

TRABALHO Nº 3 Conversor CC/CC abaixador com filtro LC

V1.0, dezembro de 2020

Experiência

INTRODUÇÃO

Neste trabalho pretende-se implementar um conversor CC/CC abaixador com filtro LC (Figura 1), de forma a converter 10 V na entrada para 3,3 V na saída, com ondulação desprezável (cerca de 20 mV), pelo que a razão cíclica (D) associada é de 0,33. Nas condições propostas o conversor opera no modo de condução contínua.

Figura 1 - Conversor CC/CC abaixador com filtro LC

PARTE I - Circuito de controlo

Teste o circuito de controlo implementado no âmbito da preparação deste trabalho. Caso não tenha feito ou circuito implementado não funcione, passe para o ponto 2) deste guião. Use a fonte de alimentação do laboratório, preferencialmente, em modo série.

- 1) Após confirmação de que o circuito de controlo está funcional, faça D = 0,33 e registe, com a devida correspondência temporal:
 - o sinal de referência;
 - o sinal da portadora;
 - o sinal de PWM.

	Mínimo	Máximo
Referência		
Portadora		
PWM		

2) Ajuste o gerador de sinais para uma quadrada com frequência igual a 20 kHz, valor mínimo igual a 0 V e valor máximo igual a 1 V. Registe o sinal:

V/div: ______ s/div: ______

PARTE II - Circuito de potência

O circuito de potência está ilustrado na Figura 2 com:

L – 2 bobines em série de 680 μH R_o – 12 Ω (2 W)

3) Monte o circuito **sem o filtro LC**. Verifique o correto funcionamento. Registe a forma de onda v_o e meça o valor mínimo, máximo e médio.

Figura 2 – Conversor CC/CC abaixador com filtro LC

	Vo
Mínimo	
Máximo	
Valor médio	

4) Introduza o filtro LC no circuito e ajuste a razão cíclica de modo a obter exatamente $V_0 = 3,3$ V. Meça e registe o valor médio, valor eficaz e a ondulação da tensão de saída.

- 5) Registe e caracterize as formas de onda dos seguintes pares de variáveis:
 - a) Tensão v_{DS} do mosfet e tensão v_{AK} do díodo;
 - b) Tensão e corrente na bobine, v_L e i_L ; Para visualizar a corrente use uma resistência de 0,47 Ω .

	Mínimo	Máximo
v_{DS}		
v_{AK}		
v_L		

Ondulação de v_o : ___

 i_L

	V_{o}
Valor médio	
V _{AC_rms}	
Valor eficaz (verdadeiro)	

6) A título de curiosidade, coloque em paralelo com a resistência da carga o ventilador (motor DC de 12 V). Experimente variar a velocidade do ventilador.

l	Registo de ocorrências do professor:		
l			
l			

Rui Chibante ISEP/DEE/ELTRP 3/3