Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir

Thermodynamics & Thermochemistry

DPP: 5

Q1 The heat of combustion of ethanol determined in a bomb calorimeter is $-670.48~\rm{K}$. Cals \rm{mole}^{-1} at $25^{\circ}\rm{C}$.

What is ΔH at $25^{\circ}C$ for the reaction:

- (A) -335.24 K. Cals.
- (B) -671.08 K. Cals.
- (C) -670.48 K Cals.
- (D) +670.48 K. Cals.
- **Q2** From the reaction $P(White) \rightarrow P(Red)$;

$$\Delta \mathrm{H} = -18.4 \mathrm{KJ}$$
. It follows that:-

- (A) Red P is readily formed from white P
- (B) White P is readily formed from red P
- (C) White P can not be converted to red P
- (D) White P can be converted into red P and red P is more stable
- Q3 Since the enthalpy of the elements in their standard states is taken to be zero. The heat of formation (ΔH_f) of compounds:
 - (A) Is always negative
 - (B) Is always positive
 - (C) Is zero
 - (D) May be positive or negative
- **Q4** Which of the following equations represents standard heat of formation of CH_4 ?
 - (A) $\mathrm{C}_{(\mathrm{diamond})} + 2\mathrm{H}_{2}(\ \mathrm{g})
 ightarrow \mathrm{CH}_{4}(\ \mathrm{g})$
 - (B) $ext{C}_{ ext{(graphite)}} + 2 ext{H}_2(ext{ g})
 ightarrow ext{CH}_4(ext{ g})$
 - (C) $ext{C}_{ ext{(diamond)}} + 4 ext{H}_2(ext{ g}) o ext{CH}_4(ext{ g})$
 - (D) $ext{C}_{ ext{(graphite)}} + 4 ext{H}_2(ext{ g}) o ext{CH}_4(ext{ g})$
- Q5 Given enthalpy of formation of $CO_2(g)$ and CaO(s) are -94.0kJ and -152kJ respectively and the enthalpy of the reaction:

$$CaCO_3(\ s) \rightarrow CaO(s) + CO_2(\ g)$$
 is $42kJ$. The enthalpy of formation of $CaCO_3(\ s)$ is:

$$(A) - 42kJ$$

- (B) -202 kJ
- (C) +202kJ
- (D) 288kJ
- ${\bf Q6}$ The enthalpies of combustion of carbon and carbon monoxide are -393.5 KJ and -283 KJ, respectively the enthalpy of formation of carbon monoxide is
 - (A) -676.5 KJ
 - (B) -110.5 KJ
 - (C) 110.5 KJ
 - (D) 676.5KJ
- Q7 The heat of combustion of $CH_{4(\,\mathrm{g})}, C_{(\mathrm{s})}$ and $H_{2(\,\mathrm{g})}$ at $25^{\circ}\mathrm{C}$ are $-212.4~\mathrm{Kcal}, -94.0~\mathrm{Kcal}$ and $-68.4~\mathrm{Kcal}$ respectively, the heat of formation of CH_4 will be-
 - (A) +54.4 Kcal
 - (B) -18.4 Kcal
 - (C) -375.2 Kcal
 - (D) +212.8 Kcal
- Q8 Standard enthalpy of formation is zero for
 - (A) C_{diamond}
 - (B) Br(g)
 - (C) $C_{
 m graphite}$
 - (D) $O_{3(g)}$
- $\mbox{\bf Q9}~$ Heat of formation of CO_2 is -94.0~K. cal. What would be the quantity of heat liberated, when 3~g of graphite is burnt in excess of oxygen:-
 - (A) $23.5~\mathrm{K}$ cals
 - (B) $2.35~\mathrm{K}$ cals
 - (C) $94.0~\mathrm{K}$ cals
 - (D) $31.3\ K$ cals
- **Q10** The heat of neutralization of HCl by NaOH is -55.9 kJ/mol. If the heat of neutralization of

HCN by NaOH is -12.1~kJ/mol. The energy of dissociation of HCN is

- (A) -43.8 kJ
- (B) 43.8 kJ
- (C) 68 kJ
- (D) 68 kJ
- Q11 Heat evolved in the reaction

 $m H_2+Cl_2
ightarrow 2HCl$ is 182KJ. Bond energies of m H-H and m Cl-Cl are 430 and m 242KJ/mol respectively. The m H-Cl bond energy is:

- (A) $245 \text{KJ} \text{mol}^{-1}$
- (B) $427 \mathrm{KJmol}^{-1}$
- (C) $336 \text{KJ} \text{mol}^{-1}$
- (D) $154 \mathrm{KJmol}^{-1}$
- Q12 Heat of dissociation of benzene to elements is $5535~{\rm kJ~mol}^{-1}$. The bond enthalpies of ${\rm C-C,C=C}$ and ${\rm C-H}$ are 347.3, 615.0 and $416.2~{\rm kJ~mol}^{-1}$ respectively. Resonance energy of benzene is
 - (A) 1.51 kJ mol^{-1}
 - (B) 15.1 kJ mol^{-1}
 - (C) 151 kJ mol^{-1}
 - (D) 1511 kJ mol^{-1}
- $$\begin{split} \text{Q13} \quad & \text{If S} + \text{O}_2 \to \text{SO}_2; \Delta \text{H} = -298.2 \text{ kJ mol}^{-1} \\ & \text{SO}_2 + \frac{1}{2} \text{O}_2 \to \text{SO}_3; \Delta \text{H} = \\ & -98.7 \text{ kJ mol}^{-1} \\ & \text{SO}_3 + \text{H}_2 \text{O} \to \text{H}_2 \text{SO}_4; \Delta \text{H} = \\ & -130.2 \text{ kJ mol}^{-1} \\ & \text{H}_2 + \frac{1}{2} \text{O}_2 \to \text{H}_2 \text{O}; \Delta \text{H} = \\ & -287.3 \text{ kJ mol}^{-1} \end{split}$$

Then the enthalpy of formation of H_2SO_4 at $298\ K$ will be-

- (A) -814.4 kJ mol 1
- (B) $-650.3 \text{ kJ mol}^{-1}$
- (C) $-320.5 \text{ kJ mol}^{-1}$
- (D) $-433.5 \text{ kJ mol}^{-1}$
- **Q14** If the bond energies of H-H, Br-Br and H-Br are 433,192 and $364~kJ~mol^{-1}$

respectively, then ΔH° for the reaction

 $H_2(\ g) + Br_2(\ g) o 2HBr(g)$ is

- (A) -261 kJ
- (B) + 103 kJ
- (C) +261 kJ
- (D) -103 kJ
- **Q15** The absolute enthalpy of neutralisation of the reaction.

$$\mathrm{MgO}(\mathrm{s}) + 2\mathrm{HCl}(\mathrm{aq}) o \mathrm{MgCl}_2(\mathrm{aq})$$
 will be $+ \mathrm{H}_2\mathrm{O}(l)$

- (A) Less than $-57.33 \mathrm{~kJ~mol}^{-1}$
- (B) $-57.33 \text{ kJ mol}^{-1}$
- (C) Greater than $-57.33 \text{ kJ mol}^{-1}$
- (D) $57.33 \text{ kJ mol}^{-1}$

Answer Key

Q1	(B)	Q9	(A)
Q2	(D)	Q10	(B)
Q3	(D)	Q11	(B)
Q4	(B)	Q12	(C)
Q5	(D)	Q13	(A)
Q6	(B)	Q14	(D)
Q7	(B)	Q15	(A)
Q8	(C)		

Master NCERT with PW Books APP