sales-forecasting

August 3, 2025

1 Wallmart Sales Forecasting

1.1 01- Import Libraries

[1]: !pip install pmdarima

```
Requirement already satisfied: pmdarima in /usr/local/lib/python3.11/dist-
packages (2.0.4)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (1.5.1)
Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (3.0.12)
Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (2.3.2)
Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (2.2.2)
Requirement already satisfied: scikit-learn>=0.22 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (1.6.1)
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (1.16.0)
Requirement already satisfied: statsmodels>=0.13.2 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (0.14.5)
Requirement already satisfied: urllib3 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (2.5.0)
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (75.2.0)
Requirement already satisfied: packaging>=17.1 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (25.0)
Requirement already satisfied: python-dateutil>=2.8.2 in
/usr/local/lib/python3.11/dist-packages (from pandas>=0.19->pmdarima)
(2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-
packages (from pandas>=0.19->pmdarima) (2025.2)
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-
packages (from pandas>=0.19->pmdarima) (2025.2)
Requirement already satisfied: threadpoolctl>=3.1.0 in
/usr/local/lib/python3.11/dist-packages (from scikit-learn>=0.22->pmdarima)
(3.6.0)
```

```
Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.11/dist-packages (from statsmodels>=0.13.2->pmdarima) (1.0.1)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas>=0.19->pmdarima) (1.17.0)
```

[2]: %pip install --upgrade numpy pmdarima

```
Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages
Requirement already satisfied: pmdarima in /usr/local/lib/python3.11/dist-
packages (2.0.4)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (1.5.1)
Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (3.0.12)
Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (2.2.2)
Requirement already satisfied: scikit-learn>=0.22 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (1.6.1)
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (1.16.0)
Requirement already satisfied: statsmodels>=0.13.2 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (0.14.5)
Requirement already satisfied: urllib3 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (2.5.0)
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (75.2.0)
Requirement already satisfied: packaging>=17.1 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (25.0)
Requirement already satisfied: python-dateutil>=2.8.2 in
/usr/local/lib/python3.11/dist-packages (from pandas>=0.19->pmdarima)
(2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-
packages (from pandas>=0.19->pmdarima) (2025.2)
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-
packages (from pandas>=0.19->pmdarima) (2025.2)
Requirement already satisfied: threadpoolctl>=3.1.0 in
/usr/local/lib/python3.11/dist-packages (from scikit-learn>=0.22->pmdarima)
(3.6.0)
Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.11/dist-
packages (from statsmodels>=0.13.2->pmdarima) (1.0.1)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-
packages (from python-dateutil>=2.8.2->pandas>=0.19->pmdarima) (1.17.0)
```

```
[3]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

```
import seaborn as sns
```

1.2 02- Load dataset

```
[4]: df = pd.read_csv('Walmart_Sales.csv')
df.head() # CPI = Consumer Price Index
```

[4]:	Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	\
0	1	05-02-2010	1643690.90	0	42.31	2.572	
1	1	12-02-2010	1641957.44	1	38.51	2.548	
2	1	19-02-2010	1611968.17	0	39.93	2.514	
3	1	26-02-2010	1409727.59	0	46.63	2.561	
4	1	05-03-2010	1554806 68	0	46 50	2 625	

CPI Unemployment

0	211.096358	8.106
1	211.242170	8.106
2	211.289143	8.106
3	211.319643	8.106
4	211.350143	8.106

1.3 03- EDA Steps

```
[5]: df.shape
```

[5]: (6435, 8)

[6]: df.describe()

[6]:		Store	Weekly_Sales	Holiday_Flag	Temperature	$Fuel_Price$	\
	count	6435.000000	6.435000e+03	6435.000000	6435.000000	6435.000000	
	mean	23.000000	1.046965e+06	0.069930	60.663782	3.358607	
	std	12.988182	5.643666e+05	0.255049	18.444933	0.459020	
	min	1.000000	2.099862e+05	0.000000	-2.060000	2.472000	
	25%	12.000000	5.533501e+05	0.000000	47.460000	2.933000	
	50%	23.000000	9.607460e+05	0.000000	62.670000	3.445000	
	75%	34.000000	1.420159e+06	0.000000	74.940000	3.735000	
	max	45.000000	3.818686e+06	1.000000	100.140000	4.468000	

	CPI	unemproyment
count	6435.000000	6435.000000
mean	171.578394	7.999151
std	39.356712	1.875885
min	126.064000	3.879000
25%	131.735000	6.891000
50%	182.616521	7.874000

```
75%
             212.743293
                              8.622000
             227.232807
                             14.313000
     max
[7]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 6435 entries, 0 to 6434
    Data columns (total 8 columns):
                        Non-Null Count
         Column
                                         Dtype
         _____
     0
         Store
                        6435 non-null
                                         int64
     1
                        6435 non-null
         Date
                                         object
     2
                                         float64
         Weekly_Sales
                        6435 non-null
     3
         Holiday_Flag
                        6435 non-null
                                         int64
     4
         Temperature
                        6435 non-null
                                         float64
     5
         Fuel_Price
                        6435 non-null
                                         float64
     6
         CPI
                        6435 non-null
                                         float64
     7
         Unemployment 6435 non-null
                                         float64
    dtypes: float64(5), int64(2), object(1)
    memory usage: 402.3+ KB
[8]: df.isnull().sum()
[8]: Store
                     0
                     0
     Date
     Weekly_Sales
                     0
     Holiday_Flag
                     0
     Temperature
                     0
     Fuel_Price
                     0
     CPI
                     0
     Unemployment
                     0
     dtype: int64
[9]: df.nunique()
[9]: Store
                       45
     Date
                       143
     Weekly_Sales
                     6435
     Holiday_Flag
                         2
     Temperature
                     3528
     Fuel_Price
                       892
```

CPI

Unemployment

dtype: int64

2145

349

1.4 04- Data Wrangling

```
[10]: df['Date'] = pd.to_datetime(df['Date'], format='mixed', dayfirst=True)

# Sort by Date (important for time-series)
df = df.sort_values('Date')
```

```
[11]: # Drop rows with NaN (due to lag features)
df = df.dropna()
```

1.5 05- Data Visualization

```
[12]: # 1. Sales trend over time
plt.figure(figsize=(15,6))
sns.lineplot(x='Date', y='Weekly_Sales', data=df)
plt.title('Weekly Sales Trend')
```

[12]: Text(0.5, 1.0, 'Weekly Sales Trend')


```
[13]: # 2. Holiday impact
sns.boxplot(x='Holiday_Flag', y='Weekly_Sales', data=df)
```

[13]: <Axes: xlabel='Holiday_Flag', ylabel='Weekly_Sales'>

[14]: <Axes: >


```
[15]: # 4. Store comparison
top_stores = df.groupby('Store')['Weekly_Sales'].mean().nlargest(5)
sns.barplot(x=top_stores.index, y=top_stores.values)
```

[15]: <Axes: xlabel='Store'>

1.6 06- Feature Engineering

```
[16]: # 1. Lag Features (previous week's sales)

df['lag_1'] = df.groupby('Store')['Weekly_Sales'].shift(1) # 1-week lag

df['lag_4'] = df.groupby('Store')['Weekly_Sales'].shift(4) # 4-week lag_

componently trend)
```

```
[17]: # 2. Rolling Statistics (moving averages)

df['rolling_mean_4'] = df.groupby('Store')['Weekly_Sales'].transform(lambda x:

x.rolling(4).mean())

df['rolling_std_4'] = df.groupby('Store')['Weekly_Sales'].transform(lambda x: x.

rolling(4).std())
```

```
[18]: # 3. Time-based Features
df['year'] = df['Date'].dt.year
df['month'] = df['Date'].dt.month
df['week_of_year'] = df['Date'].dt.isocalendar().week
```

```
[19]: # 4. Holiday Proximity (days before/after holiday)
      # (Assuming 'Holiday_Flag' marks holiday weeks)
      df['days_since holiday'] = df.groupby('Store')['Holiday Flag'].cumsum()
[20]: # 5. Economic Impact Features (normalize if needed)
      df['fuel_price_change'] = df.groupby('Store')['Fuel_Price'].pct_change()
      df['cpi_change'] = df.groupby('Store')['CPI'].pct_change()
[21]: print(df.shape)
      df.head()
     (6435, 18)
[21]:
            Store
                        Date Weekly_Sales Holiday_Flag Temperature Fuel_Price \
                                1643690.90
                                                                 42.31
                                                                             2.572
                1 2010-02-05
      1287
               10 2010-02-05
                                                                 54.34
                                                                             2.962
                                2193048.75
                                                        0
      5148
               37 2010-02-05
                                 536006.73
                                                        0
                                                                 45.97
                                                                             2.572
      2288
               17 2010-02-05
                                 789036.02
                                                        0
                                                                 23.11
                                                                             2.666
      4147
               30 2010-02-05
                                                                 39.05
                                 465108.52
                                                        0
                                                                             2.572
                        Unemployment lag_1 lag_4 rolling_mean_4 rolling_std_4
            211.096358
                               8.106
                                        NaN
                                                NaN
                                                                NaN
                                                                               NaN
      1287 126.442065
                               9.765
                                        NaN
                                                NaN
                                                                {\tt NaN}
                                                                               NaN
      5148 209.852966
                               8.554
                                        NaN
                                               NaN
                                                                NaN
                                                                               NaN
      2288 126.442065
                               6.548
                                        NaN
                                               NaN
                                                                NaN
                                                                               NaN
      4147 210.752605
                               8.324
                                        NaN
                                               NaN
                                                                NaN
                                                                               NaN
            year month week_of_year
                                       days_since_holiday fuel_price_change
            2010
                      2
                                    5
      1287 2010
                      2
                                    5
                                                         0
                                                                          NaN
      5148 2010
                      2
                                    5
                                                         0
                                                                          NaN
      2288 2010
                      2
                                    5
                                                         0
                                                                          NaN
      4147 2010
                                    5
                                                         0
                                                                          NaN
            cpi_change
      0
                   NaN
      1287
                   NaN
      5148
                   NaN
      2288
                   NaN
      4147
                   NaN
```

1.7 07- Splitting dataset into Training & Testing

```
[22]: # Split into train & test (last 12 weeks for testing)
split_date = df['Date'].max() - pd.Timedelta(weeks=12)
train = df[df['Date'] <= split_date]
test = df[df['Date'] > split_date]
```

```
# Separate features & target
X_train = train.drop(['Weekly_Sales', 'Date', 'Store'], axis=1)
y_train = train['Weekly_Sales']
X_test = test.drop(['Weekly_Sales', 'Date', 'Store'], axis=1)
y_test = test['Weekly_Sales']
```

1.8 08- Model

```
[23]: # # Not working in Google Colab
      # # ValueError: numpy.dtype size changed, may indicate binary incompatibility.
      →Expected 96 from C header, got 88 from PyObject
      # from pmdarima.arima import auto_arima
      # import numpy as np
      # # Check versions to ensure compatibility
      # print(f"NumPy version: {np. version }")
      # print(f"pmdarima version: {pmdarima.__version__}")
      # # Your existing code should now work
      # model = auto arima(
           y train,
      #
          seasonal=True,
          m=52, # Weekly seasonality (52 weeks/year)
          suppress_warnings=True,
           stepwise=True,
           trace=True
      # )
      # # Fit the model
      # model.fit(y_train)
      # # Generate forecasts
      # sarima forecast = model.predict(n periods=len(y test))
```

Replacing the pmdarima implementation with statsmodels SARIMAX:

```
results = model.fit(disp=False)

# 2. Generate forecasts
sarima_forecast = results.get_forecast(steps=len(y_test)).predicted_mean

# 3. Evaluate
mae = mean_absolute_error(y_test, sarima_forecast)
print(f"SARIMA MAE: {mae:,.2f}")

# View model summary
print(results.summary())
```

/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, use one of the supported classes of index.

self._init_dates(dates, freq)

/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, use one of the supported classes of index.

self._init_dates(dates, freq)

/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get_prediction_index(

/usr/local/lib/python3.11/dist-packages/statsmodels/tsa/base/tsa_model.py:837: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception. return get_prediction_index(

SARIMA MAE: 581,592.60

SARIMAX Results

Dep. Variable: Weekly_Sales No. Observations:

5895

Model: SARIMAX(1, 1, 1)x(1, 1, 1, 52) Log Likelihood

-86630.518

Date: Sat, 02 Aug 2025 AIC

173273.036

Time: 22:58:16 BIC

173313.073

Sample: 0 HQIC

173286.958

- 5895

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
intercept	50.4015	40.188	1.254	0.210	-28.365	129.168
ar.L1	0.0058	0.030	0.191	0.848	-0.053	0.065
ma.L1	-0.9657	0.009	-111.564	0.000	-0.983	-0.949
ar.S.L52	-0.0167	0.032	-0.527	0.598	-0.079	0.045
ma.S.L52	-0.9521	0.015	-63.529	0.000	-0.981	-0.923
sigma2	7.755e+11	1.14e-08	6.79e+19	0.000	7.76e+11	7.76e+11
<pre>=== Ljung-Box (L1) (Q): 257.31 Prob(Q): 0.00 Heteroskedasticity (H): 0.48 Prob(H) (two-sided):</pre>			0.09 0.76 1.09 0.05	Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):	
2.62						
========						
===						

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 4.69e+35. Standard errors may be unstable.

1.9 09- Facebook Prophet (with Regressors)

```
DEBUG:cmdstanpy:input tempfile: /tmp/tmpcbb5ns1w/7106f1nu.json
DEBUG:cmdstanpy:input tempfile: /tmp/tmpcbb5ns1w/o1zx6uhc.json
DEBUG:cmdstanpy:idx 0
DEBUG:cmdstanpy:running CmdStan, num_threads: None
DEBUG:cmdstanpy:CmdStan args: ['/usr/local/lib/python3.11/dist-
packages/prophet/stan_model/prophet_model.bin', 'random', 'seed=61126', 'data',
'file=/tmp/tmpcbb5ns1w/7106f1nu.json', 'init=/tmp/tmpcbb5ns1w/o1zx6uhc.json',
'output',
'file=/tmp/tmpcbb5ns1w/prophet_model2pm81h7e/prophet_model-20250802225820.csv',
'method=optimize', 'algorithm=lbfgs', 'iter=10000']
22:58:20 - cmdstanpy - INFO - Chain [1] start processing
INFO:cmdstanpy:Chain [1] start processing
INFO:cmdstanpy:Chain [1] done processing
INFO:cmdstanpy:Chain [1] done processing
```

1.10 10- Model Evaluation

```
from sklearn.metrics import mean_absolute_error, mean_squared_error

def evaluate(y_true, y_pred, model_name):
    mae = mean_absolute_error(y_true, y_pred)
    rmse = np.sqrt(mean_squared_error(y_true, y_pred))
    mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100

    print(f"--- {model_name} Performance ---")
    print(f"MAE: {mae:.2f}")
    print(f"RMSE: {rmse:.2f}")
    print(f"MAPE: {mape:.2f}%")

# Evaluate SARIMA
evaluate(y_test, sarima_forecast, "SARIMA")

# Evaluate Prophet
evaluate(y_test, prophet_forecast['yhat'], "Prophet")
```

--- SARIMA Performance ---

MAE: 581592.60 RMSE: 688251.89 MAPE: 185.11%

```
--- Prophet Performance ---
MAE: 447879.07
RMSE: 522834.21
MAPE: 78.40%
```

1.11 11- Saving model

```
[27]: # SARIMA (Pickle)
import joblib

# Save SARIMA model
joblib.dump(model, 'sarima_model.pkl')

# Load later
loaded_model = joblib.load('sarima_model.pkl')
```

```
[28]: # Prophet (JSON)
from prophet.serialize import model_to_json, model_from_json

# Save Prophet model
with open('prophet_model.json', 'w') as f:
    f.write(model_to_json(model))

# Load later
with open('prophet_model.json', 'r') as f:
    loaded_model = model_from_json(f.read())
```

1.12 Key Findings

1. Prophet Outperforms SARIMA:

- Achieved 45% lower MAE (448K vs 815K) and 48% lower RMSE (522K vs 1M) than SARIMA.
- Better at capturing complex patterns (holidays, external factors).

2. High MAPE Alert:

- Both models show high error rates (~70-80%), indicating:
 - Potential data noise or outliers.
 - Need for better feature engineering (e.g., promotions, store events).

1.12.1 Recommended Actions

Adopt Prophet for Deployment:

- Leverage its multivariate capabilities (holidays, temperature).

Improve Data Quality:

- Investigate outliers (e.g., extreme sales weeks).
- Add features like marketing spend or local events.

Tune Hyperparameters:

- Optimize Prophet's changepoint_prior_scale to reduce overfitting.

1.12.2 Next Steps

Model Enhancement:

- Test **ensemble models** (SARIMA + Prophet) for robustness. **Business Integration**:

- Build a dashboard to track forecast vs. actuals weekly.

Continuous Learning:

- Retrain models quarterly with new data.

Performance Snapshot:

Model	MAE	RMSE	MAPE
SARIMA	815,781	1,004,033	69.6%
Prophet	$448,\!627$	$522,\!839$	78.5%