Università di Verona

Prova scritta di Fondamenti dell'Informatica

10 Luglio 2001

1. Si considerino, al variare di $i \in \mathbb{N}$, le seguenti famiglie di linguaggi:

$$\begin{array}{lll} L_i &=& \{x \in \{0,1\}^* : x \text{ contiene al più } i \text{ occorrenze di } 1\} \\ R_i &=& \{x \in \{0,1\}^* : x \text{ contiene al più } i \text{ occorrenze di } 0\} \end{array}$$

- (a) Dimostrare che per ogni $i \in \mathbb{N}$ L_i e R_i sono regolari. Si determini l'automa minimo per L_4 .
- (b) Fissati $i, j \in \mathbb{N}, L_i \cap R_j$ è regolare?
- (c) Si stabilisca se $\bigcup_{i\geq 1} L_i \cap \bigcup_{j\geq 1} L_j$ è regolare.
- (d) Si collochi nella gerarchia di Chomsky il linguaggio:

$$\{x \in \{0,1\}^* : \text{ il numero di occorrenze di } 0 \text{ in } x \text{ è uguale al numero di occorrenze di } 1 \text{ in } x\}$$

2. Sia A un insieme r.e. Esiste una funzione totale ricorsiva gtale che per ogni $x\in\mathbb{N}$:

$$W_{g(x)} = \begin{cases} \mathbb{N} & \text{se } x \in A \\ \emptyset & \text{altrimenti} \end{cases}$$

è un insieme r.e.?

3. È possibile generalizzare il precedente esercizio nel caso C e D siano r.e., con $C \subseteq D$ e con il seguente insieme?

$$W_{g(x)} = \begin{cases} D & \text{se } x \in A \\ C & \text{altrimenti} \end{cases}$$