Data Visualization

Max Turgeon

DATA 2010—Tools and Techniques for Data Science

Lecture Objectives

- · Identify the main types of data visualization
- Contrast their strengths and weaknesses

Motivation

- · Summary statistics are useful in doing quick comparisons.
 - · Or even statistical inference
- Data visualizations are an effective way of sharing a lot of information about a dataset.
- In this slide deck, we'll focus on the main types of data visualizations; in the next one, we'll discuss important principles for effective visualization.

Main principles

Why would we want to visualize data?

- · Quality control
- Identify outliers
- Find patterns of interest (EDA)
- · Communicate results

Histogram i

- A histogram represents the frequency of observations occurring in certain bins.
 - Most software will choose default bins, but you can always change them.
- It is useful for displaying continuous data, and comparing its distribution across subgroups.

```
library(tidyverse)
library(dslabs)
dim(olive)
```

Histogram ii

Histogram iii

Histogram iv

Histogram v

Histogram vi

Histogram vii

Histogram viii

```
# Or with facets
ggplot(olive,
        aes(x = oleic)) +
geom_histogram() +
facet_grid( ~ region)
```

Histogram ix

Histogram—Summary

- Histograms help visualize the distribution of a single variable.
 - · It bins data and displays the counts in each bin
 - But large bins can hide important features, while small bins can create artifacts
- ggplot takes a data.frame as input and maps variables to different features of the graph.
 - oleic is mapped to the x-axis
 - region is mapped to the fill colour.
 - Important: This mapping happens inside the function aes.
- ggplot2 automatically takes care of choosing the colour, drawing the limits, and printing a legend.
- facet_grid can be used to display multiple plots together, one per value of the variable.

A more complex histogram i

```
# Create a copy of the data to serve as background
olive bg <- select(olive, -region)
ggplot(olive, aes(x = oleic)) +
  # Start with grev background
  geom histogram(data = olive_bg,
                 fill = 'grev') +
  # Add colour on top
  geom histogram(aes(fill = region)) +
  facet grid( ~ region) +
  # Move legend to top
  theme(legend.position = 'top')
```

A more complex histogram ii

A more complex histogram iii

- Note: The order in which you add the layers (e.g. the two geom_histogram) is important!
- Try swapping the two geom_histogram calls and see what happens.

Exercise

Use the dataset nba_players_19 from the package openintro to plot a histogram of the heights of basketball players.

Next, use histograms to compare the height distribution of guards vs centers.

Solution i

· First, we plot the overall histogram.

```
library(tidyverse)
library(openintro)

ggplot(nba_players_19, aes(height)) +
  geom_histogram()
```

Solution ii

Solution iii

- Next, we need to figure out which variable encodes the position of each player.
 - · You can look at the help page ?nba_players_19.
 - · You can look at str(nba_players_19).
- Then we can filter using **position**.

```
nba_players_19 %>%
  filter(position %in% c("Center", "Guard")) %>%
  ggplot(aes(height)) +
  geom_histogram() +
  facet_grid(~position)
```

Solution iv

Density plot i

- Density plots can be thought of as smoothed histograms.
 - Their mathematical definition is much more involved and beyond the scope of this course.
- · They can be used interchangeably with histograms.

```
ggplot(olive, aes(x = oleic)) +
  geom_density()
```

Density plot ii

Density plot iii

Density plot iv

Density plot v

Density plot vi

Density plot vii

Density plot viii

Density plot—Summary

- **Density plots** can be thought of as *smoothed* histograms.
 - There is a parameter (adjust) controlling the level of smoothness: too large and it will hide important features; too small and it may create artifacts.
- We used a different geom to create the plot.
 - geom_density as opposed to geom_histogram.
- The attribute alpha can be used to control transparency.
 - alpha = 0 is completely transparent
 - alpha = 1 is completely opaque.

Boxplot i

- Box plots are a simple way to display important quantiles and identify outliers
- · Components (per Tukey):
 - · A box delimiting the first and third quartile;
 - · A line indicating the median;
 - Whiskers corresponding to the lowest datum still within 1.5
 IQR of the lower quartile, and the highest datum still within 1.5
 IQR of the upper quartile;
 - Any datum that falls outside the whiskers is considered a (potential) outlier.

Boxplot ii

```
ggplot(olive, aes(x = oleic)) +
  geom_boxplot()
```

Boxplot iii

Boxplot iv

Boxplot v

Boxplot vi

Boxplot vii

Boxplot viii

Boxplot ix

Boxplot x

Boxplot xi

Boxplot—Summary

- Boxplots are a mixture between a data visualization and a summary statistics.
 - It is essentially a graphical depiction of the five-number summary.
- · Widely different datasets can give rise to the same boxplot.
 - I recommend to overlay the actual data (potentially jittered).

Exercise

Using the dataset nba_players_19 from the package openintro, compare the distribution of heights across all positions.

Solution i

Solution ii

Single-variable visualization

- All three data visualizations above focused on a single continuous variable.
- But you can draw one such visualization for the same variable, but in different subgroups.
 - E.g. GPA for math, biology and psychology majors.
- In this way, they can all be used to investigate the relationships between one continuous and one categorical variable.

Bar plots i

- Bar plots are a very efficient way of displaying counts or percentages for different levels of a categorical variable.
 - · Much, much better than pie charts
- When displaying summary statistics, they are also known as dynamite plots.
 - I don't recommend the use of dynamite plots.

```
library(socviz)

ggplot(gss_sm, aes(x = religion)) +
  geom_bar()
```

Bar plots ii

Bar plots iii

Bar plots iv

Bar plots v

```
# Across two categorical variables
gss_sm |>
filter(!is.na(religion)) |>
ggplot(aes(x = bigregion)) +
geom_bar(aes(fill = religion))
```

Bar plots vi

Bar plots vii

Bar plots viii

Bar plots ix

Bar plots x

Bar plots xi

```
# Turn into % by changing y scale
gss_sm |>
  filter(!is.na(religion)) |>
  count(religion) |>
  mutate(percent = n/sum(n)) |>
  ggplot(aes(x = religion, y = percent)) +
  geom col(aes(fill = religion),
           show.legend = FALSE) +
  scale_y_continuous(labels = scales::percent)
```

Bar plots xii

Bivariate plots

Scatter plot i

- The simplest way to represent the relationship between two continuous variables is a scatter plot.
 - · Not really suitable with categorical variables.
- Technically still possible with three variables, but typically more difficult to read.

Scatter plot ii

Scatter plot iii

Scatter plot iv

Exercise

Use the dataset **babies_crawl** from the package **openintro** to plot the average crawling age against the average outdoor temperature at 6 months.

Solution i

- First, we need to figure out the name of the variables we need to plot.
 - · You can look at the help page ?babies_crawl.
 - You can look at str(babies_crawl).
- Our two variables are temperature and avg_crawling_age

Solution ii

Solution iii

Solution iv

· What if we want to restrict the range of temperatures?

Solution v

Solution vi

Warning: Removed 2 rows containing missing values (go

Solution vii

Solution viii

Solution ix

Beyond two variables

Limitations

- Three-dimensional scatter plots are possible, but hard to interpret.
- Density plots can technically be constructed for any dimension
 - But as the dimension increases, its performance decreases rapidly
- **Solution**: We can look at each variable one at a time and at each pairwise comparison.

Pairs plot i

- A pairs plot arranges these univariate summaries and pairwise comparisons along a matrix.
- Each variable corresponds to both a row and a column
- Univariate summaries appear on the diagonal, and pairwise comparisons off the diagonal.
- Because of symmetry, we often see a different summary of the comparison above and below the diagonal.

Pairs plot ii

```
library(GGally)

# Select three variables
olive_sub <- olive %>%
   select(eicosenoic, arachidic, linolenic)

ggpairs(olive_sub)
```

Pairs plot iii

Pairs plot iv

- · As we can see, **GGally** displays the following:
 - · Scatter plots below the diagonal
 - · Density plots on the diagonal
 - · Pearson correlations above the diagonal
- These can all be changed—see the documentation for more information.