Definitions-Biology

1 Histones

. . .

Hyperaccetlation of the histones leads to unfolding of the chromatin that should facilitate the general accessibility of factors to the DNA [1].

2 Enhancers

An Enhancer is a short (20-400bp,[2]) region of DNA that can be bound with proteins to activate transcription of a gene or genes. These proteins are usually referred to as transcription factors. Enhancers are discrete DNA elements that contain specific sequence motifs with which DNA-binding proteins interact and transmit molecular signals to genes [1].

Enhancers increase transcription of genes in a manner that is independent of their orientation and distance relative to the RNA start site [1]

3 Promoters

Promoters (or core promoters) are located within ± 40 nucleotides from the RNA start site [1].

4 Insulators

5 Promoter-Enhancer Interactions

In the majority of cases, action of enhancers involves enhancer-promoter interaction through proteins bound at the enhancer and promoter, accompanied by formation of an intervening chromatin loop [2].

There are two mechanisms by which enhancer-promoter selectivity might be achieved. First, there could be specific interactions between enhancer binding proteins and factors that interact with the promoter. Second, boundary elements (insulators) could be used to block undesired enhancer-promoter interactions [1].

How might enhancer binding proteins and their associated co-activators establish productive interaction with the promoter? One option is the DNA looping. A "facilitated tracking" mechanism for enhancer function is postulated to allow enhancer bound complex containing DNA-binding factors and co-activators "tracks" via small steps along the chromatin until it encounters the promoter, at which a stable looped structure is formed [1].

References

- [1] Elizabeth M. Blackwood and James T. Kadonaga. Going the distance: A current view of enhancer action. *Science*, 281(5373):60–63, July 1998.
- [2] Olga I. Kulaeva, Ekaterina V. Nizovtseva, Yury S. Polikanov, Sergei V. Ulianov, and Vasily M. Studitsky. Distant activation of transcription: Mechanisms of enhancer action. *Molecular and Cellular Biology*, 32(24):4892–4897, December 2012.