Chapter 2 Determinants and Matrices

solutions by Hikari

July 2021

2.1 Determinants

2.1.1 (a)
$$1 \times (-1 \times 1) = -1$$

(b) $1 \times (1 \times 1 - 2 \times 3) - 2 \times (3 \times 1 - 2 \times 0) = -11$
(c) $\frac{1}{\sqrt{2}}(-\sqrt{3}) \times \sqrt{3} \times (-\sqrt{3} \times \sqrt{3}) = \frac{9}{\sqrt{2}}$

2.1.2 $\begin{vmatrix} 1 & 3 & 3 \\ 1 & -1 & 1 \\ 2 & 1 & 3 \end{vmatrix} = 2$, So the homogeneous linear independent equations have no nontrivial solutions.

2.1.3 (a)
$$\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 0$$
 (b) $\begin{vmatrix} 3 & 2 \\ 6 & 4 \end{vmatrix} = 0$ (c) (1, 1), (2, 2)

2.1.4 (a) $|A| = \sum_{ij...} \varepsilon_{ij...} a_{1i} a_{2j} \cdots$, which is the sum of all products formed by choosing one entry in each row that they are all in different columns (call it a valid combination), multiplying them together, and multiplying +1 or -1 depending on the parity of permutation $c_1c_2\cdots$, where c_i is the column of the entry chosen in row i. $a_{ji}C_{ji}=a_{ji}M_{ji}(-1)^{j+i}$, is the sum of all products of valid combinations in M_{ji} , multiplying a_{j+i} , multiplying $(-1)^{j+i}$. If it takes n steps for a permutation in M_{ji} to return to reference order, then it will take n+|j-i| steps for the permutation appended a_{ji} to return to reference order, so $a_{ij}M_{ij}(-1)^{|j-i|}=a_{ij}M_{ij}(-1)^{j+i}$ will contribute to the sum of products of valid combinations in A that contains a_{ji} , so $\sum_i a_{ji}C_{ji}$ contains all products of valid combinations, and is therefore equal to |A|.

Example:

(b) If A' is the matrix whose k^{th} column is the j^{th} column of A and all the other columns is the same with A, then $\sum_i a_{ij} C_{ik} = \sum_i a'_{ik} C'_{ik}$ is the determinant of A', but A' has two equal rows (j^{th} and k^{th} rows), so it equals to zero.

2.1.5 (a) $\det(H_1) = 1$, $\det(H_2) = 8.3333 \times 10^{-2}$, $\det(H_3) = 4.62963 \times 10^{-4}$ (b) for $det(H_4)$:

Subtract the last row from each row above it:

$$\begin{vmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{vmatrix} = \begin{vmatrix} \frac{3}{(1)(4)} & \frac{3}{(2)(5)} & \frac{3}{(3)(6)} & \frac{3}{(4)(7)} \\ \frac{2}{(2)(4)} & \frac{2}{(3)(5)} & \frac{2}{(4)(6)} & \frac{2}{(5)(7)} \\ \frac{1}{(3)(4)} & \frac{1}{(4)(5)} & \frac{1}{(5)(6)} & \frac{1}{(6)(7)} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{vmatrix} = \frac{(1)(2)(3)}{(4)(5)(6)(7)} \begin{vmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ 1 & 1 & 1 & 1 \end{vmatrix} = \frac{(3!)^2}{7!} \begin{vmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

Subtract the last column from each column precedes it:

$$\frac{(3!)^2}{7!} \begin{vmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ 1 & 1 & 1 & 1 \end{vmatrix} = \frac{(3!)^2}{7!} \begin{vmatrix} \frac{3}{(1)(4)} & \frac{2}{(2)(4)} & \frac{1}{(3)(4)} & \frac{1}{4} \\ \frac{3}{(2)(5)} & \frac{2}{(3)(5)} & \frac{1}{(4)(5)} & \frac{1}{5} \\ \frac{3}{(3)(6)} & \frac{2}{(4)(6)} & \frac{1}{(5)(6)} & \frac{1}{6} \\ 0 & 0 & 0 & 1 \end{vmatrix} = \frac{(3!)^2}{7!} \frac{(3!)^2}{6!} \begin{vmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ 0 & 0 & 0 & 1 \end{vmatrix} = \frac{(3!)^4}{(7!)(6!)} \det(H_3)$$

By this procedure, we found that

$$\det(H_n) = \frac{(n-1)!^4}{(2n-1)!(2n-1)!} \det(H_{n-1})$$

So $\det(H_4) = \frac{3!^4}{7!6!} \det(H_3) = 1.65344 \times 10^{-7}, \ \det(H_5) = \frac{4!^4}{9!8!} \det(H_4) = 3.74930 \times 10^{-12}, \ \det(H_6) = 1.65344 \times 10^{-12}$ $\frac{5!^4}{11!10!} = 5.36730 \times 10^{-18}$

- 2.1.6 Linear dependence implies one row (or column) can be expressed by linear combination of other rows (columns), so $A_{ni} = a_1 A_{1i} + a_2 A_{2i} + \cdots$. Add $-a_j$ times the j^{th} row to the n^{th} row, then the determinant remains the same, but all entries in the n^{th} row becomes 0, so the determinant equals to
- **2.1.7** By Gauss's elimination, $x_1 = 1.88282$, $x_2 = -0.36179$, -0.96889, 0.44221, 0.41022, 0.39219
- **2.1.8** (a) $\sum_{i} \delta_{ii} = \delta_{11} + \delta_{22} + \delta_{33} = 3$ (b) $\sum_{ij} \delta_{ij} \varepsilon_{ijk} = \sum_{i} \delta_{ii} \varepsilon_{iik} = 0$ (c) If $i \neq j$, then at least two of 1, j, p, q is the same, and $\varepsilon_{ipq} \varepsilon_{jpq} = 0$. If i = j = 1, then $\sum_{pq} \varepsilon_{ipq} \varepsilon_{jpq} = \varepsilon_{123} \varepsilon_{123} + \varepsilon_{132} \varepsilon_{132} = 2$, and the case is similar when i = j = 2 and i = j = 3. Therefore, $\sum_{pq} \varepsilon_{ipq} \varepsilon_{jpq} = 2\delta_{ij}$

 $(d)\sum_{ijk} \varepsilon_{ijk} \varepsilon_{ijk} = (-1)^2 \times 6 = 6$

2.1.9 The only case that $\varepsilon_{ijk}\varepsilon_{pqk}\neq 0$ is: k is one of (1,2,3) and (i,j),(p,q) are the other two of (1,2,3), respectively. So i=p, j=q or i=q, j=p. For the former case, $\varepsilon_{ijk}\varepsilon_{pqk}=(\pm 1)^2=1=\delta_{ip}\delta_{jq}$, and for the latter case, $\varepsilon_{ijk}\varepsilon_{pqk} = (1)(-1) = -1 = -\delta_{iq}\delta_{jp}$. Therefore, $\sum_{k}\varepsilon_{ijk}\varepsilon_{pqk} = \delta_{ip}\delta_{jq} - \delta_{iq}\delta_{jp}$

2.2 Matrices

2.2.1

$$((AB)C)_{il} = \sum_{m} (AB)_{im} C_{ml} = \sum_{m} \sum_{k} A_{ik} B_{km} C_{ml} = \sum_{k} \sum_{m} A_{ik} B_{km} C_{ml} = \sum_{k} A_{ik} (BC)_{kl} = (A(BC))_{il}$$

2.2.2 If
$$(A+B)(A-B) = A^2 - B^2$$
, then $A^2 + BA - AB - B^2 = A^2 - B^2$, so $AB - BA = [A, B] = 0$. If $[A, B] = 0$, then $(A+B)(A-B) = A^2 - B^2 - (AB - BA) = A^2 - B^2$

2.2.3 (a)

$$(a+ib)+(c+id)\longleftrightarrow \begin{pmatrix} a & b\\ -b & a \end{pmatrix} + \begin{pmatrix} c & d\\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d\\ -(b+d) & a+c \end{pmatrix} \longleftrightarrow (a+c)+i(b+d)$$

$$(a+ib)(c+id)\longleftrightarrow \begin{pmatrix} a & b\\ -b & a \end{pmatrix} \begin{pmatrix} c & d\\ -d & c \end{pmatrix} = \begin{pmatrix} ac-bd & ad+bc\\ -(ad+bc) & ac-bd \end{pmatrix} \longleftrightarrow (ac-bd)+i(ad+bc)$$
(b)
$$(a+ib)^{-1} = \frac{1}{a^2+b^2}(a-ib)\longleftrightarrow \frac{1}{a^2+b^2}\begin{pmatrix} a & -b\\ b & a \end{pmatrix}$$

2.2.4 Multiply each row of A by -1 will turn A into -A, so $\det(-A) = (-1)^n \det(A)$.

2.2.5 (a) If
$$A^2 = 0$$
 and $A = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$

$$A^2 = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} = 0$$

Then $x^2+yz=0$, $t^2+yz=0$, y(x+t)=0, z(x+t)=0. Let $y=b^2$, $z=-a^2$, then $x=\pm ab$, $t=\pm ab$. Without less of generality let x=ab because the sign of a and b is arbitrary. If $y\neq 0$, then t=-x=-ab; if y=0, then t=x=ab=0 so t=-ab. Therefore, in all cases we can find a,b such that $\begin{pmatrix} x&y\\z&t \end{pmatrix}=\begin{pmatrix} ab&b^2\\-a^2&-ab \end{pmatrix}$

(b) Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, then $\det C = \det \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$ but $\det A + \det B = 1 + 1 = 2$

2.2.6
$$K = \begin{pmatrix} 0 & 0 & i \\ -i & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, K^2 = \begin{pmatrix} 0 & -i & 0 \\ 0 & 0 & 1 \\ i & 0 & 0 \end{pmatrix}, K^3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = -I, K^4 = -K, K^5 = -K^2, K^6 = I.$$
 So if $n = 6k$, k is positive integer, then $K^n = I$

2.2.7

$$[A,[B,C]] = [A,BC-CB] = (ABC-ACB) - (BCA-CBA) = ABC-ACB-BCA+CBA$$

$$[B,[A,C]] - [C,[B,A]] = [B,AC-CA] - [C,AB-BA]$$

$$= (BAC-BCA) - (ACB-CAB) - [(CAB-CBA) - (ABC-BAC)] = ABC-ACB-BCA+CBA$$
 So $[A,[B,C]] = [B,[A,C]] - [C,[B,A]]$

- **2.2.8** Use the definition of commutator and carry out the corresponding matrix multiplication, then all the three relations are trivially satisfied.
- 2.2.9 Carry out the corresponding matrix multiplication, then all the relations are trivially satisfied.
- **2.2.10** If A and B are upper right triangular matrices, then $A_{ij} = 0$ when j < i, $B_{ij} = 0$ when j < i. $A_{ij} = \sum_{k} A_{ik} B_{kj}$, when j < i: if k > j, then $B_{kj} = 0$, if $k \le j$, then k < i and $A_{ik} = 0$. So in all case $A_{ik} B_{ij} = \sum_{k} A_{ik} B_{kj} = 0$ when j < i, so $A_{ij} B_{ij} = \sum_{k} A_{ik} B_{kj} = 0$ when i < i, so $i \in A_{ij} B_{ij} = 0$.
- **2.2.11** (a)(b) By matrix multiplication the relations hold trivially.
- (c) When i = j, $\sigma_i \sigma_j + \sigma_j \sigma_i = 2(\sigma_i)^2 = 2I_2 = 2\delta_{ij}I_2$. When $i \neq j$: by (a) we know the inverse matrix of σ_i is itself, and by (b) we have $\sigma_i \sigma_j = i\sigma_k$, so $(\sigma_i \sigma_j)^{-1} = \sigma_j^{-1} \sigma_i^{-1} = \sigma_j \sigma_i = (i\sigma_k)^{-1} = -i\sigma_k$, so $\sigma_i \sigma_j + \sigma_j \sigma_i = i\sigma_k i\sigma_k = 0 = 2\delta_{ij}I_2$. So $\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{ij}I_2$ holds for all cases.
- **2.2.12** (a)(b) By definition of commutator and matrix multiplication, the relations can be easily verified.

(c)
$$[M^2, M_i] = 2IM_i - M_i 2I = 0$$
; $[M_z, L^+] = [M_z, M_x] + i[M_z, M_y] = iM_y + i(-i)M_x = M_x + iM_y$; $[L^+, L^-] = [M_x + iM_y, M_x - iM_y] = i[M_y, M_x] - i[M_x, M_y] = 2M_z$

- **2.2.13** It is similar with Exercise 2.2.12.
- **2.2.14** If the i^{th} diagonal entries of A is a_i , then $(AB)_{ij} = a_i B_{ij}$, and $(BA)_{ij} = B_{ij} a_j$. So if $i \neq j$, then by $a_i B_{ij} = a_j B_{ij}$ and $a_i \neq a_j$, we have $B_{ij} = 0$, which means B is a diagonal matrix.
- **2.2.15** $(AB)_{ij} = \sum_k A_{ik} B_{kj} = \sum_k a_i \delta_{ik} b_j \delta_{kj} = a_i b_j \delta_{ij} = a_i b_i \delta_{ij}.$ $(BA)_{ij} = \sum_k B_{ik} A_{kj} = \sum_k b_i \delta_{ik} a_j \delta_{kj} = a_j b_i \delta_{ij}$. So $(AB)_{ij} = (BA)_{ij}$, and A and B commute.
- **2.2.16** For any two matrices X, Y we have $\operatorname{trace}(XY) = \operatorname{trace}(YX)$. If A, B commute, $\operatorname{trace}(ABC) =$ $\operatorname{trace}(BAC) = \operatorname{trace}(CBA)$; if B, C commute, $\operatorname{trace}(ABC) = \operatorname{trace}(ACB) = \operatorname{trace}(CBA)$; if A, C commute, trace(ABC) = trace(CAB) = trace(ACB) = trace(CBA).
- $\mathbf{2.2.17} \quad \operatorname{trace}([M_j, M_k]) = \operatorname{trace}(M_j M_k M_k M_j) = \operatorname{trace}(M_j M_k) \operatorname{trace}(M_k M_j) = 0 = \operatorname{trace}(i M_l) = 0$ $itrace(M_l)$, so $trace(M_l) = 0$, and so as M_j and M_k because the commutation relation is cyclic.
- **2.2.18** $\operatorname{trace}(A) = \operatorname{trace}(ABB) = \operatorname{trace}(BAB) = \operatorname{trace}(-ABB) = \operatorname{trace}(-A) = -\operatorname{trace}(A)$, so $\operatorname{trace}(A) = \operatorname{trace}(A) = \operatorname{trac$ 0. The same is for trace(B).
- **2.2.19** (a) If AB = -BA and both are non-singular (so the matrix inverses exist): trace(A) = $\operatorname{trace}(ABB^{-1}) = \operatorname{trace}(B^{-1}AB) = \operatorname{trace}(-B^{-1}BA) = \operatorname{trace}(-A) = -\operatorname{trace}(A), \text{ so } \operatorname{trace}(A) = 0.$ The same is for trace(B).
- (b) A, B being non-singular means $\det(A), \det(B) \neq 0$. Suppose they are anti-commuting and n is odd, then $\det(A)\det(B) = \det(AB) = \det(-BA) = \det(-B)\det(A) = (-1)^n\det(B)\det(A) =$ $-\det(A)\det(B)$, so $\det(A)\det(B)=0$. So either $\det(A)$ or $\det(B)$ equals to zero, contradicting to $\det(A), \det(B) \neq 0.$
- **2.2.20** $(A^{-1}A)_{ik} = \sum_{j} (A^{-1})_{ij} A_{jk} = \sum_{j} \frac{(-1)^{i+j} M_{ji}}{\det(A)} A_{jk} = \frac{1}{\det(A)} \sum_{j} (-1)^{i+j} M_{ji} A_{jk}$. If i = k, notice that $\det(A) = \det(A^T) = \sum_{j} (-1)^{i+j} M_{ji} A_{ji}$, so $(A^{-1}A)_{ik} = \frac{\det(A)}{\det(A)} = 1$; if $i \neq k$, then $(A^{-1}A)_{ik} = \frac{1}{\det(A)} \sum_{j} (-1)^{i+j} M_{ji} A_{jk} = \frac{1}{\det(A)} A_{jk} C_{ji} = 0$ by Exercise 2.1.4(b) (it is obvious by noticing that $\sum_{j} (-1)^{i+j} M_{ji} A_{jk}$ is the determinant of A whose k^{th} column is replaced by j^{th} column, and the determinant of $A^{th} = A^{th} A_{jk} C_{jk}$. minant of matrix with two same column is zero). Therefore, $(A^{-1}A)_{ik} = \delta_{ik}$, so $A^{-1}A = I$.
- **2.2.21** (a) The unit matrix with M_{ii} replaced by k.
 - (b) The unit matrix with M_{im} replaced by -K.
 - (c) The unit matrix with M_{ii} , M_{mm} replaced by 0 and M_{im} , M_{mi} replaced by 1.
- **2.2.22** (a) The unit matrix with M_{ii} replaced by k.
 - (b) The unit matrix with M_{mi} replaced by -k.
 - (c) The unit matrix with M_{ii}, M_{mm} replaced by 0 and M_{im}, M_{mi} replaced by 1.
- By Gauss-Jordan matrix inversion, $A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & \frac{11}{7} & -\frac{1}{7} \\ 0 & -\frac{1}{7} & \frac{2}{7} \end{pmatrix}$
- **2.2.24** (a) $\sum_{i=1}^{n} T_{ij}$ is the sum of fraction of population of jth area having moved to other(including j) areas, so the sum add up to 1. (b) $\sum_{i=1}^{n} Q_i = \sum_{i=1}^{n} (TP)_i = \sum_{i=1}^{n} \sum_{j=1}^{n} T_{ij} P_j = \sum_{j=1}^{n} (\sum_{i=1}^{n} T_{ij}) P_j = \sum_{j=1}^{n} P_j = 1$

4

(b)
$$\sum_{i=1}^{n} Q_i = \sum_{i=1}^{n} (TP)_i = \sum_{i=1}^{n} \sum_{j=1}^{n} T_{ij} P_j = \sum_{j=1}^{n} (\sum_{i=1}^{n} T_{ij}) P_j = \sum_{j=1}^{n} P_j = 1$$

2.2.25

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \frac{1}{32} \\ \frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} \\ \frac{1}{4} & \frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & \frac{1}{32} \\ 0 & \frac{3}{4} & \frac{3}{8} & \frac{3}{16} & \frac{3}{32} & \frac{3}{64} \\ 0 & 0 & \frac{3}{4} & \frac{3}{8} & \frac{3}{16} & \frac{3}{32} \\ 0 & 0 & 0 & \frac{3}{4} & \frac{3}{8} & \frac{3}{16} \\ 0 & 0 & 0 & 0 & \frac{3}{4} & \frac{3}{8} & \frac{3}{16} \\ 0 & 0 & 0 & 0 & \frac{3}{4} & \frac{3}{8} & \frac{3}{16} \\ 0 & 0 & 0 & 0 & \frac{3}{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 \end{pmatrix}$$

$$\begin{pmatrix} \frac{3}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{3}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{3}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{3}{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{3}{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & \frac{5}{4} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & \frac{5}{4} & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & \frac{5}{4} & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{5}{4} & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & \frac{3}{4} & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -\frac{2}{3} & \frac{5}{3} & -\frac{2}{3} & 0 & 0 \\ 0 & 0 & -\frac{2}{3} & \frac{5}{3} & -\frac{2}{3} & 0 & 0 \\ 0 & 0 & 0 & -\frac{2}{3} & \frac{5}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & 0 & -\frac{2}{3} & \frac{5}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & 0 & -\frac{2}{3} & \frac{5}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 & -\frac{2}{3} & \frac{5}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 & -\frac{2}{3} & \frac{5}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 & -\frac{2}{3} & \frac{5}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 & -\frac{2}{3} & \frac{5}{3} & -\frac{2}{3}$$

2.2.26 If A, B are orthogonal, $AA^T = I$ and $BB^T = I$, then $(AB)(AB)^T = ABB^TA^T = AA^T = I$, so AB is also orthogonal.

2.2.27
$$\det(AA^T) = \det(A)\det(A^T) = (\det(A))^2 = \det(I) = 1$$
, so $\det(A) = \pm 1$

2.2.28 If $A = A^T$ and $B = -B^T$, then $\operatorname{trace}(AB) = \operatorname{trace}(BA) = \operatorname{trace}(-B^TA^T) = \operatorname{trace}(-(AB)^T) = -\operatorname{trace}(AB)$, so $\operatorname{trace}(AB) = 0$.

2.2.29
$$AA^T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, so $a^2 + b^2 = 1$, $c^2 + d^2 = 1$, $ac + bd = 0$. Let $\theta = \tan^{-1} \frac{b}{a}$, then $a = \cos \theta$, $b = \sin \theta$, $\frac{c}{d} = -\tan \theta$, $c = -\sin \theta$, $d = \cos \theta$. So the most general form is $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.

2.2.30
$$\det(A^*) = \sum_{ij...} \varepsilon_{ij...} a_{1i}^* a_{2j}^* \cdots = (\sum_{ij...} \varepsilon_{ij...} a_{1i} a_{2j} \cdots)^* = (\det A)^* \det(A^*) = \det((A^*)^T) = A^{\dagger}$$

2.2.31 If two of the matrices are real, then their commutator is real, so i multiply the third matrix must be real, so the third matrix must be pure imaginary.

- **2.2.32** $(AB)^{\dagger} = ((AB)^T)^* = (B^T A^T)^* = ((B)^T)^* ((A)^T)^* = B^{\dagger} A^{\dagger}$
- **2.2.33** $S_{ij}^{\dagger} = S_{ji}^*$, so trace $(S^{\dagger}S) = \sum_i (S^{\dagger}S)_{ii} = \sum_i \sum_j S_{ij}^{\dagger}S_{ji} = \sum_i \sum_j |S_{ji}|^2 > 0$ when S is not null matrix.
- **2.2.34** $A^{\dagger} = A$, $B^{\dagger} = B$. $(AB + BA)^{\dagger} = B^{\dagger}A^{\dagger} + A^{\dagger}B^{\dagger} = BA + AB = AB + BA$; $[i(AB BA)]^{\dagger} = -i(B^{\dagger}A^{\dagger} A^{\dagger}B^{\dagger}) = -i(BA AB) = i(AB BA)$. So both (AB BA) and i(AB BA) are Hermitian.
- **2.2.35** $(C+C^{\dagger})^{\dagger}=C^{\dagger}+C=C+C^{\dagger}; [i(C-C^{\dagger})]^{\dagger}=-i(C^{\dagger}-C)=i(C-C^{\dagger}).$ So both matrices are Hermitian,
- **2.2.36** C = -i(AB BA), $C^{\dagger} = i(B^{\dagger}A^{\dagger} A^{\dagger}B^{\dagger}) = i(BA AB) = -i(AB BA) = C$ so C is Hermitian.
- **2.2.37** If AB = BA, then $(AB)^{\dagger} = B^{\dagger}A^{\dagger} = BA = AB$ so AB is Hermitian; if AB is Hermitian, then $AB = (AB)^{\dagger} = B^{\dagger}A^{\dagger} = BA$. Therefore, AB = BA is a necessary and sufficient condition for AB to be Hermitian.
- **2.2.38** $UU^{\dagger} = I, U^{\dagger} = U^{-1}, U = (U^{-1})^{\dagger}, U^{-1}U = I = U^{-1}(U^{-1})^{\dagger}, \text{ so } U^{-1} \text{ is unitary.}$
- **2.2.39** It is obvious that $(A \otimes B)^T = A^T \otimes B^T$, so $(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$. If A and B are unitary, then $(A \otimes B)(A \otimes B)^{\dagger} = (A \otimes B)(A^{\dagger} \otimes B^{\dagger}) = (AA^{\dagger} \otimes BB^{\dagger}) = I_1 \otimes I_2 = I$
- **2.2.40** $\boldsymbol{\sigma} \cdot \mathbf{p} = \sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3 = \begin{pmatrix} 0 & p_1 \\ p_1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -ip_2 \\ ip_2 & 0 \end{pmatrix} + \begin{pmatrix} p_3 & 0 \\ 0 & -p_3 \end{pmatrix} = \begin{pmatrix} p_3 & p_1 ip_2 \\ p_1 + ip_2 & -p_3 \end{pmatrix},$ so $(\boldsymbol{\sigma} \cdot \mathbf{p})^2 = \begin{pmatrix} p_3 & p_1 ip_2 \\ p_1 + ip_2 & -p_3 \end{pmatrix} \begin{pmatrix} p_3 & p_1 ip_2 \\ p_1 + ip_2 & -p_3 \end{pmatrix} = \begin{pmatrix} \mathbf{p}^2 & 0 \\ 0 & \mathbf{p}^2 \end{pmatrix} = \mathbf{p}^2 \mathbf{1}_2$
- **2.2.41** $(\gamma^0)^2 = (\sigma_3)^2 \otimes (1_2)^2 = 1_2 \otimes 1_2 = 1_4$. $(\gamma^i)^2 = \gamma^2 \otimes (\sigma_i)^2 = (-1_2) \otimes 1_2 = -1_4$. When $\mu \neq 0$, $\gamma^{\mu}\gamma^i + \gamma^i\gamma^{\mu} = \gamma^2 \otimes (\sigma_{\mu}\sigma_i) + \gamma^2 \otimes (\sigma_i\sigma_{\mu}) = \gamma^2 \otimes (\sigma_{\mu}\sigma_i + \sigma_i\sigma_{\mu}) = \gamma^2 \otimes 0 = 0$; when $\mu = 0$, $\gamma^0\gamma^i + \gamma^i\gamma^0 = (\sigma_3\gamma) \otimes (\sigma_i) + (\gamma\sigma_3) \otimes (\sigma_i) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes (\sigma_i) + \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \otimes (\sigma_i) = 0$
- **2.2.42** $\gamma^5 \gamma^\mu = i \gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^\mu$. Switch γ^μ with γ^i left to it: if $i = \mu$, it won't cange; if $i \neq \mu$, it will be multiplied (-1) by the anti-commuting properties. So after switching four times to move γ^μ to the left-most side, three (-1) have been multiplied, so $\gamma^5 \gamma^\mu = -i \gamma^\mu \gamma^0 \gamma^1 \gamma^2 \gamma^3 = -\gamma^\mu \gamma^5$, so γ^5 anti-commutes with all four γ^μ .
- **2.2.43** $(\gamma_{\mu} = \sum_{\nu} g_{\nu\mu} \gamma^{\mu} = \text{should be } \gamma_{\nu} = \sum_{\nu} g_{\nu\mu} \gamma^{\mu}) \gamma_{0} = \gamma^{0} \text{ and } \gamma_{i} = -\gamma^{i}, i = 1, 2, 3.$ Along with $(\gamma^{0})^{2} = 1$ and $(\gamma^{i})^{2} = -1$, we have $\gamma_{\mu} \gamma^{\mu} = 1$, $\mu = 0, 1, 2, 3$.
- (a) If $\mu = \alpha$, $\gamma_{\mu}\gamma^{\alpha}\gamma^{\mu} = \gamma_{\mu}\gamma^{\mu}\gamma^{\alpha} = \gamma^{\alpha}$; if $\mu \neq \alpha$, $\gamma_{\mu}\gamma^{\alpha}\gamma^{\mu} = -\gamma_{\mu}\gamma^{\mu}\gamma^{\alpha} = -\gamma^{\alpha}$. So $\sum \gamma_{\mu}\gamma^{\alpha}\gamma^{\mu} = (1-3)\gamma^{\alpha} = -2\gamma^{\alpha}$
- (b) If $\alpha=\beta$, $\gamma_{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\mu}=\gamma^{\alpha}\gamma^{\beta}=(\gamma^{\alpha})^{2}=g^{\alpha\alpha}=g^{\alpha\beta}$ for all $\mu=0,1,2,3$, so $\sum \gamma_{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\mu}=4g^{\alpha\beta}$. If $\alpha\neq\beta$, for $\mu=\alpha$ or $\mu=\beta$, $\gamma_{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\mu}=-\gamma^{\alpha}\gamma^{\beta}$, and for $\mu\neq\alpha$ and $\mu\neq\beta$, $\gamma_{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\mu}=\gamma^{\alpha}\gamma^{\beta}$, so $\sum \gamma_{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\mu}=(-2+2)\gamma^{\alpha}\gamma^{\beta}=0=g^{\alpha\beta}$. So $\sum \gamma_{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\mu}=4g^{\alpha\beta}$.
- (c) If α, β, ν are different with each other, then $\sum \gamma_{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\nu} \gamma^{\mu} = (3-1)\gamma^{\alpha} \gamma^{\beta} \gamma^{\nu} = 2(-1)^{3} \gamma^{\nu} \gamma^{\beta} \gamma^{\alpha} = -2\gamma^{\nu} \gamma^{\beta} \gamma^{\alpha}$. If only two of α, β, ν are the same, then $\sum \gamma_{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\nu} \gamma^{\mu} = (-3+1)\gamma^{\alpha} \gamma^{\beta} \gamma^{\nu} = -2(1)(-1)^{2} \gamma^{\nu} \gamma^{\beta} \gamma^{\alpha} = -2\gamma^{\nu} \gamma^{\beta} \gamma^{\alpha}$. If α, β, ν are all the same, then $\sum \gamma_{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\nu} \gamma^{\mu} = (-3+1)\gamma^{\alpha} \gamma^{\beta} \gamma^{\nu} = -2\gamma^{\nu} \gamma^{\beta} \gamma^{\alpha}$. Therefore, in all cases, $\sum \gamma_{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\nu} \gamma^{\mu} = -2\gamma^{\nu} \gamma^{\beta} \gamma^{\alpha}$.
- **2.2.44** $(\gamma^5)^2 = -\gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^0 \gamma^1 \gamma^2 \gamma^3 = -(-1)^{3+2+1} (\gamma^0)^2 (\gamma^1)^2 (\gamma^2)^2 (\gamma^3)^2 = 1$, so $M^2 = \frac{1}{4} (1 + 2\gamma^5 + (\gamma^5)^2) = \frac{1}{4} (2 + 2\gamma^5) = \frac{1}{2} (1 + \gamma^5) = M$.

- **2.2.45** By evaluation, we can found that the 16 Dirac matrices is equal to $(i)^n \sigma_i \otimes \sigma_j$, i, j = 0, 1, 2, 3with each Dirac matrix having different (i, j), if we let $\sigma_0 = 1_2$, n depend on i, j. Then the problem is equivalent to prove that the 16 $\sigma_i \otimes \sigma_j$ form a linearly independent set. If $a, b \neq 0$ and $(i,j) \neq (k,l)$, then $a\sigma_i \otimes \sigma_j + b\sigma_k \otimes \sigma_l \neq 0$ because the four σ_μ form a linearly independent set. So the 16 $\sigma_i \otimes \sigma_j$ form a linearly independent set, and the 16 Dirac matrices form a linearly independent set
- **2.2.46** (The 16 Dirac matrices is defined as $E_{ij} = \sigma_i \otimes \sigma_j$, i, j = 0, 1, 2, 3, where $\sigma_0 = I_2$) For $(i,j) \neq (0,0)$, $\operatorname{trace}(E_{ij}) = \operatorname{trace}(\sigma_i)(\sigma_j) = 0$ because $\operatorname{trace}(\sigma_k) = 0$ when k = 1,2,3. So $\operatorname{trace}(E_{ij}E_{mn}) \neq 0$ only when $(\sigma_i \otimes \sigma_j)(\sigma_m \otimes \sigma_n) = \sigma_0 \otimes \sigma_0$, that is, i = m and j = n. Let $c_i = c_{mn}$, $\Gamma_i = E_{mn}$, $\sum_{i=1}^{16} c_i \Gamma_i = \sum_{i,j=0}^{3} c_{ij} E_{ij}$, then $\operatorname{trace}(A\Gamma_i) = \operatorname{trace}(\sum_{i,j=0}^{3} c_{ij} E_{ij} E_{mn}) = c_{mn}\operatorname{trace}(E_{mn}E_{mn}) = c_{mn}\operatorname{trace}(I_4) = 4c_{mn} = 4c_i$, so $c_i = \frac{1}{4}\operatorname{trace}(A\Gamma_i)$.
- $\begin{array}{l} \textbf{2.2.47} \quad \text{Note that} \ \ (\gamma^0)^T = \gamma^0, \ \ (\gamma^1)^T = -\gamma^1, \ \ (\gamma^2)^T = \gamma^2, \ \ (\gamma^3)^T = -\gamma^3. \ \ C^{-1} = -i(\gamma^0)^{-1}(\gamma^2)^{-1} = i\gamma^0\gamma^2, \ \text{so} \ \ C\gamma^\mu C^{-1} = -\gamma^2\gamma^0\gamma^\mu\gamma^0\gamma^2. \ \ \text{If} \ \mu = 0 \ \text{or} \ \ 2, \ \ -\gamma^2\gamma^0\gamma^\mu\gamma^0\gamma^2 = -(-1)(1)(-1)\gamma^\mu = -\gamma^\mu = -(\gamma^\mu)^T; \ \ \text{If} \ \mu = 1 \ \text{or} \ \ 3, \ \ -\gamma^2\gamma^0\gamma^\mu\gamma^0\gamma^2 = -(-1)^2(1)(-1)\gamma^\mu = \gamma^\mu = -(\gamma^\mu)^T. \ \ \text{So in all cases} \ \ C\gamma^\mu C^{-1} = -(\gamma^\mu)^T. \end{array}$
- **2.2.48** (a)

$$\gamma^{0}mc^{2} = mc^{2}\sigma_{3} \otimes I_{2} = \begin{pmatrix} mc^{2} & 0\\ 0 & -mc^{2} \end{pmatrix}$$

$$c(\alpha_{1}p_{1} + \alpha_{2}p_{2} + \alpha_{3}p_{3}) = c\gamma^{0}(\gamma^{1}p_{1} + \gamma^{2}p_{2} + \gamma^{3}p_{3}) = c(\sigma_{3} \otimes I_{2})(\gamma \otimes \sigma_{1}p_{1} + \gamma \otimes \sigma_{2}p_{2} + \gamma \otimes \sigma_{3}p_{3})$$

$$= c\sigma_{1} \otimes (\sigma_{1}p_{1} + \sigma_{2}p_{2} + \sigma_{3}p_{3}) = \begin{pmatrix} 0 & c(\sigma_{1}p_{1} + \sigma_{2}p_{2} + \sigma_{3}p_{3}) \\ \sigma_{1}p_{1} + \sigma_{2}p_{2} + \sigma_{3}p_{3} & 0 \end{pmatrix}$$

$$-EI_{4} = -EI_{2} \otimes I_{2} = \begin{pmatrix} -E & 0 \\ 0 & -E \end{pmatrix}$$

$$\psi = \begin{pmatrix} \psi_{L} \\ \psi_{S} \end{pmatrix}$$

So
$$\left[\gamma^0 mc^2 + c(\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3) - E\right]\psi = 0$$
 becomes
$$\begin{pmatrix} mc^2 - E & c(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3) \\ c(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3) & -mc^2 - E \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_S \end{pmatrix} = 0$$

(b) By the indicated approximation, the equation becom

$$\begin{pmatrix} -\varepsilon & c(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3) \\ c(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3) & -2mc^2 \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_S \end{pmatrix} = 0$$

It can be separated to $\varepsilon \psi_L = c(\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3) \psi_S$ and $c(\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3) \psi_L = 2mc^2 \psi_S$. Eliminating ψ_S and we obtain $\frac{1}{2m} \left(p_1^2 + p_2^2 + p_3^2 \right) \psi_L = \varepsilon \psi_L$

- (c) From the two separated equations, we can get $(\frac{\psi_S}{\psi_L})^2 = \frac{\varepsilon}{2mc^2} \ll 1$ in the non-relativistic approximation.
- 2.2.49

$$(\gamma^0)^2 = \begin{pmatrix} I_2 & 0 \\ 0 & I_2 \end{pmatrix} = I_4$$

$$(\gamma^i)^2 = \begin{pmatrix} -\sigma_i^2 & 0 \\ 0 & -\sigma_i^2 \end{pmatrix} = \begin{pmatrix} -I_2 & 0 \\ 0 & -I_2 \end{pmatrix} = -I_4, i = 1, 2, 3$$

$$\gamma^\mu \gamma^i + \gamma^i \gamma^\mu = \begin{pmatrix} -\sigma_\mu \sigma_i & 0 \\ 0 & -\sigma_\mu \sigma_i \end{pmatrix} + \begin{pmatrix} -\sigma_i \sigma_\mu & 0 \\ 0 & -\sigma_i \sigma_\mu \end{pmatrix} = 0, \mu \neq i$$

2.2.50 As in Exercise 2.2.48 but with γ^0 and γ^i defined in Exercise 2.2.49, the Dirac equation becomes

$$\begin{pmatrix} -c(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3) - E & mc^2 \\ mc^2 & c(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3) - E \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_S \end{pmatrix} = 0$$

In the limit that m approaches zero, the equation becomes

$$\begin{pmatrix} -c(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3) - E & 0\\ 0 & c(\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3) - E \end{pmatrix} \begin{pmatrix} \psi_L\\ \psi_S \end{pmatrix} = 0$$

which separates into independent 2×2 block

$$\begin{array}{ll} \textbf{2.2.51} \quad \text{(a)} \ |r'|^2 = r'^\dagger r' = r^\dagger U^\dagger U r = r^\dagger r = |r|^2 \\ \text{(b)} \ r^\dagger r = r'^\dagger r' = r^\dagger U^\dagger U r \ \text{for any } r, \ \text{so } U^\dagger U = I. \end{array}$$