<u>Bioinformatics Assignment - 3</u>

1. What is Sum-of-Pairs score ?

- · Sum- of-pairs (SP) scoring is the standard scoring method for MSA.
- · It is essentially a cost-weight function, calculated collumn-by-collumn manner, such that each collumn is assumed to be independent.
- · The score is calculated by adding up the scores of all possibble pairs in a collumn
- · Scoring for this method is done using a substitution matrin such as BLOSUM on PAM scoring matrices.
- · The allignment is fixed by maximising the score over all collumns.

Drawbacks of Sum- of - Pairs scoring

- Sum-of-pairs (SP) scoring is largely heuristic and there is no theoretical justification.
- · The score detoriates very quickly, when the number of differences are low (even as low as 1 disagreement).
- · The rapid detorication might lead to incorrect overall allignments.

Alternative scoring system

- · An entropy based scare, vased con scaling and by taking the natural log, can be used instead.
- · This could solve the issue of rapid score detoriation and hence give more accurate allignments.
- · Scores can be calculated as:

$$-\sum_{i} (c_{i}/C) \log (c_{i}/C)$$
, where: $c_{i} = no$. of occurrence of a amino acid in its collumn

& C = no. of different symbols in guen collumn.

· Here minimisation will be done, instead of manimisation

2. Length of residues in each sequence
$$(L) = 50$$

Time taken for alligning N sequences = $(2L)^{N-2} = 10^{2N-4}$ seconds

Now, no. of seconds in 5 billion years =
$$5 \times 10^9 \times 365.25 \times 24 \times 60 \times 60$$

= 1.57788×10^{17} seconds

$$\Rightarrow$$
 No. of sequences that can be alligned = $\left\lfloor \frac{\log \left(1.57788 \times 10^{17}\right) + 4}{2} \right\rfloor$

$$= \left[\begin{array}{c} \log \left(1.5 \mp 188 \right) + 21 \\ 2 \end{array} \right]$$

3. * Initial condition:
$$\alpha_{i_1,i_2,0}$$
, where it is the score of best allignment of the 2 most similar allignments.

* Recursion relation:
$$\alpha_{i_1,i_2,i_3} = \max_{\Delta_1+\Delta_2+\Delta_3>0} \left\{ \alpha_{i_1-\Delta_1,i_2-\Delta_2,i_3-\Delta_3} + S(\Delta_1,\lambda_1,\Delta_2,\lambda_{i_2}^2) \Delta_3 \cdot \lambda_{i_3}^3 \right\}$$

4. * Obtaining the guide tree

o Iteration 1:		\mathcal{S}_{I}	S	Sz	54	
	${\cal S}_1$		3	3	1	
	S,			1	4	/ Matrix
	S				2	(Materix of Matches)
	5,					1
	04					·

Tree: S2

* Obtaining be alignment

· Alignment between S2 & S4

S₂: GTCAGC

S4: GTCTGA

		G	Т	С	Α	G	С	
	0	-1	-2	-3	-4	-5	-6	
G	-1	1	0	-1	- 2	-3	-4	
Т	-2	0	2	_	٥	-1	-2	
С	-3	-1	1	3	2	l	٥	
Т	-4	-2	٥	2	2	١	0	
G	-5	-3	-1	1	ı	3	2	
Α	-6	-4	-2	0	2	2	2	

<u> Alignment between S1 & S3</u>

S1: GAT - TCA

S3: GATAT-T

		G	Α	Т	Α	Т	Т	
	0	-1	-2	-3	-4	-5	-6	
G	-1	1 6	. 0	-1	-2	-3	- 4	
A	- 2	0	2	l	0	-1	-2	
T	-3	_ l	1	3€	- 2	١	0	
Т	-4	-2	٥	2	2	3	2	
c	-5	-3	-1	ı	1	2	2	
Α	-6	-4	- 2	٥	2	1	l	
								Г

· Alignment between S1 & S3 with S2 & S4:

					_					
			GG	ΑА	TT	_ A	TT	C _	АТ	
S1: GAT-TCA		0	-4	- g	-12	-16	-20	-24	-28	
S,: GI-TCAGC	GG	-4	4 €	0 ,	-4	- g	-12	-16	-20	
S3: GATAT-T	TT	- g	0	0	4	0	-4	-8	-12	
S4: G-TCTGA	CC	-12	-4	-4	0	0	-4	-4	-8	
4	AT	-16	- g	-4	0	-1	0	-4	0	
	GG	-20	-(2	- g	-4	-4	-4	-4	-4	
	CA	-24	-16	-(2	-8	- 5	- g	-5	<i>-</i> 5	
	-		-							
										-

* Obtaining be final score [taking s (-,-) = -1]

Collumn
$$4 = -4$$

5. a) hog-odds score for a base b' at the its collumn is given as:

scare
$$(b,i) = log_2\left(\frac{f_{b,i}}{P_b}\right)$$

where, for = frequency of base 'b' at collumn 'i'

Pb = background frequency / probability of b'

Here, we have: Background frequency = 0.25

$$\Rightarrow P_A = P_T = P_G = P_c = 0.25$$

Hence, we get PSSM as:

	Collumn 1	Collumn 2	Collumn 3	Collumn 4
Α	1.26	-1:32	-0.32	-1:32
G	-1:32	1.49	-1:32	-1.32
C	-1.32	-1:32	1.26	-1.32
T	-0.32	-1:32	-1:32	1.49

b.) For each sliding window sequence, the score is given as:

⇒ Scores :

- AGCT : 5.50 GCTA : -5.29
 - · CTAA : -4.29
- c) Based on the scores calculated above, we can calculate ODDS scores for each of the window sequences.

→ ODDS scores:

• TGAG: antilog (-0.48) = 0.716 • GAGC: antilog (-5.29) = 0.025 • AGCT: antilog (5.50) = 45.131 • GCTA: antilog (-5.29) = 0.025 • CTAA: antilog (-4.29) = 0.051

The ODDS score of \underline{AGCT} is maximum & hence this sequence is most probable.

We calculate probability of AGICT sequence as below: