- Wide Bandwidth (BW = 350 MHz Min)
- Low Differential Crosstalk (X_{TALK} = -68 dB Typ)
- Low Power Consumption (I_{CC} = 10 μA Max)
- Bidirectional Data Flow, With Near-Zero Propagation Delay
- Low ON-State Resistance (r_{on} = 5 Ω Typ)
- Rail-to-Rail Switching on Data I/O Ports (0 to V_{CC})
- V_{CC} Operating Range From 3 V to 3.6 V
- I_{off} Supports Partial-Power-Down Mode Operation

- Data and Control Inputs Have Undershoot Clamp Diodes
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Suitable for Both 10 Base-T/100 Base-T Signaling

description/ordering information

The TI TS3L100 LAN switch is a 4-bit 1-of-2 multiplexer/demultiplexer with a single switch-enable (\overline{E}) input. When \overline{E} is low, the switch is enabled and the I port is connected to the Y port. When \overline{E} is high, the switch is disabled and the high-impedance state exists between the I and Y ports. The select (S) input controls the data path of the multiplexer/demultiplexer.

ORDERING INFORMATION

TA	PACKAG	εt	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	QFN – RGY	Tape and reel	TS3L100RGYR	TK100	
	colo p	Tube TS3L100D		T001 400	
	SOIC - D	Tape and reel	TS3L100DR	TS3L100	
0°C to 70°C	SSOP (QSOP) – DBQ	Tape and reel	TS3L100DBQR	TK100	
	TOOOD DW	Tube	TS3L100PW	TI(400	
	TSSOP – PW	Tape and reel	TS3L100PWR	TK100	
	TVSOP - DGV	Tape and reel	TS3L100DGVR	TK100	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TS3L100 QUAD SPDT WIDE-BANDWIDTH LAN SWITCH WITH LOW ON-STATE RESISTANCE

SCDS161A - MAY 2004 - REVISED OCTOBER 2004

description/ordering information (continued)

This device can be used to replace mechanical relays in LAN applications. This device has low r_{on} , wide bandwidth, and low differential crosstalk, making it suitable for 10 Base-T, 100 Base-T, and various other LAN applications.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, \overline{E} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE

INPUTS		INPUT/OUTPUT	FUNCTION
Ē	S	YX	FUNCTION
L	L	IX ₀	$YX = IX_0$
L	Н	IX ₁	$YX = IX_1$
Н	X	Z	Disconnect

PIN DESCRIPTIONS

PIN NAME	DESCRIPTION	
IAn–IDn	Data I/Os	
S	Select input	
Ē	Enable input	
YA-YD	Data I/Os	

logic diagram (positive logic)

TS3L100 QUAD SPDT WIDE-BANDWIDTH LAN SWITCH WITH LOW ON-STATE RESISTANCE

SCDS161A - MAY 2004 - REVISED OCTOBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		–0.5 V to 4.6 V
Control input voltage range, V _{IN} (see Notes 1 a	and 2)	–0.5 V to 4.6 V
Switch I/O voltage range, V _{I/O} (see Notes 1, 2,	, and 3)	–0.5 V to 4.6 V
Control input clamp current, I _{IK} (V _{IN} < 0)		–50 mA
I/O port clamp current, $I_{I/OK}$ ($V_{I/O} < 0$)		–50 mA
ON-state switch current, I _{I/O} (see Note 4)		±128 mA
Continuous current through V _{CC} or GND termi	inals	±100 mA
Package thermal impedance, θ _{JA} (see Note 5)	: D package	73°C/W
	DB package	82°C/W
	DBQ package	90°C/W
	PW package	108°C/W
Storage temperature range, T _{sto}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltages are with respect to ground, unless otherwise specified.
 - 2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 3. V_I and V_O are used to denote specific conditions for V_{I/O}.
 - 4. II and IO are used to denote specific conditions for II/O.
 - 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 6)

		MIN	MAX	UNIT
VCC	Supply voltage	3	3.6	V
V_{IH}	High-level control input voltage $(\overline{\overline{E}}, S)$	2	VCC	V
VIL	Low-level control input voltage $(\overline{\overline{E}}, S)$	0	8.0	V
TA	Operating free-air temperature	0	70	°C

NOTE 6: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

TS3L100 QUAD SPDT WIDE-BANDWIDTH LAN SWITCH WITH LOW ON-STATE RESISTANCE

SCDS161A - MAY 2004 - REVISED OCTOBER 2004

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V $_{\pm}$ 0.3 V (unless otherwise noted)

PARAMETER			TEST CONDI	ITIONS	MIN	TYP [†]	MAX	UNIT
VIK	Ē, S	$V_{CC} = 3 V$,	$I_{IN} = -18 \text{ mA}$				-1.8	V
V _{hys}	Ē, S					150		mV
ΙΗ	Ē, S	$V_{CC} = 3.6 \text{ V},$	VIN = VCC				±1	μΑ
I _I L	Ē, S	$V_{CC} = 3.6 \text{ V},$	V _{IN} = GND				±1	μΑ
loz‡		V _{CC} = 3.6 V,	$V_O = 0 \text{ to } 3.6 \text{ V},$ $V_I = 0,$	Switch OFF			±1	μА
los§		V _{CC} = 3.6 V,	$V_O = 0 \text{ to } 0.5 V_{CC},$ $V_I = 0,$	Switch ON	50			mA
loff		$V_{CC} = 0$,	$V_0 = 0 \text{ to } 3.6 \text{ V},$	V _I = 0			15	μΑ
ICC		$V_{CC} = 3.6 \text{ V},$	$I_{I/O} = 0,$	Switch ON or OFF		0.1	10	μΑ
∆ICC	E, S	$V_{CC} = 3.6 \text{ V},$	One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND			750	μΑ
ICCD		V _{CC} = 3.6 V,	I and Y ports open,	V _{IN} input switching 50% duty cycle			0.45	mA/ MHz
C _{IN}	Ē, S	f = 1 MHz				3		pF
0	I port	\\. 0	D, f = 1 MHz, Outputs open, Switch OFF			5		
COFF	Y port	$V_I = 0$,			10			pF
CON	•	V _I = 0,	f = 1 MHz, Outputs open,	Switch ON		17		pF
		.,	V _I = 0 V,	I _O = 48 mA		5	7	
r _{on}		VCC = 3 V	V _I = 2 V,	I _O = 15 mA		10	15	Ω
Δr_{on}		V _I = 3 V,	Switch ON,	I _O = 15 mA		1		Ω

 $V_{\mbox{\scriptsize I}},\,V_{\mbox{\scriptsize O}},\,I_{\mbox{\scriptsize I}},$ and $I_{\mbox{\scriptsize O}}$ refer to I/O pins. $V_{\mbox{\scriptsize IN}}$ refers to the control inputs.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V, R_L = 100 Ω , C_L = 35 pF (unless otherwise noted) (see Figure 4)

PARAMETER FROM (INPUT)		TO (OUTPUT)	MIN	MAX	UNIT
tON	S	Y	1	7.5	ns
^t OFF	S	Υ	1	3.5	ns

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ (unless otherwise noted), $T_A = 25^{\circ}\text{C}$.

dynamic characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V $_{\pm}$ 0.3 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS					
X _{TALK} (Diff)	$R_L = 100 \Omega$,	f = 10 MHz, see Figure 8,	$t_f = t_f = 2 \text{ ns}$	-55	dB		
X _{TALK}	$R_L = 100 \Omega$,	f = 30 MHz, see Figure 6		-68	dB		
O _{IRR}	$R_L = 100 \Omega$,	f = 30 MHz, see Figure 7		-42	dB		
BW	R_L = 100 Ω , see Fi	gure 5		350	MHz		

[†] All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ (unless otherwise noted), $T_A = 25^{\circ}C$.

[‡] For I/O ports, the parameter IOZ includes the input leakage current.

[§] The IOS test is applicable to only one ON channel at a time. The duration of this test is less than one second.

OPERATING CHARACTERISTICS

- Gain 3 dB at 450 MHz
- Phase at 3-dB Frequency, -43 Degrees

Figure 1. Gain/Phase vs Frequency

OPERATING CHARACTERISTICS

- Off Isolation at 30 MHz, -44.6 dB
- Phase at 30 MHz, 84.41 Degrees

Figure 2. Off Isolation vs Frequency

OPERATING CHARACTERISTICS

- ▲ Crosstalk at 30 MHz, −67.3 dB
- Phase at 30 MHz, -118.4 Degrees

Figure 3. Crosstalk vs Frequency

PARAMETER MEASUREMENT INFORMATION

TEST	VCC	RL	CL	V _{X0}	V _{X1}
ton	3.3 V ± 0.3 V	100 Ω	35 pF	GND	3 V
	3.3 V ± 0.3 V	100 Ω	35 pF	3 V	GND
tOFF	3.3 V ± 0.3 V	100 Ω	35 pF	GND	3 V
	3.3 V ± 0.3 V	100 Ω	35 pF	3 V	GND

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- C. The outputs are measured one at a time, with one transition per measurement.

Figure 4. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

Figure 5. Test Circuit for Frequency Response (BW)

Frequency response is measured at the output of the ON channel. For example, when $V_S = 0$, $V_E = 0$, and YA is the input, the output is measured at IA₀. All unused analog I/O ports are left open.

HP8753ES setup

Average = 4 RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 s P1 = 0 dBM

PARAMETER MEASUREMENT INFORMATION

 \dagger A 50- $\!\Omega$ termination resistor is needed for the network analyzer.

Figure 6. Test Circuit for Crosstalk (X_{TALK})

Crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_S=0$, $V_E=0$, and YA is the input, the output is measured at IB_0 . All unused analog input (Y) ports are connected to GND and output (I) ports are connected to GND through $50-\Omega$ pulldown resistors.

HP8753ES setup

Average = 4

RBW = 3 kHz

 $V_{BIAS} = 0.35 V$

ST = 2 s

P1 = 0 dBM

PARAMETER MEASUREMENT INFORMATION

 $[\]dagger$ A 50-Ω termination resistor is needed for the network analyzer.

Figure 7. Test Circuit for Off Isolation (OIRR)

OFF isolation is measured at the output of the OFF channel. For example, when $V_S = V_{CC}$, $V_E = 0$, and YA is the input, the output is measured at IA₀. All unused analog input (Y) ports are left open and output (I) ports are connected to GND through $50-\Omega$ pulldown resistors.

HP8753ES setup

Average = 4 RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 s P1 = 0 dBM

PARAMETER MEASUREMENT INFORMATION

Figure 8. Differential Crosstalk Measurement

Differential crosstalk is a measure of coupling noise between a transmit and receive pair in the LAN application. Differential crosstalk depends on the edge rate, frequency, and load. This is calculated from the equation, $X_{TALK}(Diff)$ db = 20 log $V_{O}(Diff)/V_{I}(Diff)$, where $V_{O}(Diff)$ is the differential output voltage and $V_{I}(Diff)$ is the differential input voltage.

7-Apr-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TS3L100D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3L100DBQR	ACTIVE	SSOP/ QSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TS3L100DBQRE4	ACTIVE	SSOP/ QSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TS3L100DBQRG4	ACTIVE	SSOP/ QSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TS3L100DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3L100DGVR	ACTIVE	TVSOP	DGV	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3L100DGVRE4	ACTIVE	TVSOP	DGV	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3L100DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3L100DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3L100PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3L100PWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3L100PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3L100PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3L100RGYR	ACTIVE	QFN	RGY	16	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TS3L100RGYRG4	ACTIVE	QFN	RGY	16		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

7-Apr-2006

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- F. Package complies to JEDEC MO-241 variation BB.

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB), the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground plane or special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No—Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RGY (R-PQFP-N16)

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com https://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

DBQ (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AB.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated