FEUILLE 4 : GÉNÉRALITÉS SUR LES FONCTIONS

I EXERCICES TECHNIQUES

Exercice 1

Calculer, où elles existent, les dérivées des fonctions suivantes :

a.
$$f(x) = \frac{x}{x^2 - 1}$$

a.
$$f(x) = \frac{x^3}{x^2 - 1}$$
 b. $g(x) = x^3 \sin(2x) + x^2 \cos\left(\frac{x}{2}\right) + x \cos^2(x)$ **c.** $h(x) = \sqrt{\frac{x - 1}{x + 1}}$ **d.** $j(x) = \frac{1}{x + \sqrt{1 + x^2}}$ **e.** $k(x) = \frac{1}{\cos\sqrt{x}}$ **f.** $u(x) = \operatorname{Arctan}(\sin(3x))$ **g.** $v(x) = \ln\left(2 + \sin^2\left(e^{x^2}\right)\right)$ **h.** $w(x) = \operatorname{Arctan}\frac{1 + x}{1 - x}$

c.
$$h(x) = \sqrt{\frac{x-1}{x+1}}$$

d.
$$j(x) = \frac{1}{x + \sqrt{1 + x^2}}$$

$$\mathbf{e.}\ k(x) = \frac{1}{\cos\sqrt{x}}$$

$$\mathbf{f.}\ u(x) = \arctan\left(\sin(3x)\right)$$

$$\mathbf{g.}\ v(x) = \ln\left(2 + \sin^2\left(e^{x^2}\right)\right)$$

$$\mathbf{h.} w(x) = \operatorname{Arctan} \frac{1+x}{1-x}$$

Exercice 2

Déterminer les valeurs suivantes :

a. Arcsin
$$\left(\frac{-\sqrt{3}}{2}\right)$$
 b. Arccos $\left(\frac{-\sqrt{3}}{2}\right)$ **c.** Arcsin $\left(\frac{-\sqrt{2}}{2}\right)$ **d.** Arccos $\left(\frac{-\sqrt{2}}{2}\right)$

d. Arccos
$$\left(\frac{-\sqrt{2}}{2}\right)$$

e.
$$\operatorname{Arccos}\left(\cos\left(\frac{6\pi}{5}\right)\right)$$
 f. $\operatorname{Arcsin}\left(\sin\left(\frac{4\pi}{5}\right)\right)$ g. $\operatorname{Arcsin}\left(\sin\left(\frac{6\pi}{5}\right)\right)$ h. $\operatorname{Arccos}\left(\sin\left(\frac{\pi}{5}\right)\right)$

f. Arcsin
$$\left(\sin\left(\frac{4\pi}{5}\right)\right)$$

g. Arcsin
$$\left(\sin\left(\frac{6\pi}{5}\right)\right)$$

h. Arccos
$$\left(\sin\left(\frac{\pi}{5}\right)\right)$$

Exercice 3

Simplifier les expressions suivantes, après avoir donné leur ensemble de définition :

a.
$$\cos(2\operatorname{Arccos} x)$$

b.
$$\sin(2Arc\sin x)$$

b.
$$\sin(2\operatorname{Arcsin} x)$$
 c. $\sin^2\left(\frac{1}{2}\operatorname{Arccos} x\right)$ d. $\cos^2\left(\frac{1}{2}\operatorname{Arcsin} x\right)$

d.
$$\cos^2\left(\frac{1}{2}\operatorname{Arcsin} x\right)$$

Exercice 4

Établir les transformations successives à appliquer à des courbes de fonctions usuelles pour obtenir les courbes des fonctions suivantes : **a.** $x \mapsto 1 + \frac{1}{2+x}$ **b.** $x \mapsto x^2 + x + 1$ **c.** $x \mapsto 1 + x - x^2$ **d.** $x \mapsto 1 + \frac{1}{2x}$ **e.** $x \mapsto \frac{x+4}{x+3}$ **f.** $x \mapsto \frac{x+2}{x+3}$

a.
$$x \mapsto 1 + \frac{1}{2 + x}$$

$$\mathbf{b.}\ x \mapsto x^2 + x +$$

$$\mathbf{c.} \ x \mapsto 1 + x - x^2$$

$$\mathbf{d.} \ x \mapsto 1 + \frac{1}{2x}$$

$$\mathbf{e.} \ x \mapsto \frac{x+4}{x+3}$$

$$\mathbf{f.} \ x \mapsto \frac{x+2}{x+3}$$

Exercice 5

Donner l'expression de la fonction dont la courbe est obtenue à partir de la courbe de la fonction exponentielle, en effectuant les transformations suivantes :

- Une translation de vecteur \vec{i} , suivie d'une affinité de rapport 2 parallèlement à (Oy).
- Une affinité de rapport 2 parallèlement à (Oy), suivie d'une translation de vecteur \vec{i} .
- Une affinité de rapport 2 parallèlement à (Oy), suivie d'une translation de vecteur \vec{j} .
- Une translation de vecteur \vec{j} , suivie d'une affinité de rapport 2 parallèlement à (Oy).
- Une affinité de rapport 2 parallèlement à (Ox), suivie d'une translation de vecteur \vec{i} . Une translation de vecteur \vec{i} , suivie d'une affinité de rapport 2 parallèlement à (Ox).
- Une translation de vecteur \vec{i} , suivie d'une affinité de rapport 2 parallèlement à (Ox), suivie d'une translation de vecteur \vec{i} .
- h. Une affinité de rapport 2 parallèlement à (Ox), suivie d'une translation de vecteur $\vec{i} + \vec{j}$.

II EXERCICES SUR LES GÉNÉRALITÉS SUR LES FONCTIONS

Exercice 6

Soient f et g deux fonctions réelles de la variable réelle.

Selon la parité de chacune, donner la parité de leur produit fg ainsi que de la composée $f \circ g$.

Exercice 7

Etudier la périodicité des fonctions suivantes :

- **a.** $f: x \mapsto \sin^2 x$
- **b.** $g: x \mapsto (\cos(3x) + \sin(3x))^2$

Exercice 8

$$\text{Soit } g: \left| \begin{array}{ccc} [-1,1] & \longrightarrow & [-1,1] \\ x & \mapsto & \left\{ \begin{array}{ccc} x & \text{ si } x \in [-1,0] \\ 1-x & \text{ si } x \in]0,1] \end{array} \right.$$

Représenter graphiquement g et $g \circ g$

Exercice 9

Soit $f \in \mathbb{R}^{\mathbb{R}}$ telle que $f \circ f$ est croissante et $f \circ f \circ f$ est strictement décroissante. Montrer que f est strictement décroissante.

Exercice 10

Soit $f \in \mathbb{R}^{\mathbb{R}}$ telle que f est strictement croissante. Montrer que

$$\forall x \in \mathbb{R}, \quad ((f \circ f)(x) = x \iff f(x) = x)$$

III EXERCICES SUR LES FONCTIONS USUELLES

Exercice 11

Résoudre dans \mathbb{R} les équations suivantes :

a.
$$\ln(x+3) + \ln(x-2) = \ln(x)$$

b.
$$2^x + 6 \times 2^{-x} = 5$$

c.
$$\sqrt[3]{x+13} + \sqrt[5]{x-13} = 4$$

d.
$$3^{2x} - 2^{x + \frac{1}{2}} = 2^{x + \frac{7}{2}} - 3^{2x - 1}$$

e.
$$(\sqrt{x})^x = x^{\sqrt{x}}$$

Exercice 12

Calculer:

$$\frac{\sqrt[5]{4}\sqrt{8}\left(\sqrt[5]{\sqrt[3]{4}}\right)^2\sqrt[3]{\sqrt[4]{2}}}{\sqrt{\sqrt{2}}}$$

Exercice 13

- a. Montrer que $\frac{\ln 9}{\ln 2}$ et $\sqrt{2}$ sont des irrationnels ; en déduire qu'il existe deux irrationnels a et b tels que a^b soit rationnel.
- **b.** Etudier la fonction h définie sur \mathbb{R}_+^* par :

$$h(x) = \frac{\ln x}{x}$$

- **c.** En déduire les solutions dans $(\mathbb{N}^*)^2$ de l'équation $a^b = b^a$.
- **d.** Montrer que $2,25^{3,375} = 3,375^{2,25}$

Exercice 14

Etudier et représenter les fonctions suivantes, après avoir réduit le domaine d'étude et simplifié leurs expressions :

- **a.** $f: x \mapsto Arcsin(sin(x))$
- **b.** $g: x \mapsto Arcsin(cos(3x))$

Exercice 15

a. Démontrer que :

$$\forall (a,b) \in \mathbb{R}^2, ab \neq 1, \exists k \in \mathbb{Z}, \quad \operatorname{Arctan} a + \operatorname{Arctan} b = \operatorname{Arctan} \frac{a+b}{1-ab} + k\pi$$

b. Calculer:

$$Arctan 1 + Arctan 2 + Arctan 3$$

Exercice 16

Résoudre dans \mathbb{R} les équations suivantes :

- **a.** Arcsin $\left(\frac{2x}{1+x^2}\right)$ = Arctan x
- **b.** $\operatorname{Arctan}(x) + \operatorname{Arctan}(2x) = \frac{\pi}{4}$

Exercice 17

On considère la fonction

$$f: x \mapsto \operatorname{Arcsin}\left(2x\sqrt{1-x^2}\right)$$

- a. Déterminer le domaine de définition de f.
- **b.** Exprimer simplement $f(\cos(u))$ pour $u \in [0, \pi]$.
- c. En déduire une expression simplifiée de f(x).
- **d.** Retrouver le résultat précédent en dérivant f.

Exercice 18

On considère la fonction

$$f: x \mapsto \operatorname{Arccos} \frac{1}{\sqrt{1+x^2}}$$

- a. Déterminer le domaine de définition de f.
- **b.** Exprimer simplement $f(\tan(u))$ pour $u \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.
- c. En déduire une expression simplifiée de f(x).
- **d.** Retrouver le résultat précédent en dérivant f.

Exercice 19

On considère la fonction

$$f: x \mapsto \operatorname{Arcsin} \frac{1+x}{\sqrt{2}\sqrt{1+x^2}}$$

- **a.** Déterminer le domaine de définition de f.
- **b.** Exprimer simplement $f(\tan(u))$ pour $u \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.
- c. En déduire une expression simplifiée de f(x).
- **d.** Retrouver le résultat précédent en dérivant f.

Exercice 20

Simplifier pour $x \in \mathbb{R} \setminus \{1\}$ l'expression :

Arctan
$$\left(\frac{1+x}{1-x}\right)$$

Exercice 21

On considère la fonction

$$f: x \mapsto \operatorname{Arctan} \sqrt{\frac{1-\sin\,x}{1+\sin\,x}}$$

- 1. Déterminer l'ensemble de définition de f et réduire son domaine d'étude.
- 2. Montrer que :

$$\forall x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2} \right[, \quad \frac{1-\sin x}{1+\sin x} = \tan^2\left(\frac{\pi}{4} - \frac{x}{2}\right) \right]$$

- 3. En déduire une expression simplifiée de f(x) et représenter graphiquement f.
- 4. Retrouver le résultat précédent en dérivant f.

LES BONS REFLEXES

- *Toujours étudier le domaine de validité des expressions algébriques que l'on manipule.
- \bigstar Attention les fonctions Arccos et Arcsin sont définies sur [-1,1] et dérivables sur [-1,1].
- ♥ On a $\operatorname{Arcsin}(\sin(x)) = x$ que pour x dans le domaine d'arrivée de Arcsin , c'est-à-dire $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; de même $\operatorname{Arccos}(\cos(x)) = x$ pour x dans le domaine d'arrivée de Arccos c'est-à-dire $x \in [0, \pi]$ et enfin $\operatorname{Arctan}(\tan(x)) = x$ pour x dans le domaine d'arrivée de Arctan , c'est-à-dire $x \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$.