HLMA101 - Partie A : Généralités

Chapitre 2

Démonstration et types de raisonnement

Simon Modeste

Faculté des Sciences - Université de Montpellier

2019-2020

Sommaire

- 1. Démontrer des assertions
- 1.1 Existentielles
- 1.2 Universelles
- 1.3 Quantifications imbriquées
- 1.4 Conjonctions et disjonctions
- 1.5 Négation
- 1.6 Équivalence
- 1.7 Rédaction

Cas particulier : existence et unicité

On doit parfois démontrer l'existence d'un unique élément xvérifiant une certaine propriété P (noté parfois $\langle \exists ! x \in E, P(x) \rangle$.

Il faut alors prouver d'une part l'existence (comme précédemment),

et d'autre part l'unicité : souvent, on prend deux éléments vérifiant la propriété et on montre qu'ils sont égaux.

Remarque

Autrement dit, on montre :

(1) $\exists x \in E, P(x)$ et

(2) $\forall x \in E, \forall y \in E, (P(x) \land P(y)) \Longrightarrow x = y.$

Vouloir démontrer tout à la fois entraıne souvent des erreurs!

Comment démontrer une assertion de la forme $\forall x \in E, P(x)$? Exemple: $\forall r \in \mathbb{R}, (r^2+2)^2 \ge 4$

Principe

On prend un élément générique de E et on montre qu'il vérifie

On introduit cet élément par « Soit $x \in E$ » (ou une autre lettre).

On considère que cet élément générique ne vérifie que les propriétés communes à tous les éléments de E.

Ainsi, si on montre la propriété pour cet élément générique, elle est vraie pour tous les éléments.

Exemple

Soit $t \in \mathbb{R}$.

Montrons que $(t^2+2)^2 \ge 4$

On sait que $t^2 \ge 0$. (Le carré d'un réel est toujours positif)

Donc $t^2 + 2 \ge 2$.

Donc $(t^2 + 2)^2 \ge 4$ Donc $\forall r \in \mathbb{R}, (r^2+2)^2 \ge 4$

2.4 Analyse-synthèse

Comment démontrer une assertion de la forme $\exists y \in E, Q(y)$? Exemples: (a) $\exists s \in \mathbb{R}, 1 < s^2 < 2$ (b) $\exists \theta \in \mathbb{R}, \sin(\theta) = \frac{7}{8}$

Principe

On montre qu'au moins un élément de E vérifie la propriété 0:

> Soit en exhibant un tel élément (explicitement)

♦ Soit en utilisant d'autres théorèmes affirmant l'existence d'un élément qui vérifie la propriété Q, ou permettant de construire un élément de E vérifiant la propriété Q.

Exemples

(a) Posons $y = \frac{\sqrt{3}}{\sqrt{2}}$. On a $y^2 = \frac{3}{2}$, donc $1 < y^2 < 2$.

(b) La fonction sinus est continue sur $[0, \frac{\pi}{2}]$ et $\sin(0) = 0$ et

D'après le théorème des valeurs intermédiaires (et comme $0 < \frac{7}{8} < 1$), il existe $\theta \in [0, \frac{\pi}{2}]$ tel que $\sin(\theta) = \frac{7}{8}$.

Comment démontrer une assertion de la forme $\forall x \in E, P(x)$?

Exemple: $\forall r \in \mathbb{R}, (r^2+2)^2 \ge 4$

Principe

On prend un élément générique de E et on montre qu'il vérifie

On introduit cet élément par « Soit $x \in E$ » (ou une autre lettre).

On considère que cet élément générique ne vérifie que les propriétés communes à tous les éléments de E.

Ainsi, si on montre la propriété pour cet élément générique, elle est vraie pour tous les éléments.

Exemple

Soit $r \in \mathbb{R}$.

Montrons que $(r^2 + 2)^2 \ge 4$

On sait que $r^2 \ge 0$. (Le carré d'un réel est toujours positif)

Donc $r^2 + 2 \ge 2$.

Donc $(r^2 + 2)^2 \ge 4$

Donc $\forall r \in \mathbb{R}, (r^2 + 2)^2 \ge 4$

Utiliser une implication - raisonnement déductif

Au cours d'une démonstration, on veut montrer Q(t) pour un $t \in E$ générique.

Si on sait que $\forall x \in E$, $P(x) \Longrightarrow Q(x)$ (connu ou déjà prouvé), on peut démontrer P(t) puis en déduire Q(t).

Remarque

Modus Ponens : Si on a $(A \text{ et } A \Longrightarrow B)$ alors B.

Passage de $r^2 + 2 \ge 2$ à $(r^2 + 2)^2 \ge 4$ dans l'exemple précédent. (On utilise, $\forall x \in \mathbb{R}^+$, $\forall y \in \mathbb{R}^+$, $x \le y \implies x^2 \le y^2$).

Attention: Le fait que A soit vrai et le fait que $A \Longrightarrow B$ soit vrai sont indépendants.

Démontrer une implication (universellement quantifiée)

Pour prouver $\forall x \in E$, $P(x) \Longrightarrow Q(x)$, on prend un élément générique de E dont on suppose qu'il vérifie P (la prémisse) et on démontre qu'il vérifie Q (le conséquent).

Exemple

 $\forall t \in \mathbb{R}, t > 1 \Longrightarrow t^3 > 1.$

Remarque

Attention, ceci est très différent du raisonnement déductif! Démontrer une implication \neq Utiliser une implication :

ex:
$$\forall t \in \mathbb{R}, (t^2 = -1) \Longrightarrow (t^2 + 3 \ge 0)$$

Quantification universelle bornée

On écrit parfois : « Pour tout entier naturel n tel que n impair, P(n) »:

- on peut l'interpréter \forall n ∈ I, P(n), en ayant posé I l'ensemble des entiers naturels impairs, ou
- $\forall n \in \mathbb{N}$, (n impair $\Longrightarrow P(n)$).

On trouve aussi parfois dans les énoncés de théorèmes :

« Soit n un entier. Si n est impair alors P(n). »

Quantification existentielle bornée

On écrit parfois : « Il existe un entier naturel n, impair, tel que

- on peut l'interpréter $\exists n \in I$, P(n), en ayant posé I l'ensemble des entiers naturels impairs, ou
- $\exists n \in \mathbb{N}$, (n impair ∧ P(n)).

Au cours d'une démonstration...

... pour prouver $A(x) \wedge B(x)$

On démontre d'une part que x vérifie A(x)et d'autre part qu'il vérifie B(x).

Exemple

 $\forall x \in \mathbb{R} \text{ tel que } x \ge 1, \quad \sqrt{x} \le x \le x^2$

... pour prouver $A(x) \vee B(x)$

On démontre que soit x vérifie A(x), soit x vérifie B(x). On peut aussi démontrer que si x ne vérifie pas A(x), il vérifie B(x) (...ou l'inverse ...).

Exemple

$$\forall x \in \mathbb{R}, x^2 - 1 > 0 \Longrightarrow (x < -1 \text{ ou } x > 1)$$

Au cours d'une démonstration...

... pour prouver
$$P(x) \iff Q(x)$$

En général on prouve $P(x) \Longrightarrow Q(x)$ et $Q(x) \Longrightarrow P(x)$ séparément.

Cela doit apparaître clairement dans la rédaction.

Cas de plusieurs équivalences

Pour démontrer $P(x) \iff Q(x) \iff R(x)$, on peut démontrer circulairement :

$$P(x) \Longrightarrow Q(x)$$
 et

$$Q(x) \Longrightarrow R(x)$$
 et $R(x) \Longrightarrow P(x)$.

$$R(x) \implies P(x).$$

$$P(x) \Longrightarrow Q(x)$$

Pourquoi est-il est suffisant de se placer dans le cas : P(x)

Pourquoi on ne traite pas le cas où P(x) est fausse?

Table de vérité de l'implication

1 Implication		
Α	В	$A \Longrightarrow B$
F	F	V
F	٧	V
V	F	F
V	V	V

Vocabulaire

Dans la pratique des mathématiques, $A \Longrightarrow B$ se dit aussi... « Si A alors B », ou « A entraı̂ne B » (attention sens courant) A est une condition suffisante de B (il suffit d'avoir A pour avoir B)

B est une condition nécessaire de A (il est nécessaire d'avoir B pour avoir A, ie., sans B, impossible d'avoir A).

Quantifications multiples

Exemple typique : ∀...∃...

 $\forall x \in \mathbb{R}^+, \exists y \in \mathbb{R}^+, x = y^2 - 1$

Démonstration :

Soit $x \in \mathbb{R}^+$. Recherche au brouillon

x+1 est positif.

Posons $y = \sqrt{x+1}$.

y est bien dans \mathbb{R}^+ , et $y^2 = x + 1$, donc $x = y^2 - 1$

Conseils

- Qualité et précision de la rédaction
- ♦ On explique au lecteur ce que l'on fait, où l'on va
- On donne tous les détails pertinents

♦ On n'ajoute rien d'inutile (ou de redondant)

Au cours d'une démonstration...

```
... pour prouver \neg(P(x))
```

On peut prouver que P(x) est fausse ou formuler la négation de P(x) et la prouver.

La négation de $\forall x \in E$, P(x) est $\exists x \in E$, $\neg(P(x))$

La négation de $\exists x \in E, P(x)$ est $\forall x \in E, \neg(P(x))$.

Conseils pour la rédaction

- ♦ Chercher au brouillon
- ♦ Bien choisir les noms des variables
- ♦ Bien dire qui est quoi avant d'en parler : ex : $\forall x \in E, P(x)$ ne veut pas dire qu'on peut parler de l'élément x!
- ♦ Annoncer où on en est, ce qu'on va faire, le type de raisonnement utilisé
- ♦ Faire des phrases en français, être propre
- ♦ Indenter, structurer en paragraphes
- ♦ Conclure (■), conclusions intermédiaires...
- Lire des preuves, travailler les preuves des cours et des livres.

Sommaire

1 Démontrer des assertions

2. Raisonnements spécifiques

- 2.1 Contraposée
- 2.2 Raisonnement par l'absurde
- 2.3 Disjonction de cas
- 2.4 Analyse-synthèse
- 2.5 Récurrence

Exemple:

 $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, (ab \neq 0) \Longrightarrow (a \neq 0 \text{ et } b \neq 0)$

Démonstration :

Soit $a \in \mathbb{R}$.

Soit $b \in \mathbb{R}$.

On raisonne par contraposition :

Supposons a = 0 **ou** b = 0.

Alors ab = 0.

Donc $\forall a \in R, \forall b \in R, (ab \neq 0) \Longrightarrow (a \neq 0 \text{ et } b \neq 0)$

Remarque : Contraposée et équivalence

Pour démontrer $A \Longleftrightarrow B$ on peut démontrer

 $A \Longrightarrow B$ et $\neg(A) \Longrightarrow \neg(B)$.

Pour démontrer $\forall x \in E$, $P(x) \iff Q(x)$ on peut démontrer $\forall x \in E$, $P(x) \implies Q(x)$ et $\forall x \in E$, $\neg P(x) \implies \neg Q(x)$.

Important : cas courant d'une implication

Pour démontrer $A \Longrightarrow B$ par l'absurde :

On suppose que $A \Longrightarrow B$ est faux, ie. on suppose A et non(B). On montre que cela entraîne une assertion C alors qu'on sait déjà que C est fausse, ou que cela entraîne à la fois C et $\neg(C)$ (Contradiction).

Par extension...

Pour prouver $\forall x \in E$, P(x) par l'absurde, on peut supposer $\exists x \in E$, $\neg P(x)$

Pour prouver $\forall x \in E$, $P(x) \Longrightarrow Q(x)$ par l'absurde, on peut supposer $\exists x \in E$, $(P(x) \land \neg Q(x))$

Disjonction de cas. Exemple :

 $\forall r \in \mathbb{N}, r^3 + r^2 \text{ est pair.}$

Démonstration.

Soit $r \in \mathbb{N}$

Si r est impair :

Alors r+1 est pair.

Et donc l'entier $r^3 + r^2 = r^2(r+1)$ est pair.

Si r est pair :

Il existe $k \in \mathbb{N}$ tel que r = 2k.

Et alors $r^2 = 4k^2$ est pair. Et donc, $r^3 + r^2 = r^2(r+1)$ est

Dans **tous** les cas, $r^3 + r^2$ est pair.

Disjonction de cas

Pour montrer une assertion A, on peut montrer qu'elle est vraie dans différents cas, à condition de traiter **TOUS** les cas, c'est-à-dire que ces cas couvrent tous les possibles.

Contraposition

On a vu que $A\Longrightarrow B$ a la même table de vérité que $\neg(B)\Longrightarrow \neg(A)$ (ou $\operatorname{non}(B)\Longrightarrow \operatorname{non}(A)$). Il est donc équivalent de prouver l'un où l'autre. Par extension, pour démontrer $\forall x, P(x)\Longrightarrow Q(x)$, il est équivalent de démontrer $\forall x\in E, \neg(Q(x))\Longrightarrow \neg(P(x))$.

Intuition

 $\forall x \in E, P(x) \Longrightarrow Q(x)$ signifie que pour tout x de E, si P(x) est vrai, alors Q(x) est nécessairement vraie. Autrement dit, si Q(x) est faux, on ne peut pas avoir P(x) vrai, donc $\forall x \in E, \neg(Q(x)) \Longrightarrow \neg(P(x))$.

Erreur fréquente

Confusion entre contraposée et réciproque.

Raisonnement par l'absurde

On veut prouver une assertion A. On prouve que si A est faux, alors on aboutit à une contradiction. On en conclut que A est nécessairement vraie. Autrement dit : Si $\neg(A)$ implique une contradiction, alors A.

En fait, on montre que $\neg(A) \Longrightarrow F$, c'est-à-dire que A ne peut pas être fausse.

Pour se convaincr

ncre		
$\neg(A)$	В	$\neg(A) \Longrightarrow B$
F	F	V
F	٧	V
V	F	F
V	V	V

Exemple : $\forall x \in \mathbb{N}$, $x + 1 \neq x + 2$

Soit $x \in \mathbb{N}$.

Montrons par l'absurde que $x + 1 \neq x + 2$.

Supposons donc que x + 1 = x + 2

Alors, 1 = 2 (en soustrayant x dans chaque membre).

Cela est impossible

Analyse-Synthèse

Pour montrer $A \iff B$ (en particulier quand on cherche à déterminer B) :

On raisonne par déduction en partant de l'hypothèse A jusqu'à atteindre une condition nécessaire B ($A \Longrightarrow B$). Pour avoir $A \Longleftrightarrow B$, il reste à prouver que B est une condition suffisante ($B \Longrightarrow A$).

Cas courant : résolution d'une équation ${\mathscr E}$

« Analyse » : Si x est solution de $\mathscr E$ alors $x \in S$

« Synthèse » : On vérifie que les éléments de ${\mathcal S}$ sont tous des solutions de ${\mathcal E}$

Si certains ne sont pas solution, on les "élimine".

Exemple : Résoudre les équations $\sqrt{x(x-3)} = \sqrt{x-4}$;

 $\sqrt{x(x-4)} = \sqrt{3-2x}.$

Autres exemples pour s'exercer

Ex.1. Résoudre dans \mathbb{R} l'équation : $x + \sqrt{x+1} = 11$

Ex.2. Déterminer les fonctions f telles que :

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R} \quad f(x+y) = x + f(y)$$

Ex.3. Déterminer les fonctions f telles que :

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R} \quad f(x - f(y)) = 1 - x - y$$

Raisonnement par récurrence

Permet de prouver des propriétés sur les entiers de la forme

$$\forall n \in \mathbb{N}, P(n)$$

On démontre deux choses :

Initialisation P(0)

Hérédité $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)$

De ces deux assertions, on déduit que la propriété ${\cal P}$ est vraie pour tous les entiers.

Remarque

♦ L'hérédité est une implication universellement quantifiée

Analogie avec le raisonnement déductif

 \diamond On peut faire un rapprochement avec le raisonnement déductif : si (A et $A \Longrightarrow B$), alors B

Ici, si P(0), comme $P(0) \Longrightarrow P(1)$, alors P(1), et comme $P(1) \Longrightarrow P(2)$, alors P(2), et comme $P(2) \Longrightarrow P(3)$, alors P(3), ...

- \diamond mais on démontre que P(n) est vrai pour tous les n "d'un seul coup".
- \diamond On comprend la nécessité d'établir $P(n) \Longrightarrow P(n+1)$ pour toutes les valeurs de n
- ♦ Sans initialisation, ie. sans un n_0 pour lequel P est vraie, on pourrait avoir toutes les implications $P(n) \Longrightarrow P(n+1)$ vraies sans qu'aucun P(n) ne soit vrai!

Récurrence forte

Pour prouver une propriété sur les entiers de la forme

$$\forall n \in \mathbb{N}, P(n)$$

On démontre deux choses :

Initialisation P(0)

Hérédité $\forall n \in \mathbb{N}$, $(\forall m \le n, P(m)) \Longrightarrow P(n+1)$

De ces deux assertions, on déduit que la propriété ${\cal P}$ est vraie pour tous les entiers.

Exercice

Écrire la variante de la récurrence forte dans la situation où l'on veut démontrer $\forall n \ge n_0$, P(n).

Solution de l'exemple 2

Déterminer les fonctions f telle que :

 $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ f(x+y) = x + f(y)$

Analyse: Soit une fonction f telle que $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ f(x+y) = x + f(y)$

Alors, en particulier, pour y=0: $\forall x \in \mathbb{R}$, f(x)=x+f(0)Autrement dit, f est forcément de la forme f(x)=x+a avec

Synthèse : Est-ce que toute fonction de cette forme est solution ?

Soit f une fonction de la forme f(x) = x + a avec $a \in \mathbb{R}$.

Alors f(x+y) = x + y + a.

Et x + f(y) = x + y + a.

Donc f vérifie bien la propriété $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ f(x+y) = x + f(y).$

Conclusion : L'ensemble des solutions est bien l'ensemble :

 $\{f \text{ fonction de } \mathbb{R} \text{ dans } \mathbb{R} / f(x) = x + a, \text{ avec } a \in \mathbb{R} \}$

Variante, à partir d'un rang n_0

Pour prouver une propriété sur les entiers de la forme

$$\forall n \ge n_0, P(n)$$

On démontre deux choses :

Initialisation $P(n_0)$

Hérédité $\forall n \ge n_0$, $P(n) \Longrightarrow P(n+1)$

De ces deux assertions, on déduit que la propriété P est vraie pour tous les entiers à partir de n_0 .

Exemple: $\forall n \in \mathbb{N}$, $10^{6n+2} + 10^{3n+1} + 1$ est divisible

par 111

Indication : $1000 = 9 \times 111 + 1$

Remarques

- Importance de distinguer les deux parties.
- Annoncer la récurrence (et son type).
- Attention aux variables et à leurs noms!
- Étudier la propriété P(n+1) au brouillon pour trouver son lien avec P(n) est souvent une bonne piste.
- Parfois, il faut identifier où interviennent les entiers (exemple : degré d'un polynôme)