

19MA701

OPTIMIZATION THEORY

- Dr. Sarada Jayan
- Dr. Subramani R

Department of Mathematics

Convex Sets

- Let S be a set and let x_1 and x_2 be elements of the set. If the line segment joining x_1 and x_2 is also an element of S, then we say that S is convex
- Mathematically:

Let
$$x_1, x_2 \in S$$

Let $x_1, x_2 \in S$ If $\theta x_1 + (1 - \theta)x_2 \in S$ for $0 < \theta < 1$, then S is a Convex set.

Examples: Non-Convex Sets

Convex Sets

<u>Definition</u>: A set C is convex if a line segment between any two points in C lies in C.

<u>Ex</u>: Which of the below are convex sets?

The set on the left is convex. The set on the right is not.

Convex Sets

<u>Definition</u>: A set C is convex if a line segment between any two points in C lies in C.

Examples of Convex Sets

- The empty set Φ is a convex set. $\{ \}$
- A single point (singleton), i.e., $\{x_0\}$ is a convex set. $\{\cdot\}$
- $\mathbf{R}, \mathbf{R}^2, \mathbf{R}^3, ..., \mathbf{R}^n$ are convex sets.
- X axis, Y axis and any other line is convex.
- Any line segment and any ray is convex.
- Any vector space and subspace is convex.
- A hyperplane is convex.
 - Hyperplane is a solution set of a single linear equation.
 - In \mathbb{R}^2 it is a line, in \mathbb{R}^3 it is a plane.
- Solution set of linear equations, $C = \{x \mid Ax = b\}$ is convex (point/line/plane/hyperplane)

More Examples of Convex Sets

- A halfspace is convex.
 - Halfspace is the solution set of a single linear inequality. $H = \{x | a^T x \le b\}, \ a \ne 0$
 - Hyperplane divides the domain into 2 halfspaces.
- Every quadrant(n=2), octant(n=3) and orthant(n) is convex.
- A polyhedron and a polytope is convex.
 - Polyhedron is a solution set of finitely many inequalities.
 - A bounded polyhedron is often called a polytope.
- Feasible region of a linear optimization problem is always convex.

Operations that preserve convexity

• Intersection of convex sets is convex (Union of convex sets need not be convex)

Problems

1. Which of the following sets are convex?

(a) $\mathbf{R} - \{0\}$

(b)

Answers1. Only (c) and (d) are convex

(c) All the points in an interval, [a, b] > Conven

(d) All the points in an interval, $(a, b) \Rightarrow \bigcirc^{\bullet \bullet}$

(e) All points in the XY plane except the origin $\frac{1}{2}$ Not convex (f) All points in the parabola, $y = x^2$

2. Find the domain of the following functions and mention if it is convex or not

(a)
$$f(x) = \frac{1}{x-1}$$
 (b) $g(x) = \sqrt{4-x^2}$ (c) $h(x) = \frac{\sqrt{x-1}}{x}$

(c)
$$h(x) = \frac{\sqrt{x-1}}{x}$$

Answers 2. (a) Domain of f is $\mathbf{R} - \{1\}$, which is not convex

- (b) Domain of g is [-2,2], which is convex
- (c) Domain of h is $[1,\infty)$, which is convex

Convex functions

- A function $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function if:
 - (i) the domain of f is convex and f the convex f
 - (ii) $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$ for all $x, y \in \text{domain } f \text{ and } 0 \le \theta \le 1$
- Graphically, a function y=f(x) is convex if the curve y=f(x) lies below the line segment joining any two points on the curve.

• The function is strictly convex if the inequality is strictly less (<)

Concave functions

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is a concave function if -f is convex, i.e., when,

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{domain } f \text{ and } 0 \le \theta \le 1$

• Graphically, a function y=f(x) is concave if the curve y=f(x) lies above the line segment joining any two points on the curve.

• The function is strictly concave if the inequality is strictly greater (>)

Sarada Jayan & Subramani 10

Convex functions

<u>Definition</u>: A function f(x) is convex in an interval if its second derivative is positive on that interval.

Example: $f(x)=x^2$ is convex since f'(x)=2x, f''(x)=2>0

f(y)=200 f(y)=200 f(y)=200 f(y)=200

Convex functions

The second derivative test is sufficient but not necessary.

<u>Definition</u>: A function f(x) is convex if a line drawn between any two points on the function remains on or above the function in the interval between the two points.

Examples

- Linear functions and affine functions are taken to be convex as well as concave as they don't have a curvature.
- $y = x^2$ is a convex function
- $y = x^4$, $y = x^6$, $y = x^8$, ... are convex functions for all values of x.
- $y = x^3$, $y = x^5$, $y = x^7$, ... are convex functions if x > 0 (in the first quadrant) and concave in the third quadrant (x<0).
- Exponential function, $y = e^{ax}$ for any $a \in \mathbf{R}$ is a convex function as it always curves up.

Second derivative test for convexity/concavity

- A twice differentiable function f(x) is convex if its Hessian $\nabla^2 f(x)$ is at least positive definite.
- A twice differentiable function f(x) is concave if its Hessian $\nabla^2 f(x)$ is at least negative definite.
- A function f(x) is non-convex if its Hessian $\nabla^2 f(x)$ is indefinite

Examples:

1.
$$f(x) = x + 1/x$$
 is convex in $x > 0$

(Since
$$\nabla^2 f(x) = \frac{d^2 f}{dx^2} = \frac{2}{x^3} > 0 \text{ for } x > 0$$
)

2.
$$f(x) = \cos x$$
 is concave in $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

3.
$$f(x,y) = 5x^2 + 6xy + 7y^2$$
 is convex

4.
$$f(x,y) = -2x^2 + xy - 7y^2$$
 is concave

5.
$$f(x,y) = 5x^2 + 19xy + 7y^2$$
 is non-convex

6.
$$f(x,y) = x^2/y$$
 is convex if $y>0$ and concave if $y<0$

Operations that preserve convexity

- If f(x) is a convex function, then $\alpha f(x)$ is also convex for $\alpha > 0$
 - $f(x) = 8e^x$ is convex
- The sum of convex functions is also convex
 - $f(x,y) = x^4 + y^4 + e^x$ is convex
- Non-negative weighted sum of convex functions is convex
 - $f(x,y,z) = 4x^2 + 5y^2 + 3e^z$ is convex

Practical methods for establishing convexity of a function

- Verify definition
- For twice differentiable functions, check whether hessian matrix is positive definite
- Show that f is obtained from simple convex functions by operations that preserve convexity

8/9/2021 Sarada Jayan & Subramani 16

Relation between convex sets and convex functions

The set of all points in the region $g(x) \le 0$ is a convex set if the function g(x) is a convex function.

8/9/2021 Sarada Jayan & Subramani 17

Optimization Problem in standard form

Minimize
$$f(x)$$
 7/
subject to $g_i(x) \le 0, i = 1, 2, ..., m$

$$h_i(x) = 0, i = 1, 2, ..., p$$

x : decision variable

 $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function (or cost fn. if obj. is min.)

 $g_i: \mathbb{R}^n \to \mathbb{R}$ are the inequality constraints

 $h_i: \mathbb{R}^n \to \mathbb{R}$ are the equality constraints

Domain of the standard optimization problem:

$$\mathbf{D} = \bigcap_{i=1}^m dom \ g_i \ \cap \ \bigcap_{i=1}^p dom \ h_i$$

Convex Optimization Problem

An optimization problem in the standard form:

Minimize f(x)

subject to
$$g_i(x) \le 0, i = 1, 2, ..., m$$

 $h_i(x) = 0, i = 1, 2, ..., p$

is said to be convex if

- (i) the objective function is convex
- (ii) the feasible region is convex

Convex Feasible regions

- Feasible region of the optimization problem is the intersection of each constraint $g_i(\mathbf{x}) \le 0, i = 1, 2, ..., m, \quad h_i(\mathbf{x}) = 0, i = 1, 2, ..., p$
- Since intersection of convex sets is convex, convexity of the feasible region can be checked by checking whether each constraint gives a convex set.
- $g_i(x) \le 0$ is a convex set if g_i is a convex function.
- $h_j(x) = 0$ will be a convex set only if $h_j(x)$ is linear. (Any linear equality constraint represents a line or a plane or a hyperplane which is a convex set. Any non-linear equality constraint represents a curve or a curved surface which cannot be a convex set.)

/9/2021 Sarada Javan & Subramani

Convex Optimization Problem

An optimization problem in the standard form:

Minimize f(x)

subject to
$$g_i(x) \le 0, i = 1, 2, ..., m$$

 $h_i(x) = 0, i = 1, 2, ..., p$

is said to be convex if

- (i) the objective function is convex
- (ii) the inequality constraint functions, $g_i(x)$ are convex
- (iii) the equality constraint functions, $h_j(x)$ are linear

3/9/2021 Sarada Jayan & Subramani 21

Optimization problems with convex Feasible regions

Optimization problems involving linear inequality constraints have convex feasible region.

Eg:
$$-x + y \le 2$$
, $2x + 3y \le 12$, $x \ge 0$, $y \ge 0$

(Feasible region will be a null set, or a polyhedron)

Optimization problems with only linear equality constraints have a convex feasible region.

(Feasible region will be a null set, or a singleton or a line or a plane)

Optimization problems with linear equality and inequality constraints have convex feasible region.

Eg:
$$-x + 2y \le 2$$
, $2x + 3y = 12$, $x \ge 0$, $y \ge 0$

Optimization problems involving convex inequality constraints have a convex feasible region.

Eg:
$$x^2 + y^2 \le 1$$
, $(x - 1)^2 + (y - 1)^2 \le 1$, $x \ge 0$, $y \ge 0$

79/2021 Sarada Jayan & Subramani

Note:

Feasible region for an optimization problem with **non-linear equality constraint(s) is never a convex set** regardless of whether the equality constraints is convex or not.

$$x^{2} + y^{2} = 1,$$

$$x \ge 0,$$

$$y \ge 0$$

Examples:

1. Minimize
$$5x + 9y^2$$

subject to
$$x^2 - 4y + 9x \le 7$$

 $2x^2 + 3xy + 81y^2 \le 5$

2. Minimize
$$(x - 1)^2 + (y - 1)^2 + xy$$

subject to $x + y \le 4$
 $2x + x^2 + y^2 = 16$

3. Maximize
$$x^2 + y^2$$

subject to $x + y \le 4$
 $2x + x^2 + y^2 \le 16$

4. Maximize,
$$xy - (x - 1)^2 - (y - 1)^2$$

subject to $2x + x^2 + y^2 \le 16$
 $3x - 7y = 9$

Is a C.O.P. since f(x), $g_1(x)$ and $g_2(x)$ are convex

Is not a C.O.P. since the equality constraint is non-linear

> Is not a C.O.P. since the objective in the standard form is concave.

Is C.O.P. Since f(x) (after writing in standard form), $g_1(x)$ is convex and $g_2(x)$ is linear

Fundamental Property of Convex Optimization Problems

Any locally optimal point of a convex optimization problem is globally optimal

8/9/2021 Sarada Jayan & Subramani 25

Tutorial questions

- 1. Consider the function $f(x_1, x_2) = x_1^2 + 2x_2^2 4x_1x_2 4x_2 + 7x_1 + 15$. Is this function convex?
- 2. Is the given non-linear programming problem convex? Why or why not?

Maximize
$$z = 9x_1^2 - 4x_1x_2 + 7x_2^2$$

Subject to $x_1^2 + 2x_1x_2 + 3x_2^2 = 40$; $2x_1^2 - x_2 \le 80$; $x_1 \le 60$.

- 3. Is the following statement true? Explain.
 - "Maximize $(x-3)^2 + (y-8)^2$ is not a convex optimization problem but Minimize $(x-3)^2 + (y-8)^2$ is a convex optimization problem"
- 4. Determine if the following optimization problems are convex optimization problems. Use graphical methods to solve these problems.

(a) Maximize
$$-6x + 9y$$

subject to $x - y \ge 2$
 $3x + y \ge 1$
 $2x - 3y \ge 3$

(b) Minimize
$$x^2+2y^2$$

subject to $x + y \ge 1$; $x, y \ge 0$

8/9/2021

Tutorial questions

5. Draw the feasible region and determine the convexity status:

Minimize
$$x^2+2y^2-24x-20y$$

subject to $x + 2y \ge 0$; $x + 2y \le 9$; $x + y \le 8$; $x + y \ge 0$

6. Explain why the given optimization problem is not convex.

Maximize
$$(x-2)^2 + (y-10)^2$$

subject to $x^2 + y^2 = 50$
 $x^2 + y^2 + 2xy - x - y + 20 \ge 0; x, y \ge 0.$

7. Determine if the following optimization problem is convex optimization problems or not:

Minimize
$$\frac{100}{e^{2x+y}}$$

subject to $e^x + e^y \le 20$;
 $x, y \ge 1$.