(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-182391 (P2002-182391A)

(43)公開日 平成14年6月26日(2002.6.26)

(51) Int.Cl. ⁷		識別記号		FΙ			ァーマュート*(参考)		
G03F	7/038	5 0 1		C 0 3	F	7/038		501	2 H 0 2 ដ
B 4 1 N	1/14			B 4 1	N	1/14			2 H Ū 9 6
C 0 8 F	2/50			C 0 8	F	2/50			2H114
290/12				290/12				4 J O 1 1	
G03F	7/00	503		C 0 3	F	7/00		503	4 J 0 2 7
			審查請求	未請求	請求,	頁の数7	OL	(全 22 頁)	最終頁に続く
(21)出願番号		特願2000-384632(P2000-384632)		(71) 出	【願人	000005		会社	
(22) 出顧日		平成12年12月19日 (2000. 12. 19)		東京都千代田区丸の内二丁目 5番2号 (72)発明者 浦野 年由 神奈川県横浜市青葉区鴨志田町1000番地					

(72)発明者 岡本 英明

神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内

三菱化学株式会社横浜総合研究所内

(74)代理人 100103997

弁理士 長谷川 曉司

最終頁に続く

(54) 【発明の名称】 光重合性組成物及び光重合性平版印刷版

(57)【要約】

【目的】 耐刷力に優れると共に、高感度を示す光重合性組成物及び光重合性平版印刷版を提供する

【構成】 下記の(A)成分、(B)成分、及び(C)成分を含有してなる光重合性組成物、及び、支持体表面

$$\begin{array}{c}
R^{*1} \\
-\left\{CH_{2} - C\right\} \\
O = C \\
O = C
\end{array}$$

$$\begin{array}{c}
O = C \\
O = CH - CH \\
O = CH - CH
\end{array}$$

$$\begin{array}{c}
R^{*2} \\
R^{*2} \\
V
\end{array}$$

〔式(I) 中、R³¹は、メチル基又は水素原子を示し、R³²は、アルキル基又は水素原子を示し、Vは、エポキシ 基含有エチレン性不飽和化合物の残基を示す。〕 に該光重合性組成物の層が形成されてなる光重合性平版 印刷。

(A)下記一般式(I)で表される構成単位と(メタ)アクリロニトリル由来の構成単位を含む高分子結合材 【化1】

- (B) エチレン性不飽和化合物
- (C) 光重合開始剤

(A) 下記一般式(I) で表される構成単位と(メタ)ア

クリロニトリル由来の構成単位を含む高分子結合材

【特許請求の範囲】

【請求項1】 下記の(A)成分、(B)成分、及び(C)成分を含有してなることを特徴とする光重合性組成物。

$$\begin{array}{c|c}
 & R^{*1} \\
\hline
 & CH_2 - C \\
 & O = C \\
 & O = C \\
 & O = CH - CH \\
 & O = CH \\
 & O = CH - CH \\
 & O = CH \\
 & O =$$

〔式(I) 中、R³¹は、メチル基又は水素原子を示し、R³²は、アルキル基又は水素原子を示し、Vは、エポキシ 基含有エチレン性不飽和化合物の残基を示す。〕

- (B) エチレン性不飽和化合物
- (C) 光重合開始剤

【化1】(I)

【請求項2】 (A)成分における前記一般式(I)の構成単位が、下記一般式(II)で表されるものである請求項1に記載の光重合性組成物。

【化2】

〔式(II)中、 R^{31} 及び R^{32} は、前記一般式(I) におけると同じであり、 R^{33} は、アルキル基又は水素原子を示し、 R^{33} が複数個ある場合、それぞれの R^{33} は異なっていてもよく、又、 R^{32} と R^{33} が互いに連結して環状構造を形成していてもよく、mは $0\sim10$ の整数を示す。〕

【請求項3】 (A)成分における前記一般式(II)の構成単位が、下記一般式(III)で表されるものである請求項2に記載の光重合性組成物。

【化3】

$$\begin{array}{c|c}
R^{s_1} \\
-\left\{CH_s - C\right\} \\
O = C & OH \\
O & CH - O - C - C = CH_s \\
R^{s_2} & O & R^{s_1}
\end{array}$$
(III)

〔式(III) 中、 R^{31} 及び R^{33} は、前記一般式(II)におけると同じである。〕

【請求項4】 (A) 成分の高分子結合材が、(メタ) アクリル酸由来の構成単位、(メタ) アクリル酸エステル由来の構成単位、前記一般式(I)、(II)、又は(III) で表される構成単位、及び、(メタ) アクリロニトリル由来の構成単位からなる請求項1乃至3のいずれかに記載の光重合性組成物。

【請求項5】 (A)成分の高分子結合材が、前記一般式(I)、(II)、又は(III)で表される構成単位、及び、(メタ)アクリロニトリル由来の構成単位を、各々1~30モル%含むものである請求項1乃至4のいずれかに記載の光重合性組成物。

【請求項6】 更に、増感色素(D)成分を含有する請求項1乃至5のいずれかに記載の光重合性組成物。

【請求項7】 支持体表面に、請求項1乃至6のいずれかに記載の光重合性組成物の層が形成されてなることを特徴とする光重合性平版印刷版。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光重合性組成物及び光重合性平版印刷版に関し、特に、耐刷力に優れると 共に、高感度を示す光重合性組成物及び光重合性平版印 刷版に関する。

[0002]

【従来の技術】従来より、光重合性組成物の露光による

画像形成方法として、高分子結合材、エチレン性不飽和 化合物、及び光重合開始剤、或いは更に増感色素等から なる光重合性組成物の層を支持体表面に形成し、画像露 光して露光部のエチレン性不飽和化合物を重合、硬化さ せた後、非露光部を溶解除去することにより硬化レリー フ画像を形成する方法が汎用されており、又、その光重 合性組成物の感度の改良を目的として、各種の、エチレ ン性不飽和化合物、或いは光重合開始剤、又は増感色素 等に関し多くの提案がなされているが、いずれも、耐刷 力の面で満足できるものではなく、一方、その耐刷力の 改良を目的として、カルボキシル基含有重合体のカルボ キシル基の一部をエポキシ基含有エチレン性不飽和化合 物と反応させて側鎖にエチレン性不飽和結合を導入せし めた重合体を高分子結合材として用いた光重合性組成物 も提案されている(例えば、特開平10-10719号 公報等参照。)が、依然として満足できる耐刷力には到 り得ていなかった。

[0003]

【発明が解決しようとする課題】本発明は、前述の従来

【0007】〔式(I)中、 R^{31} は、メチル基又は水素原子を示し、 R^{32} は、アルキル基又は水素原子を示し、Vは、エポキシ基含有エチレン性不飽和化合物の残基を示す。〕

【0008】(B)エチレン性不飽和化合物

(C)光重合開始剤

[0009]

【発明の実施の形態】本発明の光重合性組成物を構成する(A)成分の高分子結合材は、後述する(B)成分のエチレン性不飽和化合物、及び(C)成分の光重合開始 剤等に対するバインダーとしての機能を有するものであり、本発明においては、その高分子結合材として前記一般式(I)で表される構成単位と(メタ)アクリロニトリル〔尚、ここで、「(メタ)アクリル」とは、アクリル又はメタクリルを意味するものとし、以降も同様とす

【0013】〔式(II)中、R³¹及びR³²は、前記一般式 (I) におけると同じであり、R³³は、アルキル基又は水 技術に鑑みてなされたものであって、従って、本発明 は、耐刷力に優れると共に、高感度を示す光重合性組成 物及び光重合性平版印刷版を提供することを目的とす 。

[0004]

【課題を解決するための手段】本発明者等は、前記課題を解決すべく鋭意検討した結果、特定の構成単位を含む高分子結合材を含有させた光重合性組成物が前記目的を達成できることを見い出し本発明を完成したもので、即ち、本発明は、下記の(A)成分、(B)成分、及び(C)成分を含有してなる光重合性組成物、及び、支持体表面に該光重合性組成物の層が形成されてなる光重合性平版印刷、を要旨とする。

【0005】(A)下記一般式(I)で表される構成単位と(メタ)アクリロニトリル由来の構成単位を含む高分子結合材

[0006]

【化4】

る。〕由来の構成単位を含むことを必須とし、前記一般 式(I) で表される構成単位か(メタ)アクリロニトリル 由来の構成単位のいずれかを含まない場合には、本発明 の目的を達成することができない。

【0010】ここで、前記一般式(I) において、 R^{32} の アルキル基の炭素数は、通常 $1\sim10$ であり、 $1\sim4$ で あるのが好ましい。

【0011】又、Vのエポキシ基含有エチレン性不飽和化合物の残基は、後述する前記一般式(I)の構成単位を含む高分子結合材の製造法に由来するものであるが、そのVを含めた前記一般式(I)の構成単位としては、下記一般式(II)で表される構成単位が好ましい。

[0012]

【化5】

O R*1

素原子を示し、R³⁸が複数個ある場合、それぞれのR⁸⁸ は異なっていてもよく、又、R³²とR³⁸が互いに連結し

(II)

て環状構造を形成していてもよく、mは0~10の整数を示す。〕

【0014】ここで、前記一般式(II)において、 R^{88} の アルキル基の炭素数は、通常 $1\sim10$ であり、 $1\sim4$ であるのが好ましく、mは $0\sim5$ であるのが好ましい。 又、 R^{32} と R^{33} が互いに連結して炭素数が $4\sim7$ の環状

【0017】〔式(III) 中、R³¹及びR³³は、前記一般 式(II)におけると同じである。〕

【0018】本発明における(A)成分の高分子結合材の前記一般式(I)の構成単位は、前駆体としての、カルボキシル基含有単量体と(メタ)アクリロニトリルとの共重合体〔以下、「カルボキシル基含有共重合体」と言うことがある。〕のカルボキシル基に、エポキシ基含有エチレン性不飽和化合物のエポキシ基を反応させることにより形成されたものである。

【0019】ここで、前駆体としてのカルボキシル基含 有共重合体としては、具体的には、例えば、(メタ)ア クリル酸〔尚、ここで、「(メタ)アクリル」とは、ア クリル又はメタクリルを意味するものとし、以降も同様 とする。〕、クロトン酸、イソクロトン酸、マレイン 酸、無水マレイン酸、フマル酸、イタコン酸、無水イタ コン酸、シトラコン酸、無水シトラコン酸、桂皮酸等の 不飽和カルボン酸類等のカルボキシル基含有単量体と、 (メタ) アクリロニトリルとの二元共重合体、及び、こ れらのカルボキシル基含有単量体と、(メタ)アクリロ ニトリルと、メチル (メタ) アクリレート、エチル (メ タ)アクリレート、プロピル(メタ)アクリレート、ブ チル (メタ) アクリレート、2-エチルヘキシル (メ タ) アクリレート、ヒドロキシエチル(メタ) アクリレ ート、シクロヘキシル(メタ)アクリレート、フェニル (メタ) アクリレート、ヒドロキシフェニル(メタ) ア クリレート、メトキシフェニル(メタ)アクリレート、 ベンジル (メタ) アクリレート、N, N-ジメチルアミ ノエチル (メタ) アクリレート、(メタ) アクリルアミ ド、N-メチロール(メタ)アクリルアミド、N, N-ジメチル (メタ) アクリルアミド等の (メタ) アクリル 酸誘導体類、N-ビニルピロリドン等のビニル複素環式 化合物類、スチレン、α-メチルスチレン、ビニルトル エン等のビニル芳香族化合物類、酢酸ビニル、塩化ビニ ル等のその他のビニル化合物類等の共単量体との三元以 上の共重合体が挙げられる。

構造を形成しているのが好ましい。

【0015】更に、前記一般式(II)の構成単位としては、下記一般式(III)で表される構成単位が好ましい。 【0016】

【化6】

【0020】これらのカルボキシル基含有単量体、(メタ)アクリロニトリル、及び共単量体は、それぞれ2種以上が併用されていてもよい。中で、カルボキシル基含有単量体としては(メタ)アクリル酸が好ましく、又、共単量体としては、メチル(メタ)アクリレート、ブチル(メタ)アクリレート等の(メタ)アクリル酸エステルが好ましい。

【0021】又、前駆体としてのカルボキシル基含有共重合体としては、カルボキシル基含有単量体の占める割合が3 \sim 50モル%であるのが好ましく、5 \sim 30モル%であるのが特に好ましく、(\times 9)アクリロニトリルの占める割合が1 \sim 60モル%であるのが好ましく、2 \sim 40モル%であるのが特に好ましい。

【0022】又、前駆体としての前記カルボキシル基含 有共重合体に反応させるエポキシ基含有エチレン性不飽 和化合物としては、例えば、脂肪族エポキシ基含有エチ レン性不飽和化合物類、及び脂環式エボキシ基含有エチ レン性不飽和化合物類等が挙げられる。

【0023】その脂肪族エポキシ基含有エチレン性不飽和化合物類としては、例えば、アリルグリシジルエーテル、グリシジル(メタ)アクリレート、αーエチルグリシジル(メタ)アクリレート、グリシジルクロトネート、グリシジルイソクロトネート、クロトニルグリシジルエーテル、イタコン酸モノアルキルモノグリシジルエステル、マレイン酸モノアルキルモノグリシジルエステル、マレイン酸モノアルキルモノグリシジルエステル、マレイン酸モノアルキルモノグリシジルエステル。マレイン酸モノアルキルモノグリシジルエステル等が挙げられる。

【0024】又、その脂環式エポキシ基含有エチレン性不飽和化合物類の場合、その脂環式エポキシ基としては、例えば、2、3-エポキシシクロペンチル基、3、4-エポキシシクロペキシル基、7、8-エポキシ〔トリシクロ〔5.2.1.0〕デシー2-イル〕基等が挙げられ、又、エチレン性不飽和結合としては、(メタ)アクリロイル基に由来するものであるのが好ましく、好適な脂環式エポキシ基含有エチレン性不飽和化合物類と

しては、例えば、以下に示す化合物が挙げられる。尚、以下の化合物において、 R^{35} は水素原子又はメチル基、 R^{36} は炭素数 $1\sim10$ のアルキレン基をそれぞれ示す。

【0025】

【化7】

【0026】本発明において、以上のエポキシ基含有エチレン性不飽和化合物の中で、脂環式エボキシ基含有エチレン性不飽和化合物類が好ましく、就中、3,4-エボキシシクロヘキシルメチル(メタ)アクリレートが特に好ましい。

【0027】本発明において、前駆体としての前記カルボキシル基含有共重合体に前記エボキシ基含有エチレン性不飽和化合物を反応させ、前記カルボキシル基含有共重合体の側鎖にエチレン性不飽和結合を導入するには、例えば、トリエチルアミン、ベンジルメチルアミン等の3級アミン、ドデシルトリメチルアンモニウムクロライド、テトラメチルアンモニウムクロライド等の4級アンモニウム塩、ピ

リジン、トリフェニルホスフィン等を触媒として、有機 溶剤中、通常、反応温度50~150℃で1~50時間 程度反応させるという公知の方法が採られる。

【0028】本発明における(A)成分の高分子結合材としては、(メタ)アクリル酸由来の構成単位、(メタ)アクリル酸エステル由来の構成単位、前記一般式(I)、(II)、又は(III)で表される構成単位、及び、(メタ)アクリロニトリル由来の構成単位からなるものであるのが好ましい。

【0029】又、本発明における(A)成分の高分子結 合材としては、前記一般式(I)、(II)、又は(III)で表 される構成単位、及び、(メタ)アクリロニトリル由来 の構成単位を、各々1~30モル%含むものであるのが 好ましく、各々2~20モル%含むものであるのが特に 好ましい。前記一般式、及び、(メタ)アクリロニトリ ル由来の構成単位の含有量が前記範囲未満では、光重合 性組成物としての耐刷力が劣る傾向となり、一方、前記 範囲超過では、光重合性組成物としての画像形成性が悪 化する傾向となる。尚、本発明における高分子結合材と しては、前記(A)成分の高分子結合材の外に、前記 (A) 成分以外の高分子結合材を含有していてもよい。 【0030】本発明の光重合性組成物を構成する(B) 成分のエチレン性不飽和化合物は、光重合性組成物が活 性光線の照射を受けたときに、後述する(C)成分の光 重合開始剤を含む光重合開始系の作用により付加重合 し、場合により架橋、硬化するようなラジカル重合性の エチレン性不飽和結合を分子内に少なくとも1個有する 化合物である。

【0031】本発明におけるエチレン性不飽和化合物としては、エチレン性不飽和結合を分子内に1個有する化合物、具体的には、例えば、(メタ)アクリル酸、クロトン酸、イソクロトン酸、マレイン酸、イタコン酸、シトラコン酸等の不飽和カルボン酸、及びそのアルキルエステル、(メタ)アクリロニトリル、(メタ)アクリルアミド、スチレン等、であってもよいが、重合性、架橋性、及びそれに伴う露光部と非露光部の現像液溶解性の差異を拡大できる等の点から、エチレン性不飽和結合を分子内に2個以上有する化合物であるのが好ましく、又、その不飽和結合が(メタ)アクリロイルオキシ基に由来するアクリレート化合物が特に好ましい。

【0032】エチレン性不飽和結合を分子内に2個以上有する化合物としては、代表的には、不飽和カルボン酸とポリヒドロキシ化合物とのエステル類、ヒドロキシ(メタ)アクリレート化合物とポリイソシアネート化合物とのウレタン(メタ)アクリレート類、(メタ)アクリル酸又はヒドロキシ(メタ)アクリレート化合物とポリエポキシ化合物とのエポキシ(メタ)アクリレート類、及び、(メタ)アクリロイルオキシ基含有ホスフェート類等が挙げられる。

【0033】そのエステル類としては、具体的には、例

えば、前記の如き不飽和カルボン酸と、エチレングリコ ール、ジエチレングリコール、トリエチレングリコー ル、テトラエチレングリコール、プロピレングリコー ル、トリプロピレングリコール、トリメチレングリコー ル、テトラメチレングリコール、ネオペンチルグリコー ル、ヘキサメチレングリコール、ノナメチレングリコー ル、トリメチロールエタン、テトラメチロールエタン、 トリメチロールプロパン、グリセロール、ペンタエリス リトール、ジペンタエリスリトール、ソルビトール、及 びそれらのエチレンオキサイド付加物、プロピレンオキ サイド付加物、ジエタノールアミン、トリエタノールア ミン等の脂肪族ポリヒドロキシ化合物との反応物、具体 的には、例えば、エチレングリコールジ(メタ)アクリ レート、ジエチレングリコールジ(メタ)アクリレー ト、トリエチレングリコールジ(メタ)アクリレート、 テトラエチレングリコールジ (メタ) アクリレート、プ ロピレングリコールジ (メタ) アクリレート、トリプロ ピレングリコールジ (メタ) アクリレート、テトラメチ レングリコールジ (メタ) アクリレート、ネオペンチル グリコールジ (メタ) アクリレート、ヘキサメチレング リコールジ (メタ) アクリレート、ノナメチレングリコ ールジ(メタ)アクリレート、トリメチロールエタント リ(メタ)アクリレート、テトラメチロールエタントリ (メタ) アクリレート、トリメチロールプロパンジ(メ タ) アクリレート、トリメチロールプロパントリ(メ タ) アクリレート、トリメチロールプロパンエチレンオ キサイド付加トリ(メタ)アクリレート、グリセロール ジ(メタ)アクリレート、グリセロールトリ(メタ)ア クリレート、グリセロールプロピレンオキサイド付加ト リ(メタ)アクリレート、ペンタエリスリトールジ(メ タ)アクリレート、ペンタエリスリトールトリ(メタ) アクリレート、ペンタエリスリトールテトラ (メタ)ア クリレート、ジペンタエリスリトールジ(メタ)アクリ レート、ジペンタエリスリトールトリ(メタ)アクリレ ート、ジペンタエリスリトールテトラ(メタ)アクリレ ート、ジペンタエリスリトールペンタ(メタ)アクリレ ート、ジペンタエリスリトールヘキサ(メタ)アクリレ ート、ソルビトールトリ(メタ)アクリレート、ソルビ トールテトラ (メタ) アクリレート、ソルビトールペン タ(メタ)アクリレート、ソルビトールヘキサ(メタ) アクリレート等、及び同様のクロトネート、イソクロト ネート、マレエート、イタコネート、シトラコネート等 が挙げられる。

【0034】更に、そのエステル類として、前記の如き不飽和カルボン酸と、ヒドロキノン、レゾルシン、ピロガロール、ビスフェノールF、ビスフェノールA等の芳香族ポリヒドロキシ化合物との反応物、具体的には、例えば、ヒドロキノンジ(メタ)アクリレート、レゾルシンジ(メタ)アクリレート、ピロガロールトリ(メタ)アクリレート等、又、前記の如き不飽和カルボン酸と、

トリス (2ーヒドロキシエチル) イソシアヌレート等の 複素環式ボリヒドロキシ化合物との反応物、具体的に は、例えば、トリス (2ーヒドロキシエチル) イソシア ヌレートのジ (メタ) アクリレート、トリ (メタ) アク リレート等、又、不飽和カルボン酸と多価カルボン酸と ボリヒドロキシ化合物との反応物、具体的には、例え ば、 (メタ) アクリル酸とフタル酸とエチレングリコー ルとの縮合物、 (メタ) アクリル酸とマレイン酸とジエ チレングリコールとの縮合物、 (メタ) アクリル酸とテ レフタル酸とペンタエリスリトールとの縮合物、 (メ タ) アクリル酸とアジピン酸とブタンジオールとグリセ リンとの縮合物等が挙げられる。

【0035】又、そのウレタン (メタ) アクリレート類 としては、具体的には、例えば、ヒドロキシメチル(メ タ) アクリレート、ヒドロキシエチル(メタ) アクリレ ート、グリセロールジ(メタ)アクリレート、ペンタエ リスリトールトリ (メタ) アクリレート、テトラメチロ ールエタントリ (メタ) アクリレート等のヒドロキシ (メタ) アクリレート化合物と、ヘキサメチレンジイソ シアネート、2,4,4ートリメチルヘキサメチレンジ イソシアネート、リジンメチルエステルジイソシアネー ト、リジンメチルエステルトリイソシアネート、ダイマ 一酸ジイソシアネート、1,6,11-ウンデカトリイ ソシアネート、1,3,6-ヘキサメチレントリイソシ アネート、1、8-ジイソシアネート-4-イソシアネ ートメチルオクタン等の脂肪族ポリイソシアネート、シ クロヘキサンジイソシアネート、ジメチルシクロヘキサ ンジイソシアネート、4,4'ーメチレンビス(シクロ ヘキシルイソシアネート)、イソホロンジイソシアネー ト、ビシクロヘプタントリイソシアネート等の脂環式ポ リイソシアネート、pーフェニレンジイソシアネート、 2,4-トリレンジイソシアネート、2,6-トリレン ジイソシアネート、キシリレンジイソシアネート、テト ラメチルキシリレンジイソシアネート、4,4'ージフ ェニルメタンジイソシアネート、トリジンジイソシアネ ート、1,5-ナフタレンジイソシアネート、トリス (イソシアネートフェニルメタン)、トリス(イソシア ネートフェニル)チオホスフェート等の芳香族ポリイソ シアネート、イソシアヌレート等の複素環式ポリイソシ アネート、等のポリイソシアネート化合物との反応物等 が挙げられる。

【0036】又、そのエポキシ(メタ)アクリレート類としては、具体的には、例えば、(メタ)アクリル酸、又は前記の如きヒドロキシ(メタ)アクリレート化合物と、(ポリ)エチレングリコールポリグリシジルエーテル、(ポリ)テトラメチレングリコールポリグリシジルエーテル、(ポリ)ペンタメチレングリコールポリグリシジルエーテル、(ポリ)ペンタメチレングリコールポリグリシジルエーテル、(ポリ)ネオペンチルグリコールポリグリシジルエーテル、(ポリ)スキサメチレングリコ

ールポリグリシジルエーテル、(ポリ)トリメチロールプロパンポリグリシジルエーテル、(ポリ)ソルビトールポリグリシジルエーテル、(ポリ)ソルビトールポリグリシジルエーテル等の脂肪族ポリエポキシ化合物、フェノールノボラックポリエポキシ化合物、(oー, mー, pー)クレゾールノボラックポリエポキシ化合物、ビスフェノールトポリエポキシ化合物、ビスフェノールトポリエポキシ化合物、ビスフェノールトポリエポキシ化合物、ビスフェノールトポリエポキシ化合物、アルビタンポリグリシジルエーテル、トリグリシジルイソシアヌレート、トリグリシジルトリス(2ーヒドロキシエチル)イソシアヌレート等の複素環式ポリエポキシ化合物、等のポリエポキシ化合物との反応物等が挙げられる。

【 0 0 3 7 】 又、その (メタ) アクリロイルオキシ基含有ホスフェート類としては、具体的には、例えば、 (メタ) アクリロイルオキシエチルホスフェート、ビス〔 (メタ) アクリロイルオキシエチル〕 ホスフェート、 (メタ) アクリロイルオキシエチレングリコールホスフェート等が挙げられる。

【0038】又、その他のエチレン性不飽和化合物として、前記以外に、例えば、エチレンビス(メタ)アクリルアミド等の(メタ)アクリルアミド類、フタル酸ジアリル等のアリルエステル類、ジビニルフタレート等のビニル基含有化合物類等が挙げられる。以上のエチレン性不飽和化合物は、それぞれ単独で用いられても2種以上が併用されてもよい。

【0039】以上の(B)成分のエチレン性不飽和化合物として、本発明においては、(メタ)アクリロイルオキシ基含有ホスフェート類、ウレタン(メタ)アクリレート類、又は、エステル(メタ)アクリレート類が好ましく、(B)成分のエチレン性不飽和化合物全体に対して、(メタ)アクリロイルオキシ基含有ホスフェート類としてはその占める割合が1~60重量%であるのが好ましく、又、ウレタン(メタ)アクリレート類のとしてはその占める割合が10~60重量%であるのが好ましく、又、エステル(メタ)アクリレート類としてはその占める割合が10~60重量%であるのが好ましい。

【0040】本発明の光重合性組成物を構成する(C)成分の光重合開始剤は、後述する(D)成分の増感色素等との共存下で光照射されたときに、活性ラジカルを発生するラジカル発生剤であって、代表的には、ハロメチル化sートリアジン誘導体類、ハロメチル化1,3,4ーオキサジアゾール誘導体類、ヘキサアリールビイミダゾール化合物類、チタノセン化合物類、及び有機硼素酸塩類等が挙げられ、本発明においては、ハロメチル化sートリアジン誘導体類、チタノセン化合物類、及び有機硼素酸塩類が好ましい。

【0041】ここで、そのハロメチル化sートリアジン誘導体類としては、具体的には、例えば、2,4,6-

トリス(トリクロロメチル)ーsートリアジン、2ーメ チルー4,6-ビス(トリクロロメチル)-s-トリア ジン、2-n-プロピルー4,6-ビス(トリクロロメ チル) $-s-トリアジン、2-(\alpha,\alpha,\beta-トリクロ$ ロエチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-フェニル-4,6-ビス(トリクロロ メチル) - s - トリアジン、2 - (p - メトキシフェニ ジン、2-(3,4-エポキシフェニル)-4,6-ビ ス(トリクロロメチル)-s-トリアジン、2-(p-クロロフェニル)-4,6-ビス(トリクロロメチル) -s-hリアジン、2-[1-(p-x)++)フェニ (μ) - 2, 4 - ブタジエニル] - 4, 6 - ビス (トリク ロロメチル) -s-トリアジン、2-スチリル-4,6 ービス(トリクロロメチル)ーsートリアジン、2-(p-メトキシスチリル)-4,6-ビス(トリクロロ メチル) - s - トリアジン、2 - (p - i - プロピルオ キシスチリル)-4,6-ビス(トリクロロメチル)s-トリアジン、<math>2-(p-トリル)-4, 6-ビス(トリクロロメチル) - s - トリアジン、2 - (p - メ トキシナフチル)-4,6-ビス(トリクロロメチル) -s-トリアジン、2-(p-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、 2-(p-エトキシカルボニルナフチル)-4,6-ビ ス(トリクロロメチル)ーsートリアジン、2ーフェニ ルチオー4,6ービス(トリクロロメチル)ーェートリ アジン、2-ベンジルチオー4,6-ビス(トリクロロ メチル) - s - トリアジン、2, 4, 6 - トリス (ジブ ロモメチル)-s-トリアジン、2,4,6-トリス(トリブロモメチル) -s-トリアジン、2-メチルー 4,6-ビス(トリブロモメチル)-s-トリアジン、 2-メトキシー4, 6-ビス(トリブロモメチル)-s ートリアジン等が挙げられる。

【0042】又、そのハロメチル化1、3、4ーオキサジアゾール誘導体類としては、具体的には、例えば、2ー(p-メトキシフェニル)-5-トリクロロメチルー1、3、4ーオキサジアゾール、2ー(p-メトキシスチリル)-5-トリクロロメチルー1、3、4ーオキサジアゾール、2ー(o-ベンゾフリル)-5-トリクロロメチルー1、3、4ーオキサジアゾール、2ー〔 β -(o-ベンゾフリル)ビニル〕-5-トリクロロメチルー1、3、4ーオキサジアゾール等が挙げられる。

【0043】又、そのヘキサアリールビイミダゾール誘導体類としては、具体的には、例えば、2, 2'ービス (o-メトキシフェニル) -4, 4', 5, 5'ーテトラフェニルビイミダゾール、2, 2'ービス (p-メトキシフェニル) -4, 4', 5, 5'ーテトラフェニルビイミダゾール、2, 2'ービス (o-クロロフェニル) -4, 4', 5, 5'ーテトラフェニルビイミダゾール、2, 2'ービス (o-フルオロフェニル) -4,

4', 5, 5'-テトラフェニルビイミダゾール、2, 2'-ビス(o-クロロフェニル)-4,4',5, 5'ーテトラ(m, m-ジメトキシフェニル)ビイミダ ゾール、2,2'-ビス(o-クロロフェニル)-4, 4', 5, 5'ーテトラ (pークロロフェニル) ビイミ ダゾール、2,2'ービス(o-クロロフェニル)-4, 4', 5, 5'ーテトラ(o, pージクロロフェニ ル) ビイミダゾール、2,2'ービス(o-クロロフェ ェニル) ビイミダゾール、2,2'ービス(0-クロロ フェニル) -4, 4', 5, 5' -テトラ(0, p -ジ ブロモフェニル) ビイミダゾール、2,2'ービス (o, p-ジクロロフェニル)-4,4',5,5'-テトラ(o, p-ジクロロフェニル) ビイミダゾール、 5,5'ーテトラ(o,p-ジクロロフェニル)ビイミ ダゾール、2,2'ービス(oーブロモフェニル)ー 4, 4', 5, 5'ーテトラ (p-ヨードフェニル) ビ イミダゾール、2,2'ービス(oーブロモフェニル) -4, 4', 5, 5'ーテトラ(oークロローpーメト キシフェニル) ビイミダゾール、2,2'ービス(o-クロロフェニル) -4, 4', 5, 5'-テトラ(p-クロロナフチル) ビイミダゾール等が挙げられる。

【0044】又、そのチタノセン誘導体類としては、具 体的には、例えば、ジシクロペンタジエニルチタニウム ジクロライド、ジシクロペンタジエニルチタニウムビス フェニル、ジシクロペンタジエニルチタニウムビス (2,4-ジフルオロフェニル)、ジシクロペンタジエ ニルチタニウムビス(2,6-ジフルオロフェニル)、 ジシクロペンタジエニルチタニウムビス(2,4,6-トリフルオロフェニル)、ジシクロペンタジエニルチタ ニウムビス(2,3,5,6-テトラフルオロフェニ ル)、ジシクロペンタジエニルチタニウムビス(2, 3,4,5,6-ペンタフルオロフェニル)、ジ(メチ ルシクロペンタジエニル) チタニウムビス(2,4-ジ フルオロフェニル)、ジ(メチルシクロペンタジエニ ル)チタニウムビス(2,6-ジフルオロフェニル)、 ジ (メチルシクロペンタジエニル) チタニウムビス (2,4,6-トリフルオロフェニル)、ジ(メチルシ クロペンタジエニル) チタニウムビス(2,3,5,6 ーテトラフルオロフェニル)、ジ(メチルシクロペンタ ジエニル) チタニウムビス(2,3,4,5,6-ペン タフルオロフェニル)、ジシクロペンタジエニルチタニ ウムビス〔2,6ージフルオロー3ー(1ーピロリル)

【0045】又、その有機硼素酸塩類としては、特に、 下記一般式(IV)で表されるものが好ましい。

【0046】

フェニル〕等が挙げられる。

【化8】

【0047】〔式(IV)中、R¹⁵、R¹⁶、R¹⁷、及びR¹⁸ は各々独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、又は複素環基を示し、これらは互いに連結して環状構造を形成していてもよく、これらのうち少なくとも一つは置換基を有していてもよいアルキル基である。X_b + は対カチオンである。]

【0048】ここで、式(IV)中の R^{15} 、 R^{16} 、 R^{17} 、及 VR^{18} がアルキル基であるときの炭素数は通常 $1\sim1$ 5、好ましくは $1\sim5$ 、アルケニル基、アルキニル基であるときの炭素数は通常 $2\sim15$ 、好ましくは $2\sim5$ 、アリール基であるときの炭素数は通常 $6\sim20$ 、好ましくは $6\sim15$ 、複素環基であるときの炭素数は通常 $4\sim20$ 、好ましくは $4\sim15$ であり、それらにおける置換基としては、ハロゲン原子、アルキル基、アルコキシ基、トリフルオロメチル基、トリメチルシリル基等が挙げられる。

【0049】これらの式(IV)で表される有機硼素酸塩の 有機硼素アニオンとしては、具体的には、例えば、n-ブチルーメチルージフェニル硼素アニオン、nーブチル ートリフェニル硼素アニオン、n-ブチルートリス (2,4,6-トリメチルフェニル) 硼素アニオン、n -ブチル-トリス(p-メトキシフェニル)硼素アニオ ン、n-ブチルートリス(p-フルオロフェニル) 硼素 アニオン、n-ブチル-トリス(m-フルオロフェニ ル) 硼素アニオン、n-ブチル-トリス(3-フルオロ - 4 - メチルフェニル)硼素アニオン、n-ブチルート リス(2,6-ジフルオロフェニル) 硼素アニオン、n ーブチルートリス(2,4,6-トリフルオロフェニ ν) 硼素アニオン、n-ブチルートリス(2,3,4,5,6-ペンタフルオロフェニル) 硼素アニオン、n-ブチルートリス (p-クロロフェニル) 硼素アニオン、 n-ブチル-トリス(トリフルオロメチル)硼素アニオ ン、n-ブチルートリス(2,6-ジフルオロ-3-ピ ロリルフェニル) - 硼素アニオン等が挙げられる。

【0050】又、対カチオンX。+ としては、例えば、アルカリ金属カチオン、アンモニウムカチオン、ホスホニウムカチオン、スルホニウムカチオン、ヨードニウムカチオン等のオニウム化合物、及び、ピリリウムカチオン、チアピリリウムカチオン、インドリウムカチオン等を挙げることができるが、テトラアルキルアンモニウム等の有機アンモニウムカチオンが好ましい。又、本発明において、(C)成分の光重合開始剤としての有機硼素酸塩類を光重合性組成物中に存在させる方法として、前記有機硼素酸塩類の有機硼素アニオンと適宜選択した対

カチオンとの塩を配合する通常の方法の他、前記有機硼素酸塩類の有機硼素アニオンと後述する(D)成分の増感色素の色素カチオンとで形成された塩を配合する方法も採ることができる。

【0051】尚、本発明の光重合性組成物は、前記

(A) 成分の高分子結合材、前記(B) 成分のエチレン 性不飽和化合物、及び前記(C) 成分の光重合開始剤を 必須成分とするが、更に、増感色素(D) 成分を含有す るのが好ましい。

【0052】本発明において、増感色素は、波長域300~1200nmの紫外線領域から近赤外線領域の光を効率よく吸収すると共に、その光励起エネルギーを

(C)成分の前記光重合開始剤に伝え、該光重合開始剤を分解し、(B)成分の前記エチレン性不飽和化合物の重合を誘起する活性ラジカルを発生させる増感機能を増長させる。

【0053】本発明において、その増感色素としては、 窒素原子、酸素原子、又は硫黄原子等の複素原子がポリ メチン(-CH=)。鎖で結合された構造であって、代表的には、その複素原子が複素環を形成し、ポリメチン鎖を介して複素環が結合された構造を基本構造とする広義の所謂シアニン系色素、具体的には、例えば、キノリン系(所謂、シアニン系)、インドール系(所謂、インドシアニン系)、ベンゾチアゾール系(所謂、チオシアニン系)、ピリリウム系、チオピリリウム系、スクアリリウム系、クロコニウム系、アズレニウム系等、及び、ポリメチン鎖を介して非環式複素原子が結合された構造を基本構造とする所謂ポリメチン系色素等が挙げられ、中で、キノリン系、インドール系、ベンゾチアゾール系、ピリリウム系、チオピリリウム系等のシアニン系色素、及びポリメチン系色素が好ましい。

【0054】本発明において、前記シアニン系色素の中で、キノリン系色素としては、特に、下記一般式(Va)、(Vb)、又は(Vc)で表されるものが好ましい。

【0055】

【化9】

【0056】〔式(Va)、(Vb)、及び(Vc)中、R¹ 及びR² は各々独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルキニル基、工は置換基を有していてもよいフェニル基を示し、L¹ は置換基を有していてもよいフェニル基を示し、L¹ は置換基を有していてもよいトリ、ペンタ、ヘプタ、ノナ、又はウンデカメチン基を示し、該ペンタ、ヘプタ、ノナ、又はウンデカメチン基上の2つの置換基が互いに連結して炭素数5~7のシクロアルケン環を形成していてもよく、縮合ベンゼン環は置換基を有していてもよく、その場合、隣接する2つの置換基が互いに連結して縮合ベンゼン環を形成していてもよい。X_a - は対アニオンを示す。〕

【0057】ここで、式(Va)、(Vb)、及び(Vc)中の R^1 及び R^2 がアルキル基であるときの炭素数は、通常 $1\sim 15$ 、好ましくは $1\sim 10$ 、アルケニル基、アルキニル基であるときの炭素数は、通常 $2\sim 15$ 、好ましくは $2\sim 10$ であり、フェニル基も含めたそれらの置換基とし

ては、炭素数が通常 $1\sim15$ 、好ましくは $1\sim10$ のアルコキシ基、フェノキシ基、ヒドロキシ基、又はフェニル基等が挙げられ、 L^1 及び縮合ベンゼン環における置換基としては、同上炭素数のアルキル基等が挙げられる。

【0058】又、インドール系、及びベンゾチアゾール 系色素としては、特に、下記一般式(VI)で表されるもの が好ましい。

[0059]

【化10】

【0060】〔式(VI)中、Y1 及びY2 は各々独立し

て、ジアルキルメチレン基又は硫黄原子を示し、R®及びR¾は各々独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、又は置換基を有していてもよいフェニル基を示し、L²は置換基を有していてもよいトリ、ペンタ、ヘプタ、ノナ、又はウンデカメチン基を示し、該ペンタ、ヘプタ、ノナ、又はウンデカメチン基上の2つの置換基が互いに連結して炭素数5~7のシクロアルケン環を形成していてもよく、締合ベンゼン環は置換基を有していてもよく、その場合、隣接する2つの置換基が互いに連結して縮合ベンゼン環を形成していてもよい。X。「は対アニオンを示す。」

【0061】ここで、式(VI)中のR³ 及びR⁴ がアルキル基であるときの炭素数は、通常 $1\sim15$ 、好ましくは $1\sim10$ 、アルケニル基、アルキニル基であるときの炭素数は、通常 $2\sim15$ 、好ましくは $2\sim10$ であり、フェニル基も含めたそれらの置換基としては、炭素数が通常 $1\sim15$ 、好ましくは $1\sim10$ のアルコキシ基、フェノキシ基、ヒドロキシ基、又はフェニル基等が挙げられ、L² 及び縮合ベンゼン環における置換基としては、同上炭素数のアルキル基等が挙げられる。

【0062】又、ピリリウム系、及びチオピリリウム系 色素としては、特に、下記一般式(VIIa)、(VIIb)、又は (VIIc)で表されるものが好ましい。

[0063]

【化11】

$$Z^{1} \xrightarrow{R^{2}} C \xrightarrow{R^{3}} Xa^{-} \xrightarrow{R^{3}} Z^{2}$$
(VIIb)

【0068】〔式(VIII)中、R⁹、R¹⁰、R¹¹、及びR ¹²は各々独立して、アルキル基を示し、R¹³及びR¹⁴は 各々独立して、置換基を有していてもよいアリール基、 フリル基、又はチエニル基を示し、L⁴ は置換基を有し 【0064】〔式(VIIa)、(VIIb)、及び(VIIc)中、Z¹及びZ²は各々独立して、酸素原子又は硫黄原子を示し、R⁵、R³、及びR³は各々独立して、水素原子又はアルキル基、又は、R⁵とR³、及びR⁶とR³が互いに連結して炭素数5又は6のシクロアルケン環を形成していてもよく、L³は置換基を有していてもよいモノ、トリ、ペンタ、又はヘプタメチン基を示し、該トリ、ペンタ、又はヘプタメチン基上の2つの置換基が互いに連結して炭素数5~7のシクロアルケン環を形成していてもよく、ピリリウム環及びチアピリリウム環は置換基を有していてもよく、その場合、隣接する2つの置換基が互いに連結して縮合ベンゼン環を形成していてもよい。Xa は対アニオンを示す。〕

【0065】ここで、式(VIIa)、(VIIb)、及び(VIIc)中の R^5 、 R^6 、 R^7 、及び R^8 がアルキル基であるときの炭素数は、通常 $1\sim15$ 、好ましくは $1\sim10$ であり、 L^3 における置換基としては、同上炭素数のアルキル基等が挙げられ、ピリリウム環及びチアピリリウム環における置換基としては、フェニル基等のアリール基等が挙げられる。

【0066】又、ポリメチン系色素としては、特に、下記一般式(VIII)で表されるものが好ましい。

[0067]

【化12】

ていてもよいモノ、トリ、ペンタ、又はヘプタメチン基を示し、該トリ、ペンタ、又はヘプタメチン基上の2つの置換基が互いに連結して炭素数5~7のシクロアルケン環を形成していてもよく、キノン環及びベンゼン環は

置換基を有していてもよい。X_a - は対アニオンを示す。〕

【0069】ここで、式(VIII)中のR⁹、R¹⁰、R¹¹、及びR¹²のアルキル基の炭素数は、通常 $1 \sim 15$ 、好ましくは $1 \sim 10$ 、R¹³及びR¹⁴がアリール基であるときの炭素数は、通常 $6 \sim 20$ 、好ましくは $6 \sim 15$ であり、R¹³及びR¹⁴として具体的には、フェニル基、1 - ナフチル基、2 - ナフチル基、3 - チェニル基等が挙げられ、それらの置換基としては、同上炭素数のアルキル基、同上炭素数のアルコキシ基、ジアルキルアミノ基、ヒドロキシ基、又はハロゲン原子等が挙げられ、L⁴、並びに、キノン環及びベンゼン環における置換基としては、同上炭素数のアルキル基等が挙げられる。

【0070】尚、前記一般式(V a~c)、(VI)、(VII a~c)、及び(VIII)における対アニオン X_a - としては、具体的には、例えば、 $C1^-$ 、 Br^- 、 I^- 、C1 O_4 - 、 PF_6 - 、 SbF_6 - 、 AsF_6 - 、Q0、Q0、Q1、Q2 - 、Q3 - 、Q4 - 、Q4 - 、Q5 - 、Q5 - 、Q6 - 、Q7 - 、Q8 - 、Q9 - Q9 - Q

【0071】以上の前記一般式(Va~c)で表されるキノリン系、前記一般式(VI)で表されるインドール系又はベンゾチアゾール系、前記一般式(VIIa~c)で表されるピリリウム系又はチオピリリウム系等のシアニン系色素、及び前記一般式(VII)で表されるポリメチン系色素の中で、本発明においては、前記一般式(VI)で表されるインドール系又はベンゾチアゾール系色素が特に好ましい。【0072】本発明における(D)成分の増感色素として、好ましいとする前記シアニン系色素又は前記ポリメチン系色素の具体例を以下に示す。

【0073】 【化13】

【0075】 【化15】

[0077]

【0078】 【化18】

【0079】 【化19】

【0080】 【化20】

【0081】 【化21】

$$(CH_3)_2N \qquad X_{a} - \bigwedge_{A} (CH_3)_2$$

【 0 0 8 2 】尚、前記具体例において、対アニオン X_a っは、具体的には、C 1 、B r 、I 、C 1 O_4 っ、 PF_6 っ、 BF_4 っ、p ートルエンスルホン酸、又は1 ーナフタレンスルホン酸である。

【0083】又、前記一般式(V a \sim c)、(VI)、(VII a \sim c)、及び(VIII)における L^1 、 L^2 、 L^3 、及び L^4 のポリメチン鎖上に、下記一般式(IX)で表されるバルビツル酸アニオン基又はチオバルビツル酸アニオン基を置換基として有することにより、又は、 L^1 、 L^2 、 L^3 、及び L^4 のポリメチン鎖中に、下記一般式(X) で表されるスクエア酸アニオン基又はチオスクエア酸アニオン基、或いは、下記一般式(XI)で表されるクロコン酸アニオン基又はチオクロコン酸アニオン基を形成することにより、分子内塩を形成しているものも好ましい。

【0084】 【化22】

【0085】〔式(IX)、(X)、及V(XI)中、 Z^{8} 、 Z^{4} 、 Z^{5} 、 Z^{6} 、 Z^{7} 、及 VZ^{8} は各々独立して、酸素原子又は硫黄原子を示し、 R^{19} 及 VR^{20} は各々独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルクニル基、置換基を有していてもよいアルコキシ基、又は置換基を有していてもよいフェニル基を示す。〕

【0086】ここで、式(IX)中のR19及びR20がアルキ

ル基、アルコキシ基であるときの炭素数は通常1~1 5、好ましくは1~5、アルケニル基であるときの炭素 数は通常2~15、好ましくは2~5であるが、アルキ ル基であるのが好ましく、そのアルキル基として具体的 には、メチル基、エチル基、プロピル基、又はブチル基 等が挙げられる。

【0087】又、本発明における増感色素としては、アザポリメチン鎖を介して複素環が結合された構造を基本構造とする、所謂フタロシアニン系色素も挙げられ、そのフタロシアニン系色素としては、下記一般式(XII)で表されるものが好ましい。

[0088]

【化23】

【0089】〔式(XII)中、R²¹、及びR²²は各々独立して、アルコキシ基、チオアルコキシ基、アリールオキシ基、チオアリールオキシ基、アルキルアミノ基、アリールアミノ基、ハロゲン原子、又は水素原子を示し、Mは、Zn、Cu、Ni、 $SnCl_2$ 、AlCl、Zid水素原子を示し、Zid水素原子を示し、Zid水素原子を示し、Zid水素原子を示し、Zidの置換基が互いに連結して縮合環を形成していてもよい。〕

【0090】ここで、式(XII) 中の R^{21} 、及び R^{22} がアルコキシ基、チオアルコキシ基、又はアルキルアミノ基であるときの炭素数は通常 $1\sim10$ 、好ましくは $1\sim4$ であり、アリールオキシ基、チオアリールオキシ基、又はアリールアミノ基としては、フェノキシ基、チオフェノキシ基、又はフェニルアミノ基等が挙げられ、又、Mとしては、Zn、又は $SnC1_2$ であるのが好ましい。【0091】又、本発明における増感色素としては、ジアルキルアミノベンゼン系色素も挙げられ、中で、下記一般式(XV)で表されるジアルキルアミノベンゾフェノン系色素が好ましい。

[0092]

【化24】

【0093】〔式(XIII)中、R²³、R²⁴、R²⁵、及びR²⁶は各々独立して、アルキル基を示し、R²⁷、R²⁸、R²⁹、及びR³⁰は各々独立して、アルキル基、又は水素原子を示し、R²³とR²⁴、R²⁵とR²⁶、又は、R²³とR²⁷、R²⁴とR²⁸、R²⁵とR²⁹、或いはR²⁶とR³⁰は各々独立して、互いに連結して縮合環を形成していてもよい。

【0094】ここで、式(XIII)中のR²³、R²⁴、R²⁵、R²⁶、R²⁷、R²⁸、R²⁹、及びR³⁰のアルキル基の炭素数は、 $1\sim6$ であるのが好ましく、式(XVI)で表される好適なジアルキルアミノベンゾフェノン系色素としては、例えば、4, 4'ービス(ジメチルアミノ)ベンゾフェノン、4, 4'ービス(ジエチルアミノ)ベンゾフェノン等が挙げられる。

【0095】更に、本発明における増感色素としては、 例えば、米国特許第3479185号明細書に開示され るロイコクリスタルバイオレットやロイコマラカイトグ リーン等のトリフェニルメタン系ロイコ色素類、エリス ロシンやエオシンY等の光還元性染料類、米国特許第3 549367号、同第3652275号各明細書に開示 されるミヒラーズケトンやアミノスチリルケトン等のア ミノフェニルケトン類、米国特許第3844790号明 細書に開示される8-ジケトン類、米国特許第4162 162号明細書に開示されるインダノン類、特開平6-301208号、特開平8-129258号、特開平8 -129259号、特開平8-146605号、特開平 8-211605号各公報に開示されるクマリン系色素 類、特開昭52-112681号公報に開示されるケト クマリン系色素類、特開昭59-56403号公報に開 示されるアミノスチレン誘導体類やアミノフェニルブタ ジエン誘導体類、米国特許第4594310号明細書に 開示されるアミノフェニル複素環類、米国特許第496 6830号明細書に開示されるジュロリジン複素環類、 特開平5-241338号、特開平7-5685号、特 開平10-144242号各公報に開示されるピロメテ ン系色素類等の化合物が挙げられる。

【0096】本発明の光重合性組成物は、前記(A)成分の高分子結合材、前記(B)成分のエチレン性不飽和化合物、及び前記(C)成分の光重合開始剤を必須成分として含有するが、前記(A)成分の高分子結合材の含有量は、前記(B)成分のエチレン性不飽和化合物100重量部に対して10~400重量部であるのが好ましく、20~200重量部であるのが特に好ましい。又、前記(C)の光重合開始剤の含有量は、前記(B)成分のエチレン性不飽和化合物100重量部に対して0.01~30重量部であるのが好ましく、0.05~20重量部であるのが特に好ましい。

【0097】又、含有が好ましい前記(D)成分の増感 色素の含有量は、前記(B)成分のエチレン性不飽和化 合物100重量部に対して0.1~30重量部であるの が好ましく、 $0.5\sim20$ 重量部であるのが特に好ましい。

【0098】尚、本発明の光重合性組成物は、前記成分 以外に、光重合開始能力の向上を目的として、更に、水 素供与性化合物(E)成分を含有しているのが好まし く、その水素供与性化合物としては、例えば、2-メル カプトベンゾチアゾール、2-メルカプトベンゾイミダ ゾール、2-メルカプトベンゾオキサゾール、3-メル カプトー1,2,4ートリアゾール、2ーメルカプトー エチレングリコールジチオプロピオネート、トリメチロ ールプロパントリスチオプロピオネート、ペンタエリス リトールテトラキスチオプロピオネート等のメルカプト 基含有化合物類、ヘキサンジチオール、トリメチロール プロパントリスチオグリコネート、ペンタエリスリトー ルテトラキスチオプロピオネート等の多官能チオール化 合物類、N,N-ジアルキルアミノ安息香酸エステル、 N-フェニルグリシン、又はそのアンモニウムやナトリ ウム塩等の塩、同上のエステル等の誘導体、フェニルア ラニン、又はそのアンモニウムやナトリウム塩等の塩、 同上のエステル等の誘導体等の芳香族環を有するアミノ 酸又はその誘導体類等が挙げられる。

【0099】更に、本発明の光重合性組成物には、必要に応じて、各種添加剤、例えば、ヒドロキノン、pーメトキシフェノール、2,6ージーセーブチルーpークレゾール等の熱重合防止剤、ジオクチルフタレート、ジドデシルフタレート、トリクレジルホスフェート、ジオクチルアジペート、トリエチレングリコールジカプリレート等の可塑剤、シランカップリング剤等の密着性向上剤、塗布性改良剤、現像性改良剤、感度改良剤、感脂化剤等の通常用いられる各種の添加剤が更に含有されていてもよい。

【0100】本発明の前記光重合性組成物の感光材料としての使用形態は、使用目的に応じて、例えば、無溶剤で又は適当な溶剤で希釈して支持体表面に塗布し、乾燥させた形態、或いは更にその上に酸素遮断のためのオーバーコート層を設けた形態、異相媒体中に小滴分散させて複数種の感光材として多層に塗布した形態、マイクロカプセル中に内包させて支持体上に塗布した形態等を採り得るが、本発明の光重合性組成物は、該組成物を適当な溶剤に溶解した溶液として支持体表面に塗布した後、加熱、乾燥させることにより、支持体表面に本発明の光重合性組成物の層が形成された光重合性平版印刷版としての使用形態が好適である。

【0101】ここで、その溶剤としては、使用成分に対して十分な溶解度を持ち、良好な塗膜性を与えるものであれば特に制限はないが、例えば、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート等のセロソルブ系溶剤、プロピレングリコールモノメチルエーテル、プロピレングリコ

ールモノエチルエーテル、プロピレングリコールモノブ チルエーテル、プロピレングリコールモノメチルエーテ ルアセテート、プロピレングリコールモノエチルエーテ ルアセテート、プロピレングリコールモノブチルエーテ ルアセテート、ジプロピレングリコールジメチルエーテ ル等のプロピレングリコール系溶剤、酢酸ブチル、酢酸 アミル、酪酸エチル、酪酸ブチル、ジエチルオキサレー ト、ピルビン酸エチル、エチルー2-ヒドロキシブチレ ート、エチルアセトアセテート、乳酸メチル、乳酸エチ ル、3-メトキシプロピオン酸メチル等のエステル系溶 剤、ヘプタノール、ヘキサノール、ジアセトンアルコー ル、フルフリルアルコール等のアルコール系溶剤、シク ロヘキサノン、メチルアミルケトン等のケトン系溶剤、 ジメチルホルムアミド、ジメチルアセトアミド、Nーメ チルピロリドン等の高極性溶剤、或いはこれらの混合溶 剤、更にはこれらに芳香族炭化水素を添加したもの等が 挙げられる。溶剤の使用割合は、光重合性組成物の総量 に対して、通常、重量比で1~20倍程度の範囲であ

【0102】又、その塗布方法としては、従来公知の方法、例えば、回転塗布、ワイヤーバー塗布、ディップ塗布、エアーナイフ塗布、ロール塗布、ブレード塗布、及びカーテン塗布等を用いることができる。塗布量は用途により異なるが、乾燥膜厚として、通常、 $0.3 \sim 7~\mu$ m、好ましくは $0.5 \sim 5~\mu$ m、特に好ましくは $1 \sim 3~\mu$ mの範囲とする。尚、その際の乾燥温度としては、例えば、 $60 \sim 1~7~0$ で程度、好ましくは $7~0 \sim 1~5~0$ で程度、乾燥時間としては、例えば、 $5~0 \sim 1~0$ 分間程度、好ましくは $1~0~0 \sim 1~0$

【0103】尚、通常、前記光重合性組成物層の上には、酸素による重合禁止作用を防止するために、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキシド、セルロース等の酸素遮断層が設けられる。

【0104】又、その支持体としては、アルミニウム、 亜鉛、銅、鋼等の金属板、アルミニウム、亜鉛、銅、 鉄、クロム、ニッケル等をメッキ又は蒸着した金属板、 紙、樹脂を塗布した紙、アルミニウム等の金属箔を貼着した紙、プラスチックフィルム、親水化処理したプラスチックフィルム、及びガラス板等が挙げられる。中で、 好ましいのはアルミニウム板であり、塩酸又は硝酸溶液中での電解エッチング又はブラシ研磨による砂目立て処理、硫酸溶液中での陽極酸化処理、及び必要に応じて封孔処理等の表面処理が施されたアルミニウム板がより好ましい。又、支持体表面の粗さとしては、JIS B 0 6 0 1 に規定される平均粗さB 。で、通常、0 . 3~ 1 . 0 μ m、好ましくは0 . 4 ~ 0 . 8 μ m程度とす

【 0 1 0 5 】本発明の光重合性平版印刷版の光重合性組成物層を画像露光する光源としては、カーボンアーク、高圧水銀灯、キセノンランプ、メタルハライドランプ、

蛍光ランプ、タングステンランプ、ハロゲンランプ、及び、HeNeレーザー、アルゴンイオンレーザー、YAGレーザー、HeCdレーザー、半導体レーザー、近赤外半導体レーザー、ルビーレーザー、バイオレットレーザー等のレーザー光源等、主として、波長域300~1200nmの紫外線領域から近赤外線領域の光線を発生する光源が挙げられる。

【0106】本発明の前記光重合性平版印刷版を画像露 光した感光体の現像に用いる現像液としては、例えば、 珪酸ナトリウム、珪酸カリウム、珪酸リチウム、珪酸ア ンモニウム、メタ珪酸ナトリウム、メタ珪酸カリウム、 水酸化ナトリウム、水酸化カリウム、水酸化リチウム、 炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、第 二燐酸ナトリウム、第三燐酸ナトリウム、第二燐酸アン モニウム、第三燐酸アンモニウム、硼酸ナトリウム、硼 酸カリウム、硼酸アンモニウム等の無機アルカリ塩、モ ノメチルアミン、ジメチルアミン、トリメチルアミン、 モノエチルアミン、ジエチルアミン、トリエチルアミ ン、モノイソプロピルアミン、ジイソプロピルアミン、 モノブチルアミン、モノエタノールアミン、ジエタノー ルアミン、トリエタノールアミン、モノイソプロパノー ルアミン、ジイソプロパノールアミン等の有機アミン化 合物の0.1~5重量%程度の水溶液からなるアルカリ 現像液を用いる。中で、無機アルカリ塩である珪酸ナト リウム、珪酸カリウム等のアルカリ金属の珪酸塩が好ま

【0107】尚、現像は、浸漬現像、スプレー現像、ブラシ現像、超音波現像等により、通常、好ましくは10~60℃程度、更に好ましくは15~45℃程度の温度で成される。

[0112]

[0108]

【実施例】以下、本発明を実施例により更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。

【0109】(A) 成分の高分子結合材の製造例」前駆体として、メチルメタクリレート(60モル%)/メタクリル酸(20モル%)/アクリロニトリル(20モル%)共重合体(重量平均分子量7万)200g、3、4ーエポキシシクロヘキシルメチルアクリレート9g、pーメトキシフェノール2.5mg、テトラブチルアンモニウムクロライド8mg、プロピレングリコールモノメチルエーテルアセテート800gを反応容器に仕込み、110℃で攪拌下に24時間反応させることにより、メタクリル酸成分のカルボキシル基の50モル%にエポキシ基を反応させ、メチルメタクリレート(60モル%)/メタクリル酸(10モル%)/前記一般式(III)の構成単位(10モル%)/アクリロニトリル(20モル%)、の共重合体を製造した。

【0110】実施例1

砂目立て処理及び陽極酸化処理を施したアルミニウム板(厚さ0.24mm)を支持体として用い、該アルミニウム板支持体表面に、下記の(A)~(E)成分をシクロヘキサノン1090重量部に室温で攪拌して調液した塗布液をバーコーターを用いて塗布し、乾燥させて膜厚2 μ mの光重合性組成物層を形成し、更にその上に、ポリビニルアルコール水溶液を塗布し、乾燥させて膜厚3 μ mのオーバーコート層を形成して光重合性平版印刷版を作製した。

[0111]

【化25】

(A) 成分: 前記製造例で得られた共重合体 45 重量部 (B-1)成分:下記B-1のビス(メタクリロイルオキシエチル)ホスフェ **−** ト 10 重量部 (B-2)成分:下記B-2の2, 2-ビス(4'-P)クリロイルオキシジエ チレングリコールフェニル)プロパン 22.5重量部 (B-3)成分: 下記B-3のヘキサメチレンビス [トリス (アクリロイルオ キシメチル) エチルウレタン〕 22.5重量部 (C-1)成分: ジシクロペンタジエニルチタニウムビス〔2,6-ジフルオ ロー3-(1-ピロリル)フェニル] 重量部 5 (D-1)成分:下記D-1のピロメテン系増感色素 2 重量部 (D-2) 成分: 銅フタロシアニン着色色素 3 重量部 (E-1)成分: 2-メルカプトベンゾチアゾール5 重量部 (E-2)成分: N, N-ジメチルアミノ安息香酸エチル 重量部

【0113】得られた光重合性平版印刷版を回折分光照射装置(ナルミ社製「RM-23」)を用いて露光した後、無水炭酸ナトリウム0. 8重量%及びアニオン性界面活性剤(花王社製「ペレックスNBL」)3重量%の水溶液中に<math>25℃で30秒間浸漬し、スポンジで7回擦ることにより現像処理し、得られた硬化画像の高さより、532nmの光線による硬化に要する光エネルギー量を感度として求めたところ、 60μ J/cm² であった

【O114】更に、光重合性平版印刷版を空冷アルゴンレーザー平版露光装置(大日本スクリーン社製「PI-R」)を用いて 100μ J/ cm^2 の露光量で走査露光した後、前記と同様にして現像処理し、得られた平版印刷版を平版印刷機(三菱重工業社製「DAIYA-1F-2」)にて、印刷インキ(東洋インキ社製「HYECOOXI」)と湿し水(日研化学社製「PZ+ PZ- P

【0115】実施例2

実施例1における(C-1)成分に代えて(C-2)成分として、2-(p-x)トキシフェニル)-4, 6-ビス(+10クロロメチル)-s-1リアジン5重量部、及び、(+100分に代えて(+100分として、下記+10のシアニン系増感色素+11、5重量部を用い、且つ、(+100分と(+10分と)成分を用いなかった外

は、実施例1と同様にして光重合性平版印刷版を作製し、得られた平版印刷版について、830nm近赤外線レーザー製版露光装置(TrendSetter社製「3442T」)を用いて、100mJ/cm²の露光量で175線の網点画像露光を行った後、実施例1と同様にして、現像処理して印刷し、耐刷力を評価したところ9万枚であった。

【0116】 【化26】

D-3

【0117】実施例3

実施例1における(C-1)成分に代えて(C-3)成分として、2,2'-ビス(o-2ロロフェニル)-4,4',5,5'-テトラフェニルビイミダゾール、及び、(D-1)成分に代えて(D-4)成分として、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、更に、(E-2)成分に代えて(E-3)成分として、N-フェニルグリシンベンジルエステルを、それぞれ用いた外は、実施例1と同様にして光重合性平版印刷版を作製し、得られた平版印刷版について、410nm・5mWバイオレットレーザー製版露光装置(エッシャグラフ

ト社製「Covalt8」)を用いて、20μJ/cm ² の露光量で175線の網点画像露光を行った後、実施例1と同様にして、現像処理して印刷し、耐刷力を評価したところ8万枚であった。

【0118】比較例1

実施例1における(A)成分に代えて、前駆体として、メチルメタクリレート(80モル%)/メタクリル酸(20モル%)共重合体(重量平均分子量5万)を用い、実施例1におけると同様にして3,4ーエポキシシクロヘキシルメチルアクリレートを反応させることにより製造した、メチルメタクリレート(80モル%)/メ

タクリル酸(10モル%)/前記一般式(III)の構成単位(10モル%)、の共重合体を用いた外は、実施例1と同様にして光重合性平版印刷版を作製し、得られた平版印刷版について、実施例1と同様にして測定、評価した感度は 60μ J/c m^2 であり、又、耐刷力は6万枚であった。

[0119]

【発明の効果】本発明によれば、耐刷力に優れると共 に、高感度を示す光重合性組成物及び光重合性平版印刷 版を提供することができる。

(参考)

フロントページの続き

(51) Int. Cl. 7

識別記号

G03F 7/027 7/028

FI

GO3F 7/027 7/028

Fターム(参考) 2H025 AA01 AA12 AB03 AC01 AC08

ADO1 BC14 BC32 BC42 BC53

CA14 CA28 CA39 CA41 CA50

FA03 FA17

2H096 AA00 AA07 AA08 BA05 BA06

BA20 EA02 EA04 GA08

2H114 AA04 AA23 BA01 BA10 DA21

DA50 DA52 DA53 DA55 EA03

EA08 FA18

4J011 QA02 QA03 QA04 QA05 QA06

QA12 QA13 QA14 QA15 QA17

QA22 QA23 QA24 QA27 QA34

QA35 QA39 QA42 QB03 QB16

QB20 QB22 QB24 SA78 SA85

SA86 SA87 SA88 TA01 TA07

UA01 UA02 VA01 WA01

4J027 AA02 AC03 AC04 AC06 AE02

AE03 AE07 BA04 BA05 BA06

BA13 BA14 BA16 BA17 BA19

BA20 BA21 BA23 BA25 BA26

BA27 BA28 BA29 CB10 CD10

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-182391

(43)Date of publication of application: 26.06.2002

(51)Int.Cl.

G03F 7/038 B41N 1/14 COSF 2/50 C08F290/12 G03F 7/027 GO3F 7/028

(21)Application number: 2000-384632

(71)Applicant: MITSUBISHI CHEMICALS CORP

(22)Date of filing:

19.12,2000

(72)Inventor: URANO TOSHIYOSHI

OKAMOTO HIDEAKI

(54) PHOTOPOLYMERIZABLE COMPOSITION AND PHOTOPOLYMERIZABLE PLANOGRAPHIC PRINTING **PLATE**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a photopolymerizable composition and a photopolymerizable planographic printing plate having high sensitivity as well as superior printing resistance.

SOLUTION: The photopolymerizable composition contains (A) a polymer binder containing a constitutional unit of formula (I) [where R31 is methyl or H; R32 is alkyl or H; and V is the residue of an epoxy-containing ethylenically unsaturated compound] and a constitutional unit derived from (meth)acrylonitrile, (B) an ethylenically unsaturated compound and (C) a photopolymerization initiator. The photopolymerizable planographic printing plate is obtained by forming a layer of the photopolymerizable composition on the surface of a base.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]