EOS - Introduction and Overview

Danny van Dyk

New Physics at Belle II February 24th, 2015

What is EOS?

Use cases

EOS is a set of C++ libraries and programs that is used for several applications in the field of flavour physics.

http://project.het.physik.tu-dortmund.de/eos

Use cases are:

1. evaluation of observables and related theoretical quantities, and their uncertainty estimation

inference of parameters from experimental or theoretical constraints

How and Who

- truely collaborative effort
- source publicly available, via tarballs and a GIT repository
 http://project.het.physik.tu-dortmund.de/source/eos

main authors:

- D. van Dyk (U Siegen)
- F. Beaujean (LMU Munich)
- Ch. Bobeth (TU Munich)
- S. Jahn (TU Munich)

formerly:

· Ch. Wacker

contributors:

- Th. Blake (U Warwick)
- Ch. Langenbruch (U Warwick)
- H. Miyake (U Tsukuba)
- K. Petridis (U Bristol)
- A. Shires (TU Dortmund)

Overview and Architecture

```
/ eos
    ▶ libeos.so: main interface to all classes
    / utils
         ▶ libeosutils.so: utility classes (I/O, multithreading, ...)
     / statistics
         ▶ libeosstatistics.so: likelihood, Markov chains,...
     / b-decays
         ▶ libeosbdecays.so: charged-current b decays
     / rare-b-decays
         ▶ libeosrarebdecays.so: FCNC b decays
     / form-factors
         ▶ libeosformfactors.so: hadronic matrix elements
/ src
     / clients
         ▶ eos-*: client progams
```

Design: Language and Dependencies

Core library

- written in C++0x from the beginning (now C++11)
 - ▶ requires state-of-the-art GNU C++, version 4.8+
 - experimental support for LLVM clang
 - built using GNU autotools, known to build on Linux and OS X
- dependencies
 - GNU Scientific Library
 - ▶ Hierarchical Data Format 5 Library

Statistics

- additional dependencies
 - Minuit2 (standalone or as part of ROOT)
 - Population Monte Carlo Library (optional, see commit 8599595)

Design: Abstraction

Everything is a parameter

- basically all quantities can be changed at run time
 - CKM Wolfenstein parameters
 - ▶ meson masses, quark masses, . . .
 - ▶ hadronic matrix elements
 - life times
- allow to change role of parameter
 - estimate theory uncertainties (when treated as nuisance parameters)
 - fit from data (when treated as parameter of interest)

Plug-Ins

- most input functions can be chosen at run time
 - ▶ hadronic matrix elements (form factors) in various parametrizations
 - effective couplings (Wilson coefficients) in NP models

Design: Abstraction

Likelihood and Prior

- · construct likelihood and prior at run time
- · abstract tree, with leaves:
 - ▶ (Multivariate) Gaussian distribution
 - ► LogGamma distribution (for asymmetric uncertainty intervals)
 - Amoroso (for limits)
 - ► Flat (prior only)

Design: Building Blocks

begin of a technical intermezzo

most important classes:

- Parameter, Parameters
- Kinematics
- Options
- Observable

let's go into details on each of these

Implementation: Parameters

key = value dictionary, with string keys and floating-point real values

- copies share, by default, the parameters of the original
- observables usually share a common set of parameters

Implementation: Parameters

key = value dictionary, with string keys and floating-point real values

- copies share, by default, the parameters of the original
- observables usually share a common set of parameters
- access to individual parameters via array subscript []
 - ▶ input: parameter name
 - result: instance of Parameter, w/ persistent access to parameter data lookup once, use often!
- parameter naming scheme: NAMESPACE::ID@SOURCE, e.g.:
 - lacktriangledown mass::b(MSbar) ightarrow mass $\overline{m}_b(\overline{m}_b)$ in MS scheme
 - ▶ B->K:: f_+ (0) @KMPW2010 \to normalization of f_+ FF in $B \to K$ decays, according to KMPW '10

Implementation: Kinematics

key = value dictionary, with string keys and floating-point real values

- allows run-time construction of observables
- · each obervable has its very own set of kinematic variables
- access to individual variables via array subscript []
 - ▶ input: variable name
 - result: double
- no naming scheme, since namespace is unique per observable instance

Implementation: Options

key = value dictionary, with string keys and string values influences how observables are evaluated

- access to individual otions via array subscript []
 - ▶ input: option name
 - result: string value
- example: lepton flavour in semileptonic decay: l=mu, l=tau,...
- example: choice of form factors: form-factors=KMPW2010 ...
- example: model=... as choice of underlying physics model
 - SM to produce SM prediction
 WilsonScan to fit Wilson coefficients
 CKMScan to fit CKM matrix elements

Observable is an abstract base class

- descendants must at construction time:
 - associate with instance of Parameters
 - extract value from instance of Options
- construction via factory method:
 create an observable at runtime using its name, a set of parameters, a set of kinematic variables, and a set of options:

```
Observable::make("B->pilnu::BR", p, k, o)
```

- changes to Parameters transparently affect associated observables
- changes to Options do not affect the observable after construction

- observables can be
 - evaluated:

runs the necessary computations for the present values of the parameters

- copied:
 - copy-ctor does not create an independent copy, the copy uses the same parameters, with the same options
- cloned:
 - creates an independent copy of the same observable, using a different set of parameters than the original
- all users of Observable must also support cloning
 - easily allows to parallelize algorithms

Copying

Cloning

Implementation: Observable (example)

example of an observable:

- class BToPiLeptonNeutrino
 - ▶ inherits from PrivateImplementationPattern
 ⇒ Copy-CTOR does not produce independent copy
- method

```
integrated_branching_ratio(const double & s_min, const double &
s_max)
```

- ▶ two kinematic variables: smin, smax correspond to integration range for ℓ̄ mass square
- Observable::make(...) associates name B->pilnu::BR with an instance of BToPiLeptonNeutrino and its method integrated branching ratio
 - associates kinematic variable s_min with first argument,
 s_max with second argument

end of the intermezzo

Adding Observables

easy to add new observables, with efficient implementation:

- core library provides commonly-used functions
 - $ightharpoonup \alpha_s$ running ($\overline{\rm MS}$ scheme)
 - quark-mass running and scheme conversion (MS, kinetic and pole schemes)
 - ▶ Wilson coefficients of $b \rightarrow s$ EFT in the SM
 - ▶ Pion light-cone distriubution amplitudes (twists 2 through 4)
- · memoisation of expensive function calls
 - created table at run time, lookup of result for known arguments
 - easy-peasy:

Parameter Inference

- parameter inference is EOS' 2nd use case
- · setup for Bayesian anaylses
 - mode-finding accomplished using Minuit2
 - planned: allow for configurable mode-finding libraries
 - integration of the posterior is the leading numerical problem
 - using black-box algorithm that works for large parameter spaces
 - works up to approx. 40 50 parameters
 - adaptive importance sampling
 - uses Markov Chains and Population Monte Carlo

Usage

mainly three clients = programms that use EOS library

- evaluation via eos-evaluate
 - ▶ takes a list of observables and their kinematics from command line
 - outputs table of evaluation to STDOUT
 - naive error estimation available, assumes Gaussian errors
- parameter inference and sampling via eos-scan-mc
 - ▶ Bayesian inference, constructs prior and likelihood from command line
 - accesses EOS' library of expt. constraints and theory inputs
 - outputs posterior samples to HDF5 file
- eos-propagate-uncertainty
 - draws samples from a predictive distribution
 - takes posterior samples from HDF5 file or prior samples from command line
 - combination possible!
 - outputs samples to HDF5 file

Usage

- · carry out analyses via command line
- internally: use set of BASH/Python scripts
 - ► runs EOS analyses on laptops, workstations or clusters
 - works on at least two different clustering systems
 - ▶ happy to share them, please approach us

Walkthrough of a Recent Analysis

$B o \pi$ Form Factor and $|V_{ub}|$ from $\bar{B}^0 o \pi^+ \mu^- \bar{\nu}$

let's look at a small-scale study that uses EOS

- walkthrough of recent study Imsong/Khodjamirian/Mannel/DvD 1409.7816
- $B \to \pi$ form factor $f_+^{B\pi}(q^2)$ from Light-Cone Sum Rules (LCSRs)
 - ▶ first LCSR result that provides correlations of parametric uncertainties
- one application: determination of $|V_{ub}|$ from BaBar and Belle measurements of $\bar{B}^0 \to \pi^+ \mu^- \bar{\nu}$

(for large-scale study, see Christoph Bobeth's talk)

Step 1: Implementation

- implement $f_+^{B\pi}$ from Light-Cone Sum Rules (LCSRs) Duplancic/Khodjamirian/Mannel/Melic/Offen 0801.1796
- add AnalyticBToPiFormFactorsDKMMO2008
 - ▶ introduce relevant input parameters to Parameters
 - \blacktriangleright implement $f_+(q^2)$, $f'_+(q^2)$ and $f''_+(q^2)$ for predictions
 - implement 2 ancillary observables for theory constraints
 - ▶ implement target observable $\mathcal{B}(\bar{B}^0 \to \pi^+ \mu^- \bar{\nu}_{\mu})$

Step 1: Implementation

- implement $f_+^{B\pi}$ from Light-Cone Sum Rules (LCSRs) Duplancic/Khodjamirian/Mannel/Melic/Offen 0801.1796
- add AnalyticBToPiFormFactorsDKMM02008
 - ▶ introduce relevant input parameters to Parameters
 - ▶ implement $f_+(q^2)$, $\dot{f}'_+(q^2)$ and $f''_+(q^2)$ for predictions
 - implement 2 ancillary observables for theory constraints
 - ▶ implement target observable $\mathcal{B}(\bar{B}^0 \to \pi^+ \mu^- \bar{\nu}_{\mu})$

modified files

Step 2: $B \to \pi$ Form Factor

- construct PDF for the input parameters
 - ▶ 16 dim. parameter space
 - uncorrelated priors individual parameters: m_b, f_{π}, \dots
 - ▶ includes two theory constraints
- mode-finding and integration using eos-scan-mc
 - ▶ 16 Markov chains, run independently
 - ▶ combine chains, and initialize PMC with 4 clusters
 - ▶ PMC converged after 2 update steps
 - ▶ draw $5 \cdot 10^4$ samples from the posterior
- eos-propagate-uncertainty: compute posterior-predictive distribution for $B \to \pi$ form factor and its derivative
 - \blacktriangleright distribution of f_+ and derivatives is Gaussian to very good approximation
 - estimate covariance from samples

Step 3: $|V_{ub}|$ from $\bar{B}^0 \to \pi^+ \mu^- \bar{\nu}$

- add constraints to libeos.so
 - ▶ add theory constraint B->pi::f_+@IKMvD2014 based on previous results \Rightarrow can be reused for future projects $(B \to \pi \ell^+ \ell^-!)$
 - implement experimental constraints B->pilnu::BR@* based on various BaBar and Belle measurements
- fit $|V_{ub}|$ and form factor parameters to exp.&th. constraints, using eos-scan-mc
 - ▶ 16 Markov chains explore parameter space
 - combine chains and initialize PMC w/ 4 clusters
 - ▶ PMC converged after 3 update steps
 - ightharpoonup draw 10^5 samples from the posterior, effective sample size: 94%

Step 3: $|V_{ub}|$ from $\bar{B}^0 \to \pi^+ \mu^- \bar{\nu}$

- add constraints to libeos.so
 - ▶ add theory constraint B->pi::f_+@IKMvD2014 based on previous results \Rightarrow can be reused for future projects ($B \rightarrow \pi \ell^+ \ell^-$!)
 - implement experimental constraints B->pilnu::BR@* based on various BaBar and Belle measurements
- fit $|V_{ub}|$ and form factor parameters to exp.&th. constraints, using eos-scan-mc
 - ▶ 16 Markov chains explore parameter space
 - combine chains and initialize PMC w/ 4 clusters
 - ▶ PMC converged after 3 update steps
 - ightharpoonup draw 10^5 samples from the posterior, effective sample size: 94%

/ eos

M constraint.cc

modified files

Step 3: $|V_{ub}|$ from $\bar{B}^0 \to \pi^+ \mu^- \bar{\nu}$

produce pretty plots

First determination of $\left|V_{ub}\right|$ from Light-Cone Sum Rules with Bayesian treatment of parametric theory uncertainties

blue contours red areas

green vertical line/area

 $68\%,\,95\%,\,99\%$ prob. contours for 2010 data (BaBar+Belle) $68\%,\,95\%,\,99\%$ prob. contours for 2013 data (BaBar+Belle)

central value/68% CL interval for $B \to X_u \ell \bar{\nu}$ (GGOU/HFAG)

Conclusion and Outlook

Conclusion

- EOS is a HEP flavour program for observable evaluation and parameter inference
 - adding observables is rather eady
 - ▶ reduces code replication by sharing common code (RGE running, ...)
- already contains theory codes for many interesting observables
 - $lackbox{b} o s\ell^+\ell^-, \ b o s\gamma$: excl. and incl. decays, see Ch. Bobeth's talk
 - $b \rightarrow u\ell\bar{\nu}$ (exclusive only)
- powerful black-box algorithm for mode-finding and posterior integration
 - allows for treatment of th. uncertainties via nuisance parameters
 - ▶ for algorithm see F. Beaujean's dissertation (link in backups)

Belle II and EOS

- mutually benefitial exchange with members of LHCb
 - ▶ discussions with Belle II members would be very welcome
 - tell us if you want use EOS
 - tell us about your applications
 - patches/contributions always welcome!
- prospects
 - ▶ Feature: EOS as an event Monte Carlo generator in NP models? importance sampling already in place in the library; basically needs only a new client program
 - Feature: Python interface
 - ▶ Physics: $B \to X_c \ell \bar{\nu}$ observables w/ comprehensive theory uncertainty?
 - ▶ Physics: $b \to \{c, u\} \ell \bar{\nu}$ in EFT?
- what would you consider helpful or important?

Backup Slides

Sketch of the Black-Box Algorithm

Algorithm as described in Beaujean 2012¹ basic idea:

- let adaptive markov chains explore the paramater space
 - ▶ usual problem: chains do not mix ⇒ chains may be biased towards individual modes
 - solution: chop chains up into patches, let hierarchical clustering sort patches into clusters
 - extract mode and covariance for each cluster
- 2. create mixture density based on modes and covariances for each cluster
- use population monte carlo to find mixture density that approximates the target
 - draws samples from approximative results, compares with target
 - each update step decreases Kullback-Leibler divergence between approximation and target
 - final step: draw weighted variates from approximation

¹http://d-nb.info/1031075380