

作业2

李子龙 123033910195

2023年10月13日

3. **解** 对于 $f(x) = x^3 - x^2 - 1$,由于

$$f(1.5) = 0.125 > 0$$

$$f(1.4) = -0.216 < 0$$

故方程 $x^3 - x^2 - 1$ 有一个根在 (1.4, 1.5) 区间内。

- (1) $\phi(x) = 1 + 1/x^2, \phi'(x) = -2/x^3, \phi'(x)$ 是一个单调函数,由于 $|\phi'(1.4)| = |-0.7289| <$
- $1, |\phi'(1.5) = |-0.5926| < 1, 所以对于 \forall x \in (1.4, 1.5), |\phi'(x)| < 1, 迭代公式收敛。$ $(2) \ \phi(x) = \sqrt[3]{1+x^2}, \phi'(x) = \frac{2}{3} \frac{x}{(1+x^2)^{2/3}}, \phi''(x) = \frac{2}{3} \frac{(1+x^2)^{2/3}-x\cdot\frac{2}{3}(1+x^2)^{-1/3}\cdot2x}{(1+x^2)^{4/3}}, \ \forall x \in (1.4, 1.5), \phi''(x) > 0$ 0, 所以 $\phi'(x)$ 是一个单调函数, $\phi'(1.4) = 0.4527 < 1$, $\phi'(1.5) = 0.4558 < 1$, 所以 $\forall x \in$ $(1.4, 1.5), \phi'(x) < 1$, 迭代公式收敛。
- (3) $\phi(x) = 1/\sqrt{x-1}$, $\phi'(x) = -1/(x-1)$, 由于 ϕ' 是一个单调函数, $\phi'(1.4) = -2.5$, $\phi'(1.5) = -2.5$ $-2, |\phi(x)| > 1, __$ 迭代公式发散。

选择 (2) 的 $x_{k+1} = \sqrt[3]{1+x_k^2}$ 作为迭代公式,考虑到压缩率 $q = |\phi'(1.5)| = 0.45577$,则根据后验估 计,只需要

$$|x^* - x_k| \le \frac{q}{1 - q} |x_k - x_{k-1}| < \frac{1}{2} \times 10^{-3}$$

只需要 $|x_k - x_{k-1}| < 0.000597$ 就可以保证结果有四位有效数字。求解过程如下:

k	x_k
0	1.5
1	1.48125
2	1.47271
3	1.46882
4	1.46705
5	1.46624
6	1.46588

由于 $|x_5-x_6|=0.00036<0.000597$,满足四位有效数字,所以 $x^*=1.46588$ 是原方程的一个近 似解。

4. 解 (1) 在区间(0,1)上二分法:

\overline{k}	a_k	b_k	x_k	$f(x_k)$ 符号	k	a_k	b_k	x_k	$f(x_k)$ 符号
0	0	1	0.5	+	6	0.078125		0.0859375	_
1		0.5	0.25	+	7	0.0859375		0.08984375	_
2		0.25	0.125	+	8	0.08984375		0.091796875	+
3		0.125	0.0625	_	9		0.091796875	0.0908203125	+
4	0.0625		0.09375	+	10		0.0908203125	0.09033203125	_
5		0.09375	0.078125	-					

所以二分法需要 10 次迭代,使得 $|x^* - x_k| \le (b_{10} - a_{10})/2 = 0.00048828125 < 0.0005 满足三位小数精度。$

(2) 使用迭代法 $x_{k+1}=(2-\mathrm{e}^{x_k})/10$,对 $\phi(x)=(2-\mathrm{e}^x)/10$ 求导,有 $\phi'(x)=-\mathrm{e}^x/10$,认为其在 (0,1) 上有根,不妨取压缩率 $q=|\phi'(1)|\approx 0.271$,根据后验估计有

$$|x^* - x_k| \le \frac{q}{1 - q} |x_k - x_{k-1}| < \frac{1}{2} \times 10^{-3}$$

故只需要 $|x_k - x_{k-1}| < 0.001345$ 就可以满足三位小数精度。取迭代初值 $x_0 = 0$:

\overline{k}	x_k
0	0
1	0.1
2	0.089483
3	0.090639

所以迭代法需要 3 次迭代,使得 $|x_3-x_2|=0.001156<0.001345$ 将满足三位小数精度。

- 5. **证明** 令 $\phi(x) = x \lambda f(x)$,则 $\phi'(x) = 1 \lambda f'(x)$,由于 $0 < m \le f'(x) \le M$,则 $1 \lambda M \le \phi'(x) \le 1 \lambda m$,由于 $0 < \lambda < 2/M$,故 $-1 < \phi'(x) < 1$,即 $|\phi'(x)| < 1$,根据局部收敛定理,迭代过程 $x_{k+1} = \phi(x_k) = x_k \lambda f(x_k)$ 在某个区间上收敛到 x^* 。收敛时 $x^* = x^* \lambda f(x^*)$,由于 $\lambda > 0$,等价于 $f(x^*) = 0$,即 x^* 为 f(x) = 0 的根。
- 7. **解** (1) $f(x) = x^3 3x 1$, $f'(x) = 3x^2 3$, 则牛顿公式为

$$x_{k+1} = x_k - \frac{x_k^3 - 3x_k - 1}{3x_k^2 - 3}$$

取迭代初值 $x_0 = 2$, 迭代过程如下:

$$\begin{array}{c|cc}
k & x_k \\
\hline
0 & 2 \\
1 & 1.88889 \\
2 & 1.87945 \\
\end{array}$$

由于 $|x_2 - x^*| = |1.87945 - 1.87939| = 0.00006 < 0.0005 满足四位有效数字精度,所以使用牛顿法解得近似解 <math>x^* = 1.879$ 。

(2) 取 $x_0 = 2, x_1 = 1.9$ 作为开始值,用弦切法公式

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

迭代过程如下:

$$\begin{array}{c|cccc}
k & x_k \\
\hline
0 & 2 \\
1 & 1.9 \\
2 & 1.88109 \\
3 & 1.87941
\end{array}$$

由于 $|x_3 - x^*| = 0.00002 < 0.0005$ 满足四位有效数字精度,所以使用弦切法解得近似解 $x^* = 1.879$ 。

9. **证明** 根据 6.3.4 节的配方法得到的公式, $q = \frac{x_0 - \sqrt{a}}{x_0 + \sqrt{a}}$,由于 $\forall x_0 > 0, |q| < 1$, 2^k 必定为偶数,则

$$x_k - \sqrt{a} = 2\sqrt{a} \frac{q^{2^k}}{1 - q^{2^k}} \ge 0$$

 $\exists \exists x_k \geq \sqrt{a}$

对原迭代公式两侧同减去 x_k ,有

$$x_{k+1} - x_k = \frac{1}{2} \left(\frac{a}{x_k} - x_k \right) = \frac{1}{2} \cdot \frac{a - x_k^2}{x_k} \le 0$$

也就是序列 x_1, x_2, \cdots 是单调递减的。

11. 解 (1)

$$f(x) = \begin{cases} \sqrt{x}, & x \ge 0, \\ -\sqrt{-x}, & x < 0. \end{cases}$$
$$\phi(x) = x - \frac{f(x)}{f'(x)} = x - \frac{\sqrt{x}}{\frac{1}{2\sqrt{x}}} = -x$$

则 $\forall x \in \mathbb{R}, \phi'(x) = -1$, 牛顿法发散。

(2)

$$f(x) = \begin{cases} \sqrt[3]{x^2}, & x \ge 0, \\ -\sqrt[3]{x^2}, & x < 0. \end{cases}$$

$$\phi(x) = x - \frac{f(x)}{f'(x)} = x - \frac{\sqrt[3]{x^2}}{\frac{2}{x^3}} = -\frac{1}{2}x$$

则 $\forall x \in \mathbb{R}, |\phi'(x)| = |-\frac{1}{2}| < 1$,牛顿法收敛。由于 $\phi^{(1)}(x^*) \neq 0$,所以其是 1 阶收敛的。

12. 解 牛顿公式为

$$x_{k+1} = x_k - \frac{x_k^3 - a}{3x_k^2} = \frac{2x_k^3 + a}{3x_k^2}$$

则

$$\phi(x) = \frac{2x^3 + a}{3x^2} \qquad \phi'(x) = \frac{6x^2 \cdot 3x^2 - (2x^3 + a) \cdot 6x}{9x^4} = \frac{2}{3} \left(1 - \frac{a}{x^3} \right) \qquad \phi''(x) = \frac{2a}{x^4}$$

 $\phi(\sqrt[4]{a}) = \sqrt[4]{a}$, 当 $a \neq 0$ 时,由于 $\phi'(\sqrt[4]{a}) = 0$, $\phi''(\sqrt[4]{a}) \neq 0$, 此时它是 2 阶收敛的。当 a = 0 时,由于 $\phi'(\sqrt[4]{a}) \neq 0$,此时它是 1 阶收敛的。

13. 解 牛顿公式为

$$x_{k+1} = x_k - \frac{1 - \frac{a}{x_k^2}}{\frac{2a}{x_k^3}} = \frac{3ax_k - x_k^3}{2a}$$

将 a = 115 代入,有

$$x_{k+1} = \frac{345x_k - x_k^3}{230}$$

取初值 $x_0 = 11$, 有

由于 $|x_2 - x_3| = 0.00002 < 0.0005$,所以 $\sqrt{115} \approx 10.7238$ 。

14. 解 讨论通用的牛顿公式

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$

的导数:

$$\begin{split} \phi'(x) &= 1 - \frac{f'^2(x) - f(x)f''(x)}{f'^2(x)} = \frac{f(x)f''(x)}{f'^2(x)} \\ \phi''(x) &= \frac{[f'(x)f''(x) + f(x)f'''(x)]f'^2(x) - 2f(x)f''(x)f'(x)f''(x)}{f'^4(x)} \\ &= \frac{f'^3(x)f''(x) + f(x)f'^2(x)f'''(x) - 2f(x)f'(x)f''^2(x)}{f'^4(x)} \\ &= \frac{f'^2(x)f''(x) + f(x)f'(x)f'''(x) - 2f(x)f''^2(x)}{f'^3(x)} \end{split}$$

根据p阶收敛定理,

$$\lim_{k \to \infty} \frac{\sqrt[q]{a} - x_{k+1}}{(\sqrt[q]{a} - x_k)^2} = -\lim_{k \to \infty} \frac{x_{k+1} - \sqrt[q]{a}}{(x_k - \sqrt[q]{a})^2} = -\frac{\phi''(x^*)}{2}$$

(1) 对于 $f(x) = x^n - a$, 牛顿公式为

$$x_{k+1} = x_k - \frac{x_k^n - a}{nx_k^{n-1}} = \frac{(n-1)x_k^n + a}{nx_k^{n-1}}$$

由于 $f'(x) = nx^{n-1}$, $f''(x) = n(n-1)x^{n-2}$, $f'''(x) = n(n-1)(n-2)x^{n-3}$, 则

$$\phi''(x) = \frac{an^3(n-1)x^{2n-4}}{n^3x^{3n-3}} = a(n-1)x^{-n-1}$$

故

$$\lim_{k \to \infty} \frac{\sqrt[n]{a} - x_{k+1}}{(\sqrt[n]{a} - x_k)^2} = -\frac{\phi''(\sqrt[n]{a})}{2} = -\frac{n-1}{2\sqrt[n]{a}}$$

(2) 对于 $f(x) = 1 - \frac{a}{x^n}$, 牛顿公式为

$$x_{k+1} = x_k - \frac{1 - \frac{a}{x_k^n}}{\frac{an}{x_k^{n+1}}} = \frac{a(n+1)x_k - x_k^{n+1}}{an}$$

由于 $f'(x) = anx^{-n-1}$, $f''(x) = -an(n+1)x^{-n-2}$, $f'''(x) = an(n+1)(n+2)x^{-n-3}$, 则

$$\phi''(x) = \frac{-a^2n^3(n+1)x^{-2n-4}}{a^3n^3x^{-3n-3}} = -\frac{(n+1)x^{n-1}}{a}$$

故

$$\lim_{k \to \infty} \frac{\sqrt[q]{a} - x_{k+1}}{(\sqrt[q]{a} - x_k)^2} = -\frac{\phi''(\sqrt[q]{a})}{2} = \frac{n+1}{2\sqrt[q]{a}}$$

15. 解 令

$$\phi(x) = \frac{x(x^2 + 3a)}{3x^2 + a}$$

有 $\phi(\sqrt{a}) = \sqrt{a}$,则

$$(3x^{2} + a)\phi(x) = x^{3} + 3ax$$

$$6x\phi(x) + (3x^{2} + a)\phi'(x) = 3x^{2} + 3a \qquad \Rightarrow \phi'(\sqrt{a}) = 0$$

$$6\phi(x) + 12x\phi'(x) + (3x^{2} + a)\phi''(x) = 6x \qquad \Rightarrow \phi''(\sqrt{a}) = 0$$

$$18\phi'(x) + 18x\phi''(x) + (3x^{2} + a)\phi'''(x) = 6 \qquad \Rightarrow \phi'''(\sqrt{a}) = \frac{3}{2a}$$

因此它是计算 \sqrt{a} 的三阶方法,根据 p 阶收敛定理,有

$$\lim_{k \to \infty} \frac{\sqrt{a} - x_{k+1}}{(\sqrt{a} - x_k)^3} = \lim_{k \to \infty} \frac{x_{k+1} - \sqrt{a}}{(x_k - \sqrt{a})^3} = \frac{\phi'''(\sqrt{a})}{6} = \frac{1}{4a}$$