Université de Bordeaux

Master 2 : Cryptologie et Sécurité Informatique

Projet de fin d'études

Wave - Un procédé de signature à base de codes correcteurs

Suzanne Lansade Eva Palandjian Encadrant: Gilles ZEMOR

Février, 2020

Contents

	Int	roduction	2
1	Le schéma de signature Wave		2
	1.1	La famille de codes $(U,U+V)$ -généralisés	2
	1.2		
	1.3		
	1.4	Implémentation et choix de paramètres	
2	Uni	formisation des signatures et syndromes	11
	2.1	Une fuite d'information	11
	2.2	La méthode du rejet	12
	2.3	Choix des algorithmes de décodage	14
	2.4	Estimation du nombre de rejet	14
	2.5	Une famille de fonctions uniformément distribuée	14
3	Séc	urité du schéma	14
	3.1	Sécurité EUF-CMA	14
		3.1.1 Définitions	
		3.1.2 Réduction au problème DOOM	
		3.1.3 Preuve formelle de la réduction	
	3.2	Indistinguabilité des codes (U,U+V)-généralisés	
	Cor	nclusion	18

Introduction

- passage au post-quantique
- appel d'offre NIST
- -> tableau : aucun code correcteur en signatures
- dur de trouver l'ensemble des syndromes facilement décodable
- dur de créer une fonction de hachage qui envoie m dans l'ensemble des syndromes possibles
- problème du décodage NP-complet
- mot y de syndrome s est associé à un unique mot de code c le plus proche de y

quand on chiffre -> ne pose pas de problème

quand on signe -> pose un problème car il est dur de trouver un syndrome de cette sorte

la solution Wave est d'enlever la restriction au mot le plus proche Nous allons détailler le schéma de signature Wave et détailler sa sécurité.

1 Le schéma de signature Wave

Nous allons détailler dans cette section le schéma de signature Wave. C'est un schéma de type hache et signe à base de codes correcteurs. Pour des raisons de clarté nous oublierons dans un premier temps la problématique du hachage. Nous le réintroduirons en fin de rapport afin de proposer une preuve formelle de la sécurité du schéma, où la fonction de hachage est alors nécéssaire.

Le schéma de signature Wave s'appuie sur une famille de codes appelés des codes (U,U+V)-généralisés. La strucure de ces codes nous permettrons de proposer un algorithme de décodage \mathcal{D} utilisant une trappe T et donnant un avantage par rapport à un algorithme de décodage générique. Ce système s'appuie aussi sur la notion de fonctions GPV en moyenne, que nous détaillerons.

1.1 La famille de codes (U,U+V)-généralisés

Définition des codes (U,U+V)-généralisés:

- Comment les créer FAIT
- Choix des paramètres a,b,c,d À DETAILLER

- Liens entre les matrices des codes U et V et du code UV FAIT
- Les dimensions et différents paramètres EN COURS
- Calcul du hull ==> q > 2 TODO
- ...?

Définition 1.1. Soient U et V deux codes de même longueur n/2 et de dimension respectives k_u et k_v . Un code (U, U + V) est un code de longueur n et de dimension $k = k_u + k_v$ et tel que :

$$(U, U + V) = \{(u, u + v) \text{ tel que } u \in U \text{ et } v \in V\}$$

Définition 1.2. (codes (U, U + V)-généralisés) Soient n un entier pair et a,b,c,d quatres vecteurs de $\mathbb{F}_q^{n/2}$ tels que pour tout $i \in 1, n/2$:

$$a_i c_i \neq 0$$

$$a_i d_i - b_i c_i \neq 0$$

Soient U et V deux codes définis comme précédemment. Le code (U,U+V)-généralisé correspond à l'ensemble :

$$\{(a.u+b.v,c.u+d.v) \text{ tel que } u \in U \text{ et } v \in V\}$$

où x.y est le produit coordonnée par coordonnée des x_i et y_i .

Remarque 1.3. Dans la suite, on prend a,b,c,d tels que

$$a_i d_i - b_i c_i = 1$$
 pour tout $i \in 1, n/2$.

Proposition 1.4. Soient U, V, a, b, c et d définis comme précédemment. Soit UV le code (U, U + V)-généralisé associé. Alors

$$k = \dim UV = k_u + k_v.$$

De plus soient $G_U \in \mathbb{F}_q^{k_u \times n/2}$ (respectivement $G_V \in \mathbb{F}_q^{k_v \times n/2}$) et $H_U \in \mathbb{F}_q^{(n/2-k_u) \times n/2}$ (respectivement $H_V \in \mathbb{F}_q^{(n/2-k_v) \times n/2}$) les matrices génératrices et de parité des codes U et V. Soient A, B, C, D de $\mathbb{F}_q^{n \times n}$ les matrices diagonales de diagonales respectives les vecteurs a, b, c et d.

Alors la matrice de $\mathbb{F}_q^{(k_u+k_v)\times n}$:

$$G := \left(\begin{array}{c|c} G_u A & G_u C \\ \hline G_v B & G_V D \end{array} \right)$$

et la matrice $\mathbb{F}_q^{(n-k_u-k_v)\times n}$:

$$H := \left(\begin{array}{c|c} H_u D & -H_u B \\ \hline -H_v C & H_V A \end{array}\right)$$

sont des matrices génératrices et de parité du code UV.

Preuve. Remarquons d'abord que G engendre bien le code UV. Remarquons aussi que

$$\left(\begin{array}{c|c}
G_u A & G_u C \\
\hline
G_v B & G_V D
\end{array}\right) = \left(\begin{array}{c|c}
G_u & 0 \\
\hline
0 & G_V
\end{array}\right) \left(\begin{array}{c|c}
A & C \\
\hline
B & D
\end{array}\right)$$

Par définition des matrices G_V et G_U , la matrice $\begin{pmatrix} G_u & 0 \\ 0 & G_V \end{pmatrix}$ est de rang $k_u + k_v$. De plus les matrices A, B, C, D étant diagonales, le déterminant de la matrice $\begin{pmatrix} A & C \\ B & D \end{pmatrix}$ est le produit des $(a_id_i - b_ic_i)$ pour $i \in 1, n/2$, et donc non-nul par définition des vecteurs a, b, c, d. On a donc bien $k = k_u + k_v$. On remarque aussi que $GH^T = 0$ et que H est de rang plein par le même raisonnement que précédemment, ce qui conclut la preuve.

q=2 -> calcul du hull -> fuite d'info. On pose donc q=3 pour toute la suite du rapport.

1.2 Le principe de signature

Un schéma hash et signe utilisant la fonction syndrome comme fonction à sens unique :

- Définition des fonctions GPVM, un couple (Trapdoor, InvertAlg) où trapdoor est un algo poly proba renvoyant une matrice de parité et la trappe associée, et où InvertAlg est un algo poly proba prenant en entrée la trappe et renvoyant l'inverse de la fonction syndrome.

De plus, ces fonctions sont (1) bien distribuées, (2) sans fuite d'info en moyenne, (3) sens unique sans la trappe

- Le schéma : un algo signe et un algo verify.

Notre schéma de signature utilisera donc les codes (U, U + V)-généralisés et la fonction syndrôme comme fonction à sens unique, sous l'hypothèse de la difficulté de résoudre le problème du décodage.

Nous allons définir la notion de fonctions GPV en moyenne (GPVM). Pour cela, introduisons d'abord la notion de distance statistique.

Définition 1.5. Soient X et Y deux variables aléatoires à valeurs dans le même espace ϵ . Soient \mathcal{D}_X et \mathcal{D}_Y leurs distributions respectives. On définit la distance statistique entre ces deux distributions comme :

$$\rho(\mathcal{D}_X, \mathcal{D}_Y) := \frac{1}{2} \sum_{x \in \epsilon} |\mathcal{D}_X(x) \mathcal{D}_Y(x)|.$$

Définition 1.6. (Fonctions GPVM). On appelle fonction GPV en moyenne une paire d'algorithmes (Trapdoor, InvertAlg) ainsi qu'un triplet de fonctions $(n(\lambda), k(\lambda), \omega(\lambda))$ en fonction d'un paramètre de sécurité λ , tels que :

- Trapdoor est un algorithme probabiliste et polynomial en 1^{λ} et renvoyant le couple (H,T) où $H \in \mathbb{F}_q^{(n-k)\times n}$ de rang n-k et T est la trappe associée.
- InvertAlg est un algorithme probabiliste et polynomial prenant en entrée la trappe T et un syndrôme $s \in \mathbb{F}_q^{n-k}$, et renvoyant $e \in \mathbb{F}_q^n$ de poids ω tel que $eH^T = s$.

De plus, pour $presque\ toutes$ matrice H renvoyée par Trapdoor, la fonction est :

- 1. bien distribuée : $\rho(eH^T, s) \in \text{negl}(\lambda)$ où e est pris uniformément dans l'ensemble des mots de poids ω et de longueur n et s est pris uniformément dans \mathbb{F}_a^{n-k} .
- 2. sans fuite d'information en moyenne : $\rho(\mathtt{InvertAlg}(s,T),e) \in \operatorname{negl}(\lambda) \text{ où } e \text{ est pris uniformément dans l'ensemble}$ des mots de poids ω et de longueur n et s est pris uniformément dans \mathbb{F}_q^{n-k} .

3. À sens unique sans la trappe :

Pour tout algorithme probabiliste polynomial A, on a

$$\mathbb{P}(\mathcal{A}(H, s) = e \mid eH^T = s) \in \text{negl}(\lambda).$$

C'est une définition relaxée des fonctions GPV.

Nous pouvons maintenant définir notre système de signature.

$$\begin{array}{lll} \mathtt{Sign}^{sk}(s) \colon & \mathtt{Verify}^{pk}(s,e') \colon \\ & \mathrm{e} \leftarrow \mathtt{InvertAlg}(\mathbf{s},\mathbf{T}) & \mathtt{Si} \ e'H^T = s \ \mathtt{et} \ |e'| = \omega \\ & \mathtt{renvoie} \ 1 \\ & \mathtt{renvoie} \ 0 \end{array}$$

1.3 Le décodage avec trappe

Détail de l'algorithme invertAlg avec utilisation de la trappe:

- Conditions sur le poids de e:
- -> facile
- -> facile avec trappe
- -> difficile
- Inverser le syndrome sur le code UV <==> inverser le syndrome sur U et sur V et prendre son image par Phi.
- Prendre un ev par un algo de décodage quelconque, utiliser les propriétés du code UV pour en déduire un eu, vérifier le poids de e, recommencer.
- Différences gros poids et petits poids

En partant de l'hypothèse que la matrice de parité \mathbf{H} du code (U,U+V)-généralisé ressemble à une matrice aléatoire, la difficulté de créer une fausse signature sans connaître la trappe \mathbf{T} est exactement celle de résoudre le problème du décodage d'un code aléatoire, que l'on sait difficile. Nous allons expliciter dans cette section l'algorithme d'inversion de la fonction syndrôme, et discuter sa difficulté en fonction du poids ω de e.

Notons $S_{\omega,n}$ l'ensemble des mots de poids ω et de longueur n. On notera S_{ω} s'il n'y a pas d'ambiguité sur la longueur. On rappelle que l'agorithme InvertAlg cherche à inverser la fonction syndrôme :

$$f_{\omega,\mathbf{H}}: \mathcal{S}_{\omega,n} \to \mathbb{F}_q^{n-k}$$
 $\mathbf{e} \mapsto \mathbf{e}\mathbf{H}^{\mathbf{T}}$

On rappelle que la fonction $f_{\omega,\mathbf{H}}$ avec $\mathbf{H} \in \mathbb{F}_q^{(n-k)\times n}$ s'inverse génériquement si $\omega \in \{\omega_{easy}^-, \omega_{easy}^+\}$, où :

$$\omega_{easy}^- := \frac{q-1}{q}(n-k) \qquad \text{et} \qquad \omega_{easy}^+ \} := k + \frac{q-1}{q}(n-k).$$
 Preuve. TODO

On rappelle aussi que la fonction $f_{\omega,\mathbf{H}}$ admet un inverse pour toute entrée $s \in \mathbb{F}_q^{n-k}$ si $\omega \in \{\omega^-, \omega^+\}$, où :

$$\omega^{-} := ???$$
 et $\omega^{+} := ???$.

Nous voulons donc un moyen d'inverser la fonction syndrôme pour $\omega \in \{\omega_{UV}^-, \omega_{UV}^+\}$ avec ω_{UV}^- et ω_{UV}^+ tels que :

$$\{\omega_{easy}^-, \omega_{easy}^+\} \subsetneq \{\omega_{UV}^-, \omega_{UV}^+\} \subset \{\omega^-, \omega^+\}$$

INSERER SCHEMA!!

Afin d'expliciter le décodage, introduisons la fonction :

$$\varphi_{\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}} : \mathbb{F}_q^{n/2} \times \mathbb{F}_q^{n/2} \to \mathbb{F}_q^{n/2} \times \mathbb{F}_q^{n/2}$$

$$(\mathbf{x},\mathbf{y}) \mapsto (\mathbf{a}.\mathbf{x} + \mathbf{b}.\mathbf{y}, \mathbf{c}.\mathbf{x} + \mathbf{d}.\mathbf{y})$$

Si cette fonction respecte les conditions sur les vecteurs $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ définies dans la définition 1.2, on dit qu'elle est UV-normalisée. Dans ce cas on peut vérifier qu'elle est bijective d'inverse :

$$\begin{array}{cccc} \varphi_{\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}}^{-1} & : & \mathbb{F}_q^{n/2} \times \mathbb{F}_q^{n/2} & \to & \mathbb{F}_q^{n/2} \times \mathbb{F}_q^{n/2} \\ & & (\mathbf{x},\mathbf{y}) & \mapsto & (\mathbf{d}.\mathbf{x} - \mathbf{b}.\mathbf{y}, -\mathbf{c}.\mathbf{x} + \mathbf{a}.\mathbf{y}) \end{array}$$

Ainsi, pour chaque vecteur \mathbf{e} de \mathbb{F}_q^n , on peut associer deux vecteurs $\mathbf{e}_{\mathbf{U}}$ et $\mathbf{e}_{\mathbf{V}}$ de $\mathbb{F}_q^{n/2}$ tels que

$$(\mathbf{e}_{\mathbf{U}},\mathbf{e}_{\mathbf{V}})=\varphi_{\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}}^{-1}(\mathbf{e}).$$

Proposition 1.7. Inverser $f_{\omega,\mathbf{H}}$ pour un certain $\mathbf{s} \in F_q^{n-k}$ est équivalent à trouver $\mathbf{e} \in \mathbb{F}_q^n$ tel que:

$$\mathbf{e}_U \mathbf{H}_U^T = \mathbf{s}^U$$
 et $\mathbf{e}_V \mathbf{H}_V^T = \mathbf{s}^V$

où $\mathbf{s} = (\mathbf{s}^U, \mathbf{s}^V)$ avec $\mathbf{s}^U \in \mathbb{F}_q^{n/2 - k_U}$ et $\mathbf{s}^V \in \mathbb{F}_q^{n/2 - k_V}$.

Preuve. TODO

Ainsi, on on aura:

```
\begin{split} & \texttt{InvertAlg}(\mathbf{s}, \mathbf{T}) : \\ & (\mathbf{s}_U, \mathbf{s}_V) = s \\ & \mathbf{e}_U = \texttt{DECODE\_U}(\mathbf{s}_U) \\ & \mathbf{e}_V = \texttt{DECODE\_V}(\mathbf{s}_V) \\ & \texttt{renvoie} \ \ \varphi_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}(\mathbf{e}_\mathbf{U}, \mathbf{e}_\mathbf{V}) \end{split}
```

Si l'on choisit un algorithme générique pour DECODE_U et DECODE_V, alors nous obtiendrons un vecteur \mathbf{e} de poids ω $in\{\omega_{easy}^-, \omega_{easy}^+\}$. Non allons montrer comment utiliser les propriétés des codes (U, U+V)-généréralisés pour permettre un décodage hors de cet intervalle.

Remarque 1.8. Pour tout $\mathbf{e} = \varphi_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}(\mathbf{e}_{\mathbf{U}}, \mathbf{e}_{\mathbf{V}})$, on a pour tout $i \in \{1, n/2\}$:

$$\begin{cases} a_i \mathbf{e}_U(i) + b_i \mathbf{e}_V(i) &= \mathbf{e}(i) \\ c_i \mathbf{e}_U(i) + d_i \mathbf{e}_V(i) &= \mathbf{e}(i + n/2) \end{cases}$$

Choisir la valeur de \mathbf{e}_U en fonction de la valeur de \mathbf{e}_V nous permettras donc d'influer sur le poids de \mathbf{e} . On aura alors :

```
\begin{split} & \texttt{InvertAlg}(\mathbf{s}, \mathbf{T}) : \\ & (\mathbf{s}_U, \mathbf{s}_V) = s \\ & \mathbf{e}_V = \texttt{DECODE\_V}(\mathbf{s}_V) \\ & \mathbf{e}_U = \texttt{DECODE\_U}(\mathbf{s}_U, \mathbf{e}_V) \\ & \texttt{renvoie} \ \varphi_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}(\mathbf{e}_U, \mathbf{e}_V) \end{split}
```

Proposition 1.9. Soit \mathbf{e}_V une sortie de DECODE_V. Soit DECODE_U un algorithme prenant en entrée \mathbf{s}_U et \mathbf{e}_V et renvoyant \mathbf{e}_U tel que $\mathbf{e}_U \mathbf{H}_U^T = \mathbf{s}^U$ et tel que pour k_U positions de \mathbf{e}_U

$$\begin{cases} a_i \mathbf{e}_U(i) + b_i \mathbf{e}_V(i) \neq 0 \\ c_i \mathbf{e}_U(i) + d_i \mathbf{e}_V(i) \neq 0 \end{cases}$$

Alors $\mathbf{e} = \varphi_{\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}}(\mathbf{e}_{\mathbf{U}},\mathbf{e}_{\mathbf{V}})$ a au moins $2k_U$ coordonnées non nulles. De plus les $n - k_U$ autres coordonnées sont uniformément distribuées sur \mathbb{F}_q . On a alors

$$\mathbb{E}(|\mathbf{e}|) = \frac{q-1}{q}n + \frac{2k_U}{q}$$

et on peut alors espérer obtenir en temps polynomial des erreurs de poids:

$$\omega_{UV}^{+} = \begin{cases} \frac{q-1}{q}n + \frac{2k}{q} & \text{si } k \le n/2 \\ n & \text{sinon} \end{cases}$$

Preuve. TODO

Proposition 1.10. Soit \mathbf{e}_V une sortie de DECODE_V. Soit DECODE_U un algorithme prenant en entrée \mathbf{s}_U et \mathbf{e}_V et renvoyant \mathbf{e}_U tel que $\mathbf{e}_U \mathbf{H}_U^T = \mathbf{s}^U$ et tel que pour k_U positions de \mathbf{e}_U

$$\begin{cases} a_i \mathbf{e}_U(i) + b_i \mathbf{e}_V(i) = 0 \\ c_i \mathbf{e}_U(i) + d_i \mathbf{e}_V(i) = 0 \end{cases}$$
 (1)

On peut alors espérer obtenir en temps polynomial des erreurs de poids:

$$\omega_{UV}^{-} = \begin{cases} \frac{q-1}{q}(n-2k) & \text{si } k \le n/(2q) \\ \frac{2(q-1)^2}{(2q-1)q}(n-k) & \text{sinon} \end{cases}$$
 (2)

Preuve. Il n'existe de solution au système (1) que si $\mathbf{e}_V(i) = 0$ car pour tout i on a $a_id_i - b_ic_i \neq 0$. De ce fait, à l'inverse du cas où nous souhaitions des erreurs de gros poids, l'ensemble d'indices où l'on peut gagner deux fois est réduit à $n/2 - |\mathbf{e}_V|$. De ce fait le poids minimal que nous pouvons espérer pour \mathbf{e}_V est $|\mathbf{e}_V|_{min} := \frac{q-1}{q}(n/2 - k_V)$. Ainsi :

- Si $k_U \leq n/2 |\mathbf{e}_V|_{min}$, nous pouvons obtenir des erreurs e telles que :
 - $-2k_U$ coordonnées sont nulles.
 - Les autres coordonnées sont uniformément distribuées.
- Sinon, nous pouvons obtenir des erreurs e telles que :
 - $-2(n/2-|\mathbf{e}_V|_{min})$ sont nulles.

- $-k_U (n/2 |\mathbf{e}_V|_{min})$ autres coordonnées sont nulles tandis que $k_U (n/2 |\mathbf{e}_V|_{min})$ sont non nulles.
- Les autres coordonnées sont uniformément distribuées.

A PROUVER !!!!!! □

On récapitule les différents cas dans la figure 1.3.

Figure 1: Comparaison des distances w/n avec et sans trappe en fonction du rendement.

La connaissance de la trappe apporte donc bien un avantage puisqu'elle permet un décodage pour des erreurs de poids ne permettant pas de décodage générique.

Remarque 1.11. Fonction de hash

1.4 Implémentation et choix de paramètres

TODO

Détail de DECODE U et DECODE V + choix des paramètres et choix d'implémentation + résultats

2 Uniformisation des signatures et syndromes

2.1 Une fuite d'information

Afin d'assurer la sécurité du système, il est nécéssaire que les $\mathbf{e} \in f_{w,\mathbf{H}}^{-1}(\mathbf{s})$ ne révèlent pas d'information sur la structure du code (U,U+V)-généralisé utilisé.

Or, si la sortie $\mathbf{e}_{\mathbf{V}}$ de DECODE_V n'est pas uniforme, alors des corrélations entre les coordonnées \mathbf{e}_i et $\mathbf{e}_{i+n/2}$ du vecteur \mathbf{e} .

Par exemple, prenons le cas où q=3, et où pour tout $i \in \{1, n/2\}$, $a_i=c_i=d_i=1$ et $b_i=0$, et où DECODE_V est l'algorithme de Prange.

On a alors pour tout $\mathbf{e} = (\mathbf{e}_{\mathbf{U}}, \mathbf{e}_{\mathbf{U}} + \mathbf{e}_{\mathbf{V}})$

$$|\mathbf{e}_{\mathbf{V}}| = \# \{1 \le i \le n/2 \mid e_i \ne e_{i+n/2}\}$$

Proposition 2.1. Si le vecteur $\mathbf{e}_{\mathbf{V}}$ est obtenu par l'algorithme de Prange, alors il est de poids moyen $\frac{2}{3}(\frac{n}{2}-k_V)$.

Alors, pour tout i $in\{1, n/2\}$, on a :

$$\mathbb{P}(\mathbf{e}_i \neq \mathbf{e}_{i+n/2}) = \frac{2}{3(n/2)}(n/2 - k_V)(1 + o(1))$$

PREUVE

En revanche, pour les autres paires (i, j), on a :

$$\mathbb{P}(\mathbf{e}_i \neq \mathbf{e}_j) = \frac{4wn - 3w^2 - w}{n(n-1)}$$

PREUVE

Ces deux probabilités n'ont donc aucune raison d'être égales. On a donc une fuite d'information. En effet, dans la pratique et afin de cacher la structure, on effectue une permutation sur les coordonnées de \mathbf{e} lors de la signature. Si un attaquant récupère suffisemment de signatures, il pourra donc en analysant la fréquence des $\mathbf{e}_i \neq \mathbf{e}_j$ retrouver cette permutation. Il est donc nécéssaire pour la sécurité du schéma de s'assurer de l'uniformité des sorties de l'algorithme sign.

2.2 La méthode du rejet

Afin de s'assurer un e uniforme dans son ensemble, nous allons :

- choisir \mathbf{e}_V de façon a ce qu'il soit uniforme dans son ensemble
- mettre des conditions de rejet sur \mathbf{e}_U en fonction du poids de \mathbf{e}_V afin de supprimer le biais sur l'ensemble

$$m_1(x) := \# \{1 \le i \le n/2 ; |(x_i, x_{i+n/2})| = 1\}$$

Avant d'expliciter nos algorithmes, il est nécéssaire d'introduire quelques notations et définitions.

Notation 2.2. On notera:

- e^{unif} la variable aléatoire tirée uniformément dans l'ensemble $S_{w,n}$
- \mathbf{e}_V^{unif} la variable aléatoire tirée uniformément dans les mots de $\mathbb{F}_q^{n/2}$
- \bullet \mathbf{e}_U^{unif} la variable aléatoire tirée uniformément dans les mots de $\mathbb{F}_q^{n/2}$ conditionné au vecteur \mathbf{e}_V^{unif}

Définition 2.3. (uniforme en poids et m_1 -uniforme)

- DECODE_V est dit uniforme en poids si ces sorties \mathbf{e}_V sont telles que $\mathbb{P}(\mathbf{e}_V)$ n'est fonction que du poids de \mathbf{e}_V quand \mathbf{s}^V est tiré uniformément dans son ensemble.
- DECODE_U est dit m_1 -uniforme si ces sorties \mathbf{e}_U sont telles que $\mathbb{P}(\mathbf{e}_U \mid \mathbf{e}_V)$ n'est fonction que du poids de \mathbf{e}_V et de $m_1(\varphi(\mathbf{e}_U, \mathbf{e}_V))$.

Lemme 2.4. Soit e la sortie de InvertAlg avec \mathbf{s}_U et \mathbf{s}_V choisis uniformément dans leurs ensembles. Soit DECODE_V uniforme en poids et DECODE_U m_1 -uniforme. Si pour tout y et z

$$|\mathbf{e}_V| \sim |\mathbf{e}_V^{unif}|$$
 et $\mathbb{P}(m_1(\mathbf{e}) = z \mid |\mathbf{e}_V| = y) = \mathbb{P}(m_1(\mathbf{e}^{unif}) = z \mid |\mathbf{e}_V^{unif}| = y)$

Alors

$$\mathbf{e} \sim \mathbf{e}_V^{unif}$$
.

Preuve. TODO

Ainsi, pour que \mathbf{e} soit uniformément distribué sur S_{ω} , il suffit de choisir DECODE_V de façon à ce que ses sorties soient uniforment sur $\mathbb{F}_q^{n/2}$ puis d'ajouter une condition de rejet sur les sorties de DECODE_U de façon à ce que $m_1(\mathbf{e})$ conditionnée à $|\mathbf{e}_V|$ soit distribué comme $m_1(\mathbf{e}^{unif})$ conditionnée à $|\mathbf{e}_V^{unif}|$.

Proposition 2.5. Soit l'algorithme :

$$\begin{split} \text{DECODE_UV } & \left(\mathbf{H}_V, \mathbf{H}_V, \varphi, \mathbf{s} \right) : \\ & \mathbf{e}_V \leftarrow \text{DECODE_V } \left(\mathbf{H}_V, \mathbf{s}^V \right) \\ & \text{Faire} \\ & \mathbf{e}_U \leftarrow \text{DECODE_U } \left(\mathbf{H}_U, \mathbf{s}^U, \varphi, \mathbf{e}_V \right) \\ & \mathbf{e} \leftarrow \varphi(\mathbf{e}_U, \mathbf{e}_V) \\ & \text{Tant que rand}([0, 1]) \leq r(|\mathbf{e}_V|), m_1(\mathbf{e})) \\ & \text{retourner } \mathbf{e} \end{split}$$

Où:

$$r(s,t) := \frac{1}{M(t)} \frac{q^{unif}(s,t)}{q(s,t)}$$
$$q(s,t) := \mathbb{P}(m_1(\mathbf{e}) = s \mid |\mathbf{e}_V| = t)$$
$$q^{unif}(s,t) := \mathbb{P}(m_1(\mathbf{e}^{unif}) = s \mid |\mathbf{e}_V^{unif}| = t)$$
$$M(t) := \max_{0 \le s \le t} \frac{q^{unif}(s,t)}{q(s,t)}$$

Alors si DECODE_V est uniforme en poids et si DECODE_U est m_1 -uniforme, on a $\mathbf{e} \sim \mathbf{e}^{unif}$.

2.3 Choix des algorithmes de décodage

description explicite de DECODE_V
description explicite de DECODE_U

Application de la méthode du rejet selon ces choix et choix des distributions.

2.4 Estimation du nombre de rejet

TODO

2.5 Une famille de fonctions uniformément distribuée

On a donc le point (2) de la definition des fonctions GPV qui est obtenu dans la section précédente. On va montrer le point (1), à savoir, notre famille de fonctions syndrômes est uniformément distribuée avec les codes (U,U+V)-généralisés

3 Sécurité du schéma

Deux problèmes :

- Distinction d'une matrice de parité d'un code (U,U+V)-généralisé permutée d'une matrice aléatoire
- Sécurité EUF-CMA du système si H ressemble à une matrice aléatoire

3.1 Sécurité EUF-CMA

Nous allons montrer que le schéma est sûr au sens EUF-CMA (Existential Unforgeability under Chosen Message Attacks). Pour cela nous ferons une réduction au problème DOOM.

3.1.1 Définitions

Soit \mathcal{A} un adversaire ayant accès à N_{sign} signatures de son choix.

Définition 3.1. (Modèle de sécurité EUF-CMA). On définit 3 algorithmes :

$$\begin{array}{lll} \text{Init:} & \text{Sign}(s): \\ (pk,sk) \leftarrow \text{Gen}(1^{\lambda)} & \mathbf{e} \leftarrow \mathcal{D}_{\varphi,\mathbf{H}_U,\mathbf{H}_V}(s) \\ \mathbf{H}_{pk} \leftarrow pk & \text{renvoie } \mathbf{e} \\ (\varphi,\mathbf{H}_U,\mathbf{H}_V) \leftarrow sk & \\ \text{renvoie } \mathbf{H}_{pk} & \text{Fin}(s,e): \\ & \text{renvoie } (\mathbf{e}\mathbf{H}_{pk}^T = s) \wedge (|\mathbf{e}| = \omega) \end{array}$$

Le jeu EUF-CMA se déroule comme suit. \mathcal{A} fait appel à Init. Il peut ensuite faire N_{sign} requêtes à sign. Le jeu est dit réussi si \mathcal{A} est capable de donner (s,e) accepté par Fin et tel que s n'est jamais été demandé à Sign. On définit alors le succès EUF-CMA comme :

$$Succ_{Wave}^{EUF-CMA}(t, N_{sign}) := \max_{\mathcal{A}; |A| \leq t} (\mathbb{P}(\mathcal{A} \text{ réussit le jeu EUF-CMA de Wave})).$$

Le protocole est alors sûr au sens EUF-CMA si ce succès est négligeable.

Nous souhaitons donc montrer que notre système est sûr au sens EUF-CMA. Pour cela, nous allons dans la section suivante majorer ce succès par rapport au succès d'un problème connu, le problème DOOM.

3.1.2 Réduction au problème DOOM

Définition 3.2. (Le problème DOOM). Soient des paramètres (n, q, k, ω, N) , où N est un entier.

 $I: \mathbf{H}$ une matrice uniforme de $\mathbb{F}_q^{(n-k)\times n}$ et $(\mathbf{s}_1, ..., \mathbf{s}_N)$ une liste de N syndromes.

Q: Décoder l'un des syndromes à la distance $w := \lfloor \omega n \rfloor$. On définit alors le succès de DOOM comme :

$$Succ^{DOOM(n,q,k,N)}(t) := \max_{\mathcal{A};|A| \leq t} (\mathbb{P}(\mathcal{A}(\mathbf{H},\mathbf{s}_1,...,\mathbf{s}_n) = \mathbf{e} \text{ tel que}$$

$$\mathbf{e}\mathbf{H}^T = \mathbf{s}_j \text{ pour un certain } j \in \{1,...,N\}).$$

La réduction à ce problème est naturelle pour un schéma de signature puisque JHFEKHZFKHFKZEHFILZEJHFKLZEJFHJ. EXPLICATION INFORMELLE DE LA REDUCTION, POURQUOI ELLE VA MARCHER

3.1.3 Preuve formelle de la réduction

Pour faire une preuve formelle de cette réduction, nous allons introduire un système de jeux qui nous permettra de réduire la sécurité d'un système à un problème P. Soit \mathcal{A} un attaquant et \mathcal{R} un rival. Soient $G_0, G_1, ..., G_N$ un ensemble de jeux et soit $\mathbb{P}(G_i)$ la probabilité pour \mathcal{A} de répondre au défi posé par \mathcal{R} pour le jeu G_i . $\mathbb{P}(G_0)$ est alors la probabilité de cassé le système considérer et $\mathbb{P}(G_N)$ la probabilité de répondre au problème P.

L'idée est de changer pas à pas les jeux G_0 à G_N de façon à ce que :

$$\forall i \in 0, ..., N-1, |\mathbb{P}(G_i) - \mathbb{P}(G_i+1)| \in negl(\lambda) \Longrightarrow |\mathbb{P}(G_0) - \mathbb{P}(G_N)| \in negl(\lambda)$$

où λ est un paramètre de sécurité. Autrement dis, les changements sur les jeux ne changent qu'à un facteur négligeable près les probabilités de succès de l'attaquant \mathcal{A} .

Il n'est pas possible de changer le comportement de \mathcal{A} puisqu'il est quelconque, en revanche nous pouvons modifier celui de R.

EVENTUELLEMENT METTRE LES 3 conditions mais je ne pense pas que ça soit nécessaire.

Théorème 3.3. (Réduction de sécurité).

Soit N_{sign} le nombre de requêtes faites à l'oracle de signature. Soit λ le paramètre de sécurité et $\lambda_0 = \lambda + 2\log_2(N_{sign})$. On a :

$$Succ_{Wave}^{EUF-CMA}(t, N_{sign}) \le 2Succ^{DOOM(n,q,k,N)}(t) + \rho(\mathcal{D}_{rand}, \mathcal{D}_{pub})(t) + N_{sign}$$

$$f(\mathcal{U}_{\omega}, \mathcal{D}_{\omega}^{\mathbf{H}_{pk}}) + g(\epsilon) + c + \frac{N_{hash}}{2} \sqrt{\epsilon} + \frac{1}{2^{\lambda}}$$

Preuve. On rappelle que G_0 correspond à notre jeu pour la sécurité EUF-CMA de Wave.

• G_1 : Le jeu G_1 est identique au jeu G_0 sauf si l'évènement

 $F := \{ \text{Un même aléa r a été tiré lors de deux requêtes}$ d'un même message à l'oracle de signature $\}$.

On a alors

$$\mathbb{P}(G_0) \le \mathbb{P}(G_1) + \mathbb{P}(F)$$

Or pour $\lambda_0 = \lambda + 2\log_2(N_{sign})$, la probabilité que l'évènement F se produise est majorée par $\frac{1}{2^{\lambda}}$. C'est donc négligeable et le changement est autorisé.

- G_2 : Le passage au jeu G_2 permet d'empêcher \mathcal{A} de faire appel à l'oracle de signature sur les syndrome du problème DOOM. L'idée est de créer une liste suffisemment grande L_m d'aléas tous différents. On modifie alors la fonction hash de cette façon :
 - 1. Si hash est appelée par la fonction sign, alors les aléas seront pris successivement dans L_m et associés à un vecteur erreur $\mathbf{e}_{m,r}$ (stocké) pris uniformément dans S_{ω} . Elle renvoie alors $\mathbf{s} = \mathbf{e}_{m,r}\mathbf{H}^T$.
 - 2. En revanche si hash est appelée hors de la fonction sign par \mathcal{A} , alors elle son comportement dépendra de l'aléa. Si r est dans L_m elle se comporte comme si elle avait été appelée par sign et renvoie $\mathbf{e}_{m,r}\mathbf{H}^T$. Sinon elle renvoie successivement les syndromes du problème DOOM.

On prend donc dans la fonction sign toujours le r suivant de L_m . On a alors changé le jeu en supprimant le cas où deux mêmes r sont tirés lors de la signature. Cela ne pose pas de problème grace au passage à G_1 . Le passage au jeu G_2 permettra ainsi de s'assurer par la suite que \mathcal{A} n'a pas fait d'appel à sign sur les syndromes du problème DOOM. On a alors

$$\mathbb{P}(G_1) \le \mathbb{P}(G_2) + \frac{N_{hash}}{2} \sqrt{\epsilon}$$

où ϵ est une fonction en n qui décroît exponentiellement. C'est donc bien négligeable.

• G₃: Le jeu G₃ permet à l'oracle de signature de se passer de l'algorithme de décodage, et donc de la trappe T. Il sera nécessaire pour remplacer la matrice du code (U,U+V)-généralisé par la matrice aléatoire de l'instance du problème DOOM. Pour passer au jeu G₃, on modifie la sortie de sign. Au lieu de renvoyer le couple (e, r) où e = D_{φ,H_U,H_V}, on renvoit le couple (e_{m,r}, r) préalablement stocké. La différence de succès de dépand que de ω et des différence de distribution entre U_ω et D_ω^{H_{pk}}, où U_ω et la distribution uniforme sur S_ω et où U_ω et D_ω^{H_{pk}} est la distribution des couples (e, r) où r est un aléa uniforme dans {0,1}^{λ₀} et e est la sortie de l'algorothme de décodage avec trappe sur une entrée s prise uniformément dans F_q^{n-k}. On a alors

$$\mathbb{P}(G_2) \leq \mathbb{P}(G_3) + f(\mathcal{U}_{\omega}, \mathcal{D}_{\omega}^{\mathbf{H}_{pk}}) + g(\epsilon) + c$$

où f et g sont linéaires et c un certaine constante.

• G_4 : On peut maintenant remplacer \mathbf{H}_{pk} par \mathbf{H}_0 . Ce changement ne pose pas de problème puisque sign n'utilise plus la trappe. En revanche, nous avons créé un distingueur entre la distribution (:= \mathcal{D}_{rand}) des matrices prises aléatoirement dans $\mathbb{F}_q(n-k) \times n$ et la distribution (:= \mathcal{D}_{pub}) des matrices prises aléatoirement dans l'ensemble des matrices de parité d'un code (U, U + V)-généralisé où U (resp. V) est un $[n/2, k_U]$ -code (resp. $[n/2, k_V]$ -code). On a alors

$$\mathbb{P}(G_3) \leq \mathbb{P}(G_4) + \rho(\mathcal{D}_{rand}, \mathcal{D}_{pub})(t)$$

• G_5 : On change ici la procédure de fin. On rajoute à la vérification la condition $r \notin L_m$. Ainsi on est bien sûr que \mathcal{A} réussi le jeu s'il répond au problème DOOM. Alors la probabilité que \mathcal{A} réussisse G_5 est exactement la probabilité que \mathcal{A} réussisse G_4 et $r \notin L_m$. On a alors

$$\mathbb{P}(G_4) \leq 2\mathbb{P}(G_5) + \rho(\mathcal{D}_{rand}, \mathcal{D}_{pub})(t)$$

où $\mathbb{P}(G_5)$ est exactement la probabilité pour \mathcal{A} de renvoyer $\mathbf{e}_j \in S_{\omega}$ et tel que $\mathbf{e}_j \mathbf{H}_0^T = \mathbf{s}_j$ pour un certain indice j du problème DOOM. On a donc

$$\mathbb{P}(G_5) \le Succ_{DOOM}^{n,k,N_{hash},\omega}(t)$$

En rassemblant toutes les inégalités on termine la preuve. (On trouvera le détail des preuves de probabilité en annexe de ce rapport.)

3.2 Indistinguabilité des codes (U,U+V)-généralisés

Distinguer une matrice de parité d'un code (U,U+V)-généralisé d'une matrice de parité aléatoire.

Réduction à un problème NP-complet.

Utilisation de S et P pour masquer les propriétés de la matrice.

Conclusion