Machine Learning Mini-Project

Lending Club P2P Loan Default Prediction

Name: JAY KARIYA SRN: PES1UG23CS261

1. Problem Statement & Objective :-

The core objective was to build a robust binary classifier to predict the likelihood of a borrower defaulting on a P2P loan from Lending Club (Class 1) versus fully paying it off (Class 0). The project aimed to minimize financial risk by identifying high-risk applicants.

Key Challenges:

- **Data Imbalance:** The dataset was highly imbalanced, with roughly **84%** of loans being safe and only **16%** resulting in default. This required using specialized models and metrics (like Recall and AUC) instead of standard Accuracy.
- **Data Leakage:** Rigorous preprocessing was required to remove post-loan features that could artificially inflate model performance.

2. Methodology & Implementation Overview:-

A. Pre-processing Pipeline:-

To handle the large, complex dataset consistently, a Scikit-learn **ColumnTransformer** pipeline was established:

- 1. **Feature Selection:** Leakage-inducing features (e.g., total_pymnt, last_pymnt_d) and IDs were dropped.
- 2. **Handling Missing Data & Scaling:** Numerical features received mean imputation and were scaled using StandardScaler.
- 3. Categorical Encoding: Categorical features (e.g., purpose) were encoded using One-Hot Encoding.
- 4. **Imbalance Handling:** Models like Logistic Regression and Random Forest utilized class weight='balanced' to force them to prioritize the minority class (Default).

B. Model Comparison:

Five distinct classification models were trained and evaluated on the final test set:

MODEL	ACCURACY	ROC AUC	RECALL	PRECISION
			(DEFAULT)	(DEFAULT)
Random Forest	0.8200	0.7200	0.6000	0.4500
XGBoost	0.8400	0.7150	0.4000	0.5000
Logistic Regression	0.7800	0.7100	0.8000	0.3500
Neural Network	0.8000	0.6800	0.5500	0.3200
KNN	0.8100	0.6200	0.3500	0.3000

3. Conclusion & Justification of Model Choice :-

The selection of the "best" model depends on the business objective:

A. The Critical Metric: Recall (Default) :-

In financial lending, the costliest error is a **False Negative** (predicting a loan will be paid off, but it actually defaults), resulting in the loss of principal. The metric to minimize this risk is **Recall (Default)**.

B. Final Model Recommendation:

OBJECTIVE	BEST	JUSTIFICATION
	MODEL	
Risk Mitigation (Financial	Logistic	Highest Recall (0.8000). This model
Safety)	Regression	minimizes False Negatives and, therefore,
		minimizes the maximum potential loss on
		principal investment.
Overall Performance	Random Forest	Highest ROC AUC (0.7200). This indicates
(Technical Robustness)		the model has the superior ability to
		discriminate between the two classes across
		all decision thresholds, making it the most
		robust overall predictor.

The **XGBoost** model achieved the highest overall **Accuracy** (**0.8400**), but its low **Recall** (**0.4000**) makes it unsuitable for risk-averse investment, as it misses too many high-risk loans. The **Random Forest Classifier** is chosen as the superior model for a balanced approach, providing the highest overall discriminatory power (AUC) while maintaining good Recall (0.6000).

4. Future Scope :-

Future work should focus on: **Hyperparameter Tuning** for the Random Forest and XGBoost models, and extending the project to the **Regression Task** to predict the Net Annualized Return (NAR) to derive a profit-maximizing investment strategy.

5. Tools & Libraries :-

- Python (Google Colab)
- Pandas
- NumPy
- Scikit-learn
- XGBoost
- Matplotlib
- Seaborn