df

₽		Centigrade	Farhenheit
	0	25	77.0
	1	30	86.0
	2	33	91.4
	3	35	95.0
	4	37	98.6
	5	40	104.0

df.columns

Index(['Centigrade', 'Farhenheit'], dtype='object')

```
X = df[['Centigrade']]
x
```

Cen	tigrade
0	25
1	30
2	33
3	35
4	37
5	40

```
y=df[['Farhenheit']]
y
```

	Farhenheit
0	77.0
1	86.0
2	91.4
3	95.0
4	98.6

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta

X_train

Ce	Centigrade	
4	37	
2	33	
1	30	
3	35	

y_train

	Farhenheit
4	98.6
2	91.4
1	86.0
3	95.0

from sklearn.linear_model import LinearRegression
lm=LinearRegression()

lm.fit(X_train,y_train)

 $\texttt{LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False}$

```
prediction=lm.predict([[48]])
prediction
```

array([[118.4]])