

B.TECH. SECOND YEAR

(III SEM. CSE/IT/CCE)

ACADEMIC YEAR: 2020-2021

COURSE NAME: ENGINEERING MATHEMATICS III

COURSE CODE : MA 2101

LECTURE SERIES NO: UNIT-III (LECTURE NO. 14-22)

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY : DR. REEMA JAIN

EMAIL-ID : reema.jain@laipur.manipal.edu

PROPOSED DATE OF DELIVERY: August 17, 2020

VISION

Global Leadership in Higher Education and Human Development

MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

VALUES

Integrity, Transparency, Quality,
Team Work, Execution with Passion, Humane Touch

SESSION OUTCOME

"TO UNDERSTAND THE CONCEPT OF TREES AND APPLY THE TREE ALGORITHMS TO ANALYZE THE SHORTEST PATH PROBLEMS"

ASSIGNMENT

QUIZ

MID TERM EXAMINATION -I & II END TERM EXAMINATION

ASSESSMENT CRITERIA

Trees

Definition: A *tree* is a connected undirected graph with no cycles. In other words a *tree* T is a simple graph such that for every pair of vertices v and w there is a unique path from v to w.

When talking about graphs, we say a tree is a graph that is:

- undirected
- acyclic
- Connected.

A Tree?

A Tree?

Facts about Trees

- All trees are graphs, but NOT all graphs are trees.
- An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.
- Trees are structures used to represent hierarchical relationship.
- Each tree consists of nodes and edges.
- Each node represents an object.
- Each edge represents the relationship between two nodes.

Some Applications of Trees

Organization Chart

Expression Tree

Applications of trees:

- •Represent organization
- •Represent computer file systems
- •Networks to find best path in the Internet
- •Chemical formulas representation etc.

Certain Properties of Trees

Theorem 1: A graph G is a tree if and only if there is a unique simple path between any two vertices of G.

Theorem 2: Every tree, T = (V, E) with $|V| \ge 2$, has at least two vertices that have degree = 1.

Theorem 3: Every tree with n vertices has exactly n-1 edges.

(Questions based in above theorems)

Basic Terminology I

- For any two nodes u and v, if there is an edge pointing from u to v, u is called the parent of v while v is called the child of u. Such edge is denoted as (u, v).
- In a tree, there is exactly one node without parent, which is called the root. The nodes without children are called leaves.

Basic Terminology II

• In a tree, the nodes without children are called leaves. Otherwise, they are called internal nodes.

Basic Terminology III

- If two nodes have the same parent, they are siblings.
- A node u is an ancestor of v if u is parent of v or parent of parent of v or ...
- A node v is a descendent of u if v is child of v or child of child of v or ...

v and w are siblingsu and v are ancestors of xv and x are descendants of u

Basic Terminology IV

• A subtree is any node together with all its descendants.

A subtree of T

Basic Terminology V

- Level of a node n: number of nodes on the path from root to node n
- Height of a tree: maximum level among all of its node
- Depth of a vertex v is its distance from the root.

