Sistemas inteligentes

Inteligência artificial Prof. Allan Rodrigo Leite

Sistemas inteligentes

- Um sistema é considerado inteligente quando é capaz de executar tarefas que humanos fariam
 - Sistemas complexos não são necessariamente inteligentes
 - Um sistema de controle de um braço mecânico que repete uma sequência de movimentos não deveria ser considerado inteligente
- Características de um sistema inteligente
 - Aprendizado e auto-organização
 - Adaptação em um ambiente ou situação desconhecida
 - Raciocínio e reação às percepções coletadas sobre o ambiente

Sistemas inteligentes

Características de um sistema inteligente (cont.)

- Relembrando as abordagens de raciocínio
 - Simbólica
 - Conexionista
 - Evolutiva
 - Estatística

- Abordagens baseadas em busca
 - São eficientes quando o problema pode ser formalizados por
 - Conjunto de estados e ações (espaço de estados)
 - Estado inicial
 - Conjunto de estados alvo
 - Porém, não são capazes de resolver problemas que exigem raciocínio a partir de algum conhecimento sobre o domínio do problema

- Abordagens baseadas em busca (cont.)
 - Nesta abordagem o conhecimento do domínio é fraco e limitado
 - Normalmente o conhecimento representado por heurísticas na busca
 - Diversos problemas necessitam prever um conhecimento explícito
 - Sistemas para diagnóstico médico
 - Controle de tráfego aéreo
 - Prova de teoremas
 - Sistemas envolvendo probabilidade

- Agentes baseados em conhecimento
 - Uma das linhas de pesquisa da abordagem simbólica
 - The Knowledge Principle (Lenat & Feigenbaum, 1991)
 - If a program is to perform a complex task well, it must know a great deal about the world in which it operates
 - Agentes baseados em conhecimento requerem
 - Identificar o conhecimento do domínio
 - Representá-lo em uma linguagem formal
 - Implementar um mecanismo de inferência para utilizá-lo

- Desafios envolvendo agentes baseados em conhecimento
 - Adquirir conhecimento sobre o domínio do problema
 - Representar adequadamente o conhecimento
 - Raciocinar corretamente e de forma eficiente a partir do conhecimento

Representação do conhecimento

Base de conhecimento (conhecimento prévio)

Conhecimento do problema

Conhecimento adquirido (novo conhecimento)

Princípios

- Conhecem seu mundo, isto é, o domínio do problema
- Raciocinam sobre as possíveis ações

Características

- Conhecem o estado atual do mundo
- Sabem como o mundo evolui
- Conhecem estados desejáveis do mundo, ou seja, o estado alvo
- Podem planejar e avaliar o resultado das ações
- Capazes de planejar as ações
- Podem utilizar metaconhecimento (aprendem como aprender)

- Composto minimamente por dois componentes básicos e separados
 - Base de conhecimento
 - Mecanismo de inferência
- Base de conhecimento
 - Representações de regras e fatos sobre o domínio do problema
 - Utiliza uma linguagem de representação do conhecimento
 - Compreensível pelo computador e preferencialmente de fácil manutenção
- Mecanismo ou máquina de inferência
 - Infere novos fatos ou hipóteses intermediárias ou temporárias
 - Utiliza a base de conhecimento para fundamentar as inferências

- Dedução
 - Fatos combinados com regras implicam em novos fatos (causa e efeito)
 - É o único tipo de inferência que preserva a verdade (truth-preserving)
 - Exemplo
 - Se há fogo (causa), há fumaça (efeito)
 - Aqui tem fogo, logo, aqui tem fumaça (novo fato)
- Abdução
 - Inverso da dedução, isto é, do efeito para a causa
 - Este tipo de inferência preserva a falsidade
 - Exemplo
 - Se há fumaça, há fogo
 - Eu vi fumaça (efeito), logo aqui tem fogo (causa)

- Indução
 - Parte dos fatos observados para gerar regras
 - Transforma o conhecimento em extensão em conhecimento em intenção
 - Relembrando
 - Conhecimento em intenção: definição de um conceito
 - Conhecimento em extensão: instância de um conceito
 - Exemplo
 - Maria observou a presença de fumaça e fogo em dias passados
 - José observou fumaça, então conclui-se que há fogo

- Raciocínio analógico
 - Não oferece certeza, mas sim uma probabilidade
 - Combina fatos, similaridades e regras de adaptação
 - Resolve o problema a partir de fatos e da similaridade entre eles
 - Exemplo
 - Em algum outro caso de dengue, foi receitado aspirina e não deu certo
 - Logo, vou evitar receitar aspirina neste novo caso semelhante

- Aplicabilidade das categorias de raciocínio
 - Dedução e abdução (via dedução)
 - Usadas em agentes baseados em conhecimento declarativo
 - Indução e analogia
 - Usadas em aprendizagem de máquina
 - Dedução (dois grandes grupos)
 - Usadas em problemas formulados em linguagem declarativa (lógica e afins)
 - Usadas em cenários incertos, probabilísticos ou nebulosos (fuzzy)

- Sistema de representação procedimental
 - Regras de produção representam conhecimento por meio de um conjunto de regras do tipo se <condição> então <ação>
 - A ação corresponde a algum procedimento
 - Este procedimento leva a uma conclusão ou mudança no estado corrente
- Regras de produção
 - Contém um fragmento independente do conhecimento
 - Cujo conhecimento pode ser refinado com a adição de uma nova regra

- Regras de produção (cont.)
 - Condição da regra
 - Determina quando uma regra pode ser aplicada para a situação do problema
 - Também chamada de left hand side (LHS)
 - Ação da regra
 - Define o próximo passo na busca da solução para o problema
 - Também chamada de right hand side (RHS)

- Um sistema de produção é formado por
 - Base de conhecimento composta por regras e fatos
 - Regras são declarações sobre classes e objetos se então
 - Fatos são declarações sobre objetos específicos
 - Memória de trabalho
 - Representa o estado do problema em um dado momento
 - Manipula dados transientes e de curta duração
 - Existem enquanto uma dada regra estiver sendo interpretada
 - Máquina de inferência
 - É acionada ao ser especificado um estado meta
 - Executa regras e determina quais são relevantes a partir de ciclos

- Um ciclo da máquina de estados pode ser dividido em três etapas
 - Seleção de regras (casamento)
 - Busca as regras que são satisfeitas pelo conteúdo da memória de trabalho
 - Resolução de conflitos
 - Usa estratégias para resolver conflitos no casamento das regras
 - As principais são raciocínio progressivo (regras) ou regressivo (metas)
 - Ação
 - Procedimento a ser realizado após o casamento e resolução de conflitos
 - Normalmente altera o estado da memória de trabalho

- O motor de inferência pode usar duas abordagens para raciocínio
 - Raciocínio progressivo
 - Raciocínio regressivo
- Raciocínio progressivo
 - O encadeamento dos fatos e regras é para a frente
 - Também chamado de data-driven inference (dos dados à conclusão)
 - Características
 - As regras da base de conhecimento são usadas para gerar novos fatos
 - A geração dos novos fatos ocorre a partir de um conjunto inicial de dados
 - Os fatos gerados passam a fazer parte da base de conhecimento

- Raciocínio regressivo
 - Raciocínio guiado da hipótese aos dados
 - o Também conhecido como goal-directed inference
 - Características
 - Usa as regras da base de conhecimento para responder perguntas
 - Em outras palavras, tenta provar se uma asserção é verdadeira
 - Só processa as regras relevantes para a pergunta (asserção)

- Resolução de conflitos
 - Regra #1: se <sinal> = verde então <ação> ← continue
 - o Regra#2:**se** <sinal> = vermelho **então** <ação> ← pare
 - Regra #3: se <sinal> = vermelho então <ação> ← continue
 - Estratégias possíveis
 - Parar quando o objetivo for alcançado
 - Regra com maior prioridade
 - Regra mais específica
 - Regra mais recente

- Ferramentas para desenvolvimento de sistemas de produção
 - CLIPS (C Language Integration Production System)
 - Ambiente para construção de sistemas especialistas baseados em regras
 - Projeto open-source
 - Jess (Java Expert System Shell)
 - Usa a mesma sintaxe do CLIPS
 - Projeto n\u00e3o \u00e9 gratuito para uso comercial
 - Drools
 - Motor para regras de negócio baseadas em regras de produção
 - Projeto open-source

Exercícios

Implemente um sistema de produção para resolver o teste do Einstein. Há 5 casas de 5 diferentes cores e em cada casa mora uma pessoa de uma diferente nacionalidade. Os 5 proprietários bebem diferentes bebidas, fumam diferentes cigarros e têm um animal de estimação. Nenhum deles possui o mesmo animal nem fumam o mesmo cigarro ou bebem a mesma bebida. (continua)

Exercícios

- O sistema deve responder perguntas como: "Qual é o animal de estimação do Inglês?".
 Considere as dicas abaixo para construção da base de conhecimento.
 - o O Inglês vive na casa Vermelha.
 - O Sueco tem Cachorros como animais de estimação.
 - O Dinamarquês bebe Chá.
 - A casa Verde fica do lado esquerdo da casa Branca.
 - O homem que vive na casa Verde bebe Café.
 - O homem que fuma Pall Mall cria Pássaros.
 - O homem que vive na casa Amarela fuma Dunhill.
 - O homem que vive na casa do meio bebe Leite.
 - O Norueguês vive na primeira casa.
 - o O homem que fuma Blends vive ao lado do que tem Gatos.
 - o O homem que cria Cavalos vive ao lado do que fuma Dunhill.
 - o O homem que fuma BlueMaster bebe Cerveja.
 - O Alemão fuma Prince.
 - O Norueguês vive ao lado da casa Azul.
 - O homem que fuma Blends é vizinho do que bebe Água.

Sistemas fuzzy

- São sistemas baseados na teoria de conjuntos fuzzy e lógica fuzzy
 - o Também utilizam um conjunto de regras se < condição > então < ação >
 - o Porém, o mecanismo de inferência permite um raciocínio aproximado
- Teoria de conjuntos fuzzy
 - Uma proposição lógica tem dois extremos: verdadeiro ou falso
 - Na lógica fuzzy, uma premissa varia em grau de verdade de 0 a 1
 - O que pode representar parcialmente verdadeira ou parcialmente falsa
 - Usa uma técnica baseada em graus de pertinência (verdade)
 - Os valores 0 e 1 ficam na extremidade
 - Prevê vários estados de verdade entre 0 e 1
 - A ideia por trás é que todas as informações admitem um grau

Sistemas fuzzy

- Teoria de conjuntos fuzzy (cont.)
 - Permite especificar o quão bem algo satisfaz uma proposição vaga
 - Exemplo: eu sou alto
 - Como interpretar o termo "alto"?
 - Esta proposição é verdadeira para alguém com 1,70 m?
 - Vantagens
 - Permite capturar melhor o que as pessoas pensam
 - Modela critérios mais subjetivos para tomada de decisão ou senso comum
 - Trabalha com uma variedade de informações vagas e incertas
 - Exemplo: maioria, mais ou menos, talvez, ...

Relação entre conjuntos tradicionais e conjuntos fuzzy

- Função de pertinência W_A
 - Descreve um conjunto fuzzy definido no universo x
 - A função mapeia os elementos de X para o intervalo [0,1]
 - $\blacksquare \quad \mathcal{U}_{A:X} \rightarrow [0,1]$
 - Associa cada elemento y pertencente à Xa um número real entre [0,1]
 - A associação representa o grau de pertinência do elemento y ao conjunto A
 - Ou seja, o quanto é possível para o elemento y pertencer ao conjunto A
 - Portanto, uma sentença pode ser
 - Parcialmente verdadeira
 - Parcialmente falsa

- Função de pertinência $\mathscr{U}_{\Delta}(x)$
 - Indica o grau de compatibilidade entre x e o conceito expresso por A
 - \circ $\mathscr{U}_{\Lambda}(x)$ = 1: indica que x é completamente compatível com A
 - \circ $\mathscr{U}_{\Lambda}(x) = 0$: indica que x é completamente incompatível com A
 - \circ 0 < $\mathcal{U}_{\Delta}(x)$ < 1: indica que x é parcialmente compatível com A
 - lacktriangleq x é parcialmente compatível levando em consideração um grau $\mathscr{U}_{_{\! A}}(x)$
 - $\circ \quad A = \{(x, \mathscr{U}_{\Lambda}(x)) \mid x \in \mathscr{X}\}$
 - o Onde:
 - A é o conjunto *fuzzy*
 - W_A é a função de pertinência
 - \$\mathcal{X}\'\epsilon\'\ o\ universo

- Função de pertinência $\mathcal{U}_{A}(x)$ (cont.)
 - Permite representação de universos discretos ou contínuos
 - Pode apresentar diferentes comportamentos (dinâmicas)
 - Linear
 - Triangular ou trapezoidal
 - Gaussiana
 - Sino generalizada
 - Quadrática

- Função de pertinência linear
 - Função com comportamento mais simples
 - Aproximação apresenta uma noção de crescente ou decrescente

- Função de pertinência triangular e trapezoidal
 - Triangular
 - Apresenta mudança de comportamento em um dado limiar
 - Trapezoidal
 - Apresenta mudança de comportamento entre um platô
 - Adequada para uma aproximação que mapeia a expressão "em torno"

- Função de pertinência gaussiana e sino generalizada
 - Apresenta uma mudança suavizada de comportamento
 - Aproximação que mapeia uma distribuição normal
 - Tendência para um valor média

- Variável linguística
 - o Representa uma partição do universo de discurso 🌋
 - Possui valores que não são números
 - São palavras, rótulos ou frases em linguagem natural
 - Exemplo: idade = jovem, idade = idoso, ...
 - Um valor linguístico é um conjunto fuzzy
 - Todos os valores linguísticos formam um conjunto de termos
 - T(idade) = {jovem,adulto,velho,não jovem,+- velho,...}
 - Faz a modelagem *fuzzy* expressar a semântica usada por especialistas
 - Monitoramento de equipamentos em um sistema de controle de produção
 - se <ruído = um pouco baixo> então <consumo = eficiente>

Variável linguística (cont.)

Teoria de conjuntos *fuzzy*

- Operações sobre conjuntos fuzzy
 - \circ NÃO-fuzzy(x) = 1 x
 - Negação da sentença original
 - \circ E-fuzzy(x,y) = min(x,y)
 - Junção de duas sentenças
 - Forma uma conjunção de duas sentenças
 - \circ OU-fuzzy(x,y) = max(x,y)
 - Disjunção de duas sentenças

Teoria de conjuntos *fuzzy*

- Exemplo: representação de forma fuzzy
 - Alice com 1.65 m
 - Bob com 1,75 m
 - Carol com 2,0m
 - o Denis com 1,45 m
 - As proposições são "X é alto" com as seguintes pertinências
 - \blacksquare A = Alice é alta, $\mathscr{U}(A) = 0.55$
 - B = Bob é alto, $\mathscr{U}(B) = 0,75$
 - \blacksquare C = Carol é alta, $\mathscr{U}(C) = 1,0$
 - D = Denis é alto, $\mathcal{U}(D) = 0$

Teoria de conjuntos *fuzzy*

- Exemplo: representação de forma fuzzy (cont.)
 - Usando operadores fuzzy é possível escrever as sentenças
 - Carol não é alta
 - NÃO(C)
 - o Bob não é alto
 - NÃO(B)
 - $\mathcal{U}(NAO(B)) = 1,0 \mathcal{U}(B) = 0,25$
 - Denis é alto e Alice é alta
 - \blacksquare $\mathscr{U}(D)$ e $\mathscr{U}(A)$

- A teoria de conjuntos fuzzy oferece suporte para a lógica fuzzy
 - Produz valores de saída sem a necessidade de entradas precisas
 - Os valores de saída são aproximações para lidar com incertezas
 - Também conhecido como raciocínio aproximado
- Lógica fuzzy
 - Conjunto de regras expressas através de implicações lógicas
 - Estas implicações são do tipo se < condição > então < ação >
 - Similar à implicação <A → B> da lógica tradicional
 - Combina regras com os demais operadores dos conjuntos fuzzy
 - Negação: <¬A>
 - Conjunção: <A ∧ B>
 - Disjunção: <A V B>

- Operadores básicos
 - Negação <¬A>

- Operadores básicos (cont.)
 - Conjunção <A ∧ B>

- Operadores básicos (cont.)
 - o Disjunção <A V B>

Sistema de controle fuzzy baseado no modelo de Mamdani

- Componentes de um sistema de controle fuzzy
 - Variáveis fuzzy de entrada e de saída
 - Regras fuzzy
 - Fuzzificação e defuzzificação
- Variáveis fuzzy de entrada e de saída
 - Representação das entradas e saídas mapeadas por conjuntos fuzzy
 - A definição das variáveis fuzzy englobam
 - Análise do problema
 - Definição das variáveis linguísticas
 - Definição das funções de pertinência
 - Definição das regiões/rótulos

- Regras fuzzy
 - Regras de implicação usando variáveis fuzzy, cujo raciocínio consiste em
 - Avaliar o antecedente
 - Aplicar o resultado consequente
 - Disparo das regras
 - O grau de pertinência estabelece o grau de ativação de uma dada regra
 - Ou seja, quanto maior a compatibilidade entre a entrada e o antecedente da regra, maior será o peso do consequente no resultado final
 - Exemplo
 - se marcha > 5 então velocidade é 80 km/h (não fuzzy)
 - **se** marcha é alta **então** velocidade é alta (*fuzzy*)

- Fuzzificação e defuzzificação
 - Fuzzificação
 - Etapa onde as entradas do sistema são modeladas por conjuntos fuzzy
 - Transformação de entradas não fuzzy
 - As entradas representam valores númericos capturados do ambiente
 - Defuzzificação
 - Interpretação das saídas fuzzy para saídas não fuzzy
 - Saídas não fuzzy representam comandos a serem executados no ambiente
 - Requer a definição do método a ser utilizado para realizar esta interpretação

- Métodos de defuzzificação
 - Centróide
 - Centro de gravidade do conjunto fuzzy
 - Mínimo ou maior máximo
 - Valor para o qual o grau de pertinência no conjunto é máximo
 - Média dos máximos
 - Média dos maiores valores da função de pertinência nos valores de saída fuzzy

- Ferramentas para desenvolvimento de sistemas de controle fuzzy
 - jFuzzyLogic
 - Biblioteca em Java para construção de sistemas *fuzzy*
 - Projeto open-source
 - FuzzyCLIPS
 - Extensão do CLIPS para possibilitar o uso da lógica fuzzy
 - Projeto open-source
 - Scikit-Fuzzy
 - Coleção de algoritmos fuzzy desenvolvidos em Python
 - Projeto open-source

Exercícios

- Implemente um sistema fuzzy para calcular o percentual de gorjeta em um restaurante.
 O cálculo da gorjeta deve levar em consideração as seguintes regras:
 - Se a refeição estiver insossa e o serviço ruim, a gorjeta será pouca
 - Se a refeição estiver saborosa e o serviço excelente, a gorjeta será generosa
 - Se o tempo de atendimento for demorado, não haverá gorjeta
 - Se o tempo de atendimento for mediano ou rápido, haverá gorjeta

Sistemas inteligentes

Inteligência artificial Prof. Allan Rodrigo Leite