$\ensuremath{\mathsf{CS703}}$ - Optimization and Computing Notes

Nong Minh Hieu^{1,2}

Contents

1	Introduction	2
A	List of Definitions	3
В	Important Theorems	3
\mathbf{C}	Important Corollaries	3
D	Important Propositions	3
\mathbf{E}	References	4

 $^{^{1}}$ School of Physical and Mathematical Sciences, Nanyang Technological University (NTU - Singapore)

² School of Computing and Information Systems, Singapore Management University (SMU - Singapore)

1 Introduction

minimize:
$$f_0(x)$$

subject to: $f_i(x) \le 0$, $i = 1, ..., m$ (1)
 $h_i(x) = 0$, $i = 1, ..., p$.

Where we have:

- 1. $x \in \mathbb{R}^n$ is the optimization variable.
- 2. $f_0: \mathbb{R}^n \to \mathbb{R}$ is the opjective (cost function).
- 3. $f_i: \mathbb{R}^n \to \mathbb{R}$ are inequality constraints.
- 4. $h_i: \mathbb{R}^n \to \mathbb{R}$ are equality constraints.

Definition 1.2 (Convex Optimization Problem).

An optimization problem is a convex optimization problem if:

- 1. f_0, f_1, \ldots, f_m are convex.
- 2. Equality constraints are affine.

The reason why we need convex optimization problems are:

- 1. Convex optimization problems can be solved optimally (no local minima).
- 2. Time required to solve convex optimization problems is polynomial (in terms of number of variables and constraints).

A List of Definitions

	.1 Definition (Optimization Problem)
В	Important Theorems
\mathbf{C}	Important Corollaries
D	Important Propositions

E References