Метелик

Гра на шаховій дошці

Складові: стандартна шахова дошка 8*8, по 10 шашок чорного і білого кольору

Кількість гравців: 2

Стартова розстановка:

Правила:

Шашка ходить за правилами шахового пішака. За хід може переміститися в наступне вільне поле попереду або взяти шашку суперника діагональним кроком вперед-вліво чи впередвправо. При цьому напрямок «вперед» для чорних — це знизу вгору по діаграмі, а для білих — зліва направо. Відповідно, напрямки взяття для чорних — вгору-вліво і вгору-вправо, а для білих — вгору-вправо і вниз-вправо. Стартові розташування шашок кожного кольору називаються базою цього кольору; шашки одного кольору не можуть заходити на базу іншого кольору.

Шашка, що досягнула останньої для себе лінії (верхньої для чорних і правої для білих), за окремий хід може бути знята з поля і зарахована гравцеві-власнику як переможне очко.

Щойно гравець, який повинен ходити, не може здійснити хід, гра припиняється і перемагає гравець із більшою кількістю переможних очок. У разі рівності переможних очок перемагає той гравець, який має більше шашок свого кольору в полі бою (виділена червоним верхня права чверть дошки, в якій можуть перебувати шашки обох кольорів), а при рівності й цього параметра зараховується нічия.

Технічні подробиці реалізації гри в коді

			,				
			6	32	33	34	35
		3	7	28	29	30	31
	1	4	8	24	25	26	27
0	2	5	9	20	21	22	23
				19	18	17	16
				15	14	13	
				12	11		
				10			

Поля дошки пронумеровані, як на зображенні. Невикористані поля ніяк не пронумеровані.

Архітектура 38-50

Можливих ходів у кожної сторони є 50:

Nº	Тип ходу	Білі	Чорні	Взяття?	Залік?
0	Пасивний розвиток	0-2	10-12		
1	Пасивний розвиток	1-4	11-14		
2	Пасивний розвиток	2-5	12-15		
3	Пасивний розвиток	3-7	13-17		
4	Пасивний розвиток	4-8	14-18		
5	Пасивний розвиток	5-9	15-19		
6	Активний розвиток	9-20	19-20		
7	Активний розвиток	8-24	18-21		
8	Активний розвиток	7-28	17-22		
9	Активний розвиток	6-32	16-23		
10	Просування 1	20-21	20-24		
11	Просування 1	24-25	21-25		
12	Просування 1	28-29	22-26		
13	Просування 1	32-33	23-27		
14	Просування 2	21-22	24-28		
15	Просування 2	25-26	25-29		

16	Просування 2	29-30	26-30		
17	Просування 2	33-34	27-31		
18	Просування 3	22-23	28-32		
19	Просування 3	26-27	29-33		
20	Просування 3	30-31	30-34		
21	Просування 3	34-35	31-35		
22	Залік	35-x	35-x		так
23	Залік	31-x	34-x		так
24	Залік	27-x	33-x		так
25	Залік	23-x	32-x		так
26	Засідка назовні	9-24	19-21	так	
27	Засідка назовні	8-28	18-22	так	
28	Засідка назовні	7-32	17-23	так	
29	Засідка всередину	6-28	16-22	так	
30	Засідка всередину	7-24	17-21	так	
31	Засідка всередину	8-20	18-20	так	
32	Атака 1 назовні	20-25	20-25	так	
33	Атака 1 назовні	24-29	21-26	так	
34	Атака 1 назовні	28-33	22-27	так	
35	Атака 1 всередину	32-29	23-26	так	
36	Атака 1 всередину	28-25	22-25	так	
37	Атака 1 всередину	24-21	21-24	так	
38	Атака 2 назовні	21-26	24-29	так	
39	Атака 2 назовні	25-30	25-30	так	
40	Атака 2 назовні	29-34	26-31	так	
41	Атака 2 всередину	33-30	27-30	так	
42	Атака 2 всередину	29-26	26-29	так	
43	Атака 2 всередину	25-22	25-28	так	
44	Атака 3 назовні	22-27	28-33	так	
		1	1	1	1

45	Атака 3 назовні	26-31	29-34	так	
46	Атака 3 назовні	30-35	30-35	так	
47	Атака 3 всередину	34-31	31-34	так	
48	Атака 3 всередину	30-27	30-33	так	
49	Атака 3 всередину	26-23	29-32	так	

Усі ці дані внесені в таблицю — так найшвидше обробляти матчі в автоматичному режимі.

Отже, «магічних чисел» у нас два — 36 і 50 (36 ігрових полів і 50 можливих ходів у кожної сторони). Ігрові поля — це вхідні дані (в нейрон кожної клітинки ми подаємо сигнал +1, якщо там «своя» шашка, -1, якщо шашка опонента, і 0, якщо порожньо), а можливі ходи — виводи нашої нейромережі; до вхідних полів також слід додати поточний рахунок (він теж належить до стану гри). Нехай це будуть два нейрони; можна було б на один з яких подавати «наш» рахунок, а на інший — рахунок опонента, але зробимо хитріше: на перший з них подамо суму рахунків, а на другий — різницю («мій» мінус опонента). Перша величина показує, наскільки далеко зайшла партія, а друга — чи ведемо ми по рахунку.

Отже, 38 нейронів на вході і 50 на виході. Нейромережа отримує на вхід положення ігрового поля і стан рахунку, а на вихід подає пріоритети кожного з 50 ходів білих. Хід із максимальним значенням сигналу серед підмножини припустимих у цій ситуації ходів обирається як наступний. Щоб нейромережа походила чорними, на вхід їй подаємо віддзеркалене поле (наприклад, клітинки 32 і 23 міняються місцями) з заміною чорних на білих і навпаки (і рахунок інвертуємо, зрозуміло).

Архітектура 38-1

Інший варіант архітектури мережі полягає в тому, що на виході замість 50 нейронів є тільки один нейрон — сигнал на ньому показує відносну вигідність положення дошки, яке ми передали на вхід. Коли така мережа грає, на її вхід ми подаємо не поточне положення дошки, а по черзі всі можливі положення після її ходу; максимальне значення визначає, який саме хід зробити.

Архітектура 38-1 повільніша: для виконання одного ходу потрібно зробити декілька проходів сигналів (а не один). Однак у деяких іграх можливою є лише така архітектура: наприклад, у звичайних шашках не можна заздалегідь пронумерувати всі можливі ходи, як у «Метелику», бо ланцюгові взяття (кілька взяттів однією шашкою) можуть бути необмежено довгими (особливо у випадку дамки).

Симетрія

«Метелик» цілком симетричний між білими і чорними, окрім почерговості ходу. Відповідно, мережа, яка ходить чорними, просто отримує віддзеркалену ігрову ситуацію на вхід (чорні й білі шашки міняються місцями і змінюється нумерація полів). 50 варіантів ходів у таблиці розташовані так, що хід чорних відповідає віддзеркаленому ходу білих, тож інтерпретація результату роботи нейромережі не відрізняється.

Еволюційні показники

Довідка з параметрів, які відображаються у вікні Evolution:

Generation Number — це номер покоління нейромережі в «біологічному» сенсі, тобто фактично кількість мутацій, яких зазнала мережа від моменту свого народження і дотепер.

Total Generation Number — це «хронологічний» номер покоління нейромережі, тобто скільки поколінь вона пережила всього (і тих, у яких брунькувалася й отримувала мутацію, і тих, у яких залишилася незмінною).

Survived Generations — це кількість поколінь від останньої мутації цієї нейромережі.

Last Evolution History — це історія останніх 10 поколінь мережі: = — залишилася незмінною; + — перемогла й дала потомство; * — відбрунькувалася від предка й зазнала мутацій.