osersa. Tookoo

FAMILY 1; see table

FAMILY 2: like family I with position 4 empty

FAMILY 3: like family 1 with positions 3 and 4 empty

FAMILY 4: like family I with positions 2, 3 and 4 empty

					a a a a
×	>	2	T	x y z t (a)	KI KY ZW IN DN
SO. Ar	CH.	HN-	-(CH ₂) ₁ - i=1 to 9	с	
**************************************	-02	φ	-(CH ₂) _m -Ar-(CH ₂) _n - -(CH ₂) _m -O-Ar-(CH ₂) _n -(CH ₂) _m -Ar-O-(CH ₂) _n -	- 6	NIIII N NIKIN
£			Ar outho, meta, para		OKAIO NONIACIN' NONIACIN
CO-NHR CO-NHA	·	-(CH ₂) _m -CH= Alkene E.Z -(CH ₂) _m -C=C	-(CH ₂) _m -CH=CH-(CH ₂) _n - Alkene E,Z -(CH ₂) _r -Ar-CH=CH-(CH ₂) _s - -(CH ₂) _m -CH-CH-Ar-(CH ₂) _s - -(CH ₂) _m -CH-CH-Ar-(CH ₂) _s -	1-(CH ₂),- r-(CH ₂),-	OPGO Princial Copgo Princial
09-0-180 -CO-0-8u		—(CH ₂)m—	,	CH-(CH ₂),- r-O-(CH ₂),-	Spessi Jensen Je
		epoxie —(CH2)mT H4	epoxide cis.trans	E	Proline and 4 Hydroxypmline can be used at Positions 0,2.3 (also at position 1 when X=CO)
ران آگ—* ا	CID)a-Nillecin	—(CH2)m7 O			PGO= -H, -COH, -CO-CH ₁ , -CO-Ar, CO-IBu
		•	m=1 to 6, n=1 to 6		$PG_{RUid} = -OH, -NH_2, -OCH_3, -NHCH_3, -O.1Bu, -O.Bn$
PGN= -HS	102-CH1S	02-CF3-CO	JH, -CO-CH3, -CO-Ar, -CO-NHR, -CC	-NHARCO	PGN=-H, -SO ₂ -CH ₃ ,-SO ₂ -CF ₃ ,-COH, -CO-CH ₃ , -CO-Ar, -CO-NHR, -CO-0-1Bu, -CO-0-Bn, -CO-O-R PGS=-H, -1Bu, -CO-CH ₃ , -CO-Ar, -COH

Ar. alkeness and CH2s in AA (Amino-Acid), PGN, PGO, PGacid and PGS can hear groups amongst: -O-CH3, -CH3, -NH2, -NH-CH3, -N(CH3)2, -CO-OH, -CO-CH3, -CO-NH2, OH, F, CI, Br, I.

FIGURE 1

PG
$$_{1}$$
 PG $_{2}$ PG $_{3}$ PG $_{4}$ P 1) Coupling

1) Coupling

1) Deprotection

1) PG $_{1}$ PG $_{2}$ PG $_{3}$ PG $_{4}$ P 2) PG $_{1}$ PP 10 PG $_{2}$ PG $_{3}$ PG $_{4}$ P 2) PG $_{1}$ PP 10 PG $_{2}$ PG $_{3}$ PG $_{4}$ PP 10 PG $_{4}$ PP 10 PG $_{4}$ PP 11 PP 12 P

 $\underline{A} = Sp$

FIGURE 2a

FIGURE 2b

$$(PG_2)R_2 \xrightarrow{NH} CH_2$$

$$(PG_1)R_1 \xrightarrow{N} CH_2$$

$$(PG_2)R_2 \xrightarrow{NH} CH_2$$

$$0 = S = 0$$

$$8 \qquad (PG_2)R_2 \xrightarrow{NH} CH_2$$

$$(PG_2)R_2 \xrightarrow{NH} CH_2$$

$$(PG_2)R_2 \xrightarrow{NH} CH_2$$

$$(PG_1)R_1 \xrightarrow{N} CH_2$$

$$(PG_2)R_2 \xrightarrow{NH} CH_2$$

$$(PG_1)R_1 \xrightarrow{N} CH_2$$

$$(PG_2)R_2 \xrightarrow{NH} CH_2$$

$$(PG_1)R_1 \xrightarrow{N} CH_2$$

$$(PG_2)R_2 \xrightarrow{NH} CH_2$$

$$(PG_1)R_1 \xrightarrow{N} CH_2$$

$$(PG_1)R_1 \xrightarrow{N} CH_2$$

$$(PG_2)R_2 \xrightarrow{NH} CH_2$$

$$(PG_1)R_1 \xrightarrow{N} CH_2$$

$$(PG_2)R_2 \xrightarrow{NH} CH_2$$

$$(PG_1)R_1 \xrightarrow{N} CH_2$$

$$(PG_2)R_2 \xrightarrow{N} CH_2$$

$$(PG_1)R_1 \xrightarrow{N} CH_2$$

$$(PG_1)R_2 \xrightarrow{N} C$$

FIGURE 3

FIGURE 4a

17

$$(PG_2)R_2$$
 $(PG_1)R_1$
 $(PG_1)R_1$
 $(PG_1)R_1$
 $(PG_1)R_1$
 $(PG_1)R_1$
 $(PG_2)R_2$
 $(PG_1)R_1$
 $(PG_$

FIGURE 4b