Archinedan Property R and any subfield

 $\left(U \stackrel{?}{\Rightarrow} \stackrel{r}{\rightleftharpoons} \Leftrightarrow \frac{p}{v} \leqslant \frac{1}{l} \right)$

Given a 20, 670, can find a positive integer n so that na 26 Geometrically: any length can be measured with a ruler total

R contains no infinitesimals A R contains no pseudo-intinite elemente

What is a function?

Informal: rule which assigns to any number in some subset of R swher real number

Greek Geometers: $\chi^2 + \chi$ is norsensical in in $\chi^2 + \chi$ is norsensical in $\chi^2 + \chi$ is normalized in $\chi^2 + \chi$ in $\chi^2 + \chi$ in $\chi^2 + \chi$ is normalized in $\chi^2 + \chi$ is normalized in $\chi^2 + \chi$ is normalized in $\chi^2 + \chi$ i

Calileo: h= 64+48t-16t² (an object falling in physics)

h₆ + V.t + ½at²

so coefficients also come with units: V₀:: m/s which cancels s

h = -16(t-4)(t+1)

0=h => t= 4 or t=-1 but t=-1 makes 1255 songe

to this physical interpretation only makes sense for te (0,4)

So must distinguish between functions of different Domain

 $h(t) = f(t) \quad \forall t \in \mathbb{R}$ $h'(t) = f(t) \quad \forall t \in (0, 4)$

Formal detinition of function: (real-valued of one real variable)

A function f is a subset of RXR (a set of ordered pairs (x,y)) satisfying the property that $(x,y) \in f$ and $(x,y_2) \in f \Rightarrow y_1 = y_2$ Genetrically: Vertical like test h: h':

notation! $f(x) = y := (x,y) \in f$

The set dom(f)= {\int X: \(\)

Ex: f: S -> [0,00) mens (fix) is defined \seS

convenient to specify functions by formulas. In that case, the domain is assumed to be {x \in R: f(x) makes sense?

 $\frac{2}{x}$: $f(x) = \frac{x}{x^2-4}$ is shorthand for the function f defined $\forall x \neq \frac{1}{2}$ given by $f(x) = \frac{x}{x^2-4}$

examples of functions:

i) polynomial functions $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ where $a_0, a_1, ..., a_n \in \mathbb{R}$ $dom(f) = \mathbb{R}$

Two special cases: α) f(x) = c constant function

b) I(x) = x is entity function

2) rational functions $f(x) = \frac{g(x)}{h(x)}$ where g and h are polynomial functions $f(x) = \{x \in \mathbb{R} : h(x) \neq 0\}$

Note: $f(x) = \frac{x-1}{x^2-1} \neq g(x) = \frac{1}{x+1}$ because $d \circ m(f) \neq d \circ m(g)$ $|R \setminus \{-1,1\}| \qquad |R \setminus \{-1,1\}|$

3) f(x) = |x| $f(x) = \begin{cases} x & \text{if } x \neq 0 \\ -x & \text{if } x \neq 0 \end{cases}$ f(x) = |R|

(i)
$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$
 (d is continuous everywhere)

7)
$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q} \in \mathbb{Q} \text{ (in lowest terms, } q > 0) \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

fin ex 7 is called "poplar function"

it is continuous at all irrationals & discontinuous at all rationals