Órarendgenerálási probléma megoldási lehetőségei

Van egy eredeti problémánk, melyben tényezőink a tantárgyak, tantermek, tanárok és osztályok. Mindenképpen szükség van ennek a felbontására, hogy egyszerűbb részproblámákat kapjunk, melyek megoldhatóak hagyományos algoritmusokkal, illetve hagyományos optimalizálási módszerekkel és együttesen alkotják az órarendgenerálási probléma megoldását. A genetikus algoritmust a plusz feltételeknek lehető legjobban megfelelő órarendek megkapásához fogjuk használni, merthogy ez hagyományos módszerekkel nem megoldható. Ezt onnan lehet tudni, hogy nem tudjuk matematikailag leírni a szükséges algoritmust. A plusz feltételek azok a feltételek, melyek nélkül is érvényes és elfogadható, de nem feltétlenül kielégítő órarendeket kapunk. Esetünkben a kora reggeli/késő délutáni órák számának minimalizálása és a heti óraszámok arányos eloszlása/pénteki órák számának minimalizálása lesznek a plusz feltételek, de lehetne mondjuk a lyukas órák számának minimalizálása is.

1. Teremhozzárendelési feladat

Az első részfeladat a teremhozzárendelési, amely kétfázisú lesz. Az első fázisban osztályokat kell hozzárendelni optimálisan a tantermekhez. Ez egy halmazfelbontási feladat, ahogyan az optimalizálásban nevezzük, ami arról szól, hogy az egyik halmaz (osztályok) és másik halmaz (tantermek) elemeihez 1:1 hozzárendelést kell elvégezni, vagyis minden osztályhoz pontosan 1 tanteremnek kell tartoznia és minden tanteremhez pontosan 1 osztálynak. Mindezt úgy, hogy a legoptimálisabb megoldást kapjuk a kihasználatlanság minimalizálásának szempontjából, mert így elkerülhetjük azt, hogy egy osztály terem nélkül maradjon, miközben létezik olyan hozzárendelés, hogy minden osztálynak jusson terem. A kihasználatlanság az adott terem kapacitásának és az adott osztály létszámának a különbsége. Természetesen amennyiben van olyan osztály, amelynek létszáma nagyobb, mint bármely terem befogadóképessége, vagy több olyan, adott létszámot elérő osztály van, mint ahány terem, amelyik rendelkezik az adott befogadóképességgel, akkor a feladat nem megoldható, így legelőször ezzel kapcsolatban kell ellenőrzést végezni. Feltétel nyilván, hogy egy osztálynak nem lehet órája olyan teremben, amelynek a kapacitása kisebb az osztály létszámánál, ezenkívül egy évfolyam osztályai és az évfolyamon képzett nyelvi, fakultációs vagy egyéb csoportok esetében megengedett ugyanannak a teremnek a hozzárendelése. A második fázis azért szükséges, mert egyes termek lehetnek elsősorban adott tantárgy(ak) számára fenntartottak). Itt már nem osztályokat, hanem osztály-tantárgy kettősöket veszünk (vagyis minden osztályt annyiszor kell számba venni, ahány tantárgy tartozik hozzá), olyan tantárgyak esetén, melyekhez van "speciális" terem/termek, de az első fázis során hozzárendelt terem nem ilyen, akkor az osztály úgymond költözni fog az adott tantárgy kapcsán. Kivéve ha nagyobb a létszámuk minden ilyen terem befogadóképességénél, ez esetben maradnak az eredetileg hozzárendelt teremben.

A feladat formalizálása

• $n \in \mathbb{N}$: osztályok száma

• $m \in \mathbb{N}$: tantermek száma

 $\bullet \ p \in \mathbb{N}$: tantárgyak száma

• $l \in \mathbb{N}^n$: osztályok létszáma

• $k \in \mathbb{N}^m$: tantermek kapacitása

• $h \in \mathbb{N}^n$: termek száma, ahová az egyes osztályok beférnek

• $C \in \mathbb{N}^{n \times m}$: költségmátrix

• $X \in \{0;1\}^{n \times m}$: hozzárendelés-mátrix

$$C_{ij} = \begin{cases} k_j - l_i, & \text{ha } X_{ij} = 1, \\ \infty & \text{egy\'ebk\'ent.} \end{cases}$$

$$A_{ij} = \begin{cases} 1, & \text{ha } l_i \le k_j, \\ 0 & \text{egyébként.} \end{cases}$$

 $X_{ij} = \begin{cases} 1, & \text{ha az } i\text{-edik osztálynak a } j\text{-edik teremben lesz a tanóra,} \\ 0 & \text{egyébként.} \end{cases}$

$$\sum_{j=1}^{m} C_j X_j \to \min$$

$$\sum_{j=1}^{m} A_{ij} X_j = 1$$

$$i=1,2,\ldots,n$$

$$j=1,2,\ldots,m$$

$$k=1,2,\ldots,p$$

Összes lehetséges esetek száma:

$$P = \prod_{i=1}^{n} h_i$$

Összes lehetséges megoldások száma:

$$P = \prod_{i=1}^{n} h_i - (i-1)$$

Nézzük az összes lehetséges esetek és lehetséges megoldások számát az alapesetben, az eredeti példa esetén, illetve évfolyamonként 6, 7, 8 osztályra kibővített esetben (ahol a termek számát plusz egy évfolyamonkénti osztály esetén 5-tel növeltem):

	5	6	7	8
Összes esetek	$1,1\cdot 10^{23}$	$1,4\cdot 10^{31}$	$1,7\cdot 10^{38}$	$2 \cdot 10^{46}$
Összes megoldások	$5, 3 \cdot 10^{16}$	$3,5\cdot 10^{22}$	$1,5\cdot 10^{26}$	$3, 3 \cdot 10^{31}$

A növekedési rend a következő: $T(n, m, p) = \sim \Theta(2nm + n^2p^2)$.

2. Tanárhozzárendelési feladat

Az osztály-tantárgy kettősökhöz immáron a tanárokat rendeljük hozzá. Ez egy halmazlefedési feladat, ami abban különbözik a halmazfelbontásitól, hogy 1:N hozzárendelés van, ugyanis egy tanárhoz több osztály-tantárgy kettőst is rendelhetünk, sőt ugye kell is többet hozzárendelni. A párosításmátrixban két feltételtől is függ, hogy 0 vagy 1 kerül a rublikába. Egyrészt, hogy az adott tanár tudja-e tanítani az adott tantárgyat, másrészt hogy az adott osztálynak van-e ilyen tárgya. A minimalizálás pedig itt arra vonatkozik, hogy minél kisebb legyen a tanárok heti óraszámai közötti eltérés, ne fordulhasson elő, hogy mondjuk míg valaki 30 órát tart egy héten, addig más 5-öt. A futtatás után kapott eredményt látva megállapítható, hogy amennyire lehetett, sikerült kiküszöbölni a tanárok egyenlőtlen terhelését, megkaptuk a lehető legoptimálisabb, olyan hozzárendelés-mátrixot, amely meghatározza, hogy egy adott osztálynak egy adott tantárgyat, melyik tanár tartsa.

A feladat formalizálása

• n: osztály-tantárgy kettősök száma

• m: tanárok száma

• p: tantárgyak száma

• $u \in \mathbb{N}^p$: az egyes tárgyakat hallgató osztályok száma

• $v \in \mathbb{N}^p$: az egyes tárgyakat oktató tanárok száma

• $t \in \mathbb{N}^m$: tanárok heti óraszáma

• $o \in \mathbb{N}^n$: osztály-tantárgy kettősök heti óraszáma

• $A \in \{0; 1\}^{n \times m}$: párosításmátrix

• $X \in \{0, 1\}^{n \times m}$: hozzárendelés-mátrix

$$t_j = \begin{cases} t_j + o_i, & \text{ha } X_{ij} = 1, \\ t_j & \text{egyébként.} \end{cases}$$

 $A_{ij} = \begin{cases} 1, & \text{ha az } i\text{-edik osztály-tantárgy kettősben szereplő tantárgyat tudja tanítani a } j\text{-edik tanár} \\ 0 & \text{egyébként.} \end{cases}$

 $X_{ij} = \begin{cases} 1, & \text{ha az } i\text{-edik osztály-tantárgy kettősben szereplő osztálynak az ugyanezen kettősben elek$

$$\sum_{j=1}^{m} |o_j X_j - \overline{o}| \to \min$$

$$\sum_{j=1}^{m} A_{ij} X_j = 1$$

Összes lehetséges esetek száma:

$$P = m^n$$

Összes lehetséges megoldások száma:

$$P = \prod_{k=1}^{p} v_k^{u_k}$$

A lehetséges esetek és megoldások száma (a tanárok számát plusz egy évfolyamonkénti osztály esetén 3-mal növeltem):

	5	6	7	8
Összes esetek	$9,3 \cdot 10^{325}$	$6, 5 \cdot 10^{395}$	$7,8 \cdot 10^{467}$	$9,2 \cdot 10^{541}$
Összes megoldások	$1, 1 \cdot 10^{132}$	$2 \cdot 10^{168}$	$4,2\cdot 10^{208}$	$1, 2 \cdot 10^{249}$

Növekedési rend: $T(n,m) = \Theta(nm + nm^2)$.

5	6	7	8
19800	25740	32400	39780

3. Időablakok beosztása

Ennek lényege, hogy a korábbiak alapján kapott osztály-tantárgy-terem-tanár hozzárendeléseket ütközésmentesen beosszuk időablakokba. Merthogy egy időablakban nyilván nem szerepelhet többször ugyanaz az osztály, ugyanaz a terem és ugyanaz a tanár sem. Egy időablak legfeljebb annyi hozzárendelést tartalmazhat, amennyi a tanárok száma. Amire még oda kell figyelni, hogy egy osztály-tantárgy kettős annyiszor forduljon elő, amennyi a heti óraszáma az adott osztálynak az adott tárgyból.

A feladat formalizálása

• $n \in \mathbb{N}$: osztály-tantárgy kettősök száma

• $m \in \mathbb{N}$: tanárok száma

• $p \in \mathbb{N}$: tantermek száma

• $r \in \mathbb{N}$: időablakok száma

 $\bullet \ o \in \mathbb{N}^n$: osztály-tantárgy kettősök heti óraszámai

• $c \in \mathbb{N}^n$: osztály-tantárgy kettősök előfordulásainak száma

• $e \in \mathbb{N}^m$: tanárok előfordulásainak száma

• $h \in \mathbb{N}^p$: tantermek előfordulásainak száma

$$\sum_{i=1}^{n} c_i \in (0,1), \quad \text{minden } l \text{ időablak esetén.}$$

$$\sum_{j=1}^{m} e_j \in (0,1), \quad \text{minden } l \text{ időablak esetén.}$$

$$\sum_{k=1}^{p} h_k \in (0,1), \quad \text{minden } l \text{ időablak esetén.}$$

$$\sum_{i=1}^{n} |o_i - c_i| = 0$$

$$l=1,2,\ldots,r$$

Összes lehetséges esetek száma:

$$P = \binom{n+m-1}{m}$$

Összes lehetséges megoldások száma:

$$P = \binom{n}{m}$$

A lehetséges esetek és megoldások száma (a tanárok számát plusz egy évfolyamonkénti osztály esetén 3-mal növeltem):

	5	6	7	8
Összes esetek	$5 \cdot 10^{105}$	$9,1\cdot 10^{119}$	$1,7 \cdot 10^{134}$	$3, 5 \cdot 10^{148}$
Összes megoldások	$8,9 \cdot 10^{36}$	$6,8 \cdot 10^{41}$	$4,5 \cdot 10^{46}$	$2,7 \cdot 10^{51}$

Növekedési rend: $T(n, r, o) = \sim \Theta(nro)$.

5	6	7	8
24400	28960	33520	38080

5

4. Időintervallumok hozzárendelése

A megkapott időablakok még nincsenek időintervallumhoz kötve, bármelyik felcserélhető bármelyikkel. Azt a feladatot, hogy a megadott plusz feltételek alapján lehető legoptimálisabban állapítsuk meg, mely időablak mely időintervallumba kerüljön (vagyis a legoptimálisabb legyen az időablakok sorrendje), a genetikus algoritmus végzi el nekünk. A probléma leképezése a genetikus algoritmus összetevőire:

- **gén:** egy konkrét, általános- és középiskolák esetén egy óra hosszúságú, főiskolák/egyetemek esetén két óra hosszúságú időintervallum. Implementációja szótár, két elemmel: nap (enum) és a napon belüli időablak (string).
- egyed: az összes időablak sorrendje, az egyedek mibenlétét a gének sorrendje határozza meg. Implementációja szintén szótár, elemei a gének listája, a célfüggvényérték és az egyedi azonosító.
- **populáció:** az egyedek összességét tárolja, melyeknek számát a programozó állapítja meg, a hatékonysági tesztek által. Implementációja lista.
- célfüggvény: esetemben a kora reggeli/késői délutáni órák számát akarom minimalizálni, illetve a napi óraszámok arányos eloszlása/pénteki órák számának minimalizálása is szempont. Minden tanárhoz tartozik egy balance és egy extremisms érték, melyet a felhasználó ad meg és ezzel skálán rögzíti mennyire fontosak/kevésbé fontosak ezek a különböző szempontok az adott tanároknak. Ezek az értékek adják a célfüggvény súlyozását, melynek értéke ennek megfelelően minden problémás időintervallum esetén növekszik. Minél kisebb a célfüggvény értéke, az egyed annál megfelelőbb.
- szelekció: rátermettség-arányos választással, súlyozott random generátornak köszönhetően. Miután a populáció egyedeit a célfüggvény-értékek alapján sorrendbe rakta a rendező metódusunk, a súlyozott random generátor annak megfelelő valószínűséggel szelektálja ki szülőnek az egyedeket, amilyen helyezést foglalnak el a listán. Ahány egyedből áll a populáció, a legmegfelelőbb egyednek annyiszor nagyobb esélye lesz, mint a leggyengébb egyednek. Amire még oda kell figyelni, hogy ugyanaz az egyed ne kerülhessen kétszer is kiválasztásra a szülők meghatározásakor, mivel az azt jelentené hogy a gyerek anyja egyben az apja is (igaz, a South Park rajzfilmsorozatban találkozhatunk ilyennel)...
- keresztezés: egypontos keresztezéssel. Véletlenszám-generálással döntjük el, hol legyen a keresztezési pont. A nehézséget annak megoldása jelenti, hogy ugyanaz az időablak (vagyis ugyanaz a gén) ne fordulhasson elő többször a gyermek egyedben. A keresztezési pont után jelentkezik ez a probléma és úgy küszöböljük ki, hogy amennyiben már megtalálható a gyerek génjei között a szülő adott génje, akkor a szülő keresztezési pont előtti génjei között megkeressük az első olyat, amely még nem.
- mutáció: ha mutálnunk kell a gyereket, először is véletlenszerűen generáljuk, hogy melyik legyen a mutálandó gén, és szintén véletlenszerűen generálunk egy idegen egyedet (vagyis olyan egyedet, amely nem szülője a gyereknek). Az idegen egyed

sorrendileg utolsó génjének megfelelő gént megkeressük a gyerek génjei között, és azt felcseréljük a mutálandó génnel.

A feladat formalizálása

• P: populáció mérete

• G: generációk száma

• $n \in \mathbb{N}$: osztály-tantárgy kettősök száma

 $\bullet \ o \in \mathbb{N}^n$: osztály-tantárgy kettősök heti óraszámai

• $m \in \mathbb{N}$: tanárok száma

• $r \in \mathbb{N}$: időablakok száma

• $b \in \{1, 5\}$: tanárok balance értékei

• $e \in \{1, 5\}$: tanárok extremisms értékei

• $c: \mathbb{N} \to \mathbb{N}$: célfüggvény

$$c = \sum_{j=1}^{m} \sum_{l=1}^{r} \begin{cases} b_j, & \text{ha a } balance\text{-szal kapcsolatos feltétel teljesül } l \text{ időablakban,} \\ e_j, & \text{ha a } extremisms\text{-zel kapcsolatos feltétel teljesül } l \text{ időablakban,} \\ b_j + e_j, & \text{ha a } balance\text{-szal és az } extremisms\text{-zel kapcsolatos feltétel is teljesül } l \text{ időablakban,} \\ 0 & \text{egyébként.} \end{cases}$$

Összes lehetséges esetek száma:

$$P = r^r$$

Összes lehetséges megoldások száma:

$$P = r!$$

Célfüggvény növekedési rendje: $T(m, n, o) = \Theta(mno)$.

Keresztezés növekedési rendje: $T(I) = \sim \Theta(I^2)$.

Mutáció növekedési rendje: $T(I) = \sim \Theta(I)$.

Növekedési rend: $T(P, G, I, n, m, o) = \sim \Theta(G \cdot P \cdot \Theta(nmo) \cdot \Theta(I^2) \cdot \Theta(I))$.

Gyerek egyed				
	Nap	Periódus		
Időablak_1	hétfő	17-18		
Időablak_2	csütörtök	18-19		
Időablak_3	hétfő	17-18		
Időablak_4	hétfő	18-19		

 $[1] \quad https://www.uni-miskolc.hu/\ matka/Dokumentumok/EP_feladatok.pdf$

- [2] D. Abramson, J. Abela: A parallel genetic algorithm for solving the school timetabling problem. Commonwealth Scientific and Industrial Scientific Organisation (CSIRO), Australia, 1991.
- [3] F. G. Lobo, D. E. Goldberg, M. Pelikan: Time complexity of genetic algorithms on exponentially scaled problems. University of Illinois, USA, 2000.