## **HOMEWORK WEEK 2**

Please solve the follwing problem using Bisection, Newton's and Secant method in using google colab.

## Problem 1

A trough of length L has a cross section in the shape of a semicircle with radius r. (See the accompanying figure.) When filled with water to within a distance h of the top, the volume V of water is

$$V = L \left[ 0.5\pi r^2 - r^2 \arcsin(h/r) - h(r^2 - h^2)^{1/2} \right].$$



Suppose L = 10 ft, r = 1 ft, and V = 12.4 ft<sup>3</sup>. Find the depth of water in the trough to within 0.01 ft.

## Problem 2

In the design of all-terrain vehicles, it is necessary to consider the failure of the vehicle when attempting to negotiate two types of obstacles. One type of failure is called *hang-up failure* and occurs when the vehicle attempts to cross an obstacle that causes the bottom of the vehicle to touch the ground. The other type of failure is called *nose-in failure* and occurs when the vehicle descends into a ditch and its nose touches the ground.

The accompanying figure, adapted from [Bek], shows the components associated with the nose-in failure of a vehicle. In that reference it is shown that the maximum angle  $\alpha$  that can be negotiated by a vehicle when  $\beta$  is the maximum angle at which hang-up failure does *not* occur satisfies the equation

$$A\sin\alpha\cos\alpha + B\sin^2\alpha - C\cos\alpha - E\sin\alpha = 0,$$

where

$$A = l \sin \beta_1, \quad B = l \cos \beta_1, \quad C = (h + 0.5D) \sin \beta_1 - 0.5D \tan \beta_1,$$
 and 
$$E = (h + 0.5D) \cos \beta_1 - 0.5D.$$

- **a.** It is stated that when l = 89 in., h = 49 in., D = 55 in., and  $\beta_1 = 11.5^\circ$ , angle  $\alpha$  is approximately 33°. Verify this result.
- **b.** Find  $\alpha$  for the situation when l, h, and  $\beta_1$  are the same as in part (a) but D = 30 in.

