Car Price Prediction Multiple Linear Regression

Juan Felipe Latorre Gil <u>iflatorreg@unal.edu.co</u> https://github.com/jflatorreg/Car-Price-Prediction-Multiple-Linear -Regression

- Null Data

- 23 variables
- 18 categorical variables
- 5 numeric variable

- vin and county are not statistically relevant
- size is the least represented variable

Numeric Data

- Price - Response Variable

Range less than the 95% percentile and greater than 50.

- Odometer

- Range less than the 95% percentile.

- Year

Range greater than the 5% percentile.

- Latitude and Longitude

Categorical Data

- Cylinders

- Condition

- Fuel

- Transmission

- Drive

- Type

- Size

- Region has 356 different non-normalized values.
- Manufacturer has 37 different non-normalized values.
- Model has 37 different non-normalized values.
- Title Status has non-normalized values.
- Paint Color 12 different non-normalized values.

Model Variables:

- price
- odometer, year,
- long, lat,
- condition, transmission,
- drive, type,
- fuel, cylinders, size

11 explanatory variables

Correlation

- Strong correlation between year and price, between odometer and price, also enrew year and odometer
- correlation between independent variables

- Correlation

Results

Results

Linear regression

OLS Regression Results					
Model:	OLS	Adj. R-squared:	0.626		
Method:	Least Squares	F-statistic:	473.3		
Date:	Tue, 09 Aug 2022	Prob (F-statistic):	0.00		
Time:	10:38:06	Log-Likelihood:	-95251.		
No. Observations:	9612	AIC:	1.906e+05		
Df Residuals:	9577	BIC:	1.908e+05		
Df Model:	34				
Covariance Type:	nonrobust				

Feature Selection

OLS Regression Results					
D		D	0.636		
Dep. Variable:	У	R-squared:	0.626		
Model:	OLS	Adj. R-squared:	0.625		
Method:	Least Squares	F-statistic:	668.1		
Date:	Tue, 09 Aug 2022	Prob (F-statistic):	0.00		
Time:	13:22:15	Log-Likelihood:	-95265.		
No. Observations:	9612	AIC:	1.906e+05		
Df Residuals:	9587	BIC:	1.908e+05		
Df Model:	24				
Covariance Type:	nonrobust				

- Bonferroni correction

B = 0.0014

Model Building Performance

Business Presentation

Losses per car: \$-1,711.92 Profits per car: \$1,893.85 P(Buying|PriceReal): 65% Car Value Mean: \$14,555.05

12%