- 1. Let $\{a_n\}$ be a sequence of real numbers such that $|a_n| \le 2$ and $|a_{n+2} a_{n+1}| \le \frac{1}{8} |a_{n+1}^2 a_n^2| \forall n \ge 1$. Then, $\frac{1}{8} |a_{n+1}^2 a_n^2| = \frac{1}{8} |(a_{n+1} a_n)(a_{n+1} + a_n)| \le \frac{1}{8^2} |a_n^2 a_{n-1}^2| |a_{n+1} + a_n| \le \cdots \le \frac{1}{8^{n-2}} |a_2^2 a_1^2| |a_{n+1} + a_n| \cdots |a_3 + a_2|$. Since $|a_n| \le 2$, $\frac{1}{8^{n-2}} |a_2^2 a_1^2| |a_{n+1} + a_n| \cdots |a_3 + a_2| \le \frac{1}{8^{n-2}} |a_2^2 a_1^2| |2 + 2| \cdots |2 + 2| = \frac{1}{8^{n-2}} |a_2^2 a_1^2| |4^{n-2} = \frac{1}{2^{n-2}} |a_2^2 a_1^2|$. Since $\frac{1}{2^{n-2}} \to 0$ as $n \to \infty$, $\{a_n\}$ is Cauchy. Thus $\{a_n\}$ converges.
- 2. For all $x, y \in \mathbb{R}$, $|cos(x) cos(y)| = 2|sin(\frac{x+y}{2})sin(\frac{x-y}{2})| \le 2|sin(\frac{x-y}{2})| < 2|\frac{x-y}{2}| = |x-y|$. Thus, if we let $\delta = \epsilon$, $|f(x) f(y)| < \epsilon$ if $|x-y| < \delta$. Thus, f(x) = cos(x) is uniformly continuous on all of \mathbb{R} .
- 3. Let f(x) = cos(x) where $x \in \mathbb{R}$. Then, f'(x) = -sin(x) Since sin(x) is bounded by [-1, 1], the derivative is bounded below by -1 and above by 1. Thus, $|f'| \le 1$. Since f is a function with a bounded derivative, cos(x) is continuous on all of \mathbb{R} .
- 4. Since we are no longer in the interval $[-\pi, \pi]$, we must take back into consideration L, our period. We also now have a disctoninuous piecewise function and so when we are integrating, we must split our integral into two parts. Taking this into account, we can write a script in Matlab to get our first four fourier series terms:

```
g(\mathbf{x}) = \\ 0.63661977*\sin(4.712389*\mathbf{x}) + 1.9098593*\sin(1.5707963*\mathbf{x}) + 0.38197186*\sin(7.8539816*\mathbf{x}) + 0.5
```

Plotting these four terms:

