NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3272

GENERALIZED TABLES OF CORRECTIONS TO THERMODYNAMIC

PROPERTIES FOR NONPOLAR GASES

By Harold W. Woolley and William S. Benedict

National Bureau of Standards

Washington March 1956

AFMIN

TECHNICAL FOR

PFL 23.

NATIONAL ADVISORY COMMITTEE FOR AERONAU

TECHNICAL NOTE 3272

GENERALIZED TABLES OF CORRECTIONS TO THERMODYNAMIC

PROPERTIES FOR NONPOLAR GASES

By Harold W. Woolley and William S. Benedict

SUMMARY

Tables are presented based on the Lennard-Jones 6-12 potential for nonpolar molecules to be used in the representation of second and third virial coefficients and equation-of-state corrections for enthalpy, entropy, specific heats at constant volume and at constant pressure, the ratio of specific heats, the isentropic expansion coefficient, and the velocity of sound. The treatment for effects involving three molecules jointly uses an empirical adjustment of the Lennard-Jones force parameters within a cluster of three independently of the value for an isolated pair. A graphical correlation of ratios of these parameters with the critical constants is also shown which permits better estimates for compact nonpolar molecules with known critical constants but with limited data of state.

INTRODUCTION

The thermodynamic properties of real gases at pressures near atmospheric differ from those of the corresponding ideal gases. The difference is not, in general, large, but it is appreciable when careful experimental work has been performed and should be taken into account when observed gas properties are to be compared with those theoretically calculated from spectroscopic data. For example, experimental determinations of the specific heat, or of the velocity of sound, are often used to derive values of C_{p}^{o} , the ideal-gas specific heat. The realgas corrections $C_{\rm p}$ - $C_{\rm p}^{\rm o}$ are, in general, calculated from some equation of state, one derived either from actual measurements of the pressure dependence of the properties in question or from compressibility measurements; alternatively, especially in the case of many substances which liquefy readily and whose vapors are hence not stable over a wide pressure range, so that such data are lacking, a "reduced" or general equation of state is used, whose specific constants are derived from the critical data of the substance or from the boiling point. The Berthelot

equation of state

$$P = \frac{RT}{V - b} - \frac{a}{TV^2} \tag{1}$$

is very often used for this purpose. However, this equation is lacking in general theoretical significance (ref. 1).

Statistical mechanics indicates that a correct theoretical form for the equation of state of any nonreacting gas at moderate pressures is

$$\frac{PV}{RT} = 1 + \left[B(T)/V \right] + \left[C(T)/V^2 \right]$$
 (2)

where P is the pressure; V, the molar volume; R, the universal gas constant; T, the absolute temperature; and B and C are functions of the temperature known as the second and third virial coefficients, respectively. The coefficient B depends on only the forces between pairs of molecules and may in principle be calculated in terms of any assumed potential. The situation is essentially the same for C, but it depends on the energies of triples of molecules as well as pairs, so that the problem is considerably more complicated. A potential function that has been widely used, and that has been able to give good agreement with the experimental data for such different force-dependent properties as the second virial coefficient and the viscosity and other transport properties (ref. 2), is that due to Lennard-Jones. The Lennard-Jones expression for the potential energy of two molecules at a separation r is

$$U(r) = 4\epsilon \left[\left(\frac{r_0}{r} \right)^{12} - \left(\frac{r_0}{r} \right)^{6} \right]$$
 (3)

where ϵ and r_0 are two disposable parameters equal, respectively, to the maximum binding energy between the molecules and the distance at which the attractive and repulsive energies are equal. A gas whose molecules obey this law of force is referred to as a Lennard-Jones 6-12 gas. To a good approximation such gases include practically all common gases and vapors except those with large polar groups, such as water or alcohols, and those whose shape is far from spherical, such as carbon dioxide.

It follows from the original work of Lennard-Jones (ref. 3) that for this type of potential it is possible to calculate the second virial coefficient B(T) and its temperature derivatives. These may be

NACA TN 3272 3

expressed in terms of the two parameters ε and r_0 . Calculations of B and its derivatives have been made by several groups of authors. Values of B were given by Stockmayer and Beattie (ref. 4), fairly extensive tables from which one may compute B and T dB/dT have been published by Curtiss and Hirschfelder (ref. 5), and a revised calculation giving B, T dB/dT, T^2d^2B/dT^2 , and T^3d^3B/dT^3 has been prepared by Hirschfelder, Curtiss, Bird, and Spotz (ref. 6). An extension of the calculations to lower temperatures has been made by Epstein and Roe (ref. 7) and has furnished values at the lowest temperature entries in the present tables.

Several computations have similarly been made concerning the third virial coefficients, assuming a Lennard-Jones 6-12 potential, including those of De Boer and Michels (ref. 8), Montroll and Mayer (ref. 9), Kihara (ref. 10), and Bird, Spotz, and Hirschfelder (ref. 11) as well as some unpublished calculations by one of the present authors in 1943. In contrast with the case of the second virial coefficient, the results of the third virial calculation do not fit third virial coefficients as determined from experiment, so that the results are without immediate direct application. However, the recognition that the effective force law in a group of three molecules is not necessarily identical with the sum for three independent pairs permits an appropriate fitting of the experimental data. By considering the formation of a cluster of three molecules as a chemical reaction with an equilibrium constant for formation, the selection of appropriate effective-force-law parameters can in principle be made readily, as has been discussed elsewhere (ref. 12). The results for the second virial coefficient may be expressed simply

by $B = b_0 B^{(0)}(\tau)$ in the notation of reference 11, where $b_0 = \frac{2\pi}{3} N r_0^3$, $\tau = kT/\varepsilon$, and $B^{(0)}(\tau)$ is a tabulated function. For the third virial coefficient more complicated relations result. Thus,

$$C = b_3^2 \left\{ C^{(0)}(\tau_3) - 4 \left[B^{(0)}(\tau_3) \right]^2 \right\} + 4b_2^2 \left[B^{(0)}(\tau_2) \right]^2$$
 (4)

with $\tau_3 = kT/\epsilon_3$ and $\tau_2 = kT/\epsilon_2$, b_3 and ϵ_3 being the parameters b_0 and ϵ , respectively, as determined for the cluster of three, and b_2 and ϵ_2 , the regular values as determined for the second virial coefficient; $C^{(0)}(\tau)$, when multiplied by b_0^2 , gives the third virial coefficient for a gas in which the mutual energy in any group of three molecules is the sum of Lennard-Jones pair energies with the same parameters as those which apply for isolated pairs.

Tables permitting the close representation of experimental values are of great utility in regard to the observed compressibility and the

Joule-Thomson coefficient (ref. 5) at various temperatures and their relation to the actual laws of force. Such tables permit the calculation of these properties at other temperatures when the parameters of the law of force have been established. The ease of such correlations and calculations is increased if similar tables are available for other thermodynamic properties. It is the purpose of this report to present tables from which one may readily calculate other effects of gas imperfection for nonpolar gases to obtain the effect for the density, enthalpy, entropy, specific heat at constant pressure and at constant volume, specific-heat ratio, isentropic expansion coefficient, and velocity of sound. Alternatively, tables are presented for calculations in which either the density or the pressure may be the variable.

This report is one of a series of papers on the thermodynamic properties of technically important gases compiled and calculated at the National Bureau of Standards under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics.

SYMBOLS

a.	sound velocity, m sec-1 or ft sec-1
a,b	constants in Berthelot equation of state
a ^o	sound velocity for ideal gas, m sec-1 or ft sec-1
В	second virial coefficient in $1/V$ series, a function of temperature, cm ³ mole ⁻¹
$B(0)(\tau)$	second virial coefficient function, B/b _o
ъo	characteristic parameter of Lennard-Jones interaction potential, $\frac{2\pi}{3} \text{ Nr}_0^{3}$, cm ³ mole-1
b2	bo for pairs alone as distinct from pairs in larger clusters, cm ³ mole-1
ъз	bo for pairs within a cluster of three, cm ³ mole-1
С	third virial coefficient in $1/V$ series, a function of temperature, $(cm^3 mole^{-1})^2$
$c^{(0)}(\tau)$	third virial coefficient function, c/b_0^2 in simple theory

c_p	heat capacity at constant pressure, various units
$c^{\mathbf{p}_{\mathbf{o}}}$	heat capacity at constant pressure for ideal gas, various units
C _v	heat capacity at constant volume, various units
C _v o	heat capacity at constant volume for ideal gas, various units
c ₁ ,c ₂ ,c ₁₂ , c ₁ ',c ₂ ',c ₁₂ '	coefficients in correction for specific heat at constant pressure
D	fourth virial coefficient in $1/V$ series, a function of temperature, $\left(\text{cm}^{3} \text{ mole}^{-1}\right)^{3}$
Е	internal energy, various units; also, fifth virial coefficient in $1/V$ series, a function of temperature, $\left(\text{cm}^{3} \text{ mole}^{-1}\right)^{1/4}$
Eo	internal energy for ideal gas, various units
н	enthalpy per mole, various units
н°	enthalpy per mole for ideal gas, various units
h ₁ ,h ₂ ,h ₁₂ , h ₁ ',h ₂ ',h ₁₂ '}	coefficients in enthalpy correction
k	Boltzmann constant for proportionality of energy to temperature, 1.38048 \times 10 $^{-16}$ erg $^{\rm o}{\rm K}^{-1}$
М	molecular weight (chemical scale), g mole-l
N	Avogadro's number
P	pressure, atm or dynes cm-2
P _c	critical pressure, atm or dynes cm-2
P _O	atmospheric pressure, 1 atm or 1,013,250 dynes cm ⁻²
P ₂	pressure parameter for pair of molecules, $R\epsilon_2/b_2k$

P3	pressure parameter for cluster of three molecules, $R \epsilon_3 / b_3 k$
R	universal gas constant, various units
r	distance between two molecules
ro	classical distance of closest intermolecular approach at zero energy according to Lennard-Jones potential, A
S	entropy per mole, various units
s ^o	entropy per mole for ideal gas, various units
s ₁ ,s ₂ ,s ₁₂ , s ₁ ',s ₂ ',s ₁₂ '	coefficients in entropy correction
T	absolute temperature, OK or OR
Tc	critical temperature, ^O K or ^O R
υ	potential energy of interaction of two molecules
v	volume per mole, cm ³ mole ⁻¹
v _e	critical volume, cm ³ mole-1
w ₁ ,w ₂ ,w ₁₂ , w ₁ ',w ₂ ',w ₁₂ '	coefficients in correction for specific heat at con- stant volume
Z	compressibility factor, PV/RT
z ₁ ,z ₂ ,z ₁₂ , z ₁ ',z ₂ ',z ₁₂ '	coefficients in Z = PV/RT
α	isentropic expansion coefficient, $-\frac{V}{P}\left(\frac{dP}{dV}\right)_{S} = -\gamma \frac{V}{P}\left(\frac{dP}{dV}\right)_{T}$
α_{O}	isentropic expansion coefficient for ideal gas
γ	ratio of specific heats, C_{p}/C_{v}
γ ^o	ratio of specific heats for ideal gas, $C_p^{\ o}/C_v^{\ o}$

€	maximum energy of binding between molecules with a Lennard-Jones potential, ergs
€/k	characteristic parameter of Lennard-Jones interaction potential, ${}^{O\!K}$
€2/k	ϵ/k for pairs alone, $^{ m O}K$
€3/k	ϵ/k for pairs within a cluster of three, ${}^{ m O}K$
ρ	density, mole cm ⁻³ , Amagat units, and so forth
τ	reduced temperature, kT/ϵ
$\tau_{\mathbf{c}}$	τ for critical condition
^T 2	τ for pairs alone, kT/ϵ_2
т3	τ for pairs within a cluster of three, kT/ $ε$ ₃

TABLES

The relations on which the tabulations are based may be derived by standard thermodynamic methods on the basis of the virial equation of state (2) with C given by equation (4). In these relations, the nomenclature of Bird, Spotz, and Hirschfelder is used (ref. 11), so that $B^{(1)}(\tau) = \tau \ dB^{(0)}(\tau)/d\tau, \quad B^{(2)}(\tau) = \tau^2 \ d^2B^{(0)}(\tau)/d\tau^2, \quad C^{(1)}(\tau) = \tau \ dC^{(0)}(\tau)/d\tau,$ and $C^{(2)}(\tau) = \tau^2 d^2 C^{(0)}(\tau)/d\tau^2$. The tabulations and related formulas are applicable to nonpolar gases having Lennard-Jones 6-12 pair energies and distinct parameters for clusters of three molecules. With energy and volume parameters of ϵ_2 and b_2 for a pair and ϵ_3 and b_3 for a cluster of three, the pressure parameter for the pair is $p_2 = R\epsilon_2/b_2k$ and, for a cluster of three, the pressure parameter for the pair is $p_3 = R\epsilon_3/b_3k$. With the pressure parameters, the pressure dependence of the thermodynamic properties in dimensionless form can be expressed in terms of the dimensionless ratios P/p_2 , $(P/p_2)^2$, and $(P/p_3)^2$, the dimensionless coefficients for which are given in tables 1 to 5. Alternatively, the dependence on volume can be expressed in terms of the dimensionless ratios b_2/V , $(b_2/V)^2$, and $(b_3/V)^2$ with dimensionless coefficients which are also given in tables 1 to 5. Detailed formulas are to be found in the appendix.

Each of tables 1 to 5 contains two sets of three columns of coefficients following the column for the temperature variable T, one set being for density dependence and the other, for pressure dependence. In each of the two sets the first column of the three is for the linear dependence, while the second and third columns are for the quadratic dependence. Their appropriate multipliers are indicated in the tables. The second column gives the entire quadratic contribution in case the Lennard-Jones parameters for the cluster of three are identical with those for a single pair of molecules. If the parameters for the cluster of three are different, then the entire quadratic contribution is composed of three parts of which one is obtained from the second column at au_{3} and the other two are obtained from the third column at τ_3 and at τ_2 , τ_2 and τ_3 being given, respectively, by kT/ϵ_2 and kT/ϵ_3 . tables cover the temperature range given by $0.7 < \tau < 400$ for all quantities tabulated with the additional extension down to 0.15 in the case of the linear terms. The entries are spaced sufficiently closely so that three-point interpolation will be adequate in most cases (ref. 13). Since boiling points are typically near $\tau = 0.8$ with critical points near $\tau = 1.3$, the range of the tables covers practically all temperatures of experimental interest.

Tables 6, 7, and 8 give results for γ , α , and a involving only the linear dependence on density and pressure. Values of these quantities including the quadratic correction effects can be obtained by means of the defining formulas. Thus γ is readily obtained from the values of C_p and C_v . As α is given by $\gamma \left[Z - V(\partial Z/\partial V)_T \right] / Z$ or $\gamma Z / \left[Z - P(\partial Z/\partial P)_T \right]$, it can be computed quite directly if Z is known in terms of coefficients for powers of the density or of the pressure. Similarly, a2 is given by RTcZ/M. The evaluation of the quadratic terms for γ , α , and a has not been performed for these tables because of the complexity of the formulas and the adequacy of the direct calculation. Inasmuch as the ideal-gas specific-heat ratio γ^{O} is also a parameter, entries are given in the tables for various values of this ratio ranging from 1.40 to 1.00 in steps of 0.05 and for the single value $\gamma^0 = 5/3$. The latter is the value for an ordinary monatomic gas considered as ideal. Similarly, $\gamma^{O} = 1.40$ is the theoretical value for an ideal diatomic gas at low temperatures where translational and rotational degrees of freedom are fully excited but where there is no vibration $(C_p^0/R = 3.5)$, whereas $\gamma^0 = 1.10$ corresponds to relatively complex polyatomic gases at higher temperatures where many vibrational degrees of freedom are contributing $(C_D^{\circ}/R = 11)$.

The isentropic expansion coefficient $\alpha = -\frac{V}{P}\left(\frac{dP}{dV}\right)_S = -\gamma \frac{V}{P}\left(\frac{dP}{dV}\right)_T$ (see the appendix) is perhaps an unfamiliar quantity requiring further

$$f(a + xw) = f(a) + x \Delta f(a) - \frac{x(1 - x)}{2} \Delta^2 f(a)$$

explanation. For an ideal gas, it will be noted, it is identical with γ , the true specific-heat ratio. In many formulas of gas dynamics involving expansions through nozzles, the ideal-gas laws are assumed and, hence, y and a may be written interchangeably. When deviations from ideal-gas behavior are to be considered, however, it will sometimes be found that the usual idal-gas formulas are valid if α , rather than γ , is used. For example, the familiar equation for the velocity of sound is $a^2 = PV\alpha M^{-1}$. Similarly, the resonance method to determine γ gives α the more directly, so that γ is obtained after correction for effects calculable from the equation of state. On the other hand, the method for determining γ by the amount of cooling in an adiabatic expansion gives directly a different quantity β , according to $1 - \beta^{-1} = \frac{P}{T} \left(\frac{dT}{dP}\right)_S = \frac{P}{C_p} \left(\frac{dV}{dT}\right)_P$ which in the limit of low pressure becomes $1 - \gamma^{-1}$. state during an expansion covers a wide range of pressure or temperature, so that α or γ is not constant, further refinements must be considered (ref. 14).

For the density-dependent parts of the tables, the multiplying factor for density in moles per unit volume for a given entry in the linear correction is a quantity frequently known as $b_0 = \frac{2}{3} \pi N r_0^3$ and here indicated as b_2 . The subscript o here replaced by 2 to signify a pair of molecules is also replaced by 3 for cases in which it refers to the effective parameter for a cluster of three molecules. If r_0 is in the usual units of A (10⁻⁸ centimeter), values of the multiplying factor b_0 for various values of r_0 and various units of density are as presented in table 9. For the pressure-dependent tables, the multiplying factor for pressure for a given entry in the linear correction is the quantity $b_2/R(\varepsilon_2/k)$. If b_2 is in cubic centimeters per mole, as in table 9, and ε_2/k is in ${}^{0}K$, the values of the constant R to transform from the density-dependent to the pressure-dependent factor for various units of pressure are as given in table 10.

USE OF TABLES

The utility of the tables is twofold. First, if values of the parameters ε/k and b_0 are known for pairs (as ε_2/k and b_2) and for triples (as ε_3/k and b_3), when different, one may calculate the density dependence or pressure dependence of the thermodynamic functions, at any temperature covered, at low and moderate densities or pressures, by the following procedure. Calculate $\tau_2 = kT/\varepsilon_2$ and $\tau_3 = kT/\varepsilon_3$

NACA IN 3272

and, according to whether density or pressure is to be used as variable, calculate b2 and b3 or $b_2/R(\varepsilon_2/k)$ and $b_3/R(\varepsilon_3/k)$ (or the reciprocals of the latter, $Re_2/b_2k = p_2$ and $Re_3/b_3k = p_3$) in the appropriate units. Next, interpolate in the density or pressure part of table 1, 2, 3, 4, or 5 that treats the desired property to find values in the first column and third column at the value of τ_2 and values in the second column and the third column at the value of τ_3 . The linear contribution is obtained by multiplying the value from the first density column by b2/V or by multiplying the value from the first pressure column by $\left\lceil b_2/R(\epsilon_2/k)\right\rceil$ P or P/p₂. For the quadratic dependence, the values at τ_3 are to be multiplied by b_3^2/b_2^2 for the density-dependent functions or by $b_3^2 \epsilon_2^2 / b_2^2 \epsilon_3^2 = p_2^2 / p_3^2$ in the case of tables for obtaining the pressure dependence. After obtaining the sum of products based on values from the second column at τ_3 and the third column at τ_2 , the product based on the value in the third column at τ_3 is to be subtracted. The combined quantity is to be multiplied by $(b_2/V)^2$ when using density as a variable or by $(P/P_2)^2$ when using pressure as a variable. The adding and subtracting of the two values found in the third column with their proper multipliers is indicated by $(-1)^{\frac{1}{2}}(b_{1}/V)^{2}$ for the set in which density is the variable and by $(-1)^{1}(P/p_{1})^{2}$ as multiplier for the set in which pressure is the variable. If the parameters for the cluster of three are identical with those for a pair, then the two contributions from the third column are of equal magnitude and opposite in sign, giving no net contribution. When the three contributions to the quadratic dependence have been evaluated and combined with the linear contribution, the result may be added to the ideal-gas value to obtain the real-gas value. This procedure is applicable either if one is to calculate the real-gas value, the ideal-gas value being known from previous calculations, or if one is to correct an observed real-gas result to the corresponding ideal-gas value. In the latter case, since the idealgas ratio of specific heats γ^{O} enters the tables for γ , α , and a, it is necessary to find the corrections for these properties by successive approximations.

As an example of this direct use of the tables, one might consider the calculation of the density of gaseous methane at a pressure of 15 atmospheres and a temperature of 473.16° K. Turning to table 11, it is found that the appropriate parameters are estimated to be $\epsilon_2/k = 148.2^\circ$ K, $\epsilon_3/k = 145.2^\circ$ K, $p_2 = 173.3$ atmospheres, and $p_3 = 165.5$ atmospheres. These give $\tau_2 = 3.1927$ and $\tau_3 = 3.2587$, with $P/P_2 = 0.08655$ and $P/P_3 = 0.09063$, giving $(P/P_2)^2 = 0.00749$ and $(P/P_3)^2 = 0.00821$. Referring to the pressure part of table 1 for $\tau = \tau_2$

and $\tau = \tau_3$, the values obtained for the coefficients are:

At
$$\tau_2 = 3.1927$$
, $z_1' = -0.01811$
At $\tau_2 = 3.1927$, $z_{12}' = 0.00099$
At $\tau_3 = 3.2587$, $z_2' = 0.03215$
At $\tau_3 = 3.2587$, $z_{12}' = 0.00044$

The value of $\, Z \,$ or $\, PV/RT$, the compressibility factor, is then given by

$$\frac{PV}{RT} = 1 + (-0.01811) \times 0.08655 + 0.03215 \times 0.00821 + 0.00099 \times 0.00749 - 0.00044 \times 0.00821$$
$$= 1 - 0.001567 + (0.000264 + 0.000007 - 0.000004)$$
$$= 0.9987$$

Then the value of V^{-1} is obtained from $\frac{RT}{PV} \frac{P}{RT}$ using the value of R of 82.0567 cm³ atm/mole O K:

$$V^{-1} = \frac{15 \text{ atm}}{0.9987 \times 82.0567 \text{ cm}^3 \text{ atm mole}^{-1} \text{ o}^{-1} \times 473.16 \text{ o}^{-1} \times 473.$$

Multiplying by the molecular weight 16.042, a density of 0.006206 gram per cubic centimeter or 6.206 grams per liter is obtained.

Alternately, one may use the tables to derive values of ε/k and b_0 from experimental data, if the latter cover a wide range of temperature for one property, or several properties, and if the ideal-gas properties are known. One such procedure has been used in reference 12, taking into account effects on various properties including coefficients other than the virial coefficients.

A simple extension permits the use of a third parameter to obtain a closer representation for pairs and clusters of three molecules. Recognizing that the extent of phase space from which clusters are excluded is in some degree independent of the binding energy and the extent of phase space in which the binding energy is effective, additive constants may be included for K2RT and K3(RT)2, that is, for B and $2B^2 - \frac{1}{2}C$. Thus, the extension is to use $B = b_2[\beta_2 + B(0)(\tau_2)]$ $C - 4B^2 = b_3^2 \left\{ \beta_3 + C^{(0)}(\tau_3) - \left[4B^{(0)} \right]^2(\tau_3) \right\}$, where β_2 and β_3 are constants. The changes required in all the thermodynamic formulas are simply to replace $B^{(0)}(\tau_2)$ by $\beta_2 + B^{(0)}(\tau_2)$ and to replace $C^{(0)}(\tau_3)$ by $\beta_3 + C^{(0)}(\tau_3)$. By referring to the fundamental equations in the appendix, the necessary algebra can be performed to take account of these constants so that results may be obtained from the present tables by extended combination of their values as indicated by the resulting formulas. For example, in the case of the enthalpy function $(H - H^0)/RT$, the coefficient of b_2/V in table 2 is changed from the $B^{(0)}(\tau_2) - B^{(1)}(\tau_2)$ tabulated to $\beta_2 + B^{(0)}(\tau_2) - B^{(1)}(\tau_2)$. For the coefficient of $(b_2/V)^2$, the value from the middle column, $C^{(0)}(\tau_3) - \frac{1}{2}C^{(1)}(\tau_3)$, is changed to $\beta_3 + C^{(0)}(\tau_3) - \frac{1}{2}C^{(1)}(\tau_3)$ prior to multiplication by b_3^2/b_2^2 . The value in the third column at τ_2 , $4\left\{\begin{bmatrix} B^{(0)}(\tau_2)\end{bmatrix}^2 - B^{(0)}(\tau_2)B^{(1)}(\tau_2)\right\}$, is changed to $4\beta_2^2 + 4\beta_2 B^{(0)}(\tau_2) + 4\beta_2 \left[B^{(0)}(\tau_2)B^{(1)}(\tau_2)\right] + 44\left[B^{(0)}(\tau_2)\right]^2$ $B^{(0)}(\tau_2)B^{(1)}(\tau_2)$. The second of these three added quantities is $4\beta_2$ times the first tabulated coefficient for Z; the third is 460 times the first tabulated coefficient for the present (H - HO)/RT.

VALUES OF PARAMETERS: REDUCED EQUATION OF STATE

Values of the parameters $\,\varepsilon/k\,$ and $\,r_{O}\,$ have been deduced for most of the common gases from various sets of data by various authors. A

tabulation and comparison of the values obtained from the viscosity and the second virial coefficient are presented in reference 2 and additional values from the second virial coefficient are given in reference 11. These values are quoted in table 12.

Other data in table 12 include values of $\tau_c = kT_c/\varepsilon_2$ and V_c/b_2 . Here kT_c/ε_2 is the ratio of the critical temperature to the average value of ε/k from the viscosity and second virial data. Similarly, V_c/b_2 is the ratio of the critical volume to the value of b calculated from the average value of r_0 from the two types of data. It will be noted, as Hirschfelder, Bird, and Spotz point out (ref. 2), that the agreement of the parameters from the two types of data is only fair, being best for the more spherical gases that are more likely to obey the Lennard-Jone 6-12 potential and worst for carbon dioxide and nitrous oxide. However, the average parameters reproduce all transport and low-pressure thermodynamic data fairly well. To obtain parameters for other molecules, specifically to predict PVT and thermodynamic properties more reliably, it is reasonable also to examine such data without using the viscosity parameters.

It might seem that such reduced parameters as kT_c/ε_2 and V_c/b_2 would be roughly constant for all gases on the basis of the law of corresponding states according to the assumption that the potential function between molecules in higher order collisions is, in effect, about the same as that in binary collisions. However, it has been demonstrated in connection with the third virial coefficient that the pair potential function in a group of three molecules is appreciably different from that for an isolated pair (ref. 12). As the difference may continue in the progression to larger clusters, it is appropriate to examine evidence for the systematic effect of parameter change. One such effect would appear in the value of P_cV_c/RT_c , which is known to vary appreciably among different substances.

Figure 1 shows corresponding values of P_cV_c/RT_c and kT_c/ε_2 based on PVT data for various substances from a variety of sources. While acceptance of 1.3 as an average value of kT_c/ε_2 may give ε_2/k approximately from the experimental T_c , agreeing with the theoretical estimates of 1.26 by De Boer and Michels (ref. 15) and 1.333 by Lennard-Jones and Devonshire (ref. 16), it seems likely that a better value in the absence of a direct experimental value for ε_2/k might be obtained by reading from the graph if the value of P_cV_c/RT_c is known.

Similarly, an average value of $V_{\rm C}/b_2$ near 1.4 is close to the theoretical estimates of 1.50 by De Boer and Michels and 1.35 by Lennard-Jones and Devonshire. In the absence of a direct experimental value

for b₂, a value might be estimated from such an average value or perhaps more closely from V_c and figure 2, which shows corresponding values of P_cV_c/RT_c and V_c/b_2 based on PVT data only. Hirschfelder, McClure, and Weeks (ref. 17) cite average values of 1.299 for kT_c/ε_2 and 1.47 for V_c/b_2 .

The ratios between parameters for clusters of three and of two molecules are also found to be related to the values of the critical constants. Values for the ratios ϵ_3/ϵ_2 and b_3/b_2 as obtained in fitting PVT data may differ somewhat randomly, being influenced by the range of reduced temperature for which the fit is obtained. This may be attributed to failure to represent well the actual complicated potential function for the clusters. Parameters suitable over a range of temperature including both the critical temperature and somewhat higher temperatures may thus be expected to be more comparable than parameters based on segments of a higher temperature range not corresponding on a reduced-temperature basis. A procedure intended to improve the estimates through a knowledge of the critical conditions will now be described.

If the classical condition for the critical point $(\partial P/\partial V)_T = 0$ and $(\partial^2 P/\partial V^2)_T = 0$ is used with the equation of state in the virial form $PV/RT = 1 + B/V + C/V^2 + D/V^3 + E/V^4 + \dots$, it is found that the critical density may be estimated with a series beginning as

$$\frac{1}{V_c} = -\frac{B}{3C} - \frac{2DB^2}{9C^3} + \frac{10EB^3}{81C^4} - \frac{8D^2B^3}{81C^5} + \dots$$

and giving

$$\frac{P_c V_c}{RT_c} = \frac{1}{9} \frac{B^2}{C} + \frac{1}{27} \frac{DB^3}{C^3} - \frac{2}{2^{1/3}} \frac{EB^{1/4}}{C^{1/4}} + \frac{2D^2 B^{1/4}}{81C^5} + \cdots$$

as a beginning approximation. This expression is not to be regarded as fully definitive, as its form is changed somewhat if the next higher derivatives are also taken as zero.

However, an examination of the relationship between B^2/C and PV/RT at the critical point can be made empirically by using the results of Meyers (ref. 18) for the representation of critical isotherms. As critical constants have been determined for many substances, P_cV_c/RT_c may give a fair estimate for B^2/C at the critical point, giving an

indicated value for C if B can be estimated reliably. This can help to give a better overall function for C than might come from correlation of higher temperature data alone. The values of B^2/C so obtained are of the order of magnitude of $9P_cV_c/RT_c$ but are uniformly somewhat greater. In figure 3 values are shown as obtained by Meyers and as indicated by the values of $b_3{}^2/b_2{}^2$ and $\varepsilon_3/\varepsilon_2$ recently obtained. On the basis of approximate agreement some of the parameters obtained earlier appear fairly reliable. The considerable departure in other cases has been rectified through the fitting of C at the critical point as indicated on the basis of Meyers' critical isotherms. For some substances the fit is still only approximate over extended ranges of temperature, possibly because of departure from the spherical symmetry implied by the Lennard-Jones potential.

Using the "improved" constants, one simple correlation is shown in figure 4 in which $(\varepsilon_3/\varepsilon_2)(b_3/b_2)^{1/2}$ is plotted as a function of $(kT_c/\varepsilon_2)(b_2/V_c)$. The scattering of points with the use of the preliminary or unimproved constants is appreciable. The use of the critical condition is seen to reduce the scattering considerably. Two sets of improved constants for approximate representation for carbon monoxide resulted from combining the critical constant with (1) older virial data as used in the NBS-NACA tables and (2) newer data of Michels.

In figure 5 $(\epsilon_3/\epsilon_2)(b_2/b_3)^{1/2}$ is shown, using the improved constants of figure 4, plotted as a function of V_c/b_2 . The lower point for carbon monoxide (CO) was obtained using the older virial data; the upper point, using newer data of Michels. It appears that the points form a band of considerable and seemingly varying width. However, there is a possibility that further improvement in critical constants and parameters for clusters of two and three molecules will lead to better but more complex correlations of these data.

It would accordingly seem that, if other experimental data are missing, it still may be possible to calculate approximate corrections to the thermodynamic functions for nonpolar, approximately spherical gases from the tables and graphs presented here using the known values for the critical constants.

In table 11 some of the numerical values for parameters obtained for pairs and clusters of three are listed. Values are given both as obtained by direct PVT correlation and also as adjusted for the critical condition. In addition to these values of ε/k and $b_0 = \frac{2}{3} \pi N r_0^3$, corresponding values are given for the ratios $\varepsilon_3/\varepsilon_2$ and b_3^2/b_2^2 and for $p_2 = R\varepsilon_2/kb_2$, $p_3 = R\varepsilon_3/kb_3$, and p_2^2/p_3^2 .

While the constants as adjusted to fit the critical condition are probably preferable near the critical temperature, it can be expected that constants fitted to good higher temperature data will be preferable for the higher temperature regions. This is due to the limitations of the Lennard-Jones functions in representing all details exactly.

DISCUSSION

It must be reemphasized that the tables are valid only to the extent that the gas imperfection is representable in terms of pair energies equivalent to binary encounters of spherical nonpolar molecules and pair energies in triple encounters, the potential energies for pairs in an encounter being of the form of equation (3). How adequate these assumptions are will, of course, depend upon the precision of the result desired. Deviations of properties of actual gases from those calculated will be of two kinds: Those due to interactions involving a greater number of molecules and those due to inadequacy of the 6-12 potential. At rather low pressures, the third virial coefficient is relatively unimportant in regard to deviations from ideal behavior, in the sense of contributing less than 5 percent of the deviation at densities below 5 Amagats. At high pressures such deviations should not be neglected, and it may be necessary to consider virials higher than the third in such cases.

There has been some interest in the limitations of the 6-12 potential for the exact representation of actual deviations from ideality. It is certain that the 6-12 potential does not give a completely accurate representation of the pair potential for any molecule, since theory indicates additional attractive terms proportional to the eighth power of the distance and exponential, rather than twelfth-power, repulsive forces even for the monatomic molecules, which give spherical symmetry. However, these refinements lead only to minor changes in the resulting form of B(T), such as may be adjusted for by a change in the parameters ϵ and r_0 . It is probable that no simple function with two disposable parameters can do better, in general. For molecules with large departure from spherical symmetry, the 6-12 potential may be expected to give only a rough representation of derived properties over an extended range of temperature. The comparative studies of various potential functions have, in general, hitherto been based on experimental values of the second virial coefficient derived from density measurements; since, however, the thermodynamic properties involving higher temperature derivatives of the virial coefficients, such as $\ensuremath{\mathtt{C}}_{\ensuremath{\mathtt{D}}}$ and sound velocity, are more sensitive to the particular form of the equation of state, it can be expected that their measurement as a function of pressure and temperature will also lead to conclusions concerning

the suitability of the Lennard-Jones potential function as a basis for the calculation of all of the thermodynamic properties.

National Bureau of Standards, Washington, D. C., May 5, 1954.

APPENDIX

DETAILED FORMULAS FOR THERMODYNAMIC PROPERTIES

The relations which follow may be derived by standard thermodynamic methods using the indicated equation of state. The nomenclature of Bird, Spotz, and Hirschfelder is used; namely,

$$B^{(1)}(\tau) = \tau dB^{(0)}(\tau)/d\tau$$

$$B^{(2)}(\tau) = \tau^2 d^2 B^{(0)} / d\tau^2$$

$$C^{(1)}(\tau) = \tau dC^{(0)}(\tau)/d\tau$$

$$c^{(2)}(\tau) = \tau^2 d^2 c^{(0)}(\tau) / d\tau^2$$

The superscript o applied to the quantities E, H, S, $C_{\rm V}$, $C_{\rm p}$, and so forth indicates that the property is for the ideal gas.

The relations for Z, E, H, S, C_V , and C_D , as arranged for tabulating for a nonpolar gas having pair energies given by a Lennard-Jones 6-12 potential with distinct parameters for clusters of three molecules, are:

The compressibility factor Z = PV/RT:

$$Z = 1 + B^{(0)}(\tau_{2})(b_{2}/V) + \left\{C^{(0)}(\tau_{3})(b_{3}^{2}/b_{2}^{2}) - 4\left[B^{(0)}(\tau_{3})\right]^{2}(b_{3}^{2}/b_{2}^{2}) + 4\left[B^{(0)}(\tau_{2})\right]^{2}\right\}(b_{2}/V)^{2}$$

$$= 1 + \tau_{2}^{-1}B^{(0)}(\tau_{2})(b_{2}kP/Re_{2}) + \left(\tau_{3}^{-2}\left\{C^{(0)}(\tau_{3}) - \left[B^{(0)}(\tau_{3})\right]^{2}\right\}(b_{3}^{2}e_{2}^{2}/b_{2}^{2}e_{3}^{2}) - 3\left[\tau_{3}^{-1}B^{(0)}(\tau_{3})\right]^{2}(b_{3}^{2}e_{2}^{2}/b_{2}^{2}e_{3}^{2}) + 3\left[\tau_{2}^{-1}B^{(0)}(\tau_{2})\right]^{2}(b_{2}kP/Re_{2})^{2}$$

The internal energy E

$$\begin{split} &(\mathbf{E} - \mathbf{E}^{O})/\mathbf{R}\mathbf{T} = -\mathbf{B}^{(1)}(\tau_{2})(b_{2}/\mathbf{V}) - \left[0.5\mathbf{C}^{(1)}(\tau_{3})(b_{3}^{2}/b_{2}^{2}) - \right. \\ &\left. + \mathbf{B}^{(O)}(\tau_{3})\mathbf{B}^{(1)}(\tau_{3})(b_{3}^{2}/b_{2}^{2}) + \mathbf{A}\mathbf{B}^{(O)}(\tau_{2})\mathbf{B}^{(1)}(\tau_{2})\right](b_{2}/\mathbf{V})^{2} \\ &= -\tau_{2}^{-1}\mathbf{B}^{(1)}(\tau_{2})(b_{2}\mathbf{k}\mathbf{P}/\mathbf{R}\boldsymbol{\epsilon}_{2}) - \left\{\tau_{3}^{-2}\left[0.5\mathbf{C}^{(1)}(\tau_{3}) - \right. \right. \\ &\left. + \mathbf{B}^{(O)}(\tau_{3})\mathbf{B}^{(1)}(\tau_{3})\right](b_{3}^{2}\boldsymbol{\epsilon}_{2}^{2}/b_{2}^{2}\boldsymbol{\epsilon}_{3}^{2}) - \right. \\ &\left. + \mathbf{B}^{(O)}(\tau_{3})\mathbf{B}^{(1)}(\tau_{3})\right](b_{3}^{2}\boldsymbol{\epsilon}_{2}^{2}/b_{2}^{2}\boldsymbol{\epsilon}_{3}^{2}) + \\ &\left. + \mathbf{B}^{(O)}(\tau_{3})\mathbf{B}^{(O)}(\tau_{2})\mathbf{B}^{(O)$$

The enthalpy H:

$$(H - H^{0})/RT = \left[B^{(0)}(\tau_{2}) - B^{(1)}(\tau_{2})\right](b_{2}/v) + \left(\left[C^{(0)}(\tau_{3}) - B^{(1)}(\tau_{3})\right](b_{3}^{2}/b_{2}^{2}) - 4\left[B^{(0)}(\tau_{3})\right]^{2} - B^{(0)}(\tau_{3})B^{(1)}(\tau_{3})\right](b_{3}^{2}/b_{2}^{2}) + 4\left[B^{(0)}(\tau_{2})\right]^{2} - B^{(0)}(\tau_{2})B^{(1)}(\tau_{2})\right](b_{2}/v)^{2}$$

$$= \tau_{2}^{-1}\left[B^{(0)}(\tau_{2}) - B^{(1)}(\tau_{2})\right](b_{2}kP/Re_{2}) + \left(\tau_{3}^{-2}\left\{C^{(0)}(\tau_{3}) - 0.5C^{(1)}(\tau_{3}) - \left[B^{(0)}(\tau_{3})\right]^{2} + B^{(0)}(\tau_{3})B^{(1)}(\tau_{3})\right](b_{3}^{2}e_{2}^{2}/b_{2}^{2}e_{3}^{2}) - 3\tau_{3}^{-2}B^{(0)}(\tau_{3})\left[B^{(0)}(\tau_{3}) - B^{(1)}(\tau_{3})\right](b_{3}^{2}e_{2}^{2}/b_{2}^{2}e_{3}^{2}) + 3\tau_{2}^{-2}B^{(0)}(\tau_{2})\left[B^{(0)}(\tau_{2}) - B^{(1)}(\tau_{2})\right](b_{2}kP/Re_{2})^{2}$$

The entropy S with $P_0 = 1$ atmosphere and S^0 at 1 atmosphere:

$$\begin{split} &(\mathrm{S}-\mathrm{S}^{\mathrm{O}})/\mathrm{R} = \log_{\mathrm{e}}\left(\mathrm{P}_{\mathrm{O}}\mathrm{V}/\mathrm{RT}\right) - \left[\mathrm{B}^{\mathrm{(O)}}(\tau_{2}) + \mathrm{B}^{\mathrm{(1)}}(\tau_{2})\right]\left(\mathrm{b}_{2}/\mathrm{V}\right) - \\ &\left(\mathrm{o.5}\left[\mathrm{C}^{\mathrm{(O)}}(\tau_{3}) + \mathrm{C}^{\mathrm{(1)}}(\tau_{3})\right]\left(\mathrm{b}_{3}^{2}/\mathrm{b}_{2}^{2}\right) - 2\left\{\left[\mathrm{B}^{\mathrm{(O)}}(\tau_{3})\right]^{2} + \right. \\ &\left. \left. \left. \left(\mathrm{B}^{\mathrm{(O)}}(\tau_{3})\right)\mathrm{B}^{\mathrm{(1)}}(\tau_{3})\right\}\left(\mathrm{b}_{3}^{2}/\mathrm{b}_{2}^{2}\right) + 2\left\{\left[\mathrm{B}^{\mathrm{(O)}}(\tau_{2})\right]^{2} + \right. \\ &\left. \left. \left(\mathrm{B}^{\mathrm{(O)}}(\tau_{2})\right)\mathrm{B}^{\mathrm{(1)}}(\tau_{2})\right\}\right)\left(\mathrm{b}_{2}/\mathrm{V}\right)^{2} \\ &= \log_{\mathrm{e}}\left(\mathrm{P}_{\mathrm{O}}/\mathrm{P}\right) - \tau_{2}^{-1}\mathrm{B}^{\mathrm{(1)}}(\tau_{2})\left(\mathrm{b}_{2}\mathrm{kP}/\mathrm{Re}_{2}\right) + 0.5\left(\tau_{3}^{-2}\left\{\mathrm{C}^{\mathrm{(O)}}(\tau_{3}) - \mathrm{C}^{\mathrm{(1)}}(\tau_{3}) + 2\mathrm{B}^{\mathrm{(O)}}(\tau_{3})\mathrm{B}^{\mathrm{(1)}}(\tau_{3}) - \left[\mathrm{B}^{\mathrm{(O)}}(\tau_{3})\right]^{2}\right)\left(\mathrm{b}_{3}^{2}\mathrm{e}_{2}^{2}/\mathrm{b}_{2}^{2}\mathrm{e}_{3}^{2}\right) - \\ &\left. 3\tau_{3}^{-2}\left\{\left[\mathrm{B}^{\mathrm{(O)}}(\tau_{3})\right]^{2} - 2\mathrm{B}^{\mathrm{(O)}}(\tau_{3})\mathrm{B}^{\mathrm{(1)}}(\tau_{3})\right\}\left(\mathrm{b}_{3}^{2}\mathrm{e}_{2}^{2}/\mathrm{b}_{2}^{2}\mathrm{e}_{3}^{2}\right) + \right. \\ &\left. 3\tau_{2}^{-2}\left\{\left[\mathrm{B}^{\mathrm{(O)}}(\tau_{2})\right]^{2} - 2\mathrm{B}^{\mathrm{(O)}}(\tau_{2})\mathrm{B}^{\mathrm{(1)}}(\tau_{2})\right\}\right)\left(\mathrm{b}_{2}\mathrm{kP}/\mathrm{Re}_{2}\right)^{2} \end{split}$$

The specific heat at constant volume Cv:

$$\begin{split} & \left(\mathsf{C}_{\mathsf{v}} - \mathsf{C}_{\mathsf{v}}^{\mathsf{O}} \right) / \mathsf{R} = - \left[2\mathsf{B}^{(1)} (\tau_2) + \mathsf{B}^{(2)} (\tau_2) \right] (\mathsf{b}_2 / \mathsf{v}) - \left(\left[\mathsf{C}^{(1)} (\tau_3) + \mathsf{b}^{(2)} (\tau_3) \right] (\mathsf{b}_3^2 / \mathsf{b}_2^2) - \left\{ \mathsf{B}^{\mathsf{B}^{(0)}} (\tau_3) \mathsf{B}^{(1)} (\tau_3) + \mathsf{b}^{\mathsf{B}^{(1)}} (\tau_3) \right]^2 + \mathsf{b}^{\mathsf{B}^{(0)}} (\tau_3) \mathsf{B}^{(2)} (\tau_3) \right\} (\mathsf{b}_3^2 / \mathsf{b}_2^2) + \left\{ \mathsf{B}^{\mathsf{B}^{(0)}} (\tau_2) \mathsf{B}^{(1)} (\tau_2) + \mathsf{b}^{\mathsf{B}^{(1)}} (\tau_2) \right\} (\mathsf{b}_2 / \mathsf{v})^2 \\ &= -\mathsf{r}_2 - \mathsf{I} \left[2\mathsf{B}^{(1)} (\tau_2) + \mathsf{B}^{(2)} (\tau_2) \right] (\mathsf{b}_2 \mathsf{kP} / \mathsf{Re}_2) + \\ & \left(\mathsf{r}_3 - \mathsf{2} \left[2\mathsf{B}^{(0)} (\tau_3) \mathsf{B}^{(1)} (\tau_3) + \mathsf{B}^{(0)} (\tau_3) \mathsf{B}^{(2)} (\tau_3) - \mathsf{C}^{(1)} (\tau_3) \right. - \\ & \left. \mathsf{O} \cdot \mathsf{5C}^{(2)} (\tau_3) \right] (\mathsf{b}_3^2 \mathsf{e}_2^2 / \mathsf{b}_2^2 \mathsf{e}_3^2) + \mathsf{r}_3^{-2} \left\{ \mathsf{5B}^{(0)} (\tau_3) \mathsf{B}^{(2)} (\tau_3) + \mathsf{B}^{\mathsf{B}^{(2)}} (\mathsf{r}_3) \right\} \\ & \left. \mathsf{B}^{(0)} (\tau_3) \mathsf{B}^{(1)} (\tau_3) + \mathsf{b} \left[\mathsf{B}^{(1)} (\tau_3) \right]^2 \right\} (\mathsf{b}_3^2 \mathsf{e}_2^2 / \mathsf{b}_2^2 \mathsf{e}_3^2) - \\ & \tau_2^{-2} \left\{ \mathsf{5B}^{(0)} (\tau_2) \mathsf{B}^{(2)} (\tau_2) + \mathsf{6B}^{(0)} (\tau_2) \mathsf{B}^{(1)} (\tau_2) + \mathsf{B}^{(1)} (\mathsf{r}_2) \right\} \right\} \\ & \mathsf{b} \left[\mathsf{B}^{(1)} (\tau_2) \right]^2 \right\} (\mathsf{b}_2 \mathsf{kP} / \mathsf{Re}_2)^2 \end{split}$$

The specific heat at constant pressure C_D :

$$\begin{split} & \left(\mathbb{C}_{p} - \mathbb{C}_{p}^{o} \right) \! / \mathbb{R} = -\mathbb{B}^{(2)} (\tau_{2}) \! \big(b_{2} \! / \mathbb{V} \big) + \left(\! \left\{ \mathbb{C}^{(1)} (\tau_{3}) - \mathbb{C}^{(0)} (\tau_{3}) - 0.5 \mathbb{C}^{(2)} (\tau_{3}) + \mathbb{E}^{(0)} (\tau_{3}) - \mathbb{E}^{(1)} (\tau_{3}) \right]^{2} \! \right\} \left(b_{3}^{2} \! / b_{2}^{2} \right) + \left\{ \! \left\{ \! \left[\mathbb{B}^{(0)} (\tau_{3}) - \mathbb{E}^{(1)} (\tau_{3}) \right] \! \right\} \right. \\ & \left. \mathbb{B}^{(1)} (\tau_{3}) \right]^{2} + \mathbb{E}^{(0)} (\tau_{3}) \mathbb{B}^{(2)} (\tau_{3}) \right\} \left(b_{3}^{2} \! / b_{2}^{2} \right) - \left\{ \! \left\{ \! \left[\mathbb{B}^{(0)} (\tau_{2}) - \mathbb{E}^{(0)} (\tau_{2}) \right] \! \right\} \right. \\ & \left. \mathbb{B}^{(1)} (\tau_{2}) \right]^{2} + \mathbb{E}^{(0)} (\tau_{2}) \mathbb{B}^{(2)} (\tau_{2}) \right\} \left(b_{2} \! / \mathbb{V} \right)^{2} \\ & = -\tau_{2}^{-1} \mathbb{B}^{(2)} (\tau_{2}) \left(b_{2} \! / \mathbb{E}^{2} \! / \mathbb{E}^{2} \right) + \left(\tau_{3}^{-2} \! \left\{ \! \left\{ \! \left(\mathbb{I}^{(1)} (\tau_{3}) - \mathbb{C}^{(0)} (\tau_{2}) - \mathbb{E}^{(0)} (\tau_{3}) \right\} \right. \right. \\ & \left. \mathbb{B}^{(1)} (\tau_{3}) \right]^{2} \right\} \left(b_{3}^{2} \varepsilon_{2}^{2} \! / b_{2}^{2} \varepsilon_{3}^{2} \right) + 3 \tau_{3}^{-2} \left\{ \mathbb{B}^{(0)} (\tau_{3}) \mathbb{B}^{(2)} (\tau_{3}) + \mathbb{E}^{(0)} (\tau_{3}) \right. \\ & \left. \mathbb{B}^{(0)} (\tau_{3}) - \mathbb{B}^{(1)} (\tau_{3}) \right]^{2} \right\} \left(b_{3}^{2} \varepsilon_{2}^{2} \! / b_{2}^{2} \varepsilon_{3}^{2} \right) - \\ & 3 \tau_{2}^{-2} \left\{ \mathbb{B}^{(0)} (\tau_{2}) \mathbb{B}^{(2)} (\tau_{2}) + \mathbb{E}^{(0)} (\tau_{2}) - \mathbb{E}^{(0)} (\tau_{2}) \right. \\ & \left. \mathbb{B}^{(1)} (\tau_{2}) \right\}^{2} \right\} \left(b_{2} \mathbb{E}^{p} \! / \mathbb{E}^{2} \right)^{2} \end{split}$$

The dependence of γ , the ratio of specific heats, α , the isentropic expansion coefficient, and α , the velocity of sound, on the second virial coefficient and its derivatives may be indicated as follows:

The specific-heat ratio $\gamma = C_p/C_v$:

$$\gamma = \gamma^{\circ} + \left[(\gamma^{\circ} - 1)^{2} B^{(2)} (\tau_{2}) + 2\gamma^{\circ} (\gamma^{\circ} - 1) B^{(1)} (\tau_{2}) \right] (b_{2}/V)$$

$$= \gamma^{\circ} + \tau_{2}^{-1} \left[(\gamma^{\circ} - 1)^{2} B^{(2)} (\tau_{2}) + 2\gamma^{\circ} (\gamma^{\circ} - 1) B^{(1)} (\tau_{2}) \right] (b_{2}kP/R\epsilon_{2})$$

The isentropic expansion coefficient $\alpha = -(V/P)(\partial P/\partial V)_S$:

$$\alpha = -(V/P) (\partial P/\partial V)_{T}^{\gamma}$$

$$= \gamma^{O} + \left[\gamma^{OB}^{(O)} (\tau_{2}) + 2\gamma^{O}(\gamma^{O} - 1) B^{(1)} (\tau_{2}) + (\gamma^{O} - 1)^{2} B^{(2)} (\tau_{2}) \right] (b_{2}/V)$$

$$= \gamma^{O} + \tau_{2}^{-1} \left[\gamma^{OB}^{(O)} (\tau_{2}) + 2\gamma^{O}(\gamma^{O} - 1) B^{(1)} (\tau_{2}) + (\gamma^{O} - 1)^{2} B^{(2)} (\tau_{2}) \right] (b_{2}kP/R\epsilon_{2})$$

The velocity of sound a with a at low pressure equal to $a^{O} = (RT\gamma^{O}/M)^{1/2} = (PV\alpha^{O}/M)^{1/2}$:

$$\frac{a - a^{\circ}}{a^{\circ}} = \left[B^{(0)}(\tau_{2}) + (\gamma^{\circ} - 1)B^{(1)}(\tau_{2}) + 0.5(\gamma^{\circ} - 1)^{2}(\gamma^{\circ})^{-1}B^{(2)}(\tau_{2}) \right] (b_{2}/V)$$

$$= \tau_{2}^{-1} \left[B^{(0)}(\tau_{2}) + (\gamma^{\circ} - 1)B^{(1)}(\tau_{2}) + 0.5(\gamma^{\circ} - 1)^{2}(\gamma^{\circ})^{-1}B^{(2)}(\tau_{2}) \right] (b_{2}kP/Re_{2})$$

REFERENCES

- 1. Beattie, J. A., and Stockmayer, W.: Equations of State. Reps. on Prog. in Phys., vol. VII, 1940, pp. 195-229.
- 2. Hirschfelder, Joseph O., Bird, R. Byron, and Spotz, Ellen L.: The Transport Properties for Non-Polar Gases. Jour. Chem. Phys., vol. 16, no. 10, Oct. 1948, pp. 968-981.
- 3. Lennard-Jones, J. E.: On the Determination of Molecular Fields.
 II From the Equation of State of a Gas. Proc. Roy. Soc. (London),
 ser. A, vol. 106, no. 738, Oct. 1, 1924, pp. 463-477.
- 4. Stockmayer, W. H., and Beattie, J. A.: Determination of the Lennard-Jones Parameters From Second Virial Coefficients. Tabulation of the Second Virial Coefficient. Jour. Chem. Phys., vol. 10, no. 7, July 1942, pp. 476-477.
- 5. Curtiss, C. F., and Hirschfelder, J. O.: Thermodynamic Properties of Air. CM-472, Contract NOrd 9938, Bur. Ord., Dept. Navy, and Dept. Chem., Univ. of Wis., June 1, 1948.
- 6. Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., and Spotz, E. L.: The Properties of Gases. Ch. VII The Virial Coefficients. Rep. CF-1504, Contract Nord 9938, Bur. Ord., Dept. Navy, and Univ. of Wis., Jan. 29, 1951.
- 7. Epstein, L. F., and Roe, G. M.: Low Temperature Second Virial Coefficients for a 6-12 Potential. Jour. Chem. Phys., vol. 19, no. 10, Oct. 1951, pp. 1320-1321.
- 8. De Boer, J., and Michels, A.: The Influence of the Interaction of More Than Two Molecules on the Molecular Distribution Function in Compressed Gases. Physica, vol. 6, no. 2, Feb. 1939, pp. 97-114.
- 9. Montroll, E. W., and Mayer, J. E.: Statistical Mechanics of Imperfect Gases. Jour. Chem. Phys., vol. 9, no. 8, Aug. 1941, pp. 626-637.
- 10. Kihara, T.: Determination of Intermolecular Forces From the Equation of State of Gases. Jour. Phys. Soc. (Japan), vol. 3, no. 4, July-Aug. 1948, pp. 265-268.
- 11. Bird, R. B., Spotz, E. L., and Hirschfelder, J. O.: The Third Virial Coefficient for Non-Polar Gases. Jour. Chem. Phys., vol. 18, no. 10, Oct. 1950, pp. 1395-1402.

- 12. Woolley, H. W.: The Representation of Gas Properties in Terms of Molecular Clusters. Jour. Chem. Phys., vol. 21, no. 2, Feb. 1953, pp. 236-241; also, NBS Rep. 1491, Project S52-35, NACA and Nat. Bur. Standards, Mar. 1, 1952.
- 13. Anon.: Tables of Lagrangian Interpolation Coefficients. Columbia Univ. Press (New York), 1944.
- 14. Iberall, Arthur S.: The Effective "Gamma" for Isentropic Expansions of Real Gases. Jour. Appl. Phys., vol. 19, no. 11, Nov. 1948, pp. 997-999.
- 15. De Boer, J., and Michels, A.: Contribution to the Quantum Mechanical Theory of the Equation of State and the Law of Corresponding States. Determination of the Law of Force of Helium. Physica, vol. 5, no. 10, Dec. 1938, pp. 945-957.
- 16. Lennard-Jones, J. E., and Devonshire, A. F.: Critical Phenomena in Gases Pt. I. Proc. Roy. Soc. (London), ser. A, vol. 163, no. 912, Nov. 5, 1937, pp. 53-70.
- 17. Hirschfelder, J. O., McClure, F. T., and Weeks, I. F.: Second Virial Coefficients and the Forces Between Complex Molecules. Jour. Chem. Phys., vol. 10, no. 4, Apr. 1942, pp. 201-211.
- 18. Meyers, Cyril H.: An Equation for the Isotherms of Pure Substances at Their Critical Temperatures. Res. Paper RP1493, Jour. Res., Nat. Bur. Standards, vol. 29, no. 2, Aug. 1942, pp. 157-176.
- 19. David, H. G., Hamann, S. D., and Prince, R. G. H.: The Third Virial Coefficient of Ethane. Jour. Chem. Phys., vol. 20, no. 12, Dec. 1952. p. 1973.

TABLE 1.- COEFFICIENTS IN Z = PV/RT

$$\begin{bmatrix} z = 1 + z_{1}(\tau_{2})(b_{2}/V) + \left[z_{2}(\tau_{3})(b_{3}^{2}/b_{2}^{2}) + z_{12}(\tau_{2}) - z_{12}(\tau_{3})(b_{3}^{2}/b_{2}^{2})\right](b_{2}/V)^{2} \\ = 1 + z_{1}'(\tau_{2})(P/P_{2}) + \left[z_{2}'(\tau_{3})(P_{2}^{2}/P_{3}^{2}) + z_{12}'(\tau_{2}) - z_{12}'(\tau_{3})(P_{2}^{2}/P_{3}^{2})\right](P/P_{2})^{2} \end{bmatrix}$$

т	(at _{T2})	(at T ₃)	(at τ_1 , i = 2, 3)	(at T ₂)	z ₂ ' (at ₇₃)	$ \begin{pmatrix} z_{12}' \\ (at \tau_i, i = 2, 3) \end{pmatrix} $
	(a)	(b)	(c)	(d)	(e)	(f)
0.15 .20 .25	-466.37 -110.577 -48.203		8.7 × 10 ⁵ 48,900 9,294	-3,109.1 -552.887 -192.811		2.9 × 10 ⁷ 917,050 111,528
.30 .35 .40 .45 .50	-27.881 -18.755 -13.799 -10.755 -8.7202		3,109.3 1,406.88 761.632 462.676 304.168	-92.935 -53.585 -34.497 -23.900 -17.4404		25,910.9 8,614.19 3,570.15 1,713.61 912.504
.55 .60 .65 .70 .75	-7.2741 -6.1980 -5.3682 -4.7100 -4.1759	-3.3766 -1.7920	239.649 155.659 115.270 88.7378 69.7535	-13.2256 -10.3300 -8.2588 -6.7286 -5.5679	-52.1655 -34.1873	594.172 320.124 204.621 135.8231 93.0046
.80 .85 .90 .95 1.00	-3.7342 -3.3631 -3.0471 -2.7749 -2.5381	8495 2766 .0765 .2951 .4297	55-7778 45-2423 37-1396 30-8005 25-7674	-4.6678 -3.9566 -3.3857 -2.9210 -2.5381	-23.1156 -16.0376 -11.3684 -8.2050 -6.0122	65.3646 46.9643 34.3885 25.5960 19.3256
1.05 1.10 1.15 1.20 1.25	-2.3302 -2.1464 -1.9826 -1.8359 -1.7038	.5108 .5576 .5822 .5924 .5933	21.7197 18.4277 15.7236 13.4828 11.6114	-2.2193 -1.9512 -1.7240 -1.5300 -1.3630	-4.4618 -3.3465 -2.5321 -1.9294 -1.4781	14.7753 11.4221 8.9170 7.0223 5.5735
1.30 1.35 1.40 1.45 1.50	-1.5841 -1.4753 -1.3758 -1.2847 -1.2009	.5882 .5793 .5683 .5561 .5434	10.0376 8.7055 7.5718 6.6020 5.7685	-1.2185 -1.0928 9827 8860 8006	-1.1368 8763 6758 5205 3994	4.4545 3.5825 2.8974 2.3551 1.9228
1.55 1.60 1.65 1.70 1.75	-1.1235 -1.0519 9855 9236 8659	.5306 .5180 .5059 .4942 .4832	5.0492 4.4261 3.8845 3.4123 2.9994	7249 6574 5972 5433 4948	3046 2299 1709 1242 0871	1.5762 1.2967 1.0701 .8855 .7345

^aMultiply values by b_2/V .

^bMultiply values by $(b_3/V)^2$.

Chaltiply values by $(-1)^{1}(b_{1}/V)^{2}$.

dMultipy values by P/p_2 .

^eMultiply values by $(P/p_3)^2$. ^fMultiply values by $(-1)^{\frac{1}{2}}(P/p_1)^2$.

TABLE 1. - COEFFICIENTS IN Z = PV/RT - Continued

	zl	z ₂	z ₁₂	_{z1} '	z ₂ '	z12'
т .	(at T2)	(at 73)	(at τ_1 , $i = 2, 3$)	(at τ ₂)	(at 73)	(at τ_1 , 1 = 2, 3)
<u> </u>	(a) ²	(b)	(c)	(q)	(e)	(f)
1.80	-0.8120	0.4728	2.6376	-0,4511	-0.0576	0.6106
1.85	7615	.4630	2.3198	4116	- 0342	.5084
1.90	7141	.4538	2.0400	3759	0156	.4238
1.95	6696 6276	.4452 .4371	1.7934 1.5757	3434 3138	0008 .0108	•3537 •2954
12.00	0270	·42/1	1616.7		.0100	•29,54
2.1	5506	.4226	1.2128	2622	.0271	.2063
2.2	4817 4197	.4100 .3990	.9282 .7045	2190 1825	.0368 .0421	.1438 .0999
2.4	3636	.3894	• (045) •5288	1515	.0421	.0688
2.5	3126	.3811	•3909	1250	.0453	.0469
2.6	2661	.3738	.2833	1024	.0hh82	.03143
2.7	2236	.3674	.2000	08281	.04354	.02057
2.8	1845	.3617	.1362	06590	.04180	.01303
2.9	1485	.3568	.0882	05121	.03980	.00787
3.0	1152	-3523	.0531	03841	.03767	.00443
3.1	0844	.3484	.0285	02723	.03552	.00222
3.2	0558	•3 h 49	.0124	01743	.03338	.00091
3.3	0291	.3418	.0034	00883	.03131	.00023
3.4 3.5	0043 .0190	.3389 .3364	.0001	00126 -00542	.02932 .02743	.00004
	.0190	•9904	.0014	•00)42	.02143	.0009
3.6	.0407	.3341	.0066	.01131	.02565	.00038
3.7	.0611	•3320 •3300	.0150	.01652 .02114	.02398 .02241	.00082 .00134
3.8 3.9	.0983	.3300 .3282	.0258	.02521	.02094	.00191
4.0	.1154	.3266	.0533	.02885	.01958	.00250
4.1	.1315	.3251	.0692	.03207	.01831	.00309
4.2	.1467	.3237	.0861	.03492	.01713	.00366
4.3	.1611	.3224	.1038	.03746	.01603	.00421
4.4	.1747	.3212	.1221	03970	.01501	.00473
4.5	.1876	.3200	.1408	.04169	.01406	.00521
4.6	.1999	.3189	.1598	.04346	.01318	.00566
4.7	.2116	.3179	.1790	.04501	.01236	.00608
4.8	.2227	.3169	.1983	.04639	.01160	.00646
4.9 5.0	.2333	.3160	.2176 .2369	.04760 .04867	.01089	.00680 .00711
ا ۲۰۰۰	-2433	.3151	·27 ⁰⁹	.04007	01023	· OOLTT
5.2	.2622	.3134	.2749	-05042	.00905	.00763
5.4	·2794	.3119	.3122	-05173	.00802	.00803
5.6	.2951	.3104	.3483 .3833	.05270 .05338	.00712 .00634	.00833 .00855
5.8 6.0	.3096 .3229	.3090 .3077	.9099 .4171	.05382	.00565	.00869
لـــــــــا	- ,	-2211				

amultiply values by b_2/V .

bMultiply values by $(b_3/V)^2$.

^cMultiply values by $(-1)^{\frac{1}{2}}(b_1/V)^2$.

 $d_{\text{Multiply values by}} P_p_2$.

e_{Multiply} values by $(P/P_3)^2$. f_{Multiply} values by $(-1)^1(P/P_1)^2$.

TABLE 1.- COEFFICIENTS IN Z = PV/RT - Concluded

т	(at T ₂)	z ₂ (at τ ₃) (b)	(at τ_1 , 1 = 2, 3) (c)	z ₁ ' (at τ ₂) (d)	^z 2' (at _{T3}) (e)	(at τ_1 , i = 2, 3) (f)
6.5	0.3520	0.3046	0.4955	0.05415	0.00428	0.00880
7.0	.3761	.3017	.5658	.05373	.00327	.00866
7.5	.3963	.2989	.6283	.05284	.00252	.00838
8.0	.4134	.2962	.6837	.05168	.00196	.00801
8.5	.4280	.2936	.7329	.05036	.00153	.00761
9.0	.4406	.2910	.7765	.04896	.00120	.00719
9.5	.4514	.2886	.8152	.04752	.000939	.006775
10.0	.4609	.2861	.8496	.04609	.000737	.006372
11	.4763	.2813	.9075	.04330	.000450	.005625
12	.4882	.2768	.9535	.04069	.000267	.004966
13	.4975	.2724	.9901	.03827	.000147	.004394
14	.5048	.2682	1.0194	.03606	.0000682	.003901
15	.5106	.2642	1.0428	.03404	.0000156	.003476
16	.5151	.2604	1.0615	.03220	0000196	.003110
17	.5187	.2567	1.0763	.03051	0000430	.002793
18	.5215	.2531	1.0880	.02897	0000583	.002519
19	.5237	.2497	1.0971	.02756	0000681	.002279
20	.5254	.2464	1.1041	.02627	0000740	.002070
22	.5275	.2402	1.1130	.02398	0000785	.001725
24	.5284	.2345	1.1168	.02202	0000776	.001454
26	.5285	.2292	1.1171	.02033	0000741	.001239
28	.5279	.2242	1.1148	.01885	0000695	.001066
30	.5269	.2195	1.1106	.01756	0000646	.0009255
35	.5232	.2091	1.0951	.01495	0000528	.0006705
40	.5186	.2001	1.0757	.01296	0000430	.0005042
45	.5135	.1922	1.0548	.01141	0000353	.0003907
50	.5084	.1853	1.0337	.01017	0000293	.0003101
60	.4982	.1735	.9929	.00830	0000208	.0002068
70	.4887	.1638	.9551	.00698	0000153	.0001462
80	.4798	.1556	.9208	.00600	0000117	.0001079
90	.4716	.1486	.8897	.00524	00000911	.00008238
100	.4641	.1425	.8614	.00464	00000728	.00006461
200	.4114	.1068	.6771	.00206	00000156	· .00001270
300	.3801	.0894	.5780	.00127	00000061	.00000482
400	.3584	.0786	.5137	.00090	00000031	.00000241

⁸Multiply values by b_2/V .

bMultiply values by $(b_3/V)^2$.

CMultiply values by $(-1)^{i}(b_{i}/V)^{2}$.

 $d_{Multiply}$ values by P/P_2 .

 $^{^{}e}$ Multiply values by $(P/P_{3})^{2}$. $f_{Multiply}$ values by $(-1)^{1}(P/P_{1})^{2}$.

TABLE 2.- COEFFICIENTS IN ENTHALPY CORRECTION

$$\begin{split} & \left[\left(\mathbb{H} - \mathbb{H}^{0} \right) / \mathbb{R} \mathbb{T} = 1 + h_{1}(\tau_{2}) \left(h_{2} / \mathbb{V} \right) + \left[h_{2}(\tau_{3}) \left(h_{3}^{2} / h_{2}^{2} \right) + h_{12}(\tau_{2}) - h_{12}(\tau_{3}) \left(h_{3}^{2} / h_{2}^{2} \right) \right] \left(h_{2} / \mathbb{V} \right)^{2} \\ & = 1 + h_{1}'(\tau_{2}) \left(\mathbb{P} / \mathbb{P}_{2} \right) + \left[h_{2}'(\tau_{3}) \left(\mathbb{P}_{2}^{2} / \mathbb{P}_{3}^{2} \right) + h_{12}'(\tau_{2}) - h_{12}'(\tau_{3}) \left(\mathbb{P}_{2}^{2} / \mathbb{P}_{3}^{2} \right) \right] \left(\mathbb{P} / \mathbb{P}_{2} \right)^{2} \end{split}$$

	r			I	r —— ——	
τ	h ₁ (at τ ₂)	h ₂ (at ₇₃) (b)	(at τ_1 , $i = 2, 3$) (c)	h ₁ ' (at ₇₂) (d)	h ₂ ' (at τ ₃) (e)	h ₁₂ ' (at τ _i , i = 2, 3) (f)
0.15 .20 .25	-3,216.4 -575.83 -206.59		6 × 10 ⁶ 254,700 39,830	-21,443 -2,879.2 -826.36		2 × 10 ⁸ 4.8 × 10 ⁶ 478,000
.30 .35 .40 .45 .50	-104.488 -64.003 -44.066 -32.7445 -25.6439	,	11,652 4,801.4 2,432.23 1,408.66 894.48	-348.29 -182.86 -110.165 -72.766 -51.288		97,100 29,397 11,401.1 5,217.26 2,683.44
.55 .60 .65 .70	-20.8563 -17.4468 -14.9137 -12.9671 -11.4299	-17.72 -10.82	634.84 432.54 320.24 244.30 190.92	-37.920 -29.078 -22.944 -18.5244 -15.2399	-160.80 -104.08	1,573.98 901.12 568.47 373.93 254.56
.80	-10.1884	-6.65	152.18	-12.7355	-69:84	178.34
.85	-9.1665	-4.057	123.312	-10.7841	-48.284	128.006
.90	-8.3120	-2.400	101.311	-9.2356	-34.232	93.806
.95	-7.5877	-1.322	84.221	-7.9871	-24.794	69.989
1.00	-6.9663	609	70.725	-6.9663	-18.290	53.044
1.05	-6.4279	1347	59.9137	-6.1218	-13.7081	40.7576
1.10	-5.9570	.1823	51.1441	-5.4155	-10.4164	31.7009
1.15	-5.5419	.3942	43.9508	-4.8190	-8.0102	24.9248
1.20	-5.1734	.5344	37.9928	-4.3112	-6.2249	19.7879
1.25	-4.8442	.6256	33.0139	-3.8754	-4.8819	15.8467
1.30	4.5483	.6826	28.8200	-3.4987	-3.8594	12.7899
1.35	4.2811	.7161	25.2625	-3.1712	-3.0725	10.3961
1.40	4.0385	.7528	22.2253	-2.8846	-2.4610	8.5046
1.45	-3.8173	.7581	19.6169	-2.6326	-1.9815	6.9977
1.50	-3.6150	.7557	17.3649	-2.4100	-1.6024	5.7883
1.55	-3.4292	.7277	15.4110	-2.2124	-1.3008	4.8109
1.60	-3.2579	.7162	13.7082	-2.0362	-1.0589	4.0160
1.65	-3.0997	.7023	12.2182	-1.8786	8640	3.3659
1.70	-2.9529	.6872	10.9093	-1.7370	7059	2.8311
1.75	-2.8164	.6712	9.7556	-1.6094	5772	2.3891
1.80	-2.6894	.6549	8.7354	-1.4941	4719	2.0221
1.85	-2.5706	.6388	7.8306	-1.3895	3854	1.7160
1.90	-2.4595	.6229	7.0258	-1.2945	3140	1.4597
1.95	-2.3553	.6074	6.3083	-1.2078	2550	1.2442
2.00	-2.2574	.5926	5.6671	-1.1287	2060	1.0626

and tiply values by b_2/v . by the tiply values by $(b_3/v)^2$. Chaltiply values by $(-1)^1(b_1/v)^2$.

 d Multiply values by $^{P}/p_{2}$.

emultiply values by $(P/p_5)^2$.

fmultiply values by $(-1)^1(P/p_1)^2$.

TABLE 2.- COEFFICIENTS IN ENTHALPY CORRECTION - Continued

						
т	h ₁ (at τ ₂) (a)	h ₂ (at τ ₃) (b)	(at τ_1 , 1 = 2, 3)	h ₁ ' (at τ ₂) (d)	h ₂ ' (at ₇₃) (e)	(at τ_1 , i = 2, 3)
2.1	-2.0782	0.5646	4.5773	-0.9896	-0.1315	0.7784
2.2	-1.9183	.5394	3.6963	8720	07948	.57278
2.3	-1.7749	.5168	2.9795	7717	04313	.42243
2.4	-1.6455	.4965	2.3930	6856	01766	.31159
2.5	-1.5381	.4786	1.9109	6112	.00014	.22930
2.6	-1.4213	.4626	1.5130	5467	.01248	.16786
2.7	-1.3236	.4484	1.1838	4902	.02092	.12179
2.8	-1.2340	.4358	.9107	4407	.02655	.08712
2.9	-1.1515	.4246	.6840	3971	.03016	.06100
3.0	-1.0752	.4147	.4956	3584	.03231	.04130
3.1	-1.0046	.4058	.3392	3241	.03340	.02647
3.2	9391	.3979	.2095	2935	.03374	.01535
3.3	8780	.3909	.1023	2661	.03354	.00705
3.4	8210	.3846	.0141	2415	.03297	.00091
3.5	7677	.3789	0582	2193	.03212	00356
3.6	7178	•3739	1169	1994	.03110	00677
3.7	6709	•3693	1641	1813	.02997	00899
3.8	-,6268	•3651	2014	1650	.02877	01046
3.9	5854	•3614	2302	1501	.02754	01135
4.0	5461	•3580	2521	1365	.02632	01182
4.1	5090	.3550	2677	1241	.02510	01194
4.2	4739	.3522	2781	1128	.02391	01182
4.3	4406	.3497	2839	1025	.02275	01152
4.4	4091	.3473	2859	09298	.02163	01107
4.5	3792	.3452	2845	08425	.02056	01054
4.6	3506	. 3432	2803	07622	.01953	0099 ¹ 4
4.7	3234	. 3414	2737	06882	.01855	00929
4.8	2976	. 3398	2650	06199	.01762	00863
4.9	2728	. 3383	2546	05568	.01674	00795
5.0	2493	. 3369	2426	04985	.01590	00728
5.2	2051	• 3344	2151	03944	.01435	00597
5.4	1646	• 3322	1839	03048	.01297	00473
5.6	1273	• 3303	1503	02273	.01173	00359
5.8	0929	• 3286	1150	01602	.01062	00256
6.0	0611	• 3272	0789	01018	.00964	00164
6.5	.0090	.3241	.0126	.00138	.007597	.000224
7.0	.0678	.3216	.1020	.00969	.006043	.001562
7.5	.1179	.3194	.1869	.01572	.004847	.002492
8.0	.1609	.3173	.2662	.02012	.003918	.003119
8.5	.1982	.3154	.33395	.02333	.003191	.003524

^aMultiply values by b_2/V .

 $b_{\text{Multiply values by}} (b_{\overline{3}}/\overline{v})^2$. $c_{\text{Multiply values by}} (-1)^{\frac{1}{2}} (b_{\underline{1}}/\overline{v})^2$.

 $^{^{\}rm d}_{\rm Multiply}$ values by P/p₂.

e_{Multiply} values by $(P/P_{\overline{2}})^2$.

f_{Multiply} values by $(-1)^1(P/P_1)^2$.

TABLE 2. - COEFFICIENTS IN ENTHALPY CORRECTION - Concluded

		I		 		
τ	h ₁ (at τ ₂)	h ₂ (at τ ₃)	(at τ_1 , 1 = 2, 3) (c)	h ₁ ' (at τ ₂) (d)	h ₂ ' (at τ ₃) (e)	h ₁₂ ' (at τ_i , $i = 2, 3$) (f)
9.0	0.2309	0.3137	0.4069	0.02566	0.002617	0.003768
9.5	.2596	.3120	.4688	.02733	.002158	.003896
10.0	.2850	.3102	.5254	.02850	.001789	.003941
11	.3278	.3068	.6246	.02980	.001245	.003872
12	.3624	.3034	.7078	.03020	.000879	.003686
13	.3907	.3001	.7776	.03006	.000626	.003451
14	.4142	.2969	.8365	.02959	.000448	.003201
15	.4339	.2937	.8863	.02893	.0003205	.0029541
16	.4506	.2905	.9285	.02816	.0002282	.0027202
17	.4648	.2875	.9645	.02734	.0001603	.0025030
18	.4770	.2845	.9952	.02650	.0001101	.0023036
19	.4876	.2815	1.0214	.02566	.0000725	.0021220
20	.4967	.2786	1.0438	.02484	.0000441	.0019572
22	.5116	.2730	1.0795	.02326	.0000065	.0016728
24	.5231	.2677	1.1057	.02180	0000151	.0014396
26	.5320	.2627	1.1246	.02046	0000273	.0012477
28	.5390	.2579	1.1381	.01925	0000340	.0010888
30	.5444	.2533	1.1475	.01815	0000373	.0009562
35	•5533	.2429	1.1581	.01581	0000381	.0007090
40	•5579	.2337	1.1572	.01395	0000348	.0005424
45	•5598	.2255	1.1499	.01244	0000306	.0004259
50	•5600	.2181	1.1387	.01120	0000266	.0003416
60 70 80 90 100	.5576 .5532 .5479 .5423 .5366	.2054 .1948 .1857 .1779 .1710	1.1112 1.0812 1.0515 1.0230 .9961	.00929 .00790 .00685 .00603	0000201 0000154 0000121 00000961 00000780	.0002315 .0001655 .0001232 .00009472 .00007470
200	.4890	.1298	.8047	.00244	00000178	.00001509
300	.4567	.1093	.6943	.00152	00000071	.00000579
400	.4331	.0964	.6208	.00108	00000037	.00000291

^aMultiply values by b_2/V .

bMultiply values by $(b_3/V)^2$.

CMultiply values by $(-1)^{1}(b_{1}/V)^{2}$.

 $^{^{}d}$ Multiply values by $^{p}/^{p_{2}}$.

eMultiply values by $(P/P_3)^2$.

fulltiply values by $(-1)^{1}(P/P_{1})^{2}$.

TABLE 3 .- COEFFICIENTS IN ENTROPY CORRECTION

$$\begin{split} & \left[(s - s^{o}) / R = \log_{e} \left(P_{0} V / RT \right) + s_{1} (\tau_{2}) \left(b_{2} / V \right) + \left[s_{2} (\tau_{3}) \left(b_{3}^{2} / b_{2}^{2} \right) + s_{12} (\tau_{2}) - s_{12} (\tau_{3}) \left(b_{3}^{2} / b_{2}^{2} \right) \right] \left(b_{2} / V \right)^{2} \\ & = \log_{e} \left(P_{0} / P \right) + s_{1}' (\tau_{2}) \left(P / P_{2} \right) + \left[s_{2}' (\tau_{3}) \left(P_{2}^{2} / P_{3}^{2} \right) + s_{12}' (\tau_{2}) - s_{12}' (\tau_{3}) \left(P_{2}^{2} / P_{3}^{2} \right) \right] \left(P / P_{2} \right)^{2} \end{split}$$

τ	s ₁ (at τ ₂) (a)	(at τ_3)	⁸ 12 (at T ₁ , 1 = 2, 3) (c)	⁸ 1' (at τ ₂) (d)	⁸ 2' (at τ ₃) (e)	s ₁₂ ' (at τ ₁ , i = 2, 3) (f)
0.15 .20 .25	-2,283.6 -354.676 -110.184		4.7 × 10 ⁶ 181,300 25,890	-18,333 -2,326.27 -633.55		1.86 × 10 ⁸ 4,317,000 422,230
.30 .35 .40 .45	-48.727 -26.493 -16.468 -11.234 -8.2035		6,988.75 2,690.97 1,289.784 714.646 438.228	-255.36 -129.28 -75.668 -48.866 -33.847		84,150 25,089.5 9,616.01 3,503.64 2,227.19
.55 .60 .65 .70	-6.3081 -5.0509 -4.1773 -3.5471 -3.0781	-12.65 -8.13	275.366 202.050 147.333 111.196 86.292	-24.695 -18.748 -14.685 -11.7959 -9.6720	-134.7 -86.99	1,276.90 741.06 466.16 306.02 208.06
.80	-2.7199	-5.38	68.516	-8.0677	-58.28	145.66
.85	-2.4403	-3.642	55.449	-6.8275	-40.26	104.52
.90	-2.2178	-2.515	45.601	-5.8499	-28.55	76.61
.95	-2.0378	-1.765	38.020	-5.0661	-20.69	57.19
1.00	-1.8902	-1.254	32.073	-4.4283	-15.28	43.38
1.05	-1.7674	9009	27.3341	-3.9025	-11.477	33.370
1.10	-1.6643	6542	23.5026	-3.4642	-8.743	25.990
1.15	-1.5766	4791	20.3654	-3.0950	-6.744	20.466
1.20	-1.5015	3542	17.7686	-2.7812	-5.260	16.277
1.25	-1.4366	2643	15.5967	-2.5123	-4.143	13.060
1.30	-1.3801	1996	13.7637	-2.2802	-3.291	10.563
1.35	-1.3305	1529	12.2042	-2.0784	-2.634	8.605
1.40	-1.2868	1197	10.8675	-1.9019	-2.123	7.056
1.45	-1.2479	0961	9.7139	-1.7467	-1.721	5.820
1.50	-1.2133	0793	8.7122	-1.6094	-1.403	4.827
1.55	-1.1822	0682	7.8373	-1.4875	-1.148	4.023
1.60	-1.1541	0609	7.9691	-1.3788	9440	3.3677
1.65	-1.1287	0565	6.3914	-1.2813	7785	2.8308
1.70	-1.1056	0542	5.7909	-1.1937	6439	2.3884
1.75	-1.0846	0536	5.2565	-1.1146	5337	2.0219
1.80	-1.0653	0542	4.7790	-1.0430	4431	1.7168
1.85	-1.0476	0557	4.3509	9779	3683	1.4618
1.90	-1.0312	0578	3.9658	9186	3062	1.2477
1.95	-1.0161	0603	3.6182	8645	2546	1.0674
2.00	-1.0021	0631	3.3036	8149	2114	.9149

abilitiply values by b_2/v . $b_{Multiply}$ values by $\left(b_3/v\right)^2$.

^clultiply values by $(-1)^{1}(b_{1}/v)^{2}$.

 $^{^{}d}$ Multiply values by P/p_{2} .

emultiply values by $(P/p_3)^2$.

f_{Multiply} values by $(-1)^{1}(P/p_{1})^{2}$.

TABLE 3.- COEFFICIENTS IN ENTROPY CORRECTION - Continued

	г					
τ	(at τ_2)	s ₂ (at ₇₃) (b)	(at τ_1 , $i = 2, 3$) (c)	s ₁ ' (at τ ₂) (d)	⁸ 2' (at ₇₃) (e)	s ₁₂ ' (at r ₁ , i = 2, 3) (f)
2.1	-0.9769	-0.0693	2.7581	-0.7274	-0.1450	0.6753
2.2	9549	0756	2.3041	6530	0979	.5009
2.3	9355	0818	1.9228	5892	0642	.3725
2.4	9183	0876	1.5999	5341	0400	.2772
2.5	9029	0930	1.3245	4862	02253	.20585
2.6	8890	0980	1.0881	4443	00993	.15215
2.7	8764	1026	.8838	4074	00085	.11150
2.8	8650	1068	.7065	3748	.00565	.08061
2.9	8544	1105	.5517	3458	.01026	.05706
3.0	8448	1138	.4159	3200	.01347	.03909
3.1	8358	1168	.2965	2968	.01565	.02536
3.2	8275	1195	.1909	2760	.01705	.01489
3.3	8197	12175	.09725	2572	.01789	.00693
3.4	8125	12380	.01395	2402	.01831	.00091
3.5	8057	12564	06037	2248	.01841	00361
3.6 3.7 3.8 3.9 4.0	7993 7932 7875 7820 7769	12722 12867 12989 13096 13188	12687 18651 24013 28817 33203	2107 1979 1861 1753 1654	.01828 .01798 .01757 .01707	00696 00940 01113 01230 01307
4.1	7720	13260	37145	1562	.01595	01349
4.2	7673	1333	40716	1478	.01534	01365
4.3	7628	1339	43956	1399	.01473	01362
4.4	7585	13439	46897	1327	.01413	01344
4.5	7544	1348	49573	1259	.01353	01315
4.6	7504	13513	52010	1197	.01294	01277
4.7	7466	13538	54229	1138	.01237	01233
4.8	7429	13556	56254	1084	.01182	01186
4.9	7394	13568	58103	1033	.01129	01135
5.0	7359	13574	59791	09852	.01078	01083
5.2	7294	13581	62744	08986	.009828	009778
5.4	7233	13566	65214	08221	.008958	008745
5.6	7175	13536	67279	075 ¹ 43	.008169	007760
5.8	7121	13492	69007	06939	.007455	006838
6.0	7069	13439	70448	06400	.006810	005988

^aMultiply values by b_2/V .

bMultiply values by $(b_3/V)^2$.

CMultiply values by $(-1)^{\frac{1}{2}}(b_{\frac{1}{2}}/V)^2$.

 $^{^{}d}$ Multiply values by $^{p}/^{p}_{2}$.

e_{Multiply} values by $(P/P_3)^2$.

f_{Multiply} values by $(-1)^1(P/P_1)^2$.

TABLE 3.- COEFFICIENTS IN ENTROPY CORRECTION - Concluded

		l		-		· · · · · · · · · · · · · · · · · · ·
τ	(at T2)	(at 73)	s ₁₂ (at τ_1 , i = 2, 3) (c)	⁸ 1' (at ₇₂) (d)	⁸ 2' (at ₇₃)	⁸ 12' (at τ _i , i = 2, 3)
	(a)	- (0)	(6)	(α)	(e)	(f)
6.5	-0.6950	-0.13275	-0.73070	-0.05277	0.005458	-0.004174
7.0	6843	13088	74661	04404	.004408	002768
7.5	6747	12892	75546	03712	.003587	001696
8.0	6659	12694	75939	03156	.002940	000887
8.5	6578	12492	75984	02703	.002428	000280
9.0	6503	12287	75783	02330	.002018	.000173
9.5	6433	12084	75405	02019	.001689	.000508
10.0	6367	11892	74902	01759	.001420	.000754
11	6248	11520	73659	01350	.001020	.001059
12	6140	11172	72241	01048	.000745	.001203
13	6043	10848	70755	008214	.000552	.001254
14	5954	10546	69262	006471	.0004136	.0012504
15	5872	10264	67795	005110	.0003127	.0012162
16	5797	10000	66370	004033	.0002380	.0011653
17	5726	09753	64999	003170	.0001818	.0011064
18	5660	09522	63684	002472	.0001392	.0010443
19	5599	09306	62427	001902	.0001065	.0009823
20	5540	09103	61227	001433	.0000811	.0009221
22 2 ¹ 4 26 28 30	5433 5337 5249 5168 5094	08732 08403 08108 07842 07600	58992 56956 55101 53402 51843	000720 000220 .000137 .000395	.0000458 .0000237 .0000097 .0000007 0000050	.0008105 .0007125 .0006280 .0005556 .0004935
35	4931	07080	48451	.000860	0000117	.0003738
40	4793	06649	45630	.000983	0000133	.0002903
45	4673	06290	43240	.001028	0000130	.0002305
50	4567	05982	41184	.001033	0000120	.0001866
60	4388	05480	37813	.000989	00000973	.00012807
70	4241	05086	35148	.000921	00000776	.00009239
80	4117	04768	32974	.000851	00000622	.00006926
90	4010	04502	31157	.000785	00000505	.00005353
100	3915	04276	29610	.000725	00000416	.00004240
200	3339	03040	21094	.000388	00000100	.00000874
300	3036	02486	17264	.000255	00000041	.0000338
400	2836	02156	14968	.000187	00000021	.00000171

^aMultiply values by b_2/V .

^bMultiply values by $(b_3/v)^2$.

^cMultiply values by $(-1)^{1}(b_{1}/V)^{2}$.

 $^{^{\}rm d}$ Multiply values by $^{\rm P}/^{\rm p}_2$.

^eMultiply values by $(P/P_3)^2$.

 $f_{\text{Multiply values by } (-1)^{\frac{1}{2}}(P/P_{1})^{2}$.

TABLE 4.- COEFFICIENTS IN CORRECTION FOR SPECIFIC HEAT AT CONSTANT VOLUME

$$\begin{split} & \left[\left(c_{v} - c_{v}^{o} \right) / R = w_{1}(\tau_{2}) \left(b_{2} / V \right) + \left[w_{2}(\tau_{3}) \left(b_{3}^{2} / b_{2}^{2} \right) + w_{12}(\tau_{2}) - w_{12}(\tau_{3}) \left(b_{3}^{2} / b_{2}^{2} \right) \right] \left(b_{2} / V \right)^{2} \\ & = w_{1}' \left(\tau_{2} \right) \left(P / p_{2} \right) + \left[w_{2}' \left(\tau_{3} \right) \left(p_{2}^{2} / p_{3}^{2} \right) + w_{12}' \left(\tau_{2} \right) - w_{12}' \left(\tau_{3} \right) \left(p_{2}^{2} / p_{3}^{2} \right) \right] \left(P / p_{2} \right)^{2} \end{split}$$

						
٠٦	w ₁ (at τ ₂) (a)	(at 73)	(at T ₁ , 1 = 2, 3)	(d) · (at _T 2)	(at 73)	(at T ₁ , 1 = 2, 3)
0.15 .20 .25	16,686 2,029.4 528.3		-6.14 × 107 -1,763,500 -202,200	111,240 10,146.8 2,113.3		-2.38 × 10 ¹⁰ -3.85 × 10 ⁸ -28,280,000
.30 .35 .40 .45 .50	203.66 98.970 55.832 34.899 23.4921		-46,190 -15,614 -6,746.1 -3,436.3 -1,965.1	678.87 282.771 139.580 77.553 46.9842		-4,501,000 -112,300 -37,350 -15,112 -7,040.8
.55 .60 .65 .70	16.7181 12.4210 9.5495 7.5484 6.1051	81.3 52.0	-1,224.3 -814.1 -569.5 -414.9 -312.5	30.3965 20.7017 14.6915 10.7834 8.1401	238.5 137.7	-3,645.4 -2,047.5 -1,226.6 -774.2 -510.2
.80 .85 .90 .95 1.00	5.0336 4.2186 3.5857 3.0853 2.6833	34.4 23.5 16.4 11.7 8.4	-241.8 -191.5 -154.6 -126.9 -105.7	6.2920 4.9631 3.9841 3.2477 2.6833	83.2 52.1 33.7 22.4 15.2	-348.5 -245.4 -177.4 -131.1 -98.9
1.05 1.10 1.15 1.20 1.25	2.3560 2.0862 1.8613 1.6720 1.5114	6.2 4.5 3.38 2.53 1.89	-89.1 -76.0 -65.44 -56.83 -49.75	2.2438 1.8965 1.6185 1.3933 1.2091	10.6 7.46 5.35 3.89 2.86	-75.9 -59.10 -46.69 -37.34 -30.19
1.30 1.35 1.40 1.45 1.50	1.3739 1.2554 1.1525 1.0628 .9840	1.42 1.06 .784 .574 .410	-43.85 -38.90 -34.701 -31.119 -28.039	1.0568 .9299 .8232 .7330 .6560	2.13 1.60 1.209 .922 .707	-24.66 -20.33 -16.896 -14.151 -11.937
1.55 1.60 1.65 1.70 1.75	.9144 .8528 .7979 .7489 .7048	.282 .183 .107 .046 002	-25.374 -23.054 · -21.024 -19.238 -17.660	.5899 .5330 .4836 .4405 .4027	.545 .422 .328 .255 .199	-10.134 -8.655 -7.434 -6.417 -5.567

^aMultiply values by b_2/V .

bifultiply values by $(b_3/V)^2$.

^cMultiply values by $(-1)^{i}(b_{i}/v)^{2}$.

dMultiply values by P/P2.

eMultiply values by $(P/p_3)^2$.

 $f_{\text{Multiply values by}}$ (-1) $^{i}(P/P_{i})^{2}$.

TABLE 4.- COEFFICIENTS IN CORRECTION FOR SPECIFIC HEAT AT CONSTANT VOLUME - Continued

$\overline{}$			· · · · · · · · · · · · · · · · · · ·			
τ	(at T ₂)	Ψ ₂ (at τ ₃) (b)	(at τ_1 , 1 = 2, 3) (c)	(at T ₂)	Ψ2' (at τ ₃) (e)	w ₁₂ ' (at τ_1 , 1 = 2, 3) (f)
1.80	0.6651	-0.039	-16.258	0.3695	0.1548	-4.8512
1.85	.6293	067	-15.008	.3402	.1205	-4.2452
1.90	.5968	089	-13.890	.3141	.0935	-3.7296
1.95	.5672	105	-12.886	.2909	.0723	-3.2888
2.00	.5403	117	-11.980	.2702	.0555	-2.9103
2.1	.4931	131	-10.420	.2348	.0319	-2.3011
2.2	.4532	138	-9.129	.2060	.0166	-1.8410
2.3	.4193	139	-8.050	.1823	.0070	-1.4885
2.4	.3902	136	-7.141	.1626	.0011	-1.2151
2.5	.3651	130	-6.367	.1460	0026	-1.0004
2.6	.3432	123	-5.703	.1320	0047	8301
2.7	.3241	116	-5.130	.1200	0060	6938
2.8	.3073	109	-4.632	.1098	0066	5836
2.9	.2924	101	-4.197	.1008	0068	4939
3.0	.2792	093	-3.815	.09307	0067	4203
3.1	.2674	085	-3.478	.08626	00651	35952
3.2	.2568	078	-3.178	.08025	00627	30895
3.3	.2474	072	-2.911	.07497	00592	26667
3.4	.2388	065	-2.672	.07024	00554	23110
3.5	.2310	059	-2.458	.06600	00517	20102
3.6	.2240	053	2.265	.06222	00482	17548
3.7	.2176	048	-2.091	.05881	00451	15367
3.8	.2117	043	-1.932	.05572	00418	13499
3.9	.2064	039	-1.788	.05292	00387	11892
4.0	.2014	035	-1.657	.05036	00362	10503
4.1	.1969	031	-1.537	.04803	00339	09299
4.2	.1927	027	-1.428	.04589	00316	08253
4.3	.1889	023	-1.327	.04392	00291	07340
4.4	.1853	020	-1.234	.04211	00271	06540
4.5	.1820	017	-1.148	.04044	00250	05839
4.6	.1789	01 ¹ 4	-1.069	.03889	00234	05222
4.7	.1760	011	996	.03745	00218	04678
4.8	.1733	008	928	.03611	00203	04196
4.9	.1708	005	865	.03486	00188	03769
5.0	.1685	0031	8066	.03370	00176	03390
5.2	.1642	.0018	7011	.03158	00152	02752
5.4	.1605	.0062	6090	.02972	00133	02242
5.6	.1571	.0101	5282	.02806	00116	01832
5.8	.1541	.013 ¹ 4	4571	.02657	00102	01501
6.0	.1514	.0165	3941	.02524	00090	01231

^aMultiply values by b_2/V .

bMultiply values by $(b_3/V)^2$.

^cMultiply values by $(-1)^{1}(b_{1}/v)^{2}$.

 $^{^{\}rm d}$ Multiply values by $^{\rm P/p_2}$.

^eMultiply values by $(P/P_{3})^{2}$.

 $f_{\text{Multiply values by}}$ (-1) $\frac{1}{(P/p_i)^2}$.

38

TABLE 4.- COEFFICIENTS IN CORRECTION FOR SPECIFIC HEAT AT CONSTANT VOLUME - Concluded

	1					
1	w _l	¥2	¥ ₁₂	w _l '	w ₂ '	¥12'
т	(at T2)	(at 73)	(at τ_1 , $1 = 2, 3$)	(at T2)	(at T3)	(at τ_1 , 1 = 2, 3)
	(a)	(b)	(c)	(a)	(e)	(f)
			(6)		(6)	<u>\</u>
6.5	0.1458	0.0226	-0.2653	0.02244	-0.000682	-0.007494
7.0	.1414	.0270	1674	.02020	000535	004501
7.5	.1378	.0303	0915	.01838	000434	002598
8.0	.1349	.0327	0319	.01686	000361	001369
8.5	.1325	.0346	.0156	.01558	000306	000568
9.0	.1304	.0361	.0539	.01449	000263	-•0000/1/1
9.5	.1286	.0374	.0850	.01354	000229	.000299
10.0	.1270	.0383	.1105	.01270	000203	.000519
,,	701.5	0705	71.00	01176	000765	0.0001.7
112	.1245 .1224	.0390	.1490	.01132 .01020	000167 000140	.000741
13	.1206	.0396 .0400	.1757 .1945	.00928	~.000140 ~.000118	.000805 .000796
14	.1192	.0400	.2078	.00920	000102	.000753
15	.1179	.0402	.2173	.00786	~.000088	.000698
~	•	•6.67		100,00		2000070
16	.1167	.0403	.2239	•00730	000078	.000640
17	.1157	.0401	.2284	.00681	000069	.000583
18	.1147	•0399	.2314	.00638	000061	. 0005 <u>3</u> 0
19	.1139	.0396	-2333	.00599	000055	.000481
20	.1131	.0393	.2343	.00565	000050	.000437
22	.1116	.0385	.2345	.00507	000042	.000363
24	.1103	.0376	.2330	00460	000036	.000303
26	.1091	.0367	.2306	.00420	000031	.000256
28	.1080	.0357	.2276	.00386	000027	.000218
30	.1070	.0348	.2243	.00357	000024	.000187
35	.1047	.0329	.2155	.00299	0000179	.0001312
40	.1027	.0313	.2069	.00257	0000179	.0001912
.45	.1010	.0299	.1988	.00224	0000109	.0000726
50	.09937	.0286	.1914	.00199	0000088	.0000564
[]						· ,
60	.09658	.0264	.1784	.00161	0000060	.0000362
70	.09419	.0246	.1675	.001346	0000044	.0000248
80	.09211	.0232	.1582	.001151	0000033	.0000178
90 100	.09026	.0220	.1503 .1434	.001003	0000025 0000020	.0000133 .0000102
1 200	.0001	.0209	• 1474	.000000	000020	•0000102
200	.07778	.0150	.1040	.000389	00000042	.00000180
300	.07165	.0124	.0855	.000239	00000017	.00000065
400	.06745	.0107	.0743	.000169	00000008	.0000031

 $a_{\text{Multiply values by }} b_2/v.$

b_{Multiply} values by $(b_3/v)^2$. c_{Multiply} values by $(-1)^1(b_1/v)^2$.

 $^{^{\}rm d}$ Multiply values by P/P₂.

 $e_{\text{Multiply values by}} (P/P_{5})^{2}$.

fMultiply values by $(-1)^{\frac{1}{2}}(P/P_1)^2$.

TABLE 5.- COEFFICIENTS IN CORRECTION FOR SPECIFIC HEAT AT CONSTANT PRESSURE

$$\begin{split} & \left[\left(c_{p} - c_{p}^{o} \right) / R = c_{1}(\tau_{2}) \left(b_{2} / V \right) + \left[c_{2}(\tau_{3}) \left(b_{3}^{2} / b_{2}^{2} \right) + c_{12}(\tau_{2}) - c_{12}(\tau_{3}) \left(b_{3}^{2} / b_{2}^{2} \right) \right] \left(b_{2} / V \right)^{2} \\ & = c_{1}' \left(\tau_{2} \right) \left(P / p_{2} \right) + \left[c_{2}' \left(\tau_{3} \right) \left(p_{2}^{2} / p_{3}^{2} \right) + c_{12}' \left(\tau_{2} \right) - c_{12}' \left(\tau_{3} \right) \left(p_{2}^{2} / p_{3}^{2} \right) \right] \left(P / p_{2} \right)^{2} \end{split}$$

					,	
т	c ₁ (at τ ₂) (a)	c ₂ (at T ₃)	(at τ_i , $i = 2, 3$)	c _l ' (at τ ₂) (d)	c ₂ ' (at τ ₃) (e)	c ₁₂ ' (at τ_i , i = 2, 3) (f)
0.15 .20 .25	22,186 2,959.9 845.1		-7.24 × 10 ⁷ -2.304 × 10 ⁶ -2.91 × 10 ⁵	147,907 14,799 3,380.4		-2.76 × 10 ⁹ -4.942 × 10 ⁷ -4.004 × 10 ⁶
.30 .35 .40 .45	356.88 189.47 116.37 78.878 57.3395		-72,550 -26,503 -12,248 -5,761.6 -3,972.9	1,189.6 541.33 290.92 175.284 114.679	•	-6.956 x 10 ⁵ -187,340 -66,516 -28,452 -13,891.5
.55 .60 .65 .70	43.8824 34.9187 28.6405 24.0627 20.6131	310.2 220.5	-2,602.8 -1,778.9 -1,282.2 -957.8 -736.2	79.7863 58,1978 44.0623 34.3752 27.4841	864.4 545.0	-7,549.0 -4,340.1 -2,671.0 -1,723.4 -1,155.8
.80 .85 .90 .95	17.9419 15.8255 14.1156 12.7108 11.5398	162.3 122.9 95.3 75.4 60.7	-579.4 -465.0 -379.3 -313.8 -262.7	22.4274 18.6182 15.6840 13.3798 11.5398	358.3 243.8 170.8 122.6 90.0	-800.6 -569.9 -415.2 -308.6 -233.5
1.05 1.10 1.15 1.20 1.25	10.5513 9.7074 8.9798 8.3470 7.7922	49.5 41.0 34.27 28.93 24.64	-222.3 -189.8 -163.35 -141.59 -123.50	10.0489 8.8249 7.8086 6.9558 6.2337	67.2 51.1 39.37 30.73 24.26	-179.3 -139.6 -110.06 -87.69 -70.55
1.30 1.35 1.40 1.45 1.50	7.3023 6.8669 6.4778 6.1280 5.8122	21.14 18.26 15.867 13.862 12.165	-108.33 -95.50 -84.577 -75.208 -67.125	5.6171 5.0866 4.6270 4.2262 3.8748	19.35 15.58 12.642 10.338 8.509	-57.26 -46.84 -38.605 -32.026 -26.731
1.55 1.60 1.65 1.70 1.75	5.5258 5.2648 5.0263 4.8074 4.6059	10.722 9.486 8.423 7.499 6.696	-60.111 -53.995 -48.636 -43.919 -39.751	3.5650 3.2905 3.0462 2.8279 2.6319	7.047 5.869 4.913 4.131 3.489	-22.436 -18.928 -16.045 -13.661 -11.678

^aMultiply values by b_2/V .

bMultiply values by $(b_3/V)^2$.

^cMultiply values by $(-1)^{i}(b_{i}/v)^{2}$.

dMultiply values by P/p2.

^eMultiply values by $(P/P_3)^2$.

fmultiply values by $(-1)^{\frac{1}{2}}(P/P_1)^2$.

TABLE 5.- COEFFICIENTS IN CORRECTION FOR SPECIFIC HEAT AT CONSTANT PRESSURE - Continued

т	(at T ₂)	(at _T 3)	(at τ_1 , $i = 2, 3$)	c ₁ ' (at τ ₂) (d)	c ₂ ' (at ₇₃) (e)	c ₁₂ ' (at τ_1 , i = 2, 3) (f)
1.80	4.4198	5.993	-36.054	2.4554	2.9573	-10.0201
1.85	4.2475	5.375	-32.763	2.2959	2.5156	-8.6278
1.90	4.0875	4.830	-29.824	2.1513	2.1466	-7.4529
1.95	3.9386	4.348	-27.191	2.0198	1.8571	-6.4573
2.00	3.7997	3.920	-24.826	1.8999	1.5761	-5.6103
2.1	3.5481	3.197	-20.771	1.6896	1.1680	-4.2670
2.2	3.3265	2.614	-17.450	1.5120	.8712	-3.2742
2.3	3.1297	2.141	-14.705	1.3608	.6531	-2.5314
2.4	2.9540	1.754	-12.419	1.2308	.4910	-1.9696
2.5	2.7961	1.434	-10.502	1.1185	.3692	-1.5405
2.6	2.6536	1.168	-8.885	1.0206	.2772	-1.2099
2.7	2.5242	.944	-7.513	•9349	.2069	9532
2.8	2.4062	.756	-6.344	•8594	.1530	7526
2.9	2.2983	.597	-5.343	•7925	.1115	5947
3.0	2.1992	.462	-4.482	•7331	.07944	46986
3.1	2.1078	.346	-3.740	.6800	.05453	37062
3.2	2.0234	.246	-3.097	.6323	.03509	29142
3.3	1.9451	.161	-2.540	.5894	.01998	22799
3.4	1.8723	.087	-2.054	.5507	.00825	17702
3.5	1.8045	.024	-1.631	.5156	00083	13598
3.6	1.7411	031	-1.262	.4836	00789	10286
3.7	1.6817	079	939	.4545	01331	07611
3.8	1.6260	121	656	.4279	01742	05449
3.9	1.5737	157	409	.4035	02049	03707
4.0	1.5244	189	191	.3811	02279	02292
4.1	1.4779	217	0	.3605	02446	01156
4.2	1.4339	241	.168	.3414	02557	00243
4.3	1.3923	261	.314	.3238	02623	.00488
4.4	1.3529	279	.443	.3075	02660	.01069
4.5	1.3155	294	.556	.2923	02669	.01527
4.6	1.2799	307	.655	.2782	02661	.01884
4.7	1.2461	318	.741	.2651	02635	.02159
4.8	1.2138	328	.815	.2529	02597	.02366
4.9	1.1830	336	.880	.2414	02549	.02518
5.0	1.1537	3433	.9366	.2307	02496	.02623
5.2	1.0987	3532	1.0260	.2113	023713	.027291
5.4	1.0484	3597	1.0902	.1941	022380	.027343
5.6	1.0020	3636	1.1341	.1789	021024	.026735
5.8	.9591	3654	1.1617	.1654	019688	.025708
6.0	.9194	3653	1.1763	.1532	018394	.024429

⁸Multiply values by b_2/V .

bMultiply values by $(b_3/V)^2$.

CMultiply values by $(-1)^{i}(b_{i}/V)^{2}$.

 $d_{Multiply}$ values by P/p_2 .

emultiply values by $(P/P_3)^2$.

fMultiply values by $(-1)^{\frac{1}{2}}(P/P_{\frac{1}{2}})^2$.

TABLE 5.- COEFFICIENTS IN CORRECTION FOR SPECIFIC HEAT AT CONSTANT PRESSURE - Concluded

				· · · · · · · · · · · · · · · · · · ·		
τ	(at T ₂)	c ₂ (at ₇₃)	(at τ_1 , 1 = 2, 3)	c _l ' (at τ ₂) (d)	c ₂ ' (at ₇₃) (e)	c ₁₂ ' (at t ₁ , i = 2, 3) (f)
6.5	0.8319	-0.3601	1.1709	0.1280	-0.015453	0.020784
7.0	.7579	3499	1.1264	.1083	012957	.017170
7.5	.6947	3367	1.0595	.09262	010880	.013941
8.0	.6399	3222	.9805	.07998	009167	.011186
8.5	.5920	3071	.8957	.06965	007758	.008889
9.0	.5498	2922	.8090	.06109	006598	.006997
9.5	.5123	2776	.7229	.05393	005638	.005448
10.0	.4788	2630	.6389	.04788	004837	.004183
11	.4214	2367	.4804	.03831	003615	.002311
12	.3740	2125	.3363	.03116	002744	.001067
13	.3342	1906	.2070	.02571	002112	.000241
14	.3004	1711	.0917	.02145	001646	000306
15	.2712	1535	0110	.01808	001298	000664
16	.2458	1378	1027	.01536	001033	000896
17	.2235	1237	1845	.01315	0008291	0010395
18	.2037	1109	2576	.01132	0006704	0011231
19	.1862	0996	3232	.009798	0005460	0011653
20	.1704	0892	3821	.008520	0004467	0011790
22	.1433	0712	4830	.006514	0003033	0011540
2 ¹ +	.1209	0561	5655	.005036	0002083	0010926
26	.1020	0435	6336	.003922	0001441	0010170
28	.0859	0327	6901	.003067	0000995	0009381
30	.0720	0234	7374	.002400	0000681	0008615
35	.0445	0051	8254	.001271	0000232	0006928
40	.0241	.0081	8837	.000603	0000028	0005601
45	.0084	.0180	9227	.000188	.0000068	0004578
50	0039	.0256	9488	000079	.0000110	0003787
60 70 80 90 100	0221 0348 0441 0510 0564	.0361 .0428 .0473 .0502	9768 9860 9850 9784 9686	000369 000497 000551 000567 000564	.000131 .0000122 .0000107 .000092 .00000785	0002683 0001977 0001506 0001178 00009424
200	0773	.0554	8445	000386	.00000218	00002032
300	0814	.0521	7494	000271	.00000092	00000798
400	0821	.0487	6804	000205	.00000049	00000407

^aMultiply values by b_2/V .

bMultiply values by $(b_3/V)^2$.

cMultiply values by $(-1)^1(b_1/V)^2$.

 $d_{Multiply}$ values by P/p_2 .

^eMultiply values by $(P/P_{\overline{3}})^2$.

fMultiply values by $(-1)^{i}(P/P_{i})^{2}$.

TABLE 6.- COMPTINIENTS OF CORRECTIONS FROM IDEAL-GAS VALUES TO REAL-GAS VALUES OF SPECIFIC-HEAT RATIO γ (a) Coefficients of density-dependent corrections, $2\gamma^{\circ}(\gamma^{\circ}-1)B^{(1)}(\tau_2)+(\gamma^{\circ}-1)^{2}B^{(2)}(\tau_2)2\gamma^{\circ}(\gamma^{\circ}-1)B^{(1)}(\tau_2)+\cdots B^{(2)}(\tau_2)$

T 2	(a)												
	5/3	1.40	1.35	1.30	1.25	1.20	1.15	1.10	1.05	1.00			
12257574575766778859588895852554555867788595858585545558677885958585855455586778859501	-3,749.5 -281.60 -25.628 11.626 16.344 15.542 13.809 12.1240 10.6793 9.4780 8.4851 7.6546 6.3684 5.8629 5.4262 5.0458 4.1164 4.1537 5.9155 3.7069 3.5155 3.7817 5.1851 5.0379 2.9045 2.7815 2.6678 2.5729 2.2075 2.1325 2.0619 1.9958 1.8176	1.40 1.40	1.75 -119.0 77.08 46.151 28.676 19.550 14.348 11.118 8.9688 7.4595 6.55121 4.63539 7.9456 22.9911 22.9712 2.9712 2.9711 2.9067 1.8067 1.7226 1.7228 1.7228 1.7228 1.7228 1.7226 1.7226 1.7226 1.7226 1.7226 1.7226 1.7226 1.7226	1.50 18.5.51 15.5.55 27.6.841 15.055 27.6.841 15.055 27.6.841 15.055 27.6.841 15.055 27.6.841 15.055 27.6.841 15.055 27.6.841 15.055 27.6.841 15.055 27.6.841 15.055 27.6.841 15.055 27.6.841 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 27.6.85 16.056 16	1.25 532.1 105.79 46.173 25.575 16.173 25.575 16.173 25.575 16.44 8.814 6.9936 5.7462 4.8481 4.1759 5.6568 5.2454 2.9125 2.6580 2.1064 1.9016 1.7749 1.66555 1.5642 1.4757 1.3964 1.1959 1.1456 1.0977 1.0072 9678 9571 8652 8354 8071 7530	1. 20 4. 6. 5. 22. 26. 6. 6. 5. 26. 26. 26. 26. 26. 26. 26. 26. 26. 26	1.15 49.6 92 95.629 18.408 1.75.6495 18.6498 1.75.6495 1.6498 1.7665 1.1665	385.1 72.76 26.394 15.285 8.060 5.495 4.049 3.1498 2.1256 1.5759 1.3898 1.2405 1.1187 1.017 .9588 .7960 .7413 .6938 .6930 .6130 .5791 .5486 .5210 .4959 .4750 .4327 .4327 .4327 .4327 .5388 .3688 .3688 .3688 .3688 .2668	1.05 253.3 41.45 14.51B 7.152 4.277 2.807 2.112 1.6556 1.5164 1.0958 .7101 .6528 .5175 .4756 .4561 .4039 .3758 .3558 .5175 .4756 .4561 .2950 .2774 .2654 .2506 .2590 .2185 .2094 .2011 .1973 .1861 .1795 .1678 .1678 .1678 .1678 .1678 .1678	100			

"Multiply all entries by bop to obtain correction.

TABLE 6.- COEFFICIETES OF CORRECTIONS MECH LIBRAL-GAS VALUES TO REAL-GAS VALUES OF SPECIFIC-HEAT RATIO γ - Continued

(a) Coefficients of density-dependent corrections,	$2\gamma^{0}(\gamma^{0}-1)B^{(1)}(\tau_{2})+(\gamma^{0}-1)^{2}B^{(2)}(\tau_{2})$	- Concluded
--	--	-------------

⊤ 2		7° (a)												
	5/3	1.40	1.35	1.30	1.25	1.20	1.15	1.10	1.05	1.00				
2.4	1.5358	0.9631	0.8496	0.7340	0.6166	0.4971	0.5758	0.2525	0.1272	0				
2.5	1.4585	.9140	.8062	.6965	.5850	.4716	3565	2395	1206	Ιō				
2.6	1.3877	.8692	.7667	.6623	-5562	. 4 4,64	.3389	.2276	.1147	l ŏ				
2.7	1.3227	.8282	7303	.6309	.5298	.4270	.5227	.e168	.1092	l ŏ				
2.8	1.2627	·790 1	.6970	.6020	.5056	·40 75	3079	.2068	1042	Ιŏ				
2.9	1.2075	7556	.6665	-5755	4852	389 5	2945	.1977	.0996	l ŏ				
3.6	1.1559	7933	1.6378	5500	.4626	.5728	.2817	1892	0955	l ŏ				
3.1	1.1081	.7253 .6954	.6115	.5509 .5281 .5069 .4870	.4435	3574	.2701	1814	.0914	6				
3.2	1.0635	.6655	.5869	5060	.4256	.3431	.2592	.1741	.0914					
3.3	1.0219	.6395	.5639	1009	.4089	1007		.1673		0				
3.4	.9829	6150	.5059	.4685	7009	-3297	.2491	1075	.0843	0				
7.4	9029	.6152	.5 1 25		-3934	.3171	.2396	.1610	.0811	0				
3.5 3.6	.9463	.5924	.5224	4513	.3789	.5055 .2945	.2508	.1550	.0781	0				
2.0	.9118	.5710	•5036 •4858	4550	.3653	2945	.2225	.1495	-0753	0				
3.7	.8794	-5508	.4858	.4197	. 3525	.2841	.2147	. 1442	.0727	0				
3.8	.8488	.5519	.4691	.4053	3403	.2744	.2074	.1595	.0702	. 0				
3.9	.8198	.5139	.4 553 .4584	.3916	.3289	.2744 .2652	.2005	.1347	.0679	0				
4.0	.7924	.4970	.4384	.3788	.3182	.2565	.1939	.1303	.0656	0				
4.1	.7665	.4809	4242	.3788 .3666	.5079 .2983	.2565 .2483	. 1877	.1261	.0636	l o				
4.2	.7418	.4656	.¥106	.3550	2983	.2405	. 1818	.1222	.0616	1 0				
4.3	.71 <i>8</i> 4	.4512	.3980	·3440	.2890	.2331	.1763	.1185	.0597	ه ا				
4. 4	6961	-4374	.3860	.3336	.2803	.2261	.1710	.1149	.0579	ا ا				
4.5	.6748	.4243	•3745 •3634	.3237	.2720	.2194	.1659	.1115	.0562	Ιŏ				
4.6	6545	.4118	3634	.3237 .3148	.2641	.2130	.1611	.1083	.0546	Ιŏ				
4.7	.6351	-3999	. 3529	-3052	2565	.2070	1565	1052	.0531	ŏ				
4.8	.6166	.3885	. 3429	.2965	2493	.2012	1522	.1025	0516	ŏ				
4.9	.5989	.3776	3334	.2885	2424	.1956	.1480	.0995	.0502	ŏ				
5.0	5819	.5671	. 3242	.2804	.2358	1003	.1440	.0968	.0488	0				
5.2	5500	.9.75	.3070	.2656	2234	. 1903 . 1803	.1365	.0918	.0465					
5.4	5206	3295	.2119	.2519		1770		.0872	.0440	-				
5.6	.4934	.3128	.2764	.2719	.1712	.1712	.1296	.00/2		0				
5.8	4681	17120	.2629	.2393	.2014 2016	.1627	.1232	0829	.0418	0				
6.0	.44001 .4447	2973 2829	.2029	.2276	.1916	.1548	.1175	0790	0399	0				
6.5	·4441	2029	.2502	.2168	.1825	. 1475	.1118	.0755	.0580	0				
	.5925 .5482	.2511	.2222	.1927	. 1624	.1514	.0996	.0671	0339	0				
7.0	.5402	.2240	. 1985	.1722	. 1453	.1176	.0893	.0602	0305	0				
7.5	·5099	2007	.1780	.1546	. 1306	.1056	• 0604	.0543 .0491 .0446	·02 <u>7</u> 5	Ō				
8.0	.2767	. 1804	.1602	. 1393	. 1178	.0956 .0866	.0727	0491	.0249	0				
8.5	2475	.1626	.1446	. 1259	. 1066	.0866	0559	.0446	.0226	0				
9.0	.2217	.1469	.1308	.1141	.0967	.0787	.0600	•0406	.0206	0				
9.5	.1986	.1329	.1185	.1035 .0941	.0879	.0716	.0547 .0499	.0571	.0189	0				
٥.0	1780 l	.1204	1075	. noti i	.080ó	.0653	. oli po	.0339	.0173	ō				

 $^{^{8}\}text{Multiply}$ all entries by $\text{ b}_{2}\rho$ to obtain correction.

TABLE 6.- COEFFICIENTS OF OURRESTIONS FROM IDEAL-GAS VALUES TO REAL-GAS VALUES OF SPECIFIC-HEAT RATIO γ - Continued (b) Coefficients of pressure-dependent corrections, $\tau^{-1} \Big[2 \gamma^{0} (\gamma^{0} - 1) B^{(1)} (\tau_{2}) + (\gamma^{0} - 1)^{2} B^{(2)} (\tau_{2}) \Big]$

т2					ァ ⁰ (b)				•	
.5	5/3	1.40	1.35	1.30	1.25	1.20	1.15	1.10	1.05	1.00
. 15	-24,995 -1,408.0	-3,131.7	-793.6	988.4	2,214.2	2,883.7	2,997.1	2,554.3	1,555.2	0
.20	-1,408.0	237.52 168,710	3 85 .4 0	482.55	528.96 184.695	524.63 168.887	469.58	767.78	207.26	Ιō
.25	-94.51	168,710	184.604	189.952	184.693	168.887	142.515	105.977	58.072	Ιò
.50	-94.51 38.755 46.696	95.666	95.588 55.856	92.116	85.249	74.988	61.555 52.421	105.577 44.283	23.839	ة ا
.35	46.696	58 .18 0	55.856	52.118	46.966	40.401 24.684	32.421	23.028 13.738 8.998	12.221	Ιō
.40	38.855 30.686	38,201	35.869	52.858	29.110 19.586	24.684	19.560 12.915	15.758	7.218	ة أ
-45	30.686	26.679⊾ I	24.706	22.340	19.586	16.444 11.6596 8.6621	12.915	8.00B	k 603	ة ا
.50	24.2479 19.4168 15.7967	19.5604 14.8924 11.6862	17,9376	16.0798	13.9872 10.4476	11.6596	9.0971	6.2006	4.695 3.2675	ة ا
.55	19,4168	14. Book	13.5628	12.0812	10.4476	8,6621	6.7245	6,2996 4,6350 3,5426	9.2015	ŏ
.55	15,7067	11.6960	13.5628 10.5877	0.3857	8.0802	6.6712	5.1586	7.0770 7.6106	2.3935 1.8231	١٥
.63	13 0510	9-3977	8.1801	9.3857 7.4890	6.4245	6.6712 5.2865	4.0751	2.7902	1.4518	0
.70	13.0510 10.9352 9.2782 7.9504	7.711	6.9361	6.1070	5.2240	4.2870	4.0751	2. (902	1.4510	
- 10	0.0790	() 11174	0.9701	a.πιο	5.2240	4.2010	2.7187 2.7187 2.2787 1.9366 1.6653 1.4467 1.2681	2.2513	1, 1926 . 9469	٥
.75 .80	9.202	6.4352 5.4474 4.6679 4.0425	2-7733 4.8766	5.0706 4.2743 3.6499	4-52T5 5-6406	5.5432 2.9754	2.7107	1.8530	.9409) 0
.00	6.8976	2.44(4	4.0700	4.2(4)	2.0400	2.9754	2.270	1.5506	.7910	0
.85	0.0970	4.00(9	4.1713 3.6069	2.0499	3.1036	2,5325 2,1806	1.9500	1.3159 1.1301	.6705	0
.90	6.0291	4.0427	5.0009	3.1514	2.6759	2.1606	1,0055	1.1301	.5750 .4985	0
-95	5.3113	5.5552	3.1484	2.7474 2.4155	2.3301 2.0464 1.8110	1.0965	1.4467	.9807 .8588	4985	0
L.00	4.7118	5.1155	2.7711	2.4155	2.0464	1.6640	1.2681	.8588	.4361	0
1.05	4.2061	5.5552 5.1155 2.7650 2.4679	2.4569	2.1596	1.8110	1.8965 1.6640 1.4713	1,1205	.7581 6759 . 6028	.3846	0
1.10	3.7761	2.4679	2.1926	1.9078	1.6136	1.3098 1.1753	.9966	6759 /	.3417	0
L. 15	3.4074	2.2171	1,9683	1.7114	1.4464	1.1753	.8921	.6028	.3055 .2746 .2482	Ιo
1.20	3.0891	2.00 <u>21</u> 1.81 <i>6</i> 4	1.7762	1.5433	1.3035	1.0568	.8050	.5423	.2746	Ìο
1.25	2.8124	1.8164	1.6105	1.3986	1.1806	.9566 .8698	.7265 .6605	.5423 .4904	.2482	Ιó
L-30	2.5705	1.6550	1.4667	1.2750	1.0740	.8698	6603	.4455 .4064	.2254	ا ہ
L.35	2.3579	1.5139	1:5409	1.1633	ينهو.	7941	.6026	4064	.2055	١٠ŏ
L.40	2.1700	1.3898	1,2505	1.0670	.8995	7278	.5520	5791	.1881	ŏ
L.45	2.0031	1,2800	1.1329	9820	.8275	.7278 .6693	.5075	.3721 .3420	1728	۱ŏ
1.50	1.8544	1.5139 1.3898 1.2800 1.1826	1.2505 1.1529 1.0462	.0066	.7687	.6175	.5075 .4681	3193	1503	ا م
1.55	1.7212	1.0957	.0690	9066 8594	-7060	.5714	.k330	.3153 .2916	.1595 .1475	ŏ
60	1.6015	1.0177	.9690 .8998	7795	.9811 .8995 .8275 .7657 .7069 .6561 .6104	5502	.4350 .4016	.2704	.1365	ıŏ
1.65	1.4955	Ok.77	8×77	1177 7958	6101	7502 1932	3785	.2514	.1269	1 8
L70	1.5958	.9477 .8845	.8377 .7816	.7255 .6766	.5693	1500	•3735 •3482	.2343	.1183	٥
r voer	1 3071	.8272	*1000	6700	• 5095 • 5701	4599 4897	.)+UE	.2189	.1105	٥
∟75 ∟80	1.3071 1.2264		. 7509 . 6848	.6323 .5925 .5561	.5321 .4984 .4677	• • ••91	. 5253 . 5046	.2049		
L-00		-7752	.0040	1 225	.4904		•5040	.2049	.1054	0
1.85	1.1527	.7279 .6846	6129	10001	.4077	-5776	.2857 .2689	.1922 .1806	.0969	0
1.90	1.0852	-004b	.6045	.5229 .4925 .4646	.4397 .4141	•3549 •35 4 2	•2009 •	.1006	.0911] 0
1.95	1.0255	.6450 .60 0 7	.5695	-4925	.4141	-5542	.2528	.1700 .1605	.0857	0
2.0	.9664	.6007	• 5373 • 4804	4646	.3906 .3490	-3151	.2584	.1603	.0808	0
2.1	.8655	.5444 .48 94		.4155	3490	•5816	.2129	.1431 .1285	.0722	\ 0
2.2	.7791 .7046	• 1 89 1	.4319	-3733	.5136 .2832	.2550 .2284	.1913	.1285	.0648	0
2.3	.7046	.4422	.3901	-3371	.2632	.2284	.1727	.1160	.05847	ا ا

Multiply all entries by $\frac{b\rho}{H\left(\epsilon_{2}/k\right)}P$ to obtain correction.

TABLE 6.- CONFFICIENTS OF CORRECTIONS FROM IDEAL-GAS VALUES TO REAL-GAS VALUES OF SPECIFIC-HEAT RATIO γ - Concluded (b) Coefficients of pressure-dependent corrections, $\tau^{-1}\left[2\gamma^{0}(\gamma^{0}-1)B^{(1)}(\tau_{2})+(\gamma^{0}-1)^{2}B^{(2)}(\tau_{2})\right]$ - Concluded

					ን ⁰ (ኔ)					
™2	5/3	1.40	1.35	1.30	1.25	1.20	1.15	1.10	1.05	1.00
2.4	0.6599	0.4013	0.3540	0.5058	0.2569	0.2071	0.1566 .1426	0.1052	0.05301	0
2.5	-5854	.3656	-5225	.2786	.2340	0.2071 .1886	.1426	.09580	0.05301 .04826	Ó
2.6	-5557	.3656 .3343	.2 949	.e4k7	.2139	.1725	1505	.08754	.04410	0
2.7	• 5557 • 4899	.3067 .2823 .2605	.2949 .2705 .2489	.2536 .2150 .1984 .1856 .1704	.1962	.1581	.1195	.08754 .08028	.04044	0
2.8	.4510 .4165	.2823	.2489	.2150	.1806	.1455	.1100	.07587 .06816	.03721 .05433	0
2.9	.4165	.2605	.2298	.1984	.1666	. 1345 . 1243	.1015	.06816	.05455	0
3.0	.3855 .3575	.2411	.2126	1856	.1542 .1431	.1243	.09590	.06307 .05832 .05441	.03177 .02947	0
3.1	-3575	.2237 .2080	. 1973 . 1834	.1704	.1431	. 1153 . 1072	.08711	. 05832	.02947	. 0
3.2	1 .3324	.2080	.1834	.1584 .1476	. 1330	.1072	.08100	.05441	.02740 I	0
3.3	.3097 .2891	.1958 .1809 .1695 .1586 .1489	.1709	.1476	. 1239	.09990 .09926 .09729 .08181 .07678 .07221 .06800	.07548	.05070 .04735 .04429 .04152 .05898 .05666 .05454 .05258	.02554 .02585	0
5.4	.2891	.1809	. 1596 . 1493	.1378 .1289	.1157	.09526	07047	·0 1 735	02585	0
3.5	-2704	.1693	.1493	.1289	1085	08729	.06594 .06181	.04429	1 .02251	0
3.6	.2533 .2577	.1586	-1399	.1208	. 1015	.08181	.06181	.01152	-02092	0
3.7	J •2377	.1489	.1513	.11 3 4 .1067	09527	.07678	.05805	05898	.01964 .01847	0
3.8	.2234 .2101	. 1A-00 I	.1234	.1067	. 08957 . 08455	.07221	.05458 .05141 .04848 .04578	.03666	01847	0
3.9	.5101	.1318 .1242	.1162	1004	.06455	.06800	.051/1	+05454	-01740	0
4.0	.1981 .1869	.1242	.1096	09470	.07954 .07510	.06415 .06056	.04848	.05258	.01641	0
4.1	.1869	.1175	. 1035 . 09781 . 09256 . 09775 . 08322 . 07900 . 07509 . 07144 . 06804	.09470 .08941 .08452 .08000 .07582	.07510	06056	.04578	.05076	.01550 .01466	0
4.2	.1766	.1109	.09781	.08452	.07101 .06721	.05726 .05421 .05139 .04876	.04329 .04100 .03886 .03687	.02909 .02756 .02611 .02478 .02554 .02258	.01466	0
4.3 4.4	.1671 .1582	.1049	•09250	•00000	.06721	·05421	04100	.02756	.01588 .01516	0
	.1562	.09941	.00/75	•0/202	.06570	.05159	1 .05000	.02011	oughe	Q
4.5 4.6	1500	109429	.00522	.07195	.06044	•0 40 76	05007	.02470	.01249	0
4.0	1423	.00979	.07900	.00050	.05741 ogless	•04050 obligh	05502	.02274	.01187	0
፟¥.7 4.8	.1351 .1285	.09941 .09429 .08952 .08508 .08095	.07509	.07195 .06850 .06495 .06177 .05884 .05608	.05741 .05457 .05194	.04630 .04404 .04191	.03330	.02250	.01129	0
4.0	.1222	.00099	0690	.00111	.00194	04191	.05171 .05020	.02151	.01073 .01024	0
5.0	.1164	-01 (05)	.06484	07609	.04947 .04716	07992	.02880	01076	00000	0
5.2	1058	06683	05903	05107	.04295	07000 08h68	.02625	01766	.00977 .00891	0
5.4	00601	06102	.05301	.05107 .04665	ORODA	05170	02320	01614	.00815	0
5.6	.1058 .09641 .08810 .08071 .07411	.07705 .07342 .06683 .06102 .05586	.05591 .04956 .04532 .04171	04275	.05925 .05596	.05992 .05906 .05468 .05170 .02905 .02669	.02399 .02200	.02051 .01936 .01766 .01614 .01481 .01361 .01255 .01033	.00747	ŏ
5.8	.09071	05126	- Ok 530	. OROSA	.0330L	.02660	.02022	.01361	.00747 .00687	ŏ
6.0	07411	.06716	.04.171	.03613	.03304 .03042 .02498	.02459	.02022 .01865	.01255	.00634	ŏ
6.5	. 06039	.04716 .03863	0.1720	.020GI	nakoñ	.02021	.01555	-01033	.00599	ŏ
7.0	.04974	.05200	.03419 .02835	02460	.02076	.02021	.01276	.00861	.00522 .00435	ŏ
	.04974 .04132	.05200 .02675	.02575	.03613 .02964 .02460 .02062	.01741	.01411	.01072	.00724	.00567	ŏ
7.5 8.0	03458	.02255	02002	.01742 .01482 .01268	.01475	.01195	.00909	.00724 .00614	00311	ŏ
8.5	02012	.01913	.01701	.01482	.01254	.oioío	.00909 .00776	.00525	· .00311	ŏ
9.0	.02912 .02465	.01632	01454	.01268	.01074	.01019 .00874	.00666	.00525 .00452	.00229	č
9.5	.02091	01399	01248	.01090	.00925	00754	-00575	.00590	.00199	ō
ە.ەُ	02091 01780	.01399 .01204	.01075	.01090 .00941	.00925	.00754 .00653	.00575 .00499	.00539	.00175	ŏ

Multiply all entries by $\frac{b_2}{R(\epsilon_2/k)}P$ to obtain correction.

Table 7.- Coefficients of corrections from ideal-gas values to real-gas values of iserthopic expansion coefficient α

(a) Coefficients of density-dependent corrections, $\gamma^{O_B(0)}(\tau_2) + 2\gamma^{O}(\gamma^{O} - 1)B^{(1)}(\tau_2) + (\gamma^{O} - 1)^2B^{(2)}(\tau_2)$

_					γ° (a)					-
τ2	. 5/3	1.40	1.35	1.30	1.25	1,20	1.15	1.10	1.05	1.00
0.15	-4,526.6	-1,122.7	-748.6	<u>-458.0</u>	-250.8	-127.1	-86.8	-129.9	-256.4	466 .4
.20	465.90	-107.30	-72.20	47.24	-32.43	-27.77	-33.25	-48.88	-74.65	-110.58
.25	-103.966	-25.506	-18.923	-15.181	-14.080	-15.621	-19.804	-26.629	-56.095	48.205
.30	-34.841	-10.555	-8.962	-8.610	-9.276	-10.960	-13.663	-17.384	-22,125	-27.881
	-14.914	-5.894 -4.038	-5.770	-6.140	-7.005	-6. 5 66	-10.821	-12.570	-15.415	-16.755
.35 .40	-7.456	-4.038	-4.281	∔.803	-5.604	-6.685	-8.045	-9.684	-11.602	-13.799
.45	4.116	-3.049	-5.402	-3.929	-4,630 l	-5.506	-6.557	-7.782 -6.4424	-9. 18 1	-10.755
.50	-2.4097	-3.049 -2.4881	-2.8055	-5.2965	-5.9067	-5.506 -4.6545	-6.557 -5.4797	-6.4424	-7.5226 -6.3214	-8.7202
.55	-1.4442	-1.9929	-2.3605	-2.8117	-5.3464	I5.9648 I	-4.6667	-5.4522	-6.3214	_7.27k1
.60	8519	-1.9929 -1.6654	-2.0146	-2.4259	-3.9067 -3.3464 -2.8994	-3.4349	→.032 5	4.6922	-5.4140	-6.1980 -5.3682 -4.7100
.65	4639	-1.4070 -1.1961	-1.7550	-2.1108	-2.5545	-3,0056	-3.5246	-4.0914	-4.7059	-5.3682
.70	1954	-1.1961	-1.5033	-1.8481	-2.2308	-2.6511	-3.1092	-3.6051	-4.1587	4.7100
.75 80	0012	-1.0199	-1.3076	-1.6257	-1.9745	-2-3537	-2.7635	-3.2058	-5.6746	4.1759 -5.7548 -3.3651 -3.0478
. èo	.1446	8700 l	-1.1399	-1.4550	-1.7553	_e.1008	-2.4714	-2.8672	l <u>-3.2881</u>	-5.7548
.85	.2577	7 ⁴ 06 6278	9946 8674	-1.2697	-1.5659	-1.6831 -1.6940	-2.2215	-2.5809	-2.9615 -2.6819	-3.3631
.90	3477	- 6278	8674	-1.1250	-1.5659 -1.4005	-1.6940	-2.0054	-2.5347	-2.6819	~3.047
.95	•3477 •4209	5285 4400	7551	9974 8841	-1.2551	-1.5282 -1.5817	-1.8167	-2.1207	-2.4401	-2.7749
1.00	.4816	4400	7551 6555	6841	-1.1262	-1.5817	-1.6507	-1.9331	-2.2289	-2.5381
1.05	.5527 .5764 .6141	3611	5660 4857	7827	-1.0112	-1.2514	-1.5035	-1.7673	-2.0429	-2.5500 -2.146
1.10	.5764	2902	4857	6917	-,9080	-1.1348	-1.3721	-1.6197	-1.8778	-2.146
1.15	6141	2261	4131	6094	8150	-1.0299	-1.2541 -1.1477	-1.4877	-1.7305	-1.9826
1.20	.6469	•1679	- 3471	5347 4667	- 7307	9350	-1.1477	-1.3688 -1.2612	-1.5982	l -1.8559
1.25	.6759	1148	2870	4667	65k0	8488	-1.0512	-1.2612	-1.4787	I _1.705√
1.30	.7015	0662	2519	4045	5859	7702	9634 8831	-1.1634	-1.3705	-1.584 -1.475 -1.575 -1.204
1.35	.7243	0216	2519 1815		-,5196	I6982	8831	-1.0742	-1.2716	-1.475
ī.46	7446	.0195	1347	2948	5196 4605	6521	8094	9924	-1.1813	-1.575
1.45	7655	.0575	0917	2462	4060	5711	7415	- 9173 - 8480	-1.0983	-1.284
1.50	7801	0926	0518	2948 2462 2012	3555	i5148	- 6789	6+8 0	-1.0220	-1.200
1.55	.7955 8092	.1253	0148	1595	3087	- 4625	- 6209	7839 7244 6691	9514	-1.123
1.60	.8092	. 1557 . 1840	.0197	1206 0844	2652	4140	5671	7244	8860	1 -7 0530
1.65	1 .8218	.1810	.0518	0844	2246	5688 5266	5170	6691	8253	- 985
1.70	.8555 .8442	.2105	.0819	0505	1867	5266	4702	1 - 6176	7687	- 925
1.75	.8442	.2353	.1100	0188	1512	2871	- 4265	- 5695	7159	865
ī.86	.8541 .8632	.2586 .2805	.1364	.0109 .0588	, 1160	2501	38 5 6	- 5695 - 5244 - 4822	7159 6666	985 9250 8659
1.85	.8632	.2805	.1612	.0388	0867	2154	3472	i₄822	6203	1 761
1.90	.8717	.3010	.1846	1 .0691	0573	1827	-,3111	4425	5768	714 669 627 550 481 419
1.95	.8795	-3204	.2066	.0899	0296	-,1519	2771 2450	4051	5559 4974	669
2.0	.8868	-3387	.2273	.2155	0034	1229	- 2450	- 3698	4974	627
2.1	.8999	.5723	.2655	1,565	.0447	- 0695	1861	- 5051	4266	550
2.2	.9112	.3723 .4024	.2998	.1950	.0879	0215	1532	2471	3633	481
2.3	.9211	4295	.3307	.2298	.1267	.0216	- 0856	1949	3062	419

 $^{5}\mbox{Hultiply all entries by }b_{2}\rho$ to obtain correction.

TABLE 7.- COMPTICIENTS OF CORRECTIONS FROM LIEAL-GAS VALUES TO REAL-GAS VALUES OF ISEMPROPIO EXPANSION COEFFICIENT α - Continued (a) Coefficients of density-dependent corrections, $\gamma^{OB}(^{O})(\tau_2) + 2\gamma^{O}(\gamma^{O} - 1)B^{(1)}(\tau_2) + (\gamma^{O} - 1)^{2}B^{(2)}(\tau_2)$ - Complete the continued of density-dependent corrections, $\gamma^{OB}(^{O})(\tau_2) + 2\gamma^{O}(\gamma^{O} - 1)B^{(1)}(\tau_2) + (\gamma^{O} - 1)^{2}B^{(2)}(\tau_2)$ - Complete the continued of density-dependent corrections, $\gamma^{OB}(^{O})(\tau_2) + 2\gamma^{O}(\gamma^{O} - 1)B^{(1)}(\tau_2) + (\gamma^{O} - 1)^{2}B^{(2)}(\tau_2)$

т2					-	γ° (a)				
۔ ۔	5/3	1.40	1.35	1.30	1.25	1.20	1.15	1.10	1.05	1.00
2.4	0.9298	0.4541	0.3587	0.2613	0.1621	0.0608	-0.0423	-0.1475	-0.2545	-0.3636
2.5	9574	.4764	.5842 l	.2901	.1943	.0965	0050	1044	2076	3126
2.5 2.6	.9574 .9441	.4966	.4073 .4284	.3162	.2235	.1290	.0528 .0656	0652	1647	3126 2661
2.7	9500	.5152	.4284	.3401 .3623	2505	l .1587	0656	i0eoe i	1256 0896	2236 1845
2.8	.9552	.5321	.4479 .4658	. 5623	-2750	. 1861.	.0957 .1255	.0039 .0344 .0624 .0895	0896	1845
2.9	.9598	·5477	.4658	.3825	.2976	.2115	.1255	.0344	0564	1485
3.0	.9639	.5620	.4821	.4011	.3185 -3379	كبلحور	.1491	0624	0257	1152 0844
3.1	.9674	-5752	.4976	4184	•3379	.2561	.1750	0885	0027	084
3.2	9706	.5874	.5116	.43 44 .4492	i <u>5555</u> 9	.2561 .2761	1 .1950	.1127	.0291	0558 0291
	.9733	.5987 .6092	5245	. կ կ 92	.3726 .3880 .4026	.2946	.2155 .2547	.1352	.0557	- 0291
3.5 3.4	l .9758 l	.6092	.5367	.4650	.3880	3120	.2547	. 1563	.0766	0045
3.5	9779	.6189 .6280	.5367 .5481	.4759 .4879	.4026	.5120 .3285	.2527 .2695 .2649	.1759	.0980	.0190
3.5 3.6	.9797	.628o	.5985	4879	.4162	· 3433	2693	.1945	.1180	.0407
3.7	.9797 .9813	.6364	.5585 .5685	.4991	.4162 .4289 .4408	3575	.2840	.2115	.1369	.0611
3.8	9827	.6443	•5 <u>77</u> 5	-5097	4408	•3575 •3708	.2997	.2276	.1545	.0803
3.9	.9857 .9848	.6516	.5861	.5195	.4518 .4624	.3855	.2997 .3135 .3266	2128	.1711	.0985
4.ó	9848	6585	.5942	5288	.4624	3950	.3266	2772	. 1868	.0985 .1154
4.1	.98 5 6 i	.6564 .6443 .6516 .6585 .6650	.6017	.5376	.4723 .4816	.3855 .3950 .4061	.3389	.2708 .2856	.2016	.1315 .1467 .1611
4.2	l .986₃ l	.6710 1	.6088	5157	.4816	.4165	- 3505	2856	.2156	.1167
4.5	9868	.6767 .6820	.6155	.5554 .5607	.4904	.4264	.3615	2957	.2288	1611
4.4	.9872 .9875	.6820	.6218	5607	.4987	•4357 •4446	.3719 .3817	.3071	.2413	.1747 .1876
4.5 4.6	9875	.6870 l	.6277	.5676	.5065	4446	.5817	.3179	2552	1876
4.6	.9877	.6916 l	6333 6386	.5741 .5805	-5140	.4529 .4608 .4684	.3910 .5998 .4085 .4163	.3179 .3288	.2552 .2645	1999
4.7	.9877	. <i>6</i> 961	6386	.5805	.5e10	.4608	5998	.5380 .3473	2752	.2116
4.8	.9877	.7002 .7041	.6435 .6482	.5860	.5277	.4684	4085	.3473	.2752 .2854	.2227
4.9	•9876	.7041	.6482	.5916	5340	.4756	.4165	.3361	.2951	-2555
5.0	.9875	.7078	.6528	.5968 .6064	.5340 .5401	.4756 .4824	.4239	.3561 .3645	-3043	2433
5.2	.9870	.7146	.6609 l	.6064	.5511	, 4949	4380	.5802 l	.3216	.2433 .2622
5.4	.9862	.7206		.6151 .6229	.5511 .5611	.5064 .5168	.4239 .4380 .4508 .4626 .4733 .4831	-3945 -4075	• 3373	.2794 .2951 .3096 .3229
5.6	.9852	7259	.6748 .6808 .6862	.6229	.5705	. 5168	.4626	4075	.3517 .3649	2951
5.8	.9841	.7307	.6808	.6301	.5786 .5862 .6024	.5265	.¥735	4195	3649	3096
6.0	.9828	.7350 .7438	.6862	.6363	.5862	-5550	.4851	4305	.5771	3229
6.5	.9792	.7438	6974	.6502 I	.6024	-5537	.5044	.4543	.5771 .4055	3520
7.0	9750 9705	-7505 -7555	.7062	.6611	.6154 .6260	.5550 -5557 -5690 -5814	5044 5218	.4195 .4305 .4543 .4739	42-14	.5520 .5761
7.5	9705	·7555	.7130	.6698 .67 6 8	.6260	.5814	.5762 .5482 .5582 .5667 .578	.4902	4456	.3963 .4154
8.0	9657 9609	.7592 .7619	7183	.67 6 8	.6346 .6417 .6474 .6522 .6561	.5917	ا 82 اور. ا	.5059	·4590	4154
8.5	9609	.7619	7225	.6824	.6417	.6003	.5582	.5155	.4721	.4280 .4406
9.0	.9560	7657	.7256	.6869	.6474	.6074	,5667	-5253	.4855	.4406
9.5	.9511 .9461	.7637 .7649 .7656	.7280	.6904	6522	.6074 .6133	5738	•5357 •5409	.4929	4514
16.6 l	.9461	. 7656	7297	.6952	6361	.618 5	5799	5600	.5012	.4609

 $^{^{5}\}text{Multiply all entries by }b_{2}\rho$ to obtain correction.

TABLE 7.- COMPTICIENTS OF CORRECTIONS FROM IDEAL-GAS VALUES TO REAL-GAS VALUES OF INEMPROPIO EXPANSION OCCUPICIENT & - CONTINUED

(b) Coefficients of pressure-dependent corrections,
$$\tau^{-1} \left[\tau^{OB(0)}(\tau_2) + 2\tau^{O}(\tau_2 - 1)B(1)(\tau_2) + (\tau^O - 1)^2B(2)(\tau_2) \right]$$

					3					
					/ γ° (b)	1				
^τ 2	5/3	1.40	1.35	1.30	1.25	1.20	1.15	1.10	1.05	1.00
0.15	-30,177	-7,484.5	-4,990.9	-3,053.5	-1,672.2	-847.2	-578.4	-865.8	-1,709.3	-3,109.1
.20	-2,329.48	-556.52	-561.00	-236.21	-162.15	-158.85	-166.2	-244.39	-373-27	-552.69
.25	415.864	-101.225	-75.690	-60.722	-56.321	-62.486	-79. 21 7	-106.515	-144.380	-192.811
.30	-115.137	-34.443	-29.874 -16.484	-28.700	-30.920	-36.534	-45.543	-57.946	-73.744 -44.044	-92.955
-35	-42.615	-16.840	-16.484	-17.545	-20.015	-25.902	-29.202	-55.916 -24.209	- արգրագրանի	-57.505 -34.497
.40	-18.640	-10.095	-10.702	-12.008	-14.011	-16.713	-20.112	-21.209	-29.004	-34.497
.45	-9.147	-6.776	-7-559 -5-6070	-8.750	-10.289	-12.256 -9.2689	-14.570	-17.292 -12.8848	-20.402	-23.900 -17.4404
1,50	-≒. 819≒	I —1.8562 ∣	-5.6070	-6.5927	-7.8153 -6.0644	-9.2689	-10.9 5 94	-12.8848	-15.0452	-17.4404
	-2.6259	-5.6255	4.2918	-5.1181	-6.0844	-7.2087	-8.4849	-9.9132	-11.4954	-13.2256
1.55	-1.4199	-3.6233 -2.7737 -2.1646	-3.3577 -2.6693	-4.0432		-5.7248 -4.6240	-6.7208	-7.8204	-9.0254	-10.3300
.65	7136	-2.1616	-2.6695	-3.2474	-5.8990 -5.1868 -2.6326	<u>-4</u> ,6240	-5.4225 -4.4418	-6.2945	-7:2599	-8.2588
.70	2792	-1.7087	_2.1575	-2.6402	-5.1868	-3.7873	-4.4418	-5.1501	-5.9124	-6.7286
75	_,∞16	-1.5598	-1.7434 -1.4249	-2.1677	~2.6326	-3.1383 -2.6259	-3.6846	_≒.2717	-4.899 4	-5.5679
.80	.1808	-1.0875	-1.4249	-1,7938	-2.1941	-2.6259	-5.0892	-5.5839	-4.1101	4.6678
,85	.5052	-1.5598 -1.0875 8713	-1.1701	-1.4957	-2.1941 -1.8422	_2.215k	-2.6155	-5.5839 -5.0564	-3,4841	-3,9566
1 .90	.3863	6975	9638	-1.2500	~1.5562	-1.8822 -1.6086	-2.2282	-2.5941	-2.9799	-3.3857
.95	.4431	6975 5561 4400 5459 2658	-1.1701 9638 7949 6553 5391 4416	-1.2500 -1.0499	-1.5562 -1.3211 -1.1262	-1.6086	-1.9124	-2.5941 -2.2325 -1.9551 -1.6851	-2.9799 -2.5685	-10.7500 -8.2588 -6.7286 -5.7679 -4.6678 -7.9566 -7.9581 -2.9210 -2.5581 -2.2197 -1.9512 -1.7541 -1.5500 -1.5651
1.00	.4816	4400	6553	I8841	-1.1262	-1.3617	-1.6507	-1.9551	-2.2289	-2.5381
1.05	5074	5439	5391	7455 6288	9650 8255	-1.1918	-1.4519	-1.6831	-1.9456	-2,2193
1.10	1 .5210	26 58	4416	6288	8255	-1.0517 8956	-1.2473	-1.4725	-1.7071	-1.9512
1,15	.5340)1966	3592	5299 4456	7087 6089	8956	-1.0906	-1.2936 -1.1406	-1.5048	-1.7241
1.20	.5591 .5407	1399	-,2893	4456	6089	7792	9564	-1.1406	-1.5518 -1.1850	-1.5500
1,25	.5107	0918	2296	373 4 3111	5252 4491	6791	8410	-1.0090	-1.1850	-1.3631
1,50	.5396 .5366	0509	1784	ىنىۋ،-	4491	5925 5172 4515	7411	8949	-1.0541	-1.2185
1.55	.5366	0161	- 1545	2573	5849	5172	6541	7957 7089 6326	9419 8438	-1.0928
1.40	.5320	.0139	0962	2105	5289	4515	5781	, 7089 7089	8458	-,9827
1.45	.5264	.0596 .0618	0655	-,1698	2800	- 3939	5114	6526	7575 6813	8860
1.50	.5320 .5264 .5200	.0618	0546	1542	2370	3 432	4526	I5653	6813	- 8006
1.55	.5131	.0808	5792 2897 2296 1784 1785 0962 0677 0786 0096 0127 0482	1342 1029 0754	- 3849 - 3299 - 2800 - 2370 - 1992 - 1697 - 1761 - 1098 - 0864	5959 5452 2984 2588	4006	5057 4528	6138 5538 5002 4522	-1.0928 9827 8860 8006 7249 6974
1.60	.5057 .4981	.0973	.0125	0754	1657	- 2588	- 3544	4528	5558	6574
1.65	.4981	.1115	.0314	0512	1361	2255	5133	4055	5002	5/14 5/13 5/13 4/11 4/116 3/75/9 3/45/4 3/15/8
1.70	.4903 .4 824	.1239	.0482	0297	-,1098	1921	2766	3633	4522	5433
1.75	48 24	.1345	.0629	0108	0864	1641	2437	5254	4091	4948
1.80	<u>- 4745</u>	.1437	.0758 .0871	.0060	0655 0469	1590 1164	2142	2913 2606	5703	4511
1.85	.4745 .4666 .4588	.1516 .1584	0871	ەنچە.	0469	- 1164	1877	2606	- 2333	- 4116
1.90	.¥588	1584	.0971	.0545 .0461	0302	0962	1657	2529	I3036	- 3759
1.95	.4510 .4454	.1643	1059	0461	0152	0779 0614	1421	2077 1849	2748 2487	3435
2.0	1454	.1693	.1137 .1264	0567	0017	0614	1225	1049	2487	5138
2.1	4285	.1773	.1264	.0886	.0213	0531	0886	1453	2038	2622
2.2	.4142	.1829	.1363 .1455	.0886	-0599	0098	0605	1125	1651	2190 1825
2.3	.4005	.1868	. 1455	.09991	.05509	.00959	03722	08474	1551	1825
<u> </u>	<u>t </u>			i	L		L		L	L

builtiply all entries by $\frac{b\gamma}{H(\epsilon_2/k)}P$ to obtain correction.

Table 7.- Coefficients of observations year limit-gas values to heat-gas values of heat-

τ _Ω						7° (b)			· · ·	•
	5/ 3	1.40	1.35	1.50	1.25	1.20	1.15	1.10	1.05	1.00
2.4	0.5074	0.1892	0.1/495	0.1089	0.06754	0.02555	-0.01763	-0.06146	-0,1061	-0.1515
2.5	-5750	.1905	1537	.1160	.07772	.03860	- 00120	04176	08304	1250
2.6	.3631	.1910	.1567	.1216	.07772	.03860 .04962	.01262	02508	06538	1024
2.7	.3519	1908	.1587	.1260	.09270 .09821	.05878 .06646 .07286 .07818 .08261 .08628	.02430	01081	04653	08281 06590
2.8	.5412	.1900 .1889	.1600	.1294	.09821.	06646	.03418 .04259	.00139	05198 01944 00856	06590
2.9	.3510	.1889	.1606	.1519	.1026	.07286	·0 1 259	.01186	01044	05121 05841 02723
3.0	.5213	.1875	.1607	.1337	.1062	.07818	.04970	02080	00856	- 03/8k1
3.1	.3181	1856	.1609	.1550	.1090	.08961	.05581	02855	00088	02723
3.2	-3053	.1856	1599	.1358	.1112	.08628	.05581 .06094	.03322	.00910	01743
3.3	.3053 .2949 .2870	.1836 .1814	.1589	.1361	.1129	.08927	.06532	.035 <u>02</u> .04098	.01626	01743 00883
5.4	.2870	.1792	1579	.1362	, 11) ,	.09177	.06905	.04596	.02250	00196
3.5 3.6	.2794	.1792 .1768	. 1579 . 1566	.1360	.1150	.09177 .09380	.07220	.04596 .05026 .05396	.02252 .02800	00126 00542 01151
	.2721	.1744	.1551	.1355	.1156	.09536	07481	.03396	.03279	01131
3.7	.2721 .2652	.1720	.1556	.1355 .1549	.1159	.09536 .09662	.07700	.05716	.03699	.01652
3.8	.2586	.1720 .1696	.1520	.1341	.1159 .1160	.09758 .096 2 8	.07700 .07887	05080	04067	.02114
3.9	.2522 .2462	.1671 .1646		.1552	.1159	, 006eA	.08059	.05989 .06226	.04587	00501
4.0	.2462	.1646	.1505 .1486	.1322	1156	.09875	08165	.06130	.04671	.02521 .02885
4.1	.2404	.1622	.1468	.1311	.1152	.09875 .09905	.08266	.06430 .06605	.0491B	.05207
4.2	.2548	. 1598 . 1574	.1450	.1299	.1147	.09917	08345	06750	05133	05492
4.3	.2295	.1574	.1451	.1287	.1140	.09916	.08407	.06752 .06877	05301	.03746
ķ.Ļ	.2295 .2244	1550	.1413	1274	1155	.09905	.08452	.06980	05321 05485	07070
4.5	.2194	1527	1395	1261	1126	. 09905 . 09880	.08482	.07064	.05627	.03970 .04169
4.5 4.6	.2147	.1504	.1377	,1248	.1117	.09846	08500	.07135	05750	04346
	.2102	.1481	1359	.1255	.1109	.09805	.00506	.07191	.05750 .05855	04740
4.7 4.8	.2058	.1459	.1341	.1291	1099	09758	00,00	07255	05946	04501 04679
4.9	.2016	.1437	.1323	1207	.1090	00706	.00,00	.07267	.06025	04079
5.0		.1416	.1306	1194	.1060	.09706 .096+8	.08506 .08496 .08478	07201	.06029	.04760 .04867
5.2	. 1975 . 1898	.1374	.1271	.1166	.1060	.09518	.08422	.07290 .07311	.06184	.01007
5.4	1826	.1354	.1237	.1139	.1039	.09377	ofice of	.0(5)TT	.00104	05042
5.6		.1206	1205	:1112	.1018	.09229	.08549 .08260	07305 07277	.06247 .06280	.05173 .05270 .05558
5.8	.1759 .1697	.1296 .1260	.1174	1086	.09975	.09074	00200	.07233	.06292	.05270
6.0	1638	.1225	::::	.1061	.09769	.08917	.08160 .08052 .07760	.U(X))	.06292	•07778
6.5	1506	.1144	1073	.1000	.09267	.08519	07760	06090	06000	05382
7.0	1393	.1072	.1009	.09445	.08791	.06126	• Oliton	.00y0y	.06208	.05415
7.5	1294	.1007	.09507	.08951	.08546		.07454 .07149 .06852	.07175 .06989 .06770 .06737 .06299 .06064	06077	•05373
8.6	.1207	.09490	.08979	.08460	07040	.07752 07706	.0(149	. wo	05915	05264
8.5	.1130	08063	.08500	.08028	.07952 .07549	.07596 .07062	.00072	00299	.05738	.05168
9.0	1062	.08963 .08486	.08063		0770	•0 (00z	.06567 .06296 .06040	400004 04004	-05554	-05036
9.5	1001	.08052	00000	.07638	.07194 .06865	.06749	.00296	.05837	.05570	04896
10.0	.09461	.07656	.07663	.07268	.00000	06496	,05040	.05618	.05188	.04752
20.0	- OD-FOT	•0(0)0	07297	.06952	.0 65 61	.06185	05799	.05109	.05012	.04609

^bMultiply all entries by $\frac{b_2}{R(\epsilon_2/k)}P$ to obtain correction.

TABLE 8.- COMPYTOTETE OF CORRECTIONS FROM IDEAL-GAS VALUES TO REAL-GAS VALUES OF SOUND VELOCITY A

(a) Coefficients of density-dependent corrections, $B^{(0)}(\tau_2) + (\gamma^0 - 1)B^{(1)}(\tau_2) + \frac{(\gamma^0 - 1)^2}{2\gamma^0}B^{(2)}(\tau_2)$

T2					7° (a)					.
	5/3	1.40	1.55	1.50	1.25	1.20	1.15	1.10	1.05	1.00
0.15	-1,591.2	-654.1	-510.5	-409.3	-555.5 -68.26	-286.1	-270.9 -69.74	-292.2	-335.5	-466.4
.20	195.06	-93.61	-82.05	-73.46		-66.86	-69.74	-77.51	-90.84	-110.58
.25	-55.291	-33.139	-31_110	-29.940 -17.252	-29.755	-30.610	-32.712	-36.205	41.289	-48.203
.30	-24.393	-17.631	-17.260	-17.252	-17.651	-18.507 -12.863	-19.881	-21.842	-24.475	-27.881
35	-13.852	-11.462	-11.514	-11.739	-12.1Bo	-12.865	-13.821	-15.091	-16.718	-18.755
40	-9.136	-8.342	-8.48 5	-8.747 -6.889	-9.141	-9.68 5	-10.397	-11,301	-12.424	-13.799
.45	-6.612	-6.466	-6.637	⊸6.88 9 1	-7.250	-7.672	-8.228	-8.915	-9.749	-10.75 5
.50	-5.0850		-5.3984	-5.6279	-5.925	-6.291	-6.743	-7.288	-7.942	-8.720
.55	4.0703	-5.2275 -4.3488	4.5113	-5.6279 -4.7184	-4.9756	-6.291 -5.2890	-6.745 -5.6660	l -6.1155 l	-7.942 -6.6472	-7.2741
· 55 · 60	-3.5546	-3.603B	-3.8451	4.0520	-1.2587	4.5502	4.8522	-5.2518 -4.5458	-5.6771	-6, 1980
.65	-2.0233	-3.6938 -3.1866	-3.3267	-5.4959	-3.6978	-3.9564	4.2165	-4.5438	4.9250	-5.5682 -4.7100
. o ,	-2.4136	-2.7822	-2.9118	-5.0658	-5.2473	-3.4597	-3.7069	-3-9957	4.3238	4.7700
.70	-2.0885	-2.4522	-0.5700	-2.7133	-2.8778	-3.0687	-5.2895	-5.5442	-4.3258 -3.8578	4.1759
.80	2.0009	-2.1778	-2.5722 -2.2893	-2.4190	-2.5692	-2.7424	-2.9416	-5.1704	-3.4329	-5.7542
.00	-1.8237 -1.6042	*2.1(0	~2.2099	-2.1699	-2.3079	-2.4662	-2.6474	-2.8547	-3.0918	-5.5651
.65	-1,0042	-1.9461	-2.0499 -1.8448		-2.0858	-2.2294	-2.5955	2.5848	-2.8007	-3.0471
.90	-1,4192	-1.7478	-1.0440	-1.9565	-1.8895	-2.0242	9 1777			
-95	-1.2612	-1.5761 -1.4262	-1.6671	-1.7711 -1.6091		-1.8448	-2.1773 -1.9867	-2.3514 -2.1477	-2.5494 -2.5504	-2.7749 -2.5381
1.00	-1.1946	-1.4262	-1.5117	-1.0031	-1.7195	-1.6865	-1.8188	-2.14[[-2.5501
1.05	-1.0053	-1.2911	-1.5748	-1.4662	-1. 569 6	-1.0002	-1.6697	-1.9684 -1.8094	-2.1379	-2.3302 -2.14 <i>6</i> 4
1.10	9005	-1.1768	-1.2551	-1.5592	-1.4564	-1.5460 -1.4205	-1.0097	-1.0094	-1.9674 -1.8154	-2.1404
1.15	8071	-1.0721	-1.1443	-1.2257	-13173	-1.4205	-1.5366	-1.667 5		-1.9826 -1.8359
1.20	7239	9779 8989	-1.0465	-1.1236	-1.2102	-1.3076	-1.4170	-1.5401	-1.6790	-1.0559
1.25	6491	8929	9582	-1.0314	-1.1135	-1.2056	-1.3089	-1.4252	-1.5560	-1.7038
1.30	5816	8157 7453	8779	9476 8712	-1.0256	-1.1130	-1.2109	-1.3209	-1.4446	-1.5841 -1.4755
1.35	- 5205	- 7455	8048	8712	9455	-1.0285	-1.1216	-1.9259	-1.3431	-1.4755
1.40	4645	6810	7578 6763	8013	8721	9513 8803	-1.0398	-1.1390	-1.2504	-1.5758
1.45	4154	6218	6763	7370	8648	8805	96\8 8956	-1.0595	-1.1654	-1.2847
1.50	4134 3664	5674	-,6196	6778	7427	8149	8956	9 0, 9	-1.0871	-1.2009
1.55	5232	5170	6196 5672	6251	-,6852	7545	8317	9181	-1.0148	-1.1255
1.60	2632	4704	I5187	5725	6520	6985	7725	8552	9479	-1.0519
1.65	5232 2652 2462	4270	4735	5252	6520 5826	6985 6464	7179 6663	79 6 9	-,8857	9855
1.70	2118	5866	4515	¥812	5365	5979	6663	7425	8279	9256 8659
1.75	1797	5489	5922	-,4402	5365 4955	5979 5526	6184	6918	7759	86 5 9
ī.86	1k98	3137	-,3555	4018	4532	5102	5757	7425 6918 6444	7234	8120
1.85	1218	3137 2806	5911	3658	4154	4705	5517 4923	5999 5582	6761	7615
1.90	0956	2496	5 <u>211</u> 2887	5320	5800	4332	1923	5582	6317	7141 6696
1.95	0700	8204	2585	5002	-,5466	3981	4553	5189 4819 4140	5900	6696
2.0	0709 0478	1020	2296	2702	3152	3650 3043	- 4203	¥81ó	-,5507	-,6270
2.1	-,0054	1929 1424	1770	2152	-,2573	3063	- 3562	4140	-,5507 -,4785	5506
2.2	-,00,7	0971	1298	1659	2057	2498	2988	- 5532	4138	5506 4817
2.3	.0325	0564	0875	1214	1591	- 2008	- 2470	2984	3556	419

Quitiply all entries by $a^{Q}b_{\hat{\mathbb{Q}}^{Q}}$ to obtain correction.

Table 8.- coefficients of connections from ideal-das values to real-das values of sound velocity a - continued (a) Coefficients of density-dependent corrections, $B^{(0)}(\tau_2) + (\gamma^0 - 1)B^{(1)}(\tau_2) + \frac{(\gamma^0 - 1)^2}{2\gamma^0}B^{(2)}(\tau_2)$ - Concluded

те					γ (6) }				
	5/5	1.40	1,35	1.30	1.25	1.20	1.15	1,10	1.05	1.00
2.4	0.0972	-0.0196	-0.0489	-0.0813	-0.1170	-0.1564	-0.2008	-0,2488	-0.3050	-0.3636
2.5	.1249	.0138	0140	0447	0786	1161	1576	- 2058	2552	-,3166
2.6	.1502	O443	.0178	0114	0437	0795	1188	- 2058 - 1627	2115	5126 2661
2.7	.1732	0722	.0178 .0469	.0191	0117	- 0156	1188 0855	1251	1716	2036
2.8	1945	.0722 ,0978	0736	0470	0177	0456 0147	- 0506	- 0008	- 7270	2236 1845 1485
2.9	2137	.1213	.0736 .0983 .1210 .1420	0000	.0177 .0448 .0698	.0138	0205	0905 0587 0292	1549 1011 0699	1042
		1 .1219	10905	.0728 .0966 .1187	.0140	.0401	0205	0507	1011	1402
5.0	.2515	.1431	1510	1 .0900	10090	1 .0401	.0073	- 0292	0099	1152 0844
5.1	2480	. 1652	.1420	-1167	.0929	.0645	.0550 .0569 .0792	0020	0409 0140	
3.2	.2633 .2774	. 1819	.1616	.1592 .1582 .1759 .1925 .2080	. 1144	.0871 .1082	.0569	-0255	0140	0558
3.3	.2774	.1993	.1797 .1 966	.1582	. 1545	.1082	0792	.0469	.0110 .0545	0291
3.4	.2906	.2154	.1966	.1759	.1531	.1279	.0999	.0689	.0343	I –.∩∩b.⊼
3.5	.3028	.2505 .2446	. R194	.1925	.1705 .1868	.1279 .14 62	.0999 .1195	.0894	.0561 .0766	.0190 .0407 .0611 .0605 .0985 .1154
3.6	.51A5	olub6	.2272 .2411	.2080	1868	.1634	1375	.1087	0766	01.07
3.7	3250	2579	211	9005	.2021	1205	1545	1067	.0957	
3.8	3350	0203	021	.2225 .2362	.2165	.1795 .1947	1705	.0253 .0469 .0689 .0894 .1087 .1267 .1437 .1575 .1746 .1888	.1158	.001
	.3350 .3443	.2705 .2819	.2541 .2662	0,000	•2107	.2088	1 1102	• 1421	11170	,000
3.9 4.0	• 2442	.2019	.2002	.2489 .2611	.2299 .2427		.1855	1799	.1506	.0965
	-5532	2929	.2778	.2611	-2427	.2223	1997	.1746	. 1467	.1154
4.1	.3614	.2929 .5052	.2778 .2886 .2988 .3085	.2725	.2547 .2660 .2767 .2868	.2550 .2469	.1997 .2151 .2257	.1888	.1306 .1467 .1618 .1760 .1895	. 1515
4.2	.3692	.5130 .3222	.2988	2872	.2660	.2469	.2257	.2022 .2149	.1760	.1515 .1467
4.3	.3766 .3835	.3222	.3065	.2954	.2767	.2582 .2689	.2377 .2490	.2149	1895	.1611
4.4	. 3 835	.5509	.3176	3050	.2868	2689	.2490	.2260	2025	.1747
4.5 4.6	5901	.5509 .5591 .5470	.5263	.3121	.2964	.2790	.2598	.2385 .2491	.2023 .2144	.1747 .1876
1.6	3060	3470	33/16	3207	-3055	.2790 .2887	.2700	.pkoi	.2289 .2568 .2472	1000
4.7	.3962 .4021	.3544	74.23	3289	.3142	2978	2706	950k	2869	.1999 .2116
4.B	.4077	.3614	Z) OT	.3367	.3224	3068	.2796 .2688	.2594 .2692 .2795 .2674	200	.2227
	1,400	.5681	• 2791	.5441	7224	.3065 .3148	.2000	0000	.24(2	. 222
4.9	.4129	-5001	•5507	• 244.	3502	.5140	129/0	• • • • • • • • • • • • • • • • • • • •	.2572 .2666	- 2555 - 2455
5.0	4179	.3745 .3863	.5054	3512	3576	-5226	•5059	2074	.2666	-2455
5.2	.4272	.3005	.5176 .5263 .5746 .5425 .5497 .567 .567 .5679 .5072	.3643	.3515 .3641	.5226 -5575	.5215	.3039	.2842	. 2622
5.4	. 4555 . 4431	.3970 .4068	.5872	.3 <u>7</u> 62	.3641	.5507	.2976 .5059 .5215 .5357	.3190	• 300 5	.2794
5.6	.4451	.4068	·5975	.5871	-3757 -3862	.3629	I ∙3467 I	.3328	.3150 .5286	.2951 .3096
5.8	. \4500	.4158	.4069	.3971	.3862	-3741	.3606	- 3455	.3286	.3096
6.0	.4565	.4158 .4240 .4416	.5975 .4069 .4156	.3643 .3762 .3871 .3971 .4063	3939	. 5844 . 4067	-5715	.5039 .3190 .3328 .3455 .3457 .3571 .3025 .4035	.3410 .3681	. 3229
6.5	.4697	4416	4545	.4261	. 4169	4067	3953	3823	. 3681	3520
7.0	4805	.4561	. 146og	հետ	.4342	4251	•3955 •4149	4055	.3006 I	•3520 •3761
7.5	4899	.4680	.4543 .4496 .4622	.4598 .4670 .4765 .4845	. A.A.A.S.	4404	14515	1810	4094	. 806x
6.ó	.4964	h:770	h70A	1670	.4485 .4606	hazz	.4513 .4450	h sag	kosz	. 5963 . 4154
8.5	.5025	.4779 .4861	.4728 .4816	1.768	.4707	.4533 .4641	.4567	.4558 .4485	.4253 .4388	.4280
			4010	·(52		1404.L	**20(·4407	-4000 L	.#200
9.0	5071	·\ \ 951	.1-890	-4040	•4793	·4734	.4667	- 1 294	.4504 .4604	4406
9-5	.5110	4969	4954	.4913 .4971	4866	.4813 .4881	4752 4826	.4591 .4683 .4763	4604	4514
ا ه.م	.5143	-5059	-5007	.4971	.4929	,4881	.4626	.4755	.4691	4609

Multiply all entries by $a^{0}b_{2}\rho$ to obtain correction.

TABLE 8.- COEFFICIENTS OF CORRECTIONS FROM IDEAL-GAS VALUES TO REAL-GAS VALUES OF BOUND VELOCITY a - Continued

(b) Coefficients of pressure-dependent corrections,
$$\tau^{-1} \left[B^{(0)} (\tau_2) + (\gamma^0 - 1) B^{(1)} (\tau_2) + \frac{(\gamma^0 - 1)^2}{2\gamma^0} B^{(2)} (\tau_2) \right]$$

тр					γ ^ο (b)					
	5/3	1.40	1,35	1.50	1.25	1.20	1.15	1.10	1.05	1.00
0.15	-10,608	-4,227 -468.1	-3,405	-2,729	-2,223	-1,908	-1,806	-1,948	-2,369 -151.2	-3,109
.20	-975-5		-410.1	-567.3	-341.3	-334 - 3	-348.7	-587.5	454.2	-558.9
25	-221.16	-152.56	-124.44	-119.76	-118.95	-122.44	-130.85	-144.82	-165,16	-192.81
.30	-81.509	-58.769	-27.552	-57.506	-58.636	-61.690	-66.269	-72.607	-81.584	-92.935
- 35	-59.576 -22.841	-32.807	-52.898	-33.540 -21.867	-34.799	-56.752	-39.489	-43.118	-1 7.766	-55.585 -54.497
.40	-22.641	-20.854	-21.212	-21.067	-22.853	-24.212	-25.995 -18.285	-28.253	-31.060	
-45	-14.69	-14.570	-14.750	-15.508	-16.066	-17.048	-16.205	-19.810	-21.665	-25-900
.50	-10.1660	-10.4545	-10.7969	-11.2559	-11.8459	-12.5823	-13.4852	-14.5769	-15.8846	-17.4404
·55	-7.4006	-7.9069	-8.2024	-8.5790	-9.0466	-9.616	-10.3019	-11.1188	-12.0859	-15.2256
	-5.5909 -4.5435	-6.1563	-6.4086	-6.7201	-7.0979 -5.6890	-7.5503	-8.0871	-8.7197	-9.4618	-10.3300
.65	~~건~??	-4.9024	-5.1180	-5.3784 -4.3798	-2.6690	-6.0560	-6.4870	-6.9905	-7.5769	-8.2588
.70	-3.4481 -2.7844	-3,9746 -3,2696	-4.1597	7.2790	-4.6590	4.9424	-5.2955 -4.3860	-5.7055	-6.1798	-6.7286
:75	=2.7044	-5.2090	-5.4297 -2.8616	-3.6177	-5.8570	4.0916	-4.5000	4.7256	-5.1170 -4.2911	-5.5679 -4.6678
.80	-2.2796 -1.6875	-2.7223	-2.0010 -2.4117	-3.0238	-5.2116	-5.4280	-3.6770	-3.9650	1 -1.291	-4.6678
.85	-1.00(3	-2.2895		-2,5528	-8.7152	-2.9014	-3.1146	-3.3585	-3.6574	-3.9566
.90	-1.5769	-1.9419	-2.0498	-2.1756	-2.3153	-2.4771	-2.6616	-2.8720	-3.1119 -2.6836	-3.3857
.95	-1.3276	-1.6591	-1.7519	-1.8643 -1.6091	-1.9689	-2.1307	-2.2919	-2.4752	-2,6836	-2.9210
1.00	-1.1246	-1.4268	-1.5118	-1.6091	-1.7195	-1.8448	-1.9867	-2.147 <u>7</u>	-2.3304	-2.5381
1.05	- 9574 - 8184	-1.2325	-1.5095	-1.3963	-1.4948	-1.6062	-1.7322	-1.8747	-2.0561 -1.7885	-2.2195
1.10	8184	-1.0698	-1.1392	-1.2175 -1.0698	1.3058	-1.4055	-1.5179	-1.6119	-1.7005	-1.9512
1.15	7018	9522	9951	-1.00%	-1.1455	-1.2552	-1.3562	-1.4500	-1.5786	-1.7240
1.20	6032	8149	8721 7665	9364 8251	-1.0089 8908	-1.0896 9645	-1.1608 -1.0472	-1.2854	-1.3992	-1.5300
1.25	5193 4474	7145 6275	(00)	0271	0900	90+2		-1.1401	-1.2448	-1.3630
1.30	-,44 14 -0-1	10275	6795	7289 6453	7889	8561	9515 8508	-1.0161	-1.1115	-1.2185
1.35	5654	5521 4864	5961 5270	0422	700 \ 6230	~.7619	7427	9081 8136	- 9949 - 8932	-1.1348
1.40	5518 2851	4288	.4664	5725	0270	6795 6071	66,4		0928	9827 8860
1.49	2443	3782	4131	5085 4519	5550 4951	00/I	0074	7306 6575	8057	8006
1.50 1.55	-,2085		3660	4020	4421	5435 4868	5971 5366	,00/17	7247 6547	7249
1.60	1770	- 3336 - 2940	3242	3577	3950	4565	1,900	5925 5545 4850	054 ((249
1.65	11/02	2940	2670			4707	4828 4548	122*2	2924	6574
	1492 1246	-,2568 -,2274	- 2538	5185 2831	3531 3156	3918 3517	3919	4368	5924 5368 4870	37/2
1.70	1027	1994	- 22+1	2516	2820	3158			4488	"-7423
1.73	08322	1745	1975	2232	2518	2855	3554 3187	~•5955 ~•5580	4019	
1.85	06584	1517	1755	1977	2246	25-5	2874	5000 - 3043	5655	5972 5455 4511 4116
1.90	05050	-,1314	1520	1748	2000	-,2280	2591	~.5243 ~.2938	3325	
1.95	05658	-,1130	1525	1540	1778	2042		2661	5026	3434
2.0	02588	09643	1348	1351	1576	1825	2355 2102	2410	2753	7474
2.1	00255	06780	06427	1025	1226	- 1449	1696	1971	2278	3138 2622
2.2	.01478	04415	05900	07540	09550	1136	1358	1605	1881	2190
2.3	.02891	- 02453	05798	05280	06918	00730	1074	~.1297	1546	- 1825
E.7	.02091		07190	-10,200		00/50	10/4		-,1,740	1027

builtiply all entries by $\frac{e^Ob_2}{R\left(\varepsilon_D/k\right)^D}$ to obtain correction.

TABLE 8.- COMPTICIENTS OF CORRECTIONS FROM IDEAL-GAS VALUES TO REAL-GAS VALUES OF SCURD VELOCITY a - Commitmed

(b) Coefficients of pressure-dependent corrections,	$\int_{0}^{2\pi} \tau^{-1} \left[B^{(0)}(\tau_{2}) + (\gamma^{0} - 1)B^{(1)}(\tau_{2}) + \frac{(\gamma^{0} - 1)^{2}}{2\gamma^{0}} B^{(2)}(\tau_{2}) \right]$	- Concluded
---	---	-------------

			_		(1	,o o)				
Tg	5/3	1.40	1.35	1.50	1.25	1.20	1.15	1.10	1.05	1.00
2.4	0.04048	-0.00818	-0.02039	-0.05586	-0.04873	-0.06518	-0.08541	-0.1057	-0.1265	-0.1515
	0500	.00555	00562	01790	05145	04644	06306	08151	1021	1250
2.5	.05776	.01704	.00684	00440	01680	05051	04570	06257	08136	1024
2.7	.06416	.01704 .02674	.01737	.00706	00133	01691	05084	01652	06555	08281
2.8	.06940	.03493 .04184	.02650	.01680	.00632	- 00526	01808	05252	04818	06590
2.9	.07369	.04184	.05588	.02511	.01544	.00475	- 00708	02022	05486	05121
3.0	.07718	.04770 .05265	.04055	.03221	.02526	.01337	00242	00974	02528	05841
5.1	.08001	05265	_045B2	.05829	.02998	.02081	.01065	0006+	01520	02723
3.2	.08228	.0568	.05049	· 04349	.05576	.02725	.01778	.00730	00158	- 01743
3.5	.08407	.06088	.03446	.04794	.04074	.03279	.02399	01/167	.00533	00885
3.4	.08547	.06336 .06587 .06796	.05785	.05175	.01505	.03761	.02939	.02026	.01010	00126
3.5	.08655	.06587	.06070	.05500	.04872	.04178	• 05409	.02555	.01604	.00542
3.6	.08730	.06796	.06512	.05778	.05190	.04539 .04852	.05819 .04176	.03018	.02127	.01131
3.7	.06785	.06969	.06515	.06015	.05165	.04852	.04176	.03424	.02588	01652
3.8	.08815	.07115	.06515 .06686	.06216	.05697	.05125	.04487	.05780	02993	.02114
3.9	.08827	07227	.06826	.06585	.05894	.05554	04755	.04090	.03349	.02521 .02885
4.6	.08829	07322	.06944	.06527	.06067	.05558	· 04995	.04566 .04605	.03667	.02885
4.1	.08815	.07596 .07452	.07059	.06646	.06211	.05731	.05198	.04605	.03945	.03207
4.2	.08791	.07452	.07115	.06744 .068 2 5	.06555	.05879	.05575 .05528	.04815	.04191	.03492 .03746
4.3	08758	.07 1. 93	.07174	.06825	.06435	.06005	.05528	.04998	.04407	.03746
4.4	.08716	.07520	.07219	. 06886 ⊨	.06519	يندوه،	.05660	-05157	01597	.03970 .04169 .04346
4.5	.08668	.07557	.07251	.06936	.06587	.06201	.05772	05296	.04764	.04169
4.6	.08614	.07543	.07274	.06973 .06999	.06642	.06275	.05868	.05416	-04977	04546
4.7	.08556	.07540	.07283	.06999	.0 6685	.06556	.05950 .06017	05519	05059	.04501 .04639
4.8	.08495	.07529	.07285	.07015	.06716	.06385	.06017	05608	.05151	04639
4.9	.08127	.07512	.07280	.07023	.06739	.06424	06075	.05685	84وره.	.04760
5.0	.08558	.07489	.07268	.07024	.067 53 .06760	.06453 .06487	.06119	.05747 .05844	.05552	.04867
5.2	.08215	.07428	.07228	.07006 .06968	.06760	.05.87	.06185	.05844	.05466	05042
5.4	.08065	07552	.07170	.06968	.06745	.06494	.06216	-05907	.05561	.05175
5.6	.07913	.07264	.07098	. 06913 . 06847	.06708	.06480	.06226	05943	.05626 .05665 .05684	05270
5.8	07759	.07168	.07016	.06847	.06659	.06450	.06217	05956	05665	.05358 .05382
6.0	.07605	.07066	.06926 .06681	.06771	.06599 .06414	.06406	.0619e	.05952	05684	.05382
6.5	07227	06795	.06681	.06555	.06414	.06257	.06081	.09885	.05664	.05415
7.6	.06865	.06515	.06425	.06319	, 06205	.06073	.05927	.05764	.05580 .05459	. 05375 . 0528
7.5	.06524	.06240	.06163	.06077	.05981	.05872	05750	.05613	05459	.0525
8.0	.06206	.05975	.05910	05858	•0 5 757	05666	.05563	.05447	.05516	. 05168 ∣
8.5	1 09909	.05719	.05666	05606	.05538	.05460	.05373	05274	.05163	.03036 .04896
9.0	.05634	05478	.05454	.05383	.05525	.05260	.05185	.05101	05005	.04896
9.5	05579	.05252	.05214	.05171	.05122 .04929	.05066 01881	05002	.04950	.04847	.04752 .04609
10.0	.05145	.09099	.05007	04971	.04929	.04881	.0i.826	.04763	.04691	.04609

builtiply all entries by $\frac{a^{O_{O_{2}}}}{R(\mathbf{c}_{2}/k)^{P}}$ to obtain correction.

TABLE 9.- VALUES OF b_0 IN VARIOUS UNITS AS A FUNCTION OF r_0

			Ъo	
r ₀ , A	cm ³ /g-mole	cu ft/lb-mole	cu in./lb-mole	Amagat~l (a)
2.4	17.444	0.27942	482.84	0.77823 × 10 ⁻³
2.5	19.717	.31583	545.75	.87963
2.6	22.179	•35527	613.91	.98947
2.7	24.838	•39786	687.50	1.10810
2.8	27.701	•44372	766.75	1.23582
2.9	30.776	•49298	851.87	1.37301
3.0	34.071	•54576	943.07	1.52001
3.1	37.593	.60218	1,040.57	1.67714
3.2	41.350	.66236	1,144.56	1.84475
3.3	45.348	.72640	1,255.22	2.02311
3.4	49.597	.79446	1,372.83	2.21267
3.5	54.104	.86666	1,497.59	2.41374
3.6	58.875	.94308	1,629.64	2.62659
3.7	63.918	1.02386	1,769.23	2.85157
3.8	69.242	1.10915	1,916.61	3.08909
3.9	74.854	1.19904	2,071.94	3.33946
4.0	80.761	1.29366	2,235.44	3.60299
4.1	86.971	1.39314	2,407.35	3.88004
4.2	93.491	1.49758	2,587.82	4.17091
4.3	100.329	1.60711	2,777.09	4.47598
4.4	107.493	1.72186	2,975.37	4.79558
4.5	114.990	1.84196	3,182.91	5.13005
4.6	122.827	1.96749	3,399.82	5.47968
4.7	131.013	2.09862	3,626.41	5.84488
4.8	139.555	2.23545	3,862.86	6.22597
4.9	148.460	2.37809	4,109.34	6.62324
5.0	157.736	2.52668	4,366.10	7.03708

 $^{^{8}\}text{l}$ Amagat = Density of gas at 1 atm and 273.16° K. It is here assumed that PV/RT = 1.000 under these conditions; multiply tabulated values by true values if known.

TABLE 10.- VALUES OF GAS CONSTANT R IN VARIOUS UNITS

Р	· V	T	R
atm kg/cm ² bars ^a mm Hg atm kg/cm ² mm Hg atm mm Hg	cm ³ /mole cm ³ /mole cm ³ /mole cm ³ /mole l/mole l/mole cu ft/(lb) mole cu ft/(lb) mole	°K °K °K °K °K °R °R	82.0567 atm cm ³ /mole ^O K 84.7832 (kg/cm ²) cm ³ /mole ^O K 83.1440 bars cm ³ /mole ^O K 62363.1 (mm Hg) cm ³ /mole ^O K 0.0820544 atm l/mole ^O K 0.0847809 (kg/cm ²) l/mole ^O K 62.3613 (mm Hg) l/mole ^O K 0.730231 atm cu ft/mole ^O R 554.976 mm Hg cu ft/mole ^O R

a₁₀₆ dynes/cm².

TABLE 11. - LEMMARD-JONES CONSTANTS FOR APPROXIMATE FITTING OF VIRIAL DATA FOR CLUSTERS OF TWO AND THREE MOLECULES

Сев	€2/k, °K	b ₂ , cm ³ /mole	€3/k, °K	b ₃ , cm ³ /mole	€5/€2	₅₂ 2/ ₅₂ 2	p ₂ = Re ₂ , kb ₂ , atm	$p_3 = \frac{Re_5}{kb_3}$, atm	P2 ² /P3 ²	Notes (a)
Argon A	119.75	49.804	118.6	50.89	0.9904	1.0442	197.30	191.2	1.0645	(1)
	119.75	49.804	119.75	51.49	•9745	1.0688	197.30	190.8	1.0693	(2)
Krypton Kr	169	61	164	63.5	.9704	1.0836	227.3	211.9	1.151	(1)
	169	61	164	63.46	.9704	1.0823	227.3	212.1	1.148	(2)
Xenon Xe	224.5	84.65	227	81.46	1.0111	.9260	217.6	228.7	.9058	(1)
	224.5	84.65	227.5	81.25	1.0134	.9213	217.6	229.8	.8966	(2)
Mitrogen N ₂	95.05	63.78	100.2	56.3	1.0558	.7787	122.3	146	.7012	(1)
	95.42	63.	97.7	61.7	1.0239	.9592	124.3	130	.9149	(1), (3)
	92.5	70.5	94.8	66.5	1.0249	.8897	107.7	117	.8473	· (2)
Oxygen O2	116	54.7	124.7	48.2	1.0750	.7758	174.0	212	.6713	(5)
	113.2	58.9	115	56.5	1.0159	.9202	157.7	167	.8917	(2)
Carbon monoxide 00	100.78	69.22	97.9	68.7	.9715	.9850	119.5	116.9	1.0436	(1)
	100.78	69.22	99.9	69.63	.9913	1.0119	119.5	117.7	1.0308	(2)
	99.8	66.7	101.2	64.17	1.0140	.9256	122.8	129.4	.9006	(2)
Carbon dioxide CO2	189 189	113.9 113.9	195.9 199.5	106.8 102.6	1.0365 1.0556	.8785 .8109	136.2 136.2	150.5 159.6	.8177 .7283	(1)
Methane CH ₄	148.2	70.16	145.2	72.0	.9798	1.0525	173.3	165.5	1.0961	(1), (2)
Tetrachloromethana CF4	152.5	131.0	160.7	115.6	1.0538	.7787	95.5	114.1	.7012	(1)
Ethene C ₂ H ₄	199.2 199.2	115.5 115.5	204 203.2	109.5 110.4	1.0241 1.0201	.8980 .9134	141.5 141.5	152.9 151.0	.8562 .8781	(1)
Ethana C2H6	217.5	123.8	221.3	118.9	1.0175	.9213	144.2	152.7	.8918	(2), (4)

a(1) Reference 12.
(2) Modified for critical conditions and extant lower temperature data.
(3) Used in RBS-WACA tables.
(4) Reference 19.

TABLE 12.- FORCE CONSTANTS FROM VISCOSITY DATA

AND SECOND VIRIAL COEFFICIENTS A

	€/	′k, ^o K		r	o, A	
Ges	Viscosity	Second virial coefficient	T _C	Viscosity	Second virial coefficient	V _c /⊅ ₂
Neon Ne Argon A Nitrogen N ₂ Oxygen O ₂ Carbon monoxide CO Nitric acid NO Methane CH ₁	35.7 124.0 91.46 113.2 110.3 119.	35.7 119.75 95.05 117.5 95.33 131 148.2	1.244 1.240 1.351 1.341 1.296 1.43	2.80 3.418 3.681 3.433 3.590 3.470 3.822	2.74 3.41 3.70 3.58 3.65 3.17 3.82	1.56 1.50 1.42 1.37 1.50 1.25
Carbon dioxide CO2 Nitrous oxide N2O	190 220	189 189	1.606 1.514	3.996 3.879	4.49 4.59	.99 1.02
	Av. seven gases		1.320 ± 0.054			1.43 ± 0.07

^aFrom reference 2, with a few alterations.

Figure 1.- Parameter $kT_{\rm c}/\varepsilon_2$ versus $P_{\rm c}V_{\rm c}/RT_{\rm c}$ for various substances.

Figure 2.- Parameter V_c/b_2 versus P_cV_c/RT_c for various substances.

Figure 3.- Parameter B^2/C at T_c versus P_cV_c/RT_c for various substances. Circles represent values based on preliminary cluster parameters for PVT data away from critical temperature; curve is based only on critical isotherm data as represented by Meyers (ref. 18).

Figure 4.- Parameter $(\epsilon_3/\epsilon_2)(b_3/b_2)^{1/2}$ versus $(kT_c/\epsilon_2)(b_2/V_c)$ for various substances.

Figure 5.- Parameter $(\epsilon_3/\epsilon_2)(b_2/b_3)^{1/2}$ versus V_c/b_2 for various substances. Circles represent parameter values based in part on B^2/C requirement for classical critical condition.