Introduction

- Statistical models find the most accurate parameters that fits the data and the belief based on domain knowledge
- E.g. For Bernoulli, we find λ . For Normal Distribution, we find mean μ and covariance matrix \sum . For any distribution, we find θ . All the process which finds the fittest parameter is called *parameter estimation*
- There are 2 ways to determine θ
 - o First way is based on dataset, it's called *Maximum Likelihood Estimation* (MLE)
 - O Second way is not only based on dataset but the belief the men who has the domain knowledge propose, it's called *Maximum a Posteriori Estimation* (MAP Estimation)

Maximum Likelihood Estimation

Idea

- Assume by somehow, we know n points follow the distribution with parameter of θ
- MLE will find the best $\boldsymbol{\theta}$ such that $\theta = \max_{\theta} p(\mathbf{x}_1, ..., \mathbf{x}_N \mid \theta)$, it means we find the distribution to fit the dataset in the best way
- For details, Likelihood means how your model fit the dataset *Independence Assumption and Log-likelihood*
- Another issue arises when we try to find out θ based on $\max_{\theta} p(x_1,...,x_N \mid \theta)$ because it's almost impossible to find the distribution which describes the joint probability of the whole dataset
- We can solve this issue by assuming the independence among the points of dataset: $p(\mathbf{x}_1,...,\mathbf{x}_N \mid \theta) \approx \prod_{n=1}^N p(\mathbf{x}_n \mid \theta)$, so the MLE become: find out $\mathbf{\theta}$ such that $\theta = \max_{\theta} \prod_{n=1}^N p(\mathbf{x}_n \mid \theta)$
- But, here we will meet another problem here when we try to maximize $\prod_{n=1}^{N} p(\mathbf{x}_n \mid \theta)$, because it easily $\to 0$ so to solve it, you need to maximize $\log: \theta = \max_{\theta} \sum_{n=1}^{N} \log(p(\mathbf{x}_n \mid \theta))$
- Logarithm Property: Because log is the *monotonic increasing*, $\max_{x} f(x) = \max_{x} \log f(x)$
- E.g. We flip the coins N times and get n times get head. Find the probability of flipping head
 - o Intuitively, this probability: $\lambda = \frac{n}{N}$, but now we use MLE to check this probability
 - O Put $x_1, x_2, ..., x_N$ is the output of head (1) or tail (0) and we have n heads and m = N n tails: $\begin{cases} \sum_{i=1}^{N} x_i = n \\ N \sum_{i=1}^{N} x_i = N n = m \\ p(x_i \mid \lambda) = \lambda^{x_i} (1 \lambda)^{1 x_i} \end{cases}$

Based on MLE,

$$\lambda = \arg\max_{\lambda} \left[p(x_1, x_2, \dots x_N \mid \lambda) \right] = \arg\max_{\lambda} \left[\prod_{i=1}^{N} p(x_i \mid \lambda) \right]$$

$$= \arg\max_{\lambda} \left[\prod_{i=1}^{N} \lambda^{x_i} (1 - \lambda)^{1 - x_i} \right] = \arg\max_{\lambda} \left[\lambda^{\sum_{i=1}^{N} x_i} (1 - \lambda)^{N - \sum_{i=1}^{N} x_i} \right]$$

$$= \arg\max_{\lambda} \left[\lambda^{n} (1 - \lambda)^{m} \right] = \arg\max_{\lambda} \left[n \log \lambda + m \log (1 - \lambda) \right] = \arg\max_{\lambda} f(\lambda)$$

Now, we can take derivative of
$$f(\lambda)$$
 to maximize it, $f'(\lambda) = \frac{n}{\lambda} - \frac{m}{1 - \lambda} = 0 \Leftrightarrow \frac{n}{\lambda} = \frac{m}{1 - \lambda} \Leftrightarrow \lambda = \frac{n}{n + m} = \frac{n}{N}$

- E.g. We roll the 6-face dice, probability of each face is same. Assume you roll N times, number of times we get first, second, ... face is n_1, n_2, \dots, n_6 and $\sum n_i = N$. Calculate probability of each face. Assume $n_i > 0$
 - Intuitively, this probability: $\lambda = \frac{n_j}{N}$, now use MLE to check this probability
 - Represent each output of dice as the 6-value vector $\mathbf{x}_i \in \{0,1\}^6$ in which 1 respects the value of face you roll, the others are

$$0, \text{ so } p(\mathbf{x}_i \mid \lambda) = \prod_{j=1}^6 \lambda_j^{x_i^j} \text{ in which } \lambda_j \text{ is the probability of face j, } x_i^j : j \text{ is the value number } j \text{ in vector } x_i, \text{ and put}$$

$$n_j = \sum_{i=1}^N x_i^j, \forall j = 1, 2, \dots, 6$$

Based on MLE,

$$\lambda = \arg \max_{\lambda} \left[\prod_{i=1}^{N} p(\mathbf{x}_{i} | \lambda) \right] = \arg \max_{\lambda} \left[\prod_{i=1}^{N} \prod_{j=1}^{6} \lambda_{j}^{x_{i}^{j}} \right]$$

$$= \arg \max_{\lambda} \left[\prod_{j=1}^{6} \lambda_{j}^{\sum_{i=1}^{N} x_{i}^{j}} \right] = \arg \max_{\lambda} \left[\prod_{j=1}^{6} \lambda_{j}^{n_{j}} \right]$$

$$= \arg \max_{\lambda} \left[\sum_{j=1}^{6} n_{j} \log(\lambda_{j}) \right] \qquad with \sum_{j=1}^{6} \lambda_{j} = 1$$

Apply Lagrange, we have: $L(\lambda, \mu) = \sum_{j=1}^{6} n_j \log(\lambda_j) + \mu \left(1 - \sum_{j=1}^{6} \lambda_j\right)$

To find the solution of Lagrange, we just
$$\begin{cases} \frac{\partial L(\lambda, \mu)}{\partial \lambda_j} = 0 \\ \frac{\partial L(\lambda, \mu)}{\partial \mu} = 0 \end{cases}$$

- E.g. Assume we need to measure the somebody's height. It's hard to find the exact height in once time. Therefore, we measure many times and find the **expectation** of the data with the assumption which is data is based on Normal Distribution and independent
 - In some cases, expectation of the data, which we need to find out, may not be expectation of the distribution. So here, we need to prove that expectation of the data = expectation of the distribution
 - Assume the height we got is $x_1, x_2, ..., x_N$. So here we find the distribution with μ and σ^2 such that $x_1, x_2, ..., x_N$ is the most 0

likely. We know
$$p(x_i \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

Based on MLE,

$$\mu, \sigma = \underset{\mu, \sigma}{\operatorname{arg max}} \left[\frac{1}{\left(2\pi\sigma^{2}\right)^{\frac{N}{2}}} \exp\left(-\frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{2\sigma^{2}}\right) \right]$$

$$= \underset{\mu, \sigma}{\operatorname{arg max}} \left[\frac{1}{\left(2\pi\sigma^{2}\right)^{\frac{N}{2}}} \exp\left(-\frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{2\sigma^{2}}\right) \right]$$

$$= \underset{\mu, \sigma}{\operatorname{arg max}} \left[-N \log(\sigma) - \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{2\sigma^{2}} \triangleq J(\mu, \sigma) \right]$$

- \circ 2 π is ignored because it does not impact on result
- o Now, we can take partial derivative of $J(\mu, \sigma)$ to maximize it

$$\begin{cases} \frac{\partial J}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = 0 \\ \frac{\partial J}{\partial \sigma} = -\frac{N}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{N} (x_i - \mu)^2 = 0 \end{cases} \Rightarrow \begin{cases} \mu = \frac{1}{N} \sum_{i=1}^{N} x_i \\ \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \end{cases}$$

Maximum a Posterior

Idea

- Assume we flip the coin 5000 times, we got 1000 heads, so probability $_{\text{head}} = 0.2$ and this probability may be reliable because of large data point (5000). On the contrary, assume we flip the coin 5 times, we just got 1 head, so probability $_{\text{head}} = 0.2$, but because the small data points (5) low training, this probability may be unreliable (or overfitting)
- Therefore, when we got low-training problem, we need to consider the belief (assumption of parameter), in above case, we believe that probability_{head} ≈ 0.5
- Maximum a Posterior (MAP) can solve such problem. MAP introduces the constraint for parameter θ , the prior.
- Instead of finding out $\theta = \underset{\theta}{\operatorname{arg\,max}} p\left(\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{N} \mid \theta\right)$, we find out $\theta = \underset{\theta}{\operatorname{arg\,max}} p\left(\theta \mid \mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{N}\right)$
- $p(\theta | \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$ is called *posterior probability*
- However, $p(\theta | \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$, this probability is hard to find out because it's more common sense to find out $p(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N | \theta)$ which constructs the distribution when given parameter θ and after that, compare the distribution of $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$ we construct from θ and distribution of real data. To solve it, apply Bayes Theorem

$$\theta = \arg\max_{\theta} p(\theta | \mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{N}) = \arg\max_{\theta} \left[\frac{p(\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{N} | \theta) p(\theta)}{p(\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{N})} \right]$$

$$= \arg\max_{\theta} \left[p(\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{N} | \theta) p(\theta) \right]$$

$$= \arg\max_{\theta} \left[\prod_{i=1}^{N} p(\mathbf{x}_{i} | \theta) p(\theta) \right]$$

- Posterior is directly proportional to the multiplication of likelihood and prior
- Prior is hyper-parameter, so How to determine Prior, Conjugate Prior may solve it

Conjugate Error

- If posterior $p(\theta | \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$ is in the same family with prior $p(\theta)$, prior and posterior are conjugate distributions
- $p(\theta)$ is called *conjugate prior* of likelihood $p(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N | \theta)$, so MAP and MLE have the same distribution
- Some couples of *conjugate distributions*:
 - If likelihood function is Gaussian, prior needs to be Gaussian, so the posterior is also Gaussian. We call it Gaussian
 Conjugate or self-conjugate
 - If likelihood function is Gaussian, its prior (for variance) is Gamma Distribution, posterior is Gaussian.
 Note: The variance may be used to measure the accuracy of model, the less variance is, the more accuracy the model is
 - Beta is conjugate of Bernoulli Distribution
 - o Dirichlet is conjugate of Categorical Distribution

Hyper-parameter

- Given the Bernoulli pdf: $p(x|\lambda) = \lambda^x (1-\lambda)^{1-x}$ and its conjugate, Beta pdf: $p(\lambda) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \lambda^{\alpha-1} (1-\lambda)^{\beta-1}$
- If we ignore the constant parameter $\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$ which purpose is to make sure integration of Beta pdf is 1, we can easily realize that Beta distribution is in same family with Bernoulli distribution, so $p(\lambda \mid x) \propto p(x \mid \lambda) p(\lambda) \propto \lambda^{x+\alpha-1} (1-\lambda)^{1-x+\beta-1}$ is also in Bernoulli Distribution
- E.g. Back to flipping coin problem, we flip the coin N times, we got n heads and m = N n tails. If applying the MLE, $\lambda = \frac{n}{N}$. How about MAP in which prior is Beta[α , β]?
 - Based on MAP,

$$\lambda = \arg \max_{\lambda} \left[p(x_1, \dots, x_N \mid \lambda) p(\lambda) \right]$$

$$= \arg \max_{\lambda} \left[\left(\prod_{i=1}^{N} \lambda^{x_i} (1 - \lambda)^{1 - x_i} \right) \lambda^{\alpha - 1} (1 - \lambda)^{\beta - 1} \right]$$

$$= \arg \max_{\lambda} \left[\lambda^{\alpha - 1 + \sum_{i=1}^{N} x_i} (1 - \lambda)^{\beta - 1 + N - \sum_{i=1}^{N} x_i} \right]$$

$$= \arg \max_{\lambda} \left[\lambda^{n + \alpha - 1} (1 - \lambda)^{m + \beta - 1} \triangleq f(\lambda) \right]$$

- We maximize $f(\lambda)$ like the way in MLE, so $\lambda = \frac{n + \alpha 1}{N + \alpha + \beta 2}$, because Posterior and Likelihood is in the same family, we can easily maximize MAP
- O Remaining issue: How to choose hyper-parameter α and β

Hình 4.1: Đồ thi hàm mật độ xác suất của phân phối Beta khi $\alpha = \beta$ và nhận các giá trị khác nhau. Khi cả hai giá trị này lớn, xác suất để λ gần 0.5 sẽ cao hơn.

- When $\alpha = \beta > 1$, Beta pdf is symmetric at x = 0.5 and get maximum at x = 0.5, so λ is more likely ≈ 0.5
- When $\alpha = \beta = 1$, We got uniform distribution, at this time, probability of every λ is the same. Therefore, when we apply MAP in this case, $\lambda = \frac{n}{N}$ \rightarrow Conclusion: MLE is the special case of MAP when Prior is uniform distribution
- If we choose $\alpha = \beta = 2$, we got $\lambda = \frac{n+1}{N+2}$. e.g. choosing N = 5, n = 1, MAP got $\lambda = \frac{2}{7}$ more ≈ 0.5 than $\frac{1}{5}$ MLE results
- If we choose $\alpha = \beta = 10$, we got $\lambda = \frac{n+9}{N+10}$. e.g. choosing N = 5, n = 1, MAP got $\lambda = \frac{10}{23}$ \rightarrow Conclusion:

$$\alpha = \beta \to \infty, \lambda \to \frac{1}{2}$$

MAP helps to avoid overfitting

- The analogy in MAP and Regularization
 - o MAP

$$\theta = \arg\max_{\theta} p(X | \theta) p(\theta)$$

$$\theta = \underset{\theta}{\operatorname{arg\,max}} \ p(X \mid \theta) p(\theta)$$

$$= \underset{\theta}{\operatorname{arg\,max}} \left[\underset{\text{Likelihood}}{\operatorname{log}} \underbrace{p(X \mid \theta)} + \underset{\text{Prior}}{\operatorname{log}} p(\theta) \triangleq f(\theta) \right]$$

 $f(\theta)$ is very identical with $L(\theta) + \lambda R(\theta)$ in the regularization. So we can say MAP is the method to avoid overfitting in statistical learning, especially when low-training