Cours Complet de Mécanique - Baccalauréat

Boris KOUDAYA SCIENCES UNIVERS

Juillet 2025

Table des matières

1	\mathbf{Intr}	roduction	1
	1.1	Définition et domaines	1
	1.2	Concepts fondamentaux	1
2	Cin	ématique	2
	2.1	Vecteurs fondamentaux	2
	2.2	Mouvement rectiligne uniformément accéléré	
	2.3	Mouvement circulaire uniforme	
3	Dyr	namique (Lois de Newton)	3
	3.1		3
	3.2	Forces usuelles	3
	3.3	Application : Plan incliné	3
	-		
4	Ene	ergetique	4
4	Ene 4.1	e rgétique Concepts énergétiques	
4		Concepts énergétiques	
4	4.1	Concepts énergétiques	4
4 5	4.1 4.2 4.3	Concepts énergétiques	4
	4.1 4.2 4.3	Concepts énergétiques	4 4 4
	4.1 4.2 4.3 Exe	Concepts énergétiques	4 4 4
	4.1 4.2 4.3 Exe 5.1 5.2	Concepts énergétiques Théorèmes fondamentaux Exemple : Chute libre crcices résolus Exercice 1 : Mouvement parabolique	4 4 4 4
5	4.1 4.2 4.3 Exe 5.1 5.2	Concepts énergétiques Théorèmes fondamentaux Exemple : Chute libre ercices résolus Exercice 1 : Mouvement parabolique Exercice 2 : Système masse-ressort	4 4 4 4 5
5	4.1 4.2 4.3 Exe 5.1 5.2	Concepts énergétiques Théorèmes fondamentaux Exemple : Chute libre ercices résolus Exercice 1 : Mouvement parabolique Exercice 2 : Système masse-ressort	4 4 4 4 5 6

1 Introduction

1.1 Définition et domaines

La mécanique étudie le **mouvement des corps** et ses **causes**. Elle se divise en :

- Cinématique : description du mouvementDynamique : relation forces-mouvement
- Énergétique : transferts d'énergie

1.2 Concepts fondamentaux

- **Référentiel** : repère pour étudier le mouvement
- Vecteurs : position, vitesse, accélération
- ${f Forces}$: interactions responsables du mouvement

2 Cinématique

2.1 Vecteurs fondamentaux

Définitions:

$$\begin{array}{c} \text{Vitesse } \vec{v} = \frac{d\vec{OM}}{dt} = \left(\frac{\frac{dx}{dt}}{\frac{dy}{dt}}\right) \\ \text{Accélération } \vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{OM}}{dt^2} \end{array}$$

2.2 Mouvement rectiligne uniformément accéléré

Exemple : Voiture qui accélère depuis le repos avec $a = 2 \,\mathrm{m/s^2}$.

Équations:

$$v(t) = v_0 + at$$

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$$

$$v^2 - v_0^2 = 2a(x - x_0)$$

2.3 Mouvement circulaire uniforme

2

Relations:

$$v=R\omega$$

$$a_c=\frac{v^2}{R}=R\omega^2$$

$$T=\frac{2\pi}{\omega} \qquad \qquad f=\frac{1}{T}$$

3 Dynamique (Lois de Newton)

3.1 Les trois lois fondamentales

1. Principe d'inertie :

"Tout corps persévère dans son état de repos ou de mouvement rectiligne uniforme si les forces qui s'exercent sur lui se compensent."

$$\sum \vec{F}_{\rm ext} = \vec{0} \implies \vec{v} = {\rm constante}$$

2. Principe fondamental:

$$\sum \vec{F}_{\rm ext} = m \cdot \vec{a}$$

3. Actions réciproques :

$$\vec{F}_{A/B} = -\vec{F}_{B/A}$$

3.2 Forces usuelles

Force	Expression	Schéma
Poids	$\vec{P} = m\vec{g}$	$ec{P}$
		$ec{R}_N$
Réaction normale	$ec{R}_N$	ightharpoonup
Frottement	$\vec{f} = -\mu R_N \vec{v}$	$\vec{f} \leftarrow \Box$
Ressort	$\vec{F} = -k\Delta x$	$\stackrel{\frown}{\longrightarrow} \vec{F}$

3.3 Application : Plan incliné

Bilan des forces:

$$\vec{P} = m\vec{g} = \begin{pmatrix} 0 \\ -mg \end{pmatrix}$$

$$\vec{R}_N = \begin{pmatrix} -mg\sin\alpha \\ mg\cos\alpha \end{pmatrix}$$

$$\vec{f} = -\mu R_N \vec{u}_v$$

Accélération selon la pente :

$$a = g(\sin \alpha - \mu \cos \alpha)$$

4 Énergétique

4.1 Concepts énergétiques

4.2 Théorèmes fondamentaux

Théorème de l'énergie cinétique (TEC):

$$\Delta E_c = \sum W(\vec{F}_{\rm ext})$$

Conservation de l'énergie :

$$\Delta E_m = W_{\text{non conservatif}}$$
 (frottements)

4.3 Exemple: Chute libre

Calcul:

$$\begin{array}{ll} \text{En A}: E_p=mgh, & E_c=0, & E_m=mgh \\ \\ \text{En B}: E_p=0, & E_c=\frac{1}{2}mv^2, & E_m=\frac{1}{2}mv^2 \\ \\ \text{Conservation}: mgh=\frac{1}{2}mv^2 \implies v=\sqrt{2gh} \end{array}$$

5 Exercices résolus

5.1 Exercice 1: Mouvement parabolique

Énoncé : Un ballon est lancé du sol avec une vitesse initiale $v_0 = 20\,\mathrm{m/s}$ faisant un angle $\alpha = 30^\circ$ avec l'horizontale. Calculer :

- 1. La portée du tir
- 2. La hauteur maximale
- 3. Le temps de vol

Solution:

Calculs:

$$v_{0x} = 20 \cdot \cos 30^{\circ} = 17.32 \,\text{m/s}$$

 $v_{0z} = 20 \cdot \sin 30^{\circ} = 10 \,\text{m/s}$

a) Portée :
$$x=\frac{v_{0x}\cdot 2v_{0z}}{g}=\frac{17.32\times 2\times 10}{9.81}=35.3\,\mathrm{m}$$
b) Hauteur max : $h_{max}=\frac{v_{0z}^2}{2g}=\frac{10^2}{2\times 9.81}=5.1\,\mathrm{m}$

b) Hauteur max :
$$h_{max} = \frac{v_{0z}^2}{2g} = \frac{10^2}{2 \times 9.81} = 5.1 \,\text{m}$$

c) Temps de vol :
$$t = \frac{2v_{0z}}{g} = \frac{2 \times 10}{9.81} = 2.04 \,\mathrm{s}$$

Exercice 2 : Système masse-ressort

Énoncé : Un corps de masse $m=0.5\,\mathrm{kg}$ est attaché à un ressort de constante $k=200\,\mathrm{N/m}$. On l'écarte de $\Delta x = 0.1$ m de sa position d'équilibre et on le lâche sans vitesse initiale.

- 1. Calculer la période d'oscillation
- 2. Déterminer l'équation du mouvement
- 3. Calculer l'énergie mécanique totale

Solution:

Calculs:

a) Période :
$$T=2\pi\sqrt{\frac{m}{k}}=2\pi\sqrt{\frac{0.5}{200}}=0.314\,\mathrm{s}$$

b) Équation :
$$x(t) = A\cos(\omega t)$$
 avec $\omega = \sqrt{\frac{k}{m}} = 20 \, \mathrm{rad/s}$
$$x(t) = 0.1 \cos(20t)$$

5

c) Énergie :
$$E_m = \frac{1}{2}kA^2 = \frac{1}{2} \times 200 \times (0.1)^2 = 1 \text{ J}$$

6 Annexes

6.1 Formulaire de mécanique

Concept	Formule	Unités
Vitesse moyenne	$v_m = \frac{\Delta x}{\Delta t}$	m/s
Accélération	$a = \frac{\Delta v}{\Delta t}$	m/s^2
PFD	$\sum \vec{F} = m\vec{a}$	N
Énergie cinétique	$E_c = \frac{1}{2}mv^2$	J
Énergie potentielle	$E_p = mgh$	J
Travail	$W = F \cdot d \cdot \cos \theta$	J
Période ressort	$T = 2\pi \sqrt{\frac{m}{k}}$	s
Période pendule	$T = 2\pi\sqrt{\frac{L}{g}}$	s
Vitesse orbitale	$v = \sqrt{\frac{GM}{R}}$	m/s

6.2 Conseils pour les examens

- Toujours faire un schéma clair avec les forces
- Bien définir le référentiel et le système d'axes
- Vérifier les unités à chaque étape de calcul
- Utiliser l'analyse dimensionnelle pour vérifier les résultats
- Commencer par les principes fondamentaux (PFD, TEC)