El diámetro de una gráfica que viene de caminos de colores

Leonardo Ignacio Martínez Sandoval Jorge Ramírez Alfonsín

Instituto de Matemáticas - Unidad Juriquilla, UNAM I3M - Université Montpellier 2

29 de octubre de 2014

Gráficas

- Vértices y aristas
- Subgráficas
- Diámetro
- ¿Diámetros de subgráficas?

- ▶ Tomamos n entero positivo, un tablero de $n \times n$.
- ► Camino superior *S* y uno inferior *I* (no se cruzan).

- ▶ Tomamos n entero positivo, un tablero de $n \times n$.
- ► Camino superior *S* y uno inferior *I* (no se cruzan).

- ▶ **Vértices:** Caminos que quedan entre *S* e *I*
- ► Aristas: Caminos que varían en exactamente un renglón

- ▶ **Vértices:** Caminos que quedan entre *S* e *I*
- ► Aristas: Caminos que varían en exactamente un renglón

- ▶ **Vértices:** Caminos que quedan entre *S* e *I*
- Aristas: Caminos que varían en exactamente un renglón

▶ ¿Cuál es el diámetro de esta gráfica?

Gráfica de caminos reflejables

- ► **Vértices:** Caminos que quedan entre *S* e / **y que su reflejado también quede entre** *S* e /
- ► Aristas: Caminos que varían en exactamente un renglón

Gráfica de caminos reflejables

- ► **Vértices:** Caminos que quedan entre *S* e / **y que su reflejado también quede entre** *S* e /
- ► Aristas: Caminos que varían en exactamente un renglón

Gráfica de caminos reflejables

- ► **Vértices:** Caminos que quedan entre *S* e / **y que su reflejado también quede entre** *S* e /
- Aristas: Caminos que varían en exactamente un renglón

¿Cuál es el diámetro de esta gráfica?

Matroides

► Generalizan independencia

Matroides

- Generalizan independencia
- ▶ $\mathcal{M} = (E, \mathcal{B})$. E un conjunto inicial, $\mathcal{B} \subseteq \mathcal{P}(E)$ un conjunto de **bases** que satisfacen:
 - B es no vacío.
 - ▶ (Intercambio) Si $A, B \in \mathcal{B}$ y $a \in A \setminus B$, entonces existe $b \in B \setminus A$ tal que $A \setminus \{a\} \cup \{b\} \in \mathcal{B}$.

Matroides

- Generalizan independencia
- ▶ $\mathcal{M} = (E, \mathcal{B})$. E un conjunto inicial, $\mathcal{B} \subseteq \mathcal{P}(E)$ un conjunto de bases que satisfacen:
 - ▶ B es no vacío.
 - ▶ (Intercambio) Si $A, B \in \mathcal{B}$ y $a \in A \setminus B$, entonces existe $b \in B \setminus A$ tal que $A \setminus \{a\} \cup \{b\} \in \mathcal{B}$.
- ▶ **(Rango)** Se puede mostrar que |A| = |B| para cualesquiera $A, B \in \mathcal{B}$.

Gráfica de bases

 $ightharpoonup \mathcal{M}$ un matroide

Gráfica de bases

- ▶ M un matroide
- ▶ V = B, ponemos arista entre A y B si $|A \setminus B| = 1$.
- \triangleright $G(\mathcal{M})$

Gráfica de bases

- ▶ M un matroide
- $ightharpoonup V = \mathcal{B}$, ponemos arista entre A y B si $|A \setminus B| = 1$.
- \triangleright $G(\mathcal{M})$

Teorema

- 1. $G(\mathcal{M})$ es conexa.
- 2. $diam(G(\mathcal{M})) \leq ran(\mathcal{M})$.

Gráfica de bases y cobases

- $ightharpoonup \mathcal{M} = (E, \mathcal{B})$ un matroide con $A \in \mathcal{B}$ tal que $E \setminus A \in \mathcal{B}$.
- ▶ $G(\mathcal{M}, \mathcal{M}^*)$ es la subgráfica inducida por las bases tales que su complemento también es base.

Gráfica de bases y cobases

- $ightharpoonup \mathcal{M} = (E, \mathcal{B})$ un matroide con $A \in \mathcal{B}$ tal que $E \setminus A \in \mathcal{B}$.
- ▶ $G(\mathcal{M}, \mathcal{M}^*)$ es la subgráfica inducida por las bases tales que su complemento también es base.

Conjetura

- 1. $G(\mathcal{M}, \mathcal{M}^*)$ es conexa.
- 2. Existen dos bases complementarias A, B con d(A, B) = r.
- 3. $diam(G(\mathcal{M}, \mathcal{M}^*))) = ran(\mathcal{M}).$

Gráfica de bases y cobases

- ▶ $\mathcal{M} = (E, \mathcal{B})$ un matroide con $A \in \mathcal{B}$ tal que $E \setminus A \in \mathcal{B}$.
- ▶ $G(\mathcal{M}, \mathcal{M}^*)$ es la subgráfica inducida por las bases tales que su complemento también es base.

Conjetura

- 1. $G(\mathcal{M}, \mathcal{M}^*)$ es conexa.
- 2. Existen dos bases complementarias A, B con d(A, B) = r.
- 3. $diam(G(\mathcal{M}, \mathcal{M}^*))) = ran(\mathcal{M}).$
- ► Los matroides que satisfacen 2 se llaman baseables. Están relacionados una generalización de la integral de Feynman.

Estado de la conjetura

	(Co)gráfico	Lattice path	Transversales	Bloque
1	Farber	Farber	Farber	?
2	Kajitani	L.M	?	?
3	CM.	L.M	?	?

- ► Los tableros con caminos definen un matroide (de **caminos latices**)
- ¿Cómo se leen las bases?

- Los tableros con caminos definen un matroide (de caminos latices)
- ¿Cómo se leen las bases?
- ► Entonces las gráficas de caminos tienen diámetro a lo más $ran(\mathcal{M}) = 2n$

▶ ¿Qué quiere decir que haya un camino que tanto él como su reflejado queden entre *S* e *I*?

▶ ¿Qué quiere decir que haya un camino que tanto él como su reflejado queden entre *S* e *I*?

▶ ¡Podemos pensar $G(\mathcal{M}, \mathcal{M}^*)$ como $G(\mathcal{M}')$ para otro matroide de caminos latices (el de los "mínimos" y "máximos")!

▶ ¡Podemos pensar $G(\mathcal{M}, \mathcal{M}^*)$ como $G(\mathcal{M}')$ para otro matroide de caminos latices (el de los "mínimos" y "máximos")!

▶ De esta forma, el diámetro es 2n.

Preguntas

► ¿Hasta dónde se puede extender esta técnica de demostración?

Preguntas

- ¿Hasta dónde se puede extender esta técnica de demostración?
- ▶ ¿Se podrá usar para resolver la conjetura para matroides transversales de bloque?

Preguntas

- ¿Hasta dónde se puede extender esta técnica de demostración?
- ¿Se podrá usar para resolver la conjetura para matroides transversales de bloque?
- ► Los resultados en los matroides de caminos latices, ¿qué dicen exactamente para la integral de Feynman?

Agradecimiento y contacto

FΒ

Leonardo Martínez

Blog

http://blog.nekomath.com

Correo

leomtz@im.unam.mx

Agradecimiento y contacto

FΒ

Leonardo Martínez

Blog

http://blog.nekomath.com

Correo

leomtz@im.unam.mx

¡Gracias por su atención!