VECTOR CALCULUS, Week 4

6.2 Trigonometric Integrals and Substitutions; 6.3 Partial Fractions; 6.4 Integration with Tables and Computer Algebra Systems; 9.1 Parametric Curves

6.2 Trigonometric Integrals and Substitutions

Fact: Consider $\int \sin^m x \cos^n x \ dx$ for m, n nonnegative integers.

- If m is odd, save one power of sine and use $\sin^2 x = 1 \cos^2 x$. \Rightarrow Apply the substitution $u = \cos x$.
- If n is odd, save one power of cosine and use $\cos^2 x = 1 \sin^2 x$. \Rightarrow Apply the substitution $u = \sin x$.
- If m, n are both even, use the half-angle identities

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$
 and $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$.

Sometimes you can save time by using the double-angle formula

$$\sin 2x = 2\sin x \cos x.$$

Ex: Compute the most general antiderivative of the given f over the largest possible open subset I of \mathbf{R} , and give I.

- $1. \ f(x) = \sin^3 x \cos^2 x$
- 2. $f(x) = 4\sin^2 x \cos^2 x$, use the double-angle formula.
- 3. $f(x) = \sin^2 x$
- $4. \ f(x) = \cos^2 x$

Fact: Consider $\int \tan^m x \sec^n x \ dx$ for m, n non-negative integers.

- If m is odd and n ≥ 1, save a factor of sec x tan x and use tan² x = sec² x 1.
 ⇒ Apply the substitution u = sec x.
- If $n \ge 4$ is even, save a factor of $\sec^2 x$ and use $\sec^2 x = 1 + \tan^2 x$. \Rightarrow Apply the substitution $u = \tan x$.
- In other cases

$$m$$
 odd and $n = 0$
 m even and $n = 0, 2$
 m even and n odd

there is no general strategy.

Ex: Compute the most general antiderivative of $f(x) = \tan^3 x \sec x$ over the largest possible open subset I of \mathbf{R} , and give I.

Fact: Evaluating some trigonometric integrals using angle addition formulas.

• To evaluate $\int \sin mx \cos nx \ dx$, use

$$\sin mx \cos nx = \frac{1}{2} \Big(\sin((m-n)x) + \sin((m+n)x) \Big).$$

• To evaluate $\int \sin mx \sin nx \ dx$, use

$$\sin mx \sin nx = \frac{1}{2} \Big(\cos((m-n)x) - \cos((m+n)x) \Big).$$

• To evaluate $\int \cos mx \cos nx \ dx$, use

$$\cos mx \cos nx = \frac{1}{2} \Big(\cos((m-n)x) + \cos((m+n)x) \Big).$$

Ex: Compute the most general antiderivative of $f(x) = \sin 4x \cos 5x$ over the largest possible open subset I of \mathbf{R} , and give I.

Fact: To compute an integral involving the expression $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$, and $\sqrt{x^2 - a^2}$, use the following trigonometric substitutions and identities.

Expression Substitution Identity
$$\sqrt{a^2 - x^2} \quad x = a \sin \theta, \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \qquad 1 - \sin^2 \theta = \cos^2 \theta$$

$$\sqrt{a^2 + x^2} \quad x = a \tan \theta, \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \qquad 1 + \tan^2 \theta = \sec^2 \theta$$

$$\sqrt{x^2 - a^2} \quad x = a \sec \theta, \ 0 \le \theta \le \frac{\pi}{2} \text{ or } \pi \le \theta \le \frac{3\pi}{2} \quad \sec^2 \theta - 1 = \tan^2 \theta$$

Ex: Compute the following integrals.

1.
$$\int_0^2 x^3 \sqrt{4-x^2} \ dx$$

$$2. \int_0^{2\sqrt{3}} \frac{x^3}{(2x^2+8)^{\frac{3}{2}}} dx$$

6.3 Partial Fractions

Def: A rational fraction is a function of the form $f(x) = \frac{P(x)}{Q(x)}$ where P, Q are polynomials.

Ex: Compute the most general antiderivative of the given f over the largest possible open subset I of \mathbf{R} , and give I.

1.
$$f(x) = \frac{1}{x+1}$$

2.
$$f(x) = \frac{2x+3}{x^2+3x+2}$$

Easy Partial Fractions: Suppose P, Q are polynomials, and suppose the degree of P is strictly less than the degree of Q. If we can factor Q into distinct linear factors

$$Q(x) = (a_1x + b_1) \cdots (a_kx + b_k),$$

then we can decompose $\frac{P(x)}{Q(x)}$ into **partial fractions**: there are constants A_1, \ldots, A_k so that

$$\frac{P(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \ldots + \frac{A_1}{a_k x + b_k}.$$

Ex: Compute the most general antiderivative of $f(x) = \frac{x^2 + 2x + 2}{x^2 - 1}$ over the largest possible open subset I of \mathbf{R} , and give I.

Fact: If P, Q are polynomials and P(x) = Q(x) for all x, then the coefficients of P, Q are equal.

6.4 Integration with Tables and Computer Algebra Systems

Fact: You can use the Table of Integrals on Reference Page 6-10 in the back of the book for the Homework. But for the MIDTERM and FINAL, you only need to memorize the Basic Table of Integrals.

9.1 Parametric Curves

Def: A parametric plane curve is a function $C:[a,b]\to \mathbf{R}^2$, written

$$C(t) = (x(t), y(t))$$
 for $t \in [a, b]$

where x = x(t), y = y(t) are functions $x, y : [a, b] \to \mathbf{R}$. This means that for each $t \in [a, b]$, the function C(t) gives you a point (x(t), y(t)) in the plane. We say the set

$$C = \{(x(t), y(t)) : t \in [a, b]\}$$

is the **image** of C. We call the variable t the **parameter**, and the equations

$$x = x(t)$$
 and $y = y(t)$ for $t \in [a, b]$

we call **parametric equations** for C. We say (x(a), y(a)) is the **initial point**, while (x(b), y(b)) is the **terminal point**.

Ex:

- 1. The image of the curve $C(t) = (\cos t, \sin t)$ for $t \in [0, 2\pi]$ is the unit circle.
- 2. The image of the curve C(t) = (t, f(t)) for $t \in [a, b]$ is the graph of the function y = f(x) over [a, b].

Ex: For each given parametric plane curve C, do the following.

- (a) Eliminate the parameter to find a Cartesian equation for C.
- (b) Roughly sketch the image of C. Indicate with an arrow the direction in which the image is traced as t increases.
 - 1. $C(t) = (t^2, \ln t^2)$ for $t \in (0, \infty)$
 - 2. $C(t) = (2\sin t, 3\cos t)$ for $t \in [0, 2\pi]$
 - 3. $C(t) = (\sqrt{t}, 1 t)$ for $t \in [0, \infty)$

Ex: Match the graphs of the parametric equations x = x(t) and y = y(t) with the images of the parametric curves in red.

Ex: Use the graphs of x = x(t) and y = y(t) to sketch the image of the parametric plane curve. Indicate with arrows the direction in which the curve is traced as t increases.

