HW Linear Programming

Name: Sahand Sabour Student ID: 2020280401

1. Solving the following linear program using simplex method

$$\max Z = 3x_1 + 6x_2 + 2x_3$$

$$\begin{cases}
3x_1 + 4x_2 + x_3 \le 2 \\
x_1 + 3x_2 + 2x_3 \le 1
\end{cases}$$

$$\begin{cases}
x_1 \ge 0, x_2 \ge 0, x_3 \ge 0
\end{cases}$$

The above equations could be rewritten in augmented form.

$$3x_1 + 4x_2 + x_3 + x_4 = 2$$

$$\{x_1 + 3x_2 + 2x_3 + x_5 = 1$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Accordingly, the table would be as follows

Cj			3	6	2	0	0	B.
CB	XB	90	11	92	93	9	95	Pi
0	X4	2	3	4	1	1	0	24
0	×5	1	1	3	2	0	1	1/3
-Z 0		0	3	67	2	0	0	

Let $\ x_2\$ be a basic variable. Accordingly, by modifying the above equations, we have

$$9x_1 + 12x_2 + 3x_3 + 3x_4 = 6$$

$$-4x_1 - 12x_2 - 8x_3 - 4x_5 = -4$$

$$\frac{1}{3}x_1 + x_2 + \frac{2}{3}x_3 + \frac{1}{3}x_5 = \frac{1}{3}$$

Simplifying the top two equation gives

$$\begin{cases} \frac{5}{3}x_1 - \frac{5}{3}x_3 + x_4 - \frac{4}{3}x_5 = \frac{2}{3} \\ \frac{1}{3}x_1 + x_2 + \frac{2}{3}x_3 + \frac{1}{3}x_5 = \frac{1}{3} \end{cases}$$

And the program can be written as

$$\max Z = x_1 - 2x_3 - 2x_5 + 2$$

(j			3	6	2	0	0	8.
CB	XB	Po	91	(2	93	Pt	93	71
0	*4	2/3	5 3	0	-5	1	-4-3	25
6	*2	1/3	1 3	1	2 3	0	1/3	1
-z -2		11	0	-2	0	-2		

Let $\ x_1\$ be a basic variable. Accordingly, by modifying the above equations, we have

$$x_{1} - x_{3} + \frac{3}{5}x_{4} - \frac{4}{5}x_{5} = \frac{2}{5}$$

$$\left\{ \frac{5}{3}x_{1} - \frac{5}{3}x_{3} + x_{4} - \frac{4}{3}x_{5} = \frac{2}{3} - \frac{5}{3}x_{1} - 5x_{2} - \frac{10}{3}x_{3} - \frac{5}{3}x_{5} = \frac{-5}{3} \right\}$$

Simplifying the lower two equation gives

$$\begin{cases} x_1 - x_3 + \frac{3}{5}x_4 - \frac{4}{5}x_5 = \frac{2}{5} \\ x_3 - \frac{1}{5}x_4 + \frac{3}{3}x_5 = \frac{1}{5} \end{cases}$$

And the program can be written as

$$\max Z = -x_3 - \frac{3}{5}x_4 - \frac{6}{5}x_5 + \frac{12}{5}$$

	Cj			6	2	0	0	β;
CB	1×0	90	91	92	P3	94	95	
3	X1	2 5	1	0	-1	3/5	-4-5	
6	×2	1 5	0	1	1	-15	3 5	
-	- Z		0	0	-1	-3	-6	

Therefore, the optimal solution would be

$$x_1 = \frac{2}{5}$$

$$x_2 = \frac{1}{5}$$

$$Z = \frac{12}{5}$$