Optimizing the Performance of Multi-threaded Linear Algebra Libraries, a Task Granularity based Approach

PhD Proposal

Shahrzad Shirzad

December 4, 2019

Division of Computer Science and Engineering School of Electrical Engineering and Computer Science Louisiana State University

Outline

Objective

Introduction

Background

Method

Related Work

Proposed Study

Objective

Objective

A compile-time and runtime solution to optimize the performance of a linear algebra library based on

- Machine architecture
- Number of cores to run the program on
- Expression to be evaluated
 - Type of operations
 - Number of matrices involved
 - Matrix sizes

Introduction

Introduction

- Current programming models would not be able to keep up with the advances toward exascale computing
 - More complex machine architectures, deeper memory hierarchies, heterogeneous nodes, complicated networks
- AMT(Asynchronous Many-task) model and runtime systems
 - Examples: HPX, Charm++, Legion, OCR

Introduction

- Performance of HPC applications heavily rely on the linear algebra library they are using.
- Linear algebra libraries
 - BLAS(Basic Linear Algebra Subprograms) are the fundamental routines for basic vector and matrix operations.
 - Scalapack, ATLAS, SPIRAL
- Our motivation:
 - Phylanx, a platform to run your python code in parallel and distributed with machine learning as the target application

Background

Background: HPX

- HPX is a general purpose C++ runtime system for parallel and distributed applications of any scale.
- HPX is the first open source software runtime system implementing the concepts of the ParalleX execution model, on conventional systems including Linux clusters, Windows, Macintosh, Android, XeonPhi, and the Bluegene/Q.
- Fine-grained parallelism instead of heavyweight threads.

Background: HPX, Execution Model

Four major factors for performance degradation: SLOW

- Starvation
- Latency
- Overheads
- Waiting for contention resolution

Background: Blaze C++ Library

Blaze is a high performance C++ linear algebra library based on Smart Expression Templates.

- Expression Templates:
 - Creates a parse tree of the expression at compile time and postpone the actual evaluation to when the expression is assigned to a target
- Smart:
 - Integration with highly optimized compute kernels
 - Selecting optimal evaluation method automatically for compound expressions

Background: Blaze, Parallelization

Depending on the operation and the size of operands, the assignment could be parallelized through four different backends

- HPX
- OpenMP
- C++ threads
- Boost

Background: Blaze, Backend Implementation

In the current implementation, the work is equally divided between the cores at compile time.

Parallel for loop

Figure 1: An example of how C=A+B is performed in parallel in Blaze with 4 cores

Loop Scheduling

Figure 2: An example of loop chunking¹

Chunk size: Number of loop iterations executed by one thread

Static and dynamic loop scheduling

¹Ciorba, Florina M., Christian Iwainsky, and Patrick Buder. "OpenMP loop scheduling revisited: making a case for more schedules." International Workshop on OpenMP. Springer, Cham, 2018.

Background: Task Granularity

Grain size: The amount of work performed by one HPX thread

- What causes performance degradation?
 - Overheads
 - Starvation

Figure 3: The effect of task size on execution time for Stencil application²

²Grubel, Patricia, et al. "The performance implication of task size for applications on the hpx runtime system." 2015 IEEE International Conference on Cluster Computing. IEEE, 2015.

Background: Modeling Performance based on number of cores

Amdahl's Law

$$S(p) = \frac{p}{1 + \sigma(p-1)}$$

Universal Scalibility Law

$$X(p) = \frac{\gamma p}{1 + \sigma(p-1) + \kappa p(p-1)}$$

 Models the effects of linear speedup, contention delay, and coherency delay due to crosstalk

Figure 4: An example of speedup based on Amdahl's law and USL compared to the ideal linear speedup where $\sigma=0.04$ and $\kappa=0.005$.

Background: Modeling Performance based on number of cores: Other Models

Quadratic model

$$S(p) = p - \gamma p(p-1)$$

• Exponential model

$$S(p) = p(1 - \alpha)^{(p-1)}$$

Geometric model

$$S(p) = \frac{1 - \phi^p}{1 - \phi}$$

Method

Method: Objective

Dynamically divide the work among the cores based on number of cores, matrix size, complexity of the operation, machine architecture. For this purpose two parameters have been introduced:

- block_size: at each loop iteration the assignment is performed on one block
- chunk_size: the number of loop iterations included in one task

Figure 5: An example of blocking and creating chunks for chunk_size = 2

Method: Data Collection

• Starting from DMATDMATADD benchmark: C = A + B

Category	Configuration
Matrix sizes	200, 230, 264, 300, 396, 455, 523, 600, 690, 793, 912, 1048, 1200, 1380, 1587
Number of cores	1, 2, 3, 4, 5, 6, 7, 8
Number of rows in the block	4, 8, 12, 16, 20, 32
Number of columns in the block	64, 128, 256, 512, 1024
Chunk size	Between 1 and total number of blocks (logarithmic increase)

Table 1: List of different values used for each variable for running the DMATDMATADD benchmark

Method: Data Analysis

 For simplicity we look at each matrix size individually, one number of core at a time.

Figure 6: The results obtained from running DMATDMATADD benchmark for matrix sizes 690×690 with different combinations of block size and chunk size on 4 cores

Method: Observation

- For each selected block size, there is a range of chunk sizes that gives us the best performance.
- Except for some uncommon cases, no matter which block size we choose, we are able to achieve the maximum performance if we select the right chunk size.

Method: Throughput vs. Grain Size

Grain size: The number of floating point operations performed by one thread

For *DMATDMATADD*, with *block_size* = $r \times c$ and *chunk_size* = ch $r \times c \times ch$

Figure 7: The results obtained from running DMATDMATADD benchmark through Blazemark for matrix size 690×690 on 4 cores.

Method: Throughput vs. Grain Size

The range of grain size for maximum performance

Figure 8: The results obtained from running DMATDMATADD benchmark through Blazemark for matrix size 690×690 on 4 cores.

Throughput vs. Grain Size

Can we model the relationship between the throughput and the grain size?

Throughput vs. Grain Size

Can we model the relationship between the throughput and the grain size?

- Polynomial Model
- Bathtub Model

Method: Polynomial Model

In order to simplify the process and eliminate the effect of different possible factors, we started with limiting the problem to a fixed matrix size.

 Used a second order polynomial to model the relationship between the throughput and the grain size when number of cores is fixed.

$$P = ag^2 + bg + c$$

Divide the data into training(60%) and test(40%)

Figure 9: The results of fitting the throughput vs grain size data into a 2d polynomial for DMATDMATADD benchmark for matrix size 690×690 with different number of cores on the test

$$Relative_error = \frac{1}{n} \sum_{i=1}^{n} 1 - p_i/t_i$$
 n is the number of samples

Figure 10: The training and test error for fitting data obtained from the DMATDMATADD benchmark for matrix size 690×690 against different number of cores cores.

- We have developed a model for each number of cores:1,2,..,8 $P = ag^2 + bg + c$
- Can we somehow integrate number of cores into the model?

- For $P = ag^2 + bg + c$, see how a, b, and c change with the number of cores
- Model the relationship with a 3rd degree polynomial

$$a_i = a_0 N^3 + a_1 N^2 + a_2 N + a_3, \ b = b_0 N^3 + b_1 N^2 + b_2 N + b_3,$$

$$c = c_0 N^3 + c_1 N^2 + c_2 N + c_3$$

Figure 11: Fitting the parameters of the polynomial function with a 3rd degree polynomial from the DMATDMATADD benchmark for matrix size 690×690 against different number of cores.

The final model:

$$P = a_{11}g^2N^3 + a_{10}g^2N^2 + ... + a_1N + a_0$$

Figure 12: matrix size 690×690 for (a) 2 core, (b) 4 cores, (c) 8 cores.

Figure 13: (a) All the data points are include in calculation of error, (b) the leftmost sample was removed from error calculation.

Method: Finding the Grain Size Range for Maximum Performance

Figure 14: The range of grain size (shown as the red line) that leads to a performance within 10% of the maximum performance for (a) 2 cores, (b) 4 cores and (b) 8 cores.

Method: Finding the Grain Size Range for Maximum Performance

How do we use the calculated range?

- Select a block size
- Find the range of chunk size that results in the calculated range of grain size

Method: Finding the Grain Size Range for Maximum Performance

Figure 15: matrix size 690×690 with block size of 4×256 on (a) 2 cores, (b) 4 cores, and (c) 8 cores, and block size of 4×512 on (d) 2 cores, (e) 4 cores, and (f) 8 cores.

Method: Bathtub Model

Can we create an analytic model for execution time based on grain size?

Method: Bathtub Model

- Overheads of creating tasks
- Starvation

Figure 16: Results of running the <code>DMATDMATADD</code> benchmark on 8 cores matrix size 690×690 (time unit is microseconds)

N: Number of cores

 n_t : Number of created tasks

$$n_t = \frac{\textit{maximum_grain_size}}{\textit{grain_size}}$$

 t_s : sequential execution time

M: Number of cores actually doing the work

$$M = \begin{cases} n_t & \text{if } n_t < N \\ N & \text{otherwise} \end{cases}$$

N: Number of cores

 n_t : Number of created tasks

$$n_t = \frac{\textit{maximum_grain_size}}{\textit{grain_size}}$$

 t_s : sequential execution time

M: Number of cores actually doing the work

$$M = \begin{cases} n_t & \text{if } n_t < N \\ N & \text{otherwise} \end{cases}$$

Execution_time = $\frac{t_s}{M}$

N: Number of cores

 n_t : Number of created tasks

$$n_t = \frac{\textit{maximum_grain_size}}{\textit{grain_size}}$$

 t_s : sequential execution time

M: Number of cores actually doing the work

$$M = \begin{cases} n_t & \text{if } n_t < N \\ N & \text{otherwise} \end{cases}$$

Execution_time =
$$\frac{t_s}{M} + \alpha \frac{n_t}{M}$$

N: Number of cores

 n_t : Number of created tasks

$$n_t = \frac{\textit{maximum_grain_size}}{\textit{grain_size}}$$

 t_s : sequential execution time

M: Number of cores actually doing the work

$$M = \begin{cases} n_t & \text{if } n_t < N \\ N & \text{otherwise} \end{cases}$$

Execution_time =
$$\frac{t_s}{M} + \alpha \frac{n_t}{M} + \gamma$$

$$t = \begin{cases} \alpha + \frac{t_s}{n_t} + \gamma & \text{if } n_t < N \\ \frac{\alpha n_t + t_s}{N} + \gamma & \text{otherwise} \end{cases}$$

- Fixed matrix size, and number of cores
- Training set and test set (%60, %40)

Figure 17: The prediction of execution time based on grain size using the bathtub model, for (a)4 cores and (b)8 cores for DMATDMATADD benchmark for matrix size 690 \times 690.

Figure 18: The error in fitting execution time with the bathtub formula for DMATDMATADD benchmark for matrix size 690×690 with different number of cores.

• How do α , and γ change with number of cores?

$$f(N) = \frac{m_0 + m_1(N-1) + m_2(N-1)N + m_3(N^2)(N-1)}{N}$$

Figure 19: Fitting the three parameters (a) α , (b) t_s , and (c) γ for *DMATDMATADD* benchmark for matrix size 690 \times 690.

Figure 20: The error in fitting execution time with the bathtub formula for DMATDMATADD benchmark for matrix size 690×690 with different number of cores.

- The problem with the current model is that with this formula we know that the minimum occurs at n_t = N.
- parameters t_s, α, γ do not behave the way we expect, they change with change of number of cores.
 - What is the missing factor?

Setup: Blazemark

Blazemark is a benchmark suite provided by Blaze to compare the performance of Blaze with other linear algebra libraries.

```
Dense Vector/Dense Vector Addition:
 C-like implementation [MFlop/s]:
    100
                1115.44
                206.317
    10000000
 Classic operator overloading [MFlop/s]:
    100
                415.703
    10000000
                112.557
 Blaze [MFlop/sl:
    100
                2602.56
    10000000
                292.569
 Boost uBLAS [MFlop/s]:
    100
                1056.75
    10000000
                208.639
 Blitz++ [MFlop/s]:
    100
                1011.1
    10000000
                207.855
 GMM++ [MFlop/s]:
    100
                1115.42
    10000000
                207.699
 Armadillo [MFlop/s]:
    100
                1095.86
    10000000
                208 658
 MTL [MFlop/s]:
    100
                1018.47
    10000000
                209.065
 Eigen [MFlop/s]:
    100
                2173.48
    10000000
                209.899
```

```
N=100, steps=55116257
 C-like
             = 2.33322
                        (4.94123)
 Classic
             = 6.26062
                        (13.2586)
  Blaze
             = 1
                        (2.11777)
  Boost uBLAS = 2.4628
                        (5.21565)
  Blitz++
             = 2.57398
                        (5.4511)
 GMM++
             = 2.33325
                        (4.94129)
             = 2.3749
                        (5.0295)
  Armadillo
  MTI
             = 2.55537
                        (5.41168)
  Eigen
             = 1.19742
                        (2.53585)
N=10000000, steps=8
  C-like
             = 1.41805
                        (0.387753)
  Classic
             = 2.5993
                        (0.710753)
  Blaze
             = 1
                        (0.27344)
  Boost uBLAS = 1.40227
                        (0.383437)
                        (0.384884)
  Blitz++
             = 1.40756
  GMM++
                        (0.385172)
             = 1.40862
  Armadillo
             = 1.40215
                        (0.383403)
             = 1.39941
                        (0.382656)
  MTL
                        (0.381136)
  Eigen
             = 1.39386
```

Figure 21: An example of results obtained from Blazemark

Setup: Configuration

Category	Specification
CPU	2 x Intel(R) Xeon(R) CPU E5-2450 0 @ 2.10GHz
RAM	48 GB
Number of Cores	16
Hyperthreading	Off

Table 2: Specifications of the Marvin node from Rostam cluster at CCT.

Library	Version
HPX	1.3.0
Blaze	3.5

Table 3: Specifications of the libraries used to run our experiments.

Related Work

Related Work

- Liu et al. estimating the optimal number of cores to run the program on based on cache specific traces.
- Khatami et al. used logistic regression to find the best chunk size based on some static and dynamic features of the loop.
- Laberge et al. Used machine learning to find the best chunk size to get the maximum performance, while block size was fixed statistically.
- Thoman et al. proposed a compile-time and runtime solution, using an effort estimation function set the chunk size.

Our Contributions

- We propose a novel analytic model to represent how the execution time is expected to change based on grain size.
- To our knowledge, there has not been a work to create a 3D model of the throughput, grain size, and number of cores.
- We are proposing a method to apply the developed model to a linear algebra library, in a way specific to our application, and the machine architecture.

Proposed Study

Proposed Study

Figure 22: Throughput vs. grain size graph obtained from running *DMATDMATADD* benchmark on 4 cores for matrix sizes (a) smaller than 793×793 (b) larger than 793×793.

- Generalization for matrix size, adding runs for larger matrix sizes
- Studying the bathtub model
- Generalization for complex expressions
- Generalization for different architectures

Thank you!

Appendix

BLAS operations

 $\textbf{Figure 23:} \ \ \text{https://web.stanford.edu/class/ee392o/nlas-foils.pdf}$

Appendix

Figure 24: The range of grain size within 10% of the maximum performance of the fitted polynomial function for *DMATDMATADD* benchmark for different number of cores for matrix size 523×523 to 912×912 .