UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ÁLGEBRA Y ÁLGEBRA LINEAL 520142

PRACTICA 4. BINOMIO Y PROGRESIONES.

Problema 1.- Encuentre y escriba el término del binomio dado: (En práctica)

- (a) que contenga a $\frac{x^2}{y^2}$ en $\left(\frac{x}{y} \frac{y^2}{2x^2}\right)^{57}$.
- (b) que sea independiente de a, si existe, de $\left(3a^{-2} \frac{2}{5}a^3\right)^{30}$.

Problema 2.- Determine para los siguientes binomios el o los términos centrales, el octavo término y el décimo tercer término:

- (a) $(2x-y)^{21}$; (b) $(\frac{1}{a}+2b)^{36}$; (c) $(u^{-4}+v^{-3})^{55}$; (d) $(1-2x)^{44}$.

Problema 3.- Si $f(x) = x^n$, donde n es un entero positivo, use el teorema del binomio para simplicar el cuociente $\frac{f(x+h)-f(x)}{h}$. (En práctica)

Problema 4.- Determine cuáles de las siguientes sucesiones, $\{a_n\}$, son progresiones aritméticas(P.A.)

- (a) $a_n = 1 2n$; (b) $a_n = 3(n+2)$; (c) $a_{n+1} = 2a_n$, $a_1 = 1$; (d) $a_{n+1} = 2a_n 1$, $a_1 = 3$; (e) $a_{n+1} = a_n 1$, $a_1 = -12$; (f) $a_n = \frac{2}{3}a_n 5$.

Problema 5- La sucesión, $\{a_n\}$, es una progresión aritmética con diferencia común d y término inicial a_1 . Determine el término general de las siguientes progresiones:

- (a) $a_1 = 50$, d = -7; (b) $a_1 = 5$, $a_3 = 1$; (c) $a_1 = -\frac{2}{3}$, d = 3; (d) $a_{50} = 4$, $a_{120} = 6$, 8.

Problema 6.- Si una progresión aritmética finita tiene tres términos a, m, b el segundo término se llama **media aritmética** de a y b. En general, si $a, m_1, m_2, \ldots, m_k, b$ es una progresión aritmética finita con k+2 términos, entonces los números m_1, m_2, \ldots, m_k se llaman k medios aritméticos de a y b. Resuelva:

1

- (a) En la P.A -2, 2, 6, 10, 14, 18; ¿cuáles son los medios aritméticos de -2 y 18?.
- (b) Intercale 4 medios aritméticos entre 2 y 4.5.
- (c) Intercale 8 medios aritméticos entre 2 y 5.

(d) Para la P.A $3, \frac{9}{2}, a, b, c, d, 12$ encuentre los medios aritméticos a, b, c, d de 3 y 12.

Problema 7.- Encuentre una relación de recurrencia, con una condición inicial, que determine de manera única cada una de las siguientes progresiones geométricas(P.G):

- (a) $2, 10, 50, 250, \ldots$, (b) $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$, (c) $6, -18, 54, -162, \ldots$, (d) $7, \frac{14}{5}, \frac{28}{25}, \frac{56}{125}, \ldots$,

Problema 8.- Tres números x, y y z son términos consecutivos de una progresión geométrica. Su producto es $\frac{8}{27}$ y su suma $\frac{26}{9}$. Determine estos números.

Problema 9.- Calcular las siguientes sumas

- (a) $S = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{1}{59049}$; (b) $R = 1 + 2 + 4 + \dots + 16384$.. c) $S_{10} = a_1 + a_2 + \dots + a_{10}$ si $a_n = \frac{2^n}{3}$, $\forall n \in \mathbb{N}$.

Problema 10.- La sucesión $\{a_n\}$ es una progresión geométrica con término inicial -2 y En práctica) razón $\frac{2}{3}$.

- a) Escriba a_n en función de n. b) Determine $\lim_{n\to\infty} a_n$.
- c) Considere la suma $S_n = a_1 + a_2 + \cdots + a_n$ y determine su fórmula en función de n, y calcule, si existe, $\lim_{n\to\infty} S_n$.

Problema 11.- Encuentre el término general de las siguientes progresiones geométricas

- (a) $a_{n+1} 1.5a_n = 0$, $n \ge 0$; (b) $4a_n 5a_{n-1} = 0$, $n \ge 1$, (c) $3a_{n+1} 4a_n = 0$, $n \ge 0$, $a_1 = 5$; (d) $2a_n 3a_{n-1} = 0$, $n \ge 1$, $a_4 = 81$.

Problema 12.- Si a_n , $n \ge 0$, verifica $a_{n+1} - da_n = 0$ y $a_3 = \frac{153}{49}$, $a_5 = \frac{1377}{2401}$, encontrar el valor de d.

Problema 13.- El número de bacterias en un cultivo es de 1000 y este número aumenta un 250% cada dos horas. Determine el número presente después de un día.

Problema 14.- Encuentre una P.G. cuyo segundo término es 4, y tal que $\frac{a_4}{a_5} = \frac{25}{4}$.

Problema 15.- Cierta población de bacterias aumenta geométricamente con un factor diario de 1.2; ¿Cuánta población habrá al cabo de una semana si inicialmente había 100?. (En práctica)

Problema 16.- La media geométrica de dos números positivos a y b es el número positivo m tal que a, m, b son términos consecutivos de una P.G. finita. Encuentre una fórmula para la media geométrica de a y b.

Problema 17.- Verifique, para una P.G. de razón $r \neq 1$, que las siguientes sumas son correctas:

$$\sum_{k=0}^{n} a_0 r^k = a_0 \frac{1 - r^{n+1}}{1 - r}, \quad \sum_{k=1}^{n} a_0 r^k = a_0 \frac{r - r^{n+1}}{1 - r}.$$