Data job market analysis

February 20, 2025

1 Import libraries

```
[1]: import pandas as pd
  import numpy as np
  import sqlite3
  import matplotlib.pyplot as plt
  import seaborn as sns
  import warnings

warnings.filterwarnings('ignore')
```

2 Loading Dataset

3 EDA

```
[3]: id site \
0 in-9936bd8d30f8a34d indeed
1 in-65c826860da559a3 indeed
2 in-0123143eb77645f8 indeed
3 in-679b46dfdbe7b4ea indeed
4 in-506a48e047b0e57c indeed

job_url \
```

```
0 https://www.indeed.com/viewjob?jk=9936bd8d30f8...
1 https://www.indeed.com/viewjob?jk=65c826860da5...
2 https://www.indeed.com/viewjob?jk=0123143eb776...
3 https://www.indeed.com/viewjob?jk=679b46dfdbe7...
4 https://www.indeed.com/viewjob?jk=506a48e047b0...
                                        job_url_direct
0
                https://jobs.vccs.edu/postings/79840
   https://jobs.colgate.com/job/Piscataway-Data-A...
1
2
                         https://grnh.se/Obe7ee141us
                         https://grnh.se/de2a9b121us
3
   http://www.indeed.com/job/data-analyst-employe...
                                title
                                                                   company \
0
                         Data Analyst
                                       Virginia Community College System
1
           Data Analytics Internship
                                                        Colgate-Palmolive
2
              Financial Data Analyst
                                                           EquipmentShare
   Data Analyst, Customer Operations
                                                              Squarespace
    Data Analyst (Employee Benefits)
                                                             GBS Benefits
  date_posted
                   level
                              job_group
                                          remote
                                                   ... country
 2024-12-11
                          Data Analyst
               Mid-Level
                                         On Site
                                                          US
1 2024-12-11
                          Data Analyst
                  Junior
                                          Hybrid
                                                          US
2 2024-12-11
               Mid-Level
                          Data Analyst
                                          Remote
                                                          US
               Mid-Level
                          Data Analyst
                                          Hybrid
  2024-12-11
                                                          US
4 2024-12-11 Mid-Level Data Analyst
                                          Hybrid
                                                          US
           city_state max_salary min_salary
                                               mean_salary \
0
      Chesterfield, VA
                          78000.0
                                     61000.0
                                                   69500.0
1
        Piscataway, NJ
                          58880.0
                                     42320.0
                                                   50600.0
2
          Columbia, MO
                          86876.0
                                     68611.0
                                                   77743.5
3
          New York, NY
                         138000.0
                                     85500.0
                                                  111750.0
   South Salt Lake, UT
                                                   66566.0
                          74386.0
                                     58746.0
                                         skills
                                                  experience education
0
                                  Bachelor, SQL
                                                           2
                                                              Bachelor
                 Master, Bachelor, SQL, Python
1
                                                           0
                                                                Master
2
   Python, Bachelor, SQL, PowerPoint, Excel, R
                                                              Bachelor
                                                           3
                         Python, SQL, Looker, R
3
                                                           2
                                                                  None
4
                                Bachelor, Excel
                                                              Bachelor
   programming_languages languages
0
                      SQL
1
             SQL, Python
2
          Python, SQL, R
3
          Python, SQL, R
4
```

[5 rows x 22 columns]

[4]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1679 entries, 0 to 1678 Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype				
0	id	1679 non-null	object				
1	site	1679 non-null	object				
2	job_url	1679 non-null	object				
3	job_url_direct	1679 non-null	object				
4	title	1679 non-null	object				
5	company	1653 non-null	object				
6	date_posted	1679 non-null	object				
7	level	1679 non-null	object				
8	job_group	1679 non-null	object				
9	remote	1679 non-null	object				
10	city	1449 non-null	object				
11	state	1516 non-null	object				
12	country	1648 non-null	object				
13	city_state	1449 non-null	object				
14	max_salary	1531 non-null	float64				
15	min_salary	1531 non-null	float64				
16	mean_salary	1531 non-null	float64				
17	skills	1679 non-null	object				
18	experience	1679 non-null	int64				
19	education	1150 non-null	object				
20	<pre>programming_languages</pre>	1679 non-null	object				
21	languages	1679 non-null	object				
<pre>dtypes: float64(3), int64(1), object(18)</pre>							

memory usage: 288.7+ KB

[5]: df.describe(include='all')

	id	site	\
count	1679	1679	
unique	1679	1	
top	in-9936bd8d30f8a34d	indeed	
freq	1	1679	
mean	NaN	NaN	
std	NaN	NaN	
min	NaN	NaN	
25%	NaN	NaN	
50%	NaN	NaN	
75%	NaN	NaN	
	unique top freq mean std min 25% 50%	count 1679 unique 1679 top in-9936bd8d30f8a34d freq 1 mean NaN std NaN min NaN 25% NaN 50% NaN	count 1679 1679 unique 1679 1 top in-9936bd8d30f8a34d indeed freq 1 1679 mean NaN NaN std NaN NaN min NaN NaN 25% NaN NaN 50% NaN NaN

max NaN NaN

count					job_url 1679			
unique					1679)		
top	https://www.indeed.com/viewjob?jk=9936bd8d30f8							
freq	•		J	J	1			
mean					NaN	Ī		
std					NaN			
min					NaN			
25%					NaN			
50%					NaN			
75%					NaN			
max					NaN			
max					Nan	l		
	<pre>job_url_direct title \</pre>							
count					1679	1	679	
unique					1599	1	068	
top	https://int	tonenetwork	s.com/ca	areers	-at-intone Dat	a Engin	eer	
freq					14		135	
mean					NaN		NaN	
std					NaN		NaN	
min					NaN		NaN	
25%					NaN		NaN	
50%					NaN		NaN	
75%					NaN		NaN	
max					NaN		NaN	
	company	date_poste	ed :	level	job_group	remot	e \	
count	1653	167	'9	1679	1679	167	9	
unique	1025	7	'1	4	3		3	
top	Amazon.com	2024-12-1		Level	Data Engineer	On Sit		
freq	94	19)5	989	663	90	8	
mean	NaN	Na	ιN	NaN	NaN	Na	N	
std	NaN	Na		NaN	NaN	Na		
min	NaN	Na		NaN	NaN	Na		
25%	NaN	Na		NaN	NaN	Na		
50%	NaN	Na		NaN	NaN	Na		
75%	NaN	Na		NaN	NaN	Na		
max	NaN	Na	ιN	NaN	NaN	Na	N	
				_				
	-	ity_state		salary	min_salary		n_salary	\
count	1648	1449	1531.0	000000	1531.000000		1.000000	
unique	1	453		NaN	NaN		NaN	
top		v York,NY		NaN	NaN		NaN	
freq	1648	89		NaN	NaN		NaN	
mean	NaN	NaN	146602.	506858	104676.729589	12563	9.618223	

```
std
            NaN
                          NaN
                                56354.458212
                                                 33643.605431
                                                                 42621.890718
            NaN
                                                                 14773.500000
min
                          NaN
                                19159.000000
                                                 10388.000000
25%
            NaN
                          {\tt NaN}
                               110400.000000
                                                 81874.500000
                                                                 99784.250000
50%
            NaN
                          {\tt NaN}
                               139586.000000
                                                102317.000000 122931.500000
75%
            NaN
                          NaN
                               175900.000000
                                                124404.500000
                                                                150150.750000
                          NaN 720000.000000
                                                260100.000000
                                                                445000.000000
max
            NaN
           skills
                    experience education
                                            programming_languages languages
                   1679.000000
             1679
                                                               1679
                                                                          1679
                                      1150
count
unique
             1225
                            NaN
                                         4
                                                                122
                                                                            12
        Bachelor
                            NaN
                                 Bachelor
top
               53
                            NaN
                                       633
                                                                404
                                                                          1610
freq
mean
              NaN
                       3.945801
                                       NaN
                                                                NaN
                                                                           NaN
std
              NaN
                       3.373463
                                       NaN
                                                                NaN
                                                                           NaN
              NaN
                       0.000000
min
                                       NaN
                                                                NaN
                                                                           NaN
25%
              NaN
                       1.000000
                                       NaN
                                                                NaN
                                                                           NaN
50%
              NaN
                       3.000000
                                       NaN
                                                                NaN
                                                                           NaN
75%
              NaN
                       5.000000
                                       NaN
                                                                           NaN
                                                                NaN
max
              NaN
                      20.000000
                                       NaN
                                                                NaN
                                                                           NaN
```

[11 rows x 22 columns]

4 Analysis

4.1 Location

```
if aggregate_column is None:
               if top_10 and list_values is False:
                   column_top = group_data[column].value_counts().head(10)
               elif list_values is not False and top_10 is None:
                   column_top=(group_data[column].str.split(', ').explode()
                               .value_counts()
                               .dropna()
                               .sort_values(ascending=False))
                   column_top = column_top.drop(labels='',errors='ignore')
               elif list_values is not False and top_10 is not None:
                   column_top=(group_data[column].str.split(', ').explode()
                               .value_counts()
                               .dropna()
                               .sort_values(ascending=False).head(10))
                   column_top = column_top.drop(labels='',errors='ignore')
               else:
                   column_top = group_data[column].value_counts()
          else:
               grouped =(
                   group_data.explode(column)
                   .groupby(column)[aggregate_column]
                   .mean()
                   .sort_values(ascending=False)
               )
               if list_values:
                   group_data = group_data.reset_index(drop=True)
                   grouped = pd.DataFrame({
                       column: group_data[column].str.split(', ').explode(),
                       aggregate_column: group_data[aggregate_column]
                   grouped = grouped.groupby(column)[aggregate_column].mean().
⇔sort_values(ascending=False)
               if '' in grouped.index:
                   grouped = grouped.drop('')
               column_top = grouped.head(10) if top_10 else grouped
          ax = axes[i,j]
          total = group_data[column].count()
          for spine in ax.spines.values():
```

```
spine.set_visible(False)
            if category is not None:
                palette = category_palettes.get(row, 'Blues')
                cmap = plt.cm.get_cmap(palette).reversed()
                palette = [cmap(x) for x in np.linspace(0,0.7,len(column_top))]
            else:
                cmap = plt.cm.get_cmap('Greys').reversed()
                palette = [cmap(x) for x in np.linspace(0,0.7,len(column_top))]
            kwargs ={
                'y':column_top.values,
                'x':column_top.index
            } if x_y else {
                'x':column_top.values,
                'y':column_top.index
            }
            sns.barplot(ax=ax,palette=palette, **kwargs)
            aggregate_label = 'Count' if aggregate_column is None else_

¬f'Avg{aggregate_column}'

            ax.set_title(f'{row}: {aggregate_label} by {column}')
            ax.set_xlabel(aggregate_label if not x_y else column)
            ax.set_ylabel(column if not x_y else aggregate_label)
            if count_percentage:
                for k, value in enumerate(column_top.values):
                    percentage = value/total*100
                    annotation_kwargs = {
                        'text': f'{value:.1f}({percentage:.1f}%)',
                        'xy':(k, value) if x_y else (value,k),
                        'xytext': (-30,5) if x_y else (5,0),
                        'textcoords': 'offset points',
                        'va':'center',
                        'ha':'left',
                        'fontsize':10,
                        'color':'black'
                    }
                    ax.annotate(**annotation_kwargs)
    plt.tight_layout()
    plt.show()
columns_location = ['state','city_state']
```

plot_multiple_bars(columns_location,figsize=(10,4),top_10=True)

[8]: plot_multiple_bars(columns_location,category='job_group',figsize=(10,12),top_10=True)

4.2 Level

```
[13]: columns_level = ('level',)
plot_multiple_bars(columns_level,figsize=(8,5),count_percentage=True)
```


[14]: plot_multiple_bars(columns_level,category='job_group',figsize=(8,15),count_percentage=True)

Data Analyst: Count by level

12

200

Count

250

300

350

400

56.0(8.4%)

100

150

21.0(3.2%)

50

Lead

Junior

ó

4.3 Experience

```
[15]: columns_experience = ('experience',)

plot_multiple_bars(columns_experience,figsize=(8,5),x_y=True)
```

Total: Count by experience

[16]: plot_multiple_bars(columns_experience,category='job_group',figsize=(8,15),x_y=True)

Data Scientist: Count by experience

Data Engineer: Count by experience

4.4 Education

```
[17]: columns_education = ('education',)
    plot_multiple_bars(columns_education, figsize=(8,5), count_percentage=True)
```

Total: Count by education

[18]: plot_multiple_bars(columns_education,category='job_group',figsize=(8,15),count_percentage=True

Data Analyst: Count by education

Data Engineer: Count by education

4.5 Skills

```
[19]: columns_skills = ['skills',]
    plot_multiple_bars(columns_skills,figsize=(8,5),list_values=True,count_percentage=True)
```


[20]: plot_multiple_bars(columns_skills,category='job_group',figsize=(8,15),list_values=True,count_p

Data Scientist: Count by skills

Data Engineer: Count by skills

4.6 Programming language

```
[21]: column_programming_language = ('programming_languages',)

plot_multiple_bars(column_programming_language,list_values=True,top_10=True,figsize=(8,5))
```


[22]: plot_multiple_bars(column_programming_language,category='job_group',list_values=True,top_10=True

4.7 Languages

```
[24]: column_languages = ('languages',)

plot_multiple_bars(column_languages,list_values=True,figsize=(8,5),count_percentage=True)
```


Data Scientist: Count by languages

Data Engineer: Count by languages

5 Salary

```
[31]: def plot_salary_kde(df,job_group_column=None,salary_column='salary',**kwargs):
          plt.figure(figsize=(8,5))
          if job_group_column:
              for job_group in df[job_group_column].unique():
                  group_data = df[df[job_group_column] == job_group]
                  mean_salary = group_data[salary_column].mean()
                  sns.kdeplot(group_data[salary_column], shade=True, label=job_group,_
       →**kwargs)
                  plt.
       axvline(mean_salary,color='red',linestyle='dashed',linewidth=1,label=f'Average

¬{mean_salary:.0f}')
                  plt.title('Salary Distribution', fontsize = 14)
          else:
              mean_salary = df[salary_column].mean()
              sns.kdeplot(df[salary_column],shade=True,color='black',label='General',_
       →**kwargs)
              plt.axvline(mean_salary, color='red', linestyle='dashed', linewidth=1,__
       →label=f'Average: {mean_salary:.0f}')
              plt.title('Salary Distribution by Job Group', fontsize=14)
          plt.xlabel('Salary',fontsize=12)
          plt.ylabel('Density',fontsize=12)
          plt.legend(title=job_group_column if job_group_column else None)
          plt.grid(True,linestyle='--',alpha=0.7)
          plt.tight_layout()
          plt.show()
```

plot_salary_kde(df,salary_column='mean_salary')

[32]: plot_salary_kde(df,job_group_column='job_group',salary_column='mean_salary')

5.1 Location

[37]: plot_multiple_bars(columns_location,figsize=(10,4),top_10=True,aggregate_column='mean_salary')

[38]: plot_multiple_bars(columns_location,category='job_group',figsize=(10,12),top_10=True,aggregate

5.2 Level

[39]: plot_multiple_bars(columns_level,figsize=(8,5),aggregate_column='mean_salary')

Total: Avgmean_salary by level

[40]: plot_multiple_bars(columns_level,category='job_group',figsize=(8,15),aggregate_column='mean_sa

Data Analyst: Avgmean_salary by level

Avgmean_salary

5.3 Education

[41]: plot_multiple_bars(columns_education, figsize=(8,5), aggregate_column='mean_salary')

Total: Avgmean_salary by education

[43]: plot_multiple_bars(columns_education,category='job_group',figsize=(8,15),aggregate_column='mea

Data Analyst: Avgmean_salary by education

Avgmean_salary

5.4 Experience

```
[44]: plot_multiple_bars(columns_experience,figsize=(8,5), x_y= True, 

→aggregate_column='mean_salary')
```



```
[]: plot_multiple_bars(columns_experience,category='job_group',figsize=(8,15), x_y=

□ True, aggregate_column='mean_salary')
```

Data Analyst: Avgmean_salary by experience

Data Scientist: Avgmean_salary by experience

Data Engineer: Avgmean_salary by experience

5.5 Skills

```
[46]: plot_multiple_bars(columns_skills,figsize=(8,5), list_values=True, top_10=True, ⊔ 
aggregate_column='mean_salary')
```

Total: Avgmean_salary by skills

Data Scientist: Avgmean_salary by skills

Data Engineer: Avgmean_salary by skills

5.6 Programming languages

```
[49]: plot_multiple_bars(column_programming_language,figsize=(8,5), list_values=True, __ top_10=True, aggregate_column='mean_salary')
```



```
[50]: plot_multiple_bars(column_programming_language,category='job_group',figsize=(8,15), \( \top_10=\text{True}, \text{ top_10=True}, \text{ aggregate_column='mean_salary'} \)
```


Data Scientist: Avgmean_salary by programming_languages

Data Engineer: Avgmean_salary by programming_languages

5.7 Languages

Total: Avgmean salary by languages

Data Analyst: Avgmean_salary by languages

Data Scientist: Avgmean_salary by languages

Data Engineer: Avgmean_salary by languages

6 Remote trend

```
[53]: def plot_remote_distribution(df,column_name,title,category=None,figsize=(6,6)):
          def create_pie(data,chart_title,ax):
              counts = data.value_counts()
              ax.pie(
                  counts,
                  labels=counts.index,
                  autopct='%1.1f%%',
                  colors=plt.cm.Pastel2.colors,
                  startangle=90
              )
              ax.set_title(chart_title,fontsize=14)
              ax.axis('equal')
          if category:
              unique_categories = df[category].unique()
              n_categories = len(unique_categories)
              fig,axes = plt.subplots(n_categories,1,figsize=figsize)
              if n_categories == 1:
                  axes = [axes]
              for i, job_group in enumerate(unique_categories):
                  df_grouped = df[df[category] == job_group]
                  title_grouped = f"{job_group}:{title}"
                  create_pie(df_grouped[column_name], title_grouped, axes[i])
              plt.tight_layout()
              plt.show()
          else:
              fig, ax = plt.subplots(figsize=figsize)
              create_pie(df[column_name],title,ax)
              plt.show()
      plot_remote_distribution(df=df,column_name='remote',title='Remote vs Non-Remote_

Jobs¹)
```

Remote vs Non-Remote Jobs

Data Analyst:Remote vs Non-Remote Jobs

Data Scientist:Remote vs Non-Remote Jobs

Data Engineer:Remote vs Non-Remote Jobs

