```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
from google.colab import drive
drive.mount('/content/drive')
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
data_df = pd.read_csv('/content/raw_house_data.csv')
```

data\_df

data\_df.dtypes

| ₹ |      | MLS      | sold_price | zipcode | longitude   | latitude  | lot_acres | taxes    | year_built | bedrooms | bathrooms | sqrt_ft | garage | kitche              |
|---|------|----------|------------|---------|-------------|-----------|-----------|----------|------------|----------|-----------|---------|--------|---------------------|
|   | 0    | 21530491 | 5300000.0  | 85637   | -110.378200 | 31.356362 | 2154.00   | 5272.00  | 1941       | 13       | 10.0      | 10500.0 | 0.0    | Refrig              |
|   | 1    | 21529082 | 4200000.0  | 85646   | -111.045371 | 31.594213 | 1707.00   | 10422.36 | 1997       | 2        | 2.0       | 7300.0  | 0.0    | Garba               |
|   | 2    | 3054672  | 4200000.0  | 85646   | -111.040707 | 31.594844 | 1707.00   | 10482.00 | 1997       | 2        | 3.0       | NaN     | NaN    | Garba               |
|   | 3    | 21919321 | 4500000.0  | 85646   | -111.035925 | 31.645878 | 636.67    | 8418.58  | 1930       | 7        | 5.0       | 9019.0  | 4.0    | Dishwa<br>Sink, P   |
|   | 4    | 21306357 | 3411450.0  | 85750   | -110.813768 | 32.285162 | 3.21      | 15393.00 | 1995       | 4        | 6.0       | 6396.0  | 3.0    | Garba<br>Refri      |
|   |      |          |            |         |             |           |           |          |            |          |           |         |        |                     |
|   | 4995 | 21810382 | 495000.0   | 85641   | -110.661829 | 31.907917 | 4.98      | 2017.00  | 2005       | 5        | 3.0       | 3601.0  | 3.0    | Dishwa<br>Si<br>Dis |
|   | 4996 | 21908591 | 550000.0   | 85750   | -110.858556 | 32.316373 | 1.42      | 4822.01  | 1990       | 4        | 3.0       | 2318.0  | 3.0    | Dishwa<br>{<br>Raı  |
|   | 4997 | 21832452 | 475000.0   | 85192   | -110.755428 | 32.964708 | 12.06     | 1000.00  | 1969       | 3        | 2.0       | 1772.0  | 0.0    | El€<br>Island,      |

Next steps: Generate code with data\_df View recommended plots New interactive sheet data\_df.columns dtype='object')



fireplaces

floor\_covering

HOA

data\_df.info()

```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 5000 entries, 0 to 4999
    Data columns (total 16 columns):
                           Non-Null Count Dtype
     # Column
     ---
     0
         MLS
                           5000 non-null
                                           int64
         sold_price
                           5000 non-null
                                           float64
     1
     2
         zipcode
                           5000 non-null
                                           int64
         longitude
                           5000 non-null
                                           float64
     4
         latitude
                           5000 non-null
                                           float64
                                           float64
                           4990 non-null
         lot_acres
         taxes
                           5000 non-null
                                           float64
         year_built
                           5000 non-null
                                           int64
                           5000 non-null
                                           int64
     8
         bedrooms
         bathrooms
                           4994 non-null
                                           float64
     10
         sgrt ft
                           4944 non-null
                                           float64
                           4993 non-null
                                           float64
     11
         garage
         kitchen_features 4967 non-null
     12
                                           object
          fireplaces
                           5000 non-null
                                           object
     14 floor_covering
                           4999 non-null
                                           object
     15 HOA
                           4438 non-null
                                           object
     dtypes: float64(8), int64(4), object(4)
     memory usage: 625.1+ KB
data\_df.shape
→ (5000, 16)
#data_df= data_df.dropna()
data_df.count()
```

object

object

object

```
₹
                          0
           MLS
                      5000
        sold_price
                      5000
         zipcode
                      5000
        longitude
                      5000
         latitude
                      5000
         lot_acres
                      4990
          taxes
                      5000
        year_built
                      5000
        bedrooms
                      5000
        bathrooms
                      4994
          sqrt_ft
                      4944
                      4993
          garage
     kitchen_features 4967
        fireplaces
                      5000
       floor_covering
                      4999
           HOA
                      4438
```

data\_df.isnull().sum()

```
\overline{\Rightarrow}
                            0
             MLS
                            0
          sold_price
                            0
           zipcode
                            0
          longitude
                            0
           latitude
                            0
          lot_acres
                           10
            taxes
                            0
                            0
          year_built
                            0
          bedrooms
         bathrooms
                            6
            sqrt_ft
                           56
                            7
           garage
      kitchen_features
                           33
                            0
          fireplaces
        floor_covering
                            1
            HOA
                          562
```

```
# conversion
data_df['bathrooms'] = pd.to_numeric(data_df['bathrooms'], errors='coerce')
data_df['sqrt_ft'] = pd.to_numeric(data_df['sqrt_ft'], errors='coerce')
data_df['garage'] = pd.to_numeric(data_df['garage'], errors='coerce')
data_df['fireplaces'] = pd.to_numeric(data_df['fireplaces'], errors='coerce')
data_df['HOA'] = pd.to_numeric(data_df['HOA'], errors='coerce')

# Handle missing values
#data_df['bathrooms'].fillna(data_df['bathrooms'].median(), inplace=True)
data_df['bathrooms'].fillna(0, inplace=True)
```

```
data_df['sqrt_ft'].fillna(0, inplace=True)
data df['garage'].fillna(0, inplace=True)
data_df['fireplaces'].fillna(0, inplace=True)
data_df['lot_acres'].fillna(0, inplace=True)
data_df['kitchen_features'].fillna('Unknown', inplace=True)
data_df['floor_covering'].fillna('Unkonwn', inplace=True)
data df['HOA'].fillna(0, inplace=True)
    <ipython-input-12-2f5b70cc8eaa>:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignm
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       data_df['bathrooms'].fillna(0, inplace=True)
     <ipython-input-12-2f5b70cc8eaa>:4: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignm
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       data_df['sqrt_ft'].fillna(0, inplace=True)
     <ipython-input-12-2f5b70cc8eaa>:5: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignm
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value.
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       data_df['garage'].fillna(0, inplace=True)
     <ipython-input-12-2f5b70cc8eaa>:6: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignm
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       data_df['fireplaces'].fillna(0, inplace=True)
     <ipython-input-12-2f5b70cc8eaa>:7: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignm
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       data_df['lot_acres'].fillna(0, inplace=True)
     <ipython-input-12-2f5b70cc8eaa>:8: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignm
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       data df['kitchen features'].fillna('Unknown', inplace=True)
     <ipython-input-12-2f5b70cc8eaa>:9: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignm
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       data_df['floor_covering'].fillna('Unkonwn', inplace=True)
     <ipython-input-12-2f5b70cc8eaa>:10: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assign
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       data df['HOA'].fillna(0, inplace=True)
data_df
```

data\_df

| <del>}</del> | MLS      | sold_price | zipcode | longitude   | latitude  | lot_acres | taxes    | year_built | bedrooms | bathrooms | sqrt_ft | garage | kitche              |
|--------------|----------|------------|---------|-------------|-----------|-----------|----------|------------|----------|-----------|---------|--------|---------------------|
| 0            | 21530491 | 5300000.0  | 85637   | -110.378200 | 31.356362 | 2154.00   | 5272.00  | 1941       | 13       | 10.0      | 10500.0 | 0.0    | Refrig              |
| 1            | 21529082 | 4200000.0  | 85646   | -111.045371 | 31.594213 | 1707.00   | 10422.36 | 1997       | 2        | 2.0       | 7300.0  | 0.0    | Garba               |
| 2            | 3054672  | 4200000.0  | 85646   | -111.040707 | 31.594844 | 1707.00   | 10482.00 | 1997       | 2        | 3.0       | 0.0     | 0.0    | Garba               |
| 3            | 21919321 | 4500000.0  | 85646   | -111.035925 | 31.645878 | 636.67    | 8418.58  | 1930       | 7        | 5.0       | 9019.0  | 4.0    | Dishwa<br>Sink, P   |
| 4            | 21306357 | 3411450.0  | 85750   | -110.813768 | 32.285162 | 3.21      | 15393.00 | 1995       | 4        | 6.0       | 6396.0  | 3.0    | Garba<br>Refri      |
| •••          |          |            |         | •••         |           |           |          |            |          | •••       |         |        |                     |
| 4995         | 21810382 | 495000.0   | 85641   | -110.661829 | 31.907917 | 4.98      | 2017.00  | 2005       | 5        | 3.0       | 3601.0  | 3.0    | Dishwa<br>Si<br>Dis |
| 4996         | 21908591 | 550000.0   | 85750   | -110.858556 | 32.316373 | 1.42      | 4822.01  | 1990       | 4        | 3.0       | 2318.0  | 3.0    | Dishwa<br>{<br>Raı  |
| 4997         | 21832452 | 475000.0   | 85192   | -110.755428 | 32.964708 | 12.06     | 1000.00  | 1969       | 3        | 2.0       | 1772.0  | 0.0    | Ele<br>Island,      |
| 4.6          |          |            |         |             |           |           |          |            |          |           |         |        |                     |

Next steps: Generate code with data\_df 

✓ View recommended plots 

New interactive sheet

data\_df = data\_df.drop\_duplicates()

data\_df.duplicated().sum()

→ 0

data\_df.shape

→ (5000, 16)

| 21/24,                         | 9:20 P | M          | PROJECT1.ipynb - Colab |         |             |            |           |              |            |          |           |         |        |                     |
|--------------------------------|--------|------------|------------------------|---------|-------------|------------|-----------|--------------|------------|----------|-----------|---------|--------|---------------------|
| <b>₹</b>                       |        | MLS        | sold_price             | zipcode | longitude   | latitude   | lot_acres | taxes        | year_built | bedrooms | bathrooms | sqrt_ft | garage | kitche              |
|                                | 0      | 21530491   | 5300000.0              | 85637   | -110.378200 | 31.356362  | 2154.00   | 5272.00      | 1941       | 13       | 10.0      | 10500.0 | 0.0    | Refrig              |
|                                | 1      | 21529082   | 4200000.0              | 85646   | -111.045371 | 31.594213  | 1707.00   | 10422.36     | 1997       | 2        | 2.0       | 7300.0  | 0.0    | Garba               |
|                                | 2      | 3054672    | 4200000.0              | 85646   | -111.040707 | 31.594844  | 1707.00   | 10482.00     | 1997       | 2        | 3.0       | 0.0     | 0.0    | Garba               |
|                                | 3      | 21919321   | 4500000.0              | 85646   | -111.035925 | 31.645878  | 636.67    | 8418.58      | 1930       | 7        | 5.0       | 9019.0  | 4.0    | Dishwa<br>Sink, P   |
|                                | 4      | 21306357   | 3411450.0              | 85750   | -110.813768 | 32.285162  | 3.21      | 15393.00     | 1995       | 4        | 6.0       | 6396.0  | 3.0    | Garba<br>Refri      |
|                                |        |            |                        |         | •••         |            |           |              |            |          |           |         |        |                     |
|                                | 4995   | 21810382   | 495000.0               | 85641   | -110.661829 | 31.907917  | 4.98      | 2017.00      | 2005       | 5        | 3.0       | 3601.0  | 3.0    | Dishwa<br>Si<br>Dis |
|                                | 4996   | 21908591   | 550000.0               | 85750   | -110.858556 | 32.316373  | 1.42      | 4822.01      | 1990       | 4        | 3.0       | 2318.0  | 3.0    | Dishwa<br>{<br>Raı  |
|                                | 4997   | 21832452   | 475000.0               | 85192   | -110.755428 | 32.964708  | 12.06     | 1000.00      | 1969       | 3        | 2.0       | 1772.0  | 0.0    | El€<br>Island,      |
|                                | 4 @    |            |                        |         |             |            |           |              |            |          |           |         |        |                     |
| Next                           | steps: | Generate   | e code with dat        | ta_df   | View rec    | ommended p | olots Ne  | w interactiv | e sheet    |          |           |         |        |                     |
|                                | df.isn | ull().sum( | )                      |         |             |            |           |              |            |          |           |         |        |                     |
| $\overrightarrow{\Rightarrow}$ |        |            | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                |        | MLS        | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                | sol    | ld_price   | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                | zi     | pcode      | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                | lor    | ngitude    | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                | la     | ititude    | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                | lot    | _          | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                |        |            | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                | •      | _          | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                |        |            | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                |        |            | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                |        |            | 0                      |         |             |            |           |              |            |          |           |         |        |                     |
|                                | y      | a. aye     | J                      |         |             |            |           |              |            |          |           |         |        |                     |

data\_df.to\_csv('/content/Cleaned\_data.csv',index=False)

```
plt.figure(figsize=(10,6))
sns.boxplot(x=data_df['sold_price'])
plt.title('Boxplot of Sold Price')
plt.xlabel('Sold Price')
```

kitchen\_features 0 fireplaces

floor\_covering

HOA

0

0

0

plt.grid(True) plt.show()







#Identifying outliers numerically using IQR method

Q1 = data\_df['sold\_price'].quantile(0.25) Q3 = data\_df['sold\_price'].quantile(0.75) IQR = Q3 - Q1

print(IQR)

**→** 250000.0

data\_df.sold\_price.value\_counts().nlargest(40).plot(kind='bar', figsize=(10,5))



```
plt.figure(figsize=(10,6))
plt.scatter(data_df['sqrt_ft'],data_df['sold_price'], alpha=0.5, color='purple')
plt.title('Scatter Plot Of House Size vs. Sold Price')
plt.xlabel('Suare Footage')
plt.ylabel('Sold Price')
plt.grid(True)
plt.show()
```



```
plt.figure(figsize=(10,6))
plt.hist(data_df['sold_price'], bins=30, color='pink', edgecolor= 'black' )
plt.title('Distribution Of Sold Prices')
plt.xlabel('Sold Price')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```



```
plt.figure(figsize=(10,6))
plt.hist(data_df['sold_price'], bins=30, color='lightgreen', edgecolor= 'black' )
plt.title('Distribution Of Square Footage')
plt.xlabel('Suare Footage')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```



```
# Select only numeric columns
numeric_df = data_df.select_dtypes(include=[float, int])

# Compute the correlation matrix
correlation_matrix = numeric_df.corr()
plt.figure(figsize=(12,8))
sns.heatmap(correlation_matrix, cmap="BrBG", annot =True, linewidths=1, linecolor='black')
plt.title('Correlation Heatmap')
plt.show()
```

<del>\_</del>



sns.pairplot(data\_df)

