Hierarchical RAG Framework with Multi-Level Granularity

Ran Arino, Nipun Ravindu Fernando Warnakulasuriya, Umer Aftab

rarino@myseneca.ca, nwarnakulasuriya1@myseneca.ca, uaftab@myseneca.ca
School of Software Design and Data Science, Seneca Polytechnic

Abstract

Traditional Retrieval-Augmented
Generation (RAG) systems often struggle
with fixed retrieval granularity and lack
hierarchical context understanding.

This project introduces a hierarchical RAG framework leveraging multi-level granularity (documents, clusters, chunks).

Our approach involves structured indexing via semantic clustering and multi-step retrieval (cluster-to-chunk search), aiming to enhance both efficiency and context-awareness.

Objective

- 1. Develop a hierarchical RAG architecture utilizing multi-level granularity.
- 2. Implement structured indexing using semantic clustering (document/chunk).
- 3. Design an multi-step retrieval process.
- 4. Evaluate the framework's effectiveness in retrieval accuracy and generation quality on diverse QA tasks.

Challenges

• Suboptimal Granularity:

Fixed-size chunk struggles with balance contextual completeness and noise inclusion.

• Lack of Hierarchy:

Flat retrieval ignores document structure, hindering context synthesis.

• Efficiency vs. Effectiveness:

Balancing retrieval speed, accuracy, and contextual relevance remains difficult.

Framework

Indexing Phase:

- 1. Summarization (Inter-Doc Only):
 Generate & embed document summaries.
- Segmentation:
 Divide documents into overlapping, semantically coherent chunks (~100 tokens).
- 3. Embedding:
 Generate vector representations for all chunks.
- 4. Clustering:
 Group related chunk embeddings by
 K-means/GMM; store cluster centroids.
 Creates a hierarchical structure (Doc ->
 Cluster -> Chunk or Cluster -> Chunk).

Retrieval Phase:

- Top-Level Search:
 Match query against highest-level centroids (document or chunk clusters) to find relevant clusters.
- Query Expansion (Optional):
 Refine query based on retrieved cluster context.
- 3. Second-Level Search:
 Search within selected clusters using the (expanded) query to retrieve relevant chunks.
- 4. Generation:
 Feed retrieved chunks context to LLM for answer synthesis.

Examples

Documents => Clusters (only inter-doc search)

How do Retrieval & Generation Work?

Evaluations

Datasets:

- Intra-Document:Qasper, NarrativeQA
- Inter-Document:
 MultiHop-RAG, Frames

Retrieval Metrics:

- MAP@K, MRR@K, Hit@K (Relevance & Ranking).
- LLM-as-a-Judge (Contextual Sufficiency).

Generation Metrics:

- ROUGE (Precision/Recall/F1; 1-, 2-, N-gram overlap).
- BLEU (Precision/Fluency).
- Semantic Similarity (Sentence-BERT) vs. Ground Truth.
- LLM-as-a-Judge (Factuality, Relevance, Coherence).

Conclusions

This project proposes a hierarchical RAG framework to overcome limitations of flat retrieval and fixed granularity.

By structuring information hierarchically and employing multi-step retrieval, we aim for improvements in retrieval efficiency and contextual quality of generated responses, especially for complex information needs across single or multiple documents.

Reference

Arino, R., Warnakulasuriya, N.R.F., & Aftab, U. Hierarchical RAG Framework with Multi-Level Granularity.