A Model of the Formation of Transactive Memory Systems

Abigail Devereaux, Economics Xiaoyi Yuan, Computational Social Science George Mason University

Hypothesis

Our simulated TMSs will produce more of the microstructures positively associated with TMSs², and fewer of the microstructures negatively associated with TMSs.

A transactive memory system (TMS) is a system where members know "who knows what"

Microstructure	Visualization	Correlation	Literature
In-star: Two agents connected to the same agent but not to each other		Positive	Palazzolo, 2005
Out-star: One agent connected to two different agents who aren't connected to each other		Positive	Palazzolo, 2005
Transitive triad: One agent (the tertius) is connected to two agents are who are also connected		Positive	Palazzolo, 2005; Lee, Bachrach, & Lewis, 2014
Cyclic triad: Each agent is connected to only one other agent in the triad		Negative	Lee, Bachrach, & Lewis, 2014

Main Findings

Transitive Triads and Triadic Cycles

 $TMS_i = \theta_0 + \theta_1$ (transitive triad)_i + θ_2 (triadic cycle)_i + ε_i

·			· ·		•
triadic microstructure	20 edges	19 edges	18 edges	17 edges	all edges
transitive triads (030T)	0.0559***	0.0638***	0.0679***	0.0799***	0.0452***
	(49.73)	(41.44)	(29.93)	(31.21)	(45.08)
triadic cycles (030C)	-0.0532***	-0.0759***	-0.0929***	-0.0990***	-0.162***
	(-6.04)	(-9.14)	(-7.12)	(-6.49)	(-23.09)
_cons	-0.134***	-0.112***	-0.0681*	-0.0582*	0.209***
	(-7.26)	(-5.21)	(-2.40)	(-2.21)	(17.17)
N	252	286	224	234	1956

Regression table output for 8 nodes. Edge subsets are shown in the first columns, and the result taken over all edges is shown in the last column. t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

In-stars and Out-stars

 $TMS_i = \theta_0 + \theta_1 (in\text{-}star)_i + \theta_2 (out\text{-}star)_i + \varepsilon_i$

triadic microstructure	20 edges	19 edges	18 edges	17 edges	all edges
in-stars (021U)	0.0686***	0.0704***	0.0647***	0.0586***	0.0615***
	(14.65)	(13.95)	(10.87)	(8.71)	(26.34)
out-stars (021D)	0.0599***	0.0630***	0.0672***	0.0724***	0.0609***
	(11.67)	(11.94)	(11.15)	(11.27)	(25.67)
_cons	-0.309***	-0.334***	-0.312***	-0.261***	-0.178***
	(-7.04)	(-7.62)	(-6.08)	(-5.03)	(-9.78)
N	252	286	224	234	1956

Regression table output for 8 nodes. Edge subsets are shown in the first columns, and the result taken over all edges is shown in the last column. t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Simulation in NetLogo

A transactive memory system network is formed by each agent completing a list of tasks. Each agent has different levels of expertise in some number of areas, and must coordinate with agents to complete tasks each couldn't complete alone.

For *m* areas of expertise, the *expertise* of agent *i* is:

 $expertise_i = [a_0^i, a_1^i, a_2^i, \dots, a_{m-1}^i]$

An example a length 10 tasks-to-complete in 4 areas:

tasks-to-complete = [3, 0, 2, 2, 1, 0, 0, 3, 1, 1]

Agents can either complete the task themselves if their expertise in that area ≥ 1 , or they can ask agent j to help if $a_k^i + a_k^j \ge 1$, for a task in area k

In the model to the left, the agent has 5 areas of expertise, a task length of 24, and there are a total of 8 agents in the team.

Example evolution of the simulation for 8 nodes and 5 task areas

Unexpected Results...

...noticeable downward trend in the presence of structures associated with TMSs as the node sizes of networks increased.

triadic microstructure	6 nodes	8 nodes	12 nodes	30 nodes
transitive triads (030T)	0.0700***	0.0452***	0.0268***	0.0154***
	(35.03)	(45.08)	(46.79)	(35.76)
triadic cycles (030C)	-0.237***	-0.162***	-0.117***	-0.0680***
	(-16.80)	(-23.09)	(-34.41)	(-56.25)
_cons	0.262***	0.209***	0.224***	0.237***
	(20.56)	(17.17)	(17.39)	(12.62)
N	1810	1956	1994	2000

Regression table summary output for each set of nodes. t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

1. Lee, J.-Y., Bachrach, D. G., & Lewis, K. (2014). Social Network Ties, Transactive Memory, and Performance in Groups. Organization Science, 25(3), 951–967. 2. Peltokorpi, V. (2008). Transactive memory systems. Review of General Psychology, 12(4), 378–394.