5

confinement layers;

K. G. Glogovsky 7-10-14-12

1	Claims
	What is claimed is:
2 3 4 5	1. An optoelectronic device comprising at least two spatially separate optical components formed on a single semiconductor substrate, each optical component including an active region, and a passive waveguide formed over the substrate and optically butt coupling the two components.
1 2	2. The device according to claim 1 wherein the active regions comprise multi-quantum well layers.
1 2	3. The device according to claim 1 comprising at least three optical components of different types.
1 2	4. The device according to claim 3 wherein the device comprises a laser, a modulator, and an optical amplifier.
1 2 3	5. The device according to claim 1 wherein each component includes a cladding layer on either side of the active region, and further comprising a cladding layer on either side of the passive waveguide.
1	6. The device according to claim 2 wherein the muli-quantum layers comprise InGaAsP.
1 2	7. The device according to claim 5 wherein each component further comprises a separate confinement layer on either side of the active region.
1 2	8 The device according to claim 1 further comprising a stop-etch layer formed over the substrate.
1 2	9. The device according to claim 8 wherein the stop-etch layer comprises InAlAs or GaInAlAs.
1 2	10. The device according to claim 1 wherein the passive waveguide comprises an identical composition between the components.
1	11. An optoelectronic device comprising:
2 3	at least three spatially separate optical components including a laser, modulator, and optical amplifier formed on a single substrate, each optical component comprising a multi-
4	quantum well layer comprising InGaAsP sandwiched between cladding layers and separate

5

K. G. Glogovsky 7-10-14-12

6	a passive waveguide formed over the substrate so as to form butt joints with the multi-
7	quantum well layers and optically connect the components, the waveguide having an identical
8	composition between the components comprising InGaAsP; and
9	a stop-etch layer comprising InAlAs or GaInAlAs formed over the substrate.
1	12. A method of forming an optoelectronic device comprising the steps of:
2	forming a plurality of epitaxial semiconductor layers on essentially the entire surface of a
3	semiconductor substrate, the layers including at least one layer of an active material;
4	selectively etching the layers to form spatially separate structures including the active
5	material; and
6	forming at least one passive waveguide layer in the etched areas so as to provide optical
7	butt coupling between the active material of the separate structures.
1	13. The method according to claim 12 further comprising, prior to forming the active
2	material, forming an etch-stop layer over the substrate, and selectively etching the epitaxial layers
3	down to the etch-stop layer.
1	14. The method according to claim 13 wherein the etch-stop layer comprises InAlAs or
2	GaInAlAs.
1	15. The method according to claim 12 wherein a plurality of layers including the passive
2	waveguide layer are sequentially formed in the etched areas.
1	16. The method according to claim 12 wherein the active material comprises InGaAsP,
2	and the passive waveguide comprises InGaAsP.
1	17. The method according to claim 12 wherein, prior to forming the passive waveguide, a
2	separate plurality of epitaxial layers is formed for each type of optical component on the
3	substrate.
1	18. The method according to claim 15 wherein the plurality of layers formed in the
2	etched areas includes cladding layers.
1	19. The method according to claim 12 wherein the spatially separate structures are
2	formed into at least a laser, modulator, and optical amplifier.
3	20. A method of forming an optoelectronic device including at least a laser, modulator,
4	and optical amplifier on a single substrate comprising the steps of:

forming an etch-stop layer comprising InAlAs or GaInAlAs on a surface of the substrate;

K. G. Glogovsky 7-10-14-12

6	separately forming a plurality of epitaxial layers over the substrate for each of the laser,
7	modulator, and amplifier, the plurality of layers including multi-quantum active layers
8	comprising InGaAsP;
9	selectively etching the plurality of epitaxial layers down to the etch-stop layer to form
10	spatially separate structures;
11	sequentially forming a first cladding layer comprising InP, a passive waveguide layer
12	comprising InGaAsP, and a second cladding layer comprising InP in the etched areas so as to
13	form butt joints between the active layers and passive waveguide layer; and
14	forming the spatially separate structures into the laser, modulator, and optical amplifier.