Técnicas

Digitais para Computação

Funções Booleanas

Aula 9

Álgebra Booleana de Chaveamento

Álgebras Booleanas

- variáveis, constantes
- valores de variáveis e constantes: conjunto discreto e finito
- operadores "+", ".", "complemento" definidos sobre as constantes
- elementos neutros para cada operador

Álgebra Booleana de Chaveamento

- valores 0 e 1
- operadores "+", ".", "complemento" definidos sobre 0 e 1

В	A + B
0	0
1	1
0	1
1	1
	0 1 0

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

A	$\overline{\mathbf{A}}$
0	1
1	0

Axiomas e Teoremas da Álgebra Booleana de Chaveamento

1.
$$X + 0 = X$$

3.
$$X + 1 = 1$$

5.
$$X + X = X$$

$$7. \quad X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

10.
$$X + Y = Y + X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

14.
$$X \cdot (Y + Z) = XY + XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

2.
$$X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$\mathbf{X} \cdot \overline{\mathbf{X}} = \mathbf{0}$$

11.
$$X Y = Y X$$

13.
$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X+Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Lei comutativa

Lei associativa

Lei distributiva

DeMorgan

Porta OR:

1.
$$X + 0 = X$$

5.
$$X + X = X$$

3. X + 1 = 1

7.
$$X + \overline{X} = 1$$

$$\frac{X}{X}$$
 $-$ 1

E1	E2	S
0	0	0
0	1	1
1	0	1
1	1	1

Porta AND:

2.
$$X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$\mathbf{X} \cdot \overline{\mathbf{X}} = \mathbf{0}$$

$$\frac{\mathbf{X}}{\mathbf{X}}$$

E1	E2	S
0	0	0
0	1	0
1	0	0
1	1	1

Porta NOT:

Lei Comutativa:

10.
$$X + Y = Y + X$$

11.
$$X Y = Y X$$

Expansão de Portas com Múltiplas Entradas:

CUIDADO!!!

Manipulações Algébricas

• Em qualquer um dos Axiomas e Teoremas, X pode ser substituído por uma expressão qualquer.

• Exemplo:

$$\mathbf{X} + \mathbf{1} = \mathbf{1}$$

X + 1 = 1 substituindo X por AB + C AB + C + 1 = 1

$$\mathbf{AB} + \mathbf{C} + \mathbf{1} = \mathbf{1}$$

- Lei distributiva $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$
- Ex. : (A + B) (A + CD)

aplicando lei distributiva ao contrário => A + BCD

Manipulações Algébricas

- Manipulação algébrica usando axiomas e teoremas => simplificação de circuitos
- Redução do número de termos e/ou de literais deve resultar num circuito com menos portas

• Exemplo anterior

$$\mathbf{F} = \overline{\mathbf{X}} \mathbf{Y} \mathbf{Z} + \overline{\mathbf{X}} \mathbf{Y} \overline{\mathbf{Z}} + \mathbf{X} \mathbf{Z}$$

(identidade 14) lei distributiva

$$F = \overline{X} Y (Z + \overline{Z}) + X Z$$

(identidade 7) complemento

$$F = \overline{X} Y \cdot 1 + X Z$$

(identidade 2) elemento identidade

$$\mathbf{F} = \overline{\mathbf{X}} \mathbf{Y} + \mathbf{X} \mathbf{Z}$$
2 termos
4 literais

4 portas

- 3 portas de 2 entradas
- 1 porta de 1 entrada

- Não existe nenhuma técnica especial para indicar qual manipulação algébrica deve ser aplicada para simplificar o circuito
 - método de tentativas
 - familiaridade com axiomas e teoremas

$$X + XY = X \cdot (1+Y) = X \cdot 1 = X$$

$$XY + XY = X \cdot (Y+Y) = X \cdot 1 = X$$

$$X + \overline{X}Y = (X + \overline{X}) \cdot (X + Y) = 1 \cdot (X + Y) = X + Y$$

Outros exemplos

$$X \cdot (X+Y) = X \cdot X + X \cdot Y = X + X \cdot Y = X \cdot (1+Y) = X \cdot 1 = X$$

$$(X+Y) \cdot (X+\overline{Y}) = X + Y \cdot \overline{Y} = X + 0 = X$$

$$X \cdot (\overline{X}+Y) = X \cdot \overline{X} + X \cdot Y = 0 + X \cdot Y = XY$$

• Note-se que estas 3 funções são as duais das anteriores

Teorema do Consenso

$$XY + \overline{X}Z + YZ = XY + \overline{X}Z$$

Demonstração: fazer AND do terceiro termo com $X + \overline{X} = 1$

$$XY + \overline{X}Z + YZ = XY + \overline{X}Z + YZ (X + \overline{X})$$

$$= XY + \overline{X}Z + XYZ + \overline{X}YZ$$

$$= XY + XYZ + \overline{X}Z + \overline{X}YZ$$

$$= XY + XYZ + \overline{X}Z + \overline{X}YZ$$

$$= XY(1 + Z) + \overline{X}Z(1 + Y)$$

$$= XY + \overline{X}Z$$

Aplicação numa simplificação

$$(A + B) (\overline{A} + C) = A\overline{A} + AC + \overline{A}B + BC$$
$$= AC + \overline{A}B + BC$$
$$= AC + \overline{A}B$$

redundante segundo o teorema do consenso

Cada ocorrência de variável

(complementada ou não)

Funções Booleanas e Circuitos Lógicos

- · Pode-se obter um circuito da seguinte maneira
 - cada termo é uma porta
 - cada literal é uma entrada para uma porta
 - portas adicionais : inversores na entrada composição dos termos (1 AND ou 1 OR)

O número de termos e literais dá uma medida aproximada da complexidade do circuito.

6 portas

- No exemplo:
- 3 termos 8 literais

• 3 portas de 3 entradas

literais

- 1 porta de 2 entradas
- 2 portas de 1 entrada

Teorema de DeMorgan:

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Usando o Teorema de DeMorgan ...

$$\bar{S} = \overline{X} (\overline{Y}\overline{Z} + YZ)$$

$$= \overline{X} + (\overline{Y}\overline{Z} + YZ)$$

$$= \overline{X} + (\overline{Y}\overline{Z} \cdot \overline{YZ})$$

$$= \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z})$$

Dica: sempre que possível e interessante a aplicação do Teorema de DeMorgan, troca-se a porta lógica de AND para OR, e vice-versa, invertendo-se os sinais de entrada e saída.

- 2 2-input NAND
- 2 2-input NOR
- 2 NOT

Usando o Teorema de DeMorgan ...

$$\bar{S} = \overline{X} (\overline{Y}\overline{Z} + YZ)$$

$$= \overline{X} + (\overline{Y}\overline{Z} + YZ)$$

$$= \overline{X} + (\overline{Y}\overline{Z} \cdot \overline{YZ})$$

$$= \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z})$$

Dica: sempre que possível e interessante a aplicação do Teorema de DeMorgan, troca-se a porta lógica de AND para OR, e vice-versa, invertendo-se os sinais de entrada e saída.

- 3 2-input NAND
- 1 2-input NOR
- 1 NOT

Combinação de Portas Lógicas

	S
0 0 0 0 0 1 1	0
$\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
0 1 0 1 1 0 0	1
$\left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
1 0 0 1 0 1 1	0
1 0 1 1 1 0 1	0
1 1 0 1 1 0 0	1
1 1 1 1 0 1 1	0

Formas de Onda (transição no tempo):

Combinação de Portas Lógicas

X	Y	Z	ABCDS
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	
			•

Formas de Onda (transição no tempo):

Avaliação de Funções Booleanas

• Construção de uma Tabela-Verdade

Exemplo: F (A,B)
4 combinações de valores de A,B
uma linha para cada combinação

A	В	F(A,B)
0	0	
0	1	
1	0	
1	1	

- Avaliação da função
 - substituir variáveis por 0 ou 1
 - avaliar AND, OR, complemento na ordem estabelecida
- Exemplo: DeMorgan

$$\overline{\mathbf{X} + \mathbf{Y}} = \overline{\mathbf{X}} \cdot \overline{\mathbf{Y}}$$

X	Y	X+Y	$\overline{X+Y}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

		X.Y
1	1	1
1	0	0
0	1	_ 0
0	9	0
	1	1 0

As 2 tabelas-verdade são idênticas, portanto a igualdade das funções é verdadeira

Complemento de uma função

a) Usando tabela-verdade trocar $0 \longleftrightarrow 1$

• exemplo: $F = X(\overline{Y}\overline{Z} + YZ)$

• construindo a tabela-verdade

X	Y	Z	YZ	YZ	$\overline{\mathbf{Y}}\overline{\mathbf{Z}} + \mathbf{Y}\mathbf{Z}$	\mathbf{F}	F
0	0	0	1	0	1	0	1
0	0 1	0	0	0	0	0	1
0	1 0	1 0	0	1	1	0	1
1	0	1	0	0	0	0	0 1
1	1	0 1	0	0 1	0 1	0 1	1 0

construção da função a partir da tabela-verdade

$$\overline{F} = \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + + \overline{X}YZ + XYZ$$

b) Usando DeMorgan

$$\bar{\mathbf{F}} = \overline{\mathbf{X}} (\overline{\mathbf{Y}} \overline{\mathbf{Z}} + \mathbf{Y} \mathbf{Z})$$

$$= \overline{\mathbf{X}} + (\overline{\mathbf{Y}} \overline{\mathbf{Z}} + \mathbf{Y} \mathbf{Z})$$

$$= \overline{\mathbf{X}} + (\overline{\mathbf{Y}} \overline{\mathbf{Z}} \cdot \overline{\mathbf{Y}} \mathbf{Z})$$

$$= \overline{\mathbf{X}} + (\mathbf{Y} + \mathbf{Z}) \cdot (\overline{\mathbf{Y}} + \overline{\mathbf{Z}})$$

$$= \overline{X} + Y\overline{Y} + Y\overline{Z} + \overline{Y}Z + Z\overline{Z}$$
$$= \overline{X} + Y\overline{Z} + \overline{Y}Z$$

c) Tomar dual da função e complementar cada literal

$$\mathbf{F} = \mathbf{X}(\overline{\mathbf{Y}}.\overline{\mathbf{Z}} + \mathbf{Y}.\mathbf{Z})$$

$$\mathbf{F'} = \mathbf{X} + (\overline{\mathbf{Y}} + \overline{\mathbf{Z}}) (\mathbf{Y} + \mathbf{Z})$$

$$\overline{F} = \overline{X} + (Y + Z).(\overline{Y} + \overline{Z})$$

$$= \overline{X} + Y\overline{Y} + Y\overline{Z} + YZ + Z\overline{Z}$$

$$= \overline{X} + Y\overline{Z} + \overline{Y}Z$$

X	Y	Z	X	ΥZ	YZ	F
0	0	0	1	0	0	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	0	0	1
1	0	0	0	0	0	0
1	0	1	0	0	1	1
1	1	0	0	1	0	1
1	1	1	0	0	0	0