Perceptron2

September 27, 2023

Deep Learning Fundamentals

Trimester 3, 2023

Assignment - 1

Predict diabetes using Perceptron

Loading Libraries

Loading Dataset

```
[2]: DataFrame_DLF = pd.read_csv('diabetes.csv')
DataFrame_DLF.head()
```

Pregnancies	Glucose	${ t BloodPressure}$	SkinThickness	Insulin	\mathtt{BMI}	\
6	148	72	35	0	33.6	
1	85	66	29	0	26.6	
8	183	64	0	0	23.3	
1	89	66	23	94	28.1	
0	137	40	35	168	43.1	
	Pregnancies 6 1 8 1 0	6 148 1 85 8 183 1 89	6 148 72 1 85 66 8 183 64 1 89 66	6 148 72 35 1 85 66 29 8 183 64 0 1 89 66 23	1 85 66 29 0 8 183 64 0 0 1 89 66 23 94	6 148 72 35 0 33.6 1 85 66 29 0 26.6 8 183 64 0 0 23.3 1 89 66 23 94 28.1

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

Choosing Important Features

```
[3]: plt.figure(figsize=(13,10)) sns.heatmap(DataFrame_DLF.corr(),annot=True, fmt = ".2f", cmap = "coolwarm")
```

[3]: <Axes: >

Checking For Any Missing Value

[4]: DataFrame_DLF.isnull().sum()

[4]:	Pregnancies	0
	Glucose	0
	BloodPressure	0
	SkinThickness	0
	Insulin	0
	BMI	0
	DiabetesPedigreeFunction	0
	Age	0

Outcome 0 dtype: int64

Data Splitting and Pre-processing

Defining Perceptron Algorithm

```
[6]: class PerceptronAlgorithm:
         def __init__(self, learning_rate_dlf, num_epochs_dlf, num_features_dlf):
             self.learning_rate_dlf = learning_rate_dlf
             self.num_epochs_dlf = num_epochs_dlf
             self.num_features_dlf = num_features_dlf
         def fit(self, Important DLF, Outcomes DLF):
             self.weights_dlf = np.zeros(self.num_features_dlf)
             self.bias_dlf = 0
             for epoch_dlf in range(self.num_epochs_dlf):
                 for i in range(Important_DLF.shape[0]):
                     Outcomes_DLF_pred = np.dot(Important_DLF[i], self.weights_dlf)__
      →+ self.bias_dlf
                     if Outcomes_DLF_pred >= 0:
                         update = self.learning_rate_dlf * (Outcomes_DLF[i] - 1)
                     else:
                         update = self.learning_rate_dlf * Outcomes_DLF[i]
                     self.weights_dlf += update * Important_DLF[i]
                     self.bias_dlf += update
         def predict(self, Important_DLF):
             Outcomes_DLF_pred = np.dot(Important_DLF, self.weights_dlf) + self.
      ⇒bias dlf
             return np.where(Outcomes_DLF_pred >= 0, 1, 0)
```

Evaluating Model

Accuracy

[32]: accuracy_score(Outcomes_DLF_test, Outcomes_DLF_pred)

[32]: 0.796875

Confusion Matrix

[33]: print(confusion_matrix(Outcomes_DLF_test, Outcomes_DLF_pred))

[[107 21] [18 46]]

Report

[34]: print(classification_report(Outcomes_DLF_test, Outcomes_DLF_pred))

support	f1-score	recall	precision	
128	0.85	0.84	0.86	0
64	0.70	0.72	0.69	1
192	0.80			accuracy
192	0.77	0.78	0.77	macro avg
192	0.80	0.80	0.80	weighted avg