ЛАБОРАТОРНАЯ РАБОТА №1 СЛУЧАЙНЫЕ ПРОЦЕССЫ. ПРОЦЕСС ВИНЕРА. СТОХАСТИЧЕСКОЕ ИНТЕГРИРОВАНИЕ

- 1. Сгенерировать 10^3 значений стандартной нормальной случайной величины.
- 2. Построить график винеровского процесса для моментов t из интервала $0 \le t \le 4$ года с шагом $h=4 \times 10^{-3}$.
- 3. Построить и изобразить реализацию винеровского процесса как случайное блуждание: пусть x_k CB, имеющая биномиальное распределение и принимающая значения \pm 1 с одинаковыми вероятностями p=0.5 и q=0.5. Пусть N число таких случайных величин. Тогда $W_t = \frac{x_1 + \ldots + x_N}{\sqrt{N}}$ для некоторого момента времени t. Для отрисовки использовать $N=10^4$.
- 4. В соответствии с номером варианта сгенерировать процесс ценообразования рискового актива по формуле

$$S_t = S_0 \exp \left(\int_0^t \left(\mu_t - \frac{\sigma_t^2}{2} \right) dt + \int_0^t \sigma_t dW_t \right).$$

Интегралы вычислять численно методом трапеций и Монте-Карло для первого и второго интегралов соответственно с погрешностью не ниже 10^{-3} и вероятностью не ниже 0.95. Последовательно положить моменты времени равными t=0.5;1;...;4 года.

- 5. Сравнить данные, полученные для S_t , с данными цен облигаций $B_t = S_0 \exp \left(\int_0^t \mu_t dt \right)$ в те же моменты времени.
- 6. Решить методом Рунге-Кутты четвертого порядка точности дифференциальное уравнение $dS_t = \mu_t S_t dt + \sigma_t S_t dW_t, t \in [0,4]$. Сравнить с результатом, найденным в п.4 в те же моменты времени t.

ВАРИАНТЫ РАСЧЕТА ЗАДАЧ

Таблица 1

№ варианта	S_0	μ_t , доли	σ_t , %
1	30	0.09 t	$t^{3/2}$
2	15	0.08 t	$2^{t}+1$
3	10	0.1 t	6+2 <i>t</i>
4	20	0.1 t	$2t^2$
5	20	0.05 t	1.5 <i>t</i> +4
6	1	$0.02 \ t$	5 <i>t</i>
7	10	-0.05 t	3 <i>t</i>
8	20	0.05 t	$/t^2$ -3t/
9	25	0.05 t	16- <i>t</i>
10	35	-0.1 t	<i>exp</i> (t)
11	30	-0.02 t	t+2

12	10	0.1 t	t
13	15	0.2t-0.3	5t/2
14	20	0.09 t	4t+1
15	5	$0.01t^2$	$4+t^2$