Math Camp: Limits, Continuity, & Derivatives Calc I

James Steur

University of Illinois

July 28, 2018

Why does math matter?

- You can read articles and understand them better.
- Certain topics—like game theory and formal theory—rely heavily on math.
- Your future research and dissertation could (and most likely will) involve methods you learn on your own.

Why does math matter?

- Political questions, on the surface, do not require math:
 - Why do people vote for certain candidates?
 - Why do countries go to war?

Disclaimer

- I am not doing proofs.
- Most undergrads spend a semester on these concepts.
- Don't get discouraged if it's your first time or you're a little rusty.

Intuition about Limits

- Suppose we have a function $f(x) = \frac{(x^2-4)}{(x-2)}$
- How does the function behave around x=2?

Figure 1

Intuition about Limits

- As the values of x approach 2 from either side of 2, the values of y = f(x) approach 4.
- In more mathy terms, we say that the limit of f(x) as x approaches 2 is 4.
- Notationally, we express the limit in the following form: $\lim_{x\to 2} f(x) = 4$

Formal Definitions of Limits

- Definition of Limit: L is the limit of f(x) as x approaches c when the value of f(x) nears L as x nears c
 - $\lim_{x \to c} f(x) = L$
- Right-hand Limits: The value of f(x) when approaching c from the right-hand side of the graph.
 - $\bullet \lim_{x \to c^+} f(x) = L$
- Left-hand Limits: The value of f(x) when approaching c from the left-hand side of the graph.
 - $\bullet \lim_{x \to c^{-}} f(x) = L$
- The value of f(x) as the function approaches infinity.
 - $\bullet \lim_{x \to \infty} f(x) = L$

Example of Right-handed & Left-Handed Limits

- What is the $\lim_{x \to 2^+} \frac{(x^2-4)}{(x-2)}$?
- What is the $\lim_{x \to 2^{-}} \frac{(x^2-4)}{(x-2)}$?

Figure 1

Properties of Limits

- ▶ Let $\lim_{x\to c} f(x) = L_1$ and $\lim_{x\to c} g(x) = L_2$
 - If f = g, then $L_1 = L_2$
 - $\lim_{x \to c} k = k$
 - $\lim_{x \to c} x = c$
 - $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = L_1 + L_2$
 - $\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x) = kA$
 - $\lim_{x\to c} f(x)g(x) = [\lim_{x\to c} f(x)][\lim_{x\to c} g(x)] = AB$
 - $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{\substack{x \to c \\ \lim_{x \to c} g(x)}} \frac{f(x)}{g(x)} = \frac{A}{B} \text{ for all } B \neq 0$
 - If $\lim_{x\to L_2} f(x) = L_3$ and $\lim_{x\to c} g(x) = L_2$, then $\lim_{x\to c} f(g(x)) = L_3$

Definition of Continuity at a Point

A function f(x) is **continuous at a point** a if and only if all three conditions are satisfied:

- f(a) is defined
- $\lim_{x \to a} f(x) \text{ exists}$
- $\lim_{x\to a} f(x) = f(a)$

A function f(x) is **discontinuous at a point** a if it fails to be continuous at a.

Formal Definitions of Discontinuity at a Point

Definition

If f(x) is discontinuous at a, then

- **1.** f has a **removable discontinuity** at a if $\lim_{x \to a} f(x)$ exists. (Note: When we state that $\lim_{x \to a} f(x)$ exists, we mean that $\lim_{x \to a} f(x) = L$, where L is a real number.)
- 2. f has a **jump discontinuity** at a if $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ both exist, but $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$. (Note: When we state that $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ both exist, we mean that both are real-valued and that neither take on the values $\pm \infty$.)
- 3. f has an **infinite discontinuity** at a if $\lim_{x \to a^{-}} f(x) = \pm \infty$ or $\lim_{x \to a^{+}} f(x) = \pm \infty$.

Graphic Representation of Discontinuity at a Point

Continuity over an Interval

- A function f(x) is said to be continuous from the right at a if
 lim
 _{x→ a+} f(x) = f(a).
- A function f(x) is said to be continuous from the left at a if
 lim
 _{x→ a⁻} f(x) = f(a).

Continuity over an Interval

- A function f(x) is said to be continuous from the right at a if
 lim
 _{x→ a+} f(x) = f(a).
- A function f(x) is said to be continuous from the left at a if
 lim
 _{x→ a⁻} f(x) = f(a).

Intuition: Generally, if we can use a pencil to trace a function between any two points in the interval, then the function is continuous.

Derivatives

- The type of limit we compute to find the slope of the line tangent to a function occurs in many settings.
- This limit occurs so frequently that we call it the derivative.
- The process of finding a derivative is called **differentiation**.

Derivative Example

- Suppose the probability of turning out to vote has a quadratic relationship with education.
- Let's assume the following relationship: $Pr(Turnout) = -0.05Ed^2 + 0.18Ed 1$ (where Ed=years of education).

Derivative Example

- Suppose I want to know how the likelihood of turnout is changing at 16 years of college education. I theorize those with bachelor's degrees should vote at a higher rate of change.
- I need to know the slope of the function at this point. How do I do this?
- I can determine the slope of the tangent line touching the function at that point (aka the derivative).

Derivative Notation

Notationally, derivatives are written in many ways.

- $f(x)' = \frac{dy}{dx} = \frac{d}{dx}y = Df(x) = Df$
- You can differentiate a derivative. (You can take a derivative of a derivative.)
- A second derivative is the derivative of the first derivative. A third derivative is the derivative of the second derivative. Etc.

Why take Derivatives?

- Can tell us whether the function is increasing or decreasing at a particular point.
- Can help us find critical points: minima, maxima, and inflection points (changes in concavity) of the function.

The First & Second Derivative

- The first derivative tells us whether the formula is increasing or decreasing.
- The second derivative tells us whether the derivative is increasing or decreasing.
- This also tells us the concavity of the function.
- This helps us determine the maxima and minima of the function.

Critical Points

- To find critical points, the slopes of tangents at maxima or minima are 0.
- The derivative tells us the slope of a tangent line.

Inflection Points

- When a function changes concavity, this is called an inflection point.
- Inflection points occur where the f''(x) = 0
- When f''(x) = 0, there is no information on the concavity.

Differentiation Rules

- $f(x) = e^x$; $f'(x) = e^x$
- $f(x) = c^x$; $f'(x) = ln(c)c^x$
- $f(x) = In(x); f'(x) = \frac{1}{x}$
- $f(x) = log_n(x); f'(x) = \frac{1}{x ln(n)}$
- f(x) = sin(x); f'(x) = cos(x)
- f(x) = cos(x); f'(x) = -sin(x)
- f(x) = tan(x); $f'(x) = sec^2(x)$

Derivative Basics

- Not all functions have derivatives for all values.
 - The value of a derivative does not exist wherever the function is non-continuous
- The derivative of a scalar is 0.
- For derivatives of polynomials with degree 1, the derivative is a scalar.
- For polynomials of degree 2 or higher, the derivative will depend on the value of x.

Helpful Derivatives

- Power Rule
 - If $f(x) = \sum_{k=0}^{n} a_k x^k$, then $f'(x) = \sum_{k=0}^{n} k a_k x^{k-1}$
- ► Constant Rule: $\frac{d}{dx}cf(x) = c\frac{d}{dx}f(x)$
- Sum Rule: $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$
- ▶ Product Rule: $\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}g(x)$
- Quotient Rule:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{[g(x)]^2} = \frac{\text{Low} d \text{High-High} d \text{Low}}{\text{Denominator}^2}$$

► Chain Rule: $\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$

References & Resources

Alicia Uribe-McGuire. Math Camp Day 1. August 22, 2017. Paul Dawkins Calc I Notes Khan Academy MIT Strang, G. (2016). *Calculus*. Houston, TX: OpenStax College.