

(19) **SU** (11) **1 724 613** (13) **A1**
(51) МПК

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО
ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

**(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ
СССР**

(21), (22) Заявка: 4813330, 11.03.1990

(46) Дата публикации: 07.04.1992

(56) Ссылки: Авторское свидетельство СССР № 649670, кл. С 03 С 13/00, 1979. Авторское свидетельство СССР № 1261923, кл. С 03 С 13/06, 1986.

(98) Адрес для переписки:
13 252655 КИЕВ ГСП, КОНСТАНТИНОВСКАЯ 68

(71) Заявитель:
УКРАИНСКИЙ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ,
ПРОЕКТНЫЙ И
КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКИЙ
ИНСТИТУТ "УКРСТРОМНИИПРОЕКТ"
(72) Изобретатель: АНДРЕЕВ АРКАДИЙ
АЛЕКСАНДРОВИЧ,
ДАРЕНСКИЙ ВИКТОР АЛЕКСЕЕВИЧ, САЙ
ВИТАЛИЙ ИВАНОВИЧ₁₃ 252028 8888,
АІЕÜØÀВ ÈÈØÀÉÑÈÀВ 53À-1113 255720
ЧІÑ. АØ×À ÈÈÁÄÑØÍÉ ТÀВ., ØÀÐÁÑÍÀÑÈÀВ
30-2313 252154 8888, ØÓÑLÍÍÀÑØÈЕ А-9 1-99

(54) Стекло для изготовления минерального волокна

S U 1 7 2 4 6 1 3 A 1

S U 1 7 2 4 6 1 3 A 1

(19) **SU** (11) **1 724 613** (13) **A1**
(51) Int. Cl.

STATE COMMITTEE
FOR INVENTIONS AND DISCOVERIES

(12) ABSTRACT OF INVENTION

- (71) Applicant:
UKRAINSKIJ NAUCHNO-ISSLEDOVATELSKIJ,
PROEKTNYJ I
KONSTRUKTORSKO-TEKHNOLOGICHESKIJ
INSTITUT "UKRSTROMNIIPROEKT"

(72) Inventor: ANDREEV ARKADIJ
ALEKSANDROVICH,
DARENISKIJ VIKTOR ALEKSEEVICH, SAJ
VITALIJ IVANOVICH

(54) GLASS FOR PREPARATION OF MINERAL FIBRE

(57)
Изобретение относится к производству минерального волокна, в частности к составам силикатного стекла для изготовления минерального волокна, и может быть использовано для изготовления эффективных теплоизоляционных и щелочеустойчивых материалов. Цель - уменьшение рабочей вязкости расплава, повышение температурно- и щелочеустойчивости волокна. Стекло

содержит компоненты в следующих количествах, мас.%: SiO₂ 51,7-54,6; TiO₂ 0,7-1,3; Al₂O₃ 7,7-10,7; FeO 0,8-3,6; ReaO₃ 3,7-4,5; CaO 17,0-19,5; MgO 8,6-11,8; K₂O 0,8-1,0; N₂O₅ 1,2-1,4; ZnO 1-0,2. Вязкость расплава в интервале температур (1300-1400) °C 1,6-23,2 Па·с, химическая устойчивость волокна к щелочи (83,11-87,5), предельная температура применения 1000 °C. 3 табл.

SU 1724613 A1

S U 1 7 2 4 6 1 3 A 1

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1724613A1

(SIS) C 03 C 13/00

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

КАВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

- (21) 4813330/33
- (22) 11.03.90
- (46) 07.04.92. Бюл. № 13
- (71) Украинский научно-исследовательский, проектный и конструкторско-технологический институт "Укрстремнипроект"
- (72) А.А. Андреев, В.А. Даренский и В.И. Сай (53) 666.1.022(088.8)
- (56) Авторское свидетельство СССР № 649670, кл. С 03 С 13/00, 1979.
- Авторское свидетельство СССР № 1261923, кл. С 03 С 13/06, 1986.
- (54) СТЕКЛО ДЛЯ ИЗГОТОВЛЕНИЯ МИНЕРАЛЬНОГО ВОЛОКНА
- (57) Изобретение относится к производству минерального волокна, в частности к соста-

2

вам силикатного стекла для изготовления минерального волокна, и может быть использовано для изготовления эффективных теплоизоляционных и щелочестойчивых материалов. Цель – уменьшение рабочей вязкости расплава, повышение температуры- и щелочестойчивости волокна. Стекло содержит компоненты в следующих количествах, мас. %: SiO₂ 51,7–54,6; TiO₂ 0,7–1,3; Al₂O₃ 7,7–10,7; FeO 0,8–3,6; Fe₂O₃ 3,7–4,5; CaO 17,0–19,5; MgO 8,6–11,8; K₂O 0,8–1,0; Na₂O 1,2–1,4; SO₃ 0,1–0,2. Вязкость расплава в интервале температур (1300–1400)°С 1,6–23,2 Па·с, химическая устойчивость волокна к щелочи (83,11–87,5)%, предельная температура применения 1000°C. З табл.

(19) SU (11) 1724613A1

S U 1 7 2 4 6 1 3 A 1

Изобретение относится к составу стекла для изготовления минерального волокна.

Известно стекло для получения минерального волокна, содержащее следующие оксиды, мас. %:

SiO ₂	27–61;
Al ₂ O ₃	8–23;
TiO ₂	0,5–3,0;
Fe ₂ O ₃	0,8–12;
FeO	0,1–4,0;
MnO	0,5–1,0;
CaO	8–20;
MgO	4,5–21;
R ₂ O	0,1–5,5.

Недостаток минерального волокна, получаемого из расплава такого стекла, состоит в низкой температуроустойчивости.

Наиболее близким к предлагаемому является стекло, включающее SiO₂, Al₂O₃,

TiO₂, Fe₂O₃, FeO, MnO, CaO, MgO, K₂O, Na₂O и SO₃ в следующих количествах, мас. %:

SiO ₂	49,05–50,55;
Al ₂ O ₃	5,48–16,32;
TiO ₂	0,69–1,29;
Fe ₂ O ₃	0,71–3,79;
FeO	8,41–11,46;
MnO	0,20–0,24;
CaO	6,80–13,26;
MgO	7,74–16,61;
K ₂ O	0,34–0,82;
Na ₂ O	0,25–3,47;
SO ₃	0,40–10,97.

Однако расплавы из данного стекла вследствие пониженного содержания стеклообразующего оксида SiO₂ имеют слабые ионные кремнекислородные связи и при высоких температурах (1400°C и выше) в температурном интервале формирования тонких волокон происходит капельный распад

S U 1 7 2 4 6 1 3 A 1

Изобретение относится к составу стекла для изготовления минерального волокна.

Известно стекло для получения минерального волокна, содержащее следующие оксиды, мас.%:

SiO₂27-61;
A 20₃8-23;
TiO₂0,5-3,0;
Pe20₃0,8-12;
FeO0,1-4,0;
MnO0,5-1,0;
CaO8-20;
MdO4,5-21;
K200,1-5,5.

Недостаток минерального волокна, получаемого из расплава такого стекла, состоит в низкой температуроустойчивости.

Наиболее близким к предлагаемому является стекло, включающее SiO₂, A12O₃,

TiO₂, Pe20₃, FeO, MnO, CaO, MdO, K20, Na20 и ZO₃ в следующих количествах, мас.%:

SiO₂49,05-50,55;
A12O₃5,48-16,32;
TiO₂0,69-1,29;
Pe20₃0,71-3,79;
FeO8,41-11,46;
MnO0,20-0,24;
CaO6,80-13,26;
MdO7,74-16,61;
K200,34-0,82;
Na200,25-3,47;
SO30,40-10,97.

Однако расплавы из данного стекла вследствие пониженного содержания стеклообразующего оксида SiO₂ имеют слабые ионные кремнекислородные связи и при высоких температурах (1400°C и выше) в температурном интервале формования тонких волокон происходит капельный распад

VJ
го
4 O
CO

струи расплава с образованием коротких волокон и большого количества неволокнистых включений в виде стекловидной пыли и корольков. Получение тонких волокон из такого стекла затруднено. Кроме того, получаемые волокна из данных расплавов имеют низкие показатели по химической устойчивости в концентрированных растворах щелочей, а также при нагреве выше 800°C. Вследствие происходящих окислительных процессов(FeO переходит в Pb20₃) они становятся хрупкими, при механическом воздействии разрушаются.

Цель изобретения-уменьшение рабочей вязкости расплава, повышение температуре- и щелочеустойчивости минерального волокна. Высокая температуроустойчивость позволяет использовать такое волокно как высокоеффективный теплоизоляционный материал, а при повышенной химической устойчивости в концентрированных щелочных средах оно может быть рекомендовано при создании композиционных материалов с применением различных вяжущих.

Поставленная цель достигается тем, что стекло для изготовления минерального волокна характеризуется следующим количественным содержанием компонентов, мас.%:

SiO₂51,7-54,6;
TiO₂0,7-1,3;
A 20₃7,7-10,7;
FeO0,8-3,6;
Fe2033,7-4,5
CaO17,0-19,5
MgO8,6-11,8;
K200,8-1,0;
Na₂O1,2-1,4;
SO30,1-0,2.

При увеличении и уменьшении содержания SiO₂ происходит нарушение процесса формирования волокон. Если в стекле содержание SiO₂ менее 51,6, уменьшается вязкость, что способствует повышению содержания неволокнистых включений (корольков и стекловидной пыли). При содержании SiO₂ в стекле более 54,6% вязкость расплава возрастает, что приводит к утолщению волокон.

Аналогичное явление наблюдается при изменении содержания в стекле щелочноземельных оксидов CaO и MgO. При содержании CaO и MgO более соответственно 19,5 и 11,8% уменьшается вязкость, повышается кристаллизационная способность расплава. В результате снижения количества CaO

и MgO ниже приведенных предельных значений вязкость расплава повышается.

В табл. 1 приведены составы стекол, из которых формировались волокна, в табл. 2 - результаты испытаний на химическую устойчивость к щелочи, в табл. 3 - результаты испытаний на температуроустойчивость.

Оптимальным является содержание компонентов, приведенных в табл. 1 (составы 1-3). Такие стекла получают плавлением шихт на основе горных пород типа базальта с добавлением пород с высоким содержанием SiO₂, например суглинка и доломита, при температуре 1400-1450°C.

Расплавы из предлагаемого стекла, приведенные в табл. 1, в температурном интервале формования волокон имеют вязкость в 1,5-2,0 раза более низкую по сравнению с известным материалом, что позволяет формовать из них, например, центробежно-валковым способом волокно диаметром 3-5 мкм при содержании неволокнистых включений до 10%.

Полученное минеральное волокно испытывали в концентрированных щелочных средах. Установление механизма разрушения волокон при нагревании проводили по методике TGL 3232/08 (ГДР). Волокна из предлагаемого стекла сохраняют при температуре нагрева 1000°C 73-74% прочности, сохраняют гибкость и эластичность, предельная температура их применения составляет 1000°C, в то время как волокна известного состава при температуре выше

900°C становятся хрупкими и разрушаются. Формула изобретения Стекло для изготовления минерального волокна, включающее SiO₂, TiO₂, FeO, Pe20₃, CaO, MgO, K₂O и SO₃, отличающееся тем, что, с целью уменьшения рабочей вязкости расплава, повышения температуре- и щелочеустойчивости волокон, оно содержит указанные компоненты в следующих количествах, мас.%:

SiO₂51,7-54,6
TiO₂0,7-1,3
Al₂O₃7,7-10,7
FeO0,8-3,6
Fe₂O₃s3,7-4,5
CaO 17,0-19,5
MgO8,6-11,8
K₂O0,8-1,0
Na₂O1,2-1,4
3O₃0,1-0,2
Таблица 2

5

SU 1724613A1

Page 5 of 5 13/09

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 681330/53
 (22) 11.62.43
 (49) 07.04.-22, вкл. № 13
 (51) Узбекская науко-исследовательская лаборатория по изучению и разработке гидротехнических сооружений и инженерно-технической документации
 (77) А.А. Акимов, В.Д. Даренчук и В.И. Савицкий
 (88) 8.001.022/0405 81
 (91) Акция социалистического соревнования ССРР № 849670, с. 03 ГГ. 13/03. 1978.
 (92) Акция социалистического соревнования ССРР № 1318213, с. 03 ГГ. 13/03. 1984.
 (94) СПЕЦМОЛДИМПОРТПОЛУМЕТАЛЛ
 (95) ПОЛИМЕРНОГО ВОЛОСКА
 (97) Недорогие функциональные и герметизирующие материалы, в -ности к волокнам

2
ВАН АМПЕЛЬСКОГО СТРИЛЫ ДЛЯ КОРОПОЛЕНИЯ
АЛМАЗНОГО ВОДОЛОДА, включая биты, но
не ограничивающиеся ими, для корополения эффективно-
го твердотельного и циркуляционного
материнского. Наконечники — универсальные рабочие
биты для раскальвания, погружения крепежных
и фиксирующих элементов в шахты. Стандарт
содержит классификацию с указанием рабочих
стрил и бит: №3; №3G; №1-6-48; №10; №1-7-3;
№1-7-18; №1-7-19; №10-0-3-3; Febo 3-7-2;
Co 11-7-17; №1-7-20; №1-7-21; №10-0-3-4;
№10-1-3-1; №10-1-3-2. Биты для раскаль-
вания и погружения крепежных (1500-15000)
1.9-2.2 2 Тыс. минимумы устанавливаются
в агрегатах (11.31-11.75-7.5), погружения
и раскальвания (11.31-11.75-7.5), погружения
и температуре погружения 1000°C. Схема

13

21

23

30

33

40

49

50

55

b2

S U 1 7 2 4 6 1 3 A 1

S U 1 7 2 4 6 1 3 A 1

-5

Таблица 2

Состав	Средний диаметр волокна, мкм	Химическая устойчивость к щелочи (35% NaOH), %
1	5	83,11
2	3,5	86,32
3	3,0	87,5
Известный	6	35,43

Таблица 3

Состав	Средний диаметр волокна, мкм	Прочность волокон, % при температуре, °C		Пределная температура применения, °C
		900	1000	
1	5	90	73	1000
2	3,5	92	74	1000
3	3,0	95	78	1000
Известный	6	60	-	900

5

10

15

20

25

S U 1 7 2 4 6 1 3 A 1

S U 1 7 2 4 6 1 3 A 1

Редактор В.Петраш

Составитель Т.Букреева
Техред М.Моргентал

Корректор М.Максимишинец

Заказ 1147 Тираж Подписьное
ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101