ISAW GLAD Operators

Table of Contents

GLADAnalyze	3
GLADCalibration	6
GLADCombine	7
GLADConfigure	8
GLADCrunch	10
GLADDistinct	12
GLADDQ2R	13
GLADSumRun	15
GLADVanCal	16
Flowchart	18
References	19

GLADAnalyze

Introduction

The GLADAnalyze operator is used to calculate experimental attenuation, multiple scattering, and inelasticity terms.

Launching Operator

To launch GLADAnalyze from ISAW, follow the menus:

Macros>InstrumentType>TOF_NGLAD>GLADAnalyze

User Inputs

dso – See documentation for GLADConfigure.

ds – Select an input dataset.

imask – The imask field is used to enter a special integer flag indicating the type of scatterer; each bit corresponds to one experiment sample setup component:

- 0: Calibration/Vanadium
- 1: Sample
- 2: Can
- 4: Furnace
- 8: Flat Plate Setup

Example:

To indicate a sample with a can, you would enter 3 in the imask field.

Sample =
$$1$$
, Can = 2

Sample +
$$Can = 3$$

To indicate a sample with a can in a flat plate setup, you would enter 11 in the imask field.

mulstep – Use the mulstep field to specify a step size (cm in the cylindrical axial direction) for the multiple scattering calculation.

absstep – The absstep field is used to specify a step size (cm in the cylindrical axial direction) for the absorption calculation.

usemutfile – The usemutfile checkbox is used to choose whether or not to apply a user specified MUT file.

mutfile – Use the mutfile browser to choose a file to be used when the usemutfile option is enabled.

minw – The minw field is used to assign a minimal wavelength (in angstroms) when generating the MUT table.

maxw – The maxw field is used to assign a maximum wavelength (in angstroms) when generating the MUT table.

dw – The dw field is used to specify a wavelength step size (in angstroms).

Additional Information

See sections 3.6 and 3.7 on pages 13-15. [1]

See equations 14 and 15. [1]

$$I_{s}^{i}(Q) = \frac{I_{sc}^{i}(Q) - \frac{I_{c}^{i}(Q)}{A_{c,c}}}{A_{s,sc}},$$
(14)

$$I_{des}^{i}\left(Q\right) = \frac{I_{s}^{i}\left(Q\right)}{N_{s}}.$$
(15)

GLADCalibration

Introduction
The GLADCalibration
Launching Operator
To launch GLADCalibration from ISAW, follow the menus:
Macros>InstrumentType>TOF_NGLAD>GLADCalibration
Hear Innute
User Inputs calibfile0
calibfile1
calibds
Additional Information
See section 3.9 on page 19. [1]
See equation 18. [1]

GLADCombine

Introduction

The GLADCombine operator uses the weighting function generated by the GLADDistinct operator to produce a final differential cross section.

Launching Operator

To launch GLADCombine from ISAW, follow the menus:

Macros>Instrument Type>TOF_NGLAD> GLADCombine

User Inputs

int_smp - The int_smp menu is used to choose the dataset containing the sample differential
cross section.

flx_van – The flx_van menu is used to choose the dataset containing the weighting function.

NUMQ – The NUMQ field is used to specify the number of Q bins in one unit (in angstrom⁻¹).

GLADQMAX - The GLADQMAX field is used to specify a maximum Q value.

Additional Information

See section 3.9 on page 19. [1]

See equation 18. [1]

$$F(Q) = \frac{\sum_{i} W^{i}(Q) I_{int}^{i}(Q)}{\sum_{i} W^{i}(Q)}.$$
(18)

GLADConfigure

Introduction

The GLADConfigure operator is used to define the experimental standards to be used for subsequent analysis.

Launching Operator

To launch GLADConfigure from ISAW, follow the menus:

 $Macros > Instrument\ Type > TOF_NGLAD > GLADConfigure$

User Inputs

calibopt – Enter the calibration standard used.

smpcomposition – Enter the sample composition.

smpdensity –Enter the sample effective density.

canopt – Enter the sample container (can) used.

scc – Enter the sample calibration constant.

Note: $scc = (number density, 1/cm^3)*(beam ht, cm)*\pi*(radius of sample, cm)^2$

configfile – Use the configfile browser to choose a configration file.

hasCan – Check this box if the experiment uses a can ("false" for calibration run with fused silica rod).

hasFur – Check this box if the experiment uses a furnace.

isFP – Check this box if a flat plate setup was used.

doDebug – Check this box to print out inputs relating to absorption and multiple scattering correction routines.

Outputs:

dso

At the beginning of data analysis, the GLADConfigure operator reads a user specified/edited configuration file to set up an array of objects containing the following elements:

- 0: A GLADRunProps object holding instrument information
- 1: Vanadium (a GLADScatter object)
- 2: Sample (rod or with can)

- 3: Can (empty)
- 4: Furnace

The dummy dataset contains only a single attribute -"GLAD_Running_Info" - with the object array as its value. This special dataset "dso" is used to transport instrument and experiment information around within ISAW to various GLAD related operators.

GLADCrunch

Introduction

The GLADCrunch operator is used to eliminate dead detector data.

Launching Operator

To launch GLADCrunch from ISAW, follow the menus:

Macros>Instrument Type>TOF_NGLAD> GLADCrunch

User Inputs

dso – See documentation for GLADConfigure.

runfile – Use the runfile browser to choose the IPNS runfile to be "crunched."

noDeadDetList - Check this box if you are not using a vanadium run

redpar – Use the redpar browser to choose a DAS bad data list file.

lcutoff – A data group is flagged as bad if its total number of counts is smaller than the value entered in the lcutoff field.

MonSmoothing – Check the MonSmoothing box to smooth monitor data with Fourier filtering.

DetSmoothing – Check the DetSmoothing box to smooth detector data with Fourier filtering.

Additional Information

See sections 3.1, 3.2, 3.4, and 3.5 on pages 7-12. [1]

GLADDistinct

Introduction

The GLADDistinct operator rebins the vanadium monitor spectrum for each data group from wavelength to Q at a given scattering angle, and then generates a weighting function. This weighting function is subsequently used by the GLADCombine operator.

Launching Operator

To launch GLADDistinct from ISAW, follow the menus:

Macros>Instrument Type>TOF_NGLAD> GLADDistinct

User Inputs

dso - See documentation for GLADConfigure

dcs_smp – The dcs_smp menu is used to choose a sample dataset.

smo_van – The smp_van menu is used to choose a vanadium dataset.

dm_van – The dm_van menu is used to choose a vanadium monitor dataset.

temperature – Enter the temperature to be used in Placzek correction.

wmin/wmax – If the wavelength value is outside the boundaries of wmin/wmax, the weightings are set to zero, which in turn sets the contribution to merged differential cross section values to zero.

Additional Information

See section 3.9 on page 19. [1]

See equation 17. [1]

$$W^{i}(Q) = Cal_{v}^{i}(Q)C_{m,v}^{i}(Q). \tag{17}$$

GLADDQ2R

Introduction

The GLADQ2R operator is used to Fourier transform the structure factor for the lattice into real space. The operation results in a number of distribution functions including the differential distribution function, the total distribution function, and the radial distribution function.

Launching Operator

To launch GLADQ2R from ISAW, follow the menus:

Macros>Instrument Type>TOF_NGLAD> GLADQ2R

User Inputs

dso - See documentation for GLADConfigure.

ioq_smp - Use the ioq_smp menu to choose a sample dataset.

Number Density – This field is used to enter the number density.

RCut – Use this field to define the R cutoff in calculating real space functions.

QCut – Use this field to define the Q cutoff in Fourier transform.

NUMQ – Use the NUMQ field to define the number of Q bins in each unit (in angstroms⁻¹).

Additional Information

See section 3.12 on page 22. [1]

GLADSumRun

Introduction

The GLADSumRun operator is used to combine any number of runs.

Launching Operator

To launch GLADSumRun from ISAW, follow the menus:

Macros>Instrument Type>TOF_NGLAD> GLADSumRun

User Inputs

mon_nrm_list – The mon_nrm_list text field is used to define the .NRM and .MON files that will be combined by the operator. The filenames are entered as an array.

GLADVanCal

Introduction

The GLADVanCal operator is used to generate a vanadium calibration function for each data group.

Launching Operator

To launch GLADVanCal from ISAW, follow the menus:

Macros>Instrument Type>TOF_NGLAD> GLADVanCal

User Inputs

dso – See documentation for GLADConfigure.

nrm_van – Use the nrm_van menu to choose a vanadium dataset.

DOsmooth – Check the DOsmooth box to enable smoothing for the vanadium data.

temperature – Enter the temperature to be used in Placzek correction.

mulstep – Use the mulstep field to define a step size to be used in the vanadium multiple scattering calculation.

Additional Information

See section 3.8 on page 15. [1]

See equation 9. [1]

$$Cal_{\nu}^{i}(Q) = \frac{I_{nrm,\nu}^{i}(Q)}{M_{\nu,0}^{i}(\lambda)p^{i}(\lambda) + M_{\nu,1}^{i}(\lambda)},$$
(9)

Flowchart

References

[1] J. Tao, C. J. Benmore, T. G. Worlton, J. M. Carpenter, D. Mikkelson, R. Mikkelson, J. Siewenie, J. Hammonds, A. Chatterjee, Time-of-Flight Neutron Total Scattering Data Analysis implemented in the software suite ISAW. 2005.