Statistics 2

Multiple regression

Casper Albers & Jorge Tendeiro Lecture 4, 2019 – 2020

Overview

Multiple regression

Definition

Example

Plots

Model

Sum-of-squares partitioning

R, R^2 , adjusted R^2

Inference

Literature for this lecture

Read:

Agresti, Sections 11.1 - 11.3

Multiple regression

- ► Simple Linear Regression:

 Predict values of a *y*-variable through a linear relation with one *x*-variable.
- Multiple Linear Regression:
 Predict values of a y-variable through linear relations with multiple x-variables

So, think of multiple linear regression as a natural extension of simple linear regression.

Multiple regression

Population regression equation:

$$(E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)$$

Or in terms of individual scores y:

$$(y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi} + \varepsilon_i)$$

- One dependent variable y.
- \triangleright *p* independent variables $x_1, \ldots x_p$.
- **Residual** (error, deviation, noise, ...) ε_i :
 - $\triangleright \mathcal{N}(0,\sigma)$, with σ constant.
 - Independent of all x-variables.
- Partial regression coefficients:
 - α: Intercept.
 - \triangleright β_1, \ldots, β_p : Slopes.
 - $ightharpoonup \sigma$: Residual SD.

Multiple regression

Conceptual differences between simple and multiple regression:

► (There are none!)

Example – Overclaiming

Atir, Rosenzweig, and Dunning (2015) studied whether experts overrate the extent of their expertise 1 .

- Dependent variable
 - y: OVCLAIM, overclaiming based on defining 15 terms (of which 3 do not exist).
- lndependent variables (p = 2)
 - \triangleright x_1 : SPKNOW, based on a questionnaire assessing self-perceived knowledge.
 - x₂: ACCUR, accuracy operationalized as the ability to distinguish between the 12 real terms and the 3 fake terms.

Sample size = 202.

¹ Atir, S., Rosenzweig, E., & Dunning, D. (2015). When knowledge knows no bounds: Self-perceived expertise predicts claims of impossible knowledge. *Psychological Science*, 26, 1295-1303. doi: 10.1177/0956797615588195

Example – Overclaiming (correlations)

		OVCLAIM	SPKNOW	ACCUR
OVCLAIM	Pearson's r	-		
	<i>p</i> -value	_		
SPKNOW	Pearson's r	0.481	_	
	<i>p</i> -value	< .001	_	
ACCUR	Pearson's r	-0.672	0.033	_
	<i>p</i> -value	< .001	0.645	-

We expect that:

- OVCLAIM is linearly related to either predictor.
- ▶ The predictors SPKNOW and ACCUR are not strongly linearly related.

Interpretation of 3D plots is very difficult.

Observe that:

- ▶ In simple linear regression: Regression line plotted in 2D.
- ▶ In multiple linear regression: Regression (hyper) plane plotted in (p+1)D.

Example – Overclaiming (scatterplot matrix)

Better option: Scatterplot matrix.

Example - Overclaiming (partial plot)

One other plot alternative: Partial plots.

Idea:

Look at the relation between y and a predictor x_i , by removing (i.e., partialing out) the effects of all remaining predictors from both y and x_i .

For example, to look at the relation between y = OVCLAIM and $x_1 = \text{SPKNOW}$ (and denote $x_2 = \text{ACCUR}$):

- 1. Partial x₂ from y:
 - $\hat{y} = a + bx_2$
 - Save the residuals: $y^{(res)} = y \hat{y}$.
- 2. Similarly, partial x_2 from x_1 :
 - $\hat{x_1} = a + bx_2$
 - Save the residuals: $x_1^{(res)} = x_1 \widehat{x_1}$.
- 3. Plot $y^{(res)}$ on vertical axis, $x_1^{(res)}$ on horizontal axis.

Population

Population regression equation

link individual score and mean

Statistical model

 \Rightarrow population parameters

Sample

Estimation in sample (OLS)

Estimated equation

$$E(y) = \alpha + \beta_1 x_1 + \ldots + \beta_p x_p$$

$$y_i = \alpha + \beta_1 x_{1i} + \ldots + \beta_p x_{pi} + \varepsilon_i$$

$$\alpha, \beta_1, \ldots, \beta_p$$

$$\mathcal{N}(0, \sigma)$$

$$[a,b_1,\ldots,b_p \text{ and } s]$$

$$\widehat{y_i} = a + b_1 x_{1i} + \ldots + b_p x_{pi}$$

Multiple Regression Model

Multiple Regression Model

- Statistical model: $y_i = \alpha + \beta_1 x_{1i} + \ldots + \beta_p x_{pi} + e_i$.
 - $ightharpoonup \alpha$: Intercept; expected value for y if all x are 0.
 - β_j : Slope for x_j (j = 1, ..., p); change in y if x_j increases one unit whilst other predictors stay the same.
- Estimation using OLS: Minimize the sum of squared errors (SSE).

$$\min SSE = \min \sum_{i=1}^{n} e_i^2 = \min \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2.$$

Provides

$$\widehat{y}_i = a + b_1 x_{1i} + \ldots + b_p x_{pi}.$$

Estimate σ from the residuals: $s = \sqrt{\frac{\text{SSE}}{n-p-1}}$. In JASP, s is also known as the root mean square error (RMSE).

Statistics 2 (2019-20) Lecture 4 14/29

Example – Overclaiming (parameter estimates)

Coeffi	cients

Model		Unstandardized	Standard Error	Standardized	t	p
1	(Intercept)	0.089	0.037		2.420	0.016
	SPKNOW	0.100	0.008	0.504	13.072	< .001
	ACCUR	-0.754	0.042	-0.688	-17.869	< .001

$$\widehat{\mathsf{OVCLAIM}} = 0.089 + 0.100\,\mathsf{SPKNOW} - 0.754\,\mathsf{ACCUR}$$

Interpret regression coefficients:

- a = 0.089: The expected OVCLAIM score is equal to 0.089 when both SPKNOW and ACCUR are equal to 0.
- ▶ $b_1 = 0.100$: OVCLAIM increases by 0.100 units when SPKNOW increases by 1 unit, controlling for ACCUR (i.e., keeping ACCUR fixed).
- $b_2 = -0.754$: OVCLAIM decreases by 0.754 units when ACCUR increases by 1 unit, controlling for SPKNOW (i.e., keeping SPKNOW fixed).

Example – Overclaiming (root mean square error)

Model Summary

Model	R	R ²	Adjusted R ²	RMSE
1	0.840	0.705	0.702	0.127

Therefore
$$s=\sqrt{\frac{\mathrm{SSE}}{n-p-1}}=0.127.$$

Sum-of-squares partitioning (ANOVA)

How much of the variance in y can be explained by the model?

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}{\sum_{i=1}^{n} (\hat{y}_i - \bar{y}_i)^2} + \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$(TSS) = (RSS) + (SSE)$$

- ► TSS = Total sum of squares
- ► RSS = Regression sum of squares
- ► SSE = Sum of squares of residuals (errors)

Source	SS	df	MS	F	р
Regression	$RSS = \sum (\widehat{y_i} - \overline{y})^2$	р	$MSR = \frac{RSS}{p}$	MSR MSE	(Table)
Residual	$SSE = \sum (y_i - \widehat{y})^2$	n-p-1	$MSE = \frac{SSE}{n-p-1}$		
Total	$TSS = \sum (y_i - \bar{y})^2$	n – 1			

- df = degrees of freedom
- ► MSR = Mean squares of regression
- ► MSE = Mean squares of errors

We will learn more about sum-of-squares partitioning when ANOVA is introduced later in this course.

For the 'overclaiming' dataset, in JASP:

ANOVA

Model		Sum of Squares	df	Mean Square	F	р
1	Regression	7.641	2	3.821	237.7	< .001
	Residual	3.198	199	0.016		
	Total	10.840	201			

Sample multiple correlation:

$$R = cor(y, \widehat{y})$$

- Assess linear association between y and the set of predictors collectively (via $\hat{y} = a + b_1x_1 + \cdots + b_px_p$).
- ▶ R is always between 0 (when all $b_j = 0$, j = 1, ..., p) and 1 (perfect linear relationship).

'Overclaiming' dataset:

OVCLAIM	SPKNOW	ACCUR	OVCLAIM					
0.4444	5.5	0.2500	0.4491					
0.5556	4.5	0.1944	0.3912			Model Su	mmary	
0.1667	3.5	0.3472	0.1763	Model	R	R^2	Adjusted R ²	RMSE
				1	0.840	0.705	0.702	0.127
0.1667	2.5	0.1250	0.2441					
0.2778	4.0	0.4306	0.1633					

(Recall: $\widehat{OVCLAIM} = 0.089 + 0.100 \text{ SPKNOW} - 0.754 \text{ ACCUR.}$)

Coefficient of multiple determination:

$$R^2 = \frac{RSS}{TSS} = \frac{TSS - SSE}{TSS}$$

- $ightharpoonup R^2 =$ square of the multiple correlation R.
- Assess proportion of total variation in y that is explained by all preditors collectively (via $\hat{y} = a + b_1 x_1 + \cdots + b_n x_n$).
- ▶ R^2 is always between 0 (when all $b_j = 0$, j = 1, ..., p) and 1 (perfect linear relationship).

'Overclaiming' dataset:

ANOVA							
	SS	df	Mean Square	F	р		
Regression	7.641	2	3.821	237.7	< .001		
Residual	3.198	199	0.016				
Total	10.840	201					

Model Summary					
Model	R	R^2	Adjusted R ²	RMSE	
1	0.840	0.705	0.702	0.127	

R^2 —	7.641	
Λ –	10.840	
	10.840 - 3.19	98
=	10.840	
=	.705.	

Adjusted R^2

 R^2 has two drawbacks:

1. R^2 cannot decrease:

If p increases then R^2 will also increase, even if the new variables are unimportant.

2. R^2 overestimates the population value:

Because the computation of R^2 is optimal for the current sample (but not necessarily for other samples).

Therefore, adjusted R^2 is used in multiple regression.

Most commonly used: Wherry's R^2 .

$$\left(R_{adj}^2 = R^2 - \left(\frac{p}{n-p-1}\right)(1-R^2)\right)$$

'Overclaiming' (adjusted R^2)

Model Summary

Model	R	R ²	Adjusted R ²	RMSE
1	0.840	0.705	0.702	0.127

$$n = 202$$

$$R_{adj}^{2} = R^{2} - \left(\frac{p}{n - p - 1}\right) (1 - R^{2})$$

$$= .705 - \frac{2}{202 - 2 - 1} (1 - .705)$$

$$= .702$$

Inference in multiple regression

There are two main types of inferential questions that can be asked in multiple regression:

1. Globally:

Are the predictors, jointly, associated with the response variable?

Hypotheses of interest:

$$igg(\mathcal{H}_0: R^2=0 \quad ext{versus} \quad \mathcal{H}_{ extsf{a}}: R^2>0igg)$$

or, equivalently,

$$\left(\mathcal{H}_0:eta_1=\cdots=eta_p=0 \quad ext{versus} \quad \mathcal{H}_a: ext{At least one } eta_j
eq 0
ight)$$

Test statistic:

$$F = \frac{MSR}{MSE} = \frac{R^2/p}{(1-R^2)/(n-p-1)} \underset{\mathcal{H}_0}{\sim} F(p, n-p-1)$$

'Overclaiming' (global test)

ANOVA

	SS	df	Mean Square	F	р
Regression	7.641	2	3.821	237.7	< .001
Residual	3.198	199	0.016		
Total	10.840	201			

Model Summary

model Summary						
Model	R	R^2	Adjusted R ²	RMSE		
1	0.840	0.705	0.702	0.127		

$$ightharpoonup df_1 = p = 2$$

$$df_2 = n - p - 1 = 202 - 2 - 1 = 199$$

.

$$F = \frac{R^2/p}{(1 - R^2)/(n - p - 1)}$$
$$= \frac{.705/2}{(1 - .705)/199}$$
$$= 237.7.$$

▶ $P(F \ge 237.7 | F \sim F_{2,199}) < .001$: Reject \mathcal{H}_0 .

Inference in multiple regression

There are two main types of inferential questions that can be asked in multiple regression:

2. Locally:

Which predictors are associated with the response variable?

Observe that rejecting the null hypothesis \mathcal{H}_0 : $R^2=0$ does not imply that all predictors have a partial effect on y.

Hypotheses of interest:

$$\mathcal{H}_0:eta_j=0$$
 versus $\mathcal{H}_a:eta_j
eq 0$,

one test for each predictor j (j = 1, ..., p).

Test statistic

$$\left[t=rac{b_j}{SE_j} \mathop{\sim}_{\mathcal{H}_0} t(\mathit{n}-\mathit{p}-1)
ight]$$

Confidence interval

$$b_j \pm t^* SE_j$$

 $t^* = \text{critical value from } t(n-p-1)$

'Overclaiming' (local tests)

Coefficients

						95% CI	
	Unstandardized	Standard Error	Standardized	t	р	Lower	Upper
(Intercept)	0.089	0.037		2.420	0.016	0.016	0.161
SPKNOW	0.100	0.008	0.504	13.072	< .001	0.085	0.115
ACCUR	-0.754	0.042	-0.688	-17.869	< .001	-0.837	-0.671

For example, test for partial effect ACCUR ($\alpha = .05$):

$$t = \frac{-0.754}{0.042} = -17.869$$

$$\rightarrow$$
 df = $n - p - 1 = 202 - 2 - 1 = 199$

$$t^* = t_{.975,199} = 1.972$$

$$|t| > t^* \longrightarrow \text{Reject } \mathcal{H}_0 : b_{\mathsf{ACCUR}} = 0$$

$$p\text{-value} = P(|t| \ge 17.869 | t \sim t(199)) < .001$$

Coe	ttı	CIE	nts

						95% CI	
	Unstandardized	Standard Error	Standardized	t	р	Lower	Upper
(Intercept)	0.089	0.037		2.420	0.016	0.016	0.161
SPKNOW	0.100	0.008	0.504	13.072	< .001	0.085	0.115
ACCUR	-0.754	0.042	-0.688	-17.869	< .001	-0.837	-0.671

For example, 95% CI test for partial effect ACCUR:

$$df = n - p - 1 = 202 - 2 - 1 = 199$$

$$t^* = t_{.975,199} = 1.972$$

►
$$B_{\text{ACCUR}} \pm t^* \times SE_{\text{ACCUR}} = -0.754 \pm 1.972 \times 0.042 = [-0.837, -0.671]$$

Next week: Multiple regression (interaction effects)

Agresti, Section 11.4 - 11.5