Виразимість. Арифметичні предикати, множини, функції

Нехай $A=(A,\sigma)$ — деяка алгебраїчна система (AC). Предикат P на A виразимий формулою Φ сигнатури σ , якщо P — це предикат Φ_A .

Предикат P на A виразимий в AC $A = (A, \sigma)$, якщо P виразимий деякою формулою Φ сигнатури σ . Інакше кажучи, предикат P на A виразимий в AC $A = (A, \sigma)$, якщо існує така формула Φ сигнатури σ , що P – це предикат Φ_A .

Множина, що є областю істинності предикату, виразимого в AC A, називається виразимою в AC A множиною. Функція, графік якої — виразима в AC A множина, називається виразимою в AC A функцією.

Множину натуральних чисел N з виділеними константами 0 та 1, визначеними на N стандартними бінарними функціями додавання + і множення \times та стандартним предикатом рівності назвемо *стандартною інтерпретацією*, або *стандартною моделлю* мови арифметики. Тобто, стандартна інтерпретація L_{ar} — це $AC N = (N, \sigma_{ar})$.

Арифметична формула, істинна на N, називається *істинною арифметичною формулою* (ІА Φ).

Кожна всюди істинна арифметична формула ϵ ІАФ, але не кожна ІАФ всюди істинна. Наприклад, формула $\neg \exists x(x+1=0) \in \text{IA}\Phi$, але вона не істинна на $\mathbf{Z} = (Z, \sigma_{ar})$ та на $\mathbf{R} = (R, \sigma_{ar})$.

Предикати, множини та функції, виразні в $N = (N, \sigma_{ar})$, назвемо *арифметичними*.

Отже, функція f арифметична, якщо її графік Γ_f є арифметичною множиною. Звідси маємо: арифметична формула Φ виражає функцію f, якщо Φ виражає предикат " $y = f(x_1, ..., x_n)$ ".

Приклад. Предикати " $x \in \text{парним}$ числом" та "x ділиться на y" – арифметичні, вони виражаються формулами $\exists y(x=y+y)$ та $\exists z(x=y\times z)$.

Приклад. Предикат " $x \in$ простим числом" арифметичний. Він виражається арифметичною формулою $\forall y \forall z (x=y \times z \rightarrow y=1 \vee z=1) \& \neg x=1$.

Приклад. Предикати " $x \le y$ " та "x < y" арифметичні, бо вони виражаються арифметичними формулами $\exists z(x+z=y)$ та $\exists z(x+z=y)$ ав $\exists z(x+z=y)$.

Слід зауважити, що предикат " $x \le y$ " в АС $N = (N, \sigma_{ar})$, $R = (R, \sigma_{ar})$ та $Z = (Z, \sigma_{ar})$ виражається різними арифметичними формулами. Справді, для N маємо $\exists z(x+z=y)$; для R маємо $\exists z(x+z+z=y)$, для R маємо $\exists z(x+z+z+z)$ по останнє співвідношення використовує результат теореми Лагранжа про чотири квадрати: довільне натуральне число можна подати у вигляді суми чотирьох квадратів цілих чисел.

Окрім того, арифметичними ϵ такі функції:

- 1) Функції x+y, $x\times y$ та x-y виражаються арифметичними формулами z=x+y, $z=x\times y$ та y+z=x.
- 2) Функція [x/y] виражається арифметичною формулою $z \times y \le x & x < (z+1) \times y$.
- 3) Функція mod(x, y) виражається арифметичною формулою $\exists u(x = z + u \times y \& z < y)$.
- 4) Функція [\sqrt{x}] виражається арифметичною формулою $z \times z \le x \& x < (z+1) \times (z+1)$.

Твердження. Клас арифметичних множин замкнений відносно операцій \cup , \cap та доповнення.

Доведення. Нехай множини A та B виражаються арифметичними формулами Φ та Ψ . Тоді $A \cup B$, $A \cap B$ та \overline{A} виражаються відповідно арифметичними формулами $\Phi \lor \Psi$, $\Phi \& \Psi$ та $\neg \Phi$.

Інтерпретація мови 1-го порядку

Інтерпретацією, або моделлю мови L сигнатури σ будемо називати алгебраїчну систему (AC) з доданою сигнатурою вигляду $A = (A, I, \sigma)$. Множину A називають областю інтерпретації. Значення символів та виразів мови L задамо на A природним чином.

Конкретна інтерпретація мови L на AC $A = (A, I, \sigma)$ визначається відображенням $I : \sigma \to Fn^A \cup Pr^A$. Відображення інтерпретації для термів і формул мови L задається за допомогою відображення $J : Tr \cup Fm \to Fn^A \cup Pr^A$, яке індуктивно визначається за допомогою I.

Функцію, що є значенням терма t на AC $A = (A, I, \sigma)$, позначаємо t_A . Предикат, що є значенням формули Φ на AC $A = (A, I, \sigma)$, позначаємо Φ_A . Це означає, що $J(t) = t_A$, $J(\Phi) = \Phi_A$.

Формула Φ *істинна при інтерпретації на* A, або *істинна на* A, або A-*істинна* (позначаємо $A \models \Phi$), якщо предикат Φ_A є істинним.

Формула Φ всюди істинна (позначаємо $|=\Phi$), якщо вона істинна при кожній інтерпретації.

Формула Ф виконувана при інтерпретації на A, або виконувана на AC A, або A-виконувана, якщо предикат Φ_A ϵ виконуваним.

Формула Ф виконувана, якщо Ф виконувана при деякій інтерпретації.

Приклад. Формула x = x всюди істинна.

Приклад. Формула $\forall x \forall y (x=y)$ істинна на всіх 1-елементних AC і тільки на них; формула $\neg \forall x \forall y (x=y)$ істинна на всіх k-елементних AC, де k > 1, і тільки на них.

Замиканням формули Φ з вільними іменами $x_1, ..., x_n$ назвемо замкнену формулу $\forall x_1 ... \forall x_n \Phi$.

Семантична теорема замикання. $A \models \Phi \Leftrightarrow A \models \overline{\Phi}$, де $\overline{\Phi}$ – замикання формули Φ .

Логічний та тавтологічний наслідки

Окремим випадком всюди істинних формул ϵ тавтології.

Формула *пропозиційно нерозкладна*, якщо вона атомарна або має вигляд $\exists x \Phi$. Нехай Fm_0 — множина всіх пропозиційно нерозкладних формул мови L.

Істиннісна оцінка мови L – це довільне відображення $\tau: Fm_0 \to \{T, F\}$. Його можна продовжити на формули: $\tau: Fm \to \{T, F\}$: $\tau(\neg \Phi) = T \Leftrightarrow \tau(\Phi) = F$; $\tau(\Phi \lor \Psi) = T \Leftrightarrow \tau(\Phi) = T$ або $\tau(\Psi) = T$.

Формула Φ мови L тавтологія, якщо $\tau(\Phi) = T$ для кожної істиннісної оцінки τ мови L.

Кожна тавтологія ϵ всюди істинною формулою, але зворотне невірне. Наприклад, всюди істинна формула вигляду x=x — не тавтологія.

На множині формул введемо відношення тавтологічного наслідку \models , логічного наслідку \models , тавтологічної еквівалентності \sim т та логічної еквівалентності \sim .

Формула Ψ є *тавтологічним наслідком* формули Φ (позначаємо $\Phi \models \Psi$), якщо $\Phi \rightarrow \Psi$ – тавтологія.

Формули Φ та Ψ *тавтологічно еквівалентні* (позначаємо $\Phi \sim_{\mathsf{T}} \Psi$), якщо $\Phi \models \Psi$ та $\Psi \models \Phi$.

Формула $\Psi \in \text{логічним наслідком}$ формули Φ (позначаємо $\Phi \models \Psi$), якщо $\Phi \rightarrow \Psi$ всюди істинна.

Формули Φ та Ψ *погічно еквівалентні* (позначаємо $\Phi \sim \Psi$), якщо $\Phi \models \Psi$ та $\Psi \models \Phi$.

Зрозуміло, що $\Phi \sim \Psi \Leftrightarrow \varphi$ формули $\Phi \to \Psi$ та $\Psi \to \Phi$ всюди істинні.

Формула Ψ є логічним наслідком множини формул $\{\Phi_1,...,\Phi_n\}$, що позначатимемо $\{\Phi_1,...,\Phi_n\} \models \Psi$, якщо $\Phi_1 \& \dots \& \Phi_n \models \Psi$. Аналогічно визначаємо $\{\Phi_1,...,\Phi_n\} \models \Psi$.

Замість $\varnothing \models \Psi$ та $\varnothing \models \Psi$ пишемо відповідно $\models \Psi$ та $\models \Psi$.

Основні властивості для \models , $\sim_{_{\mathrm{T}}}$, \models та \sim :

- 1) Φ тавтологія $\Leftrightarrow \models \Phi$.
- 2) Φ всюди істинна $\Leftrightarrow \models \Phi$.
- 3) якщо $\Phi \models \Psi$, то $\Phi \models \Psi$, але не завжди із $\Phi \models \Psi$ випливає $\Phi \models \Psi$;
- 4) $\Phi \sim_{\mathsf{T}} \Psi \Leftrightarrow \models \Phi \leftrightarrow \Psi \Leftrightarrow \Phi \leftrightarrow \Psi$ тавтологія;
- 5) $\Phi \sim \Psi \Leftrightarrow \models \Phi \leftrightarrow \Psi$;
- б) відношення ⊨ та |= рефлексивні і транзитивні;
- 7) відношення ~ та ~ рефлексивні, транзитивні і симетричні.

Контрприклад для 3). $\exists x \exists y(x=y) \models \exists y \exists x(x=y)$, але невірно $\exists x \exists y(x=y) \models \exists y \exists x(x=y)$.

Той факт, що Φ всюди істинна, надалі позначаємо $\models \Phi$.

Еквівалентні перетворення формул. Нормальні форми

Основою еквівалентних перетворень формул ϵ семантична теорема еквівалентності:

Нехай Φ' отримана із формули Φ заміною деяких входжень формул $\Phi_1, ..., \Phi_n$ на $\Psi_1, ..., \Psi_n$ відповідно. Якщо $\Phi_1 \sim \Psi_1, ..., \Phi_n \sim \Psi_n$, то $\Phi \sim \Phi'$.

Формула A' називається варіантою формули A, якщо A' можна отримати із A послідовними замінами такого типу: підформулу $\exists x$ B замінюємо на $\exists y$ B $_x[y]$, де y не вільна в B. Якщо A' – варіанта формули A, то A ~ A'.

Формула А – пренексна, або знаходиться в пренексній (попередній) нормальній формі, якщо А має вигляд $Qx_1...Qx_n$ В, де Qx_k – кванторний префікс $\exists x_k$ або $\forall x_k$, В – безкванторна формула, яку називають матрицею формули А.

Введемо пренексні операції над формулами, які дозволять кожну формулу перетворити до еквівалентної їй пренексної формули:

- а) заміна А деякою її варіантою;
- b) заміна в A підформул вигляду $\neg \exists x B(x)$ та $\neg \forall x B(x)$ на $\forall x \neg B(x)$ та $\exists x \neg B(x)$ відповідно;
- с) заміна в А підформул вигляду $QxB(x)\lor C$ на $Qx(B(x)\lor C)$, якщо x не вільне в C; заміна в А підформул вигляду $B\lor QxC(x)$ на $Qx(B\lor C(x))$, якщо x не вільне в B.
- d) заміна в А підформул вигляду $QxB(x) \wedge C$ на $Qx(B(x) \wedge C)$, якщо x не вільне в C, та підформул вигляду $B \wedge QxC(x)$ на $Qx(B \wedge C(x))$, якщо x не вільне в B;
- е) заміна в A підформул вигляду $B \rightarrow QxC(x)$ на $Qx(B \rightarrow C(x))$, якщо x не вільне в B;
- f) заміна в A підформул вигляду $\exists x B(x) \to C$ на $\forall x (B(x) \to C)$, та підформул вигляду $\forall x B(x) \to C$ на $\exists x (B(x) \to C)$, якщо x не вільне в C.

Зауважимо, що для \leftrightarrow подібних операцій немає, тому \leftrightarrow слід розписувати через \to та &.

Пренексною формою формули A назвемо пренексну формулу A', утворену із A за допомогою пренексних операцій.

Кожна формула має пренексну форму, причому якщо А' – пренексна форма формули А, то А ~ А'.

Приклад 1. Знайдемо пренексну форму для формули $\exists z(x=y+z) \to (x=y) \lor \exists z((x=y+z) \& \neg (z=0))$:

```
\exists z(x=y+z) \to (x=y) \lor \exists t((x=y+t)\& \neg (t=0)) – операція а);
```

 $\exists z(x=y+z) \rightarrow \exists t(x=y \lor x=y+t \& \neg (t=0)) -$ операція с);

 $\forall z(x=y+z \rightarrow \exists t(x=y \lor x=y+t \& \neg (t=0))) - \text{ one paulis } f);$

 $\forall z \exists t(x=y+z \rightarrow x=y \lor x=y+t \& \neg (t=0)) -$ операція e).

Комбінацію кванторів $\forall x \exists y$ можна трактувати як твердження про існування певної функції, значення y якої залежить від x. Ця ідея лежить в основі визначення скулемівської нормальної форми.

Нехай $Q \, \overline{v} \, M(\overline{v})$ — замкнена пренексна формула. Тут $Q \, \overline{v}$ — кванторні префікси (всі ці кванторні префікси — за різними предметними іменами), \overline{v} — всі вільні предметні імена (змінні) безкванторної формули M, причому \overline{v} складається з \exists -кванторних імен y_1, \ldots, y_n та \forall -кванторних імен x_1, \ldots, x_m . Зіставимо кожному кванторному префіксу $\exists y_i$ із $Q \, \overline{v} \, \{ \, \overline{x}_i \, \}$ -арну функцію f_i , де \overline{x}_i — всі ті \forall -кванторні імена із \overline{v} , що передують y_i в $Q \, \overline{v}$. Функції f_i зіставимо новий функціональний символ f_i , арність якого рівна кількості змінних в \overline{x}_i . Якщо y_i не передує в $Q \, \overline{v}$ жодний \forall -кванторний префікс, то f_i — константа, f_i — константний символ. Замінимо всі входження y_i в M на терм $f_i(\overline{x}_i)$, $i \in \{1, \ldots, n\}$. В результаті отримаємо формулу $\forall x_1 \ldots \forall x_m M(x_1, \ldots, x_m, f_1(\overline{x}_1), \ldots, f_n(\overline{x}_n))$. Таке перетворення називається скулемізацією, а самі формули зазначеного вигляду — скулемівськими, або формулами в скулемівській формі.

Приклад 2. Нехай формула має вигляд $\forall x p(x,x) \land \forall x \exists y (q(y) \to p(x,y)) \land \forall y \exists x (p(x,y))$. Зводячи її до пренексної форми, отримуємо $\forall x \forall z \exists y \forall u \exists v (p(x,x) \land (q(y) \to p(z,y)) \land p(v,u))$. Тепер $\exists y$ зіставимо 2-арний функціональний символ f, $\exists v$ зіставимо 3-арний функціональний символ g, замінимо входження y термом f(x,y), входження v — термом g(x,y,u). В результаті отримаємо скулемівську формулу $\forall x \forall z \forall u (p(x,x) \land (q(f(x,y)) \to p(z,f(x,y))) \land p(g(x,y,u),u))$.

Приклад 3. Нехай формула має вигляд $\exists x \ p(x) \land \forall x (p(x) \to \exists y (p(y))$. Зводячи її до пренексної форми, отримуємо $\exists x \forall z \exists y (p(x) \land (p(z) \to p(y))$. Тепер $\exists x$ зіставимо константний символ c, $\exists y$ зіставимо 1-арний функціональний символ f, замінимо входження x константним символом c, входження y — термом f(z). У результаті отримаємо скулемівську формулу $\forall z (p(c) \& (p(z) \to p(f(z)))$.

Завдання

Вкажіть пренексну форму для таких формул:

- 1) $\forall x A(x) \rightarrow \forall y (\exists z B(x, y, z) \rightarrow \neg \forall x A(x) \land \exists x C(x, y));$
- 2) $\exists z(x=y+z) \rightarrow (x=y) \lor \exists z((x=y+z) \land \neg (z=0));$
- 3) $\exists x A(x, y) \rightarrow \forall x (\neg \exists y B(x, y) \rightarrow \exists y C(y)).$

Замкніть отриману формулу і приведіть до скулемівської нормальної форми.

Зведіть до скулемівської форми із матрицею в КНФ такі формули:

- 1) $\forall x \neg p(x, x) \land \forall x \exists y \, p(x, y) \land \forall x \forall z \, \forall y (p(x, z) \land p(z, y) \rightarrow p(x, y));$
- 2) $\forall x \neg q(x, x) \land \forall x \forall z \exists y (q(x, y) \rightarrow q(x, z) \land q(z, y)) \land \forall x \forall y \forall z (q(x, y) \land q(y, z) \rightarrow q(x, z));$
- 3) $\exists x(p(x) \land \forall y(q(y) \rightarrow h(x,y)) \land \forall x(p(x) \rightarrow \forall y(r(y) \rightarrow \neg h(x,y))) \rightarrow \forall x(q(x) \rightarrow \neg r(x)).$