MEP: Demonstration Project Unit 17: Using Graphs

UNIT 17 Using Graphs

Overhead Slides

Overhead Slides

17.1	Graph Transforms 1
17.2	Graph Transforms 2
17.3	Distance-Time Graph
17.4	Speed-Time Graph

The graph of y = f(x) is shown below.

On the diagram, draw graphs of:

$$(a) \quad y = f(x+3)$$

(a)
$$y = f(x + 3)$$
 (b) $y = f(\frac{x}{2})$

(c)
$$y = f(2x)$$

$$(d) y = f(x) - 2$$

(e)
$$y = 2 f(x)$$

The graph of $y = x^2$ is illustrated below, together with some transformations of this graph.

Suggest the possible forms of the transformation of $y = x^2$ to the functions with graphs labelled:

A ______ B ____ C ____

D _____ E ____

OS 17.3

The diagram shows four distance-time graphs.

Calculate the speeds of the car, lorry, cyclist and pedestrian.

Give your answers in m/s, correct to 2 d.p. where applicable.

- 1. Speed of car = _____
- 2. Speed of lorry = _____
- 3. Speed of cyclist = _____
- 4. Speed of pedestrian = _____

OS 17.4

A speed-time graph for a plane is shown below.

Estimate:

- (a) the speed after 1 hour
- (b) the acceleration at 1 hour
- (c) the cruising speed
- (d) the deceleration at time 5 hours
- (e) the landing speed at time 6 hours
- (f) the total distance travelled.