República Bolivariana de Venezuela

Universidad Centro Occidental Lisandro Alvarado

Decanato de Ciencias y Tecnología

Ingeniería de Producción

Martorana Milko G. C.I.: 24.305.350.

Barquisimeto, Mayo, 2022.

Diseño de Experimentos Estadisticos

El problema.: Crecimiento de las platanciones

Contamos con los siguientes 2 parametros.:

- Luz o no.
- Riego bajo o alto.

Entonces creo el experimento.:

El Objetivo.:

- La luz -> minimizar tiempo de exposición
- El Riego -> minimizar los costos por riego

la cantidad total de experimentos será $2^2 = 4$.

Importo las librerías a utilizar

```
In []: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import statsmodels

In []: Luz = ['On','Off']
   Agua = ['Low','High']
   # create combinations for all parameters
   experimento = [(x,y) for x in Luz for y in Agua]
   exp_df = pd.DataFrame(experimento,columns=['A','B'])
```

Ahora veo las variables

```
In [ ]: exp_df
```

```
Out[]: A B

0 On Low

1 On High

2 Off Low

3 Off High
```

Idealmente, cada experimento debe ejecutarse sin la experiencia de intentos anteriores.

```
In [ ]: from sklearn.preprocessing import OrdinalEncoder
         from sklearn.preprocessing import OneHotEncoder
         from sklearn.compose import ColumnTransformer
        enc = OrdinalEncoder(categories=[['On','Off'],['Low','High']])
In [ ]:
In [ ]:
        encoded_df = pd.DataFrame(enc.fit_transform(exp_df[['A','B']]),columns=['A'
         #define the experiments order which must be random
        encoded df['exp order'] = np.random.choice(np.arange(4),4,replace=False)
        encoded df['outcome'] = [25,37,55,65]
        encoded df
                B exp_order outcome
Out[]:
                                  25
         0.0 0.0
                          3
         1 0.0
               1.0
                          0
                                  37
                          2
         2 1.0 0.0
                                  55
         3 1.0 1.0
                                  65
```

Explorando un poco el resultado tenemos,

```
In [ ]: plt.scatter(encoded_df['A'],encoded_df['B'], marker='o', s=80, c=encoded_df[
    plt.xlabel('A')
    plt.ylabel('B')
    for i, txt in enumerate(encoded_df['outcome']):
        plt.annotate(txt, (encoded_df['A'].iloc[i], encoded_df['B'].iloc[i]),xyt
```


Es claro que tener A = 1 y B = 1 nos dio los mejores resultados.

```
In []: promedio = encoded_df['outcome'].mean()
promedio
```

El resultado promedio es la media de todos los resultados: 45,5. Esta será nuestra línea de base. A continuación, debemos tener en cuenta los efectos de A y B. Para hacerlo, debemos fijar B(A) y verificar la variación en A(B) y promediar la suma de los efectos.

El efecto promedio de A es, por lo tanto, (30+28)/2 = 29. Podemos ver este resultado de otra manera: observe el gráfico a continuación.

```
In []:
          sns.lineplot(x='A',y='outcome',hue='B',data=encoded df)
          <AxesSubplot:xlabel='A', ylabel='outcome'>
Out[ ]:
             65
                    В
                      0.0
             60
                      1.0
             55
             50
          outcome
             45
             40
             35
             30
             25
                 0.0
                           0.2
                                    0.4
                                              0.6
                                                       0.8
                                                                 1.0
```

Ambas lineas son paralelas. Lo que significa que no tendremos una fórmula en nuestro modelo que los reproduzca: p. un término A*B. Podemos implementar un código simple para calcular los efectos para nosotros:

```
In []: def Pars_effect(data = encoded_df, par='A', effect='B'):
    data_1 = data[data[par] == data[par].min()]
    data_2 = data[data[par] == data[par].max()]

    eff_1 = (data_1[data_1[effect] == data_1[effect].max()].outcome.max() -
    eff_2 = (data_2[data_2[effect] == data_2[effect].max()].outcome.max() -
    return (eff_2+eff_1)/2
```

A continuación, queremos verificar si nuestros coeficientes tienen sentido o no, por lo que implementamos otra pieza de código en la que básicamente sustituimos los coeficientes en nuestra fórmula y asignamos las variables al caso de ±1. Hacemos eso porque es una práctica común usar esta codificación, pero luego veremos qué sucede si hubiéramos usado 0/1 en su lugar.

```
In []: def predict_outcome(baseline, A, Ax, B, Bx):
    if A == 0:
        A = -1
    if B == 0:
        B = -1
    print(f'y ~ {baseline}+1/2 {Ax}*A + 1/2 {Bx}*B')
    pred_y = baseline + 1/2*Ax*A + 1/2*Bx*B
```

```
print(f'{pred_y}')
return pred_y
```

Si probamos nuestra suposición con esta fórmula, podemos comprobar los resultados para el caso de A = 1, B = 1 y A=0, B=0.

```
In []: Ax = Pars_effect(data = encoded_df, par='B', effect='A')
Bx = Pars_effect(data = encoded_df, par='A', effect='B')
y_predice_1 = predict_outcome(promedio,1,Ax,1,Bx)
y_predice_0 = predict_outcome(promedio,0,Ax,0,Bx)
promedio

y ~ 45.5+1/2 29.0*A + 1/2 11.0*B
65.5
y ~ 45.5+1/2 29.0*A + 1/2 11.0*B
25.5

Out[]:
```

Asi obtenemos una formula que puede estimar el resultado de nuestro experimento. Ahora verifiquemos.

```
In []: import statsmodels.api as sm
import statsmodels.formula.api as smf

In []: results = smf.ols('outcome ~ A + B', data=encoded_df).fit()

In []: print(results.summary())
```

OLS Regression Results

OLD REGIESSION RESULTS							
==							
Dep. Variable	e :	out	come	R-squ	ared:		0.9
99	•	040	Come	n bqu	21000		0.5
Model:			OLS	Adj. 1	R-squared:		0.9
97			- 3	1			
Method:	Least Squ	ares	F-sta	tistic:		48	
1.0							
Date:	М	on, 09 May	2022	Prob	(F-statistic)	:	0.03
22							
Time:	02:47:32			Log-Likelihood:			-2.90
32							
No. Observat:		4	AIC:			11.	
81							
Df Residuals	:		1	BIC:			9.9
65							
Df Model: 2							
Covariance Type: nonrobust							
=========		=======					
==	-				I. I		0 0 7
F.,	coei	std err		t	P> t	[0.025	0.97
5]							
Intercept	25.5000	0.866	20	9.445	0.022	14.496	36.5
04	23.3000	0.000			0.022	110130	30.3
A	29.0000	1.000	2.0	9.000	0.022	16.294	41.7
06					***		
В	11.0000	1.000	13	1.000	0.058	-1.706	23.7
06							
==========			=====	======			======
==							
Omnibus:			nan	Durbi	n-Watson:		2.0
00							
Prob(Omnibus):			nan	Jarque	e-Bera (JB):		0.6
67							
Skew:		0	.000	Prob(JB):		0.7
17							
Kurtosis:		1	.000	Cond.	No.		3.
19							
=========		=======	=====	======			======
==							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is corre ctly specified.

/Users/milkomartorana/micromamba/lib/python3.9/site-packages/statsmodels/sta ts/stattools.py:74: ValueWarning: omni normtest is not valid with less than 8 observations; 4 samples were given.

warn("omni_normtest is not valid with less than 8 observations; %i "

La intercepción es básicamente la mitad del que calculamos mientras que los coeficientes para A y B se duplican. Esto se debe a que en el mapeo ±1 la diferencia entre los dos niveles es 2 mientras que en el mapeo original la diferencia es 1.

Conclusión

Observamos como planificar un experimento y cómo interpretar los resultados. También vimos cómo descubrir el efecto de las interacciones entre nuestras variables y cómo lidiar con el sobreajuste. Los datos siempre serán la mejor solución, pero en lugar de

realizar experimentos aleatorios obtuvimos el marco de donde el cual decidimos como realizarlo.