FYS4480 Quantum mechanics for many-particle systems — Project 1 —

Erlend Lima, Lasse Lorentz Braseth and Halvard Sutterud October 2018

Contents

1	Introduction	1
2	Theory 2.1 Second quantization	1 1 1
3	Methods and implementation	2
4	Results	2
5	Discussion	2
6	Conclusions	2

1 Introduction

2 Theory

2.1 Second quantization

We introduce the second quantization formalism to simplify the notation and calculations. Second quantization introduces creation and annihilation operators, which we will represent as a_p^{\dagger} and a_p respectively. They work on a slater determinant in the following way,

$$a_p^{\dagger} | \alpha_1 \alpha_2 \dots \alpha_n \rangle = | p \alpha_1 \alpha_2 \dots \alpha_n \rangle$$

 $a_p | p \alpha_1 \alpha_2 \dots \alpha_n \rangle = | \alpha_1 \alpha_2 \dots \alpha_n \rangle$.

The a_p^{\dagger} thus has the effect of creating a particle in the state p, and a_p to remove a particle from the same state. In addition, we have

$$a_p^{\dagger} | p\alpha_1 \alpha_2 \dots \alpha_n \rangle = 0$$

 $a_p | \alpha_1 \alpha_2 \dots \alpha_n \rangle = 0,$

i.e. the creation operator cannot create a particle in an occupied state (the Pauli Exclusion principle), and in the second case the annihilation operator cannot remove a particle not present (common sense).

2.2 Wicks theorem

Wicks theorem states that a product of N operators can be expressed as the normal-ordered product of the operators plus

the normal-ordered products of every possible permutation of one to N/2 contractions of the same operators.

only need to consider the sum over normal products of all contractions between two and two operators.

2.2.1 Generalized wicks theorem

When using the particle-hole formalism, we need to give a small reformulation of wicks theorem. Main changes: We consider

2.3 Part a (to be renamed)

Our basis in the second quantization are slater determinants consisting of s-wave (l = 0) hydrogen like single particle functions $R_{n0}(r)$, given by

$$R_{n0}(r) = \left(\frac{2Z}{n}\right)^{3/2} \sqrt{\frac{(n-1)!}{2n(n!)}} L_{n-1}^{1}(\frac{2Zr}{n}) \exp\left(-\frac{Zr}{n}\right), (1)$$

where $L_{n-1}^1(r)$ are the so-called Laguerre polynomials. We then have a degeneracy for the states with quantum number n of 2, since we only consider s-waves.

We will be working with the helium atom. We define our single-particle Hilbert space to consist of the single-particle orbits 1s, 2s, and 3s with corresponding spin degeneracies, and consider that we will be working with a two-electron system. We will number the six possible single particle states $|nm_s\rangle$ as seen in table 1. The Fermi level is then defined to be F=2. Our ansatz for the ground state $|c\rangle=|\Phi_0\rangle$ of the helium atom is then two electrons placed in the ground state with n=1, with opposite spin values, which we can then

represent as

$$|c\rangle = \prod_{i=1}^{F} a_i^{\dagger} |0\rangle = a_2^{\dagger} a_1^{\dagger} |0\rangle \tag{2}$$

Assuming that the total spin is projection of the possible states is $M_S=0$, the possible one-particle-one-hole excitations are $|\Phi_i^a\rangle=a_a^\dagger a_i\,|c\rangle$ in these combinations,

$$\begin{split} \left| \Phi_1^3 \right\rangle &= a_3^\dagger a_1 \left| c \right\rangle, & \left| \Phi_1^5 \right\rangle &= a_5^\dagger a_1 \left| c \right\rangle \\ \left| \Phi_2^4 \right\rangle &= a_4^\dagger a_2 \left| c \right\rangle, & \left| \Phi_2^6 \right\rangle &= a_6^\dagger a_2 \left| c \right\rangle, \end{split}$$

while the possible two-particle-two-holes excitations are $|\Phi_{ij}^{ab}\rangle=a_b^{\dagger}a_a^{\dagger}a_ja_i\,|c\rangle$ in the following combinations,

$$\begin{split} \left| \Phi_{12}^{34} \right\rangle &= a_4^\dagger a_3^\dagger a_2 a_1 \left| c \right\rangle, & \left| \Phi_{12}^{56} \right\rangle &= a_6^\dagger a_5^\dagger a_2 a_1 \left| c \right\rangle \\ \left| \Phi_{12}^{36} \right\rangle &= a_6^\dagger a_3^\dagger a_2 a_1 \left| c \right\rangle, & \left| \Phi_{12}^{45} \right\rangle &= a_5^\dagger a_4^\dagger a_2 a_1 \left| c \right\rangle. \end{split}$$

Table 1: Here \uparrow corresponds to magnetic spin quantum number $m_s = 1/2$, while \downarrow corresponds to $m_s = -1/2$.

index	1	2	3	4	5	6
state	$ 1\uparrow\rangle$	$ 1\downarrow\rangle$	$ 2\uparrow\rangle$	$ 2\downarrow\rangle$	$ 3\uparrow\rangle$	$ 3\downarrow\rangle$

2.4 Part b (to be renamed)

The Hamiltonian in a second-quantized form is given as

$$\hat{H} = \sum_{pq} \langle p|\hat{h}|q\rangle \, a_p^{\dagger} a_q + \frac{1}{4} \sum pqrs \, \langle pq|\hat{v}|rs\rangle \, a_p^{\dagger} a_q^{\dagger} a_s a_r, \quad (3)$$

where the sums run both above and below the fermi surface. Splitting these sums give us the BLA BLA

Or maybe we should split it into non-interacting and interacting?

$$\hat{H}_0 = \sum_{pq>F} \langle p|h_0|q\rangle \tag{4}$$

3 Methods and implementation

- 4 Results
- 5 Discussion
- 6 Conclusions