The Alternation Hierarchy of the μ -calculus over Weakly Transitive Frames

Leonardo Pacheco and Kazuyuki Tanaka Tohoku University

> WoLLIC September 20, 2022

Slides available at leonardopacheco.github.io/slides-wollic2022.pdf

BASIC DEFINITIONS

► The formulas of the μ -calculus are generated by the following grammar:

$$\varphi := P \mid \neg P \mid X \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \mu X.\varphi \mid \nu X.\varphi.$$

▶ Given a μ -formula $\varphi(X)$ and a Kripke model M,

$$\|\mu X.\varphi\|^M$$
 is the least fixed-point of Γ_{φ} ; $\|\nu X.\varphi\|^M$ is the greatest fixed-point of Γ_{φ} ,

where
$$\Gamma_{\varphi}(X) = \|\varphi(X)\|^{M}$$
.

EXAMPLE

▶ Let *E* be the "everyone knows" modality:

$$E\varphi:=K_1\varphi\wedge\cdots\wedge K_n\varphi.$$

► Common knowledge can be defined as

$$C\varphi := \nu X.\varphi \wedge EX$$
$$(= \varphi \wedge E\varphi \wedge EE\varphi \wedge EEE\varphi \wedge \cdots).$$

ALTERNATING FIXED-POINTS

► Fixed-point operators may be "entangled":

$$W_n := \eta X_n \dots \nu X_2 \mu X_1 \nu X_0. \bigvee_{0 \le j \le n} (P_j \vee P_\exists \vee \Diamond X_j) \vee (P_j \vee P_\forall \vee \Box X_j)$$

 W_n describes the winning region for player \exists of a parity game using parities $0, \ldots, n$. The player \exists wins an infinite play iff the greatest priority appearing infinitely often is even.

- ► A formula is alternation-free if it has no entangled fixed points.
 - ▶ $\mu X.(\nu Y.P \wedge \Box Y) \vee \Diamond X$ is alternation-free.
 - ▶ $\mu X \nu Y . (P \wedge \Box Y) \vee \Diamond X$ is not alternation-free.

THE COLLAPSE OF THE ALTERNATION HIERARCHY

Theorem

- ► (Bradfield [3]) The alternation hierarchy is strict over all Kripke frames.
- ► (Alberucci and Facchini [1]) The alternation hierarchy collapses to the alternation-free fragment over transitive frames.
- ► (Alberucci and Facchini [1]) The alternation hierarchy collapses to modal logic over equivalence relations.

Logic	Alternation Hierarchy
K	Strict
K4 S4	Alternation-free
S5	Modal Logic

Theorem (P. and Tanaka)

- ► The alternation hierarchy collapses to the alternation-free fragment over weakly transitive frames.
- ► The alternation hierarchy collapses to modal logic over frames of \$4.3.2.

Logic	Alternation Hierarchy
K	Strict
wK4 K4/S4 S4.2 S4.3	Alternation-free
\$4.3.2 \$4.4 \$5	Modal Logic

WEAKLY TRANSITIVE FRAMES

► The logic wK4 is obtained by adding to K the axiom scheme:

$$\Diamond \Diamond P \rightarrow P \vee \Diamond P$$
.

► A frame $F = \langle W, R \rangle$ is weakly transitive iff

$$wRv \wedge vRu$$
 implies $wRu \vee w = u$.

► wK4 is complete for weakly transitive frames.

COLLAPSE OVER WEAKLY TRANSITIVE FRAMES

Theorem (P., Tanaka)

The alternation hierarchy collapses to its alternation-free fragment over weakly transitive frames.

Lemma

Suppose X appears in the scope of some \square *inside* $\nu X.\varphi$. Then, over weakly transitive frames,

$$\nu X.\varphi(X) \equiv \varphi(\varphi(\varphi((\top)))).$$

Lemma

Over weakly transitive frames,

$$\Diamond \mu X. \varphi(X) \equiv \Diamond \varphi^2(\bot) \text{ and } \Box \nu X. \varphi(X) \equiv \Box \varphi^2(\top).$$

Proof sketch.

- ▶ Let $\nu X.\varphi$ be a formula where X appears in the scope of some μY and only in the scope of $\Diamond s$.
- We may suppose $\mu Y.\psi$ is a subformula of some minimal formula of the form

$$\left(\bigwedge_{\theta\in\Gamma}\Diamond\theta\right)\wedge\square\left(\bigvee_{\theta\in\Delta}\theta\right).$$

• ψ can only occur inside some $\theta \in \Gamma$ of the form

$$\theta_1 \vee (\theta_2 \vee (\cdots (\theta_k \vee \mu Y.\psi_2) \cdots).$$

► As we can commute \Diamond and \lor , $\Diamond\theta$ is equivalent to

$$\Diamond(\theta_1 \vee (\theta_2 \vee (\cdots (\theta_k \vee \psi(\psi(\bot)))\cdots)).$$

DERIVATIVE TOPOLOGICAL SEMANTICS

- ▶ A derivative topological model is a triple $\mathcal{X} = \langle W, \tau, V \rangle$.
- ► Semantics for the topological μ -calculus are as in the modal μ -calculus, but we define

$$w \in \|\Diamond \varphi\|^{\mathcal{X}}$$
 iff w is a limit point of $\|\varphi\|^{\mathcal{X}}$.

▶ wK4 is complete for derivative topological semantics.

Theorem (Baltag, Bezhanishvili, Fernández-Duque [2])

If a formula is satisfiable by some topological model, then it is satisfiable by a finite topological model.

Theorem (P., Tanaka)

The alternation hierarchy collapses to its alternation-free fragment on topological semantics.

Proof sketch.

- Suppose φ is not equivalent to any alternation-free formula over topological models.
- Let ψ be an alternation-free formula.
- ► There is a (finite) topological model \mathcal{X} which satisfies $\varphi \wedge \neg \psi$.
- $ightharpoonup \mathcal{X}$ is equivalent to a weakly transitive model.
- ► Therefore $\varphi \land \neg \psi$ is satisfiable over weakly transitive models.

BETWEEN S4 AND S5

Logic	Frame Condition
S4.2	Convergent
S4.3	Weakly Connected
S4.3.2	Semi-Euclidean
S4.4	(no particular name)
S5	Equivalence Relation

 $S4.2 \land \neg S4.3$

 $S4.3 \land \neg S4.3.2$

 $S4.3.2 \land \neg S4.4 \quad S4.4 \land \neg S5$

GAME SEMANTICS FOR ALTERNATION-FREE FORMULAS

We play a game to decide if $M, w \models \varphi$:

- ► Two players: Verifier and Refuter.
- ▶ Positions are of the form $\langle \psi, v \rangle$ with $\psi \in \text{Sub}(\varphi)$ and $v \in W$.
- ▶ Initial position: $\langle \varphi, w \rangle$.

The rules are as follows:

- ► At $\langle \psi \lor \psi', v \rangle$, Verifier chooses $\langle \psi, v \rangle$ or $\langle \psi', v \rangle$.
- ► At $\langle \Box \psi, v \rangle$, Refuter chooses $\langle \psi, v' \rangle$ woth vRv'.
- ▶ At $\langle P, v \rangle$, Verifier wins iff $M, v \models P$.
- At $\langle \eta X.\psi, v \rangle$, move to $\langle \psi, v \rangle$.
- ► At $\langle X, v \rangle$, move to $\langle \eta X. \psi, v \rangle$.

Verifier wins an infinite play iff some $\nu X.\psi$ appears infinitely often.

Theorem (P., Tanaka)

The alternation hierarchy collapses to modal logic over frames of S4 3 2

Proof sketch.

We may suppose an \$4.3.2 frame can be divided into two equivalence classes:

At any long enough game, we will have equivalent positions:

$$\langle \nu X.\varphi, w \rangle \to \cdots \to \langle \Box \psi, v \rangle \to \cdots \to \langle \Box \psi, v' \rangle \to \cdots \to \langle \Box \psi, v'' \rangle \to \cdots$$

We can use this fact to show that $\varphi(\varphi(\top)) \equiv \varphi(\varphi(\varphi(\top)))$.

IGNORANCE

Definition (Van der Hoek, Lomuscio)

The ignorance modality is defined by

$$I\varphi := \neg K\varphi \wedge \neg K \neg \varphi.$$

Read $I\varphi$ as "the agent is ignorant whether φ is true".

Theorem (Fine)

Define higher-order ignorance by:

$$I^1\varphi :\Leftrightarrow I\varphi$$
; and $I^{n+1}\varphi :\Leftrightarrow I(I^n\varphi)$.

If K satisfies S4 then second-order ignorance is unobtainable. That is,

S4
$$\models \neg I^2 \varphi$$
 for any φ .

DEGREES OF IGNORANCE

Fix a formula φ . Let

$$\alpha_{\varphi}(X) := \neg K(\varphi \wedge X) \wedge \neg K(\neg \varphi \wedge X).$$

The degrees of ignorance about φ are:

- $\qquad \qquad \bullet \quad \alpha_{\varphi}^{n+1} := \alpha_{\varphi}(\alpha_{\varphi}^{n});$
- $\qquad \qquad \bullet \quad \alpha_{\varphi}^{\infty} := \nu X. \alpha_{\varphi}.$

If *K* satisfies S4.2, then:

- $\alpha_{\varphi}^{1} \wedge \neg \alpha_{\varphi}^{2} \equiv$ the agent has a false belief but do not consider it possible to be wrong;
- $\alpha_{\varphi}^2 \wedge \neg \alpha_{\varphi}^3 \equiv$ the agent has a true belief but considers it possible to be wrong.

DEGREES OF IGNORANCE

Logic	Degrees
S4.2	ω
S4.3	ω
S4.3.2	2
S4.4	2
S5	1

OVERVIEW

Logic	Alternation Hierarchy
K	Strict
wK4 K4/S4 S4.2 S4.3	Alternation-free
\$4.3.2 \$4.4 \$5	Modal Logic

OVERVIEW

Logic	Alternation Hierarchy
K	Strict
wK4 K4/S4 S4.2 S4.3	Alternation-free
\$4.3.2 \$4.4 \$5	Modal Logic

Thank you!

- Alberucci, L. and Facchini, A. "The modal μ -calculus hierarchy over restricted classes of transition systems". In: *The Journal of Symbolic Logic* 74.4 (2009), pp. 1367–1400.
- Baltag, A., Bezhanishvili, N., and Fernández-Duque, D. "The Topological Mu-Calculus: completeness and decidability". In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2021, pp. 1–13.
- Bradfield, J. C. "The modal mu-calculus alternation hierarchy is strict". In: *Theoretical Computer Science* 195.2 (1998), pp. 133–153.