Classification Trees

Classification Trees

author: Son Nguyen

Reading Materials

► Max Kuhn. Chapter 14. Section 14.1

Decision Boundary in Classification

Classification is a process of finding the **decision boundary** that best separates two classes

Decision Boundary in Classification

Decision Boundary in Classification

► SVM = Support Vector Machine

Decision Tree

- ▶ Decision Tree for classification is **Classification Tree**
- ▶ Decision Tree for Regression is **Regression Tree**

Example of Classification Tree

```
[Link] (http://graphics8.nytimes.com/images/2008/04/16/us/0416-nat-subOBAMA.jpg)
```

Example of Classification Tree

Example of Classification Tree

Note:- A is parent node of B and C.

Classification Tree

► In two dimension, classification Tree's decision boundary is a collection of horiontal and vertical line

Find a vertical line that best seperate **red** and **green**.

One way to seperate the reds and greens

One way to seperate the reds and greens

One way to seperate the reds and greens

Question

▶ **Question**: Which is the best split?

Partial Answer

- It looks like Split 1 and 3 are better than Split 2 since it misclassifies less
- ▶ Which is the better split between Split 1 and Split 3?
- We need to find a way to measure how good a split is

Impurity Measure

- ► The impurity of a node (a node = a subset of the data or the original data) measure how uncertain the node is.
- ► For example, node A with 50% reds and 50% greens would be more uncertained than node B with 90% reds and 10% greens. Thus, node A has greater impurity than node B.
- ► More uncertained = Greater impurity

Impurity Measure

► A split that *gains* more impurity is the **better split**!

Impurity Gain

$$IG = I_{parent} - \frac{N_{left}}{N}I_{left} - \frac{N_{right}}{N}I_{right}$$

- ► IG is Impurity Gain of the split
- $ightharpoonup N_{left}$ and N_{right} are the number of points in the left child node and right child node, respectively.
- $ightharpoonup N_{left} + N_{right} = N$

Impurity Measure

► Impurity can be measured by: classification error, Gini Index, and Entropy.

Impurity Measure

Let p_0 and p_1 be the proportion of class 0 and class 1 in a node.

By Classification Error:
$$I = min\{p_0, p_1\}$$

By Gini Index:
$$I = 1 - p_0^2 - p_1^2$$

By Entropy:
$$I = -p_0 \log_2(p_0) - p_1 \log_2(p_1)$$

Calculation

► Let's calculate the impurity gain of the three splits to decide which split is the best

Split 1: IG By Classification Error

Let **green** and **red** be class 0 and class 1, respectively.

For Split 1:
$$N = 5$$
, $N_{left} = 1$, $N_{right} = 4$

Split 1: IG By Classification Error

- ▶ Node parent, A: $p_0 = \frac{2}{5}$, $p_1 = \frac{3}{5}$. Thus, $I_A = \min(\frac{2}{5}, \frac{3}{5}) = \frac{2}{5}$
- Node *child left*, L: $p_0 = \frac{0}{1} = 0$, $p_1 = \frac{1}{1} = 1$. Thus, $I_L = \min(0, 1) = 0$
- Node *child right*, R: $p_0 = \frac{3}{4}, p_1 = \frac{1}{4}$. Thus, $I_R = \min(\frac{3}{4}, \frac{1}{4}) = \frac{1}{4}$
- ► Impurity Gain of Split 1:

$$IG = I_A - \frac{N_{left}}{N}I_L - \frac{N_{right}}{N}I_R$$
$$= \frac{2}{5} - \frac{1}{5} \cdot 0 - \frac{4}{5} \cdot \frac{1}{4} = 0.2$$

Split 2: IG By Classification Error

For Split 2: N = 5, $N_{left} = 2$, $N_{right} = 3$

Split 2: IG By Classification Error

- ▶ Node parent, A: $p_0 = \frac{2}{5}, p_1 = \frac{3}{5}$. Thus, $I_A = \min(\frac{2}{5}, \frac{3}{5}) = \frac{2}{5}$
- ▶ Node *child left*, L: $p_0 = \frac{1}{2}, p_1 = \frac{1}{2}$. Thus, $I_L = \frac{1}{2}$
- Node *child right*, R: $p_0 = \frac{2}{3}, p_1 = \frac{1}{3}$. Thus, $I_R = \min(\frac{2}{3}, \frac{1}{3}) = \frac{1}{3}$
- ▶ Impurity Gain of Split 2:

$$IG = I_A - \frac{N_{left}}{N} I_L - \frac{N_{right}}{N} I_R$$

= $\frac{2}{5} - \frac{2}{5} \cdot \frac{1}{2} - \frac{3}{5} \cdot \frac{1}{3} = 0$

Split 3: IG By Classification Error

For Split 3: N = 5, $N_{left} = 3$, $N_{right} = 2$

Split 3: IG By Classification Error

- Node parent, A: $p_0 = \frac{2}{5}$, $p_1 = \frac{3}{5}$. Thus, $I_A = \min(\frac{2}{5}, \frac{3}{5}) = \frac{2}{5}$ Node child left, L: $p_0 = \frac{1}{2}$, $p_1 = \frac{2}{2}$. Thus, $I_A = \min(\frac{1}{2}, \frac{2}{3}) = \frac{1}{3}$
- ▶ Node *child right*, R: $p_0 = \frac{2}{2}$, $p_1 = \frac{0}{2}$. Thus, $I_R = \min(1, 0) = 0$
- Impurity Gain of Split 3:

$$IG = I_A - \frac{N_{left}}{N} I_L - \frac{N_{right}}{N} I_R$$

= $\frac{2}{5} - \frac{3}{5} \cdot \frac{1}{3} - \frac{2}{5} \cdot 0 = 0.2$

Comparing IG By Classification Error

	IG
Split 1	0.2
Split 2	0
Split 3	0.2

▶ By classification error, Split 1 and Split 3 are tie as the best because they have the same impurity gain.

Split 1: IG By Gini Index

For Split 1: N = 5, $N_{left} = 1$, $N_{right} = 4$

Split 1: IG By Gini Index

Node parent, A:
$$p_0 = \frac{2}{5}$$
, $p_1 = \frac{3}{5}$. Thus, $I_A = 1 - (\frac{2}{5})^2 - (\frac{3}{5})^2 = 0.48$

Node child left, L: $p_0 = \frac{0}{1} = 0, p_1 = \frac{1}{1} = 1$. Thus,

$$I_L = 1 - 0^2 - 1^2 = 0$$

Node child right, R: $p_0 = \frac{3}{4}$, $p_1 = \frac{1}{4}$. Thus,

$$I_R = 1 - (\frac{3}{4})^2 - (\frac{1}{4})^2 = 0.375$$

► Impurity Gain of Split 1:

$$IG = I_A - \frac{N_{left}}{N} I_L - \frac{N_{right}}{N} I_R$$

$$=0.48-\frac{1}{5}\cdot 0-\frac{4}{5}\cdot 0.375=0.18$$

Split 2: IG By Gini Index

For Split 2: N = 5, $N_{\textit{left}} = 2$, $N_{\textit{right}} = 3$

Split 2: IG By Gini Index

- Node parent, A: $p_0 = \frac{2}{5}, p_1 = \frac{3}{5}$. Thus, $I_A = 1 (\frac{2}{5})^2 (\frac{3}{5})^2 = 0.48$
- Node child left, L: $p_0 = \frac{1}{2}$, $p_1 = \frac{1}{2}$. Thus, $I_L = 1 (\frac{1}{2})^2 (\frac{1}{2})^2 = 0.5$
- Node *child right*, R: $p_0 = \frac{2}{3}$, $p_1 = \frac{1}{3}$. Thus, $I_R = 1 (\frac{2}{3})^2 (\frac{1}{3})^2 = 0.44$
- ► Impurity Gain of Split 2:

$$IG = I_A - \frac{N_{left}}{N} I_L - \frac{N_{right}}{N} I_R$$
$$= 0.48 - \frac{2}{5} \cdot \frac{1}{2} - \frac{3}{5} \cdot 0.44 = 0.016$$

Split 3: IG By Gini Index

For Split 3: N = 5, $N_{left} = 3$, $N_{right} = 2$

Split 3: IG By Gini Index

- Node parent, A: $I_A = 0.48$
- Node *child left*, L: $p_0 = \frac{1}{3}, p_1 = \frac{2}{3}$. Thus, $I_A = 1 (\frac{1}{3})^2 (\frac{2}{3})^2 = 0.44$
- Node *child right*, R: $p_0 = \frac{2}{2}$, $p_1 = \frac{0}{2}$. Thus, $I_R = 1 0^2 1^2 = 0$
- Impurity Gain of Split 3:

$$IG = I_A - \frac{N_{left}}{N} I_L - \frac{N_{right}}{N} I_R$$
$$= 0.48 - \frac{3}{5} \cdot 0.44 - \frac{2}{5} \cdot 0 = 0.216$$

Comparing IG By Gini Index

	IG
Split 1	0.18
Split 2	0.016
Split 3	0.216

▶ By Gini Index, Split 3 is the best because it has the greatest impurity gain.

Split 1: IG By Entropy

For Split 1: N = 5, $N_{\textit{left}} = 1$, $N_{\textit{right}} = 4$

Split 1: IG By Entropy

- Node parent, A: $p_0 = \frac{2}{5}$, $p_1 = \frac{3}{5}$. Thus, $I_A = -log_2(\frac{2}{5}) log_2(\frac{3}{5}) = 0.971$
- Node child left, L: $p_0 = \frac{0}{1} = 0$, $p_1 = \frac{1}{1} = 1$. Thus, $I_L = 0$
- Node *child right*, R: $p_0 = \frac{3}{4}$, $p_1 = \frac{1}{4}$. Thus,

$$I_R = -log_2(\frac{3}{4}) - log_2(\frac{1}{4}) = 0.811$$

▶ Impurity Gain of Split 1:

$$IG = I_A - \frac{N_{left}}{N} I_L - \frac{N_{right}}{N} I_R$$

= $0.971 - \frac{1}{5} \cdot 0 - \frac{4}{5} \cdot 0.811 = 0.322$

Split 2: IG By Entropy

For Split 2: N = 5, $N_{\textit{left}} = 2$, $N_{\textit{right}} = 3$

Split 2: IG By Entropy

- Node parent, A: $p_0 = \frac{2}{5}$, $p_1 = \frac{3}{5}$. Thus, $I_A = 0.971$
- Node child left, L: $p_0 = \frac{1}{2}$, $p_1 = \frac{1}{2}$. Thus, $I_L = -log_1(\frac{1}{2}) log_2(\frac{1}{2}) = 1$
- Node *child right*, R: $p_0 = \frac{2}{3}$, $p_1 = \frac{1}{3}$. Thus, $I_R = -log_2(\frac{2}{3}) log_2(\frac{1}{3}) = 0.918$
- ► Impurity Gain of Split 2:

$$IG = I_A - \frac{N_{left}}{N}I_L - \frac{N_{right}}{N}I_R$$

= $0.971 - \frac{2}{5} \cdot 1 - \frac{3}{5} \cdot 0.918 = 0.02$

Split 3: IG By Entropy

For Split 3: N = 5, $N_{left} = 3$, $N_{right} = 2$

Split 3: IG By Entropy

- Node parent, A: $I_{\Delta} = 0.971$
- Node *child left*, L: $p_0 = \frac{1}{3}$, $p_1 = \frac{2}{3}$. Thus, $I_A = -log_2(\frac{1}{3}) log_2(\frac{2}{3}) = 0.918$
- ▶ Node *child right*, R: $p_0 = \frac{2}{2}$, $p_1 = \frac{0}{2}$. Thus, $I_R = 0$
- Impurity Gain of Split 3:

$$IG = I_A - \frac{N_{left}}{N}I_L - \frac{N_{right}}{N}I_R$$

= $0.971 - \frac{3}{5} \cdot 0.918 - \frac{2}{5} \cdot 0 = 0.42$

Comparing IG By Entropy

IG
0.322
0.02
0.42

▶ By Gini Index, Split 3 is the best because it has the greatest impurity gain.

Comparing Impurity Measures

▶ Relation between impurity and the class probabilities. All impurity measures are maximized at $p_1 = 1/2$ and minimized at $p_1 = 0$ and $p_1 = 1$.

Another Example

- Which split is better?

Decide the best split using Chi-Square test of Independence

ightharpoonup Besides impurity gain, one can use the Chi-square, χ^2 , test of independence to decide the best split.

Review of Chi-Square test of Independence

- ► Let X and Y be two categorical variables.
- ▶ We want to test if X and Y are independent/associated
 - $ightharpoonup H_0$: X and Y are independent
 - $ightharpoonup H_{\alpha}: X \text{ and } Y \text{ are dependent}$
- ► Test statistic:

$$\sum rac{(e_i-o_i)^2}{e_i} \sim \chi^2$$
 distribution with degree of freedom $(n-1)(m-1)$

Review of Chi-Square test of Independence

- In our context, the greater the χ^2 value, the smaller the p-value
- The smaller the p-value, the more dependent the two variables are. Thus the better the split is.
- ▶ Therefore, we look for the split with the **greatest** χ^2 **value**.

Applying to Our Example

- \blacktriangleright We will calculate the χ^2 values of the three splits.
- ▶ The best split is the split with the greatest χ^2 value.

	Greens	Reds	Total
Left Branch	0	1	1
Right Branch	3	1	4
Total	3	2	

$$\chi^2 = \frac{(e_1 - o_1)^2}{e_1} + \frac{(e_2 - o_2)^2}{e_2} + \frac{(e_3 - o_3)^2}{e_3} + \frac{(e_4 - o_4)^2}{e_4}$$

- i = 1 (Cell 1): $e_1 = \frac{1 \cdot 3}{5}$, $o_1 = 0$
- i = 2 (Cell 2): $e_2 = \frac{1 \cdot 2}{5}$, $o_2 = 1$
- i = 3 (Cell 3): $e_3 = \frac{3.4}{5}$, $o_3 = 3$
- i = 4 (Cell 4): $e_4 = \frac{2 \cdot 4}{5}$, $o_4 = 1$
- Plug in, we have:

$$\chi^2 = 1.875$$

	Greens	Reds	
Left Branch Right Branch	1 (Cell 1) 2 (Cell 3) 3) (3

$$\chi^2 = \frac{(e_1 - o_1)^2}{e_1} + \frac{(e_2 - o_2)^2}{e_2} + \frac{(e_3 - o_3)^2}{e_3} + \frac{(e_4 - o_4)^2}{e_4}$$

- i = 1 (Cell 1): $e_1 = \frac{2 \cdot 3}{5}$, $o_1 = 1$
- i = 2 (Cell 2): $e_2 = \frac{2 \cdot 2}{5}$, $o_2 = 1$
- i = 3 (Cell 3): $e_3 = \frac{3 \cdot 3}{5}$, $o_3 = 2$
- i = 4 (Cell 4): $e_4 = \frac{3 \cdot 2}{5}$, $o_4 = 1$
- Plug in, we have:

$$\chi^2 = 0.139$$

	Greens	Reds	
Left Branch Right Branch	` ,	2 (Cell 2) 0 (Cell 4) 2	3 2

$$\chi^2 = \frac{(e_1 - o_1)^2}{e_1} + \frac{(e_2 - o_2)^2}{e_2} + \frac{(e_3 - o_3)^2}{e_3} + \frac{(e_4 - o_4)^2}{e_4}$$

- ightharpoonup (Cell 1): $e_1 = \frac{2 \cdot 3}{5}$, $o_1 = 1$
- ightharpoonup (Cell 2): $e_2 = \frac{2 \cdot 2}{5}$, $o_2 = 2$
- ightharpoonup (Cell 3): $e_3 = \frac{3 \cdot 3}{5}$, $o_3 = 2$
- ightharpoonup (Cell 4): $e_4 = \frac{3 \cdot 2}{5}$, $o_4 = 0$
- Plug in, we have:

$$\chi^2 = 2.222$$

Comparing the three splits

χ^2
1.875
0.139
2.222

▶ Split 3 is the best because it has the greatest χ^2 !

Logworth

- ► The quality of the split can be measured by **Logworth**
- ► Formula:

$$logworth = -log(p_{value})$$

▶ The greater the logworth, the better the split

Logworth

	χ^2	p-value	logworth
Split 1	1.875	0.114	0.943
Split 2	0.139	0.998	0.0008
Split 3	2.222	0.088	1.055

- ▶ Greatest $\chi^2 = \text{Lowest } p value = \text{Greatest logworth} = \text{Best Split}$
- ► Split 3 is the best split!

What happens after the first split?

- After the first split, the data are divided into to subsets.
- ► The splitting process is repeated for each subset.
- The process ends when a stopping criteria is satisfied

Stopping Criteria

- Minimum Leaf Size: The minimum of observations in the leaves
- Maximum Number of Leaves
- Maximum Depth
- Others

Stopping Criteria

Decision Tree Algorithm - How to grow a tree

- Step 1: Calculate the impurity gain or p-value of all possible splits at all variables
- Step 2: Select the split that give the maximum impurity gain or lowest p-value to split the data into two subdata D_1 and D_2
- ▶ Repeat Step 1 and Step 2 to both D_1 and D_2 .
- Until a stopping criteria is satisfied

Complexity of Decision Tree

- ➤ A complexity of a tree can be measured by the number of leaves the tree has
- ▶ The more leaves a tree has, the more complex the tree is.
- ► A complex tree may be **overfitted**, i.e. having low training error but high testing error.

Prunning a tree

- For any given data, one can construct a tree that achives 0 misclassification on training data
- After growing the tree one needs to prune it to avoid overfittted

Prunning a tree

- ➤ The tree with maximum number of leaves is called the maximal tree (still satisfied the stopping rule)
- ► From the **maximal tree**, leaves are cut down, one by one, to obatined all possible subtrees
- ➤ The subtree with lowest error on validation data, is the optimal tree

Maximal vs Optimal Tree

Example of Tree Prunning

Example of Tree Prunning

- ► All the subtrees A, B, C, D, and E will be validated with the validation data to find the **optimal tree**
- ► The optimal tree could be the maximal tree!

Question

- What if both B and C give the lowest error on the validation data? Which tree should be selected as the final model?