國立中與	興大	學附屬市	高級中學	113	學年度第	1 學期	期末考	高二 <u>數</u>	t學 A	第1頁	/共3頁
班級:二年	_ 班	座號:_	姓名	:				命題:	L老師	審題:	C老師

- 一、單選題(每題5分,共25分)
- **1.** 在平行四邊形 ABCD 中, \overline{AB} = 3, \overline{BC} = 5,則 \overline{AC} ◆ \overline{BD} 的值為?
 - (1) 15 (2) 16 (3) 18 (4) 24 (5) 34.
- **2.** 假設三角形 \overrightarrow{ABC} 的三邊長分別為 \overrightarrow{AB} = 9、 \overrightarrow{BC} = 11、 \overrightarrow{AC} = 6 . 請選出和向量 \overrightarrow{AB} 的內積為最大的選項? (1) \overrightarrow{AC} (2) \overrightarrow{CA} (3) \overrightarrow{BC} (4) \overrightarrow{CB} (5) \overrightarrow{AB} .
- 3. ABC 為坐標平面上三角形,P 為平面上一點且 $\overrightarrow{AP} = \frac{1}{5} \overrightarrow{AB} + \frac{3}{5} \overrightarrow{AC}$,則 $\frac{\Delta ABP}{\Delta ABC}$ 面積 等於? $\frac{1}{(1)^{\frac{1}{5}}} \frac{2}{(2)^{\frac{1}{5}}} \frac{3}{(3)^{\frac{1}{5}}} \frac{4}{(4)^{\frac{1}{5}}} \frac{3}{(5)^{\frac{1}{4}}}$
- **4.** $\triangle ABC$ 內接於圓心為O之單位圓.若 $\overrightarrow{OA} + \overrightarrow{OB} + \sqrt{3}\overrightarrow{OC} = \overrightarrow{0}$,則 $\overrightarrow{AO} \bullet \overrightarrow{AB}$ 為何? (1) $\frac{1}{2}$ (2) $\frac{1}{3}$ (3) $\frac{\sqrt{2}}{2}$ (4) $\frac{\sqrt{3}}{2}$ (5) 1.
- 5. 設 \overrightarrow{a} 與 \overrightarrow{b} 都是平面上不為零的向量。若 $2\overrightarrow{a}$ + \overrightarrow{b} 與 \overrightarrow{a} + $2\overrightarrow{b}$ 所張成的三角形面積為 9 ,則 $3\overrightarrow{a}$ + \overrightarrow{b} 與 \overrightarrow{a} + $3\overrightarrow{b}$ 所張成的三角形面積為下列哪一個選項? (1) 6 (2) 9 (3) 12 (4) 18 (5) 24。
- 二、多重選擇題(每題8分,共40分)

說明:第6題至第10題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答錯多於2個選項或所有選項均未作答者,該題以零分計算。

6. 在平面直角坐標系中,若 A(1,0), B(-1,0) ,則下列哪些函數的圖形上可以找到 P點,使得 $\overrightarrow{PA} \cdot \overrightarrow{PB} = 0$ 。 (1) $y = -x^2$ (2) $y = x^2 + 1$ (3) 2x + 4y = 5 (4) $x^2 + (y - 3)^2 = 1$ (5) $y = 2^x$

- 7. **已知** $\triangle ABC$,則下列敘述哪些正確?
 - (1)若 \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = $\overrightarrow{0}$,則P必為 $\triangle ABC$ 的重心
 - (2)若 $2\overrightarrow{PA}$ + $3\overrightarrow{PB}$ + $4\overrightarrow{PC}$ = $\overrightarrow{0}$,則P必為 $\triangle ABC$ 的內心
 - (3)若 $2\overrightarrow{PA}$ - $3\overrightarrow{PB}$ + $4\overrightarrow{PC}$ = $\overrightarrow{0}$,則P必在 $\triangle ABC$ 的外部
 - (4)若 $\overrightarrow{AP} \bullet \overrightarrow{AB} = \frac{1}{2} |\overrightarrow{AB}|^2$,則P必為 $\triangle ABC$ 的外心
 - (5)若 $\overrightarrow{AP} \bullet \overrightarrow{AB} = \overrightarrow{AP} \bullet \overrightarrow{AC}$,則P 必為 $\triangle ABC$ 的垂心
- 8. 若 $\overrightarrow{a}=(1,p)$, $\overrightarrow{b}=(100,q)$, $\overrightarrow{c}=(r,s)$,其中p,q,r,s皆為非零的實數,若想找實數數對(x,y)使得 $\overrightarrow{c} = x \overrightarrow{a} + y \overrightarrow{b}$, 關於下列敘述哪些正確?
 - (1)若 $\overrightarrow{a} \perp \overrightarrow{b}$,則數對(x,y)一定有解
 - (2)若數對(x,y)只有一組解,則 \overrightarrow{a} , \overrightarrow{b} 兩向量不平行
 - (3)若數對(x, y)無限多解,則 $\overrightarrow{a}//\overrightarrow{b}$
 - (4)若數對(x,y)無解,則 $\overline{a}//\overline{b}$
 - (5)若數對 (x, y) 無解,則 $\begin{vmatrix} 1 & p \\ r & s \end{vmatrix} = 0$
- 9. 設 $P \triangleq \Delta ABC$ 內部一點,且 $\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$,若 \overrightarrow{CP} 交 \overrightarrow{AB} 於E,且 \overrightarrow{AP} 交 \overrightarrow{BC} 於D,請選出下列正確的選項。
- (1) \overline{BD} : \overline{CD} = 3:4 (2) \overline{AP} : \overline{AD} = 7:12 (3) \overline{AE} : \overline{BE} = 3:4
- $(4)\frac{\Delta ACP}{\Delta ABC}$ 面積 = $\frac{9}{49}$ (5) $\frac{\Delta AED}{\Delta ABC}$ 面積 = $\frac{4}{21}$

- **10.** 如右圖所示,坐標平面上A(4,3) 為圓 Γ 上一點,原點O為 Γ 的圓心。若B為圓 Γ 上之動點,且 $\overrightarrow{BC} = \overrightarrow{OA}$,則下列 哪些敘述是正確的?
 - (1) \overrightarrow{OC} 必平分 \overrightarrow{OA} 與 \overrightarrow{OB} 的夾角
 - (2) $|\vec{oC}|$ 的值可能為 $\sqrt{110}$
 - (3)若C在y軸正向上,則C落在圓 Γ 的內部
 - (4)若C(a,b)在圓 Γ 上,則ab<0
 - (5)若C(a,b),則a之最小值為-1

三、選填題(每題5分,共35分)

說明:1.第11至17題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(11~25)。 2.第11至17題每題完全答對給5分,答錯不倒扣,未完全答對不給分。

- **11.** 在坐標平面上,若兩向量 $\overrightarrow{a} = (s, \frac{1}{2})$ 與 $\overrightarrow{b} = (-\frac{1}{2}, t)$ 都是單位向量(即長度為 1 的向量),且兩向量的夾角 為 30° ,則 $8\times s\times t=$ _____ (11)(12) ____ 。
- 12. 設 O 為坐標平面上的原點,P 點坐標為 (2,4) ;若 A 、 B 分別是正 x 軸及正 y 軸上的點,使得 $\overrightarrow{PA} \perp \overrightarrow{PB}$, 則 $\triangle OAB$ 面積的最大可能值为 $\frac{(13)(14)}{(15)}$ (化成最簡分數)
- **13.** 設 \overrightarrow{u} , \overrightarrow{v} 為兩非零向量。以| \overrightarrow{u} | 表 \overrightarrow{u} 之長度, 若 3 | \overrightarrow{u} | = 2 | \overrightarrow{v} | = 2 \overrightarrow{u} + \overrightarrow{v} | , 且 θ 表 \overrightarrow{u} , \overrightarrow{v} 之夾角, 則 $\cos\theta = \frac{(16)(17)}{(18)(19)}$ (化成最簡分數)
- **15.** 已知 A,B,C 三點不共線, P,Q 為直線 BC 上相異兩點,且 $\overrightarrow{AP} = a \overrightarrow{AB} + b \overrightarrow{AC}$, $\overrightarrow{AQ} = 2b \overrightarrow{AB} + (7a 3b) \overrightarrow{AC}$,其中 a,b 为相異實數。若 $\triangle ABC$ 面積為 48,則 $\triangle APQ$ 面積為 (22)(23)
- **16.** 設 A(a,1) 、 B(1,b) 、 P(2,3) 為坐標平面上三點,已知 \overline{PA} 與 \overline{PB} 互相垂直,當行列式 $\begin{vmatrix} a & 2b \\ -2b & a \end{vmatrix}$ 的值為最小值時,則此時 ΔPAB 的面積為 (24)。
- **17.** 已知 $\Delta_1 = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 3$, $\Delta_2 = \begin{vmatrix} 2a_1 & a_2 \\ 2c_1 & c_2 \end{vmatrix} = -4$, $\Delta_3 = \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} = b$,若方程組 $\begin{cases} b_1x a_1y = c_1 \\ b_2x a_2y = c_2 \end{cases}$ 的解為 (a, -1),則 $a \times b = \underline{(25)}$

一單選題

(1)	(2)	(3)	(4)	(5)
2	4	3	1	5

二多選題

(6)	(7)	(8)	(9)	(10)
125	13	1234	125	1(送分)45

三選填題

(11)	(12)	(13)	(14)	(15)
-6	$\frac{25}{4}$	$\frac{11}{24}$	(9,1)	60
(16)	(17)			
2	2			