Powers and Roots

Refresher: the exponent rules

$$x^a x^b = x^{a+b}$$
 multiplying powers \rightarrow add exponents $\frac{x^a}{x^b} = x^{a-b}$ dividing powers \rightarrow subtract exponents $(x^a)^b = x^{ab}$ combining powers \rightarrow multiply exponents $x^{-a} = \frac{1}{x^a}$ negative powers \rightarrow fractions $x^a y^a = (xy)^a$ bases with the same exponent merge

When tracking investments and other types of exponential growth, you'll need to be familiar with manipulating powers. Try these out:

• Simplify
$$\frac{x^5}{x^2} \cdot x^3$$
:

• Simplify
$$\frac{(xy)^3}{x^2y}$$
:

• Simplify
$$\frac{2^k}{2}$$
:

• Write
$$\frac{1}{2x^6}$$
 as ax^b , for some numbers a and b :

• Simplify
$$\frac{x^7 - x^4}{x^4}$$
:

• Simplify
$$\frac{rK^3 - rK^2}{K^2}$$
:

• Solve
$$m^7 = 1.3m^5$$
 for m :

• Solve
$$(2t)^5 = t^4$$
 for t :

• Solve
$$(x^2)^{-1} = \frac{1}{9}$$
 for x :

Fractional powers and roots

Fractional powers will come in handy a lot. If the population of blackbirds in Seattle is 100 now and doubles every year, then the explicit formula for the blackbird population is $B(k) = 100 \cdot 2^k$. That makes sense: after 2 years, there should be $400 = 100 \cdot 2^2$ blackbirds.

What about the population after 2.25 years? We would want to plug in 2.25 for k, and that means dealing with $2^{2.25}$ — a fractional power.

Roots are also fractional powers:

$$\sqrt{x} = x^{1/2}$$

$$\sqrt{x^a} = x^{a/2}$$

$$\sqrt[b]{x^a} = x^{a/b}$$

• By definition, $(\sqrt{x})^2 = x$. Check that $(x^{1/2})^2 = x$ also:

• Simplify $x^{1.3} \cdot \sqrt{x}$:

• Simplify $\frac{3x}{\sqrt{x}}$:

• Simplify $\sqrt{ab^2}$ as much as possible:

• Simplify $\frac{\sqrt{3^{k+1}}}{\sqrt{3^k}}$:

• Simplify $\frac{\sqrt{4 \cdot a^{k+2}}}{\sqrt{4 \cdot a^k}}$:

• Simplify $\sqrt[4]{x^3}$:

• Solve $\frac{t^{4.5}}{t} = 3$ for t:

• Solve $(u^3)^2 = 70u$ for u: