Nome:

nº de estudante:

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4

2021/22

 $2^{\underline{0}}$ teste Duração: 1h40

• Este exame contém 4 questões no total, com uma questão por folha. O enunciado do exame contém no total 5 folhas numeradas de 0 até 4. Na página inicial (esta página, pág. 0) encontras também a cotação e formulários.

- Cada pergunta deve ser respondida na **respetiva folha do enunciado** começa na frente e, se necessário, continua no verso. Se for preciso podes ainda continuar em folhas de continuação mas tens de dizer qual é a questão a que estás a continuar a responder.
- Não podes misturar respostas a diferentes perguntas na mesma folha. Por exemplo, não podes responder a parte da pergunta 2 na mesma folha da questão 1, e vice-versa.
- Deves identificar todas as folhas que usares com o teu nome e $n^{\underline{o}}$ de estudante. Deves indicar no enunciado de cada pergunta quantas folhas de continuação usaste para essa pergunta.
- Todos os raciocínios devem ser convenientemente **justificados** e todas as respostas devem ser **cuidadosamente redigidas**.

Cotação:

1. 6; 2. 6;

3. 5; 4. 3.

Algumas fórmulas de derivação

função de x	$\frac{d}{dx}$
$m u(x), m \in \mathbb{R}$	m u'(x)
$u(x)^n, n \in \mathbb{R}$	$n u(x)^{n-1} u'(x)$
$\log_a u(x) , \ a \in \mathbb{R}^+ \setminus \{1\}$	$\frac{u'(x)}{u(x)\ln a}$
$a^{u(x)}, a \in \mathbb{R}^+$	$\frac{\frac{u(x)}{u(x)\ln a}}{a^{u(x)}u'(x)\ln a}$
$\sin u(x)$	$\cos u(x) u'(x)$
$\cos u(x)$	$-\sin u(x)u'(x)$
$\tan u(x)$	$\sec^2 u(x) u'(x)$
$\cot u(x)$	$-\csc^2 u(x) u'(x)$
$\sec u(x)$	$\tan u(x) \sec u(x) u'(x)$
$\csc u(x)$	$-\cot u(x) \csc u(x) u'(x)$
$\sinh u(x)$	$\cosh u(x) u'(x)$
$\cosh u(x)$	$\sinh u(x) u'(x)$
$\arcsin u(x)$	$\frac{u'(x)}{\sqrt{1-u(x)^2}}$
$\arccos u(x)$	$-\frac{u'(x)}{\sqrt{1-u(x)^2}}$ $u'(x)$
$\arctan u(x)$	$\frac{u'(x)}{1+u(x)^2}$
$\operatorname{arccot} u(x)$	$-\frac{u'(x)}{1+u(x)^2}$

Algumas fórmulas trigonométricas

$\sec u = \frac{1}{\cos u}$	$\csc u = \frac{1}{\sin u}$
$\cot u = \frac{\cos u}{\sin u}$	
$\cos^2 u = \frac{1 + \cos(2u)}{2}$	$\sin^2 u = \frac{1 - \cos(2u)}{2}$
$1 + \tan^2 u = \sec^2 u$	$1 + \cot^2 u = \csc^2 u$
$\cos^2(\arcsin u) = 1 - u^2$	$\sin^2(\arccos u) = 1 - u^2$

Algumas fórmulas hiperbólicas

$\sinh u = \frac{e^u - e^{-u}}{2}$	$ \cosh u = \frac{e^u + e^{-u}}{2} $
$\cosh^2 u - \sinh^2 u = 1$	

Nome:		nº de estudante:
N^0 folhas de continuação:	(Questão 1).	

- 1. Seja \mathcal{A} a região do plano delimitada pelos gráficos das funções $y=\frac{2}{\sqrt{x}}$ e $y=\sqrt{5-x}$.
 - (a) Calcula os pontos de interseção dos gráficos de $y=\frac{2}{\sqrt{x}}$ e de $y=\sqrt{5-x}$. Nota: Para efeitos da resolução das alíneas seguintes informa-se que a solução é (1,2) e (4,1), mas nenhuma cotação terás na presente alínea se apenas verificares que estes pontos satisfazem as duas equações.
 - (b) Representa geometricamente a região A.
 - (c) Calcula a área da região \mathcal{A} .

Resposta à questão 1:

Nome:

 $\mathbf{n}^{\mathbf{0}}$ de estudante:

 $N^{\underline{0}}$ folhas de continuação:

(Questão 2).

2. (a) Considera os seguintes integrais impróprios. Determina a natureza de cada um e, no caso de convergência, o seu valor.

(i)
$$\int_{-\infty}^{-1} \frac{e^x}{\sqrt{1 - e^{2x}}} dx$$
; (ii) $\int_{1}^{e} \frac{1}{x \ln x} dx$.

(ii)
$$\int_{1}^{e} \frac{1}{x \ln x} \, dx.$$

(b) Determina a soma da seguinte série numérica convergente:

$$\sum_{n=1}^{+\infty} \left[(-1)^n \frac{3^n}{e^{2n+1}} + \frac{1}{e^{1/n}} - \frac{1}{e^{1/(n+1)}} \right].$$

Resposta à questão 2:

Nome:	n^0 de estudante:	
N^0 folhas de continuação:	(Questão 3).	

 $3.\ Estuda a natureza das seguintes séries numéricas. Em caso de convergência indica se é simples ou absoluta.$

(a)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{n^3}{\sqrt{3^n}}$$
; (b) $\sum_{n=1}^{+\infty} \frac{ne^{1/n} + \sin n}{4n^2 - n - 2}$.

Resposta à questão 3:

Nome:	n^0 de estudante:
N^0 folhas de continuação:	

4. Considera a função

$$g(x) := 2x - 1 - \frac{1}{2} \int_0^x e^{-t^2} dt, \quad x \in \mathbb{R}.$$

- (a) Determina a sua derivada.
- (b) Mostra que a equação g(x)=0 tem uma e uma só solução em $\mathbb R.$

Resposta à questão 4: