HR ANALYTICS

Steps to develop the model

- 1. <u>Understanding the data</u>
- 2. <u>Data cleaning</u>
- 3. Data visualization
- 4. Model building

Understanding the data

- Import various libraries required
- Read the data
- Check the various attributes of data:-
 - Name of columns
 - > How the data is distributed
 - > What kind of data types we have

Observations made:-

- The data had 10 columns and 15000 entries.
- Most of the data was in numerical form and there was less of the categorical data.

Steps to develop the model

- 1. <u>Understanding the data</u>
- 2. <u>Data cleaning</u>
- 3. <u>Data visualization</u>
- 4. Model building

Data cleaning and preparation

- 'Average monthly income' was spelled wrong, got it done right.
- There were duplicate values ,found them and finally removed them.
- Checked for null values, there were none, so did not had to do anything with that.
- Lastly converted all the column names to lower case, to avoid any case difference error.

Visualising the data

Categorical Data

- Salary
- Department

Numerical Variables

- Satisfaction level
- Last evaluation
- Number of project
- Average monthly hours
- Time spend in company
- Work accidents
- Promotions in last 5 years

- Plotted a set of various graphs representing each categorical data as well as the numerical data and their respective relation with the 'left' to understand there relation with the people leaving the organisation.
- ☐ Graphs used here were mostly countplot from the seaborn library, which gave a good representation of the data

Fig1. The relationship between the department, salary, promotions and work accidents with the people leaving organisation.

Steps to develop the model

- 1. <u>Understanding the data</u>
- 2. <u>Data cleaning</u>
- 3. <u>Data visualization</u>
- 4. Model building

Choosing the variables for the regression

Finding the correlation of all the variables with respect to price and sort them as per their relations.

	left	correlation		
satisfaction_level	-0.305	moderate negative		
last_evaluation	0.023	weak positive		
number_project	0.041	weak positive		
average_monthly_hours	0.071	weak positive		
time_spend_company	0.235	moderate positive		
work_accident	-0.094	weak negative		
left	1.000	strong positive		
promotion_last_5years	-0.028	weak negative		

Finding the correlation of all the variables with respect to price and sort them as per their relations.

Checking the OLS Regression Results

OLS Regression Results									
Dep. Variable:		left		R-squared:			===== 0.231		
Model:			OLS Adj. R-squared:			0.230			
Method:	Least Squa	ares	s F-statistic:			321.1			
Date:	Thu, 25 Jul 201		Prob (F-statistic):			0.00			
Time:	10:37	7:01	<pre>1 Log-Likelihood:</pre>			-1865.0			
No. Observations:	9	9653	AIC:	AIC:		3748.			
Df Residuals:	9	9644	BIC:			3813.			
Df Model:		9							
Covariance Type:	nonrol	oust							
=======================================	coef	st	d err	t	P> t	[0.025	0.975]		
satisfaction_level	-0.3376		0.012	-28.059	0.000	-0.361	-0.314		
last_evaluation	0.0933		0.017	5.332	0.000	0.059	0.128		
number_project	-0.0116		0.003	-4.136	0.000	-0.017	-0.006		
average_monthly_hours	0.0005	6.1	3e-05	8.512	0.000	0.000	0.001		
time_spend_company	0.0577		0.003	20.739	0.000	0.052	0.063		
work_accident	-0.0717		0.008	-8.833	0.000	-0.088	-0.056		
promotion_last_5years	-0.0592		0.031	-1.924	0.054	-0.120	0.001		
department_code	0.0021		0.001	2.118	0.034	0.000	0.004		
salary_code	0.0116		0.005	2.513	0.012	0.003	0.021		
Omnibus:	3372	.163	 Durbi	Durbin-Watson:		0.279			
Prob(Omnibus):	0	000	Jarqu	e-Bera (JB):	9342.147				
Skew:	1	907	Prob(JB):	0.00				
Kurtosis:	5	946	Cond.			2.12e+03			

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.12e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Interpreting the OLS Regression Results

All the p values are less than 0.05 except for the 'promotions in last five years', so we can avoid this value for the regression analysis, as it does not have significant correlation with the people leaving the organisation.

Model building

import the train_test_split from sklearn.

Split the data into train and test taking 25% test and 75% train data.

Now apply the logistic regression(as the data is binary) and predict the value based on the given data.

Check for the accuracy of the data.comes out to be 86%.

Applying random forest for better accuracy

import the RandomForestClassifier from sklearn.

Fitting the model into random forest.

Check for the accuracy of the data.comes out to be 96%.

VISUALIZE THE RESULT

thanh Uninh