Outline Introducción Modelado del problema Mejoras al algoritmo backpropagation Resultados Conclusiones

Redes neuronales multicapa Castiglione, Karpovsky, Sturla

Sistemas de Inteligencia Artificial

3 de Mayo de 2012

- Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Simetría
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagation
- Resultados
- 6 Conclusiones

- 1 Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Simetría
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagation
- 4 Resultados
- Conclusiones

El problema

El problema planteado consiste en la estimación de funciones escalares a partir de un conjunto de puntos que las representan.

En nuestor caso particular hemos trabajado con el archivo samples7.txt

Gráfico de la función

Representación de la red neuronal Funciones de activación Simetría Conjuntos de entrenamiento y testeo

- 1 Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Simetría
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagatior
- 4 Resultados
- 6 Conclusiones

Representación de la red neuronal

Se representó la red neuronal como una matriz de pesos.

- Cada neurona es una columna de pesos.
- Cada capa de neuronas es una matriz de pesos.
- La red neuronal, por consiguiente, es un vector de matrices.

Se utilizaron dos funciones de activación distintas:

Sigmoidea exponencial

$$g(h) = \frac{1}{1 + e^{-2\beta h}}$$

Derivada:

$$2\beta g(1-g)$$

Tangente hiperbólica

$$g(x) = tanh(x)$$

Derivada:

$$\beta g(1-g^2)$$

Representación de la red neuronal Funciones de activación Simetría Conjuntos de entrenamiento y teste

Ruptura de la simetría

asfas

Representación de la red neuronal Funciones de activación Simetría Conjuntos de entrenamiento y teste

Ruptura de la simetría

asfsas

Conjunto de entrenamiento y testeo

Se decidió seguir el consejo de la cátedra y al realizar las pruebas se utilizó un subconjunto de los datos seleccionados al azar para la fase de aprendizaje y el subconjunto restante para testeo.

• Elección de puntos al azar? Puntos representativos?

- 1 Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Simetría
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagation
- 4 Resultados
- Conclusiones

- 1 Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Simetría
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagatior
- 4 Resultados
- Conclusiones

- Introducción
 - El problema
- 2 Modelado del problema
 - Representación de la red neuronal
 - Funciones de activación
 - Simetría
 - Cálculo del error
 - Conjuntos de entrenamiento y testeo
- Mejoras al algoritmo backpropagation
- 4 Resultados
- Conclusiones

A sample slide

Theorem (The Poincaré inequality)

Suppose $\Omega \in \mathbf{R}^n$ is a bounded domain with smooth boundary. Then there exists a $\lambda > 0$, depending only on Ω , such that for any function f in the Sobolev space $H^1_0(\Omega)$ we have:

$$\int_{\Omega} |\nabla u|^2 dx \ge \lambda \int_{\Omega} |u|^2 dx.$$

Here is what itemized and enumerated lists look like:

- itemized item 1
- itemized item 2
- itemized item 3

- enumerated item 1
- enumerated item 2
- enumerated item 3

