1

Gate Assignment CH 31

Shravya Kantayapalam EE23BTECH11030

1) **Question**: The position x(t) of a particle, at constant ω , is described by the equation

$$\frac{d^2x}{dt^2} = -\omega^2 x.$$

The initial conditions are x(t = 0) = 1 and $\frac{dx}{dt}\Big|_{t=0} = 0$.

The position of the particle at $t = \frac{3\pi}{\omega}$ is _____ (in integer). (GATE CH 2023)

Solution:

TABLE I: Input Parameters

Parameter	Description
S	Complex frequency variable in Laplace domain
ω	Angular frequency
X(s)	Laplace transform of the function $x(t)$
x(t)	Time-domain function

$$s^{2}X(s) - sx(0) - \frac{dx}{dt}(0) + \omega^{2}X(s) = 0$$

$$x(0) = 1 \quad \text{and} \quad \frac{dx}{dt}(0) = 0$$

$$s^2X(s) - s - \omega^2X(s) = 0$$

$$(s^2 + \omega^2)X(s) = s$$

$$X(s) = \frac{s}{s^2 + \omega^2}$$

$$X(s) = \frac{s}{s^2 + \omega^2} = \frac{A}{s} + \frac{Bs + C}{s^2 + \omega^2}$$

Multiplying both sides by $s(s^2 + \omega^2)$, we get:

$$s = A(s^2 + \omega^2) + (Bs + C)s$$

This implies A = 0, B = 1, and C = 0. Therefore,

$$X(s) = \frac{1}{s^2 + \omega^2}$$

$$x(t) = \mathcal{L}^{-1} \left\{ \frac{1}{s^2 + \omega^2} \right\} = \cos(\omega t)$$

Finally, evaluating x(t) at $t = \frac{3\pi}{\omega}$, we have:

$$x\left(\frac{3\pi}{\omega}\right) = \cos\left(\omega \cdot \frac{3\pi}{\omega}\right) = \cos(3\pi) = -1$$

Fig. 1: Graph of x(t)