

Módulo 2: Sistemas Embebidos

- ¿Qué son los Sistemas Embebidos?
- Estructura de un Sistema Embebido
- Componentes de un Sistema Embebido
- Interacción con el mundo físico

¿Qué son los Sistemas Embebidos?

Definición simple: sistemas computacionales que no se parecen a una computadora

- La complejidad está escondida de los usuarios (embebida dentro de los dispositivos)
- Los dispositivos IoT son embebidos
- No tienen acceso a internet necesariamente

¿Que son los Sistemas Embebidos?

• Pueden no interactuar directamente con el humano, pero con otro dispositivo

¿Que son los Sistemas Embebidos?

- Eficiencia: Diferencia entre el diseño de SW tradicional y el diseño de Sistemas Embebidos
- Usados en mercados críticos
- Limitaciones estrictas y rigurosas
 - Bajo costo
 - Rendimiento óptimo
 - Bajo consumo energético
 - Costo de Manufactura y diseño
 - Tiempo de entrega

Detalles adicionales

- Sistemas embebidos tienden a ser construidos/diseñados para una sola aplicación específica
 - o Ejemplo: audífonos, parlantes, etc.
 - o A diferencia de una computadora tradicional que son mayormente 'sobre diseñadas'
- HW y SW van diseñados de la mano
 - o A diferencia de las computadoras de propósito general donde se usa HW y SW por separado
 - Ejemplo: una computadora LENOVO corriendo PowerPoint (Microsoft)
- Más trabajo para diseñadores (HW y SW)

Estructura General

- Sensores reciben datos del mundo exterior
- Actuadores realizan acciones en el mundo exterior
- IP core
 - Chips diseñados para una función (audio, video, internet)
 - Manufacturados en masa
 - Interactúan con el microcontrolador

Estructura General

- FPGAs (no estudiados en este curso)
 - HW que puede ser reconfigurados/reconectados vía RAM para realizar una tarea diferente
 - Más rápidos que el software tradicional, más lentos que los circuitos integrados

Microcontrolador: el componente principal de un sistema embebido

• El principal circuito integrado que ejecuta el programa. Ejemplo: Arduino

- Microcontrolador vs Microprocesador
 - Microprocesador: lo encuentran en una laptop
 - Microcontrolador: se encuentran en los sistemas embebidos o loT
 - Más débil, menos memoria, más lento (Desde 16Mhz a 500Mhz)

- Microcontrolador: necesitan ser programados, envía comandos, recibe datos
 - C, C++, Python (Raspberry PI)

Tipos de Procesadores

- Procesadores de propósito general
 - Usados para muchas aplicaciones
 - Incluyen muchas características
 - Caros, sobre diseñados
 - Muy disponibles en el mercado
- Procesadores de procesamiento de señales digitales (DSP)
 - Soporta instrucciones vectoriales
 - o Baratos, pero más limitados en el mercado

Sensores Simples

- Output: números reales, true, false
 - o Luz, temperatura, humedad, etc.

Sensores Complejos

- Output: imágenes, mensajes de comunicación
 - o Cámaras, controlador de ethernet

Actuadores Simples

- Realizan acciones en el mundo físico
 - LEDs, LCDs, displays

Actuadores Complejos

- Realizan acciones más complejas
 - Todo tipo de motores

Interacción con el mundo físico

Conversión de Análogo a Digital (ADC)

- Sensores vs Actuadores: recibir y enviar datos al mundo exterior
- Relación: números reales (0.1,0.01,0.001,0.0001....) vs integrales (1,2,3,4,5......)
- El fenómeno análogo: el mundo real es análogo
 - Luz natural
 - o Sonido
 - Temperatura
 - Reloj análogo

- El fenómeno digital: como describimos al mundo análogo
 - o Bombilla eléctrica--> encendido, apagado
 - o Volumen del celular--> representado con números del 1 al 100
 - Control de temperatura--> representado con sistemas internacionales
 - Reloj digital

Interacción con el mundo físico

- Microcontroladores solo entienden señales digitales
 - Usamos ADC por este motivo
 - La conversión es una aproximación
 - o Ejemplo: el procesamiento de una onda de sonido
 - El micrófono convierte la presión a voltaje
 - El voltaje es muestreado (discretización)

