A Framework for Reinforcement Learning and Planning: Extended Abstract

Thomas Moerland, Joost Broekens and Catholijn Jonker Delft University of Technology, The Netherlands

Main Idea

Reinforcement learning and MDP planning solve the same problem.

Can we identify one underlying algorithmic space, and can we disentangle it?

Main inspiration

Trial-based Heuristic Tree Search (THTS) (Keller & Helmert, 2013) -- Similar effort for tree search alone

Central concept:

Trials A single call to the environment/transition model

Back-ups A single operation to back-up the obtained information from the trial

Framework

Six main questions:

- 1) Where do we put our computational effort?
- 2) How do we select the next trial?
- 3) How do we estimate the cumulative return after a trial?
- 4) How do we back-up the new information to previous nodes?
- 5) How do we represent the solution?
- 6) How do we update the solution?

Full paper

Details all decisions, and presents a large table comparing well-known model-free RL, model-based RL, and planning methods.

Potential Benefits

- Bridge both fields (conceptually + terminology)
- Mutual inspiration
- In each separate field (e.g., no framework for RL itself)

Overview of framework

Table 1: Overview of dimensions in the Framework for Reinforcement learning and Planning (FRAP). For any planning or reinforcement learning algorithm, we should be able to identify the decision on each of the dimensions. The subconsiderations and possible options are shown in the right columns. IM = Intrinsic Motivation.

Dimension	Consideration	Choices
1. Comp. effort	- State set	$All \leftrightarrow reachable \leftrightarrow relevant$
2. Trial selection	- Candidate set	$Step\text{-wise} \leftrightarrow frontier$
	- Exploration	Random ↔ Value-based ↔ State-based -For value: mean value, uncertainty, priors -For state: ordered, priors (shaping), novelty, knowledge IM, competence IM
	- Phases	$One\text{-phase} \leftrightarrow two\text{-phase}$
	- Reverse trials	$Yes \leftrightarrow No$
8. Return estim.	- Sample depth	$1 \leftrightarrow n \leftrightarrow \infty$
	- Bootstrap func.	$Learned \leftrightarrow heuristic \leftrightarrow none$
4. Back-up	- Back-up policy	On-policy \leftrightarrow off-policy
	- Policy expec.	$Expected \leftrightarrow sample$
	- Dynamics expec.	$Expected \leftrightarrow sample$
5. Representation	- Function type	Value \leftrightarrow policy \leftrightarrow both (actor-critic) - For all: generalized \leftrightarrow not generalized
	- Function class	Tabular \leftrightarrow function approximation - For tabular: local \leftrightarrow global
6. Update	- Loss	 For value: e.g., squared For policy: e.g., (det.) policy gradient ↔ value gradient ↔ cross-entropy, etc.
	- Update	Gradient-based ↔ gradient-free - For gradient-based, special cases: replace & average update

Full paper has a large table comparing well-known planning and RL algorithms on these dimensions

A Framework for Reinforcement Learning and Planning: Extended Abstract

Thomas Moerland, Joost Broekens and Catholijn Jonker Delft University of Technology, The Netherlands

Paper	Environ- ment	Learned	Comp. effort	Trial selection							
				Candidate	Exploration	Sub-category	Phases	Reverse	Description		
Dynamic Programming (Bellman, 1966)	Reversible		All	State set	State	Ordered	1		Sweep		
Depth-first exh. search (Russell and Norvig, 2016)	Reversible		Reach.	Step	State	Ordered	1		Sweep		
Heuristic search (e.g., A*	Reversible		Reach.	Frontier	Value	Prior	1		Greedy on heuristic		
MCTS (Browne et al., 2012)	Reversible		Reach.	Step	Value	Uncertainty	2		Upper confidence bound		
Real-time DP (Barto et al.,	Reversible analytic		Reach.	Step	State	Ordered	1		Random starts		
Q-learning (Watkins and Dayan, 1992)	Irreversible		Reach.	Step	State	Ordered	1		Random starts		
SARSA + eligibility trace (Sutton and Barto, 2018)	Irreversible		Reach.	Step	Value	Mean values	1		e.g., Boltzmann		
REINFORCE (Williams.	Irreversible		Reach.	Step	Random	7.0	1		Stochastic policy		
DQN (Mnih et al., 2015)	Irreversible		Reach.	Step	Value	Random	1		ϵ -greedy		
PPO Schulman et al.,	Irreversible sample		Reach.	Step	Value	Mean values	1		Stochastic policy with entropy regular- ization		
DDPG (Lillicrap et al., 2015)	Irreversible		Reach.	Step	Random	327	1		Noise process (Ornstein-Uhlenbeck)		
Go-Explore [†] (Ecoffet et al.,	Irreversible		Reach.	Frontier	State+ val+rand	Novelty+ prior+random	1		Frontier prior.: visit freq. + heuristics. On frontier: random perturbation.		
AlphaStar (Vinyals et al.,	Irreversible		Reach.	Step	State+ Value	Prior+mean values	1		Imitation learning + shaping rewards + entropy regularization		
Dyna-Q (Sutton, 1990)	Irreversible	~	Reach.	Step	State+ Value	Knowledge+ mean values	1		Novelty bonus + Boltzmann		
Prioritized sweeping Moore and Atkeson, 1993	Irreversible	~	Reach.	Step	State	Novelty	1	~	Visitation frequency + Reverse trials		
PILCO (Deisenroth and Rasmussen, 2011	Irreversible	~	Reach.	Step	Random	953	2		Stochastic policy on initialization		
AlphaGo (Silver et al., 2017)	Reversible		Reach.	Step	Value + random	Uncertainty	2		Upper confidence bound + noise		
Knowledge, e.g., surprise Achiam and Sastry 2017	Irreversible	~	Reach.	Step	State	Knowledge	1		Intrinsic reward for surprise		
Competence IM, e.g., (Péré et al., 2018)	Irreversible	~	Reach.	Frontier	State	Competence	1		Sampling in learned goal space		

A Framework for Reinforcement Learning and Planning: Extended Abstract

Thomas Moerland, Joost Broekens and Catholijn Jonker Delft University of Technology, The Netherlands

Paper	Cumulativ	ve return		Back-up			sentation	Update	
	Sample depth	Bootstrap	Back-up policy	Action ex- pectation	Dynamics Expecta- tion	Function type	Function class	Loss	Update type
Dynamic Programming Bellman, 1966	1	Learned	Off-policy	Max	Exp.	Value	Global table	(Squared)	Replace
Russell and Norvig. 2016)	000	None	Off-policy	Max	Exp	Value	Global table	(Squared)	Replace
leuristic search (e.g., A* Hart et al., 1968)	1	Heuristic	Off-policy	Max	Determ.	Value	Global table	(Squared)	Replace
MCTS (Browne et al., 2012)	000	None	On-policy	Sample	Sample	Value	Local table	(Squared)	Average
Real-time DP (Barto et al., 995)	1°	Learned	Off-policy	Max	Exp.	Value	Global table	(Squared)	Replace
Q-learning (Watkins and Dayan, 1992)	1	Learned	Off-policy	Max	Sample	Value	Global table	Squared	Gradient
SARSA + eligibility trace Sutton and Barto, 2018	1-n (eligibility)	Learned	On-policy	Sample	Sample	Value	Global table	Squared	Gradient
REINFORCE (Williams, 1992)	000	None	On-policy	Sample	Sample	Policy	Func.approx. (NN)	Policy gradient	Gradient
OQN Mnih et al., 2015	1	Learned	Off-policy	Max	Sample	Value	Func.approx. (NN)	Squared	Gradient
PPO Schulman et al.	1-n (eligibility)	Learned	On-policy	Sample	Sample	Policy	Func.approx. (NN)	Policy gradient	Gradient (trust.reg.)
ODPG (Lillicrap et al.)	1	Learned	Off-policy	Max	Sample	Policy+ value	Func.approx. (NN)	Determ. policy grad. + squared	Gradient
30-Explore [†] (Ecoffet et al.,	1	Heuristic	On-policy	Sample	Sample	Policy	Global table	(Squared)	Replace
AlphaStar (Vinyals et al.,	1-n (importance weighted)	Learned	On-policy	Sample	Sample	Policy+ value	Func.approx. (NN)	Policy gradient + squared	Gradient
Oyna (Sutton, 1990)	1	Learned	On-policy	Sample	Sample	Value	Global table	Squared	Gradient
rioritized sweeping Moore and Atkeson, 1993	1	Learned	Off-policy	Max	Exp.	Value	Global table	Squared	Gradient
PILCO (Deisenroth and Rasmussen, 2011)	000	None	On-policy	Sample	Sample	Policy	Func.approx.	Value gradient	Gradient
AlphaGo (Silver et al., 2017)	MCTS: $1-n$ Value: ∞	Learned	On-policy	Sample	Sample	Policy+ value	Func.approx. (NN)+ local table	Cross-entropy+ Squared	Average+ Gradient
Knowledge, e.g., surprise Achiam and Sastry, 2017	000	None	On-policy	Sample	Sample	Policy	Func.approx. (NN)	Policy gradient	Gradient
t al. 2018	000	None	On-policy	Sample	Sample	Generalized policy ⁸	Func.approx.	k-NN loss	Gradient- free