Intégrale d'une fonction positive 10.1

Définition 1.10.

Soit ${\mathscr P}$ un plan muni d'un repère orthogonal .

Soient I, J et K les points tels que $\overrightarrow{OI} = \overrightarrow{\imath}$, $\overrightarrow{OJ} = \overrightarrow{\jmath}$ et $\overrightarrow{OK} = \overrightarrow{\imath} + \overrightarrow{\jmath}$. On appelle unité d'aire (notée u.a.) l'unité de mesure des aires telle que $\operatorname{Aire}(OIKJ) = 1$ u.a.

Exemple 1.10.

Si OI = 2 cm et OJ = 5 cm alors $1 \text{u.a} = 2 \times 5 = 10$ cm².

Définition 2.10.

Soit f une fonction continue et positive sur un intervalle $[a\,;\,b].$

L'intégrale de f sur [a;b], notée $\int_a^b f(x)dx$, est l'aire du domaine délimité par l'axe des abscisses, la courbe représentative de f et les droites d'équation x=a et x=b.

Les nombres a et b sont les bornes de l'intégrale.

▶ Note 1.10.

- le symbole \int représente une somme (il ressemble à un S), f(x)d(x) représente l'aire d'un rectangle de largeur (très petite) dx et de hauteur f(x).
- La variable x est muette, c'est à dire que l'on peut noter aussi :

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \dots$$

autrement dit, le nombre ne dépend pas de x, mais uniquement de f, a et b.

Application 1.10. Soit $f: x \mapsto x+1$. Calculer $\int_{-1}^{5} f(x)dx$, autrement dit l'aire située entre l'axe des abscisses, la courbe représentative de f et les droites d'équation x=-1 et x=5.

10.1.1 Théorème fondamental

Théorème 1.10.

Soit f une fonction continue et positive sur un intervalle [a; b].

On définit, pour tout $x \in [a; b]$, $F(x) = \int_{a}^{x} f(t)dt$.

La fonction F est la primitive de f qui s'annule en a.

Démonstration.

On ne fait la démonstration que dans le cas où la fonction est $strictement\ croissante.$

On a donc un cas similaire à celui représenté ci-contre.

Soit $x_0 \in [a; b]$ et h > 0 tel que $x_0 + h \in [a; b]$. On a :

$$F(x_0) = \int_a^{x_0} f(t)dt$$
 et $F(x_0 + h) = \int_a^{x_0 + h} f(t)dt$

Puisque f est positive,

la différence $F(x_0 + h) - F(x_0)$ est l'aire coloriée en rouge sur la figure.

Cette aire est comprise entre l'aire du rectangle MNPS qui vaut hf(x) et celle de MNQR qui vaut hf(x+h).

Comme f est croissante, on a:

$$hf(x_0) \leqslant F(x_0 + h) - F(x_0) \leqslant hf(x_0 + h)$$

Puis, comme h > 0,

$$f(x_0) \leqslant \frac{F(x_0 + h) - F(x_0)}{h} \leqslant f(x_0 + h)$$

Comme f est continue sur [a; b], $\lim_{h\to 0} f(x_0 + h) = f(x_0)$.

Par suite, d'après le théorème d'encadrement des limites :

$$\lim_{\substack{h \to 0 \\ h > 0}} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$$

On peut tenir le même type de raisonnement avec h < 0.

Finalement, F est dérivable en x_0 et $F'(x_0) = f(x_0)$, cela quelque soit $x_0 \in [a; b]$.

Donc F est dérivable sur [a; b] et F' = f..

Théorème 2.10. Corollaire

Soit f une fonction continue et positive sur [a;b] et soit F une primitive de f sur [a;b]. Alors:

$$\int_{a}^{b} f(t) dt = [F(t)]_{a}^{b} = F(b) - F(a)$$

- **a** Application 2.10. Soit la fonction f définie sur [-4; 1] par $f(x) = -x^2 3x + 4$.
 - 1. Démontrer que f est positive sur [-4; 1].
 - 2. Calculer l'aire sous la courbe représentative de la fonction f entre -4 et 1 en unité d'aire puis en cm² si on se place dans un repère orthonormé d'unité 0,5 cm.

10.2 Intégrale d'une fonction continue

10.2.1 Fonction de signe quelconque

Définition 3.10.

Soient f une fonction continue sur un intervalle I et a et b deux réels de I et F une primitive de f sur I.

On définit l' $intégrale\ de\ f\ de\ a\ \grave{a}\ b\ par$:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b}$$
$$= F(b) - F(a)$$

▶ Note 2.10.

Le réel F(b) - F(a) ne dépend pas de la primitive choisie pour f.

En effet, si G est une autre primitive de f alors G = F + k avec k réel donc :

$$G(b) - G(a) = F(b) + k - (F(a) + k)$$

= $F(b) - F(a)$

10.2.2 Propriétés des intégrales

Propriétés 1.10.

Soient f et g deux fonctions continues sur un intervalle I.

On considère trois réels a, b et c appartenant à I et λ un réel.

•
$$\int_a^a f(x)dx = 0$$
 et $\int_a^b f(x)dx = -\int_b^a f(x)dx$.

• Relation de Chasles :
$$\int_a^c f(x)dx = \int_a^b f(x)dx + \int_c^b f(x)dx$$
.

• Linéarité de l'intégrale :
$$\int_a^b \lambda f(x) + g(x) dx = \lambda \int_a^b f(x) dx + \int_a^b g(x) dx$$
.

Application 3.10. On souhaite calculer l'intégrale $I = \int_0^1 \frac{1}{e^x + 2} dx$.

1. On pose
$$J = \int_0^1 \frac{e^x}{e^x + 2} dx$$
.

- 2. Calculer 2I + J.
- 3. En déduire la valeur de I.

Propriétés 2.10. Intégrales et inégalités

Soient deux réels a et b tels que $a \leq b$ et f et g deux fonctions continues sur [a;b].

- Positivité : si f est positive sur [a; b] alors : $\int_a^b f(x)dx \ge 0$. Attention ; réciproque fausse!
- Ordre: si $f \ge g$ sur [a; b] alors $\int_a^b f(x)dx \ge \int_a^b g(x)dx$.

Propriétés 3.10. Fonction paire ou impaire

Soient f une fonction continue un intervalle I centré en 0 et a un réel de I.

- Paire: si f est paire alors $\int_{-a}^{0} f(x)dx = \int_{0}^{a} f(x)dx$.
- Impaire: si f est impaire alors $\int_{-a}^{0} f(x)dx = -\int_{0}^{a} f(x)dx$.

10.2.3 Intégration par parties

Propriété 1.10.

Soient u et v deux fonctions $d\acute{e}rivables$ sur un intervalle I à dérivées u' et v' continues sur I et a et b deux réels de I.

On a:

$$\int_{a}^{b} u(t)v'(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t)v(t)dt$$

Application 4.10. À l'aide d'une intégration par parties, calculer $\int_1^e \ln(x) dx$.

10.3 Applications du calcul intégral

10.3.1 Calcul d'aire

Propriété 2.10.

Soient f une fonction continue et négative sur un intervalle [a;b] et \mathscr{C}_f sa courbe représentative dans un repère orthogonal.

L'aire du domaine \mathscr{D} délimité par la courbe \mathscr{C}_f et les droites d'équation x=a et x=b, exprimée en unité d'aire est égale à :

$$-\int_{a}^{b} f(x)dx$$

Illustration.

▶ Note 3.10.

Dans le cas d'une fonction f continue et de signe quelconque sur $[a\,;\,b]$, l'aire de \mathscr{D}_f est la somme des aires algébriques des domaines définis par des intervalles sur lesquels f garde un signe constant. Dans l'exemple ci-contre, exprimons l'aire du domaine colorée à l'aide d'intégrales :

Propriété 3.10. Admise

Soit f et g deux fonctions continues sur un intervalle [a;b] telles que $f \leq g$ sur [a;b].

On note \mathscr{C}_f et \mathscr{C}_g leurs courbes représentatives dans un repère orthogonal.

L'aire du domaine \mathcal{D} délimité par les courbes \mathcal{C}_f et \mathcal{C}_g et les droites d'équation x=a et x=b, exprimée en unité d'aire, est égale à :

$$\int_{a}^{b} g(x)dx - \int_{a}^{b} f(x) dx$$

10.3.2 Valeur moyenne

Définition 4.10.

Soient a et b deux réels tels que b > a.

La valeur moyenne d'une fonction f continue sur l'intervalle [a; b] est :

$$m = \frac{1}{b-a} \int_{a}^{b} f(t) dt$$

Illustration.

La zone rosée et le rectangle ont la même aire.

En effet,
$$\int_a^b f(t)dt = m(b-a)$$
.