$\begin{array}{c} \text{DEPARTMENT OF MATHEMATICS} \\ (2014/2015) \text{SEMESTER 1} \end{array}$

MATH 223-CALCULUS II

Exercise 4

- 1. Suppose that n is a fixed positive integer. Show that $\lim_{x\to\infty} \left(\sqrt{x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n} x \right) = \frac{a_1}{n}$.
- 2. Determine the constants a and b so that $\frac{1+a\cos 2x+b\cos 4x}{x^4}$ has a finite limit as $x\to 0$. Find the value of the limit.
- 3. If $y = \tanh^{-1}(1/x)$, express y as a natural logarithmic function of x. Sketch the graph of $\tanh^{-1}(1/x)$ showing its general characteristics.
- 4. Express each of the following functions as a natural logarithmic function and sketch the graph a) $\operatorname{cosech}^{-1}x$ b) $\operatorname{sech}^{-1}x$ c) $\operatorname{coth}^{-1}x$
- 5. Let $f(x) = \sinh x (x 1) \cosh x$.
 - (a) Find the local maximum and minimum values of f.
 - (b) Find the point of inflection and sketch the graph of f.
- 6. Prove that if $p = \frac{1}{2}\ln(2+\sqrt{5})$ and $q = \ln(1+\sqrt{2})$ then $\tanh x < \sinh x < \operatorname{sech} x < \cosh x < \operatorname{cosech} x < \coth x$ if 0 < x < p, and $\tanh x < \operatorname{sech} x < \sinh x < \operatorname{cosech} x < \coth x$ if p < x < q.
- 7. If $-\frac{\pi}{2} < x < \frac{\pi}{2}$ and a is any real constant, show that the equation $\sin x = \tanh a$ has just one solution, and prove that $\tan x = \sinh a$ and $\sec x = \cosh a$ for this value of x.
- 8. By expressing the hyperbolic functions in terms of the exponential functions, prove the following identities
 - (a) $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$
 - (b) $\sinh x + \sinh y = 2\sinh\left(\frac{x+y}{2}\right)\cosh\left(\frac{x-y}{2}\right)$
 - (c) $\cosh x \cosh y = 2\sinh\left(\frac{x+y}{2}\right)\sinh\left(\frac{x-y}{2}\right)$
- 9. If $y = \ln \tan x$, prove the following
 - (a) $\sin ny = \frac{1}{2} \left(\tan^n x \cot^n x \right)$
- (b) $2\cosh ny \csc 2x = \cosh(n+1)y + \cosh(n-1)y$
- 10. Solve the following equations
 - (i) $10 \cosh x = 2 \sinh x = 11$
- (ii) $3 \tanh x = 4(1 \mathrm{sech}x)$
- (iii) $4 \tanh x = \coth x$
- 11. Determine the real values of x which satisfy the equation

$$\exp\left(\sin^{-1}x\right) = 1 + \exp\left(\cosh^{-1}x\right).$$

12. By making it a quadratic in e^x , show that the equation

$$a \cosh x + b \sinh x = 1$$

has no solution if $a^2 - b^2 > 1$, and that, if $a^2 - b^2 < 1$, it has two solutions, one solution or no solution, depending on whether a + b and a - b are both positive, of opposite signs, or both negative.

1

- 13. Prove that
 - (a) $\alpha = \ln \tan \beta \iff \tanh \alpha = -\cos 2\beta$
- (b) $\alpha = \ln \tan \left(\frac{\pi}{4} + \frac{\beta}{2}\right) \iff \tanh \alpha = \sin \beta$.

14. Prove that in the range $0 < \theta < \frac{\pi}{2}$, the equation

$$\cosh^{-1}(\sec\theta) + \ln(\sin 2\theta) = 0$$

has just one solution, viz. $\theta = \sin^{-1}\left(\frac{\sqrt{3}-1}{2}\right)$.

15. Find the real values of x and y which satisfy the equations

$$\sinh x + \sinh y = \frac{25}{12}, \qquad \cosh x - \cosh y = \frac{5}{12}.$$

- 16. If $f(x) = \cosh^{-1} x \sinh^{-1} x$ for x > 1, prove that f(x) increases with x and that for large values of x the value of f'(x) is very nearly x^{-3} . Find the range of values of f(x) a sx ranges from 1 to ∞ .
- 17. Differentiate the following expressions with respect to x.
 - (a) $x\sqrt{1+x^2} + \sinh^{-1} x$
 - (b) $\ln \sinh (x + \cosh^2 x)$
 - (c) $x\sqrt{x^2 a^2} a^2 \cosh^{-1}\left(\frac{x}{a}\right)$
 - (d) $\ln \sinh (x = \cosh^2 x)$
- 18. Express $\operatorname{cosech}^{-1} x$ in logarithmic form and hence solve the equation

$$\operatorname{cosech}^{-1} x + \ln x = 3.$$

19. Verify the inequalities

$$\operatorname{sech} x < \operatorname{cosech} x < \coth x, \qquad x > 0.$$