مدار رسم شده در قسمت سوم CA1 به فرم زیر است. در آنجا با استفاده از آزمایش، بدترین حالت برای یک شدن 28ns و بدترین حالت برای صفر شدن 30ns ییدا شد.

برای تعریف کردن این ماژول در سیستم وریلاگ، کد زیر نوشته شد.

```
D:\University\Term4\Digital Systems\CAs\2\Q1.v - Notepad++
☐ change log ☑ ☐ main.v ☑ ☐ Q1.v ☑
       `timescale lns/lns
      module mux (input s0, s1, a, b, c, d, output w);
           assign \#(28,30) w = (s0==0 \& s1==0) ? a:
                                (s0==0 & s1==1) ? b:
                                (s0==1 \& s1==0) ? c:
  6
                                (s0==1 & s1==1) ? d:
  8
                                1'bx;
  9
      endmodule
 11
      module TB ();
          reg aa, bb, cc, dd, ss0, ss1;
 13
          wire ww;
 14
          mux my_ic(ss0, ss1, aa, bb, cc, dd, ww);
 15 ₽
           initial begin
               #50 aa=0; bb=1; cc=0; dd=1; ss0=0; ss1=0;
 16
               #50 ss0=1;
 17
 18
               #50 ss1=1;
 19
               #50 dd=0;
               #50 $stop;
 21
          end
      endmodule
                                                                  Windows (CR LF) UTF-8
Verilog file
                          length: 457 lines: 22
                                             Ln:1 Col:1 Pos:1
                                                                                      INS
```

انتظار میرود این ماژول از جدول درستی زیر پیروی کند:

s0	s1	W
0	0	a
0	1	b
1	0	С
1	1	d

	تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
14/1/71		CA2	۸۱۰۱۹۸۴۷۵	سوال

در اینجا چندین حالت تست و بررسی میشود تا نشان داده شود ماژول به درستی کار میکند و نتیجه دلخواه ما را برآورده میسازد.

4/9

تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
	CA2	11.1914VV	سوال

۲

همانطور که در صورت پروژه هم آورده شده است، مداری مطابق با مدار شکل زیر برای این قسمت در نظر گرفته می شود. که هر بلوک آبی رنگ، همان mux-های ذکر شده در قسمت اول می باشد.

4/9

14../1/71

برای تعریف کردن این ماژول در سیستم وریلاگ، کد زیر نوشته شد.

```
C:\Users\IDEAL\Desktop\Programm train\ModelSIM\Project1\main.v - Notepad++
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?

| A | | A | | A | | A | | A | | A | | A | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A | | A
Enange log 🗵 Emain.v 🗵
                                         `timescale 1ns/1ns
                                1'bx:
                                 module barrel_shifter (input [3:0] A, [1:0] S, output [3:0] SHO);

mux mux1 (S[1], S[0], A[3], A[0], A[1], A[2], SHO[3]),

mux2 (S[1], S[0], A[2], A[3], A[0], A[1], SHO[2]),

mux3 (S[1], S[0], A[1], A[2], A[3], A[0], SHO[1]),

mux4 (S[1], S[0], A[0], A[1], A[2], A[3], SHO[0]);
      13
14
15
      16
17
18
                                   endmodule
      19
                                                         reg [3:0] AA;
reg [1:0] SS;
wire [3:0] WW;
      22
23 🛱
                                                           barrel_shifter my_ic(AA, SS, WW);
                                                            initial begin
      24
25
26
                                                                                  #50 AA=4'b1001; SS=2'b11;
#50 AA=4'b0110;
                                                                                   #50 ss=2'b00;
      27
28
29
                                                                                    #50 $stop;
                                                            end
                                    endmodule
                                                                                                                                                                                   length: 734 lines: 29
                                                                                                                                                                                                                                                                                                               Ln:1 Col:1 Pos:1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Windows (CR LF) UTF-8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      INS
```

	تاریخ تحویل:	سیستمهای دیجیتال	محمد مهدی معینی منش	l
				شماره
4/9	14/1/77	CA2	۸۱۰۱۹۸۴۷۵	سوال

جدول درستی این قطعه به صورت زیر است.

S [1:0]	SHO [3]	SHO [2]	SHO [1]	SHO [0]
00	A [3]	A [2]	A [1]	A [0]
01	A [0]	A [3]	A [2]	A [1]
10	A [1]	A [0]	A [3]	A [2]
11	A [2]	A [1]	A [0]	A [3]

پیشبینی می شود به علت ساختار موازی این قطعه RTL، حداکثر تأخیر یک شدن هر کدام از خروجی ها، 30ns و بدترین تأخیر صفر شدن هر کدام از خروجی ها، 28ns باشد. با اجرای تستبنچ نشان داده شده که در آن چندین مورد تست شده است، این موضوع اثبات می شود (بعد از 28ns خروجی هایی که باید صفر شوند، صفر می شوند و در مجموع بعد از 28ns سیستم به حالت پایدار می رسد.).

برای این قسمت مداری مشابه شکل زیر در نظر گرفته شده است.

برای تعریف کردن این ماژول در سیستم وریلاگ، کد زیر نوشته شد.

```
D:\University\Term4\Digital Systems\CAs\2\Q3.v - Notepad++
                                                                                                                                                                                                                                                                                                                                 ×
 File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?

    Change log ☑ ■ Q3.v ☑
                   module mux (input s0, s1, a, b, c, d, output w);
assign #(28,30) w = (s0==0 & s1==0) ? a:
(s0==0 & s1==1) ? b:
(s0==1 & s1==0) ? c:
(s0==1 & s1==1) ? d:
    10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
                   module mux 16tol (input [15:0] I, [3:0] S, output f);
wire 00, 01, 02, 03;
mux muxl (S[1], S[0], I[0], I[1], I[2], I[3], 00),
mux2 (S[1], S[0], I[4], I[5], I[6], I[7], 02),
mux3 (S[1], S[0], I[8], I[9], I[10], I[11], 01),
mux4 (S[1], S[0], I[12], I[13], I[14], I[15], 03),
mux0 (S[3], S[2], 00, 01, 02, 03, f);
endmodule
                   module TB ();

reg [15:0] II;

reg [3:0] SS;

wire ff;

mux_létol my_ic(II, SS, ff);

initial begin

#100 II=16'b101010110101101;

#100 SS=*'b1111;

#100 II=16'b001001101011101;

#100 II=16'B00000000000000;

#100 Sstop;

end
                    endmodule
Verilog file
                                                                                                                                                                              Ln:1 Col:1 Pos:1
                                                                                                                                                                                                                                                                  Windows (CR LF) UTF-8
                                                                                                        length: 880 lines: 33
```

	تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
1	14/1/71	CA2	۸۱٠١٩٨۴٧۵	سوال

جدول درستی این قطعه به صورت زیر است.

s0	s1	s2	s3	f
0	0	0	0	I [0]
0	0	0	1	I [1]
0	0	1	0	I [2]
0	0	1	1	I [3]
0	1	0	0	I [4]
0	1	0	1	I [5]
0	1	1	0	I [6]
0	1	1	1	I [7]
1	0	0	0	I [8]
1	0	0	1	I [9]
1	0	1	0	I [10]
1	0	1	1	I [11]
1	1	0	0	I [12]
1	1	0	1	I [13]
1	1	1	0	I [14]
1	1	1	1	I [15]

با توجه به ساختار دولایهای بودن این قطعه، پیشبینی می شود بدترین تأخیر صفر شدن خروجی، 60 = 60 و بدترین تأخیر یک شدن خروجی، 2 = 56 باشد. در تستبنچ این سوال، چندین حالت بررسی می شود و پاسخ داده شده اثبات می گردد.

	تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
٧/٩	14/1/71	CA2	۸۱۰۱۹۸۴۷۵	سوال
	S3 S2 S1 S0 I[0] I[15] I[14] I[14] I[18] I[19]	SHO [11] I[13] SHO [12] I[13] I[0] I[13] I[0] I[13] I[14] I[15] I[4] I[5]	SHO [7] I[4] I[5] I[7] SHO [3] I[14] I[15] I[14] I[15]	۴
	\$\frac{1[12]}{1[14]} \frac{1[13]}{1[10]} \frac{1[19]}{1[10]} \frac{1[19]}{1[10]} \frac{1[19]}{1[10]} \frac{1[11]}{1[12]} \frac{1[11]}{1[12]} \frac{1[11]}{1[18]} \frac{1[11]}{1[18]} \frac{1[11]}{1[18]} \frac{1[11]}{1[19]} \frac{1[18]}{1[18]} \frac{1[11]}{1[11]} \frac{1[10]}{1[18]} \frac{1[11]}{1[18]} \frac{1[11]}{1[18]} \frac{1[19]}{1[18]} \frac{1[18]}{1[19]} \frac{1[18]}{1[18]} \frac{1[19]}{1[18]} \frac{1[18]}{1[18]} \frac{1[19]}{1[18]} \frac{1[18]}{1[18]} \frac{1[19]}{1[18]} \frac{1[18]}{1[18]} \frac	s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 [7]	I[2] - 1[1]	
	s3 s2 s1 s0 I[14] I[15] I[16] I[17] I[18] I[18] I[19] I[18] I[19] I[18]	SHO [9] 1[10] 1[9] 1[11] 1[12] 1[13] 1[14] 1[15] 1[16]	SHO [5] 1[2] 1[1] 1[3] 1[4] 1[5] 1[7] 1[1] 1[12] 1[13] 1[14] 1[15] 1[14] 1[15] 1[14] 1[15]	
	Sign	SHO [8] 1[3] 1[6] 1[7] 1[8] 1[9] 1[10] 1[11] 1[12] 1[13] 1[14] 1[15] 1[16] 1[1	SHO [4] I[5] I[0] SHO [0] SHO [0] I[13] I[13] I[14] I[15] I[14] I[15] I[14] I[15] I[15] I[14] I[15] I[15] I[15] I[15] I[16] I[

11.191419

برای تعریف کردن این ماژول در سیستم وریلاگ، کد زیر نوشته شد.

```
i D:\University\Term4\Digital Systems\CAs\2\Q4.v - Notepad++
                                                                                                                                                                                                                                                                                                                                                                                                             X
 File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 2

| Second Search View Encoding Language Settings Tools Macro Run Plugins Window 2
| Second Search View Encoding Language Settings Tools Macro Run Plugins Window 2
| Search View Encoding Language Settings Tools Macro Run Plugins Window 2
| Search View Encoding Language Settings Tools Macro Run Plugins Window 2
| Search View Encoding Language Settings Tools Macro Run Plugins Window 2
 module barrel shifter_16bit (input [15:0] I, [3:0] S, output [15:0] SHO);
  reg [15:0] IA [0:16];
  reg temp [0:16];
    assign IA[0] = I;

for (genvar n=1;n<17;n=n+1)begin

assign temp[n-1]=IA[n-1][15];

for (genvar m=0;m<15;m=m+1)begin

assign IA[n][15-m]=IA[n-1][15-m-1];

end
                早早
                                                   assign IA[n][0]=temp[n-1];
                                      end
                                                                         mux1 (IA[1], S,SHO[15]), mux2 (IA[2], S,SHO[14]), mux3 (IA[3], S,SHO[13]), mux4 (IA[4], S,SHO[12]), mux5 (IA[6], S,SHO[12]), mux6 (IA[6], S,SHO[10]), mux7 (IA[7], S, SHO[8]), mux8 (IA[8], S, SHO[8]), mux9 (IA[8], S, SHO[8]), mux9 (IA[9], S, SHO[6]), mux10 (IA[10], S, SHO[6]), mux11(IA[11], S, SHO[5]), mux12 (IA[12], S, SHO[4]), mux13 (IA[13], S, SHO[3]), mux14 (IA[14], S, SHO[2]), mux15 (IA[15], S, SHO[2]), mux15 (IA[15], S, SHO[0]);
                                      mux_16tol
                        module TB ();

reg [15:0] II;

reg [3:0] SS;

wire [15:0] ff;

barrel shifter l6bit my_ic(II,SS,ff);

initial begin

#200 II=16'bl01010110101101;

#200 SS=4'bl111;

#200 II=6'b00101010101101;

#200 II=6'b00000000000000;

#200 Sstop;
                                                                                                                                 length: 1,695 lines: 57
                                                                                                                                                                                                                         Ln:57 Col:10 Pos:1,696
                                                                                                                                                                                                                                                                                                                                 Windows (CR LF) UTF-8
                                                                                                                                                                                                                                                                                                                                                                                                                            INS
Verilog file
```

تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
	CA2	۸۱۰۱۹۸۴۷۵	سوال

مے باشد.	به صورت زیر	ے اپنے مدار	حدول درست

S [3:0]								SHO)							
3 [3.0]	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0000	I [15]	I [14]	I [13]	I [12]	I[11]	I [10]	I [9]	I [8]	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]	I[1]	I [0]
0001	I [0]	I [15]	I [14]	I [13]	I [12]	I[11]	I [10]	I [9]	I [8]	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]	I[1]
0010	I[1]	I [0]	I [15]	I [14]	I [13]	I [12]	I[11]	I [10]	I [9]	I [8]	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]
0011	I [2]	I [1]	I [0]	I [15]	I [14]	I [13]	I [12]	I [11]	I [10]	I [9]	I [8]	I [7]	I [6]	I [5]	I [4]	I [3]
0100	I [3]	I [2]	I[1]	I [0]	I [15]	I [14]	I [13]	I [12]	I [11]	I[10]	I [9]	I [8]	I [7]	I [6]	I [5]	I [4]
0101	I [4]	I [3]	I [2]	I [1]	I [0]	I [15]	I [14]	I [13]	I [12]	I[11]	I [10]	I [9]	I [8]	I [7]	I [6]	I [5]
0110	I [5]	I [4]	I [3]	I [2]	I [1]	I [0]	I [15]	I [14]	I [13]	I [12]	I [11]	I [10]	I [9]	I [8]	I [7]	I [6]
0111	I [6]	I [5]	I [4]	I [3]	I [2]	I [1]	I [0]	I [15]	I [14]	I [13]	I [12]	I [11]	I [10]	I [9]	I [8]	I [7]
1000	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]	I [1]	I [0]	I [15]	I [14]	I [13]	I [12]	I[11]	I [10]	I [9]	I [8]
1001	I [8]	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]	I [1]	I [0]	I [15]	I [14]	I [13]	I [12]	I [11]	I [10]	I [9]
1010	I [9]	I [8]	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]	I[1]	I [0]	I [15]	I [14]	I [13]	I [12]	I[11]	I [10]
1011	I [10]	I [9]	I [8]	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]	I [1]	I [0]	I [15]	I [14]	I [13]	I [12]	I[11]
1100	I [11]	I [10]	I [9]	I [8]	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]	I [1]	I [0]	I [15]	I [14]	I [13]	I [12]
1101	I [12]	I[11]	I [10]	I [9]	I [8]	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]	I[1]	I [0]	I [15]	I [14]	I [13]
1110	I [13]	I [12]	I [11]	I [10]	I [9]	I [8]	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]	I[1]	I [0]	I [15]	I [14]
1111	I [14]	I [13]	I [12]	I [11]	I [10]	I [9]	I [8] I	I [7]	I [6]	I [5]	I [4]	I [3]	I [2]	I[1]	I [16]	I [15]

14../1/71

با توجه به ساختار موازی و تکلایهای بودن قطعه، پیشبینی میشود بعد از 56ns هر کدام از خروجیها که لازم است، یک شود و بعد از 4ns (دیعنی در مجموع 60ns) هر کدام از خروجیها که لازم است، صفر شود. این موضوع با تستبنچ طراحی شده زیر اثبات می گردد.

