קורס: 20425 ״הסתברות לתלמידי מדעי המחשב״

(48/85 מועד 2009 - מועד 13.7.2009 מועד 13.7.2009 מועד 13.7.2009

חומר העזר המותר: מחשבון מדעי בלבד.

ספר הקורס, מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפים: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית ודף נוסחאות הכולל 2 עמודים.

שאלה 1 (25 נקודות)

. p -ו n משתנה מקרי בינומי עם הפרמטרים X יהי א. יהי (12)

.
$$Var(X) = np(1-p)$$
 הוכח כי

– מטילים קובייה תקינה 60 פעמים (13 נקי) ב. מטילים קובייה חקינה 60 פעמים

; מספר התוצאות הזוגיות שהתקבלו ב-60 הטלות אלו אלו מספר X

. ויהי Y מספר התוצאות האי-זוגיות שהתקבלו באותן 60 הטלות

- $.P\{X > Y\}$ חשב את .1
- $E[X^2 + Y^2]$ חשב את .2

שאלה 2 (25 נקודות)

ביולוגים מ-3 כימאים, 5 מדענים מתוך קבוצה של 10 מדענים מתוך 5 מדענים מתוך מדענים מחורכבת מ-3 כימאים, 5 ביולוגים ביחרים באקראי משלחת של 5 מדענים מתוך קבוצה של 10 מדענים מחורכבת מ-3 כימאים, 10 ביולוגים ביולוגים ביולוגים מתוך מדענים מדענים מתוך מדענים מדענים מתוך מתוך מדענים מתוך מתוך מדענים מתוך מתוך מדענים מתוך מתוך מתוך מתוך מדענים מתוך מתוך מדעים מתוך מדענים מתוך מדענים מ

; מספר במשלחת = X

מספר הפיזיקאים במשלחת. = Y

- $P\{X=2\}$ א. חשב את (5 נקי)
- X ב. חשב את השונות של 5.
- - (6 נקי) ד. בהינתן שנבחרו למשלחת 3 ביולוגים, מהי השונות המותנית של Y!

שאלה 3 (25 נקודות)

נתונים 6 ספלים בגדלים שונים ו-6 תחתיות שונות המתאימות לספלים אלו.

כל תחתית מתאימה בדיוק לאחד מ-6 הספלים.

מניחים באקראי את הספלים על התחתיות (ספל אחד על כל תחתית).

- (6 נקי) א. מהי ההסתברות שבדיוק ארבעה ספלים יונחו על התחתיות המתאימות להם?
- (6 נקי) ב. מהי ההסתברות ששני הספלים הקטנים ביותר יונחו על התחתיות המתאימות להם?
- (6 נקי) ג. מהי ההסתברות ששלושת הספלים הקטנים ביותר יונחו על שלוש התחתיות המתאימות לספלים הגדולים ביותר?
 - (7 נקי) ד. מהי ההסתברות שבדיוק ספל אחד יונח על התחתית המתאימה לו?

שאלה 4 (25 נקודות)

. σ^2 ושונות 30 התפלגות עם היא נורמלית מסוים אל צמח של צמח של התפלגות הגובה (בסיים) של צמח מקרי מהזן הזה הוא בין 19.15 סיים ל-40.85 סיים בהסתברות 0.97.

- (ז נקי) א. מהי סטיית-התקן של ההתפלגות!
- (6 נקי) ב. בוחרים צמח באופן מקרי. מהי ההסתברות שגובהו עולה על 33.89 סיימי
- ג. כמות המים (בסמייק), שצמח כזה צורך בשבוע, היא פי 3 מגובהו (בסיימ). נסמן ב-Y את צריכת המים השבועית של צמח מקרי מהזן הזה.
 - Y מצא את הפונקציה יוצרת המומנטים של Y מצא את הפונקציה יוצרת המומנטים של
- (6 נקי) 2. מהן התוחלת והשונות של כמות המים הכוללת שצורכים 10 צמחים מקריים מהזן הזה?

שאלה 5 (25 נקודות)

- . p איא H היא לקבל בו את לקבל אחסתברות ($n=1,2,\ldots$), שההסתברות פעמים מטבע (נקי) א. מטילים מטבע נגדיר את המאורעות הבאים:
 - H מתקבלת התוצאה (מתוך n ההטלות) בהטלה הראשונה =A
 - . k=0,1,2,...,n לכל ההטלות, לכל k פעמים ב- k מתקבלת א מתקבלת = B_k

באלו תנאים המאורעות A ו- B_k בלתי-תלויים זה בזה? הוכח את טענתך.

(13 נקי) ב. ילד אוסף בהתמדה קלפי-משחק.

נניח שיש 10 סוגים שונים של קלפי-משחק וכי כל קלף שהילד משיג הוא מסוג 1 בהסתברות i=2,...,10 לכל בהסתברות i=2,...,10 בין סוגי הקלפים שהילד משיג.

מהי ההסתברות שהקלף ה-15 שהילד ישיג יהיה מסוג שטרם יש לו כמותו!

בהצלחה!

 $\Phi(x)$, ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^{2}/2} \, dy$$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(x)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
x	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(x)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
x	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

20425 / 85 - 12009 4

דף נוסחאות לבחינה

הפונקציה יוצרת המומנטים	חשונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	пр	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i = 0, 1,, n$	בינומית
$\frac{pe^{t}/(1-(1-p)e^{t})}{t<-\ln(1-p)}$	$(1-p)/p^2$	1/ p	$(1-p)^{i-1} \cdot p$, $i=1,2,$	גיאומטרית
$\exp\{\lambda(e^t-1)\}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0, 1, \dots$	פואסונית
$ \frac{\left(pe^t/(1-(1-p)e^t)\right)^r}{t < -\ln(1-p)} $	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i=r,r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \binom{m}{i} \binom{N-m}{n-i} / \binom{N}{n} , i = 0, 1,, m $	היפרגיאומטרית
	$(n^2-1)/12$	m + (1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a) , a \le x \le b$	אחידה
$\exp\{\mu t + \sigma^2 t^2/2\}$	σ^2	μ	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/λ	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

נוסחת הבינום
$$P(A)=P(A\cap B)+P(A\cap B^C)$$

$$P\bigg(\bigcup_{i=1}^{n}A_{i}\bigg) = \sum_{i=1}^{n}P(A_{i}) - \sum_{i< j}P(A_{i}\cap A_{j}) + \ldots + (-1)^{n+1}P(A_{1}\cap A_{2}\cap \ldots \cap A_{n})$$
 כלל ההכלה וההפרדה

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \cdot ... \cdot P(A_n \mid A_1 \cap A_2 \cap ... \cap A_{n-1})$$
 נוסחת הכפל

$$P(A) = \sum\limits_{i=1}^n P(A \,|\, B_i) P(B_i)$$
 , S אורים ואיחודם הוא $\{B_i\}$

$$P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum\limits_{i=1}^n P(A \mid B_i)P(B_i)} \quad , \quad S \text{ אורים ואיחודם הוא } \{B_i\}$$

$$E[X] = \sum_{x} x p_X(x) = \int x f(x) dx$$

$$E[g(X)] = \sum_{x} g(x) p_X(x) = \int g(x) f(x) dx$$
 תוחלת של פונקציה של מ"מ

$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

$$E[aX+b]=aE[X]+b$$
 תוחלת ושונות של פונקציה לינארית

$$Var(aX + b) = a^2 Var(X)$$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

$$P\{X>s+t \, \big|\, X>t\}=P\{X>s\}$$
 , $s,t\geq 0$

$$E[X \mid Y = y] = \sum_{x} x p_{X|Y}(x \mid y) = \int x f_{X|Y}(x \mid y) dx$$
 תוחלת מותנית

5

$$\label{eq:var_exp} \text{Var}(X\mid Y=y) = E[X^2\mid Y=y] - (E[X\mid Y=y])^2$$
 עוטחת התוחלת המותנית
$$E[X] = E[E[X\mid Y]] = \sum_y E[X\mid Y=y] p_y(y)$$
 עוסחת התוחלת המותנית
$$E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i]$$
 עוסחת השונים משתנים משרנים במשרנים משרנים במשרנים בשרנים בשרנ

- אם A ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי B ו- A המאורע B יתרחש לפני המאורע B היא B היא ווע B המאורע B יתרחש לפני המאורע B היא
- שלילי). סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיימ בינומי (בינומי-שלילי).
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.
- (p אותו עם בינומיים (בינומיים אותו Y ו-Y מיימ פואסוניים (בינומיים עם אותו X בהינתן אותו עם התפלגות היפרגיאומטרית).

6