Topics in Computer Graphics Chap 4: The de Casteljau Algorithm spring, 2014

University of Seoul School of Computer Science Minho Kim

Table of contents

Parabolas

The de Casteljau Algorithm

Some Properties of Bézier Curves

Parabolas

The de Casteljau Algorithm

Some Properties of Bézier Curves

Parabolas via Linear Interpolation

Let $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2 \in \mathbb{E}^3$ and $t \in \mathbb{R}$. Construct

$$\mathbf{b}_0^1(t) = (1 - t)\mathbf{b}_0 + t\mathbf{b}_1$$

$$\mathbf{b}_1^1(t) = (1 - t)\mathbf{b}_1 + t\mathbf{b}_2$$

$$\mathbf{b}_0^2(t) = (1 - t)\mathbf{b}_0^1(t) + t\mathbf{b}_1^1(t)$$

which becomes

$$\mathbf{b}^2 := \mathbf{b}^2(t) = \mathbf{b}_0^2(t) = (1-t)^2 \mathbf{b}_0 + 2t(1-t)\mathbf{b}_1 + t^2 \mathbf{b}_2.$$
 $\mathbf{b}_0^2(t)$ traces out a *parabola* as t varies from $-\infty$ to ∞ .

- Constructed by repeated linear interpolation (Figure
- 4.1). $\mathbf{b}^2(0) = \mathbf{b}_0$ and $\mathbf{b}^2(1) = \mathbf{b}_2$.
- ► ratio($\mathbf{b}_0, \mathbf{b}_0^1, \mathbf{b}_1$) = ratio($\mathbf{b}_1, \mathbf{b}_1^1, \mathbf{b}_2$) = ratio($\mathbf{b}_0^1, \mathbf{b}_0^2, \mathbf{b}_1^1$) = t/(1-t)
- Affinely invariant (Why?)
 - ▶ Plane curve (Why?)
 - Three tangent theorem

Parabolas

The de Casteljau Algorithm

Some Properties of Bézier Curves

The de Casteljau Algorithm

 Generalization of parabola construction to a polynomial curve of arbitrary degree n

de Casteljau algorithm

Given: $\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{E}^3$ and $t \in \mathbb{R}$, set

$$\mathbf{b}_{i}^{r}(t) = (1-t)\mathbf{b}_{i}^{r-1}(t) + t\mathbf{b}_{i+1}^{r-1}(t), \quad \begin{cases} r = 1, \dots, n \\ i = 0, \dots, n-r \end{cases}$$

and $\mathbf{b}_i^0(t) = \mathbf{b}_i$. Then $\mathbf{b}_0^n(t)$ is the point with parameter value t on the *Bézier curve* \mathbf{b}^n , hence $\mathbf{b}^n(t) = \mathbf{b}_0^n(t)$.

► Figure 4.2

The de Casteljau Algorithm (cont'd)

- Used to evaluate the point $\mathbf{b}^n(t)$ on the curve.
- Bézier polygon or control polygon ${f P}$ of ${f b}^n$
- Bézier points or control points
- Alternative notations $\mathbf{b}^n(t) = \mathbf{B}[\mathbf{b}_0, \dots, \mathbf{b}_n; t] = \mathbf{B}[\mathbf{P}; t]$ or $\mathbf{b}^n = \mathbf{B}[\mathbf{b}_0, \dots \mathbf{b}_n] = \mathbf{B}\mathbf{P}$
- "The curve is the Bernstein-Bézier approximation to the control polygon."
- de Casteljau scheme (Example 4.1)

How many storage is required?

Parabolas

The de Casteljau Algorithm

Some Properties of Bézier Curves

Some Properties of Bézier Curves

Can be inferred by de Casteljau algorithm

- Affine invariance ← Sequence of linear interpolations
 cf) Not projectively invariant
- Invariance under affine parameter transformations

$$\mathbf{b}_{i}^{r}(u) = \frac{b-u}{b-a}\mathbf{b}_{i}^{r-1}(t) + \frac{u-a}{b-a}\mathbf{b}_{i+1}^{r-1}(t)$$

where t = (u - a)/(b - a)

- Convex hull property For $t \in [0,1]$, $\mathbf{b}^n(t)$ lies in the convex hull of the control polygon.

 Useful for interference checking (Why?)
- Endpoint interpolation

$$\mathbf{b}^n(0) = \mathbf{b}_0$$
 and $\mathbf{b}^n(1) = \mathbf{b}_n$

 Designing with Bézier curves "The Bézier curve mimics the Bézier polygon." (Figure 4.4)

Parabolas

The de Casteljau Algorithm

Some Properties of Bézier Curves

The Blossom

Use a new parameter t_r at rth step of the de Casteljau algorithm:

$$\begin{array}{lll} \mathbf{b}_0 \\ \mathbf{b}_1 & \mathbf{b}_0^1[t_1] \\ \mathbf{b}_2 & \mathbf{b}_1^1[t_1] & \mathbf{b}_0^2[t_1, t_2] \\ \mathbf{b}_3 & \mathbf{b}_2^1[t_1] & \mathbf{b}_1^2[t_1, t_2] & \mathbf{b}_0^3[t_1, t_2, t_3] \end{array}$$

- $\mathbf{b}[t_1, t_2, t_3] := \mathbf{b}_0^3[t_1, t_2, t_3]$ traces out a region in \mathbb{E}^3 . (Why?)
- $\mathbf{b}[t_1, t_2, t_3]$ is a blossom. (Check it)
- The original Bézier curve is recovered when $t=t_1=t_2=t_3$. (Diagonality)

The Blossom (cont'd)

- ▶ The original Bézier points can be found by evaluating $\mathbf{b}[t_1, t_2, t_3]$ at arguments consisting only of 0's and 1's. ex) $\mathbf{b}[0, 0, 1] = \mathbf{b}_1$
- Intermediate entries $\mathbf{b}_i^r(t)$ can be also found. ex) $\mathbf{b}[0,0,t] = \mathbf{b}_0^1(t)$

$$\begin{aligned} \mathbf{b}_0 &= \mathbf{b}[0,0,0] \\ \mathbf{b}_1 &= \mathbf{b}[0,0,1] \quad \mathbf{b}[0,0,t] \\ \mathbf{b}_2 &= \mathbf{b}[0,1,1] \quad \mathbf{b}[0,t,1] \quad \mathbf{b}[0,t,t] \\ \mathbf{b}_3 &= \mathbf{b}[1,1,1] \quad \mathbf{b}[t,1,1] \quad \mathbf{b}[t,t,1] \quad \mathbf{b}[t,t,t] \end{aligned}$$

de Casteljau Algorithm Using Blossom

$$\begin{aligned} \mathbf{b}[0^{< n-t-i>}, t^{< r>}, 1^{< i>}] = & (1-t)\mathbf{b}[0^{< n-t-i+1>}, t^{< r-1>}, 1^{< i>}] \\ & + t\mathbf{b}[0^{< n-r-i>}, t^{< r-1>}, 1^{< i+1>}] \end{aligned}$$

and

$$\mathbf{b}_i = \mathbf{b}[0^{< n-i>}, 1^{< i>}]$$

▶ The point on the curve is given by $\mathbf{b}[t^{< n>}]$.

Blossom of a Bézier curve over [a, b]

- After affine parameter transformations
- $\mathbf{b}_i = \mathbf{b}[a^{< n-i>}, b^{< i>}]$
- Figure 4.5

Explicit Formula for Blossom $\mathbf{b}[t_1, t_2, t_3]$

▶ In terms of b[0,0,0], b[0,0,1], b[0,1,1], and b[1,1,1].