# FCC RF EXPOSURE REPORT

Jiangmen Dascom Computer Peripherals Co.,Ltd.

Label & Barcode Printer

Model Number: DL-210

Additional Model: DL-310

FCC ID: Z7ODL3100

Prepared for : Jiangmen Dascom Computer Peripherals Co.,Ltd.

No 399,Jin Xing Road,Jiang Hai District, Jiangmen City Guang Dong

Province China

Prepared By: EST Technology Co., Ltd.

Santun(guantai Road), Houjie Town, DongGuan City,

GuangDong, China.

Tel: 86-769-83081888-808

Report Number: ESTE-R1609051

Date of Test : Jul 31,2016~ Oct 16, 2016

Date of Report: Oct 16, 2016



## **Maximum Permissible Exposure**

#### 1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

#### (a) Limits for Occupational / Controlled Exposure

| Frequency   | Electric Field | Magnetic       | Power       | Averaging      |  |
|-------------|----------------|----------------|-------------|----------------|--|
| Range (MHz) | Strength E)    | Field Strength | Density (S) | Times   E      |  |
|             | (V/m)          | (H) (A/m)      | (mW/cm2)    | 2 ,   H   2 or |  |
|             |                |                |             | S (minutes)    |  |
| 0.3-3.0     | 614            | 1.63           | (100)*      | 6              |  |
| 3.0-30      | 1842/f         | 4.89/f         | (900/f)*    | 6              |  |
| 30-300      | 61.4           | 0.163          | 1.0         | 6              |  |
| 300-1500    |                |                | F/300       | 6              |  |
| 1500-10000  |                |                | 5           | 6              |  |

### (b), Limits for General Population / Uncontrolled Exposure

| Frequency   | Electric Field | Magnetic       | Power       | Averaging      |  |
|-------------|----------------|----------------|-------------|----------------|--|
| Range (MHz) | Strength E)    | Field Strength | Density (S) | Times   E      |  |
|             | (V/m)          | (H) (A/m)      | (mW/cm2)    | 2 ,   H   2 or |  |
|             |                |                |             | S (minutes)    |  |
| 0.3-1.34    | 614            | 1.63           | (100)*      | 30             |  |
| 1.34-30     | 824/f          | 2.19/f         | (180/f)*    | 30             |  |
| 30-300      | 27.5           | 0.073          | 0.2         | 30             |  |
| 300-1500    |                |                | F/1500      | 30             |  |
| 1500-10000  |                |                | 1.0         | 30             |  |

Note: f=frequency in MHz; \*Plane-wave equivalent power density

#### 2、MPE Calculation Method

E (V/m) = (30\*P\*G) 0.5/d Power Density: Pd (W/m2) = E2/377

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

Pd = (30\*P\*G) / (377\*d2)

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained



## 3. Calculated Result and Limit

| Model        | Frequency | Peak   | Peak   | Anter | ına gain | Target      | Power Density (S) | Limited of  |          |
|--------------|-----------|--------|--------|-------|----------|-------------|-------------------|-------------|----------|
|              |           | output | output |       | (Linear  |             |                   | Power       | Test     |
|              | (MHz)     | power  | power  | (dBi) | (Linear  | power (dBm) | (mW/cm2)          | Density (S) | Result   |
|              |           | (dBm)  | (mW)   |       | ,        | (ubiii)     | (III W/CIII2)     | (mW/cm2)    |          |
|              | 2402      | -1.276 | 0.745  | 1.6   | 1.45     | -1±1        | 0.0002876         | 1           | Compiles |
| GFSK         | 2441      | -1.686 | 0.678  | 1.6   | 1.45     | -1±1        | 0.0002876         | 1           | Compiles |
|              | 2480      | -2.386 | 0.577  | 1.6   | 1.45     | -2±1        | 0.0002284         | 1           | Compiles |
| 8-DPSK       | 2402      | -1.219 | 0.755  | 1.6   | 1.45     | -1±1        | 0.0002876         | 1           | Compiles |
|              | 2441      | -1.713 | 0.674  | 1.6   | 1.45     | -1±1        | 0.0002876         | 1           | Compiles |
|              | 2480      | -2.365 | 0.580  | 1.6   | 1.45     | -2±1        | 0.0002284         | 1           | Compiles |
| BLE-<br>GFSK | 2402      | 3.390  | 2.183  | 1.6   | 1.45     | 3±1         | 0.0007223         | 1           | Compiles |
|              | 2440      | 3.020  | 2.004  | 1.6   | 1.45     | 3±1         | 0.0007223         | 1           | Compiles |
|              | 2480      | 2.610  | 1.824  | 1.6   | 1.45     | 2±1         | 0.0005738         | 1           | Compiles |



EST Technology Co.,Ltd Report No. ESTE-R1609051 Page 3 of 3