LETTERS

(Collection)

A. Grothendieck

This edition is a collection of letters of A. Grothendieck reunited by Mateo Carmona. Remarks, comments, and corrections are welcome. https://agrothendieck.github.io/

Typeset with MEX and the fabulous *memoir* class. Composed with Bitstream Charter for the text type and Paul Pichaureau's mathdesign package for the math type. All diagrams and illustrations were made with Till Tantau's TikZ (TikZ ist kein Zeichenprogramm) and the tikz-cd package.

Contents

```
1950
       1
1952
       2
1954
       3
1955
       4
1956
       5
1957
       6
1958
       7
1959
       8
1960
       9
1961
      10
1962
      11
1963
      12
1964
      13
1965
      14
1966
      Letter to J. Coates, 6.1.1966 15
  1
1967
      17
1968
      18
1969
      19
1970
      20
1971
      21
1972
      22
1973
      23
```

Contents

- 1974 24
 - 2 Lettre à P. Deligne, 7.8.1974 24
- 1975 27
- 1976 28
- 1977 29
- 1978 30
- 1979 31
- 1980 32
- 1981 33
- 1982 34
- 1983 35
- 1984 36
- 1985 37
- 1987 38
- 1988 39
- 1989 40
- 1990 41
- 1991 42

6.1.1966

Dear Coates,

1 Here a few more comments to my talk on the conjectures. The following proposition shows that the conjecture $C_{\ell}(X)$ is independent of the chosen polarisation, and has also some extra interest, in showing the part played by the fact that $H^{i}(X)$ should be "motive-theoretically" isomorphic to its natural dual $H^{2n-i}(X)$ (as usual, I drop the twist for simplicity).

Proposition. — *T*he condition $C_{\ell}(X)$ is equivalent also to each of the following conditions:

- a) $D_{\ell}(X)$ holds, and for every i < n, there exists an isomorphism $H^{2n-i}(X) \to H^i(X)$ which is algebraic (i.e. induced by an algebraic correspondence class; we do not make any assertion on what it induces in degrees different from 2n-i).
- b) For every endomorphism $H^i(X) \to H^i(X)$ which is algebraic, the coefficients of the characteristic polynomial are rational, and for every i < n, there exists an isomorphism $H^{2n-i}(X) \to H^i(X)$ which is algebraic.

Proof. — I sketched already how $D_\ell(X)$ implies the fact that for an algebraic endomorphism of $\mathrm{H}^i(X)$, the coefficients of the characteristic polynomial are rational numbers, therefore we know that a) implies b), and of course $C_\ell(X)$ implies a). It remains to prove that b) implies $C_\ell(X)$. Let $u:\mathrm{H}^{2n-i}(X)\to\mathrm{H}^i(X)$ be the given isomorphism which is algebraic, and $v:\mathrm{H}^i(X)\to\mathrm{H}^{2n-i}(X)$ is an algebraic isomorphism in the opposite direction, induced by L_X^{n-i} . Then uv=w is an automorphism of $\mathrm{H}^i(X)$ which is algebraic, and the Hamilton-Cayley formula $u^h-\sigma_1(w)u^{h-1}+\ldots+(-1)^h\sigma_h(w)=0$ (where the $\sigma_i(w)$ are the coefficients of the characteristic polynomial of w) such that w^{-1} is a linear combination of the w^i , with coefficients of the type $+/-\sigma_i(w)/\sigma_b(w)$ (N.B. $b=\mathrm{rank}\;\mathrm{H}^i$). The assumption implies that these coefficients are rational, which implies that w^{-1} is algebraic, and so is $w^{-1}u=v^{-1}$, which was to be proved.

N.B. In characteristic 0, the statement simplifies to: C(X) equivalent to the existence of algebraic isomorphisms $H^{2n-i}(X) \to H^i(X)$, (as the preliminary in b) is then automatically satisfied). Maybe with some extra care this can be proved too in arbitrary characteristics.

Corollary. — Assume X and X' satisfy condition C_{ℓ} , and let $u: H^{i}(X) \to H^{i+2D}(X') \to H^{i}(X)$ ($D \in \mathbf{Z}$) be an isomorphism which is algebraic. Then u^{-1} is algebraic.

Letter to J. Coates, 6.1.1966

Indeed, the two spaces can be identified "algebraically" (both directions!) to their dual, so that the transpose of u can be viewed as an isomorphism $u': H^{i+2D}(X') \to H^i(X)$. Thus u'u is an algebraic automorphism w of $H^i(X)$, and by the previous argument we see that w^{-1} is algebraic, hence so is $u^{-1} = w^{-1}u'$.

As a consequence , we see that if $x \in H^i(X)$ is such that u(x) is algebraic (i being now assumed to be even), than so is x. The same result should hold in fact if u is a monomorphism, the reason being that in this case there should exists a left-inverse which is algebraic; this exists indeed in a case like $H^{n-1}(X) \to H^{n-1}(Y)$ (where we take the left inverse $\Lambda_X \phi_*$). But to get it in general, it seems w need moreover the Hodge index relation. (The complete yoga then being that we have the category of motives which is semi-simple!). Without speaking of motives, and staying down on earth, it would be nice to explain in the notes that C(X) together with the index relation $I(X \times X)$ implies that the ring of correspondences classes for X is semi-simple, and how one deduces from this the existence of left and right inverses as looked for above.

This could be given in an extra paragraph (which I did not really touch upon in the talk), containing also the deduction of the Weil conjectures from the conjectures *C* and *A*.

A last and rather trivial remark is the following. Let's introduce variant $A'_{\ell}(X)$ and $A''_{\ell}(X)$ as follows:

 $A'_{\ell}(X)$: if $2i \le n-1$, any element x of $H^{i}(X)$ whose image in $H^{i}(Y)$ is algebraic, is algebraic.

 $A''_{\ell}(X)$: if $2i \ge n-1$, any algebraic element of $H^{i+2}(X)$ is the image of an algebraic element of $H^{i}(Y)$.

Let us consider also the specifications $A'_{\ell}(X)^{\circ}$ and $A''_{\ell}(X)^{\circ}$, where we restrict to the [] dimensions 2i=n-1 if n odd, 2i=n-2 if n even. All these conditions are in the nature of "weak" Lefschetz relations, and they are trivially implied by $A_{\ell}(X)$ resp. $C_{\ell}(X)$ (in the first case, applying ϕ we see that L_XX is algebraic; in the second, we take $y=\Lambda_Y\phi^+(x)$). The remark then is that these pretendently "weak" variants in fact imply the full Lefschetz relations for algebraic cycles, namely:

Proposition. — $C_\ell(X)$ is equivalent to the conjunction $C_\ell(Y) + A_\ell(X \times X)^\circ + A_\ell''(X \times X)^\circ$, hence (by induction) also to the conjunction of the conditions $A_\ell''^\circ$ and $A_\ell''^\circ$ for all of the varieties $X \times X$, $Y \times Y$, $Z \times Z$,... Analogous statement with $X \times Y$, $Y \times Z$ etc instead of $X \times X$, $Y \times Y$ etc.

This comes from the remark that $A_{\ell}(X)^{\circ}$ follows from the conjunction of $A'_{\ell}(X)^{\circ}$ and $A''_{\ell}(X)^{\circ}$, as one sees by decomposing $L^2_X: H^{2m-2}(X) \to H^{2m+2}(X)$ into $H^{2m+2}(X) \xrightarrow{\phi^k} H^{2m+2}(Y) \xrightarrow{\phi_a} H^{2m}(X) \xrightarrow{L_X} H^{2m+2}(X)$ if dim X=2m is even, and $H^{2m+1-1}(X) \to H^{2m+1+1}$ into $H^{2m}(X) \xrightarrow{\phi^*} H^{2m}(Y) \xrightarrow{\phi_*} H^{2m+2}(X)$ if dim X=2m+1 is odd.

Sincerely yours

7.8.74

Lettre à P. Deligne, 7.8.1974

Cher Deligne,

Étant peut-être empêché par mon jambe d'assurer un cours de 1^{er} cycle au 1^{er} trimestre, je vais peut-être à la place faire un petit séminaire d'algèbre, et envisage de le faire sur les fourbis de Mme Sinh, éventuellement transposés dans le contexte des "champs". À ce propos, je tombe sur le truc suivant, qui pour l'instant reste heuristique. Si M, N sont deux faisceaux abéliens sur un topos X, et $\tau_{\leq 2}$ $\operatorname{Hom}(M,N) = E(M,N)$ est le complexe ayant les invariants

$$\begin{cases}
\mathbf{H}^{i} = \mathbf{Ext}^{i}(M, N) & \text{pour } 0 \leq i \leq 2 \\
\mathbf{H}^{i} = 0 & \text{si } i \notin [0, 2],
\end{cases}$$

il doit y avoir un triangle distingué canonique

donc E'(M,N) est un complexe dont les invariants \mathbf{H}^i sont ceux de E(M,N) en degré $i \neq 2$, et qui en degré 2 donne lieu à une suite exacte

$$(*) \quad 0 \to \operatorname{Ext}^{2}(M,N) \to \underbrace{H^{2}(E'(M,N))}^{P(M,N)} \xrightarrow{\sigma} \operatorname{Hom}(M, {}_{2}N) \to 0.$$

Heuristiquement, E'(M,N) est le complexe qui exprime le "2-champ de Picard strict" formé des 1-champs de Picard (pas nécessairement stricts) "épinglés" par M, N sur des objets variables de X, en admettant que ta théorie pour les 1-champs de Picard stricts s'étend aux 2-champs de Picard stricts (ce qui pour moi ne fait guère de doute); de même E(M,N) correspond aux champs de Picard stricts épinglés par M, N. La suite exacte (*) se construit en tous cas canoniquement "à la main", où le terme médian est le faisceau des classes à "équivalence" près des champs de Picard épinglés par M, N, or étant l'invariant qui s'obtient en associant à toute section L d'un champ de Picard la symétrie de $L \otimes L$, interprété comme section de 2N. Je sais prouver (sauf erreur) que tout homomorphisme $M \rightarrow {}_{2}N$ provient d'un champ de Picard convenable (épinglé par M, N) (a priori l'obstruction est dans $\operatorname{Ext}^3(X; M, N)$, mais un argument "universel" prouve qu'elle est nulle). Cela prouve que l'extension (*) est bien proche d'être splittée : toute section du troisième faisceaux, sur un objet quelconque de X, se remonte – en d'autres

termes, l'extension a une section "ensembliste". Bien sûr, il y a mieux en fait : toute section sur un $U \in \text{Ob}X$ "provient" d'un élément de $H^2(U, E'(M, N))$ (hypercohomolo - H^2).

Exemple. Soit A un anneau sur X, soient M, N respectivement les faisceaux K^0 , K^1 associés au champ additif des A-Modules projectifs de type fini (p. ex.). Alors la construction de Mme Sinh nous fournit un champ de Picard épinglé par M, N, d'où une section canonique du terme médian P(M,N) de (*).

NB. Tout ce qui précède a les fonctorialités évidentes en M, N, X, \ldots Question. Le triangle exact (T) et la suite exacte (*) sont-ils connus par les compétences (Quillen, Breen, Illusie...)? Connaissent-ils des variantes "supérieures"? (Un principe "géométrique" pour les obtenir pourrait être via des n-champs de Picard non nécessairement stricts...)

Je profite de l'occasion pour soulever une question sur la "cohomologie relative". Soit $q:X\to Y$ un morphisme de topos. Si F est un faisceau abélien (ou un complexe d'iceux) sur Y, peut-on définir fonctoriellement en F la cohomologie relative $\Gamma(Y \bmod X, F)$ (de la catégorie dérivée de (Ab)(Y) dans celle de (Ab))? L'interprétation "géométrique" en termes d'opérations sur des n-champs de Picard (n "grand") suggère que ça doit exister. Mais je ne vois de construction évidente "à la main" que dans les deux cas extrêmes :

(a) q est "(-1)-acyclique", i.e. pour tout F sur Y, $F \to q_*q^*F$ est injectif (NB C'est le cas de $Y/P \to Y$ si $P \to e_Y$ est un épimorphisme – c'est donc le cas de $B_e \to B_G$ plus haut.)

On prend

$$\Gamma(\operatorname{Coker}(F \to q_*(\underbrace{C(q^*(F))}))[-1]) \ .$$
résolution injective

(b) \forall *F* injectif sur *Y*, $q^*(F)$ est injectif et $F \rightarrow q_*q^*F$ est un épimorphisme (exemple : q inclusion d'un ouvert $U \hookrightarrow e_Y$). On prend

$$\Gamma_Y(\operatorname{Ker}(C(F) \to q_*q^*(C(F))))$$
.
résolution injective

Dans le cas général, la difficulté provient du fait que le cône d'un morphisme de complexes (tel que

$$F \to q_*(q^*(F))$$

n'est pas fonctoriel (dans la catégorie dérivée) par rapport à la flèche dont on veut prendre le cône. Et pourtant, dans le cas particulier actuel, il devrait y avoir un choix fonctoriel. Est-ce évident?

Question pour Illusie : Dans sa théorie des déformations de schémas en groupes plats, il tombe sur des $\mathrm{H}^3(\mathrm{B}_G/X,-)$ resp. des $\mathrm{Ext}^2(X;-,=)$. Peut-on court-circuiter sa théorie via la théorie (supposée écrite) des Gr-champs – resp. via ta théorie des champs de Picard? J'ai [phrase incomplète]

Je te signale que j'ai réfléchi aux Gr-champs sur X. Si G est un Groupe sur X, N un G-Module, les Gr-champs sur X "épinglés par G, N" forment a priori une 2-catégorie et même une 2-catégorie de Picard stricte, grâce à l'opération évidente à la Baer. On trouve que le complexe (de cochaînes) tronqué à 1 échelon à qui lui correspond est le tronqué

$$\tau_{\leq 2}(\Gamma(\mathsf{B}_G \bmod X, N)[1])$$
.

(NB la cohomologie de $\Gamma(B_G \mod X, N)$ commence en degré 1.) Plus géométriquement, un Gr-champ sur X épinglé par (G,N) est essentiellement "la même chose" qu'une 2-gerbe sur B_G , liée par N, et munie d'une trivialisation au dessus de $X \approx B_e = (B_G)/P$ (où P est l'objet de B_G "torseur universel sous G"). Ces 2-gerbes forment en fait une 3-catégorie de Picard a priori, mais il se trouve que dans celle-ci, les 3-flèches sont triviales (i.e. si source = but, ce sont des identités) – cela ne fait qu'exprimer $H^0(B_G/X,N)=0$ (i.e. $H^0(B_G,N)\to H^0(X,N)$ injectif ...). Donc la 3-catégorie peut être regardée comme une 2-catégorie – et "c'est" celle des Gr-champs sur X épinglés par G, N. Si on veut localiser sur X, et décrire le 2-champs de Picard sur X des champs de Picard (sur des objets variables de X) épinglés par G, N, on trouve qu'il est exprimé par le complexe

résolution injective
$$\tau_{\leq 2}(p_{G*}\operatorname{Coker}(N \to q_{G*}\widetilde{C(q_G^*N)})),$$

où $p_G: B_G \to X$ et $q_G: B_e \approx X \simeq (B_G)_P \to B_G$. Toutes ces descriptions étant compatibles avec des variations de G, N, X, cela donne en principe une description de la 2-catégorie des Gr-champs, avec X, G, N variables . . .