

Problem ? Siven To [inted distribution]

$$T_{n} = P^{n} T_{0} , \quad \tilde{T}_{n} = (S_{M}P)^{n} S_{M} T_{0} \\
SanPle of To$$
2) Identify  $T_{n+1}$  ( $\tilde{T}_{n+1}$ )

$$T_{n+1} = P \cdot T_{n} , \quad \tilde{T}_{n+1} = S_{M} \cdot P \cdot \tilde{T}_{n}$$
I) The distance  $d(T_{n+1} \circ \tilde{T}_{n+1})$  Can be identified as:
$$d(T_{n+1}, \tilde{T}_{n+1}) = d(PT_{n}, S_{M} \cdot PT_{n})$$
Using triangular Inquality with  $PT_{n}$  as intermidiate.
$$d(T_{n+1} \cdot T_{n+1}) = d(PT_{n}, S_{M} \cdot PT_{n}) \times d(PT_{n}, PT_{n}) + d(PT_{n}, S_{M} \cdot PT_{n})$$

ID) break down of  $RH$ . Sof Inquality:

1)  $d(PT_{n+1} \cdot PT_{n}) \leq d(T_{n-1} \cdot T_{n}) \cdot Property of P$ 

1)  $d(P\pi_n, P\pi_n) \leqslant d(\pi_n, \pi_n)$  Proporty of P2)  $d(P\pi_n, S_M P\pi_n) \leqslant \frac{1}{M}$  Proporty of  $S_M$  sampling

+ Substitute in the inquality:- $d(P\pi_n, S_M P\pi_n) \leqslant d(P\pi_n, S_M P\pi_n)$ 

 $= d\left( \pi_{n+1}, \widehat{\pi}_{n+1} \right) \left\langle d\left( \pi_{n}, \widehat{\pi}_{n} \right) + d\left( P\widehat{\pi}_{n}, S_{m}P, \widehat{\pi}_{n} \right) \right\rangle$ 

 $< d(T_n,T_n) + \frac{1}{M}$ 



