(43) International Publication Date

15 July 2004 (15.07.2004)

(10) International Publication Number WO 2004/058723 A1

- (51) International Patent Classification7: C07D 231/14, 231/16, 207/34, 277/56, 263/34, 333/38, 307/68, 309/28, 327/06, 213/82, 239/28, 239/30, 237/24, C07C 233/03,
- (21) International Application Number:

PCT/EP2003/014248

(22) International Filing Date:

15 December 2003 (15.12.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0230155.4

24 December 2002 (24.12.2002)

- (71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Intellectual Property Department, Schwazwaldallee 215, CH-4058 Basel (CH).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): EHRENFREUND, Josef [AT/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH). LAMBERTH, Clemens [DE/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH). TOBLER, Hans [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH). WALTER, Harald [DE/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).

- (74) Agents: OSBORN, Martin, Kelth et al.; Syngenta Limited, Intellectual Property Department, Jealott's Hill Research Centre, P.O. Box 3538, Bracknell, Berkshire RG42 6YA (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: BIPHENYL DERIVATIVES AND THEIR USE AS FUNGICIDES

(57) Abstract: A fungicidally active compound of formula (I): where Het is a substituted 5- or 6-membered heterocyclic ring; R1 is hydrogen, formyl, CO-C1-4 alkyl, COO- C_{1-4} alkyl, C_{1-4} alkoxy(C_{1-4})alkylene, CO- C_{1-4} alkylenoxy(C_{1-4})alkyl, propargyl or allenyl; R2, R3, R4 and R5 are each, independently, hydrogen, halogen, methyl or CF3; each R6 is, independently, halogen, methyl or CF3; R7 is (Z)mC=C(Y1), $(Z)_mC(Y^1)=C(Y^2)(Y^3)$ or $tri(C_{1-4})$ alkylsilyl; X is O or S; Y^1 , Y^2 and Y^3 are each, independently, hydrogen, halogen, C₁₋₆ alkyl [optionally substituted by one or more substituents each independently selected from halogen, hydroxy, C1-4 alkoxy, C1-4 haloalkoxy, C1-4 alkylthio, C1-4 haloalkylthio, C1-4 alkylamino, di(C1-4)alkylamino, C₁₋₄ alkoxycarbonyl, C₁₋₄ alkylcarbonyloxy and tri(C₁₋₄)alkylsilyl], C₂₋₄ alkenyl [optionally substituted by one or more substituents each independently selected from halogen], C2-4 alkynyl [optionally substituted by one or more substituents each independently selected from halogen], C3-7 cycloalkyl [optionally substituted by one

or more substituents each independently selected from halogen, C14 alkyl and C14 haloalkyl] or tri(C14)alkylsilyl; Z is C14 alkylene [optionally substituted by one or more substituents each independently selected from hydroxy, cyano, C1-4 alkoxy, halogen, C1-4 haloalkyl, C14 haloalkoxy, C14 alkylthio, COOH and COO-C14 alkyl]; m is 0 or 1; and n is 0, 1 or 2; the invention also relates to novel intermediates used in the preparation of these compounds, to agrochemical compositions which comprise at least one of the novel compounds as active ingredient and to the use of the active ingredients or compositions in agriculture or horticulture for controlling or preventing infestation of plants by phytopathogenic microorganisms, preferably fungi.

058723 A

- 10 -

Hal	R ²	R ³	\mathbb{R}^4	R ⁷
Cl	C1	H	Н	C(CH ₃)=CH-CH ₂ -OH
Br	Н	Me	H	$C(CF_3)=CF_2$
Br	Н	Me	Br	$C(CF_3)=CF_2$
Cl	Н	H	H	C::CH
Cl	H	Н	Н	CH=CH-CH ₂ -CH ₂ -OH
C1	H	Н	Н	C(CH ₃)=CH-CH ₂ -OH
C1	H	Н	H	$C(CH_3)=CH-C(=O)-OC_2H_5$
C1	H	Н	H	C(CH ₃)=CH-CH(OH)CH ₃
C1	Н	Н	H	CH=CH-CH(OH)CH ₃

Therefore, in a further aspect the present invention provides a compound of formula (III), where R², R³, R⁴, R⁵, R⁶, R⁷ and n are as defined above for a compound of formula (I) and Hal is bromo, chloro or iodo; provided that the compound is not a compound of formula (IIIa) according to Table 0.

The preferred values for R², R³, R⁴, R⁵, R⁶, R⁷ and n for a compound of formula (III) are as defined above for a compound of formula (I).

Preferably Hal is bromo or chloro.

More preferably Hal is bromo.

The compounds of formulae (I), (II) and (III) may exist as different geometric or optical isomers or in different tautomeric forms. For each formula, this invention covers all such isomers and tautomers and mixtures thereof in all proportions as well as isotopic forms such as deuterated compounds.

The compounds in Tables 1 to 13 below illustrate compounds of the invention.

15

Table 1

Compound	\mathbb{R}^1	R ⁷	R ⁸	R ⁹	\mathbb{R}^{10}	X
No.						
1.01	Н	C::CH	Н	Me	CF ₃	0
1.02	Н	C::CH	H	Me	CF ₃	S
1.03	Н	C::CH	Н	Me	CF ₂ H	0
1.04	propargyl	C::CH	Н	Me	CF ₃	0
1.05	Н	C::CH	F	Me	Me	0
1.06	Н	C::CH	Н	CH ₂ OMe	CF ₃	0

1.07	allenyl	C::CH	H	Me	CF ₃	0
1.08	Н	C::CSiMe ₃	H	Me	CF ₃	0
1.09	Н	C::CSiMe ₃	H	Me	CF ₃	S
1.10	H	C::CSiMe ₃	H	Me	CF ₂ H	0
1.11	H	C::CSiMe ₃	F	Me	Me	0
1.12	Н	C::CC1	H	Me	CF ₃	0
1.13	Н	C::CC1	Н	Me	CF ₂ H	0
1.14	Н	C::CC1	F	Me	Me	0
1.15	Н	C::CBr	H	Me	CF ₃	0
1.16	Н	C::CBr	H	Me	CF ₂ H	0
1.17	Н	. C::CBr	F	Me	Me	0
1.18	H	C::CCF ₃	H	Me	CF ₃	0
1.19	Н	C::CCF ₃	H	Me	CF ₂ H	0
1.20	Н	C::CCF ₃	F	Me	Me	0
1.21	allenyl	C::CCF ₃	H	Me	CF ₃	0
1.22	Н	CH=CH ₂	Н	Me	CF ₃	0
1.23	Н	CH=CH ₂	Н	Me	CF ₃	S
1.24	Н	CH=CH ₂	Н	Me	CF ₂ H	0
1.25	propargyl	CH=CH ₂	Н	Me	CF ₃	0
1.26	Н	CH=CH ₂	F	Me	Me	0
1.27	Н	CH=CH ₂	H	CH ₂ OMe	CF ₃	0
1.28	allenyl	CH=CH ₂	Н	Me	CF ₃	0
1.29	H	CH=CF ₂	Н	Me	CF ₃	0
1.30	H	CH=CF ₂	Н	Me	CF₂H	0
1.31	H	CH=CF ₂	F	Me	Me	0
1.32	Н	CH=CCl ₂	Н	Me	CF ₃	0
1.33	Н	CH=CCl ₂	H	Me	CF₂H	0
1.34	Н	CH=CCl ₂	F	Me	Me	0
1.35	Н	CH=CBr ₂	Н	Me	CF ₃	0

					•	
1.36	Н	CH=CBr ₂	H	Me	CF ₂ H	0
1.37	Н	CH=CBr ₂	F	Me	Me	0
1.38	H	CF=CF ₂	H	Me	CF ₃	0
1.39	H	CF=CF ₂	H	Me	CF ₂ H	0
1.40	Н	CF=CF ₂	F	Me	Me	0
1.41	H	CCl=CH ₂	H	Me	CF ₃	0
1.42	Н	CC1=CH ₂	Н	Me	CF ₂ H	0
1.43	Н	CCl=CH ₂	F	Me	Me	0
1.44	Н	CBr=CH ₂	H	Me	CF ₃	0
1.45	Н	CBr=CH ₂	H	Me	CF ₂ H	0
1.46	Н	CBr=CH ₂	F	Me	Me	0
1.47	Н	CF=CHF	H	Me	CF ₃	0
1.48	Н	CF=CHF	Н	Me	CF ₂ H	0
1.49	H	CF=CHF	F	Me	Me	0
1.50	Н	CH=CHSiMe ₃	Н	Me	CF ₃	0
1.51	H	CH=CHSiMe ₃	H	Me	CF ₂ H	0
1.52	Н	CH=CHSiMe ₃	F	Me	Me	0
1.53	Н	CH=CHCF ₃	Н	Me	CF₃	0
1.54	Н	CH=CHCF ₃	Н	Me	CF₂H	0
1.55	Н	CH=CHCF ₃	F	Me	Me	0
1.56	Н	CH=CClCF ₃	Н	Me	CF ₃	О
1.57	Н	CH=CClCF ₃	Н	Me	CF ₂ H	0
1.58	Н	CH=CClCF ₃	F	Me	Me	0
1.59	H	CH₂C::CH	H	Me	CF ₃	0
1.60	Н	CH₂C::CH	H	Me	CF ₂ H	0
1.61	· H	CH ₂ C::CH	F	Me	Me	0
1.62	Н	CH₂C::CH	H	CH ₂ OMe	CF ₃	0
1.63	Н	CH ₂ C::CSiMe ₃	H	Me	CF ₃	0
1.64	H	CH ₂ C::CSiMe ₃	H	Me	CF ₂ H	0

1.65	H	CH ₂ C::CSiMe ₃	F	Me	Me	0
1.66	Н	C::CCMe ₃	Н	Me	CF ₃	0
1.67	H	C::CCMe ₃	Н	Me	CF ₂ H	0
1.68	H	C::CCMe ₃	F	Me	Me	0
1.69	H	C::CMe	Н	Me	CF ₃	0
1.70	Н	· C::CMe	Н	Me	CF ₂ H	0
1.71	Н	C::CMe	F	Me	Me	0
1.72	COMe	C::CH	H	Me	CF ₃	0
1.73	Н	C::CH	H	CF ₂ H	CF ₂ H	0
1.74	Н	C::CH	Н	CF ₂ H	CF ₃	0
1.75	Н	C::CH	Н	Me	CH ₂ F	0
1.76	H	C::CSiMe ₃	Н	Me	CH ₂ F	0
1.77	Н	C::C(cyclopropyl)	Н	Me	CF ₃	0
1.78	Н	C::C(cyclopropyl)	Н	Me	CHF ₂	0
1.79	Н	SiMe ₃	Н	Me	CH ₂ F	0
1.80	Н	SiMe ₃	Н	Me	CF ₃	0
1.81	Н	SiMe ₃	H	Me	CHF ₂	0
1.82	Н	C::CF	Н	Me	CF ₃	0
1.83	Н	C::CF	Н	Me	CF ₂ H	0
1.84	H	C::CF	F	Me	Me	0
1.85	Н	C::CCF2Cl	Н	Me	CF ₃	0
1.86	Н	C::CCF₂Cl	Н	Me	CF ₂ H	0
1.87	H	C::CCF ₂ Cl	F	Me	Me	0
1.88	H	C::CCF ₂ H	Н	Me	CF ₃	0
1.89	H	C::CCF ₂ H	Н	Me	CF ₂ H	0
1.90	H	C::CCF ₂ H	F	Me	Me	0
1.91	Н	C::CCF ₂ Br	Н	Me	CF ₃	0
1.92	H	C::CCF ₂ Br	Н	Me	CF ₂ H	0
1.93	H	C::CCF ₂ Br	F	Me	Me	0

1.04	TT	C COTT T				
1.94	H	C::CCH₂F	H	Me	CF ₃	0
1.95	Н	C::CCH₂F	H	Me	CF ₂ H	0
1.96	H	C::CCH ₂ F	F	Me	Me	0
1.97	H	C::CCH(Me)F	H	Me	CF ₃	0
1.98	H	C::CCH(Me)F	H	Me	CF ₂ H	0
1.99	H	C::CCH(Me)F	F	Me	Me	0
1.100	H	C::CC(Me) ₂ F	H	Me	CF ₃	0
1.101	H	C::CC(Me) ₂ F	H	Me	CF ₂ H	0
1.102	H	C::CC(Me) ₂ F	F	Me	Me	0
1.103	Н	C::CCH ₂ C(Me) ₃	H	Me	CF ₃	0
1.104	Н	C::CCH ₂ C(Me) ₃	Н	Me	CF ₂ H	0
1.105	Н	C::CCH ₂ C(Me) ₃	F	Me	Me	0
1.106	Н	C::CCH(Me) ₂	Н	Me	CF ₃	0
1.107	H	C::CCH(Me) ₂	Н	Me	CF ₂ H	0
1.108	Н	C::CCH(Me) ₂	F	Me	Me	0
1.109	Н	C::CCH ₂ CH(Me) ₂	H	Me	CF ₃	0
1.110	Н	C::CCH ₂ CH(Me) ₂	Н	Me	CF ₂ H	0
1.111	Н	C::CCH ₂ CH(Me) ₂	F	Me ·	Me	0
1.112	H	CH ₂ C::CCMe ₃	H	Me	· CF ₃	0
1.113	Н	CH ₂ C::CCMe ₃	H	Me	CF ₂ H	0
1.114	H	CH ₂ C::CCMe ₃	F	Me	Me	0
1.115	Н	CF ₂ C::CCMe ₃	H	Me	CF ₃	0
1.116	Н	CF ₂ C::CCMe ₃	H	Me	CF ₂ H	0
1.117	Н	CF ₂ C::CCMe ₃	F	Me	Me	0
1.118	Н	CF ₂ C::CMe	Н	Me	CF ₃	0
1.119	Н	CF ₂ C::CMe	Н	Me	CF ₂ H	0
1.120	Н	CF ₂ C::CMe	F	Me	Me	0
1.121	Н	CF ₂ C::CH	H	Me	CF ₃	0

			1 55 1		OFIT	
1.122	Н	CF ₂ C::CH	H	Me	CF ₂ H	0
1.123	Н	CF ₂ C::CH	F	Me	Me	0
1.124	Н	CMe ₂ C::CH	Н	Me	CF ₃	0
1,125	H	CMe ₂ C::CH	Н	Me	CF ₂ H	0
1.126	Н	CMe ₂ C::CH	F	Me	Me	О
1.127	Н	CHFC::CH	Н	Me	CF ₃	0
1.128	Н	CHFC::CH	Н	Me	CF ₂ H	0
1.129	Н	CHFC::CH	F	Me	Me	0
1.130	Н	CHMeC::CH	H	Me	CF ₃	0
1.131	Н	CHMeC::CH	Н	Me	CF ₂ H	0
1.132	Н	CHMeC::CH	F	Me	Me	0
1.133	H	CH(CF ₃)C::CH	Н	Me	CF ₃	0
1.134	Н	CH(CF ₃)C::CH	Н	Me	CF ₂ H	0
1.135	Н	CH(CF ₃)C::CH	F	Me	Me	0
1.136	Н	C::C (1-F-cyclopentyl)	Н	Me	CF ₃	0
1.137	Н	C::C (1-F-cyclopentyl)	Н	Me	CHF ₂	0
1.138	Н	C::CCH ₂ OMe	H	Me	CF ₃	0
1.139	Н	C::CCH ₂ OMe	Н	Me	CF ₂ H	0
1.140	Н	C::CCH ₂ OMe	F	Me	Me	0
1.141	H	C::CCMe2OMe	Н	Me	CF ₃	0
1.142	Н	C::CCMe2OMe	Н	Me	CF ₂ H	0
1.143	H	C::CCMe2OMe	F	Me	Me	0
1.144	Н	C::CCMe2OCOMe	H	Me	CF ₃	0
1.145	H	C::CCMe2OCOMe	Н	Me	CF ₂ H	0
1.146	H	C::CCF ₂ Me	H	Me	CF ₃	0
1.147	H'	C::CCF ₂ Me	Н	Me	CF ₂ H	0
1.148	H	C::CCF ₂ Me	F	Me	Me	0
1.149	H	C::CC(Me)=CH ₂	Н	Me	CF ₃	0
1	_l	<u> </u>				

1.150	H	C::CC(Me)=CH ₂	H	Me	CF ₂ H	0
1.151	Н	CH=CFCl	Н	Me	CF ₃	0
1.152	Н	CH=CFCl	H	Me	CF ₂ H	0
1.153	H	CH=CFC1	F	Me	Me	0
1.154	Н	CH=CFBr	H	Me	CF ₃	0
1.155	Н	CH=CFBr	Н	Me	CF ₂ H	0
1.156	Н	CH=CFBr	F	Me	Me	0
1.157	Н	CH=CHBr	Н	Me	CF ₃	О
1.158	Н	CH=CHBr	Н	Me	CF ₂ H	0
1.159	Н	CH=CHBr	F	Me	Me	0
1.160	Н	CH=CHF	Н	Me	CF ₃	0
1.161	Н	CH=CHF	H	Me	CF ₂ H	0
1.162	Н	CH=CHF	F	Me	Me	0
1.163	H	CMe=CHCF ₃	H	Me	CF ₃	0
1.164	Н	CMe=CHCF ₃	Н	Me	CF ₂ H	0
1.165	Н	CMe=CHCF ₃	F	Me	Me	0
1.166	Н	CH=CFCF ₃	Н	Me	CF ₃	0
1.167	Н	CH=CFCF ₃	Н	Me	CF ₂ H	0
1.168	Н	CH=CFCF ₃	F	Me	Me	0
1.169	Н	CH=CBrCF ₃	Н	Me	CF ₃	0
1.170	H	CH=CBrCF ₃	H	Me	CF ₂ H	0
1.171	H	CH=CBrCF ₃	F	Me	Me	0
1.172	Н	CH=CHC ₂ F ₅	H	Me	CF ₃	0
1.173	Н	CH=CHC ₂ F ₅	H	Me	CF ₂ H	0
1.174	Н	CH=CHC ₂ F ₅	F	Me	Me	0
1.175	н	CH=CHCl	H	Me	CF ₃	0
1.176	Н	CH=CHCl	H	Me	CF ₂ H	0
1.177	Н	CH=CHCl	F	Me	Me	0
1.178	Н	CH=C(CF ₃) ₂	Н	Me	CF ₃	0
1.179	H	CH=C(CF ₃) ₂	Н	Me	CF ₂ H	0

1.240	H	CH CH-CE		7.6	T	т
		CH ₂ CH=CF ₂	F	Me	Me	0
1.241	Н	CH₂CH=CCl₂	H	Me	CF ₃	0
1.242	H	CH ₂ CH=CCl ₂	H	Me	CF ₂ H	0
1.243	H	CH ₂ CH=CCl ₂	F	Me	Me	0
1.244	H	CH₂CH=CBr₂	Н	Me	CF ₃	0
1.245	H	CH ₂ CH=CBr ₂	Н	Me	CF ₂ H	0
1.246	Н	CH ₂ CH=CBr ₂	F	Me	Me	0
1.247	Н	CCl=CF ₂	Н	Me	CF ₃	0
1.248	H	CCl=CF ₂	Н	Me	CF ₂ H	0
1.249	H	CCl=CF ₂	F	Me	Me	0
1.250	H	C::CCMe ₂ OH	Н	Me	CF ₃	0
1.251	H	C::CCMe ₂ OH	Н	Me	CF ₂ H	0
1.252	Н	C::CSi(Me ₂)CMe ₃	Н	Me	CF ₃	0
1.253	Н	C::CSi(Me ₂)CMe ₃	Н	Me	CF ₂ H	0
1.254	Н	C::CCH ₂ SiMe ₃	Н	Me	CF ₃	0
1.255	Н	C::CCH ₂ SiMe ₃	Н	Me	CF ₂ H	0
1.256	Н	C::CCH ₂ SiMe ₃	F	Me	Me	0
1.257	Н	C::CCMe ₃	H	CF ₂ H	CF ₃	0
1.258	Н	C::CCH2CF3	Н	Me	CF ₃	0
1.259	Н	C::CCH ₂ CF ₃	Н	Me	CF₂H	0
1.260	Н	C::CCH ₂ CF ₃	F	Me	Me	0
1.261	Н	C::CCMe ₃	Н	CF₂H	CF₂H	0
1.262	H	C::CCH2CH3	Н	Me	CF ₃	0
1.263	Н	C::CCH2CH3	Н	Me	CF ₂ H	0
1.264	Н	C::CCH ₂ CH ₃	F	Me	Me	0
1.265	Н	C::CCF=CF ₂	Н	Me	CF ₃	0
1.266	Н	C::CCF=CF ₂	H	Me	CF ₂ H	0
1:267	Н	C::CCHFC1	H	Me	CF ₃	0
1.268	Н	C::CCHFC1	H	Me	CF ₂ H	0

1.269	Н	C::CCHFCI	F	Me	Me	0
1.270	Н	CH=CFC ₂ F ₅	H	Me	CF ₃	0
1.271	Н	CH=CFC ₂ F ₅	H	Me	CF₂H	0
1.272	Н	CH=CFC ₂ F ₅	F	Me	Me	0
1.273	Н	C::CCF ₂ CH ₂ CH ₃	H	Me	CF ₃	0
1.274	Н	C::CCF ₂ CH ₂ CH ₃	H	Me	CF ₂ H	0
1.275	Н	C::CCF ₂ CH ₂ CH ₃	F	Me	Me	0
1.276	Н	C::CCHFCH2CH3	Н	Me	CF ₃	0
1.277	H ·	C::CCHFCH2CH3	H	Me	CF ₂ H	0
1.278	Н	C::CCHFCH2CH3	F	Me	Me	0
1.279	Н	C::CCF(CF ₃) ₂	Н	Me	CF ₃	0
1.280	H	C::CCF(CF ₃) ₂	H	Me	CF ₂ H	0
1.281	Н	C::CCF(CF ₃) ₂	F	Me	Me	0
1.282	H.	CH=CCIC ₂ F ₅	H	Me	CF ₃	0
1.283	H	CH=CClC ₂ F ₅	Н	Me	CF ₂ H	0
1.284	Н	CH=CClC ₂ F ₅	F	Me	Me	0
1.285	Н	C::CC ₂ F ₅	H	Me	CF ₃	0
1.286	Н	C::CC ₂ F ₅	Н	Me	CF ₂ H	0
1.287	Н	C::CC ₂ F ₅	F	Me	Me	0
	I					

Table 1 provides 287 compounds of formula (Ia):

$$R^{10}$$
 R^{10}
 R^{10}

wherein R¹, R⁷, R⁸, R⁹, R¹⁰ and X are as defined in Table 1.

Table 1 provides 287 compounds of formula (IaA):

$$R^{10}$$
 R^{10}
 R^{10}

Table 2

Compound	R ¹	R ⁷	R ⁸	R ⁹	R ¹⁰	X
No.						
2.01	Н	C::CH	H	Me	CF ₃	0
2.02	Н	C::CH	H	Me	CF ₃	S
2.03	H	C::CH	Н	Me	CF ₂ H	0
2.04	propargyl	C::CH	Н	Me	CF ₃	0
2.05	Н	C::CH	F	Me	Me	0
2.06	Н	C::CH	H	CH ₂ OMe	CF ₃	Ο
2.07	allenyl	C::CH	Н	Me	CF ₃	0
2.08	Н	C::CSiMe ₃	Н	Me	CF₃	0
2.09	H	C::CSiMe ₃	Н	Me	CF ₃	S
2.10	H	C::CSiMe ₃	H	Me	CF ₂ H	0
2.11	Н	C::CSiMe ₃	F	Me	Me	0
2.12	Н	C::CC1	H	Me	CF ₃	0
2.13	Н	C::CCl	H	Me	CF ₂ H	0
2.14	Н	C::CCl	F	Me	Me	0
2.15	Н	C::CBr	H	Me	CF ₃	0
2.16	Н	C::CBr	H	Me	CF ₂ H	0
2.17	Н	C::CBr	F	Me	Me	0

			T		CT.	
2.18	H	C::CCF ₃	H	Me	CF ₃	0
2.19	. Н	C::CCF ₃	H	Me	CF ₂ H	0
2.20	Н	C::CCF ₃	F	Me	Me	0
2.21	allenyl	C::CCF ₃	H	Me	CF ₃	0
2.22	Н	CH=CH ₂	H	Me	CF ₃	0
2.23	Н	CH=CH ₂	H	Me	CF ₃	S
2.24	H	CH=CH ₂	Н	Me	CF₂H	0
2.25	propargyl	CH=CH₂	Н	Me	CF ₃	0
2.26	Н	CH=CH ₂	F	Me	Me	0
2.27	Н	CH=CH ₂	H	CH ₂ OMe	CF ₃	0
2.28	allenyl	CH=CH ₂	H	Me	CF ₃	0
2.29	Н	CH=CF ₂	H	Me	CF ₃	0
2.30	Н	CH=CF ₂	H	Me	CF ₂ H	0
2.31	H	CH=CF ₂	F	Me	Me	0
2.32	Н	CH=CCl ₂	H	Me	CF ₃	0
2.33	Н	CH=CCl ₂	H	Me	CF ₂ H	0
2.34	Н	CH=CCl ₂	F	Me	Me	0
2.35	Н	CH=CBr ₂	H	Me	CF ₃	0
2.36	Н	CH=CBr ₂	H	Me	CF ₂ H	0
2.37	Н	CH=CBr ₂	F	Me .	Me	0
2.38	Н	CF=CF ₂	H	Me	CF ₃	0
2.39	·H	CF=CF ₂	H	Me	CF ₂ H	0
2.40	Н	CF=CF ₂	F	Me	Me	0
2.41	Н	CCl=CH ₂	H	Me	CF ₃	0
2.42	H	CCl=CH ₂	H	Me	CF ₂ H	0
2.43	H	CCl=CH ₂	F	Me	Me	0
2.44	Н	CBr=CH ₂	H	Me	CF ₃	0
2.45	Н	CBr=CH ₂	H	Me	CF ₂ H	0
2.46	Н	CBr=CH ₂	F	Me	Me	0
2.47	Н	CF=CHF	Н	Me	CF ₃	0

2.48 H CF=CHF H Me CF2H 2.49 H CF=CHF F Me Me 2.50 H CH=CHSiMe3 H Me CF3 2.51 H CH=CHSiMe3 H Me CF2H 2.52 H CH=CHSiMe3 F Me Me 2.53 H CH=CHCF3 H Me CF3 2.54 H CH=CHCF3 H Me CF2H 2.55 H CH=CHCF3 F Me Me 2.56 H CH=CHCF3 H Me CF3 2.57 H CH=CCICF3 H Me CF2H 2.58 H CH=CCICF3 F Me Me 2.59 H CH=CCICF3 F Me Me 2.60 H CH2C::CH H Me CF2H 2.61 H CH2C::CH H CH2OMe CF3	0 0 0 0 .0 0
2.50 H CH=CHSiMe3 H Me CF3 2.51 H CH=CHSiMe3 H Me CF2H 2.52 H CH=CHSiMe3 F Me Me 2.53 H CH=CHCF3 H Me CF3 2.54 H CH=CHCF3 H Me CF2H 2.55 H CH=CHCF3 F Me Me 2.56 H CH=CCICF3 H Me CF3 2.57 H CH=CCICF3 H Me CF2H 2.58 H CH=CCICF3 F Me Me 2.59 H CH2C::CH H Me CF2H 2.60 H CH2C::CH H Me Me 2.61 H CH2C::CH F Me Me	0 0 0 0 0 0 0 0
2.51 H CH=CHSiMe3 H Me CF2H 2.52 H CH=CHSiMe3 F Me Me 2.53 H CH=CHCF3 H Me CF3 2.54 H CH=CHCF3 H Me CF2H 2.55 H CH=CHCF3 F Me Me 2.56 H CH=CCICF3 H Me CF3 2.57 H CH=CCICF3 H Me CF2H 2.58 H CH=CCICF3 F Me Me 2.59 H CH2C::CH H Me CF3 2.60 H CH2C::CH H Me CF2H 2.61 H CH2C::CH F Me Me	0 0 0 0 0 0 0 0
2.52 H CH=CHSiMe3 F Me Me 2.53 H CH=CHCF3 H Me CF3 2.54 H CH=CHCF3 H Me CF2H 2.55 H CH=CHCF3 F Me Me 2.56 H CH=CCICF3 H Me CF3 2.57 H CH=CCICF3 H Me CF2H 2.58 H CH=CCICF3 F Me Me 2.59 H CH2C::CH H Me CF3 2.60 H CH2C::CH H Me CF2H 2.61 H CH2C::CH F Me Me	0 0 0 0 0 0 0
2.53 H CH=CHCF3 H Me CF3 2.54 H CH=CHCF3 H Me CF2H 2.55 H CH=CHCF3 F Me Me 2.56 H CH=CCICF3 H Me CF3 2.57 H CH=CCICF3 H Me CF2H 2.58 H CH=CCICF3 F Me Me 2.59 H CH2C::CH H Me CF3 2.60 H CH2C::CH H Me Me 2.61 H CH2C::CH F Me Me	0 0 0 0 0 0 0
2.54 H CH=CHCF3 H Me CF2H 2.55 H CH=CHCF3 F Me Me 2.56 H CH=CCICF3 H Me CF3 2.57 H CH=CCICF3 H Me CF2H 2.58 H CH=CCICF3 F Me Me 2.59 H CH2C::CH H Me CF3 2.60 H CH2C::CH H Me Me 2.61 H CH2C::CH F Me Me	0 0 0 0 0 0
2.55 H CH=CHCF3 F Me Me 2.56 H CH=CCICF3 H Me CF3 2.57 H CH=CCICF3 H Me CF2H 2.58 H CH=CCICF3 F Me Me 2.59 H CH2C::CH H Me CF3 2.60 H CH2C::CH H Me CF2H 2.61 H CH2C::CH F Me Me	0 0 0 0 0
2.56 H CH=CCICF3 H Me CF3 2.57 H CH=CCICF3 H Me CF2H 2.58 H CH=CCICF3 F Me Me 2.59 H CH2C::CH H Me CF3 2.60 H CH2C::CH H Me CF2H 2.61 H CH2C::CH F Me Me	0 0 0 0
2.57 H CH=CClCF3 H Me CF2H 2.58 H CH=CClCF3 F Me Me 2.59 H CH2C::CH H Me CF3 2.60 H CH2C::CH H Me CF2H 2.61 H CH2C::CH F Me Me	0 0 0
2.58 H CH=CCICF3 F Me Me 2.59 H CH2C::CH H Me CF3 2.60 H CH2C::CH H Me CF2H 2.61 H CH2C::CH F Me Me	0 0
2.59 H CH ₂ C::CH H Me CF ₃ 2.60 H CH ₂ C::CH H Me CF ₂ H 2.61 H CH ₂ C::CH F Me Me	0
2.60 H CH ₂ C::CH H Me CF ₂ H 2.61 H CH ₂ C::CH F Me Me	0
2.61 H CH ₂ C::CH F Me Me	
	10
2.62 H CH ₂ C::CH H CH ₂ OMe CF ₂	
	0
2.63 H CH ₂ C::CSiMe ₃ H Me CF ₃	0
2.64 H CH ₂ C::CSiMe ₃ H Me CF ₂ H	0
2.65 H CH ₂ C::CSiMe ₃ F Me Me	0
2.66 H C::CCMe ₃ . H Me CF ₃	0
2.67 H C::CCMe ₃ H Me CF ₂ H	0
2.68 H C::CCMe ₃ F Me Me	Ō
2.69 H C::CMe H Me CF ₃	0
2.70 H C::CMe H Me CF ₂ H	0
2.71 H C::CMe F Me Me	0
2.72 COMe C::CH H Me CF ₃	0
2.73 H C::CH H CF ₂ H CF ₂ H	0
2.74 H C::CH H CF ₂ H CF ₃	0
2.75 H C::CH H Me CH ₂ F	0
2.76 H C::CSiMe ₃ H Me CH ₂ F	0

2.77	Н	C::C(cyclopropyl)	H	Me	CF ₃	0
2.78	Н	C::C(cyclopropyl)	Н	Me	CHF ₂	0
2.79	Н	SiMe ₃	H	Me	CH ₂ F	0
2.80	H	SiMe ₃	Н	Me	CF ₃	0
2.81	H	SiMe ₃	H	Me	CHF ₂	0
2.82	Н	C::CF	Н	Me	CF ₃	0
2.83	Н	C::CF	H	Me	CF ₂ H	0
2.84	H	C::CF	F	Me	Me	0
2.85	Н	C::CCF ₂ Cl	Н	Me	CF ₃	0
2.86	Н	C::CCF ₂ Cl	Н	Me	CF ₂ H	0
2.87	H	C::CCF ₂ Cl	F	Me	Me	0
2.88	Н	C::CCF ₂ H	H	Me	CF ₃	0
2.89	Н	C::CCF ₂ H	H	Me	CF ₂ H	0
2.90	H	C::CCF ₂ H	F	Me	Me	0
2.91	Н	C::CCF ₂ Br	H	Me	CF ₃	0
2.92	H	C::CCF ₂ Br	H	Me	CF ₂ H	0
2.93	H	C::CCF ₂ Br	F	Me	Me	0
2.94	Н	C::CCH ₂ F	Н	Me	CF ₃	0
2.95	Н	C::CCH ₂ F	Н	Me	CF ₂ H	0
2.96	H	C::CCH ₂ F	F	Me	Me	0
2.97	Н	C::CCH(Me)F	Н	Me	CF ₃	0
2.98	H	C::CCH(Me)F	Н	Me	CF ₂ H	0
2.99	Н	C::CCH(Me)F	F	Me	Me	0
2.100	Н	C::CC(Me) ₂ F	H	Me	CF ₃	0
2.101	Н	C::CC(Me) ₂ F	Н	Me	CF ₂ H	0
2.102	H	C::CC(Me) ₂ F	F	Me	Me	0
2.103	Н	C::CCH ₂ C(Me) ₃	H	Me	CF ₃	0
2.104	Н	C::CCH ₂ C(Me) ₃	H	Me	CF₂H	0
2.105	Н	C::CCH ₂ C(Me) ₃	F	Me	Me	0

2.106	Н	C::CCH(Me) ₂	H	Me	CF ₂ H	0
2.107	Н	C::CCH(Me) ₂	H	Me	CF ₂ H	0
2.108	Н	C::CCH(Me) ₂	F	Me	Me	0
2.109	H	C::CCH ₂ CH(Me) ₂	Н	Me	CF ₂ H	0
2.110	H	C::CCH ₂ CH(Me) ₂	Н	Me	CF ₂ H	0
2.111	H	C::CCH ₂ CH(Me) ₂	F	Me	Me	0
2.112	Н	CH ₂ C::CCMe ₃	H	Me	CF ₃	0
2.113	Н	CH ₂ C::CCMe ₃	Н	Me	CF ₂ H	О
2.114	Н	CH ₂ C::CCMe ₃	F	Me	Me	0
2.115	Н	CF ₂ C::CCMe ₃	H	Me	CF ₃	О
2.116	Н	CF ₂ C::CCMe ₃	Н	Me	CF ₂ H	О
2.117	Н	CF ₂ C::CCMe ₃	F	Me	Me	0
2.118	H	CF ₂ C::CMe	Н	Me	CF ₃	0
2.119	Н	CF ₂ C::CMe	Н	Me	CF ₂ H	0
2.120	Н	CF ₂ C::CCMe	F	Me	Me	0
2.121	Н	CF ₂ C::CH	H	Me	CF ₃	0
2.122	Н	CF ₂ C::CH	H	Me	CF ₂ H	0
2.123	H	CF ₂ C::CH	F	Me	Me	О
2.124	Н	CMe ₂ C::CH	Н	Me	CF ₃	0
2,125	Н	CMe ₂ C::CH	Н	Me	CF ₂ H	0
2.126	H	CMe₂C::CH	F	Me	Me	0
2.127	H	CHFC::CH	Н	Me	CF ₃	О
2.128	Н	CHFC::CH	Н	Me	CF ₂ H	0
2.129	Н	CHFC::CH	F	Me	Me	0
2.130	H	CHMeC::CH	H	Me	CF ₃	0
2.131	Н	CHMeC::CH	H	Me	CF ₂ H	0
2.132	H	CHMeC::CH	F	Me	Me	0
2.133	Н	CH(CF ₃)C::CH	Н	Me	CF ₃	0

2.134	Н	CH(CF ₃)C::CH	H	Me	CF ₂ H	0
2.135	H	CH(CF ₃)C::CH	F	Me	Me	0
2.136	Н	C::C (1-F-cyclopentyl)	H	Me	CF ₃	0
2.137	H	C::C (1-F-cyclopentyl)	H	Me	CHF ₂	0
2.138	Н	C::CCH ₂ OMe	H	Me	CF ₃	0
2.139	н	C::CCH ₂ OMe	H	Me	CF ₂ H	0
2.140	Н	C::CCH ₂ OMe	F	Me	Me	0
2.141	Н	C::CCMe ₂ OMe	H	Me	CF ₃	0
2.142	H	C::CCMe ₂ OMe	H	Me	CF ₂ H	0
2.143	H	C::CCMe ₂ OMe	F	Me	Me	0
2.144	Н	C::CCMe2OCOMe	Н	Me	CF ₃	0
2.145	H	C::CCMe2OCOMe	Н	Me	CF ₂ H	0
2.146	Н	C::CCF ₂ Me	Н	Me	CF ₃	0
2.147	Н	C::CCF ₂ Me	Н	Me	CF ₂ H	0
2.148	H	C::CCF ₂ Me	F	Me	Me	0
2.149	Н	C::CC(Me)=CH ₂	Н	Me	CF ₃	0
2.150	Н	C::CC(Me)=CH ₂	H	Me	CF ₂ H	0
2.151	H	CH=CFCl	H	Me	CF ₃	0
2.152	Н	CH=CFCl	H	Me	CF ₂ H	0
2.153	Н	CH=CFCl	F	Me	Me	0
2.154	Н	CH=CFBr	H	Me	CF ₃	0
2.155	H	CH=CFBr	H	Me	CF ₂ H	0
2.156	Н	CH=CFBr	F	Me	Me	0
2.157	H	CH=CHBr	Н	Me	CF ₃	0
2.158	Н	CH=CHBr	Н	Me	CF ₂ H	0
2.159	Н	CH=CHBr	F	Me	Me	0
2.160	Н	CH=CHF	H	Me	CF ₃	0
2.161	H	CH=CHF	H	Me	CF ₂ H	0
2.162	H	CH=CHF	F	Me	Me	0

$$R^{10} \xrightarrow{N} R^{1}$$

$$R^{1} \xrightarrow{R^{9}}$$

$$R^{7}$$

$$R^{7}$$

$$R^{9}$$

Table 3

Compound	R ¹	R ⁷	R ⁹	R ¹⁰	X
No.					
3.01	H	C::CH	Me	CF ₃	0
3.02	Н	C::CH	Me	CF ₃	S
3.03	Н	C::CH	Me	CF ₂ H	0
3.04	propargyl	C::CH	Me	CF ₃	0
3.05	Н	C::CH	Me	Me	0
3.06	H	C::CH	CH ₂ OMe	CF ₃	0
3.07	allenyl	C::CH	Me	CF ₃	0
3.08	H	C::CSiMe ₃	Me	CF ₃	0
3.09	Н	C::CSiMe ₃	Me	CF ₃	S
3.10	Н	C::CSiMe ₃	Me	CF ₂ H	0
3.11	Н	C::CSiMe ₃	Me	Me	0
3.12	Н	C::CCl	Me	CF ₃	0
3.13	Н	C::CCl	Me	CF₂H	0
3.14	Н	C::CCl	Me	Me	0
3.15	H	C::CBr	Me	CF ₃	0
3.16	H	C::CBr	Me	CF ₂ H	0
3.17	Н	C::CBr	Me	Me	0
3.18	Н	C::CCF ₃	Me	CF ₃	0
3.19	H	C::CCF ₃	Me	CF ₂ H	0

3.20	Н	C::CCF ₃	Me	Me	0
3.21	allenyl	C::CCF ₃	Me	CF ₃	0
3.22	H	CH=CH ₂	Me	CF ₃	0
3.23	Н	CH=CH ₂	Me	CF ₃	S
3.24	Н	CH=CH ₂	Me	CF ₂ H	0
3.25	propargyl	CH=CH ₂	Me	CF ₃	0
3.26	Н	CH=CH ₂	Me	Me	0
3.27	Н	CH=CH ₂	CH ₂ OMe	CF ₃	0
3.28	allenyl	CH=CH ₂	Me	CF ₃	0
3.29	Н	CH=CF ₂	Me	CF ₃	0
3.30	Н	CH=CF ₂	Me	CF ₂ H	0
3.31	Н	CH=CF ₂	Me	Me	0
3.32	Н	CH=CCl ₂	Me	CF ₃	0
3.33	H	CH=CCl ₂	Me	CF ₂ H	0
3.34	Н	CH=CCl ₂	Me	Me	0
3.35	Н	CH=CBr ₂	Me	CF ₃	0
3.36	Н	CH=CBr ₂	Me	CF ₂ H	0
3.37	Н	CH=CBr ₂	Me	Me	0
3.38	Н	CF=CF ₂	Me	CF ₃	0
3.39	Н	CF=CF ₂	Me	CF ₂ H	0
3.40	Н	CF=CF ₂	Me	Me	0
3.41	Н	CCl=CH ₂	Me	CF ₃	0
3.42	H .	CCl=CH ₂	Me	CF ₂ H	0
3.43	Н	CCl=CH ₂	Me	Me	0
3.44	Н	CBr=CH ₂	Me	CF ₃	0
3.45	Н	CBr=CH ₂	Me	CF ₂ H	0
3.46	Н	CBr=CH ₂	Me	Me	0
3.47	Н	CF=CHF	Me	CF ₃	0
3.48	Н	CF=CHF	Me	CF ₂ H	0
3.49	Н	CF=CHF	Me	Me	0

3.50	H	CH=CHSiMe ₃	Me	CF ₃	0
3.51	H	CH=CHSiMe ₃	Me	CF ₂ H	0
3.52	H	CH=CHSiMe ₃	Me	Me	0
3.53	H	CH=CHCF ₃	Me	CF ₃	0
3.54	Н	CH=CHCF ₃	Me	CF ₂ H	0
3.55	H	CH=CHCF ₃	Me	Me	0
3.56	Н	CH=CClCF ₃	Me	CF ₃	0
3.57	Н	CH=CClCF ₃	Me	CF ₂ H	0
3.58	Н	CH=CClCF ₃	Me	Me	0
3.59	Н	CH₂C::CH	Me	CF ₃	0
3.60	Н	CH₂C::CH	Me	CF ₂ H	0
3.61	Н	CH₂C::CH	Me	Me	0
3.62	Н	CH₂Ç::CH	CH ₂ OMe	CF ₃	0
3.63	Н	CH ₂ C::CSiMe ₃	Me	CF ₃	0
3.64	H	CH ₂ C::CSiMe ₃	Me	CF ₂ H	0
3.65	Н	CH ₂ C::CSiMe ₃	Me	Me	0
3.66	Н	C::CCMe ₃	Me	CF ₃	0
3.67	Н	C::CCMe ₃	Me	CF₂H	0
3.68	Н	C::CCMe ₃	Me	Me	0
3.69	Н	C::CMe	Me	CF ₃	0
3.70	Н	C::CMe	Me	CF ₂ H	0
3.71	Н	C::CMe	Me	Me	0
3.72	COMe	C::CH	Me	CF ₃	0
3.73	Н	C::CH	CF₂H	CF ₂ H	0
3.74	H	C::CH	CF ₂ H	CF ₃	0
3.75	H	C::CH	Me	CH ₂ F	0
3.76	Н	C::CSiMe ₃	Me	CH ₂ F	0
3.77	H	C::C(cyclopropyl)	Me	CF ₃	0
3.78	H	C::C(cyclopropyl)	Me	CHF ₂	0

3.79	H	SiMe ₃	Me	CH ₂ F	0
3.80	Н	SiMe ₃	Me	CF ₃	0
3.81	H	SiMe ₃	Me	CHF ₂	0
3.82	Н	C::CF	Me	CF ₃	0
3.83	Н	C::CF	Me	CF ₂ H	0
3.84	H	C::CF	Me	Me	0
3.85	Н	C::CCF ₂ Cl	Me	CF ₃	0
3.86	Н	C::CCF ₂ C1	Me	CF ₂ H	0
3.87	H	C::CCF ₂ Cl	Me	Me	0
3.88	H	C::CCF ₂ H	Me	CF ₃	0
3.89	Н	C::CCF ₂ H	Me	CF ₂ H	0
3.90	Н	C::CCF ₂ H	Me	Me	0
3.91	Н	C::CCF ₂ Br	Me	CF ₃	0
3.92	Н	C::CCF ₂ Br	Me	CF ₂ H	0
3.93	Н	C::CCF ₂ Br	Me	Me	0
3.94	Н	C::CCH ₂ F	Me	CF ₃	0
3.95	Н	C::CCH ₂ F	Me	CF ₂ H	0
3.96	Н	C::CCH₂F	Me	Me	0
3.97	Н	C::CCH(Me)F	Me	CF ₃	0
3.98	H	C::CCH(Me)F	Me	CF ₂ H	0
3.99	H	C::CCH(Me)F	Me	Me	0
3.100	Н	C::CC(Me) ₂ F	Me	CF ₃	0
3.101	H	C::CC(Me) ₂ F	Me	CF ₂ H	0
3.102	H	C::CC(Me) ₂ F	Me .	Me	0
3.103	Н	C::CCH ₂ C(Me) ₃	Me	CF ₃	0
3.104	Н	C::CCH ₂ C(Me) ₃	Me	CF ₂ H	0
3.105	Н	C::CCH ₂ C(Me) ₃	Me	Me	0
3.106	Н	C::CCH(Me) ₂	Me	CF ₃	0
3.107	Н	C::CCH(Me) ₂	Me	CF ₂ H	0

2 100	T TT	G GGTTO()		7.7	
3.108	Н	C::CCH(Me) ₂	Me.	Me	0
3.109	H	C::CCH ₂ CH(Me) ₂	Me	CF ₃	0
3.110	H	C::CCH ₂ CH(Me) ₂	Me	CF₂H	0
3.111	H	C::CCH ₂ CH(Me) ₂	Me	Me	0
3.112	Н	CH ₂ C::CCMe ₃	Me	CF ₃	0
3.113	H	CH ₂ C::CCMe ₃	Me	CF ₂ H	0
3.114	Н	CH ₂ C::CCMe ₃	Me	Me	0
3.115	Н	CF ₂ C::CCMe ₃	Me	CF ₃	0
3.116	Н	CF ₂ C::CCMe ₃	Me	CF ₂ H	0
3.117	Н	CF ₂ C::CCMe ₃	Me	Me	0
3.118	Н	CF ₂ C::CMe	Me	CF ₃	0
3.119	Н	CF₂C::CMe	Me	CF ₂ H	0
3.120	Н	CF ₂ C::CCMe	Me	Me	0
3.121	Н	CF₂C::CH	Me	CF ₃	0
3.122	Н	CF ₂ C::CH	Me	CF ₂ H	0
3.123	Н	CF₂C::CH	Me	Me	0
3.124	Н	CMe ₂ C::CH	Me	CF ₃	0
2,125	Н	CMe₂C::CH	Me	CF ₂ H	0
3.126	Н	CMe₂C::CH	Me	Me	0
3.127	Н	CHFC::CH	Me	CF ₃	0
3.128	Н	CHFC::CH	Me	CF ₂ H	0
3.129	Н	CHFC::CH	Me	Me	0
3.130	H	CHMeC::CH	Me	CF ₃	0
3.131	H	CHMeC::CH	Me	CF₂H	0
3.132	Н	CHMeC::CH	Me	Me	0
3.133	Н	CH(CF ₃)C::CH	Me	CF ₃	0
3.134	Н	CH(CF ₃)C::CH	Me	CF ₂ H	0
3.135	Н	CH(CF ₃)C::CH	Me	Me	0

3.136	н	C::C(1-F-cyclopentyl)	Me	CF ₃	0
3.137	Н	C::C(1-F-cyclopentyl)	Me	CHF ₂	0
3.138	H	C::CCH₂OMe	Me	CF ₃	0
3.139	Н	C::CCH ₂ OMe	Me	CF ₂ H	0
3.140	Н	C::CCH ₂ OMe	Me	Me	0
3.141	H	C::CCMe2OMe	Me	CF ₃	0
3.142	Н	C::CCMe2OMe	Me	CF ₂ H	0
3.143	Н	C::CCMe2OMe	Me	Me	0
3.144	Н	C::CCMe2OCOMe	Me	CF ₃	0
3.145	Н	C::CCMe2OCOMe	Me	CF ₂ H	0
3.146	Н	C::CCF ₂ Me	Me	CF ₃	0
3.147	Н	C::CCF ₂ Me	Me	CF ₂ H	0
3.148	Н	C::CCF ₂ Me	Me	Me	0
3.149	Н	C::CC(Me)=CH ₂	Me	CF ₃	0
3.150	H	C::CC(Me)=CH ₂	Me	CF ₂ H	0
3.151	Н	CH=CFCl	Me	CF ₃	0
3.152	Н	CH=CFCI	Me	CF ₂ H	0
3.153	Н	CH=CFC1	Me	Me	0
3.154	H	CH=CFBr	Me	CF ₃	0
3.155	Н	CH=CFBr	Me	CF ₂ H	0
3.156	Н	CH=CFBr	Me	Me	0
3.157	H	CH=CHBr	Me	CF ₃	0
3.158	Н	CH=CHBr	Me	CF ₂ H	0
3.159	H	CH=CHBr	Me	Me	0
3.160	Н	CH=CHF	Me	CF ₃	0
3.161	Н	CH=CHF	Me	CF ₂ H	О
3.162	Н	CH=CHF	Me	Me	0
3.163	Н	CMe=CHCF ₃	Me	CF ₃	0
3.164	Н	CMe=CHCF ₃	Me	CF ₂ H	0

3.225	Н	CCF ₃ =CHCl	Me	7.15-	
3.226		001, 01101	IVIC	Me	0
320	H	CH=CFCF₂Cl	Me	CF ₃	0
3.227	Н	CH=CFCF₂Cl	Me	CF ₂ H	0
3.228	Н	CH=CFCF₂Cl	Me	Me	0
3.229	Н	CH=CClCF ₂ Cl	Me	CF ₃	0
3.230	Н	CH=CClCF ₂ Cl	Me	CF₂H	0
3.231	Н	CH=CClCF ₂ Cl	Me	Me	0
3.232	Н	CH ₂ CF=CF ₂	Me	CF ₃	0
3.233	Н	CH ₂ CF=CF ₂	Me	CF ₂ H	0
3.234	Н	CH ₂ CF=CF ₂	Me	Me	0
3.235	Н	CF=CFBr	Me	CF ₃	0
3.236	.H	CF=CFBr	Me	CF ₂ H	0
3.237	H	CF=CFBr	Me	Me	0
3.238	· H	CH ₂ CH=CF ₂	Me	CF ₃	0
3.239	Н	CH ₂ CH=CF ₂	Me	CF ₂ H	0
3.240	Н	CH ₂ CH=CF ₂	Me	Me	0
3.241	Н	CH ₂ CH=CCl ₂	Me	CF ₃	0
3.242	Н	CH ₂ CH=CCl ₂	Me	CF ₂ H	0
3.243	Н	CH ₂ CH=CCl ₂	Me	Me	0
3.244	Н	CH ₂ CH=CBr ₂	Me	CF ₃	0
3.245	Н	CH ₂ CH=CBr ₂	Me	CF ₂ H	0
3.246	Н	CH ₂ CH=CBr ₂	Me	Me	0
3.247	Н	CCl=CF ₂	Me	CF ₃	0
3.248	Н	CCI=CF ₂	Me	CF₂H	0
3.249	Н	CCl=CF ₂	Me	Me	0.
3.250	Н	C::CCMe ₂ OH	Me	CF ₃	0
3.251	Н	C::CCH2CH3	Me	CF ₂ H	0
3.252	Н.	C::CCH ₂ CH ₃	Me	Me	0
3.253	Н	C::CCH ₂ CH ₃	Me	CF ₃	0
3.254	Н	C::CCF=CF ₂	Me	CF ₃	0

3.255	Н	~ ~~~			
		C::CCF=CF ₂	Me	CF ₂ H	0
3.256	H	C::CCHFC1	Me	CF ₃	0
3.257	Н	C::CCHFCI	Me	CF ₂ H	0
3.258	Н	C::CCHFC1	Me	Me	0
3.259	Н	CH=CFC ₂ F ₅	Me	CF ₃	0
3.260	Н	CH=CFC ₂ F ₅	Me	CF ₂ H	0
3.261	Н	CH=CFC ₂ F ₅	Me	Me	0
3.262	Н	C::CCF ₂ CH ₂ CH ₃	Me	CF ₃	0
3.263	Н	C::CCF ₂ CH ₂ CH ₃	Me	CF ₂ H	0
3.264	Н	C::CCF ₂ CH ₂ CH ₃	. Me	Me	0
3.265	Н	C::CCHFCH ₂ CH ₃	Me	CF ₃	0
3.266	Н	C::CCHFCH2CH3	Me	CF ₂ H	0
3.267	Н	C::CCHFCH₂CH₃	Me	Me	0
3.268	Н	C::CCF(CF ₃) ₂	Me	CF ₃	0
3.269	Н	C::CCF(CF ₃) ₂	Me	CF ₂ H	0
3.270	Н	C::CCF(CF ₃) ₂	Me	Me	0
3.271	H .	CH=CClC ₂ F ₅	Me	CF ₃	0
3.272	Н	CH=CClC ₂ F ₅	Me	CF ₂ H	0
3.273	Н .	CH=CClC ₂ F ₅	Me	Me	0
3.274	Н	C::CC ₂ F ₅	Me	CF ₃	0
3.275	Н	C::CC ₂ F ₅	Me	CF ₂ H	0
3.276	Η.	C::CC ₂ F ₅	Me	Me	0

Table 3 provides 276 compounds of formula (Ic):

$$R^{10} \longrightarrow R^{1}$$

$$R^{1} \longrightarrow R^{7}$$

$$R^{9} \longrightarrow R^{7}$$

wherein R¹, R⁷, R⁹, R¹⁰ and X are as defined in Table 3.

Table 3 provides 276 compounds of formula (IcA) wherein R^1 , R^7 , R^9 , R^{10} and X are as defined in Table 3.

$$R^{10}$$
 R^{10}
 R^{10}
 R^{1}
 R^{7}

5

Table 3 provides 276 compounds of formula (IcB) wherein R^1 , R^7 , R^9 , R^{10} and X are as defined in Table 3.

$$R^{10}$$
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

10

Table 3 provides 276 compounds of formula (IcC) wherein R^1 , R^7 , R^9 , R^{10} and X are as defined in Table 3.

15

Table 3 provides 276 compounds of formula (IcD) wherein \mathbb{R}^1 , \mathbb{R}^7 , \mathbb{R}^9 , \mathbb{R}^{10} and X are as defined in Table 3.

$$R^{10}$$
 R^{1}
 R^{1}
 R^{7}
 R^{7}
 R^{7}

Table 3 provides 276 compounds of formula (IcE) wherein R^1 , R^7 , R^9 , R^{10} and X are as defined in Table 3 .

Table 3 provides 276 compounds of formula (IcF) wherein R^1 , R^7 , R^9 , R^{10} and X are as defined in Table 3 .

Table 3 provides 276 compounds of formula (IcG) wherein R^1 , R^7 , R^9 , R^{10} and X are as defined in Table 3 .

$$R^{10}$$
 N
 S
 R^{1}
 R^{7}
 R^{7}

5

5

10

Table 4 provides 3 compounds of formula (Id):

$$R^{10} \longrightarrow R^{1}$$
 (Id)

wherein R¹, R⁷, R⁹ and R¹⁰ are as defined in Table 4.

Table 4

Compound	R ¹	R ⁷	R ⁹	R ¹⁰
No.				
4.01	Н	C::CH	Me	CF ₃
4.02	Н	C::CSiMe ₃	Me	CF ₃
4.03	Н	CH=CH ₂	Me	CF ₃

Table 5 provides 15 compounds of formula (Ie):

$$R^{10}$$
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
(le)

wherein R^1 , R^7 , R^8 , R^9 and R^{10} are as defined in Table 5.

Table 5

Compound	R ¹	R^7	R ⁸	R ⁹	R ¹⁰
No.					:
5.01	Н	C::CH	Н	Н	CF ₃

5.03 H C::CH H Me CF 5.04 H C::CH Me Me H 5.05 COMe C::CH Me Me H 5.06 COMe C::CH Me Me Me 5.07 COEt C::CH Me Me Me 5.08 H C::CSiMe3 H H CF 5.09 H C::CSiMe3 Me Me Me 5.10 H C::CSiMe3 H Me CF 5.11 H C::CSiMe3 Me Me H						
5.04 H C::CH Me Me H 5.05 COMe C::CH Me Me H 5.06 COMe C::CH Me Me Me 5.07 COEt C::CH Me Me Me 5.08 H C::CSiMe3 H H CF 5.09 H C::CSiMe3 Me Me Me 5.10 H C::CSiMe3 H Me CF 5.11 H C::CSiMe3 Me Me H	5.02	Н	C::CH	Me	Me	Me
5.05 COMe C::CH Me Me H 5.06 COMe C::CH Me Me Me 5.07 COEt C::CH Me Me Me 5.08 H C::CSiMe3 H H CF 5.09 H C::CSiMe3 Me Me Me 5.10 H C::CSiMe3 H Me CF 5.11 H C::CSiMe3 Me Me H	5.03	Н	C::CH	Н	Me	CF ₃
5.06 COMe C::CH Me Me Me 5.07 COEt C::CH Me Me Me 5.08 H C::CSiMe3 H H CF 5.09 H C::CSiMe3 Me Me Me 5.10 H C::CSiMe3 H Me CF 5.11 H C::CSiMe3 Me Me H	5.04	H	C::CH	Me	Me	Н
5.07 COEt C::CH Me Me Me 5.08 H C::CSiMe3 H H CF 5.09 H C::CSiMe3 Me Me Me 5.10 H C::CSiMe3 H Me CF 5.11 H C::CSiMe3 Me Me H	5.05	COMe	C::CH	Me	Me	Н
5.08 H C::CSiMe3 H H CF 5.09 H C::CSiMe3 Me Me Me 5.10 H C::CSiMe3 H Me CF 5.11 H C::CSiMe3 Me Me H	5.06	COMe	C::CH	Me	Me	Me
5.09 H C::CSiMe3 Me Me Me 5.10 H C::CSiMe3 H Me CF 5.11 H C::CSiMe3 Me Me H	5.07	COEt	C::CH	Me	Me	Me
5.10 H C::CSiMe ₃ H Me CF 5.11 H C::CSiMe ₃ Me Me H	5.08	H	C::CSiMe ₃	Н	Н	CF ₃
5.11 H C::CSiMe ₃ Me Me H	5.09	H	C::CSiMe ₃	Me	Me	Me
	5.10	H	C::CSiMe ₃	H	Me	CF ₃
5.12 H C::CSiMe ₃ H H CF	5.11	Н	C::CSiMe ₃	Me	Me	Н
	5.12	Н	C::CSiMe ₃	H	H	CF ₃
5.13 H CH=CH ₂ Me Me Me	5.13	Н	CH=CH ₂	Me	Me	Me
5.14 H CH=CH ₂ H Me CF	5.14	Н	CH=CH ₂	H	Me	CF ₃ .
5.15 H CH=CH ₂ Me Me H	5.15	Н	CH=CH ₂	Me	Me	H

Table 6 provides 15 compounds of formula (If):

$$R^{10} \longrightarrow R^{1} \longrightarrow R^{7}$$
 (If)

wherein R^1 , R^7 , R^8 , R^9 and R^{10} are as defined in Table 6.

Table 6

Compound	R ¹	R ⁷	R ⁸	R ⁹	R ¹⁰
No.					
6.01	Н	C::CH	Н	Н	CF ₃
6.02	Н	C::CH	Me	Me	Me
6.03	Н	C::CH	Н	Me	CF ₃

Н	C::CH	Me	Me	H
COMe	C::CH	Me	Me	Н
COMe	C::CH	Me	Me	Me
COEt	C::CH	Me	Me	Me
Н	C::CSiMe ₃	Н	Н	CF ₃
Н	C::CSiMe ₃	Me	Me	Me
Н	C::CSiMe ₃	H	Me	CF ₃
H	C::CSiMe ₃	Me	Me	H
Н	C::CSiMe ₃	H	H	CF ₃
H	CH=CH ₂	Me	Me	Me
H	CH=CH ₂	H	Me	CF ₃
H	CH=CH ₂	Me	Me	Н
	COMe COMe H H H H H	COMe C::CH COMe C::CH COEt C::CH H C::CSiMe3 H C::CSiMe3 H C::CSiMe3 H C::CSiMe3 H C::CSiMe3 H CH=CH2 H CH=CH2	COMe C::CH Me COMe C::CH Me COEt C::CH Me H C::CSiMe3 H H C::CSiMe3 Me H C::CSiMe3 H H C::CSiMe3 H H C::CSiMe3 H H C::CSiMe3 H H CH=CH2 Me H CH=CH2 H	COMe C::CH Me Me COMe C::CH Me Me COEt C::CH Me Me H C::CSiMe3 H H H C::CSiMe3 Me Me H C::CSiMe3 H Me H C::CSiMe3 Me Me H C::CSiMe3 H H H C::CSiMe3 H H H CH=CH2 Me Me H CH=CH2 H Me

Table 7 provides 10 compounds of formula (Ig):

wherein R^1 , R^7 , R^8 and X are as defined in Table 7.

Table 7

Compound	R ¹	R ⁷	R ⁸	X
No.				
7.01	Н	C::CH	CF ₃	0
7.02	H	C::CH	Me	0
7.03	· H	C::CH	CF ₃	S
7.04	COMe	C::CH	Me	0
7.05	H	C::CSiMe ₃	CF ₃	0
7.06	Н	C::CSiMe ₃	Me	0
	<u> </u>			

7.07	Н	CH=CH ₂	CF ₃	0
7.08	Н	CH=CH ₂	CF ₃	0
7.09	propargyl	CH=CH ₂	Me	0
7.10	allenyl	CH=CH ₂	Me	0

- 48 -

Table 8 provides 10 compounds of formula (Ih):

$$\begin{array}{c|c} X & & \\ X & &$$

5 wherein R^1 , R^7 , R^8 and X are as defined in Table 8.

Table 8

			,	
Compound	\mathbb{R}^1	R ⁷	R ⁸	X
No.				
8.01	Н	C::CH	CF ₃	0
8.02	H	C::CH	Me	0
8.03	Н	C::CH	CF ₃	S
8.04	COMe	C::CH	Me	0
8.05	H	C::CSiMe ₃	CF ₃	0
8.06	Н	C::CSiMe ₃	Me	0
8.07	Н	CH=CH ₂	CF₃	0
8.08	H	CH=CH ₂	CF ₃	0
8.09	propargyl	CH=CH ₂	Me	0
8.10	allenyl	CH=CH ₂	Me	0

Table 9

Compound	R ¹	R ⁷	R ⁸
No.			
9.01	Н	C::CH	C1
9.02	Н	C::CH	CF ₃
9.03	СОМе	C::CH	Cl
9.04	Н	C::CH	Br
9.05	COCH ₂ OMe	C::CH	Cl
9.06	Н	C::CSiMe ₃	Cl
9.07	Н	C::CSiMe ₃	CF ₃
9.08	Н	C::CSiMe ₃	Br
9.09	Н	CH=CH ₂	CF ₃
9.10	H	CH=CH ₂	Br
9.11	Н	CH=CH ₂	Cl
9.12	Н	CH=CH ₂	CH ₃
9.13	propargyl	CH=CH ₂	C1
9.14	allenyl	CH=CH ₂	Cl
9.15	H	C::CC1	Cl
9.16	Н	C::CCI	CF ₃
9.17	Н	C::CCI	Br
9.18	Н	C::CBr	Cl
9.19	Н	C::CBr	CF ₃
9.20	H	C::CBr	Br
9.21	Н	C::CCF ₃	Cl
9.22	H	C::CCF ₃	CF ₃
9.23	Н	C::CCF ₃	Br
9.24	Н	CH=CF ₂	CF ₃
9.25	Н	CH=CF ₂	Br

			
9.26	H	CH=CF ₂	Cl
9.27	H	CCl=CH ₂	CF ₃
9.28	H	CCl=CH ₂	Br
9.29	Н	CCl=CH ₂	Cl
9.30	H	CBr=CH ₂	CF ₃
9.31	Н	CBr=CH ₂	Br
9.32	Н	CBr=CH ₂	Cl
9.33	Н	CF=CHF	ÇF ₃
9.34	Н	CF=CHF	Br
9.35	Н	CF=CHF	Cl
9.36	Н	CH=CHCF ₃	CF ₃
9.37	Н	CH=CHCF ₃	Br
9.38	H	CH=CHCF ₃	Cl
9.39	Н	CH=CClCF ₃	CF ₃
9.40	H	CH=CCICF ₃	Br
9.41	H	CH=CCICF ₃	Cl
9.42	Н	CH₂C::CH	CF ₃
9.43	Н	CH ₂ C::CH	Br
9.44	Н	CH ₂ C::CH	Cl
9.45	H	CH ₂ C::CSiMe ₃	CF ₃
9.46	Н	CH ₂ C::CSiMe ₃	Br
9.47	Η.	CH ₂ C::CSiMe ₃	Cl
9.48	Н	C::CMe	CF ₃
9.49	H	C::CMe	Br
9.50	H	C::CMe	Cl
9.51	Н	CH=CCl ₂	CF ₃
9.52	Н	CH=CCl ₂	Br
9.53	Н	CH=CCl ₂	Cl
9.54	Н	CH=CHSiMe ₃	CF ₃

9.55	Н	CH=CHSiMe ₃	Br
9,56	H	CH=CHSiMe ₃	Cl
9.57	H	C::C(cyclopropyl)	Cl
9.58	H	SiMe ₃	C1
9.59	Н	C::CCMe ₃	Cl
9.60	H	CH=CBr ₂	CF ₃
9.61	Н	CH=CBr ₂	Br
9.62	Н	CH=CBr ₂	Cl
9.63	H	CF=CF ₂	CF ₃
9.64	H	CF=CF ₂	Br
9.65	Н	CF=CF ₂	Cl
9.66	H	C::CCMe ₃	CF ₃
9.67	H	C::CCMe ₃	Br
9.68	allenyl	C::CCMe ₃	Cl
9.69	Н	C::C(cyclopropyl)	CF ₃
9.70	Н	C::C(cyclopropyl)	Br
9.71	Н	C::CF	CF ₃
9.72	Н	C::CF	Br
9.73	Н	C::CF	Cl
9.74	Н	C::CCF2C1	Cl
9.75	Н	C::CCF ₂ Cl	CF ₃
9.76	Н	C::CCF2Cl	Br
9.77	Н	C::CCF ₂ H	Cl
9.78	Н	C::CCF ₂ H	CF ₃
9.79	Н	C::CCF ₂ H	Br
9.80	н	C::CCF ₂ Br	Cl
9.81	Н	C::CCF ₂ Br	CF ₃
9.82	H	C::CCF ₂ Br	Br
9.83	Н	C::CCH ₂ F	Cl

9.84	Н	C::CCH ₂ F	CF ₃
9.85	H	C::CCH ₂ F	Br
9.86	H	C::CCH(Me)F	Cl
9.87	H	C::CCH(Me)F	CF ₃
9.88	H	C::CCH(Me)F	Br
9.89	H	C::CC(Me) ₂ F	Cl
9.90	H	C::CC(Me) ₂ F	CF ₃
9.91	Н	C::CC(Me) ₂ F	Br
9.92	Н	C::CCH ₂ CMe ₃	C1
9.93	H	C::CCH ₂ CMe ₃	Br
9.94	Н	C::CCHMe2	CF ₃
9.95	Н	C::CCHMe2	Br
9.96	Н	C::CCHMe2	Cl
9.97	H	C::CCH2CHMe2	CF ₃
9.98	H	C::CCH2CHMe2	Br
9.99	Н	C::CCH2CHMe2	Cl
9.100	H	CF ₂ C::CMe	CF ₃
9.101	H	CF ₂ C::CMe	Br
9.102	H	CF ₂ C::CMe	Cl
9.103	H	CF ₂ C::CH	CF ₃
9.104	H	CF ₂ C::CH	Br
9.105	H	CF ₂ C::CH	Cl
9.106	H	CHFC::CH	CF ₃
9.107	H	CHFC::CH	Br
9.108	H	CHFC::CH	Cl
9.109	Н	C::C(1-F-cyclopentyl)	CF ₃
9.110	Н	C::C(1-F-cyclopentyl)	Br
9.111	Н	C::C(1-F-cyclopentyl)	CI

9.112	H	C::CCH ₂ OMe	Cl
9.113	Н	C::CCH₂OMe	Br
9.114	H	C::CCH ₂ OMe	CF ₃
9.115	H	C::CCMe2OMe	CI
9.116	H	C::CCMe2OMe	Br
9.117	H	C::CCMe2OMe	CF ₃
9.118	H	C::CCMe2OCOMe	Cl
9.119	Н	C::CCMe2OCOMe	Br
9.120	Н	C::CCMe2OCOMe	CF ₃
9.121	Н	C::CCF ₂ Me	Cl
9.122	Н	C::CCF ₂ Me	Br
9.123	Н	C::CCF ₂ Me	CF ₃
9.124	H	CH=CFC1	CF ₃
9.125	Н	CH=CFCI	Br
9.126	H	CH=CFCl	Ci
9.127	Н	CH=CFBr	CF ₃
9.128	Н	CH=CFBr	Br
9.129	Н	CH=CFBr	Cl
9.130	Н	CH=CHBr	CF ₃
9.131	H	CH=CHBr	Br
9.132	Н	CH=CHBr	Cl
9.133	H	CMe=CHCF ₃	CF ₃
9.134	Н	CMe=CHCF ₃	Br
9.135	Н	CMe=CHCF ₃	Cl
9.136	Н	CH=CFCF ₃	CF ₃
9.137	Н	CH=CFCF ₃	Br
9.138	Н	CH=CFCF₃	Cl
9.139	Н	CH=CBrCF ₃	CF ₃
9.140	Н	CH=CBrCF ₃	Br

9.171	Н	CCF ₃ =CBr ₂	Br
9.172	Н	CCF ₃ =CBr ₂	Cl
9.173	Н	CCF ₃ =CH ₂	CF ₃
9.174	Н	CCF ₃ =CH ₂	Br
9.175	Н	CCF ₃ =CH ₂	Cl
9.176	Н	. CCF ₃ =CFBr	CF ₃
9.177	Н	CCF ₃ =CFBr	Br
9.178	Н	CCF ₃ =CFBr	Cl
9.179	Н	CCF ₃ =CFCl	CF ₃
9.180	H	CCF ₃ =CFCl	Br
9.181	Н	CCF ₃ =CFCl	Cl
9.182	Н	CH=CFCF ₂ Cl	CF ₃
9.183	Н	CH=CFCF ₂ Cl	Br
9.184	Н	CH=CFCF ₂ Cl	Cl
9.185	H	CH=CClCF2Cl	Cl
9.186	H	CH ₂ CF=CF ₂	CF ₃
9.187	Н	CH ₂ CF=CF ₂	Br
9.188	Н	CH ₂ CF=CF ₂	Cl
9.189	Н	CF=CFBr	Cl
9.190	Н	CH ₂ CH=CF ₂	Cl
9.191	H	CH ₂ CH=CCl ₂	C1
9.192	Н	CH ₂ CH=CBr ₂	C1
9.193	Н	CH ₂ CH=CBr ₂	CF ₃
9.194	Н	CH ₂ CH=CBr ₂	Br
9.195	Н	CCl=CF ₂	Cl
9.196	Н	C::CMe	CHF ₂
9.197	H	C::CCHMe2	CHF ₂
9.198	H	C::CCH ₂ CHMe ₂	CHF ₂
9.199	H	C::CCF ₃	CHF ₂
9.200	H	C::CH	CHF ₂

9.201	H	C::CCH ₂ SiMe ₃	Cl
9.202	Н	C::CCH ₂ CF ₃	Cl
9.203	Н	C::CSi(Me) ₂ CMe ₃	Cl
9.204	Н	C::CCH ₂ CH ₃	Cl
9.205	H	C::CCF=CF ₂	Cl
9.206	Н	C::CCHFC1	Cl
9.207	Н	CH=CFC ₂ F ₅	Cl
9.208	Н	C::CCF ₂ CH ₂ CH ₃	C1
9.209	Н	C::CCHFCH₂CH₃	Cl
9.210	Н	C::CCF(CF ₃) ₂	CI
9.211	Н	CH=CClC ₂ F ₅	Cl
9.212	Н	C::CC ₂ F ₅	Cl

Table 9 provides 212 compounds of formula (Ii):

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

5 wherein R^1 , R^7 and R^8 are as defined in Table 9.

. Table 9 provides 212 compounds of formula (IiA) wherein R^1 , R^7 and R^8 are as defined in Table 9.

$$R^8$$
 R^1
 R^7
(IiA)

wherein R^1 , R^7 and R^8 are as defined in Table 10.

Table 10

Compound	R ¹	R ⁷	R ⁸
No.			
10.01	Н	C::CH	C1
10.02	Н	C::CH	CF ₃
10.03	СОМе	C::CH	Cl
10.04	Н	C::CH	Br
10.05	COCH ₂ OMe	C::CH	Cl
10.06	H	C::CSiMe ₃	Cl
10.07	Н	C::CSiMe ₃	CF ₃
10.08	Н	C::CSiMe ₃	Br
10.09	Н	CH=CH ₂	CF ₃
10.10	Н	CH=CH ₂	Br
10.11	Н	CH=CH ₂	C1
10.12	Н	CH=CH ₂	CH₃
10.13	propargyl	CH=CH ₂	C1
10.14	allenyl	CH=CH ₂	Cl

Table 11 provides 14 compounds of formula (Ik):

5

5

wherein R^1 , R^7 and R^8 are as defined in Table 11.

Table 11

Compound	\mathbb{R}^1	R ⁷	R ⁸
No.			
11.01	Н	C::CH	Cl
11.02	Н	C::CH	CF ₃
11.03	COMe	C::CH	Cl
11.04	Н	C::CH	Br
11.05	COCH ₂ OMe	C::CH	Cl
11.06	Н	C::CSiMe ₃	C1
11.07	Н	C::CSiMe ₃	CF ₃
11.08	Н	C::CSiMe ₃	Br
11.09	Н	CH=CH ₂	CF ₃
11.10	Н	CH=CH ₂	Br
11.11	H	CH=CH ₂	Cl
11.12	Н	· CH=CH ₂	CH ₃
11.13	propargyl	CH=CH ₂	Cl
11.14	allenyl	CH=CH₂	Cl

Table 12 provides 94 compounds of formula (II) where R^2 , R^3 , R^4 and R^5 are each hydrogen; n is 0; and R^1 and R^7 are as defined in Table 12.

Table 12

Compound	R ¹	R ⁷
No.		
12.01	. H	C::CH
12.02	Н	C::CSiMe ₃
12.03	Н	C::CCF ₃
12.04	Н	C::CC1

·\$3.

10.05	77	CH=CH ₂
12.05	H	
12.06	H	CH=CF ₂
12.07	H	CH=CCl ₂
12.08	Н	CH=CBr ₂
12.09	H	CF=CF ₂
12.10	H	CCl=CH ₂
12.11	Н	CF=CHF
12.12	H	CH=CHCF ₃
12.13	Н	CH=CCICF ₃
12.14	Н	CH ₂ C::CH
12.15	H	C::CCMe ₃
12.16	СНО	C::CMe
12.17	Н	C::C(cyclopropyl)
12.18	Н	SiMe ₃
12.19	Н	C::CBr
12.20	Н	CBr=CH ₂
12.21	H	CH=CHSiMe ₃
12.22	H	CH ₂ C::CSiMe ₃
12.23	H	C::CMe
12.24	H	C::CF
12.25	H	C::CCF ₂ Cl
12.26	H	C::CCF ₂ H
12.27	H	C::CCF ₂ Br
12.28	н	C::CCH₂F
12.29	Н	C::CCH(Me)F
12.30	H	C::CC(Me) ₂ F
12.31	Н	C::CCH ₂ C(Me) ₃
12.32	H.	C::CCH(Me) ₂
12.33	H	C::CCH ₂ CH(Me) ₂

		CIT C. CCD (
12.34	H	CH₂C::CCMe₃
12.35	H	CF ₂ C::CCMe ₃
12.36	H	CF ₂ C::CMe
12.37	H	CF₂C::CH
12.38	H	CMe ₂ C::CH
12.39	Н	CHFC::CH
12.40	Н	CHMeC::CH
12.41	Н	CH(CF ₃)C::CH
12.42	Н	C::C(1-F-cyclopentyl)
12.43	Н	C::CCH₂OMe
12.44	Н	C::CCMe2OMe
12.45	Н	C::CCMe2OCOMe
12.46	Н	C::CCF ₂ Me
12.47	Н	C::CC(Me)=CH ₂
12.48	H	CH=CFCI
12.49	H	CH=CFBr
12.50	Н	CH=CHBr
12.51	Н	CH=CHF
12.52	Н	CMe=CHCF ₃
12.53	Н	CH=CFCF ₃
12.54	Н	
12.55	H	CH=CHC ₂ F ₅
12.56	Н	CH=CHCl
12.57	H	CH=C(CF ₃) ₂
12.58	Н	CMe=CFC1
12.59	H	CMe=CFBr
12.60	H	CMe=CF ₂
12.61	Н	CMe=CCl ₂
12.62	H	CMe=CBr ₂

12.63	H	CMe=CFCF ₃
12.64	Н	CMe=CClCF ₃
12.65	H	CCF ₃ =CF ₂
12.66	H	CCF ₃ =CCl ₂
12.67	H	CCF ₃ =CCl ₂
12.68	H	CCF ₃ =CCl ₂
12.69	H	CCF ₃ =CBr ₂
12.70	H	CCF ₃ =CH ₂
12.71	H	CCF ₃ =CFBr
12.72	Н	CCF ₃ =CHF
12.73	H	CCF ₃ =CFCl
12.74	Н	CCF ₃ =CHCl
12.75	H	CH=CFCF ₂ Cl
12.76	H	CH=CClCF ₂ Cl
12.77	H	CH ₂ CF=CF ₂
12.78	H ·	CF=CFBr
12.79	H	CH ₂ CH=CF ₂
12.80	H	CH ₂ CH=CCl ₂
12.81	H	CH ₂ CH=CBr ₂
12.82	Н	CCI=CF ₂
12.83	Н	C::CCH ₂ SiMe ₃
12.84	H	C::CSiMe ₂ CMe ₃
12.85	H	C::CCMe2OH
12.86	H	C::CCH ₂ CH ₃ .
12.87	H	C::CCF=CF ₂
12.88	H	C::CCHFC1
12.89	H	CH=CFC ₂ F ₅
12.90	H	C::CCF ₂ CH ₂ CH ₃
12.91	H	C::CCHFCH2CH3

12.92	H	C::CCF(CF ₃) ₂
12.93	H	CH=CClC₂F₅
12.94	Н	C::CC₂F₅

Table 13 provides 1 compound of formula (III) where R², R³, R⁴ and R⁵ are each hydrogen; n is 0; and Hal and R⁷ are as defined in Table 13.

Table 13

Compound Number	R^7	Hal
13.01	C::CH	Br

5

10

15

Throughout this description, temperatures are given in degrees Celsius; "NMR" means nuclear magnetic resonance spectrum; MS stands for mass spectrum; M⁺-1 or M⁺+1 are signals in the mass spectrum respectively corresponding to the molecular weight minus 1 or the molecular weight plus 1; and "%" is percent by weight, unless corresponding concentrations are indicated in other units.

The following abbreviations are used throughout this description:

m.p. =	melting point	b.p.=	boiling point.
s =	singlet	br =	broad
d =	doublet	dd =	doublet of doublets
t =	triplet	q =	quartet
m =	multiplet	ppm =	parts per million

Table 14 shows selected melting point, selected molecular ion and selected NMR data, all with CDCl₃ as the solvent (unless otherwise stated; if a mixture of solvents is present, this is indicated as, for example, (CDCl₃ / d₆-DMSO)), (no attempt is made to list all characterising data in all cases) for compounds of Tables 1 to 13. Unless otherwise stated, the data relate to a cis/trans mixture of each compound.

15.28	1.3(s,9); 7.2-7.5(m,10); 8.1(m,2); 8.45(m,2)	
16.7		63-64

Table 15 provides 48 compounds of formulas 1(m) where R,X and Het are as defined in Table 15.

Het(n)
$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Table 15

Compound	Х	R	Het
No.		-	
15.1	Н	C::CH	Het(1)
15.2	Н	C::CH	Het(2)
15.3	Н	C::CH	Het(3)
15.4	Н	C::CH	Het(4)
15.5	Cl	C::CH	Het(1)
15.6	Cl	C::CH	Het(2)

15.7	Cl	C::CH	Het(3)
15.8	C1	C::CH	Het(4)
15.9	F	C::CH	Het(1)
15.10	F	C::CH	Het(2)
15.11	F	C::CH	Het(3)
15.12	F	C::CH	Het(4)
15.13	Н	C::CMe	Het(1)
15.14	Н	C::CMe	Het(2)
15.15	Н	C::CMe	Het(3)
15.16	Н	C::CMe	Het(4)
15.17	F	C::CMe	Het(1)
15.18	F	C::CMe	Het(2)
15.19	F	C;:CMe	Het(3)
15.20	F	C::CMe	Het(4)
15.21	Cl	C::CMe	Het(1)
15.22	Cl	C::CMe	Het(2)
15.23	Cl	C::CMe	Het(3)
15.24	Cl	C::CMe	Het(4)
15.25	Н	C::CCMe ₃	Het(1)
15.26	Н	C::CCMe ₃	Het(2)
15.27	Н	C::CCMe ₃	Het(3)
15.28	H	C::CCMe ₃	Het(4)
15.29	CI	C::CCMe ₃	Het(1)
15.30	Cl	C::CCMe ₃	Het(2)
15.31	Cl	C::CCMe ₃	Het(3)
15.32	Cl	C::CCMe ₃	Het(4)
15.33	F	C::CCMe3	Het(1)
15.34	F	C::CCMe3	Het(2)
			

5

15.35	F	C::CCMe ₃	Het(3)
15.36	F	C::CCMe ₃	Het(4)
15.37	H	CH=CClCF ₃	Het(1)
15.38	H	CH=CClCF ₃	Het(2)
15.39	Н	CH=CClCF ₃	Het(3)
15.40	H	CH=CCICF ₃	Het(4)
15.41	Cl	CH=CClCF ₃	Het(1)
15.42	CI	CH=CClCF ₃	Het(2)
15.43	Cl	CH=CClCF ₃	Het(3)
15.44	C1	CH=CClCF ₃	Het(4)
15.45	F	CH=CClCF ₃	Het(1)
15.46	F	CH=CClCF ₃	Het(2)
15.47	F	CH=CClCF ₃	Het(3)
15.48	F	CH=CClCF ₃	Het(4)

Table 16 provides 12 compounds of formulas II(m) where R and X are as defined in Table 16:

II(m)

Table 16

Compound	X	R	
No.			
16.1	H	C::CH	
, 16.2	Cl	C::CH	
16.3	F	C::CH	

16.4	Н	C::CMe	
16.5	F	C::CMe	
16.6	Cl	C::CMe	
16.7	Н	C::CCMe ₃	
16.8	Cl	C::CCMe ₃	
16.9	F	C::CCMe₃	
16.10	H	CH=CClCF ₃	
16.11	Cl	CH=CClCF ₃	
16.12	F	CH=CCICF ₃	

The compounds according to the present invention may be prepared according to the following reaction schemes, in which, unless otherwise stated, the definition of each variable is as defined above for a compound of formula (I).

There are a number of alternative methods for preparing a compound of formula (I).

Method A

5

10

15

20

A compound of formula (I) may be prepared by reacting a compound of formula (II) with a compound of formula Het-C(=O)OR' [where R' is C₁₋₅ alkyl] in the presence of strong base [for example NaH or sodium hexamethyldisilazane], in a dry polar solvent [preferably THF] and at a temperature between -10°C and the boiling point of the solvent [preferably at ambient temperature]. The article by J.Wang et al, Synlett 2001,1485 provides details of analogous preparations.

Method B

A compound of formula (I) may be prepared by reacting a compound of formula (II) with a compound of formula Het-C(=O)R" [where R" is OH or a leaving group, such as Cl, Br, F or OC(=O)C₁₋₄ alkyl] in an inert organic solvent [such as ethylacetate, dichloromethane, dioxane or DMF] and at a temperature between -10°C and the boiling point of the solvent [preferably at ambient temperature]. If R" is OH, the reaction is carried out in the presence of an activating agent [for example BOP-Cl] and two equivalents of a base [such as a tertiary

10

$$R^{2}$$
 R^{1}
 R^{5}
 R^{6}
 R^{6}
 R^{6}

[where FG is a functional group which is convertible to R⁷ in one or more synthetic steps]. Functional group interconversions are standard procedures for a person skilled in the art. 5 There are many methods described in the literature, which can be used as such or with modifications according to the functionalities present; Table A gives literature references (some of which also cite further appropriate references) which are specifically relevant to the preparation of a compound of formula (I) by the interconversion of FG to R⁷. It is apparent to the person skilled in the art that the literature examples given in Table A are not necessarily limited to the preparation of the specifically mentioned R⁷ but can be also applied by analogy to the preparation of other structurally related R⁷

Table A

Reference :	FG	R.
Synthesis 2001, 2081	СНО	CH=CBr ₂
Tetrahedron 58, 1491 (2002)		CH=CHBr
		C::CBr
Russ.Chem. Bull. 50 (6), 1047 (2001)	СНО	CH=CCl ₂
Tetrahedron 57, 7519 (2001)	СНО	CH=CClCF ₃
		CH=CFCF ₂ Cl
Bull.Chem.Soc.Jpn. 73, 1691 (2000)	СНО	CF=CBrF
Bull.Chem.Soc.Jpn. 71, 2903 (1998-)		
J. Chem.Soc.Perkin 1 2002, 883	COCH ₃	C(CH ₃)=CHBr
		C(CH ₃)=CCl ₂
J.Fluorine Chem. 1, 381 (1972)	COCH ₃	C(CH ₃)=CBr ₂

J.Fluorine Chem. 23, 339 (1983)	COCF ₃	C(CH ₃)=CFBr
J.P. HOPING CHOM. 23, 333 (1965)		C(CH ₃)=CFCl
		C(CF ₃)=CFBr
·		C(CF ₃)=CFCl
·		$C(CF_3)=CF_2$
Tetrahedron Letters 41, 8045 (2000)	Hal	CF=CHF
J.Org.Chem. 62, 9217 (1997)		
Tetrahedron Letters 37,8799 (1996)	Hal	CH=CF ₂
JP 09278688	Hal	CF=CF ₂
J.Fluorine Chem. 31, 115 (1986)		
Zh.Org.Khim. 25, 1451 (1989)	Hal	CF=CFCl
J.Org.Chem. 53, 2714 (1988)	Hal	CF=CFCF ₃
J.Org.Chem. 56, 7336 (1991)	Hal	$C(CF_3)=CH_2$
Tetrahedron Letters 42, 4083 (2001)		,
Ukr.Khim.Zh. 32, 996 (1966)	CHBrCH ₂ CF ₃	CH=CHCF ₃
Bull.Chem.Soc.Jap. 62,1352	CH=CCICF ₃	C::CCF ₃
	CH=CFCF ₂ Cl	C::CCF2Cl
J.Org.Chem. 54, 5856 (1989)	Hal or triflate	C::CH
J.Am.Chem.Soc. 109,2138 (1987)		C::CSiMe ₃
Tetrahedron 45,6511 (1989)		C::CCH₃
J.Orgmet.Chem.549,127 (1997)		C::CCMe ₃
Tetrahedron 56, 10075 (2000)		C::CCH2OH
Tetrahedron Asymmetry 6, 245 (1995)		C::CCHMeOH
	·	C::CCMe ₂ OH
		С::ССНО
		C::CC(O)Me
J.Org.Chem. 32, 1674 (1967)	C::CCH ₃	CH ₂ C::CH
Synth.Comm.1989,561	СНО	C::CH
	CH₂CHO	CH₂C::CH

WO 01 092563	СНО	CH=CH ₂
J.Am.Chem.Soc. 123,4155 (2001)	Hal or triflate	CH=CH ₂
Org.Lett. 2,3703 (2000)		
J.Org.Chem. 57,3558 (1992)		
Synthesis 2001,893		·
GB 2 183 639	C::CH	CH=CH ₂
Synthesis 1996, 1494	СНО	C::CC1
J.Org.Chem.49, 294 (1984)		C::CH
		C::CBr
US 6 159956	CH ₂ Br	CH ₂ CF=CF ₂
Liebigs Ann.Chem. 1995, 2027	CH₂Br	CH=C(CF ₃) ₂
J.Am.Chem.Soc. 123,4155 (2001)	CH ₂ Br	CH ₂ C::CSiMe ₃
Inorg.Chim.Acta 296, 37 (1999)	Hal	CH ₂ C::CMe ₃
J.Fluorine Chem.111, 185 (2001)	CH=CHBr	CH=CHCF ₃
J.Chem.Soc. Perkin I 1988, 921	CH=CFBr	CH=CFCF3
	CH=CBr ₂	$CH=C(CF_3)_2$
DE 4417441	C::CCH ₂ OH	C::CCH ₂ F
US3976691	C::CCHMeOH	C::CCHMeF
J. Org. Chem. 64, 7048 (1999)	C::CCMe ₂ OH	C::CCMe ₂ F
	C::CCHO	C::CCHF2
	C::CC(O)Me	C::CCF ₂ Me
J.Chem.Soc. Perkin I 1994, 725	C::CCH₂OH	C::CCH ₂ CF ₃
Synthesis 1997, 1489	C::CH	C::CCF ₂ CF ₃
Angew.Chem.Int.Ed. 39, 2481 (2000)		CH=CHCF2CF3
J.Org.Chem. 47, 2255 (1982)		
J.Fluorine.Chem.113, 55 (2002)		
J.Fluorine.Chem.64, 61 (1993)	C::CH	C::CCHFC1
J.Am.Chem.Soc. 109, 3492 (1987)		C::CCF ₂ Br
J.Am.Chem.Soc. 107, 5186 (1985)	CH=CHBr	CH=CHCF ₂ CF ₃

- 93 -

CLAIMS

5

10

15

20

1. A compound of formula (I):

$$\begin{array}{c|c}
R^{2} & R^{3} \\
R^{1} & R^{5} \\
R^{5} & R^{6}
\end{array}$$
Het
$$\begin{array}{c}
R^{3} & R^{4} \\
R^{5} & R^{6}
\end{array}$$

$$\begin{array}{c}
R^{5} & R^{6}
\end{array}$$

where Het is a 5- or 6-membered heterocyclic ring containing one to three heteroatoms, each independently selected from oxygen, nitrogen and suphur, provided that the ring is not 1,2,3-triazole, the ring being substituted by one, two or three groups R^y; R¹ is hydrogen, formyl, CO-C₁₋₄ alkyl, COO-C₁₋₄ alkyl, C₁₋₄ alkoxy(C₁₋₄)alkylene, CO-C₁₋₄ alkylenoxy(C₁₋₄)alkyl, propargyl or allenyl; R², R³, R⁴ and R⁵ are each. independently, hydrogen, halogen, methyl or CF₃; each R⁶ is, independently, halogen, methyl or CF_3 ; R^7 is $(Z)_m C \equiv C(Y^1)$, $(Z)_m C(Y^1) = C(Y^2)(Y^3)$ or $tri(C_{1-4})$ alkylsilyl; each R^9 is, independently, halogen, C₁₋₃ alkyl, C₁₋₃ haloalkyl, C₁₋₃ alkoxy(C₁₋₃)alkylene or cyano; X is O or S; Y¹, Y² and Y³ are each, independently, hydrogen, halogen, C₁₋₆ alkyl [optionally substituted by one or more substituents each independently selected from halogen, hydroxy, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, C₁₋₄ haloalkylthio, C₁₋₄ alkylamino, di(C₁₋₄)alkylamino, C₁₋₄ alkoxycarbonyl, C₁₋₄ alkylcarbonyloxy and tri(C₁₋₄)alkylsilyl], C₂₋₄ alkenyl [optionally substituted by one or more substituents each independently selected from halogen], C2-4 alkynyl [optionally substituted by one or more substituents each independently selected from halogen], C3-7 cycloalkyl [optionally substituted by one or more substituents each independently selected from halogen, C₁₋₄ alkyl and C_{1-4} haloalkyl] or tri(C_{1-4})alkylsilyl; Z is C_{1-4} alkylene [optionally substituted by one or more substituents each independently selected from hydroxy, cyano, C₁₋₄ alkoxy, halogen, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, C₁₋₄ alkylthio, COOH and COO- C_{1-4} alkyl]; m is 0 or 1; and n is 0, 1 or 2.