

Number Representation

On computer

Where come from the various number representations

In the position number representation, the base is implicitly contained in the position of number ...Thanks to Zero

1932

$$1000 + (1000 - 100) + 10 + 10 + 10 + 2$$

$$1*10^3 + 9*10^2 + 3*10^1 + 2*10^0$$

The modern number representation can be define as

$$d = \sum_{i=-n}^{m} 10^{i} \times d_{i} = \sum_{i=-n}^{m} b^{i} \times d_{i}$$

The base of the number representation is define by **b**

With m integer and n decimal

Integer - Conversion b=10 to b=2

To convert from base 10 to base 2 an integer we pass by the euclidian division

$$75|_{10} = 1001011|_{2}$$

Representation on the machine

The numbers are physically represented in base 2 on the machine - a **bit**

A number is represented by a finit group of 8 bits, a bytes

A bytes
$$\longrightarrow$$
 255 = 28-1

By convention integer are represented on 4 bytes = 32 bits \longrightarrow Max value = 2^{32} -1 ~ $4x10^{10}$

The negative integer

To represent the negative integer we use the first bit to sign the number

The range of the representation is reduce: [-2³¹:2³¹-1]

We lose one digit: $max val = 2^7-1$

0: positif

1: negative

The negative integer

To represent the negative integer we use the first bit to sign the number

The range of the representation is reduce: [-2³¹:2³¹-1]

We lose one digit: $\max val = 2^7-1$

Method of complement at 2

To obtain the opposite value of the a positif integer we use the method of complement at 2

- 1. Inverse the value of all bit
- 2. Add 1

$$2 = 0010 \\
1101 \\
+0001 \\
\hline
1110 - 2$$

$$0010 \\
+1110 \\
\hline
0000$$

Floating point - Conversion b=10 to b=2

To convert from base 10 to base 2 the decimal part of real number we pass by a multiplication

$$0.375 \times 2 = 0.75$$
 $0.75 \times 2 = 1.5$
 $0.5 \times 2 = 1.0$

$$0.375 \mid_{10} = 0.011 \mid_{2}$$

Floating point - Conversion b=10 to b=2

To convert from base 10 to base 2 the decimal part of real number we pass by a multiplication

$$0.375 \times 2 = 0.75$$
 $0.75 \times 2 = 1.5$
 $0.5 \times 2 = 1.0$

$$0.375 \mid_{10} = 0.011 \mid_{2}$$

$$0.3 \times 2 = 0.6$$
 $0.6 \times 2 = 1.2$
 $0.2 \times 2 = 0.4$
 $0.4 \times 2 = 0.8$
 $0.8 \times 2 = 1.6$
 $0.6 \times 2 = 1.2$

$$0.3 \mid_{10} = 0.01001[1001] \mid_{2}$$

Floating point representation on machine

$$-254.603 = -2.54603 \times 10^{2}$$
Sign Mantisse Exposant

Float is coded on 4 bytes

Double is coded on 8 bytes

4 1 1	8 bits	23 bits	
1 bit	11 bits	52 bits	In memory

$$r = (-1)^{s} * (1 + \sum_{i=1}^{N_m} m_i 2^{-i}) * 2^{e_b - e_0}$$

The bit of sign is associate to the mantisse but the sign of the exponent follow another rule

For 8 bits associate to the exponent we define $\ e_0=2^{8-1}-1=127$

And we store in memory an bias exponent: $e_b = e + e_0 \in \{-2^{7-1} + 1 : 2^{7-1}\}$

Floating point representation on machine

$$r = (-1)^{s} * (1 + \sum_{i=1}^{N_m} m_i 2^{-i}) * 2^{e_b - e_0}$$

$$S = 1$$
 (Negatif)

$$e = (2^7 + 2^1) - 127 = 130 - 127 = 3$$

$$m = 2^{-3} + 2^{-4} = 0.125 + 0.0625 = 0.1875$$

$$A = -1.1875 \times 2^3 = -9.5$$

Example of **positive** real number stored in 4 bits

	exp	$0 \ 0$ $2^0 = 1$	$0 1$ $2^1 = 2$	$1 \ 0$ $2^2 = 4$	$ \begin{array}{c c} 1 & 1 \\ 2^3 = 8 \end{array} $
1.	0 0 0 1 1 0 1 1				
	Δ				
	${\cal E}$				

Example of **positive** real number stored in 4 bits

	ехр	$0 \ 0$ $2^0 = 1$	0 1	1 0	1 1
		$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$
	00	1			
1	0 1	1.25			
1.	10	1.5			
	1 1	1.75			
	Δ	0.25			
	\mathcal{E}	0.25/1			

Example of **positive** real number stored in 4 bits

	exp	$00 \ 2^0 = 1$	$\begin{array}{c} 0 \ 1 \\ 2^1 = 2 \end{array}$	$1 \ 0$ $2^2 = 4$	$1 1 2^3 = 8$
		2 = 1 1	$\frac{z}{2} = z$	$\frac{2}{4}$	$\frac{2}{8}$
1	0 1	1.25	2.5	5	10
1.	10	1.5	3	6	12
		1.75	3.5		14
	Δ	0.25	0.5	1	2
	$\boldsymbol{\mathcal{E}}$	0.25/1	0.5/2	1/4	2/8

	$2^{-1}2^{-1}$	-2			
1.		\mathbf{Z}	2 ¹	2^0	
	$\boldsymbol{\mathcal{E}}$	$=2^{-2}$	= /	25 9	%

Simple precision (4 bytes)

One character is stored in 1 bytes (8 bits). The character representation follows the ASCII norme.

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	*
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	(BELL)	39	27		71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	•	77	4D	М	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Р	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]