# OKAWA Electric Design

English | Japanese

Top > Tools > Filters > Sallen-Key Low-pass Filter Design Tool

<u>disclaimer</u> <u>blog</u>

© 2004 - 2019 OKAWA Electric Design

# Sallen-Key Low-pass Filter Design Tool

This page is a web application that design a Sallen-Key low-pass filter. Use this utility to simulate the Transfer Function for filters at a given frequency, damping ratio  $\zeta$ , Q or values of R and C. The response of the filter is displayed on graphs, showing Bode diagram, Nyquist diagram, Impulse response and Step response.

**Sample calculation** 

# Calculate the transfer function for Sallen-Key low-pass filter with R and C values



Transfer function:

$$\frac{Vout(s)}{Vin(s)} = \frac{\frac{1}{R1C1R2C2}}{s^2 + s\left(\frac{1}{R2C1} + \frac{1}{R1C1}\right) + \frac{1}{R1C1R2C2}}$$



R1= 
$$\Omega$$
 C1= F

Calculate the R and C values for the Sallen-Key filter at a given frequency and Q factor

R2= 
$$\Omega$$
 C2= F

p:pico, n:nano, u:micro, k:kilo, M:mega

## Frequency analysis

- Bode diagram
  - Phase Ogroup delay
- Nyquist diagram
- Pole, zero
- Phase margin
- Oscillation analysis

Upper and lower frequency limits:

$$f1 = -f2 = [Hz]$$

(frequency limits are optional)

### Transient analysis

- Step response
- Impulse response
- Overshoot
- Final value of the step response

Simulation time:

0 - [sec] (optional)

## **Calculate**



Cut-off frequency:

$$fc = \frac{1}{2\pi\sqrt{R1C1R2C2}}$$

Transfer function:

$$\begin{split} &\frac{Vout(s)}{Vin(s)} = \frac{\left(2\pi f_{c}\right)^{2}}{s^{2} + 2\zeta\left(2\pi f_{c}\right)s + \left(2\pi f_{c}\right)^{2}} \\ &Q = \frac{1}{2\zeta} \end{split}$$

Ge

$$f_c = Hz$$

## $Q\;factor\;|\;Damping\;ratio\;\zeta$

| Oquality factor Q =                | 0.707 |
|------------------------------------|-------|
| $\bigcirc$ Damping ratio $\zeta =$ | 1     |

$$C1 = F$$
  $C2 = F$ 

C1, C2 is optional. But when setting these capacitances, C1 and C2 of both are needed to give following the equation

$$(C2/C1) \le \zeta^2$$
$$(C1/C2) \ge 4Q^2$$

Select Capacitor Sequence: E6 Select Resistor Sequence: E24

# Frequency analysis





Calculate

# Calculate the transfer function for Sallen-Key low-pass filter with R and C values



Transfer function:

**Transfer function** 

Ge

| R1= | Ω | C1= | F |
|-----|---|-----|---|
| R2= | Ω | C2= | F |
| R3= | Ω |     |   |
| R4= | Ω |     |   |

p:pico, n:nano, u:micro, k:kilo, M:mega



| Transient analysis                       |  |
|------------------------------------------|--|
| Step response Impulse response Overshoot |  |



#### **Calculate**

# Calculate the R and C values for the Sallen-Key filter at a given frequency and Q factor



Cut-off frequency:

$$fc = \frac{1}{2\pi\sqrt{R1C1R2C2}}$$

Transfer function:

$$\begin{split} &\frac{Vout(s)}{Vin(s)} = \frac{G(2\pi f_c)^2}{s^2 + 2\zeta(2\pi f_c)s + (2\pi f_c)^2} \\ &\mathcal{Q} = \frac{1}{2\zeta} \\ &\mathcal{G} = \frac{R3 + R4}{R3} \end{split}$$

$$f_c =$$
 Hz
$$G = 1.59 at f=0Hz (G>1)$$



Oquality factor Q = 0.707Opamping ratio  $\zeta = 1$ 

| Sallen-Key | Low-pass | Filter | Design | Tool | ĺ |
|------------|----------|--------|--------|------|---|
| Samen-Key  | LOW-pass | TILLET | Design | 1001 | L |

| C1 = | F | C2 = | F |
|------|---|------|---|
|------|---|------|---|

C1, C2 is optional. But when setting these capacitances, C1 and C2 of both are needed to give following the equation

$$G-1 < C2/C1 \le \zeta^2 + G-1$$

Select Capacitor Sequence: E6 Select Resistor Sequence: E24



| Transient      | t analysis                 |  |
|----------------|----------------------------|--|
| Step re        | esponse                    |  |
| Impuls         | e response                 |  |
| <b>O</b> versh | noot                       |  |
| Final v        | ralue of the step response |  |
| Simulation     | time:                      |  |
| 0 -            | [sec] (optional)           |  |
|                |                            |  |

## Calculate

8 of 9

### Filter tools

RC LPF **RC HPF** LR LPF

LR HPF **RLC LPF RLC HPF** 

**RLC BPF RLC BEF** Sallen-Key LPF

3rd order Sallen-Key HPF 3rd order

SallenKeyLPF Multiple feedback

SallenKeyHPF Multiple feedback Multiple feedback

<u>HPF</u> 3rd order BPF TwinT notch LPF

3rd order

Multiple feedback Multiple feedback

CR<sub>E</sub>2nd order Active filter

LPF, HPF, BPF

Filter index