

Demostracion-No-Decibilidad-Prob...

mike_

Modelos Avanzados de Computacion

4º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingeniería Universidad de Huelva

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

7CR

Rocio

Problema EQ_™

Sea EQ_{TM} el lenguaje formado por las cadenas $<M_1$, $M_2>$ tales que M_1 y M_2 son codificaciones de máquinas de Turing que reconocen el mismo lenguaje:

$$L(M_1) = L(M_2)$$

TEOREMA: El lenguaje EQ_{TM} es indecidible.

Demostración (por reducción):

Es fácil crear una máquina M1 que rechace todas las entradas. Si existe la máquina R que reconoce el lenguaje EQ_{TM} , entonces podemos construir S tal que:

$$S(< M >) = \begin{cases} ACEPTAR & si\ R < M, M_1 > acepta \\ RECHAZAR & si\ R < M, M_1 > rechaza \end{cases}$$

La máquina S no puede existir ya que resolvería el problema E_{TM}. Por tanto, R tampoco puede existir.

