Statistics Document of Article Figures: VERSION 75

Atanu Giri

May 24, 2023

Contents

1	Figu	ure 2	3													
	1.1	Figure 2a	3													
	1.2	8	3													
	1.3		4													
	1.4	ů	4													
	1.5	0	5													
	1.6	g ·	5													
	1.7		6													
	1.8	0 0	7													
2	Figu	Figure 3														
	2.1		7													
	2.2	9	7													
	2.3	9	8													
	2.4	0 0	8													
3	Figure 5															
	3.1		8													
	3.2	· ·	9													
	3.3	9	9													
	3.4	Figure 5d														
	3.5	Figure 5e														
	3.6	Figure 5f														
	3.7	Figure 5g														
	3.8	Figure 5i (Left)														
	3.9	Figure 5i (Right)														
4	Figu	Figure 6 1														
	4.1	Figure 6b (Left)	3													
	4.2	Figure 6b (Right)														
	4.3	Figure 6c	4													

	4.4	Figure 6																									16
	4.5	Figure 6	3d (F	Righ	t) .																						16
	4.6	Figure 6	ŝе.																								17
	4.7	Figure 6																									17
	4.8	Figure 6	_																								18
	4.9	Figure 6																									19
	4.10	Figure 6	δk .						•											•	 •				•		19
5	Sup	plement	tal E	Figu	ıre	1																					20
	5.1	Figure S		_																							20
6	Sup	plement	tal E	Figu	ıre	2																					20
	6.1	Figure S																									20
	6.2	Figure S																									20
7	Sup	plement	tal F	ion	ıre	4																					20
•	7.1	Figure S																									20
0	C	1 4	. 1 T	.		c																					00
8	8.1	plement Figure S																									20 20
	-	0																									20 21
	8.2 8.3	Figure S Figure S																									$\frac{21}{22}$
	8.4	Figure S																									22
	8.5	Figure S																									23
	0.0	1 igare i	J.0C		•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	20
9	Sup	plement		_																							23
	9.1	Figure S																									23
	9.2	Figure S																									24
	9.3	Figure S																									25
	9.4	Figure S																									25
	9.5	Figure S																									26
	9.6	Figure S																									26
	9.7	Figure S																									27
	9.8	Figure S	_																								28
	9.9	Figure S																									28
		Figure S			•																						29
		Figure S			•																						29 30
	9.17	TERRITE 3	1. / K																								

A repeated measures analysis of variance (ANOVA) was conducted using the MATLAB ranova function to examine the effects of within-subject factors, such as sucrose concentration, and between-subject factors, including gender and experimental conditions (baseline vs. food deprivation). To assess the between-subject differences, a two-sample Kolmogorov-Smirnov test was employed with the MATLAB kstest2 function. Additionally, pairwise comparisons were conducted to further explore the differences between groups using a post-hoc analysis, specifically the Tukey's honestly significant difference method, implemented with the MATLAB multcompare function.

1 Figure 2

1.1 Figure 2a

```
Statistical significance was determined by Repeated measures analysis of variance. (Female N = 12, Male N = 11).
```

p-value for concentration: 7.3397e-26.

p-value for gender: 6.3880e-02.

kstest2 results: h=0, p=8.2894e-02, ks2stat=0.2557 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 5.9941e - 01, 2\%: 2.0283e - 02, 5\%: 1.0142e - 01, 9\%: 5.3385e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.3032,ks2stat=0.3788\\RStest:Conc1:h=0,p=0.4049,zval=0.8329\\KStest2:Conc2:h=1,p=0.0087,ks2stat=0.6439\\RStest:Conc2:h=1,p=0.0187,zval=2.3510\\KStest2:Conc3:h=0,p=0.2812,ks2stat=0.3864\\RStest:Conc3:h=0,p=0.1314,zval=1.5086\\KStest2:Conc4:h=0,p=0.9465,ks2stat=0.2045\\RStest:Conc4:h=0,p=0.5156,zval=-0.6501
```

1.2 Figure 2b

Statistical significance was determined using **Statistical Package for the Social Sciences (SPSS)** package (F = 12, M = 9) p-value for concentration: <0.0001.

Sex differences across all concentrations p=0.8. Post-hoc analysis:

$$0.5\%: p = 0.05, 2\%: p = 0.007, 5\%: p = 0.8, 9\%: p = 0.4.$$

1.3 Figure 2c

Statistical significance was determined by Repeated measures analysis of variance. (Female $N=12,\,\mathrm{Male}\ N=9).$

p-value for concentration: 5.4462e-08.

p-value for gender: 8.1709e-02.

kstest2 results: h=0, p=8.4033e-01, ks2stat=0.1319 (complementary to ranova)

Post-hoc analysis:

```
0.5\%:5.5135e-02,2\%:7.7089e-03,5\%:8.6296e-01,9\%:4.4345e-01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.1028,ks2stat=0.5000\\RStest:Conc1:h=0,p=0.0590\\KStest2:Conc2:h=1,p=0.0102,ks2stat=0.6667\\RStest:Conc2:h=1,p=0.0142\\KStest2:Conc3:h=0,p=0.4213,ks2stat=0.3611\\RStest:Conc3:h=0,p=0.8036\\KStest2:Conc4:h=0,p=0.6366,ks2stat=0.3056\\RStest:Conc4:h=0,p=0.8590
```

1.4 Figure 2d

Statistical significance was determined by Repeated measures analysis of variance. (Female $N=12, Male \ N=11$).

p-value for concentration: 7.8859e-04.

p-value for gender: 4.3484e-01.

kstest2 results: h=0, p=3.1096e-01, ks2stat=0.1986 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 8.9816e - 01, 2\%: 4.5069e - 01, 5\%: 5.3396e - 01, 9\%: 5.9227e - 01
```

```
KStest2:Conc1:h=0,p=0.7358,ks2stat=0.2727\\RStest:Conc1:h=0,p=0.6458,zval=-0.4597\\KStest2:Conc2:h=0,p=0.4896,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.6682,zval=-0.4286\\KStest2:Conc3:h=0,p=0.8286,ks2stat=0.2500\\RStest:Conc3:h=0,p=0.7169,zval=-0.3627\\KStest2:Conc4:h=0,p=0.7136,ks2stat=0.2727\\RStest:Conc4:h=0,p=0.7350,zval=-0.3385
```

1.5 Figure 2e

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

p-value for concentration: 8.9008e-02.

p-value for gender: 2.4720e-03.

kstest2 results: h=1, p=9.4199e-06, ks2stat=0.5019 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 1.2707e - 03, 2\%: 1.1033e - 02, 5\%: 3.5299e - 03, 9\%: 8.9459e - 03
```

KStest2 and wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0258,ks2stat=0.5758\\RStest:Conc1:h=1,p=0.0051,zval=2.8003\\KStest2:Conc2:h=1,p=0.0361,ks2stat=0.5530\\RStest:Conc2:h=1,p=0.0151,zval=2.4311\\KStest2:Conc3:h=1,p=0.0230,ks2stat=0.5833\\RStest:Conc3:h=1,p=0.0051,zval=2.8003\\KStest2:Conc4:h=1,p=0.0361,ks2stat=0.5530\\RStest:Conc4:h=1,p=0.0062,zval=2.7388
```

1.6 Figure 2f

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

p-value for concentration: 9.8312e-01

p-value for gender: 1.5572e-01

kstest2 results: h=1, p=2.5533e-05, ks2stat=0.4811 (complementary to ranova) Post-hoc analysis:

```
0.5\%: 7.9690e - 02, 2\%: 2.5673e - 01, 5\%: 1.4691e - 01, 9\%: 2.0322e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0067,ks2stat=0.6591\\RStest:Conc1:h=1,p=0.0028,zval=-2.9850\\KStest2:Conc2:h=0,p=0.2604,ks2stat=0.3939\\RStest:Conc2:h=0,p=0.1029,zval=-1.6310\\KStest2:Conc3:h=1,p=0.0323,ks2stat=0.5606\\RStest:Conc3:h=1,p=0.0289,zval=-2.1849\\KStest2:Conc4:h=0,p=0.0915,ks2stat=0.4848\\RStest:Conc4:h=0,p=0.0905,zval=-1.6925
```

1.7 Figure 2g

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=11).

p-value for concentration: 2.6239e-10.

p-value for gender: 1.7542e-03.

kstest2 results: h=1, p=3.0470e-05, ks2stat=0.4773 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 1.6629e - 04, 2\%: 2.5835e - 03, 5\%: 5.1037e - 03, 9\%: 6.0776e - 02
```

```
KStest2:Conc1:h=1,p=0.0003,ks2stat=0.8258\\RStest:Conc1:h=1,p=0.0006,zval=-3.4158\\KStest2:Conc2:h=1,p=0.0059,ks2stat=0.6667\\RStest:Conc2:h=1,p=0.0042,zval=-2.8619\\KStest2:Conc3:h=1,p=0.0323,ks2stat=0.5606\\RStest:Conc3:h=1,p=0.0106,zval=-2.5541\\KStest2:Conc4:h=0,p=0.1213,ks2stat=0.4621\\RStest:Conc4:h=0,p=0.1481,zval=-1.4463
```

1.8 Figure 2h

Statistical significance was determined by Repeated measures analysis of variance. (Female $N=12,\,\mathrm{Male}\ N=11$).

p-value for concentration: 3.0392e-07.

p-value for gender: 2.3301e-01.

kstest2 results: h=0, p=3.3508e-01, ks2stat=0.1913 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 2.6980e - 01, 2\%: 7.5679e - 01, 5\%: 8.5789e - 02, 9\%: 3.0110e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.8067,ks2stat=0.2500\\RStest:Conc1:h=0,p=0.4044,zval=0.8338\\KStest2:Conc2:h=0,p=0.9982,ks2stat=0.1515\\RStest:Conc2:h=0,p=0.8292,zval=0.2157\\KStest2:Conc3:h=0,p=0.1006,ks2stat=0.4773\\RStest:Conc3:h=1,p=0.0483,zval=1.9743\\KStest2:Conc4:h=0,p=0.4595,ks2stat=0.3333\\RStest:Conc4:h=0,p=0.4219,zval=0.8031
```

2 Figure 3

2.1 Figure 3e

Statistical significance was determined by one-way analysis of variance. (group 1 = 60, group 2 = 61, group 3 = 58, group 4 = 64, group 5 = 22, group 6 = 22, group 7 = 25, group 8 = 18) p-value for significance of difference between the groups (utility): 0.0429.

Post-hoc analysis by Tukey's HSD method:

No group difference is statistically significant.

2.2 Figure 3f

Statistical significance was determined by one-way analysis of variance. (group 1 = 60, group 2 = 61, group 3 = 58, group 4 = 64) p-value for significance of difference between the groups (concentration): 0.9599.

Post-hoc analysis by Tukey's HSD method:

No group difference is statistically significant.

2.3 Figure 3g

Statistical significance was determined by one-way analysis of variance. (group 1 = 22, group 2 = 22, group 3 = 25, group 4 = 18) p-value for significance of difference between the groups (concentration): 0.5523.

Post-hoc analysis by Tukey's HSD method:

No group difference is statistically significant.

2.4 Figure 3h

Statistical significance was determined by one-way analysis of variance. (group $1=243,\,\mathrm{group}~2=87)$

p-value for significance of difference between the groups (concentration): 0.0012.

3 Figure 5

3.1 Figure 5a

Statistical significance was determined by Repeated measures analysis of variance. (BL N=22, FD N=22).

p-value for concentration: 1.0842e-55

p-value for BL vs FD: 8.0411e-05.

kstest2 results: h=1, p=1.0816e-02, ks2stat=0.2386 (complementary to ranova)

Post-hoc analysis:

```
0.5\%:6.8154e-01,2\%:5.2118e-01,5\%:5.0500e-04,9\%:4.8848e-03
```

```
KStest2:Conc1:h=0,p=0.1746,ks2stat=0.3182\\RStest:Conc1:h=0,p=0.3038,zval=1.0283\\KStest2:Conc2:h=0,p=0.3320,ks2stat=0.2727\\RStest:Conc2:h=0,p=0.3820,zval=0.8743\\KStest2:Conc3:h=1,p=0.0138,ks2stat=0.4545\\RStest:Conc3:h=1,p=0.0011,zval=-3.2659\\KStest2:Conc4:h=1,p=0.0000,ks2stat=0.6818\\RStest:Conc4:h=1,p=0.0003,zval=-3.6583
```

3.2 Figure 5b

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 12, FD N = 9).

p-value for concentration: 1.3979e-09 p-value for BL vs FD: 4.2358e-01.

kstest2 results: h=0, p=1.0000e+00, ks2stat=0.0556 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 4.2051e - 01, 2\%: 1.2090e - 02, 5\%: 8.9340e - 01, 9\%: 8.4742e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.7495,ks2stat=0.2778\\RStest:Conc1:h=0,p=0.5274\\KStest2:Conc2:h=1,p=0.0065,ks2stat=0.6944\\RStest:Conc2:h=1,p=0.0034\\KStest2:Conc3:h=0,p=0.1417,ks2stat=0.4722\\RStest:Conc3:h=0,p=0.5421\\KStest2:Conc4:h=0,p=0.1915,ks2stat=0.4444\\RStest:Conc4:h=0,p=0.2015
```

3.3 Figure 5c

Statistical significance was determined by Repeated measures analysis of variance. (BL N = 22, FD N = 22). p-value for concentration: 6.3645e-10.

```
p-value for BL vs FD: 1.9462e-01. kstest2 results: h=0, p=3.5436e-01, ks2stat=0.1435 (complementary to ranova)
```

Post-hoc analysis:

```
0.5\%: 1.0418e - 02, 2\%: 3.2611e - 01, 5\%: 7.3375e - 01, 9\%: 1.0336e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.0647,ks2stat=0.4286\\RStest:Conc1:h=1,p=0.0127,zval=-2.4921\\KStest2:Conc2:h=1,p=0.0395,ks2stat=0.4286\\RStest:Conc2:h=0,p=0.0883,zval=-1.7044\\KStest2:Conc3:h=0,p=0.7388,ks2stat=0.1991\\RStest:Conc3:h=0,p=0.6885,zval=0.4009\\KStest2:Conc4:h=0,p=0.3320,ks2stat=0.2727\\RStest:Conc4:h=0,p=0.1625,zval=1.3966
```

3.4 Figure 5d

Statistical significance was determined by Repeated measures analysis of variance. (BL N=22, FD N=22).

p-value for concentration: 2.8777e-07.

p-value for BL vs FD: 1.6989e-03

kstest2 results: h=1, p=7.5537e-08, ks2stat=0.4318 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 3.7073e - 04, 2\%: 7.5759e - 04, 5\%: 3.3233e - 02, 9\%: 1.3234e - 02
```

```
KStest2:Conc1:h=1,p=0.0015,ks2stat=0.5455\\RStest:Conc1:h=1,p=0.0008,zval=-3.3683\\KStest2:Conc2:h=1,p=0.0356,ks2stat=0.4091\\RStest:Conc2:h=1,p=0.0028,zval=-2.9928\\KStest2:Conc3:h=1,p=0.0138,ks2stat=0.4545\\RStest:Conc3:h=1,p=0.0151,zval=-2.4294\\KStest2:Conc4:h=1,p=0.0356,ks2stat=0.4091\\RStest:Conc4:h=1,p=0.0151,zval=-2.4294
```

3.5 Figure 5e

Statistical significance was determined by Repeated measures analysis of variance. (BL N=22, FD N=22).

p-value for concentration: 2.7791e-01.

p-value for BL vs FD: 4.3141e-02

kstest2 results: h=1, p=7.5537e-08, ks2stat=0.4318 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 3.9999e - 02, 2\%: 3.3272e - 02, 5\%: 5.5036e - 02, 9\%: 5.9155e - 02
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0001,ks2stat=0.6364\\RStest:Conc1:h=1,p=0.0003,zval=3.6265\\KStest2:Conc2:h=1,p=0.0138,ks2stat=0.4545\\RStest:Conc2:h=1,p=0.0028,zval=2.9928\\KStest2:Conc3:h=0,p=0.0828,ks2stat=0.3636\\RStest:Conc3:h=1,p=0.0109,zval=2.5468\\KStest2:Conc4:h=1,p=0.0138,ks2stat=0.4545\\RStest:Conc4:h=1,p=0.0032,zval=2.9458
```

3.6 Figure 5f

Statistical significance was determined by Repeated measures analysis of variance. (BL N=22, FD N=22).

p-value for concentration: 6.6926e-20 p-value for BL vs FD: 2.4891e-02

kstest2 results: h=1, p=1.0816e-02, ks2stat=0.2386 (Complementary to ranova)

Post-hoc analysis:

```
0.5\%: 7.3584e - 04, 2\%: 1.0250e - 01, 5\%: 2.0052e - 01, 9\%: 1.2278e - 01
```

```
KStest2:Conc1:h=1,p=0.0015,ks2stat=0.5455\\RStest:Conc1:h=1,p=0.0012,zval=3.2275\\KStest2:Conc2:h=0,p=0.0828,ks2stat=0.3636\\RStest:Conc2:h=0,p=0.0689,zval=1.8191\\KStest2:Conc3:h=0,p=0.3320,ks2stat=0.2727\\RStest:Conc3:h=0,p=0.4455,zval=0.7629\\KStest2:Conc4:h=0,p=0.1746,ks2stat=0.3182\\RStest:Conc4:h=0,p=0.1424,zval=1.4670
```

3.7 Figure 5g

Statistical significance was determined by Repeated measures analysis of variance. (BL N=22, FD N=22).

p-value for concentration: 8.1104e-22

p-value for BL vs FD: 1.2044e-01

kstest2 results: h=1, p=1.7572e-02, ks2stat=0.2273 (Complementary to ranova)

Post-hoc analysis:

```
0.5\%: 5.6817e - 03, 2\%: 1.9624e - 02, 5\%: 5.4119e - 01, 9\%: 7.4789e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0049,ks2stat=0.5000\\RStest:Conc1:h=1,p=0.0068,zval=-2.7047\\KStest2:Conc2:h=1,p=0.0356,ks2stat=0.4091\\RStest:Conc2:h=1,p=0.0186,zval=-2.3536\\KStest2:Conc3:h=0,p=0.3320,ks2stat=0.2727\\RStest:Conc3:h=0,p=0.2485,zval=1.1541\\KStest2:Conc4:h=0,p=0.3320,ks2stat=0.2727\\RStest:Conc4:h=0,p=0.9156,zval=-0.1059
```

3.8 Figure 5i (Left)

Statistical significance was determined using **SPSS** software package (F = 12, M = 9)

p-value for gender: <0.001)

p-value for acceptance rate: 0.723

3.9 Figure 5i (Right)

Statistical significance was determined using **SPSS** software package (F = 12, M = 10)

p-value for gender: 0.873)

p-value for acceptance rate: 0.018

4 Figure 6

4.1 Figure 6b (Left)

Statistical significance was determined by Repeated measures analysis of variance. (Female $N=12,\, Male\,\, N=10).$

p-value for concentration: 2.5457e-16.

p-value for gender: 4.7989e-01.

kstest2 results: h=0, p=8.0438e-01, ks2stat=0.1333 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 8.0114e - 01, 2\%: 8.8708e - 01, 5\%: 5.7254e - 01, 9\%: 5.0164e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.8848,ks2stat=0.2333\\RStest:Conc1:h=0,p=0.8621,zval=0.1736\\KStest2:Conc2:h=0,p=1.0000,ks2stat=0.1167\\RStest:Conc2:h=0,p=1.0000,zval=-0.0000\\KStest2:Conc3:h=0,p=0.9304,ks2stat=0.2167\\RStest:Conc3:h=0,p=0.9467,zval=0.0668\\KStest2:Conc4:h=0,p=0.8848,ks2stat=0.2333\\RStest:Conc4:h=0,p=1.0000,zval=-0.0000
```

4.2 Figure 6b (Right)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=10, Male N=10).

p-value for concentration: 6.1134e-18.

p-value for gender: 2.4633e-02.

kstest2 results: h=0, p=3.6131e-01, ks2stat=0.2000 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 8.8484e - 01, 2\%: 1.0123e - 01, 5\%: 7.5526e - 02, 9\%: 3.3494e - 01
```

 $\operatorname{KStest2}$ and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.9748,ks2stat=0.2000\\RStest:Conc1:h=0,p=0.5004,zval=0.6739\\KStest2:Conc2:h=0,p=0.3129,ks2stat=0.4000\\RStest:Conc2:h=0,p=0.1315,zval=1.5083\\KStest2:Conc3:h=0,p=0.6751,ks2stat=0.3000\\RStest:Conc3:h=0,p=0.1233,zval=1.5411\\KStest2:Conc4:h=0,p=0.9748,ks2stat=0.2000\\RStest:Conc4:h=0,p=0.4201,zval=0.8062
```

4.3 Figure 6c

After Alcohol Analysis: Statistical significance was determined by Repeated measures analysis of variance. (Female N=10, Male N=10).

p-value for concentration: 3.374e-25.

p-value for gender: 0.13625.

kstest2 results: h=0, p=1.0000e+00, ks2stat=0.0000 (complementary to ranova)

Post-hoc analysis:

```
0.5\%:8.1246e-01,2\%:8.0739e-01,5\%:1.3206e-01,9\%:3.5295e-01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.1108,ks2stat=0.5000\\RStest:Conc1:h=0,p=0.5648\\KStest2:Conc2:h=0,p=0.1108,ks2stat=0.5000\\RStest:Conc2:h=0,p=0.5648\\KStest2:Conc3:h=0,p=0.1108,ks2stat=0.5000\\RStest:Conc3:h=0,p=0.7882\\KStest2:Conc4:h=0,p=0.1108,ks2stat=0.5000\\RStest:Conc4:h=0,p=0.0713
```

Before and After Alcohol Analysis of Female: Statistical significance was determined by Repeated measures analysis of variance. (Before Alcohol N = 12, After Alcohol N = 10).

p-value for concentration: 6.4554e-17.

p-value for before and after alcohol: 0.11585. kstest2 results: h=0, p=9.8992e-01, ks2stat=0.0917 (complementary to ranova)

Post-hoc analysis:

```
0.5\%:6.8311e-04,2\%:3.1640e-03,5\%:2.8801e-01,9\%:1.8980e-05
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0017,ks2stat=0.7500\\RStest:Conc1:h=1,p=0.0016\\KStest2:Conc2:h=1,p=0.0076,ks2stat=0.6667\\RStest:Conc2:h=1,p=0.0059\\KStest2:Conc3:h=1,p=0.0282,ks2stat=0.5833\\RStest:Conc3:h=0,p=0.0789\\KStest2:Conc4:h=1,p=0.0001,ks2stat=0.9167\\RStest:Conc4:h=1,p=0.0002
```

Before and After Alcohol Analysis of Male: Statistical significance was determined by Repeated measures analysis of variance. (Before Alcohol N = 12, After Alcohol N = 10).

p-value for concentration: 3.6982e-15.

p-value for before and after alcohol: 0.76845.

kstest2 results: h=0, p=1.0000e+00, ks2stat=0.0472 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 1.1779e - 01, 2\%: 9.7611e - 01, 5\%: 6.6111e - 01, 9\%: 8.3969e - 02
```

```
KStest2:Conc1:h=0,p=0.1273,ks2stat=0.5000\\RStest:Conc1:h=0,p=0.0884\\KStest2:Conc2:h=0,p=0.5732,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.9681\\KStest2:Conc3:h=0,p=0.2031,ks2stat=0.4556\\RStest:Conc3:h=0,p=0.7785\\KStest2:Conc4:h=0,p=0.0667,ks2stat=0.5556\\RStest:Conc4:h=0,p=0.0762
```

4.4 Figure 6d (Left)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

p-value for concentration: 5.4017e-02.

p-value for gender: 4.0729e-01.

kstest2 results: h=0, p=4.6263e-01, ks2stat=0.2016 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 7.1363e - 01, 2\%: 7.6787e - 01, 5\%: 7.5464e - 02, 9\%: 6.6465e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.2141,ks2stat=0.5000
```

RStest: Conc1: h = 0, p = 0.3462

$$KStest2:Conc2:h=0, p=0.3180, ks2stat=0.5000$$

RStest:Conc2:h=0,p=0.3701

$$KStest2:Conc3:h=1,p=0.0032,ks2stat=0.7167$$

RStest: Conc3: h = 1, p = 0.0192

$$KStest2: Conc4: h = 0, p = 0.2503, ks2stat = 0.4545$$

RStest: Conc4: h = 0, p = 0.5360

4.5 Figure 6d (Right)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=10, Male N=10).

p-value for concentration: 3.8602e-01.

p-value for gender: 7.0494e-01.

kstest2 results: h=0, p=1.7336e-01, ks2stat=0.2745 (complementary to ranova)

Post-hoc analysis:

```
0.5\%:5.2868e-01,2\%:4.4209e-01,5\%:5.2319e-01,9\%:4.8906e-01
```

```
KStest2:Conc1:h=1,p=0.0204,ks2stat=0.8000\\RStest:Conc1:h=1,p=0.0303\\KStest2:Conc2:h=0,p=0.5070,ks2stat=0.4250\\RStest:Conc2:h=0,p=0.2844\\KStest2:Conc3:h=0,p=0.4892,ks2stat=0.3556\\RStest:Conc3:h=0,p=0.3562\\KStest2:Conc4:h=0,p=0.1076,ks2stat=0.5417\\RStest:Conc4:h=1,p=0.0274
```

4.6 Figure 6e

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5, Male N=5).

p-value for concentration: 4.1083e-02.

p-value for gender: 8.2510e-01.

kstest2 results: h=0, p=7.7095e-01, ks2stat=0.2000 (complementary to ranova)

Post-hoc analysis:

```
0.5\%:8.0968e-01,2\%:2.1173e-01,5\%:4.2256e-01,9\%:2.2622e-01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.6974,ks2stat=0.4000\\RStest:Conc1:h=0,p=0.6429\\KStest2:Conc2:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc2:h=0,p=0.2063\\KStest2:Conc3:h=0,p=0.6974,ks2stat=0.4000\\RStest:Conc3:h=0,p=0.6349\\KStest2:Conc4:h=0,p=0.6974,ks2stat=0.4000\\RStest:Conc4:h=0,p=0.3016
```

4.7 Figure 6f

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5, Male N=5).

p-value for concentration: 8.1732e-01.

p-value for gender: 1.2629e-01.

kstest2 results: h=1, p=8.1617e-03, ks2stat=0.5000 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 2.1755e - 01, 2\%: 9.1185e - 02, 5\%: 1.8516e - 01, 9\%: 9.4228e - 02
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.6974,ks2stat=0.4000\\RStest:Conc1:h=0,p=0.2222\\KStest2:Conc2:h=1,p=0.0361,ks2stat=0.8000\\RStest:Conc2:h=1,p=0.0317\\KStest2:Conc3:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc3:h=0,p=0.1508\\KStest2:Conc4:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc4:h=0,p=0.0952
```

4.8 Figure 6g

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6, Male N=6).

p-value for concentration: 2.6307e-07.

p-value for gender: 6.6366e-01.

kstest2 results: h=0, p=6.2161e-01, ks2stat=0.2083 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 7.5735e - 01, 2\%: 3.7013e - 01, 5\%: 8.0930e - 01, 9\%: 6.4244e - 01
```

```
KStest2:Conc1:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc1:h=0,p=1.0000\\KStest2:Conc2:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc2:h=0,p=0.3095\\KStest2:Conc3:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc3:h=0,p=0.8182\\KStest2:Conc4:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc4:h=0,p=0.5887
```

4.9 Figure 6h

Statistical significance was determined by Repeated measures analysis of variance. (Female N = 6, Male N = 6).

p-value for concentration: 4.2378e-01.

p-value for gender: 3.0986e-01.

kstest2 results: h=1, p=9.3124e-04, ks2stat=0.5417 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 3.2581e - 01, 2\%: 3.9929e - 01, 5\%: 2.7256e - 01, 9\%: 2.6367e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.0766,ks2stat=0.6667\\RStest:Conc1:h=0,p=0.1320\\KStest2:Conc2:h=1,p=0.0122,ks2stat=0.8333\\RStest:Conc2:h=0,p=0.0649\\KStest2:Conc3:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc3:h=0,p=0.3095\\KStest2:Conc4:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc4:h=0,p=0.2403
```

4.10 Figure 6k

Statistical significance was determined by one-way analysis of variance. (Female BL = 10, Male BL = 10, Female Oxy = 5, Male Oxy = 5, Female Incub = 6, Male Incub = 6, Female PA = 10, Male PA = 10) p-value for significance of difference between the groups: 1.0469e-09.

Post-hoc analysis by Tukey's HSD method:

FemaleBL and MaleBL: 0.9981 FemaleBL and FemaleOxy: 6.5947e-06 FemaleBL and FemaleIncub: 0.0132 FemaleBL and FemalePA: 0.9993 MaleBL and MaleOxy: 4.0017e-06 MaleBL and MaleIncub: 3.3984e-04 MaleBL and MalePA: 0.3631

5 Supplemental Figure 1

5.1 Figure S.1i

statistical significance was determined by paired t-test using **SPSS** software package (F = 12, M = 11).

p-vale for gender difference: 0.01.

6 Supplemental Figure 2

6.1 Figure S.2a

Statistical significance was determined by one-way analysis of variance. (N = 5).

p-value for light level: 0.0011.

6.2 Figure S.2b

Statistical significance was determined by one-way analysis of variance. (N = 23).

p-value for light level: 0.0028.

7 Supplemental Figure 4

7.1 Figure S.4d

statistical significance was determined by chi-squared test using **SPSS** software package (F = 12, M = 11).

p-value for Sigmoidal and U-shape for initial 1-3 months: 0.016.

p-value for Sigmoidal and U-shape after a year: 0.0009.

8 Supplemental Figure 6

8.1 Figure S.6a

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

p-value for concentration: 4.3911e-30.

p-value for gender: 1.5870e-01.

kstest2 results: h=0, p=9.3097e-01, ks2stat=0.1125 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 7.8880e - 01, 2\%: 2.2787e - 01, 5\%: 2.6929e - 01, 9\%: 7.6084e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.9636,ks2stat=0.2000\\RStest:Conc1:h=0,p=0.5631\\KStest2:Conc2:h=0,p=0.8286,ks2stat=0.2500\\RStest:Conc2:h=0,p=0.2840\\KStest2:Conc3:h=0,p=0.6961,ks2stat=0.2833\\RStest:Conc3:h=0,p=0.2892\\KStest2:Conc4:h=0,p=0.8848,ks2stat=0.2333\\RStest:Conc4:h=0,p=0.8891$

8.2 Figure S.6b

Statistical significance was determined by Repeated measures analysis of variance. (Female $N=12,\, Male\,\, N=10).$

p-value for concentration: 2.6791e-06.

p-value for gender: 1.6014e-04.

kstest2 results: h=1, p=1.3139e-08, ks2stat=0.6375 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 4.0070e - 04, 2\%: 1.4910e - 05, 5\%: 9.2678e - 03, 9\%: 2.5464e - 03
```

```
KStest2:Conc1:h=1,p=0.0076,ks2stat=0.6667\\RStest:Conc1:h=1,p=0.0033\\KStest2:Conc2:h=1,p=0.0001,ks2stat=0.9167\\RStest:Conc2:h=1,p=0.0003\\KStest2:Conc3:h=0,p=0.0567,ks2stat=0.5333\\RStest:Conc3:h=1,p=0.0229\\KStest2:Conc4:h=1,p=0.0076,ks2stat=0.6667\\RStest:Conc4:h=1,p=0.0051
```

8.3 Figure S.6c

Statistical significance was determined by Repeated measures analysis of variance. (Female N = 12, Male N = 10).

p-value for concentration: 1.1616e-02.

p-value for gender: 7. 3997e-03.

kstest2 results: h=1, p=1.8518e-05, ks2stat=0.5000 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 1.8703e - 02, 2\%: 4.5455e - 04, 5\%: 2.3150e - 01, 9\%: 1.1937e - 02
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2: Conc1: h = 1, p = 0.0076, ks2stat = 0.6667

RStest: Conc1: h = 1, p = 0.0111
```

KStest2: Conc2: h = 1, p = 0.0003, ks2stat = 0.8333

RStest: Conc2: h = 1, p = 0.0014

KStest2: Conc3: h = 0, p = 0.2270, ks2stat = 0.4167

RStest: Conc3: h = 0, p = 0.4098

KStest2: Conc4: h = 1, p = 0.0452, ks2stat = 0.5500

RStest: Conc4: h = 1, p = 0.0092

8.4 Figure S.6d

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

p-value for concentration: 7.6444e-13.

p-value for gender: 2.4455e-02.

kstest2 results: h=1, p=6.8336e-03, ks2stat=0.3500 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 1.1326e - 02, 2\%: 1.2677e - 04, 5\%: 9.3261e - 01, 9\%: 1.6538e - 01
```

```
KStest2:Conc1:h=1,p=0.0358,ks2stat=0.5667\\RStest:Conc1:h=1,p=0.0111\\KStest2:Conc2:h=1,p=0.0001,ks2stat=0.9167\\RStest:Conc2:h=1,p=0.0003\\KStest2:Conc3:h=0,p=0.9989,ks2stat=0.1500\\RStest:Conc3:h=0,p=0.9212\\KStest2:Conc4:h=0,p=0.5564,ks2stat=0.3167\\RStest:Conc4:h=0,p=0.2485
```

8.5 Figure S.6e

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

p-value for concentration: 2.3011e-15.

p-value for gender: 3.8916e-01.

kstest2 results: h=0, p=2.6677e-01, ks2stat=0.2083 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 2.8309e - 01, 2\%: 1.3761e - 02, 5\%: 8.4288e - 01, 9\%: 5.6653e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.4896,ks2stat=0.3333\\RStest:Conc1:h=0,p=0.3891\\KStest2:Conc2:h=0,p=0.0567,ks2stat=0.5333\\RStest:Conc2:h=1,p=0.0149\\KStest2:Conc3:h=0,p=0.9636,ks2stat=0.2000\\RStest:Conc3:h=0,p=0.8940\\KStest2:Conc4:h=0,p=0.3689,ks2stat=0.3667\\RStest:Conc4:h=0,p=0.5716
```

9 Supplemental Figure 7

9.1 Figure S.7a (Left)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

p-value for concentration: 1.4050e-01.

p-value for gender: 3.6754e-01.

kstest2 results: h=0, p=1.2139e-01, ks2stat=0.2458 (complementary to ranova)

Post-hoc analysis:

$$0.5\%: 7.7450e - 01, 2\%: 9.1269e - 01, 5\%: 3.6064e - 03, 9\%: 5.6181e - 01$$

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

$$KStest2:Conc1:h=0,p=0.9304,ks2stat=0.2167$$

$$RStest:Conc1:h=0,p=0.7667$$

$$KStest2:Conc2:h=0,p=0.8286,ks2stat=0.2500$$

$$RStest:Conc2:h=0,p=0.7667$$

$$KStest2:Conc3:h=1,p=0.0101,ks2stat=0.6500$$

$$RStest: Conc3: h = 1, p = 0.0111$$

$$KStest2:Conc4:h=0,p=0.1072,ks2stat=0.4833$$

$$RStest: Conc4: h = 0, p = 0.3734$$

9.2 Figure S.7a (Right)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=10, Male N=10).

p-value for concentration: 6.8275e-01.

p-value for gender: 1.9427e-01.

kstest2 results: h=0, p=1.3925e-01, ks2stat=0.2500 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 4.4173e - 01, 2\%: 1.5443e - 01, 5\%: 4.3851e - 01, 9\%: 8.8666e - 02
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

KStest2: Conc1: h = 0, p = 0.3129, ks2stat = 0.4000

$$RStest: Conc1: h = 0, p = 0.3075$$

KStest2:Conc2:h=0,p=0.6751,ks2stat=0.3000

RStest: Conc2: h = 0, p = 0.1620

KStest2: Conc3: h = 0, p = 0.6751, ks2stat = 0.3000

RStest: Conc3: h = 0, p = 0.9698

KStest2: Conc4: h = 0, p = 0.1108, ks2stat = 0.5000

RStest:Conc4:h=0,p=0.0890

9.3 Figure S.7b (Left)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=12, Male N=10).

p-value for concentration: 7.3371e-02.

p-value for gender: 4.0968e-04.

kstest2 results: h=1, p=2.4759e-06, ks2stat=0.5417 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 1.2714e - 02, 2\%: 5.9126e - 02, 5\%: 8.5187e - 04, 9\%: 1.1225e - 03
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1, p=0.0220, ks2stat=0.6000
```

RStest:Conc1:h=1,p=0.0092

KStest2: Conc2: h = 0, p = 0.0567, ks2stat = 0.5333

RStest: Conc2: h = 0, p = 0.0806

KStest2:Conc3:h=1,p=0.0076,ks2stat=0.6667

RStest: Conc3: h = 1, p = 0.0022

KStest2: Conc4: h = 1, p = 0.0076, ks2stat = 0.6667

RStest: Conc4: h = 1, p = 0.0041

9.4 Figure S.7b (Right)

Statistical significance was determined by Repeated measures analysis of variance. (Female N=10, Male N=10).

p-value for concentration: 5.5161e-01.

p-value for gender: 4.4971e-02.

kstest2 results: h=1, p=1.0793e-02, ks2stat=0.3500 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 9.3255e - 02, 2\%: 8.9902e - 02, 5\%: 5.4953e - 01, 9\%: 6.7305e - 03
```

```
KStest2:Conc1:h=1,p=0.0310,ks2stat=0.6000\\RStest:Conc1:h=0,p=0.0890\\KStest2:Conc2:h=0,p=0.3129,ks2stat=0.4000\\RStest:Conc2:h=0,p=0.1212\\KStest2:Conc3:h=0,p=0.3129,ks2stat=0.4000\\RStest:Conc3:h=0,p=0.6232\\KStest2:Conc4:h=1,p=0.0069,ks2stat=0.7000\\RStest:Conc4:h=1,p=0.0113
```

9.5 Figure S.7d

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5, Male N=5).

p-value for concentration: 8.7784e-02.

p-value for gender: 3.1525e-02.

kstest2 results: h=1, p=2.3213e-02, ks2stat=0.4500 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 3.1246e - 03, 2\%: 5.8901e - 01, 5\%: 3.6169e - 02, 9\%: 9.2633e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=1,p=0.0038,ks2stat=1.0000\\RStest:Conc1:h=1,p=0.0079\\KStest2:Conc2:h=0,p=0.9996,ks2stat=0.2000\\RStest:Conc2:h=0,p=0.6905\\KStest2:Conc3:h=1,p=0.0361,ks2stat=0.8000\\RStest:Conc3:h=0,p=0.0556\\KStest2:Conc4:h=0,p=0.6974,ks2stat=0.4000\\RStest:Conc4:h=0,p=1.0000
```

9.6 Figure S.7e

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5, Male N=5).

p-value for concentration: 6.8473e-01.

p-value for gender: 1.5292e-01.

kstest2 results: h=1, p=2.3213e-02, ks2stat=0.4500 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 3.2600e - 01, 2\%: 1.2515e - 01, 5\%: 3.5598e - 01, 9\%: 1.0995e - 01
```

 $\operatorname{KStest2}$ and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc1:h=0,p=0.3095\\KStest2:Conc2:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc2:h=0,p=0.2222\\KStest2:Conc3:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc3:h=0,p=0.3968\\KStest2:Conc4:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc4:h=0,p=0.2222
```

9.7 Figure S.7f

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5, Male N=5).

p-value for concentration: 6.2169e-01.

p-value for gender: 8.7263e-02.

kstest2 results: h=1, p=8.1617e-03, ks2stat=0.5000 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 1.9249e - 01, 2\%: 1.3288e - 01, 5\%: 5.9820e - 02, 9\%: 5.9578e - 02
```

```
KStest2:Conc1:h=0,p=0.6974,ks2stat=0.4000\\RStest:Conc1:h=0,p=0.2222\\KStest2:Conc2:h=0,p=0.6974,ks2stat=0.4000\\RStest:Conc2:h=0,p=0.2222\\KStest2:Conc3:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc3:h=0,p=0.0952\\KStest2:Conc4:h=0,p=0.2090,ks2stat=0.6000\\RStest:Conc4:h=0,p=0.0952
```

9.8 Figure S.7g

Statistical significance was determined by Repeated measures analysis of variance. (Female N=5, Male N=5).

p-value for concentration: 4.5703e-01.

p-value for gender: 6.3326e-02.

kstest2 results: h=1, p=7.2529e-04, ks2stat=0.6000 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 1.7344e - 01, 2\%: 9.6526e - 02, 5\%: 5.1225e - 02, 9\%: 4.6853e - 02
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2: Conc1: h = 0, p = 0.2090, ks2stat = 0.6000
```

$$RStest:Conc1:h=0,p=0.2222$$

$$KStest2: Conc2: h = 0, p = 0.2090, ks2stat = 0.6000$$

$$RStest: Conc2: h = 0, p = 0.0952$$

$$KStest2: Conc3: h = 1, p = 0.0361, ks2stat = 0.8000$$

$$RStest:Conc3:h=0,p=0.0556$$

$$KStest2:Conc4:h=0,p=0.2090,ks2stat=0.6000$$

$$RStest: Conc4: h = 0, p = 0.0952$$

9.9 Figure S.7h

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6, Male N=6).

p-value for concentration: 3.0232e-04.

p-value for gender: 4.9003e-01.

kstest2 results: h=0, p=8.6076e-01, ks2stat=0.1667 (complementary to ranova)

Post-hoc analysis:

```
0.5\%:6.9253e-01,2\%:6.3994e-01,5\%:6.0961e-01,9\%:7.4470e-01
```

```
KStest2:Conc1:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc1:h=0,p=0.5887\\KStest2:Conc2:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.6991\\KStest2:Conc3:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc3:h=0,p=0.4848\\KStest2:Conc4:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc4:h=0,p=0.8182
```

9.10 Figure S.7i

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6, Male N=6).

p-value for concentration: 1.1029e-03.

p-value for gender: 3.4076e-01.

kstest2 results: h=0, p=5.0588e-02, ks2stat=0.3750 (complementary to ranova)

Post-hoc analysis:

```
0.5\%:5.1260e-01,2\%:3.1392e-01,5\%:2.5092e-01,9\%:3.6439e-01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

```
KStest2:Conc1:h=0,p=1.0000,ks2stat=0.1667\\RStest:Conc1:h=0,p=0.8182\\KStest2:Conc2:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc2:h=0,p=0.2403\\KStest2:Conc3:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc3:h=0,p=0.1797\\KStest2:Conc4:h=1,p=0.0122,ks2stat=0.8333\\RStest:Conc4:h=1,p=0.0411
```

9.11 Figure S.7j

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6, Male N=6).

p-value for concentration: 1.8477e-06.

p-value for gender: 3.2473e-01.

kstest2 results: h=0, p=2.1598e-01, ks2stat=0.2917 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 4.5320e - 01, 2\%: 4.5178e - 01, 5\%: 3.0428e - 01, 9\%: 2.1404e - 01
```

KStest2 and Wilcoxon rank sum test Results (complementary to post-hoc analysis)

 $KStest2:Conc1:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc1:h=0,p=0.4848\\KStest2:Conc2:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.4848\\KStest2:Conc3:h=0,p=0.0766,ks2stat=0.6667\\RStest:Conc3:h=0,p=0.3939\\KStest2:Conc4:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc4:h=0,p=0.2403$

9.12 Figure S.7k

Statistical significance was determined by Repeated measures analysis of variance. (Female N=6, Male N=6).

p-value for concentration: 5.9005e-04.

p-value for gender: 1.4048e-01.

kstest2 results: h=0, p=2.1598e-01, ks2stat=0.2917 (complementary to ranova)

Post-hoc analysis:

```
0.5\%: 3.2825e - 01, 2\%: 4.1626e - 01, 5\%: 5.1375e - 02, 9\%: 3.6430e - 01
```

```
KStest2:Conc1:h=0,p=0.3180,ks2stat=0.5000\\RStest:Conc1:h=0,p=0.3939\\KStest2:Conc2:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc2:h=0,p=0.5887\\KStest2:Conc3:h=0,p=0.0766,ks2stat=0.6667\\RStest:Conc3:h=0,p=0.0649\\KStest2:Conc4:h=0,p=0.8096,ks2stat=0.3333\\RStest:Conc4:h=0,p=0.4848
```