MATH 239

TUTORIAL 7

Question 1:

Let K be a bipartite graph with bipartitions (X, Y):

- a) If $K = K_{m,n}$, how many vertices and edges does it have?
- b) Suppose K has p vertices, show that K has at most $\left| \frac{p^2}{4} \right|$ edges.
- c) Suppose K is k-regular with k > 0. Show that |X| = |Y|.

Answer 1:

- a) $K_{m,n}$ has m+n vertices and mn edges. The latter comes from the fact that are m vertices in X, and each of them must join to all n vertices of Y.
- b) Suppose |X| = m and |Y| = n, where m + n = p. Then, K is a subgraph of $K_{m,n}$. That is to say, $K_{m,n}$ contains all vertices and edges of K, and possibly some more. Therefore,

$$|E(K)| \leq |E(K_{m,n})|$$

$$\leq m(p-m)$$

$$\leq -\left(\frac{p}{2}-m\right)^2 + \frac{p^2}{4}$$

$$\leq \frac{p^2}{4}$$

$$\leq \left\lfloor \frac{p^2}{4} \right\rfloor$$

as |E(K)| must be an integer.

c) Notice that each vertex of |X| must join to exactly k vertices of |Y|, and vice versa. Therefore, k|X| = |E(K)| = k|Y|, and we deduce that |X| = |Y|.

Question 2:

Let n be a positive integer. We define a graph G_n as follows. The vertex set of G_n is the set of all permutations of $\{1, 2, ..., n\}$. Two permutations σ and σ' are joined by an edge G_n if and only if σ' can be obtained from σ by integerchanging two positions. (This graph is the same as Question 2 of Assignment 7.)

- a) Give the neighbours of 13542 of G_5 .
- b) Determine the number of vertices of G_n .
- c) Determine the number of edges of G_n .

Answer 2:

- a) The neighbours of 13542 can be achieved by swapping any 2 positions. Therefore, they are 31542, 53142, 43512, 23541, 15342, 14532, 12543, 13452, 13245, 13524.
- b) We count the number of permutations of n. We have n choices for the first position of the permutation, n-1 on the second (anything not the same as the first position), n-2 on the third, down to 1 choice for the last position. Therefore, |V(G)| = n!.
- c) There are $\binom{n}{2}$ ways to can choose two positions and swap them, so each vertex is adjacent $\binom{n}{2}$ edges. Since the total number of edges is twice the sum of the degree, we have $|E(G)| = \frac{1}{2}n!\binom{n}{2}$.

Date: 10/26/12.

MATH 239 2

Question 3:

Let G be a graph with minimum degree k, where $k \geq 2$. Prove that

- a) G contains a path of length at least k.
- b) G contains a cycle of length at least k.

Answer 3:

a) Let $P = v_0 v_1 \cdots v_n$ be a longest path of G. That is, there does not exist a path P' of length n+1. (Notice that P is not necessary unique.) Suppose for contradiction that n < k. However, vertex v_n has k neighbours, and $\{v_0, \ldots, v_{n-1}\}$ is a set of n < k vertices. Therefore, there exists a neighbour $u \in V(G)$ that is not in P. This means that $P' = v_0 v_1 \cdots v_n u$ is a longer path of G. Contradiction.

b) Again, let $P = v_0 v_1 \cdots v_n$ be a longest path of G. By part a), $n \ge k$. Now consider the neighbours of v_0 . These vertices must all be in P, as otherwise we can extend P like in a). Furthermore, they cannot all lie in $\{v_1, \ldots, v_{k-1}\}$ as that is a set of k-1 vertices. So, v_0 must have a neighbour v_i , where $i \ge k$. Then, the cycle $C = v_0 v_1 \cdots v_i v_0$ is a cycle of length i+1, which is at least k+1 as desired.

Question 4:

Let G be a connected graph with 5 vertices of degree 10, and the rest of the vertices of G have degree 1. Find the minimum and maximum number of vertices possible.

Answer 4:

Let the set of degree 10 vertices be X and the set of other vertices be Y. Let s be the number of edges joining 2 vertices of X together. Since each vertex of Y must join to a vertex of X, we have of $|Y| = 5 \cdot 10 - 2s$ by counting neighbours of X.

Now, in the minimum case, we want to maximize s, so the vertices of X should join to each other to get the complete grah K_5 . As K_5 has 10 edges, we have $|Y| = 5 \cdot 10 - 2 \cdot 10 = 30$. Hence, |V(G)| = 35.

On the other hand, a path from a vertex of X to another must only use vertices in X, so the subgraph of those 5 vertices are connected. Since adding an edge can degree the number of component by at most 1, there must be at least 4 edges joining those 5 vertices. For example, they can form a path of length 4. This means $|Y| = 5 \cdot 10 - 2 \cdot 4 = 42$. Hence, |V(G)| = 47.

Question 5:

Prove that, if G is connected, any two longest paths have a vertex in common.

Answer 5:

Suppose for contradiction $P=v_0v_1\cdots v_n$ and $P'=u_0u_1\cdots u_n$ are both longest paths of G. Since G is connected, there exists a path from v_i to u_j for all $0\leq i,j\leq n$. Let $Q=v_iq_1q_2\cdots q_{m-1}u_j$ be a shortest path that satisfies this property. Without loss of generality, assume $i\geq j$. Now, none of the internal vertices q_s can be in P or P', as otherwise this contradicts with Q being a shortest path. Then, $v_0v_1\cdots v_iq_1q_2\cdots q_{m-1}u_ju_{j+1}\cdots u_n$ is path since v_i and u_j are the only common vertices of P, P', and Q. Furthermore, this path contains at least $(i+1)+(n-j+1)=n+(i-j)+2\geq n+2$ vertices, so it is a path of length at least n+1