Integrative Project, December 3rd, 2021

COVID-19 tweets classification visualization and generation system

- Mariely del Rosario Nieves González | 1709102
- Ariadna Elizabeth Moo Sosa | 1709097
- Erick Ruben Jaimes Curiel | 1709069
- Nilda Amira Yah Ucan | 1709161
- LLisette Ruiz Peña | 1809150

Introduction

IMPORTANT CONCEPTS:

- SENTIMENT ANALYSIS
- TWEETER
- NETWORK

BUSINESS OBJECTIVES

- BUILD A SYSTEM CLASSIFICATION COMMENTS AND BE ABLE TO VISUALIZE THE OBTAINED RESULTS.
- CLASSIFY TWEET TEXT EITHER POSITIVE OR NEGATIVE.
- THE SYSTEM MUST RETURN OR CREATE A POSITIVE COMMENT GIVEN A NEGATIVE ONE.
- BUILD A DASHBOARD TO VISUALIZE IN REAL TIME THE DISTRIBUTION OF THE COMMENTS AND THEIR PREDICTION CLASSIFICATION.

System Design and Technologies

PROGRAMMING LANGUAGE:

LIBRRIES

- 1. SCIKIT-LEARN
- 2. NUMPY
- 3. PANDAS
- 4. MATPLOTLIB

FRAMEWORKS:

- 1. KERAS
- 2. TENSORFLOW
- 3. TABLEAU

Sequence to sequence modeling

- 1. Create the user account on Twitter.
- 2. Request the APIs.
- 3. Download the tweets.
- 4. Importing-Applying model.
- 5. Get the data from Kaggle.
- 6. Training data.
- 7. Create the two models (classification and generation).
- 8. Dashboard creation- toxic to not toxic tweet generation.

Data Understanding

Experiments models

Logistic regression

Covid tweets from the api

Keras

Generation char model

Dashboard

Heatmap distribution by account and prediction

Timeseries of follower account of twitter by minute

Conclusions

- Words can be compared to categorical variables.
- Embedding layer enables us to convert each word into a fixed length vector of defined size.
- The resultant vector is a dense one with having real values instead of just 0's and 1's.
- The model to be applied, due to its input parameters and its accurancy.
- The model is important to train and save it to import it from another notebook.

REFERENCES

The report has all the references of the project

```
[1] "TWEET GENERATION WITH NEURAL NETWORKS: LSTM AND GPT-2", MEDIUM, 2021. [ONLINE]. AVAILABLE: HTTPS://TOWARDSDATASCIENCE.COM/TWEET-GENERATION-WITH-NEURAL-NETWORKS-LSTM-AND-GPT-2-E163BFD3FBD8. [ACCESSED: 04- DEC- 2021]. 2] "PREDICTING TRUMP TWEETS WITH A RNN", MEDIUM, 2021. [ONLINE]. AVAILABLE: HTTPS://TOWARDSDATASCIENCE.COM/PREDICTING-TRUMP-TWEETS-WITH-A-RNN-95E7C398B18E. [ACCESSED: 04- DEC- 2021].
```

```
[3]G. TANNER, "GENERATING TEXT USING A RECURRENT NEURAL NETWORK", GILBERTTANNER.COM, 2021. [ONLINE]. AVAILABLE: HTTPS://GILBERTTANNER.COM/BLOG/GENERATING-TEXT-USING-A-RECURRENT-NEURALNETWORK. [ACCESSED: 04- DEC- 2021].

[4]K. TEAM, "KERAS DOCUMENTATION: CHARACTER-LEVEL TEXT GENERATION WITH LSTM", KERAS.IO, 2021. [ONLINE]. AVAILABLE: HTTPS://KERAS.IO/EXAMPLES/GENERATIVE/LSTM_CHARACTER_LEVEL_TEXT_GENERATION/.

[ACCESSED: 04- DEC- 2021].
```