Machine Learning Foundations

Chapter 6: Probability

Harish Guruprasad Ramaswamy
IIT Madras

Outline for Chapter 6: Probability

6.1 : Discrete Random Variables

- 6.2 : Continuous Random Variables
- 6.3 : Maximum Likelihood and other advanced topics

Outline for Chapter 6: Probability

6.1 : Discrete Random Variables

- 1. Probability space
- 2. Conditioning
- 3. Random variables
- 4. Expectation and Variance
- 5. Multiple Random Variables
- 6. Bernoulli, Binomial, Poisson and Geometric RVs
- 6.2 : Continuous Random Variables
- 6.3 : Maximum Likelihood and other advanced topics

Chapter 6.1.2 : Conditioning

```
Conditional probability
```

e.g.: Two die throw experiment. P(sum =7l first=5),

Total probability

e.g. Two urn experiment with white and black balls (9W1B, 5W5B)

Independence

e.g. Two die throw experiment Sum=7, First=5, second=3

Bayes Rule

e.g. Two urn exp P(Urn1 is chosenlBall is white)

e.g P(COVID | PCR=True)

Conditional Probability

$$A,B \subseteq \mathcal{R}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Conditional Probability Examples

DDTE:
$$D = \{1, 2, 3, 4, 5, 6\}^2$$
 $S = \{0, 1\}^2$
 $P(A) = \frac{|A|}{36}$
 $P(Sum = 7 | First = 5) = P(Sum = 7 & First = 5)$
 $P(First = 5) = \frac{1}{4}$

Conditional Probability Examples

$$P(First = 5 | Sum = 8)$$
 = $\frac{P(First = 5 \& Sum = 8)}{P(Sum = 8)}$

Total Probability Law

$$B_1, B_2, \dots B_n$$
 are mutually exclusive K exhaustive

His $B_1 \cap B_2 = \emptyset$ \Rightarrow ME
 $A \subseteq \mathcal{S}$
 $P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_n)$
 $= P(A \mid B_1) P(B_1) + \dots + P(A \mid B_n) P(B_n)$

Total Probability Law Example

2 JE: 2 Buckets 10 balls each

1st bucket: 9W, 1B

2nd bucket: 5W, 5B

P(White Ball is Picked)

A: White ball is Picked

B1: Urn 1 is Chosen

B2: Urn 2 is Chosen

P(A) =
$$P(A|B_1)P(B_1) + P(A|B_2)P(B_2)$$
 $\frac{9}{10} \cdot \frac{1}{2} + \frac{5}{10} \cdot \frac{1}{2}$

Independence

A, B
$$\subseteq \Omega$$

A, B are independent $\longrightarrow P(A \cap B) = P(A) \cdot P(B)$
events

Independence Examples

DDTE:
$$P(A) = \frac{|A|}{36}$$

$$A = Sum \text{ is } 7 \qquad D = Sum = 4$$

$$P(BND) = 0$$

$$P(B) = \frac{1}{6}$$

$$\frac{1}{6} P(D) = \frac{3}{36}$$

Bayes Rule

$$P(A1B)$$
:
$$\frac{P(B1A)P(A)}{P(B1A)P(A)+P(B1A)P(A)}$$

Bayes Rule Examples

Dayes Rule Examples

2UE

$$P(Urn1 \text{ was chosen}) Ball \text{ is white}$$
 $A \rightarrow Ball \text{ is white}$
 $B_1 \rightarrow Urn 1 \quad B_2 \rightarrow Urn 2$
 $P(B_1 | A) = ?$
 $P(A | B_1) = ?$
 $P(A | B_1) = ?$

Bayes Rule Examples

C is the event that the chosen serson has
$$COVID$$

T is the event the chosen person's test is positive.

$$P(C|T) = ?$$

Test is such that
$$P(T|C) = 0.9 \qquad P(C) = \frac{1}{100}$$

$$P(T'|C') = 0.9$$

$$P(C|T) = ?$$

$$P(T|C) = 0.9$$

 $P(T^{c}|C^{c}) = 0.9$

P(TIC) P(c)

$$\frac{(0.9)(1/100)}{0.9(1/100) + 0.1(99/100)^{2} 0.9 + 9.9}$$

P(C) = /100