Übungen zur Linearen Algebra I

Wintersemester 2016/17

Universität Heidelberg Mathematisches Institut Dr. D. Vogel

Dr. M. Witte

Blatt 6

Abgabetermin: Donnerstag, 01.12.2016, 9.30 Uhr

Aufgabe 1. (Abbildungen in Vektorräume) Sei K ein Körper, V ein K-Vektorraum und M eine Menge. Betrachten Sie auf der Menge W = Abb(M, V) der Abbildungen von M nach V die Verknüpfungen

$$+: W \times W \to W, \qquad (f,g) \mapsto f + g,$$

 $: K \times W \to W, \qquad (\lambda, f) \mapsto \lambda f,$

wobei für $f, g \in W$, $\lambda \in K$ die Abbildungen f + g und λf durch

$$f + g: M \to V,$$
 $m \mapsto f(m) + g(m),$
 $\lambda f: M \to V,$ $m \mapsto \lambda \cdot f(m)$

gegeben sind. Zeigen Sie, dass W mit diesen Verknüpfungen ein K-Vektorraum ist. (Dies verallgemeinert Beispiel 8.2.(d) aus der Vorlesung.)

Aufgabe 2. (Untervektorräume von \mathbb{R}^3) Entscheiden Sie (jeweils mit Begründung), ob folgende Teilmengen Untervektorräume des \mathbb{R} -Vektorraums \mathbb{R}^3 sind:

- (a) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1\},\$
- (b) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + 2x_2 + 3x_3 = 0\},\$
- (c) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 x_2 x_3 = 0\},\$
- (d) $\{(x_1 + x_2, 5x_1 x_2 + 3x_3, 2x_1 7x_2 + x_3) \mid x_1, x_2, x_3 \in \mathbb{R}\}.$

Aufgabe 3. (Untervektorräume von Abb(M, K)) Es seien K ein Körper und M eine Menge. Wir betrachten den K-Vektorraum V = Abb(M, K) der Abbildungen von M nach K. Zeigen Sie, dass die folgenden Teilmengen Untervektorräume von V sind:

(a) für eine Teilmenge $N \subset M$ die Teilmenge

$$\{f\in \operatorname{Abb}(M,K)\mid\ f(m)=0\ \text{für alle}\ m\in M\setminus N\},$$

(b) für eine endliche Teilmenge $N\subset M$ und eine Abbildung $g\colon N\to K$ die Teilmenge

$$\{f \in Abb(M, K) \mid \sum_{n \in N} g(n)f(n) = 0.\}$$

(c) die Teilmenge

$$\{f\in \mathrm{Abb}(M,K)\mid \ f(m)=0 \text{ für fast alle } m\in M\},$$

Aufgabe 4. (Lineare Hülle) Sei K ein Körper, V ein K-Vektorraum, I eine Menge, $(v_i)_{i \in I}$ eine Familie von Vektoren in V und $\phi \colon J \to I$ eine Abbildung. Zeigen Sie, dass

$$\operatorname{Lin}((v_{\phi(i)})_{i \in J}) \subseteq \operatorname{Lin}((v_i)_{i \in I}),$$

wobei Gleichheit genau dann gilt, wenn $v_i \in \text{Lin}((v_{\phi(j)})_{j \in J})$ für jedes $i \in I \setminus \phi(J)$. Folgern Sie daraus:

- (a) Für jede Teilmenge $J \subseteq I$ gilt $Lin((v_i)_{i \in I}) \subseteq Lin((v_i)_{i \in I})$.
- (b) Sei $n \in \mathbb{N}$. Für jede Permutation $\sigma \in S_n$ und jede Familie (v_1, \ldots, v_n) von Vektoren in V gilt $\text{Lin}(v_1, \ldots, v_n) = \text{Lin}(v_{\sigma(1)}, \ldots, v_{\sigma(n)})$.
- (c) Seien $n, m \in \mathbb{N}$ mit $n \leq m$. Für jede Familie von Vektoren (v_1, \ldots, v_n) in V und jede Familie von Vektoren (v_{n+1}, \ldots, v_m) in $\text{Lin}(v_1, \ldots, v_n)$ gilt $\text{Lin}(v_1, \ldots, v_n) = \text{Lin}(v_1, \ldots, v_m)$.

(Diese Folgerungen lassen sich auch schnell direkt beweisen. Sie sollen aber erkennen, dass es sich um Spezialfälle der obigen allgemeinen Aussage handelt.)

Zusatzaufgabe 5. (Verkleben von Vektorraumstrukturen) Zeigen Sie: Sei K ein Körper. Sei ferner I eine Menge mit einer Halbordnung \leq , V eine Menge und $(V_i)_{i\in I}$ eine Familie von Teilmengen von V, so dass Folgendes gilt:

- (a) $V = \bigcup_{i \in I} V_i$.
- (b) Für alle $i, j \in I$ gibt es ein $k \in I$ mit $i \leq k$ und $j \leq k$.
- (c) Für alle $i, j \in I$ mit $i \leq j$ gilt $V_i \subseteq V_j$.
- (d) Für jedes $i \in I$ ist auf V_i eine Addition und eine Skalarmultiplikation definiert, mit der V_i zu einem K-Vektorraum wird, so dass für $i, j \in I$ mit $i \leq j$ der Vektorraum V_i ein Untervektorraum von V_j ist.

Dann existiert auf der Menge V genau eine K-Vektorraum-Struktur, so dass für jedes $i \in I$ der K-Vektorraum V_i ein Untervektorraum von V ist.