Class	:	
Batch	:	
Roll. No	:	
ABC ID	:	
Assignment No.	:	B.1.a
Assignment Name	:	CMOS INVERTER & Dynamic Power Dissipation Analyses
Date Of Performance	:	

Truth Table:-Vout Vin Strong-1 (1.2 V) 0 Strong-0 (0 V) 1

Layout for 90 nm Foundry : ($V_{dd} = 1.2 V$) Vdd+ CMOS 90nm, 6 Metal Copper - strained SiGe - LowK (1.20V,2.50V)

Waveforms:

1) C_L =0.001pF , f_{clk} =5 GHz

2) C_L =0.002pF , f_{clk} =5 GHz

4) C_L=0.001pF , f_{clk}=10 GHz

DYNAMIC POWER DISSIPATION ANALYSES

(I) Effect of change in C_L :

SR.NO.	C _L (pF)	P _{dyn} (μW)
1)	0.001	
2)	0.002	
3)	0.0005	

(II) Effect of change in f_{clk} :

SR.NO.	f _{clk} (GHz)	P _{dyn} (μW)
1)	5	
2)	2.5	
3)	10	

Layout for 180nm foundry : ($V_{dd} = 2 V$) Vdd+ Vdd+ ∵Vin vout 0.001pF

Set CLOCK parameters as :

Time low = Time High = 0.090 nS

Rise Time = Fall Time = 0.01 nS

Waveforms:-

C_L =0.001pF , f_{clk} = 5 GHz , V_{dd} = 2 V (180 nm Foundry)

DYNAMIC POWER DISSIPATION ANALYSES

V _{dd} (V)	P _{dyn} (μW)
1.2 (90 nm)	
2 (180 nm)	

Conclusions:-

- 1) Drawn the LAYOUT for CMOS Inverter using 90 nm & 180 nm Foundry.
- 2) Simulated LAYOUT to observe w/f's & verified functionality.
- 3) Being a **Pure-CMOS System** (PMOS // NMOS & CMOS INVERTER) , it gives both **S-1** & **S-0** as O/P.
- 4) Appreciated the validity of the mathematical model

$$P_{dynamic} = C_L * (Vdd)^2 * f_{clk}$$

- 5) Found a reduction in P_{dynamic} by using a better Foundry i.e., 90 nm instead of 180 nm
- 6) Learnt that the presence of spikes in O / P waveform at Switching instants indicate the inability of the MOSFETs to switch at GHz frequencies.