0.1 连续变换与可测集

定理 0.1 (变换的基本性质)

设变换 $T: \mathbb{R}^n \to \mathbb{R}^n$,则

1.
$$T\left(\bigcup_{\alpha\in I}A_{\alpha}\right) = \bigcup_{\alpha\in I}T\left(A_{\alpha}\right)$$
.

证明

2.

1. 下面是转换后的 LaTeX 正文格式代码:

$$-方面, \forall x \in T \left(\bigcup_{\alpha \in I} A_{\alpha}\right), 存在 y \in \bigcup_{\alpha \in I} A_{\alpha}, 从而存在 \alpha_{y} \in I, 使得 y \in A_{\alpha_{y}} 且 x = T(y). 于是 x = T(y) \subset T\left(A_{\alpha_{y}}\right) \subset \bigcup_{\alpha \in I} T(A_{\alpha}). 故 T\left(\bigcup_{\alpha \in I} A_{\alpha}\right) \subset \bigcup_{\alpha \in I} T(A_{\alpha}).$$
 另一方面, 对 $\forall x \in \bigcup_{\alpha \in I} T(A_{\alpha}),$ 都存在 $\alpha_{x} \in I$, 使得 $x \in T\left(A_{\alpha_{x}}\right)$. 于是存在 $y \in A_{\alpha_{x}}$, 使得 $x = T(y)$. 又因为 $y \in A_{\alpha_{x}} \subset \bigcup_{\alpha \in I} A_{\alpha}$, 所以 $x = T(y) \subset T\left(\bigcup_{\alpha \in I} A_{\alpha}\right)$. 故 $T\left(\bigcup_{\alpha \in I} A_{\alpha}\right) \supset \bigcup_{\alpha \in I} T(A_{\alpha})$.

定义 0.1 (连续变换)

设有变换 $T: \mathbb{R}^n \to \mathbb{R}^n$. 若对任一开集 $G \subset \mathbb{R}^n$, 逆(原) 像集

$$T^{-1}(G)$$
 \mbox{p} $\{x \in \mathbb{R}^n : T(x) \in G\}$

是一个开集,则称T是从 \mathbb{R}^n 到 \mathbb{R}^n 的连续变换.

定理 0.2 (连续变换的充要条件)

变换 $T: \mathbb{R}^n \to \mathbb{R}^n$ 是连续变换的充分必要条件是,对任一点 $x \in \mathbb{R}^n$ 以及任意的 $\varepsilon > 0$,存在 $\delta > 0$,使得当 $|y-x| < \delta$ 时,有

$$|T(y) - T(x)| < \varepsilon. \tag{1}$$

证明 必要性: 对任一点 $x \in \mathbb{R}^n$ 以及任意的 $\varepsilon > 0$, 有 x 属于开集

$$T^{-1}(B(T(x),\varepsilon)),$$

从而存在 $\delta > 0$, 使得

$$B(x, \delta) \subset T^{-1}(B(T(x), \varepsilon)).$$

这说明, 当 $|y-x| < \delta$ 时, 有 $y \in B(x,\delta) \subset T^{-1}(B(T(x),\varepsilon))$, 即

$$|T(y) - T(x)| < \varepsilon$$
.

充分性: 设 $G \in \mathbb{R}^n$ 中任一开集, 且 $T^{-1}(G)$ 不是空集,则对任一点 $x \in T^{-1}(G)$, 有 $T(x) \in G$. 因此, 存在 $\varepsilon > 0$, 使得 $B(T(x), \varepsilon) \subset G$. 根据充分性的假定, 对此 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $|y - x| < \delta$ 时, 有

$$|T(y) - T(x)| < \varepsilon$$
, \mathbb{P} $T(y) \in B(T(x) \subset G, \varepsilon)$.

也即 $T(y) \in G, \forall y \in B(x, \delta)$. 此即 $T(B(x, \delta)) \subset G$. 这就是说 $B(x, \delta) \subset T^{-1}(G)$, 即 $T^{-1}(G)$ 是开集.

命题 0.1

若 $T: \mathbb{R}^n \to \mathbb{R}^n$ 是线性变换,则 T 是连续变换.

证明 令 e_i $(i=1,2,\cdots,n)$ 是 \mathbb{R}^n 中的一组基, 则对 \mathbb{R}^n 中任意的 $x=(\xi_1,\xi_2,\cdots,\xi_n)$, 有

$$x = \xi_1 e_1 + \xi_2 e_2 + \dots + \xi_n e_n$$
.

再令 $T(e_i) = x_i \ (i = 1, 2, \dots, n)$, 又有

$$T(x) = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_n x_n.$$

记
$$M = \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2}$$
,从而由 Cauchy 不等式可得

 $|T(x)| \le |\xi_1||x_1| + |\xi_2||x_2| + \dots + |\xi_n||x_n|$

$$\leq \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2} \left(\sum_{i=1}^{n} |\xi_i|^2\right)^{1/2} = M|x|.$$

由此可知

$$|T(y) - T(x)| = |T(y - x)| \leqslant M|y - x|.$$

再由连续变换的充要条件可知 T 是连续变换.

定理 0.3

 $_{\mathrm{U}}^{--}$ $_{\mathrm{U}}^{--}$ $_{\mathrm{U}}^{--}$ 是连续变换. 若 $_{\mathrm{U}}$ $_{\mathrm{U}}^{--}$ 中的紧集, 则 $_{\mathrm{U}}^{--}$ $_{\mathrm{U}$

证明 对于 T(K) 的任一开覆盖族 $\{H_i\}$, 令 $G_i = T^{-1}(H_i)$, 则 $\{G_i\}$ 是 K 的开覆盖族. 根据有限子覆盖定理可知, 在 $\{G_i\}$ 中存在 $G_{i_1}, G_{i_2}, \cdots, G_{i_k}$, 使得

$$K \subset \bigcup_{j=1}^k G_{i_j}$$
.

从而得

$$T(K) \subset \bigcup_{j=1}^{k} T(G_{i_j}) \subset \bigcup_{j=1}^{k} H_{i_j}.$$

这说明 T(K) 是 \mathbb{R}^n 中的紧集.

推论 0.1

设 $T: \mathbb{R}^n \to \mathbb{R}^n$ 是连续变换. 若 $E \neq F_\sigma$ 集, 则 $T(E) \neq F_\sigma$ 集.

证明 由 $E \subset \mathbb{R}^n$ 是 F_σ 集, 故 $E = \bigcup_{k=1}^{\infty} E_k$, 其中 E_k 都是闭集. 令

$$F_k = E_k \cap C(0, k) (k = 1, 2, \dots), \quad F = \bigcup_{k=1}^{\infty} F_k.$$

显然 $\{F_k\}$ 是 \mathbb{R}^n 中的递增紧集列,并且

$$F = \bigcup_{k=1}^{\infty} (E_k \cap C(0, k)) \subset \left(\bigcup_{k=1}^{\infty} E_k\right) \cap \left(\bigcup_{k=1}^{\infty} C(0, k)\right) = E \cap \mathbb{R}^n = E.$$

于是

$$T(E) = T(F) = T\left(\bigcup_{k=1}^{\infty} F_k\right) = \bigcup_{k=1}^{\infty} T(F_k).$$

由定理可知 $T(F_k)$ 都是 \mathbb{R}^n 中的紧集, 进而 $T(F_k)$ 都是闭集, 从而 $\bigcup_{k=1}^{\infty} T(F_k)$ 也是闭集. 故 T(E) 是闭集, 结论得证.

推论 0.2

设 $T:\mathbb{R}^n\to\mathbb{R}^n$ 是连续变换. 若对 \mathbb{R}^n 中的任一零测集 Z,T(Z) 必为零测集,则对 \mathbb{R}^n 中的任一可测集 E,T(E) 必为可测集.

证明 根据定理??(ii), 有 $E = K \cup Z$, 其中 $K \in F_{\sigma}$ 集, $Z \in \mathbb{Z}$ 是零测集. 因为

$$T(E) = T(K) \cup T(Z),$$

而 T(K) 是 F_{σ} 集, T(Z) 为零测集, 所以 T(E) 是可测集.

定理 0.4

若 $T: \mathbb{R}^n \to \mathbb{R}^n$ 是非奇异线性变换, $E \subset \mathbb{R}^n$, 则

$$m^*(T(E)) = |\det T| \cdot m^*(E). \tag{2}$$

注 在 | det T | = 0 时, T 将 ℝⁿ 变为一个低维线性子空间, 显然其映像集是零测集, 我们有

$$m(T(E)) = |\det T| \cdot m(E) = 0, \quad E \subset \mathbb{R}^n.$$

证明 记

$$I_0 = \{ x = (\xi_1, \xi_2, \dots, \xi_n) : 0 \le \xi_i < 1, 1 \le i \le n \},$$

$$I = \{ x = (\xi_1, \xi_2, \dots, \xi_n) : 0 \le \xi_i < 2^{-k}, 1 \le i \le n \}.$$

显然, I_0 是 2^{nk} 个 I 的平移集 $I + \{x_i\}$ $(j = 1, 2, \dots, 2^{nk})$ 的并集, $T(I_0)$ 是 2^{nk} 个

$$T(I + \{x_i\}), \quad j = 1, 2, \dots, 2^{nk}$$

的并集,而且有(注意 T^{-1} 是连续变换)

$$m(T(I + \{x_j\})) = m(T(I)), \quad j = 1, 2, \dots, 2^{nk}.$$

现在假定(2)式对于 Io 成立:

$$m(T(I_0)) = |\det T|,\tag{3}$$

则

$$|\det T| = 2^{nk} m(T(I)).$$

因为 $m(I) = 2^{-nk}$,所以得到

$$m(T(I)) = 2^{-nk} |\det T| = |\det T| m(I).$$

这说明 (2) 式对每个 I 以及 I 的平移集都成立,从而可知 (2) 式对可数个互不相交的任意二进方体的并集是成立的,也就说明对任一开集 $G \subset \mathbb{R}^n$ (2) 式均成立.于是应用等测包的推理方法立即可知,对一般点集 (2) 式成立.

下面证明(3)式成立. 大家知道 T 至多可以表为如下几个初等变换的乘积:

- (i) 坐标 $\xi_1, \xi_2, \dots, \xi_n$ 之间的交换;
- $(ii)\xi_1 \rightarrow \beta \xi_1, \xi_i \rightarrow \xi_i \ (i = 2, 3, \dots, n);$
- $(iii)\xi_1 \to \xi_1 + \xi_2, \xi_i \to \xi_i \ (i = 2, 3, \dots, n).$
- 在 (i) 的情形, 显然有 $|\det T| = 1$, $T(I_0) = I_0$. 从而可知 (3) 式成立.
- 在 (ii) 的情形, 矩阵 T 可由恒等矩阵在第一行乘以 β 而得到, 此时有

$$T(I_0) = \{x = (\xi_1, \xi_2, \dots, \xi_n) : 0 \le \xi_i < 1 \ (i = 2, 3, \dots, n), \ 0 \le \xi_1 < \beta \ (\beta > 0), \beta < \xi_1 \le 0 \ (\beta < 0)\}.$$

从而可知 $m(T(I_0)) = |\beta|$, 即 (3) 式成立.

在 (iii) 的情形, 此时 $\det T = 1$, 而且有

$$T(I_0) = \{x = (\xi_1, \xi_2, \dots, \xi_n) : 0 \leqslant \xi_i < 1 \ (i \neq 1), \ 0 \leqslant \xi_1 - \xi_2 < 1\}.$$

记

$$A = \{x = (\xi_1, \xi_2, \dots, \xi_n) \in T(I_0) : \xi_1 < 1\},$$

$$e_1 = (1, 0, \dots, 0), \quad B = T(I_0) \setminus A.$$

我们有

$$A = \{x = (\xi_1, \xi_2, \dots, \xi_n) \in I_0 : \xi_2 < \xi_1\},$$

$$B - e_1 = \{x = (\xi_1, \xi_2, \dots, \xi_n) \in I_0 : \xi_1 < \xi_2\}.$$

因此得到

$$m(T(I_0)) = m(A) + m(B) = m(A) + m(B - e_1)$$

= $m(I_0) = 1 = \det T$.

这说明 (3) 式对 I_0 成立.

最后不妨设 $T = T_1 \cdot T_2 \cdot \cdots \cdot T_i$,这里的每个 T_i 均是(i)~(iii)情形之一,从而由归纳法可知

$$m^*(T(E)) = m(T_1(T_2(\cdots (T_j(E))\cdots)))$$

$$= |\det T_1||\det T_2|\cdots |\det T_j|m^*(E)$$

$$= |\det T|m^*(E).$$

推论 0.3

设 $T: \mathbb{R}^n \to \mathbb{R}^n$ 是非奇异线性变换. 若 $E \in \mathcal{M}$, 则 $T(E) \in \mathcal{M}$ 且有

$$m(T(E)) = |\det T| m(E).$$

证明 由定理 0.4立得.

例题 0.1 若 $E \subset \mathbb{R}^2$ 是可测集, 则将 E 作旋转变换后所成集为可测集, 且测度不变.

证明

例题 $0.2 \mathbb{R}^2$ 中三角形的测度等于它的面积.

证明 显然, \mathbb{R}^2 中任一三角形都是可测集. 由于测度的平移不变性,故不妨假定三角形的一个顶点在原点. 记三角形为 T,其面积记为 |T|. 因为 m(T) = m(-T),所以经平移后可得 2m(T) = m(T) + m(-T) = m(P),其中 P 是平行四边形. 再将 P 中的子三角形作旋转或平移,可使 P 转换为矩形 Q,且有 m(P) = m(Q) = |P| = 2|T|,从而得 m(T) = |T|.

例题 **0.3** 圆盘 $D = \{(x, y) : x^2 + y^2 \le r^2\}$ 是 \mathbb{R}^2 中可测集, 且 $m(D) = \pi r^2$.

证明 记 P_n 与 Q_n 为 D 的内接与外切正 n 边形, 由 P_n 与 Q_n 的可测性易知 D 是可测集. 注意到 $P_n \subset D \subset Q_n$, 以 及

$$\begin{split} m(P_n) &= \pi r^2 \frac{\sin(\pi/n)}{\pi/n} \cos \frac{\pi}{n} \to \pi r^2 \quad (n \to \infty), \\ m(Q_n) &= \pi r^2 \frac{\tan(\pi/n)}{\pi/n} \to \pi r^2 \quad (n \to \infty), \end{split}$$

可知 $m(D) = \pi r^2$.

例题 **0.4** 设 $E \subset (-\pi, \pi], 0 \le a < b \le +\infty$, 令

$$S_E = S_E(a, b) = \{ (r\cos\theta, r\sin\theta) : a < r < b, \theta \in E \}.$$

大家知道, 若 $E = (\alpha, \beta)$, 则 S_E 就是通常所说的扇形, 其面积为 $(b^2 - a^2)(\beta - \alpha)/2$.

(1) 对于一般点集 E, 我们有

$$m^*(S) \leqslant \frac{(b^2 - a^2)m^*(E)}{2}.$$

(注意, 这里 $m^*(S)$ 是二维外测度, $m^*(E)$ 是一维外测度.)

(2) 若 E ⊂ $(-\pi, \pi]$ 是可测集, 则 S 是可测集.

证明 (1) (i) 设 $b < +\infty$, 此时, 对任给 $\varepsilon > 0$, 存在开区间列 $\{I_n\}$: $\bigcup_{n=1}^{\infty} I_n \supset E$, $\sum_{n=1}^{\infty} |I_n| < m^*(E) + \varepsilon$. 显然, $\bigcup_{n=1}^{\infty} S_{I_n} \supset S_E$, 从而有

$$m^*(S_E) \le m^* \left(\bigcup_{n=1}^{\infty} S_{I_n}\right) \le \sum_{n=1}^{\infty} m^*(S_{I_n})$$

= $(b^2 - a^2) \sum_{n=1}^{\infty} |I_n|/2 \le \frac{b^2 - a^2}{2} (m^*(E) + \varepsilon),$

由 ε 的任意性即得所证.

(ii) 设 $b = +\infty, m^*(E) = 0$. 此时, 对 $n \ge 1$, 由 (i) 知

$$m^*(S_E(a,n)) \leq \frac{(n^2 - a^2)m^*(E)}{2} = 0.$$

从而得到

$$m^*(S_E(a, +\infty)) = \lim_{n \to \infty} m^*(S_E(n)) = 0.$$

- (iii) 设 $b = +\infty, m^*(E) > 0$. 结论显然.
- (2) 由于 $S_E(a,b) = S_E(0,+\infty) \cap S_{(-\pi,\pi]}(a,b)$, 故只需指出 $S_E(0,+\infty)$ 可测即可.

设 $I \subset (-\pi, \pi]$ 是开区间, 记 $T = S_I(a, b)$ (开环扇形), $E^c = (-\pi, \pi] \setminus E$ 以及 $S_E = S_E(0, +\infty)$, 我们有

设 R 是一个开矩形, 易知它可由互不相交的可列个开环扇形 T_n 组成, 至多差一零测集 (边界). 因此 (注意, 开环扇形可测) 得到

$$m^*(R \cap S_E) + m^*(R \cap S_{E^c}) \leqslant \sum_{n=1}^{\infty} m^*(T_n \cap S_E) + \sum_{n=1}^{\infty} m^*(T_n \cap S_{E^c})$$

 $\leqslant \sum_{n=1}^{\infty} m(T_n) = m\left(\bigcup_{n=1}^{\infty} T_n\right) = m(R).$

这说明,对任一矩形 R,有

$$m(R) = m^*(R \cap S_E) + m^*(R \cap S_{E^c}).$$

而 S_{E^c} 就是 S_E 的补集 (除原点外), 也就是说 S_E 是可测集.