

Linearna vremenska logika (LTL)
Potpuna logika vremenskog grananja (CTL*)
Eksplicitni postupci računanja skupova stanja koja zadovoljavaju CTL specifikaciju

Pripremio: izv. prof. dr. sc. Alan Jović Ak. god. 2022./2023.

Provjera modela (engl. model checking)

koji se verificira). Izraženo povezanim strojevima s konačnim brojem stanja (FSM).

Sustav za verifikaciju

DA = model
sustava <u>logički</u>
zadovoljava
specifikaciju

NE (+ ispis traga (engl. *trace*) pogrešnog izvođenja programa)

S = Specifikacija (željeno ponašanje). Izraženo najčešće u vremenskoj logici - CTL ili (LTL)

Simbolički opisujemo:

FVPP: Propozicijska linearna vremenska logika

Engl. Propositional Linear Temporal Logic

PLTL (najčešće samo LTL)

A. Pnueli: "The temporal logic of programs" (1977.)

Pretpostavka primjene (vrijede i za CTL)

- Promatramo sustave koji se mogu modelirati strojevima s konačnim brojem stanja
- Promatramo reaktivne programe (neterminirajuće) kontinuirano reagiraju na okolinu (operacijski sustavi, sustavi upravljanja procesima i sl.)
- Analiza ponašanja duž potencijalno beskonačnih putova izvođenja.

Prisjetimo se...

- Kontekst vremenske logike CTL:
- Kripkeova struktura (model M) promatra se kao beskonačno stablo počevši od početnog stanja s0 ("stablo se odmota").
- U svakom stanju moguć je prijelaz u jedno od mogućih više stanja.
- Eksplicitno se kvantificiraju svi putovi izvođenja (A) ili barem jedan put izvođenja (E).
- Formula vremenske logike CTL je istinita ako je istinita barem za jedan put izvođenja (**E**) ili za sve putove izvođenja (**A**), ovisno o vrsti specifikacije.

Kontekst vremenske logike LTL

- Kripkeova struktura (M) se dekomponira u pojedinačne beskonačne sekvence – putove izvođenja programa.
- Ponašanje sustava je kolekcija beskonačnih sekvenci prijelaza (engl. infinite transition sequences)
- Svako stanje u pojedinoj sekvenci ima samo jednog sljedbenika.

```
sekvenca I: s0 \rightarrow s1 \rightarrow s2 \rightarrow s3 \rightarrow s4 \rightarrow s5 \rightarrow s6 \rightarrow s7 \rightarrow ...
```

sekvenca 2:
$$s0 \rightarrow s1 \rightarrow s2 \rightarrow s7 \rightarrow s4 \rightarrow s5 \rightarrow s6 \rightarrow s2 \rightarrow ...$$

sekvenca *n*: ...

• LTL formula je istinita za neki sustav (Kripkeovu strukturu) ako vrijedi za sve pojedinačne putove izvođenja (za sve sekvence) toga sustava. Kvantifikator "A" je implicitan. Nema kvantifikatora "E".

Linearna vremenska struktura

- Jedna beskonačna sekvenca s početnim stanjem i označavanjem propozicijskih simbola koji vrijede u pojedinim stanjima naziva se linearna vremenska struktura.
- Formule logike LTL se interpretiraju po svim beskonačnim sekvencama (linearnim vremenskim strukturama).
- AP: skup atomičkih propozicijskih simbola
- Linearna vremenska struktura dana je trojkom $\pi = (S, x, L)$

S: konačan skup stanja

x:

 $\mathbf{x}: \mathbf{N} \to \mathbf{S}$ beskonačna sekv. prijelaza = vremenska crta ($\mathbf{x} = \mathbf{s}_0, \mathbf{s}_1, ...$)

L: $S \rightarrow 2^{AP}$ označavanje stanja skupom propozicijskih simbola.

Primjer:

$$S_0$$
 S_1 S_2 S_3

$$p p q r u v$$

$$L(s_0) = \{p\}, L(s_1) = \{p, q\}, L(s_2) = \{r\}, L(s_3) = \{u, v\},...$$

Vremenski operatori u LTL-u

Uporaba vremenskih operatora (bez kvantifikatora):

Fp ("eventually p", "finally p")
Gp ("always p", "henceforth p")
Up ("next time p")
u sljedećem koraku p
p dok ne počne vrijediti q

$$Xp \longrightarrow p \longrightarrow p \rightarrow q$$

Provjera modela: implicitno provjeravamo sve putove u Kripkeovoj strukturi (kvantifikator A je implicitan).

Formalna sintaksa (P)LTL-a (1/2)

- (I) Atomičke propozicije su formule.
- (2) Ako su p i q formule, tada su $p \wedge q$, $\neg p$, $p \cup q$, Xp formule.

Ostale formule mogu se izvesti:

$p \vee q$	ekvivalentan oblik	$\neg(\neg p \land \neg q),$
$p \Rightarrow q$	ekvivalentan oblik	$\neg p \lor q$,
$p \equiv q$	ekvivalentan oblik	$(p \Rightarrow q) \land (q \Rightarrow p),$
true	ekvivalentan oblik	$p \vee \neg p$,
false	ekvivalentan oblik	¬true,
Fρ	ekvivalentan oblik	(true ∪ p),
Gp	ekvivalentan oblik	$\neg F \neg p$.

LTL dozvoljava Booleove kombinacije i ugniježđivanje vremenskih operatora

Formalna sintaksa LTL-a (2/2)

Prioritet unarnih i binarnih operatora:

- I. Unarni operatori (¬, X, F, G) povezuju najčvršće
- 2. U binarni operator
- 3. A konjunkcija
- 4. v disjunkcija
- 5. ⇒ implikacija

Primjer suvišnih zagrada:

$$(F(p \Rightarrow (G r)) \lor ((\neg q) U p)) \equiv F(p \Rightarrow G r) \lor \neg q U p$$

Preporuka: **upotrebljavaj zagrade zbog jasnijeg razumijevanja**, iako mogu biti suvišne.

Formalna semantika (P)LTL-a

Formula φ dana u vremenskoj logici LTL ima značenje u odnosu na svaku pojedinu linearnu vremensku strukturu $\pi = (S, x, L)$.

```
\pi, \mathbf{x} \models \varphi - u strukturi \pi formula \varphi je istinita za vremensku crtu \mathbf{x}. Crta (put) \mathbf{x} logički zadovoljava (\models) formulu \varphi.
```

Neka je:

x - put (vremenska crta) koja započinje u s_0 , $\mathbf{x} = s_0$, s_1 , ... - put (vremenska crta) koja započinje u s_i , $\mathbf{x}_i = s_i$, s_{i+1} , ...

Tada:

$$\pi, \mathbf{x} \models \mathbf{a}$$
 akko $\mathbf{a} \in \mathsf{L}(\mathsf{s}_0), \mathsf{AP} \, \mathbf{a} \, \mathbf{je} \, \mathbf{istinit} \, \mathbf{u} \, \mathbf{s}_0.$
 $\pi, \mathbf{x}_i \models \mathbf{b}$ akko $\mathbf{b} \in \mathsf{L}(\mathsf{s}_i), \mathsf{AP} \, \mathbf{b} \, \mathbf{je} \, \mathbf{istinit} \, \mathbf{u} \, \mathbf{s}_i.$
 $\pi, \mathbf{x} \models \varphi \land \psi$ akko $\pi, \mathbf{x} \models \varphi \quad \mathbf{i} \quad \pi, \mathbf{x} \models \psi$
 $\pi, \mathbf{x} \models \neg \varphi$ akko put $\mathbf{x} \, \mathbf{u} \, \mathbf{strukturi} \, \pi \, \mathbf{ne} \, \mathbf{zadovoljava} \, \varphi$
 $\pi, \mathbf{x} \models \varphi \cup \psi$ akko $\exists_i \, (\mathbf{x}_i \models \psi) \quad \mathbf{i} \quad \forall_{k < i} \, (\mathbf{x}_k \models \varphi)$
 $\pi, \mathbf{x} \models \mathbf{x} \varphi$ akko $\mathbf{x}_1 \models \varphi$ $\mathbf{u} \, \mathbf{sljede\acute{c}em} \, \mathbf{stanju} \, \mathbf{je} \, \varphi = \mathbf{T}$
 $\pi, \mathbf{x} \models \mathbf{F} \varphi$ akko $\exists_i \, (\mathbf{x}_i \models \varphi) \, \mathbf{postoji} \, \mathbf{neko} \, \mathbf{stanje} \, \mathbf{gdje} \, \mathbf{je} \, \varphi = \mathbf{T}$
 $\pi, \mathbf{x} \models \mathbf{G} \varphi$ akko $\forall_i \, (\mathbf{x}_i \models \varphi) \, \mathbf{u} \, \mathbf{svakom} \, \mathbf{stanju} \, \varphi = \mathbf{T}$

Konvencija: sadašnje stanje je uključeno u buduće stanje.

Načini iskazivanja beskonačnosti u LTL-u (engl. LTL infinitary modalities)

p: formula u LTL-u

$$\mathbf{F}^{\infty} \ \mathbf{p} \equiv \mathbf{GF} \ \mathbf{p}$$
 ("globally finally p ", "infinitely often p ")
$$\mathbf{s}_{0} \to \mathbf{s}_{1} \to \mathbf{s}_{2} \to \mathbf{s}_{3} \to \mathbf{s}_{4} \to \mathbf{s}_{5} \to \mathbf{s}_{6} \to \mathbf{s}_{7} \to \dots$$

$$\neg p \ \neg p \ p \ \neg p \ p \ \neg p$$
"infinitely often p " – "beskonačno često se pojavljuje p"

$$G^{\infty} p \equiv FG p \qquad \text{("finally globally p", "almost everywhere p")}$$

$$s_0 \to s_1 \to s_2 \to s_3 \to s_4 \to s_5 \to s_6 \to s_7 \to \dots$$

$$\neg p \ \neg p \ \neg p \ p \ p \ p$$

$$\text{finite } \neg p \qquad \text{infinite } p$$

"Konačno globalno se pojavljuje p": nakon konačnog broja stanja u kojime p ne mora biti istinit, slijedi beskonačan niz stanja u kojima je p=TRUE.

Ispravnost LTL-formula

Primjeri sintaktički ispravnih LTL-formula:

```
p \Rightarrow Fq
G(p \Rightarrow Fq)
p U(q U r)
XXG p
[p \land G(p \Rightarrow Xp)] \Rightarrow Gp
```

Primjeri sintaktički neispravnih LTL-formula:

```
U r (U nije unarni operator)
p G q (G nije binarni operator)
EG p (E kao kvantifikator ne postoji u logici LTL)
A p U q (A se ne navodi eksplicitno kao kvantifikator u logici LTL)
```

Značajne valjanosti u LTL-u

Vrijede za sve linearne vremenske strukture $\pi = (S, x, L)$

Neka su p, q formule u LTL-u.

 $GF = F^{\infty} p$ – "beskonačno često p

FG = G^{∞} – "konačno (nakon nekog vremena) globalno (stalno) p"

$$|= p \Rightarrow Fp \qquad |= Gp \Rightarrow p$$

$$|= Xp \Rightarrow Fp \qquad |= Gp \Rightarrow Xp$$

$$|= Gp \Rightarrow Fp \qquad |= Gp \Rightarrow XGp$$

$$|= p \cup q \Rightarrow Fq \qquad |= G^{\infty}q \Rightarrow F^{\infty}q$$

(zadnja izjava: ako nakon nekog stanja globalno q, tada i beskonačno često q)

Distributivnost i rekurzije u LTL-u

Distribucija preko logičkih vezica:

Primijetiti da u CTL-u takva distribucija nije dozvoljena:

CTL:
$$A[(p \land q) \cup r] \neq A[(p \cup r) \land (q \cup r)]$$

Rekurzivni izrazi:

$$|= Fp = p \lor XFp$$

$$|= Gp = p \land XGp$$

$$|= (p \cup q) = q \lor (p \land X (p \cup q))$$

Preslikavanje rečenica prirodnog jezika u LTL (1/2)

Nije moguće doći u stanje gdje je start istinito a spreman nije istinito.
 G¬(start ∧ ¬spreman)

Za svako stanje vrijedi: ako se pojavi zahtjev, on će konačno biti prihvaćen.
 G(pojavio_zahtjev ⇒ F prihvaćen_zahtjev)

Neki proces je omogućen beskonačno često na svim putovima izvođenja.
 GF proces_omogućen

U svakom slučaju, određeni proces će permanentno biti zaustavljen.
 FG proces_zaustavljen

5. Iz svakog stanja sustava **moguće** je doći u stanje gdje vrijedi *reset*.

To se ne može izreći LTL-logikom, jer LTL ne može izravno potvrditi postojanje (moguće) nekog određenog puta ili putova (to naravno može CTL kvantifikatorima puta A i E).

Preslikavanje rečenica prirodnog jezika u LTL (2/2)

6. Lift **može** ostati stajati na ...

Ove sve izjave ne mogu se izreći LTL-logikom, jer LTL ne može izravno potvrditi postojanje (moguće, može) nekog određenog puta ili putova (to naravno može CTL kvantifikatorima puta A i E).

Problem se djelomično može riješiti **negacijom upita**:

- Provjera postoji li put iz s koji zadovoljava LTL-formulu φ svodi se na provjeru da li svi putovi zadovoljavaju $\neg \varphi$.
- Ako svi putovi zadovoljavaju $\neg \phi$, onda ne postoji put koji zadovoljava ϕ .
- Međutim, provjera značajki sustava u kojem postoji mješavina egzistencijskih i univerzalnih kvantifikatora ne može se riješiti na gornji način (negacija opet daje mješavinu E i A).

Proširenja LTL-a

- 1. LTL s konačnim linearnim vremenskim strukturama (odmotavamo samo dio puta: prvih k stanja koristi se za ograničenu provjeru modela (engl. bounded model checking).
- 2. Promjena semantike modaliteta:
 - 2.1. ($p \cup q$) je istinita sve dok vrijedi ($p \wedge \neg q$), tj. q može stalno biti neistinit, tj. ne mora biti istinit negdje u budućnosti ("weak until"): ($p \vee q$)
 - 2.2. (p U q) je istinita akko u budućem trenutku (**ne sada**) q je istinit (q mora biti istinit **striktno u budućnosti**).
- 3. Proširenje s logikom predikata prvoga reda (FOLTL)
- 4. Proširenje s prošlim vremenom (ptLTL) "past time LTL" ima istu izražajnu moć kao i LTL sa samo budućim vremenom

. . .

Usporedba CTL-a i LTL-a (1/3)

- I. Različita i neusporediva izražajnost (ekspresivnost).
- 2. CTL eksplicitno kvantificira putove
- LTL može selektirati sve pojedinačne putove iz nekog stanja koji zadovoljavaju LTL-formulu
- 4. Neke formule u CTL-u nije moguće izraziti u LTL-u i obratno.
- 5. U LTL-u **su složenije procedure provjere modela** ali jednostavnije neke druge procedure (npr. provjera valjanosti formula).

Usporedba CTL-a i LTL-a (2/3)

CTL-formula AG (EF p) = "iz kojeg god stanja da krenemo možemo doći (postoji barem jedan put) do stanja gdje je p istinit" **nema ekvivalenta u LTL-u**.

Primjer: Neka je φ LTL-formula takva da je A[φ] navodno ekvivalentno AG(EF p), tj. za sve putove.

Za model kao na slici:

- ϕ kao LTL-formula GF p ne vrijedi za put (beskonačnu petlju) stalno u s₀ (izdvojen put) jer mora vrijediti za sve pojedinačne putove.
- $\varphi = AG (EF p)$ kao CTL-formula vrijedi jer EF p vrijedi za oba stanja.

Usporedba CTL-a i LTL-a (3/3)

LTL-formula FG p nije ekvivalentna CTL-formuli AF (AG p)

FG p = konačno (nakon konačnog broja koraka) globalno (stalno) p

AF (AG p) = na svim putovima uvijek dolazimo konačno do stanja iz kojega je dalje stalno p=T.

U prikazanom modelu FG p vrijedi za sva stanja, a AF (AG p) ne vrijedi.

= p holds

FG p – na svim **pojedinačnim** putovima

dolazimo bilo kako do stanja nakon

kojega je stalno p=TRUE.

AF (**AG p**) je striktno jači zahtjev.

AG p vrijedi samo za S₁.

Iz S postoji put natrag na S i nikad ne dođe u S₁.

Zadaci

- I. Preslikajte rečenice prirodnog jezika u formule logike LTL:
 - a) "Nije moguće doći u stanje gdje vrijedi p i ne vrijedi q."
 - b) "Uvijek se konačno dolazi u stanje gdje vrijedi p, a od idućeg stanja p vrijedi dalje beskonačno često."
 - c) "Uvijek ako vrijedi p, q će vrijediti od tog stanja sve dok p ne prestane vrijediti."

Potpuna logika vremenskog grananja: CTL*

E.A. Emerson

Ĭ

J.Y. Halpern (1986.)

Unificirajuća struktura za CTL i LTL.

Dozvoljeno: I) Booleove kombinacije F, G, X, U

2) Ugniježđivanje prije primjene E,A

Primjer I: A $[(p \cup r) \lor (q \cup r)]$

"Duž svih putova p je istinit do r, ili q je istinit do r." Nije CTL, a za LTL samo ako vrijedi za sve pojedinačne putove.

Primjer 2: E(GF p)

"Postoji put na kojem je p istinit beskonačno često." Nije ni CTL ni LTL.

Primjer3: A [$\times p \vee \times p$]

"Duž svih putova, p je istinit u sljedećem stanju ili u prvom stanju nakon sljedećeg." Nema ekvivalenta u CTL. U LTL-u samo ako vrijedi za sve pojedinačne putove.

CTL* - definicija sintakse

Formula stanja (dobro formirana CTL* formula):

$$\phi$$
: $p \mid \neg p \mid p \land q \mid p \lor q \mid p \Rightarrow q \mid p \Leftrightarrow q \mid E \phi \mid A \phi$

Formula puta:

 $\phi: \qquad \phi \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \Rightarrow \phi \mid \phi \Leftrightarrow \phi \mid X \phi \mid F \phi \mid G \phi \mid \phi \cup \phi$

CTL je restriktivni CTL* za formulu puta:

φ: Ako su p, q formule stanja, tada su X p, F p, G p, p U q formule puta.

LTL form. stanja ϕ je ekvivalentna CTL* form. stanja A[ϕ], dok E[ϕ] nije dozvoljen, a formula puta je:

$$\phi$$
: $p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \Rightarrow \phi \mid \phi \Leftrightarrow \phi \mid X \phi \mid F \phi \mid G \phi \mid \phi \cup \phi$

CTL* - odnosi između vrem. logika

Objašnjenja formula sa slike

AG EF p

Iz svakog stanja možemo doći u stanje gdje je p=T. CTL, ali nije u LTL (ranije pokazano).

 $[\mathsf{GF}\,\mathsf{p}\Rightarrow\mathsf{F}\,\mathsf{q}]$

Ako na svim putovima vrijedi beskonačno često p=T, onda vrijedi i konačno q=T. Npr. beskonačno česti REQ implicira konačni ACK. LTL, ali ne CTL (pravednost se ne može

izravno izraziti u CTL-u, a može u LTL-u).

Nije isto kao AG AF p \Rightarrow AF q (ako p vrijedi beskonačno često, onda q vrijedi konačno)

E[GF p]

Postoji put s beskonačno često p=T CTL*, ali nije u CTL (dokaz o nemogućnosti izražavanja ovakvog svojstva je složen), nije LTL jer je LTL ekvivalentan CTL* formuli A[ϕ], a ovdje je egzistencijski operator

AG ($p \Rightarrow AF q$) CTL, svaki p=T će konačno slijediti sa q=T $G(p \Rightarrow Fq)$ LTL, ako vrijedi u strukturi M za svaki put posebno

Složenost provjere modela

Dokazana složenost provjere

Logika modela u odnosu na $|\phi|^*$

LTL PSpace-Complete

CTL P-Complete

CTL* PSpace-Complete

Složenost provjere modela u sve tri logike je linearna u odnosu na broj stanja i prijelaza Kripkeove strukture M.

Problem je što je broj stanja oksponencijalan (ili ješ gori) u

Problem je što je **broj stanja eksponencijalan** (ili još gori) u ovisnosti o broju varijabli

Poznato je da vrijedi:

 $\mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME} \subseteq \mathsf{EXPSPACE} \subseteq 2\text{-}\mathsf{EXPTIME} \subseteq \mathsf{ELEMENTARY}$

^{*} $|\phi|$ - broj povezujućih elemenata (npr. za CTL to su logički operatori i operatori stanja AF, EU, EX...) koje čine formulu ϕ

Definicija problema

 Za danu Kripkeovu strukturu (usmjereni označeni graf) i određen skup početnih stanja S₀, provjeri da je CTL formula zadovoljena za ta stanja:

Formalno:

•
$$M, S_0 \models \phi$$
 , $tj. \forall s_0 \in S_0$ $M, s_0 \models \phi$

- Uobičajeni pristup: potrebno je pronaći sva stanja koja zadovoljavaju CTL formulu ϕ i ispitati je li željeni podskup S_0 uključen.
- Problem: učinkovit algoritam izračunavanja stanja

Postupci izračunavanja skupova stanja u verifikaciji sustava provjerom modela

- Eksplicitno predstavljanje i izračunavanje skupova stanja
 - Kripkeova struktura predstavljena je u memoriji računala kao označeni usmjereni graf (engl. labeled directed graph).
 Izračunavanje skupova stanja koji zadovoljavaju formulu vremenske logike izvodi se postupkom "čvrste točke".
- Simbolički postupci predstavljanja i izračunavanja skupova stanja
 - Skupovi stanja i relacija zadane Kripkeove strukture predstavljeni su Booleovim (logičkim) formulama. Booleove formule se u drugom koraku učinkovito predstavljaju binarnim dijagramima odlučivanja (BDD). Izračunavanje skupova stanja koja zadovoljavaju formulu vremenske logike također se izvodi postupkom "čvrste točke".

Notacija

- $v \in V$ Element v je član skupa V
- v ∉ V Element v nije član skupa V
- |V| Kardinalnost (broj elemenata) skupa V
- S ⊆ V Skup S je podskup skupa V
- Ø Prazan skup (član svih skupova)
- S' Komplement skupa S
- V
 Svemir nadskup svih skupova; vrijedi:
 S'=U S

Notacija

Partitivni skup skupa V (engl. power set):

To je skup skupova $\{S\}$ takvih da je svaki S podskup skupa V. Osim oznake 2^V za sve podskupove skupa V, često se koristi i oznaka P(V).

$$P(V) = 2^V = \{S \mid S \subseteq V\}$$

 $|P(V)| = |2^V| = 2^{|V|}$ Kardinalnost partitivnog skupa od skupa V je potencija broja 2

Primjer:
$$V = \{1, 2, 3\}$$

 $P(V) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Relacija kao skup

Binarna relacija **na skupu stanja S:** $R \subseteq S \times S$ je Kartezijev produkt; daje skup uređenih parova elemenata skupa S.

Totalna binarna relacija Kripkeove strukture i uređenost:

Za svaki element s (u našem kontekstu "stanje sustava") iz skupa S postoji barem jedan (može i više) element t (u našem kontekstu "stanje sustava") takav da su elementi (stanja) s i t povezani relacijom R:

$$\forall s \in S \ \{\exists t \in S \mid (s,t) \in R\}$$
 Kripke: svaki $s \in S$ je obuhvaćen u R .

Skup svih stanja $\{t\}$ čine stanja dosezljiva (engl. reachable) u jednom koraku iz skupa stanja $\{s\}$.

Totalna binarna relacija R na Kripkeovoj strukturi je skup svih mogućih tranzicija (prijelaza) između stanja.

Definicije

 $\forall s \in S \ \{\exists t \in S \mid (s,t) \in R\}$

Skup $\{t\}$ je **slika (engl. IMAGE)** skupa $\{s\}$ pod relacijom R.

Skup $\{s\}$ je **pred-slika (engl. PRE-IMAGE)** skupa $\{t\}$ pod relacijom R.

Skup $\{s\}$ je **slika (engl. IMAGE)** skupa $\{t\}$ pod relacijom \mathbb{R}^{-1} (inverznom).

Inverzna relacija

- Neka na skupu S postoji relacija $R \subseteq A \times B$, gdje je: $A = \{s\}$, $B = \{t\}$.
- A = slika (IMAGE) pod inverznom relacijom R-1
- B = slika (IMAGE) od A pod R.
- $A = R^{-1}(B)$
- B = R(A)

- $R(s) = \{t \in S \mid (s,t) \in R\}$
- $R^{-1}(t) = \{s \in S \mid (s,t) \in R\}$
- Primjena inverzne relacija R^{-1} na stanje t daje jedno ili više stanja s iz kojih u jednom koraku dolazimo do specificiranog stanja t.
- $R^{-1}(T) = \bigcup_{t \in T} R^{-1}(t)$ ako je T skup $\{t\}$, rezultat je unija svih $\{s\}$.

Za Kripkeovu strukturu: R^{-1} (S) = S prethodnici svih stanja su sva stanja (R je totalna relacija).

 $R^{-1}(\emptyset) = \emptyset$ nema prethodnika praznog skupa

Izračunavanje slike

- Postupci izračunavanja slike ili pred-slike preko relacije R, ili preko inverzne relacije R-1, predstavljaju najznačajniji dio analize dosezljivih stanja (engl. reachability analysis) u sustavima s prijelazima (engl. transition systems).
- Neki postupci temelje se na izravnom (eksplicitnom) izračunavanju stanja.
- Neki drugi postupci uvode transformacije preko logičkog kodiranja, pa se slika računa u transformiranom prostoru i zatim dekodira – algoritam za izračun dosezljivih stanja u tom slučaju ćemo pokazati kasnije
- Pretpostavljamo da postoji algoritam izračuna R(s) i $R^{-1}(t)$.

Logičke rekurzije CTL-formula

```
AG \varphi = \varphi \wedge AX AG \varphi
                                          ; sada i na svim putovima
                                          ; počevši od sljedećeg
; sada i na jednom putu
                                          ; počevši od sljedećeg
AF \phi = \phi \lor AX AF \phi
                                          ; sada ili za svako sljedeće
                                          ; stanje vrijedi AF φ
\mathsf{EF} \ \phi = \phi \lor \mathsf{EX} \ \mathsf{EF} \ \phi
                                          ; sada ili za jedno sljedeće
                                          ; stanje vrijedi EF φ
A[\phi \ U \ \psi] = \psi \ \lor (\phi \land AXA(\phi \ U \ \psi))
                                          ; ψ vrijedi sada ili
                                          ; φ vrijedi sada i za svako
                                          ; sljedeće stanje vrijedi
                                          ;A(\phi \cup \psi)
E[\phi \ U \ \psi] = \psi \ \lor (\phi \land EX \ E(\phi \ U \ \psi)); slično kao AU, ali
                                                     ; samo za jedan put
```

Izračunavanje EX, EG, EU (adekvatan skup) omogućuje izračunavanje svih CTL-formula.

Zamjena logičkih operacija operacijama nad skupovima

```
Model M = (S, R, L)
                                             EX, EG, EU - adekvatan skup
R(s) = \{ t \in S \mid (s, t) \in R \} - daje sljedbenike stanja s (skup t-ova)
Q( False ) = \emptyset
Q(True) = S
Q(p) = \{s \mid p \in L(s)\} - skup stanja s u kojima vrijedi p = True - sva stanja u S osim onih u kojima f = True
                                 - sva stanja u S osim onih u kojima f = True
Q(f \wedge g) = Q(f) \cap Q(g)
                                 - skup dobiven presjekom skupova
Q(EX f) = \{ s \mid R(s) \cap Q(f) \} - stanja koja imaju sljedbenike u Q(f)
                                       (R(s) daje sve sljedbenike u jednom koraku)
Q(EGf) = Q(f) \cap Q(EXEGf) - stanja Q(f) u kojima je f = True
                                       i stanja za koja vrijedi Q(EG f)
                                       nakon jednog koraka (EX)
Q[E(fUg)] = Q(g) \cup [Q(f) \cap Q(EXE(fUg))] - stanja u kojima je g = True, ili
                                 stanja u kojima je f = True i nakon jednog koraka
                                 (EX) vrijedi E(f U g)
```

Izračunavanje skupa stanja za CTLformulu EX

Zadan je skup stanja Q(f) u kojima je istinita formula vremenske logike f. Potrebno je pronaći skup stanja **Q(EX f)**, dakle ona stanja iz kojih u jednom koraku dolazimo do nekog stanja iz Q(f).

$$Q(EX f) = \{ s \mid R(s) \cap Q(f) \neq \emptyset \}$$

$$= \{ s \mid \exists_{t \in R(s)} t \in Q(f) \}$$

$$= \{ s \mid \exists_{t \in Q(f)} (s, t) \in R \}$$

$$= R^{-1} (Q(f)) \qquad \text{Slika pod inverznom relacijom}$$

CTL-operatori kao skupovi stanja

I. Izračunavanje skupa **Q(EX f)** (pokazano ranije):

$$Q(EX f) = R^{-1} (Q(f))$$

2. Izračunavanje skupa **Q(EG f)** je uz supstituciju za EX:

Q(EG f) = Q(f)
$$\cap$$
 Q(EX EG f)
Q(EG f) = Q(f) \cap R⁻¹ (Q(EG f))

3. Izračunavanje skupa Q(E (f U g)) je uz supstituciju za EX:

Q[E(f U g)] = Q(g)
$$\cup$$
 [Q(f) \cap Q(EX E(f U g))]
Q[E(f U g)] = Q(g) \cup [Q(f) \cap R⁻¹ (Q(E(f U g)))]

Za izračunavanje 2. i 3. potrebna je teorija "čvrste točke" jer nije očigledno kako razriješiti rekurzije.

(1/6)

Monotone funkcije i fiksna točka

Definicije:

S - skup stanja F: $P(S) \rightarrow P(S)$ - funkcija na svim podskupovima u S, P(S) - 2^S (partitivni skup)

- I. F je monotona akko
 X ⊆ Y implicira (povlači) F(X) ⊆ F(Y)
 za sve podskupove X i Y u S (oznaka ⊆ podskup).
- 2. Podskup X od skupa S je fiksna točka (engl. fix-point) funkcije F akko:

$$F(X)=X$$

(2/6)

```
<u>Primjer I:</u>
```

```
Neka je S = \{s_0, s_1\},
te neka je F(Y) = Y \cup \{s_0\} za sve podskupove Y \subseteq S.
```

Test na monotonost:

```
Neka je Y' također bilo koji podskup od S. Svaki Y' \subseteq Y , implicira Y' \cup {s<sub>0</sub>} \subseteq Y \cup {s<sub>0</sub>}, te je F monotona.
```

```
Analiza fiksne točke (za sve podskupove Y \subseteq S=\{s_0, s_1\}): Podskup \{\} nije fiksna točka jer F(\{\}) = \{\} \cup \{s_0\} = \{s_0\}. Podskup \{s_0\} je najmanji fix-point, jer F(\{s_0\})=\{s_0\} \cup \{s_0\}=\{s_0\}. Podskup \{s_1\} nije fiksna točka jer F(\{s_1\}) = \{s_1\} \cup \{s_0\} = \{s_0, s_1\}. Skup \{s_0, s_1\} je najveći fix-point, jer F(\{s_0, s_1\})=\{s_0, s_1\} \cup \{s_0\}=\{s_0, s_1\}.
```

Monotone funkcije uvijek imaju najmanju i najveću fiksnu točku.

Funkcije za izračunavanje skupova stanja u Kripkeovoj strukturi koje nas zanimaju su monotone te imaju najmanji i najveći fix-point:

Q(EG f) = Q(f)
$$\cap$$
 Q(EX EG f)
Q(E(f U g)) = Q(g) \cup [Q(f) \cap Q(EX E(f U g))]

Fiksna (čvrsta) točka (3/6)

```
Primjer 2:

S = \{s_0, s_1\}
Funkcija: G(Y) = ako [Y = \{s_0\}] tada \{s_1\} inače \{s_0\}
```

Test na monotonost:

```
Primjena funkcije G na Y = \{s_0, s_1\} daje \{s_0\}.
Primjena funkcije G na Y' = \{s_0\} daje \{s_1\}.
Y' je podskup od Y, tj. (Y' \subseteq Y),
ali kako rezultat \{s_1\} nije podskup od \{s_0\} to G nije monotona.
```

```
Analiza fiksne točke (za sve podskupove Y \subseteq S = \{s_0, s_1\}):
G(\{\}) = \{s_0\}

G(\{s_0\}) = \{s_1\}

G(\{s_1\}) = \{s_0\}

G(\{s_0, s_1\} = \{s_0\}
```

G(Y) nema nijednu fiksnu točku. Nemonotone funkcije mogu, ali i ne moraju imati fiksnu točku.

Fiksna (čvrsta) točka (4/6)

Postupak izračunavanja fiksne točke: Teorem Knaster-Tarski

```
Neka je S skup: S = \{s_0, s_1, ..., s_n\} sa n+1 elementom.
```

Označimo sa F^i : funkcija F primijenjena i-puta, odnosno: F(F(... F(X)))

```
Npr. Neka je F(Y)=F^1(Y)=Y\cup\{s_0\} gdje je Y\subseteq S F^2(Y)=F(F(Y))=[Y\cup\{s_0\}]\cup\{s_0\}=Y\cup\{s_0\}=F(Y), te je F^2=F Za ovaj primjer vrijedi: F^i=F za sve i\geq I
```

Teorem [P(S) je partitivni skup]:

Ako je $F: P(S) \rightarrow P(S)$ monotona, tada

 $F^{n+1}(\emptyset)$ je najmanji fix-point od F. $F^{n+1}(S)$ je najveći fix-point od F.

(5/6)

Dokaz da je $F^{n+1}(\emptyset)$ najmanji *fix-point* od F: (napomena: dokaz nije potrebno učiti)

F je monotona (uvjet) pa vrijedi $\varnothing \subseteq F(\varnothing)$, također $F(\varnothing) \subseteq F(F(\varnothing))$, odnosno $F^1(\varnothing) \subseteq F^2(\varnothing)$. Indukcijom slijedi: $F^1(\varnothing) \subseteq F^2(\varnothing) \subseteq \ldots \subseteq F^i(\varnothing)$ za sve $i \ge 1$

Definiramo: i = n + 1 (n + 1 = broj elemenata u skupu S).**Tvrdimo:** $jedan od gornjih <math>F^k(\emptyset)$ je *fix-point*, tj. $F(F^k(\emptyset)) = F^k(\emptyset)$

Kad $F^{I}(\emptyset)$ ne bi bio *fix-point* onda bi $F^{I}(\emptyset)$ morao sadržavati najmanje I element više od \emptyset (jer tada $\emptyset \neq F(\emptyset)$).

 $F^2(\varnothing)$ bi morao sadržavati barem 2 elementa, morao biti veći od $F^1(\varnothing)$. Svaki daljnji bi morao imati barem jedan element više od prethodnika.

Kad $F^{n+1}(\emptyset)$ ne bi bio *fix-point*, $F^{n+2}(\emptyset) = F(F^{n+1}(\emptyset))$ bi morao imati n+1+1 element, što je nemoguće jer S ima samo n+1 elemenata. Dakle $F^{n+1}(\emptyset)$ mora biti *fix-point*.

Odnosno: $F(F^{n+1}(\emptyset)) = F^{n+1}(\emptyset)$ $F^{n+1}(\emptyset)$ je fiksna točka

(6/6)

Još treba dokazati da je to najmanja fiksna točka!

Neka je X neki drugi *fix-point* od F, tj. F(X) = X Moramo pokazati da je $F^{n+1}(\emptyset) \subseteq X$.

Kako je $\varnothing \subseteq X$, to slijedi $F(\varnothing) \subseteq F(X) = X$ (jer je funkcija monotona) Dakle: $F(\varnothing) \subseteq X$. $F^2(\varnothing) \subseteq F(F(X)) = X$ (jer je X fix-point) Indukcijom $F^i(\varnothing) \subseteq X$ za sve $i \ge 0$, pa i za i = n + 1, slijedi $F^{n+1}(\varnothing) \subseteq X$

Dokaz za najveći fix-point analogno uz zamjenu: \subseteq sa \supseteq , te \varnothing sa S.

Teorem daje ujedno i algoritam izračunavanja i garantira završetak:

Najmanji *fix-point*: iterativna primjena F na prazan skup ∅, dok rezultat ne postane invarijantan na tu primjenu.

Najveći fix-point: iterativna primjena F na skup svih stanja S, dok rezultat ne postane invarijantan na tu primjenu.

Najveća gornja granica broja iteracija: n+1 (za S sa n+1 elementom)

Izračunavanje EG preko najveće fiksne točke (1/3)

• Q(EGf) = Q(f)
$$\cap$$
 Q(EX EG f)
= Q(f) \cap R-1(Q(EG f))

• Primjenom funkcije $F(X) = Q(f) \cap R^{-1}(X)$ i to n+1 puta na skup svih stanja S slijedi najveća čvrsta točka, tj. podskup Z_{EG} koji zadovoljava CTL-formulu EG f:

$$F^{n+1}(S) = Q(EG(f))$$

•
$$Z_{EG} = F_{EG} (Z_{EG}) = Q(f) \cap R^{-1}(Z_{EG})$$

Izračunavanje EG preko najveće fiksne točke (2/3)

Započinjemo sa skupom S, tj. Z_0 = S, i prva iteracija daje: Z_1 = Q(f) \cap R⁻¹(S) = Q(f), dakle u prvoj iteraciji je $Z_1 \neq Z_0$ te se ide dalje: Z_2 = Q(f) \cap R⁻¹(Q(f)) ... itd. sve dok Z_{n+1} = Z_n tj. dosegne fiksnu točku

Budući da $R^{-1}(S) = S$, bolje je odmah započeti sa $Z_k = Q(f)$.

Izračunavanje EG preko najveće fiksne točke (3/3)

Za primjer sa slike odredi stanja

za koja vrijedi EG p:

$$Q(p) = \{ 0, 1, 3, 4 \}, \text{ tu je p=True }$$

$$Z_{k+1} = Q(p) \cap R^{-1}(Z_k)$$

Početno: $Z_0 = S = \{0, 1, 2, 3, 4, 5\}$

- $R^{-1}(Z_0) = R^{-1}(S) = S$
- $Z_1 = \{0, 1, 3, 4\} \cap R^{-1} (\{0, 1, 2, 3, 4, 5\})$
- $R^{-1}(Z_1) = R^{-1}(\{0, 1, 3, 4\}) = prethodnici$
- $Z_2 = \{0, 1, 3, 4\} \cap R^{-1}(Z_1)$
- $R^{-1}(Z_2) = R^{-1}(\{0,1,3\}) = prethodnici$
- $Z_3 = \{0, 1, 3, 4\} \cap R^{-1}(Z_2)$
- $R^{-1}(Z_3) = R^{-1}(\{0,1\}) = prethodnici$
- $Z_4 = \{ 0, 1, 3, 4 \} \cap R^{-1}(Z_3)$

Rješenje: stanja {0, I} zadovoljavaju EG p.

$$= \{ 0, 1, 2, 3, 4, 5 \}$$

$$= \{ 0, 1, 3, 4 \} \neq Z_0$$

$$= \{ 0, 1, 2, 3 \}$$

$$= \{ 0, 1, 3 \} \neq Z_1$$

$$= \{ 0, 1, 2 \}$$

$$= \{ 0, 1 \} \neq Z_2$$

$$= \{ 0, 1, 2 \}$$

$$= \{ 0, 1 \} = Z_3$$
 (fiksna točka)

Izračunavanje EU putem najmanje fiksne točke (1/2)

Q[fEUg] = Q(g)
$$\cup$$
 [Q(f) \cap Q(EX E(fUg))]
Q[E(fUg)] = Q(g) \cup [Q(f) \cap R⁻¹ (Q(E(fUg))]

Primjenom funkcije $F(X) = Q(g) \cup [Q(f) \cap R^{-1}(X)]$ i to n+1 puta na prazan skup \emptyset slijedi najmanja čvrsta točka, tj. podskup Z_{EU} koji zadovoljava CTL formulu $E(f \cup g)$:

$$F^{n+1}(\emptyset) = Q(E (f \cup g))$$

•
$$Z_{EU} = F_{EU}(Z_{EU}) = Q(g) \cup Q(f) \cap R^{-1}(Z_{EU})$$

$$F_{EU}$$

Izračunavanje EU putem najmanje fiksne točke (2/2)

```
Q(f EU g): Z_{EU} = F_{EU}(Z_{EG}) = Q_g \cup [Q_f \cap R^{-1}(Z_{EU})]
Q(f EU g) (Q(f), Q(g))
          k := 0; \quad \mathbf{Z}_{k} := \emptyset;
          do
                    Z_{k+1} := Q(g) \cup [Q(f) \cap R^{-1}(Z_k)];
                    if (Z_{k+1} = Z_k) return Z_k;
                    k++;
          } forever;
Započinjemo s praznim skupom Z_0 = \emptyset.
Budući da R^{-1}(\emptyset) = \emptyset, bolje odmah započeti sa Z_k = Q(g)
                                                                                Fix
                                                                  Q(g)
```

I. zadatak

 Za primjer sa slike odredite stanja za koja vrijedi E(p U q) korištenjem algoritma za izračunavanje EU pomoću najmanje fiksne točke.

2. zadatak

- Za funkciju $F(X) = (X \cup \{s1\}) \cap \{s2\}$ i skup mogućih stanja $S = \{s0, s1, s2\}$ odredite:
 - a) Je li funkcija monotona.
 - b) Ako funkcija jest monotona, nađite najmanju i najveću fiksnu točku.

Zadatak za bonus bod

Koristeći teoriju fiksne točke i odgovarajući algoritam, odredite
 Q(EG r) za Kripkeovu strukturu prikazanu na slici. Potrebno je
 napisati cjelokupni postupak dobivanja rješenja i konačno rješenje.

