Revised Simplex Method

Original simplex method calculates and stores <u>all</u> numbers in the tableau – many are not needed.

→ Revised Simplex Method (more efficient for computing)

Used in all commercially available packages. (e.g. IBM MPSX, CDC APEX III)

Max
$$Z = \underline{c} \underline{x}$$

subject to $\underline{A} \underline{x} \leq \underline{b}$
 $\underline{x} \geq \underline{\theta}$

Initially constraints become (standard form):

$$\begin{bmatrix} \underline{A} & \underline{I} \end{bmatrix} \begin{bmatrix} \underline{x} \\ \underline{x}_s \end{bmatrix} = \begin{bmatrix} \underline{b} \end{bmatrix}$$

 \underline{x}_s = slack variables

Basis matrix: columns relating to basic variables.

$$\underline{B} = \begin{bmatrix} B_{11} & \cdots & B_{1m} \\ \cdots & \cdots & \cdots \\ \vdots & \cdots & \vdots \\ B_{m1} & \cdots & B_{mm} \end{bmatrix}$$

(Initially $\underline{B} = \underline{I}$)

Basic variable values:
$$\underline{x}_B = \begin{pmatrix} x_{B1} \\ .. \\ .. \\ x_{Bm} \end{pmatrix}$$

At any iteration non-basic variables = 0

$$\underline{\underline{B}} \, \underline{x}_B = \underline{\underline{b}}$$
Therefore $\underline{x}_B = \underline{\underline{B}}^{-1} \underline{\underline{b}} \qquad \underline{\underline{B}}^{-1} \rightarrow \text{inverse matrix.}$

At any iteration, given the original \underline{b} vector and the inverse matrix, \underline{x}_B (current R.H.S.) can be calculated.

 $Z = \underline{c}_B \underline{x}_B$ where $\underline{c}_B =$ objective coefficients of basic variables

Step in the Revised Simplex Method

- 1. Determine entering variable, X_j , with associated vector \underline{P}_i .
- compute $\underline{Y} = \underline{c}_B \underline{B}^{-1}$ compute $z_j c_j = \underline{Y} \underline{P}_j c_j$ for all non-basic variables.

Choose largest negative value (maximisation). If none, stop.

- 2. Determine leaving variable, X_r , with associated vector \underline{P}_r .
- compute $\underline{x}_B = \underline{B}^{-1}\underline{b}$ (current R.H.S.)
- compute current constraint coefficients of entering variable:

$$\underline{\alpha}^{j} = \underline{B}^{-1}\underline{P}_{j}$$

 X_r is associated with

$$\theta = \min_{k} \left\{ (\underline{x}_{B})_{k} / \alpha_{k}^{j}, \alpha_{k}^{j} > 0 \right\}$$
(minimum ratio rule)

3. Determine next basis i.e. calculate \underline{B}^{-1}

Go to step 1.

Example:

Max
$$Z = 3X_1 + 5X_2$$

s.t. $X_1 \le 4$
 $2X_2 \le 12$
 $3X_1 + 2X_2 \le 18$
 $X_1, X_2 \ge 0$

Standard form of constraints:-

$$X_1$$
 + S_1 = 4
 $2X_2$ + S_2 = 12
 $3X_1$ + $2X_2$ + S_3 = 18
 X_1 , X_2 , S_1 , S_2 , $S_3 \ge 0$

$$\underline{x}_{B} = \underline{B}^{-1}\underline{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$

$$\underline{c}_B = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$Z = 0 \quad 0 \quad 0 \quad \begin{pmatrix} 4 \\ 12 \\ 18 \end{pmatrix} = 0$$

First iteration

Step 1

Determine entering variable, X_i , with associated vector \underline{P}_i .

- compute $\underline{Y} = \underline{c}_B \underline{B}^{-1}$ compute $z_j c_j = \underline{Y} \underline{P}_j c_j$ for all non-basic variables.

$$\underline{Y} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$z_1 - c_1 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \qquad -3 \qquad = -3$$

and similarly for $z_2 - c_2 = -5$

Therefore X_2 is entering variable.

Determine leaving variable, X_r , with associated vector \underline{P}_r .

- compute $\underline{x}_B = \underline{B}^{-1}\underline{b}$ (current R.H.S.)
- compute current constraint coefficients of entering variable:

$$\underline{\alpha}^{j} = \underline{B}^{-1}\underline{P}_{j}$$

 X_r is associated with

$$\theta = \min_{k} \{ (\underline{x}_B)_k / \alpha^j_k, \alpha^j_k > 0 \}$$

$$\underline{x}_{B} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} \qquad \underline{\alpha}^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$$

$$\theta = Min \{ -, 12/2, 18/2 \}$$

= 12/2

therefore S_2 leaves the basis.

Determine new \underline{B}^{-1}

Solution after one iteration:

$$\underline{x}_{B} = \underline{B}^{-1}\underline{b}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$$

Go to step 1

Step 1 (second iteration)

Compute $\underline{Y} = \underline{c}_B \underline{B}^{-1}$

$$\underline{Y} = \begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 5/2 & 0 \end{bmatrix}$$

- compute $z_j - c_j = \underline{Y} \underline{P}_j - c_j$ for all non-basic variables $(X_1 \text{ and } S_2)$:-

$$X_1: z_1 - c_1 = \begin{bmatrix} 0 & 5/2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} - 3 = -3$$

$$S_2$$
: $z_4 - c_4 = \begin{bmatrix} 0 & 5/2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 0 = 5/2$

Therefore X_I enters the basis.

Step 2

Determine leaving variable.

$$\underline{x}_{B} = \begin{pmatrix} 4 \\ 6 \\ 6 \end{pmatrix} \qquad \underline{\alpha}^{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

$$\theta = Min \{ 4/1, -, 6/3 \}$$

= 6/3

therefore S_3 leaves the basis.

Determine new \underline{B}^{-1}

$$\underline{B} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix} \qquad \underline{B}^{-1} = \begin{bmatrix} 1 & 1/3 & -1/3 \\ 0 & 1/2 & 0 \\ 0 & -1/3 & 1/3 \end{bmatrix}$$

Solution after two iterations:

$$\underline{x}_{B} = \underline{B}^{-1}\underline{b}$$

$$= \begin{bmatrix} 1 & 1/3 & -1/3 \\ 0 & 1/2 & 0 \\ 0 & -1/3 & 1/3 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix}$$

Go to step 1

- compute $\underline{Y} = \underline{c}_B \underline{B}^{-1}$

$$\underline{Y} = \begin{bmatrix} 0 & 5 & 3 \end{bmatrix} \quad \underline{B}^{-1} \qquad = \begin{bmatrix} 0 & 3/2 & 1 \end{bmatrix}$$

- compute $z_j - c_j = \underline{Y} \underline{P}_j - c_j$ for all non-basic variables $(S_2 \text{ and } S_3)$:-

$$S_2$$
: $z_4 - c_4 = \begin{bmatrix} 0 & 3/2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 0 = 3/2$

$$S_3$$
: $z_5 - c_5 = \begin{bmatrix} 0 & 3/2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 0 = 1$

No negatives. Therefore stop.

Optimal solution:

$$S_{1}^{*} = 2$$

$$X_{2}^{*} = 6$$

$$X_{1}^{*} = 2$$

$$Z^{*} = \underline{c}_{B} \underline{x}_{B} = \begin{bmatrix} 0 & 5 & 3 \end{bmatrix} \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} = 36$$