16.1. Propagation of a disturbance

- Wave types: depending on the vibration of wave source
- *Transverse wave*: vibration of elements of medium \perp direction of wave motion.
- *Longitudinal wave*: vibration of elements // direction of wave motion. (Ch. 17: Sound Waves)

16.2. Mathematical description of traveling wave - General Form

Snapshot of the traveling wave at t = 0 and at a later time t. During the time interval t, the entire wave shifts distance vt to the right, but its shape stays the same.

General form of traveling wave:

$$y(x, t) = f(x \pm vt)$$

Note: All waves in which the variables x and t enter in the combination $(x \pm vt)$ are traveling waves.

where f represents any function, e.g. sine function.

Problem:

A wave moving along the x axis is described by

$$y(x, t) = 5 \exp[-(x + 5t)^2]$$

where *x* is in meters and *t* is in seconds.

Determine (a) the direction of the wave motion, and (b) the speed of the wave.

• Mathematical description of traveling wave — Sinusoidal Waves

We describe the traveling wave by means of sinusoidal wave:

$$y(x, t) = A \sin(kx + \omega t)$$

where A = amplitude, k = angular wave number, $\omega =$ angular frequency.

Concepts of k and ω :

$$k = 2\pi/\lambda$$
 (rad/m) [angular wave number]
(not a spring constant k !)
 $\omega = 2\pi/T$ (rad/s) [angular frequency]

Wave speed *v* of traveling wave :

Snapshot of the traveling wave at t = 0 and at a later time $t = \Delta t$. During the time interval Δt , the entire wave shifts distance Δx to the right.

$$v = \omega/k = (2\pi/T)/(2\pi/\lambda) = \lambda/T = \lambda f$$

Transverse speed v_y of wave:

While the wave travels in the x direction with wave speed v, each segment of the wave oscillates vertically (in the y direction).

$$v_v^{max} = \omega A$$

(identical as SHM, see 13-3 in lecture note)

16.3. Speed of a wave on a stretched string

Find the speed of a traveling wave by

- (i) using conceptual and dimensional analysis: $\rightarrow v = C \sqrt{\frac{T}{\mu}}$
- (ii) using mechanical analysis: considering a single symmetrical pulse.
- (a) In a stationary frame of reference: (b) In a frame moving with the pulse:

• Consider a small segment of Δs , forming an arc of a circle of radius R

$$v = \sqrt{\frac{T}{\mu}}$$

$$Wave speed = \sqrt{\frac{Force factor}{Mass factor}}$$