## Review of State Removal

| Players             | Options                                                                                                                                                                                                                                                 |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U.S. Support        | <ol> <li>Complete full GDU</li> <li>Complete GDU modified to reduce Canadian impacts</li> <li>Complete GDU modified to appease US environmentalists</li> </ol>                                                                                          |
| U.S. Opposition     | 1. Legal action based on environmental legislation                                                                                                                                                                                                      |
| Canadian Opposition | 1. Legal action based on Boundary Treaty of 1909                                                                                                                                                                                                        |
| IJC                 | <ol> <li>Support completion of GDU</li> <li>Support completion of GDU modified to reduce<br/>Canadian impacts</li> <li>Support suspension of GDU except for the Lone-<br/>tree Reservoir</li> <li>Support the complete suspension of the GDU</li> </ol> |

## Review of State Removal

| Reasons                                                                                                                                                                     | Removed                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Type 1: Logically infeasible for a DM                                                                                                                                       |                                             |
| Mutually exclusive options for US Support                                                                                                                                   | (1 1 )<br>(1 - 1 )<br>(- 1 1 )<br>( 1 1 )   |
| Mutually exclusive options for IJC                                                                                                                                          | (1-1-)<br>(1-1)<br>(1-1)<br>(1-1)<br>(1-1)  |
| Type 2: Preferentially infeasible for a DM<br>Some sort of project will be built<br>IJC will make a recommendation                                                          | (0 0 0 )<br>( 0 0 0 0)                      |
| Type 3: Logically infeasible for a set of DMs<br>None                                                                                                                       |                                             |
| Type 4: Preferentially infeasible for a set of DMs<br>US Opposition will pursue legal action against full project<br>US Opposition will not pursue legal action if appeased | (1 0)<br>( 1 1)<br>(1 0 0)                  |
| Canadian Opposition will pursue legal action if any project larger than that approved by the IJC is built                                                                   | (-101 -)<br>(-101)<br>(-1 - 01)<br>(-1 -01) |

A state s is **sequentially sanctioned** (s) for a DM if for each UI from s, a credible action can be taken by the opponent(s) to stop the DM from taking advantage of the UI

Credible action: one that results in a more preferred outcome for the player taking the action (UI)

In  $n\geq 2$  DM games, check for sequences of UIs from opponents - each opponent can move at most one time

If there is more than one possible sequence, consider them all

DM 1 Preference ranking

| 17 | 15 | 11 | 14 | 16 | 9  | 10 | 12 | 13 | 5 | 2 | 4 | 8 | 6 | 3 | 7 | 1 |
|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|
|    | 17 |    |    | 17 | 11 | 11 | 14 | 14 |   |   | 5 |   | 5 | 2 | 8 | 2 |

#### DM 2 Preference ranking

| 11 17 | 15 | 1 | 16 | 5 | 13 | 9  | 2 | 10       | 7 | 8 | 12      | 6 | 3 | 4 | 14 |
|-------|----|---|----|---|----|----|---|----------|---|---|---------|---|---|---|----|
| 11    |    |   |    |   | 16 | 15 | 5 | 16<br>13 |   |   | 15<br>9 |   |   |   |    |

#### DM 3 Preference ranking

| 1 | 4 | 12 | 9 | 7 | 5 | 2 | 13 | 10 | 8 | 6 | 3 | 14 | 11 | 16 | 15 | 17 |
|---|---|----|---|---|---|---|----|----|---|---|---|----|----|----|----|----|
|   |   | 4  | 1 |   |   |   | 5  | 2  |   |   |   | 6  | 3  | 8  | 7  |    |

State 15 for DM 1:  $15 \rightarrow_{DM1} 17 \rightarrow_{DM2} 11 \rightarrow_{DM3} 3$ Since 3 is less preferred to 15, state 15 is sequentially sanctioned for DM1 The only UI from 15 is sanctioned

#### DM 1 Preference ranking

| 17 | 15 | 11 | 14 | 16 | 9  | 10 | 12 | 13 | 5 | 2 | 4 | 8 | 6 | 3 | 7 | 1 |
|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|
|    | 17 |    |    | 17 | 11 | 11 | 14 | 14 |   |   | 5 |   | 5 | 2 | 8 | 2 |
|    |    |    |    | 15 |    | 9  |    | 12 |   |   |   |   | 4 |   |   | 3 |

#### DM 2 Preference ranking

| 11 | 17 | 15 | 1 | 16 | 5 | 13 | 9  | 2 | 10       | 7 | 8      | 12 | 6 | 3 | 4 | 14 |
|----|----|----|---|----|---|----|----|---|----------|---|--------|----|---|---|---|----|
|    | 11 |    |   |    |   | 16 | 15 | 5 | 16<br>13 |   | 5<br>2 |    |   | 6 |   |    |

#### DM 3 Preference ranking

| 1 | 4 | 12 | 9 | 7 | 5 | 2 | 13 | 10 | 8 | 6 | 3 | 14 | 11 | 16 | 15 | 17 |
|---|---|----|---|---|---|---|----|----|---|---|---|----|----|----|----|----|
|   |   | 4  | 1 |   |   |   | 5  | 2  |   |   |   | 6  | 3  | 8  | 7  |    |

State 16 for DM 1: two UIs to check: 17 and 15  $16 \rightarrow_{DM1} 17 \rightarrow_{DM2} 11 \rightarrow_{DM3} 3 < 16$  so this UI is sanctioned  $16 \rightarrow_{DM1} 15 \rightarrow_{DM3} 7 \rightarrow_{DM2} 1 < 16$  so this UI is sanctioned Both UIs are sanctioned, so state 16 is sequentially sanctioned for DM1

#### DM 1 Preference ranking

| r  | s  | r  | r  | s  | s  | s  | s  | s  | r | r | u | r | u | и | и | u |
|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|
| 17 | 15 | 11 | 14 | 16 | 9  | 10 | 12 | 13 | 5 | 2 | 4 | 8 | 6 | 3 | 7 | 1 |
|    | 17 |    |    | 17 | 11 | 11 | 14 | 14 |   |   | 5 |   | 5 | 2 | 8 | 2 |
|    |    |    |    | 15 |    | 9  |    | 12 |   |   |   |   | 4 |   |   | 3 |

#### DM 2 Preference ranking

| r  | s  | r  | r | r  | r | s  | s  | u | s        | s | u | u       | r | s | u | u  |
|----|----|----|---|----|---|----|----|---|----------|---|---|---------|---|---|---|----|
| 11 | 17 | 15 | 1 | 16 | 5 | 13 | 9  | 2 | 10       | 7 | 8 | 12      | 6 | 3 | 4 | 14 |
|    | 11 |    |   |    |   | 16 | 15 | 5 | 16<br>13 |   |   | 15<br>9 |   |   |   |    |

#### DM 3 Preference ranking

| r | r | S  | S | r | r | r | u  | u  | r | r | r | u  | u  | u  | u  | r  |
|---|---|----|---|---|---|---|----|----|---|---|---|----|----|----|----|----|
| 1 | 4 | 12 | 9 | 7 | 5 | 2 | 13 | 10 | 8 | 6 | 3 | 14 | 11 | 16 | 15 | 17 |
|   |   | 4  | 1 |   |   |   | 5  | 2  |   |   |   | 6  | 3  | 8  | 7  |    |

## Review of Simultaneous Sanctioning

A state s is **simultaneously sanctioned** ( $ext{#}$ ) for a DM if simultaneous action by more than one DM could cause a less preferred outcome to occur

Need to check all possible combinations of simultaneous actions

For every  $\Gamma \subseteq M$ ,  $|\Gamma| \ge 2$  and  $a_i \in A_i$ , calculate the outcome to compare to q:

outcome = 
$$\sum_{i \in \Gamma} a_i - (|\Gamma| - 1) \cdot q$$

If at any point, outcome is less preferred to q, the state is simultaneously sanctioned for the DM in question

## Review of Simultaneous Sanctioning

A state s is **simultaneously sanctioned** ( $ext{th}$ ) for a DM if simultaneous action by more than one DM could cause a less preferred outcome to occur

Need to check all possible combinations of simultaneous actions

For every  $\Gamma \subseteq M$ ,  $|\Gamma| \ge 2$  and  $a_i \in A_i$ , calculate the outcome to compare to q:

outcome = 
$$\sum_{i \in \Gamma} a_i - (|\Gamma| - 1) \cdot q$$

If at any point, outcome is less preferred to q, the state is simultaneously sanctioned for the DM in question

## Review of Simultaneous Sanctioning

DM 1 Preference Ranking:

| a | е | f | g | h |
|---|---|---|---|---|
| b |   |   |   |   |

DM 2 Preference Ranking:

DM 3 Preference Ranking:

# SYDE 533 Conflict Resolution Hypergames

#### Amanda Garcia

Department of Systems Design Engineering University of Waterloo

September 28, 2016



## Learning Objectives

By the end of this lesson, you will be able to:

- ▶ Define and explain an *n*-level hypergame
- ► Conduct stability analysis and calculations for hypergames

## Hypergames

A **hypergame** is a conflict in which one or more DMs have misperceptions about the conflict

Misperceptions may include:

- preferences
- options
- players
- any combination of the above

The level of hypergame can be extended up to any levels of perception

## Game of Complete Perception

In a game of complete perception, we define the overall game  $G = \{V_1, V_2, \dots V_n\}$  where  $V_i$  is the preference ranking for DM i

All DMs perceive each other correctly and completely; all DMs are playing the same game

In a **first level hypergame**, one or more players perceive different games

DM i's game is  $G_i = \{V_{1i}, V_{2i}, \dots V_{ni}\}$  where  $V_{ji}$  is the preference ranking for DM j as perceived by DM i

The collection of all DMs' subjective games mathematically defines a first-level hypergame:  $H^1 = \{G_1, G_2, \dots G_n\}$ 

Hypergame Matrix

|              |                 | DM perceiving   |       |          |  |  |  |  |  |  |  |
|--------------|-----------------|-----------------|-------|----------|--|--|--|--|--|--|--|
| DM perceived | 1               | 2               | • • • | n        |  |  |  |  |  |  |  |
| 1            | V <sub>11</sub> | V <sub>12</sub> |       | $V_{1n}$ |  |  |  |  |  |  |  |
| 2            | $V_{21}$        | $V_{22}$        | • • • | $V_{2n}$ |  |  |  |  |  |  |  |
| ÷            | :               | :               | :     | :        |  |  |  |  |  |  |  |
| n            | $V_{n1}$        | $V_{n2}$        |       | $V_{nn}$ |  |  |  |  |  |  |  |
| Game         | $G_1$           | $G_2$           | • • • | $G_n$    |  |  |  |  |  |  |  |

 $V_{ij}$  reads as "preferences of DM i as perceived by DM j"

 $G_i$  is the game perceived by DM i

# First Level Hypergame Stability Analysis

In a **first level hypergame**, perform a stability analysis of  $G_i$  for each DM to see how they perceive individual stability results and equilibria

A state is an equilibrium if it is stable in all the preference rankings that DMs perceive for themselves

Check preferences along the main diagonal of the hypergame matrix

It can be argued that the Russians did not expect the Americans to react as strongly as they did (i.e. blockade)

The Americans were unaware of this misunderstanding on the part of the USSR, so we model this as a first level hypergame

Cuban Missile Crisis

The hypergame matrix is:

|                      | DM perceiving                                |                                                |  |  |  |  |  |  |  |  |  |  |
|----------------------|----------------------------------------------|------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| DM per-<br>ceived    | US                                           | USSR                                           |  |  |  |  |  |  |  |  |  |  |
| US                   |                                              | 4 0 6 2 5 1 7 3 11 9 10 8                      |  |  |  |  |  |  |  |  |  |  |
| USSR<br><b>Gam</b> e | 0 4 6 2 5 1 7 3 11 9 10 8<br>G <sub>US</sub> | 0 4 6 2 5 1 7 3 11 9 10 8<br>G <sub>USSR</sub> |  |  |  |  |  |  |  |  |  |  |

USSR has a misperception of the US's preferences (red)

US correctly perceives the USSR's preferences

Cuban Missile Crisis

The hypergame matrix is:

|                     | DM pe           | rceiving                                       |
|---------------------|-----------------|------------------------------------------------|
| DM per-<br>ceived   | US              | USSR                                           |
| US                  |                 | 40625173119108                                 |
| USSR<br><b>Game</b> | G <sub>US</sub> | 0 4 6 2 5 1 7 3 11 9 10 8<br>G <sub>USSR</sub> |

Separately analyse  $G_{US}$  and  $G_{USSR}$ 

To determine equilibria of  $H^1$ , compare stability results for the US preferences in  $G_{US}$  and those for the USSR preferences in  $G_{USSR}$ .

Cuban Missile Crisis

Take a few minutes to analyse  $G_{US}$ :

 $V_{US,US}$ :

| 4 | 6 | 5 | 7 | 2 | 1 | 3 | 0 | 11 | 9  | 10 | 8  |
|---|---|---|---|---|---|---|---|----|----|----|----|
|   | 4 | 4 | 4 |   | 2 | 2 | 2 |    | 11 | 11 | 11 |
|   |   | 6 | 6 |   |   | 1 | 1 |    |    | 9  | 9  |
|   |   |   | 5 |   |   |   | 3 |    |    |    | 10 |

| 0 | 4 | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9 | 10 | 8 |
|---|---|---|---|---|---|---|---|----|---|----|---|
|   | 0 |   | 6 |   | 5 |   | 7 | 7  | 5 | 6  | 0 |
|   |   |   |   |   |   |   |   | 3  | 1 | 2  | 4 |

#### Cuban Missile Crisis

#### Rational states for $G_{US}$ :

### $V_{US,US}$ :

| r |   |   |   | r |   |   |   | r  |    |    |    |
|---|---|---|---|---|---|---|---|----|----|----|----|
| 4 | 6 | 5 | 7 | 2 | 1 | 3 | 0 | 11 | 9  | 10 | 8  |
|   | 4 | 4 | 4 |   | 2 | 2 | 2 |    | 11 | 11 | 11 |
|   |   | 6 | 6 |   |   | 1 | 1 |    |    | 9  | 9  |
|   |   |   | 5 |   |   |   | 3 |    |    |    | 10 |

| r |   | r |   | r |   | r |   |    |   |    |   |
|---|---|---|---|---|---|---|---|----|---|----|---|
| 0 | 4 | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9 | 10 | 8 |
|   | 0 |   | 6 |   | 5 |   | 7 | 7  | 5 | 6  | 0 |
|   |   |   |   |   |   |   |   | 3  | 1 | 2  | 4 |

#### Cuban Missile Crisis

#### Sequentially sanctioned states for $G_{US}$ :

### $V_{US,US}$ :

| r | S |   |   | r |   |   |   | r  |    |    |    |
|---|---|---|---|---|---|---|---|----|----|----|----|
| 4 | 6 | 5 | 7 | 2 | 1 | 3 | 0 | 11 | 9  | 10 | 8  |
|   | 4 | 4 | 4 |   | 2 | 2 | 2 |    | 11 | 11 | 11 |
|   |   | 6 | 6 |   |   | 1 | 1 |    |    | 9  | 9  |
|   |   |   | 5 |   |   |   | 3 |    |    |    | 10 |

| r | S | r |   | r |   | r |   |    |   |    |   |
|---|---|---|---|---|---|---|---|----|---|----|---|
| 0 | 4 | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9 | 10 | 8 |
|   | 0 |   | 6 |   | 5 |   | 7 | 7  | 5 | 6  | 0 |
|   |   |   |   |   |   |   |   | 3  | 1 | 2  | 4 |

#### Cuban Missile Crisis

Unstable and simultaneously sanctioned states for  $G_{US}$ :

### $V_{US,US}$ :

| r | S | u | u | r | u | u | u | r  | u  | u  | u  |
|---|---|---|---|---|---|---|---|----|----|----|----|
| 4 | 6 | 5 | 7 | 2 | 1 | 3 | 0 | 11 | 9  | 10 | 8  |
|   | 4 | 4 | 4 |   | 2 | 2 | 2 |    | 11 | 11 | 11 |
|   |   | 6 | 6 |   |   | 1 | 1 |    |    | 9  | 9  |
|   |   |   | 5 |   |   |   | 3 |    |    |    | 10 |

| r | S | r | u | r | u | r | u | u  | u | u  | u |
|---|---|---|---|---|---|---|---|----|---|----|---|
| 0 | 4 | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9 | 10 | 8 |
|   | 0 |   | 6 |   | 5 |   | 7 | 7  | 5 | 6  | 0 |
|   |   |   |   |   |   |   |   | 3  | 1 | 2  | 4 |

#### Cuban Missile Crisis

#### Equilibria for Gus:

### $V_{US,US}$ :

| Ε | Ε | Χ | Χ | Χ | Χ | Χ | Χ | Χ  | Χ  | X  | Χ  |
|---|---|---|---|---|---|---|---|----|----|----|----|
| r | S | u | u | r | u | u | u | r  | u  | u  | u  |
| 4 | 6 | 5 | 7 | 2 | 1 | 3 | 0 | 11 | 9  | 10 | 8  |
|   | 4 | 4 | 4 |   | 2 | 2 | 2 |    | 11 | 11 | 11 |
|   |   | 6 | 6 |   |   | 1 | 1 |    |    | 9  | 9  |
|   |   |   | 5 |   |   |   | 3 |    |    |    | 10 |

| r | S | r | u | r | u | r | u | u  | u | u  | u |
|---|---|---|---|---|---|---|---|----|---|----|---|
| 0 | 4 | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9 | 10 | 8 |
|   | 0 |   | 6 |   | 5 |   | 7 | 7  | 5 | 6  | 0 |
|   |   |   |   |   |   |   |   | 3  | 1 | 2  | 4 |

Cuban Missile Crisis

Take a few minutes to analyse  $G_{USSR}$ :

 $V_{US,USSR}$ :

| 4 | 0 | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9  | 10 | 8  |
|---|---|---|---|---|---|---|---|----|----|----|----|
|   |   | 4 | 0 | 4 | 0 | 4 | 0 |    | 11 | 11 | 11 |
|   |   |   |   | 6 | 2 | 6 | 2 |    |    | 9  | 9  |
|   |   |   |   |   |   | 5 | 1 |    |    |    | 10 |

| 0 | 4 | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9 | 10 | 8 |
|---|---|---|---|---|---|---|---|----|---|----|---|
|   | 0 |   | 6 |   | 5 |   | 7 | 7  | 5 | 6  | 0 |
|   |   |   |   |   |   |   |   | 3  | 1 | 2  | 4 |

#### Cuban Missile Crisis

Equilibria and stabilities for  $G_{USSR}$ :

#### $V_{US,USSR}$ :

| r | r | u | u | u | u | u | u | r  | u  | u  | u  |
|---|---|---|---|---|---|---|---|----|----|----|----|
| 4 | 0 | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9  | 10 | 8  |
|   |   | 4 | 0 | 4 | 0 | 4 | 0 |    | 11 | 11 | 11 |
|   |   |   |   | 6 | 2 | 6 | 2 |    |    | 9  | 9  |
|   |   |   |   |   |   | 5 | 1 |    |    |    | 10 |

| Ε | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ  | Χ | Χ  | Χ |
|---|---|---|---|---|---|---|---|----|---|----|---|
| r | u | r | u | r | u | r | u | u  | u | u  | u |
| 0 | 4 | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9 | 10 | 8 |
|   | 0 |   | 6 |   | 5 |   | 7 | 7  | 5 | 6  | 0 |
|   |   |   |   |   |   |   |   | 3  | 1 | 2  | 4 |

Cuban Missile Crisis

From the US point of view, there are two equilibria: state 4 (USSR withdraws) and state 6 (US blockades and USSR withdraws)

From the USSR point of view, there is one equilibrium: state 0 (no action taken by either DM)

What game is actually being played?

#### Cuban Missile Crisis

Compare stability results for  $V_{US,US}$  in  $G_{US}$  to  $V_{USSR,USSR}$  in  $G_{USSR}$ :

| Χ                        | Е | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ  | Χ |
|--------------------------|---|---|---|---|---|---|---|---|---|----|---|
| $\overline{V_{US,US}}$ : |   |   |   |   |   |   |   |   |   |    |   |
| r                        | s | u | u | r | u | u | u | r | u | u  | u |
|                          |   | _ |   |   | - | _ | _ |   |   | 10 | _ |

|   | 3 | u | u | ' | u | u | u | '  | u  | u  |    |
|---|---|---|---|---|---|---|---|----|----|----|----|
| 4 | 6 | 5 | 7 | 2 | 1 | 3 | 0 | 11 | 9  | 10 | 8  |
|   | 4 | 4 | 4 |   | 2 | 2 | 2 |    | 11 | 11 | 11 |
|   |   | 6 | 6 |   |   | 1 | 1 |    |    | 9  | 9  |
|   |   |   | 5 |   |   |   | 3 |    |    |    | 10 |

#### $V_{USSR,USSR}$ :

| r | u | r | u | r | u | r | u | u  | u | u  | u |
|---|---|---|---|---|---|---|---|----|---|----|---|
| 0 | 4 | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9 | 10 | 8 |
|   | 0 |   | 6 |   | 5 |   | 7 | 7  | 5 | 6  | 0 |
|   |   |   |   |   |   |   |   | 3  | 1 | 2  | 4 |

Single equilibrium at state 6 (US blockades, USSR withdraws)

Cuban Missile Crisis

From the US point of view, there are two equilibria: state 4 (USSR withdraws) and state 6 (US blockades and USSR withdraws)

From the USSR point of view, there is one equilibrium: state 0 (no action taken by either DM)

Hypergame analysis reveals a single equilibrium: state 6

Analysing each level of a hypergame helps determine each player's expectations and how they will behave

# First Level Hypergame Recap

- Draw hypergame matrix
- ► Analyse each DM's game, G<sub>i</sub>
- ► Compare stability results across games (matrix diagonal) to find the hypergame equilibria

|                   | DM perceiving             |                           |  |  |  |  |  |
|-------------------|---------------------------|---------------------------|--|--|--|--|--|
| DM per-<br>ceived | US                        | USSR                      |  |  |  |  |  |
| US                | 4 6 5 7 2 1 3 0 11 9 10 8 | 40625173119108            |  |  |  |  |  |
| USSR              | 0 4 6 2 5 1 7 3 11 9 10 8 | 0 4 6 2 5 1 7 3 11 9 10 8 |  |  |  |  |  |
| Game              | $G_{US}$                  | $G_{USSR}$                |  |  |  |  |  |

In a **second level hypergame**, at least one player realizes that a first level hypergame is being played

DM *i*'s hypergame is  $H_i = \{G_{1i}, G_{2i}, \dots G_{ni}\}$  where  $G_{ji}$  is the game for DM *j* as perceived by DM *i* 

The second level hypergame is defined as  $H^2 = \{H_1, H_2, \dots H_n\}$ 

Hypergame Matrix

|              | DM perceiving   |                 |       |          |  |  |  |
|--------------|-----------------|-----------------|-------|----------|--|--|--|
| DM perceived | 1               | 2               | • • • | n        |  |  |  |
| 1            | G <sub>11</sub> | G <sub>12</sub> |       | $G_{1n}$ |  |  |  |
| 2            | $G_{21}$        | $G_{22}$        | • • • | $G_{2n}$ |  |  |  |
| :            | :               | :               | :     | :        |  |  |  |
| n            | $G_{n1}$        | $G_{n2}$        |       | $G_{nn}$ |  |  |  |
| Hypergame    | $H_1$           | $H_2$           | • • • | $H_n$    |  |  |  |

 $G_{ij}$  reads as "game for DM i as perceived by DM j"

 $H_i$  is the hypergame perceived by DM i

## Second Level Hypergame Stability Analysis

In a second level hypergame, perform a stability analysis of  $G_{ij}$ 

A state is an equilibrium if it is stable in all the games that DMs perceive for themselves

Check along the main diagonal of the hypergame matrix

Cuban Missile Crisis

|            | US Hypergame                                           |                                                        |  |  |  |  |
|------------|--------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
|            | $G_{US,US}$                                            | $G_{USSR,US}$                                          |  |  |  |  |
| US         | 4 6 5 7 2 1 3 0 11 9 10 8                              | 40625173119108                                         |  |  |  |  |
| USSR       | 0 4 6 2 5 1 7 3 11 9 10 8                              | 0 4 6 2 5 1 7 3 11 9 10 8                              |  |  |  |  |
|            | USSR Hy                                                | ypergame                                               |  |  |  |  |
|            | $G_{US,USSR}$                                          | $G_{USSR,USSR}$                                        |  |  |  |  |
| US<br>USSR | 4 0 6 2 5 1 7 3 11 9 10 8<br>0 4 6 2 5 1 7 3 11 9 10 8 | 4 0 6 2 5 1 7 3 11 9 10 8<br>0 4 6 2 5 1 7 3 11 9 10 8 |  |  |  |  |

US knows that the USSR has a misperception of US preferences (red)

USSR is not aware of its misperception

## Second Level Hypergame Stability Analysis

► Separately analyse *G<sub>US,US</sub>*, *G<sub>USSR,US</sub>*, *G<sub>US,USSR</sub>*, and *G<sub>USSR,USSR</sub>* to get individual stabilities and equilibria

#### Stability Analysis

- ▶ Determine equilibria in *H<sub>US</sub>* and *H<sub>USSR</sub>* by comparing the results along each hypergame diagonal
  - ► For  $H_{US}$  compare stability results from US preference ranking in  $G_{US,USSR}$  and USSR preference ranking from  $G_{US,USSR}$

|      | US Hypergame              |                           |  |  |  |  |
|------|---------------------------|---------------------------|--|--|--|--|
|      | $G_{US,US}$               | $G_{USSR,US}$             |  |  |  |  |
| US   | 4 6 5 7 2 1 3 0 11 9 10 8 | 40625173119108            |  |  |  |  |
| USSR | 0 4 6 2 5 1 7 3 11 9 10 8 | 0 4 6 2 5 1 7 3 11 9 10 8 |  |  |  |  |
|      | USSR H                    | ypergame                  |  |  |  |  |
|      | $G_{US,USSR}$             | $G_{USSR,USSR}$           |  |  |  |  |
| US   | 40625173119108            | 40625173119108            |  |  |  |  |
| USSR | 0 4 6 2 5 1 7 3 11 9 10 8 | 0 4 6 2 5 1 7 3 11 9 10 8 |  |  |  |  |

#### Stability Analysis

- ▶ Determine equilibria in *H<sub>US</sub>* and *H<sub>USSR</sub>* by comparing the results along each hypergame diagonal
  - ► For *H<sub>USSR</sub>* compare stability results from US preference ranking in *G<sub>US,USSR</sub>* and USSR preference ranking from *G<sub>USSR,USSR</sub>*

|      | US Hypergame              |                           |  |  |  |  |  |
|------|---------------------------|---------------------------|--|--|--|--|--|
|      | $G_{US,US}$               | $G_{USSR,US}$             |  |  |  |  |  |
| US   | 4 6 5 7 2 1 3 0 11 9 10 8 | 40625173119108            |  |  |  |  |  |
| USSR | 0 4 6 2 5 1 7 3 11 9 10 8 | 0 4 6 2 5 1 7 3 11 9 10 8 |  |  |  |  |  |
|      | USSR Hypergame            |                           |  |  |  |  |  |
|      | $G_{US,USSR}$             | $G_{USSR,USSR}$           |  |  |  |  |  |
| US   | 40625173119108            | 40625173119108            |  |  |  |  |  |
| USSR | 0 4 6 2 5 1 7 3 11 9 10 8 | 0 4 6 2 5 1 7 3 11 9 10 8 |  |  |  |  |  |

#### Stability Analysis

▶ Determine H<sup>2</sup> equilibria by examining the results for the US preferences in G<sub>US,US</sub> and for the USSR preferences in G<sub>USSR,USSR</sub>

|      | US Hypergame              |                                     |  |  |  |  |  |
|------|---------------------------|-------------------------------------|--|--|--|--|--|
|      | $G_{US,US}$               | $G_{USSR,US}$                       |  |  |  |  |  |
| US   |                           | 4 0 6 2 5 1 7 3 11 9 10 8           |  |  |  |  |  |
| USSR |                           | 0 4 6 2 5 1 7 3 11 9 10 8           |  |  |  |  |  |
|      | USSR Hypergame            |                                     |  |  |  |  |  |
|      | $G_{US,USSR}$             | G <sub>USSR</sub> , <sub>USSR</sub> |  |  |  |  |  |
| US   | 4 0 6 2 5 1 7 3 11 9 10 8 | 4 0 6 2 5 1 7 3 11 9 10 8           |  |  |  |  |  |
| USSR | 0 4 6 2 5 1 7 3 11 9 10 8 | 0 4 6 2 5 1 7 3 11 9 10 8           |  |  |  |  |  |

#### Cuban Missile Crisis

Compare stability results for  $V_{US,US}$  in  $G_{US,US}$  to  $V_{USSR,USSR}$  in  $G_{USSR,USSR}$ :

| X         | Е      | Χ | Χ | Χ | Χ | Χ | Χ | Χ  | Χ  | Χ  | Χ  |
|-----------|--------|---|---|---|---|---|---|----|----|----|----|
| $V_{US}$  | us:    |   |   |   |   |   |   |    |    |    |    |
| r         | S      | u | u | r | u | u | u | r  | u  | u  | u  |
| 4         | 6      | 5 | 7 | 2 | 1 | 3 | 0 | 11 | 9  | 10 | 8  |
|           | 4      | 4 | 4 |   | 2 | 2 | 2 |    | 11 | 11 | 11 |
|           |        | 6 | 6 |   |   | 1 | 1 |    |    | 9  | 9  |
|           |        |   | 5 |   |   |   | 3 |    |    |    | 10 |
| $V_{USS}$ | R,USSR | : |   |   |   |   |   |    |    |    |    |
| r         | u      | r | u | r | u | r | u | u  | u  | u  | u  |
| 0         | 4      | 6 | 2 | 5 | 1 | 7 | 3 | 11 | 9  | 10 | 8  |
|           | 0      |   | 6 |   | 5 |   | 7 | 7  | 5  | 6  | 0  |

## Hypergame Analysis

#### Cuban Missile Crisis

- $H^0$  (complete perception / no misperceptions):
  - ▶ Two equilibria at states 4 and 6
- $H^1$  (USSR misunderstands US preferences):
  - Analyst perceives unique equilibrium at state 6
  - US perceives equilibria at states 4 and 6
  - USSR perceives equilibrium at state 0
- $H^2$  (USSR misunderstands US preferences, US is aware of this):
  - US perceives unique equilibrium at state 6
  - USSR perceives equilibrium at state 0

# Hypergame Analysis Summary

 $H^0$  (complete perception / no misperceptions):

▶ DMs are playing the same game

 $H^1$  (at least one DM has misunderstanding):

▶ DMs are playing different games

 $H^2$  (at least one DM is aware of misunderstanding):

DMs are playing different hypergames

Can be extended to any level

# Coming Up

#### Next Lecture:

Hypergames (continued)



▶ Tutorial?

#### Next Lesson:

- Assignment 1 due on October 5th
- ► Forms of a game / intro to graph theory