Algorithmic Foundations 2 - Tutorial Sheet 9 Graphs and Relations

1. Consider the following graph:

$$G = (\{a, b, c, d, e, f, g\}, \{\{a, b\}, \{b, c\}, \{c, d\}, \{a, d\}, \{d, g\}, \{d, e\}, \{f, g\}, \{e, f\}\})$$

(a) Draw the graph

(b) Is the graph G connected?

Solution: The graph is connected, i.e. every pair of vertices is joined by a path.

2. How many simple undirected graphs are there with 20 vertices and 60 edges?

Solution: The number of possible edges between 20 vertices is C(20, 2), i.e. the number of 2-combinations from a set of size 20. This yields $20 \cdot 19/2 = 190$ different edges. For a graph to have 60 edges we need to choose 60 out of 190 possible edges i.e. an 60-combination from a set of size 190. The number of graphs therefore equals:

$$C(190, 60) = \frac{190!}{60! \cdot 130!}$$

3. Decide whether or not the two graphs below are isomorphic. Explain your answer.

Solution: The graphs are not isomorphic, for example the graph on the left has two vertices with degree 3 (vertices 1 and 2), while the graph on the right has only one vertex with degree 3 (vertex c).

2

4. Decide whether or not the two graphs below are isomorphic. Explain your answer.

Solution: The graphs are isomorphic as demonstrated by the following bijection:

$$1 \mapsto \epsilon$$

$$2 \mapsto a$$

$$3 \mapsto 0$$

$$4 \mapsto \epsilon$$

$$5 \mapsto t$$

5. What is an Euler circuit?

Solution: A Euler circuit is a circuit that contains every edge, where a circuit is a path of length at least 2 that begins and ends with the same vertex.

6. What is a Hamiltonian circuit?

Solution: A Hamiltonian circuit is a circuit that visits each vertex exactly once, where a circuit is a path of length at least 2 that begins and ends with the same vertex.

- 7. Determine whether each of the following binary relations is
 - reflexive;
 - symmetric;
 - anti-symmetric;
 - \bullet transitive.
 - (a) The relation R_1 over $\mathbb{N} \times \mathbb{N}$ where $(a, b) \in R_1$ if and only if a | b.

Solution:

- R_1 is reflexive since a|a for any $a \in \mathbb{N}$;
- R_1 is not symmetric since, for example 1|2 while 2 does not divide 1;
- R_1 is anti-symmetric since, for any $a, b \in \mathbb{N}$, if a|b and b|a, then a=b;

• R_1 is transitive since if a|b and b|c for any $a, b, c \in \mathbb{N}$, then a|c (this was proved in the lectures).

Proof for anti-symmetric case: if a|b and b|a for any $a, b \in \mathbb{N}$, then $a = c_1 \cdot b$ and $b = c_2 \cdot a$ for some $c_1, c_2 \in \mathbb{N}$, and hence $a = c_1 \cdot c_2 \cdot a$ and $b = c_1 \cdot c_2 \cdot b$. Therefore, since $a, b, c_1, c_2 \in \mathbb{N}$, we have either a = b = 0 or $c_1 = c_2 = 1$, in either case it follows that a = b as required.

(b) The relation R_2 over $S \times S$ where $S = \{w, x, y, z\}$ and

$$R_2 = \{(w, w), (w, x), (x, w), (x, x), (x, z), (y, y), (z, y), (z, z)\}.$$

Solution:

- R_2 is reflexive since $(a, a) \in R$ for all $a \in S$;
- R_2 is not symmetric, e.g. $(x, z) \in R$ while $(z, x) \notin R$;
- R_2 is not anti-symmetric, e.g. $(w, x) \in R$ and $(x, w) \in R$;
- R_2 is not transitive, e.g. $(w,x) \in R$ and $(x,z) \in R$ while $(w,z) \notin R$
- (c) The relation R_3 over $\mathbb{Z} \times \mathbb{Z}$ where $(a, b) \in R_3$ if and only if $a \neq b$.

Solution:

- R_3 is not reflexive since a = a for all $a \in \mathbb{R}$
- R_3 is symmetric since if $a \neq b$ for any $a, b \in \mathbb{Z}$, then $b \neq a$
- R_3 is not anti-symmetric, e.g. $1 \neq 2$ and $2 \neq 1$;
- R_3 is not transitive, e.g. $1 \neq 2$, $2 \neq 1$ and not $1 \neq 1$.
- (d) The relation R_4 over $P(X) \times P(X)$ where $X = \{1, 2, 3, 4\}$ and $(S, T) \in R_4$ if and only if $S \subseteq T$.

Solution:

- R_4 is reflexive since $S \subseteq S$ for any $S \subseteq X$;
- R_4 is not symmetric e.g. $\{1\} \subseteq \{1,2\}$ and not $\{1,2\} \subseteq \{1\}$;
- R_4 is anti-symmetric since if $S \subseteq T$ and and $T \subseteq S$ for any $S, T \subseteq X$, then S = T;
- R_4 is transitive since if $S \subseteq T$ and $T \subseteq U$ for any $S, T, U \subseteq X$, then $S \subseteq U$.
- (e) The relation R_5 over $People \times People$ where People is the set of all people and $(a, b) \in R_5$ if and only if a is younger than b.

Solution:

• R_5 is not reflexive as a person is not younger than them self;

- R_5 is not symmetric as if a is younger than b, then b is not younger than a;
- R_5 is anti-symmetric if a is younger than b and b is younger than a, then a = b (note that this is implication is vacuously true);
- R_5 is transitive since if a is younger than b and b is younger than c, then a is younger than c.
- 8. Give an example of a relation on a set that is
 - (a) symmetric and anti-symmetric

Solution: For any set A, define a relation R over $A \times A$ by $(a, b) \in R$ if and only if a = b, for any $a, b \in A$. Then R is symmetric and anti-symmetric.

(b) neither symmetric nor anti-symmetric

Solution: Define a relation R over $\mathbb{Z} \times \mathbb{Z}$ by $(a,b) \in R$ if and only if a|b. Then R is not symmetric, e.g. choose a=1 and b=2. Also R is not anti-symmetric e.g. choose a=2 and b=-2.

9. Draw the directed graph for the following relations

$$R_1 = \{(1,1), (1,3), (2,1), (2,2), (2,4), (3,1), (3,2), (3,3), (4,1), (4,2), (4,4)\}$$

$$R_2 = \{(1,1), (1,2), (1,3), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

10. Suppose that the relation R over $A \times A$ is reflexive. Show that R^* is reflexive. R^* is the transitive closure of R and is given by $R^* = \bigcup_{i=1}^{\infty} R^n = R \cup R^2 \cup R^3 \cup R^3 \cup \ldots$

Solution: By construction $R \subseteq R^*$, and hence for any $a \in A$, if $(a, a) \in R$, then $(a, a) \in R^*$. The result then follows from the fact that R is reflexive.

11. If a relation R over $A \times A$ is irreflexive, then is the relation R^2 necessarily irreflexive?

Solution: The answer is no, for example if $A = \{a, b\}$ and $R = \{(a, b), (b, a)\}$, then R is irreflexive while R^2 equals $\{(a, a), (b, b)\}$ and is therefore reflexive.

- 12. Consider the partially ordered sets:
 - $(P(S), \subseteq)$ where $S = \{a, b, c\}$;
 - \bullet ($\{2,3,4,6,8,12,24\}$, |), i.e. where the relation is the divides relation.
 - (a) Draw a Hass diagram for each of the partially ordered sets.

(b) State both the maximal and minimal elements of each partially ordered set and the greatest and/or least elements when they exist.

Solution: In the first case there is a single maximal element (the set $\{a, b, c\}$) and a single minimal element (the emptyset), these are also the greatest and least elements, respectively, of this partially ordered set.

For the second partially ordered set, 2 and 3 are both minimal, while 24 is maximal. This partially ordered set has no least element, while 24 is the greatest element.

Difficult/challenging questions.

13. What is the minimum number of edges required to produce a connected undirected graph?

Solution: The minimum number of edges equals n-1 where n is the number of vertices.

We first show that given n vertices $V = \{v_1, \dots, v_n\}$ we can construct a connected graph with n-1 edges. Considering the graph G = (V, E) where

$$E = \{\{v_i, v_{i+1}\} \mid 1 \le i \le n-1\}$$

we have that G has n-1 edges. Now for any distinct vertices v_i and v_j , without loss of generality we can assume i < j and we can construct the path between v_i and v_j as follows:

$$\{v_i, v_{i+1}\}, \{v_{i+1}, v_{i+2}\}, \dots, \{v_{j-1}, v_j\}$$

Therefore, since v_i and v_j were arbitrary, the graph is connected.

Next we show that we cannot construct a connected graph with n vertices and n-2 edges. We start with the edgeless graph G, and add edges till the graph is connected.

- First, pick any two vertices of G, label them v_1 and v_2 for convenience, and use one edge to connect them, labelling that edge e_1 .
- Second, pick any other vertex, label it v_3 , and use one edge to connect it to either v_1 or v_2 , labelling that edge e_2 .
- Third, pick any other vertex, label it v_4 , and use one edge to connect it to v_1 , v_2 or v_3 , labelling that edge e_3 .
- Continue in this way, until we pick a vertex, label it v_{n-1} , and use one edge to connect it to either $v_1, v_2, \ldots, v_{n-2}$ labelling that edge e_{n-2} .

This is the last of our edges, and we still have not connected the last vertex.

14. Prove that an undirected graph with more than $(n-1)\cdot(n-2)/2$ edges is connected.

Solution: Here we consider the dual problem and find the maximum number of edges allowed for a graph to be disconnected and show this equals $(n-1)\cdot(n-2)/2$.

Therefore, consider the highest number of edges a graph can have without being connected. It must have two connected components, and, to maximize the number of edges, they must be size n-1 and 1. To maximize the edges, the large component must be a complete graph (there can be no edges in the other graph as it only has one vertex), which will have C(n-1,2) = (n-1)(n-2)/2 edges.

15. Prove that a relation R over $A \times A$ is transitive if and only if R^n is a subset of R for all $n \in \mathbb{Z}^+$.

Solution: This is an if and only if so we need to prove both directions.

First we show if $R^n \subseteq R$ for all $n \in \mathbb{Z}^+$, then R is transitive. Consider any $(a,b) \in R$ and $(b,c) \in R$, since (a,b) and (b,c) are arbitrary elements of R it is sufficient to show $(a,c) \in R$. Now by definition of R^2 we have $(a,c) \in R^2$ and by the hypothesis we have $R^2 \subseteq R$, and hence $(a,c) \in R$ as required.

Second we show if R is transitive, then $R^n \subseteq R$ for all $n \in \mathbb{Z}^+$. We need to show this holds for all positive integers n so prove by induction on n.

Base case: if n = 1, then trivially $R^1 = R \subseteq R$ as required.

Inductive step: we assume $R^n \subseteq R$ and consider any $(a,c) \in R^{n+1}$. Since (a,c) is arbitrary, it is sufficient to prove $(a,c) \in R$. Now, by definition we have $R^{n+1} = R^n \circ R$,

and therefore there exists $b \in A$ such that $(a,b) \in R^n$ and $(b,c) \in R$. By the induction hypothesis we have $(a,b) \in R$, i.e. since $R^n \subseteq R$ and $(a,b) \in R^n$, and hence by transitivity of R we have $(a,c) \in R$ as required.

Therefore by the principle of induction we have proved that if R is transitive, then $R^n \subseteq R$ for all $n \in \mathbb{Z}^+$.

16. Let R be a relation that is reflexive and transitive. Show that $R^n = R$ for all $n \ge 1$.

Solution: From results presented in the lectures, since R is transitive we have $R^n \subseteq R$ for all $n \ge 1$. Thus it remains to prove that $R \subseteq R^n$ for all $n \ge 1$. The proof is by mathematical induction on $n \in \mathbb{N}$. Clearly the base case holds with n = 1. Now assume that $R \subseteq R^n$ for some $n \in \mathbb{N}$, and consider any $(a,b) \in R$. Since R is reflexive, $(b,b) \in R$. Hence by induction hypothesis, $(b,b) \in R^n$. Thus by definition of the composition operator on relations, $(a,b) \in R^{n+1}$, since $(a,b) \in R$ was arbitrary we have $R \subseteq R^{n+1}$ as required.

17. Let R be a symmetric relation. Show that R^n is symmetric for all $n \in \mathbb{Z}^+$.

Solution: The proof is by induction on $n \in \mathbb{Z}^+$. The proof relies on first showing that for any relation S and $n \in \mathbb{Z}^+$ we have $S^{n+1} = S \circ S^{n+1}$ which follows from the fact that \circ is associative.

Base case. The base holds as $R^1 = R$ and since R is symmetric.

Inductive step. Suppose R^n is symmetric and consider any $(a,c) \in R^{n+1}$, by definition of R^{n+1} there exists b such that $(a,b) \in R^n$ and $(b,c) \in R$. By by the hypothesis R is symmetric and by the inductive hypothesis we have R^n is symmetric. Therefore we have $(c,b) \in R$ and $(b,a) \in R^n$, and hence since $R^{n+1} = R \circ R^{n+1}$ we have $(c,a) \in R^{n+1}$. Since $(a,c) \in R^{n+1}$ was arbitrary it follows that R^{n+1} is symmetric.

Therefore by the principle of induction we have proved that \mathbb{R}^n is symmetric for all $n \in \mathbb{Z}^+$.