İçindekiler

1	Z ve S tanım bölgesi	,
2	Ayrıklaştırma	

2 İÇİNDEKİLER

Bölüm 1

Z ve S tanım bölgesi

Zaman tanım bölgesinden S tanım gölgesine dönüşüm

$$F(s) = \mathcal{L}\{f(t)\} = \sum_{k=0}^{\infty} f(kT)e^{-kTs}$$

= $f(0) + f(T)e^{-Ts} + f(2T)e^{-2Ts} + \cdots$ (1.1)

olarak verilmiştir. Zaman tanım bölgesinden Z tanım bölgesine geçiş ise

$$F(z) = \mathcal{Z}\{f(t)\} = \sum_{k=0}^{\infty} f(kT)z^{-k}$$

= $f(0) + f(T)z^{-1} + f(2T)z^{-2} + \cdots$ (1.2)

şeklindedir. S ve Z tanım bölgesi dönüşümlerine dikkat edilirse

$$\mathcal{L}\{f(t)\} = \sum_{k=0}^{\infty} f(kT)(e^{Ts})^{-k}$$

$$\mathcal{Z}\{f(t)\} = \sum_{k=0}^{\infty} f(kT)z^{-k}$$
(1.3)

ifadelerinden

$$z = e^{sT} (1.4)$$

ilişkisi elde edilir. Z dönüşümü için tablo Tablo 1.1 ile verilmiştir.

Zaman domeni	F(s)	F(z)
$\delta(t)$	1	1
$\delta(t - kT)$	e^{-kTs}	z^{-k}
u(t) = 1	$\frac{1}{s}$	$\frac{z}{z-1}$
t	$\frac{1}{s^2}$	$rac{Tz}{(z-1)^2}$
e^{-at}	$\frac{1}{s+a}$	
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	$rac{z}{z-e^{-aT}} \ rac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$
sin(wt)	$\frac{w}{s^2+w^2}$	$\frac{zsin(wT)}{(z-1)(z^2-2zcos(wT)+1)}$
cos(wt)	$\frac{s}{s^2+w^2}$	$\frac{z(z-\cos(wT))}{(z-1)(z^2-2z\cos(wT)+1)}$

Tablo 1.1: S ve Z dönüşümü tablosu

1. S dönüşümü

$$\mathcal{L}\{1\} = \int_{t=0}^{\infty} e^{-st} dt$$

$$= \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty}$$

$$= \frac{e^{-s\infty}}{-s} - \frac{1}{-s}$$

$$= -\frac{1}{-s}$$

$$= \frac{1}{s}$$
(1.5)

olarak elde edilir. Z dönüşümü ise

$$\mathcal{Z}\{1\} = \sum_{t=0}^{\infty} z^{-t}
= 1 + z^{-1} + z^{-2} + z^{-3} + \cdots
= \frac{1}{1 - z^{-1}}, \quad |z| > 1
= \frac{z}{z - 1}, \quad |z| > 1$$
(1.6)

elde edilir.

2.

$$\int udv = uv - \int vdu \tag{1.7}$$

kullanarak u=t ve $dv=e^{-st}dt$ olmak üzere

$$dv = e^{-st}dt$$

$$\int dv = \int e^{-st}dt$$

$$v = \frac{e^{-st}}{-s}$$
(1.8)

ve dolayısıyla

$$\mathcal{L}{t} = \int_{t=0}^{\infty} t e^{-st} dt$$

$$= t \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty} - \int_{t=0}^{\infty} \frac{e^{-st}}{-s} dt$$

$$= t \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty} + \frac{1}{s} e^{-st} \Big|_{t=0}^{\infty}$$

$$= t \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty} + \frac{1}{s^2}$$

$$= \frac{1}{s^2}$$

$$(1.9)$$

elde edilir. Z dönüşümü ise

$$\sum_{t=0}^{\infty} tz^{t-1} = 1 + 2z + 3z^2 + 4z^3 + \cdots$$

$$= \frac{1}{(1-z)^2}, \quad |z| < 1$$
(1.10)

yardımıyla

$$\mathcal{Z}{t} = \sum_{t=0}^{\infty} t T(z^{-1})^{t}
= Tz^{-1} \sum_{t=0}^{\infty} t(z^{-1})^{t-1}
= T \frac{z^{-1}}{(1-z^{-1})^{2}}, \quad |z| < 1
= T \frac{\frac{1}{z}}{(1-\frac{1}{z})^{2}}, \quad |z| < 1
= T \frac{\frac{1}{z}}{\frac{(z-1)^{2}}{z^{2}}}, \quad |z| < 1
= T \frac{z^{2}}{z(z-1)^{2}}, \quad |z| < 1
= \frac{Tz}{(z-1)^{2}}, \quad |z| < 1$$

olarak elde edilir.

Bölüm 2

Ayrıklaştırma

Türevin geometrik yorumu

$$\frac{dy(t)}{dt} \approx \frac{\Delta y}{\Delta t} \tag{2.1}$$

olmak üzere

$$\frac{dy(t)}{dt} \approx \frac{\Delta y}{\Delta t}$$

$$\approx \frac{y((k+1)T) - y(kT)}{(k+1)T - kT}$$

$$\approx \frac{y((k+1)T) - y(kT)}{T}$$
(2.2)

elde edilir. Ayrık bir sinyalin türevi ardışık değerler farkının örnekleme zamanına oranı ile hesaplanabilmektedir. Örneğin, $y(kT)=\sin(kT)$ ve T=0.1 olmak üzere

$$\frac{y((k+1)T) - y(kT)}{T} = 10(\sin((k+1)0.1) - \sin(0.1k))$$
 (2.3)

ve dolayısıyla

$$\{10\sin(0.1), 10(\sin(0.2) - \sin(0.1)), 10(\sin(0.3) - \sin(0.2)), \cdots \}$$

$$\{0.9983, 0.9884, 0.9685, \cdots \}$$

$$(2.4)$$

elde edilir. $y(kT) = \sin(kT)$ sinyalinin türevinin $\frac{d\sin(t)}{dt} = \cos(t)$ olduğu bilindiğinden

$$\left\{ \cos(0.1), \cos(0.2), \cos(0.3), \cdots \right\} \\
 \left\{ 0.9950, 0.9801, 0.9553, \cdots \right\}
 \tag{2.5}$$

elde edilir ve ayrık türev ile benzer değerler olduğu görülmektedir. Bu yaklaşıklığın türeve yakınsaması için örnekleme zamanı T daha küçük seçilmelidir.

$$\frac{dq(t)}{dt} = x \tag{2.6}$$

olmak üzere

$$\frac{dq(t)}{dt} = x$$

$$dq(t) = xdt$$

$$\int dq(t) = \int xdt$$

$$q(t) = \int xdt$$
(2.7)

elde edilir. Buradan hareketle,

$$\frac{\Delta q}{\Delta t} = x$$

$$\frac{q((k+1)T) - q(kT)}{(k+1)T - kT} = x$$

$$\frac{q((k+1)T) - q(kT)}{T} = x$$

$$q((k+1)T) - q(kT) = xT$$

$$q((k+1)T) = q(kT) + xT$$

$$(2.8)$$

ifadesi bulunur. Ayrık zamanda integral birikimli toplama karşılık gelmektedir. Bu karşılıklar Zero Order Hold(ZOH) ile elde edilmiştir. ZOH örnekleme zamanı boyunca değerlerin sabit olduğu varsayımına dayanmaktadır. Bu durum

$$x(t) = x(kT), \quad kT \le t \le (k+1)T \tag{2.9}$$

ile ifade edilebilir.

First Order Hold(FOH) yöntemi ise

$$x(t) = x(kT) + \frac{t - kT}{T}(x((k+1)T) - x(kT)), \quad kT \le t \le (k+1)T$$
 (2.10)

olarak tanımlanır. Eşitliğin sağ tarafı t=kT için $x(kT),\,t=(k+0.5)T$ için

$$x(t) = x(kT) + \frac{t - kT}{T} (x((k+1)T) - x(kT)), \quad kT \le t \le (k+1)T$$

$$= x(kT) + \frac{kT + 0.5T - kT}{T} (x((k+1)T) - x(kT))$$

$$= x(kT) + 0.5(x((k+1)T) - x(kT))$$

$$= x(kT) + 0.5x((k+1)T) - 0.5x(kT)$$

$$= 0.5x((k+1)T) + 0.5x(kT)$$
(2.11)

ve t = (k+1)T için ise

$$x(t) = x(kT) + \frac{t - kT}{T}(x((k+1)T) - x(kT)), \quad kT \le t \le (k+1)T$$

$$x(t) = x(kT) + \frac{(k+1)T - kT}{T}(x((k+1)T) - x(kT))$$

$$x(t) = x(kT) + x((k+1)T) - x(kT)$$

$$x(t) = x((k+1)T)$$

$$(2.12)$$

elde edilir. Görüldüğü üzere ZOH yönteminin aksine T süre boyunca değerler değişmektedir.