

PS Lineare Algebra, Lösungshinweise zu Aufgabenblatt 9

Aufgabe 33 (ähnlich)

Bestimmen Sie für die folgende Matrix $A \in Mat_{3.5}(\mathbb{Q})$ eine Basis des Lösungsraums $L(A,0)\subseteq \mathbb{Q}^5$:

$$A = \left(\begin{array}{cccc} 1 & -2 & 1 & 4 & 0 \\ 1 & 1 & -2 & 1 & 2 \\ 1 & 4 & -5 & -2 & 1 \end{array}\right).$$

Lösung. Wir wenden den Gauß-Algorithmus an und erhalten nach drei Zeilenoperationen das System in Zeilenstufenform, mit freien Variablen x_3 und x_4 und Pivots x_1, x_2 und x_5 . Aus der dritten Gleichung erhalten wir sofort $x_5 = 0$. Nun gehen wir wie im Skript (Konstruktion 3.1.22) vor und wählen zuerst $x_3 = 1$, $x_4 =$ 0 und dann $x_3 = 0$ und $x_4 = 1$, und berechnen in beiden Fällen Werte für x_1 und x_2 . Wir erhalten $x_1 = x_2 = 1$, bzw. $x_1 = -2$ und $x_2 = 1$. Die Lösungen (1,1,1,0,0) und (-2,1,0,1,0) sind also die Vektoren einer Basis, die aus zwei Elementen besteht.

Aufgabe 34 (ähnlich)

Bestimmen Sie für die folgenden Unterräume von \mathbb{R}^4 jeweils eine Basis:

- $\begin{array}{l} \text{(i)} \ \ U_1 = \left\{ (a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_1 = a_2 \right\} \\ \text{(ii)} \ \ U_2 = \left\{ (a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_1 + a_2 + a_3 + a_4 = 0 \right\} \\ \end{array}$
- (iii) $U_1 \cap U_2$, $U_1 + U_2$

 $L\ddot{o}sung.$

(i)
$$U_1 = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_1 = a_2\}$$

Um einen Vektor aus U_1 zu erhalten, können wir die letzten drei Koordinaten frei bestimmen, wodurch die erste dann auch festgelegt ist (wegen der Bedidngung $a_1 = a_2$). Ist also (v_1, v_2, v_3) eine Basis von \mathbb{R}^3 , dann ist

 $((v_{1,1}, v_{1,1}, v_{1,2}, v_{1,3}), (v_{2,1}, v_{2,1}, v_{2,2}, v_{2,3}), (v_{3,1}, v_{3,1}, v_{3,2}, v_{3,3}))$ eine Basis von U_1 , wobei mit $v_{i,j}$ die j-te Koordinate des Vektors v_i bezeichnet wird. Dass dies tatsächlich eine Basis von U_1 ist, ist leicht zu sehen, weil man U_1 aus \mathbb{R}^3 erhalten kann, indem man die ersten Koordinate eines jeden Vektors doppelt aufschreibt.

Z.B. erhalten wir aus der Standardbasis von \mathbb{R}^3 : $\{(1,1,0,0), (0,0,1,0), (0,0,0,1)\}.$ (ii) $U_2 = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_1 + a_2 + a_3 + a_4 = 0\}$

Wir gehen wie bei (i) vor und wählen für a_1, a_2, a_3 jeweils die Kordinaten eines Vektors der Standardbasis von \mathbb{R}^3 , und wählen a_4 dann entsprechend der Bedingung $a_1+a_2+a_3+a_4=0$. Eine Basis ist also $B_2=\{(1,0,0,-1),(0,1,0,-1),(0,0,1,-1)\}.$ (iii) $U_1 \cap U_2, U_1 + U_2$

Man sieht leicht, dass $U_1 \cap U_2$ der Untervektorraum $\{(a_1, a_1, a_2, a_3) \mid 2a_1 + a_2 + a_3 = a_3 \mid 2a_1 + a_2 + a_3 = a_3 \mid 2a_1 + a_2 + a_3 = a_3 \mid 2a_1 + a_2 \mid 2a_1 + a_2 \mid 2a_1 + a_3 = a_3 \mid 2a_1 \mid 2a_1$ 0} ist, weil sowohl die Bedingung aus U_1 als auch die aus U_2 erfüllt sein müssen. Eine Basis bestimmen wir ähnlich wie bei U_2 , nur könnnen wie hier nur zwei Koordinaten frei bestimmen: $\{(1,1,0,-2),(0,0,1,-1)\}.$

Um eine Basis von $U_1 + U_2$ zu bestimmen, stellen wir zuerst fest, dass $U_1 \neq U_2$ gilt, denn $v = (0, 0, 0, 1) \in U_1 \setminus U_2$. Weil B_2 linear unabhängig ist, kann man zeigen,

dass auch $B_2 \cup \{v\}$ linear unabhängig ist. Man sieht auch leicht, dass $B_2 \cup \{v\}$ den gesamten \mathbb{R}^4 erzeugt, denn (1,0,0,0) = (1,0,0,-1)+v, (0,1,0,0) = (0,1,0,-1)+v, (0,0,1,0) = (0,0,1,-1)+v. Da also $B_2 \cup \{v\}$ linear unabhängig ist und \mathbb{R}^4 erzeugt, ist diese Menge eine Basis von \mathbb{R}^4 .

Aufgabe 35 (ähnlich)

Wir betrachten folgende Menge:

 $M := \{A \in \operatorname{Mat}_3(\mathbb{R}) \mid \text{ jede Zeile und jede Spalte von } A \text{ summiert sich zu } 1\}.$

(i) Zeigen Sie, dass M ein affiner Unterraum von $\operatorname{Mat}_3(\mathbb{R})$ ist und bestimmen Sie den zu M parallelen Untervektorraum $U \subseteq \operatorname{Mat}_3(\mathbb{R})$.

(ii) Bestimmen Sie eine Basis von U.

Lösung.

(i) Die Bedingung, dass jede Zeile und jede Spalte einer Matrix sich zu 1 summieren, lässt sich leicht als ein nicht-homogenes Gleichungssystem mit 6 Gleichungen und 9 Unbekannten schreiben:

$$x_1 + x_2 + x_3 = 1,$$

$$x_4 + x_5 + x_6 = 1,$$

$$x_7 + x_8 + x_9 = 1,$$

$$x_1 + x_4 + x_7 = 1,$$

$$x_2 + x_5 + x_8 = 1,$$

$$x_3 + x_6 + x_9 = 1.$$

Jetzt folgt aus Satz 2.3.6 (siehe auch Konstruktion 3.1.22), dass die Lösungen dieses nicht-homogenen Systems einen affinen Unterraum von \mathbb{R}^9 bilden, und da $\operatorname{Mat}_3(\mathbb{R})$ und \mathbb{R}^9 offensichtlich isomorph sind, folgt, dass M ein affiner Untervektorraum von $\operatorname{Mat}_3(\mathbb{R})$ ist. Den dazu parallelen Untervektorraum finden wir, indem wir das entsprechende homogene Gleichungssystem lösen.

Man sieht leicht (indem man sich eine (3×3) -Matrix vorstellt), dass wir für jede beliebige Auswahl von Werten für x_1, x_3, x_7 und x_9 (also die Einträge, die in den Ecken der Matrix stehen), immer Werte für x_2, x_4, x_6, x_8 finden können, so dass die Summen auf der ersten und dritten Zeile/Spalte null ergeben, nämlich $x_2 = -x_1 - x_3, x_4 = -x_1 - x_7$, usw. Nur muss am Ende noch $x_2 + x_8 = x_4 + x_6$ gelten, damit wir auch für x_5 (Mitte der Matrix) einen Wert finden können, so dass die Summe der zweiten Zeile und der zweiten Spalte null ergibt. Letztere Gleichung drücken wir in Funktion von x_1, x_3, x_7, x_9 aus:

$$-x_1 - x_3 - x_7 - x_9 = -x_1 - x_7 - x_3 - x_9.$$

Wir sehen, dass die Gleichung $x_2 + x_8 = x_4 + x_6$ immer gilt, also können wir die Werte für x_1 , x_3 , x_7 und x_9 beliebig wählen, wodurch die Werte aller anderen Einträge eindeutig bestimmt sind. Der Untervektorraum U von $\operatorname{Mat}_3(\mathbb{R})$ ist also die Menge aller (3×3) -Matrizen der Form

$$\begin{pmatrix} x_1 & -x_1 - x_3 & x_3 \\ -x_1 - x_7 & x_1 + x_3 + x_7 + x_9 & -x_3 - x_9 \\ x_7 & -x_7 - x_9 & x_9 \end{pmatrix},$$

wobei $x_1, x_3, x_7, x_9 \in \mathbb{R}$ gilt.

(ii) Eine Basis von U kann man nun leicht bestimmen, indem man für (x_1, x_3, x_7, x_9) die Standardbasisvektoren von \mathbb{R}^4 einsetzt und die restlichen Werte entsprechend bestimmt.

Aufgabe 36

Sei W ein K-Vektorraum. Seien $u_1, \ldots, u_m \in W$ linear unabhängig, sowie $v_1, \ldots, v_n \in W$ linear unabhängig. Zeige, dass

$$u_1,\ldots,u_m,v_1,\ldots,v_n$$

genau dann linear unabhängig sind, wenn

$$\operatorname{Span}_K(\{u_1, \dots, u_m\}) \cap \operatorname{Span}_K(\{v_1, \dots, v_n\}) = \{0\}.$$

Proof. "\improof" Wir nehmen an, $u_1, \ldots, u_m, v_1, \ldots, v_n$ seien linear unabhängig. Um zu zeigen, dass $\operatorname{Span}_K(\{u_1, \ldots, u_m\}) \cap \operatorname{Span}_K(\{v_1, \ldots, v_n\}) = \{0\}$ gilt, nehmen wir an, die Aussage würde nicht gelten, um dann zu einem Widerspruch zu gelangen. Wenn also $\operatorname{Span}_K(\{u_1, \ldots, u_m\}) \cap \operatorname{Span}_K(\{v_1, \ldots, v_n\})$ nicht genau den Nullvektor enthält, dann ist diese Menge entweder die leere Menge, oder eine Menge, die außer 0 auch noch einen weiteren Vektor $v \neq 0$ enthält. Die erste Möglichkeit ist dadurch ausgeschlossen, dass sowohl $\operatorname{Span}_K(\{u_1, \ldots, u_m\})$ als auch $\operatorname{Span}_K(\{v_1, \ldots, v_n\})$ Untervektorräume sind, also beide den Nullvektor enthalten. Sei also

$$v \in \operatorname{Span}_K(\{u_1, \dots, u_m\}) \cap \operatorname{Span}_K(\{v_1, \dots, v_n\}), v \neq 0.$$

Da $v \in \operatorname{Span}_K(\{u_1,\ldots,u_m\})$, gibt es eine Linearkombination $\alpha_1u_1+\ldots+\alpha_mu_m=v$, wobei nicht alle α_i gleich 0 sind. Da $v \in \operatorname{Span}_K(\{v_1,\ldots,v_n\})$, gibt es eine Linearkombination $\beta_1v_1+\ldots+\beta_nv_n=v$, wobei nicht alle β_i gleich 0 sind. Dann ist aber $\alpha_1u_1+\ldots+\alpha_mu_m+(-\beta_1)v_1+\ldots+(-\beta_n)v_n=v-v=0$ eine Linearkombination, die zwar den Nullvektor ergibt, in der aber nicht alle Koeffizienten gleich null sind. Dies widerspricht der Annahme, dass $u_1,\ldots,u_m,v_1,\ldots,v_n$ linear unabhängig sind. " \Leftarrow " Nehmen wir nun an, $\operatorname{Span}_K(\{u_1,\ldots,u_m\})\cap\operatorname{Span}_K(\{v_1,\ldots,v_n\})$ sei gleich $\{0\}$, die Vektoren $u_1,\ldots,u_m,v_1,\ldots,v_n$ seien aber nicht linear unabhängig. Wenn $u_1,\ldots,u_m,v_1,\ldots,v_n$ linear abhängig sind, dann gibt es eine Linearkombination $\alpha_1u_1+\ldots+\alpha_mu_m+\alpha_{m+1}v_1+\ldots+\alpha_{m+n}v_n=0$, wobei nicht alle α_i gleich null sind. Also gilt

$$\alpha_1 u_1 + \ldots + \alpha_m u_m = (-\alpha_{m+1})v_1 + \ldots + (-\alpha_{m+n})v_n.$$

Da aber $\alpha_1 u_1 + \ldots + \alpha_m u_m \in \operatorname{Span}_K(\{u_1, \ldots, u_m\})$, während $(-\alpha_{m+1})v_1 + \ldots + (-\alpha_{m+n})v_n \in \operatorname{Span}_K(\{v_1, \ldots, v_n\})$, folgt aus

$$\operatorname{Span}_K(\{u_1, \dots, u_m\}) \cap \operatorname{Span}_K(\{v_1, \dots, v_n\}) = \{0\},\$$

dass

$$\alpha_1 u_1 + \ldots + \alpha_m u_m = 0 = (-\alpha_{m+1})v_1 + \ldots + (-\alpha_{m+n})v_n$$

gelten muss. Nun sind in mindestens einer der beiden Linearkombinationen nicht alle Koeffizienten gleich null, was mindestens einer der beiden Tatsachen, dass u_1, \ldots, u_m und v_1, \ldots, v_n jeweils linear unabhängig sind, widerspricht. Der Widerspruch zeigt, dass die Vektoren $u_1, \ldots, u_m, v_1, \ldots, v_n$ linear unabhängig sein müssen, wenn $\operatorname{Span}_K(\{u_1, \ldots, u_m\}) \cap \operatorname{Span}_K(\{v_1, \ldots, v_n\}) = \{0\}$ gilt.