Institut für Mathematik Sommersemester 2019

Prof. Dr. Peter Friz Dr. Michele Coghi Yizheng Yuan

1. Übungsblatt "Maß- und Integrationstheorie"

zur Präsentation in der Übung am 29.04.

Wir erinnern uns an den Transformationssatz für Integrale: Seien $U\subseteq \mathbb{R}^d$ eine offene Menge und $\varphi:U\to \varphi(U)$ eine injektive, stetig differenzierbare Funktion. Für $f\in C^0_c(\varphi(U))$ gilt dann

$$\int_{\varphi(U)} f(y) \, dy = \int_{U} f(\varphi(x)) \, |\det(D\varphi(x))| \, dx,$$

wobei $D\varphi(x)$ die Jacobi-Matrix von φ bezeichnet. (Später werden wir auch allgemeinere Funktionen integrieren können.)

Aufgabe 1. (Riemannsches Volumenmaß)

Sei $M\subseteq\mathbb{R}^m$ eine d-dimensionale Untermannigfaltigkeit des \mathbb{R}^m und φ ein Diffeomorphismus zwischen offenen Mengen $U\subseteq\mathbb{R}^d$ und $V\subseteq M$. (Wir nennen φ Karte, auch wenn diese Bezeichung üblicherweise für $\varphi^{-1}:V\to U$ verwendet wird.) Wir definieren

$$g(x) := D\varphi(x)^T D\varphi(x), \ x \in U \subseteq \mathbb{R}^d,$$

und dann, für $f \in C_c^0(V)$,

$$I(f) = \int_{U} f(\varphi(x)) \sqrt{\det g(x)} \, dx.$$

Sei $\tilde{U}\subseteq\mathbb{R}^d$ und $\tilde{\varphi}:\tilde{U}\to V$ eine weitere Karte und $\tau=\varphi^{-1}\circ\tilde{\varphi}$ der zugehörige Koordinatenwechsel. Zeigen Sie, dass

$$\det \tilde{g}(y) = |\det(D\tau(y))|^2 \det g(\tau(y))$$

gilt. Folgern Sie, dass die Definition von I(f) nicht von der Wahl der Karte abhängt. (Wenn man f durch die Indikatorfunktion geeigneter Mengen ersetzt, definiert dies das Riemannsche Volumenmaß μ und es gilt $I(f) = \int f d\mu$.)

Aufgabe 2. (Partielle Integration)

Sei $U\subseteq\mathbb{R}^n$ eine offene Menge und $f\in C^0(U)$. Zeigen Sie, dass $u\in C^2(U)$ genau dann $\Delta u=f$ erfüllt, wenn

$$\int_{U} u\Delta\varphi = \int_{U} f\varphi$$

für alle $\varphi \in C_c^{\infty}(U)$ gilt.

Aufgabe 3. (Dirichlet-Energie)

Wir sagen $f \in C_0^1[0,1]$, wenn ein $f' \in C^0[0,1]$ existiert, sodass $f(x) = \int_0^x f'(y) dy$. Für $f \in C_0^1[0,1]$ definieren wir

$$||f||_{\nabla} = \left(\int_0^1 (f'(x))^2 dx\right)^{1/2}.$$

- 1. Zeigen Sie, dass $||f||_{\nabla}^2 = \sup \sum_i \frac{(f(x_{i+1}) f(x_i))^2}{x_{i+1} x_i}$, wobei das Supremum über alle Partitionen $0 = x_0 < x_1 < \dots < x_m = 1$ gebildet wird.
- 2. Zeigen Sie, dass $(C_0^1[0,1], \|\cdot\|_{\nabla})$ nicht vollständig ist.
- 3. Finden Sie ein $f \in C^0[0,1] \cap C^1[0,1]$ mit $||f||_{\nabla} = \infty$ (wobei $||f||_{\nabla}$ für solche f analog definiert wird).

Aufgabe 4. \checkmark

Sei (Ω, \mathcal{A}) ein Messraum und $\mu : \mathcal{A} \to [0, \infty[$ mit folgenden Eigenschaften:

- $\mu(\Omega) < \infty$.
- $\mu(A_1 \cup ... \cup A_m) = \mu(A_1) + ... + \mu(A_m)$, falls $A_1, ..., A_m \in \mathcal{A}$ disjunkt sind.
- $\mu(A_n) \to 0$ für jede Folge von $A_n \in \mathcal{A}$ mit $A_{n+1} \subseteq A_n$ und $\bigcap_n A_n = \emptyset$.

Zeigen Sie, dass μ ein Maß ist.

Aufgabe 5. (Vervollständigung von Maßen)

Es sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum. Man nennt ein $N \in \mathcal{F}$ eine μ -Nullmenge, falls $\mu(N) = 0$ gilt. Weiterhin heißt $(\Omega, \mathcal{F}, \mu)$ vollständig, wenn jede Teilmenge einer μ -Nullmenge wiederum eine μ -Nullmenge ist, d.h. insbesondere in \mathcal{F} enthalten ist.

Es sei $\mathcal{N} := \{ A \subseteq \Omega \mid \text{Es existiert } N \in \mathcal{F} \text{ mit } A \subseteq N \text{ und } \mu(N) = 0 \}.$

- 1. Zeigen Sie, dass $\mathcal{F}^{\mu} := \{ F \cup A \mid F \in \mathcal{F}, A \in \mathcal{N} \}$ eine σ -Algebra ist. \checkmark
- 2. Es sei $\bar{\mu}(F \cup A) := \mu(F)$ für $F \cup A \in \mathcal{F}^{\mu}$. Zeigen Sie, dass $\bar{\mu}$ wohldefiniert und ein vollständiges Maß auf $(\Omega, \mathcal{F}^{\mu})$ ist.
- 3. Zeigen Sie, dass $\bar{\mu}$ die minimale Vervollständigung von μ in folgendem Sinne ist: Jedes vollständige Maß ν , das eine Fortsetzung von μ ist, ist auch eine Fortsetzung von $\bar{\mu}$.
- 4. Finden Sie einen Messraum (Ω, \mathcal{F}) und zwei Maße μ, ν , sodass $\mathcal{F}^{\mu} \neq \mathcal{F}^{\nu}$.

Aufgabe 6.

Man betrachte das Mengensystem $\mathcal{E} := \{B \subset \mathbb{R} \mid B \text{ endlich}\}$ sowie die Abbildung $\mu : \mathcal{E} \to [0, \infty] \text{ mit } \mu(B) = 0 \text{ für alle } B \in \mathcal{E}.$

- 1. Zeigen Sie, dass \mathcal{E} ein Ring ist und bestimmen Sie $\sigma(\mathcal{E})$.
- 2. Zeigen Sie weiterhin, dass es unendlich viele Fortsetzungen von μ zu einem Maß auf $\sigma(\mathcal{E})$ gibt. Vergleichen Sie dies mit den Ergebnissen aus der Vorlesung.

Aufgabe 7. (Limes Superior und Limes Inferior von Mengen)

Es sei Ω eine nicht-leere Menge und $(A_n)_{n\in\mathbb{N}}$ eine Mengenfolge mit $A_n\subseteq\Omega$. Wir definieren

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \quad \text{ und } \quad \liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Zeigen Sie:

- 1. $\limsup_n A_n = \{ \omega \in \Omega \mid \omega \text{ ist in unendlich vielen } A_n \text{ enthalten} \},$ $\liminf_n A_n = \{ \omega \in \Omega \mid \omega \text{ ist in allen bis auf endlich vielen } A_n \text{ enthalten} \}.$
- 2. $(\limsup_n A_n)^c = \liminf_n A_n^c$ sowie $(\liminf_n A_n)^c = \limsup_n A_n^c$.
- 3. $\liminf_n A_n \subseteq \limsup_n A_n$.

Aufgabe 8. (Limsup und liminf reloaded)

Sei $(\Omega, \mathcal{A}, \mu)$ ein endlicher Maßraum und (A_n) eine Folge von Mengen in \mathcal{A} .

1. Zeigen Sie, dass

$$\mu(\liminf_{n} A_n) \le \liminf_{n} \mu(A_n) \le \limsup_{n} \mu(A_n) \le \mu(\limsup_{n} A_n).$$

- 2. Finden Sie ein Beispiel, wo $\mu(\liminf A_n) < \liminf_n \mu(A_n)$ ist.
- 3. Es gelte $\sum_n \mu(A_n) < \infty$. Zeigen Sie, dass dann $\mu(\limsup_n A_n) = 0$.
- 4. Welche der obigen Aussagen gelten auch für unendliche Maße?