

卡諾圖

- ❖交換函數通常可以使用在第3章所描述的代數技巧 來作化簡,但是使用代數步驟時會產生兩個問題:
 - 1.很難用系統化的步驟來處理問題。
 - 2.很難知道何時得到最簡解。
- ❖在本章所學習的卡諾圖 (Karnaugh maps) 可以提供 系統性的方法來化簡交換函數,克服這些困難。

❖當利用及(AND)閘和或(OR)閘實現一個函數時,其成本與使用的閘數與閘輸入數有直接的關係。在本章所發展的卡諾圖技巧,可以直接減少包含AND和OR閘二階電路的成本。

❖積項和的表示式:二階AND-OR電路(見圖2-5)

(2-19) 式和 (2-21) 式的電路

❖和項積的表示式:二階OR-AND電路(見圖2-6)

圖 2-6

(2-22) 式和 (2-24) 式的電路

- ❖最簡積項和 (minimum sum-of-products) 表示式被 定義為:具有
 - (a)最少數目的項。
 - (b)所有這些表示式具有相同最少的項且文字字元最少之 積項的和。
- ❖最簡和項積 (minimum product-of-sums) 表示式被 定義為具有
 - (a)最少數目的因式。
 - (b)所有這些表示式具有相同數目的因式且文字字元數最少。

範例

❖ 求出 $F(a, b, c) = \Sigma m(0, 1, 2, 5, 6, 7)$ 之最簡積項和表示式。

範例

$$(A + B' + C + D')(A + B' + C' + D')(A + B' + C' + D)(A' + B' + C' + D)(A + B + C' + D)(A' + B + C' + D)$$

$$= (A + B' + D') \qquad (A + B' + C') \qquad (B' + C' + D)$$

$$= (A + B' + D') \qquad (A + B' + C') \qquad (C' + D)$$

$$= (A + B' + D')(C' + D) \qquad \qquad$$
利用重合項消去
$$(5-4)$$

❖二變數卡諾圖:

		$\setminus A$			
AB	$\mid F \mid$	B	0	1	
0 0	1	0	1	0	
0 1	1				
10	0	1	1	0	
1 1	0	1		Ů	
(a)		(b)		
(/		(~)		

5-1

❖三變數卡諾圖:

		$\setminus A$			
ABC	F	$BC \setminus$	0	1	•
	<i>I</i> '	-		1	
0 0 0	0	00	0	1	
0 0 1	0	ABC = 001 , F = 0			
010	1	01	0	0	
0 1 1	1				
100	1	11	1	0	
101	0				
110	1	10	1	1	-ABC = 110 , F = 1
111	0	10			
			i	F	
(a))		(b)	
(*)	•		`	,	

三變數函數的真值表和卡諾圖

(a) 二進位表示法

(b) 十進位表示法

5-3

三變數卡諾圖全及項的位置

❖已知一個函數的全及項展開式,則在卡諾圖中與函數全及項相對應位置的方格填上1,其餘的方格填0,即可畫出卡諾圖(需要的話可以省略0)。圖5-4 所示為F(a, b, c)=m₁+m₃+m₅的卡諾圖。

bc	0	1
00	0	0 4
01	1	1 5
11	1 3	0 7
10	0 2	0 6

圖 5-4 $F(a, b, c) = \sum m(1, 3, 5) = \prod M(0, 2, 4, 6, 7)$ 的卡諾圖

圖

5-5

積項的卡諾圖

❖如果一個函數給的是代數的形式,在畫圖之前不需要將它展開成全及項形式。例如,已知:

$$f(a,b,c) = abc' + b'c + a'$$

- 1. 當a=1 且bc=10 時,則abc' 項是1, 所以我們在圖中對應於a=1 行且 bc=10 列的方格填1。
- 2. 當bc = 01時,則b'c項是1,所以 我們在圖中對應於bc = 01 列的兩 個方格填1。
- 3. 當 a = 0 時,則 a '項是1,所以我們一在圖中對應於 a = 0 行所有的方格填1。(注意:既然已經有一個1在abc = 001的方格,因為 x + x = x,所以我們不需要再放第二個1。)

❖由卡諾圖推導出一個函數的簡化表示式。

圖 5-6 三變數函數之化簡

❖F補數的卡諾圖:

圖 5-7

圖 5-6(a) 補數的卡諾圖

❖利用卡諾圖說明重合定理:

$$XY + X'Z + YZ = XY + X'Z$$

xy + x'z + yz = xy + x'z

利用卡諾圖說明重合定理

❖如果一個函數具有兩個或多個最簡積項和形式,則可以由一個卡諾圖求出所有這些形式。

$$F = \sum m(0, 1, 2, 5, 6, 7)$$

$$F = a'b' + bc' + ac$$

F = a'c' + b'c + ab

5-9

具有兩個最簡形式的函數

❖四變數卡諾圖其全及項的位置:

四變數卡諾圖全及項的位置

❖ 將 f(a, b, c, d) = acd + a'b + d' 畫在一個卡諾圖上。

圖 5-12 四變數函數的化簡

 $f = \sum m(1, 3, 5, 7, 9) + \sum d(6, 12, 13)$ = a'd + c'd

5-13

一個未完全定義函數的化簡

❖最簡和項積的求法:

$$f = x'z' + wyz + w'y'z' + x'y$$

❖首先,f中的1被畫在圖5-14中,然後由0的部分可得:

$$f' = y'z + wxz' + w'xy$$

❖則f的最簡和項積為:

$$f = (y + z')(w' + x' + z)(w + x' + y')$$

- ❖含項(implicant):函數F在卡諾圖中任何單一個1或 任何一組1可以被合併在一起而形成一個積項則被 稱為F的含項。
- ❖質含項(prime implicant):若一個積項不能再和其他項合併消去變數,則稱為質含項。

◆在圖5-15中, a'b'c、a'cd'和ac'因為不能再與其他項 合併消去變數,所以它們是質含項

◆一個函數的最簡積項和表示式包含函數的一些質含項(但不一定是全部)。

圖 5-16 所有質含項的求法

- ❖基本質含項 (essential prime implicant)
 - 如果一個全及項只被一個質含項包含,則包含此全及項的質含項稱為基本的 (essential),且它必定是最簡積項和的一部分。

$$f = BD + B'C + AC$$
 (b)

注意:陰影部分的1只被一個質含項 所包含,其他所有的1至少被兩個質 含項所包含。

圖 5-18

* 答案為
$$A'C' + A'B'D' + ACD +$$
 $\left\{ \begin{array}{c} A'BD \\ 3 \\ BCD \end{array} \right\}$

- ❖由一個卡諾圖中求得最簡積項和:
 - 1. 選擇一個尚未被包含的全及項(一個1)。
 - 2. 找出與此全及項相鄰的所有1和X。(在n變數圖中檢查 n個相鄰方格。)
 - 3. 如果一個單項包含這個全及項以及所有相鄰的1和X, 則此項為基本質含項,所以選擇此項。(注意:不理會 項在步驟2和3中要視為1,但在步驟1中不是。)
 - 4. 重複步驟1、2和3,直到選出所有的基本質含項。
 - 找出一組最少且可以涵蓋圖中所剩下1的質含項。(如果這種組合超過一種,則選擇一組文字字元數最少的。)

圖 5-19 利用卡諾圖決定最簡積項和的流程圖

陰影部分的1只被一個質含項所包含。

❖ 圖5-23 是函數

 $F(A, B, C, D, E) = \sum m(0, 1, 4, 5, 13, 15, 20, 21, 22, 23, 24, 26, 28, 30, 31)$

❖則最簡解的結果是:

$$F = A'B'D' + ABE' + ACD + A'BCE +$$
 $\left\{ egin{array}{ll} AB'C \\ arphi \\ P_1 & P_2 & P_3 & P_4 \end{array}
ight. \left\{ egin{array}{ll} AB'C \\ arphi \\ B'CD' \end{array}
ight\}$

❖圖5-24是下列函數的的卡諾圖:

 $F(A, B, C, D, E) = \sum m(0, 1, 3, 8, 9, 14, 15, 16, 17, 19, 25, 27, 31)$

第五章 卡諾圖 第122-123頁

❖最後的解是:

$$F = B'C'D' + B'C'E + A'C'D' + A'BCD + ABDE +$$
 $\left\{ egin{array}{c} C'D'E \\ \emptyset \end{array}
ight\}$ $\left\{ egin{array}{c} P_1 & P_2 & P_3 & P_4 & P_5 \end{array}
ight\}$

