PROJECT DEVELOPMENT PHASE

PROJECT DEVELOPMENT DELIVERY OF SPRINT 2

Date	12-11-2022
Team ID	PNT2022TMID34503
Project Name	Smart Solutions For Railways
Marks	

SPRINT DESCRIPTION

In this Sprint, we discuss about the complete Python Code Simulation.

CODE EXPLANATION

The below described code is what we have developed for connecting with IBM IoT cloud. The code also connects with the Node-Red Service and displays the output frequently. This code links with the IBM IoT Platform and then to Node-Red, Finally the result is displayed in our Application.

PYTHON CODE

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "78kd0j"
deviceType = "ltx33"
deviceId = "12345678"
authMethod = "token"
authToken = "LTx@33333"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="lighton":
     print ("led is on")
  elif status == "lightoff":
```

```
print ("led is off")
  else:
     print ("please send proper command")
#print(cmd)
try:
   deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method":authMethod, "auth-token": authToken}
   deviceCli = ibmiotf.device.Client(deviceOptions)
   #.....
except Exception as e:
   print("Caught exception connecting device: %s" % str(e))
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type "greeting"
10 times
deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
    temp=random.randint(0,100)
    Humid=random.randint(0,100)
    pH=random.randint(0,14)
    data = { 'temp' : temp, 'Humid': Humid ,'pH' : pH }
    #print data
    def myOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%" % Humid, "pHValue
=%s" % pH, "to IBM Watson")
    success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on publish=myOnPublishCallback)
    if not success:
      print("Not connected to IoTF")
    time.sleep(10)
    deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```