AD-A090 119

ARMY MISSILE COMMAND REDSTONE ARSENAL AL GUIDANCE A-ETC F/6 17/1
DIGITAL SIMULATION FOR DESIGN OF A DISTURBANCE ABSORBING CONTRO-ETC(U)
MAY 80 % L MCCOMAN & HOOKER
DRSNI/RG-80-25-TR

CRIF-AD-FGSD P20

MI

END
DATE
H-80
DATE
H-80
DATE

TECHNICAL REPORT RG-80-25

DIGITAL SIMULATION FOR DESIGN OF A DIST'JRBANCE ABSORBING CONTROLLER FOR A FOURTH-ORDER PLANT WITH SECOND-ORDER DISTURBANCE AT INPUT

Wayne L. McCowan William Hooker Guidance and Control Directorate **US Army Missile Laboratory**

ELECTE OCT 1 0 1980 В

12 May 1980

U.S. ARMY MISSILE COMMAND

Redstone Arsenal, Alabama 35809

Approved for public release; distribution unlimited.

ORM 1021, 1 JUL 79 PREVIOUS EDITION IS OBSOLETE

80 9 22 147

The second second second

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not Return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

TRADE NAMES

Use of trade names or manufacturers in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TR-RG-80-25	AD-A090	449
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Digital Simulation for Design of a	Disturbance	
Absorbing Controller for a Fourth-O	rder Plant	Technical Report
with Second-Order Disturbance at In	put	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(#)
Wayne L. McCowan and William Hooker	•	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	_	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Commander		
•	MI-RG	
Redstone Arsenal, AL 35809		
11. CONTROLLING OFFICE NAME AND ADDRESS Commander, US Army Missile Command	1	12. REPORT DATE
ATTN: DRSMI-RPT		12 MAY 1980
Redstone Arsenal, AL 35809		13. NUMBER OF PAGES 77
14. MONITORING AGENCY NAME & ADDRESS(II differen	f from Controlling Office)	18. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING
IS. DISTRIBUTION STATEMENT (of this Report)		L
Approved for Public Release, Distri	parion uniimited	
17. DISTRIBUTION STATEMENT (of the ebetract entered	in Block 20, if different fro	m Report)
18. SUPPLEMENTARY NOTES		
		}
19. KEY WORDS (Continue on reverse elde II necessary an	id identify by block number)	1
Disturbance-Accommodating Control Disturbance-Absorber Controller Simulation		
26. ABSTRACT (Caudhain on reverse side If necessary an	d ideatify by block number)	
A simulation is presented which observer pole placement data to gene component, u, which will cancel the entering the system at the plant in	utilizes user-in erate a disturban e effects of a di	nce-absorbing control

DD , 7080 1473 EDITION OF 1 NOV 48 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PASE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)	
	1
	1
	1
	1
	1
	•
	ł
	ł
f .	ſ
	1
	ł
	}
	j
	1
	Ì
	Ĭ
	1
	1
	l
	1
	1
]

A STATE OF THE STA

CONTENTS

		Page
ı.	Introduction	2
II.	Plant Model	3
III.	Disturbance Model	7
IV.	Disturbance Absorber Control	7
v.	State Reconstructor Design	7
VI.	Digital Simulation	12
REFERI	ences	20
APPENI	DIX A - DIGITAL SIMULATION LISTING	21
APPENI	DIX B - SAMPLE RUNS	46

ssion For	
GRA&I	M
TAB	ñ
n o unce d	П
fication_	
ibution/	
lability (Codes
Avail and	101
Special	f
ĺ	1
	j
1	
	GRA&I TAB nounced fication ibution/ lability (Avail and

I. INTRODUCTION

The Disturbance Accommodating Controller (DAC) design method was developed by Dr. C. D. Johnson (References 1-5) of the University of Alabama in Huntsville. This method uses a combination of waveform-mode disturbance modeling and state-variable control techniques and permits three primary modes of disturbance accommodation: (1) cancellation (absorption) of disturbance effects, (2) minimization of disturbance effects and, (3) utilization of disturbance effects as an aid in accomplishing the primary control task. This report, and the digital simulation presented herein, will deal with the methods associated with the first mode, i.e., absorption.

The plant considered is one which can be described by state equations of the Form

$$\dot{\mathbf{x}} = \underline{\mathbf{A}} \, \underline{\mathbf{x}} + \underline{\mathbf{B}} \, \underline{\mathbf{u}} + \underline{\mathbf{F}} \, \underline{\mathbf{w}}
\mathbf{y} = \underline{\mathbf{C}} \, \underline{\mathbf{x}} + \underline{\mathbf{E}} \, \underline{\mathbf{u}} + \underline{\mathbf{G}} \, \underline{\mathbf{w}}$$
(1)

where

x is the plant state vector

u is the plant control input vector

 $\underline{\underline{\mathbf{w}}}$ is the vector of external disturbances acting on the plant

y is the system output vector, and

 \underline{A} , \underline{B} , \underline{F} , \underline{C} , \underline{E} , \underline{G} are appropriate size, known matrices which are not necessarily constant.

The disturbances considered are assumed to be described by the following general set of linear disturbance state equations:

$$\underline{\mathbf{w}} = \underline{\mathbf{H}} \underline{\mathbf{z}} + \underline{\mathbf{L}} \underline{\mathbf{x}}$$

$$\underline{\mathbf{\dot{z}}} = \underline{\mathbf{D}} \underline{\mathbf{z}} + \underline{\mathbf{M}} \underline{\mathbf{x}} + \underline{\mathbf{\sigma}}$$
(2)

where

z is the disturbance "state" vector

o is a sequence of randomly arriving vector impulses, and

A LANGE SELECTION OF THE PARTY OF THE PARTY

D, H, L, M, are known, time-invarient matrices.

Since neither a complete set of plant state variables nor the various components of the disturbance are available for direct on-line measurement in most practical applications, the DAC is restricted to operate only on information in the available on-line measurements of the system outputs and

commands and on any disturbance components which may actually be available for direct measurement. Since the plant and disturbance states $(\underline{x}, \underline{z})$ are required for a practical DAC implementation, the necessary data, if not available, must be generated via use of state reconstructors (observers) operating on real-time system outputs \underline{y} and control inputs \underline{u} .

A full-dimensional observer which can be used to generate the plant and disturbance state estimates (\hat{x}, \hat{z}) for the equations of the form (1) and (2) is given in Reference 2 as

$$\begin{pmatrix} \frac{\dot{\hat{x}}}{\hat{z}} \end{pmatrix} = \begin{bmatrix} \frac{\underline{A} + \underline{F} \ \underline{L} + \underline{K}_{1} \ \underline{C} + \underline{G} \ \underline{L}) & [\underline{F} + \underline{K}_{1} \ \underline{G}] & \underline{H} \\ \underline{\hat{z}} \end{pmatrix} \begin{pmatrix} \frac{\hat{x}}{\underline{z}} \end{pmatrix}$$

$$-\begin{bmatrix} \underline{K}_1 \\ \underline{K}_2 \end{bmatrix} \underline{y}(t) + \begin{bmatrix} \underline{B} + \underline{K}_1 \underline{E} \\ \underline{K}_2 \underline{E} \end{bmatrix} \underline{u}(t)$$
 (3)

where

 \underline{K}_1 , \underline{K}_2 are gain matrices to be designed, and

 \underline{A} , \underline{F} , \underline{L} , \underline{C} , \underline{G} , \underline{H} , \underline{D} , \underline{M} are as previously defined.

For acceptable observer performance, the real-time estimation errors

$$\underline{\varepsilon}_{\mathbf{x}} = \underline{\mathbf{x}} - \hat{\underline{\mathbf{x}}}$$

$$\underline{\varepsilon}_{\mathbf{z}} = \underline{\mathbf{z}} - \hat{\underline{\mathbf{z}}}$$
(4)

must settle to zero rapidly in comparison to system settling times where $\underline{\varepsilon}_{\underline{z}}$ and $\underline{\varepsilon}_{\underline{z}}$ dynamics are governed by

$$\begin{pmatrix} \vdots \\ \vdots \\ \underline{\kappa} \end{pmatrix} = \begin{bmatrix} \underline{\underline{A}} + \underline{F} \underline{L} + \underline{K}_{1} & (\underline{C} + \underline{G} \underline{L}) & [\underline{F} + \underline{K}_{1} \underline{G}] & \underline{\underline{H}} \\ \underline{\underline{M}} + \underline{K}_{2} & (\underline{C} + \underline{G} \underline{L}) & \underline{\underline{D}} + \underline{K}_{2} \underline{G} \underline{\underline{H}} \end{bmatrix} \begin{pmatrix} \underline{\varepsilon}_{x} \\ \underline{\varepsilon}_{z} \end{pmatrix} + \begin{pmatrix} \underline{\underline{O}} \\ \underline{\sigma(t)} \end{pmatrix} . \tag{5}$$

II. PLANT MODEL

This simulation will model a fourth-order plant expressed in the form shown in Figure 1.

Figure 1. Plant model.

The transfer function across the plant is

$$\frac{y(s)}{u_1(s)} = \frac{K \left[s^4 + b_1 s^3 + b_2 s^2 + b_3 s + b_4\right]}{s^4 + b_5 s^3 + b_6 s^2 + b_7 s + b_8}$$

and this can be diagrammed as shown in Figure 2. As can be seen from Figure 2,

$$\dot{x}_{1} = x_{2} + Kb_{1}u_{1} - b_{5}y$$

$$\dot{x}_{2} = x_{3} + Kb_{2}u_{1} - b_{6}y$$

$$\dot{x}_{3} = x_{4} + Kb_{3}u_{1} - b_{7}y$$

$$\dot{x}_{4} = Kb_{4}u_{1} - b_{8}y$$

$$y = x_{1} + Ku_{1}$$
(6)

For purposes of DAC design, equations (6) need to be expressed as functions of \underline{x} , \underline{u} , and \underline{w} . Therefore, since

$$u_{1} = u + w, \text{ then}$$

$$y = x_{1} + K(u + w)$$

$$\dot{x}_{1} = -b_{5}x_{1} + x_{2} + K(u + w) (b_{1} - b_{5})$$

$$\dot{x}_{2} = -b_{6}x_{1} + x_{3} + K(u + w) (b_{2} - b_{6})$$

$$\dot{x}_{3} = -b_{7}x_{1} + x_{4} + K(u + w) (b_{3} - b_{7})$$

$$\dot{x}_{4} = -b_{8}x_{1} + K(u + w) (b_{4} - b_{8})$$
(7)

In matrix form, Equations (7) can be written as

$$\begin{pmatrix}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{pmatrix} = \begin{bmatrix}
-b_{5} & 1 & 0 & 0 \\
-b_{6} & 0 & 1 & 0 \\
-b_{7} & 0 & 0 & 1 \\
-b_{8} & 0 & 0 & 0
\end{bmatrix}
\begin{pmatrix}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{pmatrix} + K \begin{bmatrix}
b_{1} - b_{5} \\
b_{2} - b_{6} \\
b_{3} - b_{7} \\
b_{4} - b_{8}
\end{bmatrix}
\underline{u} + K \begin{bmatrix}
b_{1} - b_{5} \\
b_{2} - b_{6} \\
b_{3} - b_{7} \\
b_{4} - b_{8}
\end{bmatrix}
\underline{w} \quad (8)$$

$$\underline{y} = \begin{bmatrix}
1 & 0 & 0 & 0
\end{bmatrix}
\begin{pmatrix}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{pmatrix} + \begin{bmatrix}
K
\end{bmatrix} \underline{u} + \begin{bmatrix}
K
\end{bmatrix} \underline{u} + \begin{bmatrix}
K
\end{bmatrix} \underline{w} \quad . \quad (9)$$

These correspond to Equations (1).

Figure 2. Plant state diagram.

III. DISTURBANCE MODEL

The general set of equations describing the disturbances were given in Equations (2). In this report, it is assumed that the disturbance is not dependent on the plant state, i.e., $\underline{L} \in \underline{M} \in \underline{O}$. Therefore, the disturbance modeled in the subroutine is

$$\underline{w} = \underline{H} \underline{z}$$

$$\underline{\dot{z}} = \underline{D} \underline{z} + \underline{\sigma}(t)$$
(10)

and it has been restricted to be a second-order model which can be represented as

$$\underline{w} = \underline{H} \underline{z} = (h_1 h_2) \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} (11)$$

$$\underline{\dot{z}} = \underline{D} \underline{z} + \underline{\sigma} = \begin{bmatrix} d_1 & d_3 \\ d_2 & d_4 \end{bmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \underline{\sigma} . (12)$$

IV. DISTURBANCE ABSORBER CONTROL

For the complete absorption mode of DAC design, the object is to obtain a control vector which will completely cancel out the effects of the disturbance input. First, however, it must be verified that such a control exists for the particular case being considered.

It has been shown (Reference 1) that such a control vector, $\underline{\underline{u}}_c$, will exist if, and only if,

$$\mathbf{F} \equiv \mathbf{B} \Gamma$$

for some $\underline{\Gamma}$. With the disturbance summed at the plant input, as shown in Figure 1, we can see from the representation in Equation (8) that $\underline{F} = \underline{B} \underline{\Gamma}$ for $\underline{\Gamma} = [1]$. Therefore, for this plant-disturbance model, \underline{u}_c exists and is $\underline{u}_c = -\underline{\Gamma} \underline{w} = -\underline{w}$.

Since the disturbance states z_1 and z_2 cannot, in general, be measured, in order to implement the control \underline{u} the state reconstructor given by Equation (3) must be used to provide \hat{z}_1 and \hat{z}_2 . The DAC control for this configuration will then be given by

$$\underline{\mathbf{u}}_{\mathbf{c}} = -\underline{\mathbf{w}} = -\mathbf{h}_{1}\hat{\mathbf{z}}_{1} - \mathbf{h}_{2}\hat{\mathbf{z}}_{2} \qquad (13)$$

V. STATE RECONSTRUCTOR DESIGN

In order to implement the state reconstructor, it is first necessary

to design the gain matrices \underline{K}_1 and \underline{K}_2 . This is done by using Equation (5) with

$$\underline{\underline{K}}_{1} = \begin{bmatrix} k_{11} \\ k_{21} \\ k_{31} \\ k_{41} \end{bmatrix} \qquad \underline{\underline{K}}_{2} = \begin{bmatrix} k_{12} \\ k_{22} \end{bmatrix} \qquad (14)$$

Substituting the appropriate values into the first term on the right-hand side of Equation (5) and performing the indicated matrix multiplications and additions will result in the relation

$$\begin{pmatrix} \vdots \\ \varepsilon_{\mathbf{z}} \end{pmatrix} = \begin{bmatrix} (k_{11} - b_{5}) & 1 & 0 & 0 & | & h_{1}K(b_{1} - b_{5} + k_{11}) & h_{2}K(b_{1} - b_{5} + k_{11}) \\ (k_{21} - b_{6}) & 0 & 1 & 0 & | & h_{1}K(b_{2} - b_{6} + k_{21}) & h_{2}K(b_{2} - b_{6} + k_{21}) \\ (k_{31} - b_{7}) & 0 & 0 & 1 & | & h_{1}K(b_{3} - b_{7} + k_{31}) & h_{2}K(b_{3} - b_{7} + k_{31}) \\ (k_{41} - b_{8}) & 0 & 0 & 0 & | & h_{1}K(b_{4} - b_{8} + k_{41}) & h_{2}K(b_{4} - b_{8} + k_{41}) \\ \hline k_{12} & 0 & 0 & 0 & | & (d_{1} + Kh_{1}k_{12}) & (d_{3} + Kh_{2}k_{12}) \\ k_{22} & 0 & 0 & 0 & | & (d_{2} + Kh_{1}k_{22}) & (d_{4} + Kh_{2}k_{22}) \end{bmatrix} \underline{\varepsilon} + \begin{bmatrix} \underline{o} \\ \underline{\sigma} \end{bmatrix} .$$

$$(15)$$

For computation simplification, let this be

$$\frac{\varepsilon}{\underline{\varepsilon}} = \underline{\underline{A}} \, \underline{\varepsilon} + \left[\begin{array}{c} \underline{o} \\ \underline{\sigma} \end{array} \right] \tag{16}$$

and represent $\underline{\widetilde{A}}$ as

$$\tilde{\underline{A}} = \begin{bmatrix}
e_0 & 1 & 0 & 0 & e_6 & e_{12} \\
e_1 & 0 & 1 & 0 & e_7 & e_{13} \\
e_2 & 0 & 0 & 1 & e_8 & e_{14} \\
e_3 & 0 & 0 & 0 & e_9 & e_{15} \\
e_4 & 0 & 0 & 0 & e_{10} & e_{16} \\
e_5 & 0 & 0 & 0 & e_{11} & e_{17}
\end{bmatrix} .$$
(17)

Now, $\frac{\tilde{A}}{L}$ represents the characteristic matrix of the $\frac{\dot{\epsilon}}{L}$ dynamics. As stated earlier, it is desired that $\Sigma(t) \to 0$ "rapidly" for good reconstructor performance. This means that the roots of the characteristic equation,

$$\det\left[\underline{\tilde{A}} - \lambda \underline{I}\right] = 0,$$

should be "large" negative numbers. The next step, therefore, (and generally the most tedious), is to calculate

$$\det \left[\, \underline{\tilde{\mathbf{A}}} \, - \, \lambda \underline{\mathbf{I}} \, \, \right] \, .$$

Remember that $\underline{\tilde{A}}$ has unknown gain components included and is not just an array of known numbers. Therefore, we have

$$\det\left[\underline{\tilde{A}} - \lambda \underline{I}\right] = \begin{pmatrix} (e_0 - \lambda) & 1 & 0 & 0 & e_6 & e_{12} \\ e_1 & -\lambda & 1 & 0 & e_7 & e_{13} \\ e_2 & 0 & -\lambda & 1 & e_8 & e_{14} \\ e_3 & 0 & 0 & -\lambda & e_9 & e_{15} \\ e_4 & 0 & 0 & 0 & e_{10} - \lambda & e_{16} \\ e_5 & 0 & 0 & 0 & e_{11} & e_{17} - \lambda \end{pmatrix} = 0$$

Evaluating this gives

$$|A - \lambda \underline{I}| = \lambda^{6} - (e_{0} + e_{10} + e_{17}) \lambda^{5} + (e_{0}e_{10} + e_{0}e_{17} - e_{11}e_{16} + e_{10}e_{17} - e_{11}e_{16} + e_{10}e_{17} - e_{11}e_{16} - e_{0}e_{10}e_{17} + e_{1}e_{10} + e_{1}e_{17} - e_{2} + e_{4}e_{6}e_{17} - e_{4}e_{11}e_{12} - e_{4}e_{7} - e_{5}e_{6}e_{16} + e_{5}e_{10}e_{12} - e_{5}e_{13}) \lambda^{3} + (e_{1}e_{11}e_{16} - e_{1}e_{10}e_{17} + e_{2}e_{10} + e_{2}e_{17} - e_{3} + e_{4}e_{7}e_{17} - e_{4}e_{11}e_{13} - e_{4}e_{8} - e_{5}e_{7}e_{16} + e_{5}e_{10}e_{13} - e_{5}e_{14}) \lambda^{2} + (e_{2}e_{11}e_{16} - e_{2}e_{10}e_{17} + e_{3}e_{10} + e_{3}e_{17} + e_{4}e_{8}e_{17} - e_{4}e_{11}e_{14} - e_{4}e_{9} - e_{5}e_{8}e_{16} + e_{5}e_{10}e_{14} - e_{5}e_{15}) \lambda + (-e_{3}e_{10}e_{17} + e_{3}e_{10}e_{17} - e_{4}e_{11}e_{15} - e_{5}e_{9}e_{16} + e_{5}e_{10}e_{15}) = 0 . (18)$$

If the desired roots of Equation (18) are λ_1 , λ_2 , λ_3 , λ_4 , λ_5 , λ_6 , then the desired characteristic equation is

$$(\lambda - \lambda_1) (\lambda - \lambda_2) (\lambda - \lambda_3) (\lambda - \lambda_4) (\lambda - \lambda_5) (\lambda - \lambda_6) = 0 \cdot (19)$$

Expanding Equation (19) and equating coefficients of like powers of λ between Equations (18) and (19) and substituting the proper symbols which the errepresent results in the following:

(a)
$$k_{11} + Kh_1k_{12} + Kh_2k_{22} + (d_1 - b_5 + d_4) = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6 = A_1$$
;

(b)
$$(d_1 + d_4) k_{11} + (-Kd_2h_2 + Kd_4h_1 - Kh_1b_1) k_{12} + (-Kd_3h_1 + Kd_1h_2)$$

 $-Kb_1h_2) k_{22} - k_{21} + (-b_5d_1 - b_5d_4 - d_2d_3 - d_1d_4 + b_6)$
 $= \sum_{j=1}^{5} \sum_{i=1}^{6} \lambda_i \lambda_j = A_2$;

(c)
$$(d_3d_2 - d_1d_4) k_{11} + (Kh_1b_1d_4 - Kh_2b_1d_2 - Kh_1b_2) k_{12} + (-Kh_1b_1d_3 + Kh_2b_1d_1 - Kh_2b_2) k_{22} + (d_1 + d_4) k_{21} - k_{31} + (-b_5d_3d_2 + b_5d_1d_4 - b_6d_1 - b_6d_4 + b_7) = -\begin{bmatrix} \Sigma & \Sigma & \Sigma \\ i = 1 & j = i + 1 & 1 = j + 1 \end{bmatrix}$$

(e)
$$(d_3d_2 - d_1d_4) k_{31} + (-d_3d_2b_7 + d_1d_4b_7 - d_1b_8 - d_4b_8) + (-Kh_1b_3d_3 + Kh_2b_3d_1 + Kh_2b_4) k_{22} + (Kh_1b_3d_4 - Kh_2b_3d_2 - Kh_1b_4) k_{12} + (d_1 + d_4) k_{41}$$

$$= -\left[\lambda_1\lambda_2\lambda_3\lambda_4 (\lambda_5 + \lambda_6) + \lambda_1\lambda_2\lambda_5\lambda_6 (\lambda_3 + \lambda_4) + \lambda_3\lambda_4\lambda_5\lambda_6 (\lambda_1 + \lambda_2)\right]$$

$$= -A_5 ;$$

(f)
$$(-d_1d_4 + d_3d_2) k_{41} + (b_8d_1d_4 - b_8d_2d_3) + (Kh_1b_4d_4 - Kh_2b_4d_2) k_{12}$$

 $+ (-Kd_3b_4h_1 + Kd_1h_2b_4) k_{22} = \lambda_1\lambda_2\lambda_3\lambda_4\lambda_5\lambda_6 = A_6$.

For ease of manipulation, let us re-express (a) - (f) as

(a)
$$k_{11}$$
 + m_0k_{12} + m_1k_{22} + m_2 = A_1
(b) m_3k_{11} - k_{21} + m_4k_{12} + m_5k_{22} + m_6 = A_2
(c) m_7k_{11} + m_8k_{21} - k_{31} + m_9k_{12} + $m_{10}k_{22}$ + m_{11} = - A_3
(d) $m_{12}k_{21}$ + $m_{13}k_{31}$ - k_{41} + $m_{14}k_{12}$ + $m_{15}k_{22}$ + m_{16} = A_4
(e) $m_{17}k_{31}$ + $m_{18}k_{41}$ + $m_{19}k_{12}$ + $m_{20}k_{22}$ + m_{21} = - A_5
(f) $m_{22}k_{41}$ + $m_{23}k_{12}$ + $m_{24}k_{22}$ + m_{25} = A_6

or, in matrix form,

$$\begin{bmatrix} 1 & 0 & 0 & 0 & m_0 & m_1 \\ m_3 & -1 & 0 & 0 & m_4 & m_5 \\ m_7 & m_8 & -1 & 0 & m_9 & m_{10} \\ 0 & m_{12} & m_{13} & -1 & m_{14} & m_{15} \\ 0 & 0 & m_{17} & m_{18} & m_{19} & m_{20} \\ 0 & 0 & 0 & m_{22} & m_{23} & m_{24} \end{bmatrix} \begin{bmatrix} k_{11} \\ k_{21} \\ k_{31} \\ k_{41} \\ k_{12} \\ k_{22} \end{bmatrix} = \begin{bmatrix} A_1 & -m_2 \\ A_2 & -m_6 \\ -A_3 & -m_{11} \\ A_4 & -m_{16} \\ -A_5 & -m_{21} \\ A_6 & -m_{25} \end{bmatrix}$$

$$(20)$$

Therefore, we have
$$\underline{X}_{m} \begin{bmatrix} \underline{K}_{1} \\ \underline{K}_{2} \end{bmatrix} = \underline{R}$$
, where $\underline{K}_{1} = \begin{bmatrix} k_{11} \\ k_{21} \\ k_{31} \\ k_{41} \end{bmatrix}$, $\underline{K}_{2} = \begin{bmatrix} k_{12} \\ k_{22} \end{bmatrix}$. (21)

Solving for $\left[\frac{K}{K_2}\right]$ gives $\left[\frac{K}{K_2}\right] = \underbrace{X}_{-1}^{-1} \underbrace{R}_{-1}$ where \underbrace{X}_{-1}^{-1} denotes the inverse of the matrix \underbrace{X}_{-1}^{-1} . Since \underbrace{X}_{-1} is composed of known numbers when the desired values of λ_1 to λ_6 are substituted in, this matrix can be inverted via use of a matrix inversion subroutine.

Therefore, the components of the gain matrices \underline{K}_1 and \underline{K}_2 are determined as functions of the plant and disturbance parameters and the values of λ_1 through λ_6 chosen by the designer. It will usually be necessary to go through several iterations on values for the λ 's before the desired observer performance is obtained.

Having these gains, it is now possible to construct the state observer, Equation (3), as

$$\begin{pmatrix} \dot{\hat{x}}_1 \\ \dot{\hat{x}}_2 \\ \dot{\hat{x}}_3 \\ \dot{\hat{x}}_4 \\ \dot{\hat{z}}_1 \\ \dot{\hat{z}}_2 \end{pmatrix} \begin{bmatrix} (k_{11} - b_5) & 1 & 0 & 0 & h_1 K (b_1 - b_5 + k_{11}) & h_2 K (b_1 - b_5 + k_{11}) \\ (k_{21} - b_6) & 0 & 1 & 0 & h_1 K (b_2 - b_6 + k_{21}) & h_2 K (b_2 - b_6 + k_{21}) \\ (k_{31} - b_7) & 0 & 0 & 1 & h_1 K (b_3 - b_7 + k_{31}) & h_2 K (b_3 - b_7 + k_{31}) \\ (k_{41} - b_8) & 0 & 0 & 0 & h_1 K (b_4 - b_8 + k_{41}) & h_2 K (b_4 - b_8 + k_{41}) \\ \dot{\hat{z}}_1 \\ \dot{\hat{z}}_2 \end{pmatrix} \begin{bmatrix} (k_{11} - b_5) & 1 & 0 & 0 & h_1 K (b_2 - b_6 + k_{21}) & h_2 K (b_2 - b_6 + k_{21}) \\ (k_{31} - b_7) & 0 & 0 & 1 & h_1 K (b_3 - b_7 + k_{31}) & h_2 K (b_3 - b_7 + k_{31}) \\ (k_{41} - b_8) & 0 & 0 & 0 & h_1 K (b_4 - b_8 + k_{41}) & h_2 K (b_4 - b_8 + k_{41}) \\ k_{12} & 0 & 0 & 0 & (d_1 + K h_1 k_{12}) & (d_3 + K h_2 k_{12}) \\ k_{22} & 0 & 0 & 0 & (d_2 + K h_1 k_{22}) & (d_4 + K h_2 k_{22}) \end{bmatrix} \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \hat{z}_1 \\ \hat{z}_2 \end{pmatrix}$$

$$\begin{bmatrix} k_{11} \\ k_{21} \\ k_{31} \\ k_{41} \\ k_{12} \\ k_{22} \end{bmatrix} y(t) + \begin{bmatrix} K(b_1 - b_5 + k_{11}) \\ K(b_2 - b_6 + k_{21}) \\ K(b_3 - b_7 + k_{31}) \\ K(b_4 - b_8 + k_{41}) \\ Kk_{12} \\ Kk_{22} \end{bmatrix} \underline{u}(t)$$
(21)

and thus obtain the disturbance state estimates, \hat{z}_1 and \hat{z}_2 , required for the DAC control \underline{u} .

Figure 3 presents the overall block diagram for the composite plant-state reconstructor model. The symbols r_i , p_i , v_i relate to matrix elements from Equation 21 as shown in Table 1.

VI. DIGITAL SIMULATION

This simulation has been assembled, for use on a CDC 6600 digital computer, in order to permit the design of DAC's for systems of the type shown in Figure 1 without the necessity of having to go through the tedious task of expanding determinants by hand. This simulation can be used in a design process to determine the necessary gains for a given system and then simulate that system's operation for various disturbance conditions. Or, the simulation could be modified and used as a subroutine in a larger program to provide a necessary disturbance control value when called.

As a design tool used by itself, the simulation will perform the following tasks: (1) calculate the elements of the gain matrices \underline{K}_1 and \underline{K}_2 utilizing the plant and disturbance input parameters and the λ 's input by the designer; (2) implement the state reconstructor; (3) calculate the DAC control vector;

$$\underline{\underline{\mathbf{u}}}_{\mathbf{c}} = -\mathbf{h}_{1}\mathbf{z}_{1} - \mathbf{h}_{2}\hat{\mathbf{z}}_{2},$$

and (4) close the DAC control loop through the plant to provide output data showing the overall performance obtained.

As a subroutine, the necessary plant output and other data can be transferred in through a COMMON block; the gains can be updated, if required by changing plant parameters; the value for $\underline{\mathbf{u}}_{\mathbf{c}}$ can be determined; and then required data can be transferred out through a COMMON block.

An overall program dictionary is presented in Table 2. Table 3 lists the NAMELIST inputs for the program, and Table 4 lists the outputs. A System Library Line Printer Plot Routine is used to plot the output, Y, and the disturbance state estimates \hat{z}_1 , \hat{z}_2 .

A listing of the simulation is given in Appendix A and the results of several disturbance cases for a given plant are shown in Appendix B.

The line-plot and matrix inversion subroutines used in this simulation were taken from Reference 6.

TABLE 1. EQUIVALENCES FOR FIGURE 3 SYMBOLS

r ₁	=	k ₁₁ - b ₅	$p_7 = Kh_2(b_1 - b_5 + k_{11})$
r ₂	-	$k_{21} - b_{6}$	$p_8 = Kh_2(b_2 - b_6 + k_{21})$
r ₃	-	$k_{31} - b_{7}$	$p_9 = Kh_2(b_3 - b_7 + k_{31})$
r ₄	=	k ₄₁ - b ₈	$p_{10} = Kh_2(b_4 - b_8 + k_{41})$
_p 1	*	$Kh_1(b_1 - b_5 + k_{11})$	$p_{11} = d_3 + Kh_2k_{12}$
p ₂	-	$Kh_1(b_2 - b_6 + k_{21})$	$P_{12} = d_4 + Kh_2k_{22}$
P3	=	$Kh_1(b_3 - b_7 + k_{31})$	$v_1 = K(b_1 - b_5 + k_{11})$
P ₄	*	$Kh_1(b_4 - b_8 + k_{41})$	$v_2 = K(b_2 - b_6 + k_{21})$
р ₅	*	$d_1 + Kh_1k_{12}$	$v_3 = K(b_3 - b_7 + k_{31})$
Pá	*	d ₂ + Kh ₁ k ₂₂	$v_4 = K(b_4 - b_8 + k_{41})$

Figure 3. Composite plant - DAC block diagram.

TABLE 2. PROGRAM DICTIONARY

FORTRAN NAME	SYMBOL	DEFINITION
A	A _i	Coefficients of the desired characteristic equation associated with $\left[\frac{\tilde{A}}{A} - \lambda \underline{I}\right] \text{ calculated using input eigenvalues.}$
AMO-AM25	m _i	Coefficients of the characteristic equation associated with $\left[\frac{\widetilde{A}}{A} - \lambda \underline{I}\right]$ calculated using actual plant and disturbance input parameters, factored according to components of the \underline{K}_1 and \underline{K}_2 matrices.
В	^b j	Coefficients in the plant transfer function.
co, c1	c_{0}, c_{1}	Coefficients used in defining $\underline{w}(t)$.
С	K	Plant transfer function gain value.
CU1		Defined as K·U ₁ .
CK	<u>K</u> ₁ , <u>K</u> ₂	Array containing computed values for the gain matrices. $CK(1) - CK(4)$ correspond to \underline{K}_1 , $CK(5)$ and $CK(6)$ correspond to \underline{K}_2 .
D	ďi	Array consisting of the elements of the \underline{D} matrix associated with the disturbance state model.
DT	Δt	Integration step size.
Н	h _i	Array consisting of elements of the \underline{H} matrix associated with the disturbance state model.
KUTTA		Integration loop counter.
KU	}	Integration loop counter.
LM	λ _i	Eigenvalues of $ \widetilde{\underline{A}} - \lambda \underline{I} = 0$ chosen by designer to settle out state reconstruct response.
NX		Number of derivatives to be integrated.
PGO	u _r	Plant Input Command

TABLE 2. (CONCLUDED)

FORTRAN NAME	SYMBOL	DEFINITION
R	R	Matrix used in solving for \underline{K}_1 and \underline{K}_2 .
STPSZ		Used to define integration step size $\Delta t = 1./STPSZ$.
τ		Intermediate terms, comprised of various combinations of the λ 's, defined for use in later equations.
TIME	t	Total elapsed time (sec).
TSTOP	tstop	Run end time (sec).
U 1	^u 1	Summation of u with disturbance magnitude, w.
υ	u	Summation of plant input command, \underline{u} , DAC control term, \underline{u}_c , and plant output feedback, y.
UDA	<u>u</u> c	DAC control vector.
w	<u>w</u> (t)	Disturbance vector.
X1 - X4	x ₁ - x ₄	Plant states.
XD1 - XD4	$\dot{x}_1 - \dot{x}_4$	Plant state derivatives.
XDH1 - XDH4	$\dot{\hat{x}}_1 - \dot{\hat{x}}_4$	State reconstructor state derivatives corresponding to $\dot{x}_1 - \dot{x}_4$.
XH1 - XH4	$\hat{\mathbf{x}}_1 - \hat{\mathbf{x}}_4$	State reconstructor states corresponding to $x_1 - x_4$.
MX		Array of elements of \underline{X}_{m} matrix.
Y	y	Plant output.
Z		Intermediate terms, composed of various combinations of the λ 's, defined for use in simplifying later equations.
ZDH1, ZDH2	$\dot{\hat{z}}_1$, $\dot{\hat{z}}_2$	State reconstructor disturbance state derivatives.
ZH1, ZH2	î, î,	State reconstructor disturbance state estimates.

TABLE 3. NAMELIST INPUT VARIABLES

FORTRAN NAME	SYMBOL	DEFINITION
В	b _i	Array consisting of the coefficients, $b_1 - b_8$, of the plant transfer function y/u_1 .
С	K	Plant transfer function gain value.
co, c1	c _o , c ₁	Coefficients used in defining $\underline{w}(t)$.
D	d _i	Array consisting of the elements of the \underline{D} matrix associated with the disturbance state model. The elements are entered according to the subscripts shown in Equation (12).
н	h _i	Array consisting of elements of the \underline{H} matrix associated with the disturbance model. The elements are entered according to the subscripts shown in Equation (11).
LM	λ _i	Array consisting of designer's choice of roots for the characteristic equation of $ \widetilde{A} - \lambda I $. The array permits input of complex conjugate values for the roots in the form $a + jb$. For this reason, the input format which must be used is: (RE_1, IM_1) , (RE_2, IM_2) , (RE_3, IM_3) , (RE_4, IM_4) , (RE_5, IM_5) , (RE_6, IM_6) .
NPRT	-	Used to control output print interval.
NUMBR	_	Used to control data storage for plots.
NX	-	Number of derivatives to be integrated by the Runge-Kutta integration subroutine.
PGO	u _r	Plant input command.
STPSZ	-	Used to define integration step size as, DT = 1./STPSZ (sec).
TSTOP	^t STOP	Run end time (sec).

TABLE 4. DIGITAL SIMULATION OUTPUT VARIABLES

FORTRAN NAME	SYMBOL	DEFINITION
PGO	<u>u</u> r	Plant input command
TIME	t	Total elapsed time since beginning of run (sec)
UDA	<u>u</u> c	DAC control vector
W	W	Disturbance magnitude as determined from differential equation used to describe it
X1 - X4	x ₁ - x ₄	Plant states
XD1 - XD4	*1 - *4	Plant state derivatives
XDH1 - XDH4	x 1 - x4	State reconstructor state derivatives corresponding to XD1 - XD4.
XH1 - XH4	$\hat{x}_1 - \hat{x}_4$	State reconstructor state estimates corresponding to X1 - X4.
Y	у	Plant output.
ZDH1, ZDH2	\hat{z}_{1}, \hat{z}_{2} \hat{z}_{1}, \hat{z}_{2}	State reconstructor disturbance state derivatives.
ZH1, ZH2	\hat{z}_1, \hat{z}_2	State reconstructor disturbance state estimates.

REFERENCES

- Johnson, C. D., "Accommodation of Disturbances in Optimal Control Problems," Int. Journal Control, Vol. 15, No. 2, 1972, pp. 209-231.
- Johnson, C. D., "On Observers for Systems with Unknown and Inaccessible Inputs," Int. Journal Control, Vol. 21, No. 5, 1975, pp. 825-831.
- 3. Johnson, C. D., "Accommodation of External Disturbances in Linear Regulator and Servomechanism Problems," Institute of Electrical and Electronics Engineers Transactions on Automatic Control, Vol. AC-16, No. 6, December 1971.
- 4. Johnson, C. D., "Algebraic Solution of the Servomechanism Problem with External Disturbances," Transactions of American Society of Mechanical Engineers, Journal of Dynamics Systems, Measurements and Control, March 1974, pp. 25-35.
- 5. Johnson, C. D., "Theory of Disturbance-Accommodating Control," Chapter in Book, Control and Dynamic Systems; Advances in Theory and Applications, Vol. 12, Edited by C. T. Leondes, Academic Press, Inc., New York, 1976.
- Sellers, W. R., Jr., and Gibbs, B. G., "Descriptions, General-Purpose Computer Subroutines," U.S. Army Missile Command, Report No. TR-WS-79, April 1979.
- 7. McCowan, W. L., "Investigation of Disturbance Accommodating Controller Application to a Missile Autopilot," U.S. Army Missile Research and Development Command Technical Report No. T-79-63, May 1979.

Salarah dan dan dari da

APPENDIX A

DIGITAL SIMULATION LISTING

```
1
                      FROGRAM MAIN ( INPUT. CUTPUT. TAFFFEINPUT. TAFFFETOUTFUT.)
                €
                      CCMMCNIPEFCATI
                                           FLF.
                                                            F ( P ).
                                                                             FFT.
                           C •
                                           C G •
                           C1,
                                           r ( 4 ),
                                                            H ( 2 ),
                                                                             LM ( E ).
                           SERT.
                                           NUMER.
                                                            FOC.
                                                                             STECT.
                          TSTOP
               C
                      CCMMCN/INTEG/
                                           1. X
  10
               C
                      COMMON/OUTP/ AMO.
                                                £ № 1 •
                                                           AM2.
                                                                      ANT.
                         ANE,
                                                                                 AN4.
                                    AME .
                                                △ ∨ 7 •
                                                           AVA.
                                                                      AMS,
                         A ~ 11 .
                                                                                 A * 1 * .
                                    AM12.
                                                AM13.
                                                           ANTA.
                                                                     'AMTE.
                         A * 17 •
                                                                                 AVIC.
                                    A * 1 8 .
                                               AN19.
                                                           4 7 2 C .
 15
                                                                      AM21.
                         AM23.
                                                                                 A 422.
                                    AM24 .
                                                AN25
               C
                      CCMMCN/PLNK/
                                          ^ T ,
                                                            KLTT!
               C
                     CCMMCN/RUNKIN/
 20
                        X 🖺 1 🦠
                                    X02,
                                               χη3.
                                                          y 7 4 .
                         XDF1.
                                    XDF2.
                                               XDH3.
                                                          X ] + 4 .
                                                                      21H1.
              C
                                                                                 77+3
                     CCMMCA/PLAKCUT/
                        X1,
                                    X2.
                                               УЗ,
                                                          . 4 .
 25
                        X + 1 .
                                    XF2,
                                               χĿ₹,
                                                          Y - 4 .
                                                                      2H1.
              C
                                                                                 719
                     COMPLEX
                                          LM.
                                                           T .
              C
                                                                            Z
                     TIMENSICA
                                          * ( £ ),
                                                           AV ( 26 ).
 30
                                                                            CK ( 6 ).
                         FEAD ( P ).
                                          IFLT ( - ),
                                                          p ( & ),
                                                                            7 ( 5 ).
                         WCRK ( 12 ),
                                          ** ( ** 15 )* XMT ( F, F )*
                                                                          XT ( 1660 ).
                         YT ( 1000 ).
                                          7 ( 15 ).
                                                           71" ( 10(0 ),
                                                                            72T ( 1000 )
              С
                    EGUIVALENCE ( AM ( 1 ). 240 )
 3.5
              ſ
              C
                    NAMELIST/INF/
                                              JLP.
                                                          H<sub>e</sub>
                                                                     EET.
                      С,
                                  00.
                                              [],
                        £ •
                                              L×,
                                   ⊢ •
                                                         NPRT.
4 :
                                                                     VDWDD.
                                                                                λу,
                        F ^ C .
                                   STFSZ.
                                              TSTOF
              C
                    FEAD(5.180) FEAD
                    READ(E.INP)
             C
45
                    WRITT(6.INP)
                    ARITE(6+150) HEΔC
             C
                    CC 10 T = 1 €
ê ·
                    FC 10 0 = 1. 12
                   0.0 = (L.I) M/
               10
                    2(1)
                            = LM (1) + LM (2)
                    7(2)
                             = LM ( 1 ) + LM ( 3 )
                    7(3)
                            = LM (1) * LM (4)
= =
                   7(4)
                            = LM ( 1 ) * LM ( = )
                            = L* (1) + L* (E)
                   7 (5)
                    7(6)
                            = LM (2) + LM (3)
```

```
2(7)
                         = LM (2) * LM (4)
                  7(8)
                         = LM ( 2 ) * LM ( 5 )
50
                  7(9)
                         = ["
                              (2) * LV (6)
                  2(10)
                         = [ *
                              (3) \times LM (4)
                                  ) * LM
                  2(11)
                         = LM (
                                3
                                         ( 5 )
                  ~(12)
                         = LM (
                                3
                                  ) * LM
                                         (
                                           €:
                  (13)
                         = LM
                              ( 4
                                  ) * LM
                                         (
                                           Ε.
60
                  7(14)
                         = [ " ( 4
                                  ) * LM
                                         (6)
                  3(15)
                         = LM ( 5 ) * LM
                                         (
                                          6)
                         = 64 ( 3
                  7(1)
                                  ) + LM ( 4 ) + LM ( 5 ) + LM ( 6 )
                  7(2)
                         = LM ( 4 ) + LM ( 5 ) + LM ( 6 )
                         = L V ( F ) + L M ( F )
                  T(3)
                          = LY (3) + LM (4)
70
                  7(4)
                  7(5)
                          = L^{N} (1) + L^{N} (2)
                  #RITT(6+300) T
                         = T ( E ) + T ( 4 ) + T ( 3 )
                  2(1)
                  2(2)
                         = 7 (1) + 7 (2) + 7 (3) + 7 (4) +
75
                    7 (5) + 7 (6) + 7 (7) + 7 (8) +
                     2 ( 9 ) + 2 ( 10 ) + 7 ( 11 ) + 2 ( 12 ) +
                     2 ( 13 ) + 2 ( 14 ) + 2 ( 15 )
                  7 (3)
                        = 7 (1) * T (1) + 7 (2) * T (2) +
                     7 (3) * T (3) + Z (4) * LM (6) +
9.0
                     7 ( 6 ) * T ( 2 ) + 7 ( 7 ) * T ( 3 ) +
                     2 (8) * LM (6) + 7 (10) * 7 (3) +
                     2 ( 11 ) * LM ( F ) + 2 ( 13 ) * LM ( F )
                         = 7 (1) + (2 (10) + 2 (11) + 7 (12) +
                  1(4)
                    7 (13) + 2 (14) + 2 (1<sup>F</sup>) ) +
8 =
                     2 (2) * (2 (13) + 7 (14) + 7 (15)) +
                     7 ( 3 ) * 2 ( 15 ) * 7 ( 6 ) * ( 7 ( 13 ) * 7 ( 14 ) *
                    7 ( 15 ) ) + 7 ( 7 ) * 7 ( 15 ) + 7 ( 10 ) * 7 ( 15 )
                  4(5)
                         = 7 (1) + 7 (10) + 7 (3) +
                     2 (1) * 2 (15) * T (4) * 7 (19) * 7 (5)
90
                  1(6)
                       = 2 (1) \times 7 (10) \times 7 (15)
                  WRITE (6,400) A
                  4 M C
                         = 0 \star + (1)
                         = C \star + (?)
                  7 M 1
Ç.E
                  1 M 2
                         = D (1) = B (F) + D (4)
                  _2 N ₹
                         = D (1) + P (4)
                  SMS
                         = AM13 = AM18 = AM3
                  1 M4
                          = C * / - C ( 2 ) * F ( 2 ) + D ( 4 ) * F ( 1 )
                      (1) * 2 (1)
                         = - C * ( C ( Z ) * + ( 1 ) - C ( 1 ) * + ( 2 ) +
100
                 + (2) * P (1) )
                  £ N 7
                         = P (3) * D (2) * D (1) * D (4)
                  :M12
                         = AM17 = AM22 = AM7
                           - 8 ( 5 ) * AM3 + 8 ( 6 ) - AM7
                  2 M E
105
                               (8) + AM7
                  : M25
                             Ē
                         Ξ
                  7 M 2 1
                           - E
                               (8) * AM3 - E (7) * AM7
                  IM16
                         = -P(6) * AM7 - E(7) * AM3 + F(8)
                  - M 1 1
                          = - E ( 5 ) + AY7 - E ( 6 ) + AY3 + F ( 7 )
                         = C * ( F ( 1 ) * F ( 1 ) * F ( 4 ) '- '
110
                   + (2) * F (1) * D (2) - F (1) * E (2) )
                  M10
                         = - C * ( + ( 1 ) * 5 ( 1 ) * F ( 3 ) -
                   - + (2) + P (1) + D (1) + + (2) + P (2))
                  : N14
                         = C * ( B ( 2 ) * H ( 1 ) * P ( 4 ) -
                     F(2)*F(2)*E(2)*B(3)*F(1)1
```

```
115
                AM15
                        = -C * ( P ( 2 ) * F ( 1 ) * P ( 3 ) -

    F(2)*F(2)*F(3)*F(3)

                4M15 = C * ( F ( 1 ) * P ( 2 ) * C ( 4 ) *
                + (2) * B (3) * F (2) + F (1) * F (4) )
                AM20 = -C + (F(1) + F(3) + F(3) -
 120

    +(2)*P(3)*D(1)++(2)*P(4))

                #M23 = C * ( F ( 1 ) * P ( 4 ) * C ( 4 ) =
                 H (2) * E (4) * P (2))
                     = C * ( - C ( 3 ) * F ( 4 ) * F ( 1 ) +
                LM 24
                 [(1)*+(2)*E(4))
 125
                [C 30 I = 1, 25, 5
             50 ARITE (6,600) I. AM(T), T+1, AM(I+1), T+2, AM(I+2), I+3, AM(I+3)
                   I+4. AM(I+4)
                WRITE(6.700) AM25
                       = A (1) - AM2
                = (1)
. 130
                3 (2)
                       \pm A ( 2 ) - AMC
                F (3)
                       = - A (3) - AV11
                r (4)
                       = A (4) - IM16
                : (5)
                      = - A (5) + 4 \times 21
                °(6)
                     = A ( 6 ) - AM2F
 135
                WRITE(6,500) R
                ^{V}(1.1) = 1.0
                XM(2.1) = \Delta M3
                xM(3,1) = AN7
 140
                YM(4,1) = XM(5,1) = YM(6,1) = 0.6
                ----- ELEMENTS 7 THRU 12
                VN(1.2) = 0.0
                YM(2.2) = -1.0
                XM(3.2) = AMB
 145
                x^{N}(4,2) = A^{N}12
                xM(5.2) = xM(6.2) = 0.0
           C----- FLEYENTS 13 THRU 18
                XM(1.3) = XM(2.3) = 0.0
                YM(3,3) = -1.0
- 150
                XM(4.3) = AM13
                xM(5.3) = AV17
                YM(6.3) = 0.0
            C----- ELENENTS 19 THRU 24
                YM(1,4) = XM(2,4) = XM(3,4) = 0.0
 155
                YN(4,4) = -1.0
                XM(5+4) = AM18
                xN(6+4) = 4M22
             ----- FLEMENTS 25 THRU 30
                XM(1.5) = AMO
 160
                YM(2.5) = AM4
                xM(3.5) = AM9
                xN(4.5) = AV14
                XM(5.5) = AV19
                YM(6.5) = AM23
 165
                   XM(1.6) = AM1
                xM(2.6) = AM5
                XM(3.6) = AM10
                yM(4+6) = AM15
 170
                YM(5.6) = AM20
                XY(6+E) = AY24
```

```
EC 26 I = 1 6
              20 WRITE(6.200) I. XM(T.1). I. XM(I.2). I. XM(I.3).
                 • In XM(I_94), In XM(I_95), In XM(I_96)
                    175
                 CALL SESOMI ( XM. 6. 6. 1. 6. DET. RA. E. LORK. IHLD. 1. 1. 1. )
                  IF ( DET .EG. 0.0 .CR. F .EG. 1.0 ) 00 TC 2200
                  IF ( E .FG. 2.0 ) WFITE(6. 5200)
                  nc 40 I = 1. 6
180
              40 WRITE(6,200) I, XM(I,1), I, XM(I,2), I, XM(I,3),

    I = XM(I+4) + I = XM(I+5) + I = XM(I+6)

                  WRITE(6,800) DET+ RA+ E
                  FC 50 I = 1. 6
                  00 50 u = 1, 6
185
                 VMI(I+J) = XM (I+J)
                 CALL MMPY ( XMI, R. CK. 6, 6, 1)
                  ARITE (6.500) CK
                  ND1
                        = XC2 = XC3 = YC4 = 0.0
                         = X2 = X3 = X4 = 0.0
                  v 1
                         = XDH2 = XDH3 = XDH4 = ZDH1 = ZDH2 = 0.0
190
                  \C+1
                         = XF2 = XF3 = XF4 = ZF1 = ZF2 = 0.000
                  x ⊢ 1
                         = 1.0 / STPSZ
                  P.T
                  ٠.
                         = 0
                  TIME
                         = 0.0
155
                  ΙF
                         = NERT - 1
                 ISTR
                         = STESZ / NUMBER
                 TPLT
                         = ISTR - 1
                  FTS
                         = C
                  V V A X
                         = -1000000.0
200
                  VVIV
                         = 10000000.0
                  YMAXI
                         = YMAX2 = +10000000.0
                  YMIN1
                         = YMIN2 = 1000000.0
             1/10 CONTINUE
                  IF ( TIME .GE. TSTOF ) OD TO 1000
255
                         = J + 1
                  TC 2000 KU = 1. 4
                  - LTTA
                         = KU
                         = CO + C1 * EXP( ALP * TIME )
                  LDA
                         = + (1) \times 7+1 + + (2) \times 7+2
21"
                         = FCC - UDA - Y
                  Į.
                  1
                         = U + W
                  (L1)
                         = C * U1
                         = CL1 + P (4) - B (8) + Y
                  . D4
                         = x4 + CL1 + P (3) - P (7) * Y
                  Y 0.3
215
                         = X3 + CU1 + E (2) - E (6) + Y
                  > L 5
                         = x_2 + cu_1 + E (1) - E (5) * Y
                  ×C1
                         = X1 + CU1
                         = ( CK ( 1 ) + H ( 5 ) ) * XH1 + XH2 +
                  > C H 1
                   C * ( P ( 1 ) - P ( F ) + CK ( 1 ) ) *
                   ( F
227
                        (1) * ZH1 + F (2) * ZF2 + L) - CF (1) * Y
                  xCF2 = ( CK ( 2 Y + 5 ( F ) ) * XF1 + XF3 +
                    C *
                        (E(2) - P(E) + CK(2)) *
                    ( F ( 1 ) * 7F1 + F ( 2 ) * 2F2 + U ) = CK ( 7 ) * Y TT " "
                  NDH3
                        \pi ( CK ( 3 ) + \pi ( 7 ) ) * XH1 + XH4 +
                   C * ( f ( 3 ) - F ( 7 ) + CK ( 3 ) ) *
221
                   ( + ( 1 ) * 2+1 + + ( 2 ) * 2+2 + L ) - CK ( 7 ) * Y
                        = (CK(4) - E(9)) * YL1 +
                    C * ( F ( 4 ) - F ( 8 ) + CK ( 4 ) ) *
```

```
( + ( 1 ) * 7F1 + F ( 2 ) * 2F2 + U ) - CF ( 4 ) * Y
                   "CH1 = CK ( 5 ) * XH1 + ( C ( 1 ) + C * H ( 1 ) * CK ( 5 ) ) *
230
                      7-1 + ( C ( 3 ) + C * + ( 2 ) * CK ( 5 ) ) *
                     ZH2 - TCK ( 5 ) * Y + C * CK ( 5 ) * U
                          = CK ( 6 ) * XF1 + ( D ( 2 ) + C * F ( 1 ) * CK ( 6 ) ) *
                   20H2
                      ZH1 + ( D ( 4 ) + C + F ( 2 ) * CK ( 6 ) ) *
235
                      ZH2 - CK ( 6 ) * Y + C * CK ( 6 ) * U
                   CC TO ( 5000+ 6000+ 3000+ 4000 )+ KUTTA
              5000 CONTINUE
                                          = TPLT + 1
                   IFLT 
                   IF ( IPLT .NE. ISTR ) GC TO 2020
240
                   IFLT
                          = 0
                   * FTS
                           = NPTS + 1
                   XT(NPTS) = TIME
                   YT(NPTS)= Y
                           = AMAX1 ( YMAX Y )
                   VNAX
245
                   YMIN
                           = AMINI ( YMIN, Y )
                   21T(NPTS)= 2F1
                   72T(NPTS)= 7H2
                   VMAX1
                           = AVAX1 ( YVAX1. ZH1 )
                   YMIN1
                           = AMIN1 ( YMIN1 + ZH1 )
250
                   CXAMY
                           = AMAX1 ( YMÁX2. ZH2 )
                   SAINY
                           = AMIN1 ( YMIN2. 7H2 )
              2020 CONTINUE
                   IF
                           = IF + 1
                   IF ( IP .NE. NPRT ) OC TO 2030
255
                   IP
                         = 0
                   WRITE (6.551) TIME.
                                                               X[3,
                                           Y11.
                                                     AC5.
                                                                         XC4.
                    ¥ 1 •
                                                     X 4 •
                                X2.
                                          x3•
                                                               XT+1.
                                                                         XCH2.
                                                     ZCH2.
                      XEF3.
                                XDH4.
                                          7EH1•
                                                               x + 1 •
                                                                         X + 2 .
                      X - 3 .
                                XH4.
                                           7-1.
                                                     7+2.
                                                               FOC.
250
                      UDA
              2:38 (CATINLE
              3000 TIME = TIME + 0.5 * DT
              4000 CONTINUE
              6000 CALL RUNGK
265
              2000 CONTINUE
                   C TO 1010
              1:00 CONTINUE
                   APTS = APTS + 1
                   XT(NFTS)= TIME
                   YT(NFTS)= Y
270
                   YMAX
                           = AMAX1 ( YMAX. Y )
                   MINY
                           = AMIN1 ( YMIN, Y )
                   21T(NPTS)= 7H1
                   721(NPTS)= 7+2
275
                   YMAX1
                          = AMAXI ( YMAXI . 7H1 )
                   YMIN1
                           = AMIN' ( YMIN1 + ZHI )
                   YMAX2
                           = AMAX1 ( YMAX2. ZH2 )
                   VMIN2
                           = AMIN1 ( YMIN2+ ZH2 )
                                                     XC2.
                   *RITF(6.550) TIVE.
                                          * C 1 •
                                                               XE3.
                                                                         Y 1 4 .
                      ×1•
                                           у т 🙀
200
                                X 2 •
                                                     ×4.
                                                               XTH1.
                                                                         YOURS.
                      XSF3+
                                           7E+1.
                                XCH4.
                                                     71110 ·
                                                               y + 1 .
                                                                         XF2.
                      XF3.
                                                     7+2.
                                X - 4 .
                                                               PCC.
                                          Z+1•
                      UEA.
                   CALL LINGLY ( XT+ YT+ CUMM+ CUMM+ ARTS+ 1+ YMIN+ YMAX+ C++ C++
285
                      0.. 0. )
```

al business states and the sail

	CALL LINFLT (XT. Z1T. Z2T. DUMM. NPTS. 2. YMIN1. YMAX1.
	. YMIN2 . YMAX2 . O O .)
	'C TC 2100
	2200 CONTINUE
5 à C	WRITE(6, #100)
	2100 CATINUE
	CALL EXIT
	100 FCRMAT(8A10)
	150 FCRMAT(1+1+1×+13(2+*)+8410+13(2+*)+///)
255	200 FCRMAT(/-1X-35HXM(I1-4H-1)=-EI2-6-IX-
	. 3+XM(I1,4+,2)=,E12.6,1X,3+XM(I1,4+,3)=,E12.6,1X.
	. 3FXM(I1,4F,4)=,E12.6,1X,3FXM(I1,4F,5)=,E12.6,1X,
	• 3FXM(I1,4F,6)=,E12.6)
	330 FCRMAT(/+1X++T(1)=++2(E12+6+2X)+1X++T(2)=++2(E12+62X)+1X+
300	*T(3)=*+2(E12+6+2X)+/+1X+*T(4)=*+2(E12+6+2X)+1X+
	T(5)=,2(F12.6,2X),77
	43G FCRMAT(/+1X+*A(1)=*E12+6+1X+*A(2)=*+E12+6+
	. 1x * * A(3) = * * F12 . 6 . 1 Y . * A(4) = * * F12 . 6 . 1 X .
	• *A(5)=*•F12•6•1X•*A(6)=*•F12•6•/)
305	500 FCRVAT(/e1X+*R(1)=*E12+6+1X+*R(2)=*+F12+6+
	. 1X+*R(*)=*+F12+6+1X+*R(4)=*+E12+6+1X+
	** (5) = * , F12 . 6 . 1X . * R(E) = * , E12 . E . /)
	550 FCRMAT(/+4x+6HTIME =+E14+7+4x+6HXC1 =+F14+7+4x+
	• 6 + XP2 = + F14 • 7 • 4 X • 6 + XC3 = = • F14 • 7 • 4 X • 6 + XD4 = • E14 • 7 • 7 •
310	.4x.6+X1 =.E14.7.4x.6+X2 =.E14.7.4Y.6+X3 =.E14.7.4X.
	• E+X4 = • F14 • 7 • 4X • EFXC+1 = • E14 • 7 • / •
	.4x,6+XCH2 =,E14.7,4x,6+XCH3 =,E14.7,4x,6+XCH4 =,E14.7,4x,
	.6FZCH1 = .E14.7.4X.6FZCF2 = .E14.7.7.4X.EHXFT = .E14.7.4X.
	-6-X-2 =-514-7-4X-6-X-3 ==-514-7-4X-6-XXH4 ==-514-7-4X-
315	• FHZH1 = • E14 • 7 • / • 4 X • 6 HZH2 = • E14 • 7 • 4 X • 6 HFGC = • E14 • 7 • 4 X •
3 \$ "	= = = = = = = = = = = = = = = = =
	600 FCRMAT(/,F(1x,3+4M(,12,2H)=,E12.6))
	730 FCRMAT(/.1x.*AM(26)=*.F12.6./)
	800 FCRMAT(////.EX.*CET=*.F14.7.38.*RA=*.F14.7.38.*E=*.E14.7
320	500 FCRMAT(/.1x.+K(1)=+E12.6.1x.+K(2)=+.112.6.
J & 3	1y**K(3)=**F12*6*1X**K(4)=**F12*6*1X*
	* *K(5)=**E12*6*1X**K(6)=**F12*6*1/)
	5100 FCRMAT(////.28X.10(2+**).4X.34HMATRIX IS SINGULAR. RUN IS ABORTE
	4X*10(2*))
325	5200 FCRMAT(1X+68(2H+*)+//+35X+
3/2	*FEHSCLUTION IS ATTEMPTED BUT MATRIX MAY BE SINGULAR OR ILL .
	.11+CCACITICAEC.//.1x.f8(2F**))
í	
1	FNC

.. .

STATES OF THE COLOR OF THE COLO			9	CCRAP VAIN	74/74	CF1=2			FTA 4.64	ύ β: 4* +	03/31/80	13.47.25	P & GE	٢
1	-		SYPECL	, REFERE	WAP (P									
1	ш	A TRY	PCINTS	ш. С	ŭ	1.1			:					
1		AR 1 A B 5 1 5 3	4	A TYE PELL	α ≻ α	+ 4	0. 49 LI ₩	ت الا الا الا الا الا الا الا الا الا الا	Q K		130	M €	ws oc	w o
1		0		REAL		_	. v.		7 2	208	:	;) ,	
1		·0	A	Reit R	APRAY	CUTB	2.5.5	56	क भ)	5+126				
1		0	0 M T	REAL		CUTP	ال الله الله الله الله الله الله الله ال	11	45	o u T	EFINE			
13 11 12 12 13 14 15 15 15 15 15 15 15		-	4 P 1	RELL		GUTP	REFO		Ü	CEFINED	4 0			
15 2011 100		12	AP10	REAL		CUTP	REFO	11	9	CEFINED	_			:
10		13	1144	REAL		CUTP	P.F.F.	11	M	DEFINED	_			
15		₹.	AP12	REAL		م ۲۵۲	0 5 6 6	11	4	DER INFE	103			
1		15	AP13	אניין		COTP	NEF.C	11	ď,	CEFIVED	66			
1		16	-	1,34	;	CUTP	RFFS	11	¥	CEFINED	113			
1		17	_	REAL		CUTP	ري اور اور	11	Ł	PEFINED	115			
1		20	_	RE:L		OUTP	REFS		M	DEFINED	101			
2.5 M/18 PEAL CUIP SEEK 11 156 SEFNEE 17 100		21	_	REAL	i	۲۰۰۰	S al ii a	11	S.	GENTAGE.	109			
2.3 MIN REAL CUIP SEES 11 16.3 SEFANED 15.5 MIN REAL CUIP SEES 11 17.0 SEFANED 15.5 MIN REAL CUIP SEES 11 17.0 SEFANED 15.5 MIN SEES 11.0 SEFANED 1		25	A P 1 8	PEAL		CUTP	۷. بد د	11	ď:	CEFINED	76			
2		₩) (V	4 1 2	אנוין		CUTP	A: FF: A	11	Ŧ	DEFINED	117			
24 MF20 RFAL CUTP PEFF 11 170 CFFIEED 106 25 MF22 RFAL CUTP PFF 11 170 CFFIEED 106 26 MF24 RFAL CUTP PFF 11 170 CFFIEED 106 27 MF26 RFAL CUTP PFF 11 170 CFFIEED 106 28 MF24 RFAL CUTP PFF 11 170 CFFIEED 107 29 MF24 RFAL CUTP PFF 11 170 CFFIEED 107 20 MF24 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL RFAL RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL RFAL RFAL RFAL CUTP PFF 11 170 CFFIEED 107 21 MF26 RFAL RFAL RFAL RFAL RFAL RFAL RFAL RFAL		۲	A 1 2	ነና 38		CUTE	V. 141 0:	11	S	DEFINED	ሆ: ሆ			1
26 AFZ1 RELL CUTP FFFF 11 113 CETAND 100 30 AFZ2 RELL CUTP FFFF 11 114 TETAND 101 31 AFZ RELL CUTP FFFF 11 114 TETAND 102 32 AFZ RELL CUTP FFFF 11 114 TETAND 102 33 AFZ RELL CUTP FFFF 11 114 TETAND 102 34 AFZ RELL CUTP FFFF 11 115 TETAND 106 4 AFZ RELL CUTP FFFF 11 115 TETAND 106 4 AFZ RELL CUTP FFFF 11 115 TETAND 106 4 AFZ RELL CUTP FFFF 11 115 TETAND 106 4 AFZ RELL CUTP FFFF 11 115 TETAND 106 4 AFZ RELL CUTP FFFF 11 115 TETAND 106 4 AFZ RELL CUTP FFFF 11 115 TETAND 106 5 AFZ RELL CUTP FFFF 11 115 TETAND 107 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL CUTP FFFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 11 115 TETAND 106 6 AFZ RELL ARRAY FFF 1		4 2	A P 2 0	REAL		CUTP	0. TT 0.	- -	1-	CEFINED	115	:		1
10 10 10 10 10 10 10 10		in C	A P 2 1	₽ ₹ ≵.		CUTP	ν. Ε.	11	₩~	CEFINED	106			
1		5€	2542	3. 3e		CUTP	V) 14. 14. 14. 14. 14. 14. 14. 14. 14. 14.		Æ,	CEFINED	16.			
10 10 10 10 10 10 10 10		27	AM23	REAL		CUTP	S H H G	11	Ý	CFFINED	•			
1 AMPS REAL CUTP PFFS 11 17P 1194 1106 10T 1106 1107 1107 11		8	454	الا الاول الاول		a LO	L L L	11	~	GENIES	123			
1	•	Ξ,	2 S S S	₽E 3 L		CUTP	V. 11. 0.		Ç	134	FFILE	c		
## ## ## ## ## ## ## ## ## ## ## ## ##	31	M)	₩) 3 L 44	RET		CUTP	Suba		25	₩	-	Ю	C	r)
## REAL CUTP PEFS 11 15C CETNED 90 ### REAL CUTP PEFS 11 15C CETNED 100 ### REAL APPRAY DEFDAT REFS 11 15C 2*214 2*215 3*215 ### REAL APPRAY DEFDAT REFS 11 120 ### REAL APPRAY DEFDAT REFS 2*210 ### REAL APPRAY REFDAT REFDAT REFDAT REFT 2*210 ### REAL APPRAY REF							EF INF						i	
10		•	4 4 2	w	,	CUTP	V 11 12 12 12 12 12 12 12 12 12 12 12 12		160	E F NE	Մ			
FEAL CUTP PFFS 11 130 CFFINED 104 105 104 105 104 105 104 105 104 105 104 105 104 105 104 105 104 105		u)	 	141	:	cute	SEE	11	167	EF INE	0			
10	ı	÷	A 46	w	i !	ر ۱	U:	11	136	1111	¢			
10		۲	A P 7	نعا		CUTP	SHER	11	103	ď.	c	۵	0	c)
10 APP REAL CUTP REFS 11 144 DSFINE 155 170 2*104 105							U	EF INE	102				•	
			20 (A. :	44 .		CUTP	ν; Η (α :	11	4	FINE	7	1		
		-	r L	ا العا		n) H 3 a	=	161	FINE	501			
			a ;	41 :	•	o.	U. LL	٠.	۲.	ָרְאָ עי		100	2+104	200
11 FET REAL							0	10	+10	+10		211s	3+115	-
11 FET REAL DEFDAT REFS 3 37 93 94 96 100 105							= 1	21.	412	* 2.1	*	2*215	2+216	5.
12 REAL DEFDAT REFS 7 7 7 7 7 7 7 7 7							22.	× 2	2 1					
12 C REAL		٠ .	L L	7 F 2 F		F D A	S 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- ,	2.7	•		,		:
CK REAL AGPAY 113 115 115 115 115 123 212 224 227 3*230 3*223 3*224 3*22		-	v			F 0 A	ر الا الا		.	σ	O,	ar G	100	10
CLI REAL APPAY DEFOAT	1				i :		1111	~ '	'n	- 6	110	12	o [
1 CLI REAL CEFINED 212 5+235 14 21 216 217 CEFINED 212 214 21 216 217 CEFINED 212 214 21 216 217 CEFINED 212 27 208 CEFINED 212 27 208 CEFINED 2+230 2+233 2+115 2+115 2+115 2+115 2+115 2+121 2+121 CEFINED 2+230 2+233 176 177 182		•	3				410	~ (~ <	H) +	*		
13 CO REAL DEFDAT PEFS 13 CO REAL DEFDAT DEFFIE 15 C REAL DEFDAT DEFFIE 2 14 216 217 2 0A 14 CI REAL DEFDAT DEFFIE 2 2 2 2 0A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1010		۱ ا ۲ ا	4 4 4 4		1 LU) (L	, m	ı,	7.7	•	7	
13 CO REAL DEFDAT REFS 212 214 217 216 217 11 2 11 217 20 8 117 2 110 4 117 2 12 2 12 2 12 2 12 2 12 2 12 2 1			;				÷ (, (v				•		
13 CO REAL DEFDAT PEFS 3 37 20A 14 CI REAL ARRAY PEFDAT PEFS 7 11 2+15 2+117 2+15 2+121 3-121 3-120 2+270 2+273 177 142 2+117 2+117 2+117 3-121 3-120 055 DET REAL ARRAY PEFDAT PEFS 176 177 142	1		177	٠ له	:		V)	μ,	_	_ `	<u>, , , , , , , , , , , , , , , , , , , </u>	-		
13 CO REAL DEFDAT PEFS 3 27 20R 14 C1 AFRIL ARRAY PEFDAT PEFF 7 7 20FF 2*56 2*56 2*10 4*10 15 C REAL ARRAY PEFDAT PEFF 7 11 2*115 2*117 2*115 2*121 2*120 2*2*2 2*2*3 176 177 182							EF1AE	-						
14 CL REAL ARRAY PEFDAT PEFFS 7 245F 2456 2456 2410 441F 2512 2417 24115 2417 2415 2417 2415 2415 2415 2415 2415 2415 2415 2415	!			بر 7- بالد	,	DEFUA	2 H L	4 c⊶	7,	O #				
15 L MEAL ARRAY FEFDAT FEFS T 7 2*5" 2*58 2*100 4*10 2*110 2*111 2*115 2*117 2*115 2*127 2*121 2*12 055 DET REAL REFS 176 177 142		* (1.5	1	₩ / I	7.	استا ت	•	•		
055 DET REAL C-123 C-134 C-135 C-135 C-135 C-124 C-124 C-125 C-125 C-124 C-125		15	د.	PEAL	44 DK DY	E F C A	ان. و لفا د لفا	•		(r .	5 * 2	* *		
055 CET REAL 177 IA							- F				•	.	77.	• 15
		, C	Ĺ	96.91			7 2	126	. 177	а				1
) >	J	.i : :			r Luir	-	-	r				

al hands a little with

REAL REAL REAL INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER				:		-1 (
4 4 47 64 64 64 64 65 65	RUNK	8. E	17	262	DEFINED	192			
		/ O V.	176	177	178	182			
. A A	AY REFUAT	TATES	4.114	3118	4117	14119	2858	34100	24209
4 4 8		2.218	2*221	22	7*227	2+230			
4	AY	REFS	0 1	47	CEFINED	42			
4			io 4	10+126	12*173	12*140	24185		
	RAY	1	<u> </u>	176			1		
INTEGER Integer Integer		REFS	253	25.4	CEFINED	195	253	255	
INTEGER		. SEES.	E PO	239	DEFINED	197	238	240	
	•	REFS	197	239	DEFINED	196			
	•	. (C)	- 21	2*185	502	CEFINED	20	184	193
	;	205		- *************************************					
ور الما الما		N 6	7 11 2	CEFINED	·				
	RUNK STORY	1 KE		256	CEF INED	20.7			
PLEX ARR	AT UEFUAL	N 1 4	· · · · · · · · · · · · · · · · · · ·	/ 7 0		20.4	50.7	*0.47	00.0
		90.87	10.75	27.40	40.27	02.7	19.7	79.7	60.0
		1014	12.44	99.	0	0	C = 2		* / * *
TATERET	. DEFNAT	BEER	****		101	25.8			
INTEGER	•) U.	241	0.40	. 4C	400	247	24.0	269
		27.0		- 774	28.0	786	TELINE	HA!	74.7
		26.2)	-	-)			•	:
417	TEFDAT	BEFS	F.	12	1961			<u>.</u>	
INTEGER	INTEG	REFS	σ	37					
00 4	DEFURT	PEFF	. 00	136	210	256	272	1 4 0	1 % 1
		132	1 2 2	4.0	1	J	, , , ,) I	
AL) 1 1 1 1 1 1	176	182					
1	DEFUAT	REFS	• 1	37	142	1961			
PPLEX ARR	A 4	REFS	27	25	72	3+73	6+78	3*88.	
		CEFINED	790	EC 0	646	0 40		0.0	0
			407	202	• !	וח	797	792	613
E 2 L	DEFRAT	RFFR	. ₩.	707	204				
REAL	1	REFS	211	218	221	224	122	230	233
		CEFINED	210						
RELL		REFS	312	256	579	DEFINED	502		
REAL	i .	2012	212	CEFINED	211			•	
	3	۷/ 4 البا الد	211	900	513	UEF INEU	202		
X !	A V	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.6	9/1	4				
	A LANGE	// C	<u>, , , , , , , , , , , , , , , , , , , </u>	9 10 10	6.70	11110	190	218	
76.4L	KUNKIN		<u></u>	962	2/2	DEFINED	190	127	
7 4 4 4	7 L 7 L 0		11	200	617		190	200	
RF41	TANIE			786	- 546	CEFTKED	RR	7 1	
REAL	RUNKIN	() () ()	13	5 E C	279	CEFINED	60.00	215	
RFAL	RUNKTK			256	- 279	DEFINED	188	27.0	
REAL	RUNKIN		19	40	279	CEFINED	188	213	
RESE	RUKKEU	-	- 23	218	- 722	b 2.2	122	0.5.2	233
			279	CEFINED	191				
REAL .	RUNKCUT		R	218	256	512	DEFINED	161	
4 t A L	X :			721	25.6	512	CEFINEC	191	
	בספעים א מסיים א	rc	' ' C	***	90.	612	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	761	

32

June Charles Shire and a second

		OX.	RELCCATION	 							
			1	CEFINEC	¥.	137	138	135	3+140	142	143
				144	n 4	2+146	2 * 1 4 8	149	150	151	152
				3+154	156	156	157	159	160	161	162
		:	 	163	164	166	151	168	165	170	171
. I MX C	REAL	BRRAY	1	REFE	50	186	CFFINED	165			
×	RFAL	ARRAY		REFS	5	28 48 88	286	CEFINED	242	269	
	RE 2.L		RUNKOUT	REFS	μ; (V)	217	256	279	DEFINEC	1 49	1
	REAL		PUNKOUT	S E E S	S.	216	256	279	DEFINED	169	
	1538		25	PEFS	ζ. K i	215	256	279	DEFINED	189	
	RELL		RLNKOLT	REFS	2.4	214	256	275	DEFINED	189	
	REJL			RFF	21 r	213	214	215	216	218	221
				462	227	230	233	K 4.0	244	245	S
				270	271	272	279	CEFINED	217		
YEAX	REAL	1		REFS	542	271	204	CEFINED	199	244	271
Y P A X 1	25.24			2 4 3 6	4 0	275	285	CEFINED	201	60 47	275
V	BF 11	!		Sept.	100	77.5	286	CFFTAED	201	250	277
× 1 3 ×	1010			. U.) to (070	400	011111111111111111111111111111111111111	200	4 6	272
	1	•	:	200	. 40	375	200	L F F T N F D	200	040	276
0 4 4 3	ا ا ا ا			, U	יי נייני	010	L 40		000	25.7	9.40
7	1 . 4	24	į	2000		1 40	10 10 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.12	403	2
		-) - (/		r c	34.7.	2	1 7 7		
2		4 4 4			7.7	53	* 1	10+/8	21.63	T	14.0
				CEFIREG	5.2	, 10	4.	ស ស	40	2.	n n
			•	U ·	יט פייעי	61	۲,	() ()	4.0	65	99
	RE A L		RUNKIN	RFFS	<u>د</u>	3	6,2	CEFINED	1 40	230	
1 2C+2	REAL		RUNKIN	REFS] c	256	279	DEFINED	190	67 (4	
	SE AL		RUNKOLT	REFS	23	209	218	221	224	227	230
						342	249	256	273	275	276
				310	i.	1.61					
1 212	REAL		PUNKCUT	SEES	₩ & ·	5002	21P	221	224	227	230
						250	2	ď)	~	277	278
	,			3 625	in	151			- 1	1	
3 Z1T	REAL	ARRAY		0.670	90	2.8.5	14 141		273		
	₽ € ≱∟ 	ARRAY	; ;	E !	o	786	7 T.E	247	~ 1		
A A PES	اما دن عاد						•				
THEFT S											
1 A D F A	F 1 2 2 2		4					1			
	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						ć	•	•		
	,	!	441	Jai	182	. 747	256	666	290	۱ ۱	-
			•			•	ì				
FXTERNALS	TYPF	2987	REFERENCES				1,		: 		
41×3			Λ.								
n X n	7638	1 LIERA	RY 200				· ()				
רואטרן		2		286		:	,				
) 1 4 2 0			- - 1								
1 3 C V L V		ب م	176	•				1	1		į
• 35		1	•								
INLINE FUNCTIONS	TYPE	Suke	CEF LINE	α	1	1	:			1	. 1
	RESL	O INTRIN			a •	250	271	275	277		
2 V I V 1	4) 		I	4	3	111	272	312	~		
	- 500	0 40 40 40 40 40 40 40 40 40 40 40 40 40						٠		•	
9: / T J : > - >											

:

al brandle state to state the real experience

10 10	ATFFERT LAP	5 13e	CFF LINE	REFE	RENCES							
1	0 10		, E	4	ur)							
100 100	~		173	172								
100 100	m)		12	125								
100 100	•		1	179							ì	
100 171 120 171 120 171 120 171 170 171 170 171 170 171 170 171 170 171 170 171 170 171	50		£.		1 p 4							
150 FFF 775 126 175 126 175 126 175 126 175 126 175 126 175 175 126 175	9 10	- 4 4	62									
200 FFF	15	F # 4	₹ 60									
100 FFT 100	20	L M	562	173	180							
1	30	-	552	72								
1500 FFF 175	0 0	É	312	60]
100 100	5 50	F # 7	3	1.5								
1000	# ·	F # #	Ľ.	3=2	513							
100 100	9	L M J	317	126								
1000	70	FFT	318	128								
1000 200	9	F # 5	2.1	1 42								
100 27 26 26 26 26 26 26 26			164	701		:		1		1		
100 100		-	7.30	4 6								
100 100			. # 								1	
2010 2010 2010 2010 2010 2010 2010 2010	7 0											
10						;				:	;	1
10 10 10 10 10 10 10 10	202 0		707	507								
10	5 203		9 I V.	# 10 00 00 00 00 00 00 00 00 00 00 00 00		;						!
100 17 17 17 17 17 17 17	012 0		5	the contract of the contract o								
100 FFT	6 220		28.9	r								
176 237 236 237 236 237	5 300		29.	*	*				•			
5000 237 226 5000 54 526 520	004 0		163	p.,								
175 176	0 500		237	Pr)	1			•		1		! !
LABEL IACEY FRGE-TO LEAGL FRGERTIES TACTACK TATTACK	5 510		323	200								
LABEL INTEX FROPTO LENGTH FROPERTIES	5 520		E.	176		•	:					
LABEL INTEX FRCW-TO LENGTH FRCHERTIES	000		49€	236								
10 1 172 126 227 147 1							:		ı	1		1
10	S LABE	7.5	SCW-T	~	REFERTIE							
10			'n	•		Ę.				i		!
125 126 227 5 5 5 5 5 5 5 5 5		ر- ر	41	:: <	INSTACK							
172 173 16	*		125.12	٠.		L		!	: : : : : :		-	1
1 164 185 204	. ^		72 17	. 4								
1 163 185	. 4		75 18	1 4					1			
100 0 1 100 100 100 100 100 100 100 100												
100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	•			. · · · · · · · · · · · · · · · · · · ·				•		1	1	
10 ELOCKS LENGTH WEMPERS - ELAS NAMECLENCTH) 1 ELOCKS LENGTH WEMPERS - ELAS NAMECLENCTH) 1 C		: כ		٠, .	a.							
Decoration Dec	202	: ×	92 90	*			•				:	:
1	4		2									
1	1000 L	- 1		4					:			
NTES 1 C (1) 11 C (1) 12 C 1 T 1 C (1) 12 C 1 T 1 C (1) 13 C 1 T 1 C (1) 14 C 1 T 1 C (1) 15 C 1 T 1 T 1 C (1) 15 C 1 T 1 C (¥ : 4 3	•		7	E :		Ω,	a			C	
13 E			Ξ.	U	C	_	Ü	C		U		,
31 NFRT (1) 32 NUMPR (1) 35 NU				L.3	~	-	_	(2)		֝֡֡		
NTES 1 C NX (1) UTP 26 NX (1) 0 NX (1) 10 NY (1) 10 NY (1) 11 NY (1) 12 NY (1) 13 NY (1) 14 NY (1) 15 NY (1) 16 NY (1) 17 NY (1) 18 NY (1) 18 NY (1) 19 NY (1) 20 NY (1) 21 NY (1) 22 NY (1) 23 NY (1) 24 NY (1) 26 NY (1) 27 NY (1) 28 NY (1) 29 NY (1) 20 NY (1) 20 NY (1) 21 NY (1) 22 NY (1) 23 NY (1) 24 NY (1) 25 NY (1) 26 NY (1) 27 NY (1) 28 NY (1) 29 NY (1) 20 NY (1) 20 NY (1) 20 NY (1) 21 NY (1) 22 NY (1) 23 NY (1) 24 NY (1) 25 NY (1) 26 NY (1) 27 NY (1) 28 NY (1) 29 NY (1)			P ()		3		2 NUPR	3		Ĺ	3	
			1	:			TŝT	111			i i	:
	11		_		:							
5 APS (1) 4 AP4 (1) 5 AP5 (1) 6 AP (1) 7 AP7 (1) 1 AP1 1 AP1 1	110			1		: (^		
6 A W 6 (1)			-,		3		4 4 4	(1)		4	3	
					(1)		7. 247					
15 AVIS (1) 15 AVIS (1) 17 AVIS (1) 18 AVIS (1) 17 AVIS (1) 18 AVIS (1) 19 AVIS (1) 20 AVIS (1) 22 AVIS (1) 23 AVIS (1) 24 AVIS (1) 25 AVI					=		7 4 7	î.		~	<u>.</u>	
E 4 4 5 (1) 16 A 4 15 (1) 17 A 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1		STAR .	111.		LA BATA	11)	j		ur	
8 AWIR (1) 20 AWZ (1) 20 AWZ 2				1 . 1	3		A * 1	3		7 A * 3	3	
1 FP21 (1) 22 AP22 (1) 23 AP2				-	- (1)		API			Za 1 . 1		
100 mm				4.	(1)		S A A S	(1)		3 4 2	3	
				•		•				,		

34

Land Harborne Serve

PAGE 11	
03/31/80 13.47.25	2 XF3 (1) 5 XF42 (1) 8 ZFF1 (1) 2 X3 (1) 5 XF2 (1) 6 ZF1 (1)
FTN 4.6+439	1 KUTTA (1) 1 KDZ (1) 4 KDF1 (1) 7 KDF4 (1) 1 KZ (1) 4 KF1 (1) 7 KF4 (1)
74/74 CPT=2	WEMPERS - BIAS NAME (LENGTE) 0 x01 (1) 0 x04 (1) 6 x0-4 (1) 7 25-2 (1) 0 x1 (1) 6 x1-3 x4 7 27-2 (1) 0 x1 (1) 7 27-2 (1)
	COMMON TLOCAS LENGTH 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

FGLIV CLASSES LENGTH WEMPERS - PIAS NAME (26)

STATISTICS

PACCASM LENGTH

CP. LAFELE CCMPCN LENGTH

1258

F5

t L C	OCK DATA A	74/74 CPT	:=2	F	TN 4.6+439	
1	c c	FLCCK DATA A	· <u>-</u> .			
	C	CCMMON/DEFDAT/	ALF.	E (E).	EFT.	
		• C • T	C.O.	•	*** *	
Ę.		• C1•	F (4),	F (2)•	LM (6).	
		• NPRT•	A UMPR .	PGC•	STPSZ.	
•		 TSTCP 				
	c		*-			
		CCMMON/INTEG/	N X			
16	· c	e e pueste	•			
		CCMPLEX	LM			
		DATA	ALP	/1.0	,	
		CATA	0			
	•	. /20.0.	-440.0	-10000.0.	-54000.0.	
15		• 17.6816.	243.7748.	438.5048.	211-4116	1
-	magneting decise to the mag	CATA	PET	/1.0	· /	• •
	•	CATA	C	/-0.0332P	/	
	• • •	DATA	Tica	/0 • C	/	-
		DATA	01	/0.0	/	
20	•	CATA	£			
		. /0.0.	n • 0 •	1.0.	0 • 0	,
•		CATA				
		. /1.0.	0 • 0	/		
	•	DATA	L M	·		
25		. /(-5.0,0.0).	(-E.O.O.O).	(-10.0.0.0)	(-10.C.C.O).	
	_	. (-12.0.0.0).	(-15.0.0.0)	· / · · · · · · · · · · · · · · · · · ·		
		DATA	NPRT	/32	/	
. —	• • • •	CATA	NUMBR	7.6	7	
		DATA	ħΧ	/10	/	
30	••	CATA	E C C	/1.0	· /	
		DATA	STFS7	/32.0	/	
	* -	DATA	TSTCP	/10.0	7	
		END				

C3/11/85 17.47.25 FATE 2										***									1	5	15 [* (12)	12 bit 11					
7 4 5 4 4 3 C		to be a second of the second o				•	i				// 1321 /4 F		7 2 4 7 1 2 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	C) (•	25FIMED		a -	. .	ני		11. 01.10 20 21. 01.10 20	L 7.				
72774 (875)	RELCCATICA	F =3		بالأعلاق فالملاه		CFFCAT						4	a	0 11 10 10 10 10 10 10 10 10 10 10 10 10	' '	μ	CHEVELS - SAFE (LEACTE)	(1) 275)	c)	Ľ	TOOL	•			:	U V	1: 1: 7
4 414 D 20 D 2	ŧ,	Table Late 2	► a'		2			1	> _		A UNIT	*	<u>ئ</u> در ن				COMMON PLOCKS LENGTH	96					INTEG	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ストしゃし コーハイ・コーハ	ALCEL NORMOU DESIGNATION OF	

COMPON/RUNK/

 $\circ \circ \circ$

Ħ,

KUTTA

---DERIVATIVES TO RUNCK
DO NOT CHANGE THE ORDER OF THE MEMBERS

ဝဝဝဝှဝဝ

9

COHMON/RUNKIN/ VD1, XD2, XDR2,

2

X X V 144. XD3.

ZDH2

ZDH1,

--INTEGRALS FROM RUNGK DO NOT CHANGE THE ORDER OF THE MEMBERS

000000

å

X3. X∃3,

COMMON/RUNKOUT/ X1, X2, XH1, XH2,

23

ZH2

ZH1,

DXA (10),

DIMENSION XA (10)

XR (10),

DX (10),

ĕ C DX, Х1),

EQUIVALENCE (XR,

υU

4

ပပပ

8

GO TO (10, 30, 50, 70), KUTTA
XA(1) = XR (I)
DXA(1) = XR (I)
DXA(1) = XR (I) + 0.5 * DXA (I)
RETURN
30 TDT=2.*DT
RO 40 I=1, RX
DXA(1) = DXA(1) + TDT*DX(1)
XR(1) = XA (I) + HDT * DX (I)
RETURN

20

30

4

30 40

30

98 9

22

DO 60 1=1, MX DO 60 1=1, MX VDT=DT*DX(1) = XA (1) + VDT NE(1) = XA (1) + VDT NE(1) MX DO 80 1=1, MX XR(1) = XA (1) + (DXA (1) + DT * DX (1)) / 6.0

30

N

SUBROUTINE RUNCK

		t o	2*53				\$			
		22	22	ê	41		₹			
		80 4 10 90 1-	3*49	26	DEF INED		DEF INED			
		448 88	3*48	51 1	2 22		4 3			
		4 4 4 F	0 4 % 0 4 % 0 4 4 4	4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	DEF 1 NED 54		41			
		4 6 4 4 9 6 6 6	DEFINED 2*42	DEFINED DEFINED	0. 4. 4. 0.	9 8	36	9 8		
	38	3 3 B	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 6 5 8 4 8 5		5 5 5 5 5 5 5 5 5 5 4 4 4 4 4	31	. 4 4 4 4 6 5 4 4		
	10	REFS REFS REFS	REFS REFS	REFS REFS REFS	REFS	HEFS REFS REFS REFS REFS REFS REFS REFS R	REFS	REFS REFS REFS REFS REFS REFS	KCES	PROPERTIES OPT OPT OPT
	NCES 50	RELOCATION RUNK RUNKIN		RUNK Integ		RUNKIN RUNKIN RUNKIN RUNKIN RUNKIN RUNKIN RUNKOUT RUNKOUT	RUNKOUT	RUNKOUT RUNKOUT RUNKOUT RUNKIN RUNKIN RUNKIN	E REFERENCES 39 40 47 47 51 39 56	LENCTH 14B 12B 13B 10B
MAP (R=3)	references 44	REL ARRAY ARRAY			ARRAY		ARRAY		DEF LINE 40 43 45 45 49 49 51 54 55	FROM-TO 40 43 47 49 51 54 56 57
SYMBOLIC REFERENCE MAP (R=3)	DEF LINE	SN TYPE REAL REAL REAL	real Integer	INTEGER INTEGER REAL	REAL	HEAL REAL REAL REAL REAL REAL REAL	REAL	REAL REAL REAL REAL REAL REAL REAL	S	INDEX I I I
SYMBOL	ENTRY POINTS 2 RUNCK	VARIABLES	115 HDT 113 I	1 KUTTA 6 NX 114 TDT			_	2HZ 011 1HZ 01 1HGZ 01 5X 2 6 1 2 40	STATEMENT LABELS 15 10 9 20 34 30 9 40 57 50 75 70 9 60	LOOPS LABEL 16 20 43 40 60 60 76 80

60

PACE

03/04/80 08.49.44

FTN 4.6+439

74/74 OPT=0 TRACE

SUBROUTINE RUNGK

SUBROUTINE LIMPLT(XT+YT1+YT2+YT3+XX+YTS+Y1M1V+Y1MXX+1Y2M1N+Y2MXX+Y3M1N+Y3MAX)

DESCRIPTION

THIS ROUTINE GENERATES ON-LINE PRINTER PLOTS FOR 1, 2, OR 3 CURVES. THE TABLE OF INDEPENDENT VARIABLES MUST BE EVENLY SPACED.

INPUT

TABLE OF INDEPENDENT VALUES. MUST BE УT 1 FVENLY SPACED. TABLE OF DEPENDENT VALUES FOR FIRST CURVE. 2 YT1 TABLE OF DEPENDENT VALUES FOR SECOND CURVE'S 3 YT2 TABLE OF DEPENDENT VALUES FOR THIRD CURVE. YT3 VХ NUMBER OF POINTS IN XT. NUMBER OF CURVES TO BE PLOTTED. VYTS (NYTS=1, 2, OR 3) 7 Y1MIN LOVER LIMIT OF YT1 SCALE. UPPER LIMIT OF YT1 SCALE. YIMAX IF YIMIN =YIMAX . THIS ROUTINE WILL CALCULATE SCALE VALUES. 9 Y2MIN LOWER LIMIT OF YTZ SCALE. UPPER LIMIT OF YT2 SCALE. 10 Y2MAX IF Y2MIN =Y2MAX . THIS ROUTINE WILL CALCULATE SCALE VALUES. LOWER LIMIT OF YTS SCALE. 11 Y3MIN UPPER LIMIT OF YTS SCALE. 12 Y3MAX

CALCULATE SCALE VALUES.

DUTPUT

ON-LINE PRINTER PLOTS

REMARKS

IF A PLOT OF 1 CURVE OR A PLOT OF 2 CURVES IS
DESIRED, THE VARIABLES NOT NEEDED MUST BE DUMMY
VARIABLES IN THE CALL STATEMENT.
EXAMPLE...TO PLOT 1 CURVE
CALL LINPLT(XV1, YV1, DUMMY, DUMMY, 100, 1, -1.0, 1.0, 0., 0., 0., 0.)

IF YEMIN =YEMAX . THIS ROUTINE WILL

```
SUBROUTINE LINPLT(XT.YT1.YT2.YT3.NX.NYTS.YIMIN.YIMAX.
                                                                                  101
                                                                                        1
     1Y2MIN.Y2MAX.Y3MIN.Y3MAX)
                                                                                  I01
                                                                                        2
      DIMENSION XT(1)+YT1(1)+YT2(1)+YT3(1)+WRYARR(101)
                                                                                  101
      DIMENSION TT(4).DLM(3).SCA(3).SCALE(6).ABC(3)
                                                                                  101
                                                                                        4
      DIMENSION YMIN(3).YMAX(3).YLL(3).YUL(3)
                                                                                  I 0 1
                                                                                        5
      DATA BLK. DOT/1H .1H./
                                                                                  101
                                                                                        6
      DATA ABC/1HA.1HB.1HC/
                                                                                  101
                                                                                        7
      DATA TT /1.0,2.0,5.0,10.0 /
                                                                                  101
                                                                                        8
C
           INITIALIZE
                                                                                  101
                                                                                        Q
      DO 200 II=1.3
                                                                                  101
                                                                                       10
      IF(II .GT. NYTS) GO TO 300
                                                                                  I01
                                                                                       11
      GO TO (10,20,30), II
                                                                                  101
                                                                                       12
   10 YMN=Y1MIN
                                                                                  101
                                                                                       13
      YMX=Y1MAX
                                                                                  101
                                                                                       14
      GO TO 50
                                                                                  101
                                                                                       15
   20 YMN=Y2MIN
                                                                                  101
                                                                                       16
      YMX=Y2MAX
                                                                                  101
                                                                                       17
      GO TO 50
                                                                                  I 0 1
                                                                                       18
   30 YMN=Y3MIN
                                                                                  101
                                                                                       19
      YYX=Y3MAX
                                                                                  101
                                                                                       20
   50 YMIN(II)=1.0E+20
                                                                                  101
                                                                                       21
      YMAX(II)=-1.0E+20
                                                                                  101
                                                                                       22
                                                                                  101
      DO 60 I=1.NX
                                                                                       23
                      Y=YT1(])
      IF(II .EQ. 1)
                                                                                  101
                                                                                       24
      IF(II .EQ. 2)
                       Y=YT2(])
                                                                                  101
                                                                                       25
      IF(II .EQ. 3) Y=YT3(I)
                                                                                  101
                                                                                       26
      YMIN(II) = AMIN1 (YMIN(II) • Y)
                                                                                  101
                                                                                       27
   50 YMAX(II) = AMAX1(YMAX(II) . Y)
                                                                                  101
                                                                                       28
      IF(YMN .EQ. YMX)
                          GO TO 70
                                                                                  101
                                                                                       29
      YLL(II) = YMN
                                                                                  101
                                                                                       30
      YUL(II) = YMX
                                                                                  101
                                                                                       31
      GO TO 140
                                                                                  101
                                                                                       32
      SET SCALES
                                                                                  101
                                                                                       33
   70 D=ABS(YMAX(II)-YMIN(II))
                                                                                  101
                                                                                        34
      IF(0 .NE. 0.0) GO TO 72
                                                                                  101
                                                                                        35
      D = 0.01 + ABS(YMAX(II))
                                                                                  101
                                                                                        36
                                                                                  101
      IF(0 \bulletEQ\bullet 0\bullet0) D = 1\bullet0
                                                                                        37
   72 L1 = ALOG10(D)
                                                                                  I 0 1
                                                                                       38
      IF(D .LT. 1.0)
                         L1 = L1-1
                                                                                  101
                                                                                        39
      TEST = *5*10*0**(FLOAT(L1-8))
                                                                                  101
                                                                                        40
      DO 75 I=1.4
                                                                                  101
                                                                                       41
      R = TT(I) + 10 \cdot 0 + FLOAT(L1)
                                                                                  I 0 1
                                                                                       42
       IF(R .GE. D) GO TO 80
                                                                                  101
                                                                                        43
   75 CONTINUE
                                                                                  101
                                                                                        44
   80 IF (YMIN(II) .NE. 0.0) GO TO 90
                                                                                  101
                                                                                        45
      YLL(II)=0.0
                                                                                  101
                                                                                        46
      YUL(II)=R
                                                                                  I 0 1
                                                                                        47
      GO TO 140
                                                                                  I 0 1
                                                                                        48
   90 IF(YMAX(II) .NE. 0.0) GO TO 100
                                                                                  101
                                                                                       49
   95 YUL(II)=0.0
                                                                                  101
                                                                                       50
      YLL(II) =-R
                                                                                  IO1
                                                                                       51
      GO TO 140
                                                                                  I01
                                                                                       52
  100 P=.5*(YMIN(II)+YMAX(II))
                                                                                  101
                                                                                       53
      P = P + 0 \cdot 001 + R + SIGN(1 \cdot 0 \cdot P)
                                                                                  101
                                                                                       54
      L2 = 0
```

A CARLO COM LINE COM A COMPANY OF THE CARLO

101

55

and the state of the same of t

```
IOI
                                                                                56
    IF(P \cdotNE \cdot 0 \cdot 0) L2 = ALOG10(ABS(P))
                                                                            101
                                                                                 57
    IF(ABS(P) .LT. 1.0) L2=L2-1
    IP=(P+.5+10.0++FLOAT(L2))/10.0++FLOAT(L2)
                                                                            101
                                                                                 58
    IF(IP .LE. 0) IP=IP-1
                                                                            101
                                                                                 59
110 YLL(II)=FLOAT(IP)+10.0++FLOAT(L2)-.5+R
                                                                            101
                                                                                 60
    IF(YLL(II) .GT. YMIN(II)) GO TO 125
IF(YMIN(II) .GT. 0.0) YLL(II)=AMAX1(0.0.4YLL(II))
                                                                            101
                                                                                 61
                                                                            101
                                                                                 62
    YUL(II)=YLL(II)+R
                                                                            101
                                                                            I01
                                                                                 64
    IF(YUL(II) .LT. YMAX(II)) GO TO 135
                                                                                 65
    IF(YMAX(II) .LT. 0.0 .AND. YUL(II) .GT. 0.0) 50 TO 95
                                                                            101
                                                                            101
                                                                                 66
    IF(YUL(II)*YLL(II) .GE. 0.0) 50 TO 130
                                                                            101
                                                                                 67
    DO 120 I=1.10
                                                                            101
                                                                                 68
    TMP1=YLL(II)+.1+R+FLOAT(I)
                                                                            101
    IF(ABS(TMP1) .LE. TEST) GO TO 130
                                                                                 69
                                                                            I01
                                                                                 70
120 CONTINUE
                                                                            101
                                                                                 71
125 IP=IP-1
                                                                            101
                                                                                 72
    GO TO 110
130 IF(YUL(II) .GE. YMAX(II)) GO TO 140
                                                                            101
                                                                                 73
                                                                                 74
                                                                            101
    IF(YMAX(II)-YUL(II) .LE. .005*R) GO TO 140
                                                                            101
                                                                                 75
135 R = 2.0 * R
                                                                            101
                                                                                 76
    GO TO 110
140 DLM(II)=(YUL(II)-YLL(II))/5.0
                                                                            101
                                                                                 77
                                                                            101
                                                                                 78
    SCA(II)=YLL(II)
    PRINT CURVE MAX AND MIN VALUES
                                                                            101
                                                                                 79
150 IF(II .EQ.1) WRITE(6,160)
                                                                            101
                                                                            101
                                                                                 81
160 FORMAT(1H1)
    WRITE(6.170) II.ABC(II).YMIN(II).YMAX(II)
                                                                            101
                                                                                 82
170 FORMAT(1X.7HCURVE Y.II.1X.10HDENOTED BY.1X.A1.4X.4HMIN=1PE10.3.
                                                                            101
                                                                                 83
                                                                            101
                                                                                 84
   12X.4HMAX=1PE10.3)
200 CONTINUE
                                                                            101
                                                                                 85
    PRINT CURVE SCALES
                                                                            101
                                                                                 86
                                                                            101
                                                                                 87
300 WRITE(6,310)
                                                                            I 0 1
                                                                                 88
310 FORMAT(1H0)
                                                                            101
                                                                                  89
    DO 350 II=1.3
                                                                            T 0 1
                                                                                  90
    IF(II .GT. NYTS) GO TO 360
                                                                            101
                                                                                  91
    SCALE(1)=SCA(II)
                                                                            101
                                                                                  92
    30 320 I=2.6
    SCALE(I)=SCALE(I-1)+DLM(II)
                                                                            101
                                                                                  93
                                                                                  94
    IF(ABS(SCALE(I)) .LT. TEST) SCALE(I) = 0.0
                                                                            10.
                                                                                  95
320 CONTINUE
                                                                            T 0 1
                                                                            I01
                                                                                  96
330 WRITE(6,340) ABC(II), (SCALE(I),1=1,6)
340 FORMAT(1X+6HSCALE +A1+10X+1PE10+3+10X+1PE10+3+10X+1PE10+3+10X+
                                                                            101
                                                                                 97
                                                                                 98
   11PE10.3.10X.1PE10.3.10X.1PE10.3)
                                                                            101
                                                                            101
                                                                                 99
350 CONTINUE
360 NXP=NX+10
                                                                            101 100
                                                                            IO1 101
    WRITE(6,365)
365 FORMAT(1HT)
                                                                            101 102
                                                                            IO1 103
    DX=XT(2)-XT(1)
                                                                            I01 104
    DO 800 I=1.NXP
    WRKARR(1)=DOT
                                                                            101 105
                                                                            101 106
    DO 375 JJ=2+101
                                                                            101 107
    J=JJ
                                                                            101 108
    WRKARR(J)=BLK
    IF(MOD((J-1).10).EQ.O) WRKARR(J)=DOT
                                                                            101 109
                                                                            101 110
    IF(I.EQ.1) WRKARR(J)=DOT
```

L'agrant & Glore the surprises of the second

	IF(MOD((I-1),5).EQ.O) WRKARR(J)=DOT	IO1 111
375	CONTINUE	IO1 112
J. J	IF(I.ST.NX) GO TO 750	101 113
400	DO 420 II=1,3	101 114
,,,,	IF(II .GT. NYTS) GO TO 720	101 115
	IF(II.EG.1) Y=YT1(I)	101 116
	IF(II.EQ.2) Y=YT2(I)	101 117
	IF(II.EQ.3) Y=YT3(I)	IO1 118
	NP=100+(Y-YLL(II))/(YUL(II)-YLL(II))+1.5	101 119
	IF(NP .GT. 101) NP=101	I01 120
	IF(NP .LT. 1) NP=1	101 121
	WRKARR(NP)=ABC(II)	101 122
420	CONTINUE	101 123
C	PRINT LINE OF DESIRED PLOTS	<u> 1</u> 01 124
720	X=XT(])	101 125
	IF(I.EQ.1) GO TO 740	I01 126
	IF(MOD((I-1),10).EQ.0) GO TO 740	101 127
	#RITE(6.730) WRKARR	IO1 128
730	FORMAT(20X+101A1)	101 129
	GO TO 800	101 130
740	WRITE(6.750) X.WRKARR	101 131
750	FORMAT(10X+1PE10.3+101A1)	101 132
	SO TO 800	IO1 133
760	X=XT(NX)+FLOAT(I-NX)+DX	I01 134
	IF(MOD((I-1),10).EQ.0) GO TO 820	101 135
	WRITE(6.730) WRKARR	I01 136
900	CONTINUE	101 137
	GO TO 830	IO1 138
820	WRITE(6.750) X.WRKARR	101 139
	WRITE(6+835)	101 140
835	FORMAT(1HS)	101 141
	RETURN	101 142
	END	101 143

SUBROUTINE SESOMI (X+N+N3+MS+MN1+D+R+E+WORK+IHLD+IC+ID+IS)

DESCRIPTION

THIS SUBROUTINE WILL SOLVE AN N BY N SYSTEM OF SIMULTANEOUS EQUATIONS WITH AN ARBITRARY NUMBER OF RIGHT HAND SIDES OR INVERT A MATRIX OF ORDER N. IN THE PROCESS, THE RANK OF THE MATRIX AND ITS DETERMINANT ARE EVALUATED. THE METHOD USED IS THAT OF GAUSS-JORDAN WITH TOTAL PIVOTING IF DESIRED.

INPUT

- FIRST LOCATION OF INPUT COEFFICIENT MATRIX.X(1.1)
 AUGMENTED BY NB RIGHT HAND SIDES. FOR MATRIX
 INVERSE, X IS FIRST LOCATION OF THE MATRIX TO BE
 INVERTED. I.E. X(1.1). X MUST BE DIMENSIONED
 TC (MN1.MN1+NB) IN THE CALLING PROGRAM IN EITHER
 CASE.
- NUMBER OF SIMULTANEOUS EQUATIONS TO BE SOLVED.
 OR ORDER OF MATRIX TO BE INVERTED.
- 3 NB = NUBBER OF RIGHT HAND SIDES FOR SIMULTANEOUS EQUATION SOLUTION. VB = N FOR MATRIX INVERSE.
- MS = 0 FOR STUDY SUCCESSION SOLUTION.
 - MS = 1 FOR MATRIX INVERSE.
- 5 MN1 ROW DIMENSION OF X AS DEFINED IN CALLING PROGRAM.
- S WORK WORKING ARRAY DIMENSIONED AS FOLLOWS IN CALLING PROGRAM... WORK(MN1+NB).
- 7 IHLD WORKING ARRAY DIMENSIONED AS FOLLOWS IN CALLING PROGRAM... IHLD(MN1).
- B IC IC=1. PIVOTING BY ROW ONLY. NORMALLY SUFFICIENT. IC=0. PIVOTING BY ROW AND CCLUMN. RUNS LONGER.
- 9 ID ID=1. DETERMINANT CALCUALTED.
- ID=0. DETERMINANT NOT DESIRED.

 10 IS IS=1. MATRIX IS NOT SCALED PRIOR TO MANIPULATION.
 - IS=0. EACH MATRIX ELEMENT IS SCALED PRIOR TO MANIP.

OUTPUT

- 1 X X(1,1) THROUGH X(N,1) CONTAIN FIRST SOLUTION VECTOR. X(1,2) THROUGH X(N,2) CONTAIN SECOND SOLUTION VECTOR, ETC. FOR MATRIX INVERSE, THE ARRAY X CONTAINS THE INVERSE MATRIX.
- 2 D DETERMINANT OF INPUT X.
- 3 R RANK OF INPUT X.
- 4 E ERROR CHECK
 - E=0 0.K.
 - E=1 MATRIX OF COEFFICIENTS IS SINGULAR.
 - E=2 SOLUTION IS ATTEMPTED BUT EQUATIONS MAY BE SINGULAR OR ILL CONDITIONED.

REMARKS

THIS SUBROUTINE WILL RUN FASTER WITH IC=1 AND IS=1. THE VALUE IC SHOULD BE SET TO 0 ONLY IN RARL CASES WHERE EXTREME ILL—CONDITIONING IS EVIDENT AND IS SHOULD BE SET TO 0 ONLY WHEN ELEMENTS OF ONE ROW OF THE MATRIX IS MUCH GREATER THAN THE ELEMENTS OF OTHER ROWS, CAUSING A FALSE E=2., INDICATOR.

```
F01
                                                                                      1
      SUBROUTINE SESOMI(X.N.NB.MS.MN1.D.R.E.WORK.IHLD.IC.ID.IS)
      DIMENSION X(MN1+1)+WORK(1)+IHLD(1)
                                                                               F01
                                                                                      3
      DOUBLE PRECISION X+WORK+Y+J+SUM+X1
                                                                               F01
C
                                                                               F01
                                                                                      4
      THE FOLLOWING 9 CARDS ARE TEMPORARY MODIFICATIONS TO ALLOW
                                                                               F01
      EXISTING CALLS TO SESOMI (USING 10 ARGUMENTS) TO WORK PROPERLY.
                                                                                      5
                                                                               F01
                                                                                      6
      ANY CALLS NOW MADE SHOULD INCLUDE ALL 13 ARGUMENTS.
      J = LOCF(IC)
                                                                               F01
                                                                                      7
      IF(J .GT. 64 )GO TO 50
                                                                               F01
                                                                                      8
                                                                               F01
                                                                                      -9
      IIC = C
      110 = 1
                                                                               F01
                                                                                     10
      IIS = 0
                                                                               F01
                                                                                     11
                                                                               F01
                                                                                     12
      GO TO 51
                                                                               F01
                                                                                     13
   50 IIC = IC
                                                                               F01
                                                                                     14
      IID = ID
                                                                               F01
                                                                                     15
      IIS = IS
                                                                               F01
                                                                                     16
   51 X1 = 1.
                                                                               F01
      E = 0 .
                                                                                     17
                                                                               F01
                                                                                     18
       R = 0 .
                                                                               F01
                                                                                     19
       IF(IIC .NE. 0)G0 TO 211
                                                                                     20
                                                                                F01
      DO 21 1=1.N
                                                                                F01
                                                                                     21
   21 IHLD(I)=I
                                                                                F01
                                                                                     22
  211 CONTINUE
                                                                                F01
                                                                                     23
       IF(MS)6.4.6
                                                                                     24
                                                                                F01
    6 NN=V+V
                                                                                F01
                                                                                     25
       NB = N
                                                                                F01
                                                                                     26
       MN=N+1
                                                                                F01
                                                                                     27
       DO 14 I=1.N
       DO 14 J=MN.NN
                                                                                F01
                                                                                     28
                                                                                F01
                                                                                     29
   14 X(I.J)=0.
                                                                                F 0 1
                                                                                     30
       DO 15 1=1.N
                                                                                F01
                                                                                     31
       J= I + N
   15 X(I,J)=1.
                                                                                F01
                                                                                     32
                                                                                F01
                                                                                     33
       GO TO 16
                                                                                F01
                                                                                     34
    4 NN=N+NB
                                                                                F01
                                                                                     35
   16 JJ=NN
       NNN=N-1
                                                                                F01
                                                                                     36
                                                                                F01
                                                                                     37
       0=C
                                                                                F01
                                                                                     38
       IF(IID .NE. 0)D=1.
                                                                                F01
                                                                                     39
       IF(IIS .NE. 0)60 TO 361
                                                                                F01
                                                                                     40
       DO 36 I=1+N
                                                                                F01
                                                                                     41
       Y=X([.1)
                                                                                F01
                                                                                     42
       DO 35 J=2.N
                                                                                F01
                                                                                     43
       IF(ABS(Y).LT.ABS(X(I.J)))Y=X(I.J)
                                                                                F01
                                                                                     44
    35 CONTINUE
                                                                                F01
                                                                                     45
       D=D+Y
                                                                                F01
       00 36 J=1.NN
                                                                                     46
                                                                                F01
                                                                                     47
    36 X(1,J)=X(1,J)/Y
                                                                                F01
                                                                                     48
  351 CONTINUE
                                                                                F01
                                                                                     49
       DO 5 J=1.N
                                                                                -01
                                                                                     50
       KK=N-I
                                                                                F01
                                                                                     51
       IF(KK)10,10,26
    25 IF (IIC .NE. 0) GO TO 261
                                                                                F01
                                                                                     52
                                                                                F01
                                                                                     53
       LL=KK+1
                                                                                F01
                                                                                     54
       IJJ=1
                                                                                F 0 1
                                                                                     55
```

Janah Market Comment of the Comment

L=I

		_	
	WORK(1)=X(1+1)	F01	56
	DO 17 II=1.LL	F01	57
	DO 17 J=1•LL	F01	58
	IF(ABS(WORK(1))-ABS(X(II,J)))16,17,17	F 0 1	59
18	WORK(1)=X(II+J)	F01	60
	L=J+I-1	F01	61
	IJU=J	F01	62
17	SURITAGO	F01	63
	IF(IJJ-1:2,2,19	F01	64
19	DO 20 II=1.N	F01	65
	Y=X(II+1)	F01	66
	X(II.1)=X(II.IJJ)	F01	67
20	Y=(LL,II)X	F01	68
	IY=IHLO(I)	F01	69
	IHLD(I)=IHLD(L)	F01	70
	IHLD(L)=IY	F01	71
	D=-3	F01	72
261	IJJ=1	F01	73
	Y=X(1,1)	F01	74
2	D0 1 L=1, KK	F01	75
	IF(ABS(Y)-ABS(X(L+1+1)))7+1+1	F01	76
7	IJJ=L+1	F01	77
	Y=X(L+1,1)	F01	78
1	CONTINUE	F01	79
	IF(IJJ.EQ.1) GO TO 10	F01	80
	D=-D	F01	81
	DO 9 J=1•JJ	F01	82
	Y=X(1 ₉ J)	F01	83
	X(1,1)X=(L,1)X	F01	84
9	Y=(U+U)X	F01	85
10	JJ=JJ-1	F01	86
	D=D*X(1,1)	F01	87
	IF(X(1,1),EQ,0,)GO TO 8	F01	88
31	IF(ABS(ABS((X1-X(1.1))/X1)-1.).LT.1.E-7)E=2.	F01	89
	X1=x(1,1)	F01	90
11	R=R+1.	F01	91
	DO 12 J=1•JJ	F01	92
12		F01	93
	KK=JJ+1	FO.	94
	IF(NNN-EQ-0)GO TO 33	F01	95
	DO 3 K=1+NNN	F01	96
_	00 3 J=2•KK	F01	97
	$X(K_{\theta}J-1)=X(K+1_{\theta}J)-X(K+1_{\theta}1)+WORK(J-1)$	F01	98
	00 5 J=1+JJ	F01	99
5	X(N,J)=WORK(J)		100
	IF(IIC •NE• 0)GO TO 13		101
	NN=N-1		102
	IF(NN.EQ.0)GO TO 13		103
	30 22 I=1+NN		104
	L=I+1	_	105
	00 22 J=L+N		105
	IF(IHLD(I)-IHLD(J))22+22+23		107
2.3	IY=IHLO(I)		108
	IHLD(I)=IHLD(J)		109
	IHLD(J)=IY	F01	110

	00 25 K=1.NB	F01 111
	Y=X(],K)	F01 112
	X(I.K)=X(J.K)	F01 113
25	X(J,K)=Y	
	CONTINUE	F01 114
	RETURN	F01 115
	E=1.	F01 116
•	RETURN	F01 117
	END	F01 1.18
	LAD	F01 119

APPENDIX B

SAMPLE RUNS

Several complete sample runs are presented in this Appendix in order to furnish examples of the output which results when this program is run on a stand-alone basis. The plant used for the examples is a simplified autopilot loop described by aerodynamic transfer function and compensator data taken at various times along a nominal trajectory (see Reference 7). For each case, the NAMELIST input section, the $\underline{X}_{\underline{m}}$ matrix (before and after inversion), output data as listed in Table 3, and line printer plots showing output Y and disturbance state estimates \hat{z}_1 , \hat{z}_2 are given.

The disturbances used in each run are as follows:

- (a) Run 1: w(t) = 1.
- (b) Run 2: w(t) = 1. + 0.5t
- (c) Run 3: $w(t) = 1.5 + 0.5e^{-25t}$

For runs (a) and (b), where the disturbance is of the form $w(t) = C_0 + C_1t$, the disturbance is modeled as

$$\underline{\mathbf{w}} = \underline{\mathbf{H}} \underline{\mathbf{z}} = (1, 0) \begin{pmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{pmatrix}$$

$$\frac{\dot{z}}{z} = \underline{D} \underline{z} + \underline{\sigma} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \underline{\sigma}.$$

For run (c), the disturbance is of the form $w(t) = Co + c_1e^{\alpha t}$ and is modeled as

$$\underline{\underline{w}} = (1, 0) \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

$$\frac{\dot{\mathbf{z}}}{\mathbf{z}} = \begin{bmatrix} 0 & 1 \\ 0 & \alpha \end{bmatrix} \begin{pmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{pmatrix} + \underline{\sigma},$$

RUN 1

INTUI
Ξ,
RUN
IND

.6554035E*02271441E+02.
5066242E+02.
.1325916E+02, .
856E+84.
1712E+04,
1 WE + 0 2.
.2E+C2,
Œ

C = +.78847E-02,

C0 = .1E+01.

f1 = 0.8.

0 = 0.0, 1.0, .1E+01, 8.0,

= .1E+01, 0.0,

(-.8E+01,3.0), = (-.3E+01,0e0), (-.45+01,0e0), (-.7E+C1,.2E+01), (-.7E+01),
(-.1E+02,0.0),

NPPT = 128,

NUMBR = 4.

X = 10,

PG0 = .1F+01,

STPSZ = .325+02,

= .1E+02,

TSTOP

4FND

T(2)=-250000±+32 -200030±+01 T(3)=-16603J5+92 3-T(5)=-,765000±+31 0. . 40 0 0 0 0 E + 0 1 . 40 2 0 0 0 E + 0 1 T(1)=-,320000E+32 T(4)=-,14000E+02 A(1)=+.3960102+02 A(2)= .6136066+13 A(3)=-.4953006+14 A(4)= .2163476+15 A(5)=-.4836707+15 A(6)= .4325065+25

AM(1) =-, 768470E-02 AM(2)=0.	AM(3)=132592F+02 AM(4)=0.	AH(4)=0.	AM(51= .1576945+00
AME 61 = . 78847CL-02 AME 71 = .506624E+02 AME 81=3.	AM(8)=0.	AH(9)=0.	AM(10)= .11354GE+JO
AM(111) = 157694±+00 AM(12) = .655494E+62 AM(13)=0.	1H(13)=0.	AM(14)=0.	A4(15)=1349865+02
AMI161= .113540E+0C AMI17)= .271441E+02 AM(18)=0.	AH(18)=3.	AM(19)=0.	AM(20)=67493CE+02
AM(218=1349865+02 AM(228=0.	AM (23) = 0.	AM(24)=3.	AM(25) = 674930E+62
AH(26)=3.			

R(11=-,257408E+u2 R(2)= ,56233RE+n3 R(3)= ,488746E+04 R(4)= ,216069E+35 R(5)= ,483640±+95 R(6)= ,432000E+05

XM(1,1)= .10000CE+01 XM(1,2)=C.	XH(1,2)=C.	XM(1,3)=0.	XH(1,4)=0.	XH(1,5)=788470E-02 XH(1,6)=0.	XH(1,6)=0.
XM(2,1)=0.	XM(2,2)=1000002+01)0000E+01 XM(2,31=0.	XM(2,4)=0.	XM(2,5)= .1576945+40 XM(2,6)= .7484765-02	X4(2,6)= .7 68470E-02
(M(3,1)=f).	XH(3,2)=0.	XM(3,3)=10000uE+01 XM(3,4)=0.	XM(3,4)=0.	XM(3,5)= .11354_E+00 XM(3,6)= .157634E+30	XM(3.6)= .157694E+30
XM(4+1)=0.	XH(4,21=0.	XH(4, 3) = 0.	XM(4,4)=1636005+01	XM(4,4)=-1636005+01 XM(4,5)=-134986E+02 XM(4,6)= 113540±+00	XM(4,6)= ,113540c+00
XM(5,1)=0.	XH(5,2)=0.	XM (5, 3) = ù.	XH(5,4)=0.	XM(5,5)=67493JE+G2 XM(5,6)=134986E+J2	XM(5,6)=134986E+J2
X#(6+1)=0.	XH16,21=0.	XM (6, 3) =0.	XM(6,4)=0.	XM(6,5)=0.	XM(6,61=6749305+32
XM(1,1)= .100000E+01 XM(1,2)=0.	XM(1,2)=0.	XH(1,3)=0.	XM(1,4)=6.	XM(1,5)=116822E-03 XM(1,6)= .233645E-J4	XM(1,6)= .233645E-34
XM(2,1)=0.	XM(2,21=-,100030E+01	0030E+01 XM(2+3)=0.	XH(2,4)=0.	XM(2,5)=+,233645E-02 XM(2,6)= ,350467E-63	XH(2,6)= ,350467E-03
MACU-LIO.	XH(3,2)=0.	XH(3,3)=106000E+01 XH(3,4)=C.	XH(3,4)=C.	XM(3,5)=168224E-02 XM(3,6)=20000E-12	XM(3,6)=20000CE-32
XM(4,1)=0.	XM(4,2)=0.	XH(4,31=0.	XH(4,4)=-,100000E+01	XM(4,4)=109800E+01 X4(4,5)= .200603E+00 XM(4,6)=416822E-01	XM(4,6)=-,416822E-01
XM(5,1)=0.	XM(5,2)=0.	XM(5,3)=0.	XM(5,4)=0.	XM(5,5)=148163E-01 XM(5,6)= .296327E-22	KM(5,6)= .296327E-ù2
XM(6,11=0.	XM(6,2)=0.	XM(6,3)=Q.	XH(6,4)=G.	XM(6,5)=0.	XM(6,6)=+,1481632+01

K(1)=-.303810E+02 K(2)=-.660188E+03 K(3)=-.505521E+04 K(4)=-.137355E+05 K(5)=-.588505E+03 K(6)=-.643466E+03 PET= -.4555309E+04 RA= .6900000E+01 E= 0.

×04 = 9.	X9H1 = 0.	20H2 = J.	ZH1 = 3.	۲ = 3.
XD3 = 0.	*0 = 5×	20H1 = 0.	XH4 # 3.	UDA = 3.
xD2 = 3.	X3 = 1.	XDH¢ = 0.	XH3 = 3.	# C = 1
XP1 = 0.	x2 = 0.	xDH3 = 0.	XH2 = C.	PGO = .1000000E+01
TIME = 0.	X1 = 0.	XDH2 # F.	XH2 = 0.	7H2 = 0.

-1375C495+12 -4565632E+00 -25954572+01 -126861E+11 -6412085E+11	80059265+11 12055658-10 -91763755-11 -10519462+11	. 4756761E+01 - 1967491E-01 - 6106235E-11 - 1064019E+01 - 6606956E+00	. 1643567E+01 . 49085562-01 138562840 . 9988682E+00 . 693462+00	1282243E+01 5234748E-02 28623172-01 9997393E+00 72673562+00	4%87033E+00 1277760E-01 .3601964E-01 .100034E+01	.3422791E+30 106562i-32 .456886E-32 .104306E+01	. 10857542+00 . 33345014-02 94360675-02 . 99991656+00
X04 = X0H1 = Z0H2 = ZH2 = ZH2 = ZH3	X04 = X0H1 = Z0H2 = ZH2 = ZH3	X 264 X 2012 Z 2012 Z 111 Y 1	X04 = X0H1 = Z0H2 = ZH1 = Y	XD4 = XOH1 = ZOH2 = ZH1 = Y	X X X X X X X X X X X X X X X X X X X	X04 = X0H1 = Z0H2 = ZH1 = Y	X04 = X04 = Z0H1 = Z0H2
= .14c^556:+C2 = .54&3239.+02 =1659993.+01 = .5813855:+02 = .1315429E+01	= -,7617743c+01 = ,3995335c+01 = ,1687666f+00 = ,4957196+02 = ,1046360E+01	= .9335436E+00 = .3971393E+02 = .5932165=-01 = .398139E+02 = .1092723E+01	= .2454174E+61 = .4373116E+02 =126P938E+60 = .4373368E+02 = .1001237E+01	=2678663E+60 = .4366933E+62 =1667377E-01 = .4365440E+62 = .100091E+11	= +.6285549E+00 = .4262903E+32 = .3282118E-01 = .4262924E+02 = .9997073E+0	= .8355972E-01 = .4266852E+02 = .4369254E-02 = .4267241E+62 = .4267241E+62	= .1669761E+00 = .4293716E+02 =959613E+02 = .4293703E+02 = .103076E+01
X 03 X 4 Z D H 1 X H 4 U C A	X X X X X X X X X X X X X X X X X X X	X03 X4 ZDH1 XH4 UDA	X 03 X 4 Z D H 1 X H 4 U D A	XD3 XX4 ZOH1 XH4 UOA	X D3 X 4 Z 2 DH 1 X H 4 U D A	X X X X X X X X X X X X X X X X X X X	X D X X X X X X X X X X X X X X X X X X
.66329776÷u1 .3874161£÷G2 4847177€÷32 .3993356€÷G2 .100000€÷31	18877155+C1 .3687482E+C2 2653760E+01 .3761793E+C2 .1000000E+01	15390122-00 .3337036E+32 .6263982F+01 .3339693E+02	.7250972E+00 .3586016E+02 1069909F+01 .3587676E+02 .100000E+01	.3952231E-ú1 .368508E+02 1725676E+01 .368128E+02 .100000E+01	1880282E+00 .3622589E+02 .3106168E+00 .3622180E+02 .10000000E+01	-,5982773E-02 .359755E+02 .4399168E+00 .3597664E+02	.4885960E-01 .3615198E+32 9035699E-01 .3615362E-62 .100300E+01
1	X X X X X X X X X X X X X X X X X X X	20 X X X X X X X X X X X X X X X X X X X	2 X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X 02 X X X X X X X X X X X X X X X X X X	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.6079224E+00 .90228335+31 .9727568E+00 .9193399E+01	14125982+0J .1002667E+B2 5666908E+D1 .1003512E+G2	-,2470653E-01 .8791909E+01 .15465175+01 .8791295F+01	.5834867E-01 .9293857E+01 .1378225E+01 .9299699E+01	.6636800E-02 .9684745E+01 .968528EE+01 .100000E+01	1532339E-01 .9550771E+01 3477320E+00 .9549421E+01	1372468E-02 .9452724E+01 .1230360E+00 .9452616E+01	.4001100E-02 .9489646E+01 .8732892E-01 .9489998E+01
XP1 = X2 X2 = X7 XPH 3 = XH2 = F60 = F	XD1 = XZ = X	XD1 = X2	XD1 = X2 = X2	X01 = X2 = X2 = X2 = X42	x01 = x2 = x70 = x00 = x	XD1 = X2 = X XDH3 = XH2 = XH2 = FG0 = FG0	X01 = X2 X2 = XDH3 = XH2 = XH2
	= .2000000000000000000000000000000000000	= .30000001 = .6632571F+00 = .57127424-01 = .5633364490 = .4633071E-02	- 41001015+11 - 6967866+06 - 57594566+10 - 69598436+01 - 13633916-02	= .500000E+01 = .7289146E+90 = .1189737E-01 = .7289362F+00 = .8586546E-04	= .60000002+01 = .7201424E+90 =14903625+00 = .7201550E+66	= .700f000E+91 = .711A403E+90 = .2964169E-03 = .7118422E+00 =2737033E-C4	= .9006003E+n1 = .7143004E+60 = .3860712E+01 = .7142971E+00
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7146 X X D H 2 X H 1 Z H 2	711 701 711 712 712	711 X X D T T X X D T X X X X X X X X X X X	714E X1 X0H2 XH1 ZH2	TI 4F X 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7IME X1 X0H2 XH1 ZH2	X K L L K K K K K K K K K K K K K K K K

X34 = .91135422-11	XD4 = -2664685=-01	XD4 =260f685=-01
X5H1 = .21163522-03	XDH1 = -e643683=-03	XDH1 =8603683=-73
Z0H2 = .97245712-03	ZDH2 = .2466327E-02	ZOH2 = .246632F=-02
ZH1 = .9999661E+00	ZH1 = .16G024E+01	ZH1 = .01030024E+01
Y = .71414122+30	Y = .7134554E+00	Y = .7134554=+03
= -2525314E-01	=4113742E-01	= .4113742E=01
= -4292091E+32	= .42851685+32	= .428545BE+02
= -8669565E-43	= .2246341E-02	= .2246341E=02
= -4291991E+62	= .4285174E+02	= .4285174E=02
= -130002E+01	= .4285174E+02	= .9999002E+00
X X X X X X X X X X X X X X X X X X X	XDX X44 X0H1 XH44 UDA	X X X X X X X X X X X X X X X X X X X
. 4558971E-03	= .126567E-C1	1266567E-01
. 3621288E+02	= .3616582E+02	3646392E+02
1119466E+0	= .2591632E-01	2594632E-01
. 362125AE+02	= .361655E+02	3646555E-02
1.00000E+01	= .100000E+01	1000000E+01
HHHHH OMN OMN OMN OMN OMN OMN OMN OMN OMN OMN	# # # # # # # # # # # # # # # # # # #	XOX XXX XXXX X X X X X X X X X X X X X X
. 2659585E-63	=1042501E-02	=1042501E-02
. 9514221E+01	= .9504105E+01	= .9564105E+01
. 95142116E-01	=2106590E-01	=218690E-01
. 9514241E+01	= .9564014E+01	= .9504014E+01
. 100000E+01	= .100000E+01	= .1000000E+01
XD1 H X2 XPH3 H XH2 H PG0 H	XD1 XZ XZ XD43 H XH2 H FG0 H	XD1 X2 XD1 XH2
TIME = .9000000E+01	TIME = .1COCOOOE+D2	TIME = .100.00.5e02
X1 = .7163962E+00	X1 = .715712CE+OC	X1 = .7157123:+C0
XPH2 =93888765=03	XPH2 =9980703E-C2	XDH2 = -99AG7125-C0
XM1 = .7163958F+00	XH1 = .7157126E+OO	XH1 = .7157126E-06
ZH2 = .94372325=05	ZH2 = .2635707E-C4	ZH2 = .2635707F-04

	,946≣-01					• • • ···i·c	14 4 .				••••							. 1
	7			•	• • • • • • • • • • • • • • • • • • •	d d	44	4 4 4 4	(≪(4 64) 	v
	18E-31	••••	•	•	4				A C	4 d	ৰেবৰ বৰ	ববৰ ববৰ	ৰবৰ ব	44 44		বব • •		•
	6	••••															, , , , , , , , , , , , , , , , , , ,	
	885-31	••••		₹ 4	•								••••					•
UTPUT (Y)	9 • 4	••••	• • • • • • • • • • • • • • • • • • •	• 4 • 4 •										• • • • • • • • • • • • • • • • • • •				
PLANT OUTPUT	1575-01	••••	•	• • • • • • • • • • • • • • • • • • •	•								••••	•				•
	3.0	••••			•							•	••••	•				
	.275-01	••••	< <		•	•							• • • •				, , , , , , , , , , , , , , , , , , ,	
	7 • 1		•		•	•	•					•	•	•	•	:		
	-2.029E-02	••••				•		• • • • •	• • • • • • •			_	•	•	•			•••••••
	.5. (6.25RE-11.		1. C 2 UL + C C					7				u u N			7.0000FFE
	SCALE A														♥ e			

OUTPUT LEVEL WITH NO DISTURBANCE PRESENT 1.000F+01................. 5.000F+00..... 6.250E+00. 5. 875£+00. 5.625E+f3..... 9. ₹7 5E + 00. 8. 7505+03 TIME (SECONDS)

1.314E+00 1.013E+00 1.018E+00 7.758E-01 m 7.215E-01 5.3965-61 DISTURBANCE STATE ESTIMATES •••••••••• 4.255E-01 3.013E-01 MAX= 1.314E+00 MAX= 1.013E+00 1.295E-01 6.403E-02 8 6.250F-01. MIN=-1.565E-01 MIN=-1.732E-01 1.875E+00. 3.125E+00. 2.500E+00..... 3.750£+06. -1.665E-01 -1.732E-01 **8** ⋖ Ф GURVE Y1 DENOTED BY CURVE Y2 SENOTED BY 1.250E+00. SCALE A (ZH1) SCALE 8 (ZH2) TIME (SECONDS) 59

The state of the s

RUN 2

:	
ł	
:	
:	
:	
•	
:	
;	
;	
:	
•	
	5
	E
	P RUN #1, IMPUT
;	5
	#
	•
•	SIND

.4385348E+83, .211~116E+D3, z .2E+02, -.44E+03, -.108E+05, -.54E+05, .176816E+32, .2437748E+03,

- - 3328E-01,

= .1E+01. 8

* 9.0. 0.0. .1E.01, 0.0. * .5E+00. ij

* .1E+01, 0.0,

1--12E+02.0.01. x (-.5E+01,0e0), (-.6E+01,0e0), (-.1E+62,0.0), (-.1E+02,0.0), (-.15E+92,0.0),

= 128. MPRT

NUMBE

= 10,

= .15+01, 60

= .326+02, STPSZ

= .1E+02. 61 61

SE NO

T113 = - 4700005+#2	• •	T(2) = 370000E+02	•0	T(3)=270606c+02 0.
	•	- (>) = TINBOOF (<) -		

A11)=-.58602.05+?2 A12)= .136730E+& A13)=-.167303E+05 A14)= .111900E+06 A15)=-.367090E+66 A16)= .543000E+06 AM(10) =-. 146432E+C2 AM(20)=-.179712E+04 AM(251=-.179712E+04 AM(15) =-. 359424 E+03 AM(51= .665608E+00 AM 91=0. AH(19)=0. AM 31=-.175816E+32 AM 41=0. A4(14) =0. AM (24) =0. AME 614 .3329005-P1 AME 704 .2437758+03 AME 8040. AMILLD . 665600E+8C AMIL2) = .438595E+83 AMILS = 0. AM(16)=-.146432E+C2 AM(17)= .211412E+03 AM(18)=0. AM(23)=0. AM(21) =-. 3594246+03 AM(221=0. ANT 13 = -. 3328605-61 AHL 21=0. AM (26) = 0.

R(1)=-.4031845+02 R(2)= .112323E+34 R(3)= .162915E+35 R(4)= .111689E+06 R(5)= .387400E+86 R(6)= .540800E+06

XM(1,1) = .18000čE+01 XM(1,2)=C.	XM(1,2)=C.	XH (1, 3) = 0.	XH(1,4)=0.	XM(1,5)=-,332830E-01 XM(1,6)=0.	XM(1,6)=0.
XH(2.1) = 8.	X4(2,2)=198080E+01	04000E+01 XM(2,3)=0.	XH(2,4)=0.	XH(2,51= .665600E+00	XM(2,5)= .665600E+00 XM(2,6)= .332800E-01
XP(3.1) =0.	XM(3,2)=0.	XM(3,3) =100000E+01 XM(3,4) =0.	XH(3,4)=0.	XM(3,5)=146432E+02	XM(3,5)=-146432E+02 XM(3,6)= .665600E+00
X#(6,11=0.	XM(6,21=6.	XM (4, 3) = 8.	XM(4,4)=100000E+01	XH(4,5)=359424E+03	XH(4,4)=1000005+01 XH(4,5)=359424E+03 XH(4,6)=146432E+02
XH(5,1)=0.	XH(5,2)=0.	XH(5,3)=0.	XH(5,4)=0.	XM(5,5]=179712E+04	XM(5,5)=179712E+04 XM(5,6)=359424E+03
XM(6,11=0.	XM(6,21=0.	XH (6, 3) =0.	XH(6,4)=0.	XM(6,5)=0.	XX(6,6)=179712E+04
XM(1,1) = .100000E+01 XP(1,2)=0.	XP(1,2)=0.	XH(1,3)=0.	XH(1,4)=0.	XM(1,5)=185185E-64	XM(1,5)=165165E-G4 XM(1,6)= .370370E-J5
XH(2,1)=0.	XM(2,21=1000002+01	00000E+01 XM(2,3)=0.	XM(2,4)=0.	XM(2,51=-,370373E-03	XM(2,5)=370373E-03 XM(2,6)= .55555E-04
XM(3,1)=8.	XM(3,2)=0.	XM (3, 3) =100000E+91 XM(3,4) =0.	XH(3,4) = 0.	XH(3,5)= .814815E-02	XM(3,5)= .814815E-02 XM(3,6)=208000E-02
X#(6,1)=8.	XM(4,21=0.	XH(4, 31 = 0.	XM(4,4)=-1000005+01 XM(4,5)= .2000005+00 XM(4,6)=-3185192-01	XM(4,5)= .2000002+00	XM(4.6)=-,3185192-01
X#(5,1)=0.	XH(5,2)=8.	XH (5, 3) = 0.	XH(5,4)=8.	XM(5,5)=556446E-03	XM(5,5)=556446E-Q3 XM(5,6)= .111289E-Q3
XH16.11=6.	XM(6,2)=0.	XM (6,3) = 0.	XM(6,4)=0.	X4(6,5)=8.	XM(6, 6)=55646E-83

KIII=-6454951E+O2 K(2)=-6123656E+O4 K(3)=-142182E+O5 K(4)=-6514886E+O5 K(5)=-6155248E+O3 K(6)=-6303481E+O3 RA= .6000000E+01 E= 0. DET# -.3229640E+07

11MF = 0.	XD1 = 0.	x02 = 1.	XG3 = 0.	X04 = 0.
K1 = 9.	X2 = 0.	X3 × 0.	X4 # 0.	X041 = 0.
JH2 # 8.	XDH" = 0.	XDH4 = 0.	20M1 = 0.	2DH2 = 0.
AN . 18 80.	XH2 = 0.	XH3 = 0.	XX4 N D.	2H1 = 3.
747 ± 0.	PCO = .10050A0F+C1	3	10 m 100	- E

-,24,26,58,9E+83 -,48,45,18,6E+80 -,48,45,18,6E+80 -,15,80,38,6E+80	-68901172+02 -6172443E-01 -14307632+80 -19991175+81 -87494665+00	-,1116329E+12 -,1076638E+61 -,2116658E+01 -,2508237E+01 -,9001156E+00	.2468038E+81 .1443179E-02 .2417536:482 .299978E+01 .8935334E+00	-,4645352E+88 -,68974362-04 -,42615722-15 -,349998E+81 -,69497562+88	.7121517E-01 3134612E-04 .1056317E-03 .408882E-01	-,7894614E-82 .1591521E-34 -,4127075E-04 .449999E+01	89917235-03 47994655-15 -11366045-04 -502J008-01
H, H H H H						1	
X04 X0H1 Z0H2 ZH1	X04 X044 Z042 Z41 Y	X04 X0H1 Z0H2 ZH3	X X X X X X X X X X X X X X X X X X X	XD4 XD41 ZDH2 ZH1	X04 X041 Z042 Z41	X04 X041 Z042 Z442	X04 X0H1 Z0H2 ZH2 Y
-,7779528E+03 -,3341483E+03 -,5196986E+00 -,3456251E+03 -,1575371E+01	.1975917E+02 .3578629E+03 .4266095E+00 .3581694E+03	**3615202E+01 *3553265E+03 *5113105E+00 *3552501E+03 *2500025E+01	.5270227E+60 .3540633E+63 .4986647E+00 .3540826E+03	4471175E-01 .3546580E+03 .500137E+60 .3546535E+03 .349998E+01	5984299E-02 .3544828E+03 .500520E+00 .3544837E+03	.4310336E-02 .3545246E+03 .499790E+00 .854524E+03 .450000E+03	1410950E-12 .3545161E+03 .5000059E+03 .8545161E+63
H H H H H H	H H H H			H A H H H	11 11 11 11	# # # # #	H H H H H
XD3 X4 ZDH1 XH4 UDA	X X X X X X X X X X X X X X X X X X X	х р 3	X D3 X 4 Z DH 1 X H 4 U DA	XD3 X4 ZDH1 XH4 UDA	X 0 X X X X X X X X X X X X X X X X X X	X C X C X C X C X C X C X C X C X C X C	X D 3 X 4 X D 4 X D 4 U 0 A
-,52676325+31 -,22221046+03 -,1590423E+03 -,2547706+33	.1648086E+01 .2126739E+03 .168730E+02 .2128276E+03	2625927E+33 -2177414E+03 7434893E+01 -217163E+03 .250000E+01	.3b01191E-01 .2162947E+03 .2051724E+01 .2162990E+03	3143971E-02 -2166317E+03 4675960E+00 -2166311E+03 -3509000E+01	-,4631205E-03 .2165640E+03 .9007346E-01 .2165640E+03	.3195467E-03 .2165758E+03 1460426E-01 .2165758E+03	-,1037378E-03 .2165745E+03 .1649596E-12 .2165745E+03
11 M H H M	H H H H H		H H H H	11 11 11 11		n # # # #	4 4 4 4 4
7 m 0 m x 0 m x 1 m 0 m x 1	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	XXXXX XXXX XXXX XXXX	X 0 2 X 3 X 0 X 4 X X 4 X X 4 X X 4 X 4 X 4 X 4 X	K X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X
3110706E+00 .1616113E+02 6286625E+02 .1637174E+02	.4492381E-01 .1562612E+02 .1323196E+02 .1563597E+02	1445108E-01 .1596963E+02 2638285E+01 .1596826E+02 .100000E+01	•1864373E-62 •1587154E+82 •4277657E+00 •1587175E+02	8462174E-04 .1589446682 4937732E-01 .1589442E+02	4977684E-34 .1588988E+82 .2334211E-03 .1588988E+02	.2311190E-04 .1589064E+02 .2099094E-02 .1589064E+02	6780962E-05 -1589055E+02 8267198E-03 -1589055E+02
n n n n n		11 11 11 11 11		W H H H H	11 H H H H	11 H H H	
XD1 XZ XDH3 XH2	XD1 XD1 XD1 XH2 XH2 XH2	XD1 X2 XPH3 XH2 PG0	X01 X2 XDH 3 XH2 XH2	X01 X2 XDH3 XH2 PG0	ХВ1 Х2 ХЭН3 ХН2	XD1 XZ XD1 XH2 XH2 PG0	XD1 X2 XDH3 XH2 PG0
.1000000000000000000000000000000000000	.20000CCE+01 .8792473E+00 .7923703E+00 .8792531E+00	.3000000E+11 .9033990E+00 -1628931E+00 .9834219E+00	.4003903E+01 .8976808E+00 .2759861E-01 .8970788E+00	.5000080F+01 .8964709E+08 3510325E+02 .8964707E+00 .5000163E+00	.6806.001E+01 .8982104E+94 .1412673E-03 .8982106E+90 .499996E+00	.7000000E+01 .8982501E+00 .1807334E-03 .8982500F+00	.0907400E+01 .0997452E+90 554274E-04 .0902462E+00
N N N N N		11 13 14 H H	H H H H H	11 H H H H	N N H N H	91 11 11 11 H	11 11 11 11 11
7112 XD:12 XX:12 2X:2	11 K X X X X X X X X X X X X X X X X X X X	777E X1 X0H2 XH1 7H2	TIME X1 XDH2 XH1 ZH2	TIME X1 X0H2 XH1 ZH2	714E X1 XDH2 XH1 ZH2	TIX XXX XXX XXX XXX	7146 X14 X1042 X1042

.4699875=93 .1160746E-05 2599074E-05 .5500800E+01	H - 1650428E - 03 H - 583249E - 06 H - 593249E - 06 H - 606080E + 91 H - 8947433E + 90	H + 1650428E = 83 H - 2335754E = 95 H - 5835754E = 96 H - 5800000000000000000000000000000000000
X04 X041 Z042 Z41	X D4 X DH 1 Z DH 2 Z H 1	X04 X0H1 Z0H2 ZH1
. 35451661-03 . 3545175E+03 . 499986E+00 . 3545175E+03 . 5500008E+01	= -7649155E-84 = -3545174E+83 = -500003E+03 = -3545174E+03 = -600000E+01	76491551-04 35451741-403 5000000181-40 35451741-403 600000001-01
X & X & ZOH1 X X X X X X X X X X X X X X X X X X X	XD3 X4 ZDH1 XH4 UDA	X03 X4 Z0H1 XH4 UDA
.2617325E-04 .2165745E+03 .6141907E-05 .2165745E+03	5578414E-05 2165746E+03 7554712E-04 2165746E+03 600000E+01	=5578414E-15 = .2165746E+03 =7554712E-04 = .0100090E+03
		H H H H H
XDZ X3 XDH4 XH3	XOX XXX XOX XOIL	X02 X3 X0H4 XH8
.1612209E-05 .1569055E+02 .2284290E-03 .1589055E-02	3262775E-06 -1589055E+02 521746E-04 .158965E+82	=3262775E-06 = -1569055E+02 =5217440E-04 =154965E+02 = -154965E+02
11 H H H H		
X01 X2 X0H2 XH2 PG0	XD1 XZ XDH XDH YHD PGO	XD1 X2 X0H3 XH2 YH2
.908046+01 .89824685+08 .13205835=04 .89824605+00	TIME = .1888846+02 X1 = .8982462E+08 XDM2 = .83120550E-05 XM1 = .8942462E+00 ZM2 = .588880E+00	TIME = .10000016+02 X1 = .6907462E+00 XDH2 =3120550E-05 XH1 = .5962467E+00 ZH2 = .50000002
714E H X012 H X012 H X10 H	TINE X1 XDH2 XH1 ZH2	71 ME X1 X0H2 XH1 ZH2

6.000c+00 1. 3996+00 3.588E+60 1.639E+00 DISTURBANCE STATE ESTIMATES 2.382E+00 6.784E-01 MIN=-2.564E-02 MAX= 6.805E+60 MIN=-4.251E-82 MAX= 1.763E+00 1.176E+00 3.188E-81 7 - -- B 2.503£+80..... 3.125E+80. -2,964E-02 -4,251E-02 6-250E-81 1.250E+00..... 1.875F+00..... 3. 75 EE+ 80 **4 0** CURVE Y1 DENOTED BY 4.375E+ (ZH1) (ZH2) SCALE A TIME (SECONDS)

RUN 3

FIRF

I CALCULATION CHAICE FRINT CHANGE CECK 1

35355

XM(2+5)= .657280E+00 XM(2+6)= .332600E+01 XM(345)=-14809EE+02 YM(346)= .6E5600E+00 XX(4+0)= +250006E+00 XX(4+4)=-1000F0E+01 XX(4+5)=-4057E40E XX(4+6)=-146432E+02 XM(5,4)= .256000E+00 XM(5,5)=-.170726E+04 XM(5,6)=-.359424E+03 x#f141)= .100000E+01 x#f1+2)=-.275441E+06 X#f1+3)=-.110176E-05 X#f194)=-.440706E-05 X#f1+5)=-.176282E-04 X#f1+6 XM(6+5)= .449280E+03 XM(6+6)=-.179712E+04 XM(301)= .620701E-01 XM(302)=-.245880E+00 XM(303)=-.559521E+00 XM(304)= .191679E-02 XM(305)= .766718E-02 XM(306)=-.152187E-02 XM(4.1)= .148738E-D1 XM(4.2)=-.594953E-D1 XM(4.3)=-.227581E+OG XM(4.4)=-.551925E+OG XM(4.5)= .152302E+OG XM(4.6)=-.307532E+O1 XM(501)= .206912E-05 XM(502)=-.827648E-05 XM(503)=-.331059E-04 XM(504)=-.132424E-03 XM(50E)=-.529694E-03 XM(50E)= .107005E-03 XM(6.1)= .517280E-06 XM(6.2)=-.206912E-05 XM(6.3)=-.82764PE-05 XM(6.4)=-.331059E-04 XM(6.5)=-.132424E-03 XM(6.6)=-.529694E-03 x#(2+1)= .250001E+00 X#(2+2)=-.100001E+01 X#(2+3)=-.223107E-04 X#(2+4)=-.#55429E-04 X#(2+5)=-.356972E-03 X#(2+6)= .535946E-04 20+2 = -.3447822E+02 = .5391360E+04 --Z968623E+01 XM(1.5)=-.332A00F-01 XM(1.6)=0. K(1)===434415E+UZ K(2)==-118343E+B4 K(3)==-128646E+US K(4)===51986E+F5 K(5)==+200 SE+US K(5)==+519002E+US #{{}}===540000E+02 4{2}= -125500E+04 A{2}===16660E+0F A{4}= -12537FE+[6 A{5}===527750+[6 A{5}==537750]= -53812FE+06 XOF1 = 747 AM (3)=-174316E+02 AM (4)= .250000E+00 AM (4)= .657290F+00 A'(5)= .250000E+00 A'(10)=-.148096E+02 AN (24)= .445250E+03 AN (25)=-.175712E+04 A1114)= .2500005+00 AM(14)=.3557635+03 AM 1193 - 2500008+00 AM (203=--170726E+04 ZDH1 = -.1374622E+02 XP4 = = 0. UCA = 0. = .1078;72£+04 <u>.</u> ت 20+10000102*-=(1)1 XW(1,4)=f. xw(594)=0. YP(3,2)= .250000E+00 XP(3,3)=-.10000CE+01 XP(3,4)=0. XP(6+4)=0. XDP4 = -.1649016E+C4 .2000000E+01 41c296CE+02 -.100005+02 0. XF3 = U. T(2)=-.370C00E+02"
T(5)=-.100C0CE+12 XF(1,3)=0. XF(2+1)= .250000E+00 XF(2+2)=-.100000E+01 XF(2+3)=0. XF(5,3)=0. XP(6,3)=0. AN (6)= .332800E-01 AN(7)= .235354E+03 AN(8)=0. MAE . GOUDOUE+UI E= U. A*(11)= .665600E+00 A*(12)= .377561E+03 AP(13)=f. AM(16)=-.146432E+02 AM(17)= .101785E+03 AM(18)=0. AMI21)=-.359424E+03 AMI22)=-,528529E+02 AMI23)=0. XZ = 0. XDH3 = -.5488076E+03 PG0 = .1000000E+01 XD1 = -+:1996800E+01 X#(191)= .100000E+01 X#(1,2)=0. YF (4,2)=0. x F (6.2)=0. X# (5,2)=0. 14 (1)=-.332800E-01 AFC 2)=0. XDH2 = -.5601700E+02 XH1 = 0. DET= -. 3392748E+U7 •• TINE-34 CODOE+C2 T(4)=-140000E+02 x# (4.1)=0. XF (5+1)=0. XF (3+1)=0. XF(6.1)=0. AV (26)=0.

69

, 2

= --5984000E-01

2525 + 03 2565 + 03 2565 + 03 3575 + 03 3575 + 03 4155 + 03 1075 + 03	252E+02 951E+00 22(E-01 159E+01 178E+00 178E+01 126E+02 126E+01 126E+01 126E+01 126E+01 126E+01 126E+01 126E+01	00000000000000000000000000000000000000	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1162 1162 1162 1162 1162 1162 1162 1162	91149 94 94 94 94 94 94 94 94 94 94 94 94 9	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X X X X X X X X X X X X X X X X X X X	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
-6666699999999999999999999999999999999	**2554327*02*35403*3541716*03*35417716*03*35417716*03*35417716*03*3571545*03*3774786*03*3774786*03*3774786*03*3774786*03*3774786*03*3774786*03*3774786*03*3774786*03*3774786*03*3774786*03*37774786*03*377486*03*3774786*03*377486*03*37747886*03*377486*03*377486*03*377486*03*377486*03*376866*03*37686*038686*038686*038686*038686*03868686*038686*03868686*	7309192E+01 25492E+01 354704EE+01 343470EE+01 2714219E+01 351342E+01 351342E+01 351342E+01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	7 D4040 D4C10
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	**************************************		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 H H B B B B B B B B B B B B B B B B B	a a
C T B) (C T R)	M IN G IN LMCDI DECDI XXXX XXXX		U IN U IN UNCL CHOLL S. XXXX XXXX
	-1572756566 -157845666 -1572665567 -1000000000000000000000000000000000000		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H B 6 6 B B B B B B B B B B B B B B B B	HANDE HEED	
EVELO E TOC EVELO E TOC EVELO E TOC	THE THE PARTY OF T	2×××	T XXXXII XXXXII C ENCTO CVCIL
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	** 1500000000000000000000000000000000000	**************************************	######################################
няяя ряяк	म्बर्गा म्बर्ग्स		Ψ

						; ·	(
# # # # # # # # # # # # # # # # # # #	2					######################################	-10064000 -100640000 -100640000000000000000000000000000000000)t 6 0
7 4 4 4 5 7 6 7 7 7	2 X V V Y 0 0 0 1 1 1 1 1	>> + N >>	X > V' t > C) C C) 1 4 1 7 4.	> X V V Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	# 2 E
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	######################################	11 11 12 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2423984F-02 3565178F+03 31020197+01 356E1746173 356E1746173		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2001 20	0 F F M O C C O C O C O C O C O C O C O C O C	ਿਲਾ : ਨਿਜ਼ਬ ਹਵਾਕਾ
1 4 + 2 L 4 L 3 C X Z	. 7		F 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	× × × × × × × × × × × × × × × × × × ×	-	1 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	# 1 d +	
FOR THE STATE OF T		# 1	E	702 =0844225+f3 73 =23687456+73 704 =37624674f2 745 =37624674f2 745 =31674674f3 747 =31674674f3	#1 #	0 0 0 0 6	0 F A F 0 C C C C C C C C C C C C C C C C C C	
	# O B O C C C C C C C C C C C C C C C C C	e)	10 X X X X X X X X X X X X X X X X X X X	e and	= 1 00 €	1 1 H H H H H	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 N
C	+ + + + + + + + + + + + + + + + + + +	# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #		######################################	(V C) (2) (1) (m) (v (1) (2) (1) (1) (v (1) (1) (1) (1) (v (2) (2) (2) (2) (2) (v (2) (2) (2) (v (2) (2) (2) (2) (v (2) (2) (2) (v (2) (2) (2) (v (2) (2) (2) (v (2) (2) (2) (2) (v (2) (2)	CO C	
* * * * *	K. Cu Street E. E. J. Providence E. E. J. Providence A. A. Pry	to the second of	E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	71	# C. Z J	₩ - 1 - 1 - 1 ₩ - 1 - 1 - 1 ₩ - 2 - 3 - 4 - 1	to CN S t ext. Property A A F S E S F.	(3) > 1 + 1 + 1 +

THE SHARE IS BEIT QUALITY PRACTICABLE FOR THE SECOND

ing the stop of the state of th

The second secon

The state of the s

5-574E-E1 OUTPUT LEVEL WITH NO DISTURBANCE PRESENT 7.7205-01 13-140m* u PLANT OUTPUT (Y) 1 3 2 2 2 1:-1921:-1 6-18-0° 5-EVI3 22-350u•5-CLRVE Y1 DENOTED BY A TIME (SECONDS) B BTEDS

. 5. .68 Call 14 m 47 W

			v - v - v -
7 + 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	 1 +1 25 0 + 01 1 + 1 25 0 0 + 01 1 + 1 2 0 0 0 + 01	1.377.	10.00.00.00.00.00.00.00.00.00.00.00.00.0
	73 .		

I had a contract to the contract to

	1 1						
•							V V
				्य च प्रवास च च्या (
a d v v v			Ş	7	<u></u>		
	u Su Su F	1. 1. 4.	0. 0.	1.15 F		# # # # # # # # # # # # # # # # # # #	

TIME (SECONDS)

					ž ,		; • •	. ,					
			:										
										ω.	i		
			;					' '	ed gr	a :			
					•				a.				
								a a					
						e: d.	if.	; ;					
		1			41 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(d)							
•		• • • •	-1 -1 -2 (1 -2 (1 -2 (1)	engi engi engi engi									
ब्द वा (r च्या (r च्या (r	т т д 1 - д 4 - д 2 - д	• • • • • • • • • • • • • • • • • • •											
α.													
• • • •													
13*:42**1		# 1	ı			1. C.	•	12- 12- 17- 14- 18- 18-		••• • • • •		±4 U / 	

7)

A SAMPA CONTRACTOR OF THE PARTY OF

ì

DISTRIBUTION

	No. of Copies
Defense Technical Information Center	
Cameron Station	
Alexandria, Virginia 22314	14
Commander	
US Army Material Development and Readiness Command	_
ATTN: DRCRD	1
DRCDL 5001 Eisenhower Avenue	1
Alexandria, Virginia 22333	
Alexandia, Viiginia 22333	
US Army Materiel Systems Analysis Activity	
ATTN: DRXSY-MP	2
Aberdeen Proving Ground, Maryland 21005	
IIT Research Institute	
ATTN: GACIAC	1
10 West 35th Street	
Chicago, Illinois 60616	
DRSMI-LP, Mr. Voigt	1
DRSMI-R, Dr. Kobler	1
-RPR	3
-RG	1
-RGN	8
-RPT (Reference Copy)	1
-RPT (Record Set)	1
-FY Mr Oven	1