EXERCICE 1C.1

Substituer à \mathcal{Z} sa valeur pour calculer le périmètre d'un carré de côté \mathcal{Z} :

	\mathscr{L}	$\mathcal{P} = 4 \times \mathcal{L}$	Résultat
a.	5 cm	$\mathscr{P} = 4 \times 5$	<i>𝒯</i> = 20 cm
b.	3 cm	$\mathscr{P}=$	$\mathcal{P}=$
c.	9 cm	$\mathscr{P}=$	$\mathcal{P}=$
d.	4 cm	$\mathcal{P}=$	$\mathcal{P}=$
e.	2,5 cm	$\mathcal{P}=$	$\mathcal{P}=$
f.	10 cm	$\mathcal{P}=$	$\mathcal{P}=$
g.	100 mm	$\mathcal{P}=$	$\mathcal{P}=$
h.	500 m	$\mathcal{P}=$	$\mathcal{P}=$
i.	3,2 cm	$\mathcal{P}=$	$\mathcal{P}=$
j.	8,7 cm	$\mathcal{P}=$	$\mathcal{P}=$

EXERCICE 1C.2

a. ABCD est un carré de côté 7,5 cm. Quel est son périmètre ?

b. EFGH est un carré de périmètre 40 cm. Quelle est la longueur d'un de ses côtés ?

c. IJKL est un carré de périmètre 32 cm. Quelle est la longueur d'un de ses côtés ?

......

d. PQRS est un carré de périmètre 14 cm. Quelle est la longueur d'un de ses côtés ?

EXERCICE 1C.3

Substituer à \mathscr{L} et \prime leurs valeurs pour calculer le périmètre d'un rectangle de longueur \mathscr{L} et de largeur \prime :

	\mathscr{L}	1	$\mathcal{P} = 2 \times (\mathcal{L} + l)$	Résultat
a.	5 cm	4 cm	$\mathscr{P}=2\times(5+4)$	<i>𝒯</i> = 18 cm
b.	3 cm	2 cm	<i>P</i> =	<i>P</i> =
c.	8 cm	1 cm	$\mathscr{P}=$	$\mathcal{P}=$
d.	9 cm	8 cm	$\mathscr{P}=$	$\mathcal{P}=$
e.	5,5 cm	4,5 cm	$\mathscr{P}=$	$\mathcal{P}=$
f.	6,5 cm	3 cm	$\mathscr{P}=$	$\mathcal{P}=$
g.	14 m	12 m	$\mathscr{P}=$	$\mathscr{P}=$
h.	120 cm	1 m	$\mathscr{P}=$	$\mathscr{P}=$
i.	123 mm	12,2 cm	$\mathscr{P}=$	$\mathcal{P}=$
j.	1 m	1 cm	$\mathscr{P}=$	$\mathscr{P}=$

EXERCICE 1C.4

a. Un champ mesure 156 m de long pour 124 m de large. Combien de mètres de clôture faudrait-il pour l'entourer complètement ?

b. Avec 360 m de clôture, on pourrait faire le tour d'un champ carré. Quelle serait alors la mesure du côté de ce carré?

c. Quel champ nécessite la plus longue cloture: un champ carré de 30 m de côté ou un champ rectangulaire de 50 m de long sur 10 m de large ?

EXERCICE 1C.5

Substituer à \mathcal{R} sa valeur pour calculer la longueur d'un cercle de rayon \mathcal{R} ou de diamètre \mathcal{L} :

	R	$\mathcal{P} = 2 \times \pi \times \mathcal{R}$	Résultat
a.	5 cm	$\mathscr{P} = 2 \times \pi \times 5$	<i>P</i> ≈ 31,4 cm
b.	3 cm	$\mathscr{P}=$	P≈
C.	9 cm	$\mathscr{P}=$	P≈
d.	4 mm	$\mathscr{P}=$	P≈
e.	2,5 cm	$\mathscr{P}=$	P≈
	Ø	$\mathcal{P} = \pi \times d$	Résultat
f.		$\mathcal{P} = \pi \times d$ $\mathcal{P} = \pi \times 10$	Résultat
f. g.		$\mathcal{P} = \pi \times 10$	
	10 cm	$\mathcal{P} = \pi \times 10$	<i>P</i> ≈ 31,4 cm
g.	10 cm 15 cm 500 m	$\mathcal{P} = \pi \times 10$ $\mathcal{P} =$	<i>P≈</i> 31,4 cm <i>P≈</i>

EXERCICE 1C.6

Calculer le <u>péri</u>mètre <u>réel</u> de ces figures:

