The impact of double blind reviewing at EvoLang 12: statistics

Contents

roduction	1
Data	1
Loading data for first analysis	1
Plots	4
Review ranks by gender and student status	13
Mixed effects model	
Permutation test	18
Decision tree exploration	21
Readability scores	22
Reading scores and review scores	45
Influence of last author	50

Introduction

Data

This script uses the data file EvoLang_Scores_8_to_12.csv:

- conference: Which conference the paper was submitted to
- gender: Gender of first author
- Score.Mean: Mean raw score given by reviewers (scaled between 0 and 1, higher = better paper)
- student: The student status of the first author at submission.

All variables with an underscore are measures of readability. Below we calculate a variable review, which represents the type of review (Single / Double blind).

Loading data for first analysis

Load libraries.

```
# Load data
library(lattice)
library(ggplot2)
library(gplots)
library(lme4)
library(magrittr)
library(qwraps2)
library(car)
```

```
library(caret)
library(dplyr)
library(party)
library(lmerTest)
library(stargazer)
allData = read.csv("../data/EvoLang_Scores_8_to_12.csv", stringsAsFactors = F)
# relabel factor
allData$FirstAuthorGender = factor(allData$FirstAuthorGender,labels=c("F","M"))
allData$review = factor(c("Single", "Double")[(allData$conference %in% c("E11", "E12"))+1])
allData$conference = factor(allData$conference,levels = c("E8","E9","E10","E11","E12"))
allData$format = factor(allData$format)
allData$student[!is.na(allData$student) &
                  allData$student=="Faculty"] = "Non-Student"
allData$student[!is.na(allData$student) &
                  allData$student=="EC"] = "Non-Student"
allData$student = factor(allData$student)
#allData$Score.mean = scale(allData$Score.mean)
for(conf in levels(allData$conference)){
  allData$Score.mean[allData$conference==conf] = scale(allData$Score.mean[allData$conference==conf])
}
Look at the distribution of submissions:
table(allData$FirstAuthorGender,allData$conference)
##
##
       E8 E9 E10 E11 E12
##
    F 58 52 67 76 84
    M 94 130 124 119 122
prop.table(table(allData$FirstAuthorGender,allData$conference),2)
##
              E8
##
                        E9
                                 E10
                                           E11
                                                     E12
##
     F 0.3815789 0.2857143 0.3507853 0.3897436 0.4077670
     M 0.6184211 0.7142857 0.6492147 0.6102564 0.5922330
gtable = table(allData$FirstAuthorGender,allData$conference,allData$student)
write.csv(cbind(t(gtable[,,1]),t(gtable[,,2])),
          "../results/CountTable.csv")
gtable
  , , = Non-Student
##
##
      E8 E9 E10 E11 E12
##
##
    F 0 34 55 41 54
##
    M 0 85 94 77 93
##
## , , = Student
##
```

##

E8 E9 E10 E11 E12 ## F 0 18 12 35 30 ## M 0 45 30 42 29

Plots

Rank by gender. It seems that the difference in E11 is not replicated in E12.

fill=FirstAuthorGender))

```
p2Abstract <- p2Abstract + geom_violin() + geom_boxplot(width=0.1) +
    theme(text=element_text(size=20), legend.position="none") +
    scale_y_continuous(name="Score ranking")+
    scale_x_discrete(name="")+
    scale_fill_grey(start = 0.55, end=0.8) +
    theme(text = element_text(size=10)) +
    ggtitle("Scores for abstracts only")
p2Abstract</pre>
```

Scores for abstracts only

Scores for full papers only

Rank by student status in each conference.

```
p <- ggplot(allData[complete.cases(allData),], aes(conference:student, Score.mean, fill=student))

p <- p + geom_violin() + geom_boxplot(width=0.1) +
    theme(text=element_text(size=20), legend.position="none") +
    scale_y_continuous(name="Score ranking")+
    scale_x_discrete(name="")+
    scale_fill_grey(start = 0.55, end=0.8)+
    theme(text = element_text(size=10))

p</pre>
```


E9:Non-Student E9:Student E10:Non-StudentE10:StudentE11:Non-StudentE11:StudentE12:Non-StudentE12:Student

```
pdf("../results/Results_Student_3conf.pdf", width = 12, height= 6)
p
dev.off()
```

pdf ## 2

Format:

```
p <- ggplot(allData, aes(conference:format, Score.mean, fill=format))

p <- p + geom_violin() + geom_boxplot(width=0.1) +
    theme(text=element_text(size=10)) +
    scale_y_continuous(name="Score ranking")+
    scale_x_discrete(name="")+
    scale_fill_grey(start = 0.55, end=0.8)

p</pre>
```


Combined student and gender:

Summary statistics

```
t1 = table(allData$conference,allData$FirstAuthorGender)
t2 = table(allData$conference,allData$student)
t3 = table(allData$conference,allData$format)
cbind(t1,t2,t3)
       F
          M Non-Student Student Abstract Paper
                 0 0
                                     98
## E8 58 94
## E9 52 130
                   119
                             63
                                    121
                                           61
## E10 67 124
                   149
                             42
                                    131
                                           60
## E11 76 119
                    118
                             77
                                    145
                                           50
## E12 84 122
                    147
                                    161
                                           45
stargazer(allData,type = 'text')
## =====
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
## Score.mean 927 -0.000 0.998
                              -1.724 -0.857
                                                0.948
                                                       1.673
                              1
## year 927 3.128 1.393
                                         2
# Statistics for female authors:
stargazer(allData[allData$FirstAuthorGender=="F",],type = 'text')
```

Review ranks by gender and student status

Are papers with female first authors ranked higher than those with male first authors under double-blind review?

Using a simple anova, there's a significant interaction between gender and review type:

```
##
                                            Df Sum Sq Mean Sq F value
## FirstAuthorGender
                                                  5.4
                                                        5.366
                                                                 5.551
## student
                                                  0.4
                                                         0.423
                                                                 0.438
## review
                                                  0.1
                                                        0.054
                                                                 0.056
## format
                                                  11.7 11.747 12.151
## FirstAuthorGender:student
                                                  0.8
                                                        0.758
                                                                 0.784
## FirstAuthorGender:review
                                             1
                                                  4.3
                                                        4.278
                                                                 4.425
                                                        0.302
## student:review
                                             1
                                                  0.3
                                                                 0.313
## FirstAuthorGender:format
                                                  0.9
                                                        0.946
                                                                 0.979
## student:format
                                                 10.1 10.079 10.426
                                             1
## review:format
                                             1
                                                  0.7
                                                        0.701
                                                                 0.725
## FirstAuthorGender:student:review
                                             1
                                                  0.0
                                                        0.005
                                                                 0.005
## FirstAuthorGender:student:format
                                             1
                                                  0.0
                                                        0.037
                                                                 0.038
## FirstAuthorGender:review:format
                                                  0.3
                                                        0.270
                                                                 0.279
                                             1
## student:review:format
                                                  2.1
                                                        2.124
                                                                 2.197
## FirstAuthorGender:student:review:format
                                                  0.1
                                                         0.080
                                                                 0.082
## Residuals
                                           758 732.8
                                                        0.967
##
                                             Pr(>F)
## FirstAuthorGender
                                           0.018726 *
## student
                                           0.508378
## review
                                           0.813575
## format
                                           0.000519 ***
## FirstAuthorGender:student
                                           0.376058
## FirstAuthorGender:review
                                           0.035743 *
## student:review
                                           0.576264
## FirstAuthorGender:format
                                           0.322788
## student:format
                                           0.001296 **
## review:format
                                           0.394665
## FirstAuthorGender:student:review
                                           0.943998
## FirstAuthorGender:student:format
                                           0.844520
## FirstAuthorGender:review:format
                                           0.597387
## student:review:format
                                           0.138730
## FirstAuthorGender:student:review:format 0.774242
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
However, it looks like this is driven just by EvoLang11:
t.test.string = function(tx){
 t = signif(tx$statistic,2)
 df = tx$parameter['df']
  p = signif(tx$p.value,3)
  est = signif(diff(tx$estimate),2)
  paste("(difference in means = ",est,", t = ",t,", p = ",p,")",sep = "")
```

```
for(conf in levels(allData$conference)){
    print(conf)
    print(t.test.string(t.test(Score.mean~FirstAuthorGender, data=allData[allData$conference==conf,])))
}

## [1] "E8"

## [1] "(difference in means = -0.092, t = 0.54, p = 0.591)"

## [1] "E9"

## [1] "(difference in means = 0.14, t = -0.87, p = 0.386)"

## [1] "E10"

## [1] "(difference in means = -0.12, t = 0.75, p = 0.454)"

## [1] "E11"

## [1] "(difference in means = -0.61, t = 4.4, p = 1.93e-05)"

## [1] "E12"

## [1] "(difference in means = -0.058, t = 0.4, p = 0.687)"
```

There is also a significant main effect of first author gender.

The model above mots EvoLang 8 because it has no data for student status. We get the same results if we omit student status and run the test for all conferences:

```
Df Sum Sq Mean Sq F value Pr(>F)
## FirstAuthorGender
                                          5.5
                                                5.480
                                                        5.603 0.01814 *
## review
                                     1
                                          0.0
                                                0.032
                                                        0.032 0.85706
## format
                                     1
                                          8.6
                                                8.649
                                                        8.843 0.00302 **
## FirstAuthorGender:review
                                          4.9
                                                4.852
                                                        4.961 0.02617 *
                                     1
## FirstAuthorGender:format
                                                2.439
                                                        2.494 0.11463
                                     1
                                          2.4
## review:format
                                          1.6
                                                1.641
                                                        1.678 0.19553
                                     1
## FirstAuthorGender:review:format
                                          0.0
                                                0.019
                                                        0.019 0.89015
                                     1
## Residuals
                                   918 897.9
                                                0.978
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
```

Mixed effects model

Alternatively, we can use a mixed effects model, with random slopes for conference and test whether the interaction between gender and review type is a significant fixed predictor. A random intercept is not necessary, because the data is scaled to be centered around 0 within each conference. A random slope for the interaction between gender and review is also not permissable, since review type does not vary by conference.

```
contrasts(allData$FirstAuthorGender) <- contr.sum(2)/2</pre>
contrasts(allData$review) <- contr.sum(2)/2</pre>
contrasts(allData$student) <- contr.sum(2)/2</pre>
contrasts(allData$format) <- contr.sum(2)/2</pre>
m0 <- lmer(
      Score.mean ~
        1 + (FirstAuthorGender*review*student*format) +
        (0+FirstAuthorGender+student+format|conference),
      allData[allData$conference!="E8",],
  control=lmerControl(optimizer="bobyqa",optCtrl = list(maxfun=10000000)),
  REML = T
)
summary(m0)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
     to degrees of freedom [lmerMod]
## Formula:
## Score.mean ~ 1 + (FirstAuthorGender * review * student * format) +
       (0 + FirstAuthorGender + student + format | conference)
##
##
      Data: allData[allData$conference != "E8", ]
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+07))
##
## REML criterion at convergence: 2175.5
##
## Scaled residuals:
              1Q Median
##
       Min
                                3Q
                                       Max
## -2.0469 -0.8318 -0.0649 0.8731 2.1003
##
## Random effects:
##
                                  Variance Std.Dev. Corr
   conference FirstAuthorGenderF 0.049878 0.22333
##
##
               FirstAuthorGenderM 0.002765 0.05258
                                                    -0.97
##
                                  0.045642 0.21364
               student1
                                                    -0.87 0.73
##
               format1
                                  0.023844 0.15441
                                                     0.37 -0.14 -0.77
                                  0.950489 0.97493
##
  Residual
## Number of obs: 774, groups: conference, 4
##
## Fixed effects:
##
                                                  Estimate Std. Error
## (Intercept)
                                                 -0.005526 0.063844
## FirstAuthorGender1
                                                  0.146719 0.166438
## review1
                                                 -0.094290 0.127687
                                                 -0.203825
## student1
                                                            0.142736
## format1
                                                  0.154509 0.121783
## FirstAuthorGender1:review1
                                                  0.256651
                                                             0.332875
## FirstAuthorGender1:student1
                                                 -0.208867
                                                             0.189766
```

```
## review1:student1
                                                0.217541
                                                           0.285473
## FirstAuthorGender1:format1
                                                0.088045 0.188464
                                                0.286881 0.243566
## review1:format1
## student1:format1
                                                0.620946 0.189427
## FirstAuthorGender1:review1:student1
                                                0.070548
                                                          0.379532
## FirstAuthorGender1:review1:format1
                                                0.178654 0.376927
## FirstAuthorGender1:student1:format1
                                                0.250443
                                                           0.377860
## review1:student1:format1
                                               -0.543252
                                                           0.378853
## FirstAuthorGender1:review1:student1:format1
                                                0.151257
                                                           0.755720
##
                                                      df t value Pr(>|t|)
## (Intercept)
                                                2.900000 -0.087
                                                                  0.9367
## FirstAuthorGender1
                                                2.600000
                                                         0.882
                                                                  0.4519
## review1
                                                2.900000 -0.738
                                                                  0.5163
## student1
                                                2.900000 -1.428
                                                                  0.2528
## format1
                                                         1.269
                                                                  0.2845
                                                3.400000
## FirstAuthorGender1:review1
                                                2.600000
                                                           0.771
                                                                  0.5046
                                              674.800000 -1.101
## FirstAuthorGender1:student1
                                                                  0.2714
## review1:student1
                                                2.900000 0.762
                                                                  0.5040
## FirstAuthorGender1:format1
                                              749.300000 0.467
                                                                  0.6405
## review1:format1
                                                3.400000
                                                         1.178
                                                                  0.3148
## student1:format1
                                              615.300000 3.278
                                                                  0.0011 **
## FirstAuthorGender1:review1:student1
                                              674.800000 0.186
                                                                  0.8526
## FirstAuthorGender1:review1:format1
                                              749.300000
                                                           0.474
                                                                  0.6357
## FirstAuthorGender1:student1:format1
                                              719.900000 0.663
                                                                  0.5077
## review1:student1:format1
                                              615.300000 -1.434
                                                                  0.1521
## FirstAuthorGender1:review1:student1:format1 719.900000 0.200
                                                                  0.8414
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation matrix not shown by default, as p = 16 > 12.
## Use print(x, correlation=TRUE) or
    vcov(x)
                if you need it
```

The results above suggest that there's no overall interaction between gender and review type. The tendency is there, but from the plots it's probably just driven by EvoLang 11.

We can run the same model without student status to include data from EvoLang 8:

```
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: Score.mean ~ 1 + (FirstAuthorGender * review * format) + (0 +
## FirstAuthorGender + format | conference)
## Data: allData
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+07))
```

```
##
## REML criterion at convergence: 2616.6
##
## Scaled residuals:
                  1Q
                       Median
## -2.00126 -0.87372 -0.03911 0.89455 2.01352
## Random effects:
   Groups
               Name
                                  Variance Std.Dev. Corr
   conference FirstAuthorGenderF 0.018667 0.13663
##
##
               FirstAuthorGenderM 0.005532 0.07438
                                  0.050963 0.22575
##
               format1
                                                    -0.39 - 0.49
                                  0.966469 0.98309
## Residual
## Number of obs: 926, groups: conference, 5
##
## Fixed effects:
##
                                       Estimate Std. Error
                                                                   df t value
                                                              6.10000 -1.069
## (Intercept)
                                       -0.04969
                                                 0.04647
## FirstAuthorGender1
                                        0.11629
                                                   0.11771
                                                             3.90000
                                                                      0.988
## review1
                                       -0.02834
                                                   0.09293
                                                             6.10000 -0.305
                                                             3.40000
## format1
                                        0.26421
                                                   0.12964
                                                                        2.038
## FirstAuthorGender1:review1
                                        0.29146
                                                   0.23542
                                                             3.90000
                                                                        1.238
## FirstAuthorGender1:format1
                                        0.21076
                                                   0.15756 904.20000
                                                                        1.338
## review1:format1
                                        0.17404
                                                   0.25928
                                                              3.40000
                                                                        0.671
## FirstAuthorGender1:review1:format1 -0.05484
                                                   0.31512 904.20000 -0.174
                                      Pr(>|t|)
## (Intercept)
                                         0.326
## FirstAuthorGender1
                                         0.380
## review1
                                         0.771
## format1
                                         0.123
## FirstAuthorGender1:review1
                                         0.284
## FirstAuthorGender1:format1
                                         0.181
## review1:format1
                                         0.545
## FirstAuthorGender1:review1:format1
                                         0.862
## Correlation of Fixed Effects:
##
                    (Intr) FrsAG1 reviw1 formt1 FrstAthrGndr1:r1
## FrstAthrGn1
                     0.443
                     0.202 0.067
## review1
                    -0.606 -0.149 -0.165
## format1
## FrstAthrGndr1:r1 0.067 0.204 0.443 -0.033
## FrstAthrGndr1:f1 -0.197 -0.334 -0.044 0.206 -0.126
                    -0.165 -0.033 -0.606  0.202 -0.149
## revw1:frmt1
## FrstAG1:1:1
                    -0.044 -0.126 -0.197 0.019 -0.334
                    FrstAthrGndr1:f1 rvw1:1
## FrstAthrGn1
## review1
## format1
## FrstAthrGndr1:r1
## FrstAthrGndr1:f1
## revw1:frmt1
                     0.019
## FrstAG1:1:1
                     0.206
                                      0.206
```

Again, there's no interaction between gender and review type.

Permutation test

The distributions of score means are not very normal within conferences. We run a permutation test to address this. We calculate the average difference between single blind and double blind scores for males (dM) and for females (dF). Then we calculate dF - dM. A value > 0 means females scores increase more than male scores under double blind review. This 'true difference' is compared to a 'permuted difference'. The association between review scores and review type is randomly permuted, and dF - dM is calculated again. This is done 10,000 times to compare the true difference to a distribution of random differences.

```
meanDifferenceBetweenGenders = function(d){
  # difference in means between review types
  # for males
  # (change from single to double)
  diffMales = diff(rev(tapply(d[d$FirstAuthorGender=="M",]$Score.mean,
              d[d$FirstAuthorGender=="M",]$review,
  # for females
  diffFemales = diff(rev(tapply(d[d$FirstAuthorGender=="F",]$Score.mean,
              d[d$FirstAuthorGender=="F",]$review,
              mean)))
  # difference in differences
  # value > 0 means female scores increase
  # more under double-blind review than male scores
  return(diffFemales-diffMales)
}
perm = function(d){
  d$review = sample(d$review)
  meanDifferenceBetweenGenders(d)
perm.test = function(d,title){
  n = 10000
  trueDiff = meanDifferenceBetweenGenders(d)
  permDiff = replicate(n, perm(d))
 p = sum(permDiff>trueDiff) / n
  z = (trueDiff-mean(permDiff)) / sd(permDiff)
  print(paste("p=",p,", z=",z))
  hist(permDiff,xlab="Female advantage in double-blind",main=title)
  abline(v=trueDiff,col=2)
```

Permutation test for all data:

```
## [1] "p= 0.0156 , z= 2.14768869364851"
```

All conferences

Female advantage in double-blind

Permutation test without E11 data:

[1] "p= 0.4259 , z= 0.182421863486669"

Without E11

Female advantage in double-blind

Permutation test without E12 data:

[1] "p= 6e-04 , z= 3.33518379864133"

Without E12

Female advantage in double-blind

The results are in line with the test above. Across the whole data, females are given higher scores in double-blind, but this is driven by E11 alone.

Decision tree exploration

Construct a decision tree, attempting to predict review socres by format, student status, gender, review model and conference.

Work out differences between leaves of the tree:

0.1235369

-0.3300312

The tree suggests that full papers are given lower ratings than abstracts on average (about 6.6% difference). For full papers, students are given higher ratings than non-students (about 13.4% difference).

Readability scores

This section uses the file EvoLang_ReadingScores_E8_to_E12.csv. It includes the following variables:

- conference: Conference
- gender: Gender of first author
- student: Student status
- format: Full paper or short abstract
- char_count, word_count, sent_count, sybl_count: Number of characters, words, sentences and syllables. These distributions have been scaled and centrered.
- *_score: Various measures of readability, calculated using the tools from Hengel (2016).
- Score.mean: Mean raw score given by reviewers (scaled between 0 and 1, higher = better paper)

Read the data:

```
readScores = read.csv("../data/EvoLang_ReadingScores_E8_to_E12.csv",stringsAsFactors = F)
```

We'll focus on the Flesch-Kinkaid score (since most other measures are highly correlated with it and it's easy to interpret) and the Dale-Chall score (which is not highly correlated with the other measures):

```
##
                       flesch_score fleschkincaid_score gunningfog_score
## flesch_score
                                                   -0.91
                               1.00
## fleschkincaid_score
                               -0.91
                                                    1.00
                                                                      0.98
                               -0.90
## gunningfog_score
                                                    0.98
                                                                      1.00
## smog_score
                              -0.93
                                                    0.96
                                                                      0.99
## dalechall_score
                              -0.72
                                                    0.61
                                                                      0.61
                       smog_score dalechall_score
## flesch_score
                            -0.93
                                             -0.72
## fleschkincaid_score
                             0.96
                                              0.61
## gunningfog_score
                             0.99
                                              0.61
## smog score
                                              0.64
                             1.00
## dalechall score
                             0.64
                                              1.00
```

Scale the variables:

```
readScores$fleschkincaid_score_scaled = scale(readScores$fleschkincaid_score)
readScores$dalechall_score_scaled = scale(readScores$dalechall_score)
readScores$student[readScores$student=="EC"] = "Non-Student"
readScores$student[readScores$student=="Faculty"] = "Non-Student"
# Remove an outlier
readScores = readScores[readScores$fleschkincaid_score_scaled<6,]</pre>
readScores$gender = factor(readScores$gender)
readScores$conference = factor(readScores$conference,
                               levels = c("E8","E9","E10","E11","E12"))
# Box-Cox scaling
pp = preProcess(readScores[,
        c('fleschkincaid_score', "dalechall_score")],
       method="BoxCox")
lambda.fk = pp$bc$fleschkincaid score$lambda
lambda.dc = pp$bc$dalechall_score$lambda
readScores$fleschkincaid_score_norm =
```

```
bcPower(readScores$fleschkincaid_score, lambda = lambda.fk)
readScores$dalechall_score_norm =
  bcPower(readScores$dalechall_score, lambda = lambda.dc)
readScores$Score.mean.norm = scale(readScores$Score.mean)
readScores$review = factor(c("Single", "Double")[(readScores$conference %in% c("E11", "E12"))+1])
readScores$student = factor(readScores$student)
readScores$format = factor(readScores$format)
Create time variable: a continuous variable increasing with each conference.
readScores$time = as.numeric(readScores$conference)-3
Number of available datapoints (less than the total because some papers could not be automatically converted
to text):
table(readScores$conference,readScores$gender)
##
##
          F
               М
##
     E8
          56 93
##
    E9
         52 130
##
    E10 67 120
##
    E11 68 111
     E12 84 121
gtable2 = table(readScores$gender,readScores$conference,readScores$student)
write.csv(cbind(t(gtable2[,,1]),t(gtable2[,,2])),
          "../results/CountTable_Readability.csv")
gtable2
##
   , , = Non-Student
##
##
##
       E8 E9 E10 E11 E12
##
     F 0 34 55 38 54
##
    M 0 85 90 72 92
##
##
       = Student
##
##
##
       E8 E9 E10 E11 E12
##
     F 0 18 12
                  30
##
     M 0 45 30 39 29
Flesch-Kinkaid score
Descriptive stats
mean(readScores$fleschkincaid_score)
## [1] 13.11313
cor.test(readScores$fleschkincaid_score,readScores$dalechall_score)
##
## Pearson's product-moment correlation
```

```
##
## data: readScores$fleschkincaid_score and readScores$dalechall_score
## t = 23.138, df = 900, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5680890 0.6500779
## sample estimates:
##
         cor
## 0.6107177
sel = readScores$conference=="E11"
mean(readScores[sel & readScores$gender=="M",]$fleschkincaid_score) -
 mean(readScores[sel & readScores$gender=="F",]$fleschkincaid_score)
## [1] -0.4780219
sel = readScores$conference=="E12"
mean(readScores[sel & readScores$gender=="M",]$fleschkincaid_score) -
 mean(readScores[sel & readScores$gender=="F",]$fleschkincaid score)
## [1] 0.1664231
meanFK =
  rbind(tapply(readScores$fleschkincaid_score[readScores$gender=="F"],
             readScores$conference[readScores$gender=="F"],mean),
tapply(readScores$fleschkincaid_score[readScores$gender=="M"],
       readScores$conference[readScores$gender=="M"],mean))
sdFK =
  rbind(tapply(readScores$fleschkincaid_score[readScores$gender=="F"],
             readScores$conference[readScores$gender=="F"],sd),
tapply(readScores$fleschkincaid_score[readScores$gender=="M"],
      readScores$conference[readScores$gender=="M"],sd))
msdFK = matrix(paste0(round(meanFK,2)," (",round(sdFK,2),")"),nrow=2)
colnames(msdFK) = sort(unique(readScores$conference))
rownames(msdFK) = c("Female", "Male")
write.csv(msdFK,"../results/MeanFleschKincaidScores_by_conf_by_gender.csv")
Various Plots:
readScores$gender2 = "Female"
readScores$gender2[readScores$gender=="M"] = "Male"
ggplot(readScores, aes(y=fleschkincaid_score,x=conference)) + geom_boxplot()
```


ggplot(readScores, aes(y=fleschkincaid_score,x=conference,colour=gender)) + geom_boxplot()

ggplot(readScores, aes(y=fleschkincaid_score,x=gender,colour=conference)) + geom_boxplot()

ggplot(readScores, aes(y=fleschkincaid_score,x=conference,colour=format)) + geom_boxplot()

ggplot(readScores, aes(y=fleschkincaid_score,x=paste(student,gender),colour=conference))+ geom_boxplot(

pdf ## 2

Decision tree

Is there a gender difference between E11 and E12?

```
ggplot(readScores[readScores$conference %in% c("E11","E12"),],
    aes(x = conference, y=fleschkincaid_score, colour=gender)) +
geom_boxplot()
```



```
##
                                     Df Sum Sq Mean Sq F value Pr(>F)
## format
                                        0.811 0.8108
                                                        9.562 0.00214 **
## conference
                                        0.000 0.0001
                                                        0.001 0.97103
## student
                                        0.070 0.0701
                                                        0.827 0.36372
## gender
                                        0.018 0.0177
                                                        0.208 0.64844
                                      1
## format:conference
                                        0.111
                                               0.1112
                                                         1.311 0.25294
## format:student
                                        0.062 0.0624
                                                        0.736 0.39151
                                      1
## conference:student
                                        0.015
                                               0.0148
                                                        0.175 0.67637
                                      1
## format:gender
                                        0.113
                                               0.1130
                                                        1.333 0.24905
                                      1
## conference:gender
                                        0.057
                                               0.0567
                                                        0.669 0.41396
                                     1
## student:gender
                                        0.036 0.0355
                                                        0.419 0.51784
                                      1
## format:conference:student
                                      1
                                        0.112 0.1124
                                                         1.325 0.25039
## format:conference:gender
                                        0.002
                                               0.0017
                                                         0.020 0.88807
                                      1
## format:student:gender
                                        0.004 0.0038
                                                         0.045 0.83230
                                     1
## conference:student:gender
                                      1
                                        0.099 0.0986
                                                         1.162 0.28168
## format:conference:student:gender
                                                         2.583 0.10889
                                      1 0.219 0.2190
## Residuals
                                    368 31.205 0.0848
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

There is an effect for format, but nothing else.

Mixed effects model across the whole readability data. The model was not converging with a random slope for student, so:

```
contrasts(readScores$gender) <- contr.sum(2)/2</pre>
contrasts(readScores$student) <- contr.sum(2)/2</pre>
contrasts(readScores$format) <- contr.sum(2)/2</pre>
m0 = lmer(fleschkincaid_score_scaled~ 1 +
            (format+student+gender+review)^2 + time +
           (1 + format + student + gender | conference),
       data = readScores[readScores$conference!="E8",])
summary(m0)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
     to degrees of freedom [lmerMod]
## Formula: fleschkincaid_score_scaled ~ 1 + (format + student + gender +
      review)^2 + time + (1 + format + student + gender | conference)
     Data: readScores[readScores$conference != "E8", ]
##
##
## REML criterion at convergence: 2053.1
##
## Scaled residuals:
##
      Min
                1Q Median
                                30
                                       Max
## -2.4417 -0.7021 -0.0512 0.5907
                                   4.3979
##
## Random effects:
                           Variance Std.Dev. Corr
##
   Groups
               Name
   conference (Intercept) 0.0055514 0.07451
##
               format1
                           0.0054120 0.07357
                                               1.00
##
               student1
                           0.0003985 0.01996 -1.00 -1.00
##
                                               1.00 1.00 -1.00
               gender1
                           0.0071636 0.08464
                           0.8678717 0.93160
## Number of obs: 753, groups: conference, 4
## Fixed effects:
                                                     df t value Pr(>|t|)
                          Estimate Std. Error
                                                3.10000 -1.274
## (Intercept)
                                      0.15846
                                                                  0.2900
                          -0.20192
## format1
                           0.28655
                                      0.13768
                                               8.30000
                                                          2.081
                                                                   0.0696 .
## student1
                           0.07745
                                      0.11835 65.40000
                                                          0.654
                                                                  0.5151
## gender1
                           0.13950
                                      0.12964
                                               5.90000
                                                          1.076
                                                                 0.3242
## reviewSingle
                           0.20255
                                      0.21439
                                                3.00000
                                                          0.945
                                                                  0.4138
## time
                           0.11253
                                      0.09008
                                                3.00000
                                                          1.249
                                                                  0.3008
## format1:student1
                           0.02661
                                      0.17604 738.40000
                                                          0.151
                                                                  0.8799
## format1:gender1
                          -0.26543
                                      0.16999 736.80000 -1.561
                                                                  0.1188
## format1:reviewSingle
                           0.02550
                                      0.17199
                                                5.10000
                                                          0.148
                                                                  0.8878
## student1:gender1
                          -0.25645
                                      0.15545 726.70000 -1.650
                                                                  0.0994 .
## student1:reviewSingle
                          -0.15616
                                      0.15276 43.90000 -1.022
                                                                  0.3123
## gender1:reviewSingle
                          -0.04597
                                      0.16817
                                                4.10000 -0.273
                                                                  0.7977
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
               (Intr) formt1 stdnt1 gendr1 rvwSng time
##
                                                         frmt1:s1 frmt1:g1
## format1
               -0.084
## student1
               -0.138 0.179
```

```
## gender1
            0.281 -0.013 -0.007
## reviewSingl -0.915 0.030 0.063 -0.189
             -0.847 -0.034 -0.065 -0.034 0.843
## frmt1:stdn1 0.073 -0.307 -0.477 -0.003 0.000 0.037
## frmt1:gndr1 -0.144 0.240 -0.018 -0.419 0.075 0.061 0.030
## frmt1:rvwSn 0.032 -0.679 -0.035 -0.072 -0.006 0.017 0.015
                                                                 0.003
## stdnt1:gnd1 -0.015 0.015 0.125 -0.199 -0.029 0.025 -0.079
                                                                 0.059
## stdnt1:rvwS 0.133 -0.067 -0.635 -0.027 -0.205 -0.006 0.119
                                                                 0.001
## gndr1:rvwSn -0.169 -0.039 -0.009 -0.640 0.270 -0.011 -0.003
                                                                 0.099
##
              frm1:S std1:1 std1:S
## format1
## student1
## gender1
## reviewSingl
## time
## frmt1:stdn1
## frmt1:gndr1
## frmt1:rvwSn
## stdnt1:gnd1 0.007
## stdnt1:rvwS 0.018 0.125
## gndr1:rvwSn 0.132 -0.072 -0.062
```

Abstracts have higher reading scores than papers (marginally), but there are no other significant effects.

Dale-Chall scale

Plots

```
ggplot(readScores, aes(y=dalechall_score,x=conference,colour=gender)) + geom_boxplot()
```


 ${\tt ggplot(x,aes(x=(conference),y=dalechall_score,group=paste(gender,student),colour=paste(gender,student))}$

ggplot(readScores, aes(y=dalechall_score,x=format,colour=conference)) + geom_boxplot()

Decision tree:

Is there a gender difference between E11 and E12?

```
ggplot(readScores[readScores$conference %in% c("E11","E12"),],
    aes(x = conference, y=dalechall_score, colour=gender)) +
    geom_boxplot()
```



```
##
                                     Df Sum Sq Mean Sq F value
                                                                 Pr(>F)
## format
                                          1.72 1.7179 12.240 0.000525 ***
## conference
                                      1
                                          0.01 0.0060
                                                         0.043 0.836486
## student
                                          0.11 0.1100
                                                         0.784 0.376531
## gender
                                          0.18 0.1800
                                                         1.282 0.258186
                                      1
## format:conference
                                          0.05
                                               0.0498
                                                         0.355 0.551780
## format:student
                                          0.21
                                               0.2150
                                                         1.532 0.216638
                                      1
## conference:student
                                      1
                                          0.00
                                               0.0004
                                                         0.003 0.957688
## format:gender
                                          0.03 0.0261
                                                         0.186 0.666379
                                      1
## conference:gender
                                          0.03 0.0252
                                                         0.179 0.672053
                                      1
## student:gender
                                          0.07 0.0656
                                                         0.468 0.494537
                                      1
## format:conference:student
                                      1
                                          0.10 0.0987
                                                         0.704 0.402147
## format:conference:gender
                                      1
                                          0.00
                                               0.0046
                                                         0.032 0.857041
## format:student:gender
                                          0.05 0.0546
                                                         0.389 0.533309
                                      1
## conference:student:gender
                                      1
                                          0.02 0.0195
                                                         0.139 0.709404
## format:conference:student:gender
                                          0.03 0.0290
                                                         0.206 0.649913
                                      1
## Residuals
                                    368 51.65 0.1403
## ---
```

Signif. codes: 0'***'0.001'**'0.05'.'0.1''1 There's an effect for format, but nothing else.

Mixed effects model across whole data:

Run mixed effects model:

```
m0 = lmer(dalechall_score_norm~ 1 +
          (format+student+gender+review)^2 + time +
          (1 + format + gender | conference),
      data = readScores[readScores$conference!="E8",])
summary(m0)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
    to degrees of freedom [lmerMod]
## Formula:
  dalechall_score_norm ~ 1 + (format + student + gender + review)^2 +
      time + (1 + format + gender | conference)
##
##
     Data: readScores[readScores$conference != "E8", ]
##
## REML criterion at convergence: 699.6
##
## Scaled residuals:
      Min
              1Q Median
                            3Q
                                  Max
## -3.5716 -0.6737 0.0250 0.6070 3.0111
##
## Random effects:
  Groups
                        Variance Std.Dev.
   conference (Intercept) 0.000e+00 0.000e+00
##
             format1
                        1.743e-16 1.320e-08
##
##
                                           NaN -1.00
             gender1
                        1.374e-16 1.172e-08
  Residual
                        1.400e-01 3.742e-01
## Number of obs: 753, groups: conference, 4
## Fixed effects:
                                                 df t value Pr(>|t|)
                        Estimate Std. Error
## (Intercept)
                                 0.049189 741.000000 124.174 < 2e-16
                        6.108027
## format1
                        0.163237
                                 0.051187 741.000000
                                                     3.189
                                                           0.00149
## student1
                        0.011899 0.047173 741.000000
                                                     0.252
                                                           0.80093
## gender1
                       -0.046606 0.046148 741.000000 -1.010
                                                           0.31286
## reviewSingle
                       0.68592
## time
                       0.007782 0.027609 741.000000
                                                    0.282
                                                           0.77812
## format1:student1
                       0.054107 0.070616 741.000000
                                                     0.766 0.44380
## format1:gender1
                       0.342
                                                           0.73220
## format1:reviewSingle
                       0.95850
## student1:gender1
                       -0.040472 0.062358 741.000000 -0.649
                                                           0.51652
## student1:reviewSingle
                      ## gender1:reviewSingle
                       ## (Intercept)
                      ***
## format1
## student1
## gender1
## reviewSingle
## time
## format1:student1
## format1:gender1
## format1:reviewSingle
```

```
## student1:gender1
## student1:reviewSingle
## gender1:reviewSingle
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
              (Intr) formt1 stdnt1 gendr1 rvwSng time
                                                        frmt1:s1 frmt1:g1
## format1
              -0.306
## student1
              -0.134 0.244
## gender1
               0.177 -0.228 0.054
## reviewSingl -0.913 0.187 0.049 -0.103
## time
              -0.844 -0.032 -0.080 -0.040 0.845
## frmt1:stdn1 0.120 -0.331 -0.482 -0.004 -0.026 0.018
## frmt1:gndr1 -0.155  0.260 -0.017 -0.472  0.067  0.043  0.029
## frmt1:rvwSn 0.198 -0.674 -0.078 0.085 -0.231 0.015 0.017
                                                                  0.003
## stdnt1:gnd1 0.013 0.016 0.127 -0.223 -0.069 -0.005 -0.080
                                                                  0.057
## stdnt1:rvwS 0.137 -0.111 -0.634 -0.076 -0.213 -0.011 0.123
                                                                -0.001
## gndr1:rvwSn -0.078 0.120 -0.059 -0.620 0.146 -0.013 -0.001
                                                                  0.114
              frm1:S std1:1 std1:S
## format1
## student1
## gender1
## reviewSingl
## time
## frmt1:stdn1
## frmt1:gndr1
## frmt1:rvwSn
## stdnt1:gnd1 0.007
## stdnt1:rvwS 0.081 0.125
## gndr1:rvwSn -0.108 -0.084 0.001
```

Differences by format, but no other effects.

Reading scores and review scores

The simple correlations between reading score and review scores are weak, but suggest that higher scores are given to submissions with higher reading grades:

```
cor.test(readScores$Score.mean, readScores$fleschkincaid_score)
```

```
##
## Pearson's product-moment correlation
##
## data: readScores$Score.mean and readScores$fleschkincaid_score
## t = 2.5828, df = 900, p-value = 0.009956
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.02061699 0.15021152
## sample estimates:
## cor
## 0.08577706
cor.test(readScores$Score.mean, readScores$dalechall score)
```

```
##
## Pearson's product-moment correlation
##
## data: readScores$Score.mean and readScores$dalechall_score
## t = 1.2699, df = 900, p-value = 0.2044
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   -0.02304636 0.10727214
## sample estimates:
##
           cor
## 0.04229277
ggplot(readScores,
       aes(y=fleschkincaid_score,
            x=Score.mean)) +
  geom_point() +
  stat_smooth(method = 'lm')
   25 -
   20 -
fleschkincaid_score
   10 -
    5 -
        0.00
                            0.25
                                                                   0.75
                                               0.50
                                                                                       1.00
                                           Score.mean
ggplot(readScores,
       aes(y=dalechall_score,
            x=Score.mean)) +
  geom_point() +
  stat_smooth(method = 'lm')
```


Are there interactions between reading scores and gender?

Linear mixed model fit by maximum likelihood ['lmerMod']

```
m0 = lmer(Score.mean.norm~ 1 +
            format + student + gender +
           (1 | conference),
       data = readScores,
       control = lmerControl(optimizer = 'Nelder_Mead'),
      REML = F)
m1 = update(m0,~.+fleschkincaid_score_scaled)
m2 = update(m1,~.+fleschkincaid_score_scaled:gender)
anova(m0,m1,m2)
## Data: readScores
## Models:
## object: Score.mean.norm ~ 1 + format + student + gender + (1 | conference)
## ..1: Score.mean.norm ~ format + student + gender + (1 | conference) +
            fleschkincaid_score_scaled
## ..2: Score.mean.norm ~ format + student + gender + (1 | conference) +
            fleschkincaid_score_scaled + gender:fleschkincaid_score_scaled
##
          Df
                AIC
                       BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## object 6 2126.5 2154.2 -1057.2
                                     2114.5
           7 2127.1 2159.4 -1056.5
                                     2113.1 1.4443
                                                               0.2294
           8 2129.0 2166.0 -1056.5
                                     2113.0 0.0182
                                                               0.8926
## ..2
summary(m2)
```

Formula: Score.mean.norm ~ format + student + gender + (1 | conference) +
fleschkincaid_score_scaled + gender:fleschkincaid_score_scaled

```
Data: readScores
## Control: lmerControl(optimizer = "Nelder_Mead")
##
##
                    logLik deviance df.resid
       ATC
                BIC
##
    2129.0
             2166.0 -1056.5
                              2113.0
##
## Scaled residuals:
##
      Min
           1Q Median
                               3Q
## -1.9234 -0.9003 -0.0175 0.8968 1.9443
##
## Random effects:
## Groups
                          Variance Std.Dev.
              Name
## conference (Intercept) 0.0000
                                   0.0000
                          0.9688
                                   0.9843
## Residual
## Number of obs: 753, groups: conference, 4
##
## Fixed effects:
##
                                     Estimate Std. Error t value
## (Intercept)
                                     -0.02976
                                                 0.04538 -0.656
## format1
                                      0.24568
                                                 0.08270
                                                          2.971
## student1
                                     -0.01985
                                                 0.07807 -0.254
## gender1
                                      0.12686
                                                 0.07535
                                                         1.684
## fleschkincaid_score_scaled
                                      0.04840
                                                 0.04147 1.167
## gender1:fleschkincaid_score_scaled 0.01113
                                                 0.08244 0.135
##
## Correlation of Fixed Effects:
              (Intr) formt1 stdnt1 gendr1 flsc__
## format1
              -0.468
              -0.360 0.091
## student1
## gender1
              0.273 -0.116 0.024
## flschkncd_ 0.032 -0.136 -0.004 -0.017
## gndr1:fls__ -0.072  0.061  0.055 -0.041  0.370
Dale-Chall scores:
m0 = lmer(Score.mean.norm~ 1 +
           format + student + gender +
           (1 | conference),
      data = readScores,
      REML = F
m1 = update(m0,~.+dalechall_score_scaled)
m2 = update(m1,~.+dalechall_score_scaled:gender)
anova(m0,m1,m2)
## Data: readScores
## Models:
## object: Score.mean.norm ~ 1 + format + student + gender + (1 | conference)
## ..1: Score.mean.norm ~ format + student + gender + (1 | conference) +
## ..1:
           dalechall_score_scaled
## ..2: Score.mean.norm ~ format + student + gender + (1 | conference) +
           dalechall_score_scaled + gender:dalechall_score_scaled
## ..2:
         Df
               AIC
                      BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## object 6 2126.5 2154.2 -1057.2
                                   2114.5
## ..1
          7 2128.5 2160.8 -1057.2
                                   2114.5 0.0117
                                                             0.9140
## ..2
          8 2130.5 2167.5 -1057.2 2114.5 0.0158
                                                             0.8999
```

summary(m2)

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: Score.mean.norm ~ format + student + gender + (1 | conference) +
      dalechall_score_scaled + gender:dalechall_score_scaled
##
     Data: readScores
##
##
                BIC
                      logLik deviance df.resid
        AIC
             2167.5 -1057.2
##
     2130.5
                               2114.5
##
## Scaled residuals:
                 1Q
                     Median
                                           Max
## -1.89072 -0.90090 -0.03418 0.91063 1.89314
##
## Random effects:
## Groups
                          Variance Std.Dev.
## conference (Intercept) 0.0000
                                   0.0000
                          0.9706
                                   0.9852
## Residual
## Number of obs: 753, groups: conference, 4
## Fixed effects:
                                  Estimate Std. Error t value
## (Intercept)
                                 -0.032909
                                             0.045329 -0.726
## format1
                                             0.083196 3.165
                                  0.263319
## student1
                                             0.078066 -0.230
                                 -0.017948
                                                       1.692
## gender1
                                  0.127700
                                             0.075471
## dalechall score scaled
                                 -0.004810
                                             0.038251 -0.126
## gender1:dalechall_score_scaled -0.009455
                                             0.075132 -0.126
## Correlation of Fixed Effects:
##
              (Intr) formt1 stdnt1 gendr1 dlch__
## format1
              -0.466
## student1
              -0.359 0.090
## gender1
              0.274 -0.121 0.024
## dlchll_scr_ 0.059 -0.194 -0.027 0.021
## gndr1:dlc__ -0.028  0.041  0.025 -0.046  0.151
No interactions.
```

Influence of last author

This study considered first authors, but future research could explore the effect of supervising authors and institutions. The data in this study is not ideal for exploring this, since the number of papers with multiple authors varies between conferences and there are many non-independencies. The raw data is not made available here because the combination of factors make cases identifiable.

We investigated whether the review scores were biased by combinations of first author gender, last author gender and review type (mixed effects model with a random intercept for each conference). We note that the biggest change is for male-male authors from E10 (single-blind) to E11 (double-blind), which would be consistent with a gender bias being neutralised by double-blind review. However, statistically, there was only a significant main effect of format.

Here are the distributions of review scores by first and last author gender:

Figure 1: Distributions of review scores by first and last author gender.

Figure 2: Distributions of review scores by first and last author gender.

Figure 3: Coefficients and confidence intervals for effects predicting review ranks.