# **Bijections and Cardinality**

## **Previous Lecture**

- Functions
- Describing functions
- One-to-one functions
- Onto functions
- Bijections

## **Properties of Functions**

- A function f is said to be one-to-one, or injective, if and only if f(a) = f(b) implies a = b.
- A function f from A to B is called onto, or surjective, if and only if for every element b∈ B there is an element a∈ A with f(a) = b. A function is called a surjection if it is onto.
- A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.

## **Composition of Functions**

Let g be a function from A to B and let f be a function from B to C. The composition of the functions f and g, denoted by f ○ g, is the function from A to C defined by



# **Composition of Functions (cntd)**

 Suppose that the students first get numerical grades from 0 to 100 that are later converted into letter grade.



Adams — A
Chou B
Goodfriend C
Rodriguez D
Stevens — F

Let f(a) = b mean `b is the father of a'.
What is f o f?

## **Composition of Numerical Functions**

- Let  $g(x) = x^2$  and f(x) = x + 1. Then  $(f \circ g)(x) = f(g(x)) = g(x) + 1 = x^2 + 1$
- Thus, to find the composition of numerical functions f and g given by formulas we have to substitute g(x) instead of x in f(x).

#### **Inverse Functions**

Let f be a one-to-one correspondence from the set A to the set
 B. The inverse function of f is the function that assigns to an element b∈ B the unique element a∈ A such that f(a) = b.
 The inverse function is denoted by f<sup>-1</sup>.

Thus,  $f^{-1}(b) = a$  if and only if f(a) = b



Note!  $f^{-1}$  does not mean  $\frac{1}{f(x)}$ 

$$f \circ f^{-1} = i_E$$

$$f^{-1} \circ f = i_E$$

# **Inverse Functions (cntd)**

- If a function f is not a bijection, the inverse function does not exist.
  Why?
- If f is not a bijection, it is either not one-to-one, or not onto





one-to-one, not onto

$$f^{-1}(2) = ?$$

$$2 \bullet \longrightarrow ? \bullet !$$

$$3 \bullet \bullet \circ \circ$$

#### **How to Count Elements in a Set**

- How many elements are in a set?
- Easy for finite sets, just count the elements.
- What about infinite sets? Does it make sense at all to ask about the number of elements in an infinite set?
- Can we say that this infinite set is larger than that infinite set?
- Which set is larger: the set of all integers or the set of even integers?
  - the set of all integers or the set of all rationals?
  - the set of all integers or the set of all reals?

# **Cardinality and Bijections**

- If A and B are finite sets, it is not hard to see that they have the same cardinality if and only if there is a bijection from A to B
- For example, |{a,b,c}| = |{d,e,f}|

```
\{abc\} \{def\}
```



# **Cardinality and Bijections**

- Sets A and B (finite or infinite) have the same cardinality if and only if there is a bijection from A to B
- |N| = |2N|



## **Comparing Cardinalities**

Let A and B be sets. We say that | A | ≤ | B | if there is an injective function from A to B.



The function f(x) = x is an injective function from 2N to N. Therefore  $|2N| \le |N|$ 

- If there is an injective function from A to B, but not from B to A, we say that |A| < |B|</p>
- If there is an injective function from A to B and an injective function from B to A, then we say that A and B have the same cardinality
- Exercise: Prove that a bijection from A to B exists if and only if there are injective functions from A to B and from B to A.

## **Example**

- Let A be the closed interval [0;1] (it includes the endpoints) and B the open interval (0;1) (it does not include the endpoints)
- There are injective functions f and g from A to B and B to A, respectively.





#### **Countable and Uncountable**

- A set A is said to be countable if  $|A| \le |N|$
- This is because an injective function from A to  $\mathbb N$  can be viewed as assigning numbers to the elements of A, thus counting them
- Sets that are not countable are called uncountable
- Countable sets:

finite sets

$$a \bullet \longrightarrow \bullet 1$$

$$b \bullet \longrightarrow \bullet 2$$

$$c \bullet \longrightarrow \bullet 3$$

$$\vdots$$

any subset of  $\,\mathbb{N}\,$ 

#### **More Countable Sets**

The set of all integers is countable



In other words we can make a list of all integers

lacktriangle The cardinality of the set of all natural numbers is denoted by  $leph_0$ 

# **More Countable Sets (cntd)**

- The set of positive rational numbers is countable
- Every rational number can be represented as a fraction Pq
   We do not insist that p and q do not have a common divisor



This gives an injection from  $\mathbb{Q}^+$  to  $\mathbb{N}$ . The converse injection is f(x) = x + 1

### The Smallest Infinite Set

Theorem.

If A is an infinite set, then  $|A| \ge \aleph_0$ 

Proof requires mathematical induction. Wait for a few days.

#### Homework

Exercises from the Book:

No. 1def, 2b, 4 (page A-32)

- Construct a bijective mapping between the closed interval [0;1] and the square  $[0;1] \times [0;1]$