<u>CLAIMS</u>

We claim:

- 1. A solid state reaction method for the production of tetrabasic lead sulfate by reacting 4PbO and PbSO₄, comprising the steps of:
 - (a) mixing the stoichiometric mixture of 4PbO and PbSO₄,
- (b) heating the stoichiometric mixture of 4PbO and PbSO₄ at a temperature between 500 and 700 $^{\circ}$ C during 3 to 8 hours.
 - (c) deagglomerating and sieving the resulting tetrabasic lead sulfate
- 2. A solid state reaction method for the production of tetrabasic lead sulfate by reacting 3PbO·PbSO₄·H₂O + PbO, comprising the steps of
 - (a) mixing the stoichiometric mixture of $3PbO \cdot PbSO_4 \cdot H_2O + PbO$,
- (b) heating the stoichiometric mixture of $3PbO \cdot PbSO_4 \cdot H_2O + PbO$ at a temperature between 500 and 700°C during 3 to 8 hours.
 - (c) deagglomerating and sieving the resulting tetrabasic lead sulfate
- 3. A solid state reaction method according to claim 2, wherein said mixture of 3PbO·PbSO₄·H₂O + PbO is obtained from active materials coming from the pastes used for the preparation of the lead-acid battery plates, or coming from recycled lead-acid battery plates.

- 4. A solid state reaction method for the production of tetrabasic lead sulfate by reacting 5PbO + H₂SO₄, comprising the steps of:
 - (a) mixing the stoichiometric mixture of 5PbO + H₂SO₄,
- (b) heating the stoichiometric mixture of $5PbO + H_2SO_4$ at a temperature between 500 and $700^{\circ}C$ during 3 to 8 hours.
 - (c) deagglomerating and sieving the resulting tetrabasic lead sulfate
- 5. A solid state reaction method for the production of tetrabasic lead sulfate by reacting 4PbO + PbCO₃ + H₂SO₄, comprising the steps of:
 - (a) mixing the stoichiometric mixture of $4PbO + PbCO_3 + H_2SO_4$,
- (b) heating the stoichiometric mixture of $4PbO + PbCO_3 + H_2SO_4$ at a temperature between 500 and 700°C during 3 to 8 hours.
 - (c) deagglomerating and sieving the resulting tetrabasic lead sulfate
- 6. A solid state reaction method for the production of tetrabasic lead sulfate by reacting 5PbO + (NH₄)₂SO₄, comprising the steps of:
 - (a) mixing the stoichiometric mixture of 5PbO + $(NH_4)_2SO_4$,
- (b) heating the stoichiometric mixture of 5PbO + $(NH_4)_2SO_4$ at a temperature between 500 and 700°C during 3 to 8 hours.
 - (c) deagglomerating and sieving the resulting tetrabasic lead sulfate

- 7. A lead-acid battery paste made with the tetrabasic lead sulfate obtained according to the method of claim 1, the production of lead-acid battery plates made with said paste, and the production of lead-acid batteries subsequently made with them.
- 8. A lead-acid battery paste made with the tetrabasic lead sulfate obtained according to the method of claim 2, the production of lead-acid battery plates made with said paste, and the production of lead-acid batteries subsequently made with them.
- 9. A lead-acid battery paste made with the tetrabasic lead sulfate obtained according to the method of claim 3, the production of lead-acid battery plates made with said paste, and the production of lead-acid batteries subsequently made with them.
- 10. A lead-acid battery paste made with the tetrabasic lead sulfate obtained according to the method of claim 4, the production of lead-acid battery plates made with said paste, and the production of lead-acid batteries subsequently made with them.
- 11. A lead-acid battery paste made with the tetrabasic lead sulfate obtained according to the method of claim 5, the production of lead-acid battery plates made with said paste, and the production of lead-acid batteries subsequently made with them.
- 12. A lead-acid battery paste made with the tetrabasic lead sulfate obtained according to the method of claim 6, the production of lead-acid battery plates made with said paste, and the production of lead-acid batteries subsequently made with them.