

EULER-MACLAURIN FORMULA FOR THE MULTIPLICITIES OF THE INDEX OF TRANSVERSALLY ELLIPTIC OPERATORS

MICHÈLE VERGNE

ABSTRACT. Let G be a connected compact Lie group acting on a manifold M and let D be a transversally elliptic operator on M . The multiplicity of the index of D is a function on the set \hat{G} of irreducible representations of G . Let T be a maximal torus of G with Lie algebra t . We construct a finite number of piecewise polynomial functions on t^* , and give a formula for the multiplicity in term of these functions.

1. INTRODUCTION

Let G be a compact connected Lie group acting on a manifold M . Atiyah-Singer [1] have associated to any G -transversally elliptic pseudo-differential operator D on M a virtual trace class representation of G :

$$\text{Index}(D) = \sum_{\lambda \in \hat{G}} \text{mult}(D)(\lambda) V_\lambda.$$

If D is elliptic, the preceding sum of irreducible representations V_λ of G is finite. As shown in [1], the computation of the function $\text{mult}(D) : \hat{G} \rightarrow \mathbb{Z}$ can be reduced to the case where G is a torus.

Thus we assume that G is a torus with Lie algebra \mathfrak{g} , and parameterize the irreducible representations of G by the lattice $\Lambda \subset \mathfrak{g}^*$ of characters of G . Assume, in this introduction, that the stabilizer of any point of M is connected. We construct a particular “spline” function m on \mathfrak{g}^* , extending the function $\text{mult}(D)$ in a piecewise polynomial function on \mathfrak{g}^* . The construction of the function m is based on the notion of infinitesimal index [8] and is canonically associated to the equivariant Chern character $\text{ch}(\sigma)$ of the principal symbol σ of D .

A trivial example is when G acts on $G = M$ by left translations and D is the operator 0 , with index

$$L^2(G) = \sum_{\lambda \in \Lambda} e^{i\lambda}.$$

Then the function $\text{mult}(D)$ is identically equal to 1 on Λ , and extended by the constant function $m = 1$.

The construction of m was the object of the article [7], in the case where M is a vector space with a linear action of G . In this note, we just state the results. Our proofs are very similar to those of [7]. We use results of [1] (see

also [9]) on generators of the equivariant K -theory. Then our main tool is (as in [7]) the Dahmen-Micchelli inversion formula for convolution with the box spline, a “Riemann-Roch formula” for approximation theory ([5], see [7]).

Let us briefly explain the origin of our construction. Denote by $\text{Index}(D)(g)$ the corresponding generalized function.

$$\text{Index}(D)(g) = \sum_{\lambda \in \hat{G}} \text{mult}(D)(\lambda) \text{Tr}_{V_\lambda}(g)$$

on G . Recall the formula

$$(1) \quad \text{Index}(D)(\exp X) = \frac{1}{(2i\pi)^{\dim M}} \int_{T^*M} \frac{\text{ch}(\sigma)(X)}{J(M)(X)},$$

obtained in ([4], [3]), a ”delocalized” version of Atiyah-Bott-Segal-Singer equivariant index formula. Here the inverse of $J(M)$ is the equivariant Todd class of T^*M (considered as an almost complex manifold). The formula above is valid when X varies in a neighborhood of 0 in the Lie algebra \mathfrak{g} of G as an equality of generalized functions of X .

Here we replace the equivariant class $J(M)$ by its formal series of homogeneous components. By Fourier transform, we obtain a series of generalized functions on \mathfrak{g}^* . In a limit sense explained in this note, the restriction of this series to Λ coincides with the function $\lambda \rightarrow \text{mult}(D)(\lambda)$.

In a subsequent note, we will give a geometric interpretation of the piecewise polynomial function m , when D is a Dirac operator twisted by a line bundle L in term of the moment map associated to an equivariant connection on L .

I thank Michel Duflo, and Corrado de Concini for comments on this text.

2. TRANSVERSALLY ELLIPTIC SYMBOLS

Let G be a compact Lie group. Let M be a G -manifold, and T^*M its cotangent bundle. We denote by $p : T^*M \rightarrow M$ the projection.

Let ω be the Liouville one form: for $x \in M$, $\xi \in T_x^*M$ and V a tangent vector at the point $(x, \xi) \in T^*M$, $\omega_{x,\xi}(V) = \langle \xi, p_*V \rangle$. By definition, the symplectic form $\Omega = -d\omega$ is the symplectic form of T^*M , and we use the corresponding orientation of T^*M to compute integrals on T^*M of differential forms with compact support.

Let \mathcal{E}^\pm be two G -equivariant complex vector bundles over M . A G -equivariant bundle map $\sigma : p^*\mathcal{E}^+ \rightarrow p^*\mathcal{E}^-$ will be called a symbol. The support $\text{supp}(\sigma) \subset T^*M$ of σ is the set of elements $n \in T^*M$ such that the linear map $\sigma(n) : \mathcal{E}_{p(n)}^+ \rightarrow \mathcal{E}_{p(n)}^-$ is not invertible. An elliptic symbol is a symbol such that $\text{supp}(\sigma)$ is compact.

Denote by $T_G^*M \subset T^*M$ the union of the space of covectors conormal to the G orbit through x . If $X \in \mathfrak{g}$, we denote by v_X the vector field on N generated by $-X \in \mathfrak{g}$. Let $\mu : T^*M \rightarrow \mathfrak{g}^*$ be the moment map

$\langle \mu(x, \xi), X \rangle = -\langle \xi, v_X \rangle$. Then the zero fiber $Z = \mu^{-1}(0)$ of the moment map μ is the space T_G^*M . If the support of the symbol σ intersects Z in a compact set, we say that σ is a transversally elliptic symbol (it is elliptic in the directions transverse to the G -orbits). Then σ determines an element in the topological equivariant K group $K_G^0(Z)$, still denoted by σ .

If D is a pseudo-differential operator with principal symbol σ , we say that D is transversally elliptic if its principal symbol is transversally elliptic. The index of D depends only of the class of $\sigma \in K_G^0(Z)$.

Atiyah-Singer [1] have associated to any transversally elliptic symbol σ a virtual trace class representation of G :

$$\text{Index}(\sigma) = \sum_{\lambda \in \hat{G}} \text{mult}(\sigma)(\lambda) V_\lambda.$$

If σ is elliptic, the preceding sum of irreducible representations V_λ of G is finite. By construction, if D is a pseudo-differential operator with principal symbol σ , then $\text{Index}(D) = \text{Index}(\sigma)$ (and $\text{mult}(D) = \text{mult}(\sigma)$).

Let us give examples of such operators.

Example 2.1. Elliptic operators are transversally elliptic. If M is an even dimensional compact manifold and is oriented, then, up to stable homotopy, any elliptic symbol is the principal symbol of a twisted Dirac operator.

Example 2.2. Let $M = G$ and let $H \subset G$ be a compact connected subgroup of G . Then the 0 operator is transversally elliptic with respect to the action of $G \times H$, acting by left and right multiplication, and $\text{Index}(0) = \sum_{\lambda \in \hat{G}, \mu \in \hat{H}} m(\lambda, \mu) V_\lambda^G \otimes V_\mu^H$, where $m(\lambda, \mu)$ is the multiplicity of the irreducible representation V_μ^H of H in the irreducible representation $(V_\lambda^G)^*$ of G .

Example 2.3. Let M be a compact manifold and let G be a group acting on M , and such that G acts infinitesimally freely on M . Then M/G is an orbifold. Let σ be a G -transversally elliptic symbol on M . Denote by λ_0 the trivial representation of G . If D is a G -invariant operator with principal symbol σ , $\text{mult}(\sigma)(\lambda_0)$ is the index of the elliptic operator associated to D on the orbifold M/G .

Example 2.4. Let V be a Hermitian vector space and G a subgroup of $U(V)$. Let c be the Clifford representation of V^* in the superspace $E = \Lambda V^*$.

Consider the moment map $\Phi : V \rightarrow \mathfrak{g}^*$. Assume $\Phi^{-1}(0) = \{0\}$. Identify the Kirwan vector field associated to the moment map Φ to a G -invariant one form λ on V . Then the pushed symbol $\sigma(v, \xi) = c(\xi + \lambda_v)$ is a transversally elliptic symbol on V . The function $\text{mult}(\sigma)(\lambda)$ is the multiplicity of the representation V_λ of G in the space $S(V^*)$ of polynomial functions on V (see [6]). In particular, if G is a torus, then $\lambda \mapsto \text{mult}(\sigma)(\lambda)$ is the vector partition function associated to the list of weights of G in V .

3. DEFINITIONS

3.1. Equivariant cohomology. Let G be a compact Lie group, with Lie algebra \mathfrak{g} , acting on a manifold N . Let $\mathcal{A}(N)$ be the space of differential forms on N . If $X \in \mathfrak{g}$, we denote by ι_X the contraction of a differential form on N by v_X . Let $D = d - \iota(v_X)$ be the equivariant differential. In the Cartan model, a representative of an element of the equivariant cohomology $H_G^*(N)$ is an equivariant form $\alpha : \mathfrak{g} \rightarrow \mathcal{A}(N)$ such that $D(\alpha) = 0$. The dependance of α in $X \in \mathfrak{g}$ is polynomial. Then $H_G^*(N)$ is a \mathbb{Z} -graded algebra.

Let q be a formal variable. If F is a vector space and $f([q]) = \sum_{k=0}^{\infty} q^k f_k$ is a formal series of elements of F , we write $f \in F[[q]]$. If $f(q, x)$ is a smooth function of q , defined near $q = 0$, and depending of some parameters x , we denote by $f([q], x) = \sum_{k=0}^{\infty} q^k f_k(x)$ its Taylor series at $q = 0$, a formal series of functions of x . If the series $f([q])$ is finite, we write $f([1])$ of $f([q])_{q=1}$ for the sum $\sum_k f_k$.

We introduce formal series

$$\alpha([q], X) = \sum_{k=0}^{\infty} q^k \alpha_k(X)$$

of equivariant forms on N . If the constant term β_0 of $\beta([q], X) = \sum_{k=0}^{\infty} q^k \beta_k(X)$ is a non zero constant, we can define the formal series $\alpha([q], X)/\beta([q], X)$. If N is oriented, we can integrate such series against any equivariant form $c(X)$ with compact support, and obtain a formal power series $\int_N c(X) \alpha([q], X) = \sum_{k=0}^{\infty} q^k \int_N c(X) \alpha_k(X)$ of functions of $X \in \mathfrak{g}$.

If Z is a G -invariant closed subset of N , we have defined in [8] a Cartan model for the space $H_{G,c}^{\infty}(Z)$ of equivariant cohomology with compact supports. A representative is an equivariant form $\alpha : \mathfrak{g} \rightarrow \mathcal{A}_c(N)$ such that $D(\alpha) = 0$ in a neighborhood of Z . Here $\mathcal{A}_c(N)$ is the space of differential forms with compact supports and the dependance of α in X is C^{∞} .

Let M be a G -manifold, T^*M its cotangent bundle and $Z = T_G^*M$. If α is an equivariant cohomology class on M , its pull back $p^*\alpha$ is an equivariant cohomology class on T^*M , that we denote simply by α .

Let $\sigma : p^*\mathcal{E}^+ \rightarrow p^*\mathcal{E}^-$ be a transversally elliptic symbol. Choosing G -invariant connections on $p^*\mathcal{E}^{\pm}$, coinciding via σ outside a small neighborhood of $\text{supp}(\sigma)$, we can construct the equivariant Chern character $\text{ch}(\sigma) \in H_{G,c}^{\infty}(Z)$ of σ , an equivariant cohomology class, represented by a differential form with compact support on T^*M , still denoted by $\text{ch}(\sigma)$.

Let $\mathcal{V} \rightarrow M$ be a real or complex vector bundle on M with typical fiber a vector space V . The Chern-Weil map W associates to an invariant polynomial f on $\text{End}(V)$ an equivariant characteristic class $W(f)$ in $H_G^*(M)$. If f is homogeneous of degree k , then $W(f)$ is homogeneous of degree $2k$. Our conventions for the Chern-Weil homomorphism W and the Chern character are as in [2].

Let $A \in \text{End}(V)$. Introduce a variable q , and consider the Taylor expansion

$$\det_V \left(\frac{e^{qA} - 1}{qA} \right) = \sum_{k=0}^{\infty} q^k T_k(A) = 1 + \frac{q}{2} \text{Tr}(A) + \dots$$

Thus T_k is an invariant homogeneous polynomial of degree k on $\text{End}(V)$.

Our main new concept is the introduction of the following formal equivariant characteristic class of M .

Definition 3.2. The formal J -class of M is the series of elements of $H_G^*(M)$ defined by

$$J([q], M) = \sum_{k=0}^{\infty} q^k W(T_k)$$

obtained by applying the Chern-Weil map for the real vector bundle $\mathcal{V} = TM \rightarrow M$ to the series $\det_V \left(\frac{e^{qA} - 1}{qA} \right) = \sum_{k=0}^{\infty} q^k T_k(A)$.

Here $W(T_k)$ is homogeneous of degree $2k$.

When $G = \{1\}$, then $p^*J([1], M) = J(M)$ is the inverse of the usual Todd class of the tangent bundle to T^*M (considered as an almost complex manifold). Furthermore, if σ is elliptic, Atiyah-Singer formula for $\text{Index}(\sigma) \in \mathbb{Z}$ is

$$\text{Index}(\sigma) = \frac{1}{(2i\pi)^{\dim M}} \int_{T^*M} \frac{\text{ch}(\sigma)}{J(M)}.$$

3.3. Piecewise polynomial generalized functions. In this subsection, G is a torus.

Let $V = \mathfrak{g}^*$ equipped with the lattice $\Lambda \subset \mathfrak{g}^*$ of weights of G . If $g = \exp X$, we denote by $g^\lambda = e^{i\langle \lambda, X \rangle}$. The function $g \mapsto g^\lambda$ is a character of G .

We denote by $\mathcal{C}(\Lambda)$ the space of (complex valued) functions on Λ . If $g \in G$, we denote by \hat{g} the function $g \rightarrow g^\lambda$ on Λ . If $m \in \mathcal{C}(\Lambda)$, then $\hat{g}m \in \mathcal{C}(\Lambda)$ is defined by $(\hat{g}m)(\lambda) = g^\lambda m(\lambda)$.

Using the Lebesgue measure $d\xi$ associated to Λ , we identify generalized functions on \mathfrak{g}^* and distributions on \mathfrak{g}^* . Let f be a test function on \mathfrak{g}^* , we define $\hat{f}(X) = \int_{\mathfrak{g}^*} e^{i\langle \xi, X \rangle} f(\xi) d\xi$. The Lebesgue measure dX on \mathfrak{g} is such that the Fourier inversion $\int_{\mathfrak{g}} e^{-i\langle \xi, X \rangle} \hat{f}(X) dX = f(\xi)$ holds. If h is a generalized function on \mathfrak{g}^* , we denote by $\int_{\mathfrak{g}^*} h(\xi) f(\xi) d\xi$ its value on the test function f . We denote by δ_v the Dirac function at the point $v \in V$.

Let \mathcal{H} be a finite collection of rational hyperplanes in \mathfrak{g}^* . An element of \mathcal{H} will be called an admissible hyperplane. An element $v \in V$ is called \mathcal{H} -generic if v is not on any hyperplane of the collection \mathcal{H} . We just say that v is generic.

An admissible wall is a translate of an hyperplane in \mathcal{H} by an element of Λ . A *tope* τ is a connected component of the complement of all admissible walls and we denote by V_{reg} the union of topes.

A piecewise polynomial function is a function on V_{reg} which is given by a polynomial formula on each tope. We denote by PW the space of piecewise polynomial functions.

Consider $f \in PW$ (defined on V_{reg}) as a locally L^1 -function on V , thus f defines a generalized function on V . An element of PW , considered as a generalized function on V , will be called a piecewise polynomial generalized function.

Definition 3.4. The space \mathcal{S} is the space of generalized functions on V generated by the action of constant coefficients differential operators on piecewise polynomial generalized functions.

For example, the Heaviside function on \mathbb{R} is a piecewise polynomial function. Its derivative in the sense of generalized functions is the Dirac function at 0.

A function in \mathcal{S} can be evaluated at any point of V_{reg} . If $v \in V$, and ϵ is a generic vector, then $v + t\epsilon$ is in V_{reg} if $t > 0$ and sufficiently small.

Definition 3.5. Let $v \in V$, and $f \in \mathcal{S}$. Let ϵ a generic vector. Define $(\lim_\epsilon f)(v) = \lim_{t>0, t \rightarrow 0} f(v + t\epsilon)$.

Remark that this definition depends only of the restriction of f to V_{reg} .

Introduce formal series $m([q]) = \sum_{k=0}^{\infty} q^k m_k$ of generalized functions on V . Then if f is a test function

$$\int_{\mathfrak{g}^*} m([q])(\xi) f(\xi) d\xi = \sum_{k=0}^{\infty} q^k \int_{\mathfrak{g}^*} m_k(\xi) f(\xi) d\xi$$

is a formal power series in q . It may be evaluated at $q = 1$ if the preceding series is finite (or convergent).

If ϵ is generic, we define a map $\lim_\epsilon^\Lambda : \mathcal{S}[[q]] \rightarrow \mathcal{C}(\Lambda)[[q]]$ by

$$(\lim_\epsilon^\Lambda m([q]))(\lambda) = \sum_{k=0}^{\infty} q^k (\lim_\epsilon m_k)(\lambda).$$

If all, but a finite number, the functions m_k are equal to 0 on V_{reg} , then $\lim_\epsilon^\Lambda m([q])|_{q=1}$ is an element of $\mathcal{C}(\Lambda)$.

Formal series of distributions occur naturally in the context of Euler-MacLaurin formula.

3.6. Fourier transforms of equivariant integrals. In this section, G is a torus acting on a manifold M , $V = \mathfrak{g}^*$ and $Z = T_G^*M$. We assume that M admits a G -equivariant embedding in a vector space provided with a linear representation of G . For $x \in M$, denote by $\mathfrak{g}_x \subset \mathfrak{g}$ the infinitesimal stabilizer of $x \in M$. We assume that the generic infinitesimal stabilizer for the action of G on M is equal to 0. We denote by \mathcal{I}^1 the set of infinitesimal stabilizers of dimension 1. Let \mathcal{H} be the finite collection of hyperplanes ℓ^\perp where the line ℓ varies in \mathcal{I}^1 . Let \mathcal{S} be the corresponding space of generalized functions on $V = \mathfrak{g}^*$.

Consider a transversally elliptic symbol σ . We then use the notion of infinitesimal index to perform the integration on T^*M .

If α is a closed equivariant form with **polynomial** coefficients, and f a test function on \mathfrak{g}^* , the double integral

$$\int_{T^*M} \int_{\mathfrak{g}} e^{isD\omega(X)} \text{ch}(\sigma)(X) \alpha(X) \hat{f}(X) dX$$

is independent of $s \in \mathbb{R}$, for s positive and sufficiently large. We denote it by

$$\int_{T^*M} \int_{\mathfrak{g}} \text{ch}(\sigma)(X) \alpha(X) \hat{f}(X) dX.$$

Definition 3.7. If σ is a transversally elliptic symbol and α is a closed equivariant form with **polynomial** coefficients, we define the generalized function $m(\sigma, \alpha)$ on \mathfrak{g}^* so that

$$\int_{T^*M} \int_{\mathfrak{g}} \text{ch}(\sigma)(X) \alpha(X) \hat{f}(X) dX = \int_{\mathfrak{g}^*} m(\sigma, \alpha)(\xi) f(\xi) d\xi$$

for any test function $f(\xi)$ on \mathfrak{g}^* .

Then $m(\sigma, \alpha)$ depends only of the cohomology class of α (still denoted by α).

Proposition 3.8. • The generalized function $m(\sigma, \alpha)$ belongs to \mathcal{S} .

• If α is an homogeneous equivariant class of degree $2k$, then $m(\sigma, \alpha)$ restricts to a polynomial of degree less or equal to $\dim M - \dim G - k$ on each connected component of V_{reg} . In particular, when k is greater than $\dim M - \dim G$, $m(\sigma, \alpha)$ restricts to 0 on V_{reg} .

4. THE ELLIPTIC CASE

Let G be a torus acting on a connected manifold M . To explain the flavor of our formula, we assume that σ is an elliptic symbol and we make a further simplification. We assume that the stabilizer of any point of M is connected and that the generic stabilizer is trivial.

We write

$$\text{Index}(\sigma) = \sum_{\lambda \in \Lambda} \text{mult}(\sigma)(\lambda) e^{i\lambda}$$

with $\text{mult}(\sigma) \in \mathcal{C}(\Lambda)$.

To the elliptic symbol σ , we associate a series $m([q], \sigma)$ of generalized functions on \mathfrak{g}^* .

Definition 4.1. Define $m([q], \sigma) = \sum_{k=0}^{\infty} q^k m_k$ to be the series of generalized functions on \mathfrak{g}^* such that, for any test function f on \mathfrak{g}^* ,

$$(2) \quad (2i\pi)^{-\dim M} \int_{T^*M} \int_{\mathfrak{g}} \frac{\text{ch}(\sigma)(X)}{J([q], M)(X)} \hat{f}(X) dX = \int_{\mathfrak{g}^*} m([q], \sigma)(\xi) f(\xi) d\xi.$$

All distributions m_k are compactly supported, as we are in the elliptic case. The restriction of m_k to each connected component of V_{reg} is a polynomial of degree less or equal to $\dim M - \dim G - k$.

Compare with Formula (1) (for D with principal symbol σ). The equivariant form $\frac{\text{ch}(\sigma)(X)}{J([q], M)(X)}$ is for $q = 1$ equal to $\frac{\text{ch}(\sigma)(X)}{J(M)(X)}$. The left hand side of the equality (2) cannot be evaluated for $q = 1$, as $J(M)(X)$ is not invertible for X large. Here comes the miracle. The right hand side can be evaluated at $q = 1$, when restricted to Λ and we have the following theorem.

Theorem 4.2. *For any generic vector ϵ ,*

$$\text{mult}(\sigma) = \lim_{\epsilon}^{\Lambda} m([q], \sigma)|_{q=1}.$$

When f is a polynomial, $\hat{f}(X)$ is supported at 0, and the two formulae (1), (2) coincide at $q = 1$, thus we have the following Euler-MacLaurin formula.

Theorem 4.3. *For any polynomial function f on \mathfrak{g}^* , $\int_{\mathfrak{g}^*} m_k(\xi) f(\xi) d\xi$ is equal to 0 when k is sufficiently large, and*

$$\sum_{\lambda} \text{mult}(\sigma)(\lambda) f(\lambda) = \sum_{k=0}^{\infty} \int_{\mathfrak{g}^*} m_k(\xi) f(\xi) d\xi.$$

Let us give a simple example. Let $M = P_1(\mathbb{C})$, let A be a non negative integer and $\bar{\partial}_A$ the $\bar{\partial}$ operator on sections of \mathcal{L}^A , where \mathcal{L} is the dual of the tautological bundle. Let S^1 be the circle group with generator J , acting on $[x, y] \in P^1(\mathbb{C})$ by $\exp(\theta J)[x, y] = [e^{i\theta}x, y]$. Here $[x, y]$ are the homogeneous coordinates on $P_1(\mathbb{C})$. Then

$$\text{Index}(\bar{\partial}_A)(\exp(\theta J)) = \sum_{d=0}^A e^{id\theta}.$$

We identify \mathfrak{g}^* with \mathbb{R} and Λ with \mathbb{Z} . The multiplicity function $\text{mult}(\bar{\partial}_A)$ is such that $\text{mult}(\bar{\partial}_A)(n) = 1$ if $0 \leq n \leq A$, otherwise is equal to 0.

Consider the function

$$F(q, \theta) = \frac{(1 - e^{-i\theta})}{(1 - e^{iq\theta})(1 - e^{-iq\theta})} + \frac{e^{iA\theta}(1 - e^{i\theta})}{(1 - e^{iq\theta})(1 - e^{-iq\theta})}.$$

The Taylor series $F([q], \theta)$ is a series of analytic functions of θ and it follows from the localisation formula on $T^*P_1(\mathbb{C})$ that, for $X = \theta J$,

$$(2i\pi)^{-\dim M} \int_{T^*M} \frac{\text{ch}(\sigma)(X)}{J([q], M)(X)} = F([q], \theta).$$

Let us write the first terms of the expansion of $F([q], \theta)$. This is

$$(e^{iA\theta} + 1 - e^{i(A+1)\theta} - e^{-i\theta})(-\frac{1}{i^2\theta^2} + \frac{1}{12}q^2 - \frac{1}{240}i^2\theta^2q^4 + \frac{1}{6048}i^4\theta^4q^6 + \dots)$$

FIGURE 1. $m_0(\xi)$ for $A = 3$

The Fourier transform of $F([q], \theta)$ is the series of generalized functions

$$m([q], \xi) = \sum_{k=0}^{\infty} q^k m_k(\xi).$$

We see that only $m_0(\xi)$ is non zero on $\mathbb{R} \setminus \mathbb{Z}$, and given by the piecewise polynomial function

$$m_0(\xi) = \begin{cases} 0 & \xi \leq -1 \\ \xi + 1 & -1 \leq \xi \leq 0 \\ 1 & 0 \leq \xi \leq A \\ (A+1) - \xi & A \leq \xi \leq A+1 \\ 0 & (A+1) \leq \xi \end{cases}$$

Remark that $m_0(\xi)$ continuous and coincide with the function $\text{mult}(\bar{\partial}_A)$ on \mathbb{Z} . This is the content of Theorem 4.2.

We can compute further terms of the expansion,

$$m([q], \xi) = m_0(\xi) + \frac{q^2}{12}(\delta_0 + \delta_A - \delta_{-1} - \delta_{A+1}) - \frac{q^4}{240}\left(\frac{d}{d\xi}\right)^2(\delta_0 + \delta_A - \delta_{-1} - \delta_{A+1}) + \dots$$

Then for any polynomial function f , we obtain a version of Euler-MacLaurin formula:

$$\sum_{d=0}^A f(d) = \int_{\mathbb{R}} f(\xi) m_0(\xi) d\xi$$

$$+ \frac{1}{12}(f(0) + f(A) - f(-1) - f(A+1)) - \frac{1}{240}(f''(0) + f''(A) - f''(-1) - f''(A+1)) + \dots$$

This is the content of Theorem 4.3.

5. THE GENERAL FORMULA FOR A TORUS

Let G be a torus acting on M . The collection of hyperplanes \mathcal{H} in \mathfrak{g}^* is as in Subsection 3.6 and $Z = T_G^*M$.

Let $\sigma \in p^*\mathcal{E}^+ \rightarrow p^*\mathcal{E}^-$ be a transversally elliptic symbol on M . We assume that the generic infinitesimal stabilizer for the action of G on M is equal to 0. We can always reduce the problem to this case.

For $g \in G$, denote by $M^g = \{x \in M; gx = x\}$. This is a manifold, which might not be connected. We say that g is a vertex if there exists $x \in M^g$ with a finite stabilizer under the action of G (if stabilizers are all connected, then the only vertex is $g = 1$). We denote by $\mathcal{V}(M)$ the set of vertices of the action of G on M . This is a finite subset of G .

Let $g \in G$. Then g acts by a fiberwise transformation on $\mathcal{E}^\pm \rightarrow M^g$ still denoted g . The morphism σ commutes with g over T^*M^g . The equivariant twisted Chern character $\text{ch}^g(\sigma)$ is defined in [7] as an element of $H_{G,c}^\infty(Z^g)$.

If $\alpha \in H_G^*(M^g)$, we can define a generalized function $m(g, \sigma, \alpha)$ on \mathfrak{g}^* by the formula

$$\int_{T^*M^g}^\omega \int_{\mathfrak{g}} \text{ch}^g(\sigma)(X) \alpha(X) \hat{f}(X) dX = \int_{\mathfrak{g}^*} m(g, \sigma, \alpha)(\xi) f(\xi) d\xi$$

for any test function f on \mathfrak{g}^* .

Lemma 5.1. *The generalized function $m(g, \sigma, \alpha)$ belong to \mathcal{S} .*

If g is not a vertex, the generalized function $m(g, \sigma, \alpha)$ vanishes on V_{reg} .

If E is a vector space and $s \in \text{End}(E)$ is an invertible and semi-simple transformation of E , we denote by $GL(s)$ the group of invertible linear transformation of E commuting with s . We consider for $A \in \text{End}(E)$

$$D(q, s, A) = \det_E(1 - se^{qA}),$$

an analytic function of $A \in \text{End}(E)$. Write the Taylor series

$$D([q], s, A) = \sum_{k=0}^{\infty} q^k D_k^s(A).$$

Then $A \rightarrow D_k^s(A)$ are homogeneous polynomials of degree k , invariant under $GL(s)$.

Consider the normal bundle $\mathcal{N} \rightarrow M^g$. Thus g produces an invertible linear transformation of \mathcal{N}_x at any $x \in M^g$. The Chern Weil homomorphism for the bundle \mathcal{N} (with structure group $GL(g)$) produces a series $D([q], g, M/M^g) := \sum_{k=0}^{\infty} q^k W(D_k^g)$ of closed equivariant forms on M^g . The coefficient in q^0 of this series is just the function $x \rightarrow \det_{\mathcal{N}_x}(1-g)$, a function which is a non zero constant on each connected component of M^g . Similarly the function $\dim M^g$ is constant on each connected component of M^g .

Recall that we have defined the class of $J([q], M^g)$ on M^g .

Definition 5.2. Define the series of generalized functions $m([q], g, \sigma)$ of generalized functions on \mathfrak{g}^* such that

$$\begin{aligned} & \int_{T^*M^g}^\omega \int_{\mathfrak{g}} (2i\pi)^{-\dim M^g} \frac{\text{ch}^g(\sigma)(X)}{J([q], M^g)(X)D([q], g, M/M^g)(X)} \hat{f}(X) dX \\ &= \int_{\mathfrak{g}^*} m([q], g, \sigma)(\xi) f(\xi) d\xi \end{aligned}$$

for any test function $f(\xi)$ on \mathfrak{g}^* .

Here is the multiplicity formula for the index of a transversally elliptic symbol σ .

Theorem 5.3. *For any ϵ generic*

$$\text{mult}(\sigma) = \sum_{g \in \mathcal{V}(M)} \hat{g} \lim_{\epsilon}^{\Lambda} m([q], g^{-1}, \sigma)|_{q=1}.$$

6. COMPACT GROUPS

Let G be a compact simply connected Lie group acting on a manifold M and let $Z = T_G^*M$. Let T be a maximal torus of G . The action of T on M defines a set of hyperplanes \mathcal{H} in \mathfrak{t}^* and a space \mathcal{S} of distributions on \mathfrak{t}^* . We denote by $\mathcal{V}(M) \subset T$ the set of vertices for the action of T on M .

We parameterize the set of irreducible representations of G as follows. We consider $\Lambda \subset \mathfrak{t}^*$ to be the set of weights of T . We choose a system of positive roots $\Delta^+ \subset \mathfrak{t}^*$. Let $\rho = \frac{1}{2} \sum_{\alpha > 0} \alpha$, and $\mathfrak{t}_{>0}^*$ be the positive Weyl chamber. For $\lambda \in \Lambda$, regular and dominant, we denote by V_λ the irreducible representation of G of highest weight $\lambda - \rho$.

Let $\sigma \in K_G^0(Z)$. We write

$$\text{Index}(\sigma) = \sum_{\lambda \in \Lambda \cap \mathfrak{t}_{>0}^*} \text{mult}(\sigma)(\lambda) V_\lambda$$

and we extend the function $\text{mult}(\sigma)$ in an antiinvariant (under the action of the Weyl group W) function $\tilde{\text{mult}}(\sigma)$ on Λ . The function $\tilde{\text{mult}}(\sigma)$ is the multiplicity index of a T -transversally elliptic symbol $\tilde{\sigma}$ on M , constructed in [1]. (If σ is itself T transversally elliptic, denote by σ^T the symbol σ considered as a T -transversally elliptic symbol. Then $\tilde{\sigma}$ is the symbol σ^T twisted by the representation of T in the spinor superspace of $\mathfrak{g}/\mathfrak{t}$, and then $\tilde{\text{mult}}(\sigma) = \sum_{w \in W} \epsilon(w) \text{mult}(\sigma^T)(\lambda + w\rho)$.)

The multiplicity of $\tilde{\sigma}$ is an anti-invariant function on Λ . Thus we construct from $\tilde{\sigma}$ the series $m([q], g, \tilde{\sigma})$ of anti-invariant generalized functions on \mathfrak{t}^* belonging to the space \mathcal{S} .

Theorem 6.1. • For any ϵ generic,

$$\tilde{\text{mult}}(\sigma) = \sum_{g \in \mathcal{V}(M)} \hat{g} \lim_{\epsilon}^{\Lambda} (m([q], g, \tilde{\sigma}))|_{q=1}.$$

REFERENCES

- [1] Atiyah M. F., Elliptic operators and compact groups , *Springer L.N.M.*, n. 401, 1974.
- [2] Berline N., Getzler E., Vergne M. Heat kernels and Dirac operators. Grundlehren der Mathematischen Wissenschaften, 298. *Springer-Verlag*, Berlin, 1992. viii+369 pp.
- [3] Berline N., Vergne M. The Chern character of a transversally elliptic symbol and the equivariant index. *Invent. Math.* **124**, 1996, 11–49.
- [4] Berline N., Vergne M. L’indice équivariant des opérateurs transversalement elliptiques. *Invent. Math.* **124**, 1996, 51–101.
- [5] Dahmen W., Micchelli C., On the solution of certain systems of partial difference equations and linear dependence of translates of box splines, *Trans. Amer. Math. Soc.* **292**, 1985, 305–320.
- [6] De Concini C., Procesi C., Vergne M. Equivariant K -theory and index of transversally elliptic operators. *Transform. Groups* Online First, 21 June 2010.
- [7] De Concini C., Procesi C., Vergne M. Box splines and the equivariant index theorem. *To appear in Journal of the Institute of Mathematics of Jussieu*. arXiv:1012.1049
- [8] De Concini C., Procesi C., Vergne M. The infinitesimal index *To appear in Journal of the Institute of Mathematics of Jussieu*. arXiv: 1003.3525
- [9] Paradan P-E. On the structure of $K_G(T_G M)$. arXiv:1209.3852
- [10] Paradan P-E, Vergne M., The index of transversally elliptic operators. *Astérisque* **328**, 2009, 297–338. arXiv:0804.1225

UNIVERSITÉ DENIS-DIDEROT-PARIS 7, INSTITUT DE MATHÉMATIQUES DE JUSSIEU,
C.P. 7012, 2 PLACE JUSSIEU, F-75251 PARIS CEDEX 05
E-mail address: vergne@math.jussieu.fr