Fakultät Angewandte Naturwissenschaften und Wirtschaftsingenieurwesen

Übungen zu Analytische Grundlagen - WIW-1: Blatt 2 WS 2014/15

1. Funktionen und Abbildungen

- a) Ist durch die Kreisgleichung $x^2 + y^2 = r^2$ eine Funktion gegeben?
- b) Man gebe je ein Beispiel für eine injektive (nicht surjektiv), surjektive (nicht injektiv) und bijektive Funktion an für $f: D_f = \mathbb{R} \to \mathbb{R}$, sowie eine Funktion, die keine dieser Eigenschaften erfüllt. Natürliche Definitionslücken kann man durch eigene Definition "überbrücken".
- c) Gegeben seien die Funktionen $f(x) = \frac{x^2}{x+1}$ und $g(x) = \frac{1}{x}$. Man bilde jeweils die verkettete Funktion (Kompositum) $f \circ g$ und $g \circ f$ und berechne den Funktionswert für x=1.

2. Vektoralgebra

Gegeben seien die Vektoren $\vec{a} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$, $\vec{d} = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$, $\vec{e} = \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix}$.

a) Man berechne - sofern dies möglich ist:

$$\begin{split} & -\frac{1}{2}\vec{b} \ , \ \ 2\vec{a} + 3\vec{b} - \vec{d} \ , \ \ \ 2\vec{d} - \vec{c} + 3\vec{e} \ , \ \ \ 2\vec{e}^T \ , \ \ \ 3\vec{c}^T - \vec{d}^T \ , \ \ \vec{b}^T + 4\vec{e} \ , \ \ |\vec{a}| \ , \ \ |-2\vec{b}| \ , \\ & -2|\vec{d}| \ , \ \ \ 2|\vec{a}| + 3|\vec{b}| - |\vec{d}| \ , \ \ |2\vec{a} + 3\vec{b} - \vec{d}| \ , \ \ |2\vec{a}| - |\vec{c}| + |3\vec{e}| \ , \ \ |2\vec{a} - \vec{c} + 3\vec{e}| \ , \ \ 2|\vec{e}^T| \ , \\ & |3\vec{c}^T| - |\vec{d}^T| \ , \ |\vec{b}^T| + 4|\vec{e}| \ . \end{split}$$

- b) Man ermittle die Einheitsvektoren von $\; \vec{a} \;$, $\; \vec{b} \;$ und $\; \vec{c} \;$.
- c) Welche der gegebenen Vektoren sind zueinander parallel, welche orthogonal?
- d) Welchen Winkel schließen \vec{a} und \vec{b} , \vec{d} und \vec{e} miteinander ein?
- e) Welchen Betrag haben die Projektionen von \vec{a} auf \vec{e} , von \vec{e} auf \vec{a} ,von \vec{b} auf \vec{d} ?
- f) Man berechne $\vec{a} \cdot \vec{a}$, $\vec{a} \cdot \vec{e}$, $\vec{a} \times \vec{e}$, $(\vec{b} \times \vec{d}) \cdot \vec{e}$, $(\vec{a} \times \vec{b}) \times \vec{e}$, $\vec{a} \times (\vec{b} \times \vec{e})$, $(\vec{a} + \vec{d}) \times (\vec{b} \times \vec{d})$, $(\vec{a} \times \vec{e}) \cdot (\vec{b} \times \vec{e})$, $(\vec{a} \times \vec{e}) \cdot (\vec{d} \times \vec{e})$.
- g) Die Konstanten α , β , γ sind so zu bestimmen, dass $\alpha \vec{a} + \vec{b}$ orthogonal zu \vec{b} , \vec{e} orthogonal zu $\vec{a} + \beta \vec{b}$ ist und $\vec{a} + \gamma \vec{b}$ mit der y-Achse einen Winkel von 45° bildet.

3. Geraden und Ebenen

- a) Man bestimme eine Parameterdarstellung der Ebene durch die Punkte P_1 =(2,1,-3) , P_2 =(-1,3,-4) und P_3 =(1,2,3) .
- b) Man gebe eine Parameterdarstellung der Ebene an , die den Punkt $P = (3,-3,4) \qquad \text{und die Gerade G:} \quad \vec{r} = (2,-1,1) + \lambda \cdot (0,1,2) \quad \text{enthält.}$

Anmerkung:

Man findet viele ähnliche Aufgaben zum selbständigen Bearbeiten in der Übungssammlung von Prof. Schulte auf den Blättern 4, 5 und 6 mit Lösungen.