ОПРЕДЕЛЕНИЕ C_P/C_V МЕТОДОМ ИЗОБАРИЧЕСКОГО РАСШИРЕНИЯ

Цель работы: проверить применимость модели идеального газа

Задачи работы: определение отношения C_P/C_V для воздуха или углекислого газа по измерению давления в стеклянном сосуде

В работе используются: стеклянный сосуд; U-образный жидкостный манометр; резиновая груша; газгольдер с углекислым газом.

Экспериментальная установка

Экспериментальная установка состоит из стеклянного сосуда A, объёмом около 20 л, снабженного краном K_1 , и U-образного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на рисунке 1

Рис. 1: Схема экспериментальной установки

С помощью резиновой груши, соединённой с краном K_1 , в сосуде создаётся заданное избыточное давление воздуха P_1 . При этом газ оказывается перегретым

Мысленно выделим в сосуде некоторый объём воздуха ΔV . Будем следить за изменением его состояния. Вследствие теплообмена со стенками сосуда через некоторое время газ остынет до комнатной температуры T_0 в процессе изохорного охлаждения. При этом давление воздуха понизится до $P_0 + \Delta P_1$, где

$$\Delta P_1 = \rho g \Delta h_1 \tag{1}$$

Откроем кран K_2 . За время Δt порядка 0,5 секунд произойдёт адиабатическое расширение газа (2 \to 3), и его температура окажется ниже комнатной. Далее газ будет изобарически нагреваться (процесс 3 \to 4). Зададим время τ в течение которого кран K_2 остаётся открытым, таким, чтобы можно было пренебречь временем Δt адиабатического расширения воздуха. После закрытия крана K_2 газ станет изохорически нагреваться до комнатной температуры (процесс 4 \to 5), причём давление внутри сосуда возрастёт до $P_0 + \Delta P_2$, где

$$\Delta P_2 = \rho g \Delta h_2 \tag{2}$$

Наибольший интерес представляет исследование зависимости отношения перепадов давления $\frac{\Delta P_1}{\Delta P_2}$ от времени au

С хорошей точностью мы можем считать воздух в газгольдере идеальным газом. Рассмотрим изобарическое расширение воздуха. Для этого запишем уравнение теплового баланса для изменяющейся со временем массы газа $m = \frac{P_0 V_0}{RT} \mu$:

$$C_P m dT = -\alpha (T - T_0) dt$$

где C_P — удельная теплоёмкость воздуха при постоянном давлении, α — положительный постоянный коэффициент, характеризующий теплообмен, V_0 — объём газгольдера

$$C_P rac{P_0 V_0}{RT} \mu dT = -lpha (T-T_0) dt$$
 или $rac{dT}{T(T-T_0)} = -rac{lpha dt}{C_P rac{P_0 V_0}{R} \mu}$

Заметим, что

$$\frac{1}{T(T-T_0)} = -\frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T-T_0} \right)$$

Тогда

$$\frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T - T_0} \right) dT = \frac{\alpha dt}{C_P m_0 T_0}$$

После сокращения на T_0 выполним интегрирование:

$$\int_{T_{1}}^{T_{2}} \left(\frac{1}{T} - \frac{1}{T - T_{0}} \right) dT = \frac{\alpha}{C_{P} m_{0}} \int_{0}^{\tau} dt,$$

откуда

$$\ln\left(\frac{T_2}{T_1}\right) - \ln\left(\frac{T_2 - T_0}{T_1 - T_0}\right) = \frac{\alpha}{C_P m_0} \tau \text{ или } \ln\left(\frac{T_2}{T_1} \frac{\Delta T_1}{\Delta T_2}\right) = \frac{\alpha}{C_P m_0} \tau$$

Наконец,

$$\frac{\Delta T_1}{T_1} = \frac{\Delta T_2}{T_2} \exp\left(\frac{\alpha}{C_P m_0} \tau\right) \tag{3}$$

Для адиабатического расширения (процесс $2\to 3$) справедливо соотношение $T^\gamma=const\cdot P^{\gamma-1}$ (здесь $\gamma=\frac{C_P}{C_W}$). После взятия логарифмических производных получим:

$$\gamma rac{dT}{T} = (\gamma - 1) rac{dP}{P}$$
 или $rac{dT}{T} = rac{\gamma - 1}{\gamma} rac{dP}{P}$

Переходя к конечным приращениям, найдём:

$$\frac{\Delta T_1}{T_1} = \frac{\gamma - 1}{\gamma} \frac{\Delta P_1}{P_0} \tag{4}$$

При изохорическом нагреве газа выполняется соотношение $\frac{P}{T}=const.$ Возьмём от этого выражения логарифмическую производную: $\frac{dP}{P}=\frac{dT}{T}.$ В конечных приращениях

$$\frac{\Delta T_2}{T_2} = \frac{\Delta P_2}{P_0} \tag{5}$$

После подстановки (4) и (5) в (3) получим

$$\frac{\gamma - 1}{\gamma} \frac{\Delta P_1}{P_0} = \frac{\Delta P_2}{P_0} \exp\left(\frac{\alpha}{C_P m_0} \tau\right)$$

Наконец, подставив в это уравнение выражения (1) и (2) получим

$$rac{\gamma-1}{\gamma}\Delta h_1 = \Delta h_2 \exp\left(rac{lpha}{C_P m_0} au
ight)$$
 или $rac{\Delta h_1}{\Delta h_2} = rac{\gamma}{\gamma-1} \exp\left(rac{lpha}{C_P m_0} au
ight)$

Следовательно,

$$\ln\left(\frac{\Delta h_1}{\Delta h_2}\right) = \ln\left(\frac{\gamma}{\gamma - 1}\right) + \frac{\alpha}{C_P m_0} \tau$$

Из графика зависимости $\ln\left(\frac{\Delta h_1}{\Delta h_2}\right)$ от au определим γ