REDES MULTIORBITALES BASADAS EN MOLÉCULAS FOTÓNICAS

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN EN FÍSICA

DIEGO ANTONIO ROMÁN CORTÉS

PROFESOR GUÍA: RODRIGO ANDRÉS VICENCIO POBLETE

> MIEMBROS DE LA COMISIÓN: NOMBRE COMPLETO UNO NOMBRE COMPLETO DOS NOMBRE COMPLETO TRES

Este trabajo ha sido parcialmente financiado por los proyectos Instituto Milenio para la Investigación en Óptica (MIRO) ICN17 012, Fondecyt Regular 1191205 y 1231313

Resumen

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Una dedicatoria corta.

Agradecimientos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Tabla de Contenido

1.	Introducción	1
2.	Marco teórico	3
	2.1. Modos normales del campo electromagnético en un medio dieléctrico	3
	2.2. Métodos numéricos	4
3.	Tercero	6
4.	Conclusión	9
	Bibliografía	15
Αn	péndice A. Anexo	16

Índice de Tablas

4.1. Tabla 1]	1	Ĺ
--------------	--	--	--	--	--	--	--	--	--	---	---	---

Índice de Ilustraciones

4.1.	Logo de la Facultad	 	 	 	. 9
	C				

Capítulo 1

Introducción

Entre los premios Nobel en Física de la última década [1] se encuentran varios que están estrechamente ligados a la óptica: por la generación de pulsos de luz ultra cortos (femtosegundos [2] y luego attosegundos [3–5]), por experimentos con fotones entrelazados [6–8], por la ideación de pinzas ópticas [9] y por la invención de luces LED [10–12]. El estudio del comportamiento de la luz en diversos contextos ha permitido el posterior desarrollo tecnológico con aplicaciones industriales, en medicina, en comunicaciones e incluso militares. Una aplicación cotidiana es la fibra óptica, que actúa como una guía de onda para la luz y actualmente es el principal medio de transmisión de Internet en el mundo [13, 14].

Numerosos de estos avances en el control de las propiedades de transporte de la luz se han visto propiciados por la técnica de escritura de guías de onda por láser de femtosegundos, la cual ha permitido la fabricación de redes fotónicas de variada índole [15–23]. Su importancia radica no sólo en emular situaciones de la física del sólido, tales como oscilaciones de Bloch [24], localización de Anderson [25], estados de banda plana [17–20] o topología [26–29], sino que también en el estudio de fenómenos ópticos incluyendo no-linealidad tipo Kerr y su uso en la formación de solitones [30], la posible propagación de luz cuántica [31–33], o su compatibilidad con la transmisión de información en la industria de las telecomunicaciones [34].

El enfoque de este proyecto será el estudio de redes fotónicas multiorbitales. Por ello será crucial incorporar la técnica de acoplamiento interorbital, que consiste en sintonizar las constantes de propagación de el modo fundamental de una guía monomodal (S) con el primer modo guiado excitado de una guía dimodal (P) mediante la calibración adecuada de las potencias de escritura, que inducen diferencias en los contrastes generados por la técnica de escritura por láser femtosegundos [35].

El llamado acoplamiento SP ha permitido el estudio de redes que presentan flujo magnético efectivo $\Phi = \pi$, el cual permite el transporte controlado de la luz [36, 37]. Una aplicación directa de este fenómeno es la generación de guías de onda que admitan modos guiados de luz con momentum angular orbital (OAM) y la codificación de su carga topológica ℓ como medio para transmitir información [38, 39]. Se ha reportado a la fecha sólo la propagación de OAM mediante de redes fotónicas que presevan simetría C_3 [40, 41]. Sin embargo, el acoplamiento entre modos OAM en una red fotónica permitiría la generación de flujos magnéticos distintos de 0 o π , lo que se reflejaría en una direccionalidad dependiente de la circulación propagante [42, 43]. Para ello será necesario

introducir el concepto de "moléculas fotónicas" [44] y estudiar su aplicación en redes fotónicas [45].

Capítulo 2

Marco teórico

2.1. Modos normales del campo electromagnético en un medio dieléctrico

Esta tesis estudia el comportamiento de luz láser de baja potencia (1 mW de potencia de salida) propagada en guías de onda dieléctricas escritas dentro de una muestra de borosilicato. Es por ello que se supone un medio lineal no magnético libre de fuentes de carga y de corriente. Las ecuaciones de Maxwell en éste régimen son:

$$\nabla \cdot \mathbf{D} = 0, \tag{2.1}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},\tag{2.2}$$

$$\nabla \cdot \mathbf{B} = 0, \tag{2.3}$$

$$\nabla \times \mathbf{B} = \mu_0 \frac{\partial \mathbf{D}}{\partial t},\tag{2.4}$$

donde **E**, **B**, **D** = ε **E** son los campos eléctrico, campo magnético y campo desplazamiento eléctrico, respectivamente. Las guías de onda son invariantes en la dirección de propagación z, por lo que el índice de refracción $n = \sqrt{\varepsilon/\varepsilon_0}$ dependerá de las coordenadas transversales al eje óptico, es decir, $n \equiv n(x, y) = n_0 + \Delta n(x, y)$, con $n_0 = 1.47$ el índice de refracción del borosilicato y $\Delta n \sim 10^{-5} - 10^{-3}$ el contraste de las guías de onda.

Aplicando rotor por la izquierda a la ecuación (2.2), usando la ecuación (2.4) y asumiendo una solución temporal harmónica proporcional a $e^{i\omega t}$ se tiene:

$$\nabla \times \nabla \times \mathbf{E} = -\frac{\partial}{\partial t} (\nabla \times \mathbf{B}) = -\frac{\partial}{\partial t} \left(\mu_0 \frac{\partial \mathbf{D}}{\partial t} \right) = -\frac{n^2}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = n^2 k_0^2 \mathbf{E}, \tag{2.5}$$

donde $k_0 \equiv \omega/c$ es el número de onda en el vacío. Notemos que, por identidad de cálculo vectorial, se tiene que $\nabla \times \nabla \times \mathbf{E} = \nabla(\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}$, y usando la ley de Gauss (2.1) se deduce que $\nabla \cdot \mathbf{E} = -\nabla(n^2) \cdot \mathbf{E}/n^2$.

Con esto,

$$(\nabla^2 + k_0^2 n^2) \mathbf{E} = -\nabla \left(\mathbf{E} \cdot \frac{\nabla n^2}{n^2} \right) \approx 0, \tag{2.6}$$

donde el término de la derecha se desprecia usando la aproximación de guiaje débil, pues el contraste Δn es pequeño. Si la estructura de guías de onda no varía en la dirección z, el campo eléctrico se puede expandir en sus modos normales como $\mathbf{E}(\mathbf{r}) = \sum_k \mathbf{f}_k(x, y) a_k(z) e^{i\beta_k z}$, por lo que el laplaciano de la ecuación (2.6) se puede separar como $\nabla^2 = \nabla_{\perp}^2 + \frac{\partial^2}{\partial z^2}$, por lo que la ecuación (2.6) se expande como:

$$(\nabla^2 + k_0^2 n^2) \mathbf{E}(\mathbf{r}) = \left(\nabla_\perp^2 + \frac{\partial^2}{\partial z^2} + k_0^2 n^2\right) \sum_k \mathbf{f}_k(x, y) a_k(z) e^{i\beta_k z}$$
(2.7)

$$= \sum_{k} \left[a_{k} e^{i\beta_{k}z} \nabla_{\perp}^{2} \mathbf{f}_{k} + \mathbf{f}_{k} \frac{d}{dz} \left(\frac{da_{k}}{dz} e^{i\beta_{k}z} + i\beta_{k} a_{k} e^{i\beta_{k}z} \right) + k_{0}^{2} n^{2} a_{k} \mathbf{f}_{k} e^{i\beta_{k}z} \right]$$
(2.8)

$$= \sum_{k} \left\{ a_k \nabla_{\perp}^2 \mathbf{f}_k + \left[\frac{d^2 a_k}{dz^2} + 2i\beta_k \frac{da_k}{dz} + \left(k_0^2 n^2 - \beta_k^2 \right) a_k \right] \mathbf{f}_k \right\} e^{i\beta_k z}$$
 (2.9)

$$=0 (2.10)$$

2.2. Métodos numéricos

A partir de la ecuación (2.5) y separando el campo eléctrico $\mathbf{E}(\mathbf{r}) = \mathbf{E}_1(\mathbf{r})e^{-i\phi_1(\mathbf{r})}$ en una envolvente lenta $\mathbf{E}_1(\mathbf{r})$ y una fase rápidamente oscilante $\phi_1(\mathbf{r})$,

$$\nabla \times [\nabla \times (\mathbf{E}_1 e^{-i\phi_1})] = n^2 k_0^2 \mathbf{E}_1 e^{-i\phi_1}$$
 (2.11)

$$\nabla \times [e^{-i\phi_1} \times (\nabla \times \mathbf{E}_1) + \nabla (e^{-i\phi_1}) \times \mathbf{E}_1] = n^2 k_0^2 \mathbf{E}_1 e^{-i\phi_1}$$
 (2.12)

$$\nabla \times [e^{-i\phi_1}(\nabla - i\mathbf{k}_1) \times \mathbf{E}_1] = n^2 k_0^2 \mathbf{E}_1 e^{-i\phi_1}$$
 (2.13)

$$e^{-i\phi_1}\nabla \times [(\nabla - i\mathbf{k}_1) \times \mathbf{E}_1] + \nabla(e^{-i\phi_1}) \times (\nabla - i\mathbf{k}_1) \times \mathbf{E}_1 = n^2 k_0^2 \mathbf{E}_1 e^{-i\phi_1}$$
(2.14)

$$e^{-i\phi_1}\nabla \times [(\nabla - i\mathbf{k}_1) \times \mathbf{E}_1] - i\mathbf{k}_1 e^{-i\phi_1} \times (\nabla - i\mathbf{k}_1) \times \mathbf{E}_1 = n^2 k_0^2 \mathbf{E}_1 e^{-i\phi_1}$$
(2.15)

$$(\nabla - i\mathbf{k}_1) \times ((\nabla - i\mathbf{k}_1) \times \mathbf{E}_1) = n^2 k_0^2 \mathbf{E}_1, \tag{2.16}$$

con $\mathbf{k}_1 = \nabla \phi_1(\mathbf{r})$. La ecuación (2.16) se puede resolver vía el software comercial COMSOL *Multiphysics* mediante elementos finitos más gruesos que los que se tendría que usar a partir de la ecuación (2.5) debido a la separación entre envolvente y fase, sin haber hecho aproximación alguna. Por otro lado, utilizando la aproximación paraxial escogiendo el eje z como dirección de propagación y seleccionando la polarización horizontal del campo, es posible simplificar la ecuación (2.16) y llegar a la formulación de un método numérico escalar conocido como *Beam Propagation Method*, utilizado ampliamente en esta área de investigación [16, 35, 36, 41, 46]. Éste consiste en resolver

numéricamente la ecuación

$$2in_0 k_0 \frac{\partial}{\partial z} \psi(x, y, z) = \nabla_{\perp}^2 \psi(x, y, z) + \left(n^2 - n_0^2\right) k_0^2 \psi(x, y, z), \tag{2.17}$$

con $\psi(x, y, z)$, n_0 , n(x, y) y k_0 la envolvente de la componente horizontal campo eléctrico, el índice de refracción del material, el índice de refracción inducido y el número de onda en el vacío, respectivamente. Aplicando teoría acoplada de modos [47] a la ecuación (2.17), con el objetivo de describir de forma discreta una red fotónica, es posible derivar las llamadas ecuaciones discretas tipo Schrödinger [19, 20, 30]

$$-i\frac{\partial u_{\vec{n}}}{\partial z} = \beta_{\vec{n}}u_{\vec{n}} + \sum_{\vec{m} \neq \vec{n}} C_{\vec{n},\vec{m}}u_{\vec{m}}, \qquad (2.18)$$

con $u_{\vec{n}}$, $\beta_{\vec{n}}$ y $C_{\vec{n},\vec{m}}$ la envolvente normalizada del campo eléctrico, la constante de propagación normalizada y las constantes de acoplamiento entre los modos de las guías en las posiciones de la red \vec{n} y \vec{m} , respectivamente.

Capítulo 3

Tercero

Quisque facilisis auctor sapien. Pellentesque gravida hendrerit lectus. Mauris rutrum sodales sapien. Fusce hendrerit sem vel lorem. Integer pellentesque massa vel augue. Integer elit tortor, feugiat quis, sagittis et, ornare non, lacus. Vestibulum posuere pellentesque eros. Quisque venenatis ipsum dictum nulla. Aliquam quis quam non metus eleifend interdum. Nam eget sapien ac mauris malesuada adipiscing. Etiam eleifend neque sed quam. Nulla facilisi. Proin a ligula. Sed id dui eu nibh egestas tincidunt. Suspendisse arcu.

Maecenas dui. Aliquam volutpat auctor lorem. Cras placerat est vitae lectus. Curabitur massa lectus, rutrum euismod, dignissim ut, dapibus a, odio. Ut eros erat, vulputate ut, interdum non, porta eu, erat. Cras fermentum, felis in porta congue, velit leo facilisis odio, vitae consectetuer lorem quam vitae orci. Sed ultrices, pede eu placerat auctor, ante ligula rutrum tellus, vel posuere nibh lacus nec nibh. Maecenas laoreet dolor at enim. Donec molestie dolor nec metus. Vestibulum libero. Sed quis erat. Sed tristique. Duis pede leo, fermentum quis, consectetuer eget, vulputate sit amet, erat.

Donec vitae velit. Suspendisse porta fermentum mauris. Ut vel nunc non mauris pharetra varius. Duis consequat libero quis urna. Maecenas at ante. Vivamus varius, wisi sed egestas tristique, odio wisi luctus nulla, lobortis dictum dolor ligula in lacus. Vivamus aliquam, urna sed interdum porttitor, metus orci interdum odio, sit amet euismod lectus felis et leo. Praesent ac wisi. Nam suscipit vestibulum sem. Praesent eu ipsum vitae pede cursus venenatis. Duis sed odio. Vestibulum eleifend. Nulla ut massa. Proin rutrum mattis sapien. Curabitur dictum gravida ante.

Phasellus placerat vulputate quam. Maecenas at tellus. Pellentesque neque diam, dignissim ac, venenatis vitae, consequat ut, lacus. Nam nibh. Vestibulum fringilla arcu mollis arcu. Sed et turpis. Donec sem tellus, volutpat et, varius eu, commodo sed, lectus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque enim arcu, suscipit nec, tempus at, imperdiet vel, metus. Morbi volutpat purus at erat. Donec dignissim, sem id semper tempus, nibh massa eleifend turpis, sed pellentesque wisi purus sed libero. Nullam lobortis tortor vel risus. Pellentesque consequat nulla eu tellus. Donec velit. Aliquam fermentum, wisi ac rhoncus iaculis, tellus nunc malesuada orci, quis volutpat dui magna id mi. Nunc vel ante. Duis vitae lacus. Cras nec ipsum.

Morbi nunc. Aliquam consectetuer varius nulla. Phasellus eros. Cras dapibus porttitor risus. Maecenas ultrices mi sed diam. Praesent gravida velit at elit vehicula porttitor. Phasellus nisl mi,

sagittis ac, pulvinar id, gravida sit amet, erat. Vestibulum est. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Curabitur id sem elementum leo rutrum hendrerit. Ut at mi. Donec tincidunt faucibus massa. Sed turpis quam, sollicitudin a, hendrerit eget, pretium ut, nisl. Duis hendrerit ligula. Nunc pulvinar congue urna.

Nunc velit. Nullam elit sapien, eleifend eu, commodo nec, semper sit amet, elit. Nulla lectus risus, condimentum ut, laoreet eget, viverra nec, odio. Proin lobortis. Curabitur dictum arcu vel wisi. Cras id nulla venenatis tortor congue ultrices. Pellentesque eget pede. Sed eleifend sagittis elit. Nam sed tellus sit amet lectus ullamcorper tristique. Mauris enim sem, tristique eu, accumsan at, scelerisque vulputate, neque. Quisque lacus. Donec et ipsum sit amet elit nonummy aliquet. Sed viverra nisl at sem. Nam diam. Mauris ut dolor. Curabitur ornare tortor cursus velit.

Morbi tincidunt posuere arcu. Cras venenatis est vitae dolor. Vivamus scelerisque semper mi. Donec ipsum arcu, consequat scelerisque, viverra id, dictum at, metus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut pede sem, tempus ut, porttitor bibendum, molestie eu, elit. Suspendisse potenti. Sed id lectus sit amet purus faucibus vehicula. Praesent sed sem non dui pharetra interdum. Nam viverra ultrices magna.

Aenean laoreet aliquam orci. Nunc interdum elementum urna. Quisque erat. Nullam tempor neque. Maecenas velit nibh, scelerisque a, consequat ut, viverra in, enim. Duis magna. Donec odio neque, tristique et, tincidunt eu, rhoncus ac, nunc. Mauris malesuada malesuada elit. Etiam lacus mauris, pretium vel, blandit in, ultricies id, libero. Phasellus bibendum erat ut diam. In congue imperdiet lectus.

Aenean scelerisque. Fusce pretium porttitor lorem. In hac habitasse platea dictumst. Nulla sit amet nisl at sapien egestas pretium. Nunc non tellus. Vivamus aliquet. Nam adipiscing euismod dolor. Aliquam erat volutpat. Nulla ut ipsum. Quisque tincidunt auctor augue. Nunc imperdiet ipsum eget elit. Aliquam quam leo, consectetuer non, ornare sit amet, tristique quis, felis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque interdum quam sit amet mi. Pellentesque mauris dui, dictum a, adipiscing ac, fermentum sit amet, lorem.

Ut quis wisi. Praesent quis massa. Vivamus egestas risus eget lacus. Nunc tincidunt, risus quis bibendum facilisis, lorem purus rutrum neque, nec porta tortor urna quis orci. Aenean aliquet, libero semper volutpat luctus, pede erat lacinia augue, quis rutrum sem ipsum sit amet pede. Vestibulum aliquet, nibh sed iaculis sagittis, odio dolor blandit augue, eget mollis urna tellus id tellus. Aenean aliquet aliquam nunc. Nulla ultricies justo eget orci. Phasellus tristique fermentum leo. Sed massa metus, sagittis ut, semper ut, pharetra vel, erat. Aliquam quam turpis, egestas vel, elementum in, egestas sit amet, lorem. Duis convallis, wisi sit amet mollis molestie, libero mauris porta dui, vitae aliquam arcu turpis ac sem. Aliquam aliquet dapibus metus.

Vivamus commodo eros eleifend dui. Vestibulum in leo eu erat tristique mattis. Cras at elit. Cras pellentesque. Nullam id lacus sit amet libero aliquet hendrerit. Proin placerat, mi non elementum laoreet, eros elit tincidunt magna, a rhoncus sem arcu id odio. Nulla eget leo a leo egestas facilisis. Curabitur quis velit. Phasellus aliquam, tortor nec ornare rhoncus, purus urna posuere velit, et commodo risus tellus quis tellus. Vivamus leo turpis, tempus sit amet, tristique vitae, laoreet quis, odio. Proin scelerisque bibendum ipsum. Etiam nisl. Praesent vel dolor. Pellentesque vel magna. Curabitur urna. Vivamus congue urna in velit. Etiam ullamcorper elementum dui. Praesent non urna. Sed placerat quam non mi. Pellentesque diam magna, ultricies eget, ultrices placerat, adipiscing

rutrum, sem.

Capítulo 4

Conclusión

Mauris ac ipsum. Duis ultrices erat ac felis. Donec dignissim luctus orci. Fusce pede odio, feugiat sit amet, aliquam eu, viverra eleifend, ipsum. Fusce arcu massa, posuere id, nonummy eu, pulvinar ut, wisi. Sed dui. Vestibulum nunc nisl, rutrum quis, pharetra eget, congue sed, dui. Donec justo neque, euismod eget, nonummy adipiscing, iaculis eu, leo. Duis lectus. Morbi pellentesque nonummy dui.

Aenean sem dolor, fermentum nec, gravida hendrerit, mattis eget, felis. Nullam non diam vitae mi lacinia consectetuer. Fusce non massa eget quam luctus posuere. Aenean vulputate velit. Quisque et dolor. Donec ipsum tortor, rutrum quis, mollis eu, mollis a, pede. Donec nulla. Duis molestie. Duis lobortis commodo purus. Pellentesque vel quam. Ut congue congue risus. Sed ligula. Aenean dictum pede vitae felis. Donec sit amet nibh. Maecenas eu orci. Quisque gravida quam sed massa.

Nunc euismod, mauris luctus adipiscing pellentesque, augue ligula pellentesque lectus, vitae posuere purus velit a pede. Phasellus leo mi, egestas imperdiet, blandit non, sollicitudin pharetra, enim. Nullam faucibus tellus non enim. Sed egestas nunc eu eros. Nunc euismod venenatis urna. Phasellus ullamcorper. Vivamus varius est ac lorem. In id pede eleifend nibh consectetuer faucibus. Phasellus accumsan euismod elit. Etiam vitae elit. Integer imperdiet nibh. Morbi imperdiet orci euismod mi.

Donec tincidunt tempor metus. Aenean egestas cursus nulla. Fusce ac metus at enim viverra lacinia. Vestibulum in magna non eros varius suscipit. Nullam cursus nibh. Mauris neque. In nunc quam, convallis vitae, posuere in, consequat sed, wisi. Phasellus bibendum consectetuer massa. Curabitur quis urna. Pellentesque a justo.

Figura 4.1: Logo de la Facultad

Tabla 4.1: Tabla 1

Campo 1	Campo 2	Num
Valor 1a	Valor 2a	3
Valor 1b	Valor 2b	3

In sit amet dui eget lacus rutrum accumsan. Phasellus ac metus sed massa varius auctor. Curabitur velit elit, pellentesque eget, molestie nec, congue at, pede. Maecenas quis tellus non lorem vulputate ornare. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Etiam magna arcu, vulputate egestas, aliquet ut, facilisis ut, nisl. Donec vulputate wisi ac dolor. Aliquam feugiat nibh id tellus. Morbi eget massa sit amet purus accumsan dictum. Aenean a lorem. Fusce semper porta sapien.

Curabitur sit amet libero eget enim eleifend lacinia. Vivamus sagittis volutpat dui. Suspendisse potenti. Morbi a nibh eu augue fermentum posuere. Curabitur elit augue, porta quis, congue aliquam, rutrum non, massa. Integer mattis mollis ipsum. Sed tellus enim, mattis id, feugiat sed, eleifend in, elit. Phasellus non purus sed elit viverra rhoncus. Vestibulum id tellus vel sem imperdiet congue. Aenean in arcu. Nullam urna justo, imperdiet eget, volutpat vitae, semper eu, quam. Sed turpis dui, porttitor ut, egestas ac, condimentum non, wisi. Fusce iaculis turpis eget dui. Quisque pulvinar est pellentesque leo. Ut nulla elit, mattis vel, scelerisque vel, blandit ut, justo. Nulla feugiat risus in erat.

Bibliografía

- [1] All nobel prizes in physics. URL https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-physics/.
- [2] P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou. Generation of ultrahigh peak power pulses by chirped pulse amplification. *IEEE Journal of Quantum Electronics*, 24(2): 398–403, 1988. doi: 10.1109/3.137.
- [3] M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, Anne L'Huillier, and P. B. Corkum. Theory of high-harmonic generation by low-frequency laser fields. *Phys. Rev. A*, 49:2117–2132, Mar 1994. doi: 10.1103/PhysRevA.49.2117. URL https://link.aps.org/doi/10.1103/PhysRevA.49.2117.
- [4] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini. Observation of a train of attosecond pulses from high harmonic generation. *Science*, 292 (5522):1689–1692, 2001. doi: 10.1126/science.1059413. URL https://www.science.org/doi/abs/10.1126/science.1059413.
- [5] Thomas Brabec and Ferenc Krausz. Intense few-cycle laser fields: Frontiers of non-linear optics. *Reviews of Modern Physics*, 72:545–591, 2000. URL https://api.semanticscholar.org/CorpusID:120371634.
- [6] J F Clauser and A Shimony. Bell's theorem. experimental tests and implications. *Reports on Progress in Physics*, 41(12):1881, dec 1978. doi: 10.1088/0034-4885/41/12/002. URL https://dx.doi.org/10.1088/0034-4885/41/12/002.
- [7] Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of bell's inequalities using time-varying analyzers. *Phys. Rev. Lett.*, 49:1804–1807, Dec 1982. doi: 10.1103/PhysRevLett.49.1804. URL https://link.aps.org/doi/10.1103/PhysRevLett.49.1804.
- [8] Paul G. Kwiat, Klaus Mattle, Harald Weinfurter, Anton Zeilinger, Alexander V. Sergienko, and Yanhua Shih. New high-intensity source of polarization-entangled photon pairs. *Phys. Rev. Lett.*, 75:4337–4341, Dec 1995. doi: 10.1103/PhysRevLett.75.4337. URL https://link.aps.org/doi/10.1103/PhysRevLett.75.4337.
- [9] A. Ashkin, J. M. Dziedzic, and T. Yamane. Optical trapping and manipulation of single cells using infrared laser beams. *Nature*, 330(6150):769–771, Dec 1987. ISSN 1476-4687. doi: 10.1038/330769a0. URL https://doi.org/10.1038/330769a0.

- [10] Isamu Akasaki. Gan-based p-n junction blue-light-emitting devices. *Proc. IEEE*, 101(10): 2200–2210, 2013. doi: 10.1109/JPROC.2013.2274928. URL https://doi.org/10.1109/JPROC.2013.2274928.
- [11] Michael Kneissl, Tae-Yeon Seong, Jung Han, and Hiroshi Amano. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. *Nature Photonics*, 13(4): 233–244, Apr 2019. ISSN 1749-4893. doi: 10.1038/s41566-019-0359-9. URL https://doi.org/10.1038/s41566-019-0359-9.
- [12] Shuji Nakamura, Takashi Mukai, and Masayuki Senoh. Candela-class high-brightness In-GaN/AlGaN double-heterostructure blue-light-emitting diodes. *Applied Physics Letters*, 64(13):1687–1689, 03 1994. ISSN 0003-6951. doi: 10.1063/1.111832. URL https://doi.org/10.1063/1.111832.
- [13] Submarine cable frequently asked questions, . URL https://www2.telegeography.com/submarine-cable-fags-frequently-asked-questions.
- [14] Hogares con acceso a internet fijo alcanzan el 67 % y usuarios aumentan preferencia por redes de alta velocidad, . URL https://www.subtel.gob.cl/hogares-con-acceso-a-internet-fijo-alcanzan-el-67-y-usuarios-aumentan-preferencia-por-redes-de-alta-velocidad.
- [15] Alexander Szameit, Dominik Blömer, Jonas Burghoff, Thomas Schreiber, Thomas Pertsch, Stefan Nolte, Andreas Tünnermann, and Falk Lederer. Discrete nonlinear localization in femtosecond laser written waveguides in fused silica. *Opt. Express*, 13(26):10552–10557, Dec 2005. doi: 10.1364/OPEX.13.010552. URL https://opg.optica.org/oe/abstract.cfm?URI=oe-13-26-10552.
- [16] Yonatan Plotnik, Or Peleg, Felix Dreisow, Matthias Heinrich, Stefan Nolte, Alexander Szameit, and Mordechai Segev. Experimental observation of optical bound states in the continuum. *Phys. Rev. Lett.*, 107:183901, Oct 2011. doi: 10.1103/PhysRevLett.107.183901. URL https://link.aps.org/doi/10.1103/PhysRevLett.107.183901.
- [17] Rodrigo A. Vicencio, Camilo Cantillano, Luis Morales-Inostroza, Bastián Real, Cristian Mejía-Cortés, Steffen Weimann, Alexander Szameit, and Mario I. Molina. Observation of localized states in lieb photonic lattices. *Phys. Rev. Lett.*, 114:245503, Jun 2015. doi: 10.1103/PhysRevLett.114.245503. URL https://link.aps.org/doi/10.1103/PhysRevLett.114.245503.
- [18] Sebabrata Mukherjee, Alexander Spracklen, Debaditya Choudhury, Nathan Goldman, Patrik Öhberg, Erika Andersson, and Robert R. Thomson. Observation of a localized flat-band state in a photonic lieb lattice. *Phys. Rev. Lett.*, 114:245504, Jun 2015. doi: 10.1103/PhysRevLett. 114.245504. URL https://link.aps.org/doi/10.1103/PhysRevLett.114.245504.
- [19] Daniel Leykam, Alexei Andreanov, and Sergej Flach. Artificial flat band systems: from lattice models to experiments. *Advances in Physics: X*, 3(1):1473052, 2018. doi: 10.1080/23746149. 2018.1473052. URL https://doi.org/10.1080/23746149.2018.1473052.
- [20] Rodrigo A. Vicencio. Photonic flat band dynamics. *Advances in Physics: X*, 6(1): 1878057, 2021. doi: 10.1080/23746149.2021.1878057. URL https://doi.org/10.1080/23746149.2021.1878057.

- [21] Diego Román-Cortés, Guillermo Fadic, Christofer Cid-Lara, Diego Guzmán-Silva, Bastián Real, and Rodrigo A. Vicencio. Strain induced localization to delocalization transition on a lieb photonic ribbon lattice. *Scientific Reports*, 11(1):21411, Nov 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-00967-3. URL https://doi.org/10.1038/s41598-021-00967-3.
- [22] Javier Cubillos Cornejo, Diego Guzmán-Silva, Víctor Hugo Cornejo, Ignacio Bordeu, and Rodrigo A. Vicencio. Transport and localization on dendrite-inspired flat band linear photonic lattices. *Scientific Reports*, 13(1):13057, Aug 2023. ISSN 2045-2322. doi: 10.1038/s41598-023-39985-8. URL https://doi.org/10.1038/s41598-023-39985-8.
- [23] Paloma Vildoso, Rodrigo A. Vicencio, and Jovana Petrovic. Ultra-low-loss broadband multiport optical splitters. *Opt. Express*, 31(8):12703–12716, Apr 2023. doi: 10.1364/OE.486855. URL https://opg.optica.org/oe/abstract.cfm?URI=oe-31-8-12703.
- [24] Zhaoyang Zhang, Shaohuan Ning, Hua Zhong, Milivoj R. Belić, Yiqi Zhang, Yuan Feng, Shun Liang, Yanpeng Zhang, and Min Xiao. Experimental demonstration of optical bloch oscillation in electromagnetically induced photonic lattices. *Fundamental Research*, 2(3): 401–404, 2022. ISSN 2667-3258. doi: https://doi.org/10.1016/j.fmre.2021.08.019. URL https://www.sciencedirect.com/science/article/pii/S2667325821001746.
- [25] Tal Schwartz, Guy Bartal, Shmuel Fishman, and Mordechai Segev. Transport and anderson localization in disordered two-dimensional photonic lattices. *Nature*, 446(7131):52–55, Mar 2007. ISSN 1476-4687. doi: 10.1038/nature05623. URL https://doi.org/10.1038/nature05623.
- [26] Sebabrata Mukherjee, Alexander Spracklen, Manuel Valiente, Erika Andersson, Patrik Öhberg, Nathan Goldman, and Robert R. Thomson. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. *Nature Communications*, 8(1):13918, Jan 2017. ISSN 2041-1723. doi: 10.1038/ncomms13918. URL https://doi.org/10.1038/ncomms13918.
- [27] Lukas J. Maczewsky, Julia M. Zeuner, Stefan Nolte, and Alexander Szameit. Observation of photonic anomalous floquet topological insulators. *Nature Communications*, 8(1):13756, Jan 2017. ISSN 2041-1723. doi: 10.1038/ncomms13756. URL https://doi.org/10.1038/ncomms13756.
- [28] G. Cáceres-Aravena, L. E. F. Foa Torres, and R. A. Vicencio. Topological and flat-band states induced by hybridized linear interactions in one-dimensional photonic lattices. *Phys. Rev. A*, 102:023505, Aug 2020. doi: 10.1103/PhysRevA.102.023505. URL https://link.aps.org/doi/10.1103/PhysRevA.102.023505.
- [29] Roman S. Savelev and Maxim A. Gorlach. Topological states in arrays of optical waveguides engineered via mode interference. *Phys. Rev. B*, 102:161112, Oct 2020. doi: 10. 1103/PhysRevB.102.161112. URL https://link.aps.org/doi/10.1103/PhysRevB. 102.161112.
- [30] Falk Lederer, George I. Stegeman, Demetri N. Christodoulides, Gaetano Assanto, Moti Segev, and Yaron Silberberg. Discrete solitons in optics. *Physics Reports*, 463(1):1–126, 2008. ISSN 0370-1573. doi: https://doi.org/10.1016/j.physrep.2008.04.004. URL https://www.sciencedirect.com/science/article/pii/S0370157308001257.

- [31] S. Rojas-Rojas, E. Barriga, C. Muñoz, P. Solano, and C. Hermann-Avigliano. Manipulation of multimode squeezing in a coupled waveguide array. *Phys. Rev. A*, 100:023841, Aug 2019. doi: 10.1103/PhysRevA.100.023841. URL https://link.aps.org/doi/10.1103/PhysRevA.100.023841.
- [32] R. Julius, A. N. Alias, and M. S. A. Halim. Quantum squeezing in coupled waveguide networks with quadratic and qubic nonlinearity. *The European Physical Journal Plus*, 137(1):91, Jan 2022. ISSN 2190-5444. doi: 10.1140/epjp/s13360-021-02302-1. URL https://doi.org/10.1140/epjp/s13360-021-02302-1.
- [33] Joaquin Medina Dueñas, Gabriel O'Ryan Pérez, Carla Hermann-Avigliano, and Luis E. F. Foa Torres. Quadrature protection of squeezed states in a one-dimensional photonic topological insulator. *Quantum*, 5:526, August 2021. ISSN 2521-327X. doi: 10.22331/q-2021-08-17-526. URL https://doi.org/10.22331/q-2021-08-17-526.
- [34] Zhiwen Li, Siqi Hu, Qiao Zhang, Ruijuan Tian, Linpeng Gu, Yisong Zhu, Qingchen Yuan, Ruixuan Yi, Chen Li, Yan Liu, Yue Hao, Xuetao Gan, and Jianlin Zhao. Telecom-band waveguide-integrated mos2 photodetector assisted by hot electrons. *ACS Photonics*, 9(1): 282–289, 2022. doi: 10.1021/acsphotonics.1c01622. URL https://doi.org/10.1021/acsphotonics.1c01622.
- [35] Diego Guzmán-Silva, Gabriel Cáceres-Aravena, and Rodrigo A. Vicencio. Experimental observation of interorbital coupling. *Phys. Rev. Lett.*, 127:066601, Aug 2021. doi: 10.1103/PhysRevLett.127.066601. URL https://link.aps.org/doi/10.1103/PhysRevLett.127.066601.
- [36] Christina Jörg, Gerard Queraltó, Mark Kremer, Gerard Pelegrí, Julian Schulz, Alexander Szameit, Georg von Freymann, Jordi Mompart, and Verònica Ahufinger. Artificial gauge field switching using orbital angular momentum modes in optical waveguides. *Light: Science & Applications*, 9(1):150, Aug 2020. ISSN 2047-7538. doi: 10.1038/s41377-020-00385-6. URL https://doi.org/10.1038/s41377-020-00385-6.
- [37] Gabriel Cáceres-Aravena, Diego Guzmán-Silva, Ignacio Salinas, and Rodrigo A. Vicencio. Controlled transport based on multiorbital aharonov-bohm photonic caging. *Phys. Rev. Lett.*, 128:256602, Jun 2022. doi: 10.1103/PhysRevLett.128.256602. URL https://link.aps.org/doi/10.1103/PhysRevLett.128.256602.
- [38] Yudong Lian, Xuan Qi, Yuhe Wang, Zhenxu Bai, Yulei Wang, and Zhiwei Lu. Oam beam generation in space and its applications: A review. *Optics and Lasers in Engineering*, 151: 106923, 2022. ISSN 0143-8166. doi: https://doi.org/10.1016/j.optlaseng.2021.106923. URL https://www.sciencedirect.com/science/article/pii/S0143816621003924.
- [39] Jaime A. Anguita, Joaquín Herreros, and Ivan B. Djordjevic. Coherent multimode oam superpositions for multidimensional modulation. *IEEE Photonics Journal*, 6(2):1–11, 2014. doi: 10.1109/JPHOT.2014.2309645.
- [40] Wei-Guan Shen, Yuan Chen, Hui-Ming Wang, and Xian-Min Jin. Oam mode conversion in a photonic chip. *Optics Communications*, 507:127615, 2022. ISSN 0030-4018. doi: https://doi.org/10.1016/j.optcom.2021.127615. URL https://www.sciencedirect.com/science/article/pii/S0030401821008646.

- [41] Zhichan Hu, Domenico Bongiovanni, Ziteng Wang, Xiangdong Wang, Daohong Song, Jingjun Xu, Roberto Morandotti, Hrvoje Buljan, and Zhigang Chen. Topologically protected vortex transport via chiral-symmetric disclination, 2023.
- [42] J. Polo, J. Mompart, and V. Ahufinger. Geometrically induced complex tunnelings for ultracold atoms carrying orbital angular momentum. *Phys. Rev. A*, 93:033613, Mar 2016. doi: 10.1103/PhysRevA.93.033613. URL https://link.aps.org/doi/10.1103/PhysRevA.93.033613.
- [43] Chuang Jiang, Yanting Wu, Meiyan Qin, and Shaolin Ke. Topological bound modes with orbital angular momentum in optical waveguide arrays. *Journal of Lightwave Technology*, 41 (7):2205–2211, 2023. doi: 10.1109/JLT.2022.3200139.
- [44] M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii. Optical modes in photonic molecules. *Phys. Rev. Lett.*, 81:2582–2585, Sep 1998. doi: 10.1103/PhysRevLett.81.2582. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.2582.
- [45] Maxim Mazanov, Diego Román-Cortés, Gabriel Cáceres-Aravena, Christofer Cid, Maxim A. Gorlach, and Rodrigo A. Vicencio. Photonic molecule approach to multi-orbital topology, 2023. URL https://doi.org/10.48550/arXiv.2310.03160.
- [46] Ginés Lifante Pedrola. Beam Propagation Method for Design of Optical Waveguide Devices. Wiley, 2015. ISBN 9781119083382. URL https://books.google.cl/books?id=ZV6-CgAAQBAJ.
- [47] Wei-Ping Huang. Coupled-mode theory for optical waveguides: an overview. *Journal of The Optical Society of America A-optics Image Science and Vision*, 11:963–983, 1994. URL https://api.semanticscholar.org/CorpusID:120397076.
- [48] Bernd Terhalle. *Controlling Light in Optically Induced Photonic Lattices*. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-16647-1. doi: 10.1007/978-3-642-16647-1_7. URL https://doi.org/10.1007/978-3-642-16647-1_7.
- [49] Gabriel Cáceres-Aravena, Bastián Real, Diego Guzmán-Silva, Paloma Vildoso, Ignacio Salinas, Alberto Amo, Tomoki Ozawa, and Rodrigo A. Vicencio. Edge-to-edge topological spectral transfer in diamond photonic lattices. *APL Photonics*, 8(8):080801, 08 2023. ISSN 2378-0967. doi: 10.1063/5.0153770. URL https://doi.org/10.1063/5.0153770.

Apéndice A

Anexo

Quisque facilisis auctor sapien. Pellentesque gravida hendrerit lectus. Mauris rutrum sodales sapien. Fusce hendrerit sem vel lorem. Integer pellentesque massa vel augue. Integer elit tortor, feugiat quis, sagittis et, ornare non, lacus. Vestibulum posuere pellentesque eros. Quisque venenatis ipsum dictum nulla. Aliquam quis quam non metus eleifend interdum. Nam eget sapien ac mauris malesuada adipiscing. Etiam eleifend neque sed quam. Nulla facilisi. Proin a ligula. Sed id dui eu nibh egestas tincidunt. Suspendisse arcu.

Maecenas dui. Aliquam volutpat auctor lorem. Cras placerat est vitae lectus. Curabitur massa lectus, rutrum euismod, dignissim ut, dapibus a, odio. Ut eros erat, vulputate ut, interdum non, porta eu, erat. Cras fermentum, felis in porta congue, velit leo facilisis odio, vitae consectetuer lorem quam vitae orci. Sed ultrices, pede eu placerat auctor, ante ligula rutrum tellus, vel posuere nibh lacus nec nibh. Maecenas laoreet dolor at enim. Donec molestie dolor nec metus. Vestibulum libero. Sed quis erat. Sed tristique. Duis pede leo, fermentum quis, consectetuer eget, vulputate sit amet, erat.

Donec vitae velit. Suspendisse porta fermentum mauris. Ut vel nunc non mauris pharetra varius. Duis consequat libero quis urna. Maecenas at ante. Vivamus varius, wisi sed egestas tristique, odio wisi luctus nulla, lobortis dictum dolor ligula in lacus. Vivamus aliquam, urna sed interdum porttitor, metus orci interdum odio, sit amet euismod lectus felis et leo. Praesent ac wisi. Nam suscipit vestibulum sem. Praesent eu ipsum vitae pede cursus venenatis. Duis sed odio. Vestibulum eleifend. Nulla ut massa. Proin rutrum mattis sapien. Curabitur dictum gravida ante.

Phasellus placerat vulputate quam. Maecenas at tellus. Pellentesque neque diam, dignissim ac, venenatis vitae, consequat ut, lacus. Nam nibh. Vestibulum fringilla arcu mollis arcu. Sed et turpis. Donec sem tellus, volutpat et, varius eu, commodo sed, lectus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque enim arcu, suscipit nec, tempus at, imperdiet vel, metus. Morbi volutpat purus at erat. Donec dignissim, sem id semper tempus, nibh massa eleifend turpis, sed pellentesque wisi purus sed libero. Nullam lobortis tortor vel risus. Pellentesque consequat nulla eu tellus. Donec velit. Aliquam fermentum, wisi ac rhoncus iaculis, tellus nunc malesuada orci, quis volutpat dui magna id mi. Nunc vel ante. Duis vitae lacus. Cras nec ipsum.

Morbi nunc. Aliquam consectetuer varius nulla. Phasellus eros. Cras dapibus porttitor risus. Maecenas ultrices mi sed diam. Praesent gravida velit at elit vehicula porttitor. Phasellus nisl mi,

sagittis ac, pulvinar id, gravida sit amet, erat. Vestibulum est. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Curabitur id sem elementum leo rutrum hendrerit. Ut at mi. Donec tincidunt faucibus massa. Sed turpis quam, sollicitudin a, hendrerit eget, pretium ut, nisl. Duis hendrerit ligula. Nunc pulvinar congue urna.

Nunc velit. Nullam elit sapien, eleifend eu, commodo nec, semper sit amet, elit. Nulla lectus risus, condimentum ut, laoreet eget, viverra nec, odio. Proin lobortis. Curabitur dictum arcu vel wisi. Cras id nulla venenatis tortor congue ultrices. Pellentesque eget pede. Sed eleifend sagittis elit. Nam sed tellus sit amet lectus ullamcorper tristique. Mauris enim sem, tristique eu, accumsan at, scelerisque vulputate, neque. Quisque lacus. Donec et ipsum sit amet elit nonummy aliquet. Sed viverra nisl at sem. Nam diam. Mauris ut dolor. Curabitur ornare tortor cursus velit.

Morbi tincidunt posuere arcu. Cras venenatis est vitae dolor. Vivamus scelerisque semper mi. Donec ipsum arcu, consequat scelerisque, viverra id, dictum at, metus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut pede sem, tempus ut, porttitor bibendum, molestie eu, elit. Suspendisse potenti. Sed id lectus sit amet purus faucibus vehicula. Praesent sed sem non dui pharetra interdum. Nam viverra ultrices magna.

Aenean laoreet aliquam orci. Nunc interdum elementum urna. Quisque erat. Nullam tempor neque. Maecenas velit nibh, scelerisque a, consequat ut, viverra in, enim. Duis magna. Donec odio neque, tristique et, tincidunt eu, rhoncus ac, nunc. Mauris malesuada malesuada elit. Etiam lacus mauris, pretium vel, blandit in, ultricies id, libero. Phasellus bibendum erat ut diam. In congue imperdiet lectus.

Aenean scelerisque. Fusce pretium porttitor lorem. In hac habitasse platea dictumst. Nulla sit amet nisl at sapien egestas pretium. Nunc non tellus. Vivamus aliquet. Nam adipiscing euismod dolor. Aliquam erat volutpat. Nulla ut ipsum. Quisque tincidunt auctor augue. Nunc imperdiet ipsum eget elit. Aliquam quam leo, consectetuer non, ornare sit amet, tristique quis, felis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque interdum quam sit amet mi. Pellentesque mauris dui, dictum a, adipiscing ac, fermentum sit amet, lorem.

Ut quis wisi. Praesent quis massa. Vivamus egestas risus eget lacus. Nunc tincidunt, risus quis bibendum facilisis, lorem purus rutrum neque, nec porta tortor urna quis orci. Aenean aliquet, libero semper volutpat luctus, pede erat lacinia augue, quis rutrum sem ipsum sit amet pede. Vestibulum aliquet, nibh sed iaculis sagittis, odio dolor blandit augue, eget mollis urna tellus id tellus. Aenean aliquet aliquam nunc. Nulla ultricies justo eget orci. Phasellus tristique fermentum leo. Sed massa metus, sagittis ut, semper ut, pharetra vel, erat. Aliquam quam turpis, egestas vel, elementum in, egestas sit amet, lorem. Duis convallis, wisi sit amet mollis molestie, libero mauris porta dui, vitae aliquam arcu turpis ac sem. Aliquam aliquet dapibus metus.

Vivamus commodo eros eleifend dui. Vestibulum in leo eu erat tristique mattis. Cras at elit. Cras pellentesque. Nullam id lacus sit amet libero aliquet hendrerit. Proin placerat, mi non elementum laoreet, eros elit tincidunt magna, a rhoncus sem arcu id odio. Nulla eget leo a leo egestas facilisis. Curabitur quis velit. Phasellus aliquam, tortor nec ornare rhoncus, purus urna posuere velit, et commodo risus tellus quis tellus. Vivamus leo turpis, tempus sit amet, tristique vitae, laoreet quis, odio. Proin scelerisque bibendum ipsum. Etiam nisl. Praesent vel dolor. Pellentesque vel magna. Curabitur urna. Vivamus congue urna in velit. Etiam ullamcorper elementum dui. Praesent non urna. Sed placerat quam non mi. Pellentesque diam magna, ultricies eget, ultrices placerat, adipiscing

rutrum, sem.