# Visual Odometry Pipeline

 Pascal Buholzer, Fabio Dubois, Milan Schilling, Miro Voellmy January 5, 2017

## Sandbox



Figure 1: Cute pig image

# Symbols, Nomencalture

#### Introduction

The aim of this mini project is the development of a visual odometry pipeline. This pipeline takes the consecutive gray-scale images of a single digital camera as input. Therefore the pipeline developed in this mini project is a monocular visual odometry pipeline.

The output of the pipeline is the position of the camera in relation to its initial position for each frame.

keywords: (VO, sequential, monocular, markov assumption)

### **Implementation**

#### Framework

This pipeline was developed in MATLAB. Since the group consists of four students, a Git repository was used to be able to work on different files simultaneously, and to enable version control. (keywords: MATLAB, Git)

#### **Coordinate Frames**

In this mini project the coordinate frames were defined as shown in fig. 2. The camera coordinates are in a way oriented, that the x-y plane lies parallel to the image plane, while the z-axis is pointing towards the scenery. The world frame however is oriented in such a way that the x-y plane is parallel to the ground and the the z-axis is pointing upwards.

The origin of the world frame is at the same location as the origin of the first boot-strap image.



Figure 2: Coordinate Frames

#### Pipeline overview

As shown in fig. 3 the pipeline consists mainly of three parts, a bootstrap, the initialisation and the continuous operation. In section 4.2 and section 4.3 the initialisation and the continuous operation are described in detail.

#### Options and parameters

(keywords: parameter handling, GUI)



Figure 3: Rough Flow chart

## Initialization

## Continuous Operation

## Results

## Overall performance

(keywords: Real time ness, comparison to groundtruth, compare different datasets Impact of features)

## Discussion

What have we learned, what worked?

Possible future work, improvements (loop closure, ...)

## Conclusion



Figure 4: Init Flow chart



Figure 5: Cont Flow chart