

6.172 Performance Engineering of Software Systems

LECTURE 2 Bit Hacks

Charles E. Leiserson

September 14, 2010

Swap

Problem

Swap two integers x and y.

Problem

Swap two integers x and y without using a temporary.

$$X = X \wedge y;$$

$$y = X \wedge y;$$

$$X = X \wedge y;$$

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Problem

Swap two integers x and y without using a temporary.

$$x = x \wedge y;$$

 $y = x \wedge y;$
 $x = x \wedge y;$

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Problem

Swap two integers x and y without using a temporary.

$$x = x \wedge y;$$

 $y = x \wedge y;$
 $x = x \wedge y;$

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Problem

Swap two integers x and y without using a temporary.

$$x = x \wedge y;$$

$$y = x \wedge y;$$

$$x = x \wedge y;$$

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Problem

Swap two integers x and y without using a temporary.

$$X = X \wedge y;$$

$$y = X \wedge y;$$

$$X = X \wedge y;$$

Example

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Why it works

XOR is its own inverse: $(x \land y) \land y = x$.

Performance

Poor at exploiting instruction-level parallelism (ILP).

Minimum of Two Integers

Problem

Find the minimum \mathbf{r} of two integers \mathbf{x} and \mathbf{y} .

```
if (x < y)

r = x;

else

r = y;
```

Performance

A mispredicted branch empties the processor pipeline • ~16 cycles on the cloud facility's Intel Core i7's. The compiler might be smart enough to avoid the unpredictable branch, but maybe not.

No-Branch Minimum

Problem

Find the minimum z of two integers x and y without a branch.

$$r = y \wedge ((x \wedge y) \& -(x < y));$$

Why it works:

- C represents the Booleans TRUE and FALSE with the integers 1 and 0, respectively.
- If x < y, then -(x < y) = -1, which is all 1's in two's complement representation. Therefore, we have $y \land (x \land y) = x$.
- If $x \ge y$, then -(x < y) = 0. Therefore, we have $y \land 0 = y$.

Modular Addition

Problem

Compute (x + y) mod n, assuming that $0 \le x < n$ and $0 \le y < n$.

$$r = (x + y) \% n;$$

Divide is expensive, unless by a power of 2.

$$z = x + y;$$

 $r = (z < n) ? z : z-n;$

Unpredictable branch is expensive.

$$z = x + y;$$

 $r = z - (n & -(z >= n));$

Same trick as minimum.

Problem

Compute $2^{\lceil \log n \rceil}$.

```
//64-bit integers
| = n >> 1;
n = n >> 2;
n = n >> 4;
n = n >> 8;
| = n >> 16;
n = n >> 32;
++n;
```

```
      0010000001010000

      0010000001001111

      0011000001101111

      0011110001111111

      00111111111111

      0100000000000000
```

Problem

Compute $2^{\lceil \log n \rceil}$.

```
//64-bit integers
| = n >> 1;
n = n >> 2;
n = n >> 4;
n = n >> 8;
| = n >> 16;
n = n >> 32;
++n;
```

```
      0010000001010000

      0010000001001111

      0011000001101111

      0011110001111111

      00111111111111

      0100000000000000
```

Problem

Compute $2^{\lceil \log n \rceil}$.

```
//64-bit integers
n = n >> 1;
n = n >> 2;
n = n >> 4;
n = n >> 8;
| = n >> 16;
n = n >> 32;
++n;
```

Problem

Compute $2^{\lceil \log n \rceil}$.

```
//64-bit integers
| = n >> 1;
n = n >> 2;
n = n >> 4;
| = n >> 8;
| = n >> 16;
n = n >> 32;
++n;
```

Problem

Compute $2^{\lceil \log n \rceil}$.

```
//64-bit integers
| = n >> 1;
n = n >> 2;
n = n >> 4;
n = n >> 8;
| = n >> 16;
n = n >> 32;
++n;
```

Problem

Compute $2^{\lceil \log n \rceil}$.

```
//64-bit integers
| = n >> 1;
n = n >> 2;
n = n >> 4;
n = n >> 8;
| = n >> 16;
n = n >> 32;
++n;
```

Problem

Compute 2^[log n].

```
//64-bit integers
| = n >> 1;
n = n >> 2;
| = n >> 4;
n = n >> 8;
| = n >> 16;
n = n >> 32;
++n;
```

Example

Why decrement and increment?

To handle the boundary case when n is a power of 2.

Least-Significant 1

Problem

Compute the mask of the least-significant 1 in word x.

$$r = x & (-x);$$

Example

X	0010000001010000
-X	11011111101 1 0000
x & (-x)	000000000010000

Question

How do you find the index of the bit, i.e., $\lg r = \log_2 r$?

Log Base 2 of a Power of 2

Problem

Compute $\lg x$, where x is a power of 2.

```
const uint64_t deBruijn = 0x022fdd63cc95386d;
const unsigned int convert[64] =
\{0, 1, 2, 53, 3, 7, 54, 27,
  4, 38, 41, 8, 34, 55, 48, 28,
62, 5, 39, 46, 44, 42, 22, 9,
  24, 35, 59, 56, 49, 18, 29, 11,
  63, 52, 6, 26, 37, 40, 33, 47,
   61, 45, 43, 21, 23, 58, 17, 10,
   51, 25, 36, 32, 60, 20, 57, 16,
   50, 31, 19, 15, 30, 14, 13, 12};
r = convert[(x*deBruijn) >> 58];
```

Log Base 2 of a Power of 2

Why it works

A *deBruijn sequence* s of length 2^k is a cyclic 0–1 sequence such that each of the 2^k 0–1 strings of length k occurs exactly once as a substring of s.

$$00011101_2 * 2^4 = 11010000_2$$

 $11010000_2 >> 5 = 6$
convert[6] = 4

Performance

Limited by multiply and table look-up

Example k=3

```
000111012
 000
   001
    011
     111
      110
        101
6
         010
          100
```

```
convert[8] = {0, 1, 6, 2, 7, 5, 4, 3};
```

Problem

Count the number of 1 bits in a word x.

Repeatedly eliminate the least-significant 1.

Example

X	00101101110 1 0000
x-1	0010110111001111
x & (x-1)	00101101110 0 0000

Issue

Fast if the popcount is small, but in the worst case, the running time is proportional to the number of bits in the word.

Table look-up

```
static const int count[256] =
    {0,1,1,2,1,2,2,3,1,...,8}; //#1's in index

for (r=0; x!=0; x>>=8)
    r += count[x & 0xFF];
```

Performance

Memory operations are much more costly than register operations:

- register: 1 cycle (6 ops issued per cycle per core),
- L1-cache: 4 cycles,
- L2-cache: 10 cycles,
- L3-cache: 50 cycles,
- DRAM: 150 cycles.

per 64-byte cache line

Parallel divideand-conquer

Performance

 $\Theta(\lg n)$ time, where n = word length.

```
// Create masks
B5 = !((-1) << 32);
B4 = B5 \land (B5 << 16);
B3 = B4 \land (B4 << 8);
B2 = B3 \land (B3 << 4);
B1 = B2 \land (B2 << 2);
B0 = B1 \land (B1 << 1);
// Compute popcount
x = ((x >> 1) \& B0) + (x \& B0);
x = ((x >> 2) \& B1) + (x \& B1);
x = ((x >> 4) + x) & B2;
x = ((x >> 8) + x) & B3;
x = ((x >> 16) + x) & B4;
x = ((x >> 32) + x) & B5;
```

+	1 1	1 1	1 0	10	0	1 0	0 1	0	0	1 1	1 0	1 1	1 1	0	0 1	0 1
	10	10	01	01	0 0	01	01	0 0	0 0	10	01	10	10	0 0	01	01

11110101000110000011011111001010

	1	1	1	1	0	1	0	0	0	1	1	1	1	0	0	0
+	1	1	0	0	0	0	1	0	0	1	0	1	1	0	1	1
	10	10	01	01	00	01	01	00	00	10	01	10	10	00	01	01

	11	11()1(01	00	01	10	0 0	0	01	10	11	11	11	00	10	10
+	1 1	1 1	10	10	0	1					1 1			1 1		0 1	0 1
+	,	10 10		01		01		00			0	(L 0		0 0 1 0		01 01
+			001				000					000				0000	10 10
	0.0	000)1:	10	00	000	00	10	0 (0 0	0 0	1(1	00	00	01	0 0

	111	L1()1(1	000	011	100	0 0	0 (1	1 C	11	L1	11	0 0	1	0 1	LO
+	1 1	1 1	1	10	0	1								1 1			0	0
+	1	L 0 L 0		01		01		00		1		_	L 0		0010		(1
+			001			(000	0 1 0 1				001				0	0 1 0 1	L 0 L 0
	000	000)1:	10	000	000	00	10	0 (0 (0 0	10	1	00	0 0	0	1(0 (

+

	111	11()1(010	000	11	100	00	0 0	11(11	111	11(002	101	10
+	1 1	1 1	1	10	0	10	0 1	0	0	1 1	1	1	1 1	0	0 1	0 1
+	-	10 10	,	01	(100	•	00		10	_	10	(00	(01
+		7	001				000				000				002	
+				(000	000	001	10					000			
	000	000	00	000	0 (0 (100	0 0	00	000	0 (00	000	00	100)1

+

Queens Problem

Problem

Place n queens on an $n \times n$ chessboard so that no queen attacks another, i.e., no two queens in any row, column, or diagonal.

Backtracking Search

Strategy

Try placing queens row by row. If you can't place a queen in a row, backtrack.

Backtracking Search

Strategy

Try placing queens row by row. If you can't place a queen in a row, backtrack.

Strategy

Board Representation

The backtrack search can be implemented as a simple recursive procedure, but how should the board be represented to facilitate queen placement?

- array of n² bytes?
- array of n² bits?
- array of n bytes?
- 3 bitvectors of size n, 2n-1, and 2n-1!

Bitvector Representation

Placing a queen in column c is not safe if down & (1<<c)) is nonzero.

Bitvector Representation

Placing a queen in row r and column c is not safe if right & (1<<(n-r+c)) is nonzero.

Bitvector Representation

Placing a queen in row r and column c is not safe if

left & (1<<(r+c)) is nonzero.

Further Reading

Sean Eron Anderson, "Bit twiddling hacks," http://graphics.stanford.edu/~seander/bithacks.html, 2009.

Happy Hacking!

MIT OpenCourseWare http://ocw.mit.edu

6.172 Performance Engineering of Software Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.