Solutions to Homework 11

Yu Junao

December 1, 2024

Folland. Real Analysis

Exercise 8.1.1

Proof. We only prove the first identity as similar approaches are applicable for the second one.

For $|\alpha| = 1$, without loss of generality assume $\alpha = (1, 0, \dots, 0)$, then

$$\partial^{\alpha} (x^{\beta} f) = x^{\beta} \partial^{\alpha} f + \beta_1 x_1^{\beta_1 - 1} x_2^{\beta_2} \cdots x_n^{\beta_n} f = x^{\beta} \partial^{\alpha} f + \sum_{\gamma, \delta} c_{\gamma \delta} x^{\delta} \partial^{\gamma} f$$

where

$$c_{\gamma\delta} = \begin{cases} \beta_1, & \beta_1 \ge 0, \gamma = 0, \delta = (\beta_1 - 1, \beta_2, \cdots, \beta_n), \\ 0, & \text{else.} \end{cases}$$

Assume the conclusion is correct for $|\alpha| = k - 1$. Assume $|\alpha| = k$ and $\alpha_1 \ge 1$, then for $\alpha' = (\alpha_1 - 1, \alpha_2, \dots, \alpha_n)$ we have

$$\partial^{\alpha} (x^{\beta} f) = \partial_{1} \partial^{\alpha'} (x^{\beta} f) = \partial_{1} \left(x^{\beta} \partial^{\alpha} f + \sum_{\gamma, \delta} c'_{\gamma \delta} x^{\delta} \partial^{\gamma} f \right)$$
$$= x^{\beta} \partial^{\alpha} f + \beta_{1} x^{\beta'} f + \sum_{\gamma, \delta} c'_{\gamma \delta} x^{\delta} \partial^{\gamma} f$$
$$= x^{\beta} \partial^{\alpha} f + \sum_{\gamma, \delta} c_{\gamma \delta} x^{\delta} \partial^{(\gamma_{1} + 1, \gamma_{2}, \dots, \gamma_{n})} f.$$

By the assumption of induction, the conclusion is correct for every k.

Exercise 8.1.2

(1)

Proof. We shall prove by induction on n.

As is known, the conclusion is correct for n=1,2. Assume it is correct for n-1, then for $x'=(x_1,\cdots,x_{n-1})$ we have

$$(x_1 + \dots + x_n)^k = \sum_{j=0}^k \frac{k!}{j!(k-j)!} (x_1 + \dots + x_{n-1})^j x_n^{k-j}$$

$$= \sum_{j=0}^k \frac{k!}{j!(k-j)!} x_n^{k-j} \left(\sum_{|\beta|=j} \frac{j!}{\beta!} x'^\beta \right)$$

$$= \sum_{j=0}^k \sum_{|\beta|=j} \frac{k!}{(k-j)!\beta!} x'^\beta x_n^{k-j}$$

$$= \sum_{|\alpha|=k} \frac{k!}{\alpha!} x'^\beta x_n^{k-j}$$

since $|\alpha| = |\beta| + k - j = k$.

By the assumption of induction, the conclusion is correct for every n.

(2)

Proof. Direct computation implies

$$(x+y)^{\alpha} = \prod_{i=1}^{n} (x_i + y_i)^{\alpha_i}$$

$$= \prod_{i=1}^{n} \sum_{j=1}^{\alpha_i} \frac{\alpha_i!}{j!(\alpha_i - j)!} x_i^j y_i^{\alpha_i - j}$$

$$= \sum_{\beta + \gamma = \alpha} \prod_{i=1}^{n} \frac{\alpha_i!}{\beta_i! \gamma_i!} x_i^{\beta_i} y_i^{\gamma_i}$$

$$= \sum_{\beta + \gamma = \alpha} \frac{\alpha!}{\beta! \gamma!} x^{\beta} y^{\gamma}$$

Exercise 8.3.14

Proof. It is easy to check that the inequality is invariant under translation and scaling, thus we assume a = 0 and $b = \frac{1}{2}$.

Set

$$F(x) = \begin{cases} f(x), & 0 \le x \le \frac{1}{2}, \\ -f(-x), & -\frac{1}{2} \le x < 0. \end{cases}$$

Note $F(x) \in C^1[-\frac{1}{2}, \frac{1}{2}]$ since

$$F'(0) = \lim_{h \to 0} \frac{F(h) - F(0)}{h} = \lim_{h \to 0} \frac{F(h)}{h} = f'(0),$$

and we only need to prove

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} |F(x)|^2 dx \le \frac{1}{4\pi^2} \int_{-\frac{1}{2}}^{\frac{1}{2}} |F'(x)| dx.$$

By Parseval's identity, we have

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} |F(x)|^2 dx = \sum_{n=-\infty}^{+\infty} |\hat{F}(n)|^2$$

and

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} |F'(x)|^2 dx = \sum_{n=-\infty}^{+\infty} \left| 2n\pi i \hat{F}(n) \right|^2 = 4\pi^2 \sum_{n=-\infty}^{+\infty} n^2 |\hat{F}(n)|^2.$$

Particularly, $\hat{F}(0) = 0$ since F is odd, thus the inequality holds, which achieves equality if and only if F satisfies $\hat{F}(n) = 0$ unless $n = \pm 1$.

Exercise 8.4.28

(1)

Proof. Consider the partial sum of Poisson kernel. Note that

$$\left| f(y) \sum_{n=-N}^{N} r^{|n|} e^{2\pi i n(x-y)} \right| \le |f(x)| \sum_{n=-N}^{N} r^{|n|} \le 2|f(x)| \sum_{n=1}^{\infty} r^n = \frac{2r}{1-r} |f(x)| < +\infty$$

for 0 < r < 1.

Therefore, dominated convergence theorem implies

$$(f * P_r)(x) = \int f(y) \sum_{n=-\infty}^{+\infty} r^{|n|} e^{2n\pi i(x-y)} dy$$

$$= \int \lim_{N \to \infty} f(y) \sum_{n=-N}^{N} r^{|n|} e^{2n\pi i(x-y)} dy$$

$$= \lim_{N \to \infty} \int \sum_{n=-N}^{N} f(y) r^{|n|} e^{2n\pi i(x-y)} dy$$

$$= A_r f(x).$$

(2)

Proof. By direct computation,

$$P_r(x) = 1 + \sum_{n=1}^{\infty} r^n \left(e^{2n\pi i x} + e^{-2n\pi i x} \right)$$

$$= 1 + \sum_{n=1}^{\infty} \left(r e^{2\pi i x} \right)^n + \sum_{n=1}^{\infty} \left(r e^{-2\pi i x} \right)^n$$

$$= 1 + \frac{r e^{2\pi i x}}{1 - r e^{2\pi i x}} + \frac{r e^{-2\pi i x}}{1 - r e^{-2\pi i x}}$$

$$= \frac{1 - r^2}{1 + r^2 - 2r \cos 2\pi x}.$$

Exercise 8.4.32

 $Proof. \implies:$ Define

$$g(z) = g(e^{2\pi ix}) = f(x)$$

for $x \in \mathbb{T}$, then g(z) is an analytic function on \mathbb{S}^1 . By the analyticity of exponential function, g is naturally extended to a holomorphic function on an annulus

$$A=\{z\mid 1-\delta<|z|<1+\delta\}.$$

Consider the Laurent expansion at 0

$$g(z) = \sum_{n = -\infty}^{+\infty} a_n z^n,$$

where

$$a_n = \frac{1}{2\pi i} \int_{\mathbb{S}^1} \frac{g(z)}{z^{n+1}} dz$$

$$= \frac{1}{2\pi i} \int_0^1 g(e^{2\pi i x}) e^{-2n\pi i x} dx$$

$$= \frac{1}{2\pi i} \int_{\mathbb{T}} f(x) e^{-2n\pi i x} dx$$

$$= \frac{1}{2\pi i} \hat{f}(n)$$

as a result of residue theorem.

Take $z_0 \in A$ such that $|z_0| > 1$, then the convergence of Laurent series in A implies

$$\lim_{n \to \infty} \left| \frac{1}{2\pi i} \hat{f}(n) z_0^n \right| = 0 \Longrightarrow \lim_{n \to \infty} |\hat{f}(n)| |z_0|^n = 0,$$

hence there exists $N_1 > 0$ and $C_1 > 0$ such that

$$|\hat{f}(n)| \le C_1 e^{-\varepsilon_1 n}, \ n \ge N_1.$$

where $\varepsilon_1 = \log |z_0| > 0$.

Take $z_0' \in A$ such that $|z_0'| < 1$, and the same argument implies the existence of $N_2 > 0$ and $C_2 > 0$ such that

$$|\hat{f}(n)| \le C_2 e^{-\varepsilon_2 n}, \ n \le -N_2.$$

where $\varepsilon_2 = -\log|z_0'| > 0$.

T.at

$$\varepsilon = \max\{\varepsilon_1, \varepsilon_2\}$$

and

$$C = \max \left\{ C_1, C_2, \max \left\{ \frac{\hat{f}(1 - N_2)}{e^{1 - N_2}}, \cdots, \frac{\hat{f}(-1)}{e^{-1}}, \hat{f}(0), \frac{\hat{f}(1)}{e}, \cdots, \frac{\hat{f}(N_1 - 1)}{e^{N_1 - 1}} \right\} \right\}.$$
(1)

then we have

$$|\hat{f}(n)| \le Ce^{-n}$$

for $n \in \mathbb{Z}$.

⇐=:

Consider

$$A_r f(x) = \hat{f}(0) + \sum_{n=1}^{\infty} r^n \left(\hat{f}(n) e^{2n\pi i x} + \hat{f}(-n) e^{-2n\pi i x} \right)$$
$$= \hat{f}(0) + \sum_{n=1}^{\infty} r^n \left(\hat{f}(n) z^n + \hat{f}(-n) z^{-n} \right).$$

The inequality yields an uniform boundedness estimate

$$|A_r f(x)| \le |\hat{f}(0)| + C \sum_{n=1}^{\infty} r^n e^{-\varepsilon n} \left| e^{2n\pi i x} + e^{2n\pi i x} \right|$$

$$\le |\hat{f}(0)| + 2C \sum_{n=1}^{\infty} (re^{-\varepsilon})^n$$

$$\le |\hat{f}(0)| + \frac{2Cr}{e^{\varepsilon} - r}$$

$$\le |\hat{f}(0)| + \frac{2C}{e^{\varepsilon} - 1}$$

$$\le +\infty$$

for $0 < r < \frac{e^{\varepsilon}+1}{2}$, then this Laurent series converges, namely $A_r f(x)$ corresponds to a holomorphic function on \mathbb{S}^2 for every $r \in (0, \frac{e^{\varepsilon}+1}{2})$ including r = 1.

Since $A_1 f(x) = f(x)$, the complex-variable function g(z) define at the start is holomorphic on \mathbb{S}^1 , resulting in the analyticity of f(x) on \mathbb{T} .