# Convolution

EGC 113

### LTI Systems

Here, 
$$y[n] = \sum x[k] \, h[n-k]$$
 is called the Convolution Sum Index  $k = -\infty \, to \, +\infty$ 

Convolution Operation, x[n] \* h[n]

Operator is "\*"

Defined as , 
$$x[n] * h[n] = \sum x[k] h[n-k]$$
 ; Index  $k = -\infty to + \infty$ 

In Summary, for an LTI System, to determine the O/P of the system to any arbitrary I/P, all we need to know is : Impulse Response, h[n]

i.e. LTI System is completely characterized by its Impulse Response

### Convolution Sum

$$x[n] * h[n] = \sum x[k] h[n-k]$$
; Index  $k = -\infty to + \infty$ 

#### Steps Involved:

- 1) Time Reversal of h : h[k] is time-reversed to obtain h[-k]
- 2) Shift it by "n" steps to obtain h[n-k]
- 3) x[k] and h[n-k] are point-wise multiplied for all values of "k" for a given value of "n"
- 4) Repeat for all values of "n"

### Convolution Integral and Convolution Sum

#### What you often see:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau \qquad y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

Also represented as

$$y(t) = x(t) * h(t)$$

$$y[n] = x[n] * h[n]$$

### Properties

The convolution operation is *commutative*. That is, for any two functions x and h,

$$x*h=h*x$$
.

The convolution operation is associative. That is, for any signals x, h<sub>1</sub>, and h<sub>2</sub>,

$$(x*h_1)*h_2 = x*(h_1*h_2).$$

• The convolution operation is *distributive* with respect to addition. That is, for any signals x,  $h_1$ , and  $h_2$ ,

$$x*(h_1+h_2) = x*h_1+x*h_2.$$

- Determine the output y[n], given
  - x[n] = u[n]

$$h[n] = \left(\frac{1}{2}\right)^{n-3} u[n-3]$$

$$x[n] = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}$$

$$h[n] = \begin{cases} \alpha^n, & 0 \le n \le 6 \\ 0, & \text{otherwise} \end{cases}.$$

## Useful Mathematical Relationships

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}, \text{ which converges only for } |\alpha| < 1, \text{ and }$$

$$\sum_{n=0}^{N-1} \alpha^n = \frac{1-\alpha^N}{1-\alpha}$$
, which is a finite sum and hence always converges

• Compute y[n], given

$$x[n] = 2^n u[-n],$$
  
$$h[n] = u[n].$$

$$x(t) = e^{2t}u(-t),$$
  
$$h(t) = u(t-3).$$

$$x[n] = \left(\frac{1}{2}\right)^n u[n] + 2^n u[-n],$$
  
 $h[n] = u[n].$ 

- Are the systems shown earlier:
- 1. Causal
- 2. BIBO Stable
- 3. Invertible
- 4. Memoryless

Consider a discrete LTI system whose input and output are related by

• 
$$y[n] = \sum_{k=-\infty}^{n} 2^{k-n} x[k+1]$$

• Determine the impulse response of the system and if it is stable, causal.

- Consider a system below, where
- $h_1(t) = e^{-2t}u(t) h_2(t) = 2e^{-t}u(t)$

- Find the impulse response of the overall system.
- Is the system stable?



- Consider a system below, where
- $h_1(t) = u(t) h_2(t) = \delta(t-1)$

- Find the impulse response of the overall system.
- Is the system stable?



### Convolution

- LTI systems can be represented as a the convolution of the input with an impulse response.
- Convolution has many useful properties (associative, commutative, etc).
- These carry over to LTI systems
  - Composition of system blocks
  - Order of system blocks
- Useful both practically, and for understanding. While convolution is conceptually simple, it can be practically difficult. It can be tedious to convolve your way through a complex system.
- There has to be a better way ...

• Suppose Ram's parents opens a savings account on his 1<sup>st</sup> birthday and deposit rupees 50 on the first of each month in the account. Determine the money in the account after 1 year and 10 years if the interest rate is 1% per month.

- The interest calculation can be done easily using linear difference equation. Let y[n] be the amount in his account at  $n^{th}$  month.
- y[n] = y[n-1] + 0.01y[n-1] + x[n]
- y[n] = 1.01y[n-1] + x[n]
- Assuming zero initial conditions, i.e. y[-1] = 0

• The amount after 1 year will be y[12]. Can you calculate that? What about y[120]?

- Let's write equation in the form of a geometric series:
- $y[n] = \alpha y[n-1] + \beta x[n]$
- In our case, y[-1] = 0 and x[0] = x[1] = .... = D (=50) and  $\beta = 1$ .
- $y[0] = \beta D$
- $y[1] = \beta D(1+\alpha)$
- $y[2] = \alpha y[1] + \beta D = \beta D(\alpha^2 + \alpha + 1)$
- •
- $y[N] = \beta D(\alpha^N + \alpha^{N-1} + \dots + \alpha + 1) = \beta D \sum_{m=0}^{N} \alpha^m = \beta D \frac{1 \alpha^{N+1}}{1 \alpha}$

- In our case,  $\alpha$  = 1.01, b = 1, D =50, N = 12 and 120,
- The amount will be,

• 
$$y[12] = 50 \frac{1 - 1.01^{13}}{1 - 1.01} = 690.47$$

• 
$$y[120] = 50 \frac{1 - 1.01^{121}}{1 - 1.01} = 1166.95$$

 How will you calculations change if the interest was computed quarterly or annually?

#### Multiple Representations of Discrete-Time Systems

Systems can be represented in different ways to more easily address different types of issues.

**Verbal description:** 'To reduce the number of bits needed to store a sequence of large numbers that are nearly equal, record the first number, and then record successive differences.'

#### Difference equation:

$$y[n] = x[n] - x[n-1]$$

#### **Block diagram:**



We will exploit particular strengths of each of these representations.

#### **Difference Equations**

Difference equations are mathematically precise and compact.

#### Example:

$$y[n] = x[n] - x[n-1]$$

Let x[n] equal the "unit sample" signal  $\delta[n]$ ,

$$\delta[n] = \begin{cases} 1, & \text{if } n = 0; \\ 0, & \text{otherwise.} \end{cases}$$

$$x[n] = \delta[n]$$

$$-1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

We will use the unit sample as a "primitive" (building-block signal) to construct more complex signals.

Solve 
$$y[n] = x[n] - x[n-1]$$
 given 
$$x[n] = \delta[n]$$

How many of the following are true?

- 1. y[2] > y[1]
- 2. y[3] > y[2]
- 3. y[2] = 0
- 4. y[n] y[n-1] = x[n] 2x[n-1] + x[n-2]
- 5. y[119] = 0

In what ways are difference equations different from block diagrams?

#### Difference equation:

$$y[n] = x[n] - x[n-1]$$

Difference equations are "declarative."

They tell you rules that the system obeys.

#### **Block diagram:**



Block diagrams are "imperative."

They tell you what to do.

Block diagrams contain **more** information than the corresponding difference equation (e.g., what is the input? what is the output?)

#### From Samples to Signals

**Operators** manipulate signals rather than individual samples.



Nodes represent whole signals (e.g., X and Y).

The boxes **operate** on those signals:

- Delay = shift whole signal to right 1 time step
- Add = sum two signals
- -1: multiply by -1

**Signals** are the primitives.

**Operators** are the means of combination.

#### **Operator Notation**

Symbols can now compactly represent diagrams.

Let  $\mathcal{R}$  represent the right-shift **operator**:

$$Y = \mathcal{R}\{X\} \equiv \mathcal{R}X$$

where X represents the whole input signal (x[n] for all n) and Y represents the whole output signal (y[n] for all n)

Representing the difference machine



with  $\mathcal{R}$  leads to the equivalent representation

$$Y = X - \mathcal{R}X = (1 - \mathcal{R})X$$

#### Operator Notation: Check Yourself

Let  $Y = \mathcal{R}X$ . Which of the following is/are true:

- 1. y[n] = x[n] for all n
- 2. y[n+1] = x[n] for all n
- 3. y[n] = x[n+1] for all n
- 4. y[n-1] = x[n] for all n
- 5. none of the above

Consider a simple signal:



Then

$$Y = \mathcal{R}X$$

$$-1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

#### Operator Representation of a Cascaded System

System operations have simple operator representations.

Cascade systems → multiply operator expressions.



Using operator notation:

$$Y_1 = (1 - \mathcal{R}) X$$

$$Y_2 = (1 - \mathcal{R}) Y_1$$

Substituting for  $Y_1$ :

$$Y_2 = (1 - \mathcal{R})(1 - \mathcal{R})X$$

#### Operator Algebra

Operator expressions can be manipulated as polynomials.



Using difference equations:

$$y_2[n] = y_1[n] - y_1[n-1]$$

$$= (x[n] - x[n-1]) - (x[n-1] - x[n-2])$$

$$= x[n] - 2x[n-1] + x[n-2]$$

Using operator notation:

$$Y_2 = (1 - \mathcal{R}) Y_1 = (1 - \mathcal{R})(1 - \mathcal{R}) X$$
  
=  $(1 - \mathcal{R})^2 X$   
=  $(1 - 2\mathcal{R} + \mathcal{R}^2) X$ 

#### Operator Algebra

Operator notation facilitates seeing relations among systems.

"Equivalent" block diagrams (assuming both initially at rest):



Equivalent operator expressions:

$$(1 - \mathcal{R})(1 - \mathcal{R}) = 1 - 2\mathcal{R} + \mathcal{R}^2$$

The operator equivalence is much easier to see.

Operator expressions for these "equivalent" systems (if started "at rest") obey what mathematical property?



1. commutate

2. associative

3. distributive

- 4. transitive
- 5. none of the above





Multiplication by  ${\mathcal R}$  distributes over addition.

How many of the following systems are equivalent to  $Y = \left(4\mathcal{R}^2 + 4\mathcal{R} + 1\right)X \quad ?$ 

