

**Class: Machine Learning** 

Neural Networks: Perceptron

**Instructor: Matteo Leonetti** 

# Learning outcomes



- Define an appropriate error function for the perceptron.
- Derive the corresponding update algorithm.
- Describe the difference between gradient descent and stochastic gradient descent.

## Recap



We want to apply gradient descent:

$$X_{t+1} = X_t - \eta \nabla f(X_t)$$

To the parameters of a perceptron:



So as to minimise an error (or loss) function, such as:

$$E(X) = \sum_{\vec{x}_n \in X} |y_n - t_n|$$

### Number of mistakes



$$E(X) = \sum_{\vec{x}_n \in X} |y_n - t_n|$$

Number of mistakes on the dataset. Piecewise constant  $\rightarrow$  no gradient.



There is no local information on the direction of improvement





For each misclassified point, we would like to know not only that they are on the wrong side, but also **by how much**.



$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 = 0$$



Distance to the hyperplane

$$x = x_p + d \frac{w}{\|w\|}$$

$$h_{w}(x) = w(x_{p} + d\frac{w}{\|w\|}) + w_{0}$$

$$= wx_{p} + w_{0} + d\frac{w^{T}w}{\|w\|} = d\|w\|$$

Recall that:

$$\mathbf{w}^{T} \mathbf{w} = w_{1}^{2} + w_{2}^{2} + \dots + w_{n}^{2} = ||\mathbf{w}||^{2}$$



$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 = d \|\mathbf{w}\|$$

$$E(\boldsymbol{X}) = \sum_{\boldsymbol{x}_n \in \boldsymbol{X}} (\boldsymbol{w}^T \boldsymbol{x}_n + \boldsymbol{w}_0)$$

Is this a good error?





# The perceptron criterion



$$h_w(x) = \mathbf{w}^T x + w_0 = 0$$
 apply the bias input

if 
$$w^T x > 0$$
 then  $y=1$  In case of mistake:  $t=0$   $(y-t)=1$ 

if 
$$\mathbf{w}^T \mathbf{x} \le 0$$
 then  $y=0$  In case of mistake:  $t=1$   $(y-t)=-1$ 

Therefore, if mistake: 
$$\mathbf{w}^T \mathbf{x}(y-t) > 0$$

$$E(\boldsymbol{X}) = \sum_{\boldsymbol{x}_n \in \boldsymbol{X}} |\boldsymbol{y}_n - \boldsymbol{t}_n| \qquad E_p(\boldsymbol{X}) = \sum_{\boldsymbol{x}_n \in \boldsymbol{X}} \boldsymbol{w}^T \boldsymbol{x}_n (\boldsymbol{y}_n - \boldsymbol{t}_n)$$

Number of mistakes on the dataset. Piecewise constant → gradient useless.

Proportional to distance of misclassified points from surface.

→ gradient ok.



## What is the derivative of

$$y=2x$$
 ?



Given the perceptron error (below), what is the gradient with respect to **w**?

$$E_{p}(X) = \mathbf{w}^{T} \mathbf{x} (y-t) = (w_{0} x_{0} + w_{1} x_{1} + w_{2} x_{2} + ... + w_{n} x_{n}) (y-t)$$

#### Solution

$$E_{p}(\mathbf{x}) = \mathbf{w}^{T} \mathbf{x} (y-t) = w_{0} x_{0} (y-t) + w_{1} x_{1} (y-t) + \cdots + w_{m} x_{m} (y-t)$$

$$\nabla E_{p}(x) = \begin{bmatrix} \frac{\partial}{\partial w_{0}} E_{p}(x) \\ \frac{\partial}{\partial w_{1}} E_{p}(x) \\ \frac{\partial}{\partial w_{2}} E_{p}(x) \\ \dots \\ \frac{\partial}{\partial w_{n}} E_{p}(x) \end{bmatrix} = \begin{bmatrix} x_{0}(y-t) \\ x_{1}(y-t) \\ x_{2}(y-t) \\ \dots \\ x_{n}(y-t) \end{bmatrix}$$

#### Gradient descent



$$\nabla E_p(\mathbf{X}) = \sum_{\mathbf{x}_n \in \mathbf{X}} \mathbf{x}_n (y_n - t_n)$$

Recall that gradient descent does the following update:

$$w_{k+1} = w_k - \eta \nabla f(w_k)$$

Which leads us to the update rule for the perceptron:

$$w_{k+1} = w_k - \eta \sum_{x_n \in X} x_n (y_n - t_n)$$

# Stochastic gradient descent



$$E_{p}(\boldsymbol{X}) = \frac{1}{N} \sum_{\boldsymbol{x}_{n} \in \boldsymbol{X}} \boldsymbol{w}^{T} \boldsymbol{x}_{n} (\boldsymbol{y}_{n} - \boldsymbol{t}_{n}) = \boldsymbol{E} [\boldsymbol{w}^{T} \boldsymbol{x}_{n} (\boldsymbol{y}_{n} - \boldsymbol{t}_{n})]$$

**Gradient:** 

$$w_{k+1} = w_k - \eta \frac{1}{N} \sum_{x_n \in X} x_n (y_n - t_n)$$

Stochastic gradient descent:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \mathbf{x} (y-t)$$

# Stochastic gradient descent







# Conclusion

# Learning outcomes



- Define an appropriate error function for the perceptron.
- Derive the corresponding update algorithm.
- Describe the difference between gradient descent and stochastic gradient descent.





Section 3.4



Book in Minerva in "Online Course Readings Folder"

Section 5.2.1, 5.4. and 5.5 (without convergence proof)