Closed and Exact Forms

Let ω be a C^1 differential k-form defined on the open set U in \mathbb{R}^n . Then ω is called **closed** (on U) if $d\omega = 0$. Also, ω is called **exact** (on U) if there exists a (k-1)-form α on U such that $d\alpha = \omega$.

Theorem 1 (Poincare Lemma). Every closed C^1 differential k-form defined on a star-shaped open subset U of \mathbb{R}^n is exact.

Theorem 2. Let F be a C^1 vector field on the star-shaped open set $U \subset \mathbb{R}^3$. Then

- (a) curl $F = \mathbf{0}$ if and only if there exists $f: U \to \mathbb{R}$ such that $F = \operatorname{grad} f$,
- (b) div F = 0 if and only if there exists $G: U \to \mathbb{R}^3$ such that F = curl G.