

FACE Modules

Hardware Specifications

Legal Notice

© 2013 CompuLab Ltd.

All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means whether, electronic, mechanical, or otherwise without the prior written permission of CompuLab Ltd.

No warranty of accuracy is given concerning the contents of the information contained in this publication. To the extent permitted by law no liability (including liability to any person by reason of negligence) will be accepted by CompuLab Ltd., its subsidiaries or employees for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document.

CompuLab Ltd. reserves the right to change details in this publication without notice.

Product and company names herein may be the trademarks of their respective owners.

CompuLab Ltd.
17 HaYetsira St., Yokneam Elite 20692,
P.O.B 687
ISRAEL
Tel: +972-4-8290100
<http://www.compulab.co.il>
<http://fit-pc.com/web/>
Fax: +972-4-8325251

Revision History

Revision	Author/Engineer	Revision Changes
1.0	Maxim Birger	Initial public release
1.1	Maxim Birger	Added FM-VC Video Capture FACE module
1.2	Maxim Birger	B2B connector pinout – Added host interface fit-PC3 exceptions
1.3	Maxim Birger	Updated block diagrams
1.4	Maxim Birger	Added FM-POE Quad LAN with PoE capabilities FACE Module
2.0	Maxim Birger	FM-USB3 Face Module section updated. The module suitable with IPC2 computers only.
2.1	Maxim Birger	FM-USB3 Face Module section updated
2.2	Maxim Birger	Name change: FM-1LAN changed to FM-XTDEU2/4 (two versions) FM-4LAN changed to FM-XTDE4U2/4 (two versions) FM-2PCIE changed to FM-XTDM2

Table of Contents

Legal Notice.....	2
Revision History	3
1 Overview.....	10
1.1 Scope.....	10
1.2 Concept	10
1.3 FACE Module Interface	11
1.3.1 Connectors Specs	11
1.3.2 Connectors Pinout.....	12
1.4 Layout.....	16
1.5 Acronyms and Abbreviations.....	17
2 FM-4USB – USB2.0 FACE Module.....	18
2.1 Description.....	18
2.2 Highlights	18
2.3 Block Diagram	18
2.4 Mechanics	19
2.4.1 PCB Assembly.....	19
2.4.2 Front Panel.....	19
3 FM-USB3 – USB3.0 FACE Module.....	20
3.1 Description.....	20
3.2 Highlights	20
3.3 Block Diagram	20
3.4 Hardware Specifications	21
3.4.1 mSATA slot	21
3.5 Mechanics	22
3.5.1 PCB Assembly.....	22
3.5.2 Front Panel.....	22
3.6 Software Drivers	23
4 FM-SER – Serial FACE Module.....	24
4.1 Description.....	24
4.2 Highlights	24
4.3 Block Diagram	25

4.4	Hardware Specifications	26
4.4.1	PCIe to UART Bridge PLX OXPcle958	26
4.4.2	LTC2872 Dual Multiprotocol Transceiver.....	27
4.4.3	CAN Bus Controller MCP2515	27
4.4.4	CAN PHY ADM3053 (Isolation Driver).....	27
4.4.5	RJ-11 Serial Ports.....	28
4.4.6	RJ-45 CAN Bus Pinout.....	28
4.5	Configuration	29
4.5.1	Serial Ports Configuration	29
4.5.2	CAN Bus power supply	29
4.6	Mechanics	30
4.6.1	PCB Assembly.....	30
4.6.2	Front Panel.....	30
4.7	Software Drivers	31
5	FM-XTDEU2/4 – Single LAN FACE Module.....	32
5.1	Description	32
5.2	Highlights	32
5.3	Block Diagram	32
5.4	Hardware Specifications	33
5.4.1	Realtek RTL8111F GbE Controller	33
5.4.2	IDT ICS9DB102 1-to-2 Differential Clock Driver	34
5.5	Mechanics	34
5.5.1	PCB Assembly.....	34
5.5.2	Front Panel.....	34
5.6	Software Drivers	35
6	FM-XTDE4U2/4 – Quad LAN FACE Module.....	36
6.1	Description	36
6.2	Highlights	36
6.3	Block Diagram	36
6.4	Hardware Specifications	37
6.4.1	Intel 82574L GbE Controller	37
6.4.2	Pericom PI6C20400 1-to-4 Differential Clock Driver.....	38

6.4.3	SPI NOR Flash	38
6.5	Mechanics	39
6.5.1	PCB Assembly	39
6.5.2	Front Panel	39
6.6	Software Drivers	40
7	FM-XTDM2 – Dual Mini PCI Express FACE Module	41
7.1	Description	41
7.2	Highlights	41
7.3	Block Diagram	41
7.4	Hardware Specifications	42
7.4.1	Mini PCI Express Slot	42
7.5	Mechanics	43
7.5.1	PCB Assembly	43
7.5.2	Front Panel	43
8	FM-VC – Video Capture FACE Module	44
8.1	Description	44
8.2	Highlights	44
8.3	Block Diagram	45
8.4	Hardware Specifications	46
8.4.1	Intersil TW6869 Video Decoder	46
8.4.2	SMSC SIO1007 Super-IO Controller	48
8.4.3	IDT ICS9DB102 1-to-2 Differential Clock Driver	49
8.4.4	MAX3221 RS232 Transceiver	49
8.4.5	ADM3491 RS422/RS485 Transceiver	49
8.4.6	DB15 Connectors Pinout	49
8.4.7	RJ11 Connector Pinout	50
8.5	Cables	51
8.5.1	DB15 to RCA and BNC Cables	51
8.5.2	RJ11 to DB9 Cable	52
8.6	Mechanics	53
8.6.1	PCB Assembly	53
8.6.2	Front Panel	54

8.7	Software Drivers	55
9	FM-POE – Quad LAN with Power over Ethernet PSE ports	56
9.1	Description	56
9.2	Highlights	56
9.3	Block Diagram	56
9.4	Hardware Specifications	57
9.4.1	Intel I211AT GbE Controller	57
9.4.2	Silicon Labs Si3452 Quad High Voltage Port Controller for PoE + PSE.....	58
9.4.3	Pericom PI6C20400 1-to-4 Differential Clock Driver.....	59
9.4.4	SPI NOR Flash	59
9.4.5	RJ45 PoE/PSE port pinout	60
9.5	Mechanics	61
9.5.1	PCB Assembly.....	61
9.5.2	Front Panel.....	61
9.6	Software Drivers	62
9.7	Safety Information	62
10	Reference.....	63

Table of Figures

Figure 1 – FACE Module concept	10
Figure 2 – Intense PC main board Bottom view (B2B connectors - P58, P59)	16
Figure 3 – B2B connector footprint view (note for 180deg offset between the connectors)	16
Figure 4 – FACE Module FM-4USB block diagram	18
Figure 5 – FM-4USB PCB Assembly Top	19
Figure 6 – FM-4USB front panel drawing.....	19
Figure 7 – FACE Module FM-USB3 block diagram	20
Figure 8 – FM-USB3 PCB Assembly Top	22
Figure 9 – FM-USB3 front panel.....	22
Figure 10 – FACE Module FM-SER block diagram	25
Figure 11 – PLX OXPcle958 functional block diagram	26
Figure 12 – Jumper E1 location.....	29
Figure 13 – FM-SER PCB Assembly Top.....	30
Figure 14 – FM-SER front panel drawing	30
Figure 15 – FACE Module FM-XTDEU2/4 block diagram	32
Figure 16 – FM-XTDEU2/4 PCB Assembly Top	34
Figure 17 – FM-XTDEU2/4 front panel drawing.....	34
Figure 18 – FACE Module FM-XTDE4U2/4 block diagram	36
Figure 19 – FM-XTDE4U2/4 PCB Assembly Top	39
Figure 20 – FM-XTDE4U2/4 front panel drawing.....	39
Figure 21 – FACE Module FM-XTDM2 block diagram	41
Figure 22 – FM-XTDM2 PCB Assembly Top.....	43
Figure 23 – FACE Module FM-VC block diagram	45
Figure 24 – Intersil TW6869 functional block diagram	47
Figure 25 – SMSC SIO1007 functional block diagram	48
Figure 26 – RS232 DB9 Connector View	52
Figure 27 – FM-VC PCB Assembly Top	53
Figure 28 – FM-VC PCB Assembly Bottom	53
Figure 29 – FM-VC front panel drawing.....	54
Figure 30 – FACE Module FM-POE block diagram	56
Figure 31 – Silicon Labs Si3452 functional block diagram	58
Figure 32 – RJ45 Jack drawing.....	60
Figure 33 – FM-POE PCB Assembly Top.....	61
Figure 34 – FM-POE front panel drawing.....	61

Table of Tables

Table 1 – B2B receptacle connector HOST side	11
Table 2 – B2B plug connector FACE Module side	11
Table 3 – EXT1 connector HOST side pinout.....	12
Table 4 – EXT2 connector HOST side pinout.....	14

Table 5 – FM-SER connectivity.....	24
Table 6 – Serial Ports Arrangement	28
Table 7 – RJ-11 Pinout.....	28
Table 8 – RJ-45 Pinout.....	28
Table 9 – mini PCI Express edge connector pinout.....	42
Table 10 – DB15 Connector Pinout.....	49
Table 11 – RJ11 connector pinout	50
Table 12 – DB15 to RCA and BNC Cable.....	51
Table 13 – PoE RJ45 pinout.....	60
Table 14 – Reference design schematics	63

1 Overview

1.1 Scope

This document contains the most detailed coverage of *CompuLab FACE Module* portfolio and options. Each FACE Module provided with detailed description, features and capabilities, HW specifications of main blocks and entities, interface to main system board, functional block diagram and mechanical drawings. Schematics reference design of each module provided in other appendix documents as supplemental material.

1.2 Concept

FACE Module (**F**unction **A**nd **C**onnectivity **E**xtension **M**odule) designed as additional/optional system board providing extended functionality and IO connectivity options. The interface between main system board and FACE module implemented with high speed, low pitch, and high pin count board-to-board connectors (B2B). Connectors' pinout including signals mapping and description described later in this chapter.

Figure 1 – FACE Module concept

1.3 FACE Module Interface

1.3.1 Connectors Specs

Complete B2B receptacle and plug connector's specifications shown in the tables below

Table 1 – B2B receptacle connector HOST side

Item	Option A	Option B	Option C
Manufacturer	FCI	Tyco	Oupiin
PN	61082-10260	5-5179180-4	2382-100C00DP1T-M
Type	Receptacle	Receptacle	Receptacle
Positions	2x50	2x50	2x50
Pitch	0.8mm	0.8mm	0.8mm
Current rating	0.5A	0.5A	0.5A
Height	7.7mm	7.7mm	7.7mm
Stacking height	12mm	12mm	12mm

Table 2 – B2B plug connector FACE Module side

Item	Option A	Option B	Option C
Manufacturer	FCI	Tyco	Oupiin
PN	61083-10460	3-5177986-4	2381-100C00DP4T-M
Type	Plug	Plug	Plug
Positions	2x50	2x50	2x50
Pitch	0.8mm	0.8mm	0.8mm
Current rating	0.5A	0.5A	0.5A
Height	7.7mm	7.7mm	7.7mm
Stacking height	12mm	12mm	12mm

1.3.2 Connectors Pinout

The tables below provide complete pinout of extension connectors EXT1, EXT2 and signals mapping.

Table 3 – EXT1 connector HOST side pinout

EXT-1 connector HOST side					
Pin #	Pin Name	Signal Description	Pin #	Pin Name	Signal Description
A1	GND	Ground connection	B1	GND	Ground connection
A2	SATA2_TX+	SATA2.0 differential transmit pair 2; Host signal shared with mini PCIe (MUX channel B)	B2	SATA0_RX+/CLK+	Host PCIe CLK output differential pair - 100MHz PCIe Gen2 to PCIe Graphics device ¹
A3	SATA2_TX-		B3	SATA0_RX-/CLK-	
A4	IR_RX	IR UART receive signal	B4	SATA0_LED	SATA activity LED indicator
A5	SATA2_RX+	SATA2.0 differential receive pair 2; Host signal shared with mini PCIe (MUX channel B) ³	B5	SATA0_RX+/CLK+	Host PCIe CLK output differential pair - 100MHz PCIe Gen2 to PCIe devices ¹
A6	SATA2_RX-		B6	SATA0_RX-/CLK-	
A7	GND	Ground connection	B7	V5SBY	5V power domain
A8	SATA3_TX+	SATA2.0 differential transmit pair 3 ³	B8	SATA1_RX+	SATA3.0 differential receive pair 1 ²
A9	SATA3_TX-		B9	SATA1_RX-	
A10	SMB_ALRT#	SMBus Alert used to wake the system	B10	DEBUG1	Reserved debug signal
A11	SATA3_RX+	SATA2.0 differential receive pair 3 ³	B11	SATA1_RX+	SATA3.0 differential transmit pair 1 ²
A12	SATA3_RX-		B12	SATA1_TX-	
A13	V5SBY	5V power domain	B13	V5SBY	5V power domain
A14	SMB_CLK	SMBus host clock output. Connect to SMBus slave.	B14	USB3_P	USB Host interface 3
A15	SMB_DAT	SMBus bidirectional data. Connect to SMBus slave.	B15	USB3_N	
A16	HDA_RST#	High Definition Audio host reset	B16	USB_OC_2_3#	USB Overcurrent Indicator for lanes 2/3
A17	HDA_SYNC	High Definition Audio host sync	B17	USB2_P	USB Host interface 2
A18	HDA_BITCLK	High Definition Audio host bit clock out 24MHz	B18	USB2_N	
A19	HDA_SDOUT	High Definition Audio serial host data out	B19	V5SBY	5V power domain
A20	HDA_SDIN1	High Definition Audio serial host data in1	B20	COM2_RX	For internal test purposes
A21	HDA_SDIN0	High Definition Audio serial host data in0	B21	COM2_TX	For internal test purposes
A22	DEBUG3	Reserved debug signal	B22	LPC_SERIRQ	Serial Interrupt Request
A23	GND	Ground connection	B23	LPC_CLK	Single Ended 33MHz CLK host out to PCI devices
A24	USB0_P	USB Host interface lane 0	B24	LPC_FRAME#	LPC interface frame signal
A25	USB0_N		B25	GND	Ground connection
A26	USB_OCO_1#	USB Overcurrent Indicator for lanes 0/1	B26	SPI_MISO	SPI interface MISO signal – Reserved for internal use only
A27	USB1_P	USB Host interface 1	B27	SPI莫斯	SPI interface MOSI signal – Reserved for internal use only
A28	USB1_N		B28	SPI_CLK	SPI interface Clock signal – Reserved for internal use only
A29	GND	Ground connection	B29	SPI_CS1#	SPI interface chip select 1 – Reserved for internal use only
A30	LPC_ADO	LPC bus multiplexed command, address and data. Internal PU provided on LPC[3:0]	B30	SPI_CS0#	SPI interface chip select 0 – Reserved for internal use only
A31	LPC_AD1		B31	RESET#	Active Low Platform Reset driven by the Host
A32	LPC_AD2		B32	PCIE_CLK+	Host PCIe CLK output differential pair - 100MHz PCIe Gen2 to PCIe devices
A33	LPC_AD3		B33	PCIE_CLK-	

A34	GND	Ground connection	B34	EXT_PRSNT#	Clock Request for PCI Express 100 MHz Clocks
A35	PCIE_TX3+		B35	PCIE_RX3+	
A36	PCIE_TX3-	PCI Express (x1) Gen2 (up to 5Gbps) differential transmit pair 3	B36	PCIE_RX3-	PCI Express (x1) Gen2 (up to 5Gbps) differential receive pair 3
A37	PCIE_WAKE#	PCI Express Wake Event from Device to Host	B37	SPI_EXT_CNTRL	SPI interface external control signal
A38	PCIE_TX2+		B38	PCIE_RX2+	
A39	PCIE_TX2-	PCI Express (x1) Gen2 (up to 5Gbps) differential transmit pair 2	B39	PCIE_RX2-	PCI Express (x1) Gen2 (up to 5Gbps) differential receive pair 2
A40	GND	Ground connection	B40	GND	Ground connection
A41	PCIE_TX1+		B41	PCIE_RX1+	
A42	PCIE_TX1-	PCI Express (x1) Gen2 (up to 5Gbps) differential transmit pair 1	B42	PCIE_RX1-	PCI Express (x1) Gen2 (up to 5Gbps) differential receive pair 1
A43	PWRBTN#	System power button signal	B43	SLP#	Assert LP state S3 (sleep) active low signal
A44	PCIE_TX0+		B44	PCIE_RX0+	
A45	PCIE_TX0-	Host CPU PEG (x1) - PCIe Gen3 (up to 8Gbps) differential transmit pair for external graphics	B45	PCIE_RX0-	Host CPU PEG (x1) - PCIe Gen3 (up to 8Gbps) differential receive pair for external graphics
A46	RESERVED	Reserved debug signal	B46	RESERVED	Reserved debug signal
A47	VCC_12V		B47	VCC_12V	
A48	VCC_12V		B48	VCC_12V	
A49	VCC_12V		B49	VCC_12V	
A50	VCC_12V	Main 12V power domain	B50	VCC_12V	Main 12V power domain

Notes:

1. Fit-PC3/3i features PCIe REF clock only on these signals
2. Merged with PCI Express signals to Mini PCIe card on fit-PC3/3i
3. Fit-PC3/3i support SATA3.0 with rates up to 6Gbps

Table 4 – EXT2 connector HOST side pinout

EXT-2 connector HOST side					
Pin #	Pin Name	Signal Description	Pin #	Pin Name	Signal Description
A1	GND	Ground connection	B1	GND	Ground connection
A2	PEG_RX0+/RSVD0	Host CPU PEG_0 (x8) - PCIe Gen3 (up to 8Gbps) differential receive pair for external graphics ¹	B2	PEG_TX0+/RSVD6	Host CPU PEG_0 (x8) - PCIe Gen3 (up to 8Gbps) differential transmit pair for external graphics ¹
A3	PEG_RX0-/RSVD1		B3	PEG_TX0-/RSVD7	
A4	DGPU_PRSNT#/RSVD3	Host chipset GPIO67, Input, PU-10k	B4	DGPU_PWREN#/RSVD8	Host chipset GPIO54, Output, PU-8.2k
A5	PEG_RX1+/RSVD4	Host CPU PEG_1 (x8) - PCIe Gen3 (up to 8Gbps) differential receive pair for external graphics ¹	B5	PEG_TX1+/RSVD9	Host CPU PEG_1 (x8) - PCIe Gen3 (up to 8Gbps) differential transmit pair for external graphics ¹
A6	PEG_RX1-/RSVD5		B6	PEG_TX1-/RSVD10	
A7	GND	Ground connection	B7	GND	Ground connection
A8	PEG_RX2+/RSVD11	Host CPU PEG_2 (x8) - PCIe Gen3 (up to 8Gbps) differential receive pair for external graphics ¹	B8	PEG_TX2+/RSVD16	Host CPU PEG_2 (x8) - PCIe Gen3 (up to 8Gbps) differential transmit pair for external graphics ¹
A9	PEG_RX2-/RSVD12		B9	PEG_TX2-/RSVD17	
A10	DGPU_PWROK#/RSVD13	Host chipset GPIO17, Input/Output, PD-10k	B10	DGPU_HOLD_RST#/RSVD18	Host chipset GPIO50, Output, PU-8.2k
A11	PEG_RX3+/RSVD14	Host CPU PEG_3 (x8) - PCIe Gen3 (up to 8Gbps) differential receive pair for external graphics ¹	B11	PEG_TX3+/RSVD19	Host CPU PEG_3 (x8) - PCIe Gen3 (up to 8Gbps) differential transmit pair for external graphics ¹
A12	PEG_RX3-/RSVD15		B12	PEG_TX3-/RSVD20	
A13	GND	Ground connection	B13	GND	Ground connection
A14	PEG_RX4+/RSVD21	Host CPU PEG_4 (x8) - PCIe Gen3 (up to 8Gbps) differential receive pair for external graphics ¹	B14	PEG_TX4+/RSVD26	Host CPU PEG_4 (x8) - PCIe Gen3 (up to 8Gbps) differential transmit pair for external graphics ¹
A15	PEG_RX4-/RSVD22		B15	PEG_TX4-/RSVD27	
A16	DGPU_SELECT#/RSVD23	Host chipset GPIO52, Output, PU-8.2k	B16	DGPU_HPD_INTR#/RSV	Host chipset GPIO6, Input, PU-10k
A17	PEG_RX5+/RSVD24	Host CPU PEG_5 (x8) - PCIe Gen3 (up to 8Gbps) differential receive pair for external graphics ¹	B17	PEG_TX5+/RSVD29	Host CPU PEG_5 (x8) - PCIe Gen3 (up to 8Gbps) differential transmit pair for external graphics ¹
A18	PEG_RX5-/RSVD25		B18	PEG_TX5-/RSVD30	
A19	V5SBY	5V power domain	B19	V5SBY	5V power domain
A20	PEG_RX6+/RSVD31	Host CPU PEG_6 (x8) - PCIe Gen3 (up to 8Gbps) differential receive pair for external graphics ¹	B20	PEG_TX6+/RSVD36	Host CPU PEG_6 (x8) - PCIe Gen3 (up to 8Gbps) differential transmit pair for external graphics ¹
A21	PEG_RX6-/RSVD32		B21	PEG_TX6-/RSVD37	
A22	DGPU_PWM_SELE	Host chipset GPIO53, Output, No pull	B22	SPARE/eDP_HDP	NC
A23	CT#/RSVD33		B23	PEG_TX7+/RSVD38	Host CPU PEG_7 (x8) - PCIe Gen3 (up to 8Gbps) differential transmit pair for external graphics ¹
A24	PEG_RX7+/RSVD34	Host CPU PEG_7 (x8) - PCIe Gen3 (up to 8Gbps) differential receive pair for external graphics ¹	B24	PEG_TX7-/RSVD39	
A25	GND	Ground connection	B25	GND	Ground connection
A26	LVDS_A0+/eDP_T_X0+		B26	PEG_CLK+/RSVD40	Host PEG CLK output differential pair - 100MHz PCIe Gen2 to PCIe Graphics device
A27	LVDS_A0-/eDP_TX0-	LVDS Channel A differential pair 0 Host data output ³	B27	PEG_CLK-/RSVD41	
A28	LVDS_A1+/eDP_T_X1+		B28	LVDS_BKLT_CTRL	Panel Backlight Brightness Control ³
A29	LVDS_A1-/eDP_TX1-	LVDS Channel A differential pair 1 Host data output ³	B29	COM1_DCR	
A30	LVDS_A2+/eDP_T_X2+		B30	COM1_TX	
A31	LVDS_A2-/eDP_TX2-	LVDS Channel A differential pair 2 Host data output ³	B31	COM1_DCD	Full RS232 interface from Host to DCE device
A32	GND	Ground connection	B32	GND	Ground connection

A33	LVDS_A3+/eDP_T_X3+		B33	COM1_DTR	
A34	LVDS_A3-/eDP_TX3-	LVDS Channel A differential pair 3 Host data output ³	B34	COM1_RTS	
A35	LVDS_VDD_EN	LVDS Panel Power Enable ³	B35	COM1_RX	
A36	LVDS_ACLK+/eDP_AUX+		B36	COM1_CTS	
A37	LVDS_ACLK-/eDP_AUX-	LVDS Channel A differential pair Host clock output ³	B37	COM1 RI	Full RS232 interface from Host to DCE device
A38	GND	Ground connection	B38	LVDS_BKLT_EN	LVDS Backlight Enable ³
A39	LVDS_CTRL_CLK		B39	LVDS_I2C_CLK	LVDS DDC (I2C based) management interface. EDID support for flat panel display ³
A40	LVDS_CTRL_DATA	LVDS Control interface for external SSC clock chip (I2C based). Optional. ³	B40	LVDS_I2C_DAT	
A41	PEG_CLK_REQ#/R_SVD42	Clock Request Signal for PCIe Graphics (PEG)	B41	GND	Ground connection
A42	RESERVED		B42	RESERVED	
A43	RESERVED	Reserved	B43	RESERVED	Reserved
A44	GND	Ground connection	B44	NC	NC
A45	RESERVED		B45	RESERVED	
A46	RESERVED	Reserved	B46	RESERVED	Reserved
A47	USB_OC_4_5#	USB Overcurrent Indicator for lanes 2/3	B47	SPARE0	Host chipset spare GPIO
A48	USB4_P		B48	VCC_12V	
A49	USB4_N	USB Host interface 4	B49	VCC_12V	
A50	GND	Ground connection	B50	VCC_12V	Main 12V power domain

Notes:

1. Merged with PCI Express signals to Mini PCIe card on fit-PC3/3i
2. GPIOs on fit-PC3/3i
3. Fit-PC3/3i design does not feature LVDS interface

1.4 Layout

Host side extension connector's footprints with respect to board geometry shown in the below layout captures. Host side extension connectors provide complete Host/FACE Module interface connectivity. FACE Module side may have either both or only one of the connectors, connecting only FACE Module relevant signals.

Note for 180deg orientation offset between the connectors.

Figure 2 – Intense PC main board Bottom view (B2B connectors - P58, P59)

Figure 3 – B2B connector footprint view (note for 180deg offset between the connectors)

1.5 Acronyms and Abbreviations

Term	Definition
APM	Advanced Power Management
B2B	Board to Board (connectors)
BER	Bit error rate
bps	Bits per second
BT	Bluetooth
CAN	Controller Area Network
Codec	Coder decoder
DDR	Dual data rate
DSP	Digital signal processor
FACE Module	Function And Connectivity Extension Module
FM-xxxx	FACE Module – <i>connectivity options</i>
GPIO	General-purpose input/output
HW	Hardware
JTAG	Joint Test Action Group (ANSI/IEEE Std. 1149.1-1990)
kbps	Kilobits per second
LAN	Local Area Network
NVM	Non Volatile Memory
OTP	One Time Programmable
PCM	Pulse-coded Modulation
Rx	Receive
SDRAM	Synchronous dynamic random access memory
SoC	System-on-Chip
SPI	Serial peripheral interface
Tx	Transmit
UART	Universal asynchronous receiver transmitter
USB	Universal serial bus
USB-OTG	Universal serial bus on-the-go
USIM	UMTS subscriber interface module
VCTCXO	Voltage-controlled temperature-compensated crystal oscillator
WLAN	Wireless Local Area Network
XO	Crystal oscillator

2 FM-4USB – USB2.0 FACE Module

2.1 Description

FM-4USB is the basic FACE Module provide 4x USB2.0 (up to 480Mbps) extended connectivity. Used as default option in CompuLab system configurations.

Refer to [Compatibility Matrix](#) for products fit.

2.2 Highlights

- 4x USB2.0 downstream ports, up to 480Mbps half-duplex

2.3 Block Diagram

Figure 4 – FACE Module FM-4USB block diagram

2.4 Mechanics

2.4.1 PCB Assembly

Figure 5 – FM-4USB PCB Assembly Top

2.4.2 Front Panel

Figure 6 – FM-4USB front panel drawing

3 FM-USB3 – USB3.0 FACE Module

3.1 Description

FM-USB3 FACE Module provide market new USB3.0 Super Speed connectivity, with legacy USB2.0 downstream ports. In addition single mSATA SSD storage card can be implemented via mini PCIe slot either half or full form factors.

Compatible with IPC2 computers only.

Refer to [Compatibility Matrix](#) for products fit.

3.2 Highlights

- 2x USB3.0 downstream ports (USB2.0 supported on separate pins), up to 5Gbps full-duplex
- 1x mSATA slot allow to connect mSATA SSD storage (on IPC2 i5/i7 models only)

3.3 Block Diagram

Figure 7 – FACE Module FM-USB3 block diagram

3.4 Hardware Specifications

The following section provides information about FM-USB3 main components and features.

3.4.1 mSATA slot

FM-USB3 incorporates single mSATA slot (i5/i7 models only) and provides an option for connecting either full or half size form factor card.

3.5 Mechanics

3.5.1 PCB Assembly

Figure 8 – FM-USB3 PCB Assembly Top

3.5.2 Front Panel

Figure 9 – FM-USB3 front panel

3.6 Software Drivers

- **Windows Drivers**
 - Not required, except IPC2 chipset driver as USB3.0 ports are IPC2 chipset native
- **Linux Drivers**
 - Implemented in Linux Kernel (same as above)

4 FM-SER – Serial FACE Module

4.1 Description

FM-SER FACE Module provide various serial connectivity solution and compatible with several CompuLab systems.

Refer to [Compatibility Matrix](#) for products fit.

4.2 Highlights

- High performance UARTS
- Asynchronous baud rates up to 15Mbps
- 128-byte deep TX/RX FIFOs
- Advanced FIFO fill management
- RS232, RS485, RS422 operation
- Programmable RS485 turn-around delay
- 450 through 950 software compatibility
- Two independent CAN bus controllers implement CAN V2.0B at rate of up to 1Mbps each
- Isolated PHY with rated isolation voltage of 2.5 kV RMS

Table 5 – FM-SER connectivity

Connectivity	Specifications
RS232 / RS485 / RS422 ¹	6x RJ-11 jacks functioning as RS232 ² , as half ³ /full-duplex RS485 or RS422 serial ports;
CAN bus	2x RJ-45 jacks functioning as an isolated Controller Area Network (CAN) bus

Notes:

1. The default standard can be configured by jumper E1. See section Serial Ports Configuration.
2. FM-SER is classified as DTE (Data Terminal Equipment) in terms of RS232 standard definition.
3. RS485 half-duplex mode requires special HW/SW adaptation.

4.3 Block Diagram

Figure 10 – FACE Module FM-SER block diagram

4.4 Hardware Specifications

The following section provides information about the main components and respective features, as well as available configuration options.

4.4.1 PCIe to UART Bridge PLX OXPcle958

- UART bridge – from PCIe to 8 serial ports¹
- Eight 128-byte transmit and receive FIFO unit
- Integrated DMA controller
- Asynchronous data rate of up to 15.625 Mbps

Notes: FM-SER utilizes 6 serial ports.

Figure 11 – PLX OXPcle958 functional block diagram

4.4.2 LTC2872 Dual Multiprotocol Transceiver

- Three dual transceivers are onboard the FM-SER provide 6 multiprotocol serial ports.
- Implementation of physical layer (PHY) of RS232 or RS485 serial protocol ports.
See section 4.1: Serial Ports Configuration.
- Up to 500kbps data rate from UART to RS232 and up to 15 Mbps data rate to full duplex RS485
- Supports RS422 and half duplex RS485 protocols
- Integrated termination resistors are being switched according to mode of operation.
- Loopback mode for self-testing

4.4.3 CAN Bus Controller MCP2515

- Connected to SPI bus originated from a USB to SPI bridge
- Two CAN bus controllers implement CAN V2.0B at rate of up to 1Mbps each.
- Six 29-bit filters, two 29-bit masks and two receive buffers with prioritized message storage
- Interrupt outputs from CAN bus controllers and a shared reset input are connected to the host motherboard.

4.4.4 CAN PHY ADM3053 (Isolation Driver)

- Isolated physical layer (PHY) transceiver with rated isolation voltage of 2.5 kV RMS for 1 minute
- Data rate of up to 1Mbps
- Consumers power from the CAN bus by default, and can be configured to supply power of up to 170 mA to the bus.

4.4.5 RJ-11 Serial Ports

The serial ports are arranged as COM ports differently on different motherboard configurations, as detailed in Table 2. The physical locations of the ports are depicted in Figure 1.

Table 6 – Serial Ports Arrangement

Motherboard	P1	P2	P3	P4	P5	P6
fit-PC3/ SBC-fitPC3	9	8	5	4	7	6
Intense-PC/ SBC-iSB	10	9	6	5	8	7

The pinout of RJ-11 serial ports is detailed in Table 3.

Table 7 – RJ-11 Pinout

	RS232 ¹			RS485 ²		
Pin # ³	Type	Functionality		Type	Functionality	
1	O	RTS		O	TX-	
2	-	GND		-	GND	
3	O	TX		O	TX+	
4	I	RX		I	RX+	
5	-	GND		-	GND	
6	I	CTS		I	RX-	

Notes:

1. FM-SER is classified as DTE (Data Terminal Equipment) in terms of RS232 standard definition
2. FM-SER supports full duplex RS485
3. The port numbering is specified in Table 2

4.4.6 RJ-45 CAN Bus Pinout

Table 8 – RJ-45 Pinout

Pin #	Type	Functionality
1	IO	CAN +
2	IO	CAN -
3	-	CAN GND
4	NC	NC
5	NC	NC
6	-	GND
7	PWR	CAN GND
8	PWR	CAN VCC

4.5 Configuration

4.5.1 Serial Ports Configuration

Each serial port can be individually configured to act in RS232 mode or RS485 half/full duplex mode. The configuration is selected in fit-PC3 BIOS setup.

The default selection between RS232 and RS485/RS422 is determined by E1 jumper position. Default mode determines the power-up state of the Dual Protocol Transceiver. It is applied to all ports and remains valid in case that software configuration is not performed.

The options of jumper E1 selections are detailed in Table 4.

Table 4 Jumper E1 options

Jumper Position ¹	Default Serial Protocol
Assembled	RS232
Removed	RS485 / RS422

Note: The jumper is assembled by default.

Figure 12 – Jumper E1 location

After power-up, any individual port can be configured using software controlled SMBus system management protocol.

4.5.2 CAN Bus power supply

By default, the FM-SER consumes power from the CAN bus.

After power-up, the power supply option can be determined by a GPIO line connected to the motherboard, and is fully software controlled.

4.6 Mechanics

4.6.1 PCB Assembly

Figure 13 – FM-SER PCB Assembly Top

4.6.2 Front Panel

Port numbers and pinout specifications in this section refer to Table 6.

Figure 14 – FM-SER front panel drawing

4.7 Software Drivers

The OXPcle958 PCIe to UART Bridge and the USB to SPI Bridge must have installed driver to function properly.

- **Windows Drivers**

Drivers for Fit-PC / SBC-Fit-PC can be downloaded from Compulab homepage, or directly from the following links:

- Fit-PC / SBC-Fit-PC: http://fit-pc.com/wiki/index.php/Fit-PC3:_Software#Windows_7
- Intense-PC / SBC-iSB: http://fit-pc.com/wiki/index.php/IntensePC:_Software#Windows_7

- **Linux Drivers**

The OXPcle958 PCIe to UART Bridge is supported by mainline kernel, and can be also found at:

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/drivers/tty/serial/8250/8250_pci.c?id=refs/tags/v3.10

Note: CAN Bus feature is yet to be supported for Linux OS.

5 FM-XTDEU2/4 – Single LAN FACE Module

5.1 Description

FM-XTDEU2/4 FACE Module provide single GbE LAN port via RJ-45 connector, four additional USB2.0 downstream ports and two optional mini PCIe slots (half size form factor).

Refer to [Compatibility Matrix](#) for products fit.

5.2 Highlights

- 1x GbE LAN 10/100/1000BASE-T compliant with IEEE 802.3/u/ab
- 4x USB2.0 downstream ports, up to 480Mbps half-duplex
- 2x mini PCIe slots supporting half size mini PCI Express modules featuring PCIe gen2 data rates (up to 5Gbps full duplex).

5.3 Block Diagram

Figure 15 – FACE Module FM-XTDEU2/4 block diagram

5.4 Hardware Specifications

The following section provides information about FM-XTDEU2/4 main components and features.

5.4.1 Realtek RTL8111F GbE Controller

The Realtek RTL8111F Gigabit Ethernet controller combines a triple-speed IEEE 802.3 compliant Media Access Controller (MAC) with a triple-speed Ethernet transceiver, PCI Express bus controller, and embedded memory. With state-of-the-art DSP technology and mixed-mode signal technology, the RTL8111F offers high-speed transmission over CAT 5 UTP cable.

The RTL8111F supports PCI Express 1.1 bus interface for host communications with power management, and is compliant with the IEEE 802.3u specification for 10/100Mbps Ethernet and the IEEE 802.3ab specification for 1000Mbps Ethernet. It also supports an auxiliary power auto-detect function, and will auto-configure related bits of the PCI power management registers in PCI configuration space. The RTL8111F features embedded One-Time-Programmable (OTP) memory to replace the external EEPROM.

Advanced Configuration Power management Interface (ACPI) – power management for modern operating systems that are capable of Operating System-directed Power Management (OSPM) – is supported to achieve the most efficient power management possible. In addition to the ACPI feature, remote Wake on LAN is supported in both ACPI and APM (Advanced Power Management) environments.

The RTL8111F is suitable for multiple market segments and emerging applications, such as desktop, mobile, workstation, server, communications platforms and embedded applications.

- **Main Features**

- Integrated 10/100/1000 transceiver
- Auto-Negotiation with Next Page capability
- Supports PCI Express 1.1
- Supports pair swap/polarity/skew correction
- Crossover Detection & Auto-Correction
- Wake-on-LAN and remote wake-up support
- Supports Full Duplex flow control (IEEE 802.3x)
- Supports jumbo frame to 9K bytes
- Fully compliant with IEEE 802.3, IEEE 802.3u, IEEE 802.3ab
- Supports IEEE 802.1P Layer 2 Priority Encoding
- Supports IEEE 802.1Q VLAN tagging
- Supports IEEE 802.3az-2010 (EEE)
- Embedded OTP memory can replace the external EEPROM
- Supports power down/link down power saving/PHY disable mode
- Built-in switching regulator
- Supports Customized LEDs
- Supports 1-Lane 2.5Gbps PCI Express Bus
- Supports hardware ECC (Error Correction Code) function
- Supports hardware CRC (Cyclic Redundancy Check) function
- 48-pin QFN ‘Green’ package

5.4.2 IDT ICS9DB102 1-to-2 Differential Clock Driver

IDT ICS9DB102 is two output clock buffer for PCIe Gen1 & Gen2 with HCSL current mode differential outputs.

Device zero-delay buffer supports PCI Express clocking requirements. The ICS9DB102 is driven by a differential compliant input clock. It attenuates jitter on the input clock and has a selectable PLL Band Width to maximize performance in systems with or without Spread-Spectrum clocking.

5.5 Mechanics

5.5.1 PCB Assembly

Figure 16 – FM-XTDEU2/4 PCB Assembly Top

5.5.2 Front Panel

Figure 17 – FM-XTDEU2/4 front panel drawing

5.6 Software Drivers

- **Windows Drivers**

http://www.fit-pc2.com/download/fit-PC3/Win7/drivers/fit-PC3_Win7_Ethernet_2012.12.04.zip

- **Linux Drivers**

— Implemented in Linux Kernel

6 FM-XTDE4U2/4 – Quad LAN FACE Module

6.1 Description

FM-XTDE4U2/4 FACE Module incorporates 4 ports of GbE LAN supporting 10/100/1000BASE-T Ethernet connectivity and compliant with IEEE 802.3/u/ab standard through a market regular RJ-45 connectors. It also features 4 additional USB2.0 downstream ports supporting data rates up to 480Mbps.

Refer to [Compatibility Matrix](#) for products fit.

6.2 Highlights

- 4x GbE LAN 10/100/1000BASE-T compliant with IEEE 802.3/u/ab
- 4x USB2.0 downstream ports, up to 480Mbps half-duplex

6.3 Block Diagram

Figure 18 – FACE Module FM-XTDE4U2/4 block diagram

6.4 Hardware Specifications

The following section provides information about FM-XTDE4U2/4 main components and features.

6.4.1 Intel 82574L GbE Controller

The 82574L is a single, compact, low power component that offer a fully-integrated Gigabit Ethernet Media Access Control (MAC) and Physical Layer (PHY) port. The 82574L uses the PCI Express* (PCIe*) architecture and provides a single-port implementation in a relatively small area so it can be used for server and client configurations as a LAN on Motherboard (LOM) design. The 82574L can also be used in embedded applications such as switch add-on cards and network appliances.

- **MAC**
 - Flow Control Support compliant with the 802.3x specification
 - VLAN support compliant with the 802.1Q specification
 - MAC Address filters: perfect match unicast filters; multicast hash filtering, broadcast filter and promiscuous mode
 - MAC loopback
- **PHY**
 - Compliant with the 1 Gbps IEEE 802.3 802.3u, 802.3ab specifications
 - IEEE 802.3ab auto negotiation support
 - Full duplex operation at 10/100/1000 Mbps
 - Half duplex at 10/100 Mbps
 - Auto MDI, MDI-X crossover at all speeds
- **High Performance**
 - TCP segmentation capability compatible with Large Send offloading features
 - Support up to 256 KB TCP segmentation (TSO v2)
 - Fragmented UDP checksum offload for packet reassemble
 - IPv4 and IPv6 checksum offload support (receive, transmit, and large send)
 - Split header support
 - 40KB packet buffer size
- **Manageability**
 - NC-SI for remote management core
 - SMBus advanced pass through interface
- **Low Power**
 - Magic Packet wake-up enable with unique MAC address
 - ACPI register set and power down functionality supporting D0 and D3 states
 - Full wake up support (APM and ACPI 2.0)
 - Smart power down at S0 no link and Sx no link
 - LAN disable function
- **Technology**
 - 9 mm x 9 mm 64-pin QFN package with Exposed Pad
 - Configurable LED operation for customization of LED displays

6.4.2 Pericom PI6C20400 1-to-4 Differential Clock Driver

Pericom Semiconductor's PI6C20400 is a high-speed, low-noise differential clock driver/buffer compatible with CML and HCSL differential I/O technology.

The device distributes a differential input clock to four differential pairs of clock outputs either with or without PLL. The clock outputs are controlled by input selection of several static control signals and Host SMBus interface. The device oriented and designed for PCI Express applications.

6.4.3 SPI NOR Flash

The 82574L requires non-volatile memory content for initialization and configuration. The NVM is connected to a single Serial Peripheral Interface (SPI). The 82574L is compatible with many sizes of 4-wire SPI NVM devices. The required NVM size is dependent upon system requirements. FM-XTDE4U2/4 NVM is implemented with Winbond W25Q80BL 8Mbit Flash memory.

6.5 Mechanics

6.5.1 PCB Assembly

Figure 19 – FM-XTDE4U2/4 PCB Assembly Top

6.5.2 Front Panel

Figure 20 – FM-XTDE4U2/4 front panel drawing

6.6 Software Drivers

- **Windows Drivers**

<http://www.fit-pc2.com/download/fit-PC3/Win7/drivers/fit-PC3%20Win7%20FM-LAN%202013.07.30.zip>

- **Linux Drivers**

— Implemented in Linux Kernel

7 FM-XTDM2 – Dual Mini PCI Express FACE Module

7.1 Description

FM-XTDM2 FACE Module provide two optional mini PCI Express slots supporting either full or half size mechanical form factor. By default arrive with mechanical latches for full size modules, but can be adjusted for half size as well.

Refer to [Compatibility Matrix](#) for products fit.

7.2 Highlights

- 2x mini PCIe slots supporting mini PCI Express modules, featuring PCIe gen2 data rates (up to 5Gbps full duplex).
- Full/half size modules mechanical form factor

7.3 Block Diagram

Figure 21 – FACE Module FM-XTDM2 block diagram

7.4 Hardware Specifications

7.4.1 Mini PCI Express Slot

Table 9 – mini PCI Express edge connector pinout

mini PCI Express edge connector					
Pin #	Pin Name	Signal Description	Pin #	Pin Name	Signal Description
1	WAKE#	Open drain, active low signal driven low by a mini PCIe card to reactivate the PCIe link	2	3.3Vaux	3.3V power rail
3	COEX1/Reserved		4	GND	Ground connection
5	COEX2/Reserved	Reserved for future wireless coexistence control interface between radios (if needed)	6	1.5V	1.5V power rail
7	CLKREQ#	Clock request - open drain, active low driven by mini PCIe card to request PCIe reference clock	8	UIM_PWR/Reserved	The UIM signals are defined on the system connector to provide the interface between the removable User Identity Module (UIM) Interface - an extension of SIM and WWAN.
9	GND	Ground connection	10	UIM_DATA/Reserved	
11	REFCLK-	Reference clock used to assist the synchronization of PCI Express interface timing circuits	12	UIM_CLK/Reserved	
13	REFCLK+		14	UIM_RESET/Reserved	
15	GND	Ground connection	16	UIM_VPP/Reserved	
Mechanical Notch Key					
17	Reserved/UIM_C8	Reserved	18	GND	Ground connection
19	Reserved/UIM_C4	Reserved	20	W_DISABLE#	Active low signal when asserted by the system disable radio operation. Reserved for future use.
21	GND	Ground connection	22	PERST#	Asserted when power is switched off and also can be used by the system to force HW reset
23	PERn0		24	3.3Vaux	3.3V power rail
25	PERp0	PCI Express differential receive pair	26	GND	Ground connection
27	GND	Ground connection	28	1.5V	1.5V power rail
29	GND	Ground connection	30	SMB_CLK	Optional SMBus two-wire interface for Host/mini PCIe module communication
31	PETn0		32	SMB_DATA	
33	PETp0	PCI Express differential transmit pair	34	GND	
35	GND	Ground connection	36	USB_D-	USB Host Interface
37	GND	Ground connection	38	USB_D+	
39	3.3Vaux	3.3V power rail	40	GND	
41	3.3Vaux	3.3V power rail	42	LED_WWAN#	Active low output signals are provided to allow status indications to users via system provided LEDs
43	GND	Ground connection	44	LED_WLAN#	
45	Reserved		46	LED_WPAN#	
47	Reserved		48	1.5V	
49	Reserved		50	GND	
51	Reserved	Reserved for future second PCI Express Lane	52	3.3Vaux	

7.5 Mechanics

7.5.1 PCB Assembly

Figure 22 – FM-XTDM2 PCB Assembly Top

7.5.2 Front Panel

When FM-XTDM2 FACE module installed a blank front panel cover is used.

8 FM-VC – Video Capture FACE Module

8.1 Description

FM-VC FACE Module provide the ability for Video and Audio real and non-real time capture from low cost analog video sensors. Features A/V sampling, video, image processing and motion detection algorithms. In addition to application specific capabilities FM-VC offers several general purpose connectivity options as dual USB2.0 downstream ports and serial port supporting either single ended RS232 or differential mode RS485/RS422 operation.

FM-VC FACE Module designed for surveillance, homeland security and any other video analytic system.

Refer to [Compatibility Matrix](#) for products fit.

8.2 Highlights

- 8x Real time capture Composite Analog Video NTSC/PAL/SECAM channels
- 16x Non-real time capture Composite Analog Video NTSC/PAL/SECAM channels
- 8x Real time capture Analog Audio channels
- 2x DB15 female connectors for AV capture
- 2x USB2.0 downstream ports, up to 480Mbps half-duplex
- 1x Serial port supporting RS232/RS422/RS488 communication via RJ11

8.3 Block Diagram

Figure 23 – FACE Module FM-VC block diagram

8.4 Hardware Specifications

The following section provides information about FM-VC main components and features.

8.4.1 Intersil TW6869 Video Decoder

The TW6869 is a highly integrated solution that supports multi-channel video and audio capture via PCI Express x1 interface for PC DVR system and video analytic application. It contains high quality eight channel NTSC/PAL/SECAM video decoders that convert analog composite video signal to digital component YCbCr data. Adaptive 4H comb filter for separating luminance and chrominance to reduce cross noise artifacts.

TW6869 contains a high performance proprietary DMA controller that fully optimizes the utilization of PCI Express x1 bandwidth and enables it to transfer video and audio data at a high throughput rate that closely approaches the theoretical limit of PCI Express x1 interface. TW6869 is able to simultaneously decode and transfer 8 real time video streams, or up to 16 channel non-real time video streams in FM-VC application, plus 8 real time audio channel.

- **Video Decoder Features**
 - Accepts all NTSC(M/N/4.43) / PAL(B/D/G/H/I/K/L/M/N/60) standards with auto detection
 - Integrated eight video analog anti-alias filters and 10-bit CMOS ADCs
 - Color Transient Improvement, White peak AGC control
 - Programmable hue, saturation, contrast, brightness and sharpness
 - High quality proprietary fast video locking system for non-real-time application
 - High performance adaptive 4H comb filters for all NTSC and PAL standards
- **Audio Codec Features**
 - Integrated eight audio ADCs
 - 8/16 bit audio word length
 - Sample audio with 8/16/32/44.1/48kHz
- **DMA Controller**
 - Highly-efficient DMA design can support up to 8 real time D1 video and 8 real time audio Channels, or up to 32 non-real- time video with optimization of full PCIe x1 bandwidth
 - Multiple digital video format outputs: UYVY/Y422, YUYV/YUY2, IYU1/Y411, Y41P, YUV420, RGB555 and RGB565
 - Integrated internal video and audio generator simplifies system test and development
 - Built-in motion detection engine for each video channel
- **Host Interface**
 - PCI Express Base Specification 1.1 and 2.0 Compliant

Figure 24 – Intersil TW6869 functional block diagram

8.4.2 SMSC SIO1007 Super-IO Controller

The SMSC SIO1007 is PC 99 and ACPI 1.0 compliant Super I/O Controller. The SIO1007 implements the LPC interface with the LPC PortSwitch interface. The LPC PortSwitch interface is a hot switchable external docking LPC interface. It also features a full 16bit internally decoded address bus, a Serial IRQ interface with PCI clock support, relocatable configuration ports and three DMA channel options. The part also includes 16 GPIO pins.

The SIO1007 incorporates one complete 8-pin UART. In addition SIO1007 provides a second UART to support a serial Infrared interface that complies with IrDA v1.2 (Fast IR) and several other popular IR formats.

- **Main Features**

- One full function Serial port
- High Speed UART with Send/Receive 16-Byte FIFOs
- Support 230k and 460k Baud rates
- Programmable baud rate generator
- Modem control circuit
- IR communication controller
- LPC bus Host interface
- LPC PortSwitch interface
- Two IRQ input pins
- PC99a and ACPI 1.0 Compliant
- Intelligent Auto Power Management
- 16x GPIOs

Figure 25 – SMSC SIO1007 functional block diagram

8.4.3 IDT ICS9DB102 1-to-2 Differential Clock Driver

IDT ICS9DB102 is two output clock buffer for PCIe Gen1 & Gen2 with HCSL current mode differential outputs.

Device zero-delay buffer supports PCI Express clocking requirements. The ICS9DB102 is driven by a differential compliant input clock. It attenuates jitter on the input clock and has a selectable PLL Band Width to maximize performance in systems with or without Spread-Spectrum clocking.

8.4.4 MAX3221 RS232 Transceiver

- Single-channel RS232 serial protocol transceiver
- Implementation RS232 PHY serial protocol port
- Data rate of 250kbps or more
- Low power operation and auto-shutdown

8.4.5 ADM3491 RS422/RS485 Transceiver

- Single-channel RS422/RS485 serial protocol transceiver
- Implements RS422/RS485 PHY serial protocol
- Supports full-duplex RS485 protocol with data rate of up to 10Mbps
- Low power operation and auto-shutdown

8.4.6 DB15 Connectors Pinout

Table 10 – DB15 Connector Pinout

Pin #	Type	Functionality	Cable Connector*
P1			
P1 - 1	Analog Input	Audio 1	AI01
P1 - 2	Analog Input	Audio 2	AI02
P1 - 3	-	GND	
P1 - 4	Analog Input	Audio 3	AI03
P1 - 5	Analog Input	Audio 4	AI04
P1 - 6	Analog Input	Video 1A	VI11
P1 - 7	Analog Input	Video 2D	VI12
P1 - 8	-	GND	
P1 - 9	Analog Input	Video 3A	VI13
P1 - 10	Analog Input	Video 4D	VI14
P1 - 11	Analog Input	Video 1B	VI21
P1 - 12	Analog Input	Video 2C	VI22
P1 - 13	-	GND	
P1 - 14	Analog Input	Video 3B	VI23
P1 - 15	Analog Input	Video 4C	VI24

P2			
P2 - 1	Analog Input	Audio 5	AI01
P2 - 2	Analog Input	Audio 6	AI02
P2 - 3	-	GND	
P2 - 4	Analog Input	Audio 7	AI03
P2 - 5	Analog Input	Audio 8	AI04
P2 - 6	Analog Input	Video 5D	VI11
P2 - 7	Analog Input	Video 6A	VI12
P2 - 8	-	GND	
P2 - 9	Analog Input	Video 7D	VI13
P2 - 10	Analog Input	Video 8A	VI14
P2 - 11	Analog Input	Video 5C	VI21
P2 - 12	Analog Input	Video 6B	VI22
P2 - 13	-	GND	
P2 - 14	Analog Input	Video 7C	VI23
P2 - 15	Analog Input	Video 8B	VI24

8.4.7 RJ11 Connector Pinout

RJ11 connector serial port pinout shown below. It can function as RS232 or as RS422/RS485. The FM-VC is supplied with a cable for serial RJ11 port.

Table 11 – RJ11 connector pinout

	RS232			RS485	
Pin #	Type	Functionality		Type	Functionality
1	NC	HIGH Z	O	TX-	
2	-	GND	-	GND	
3	O	TX	O	TX+	
4	I	RX	I	RX+	
5	-	GND	-	GND	
6	NC	HIGH Z	I	RX-	

8.5 Cables

The FM-VC is supplied with two DB15 to RCA and BNC cables, along with one RJ11 serial communication cable.

8.5.1 DB15 to RCA and BNC Cables

In order to connect the FM-VC to video/audio source, it is provided with two identical cables of DB15-male to 8 BNC and 4 RCA connectors:

- 4 blue female BNC connectors for analog video input
- 4 green female BNC connectors for analog video input
- 4 red female RCA connectors for analog audio input

The signals and the matching connectors of the DB15 to RCA and BNC Cables are detailed in the table below. Signal names are labeled on the cables.

Table 12 – DB15 to RCA and BNC Cable

Signal Name	DB15 Pin #	Functionality	Type	Connector Color
VI11	6	Video input	BNC	Blue
VI12	7	Video input	BNC	Blue
VI13	9	Video input	BNC	Blue
VI14	10	Video input	BNC	Blue
VI21	11	Video input	BNC	Green
VI22	12	Video input	BNC	Green
VI23	14	Video input	BNC	Green
VI24	15	Video input	BNC	Green
AI01	1	Audio input	RCA	Red
AI02	2	Audio input	RCA	Red
AI03	4	Audio input	RCA	Red
AI04	5	Audio input	RCA	Red

8.5.2 RJ11 to DB9 Cable

The FM-VC is supplied with a RJ11 6P6C-male to DB9-female cable. This cable is compatible with RS232 standard rather with RS485/RS422 DB9 connector standard.

DB9 RS232 pinout shown below.

Figure 26 – RS232 DB9 Connector View

8.6 Mechanics

8.6.1 PCB Assembly

Figure 27 – FM-VC PCB Assembly Top

Figure 28 – FM-VC PCB Assembly Bottom

8.6.2 Front Panel

Figure 29 – FM-VC front panel drawing

8.7 Software Drivers

- **Windows Drivers**
 - TBD
- **Linux Drivers**
 - http://fit-pc.com/download/face-modules/fm-vc/sw/linux-drivers/tw68v-dkms_1.0_all.zip

9 FM-POE – Quad LAN with Power over Ethernet PSE ports

9.1 Description

FM-POE FACE Module incorporates 4 ports of GbE LAN supporting 10/100/1000BASE-T Ethernet connectivity, compliant with IEEE 802.3/u/ab standard. All four ports compliant with IEEE 802.3af* support PoE and PoE + PSE applications. Two additional USB2.0 downstream ports supporting data rates up to 480Mbps for general purpose connectivity.

Note that HW Rev1.0 supports PSE Class 0 (15.4W max) per port when 2 ports populated with PD Class 0 devices (12.95W max).

10 Refer to [Compatibility Matrix](#) for products fit.

10.1 Highlights

- 4x GbE LAN 10/100/1000BASE-T compliant with IEEE 802.3/u/ab
- 4x PSE ports compliant with IEEE 802.3af* PoE standard (see note above)
- 2x USB2.0 downstream ports, up to 480Mbps half-duplex

10.2 Block Diagram

Figure 30 – FACE Module FM-POE block diagram

10.3 Hardware Specifications

The following section provides information about FM-POE main components and features.

10.3.1 Intel I211AT GbE Controller

Intel Ethernet I211 controller is a single port, compact, low power component that supports GbE designs. The I211 offers a fully-integrated GbE Media Access Control (MAC), Physical Layer (PHY) port and supports PCI Express 2.1 (5GT/s). The I211 enables 1000BASE-T implementations using an integrated PHY. It can be used for server system configurations such as rack mounted or pedestal servers, in an add-on NIC or LAN on Motherboard (LOM) design. Another possible system configuration is for blade servers as a LOM or mezzanine card. It can also be used in embedded applications such as switch add-on cards and network appliances.

One independent interface is used to connect the I211 port to external devices. The following protocol is supported: MDI (copper) support for standard IEEE 802.3 Ethernet interface for 1000BASE-T, 100BASE-TX, and 10BASE-T applications (802.3, 802.3u, and 802.3ab).

- **Main Features**
 - PCIe v2.1 (5 GT/s) x1, with Switching Voltage Regulator (iSVR)
 - Integrated Non-Volatile Memory (iNVM)
 - Platform Power Efficiency
 - IEEE 802.3az Energy Efficient Ethernet (EEE)
 - Proxy: ECMA-393 and Windows logo for proxy offload
 - Jumbo frames
 - Interrupt moderation, VLAN support, IP checksum offload
 - RSS and MSI-X to lower CPU utilization in multi-core systems
 - Advanced cable diagnostics, auto MDI-X
 - ECC – error correcting memory in packet buffers
 - Four Software Definable Pins (SDPs)

For Intel 82574L GbE controller please refer to 6.4.1 section.

10.3.2 Silicon Labs Si3452 Quad High Voltage Port Controller for PoE + PSE

When connected directly to the host system or configured in Auto mode, each Si3452 high-voltage port controller provides all of the critical circuitry and sophisticated power measurement functionality for the high-voltage interfaces of four complete PSE ports. The Si3452 fully integrates robust, low- R_{ON} (0.3Ω typical) power MOSFET switches, low-power dissipation current sensing circuitry, and transient voltage surge suppression devices. The on-chip current sense circuitry and power MOSFETs provide programmable scaling of current limits to match PoE (350 mA, 15.4 W for 2 ports) and PoE+ (600 mA, 30 W for one port) power requirements on a per port basis. Each Si3452 also performs the IEEE-required powered device (PD) detection, classification, and disconnect functionality.

The flexible architecture enables powered device disconnect detection using Silicon Laboratories proprietary dV/dt disconnect sensing algorithm. dV/dt disconnect is an alternative to DC disconnect that requires no additional BOM components, does not dissipate extra device power, and fully interoperates with all powered devices. Also provided are multi-point detection algorithms and per-port current and voltage monitoring.

Intelligent protection circuitry includes power supply under voltage lockout (UVLO), port output current limiting and short-circuit protection, thermal overload sensing and port shutdown, and transient voltage surge suppressors capable of protecting the Si3452 from a variety of harsh surge events seen on the RJ-45 interface.

To maximize system design flexibility and minimize cost, each Si3452 connects directly to a system host controller through an I2C serial interface.

Figure 31 – Silicon Labs Si3452 functional block diagram

10.3.3 Pericom PI6C20400 1-to-4 Differential Clock Driver

Pericom Semiconductor's PI6C20400 is a high-speed, low-noise differential clock driver/buffer compatible with CML and HCSL differential I/O technology.

The device distributes a differential input clock to four differential pairs of clock outputs either with or without PLL. The clock outputs are controlled by input selection of several static control signals and Host SMBus interface. The device oriented and designed for PCI Express applications.

10.3.4 SPI NOR Flash

SPI Flash Reserved for pin compatible 82574L GbE device.

The 82574L requires non-volatile memory content for initialization and configuration. The NVM is connected to a single Serial Peripheral Interface (SPI). The 82574L is compatible with many sizes of 4-wire SPI NVM devices. The required NVM size is dependent upon system requirements. FM-XTDE4U2/4 NVM is implemented with Winbond W25Q80BL 8Mbit Flash memory.

10.3.5 RJ45 PoE/PSE port pinout

The connections of the RJ45 (8P8C) sockets of FM-PoE are compatible to the widely used TIA/EIA-568B standard, thus adequate to 1000BASE-T communication. The PoE connections to the RJ45 (8P8C) sockets are according to end-span (mode A) PoE IEEE802.3af.

RJ45 PoE jack pinout is shown below.

Figure 32 – RJ45 Jack drawing

Table 13 – PoE RJ45 pinout

Pin #	1000BASE-T signal	PoE connection
1	DA+	GND Pair
2	DA-	
3	DB+	-48V Pair
4	DC+	
5	DC-	-48V Pair
6	DB-	
7	DD+	
8	DD-	

10.4 Mechanics

10.4.1 PCB Assembly

Figure 33 – FM-POE PCB Assembly Top

10.4.2 Front Panel

Figure 34 – FM-POE front panel drawing

10.5 Software Drivers

- **Windows Drivers**
TBD
- **Linux Drivers**
 - Implemented in Linux Kernel

10.6 Safety Information

On every use of FM-POE to deliver Power over Ethernet, 12V power supply must be applied to the power jack on the front panel of FM-POE. The use of PoE with the power supplied via the system board back panel may result in permanent damage to the system.

11 Reference

Schematics files can be downloaded and serve as reference design documents.

Table 14 – Reference design schematics

Schematics	Board Revision	Reference location
FM-4USB	1.1	http://fit-pc.com/download/face-modules/fm-4usb/hw/rev1.1/Schematics/fm4u_1v1.pdf
FM-USB3	2.1	http://fit-pc.com/download/face-modules/fm-usb3/hw/rev2.1/fm-usb3_2_1.pdf
FM-SER	1.1	http://fit-pc.com/download/face-modules/fm-ser/hw/rev1.1/Schematics/fm-ser_1v1.pdf
FM-XTDEU2/4	1.1	http://fit-pc.com/download/face-modules/fm-1lan/hw/rev1.1/Schematics/XTD_1V1.pdf
FM-XTDE4U2/4	1.1	http://fit-pc.com/download/face-modules/fm-4lan/hw/rev1.1/Schematics/XTD_4V1.pdf
FM-XTDM2	1.1	http://fit-pc.com/download/face-modules/fm-2pcie/hw/rev1.1/Schematics/XTD_2V1.pdf
FM-VC	1.0	http://fit-pc.com/download/face-modules/fm-vc/hw/rev1.0/Schematics/fm_vc.pdf
FM-POE	1.0	TBD

Other Resources

FACE Modules compatibility matrix:

<http://fit-pc.com/download/app-notes/app-note-products-fm-compatibility-matrix.pdf>

For the latest revision of this document follow the link:

<http://fit-pc.com/download/face-modules/documents/face-modules-hw-specifications.pdf>

FACE Modules portfolio overview presentation:

<http://fit-pc.com/download/face-modules/documents/face-modules-portfolio-overview.pdf>