

IIC2613 - Inteligencia Artificial

Value Iteration y Q-Learning

Antes de empezar con las técnicas, un poco de notación

Antes de empezar con las técnicas, un poco de notación

La recompensa actúa como una especie de supervisión

which action is better or worse?

 $r(\mathbf{s}, \mathbf{a}, \mathbf{s}')$: reward function \longrightarrow tells us which states and actions are better

high reward

low reward

S, A, r(s, a, s') y p(s'|s, a) definen un proceso de decisión markoviano (MDP)

$$max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} \gamma^{t} R(S_{t}, A_{t}, S_{t+1}) | \pi\right]$$

Comencemos enfrentando esto de manera intuitiva

La idea de "buenos estados" se puede formalizar a través de la función de valor

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

 $V^*(s)$ = suma de las recompensas con descuento al empezar en el estado s y actuar óptimamente

Supongamos acciones siempre exitosas, $\gamma=1$, H=100

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

La idea de "buenos estados" se puede formalizar a través de la función de valor

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

 $V^*(s)$ = suma de las recompensas con descuento al empezar en el estado s y actuar óptimamente

Supongamos acciones siempre exitosas, $\gamma = 0.9$, H = 100

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

La idea de "buenos estados" se puede formalizar a través de la función de valor

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

 $V^*(s)$ = suma de las recompensas con descuento al empezar en el estado s y actuar óptimamente

Supongamos acciones con P = 0.8, $\gamma = 0.9$, H = 100

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

¿Cómo podemos estimar esta función de valor?

 $V_0^*(s)$ = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

 $V_1^*(s)$ = optimal value for state s when H=1

$$V_1^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_0^*(s'))$$

 $V_2^*(s)$ = optimal value for state s when H=2

$$V_2^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1^*(s'))$$

 $V_k^*(s)$ = optimal value for state s when H = k

$$V_k^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_{k-1}^*(s'))$$

Este simple algoritmo es conocido como Value Iteration

Start with $V_0^*(s) = 0$ for all s.

For k = 1, ..., H:

For all states s in S:

$$V_k^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

$$\pi_k^*(s) \leftarrow \arg\max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

Es posible demostrar que este algoritmo converge a la función de valor óptima $V^*(s)$, la cual satisface las ecuaciones de Bellman:

$$\forall s \in S: V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V_0(s) \leftarrow 0$$

$$k = 0$$

	0.00	0.00	0.00	0.00
	0.00		0.00	0.00
	0.00	0.00	0.00	0.00
VALUES AFTER 0 ITERATIONS				

$$V_1(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_0(s'))$$

$$k = 0$$

$$V_2(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1(s'))$$

$$k = 1$$

$$V_2(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1(s'))$$

$$k = 2$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 3$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 4$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 5$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 12$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 100$$

Antes del ver el código, hagamos un ejercicio: términos pareados

- a) Preferir la salida más cercana (+1), pasando cerca del abismo (-10)
- b) Preferir la salida más cercana (+1), evitando completamente el abismo (-10)
- c) Preferir la salida más lejana (+10), pasando cerca del abismo (-10)
- d) Preferir la salida más lejana (+10), evitando completamente el abismo (-10)

1)
$$\gamma = 0.1$$
, $p(error) = 0.5$

2)
$$\gamma = 0.99$$
, $p(error) = 0$

3)
$$\gamma = 0.99 \ p(error) = 0.5$$

4)
$$\gamma = 0.1$$
, $p(error) = 0$

Podemos desagregar la función de valor con respecto a las acciones y ahora estimar la función Q

Bellman Equation:

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma \max_{a'} Q^*(s', a'))$$

Q-Value Iteration:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a)(R(s,a,s') + \gamma \max_{a'} Q_k(s',a'))$$

- La función $Q^*(s,a)$ estima la utilidad esperada partiendo desde s, tomando la acción a y luego actuando óptimamente
- No es evidente en este momento por qué esto sirve de algo

Podemos refinar la función de valor y estimar la función Q

$$Q_{k+1}^*(s,a) \leftarrow \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q_k^*(s',a'))$$

¿Qué limitantes tienen estos métodos de estimación de funciones de valor?

 Ecuaciones requieren la existencia de las probabilidades de transición (modelo dinámico del mundo):

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V^*(s') \right]$$
$$Q^*(s, a) = \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right)$$

 Algoritmo requiere visitar y almacenar una gran cantidad de estados, lo que fuerza a tener una cantidad de estados y acciones manejable.

Q-Learning al rescate

- La función Q nos entrega la solución a ambos problemas.
- Al desacoplar la optimalidad del estado y la acción, es posible utilizar un enfoque de muestreo, cambiando las transiciones por un valor esperado:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a)(R(s,a,s') + \gamma \max_{a'} Q_k(s',a'))$$

$$Q_{k+1} \leftarrow \mathbb{E}_{s' \sim P(s'|s,a)} \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning al rescate

```
Start with Q_0(s,a) for all s, a.
Get initial state s
For k = 1, 2, ... till convergence
       Sample action a, get next state s'
       If s' is terminal:
             target = R(s, a, s')
             Sample new initial state s'
       else:
      target = R(s, a, s') + \gamma \max_{a'} Q_k(s', a')Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha \text{ [target]}
       s \leftarrow s'
```

La pregunta es ahora cómo muestrear

- Esta es la madre de todas las batallas: exploration vs exploitation
- En otras palabras, ¿elijo la acción optima de acuerdo a $Q_k(s,a)$, o busco nuevas posibilidades?
- En la práctica se utiliza una técnica mixta, ϵ -Greedy: acción al azar con probabilidad ϵ , en otro caso, acción que maximiza $Q_k(s,a)$.

Propiedades de Q-learning

- El principal resultado de Q-Learning es que converge a una política óptima, a pesar de actuar de manera subóptima.
- En otras palabras, desacopla exploración de optimización: off-policy learning.
- Requiere mucha exploración y ajustes cuidadosos del learning rate, pero funciona.

https://youtu.be/AMnW-OsOcl8

IIC2613 - Inteligencia Artificial

Value Iteration y Q-Learning