

FCC PART 15C TEST REPORT No. I19N01990-BT

for

TCL Communication Ltd.

MOVETIME FAMILY WATCH

MT40A

with

Hardware Version: PIO

Software Version: V1.0

FCC ID: 2ACCJB112

Issued Date: 2019-10-18

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001, Email:yewu@caict.ac.cn.www.cszit.com

REPORT HISTORY

Report Number	rt Number Revision		Issue Date	
I19N01990-BT	Rev.0	1st edition	2019-10-18	

CONTENTS

CONT	ENTS	3
1. T	EST LABORATORY	4
1.1.	TESTING LOCATION	4
1.2.	TESTING ENVIRONMENT	4
1.3.	Project data	4
1.4.	Signature	4
2. C	LIENT INFORMATION	5
2.1.	APPLICANT INFORMATION	5
2.2.	Manufacturer Information	5
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.2.	INTERNAL IDENTIFICATION OF EUT	6
3.3.	INTERNAL IDENTIFICATION OF AE	6
3.4.	GENERAL DESCRIPTION	6
4. R	EFERENCE DOCUMENTS	7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5. T	EST RESULTS	8
5.1.	SUMMARY OF TEST RESULTS	8
5.2.	STATEMENTS	8
5.3.	TERMS USED IN THE RESULT TABLE	8
5.4.	LABORATORY ENVIRONMENT	9
6. T	EST FACILITIES UTILIZED	10
7. M	IEASUREMENT UNCERTAINTY	11
ANNE	EX A: DETAILED TEST RESULTS	12
A.0	Antenna requirement	12
A.1	MAXIMUM PEAK OUTPUT POWER	13
A.2	BAND EDGES COMPLIANCE	19
A.3	CONDUCTED EMISSION	26
A.4	RADIATED EMISSION	42
	20dB Bandwidth	
	TIME OF OCCUPANCY (DWELL TIME)	
	NUMBER OF HOPPING CHANNELS	
	CARRIER FREQUENCY SEPARATION	
A.9	AC Power line Conducted Emission	75

1. Test Laboratory

1.1. Testing Location

Location:

Shenzhen Academy of Information and Communications Technology

Address:

Building G, Shenzhen International Innovation Center, No.1006

Shennan Road, Futian District, Shenzhen, Guangdong Province, China

Postal Code:

518026

Telephone:

+86(0)755-33322000

Fax:

+86(0)755-33322001

1.2. Testing Environment

Normal Temperature:

15-35℃

Relative Humidity:

20-75%

1.3. Project data

Testing Start Date:

2019-09-17

Testing End Date:

2019-10-17

1.4. Signature

An Ran

(Prepared this test report)

Tang Weisheng

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

Address: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

Contact Person Gong Zhizhou

E-Mail zhizhou.gong@tcl.com Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

Address: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

Contact Person Gong Zhizhou

E-Mail zhizhou.gong@tcl.com Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description MOVETIME FAMILY WATCH

Model Name MT40A

Market Name MOVETIME FAMILY WATCH

Frequency Band 2400MHz~2483.5MHz

Type of Modulation GFSK/ π /4 DQPSK/8DPSK

Number of Channels 79

Antenna Type Integrated
Antenna Gain -8.0 dBi

Power Supply 3.8V DC by Battery

FCC ID 2ACCJB112

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer.

3.2. Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version	Receive Date
EUT1	352213110000018	PIO	V1.0	2019-09-16

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Mode	Manufacture
AE1	Battery	ZWD602531V	ZWD

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment Under Test (EUT) are a model of MOVETIME FAMILY WATCH with integrated antenna.

It consists of normal options: travel charger, USB cable and the Watch.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version		
FCC Part 15	FCC CFR 47, Part 15, Subpart C:	2018		
	15.205 Restricted bands of operation;			
	15.209 Radiated emission limits, general requirements;			
	15.247 Operation within the bands 902–928MHz,			
	2400-2483.5 MHz, and 5725-5850 MHz			
ANSI C63.10	American National Standard of Procedures for Compliance	2013		
	Testing of Unlicensed Wireless Devices			

5. Test Results

5.1. Summary of Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Band Edges Compliance	15.247 (d)	Р
3	Conducted Spurious Emission	15.247 (d)	Р
4	Radiated Spurious Emission	15.247,15.205,15.209	Р
5	Occupied 20dB bandwidth	15.247(a)	Р
6	Time of Occupancy (Dwell Time)	15.247(a)	Р
7	Number of Hopping Channel	15.247(a)	Р
8	Carrier Frequency Separation	15.247(a)	Р
9	AC Power line Conducted Emission	15.107,15.207	Р

See ANNEX A and below for details.

5.2. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

5.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

AC	Alternating Current
AFH	Adaptive Frequency Hopping
BW	Band Width
E.I.R.P.	equivalent isotropic radiated power
ISM	Industrial, Scientific and Medical
R&TTE	Radio and Telecommunications Terminal Equipment
RF	Radio Frequency
Tx	Transmitter

5.4. Laboratory Environment

Semi-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	< ±4 dB, 3 m distance, from 30 to 1000 MHz

Shielded room did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-10000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 35 °C	
Relative humidity	Min. = 15 %, Max. = 75 %	
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB	
Electrical insulation	> 2MΩ	
Ground system resistance	< 4 Ω	
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3 m distance	
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz	

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2020-01-16	1 year
2	Bluetooth Tester	CBT32	100584	Rohde & Schwarz	2020-01-02	1 year
3	Test Receiver	ESCI	100702	Rohde & Schwarz	2020-06-19	1 year
4	LISN	ENV216	102067	Rohde & Schwarz	2020-07-17	1 year

Radiated emission test system

	Radiated emission test system						
NO.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period	
1	Loop Antenna	HLA6120	35779	TESEQ	2020-04-25	3 years	
2	BiLog Antenna	3142E	00224831	ETS-Lindgren	2021-05-17	3 years	
3	Horn Antenna	3117	00066577	ETS-Lindgren	2022-04-02	3 years	
4	Test Receiver	ESR7	101676	Rohde & Schwarz	2019-11-28	1 year	
5	Spectrum Analyser	FSV40	101192	Rohde & Schwarz	2020-05-19	1 year	
6	Chamber	FACT3-2.0	1285	ETS-Lindgren	2020-07-20	3 years	
7	Antenna	QSH-SL-18- 26-S-20	17013	Q-par	2020-01-15	3 years	
8	Antenna	QSH-SL-26- 40-K-20	17014	Q-par	2020-01-11	3 years	

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	8.53.0
3	EMC32	Rohde & Schwarz	10.01.00

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Measurement Uncertainty

Test Name	Uncertainty		
RF Output Power - Conducted	±1.32dB		
2. Time of Occupancy - Conducted	±0.58ms		
3.Occupied channel bandwidth - Conducted	±66l	Hz	
	30MHz≶f≶1GHz	±1.41dB	
4 Transmitter Spurious Emission Conducted	1GHz≤f≤7GHz	±1.92dB	
4 Transmitter Spurious Emission - Conducted	7GHz≤f≤13GHz	±2.31dB	
	13GHz≤f≤26GHz	±2.61dB	
	9kHz≤f≤30MHz	±1.94dB	
5 Transmitter Courious Emission Redicted	30MHz≤f≤1GHz	±5.12dB	
5. Transmitter Spurious Emission - Radiated	1GHz≤f≤18GHz	±5.05dB	
	18GHz≤f≤40GHz	±4.68dB	
6. AC Power line Conducted Emission	150kHz≤f≤30MHz	±3.00dB	

ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
Standard FCC CRF Part 15.203	Requirement An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional
	radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is
	employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is -8.0 dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 7.8.5.

Use the following spectrum analyzer settings:

- a) Set Span = 6 MHz.
- b) Set RBW = 3 MHz.
- c) Set VBW = 3 MHz.
- d) Sweep time = auto.
- e) Detector = peak.
- f) Trace = max hold.
- g) Allow trace to stabilize.
- h) Use the marker-to-peak function to set the marker to the peak of the emission.
- I) The indicated level is the peak output power.

Measurement Limit:

Standard	Limit (dBm)	
FCC CRF Part 15.247(b)(1)	< 30	

Measurement Results:

	Peak Conducted Output Power (dBm)			
Mode	Channel	Test Results		
	2402MHz(Ch0)	5.18	Fig.1	
GFSK	2441MHz(Ch39)	5.36	Fig.2	
	2480 MHz(Ch78)	4.43	Fig.3	
	2402MHz(Ch0)	6.18	Fig.4	
π /4 DQPSK	2441MHz(Ch39)	5.77	Fig.5	
	2480 MHz(Ch78)	5.39	Fig.6	
	2402MHz(Ch0)	6.36	Fig.7	
8DPSK	2441MHz(Ch39)	5.96	Fig.8	
	2480 MHz(Ch78)	5.64	Fig.9	

See below for test graphs.

Conclusion: Pass

Fig. 1 Maximum Peak Output Power (GFSK, Ch 0)

Fig. 2 Maximum Peak Output Power (GFSK, Ch 39)

Fig. 3 Maximum Peak Output Power (GFSK, Ch 78)

Fig. 4 Maximum Peak Output Power (π/4 DQPSK, Ch 0)

Fig. 5 Maximum Peak Output Power (π/4 DQPSK, Ch 39)

Fig. 6 Maximum Peak Output Power (π/4 DQPSK, Ch 78)

Fig. 7 Maximum Peak Output Power (8DPSK, Ch 0)

Fig. 8 Maximum Peak Output Power (8DPSK, Ch 39)

Fig. 9 Maximum Peak Output Power (8DPSK, Ch 78)

A.2 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	≤ -20

Measurement Result:

Mode	Channel	Hopping	Test Results	Conclusion
CESK	0	ON	Fig.10	Р
GFSK	78	ON	Fig.11	Р
π/4 DQPSK	0	ON	Fig.12	Р
	78	ON	Fig.13	Р
8DPSK	0	ON	Fig.14	Р
	78	ON	Fig.15	Р

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	OFF	Fig.16	Р
	78	OFF	Fig.17	Р
π/4 DQPSK	0	OFF	Fig.18	Р
	78	OFF	Fig.19	Р
8DPSK	0	OFF	Fig.20	Р
	78	OFF	Fig.21	Р

See below for test graphs.

Conclusion: Pass

Fig. 10 Band Edges (GFSK, Ch 0, Hopping ON)

Fig. 11 Band Edges (GFSK, Ch 78, Hopping ON)

Fig. 12 Band Edges (π /4 DQPSK, Ch 0, Hopping ON)

Fig. 13 Band Edges (π/4 DQPSK, Ch 78, Hopping ON)

Fig. 14 Band Edges (8DPSK, Ch 0, Hopping ON)

Fig. 15 Band Edges (8DPSK, Ch 78, Hopping ON)

Fig. 16 Band Edges (GFSK, Ch 0, Hopping OFF)

Fig. 17 Band Edges (GFSK, Ch 78, Hopping OFF)

Fig. 18 Band Edges (π/4 DQPSK, Ch 0, Hopping OFF)

Fig. 19 Band Edges (π/4 DQPSK, Ch 78, Hopping OFF)

Fig. 20 Band Edges (8DPSK, Ch 0, Hopping OFF)

Fig. 21 Band Edges (8DPSK, Ch 78, Hopping OFF)

A.3 Conducted Emission

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz	
FOC 47 OFR Fait 15.247 (u)	bandwidth	

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
	0	2.402 GHz	Fig.22	Р
		1GHz-3GHz	Fig.23	Р
		3GHz-10GHz	Fig.24	Р
		2.441 GHz	Fig.25	Р
GFSK	39	1GHz-3GHz	Fig.26	Р
		3GHz-10GHz	Fig.27	Р
		2.480 GHz	Fig.28	Р
	78	1GHz-3GHz	Fig.29	Р
		3GHz-10GHz	Fig.30	Р
		2.402 GHz	Fig.31	Р
	0	1GHz-3GHz	Fig.32	Р
		3GHz-10GHz	Fig.33	Р
π/4	39	2.441 GHz	Fig.34	Р
DQPSK		1GHz-3Ghz	Fig.35	Р
DQFSK		3GHz-10GHz	Fig.36	Р
	78	2.480 GHz	Fig.37	Р
		1GHz-3Ghz	Fig.38	Р
		3GHz-10GHz	Fig.39	Р
		2.402 GHz	Fig.40	Р
	0	1GHz-3GHz	Fig.41	Р
		3GHz-10GHz	Fig.42	Р
	39	2.441 GHz	Fig.43	Р
ODDOK		1GHz-3GHz	Fig.44	Р
8DPSK		3GHz-10GHz	Fig.45	Р
		2.480 GHz	Fig.46	Р
	78	1GHz-3GHz	Fig.47	Р
		3GHz-10GHz	Fig.48	Р
/	All channels	30 MHz-1GHz	Fig.49	Р
/	All Channels	10GHz-26GHz	Fig.50	Р

See below for test graphs.

Conclusion: Pass

Fig. 22 Conducted Spurious Emission (GFSK, Ch0, 2.402GHz)

Fig. 23 Conducted Spurious Emission (GFSK, Ch0, 1 GHz-3 GHz)

Fig. 24 Conducted Spurious Emission (GFSK, Ch0, 3GHz-10 GHz)

Fig. 25 Conducted Spurious Emission (GFSK, Ch39, 2.441GHz)

Fig. 26 Conducted Spurious Emission (GFSK, Ch39, 1GHz-3 GHz)

Fig. 27 Conducted Spurious Emission (GFSK, Ch39, 3GHz-10 GHz)

Fig. 28 Conducted Spurious Emission (GFSK, Ch78, 2.480GHz)

Fig. 29 Conducted Spurious Emission (GFSK, Ch78, 1GHz-3 GHz)

Fig. 30 Conducted Spurious Emission (GFSK, Ch78, 3GHz-10 GHz)

Fig. 31 Conducted Spurious Emission (π /4 DQPSK, Ch0, 2.402GHz)

Fig. 32 Conducted Spurious Emission (π /4 DQPSK, Ch0, 1GHz-3 GHz)

Fig. 33 Conducted Spurious Emission (π/4 DQPSK, Ch0, 3GHz-10 GHz)

Fig. 34 Conducted Spurious Emission (π /4 DQPSK, Ch39, 2.441GHz)

Fig. 35 Conducted Spurious Emission (π/4 DQPSK, Ch39, 1GHz-3 GHz)

Fig. 36 Conducted Spurious Emission (π /4 DQPSK, Ch39, 3GHz-10 GHz)

Fig. 37 Conducted Spurious Emission (π /4 DQPSK, Ch78, 2.480GHz)