

RAPPORT DE STAGE

Fracturation de floes de glace par percution dans un modèle granulaire

ÉtudiantDesmond Roussel Nzoyem

Enseignant référent Christophe PRUD'HOMME

Superviseur Stéphane Labbé

Ce stage à été effectué dans le cadre du master 2 CSMI, du 03 février 2021, au 31 juillet 2021; initié par le groupe SASIPau LJLL.

Année académique 2020 - 2021

Remerciements

Table des matières

merciements	j
Introduction	1
Environnement économique du stage 2.1 Le secteur d'activité	2 2 2
État de l'art 3.1 Position du problème 3.1.1 Modélisation d'un floe de glace 3.1.2 Cinétique d'un floe 3.2 État de l'art	3
Travaux et apports 4.1 Les travaux effectués	
5.1 Journal de bord	
	Introduction Environnement économique du stage 2.1 Le secteur d'activité . 2.2 Le Laboratoire Jacques-Louis Lions État de l'art 3.1 Position du problème 3.1.1 Modélisation d'un floe de glace 3.1.2 Cinétique d'un floe 3.2 État de l'art Travaux et apports 4.1 Les travaux effectués 4.2 Les apports du stage Déroulement du stage

Introduction

Environnement économique du stage

- 2.1 Le secteur d'activité
- 2.2 Le Laboratoire Jacques-Louis Lions

État de l'art

3.1 Position du problème

3.1.1 Modélisation d'un floe de glace

Nous commensons par présenter une modélisation mathématique d'une plaque de glace (appelé floe) sur la mer. Six variables sont nécésaires pour décrire un floe sur la mer (voir figure 1) :

- Un ouvert connexe $\omega \in \mathbb{R}^2$ décrivant la section longitidunale du floe;
- Deux fonction $h_+, h_- \in \mathcal{F}(\omega, \mathbb{R})$ décrivant l'épasseur du floe, telle que $\forall x \in \omega, h_-(x) \leq h_+(x)$;
- Le centre de gravité du floe G(w);
- Deux vecteurs $e_1(\omega)$ et $e_2(\omega)$ formant une base sur ω .

Figure 3.1 – Illustration de la géométrie d'un floe de glace Ω .

LES VECTEURS E1 ET E2 (ET TOUS LES AUTRES VECTEURS) DOIVENT ETRE EN GRAS!

Le volume Ω du floe est donné par :

$$\Omega = \{(x, z) | x \in \omega \in \mathbb{R}^2, z \in]h_{-}(x), h_{+}(x)[\}.$$

Les fonctions h_- et h_+ permettent de définir trois quantités (voir figure 2) :

- L'épaisseur moyenne du floe : $\bar{h} = \sup_{x \in \omega} h_+(x) \inf_{x \in \omega} h_-(x)$;
- La plus forte epaisseur : $\bar{h}^* = \sup_{x \in \omega} |\hat{h}_+(x) h_-(x)|$.
- La plus faible epaisseur : $\underline{h}^* = \inf_{x \in \omega} |h_+(x) h_-(x)|$.

FIGURE 3.2 – Illustration des différentes épaisseurs décrivant le floe de glace. Pour l'instant, afin d'obtenir un floes relativement plat (i.e \bar{h} faible), h_- sera pris identiquement nul, et h_+ constant.

Les vecteur $e_1(\omega)$ et $e_2(\omega)$ sont liés à ω , et pointent vers un point fixe du bord $\partial \omega$ du floe i.e :

$$\exists \sigma_i \in \partial \omega | e_i(\omega) = \frac{\sigma_i - G(\omega)}{\|\sigma_i - G(\omega)\|}, \text{ pour } i \in \{1, 2\},$$

où $\|\cdot\|$ désigne la norme euclidienne de \mathbb{R}^2 . Notons que $\sigma_1 \neq \sigma_2$, et $e_1(\omega) \cdot e_2(\omega) = 0$ de facon à ce que la base $(e_1(\omega), e_2(\omega))$ soit directe.

Un floe $F = (\omega, e_1(\omega), e_2(\omega), G(\omega), h_-, h_+)$ se déplace sur la mer $M \in \mathbb{R}^2$. Au temps t après une translation de vecteur u(t) (et de matrice $T_{u(t)}$), et une rotation de vecteur $\theta(t)$ (et de matrice $R_{\theta(t)}$), on obtient le floe F_t défini par (voir figure 3) :

$$F_t = (T_{u(t)} R_{\theta(t)} \omega, T_{u(t)} R_{\theta(t)} e_1(\omega), T_{u(t)} R_{\theta(t)} e_2(\omega), T_{u(t)} R_{\theta(t)} G(\omega), h_-, h_+).$$

REMPALCER CES TRANSFORMATION ENCOMBRANTES PAR UN prime SIMPLE!

Lors de leur mouvements sur la surface de la mer, les floes se fracturent sous l'effet des vents et des courants océaniques. Nous nous interreserons donc au phénomène de percussion en vue de l'initialisation des fractures dans les floes de glace.

3.1.2 Cinétique d'un floe

DEFINIR LE REPERE aBSOLUE DU FLOE EN 2D, AVEC LE REPERE LOCAL. ECRIRE LE VECTEUR POSITION, ET ECRIRE LES EQUATIONS DE NEWTON-EULER.

3.2 État de l'art

^{1.} Pour l'instant, la mer est considérée comme un ouvert dans \mathbb{R}^2 . Plus tard, nous prendrons en compte sont épaisseur lorsque nous modelserons la mer par une sphère

FIGURE 3.3 – Illustration du mouvement d'un floe de glace F dans la mer, après une translation de vecteur u(t) et une rotation d'angle $\theta(t)$, pour obtenir le floe F_t . On observe la transformation des propriétés du floe, en partucilier les vecteurs $e_1(\omega)$ et $e_2(\omega)$ qui restent liés au floe.

Travaux et apports

- 4.1 Les travaux effectués
- 4.2 Les apports du stage
 - L' utilisation de TIKZ

Déroulement du stage

5.1 Journal de bord

Conclusion