Machine Learning and Pattern Recognition

东北大学"智能+X"新工科课程系列

机器学习与模式识别

东北大学 信息科学与工程学院 人工智能系 、智能感知与机器人研究所 陈东岳 Bayesian Decision

贝叶斯决策论基础

CHAPTER ONE

概念

Introduction

▶第一个任务——分类

- 把一个未知的对象 模式(Pattern) 分给一个正确的类别.
- · 该任务被称为分类 (Classification)
- 分类依据: 基于概率论的解释

概率(Probability) 是分类的基本依据

• 例子:

这是一只猫,因为"它是猫的概率最大!"

▶相关概念与变量描述

- 类别: ω_i , i = 1, 2, ..., M
- 观测样本的特征向量: $x = [x_1, x_2, ..., x_l]^T$
- 先验(A-priori)概率: $P(\omega_i)$, i=1,2,...,M
- 后验(A-posteriori)概率: $P(\omega_i|x), i = 1, 2, ..., M$
- 类条件(Class-conditional)概率: $p(x|\omega_i), i = 1, 2, ..., M$

•特征概率:
$$p(\mathbf{x}) = \sum_{i=1}^{M} p(\mathbf{x}|\omega_i)p(\omega_i)$$

全概率公式

▶示例——学生群体

已知

- · 类别: ω_1 = 男性, ω_2 = 女性
- 特征: x = 身高
- 先验概率: $P(\omega_i) = 0.5, i = 1,2$
- 类条件概率密度函数: $p(x|\omega_i)$, i=1,2

未知

- •特征概率密度函数: p(x)
- 后验概率: $P(\omega_i|\mathbf{x}), i = 1,2$

▶示例——类条件概率密度函数

- 解释: ω_i 类同学身高为x的概率 $p(x|\omega_i)$
- ・取值: $p(x|\omega_i)$ 可以通过身高分布的直方图近似估计;

▶示例——估计类条件概率

$$p(\mathbf{x}|\omega_i) \approx \frac{\omega_i$$
类中身高为 x 的人数 ω_i 类总人数

	150	155	160	165	170	175	180	185	总数
男性人数	0	0	2	6	12	18	10	2	50
女性人数	2	6	14	18	8	2	0	0	50
$p(x \omega_1=男)$	0	0	0.04	0.12	0.24	0.36	0.20	0.04	1
$p(x \omega_2=$ 女)	0.04	0.12	0.28	0.36	0.16	0.04	0	0	1

$$p(165 \mid \mathbb{B}) \approx \frac{6}{50} = 0.12; \quad p(165 \mid \cancel{5}) \approx \frac{18}{50} = 0.36$$

CHAPTER TWO

分类准则

Classification Rules

二、分类准则

▶概念辨析

・分类准则

- \rightarrow —对于一个具体的样本 x ,该如何分类?
- → 最大后验概率分类准则
- → 最小错误概率分类准则
 - → 最小风险分类准则

・分类器设计准则

- \rightarrow 如何设计一个好的分类器h(x)?
- ▶ 最小平均错误概率准则
- ▶最小平均风险准则

二、分类准则

▶最大后验概率分类准则

将特征观测值为x的样本分给 ω_i , i=1,2,...,M中能够使得后验概率 $P(\omega_i|x)$ 最大的一类 ω^* 。

$$x \to \omega^*$$
: $\underset{\omega_i}{\operatorname{argmax}} [P(\omega_i | x)]$

我们最需要了解的后验概率 恰恰是

我们不知道的概率⊗

二、分类准则

▶贝叶斯定理

贝叶斯公式为类条件概率与后验概率搭建了桥梁

▶最大后验概率分类准则 (for二分类问题)

・分类准则

$$x \to \omega_1 \text{ if } P(\omega_1|x) > P(\omega_2|x)$$

 $x \to \omega_2 \text{ if } P(\omega_2|x) > P(\omega_1|x)$

根据贝叶斯公式:

$$p(\mathbf{x}|\omega_1)P(\omega_1)$$
 (>?<) $p(\mathbf{x}|\omega_2)P(\omega_2)$

当
$$P(\omega_1) = P(\omega_2)$$
:

$$p(\mathbf{x}|\omega_1)$$
 (>?<) $p(\mathbf{x}|\omega_2)$

最大后验概率准则可以通过比较类条件概率来执行

▶最大后验概率分类准则 (for多类问题)

- 当类别数量 *M* > 2时
- 如果: $p(\omega_i|\mathbf{x}) > p(\omega_j|\mathbf{x}), \forall j \neq i$
 - \rightarrow 将样本x分给后验概率最大的类别 ω_i
- 如果: $P(\omega_i) = P(\omega_j), \forall i, j,$
 - > 只需: $p(\mathbf{x}|\omega_i) > p(\mathbf{x}|\omega_i), \forall j \neq i$,
 - \rightarrow 将样本x分给类条件概率最大的类别 ω_i

▶最小错误概率分类准则

• 将样本x分给 ω_i 类的错误概率定义为:

$$P_e(\omega_i|\mathbf{x}) = 1 - P(\omega_i|\mathbf{x})$$

• 分类准则

$$x \to \omega_1$$
 if $P_e(\omega_1|x) < P_e(\omega_2|x)$

$$x \to \omega_2$$
 if $P_e(\omega_2|x) < P_e(\omega_1|x)$

最小错误概率分类准则等价于最大后验概率分类原则

▶最小风险分类准则

- 欢迎来到真实世界, 任意分类行为都必然承担风险;
- 以类别数量M = 2为例,可以定义风险矩阵如下:

$$\Lambda = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix}$$

- 其中 λ_{ij} 表示将 ω_i 类样本分给 ω_j 类的 "风险值"。
 - > 不同的决策可能有不同的风险值;
 - > 即使决策是对的,对应的风险值也可能不为零;

▶最小风险分类准则

・示例: 肿瘤诊断

良性 ω_1 vs 恶性 ω_2

> 恶性误判为良性的风险: λ21

▶ 良性误判为恶性的风险: λ₁₂

> 恶性判为恶性的风险: λ22

> 良性判为良性的风险: λ11

$$\lambda_{21} > \lambda_{12} > \lambda_{22} > \lambda_{11}$$

▶最小风险分类准则

• 将样本 x 分给 ω_1 类的风险为 ℓ_1

$$\ell_1 = \lambda_{11} P(\omega_1 | \mathbf{x}) + \lambda_{21} P(\omega_2 | \mathbf{x})$$

• 样本 x 分给 ω_2 类的风险为 ℓ_2

$$\ell_2 = \lambda_{12} P(\omega_1 | \mathbf{x}) + \lambda_{22} P(\omega_2 | \mathbf{x})$$

• 样本 x 分给决策风险最小的类别

$$x \to \omega_1$$
 if $\ell_1 < \ell_2$; $x \to \omega_2$ if $\ell_2 < \ell_1$

• 当 $\lambda_{12} = \lambda_{21} > 0$,且 $\lambda_{11} = \lambda_{22} = 0$ 时:

最小错误概率分类准则等价于最小风险分类准则

例题

- · 东北大学人工智能专业2019级学生共100人
- 其中男生60人, 女生40人, 具体身高分布如下图所示:

• 若某学生身高为165公分, 试用三种分类准则预测该生性别。

▶最大后验概率分类准则

• 设男生为 ω_1 类,女生为 ω_2 类,根据身高数据,则有:

$$p(165|\omega_1) \approx \frac{6}{60} = 0.10; \quad p(165|\omega_2) \approx \frac{14}{40} = 0.35$$

- 根据全概率公式: $p(165) = 0.10 \times 0.6 + 0.35 \times 0.4 = 0.20$
- 根据贝叶斯公式,有:

$$P(\omega_1|165) = \frac{p(165|\omega_1)P(\omega_1)}{p(165)} = \frac{0.10 \times 0.6}{0.20} = 0.3$$

$$P(\omega_2|165) = \frac{p(165|\omega_2)P(\omega_2)}{p(165)} = \frac{0.35 \times 0.4}{0.20} = 0.7$$

- 由于 $P(\omega_2|165) > P(\omega_1|165)$, 根据最大后验概率分类准则。
- 预测该学生为女生。

▶最小错误概率分类准则

- 后验概率估计结果为 $P(\omega_1|165) = 0.3$; $P(\omega_2|165) = 0.7$
- 将该生预测为男生的错误概率为:

$$P_e(\omega_1|165) = 1 - P(\omega_1|165) = 0.7$$

• 将该生预测为女生的错误概率为:

$$P_e(\omega_2|165) = 1 - P(\omega_2|165) = 0.3$$

- 由于 $P_e(\omega_2|165) < P_e(\omega_1|165)$, 根据最小错误概率分类准则。
- 预测该学生为女生。

▶最小风险分类准则

• 设预测该学生性别的风险矩阵为:

$$\Lambda = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

• 预测该生为男生的风险为:

$$\ell_1 = \lambda_{11} P(\omega_1 | 165) + \lambda_{21} P(\omega_2 | 165) = 1 \times 0.7 = 0.7$$

• 预测该生为女生的风险为:

$$\ell_2 = \lambda_{12} P(\omega_1 | 165) + \lambda_{22} P(\omega_2 | 165) = 1 \times 0.3 = 0.3$$

- 由于 $\ell_2 < \ell_1$,根据最小风险分类准则。
- 预测该生为女生。

总结

THANK YOU

感谢聆听