QED and QCD - Screening und Anti-Screening

Kopplungskonstante nur näherungsweise konstant

laufende Kopplungskonstante Confinement ↔ asymptotische Freiheit

- Schwache Wechselwirkung Leptonenzahlerhaltung
 In Reaktionen beobachtet:
 - Leptonzahlerhaltung $L=L_e+L_{\mu}+L_{ au}, \quad N(\ell)-N(ar{\ell})+N(
 u)-N(ar{
 u})=const$
 - $L_e, L_\mu, L_ au$ auch separat erhalten (Anmerkung: gilt nicht 100%-ig: Neutrino-Oszillationen)

368

Zusammenfassung: Schwache WW: Cabbibo-Theo., GIM-Mech.

(VL1, KW 02)

Schwache Wechselwirkung

$$M_{if}(q) \sim 4\pi \sqrt{lpha_w} rac{1}{m_W^2 - q^2} \sqrt{lpha_w}$$

große Masse der Vektorbosonen \rightarrow WW schwach!

Cabbibo-Theorie

Exp. Beobachtung:

$$\frac{G(p \to ne^+\nu)}{G(\mu^- \to \nu_\mu e^-\bar{\nu_e})} \approx 0.974$$

 $rac{G(s
ightarrow uW^-)}{G(d
ightarrow uW^-)}pprox 0.23$

sehr ähnlich

sehr unterschiedlich für $\Delta S = 0$, $\Delta S = 1$

⇔ keine Universalität der schwachen Kopplungskonstante ?

Eigenzustand der schwachen Wechselwirkung $d' \neq d$ Eigenzustand der starken Wechselwirkung

$$d' = d\cos\Theta_C + s\sin\Theta_C \qquad \Theta_C = 13^{\circ}$$

Eigenzustand der schwachen Wechselwirkung $d' \neq d$ Eigenzustand der starken Wechselwirkung

$$d' = d\cos\Theta_C + s\sin\Theta_C$$
 $\Theta_C = 13^{\circ}$

In Analogie zu den Lepton-Doubletts:

$$egin{pmatrix} \left(egin{array}{c}
u_e \ e \end{pmatrix}, & \left(egin{array}{c}
u_\mu \ \mu \end{pmatrix}, & \left(egin{array}{c} u \ d' \end{pmatrix} = \left(egin{array}{c} u \ d\cos\Theta_C + s\sin\Theta_C \end{pmatrix} \end{pmatrix}$$

 \Rightarrow Für diese Doubletts: Schwache Wechselwirkung beschrieben durch eine Kopplungskonstante \to Universalität erhalten

370

Experimentelle Beobachtung - Neutrale schwache Ströme

Problem: Die experimentell beobachteten neutralen Ströme folgen der Auswahlregel : $\Delta S=0$

$$K^0
ightarrow \mu^+ \mu^- \ K^+
ightarrow \pi^+ e^+ e^- \ K^+
ightarrow \pi^+
u ar{
u}$$

nicht beobachtet

(bzw. sehr, sehr stark unterdrückt)

$$(< 3.2 \cdot 10^{-7}$$

 $3.00 \pm 0.09 \cdot 10^{-7}$
 $1.7 \pm 1.1 \cdot 10^{-10}$)

$$rac{K^+
ightarrow \pi^+
u ar{
u}}{K^+
ightarrow \pi^0 \mu^+
u_\mu} < 10^{-8} \quad \Delta S = 1 \qquad \qquad \leftrightarrow rac{[ar{s}
ightarrow ar{d} + Z^0]}{[ar{s}
ightarrow ar{u} + W^+]}$$

Experimentell: keine Flavor ändernden neutralen Ströme beobachtet, keine schwachen Prozesse $d \leftrightarrow s$ (bzw. sehr, sehr stark unterdrückt)

Neutraler Strom:

$$u\bar{u} + d'\bar{d}' = u\bar{u} + d\bar{d}\cos^2\Theta_C + s\bar{s}\sin^2\Theta_C + (s\bar{d} + \bar{s}d)\sin\Theta_C\cos\Theta_C$$

$$\Delta S = 0 \qquad \Delta S = 1$$

Idee von Glashow, Iliopoulos, Maiani \leftrightarrow GIM-Mechanimus definiere: Operator s' orthogonal zu d'

$$s' = s\cos\Theta_C - d\sin\Theta_C$$

Eichtheorie: s' Teil eines SU(2)_L -Doubletts und koppelt an: $W^{\pm},\ Z^0$

⇒ c-quark erklärt Nicht-Existenz von Flavour änderenden neutralen Ströme!

$$\begin{pmatrix} u \\ d' \end{pmatrix} = \begin{pmatrix} u \\ d\cos\Theta_C + s\sin\Theta_C \end{pmatrix}, \quad \begin{pmatrix} c \\ s' \end{pmatrix} = \begin{pmatrix} c \\ s\cos\Theta_C - d\sin\Theta_C \end{pmatrix}$$

372

Cabibbo - Theorie

Erweiterung des neutralen Stromes durch

$$u\bar{u} + d'\bar{d}' + c\bar{c} + s'\bar{s}' = u\bar{u} + c\bar{c} + (d\bar{d} + s\bar{s})\cos^2\Theta_C + (s\bar{s} + d\bar{d})\sin^2\Theta_C + (s\bar{d} + \bar{s}d - \bar{s}d - s\bar{d})\sin\Theta_C\cos\Theta_C$$

 $\Delta S=1$ - Teil = $0 \ !!$

keine Flavour ändernden neutralen Ströme $d \leftrightarrow s, \; u \leftrightarrow c$ treten nicht auf

⇔ c-quark muss existieren !

Erweiterung auf 3 Quark-Familien: Kobayashi-Maskawa-Matrix

....

⇒ c-quark erklärt Nicht-Existenz von Flavour änderenden neutralen Ströme!

⇒ GIM-Mechanismus

s' analog zu d' Teil eines SU(2) $_L$ -Doubletts und koppelt an: $W^\pm,~Z^0$

$$\begin{pmatrix} u \\ d' \end{pmatrix} = \begin{pmatrix} u \\ d\cos\Theta_C + s\sin\Theta_C \end{pmatrix}, \quad \begin{pmatrix} c \\ s' \end{pmatrix} = \begin{pmatrix} c \\ s\cos\Theta_C - d\sin\Theta_C \end{pmatrix}$$

Matrixschreibweise ($|d'>, |s'> \leftrightarrow |d>, |s>$):

$$\begin{pmatrix} |d'> \\ |s'> \end{pmatrix} = \begin{pmatrix} \cos\Theta_C & \sin\Theta_C \\ -\sin\Theta_C & \cos\Theta_C \end{pmatrix} \cdot \begin{pmatrix} |d> \\ |s> \end{pmatrix}$$

= unitäre Matrix $U^+U=1$

CKM-Matrix → Erweitert Cabbibo-Theorie auf 3 Generationen → jetzt

Cabibbo-Kobayaschi-Maskawa - Matrix

3. Quarkgeneration → Cabibbo-Kobayaschi-Maskawa (CKM) - Matrix

$$\begin{vmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{vmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{pmatrix}$$

$$\begin{vmatrix} 4 \text{ Parameter:} \\ 3 \text{ reelle Winkel} \\ + 1 \text{ imaginare Phase} \\ \text{Phase } \Leftrightarrow \text{ Effekt in Interferenz-termen bei schwachen Prozesse}$$

ermen bei schwachen Prozessen höherer Ordnung (⇔ CP-Verletzung)

374

Übergänge zwischen Familien, wie c \leftrightarrow d unterdrückt gegenüber Übergängen innerhalb der Familien, wie $c \leftrightarrow s$, $d \leftrightarrow u$.

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

(V: unitär)

 $s_{ij} = \sin heta_{ij}, \ c_{ij} = \cos heta_{ij}$ δ : CP-verletzende Phase: verantwortlich für alle **CP-verletzenden Prozesse in Flavour** verändernden Prozessen der schwachen WW₃₇₅

Cabibbo-Kobayaschi-Maskawa -Matrix

CKM-Matrixelemente = fundamentale Parameter des Standardmodells

= unitare Matrix: $U^+U=1=UU^+$

$$egin{pmatrix} V_{ud}^* & V_{cd}^* & V_{td}^* \ V_{us}^* & V_{cs}^* & V_{ts}^* \ V_{ub}^* & V_{cb}^* & V_{tb}^* \end{pmatrix} \cdot egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

$$\sum_{i}V_{ij}V_{ik}^{*}=\delta_{jk}$$

z.B. j=d, k=b \longrightarrow

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Analog:

$$\sum_{i}V_{ij}V_{kj}^{*}=\delta_{ik}$$

6 verschwindende Kombinationen:

⇔ Unitarity triangles

$$egin{aligned} V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* &= 0 \ z_1 + 1 + z_2 &= 0 \ ext{(in der komplexen Ebene)} \end{aligned}$$

- → erfüllt ?
- → neue Physik ?
- ⇔ Präzise Vermessung der verschiedenen **Matrixelemente**

376

Cabibbo-Kobayaschi-Maskawa -Matrix

Bei Erweiterung auf 3. Quarkgeneration:

→ Cabibbo-Kobayaschi-Maskawa (CKM) - Matrix

Parameter:

termen bei schwachen Prozessen höherer Ordnung (⇔ CP-Verletzung)

$$rac{\sin^2(heta)}{\cos^2(heta)}pproxrac{1}{20}$$

Übergänge zwischen Familien, wie $c \leftrightarrow d$ unterdrückt gegenüber Übergängen innerhalb der Familien, wie $c \leftrightarrow s$, $d \leftrightarrow u$.

> Matrixelemente müssen experimentell bestimmt werden

Cabibbo-Kobayaschi-Maskawa -Matrix

 $Letz te \ Ergebnisse \ (und \ Messmethoden) \ siehe \ http://pdg.lbl.gov/ \leftrightarrow "Reviews, \ Tables \ \& \ Plots"$

Cabibbo-Kobayaschi-Maskawa -Matrix

378

Paritätserhaltung / Paritätsverletzung

Parität ist erhalten, wenn ein Prozess und sein Spiegelbild beide in der Natur beobachtet werden; d.h. die Wechselwirkung muss gegenüber der Paritätsoperation invariant sein

die Pirouette kann links – wie rechtsherum gedreht werden; der gespiegelte Vorgang wird beobachtet

die Emission des Elektrons erfolgt bevorzugt entgegen der Spinrichtung des Kerns; der gespiegelte Prozess wird nicht beobachtet

380

Parität

Paritätsoperation (Raumumkehr) ändert das Vorzeichen jedes polaren Vektors

$$\vec{p} \rightarrow -\vec{p}, \quad \vec{x} \rightarrow -\vec{x}$$

Axiale Vektoren bleiben unverändert z.B. $\vec{L} = \vec{r} \times \vec{p}$

$$\vec{J} \rightarrow \vec{J}$$

wenn $|\alpha\rangle$ ein Zustand positiver Parität ist

$$|\alpha>=|gerade>, P \cdot |\alpha>=+|\alpha>$$

wenn die Parität nicht erhalten ist:

$$|\alpha\rangle = c \cdot |\text{gerade}\rangle + d \cdot |\text{ungerade}\rangle$$

 $|c|^2 + |d|^2 = 1$

 $P \cdot |\alpha\rangle = c \cdot |\text{gerade}\rangle - d \cdot |\text{ungerade}\rangle \neq \pm |\alpha\rangle$

F=d/c: Maß für die Paritätsnichterhaltung (d≤c), F=1→max.

- Elektromagnetische Wechselwirkung
- StarkeWechselwirkung

- Elektromagnetische Wechselwirkung
- StarkeWechselwirkung

→ Paritätserhaltung!

Experimentelle Beobachtung:

τ-,θ- Puzzle: 2 Zustände mit identischen Eigenschaften, aber verschiedenen Zerfällen

Lee, Yang: Paritätsverletzung in der schwachen WW.

(1956) Endzustände haben entgegengesetzte Parität (..... Tafel)

⇒ Wu –Experiment (..... Tafel)

382