

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190805203

FCC REPORT

Applicant: Xwireless LLC

Address of Applicant: 11565 Old Georgetown Road, Rockville, MD 20852United States

Equipment Under Test (EUT)

Product Name: LTE smartphone

Model No.: MUV

Trade mark: Vortex

FCC ID: 2ADLJMUV

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Aug., 2019

Date of Test: 17 Aug., to 19 Sep., 2019

Date of report issued: 23 Sep., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	23 Sep., 2019	Original

Test Engineer

Winner Thang Date: Tested by: 23 Sep., 2019

Reviewed by: 23 Sep., 2019

Project Engineer

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	7
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	54
0	CHT	CONSTRUCTIONAL DETAILS	EE

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD 20852United States
Manufacturer/Factory:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD 20852United States

5.2 General Description of E.U.T.

Product Name:	LTE smartphone
Model No.:	MUV
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.38 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-2000mAh
AC adapter:	Model: MUV Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 800mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Report No: CCISE190805203

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				

Transmitting mode Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.			
Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(H20)	6.5Mbps		
802.11n(H40)	13.5Mbps		

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.38 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Frequency range	Limit (c	dBuV)		
-	(MHz)				
	0.15-0.5 66 to 56* 56 to 46*				
	0.5-5 56 46				
	5-30	60	50		
Test procedure	* Decreases with the log				
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 				
Test setup:	Reference Plane				
	AUX Equipment E.U.T EMI Receiver Remark E.U.T: Equipment Under Test				
	LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Product name:	LTE smartphone	Product model:	MUV
Test by:	Carey	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	₫BuV	₫B	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.158	36.26	-0.44	10.77	46.59	65.56	-18.97	QP
2	0.178	36.21	-0.43	10.77	46.55	64.59	-18.04	QP
3	0.178	19.81	-0.43	10.77	30.15	54.59	-24.44	Average
1 2 3 4 5 6 7 8	0.211	33.18	-0.41	10.76	43.53	63.18	-19.65	QP
5	0.211	17.83	-0.41	10.76	28.18	53.18	-25.00	Average
6	0.435	32.66	-0.38	10.73	43.01	57.15	-14.14	QP
7	0.471	21.02	-0.38	10.75	31.39	46.49	-15.10	Average
8	0.535	35.02	-0.39	10.76	45.39	56.00	-10.61	QP
9	0.535	21.01	-0.39	10.76	31.38	46.00	-14.62	Average
10	0.589	34.77	-0.39	10.76	45.14	56.00	-10.86	QP
11	0.595	20.61	-0.38	10.77	31.00	46.00	-15.00	Average
12	0.743	18.33	-0.38	10.79	28.74	46.00	-17.26	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	LTE smai	rtphone			Product model:			MUV		
est by:	Carey				Test mo	ode:	Wi	-Fi Tx mode		
est frequency:	150 kHz -	~ 30 MHz	<u>z</u>		Phase:		Ne	utral		
est voltage:	AC 120 V	//60 Hz			Enviror	nment:	Те	mp: 22.5℃	Hun	i: 55%
70 60 50 40	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV		10 111		12		\\\\\\\\	FCC PART		
20 10 0.15 .2 Trace: 23	.5		1	2 Frequence	cy (MHz)	5	on the last of	10	20	30
0.15 .2		Read		Frequence	cy (MHz)	5 Limit Line	Over Limit	10 Remark	20	30
0.15 .2		Read	LISN	Frequence		Limit			20	30

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH	Max	ximum Conducte	Bm)	Limit(dBm)	Result	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(ubin)	Result
Lowest	15.03	14.08	13.07	11.17		
Middle	15.13	14.06	13.09	11.28	30.00	Pass
Highest	15.05	14.14	13.09	11.06		

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH		6dB Emission B	andwidth (MHz)		Limit/Idla	Result	
reston	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Resuit	
Lowest	10.24	16.56	17.84	36.64			
Middle	10.24	16.56	17.84	36.64	>500	Pass	
Highest	10.24	16.56	17.76	36.64			
Test CH		99% Occupy Ba	andwidth (MHz)			Result	
Teston	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)		
Lowest	12.24	17.04	17.92	36.96			
Middle	12.24	17.04	17.92	36.80	N/A	N/A	
Highest	12.32	16.96	17.92	36.80			

Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

Toot CH		Power Spectra		Limit/dDm\	Dogult	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	5.20	1.03	0.03	-4.58		
Middle	5.64	1.00	0.60	-4.12	8.00	Pass
Highest	5.86	1.02	0.02	-3.78		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205			
Test Frequency Range:	2.3GHz to 2.5G	Hz				
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
		RMS	1MHz	3MHz	Average Value	
Limit:	Frequenc	y Lin	nit (dBuV/m @		Remark	
	Above 1GI	Hz —	54.00 74.00		Average Value Peak Value	
Test procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the numbers and to find the numbers and the limit specified EUT have 10dB	able was rot t radiation. the interfere p of a variate meter to fou value of the ns of the ant was arrang to heights from o degree eak Detect F old Mode. c mode was e stopped ar se the emiss one by one to	1.5 meters above rated 360 degrees nce-receiving ble-height antenna r meters above field strength. enna are set to ed to its worst om 1 meter to 4 es to 360 degrees			
Test setup:	150cm	AE EUT (Turntable)	3m Ground Reference Plane	Pre-mpiñer Controller	Tower	
Test Instruments:	Refer to section	5.8 for detail	S			
Test mode:	Refer to section					
Test results:	Passed					

802.11b mode:

oduct Name:	L	TE smartph	one			Product	Model:	MU	MUV	
st By:	C	Carey Test mode: 802.11b Tx			Test mode: 802.11b Tx mod			802.11b Tx mode Vertical		
st Channel:	L	_owest channel				Polarization:				
st Voltage:	А	C 120/60H	Z			Environn	nent:	Те	mp: 24 ℃	Huni: 57%
110 Level (d	IB <mark>u</mark> V/m)								71	
100									~	~
										1
80									FCC PART	15 (DIC)
-									- FUC PART	13 (FM)
60	man		00-		n 0.5	MAG A	1	. A Am. M	FCC PART	15 (AV)
~ ~	- C James	Marken Market	and a way	, v	~~~~	- V - V wh	2	~ V	TCC PART	13 (AV)
40										
20										10
02310	2320		235	0						2422
2310	2320		233	7000	quency (M	Hz)				2422
	Fre	Read/ q Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line		Remark	
	MIH	z dBuV	<u>dB</u> /π		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$			
Wa	2390.00	0 24.16	27.07	4.69		57.60				

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name	: L	TE smartph	one			Product	Model:	MU	V	
Test By:	(Carey				Test mod	le:	802	802.11b Tx mode	
Test Channel:	L	owest chan	nel			Polarizat	ion:	Hor	izontal	
Test Voltage:	,	AC 120/60H	Z			Environn	nent:	Ter	np: 24 ℃	Huni: 57%
110 Level (dBuV/m)								<i></i>	$\overline{}$
80									FCC PART	15 (PK)
60	mm	mm	m	Marin	~~~	~~~~	~~~~ 1	m	FCC PART	15 (AV)
40										
20										
0 23 1 0	2320		235		juency (M	Hz)				2422
		eq Level		Loss	Factor	Level			Remark	9 <u>0-4</u>
	MI	Hz dBuV	dB/m	₫B	dB	dBuV/m	dBuV/m	dB		
1 2	2390.00 2390.00				0.00 0.00	57.25 46.85	74.00 54.00	-16.75 -7.15	Peak Average	

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE smartphone		Product Model:	MU	v	
Test By:	Carey		Test mode:	802.	.11b Tx mo	de
Test Channel:	Highest channel		Polarization:	Vert	ical	
Гest Voltage:	AC 120/60Hz		Environment:	Tem	np: 24℃	Huni: 57%
110 Level (dBuV/m)					
100						
80					FCC PART	15 (PK)
60		1		~~~	LECG-PART	18TAY)
40						
20						
02452		Frequency	(MHz)			2500
	ReadAntenna Freq Level Factor	Cable Pream Loss Facto	p Limi [.] r Level Lin	t Over e Limit D	Remark	
	MHz dBuV dB/m	dBd	B dBuV/m dBuV/i	n dB		
1 248 2 248	3.500 25.37 27.36 3.500 13.23 27.36	4.81 0.0 4.81 0.0	0 59.24 74.00 0 47.10 54.00	0 -14.76 1 0 -6.90 1	Peak	

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	ame: LTE smartphone		Product I	Model:	MU	MUV			
est By:	Carey			Test mod	le:	802	802.11b Tx mode		
est Channel:	Highest chan	nel		Polarizat	ion:	Hor	Horizontal		
est Voltage:	AC 120/60Hz			Environn	nent:	Ten	np: 24℃	Huni: 57%	
110 Level (dBuV/n 100 80 60 40	n)				2		FCC PART		
02452		Fi	requency (M	IHz)				2500	
	ReadA Freq Level	ntenna Cabl Factor Los	e Preamp s Factor	Level	Limit Line	Over Limit	Remark		
	MHz dBuV	dB/m c	ibab	dBuV/m	dBuV/m	dB			
	3.500 23.18 3.500 13.21	27.35 4.8 27.35 4.8	31 0.00 31 0.00	57.04 47.07	74.00 54.00	-16.96 -6.93	Peak Average		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

roduct Name:	LTE	LTE smartphone					Product Model:			MUV	
est By:	Care	Carey				Test mode: 80			02.11g Tx mode		
est Channel:	Low	est chanr	nel			Polarization:			Vertical		
est Voltage:	AC	AC 120/60Hz					Environment:			emp: 24°C Huni: 57%	
110 Level (dBuV	/m)										
110	,		1	1		Y Y			Y		
100									~~~	m	
									5"		
80									FCC PART	15 (DIC)	
1									CCFARI	13 (FK)	
60]		
mmm	mon	~~~	many	When	m	where	mm	~~~	FCC PART	15 (AV)	
							1				
40											
20											
20											
0			235	0						2422	
			235		quency (M	IHz)				2422	
0)	D . 14		Fred			T.:			2422	
0		ReadA Level	ntenna	Fred Cable	Preamp		Limit Line	Over Limit	Remark	2422	
0		ReadA Level dBuV	ntenna Factor	Fred Cable Loss	Preamp Factor		Line	Limit	Remark	2422	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct Name:	LTE	Carey Lowest channel					Model:	MU	MUV 802.11g Tx mode Horizontal		
est By:	Car						le:	802			
est Channel:	Low						ion:	Hor			
est Voltage:	AC						Environment:			Temp: 24°C Huni: 57%	
Laurel (dB)	Aller V										
110 Level (dBu	iv/m)										
100		-					-		mon	mond	
									1		
80									Laconor	45 (5)(0)	
									FCC PART	15 (PK)	
60							4	- /			
my	and the same	MAN	man	man	more	wy	my	V~	FCC PART	15 (AV)	
100					*		3				
40											
20											
0										30	
2310 23	20		2350		uency (M	U-1				2422	
				rieq	uency (M	пи					
	523	ReadA	ntenna	Cable	Preamp	1 125 5523	Limit	Over	121 E		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark		
-	MHz	dBu∜	₫B/m	<u>ab</u>	₫B	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>			
1	2390.000	23.76	27.08	4.69	0.00	57.21	74.00	-16.79	Peak		
	2390.000	13.33	27.08	4.69	0.00	46.78			Average		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE smartphone	Product Model:	MUV
Test By:	Carey	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE smartphone	Product Model:	MUV
Test By:	Carey	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					
	MHz	₫₿uѶ	$\overline{dB/m}$	 <u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

oduct N	ame:	ne: LTE smartphone				Product I	Model:	MU	MUV			
st By:		Car	Carey Lowest channel					le:	802	802.11n(HT20) Tx mode Vertical		
st Chan	nel:	Lov						ion:	Ver			
Test Voltage:			AC 120/60Hz					nent:	Ten	np: 24℃	Huni: 57%	
110 Le	evel (dB	uV/m)										
100											CONT.	
										1	The same of the sa	
80										FCC PART	15 (PK)	
60	and and	and the same	myn	~~~~	www	www	n	mont	N	FCC PART	15 (AV)	
								2				
40												
20												
20												
0	310 23	20		235							2422	
0	10 23	20		235		quency (M	Hz)				2422	
0	10 23	20	Read		Fred		•	Limit	Over		2422	
0	10 23		Read/ Level	Ant enna	Fred	Preamp	•			Remark	2422	
0	i10 23		Level	Ant enna	Fred	Preamp Factor		Line	Limit	Remark	2422	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE	LTE smartphone				Product I	Model:	MU	MUV			
Test By:	Care	Э у				Test mode: 80			802.11n(HT20) Tx mode			
Test Channel:	Low	est chanr	nel			Polarizat	ion:	Но	Horizontal			
Test Voltage:	AC ·	AC 120/60Hz				Environn	nent:	Ter	mp: 24℃	Huni: 57%		
110 Level (dB	uV/m)								ww	}		
80									FCC PART	15 (PK)		
60	~~~~	~~~	m	v	~~~~	~~~~\	~~~~~ <u>~</u>	, and	FCC PART	15 (AV)		
40												
20												
0 2310 23	320	To ye	235		quency (M	1Hz)				2422		
VIII 600 VI	Freq		ntenna Factor			Level	Limit Line	Over Limit	Remark			
-	MHz	dBu∜	dB/π	₫B		dBu√/m	dBuV/m					
	2390.000 2390.000	22.76 13.11	27.08 27.08	4.69 4.69	0.00 0.00		74.00 54.00		Peak Average			
Remark:												

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE smartphone	Product Model:	MUV		
Test By:	Carey	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq	ReadAntenna Freq Level Factor							Remark
	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2483.500 2483.500					61.18 49.01			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE	smartph	one			Product I	Model:	MU	V	
Test By:	Care	еу				Test mod	le:	802	802.11n(HT20) Tx mode	
Test Channel:	High	nest chan	nel			Polarizat	ion:	Hor	Horizontal	
Test Voltage:	AC	120/60Hz				Environn	nent:	Ten	np: 24℃	Huni: 57%
110 Level (d 100 80 60 40	BuV/m)						1 2		FCC PART	
0 2452 1 2	Freq MHz 2483.500 2483.500	ReadA Level dBuV 24.40 13.87	Factor —dB/m			Level	dBu√/m 74.00	Limit dB -15.74		2500

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	LTE smartphone	Product Model:	MUV		
Test By:	Carey	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu₹		dB	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000				0.00 0.00				

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE smartphone	Product Model:	MUV
Test By:	Carey	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq		Antenna Factor						
MHz	dBu∜	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
2390.000 2390.000								

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE smartphone	Product Model:	MUV	
Test By:	Carey	Test mode:	802.11n(HT40) Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
) -	2483.500 2483.500								

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE smartph	one		Product I	Model:	MU	MUV	
Test By:	Carey			Test mod	le:	802	.11n(HT40)	Tx mode
Test Channel:	Highest chan	inel		Polarizat	ion:	Hor	izontal	
Test Voltage:	AC 120/60Hz	<u>7</u>		Environn	nent:	Ten	np: 24℃	Huni: 57%
						•		
110 Level (dBuV/n	n)							
100	~~~~	~~~~	~~~~					
80							FCC PART	15 (PK)
				7	~~~	_1		
60							FCC PART	15 (AV)
						1		
40								
20								-
0 ²⁴³²	2450		The last state of the last sta		=			2500
		F	requency (M	Hz)				
	Read	Antenna Cab	le Preamp		Limit	Over		
	Freq Level	Factor Lo	ss Factor	Level	Line	Limit	Remark	
	MHz dBuV	dB/m	<u>ab</u> ab	dBuV/m	dBuV/m	₫B		
1 248 2 248	33.500 29.48 33.500 17.23	27.35 4. 27.35 4.	81 0.00 81 0.00	63.34 51.09	74.00 - 54.00		Peak Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

6.7.1 Conducted Emission	Method
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission M	.7.2 Radiated Emission Method								
Test Requirement:	FCC Part 15 C S	ection 15.20	9 and 15.205						
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VB\	W	Remark			
·	30MHz-1GHz	Quasi-peak	(120KHz	300KHz		Quasi-peak Value			
	Above 1GHz	Peak	1MHz	ЗМЬ	Hz	Peak Value			
	Above 10112	RMS	1MHz	3MI	Hz	Average Value			
Limit:	Frequency		imit (dBuV/m @3	m)		Remark			
	30MHz-88MH		40.0			uasi-peak Value			
	88MHz-216MH		43.5			uasi-peak Value			
	216MHz-960M		46.0			uasi-peak Value			
	960MHz-1GH	IZ	54.0 54.0			uasi-peak Value Average Value			
	Above 1GHz	<u> </u>	74.0			Peak Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 								
Test setup:	Sheet. Below 1GHz FUT Turn Table Ground I	·	Im A		_				

Measurement Data (worst case):

Below 1GHz:

Product Name:	LTE smartphone	Product Model:	MUV
Test By:	Carey	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

			ReadAntenna Cab Level Factor Lo		Cable Preamp Loss Factor Level			Over Limit	Remark
	MHz	dBu₹	dB/m	₫B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	97.798	53.57	11.95	1.98	29.54	37.96	43.50	-5.54	QP
2	106.013	54.02	11.98	2.01	29.48	38.53	43.50	-4.97	QP
3	172.599	51.28	9.74	2.68	29.03	34.67	43.50	-8.83	QP
4	180.017	56.14	9.98	2.73	28.97	39.88	43.50	-3.62	QP
5	196.510	51.89	10.50	2.84	28.85	36.38	43.50	-7.12	QP
6	236.645	51.32	12.18	2.83	28.61	37.72	46.00	-8.28	QP

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE smartphone	Product Model:	MUV
Test By:	Carey	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Intenna Factor						Remark
1.000 1.000	MHz	dBu∜	— <u>d</u> B/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	106.013	49.89	11.98	2.01	29.48	34.40	43.50	-9.10	QP
1 2 3 4 5	163.182	50.74	9.39	2.61	29.11	33.63	43.50	-9.87	QP
3	171.393	54.41	9.69	2.66	29.04	37.72	43.50	-5.78	QP
4	180.017	58.02	9.98	2.73	28.97	41.76	43.50	-1.74	QP
5	196.510	56.09	10.50	2.84	28.85	40.58	43.50	-2.92	QP
6	236.645	57.16	12.18	2.83	28.61	43.56	46.00	-2.44	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz											
				802.11b							
	Test channel: Lowest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	48.08	30.94	6.81	41.82	44.01	74.00	-29.99	Vertical			
4824.00	51.18	30.94	6.81	41.82	47.11	74.00	-26.89	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	41.34	30.94	6.81	41.82	37.27	54.00	-16.73	Vertical			
4824.00	42.74	30.94	6.81	41.82	38.67	54.00	-15.33	Horizontal			
			T41	annal Mil	llo obcassi						
				nannel: Midd							
	Deed	A		tector: Peak	k value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	49.99	31.20	6.85	41.84	46.20	74.00	-27.80	Vertical			
4874.00	50.47	31.20	6.85	41.84	46.68	74.00	-27.32	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	39.46	31.20	6.85	41.84	35.67	54.00	-18.33	Vertical			
4874.00	39.41	31.20	6.85	41.84	35.62	54.00	-18.38	Horizontal			
	Test channel: Highest channel										
		T T		tector: Peak	v Value		T				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	49.29	31.46	6.89	41.86	45.78	74.00	-28.22	Vertical			
4924.00	50.39	31.46	6.89	41.86	46.88	74.00	-27.12	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	39.46	31.46	6.89	41.86	35.95	54.00	-18.05	Vertical			
4924.00	39.25	31.46	6.89	41.86	35.74	54.00	-18.26	Horizontal			

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	49.56	30.94	6.81	41.82	45.49	74.00	-28.51	Vertical		
4824.00	49.51	30.94	6.81	41.82	45.44	74.00	-28.56	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	39.39	30.94	6.81	41.82	35.32	54.00	-18.68	Vertical		
4824.00	39.46	30.94	6.81	41.82	35.39	54.00	-18.61	Horizontal		
			Test ch	nannel: Midd	dle channel					
			De	tector: Peak	k Value		T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.84	31.20	6.85	41.84	46.05	74.00	-27.95	Vertical		
4874.00	49.46	31.20	6.85	41.84	45.67	74.00	-28.33	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.89	31.20	6.85	41.84	36.10	54.00	-17.90	Vertical		
4874.00	39.42	31.20	6.85	41.84	35.63	54.00	-18.37	Horizontal		
			Test ch	annel: High	est channel					
				tector: Peak	k Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	49.72	31.46	6.89	41.86	46.21	74.00	-27.79	Vertical		
4924.00	49.09	31.46	6.89	41.86	45.58	74.00	-28.42	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	39.78	31.46	6.89	41.86	36.27	54.00	-17.73	Vertical		
4924.00	39.34	31.46	6.89	41.86	35.83	54.00	-18.17	Horizontal		
Remark:	vel – Receive	r Read level -	- Antenna Fa	octor + Cable	I oss – Pream	anlifier Factor				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	49.82	36.06	6.81	41.82	50.87	74.00	-23.13	Vertical		
4824.00	49.48	36.06	6.81	41.82	50.53	74.00	-23.47	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	39.64	36.06	6.81	41.82	40.69	54.00	-13.31	Vertical		
4824.00	39.38	36.06	6.81	41.82	40.43	54.00	-13.57	Horizontal		
	Test channel: Middle channel									
			De	tector: Peak	v Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.92	36.32	6.85	41.84	51.25	74.00	-22.75	Vertical		
4874.00	49.46	36.32	6.85	41.84	50.79	74.00	-23.21	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.06	36.32	6.85	41.84	40.39	54.00	-13.61	Vertical		
4874.00	39.23	36.32	6.85	41.84	40.56	54.00	-13.44	Horizontal		
			Test ch	annel: High	est channel					
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	49.73	36.58	6.89	41.86	51.34	74.00	-22.66	Vertical		
4924.00	49.11	36.58	6.89	41.86	50.72	74.00	-23.28	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	39.84	36.58	6.89	41.86	41.45	54.00	-12.55	Vertical		
4924.00	39.56	36.58	6.89	41.86	41.17	54.00	-12.83	Horizontal		
Remark:										

1 Ciliain

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	49.89	36.06	6.81	41.82	50.94	74.00	-23.06	Vertical		
4844.00	48.52	36.06	6.81	41.82	49.57	74.00	-24.43	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	38.58	36.06	6.81	41.82	39.63	54.00	-14.37	Vertical		
4844.00	38.89	36.06	6.81	41.82	39.94	54.00	-14.06	Horizontal		
	Test channel: Middle channel									
				tector: Peal						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.98	36.32	6.85	41.84	51.31	74.00	-22.69	Vertical		
4874.00	48.52	36.32	6.85	41.84	49.85	74.00	-24.15	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	38.12	36.32	6.85	41.84	39.45	54.00	-14.55	Vertical		
4874.00	38.27	36.32	6.85	41.84	39.60	54.00	-14.40	Horizontal		
			Test ch	annel: High	est channel					
				tector: Peal						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	49.79	36.45	6.87	41.85	51.26	74.00	-22.74	Vertical		
4904.00	49.13	36.45	6.87	41.85	50.60	74.00	-23.40	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	38.89	36.45	6.87	41.85	40.36	54.00	-13.64	Vertical		
4904.00	39.54	36.45	6.87	41.85	41.01	54.00	-12.99	Horizontal		
Remark:	. 5				, -	=				

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 53 of 55