Local fields

Emile T. Okada

February 20, 2019

Contents

C	onter	nts	1		
1	Discrete valuation rings and Dedekind domains				
	1.1	Preliminaries	3		
	1.2	Discrete valuation rings	4		
	1.3	Dedekind domains	5		

CHAPTER 1

Discrete valuation rings and Dedekind domains

1.1 Preliminaries

thm:int_dep

Thm 1.1.1. Let $S \subseteq R$ be rings and $x \in R$. The following are equivalent:

- 1. x is integral over S
- 2. S[x] is a finite S-algebra
- 3. S[x] is contained in subring $T \subseteq R$ that is a finite S-alg
- 4. There is an S[x]-module M such that $Ann_{S[x]}(M) = 0$ and M is finitely generated as a S-module.

Lemma 1.1.2. Let $S \subseteq R$ be an integral extension of rings. Let $Q \triangleleft R$ be a prime ideal, and set $P = Q \cap S$. Then Q is maximal in R iff P is maximal in S

Lemma 1.1.3. (Incomparability). Let $S \subseteq R$ be an integral extension of rings. Let $Q, Q' \triangleleft R$ be prime ideals with $Q \subseteq Q'$ and $Q \cap S = Q' \cap S$. Then Q = Q'.

Lemma 1.1.4. (Lying over). Let $S \subseteq R$ be an integral extension of rings. Let $P \triangleleft S$ be prime. Then there exists a prime $Q \triangleleft R$ such that $Q \cap S = P$.

thm:going_up

Thm 1.1.5. (Going up). Let $S \subseteq R$ be an integral extension of rings. Let $P_1 \subseteq P_2 \subseteq \cdots \subseteq P_n$ be a chain of primes in S and $Q_1 \subseteq Q_2 \subseteq \cdots \subseteq Q_m$ with $0 \le m < n$ be a chain of primes in R with $Q_i \cap S = P_i$. Then the chain can be extended to $Q_1 \subseteq Q_2 \subseteq \cdots \subseteq Q_n$ with $Q_i \cap S = P_i$.

thm:going_down

Thm 1.1.6. (Going down). Let $S \subseteq R$ be an integral extension of domains such that S is normal. Let $P_1 \supseteq P_2 \supseteq \cdots \supseteq P_n$ be a chain of primes in S and $Q_1 \supseteq Q_2 \supseteq \cdots \supseteq Q_m$ with $0 \le m < n$ be a chain of primes in R with $Q_i \cap S = P_i$. Then the chain can be extended to $Q_1 \supseteq Q_2 \supseteq \cdots \supseteq Q_n$ with $Q_i \cap S = P_i$.

thm:noeth_loc_ring

Thm 1.1.7. Let R be a Noetherian local ring with maximal ideal \mathfrak{m} . Then $\cap_n \mathfrak{m}^n = 0$.

1.2 Discrete valuation rings

Definition 1.2.1. Let K be a field. A discrete valuation on K is a surjective function $v: K \to \mathbb{Z} \cup \{\infty\}$ satisfying

- 1. $v(x) = \infty$ iff x = 0
- 2. v(xy) = v(x) + v(y)
- 3. $v(x+y) \ge \inf(v(x), v(y))$.

If (K, v) is a field with a discrete valuation then $R = \{x \in K : v(x) \ge 0\}$ is a subring of K called the valuation ring of v.

Definition 1.2.2. A domain R is called a *discrete valuation ring* if there is a valuation v on $K = \operatorname{Frac}(R)$ for which R is the valuation ring.

Lemma 1.2.3. Any DVR is a Noetherian local domain of Krull dimension 1.

Proof. Let $t \in R$ be such that v(t) = 1. Then all the ideals of R are in the chain

$$R \supsetneq (t) \supsetneq (t^2) \supsetneq (t^3) \supsetneq \cdots \supseteq 0.$$
 (1.1)

Thm 1.2.4. Let R be a Noetherian local domain with Krull dimension 1 and maximal ideal \mathfrak{m} . The following are equivalent

- 1. R is a DVR
- 2. m is principal
- 3. R is normal.

Proof. From the conditions on R we know the only prime ideals are 0 and \mathfrak{m} . $(1)\Rightarrow (3)$ Let $x\in K=\operatorname{Frac}(R)$ and suppose it is integral over R. Then there are $a_0,\ldots,a_{n-1}\in R$ such that $x^n+a_{n-1}x^{n-1}+\cdots a_1x+a_0=0$. Suppose that v(x)<0. Then

$$nv(x) = v(x^n) \ge \inf(v(a_i x^i)) \ge (n-1)v(x)$$
(1.2)

and so $v(x) \ge 0$ which is a contradiction and so $v(x) \ge 0$ and hence $x \in r$.

 $(3) \Rightarrow (2)$ Let $0 \neq x \in \mathfrak{m}$. Then $\mathrm{rad}((x)) = \mathfrak{m}$ and so since R is Noetherian there is an $n \in \mathbb{N}$ such that $\mathfrak{m}^n \subseteq (x) \subseteq \mathfrak{m}$. Let n be minimal with this property.

Remark 1.2.5. Morally we now have $(x) = \mathfrak{m}^n$.

Let $y \in \mathfrak{m}^{n-1}$ be such that $y \notin (x)$. Set $z = x/y \in K$. Then $z^{-1} \notin R$ so z^{-1} is not integral over R. But this means that $z^{-1}\mathfrak{m} \nsubseteq \mathfrak{m}$ my theorem 1.1.1. But $y\mathfrak{m} \subset (x)$ and so $z^{-1}\mathfrak{m} \subseteq R$ and hence $z^{-1}\mathfrak{m} = R$ and so $\mathfrak{m} = (z)$.

$$(2) \Rightarrow (1)$$
 Define obvious valuation.

4

Proposition 1.2.6. R is a DVR iff it is a Noetherian local ring and its maximal ideal is generated by a non-nilpotent element π .

Proof. By theorem 1.1.7 every element in R can be written as $\pi^n u$ for u a unit and $n \in \mathbb{N}_0$. It follows that R must be an integral domain, and so this expression is unique. Setting $v(\pi^n u) = n$ one can easily check that this defines valuation on $\operatorname{Frac}(R)$ with valuation ring R.

1.3 Dedekind domains

Definition 1.3.1. A *Dedekind domain* is a normal Noetherian domain of Krull dimension 1.

Lemma 1.3.2. Let R be a Noetherian domain of Krull dimension 1. Then R is a Dedekind domain iff every local ring $R_{\mathfrak{p}}$ for $\mathfrak{p} \neq 0$ is a DVR.

Definition 1.3.3. Let R be a Dedekind domain with $K = \operatorname{Frac}(R)$. We call an R-submodule of K a fractional ideal if it is finitely generated as an R-module.

Remark 1.3.4. One can define the product of fractional ideals in the obvious way. Then the products of fractional ideals are fractional ideals.

Proposition 1.3.5. Let R be a Dedekind domain. Then all fractional ideals are invertible.

1.3.1 Examples

PIDs

Thm 1.3.6. Let R be a PID. Then R is a Dedekind domain.

Proof. Certainly Noetherian. Also clearly has Krull dimension 1. Finally, $R_{\mathfrak{p}}$ is a local PID and hence a DVR for all $0 \neq \mathfrak{p} \triangleleft R$.

Rings of integers

Thm 1.3.7. Let K/\mathbb{Q} be a number field and \mathcal{O}_K its ring of algebraic integers. Then \mathcal{O}_K is a Dedekind domain.

Proof. If $\alpha \in \operatorname{Frac}(\mathcal{O}_K) = K$ is integral over \mathcal{O}_K then it is integral over \mathbb{Z} and so lies in \mathcal{O}_K . Thus \mathcal{O}_K is normal. To see that \mathcal{O}_K is Noetherian note that it is finite over \mathbb{Z} and hence Noetherian. Finally, \mathcal{O}_K has Krull dimension 1 since it is integral over \mathbb{Z} and \mathbb{Z} has Krull dimension 1.

Coordinate rings

Thm 1.3.8. Let V be an affine variety defined over an algebraically closed field k. Then k[V] is a Dedekind domain iff V is non-singular, irreducible and of dimension 1.

Proof. k[V] is always Noetherian. V is irreducible iff k[V] is a domain. V is of dimension 1 iff k[V] has Krull dimension 1.

Now suppose k[V] is a Dedekind domain. Then we know that all the local rings are normal Noetherian local domains i.e. DVRs and hence V must be non-singular. Conversely, suppose V is non-singular. Then all the local rings of k[V] are DVRs and so k[V] is a Dedekind domain.