

 \rightarrow

D-Meta.ai 과제 전형

Solution Introduction

Developer : 김영준

Contents

1 Task Overview

2 Explanation on Impossibility

3 Solution

Contents

1 Task Overview

2 Explanation on Impossibility

3 Solution

Task Overview - Process

I should develop the re-construction algorithm from split images to a complete image

But, I felt there are some points very unrealistic in implementing the merging stage

Contents

1 Task Overview

2 Explanation on Impossibility

3 Solution

1 I can't use prior information on the original image

This means I must optimize to some best cases not train patterns with complete image

2 I don't know generally used algorithm matching two images without overlapping

I can't use the algorithm carrying out very efficiently, I can only use traditional algorithms

Binarization HOG LBP

3 This process require very huge time complexity

This third reason is very critical.. Below is the number of search spaces in optimization stage

$$(2^O \cdot O!)^{M \cdot N} \times (M \cdot N)!$$

Where O is the number of operations,
M is the number of grids on height,
N is the number of grids on width,

3 This process require very huge time complexity

This third reason is very critical.. Below is the number of search spaces in optimization stage

$$(2^O \cdot O!)^{M \cdot N} \times (M \cdot N)!$$

- The number of cases which apply random operations with random order
- The number of images which operations are applied
- The number of permutation which determine the order of images

3 This process require very huge time complexity

This third reason is very critical.. Below is the number of search spaces in optimization stage

$$(2^{O} \cdot O!)^{M \cdot N} \times (M \cdot N)!$$

 \checkmark This part is O(n!), which let the search spaces increase dramatically

If $(M \cdot N)$ is 25, then I must find 4 best spaces in 1.551121e + 25 search spaces!

So, I decide to remove this part for reducing complexity which would make it impossible to converge in finite time!

3 This process require very huge time complexity

This third reason is very critical.. Below is the number of search spaces in optimization stage

$$(2^{O} \cdot O!)^{M \cdot N} \times (M \cdot N)! \qquad \Longrightarrow \qquad (2^{O} \cdot O!)^{M \cdot N}$$

✓ Then, the order of the images has already been determined

Contents

1 Task Overview

2 Explanation on Impossibility

3 Solution

The core part of my solution is using Genetic Algorithm(GA) in optimization

✓ Optimize the parameters used in merging images

Sub-images

Optimization with Genetic Algorithm

Merging images with parameters

✓ Below algorithms are used calculating naturalness on edge side

Local Feature Extractor

L2 distance of pixels

L2 distance of LBP & HOG feature

L2 distance of pixel histogram

Standard deviation of pixels

✓ Below algorithms are used calculating naturalness in case of complete image

Global Feature Extractor

Difference of LBP feature between local and global

Difference of Binarization feature between local and global

✓ This operation let objective function consider global naturalness with local naturalness

✓ This operation let objective function consider global naturalness with local naturalness

Solution - Evaluation

Hyper parameters of Genetic Algorithm

Max iteration: 10,000

Population size: 50

Mutation probability: 5%

Crossover probability: 80%

Swapping probability: 50%

Missed tiles (Only 1 tile is missed!)

M by N	Case1	Case2
2 by 2	0	0
2 by 3	0	0
3 by 3	0	0
4 by 4	0	0
5 by 5	1	0

Case1

505 by 511

551 by 800

Solution - Evaluation

This architecture shows robustness on different type of image!

Case1. The picture with low complexity, background is certainly separated from the person located in center

Solution - Evaluation

How about more complex picture? - The Last Supper of Leonardo da Vinci

Case2. The picture with high complexity, there are many people and the picture has diverse colors

Thank You

The End

 \rightarrow