28

№5.ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ НАПРЯЖЁННОСТИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ

1. ЦЕЛЬ РАБОТЫ

Ознакомление с принципом действия тангенс - гальванометра и методом измерения одного из важнейших параметров Земли - сё магнитного поля.

2.ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ

тангенс-гальванометр. амперметр, реостат, переключатель, источник постоянного тока, соединительные провода.

3.ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Земной шар представляет собой огромный постоянный магнит. Магнитное поле Земли обнаруживается с помощью магнитной стрелки, которая может свободно вращаться вокруг своего центра тяжести. Такая стрелка располагается по направлению касательной к силовой линии магнитного поля в данном месте земной поверхности.

Изучение магнитного поля земли с помощью магнитной стрелки показывает, что силовые линии поля имеют такой вид, как схематически показано на рисунке 1.

Рис.1

Магнитные полюса Земли не совпадают с географическими полюсами, причём северный магнитный полюс находится недалеко от южного географического полюса и наоборот. Плоскость, проходящая через магнитные полюса Земли и данную точку земной поверхности, называется плоскостью магнитного меридиана. В этой плоскости лежит вектор напряжённости магнитного поля.

Если подвесить магнитную стрелку S N на нити L так, чтобы точка подвеса совпадала с центром тяжести стрелки и при этом не мешала вращению стрелки, то магнитная стрелка установится в плоскости магнитного меридиана по направлению вектора напряженности магнитного поля.

На рисунке 2 показано, как магнитная стрелка устанавливается в северном полушарии.

Рис.2

Из рисунков видно, что географический меридиан не лежит в плоскости магнитного меридиана, а составляет с этой плоскостью угол ϕ , который называют магнитным склонением. Магнитное склонение для каждой точки земной поверхности указывается на топографических картах. Зная магнитное склонение, можно ввести

30

поправку в показания компаса и найти точное направление географического меридиана.

Вектор напряжённости магнитного поля \vec{H} составляет в каждой точке земной поверхности угол θ с горизонтом. Например, в северном полушарии северный конец магнитной стрелки всегда наклонен к земле. Угол θ называют углом наклона. Этот угол равен нулю на экваторе и возрастает до 90° при перемещении к магнитным полюсам.

Вектор напряжённости магнитного поля Земли \bar{H}_0 можно разложить на две составляющие: горизонтальную \bar{H}_0 и вертикальную \bar{H}_z

Горизонтальная составляющая магнитного поля Земли \vec{H}_0 магнитное склонение ϕ и наклонение θ называют элементами земного магнетизма. Зная все элементы земного магнетизма, можно определить величину и направление вектора напряжённости магнитного поля в данной точке земной поверхности.

Элементы земного магнетизма плавно изменяются при переходе от одной точки земной поверхности к другой. Если же наблюдаются нарушения в этом плавном изменении, то говорят, что в данной местности наблюдается магнитная аномалия. Аномалии связаны с большими залежами магнитных руд, например, Курская магнитная аномалия.

Напряжённость магнитного поля Земли сравнительно невелика, однако, наличие земного магнетизма проявляется существенным образом в целом ряде географических и других явлений. К таким явлениям относятся полярные сияния и захват заряженных частиц из космического пространства в своеобразные ловушки, которые называют радиационными полями земли. Некоторые биофизические эксперименты позволяют предполагать, что пространственная ориентация птиц при дальних сезонных перелётах связана с их способностью ощущать направление магнитных силовых линий.

4. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

4.1ОПИСАНИЕ ПРИБОРА И МЕТОДА ИЗМЕРЕНИЯ

В настоящей работе описан один из способов измерения горизонтальной составляющей магнитного поля Земли. Он основан на взаимодействии магнитных полей с магнитной стрелкой, которая может свободно вращаться только вокруг вертикальной оси. Поэтому такая стрелка будет устанавливаться в плоскости магнитного меридиана под действием только горизонтальной составляющей магнитного поля Земли.

На рисунке 3 схематически вектором \bar{H}_0 обозначена горизонтальная составляющая магнитного поля Земли. В направлении этого вектора в данном месте Земли и устанавливается магнитная стрелка. Для определения величины \bar{H}_0 в месте, где находится магнитная стрелка, необходимо создать искусственное дополнительное поле, \bar{H} перпендикулярное плоскости магнитного \bar{H}_0 меридиана, напряжённость которого должна быть известна. Векторы \bar{H}_0 и \bar{H} при сложении дадут результирующую напряжённость \bar{H}_p , по направлению которой и установится магнитная стрелка. Для краткости примем в дальнейшем $H = |\bar{H}|; H_0 = |\bar{H}_0|$.

Из рисунка 3 следует, что угол α , на который отклонится стрелка от плоскости магнитного меридиана, связан с напряжённостью полей H_0 и H следующем соотношением:

$$\frac{H}{H_0} = tg\alpha$$

Так как напряжённость поля Н известна, то из этого соотношения можно найти величину горизонтальной составляющей магнитного поля Земли:

$$H_0 = \frac{H}{tg\alpha}(1)$$

Поле \bar{H} создаётся с помощью катушки, витки которой расположены в плоскости магнитного меридиана, а магнитная стрелка помещается в центре такой катушки. Применение закона Био-Савара-Лапласа показывает, что если по катушке, состоящей из N витков провода, проходит ток I, то в центре, перпендикулярно виткам катушки возникает магнитное поле, напряжённость которого:

$$H=\frac{NI}{2r},(2)$$

где r — радиус витков катушки.

Подставив в формулу (1) выражение для H, получим:

$$H_0 = \frac{NI}{2rtg\alpha}(3)$$

Формула (3) справедлива только в том случае, если катушка с током создаёт однородное магнитное поле в том месте, где расположена магнитная стрелка. Это условие приближённо выполняется, если радиус катушек велик по сравнению с размерами стрелки.

Для определения H_0 на основе изложенных соображений применяют прибор, который называется тангенс - гальванометром.

В этом приборе на стойке жёстко укреплено кольцо, на котором намотано несколько витков провода. В центре кольца помещена так называемая буссоль, представляющая собой компас с круговой шкалой, разделённой на угловые градусы. Отсчёт угла поворота стрелки осуществляется с помощью визирного устройства.

Для создания дополнительного магнитного поля тангенсгальванометр снабжён источником постоянного тока, реостатом с амперметром, с помощью которых через катушку прибора можно пропустить необходимый ток.

Если после установки прибора в плоскости магнитного меридиана через катушку пропустить ток известной величины, то магнитная стрелка отклонится на некоторый угол. Измерив этот угол и силу тока, по формуле (3) можно вычислить горизонтальную составляющую вектора напряжённости магнитного поля Земли. Значения N и r постоянны для каждого прибора и указаны на приборе.

Анализ формулы (3) показывает, что наименьшая погрешность в определении H_0 будет в том случае, если угол отклонения стрелки α близок к 45°. Неточности в установке катушки прибора в плоскости магнитного меридиана и ошибки измерения, связанные с трением стрелки, можно устранить, изменив с помощью переключателя направление тока в катушке и беря среднее значение углов отклонения стрелки вправо и влево.

4.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1.Собрать электрическую схему, как показано на рис.4.

Рис.4

В схеме приняты следующие обозначения: Т.-Г. - тангенсгальванометр, Π - переключатель, с помощью которого можно изменять направление тока в катушке прибора; A - амперметр; R реостат; U.T. – источник постоянного тока.

- Поворачивая тангенс-гальванометр и компас, устанавливают плоскость катушки тангенс – гальванометра в плоскости магнитного меридиана так, чтобы один конец стрелки совпал с 0°.
- 3. Замыкают переключатель Π и с помощью реостата R подбирают такую силу тока, чтобы стрелка компаса отклонилась на угол $35^{\circ} 40^{\circ}$. Значение силы тока и угла отклонения записывают в таблицу.
- 4. Не меняя величины тока, изменяют переключателем его направление и измеряют величину отклонения стрелки угол α_2 .
- 5. Указанные измерения повторяют ещё 2 раза, подбирая с помощью реостата такую силу тока, чтобы при втором измерении угол отклонения стрелки составлял примерно 45°, а при третьем измерении несколько более 45°.

4.3 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

По найденным значениям α_1 и α_2 вычисляют среднюю величину угла отклонения α_{cp} каждого опыта и находят соответствующие значения $tg\alpha$. Пользуясь полученными данными, по формуле (3) вычисляют H_0 для каждого опыта, а затем среднюю величину горизонтальной составляющей магнитного поля земли $\overline{H_0}$.

Далее находят отклонения ΔH_i результатов отдельных измерений от среднего и рассчитывают абсолютную погрешность измерения по формуле:

$$\Delta H_0 = t_{\alpha}(n) \sqrt{\frac{\sum (\Delta H_{0i})^2}{n(n-1)}},$$

где n=3:

$$t_{\alpha}(n) = t_{0.95}(3) = 4.3$$
 - коэффициент Стьюдента.

Окончательный результат измерения должен быть представлен в виде $H_0 = \bar{H}_0 \pm \Delta H_0, \frac{A}{M}; \varepsilon = \frac{\Delta H_0}{\bar{H}_0}, \%$

Таблица 1

	№ измер	углы отклонения		α _{cp} ,	tgα	Н _{0;}	$_{\Delta}H_{0i}$, $_{A}$ / м	$\overline{H_0}$, A/M	I
		α ₁ , град.	α ₂ , град.	град.		А/м	А/м	А/м	ма
1	1								
	2								
	3								

5.КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какими величинами характеризуется магнитное поле Земли у её поверхности?
- 2. В чём состоит идея определения горизонтальной составляющей напряжённости магнитного поля Земли?
- 3. Как вычисляется напряжённость магнитного поля в центре витка с током?

Список литературы

- 1. .Н.В.Савельев, Курс общей физики Т.2 М. «Наука» 2002.
- 2. Калашников С.Г. Электричество. Изд. Зе Стереотипное. Учебное пособие для студентов университетов. М. Наука. 1970 г. 666с. с ил.
 - 3.Л.Л.Гоьден, Руководство к лабораторным занятиям по физике, P.34,M.«Наука»1973.