053강 도메인 문제

Attribute domain 문제 : 소켓의 점, 선, 면 Laplasian smoothing

도메인 문제

일부 노드는 특정 도메인을 사용해야 제대로 작동합니다. <
이럴때는 도메인을 신중하게 생각해야 합니다.

대부분은 Point입니다

지금까지 도메인을 생각할 필요가 없었던 것은, <u>사용했던 노드 대부분이 포인트를 기준으</u>로 작동했기 때문입니다.

Position •

Point가 아닌 것

Instance

Realize 후에도 인스턴스의 위치를 사용하기 위해선 인스턴스 타입으로 위치를 캡쳐해야 합니다. 이렇게 하면 Realize 뒤에도 인스턴스일 때의 위치를 사용할 수 있습니다.

Capture Attribute

Realize Instances

Geometry

Geometry •—

Spline

Spline Length 노드는 스플라인 도메인의 데이터입니다. 스플라인 정보를 컨트롤 포인트에서 읽을 때는 도메인이 달라지지만 별로 문제가 없습니다.

Point가 아닌 것

Index

인덱스는 점, 선, 면 모든 도메인이 가지고 있습니다. 따라서, **연결상태에 따라 불러오는 도메인이 바뀔 수 있습니다**.

Edge, Face 관련 노드

도메인이 Point가 아닌 노드들은 이름으로 쉽게 확인 가능합니다. 일부 노드는 노드 내에서 도메인을 고르기도 합니다.

자세한 목록은 마지막 페이지를 참고하세요.

Evaluate on Domain

※ 이 노드의 이전 버전 이름은 Interpolate Domain 이었습니다.

연결된 정보가 어떤 도메인의 값인지 설정할 수 있습니다.

이것은 '컨트롤 포인트의 인덱스' 가 나오고,

Integer

Value

Index

Value

Evaluate on Domain

Value

5 4 3 1 2 0

이것은 '스플라인의 인덱스' 가 나옵니다.

이처럼 Index를 Evaluate on Domain에 연결하면, 인덱스는 모든 도메인에 존재하기 때문에, 각 도메인의 인덱스 정보를 불러 오지만, 만약 Point의 정보를 Edge의 값으로 불러온다거나 하면, 문제가 달라집니다.

그런 경우 Attribute는 Interpolation되어 불러와집니다. 자세한 이야기는 다음 페이지를 참고하세요.

Interpolation

도메인이 변경될때는 interpolation, 쉽게 말해서 '평균' 을 내서 가져옵니다. 예를 들어, Face의 Position은 Face를 이루는 점들의 위치의 평균이 됩니다.

이외의 다른 조합들 (Edge to Face, Face to Point 등...) 도 동일하게 작동합니다.

Face Corner

Face Corner는 Face를 따로따로 분리시켰을 때 그것을 둘러싼 점들을 가리킵니다. 그 정의 때문에, Face ▶ Face Corner 로 바꿀 때는 자신이 속한 Face만 가지고 계산합니다.

Face ► **Face Corner**

데이터타입 문제

실수나 벡터 타입은 '평균' 을 내지만, 정수와 불린은 조금 다릅니다.

정수는 **반올림**으로 계산됩니다.

수동으로 Edge를 선택하려면

Reminder: Vertex Group

Vertex Group을 통해 수동으로 점을 선택할 수 있습니다. 이후 named Attribute 를 통해 Group을 노드로 가져오실 수 있습니다.

수동으로 Edge를 선택하려면

Vertex 선택을 Edge로 변경 시의 문제

버텍스 그룹으로는 A처럼 엣지를 선택할 수 없습니다.

엣지를 이루는 4개의 <mark>점</mark>을 선택하면, 앞에서 설명한 방식으로 점의 정보가 Edge로 Interpolate되어, B처럼 4개의 엣지가 선택됩니다!

엣지를 수동으로 선택하여 지오메트리 노드에서 사용하려면

3.5버전 기준으로 지오메트리 노드에서 인식 가능한 Edge Attribute는 두 가지입니다.

Mark sharp (엣지 우클릭 후 Mark sharp) 혹은

Edge Crease (Shift+E - 마우스 좌우 이동 후 클릭으로 결정)

같은 것들을 사용하면, 수동으로 엣지를 선택할 수 있습니다

다만 이것들은 다른 기능을 겸하기 때문에, 경우에 따라 사용이 곤란할 수도 있습니다.

이후 기능이 추가될 예정이라고 하니 기다려 봅시다.

Interpolation을 활용할 수 있을까요?

Laplacian Smoothing

Edge Vertices 노드는 엣지 양 끝점의 인덱스와 포지션을 출력합니다.

물론 도메인이 Edge이므로, Point에서 불러오려 한다면 주변 점들의 위치를 평균낸 값이 됩니다.

※ Edge Vertices를 포함한 토폴로지 노드들은 57,58강에서 자세히 다룰 예정입니다.

Laplacian Smoothing

Laplacian Smoothing은 자신의 이웃 점들의 위치의 평균을 가져오는 것입니다.

$$\stackrel{\sim}{\neg}_{new} = (P_1 + P_2 + P_3 + \dots + P_n) / n$$

Position 1, 2를 P에서 불러오면

Position
$$_1 + Position _2 = \{(P + P_1) + (P + P_2) + (P + P_3) + + (P + P_n)\} / n$$

= $(nP + P_1 + P_2 + P_3 + ... + P_n) / n$
= $P + (P_1 + P_2 + P_3 + ... + P_n) / n$

따라서 Position 1, Position 2의 합에서 자기 자신의 위치 P를 빼주면 Laplacian Smoothing이 됩니다!

Laplacian Smoothing

아래와 같이 Edge Vertices의 합에서 Position을 빼 줍니다. ※인터넷의 많은 강좌에서 Position 1,2를 합한 뒤 평균을 내기 위해 2로 나누는데, 정확하지 않은 계산입니다.

Appendix

아래의 노드들은 도메인을 선택할 수 있는 것들입니다. 이런 노드들은 Evaluate on Domain을 사용하지 않아도 도메인을 자동으로 바꾸어 계산합니다.

Appendix

아래쪽은 Point 도메인이 아닌 노드들입니다.

※여기에는 토폴로지 노드들은 빠져 있습니다. 지금 거기까지 생각하면 상당히 어려워지므로, 토폴로지 노드는 조금 뒤에 알아보겠습니다.

