Exercises in Marine Ecological Genetics

07. Genotyping, SNPs and population genomics

- Get overview of whole-genome genotyping
- View and filter VCF files storing SNP data
- Run population genetic calculations on SNP data
- Work on a high performance computing cluster

Martin Helmkampf

Download course materials using git

Go to project directory

```
cd dir # e.g. Documents/meg23_exercises
ls -l # view directory contents, long format
```

Update course repository

```
cd meg23_repo
git pull
```


In case of an error message

Avoiding version conflict

Please do not save over files in the course repository. Instead, save your own scripts to the local subdirectory (including copies of course scripts you would like to edit), e.g with

cp code/07_snps.sh ../local/07_snps_lc.sh

cp [source] [destination]

Get set up on the HPC cluster

Connect to login node

```
ssh <account>@carl.hpc.uni-oldenburg.de
# Account ids and passwords can be found on StudIP in Files | course_accounts.csv
```

Download course materials to cluster account using git

```
git pull
# first time: git clone https://github.com/mhelmkampf/meg23_repo.git
```

Genome assembly recap

- Reconstructing long, continuous sequence from millions of overlapping reads
- Reads can be very short (e.g. Illumina) or long (e.g. PacBio)
- Segments of assembled sequence are called contigs,
 which may be combined into scaffolds
- Scaffolds or PacBio contigs can be up to chromosome-length

Genome assembly recap

- Reconstructing long, continuous sequence from millions of overlapping reads
- Reads can be very short (e.g. Illumina) or long (e.g. PacBio)
- Segments of assembled sequence are called contigs,
 which may be combined into scaffolds
- Scaffolds or PacBio contigs can be up to chromosome-length

PacBio HiFi read

Genome sequencing strategies

De novo

Re-sequencing

~ Reduced representation sequencing, e.g. RADseq

Sequencing reads in FASTQ format

```
head -n 4 HypPue1_illumina_raw_F.fastq # display first 4 lines of file
```

- 1. @ followed by sequence id and optional info (e.g. instrument/run id, barcode)
- 2. DNA sequence
- 3. +, sometimes followed by sequence id
- 4. base quality score (same length as sequence)

Whole-genome genotyping workflow with GATK

gatk.broadinstitute.org

Variant call format (VCF)

Read depth and mapping quality

vcfR documentation

- 8 species of hamlet (genus *Hypoplectrus*)
- 3 Caribbean sites: Belize, Honduras, Panama
- 167 hamlet samples total
- Illumina short-read resequencing (mean depth 17x)
- Genotyping with GATK
- High-quality reference genome of *H. puella*

snps_hamlets_lg12.vcf.gz

- Chromosome 12 only
- Subset to 36 samples from 6 populations

Illustrations by Kosmas Hench

In PCA:

boc = pan

med ~ hon

Compare PCA with population-specific F_{ST}

Course outline

Class	Date	Topics	Script
01	Apr 14	Introduction, software installation	01_intro.R
02	Apr 21	Hardy-Weinberg equilibrium	02_hwe.R
03	Apr 28	Genetic drift and effective population size	03_drift.R
04	May 05	Population structure and gene flow	04_structure.R
05	May 12	Isolation by distance (lecture online, exercises in person)	05_ibd.R
_	May 19	Himmelfahrt break	-
06	May 26	Genome sequencing and assembly	06_genseq.sh
07	Jun 02	Genotyping, SNPs and population genomics	07_snps.R
08	Jun 09	Recombination and linkage disequilibrium	08_linkage.R
_	Jun 16	Student presentations	_
09	Jun 23	Selection and mutation	09_selection.R
10	Jun 30	DNA barcoding	10_barcode.sh
11	Jul 07	Metabarcoding	11_meta.sh
_	Jul 14	To be determined	_