Pearson's Chi-square Test

Chao Cheng

November 3, 2022

There are mainly two types of situations that's suitable for a Pearson's Chi-square test. The first is to test one sample against a given vector, the so-called goodness-of-fit test. And the second is to test the existence of correlation between two samples, the so-called contingency/independence/association test.

1 Effect size index w

The Effect size index w from Chapter 7 in Cohen [2013] is

$$w = \sqrt{\sum_{i=1}^{m} \frac{(P_{1i} - P_{0i})^2}{P_{0i}}},$$
(1)

where

- m is the number of cell.
- P_{0i} is the **proposition** in cell i proposed by the null hypothesis.
- P_{1i} is the **propotion** in cell *i* proposed by the alternative hypothesis and refects the effect for that cell.

2 Test statistics χ^2

The test statistic is just

$$\chi_T^2 = nw^2 = \sum_{i=1}^m \frac{(nP_{1i} - nP_{0i})^2}{nP_{0i}}.$$
 (2)

3 Goodness of fit test

Let $\boldsymbol{x} \in \mathcal{R}^m$ be a sample from $multinomial(n, \boldsymbol{p})$ where n is the number of trials and $\boldsymbol{p} = (p_1, \dots, p_m)^T$ and $\sum_{i=1}^m p_i = 1$. Here we assume $p_i > 0$ for all i to eliminate some edge cases where some nomial is utterly impossible to happen. Then the probability of any given $\boldsymbol{x} = (x_1, \dots, x_m)^T$ is

$$P\left(\boldsymbol{x}=\left(x_{1},\cdots,x_{m}\right)^{T}\right)=\prod_{i=1}^{m}p_{i}^{x_{i}},$$

where $\sum_{i=1}^{m} x_i = n$. This \boldsymbol{x} can also be seen as the summation of n samples $\boldsymbol{x}_1, \dots, \boldsymbol{x}_n$ where each $\boldsymbol{x}_i \in \mathcal{R}^m$ follows $multinomial(1, \boldsymbol{p})$. And one and only one entry in each \boldsymbol{x}_i is a single one while others m-1 entries all remain zero.

Based on this observed \boldsymbol{x} , we want to test its underlying distribution \boldsymbol{p} against a given vector $\boldsymbol{p}_0 = (p_{01}, \dots, p_{0m})^T$. And from (2) we know that the test statistic is

$$\chi_T^2 = \sum_{i=1}^m \frac{(x_i - np_{0i})^2}{np_{0i}}.$$
 (3)

3.1 Reject rule

Under null hypothesis, this test statistics follows a χ^2 distribution with degree of freedom being m-1. Proof for this statement can be found in Chapter 9 Pearson's chi-square test in David R. Hunter's **Notes for a graduate-level course in asymptotics for statisticians** [Hunter, 2014]. And we reject H_0 when this test statistic χ_T^2 is large enough.

3.2 Power analysis

Under alternative hypothesis, i.e. $\mathbf{p} = (p_1, \dots, p_m)^T \neq \mathbf{p}_0$. Denote $\boldsymbol{\delta} = \sqrt{n} (\mathbf{p} - \mathbf{p}_0)$ and $\boldsymbol{\Gamma} = \operatorname{diag}(\mathbf{p}_0)$. Then the test statistic now follows a **non-central chi-square distribution** with non-central parameter

$$\lambda = \boldsymbol{\delta}^T \mathbf{\Gamma}^{-1} \boldsymbol{\delta}.$$

Note: $\lambda = nw^2$, where w is the effect size.

Non-central chi-square distribution: Let x_1, \dots, x_n be independent normal distribution with means μ_1, \dots, μ_n and unit variance. Then $\sum_{i=1}^n x_i^2$ follows a non-central chi-square distribution with non-central parameter being

$$\lambda = \sum_{i=1}^{n} \mu_i^2$$

and degree of freedom being n. And the pdf of $X = \sum x_i$ is given by

$$f(x; n, \lambda) = \exp(-\lambda/2) \sum_{i=0}^{\infty} \frac{(\lambda/2)^{i}}{i!} f_{n+2i}(x),$$

where $f_n(x)$ stands for the pdf of a ordinary chi-square distribution with n degree of freedom. This result can also be found in Hunter's **Notes for a graduate-level course** in asymptotics for statisticians [Hunter, 2014]. Also Guenther [1977] and Meng and Chapman [1966] offers the same results.

4 Contingency test

The same idea as that in Section 3 for the goodness of fit test except for that p_0 is not now given, but rather computed based on **marginal proportion** of the data. So consider a $r \times c$ contingency table in Table 1 and Table 2.

	col_1	• • •	col_c	Total
row_1	x_{11}	•••	x_{1c}	$x_{1.} = \sum_{j=1}^{c} x_{1j}$
:	:	٠	:	:
row_r	x_{r1}		x_{rc}	$x_{r\cdot} = \sum_{j=1}^{c} x_{rj}$
Total	$x_{\cdot 1} = \sum_{i=1}^{r} x_{i1}$		$x_{\cdot c} = \sum_{i=1}^{r} x_{ic}$	$n = \sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij}$

Table 1: A contingency table, counts in cell

	col_1		col_c	Total
row_1	$p_{11} = x_{11}/n$		$p_{1c} = x_{1c}/n$	$p_{1.} = x_{1.}/n$
:	:	٠	:	:
row_r	$p_{r1} = x_{r1}/n$		$p_{rc} = x_{rc}/n$	$p_{r\cdot} = x_{r\cdot}/n$
Total	$p_{\cdot 1} = x_{\cdot 1}/n$		$p_{\cdot c} = x_{\cdot c}/n$	1

Table 2: A contingency table, proportion in cell

The null hypothesis is that these two types of categories (arranged in row and column, respectively) is independent. Therefore the underlying distribution satisfies

$$p_{ij} = p_{i\cdot}p_{\cdot j}, \quad 1 \le i \le r, \quad 1 \le j \le c. \tag{4}$$

Then the alternative hypothesis is that there exists at least one (i, j) such that (4) does not hold.

4.1 Reject rule

Here the test statistic is

$$\chi_T^2 = n \sum_{i=1}^r \sum_{j=1}^c \frac{(P_{1,ij} - P_{0,ij})^2}{P_{0,ij}} = \sum_{i=1}^r \sum_{j=1}^c \frac{(x_{ij} - np_{i.}p_{.j})^2}{np_{i.}p_{.j}},$$

where $P_{1,ij}$ is just the observed proportion in cell (i,j) and $P_{0,ij} = p_{i\cdot}p_{\cdot j}$ is the expected proportion computed based on marginal data.

Under null hypothesis, χ_T^2 follows a χ^2 distribution with degree of freedom being (r-1)(c-1). And H_0 is rejected for large value of χ_T^2 .

4.2 Power analysis

The same as that in Section 3.2. Just now the p is length $r \times c$ instead of m, and the degree of freedom of the chi-square distribution is (r-1)(c-1).

5 Some conventional assumptions

- Simple random sample: i.i.d sample for each count/trial.
- Sample size(whole table)

• Expected cell count: no zero count. 5 or more in a cell of a 2-by-2 table, and 5 or more in 80% of cells in larger table.

6 Other related tests

- For 2×2 table with small sample size, a Fisher's exact test can be considered.
- \bullet For 2 × 1 table, a binomial test can be considered: Clopper-Pearson's test is an exact one, while the chi-square test or a normal test is a continuous approximation here.

References

- Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge, may 2013. doi: 10.4324/9780203771587.
- William C. Guenther. Power and sample size for approximate chi-square tests. *The American Statistician*, 31(2):83, may 1977. doi: 10.2307/2683047.
- David R. Hunter. Notes for a graduate-level course in asymptotics forstatisticians. June 2014. URL http://personal.psu.edu/drh20/asymp/lectures/asymp.pdf.
- Rosa C. Meng and Douglas G. Chapman. The power of chi square tests for contingency tables. *Journal of the American Statistical Association*, 61(316):965–975, dec 1966. doi: 10.1080/01621459.1966.10482187.