Consider a cylinder of radius a and height b that has it base at the origin and is aligned along the z-axis. The polarization of this cylinder is "baked in" and can be modeled using

$$\mathbf{P} = P_0 \left(\frac{z}{b}\right) \hat{z}.$$

Determine the total dipole moment of this cylinder:

A.
$$P_0\pi a^2b\hat{z}$$

B.
$$\frac{1}{2}P_{0}\pi a^{2}b\hat{z}$$

$$C. P_0 2\pi ab^2 \hat{z}$$

D.
$$\frac{1}{2}P_0\pi ab^2\hat{z}$$

E. Something else

EXAM 1 INFORMATION

- Covers through polarization (up to Ch 4.2.3)
- Emphasizes material since Exam 1
 - But don't forget Exam 1 material!
- Specifics on Wednesday

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles

idealized dipoles

A.
$$\sigma_b = 0$$
, $\rho_b \neq 0$
B. $\sigma_b \neq 0$, $\rho_b \neq 0$
C. $\sigma_b = 0$, $\rho_b = 0$
D. $\sigma_b \neq 0$, $\rho_b = 0$

In the following case, is the bound surface and volume charge zero or nonzero?

Physical dipoles

A.
$$\sigma_b = 0, \rho_b \neq 0$$

B. $\sigma_b \neq 0, \rho_b \neq 0$
C. $\sigma_b = 0, \rho_b = 0$

idealized dipoles

D.
$$\sigma_b \neq 0$$
, $\rho_b = 0$

A VERY thin slab of thickness d and area A has volume charge density $\rho=Q/V$. Because it's so thin, we may think of it as a surface charge density $\sigma=Q/A$.

The relation between ρ and σ is:

A.
$$\sigma = \rho$$

B. $\sigma = \rho d$
C. $\sigma = \rho / d$
D. $\sigma = V \rho$
E. $\sigma = \rho / V$

Are ρ_b and σ_b due to real charges?

- A. Of course not! They are as fictitious as it gets!
- B. Of course they are! They are as real as it gets!
- C. I have no idea

A dielectric slab (top area A, height h) has been polarized, with $\mathbf{P} = P_0$ in the +z direction. What is the surface charge density, σ_b , on the bottom surface?

A. 0

 $B. -P_0$

 $\mathsf{C}.P_0$

 $D. P_0Ah$

 $E. P_0A$

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the surface charge density?

A. 0

B. Non-zero Constant

C. constant* $\sin \theta$

D. constant* $\cos \theta$

E. ??

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the volume charge density?

A. 0

B. Non-zero Constant

C. Depends on r, but not θ

D. Depends on θ , but not r

E. ?

