RECOCIDO SIMULADO (Simulated Annealing SA)

Jairo Alonso Tunjano

RECOCIDO SIMULADO

Recocido simulado:

Metaheurística que hace uso de algunos conceptos de *Mecánica Estadística*:

El Recocido Simulado usado en metalurgia para llevar un sólido a un estado de equilibrio térmico

[] (mínima Energía)

RECOCIDO SIMULADO

Proceso de SA en Metalurgia

- •Dada una sustancia, no todas las moléculas tienen la misma Energía, sino que se encuentra en diferentes niveles, el menor de los cuales se denomina "estado fundamental"
- •Si la sustancia esta a 0°K todas las moléculas están en su estado fundamental
- •Si esta a temperaturas mayores las moléculas ocupan estados superiores de energía
- •La distribución de partículas en los diferentes niveles sigue la distribución de Probabilidad de Boltzman

RECOCIDO SIMULADO

Proceso de SA en Metalurgia

Recocer: reblancecer un sólido a una temperatura elevada y luego enfriarlo lentamente hasta que las partículas, por si solas, se van colocando en el "estado fundamental del sólido"

El proceso pasa por diferentes fases cada vez a menores temperaturas. Para cada fase el sólido puede alcanzar el equilibrio térmico

Estado fundamental = Las partículas forman retículas perfectas y el sistema está en su más bajo nivel energético

RECOCIDO SIMULADO

Proceso de SA en Optimización

	Metalurgia	Optimización
	Configuración	Solución Factible
	Energía de la Configuración	Costo de la solución
	Mínima energía	Función Objetivo
	Configuración fundamental	Solución Optima
	Temperatura	Parámetro
RECOCIDO SIMULADO		

SA en Optimización

En una iteración del proceso de "Enfriamiento" una solución actual x es "perturbada" para producir una nueva alternativa que puede reemplazarla o no .

El reemplazo será aceptado o no en función de una regla de aceptación.

El proceso se repite iterativamente hasta que se considere que se llegó al óptimo (la solución converge)

Perturbar = obtener una nueva solución x' a partir de x (es decir, generar un elemento de N(x))

Enfriamiento: En el transcurso del proceso usar un parámetro dinámico T que toma valores cada vez menores RECOCIDO SIMULADO

Regla de aceptación

(Algoritmo de Metrópolis)

Si la nueva solución x' tiene mejor valor Z que la anterior, la reemplaza. x=x'

Si no, se acepta bajo la siguiente condición:

la probabilidad de que x' se acepte es:

$$P(\square Z) = \exp\left[\frac{\square Z}{CT}\right]$$

 $\Box Z = (Z(x') - Z(x))$

C: cte (1.38054 10-3)

T es la temperatura.

RECOCIDO SIMULADO

Donde:

Regla de aceptación

(Algoritmo de Metrópolis)

$$P(\Box Z) = \exp \left[\frac{\Box Z}{CT} \right]$$

La distribución da la probabilidad de que el sólido esté en el estado i con energía E_i a temperatura T.

Esta distribución se denomina Probabilidad de Boltzman.

RECOCIDO SIMULADO

En la práctica se hace así:

Se escoge un número aleatorio n uniformemente distribuido en el intervalo (0,1).

Ese número es comparado con P(//Z).

Si $n < P(\square Z)$, x' reemplaza a x como solución actual

Si $n \ge P([]Z)$, x se usa de nuevo como paso inicial de una próxima iteración.

Al principio T es un valor alto (fundición), y luego va disminuyendo (enfriamiento), es decir, cada vez es menor la probabilidad de que la nueva alternativa reemplace a la anterior.

RECOCIDO SIMULADO

Enfriamiento Iteración 0 To Iteración final En cada iteración que requiere cambio de T, Tieración simulado Donde 0 1 1 1

Parámetros

- 1. T_o = temperatura Inicial (alta)
- Velocidad de enfriamiento L(T) = número de iteraciones en que se usa la misma temperatura antes de disminuirla para otras L(T) iteraciones
- 3. Enfriamiento ☐ = grado de disminución de temperatura, se recomienda ☐ ☐ (0.8, 0.99)
- 4. T_f = Temperatura final $(T_f \square 0)$

RECOCIDO SIMULADO

Híbridos con otras Metaheurísticas

- A) Usando SA para generar una solución inicial que usará la otra metaheurística
- B) Usando el otro algoritmo para generar un solución inicial que utilizará el SA

RECOCIDO SIMULADO

Aplicaciones de SA

- Diseño de circuitos electrónicos: tamaño óptimo de los transmisores
- Comunicaciones
- · Teoría de grafos
- · Secuenciación de eventos deportivos
- · Secuenciación en una sola máquina
- · Localización de terremotos
- · Predicción de estructuras de cromosomas
- Clasificación de imágenes

RECOCIDO SIMULADO

Bibliografía de SA

- Kirkpatrick, S. C.D. Gelatt Jr, M.P. Vecchi. (1983) Optimization by Simulated Annealing, *Science*, 220, pp 671-680
 Johnson, D.S. C.R. Aragon, L.A. McGeoch, S. Schevon (1989)
 Optimization by Simulated Annealing: En experimental evaluation, Part I, Graph Partitioning, *Operations Research*, 37(6) pp 865-892
 Osborne L.J., B.E. Gillet (1991) A comparison of two simulated annealing algorithms applied to the directed Steiner problem on networks. ORSA Journal on computing 3(3) 213.

- http://exatech.com/Optimization/Optimization.htm

RECOCIDO SIMULADO