Основания алгебраического подхода к синтезу корректных алгоритмов

Лектор — Рудаков К.В. Наборщик — Старожилец В.М.

Оглавление

1	Лекция 1	
	Введение	
	Поиск решения задачи	
2	Лекция 2	,
	Алгебра, реляционная система и алгебраическая система	
	Первичные свойства фанкции	
	О лекартовом произвелении множеств	

Лекция 1

Введение

Данные лекции рассматривают общую задачу машинного обучения без привязки к конкретным методам и основы алгебраического подхода к синтезу корректных алгоритмов для её решения. В некотором роде они являются взглядом сверху на задачи машинного обучения и методы их решения.

В первую очередь следует сформулировать задачу машинного обучения в общем виде. По сути это задача построения алгоритма, который реализует отображение из множества начальных информаций в множество конечных информаций. Сразу отметим, что в курсе рассматриваются только такие отображения, для которых существует реализующий их алгоритм.

Определение. Символом \mathfrak{I}_{i} (читается «И инишл») будем обозначать множество начальных информаций, например, симптомы болезни.

Определение. Символом $\mathfrak{I}_{\mathfrak{f}}$ (читается «И файнэл») будем обозначать множество конечных информаций, например, диагноз.

Таким образом, на формальном языке нам требуется найти такой алгоритм A, что он осуществляет отображение из множества начальных информаций \mathfrak{I}_{i} в множество конечных информаций \mathfrak{I}_{f} :

$$A: \mathfrak{I}_{\mathsf{i}} \to \mathfrak{I}_{\mathsf{f}}.$$

Пока что задача стоит так, что нам нужно найти некоторое произвольное отображение из одного множества в другое, реализуемое некоторым алгоритмом. При этом свойства этого отображения и алгоритма неважны. В такой постановке у нас нет каких-либо ограничений на искомый алгоритм: даже датчик случайных чисел является решением этой задачу. Поэтому вводятся дополнительные ограничения на допустимые алгоритмы. Итак,

Определение. Обозначим $\mathfrak{M}^* = \{A | A : \mathfrak{I}_i \to \mathfrak{I}_f\}$ множество всех алгоритмов, реализующих отображение из \mathfrak{I}_i в \mathfrak{I}_f .

Определение. Обозначим I_{str} структурную информацию, содержащую условия и требования, накладываемые на A.

Определение. Обозначим $\mathfrak{M}(I_{str}) \subset \mathfrak{M}^*$ некоторое подмножество \mathfrak{M}^* , удовлетворяющее I_{str} .

Теперь у нас есть дополнительная информация I_{str} , позволяющий накладывать дополнительные ограничения на нашу задачу. Введём определения допустимого отображения и корректного алгоритма.

Определение. Любое отображение из множества $\mathfrak{M}(I_{str})$ называется допустимым.

Определение. Задача Z заключается в построении алгоритма, реализующего допустимое отображение.

Определение. Любой алгоритм реализующий любое допустимое отображение называется корректным.

В такой формулировке необходимым и достаточным условием разрешимости задачи Z является выполнение выражения:

$$\mathfrak{M}(I_{str}) \neq \emptyset$$
,

а условием единственности решения — выполнение равенства:

$$|\mathfrak{M}(I_{str})|=1.$$

Заметим также, что в данной формулировке корректный алгоритм — это алгоритм, не допускающий ни одной ошибки, а множество $\mathfrak{M}(I_{str})$ — множество алгоритмов не допускающих ошибок. Однако можно поставить условия несколько мягче, и дать алгоритмам возможность ошибаться.

Поиск решения задачи

Пусть $\mathfrak{M}(\pi)$ — некоторое параметрическое семейство отображений. После того как мы выбрали некоторое семейство отображений $\mathfrak{M}(\pi)$, попытаемся попасть в $\mathfrak{M}(I_{str})$, взяв в $\mathfrak{M}(\pi)$ какое-нибудь отображение за начальное. Это возможно, если данные семейства пересекаются:

$$\mathfrak{M}(\pi) \cap \mathfrak{M}(I_{str}) \neq \emptyset$$
.

Но, с одной стороны, чем сложенее наше семейство, тем выше вероятность, что оно пересекается с семейством $\mathfrak{M}(I_{str})$, однако, с другой стороны, достижение этого пересечения может быть затратно, если $\mathfrak{M}(\pi)$ сложное. Также всегда остаётся вероятность, что множество $\mathfrak{M}(\pi)$ с $\mathfrak{M}(I_{str})$ не пересекается. Для поиска компромиссного решения используют идею расширения множества.

Определение. Пусть f — некоторая операция над множеством \mathfrak{M}^* . Тогда $f(\mathfrak{M}(\pi))$ будем называть расширением множества $\mathfrak{M}(\pi)$.

Таким образом, мы хотим расширить некоторое «простое» множество до пересечения с $\mathfrak{M}(I_{str})$. Однако, не любая функция f нам подходит, так как «простое» множество может расшириться до слишком «сложного» множества. Важно, что f мы выбираем сами, поэтому можем выбрать его так, чтобы искать нужный алгоритм было не слишком сложно.

Лекция 2

Алгебра, реляционная система и алгебраическая система

Данная лекция скорее просвещена вопросам терминологии в данном курсе. Поэтому, тут будет очень много определений (ещё больше, чем в предыдущей). Для начала определим понятия алгебры, реляционной системы и алгебраической системы.

Определение. Сигнатура — набор характеристик, однозначно идентифицирующий объект.

Определение. Отношение — математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. В нашем курсе будет обозначаться буквой R.

Определение. Алгеброй называется структура

$$\left(\begin{array}{ccccc}
A & Op_1 & Op_2 & \dots & Op_k \\
& n_1 & n_2 & \dots & n_k
\end{array}\right)$$

где A — множество, Op_i — операции на этом множестве, n_i — сигнатура.

Определение. Реляционной системой называется структура

$$\left(\begin{array}{cccc} A & R_1 & R_2 & \dots & R_k \\ & n_1 & n_2 & \dots & n_k \end{array}\right)$$

ide A — множество, R_i — отношения на этом множестве, n_i — сигнатура.

Определение. Алгебраической системой называется структура

$$\left(\begin{array}{cccccccc} A & R_1 & R_2 & \dots & R_k & Op_1 & Op_2 & \dots & Op_l \\ & n_{1,1} & n_{1,2} & \dots & n_{1,k} & n_{2,1} & n_{2,2} & \dots & n_{2,l} \end{array}\right)$$

где A — множество, R_i — отношения на этом множестве, Op_i — операции на этом множестве, n_i — сигнатура.

Первичные свойства фанкции

Теперь поговорим о функциях. Первичные свойства функций это иньективность, сурьективность и биективность. Все остальные свойства требуют задать некоторую структуру на тех множествах, на которых они действуют (например, метрику). Пусть функция f действует из A в B. То есть:

$$\begin{cases} f: A \to B \\ f(A) \subseteq B \end{cases}$$

4

Определим также понятие отношения эквивалентности на множестве A:

Определение. Отношение эквивалентности π_f на множестве A, это бинарное отношение, которое обладает свойствами транзитивности, симметричности и рефлексивности.

Данное определение приводит нас к определению фактор множества A_{π_f} :

Определение. Фактормножество A_{π_f} это множество всех классов эквивалентности заданного множества A, по заданному отношению π_f .

А также, к понятию ядерной эквивалентности отображения f.

Определение. Ядерная эквивалентность отображения f:

$$(a_1 \equiv a_2) \equiv (f(a_1) = f(a_2))$$

 Γ де эквивалентность понимается в смысле π_f . Следует понимать, что мы выбираем π_f так, чтобы это свойство было выполнено. Это выполнено не для любого отношения эквивалентности

Саня, тут надо как нибудь переписать... непонятно что откуда идет. Я так понимаю что мы π_f выбираем по f, но чёрт его знает.

Таким образом, мы можем, например, показать, что любое отображение из A в B раскладывается в суперпозицию суръекции, инъекции и биекции. Данный факт легко понять с помощью рисунка 2.1: На данном рисунке изображены четыре множества: A, B, A_{π_f} —

Рис. 2.1: Иллюстрация представления отображения f как суперпозиции суръекции, инъекции и биекции. f_S - суръективное отображение, f_{1-1} - биекция, f_i - инъекция

фактормножество, и f(A). Множество A суръективно отображается в свое фактормножество A_{π_f} , из-за ядерной эквивалентности отображения f, A_{π_f} биективно отображается в f(A). В свою очередь f(A) иньективно вкладывается в B как его подмножество.

О декартовом произведении множеств

Поговорим о декартовом произведении множеств и том, как его можно представить через другие операции с множествами. Итак, пусть есть множество индексов $\mathfrak{A} = \{\alpha\}$ и соответствующий этому множеству индексов набор множеств $\{A_{\alpha} | \alpha \in \mathfrak{A}\}$. Чему тогда равно произведение $\prod_{\alpha \in \mathfrak{A}} A_{\alpha}$? По крайней мере оно не нулевое так как любое декартово произведение произвольного семейства непустых множеств в непустом количестве непусто (об этом свидетельствует теорема выбора). Оказывается, что

$$\prod_{\alpha \in \mathfrak{A}} A_{\alpha} = \{ f | f : \mathfrak{A} \to \bigcup_{\alpha \in \mathfrak{A}} A_{\alpha}, \forall \alpha \in \mathfrak{A} : f(\alpha) \in A_{\alpha} \}$$

Например, пусть

$$A_{\alpha} = A_{(x,y)} = \{(x',y') | \rho((x,y),(x',y')) \le 1\}$$

Тогда,

$$\prod_{\alpha \in \mathfrak{A}} A_{\alpha} = \{ f | f : R^2 \to R^2, \ \forall (x, y) : \rho((x, y), f((x, y))) \le 1 \}$$