Package 'AutoScore'

June 16, 2021

Type Package

```
Title An Interpretable Machine Learning-Based Automatic Clinical Score
Version 0.2.0
Date 2021-06-10
URL https://github.com/nliulab/AutoScore
BugReports https://github.com/nliulab/AutoScore/issues
Description A novel interpretable machine learning-based framework to automate the develop-
      ment of a clinical scoring model for predefined outcomes. Our novel framework con-
      sists of six modules: variable ranking with machine learning, variable transforma-
      tion, score derivation, model selection, domain knowledge-based score fine-tuning, and perfor-
      mance evaluation. The details are described in our research pa-
      per<doi:10.2196/21798>. Users or clinicians could seamlessly generate parsimonious sparse-
      score risk models (i.e., risk scores), which can be easily implemented and validated in clini-
      cal practice. We hope to see its application in various medical case studies.
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports tableone, pROC, randomForest, ggplot2, knitr
Depends R (>= 2.10)
VignetteBuilder knitr
Suggests rmarkdown
NeedsCompilation no
Author Feng Xie [aut, cre] (<https://orcid.org/0000-0002-0215-667X>),
      Yilin Ning [aut] (<a href="https://orcid.org/0000-0002-6758-4472">https://orcid.org/0000-0002-6758-4472</a>),
      Han Yuan [aut] (<a href="https://orcid.org/0000-0002-2674-6068">https://orcid.org/0000-0002-2674-6068">https://orcid.org/0000-0002-2674-6068</a>),
      Ehsan Saffari [aut] (<a href="https://orcid.org/0000-0002-6473-4375">https://orcid.org/0000-0002-6473-4375</a>),
      Bibhas Chakraborty [aut] (<a href="https://orcid.org/0000-0002-7366-0478">https://orcid.org/0000-0002-7366-0478</a>),
      Nan Liu [aut] (<https://orcid.org/0000-0003-3610-4883>)
```

2 add_baseline

Maintainer Feng Xie <xief@u.duke.nus.edu>

Repository CRAN

Date/Publication 2021-06-16 09:50:04 UTC

R topics documented:

add_l	paseline	Internal I			es af	ter s	econd	-step l	ogistic r	egressio	n
Index											20
	transform_df_fixed			 	 						18
	split_data			 	 						18
	sample_data_small			 	 						17
	sample_data			 	 						17
	print_scoring_table			 	 						16
	print_roc_performan	ce		 	 						16
	plot_roc_curve			 	 						15
	get_cut_vec			 	 						14
	compute_uni_variab	le_table		 	 						14
	compute_score_table	·		 	 						13
	compute_multi_varia	able_table		 	 						13
	compute_descriptive	_table .		 	 						12
	compute_auc_val .			 	 						11
	check_data			 	 						11
	change_reference .			 	 						10
	AutoScore_weightin										
	AutoScore_testing .			 	 						8
	AutoScore_rank			 	 						7
	AutoScore_parsimor	ıy		 	 						5
	AutoScore_fine_tuni										
	assign_score		. 	 	 						3
	add_baseline			 	 						2

Description

Internal Function: Add baselines after second-step logistic regression (part of AutoScore Module 3)

```
add_baseline(df, coef_vec)
```

assign_score 3

Arguments

df A data. frame used for logistic regression

coef_vec Generated from logistic regression

Value

Processed vector for generating the scoring table

assign_score Internal Function: Automatically assign scores to each subjects given new data set and scoring table (Used for intermediate and final evaluation)

Description

Internal Function: Automatically assign scores to each subjects given new data set and scoring table (Used for intermediate and final evaluation)

Usage

```
assign_score(df, score_table)
```

Arguments

df A data. frame used for testing, where variables keep before categorization

score_table A vector containing the scoring table

Value

Processed data. frame with assigned scores for each variables

AutoScore_fine_tuning AutoScore STEP(iv): Fine-tune the score by revising cut_vec with domain knowledge (AutoScore Module 5)

Description

Domain knowledge is essential in guiding risk model development. For continuous variables, the variable transformation is a data-driven process (based on "quantile" or "kmeans"). In this step, the automatically generated cutoff values for each continuous variable can be fine-tuned by combining, rounding, and adjusting according to the standard clinical norm. Revised cut_vec will be input with domain knowledge to update scoring table. User can choose any cut-off values/any number of categories. Then final Scoring table will be generated. Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.

Usage

```
AutoScore_fine_tuning(
   train_set,
   validation_set,
   final_variables,
   cut_vec,
   max_score = 100
)
```

Arguments

train_set A processed data.frame that contains data to be analyzed, for training.

validation_set A processed data.frame that contains data for validation purpose.

final_variables

A vector containing the list of selected variables, selected from Step(ii) AutoScore_parsimony.

Run vignette("Guide_book", package = "AutoScore") to see the guidebook

or vignette.

cut_vec Generated from STEP(iii) AutoScore_weighting.Please follow the guidebook

max_score Maximum total score (Default: 100).

Value

Generated final table of scoring model for downstream testing

References

• Xie F, Chakraborty B, Ong MEH, Goldstein BA, Liu N. AutoScore: A Machine Learning-Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. JMIR Medical Informatics 2020;8(10):e21798

See Also

AutoScore_rank, AutoScore_parsimony, AutoScore_weighting, AutoScore_testing, Run vignette("Guide_book", p = "AutoScore") to see the guidebook or vignette.

```
## Please see the guidebook or vignettes
```

AutoScore_parsimony 5

AutoScore_parsimony AutoScore STEP(ii): Select the best model with parsimony plot (AutoScore Modules 2+3+4)

Description

AutoScore STEP(ii): Select the best model with parsimony plot (AutoScore Modules 2+3+4)

Usage

```
AutoScore_parsimony(
    train_set,
    validation_set,
    rank,
    max_score = 100,
    n_min = 1,
    n_max = 20,
    cross_validation = FALSE,
    fold = 10,
    categorize = "quantile",
    quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1),
    max_cluster = 5,
    do_trace = FALSE
)
```

TRUE.

Arguments

A processed data. frame that contains data to be analyzed, for training. train_set validation_set A processed data.frame that contains data for validation purpose. the raking result generated from AutoScore STEP(i) AutoScore_rank rank Maximum total score (Default: 100). max_score Minimum number of selected variables (Default: 1). n_min n_max Maximum number of selected variables (Default: 20). cross_validation If set to TRUE, cross-validation would be used for generating parsimony plot, which is suitable for small-size data. Default to FALSE fold The number of folds used in cross validation (Default: 10). Available if cross_validation = TRUE. categorize Methods for categorize continuous variables. Options include "quantile" or "kmeans" (Default: "quantile"). Predefined quantiles to convert continuous variables to categorical ones. (Dequantiles fault: c(0, 0.05, 0.2, 0.8, 0.95, 1) Available if categorize = "quantile". max_cluster The max number of cluster (Default: 5). Available if categorize = "kmeans". do_trace If set to TRUE, all results based on each fold of cross-validation would be printed out and plotted (Default: FALSE). Available if cross_validation =

Details

This is the second step of the general AutoScore workflow, to generate the parsimony plot to help select a parsimonious model. In this step, it goes through AutoScore Module 2,3 and 4 multiple times and to evaluate the performance under different variable list. The generated parsimony plot would give researcher an intuitive figure to choose the best models. If data size is small (ie, <5000), an independent validation set may not be a wise choice. Then, we suggest using cross-validation to maximize the utility of data. Set cross_validation=TRUE. Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.

Value

List of AUC value for different number of variables

References

 Xie F, Chakraborty B, Ong MEH, Goldstein BA, Liu N, AutoScore: A Machine Learning-Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records, JMIR Med Inform 2020;8(10):e21798, doi: 10.2196/21798

See Also

AutoScore_rank, AutoScore_weighting, AutoScore_fine_tuning, AutoScore_testing, Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.

```
# see AutoScore Guidebook for the whole 5-step workflow
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"</pre>
out_split <- split_data(data = sample_data, ratio = c(0.7, 0.1, 0.2))</pre>
train_set <- out_split$train_set</pre>
validation_set <- out_split$validation_set</pre>
ranking <- AutoScore_rank(train_set, ntree=100)</pre>
AUC <- AutoScore_parsimony(
train_set,
validation_set,
rank = ranking,
max\_score = 100,
n_min = 1,
n_max = 20,
categorize = "quantile",
quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1)
```

AutoScore_rank 7

AutoScore_rank	AutoScore STEP(i): Rank variables with machine learning (AutoScore Module 1)

Description

AutoScore STEP(i): Rank variables with machine learning (AutoScore Module 1)

Usage

```
AutoScore_rank(train_set, ntree = 100)
```

Arguments

train_set A processed data.frame that contains data to be analyzed, for training.

ntree Number of trees in the random forest (Default: 100).

Details

The first step in the AutoScore framework is variable ranking. We use random forest (RF), an ensemble machine learning algorithm, to identify the top-ranking predictors for subsequent score generation. This step correspond to Module 1 in the AutoScore paper.

Value

Returns a vector containing the list of variables and its ranking generated by machine learning (random forest)

References

- Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32
- Xie F, Chakraborty B, Ong MEH, Goldstein BA, Liu N. AutoScore: A Machine Learning-Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. JMIR Medical Informatics 2020;8(10):e21798

See Also

AutoScore_parsimony, AutoScore_weighting, AutoScore_fine_tuning, AutoScore_testing, Run vignette("Guide_book", package = "AutoScore") to see the guidebook or vignette.

```
# see AutoScore Guidebook for the whole 5-step workflow
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
ranking <- AutoScore_rank(sample_data, ntree = 50)</pre>
```

8 AutoScore_testing

AutoScore_testing AutoScore STEP(v): Evaluate the final score with ROC analysis (AutoScore Module 6)

Description

Domain knowledge is essential in guiding risk model development. For continuous variables, the variable transformation is a data-driven process (based on "quantile", "kmeans" or "decision_tree). In this step, the automatically generated cutoff values for each continuous variable can be fine-tuned by combining, rounding, and adjusting according to the standard clinical norm. Revised cut_vec will be input with domain knowledge to update scoring table. User can choose any cut-off values/any number of categories. Then final Scoring table will be generated. Run vignette("Guide_book", package = "AutoScore") to see the guidebook or vignette..

Usage

```
AutoScore_testing(
  test_set,
  final_variables,
  cut_vec,
  scoring_table,
  threshold = "best",
  with_label = TRUE
)
```

Arguments

test_set A processed data.frame that contains data for testing purpose. This data.frame

should have same format as train_set (same variable names and outcomes)

final_variables

A vector containing the list of selected variables, selected from Step(ii) AutoScore_parsimony.

Run vignette("Guide_book", package = "AutoScore") to see the guidebook

or vignette.

cut_vec Generated from STEP(iii) AutoScore_weighting.Please follow the guidebook

scoring_table The final scoring table after fine-tuning, generated from STEP(iv) AutoScore_fine_tuning.Please

follow the guidebook

threshold Score threshold for the ROC analysis to generate sensitivity, specificity, etc. If

set to "best", the optimal threshold will be calculated (Default: "best").

with_label Set to TRUE if there are labels in the test_set and performance will be evaluated

accordingly (Default:TRUE). Set it to "FALSE" if there are not "label" in the "test_set" and the final predicted scores will be the output without performance

evaluation.

Value

A data frame with predicted score and the outcome for downstream visualization.

AutoScore_weighting 9

References

 Xie F, Chakraborty B, Ong MEH, Goldstein BA, Liu N. AutoScore: A Machine Learning-Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. JMIR Medical Informatics 2020;8(10):e21798

See Also

AutoScore_rank, AutoScore_parsimony, AutoScore_weighting, AutoScore_fine_tuning, print_roc_performance, Run vignette("Guide_book", package = "AutoScore") to see the guidebook or vignette.

Examples

```
## Please see the guidebook or vignettes
```

AutoScore_weighting

AutoScore STEP(iii): Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3)

Description

AutoScore STEP(iii): Generate the initial score with the final list of variables (Re-run AutoScore Modules 2+3)

Usage

```
AutoScore_weighting(
   train_set,
   validation_set,
   final_variables,
   max_score = 100,
   categorize = "quantile",
   max_cluster = 5,
   quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1)
)
```

Arguments

train_set A processed data.frame that contains data to be analyzed, for training.

validation_set A processed data.frame that contains data for validation purpose.

final_variables

A vector containing the list of selected variables, selected from Step(ii)AutoScore_parsimony.

Run vignette("Guide_book",package = "AutoScore") to see the guidebook

or vignette.

max_score Maximum total score (Default: 100).

categorize Methods for categorize continuous variables. Options include "quantile" or

"kmeans" (Default: "quantile").

10 change_reference

max_cluster	The max number of cluster (Default: 5). Available if categorize = "kmeans".
quantiles	Predefined quantiles to convert continuous variables to categorical ones. (De-
	fault: $c(0, 0.05, 0.2, 0.8, 0.95, 1)$ Available if categorize = "quantile".

Value

Generated cut_vec for downstream fine-tuning process STEP(iv) AutoScore_fine_tuning.

References

 Xie F, Chakraborty B, Ong MEH, Goldstein BA, Liu N. AutoScore: A Machine Learning-Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. JMIR Medical Informatics 2020;8(10):e21798

See Also

AutoScore_rank, AutoScore_parsimony, AutoScore_fine_tuning, AutoScore_testing, Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.

change_reference	Internal Function: Change Reference category after first-step logistic
	regression (part of AutoScore Module 3)

Description

Internal Function: Change Reference category after first-step logistic regression (part of AutoScore Module 3)

Usage

```
change_reference(df, coef_vec)
```

Arguments

df A data.frame used for logistic regression coef_vec Generated from logistic regression

Value

Processed data. frame after changing reference category

check_data 11

check_data	AutoScore function:	Check whether	the input	dataset fulfill	the re-
	quirement of the Auto	oScore			

Description

AutoScore function: Check whether the input dataset fulfill the requirement of the AutoScore

Usage

```
check_data(data)
```

Arguments

data

The data to be checked

Value

No return value, the result of the checking will be printed out.

Examples

```
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
check_data(sample_data)</pre>
```

compute_auc_val

Internal function: Compute AUC based on validation set for plotting parsimony (AutoScore Module 4)

Description

Compute AUC based on validation set for plotting parsimony

```
compute_auc_val(
   train_set_1,
   validation_set_1,
   variable_list,
   categorize,
   quantiles,
   max_cluster,
   max_score
)
```

Arguments

train_set_1 Processed training set
validation_set_1

Processed validation set

variable_list List of included variables

categorize Methods for categorize continuous variables. Options include "quantile" or

"kmeans"

quantiles Predefined quantiles to convert continuous variables to categorical ones. Avail-

able if categorize = "quantile".

max_cluster The max number of cluster (Default: 5). Available if categorize = "kmeans".

max_score Maximum total score

Value

A List of AUC for parsimony plot

compute_descriptive_table

AutoScore function: Descriptive Analysis

Description

Compute descriptive table (usually Table 1 in the medical literature) for the dataset.

Usage

```
compute_descriptive_table(df)
```

Arguments

df data frame after checking and fulfilling the requirement of AutoScore

Value

No return value and the result of the descriptive analysis will be printed out.

```
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
compute_descriptive_table(sample_data)</pre>
```

```
compute_multi_variable_table
```

AutoScore function: Multivariate Analysis

Description

Generate tables for multivariate analysis

Usage

```
compute_multi_variable_table(df)
```

Arguments

df

data frame after checking

Value

result of the multivariate analysis

Examples

```
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
multi_table<-compute_multi_variable_table(sample_data)</pre>
```

compute_score_table

Internal function: Compute scoring table based on training dataset (AutoScore Module 3)

Description

Compute scoring table based on training dataset

Usage

```
compute_score_table(train_set_2, max_score, variable_list)
```

Arguments

train_set_2 Processed training set after variable transformation (AutoScore Module 2)

max_score Maximum total score variable_list List of included variables

Value

A scoring table

14 get_cut_vec

```
compute_uni_variable_table
```

AutoScore function: Univariable Analysis

Description

Perform univariable analysis and generate the result table with odd ratios.

Usage

```
compute_uni_variable_table(df)
```

Arguments

df

data frame after checking

Value

result of univariate analysis

Examples

```
data("sample_data")
names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"
uni_table<-compute_uni_variable_table(sample_data)</pre>
```

get_cut_vec

Internal function: Calculate cut_vec from the training set (AutoScore Module 2)

Description

Internal function: Calculate cut_vec from the training set (AutoScore Module 2)

```
get_cut_vec(
   df,
   quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1),
   max_cluster = 5,
   categorize = "quantile"
)
```

plot_roc_curve 15

Arguments

df training set to be used for calculate the cut vector

quantiles Predefined quantiles to convert continuous variables to categorical ones. (De-

fault: c(0, 0.05, 0.2, 0.8, 0.95, 1)) Available if categorize = "quantile".

max_cluster The max number of cluster (Default: 5). Available if categorize = "kmeans".

categorize Methods for categorize continuous variables. Options include "quantile" or

"kmeans" (Default: "quantile").

Value

cut_vec for transform_df_fixed

plot_roc_curve

Internal Function: Plotting ROC curve

Description

Internal Function: Plotting ROC curve

Usage

```
plot_roc_curve(prob, labels, quiet = TRUE)
```

Arguments

prob Predicate probability

labels Actual outcome(binary)

quiet if set to TRUE, there will be no trace printing

Value

No return value and the ROC curve will be plotted.

print_scoring_table

Description

Print receiver operating characteristic (ROC) performance

Usage

```
print_roc_performance(label, score, threshold = "best")
```

Arguments

label outcome variable score predicted score

threshold Threshold for analyze sensitivity, specificity and other metrics. Default to "best"

Value

No return value and the ROC performance will be printed out directly.

See Also

```
AutoScore_testing
```

print_scoring_table AutoScore Function: Print scoring tables for visualization

Description

AutoScore Function: Print scoring tables for visualization

Usage

```
print_scoring_table(scoring_table, final_variable)
```

Arguments

```
scoring_table Raw scoring table generated by AutoScore step(iv) AutoScore_fine_tuning final_variable Final included variables
```

Value

Data frame of formatted scoring table

sample_data 17

See Also

AutoScore_fine_tuning, AutoScore_weighting

sample_data	20000 simulated ICU admission data, with the same distribution as
	the data in the MIMIC-III ICU database

Description

20000 simulated samples, with the same distribution as the data in the MIMIC-III ICU database. It is used for demonstration only in the Guidebook. Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.

• Johnson, A., Pollard, T., Shen, L. et al. MIMIC-III, a freely accessible critical care database. Sci Data 3, 160035 (2016).

Usage

sample_data

Format

An object of class data. frame with 20000 rows and 22 columns.

sample_data_small	1000 simulated ICU admission data, with the same distribution as the data in the MIMIC-III ICU database
sample_data_small	,

Description

1000 simulated samples, with the same distribution as the data in the MIMIC-III ICU database. It is used for demonstration only in the Guidebook. Run vignette("Guide_book",package = "AutoScore") to see the guidebook or vignette.

• Johnson, A., Pollard, T., Shen, L. et al. MIMIC-III, a freely accessible critical care database. Sci Data 3, 160035 (2016).

Usage

sample_data_small

Format

An object of class data. frame with 1000 rows and 22 columns.

18 transform_df_fixed

split_data	AutoScore function: Automatically splitting dataset to train, validation and test set

Description

AutoScore function: Automatically splitting dataset to train, validation and test set

Usage

```
split_data(data, ratio, cross_validation = FALSE)
```

Arguments

data The dataset to be split

ratio The ratio for dividing dataset into training, validation and testing set.(Default:

c(0.7, 0.1, 0.2)

cross_validation

If set to TRUE, cross-validation would be used for generating parsimony plot,

which is suitable for small-size data. Default to FALSE

Value

Returns a list containing training, validation and testing set

Examples

```
data("sample_data")
set.seed(4)
#large sample size
out_split <- split_data(data = sample_data, ratio = c(0.7, 0.1, 0.2))
#small sample size (for cross-validation)
out_split <- split_data(data = sample_data, ratio = c(0.7, 0, 0.3), cross_validation = TRUE)</pre>
```

Description

Internal function: Categorizing continuous variables based on cut_vec (AutoScore Module 2)

```
transform_df_fixed(df, cut_vec)
```

transform_df_fixed 19

Arguments

df dataset(training, validation or testing) to be processed

cut_vec fixed cut vector

Value

 $Processed \ \mathsf{data.frame} \ after \ categorizing \ based \ on \ fixed \ \mathsf{cut_vec}$

Index

```
* datasets
    sample_data, 17
    sample_data_small, 17
add_baseline, 2
assign_score, 3
AutoScore_fine_tuning, 3, 6–10, 16, 17
AutoScore_parsimony, 4, 5, 7–10
AutoScore_rank, 4-6, 7, 9, 10
AutoScore_testing, 4, 6, 7, 8, 10, 16
AutoScore_weighting, 4, 6-9, 9, 17
change\_reference, \\ 10
check_data, 11
compute_auc_val, 11
compute_descriptive_table, 12
compute_multi_variable_table, 13
compute_score_table, 13
compute_uni_variable_table, 14
get_cut_vec, 14
plot_roc_curve, 15
print_roc_performance, 9, 16
print_scoring_table, 16
sample_data, 17
sample_data_small, 17
split_data, 18
transform_df_fixed, 18
```