

Principal Schematic for HTPA8x8:

Order Code Example

For modules, M(UART) and M(LC) are not recommended anymore. M(SPI) and M(UDP) offer a wider input voltage range, better ADC resolution and a wider measurement range.

Pin Assignment in TO39 – Bottom View:

Connect all reference voltages via 100 nF capacitors to VSS.

Pin	Pin Assignment 8x8							
Pin	Name	Description	Туре					
1	VSS	Negative power supply voltage	Power					
2	VDD	Positive power supply voltage	Power					
3	OUT_A	Analog Output	Analog Output					
4	VCM_C	Common mode voltage	Reference Voltage*					
5	DATA_IO	Data input/output for SPI	Digital Input/Output					
6	CONT	Control Pin for SPI	Digital Input					
7	SCLK_IO	Clock input/output for SPI	Digital Input/Output					
8	VSAM	Valid sample	Digital Output					
9	CLK_1MHZ	Master clock	Digital Input					

^{*)} Connect via 100 nF to VSS

Optical Orientation of Pixels:

Internal Register Map 8x8:

Num	Name	Function	Notes
0	R	Reset	1: Mux-Pixel-Counter on reset
'(2:1)	OPCTL(1:0)	Selection of operating point	00: VrefN
		Reference choice at SCLP	01: CM
			10: VrefP
'(9:3)	MA(6:0)	Adress for static pixel selection	
10	AIM	Adress Increment Mode	0: adress = MA
			1: auto adress inrement
11	AMP	Amplification	1: high amplification
14	SDL	SCLK Divider Low	different clock dividers for
15	SDH	SCLK Divider High	operating SCLK
		3	SCLK = MCLK / 2, 4, 8

Characteristics:

Common Specifications:

• Number of Thermocouples 80

Technology n-poly/p-poly Si
 Element Resistance approx. 80 kOhms

• Sensitivity approx. 75 V/W without optics and filter

Thermal Pixeltime constant <4 ms

• MUX preamplifier noise approx. 30 nV/ $\sqrt{\text{Hz}}$ • Pixel + amplifier noise approx. 50 nV/ $\sqrt{\text{Hz}}$

Digital Interface SPIAnalog Output Yes

• 2 point selectable Gains 2640x / 7920 x

Pitch 300 µm
Absorber size 220 µm
Max. Framerate (without Averaging)

• 4 internal Amps + MUX

• 64 sensitive elements

Optical characteristics:

• Focal length: 2.1 mm ("L" equals the focal length of the lens)

F-Number: 0.85
 Field of view: 70°

• lens coating: AR-Coating; average reflectance per surface

< 3% for $8\mu m < \lambda < 11.5\mu m$

Environment acc. for MIL-C-48497

HEIMANN Sensor GmbH

Maria-Reiche-Str. 1 D-01109 Dresden / Germany Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39 Internet

www.heimannsensor.com mail: info@heimannsensor.com

Electric Specifications:

Absolute Maximum Ratings:

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		-0.5		6	V
Voltage at All inputs and outputs	V _{IO}		-0.5		V _{CC} +0.5	V
Storage Temperature	T_{STG}		-30		125	Deg. C

Operating Conditions:

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		4.5		5.5	V
Operation Temperature	T_A		0		85	Deg. C
ESD-Protection		Human body model	1.5			kV
		100pF + 1k5Ohm				K V

Electrical Characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Digital Input							
Frequency of MCLK	MCLK		100k	1M	TBD	Hz	
Input voltage high	V_{IH}		Vdd-1.2			V	
Input voltage low	V_{IL}				1.2	V	
Operating Frequency	f_{OP}	CLK_1MHz	100k	1M	TBD	Hz	
PTAT							
Temperature range			0		85	Deg. C	
PTAT value@ -20°C				TBD		V	
PTAT value@100°C				TBD		V	
Signal Processing							
First amplifier stage gain	G0		TBD	880	TBD	V/V	
Second amplifier stage gain	G1	AMPL=0	TBD	3	TBD	V/V	
Second amplifier stage gain	G1	AMPL=1	TBD	9	TBD	V/V	
Analog path Output ripple	V_{PPSENS}	CLK_1MHz	65	91	120	mV	
Temp. coefficient Thermopile path output voltage	TCO _{OUTA}		TBD	ı	TBD	mV/K	
VoltageReference							
VREF_1225	V_{REF}	$V_{CC}=5V$, $T_{amb}=25$ °C	1.2	1.225	1.25	V	
Temp. coeff. of V _{REF}	TC_{REF}		35	100	156	ppm/K	

Electrical Characteristics (continued)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Analog Output							
Output voltage swing	V_{OUTA}	load 10kOhm	0.5		V _{CC} -0.8	V	
Power supply rejection ratio	P_{SRR}	AMPL=0 VDD<5V	-16			dB	
Output current limit	I_{OUTA}	OUT_A	0.15			mA	
General Parameters	General Parameters						
Overall current consumption	I_{DD}	CLK_1MHz=1MHz 25° C	4.5	4.8	5.3	mA	
Start up time	T_{POR}	Power On to first VSAM transition			805	cycles	

Timings HTPA8x8:

Sample Timing HTPA8x8

For the HTPA 8x8 every analogous voltage has 2 stable domains, as shown above.

Serial Transmission:

HTPA8x8 Serial Transmission of analogue data

Off0...OffY Electric offset of amplifier 0 to amplifier Y Pix0...PixX Amplified pixel voltage of Pixel0 to PixelX

PTA0...PTAY PTAT-Signal

Constants for array types:

Type 8x8:

Y=3

X = 63

The numeration of the pixels is in all cases line by line.

SPI Communication:

Data sampled at rising edge of SCLK, MSB first.

In case of ASIC as master device the frequency of the SCLK_IO is equal to the frequency of MCLK/2.

HTPA8x8:

The four MSB's signify the row address of the current pixel, the other bits describe the ADC-result. The ADC result has a large offset and therefore is not accurate. However, it might be used for movement detection or other applications, which not require absolute temperature measurements.

The output drivers for SCLK_IO and DATA_IO are enabled by CONT.

If CONT is low the data can be written serially from external controller through DATA_IO. In that case the external controller has to wait a minimum delay time, until SCLK_IO and DATA_IO output drivers are disabled. After programming, the positive slope of CONT stores the contents, when the number of SCLK-pulses is equal 16. While the output driver of the ASIC is disabled a weak pull up ensures that the SCLK_IO pin is at high level. To execute a reset command, the μ C has to write a logical "1" to the R-Bit in to configuration and afterwards a "0" into the R-bit, which requires two write cycles in this special case.

Serial Read from ASIC

Serial Write to ASIC

Dimensions:

HEIMANN Sensor GmbH Maria-Reiche-Str. 1 D-01109 Dresden / Germany Contact / Customer Support Phone 49 (0) 6123 60 50 30 Fax 49 (0) 6123 60 50 39

Internet

www.heimannsensor.com mail: info@heimannsensor.com