MATEMÁTICA DISCRETA

Propiedades de los números enteros

1/19

- Principio del buen orden. Principio de Inducción Matemática.
- Divisibilidad. Números Primos.
- Algoritmo de la División. Notación en base b.

Principio del buen orden. Principio de Inducción Matemática

Principio del buen orden. Principio de Inducción Matemática.

Matemática Discreta Teoría de Números 3/19

$$\mathbb{Z} = \{..., -(n+1), -n, ..., -2, -1, 0, 1, 2, ..., n, n+1, ...\}$$

junto con las operaciones usuales de suma y producto satisface las siguientes propiedades:

- Op. internas: $\forall a, b \in \mathbb{Z}$ se tiene $a + b \in \mathbb{Z}$ y $a \cdot b \in \mathbb{Z}$.
- Conmutativas: ∀a, b ∈ Z se tiene a + b = b + a y a · b = b · a.
- Asociativas: $\forall a, b, c \in \mathbb{Z}$ se tiene (a+b)+c=a+(b+c) y $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- Existencia de el. neutros: ∀a ∈ Z se tiene a + 0 = a y a · 1 = a.
- Existencia de el. opuesto para +: ∀a ∈ Z, ∃ − a ∈ Z tal que a + (-a) = 0.
- Distributiva: ∀a, b, c ∈ Z se tiene a · (b + c) = a · b + a · c.

$$\mathbb{Z}^+ = \{ x \in \mathbb{Z} : x > 0 \} = \{ x \in \mathbb{Z} : x \ge 1 \}.$$

4 ロ ト 4 団 ト 4 ミ ト 4 ミ り 9 0 0

4/19

Matemática Discreta Teoría de Números

Principio del buen orden

Todo subconjunto no vacío de \mathbb{Z}^+ contiene un elemento que es el mínimo (Se dice que \mathbb{Z}^+ está *bien ordenado*).

Ejemplo

- El 2 es el mínimo en el conjunto formado por los números pares.
- El 1 es el mínimo de \mathbb{Z}^+ ,
- \bullet \mathbb{R}^+ no cumple el principio del buen orden.

Este principio sirve para distinguir \mathbb{Z}^+ de \mathbb{R}^+ o \mathbb{Q}^+ .

Matemática Discreta Teoría de Números 5/19

Principio de Inducción Matemática

Sea S(n) un enunciado matemático que depende de la variable $n \in \mathbb{Z}^+$.

- (i) Si S(1) es verdadero y;
- (ii) Si siempre que S(k) es verdadero (para algún $k \in \mathbb{Z}^+$ particular, pero elegido arbitrariamente), entonces S(k+1) es verdadero; entonces S(n) es verdadero para todo $n \in \mathbb{Z}^+$.

- A la condición (i) se le llama Paso base.
- A la condición (ii) se le llama Paso inductivo.

6/19

Principio de Inducción matemática

Sea S(n) un enunciado matemático que depende de la variable $n \in \mathbb{Z}^+$.

- (i) Si S(1) es verdadero y;
- (ii) Si siempre que S(k) es verdadero (para algún $k \in \mathbb{Z}^+$ particular, pero elegido arbitrariamente), entonces S(k+1) es verdadero;

entonces S(n) es verdadero para todo $n \in \mathbb{Z}^+$.

Demostración

Sea S(n) un enunciado matemático que satisface las condiciones (i) y (ii).

Sea $F = \{x \in \mathbb{Z}^+ : S(x) \text{ es falso}\}$. Supongamos que $F \neq \emptyset$.

Por el Principio del buen orden, F tiene un elemento mínimo $s \in F$.

Por (i) se tiene que S(1) es verdadero. Entonces s > 1, lo cual implica que $s - 1 \in \mathbb{Z}^+$. Además observa que $s - 1 \notin F$. (S(s - 1) es verdadero).

Por (ii) se tiene que S((s-1)+1)=S(s) es verdadero, lo cual contradice el hecho de que $s\in F$.

Por tanto, $F = \emptyset$, y el teorema queda demostrado.

Matemática Discreta Teoría de Números 7 / 19

Ejercicio

Sea $n \in \mathbb{Z}^+$. Demuestra que $\sum_{i=1}^n i = \frac{n(n+1)}{2}$.

Demostración

Sea
$$S(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
.

Observa que S(1): $\frac{1\cdot 2}{2} = 1$ es verdadero (Paso base).

Asumamos que S(k) es verdadero, i.e., S(k): $\sum_{i=1}^k i = \frac{k(k+1)}{2}$ es verdadero (hipótesis inductiva).

Necesitamos demostrar que S(k+1) es verdadero (Paso inductivo).

Observa que:
$$S(k+1)$$
: $\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1)$
= $\frac{k(k+1)}{2} + (k+1)$
= $\frac{(k+1)(k+2)}{2}$

Lo anterior implica que S(k+1) es verdadero. Por tanto, por el Principio de Inducción Matemática, S(n) es verdadero para todo $n \in \mathbb{Z}^+$.

Divisibilidad. Números Primos.

Divisibilidad. Números Primos.

Definición

Sean $a,b \in \mathbb{Z}$ y $a \neq 0$. Diremos que a divide a b (y se escribe $a \mid b$) si existe un entero n tal que b = an.

En este caso, diremos que:

- \circ a es un divisor de b.
- b es un múltiplo de a.

Teorema

Para cualesquiera $a,b,c \in \mathbb{Z}$,

- (a) 1 | a y a | 0.
- (b) Si $a \mid b$ y $b \mid a$, entonces $a = \pm b$.
- (c) Si $a \mid b$ y $b \mid c$, entonces $a \mid c$.
- (d) Si $a \mid b$ y $a \mid c$, entonces $a \mid (bx + cy)$ para todo $x, y \in \mathbb{Z}$.

Matemática Discreta Teoría de Números 10 / 19

Ejemplo

¿Existen enteros $x, y, z \in \mathbb{Z}$ tal que 6x + 9y + 15z = 107?

Solución:

Supongamos que tales enteros $x, y, z \in \mathbb{Z}$ existen.

Como $3 \mid 6$, $3 \mid 9$ y $3 \mid 15$, entonces $3 \mid 107$, lo cual es falso.

Por tanto, NO existen $x, y, z \in \mathbb{Z}$ tal que 6x + 9y + 15z = 107.

Ejemplo

Sean $a, b \in \mathbb{Z}$ tal que 2a + 3b es un múltiplo de 17. Demuestra que 17 divide a 9a + 5b.

Solución:

Observa que si 17 | (2a+3b), entonces 17 | [-4(2a+3b)].

Por otra parte, 17 | (17a + 17b).

Por tanto, $17 \mid [-4(2a+3b)+(17a+17b)]$, i.e., $17 \mid (9a+5b)$.

Matemática Discreta Teoría de Números 11/19

Definición

Sea n > 1 un entero positivo.

- Diremos que n es un número primo si sus únicos divisores positivos son 1 y n.
- Diremos que *n* es un número compuesto si NO es un número primo.

Ejemplo

- 100 es un número compuesto.
- 2 es un número primo.
- 11 es un número primo.
- 27 es un número compuesto.

Matemática Discreta Teoría de Números 12 / 19

Proposición

Si $n \in \mathbb{Z}^+$ es un número compuesto, entonces existe un número primo p tal que $p \mid n$.

Demostración:

- Sea S el conjunto de todos los compuestos que no tienen divisores primos.
- Supongamos que $S \neq \emptyset$. Por el Principio del buen orden, S tiene un elemento mínimo $m \in S$.
- Como m es un número compuesto, entonces $m = m_1 \cdot m_2$, donde $m_1, m_2 \in \mathbb{Z}^+$ $(1 < m_1 < m \text{ y } 1 < m_2 < m)$.
- Como $m_1 \notin S$, entonces m_1 es un número primo o es un múltiplo de un número primo.
- Entonces, existe un primo p tal que $p \mid m$, una contradicción.
- Por tanto, $S = \emptyset$, lo cual implica que la declaración es verdadera.

(ロト ← 母 ト ← 恵 ト ← 恵 ト 車 ・ へ ② ト ← 恵 ト 車 ・ へ ② へ ② Matemática Discreta Teoría de Números 13 / 19

Teorema(Euclides)

Existen infinitos número primos.

Teorema fundamental de la aritmética

Todo número entero positivo n>1 o es un número primo o se puede descomponer como producto de números primos. Además, esta descomposición es única salvo el orden de los factores.

Ejemplo:

- 17 es un número primo.
- $21 = 3 \cdot 7$.
- $50 = 2 \cdot 5^2$.
- $64 = 2^6$.

14 / 19

Matemática Discreta Teoría de Números

Algoritmo de la División. Notación en base b.

Algoritmo de la División. Notación en base b.

15 / 19

Matemática Discreta Teoría de Números

Teorema (Algoritmo de la División)

Si $a,b \in \mathbb{Z}$ con b > 0, entonces existen dos únicos enteros $q,r \in \mathbb{Z}$ tal que:

$$a = bq + r$$
, $0 \le r < b$.

Ejemplo:

- Si a = 170 y b = 11, entonces $170 = 15 \cdot 11 + 5$ (q = 15 y r = 5).
- Si a = 98 y b = 7, entonces $98 = 14 \cdot 7$ (q = 14 y r = 0).
- Si a = -45 y b = 8, entonces -45 = (-6)8 + 3 (q = -6 y r = 3).

Matemática Discreta Teoría de Números 16/19

Notación Decimal

Si $n = a_k a_{k-1} \dots a_1 a_0 \in \mathbb{Z}^+$, entonces:

$$n = a_0 + a_1 \cdot 10 + \dots + a_{k-1} \cdot 10^{k-1} + a_k \cdot 10^k$$
.

Sea $b \in \mathbb{Z}^+$, con b > 1. Todo número $n \in \mathbb{Z}^+$ se puede expresar de forma única como:

$$n = a_0 + a_1 \cdot b + a_2 b^2 + \dots + a_{k-1} \cdot b^{k-1} + a_k \cdot b^k.$$

para un cierto $k \in \mathbb{Z}^+$, con $a_0, a_1, \ldots, a_k \in \mathbb{Z}^+$, $a_1, \ldots, a_k < b$ y $a_k \neq 0$.

En este caso, escribiremos $n = a_k a_{k-1} \dots a_1 a_{0_b}$.

$$b = 10 \rightarrow \mathsf{Notaci\'{o}} \mathsf{n} \mathsf{decimal} \qquad b = 1$$

$$b = 16 \rightarrow \mathsf{Notaci\'{o}}\mathsf{n}$$
 hexadecimal

$$b=2$$
 \rightarrow Notación binaria $b=8$ \rightarrow Notación octal

Matemática Discreta Teoría de Números 17 / 19

Algoritmo de expresión de un número natural n (decimal) en base b

- ① Dividimos n entre b: $n = q_0b + a_0$, $0 \le a_0 < b$.
- ② Dividimos q_0 entre b: $q_0 = q_1b + a_1$, $0 \le a_1 < b$, luego

$$n = (q_1b + a_1)b + a_0 = q_1b^2 + a_1b + a_0.$$

• Repetimos hasta tener $q_k = 0$: $q_1 = q_2b + a_2$, $0 \le a_2 < b$, luego

$$n = (q_2b + a_2)b^2 + a_1b + a_0 = q_2b^3 + a_2b^2 + a_1b + a_0$$

$$= (q_3b + a_3)b^3 + a_2b^2 + a_1b + a_0 = \dots$$

$$= a_kb^k + a_{k-1}b^{k-1} + \dots + a_2b^2 + a_1b + a_0$$

$$= a_ka_{k-1}\dots a_2a_1a_{0b}.$$

Ejercicio

Expresa el número 6137 en base octal.

Solución:

$$6137 = a_0 + a_1 \cdot 8 + a_2 \cdot 8^2 + \dots + a_{k-1} \cdot 8^{k-1} + a_k \cdot 8^k.$$

$$6137 = 1 \cdot 8^4 + 3 \cdot 8^3 + 7 \cdot 8^2 + 7 \cdot 8 + 1 = 13771_8.$$

19 / 19