SSD1683

Advance Information

400 Source x 300 Gate Red/Black/White Active Matrix EPD Display Driver with Controller

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Appendix: IC Revision history of SSD1683 Specification

Version	Change Items	Effective Date
1.0	Initial Release	26-Jan-2021

 SSD1683
 Rev 1.0
 P 2/49
 Jan 2021
 Solomon Systech

CONTENTS

1	GEN	NERAL DESCRIPTION	5
2	FEA	ATURES	5
3	ORI	DERING INFORMATION	6
		DCK DIAGRAM	
4			
5		DESCRIPTION	
6	FUN	NCTIONAL BLOCK DESCRIPTION	10
	6.1	MCU Interface	
	6.1.1	MCU Interface selection	
	6.1.2 6.1.3	MCU SERIAL INTERFACE (4-WIRE SPI)	
	6.2	OSCILLATOR	
	6.3	BOOSTER & REGULATOR	
	6.4	VCOM SENSING	
	6.5	RAM	
	6.6	PROGRAMMABLE WAVEFORM FOR GATE, SOURCE AND VCOM	
	6.7	WAVEFORM SETTING	
	6.8 6.8.1	TEMPERATURE SEARCHINGINTERNAL TEMPERATURE SENSOR	
	6.8.2	EXTERNAL TEMPERATURE SENSOR I2C SINGLE MASTER INTERFACE	
	6.8.3	FORMAT OF TEMPERATURE VALUE	
	6.9	WAVEFORM SETTING SEARCHING MECHANISM	
	6.10	ONE TIME PROGRAMMABLE (OTP) MEMORY	
	6.11	THE FORMAT FOR TEMPERATURE RANGE (TR)	
	6.12	CASCADE MODE	
	6.13 6.14	VCI DETECTIONHV READY DETECTION	
_			
7		MMAND TABLE	
8	COI	MMAND DESCRIPTION	
	8.1	DRIVER OUTPUT CONTROL (01H)	37
	8.2	DATA ENTRY MODE SETTING (11H)	
	8.3	SET RAM X - ADDRESS START / END POSITION (44H)	
	8.4	SET RAM Y - ADDRESS START / END POSITION (45H)	
	8.5	·	
9	OPE	ERATION FLOW AND CODE SEQUENCE	41
	9.1	SSD1683 OPERATION FLOW TO DRIVE DISPLAY PANEL WITH POWER ON/OFF	41
	9.2	SSD1683 OPERATION FLOW TO ENTER DEEP SLEEP MODE 2 AFTER DISPLAY UPDATE	42
1() ABS	SOLUTE MAXIMUM RATING	43
11	l FLF	CTRICAL CHARACTERISTICS	43
		CHARACTERISTICS	
14			
	12.1	SERIAL PERIPHERAL INTERFACE	
		PLICATION CIRCUIT	
14	4 PAC	CKAGE INFORMATION	47
	14.1	DIE TRAY DIMENSIONS FOR SSD1683Z	47 48

TABLES

IADEEO	
Table 3-1 : Ordering Information	
Table 5-1: Power Supply Pins	
Table 5-2: Interface Logic Pins	
Table 5-3: Analog Pins	9
Table 5-4: Driver Output Pins	
Table 5-5: Miscellaneous Pins	
Table 6-1: Interface pins assignment under different MCU interface	
Table 6-2 : Control pins status of 4-wire SPI	.10
Table 6-3 : Control pins status of 3-wire SPI	
Table 6-4: RAM bit and LUT mapping for 3-color display	
Table 6-5 : RAM bit and LUT mapping for black/white display	
Table 6-6: VS[NX-LUTM] SETTINGS FOR SOURCE VOLTAGE AND VCOM VOLTAGE	.14
Table 6-7: FR settings for frame rate selection	
Table 6-8: Example of 8-bit binary temperature settings for temperature ranges	
Table 6-9: Example of waveform settings selection based on temperature ranges	
Table 7-1: Command Table	.22
Table 10-1 : Maximum Ratings	.43
Table 11-1: DC Characteristics	
Table 11-2: Regulators Characteristics	
Table 12-1 : Serial Peripheral Interface Timing Characteristics	.45
Table 13-1: Component list for SSD1683 application circuit	.46
FIGURES	
FIGURE 4-1 : SSD1683 BLOCK DIAGRAM	6
FIGURE 6-1 : WRITE PROCEDURE IN 4-WIRE SPI MODE	
FIGURE 6-2 : READ PROCEDURE IN 4-WIRE SPI MODE	
FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI	
FIGURE 6-4 : READ PROCEDURE IN 3-WIRE SPI MODE	
FIGURE 6-5 : PROGRAMMABLE DRIVING WAVEFORM ILLUSTRATION	
FIGURE 6-6: WAVEFORM SETTING FORMAT FOR 3-COLOR MODE	
FIGURE 6-7 : WAVEFORM SETTING FORMAT FOR BLACK/WHITE MODE	
FIGURE 6-8 : THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND TEMPERATURE RANGE .	
FIGURE 6-9: FORMAT OF TEMPERATURE RANGE (TR) IN OTP	
FIGURE 8-1: OUTPUT PIN ASSIGNMENT ON DIFFERENT SCAN MODE SETTING	
FIGURE 9-1: OPERATION FLOW TO DRIVE DISPLAY PANEL POWER ON/OFF	
FIGURE 9-2: OPERATION FLOW TO ENTER DEEP SLEEP MODE 2 AFTER DISPLAY UPDATE	
FIGURE 12-1: SPI TIMING DIAGRAM	
FIGURE 13-1: SCHEMATIC OF SSD1683 APPLICATION CIRCUIT	
FIGURE 14-1: SSD1683Z DIE TRAY INFORMATION	
FIGURE 14-2 : SSD168378 DIE TRAY INFORMATION (UNIT: MM)	

 SSD1683
 Rev 1.0
 P 4/49
 Jan 2021
 Solomon Systech

1 GENERAL DESCRIPTION

SSD1683 is an Active Matrix EPD display driver with controller for Red/Black/White EPD displays.

It consists of 400 source outputs, 300 gate outputs, 1 VCOM and 1VBD (for border), which can support displays with resolution up to 400x 300.

In the SSD1683, data and commands are sent from MCU through hardware selectable serial peripheral interface. It has embedded booster, regulator and oscillator which is suitable for EPD display applications.

2 FEATURES

- Design for dot matrix type active matrix EPD display, support Red/Black/White colour
- Resolution: 400 source outputs, 300 gate outputs, 1 VCOM and 1VBD (for border)
- Power supply:
 - VCI: 2.3 to 3.7V
 - VDDIO: Connect to VCI
 - VDD: 1.8V, regulate from VCI supply
- On chip display RAM
 - Mono B/W: 400x300 bits
 - Mono Red: 400x300 bits
- On-chip booster and regulator for generating VCOM, Gate and Source driving voltage
- Gate driving output voltage: 2-level outputs (VGH, VGL), Max 40Vp-p
 - VGH: 10V to 20V (Voltage adjustment step: 500mV)
 - VGL: -VGH (Voltage adjustment step: 500mV)
- Source driving output voltage: 4-levels outputs (VSH1, VSH2, VSS and VSL)
 - VSH1: 8.6V to 17V (Voltage adjustment step: 200mV)
 - VSH2: 2.4V to 17V (Voltage adjustment step: 100mV for 2.4V to 8.6V, 200mV for 8.8V to 17V)
 - VSL: -5V to -17V (Voltage adjustment step: 500mV)
- VCOM output voltage
 - DCVCOM: -3.0V to -0.2V in 100mV resolution
 - ACVCOM: 3-level outputs (VSH1+DCVCOM, DCVCOM, VSL+DCVCOM)
- On-chip oscillator, adjustable frame rate from 25Hz to 125Hz
 - Programmable output Waveform for 3-color mode and black/white mode:
 - 4 LUTs for 3-color mode
 - 5 LUTs for black/white mod
- Embedded OTP to store 24 sets of waveform setting and temperature range, color mode selection, 4-byte waveform version, 10-byte User ID and initial code setting
- External or internal generated voltage for burning OTP
- Built-in CRC checking method for RAM content and WS & TR in OTP
- VCI low voltage detection
- Driving voltage ready detection
- Support display partial update
- Auto write RAM command for regular patterns
- Internal Temperature Sensor of +/-2degC accuracy from -25degC to 50degC
- I2C single master interface to communicate with external temperature sensor
- MCU interface: 4-wire or 3-wire Serial peripheral interface (maximum SPI write speed 20MHz)
- Available in COG package

SSD1683 | Rev 1.0 | P 5/49 | Jan 2021 | **Solomon Systech**

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	Package Form	Remark
SSD1683Z	Gold Bump Die	Bump Face Up On Waffle pack Die thickness: 300um Bump height: 12um
SSD1683Z8	Gold Bump Die	Bump Face Down On Waffle pack Die thickness: 300um Bump height: 12um

4 BLOCK DIAGRAM

Figure 4-1: SSD1683 Block Diagram

5 PIN DESCRIPTION

Key:

I = Input

O =Output

IO = Bi-directional (input/output)

P = Power pin

C = Capacitor Pin

NC = Not Connected

Table 5-1: Power Supply Pins

Name	Туре	Connect to	Function	Description	When not in use
VCI	Р	Power Supply	Power Supply	Power input pin for the chip.	-
VCIA	Р	Power Supply	Power Supply	Power input pin for the chip. - Connect to VCI in the application circuit.	-
VDDIO	Р	Power Supply	Power for interface logic pins	Power input pin for the Interface Connect to VCI in the application circuit.	-
VDD	P	Capacitor	Regulator output	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS under all circumstances.	-
VSS	Р	VSS	GND	Ground (Digital).	-
VSSA	Р	VSS	GND	Ground (Analog) - Connect to VSS in the application circuit.	-
VSSBG	Р	VSS	GND	Ground (Reference) pin Connect to VSS in the application circuit.	-
VSSGS	Р	VSS	GND	Ground (Output) pin Connect to VSS in the application circuit.	-
VPP	Р	Power Supply	OTP power	Power Supply for OTP Programming.	Open

 SSD1683
 Rev 1.0
 P 7/49
 Jan 2021
 Solomon Systech

Table 5-2: Interface Logic Pins

Name	Туре	Connect to	Function	Description	When not in use
SCL	I	MPU	Data Bus	This pin is serial clock pin for interface. Refer to MCU interface in Section 6.1.	-
SDA	I/O	MPU	Data Bus	This pin is serial data pin for interface. Refer to MCU interface in Section 6.1.	-
CS#	I	MPU	Logic Control	This pin is the chip select input connecting to the MCU. Refer to MCU interface in Section 6.1.	VDDIO or VSS
D/C#	I	MPU	Logic Control	This pin is Data/Command control pin connecting to the MCU. Refer to MCU interface in Section 6.1.	VDDIO or VSS
RES#	I	MPU	System Reset	This pin is reset signal input. Active Low.	-
BUSY	0	MPU	Device Busy Signal	This pin is Busy state output pin. When Busy is High, the operation of the chip should not be interrupted, and command should not be sent. For example., The chip would output Busy pin as High when - Outputting display waveform; or - Programming with OTP - Communicating with digital temperature sensor	Open
M/S#	I	VDDIO/VSS	Cascade Mode Selection	 This pin is Master and Slave selection pin. For the single chip application, the M/S# pin should be connected to VDDIO. In the cascade mode: For Master Chip, the M/S# pin should be connected to VDDIO. For Slave Chip, the M/S# pin should be connected to VSS. The oscillator, booster and regulator circuits of the slave chip will be disabled. The corresponding pins including CL, VDD, VDDIO, VGH, VGL, VSH1, VSH2, VSL and VCOM must be connected to the master chip. 	-
CL	I/O	NC	Clock signal	 This pin is the clock signal pin. For the single chip application, the CL pin should be left open. In the cascade mode, the CL pin of the slave chip should be connected to the CL pin of the master chip. 	-
BS1	I	VDDIO/VSS	MCU Interface Mode Selection	This pin is for selecting 3-wire or 4-wire SPI bus. BS1 MCU Interface L 4-wire SPI H 3-wire SPI (9-bit SPI)	-
TSDA	I/O	Temperature sensor SDA	Interface to Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave.	VSS
TSCL	0	Temperature sensor SCL	Interface to Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave.	VSS

 SSD1683
 Rev 1.0
 P 8/49
 Jan 2021
 Solomon Systech

Table 5-3: Analog Pins

Name	Туре	Connect to	Function	Description	When not in use
GDR	0	POWER MOSFET Driver Control	VGH, VGL Generation This pin is N-Channel MOSFET gate drive control pin.		-
RESE	I	Booster Control Input		This pin is Current sense input pin for the control Loop.	-
VGH	С	Stabilizing capacitor		This pin is Positive Gate driving voltage. Connect a stabilizing capacitor between VGH and VSS in the application circuit.	-
VGL	С	Stabilizing capacitor		This pin is Negative Gate driving voltage. Connect a stabilizing capacitor between VGL and VSS in the application circuit.	-
VSH1	С	Stabilizing capacitor	VSH1, VSH2, VSL Generation	This pin is Positive Source driving voltage, VSH1 Connect a stabilizing capacitor between VSH1 and VSS in the application circuit.	-
VSH2	С	Stabilizing capacitor		This pin is Positive Source driving voltage, VSH2 Connect a stabilizing capacitor between VSH2 and VSS in the application circuit.	
VSL	С	Stabilizing capacitor		This pin is Negative Source driving voltage. Connect a stabilizing capacitor between VSL and VSS in the application circuit.	-
VCOM	С	Panel/ Stabilizing capacitor	VCOM Generation	This pins is VCOM driving voltage Connect a stabilizing capacitor between VCOM and VSS in the application circuit.	-

Table 5-4: Driver Output Pins

Name	Туре	Connect to	Function	Description	When not in use
S [399:0]	0	Panel	Source driving signal	Source output pin.	Open
G [299:0]	0	Panel	Gate driving signal	Gate output pin.	Open
VBD	0	Panel	Border driving signal	Border output pin.	Open

Table 5-5: Miscellaneous Pins

Name	Туре	Connect to	Function	Description	When not in use
NC	NC	NC	Not Connected	This is dummy pin. It should not be connected with other NC pins.	Open
RSV	NC	NC	Reserved	This is a reserved pin and should be kept open.	Open
TPA, TPB, TPC, TPD, TPF, FB	NC	NC	Reserved for Testing	Reserved pins. - Keep open. - Do not connect to other NC pins and test pins including TPA, TPB, TPC, TPD, TPF, TIN and FB.	Open
TIN	I	TPE	Reserved for Testing	This is a reserved pin and should be connected to TPE pin	VSS/VDDIO
TPE	0	TIN	Reserved for Testing	This is a reserved pin and should be connected to TIN pin	Open

 SSD1683
 Rev 1.0
 P 9/49
 Jan 2021
 Solomon Systech

6 Functional Block Description

6.1 MCU Interface

6.1.1 MCU Interface selection

The SSD1683 can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1: Interface pins assignment under different MCU interface

		Pin Name				
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA

Note

6.1.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	↑	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

SSD1683 | Rev 1.0 | P 10/49 | Jan 2021 | **Solomon Systech**

 $^{^{(1)}}$ L is connected to V_{SS} and H is connected to V_{DDIO}

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 6-2: Read procedure in 4-wire SPI mode

6.1.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Table 6-3 : Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	L

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) ↑ stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI

SSD1683 | Rev 1.0 | P 11/49 | Jan 2021 | **Solomon Systech**

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

Figure 6-4: Read procedure in 3-wire SPI mode

6.2 OSCILLATOR

The oscillator module generates the clock reference for waveform timing and analog operations.

6.3 BOOSTER & REGULATOR

A voltage generation system is included in the driver. It provides all necessary driving voltages required for an AMEPD panel including VGH, VGL, VSH1, VSH2, VSL and VCOM. External application circuit is needed to make the on-chip booster & regulator circuit work properly.

6.4 VCOM SENSING

This functional block provides the scheme to select the optimal VCOM DC level. The sensed value can be programmed into OTP.

The flow of VCOM sensing:

- Active Gate is scanning during the VCOM sense Period.
- Source are VSS.
- VCOM pin used for sensing.
- During Sensing period, BUSY is high.
- After Sensing, Active Gate return to non-select stage.

SSD1683 | Rev 1.0 | P 12/49 | Jan 2021 | **Solomon Systech**

6.5 RAM

The On chip display RAM is holding the image data.

1 set of RAM is built for Mono B/W. The RAM size is 400x300 bits.

1 set of RAM is built for Mono Red. The RAM size is 400x300 bits.

Table 6-4: RAM bit and LUT mapping for 3-color display

Data bit in R RAM	Data bit in B/W RAM	Image Color	LUT
0	0	Black	LUTB for driving Black
0	1	White	LUTW for driving White
1	0	Red	LUTR for driving Red

Table 6-5: RAM bit and LUT mapping for black/white display

Data bit in R RAM	Data bit in B/W RAM	Image Color	LUT
0	0	Black	LUTBB for driving Black
0	1	White	LUTWB for driving White
1	0	Black	LUTBW = LUTBB
1	1	White	LUTWW = LUTWB

6.6 Programmable Waveform for Gate, Source and VCOM

There are two selectable programmable driving waveform, which is selected by Command 0x22. The color mode selection can be selected for 3-color mode and black/white mode. Figure 6-5 illustrates the programmable driving waveform with the description of parameter setting.

Figure 6-5: Programmable driving waveform illustration

SSD1683 | Rev 1.0 | P 13/49 | Jan 2021 | **Solomon Systech**

In 3-color mode, there are 8 groups (Group0 to Group7) for 4 LUTs. The 4 LUTs are LUTC, LUTR, LUTW and LUTB. In black/white mode, there are 6 groups (Group0 to Group5) for 5LUTs. The 5 LUTs are LUTC, LUTBB, LUTWB, LUTBW and LUTWW. In each group, there are 4 phases (Phase A to Phase D) and 2 state repeats (Phase A and B, Phase C and D). Totally, there are 32 phases in 3-color mode and 24 phases in black/white mode. In each phase, the phase length (TP[nX]) can be set by number of frame from 0 to 63 frames. Also, each group can be repeated with repeat counting number (RP[n]) from 0 to 255 times; each AB / CD phases can be repeated with state repeat counting number (SR[nAB]/SR[nCD]) from 0 to 255 times. For the voltage level (VS[nX-LUTm]), there are four levels for Source voltage (VSS, VSH1, VSH2, VSL) and four levels for VCOM voltage (DCVCOM, VSH1+DCVCOM, VSL+DCVOM, Floating).

The description of each parameter is as follows.

- 1) TP[nX] represents the phase length set by the number of frame.
- The range of TP[nX] is from 0 to 63.
- n represents the Group number
 - from 0 to 7 for 3-color mode
 - from 0 to 5 for black/white mode
- X represents the phase number from A to D.
- When TP[nX] = 0, the phase is skipped. When TP[nX] = 1, the phase is 1 frame, and so on. The maximum phase length is 63 frame.
- 2) RP[n] represents the repeat counting number for the Group.
- The range of RP[n] is from 0 to 255.
- n represents the Group number
 - from 0 to 7 for 3-color mode
 - from 0 to 5 for black/white mode
- RP[n] = 0 indicates that the group is skipped, RP[n] = 1 indicates that the repeat times = 1, and so on. The maximum repeat times is 255.
- 3) SR[nAB] and SR[nCD] represent the state repeat counting number for Phase A & B and Phase C & D respectively.
- The range of SR[nXY] is from 0 to 255.
- n represents the Group number
 - from 0 to 7 for 3-color mode
 - from 0 to 5 for black/white mode
- SR[nXY] = 0 indicates that the sub-group is skipped, SR[nXY] = 1 indicates that the repeat times = 1, and so on. The maximum repeat times is 255.
- 4) VS[nX-LUTm] represents Source and VCOM voltage level which is used in each phase. Table 6-6 shows the voltage settings for source voltage and VCOM voltage.
- In 3-color mode
 - n represents the Group number from 0 to 7.
 - X represents the phase number from A to D.
 - LUTm represents the corresponding LUT for LUTC, LUTB, LUTW and LUTR.
- In black/white mode
 - n represents the Group number from 0 to 5.
 - X represents the phase number from A to D.
 - LUTm represents the corresponding LUT for LUTC, LUTBB, LUTWB, LUTBW and LUTWW.

Table 6-6: VS[nX-LUTm] settings for Source voltage and VCOM voltage

VS[nX-LUTm]	Source voltage	VCOM voltage
00	VSS	DCVCOM
01	VSH1	VSH1 + DCVCOM
10	VSL	VSL + DCVCOM
11	VSH2	Floating

SSD1683 | Rev 1.0 | P 14/49 | Jan 2021 | **Solomon Systech**

5) FR indicates the frame rate for display. Table 6-7 shows the FR settings for frame rate selection.

Table 6-7: FR settings for frame rate selection

FR[3:0]	Frame Rate	FR[3:0]	Frame Rate		
0001	25Hz	1001	37.5Hz		
0010	50Hz	1010	62.5Hz		
0011	75Hz	1011	87.5Hz		
0100	100Hz	1100	112.5Hz		
0101	125Hz				

- 6) XON[nAB] and XON[nCD], indicates the gate scan selection.
- n represents the Group number
 - from 0 to 7 for 3-color mode
 - from 0 to 5 for black/white mode
- XON[nXY] = 0 indicates Normal gate scan in Phase[nX] & Phase[nY].
- XON[nXY] = 1 indicates All gate on, that Gate keeps High until the phase for normal gate scan, in Phase[nX] & Phase[nY].
- 7) EOPT represents Display off sequence.
- Set as 0x22 for
 - 2 scan frames to discharge TFT pixels voltage
 - VCOM and HV power will be discharged in a sequence.
- Set as 0x07 for
 - No scan frame, keep previous TFT pixels voltage
 - VCOM will float. VSH1/VSH2/VSL/VGH will be discharged & VGL will float in a sequence For 0x07 setting, VCOM and VGL are floating after display update. Please wait until the system completely discharge before next operation.
- 8) VGH, VSH1/ VSH2/ VSL and VCOM represent the gate driving voltage, source driving voltage and VCOM driving voltage respectively.
- VGH setting from 10V to 20V.
- VSH1 voltage setting from 8.6V to 17V.
- VSH2 voltage setting from 2.4V to 8.6V, 8.8V to 17V
- VSL setting from -5V to -17V.
- VCOM setting from -0.2V to -3V.

SSD1683 | Rev 1.0 | P 15/49 | Jan 2021 | **Solomon Systech**

6.7 WAVEFORM SETTING

As described in Section 6.6, parameters VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY], EOPT and VGH, VSH1/ VSH2/ VSL, VCOM are used to define the driving waveform. In the SSD1683, there are 233 bytes in the waveform setting as follows.

- WS byte 0~226, the content of waveform LUT are defined by Register 0x32
- WS byte 227, the content of display off sequence, is the parameter belonging to register 0x3F.
- WS byte 228, the content of gate level, is the parameter defined by Register 0x03.
- WS byte 229~231, the content of source level, is the parameter defined by Register 0x04.
- WS byte 232, the content of VCOM level, is the parameter defined by Register 0x2C.

Figure 6-6 and Figure 6-7 show the waveform setting format for 3-color mode and black/white mode respectively. The waveform setting of a particular temperature range can be loaded from OTP or written by MCU. These commands (0x32, 0x3F, 0x03, 0x04 and 0x2C) can be overridden by the latest register setting. For example, if waveform setting A is loaded from OTP first, then, MCU has written another waveform setting B into the driver IC after OTP loaded. The driver IC will use the waveform setting B to drive the display.

addr.	D7 D6	D5 D4 D3 D2 D1 D0	addr.	D7 D6 D5 D4 D3 D2	D1 D0			
0		RP LUTC 0	112	RP LUTW 0				
1	VS-0A-LUTC	TP LUTC 0A	113	VS-0A-LUTW TP LUTW 0A				
2	VS-0B-LUTC VS-0C-LUTC	TP LUTC 0B TP LUTC 0C	114	VS-0B-LUTW				
3	VS-0C-LUTC	TP LUTC 0D	115 116	VS-0D-LUTW TP LUTW 0D				
5	V3-0D-L01C	SR LUTC 0AB	117	SR LUTW 0AB				
6		SR LUTC 0CD	118	SR LUTW 0CD				
7		RP LUTC 1	119	RP LUTW 1				
8	VS-1A-LUTC	TP LUTC 1A	120	VS-1A-LUTW TP LUTW 1A				
9	VS-1B-LUTC	TP LUTC 1B	121	VS-1B-LUTW TP LUTW 1B				
10	VS-1C-LUTC	TP LUTC 1C	122	VS-1C-LUTW TP LUTW 1C				
11	VS-1D-LUTC	TP LUTC 1D	123	VS-1D-LUTW TP LUTW 1D				
12		SR LUTC 1AB	124	SR LUTW 1AB				
13		SR LUTC 1CD	125	SR LUTW 1CD				
14		RP LUTC 2	126	RP LUTW 2				
	\(\(\O_7\)			TD 11170/ 74				
50 51	VS-7A-LUTC VS-7B-LUTC	TP LUTC 7A TP LUTC 7B	162 163	VS-7A-LUTW TP LUTW 7A VS-7B-LUTW TP LUTW 7B				
52	VS-7C-LUTC	TP LUTC 7C	164	VS-7C-LUTW TP LUTW 7C				
53	VS-7D-LUTC	TP LUTC 7D	165	VS-7D-LUTW TP LUTW 7D				
54	70.12.20.0	SR LUTC 7AB	166	SR LUTW 7AB				
55		SR LUTC 7CD	167	SR LUTW 7CD				
56		RP LUTR 0	168	RP LUTB 0				
57	VS-0A-LUTR	TP LUTR 0A	169	VS-0A-LUTB TP LUTB 0A				
58	VS-0B-LUTR	TP LUTR 0B	170	VS-0B-LUTB TP LUTB 0B				
59	VS-0C-LUTR	TP LUTR 0C	171	VS-0C-LUTB TP LUTB 0C				
60	VS-0D-LUTR	TP LUTR 0D SR LUTR 0AB	172	VS-0D-LUTB TP LUTB 0D SR LUTB 0AB				
61 62		SR LUTR OCD	173 174	SR LUTB OAB				
63		RP LUTR 1	175	RP LUTB 1				
64	VS-1A-LUTR	TP LUTR 1A	176	VS-1A-LUTB TP LUTB 1A				
65	VS-1B-LUTR	TP LUTR 1B	177	VS-1B-LUTB TP LUTB 1B				
66	VS-1C-LUTR	TP LUTR 1C	178	VS-1C-LUTB TP LUTB 1C				
67	VS-1D-LUTR	TP LUTR 1D	179	VS-1D-LUTB TP LUTB 1D				
68		SR LUTR 1AB	180	SR LUTB 1AB				
69		SR LUTR 1CD	181	SR LUTB 1CD				
70		RP LUTR 2	182	RP LUTB 2				
106	VS-7A-LUTR	TP LUTR 7A	218	VS-7A-LUTB TP LUTB 7A				
107	VS-7B-LUTR	TP LUTR 7B	219	VS-7B-LUTB TP LUTB 7B				
108	VS-7C-LUTR	TP LUTR 7C	220	VS-7C-LUTB TP LUTB 7C				
109	VS-7D-LUTR	TP LUTR 7D	221	VS-7D-LUTB TP LUTB 7D				
110		SR LUTR 7AB	222	SR LUTB 7AB				
111		SR LUTR 7CD	223	SR LUTB 7CD				
			224	FR	Wallaca Wallaca			
			225 226	XON3CD XON3AB XON2CD XON2AB XON1CD XON1AB XON7CD XON7AB XON6CD XON6AB XON5CD XON5AB	XON0CD XON0AB XON4CD XON4AB			
			226	EOPT CONTAB XONGCD XONGAB XONGCD XONGAB	VOINACD VOINAB			
			228	VGH				
			229	VSH1				
			230	VSH2				
			231	VSL				
			232	VCOM				
								

Figure 6-6: Waveform Setting format for 3-color mode

SSD1683 | Rev 1.0 | P 16/49 | Jan 2021 | **Solomon Systech**

addr.	D7	D6	D5	D4	D3	D2	D1	D0	addr.	D7	D6	D5	D4	D3	D2	D1	D0	
0				RP LU					126				RP LL	TWB 0				
1	VS-0A-I					JTC 0A			127		LUTWB				WB 0A			
2	VS-0B-I					JTC 0B			128		LUTWB				WB 0B			
3	VS-0C-I					JTC 0C			129		LUTWB				WB 0C			
4	VS-0D-	LUTC		00.1118		JTC 0D			130	VS-0D-	LUTWB		TP LUTWB 0D SR LUTWB 0AB					
5	SR LUTC OAB SR LUTC OCD								131 132			SR LUTWB OAB SR LUTWB OCD						
6 7		RP LUTC 1												TWB 1				
8	VS-1A-I	LUTC		111 20		JTC 1A			133 134	VS-1A-	LUTWB		TP LUTWB 1A					
9	VS-1B-I		TP LUTC 1A TP LUTC 1B						135		LUTWB		TP LUTWB 1B					
10	VS-1C-I					JTC 1C			136		LUTWB			TP LUT				
11	VS-1D-					JTC 1D			137		LUTWB				WB 1D			
12				SR LUT					138			•		WB 1AB				
13				SR LUTO					139					WB 1CD				
14				RP LU					140				RP LU	TWB 2				
36	VS-5A-I	LUTC			TP III	JTC 5A			162	VS-5A-	LUTWB			TP LUT	WB 5A			
37	VS-5B-I					JTC 5B			163	VS-5B-					WB 5B			
38	VS-5C-I					JTC 5C			164		LUTWB				WB 5C			
39	VS-5D-					JTC 5D			165		LUTWB				WB 5D			
40				SR LUT					166					WB 5AB				
41				SR LUTO					167					WB 5CD				
42				RP LUT					168				RP LI	JTBB 0				
43	VS-0A-LU					WW 0A			169		-LUTBB				TBB 0A			
44	VS-0B-LU					WW 0B WW 0C			170		-LUTBB				TBB 0B			
45	VS-0C-LU VS-0D-LU					WW 0C			171		-LUTBB -LUTBB				TBB OC TBB OD			
46 47	VS-0D-LC	J I VV VV		SR LUTW		WW UD			172 173	VS-UD-	-LUIBB	1	CDIII		I RR OD			
48				SR LUTW					174				SR LUTBB OAB SR LUTBB OCD					
49				RP LUT\					175					JTBB 1				
50	VS-1A-LU	JTWW			TP LUT	WW 1A			176	VS-1A	-LUTBB		TP LUTBB 1A					
51	VS-1B-LU	JTWW			TP LUT	WW 1B			177	VS-1B-	-LUTBB			TP LU	TBB 1B			
52	VS-1C-LU					WW 1C			178		-LUTBB				TBB 1C			
53	VS-1D-LU	JTWW				WW 1D			179	VS-1D	-LUTBB				TBB 1D			
54				SR LUTW					180					TBB 1AB				
55				SR LUTW					181					TBB 1CD				
56				RP LUT	NVV Z				182				KP LI	JTBB 2				
78	VS-5A-LU	JTWW			TP LUT	WW 5A			204	VS-5A	-LUTBB			TP LU	TBB 5A			
79	VS-5B-LU					WW 5B			205		-LUTBB			TP LU	TBB 5B			
80	VS-5C-LU					WW 5C			206		-LUTBB			TP LU	TBB 5C			
81	VS-5D-LU	JTWW				WW 5D			207	VS-5D-	-LUTBB				TBB 5D			
82				SR LUTW					208					TBB 5AB				
83				SR LUTW RP LUT					209 210					TBB 5CD				
84 85	VS-0A-LI	ITRW		RP LUI		TBW 0A			210					0				
86	VS-0A-LU					BW 0B			223					0				
87	VS-0C-LL					BW 0C			224					FR				
88	VS-0D-LI					TBW 0D			225	XON3CD	XON3AB	XON2CD		XON1CD	XON1AB	XON0CD	XON0AB	
89				SR LUTB					226			0		XON5CD	XON5AB	XON4CD	XON4AB	
90				SR LUTB	W 0CD				227					OPT				
91				RP LUT					228					GH				
92	VS-1A-LU					BW 1A			229					SH1				
93	VS-1B-LU					BW 1B			230					SH2				
94	VS-1C-LL VS-1D-LI		TP LUTBW 1C TP LUTBW 1D						231					/SL				
95 96	A2-1D-F	OIDW		SR LUTB		PAN ID			232				VC	OM				
97				SR LUTB														
98																		
120	VS-5A-LI					TBW 5A												
121	VS-5B-LU					TBW 5B												
122	VS-5C-LL					TBW 5C												
123	VS-5D-LI	UTBW		60		TBW 5D												
124				SR LUTB														
125	SR LUTBW 5CD																	

Figure 6-7 : Waveform Setting format for black/white mode

6.8 Temperature Searching

The SSD1683 has internal temperature sensor to detect the environment temperature or can communicate with the external temperature sensor by I2C single master interface or can communicate with the external MCU to get the temperature value through SPI. In the SSD1683, there is a dedicated format for the temperature value so that the driver IC can understand it. The format of temperature value is described in Section 6.8.3.

SSD1683 | Rev 1.0 | P 17/49 | Jan 2021 | **Solomon Systech**

6.8.1 Internal Temperature Sensor

The internal temperature sensor can be selected by command register. The accuracy of it is ±2degC from - 25degC to 50degC.

6.8.2 External Temperature Sensor I2C Single Master Interface

The driver IC can communicate with the external temperature sensor through I2C single master interface (TSDA and TSCL). TSDA will be SDA and TSCL will be SCL. TSDA and TSCL are required to connect with external pull-up resistor. Temperature register value of external temperature sensor can be read by command register.

6.8.3 Format of temperature value

The temperature value is defined by 8-bit binary. The rules are shown as below.

- If the Temperature value MSByte bit D11 = 0, then the temperature is positive and value (DegC) = + (Temperature value)
- If the Temperature value MSByte bit D11 = 1, then the temperature is negative and value (DegC) = (2's complement of Temperature value)

Table 6-8 shows some examples of 8-bit binary temperature value:

Table 6-8: Example of 8-bit binary temperature settings for temperature ranges

8-bit binary (2's complement)	Hexadecimal Value	TR Value [DegC]
0111 1111	7F	12B
0110 0100	64	100
0101 0000	50	80
0100 1011	4B	75
0011 0010	32	50
0001 1001	19	25
0000 0000	00	0
1111 1111	FF	-1
1110 0111	E7	-25
1100 1001	C9	-55

SSD1683 | Rev 1.0 | P 18/49 | Jan 2021 | **Solomon Systech**

6.9 Waveform Setting searching mechanism

As mentioned in Section 6.7, the SSD1683 OTP can store waveform setting and temperature range. If waveform setting and temperature range are programmed in OTP memory, corresponding waveform LUT can be selected according to the sensed temperature to drive the display. The Waveform Setting searching mechanism by driver IC is as follows.

- 1) Read temperature value by command register in the format of 8-bit binary.
- According to read temperature and color mode selection, search LUT in OTP from TR0 to TR23 in sequence.
 The last match will be selected, then, the corresponding WS will be loaded in the LUT register to drive the
 display.

Remark: Waveform LUT selection criteria is "Lower temperature bound < Sensed temperature ≤ Upper temperature bound".

Table 6-9 shows an example for the waveform LUT searching from OTP:

- If the read temperature is 25degC, then, WS4 will be selected.
- If the read temperature is 34degC, then, WS7 will be selected. Although 34degC is also in the temperature range TR6, according to searching mechanism, the last match should be selected. Therefore, WS7 is selected.

TR Lower Limit TR Upper Limit Waveform Temperature Temperature range in OTP LUT in OTP Range in OTP [Hex] [Hex] WS0 TR0 80 05 -128 DegC < Temperature ≤ 5 DegC TR1 05 0A 5 DegC < Temperature ≤ 10DegC WS1 TR2 0A 0F 10 DegC < Temperature ≤ 15DegC WS2 WS3 TR3 0F 14 15 DegC < Temperature ≤ 20DegC WS4 TR4 14 19 20 DegC < Temperature ≤ 25DegC WS5 TR5 19 1E 25 DegC < Temperature ≤ 30DegC 23 WS6 TR6 1E 30 DegC < Temperature ≤ 35DegC 7F WS7 TR7 21 33 DegC < Temperature ≤ 127DegC 00 00 Others Others

Table 6-9: Example of waveform settings selection based on temperature ranges.

Precaution:

Please ensure the temperature range covers whole range of application temperatures, display will not be updated if no suitable temperature range matches the sensed temperature.

SSD1683 | Rev 1.0 | P 19/49 | Jan 2021 | Solomon Systech

6.10 One Time Programmable (OTP) Memory

In the SSD1683, there is an embedded OTP memory which is designed to store the waveform settings of different temperature range and some variables/parameters. The OTP memory can store 24 sets of waveform LUT settings (WS), 24 sets of temperature range (TR), VCOM value, color mode selection, waveform version and user ID. Figure 6 7 shows the address mapping of the 24 waveform setting (WS0 to WS23) and temperature range (TR0 to TR23).

addr.	D7	D6	D5	D4	D3	D2	D1	D0				
0												
				W	30							
232												
233												
	WS1											
465												
466	MOO											
	WS2											
698												
699												
				W	S3							
931												
932												
				W	34							
1164												
5126												
				WS	322							
5358												
5359												
				WS	323							
5591												
5592				TF	20							
5593				•••								
5594				TF	R1							
5595												
5596				TF	R2							
5597												
5598				TF	R3							
5599												
5600				TF	R4							
5601												
5636												
5637				TR	22							
5638				-	00							
5639				TR	23							

Figure 6-8: The Waveform setting mapping in OTP for waveform setting and temperature range

6.11 The Format for Temperature Range (TR)

The format of TR Lower limit and Upper limit as shown in Figure 6-8 which temp_L[7:0] is the lower limit and temp_H[7:0] is the upper limit of the temperature range. There has 24sets of TR for waveform LUT searching.

D7	D6	D5	D4	D3	D2	D1	D0				
	temp_L[7:0]										
	temp_H[7:0]										

Figure 6-9: Format of Temperature Range (TR) in OTP

SSD1683 | Rev 1.0 | P 20/49 | Jan 2021 | **Solomon Systech**

6.12 Cascade Mode

The SSD1683 has a cascade mode that can cascade 2 chips to achieve the display resolution up to 800 (sources) x 300 (gates). The pin M/S# is used to configure the chip. When M/S# is connected to VDDIO, the chip is configured as a master chip. When M/S# is connected to VSS, the chip is configured as a slave chip.

When the chip is configured as a master chip, it will be the same as a single chip application, ie, all circuit blocks will be worked as usual. When the chip is configured as a slave chip, its oscillator and booster & regulator circuit will be disabled. The oscillator clock and all booster voltages will be come from the master chip. Therefore, the corresponding pins including CL, VDD, VGH, VGL, VSH1, VSH2, VSL, VGL and VCOM must be connected to the master chip.

6.13 VCI Detection

The VCI detection function is used to detect the VCI level when it is lower than Vlow, threshold voltage set by register.

In SSD1683, there is a command to execute the VCI detection function. When the VCI detection command is issued, the VCI detection will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of VCI, which 0 is normal, 1 is VCI<Vlow.

6.14 HV Ready Detection

The HV Ready detection function is used to detect whether the analog block is ready.

In SSD1683, there is a command to execute the HV Ready detection function. When the HV Ready detection command is issued, the HV Ready will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of HV Ready, which 0 is normal, 1 indicate HV is not ready.

SSD1683 | Rev 1.0 | P 21/49 | Jan 2021 | Solomon Systech

7 COMMAND TABLE

Table 7-1: Command Table

Com	ommand Table											
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setting
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[8:0]= 12Bh [POR], 300 MUX
0	1		0	0	0	0	0	0	0	A ₈		MUX Gate lines setting as (A[8:0] + 1).
0	1		0 0	0 0	0	0	0	0 B ₂	0 B ₁	A ₈ B ₀		B [2:0] = 000 [POR]. Gate scanning sequence and direction B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channel, gate output sequence is G0,G1, G2, G3, GD=1, G1 is the 1st gate output channel, gate output sequence is G1, G0, G3, G2, B[1]: SM Change scanning order of gate driver. SM=0 [POR], G0, G1, G2, G3299 (left and right gate interlaced) SM=1, G0, G2, G4G294, G1, G3,G299 B[0]: TB TB = 0 [POR], scan from G0 to G299
												TB = 1, scan from G299 to G0.
0		02	0	0	0	0	_	0	1	1	Coto Driving voltage	Sat Cata driving voltage
0	0	03	0	0	0	0	0	0	1		Gate Driving voltage Control	Set Gate driving voltage A[4:0] = 00h [POR]
0	1		0	0	0	A ₄	A ₃	A_2	A ₁	A ₀	Control	VGH setting from 10V to 20V
												A[4:0] VGH A[4:0] VGH
												00h 20 0Dh 15
												03h 10 0Eh 15.5
												04h 10.5 0Fh 16
												05h 11 10h 16.5
												06h 11.5 11h 17
												07h 12 12h 17.5
												08h 12.5 13h 18
												07h 12 14h 18.5
												08h 12.5 15h 19
												09h 13 16h 19.5
												0Ah 13.5 17h 20
												0Bh 14 Other NA
												0Ch 14.5
						<u> </u>	<u> </u>			<u> </u>	l .	

 SSD1683
 Rev 1.0
 P 22/49
 Jan 2021
 Solomon Systech

Com	Command Table												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	04	0	0	0	0	0	1	0		0 0	Set Source driving voltage	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] = 41h [POR], VSH1 at 15V	
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		B [7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V	
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	C ₀		Remark: VSH1>=VSH2	

B[7] = 1, VSH2 voltage setting from 2.4V to 8.6V

VSH1/VSH2 A/B[7:0] VSH1/VSH2 A/B[7:0] AEh 5.6 2.4 2.5 AFh 5.7 2.6 B0h 5.8 B1h 5.9 2.7 B2h 6 2.8 2.9 B3h 6.1 B4h 6.2 3.1 B5h 6.3 B6h 3.2 6.4 3.3 B7h 6.5

8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 3.4 B8h 6.6 99h 3.5 B9h 6.7 BAh 9Ah 3.6 6.8 9Bh BBh 6.9 3.7 9Ch 3.8 BCh 7 BDh 7.1 9Dh 3.9 9Eh 4 BEh 7.2 4.1 7.3 9Fh BFh A0h 4.2 C0h 7.4 A1h 4.3 C1h 7.5 A2h 4.4 C2h 7.6 C3h A3h 4.5 7.7 A4h 4.6 C4h 7.8 A5h 4.7 C5h 7.9 C6h A6h 4.8 8 4.9 C7h 8.1 A7h A8h C8h 8.2 A9h 5.1 C9h 8.3 CAh AAh 5.2 8.4 ABh CBh 5.3 8.5 ACh 5.4 CCh 8.6

Other

ADh

A[7]/B[7] = 0,

VSH1/VSH2 voltage setting from 8.6V to 17V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
21h	8.6	37h	13
22h	8.8	38h	13.2
23h	9	39h	13.4
24h	9.2	3Ah	13.6
25h	9.4	3Bh	13.8
26h	9.6	3Ch	14
27h	9.8	3Dh	14.2
28h	10	3Eh	14.4
29h	10.2	3Fh	14.6
2Ah	10.4	40h	14.8
2Bh	10.6	41h	15
2Ch	10.8	42h	15.2
2Dh	11	43h	15.4
2Eh	11.2	44h	15.6
2Fh	11.4	45h	15.8
30h	11.6	46h	16
31h	11.8	47h	16.2
32h	12	48h	16.4
33h	12.2	49h	16.6
34h	12.4	4Ah	16.8
35h	12.6	4Bh	17
36h	12.8	Other	NA

C[7] = 0,

VSL setting from -5V to -17V

C[7:0]	VSL
0Ah	-5
0Ch	-5.5
0Eh	-6
10h	-6.5
12h	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
Other	NA

1	-								ı			
0	0	80	0	0	0	0	1	0	0	0	Initial Code Setting OTP Program	Program Initial Code Setting
												The command required CLKEN=1.
												Refer to Register 0x22 for detail. BUSY pad will output high during
												operation.
0	0	09	0	0	0	0	1	0	0	1		Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A_2	A ₁	A ₀	Code Setting	Selection
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B_2	B ₁	B ₀		A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0	1		C ₇	C ₆	C 5	C ₄	Сз	C_2	C ₁	C_0		Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀		
0	0	0A	0	0	0	0	1	0	1	0	Read Register for Initial Code Setting	Read Register for Initial Code Setting
			·								1	'
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phase 3

Rev 1.0 SSD1683 Solomon Systech P 23/49 Jan 2021

		d Tak	лe										
R/W# [D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	1		1	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Control	for soft start curre	ent and duration setting.
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		A[7:0] -> Soft sta	rt setting for Phase1
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		= 8Bh	[POR]
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] -> Soft sta = 9Ch	rt setting for Phase2
	•			ŭ		54			,			C[7:0] -> Soft sta	irt setting for Phase3
												= 96h D[7:0] -> Duratio	[POR] n settina
												= 0Fh	[POR]
												Bit Descrip A[6:0] / B[6	tion of each byte: :0] / C[6:0]:
												Bit[6:4]	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000	NA
												0011	IVA
												0100	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:0]: dura D[5:4]: du D[3:2]: du	ation setting of phase ration setting of phase 3 ration setting of phase 2 ration setting of phase 1 Duration of Phase [Approximation] 10ms 20ms 30ms
												11	40ms

 SSD1683
 Rev 1.0
 P 24/49
 Jan 2021
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0]: Description
	-			-					,			00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: *To Exit Deep Sleep mode, User required to send HWRESET to the driver
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A ₂	A ₁	A ₀	Data Littly mode setting	A[2:0] = 011 [POR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 —Y decrement, X decrement, 01 —Y decrement, X increment, 10 —Y increment, X increment, 11 —Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

 SSD1683
 Rev 1.0
 P 25/49
 Jan 2021
 Solomon Systech

Com	man	d Ta	ble											
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration:		
0	1		0	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.		
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection		
0	1		0	0	0	0	0	A ₂	A ₁	Ao		A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).		

 SSD1683
 Rev 1.0
 P 26/49
 Jan 2021
 Solomon Systech

Com			ble											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	16	0	0	0	1	0	1	1	0	Program WS password to		Password to OTP.	
0	1		A ₇	A ₆	A 5	A ₄	A ₃	A ₂	A ₁	A ₀	OTP	Remark: Requirements of the control	uire clock is active. And Bu	sy = 1 during
0	0	17	0	0	0	1	0	1	1	1	Program Automated	Program OTF		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]	OTP area	Ref to
												8	Program Init code	Cmd08
												16	Program PW	Cmd16
												2a	Program VCOM	Cmd2A
												30	Program LUT	Cmd30
												36	Program User_ID	Cmd36
												Others	Program NA	NA
												mode. 2. Command 17	only operating in internal of action performed: open of the open o	clock -> analog
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature	e Sensor Selection	
0	1	10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] = 48h	[POR], external tem	nperatrure
												sensor A[7:0] = 80h	Internal temperatur	e sensor
								ı		I	T	1		
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor Control (Write to	Write to tem $A[7:0] = 7Fh$	perature register.	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	temperature register)	$A[I:0] = I \cap I$	I[FOK]	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from to	emperature register.	
1	1	10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Read from	rtoda nom t	emperature register.	
-	-		,	1 10	1 10					1 10	temperature register)			
								ı		ı		1		
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor Control (Write Command	Write Comm sensor.	nand to External tem	perature
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	to External temperature	A[7:0] = 00h	[POR],	
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	sensor)	B[7:0] = 00h		
	'		Ο ₁	06	05	U 4	U 3	C 2	C1	00		C[7:0] = 00h	[POR],	
												A[7:6]		
													ect no of byte to be sent lress + pointer	
												01 Add	ress + pointer + 1st para	
												2nd	lress + pointer + 1st para pointer	meter +
												11 Add A[5:0] – Poi	ress oter Setting	
												B[7:0] – 1 st p		
												$C[7:0] - 2^{nd}$		4
													nd required CLKEN= gister 0x22 for detail.	
												After this co	mmand initiated, Wr	ito
													o external temperatu	
												starts. BUS	/ pad will output high	
												operation.		

 SSD1683
 Rev 1.0
 P 27/49
 Jan 2021
 Solomon Systech

ommand Table W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description														
W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.		
												.		
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀]1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]		
0	1		0	0	0	B4	0	0	0	0		A[7:4] Red RAM option 0000		

 SSD1683
 Rev 1.0
 P 28/49
 Jan 2021
 Solomon Systech

Com	man	d Ta	ble										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option	on:
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Control 2	Enable the stage for Master Act	ivation
												A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog	03
												→ Disable clock signal	03
												Enable clock signal	
												→ Load LUT (3-color mode)	91
												→ Disable clock signal	
												Enable clock signal → Load LUT (black/white mode)	99
												→ Disable clock signal	99
												Enable clock signal	
												→ Load temperature value→ Load LUT (3-color mode)	B1
												→ Disable clock signal	
												Enable clock signal	
												→ Load temperature value→ Load LUT (black/white mode)	B9
												→ Disable clock signal	
												English also be also also	
												Enable clock signal → Enable Analog	
												→ Display (3-color mode)	C7
												→ Disable Analog	
												→ Disable OSC Enable clock signal	
												→ Enable Analog	
												→ Display (black/white mode)→ Disable Analog	CF
												→ Disable OSC	
												Enable clock signal → Enable Analog	
												→ Load temperature value	
												→ Load LUT (3-color mode)	F7
												→ DISPLAY (3-color mode)→ Disable Analog	
												→ Disable OSC	
												Enable clock signal	
												→ Enable Analog→ Load temperature value	
												→ Load LUT (black/white mode)	FF
												→ DISPLAY (black/white mode)→ Disable Analog	
												→ Disable OSC	
											• 		
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White)	After this command, data entrie	s will be
											/ RAM 0x24 `	written into the BW RAM until a	
												command is written. Address po	ointers will
												advance accordingly	
												For Write pixel:	
												Content of Write RAM(BW) =	1
												For Black pixel: Content of Write RAM(BW) = 0	,
-								I		<u> </u>		Content of write NAIM(DW) = (,

 SSD1683
 Rev 1.0
 P 29/49
 Jan 2021
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
												Content of White to IM(NEB) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
												The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required ENABLE CLOCK SIGNAL and ENABLE ANALOG. Refer to Register 0x22 for detail. BUSY pad will output high during
												operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1	13	0	1	0	0	A ₃	A ₂	A ₁	A ₀	. 35 Jones Baranon	sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
	J	273	5)	'		'		'			The command required ENABLE CLOCK. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

 SSD1683
 Rev 1.0
 P 30/49
 Jan 2021
 Solomon Systech

Com	man	d Ta	ble													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	ion			
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register		_	er from M	ICU interfac	се
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0] = 0	00h [POR]			
												A[7:0]	VCOM	A[7:0]	VCOM	
												08h	-0.2	44h	-1.7	
												0Ch	-0.3	48h	-1.8	
												10h	-0.4	4Ch	-1.9	
												14h	-0.5	50h	-2	
												18h	-0.6	54h	-2.1	
												1Ch	-0.7	58h	-2.2	
												20h	-0.8	5Ch	-2.3	
												24h	-0.9	60h	-2.4	-
												28h	-1	64h	-2.5	
												2Ch	-1.1	68h	-2.6	
												30h	-1.2	6Ch	-2.7	
												34h	-1.3	70h	-2.8	-
												38h	-1.4	74h	-2.9	
												3Ch	-1.5	78h	-3 NA	
												40h	-1.6	Other	NA	<u> </u>
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:	
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Display Option				•	
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀			VCOM OT		on	
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁			(Comm	and 0x37,	Byte A)		
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0]: \	VCOM Reg	aister		
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀			and 0x2C)	,		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀						
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀			·G[7:0]: Dis and 0x37,			
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		[5 bytes		Dyle D lo	Dyte i)	
1	1		I ₇	I ₆	I ₅	I ₄	I ₃	I ₁₂	I ₁	I ₀			_			
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀			·K[7:0]: Wa			
-												[4 bytes	and 0x37,	Byte G to	o Byte J)	
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[+ bytes	·)			
0	0	2E	0	0	1	0	1	1	1	0	User ID Read		Byte User			
1	1		A ₇	A ₆	A ₅	A_4	A ₃	A ₂	A ₁	A_0				er ID (R38	8, Byte A ar	nd
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Byte J)	[10 bytes]			
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀						
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀						
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀						
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀						
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀						
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H₀						
1	1		П7 I ₇	П ₆	П5 I ₅	П4 I 4			П1 I ₁	I ₀						
							l ₃	l ₂								
1	1		J_7	J ₆	J 5	J_4	J ₃	J_2	J ₁	J_0						

 SSD1683
 Rev 1.0
 P 31/49
 Jan 2021
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A ₅	A ₄	0	0	A ₁	A ₀		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal
												1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal
												1: BUSY A[1:0]: Chip ID [POR=01]
												Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
				1	1		1		1	1	ı	
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command.
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
	_						_	_			I	
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1	JZ	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	TVING LOT TEGISTET	[227 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		:	:	:	:	:	:	:	:		FR and XON[nXY] Refer to Session 6.7 WAVEFORM
0	1		•						•			SETTING
		0.1	_	•	_	_	_	_	•	_		
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1683 application note.
												BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1	55	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	ONO Status Neau	A[15:0] is the CRC read out value
1	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈		
	•		/٦/	776	775	/ 74	7-3	772	/71	70		

 SSD1683
 Rev 1.0
 P 32/49
 Jan 2021
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required ENABLE CLOCK. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
		07	_	_		4			4			hu:
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display Option	Write Register for Display Option A[7] Spare VCOM OTP selection
0	1		A ₇	0	0 P	0 B ₄	0 B ₃	0 B ₂	0	0 B ₀	- Option	0: Default [POR]
0	1		C ₇	B ₆	B ₅	C ₄	C ₃	C ₂	B ₁	C ₀		1: Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	F ₆ 0 0 F ₃ F ₂ F ₁ F ₀							D[7:0] Display Mode for WS[23:16] 0: Display Mode 1(3-color mode)
0	1		G ₇ G ₆ G ₅ G ₄ G ₃ G ₂ G ₁ (G ₁	G ₀		1: Display Mode 2(black/white mode)
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H₁	H₀		EIGH Ding Dong for block/white mode
0	1		I ₇	l 6	I ₅	I ₄	l ₃	l ₂	I ₁	I ₀		F[6]: Ping-Pong for black/white mode 0: RAM Ping-Pong disable [POR]
0	1		J_7	J_6	J_5	J_4	J_3	J_2	J_1	J_0		1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP by command 0x36 2) RAM Ping-Pong function is not support for 3-color mode
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1	-	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C_6	C ₅	C ₄	C ₃	C_2	C_1	C ₀		OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		
0	1		G ₇	G ₆	G ₅	G ₄	G₃	G ₂	G ₁	G₀		
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	I₁ J₁	J ₀		
			07	00	0.5	04	03	O2	0	00		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage
												Remark: User is required to EXACTLY follow the reference code sequences
	1				ı		1	1		1	1	

 SSD1683
 Rev 1.0
 P 33/49
 Jan 2021
 Solomon Systech

Command Table														
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	3C	0	0	1	1	1	1	0		Border Waveform Control	•	r waveform for VBD	
0	1	30					0	0	A ₁		Border wavelonn control		[POR], set VBD as HIZ.	
U	ı		A ₇	A ₆	A_5	A_4	U	U	A ₁	A ₀			ct VBD option	
												A[7:6]	Select VBD as	
												00	GS Transition,	
													Defined in A[2] and A[1:0]	
												01	Fix Level,	
													Defined in A[5:4]	
												10	VCOM	
												11[POR]	HiZ	
												Λ [F. 4] Fiv. La	aval Catting for VDD	
												A[5:4] FIX LE	evel Setting for VBD VBD level	
												00	VSS	
												01	VSH1	
												10	VSL	
												11	VSH2	
												A [1:0] GS Tr	ransition setting for VBD	
												VBD Level S	election:	
												00b: VCOM;		
												10b: VSL; 11		
												A[1:0]	VBD Transition	
												00	LUT0	
												01	LUT1	
												10 11	LUT2	
												11	LUT3	
	0	٥٦	0	0	4	4	4	4	4		End Ontion (EODT)			
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LU		
0	1		A ₇	A ₆	A_5	A_4	A_3	A_2	A ₁	A_0		Set this byte	t0 22n	
_										Ι.	D 15446 d	D 15446		
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option A[0]= 0 [POR] 0 : Read RAM corresponding to RAM0x24		
0	1		0	0	0	A ₄	0	0	0	A ₀				
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀			M corresponding to RAM0x26	
0	1		C ₇	C ₆	C ₅	C ₄	С3	C ₂	C ₁	C_0			seri seperiag te :e.	
												A[4] =0: select CRC check mode to		
												window mode by C44/C45 window set.		
													ct CRC check mode to	
													le follow {C[7:0], B[7:0]} set	
												values .	OI) : default is 0x1609 as the	
												LUT bytes is	0]}: default is 0x1608, as the	
												LOT Dytes is	oo to bytoo.	
				_						1		· · · · · · · · · · · · · · · · · · ·		
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address		tart/end positions of the	
0	1		0	0	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Start / End position		ess in the X direction by an	
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		address unit	tor RAM	
								_				Δ[5:0]: VS Δ[4	5:0], XStart, POR = 00h	
													5:0], XStart, POR = 0011 5:0], XEnd, POR = 31h	
		l					<u> </u>	<u> </u>		<u> </u>	<u> </u>		5.0,, 7.2.10, 1 017 - 0111	

 SSD1683
 Rev 1.0
 P 34/49
 Jan 2021
 Solomon Systech

	Command Table														
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	on		
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify th	e start/end	d positions	s of the
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	-	window address in the Y direction by an			
0	1		0	0	0	0	0	0	0	A ₈		address u	nit for RAI	M	
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		A[8:0]: YS	ΛΙΩ·Ω1 VS	Start DOD	2 – 000h
0	1		0	0	0	0	0	0	0	B ₈		B[8:0]: YE			
0	0	46	0	1	0	0	0	1	1		Auto Write RED RAM for				ular Pattern
0		40	A ₇		A ₅	A ₄	0		A ₁	A ₀	Regular Pattern	A[7:0] = 0		witor ixeg	julai Falleiii
U	1		A 7	A ₆	A 5	A 4	U	A ₂	A1	A ₀		A[7]: The		alue, POR	R = 0
												A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction according to Gate			
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	300
												011	64	111	NA
												011	0.		
												A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source			
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	256
												010	32	110	400
												011	64	111	NA
												BUSY pac operation.			
0	0	47	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁		Auto Write B/W RAM for Regular Pattern	Auto Write $A[7:0] = 0$		M for Reg	ular Pattern
												A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction according to Gate			
													A[6:4]	Height	
												000	8	100	128
												001	16	101	256
												010	32	110	300
												011	64	111	NA
												A[2:0]: Ste	ep Width, l er RAM in	POR= 000 X-direction	on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	256
												010	32	110	400
												011	64	111	NA
												During op high.	eration, Bl	USY pad v	will output

 SSD1683
 Rev 1.0
 P 35/49
 Jan 2021
 Solomon Systech

Command Table															
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description			
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X			
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address in the address counter (AC) A[5:0]: 00h [POR].			
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y			
0	1		A ₇	A ₆	A_5	A_4	A_3	A_2	A ₁	A_0	counter	address in the address counter (AC)			
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 000h [POR].			
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.			

 SSD1683
 Rev 1.0
 P 36/49
 Jan 2021
 Solomon Systech

8 COMMAND DESCRIPTION

8.1 Driver Output Control (01h)

This triple byte command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0
PC)R	0	0	1	0	1	0	1	1
W	1								MUX8
PC)R								1
W	1						GD	SM	TB
PC)R						0	0	0

MUX[8:0]: Specify number of lines for the driver: MUX[8:0] + 1. Multiplex ratio (MUX ratio) from 16 MUX to 300MUX.

GD: Selects the 1st output Gate

This bit is made to match the GATE layout connection on the panel. It defines the first scanning line.

SM: Change scanning order of gate driver.

When SM is set to 0, left and right interlaced is performed.

When SM is set to 1, no splitting odd / even of the GATE signal is performed,

Output pin assignment sequence is shown as below (for 300 MUX ratio):

	SM=0	SM=0	SM=1	SM=1
Driver	GD=0	GD=1	GD=0	GD=1
G0	ROW0	ROW1	ROW0	ROW150
G1	ROW1	ROW0	ROW150	ROW0
G2	ROW2	ROW3	ROW1	ROW151
G3	ROW3	ROW2	ROW151	ROW1
:	:	:	:	:
G148	ROW148	ROW149	ROW74	ROW224
G149	ROW149	ROW148	ROW224	ROW74
G150	ROW150	ROW151	ROW75	ROW225
G151	ROW151	ROW150	ROW225	ROW75
:	:	:	:	:
G296	ROW296	ROW297	ROW148	ROW298
G297	ROW297	ROW296	ROW298	ROW148
G298	ROW298	ROW299	ROW149	ROW299
G299	ROW299	ROW298	ROW299	ROW149

See "Scan Mode Setting" on next page.

TB: Change scanning direction of gate driver.

This bit defines the scanning direction of the gate for flexible layout of signals in module either from up to down (TB = 0) or from bottom to up (TB = 1).

SSD1683 | Rev 1.0 | P 37/49 | Jan 2021 | **Solomon Systech**

Figure 8-1: Output pin assignment on different Scan Mode Setting

SSD1683 | Rev 1.0 | P 38/49 | Jan 2021 | **Solomon Systech**

8.2 Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	ID0
PC)R	0	0	0	0	0	0	1	1

ID[1:0]: The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = "0", the address counter is updated in the X direction. When AM = "1", the address counter is updated in the Y direction. When window addresses are selected, data are written to the RAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

The pixel sequence is defined by the ID [0],

SSD1683 | Rev 1.0 | P 39/49 | Jan 2021 | Solomon Systech

8.3 Set RAM X - Address Start / End Position (44h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1			XSA5	XSA4	XSA3	XSA2	XSA1	XSA0
PC)R	0	0	0	0	0	0	0	0
W	1			XEA5	XEA4	XEA3	XEA2	XEA1	XEA0
PC)R	0	0	1	1	0	0	0	1

XSA[5:0]/XEA[5:0]: Specify the start/end positions of the window address in the X direction by 8 times address unit. Data is written to the RAM within the area determined by the addresses specified by XSA [5:0] and XEA [5:0]. These addresses must be set before the RAM write.

It allows on XEA [5:0] \leq XSA [5:0]. The settings follow the condition on 00h \leq XSA [5:0], XEA [5:0] \leq 31h. The windows is followed by the control setting of Data Entry Setting (R11h)

8.4 Set RAM Y - Address Start / End Position (45h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	YSA7	YSA6	YSA5	YSA4	YSA3	YSA2	YSA1	YSA0
PC)R	0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0	0	YSA8
PC)R	0	0	0	0	0	0	0	0
W	1	YEA7	YEA6	YEA5	YEA4	YEA3	YEA2	YEA1	YEA0
PC)R	0	0	1	0	1	0	1	1
W	1	0	0	0	0	0	0	0	YEA8
PC)R	0	0	0	0	0	0	0	1

YSA[8:0]/YEA[8:0]: Specify the start/end positions of the window address in the Y direction by an address unit. Data is written to the RAM within the area determined by the addresses specified by YSA [8:0] and YEA [8:0]. These addresses must be set before the RAM write.

It allows YEA [8:0] \leq YSA [8:0]. The settings follow the condition on 00h \leq YSA [8:0], YEA [8:0] \leq 12Bh. The windows is followed by the control setting of Data Entry Setting (R11h)

8.5 Set RAM Address Counter (4Eh-4Fh)

Reg#	R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
4Eh	W	1			XAD5	XAD4	XAD3	XAD2	XAD1	XAD0
	PC)R	0	0	0	0	0	0	0	0
	W	1	YAD7	YAD6	YAD5	YAD4	YAD3	YAD2	YAD1	YAD0
	PC	R	0	0	0	0	0	0	0	0
4Fh	W	1								YAD8
	PC)R								0

XAD[5:0]: Make initial settings for the RAM X address in the address counter (AC). **YAD[8:0]:** Make initial settings for the RAM Y address in the address counter (AC).

After RAM data is written, the address counter is automatically updated according to the settings with AM, ID bits and setting for a new RAM address is not required in the address counter. Therefore, data is written consecutively without setting an address. The address counter is not automatically updated when data is read out from the RAM. RAM address setting cannot be made during the standby mode. The address setting should be made within the area designated with window addresses which is controlled by the Data Entry Setting (R11h) {AM, ID[1:0]}; RAM Address XStart / XEnd Position (R44h) and RAM Address Ystart / Yend Position (R45h). Otherwise undesirable image will be displayed on the Panel.

SSD1683 | Rev 1.0 | P 40/49 | Jan 2021 | **Solomon Systech**

9 Operation Flow and Code Sequence

In this section, two SSD1683 operation flows with loading waveform LUT from OTP are introduced. The flows are shown in section 9.1 and section 9.2.

9.1 SSD1683 operation flow to drive display panel with power on/off

Figure 9-1 shows the SSD1683 operation flow to drive display panel with power on and off. In this flow, the driver IC will be off after display panel is update.

Figure 9-1: Operation flow to drive display panel power on/off

SSD1683 | Rev 1.0 | P 41/49 | Jan 2021 | **Solomon Systech**

9.2 SSD1683 operation flow to enter deep sleep mode 2 after display update

Figure 9-2 shows the SSD1683 operation flow to enter deep sleep mode2 after display update. In this flow, the driver IC will enter the deep sleep mode 2 after display update.

Figure 9-2: Operation flow to enter deep sleep mode 2 after display update

SSD1683 | Rev 1.0 | P 42/49 | Jan 2021 | **Solomon Systech**

10 Absolute Maximum Rating

Table 10-1: Maximum Ratings

Symbol	Parameter	Rating	Unit
Vcı	Logic supply voltage	-0.5 to +6.0	V
VIN	Logic Input voltage	-0.5 to V _{DDIO} +0.5	V
Vouт	Logic Output voltage	-0.5 to V _{DDIO} +0.5	V
Topr	Operation temperature range	-40 to +85	°C
T _{STG}	Storage temperature range	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{Cl} be constrained to the range $V_{SS} < V_{Cl}$. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{DDIO}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

11 Electrical Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, VDD=1.8V, T_{OPR}=25°C.

Table 11-1: DC Characteristics

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Vcı	VCI operation voltage	VCI	-	2.3	3.0	3.7	V
V_{DD}	VDD operation voltage	VDD	-	1.7	1.8	1.9	V
V _{COM_DC}	VCOM_DC output voltage	VCOM	-	-3.0	_	-0.2	V
dV _{COM_DC}	VCOM_DC output voltage deviation	VCOM	-	-200	-	200	mV
V _{СОМ_АС}	VCOM_AC output voltage	VCOM	-	V _{SL} + V _{COM_DC}	V _{СОМ_DС}	V _{SH1} + V _{COM_DC}	\ \
V _{GATE}	Gate output voltage	G0~G299	-	-20	-	+20	V
V _{GATE(p-p)}	Gate output peak to peak voltage	G0~G299	-	-	-	40	V
V _{SH1}	Positive Source output voltage	VSH1	-	+8.6	+15	+17	V
dV _{SH1}	VSH1 output voltage deviation	VSH1	From 8.6V to 17V	-200	-	200	mV
V _{SH2}	Positive Source output voltage	VSH2	-	+2.4	+5	+17	V
dV _{SH2}	VSH2 output voltage	VSH2	From 2.4V to 8.6V	-100	-	100	mV
	deviation		From 8.8V to 17V	-200	-	200	mV
V _{SL}	Negative Source output voltage	VSL	-	-17	-15	-5.0	V
dV _{SL}	VSL output voltage deviation	VSL	-	-200	-	200	mV
V _{IH}	High level input voltage	SDA, SCL, CS#, D/C#, RES#, BS1,	-	0.8V _{DDIO}	-	-	V
VIL	Low level input voltage	M/S#, CL	-	-	-	0.2V _{DDIO}	V
Vон	High level output voltage	SDA, BUSY, CL	IOH = -100uA	0.9V _{DDIO}	-	-	V
Vol	Low level output voltage		IOL = 100uA	-	-	0.1V _{DDIO}	V
V_{PP}	OTP Program voltage	VPP	-	7.25	7.5	7.75	V

SSD1683 | Rev 1.0 | P 43/49 | Jan 2021 | **Solomon Systech**

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Islp_VCI	Sleep mode current	VCI	 DC/DC off No clock No output load MCU interface access RAM data access 	-	25	35	uA
Idslp_VCI1	Current of deep sleep mode 1	VCI	- DC/DC off - No clock - No output load - No MCU interface access - Retain RAM data but cannot access the RAM	-	3	5	uA
Idslp_VCI2	Current of deep sleep mode 2	VCI	- DC/DC off - No clock - No output load - No MCU interface access - Cannot retain RAM data	-	1	4	uA
lopr_VCI	Operating Mode current	VCI	VCI=3.0V	-	1000	-	uA
V _{GH}	Operating Mode Output Voltage	VGH	Enable Clock and Analog by Master Activation Command	19.5	20	20.5	V
V _{SH1}		VSH1	VGH=20V VGL=-VGH	14.8	15	15.2	V
V _{SH2}		VSH2	VSH1=15V VSH2=5V	4.9	5	5.1	V
VsL		VSL	VSL=-15V VCOM = -2V	-15.2	-15	-14.8	V
V _{СОМ}		VCOM	No waveform transitions. No loading. No RAM read/write No OTP read /write	-2.2	-2	-1.8	V

Table 11-2: Regulators Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
IVSH	VSH1 current	VSH1 = +15V	VSH1	-	-	800	uA
IVSH1	VSH2 current	VSH2 = +5V	VSH2	-	-	800	uA
IVSL	VSL current	VSL = -15V	VSL	-	-	800	uA
IVCOM	VCOM current	VCOM = -2V	VCOM	-	-	100	uA

 SSD1683
 Rev 1.0
 P 44/49
 Jan 2021
 Solomon Systech

12 AC Characteristics

12.1 Serial Peripheral Interface

The following specifications apply for: VDDIO - VSS = 2.3V to 3.7V, $T_{OPR} = 25^{\circ}C$, CL=20pF

Table 12-1: Serial Peripheral Interface Timing Characteristics

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Write Mode)	-	-	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	60	-	-	ns
tcsнigh	Time CS# has to remain high between two transfers	100	-	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	25	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	25	-	-	ns
t _{SISU}	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	-	-	ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	-	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)	-	-	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50	-	-	ns
tcsнigh	Time CS# has to remain high between two transfers	250	-	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	180	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	180	-	-	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	-	ns
t _{SOHLD}	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0	-	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

tckper CS# tcshigh t sclhigh **t**CSHLD tcssu SCL tsisu 🛠 → tsihld SDA (Write Mode) \leftrightarrow t_{SOHLD} tsosu ⊱ SDA (Read Mode)

Figure 12-1: SPI timing diagram

SSD1683 | Rev 1.0 | P 45/49 | Jan 2021 | **Solomon Systech**

13 Application Circuit

C2 VGH < GDR VSH2 VSH2 TSCL TSDA BS1 TSCL CONNECTION BUSY TSDA EXTERNAL TEMP SENSOR RES# 10 D/C# 11 12 CS# BS1 SCL BUSY 14 CONNECTION 15 VDDIO D/C# 16 MCU VCI CS# 17 vss SCL VDD 18 19 SDA VPP VSH1 VGH 21 VCI 22 23 VSS VSI CO VDD VGL VCOM VPP C1 VSH1 C5 VGH VGL C7 VCOM C8

Figure 13-1: Schematic of SSD1683 application circuit

Table 13-1: Component list for SSD1683 application circuit

Part Name	Value	Requirements/Reference Part
C0-C1	1uF	X5R/X7R; Voltage Rating : 6V or 25V
C2-C7	1uF	0603/0805; X5R/X7R; Voltage Rating : 25V
C8	1uF	0603/0805; X7R; Voltage Rating : 25V
R1	2.2 ohm	0603/0805; 1% variation, ≥ 0.05W
D1-D3	Diode	MBR0530 1) Reverse DC voltage ≥ 30V 2) Io ≥ 500mA 3) Forward voltage ≤ 430mV
Q1	NMOS	Si1304BDL/NX3008NBK 1) Drain-Source breakdown voltage ≥ 30V 2) Vgs(th) = 0.9V (Typ), 1.3V (Max) 3) Rds on ≤ 2.1Ω @ Vgs = 2.5V
L1	47uH	CDRH2D18 / LDNP-470NC lo= 500mA (Max)
U1	0.5mm ZIF socket	24pins, 0.5mm pitch

Remarks:

- The recommended component value and reference part in Table 13-1 is subject to change depending on panel loading.
- 2) Customer is required to review if the selected component value and part is suitable for their application.

SSD1683 | Rev 1.0 | P 46/49 | Jan 2021 | **Solomon Systech**

14 PACKAGE INFORMATION

14.1 Die Tray Dimensions for SSD1683Z

Figure 14-1: SSD1683Z die tray information

SECTION A-A

Symbol	Spec(mm) (mil)
W1	101.60±0.10(4000)
W2	91.55±0.10(3604)
W3	91.85±0.10(3616)
Н	4.55±0.10 (179)
Dx	13.55±0.10 (533)
TPx	74.50±0.10(2933)
Dy	7.40±0.10 (291)
TPy	86.80±0.10(3417)
Px	14.90±0.05 (587)
Ру	2.80±0.05 (110)
X	13.26±0.05 (522)
Υ	1.15±0.05 (45)
Z	0.40±0.05 (16)
Ν	192(pocket number)

SSD1683 Rev 1.0 P 47/49 Jan 2021 **Solomon Systech**

14.2 Die Tray Dimensions for SSD1683Z8

Figure 14-2 : SSD1683Z8 die tray information (unit: mm)

Symbol	Spec(mm) (mil)
W1	101.60±0.10(4000)
W2	91.55±0.10(3604)
W3	91.85±0.10(3616)
Н	4.55±0.10 (179)
Dx	13.55±0.10 (533)
TPx	74.50±0.10(2933)
Dy	7.60±0.10 (299)
TPy	86.40±0.10(3402)
Px	14.90±0.05 (587)
Ру	2.70±0.05 (106)
Х	13.26±0.05 (522)
Υ	1.06±0.05 (42)
Z	0.40±0.05 (16)
X1	13.26±0.05 (522)
Y1	1.06±0.05 (42)
Z1	0.35±0.05 (14)
N	198(pocket number)

 SSD1683
 Rev 1.0
 P 48/49
 Jan 2021
 Solomon Systech

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive (EU) 2015/863 of 31 March 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council as regards the list of restricted substances and People's Republic of China Electronic Industry Standard GB/T 26572-2011 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子电器产品中限用物質的限用要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

SSD1683 Rev 1.0 P 49/49 Jan 2021 **Solomon Systech**