Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών http://courses.softlab.ntua.gr/pl2/

Γλώσσες Προγραμματισμού ΙΙ

Αν δεν αναφέρεται διαφορετικά, οι ασκήσεις πρέπει να παραδίδονται στους διδάσκοντες σε ηλεκτρονική μορφή μέσω του συνεργατικού συστήματος ηλεκτρονικής μάθησης moodle.softlab.ntua.gr. Η προθεσμία παράδοσης θα τηρείται αυστηρά. Έχετε δικαίωμα να καθυστερήσετε το πολύ μία άσκηση.

Ασκηση 7 Εξαγωγή τύπων

Προθεσμία παράδοσης: 27/3/2016

Υλοποιήστε την εξαγωγή τύπων για τον απλό λ-λογισμό. Υποβάλετε τη λύση σας στο σύστημα αυτόματης υποβολής και ελέγχου προγραμμάτων grader . softlab . ntua . gr , σε όποια γλώσσα προγραμματισμού θέλετε (από αυτές που υποστηρίζει ο grader — αν θέλετε άλλη, μιλήστε με τους διδάσκοντες). Για δική σας διευκόλυνση, σας προτείνουμε να επιλέξετε μια συναρτησιακή γλώσσα: Haskell, Standard ML (MLton) ή OCaml.

Είσοδος και έξοδος. Το πρόγραμμά σας θα διαβάζει τα δεδομένα από την τυπική είσοδο (stdin) και θα τυπώνει τα αποτελέσματα στην τυπική έξοδο (stdout).

Η πρώτη γραμμή της εισόδου θα περιέχει ένα φυσικό αριθμό N. Οι επόμενες N γραμμές θα περιέχουν ένα λ -όρο κάθε μία. Η ακριβής μορφή στην οποία θα δίνονται οι λ -όροι θα περιγραφεί στην εκφώνηση που θα βρείτε στον grader.

Το πρόγραμμά σας πρέπει να τυπώνει N γραμμές, κάθε μία από τις οποίες θα περιέχει τον τύπο που βρήκε για τον αντίστοιχο λ -όρο ή το μήνυμα "type error", σε περίπτωση που η εξαγωγή τύπων αποτύχει. Η ακριβής μορφή στην οποία θα πρέπει να εμφανίζονται οι τύποι θα περιγραφεί στην εκφώνηση που θα βρείτε στον grader.

Συνοπτική περιγραφή της λύσης. Η παρακάτω γραμματική περιγράφει τη σύνταξη των λ-όρων (,) και των τύπων (σ, τ) .

$$M, N ::= x | (\lambda x.M) | (M N)$$

 $\sigma, \tau ::= \alpha | (\sigma \to \tau)$

Για την κατασκευή του συνόλου περιορισμών που προκύπτει από τη σημασιολογική ανάλυση ενός λόρου, μπορείτε να χρησιμοποιήσετε τους παρακάτω κανόνες. Είναι οι κανόνες που δόθηκαν στον πίνακα στην παράδοση της 29/10/2014 και είναι ισοδύναμοι με τους κανόνες τύπων à-la Curry για τον απλό λ-λογισμό, που δίνονται στη διαφάνεια 41 της ίδιας παράδοσης.

Η σχέση τύπων $\Gamma \vdash e : \tau \mid C$ σημαίνει ότι στο περιβάλλον Γ , η έκφραση e έχει τύπο τ , υπό την προϋπόθεση να ικανοποιούνται οι περιορισμοί που ανήκουν στο σύνολο C.

$$\begin{array}{c} (x:\tau) \in \Gamma \\ \hline \Gamma \vdash x:\tau \mid \varnothing \end{array} \qquad \begin{array}{c} \alpha \text{ φρέσκια μεταβλητή τύπου} \qquad \Gamma, x:\alpha \vdash e:\tau \mid C \\ \hline \Gamma \vdash x:\tau \mid \varnothing \end{array} \qquad \begin{array}{c} \Gamma \vdash e_1:\sigma \mid C_1 \qquad \Gamma \vdash e_2:\tau \mid C_2 \qquad \alpha \text{ φρέσκια μεταβλητή τύπου} \\ \hline \Gamma \vdash e_1e_2:\alpha \mid C_1 \cup C_2 \cup \{\sigma=\tau \rightarrow \alpha\} \end{array}$$

Ο ελεγκτής τύπων με κατασκευή περιορισμών που θα γράψετε θα δέχεται ως είσοδο τα Γ και e και θα παράγει ως έξοδο τα τ και C. Ο αλγόριθμος W για τον υπολογισμό του γενικότερου ενοποιητή (most general unifier) για το C δίνεται στη διαφάνεια 42. - Tvχαίο; Δε νομίζω!