CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 37: I/O: Disks

http://inst.eecs.berkeley.edu/~cs61c/

Guest Lecturer: Rohan Chitnis

Review

- I/O Devices: how humans + computers interact
 - Need to connect to, transfer with variety of devices
- Polling vs. Interrupts
 - Polling: processor continually asks device for updates
 - Interrupts: device interrupts processor with updates
- Exceptions are "unexpected" events
 - In MIPS, exceptions managed by System Control Coprocessor

Review - 6 Great Ideas in Computer Architecture

- 1. Layers of Representation/Interpretation
- 2. Moore's Law
- 3. Principle of Locality/Memory Hierarchy
- 4. Parallelism
- 5. Performance Measurement & Improvement
- 6. **Dependability via Redundancy**

Review - Great Idea #6: Dependability via Redundancy

 Redundancy so that a failing piece doesn't make the whole system fail

Review - Great Idea #6: Dependability via Redundancy

• Redundancy so that a failing piece doesn't make the whole system fail

Review - Great Idea #6: Dependability via Redundancy

- Applies to everything from datacenters to memory
 - Redundant datacenters so that can lose 1 datacenter but Internet service stays online
 - Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of Independent Disks/RAID)
 - Redundant memory bits of so that can lose 1 bit but no data (Error Correcting Code/ECC Memory)

Magnetic Disk – common I/O device

- A kind of computer storage
 - Information stored by magnetizing ferromagnetic material on surface of rotating disk
 - Similar to tape recorder except digital rather than analog data
- Non-volatile storage
 - Data is retained even in the absence of power
- Purpose in computer systems (Hard Drive):
 - Long-term, inexpensive, large storage space for files
 - "Backup" for main memory (what if power goes out?)

Magnetic Disk Internals

Disk Device Terminology

- Several platters, with information recorded magnetically on both surfaces (usually)
- Actuator moves <u>head</u> (end of <u>arm</u>) over track (<u>"seek"</u>), wait for <u>sector</u> to rotate under <u>head</u>, then read or write
- Head doesn't touch platter

What about Flash Memory/SSDs?

- What is Flash Memory?
 - Electronic, non-volatile (no power ok) storage
 - Grid of transistors
 - Precise voltages applied to block the current from flowing through some transistors, generating pattern of 1s/0s
 - Benefits: durable (e.g., less sensitive to drops) & lower power
 - Limitations: finite number of write cycles (resistance builds in transistors, eventually can't be flipped → read-only)

What about Flash Memory/SSDs?

- So then what are SSDs?
 - Solid-State Drives
 - Another type of disk (long-term storage) that has NO moving parts, like magnetic disks had
 - Just an implementation (special use) of flash memory
 - Benefit: speed

Use Arrays of Small Disks...

- Katz and Patterson asked in 1987:
 - Can smaller disks be used to close gap in

performance b/w disks and CPUs? Conventional:

4 disk

designs 3.

Low End High End

Disk Array:

1 disk design

Replace Small # of Large Disks with Large # of Small!

(1988 Disks)

Capacity Volume **Power Data Rate** I/O Rate **MTTF** Cost

IBM 3390K IBM 3.5" 061 20 GBytes 320 MBytes 97 cu. ft. 0.1 cu. ft.

3 KW 11 W 1.5 MB/s 15 MB/s

55 I/Os/s 600 I/Os/s 250 KHrs 50 KHrs

\$250K

\$2K

Replace Small # of Large Disks with Large # of Small!

(1988 Disks)

<u> </u>	<u> 1814 3 5" 1161</u>	$\leftarrow x/U$	
20 GBytes		23 GBytes	
97 cu. ft.	0.1 cu. ft.	11 cu. ft.	9X
• • • • •	11 W	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
15 MB/s	1.5 MB/s	120 MB/s	3X
600 I/Os/s	55 I/Os/s		8X
250 KHrs	50 KHrs	??? Hrs	6X
\$250K	\$2K	\$150K	UA
	20 GBytes 97 cu. ft. 3 KW 15 MB/s 600 I/Os/s	97 cu. ft. 0.1 cu. ft. 3 KW 11 W 15 MB/s 1.5 MB/s 600 I/Os/s 55 I/Os/s 250 KHrs 50 KHrs	20 GBytes 320 MBytes 23 GBytes 97 cu. ft. 0.1 cu. ft. 11 cu. ft. 3 KW 11 W 1 KW 15 MB/s 1.5 MB/s 120 MB/s 600 I/Os/s 55 I/Os/s 3900 I/Os/s 250 KHrs 50 KHrs ??? Hrs

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, but what about reliability?

Disk Array Reliability

- Reliability whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)
- Reliability of N disks
 - = Reliability of 1 Disk ÷ N (assuming failures independent)
 - Example: $50,000 \text{ hours} \div 70 \text{ disks} = 700 \text{ hours}$
- Disk system MTTF:
 Drops from 6 years to 1 month -- unreliable!

Redundant Arrays of (Inexpensive) Disks

- Files are spread out (segmented) across multiple disks
- Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed

Redundant Arrays of (Inexpensive) Disks

- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - Capacity penalty to store redundant info
 - Bandwidth penalty to update redundant info

RAID: Redundant Array of Inexpensive Disks

- Invented @ Berkeley (1989)
- A multi-billion dollar industry
 - 80% non-PC disks sold in RAIDs
- Can parallelize read/write accesses to/from separate disks
- Many different levels of RAID
 - 1 through 5 protect single disk failure

"RAID 0": No redundancy = "AID"

- Striping: assume have 4 disks of data for this example
- Large accesses faster since transfer from several disks at once (parallelized)

This and next 5 slides from RAID.edu, http://www.acnc.com/04_01_00.html http://www.raid.com/04_00.html also has a great tutorial

RAID 1: Mirrored disks

- Each disk is fully duplicated onto its "mirror"
 - Very high availability can be achieved
- 1 logical write → 2 physical writes
- Most expensive solution: 100% capacity overhead

RAID 3: Parity

- Each sequential byte on a different drive
- Parity computed across disk group to protect against hard disk failures, stored in special "parity disk"
 - Logically, a single high-capacity, high-transfer-rate disk
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks)

Drawbacks of RAID 3

- Small writes (write to one disk):
 - Option 1: read other data disks, create new sum and write to Parity Disk (access all disks)
 - Option 2: since P has old sum, compare old sum to new data, add the difference to P:
 - 1 logical write = 2 physical reads + 2 physical writes to 2 disks
- Parity Disk is bottleneck for small writes: Write to A0, B1 → both write to parity disk, cannot parallelize this!

RAID 5: Rotated Parity, faster small writes

- Independent writes possible because of interleaved parity
 - Example: write to A0, B1 uses
 disks 0, 1, 3, 4, so can proceed in parallel
 - Still 1 small write = 4 physical disk accesses

Peer Instruction

- 1. RAID 1 (mirror) and 5 (rotated parity) help with performance <u>and</u> availability
- 2. RAID 1 has higher cost than RAID 5
- 3. Small writes on RAID 5 are slower than on RAID 1

123

F.E.E.

D: FTF

C: TFF

D: TFT

D: TTF

E: TTT