Práctica 8

En lo que sigue \mathcal{M} ser la σ -álgebra de los conjuntos medibles Lebesgue de \mathbb{R} y μ la medida de Lebesgue.

1. Sea X un conjunto y sea

$$\mathcal{A} = \{ A \subseteq X : A \text{ es contable o } X \setminus A \text{ es contable} \}.$$

Probar que \mathcal{A} es una σ -álgebra.

- 2. Sea X un conjunto y sea \mathcal{A} una σ -álgebra de subconjuntos de X. Probar que:
 - (a) $\emptyset \in \mathcal{A}$.
 - (b) Si $A, B \in \mathcal{A}$ entonces $A \setminus B \in \mathcal{A}$ y $A \triangle B \in \mathcal{A}$.
 - (c) \mathcal{A} es cerrada por intersecciones numerables.
- 3. Probar que todo subconjunto numerable de \mathbb{R} es nulo.
- **4.** Probar que para todos $a, b \in \mathbb{R}$ los intervalos [a, b), [a, b], $[a, +\infty)$ son medibles Lebesgue, y calcular su medida.
- **5.** Sea $A \subseteq \mathbb{R}$.
 - (a) Probar que si A es abierto entonces $A \in \mathcal{M}$.
 - (b) Deducir que si A es cerrado entonces $A \in \mathcal{M}$.
- **6.** Calcular la medida de Lebesgue de \mathbb{Q} y la de los irracionales del [0,1]. ¿Por qué son medibles estos conjuntos?
- 7. Probar que todo conjunto acotado de \mathcal{M} tiene medida finita. Mostrar un conjunto de \mathcal{M} que tenga medida de Lebesgue finita pero que no sea acotado.
- **8.** Si $A, B \in \mathcal{M}$ entonces $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.
- **9.** Sea $A \in \mathcal{M}$. Probar que si $\mu(A) = 0$ entonces $A^{\circ} = \emptyset$. Vale la vuelta?
- **10.** Sea $A \subseteq [0,1]$ un conjunto medible Lebesgue tal que $\mu(A) = 1$. Probar que A es denso en [0,1].
- 11. Sea $A \subseteq \mathbb{R}$. Probar que las siguientes afirmaciones son equivalentes:
 - (a) $A \in \mathcal{M}$.
 - (b) Existen una sucesión $(F_n)_{n\in\mathbb{N}}$ de conjuntos cerrados contenidos en A y un conjunto Z de medida nula tales que $A = (\bigcup_{n\in\mathbb{N}} F_n) \cup Z$.

- (c) Existen una sucesión $(G_n)_{n\in\mathbb{N}}$ de conjuntos abiertos que contienen a A y un conjunto H de medida nula tales que $A = (\bigcap_{n\in\mathbb{N}} G_n) \setminus H$.
- **12.** Sea $A \subseteq \mathbb{R}$. Probar que $A \in \mathcal{M}$ si y sólo si para todo $\varepsilon > 0$ existen conjuntos G abierto y F cerrado tales que $F \subseteq A \subseteq G$ y $\mu(G \setminus F) < \varepsilon$.
- **13.** Sea $(A_n)_{n\in\mathbb{N}}\subseteq \mathcal{M}$ y $B\in \mathcal{M}$ tales que $\lim_{n\to\infty}\mu(A_n\bigtriangleup B)=0$. Probar que $\lim_{n\to\infty}\mu(A_n)=\mu(B)$.
- 14. Recordemos que para $c \in \mathbb{R}$ y $A \subseteq \mathbb{R}$ denotamos

$$cA = \{ca : a \in A\}.$$

- (a) Probar que si $A \in \mathcal{M}$ entonces $cA \in \mathcal{M}$.
- (b) Probar que si c > 0 entonces $\mu(cA) = c \mu(A)$.
- (c) Qué se puede decir de $\mu(cA)$ en el caso c < 0?
- **15.** Probar que existe una función sobreyectiva $f:[0,1]\to\mathbb{R}$ que vale 0 en casi todo punto de [0,1]. Puede una tal función ser continua?