CS 6901 Capstone Exam Systems Spring 2012: Choose any 2 problems.

- 1) a) Construct a circuit diagram for a 2x4 decoder.
- b) Let F(a, b, c, d) = a'b'c'd' + a'bcd + ab'c'd + abcd. Use a 4x16 decoder (as a block diagram) and a minimal number of additional logic gates to implement F.
- 2) Consider the dining philosopher problem with 10 philosophers. Assume that philosopher i (i = 0, 1, ..., 9) executes the following:

```
while (true) {
  think;
  wait(mutex);
    wait(fork[i]);
    wait(fork[(i+1)%10]; // % is the mod operator
  signal(mutex);
  eat;
  signal(fork[i]);
  signal(fork[(i+1)%10];
}
```

All semaphores have been initialized to 1.

- a) Is deadlock possible?
- b) Is fairness guaranteed? That is, is indefinite postponement for an individual philosopher possible?
- c) Describe any other undesirable aspects of this proposed solution, if any.

Explain your answers.

3) Consider a system with 4 resources (A, B, C, D) in quantity (5, 3, 3, 3). The Banker's Algorithm is used to allocate resources and it has the following SAFE state:

Process	Allocation	Max	Need
	A B C D	A B C D	A B C D
P0	3 0 1 2	5 3 3 3	2 3 2 1
P1	1 1 1 0	2 3 2 1	1 2 1 1
P2	0 0 0 1	0 1 1 1	0 1 1 0

- a) Justify why the current state is safe.
- b) Will a request for P0 of (1, 1, 0, 0) be allowed? Justify your answer.

CS 6901 Capstone Exam Data Structures Spring 2012: Choose any 2 problems.

1. Write an efficient function to sort the elements of a linked list of integer values. Your sort must be in-place; you may not dynamically allocate new memory. Code in the language of your choice and include declarations of all data structures.

Example:

Input: $listptr \rightarrow 11 \rightarrow 8 \rightarrow 2 \rightarrow 4 \rightarrow 5$ Output: $listptr \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 8 \rightarrow 11$

2. Given a possibly empty binary search tree containing character values, write a recursive routine that takes as input an integer *D* and produces as output an ordered list of all characters at depth *D* in the tree. Code in the language of your choice and include declarations of all data structures.

Example:

For *D* = 2, your routine should display B E H L For *D* = 3, your routine should display A C F I K M

3. Solve the recurrence relation $T(n) = T(n/2) + \lg(n)$ where T(1) = 1 and $n = 2^k$ for a nonnegative integer k. Your answer should be a precise function of n in closed form. (An asymptotic answer is not acceptable.) Show the work you did to obtain the solution. Note that \lg represents the base 2 \lg function.

<u>CS 6901 Capstone Exam Theory Spring 2012</u>: Choose any 2 problems.

- 1. Prove that $\{0^a1^b0^c : b \neq a + c; a, b, c \geq 0\}$ is a context-free language.
- 2. Consider the following two languages:

```
HALT_{TM} = \{M, w : M \text{ is a Turing machine that halts on input string } w\}

TWO_{TM} = \{M : M \text{ is a Turing machine that accepts exactly two strings}\}
```

 $HALT_{TM}$ (the Halting Problem) is, of course, undecidable. Through reducibility from $HALT_{TM}$, show that TWO_{TM} is also undecidable.

3. In formal logic, a **tautology** is a Boolean formula that always evaluates true. Prove that the language

NOTAUT = $\{\varphi : \varphi \text{ is a Boolean formula that is } not \text{ a tautology}\}$

is in the class NP.