« Le travail est un trésor. »(Jean de La Fontaine)

Exercice 1 Soit $A \in GL_n(\mathbb{R})$, comparer ${}^t(A^{-1})$ et $({}^tA)^{-1}$. Que dire de l'inverse d'une matrice symétrique?

Exercice 2 Soit $A \in M_n(\mathbb{R})$, montrer que ^tAA est diagonalisable. On suppose que $A^tAA = I_n$, que vaut A?

Exercice 3 Soit $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in S_2(\mathbb{R})$ de valeurs propres $\lambda \leq \mu$. Montrer que $\lambda \leq a \leq \mu$.

Exercice 4 Soit a unitaire dans E euclidien, et k réel. CNS sur k pour que $f: x \in E \mapsto x + k \langle x, a \rangle a$ soit un automorphisme orthogonal.

Exercice 5 Soit $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$, CNS sur a, b réels pour que A soit orthogonale. Etudier dans chaque cas la nature de l'endomorphisme de matrice A dans la base canonique de \mathbb{R}^3 .

Exercice 6 Quelles sont les matrices orthogonales triangulaires supérieures ?

Exercice 7 Montrer que si u est un endomorphisme symétrique d'un espace euclidien E alors ker(u) et Im(u) sont supplémentaires orthogonaux.

Exercice 8 Quelles sont les matrices symétriques réelles nilpotentes?

Exercice 9 Soit u, v deux vecteurs libres de E euclidien et $f: x \in E \mapsto \langle x, u \rangle v + \langle v, x \rangle u$. Montrer que ϕ est diagonalisable et préciser ses éléments propres.

Exercice 10 Soit $A = (a_{i,j})_{i,j} \in O_n$, montrer que $\left| \sum_{i,j} a_{ij} \right| \le n \le \sum_{i,j} |a_{i,j}| \le n \sqrt{n}$.

Exercice 11 Soit *E* euclidien et $f \in O(E)$, montrez que :

$$f^{2} = -id_{E} \iff (\forall x \in E, f(x) \perp x) \iff (\forall (x, y) \in E^{2}, \langle f(x), y \rangle = -\langle x, f(y) \rangle)$$

Exercice 12 Trouvez les sev de \mathbb{R}^3 stables par $A = \begin{pmatrix} 1 & 1 & 0 \\ -3 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 13 Diagonaliser avec matrice de passage orthogonale $A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.

Exercice 15 Décrire les isométries de \mathbb{R}^3 dont les matrices sont :

$$\frac{1}{3} \begin{pmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{pmatrix}, \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

$$\frac{1}{7} \begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}, \frac{1}{4} \begin{pmatrix} 3 & 1 & -\sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{pmatrix}, \frac{1}{4} \begin{pmatrix} -3 & -1 & -\sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{pmatrix}$$

Exercice 16 Une matrice $M \in S_n$ est dite positive (resp. strictement positive) ssi ${}^t MXM \ge 0$ (resp. > 0) pour tout X de \mathbb{R}^n . On note alors $M \in S_n^+$ (resp. S_n^{++}).

- 1. Montrez que $A \in S_n^+ \iff Sp(A) \subset \mathbb{R}_+ \iff \exists M \in M_n(\mathbb{R}); A = {}^tMM$. Proposez et démontrez un résultat analogue pour S_n^{++} .
- 2. Montrez que $\begin{pmatrix} 2 & 1 & 0 & \cdots & 0 \\ 1 & 2 & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 1 & 2 \end{pmatrix} \in S_n^{++}.$
- 3. Montrez que si $A \in S_n^+$ il existe une unique matrice $M \in S_n^+$ telle que $A = M^2$. On note $M = \sqrt{A}$. Calculer M si $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$
- 4. Pensez vous que $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ admette une racine carrée? Et $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$?

Exercice 17 Soit $A \in M_n(\mathbb{R})$, montrer que $\det(I_n + {}^t AA) > 0$.

Exercice 18 Soit $A \in S_n(\mathbb{R})$ de valeurs propres $\lambda_1, ..., \lambda_n$, montrer que $\sum_{1 \le i,j \le n} a_{i,j}^2 = \sum_{i=1}^n \lambda_i^2$. En déduire les valeurs

propres de la matrice
$$A = \begin{pmatrix} 0 & 1 & \dots & 1 & 0 \\ 1 & 0 & \dots & 0 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 0 & \dots & 0 & 1 \\ 0 & 1 & \dots & 1 & 0 \end{pmatrix}$$

Exercice 19 On munit $E = \mathbb{R}_n[X]$ du produit scalaire $\langle P, Q \rangle = \int_{-1}^1 PQ$ et on note $u \in L(E)$:

$$u: P \longmapsto 2XP' + (X^2 - 1)P''$$

Montrer que u est diagonalisable et que des vecteurs propres associés à des valeurs propres distinctes sont orthogonaux. Préciser ses éléments de réductions dans le cas n = 3.

Exercice 20 Soit $u_1, ..., u_p$ des endomorphismes symétriques de E euclidien, vérifiant $\sum_{i=1}^p rg(u_i) = \dim E$ et $\forall x \in E, \langle \sum_{i=1}^p u_i(x), x \rangle = 0$.

- 1. Montrer que $\sum_{i=1}^p u_i = id_E$ (observer que cet endomorphisme est symétrique...)
- 2. Montrer que $E = \bigoplus_{i=1}^{p} Im(u_i)$.
- 3. Montrer que u_i est le projecteur orthogonal sur $Im(u_i)$.

Exercice 21 Soit $A \in M_n(\mathbb{R})$ non nulle telle que $A^3 + 9A = 0$.

- 1. Etudier la diagonalisabilité de A sur \mathbb{R} puis sur \mathbb{C} .
- 2. Montrer que si *n* est impair alors *A* n'est pas inversible.
- 3. Montrer que *A* ne peut pas être symétrique.

Exercice 22 Déterminer les A dans $S_n(\mathbb{R})$ telles que $A^3 + 2A^2 + 6A + 5I_n = 0_n$.

Exercice 23 Soit (E, \langle, \rangle) un espace euclidien de dimension n > 0 et a un vecteur de norme 1. On pose pour x dans E:

$$f(x) = x + \langle a, x \rangle a$$

- 1. Montrer que f est un endomorphisme symétrique de E.
- 2. Déterminer $ker(f id_E)$ et sa dimension? En déduire une première valeur propre de f et sa multiplicité.
- 3. Calculer f(a), en déduire un second sev propre de f.
- 4. Donner le polynôme caractéristique puis la trace de f.

Exercice 24 Soit $A \in S_n^+(\mathbb{R})$, montrer qu'il existe $B \in M_n(\mathbb{R})$ telle que $A = {}^tBB$.

Exercice 25 Soit $u \in S(E)$ de valeurs propres $\lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$. Montrer que pour tout x de E on a :

$$\lambda_1 \|x\|^2 \le \langle x, u(x) \rangle \le \lambda_n \|x\|^2$$

Exercice 26 Ecrire la matrice dans la base canonique (i, j, k) de :

- 1. La symétrie orthogonale d'axe le plan d'équation x 2y + z = 0.
- 2. La rotation d'axe dirigé par i j + k et d'angle $\frac{\pi}{3}$.

Exercice 27 Soit $A \in M_n(\mathbb{R})$ et $M = {}^t AA$.

- 1. Montrer que M est symétrique de spectre inclus dans \mathbb{R}_+ .
- 2. Montrer que *A* et *M* ont même noyau, puis qu'elles ont même rang.
- 3. Montrer enfin que $\operatorname{Im}(M) = \operatorname{Im}({}^{t}A) = (\ker(A))^{\perp}$.