Betrouwbaarheids Intervallen:

$$\overline{X} - \frac{G \cdot \overline{z}_{x/2}}{\sqrt{n}} < \mu < \overline{X} + \frac{G \cdot \overline{z}_{x/2}}{\sqrt{n}}$$

Links:

Rechts:

$$X = \frac{8 \cdot \frac{2}{\sqrt{2}}}{\sqrt{n}}$$
 $X = \frac{6 \cdot \frac{2}{\sqrt{2}}}{\sqrt{n}}$

N.B. Gebruih:

- 1) Voor 2-zydig: de tabel links /d standaard 1) Voor 1-zydig: de waarden /d tight-tailed (2) Voor 1-zydig: de waarden /d tight-tailed hypothesis test.

X =	2 tailed	1-tailed (Tinher aboved
10%	1.645	1.28
5%	1.96	1.645
2%	2.33	2.05
1%	2.575	2.33
	, 1	

2 Interval voor μ , 6^2 on behend: Berehen eerst s^2 , of gebruik de gegeven steelproef standaard afwijking.

Twee-zydig $(1-x)100^{\circ}$ lo: $\overline{X} - \frac{s \cdot t_{n-1}(\frac{x}{2})}{\sqrt{n}} \leq \lambda \leq \overline{X} + \frac{s \cdot t_{n-1}(\frac{x}{2})}{\sqrt{n}}$

N.B: Gebruik de t-verdeling tabel.

3) Interval voor 52;

(a) Twee - zydig $(1-x)100^{\circ}$? $\frac{(n-1)s^{2}}{\chi_{n-1}^{2}(\frac{x}{2})} < 6^{2} < \frac{(n-1)s^{2}}{\chi_{n-1}^{2}(1-\frac{x}{2})}$

6 Fén-tydig (1-x)100%:

 $\frac{\text{Links:}}{5^2 > \frac{(n-1)8^2}{\chi_{n-1}^2(x)}}$

 $\frac{\text{Rechts:}}{6^2 < \frac{(n-1)5^2}{\chi^2_{n-1}(1-\alpha)}}$

N.B: Gebruik de <u>Chi-kwadraat verdeling</u> tabel.