

WHAT IS CLAIMED IS:

1	1. A compound having a structure selected from:
2	Substitute $X = R - A - Q - (Y)_n$, $R = X - A - (Y)_n - Q$, $R = X - A - Q - (Y)_n$, and
3	$X-R-A-(Y)_n-Q$
4	wherein,
5	A is a nucleic acid chain comprising nucleic acid monomers selected from
6	the group consisting of natural nucleic acids, modified nucleic acids and combinations
7	thereof;
8	R is a molecular energy transfer donor;
9	Q is a molecular energy acceptor; and
10	X and Y are the same or different and are non-nucleic acid stabilizing
11	moieties that interact to bring R and Q into operative proximity, thereby enabling transfer
12	of energy from R to Q; and
13	n is 0 or 1.
1	
1	2. The compound according to claim 1, wherein said molecular
2	energy donor is a fluorophore
1	3. The compound according to claim 1, wherein said molecular
2	energy acceptor is a fluorescence quencher.
1	4. The compound according to claim 1, wherein X and Y are both
2	hydrophobic moieties.
1	5. The compound according to claim 4, wherein X and Y are
2	members independently selected from the group consisting of saturated hydrocarbons,
3	unsaturated hydrocarbons, steroids, fatty acids, fatty alcohols and hydrophobic peptides.
	aconois and hydrophobic peptides.
1	6. The compound according to claim 1, wherein natural nucleic acids
2	are members selected from the group consisting of deoxyribonucleotides, ribonucleotides
3	and combinations thereof.
1	
1	7. The compound according to claim 6, wherein said modified
2	nucleic acids are peptide nucleic acids.

1	8. The compound according to claim 1, wherein said nucleic acid
2	
3	consisting phosphodiesters and modified phosphodiesters.
1	9. The compound according to claim 8, wherein said modified
2	phosphodiesters are members selected from the group consisting of phosphorothioates
3	and phosphoramidates.
1	10. The compound according to claim 1, wherein said nucleic acid
2	sequence further comprises a hybridization enhancing moiety.
1	11. The compound according to claim 10, wherein said hybridization
2	enhancing moiety is a member selected from the group consisting of intercalating agents,
3	minor groove binders and modified exocyclic bases.
1	12. The compound according to claim 1 wherein X and Y are
2	independently attached to members selected from the group consisting of a natural base
3	of said nucleic acid chain, a modified base of said nucleic acid chain, a 3'-hydroxyl group
4	of said nucleic acid chain, a 5'-hydroxyl group of said nucleic acid chain, a 2'-hydroxyl
5	group of said nucleic acid chain, and a linkage joining nucleic acid groups in said nucleic
6	acid chain.
1	13. The compound according to claim 1, wherein said compound is
2	immobilized on a solid surface.
1	14. A method for amplifying NA, wherein a compound according to
2	claim 1 is a primer in said method.
1	15. The method according to claim 14, wherein said method comprises
2	a member selected from the group consisting of polymerase chain reaction (PCR), nucleic
3	acid sequence based amplification (NASBA), strand displacement amplification (SDA)
4	and combinations thereof.
1	16. A method for analyzing or quantitating DNA, wherein the
2	compound according to claim 1 is used as a probe.

1	17. The method according to claim 16, wherein said method comprises
2	a member selected from the group consisting of 5'-nuclease assay, rolling circle
3	amplification and combinations thereof.
1	18. A kit for quantitating nucleic acid, said kit comprising a compound
2	according to claim 1.
1	19. A compound having the formula:
	\ <u>\</u> p\
	D—R ¹ —Nu ¹ —R ² —O—P—O—NA—O—P—O—R ³ —Nu ² —R ⁴ —Q
2	0.102
3	wherein,
4	CHOL is a cholesterol derivative;
5	R ¹ , R ² , R ³ and R ⁴ are linker moieties independently selected from the
6	group consisting of substituted or unsubstituted alkyl and
7	substituted or unsubstituted heteroalky;
8	Nu ¹ and Nu ² are independently selected nucleotide residues;
9	NA is a nucleie acid sequence;
10	D is a donor of light energy; and
11	Q is a quencher of light energy.
1	20. The compound according to claim 19, wherein R ¹ and R ² are
2	independently selected and have structures according to the formula:
	L.
	—O—R∜—O— PEG
	$\sqrt{3}$
3	сног
4	wherein,
5	R ¹¹ is a member selected from the group consisting of substituted or unsubstituted
6	alkyl and substituted or unsubstituted heteroalkyl;
7	PEG is polyethylene glycol;
8	Y ³ is an organic functional group adjoining said PEG to said CHOL.
1	21. The compound according to claim 20, wherein said PEG has from
2	about 2 to about 20 ethylene glycol subunits.

1	22. The compound according to claim 20 in which R ¹¹ is substituted	or
2	unsubstituted alkyl.	
1	23. The compound according to claim 22, wherein R^{11} is C_1 - C_6	
2	substituted or unsubstituted alkyl.	
1	24. The compound according to claim 20, wherein Y ³ -CHOL has the	
2	structure:	
3	NHCO .	
1	25. The compound according to claim 19, wherein Nu ¹ and Nu ² are	
2	nucleotides having an exocyclic amine group to which -R ¹ -D and -R ⁴ Q are attached,	
3	respectively.	
1	26. A compound having the structure:	
	CHOLLY	
	Y—CHOL	
2	D-R ⁵ HN— Nu ¹ -OP-O O-PO-NA-OP-O O-PO-Nu ² —NH-R ⁶ -Q	
3	wherein,	
4	NA is a nucleic acid sequence;	
5	Nu ¹ and Nu ² are independently selected nucleotide residues;	
6	Y ¹ and Y ² are linking groups independently selected from the group	
7	consisting of substituted or unsubstituted alkyl and substituted or	
8	unsubstituted heterpalkyl;	
9	R ⁵ and R ⁶ are linking groups independently selected from the group	
10	consisting of substituted or unsubstituted alkyl and substituted or	
11	unsubstituted heteroalkyl;	
12	D is a donor of light energy; and	
13	Q is a quencher of light energy.	
	•	

