

A First Look into Experimental Areas

Hiroki Kozuki
06 September 2024

1. Multi-Wire Proportional Chamber (MWPC)

Overview of MWPC

Issues:

- Lost expertise
- # of spares critical
- Only beam profile monitor in North Area
 - → Need to build new chambers!

Status Quo

- Old MWPC design is complex and difficult to replicate (stack of planes screwed together with gas holes in between)
- Delay Wire Chamber has a newer and simpler design: fully encased with wires for cathodes
- Foils vs. Wires

Simplify design + Cut material budget

MWPC from 1970s

DWC from 1990s

Prototype

- New case gas-tight
- New wire planes (wires for cathodes).
- New interface take signals out of the case through a specialized PCB
- Collaboration between SY-BI, BE-EA and EP-DT
- Simulation is necessary to fully understand the physics of signal formation

Simulation of MWPCs

Simulation software:	Garfield++, ROOT
Libraries:	Magboltz, neBEM, Heed, RKF integration
Gas type:	Ar (50%) and CO2 (50%)
Temperature:	298.15 K
Pressure:	1.1 bar
Active area:	10 cm x 10 cm
Plane Spacing	5 mm
# of wires in each layer	100
Cathode voltage:	- 4000 V
Anode voltage:	0 V
Particle:	Cosmic muon (170 GeV)

Example geometries of MWPC generated in Garfield++

Configurations to Simulate

Config 1:

- 1970s
- 5 layers
- Foil cathodes

Config 2:

- 1990s
- 6 layers
- Wire cathodes

Config 3:

- 5 layers
- Wire cathodes
- Mounted, didn't work

New

Config 4: New

- 6 layers
- Foil cathodes
- Mounted, worked

Visualisation of Electric Potential

E.g. Config 1

Total Raw Signals – Config 1

First anode layer

Second anode layer

Comparison of Total Raw Signals

MWPC Simulation TODOs:

- Replace neBEM with analytical potential functions. → Improve accuracy and run-time.
- Simulate many incident particles.
- Apply the transfer function of read-out electronics. → Simulate smooth output signals.
- Visualize induced signals from individual anode wires. → Compare position tracking capabilities.

2. Characterisation of XBPF in a Beamline

East Area

Installation and alignment of detectors with beamline.

2. Characterisation of XBPF in a Beamline

Beam control with CESAR GUI.

• East Area: Beam of π^+ . Momentum +1 GeV/c to +10 GeV/c.

Loading beam file. Green of success.

List of beam files used.

2. Characterisation of XBPF in a Beamline

Data collection with the FESA Navigator.

- Collect data for the prototype XBPF and the vertical + horizontal beam XBPFs (references).
- Conducted homogeneity test on the prototype using a 3 GeV pion plus beam.

FESA Navigator interface. Data is collected every spill.

Summary

- Simulated four designs of MWPCs and compared their raw signal outputs.
- Assisted with the installation of the XBPF in the T10 East Area. Installation in H8 North Area is ongoing.
- Learned to operate beamlines using the CESAR GUI and collected data using the FESA Navigator.

TODOs:

- Improve MWPC simulation.
- Compare MWPC simulations against real MWPC signals from a source (e.g. Sr-90).
- Test the XBPF prototype in the North Area ongoing.
- Analyze the XBPF data ongoing.
 - Reconstruct profile, check for stability and homogeneity.
 - Check for cross-talk and multiplicity determine if neighbouring fibres are activated.

Thank you!

