

Benchmarking and Boosting Transformers for Medical Image Classification

DongAo Ma¹, Mohammad Reza Hosseinzadeh Taher¹, Jiaxuan Pang¹, Nahid UI Islam¹, Fatemeh Haghighi¹, Michael B. Gotway², Jianming Liang¹

¹ Arizona State University

² Mayo Clinic

Transformers

Refreshing ImageNet Leaderboard

Dominating Computer Vision

Transformers

- Refreshing ImageNet Leaderboard
- Dominating Computer Vision

How do visual transformers perform on medical images?

Benchmarking transformers

Two most popular architectures

- Vision Transformer (ViT)
 - 1. Model global context of an image

2. Capture patch-wise intra-image relations

- Swin Transformer (Swin)
 - 3. Builds hierarchical feature maps

Benchmarking transformers

Two most popular architectures

- Vision Transformer (ViT)
 - 1. Model global context of an image
 - Global context of a body region
 - 2. Capture patch-wise intra-image relations
 - Co-occurrence of pathologies
- Swin Transformer (Swin)
 - 3. Builds hierarchical feature maps
 - Lesions at different scales

VinDr-CXR: https://vindr.ai/datasets/cxr

Transformers have good properties for medical images

Benchmarking transformers

Target Tasks

1. NIH ChestX-ray14: Fourteen thorax diseases classification (X-ray)

2. CheXpert: Five thorax diseases classification (X-ray)

3. VinDr-CXR: Six thorax diseases classification (X-ray)

4. NIH Shenzhen CXR: Tuberculosis classification (X-ray)

5. RSNA Pneumonia: Pneumonia and lung opacity classification (X-ray)

6. RSNA PE: Pulmonary Embolism slide-level classification (CT)

Result I: Transformers significantly underperform CNNs when training from scratch

Result II: Transformers can offer similar results as CNNs with ImageNet pre-training

6 pre-trained Transformer models

3 pre-trained CNN models

Question 1 How do transformers perform on medical images?

Transformers need pre-training to perform well on medical images

Question 2

Which ImageNet pre-trained transformer performs better on medical image classification?

Supervised or Self-supervised?

SOTA self-supervised learning technique

- Masked Image Modeling (MIM) using transformers
- Mask input patches and reconstruct them
 - Develop a holistic understanding of the image
 - Learn fine-grained features via reconstruction

SimMIM (Xie et al., CVPR2022)

SOTA self-supervised learning technique

- Masked Image Modeling (MIM) using transformers
- Mask input patches and reconstruct them
 - Develop a <u>holistic understanding</u> of the image
 - Learn fine-grained features via reconstruction

Good for medical imaging tasks

SimMIM (Xie et al., CVPR2022)

Result III: Self-supervised learning based on masked image modeling is a preferable pre-training option for medical tasks

✓ <u>Self-supervised **SimMIM**</u> model with the <u>**Swin-B**</u> backbone outperforms fully-supervised baselines

Task ChestX-ray14 Method		CheXpert Shenzhen		VinDr-CXR	RSNA Pneumonia	RSNA PE	
Supervised	ViT-B	80.05±0.17	87.88±0.50	93.67±1.03	88.30±1.45	71.50±0.52	91.19±0.11
	Swin-B	81.73±0.14	87.80±0.42	93.35±0.77	90.35±0.31	73.44±0.46 7	94.85±0.07
	ViT-B	79.55±0.56	88.07±0.43 - n	.s.\ 93.47±2.48 * *	88.91±0.55 (-r	.s. 72.08±0.47(-n	.s., 91.39±0.10 (-*)
SimMIM	Swin-B	81.95±0.15	88.16±0.31	94.12±0.96	90.24±0.35	73.66±0.34	95.27±0.12

^{*}The best methods are bolded while the others are highlighted in green if they achieve equivalent performance compared with the best one (i.e., p > 0.05).

Can we further boost the performance of the pre-trained transformers for medical tasks?

Problems

Transformers are more data-hungry

Task Method		ChestX-ray14	CheXpert	Shenzhen	VinDr-CXR	RSNA Pneumonia	RSNA PE
Supervised	ViT-B	80.05±0.17	87.88±0.50	93.67±1.03	88.30±1.45	71.50±0.52	91.19±0.11
	Swin-B	81.73±0.14	87.80±0.42	93.35±0.77	90.35±0.31	73.44±0.46	94.85±0.07
SimMIM	ViT-B	79.55±0.56	88.07±0.43	93.47±2.48	88.91±0.55	72.08±0.47	91.39±0.10
	Swin-B	81.95±0.15	88.16±0.31	94.12±0.96	90.24±0.35	73.66±0.34	95.27±0.12

Problems

Question 3
How to boost transformers' performance for medical image classification?

- l. Continue domain-adaptive pre-training with in-domain data
- II. Create large-scale in-domain dataset by assembling multiple datasets

X-rays(926K): A large-scale dataset that we assembled

• 926,028 images from 13 different chest X-ray datasets

No.	Source Datasets	Number of Images
1	MIMIC-CXR 2.0.0	377,028
2	CheXpert	223,414
3	PadChest	160,828
4	NIH ChestX-Ray 14	86,524
5	RSNA Pneumonia Detection Challenge	26,684
6	COVID-19 RADIOGRAPHY_DATABASE	21,165
7	VinDR-CXR	15,000
8	Indiana ChestX-ray	7,883
9	Mendeley-V2	5,232
10	COVIDx	1,223
11	Shenzhen Hospital X-ray Set	662
12	JSRT(Japanese Society of Radiological Technology)	247
13	Montgomery County X-ray Set	138
	X-ray(926K)	926,028

Datasets from different sources have different labels

III. Adopt self-supervised learning for pre-training

Result IV: Self-supervised domain-adaptive pre-training on a larger-scale in-domain dataset further boosts transformer model's performance

I. Continue domain-adaptive pre-training with in-domain data to bridge the domain gap

Task Model	ChestX-ray14	CheXpert	Shenzhen	VinDr-CXR	RSNA Pneumonia
Scratch	77.04±0.34	83.39±0.84	92.52±4.98	78.49±1.00	70.02±0.42
ImageNet	81.95±0.15	88.16±0.31	94.12±0.96	90.24±0.35	73.66±0.34
ChestX-ray14	78.87±0.69	86.75±0.96	93.03±0.48	79.86±1.82	71.99±0.55
X-rays(926K)	82.72±0.17	***\ 87.83±0.23 (-n.	95.21±1.44 *	90.60±1.95	** 173.57±0.27(-*)
lmageNet→ChestX-ray14	82.45±0.15	87.74±0.31	94.83±0.90	90.33±0.88	73.85±0.72 ↑
ImageNet→X-rays(926K)	83.04±0.15	88.37±0.40	95.76±1.79	91.71±1.04	74.09±0.39

^{*}The best methods are bolded while the others are highlighted in green if they achieve equivalent performance compared with the best one (i.e., p > 0.05).

Result IV: Self-supervised domain-adaptive pre-training on a larger-scale in-domain dataset further boosts transformer model's performance

- I. Continue domain-adaptive pre-training with in-domain data to bridge the domain gap
- II. Use large-scale in-domain data to satisfy transformer's data hunger
- III. Adopt self-supervised learning to overcome heterogeneity of expert labels

Task Model	ChestX-ray14	CheXpert	Shenzhen	VinDr-CXR	RSNA Pneumonia
Scratch	77.04±0.34	83.39±0.84	92.52±4.98	78.49±1.00	70.02±0.42
ImageNet	81.95±0.15	88.16±0.31	94.12±0.96	90.24±0.35	73.66±0.34
ChestX-ray14	78.87±0.69	86.75±0.96	93.03±0.48	79.86±1.82	71.99±0.55
X-rays(926K)	82.72±0.17	87.83±0.23	95.21±1.44	90.60±1.95	73.57±0.27
ImageNet→ChestX-ray14	82.45±0.15	87.74±0.31	94.83±0.90	90.33±0.88	73.85±0.72
ImageNet→X-rays(926K)	83.04±0.15	88.37±0.40	95.76±1.79	91.71±1.04	74.09±0.39

^{*}The best methods are bolded while the others are highlighted in green if they achieve equivalent performance compared with the best one (i.e., p > 0.05).

Benchmarking Transformers

✓ Good initialization (Pre-training) is crucial for transformers

✓ Self-supervised pre-training based on masked image modeling is preferable

Boosting Transformers

✓ Self-supervised domain-adaptive pre-training using a larger-scale in-domain dataset can further boost transformer's performance

Benchmarking and Boosting Transformers for Medical Image Classification

Github page: https://github.com/JLiangLab/BenchmarkTransformers