PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2024

MAT1107 – Introducción al Cálculo

Solución Interrogación N° 4

1. Determine el mayor dominio posible y el recorrido correspondiente para cada una de las siguientes reglas de asignación:

a)
$$f(x) = \sqrt{|x| - x}$$

b)
$$g(x) = \frac{1}{\sqrt{|x| - x}}$$
.

Solución.

a) Notemos que para todo $x \in \mathbb{R}$ se cumple que $x \leq |x|$, por lo que $|x| - x \geq 0$, y f(x) está siempre bien definida. Luego el mayor dominio posible para la regla de asignación es \mathbb{R} . Ahora notemos que

$$f(x) = \begin{cases} 0 & \text{si } x > 0\\ \sqrt{-2x} & \text{si } x \le 0 \end{cases}.$$

Es claro que $\operatorname{Rec}(f) \subseteq [0, +\infty)$. Afirmamos que se cumple la igualdad. En efecto, sea $b \in [0, +\infty)$. Necesitamos encontrar un $a \in \mathbb{R}$ tal que f(a) = b. Es decir, necesitamos que $\sqrt{-2a} = b$. Despejando a, obtenemos que $a = -\frac{b^2}{2}$. Notemos que $a \le 0$, por lo que $f(a) = \sqrt{-2a} = \sqrt{b^2} = b$, donde la última igualdad se cumple porque $b \ge 0$. Luego $b \in \operatorname{Rec}(f)$, y concluimos que $\operatorname{Rec}(f) = [0, +\infty)$. Notemos que este recorrido sería el mismo incluso si restringiéramos el dominio a $(-\infty, 0]$.

b) Ya vimos que el argumento de la raíz es siempre no negativo, por lo que regla de asignación no está bien definida exactamente cuando el denominador es igual a cero, es decir, cuando x = |x|, que ocurre si y solo si $x \ge 0$. Luego el mayor dominio posible para esta regla de asignación es $(-\infty,0)$. Es claro que $\text{Rec}(g) \subseteq (0,+\infty)$. Para ver que se cumple la igualdad, basta notar que $f(x) = (g(x))^{-1}$, que f(x) toma todos los valores en $(0,+\infty)$ cuando $x \in (-\infty,0)$, y que el conjunto de los inversos multiplicativos de $(0,+\infty)$ es $(0,+\infty)$.

Observación: También se puede justificar el recorrido para la parte b usando un razonamiento similar al expuesto en la parte a.

Criterio de Corrección (CC) Pregunta 1.

- **CC 1.** 1 punto por obtener que para todo $x \in \mathbb{R}$ se cumple que $|x| x \ge 0$.
- ${\bf CC}$ 2. 1 punto por determinar el dominio de f.
- ${\bf CC}$ 3. 1 punto por determinar el dominio de g
- CC 4. 1,5 punto por mostrar que $Rec(f) = [0, +\infty)$
- CC 5. 1,5 punto por mostrar que $\operatorname{Rec}(g) = (0, +\infty)$

2. Considere la regla de asignación

$$r(x) = \frac{5x + 20}{x^2 + 10x + 25}$$

definida en su mayor dominio posible.

- a) Determine, si existen, sus asíntotas verticales.
- b) Determine, si existen, sus asíntotas horizontales.

Solución.

a) Observe que

$$r(x) = \frac{5x + 20}{x^2 + 10x + 25} = \frac{5(x+4)}{(x+5)^2}.$$

Notemos que el denominador tiene como única raíz a x = -5, mientras que el numerador solo se anula en x = -4. Como ambas raíces son distintas, la función tiene una asíntota vertical en x = -5.

b) Como el grado del denominador es mayor que el grado del numerador, la función racional tiene como asíntota horizontal a la recta y=0.

Criterio de Corrección (CC) Pregunta 2.

- CC 1. 3 puntos por justificar que r tiene una asíntota vertical en x = -5.
- CC 2. 3 puntos por justifica que r tiene una asíntora horizontal en y=0.