# GenAl-Powered OEE Analysis Tool for Biscuit Packaging

Welcome to the NTT Data Internship case study presentation. My name is Smaran Rangarajan Bharadwaj from RV University, and today I will present a cutting-edge solution designed to enhance operational efficiency in biscuit packaging plants by leveraging Generative AI technology. This tool calculates and displays Original Equipment Effectiveness, or OEE, providing valuable insights for manufacturing optimization.

This presentation will cover problem definition, data characteristics, formulae, system design, and key outcomes with a focus on real-world application and scalability.



by Smaran Rangarajan Bharadwaj





### **Problem Statement**

#### **Objective**

Develop an interactive
Generative AI web
application featuring a
ChatGPT-style
conversational interface
that analyzes OEE of
biscuit packaging devices.

#### **Input & Filters**

The application processes loT sensor data in .xlsx format from 2024 to 2025, allowing filtering by Device ID, Location, and Month for targeted analysis.

#### Output

OEE percentages are delivered through natural language responses, making complex manufacturing data accessible and actionable.

### **Data Format & Assumptions**

#### **Key Data Fields**

- Unit\_ID: unique package identifier
- Timestamp: completion time per unit
- Device\_ID: machine identifier
- Location: plant or floor
- Production\_Time: packaging duration
- Ideal\_Cycle\_Time: target time per machine
- Result: quality status ("Accepted" or "Rejected")

#### **Assumptions**

- Downtime definition thresholds based on time gaps exceeding twice the ideal cycle time
- Ideal\_Cycle\_Time is fixed per device, e.g., DEV\_A1 = 1.8s, DEV\_C3 = 2.0s
- Data presumed to be accurate and continuous within selected time frames

### Formulae to Calculate the OEE

#### Availability (%)

Downtime is detected via gaps in sensor timestamps exceeding twice the ideal cycle time.

availability = (actual\_run\_time / planned\_time) \* 100

#### Performance (%)

Ratio of ideal cycle time times units produced over actual run time, reflecting production speed efficiency relative to the ideal.

performance = (ideal\_cycle\_time \* total\_units /
total\_production\_time) \* 100

#### Quality (%)

Percentage of accepted units out of total produced, measuring the yield of conforming products in the batch.

quality = (accepted\_units / total\_units) \* 100

#### **Overall Equipment Effectiveness**

OEE combines all three metrics as Availability × Performance × Quality ÷ 10,000, providing a holistic operational efficiency metric.

oee = (availability \* performance \* quality) / 10000

# **Sample Dataset Rows**

| Index | Unit_ID            | Timestam<br>p              | Device_ID | Location | Productio<br>n_Time | Ideal_Cycl<br>e_Time | Result   |
|-------|--------------------|----------------------------|-----------|----------|---------------------|----------------------|----------|
| 4057  | PKG2024_<br>004058 | 2024-01-<br>01<br>00:10:04 | DEV_A1    | Plant_3  | 1.58                | 1.8                  | Accepted |
| 3641  | PKG2024_<br>003642 | 2024-01-<br>01<br>01:37:56 | DEV_A1    | Plant_1  | 1.72                | 1.8                  | Accepted |
| 80    | PKG2024_<br>000081 | 2024-01-<br>01<br>03:24:32 | DEV_C3    | Plant_3  | 1.92                | 2.0                  | Accepted |
| 4040  | PKG2024_<br>004041 | 2024-01-<br>01<br>03:47:03 | DEV_A1    | Plant_3  | 1.83                | 1.8                  | Accepted |
| 197   | PKG2024_<br>000198 | 2024-01-<br>01<br>03:58:11 | DEV_B2    | Plant_1  | 1.97                | 2.2                  | Accepted |

# System Architecture: Data Flow and GenAl Integration

#### **Data Ingestion**

IoT sensors continuously feed production data into a centralized data lake storing .xlsx files for historical and real-time analysis.

#### **Agentic Framework**

- QueryAgent extracts user parameters using AI-powered natural language understanding.
- DataAgent manages data loading, validation, and filtering based on query.
- OEEAgent performs calculations, generates reports, and validates metrics before output.

### **User Interface Preview:**

The GenAl-powered web interface enables intuitive conversation with the system, where users ask about device efficiency by specifying parameters like device ID or time periods.



Responses include detailed OEE metrics presented in clear natural language, enhancing accessibility for operators and engineers alike.

Code Repository: <a href="https://github.com/smaranrb/oee\_analyzer\_biscuit\_packaging.git">https://github.com/smaranrb/oee\_analyzer\_biscuit\_packaging.git</a>

# Missing inputs?

It can also handle missing query parameters if the user hasn't entered them in the prompt:



# **Technology Stack Powering GenAl OEE Tool**



#### **Python Ecosystem**

Pandas and OpenPyXL for robust data processing and Excel file manipulation.



#### **Gradio UI**

Enables dynamic conversational interface resembling ChatGPT for seamless user queries.



#### **GenAl Models**

Mixtral-8x7B-Instruct and LLaMA 3 provide natural language understanding and agentic control.

## Key Benefits of the Agentic Framework

#### Modular Design

Allows independent development and easy maintenance of discrete agents handling specific tasks.



#### Clear Responsibility

Each agent focuses on a defined domain: query processing, data management, or OEE calculation, reducing errors.

#### **Independent Testing**

Enables thorough validation of each agent ensuring reliability and system robustness.



#### Scalability

Supports growing data volumes and new device integrations with minimal system disruption.



# Conclusion: GenAl Driving Efficiency and Innovation

This GenAl-powered OEE analysis tool exemplifies how Al can transform manufacturing by providing real-time actionable insights and predictive analytics.

It offers a scalable solution that enhances operational efficiency, reduces downtime, and supports continuous improvement. This tool equips manufacturing teams with the information needed to maintain a competitive advantage through innovation and data-driven decision-making.