Методы 3D реконструкции

Александр Шишков Itseez, 2015

Одометрия

Одометр (греч. οδος — дорога + μέτρον — мера), в просторечии счётчик — прибор для измерения количества оборотов колеса.
 При помощи него может быть измерен пройденный транспортным средством путь.

https://ru.wikipedia.org/wiki/Одометр

Какие устройства мы можем использовать?

GPS/Глонасс

- Не работает в помещении
- Большая погрешность

Одометр

- Скольжение
- Большая погрешность

Какие устройства мы можем использовать?

IMU (Акселерометер+Гироскоп +Магнетометер)

- большая погрешность
- неустойчив к помехам

Какие устройства мы можем использовать?

Что же остается?

Камера

Depth-сенсор

Лидар

• Визуальная одометрия — метод оценки положения и ориентации объекта на основе анализа последовательности изображений, снятых установленной на нем камерой

Какие примеры вы встречаете каждый день?

Постановка задачи

По заданной последовательности кадров определить положение камеры в некоторой системе координат. Обычно предполагается

работа в реальном времени.

Рассмотрим два последовательных изображения и найдем соответствия между изображениями

Оценим поворот и сдвиг камеры между кадрами, минимизирующие ошибку репроекции

Пример алгоритма:

- Рассмотрим к-е изображение
- Найдем соответствия между к и к-1 изображениями (matching/tracking)
- Отфильтруем соответствия и найдем essential матрицу
- На основе найденной матрицы вычислим поворот и сдвиг
- Вычислим трехмерную модель особых точек
- Отнормируем масштаб точек
- ...

Возможно комбинировать устройства

RGB-D

RGB-IMU

SLAM

SLAM: Simultaneous Localization and Mapping

Autonomous Micro Air Vehicle Flight Indoors

Robust Robotics Group CSAIL, MIT

Почему SLAM трудная задача?

- Ошибка быстро нарастает
- Ошибки возникают из-за неточных измерений фактического движения робота (шум в одометрии) и расстояний до препятствий (landmark) (шум в
 - наблюдении)
- Loop-close problem

Введение: SLAM

SLAM: Simultaneous Localization and Mapping

Робот изучает незнакомое, статическое окружение.

Дано:

- Система одометрии
- Лазерный сонар

Оба источника данных зашумлены.

Оценка:

- Положения робота -- localization
 где Я ?
- Детализация окружающего пространства
- -- mapping

На что похоже то, что вокруг меня?

Постановка задачи

- $X_{0:k} = \{x_0, x_1, ..., x_k\} = \{X_{0:k-1}, x_k\}$ история положений робота
- $Z_{0:k} = \{z_1, z_2, ..., z_k\} = \{Z_{0:k-1}, z_k\}$ положения наблюдаемых особенностей
- $U_{0:k} = \{u_1, u_2, ..., u_k\} = \{U_{0:k-1}, u_k\}$ история управлений
- $m = \{m_1, m_2, ..., m_n\}$ множество особенностей

Задача - в каждый момент времени уметь вычислять $P(x_k, m | Z_{0:k}, U_{0:k}, x0)$. Часто для решения задачи используют рекуррентные соотношения, в связи с чем вводят модель движения: $P(x_k | x_{k-1}, u_k)$ и модель наблюдения $P(z_k | x_k, m)$.

- Алгоритм состоит из трех частей:
 - Обновление текущего состояния системы на основе одометрии
 - Обновление полученного состояния на основе видимых особенностей
 - Добавление новых особенностей к текущему состоянию системы

- $P(x_k|x_{k-1}, u_k) <==> x_k = f(x_{k-1}, u_k) + w_k$, где f-k кинематическая модель движения, а w_k-k гауссов шум с заданной ковариационной матрицей Q_k .
- $P(z_k|x_k,m) <==> z_k = h(x_k,m) + v_k$, где h геометрическая модель наблюдения, а v_k гауссов шум с ковариационной матрицей R_k .

Состояние модели:

$$\begin{bmatrix} \hat{\mathbf{x}}_{k|k} \\ \hat{\mathbf{m}}_k \end{bmatrix} = \mathbf{E} \begin{bmatrix} \mathbf{x}_k \\ \mathbf{m} \end{bmatrix} \mathbf{Z}_{0:k}$$

с матрицей ковариации

$$\mathbf{P}_{k|k} = \begin{bmatrix} \mathbf{P}_{xx} & \mathbf{P}_{xm} \\ \mathbf{P}_{xm}^T & \mathbf{P}_{mm} \end{bmatrix}_{k|k}$$

$$= \mathbf{E} \begin{bmatrix} \begin{pmatrix} \mathbf{x}_k - \hat{\mathbf{x}}_k \\ \mathbf{m} - \hat{\mathbf{m}}_k \end{pmatrix} \begin{pmatrix} \mathbf{x}_k - \hat{\mathbf{x}}_k \\ \mathbf{m} - \hat{\mathbf{m}}_k \end{pmatrix}^T \mid \mathbf{Z}_{0:k} \end{bmatrix}$$

Обновление текущего состояния системы на основе одометрии:

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{f}(\hat{\mathbf{x}}_{k-1|k-1}, \mathbf{u}_k)$$

$$\mathbf{P}_{xx,k|k-1} = \nabla \mathbf{f} \, \mathbf{P}_{xx,k-1|k-1} \nabla \mathbf{f}^{\mathrm{T}} + \mathbf{Q}_k,$$

где f – якобиан функции f в точке х_{k-1.}

Обновление полученного состояния на основе видимых особенностей и добавление новых особенностей к текущему состоянию системы

$$\begin{bmatrix} \hat{\mathbf{x}}_{k|k} \\ \hat{\mathbf{m}}_{k} \end{bmatrix} = [\hat{\mathbf{x}}_{k|k-1}\hat{\mathbf{m}}_{k-1}] + \mathbf{W}_{k}[\mathbf{z}_{k} - \mathbf{h}(\hat{\mathbf{x}}_{k|k-1}, \hat{\mathbf{m}}_{k-1})]$$

$$\mathbf{P}_{k|k} = \mathbf{P}_{k|k-1} - \mathbf{W}_{k}\mathbf{S}_{k}\mathbf{W}_{k}^{T},$$

$$\mathbf{S}_{k} = \nabla \mathbf{h}\mathbf{P}_{k|k-1}\nabla \mathbf{h}^{T} + \mathbf{R}_{k}$$

$$\mathbf{W}_{k} = \mathbf{P}_{k|k-1}\nabla \mathbf{h}^{T}\mathbf{S}_{k}^{-1}$$

где *Vh* якобиан функции h в точке x_{k-1} .

Недостатки алгоритма:

- Некорректное ассоциирование меток
- Нелинейность
- Вычислительная сложность
 - □ Сложность EKF SLAM O(N^2)

File Edit View Terminal Tabs Help	reoverm presidental elimpocornig_in	CONTROL
jiblanco@jiblanco-laptop2: ~/code/mrpt 💥	jlblanco@jlblanco-laptop2: ~/code/mrpt 💥	jlblanco@jlblanco-laptop2: ~/code/mrpt \$
jlblanco en [kf·slam] >> kf·slam EKF-S	SLAM_6D_test.ini [

Ш

Loop closure

Восстановить трехмерную модель одновременно с положениями и параметрами камер на основе неупорядоченного набора изображений.

SFM

Инициализация структуры

Минимизация ошибки репроекции

Алгоритм

- Получить надежные соответствия (matching/tracking) на 2/3-изображениях
- Вычислить начальное приближение структуры
- Улучшить структуру и позы за счет новых изображений

Bundle adjustment problem

 'bundle' – пучок лучей света исходящий из 3D точки и проходящий через центры камер

Bundle adjustment problem

Bundle adjustment problem

P(R, t, fx, fy, cx, cy, k1..k6) - проекция

indicator variable:

1 if point *j* is visible in camera *i* 0 otherwise

Нелинейная!

the street

Вопросы???