

Politechnika Warszawska

Instytut Automatyki i Informatyki Stosowanej

Teoria sterowania (TST)

Projekt 1

Zasady realizacji i punktacja

Rozwiązanie zadania w postaci krótkiego (!) sprawozdania wraz ze skryptem (Matlab lub Octave) należy przesłać mailem na adres M.Karpowicz@elka.pw.edu.pl. Termin oddania rozwiązania: 27.11.2018 godzina 20:00. Uwaga: każdy tydzień zwłoki oznacza stratę 5 punktów.

Powodzenia!

Cel projektu

Celem zadania jest zbadanie i zilustrowanie dynamiki układu liniowego

$$x(t+1) = Ax(t), \ x(0) = x_0$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

w przestrzeni fazowej.

Wymagania

Badania i symulacje należy wykonać w środowisku Matlab lub Octave, wykorzystując dostępne procedury numeryczne i graficzne. Stworzony skrypt powinien być złożony z następujących fragmentów:

- konstruowanie macierzy o zadanym widmie,
- \bullet konstruowanie zbioru X_0 punktów początkowych rozłożonych na okręgu,
- obliczanie trajektorii układu (rozwiązań r-nia stanu) dla wybranych punktów początkowych,
- \bullet obliczanie wartości i wektorów własnych macierzy A,
- ilustrację trajektorii w przestrzeni stanów (portret fazowy),
- ilustrację obrazu $Y = AX_0$ zbioru X_0 ,
- ilustrację wektorów $\lambda_i v_i$, $\lambda_i \in \sigma(A)$, i = 1, 2,
- ilustrację pola wektorowego określającego trajektorie układu.

Zadania badawcze

Należy wykonać na następujące zadania:

- \bullet podać własną interpretację wartości własnych i wektorów własnych macierzy A,
- zademonstrować zależność dynamiki układu od widma $\sigma(A) = \{\lambda \in \mathbb{C} : \varphi_A(\lambda) = 0\}$ i wektorów własnych macierzy A (uwzględniając wszystkie możliwe reprezentacje $\sigma(A)$).