

Transistors

COMP311 Connor McMahon

Announcements

- Homework 0 due tomorrow
- Lab 0 released tomorrow, due next Thursday

Arithmetic vs Logical Shifting

sizeof(int) = 4 bytes

```
unsigned int x3 = (unsigned int) -5;
printf("x3 >> 1 = 0x%x\n", x3 >> 1);
```

Arithmetic vs Logical Shifting

sizeof(int) = 4 bytes

```
unsigned int x3 = (unsigned int) -5;
printf("x3 >> 1 = 0x%x\n", x3 >> 1);
```

This is a 32-bit number because its type is unsigned int

A logical shift was performed because this number is an **unsigned** int

Transistors are like switches

Switches are controlled by physical contact

Transistors are controlled by a voltage

Transistor Symbol

Logic Levels

The exact voltage ranges are determined by the characteristics of the transistor

NMOS Transistor

NMOS Transistor in "on" state

Dark green = Logic 0 Light green = Logic 1

Current can flow between the source and drain terminals because Vg is high

NMOS Transistor in "off" state

Dark green = Logic 0 Light green = Logic 1

Current cannot flow between the source and drain terminals because Vg is low

n-channel Metal-Oxide-Semiconductor-Field-Effect Transistor (MOSFET)

n-channel Metal-Oxide-Semiconductor-Field-Effect Transistor (MOSFET)

Metal

material with high electrical conductivity

Oxide

insulates the semiconductor from the metal layer, forming a capacitor structure

Semiconductor

a material with an electrical conductivity between an insulator and conductor

n-channel MOSFET (nMOS)

Vg (gate voltage) = logic low current cannot flow between source and drain

Vg (gate voltage) = logic high current can flow between source and drain

Two Types of Transistors

Two Types of Transistors

	nMOS	pMOS
Behaves as an open switch when	Vg is low	Vg is high
Behaves as a closed switch when	Vg is high	Vg is low

PMOS Transistor

PMOS Transistor in "on" state

Dark green = Logic 0 Light green = Logic 1

Current can flow between the source and drain terminals because Vg is low

PMOS Transistor in "off" state

Dark green = Logic 0 Light green = Logic 1

Current cannot flow between the source and drain terminals because Vg is high

Recall: Logic Levels

Comparing Logic High Outputs

Comparing Logic Low Outputs

NMOS Transistor in "on" state

Dark green = Logic 0 Light green = Logic 1

Current can flow between the source and drain terminals because Vg is high

NMOS Transistor in "off" state

Dark green = Logic 0 Light green = Logic 1

Current cannot flow between the source and drain terminals because Vg is low

PMOS Transistor in "on" state

Dark green = Logic 0 Light green = Logic 1

Current can flow between the source and drain terminals because Vg is low

PMOS Transistor in "off" state

Dark green = Logic 0 Light green = Logic 1

Current cannot flow between the source and drain terminals because Vg is high

nMOS vs pMOS

Characteristic	nMOS	pMOS
Vg = 1	on	off
Vg = 0	off	on
Which signal is passed well	low	high
Symbol	arrow facing in	arrow facing out

- I want to design a circuit that takes as an input a one-bit value and outputs the complement of that number.
 - Input = 0, Output = 1
 - Input = 1, Output = 0
- I want to avoid having weak outputs.

We will use a PMOS transistor to drive the output when the input is 0.

We will use a PMOS transistor to drive the output when the input is 0.

When the input is 0, the output is 1

When the input is 1, the output is not connected

We will use an NMOS transistor to drive the output when the input is 1.

We will use an NMOS transistor to drive the output when the input is 1.

When the input is 0, the output is not connected

When the input is 1, the output is 0

CMOS (Complementary Metal Oxide Semiconductor) Inverter

When the input is 0, power is connected to the output

CMOS Inverter

When the input is 0, power is connected to the output

CMOS Inverter

When the input is 1, ground is connected to the output

CMOS Inverter

When the input is 1, ground is connected to the output

n-channel Metal-Oxide-Semiconductor-Field-Effect Transistor (MOSFET)

L = length of the channel

Transistor Size

Transistor Size

Moore's Law

Moore's Law: The number of transistors on microchips doubles every two years Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Logic Gates

Inverter/Not Gate

Symbol

A ->O- Y

Truth Table

A	Y
0	
1	

Inverter/Not Gate

Symbol

Truth Table

A	Y
0	1
1	0

$$Y = \overline{A}$$

AND Gate

Symbol

Truth Table

A	В	Y
0	0	
0	1	
1	0	
1	1	

AND Gate

Symbol

Truth Table

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

$$Y = A \times B$$

or
 $Y = AB$

OR Gate

Symbol

Truth Table

A	В	Y
0	0	
0	1	
1	0	
1	1	

OR Gate

Symbol

Truth Table

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

$$Y = A + B$$

XOR Gate

Symbol

Truth Table

A	В	Y
0	0	
0	1	
1	0	
1	1	

XOR Gate

Symbol

Truth Table

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

$$Y = A \oplus B$$

NAND

Symbol

Truth Table

A	В	Y
0	0	
0	1	
1	0	
1	1	

NAND

Symbol

Truth Table

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

$$Y = \overline{A} \times \overline{B}$$
or
$$Y = \overline{AB}$$

NOR

Symbol

Truth Table

A	В	Y
0	0	
0	1	
1	0	
1	1	

NOR

Symbol

Truth Table

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

$$Y = \overline{A + B}$$

XNOR Gate

Symbol

Truth Table

A	В	Y
0	0	
0	1	
1	0	
1	1	

XNOR Gate

Symbol

Truth Table

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

$$Y = \overline{A \oplus B}$$