MA 101 (Mathematics-I)

Multivariable Calculus part 2: Hint/solution Practice Problem Sheet 2

- 1. Consider the transformation $T:[0,2\pi]\times[0,1]\to\mathbb{R}^2$ given by $T(u,v)=(2v\cos u,v\sin u)$.
 - (a) For a fixed $v_o \in [0, 1]$, describe the set $\{T(u, v_o) : u \in [0, 2\pi]\}$.
 - (b) Describe the set $\{T(u, v) : [0, 2\pi] \times [0, 1]\}.$

Solution: (a) If $x = 2v_o \cos u$ and $y = v_o \sin u$, then $\frac{x^2}{4} + \frac{y^2}{1} = v_o^2$. The set $\{T(u, v_o) : u \in [0, 2\pi]\}$ is an ellipse.

- (b) The set is the region enclosed by $\frac{x^2}{4} + \frac{y^2}{1} = 1$.
- Let R be the region in R² bounded by the straight lines y = x, y = 3x and x + y = 4.
 Consider the transformation T(u, v) = (u v, u + v). Find the set S satisfying T(S) = R.
 Solution: If x = u v and y = u + v, then y = x is mapped to v = 0 and y = 3x is mapped to v = ½. The line x + y = 4 is mapped to u = 2. Please see Figure 1.

3. Evaluate $\iint\limits_R x dx dy$ where R is the region $1 \le x(1-y) \le 2$ and $1 \le xy \le 2$.

Solution: Let u = x(1 - v) and v = xy. Since $xy \neq 0$, we can solve as x = u + v and $y = \frac{v}{u+v}$. Here $J(u,v) = \frac{1}{u+v}$. The required integral is $\int_{1}^{2} \int_{1}^{2} (u+v) \frac{1}{|u+v|} du dv = 1$

1

4. Evaluate

(a)
$$\int_{0}^{\frac{1}{\sqrt{2}}} \int_{x=y}^{\sqrt{1-y^2}} (x+y) dx dy$$
.

(b)
$$\int_{1}^{2} \int_{x=0}^{y} \frac{1}{(x^2+y^2)^{\frac{3}{2}}} dx dy$$
.

(c)
$$\int_{0}^{2} \int_{y=0}^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx$$
.

Solution: (a) The given integral is $\iint_D (x+y) dx dy$, where D is the region bounded by $y=0,\ y=x$ and the circle $x^2+y^2=1$. By polar coordinates $\iint_D (x+y) dx dy = \int_0^{\frac{\pi}{4}} \int_0^1 r(\cos\theta+\sin\theta) r dr d\theta.$

$$\iint\limits_{D} (x+y)dxdy = \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} r(\cos\theta + \sin\theta)rdrd\theta.$$

(b) Please see Figure 2.

By polar coordinate, the given integral becomes $\int_0^{\frac{\pi}{4}} \int_{\sec \theta}^{2\sec \theta} \frac{1}{r^3} r dr d\theta$.

(c) Please see Figure 3.

The given integral becomes $\iint_D \sqrt{x+y} \, dx dy$, where D is the region in the first quadrant bounded by the circle $(x-1)^2+y^2=1$ and the x-axis. Using polar coordinate, the circle $(x-1)^2+y^2=1$ can be represented by $r=2\cos\theta$. Hence the required integral is $\int_0^{\frac{\pi}{2}} \int_0^{2\cos\theta} r^2 dr d\theta.$

5. Using change of variables
$$u = x + y$$
 and $v = x - y$, show that
$$\int_0^1 \int_{y=0}^{y=x} (x-y) dy dx = \int_0^1 \int_{u=v}^{2-v} \frac{v}{2} du dv.$$

Solution: We have u + v = 2x and u - v = 2y. The line x = y is mapped to v = 0 and x=1 to u+v=2. The x-axis is mapped to v=u. Here $J(u,v)=\frac{1}{2}$. Please see the Figure 4.

6. Find the volume of the solid in the first octant bounded below by the surface $z = \sqrt{x^2 + y^2}$ above by $x^2 + y^2 + z^2 = 8$ as well as the planes y = 0 and y = x.

Solution: The given solid lies above the region D, where D is in the first quadrant in \mathbb{R}^2 bounded by the circle $x^2 + y^2 = 4$ and the line y = x and y = 0. Please see Figure 5.

Therefore the required volume is given by $\iint\limits_{D}(\sqrt{8-x^2-y^2}-\sqrt{x^2+y^2})dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{2}(\sqrt{8-r^2}-x^2-y^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{\frac{\pi}{4}}(\sqrt{8-r^2}-x^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{\frac{\pi}{4}}(\sqrt{8-r^2}-x^2)dxdy=\int_{0}^{\frac{\pi}{4}}\int_{0}^{\frac{\pi}{4}}(\sqrt{8-r^2}-x^2)dxdy=\int_{0}$ $r)rdrd\theta$.

7. Find the volume of the solid bounded by the surfaces $z = 3(x^2 + y^2)$ and $z = 4 - (x^2 + y^2)$.

3

Solution: The intersection of the surfaces is the set $\{(x,y,3): x^2+Y^2=1\}$. Therefore the volume is given by $\iint_D (4-x^2-y^2-3(x^2+y^2)dxdy)$, where D is the region in \mathbb{R}^2 enclosed by the circle $x^2+y^2=1$. By polar coordinate the integral becomes $\int_0^{2\pi} \int_0^1 (4-4r^2)rdrd\theta$.

8. Let D denote the solid bounded by surfaces $y=x,\ y=x^2,\ z=x$ and z=0. Evaluate $\iiint\limits_D y dx dy dz.$

Solution: The projection of the solid D on the xy-plane is give by $R = \{(x,y): 0 \le x \le 1, x^2 \le y \le x\}$. The solid D lies above the surface $z = f_1(x,y) = 0$ and below $z = f_2(x,y) = x$. Therefore, $\iiint_D y dx dy dz = \int_{x=0}^1 \left(\int_{y=x^2}^x \left(\int_{z=0}^x y dz \right) dy \right) dx$.

9. Let D denote the solid bounded below by the plane z + y = 2, above by the cylinder $z + y^2 = 4$ and on the sides x = 0 and x = 2. Evaluate $\iiint_D x dx dy dz$.

Solution: Please see Figure 6.

Solving $4 - y^2 = 2 - y$ implies y = -1, 2. The projection of the solid D on the xy-plane is given by $R = [0, 2] \times [-1, 2]$. The solid lies above the surface $z = f_1(x, y) = 2 - y$ and below $z = f_2(x, y) = 4 - y^2$. Therefore

below
$$z = f_2(x, y) = 4 - y^2$$
. Therefore
$$\iiint\limits_D x dx dy dz = \iint\limits_R \left(\int_{z=2-y}^{4-y^2} x dz \right) dx dy = \int_{x=0}^2 \int_{y=-1}^2 \int_{z=2-y}^{4-y^2} x dz dy dx.$$

10. Let $D = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} \le 1\}$ and $E = \{(u, v, w) \in \mathbb{R}^3 : u^2 + v^2 + w^2 \le 1\}$. Show that $\iiint\limits_D dx dy dz = \iiint\limits_E 24 du dv dw$.

Solution: Note that the transformation T(u, v, w) = (2u, 3v, 4w) = (x, y, z) maps E onto D and J(u, v, w) = 24.

11. Let D be the solid that lies inside the cylinder $x^2 + y^2 = 1$, below the cone $z = \sqrt{4(x^2 + y^2)}$ and above the plane z = 0. Evaluate $\iiint_D x^2 dx dy dz$.

Solution: The projection of the solid D on the xy-plane is $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$. By changing to the cylindrical coordinates, the solid D is bounded by z = 0 and z = 2r. Therefore

$$\iiint\limits_D x^2 dx dy dz = \int_0^{2\pi} \int_0^1 \int_0^{2r} r^2 \cos^2 \theta r dz dr d\theta.$$

12. Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x dz dy dx$.

Solution: Note that $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x dz dy dx = \iiint_{D} x dx dy dz$, where where D is the solid bounded below by $z = x^2 + y^2$ and above by z = 4. The projection of the solid D on the xy-plane is given by $\{(x,y) \in \mathbb{R}^2: x^2 + y^2 \le 4\}$. By the cylindrical coordinates $\iint_{-\infty}^{\infty} x dx dy dz = \int_{0}^{2\pi} \int_{0}^{2} \int_{r^2}^{4} r \cos \theta r dz dr d\theta.$

13. Let D denote the solid bounded above by the plane z=4 and below by the cone $z=\sqrt{x^2+y^2}$. Evaluate $\iiint\limits_D \sqrt{x^2+y^2+z^2} dx dy dz$.

Solution: Please see Figure 7.

We use the spherical coordinates. The equation $z = \sqrt{x^2 + y^2}$ changes to $\rho \cos \phi = \rho \sin \phi$. This implies that $\phi = \frac{\pi}{4}$. The equation z = 4 is written as $\rho \cos \phi = 4$. That is, $\rho = \frac{4}{\sec \phi}$. Therefore,

$$\iiint_{D} \sqrt{x^{2} + y^{2} + z^{2}} dx dy dz = \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{4 \sec \phi} \rho \rho^{2} \sin \phi d\rho d\phi d\theta = 2\pi = 4^{3} \int_{0}^{\frac{\pi}{4}} \frac{\sin \phi}{\cos^{4} \phi}.$$

14. Parametrize the part of the sphere $x^2 + y^2 + z^2 = 16$, $-2 \le z \le 2$ using the spherical co-ordinates.

Solution: By the spherical coordinates we can write the required surface as $S := r(\theta, \phi) = (4\sin\phi\cos\theta, 4\sin\phi\sin\theta, 4\cos\phi)$, where $0 \le \theta \le 2\pi, \frac{\pi}{3} \le \phi \le \frac{2\pi}{3}$.

15. Let D denote the solid enclosed by the spheres $x^2 + y^2 + (z-1)^2 = 1$ and $x^2 + y^2 + z^2 = 3$. Using the spherical coordinates, set up iterated integral that gives the volume of D.

Solution: Please Figure 8.

By solving $x^2 + y^2 + (z - 1)^2 = 1$ and $x^2 + y^2 + z^2 = 3$ we get $z = \frac{3}{2}$. That is, $\rho \cos \phi = \frac{3}{2}$. the equation $x^2 + y^2 + (z - 1)^2 = 1$ becomes $\rho = 2\cos\phi$ in the spherical coordinates.

The required volumes is the sum of the volume of the portion of the region $x^2+y^2+z^2 \leq 3$ that lies inside the cone $\rho=\frac{\pi}{6}$ and the volume of the portion of the region $x^2+y^2+(z-1)^2 \leq 1$ that lies inside the sphere $x^2+y^2+z^2=3$. Therefore the required volume is given by $\int_0^{2\pi}\int_0^{\frac{\pi}{6}}\int_0^{\sqrt{3}}\rho^2\sin\phi d\rho d\phi d\theta + \int_0^{2\pi}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\int_0^{2\cos\phi}\rho^2\sin\phi d\rho d\phi d\theta.$

16. Let S be the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$. Parametrize S by considering it as a graph and again by using the spherical coordinates.

Solution: The surface S is bounded below by $z=\sqrt{2}$ and above by z=2. By spherical coordinates, we get $\sqrt{2} \le 2\cos\phi \le 2$. This implies that $0 \le \phi \le \frac{\pi}{4}$. Hence $S:=r(\theta,\phi)=(2\sin\phi\cos\theta,\,2\sin\phi\sin\theta,\,2\cos\phi)$, where $0 \le \theta \le 2\pi,\,0 \le \phi \le \frac{\pi}{4}$.

- 17. Let S denote the part of the plane 2x+5y+z=10 that lies inside the cylinder $x^2+y^2=9$. Find the area of S.
 - (a) By considering S as a part of the graph z = f(x, y), where f(x, y) = 10 2x 5y.
 - (b) By considering S as a parametric surface $r(u,v) = (u\cos v, u\sin v, 10 u(2\cos v + 5\sin v)), 0 \le u \le 3 \text{ and } 0 \le v \le 2\pi.$

Solution: (a) The projection D of the surface on the xy-plane is $\{(x,y): x^2 + y^2 = 9\}$. The required area is $\iint_D \sqrt{1 + f_x^2 f_y^2} \, dx dy = \iint_D \sqrt{30} \, dx dy = 9\sqrt{30}\pi$.

- (b) The area is $\int_0^3 \int_0^{2\pi} |r_u \times r_v| du dv = \int_0^3 \int_0^{2\pi} u \sqrt{30} \ du dv$.
- 18. Find the area of the surface x = uv, y = u + v, z = u v, where $(u, v) \in D = \{(s, t) \in \mathbb{R}^2 : s^2 + t^2 \le 1\}$.

Solution: The surface is given by r(u,v)=(uv,u+v,u-v) and hence $|r_u\times r_v|=\sqrt{4+2(u^2+v^2)}$. Therefore the required area is

$$\iint\limits_{D} \sqrt{4 + 2(u^2 + v^2)} du dv = \int_{0}^{2\pi} \int_{0}^{1} \sqrt{4 + 2r^2} r dr d\theta.$$

19. Find the area of the part of the surface $z=x^2+y^2$ that lies between the cylinders $x^2+y^2=4$ and $x^2+y^2=16$.

Solution: The given surface $z=x^2+y^2$ can be parameterized as $R(r,\theta)=(r\cos\theta,r\sin\theta,r^2)$, $r\geq 0$, and $0\leq \theta\leq 2\pi$. Hence $|R_r\times R_\theta|=r\sqrt{4r^2+1}$. Since the projection of the part of the surface on the xy-plane is the region between $x^2+y^2=4$ and $x^2+y^2=4$, we get $2\leq r\leq 4$. Therefore the required area is $\int_0^{2\pi}\int_2^4r\sqrt{4r^2+1}drd\theta$.

20. Let S be the part of the cylinder $y^2 + z^2 = 1$ that lies between the planes x = 0 and x = 3 in the first octant. Evaluate $\iint_S (z + 2xy) d\sigma$.

Solution: The surface is $r(x, \theta) = (x, \cos \theta, \sin \theta)$, $0 \le x \le 3$ and $0 \le \theta \le \frac{\pi}{3}$. This implies $|r_x \times r_\theta| = 1$. Hence

$$\iint\limits_{S} (z+2xy)d\sigma = \int_{0}^{\frac{\pi}{2}} \int_{0}^{3} (\sin\theta + 2x\cos\theta)(1)dxd\theta = \int_{0}^{\frac{\pi}{2}} (3\sin\theta + 9\cos\theta)d\theta.$$

MA 101 (Mathematics-I)

Multivariable Calculus part 2: Hint/solution Practice Problem Sheet 3

1. Let \vec{N} be the unit outward normal vector on the ellipse $x^2 + 2y^2 = 1$. Evaluate the line integral $\int\limits_{C} \vec{N} \cdot d\vec{R}$ along the unit circle $C = \{(x, y): x^2 + y^2 = 1\}.$

Solution: The ellipse $x^2 + 2y^2 = 1$ can be represented by $E(t) = \left(\cos t, \frac{\sin t}{\sqrt{2}}\right)$ with $0 \le t < 2\pi$. This implies that normal vector to E will be $(y'(t), -x'(t)) = \left(\frac{\cos t}{\sqrt{2}}, \cos t\right)$. Hence the unit normal vector $\vec{N}(t) = \sqrt{\frac{2}{3}} \left(\frac{\cos t}{\sqrt{2}}, \cos t \right)$. Let C be represented by R(t) = $(\cos t, \sin t), \ 0 \le t < 2\pi.$ Please refer to Figure 1.

Thus,

$$\int\limits_{C} \vec{N}.\vec{dR} = \sqrt{\frac{2}{3}} \left(\frac{\cos t}{\sqrt{2}}, \cos t \right).(-\sin t, \cos t) dt.$$

2. Use second fundamental theorem of calculus for the line integral to show that $\int_C y dx + (x+z) dy + y dz$ is independent of any path C joining the points (2,1,4) and (8, 3, -1).

Solution: Let F(x, y, z) = (y, x+z, y). Consider f(x, y, z) = xy + yz + c. Then $\nabla f(x, y, z) = xy + yz + c$. F(x, y, z). Hence, by second FTC for line integral

$$\int_C \nabla f \cdot dR = f(2, 1, 4) - f(8, 3, -1).$$

 $\int_C \nabla f \cdot dR = f(2,1,4) - f(8,3,-1).$ That is, the given line integral is path independent. Note that one can $\nabla f = F$ for f by doing indefinite integral.

1

3. Consider the curve C which is the intersection of the surfaces $x^2 + y^2 = 1$ and $z = x^2$. Assume that C is oriented counterclockwise as seen from the positive z-axis. Evaluate $\int_C z dx - xy dy - x dz.$

Solution:

Let F(x, y, z) = (z, -xy, -x). The cylinder $x^2 + y^2 = 1$ can be parameterized as $\{(\cos \theta, \sin \theta, z) : 0 \le \theta < 2\pi, z \in \mathbb{R}\}.$

Since C also lies in $z = x^2$, this implies $C = \{(\cos \theta, \sin \theta, \cos^2 \theta) : 0 \le \theta < 2\pi\}$. Please see the Figure 2.

The required line integral is

$$\int_{C} f \cdot dR = \int_{0}^{2\pi} f(R(\theta)) \cdot R'(\theta) d\theta = 0.$$

4. Let $f(x, y, z) = (x^2, xy, 1)$. Show that that there is no ϕ such that $\nabla \phi = f$.

Solution: If there exists ϕ such that $\nabla \phi = f$, then $0 = \text{curl } \nabla \phi = \text{curl } f$ should be satisfied. But that is not the case here.

- 5. Let C be a curve represented by two parametric representations such that $C = \{R_1(s) : s \in [a,b]\} = \{R_2(t) : t \in [c,d]\}$, where $R_1 : [a,b] \to \mathbb{R}^3$ and $R_2 : [c,d] \to \mathbb{R}^3$ be two distinct differentiable one-one maps.
 - (a) Show that there exists a function $h:[c,d]\to[a,b]$ such that $R_2(t)=R_1(h(t))$.
 - (b) If R_1 and R_2 trace out C in the same direction, then $\int_C f \cdot dR_1 = \int_C f \cdot dR_2$.

(c) If R_1 and R_2 trace out C in the opposite direction, then $\int_C f \cdot dR_1 = -\int_C f \cdot dR_2$.

Solution: (a) Consider $h(t) = R_1^{-1}(R_2(t))$.

(b & c) By chain rule $R'_2(t) = R'_1(t)h'(t)$. Therefore, the required line integral $\int_C f dR_2 = \int_c^d f(R_2(t)) \cdot R'_2(t) dt = \int_c^d f(R_1(h(t))) \cdot R'_1(h(t))h'(t) dt.$ Let u = h(t). Then

$$\int_{C} f dR_{2} = \int_{h(s)}^{h(d)} f(R_{1}(u)) \cdot R'_{1}(u) du = \pm \int_{c}^{b} f(R_{1}(u)) \cdot R'_{1}(u) du = \pm \int_{C} f \cdot dR_{1}.$$

6. Evaluate the line integral $\oint_C (x^2 \sin^2 x - y^3) dx + (y^2 \cos^2 y - y) dy$, where C is the closed curve consisting x + y = 0, $x^2 + y^2 = 25$ and y = x and lying in the first and fourth quadrants.

Solution: Let D be the domain enclosed by C as shown in Figure 3.

By Green's Theorem,

$$\oint_C (x^2 \sin^2 x - y^3) dx + (y^2 \cos^2 y - y) dy = \iint_D 3y^2 dx dy = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \int_0^5 3r^2 \sin^2 \theta dr d\theta.$$

7. Let $f:[a,b] \to \mathbb{R}$ be a non-negative continuously differentiable function. Suppose C is the boundary of the region bounded above by the graph of f, below by the x-axis and on the sides by the lines x=a and x=b. Show that $\int_a^b f(x)dx = -\oint_C ydx$.

Solution: Let D be the domain enclosed by C as shown in Figure 4.

It follows from Greens theorem that

$$\int_{a}^{b} f(x)dx = \operatorname{Area}(D) = \iint_{D} 1dxdy = -\int_{C} (ydx + 0dy).$$

8. Let $F(x, y, z) = (y, -x, 2z^2 + x^2)$ and S be the part of the sphere $x^2 + y^2 + z^2 = 25$ that lies below the plane z = 4. Evaluate $\iint_S \operatorname{curl} F \cdot \hat{n} d\sigma$, where \hat{n} is the unit outward normal of S.

Solution: Let C be the boundary of the surface S as shown in Figure 5.

Then $C = \{(3\sin\theta, 3\cos\theta, 4) : 0 \le \theta < 2\pi\}$. Note that C is oriented clockwise when viewed from above. By Stoke's Theorem

$$\iint\limits_{S} \operatorname{curl} F \cdot \hat{n} d\sigma = \oint\limits_{C} F \cdot dR = \int_{0}^{2\pi} F(R(\theta)) \cdot R'(\theta) d\theta = 18\pi.$$

- 9. Let C be the boundary of the cone $z=x^2+y^2$ and $0 \le z \le 1$. Use Stoke's theorem to evaluate the line integral $\int_C \vec{F} \cdot d\vec{R}$ where $\vec{F}=(y,xz,1)$.
 - **Solution:** Let $f(x,y,x)=x^2+y^2-z$. Then $S=\{(x,y,z): f(x,y,x)=0\}$ will be the surface of the domain. The unit normal to S will be $\hat{n}=\frac{\nabla f}{\|\nabla f\|}=\frac{(2x,2y,-1)}{\sqrt{4(x^2+y^2)+1}}$. Let $z=g(x,y)=x^2+y^2$. Then $d\sigma=\sqrt{g_x^2+g_y^2+1}dxdy$. By Stoke's Theorem,

$$z = g(x,y) = x^2 + y^2$$
. Then $d\sigma = \sqrt{g_x^2 + g_y^2 + 1} dxdy$. By Stoke's Theorem,
$$\int_C \vec{F} \cdot d\vec{R} = \iint_S \text{curl } \vec{F} \cdot \hat{n} \ d\sigma = \iint_R \text{curl } \vec{F} \cdot \hat{n} \sqrt{1 + g_x^2 + g_y^2} dxdy,$$

where $R = \{(x, y): x^2 + y^2 \le 1\}.$

10. Let $\vec{F} = (xy, yz, zx)$ and S be the surface $z = 4 - x^2 - y^2$ with $2 \le z \le 4$. Use divergence theorem to find the surface integral $\iint_S \vec{F} \cdot \vec{n} \ d\sigma$.

Solution: Let $S_1 = \{(x, y, 2) : x^2 + y^2 \le 2\}$. Please refer to Figure 6.

By divergence theorem,

$$\iint\limits_{S} \vec{F} \cdot \vec{n} \ d\sigma + \iint\limits_{S_1} \vec{F} \cdot \vec{n_1} \ d\sigma_1 = \iiint\limits_{D} \text{div } \vec{F} \ dxdydz.$$

Here

$$\iint\limits_{S_1} \vec{F} \cdot \vec{n} \ d\sigma_1 = \iint\limits_{x^2 + y^2 \le 2} (xy, yz, zx) \cdot (-k) dx dy$$

11. Let S be the sphere $x^2 + y^2 + z^2 = 1$. If some $\alpha \in \mathbb{R}$ satisfies $\iint_S (zx + \alpha y^2 + xz) d\sigma = \frac{4\pi}{3}$, then find α .

Solution:

Let D denote the solid enclosed by the surface S. By divergence theorem

$$\iint\limits_{S}(z,\alpha y,x).(x,y,z)d\sigma=\iiint\limits_{D}\alpha dxdydz=\alpha\frac{4\pi}{3}.$$

Hence $\alpha = 1$.

MA 101 (Mathematics-I)

Multivariable Calculus part 2: Hint/solution Tutorial Problem Sheet 1

1. If $f: D = [a, b] \times [c, d] \to \mathbb{R}$ is continuous, then f is uniformly continuous.

Solution: Suppose f is not uniformly continuous on D. Then, there is an $\epsilon > 0$ such that for each $\delta = \frac{1}{n}, n \in \mathbb{N}$, there exist sequences X_n , and Y_n in D such that $\|X_n - Y_n\| < \frac{1}{n}$ but $|f(X_n) - f(Y_n)| \ge \epsilon$. Since D is closed and bounded, by Bolzano-Weierstrass Theorem, there will be subsequence X_{n_k} such that $X_{n_k} \to X \in D$. Similarly, $Y_{n_{kl}}$ has subsequence $Y_{n_{kl}}$ such that $Y_{n_{kl}} \to Y \in D$. Hence, without lose of generality, we can assume that $X_{n_k} \to X$ and $Y_{n_k} \to Y$. Thus, we have $\|X_{n_k} - Y_{n_k}\| < \frac{1}{n_k}$ and $|f(X_{n_k}) - f(Y_{n_k})| \ge \epsilon$. It follows that X = Y. By continuity of f at X and Y, we get $|f(X) - f(Y)| \ge \epsilon$, which is a contradiction.

2. Let f be real valued continuous function on [a, b]. Show that the graph of f is a set of content zero.

Solution: Let $G_f = \{(x, f(x)) : x \in [a, b]\}$. Note that the function f is uniformly continuous on [a, b]. For given $\epsilon > 0$, there exists a $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \frac{\epsilon}{2(b-a)}$. (1)

Let $P = \{x_0, \dots, x_{i-1}, x_i, \dots, x_n\}$ be a partition of [a, b] such that $\Delta x_i < \delta$. Then (1) will be satisfied by every pair of points $x, y \in [x_{i-1}, x_i]$. That is,

$$-\frac{\epsilon}{2(b-a)} < f(x) - f(y) < \frac{\epsilon}{2(b-a)}.$$

By taking supremum w.r.t. $x \in [x_{i-1}, x_i]$ keeping y fixed and then supremum w.r.t. y, we get $M_i - m_i < \frac{\epsilon}{2(b-a)}$. Note that $(M_i - m_i)\Delta x_i$ is the area of the rectangle $R_i = [m_i, M_i] \times [x_{i-1}, x_i]$ along the graph of f as shown in Figure 1. This shows that $\sum_{i=1}^{n} (M_i - m_i)\Delta x_i < \epsilon$. Thus, $G_f \subset \bigcup_{i=1}^{n} R_i$ and $\operatorname{Area}(\bigcup_{i=1}^{n} R_i) < \epsilon$. Hence G_f is of content zero.

3. Let $D = \{(x,y) : a \le x \le b \text{ and } \varphi(x) \le y \le \psi(x)\}$, where φ and ψ are continuous functions on [a,b]. If f is a bounded continuous functions on D, then

$$\iint\limits_{D} f(x,y)dxdy = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x,y)dy \right) dx.$$

Solution: Since φ and ψ are continuous on [a, b], they are bounded and hence D is a bounded domain in \mathbb{R}^2 .

Let $Q=[a,b]\times [c,d]$ be a rectangle containing D as shown in Figure 2. Extend f on Q as $\tilde{f}:Q\to\mathbb{R},$ where

$$\tilde{f}(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in D\\ 0 & \text{if } (x,y) \in Q \setminus D. \end{cases}$$

By definition of \tilde{f} , it is clear that \tilde{f} is continuous on the interior of D. It is clear from Figure 2, the domain D is bounded by the graph of φ, ψ and two vertical line segments, each of content zero. Hence \tilde{f} has discontinuities in Q of content zero. Thus, \tilde{f} is

integrable. Now, it only remain to show that

$$\iint\limits_{Q} \tilde{f}(x,y)dxy = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x,y)dy \right) dx.$$

Note that for each fixed $x \in [a,b]$, the integral $\int_{c}^{d} \tilde{f}(x,y)dy$ exists, since the set of discontinuities of $\tilde{f}(x,\cdot)$ contains at most two points, one each on the graph of φ and ψ . Moreover, $G(x) = \int_{c}^{d} \tilde{f}(x,y)dy$ is continuous expect possibly at a and b. Hence G is integrable on [a,b]. By applying Fubini's Theorem to \tilde{f} on Q, we get

$$\iint\limits_D f(x,y)dxdy = \int_a^b \left(\int_{\varphi(x)}^{\psi(x)} \tilde{f}(x,y)dy \right) dx.$$

But, this follows from the fact that

$$\int_{c}^{d} \tilde{f}(x,y)dy = \int_{\varphi(x)}^{\psi(x)} f(x,y)dy.$$

Hence the result followed.

4. Evaluate the following integral applying Fubini's Theorem

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} dy dx$$

(b)
$$\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} dy dx$$

(c)
$$\int_{0}^{1} \int_{y}^{1} x^{2} e^{xy} dx dy$$

Solution: (a) The domain of integration is as shown Figure 3.

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} dy dx = \int_{y=0}^{1} \left(\int_{x=0}^{\sqrt{1-y^2}} \sqrt{1-y^2} dx \right) dy = \int_{y=0}^{1} (1-y^2) dy.$$

(b) The domain of integration is as shown Figure 4.

$$\int_{0}^{\pi} \left(\int_{x}^{\pi} \frac{\sin y}{y} dy \right) dx = \int_{y=0}^{\pi} \left(\int_{x=0}^{y} \frac{\sin y}{y} dx \right) dy = \int_{y=0}^{\pi} \sin y \ dy.$$

(c) The domain of integration is as shown Figure 5.

$$\int_{0}^{1} \int_{y}^{1} x^{2} e^{xy} dx dy = \int_{x=0}^{1} \left(\int_{y=0}^{x} x^{2} e^{xy} dy \right) dx.$$

5. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that $\int_{y=0}^{x} \int_{t=0}^{y} f(t)dtdy = \int_{t=0}^{x} (x-t)f(t)dt$.

Solution: The domain of integration is as shown Figure 4.

$$\int\limits_{y=0}^{x}\left(\int\limits_{t=0}^{y}f(t)dt\right)dy=\int\limits_{t=0}^{x}\left(\int\limits_{y=t}^{x}f(t)dy\right)dt=\int\limits_{t=0}^{x}(x-t)f(t)dt.$$

6. Let f be a continuous function on the bounded domain D. If $\iint_{\mathcal{B}} f(x,y) dx dy = 0$ for all rectangle R in D, then f = 0 on D.

Solution: Suppose there exists $X_o \in D$ such that $f(X_o) \neq 0$. Then without loss of generality we can assume that $f(X_o) > 0$. Since f is continuous at X_o , for $\epsilon = \frac{f(X_o)}{2} > 0$ 0, there exists an open ball $B_{\delta}(X_o)$ such that $|f(X) - f(X_o)| < \frac{f(X_o)}{2}$. This implies $f(X) > \frac{3f(X_o)}{2}$ for each $X \in B_{\delta}(X_o)$. Thus,

$$\iint\limits_{B} f(x,y)dxdy = 0$$

for each rectangle $R \in B_{\delta}(X_o)$. Since f is continuous on R, it follows that f must be zero on R. If not, then suppose, $f(y_o) > 0$ for some $Y_o \in R$. Then there exists a ball $B_r(Y_o)$ such that $f(X) > \frac{3f(Y_o)}{2}$ for each $X \in B_r(Y_o)$. But, then

$$(Y_o)$$
 such that $f(X) > \frac{3f(Y_o)}{2}$ for each $X \in B_r(Y_o)$. But, then
$$0 = \iint\limits_R f(x,y) dx dy > \iint\limits_{B_r(Y_o)} f(x,y) dx dy \ge \frac{3f(Y_o)}{2} \iint\limits_{B_r(Y_o)} dx dy = \frac{3f(Y_o)}{2} \pi r^2 > 0.$$
The is a contradiction

which is a contradiction.

7. Let $f:D=[a,b]\times [c,d]\to \mathbb{R}$ be a continuous function. If f_x,f_y,f_{xy} and f_{yx} are continuous then, by using Fubini's theorem, show that $f_{xy} = f_{yx}$.

Solution: Since f_{xy} is continuous on D, by Fubini's Theorem, we get

$$\int_{a}^{x} \int_{c}^{y} \frac{\partial^{2} f}{\partial x \partial y}(u, v) dv du = \int_{c}^{y} \int_{a}^{x} \frac{\partial^{2} f}{\partial x \partial y}(u, v) du dv$$
$$= \int_{c}^{y} \left[\frac{\partial f}{\partial y}(x, v) - \frac{\partial f}{\partial y}(a, v) \right] dv$$
$$= f(x, y) - f(x, c) - f(a, y) + f(a, c).$$

Also,

$$\int_{a}^{x} \int_{c}^{y} \frac{\partial^{2} f}{\partial y \partial x}(u, v) dv du = f(x, y) - f(x, c) - f(a, y) + f(a, c).$$

Hence

$$\int_a^x \int_c^y \frac{\partial^2 f}{\partial x \partial y}(u,v) dv du = \int_a^x \int_c^y \frac{\partial^2 f}{\partial y \partial x}(u,v) dv du.$$
 Since the above equation holds for every choice of $x,y \in D$, we obtain

$$\iint\limits_{R} \frac{\partial^2 f}{\partial x \partial y}(u, v) dv du = \iint\limits_{R} \frac{\partial^2 f}{\partial y \partial x}(u, v) dv du$$

for every rectangle $R \subseteq D$. Thus, $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

MA 101 (Mathematics-I)

Multivariable Calculus part 2: Hint/solution Tutorial Problem Sheet 2

1. Using double integral, find the area enclosed by the curve $r = \sin 3\theta$ given in polar coordinates.

Solution: Please see Figure 1.

The curve is given by $r = \sin 3\theta$, where $\theta \in [0, \pi)$. Area $= 3 \int_{0}^{\frac{\pi}{3}} \int_{r=0}^{\sin 3\theta} r dr d\theta$.

2. Evaluate the double integral $\iint_D \sqrt{x+y} \ (y-2x)^2 dy dx$ over the domain D bounded by the lines $x=0,\ y=0$ and x+y=1.

Solution: Let u = x + y and v = y - 2x. Then $x = \frac{u - v}{3}$ and $y = \frac{2u + v}{3}$.

Here $J(u, v) = \frac{1}{3}$. Note that the line y = 0 is mapped to u = x and v = -2x. Similarly, the line x = 0 is mapped to u = y and v = y. That is, x = 0 is mapped to u = v. Also,

1

x + y = 1 is mapped to u = 1. Interior of D mapped to the interior of the triangle T as shown in the Figure 2. Hence

$$\iint\limits_{D} \sqrt{x+y} \ (y-2x)^2 dy dx = \frac{1}{3} \iint\limits_{T} \sqrt{u} \ v^2 dv du = \int_{u=0}^{1} \left(\int_{v=-2u}^{u} \sqrt{u} \ v^2 dv \right) du.$$

3. Evaluate the integral $\iint_D e^{(x-2y)} dxdy$ over the domain D bounded by the lines x-2y=0, 2x-y=0 and x+y=1 as shown in Figure 3.

Solution: Put u = x - 2y and v = 2x - y. Then $x = \frac{2v - u}{3}$ and $y = \frac{v - 2u}{3}$. It is clear that x - 2y = 0 is mapped to u = 0 and 2x - y = 0 is mapped to v = 0. Also, x + y = 1 is mapped to v - u = 1. Here $J(u, v) = \frac{1}{3}$. Hence

is mapped to
$$v-u=1$$
. Here $J(u,v)=\frac{1}{3}$. Hence
$$\iint_D e^{(x-2y)} dx dy = 3 \int_{u=-1}^0 \left(\int_{v=0}^{u+1} e^u dv \right) du = 3 \int_{u=-1}^0 e^u (u+1) du.$$

- 4. Compute $\lim_{a\to\infty} \iint_{D(a)} e^{-(x^2+y^2)} dxdy$, where
 - (a) $D(a) = \{(x,y) : x^2 + y^2 \le a^2\}$ and (b) $D(a) = \{(x,y) : 0 \le x \le a, 0 \le y \le a\}$ Hence prove that (c) $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ (d) $\int_0^\infty x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$

Solution: (a) Let $D_1(a) = \{(x,y) : x^2 + y^2 \le a^2\}$. Then by using polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$, we have

$$I_1(a) = \int_{D_1(a)} \int e^{-(x^2 + y^2)} dx dy = \int_0^{2\pi} \int_{r=0}^a e^{-r^2} r dr d\theta = \pi (1 - e^{-a^2}) \to \pi.$$

(b) Write $D_2(a) = \{(x,y) : 0 \le x \le a, 0 \le y \le a\}$. It is clear from Figure 4

that $\frac{D_1(a)}{4} < D_2(a) < \frac{D_1(\sqrt{2}a)}{4}$. Let $I_2(a) = \iint_{C} e^{-(x^2+y^2)} dx dy$. Then the corresponding integrals satisfy $\frac{I_1(a)}{4} < I_2(a) < \frac{I_1(\sqrt{2}a)}{4}$. By sandwich theorem, we get $\lim_{a \to \infty} I_2(a) = \frac{\pi}{4}$.

(c) Let $I(a) = \int_0^a e^{-x^2} dx$. Then by Fubini's theorem, $I^2(a) = \left(\int_0^a e^{-x^2} dx\right) \left(\int_0^a e^{-y^2} dy\right) = \int_{x=0}^a \int_{y=0}^a e^{-(x^2+y^2)} dx dy = I_2(a) \to \frac{\pi}{4}.$

(d) Let $J(a) = \int_{a}^{a} x^{2}e^{-x^{2}}dx$. Then by Fubini's theorem,

$$J^{2}(a) = \left(\int_{0}^{a} x^{2} e^{-x^{2}} dx\right) \left(\int_{0}^{a} y^{2} e^{-y^{2}} dy\right) = \int_{x=0}^{a} \int_{y=0}^{a} x^{2} y^{2} e^{-(x^{2}+y^{2})} dx dy$$

$$= \iint_{D_{2}(a)} x^{2} y^{2} e^{-(x^{2}+y^{2})} dx dy.$$
By using polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$, we can write

$$\iint_{D_1(a)} x^2 y^2 e^{-(x^2 + y^2)} dx dy = \frac{1}{4} \int_0^{2\pi} \int_{r=0}^a r^4 (\sin 2\theta)^2 e^{-r^2} r dr d\theta.$$

Use similar argument as in solution of (b) to get answer in this case.

5. Let D denote the solid bounded by the surfaces y = x, $y = x^2$, z = x and z = 0. Evaluate $\iiint_D y dx dy dz$.

Solution: Here $y=x,\ y=x^2,\ z=x$ and z=0, implies y=0,1. Please see Figure 5.

By Fubini's theorem, we get

$$\iiint\limits_{D} y dx dy dz = \int_{x=0}^{1} \left(\int_{z=0}^{x} \left(\int_{y=x^{2}}^{x} y dy \right) dz \right) dx.$$

6. Let D denote the solid bounded above by the plane z=4 and below by the cone $z=\sqrt{x^2+y^2}$. Evaluate $\iiint\limits_D \sqrt{x^2+y^2+z^2} dx dy dz$.

Solution: Use spherical polar coordinate $x = r \sin \phi \cos \theta$, $y = r \sin \phi \sin \theta$, $z = r \cos \phi$, where $0 \le \theta < 2\pi$ and $0 \le \phi < \frac{\pi}{4}$.

7. Find the surface integral $\iint_S zd\sigma$, where S it the part of the paraboloid $2z = x^2 + y^2$ which lies in the cylinder $x^2 + y^2 = 1$.

Solution: Please see Figure 6.

Let
$$z = f(x,y) = \frac{x^2 + y^2}{2}$$
 and $D = x^2 + y^2 \le 1$.

$$\iint\limits_S z d\sigma = \iint\limits_D z \sqrt{1 + f_x^2 + f_y^2} \ dx dy.$$

Use polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ to evaluate the integral on D.

8. What is the integral of the function x^2z taken over the entire surface of a right circular cylinder of height h which stands on the circle $x^2 + y^2 = a^2$.

Solution: We divide the surface of the cylinder into three parts S_i ; i = 1, 2, 3 as shown in the Figure 7.

4

$$\iint\limits_S x^2z\ d\sigma = \left(\iint\limits_{S_1} + \iint\limits_{S_2} + \iint\limits_{S_3}\right) x^2z\ d\sigma.$$
 Note that S_1 is the bottom of the cylinder given by $x^2+y^2 \le a^2$ and $z=0$. Hence

Note that S_1 is the bottom of the cylinder given by $x^2 + y^2 \le a^2$ and z = 0. Hence $\iint_{S_1} x^2 z \ d\sigma = 0$. Here S_2 is the vertical surface given by $r(\alpha, \beta) = (a \cos \alpha, a \sin \alpha, \beta)$, where $0 \le \alpha < 2\pi$ and $0 \le \beta \le h$. Hence

where
$$0 \le \alpha < 2\pi$$
 and $0 \le \beta \le h$. Hence
$$\iint_{S_2} x^2 z \ d\sigma = \int_{\beta=0}^h \int_{\alpha=0}^{2\pi} (a\cos\alpha)^2 \beta \|r_\alpha \times r_\beta\| d\alpha d\beta = \frac{\pi a^3 h^2}{2}.$$

Here S_3 is the top of the cylinder given by $x^2 + y^2 \le a^2$ and z = h. This can be parametrized by $r(u, v) = (u \cos v, u \sin v, h)$, where $0 \le u \le a$ and $0 \le v < 2\pi$. Thus,

$$\iint_{S_0} x^2 z \ d\sigma = \int_{u=0}^a \int_{v=0}^{2\pi} (u \cos v)^2 h \|r_u \times r_v\| du dv = \frac{\pi a^4 h}{4}.$$

MA 101 (Mathematics-I)

Multivariable Calculus part 2: Hint/solution Tutorial Problem Sheet 3

1. Find the line integral of the vector field $F(x, y, z) = y\vec{i} - x\vec{j} + \vec{k}$ along the path $c(t) = (\cos t, \sin t, \frac{t}{2\pi}), 0 \le t \le 2\pi$ joining (1, 0, 0) to (1, 0, 1).

Solution:

$$\int F \cdot dc = \int_0^{2\pi} F((c(t)) \cdot c'(t)) dt = 1 - 2\pi.$$

2. Evaluate $\int_C T \cdot dR$, where C is the circle $x^2 + y^2 = 1$ and T is the unit tangent vector.

Solution: The unit circle can be represented by $C = \{R(t) : 0 \le t < 2\pi\}$. The unit tangent vector T to C is given $T(t) = \frac{R'(t)}{\|R'(t)\|}$. Hence

$$\int_C T \cdot dR = \int_0^{2\pi} \frac{R'(t)}{\|R'(t)\|} \cdot R'(t)dt = 2\pi.$$

3. Show that the integral $\int_C yzdx + (xz+1)dy + xydz$ is independent of the path C joining (1,0,0) and (2,1,4).

Solution: Let F(x, y, z) = (xy, xz + 1, xy). Consider f(x, y, z) = xyz + y + c. Then $\nabla f(x, y, z) = (xy, xz + 1, xy) = F(x, y, z)$. Hence, by second FTC for line integral $\int_C \nabla f \cdot dR = f(2, 1, 4) - f(1, 0, 0).$

That is, the given line integral is path independent. Note that one can $\nabla f = F$ for f by doing indefinite integral.

4. Use Green's Theorem to compute $\int_C (2x^2 - y^2) dx + (x^2 + y^2) dy$ where C is the boundary of the region $\{(x,y): x,y \geq 0 \text{ and } x^2 + y^2 \leq 1\}$.

Solution: Let $M(x,y) = 2x^2 - y^2$ and $N = x^2 + y^2$. Then $N_x - M_y = 2(x+y)$. Let $D = \{(x,y) : x,y \ge 0 \text{ and } x^2 + y^2 \le 1\}$.

Note that C is a simple closed and piece wise smooth curve, as shown in Figure 1. Then by Green's theorem

$$\int_C Mdx + Ndy = \iint_D 2(x+y)dxdy.$$

Use polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$, where $0 < r \le 1$ and $0 \le \theta \le \frac{\pi}{2}$.

5. If C is any simple closed and smooth curve in \mathbb{R}^2 which is not passing through the point (1,0), then evaluate the integral $\int_C \frac{-ydx + (x-1)dy}{(x-1)^2 + y^2}$.

Solution: Let $M(x,y) = -\frac{y}{(x-1)^2+y^2}$ and $N(x,y) = \frac{x-1}{(x-1)^2+y^2}$. Note that M and N are not continuous at (0,0). Let C_1 be a circle of radius r centered at (1,0) which is in the interior of domain D enclosed by C. Please see Figure 2.

A simple calculation shows that $N_x - M_y = 0$ on D. By Green'n theorem for multiply connected domain,

$$\int_C Mdx + Ndy - \int_{C_1} Mdx + Ndy = \iint_D (N_x - N_y) dx dy = 0.$$

Use the parametrization $x - 1 = r \cos t$ and $y = r \sin t$, $0 \le t < 2\pi$. Then

$$\int_{C} Mdx + Ndy = \int_{C_{1}} Mdx + Ndy = 2\pi.$$

6. Let $D = \{(x,y): x^2 + y^2 < 1\}$. If $f: D \to R^2$ is a continuously differentiable function such that $\int_{\Gamma} f \cdot dR = 0$ for every curve Γ in D, then f constant.

Solution: Let P = (x, y) be an arbitrary point in D. Then there exists a smooth curve Γ connecting origin and P as shown in Figure 3.

Let $\Gamma = \{R(t): a \le t \le s\}$ and $f = (f_1, f_2)$. Then by the given condition $\int_s^s f(R(t)) \cdot R'(t) dt = 0.$

Since point P is arbitrary, the above condition holds for every choice of $s \leq a$. Hence, $f(R(t)) \cdot R'(t) = 0$ for all $t \in [a, s]$. Choose $R(t) = (t - x, (t - y)^2)$ then R'(s) = (1, 0). This implies $f_1(P) = f_1(R(s)) = 0$. Similarly, we can select R(t) such that R'(s) = (0, 1). Hence, $f_2(P) = 0$. Thus, f = 0 on D.

7. Use Stokes' Theorem to evaluate the line integral $\int_C -y^3 dx + x^3 dy - z^3 dz$, where C is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1 and the orientation of C corresponds to counterclockwise motion in the xy-plane.

Solution: Let $S = S_1 \cup S_2$, as shown in Figure 4. Note that S_1 is the surface of part of the cylinder whereas S_2 is the base of the cylinder.

Let $F(x, y, z) = (-y^3, x^3, -z^3)$. Then by stoke's theorem,

$$\oint_C F \cdot dR = \iint_S \operatorname{curl} F \cdot \hat{n} \, d\sigma = \left(\iint_{S_1} + \iint_{S_2} \right) \operatorname{curl} F \cdot \hat{n} \, d\sigma.$$

Note that curl $F(x, y, z) = 3(x^2 + y^2)k$. Unit vector \hat{n}_1 on S_1 is given by $\hat{n}_1 = \frac{r_\alpha \times r_\beta}{\|r_\alpha \times r_\beta\|}$, and $d\sigma_1(\alpha, \beta) = \|r_\alpha \times r_\beta\| d\alpha d\beta$, where $r(\alpha, \beta) = (\cos \alpha, \sin \beta, \beta)$ with $0 \le \alpha < 2\pi$, and $0 \le \beta \le 1 - \cos \alpha - \sin \alpha$. Hence

and
$$0 \le \beta \le 1 - \cos \alpha - \sin \alpha$$
. Hence
$$\iint_{S} \operatorname{curl} F \cdot \hat{n}_1 d\sigma = \int_{\alpha=0}^{2\pi} \int_{\beta=0}^{1-\cos \alpha - \sin \alpha} (3k) \cdot (r_{\alpha} \times r_{\beta}) d\alpha d\beta.$$

Further, unit vector \hat{n}_2 on S_2 is given by $\hat{n}_2(\alpha, \beta) = -k$ and $d\sigma_2(x, y) = dxdy$. Thus,

$$\iint_{S_2} \operatorname{curl} F \cdot \hat{n}_2 d\sigma = \iint_R -3(x^2 + y^2) dx dy,$$

where *R* is the region $\{(x, y) : x^2 + y^2 \le 1 \text{ and } x + y \le 1\}.$

8. Let $\vec{F} = \frac{\vec{r}}{|\vec{r}|^3}$, where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and let S be any surface that surrounds the origin. Prove that $\iint_S \vec{F} \cdot \hat{n} d\sigma = 4\pi$.

Solution: Note that \vec{F} is not continuous at the origin O. Let S_{ρ} be the sphere of radius ρ centered at O so that S_{ρ} is in the interior of the domain D enclosed by S, as shown in Figure 5. A simple calculation show that div F = 0 on D.

By divergence theorem, we get

$$\iint\limits_{S} \vec{F} \cdot \hat{n} d\sigma - \iint\limits_{S_{\rho}} \vec{F} \cdot \hat{n} d\sigma = \iint\limits_{D} \operatorname{div} \vec{F} dV = 0.$$

The surface of S_{ρ} can be represented by $F(x,y,z) = x^2 + y^2 + z^2 - \rho^2$. Hence the unit vector on S_{ρ} is given by $\hat{n} = \frac{\nabla F}{\|\nabla F\|} = \frac{\vec{r}}{\rho}$. Note that the surface of S_{ρ} can be represented by

 $v(\theta, \phi) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$. Hence surface element on S_{ρ} will be given by $d\sigma(\theta, \phi) = ||v_{\theta} \times v_{\phi}|| d\theta d\phi = \rho^{2} \sin \phi d\theta d\phi$, where $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$, $0 \le \theta < 2\pi$ and $0 \le \phi < \pi$. Thuis,

$$\begin{split} \rho\cos\phi,\, 0 &\leq \theta < 2\pi \text{ and } 0 \leq \phi < \pi. \text{ Thuis,} \\ \iint\limits_{S} \vec{F} \cdot \hat{n} d\sigma &= \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi} \frac{\vec{r}}{|\vec{r}|^3} \cdot \frac{\vec{r}}{\rho} \, \rho^2 \sin\phi d\theta d\phi = 4\pi. \end{split}$$

9. Let D be the domain inside the cylinder $x^2 + y^2 = 1$ cut off by the planes z = 0 and z = x + 2. If $\vec{F} = (x^2 + ye^z, y^2 + ze^x, z + xe^y)$, use divergence theorem to evaluate $\iint\limits_{\partial D} F \cdot \hat{n} \ d\sigma.$

Solution: Please refer to Figure 6.

By divergence theorem, we get

$$\iint\limits_{\partial D} F \cdot \hat{n} \ d\sigma = \iint\limits_{D} \operatorname{div} \vec{F} dV = \iint\limits_{x^2 + y^2 \le 1} \left(\int_{z=0}^{x+2} (2x + 2y + 1) dz \right) dx dy.$$

Use polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$.