

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 39 Learning Outcome

 Show that E, G, and γ are related (not independent) for isotropic material

Hooke's Law in Shear

(valid for linear elastic region):

G = Modulus of Rigidity (Shear Modulus)

By Equilibrium:

$$\tau_{xy} = \tau_{yx} = \tau$$

$$\tau = G\gamma$$

Mohr's Circle - Stress

Mohr's Circle - Stress $|(0, au_{xy})|$

$$\sigma_P \quad (-\varepsilon_P, 0)$$
 $\sigma_P \quad (-\varepsilon_P, 0)$ $\sigma_P \quad (-\varepsilon_P, 0)$

Mohr's Circle - Strain

$$\tau_{xy} = \tau_{MAX} = \sigma_P \quad \left(-\varepsilon_P, 0\right)$$

$$\left(\sigma_P, 0\right) \quad \left(0, -\tau_{xy}\right) \quad \left(0, -\tau_{xy}\right)$$
Generalized Hooke's Law for Biaxial Stress-Strain

$$\sigma = \frac{E}{E} (\varepsilon + \nu \varepsilon)$$

 $\frac{E\mathscr{S}_{p}(1\neq\nu)}{(1\neq\nu)(1+\nu)} = 2G\mathscr{E}_{p}$

$$\sigma_{P} = \frac{E}{1 - \nu^{2}} (\varepsilon_{P} + \nu \varepsilon_{P}) = \tau_{MAX}$$

$$\sigma_{x} = \frac{E}{1 - \upsilon^{2}} \left(\varepsilon_{x} + \upsilon \varepsilon_{y} \right)$$

$$\sigma_{p} = \frac{E}{1 - \upsilon^{2}} \left(\varepsilon_{p} + \upsilon \varepsilon_{p} \right) = \tau_{MAX}$$

 $(\varepsilon_P,0)$ $\tau_{\text{\tiny MAY}} = G\gamma_{\text{\tiny MAX}} = G(2\varepsilon_P)$ Georgia

E, G, and
$$\gamma$$
 are related (not independent) for isotropic material