

SIMPLE-fying Middlebox Policy Enforcement Using SDN

Zafar Ayyub Qazi

Cheng-Chun Tu Luis Chiang Vyas Sekar Rui Miao Minlan Yu

Middleboxes management is hard!

Survey across 57 network operators (J. Sherry et al. SIGCOMM 2012)

Critical for security, performance, compliance But expensive, complex and difficult to manage

Can SDN simplify middlebox management?

Scope: Enforce middlebox-specific steering policies

Necessity + Opportunity:

Incorporate functions markets views as important

What makes this problem challenging?

Middleboxes introduce new dimensions beyond L2/L3 tasks.

Achieve this with *unmodified* middleboxes and *existing* SDN APIs

Our Work: SIMPLE

Policy enforcement layer for middlebox-specific "traffic steering"

Outline

- Motivation
- Challenges
- SIMPLE Design
- Evaluation
- Conclusions

Challenge: Policy Composition

"Loops"
Traditional flow rules may not suffice!

Challenge: Resource Constraints

Can we set up "feasible" forwarding rules?

Challenge: Dynamic Modifications

Are forwarding rules at S2 correct?

New dimensions beyond Layer 2-3 tasks

- 1) Policy Composition \rightarrow Potential loops
- 2) Resource Constraints → Switch + Middlebox

3) Dynamic Modifications \rightarrow Correctness?

Can we address these with *unmodified* middleboxes and *existing* SDN APIs?

Outline

- Motivation + Context for the Work
- Challenges
- SIMPLE Design
- Evaluation
- Conclusion

SIMPLE System Overview

Composition → Tag Processing State

Insight: Distinguish different instances of the same packet

SIMPLE System Overview

Resource Constraints -> Joint Optimization

Theoretically hard!
Not obvious if some configuration is feasible!

Offline + Online Decomposition

Offline Stage: ILP based pruning

SIMPLE System Overview

Modifications \rightarrow Infer flow correlations

SIMPLE Implementation

Outline

- Motivation + Context for the Work
- Challenges
- SIMPLE Design
- Evaluation
- Conclusion

Evaluation and Methodology

- What benefits SIMPLE offers? load balancing?
- How scalable is the SIMPLE optimizer?
- How close is the SIMPLE optimizer to the optimal?
- How accurate is the dynamic inference?
- Methodology
 - Small-scale real test bed experiments (Emulab)
 - Evaluation over Mininet (with up to 60 nodes)
 - Large-scale trace driven simulations (for convergence times)

Benefits: Load balancing

4-7X better load balancing and near optimal

Overhead: Reconfiguration Time

Around 125 ms to reconfigure, most time spent in pushing rules

Other Key Results

- LP solving takes 1s for a 252 node topology
 - 4-5 orders of magnitude faster than strawman

95 % accuracy in inferring flow correlations

Scalability of pruning: 1800s → 110s

Conclusions

- Middleboxes: Necessity and opportunity for SDN
- Goal: Simplify middlebox-specific policy enforcement
- Challenges: Composition, resource constraints, modifications
- SIMPLE: policy enforcement layer
 - Does not modify middleboxes
 - No changes to SDN APIs
 - No visibility required into the internal of middleboxes
- Scalable and offers 4-7X improvement in load balancing