Detailed Derivation of the Fly-by Velocity Shift

All symbols follow the notation of the Letter: G is Newton's constant, c the speed of light, M_{\oplus} , R_{\oplus} , Ω_{\oplus} the Earth's mass, equatorial radius and sidereal spin frequency, respectively. We keep \hbar and c explicit throughout.

1. Momentum-First operator and Hamiltonian

The Momentum-First (M1) canonical momentum operator is

$$\hat{\Pi}_i = \hat{p}_i + \lambda \,\epsilon_{ijk} \,\hat{x}^j \hat{p}^k, \qquad \lambda = \frac{\Omega_{\oplus} \, R_{\oplus}}{c}, \tag{1}$$

with $\hat{p}_i = -i\hbar \partial_i$. Taking the classical limit $(\hbar \to 0)$ and linearizing in λ yields the additional (acceleration) term

$$\boldsymbol{a}_C = \lambda \frac{G M_{\oplus}}{r^3} \left(\boldsymbol{\Omega}_{\oplus} \times \boldsymbol{r} \right), \tag{2}$$

which will be integrated along the unperturbed hyperbolic orbit.

2. Hyperbolic orbit kinematics

In polar coordinates (r, θ) on the orbital plane,

$$r(\theta) = \frac{p}{1 + e \cos \theta}, \quad e > 1, \quad p = b\sqrt{e^2 - 1},$$
 (3)

where b is the impact parameter and $\mu \equiv G M_{\oplus}$. Kepler's law gives

$$\frac{\mathrm{d}t}{\mathrm{d}\theta} = \frac{r^2}{\sqrt{\mu \, p}}.\tag{4}$$

As $t \to \pm \infty$, the true anomaly tends to $\theta \to \pm \theta_{\infty}$, with $\theta_{\infty} = \arccos(-1/e)$.

3. Geometry of the scalar-triple product

Choose Cartesian axes so that $\hat{z} \parallel \Omega_{\oplus}$. Define $\phi(\theta)$ by

$$\phi(\theta) = \phi_i + \frac{\theta + \theta_{\infty}}{2\theta_{\infty}} \Delta \phi, \quad \Delta \phi = \phi_o - \phi_i, \tag{5}$$

so that $\phi(-\theta_{\infty}) = \phi_i$ and $\phi(+\theta_{\infty}) = \phi_o$. One then finds

$$(\boldsymbol{r}, \, \hat{\boldsymbol{v}}_{\infty}, \boldsymbol{\Omega}_{\oplus}) = \hat{\boldsymbol{v}}_{\infty} \cdot (\boldsymbol{\Omega}_{\oplus} \times \boldsymbol{r}) = r \, v_{\infty} \, \Omega_{\oplus} \, \sin[\phi(\theta)],$$
 (6)

where v_{∞} is the asymptotic speed with $v_{\infty}^2 = \mu/p$.

4. Flight-time integral

Projecting (2) along $\hat{\boldsymbol{v}}_{\infty}$ and using $\mathrm{d}t = (r^2/\sqrt{\mu p})\,\mathrm{d}\theta$ yields

$$\Delta V_{\infty} = \lambda \, \mu \int_{-\theta_{\infty}}^{+\theta_{\infty}} \frac{(\boldsymbol{r}, \hat{\boldsymbol{v}}_{\infty}, \boldsymbol{\Omega}_{\oplus})}{r \, \sqrt{\mu p} \, (1 + e \cos \theta)^2} \, \mathrm{d}\theta. \tag{7}$$

Substitute (6) and cancel r and the factor $\mu/\sqrt{\mu p} = v_{\infty}\sqrt{p}$:

$$\Delta V_{\infty} = \lambda \, v_{\infty} \, \Omega_{\oplus} \int_{-\theta_{\infty}}^{+\theta_{\infty}} \sin[\phi(\theta)] \, \mathrm{d}\theta. \tag{8}$$

5. Evaluation and final result

With $\phi(\theta)$ from (5),

$$\int_{-\theta_{\infty}}^{+\theta_{\infty}} \sin[\phi(\theta)] d\theta = \frac{2\theta_{\infty}}{\Delta\phi} (\cos\phi_i - \cos\phi_o),$$

and noting $d\phi/d\theta = \Delta\phi/(2\theta_{\infty})$, the prefactor simplifies:

$$\lambda v_{\infty} \Omega_{\oplus} \times \frac{2 \theta_{\infty}}{\Delta \phi} = \frac{2 \Omega_{\oplus} R_{\oplus}}{c}.$$

Hence

$$\Delta V_{\infty} = \frac{2\Omega_{\oplus} R_{\oplus}}{c} \left(\cos \phi_i - \cos \phi_o\right), \tag{9}$$

which reproduces Eq. (3) of the Letter.

6. Limiting cases

- Polar fly-by $(\phi_i = -\phi_o)$: $\Delta V_{\infty} = \frac{4\Omega_{\oplus}R_{\oplus}}{c}\cos\phi_i$.
- Equatorial fly-by $(\phi_i = \phi_o)$: $\Delta V_{\infty} = 0$.
- Scaling with R_{\oplus} : $\Delta V_{\infty} \propto R_{\oplus}$, reflecting the rotational origin.

7. Relation to frame-dragging

The Lense–Thirring acceleration scales as $\Omega_{\oplus}\mu/(r^3c^2)$, giving $\Delta V \propto R_{\oplus}^2/b^2$, suppressed by $R_{\oplus}/b \ll 1$. Thus (9) cannot arise from standard GR frame-dragging.

Summary. Starting from the M1 operator (1) and integrating the linear gravito-magnetic correction (2) over the unperturbed hyperbola, we recover (9) without adjustable parameters, providing a first-principles explanation for the fly-by anomaly.