The topological space underlying a scheme X is denoted by X_{top} .

Exercise 1. Let $f: X \to S$ and $g: Y \to S$ be two scheme morphisms. Consider the map

$$\varphi \colon (X \times_S Y)_{top} \to X_{top} \times Y_{top}$$

induced by the two projection morphisms $X \times_S Y \to X$ and $X \times_S Y \to Y$.

(i) Let $x \in X_{top}$ and $y \in Y_{top}$ be such that $f(x) = g(y) = s \in S_{top}$. Show that there is a homeomorphism

$$\varphi^{-1}\{(x,y)\} \simeq (\operatorname{Spec}(\kappa(x) \otimes_{\kappa(s)} \kappa(y)))_{top}.$$

(ii) What is the image of φ ?

Exercise 2. Let S be an affine scheme and $X \to S$ a separated morphism (i.e. the diagonal morphism $(\mathrm{id}_X,\mathrm{id}_X)\colon X\to X\times_S X$ is a closed immersion). Show that the intersection of two affine open subschemes of X is affine.

Exercise 3. Let X be a scheme and \mathcal{Z} a closed subset of X_{top} . The purpose of this exercise it to prove the existence of a reduced scheme Z and a closed immersion $f: Z \to X$ inducing a homeomorphism $(Z)_{top} \to \mathcal{Z}$.

- (i) Show that Z and f exist when X is affine.
- (ii) Assume that Z and f exist. Show that for every morphism $g: T \to X$ with T reduced and $g(T_{top}) \subset \mathcal{Z}$, there exists a unique morphism $h: T \to Z$ such that $g = f \circ h$. [Hint: Begin with the case T affine.]
- (iii) For n=1,2 let Z_n be a reduced scheme and $f_n: Z_n \to X$ a closed immersion inducing a homeomorphism $(Z_n)_{top} \to \mathcal{Z}$. Show that there exists a unique isomorphism $\varphi: Z_1 \to Z_2$ such that $f_1 = f_2 \circ \varphi$.
- (iv) Conclude.

Exercise 4. Let $A \to B$ be a ring morphism making B a free A-module of rank n. Show that the morphism Spec $B \to \operatorname{Spec} A$ is open.