Optimal k-means clustering

Mattia Ravasio, Hamza Zerhouni

December 9, 2022

Problem statement

K-means clustering is often the go-to choice for clustering problems. The main idea is to find k centroids (C_1 , ..., C_k) by minimizing the sum over each cluster of the sum of the square of the distance between the point and its centroid.

$$C_1, C_2, ..., C_k = rg \min(\sum_{i=1}^k \sum_{x \in S_i} \lVert x - C_i
Vert)$$

The random nature of the algorithm results in two big issues:

- 1. The algorithm has an **issue of stability**, and often different random seeds lead to different solutions
- 2. The algorithm has **no proof of optimality** when converged

We propose an MIO (mixed integer optimization) approach that focus on solving these two issues.

Why do we care?

Clustering has many applications:

Financial markets

Political campaigns

We need a **reliable method** that is guaranteed to **find a stable and provable optimal solution.**

The effect of such a method can impact all the different applications of clustering.

Proposed formulations

Manhattan Distance

$egin{array}{ll} \min_{x,\gamma,z,r,\mu,y} & \sum_{j} \gamma_j \ & ext{s.t.} & \sum_{d=1}^D y_{ijd} \leq r_{ij} \end{array}$ $\forall i,j$ $y_{ijd} \geq x_i^d - p_i^d$ orall i,j,d $y_{iid} \geq -(x_i^d - p_i^d) \hspace{1cm} orall i, j, d$ $\gamma_j \geq r_{ij} - \mu_{ij}$ orall i, j $M(1-z_{ij}) \geq \mu_{ij}$ orall i, j $\sum \, z_{ij} = 1$ $\forall j$ $\mu,r,x,y\geq 0,z_{ij}\in\{0,1\}$

Euclidean Distance

$$egin{aligned} \min_{z,\gamma,z,r,\mu,y} & \sum_{j} \gamma_j \ ext{s.t.} & \|x_i^d - p_j^d\|_2 \leq r_{ij} & orall i,j \ & \gamma_j \geq r_{ij} - \mu_{ij} & orall i,j \ & M(1-z_{ij}) \geq \mu_{ij} & orall i,j \ & \sum_{i} z_{ij} = 1 & orall j \ & \mu,r,x,y \geq 0, z_{ij} \in \{0,1\} \end{aligned}$$

We also implemented a Warm Start solution that leverages k-means and an outlier detection system

M. Ravasio, H. Zerhouni

Convergence issues

Solutions found under 5 minutes

Cold-Start Manhattan distance

K-means with random restart

Warm-start Manhattan distance

Results

Using **synthetic data** we evaluated the proposed formulations (using a **5 minutes limit** for the run time) and compared them to k-means with random restarts. As evaluation metric we used the **Silhouette score**.

Warm-start Euclidean distance				Warm-start Manhattan distance							
	Points						Points				
Centroids	20	50	100	300	500	Centroids	20	50	100	300	500
2	0.7492435	0.8124023	0.822535	0.8271316	0.8318493	2	0.7560766	0.8124023	0.822535	0.8271316	0.8318493
3	0.7493559	0.7404216	0.7705543	0.7774862	0.7635197	3	0.7493559	0.7404216	0.7705543	0.7774862	0.7635197
4	0.6992221	0.6271979	0.6645417	0.6987365	0.6948316	4	0.6992221	0.6271979	0.6645417	0.6987365	0.6948316
5	0.4869698	0.5969384	0.5968344	0.6530551	0.6445701	5	0.4869698	0.5969384	0.5968344	0.6530551	0.6445701

Traditional k-means							
Centroids	20	50	100	300	500		
2	0.7492435	0.8124023	0.822535	0.8271316	0.8318493		
3	0.7493559	0.7404216	0.7705543	0.7774862	0.7635197		
4	0.6992221	0.7525949	0.6645417	0.6987365	0.6376002		
5	0.5236181	0.5475841	0.6163493	0.6535013	0.6527689		

Even with a limit on the run time the **models tend to outperform** the traditional approach

We also evaluated the performance of models in **High dimensionality** problems. When in high dimension (1000) our models perform as k-means, but when the **dimensionality is reduced**, with an autoencoder, our models **outperform** k-means.

	Dimensionality reduction					
	K-means	Euclidean distance	Manhattan distance			
Before dimensionality reduction	0.2388746	0.2388746	0.2388746			
After dimensionality reduction	0.3954584	0.4036549	0.3996829			
Dataset with 10 000 in dimension 1 000						