$Exercices\ MP/MP^*$

Table des matières

1	Algèbre Générale	2
2	Séries numériques et familles sommables	7
3	Probabilités sur un univers dénombrable	13
4	Calcul matriciel	14
5	Réduction des endomorphismes	15
6	Espaces vectoriels normés	16
7	Fonction d'une variable réelle	17
8	Suites et séries de fonctions	18
9	Séries entières	19
10	Intégration	20
11	Espaces préhilbertiens	21
12	Espaces euclidiens	22
13	Calcul différentiel	23
14	Équation différentielles linéaires	24

1 Algèbre Générale

Exercice 1.1. Soit (G,\cdot) un groupe tel que $\exists p \in \mathbb{N}$ tel que f_p, f_{p+1}, f_{p+2} soient des morphismes où

$$\begin{array}{cccc}
f_p: & G & \to & G \\
& x & \mapsto & x^p
\end{array}$$

Montrer que G est un groupe abélien.

Remarque 1.

- Pour (Σ_3, \circ) , on a f_0, f_1, f_6 des morphismes mais Σ_3 n'est pas commutatif.
- Si f_2 est un morphisme, pour tout $x, y \in G^2$, on a

$$(xy)^2 = xyxy$$
$$= x^2y^2$$

d'où xy = yx.

Exercice 1.2. Soit (G, \cdot) un groupe fini. Soit $A = \{x \in G, \ \omega(x) \ est \ impair\}$ où $\omega(x)$ désigne l'ordre de x. Montrer que A est non vide, et que $x \mapsto x^2$ est une permutation de A.

Exercice 1.3. Soit $\sigma \in \Sigma_n$. On note $\theta(\sigma)$ le nombre d'orbite de σ . Montrer que le nombre minimal de transposition dont σ est le produit est $n - \theta(\sigma)$.

Exercice 1.4. Soit $(n,m) \in (\mathbb{N}^*)^2$. Combien y a-t-il de morphismes de groupe de $(\mathbb{Z}/n\mathbb{Z},+) \rightarrow (\mathbb{Z}/m\mathbb{Z},+)$?

Remarque 2. Exemple pour $f: \left(\mathbb{Z}/4\mathbb{Z}, +\right) \to \left(\mathbb{Z}/6\mathbb{Z}, +\right)$. On note $f(\bar{1}) = \tilde{x}$, d'où $\tilde{4x} = \tilde{0}$ et $3 \mid x$, donc $x \in \{0,3\}$. Ainsi, on a ou bien $f = f_0: \bar{l} \mapsto \tilde{0}$, ou bien $f = f_1: \bar{l} \mapsto \tilde{3l}$.

Exercice 1.5. Soit (G,\cdot) un groupe abélien fini. Soit $P = \prod_{x \in G} x$. Montrer que $P = e_G$ (élément neutre de G) sauf dans un cas très particulier.

Exercice 1.6. Soit G un sous-groupe additif de \mathbb{R} . On suppose qu'il existe un nombre fini n d'ensembles de la forme $(x+G)_{x\in\mathbb{R}}$ avec $x+G=\{x+y,\ y\in G\}$. Montrer que $G=\mathbb{R}$.

Exercice 1.7. Soit $n \in \mathbb{N}^*$. Combien y a-t-il d'automorphismes de $(\mathbb{Z}/n\mathbb{Z}, +)$?

Exercice 1.8. Soit (G, \cdot) un groupe fini et φ un morphisme de $G \to G$. Montrer que $|G| = |\operatorname{Im} \varphi| \times |\ker \varphi|$. En déduire que $\ker \varphi = \ker \varphi^2$ si et seulement si $\operatorname{Im} \varphi = \operatorname{Im} \varphi^2$.

Exercice 1.9. Soit (G, \cdot) un groupe fini d'ordre n, et $m \in \mathbb{N}$ tel que $n \wedge m = 1$. Montrer que pour tout $y \in G$, il existe un unique $x \in G$ tel que $x^m = y$.

Exercice 1.10. Soit (G, \cdot) un groupe fini. Pour $g \in G$, on note

$$C(g) = \{hgh^{-1}, h \in G\}$$

et

$$S_g = \{x \in G, \ xg = gx\}$$

- 1. Montrer que S_q est un sous-groupe de G.
- 2. Montrer que $|G| = |S_g| \times |C(g)|$.
- 3. On note $Z(G) = \{x \in G, \ \forall y \in G, \ xy = yx\}$. Montrer que Z(G) est un sous-groupe de G, et que pour tout $g \in G$, $Z(G) \subset S_q$.
- 4. On suppose que $|G| = p^{\alpha}$ où p est premier et $\alpha \geqslant 1$. Montrer que $|Z(G)| \neq 1$. On pourra utiliser le fait que $x\mathcal{R}y$ si et seulement si il existe $h \in G$ tel que $y = hxh^{-1}$ est une relation d'équivalence.
- 5. On suppose que $|G| = p^2$. Montrer que G est abélien et qu'il est isomorphe à $\mathbb{Z}/p^2\mathbb{Z}$ ou à $\left(\mathbb{Z}/p\mathbb{Z}\right)^2$.

Remarque 3. Les groupes de cardinal p^3 ne sont pas nécessairement abélien, un exemple est donné par D_4 , le groupe des isométries du carré (qui est de cardinal $2^3 = 8$).

Exercice 1.11. Trouver tous les morphismes de $(\mathbb{Z}, +)$ (respectivement $(\mathbb{Q}, +)$) dans (\mathbb{Q}_+^*, \times) . On pourra poser, pour p premier et $n \in \mathbb{Z}$, $\nu_p(n)$ la puissance de p dans la décomposition en produit de facteurs premiers de n.

Exercice 1.12. Soit G un groupe engendré par deux éléments $x, y \neq e_G$ tels que $x^5 = e_G$ et $xy = y^2x$. Montrer que $|G| = 155 = 5 \times 31$ et qu'il est unique à un isomorphisme près.

Exercice 1.13. Soit (G, \cdot) un groupe abélien fini. On note $N = \bigvee_{x \in G} \omega(x)$ (ppcm des ordres des éléments de G) appelé exposant de G, caractérise par $\forall k \in \mathbb{Z}, (\forall x \in G, x^k = e)$ si et seulement si $(\forall x \in G, \omega(x) \mid k)$ si et seulement si (N|k). En particulier, $N \mid |G|$.

On pose $N = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ la décomposition en nombres premiers de N.

- 1. Soit $i \in \{1, ..., r\}$. Justifier qu'il existe $y_i \in G$, tel que $p_i^{\alpha_i} \mid \omega(y_i)$.
- 2. Soit $i \in \{1, ..., r\}$. Justifier qu'il existe $x_i \in G$, tel que $\omega(x_i) = p_i^{\alpha_i}$.
- 3. Montrer qu'il existe $x \in G$ tel que $\omega(x) = N$.

Exercice 1.14. Soit \mathbb{K} un corps fini commutatif, (\mathbb{K}^*, \times) est un groupe abélien fini. Soit $N = \bigvee_{x \in \mathbb{K}^*} \omega(x)$ (ordre multiplicatif). On sait d'après l'exercice précédent qu'il existe $x_0 \in \mathbb{K}^*$ tel que $\omega(x_0) = N$. En étudiant le polynôme $X^N - 1_K$, montrer que (\mathbb{K}^*, \times) est cyclique.

En exemple, soit $(\mathbb{Z}/13\mathbb{Z}, +, \times)$ (c'est un corps).

Trouver un générateur du groupe $(\mathbb{Z}/13\mathbb{Z}^*, \times)$.

Exercice 1.15. Soit (G,\cdot) un groupe tel que $\forall x \in G, \ x^2 = e_G$.

- 1. Montrer que G est abélien.
- 2. Montrer que si G est fini, il existe $n \in \mathbb{N}$ tel que G soit isomorphe à $(\mathbb{Z}/2\mathbb{Z})^n, +$. On pourra considérer une famille génératrice minimale.

Exercice 1.16. Soit (G,\cdot) un groupe, on appelle groupe dérivé de G et on note

$$D(G) = \{xyx^{-1}y^{-1}, (x,y) \in G^2\}$$

.

- 1. Si G est abélien, que vaut D(G)?
- 2. Montrer que pour $n \geqslant 3$, les 3-cycles engendrent A_n (groupe des permutations de signature égale à 1).
- 3. Montrer que deux 3-cycles (a_1, a_2, a_3) et (b_1, b_2, b_3) sont conjugués dans Σ_n (c'est-à-dire qu'il existe $\sigma \in \Sigma_n$ telle que $(b_1, b_2, b_3) = \sigma \circ (a_1, a_2, a_3) \circ \sigma^{-1}$). Est-ce encore vrai dans \mathcal{A}_n ?
- 4. En déduire $D(\Sigma_n)$.

Remarque 4. Pour $n \ge 5$, on a $D(\mathcal{A}_n) = D(\mathcal{A}_n)$.

Exercice 1.17. Soit (G,\cdot) un groupe fini de cardinal n.

1. Soit $g \in G$ et

$$\begin{array}{cccc} \tau_g: & G & \to & G \\ & x & \mapsto & g \cdot x \end{array}$$

Montrer que

$$\begin{array}{cccc} \tau: & G & \to & \Sigma(G) \\ & g & \mapsto & \tau_g \end{array}$$

(où $\Sigma(G)$ est le groupe des permutations de G) est un morphisme injectif. En déduire que G est isomorphe à un sous-groupe de (Σ_n, \circ) .

2. Montrer que G est isomorphe à un sous-groupe de $(GL_n(\mathbb{C}), \times)$.

Exercice 1.18. Montrer qu'il n'existe pas $(x, y, z, t, n) \in \mathbb{N}^5$ tel que $x^2 + y^2 + z^2 = (8t + 7) \times 4^n$.

Exercice 1.19. Montrer que $10^{10^n} \equiv 4[7]$ pour tout $n \in \mathbb{N}^*$.

Exercice 1.20. Pour $n \in \mathbb{N}$, on pose $F_n = 2^{2^n} + 1$.

- 1. Montrer que pour tout $n \ge 1$, $F_n = 2 + \prod_{k=0}^{n-1} F_k$.
- 2. En déduire qu'il existe une infinité de nombres premiers.

Remarque 5. Si $n \neq m$, alors $F_n \wedge F_m = 1$.

Exercice 1.21. Soit U le groupe des inversibles de $\mathbb{Z}/32\mathbb{Z}$.

- 1. Quel est l'ordre de $\bar{5}$?
- 2. Montrer que $U=gr\{\bar{-1},\bar{5}\}$ (groupe engendré) et qu'il est isomorphe à un groupe produit.

Exercice 1.22. On note, pour $n \in \mathbb{N}^*$, $G_n = \{e^{\frac{2ik\pi}{n}}, k \wedge n = 1\}$ l'ensemble des racines n-ièmes de l'unité, on définit $\mu(n) = \sum_{\xi \in G_n} \xi$.

- 1. Montrer que si $n \wedge m = 1$, alors $\mu(nm) = \mu(m)\mu(n)$.
- 2. Calculer $\mu(1)$. Que vaut $\mu(n)$ si $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ (décomposition en nombres premiers)?
- 3. Soit $\mathbb{C}^{\mathbb{N}^*}$ muni de

$$\begin{array}{cccc} f \star g : & \mathbb{N}^* & \to & \mathbb{C} \\ & n & \mapsto & (f \star g)(n) = \sum_{d \mid n} f(d)g(n/d) \end{array}$$

Montrer que \star est une loi associative et commutative, qu'elle admet un élément neutre noté e. Déterminer l'inverse de μ pour \star . On pourra calculer, pour $n \geq 2$, $\sum_{d|n} \mu(d)$.

4. Que vaut pour $n \in \mathbb{N}^*$, $\sum_{d|n} d\mu(d/n)$?

Exercice 1.23. Soit p premier. Montrer que

$$\sum_{k=0}^{p} \binom{p}{k} \binom{p+k}{k} \equiv 2^p + 1[p^2]$$

Exercice 1.24.

- 1. Montrer que les sous-groupes finis de (\mathbb{U}, \times) sont cycliques (où \mathbb{U} est le cercle unité).
- 2. Quels sont les sous-groupes finis de $SO_2(\mathbb{R})$?
- 3. Soit G un sous-groupe fini de $SL_2(\mathbb{R})$. Montrer que

$$\varphi: \quad \mathbb{R}^2 \quad \to \quad \mathbb{R}$$
$$(X,Y) \quad \mapsto \quad \sum_{M \in G} \langle MX, MY \rangle$$

où $\langle \cdot, \cdot \rangle$ est le produit scalaire canonique de \mathbb{R} . Montrer que φ est un produit scalaire pour lequel les matrices de M sont des isométries. En déduire que G est cyclique.

Exercice 1.25. Soit $E = \{x + y\sqrt{2}, \ x \in \mathbb{N}^*, \ y \in \mathbb{Z}, \ et \ x^2 - 2y = 1\}.$

- 1. Montrer que E est un sous-groupe de (\mathbb{R}_+^*, \times) .
- 2. Montrer que $E = \{(x_0 + y_0\sqrt{2})^n, n \in \mathbb{Z}\}\ où\ x_0 + y_0\sqrt{2} = \min E \cap]1, +\infty[.$

Exercice 1.26. Déterminer les entiers $n \in \mathbb{N}^*$ tels que $7 \mid n^n - 3$.

Exercice 1.27. Soit p premier plus grand que 5. Soit $a \in \mathbb{N}$ tel que $1 + \frac{1}{2} + \cdots + \frac{1}{p-1} = \frac{a}{(p-1)!}$. Montrer que $p^2 \mid a$.

Exercice 1.28. Soit $P \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}$, $P(x) \ge 0$. Montrer qu'il existe $(A, B) \in \mathbb{R}[X]^2$ tel que $P = A^2 + B^2$.

Exercice 1.29.

- 1. Soit $\alpha \in \mathbb{R}$ tel que $\frac{\alpha}{\pi} \notin \mathbb{Q}$. Montrer que $(\sin(n\alpha))_{n \in \mathbb{N}}$ est dense dans [-1,1].
- 2. Montrer qu'il y a une infinité de puissance de 2 qui commencent par 7 en base 10.

Exercice 1.30. Soit A un anneau commutatif intègre, on dit que A est euclidien si et seulement s'il existe $v: A \setminus \{0\} \to \mathbb{N}$ tels que pour tout $(a,b) \in A \times A \setminus \{0\}$, il existe $(q,r) \in A^2$ tels que a = bq + r et v(r) < v(b) ou r = 0.

- 1. Montrer que $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}$ est euclidien.
- 2. Montrer que tout anneau euclidien est principal.

Exercice 1.31.

- 1. Soit p premier plus grand que 3. Soit $\bar{x} \in \mathbb{Z}/p\mathbb{Z} \setminus \{\bar{0}\}$. Montrer que \bar{x} est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement $\bar{x}^{\frac{p-1}{2}} = \bar{1}$.
- 2. En déduire qu'il existe une infinité de nombres premiers congrus à 1 modulo 4.

Exercice 1.32. Soit $P = \sum_{i=0}^{n} r_i X^i \in \mathbb{Q}[X] \setminus \{0\}$. On pose

$$c(P) = \prod_{p \in \mathcal{P}} p^{\min_{0 \le i \le n} (\nu_p(r_i))}$$

où \mathcal{P} est l'ensemble des nombres premiers. On écrit $P = c(P) \times P_1$.

- 1. Montrer que $P_1 \in \mathbb{Z}[X]$, que ses coefficients sont premiers entre eux dans leur ensemble et qu'une telle écriture est unique.
- 2. Soit $(P,Q) \in (\mathbb{Q}[X] \setminus \{0\})^2$. Montrer que c(PQ) = c(P)c(Q). On justifiera en passant dans $\mathbb{Z}/p\mathbb{Z}[X]$ que si p premier divise tous les coefficients de $P_1 \times Q_1$, alors il divise tous les coefficients de P_1 ou tous ceux que Q_1 [Lemme de Gauss].
- 3. En déduire que si $P \in \mathbb{Z}[X]$ est irréductible sur $\mathbb{Z}[X]$, alors il l'est aussi sur $\mathbb{Q}[X]$. La réciproque est-elle vraie?
- 4. Trouver tous les $\theta \in [0, 2\pi[$ tels que $\frac{\theta}{\pi} \in \mathbb{Q}$ et $\cos(\theta) \in \mathbb{Q}$. Si $\theta \not\equiv 0[\pi]$ et si $\theta = 2\pi p/q$ avec $p \wedge q = 1$, on appliquera ce qui précède à $A = X^q 1$ et $P = X^2 (2\cos(\theta))X + 1$.

Exercice 1.33. Soit $P \in \mathbb{R}[X]$ scindé sur \mathbb{R} .

- 1. Montrer que pour tout $\alpha \in \mathbb{R}$, $P + \alpha P'$ est scindé sur \mathbb{R} .
- 2. Soit $R = \sum_{i=0}^{r} a_i X^i$ scindé sur \mathbb{R} . Montrer que $\sum_{i=0}^{r} a_i P^{(i)}$ l'est aussi.

Exercice 1.34. Soit $P \in \mathbb{R}[X]$ de degré $n \ge 1$, scindé sur \mathbb{R} . Montrer que pour tout $x \in \mathbb{R}$, $(n-1)(P'^2)(x) \ge nP(x)P''(x)$.

Exercice 1.35.

- 1. Soit $P \in \mathbb{Q}[X]$ irréductible sur $\mathbb{Q}[X]$, montrer que R n'a que des racines simples sur \mathbb{C} . On pourra évaluer $P \wedge P'$ sur $\mathbb{Q}[X]$.
- 2. Soit $A \in \mathbb{Q}[X]$ et $\alpha \in \mathbb{C}$ une racine de A de multiplicité $m(\alpha) > d(A)/2$ où d(A) est le degré de A. Montrer que $\alpha \in \mathbb{Q}$.
- 3. Soit $A \in \mathbb{Q}[X]$ de degré 2m+1. On suppose que A admet une racine complexe de multiplicité plus grande que m. Montrer que A possède une racine rationnelle.

2 Séries numériques et familles sommables

Exercice 2.1. Soit la suite définie par $a_0 = 1$ et pour tout $n \geqslant 1$,

$$a_n = 2a_{\lfloor n/3 \rfloor} + 3a_{\lfloor n/9 \rfloor}$$

- 1. On pose pour $p \in \mathbb{N}$, $b_p = a_{3p}$. Calculer b_p en fonction de p.
- 2. Montrer que si $3^p \leqslant n < 3^{p+1}$, alors $a_n = b_p$.
- 3. Déterminer l'ensemble des valeurs d'adhérence de $(\frac{a_n}{n})_{n \geq 2}$.

Exercice 2.2. Soit $[a,b] \subset \in \mathbb{R}$ avec a < b et $f : [a,b] \to [a,b]$ continue. Soit $x_0 \in [a,b]$ et pour tout $n \in \mathbb{N}$, $x_{n+1} = f(x_n)$.

- 1. Montrer que f admet au moins un point fixe $l \in [a, b]$.
- 2. Si $\lim_{\substack{n \to +\infty \\ segment.}} x_{n+1} x_n = 0$, montrer que l'ensemble des valeurs d'adhérence de $(x_n)_{n \in \mathbb{N}}$ est un segment.
- 3. En déduire que $(x_n)_{n\in\mathbb{N}}$ converge si et seulement si $\lim_{n\to+\infty} x_{n+1} x_n = 0$.

Exercice 2.3. Soit $\theta \in [0, 2\pi[$, on définit $u_0 = e^{i\theta}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2$. Peut-on avoir $(u_n)_{n \in \mathbb{N}}$

- stationnaire?
- convergente?
- périodique ?
- dense dans \mathbb{U} ?

On pourra étudier le développement binaire de $\frac{\theta}{2\pi} = \sum_{k=1}^{+\infty} \frac{a_k}{2^k}$.

Exercice 2.4. Soit $(a,b) \in \mathbb{R}^2_+$, étudier $u_n = \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2}\right)^{n^2}$.

Exercice 2.5. Soit $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}_+^{\mathbb{N}}$ telle que $\lim_{n\to+\infty}=0$ et $\sum_{n=0}^{+\infty}x_n=+\infty$.

- 1. Montrer qu'il existe $\varphi : \mathbb{N} \to \mathbb{N}$ bijective telle que $(x_{\varphi(n)})$ est décroissante.
- 2. Montrer que pour tout $l \in \overline{\mathbb{R}_+}$, pour tout $\varepsilon > 0$, il existe un sous-ensemble $I \subset \mathbb{N}$ fini tel que

$$\left| \sum_{k \in I} x_k - l \right| \leqslant \varepsilon$$

ou si $l = +\infty$: $\forall A > 0$, il existe un sous-ensemble I fini tel que $\sum_{k \in I} x_k \geqslant A$.

Exercice 2.6. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}_+$ telle que $\lim_{n\to+\infty}u_n\times\sum_{k=0}^nu_k^2=1$. Montrer que $u_n\sim\frac{1}{\sqrt[3]{3n}}$. Une telle suite existe-t-elle?

Exercise 2.7. Étudier $x_n = n - \sum_{k=1}^n \cosh(\frac{1}{\sqrt{k+n}})$.

Exercice 2.8. Soit $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ des suites réelles telles que

(i)
$$\lim_{n \to +\infty} a_n + b_n + c_n = 0,$$

(ii)
$$\lim_{n \to +\infty} e^{a_n} + e^{b_n} + e^{c_n} = 3.$$

Montrer que $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = \lim_{n\to+\infty} c_n = 0$. On pourra étudier $\varphi: x\mapsto e^x - x - 1$.

Exercice 2.9. Soit $u_0 \in]0,1[$ et pour $n \in \mathbb{N}$, $u_{n+1} = u_n - u_n^2$. On pose $v_n = \frac{1}{u_n}$.

- 1. Montrer que $(v_n)_{n\in\mathbb{N}}$ est bien définie.
- 2. Montrer que $v_n = n + \ln(n) + O(1)$, en déduire un développement de u_n .

Exercice 2.10.

- 1. Montrer que pour tout $n \ge 2$, il existe un unique $u_n \in \mathbb{R}_+$ tel que $u_n^n = u_n + n$.
- 2. Montrer que $(u_n)_{n\geq 2}$ converge vers $\lambda \in \mathbb{R}_+$.
- 3. Donner un développement asymptotique à deux termes de $x_n \lambda$.

Exercice 2.11. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs non tous nuls. On suppose que

$$u_n = o\left(\sum_{k=0}^n u_k\right)$$

Soit $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ de limite a. En cas d'existence, évaluer

$$\lim_{n \to +\infty} \frac{u_n a_0 + u_{n-1} a_1 + \dots + u_0 a_n}{u_0 + \dots + u_n}$$

Exercice 2.12.

- 1. Soit $x \in [0,1[$, montrer qu'il existe une unique suite $(a_n)_{n \ge 2}$ d'entiers naturels telle que
 - (i) $0 \leqslant a_n \leqslant n-1$ pour tout $n \geqslant 2$,
 - (ii) il existe $m \ge n$ tel que $a_m < m-1$ pour tout $n \ge 2$,
- (iii) $x = \sum_{n=2}^{+\infty} \frac{a_n}{n}$.
- 2. Donner une condition nécessaire et suffisante sur $(a_n)_{n\geqslant 2}$ pour que $x\in\mathbb{Q}$.
- 3. Soit $l \in [-1, 1]$, montrer qu'il existe $x \in [0, 1[$ tel que $\lim_{n \to +\infty} \sin(n!2\pi x) = l$.

Exercice 2.13. Soit $u_0 > 0$, $u_1 > 0$ et pour tout $n \ge 1$,

$$u_{n+1} = \ln(1 + u_n) + \ln(1 + u_{n-1})$$

Étudier la suite (u_n) . On pourra poser $M_n = \max(u_n, u_{n-1}, l)$, $m_n = \min(u_n, u_{n-1}, l)$ où $l = 2\ln(1+l)$ et l > 0.

Exercice 2.14. Soit $(p,q) \in (\mathbb{R}^*)^2$ avec $p/q \in \mathbb{R} \setminus \mathbb{Q}$. Soit $(x_n)_{n \in \mathbb{N}}$ une suite réelle bornée. On suppose que $(e^{ipx_n})_{n \in \mathbb{N}}$ et $(e^{iqx_n})_{n \in \mathbb{N}}$ convergent. Montrer que $(x_n)_{n \in \mathbb{N}}$ converge. Et si $(x_n)_{n \in \mathbb{N}}$ n'est pas bornée?

Exercice 2.15.

1. Montrer que pour tout $n \ge 1$, pour tout $k \in \{0, \ldots, n\}$, $\binom{n}{k} \le \frac{n^k}{k!}$.

2. Soit $z \in \mathbb{C}$, montrer que

$$\left| \sum_{k=0}^{n} \frac{z^{k}}{k!} - \left(1 + \frac{z^{n}}{n} \right) \right| \leqslant \sum_{k=0}^{n} \frac{|z|^{k}}{k!} - \left(1 + \frac{|z|}{n} \right)^{n}$$

3. En déduire $\lim_{n\to+\infty} \left(1+\frac{z}{n}\right)^n$.

Exercice 2.16. Soit $u_n = \prod_{k=2}^n \frac{\sqrt{k}-1}{\sqrt{k}+1}$ pour $n \ge 2$. Quelle est la limite de cette suite? Quelle est la nature de la série $\sum_{n\ge 2} u_n^{\alpha}$ pour $\alpha \in \mathbb{R}$?

Exercice 2.17. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}_+^{\mathbb{N}}$ décroissante de limite nulle. Montrer que si $\sum u_n$ converge, alors $u_n=o\left(\frac{1}{n}\right)$. On pourra minorer $u_{n+1}+\cdots+u_{2n}$. Montrer ensuite que si $\{p\in\mathbb{N},pu_p\geqslant 1\}$ est infini, alors $\sum u_n$ diverge.

Exercice 2.18. Nature de $\sum u_n$ où $u_n =$

- 1. $n^{-1-\frac{1}{n}}$
- 2. $\int_0^{\frac{\pi}{2}} t^n \sin(t) dt$
- 3. $\sin(2\pi \frac{n!}{e})$
- 4. $\frac{(-1)^n}{n^{\alpha} + (-1)^n \ln(n)} \text{ où } \alpha \in \mathbb{R}$

Exercice 2.19. Montrer la convergence et calculer la somme des différentes séries suivantes :

- $1. \sum_{n\geqslant 1} \sum_{k\geqslant n} \frac{(-1)^k}{k}$
- 2. $\sum_{n \geqslant 0} \frac{1}{(3n)!}$
- 3. $\sum_{n\geqslant 1} \frac{E(n^{\frac{1}{3}})-E(n-1)^{\frac{1}{3}}}{4n-n^{\frac{1}{3}}}$ où E désigne la partie entière.

Exercice 2.20. Soit $f: [1, +\infty[\to \mathbb{R}^*_+ \text{ de classe } \mathcal{C}^2 \text{ et telle que } \lim_{x \to +\infty} \frac{f'(x)}{f(x)} = a < 0.$ Montrer la convergence de $\sum_{n \geqslant 1} f(n)$. Donner un équivalent de $R_n = \sum_{k=n}^{+\infty} f(k)$.

Exercice 2.21. Donner un équivalent de $S_n = \sum_{k=1}^n \frac{e^k}{k}$.

Exercice 2.22. Donner la nature de $\sum u_n$ quand u_n vaut

- 1. $\left(1 \frac{1}{n}\right)^{n^{\alpha}} où \alpha \in \mathbb{R}$
- $2. \ \frac{1}{\sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\frac{1}{k}}}$
- 3. $\frac{\sin(n!\pi e)}{\ln(n)}$

Exercice 2.23. Montrer la convergence et calculer la somme de $\sum u_n$ où u_n vaut

- 1. $a \ln(n) + b \ln(n+1) + c \ln(n+2)$ pour $n \ge 1$ (on cherchera d'abord une condition nécessaire et suffisante de convergence).
- 2. $\frac{2^n}{3^{2^{n-1}}+1}$ pour $n \ge 1$.

3.
$$\frac{k-n\lfloor \frac{k}{n} \rfloor}{k(k+1)}$$
.

4.
$$\arctan(\frac{1}{n^2+n+1}) \ pour \ n \geqslant 0$$
.

Exercice 2.24. Soit $(u_n)_{n\geqslant 1}\in\mathbb{R}^{\mathbb{N}}$ et $v_n=n(u_n-u_{n+1})$. Montrer que $\sum u_n$ et $\sum v_n$ ont même nature lorsque

- (i) $(nu_n)_{n\geq 1}$ converge vers 0 OU
- (ii) $(u_n)_{n\geq 1}$ décroît et tend vers 0.

Comparer alors les sommes respectives. En déduire, pour $p \geqslant 1$ fixé,

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)\dots(n+p)}$$

Exercice 2.25. Soit $q \in \mathbb{Z}$ et $v_n = \frac{1}{(n+q)!} \sum_{k=1}^n k!$. Donner la nature de $\sum v_n$. En cas de divergence, donner un équivalent des sommes partielles.

Exercice 2.26. Soit $(a,b,c) \in (\mathbb{N}^*)^3$, $z \in \mathbb{C}$, |z| < 1. Montrer, en justifiant l'existence :

$$\sum_{n=0}^{+\infty} \frac{z^{nb}}{1+z^{na+c}} = \sum_{n=0}^{+\infty} \frac{(-1)^n z^{nc}}{1-z^{na+b}}$$

Exercice 2.27. Soit $\sum_{n\geqslant 1} a_n$ une série complexe absolument convergente. On pose pour $q\in\mathbb{N}^*$, $b_q=\frac{1}{q(q+1)}(a_1+2a_2+\cdots+qa_q)$. Montrer que $\sum_{q\geqslant 1} b_q$ converge et évaluer sa somme en fonction de $\sum_{n=1}^{+\infty} a_n$. On pourra poser $u_{n,q} = \frac{na_n}{q(q+1)}$ si $n \leqslant q$ et 0 sinon.

Exercice 2.28. Soit $(u_n)_{n\geqslant 1}\in \mathbb{R}_+^{\mathbb{N}}$ telle que $\sum u_n<+\infty$. On pose $v_n=\frac{1}{n(n+1)}(u_1+\cdots+nu_n)$ et $w_n = \sqrt[n]{u_1 \times u_2 \times \cdots \times u_n}$. On admet que pour tout $n \in \mathbb{N}^*$, pour tout $(a_1, \dots, a_n) \in \mathbb{R}^n_+$, on a l'inégalité entre la moyenne géométrique et arithmétique :

$$\sqrt[n]{a_1 \dots a_n} \leqslant \frac{1}{n} (a_1 + \dots + a_n)$$

avec égalité si et seulement si $a_1 = \cdots = a_n$.

Montrer que $\sum w_n$ converge et que $\sum_{n=1}^{+\infty} w_n \leqslant e \sum_{n=1}^{+\infty} u_n$. On pourra utiliser l'exercice précédent. Montrer que e est la "meilleure" constante possible, c'est-à-dire que si $\forall (u_n)_{n\geqslant 1} \in (\mathbb{R}_+^*)^{\mathbb{N}^*}$ telle que $\sum u_n$ converge, on a $\sum w_n \leqslant C \sum u_n$ alors $C \geqslant e$.

Exercice 2.29.

- 1. Trouver une condition nécessaire et suffisante sur $\alpha \in \mathbb{R}$ pour que $\left(\frac{1}{(p+q)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^2\setminus\{(0,0)\}}$ sommable et exprimer alors la somme en fonction de la fonction ζ de Riemann.
- 2. Trouver une condition nécessaire et suffisante sur $\alpha \in \mathbb{R}$ pour que $\left(\frac{1}{(p^2+q^2)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^2\setminus\{(0,0)\}}$ soit sommable.

Exercice 2.30. Étudier la sommabilité de $\left(\frac{1}{(m+n^2)(m+n^2+1)}\right)_{(m,n)\in\mathbb{N}^2}$. En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{E(\sqrt{n})}{n(n+1)}$.

Exercice 2.31.

- 1. Montrer que pour tout $s \in]1, +\infty[$, le produit infini $\prod_{k=1}^{+\infty} \frac{1}{1-\frac{1}{p_k^s}}$ converge (où les p_k sont les nombres premiers). Donner sa valeur en fonction de $\zeta(s)$.
- 2. Généraliser ce résultat à $s \in \mathbb{C}$ avec $\Re(s) > 1$.

Exercice 2.32. On note $\varphi(n) = |\{k \in \{1, ..., n\}, k \land n = 1\}|$. Pour quelles valeurs de $\alpha \in \mathbb{R}$ la somme $\sum_{n=1}^{\infty} \frac{\varphi(n)}{n}$ converge-t-elle? Donner alors sa somme en fonction de $\zeta(\alpha)$.

Exercice 2.33. Soit $(z_n)_{n\in\mathbb{N}}\in(\mathbb{C}^*)^{\mathbb{N}}$ telle que pour tout $n\neq m, |z_n-z_m|\geqslant 1$. Montrer que $\sum_{n\in\mathbb{N}}\frac{1}{z_n^3}$ converge.

Exercice 2.34. Donner la nature de $\sum_{n\geqslant 1} \frac{(-1)^{E(\sqrt{n})}}{n}$.

Exercice 2.35. Pour $(a,b) \in (\mathbb{R} \setminus \mathbb{Z}^*)$, on définit $u_n = \frac{a(a+1)...(a+n)}{b(b+1)...(b+n)}...$

- 1. Donner une condition nécessaire et suffisante pour que $\sum u_n$ converge.
- 2. Dans ce cas, calculer sa somme.
- 3. Faire le cas où $a = -\frac{1}{2}$ et b = 1.

Exercice 2.36. Soit $u_n = \frac{\ln(n)}{n}$ et $v_n = (-1)^n u_n$ pour $n \ge 1$.

- 1. Donner la nature de $\sum u_n$ et $\sum v_n$.
- 2. Soit $S_N = \sum_{n=1}^N u_n$. Donner un équivalent de S_N puis développer jusqu'au o(1).
- 3. Exprimer $\sum_{n=2}^{+\infty} v_n$ en fonction de γ (constante d'Euler) et $\ln(2)$.

Exercice 2.37. Soit pour $n \in \mathbb{N}^*$, $q_1(n)$ la nombre de chiffres de l'écriture décimale de n. On définit par récurrence $q_{k+1}(n) = q_1(q_k(n))$. Étudier la convergence de

$$\sum_{n\geqslant 1} \frac{1}{nq_1(n)q_2(n)\dots q_n(n)}$$

Exercice 2.38. Soit $P_n(X) = \sum_{k=0}^n \frac{X^k}{k!}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $P_{2n} > 0$ sur \mathbb{R} et P_{2n+1} s'annule une seule fois en $a_{2n+1} < 0$.
- 2. Déterminer $\lim_{n\to+\infty} a_{2n+1}$.

Exercice 2.39. Montrer qu'il existe un unique $x_n \ge 0$ tel que $e^{x_n} = x_n + n$. Donne un développement asymptotique à deux termes de x_n pour $n \ge 1$.

Exercice 2.40. Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$, on pose $S_n=\sum_{k=0}^n u_k$. Soit $\alpha\in\mathbb{R}$ et $v_n=\frac{u_n}{S_n^\alpha}$.

- 1. On suppose que $\sum u_n$ converge, étudier $\sum v_n$.
- 2. On suppose que $\sum u_n$ diverge. Pour $\alpha = 1$, montrer que pour tout $(n,p) \in \mathbb{N}^2$, $v_{n+1} + \cdots + v_{n+p} \geqslant 1 \frac{S_n}{S_{n+p}}$. En déduire que $\sum v_n$ diverge.
- 3. On suppose que $\sum u_n$ diverge. Pour $\alpha > 1$, on forme $w_n = \int_{S_{n-1}}^{S_n} \frac{dt}{t^{\alpha}}$. Montrer que $\sum v_n$ converge. Et si $\alpha < 1$?

4. On suppose que $\sum u_n$ converge. On pose $R_n = \sum_{k=n}^{+\infty} u_k$ et $w_n = \frac{u_n}{R_n^{\alpha}}$. Étudier la nature de $\sum w_n$.

Exercice 2.41 (Principe des tiroirs de Dirichlet). Soit $x \in \mathbb{R} \setminus \mathbb{Q}$.

- 1. Soit $n \in \mathbb{N}^*$, montrer qu'il existe $(p,q) \in \mathbb{Z} \times \{1,\ldots,n\}$ tel que $\left|x \frac{p}{q}\right| < \frac{1}{qn}$. On pourra étudier les n+1 réels $(kx-\lfloor kx \rfloor) = (x_k)_{0 \le k \le n}$ et montrer qu'il existe $k \ne k'$ avec $|x_k x_{k'}| < \frac{1}{n}$.
- 2. Montrer qu'il existe $(p_n, q_n)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}} \times (\mathbb{N}^*)^{\mathbb{N}}$ telles que $\left| x \frac{p_n}{q_n} \right| < \frac{1}{q_n^2}$ et $\lim_{n \to +\infty} q_n = +\infty$.
- 3. Étudier la convergence de la suite $\left(\frac{1}{n\sin(n)}\right)_{n\geq 1}$ (on admet que $\pi\notin\mathbb{R}\setminus\mathbb{Q}$).

Exercice 2.42. Sot $(a_{n,p}) \in \mathbb{C}^{(\mathbb{N}^*)^2}$ telle que

- (i) pour tout $p \in \mathbb{N}^*$, il existe $\lim_{n \to +\infty} a_{n,p} = a_p \in \mathbb{C}$,
- (ii) il existe une suite de réels positifs (b_p) donc la série converge telle que pour tout $(n,p) \in (\mathbb{N}^*)^2$, $|a_{n,p}| \leq b_p$.
- 1. Évaluer $\lim_{n\to+\infty}\sum_{p=1}^n a_{n,p}$.
- 2. Calcular $\lim_{n \to +\infty} \left(\left(\frac{1}{n}\right)^n + \left(\frac{2}{n}\right)^n + \dots + \left(\frac{n-1}{n}\right)^n \right)$.

Exercice 2.43. Soit $\sum_{n\geq 1} u_n$ une série complexe absolument convergente.

- 1. Montrer que pour tout $k \ge 1$, on peut définir $S_k = \sum_{n=1}^{+\infty} u_{kn}$.
- 2. On suppose que pour tout $k \ge 1$, $S_k = 0$. Montrer que pour tout $n \ge 1$, $u_n = 0$.

Exercice 2.44. Soit $f : \mathbb{R} \to \mathbb{R}$ telle que pour toute suite $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$, si $\sum u_n$ converge, alors $\sum f(u_n)$ converge.

- 1. Montrer que f(0) = 0 et que f est continue en 0.
- 2. Montrer qu'il existe $\alpha > 0$, $\forall x \in]-\alpha, \alpha[$, f(x) = -f(x) (f est impaire au voisinage de 0).
- 3. Montrer qu'il existe $\beta > 0 \ \forall (x,y) \in]-\beta, \beta[^2, f(x+y) = f(x) + f(y) \ (f \ est linéaire au voisinage de 0).$
- 4. Montrer qu'il existe $\lambda \in \mathbb{R}$ et $\gamma > 0$ tels que $\forall x \in]-\gamma, \gamma[$, $f(x) = \lambda x$ (f est une homothétie au voisinage de 0).

3	Probabilités sur un univers dénombrable

4 Calcul matriciel

5 Réduction des endomorphismes

6 Espaces vectoriels normés

7 Fonction d'une variable réelle

8 Suites et séries de fonctions

9 Séries entières

10 Intégration

11 Espaces préhilbertiens

12 Espaces euclidiens

13 Calcul différentiel

14 Équation différentielles linéaires