Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 9 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів обходу масивів»

Варіант 30

Виконав студент <u>III-13 Симотюк Денис Андрійович</u> (шифр, прізвище, ім'я, по батькові)

Перевірив Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 9

Дослідження алгоритмів обходу масивів

Мета – дослідити алгоритми обходу масивів, набути практичних навичок використання цих алгоритмів під час складання програмних специфікацій.

Варіант 30

Розробити алгоритм та написати програму, яка складається з наступних дій:

- 1. Опису змінної індексованого типу (двовимірний масив) згідно з варіантом.
- 2. Ініціювання змінної, що описана в п.1 даного завдання.
- 3. Обчислення змінної, що описана в п.1, згідно з варіантом.
 - 30 Задано матрицю дійсних чисел A[m,n]. При обході матриці по рядках знайти в ній останній мінімальний елемент X і його місцезнаходження. Порівняти значення X з середньоарифметичним значенням елементів під головною ліагоналлю.

Постановка задачі

Для вирішення задачі створюється масив, який заповнюється дійсними числами. Для збереження мінімального елементу і його індексу створюються 3 змінні. Для обчислення середнього арифметичного створимо три змінні, одній присвоюється значення суми елементів, що нижче головної діагоналі, а другій — кількість цих елементів, третя ж буде результатом ділення перших двох. Після цього вона буде порівнюватися з раніше збереженим мінімальним елементом і виведеться відповідне повідомлення.

Побудова математичної моделі

Обхід масиву по рядках – алгоритм, при якому рядки з парним індексом обходяться з початку, а з непарним – з кінця:

Середнє арифметичне – відношення суми елементів до їх кількості:

a1 + a2 + ... + an

n

Елементи матриці, що знаходяться нижче головної діагоналі — такі, рядок яких більший за стовпчик:

Побудуємо таблицю змінних:

Змінна	Тип	Призначення
Macив arr(m, n)	Дійсний	Вхідні дані
Кількість рядків m	Цілий	Вхідні дані
Кількість стовпців n	Цілий	Вхідні дані
Лічильник циклу і	Цілий	Проміжні дані, лічильник
Лічильник циклу ј	Цілий	Проміжні дані, лічильник
Останнє мінімальне значення min	Дійсний	Вихідні дані
Рядок min minRow	Цілий	Вихідні дані
Стовпець min minCol	Цілий	Вихідні дані
Чисельник середнього арифметичного sum	Дійсний	Проміжні дані
Знаменник середнього арифметичного quant	Цілий	Проміжні дані
Середнє арифметичне avg	Дійсний	Проміжні дані
Пошук мінімального елементу Search_Min	Функція	Проміжні дані
Обчислення середнього арифметичного Count_Avg	Функція	Проміжні дані

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо знаходження min, minRow, minCol.
- Крок 3. Деталізуємо знаходження avg.
- Крок 4. Деталізуємо функцію Search_Min.
- Крок 5. Деталізуємо функцію Count_Avg.
- Крок 6. Деталізуємо порівняння min і avg.

Псевдокод алгоритму

Початок

Введення arr

min = Search_Min(arr, m, n)

 $avg = Count_Avg(arr, m, n);$

Якщо min < avg

T0

Виведення «min < avg»

інакше

Виведення «min > avg»

Все якщо

Виведення min, minRow, minCol, avg

Кінепь

Функція Search_Min(arr, m, n)

min = arr[0, 0]

minRow = 0

 \mathbf{x}

Повторити для і від 0 до т з кроком 1

Якщо і % 2 == 0

T0

Повторити для ј від 0 до п з кроком 1

Якщо arr[i, j] < min

```
min = arr[i, j]

minRow = i

minCol = j
```

все якщо

все повторити

інакше

Повторити для ј від п до 0 з кроком -1

Якщо arr[i, j] < min

T0

min = arr[i, j] minRow = iminCol = j

все якщо

все повторити

все якщо

все повторити

Виведення min, minRow, minCol

Все функція

Функція Count_Avg(arr, m, n)

sum = 0quant = 0

Повторити для ј від 0 до п з кроком 1

Повторити для і від ј+1 до т з кроком 1

sum = sum + arr[i, j]quant = quant + 1

все повторити

все повторити

avg = sum / quant

Виведення avg

все функція

Блок-схема алгоритму

Код програми (С++)

```
=#include <iostream>
      #include <iomanip>
       using namespace std;
       double** Create_Matrix(int rows, int cols);
       void Init_Matrix(double** arr, int rows, int cols);
       double Search_Min(double** arr, int rows, int cols, int* rowPtr, int* colPtr);
       double Count_Avg(double** arr, int rows, int cols);
     ⊡int main()
11
            int m, n, minRow = 0, minCol = 0;
            int* rowPtr = &minRow, *colPtr = &minCol;
           double min, avg;
           double** arr;
            srand(int(time(NULL)));
           cout << "Enter number of rows: ";</pre>
           cin >> m;
            cout << "Enter number of columns: ";</pre>
            cin >> n;
            cout << endl;</pre>
            arr = Create_Matrix(m, n);
            Init_Matrix(arr, m, n);
           for (int i = 0; i < m; i++) { ... }
           min = Search_Min(arr, m, n, rowPtr, colPtr);
           rowPtr = NULL;
           colPtr = NULL;
           delete rowPtr;
           delete colPtr;
            cout << "Minimal element: " << min << endl;</pre>
            cout << "Its position: (" << minRow + 1 << ", " << minCol + 1 << ")" << endl;</pre>
```

```
avg = Count_Avg(arr, m, n);
     cout << "Average = " << avg << endl;</pre>
     if (min < avg)
          cout << "min < avg" << endl;</pre>
     else
          cout << "min > avg";
_double** Create_Matrix(int rows, int cols)
     double** arr = new double*[rows];
     for (int i = 0; i < rows; i++)
          arr[i] = new double[cols];
     return arr;
□void Init_Matrix(double** arr, int rows, int cols)
     for (int i = 0; i < rows; i++)
         for (int j = 0; j < cols; j++)
              arr[i][j] = double(rand() % 40) - 20;

☐double Search_Min(double** arr, int rows, int cols, int *rowPtr, int *colPtr)

     double min = arr[0][0];
     for (int i = 0; i < rows; i++)
φ
         if (i % 2 == 0)
              for (int j = 0; j < cols; j++)
                  if (arr[i][j] <= min)</pre>
                      min = arr[i][j];
```

```
min = arr[i][j];
 82
                              *rowPtr = i;
                              *colPtr = j;
       Ġ
                 else
                     for (int j = cols - 1; j >=0; j--)
                         if (arr[i][j] <= min)</pre>
                             min = arr[i][j];
                             *rowPtr = i;
                              *colPtr = j;
             return min;
       □double Count_Avg(double** arr, int rows, int cols)
            double avg, sum = 0, quant = 0;
            for (int j = 0; j < cols; j++)
                 for (int i = j + 1; i < rows; i++)
                     sum += arr[i][j];
                     quant++;
110
            avg = sum / quant;
111
             return avg;
112
```

Тестування програми

```
Enter number of rows: 4
Enter number of columns: 4
  -15 -20
           -6
                 6
   -1
      12
                 -6
       14 -19 -13
       16
Minimal element: -20
Its position: (1, 2)
Average = 5.83333
min < avg
C:\Users\Денис\source\repos\lab 9 asd\Debug\lab 9 asd.exe (процесс 3952) завершил работу с кодом 0.
Нажмите любую клавишу, чтобы закрыть это окно…
```

Висновки

В даній роботі я дослідив алгоритми обходу масивів, набув практичних навичок використання цих алгоритмів під час складання алгоритмів та написання програм на мові програмування С++.