PRÁCTICO 4

Determinantes Álgebra II – Año 2024/1 – FAMAF

Objetivos.

- Aprender a calcular el determinante de una matriz.
- o Aprender a utilizar operaciones elementales por filas y/o columnas para calcular el determinante.
- Aplicar las propiedades del determinante para calcular el determinante de un producto de matrices, y para decidir si una matriz cuadrada es o no invertible.

Ejercicios. Los ejercicios con el símbolo (a) tienen una ayuda al final del archivo para que recurran a ella después de pensar un poco.

(1) Calcular el determinante de las siguientes matrices.

$$A = \begin{bmatrix} 4 & 7 \\ 5 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} -3 & 2 & 4 \\ 1 & -1 & 2 \\ -1 & 4 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 3 & 1 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 5 & 1 & 1 \\ 1 & 1 & 2 & 5 \end{bmatrix}.$$

(2) Sean

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & 3 \end{bmatrix}.$$

Calcular:

- a) det(AB).
- f) det(A + tB), con $t \in \mathbb{R}$.

- *b*) det(*BA*). c) $\det(A^{-1})$.
- u) $\det(A^{\mathsf{T}})$. e) $\det(A+B)$.
- (3) Calcular el determinante de las siguientes matrices haciendo la reducción a matrices triangulares superiores.

$$A = \begin{bmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 3 & 3 & 3 \\ 1 & 3 & 5 & 5 & 5 \\ 1 & 3 & 5 & 7 & 7 \\ 1 & 3 & 5 & 7 & 9 \end{bmatrix}.$$

13

- (4) Sean A, B y C matrices $n \times n$, tales que $\det A = -1$, $\det B = 2$ y $\det C = 3$. Calcular:
 - a) det(PQR), donde P, Q y R son las matrices que se obtienen a partir de A, B y C mediante operaciones elementales por filas de la siguiente manera

$$A \xrightarrow{F_1 + 2F_2} P$$
, $B \xrightarrow{3F_3} Q$ y $C \xrightarrow{F_1 \leftrightarrow F_4} R$.

Es decir,

- P se obtiene a partir de A sumando a la fila 1 la fila 2 multiplicada por 2.
- Q se obtiene a partir de B multiplicando la fila 3 por 3.
- R se obtiene a partir de C intercambiando las filas 1 y 4.
- b) $\det(A^2BC^tB^{-1})$ y $\det(B^2C^{-1}AB^{-1}C^t)$.
- (5) Sea

$$A = \begin{bmatrix} x & y & z \\ 3 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}.$$

Sabiendo que det(A) = 5, calcular el determinante de las siguientes matrices.

$$B = \begin{bmatrix} 2x & 2y & 2z \\ 3/2 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} x & y & z \\ 3x+3 & 3y & 3z+2 \\ x+1 & y+1 & z+1 \end{bmatrix}.$$

(6) Determinar todos los valores de $c \in \mathbb{R}$ tales que las siguientes matrices sean invertibles.

$$A = \begin{bmatrix} 4 & c & 3 \\ c & 2 & c \\ 5 & c & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & c & -1 \\ c & 1 & 1 \\ 0 & 1 & c \end{bmatrix}.$$

(7) Calcular el determinante de las siguientes matrices, usando operaciones elementales por fila y/o columnas u otras propiedades del determinante. Determinar cuáles de ellas son invertibles.

$$A = \begin{bmatrix} -2 & 3 & 2 & -6 \\ 0 & 4 & 4 & -5 \\ 5 & -6 & -3 & 2 \\ -3 & 7 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix},$$

$$C = \begin{bmatrix} -2 & 3 & 2 & -6 & 0 \\ 0 & 4 & 4 & -5 & 0 \\ 5 & -6 & -3 & 2 & 0 \\ -3 & 7 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ -1 & 2 & -13 & 6 & \frac{1}{3} \\ 2 & 0 & 0 & 0 & 0 \\ 11 & 1 & 0 & 0 & 0 \\ \sqrt{2} & 2 & 1 & \pi & 0 \end{bmatrix},$$

$$E = \begin{bmatrix} 1 & -1 & 2 & 0 & 0 \\ 3 & 1 & 4 & 0 & 0 \\ 2 & -1 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & -1 & 4 \end{bmatrix}.$$

- (8) Sean A
 ot B matrices $n \times n$. Probar que:
 - a) det(AB) = det(BA).
 - b) Si B es invertible, entonces $det(BAB^{-1}) = det(A)$.
 - c) (a) $\det(-A) = (-1)^n \det(A)$.
- (9) Sean $\lambda_1, \lambda_2, \dots, \lambda_n$ escalares, la matriz de *Vandermonde* asociada es

$$V = \begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \lambda_n & \lambda_n^2 & \cdots & \lambda_n^{n-1} \end{bmatrix}.$$

Esta es la matriz del sistema de ecuaciones del ejercicio (12) c) del Práctico 2.

- *a)* Si n = 2, probar que $det(V_n) = \lambda_2 \lambda_1$.
- b) Si n = 3, probar que $\det(V_n) = (\lambda_3 \lambda_2)(\lambda_3 \lambda_1)(\lambda_2 \lambda_1)$.
- *c)* Probar que $\det(V_n) = \prod_{1 \le i < j \le n} (\lambda_j \lambda_i)$ para todo $n \in \mathbb{N}$.
- d) Dar una condición necesaria y suficiente para que la matriz de Vandermonde sea invertible.
- e) Dados b_1, \ldots, b_n y $\lambda_1, \ldots, \lambda_n$ secuencias de números reales, dar una condición suficiente para que exista un polinomio de grado n, digamos p, tal que

$$p(\lambda_1) = b_1, \ldots, p(\lambda_n) = b_n.$$

(ver ejercicio (12) del Práctico 2).

- (10) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar con una demostración o con un contraejemplo, según corresponda.
 - a) Sean A y B matrices $n \times n$. Entonces $\det(A + B) = \det(A) + \det(B)$.
 - b) Existen una matriz 3×2 , A, y una matriz 2×3 , B, tales que $\det(AB) \neq 0$.
 - c) Sea A una matriz $n \times n$. Si A^n es no invertible, entonces A es no invertible.

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

(11) Determinar todos los valores de $c \in \mathbb{K}$ tales que la siguiente matriz sea invertible.

$$A = \begin{bmatrix} 0 & c & -c \\ -1 & 2 & -1 \\ c & -c & c \end{bmatrix}.$$

(12) Sabiendo que
$$\det \begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix} = -1$$
, calcular $\det \begin{bmatrix} -2a & -2b & -2c \\ 2p + x & 2q + y & 2r + z \\ 3x & 3y & 3z \end{bmatrix}$.

(13) Probar que

$$\det\begin{bmatrix} 1 + x_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & 1 + x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & 1 + x_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & x_3 & \cdots & 1 + x_n \end{bmatrix} = 1 + x_1 + x_2 + \cdots + x_n.$$

- (14) Una matriz $A n \times n$ se dice antisimétrica si $A^t = -A$.
 - a) (a) Probar que si n es impar y A es antisimétrica, entonces det(A) = 0.
 - b) ⓐ Para cada n par, encontrar una matriz A antisimétrica $n \times n$ tal que $det(A) \neq 0$.

Ayudas.

- c) Analizar primero los casos n = 2, 3.
- (9) c) En Wikipedia hay una posible demostración.
- *a)* Usar el ejercicio *c)*.
- b) Encontrar primero una matriz A_0 para el caso 2×2 . Para n = 2m considerar la matriz $2m \times 2m$ formada por m bloques diagonales iguales a A_0 .