

TD 8: Fonctions arithmétiques

Exercice 1.

Soit N = (DCBA)BCD

On veut effectuer une multiplication par 2 et donc obtenir N' = 2N <u>avec N' codé directement en BCD</u> (c'est à dire sur 8 bits : H' G' ... A')

- a) Remplir les tables de vérité des sorties de ce circuit.
- b) Remplir les tableaux de Karnaugh nécessaires et en déduire les équations simplifiées des sorties.

Exercice 2. Additionneur complet

Pour faire une addition en binaire (et d'ailleurs quelle que soit la base), on additionne les 2 chiffres d'une même colonne en tenant compte d'une éventuelle retenue qui peut venir de la colonne de droite : on obtient donc le chiffre du résultat et aussi une éventuelle retenue qu'il faudra ajouter aux chiffres de la colonne de gauche.

On veut réaliser un circuit qui additionne 2 bits $(A_i \text{ et } B_i)$ en tenant compte d'une éventuelle retenue R_{i-1} . Ce circuit doit donc générer la somme S_i et l'éventuelle retenue R_i à transmettre à la colonne de gauche.

- a) Remplir la table de vérité de S_i et R_i
- b) Remplir les tableaux de Karnaugh et en déduire les équations simplifiées de S_i et R_i.
- c) Dessiner le schéma de ces 2 fonctions réunies en un seul bloc fonctionnel : l'additionneur complet.
- d) Dessiner le schéma d'un additionneur de 2 nombres de 4 bits en utilisant 4 blocs fonctionnels identiques à celui obtenu ci-dessus.

Exercice 3. Soustracteur complet

On veut réaliser un circuit qui effectue la soustraction A_i - B_i en tenant compte d'une éventuelle retenue R_{i-1} . Ce circuit doit donc générer la différence D_i et l'éventuelle retenue R_i à transmettre à la colonne de gauche.

Mêmes questions que ci-dessus.

Exercice 4. Additionneur Soustracteur

- a) Réaliser un circuit qui inverse ou non l'état d'une entrée E selon qu'un bit de commande C est à 1 ou à 0 : si C = 0 on veut S = E, si C = 1 on veut S = \overline{E} .
- b) En utilisant cette fonction et un additionneur sur 4 bits (vu dans l'exercice 2 question d), réaliser un circuit qui effectue l'addition de 2 nombres de 4 bits (A + B) si un bit de commande C est à O et la soustraction (A B) si C = 1.