0.0 TOPIC

x + y some example equation related to the topic (1)

Mynd? Always try to have a visual representation of the equation

Topic: describes. minute details about the equation

Theorem: Definition of "Topic" theorem + tab

Uses: What is it be used for in linear algebra

Example: "We can use **this** to calculate **that**", followed by an example

Mynd? Always try to have a visual along with the example

Exercise: Exercise for the reader

Revision

0.1 LINEAR EQUATIONS

$$x + 2 = y \tag{2}$$

This is an example of a **linear equation**, one that has two variables, x and y, and it describes how the value of one of the variables depends on the value of the other variable.

What makes it **linear** is that every variable is only raised to the first power, so *this*

$$x^2 + 2 = y$$

is **not** a linear equation.

Lets plot (draw) equation (2), for a few different values of x, say, -6, -2, 1 and 5.

As you can see, the graph of this equation is a **straight line**, which is true for all linear equations

0.1 Linear equation with multiple variables

$$x + 9y + z = 3$$
 (3)

Lets now extend our definition of a linear equation to include more variables. (2) had only x and y, but (3) has 3 variables, x, y and z.

The 9 in front of the y? That is called a *coefficient*, and the 3 on the right-hand-side is called a *constant*

Because we will (eventually) run out of letters in the alphabet, we write our equations like this:

$$c_1x_1 + c_2x_2 + c_3x_3 + \ldots + c_nx_n = b$$

Here the c's are the coefficients, the x's are the variables and the b is (spoiler) the constant .

It may look complex the first time, but you'll get used to reading equations like this.

Lets look at an example: Jimmy goes to the store to buy cokes, snickers and apples. Jimmy knows that a can of coke is 2.2\$, snickers is 1.6\$ and an apple is 3.0\$

If c_1 is price of coke, c_2 is price of snickers and c_3 is price of apples, our equation would look like this

$$2.2x_1 + 1.6x_2 + 3.0x_3 = b$$

Jimmy needs a couple of cokes (x_1) and four apples (x_3) . Jimmy has 20\$. How many snickers bars can he buy with the leftover money?

$$2.2 \cdot 2 + 1.6x_2 + 3.0 \cdot 4 = 20$$

Do the math and help Jimmy get his snickers by solving for x_2 .

0.1 System of equations

$$2x_1 + x_2 = 17$$

$$x_1 + 3x_2 = 26$$

The equations above are an example of a **system of equations**.

We want to solve these systems by finding the correct values for the *variables*, in this case, x_1 and x_2 , so that both equations work out.

We could start by *guessing* that $x_1 = 3$ and $x_2 = 5$, which would give us

$$2 \cdot 3 + 2 = 8 \neq 17$$

$$3 + 3 \cdot 5 = 18 \neq 26$$

This is far from correct, we need the **the substitution method**.

The substitution method consists of **two** steps, that you use over and over again until the system has been solved. These steps are:

- 1. Isolating a variable
- 2. Substitution
- 3. Simplification

Lets take another look at our system

$$2x_1 + x_2 = 17 (4)$$

$$x_1 + 3x_2 = 26 (5)$$

and solve it using the substitution method.

- 1. isolate the x_1 from (4), $x_1 = 26 3x_2$
- 2. substitute x_1 into (3), $2(26-3x_2) + x_2 = 17$
- 3. now the system looks like

$$2(26 - 3x_2) + x_2 = 17 ag{6}$$

$$x_1 + 3x_2 = 26 (7)$$

4. which simplifies to

$$x_2 = 7 \tag{8}$$

$$x_1 + 3x_2 = 26 (9)$$

5. now we just insert x_2 into (8) to get

$$x_2 = 7 \tag{10}$$

$$x_1 + 21 = 26 (11)$$

6. so (8) simplifies to $\boldsymbol{x}_1 = \boldsymbol{5}$

Now its your turn to solve the following

$$6x_1 + 2x_2 = 70$$

$$3x_1 + 3x_2 = 45$$

Vectors

0.2 VECTOR PROPERTIES

Vectors: Its easy to think of vectors as a **length** and a **direction**, usually denoted $v = [x_1 \ x_2 \ x_3 \ \dots \ x_n]$.

Above we have an example of a **(2-dimensional)** vector, written both as a row vector and a column vector. The vector represents a "travel" by 4 steps along the x_1 axis and 3 steps along the x_2 axis. So if you find yourself positioned at the point (2, -4) and someone "applies" this vector to you, you'll be moved to (2+4, -4+3) = (6, -1).

Vector operations: The length of a vector is written as $|\vec{v}|$ and found with the Pythagorean-theorem:

$$|\vec{v}| = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

and its direction is written $\theta_{\vec{\nu}}$ and calculated using absolute classic geometry

$$\theta_{\vec{v}} = \tan^{-1}\frac{3}{4}$$

Example:

Exercise: asd

0.2 ELEMENTARY VECTOR OPERATIONS

10 · [3 5]	scalar multiplication
$\begin{bmatrix} 3 & 5 \end{bmatrix}^T$	transpose
[2 1]+[1 2]	addition
$[2 \ 1] - [1 \ 2]$	subtraction

Operations: These 4 operations are the most elementary and common operations you will be using in linear algebra. They are

• Scalar multiplication simply multiplies every element of the vector with the scalar

$$3 \cdot [1 \ 2] = [3 \ 6]$$

Scalar multiplications simply lengthens the vector.

 Transposing a vector is simply converting it from a row-vector to a colum-vector, or a column-vector back to a row-vector

$$\begin{bmatrix} 1 & 2 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

• Adding two vectors is straighforward

$$[1 \ 2] + [2 \ 1] = [3 \ 3]$$

Visually, when adding two vectors you simply add one to the end of the other.

• Subtraction, like addition, is intuitive

$$[2 \ 1] - [1 \ 2] = [1 \ -1]$$

Exercice: Here are 3 vectors, $u = [3\ 5], v = [8\ 10], p = [10\ 1\ 1],$ can you add them together?