AND9835/D

AXM0F243 MCU Registers

ON Semiconductor®

www.onsemi.com

APPLICATION NOTE

Table of Contents

Register Mapping	20
Cortex [®] M0+ (CM0+) Registers	24
TCPWM – Individual Counter (CNT) Registers	91
CPU Sub System (CPUSS) Registers	. 183
Continuous Time Block Mini Registers	. 189
Deep Sleep Amplifier Bias (DSAB) Registers	. 213
GPIO – Common Registers	
GPIO – Port Specific Registers	. 219
High Speed IO Matrix (HSIOM) Registers	. 280
HSIOM – Port Specific Registers	
Low Power Comparators (LPCOMP) Registers	
Pass MMIO Registers	
Peripheral Interconnect (PERI) Registers	
Programmable IO (PRGIO) Registers	
CoreSight ROM Table Registers	
SAR Registers	
Serial Communication Block (SCB) Registers	
Supervisory Flash (SFLASH) registers	
SPC Interface (SPCIF) Registers	
System Resources Sub System Registers	
Timer, Counter, PWM (TCPWM) Registers	
PERI Trigger Group Control Registers	
Watch Crystal Oscillator (WCO) Registers	. 925

LIST OF REGISTERS

Cortex M0+ (CM0+) Registers CMOP DWT PID4 CMOP DWT PID1 CMOP DWT CID3 CMOP BP PID4 CMOP BP PID1 CMOP BP PID2 CMOP BP PID3 CMOP BP CID1 CMOP SYST CVR CMOP ISER CMOP ICER CMOP ISPR CM0P_IPR0 CM0P IPR1 CMOP IPR7 CMOP CPUID CMOP ICSR CMOP SCR CMOP CCR CMOP SHPR2 CMOP SHCSR

CM0P_SCS_PID4	
CM0P_SCS_PID0	69
CM0P_SCS_PID1	70
CM0P_SCS_PID2	71
CM0P_SCS_PID3	72
CM0P_SCS_CID0	73
CM0P_SCS_CID1	74
CM0P_SCS_CID2	75
CM0P_SCS_CID3	76
CM0P_ROM_SCS	77
CM0P_ROM_DWT	78
CM0P_ROM_BPU	79
CM0P_ROM_END	80
CM0P_ROM_CSMT	81
CM0P_ROM_PID4	82
CM0P_ROM_PID0	83
CM0P_ROM_PID1	84
CM0P_ROM_PID2	85
CM0P_ROM_PID3	86
CM0P_ROM_CID0	87
CM0P_ROM_CID1	88
CM0P_ROM_CID2	89
CM0P_ROM_CID3	90
TCPWM – Individual Counter (CNT) Registers	
TCPWM_CNT0_CTRL	93
TCPWM_CNT0_STATUS	96
TCPWM_CNT0_COUNTER	97
TCPWM_CNT0_CC	98
TCPWM_CNT0_CC_BUFF	99
TCPWM_CNT0_PERIOD	100
TCPWM_CNT0_PERIOD_BUFF	101
TCPWM_CNT0_TR_CTRL0	102
TCPWM_CNT0_TR_CTRL1	103
TCPWM_CNT0_TR_CTRL2	105
TCPWM_CNT0_INTR	107
TCPWM_CNT0_INTR_SET	108
TCPWM_CNT0_INTR_MASK	109
TCPWM_CNT0_INTR_MASKED	110
TCPWM_CNT1_CTRL	111
TCPWM_CNT1_STATUS	
TCPWM_CNT1_COUNTER	
TCPWM_CNT1_CC	
TCPWM_CNT1_CC_BUFF	117

TCPWM_CNT1_PERIOD_BUFF	119
TCPWM_CNT1_TR_CTRL0	120
TCPWM_CNT1_TR_CTRL1	121
TCPWM_CNT1_TR_CTRL2	
TCPWM_CNT1_INTR_SET	126
TCPWM_CNT1_INTR_MASK	127
TCPWM_CNT1_INTR_MASKED	128
TCPWM_CNT2_CTRL	129
TCPWM_CNT2_STATUS	132
TCPWM_CNT2_COUNTER	133
TCPWM_CNT2_CC	134
TCPWM_CNT2_CC_BUFF	135
TCPWM_CNT2_PERIOD	136
TCPWM_CNT2_PERIOD_BUFF	137
TCPWM_CNT2_TR_CTRL0	138
TCPWM_CNT2_TR_CTRL1	139
TCPWM_CNT2_TR_CTRL2	141
TCPWM_CNT2_INTR	143
TCPWM_CNT2_INTR_SET	144
TCPWM_CNT2_INTR_MASK	145
TCPWM_CNT2_INTR_MASKED	146
TCPWM_CNT3_CTRL	147
TCPWM_CNT3_STATUS	150
TCPWM_CNT3_COUNTER	151
TCPWM_CNT3_CC	
TCPWM_CNT3_CC_BUFF	153
TCPWM_CNT3_PERIOD	154
TCPWM_CNT3_PERIOD_BUFF	155
TCPWM_CNT3_TR_CTRL0	156
TCPWM_CNT3_TR_CTRL1	
TCPWM_CNT3_TR_CTRL2	159
TCPWM_CNT3_INTR	161
TCPWM_CNT3_INTR_SET	162
TCPWM_CNT3_INTR_MASK	163
TCPWM_CNT3_INTR_MASKED	164
TCPWM_CNT4_CTRL	165
TCPWM_CNT4_STATUS	168
TCPWM_CNT4_COUNTER	169
TCPWM_CNT4_CC	170
TCPWM_CNT4_CC_BUFF	171
TCPWM_CNT4_PERIOD	172
TCPWM_CNT4_PERIOD_BUFF	173
TCPWM_CNT4_TR_CTRL0	174
TCPWM CNT4 TR CTRL1	175

	TCPWM_CNT4_TR_CTRL2	177
	TCPWM_CNT4_INTR	179
	TCPWM_CNT4_INTR_SET	180
	TCPWM_CNT4_INTR_MASK	181
	TCPWM_CNT4_INTR_MASKED	182
CF	PU Sub System (CPUSS) Registers	
	CPUSS_SYSREQ	184
	CPUSS_SYSARG	186
	CPUSS_FLASH_CTL	187
	CPUSS_ROM_CTL	188
Co	ontinuous Time Block Mini Registers	
	CTBM0_CTB_CTRL	190
	CTBM0_OA_RES0_CTRL	191
	CTBM0_OA_RES1_CTRL	193
	CTBM0_COMP_STAT	195
	CTBM0_INTR	196
	CTBM0_INTR_SET	197
	CTBM0_INTR_MASK	198
	CTBM0_INTR_MASKED	199
	CTBM0_DFT_CTRL	200
	CTBM0_OA0_SW	201
	CTBM0_OA0_SW_CLEAR	202
	CTBM0_OA1_SW	203
	CTBM0_OA1_SW_CLEAR	204
	CTBM0_CTB_SW_HW_CTRL	205
	CTBM0_CTB_SW_STATUS	206
	CTBM0_OA0_OFFSET_TRIM	207
	CTBM0_OA0_SLOPE_OFFSET_TRIM	208
	CTBM0_OA0_COMP_TRIM	209
	CTBM0_OA1_OFFSET_TRIM	210
	CTBM0_OA1_SLOPE_OFFSET_TRIM	211
	CTBM0_OA1_COMP_TRIM	212
De	eep Sleep Amplifier Bias (DSAB) Registers	
	PASS_DSAB_DSAB_CTRL	214
	PASS_DSAB_DFT	216
GI	PIO – Common Registers	
	GPIO_INTR_CAUSE	218
GI	PIO – Port Specific Registers	
	GPIO_PRT0_DR	
	GPIO_PRT0_PS	
	GPIO_PRT0_PC	
	GPIO_PRT0_INTR_CFG	
	GPIO_PRT0_INTR	
	GPIO PRTO PC2	229

(GPIO_PRT0_DR_SET	230
	GPIO_PRT0_DR_CLR	231
(GPIO_PRT0_DR_INV	232
(GPIO_PRT1_DR	233
(GPIO_PRT1_PS	234
(GPIO_PRT1_PC	235
(GPIO_PRT1_INTR_CFG	237
(GPIO_PRT1_INTR	239
	GPIO_PRT1_PC2	241
(GPIO_PRT1_DR_SET	242
	GPIO_PRT1_DR_CLR	243
	GPIO_PRT1_DR_INV	244
	GPIO_PRT2_DR	245
	GPIO_PRT2_PS	246
	GPIO_PRT2_PC	247
(GPIO_PRT2_INTR_CFG	249
(GPIO_PRT2_INTR	251
	GPIO_PRT2_PC2	253
	GPIO_PRT2_DR_SET	254
	GPIO_PRT2_DR_CLR	255
	GPIO_PRT2_DR_INV	256
	GPIO_PRT3_DR	257
(GPIO_PRT3_PS	258
(GPIO_PRT3_PC	259
(GPIO_PRT3_INTR_CFG	261
(GPIO_PRT3_INTR	263
(GPIO_PRT3_PC2	265
(GPIO_PRT3_DR_SET	266
(GPIO_PRT3_DR_CLR	267
(GPIO_PRT3_DR_INV	268
(GPIO_PRT4_DR	269
(GPIO_PRT4_PS	270
	GPIO_PRT4_PC	271
	GPIO_PRT4_INTR_CFG	273
(GPIO_PRT4_INTR	275
(GPIO_PRT4_PC2	276
(GPIO_PRT4_DR_SET	277
	GPIO_PRT4_DR_CLR	278
(GPIO_PRT4_DR_INV	279
Hig	h Speed IO Matrix (HSIOM) Registers	
]	HSIOM_AMUX_SPLIT_CTL0	281
]	HSIOM_AMUX_SPLIT_CTL1	282

HSIOM – Port Specific Registers	
HSIOM_PORT_SEL0	284
HSIOM_PORT_SEL1	286
HSIOM_PORT_SEL2	288
HSIOM_PORT_SEL3	290
HSIOM_PORT_SEL4	292
Low Power Comparator (LPCOMP) Registers	
LPCOMP_ID	295
LPCOMP_CONFIG	296
LPCOMP_INTR	298
LPCOMP_INTR_SET	299
LPCOMP_INTR_MASK	
LPCOMP_INTR_MASKED	301
LPCOMP_TRIM1	302
LPCOMP_TRIM2	303
LPCOMP_TRIM3	304
LPCOMP_TRIM4	305
PASS MMIO Registers	
PASS_INTR_CAUSE	307
PASS_DFT_CTRL	308
PASS_PASS_CTRL	309
PASS_DSAB_TRIM	310
Peripheral Interconnect (PERI) Registers	
PERI_DIV_CMD	
PERI_PCLK_CTL0	314
PERI_PCLK_CTL1	315
PERI_PCLK_CTL2	316
PERI_PCLK_CTL3	
PERI_PCLK_CTL4	318
PERI_PCLK_CTL5	319
PERI_PCLK_CTL6	320
PERI_PCLK_CTL7	321
PERI_PCLK_CTL8	322
PERI_PCLK_CTL9	323
PERI_PCLK_CTL10	324
PERI_PCLK_CTL11	325
PERI_PCLK_CTL12	326
PERI_DIV_16_CTL0	327
PERI_DIV_16_CTL1	328
PERI_DIV_16_CTL2	329
PERI_DIV_16_CTL3	330
PERI_DIV_16_CTL4	331
PERI_DIV_16_CTL5	332
PERI_DIV_16_5_CTL0	333

P	ERI_DIV_16_5_CTL1	334
P	ERI_DIV_16_5_CTL2	335
P	ERI_TR_CTL	336
Prog	grammable IO (PRGIO) Registers	
P	RGIO_PRT0_CTL	339
P	RGIO_PRT0_SYNC_CTL	341
P	RGIO_PRT0_LUT_SEL0	342
P	RGIO_PRT0_LUT_SEL1	344
P	RGIO_PRT0_LUT_SEL2	346
P	RGIO_PRT0_LUT_SEL3	348
	RGIO_PRT0_LUT_SEL4	
P	RGIO_PRT0_LUT_SEL5	352
P	RGIO_PRT0_LUT_SEL6	354
P	RGIO_PRT0_LUT_SEL7	356
P	RGIO_PRT0_LUT_CTL0	358
P	RGIO_PRT0_LUT_CTL1	359
P	RGIO_PRT0_LUT_CTL2	360
P	RGIO_PRT0_LUT_CTL3	361
P	RGIO_PRT0_LUT_CTL4	362
P	RGIO_PRT0_LUT_CTL5	363
P	RGIO_PRT0_LUT_CTL6	364
P	RGIO_PRT0_LUT_CTL7	365
P	RGIO_PRT0_DU_SEL	366
P	RGIO_PRT0_DU_CTL	367
	RGIO_PRT0_DATA	
	RGIO_PRT1_CTL	
P	RGIO_PRT1_SYNC_CTL	371
P	RGIO_PRT1_LUT_SEL0	372
P	RGIO_PRT1_LUT_SEL1	374
P	RGIO_PRT1_LUT_SEL2	376
P	RGIO_PRT1_LUT_SEL3	378
P	RGIO_PRT1_LUT_SEL4	380
P	RGIO_PRT1_LUT_SEL5	382
P	RGIO_PRT1_LUT_SEL6	384
P	RGIO_PRT1_LUT_SEL7	386
P	RGIO_PRT1_LUT_CTL0	388
P	RGIO_PRT1_LUT_CTL1	389
P	RGIO_PRT1_LUT_CTL2	390
P	RGIO_PRT1_LUT_CTL3	391
P	RGIO_PRT1_LUT_CTL4	392
P	RGIO_PRT1_LUT_CTL5	393
	RGIO_PRT1_LUT_CTL6	
	RGIO_PRT1_LUT_CTL7	395
P	RGIO PRT1 DU SEL	396

PRGIO_PRT1_DU_CTL	397
PRGIO_PRT1_DATA	398
CoreSight ROM Table Registers	
ROMTABLE_ADDR	400
ROMTABLE_DID	401
ROMTABLE_PID4	402
ROMTABLE_PID5	403
ROMTABLE_PID6	404
ROMTABLE_PID7	405
ROMTABLE_PID0	406
ROMTABLE_PID1	407
ROMTABLE_PID2	408
ROMTABLE_PID3	409
ROMTABLE_CID0	410
ROMTABLE_CID1	411
ROMTABLE_CID2	412
ROMTABLE_CID3	413
SAR Registers	
SAR_CTRL	417
SAR_SAMPLE_CTRL	420
SAR_SAMPLE_TIME01	422
SAR_SAMPLE_TIME23	423
SAR_RANGE_THRES	424
SAR_RANGE_COND	425
SAR_CHAN_EN	426
SAR_START_CTRL	427
SAR_DFT_CTRL	428
SAR_CHAN_CONFIG0	429
SAR_CHAN_CONFIG1	431
SAR_CHAN_CONFIG2	433
SAR_CHAN_CONFIG3	435
SAR_CHAN_CONFIG4	437
SAR_CHAN_CONFIG5	439
SAR_CHAN_CONFIG6	441
SAR_CHAN_CONFIG7	443
SAR_CHAN_CONFIG8	445
SAR_CHAN_CONFIG9	447
SAR_CHAN_CONFIG10	449
SAR_CHAN_CONFIG11	451
SAR_CHAN_CONFIG12	
SAR_CHAN_CONFIG13	
SAR_CHAN_CONFIG14	
SAR_CHAN_CONFIG15	
SAR CHAN WORKO	461

SAR_CHAN_WORK1	462
SAR_CHAN_WORK2	463
SAR_CHAN_WORK3	464
SAR_CHAN_WORK4	
SAR_CHAN_WORK5	466
SAR_CHAN_WORK6	467
SAR_CHAN_WORK7	468
SAR_CHAN_WORK8	469
SAR_CHAN_WORK9	470
SAR_CHAN_WORK10	471
SAR_CHAN_WORK11	
SAR_CHAN_WORK12	473
SAR_CHAN_WORK13	474
SAR_CHAN_WORK14	475
SAR_CHAN_WORK15	476
SAR_CHAN_RESULT0	
SAR_CHAN_RESULT1	478
SAR_CHAN_RESULT2	
SAR_CHAN_RESULT3	480
SAR_CHAN_RESULT4	481
SAR_CHAN_RESULT5	482
SAR_CHAN_RESULT6	483
SAR_CHAN_RESULT7	484
SAR_CHAN_RESULT8	485
SAR_CHAN_RESULT9	
SAR_CHAN_RESULT10	487
SAR_CHAN_RESULT11	488
SAR_CHAN_RESULT12	489
SAR_CHAN_RESULT13	490
SAR_CHAN_RESULT14	491
SAR_CHAN_RESULT15	492
SAR_CHAN_WORK_VALID	493
SAR_CHAN_RESULT_VALID	494
SAR_STATUS	495
SAR_AVG_STAT	496
SAR_INTR	497
SAR_INTR_SET	499
SAR_INTR_MASK	500
SAR_INTR_MASKED	501
SAR_SATURATE_INTR	502
SAR_SATURATE_INTR_SET	503
SAR_SATURATE_INTR_MASK	504
SAR_SATURATE_INTR_MASKED	505
SAR_RANGE_INTR	506

	SAR_RANGE_INTR_SET	507
	SAR_RANGE_INTR_MASK	508
	SAR_RANGE_INTR_MASKED	509
	SAR_INTR_CAUSE	510
	SAR_INJ_CHAN_CONFIG	512
	SAR_INJ_RESULT	514
	SAR_MUX_SWITCH0	515
	SAR_MUX_SWITCH_CLEAR0	518
	SAR_MUX_SWITCH1	520
	SAR_MUX_SWITCH_CLEAR1	521
	SAR_MUX_SWITCH_HW_CTRL	522
	SAR_MUX_SWITCH_STATUS	524
	SAR_PUMP_CTRL	526
	SAR_ANA_TRIM	527
	SAR_WOUNDING	528
Se	erial communication Block (SCB) Registers	
	SCB0_CTRL	535
	SCB0_STATUS	
	SCB0_SPI_CTRL	540
	SCB0_SPI_STATUS	543
	SCB0_UART_CTRL	544
	SCB0_UART_TX_CTRL	545
	SCB0_UART_RX_CTRL	546
	SCB0_UART_RX_STATUS	548
	SCB0_UART_FLOW_CTRL	549
	SCB0_I2C_CTRL	550
	SCB0_I2C_STATUS	552
	SCB0_I2C_M_CMD	554
	SCB0_I2C_S_CMD	555
	SCB0_I2C_CFG	556
	SCB0_TX_CTRL	558
	SCB0_TX_FIFO_CTRL	559
	SCB0_TX_FIFO_STATUS	560
	SCB0_TX_FIFO_WR	561
	SCB0_RX_CTRL	562
	SCB0_RX_FIFO_CTRL	563
	SCB0_RX_FIFO_STATUS	564
	SCB0_RX_MATCH	565
	SCB0_RX_FIFO_RD	566
	SCB0_RX_FIFO_RD_SILENT	567
	SCB0_EZ_DATA0	568
	SCB0_EZ_DATA1	569
	SCB0_EZ_DATA2	570
	SCR0 F7 DATA3	571

SCB0_EZ_DATA4	572
SCB0_EZ_DATA5	573
SCB0_EZ_DATA6	574
SCB0_EZ_DATA7	575
SCB0_EZ_DATA8	576
SCB0_EZ_DATA9	577
SCB0_EZ_DATA10	578
SCB0_EZ_DATA11	579
SCB0_EZ_DATA12	580
SCB0_EZ_DATA13	581
SCB0_EZ_DATA14	582
SCB0_EZ_DATA15	583
SCB0_EZ_DATA16	584
SCB0_EZ_DATA17	585
SCB0_EZ_DATA18	586
SCB0_EZ_DATA19	587
SCB0_EZ_DATA20	588
SCB0_EZ_DATA21	589
SCB0_EZ_DATA22	590
SCB0_EZ_DATA23	591
SCB0_EZ_DATA24	592
SCB0_EZ_DATA25	593
SCB0_EZ_DATA26	594
SCB0_EZ_DATA27	595
SCB0_EZ_DATA28	596
SCB0_EZ_DATA29	597
SCB0_EZ_DATA30	598
SCB0_EZ_DATA31	599
SCB0_INTR_CAUSE	600
SCB0_INTR_I2C_EC	601
SCB0_INTR_I2C_EC_MASK	602
SCB0_INTR_I2C_EC_MASKED	603
SCB0_INTR_SPI_EC	604
SCB0_INTR_SPI_EC_MASK	605
SCB0_INTR_SPI_EC_MASKED	606
SCB0_INTR_M	607
SCB0_INTR_M_SET	608
SCB0_INTR_M_MASK	609
SCB0_INTR_M_MASKED	610
SCB0_INTR_S	611
SCB0_INTR_S_SET	613
SCB0_INTR_S_MASK	615
SCB0_INTR_S_MASKED	617
	610

SCB0_INTR_TX_SET	621
SCB0_INTR_TX_MASK	622
SCB0_INTR_TX_MASKED	623
SCB0_INTR_RX	624
SCB0_INTR_RX_SET	626
SCB0_INTR_RX_MASK	627
SCB0_INTR_RX_MASKED	628
SCB1_CTRL	629
SCB1_STATUS	633
SCB1_SPI_CTRL	634
SCB1_SPI_STATUS	637
SCB1_UART_CTRL	638
SCB1_UART_TX_CTRL	639
SCB1_UART_RX_CTRL	640
SCB1_UART_RX_STATUS	642
SCB1_UART_FLOW_CTRL	643
SCB1_I2C_CTRL	644
SCB1_I2C_STATUS	646
SCB1 I2C M CMD	
SCB1 I2C S CMD	649
SCB1 I2C CFG	650
SCB1_TX_CTRL	652
SCB1 TX FIFO CTRL	
SCB1_TX_FIFO_STATUS	654
SCB1_TX_FIFO_WR	
SCB1 RX CTRL	656
SCB1 RX FIFO CTRL	
SCB1_RX_FIFO_STATUS	
SCB1_RX_MATCH	
SCB1_RX_FIFO_RD	
SCB1_RX_FIFO_RD_SILENT	
SCB1 EZ DATA0	
SCB1 EZ DATA1	
SCB1 EZ DATA2	
SCB1_EZ_DATA3	
SCB1_EZ_DATA4	
SCB1 EZ DATA5	
SCB1_EZ_DATA6	
SCB1 EZ DATA7	
SCB1_EZ_DATA8	
SCB1 EZ DATA9	
SCB1 EZ DATA10	
SCB1 EZ DATA11	
CCD1 E7 DATA12	674

SCB1_EZ_DATA13	675
SCB1_EZ_DATA14	676
SCB1_EZ_DATA15	677
SCB1_EZ_DATA16	678
SCB1_EZ_DATA17	679
SCB1_EZ_DATA18	680
SCB1_EZ_DATA19	681
SCB1_EZ_DATA20	682
SCB1_EZ_DATA21	683
SCB1_EZ_DATA22	684
SCB1_EZ_DATA23	685
SCB1_EZ_DATA24	686
SCB1_EZ_DATA25	687
SCB1_EZ_DATA26	688
SCB1_EZ_DATA27	689
SCB1_EZ_DATA28	690
SCB1_EZ_DATA29	691
SCB1_EZ_DATA30	692
SCB1_EZ_DATA31	693
SCB1_INTR_CAUSE	694
SCB1_INTR_I2C_EC	695
SCB1_INTR_I2C_EC_MASK	696
SCB1_INTR_I2C_EC_MASKED	697
SCB1_INTR_SPI_EC	698
SCB1_INTR_SPI_EC_MASK	699
SCB1_INTR_SPI_EC_MASKED	700
SCB1_INTR_M	701
SCB1_INTR_M_SET	702
SCB1_INTR_M_MASK	703
SCB1_INTR_M_MASKED	704
SCB1_INTR_S	705
SCB1_INTR_S_SET	707
SCB1_INTR_S_MASK	709
SCB1_INTR_S_MASKED	711
SCB1_INTR_TX	713
SCB1_INTR_TX_SET	715
SCB1_INTR_TX_MASK	716
SCB1_INTR_TX_MASKED	717
SCB1_INTR_RX	718
SCB1_INTR_RX_SET	720
SCB1_INTR_RX_MASK	721
SCB1_INTR_RX_MASKED	722
SCB2_CTRL	723
SCB2 STATUS	727

SCB2_SPI_CTRL	728
SCB2_SPI_STATUS	731
SCB2_UART_CTRL	732
SCB2_UART_TX_CTRL	733
SCB2_UART_RX_CTRL	734
SCB2_UART_RX_STATUS	736
SCB2_UART_FLOW_CTRL	737
SCB2_I2C_CTRL	738
SCB2_I2C_STATUS	740
SCB2_I2C_M_CMD	742
SCB2_I2C_S_CMD	743
SCB2_I2C_CFG	744
SCB2_TX_CTRL	746
SCB2_TX_FIFO_CTRL	747
SCB2_TX_FIFO_STATUS	748
SCB2_TX_FIFO_WR	749
SCB2_RX_CTRL	750
SCB2_RX_FIFO_CTRL	751
SCB2_RX_FIFO_STATUS	752
SCB2_RX_MATCH	753
SCB2_RX_FIFO_RD	
SCB2_RX_FIFO_RD_SILENT	755
SCB2_EZ_DATA0	756
SCB2_EZ_DATA1	757
SCB2_EZ_DATA2	758
SCB2_EZ_DATA3	759
SCB2_EZ_DATA4	760
SCB2_EZ_DATA5	
SCB2_EZ_DATA6	762
SCB2_EZ_DATA7	763
SCB2_EZ_DATA8	764
SCB2_EZ_DATA9	765
SCB2_EZ_DATA10	766
SCB2_EZ_DATA11	767
SCB2_EZ_DATA12	768
SCB2_EZ_DATA13	769
SCB2_EZ_DATA14	770
SCB2_EZ_DATA15	771
SCB2_EZ_DATA16	772
SCB2_EZ_DATA17	773
SCB2_EZ_DATA18	774
SCB2_EZ_DATA19	775
SCB2_EZ_DATA20	776
SCR2_E7_DATA21	777

	SCB2_EZ_DATA22	778
	SCB2_EZ_DATA23	779
	SCB2_EZ_DATA24	780
	SCB2_EZ_DATA25	781
	SCB2_EZ_DATA26	782
	SCB2_EZ_DATA27	783
	SCB2_EZ_DATA28	784
	SCB2_EZ_DATA29	785
	SCB2_EZ_DATA30	786
	SCB2_EZ_DATA31	787
	SCB2_INTR_CAUSE	788
	SCB2_INTR_I2C_EC	789
	SCB2_INTR_I2C_EC_MASK	790
	SCB2_INTR_I2C_EC_MASKED	791
	SCB2_INTR_SPI_EC	792
	SCB2_INTR_SPI_EC_MASK	793
	SCB2_INTR_SPI_EC_MASKED	794
	SCB2_INTR_M	795
	SCB2_INTR_M_SET	796
	SCB2_INTR_M_MASK	797
	SCB2_INTR_M_MASKED	798
	SCB2_INTR_S	799
	SCB2_INTR_S_SET	801
	SCB2_INTR_S_MASK	803
	SCB2_INTR_S_MASKED	805
	SCB2_INTR_TX	807
	SCB2_INTR_TX_SET	809
	SCB2_INTR_TX_MASK	810
	SCB2_INTR_TX_MASKED	811
	SCB2_INTR_RX	812
	SCB2_INTR_RX_SET	814
	SCB2_INTR_RX_MASK	815
	SCB2_INTR_RX_MASKED	816
Sı	upervisory Flash (SFLASH) Registers	
	SFLASH_SILICON_ID	
	SFLASH_HIB_KEY_DELAY	
	SFLASH_DPSLP_KEY_DELAY	
	SFLASH_SWD_CONFIG	
	SFLASH_SWD_LISTEN	
	SFLASH_FLASH_START	
	SFLASH_CSDV2_CSD0_ADC_TRIM1	
	SFLASH_CSDV2_CSD0_ADC_TRIM2	
	SFLASH_SAR_TEMP_MULTIPLIER	
	SELASH SAR TEMP OFFSET	828

SFLASH_IMO_TCTRIM_LT1 830 SFLASH_IMO_TCTRIM_LT2 831 SFLASH_IMO_TCTRIM_LT3 832 SFLASH_IMO_TCTRIM_LT4 833 SFLASH_IMO_TCTRIM_LT5 834 SFLASH_IMO_TCTRIM_LT6 835 SFLASH_IMO_TCTRIM_LT7 836 SFLASH_IMO_TCTRIM_LT8 837 SFLASH_IMO_TCTRIM_LT9 838 SFLASH_IMO_TCTRIM_LT10 839 SFLASH_IMO_TCTRIM_LT11 840 SFLASH_IMO_TCTRIM_LT12 841 SFLASH_IMO_TCTRIM_LT13 842
SFLASH_IMO_TCTRIM_LT3 832 SFLASH_IMO_TCTRIM_LT4 833 SFLASH_IMO_TCTRIM_LT5 834 SFLASH_IMO_TCTRIM_LT6 835 SFLASH_IMO_TCTRIM_LT7 836 SFLASH_IMO_TCTRIM_LT8 837 SFLASH_IMO_TCTRIM_LT9 838 SFLASH_IMO_TCTRIM_LT10 839 SFLASH_IMO_TCTRIM_LT11 840 SFLASH_IMO_TCTRIM_LT12 841
SFLASH_IMO_TCTRIM_LT4 833 SFLASH_IMO_TCTRIM_LT5 834 SFLASH_IMO_TCTRIM_LT6 835 SFLASH_IMO_TCTRIM_LT7 836 SFLASH_IMO_TCTRIM_LT8 837 SFLASH_IMO_TCTRIM_LT9 838 SFLASH_IMO_TCTRIM_LT10 839 SFLASH_IMO_TCTRIM_LT11 840 SFLASH_IMO_TCTRIM_LT12 841
SFLASH_IMO_TCTRIM_LT5 834 SFLASH_IMO_TCTRIM_LT6 835 SFLASH_IMO_TCTRIM_LT7 836 SFLASH_IMO_TCTRIM_LT8 837 SFLASH_IMO_TCTRIM_LT9 838 SFLASH_IMO_TCTRIM_LT10 839 SFLASH_IMO_TCTRIM_LT11 840 SFLASH_IMO_TCTRIM_LT12 841
SFLASH_IMO_TCTRIM_LT6 835 SFLASH_IMO_TCTRIM_LT7 836 SFLASH_IMO_TCTRIM_LT8 837 SFLASH_IMO_TCTRIM_LT9 838 SFLASH_IMO_TCTRIM_LT10 839 SFLASH_IMO_TCTRIM_LT11 840 SFLASH_IMO_TCTRIM_LT12 841
SFLASH_IMO_TCTRIM_LT7 836 SFLASH_IMO_TCTRIM_LT8 837 SFLASH_IMO_TCTRIM_LT9 838 SFLASH_IMO_TCTRIM_LT10 839 SFLASH_IMO_TCTRIM_LT11 840 SFLASH_IMO_TCTRIM_LT12 841
SFLASH_IMO_TCTRIM_LT8 837 SFLASH_IMO_TCTRIM_LT9 838 SFLASH_IMO_TCTRIM_LT10 839 SFLASH_IMO_TCTRIM_LT11 840 SFLASH_IMO_TCTRIM_LT12 841
SFLASH_IMO_TCTRIM_LT9 838 SFLASH_IMO_TCTRIM_LT10 839 SFLASH_IMO_TCTRIM_LT11 840 SFLASH_IMO_TCTRIM_LT12 841
SFLASH_IMO_TCTRIM_LT10 839 SFLASH_IMO_TCTRIM_LT11 840 SFLASH_IMO_TCTRIM_LT12 841
SFLASH_IMO_TCTRIM_LT11 840 SFLASH_IMO_TCTRIM_LT12 841
SFLASH_IMO_TCTRIM_LT12
SELASH IMO TCTRIM LT13
SI LASII_INO_ICININ_LIIS042
SFLASH_IMO_TCTRIM_LT14
SFLASH_IMO_TCTRIM_LT15
SFLASH_IMO_TCTRIM_LT16
SFLASH_IMO_TCTRIM_LT17 846
SFLASH_IMO_TCTRIM_LT18
SFLASH_IMO_TCTRIM_LT19
SFLASH_IMO_TCTRIM_LT20
SFLASH_IMO_TCTRIM_LT21
SFLASH_IMO_TCTRIM_LT22
SFLASH_IMO_TCTRIM_LT23
SFLASH_IMO_TCTRIM_LT24
SFLASH_IMO_TRIM_LT0
SFLASH_IMO_TRIM_LT1
SFLASH_IMO_TRIM_LT2
SFLASH_IMO_TRIM_LT3
SFLASH_IMO_TRIM_LT4
SFLASH_IMO_TRIM_LT5
SFLASH_IMO_TRIM_LT6
SFLASH_IMO_TRIM_LT7
SFLASH_IMO_TRIM_LT8
SFLASH_IMO_TRIM_LT9
SFLASH_IMO_TRIM_LT10
SFLASH_IMO_TRIM_LT11
SFLASH_IMO_TRIM_LT12
SFLASH_IMO_TRIM_LT13
SFLASH_IMO_TRIM_LT14
SFLASH_IMO_TRIM_LT15
SFLASH_IMO_TRIM_LT16
SFLASH_IMO_TRIM_LT17
SFLASH IMO TRIM LT18

SFLASH_IMO_TRIM_LT19	873
SFLASH_IMO_TRIM_LT20	874
SFLASH_IMO_TRIM_LT21	875
SFLASH_IMO_TRIM_LT22	876
SFLASH_IMO_TRIM_LT23	877
SFLASH_IMO_TRIM_LT24	878
SPC Interface (SPCIF) Registers	
SPCIF_GEOMETRY	880
SPCIF_INTR	882
SPCIF_INTR_SET	883
SPCIF_INTR_MASK	884
SPCIF_INTR_MASKED	885
System Resources Sub System Registers	
PWR_CONTROL	887
PWR_KEY_DELAY	
PWR_DDFT_SELECT	890
TST_MODE	892
CLK_SELECT	
CLK_ILO_CONFIG	895
CLK_IMO_CONFIG	896
CLK_DFT_SELECT	897
WDT_DISABLE_KEY	
WDT_COUNTER	901
WDT_MATCH	902
SRSS_INTR	903
SRSS_INTR_SET	904
SRSS_INTR_MASK	905
RES_CAUSE	906
CLK_IMO_SELECT	907
CLK_IMO_TRIM1	908
CLK_IMO_TRIM2	909
PWR_PWRSYS_TRIM1	910
CLK_IMO_TRIM3	911
Timer, Counter, PWM (TCPWM) Registers	
TCPWM_CTRL	
TCPWM_CMD	914
TCPWM_INTR_CAUSE	915
PERI Trigger Group Control Registers	
PERI_TR_GROUP0_TR_OUT_CTL0	
PERI_TR_GROUP0_TR_OUT_CTL1	
PERI_TR_GROUP0_TR_OUT_CTL2	
PERI_TR_GROUP0_TR_OUT_CTL3	
PERI_TR_GROUP0_TR_OUT_CTL4	
PERL TR GROUPO TR OUT CTL5	922

PERI_TR_GROUP0_TR_OUT_CTL6	923
PERI_TR_GROUP1_TR_OUT_CTL	924
WCO_CONFIG	926
WCO_STATUS	928
WCO_DPLL	929
WCO_WDT_CTRLOW	930
WCO_WDT_CTRHIGH	931
WCO_WDT_MATCH	
WCO_WDT_CONFIG	
WCO_WDT_CONTROL	935
WCO_WDT_CLKEN	937
WCO TRIM	938

REGISTER MAPPING

The Register Mapping section discusses the registers and lists all the registers in mapping tables, in address order. For Architecture details, refer to AXM0F243 MCU programming manual.

Register General Conventions

The register conventions specific to this section and the Register Reference chapter are listed in this table.

GENERIC STRADDLE TABLE

Convention	Example	Description
'x' in a register name	ACBxxCR1	Multiple instances/address ranges of the same register
R	R: 00	Read register or bit(s)
W	W: 00	Write register or bit(s)
WOC	WOC: 0	Write one to clear
WZC	WZC: 0	Write zero to clear
RC	RC: 0	Read to clear
WC	WC: 0	Write to clear
NA	NA: 000	Reserved
U	R: U	Undefined
00	RW: 00	Reset value is 0x00
XX	RW: XX	Register is not reset

Acronyms

This table lists the acronyms used in this document

Table 1. ACRONYMS

Symbol	Unit of Measure
ABUS	analog output bus
AC	alternating current
ADC	analog-to-digital converter
AHB	AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM [®] data transfer bus
API	application programming interface
APOR	analog power-on reset
BC	broadcast clock
ВОМ	bill of materials
BR	bit rate
BRA	bus request acknowledge
BRQ	bus request
CAN	controller area network
CI	carry in
CMP	compare

Table 1. ACRONYMS (continued)

Symbol	Unit of Measure
CO	carry out
CPU	central processing unit
CRC	cyclic redundancy check
CSD	CapSense sigma delta
СТ	continuous time
DAC	digital-to-analog converter
DC	direct current
DI	digital or data input
DMA	direct memory access
DNL	differential nonlinearity
DO	digital or data output
DSI	digital signal interface
DSM	deep-sleep mode
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read only memory
EMIF	external memory interface
FB	feedback
FIFO	first in first out
FSR	full scale range
GPIO	general purpose I/O
HCI	host-controller interface
HFCLK	high-frequency clock
I ² C	inter-integrated circuit
IDE	integrated development environment
ILO	internal low-speed oscillator
IMO	internal main oscillator
INL	integral nonlinearity
I/O	input/output
IOR	I/O read
IOW	I/O write
IRES	initial power on reset
IRA	interrupt request acknowledge
IRQ	interrupt request
ISR	interrupt service routine
IVR	interrupt vector read
L2CAP	logical link control and adaptation protocol
LRb	last received bit

Table 1. ACRONYMS (continued)

Symbol	Unit of Measure
LRB	last received byte
LSb	least significant bit
LSB	least significant byte
LUT	lookup table
MISO	master-in-slave-out
MMIO	memory mapped input/output
MOSI	master-out-slave-in
MSb	most significant bit
MSB	most significant byte
PC	program counter
PCH	program counter high
PCL	program counter low
PD	power down
PGA	programmable gain amplifier
PM	power management
POR	power-on reset
PPOR	precision power-on reset
PRS	pseudo random sequence
PSRR	power supply rejection ratio
PSSDC	power system sleep duty cycle
PWM	pulse width modulator
RAM	random-access memory
RETI	return from interrupt
RF	radio frequency
ROM	read only memory
RW	read/write
SAR	successive approximation register
SC	switched capacitor
SCB	serial communication block
SIE	serial interface engine
SIO	special I/O
SE0	single-ended zero
SNR	signal-to-noise ratio
SOF	start of frame
SOI	start of instruction
SP	stack pointer
SPD	sequential phase detector

Table 1. ACRONYMS (continued)

Symbol	Unit of Measure
SPI	serial peripheral interconnect
SPIM	serial peripheral interconnect master
SPIS	serial peripheral interconnect slave
SRAM	static random-access memory
SROM	supervisory read only memory
SSADC	single slope ADC
SSC	supervisory system call
SYSCLK	system clock
SWD	single wire debug
TC	terminal count
TD	transaction descriptors
UART	universal asynchronous receiver/transmitter
UDB	universal digital block
USB	universal serial bus
USBIO	USB I/O
WCO	watch crystal oscillator
WDT	watchdog timer
WDR	watchdog reset
XRES	external reset
XRES_N	external reset, active low

CORTEX M0+ (CM0+) REGISTERS

This section discusses the CM0+ registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 2. REGISTER DETAILS

Register Name	Address
CM0P_DWT_PID4	0xE0001FD0
CM0P_DWT_PID0	0xE0001FE0
CM0P_DWT_PID1	0xE0001FE4
CM0P_DWT_PID2	0xE0001FE8
CM0P_DWT_PID3	0xE0001FEC
CM0P_DWT_CID0	0xE0001FF0
CM0P_DWT_CID1	0xE0001FF4
CM0P_DWT_CID2	0xE0001FF8
CM0P_DWT_CID3	0xE0001FFC
CM0P_BP_PID4	0xE0002FD0
CM0P_BP_PID0	0xE0002FE0
CM0P_BP_PID1	0xE0002FE4
CM0P_BP_PID2	0xE0002FE8
CM0P_BP_PID3	0xE0002FEC
CM0P_BP_CID0	0xE0002FF0
CM0P_BP_CID1	0xE0002FF4
CM0P_BP_CID2	0xE0002FF8
CM0P_BP_CID3	0xE0002FFC
CM0P_SYST_CSR	0xE000E010
CM0P_SYST_RVR	0xE000E014
CM0P_SYST_CVR	0xE000E018
CMOP_SYST_CALIB	0xE000E01C
CM0P_ISER	0xE000E100
CM0P_ICER	0xE000E180
CM0P_ISPR	0xE000E200
CM0P_ICPR	0xE000E280
CM0P_IPR0	0xE000E400
CM0P_IPR1	0xE000E404
CM0P_IPR2	0xE000E408
CM0P_IPR3	0xE000E40C
CM0P_IPR4	0xE000E410
CM0P_IPR5	0xE000E414
CM0P_IPR6	0xE000E418
CM0P_IPR7	0xE000E41C
CM0P_CPUID	0xE000ED00
CM0P_ICSR	0xE000ED04
CM0P_AIRCR	0xE000ED0C
CM0P_SCR	0xE000ED10

Table 2. REGISTER DETAILS (continued)

Register Name	Address
CM0P_CCR	0xE000ED14
CM0P_SHPR2	0xE000ED1C
CM0P_SHPR3	0xE000ED20
CM0P_SHCSR	0xE000ED24
CM0P_SCS_PID4	0xE000EFD0
CM0P_SCS_PID0	0xE000EFE0
CM0P_SCS_PID1	0xE000EFE4
CM0P_SCS_PID2	0xE000EFE8
CM0P_SCS_PID3	0xE000EFEC
CM0P_SCS_CID0	0xE000EFF0
CM0P_SCS_CID1	0xE000EFF4
CM0P_SCS_CID2	0xE000EFF8
CM0P_SCS_CID3	0xE000EFFC
CM0P_ROM_SCS	0xE00FF000
CM0P_ROM_DWT	0xE00FF004
CM0P_ROM_BPU	0xE00FF008
CM0P_ROM_END	0xE00FF00C
CM0P_ROM_CSMT	0xE00FFFCC
CM0P_ROM_PID4	0xE00FFFD0
CM0P_ROM_PID0	0xE00FFFE0
CM0P_ROM_PID1	0xE00FFFE4
CM0P_ROM_PID2	0xE00FFFE8
CM0P_ROM_PID3	0xE00FFFEC
CM0P_ROM_CID0	0xE00FFFF0
CM0P_ROM_CID1	0xE00FFFF4
CM0P_ROM_CID2	0xE00FFFF8
CM0P_ROM_CID3	0xE00FFFFC

Watchpoint Unit CoreSight ROM Table Peripheral ID #4 Address: 0xE0001FD0

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		R									
HW Access		None									
Name				VALU	E [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access				No	one						
Name				VALUE	E [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				F	3						
HW Access				No	one						
Name				VALUE	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access				No	one						
Name				VALUE	[31:24]						

Bits Description Name 31:0 VALUE Peripheral ID #4 Default Value: 4

Watchpoint Unit CoreSight ROM Table Peripheral ID #0 Address: 0xE0001FE0

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access					R						
HW Access				N	one						
Name				VALU	JE [7:0]						
	1	1		1	1	1	1	1			
Bits	15	14	13	12	11	10	9	8			
SW Access		Ř									
HW Access				N	one						
Name				VALU	E [15:8]						
	1										
Bits	23	22	21	20	19	18	17	16			
SW Access					R						
HW Access				N	one						
Name				VALUE	E [23:16]						
	1	1		1	1	1	1	1			
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access				N	one						
Name				VALUE	E [31:24]						

Bits Description Name Peripheral ID #0 31:0 VALUE

Watchpoint Unit CoreSight ROM Table Peripheral ID #1 Address: 0xE0001FE4

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		Ř										
HW Access				N	one							
Name		VALUE [7:0]										
			,	1	1		_	•				
Bits	15	14	13	12	11	10	9	8				
SW Access					R							
HW Access		None										
Name				VALU	E [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access					R							
HW Access				N	one							
Name				VALUE	E [23:16]							
Bits	31	30	29	28	27	26	25	24				
	- 01											
SW Access		R										
HW Access				No.	one							
Name		•		VALUE	E [31:24]							

Bits Description Name 31:0 VALUE Peripheral ID #1

Watchpoint Unit CoreSight ROM Table Peripheral ID #2 Address: 0xE0001FE8

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access			•		R							
HW Access		None										
Name				VALU	IE [7:0]							
						_	_					
Bits	15	5 14 13 12 11 10 9 8										
SW Access		R										
HW Access		None										
Name				VALUI	E [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access			•		R							
HW Access				No	one							
Name				VALUE	[23:16]							
							_	•				
Bits	31	30	29	28	27	26	25	24				
SW Access		R										
HW Access				No	one							
Name				VALUE	[31:24]							

Bits Description Name 31:0 VALUE Peripheral ID #2 Default Value: 11

Watchpoint Unit CoreSight ROM Table Peripheral ID #3 Address: 0xE0001FEC

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				F	3						
HW Access				No	ne						
Name				VALUI	E [7:0]						
Bits	15	15 14 13 12 11 10 9 8									
SW Access		R									
HW Access				No	ne						
Name				VALUE	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				F	3						
HW Access				No	ne						
Name				VALUE	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access				No	ne						
Name				VALUE	[31:24]						

Bits Description Name 31:0 VALUE Peripheral ID #3 Default Value: 0

Watchpoint Unit CoreSight ROM Table Component ID #0 Address: 0xE0001FF0

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		R										
HW Access		None										
Name		VALUE [7:0]										
Bits	15	14	13	12	11	10	9	8				
SW Access		R										
HW Access				No	one							
Name				VALUE	E [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				ı	7							
HW Access				No	one							
Name				VALUE	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access		R										
HW Access				No	one							
Name				VALUE	[31:24]							

Bits Description Name Component ID #0 31:0 VALUE

Watchpoint Unit CoreSight ROM Table Component ID #1 Address: 0xE0001FF4

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access					R						
HW Access				N	one						
Name				VALU	JE [7:0]						
	1	1		1	1	1	1	1			
Bits	15	14	13	12	11	10	9	8			
SW Access		Ř									
HW Access				N	one						
Name				VALU	E [15:8]						
	1										
Bits	23	22	21	20	19	18	17	16			
SW Access					R						
HW Access				N	one						
Name				VALUE	E [23:16]						
	1	1		1	1	1	1	1			
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access				N	one						
Name				VALUE	E [31:24]						

Bits Description Name 31:0 VALUE Component ID #1

Watchpoint Unit CoreSight ROM Table Component ID #2 Address: 0xE0001FF8

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access			•		R							
HW Access		None										
Name				VALU	IE [7:0]							
						_	_					
Bits	15	5 14 13 12 11 10 9 8										
SW Access		R										
HW Access		None										
Name				VALUI	E [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access			•		R							
HW Access				No	one							
Name				VALUE	[23:16]							
							_	•				
Bits	31	30	29	28	27	26	25	24				
SW Access		R										
HW Access				No	one							
Name				VALUE	[31:24]							

Bits Description Name Component ID #2 31:0 VALUE

CMOP_DWT_CID3

Watchpoint Unit CoreSight ROM Table Component ID #3 Address: 0xE0001FFC

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access			•		R							
HW Access		None										
Name				VALU	IE [7:0]							
						_	_					
Bits	15	5 14 13 12 11 10 9 8										
SW Access		R										
HW Access		None										
Name				VALUI	E [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access			•		R							
HW Access				No	one							
Name				VALUE	[23:16]							
							_	•				
Bits	31	30	29	28	27	26	25	24				
SW Access		R										
HW Access				No	one							
Name				VALUE	[31:24]							

Bits Description Name Component ID #3 31:0 VALUE

CM0P_BP_PID4

Breakpoint Unit CoreSight ROM Table Peripheral ID #4 Address: 0xE0002FD0

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access			•		R							
HW Access		None										
Name				VALU	IE [7:0]							
						_	_					
Bits	15	5 14 13 12 11 10 9 8										
SW Access		R										
HW Access		None										
Name				VALUI	E [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access			•		R							
HW Access				No	one							
Name				VALUE	[23:16]							
							_	•				
Bits	31	30	29	28	27	26	25	24				
SW Access		R										
HW Access				No	one							
Name				VALUE	[31:24]							

Bits Description Name 31:0 VALUE Peripheral ID #4

CM0P_BP_PID0

Breakpoint Unit CoreSight ROM Table Peripheral ID #0 Address: 0xE0002FE0

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access					R						
HW Access				N	one						
Name				VALU	JE [7:0]						
	1	1		1	1	1	1	1			
Bits	15	14	13	12	11	10	9	8			
SW Access		Ř									
HW Access				N	one						
Name				VALU	E [15:8]						
	1										
Bits	23	22	21	20	19	18	17	16			
SW Access					R						
HW Access				N	one						
Name				VALUE	E [23:16]						
	1	1		1	1	1	1	1			
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access				N	one						
Name				VALUE	E [31:24]						

Bits Description Name 31:0 VALUE Peripheral ID #0

Breakpoint Unit CoreSight ROM Table Peripheral ID #1 Address: 0xE0002FE4

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access				F	3							
HW Access		None										
Name		VALUE [7:0]										
Bits	15	15 14 13 12 11 10 9 8										
SW Access		R										
HW Access				No	ne							
Name				VALUE	[15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				F	3							
HW Access				No	ne							
Name				VALUE	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access		R										
HW Access		None										
Name				VALUE	[31:24]							

Bits Description Name 31:0 VALUE Peripheral ID #1

Breakpoint Unit CoreSight ROM Table Peripheral ID #2 Address: 0xE0002FE8

Retention: Retained

Bits	7	6	5	4	3	2	1	0					
SW Access		R											
HW Access		None											
Name		VALUE [7:0]											
Bits	15	15 14 13 12 11 10 9 8											
SW Access		R											
HW Access				N	one								
Name				VALU	E [15:8]								
D'A-	T 00		T 04	1 00	T 40	1 40	1-1-	10					
Bits	23	22	21	20	19	18	17	16					
SW Access					R								
HW Access				N	one								
Name				VALUE	E [23:16]								
Bits	31	30	29	28	27	26	25	24					
SW Access	"	R											
HW Access		None											
Name				VALUE	E [31:24]								

Bits Description Name 31:0 VALUE Peripheral ID #2 Default Value: 11

Breakpoint Unit CoreSight ROM Table Peripheral ID #3 Address: 0xE0002FEC

Retention: Retained

Bits	7	6	5	4	3	2	1	0					
SW Access		R											
HW Access		None											
Name		VALUE [7:0]											
Bits	15	14	13	12	11	10	9	8					
SW Access		R											
HW Access		None											
Name		VALUE [15:8]											
Bits	23	22	21	20	19	18	17	16					
SW Access			•		R								
HW Access				No	one								
Name				VALUE	[23:16]								
							_	•					
Bits	31	30	29	28	27	26	25	24					
SW Access		R											
HW Access		None											
Name				VALUE	[31:24]								

Bits Description Name 31:0 VALUE Peripheral ID #3 Default Value: 0

Breakpoint Unit CoreSight ROM Table Component ID #0 Address: 0xE0002FF0

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		R										
HW Access		None										
Name				VALU	E [7:0]							
Bits	15	5 14 13 12 11 10 9 8										
SW Access		R										
HW Access		None										
Name		VALUE [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				F	3							
HW Access				No	ne							
Name				VALUE	[23:16]							
Bits	31	31 30 29 28 27 26 25 24										
SW Access		R										
HW Access		None										
Name				VALUE	[31:24]							

Bits Name 31:0 VALUE

Description Component ID #0 Default Value: 13

Breakpoint Unit CoreSight ROM Table Component ID #1 Address: 0xE0002FF4

Retention: Retained

Bits	7	6	5	4	3	2	1	0					
SW Access		R											
HW Access		None											
Name		VALUE [7:0]											
	1												
Bits	15	14	13	12	11	10	9	8					
SW Access		R											
HW Access				N	one								
Name				VALU	E [15:8]								
	1												
Bits	23	22	21	20	19	18	17	16					
SW Access					R								
HW Access				N	one								
Name				VALUE	E [23:16]								
	1	1		1	1	1	1	1					
Bits	31	30	29	28	27	26	25	24					
SW Access		R											
HW Access		None											
Name				VALUE	E [31:24]								

Description Bits Name 31:0 VALUE Component ID #1

Breakpoint Unit CoreSight ROM Table Component ID #2 Address: 0xE0002FF8

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access				F	3							
HW Access		None										
Name		VALUE [7:0]										
Bits	15	15 14 13 12 11 10 9 8										
SW Access		R										
HW Access				No	ne							
Name				VALUE	[15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				F	3							
HW Access				No	ne							
Name				VALUE	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access		R										
HW Access		None										
Name				VALUE	[31:24]							

Bits Name 31:0 VALUE Description Component ID #2 Default Value: 5

Breakpoint Unit CoreSight ROM Table Component ID #3 Address: 0xE0002FFC

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		R										
HW Access		None										
Name		VALUE [7:0]										
	1											
Bits	15	14 13 12 11 10 9 8										
SW Access		R										
HW Access				N	one							
Name				VALU	E [15:8]							
	_	r		1	1		_					
Bits	23	22	21	20	19	18	17	16				
SW Access					R							
HW Access				N	one							
Name				VALUE	E [23:16]							
	_	T	T	1	1		1					
Bits	31	31 30 29 28 27 26 25 24										
SW Access		R										
HW Access		None										
Name				VALUE	E [31:24]							

Bits Description Name Component ID #3 31:0 VALUE

CM0P_SYST_CSR

SysTick Control & Status Address: 0xE000E010 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			None			RW	RW	RW			
HW Access			None			R	R	R			
Name			None [7:3]			CLK- SOURCE	TICKINT	ENABLE			
	1		T		ı	1	T	I			
Bits	15	14	13	12	11	10	9	8			
SW Access				No	one						
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access			l	None	I.	L	l	R			
HW Access				None				RW			
Name				None [23:17]				COUNT- FLAG			
Bits	31	1 30 29 28 27 26 25 2									
SW Access	31				one						
HW Access		None									
		None [31:24]									
Name				None	[31:24]						

Bits	Name	Description
16	COUNTFLAG	Indicates whether the counter has counted to "0" since the last read of this register:
		'0': counter has not counted to "0".
		'1': counter has counted to "0".
		COUNTFLAG is set to '1' by a count transition from "1" to "0".
		COUNTFLAG is cleared to '0' by a read of this register, and by any write to the SYST_CVR register.
		Default Value: 0
2	CLKSOURCE	Indicates the SysTick counter clock source:
		'0': SysTick uses the low frequency clock "clk_If". For this mode to function, "clk_If" should be less than half the frequency of "clk_sys". Note that "clk_If" is generated by a low accuracy ILO (Internal Low power Oscillator), with a target frequency of 32.768 kHz (frequency can be as low as 15 kHz and as high as 60 kHz).
		'1': SysTick uses the system/processor clock "clk_sys".
		Default Value: 0
1	TICKINT	Indicates whether counting to "0" causes the status of the SysTick exception to change to pending: '0': count to "0" does not affect the SysTick exception status.
		'1': count to "0" changes the SysTick exception status to pending.
		Changing the value of the counter to "0" by writing zero to the SYST_CVR register to "0" never changes the status of the SysTick exception.
		Default Value: 0
0	ENABLE	Indicates the enabled status of the SysTick counter:
		'0': counter is disabled.
		'1': counter is operating. Default Value: 0

$CMOP_SYST_RVR$

SysTick Reload Value Address: 0xE000E014 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access		R										
Name		RELOAD [7:0]										
Bits	15	5 14 13 12 11 10 9 8										
SW Access				R	W							
HW Access		R										
Name				RELOA	D [15:8]							
							_					
Bits	23	22	21	20	19	18	17	16				
SW Access				R	W							
HW Access				ŀ	R							
Name				RELOAI	D [23:16]							
			_	_								
Bits	31	31 30 29 28 27 26 25 24										
SW Access		None										
HW Access		None										
Name				None	[31:24]							

Bits Name Description

23:0 RELOAD The value to load into the SYST_CVR register when the counter reaches 0.

$CMOP_SYST_CVR$

SysTick Current Value Address: 0xE000E018 Retention: Retained

Bits	7	6	5	4	3	2	1	0					
SW Access		RW											
HW Access		R											
Name		CURRENT [7:0]											
Bits	15	15 14 13 12 11 10 9 8											
SW Access		RW											
HW Access		R											
Name				CURRE	NT [15:8]								
	1		1	1	1		1	1					
Bits	23	22	21	20	19	18	17	16					
SW Access				F	RW								
HW Access					R								
Name				CURRE	NT [23:16]								
Bits	31	30	29	28	27	26	25	24					
SW Access		None											
HW Access		None											
Name				None	[31:24]								

Bits Name Description

23:0 CURRENT Current counter value.

This is the value of the counter at the time it is sampled.

CMOP_SYST_CALIB

SysTick Calibration Value Address: 0xE000E01C Retention: Retained

Bits	7	6	5	4	3	2	1	0					
SW Access		R											
HW Access		RW											
Name		TENMS [7:0]											
Bits	15	15 14 13 12 11 10 9 8											
SW Access													
HW Access				R	W								
Name				TENM	S [15:8]								
Bits	23	22	21	20	19	18	17	16					
SW Access			<u> </u>	ı	R	<u> </u>	I	1					
HW Access				R	W								
Name				TENMS	S [23:16]								
Bits	31	31 30 29 28 27 26 25 24											
SW Access	R	R		1	No	one	I	L					
HW Access	None	RW			No	one							
Name	NOREF	SKEW			None	[29:24]							

Bits	Name	Description
31	NOREF	Indicates whether a implementation defined reference clock is provided: '0': the reference clock is provided. '1': the reference clock is not provided.
		When this bit is '1', the SYST_CSR.CLKSOURCE is forced to '1' and cannot be cleared to '0'. Default Value: 0
30	SKEW	Indicates whether the 10 ms calibration value is exact: '0': 10 ms calibration value is exact. '1': 10 ms calibration value is inexact, because of the clock frequency. Default Value: X
23:0	TENMS	Optionally, holds a reload value to be used for 10 ms (100 Hz) timing, subject to system clock skew errors. If this field is "0", the calibration value is not known. Default Value: X

CMOP_ISER

Interrupt Set-Enable Register Address: 0xE000E100 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	RW	/1S	•		
HW Access				F	7			
Name				SETEN	IA [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				RW	/1S			
HW Access		R						
Name				SETEN	A [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				RW	/1S			
HW Access				F	7			
Name		SETENA [23:16]						
Bits	31	30	29	28	27	26	25	24
SW Access		•	•	RW	/1S	•	•	•

Bits	Name	Description
Dita	Hairie	Description

HW Access

Name

Enables, or reads the enabled state of one or more interrupts. Each bit corresponds to the same numbered interrupt. 31:0 **SETENA**

R

SETENA [31:24]

$CM0P_ICER$

Interrupt Clear Enable Register Address: 0xE000E180

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW1C						
HW Access				F	3			
Name				CLREN	IA [7:0]			
	_							
Bits	15	14	13	12	11	10	9	8
SW Access				RW	/1C			
HW Access		R						
Name		CLRENA [15:8]						
	_							
Bits	23	22	21	20	19	18	17	16
SW Access				RW	/1C			
HW Access				F	3			
Name				CLRENA	A [23:16]			
	_							
Bits	31	30	29	28	27	26	25	24
SW Access				RW	/1C			
HW Access		R						
Name				CLRENA	A [31:24]			

Bits Name Description

31:0

Disables, or reads the enabled state of one or more interrupts. Each bit corresponds to the same numbered interrupt. CLRENA

$CMOP_ISPR$

Interrupt Set-Pending Register Address: 0xE000E200

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW1S						
HW Access				F	3			
Name				SETPE	ND [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				RW	/1S			
HW Access		R						
Name		SETPEND [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				RW	/1S			
HW Access				F	3			
Name				SETPEN	D [23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				RW	/1S			
HW Access		R						
Name				SETPEN	D [31:24]			

Bits Name Description

31:0

Changes the state of one or more interrupts to pending. Each bit corresponds to the same numbered interrupt. SETPEND

Interrupt Clear-Pending Register Address: 0xE000E280

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW1C						
HW Access					R			
Name				CLRPE	END [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access	1.5	RW1C						
HW Access		R						
Name		CLRPEND [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				R\	N1C			
HW Access					R			
Name				CLRPE	ND [23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	J	1			N1C			
HW Access		R						
Name	CLRPEND [31:24]							

Bits Name Description

31:0

Changes the state of one or more interrupts to not pending. Each bit corresponds to the same numbered interrupt. CLRPEND

Interrupt Priority Registers Address: 0xE000E400 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RV	RW		None						
HW Access	F	R			No	ne				
Name	PRI_N	0 [7:6]			None	[5:0]				
Bits	15	14	13	12	11	10	9	8		
SW Access	RW			l	No	ne	<u>.</u>			
HW Access	R			None						
Name	PRI_N1 [15:14]		None [13:8]							
Bits	23	22	21	20	19	18	17	16		
SW Access	RI	W	None							
HW Access	F	?		None						
Name	PRI_N2	[23:22]			None	[21:16]				
Bits	31	30	29	28	27	26	25	24		
SW Access	RW			1	No	ne	I			
HW Access	F	?	None		ne					
Name	PRI_N3	[31:30]	None [29:24]							

Bits	Name	Description
31:30	PRI_N3	Priority of interrupt number N+3. Default Value: 0
23:22	PRI_N2	Priority of interrupt number N+2. Default Value: 0
15:14	PRI_N1	Priority of interrupt number N+1. Default Value: 0
7:6	PRI_N0	Priority of interrupt number N. Default Value: 0

Interrupt Priority Registers Address: 0xE000E404 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R\	RW		None					
HW Access	F	?			No	one			
Name	PRI_N	0 [7:6]			None	e [5:0]			
Bits	15	14	13	12	11	10	9	8	
			10						
SW Access	R\	RW			No	one			
HW Access	R		None						
Name	PRI_N1	[15:14]	None [13:8]						
Bits	23	22	21	20	19	18	17	16	
SW Access	R\	W	None						
HW Access	F	?		None					
Name	PRI_N2	[23:22]			None	[21:16]			
Bits	31	30	29	28	27	26	25	24	
SW Access	RW			1	No	one	1		
HW Access	R				No	one			
Name	PRI N3	PRI_N3 [31:30]		None [29:24]					

Bits	Name	Description
31:30	PRI_N3	Priority of interrupt number N+3. Default Value: 0
23:22	PRI_N2	Priority of interrupt number N+2. Default Value: 0
15:14	PRI_N1	Priority of interrupt number N+1. Default Value: 0
7:6	PRI_N0	Priority of interrupt number N. Default Value: 0

Interrupt Priority Registers Address: 0xE000E408 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	R	RW		None						
HW Access	F	R			No	ne				
Name	PRI_N	0 [7:6]			None	[5:0]				
Bits	15	14	13	12	11	10	9	8		
SW Access	R	N			No	ne				
HW Access	R			None						
Name	PRI_N1 [15:14]		None [13:8]							
Bits	23	22	21	20	19	18	17	16		
SW Access	R	N	None							
HW Access	F	?	None							
Name	PRI_N2	[23:22]			None	[21:16]				
				_						
Bits	31	30	29	28	27	26	25	24		
SW Access	R	N			No	ne				
HW Access	R				No	ne				
Name	PRI_N3	[31:30]			None	[29:24]				

Bits	Name	Description
31:30	PRI_N3	Priority of interrupt number N+3. Default Value: 0
23:22	PRI_N2	Priority of interrupt number N+2. Default Value: 0
15:14	PRI_N1	Priority of interrupt number N+1. Default Value: 0
7:6	PRI_N0	Priority of interrupt number N. Default Value: 0

Interrupt Priority Registers Address: 0xE000E40C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	R\	N		None						
HW Access	F	?			No	ne				
Name	PRI_N	0 [7:6]			None	[5:0]				
Bits	15	14	13	12	11	10	9	8		
SW Access	R\	N			No	ne				
HW Access	R			None						
Name	PRI_N1	[15:14]		None [13:8]						
	•		•							
Bits	23	22	21	20	19	18	17	16		
SW Access	R\	N	None							
HW Access	F	?	None							
Name	PRI_N2	[23:22]	None [21:16]							
Bits	31	30	29	28	27	26	25	24		
SW Access	R\	RW			No	ne				
HW Access	F	R		None						
Name	PRI_N3	[31:30]			None	[29:24]				

Bits	Name	Description
31:30	PRI_N3	Priority of interrupt number N+3. Default Value: 0
23:22	PRI_N2	Priority of interrupt number N+2. Default Value: 0
15:14	PRI_N1	Priority of interrupt number N+1. Default Value: 0
7:6	PRI_N0	Priority of interrupt number N. Default Value: 0

Interrupt Priority Registers Address: 0xE000E410 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R	N		None					
HW Access	F	?			No	ne			
Name	PRI_N	0 [7:6]			None	[5:0]			
Bits	15	14	13	12	11	10	9	8	
SW Access	R	N			No	ne			
HW Access	F	?	None						
Name	PRI_N1	[15:14]	None [13:8]						
Bits	23	22	21	20	19	18	17	16	
SW Access	R	N	None						
HW Access	F	?	None						
Name	PRI_N2	[23:22]	None [21:16]						
				_					
Bits	31	30	29	28	27	26	25	24	
SW Access	R	N			No	ne			
HW Access	F	R		None					
Name	PRI_N3	[31:30]			None	[29:24]			

Bits	Name	Description
31:30	PRI_N3	Priority of interrupt number N+3. Default Value: 0
23:22	PRI_N2	Priority of interrupt number N+2. Default Value: 0
15:14	PRI_N1	Priority of interrupt number N+1. Default Value: 0
7:6	PRI_N0	Priority of interrupt number N. Default Value: 0

Interrupt Priority Registers Address: 0xE000E414 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	R\	W		None						
HW Access	F	7			No	ne				
Name	PRI_N	0 [7:6]			None	e [5:0]				
Bits	15	14	13	12	11	10	9	8		
SW Access	R	W	None							
HW Access	F	?		None						
Name	PRI_N1 [15:14]		None [13:8]							
Bits	23	22	21	20	19	18	17	16		
SW Access	R	W	None							
HW Access	F	?	None							
Name	PRI_N2	[23:22]	None [21:16]							
Bits	31	30	29	28	27	26	25	24		
SW Access	R	W	None							
HW Access	F	R			No	ne				
Name	PRI_N3	PRI_N3 [31:30]		None [29:24]						

Bits	Name	Description
31:30	PRI_N3	Priority of interrupt number N+3. Default Value: 0
23:22	PRI_N2	Priority of interrupt number N+2. Default Value: 0
15:14	PRI_N1	Priority of interrupt number N+1. Default Value: 0
7:6	PRI_N0	Priority of interrupt number N. Default Value: 0

Interrupt Priority Registers Address: 0xE000E418 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	R\	W		None						
HW Access	F	7			No	ne				
Name	PRI_N	0 [7:6]			None	e [5:0]				
Bits	15	14	13	12	11	10	9	8		
SW Access	R	W	None							
HW Access	F	?		None						
Name	PRI_N1 [15:14]		None [13:8]							
Bits	23	22	21	20	19	18	17	16		
SW Access	R	W	None							
HW Access	F	?	None							
Name	PRI_N2	[23:22]	None [21:16]							
Bits	31	30	29	28	27	26	25	24		
SW Access	R	W	None							
HW Access	F	R			No	ne				
Name	PRI_N3	PRI_N3 [31:30]		None [29:24]						

Bits	Name	Description
31:30	PRI_N3	Priority of interrupt number N+3. Default Value: 0
23:22	PRI_N2	Priority of interrupt number N+2. Default Value: 0
15:14	PRI_N1	Priority of interrupt number N+1. Default Value: 0
7:6	PRI_N0	Priority of interrupt number N. Default Value: 0

Interrupt Priority Registers Address: 0xE000E41C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	R\	N		None						
HW Access	F	?			No	ne				
Name	PRI_N	0 [7:6]			None	[5:0]				
Bits	15	14	13	12	11	10	9	8		
SW Access	R\	N			No	ne				
HW Access	R			None						
Name	PRI_N1	[15:14]		None [13:8]						
	•		•							
Bits	23	22	21	20	19	18	17	16		
SW Access	R\	N	None							
HW Access	F	?	None							
Name	PRI_N2	[23:22]	None [21:16]							
Bits	31	30	29	28	27	26	25	24		
SW Access	R\	RW			No	ne				
HW Access	F	R		None						
Name	PRI_N3	[31:30]			None	[29:24]				

Bits	Name	Description
31:30	PRI_N3	Priority of interrupt number N+3. Default Value: 0
23:22	PRI_N2	Priority of interrupt number N+2. Default Value: 0
15:14	PRI_N1	Priority of interrupt number N+1. Default Value: 0
7:6	PRI_N0	Priority of interrupt number N. Default Value: 0

CM0P_CPUID

CPUID Register Address: 0xE000ED00 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		ŀ	٦			R			
HW Access		No	ne			No	one		
Name		PARTN	IO [7:4]			REVISI	ON [3:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access		•••			'' R	1			
HW Access				No	one				
Name				PARTN	IO [15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		ı	3				R	I	
HW Access		No	one			No	one		
Name		VARIAN	T [23:20]			CONSTA	NT [19:16]		
Bits	31	30	29	28	27	26	25	24	
SW Access			I		R	l	l	<u>I</u>	
HW Access		None							
Name				IMPLEMEN	NTER [31:24]				

Bits	Name	Description
31:24	IMPLEMENTER	Implementer code for ARM. Default Value: 65
23:20	VARIANT	Implementation defined. In ARM implementations this is the major revision number n in the rn part of the rnpn revision status. Default Value: 0
19:16	CONSTANT	Indicates the architecture, ARMv6-M Default Value: 12
15:4	PARTNO	Indicates part number, Cortex-M0+ Default Value: 3168
3:0	REVISION	Indicates revision. In ARM implementations this is the minor revision number n in the pn part of the rnpn revision status.
		Default Value: 1

CM0P_ICSR

Interrupt Control State Register Address: 0xE000ED04

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		R									
HW Access		RW									
Name		VECTACTIVE [7:0]									

Bits	15	14	13	12	11	10	9	8
SW Access		F	3			R		
HW Access		R'	W			RW		
Name		VECTPEND	ING [15:12]			VECTAC- TIVE		

Bits	23	22	21	20	19	18	17	16
SW Access	R	R	None	R				
HW Access	RW	RW	None	RW				
Name	ISRPRE- EMPT	ISRPEND- ING	None	VECTPENDING [20:16]				

Bits	31	30	29	28	27	26	25	24
SW Access	RW1S	None		RW1S	RW1C	RW1S	RW1C	None
HW Access	RW	None		RW	R	RW	R	None
Name	NMIPEND- SET	None	None [30:29]		PENDSV- CLR	PENDST- SETb	PENDST- CLR	None

Bits	Name	Description
31	NMIPENDSET	Activates an NMI exception or reads back the current state. Because NMI is the highest priority exception, it activates as soon as it is registered. Default Value: 0
28	PENDSVSET	Sets a pending PendSV interrupt or reads back the current state. Use this normally to request a context switch. Writing PENDSVSET and PENDSVCLR to '1' concurrently is UNPREDICTABLE. Default Value: 0
27	PENDSVCLR	Clears a pending PendSV interrupt. Default Value: 0
26	PENDSTSETb	Sets a pending SysTick or reads back the current state. Writing PENDSTSET and PENDSTCLR to '1' concurrently is UNPREDICTABLE. Default Value: 0
25	PENDSTCLR	Clears a pending SysTick, whether set here or by the timer hardware. Default Value: 0
23	ISRPREEMPT	Indicates whether a pending exception will be serviced on exit from debug halt state. Default Value: 0
22	ISRPENDING	Indicates if an external configurable, NVIC generated, interrupt is pending. Default Value: 0
20:12	VECTPENDING	The exception number for the highest priority pending exception. 0=No pending exceptions. The pending state includes the effect of memory-mapped enable and mask registers. It does not include the PRIMASK special-purpose register qualifier. Default Value: 0
8:0	VECTACTIVE	The exception number for the current executing exception. 0=Thread mode. This is the same value as IPSR[8:0] Default Value: 0

CMOP_AIRCR

Application Interrupt and Reset Control Register Address: 0xE000ED0C

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			None		1	RW1S	RW1C	None			
HW Access			None			R	R	None			
Name		None [7:3]					VECTCL- RACTIVE	None			
Bits	15	14	13	12	11	10	9	8			
SW Access	R	R None									
HW Access	None	ne None									
Name	ENDIAN- NESS	None [14:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access			l	ı	RW	_ I	<u>l</u>				
HW Access					R						
Name				VECTK	EY [23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		RW									
HW Access					R						
Name		VECTKEY [31:24]									

Bits	Name	Description
31:16	VECTKEY	Vector Key. The value 0x05FA must be written to this register, otherwise the register write is UNPREDICTABLE. Readback value is UNKNOWN.
		Default Value: X
15	ENDIANNESS	Indicates the memory system data endianness: 0 little endian 1 big endian.
		The Cortex–M0+ uses the little-endian format, where the least–significant byte of a word is stored at the lowest address and the most significant byte is stored at the highest address.
		Default Value: 0
2	SYSRESETREQ	System Reset Request. Writing 1 to this bit asserts a signal to request a reset by the external system. This will cause a full system reset of the CPU and all other components in the device. Is a mechanism that allows a software-driven reset. Default Value: 0
1	VECTCLRACTIVE	Clears all active state information for fixed and configurable exceptions. The effect of writing a 1 to this bit if the processor is not halted in Debug state is UNPREDICTABLE. Default Value: 0

$CM0P_SCR$

System Control Register Address: 0xE000ED10 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		None	•	RW	None	RW	RW	None			
HW Access		None		R	None	R	R	None			
Name		None [7:5]			None	SLEEP- DEEP	SLEEPON- EXIT	None			
Bits	15	14	13	12	11	10	9	8			
SW Access		None None									
HW Access		None									
Name		None [15:8]									
		T	T	1	T	1	T				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

Bits	Name	Description
4	SEVONPEND	Determines whether an interrupt transition from inactive state to pending state is a wakeup event: 0: transitions from inactive to pending are not wakeup events. 1: transitions from inactive to pending are wakeup events. Default Value: 0
2	SLEEPDEEP	An implementation can use this bit to select DeepSleep/Hibernate power modes upon execution of WFI/WFE: 0: Select Sleep mode 1: Select DeepSleep/Hibernate (depends on PWR_CONTROL.HIBERNATE) Default Value: 0
1	SLEEPONEXIT	Determines whether, on an exit from an ISR that returns to the base level of execution priority, the processor enters a sleep state: 0 do not enter sleep state. 1 enter sleep state. Default Value: 0

$CM0P_CCR$

Configuration and Control Register Address: 0xE000ED14

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne	•	R	None		
HW Access		No	one		None	None		
Name		None	e [7:4]		UNALIGN_ TRP	None [2:0]		
Bits	15	14	13	12	11	10	9	8
SW Access			No	one	1		R	None
HW Access			None	None				
Name			STKALIGN	None				
	T		ī	T				
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		•		No	one			•
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
9	STKALIGN	 On exception entry, the SP used prior to the exception is adjusted to be 8-byte aligned and the context to restore it is saved. The SP is restored on the associated exception return. Default Value: 1
3	UNALIGN_TRP	1: unaligned word and halfword accesses generate a HardFault exception. Default Value: 1

CM0P_SHPR2

System Handler Priority Register 2 Address: 0xE000ED1C

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	None									
HW Access	None									
Name		None [7:0]								
	Т		1	1	T	T	1			
Bits	15	14	13	12	11	10	9	8		
SW Access	None									
HW Access	None									
Name		None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				N	one					
HW Access				N	one					
Name				None	[23:16]					
			•				_			
Bits	31	30	29	28	27	26	25	24		
SW Access	R	W			N	one				
HW Access	I	R			N	one				
Name	PRI_11 [31:30] None [29:24]									

Bits Description Name 31:30 PRI_11

Priority of system handler 11, SVCall Default Value: 0

CM0P_SHPR3

System Handler Priority Register 3 Address: 0xE000ED20

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	None									
HW Access				No	ne					
Name				None	e [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access	None									
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access	R'	W			No	ne				
HW Access	F	3	None							
Name	PRI_14	[23:22]			None	[21:16]				
Bits	31	30	29	28	27	26	25	24		
SW Access	R'	W	None							
HW Access	F	R		None						
Name	PRI_15	[31:30]		None [29:24]						

Bits	Name	Description
31:30	PRI_15	Priority of system handler 15, SysTick Default Value: 0
23:22	PRI_14	Priority of system handler 14, PendSV Default Value: 0

CM0P_SHCSR

System Handler Control and State Register Address: 0xE000ED24

Retention: Retained

Bits	7	6	5	4	3	2	1	0							
SW Access		None													
HW Access				N	one										
Name				Non	e [7:0]										
				1		T	Т	1							
Bits	15	14	13	12	11	10	9	8							
SW Access	RW	RW None													
HW Access	RW				None										
Name	SVCALL- PENDED	None [14:8]													
Bits	23	22	21	20	19	18	17	16							
SW Access	<u> </u>			N	one		-II	ı							
HW Access				N	one										
Name				None	[23:16]										
Bits	31	30	29	28	27	26	25	24							
SW Access		None													
HW Access		None													
Name				None	[31:24]		None [31:24]								

Bits Name **SVCALLPENDED** 15

Description

0 SVCall is not pending.1 SVCall is pending.

This bit reflects the pending state on a read, and updates the pending state, to the value written, on a write. (Pending state bits are set to 1 when an exception occurs, and are cleared to 0 when an exception becomes active.)

System Control Space ROM Table Peripheral ID #4 Address: 0xE000EFD0

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	R										
HW Access		None									
Name				VALUI	E [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access	R										
HW Access		None									
Name				VALUE	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				F	3						
HW Access				No	ne						
Name				VALUE	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access				No	ne						
Name				VALUE	[31:24]						

Bits Description Name 31:0 VALUE Peripheral ID #4

System Control Space ROM Table Peripheral ID #0 Address: 0xE000EFE0

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	R										
HW Access				No	ne						
Name				VALUI	E [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access	R										
HW Access		None									
Name				VALUE	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				F	3						
HW Access				No	ne						
Name				VALUE	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				F	3						
HW Access				No	ne						
Name				VALUE	[31:24]						

Bits Description Name 31:0 VALUE Peripheral ID #0 Default Value: 8

System Control Space ROM Table Peripheral ID #1 Address: 0xE000EFE4

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	R										
HW Access				N	one						
Name				VALU	JE [7:0]						
		T			_						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		None									
Name		VALUE [15:8]									
	1	r		1	1		_				
Bits	23	22	21	20	19	18	17	16			
SW Access					R						
HW Access				N	one						
Name				VALUE	E [23:16]						
	1	T	T	1	1		1				
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access				N	one						
Name				VALUE	E [31:24]						

Bits Description Name 31:0 VALUE Peripheral ID #1

System Control Space ROM Table Peripheral ID #2 Address: 0xE000EFE8

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	R										
HW Access				No	one						
Name				VALU	IE [7:0]						
						_	_	•			
Bits	15	14	13	12	11	10	9	8			
SW Access	R										
HW Access	None										
Name				VALUI	E [15:8]						
								_			
Bits	23	22	21	20	19	18	17	16			
SW Access					R						
HW Access				No	one						
Name				VALUE	[23:16]						
							_	•			
Bits	31	30	29	28	27	26	25	24			
SW Access					R						
HW Access				No	one						
Name				VALUE	[31:24]						

Bits Description Name 31:0 VALUE Peripheral ID #2 Default Value: 11

System Control Space ROM Table Peripheral ID #3 Address: 0xE000EFEC

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	R										
HW Access				No	one						
Name				VALU	IE [7:0]						
						_	_	•			
Bits	15	14	13	12	11	10	9	8			
SW Access	R										
HW Access	None										
Name				VALUI	E [15:8]						
								_			
Bits	23	22	21	20	19	18	17	16			
SW Access					R						
HW Access				No	one						
Name				VALUE	[23:16]						
							_	•			
Bits	31	30	29	28	27	26	25	24			
SW Access					R						
HW Access				No	one						
Name				VALUE	[31:24]						

Bits Description Name 31:0 VALUE Peripheral ID #3

CM0P_SCS_CID0

System Control Space ROM Table Component ID #0 Address: 0xE000EFF0

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access					R						
HW Access				N	one						
Name				VALU	JE [7:0]						
	1	T			_						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		None									
Name		VALUE [15:8]									
	_										
Bits	23	22	21	20	19	18	17	16			
SW Access					R						
HW Access				N	one						
Name				VALUE	E [23:16]						
	_	T	T	1	1		1				
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access		None									
Name				VALUE	E [31:24]						

Bits Description Name Component ID #0 31:0 VALUE Default Value: 13

CM0P_SCS_CID1

System Control Space ROM Table Component ID #1 Address: 0xE000EFF4

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access					R						
HW Access				N	one						
Name				VALU	JE [7:0]						
	1	1		1	1	1	1	1			
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		None									
Name		VALUE [15:8]									
	1	_									
Bits	23	22	21	20	19	18	17	16			
SW Access					R						
HW Access				N	one						
Name				VALUE	E [23:16]						
	1	1		1	1	1	1	1			
Bits	31	30	29	28	27	26	25	24			
SW Access					R						
HW Access		None									
Name				VALUE	E [31:24]						

Description Bits Name Component ID #1 31:0 VALUE

CM0P_SCS_CID2

System Control Space ROM Table Component ID #2 Address: 0xE000EFF8

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			•		R						
HW Access				No	one						
Name		VALUE [7:0]									
						_	_				
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		None									
Name		VALUE [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access			•		R						
HW Access				No	one						
Name				VALUE	[23:16]						
							_	•			
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access	None										
Name				VALUE	[31:24]						

Bits Description Name Component ID #2 31:0 VALUE Default Value: 5

CMOP_SCS_CID3

System Control Space ROM Table Component ID #3 Address: 0xE000EFFC

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				ı	R						
HW Access				No	one						
Name				VALU	IE [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		None									
Name				VALUE	E [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				!	R						
HW Access				No	one						
Name				VALUE	[23:16]						
				_				•			
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access	None										
Name				VALUE	[31:24]						

Bits Description Name Component ID #3 31:0 VALUE

CMOP_ROM_SCS

CM0+ CoreSight ROM Table Peripheral #0 Address: 0xE00FF000

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			•		R						
HW Access				No	one						
Name		VALUE [7:0]									
						_	_				
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		None									
Name		VALUE [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access			•		R						
HW Access				No	one						
Name				VALUE	[23:16]						
							_	•			
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access	None										
Name				VALUE	[31:24]						

Bits Description Name

31:0 VALUE Offset to SCS ROM Table

CM0P_ROM_DWT

CM0+ CoreSight ROM Table Peripheral #1 Address: 0xE00FF004

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				F	3						
HW Access				No	ne						
Name				VALUI	E [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		None									
Name		VALUE [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				F	3						
HW Access				No	ne						
Name				VALUE	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access	None										
Name				VALUE	[31:24]						

Bits Description Name

31:0 VALUE Offset to DWT ROM Table

$CM0P_ROM_BPU$

CM0+ CoreSight ROM Table Peripheral #2 Address: 0xE00FF008

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				F	3					
HW Access				No	one					
Name				VALU	E [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		R								
HW Access		None								
Name		VALUE [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				F	3					
HW Access				No	ne					
Name				VALUE	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		R								
HW Access	None									
Name				VALUE	[31:24]					

Bits Description Name

31:0 VALUE Offset to BPU ROM Table

CM0P_ROM_END

CM0+ CoreSight ROM Table End Marker Address: 0xE00FF00C

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				ı	R						
HW Access				No	one						
Name				VALU	IE [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		None									
Name				VALUE	E [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				!	R						
HW Access				No	one						
Name				VALUE	[23:16]						
				_				•			
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access	None										
Name				VALUE	[31:24]						

Bits Description Name

31:0 VALUE End marker in peripheral list

CMOP_ROM_CSMT

CM0+ CoreSight ROM Table Memory Type Address: 0xE00FFFCC

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access					R						
HW Access				N	one						
Name				VALU	JE [7:0]						
	1	T			_						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		None									
Name		VALUE [15:8]									
	_										
Bits	23	22	21	20	19	18	17	16			
SW Access					R						
HW Access				N	one						
Name				VALUE	E [23:16]						
	_	T	T	1	1		1				
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access		None									
Name				VALUE	E [31:24]						

Bits Description Name 31:0 VALUE Memory Type Default Value: 1

CM0+ CoreSight ROM Table Peripheral ID #4 Address: 0xE00FFFD0

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				F	3						
HW Access				No	ne						
Name				VALUI	E [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		None									
Name		VALUE [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				F	3						
HW Access				No	ne						
Name				VALUE	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		R									
HW Access	None										
Name				VALUE	[31:24]						

Bits Description Name Peripheral ID #4 31:0 VALUE Default Value: 4

CM0+ CoreSight ROM Table Peripheral ID #0 Address: 0xE00FFFE0

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access					R					
HW Access				N	one					
Name				VALU	JE [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access	1				R					
HW Access		None								
Name		VALUE [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access					R					
HW Access				N	one					
Name				VALUE	E [23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		R								
HW Access		None								
Name				VALUE	E [31:24]					

Bits Description Name 31:0 VALUE Peripheral ID #0

CM0+ CoreSight ROM Table Peripheral ID #1 Address: 0xE00FFFE4

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access					R					
HW Access				N	one					
Name				VALU	JE [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access	1				R					
HW Access		None								
Name		VALUE [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access					R					
HW Access				N	one					
Name				VALUE	E [23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		R								
HW Access		None								
Name				VALUE	E [31:24]					

Bits Description Name 31:0 VALUE Peripheral ID #1

CM0+ CoreSight ROM Table Peripheral ID #2 Address: 0xE00FFFE8

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access					R					
HW Access				N	one					
Name				VALU	JE [7:0]					
	1	T			_					
Bits	15	14	13	12	11	10	9	8		
SW Access		R								
HW Access		None								
Name				VALU	E [15:8]					
	_	r		1	1		_			
Bits	23	22	21	20	19	18	17	16		
SW Access					R					
HW Access				N	one					
Name				VALUE	E [23:16]					
	_	T	T	1	1		1			
Bits	31	30	29	28	27	26	25	24		
SW Access		·			R			·		
HW Access				N	one					
Name				VALUE	E [31:24]					

Bits Description Name Peripheral ID #2 31:0 VALUE Default Value: 11

CM0+ CoreSight ROM Table Peripheral ID #3 Address: 0xE00FFFEC

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				ŀ	٦					
HW Access				No	one					
Name				VALU	E [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		R								
HW Access		None								
Name				VALUE	E [15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				ı	7					
HW Access				No	one					
Name				VALUE	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		•	•	·	3	•	•	•		
HW Access				No	one					
Name				VALUE	[31:24]					

Bits Description Name 31:0 VALUE Peripheral ID #3

CM0+ CoreSight ROM Table Component ID #0 Address: 0xE00FFFF0

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				F	3				
HW Access				No	ne				
Name				VALUI	E [7:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access		R							
HW Access		None							
Name				VALUE	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				F	3				
HW Access				No	ne				
Name				VALUE	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				F	3				
HW Access				No	ne				
Name				VALUE	[31:24]				

Bits Description Name Component ID #0 31:0 VALUE

CM0+ CoreSight ROM Table Component ID #1 Address: 0xE00FFFF4

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				F	3				
HW Access				No	ne				
Name				VALUI	E [7:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access		R							
HW Access		None							
Name				VALUE	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				F	3				
HW Access				No	ne				
Name				VALUE	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				F	3				
HW Access				No	ne				
Name				VALUE	[31:24]				

Description Bits Name 31:0 VALUE Component ID #1

CM0+ CoreSight ROM Table Component ID #2 Address: 0xE00FFFF8

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access					R					
HW Access				N	one					
Name				VALU	JE [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access	1	R								
HW Access		None								
Name				VALU	E [15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access					R					
HW Access				N	one					
Name				VALUE	E [23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		<u> </u>			R		1			
HW Access				N	one					
Name				VALUE	E [31:24]					

Bits Description Name 31:0 VALUE

Component ID #2 Default Value: 5

CM0+ CoreSight ROM Table Component ID #3 Address: 0xE00FFFFC

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				ŀ	٦					
HW Access				No	one					
Name				VALU	E [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		R								
HW Access		None								
Name				VALUE	E [15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				ı	7					
HW Access				No	one					
Name				VALUE	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		•	•	·	3	•	•	•		
HW Access				No	one					
Name				VALUE	[31:24]					

Bits Description Name Component ID #3 31:0 VALUE

TCPWM - INDIVIDUAL COUNTER (CNT) REGISTERS

This section discusses the CNT registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 3. REGISTER DETAILS

Register Name	Address
TCPWM_CNT0_CTRL	0x40060100
TCPWM_CNT0_STATUS	0x40060104
TCPWM_CNT0_COUNTER	0x40060108
TCPWM_CNT0_CC	0x4006010C
TCPWM_CNT0_CC_BUFF	0x40060110
TCPWM_CNT0_PERIOD	0x40060114
TCPWM_CNT0_PERIOD_BUFF	0x40060118
TCPWM_CNT0_TR_CTRL0	0x40060120
TCPWM_CNT0_TR_CTRL1	0x40060124
TCPWM_CNT0_TR_CTRL2	0x40060128
TCPWM_CNT0_INTR	0x40060130
TCPWM_CNT0_INTR_SET	0x40060134
TCPWM_CNT0_INTR_MASK	0x40060138
TCPWM_CNTO_INTR_MASKED	0x4006013C
TCPWM_CNT1_CTRL	0x40060140
TCPWM_CNT1_STATUS	0x40060144
TCPWM_CNT1_COUNTER	0x40060148
TCPWM_CNT1_CC	0x4006014C
TCPWM_CNT1_CC_BUFF	0x40060150
TCPWM_CNT1_PERIOD	0x40060154
TCPWM_CNT1_PERIOD_BUFF	0x40060158
TCPWM_CNT1_TR_CTRL0	0x40060160
TCPWM_CNT1_TR_CTRL1	0x40060164
TCPWM_CNT1_TR_CTRL2	0x40060168
TCPWM_CNT1_INTR	0x40060170
TCPWM_CNT1_INTR_SET	0x40060174
TCPWM_CNT1_INTR_MASK	0x40060178
TCPWM_CNT1_INTR_MASKED	0x4006017C
TCPWM_CNT2_CTRL	0x40060180
TCPWM_CNT2_STATUS	0x40060184
TCPWM_CNT2_COUNTER	0x40060188
TCPWM_CNT2_CC	0x4006018C
TCPWM_CNT2_CC_BUFF	0x40060190
TCPWM_CNT2_PERIOD	0x40060194
TCPWM_CNT2_PERIOD_BUFF	0x40060198
TCPWM_CNT2_TR_CTRL0	0x400601A0
TCPWM_CNT2_TR_CTRL1	0x400601A4
TCPWM_CNT2_TR_CTRL2	0x400601A8

Table 3. REGISTER DETAILS (continued)

Register Name	Address
TCPWM_CNT2_INTR	0x400601B0
TCPWM_CNT2_INTR_SET	0x400601B4
TCPWM_CNT2_INTR_MASK	0x400601B8
TCPWM_CNT2_INTR_MASKED	0x400601BC
TCPWM_CNT3_CTRL	0x400601C0
TCPWM_CNT3_STATUS	0x400601C4
TCPWM_CNT3_COUNTER	0x400601C8
TCPWM_CNT3_CC	0x400601CC
TCPWM_CNT3_CC_BUFF	0x400601D0
TCPWM_CNT3_PERIOD	0x400601D4
TCPWM_CNT3_PERIOD_BUFF	0x400601D8
TCPWM_CNT3_TR_CTRL0	0x400601E0
TCPWM_CNT3_TR_CTRL1	0x400601E4
TCPWM_CNT3_TR_CTRL2	0x400601E8
TCPWM_CNT3_INTR	0x400601F0
TCPWM_CNT3_INTR_SET	0x400601F4
TCPWM_CNT3_INTR_MASK	0x400601F8
TCPWM_CNT3_INTR_MASKED	0x400601FC
TCPWM_CNT4_CTRL	0x40060200
TCPWM_CNT4_STATUS	0x40060204
TCPWM_CNT4_COUNTER	0x40060208
TCPWM_CNT4_CC	0x4006020C
TCPWM_CNT4_CC_BUFF	0x40060210
TCPWM_CNT4_PERIOD	0x40060214
TCPWM_CNT4_PERIOD_BUFF	0x40060218
TCPWM_CNT4_TR_CTRL0	0x40060220
TCPWM_CNT4_TR_CTRL1	0x40060224
TCPWM_CNT4_TR_CTRL2	0x40060228
TCPWM_CNT4_INTR	0x40060230
TCPWM_CNT4_INTR_SET	0x40060234
TCPWM_CNT4_INTR_MASK	0x40060238
TCPWM_CNT4_INTR_MASKED	0x4006023C

$TCPWM_CNT0_CTRL$

Counter control register Address: 0x40060100 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		N	one	•	RW	RW	RW	RW		
HW Access		N	one		R	R	R	R		
Name		None [7:4]				PWM_ SYNC_KILL	AUTO_ RELOAD_ PERIOD	AUTO_ RELOAD_ CC		
Bits	15	14	13	12	11	10	9	8		
SW Access		1		F	RW			<u> </u>		
HW Access					R					
Name				GENEF	RIC [15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access	No	ne	F	RW	None	RW	RW			
HW Access	No	ne		R	None	R	F	3		
Name	None [23:22]		QUADRATURE_MODE [21:20]		None	ONE_SHOT	ONE_SHOT UP_DOWN_MODE [17:16]			
Bits	31	30	29	28	27	26	25	24		
SW Access] 30	None	20	21	20	RW	24		
OW Access			None				R			

MODE [26:24]

BitsNameDescription26:24MODECounter mode.

Name

Default Value: 0

0x0: TIMER:
Timer mode

0x2: CAPTURE:
Capture mode

0x3: QUAD:

Quadrature encoding mode

0x4: PWM:

Pulse width modulation (PWM) mode

None [31:27]

0x5: PWM_DT:

PWM with deadtime insertion mode

0x6: PWM_PR:

Pseudo random pulse width modulation

21:20 QUADRATURE MODE In QUAD mode selects quadrature encoding mode (X1/X2/X4).

In PWM, PWM DT and PWM PR modes, these two bits can be used to invert "dt line out" and "dt line compl out". Inversion is the last step in generation of "dt line out" and "dt line compl_out"; i.e. a disabled output line "dt_line_out" has the value QUADRATURE_MODE[0] and a disabled output line "dt line compl out" has the value QUADRATURE MODE[1].

Default Value: 0

0x0: X1:

X1 encoding (QUAD mode)

0x1: X2:

X2 encoding (QUAD mode)

0x1: INV OUT:

When bit 0 is '1', QUADRATURE_MODE[0] inverts "dt_line_out" (PWM/PWM_DT modes)

0x2: X4:

X4 encoding (QUAD mode)

0x2: INV_COMPL OUT:

When bit 1 is '1', QUADRATURE_MODE[1] inverts "dt_line_compl_out"

(PWM/PWM DT modes)

18 ONE SHOT

15:8

When '0', counter runs continuous. When '1', counter is turned off by hardware when a terminal count event is generated.

Default Value: 0

17:16 UP DOWN MODE

GENERIC

Determines counter direction. Default Value: 0

0x0: COUNT UP:

Count up (to PERIOD). An overflow event is generated when the counter reaches PERIOD.

A terminal count event is generated when the counter reaches PERIOD.

0x1: COUNT DOWN:

Count down (to "0"). An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0".

0x2: COUNT UPDN1:

Count up (to PERIOD), then count down (to "0"). An overflow event is generated when the counter reaches PERIOD. An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0".

0x3: COUNT_UPDN2:

Count up (to PERIOD), then count down (to "0"). An overflow event is generated when the counter reaches PERÍOD. An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0" AND when the counter reaches PERIOD (this counter direction can be used for PWM functionality with asymmetrical

updates).

Generic 8-bit control field. In PWM DT mode, this field is used to determine the dead time: amount of dead time cycles in the counter clock domain. In all other modes, the lower 3 bits of

this field determine pre-scaling of the selected counter clock.

Default Value: 0 0x0: DIVBY1:

Divide by 1 (other-than-PWM_DT mode)

0x1: DIVBY2:

Divide by 2 (other-than-PWM DT mode)

0x2: DIVBY4:

Divide by 4 (other-than-PWM DT mode)

www.onsemi.com

PWM_STOP_ON_KILL

3

0x3: DIVBY8:

Divide by 8 (other-than-PWM DT mode)

0x4: DIVBY16:

Divide by 16 (other-than-PWM DT mode)

0x5: DIVBY32:

Divide by 32 (other-than-PWM_DT mode)

0x6: DIVBY64:

Divide by 64 (other-than-PWM DT mode)

0x7: DIVBY128:

Divide by 128 (other-than-PWM_DT mode)

Specifies whether the counter stops on a kill events:

'0': kill event does NOT stop counter.

'1': kill event stops counter.

This field has a function in PWM, PWM_DT and PWM_PR modes only.

Default Value: 0

2 PWM_SYNC_KILL Specifies asynchronous/synchronous kill behavior:

'1': synchronous kill mode: the kill event disables the "dt_line_out" and "dt_line_compl_out" signals till the next terminal count event (synchronous kill). In synchronous kill mode, STOP_EDGE should be RISING_EDGE.

'0': asynchronous kill mode: the kill event only disables the "dt line out" and

"dt_line_compl_out"

signals when present. In asynchronous kill mode, STOP_EDGE should be NO_EDGE_DET.

This field has a function in PWM and PWM_DT modes only. This field is only used when

PWM_STOP_ON_KILL is '0'.

Default Value: 0

1 AUTO_RELOAD_PERIOD Specifies switching of the PERIOD and buffered PERIOD values. This field has a function in

PWM, PWM_DT and PWM_PR modes.

'0': never switch.

'1': switch on a terminal count event with and actively pending switch event.

Default Value: 0

O AUTO_RELOAD_CC Specifies switching of the CC and buffered CC values. This field has a function in TIMER, PWM,

PWM DT and PWM PR modes.

Timer mode:

'0': never switch.

'1': switch on a compare match event. PWM, PWM_DT, PWM_PR modes:

'0': never switch.

'1': switch on a terminal count event with an actively pending switch event.

TCPWM_CNT0_STATUS

Counter status register Address: 0x40060104 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				None				R		
HW Access				None				RW		
Name				None [7:1]				DOWN		
Bits	15	14	13	12	11	10	9	8		
SW Access		R								
HW Access		RW								
Name		GENERIC [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access	R		•	•	None	•	•	•		
HW Access	RW				None					
Name	RUNNING				None [30:24]					

Bits	Name	Description
31	RUNNING	When '0', the counter is NOT running. When '1', the counter is running. Default Value: 0
15:8	GENERIC	Generic 8-bit counter field. In PWM_DT mode, this counter is used for dead time insertion. In all other modes, this counter is used for pre-scaling the selected counter clock. PWM_DT mode can NOT use prescaled clock functionality. Default Value: 0
0	DOWN	When '0', counter is counting up. When '1', counter is counting down. In QUAD mode, this field indicates the direction of the latest counter change: '0' when last incremented and '1' when last decremented. Default Value: 0

TCPWM_CNT0_COUNTER

Counter count register Address: 0x40060108 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W					
HW Access				R	W					
Name		COUNTER [7:0]								
Bits	15	14	13	12	11	10	9	8		
SW Access		RW								
HW Access		RW								
Name				COUNT	ER [15:8]					
	_									
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
	_									
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name Description

COUNTER

15:0

16-bit counter value. It is advised to not write to this field when the counter is running. Default Value: $\bf 0$

TCPWM_CNT0_CC

Counter compare/capture register Address: 0x4006010C

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access				R	W							
HW Access		RW										
Name		CC [7:0]										
Bits	15	15 14 13 12 11 10 9 8										
SW Access		RW										
HW Access		RW										
Name		CC [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access		•	•	No	ne	•	•	•				
HW Access				No	one							
Name				None	[31:24]							

Bits Description Name CC 15:0

In CAPTURE mode, captures the counter value. In other modes, compared to counter value. Default Value: 65535

TCPWM_CNT0_CC_BUFF

Counter buffered compare/capture register Address: 0x40060110

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access				R	W							
HW Access		RW										
Name		CC [7:0]										
	_											
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access				R	W							
Name		CC [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				No	one							
HW Access				No	one							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access		None										
HW Access				No	one							
Name				None	[31:24]							

Bits Description Name

Additional buffer for counter CC register. Default Value: 65535 15:0 CC

TCPWM_CNT0_PERIOD

Counter period register Address: 0x40060114 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access		RW										
Name		PERIOD [7:0]										
Dite	45											
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access				R	W							
Name				PERIO	D [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	one							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access		•	•	No	ne		•	-				
HW Access		None										
Name				None	[31:24]							

Bits Description Name

15:0

Period value: upper value of the counter. When the counter should count for n cycles, this field should be set to n-1. Default Value: 65535 PERIOD

TCPWM_CNT0_PERIOD_BUFF

Counter buffered period register Address: 0x40060118

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access				R	W							
HW Access		RW										
Name		PERIOD [7:0]										
	_											
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access		RW										
Name		PERIOD [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				No	one							
HW Access				No	one							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access		None										
HW Access		None										
Name				None	[31:24]							

Bits Description Name

Additional buffer for counter PERIOD register. Default Value: 65535 15:0 PERIOD

$TCPWM_CNT0_TR_CTRL0$

Counter trigger control register 0 Address: 0x40060120

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		R	W	•	RW				
HW Access		F	3			F	7		
Name		COUNT_	SEL [7:4]			CAPTURE	_SEL [3:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access		R	W			R	W		
HW Access		F	3		R				
Name		STOP_SI	EL [15:12]			RELOAD_	SEL [11:8]		
Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None	[23:20]			START_S	EL [19:16]		
Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access				No	ne				
Name				None	[31:24]				

Bits	Name	Description
19:16	START_SEL	Selects one of the 16 input triggers as a start trigger. In QUAD mode, this is the second phase (phi B). Default Value: 0
15:12	STOP_SEL	Selects one of the 16 input triggers as a stop trigger. In PWM, PWM_DT and PWM_PR modes, this is the kill trigger. In these modes, the kill trigger is used to either temporarily block the PWM outputs (PWM_STOP_ON_KILL is '0') or stop the functionality (PWM_STOP_ON_KILL is '1'). For the PWM and PWM_DT modes, the blocking of the output signals can be asynchronous (STOP_EDGE should be NO_EDGE_DET) in which case the blocking is as long as the trigger is '1' or synchronous (STOP_EDGE should be RISING_EDGE) in which case it extends till the next terminal count event. Default Value: 0
	DEI 0 4 D 0 EI	
11:8	RELOAD_SEL	Selects one of the 16 input triggers as a reload trigger. In QUAD mode, this is the index or revolution pulse. In this mode, it will update the counter with the value in the TCPWM_CNTn_PERIOD register. Default Value: 0
7:4	COUNT_SEL	Selects one of the 16 input triggers as a count trigger. In QUAD mode, this is the first phase (phi A). Default setting selects input trigger 1, which is always '1'. Default Value: 1
3:0	CAPTURE_SEL	Selects one of the 16 input triggers as a capture trigger. Input trigger 0 is always '0' and input trigger is always '1'. In the PWM, PWM_DT and PWM_PR modes this trigger is used to switch the values if the compare and period registers with their buffer counterparts. Default Value: 0

TCPWM_CNT0_TR_CTRL1

Counter trigger control register 1

Address: 0x40060124 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R	RW		RW		RW		RW	
HW Access	R		R		R		R		
Name	STOP_E	OGE [7:6]	RELOAD_EDGE [5:4]		COUNT_EDGE [3:2]		CAPTURE_EDGE [1:0]		

Bits	15	14	13	12	11	10	9	8
SW Access		RW						
HW Access			R					
Name			START_E	DGE [9:8]				

Bits	23	22	21	20	19	18	17	16		
SW Access		None								
HW Access		None								
Name				None [23:16]						

Bits	31	30	29	28	27	26	25	24		
SW Access	None									
HW Access		None								
Name				None [[31:24]					

Bits	Name
9:8	START_EDGE

7:6

A start event will start the counter; i.e. the counter will become running. Starting does NOT enable the counter. A start event will not initialize the counter whereas the reload event does. Default Value: 3

0x0: RISING EDGE:

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

STOP_EDGE A stop event, will stop the counter; i.e. it will no longer be running. Stopping will NOT disable the

counter. Default Value: 3

0x0: RISING_EDGE:

Rising edge. Any rising edge generates an event.

0x1: FALLING_EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

TCPWM CNT0 TR CTRL1 (Continued)

5:4 RELOAD_EDGE

A reload event will initialize the counter. When counting up, the counter is initialized to "0". When

counting down, the counter is initialized with PERIOD.

Default Value: 3

0x0: RISING EDGE:

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH_EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

3:2 COUNT EDGE A counter event will increase or de

A counter event will increase or decrease the counter by '1'. Default Value: 3

Delault value. 3

0x0: RISING_EDGE:

Rising edge. Any rising edge generates an event.

0x1: FALLING_EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

1:0 CAPTURE_EDGE

A capture event will copy the counter value into the CC register.

Default Value: 3

0x0: RISING_EDGE:

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

$TCPWM_CNT0_TR_CTRL2$

Counter trigger control register 2

Address: 0x40060128 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	No	ne	RW		RW		RW		
HW Access	None		R		R		R		
Name	None	None [7:6]		UNDERFLOW_MODE [5:4]		OVERFLOW_MODE [3:2]		CC_MATCH_MODE [1:0]	

Bits	15	14	13	12	11	10	9	8
SW Access	None							
HW Access		None						
Name	None [15:8]							

Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access		None						
Name	None [23:16]							

Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description

5:4 UNDERFLOW_MODE Determines the effect of a counter underflow event (COUNTER reaches "0") on the "line_out"

output signals.
Default Value: 3 **0x0: SET:**Set to '1'

Ox1: CLEAR: Set to '0' Ox2: INVERT: Invert

0x3: NO_CHANGE:

No Change

3:2 OVERFLOW_MODE Determines the effect of a counter overflow event (COUNTER reaches PERIOD) on the

"line_out" output signals. Default Value: 3

Ox0: SET: Set to '1' Ox1: CLEAR: Set to '0' Ox2: INVERT: Invert

0x3: NO_CHANGE:

No Change

TCPWM_CNT0_TR_CTRL2 (Continued)

1:0 CC_MATCH_MODE

Determines the effect of a compare match event (COUNTER equals CC register) on the "line_out" output signals. Note that INVERT is especially useful for center aligned pulse width modulation. To generate a duty cycle of 0%, the counter CC register should be set to "0". For a 100% duty cycle, the counter CC register should be set to larger than the counter PERIOD register. Default Value: 3

Ox0: SET:
Set to '1'
Ox1: CLEAR:
Set to '0'
Ox2: INVERT:
Invert

0x3: NO_CHANGE:

No Change

TCPWM_CNT0_INTR

Interrupt request register Address: 0x40060130 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			No	one	•	•	RW1C	RW1C	
HW Access			No	one			RW1S	RW1S	
Name			None	e [7:2]			CC_MATCH	TC	
			_	_					
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							
Name		None [15:8]							
Bits	23	22	21	20	19	18	17	16	
SW Access	23	22	21			10	1 17	10	
	None								
HW Access		None							
Name	None [23:16]								
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access	None								
Name	None [31:24]								

Bits	Name	Description
1	CC_MATCH	Counter matches CC register event. Set to '1', when event is detected. Write with '1' to clear bit. Default Value: 0
0	TC	Terminal count event. Set to '1', when event is detected. Write with '1' to clear bit.

TCPWM_CNT0_INTR_SET

Interrupt set request register Address: 0x40060134 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW1S	RW1S					
HW Access			No	one			А	Α
Name			None	e [7:2]			CC_MATCH	TC
Bits	15	14	13	12	11	10	9	8
SW Access		1	1	No	ne	I		
HW Access		None						
Name		None [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access		None						
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description
1	CC_MATCH	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	TC	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

TCPWM_CNT0_INTR_MASK

Interrupt mask register Address: 0x40060138 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			No	ne		•	RW	RW	
HW Access			No	ne			R	R	
Name			None	[7:2]			CC_MATCH	TC	
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access		None							
Name		None [15:8]							
	1		T						
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	23:16]				
	1		Γ						
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne	•		•	
Name				None	31:24]				

Bits	Name	Description
1	CC_MATCH	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	TC	Mask bit for corresponding bit in interrupt request register. Default Value: 0

TCPWM_CNTO_INTR_MASKED

Interrupt masked request register Address: 0x4006013C

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access			R	R						
HW Access			W	W						
Name			None	[7:2]			CC_MATCH	TC		
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access		None								
Name		None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	one					
Name				None	[31:24]					

Bits	Name	Description
1	CC_MATCH	Logical and of corresponding request and mask bits. Default Value: 0
0	TC	Logical and of corresponding request and mask bits. Default Value: 0

TCPWM_CNT1_CTRL

Counter control register Address: 0x40060140 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		N	one	•	RW	RW	RW	RW		
HW Access		N	one		R	R	R	R		
Name		Non	e [7:4]		PWM_ STOP_ ON_KILL	PWM_ SYNC_KILL	AUTO RELOAD_ PERIOD	AUTO_ RELOAD_ CC		
Bits	15	14	13	12	11	10	9	8		
SW Access		RW								
HW Access		R								
Name				GENER	RIC [15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access	No	ne	R	iW	None	RW	RW			
HW Access	No	ne	I	R	None	R	F	₹		
Name	None	[23:22]	QUADRATI [21	URE_MODE :20]	None	ONE_SHOT	UP_DOWN_MODE [17:16]			
		T	T			1	T	T		
Bits	31	30	29	28	27	26	25	24		
SW Access			None			RW				
HW Access			None			R				

MODE [26:24]

BitsNameDescription26:24MODECounter mode.

Name

Default Value: 0

0x0: TIMER:
Timer mode

0x2: CAPTURE:
Capture mode

0x3: QUAD:

Quadrature encoding mode

0x4: PWM:

Pulse width modulation (PWM) mode

None [31:27]

0x5: PWM_DT:

PWM with deadtime insertion mode

0x6: PWM_PR:

Pseudo random pulse width modulation

21:20 QUADRATURE MODE

In QUAD mode selects quadrature encoding mode (X1/X2/X4).

In PWM, PWM_DT and PWM_PR modes, these two bits can be used to invert "dt_line_out" and

"dt_line_compl_out". Inversion is the last step in generation of "dt_line_out" and "dt_line_compl_out"; i.e. a disabled output line "dt_line_out" has the value

QUADRATURE_MODE[0] and a disabled output line "dt_line_compl_out" has the value

QUADRATURE_MODE[1].

Default Value: 0

0x0: X1:

X1 encoding (QUAD mode)

0x1: X2:

X2 encoding (QUAD mode)

0x1: INV_OUT:

When bit 0 is '1', QUADRATURE_MODE[0] inverts "dt_line_out" (PWM/PWM_DT modes)

0x2: X4:

X4 encoding (QUAD mode)

0x2: INV COMPL OUT:

When bit 1 is '1', QUADRATURE_MODE[1] inverts "dt_line_compl_out"

(PWM/PWM DT modes)

18 ONE_SHOT When '0', counter runs continuous. When '1', counter is turned off by hardware when a terminal

count event is generated.

Default Value: 0

17:16 UP_DOWN_MODE Determines counter direction.

Default Value: 0

0x0: COUNT UP:

Count up (to PERIOD). An overflow event is generated when the counter reaches PERIOD. A

terminal count event is generated when the counter reaches PERIOD.

0x1: COUNT DOWN:

Count down (to "0"). An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0".

0x2- COUNT LIPON1-

Count up (to PERIOD), then count down (to "0"). An overflow event is generated when the counter reaches PERIOD. An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0".

0x3: COUNT UPDN2:

Count up (to PERIOD), then count down (to "0"). An overflow event is generated when the counter reaches PERIOD. An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0" AND when the counter reaches PERIOD (this counter direction can be used for PWM functionality with asymmetrical updates).

Generic 8-bit control field. In PWM_DT mode, this field is used to determine the dead time: amount of dead time cycles in the counter clock domain. In all other modes, the lower 3 bits of this field

determine pre-scaling of the selected counter clock.

Default Value: 0 0x0: DIVBY1:

Divide by 1 (other-than-PWM_DT mode)

0x1: DIVBY2:

Divide by 2 (other-than-PWM DT mode)

0x2: DIVBY4:

Divide by 4 (other-than-PWM_DT mode)

15:8 GENERIC

PWM_STOP_ON_KILL

3

2

0x3: DIVBY8:

Divide by 8 (other-than-PWM DT mode)

0x4: DIVBY16:

Divide by 16 (other-than-PWM DT mode)

0x5: DIVBY32:

Divide by 32 (other-than-PWM_DT mode)

0x6: DIVBY64:

Divide by 64 (other-than-PWM DT mode)

0x7: DIVBY128:

Divide by 128 (other-than-PWM_DT mode)

Specifies whether the counter stops on a kill events: '0': kill event does NOT stop counter.

'1': kill event stops counter.

This field has a function in PWM, PWM DT and PWM PR modes only.

Default Value: 0

PWM_SYNC_KILL Specifies asynchronous/synchronous kill behavior:

'1': synchronous kill mode: the kill event disables the "dt_line_out" and "dt_line_compl_out" signals till the next terminal count event (synchronous kill). In synchronous kill mode,

STOP_EDGE should be RISING_EDGE.

'0': asynchronous kill mode: the kill event only disables the "dt line out" and

"dt_line_compl_out"

signals when present. In asynchronous kill mode, STOP_EDGE should be NO_EDGE_DET.

This field has a function in PWM and PWM_DT modes only. This field is only used when

PWM_STOP_ON_KILL is '0'.

Default Value: 0

1 AUTO_RELOAD_PERIOD Specifies switching of the PERIOD and buffered PERIOD values. This field has a function in

PWM, PWM_DT and PWM_PR modes.

'0': never switch.

'1': switch on a terminal count event with and actively pending switch event.

Default Value: 0

0 AUTO_RELOAD_CC Specifies switching of the CC and buffered CC values. This field has a function in TIMER, PWM,

PWM DT and PWM PR modes.

Timer mode:

'0': never switch.

'1': switch on a compare match event. PWM, PWM_DT, PWM_PR modes:

0': never switch.

'1': switch on a terminal count event with an actively pending switch event.

TCPWM_CNT1_STATUS

Counter status register Address: 0x40060144 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		None									
HW Access				None				RW			
Name		None [7:1]									
		<u> </u>									
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		RW									
Name		GENERIC [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access	R		•	•	None	•	•	•			
HW Access	RW				None						
Name	RUNNING				None [30:24]						

Bits	Name	Description
31	RUNNING	When '0', the counter is NOT running. When '1', the counter is running. Default Value: 0
15:8	GENERIC	Generic 8-bit counter field. In PWM_DT mode, this counter is used for dead time insertion. In all other modes, this counter is used for pre-scaling the selected counter clock. PWM_DT mode can NOT use prescaled clock functionality.
		Default Value: 0
0	DOWN	When '0', counter is counting up. When '1', counter is counting down. In QUAD mode, this field indicates the direction of the latest counter change: '0' when last incremented and '1' when last decremented.
		Default Value: 0

TCPWM_CNT1_COUNTER

Counter count register Address: 0x40060148 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW										
HW Access		RW									
Name		COUNTER [7:0]									
	1	T	T	T	1	1	1	1			
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access	RW										
Name				COUNT	ER [15:8]						
								,			
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits Name Description

COUNTER

15:0

16-bit counter value. It is advised to not write to this field when the counter is running.

TCPWM_CNT1_CC

Counter compare/capture register Address: 0x4006014C

Address: 0x4006014C Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW										
HW Access		RW									
Name				CC	[7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access				R	W						
HW Access		RW									
Name				CC [[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description

15:0 CC In CAPTURE mode, captures the counter value. In other modes, compared to counter value.

TCPWM_CNT1_CC_BUFF

Counter buffered compare/capture register Address: 0x40060150

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		RW									
Name				CC	[7:0]						
	<u> </u>										
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		RW									
Name		CC [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits Name Description

15:0 CC Additional buffer for counter CC register.

TCPWM_CNT1_PERIOD

Counter period register Address: 0x40060154 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW										
HW Access		RW									
Name				PERIC	DD [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		RW									
Name				PERIO	D [15:8]						
	_		_			_	_				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits Name Description

15:0 PERIOD Period value: upper value of the counter. When the counter should count for n cycles, this field should be set to n-1.

TCPWM_CNT1_PERIOD_BUFF

Counter buffered period register Address: 0x40060158

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				R	W						
HW Access				R	W						
Name				PERIC	DD [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access				R	W						
HW Access		RW									
Name		PERIOD [15:8]									
	_										
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits Name Description

15:0

PERIOD Additional buffer for counter PERIOD register.

TCPWM_CNT1_TR_CTRL0

Counter trigger control register 0. Address: 0x40060160

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		R	W	•		R	W		
HW Access		F	3			F	7		
Name		COUNT_	SEL [7:4]		CAPTURE_SEL [3:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access		R	W			R	W		
HW Access		R			R				
Name		STOP_SEL [15:12]				RELOAD_SEL [11:8]			
Bits	23	23 22 21 20 19 18 17					17	16	
SW Access		None				R	W		
HW Access		No	ne			F	7		
Name		None	[23:20]			START_S	EL [19:16]		
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne	1			
HW Access				No	ne				
Name				None	[31:24]				

Bits	Name	Description
19:16	START_SEL	Selects one of the 16 input triggers as a start trigger. In QUAD mode, this is the second phase (phi B). Default Value: 0
15:12	STOP_SEL	Selects one of the 16 input triggers as a stop trigger. In PWM, PWM_DT and PWM_PR modes, this is the kill trigger. In these modes, the kill trigger is used to either temporarily block the PWM outputs (PWM_STOP_ON_KILL is '0') or stop the functionality (PWM_STOP_ON_KILL is '1'). For the PWM and PWM_DT modes, the blocking of the output signals can be asynchronous (STOP_EDGE should be NO_EDGE_DET) in which case the blocking is as long as the trigger is '1' or synchronous (STOP_EDGE should be RISING_EDGE) in which case it extends till the next terminal count event. Default Value: 0
11:8	RELOAD_SEL	Selects one of the 16 input triggers as a reload trigger. In QUAD mode, this is the index or revolution pulse. In this mode, it will update the counter with the value in the TCPWM_CNTn_PERIOD register. Default Value: 0
7:4	COUNT_SEL	Selects one of the 16 input triggers as a count trigger. In QUAD mode, this is the first phase (phi A). Default setting selects input trigger 1, which is always '1'. Default Value: 1
3:0	CAPTURE_SEL	Selects one of the 16 input triggers as a capture trigger. Input trigger 0 is always '0' and input trigger is always '1'. In the PWM, PWM_DT and PWM_PR modes this trigger is used to switch the values if the compare and period registers with their buffer counterparts. Default Value: 0

TCPWM_CNT1_TR_CTRL1

Counter trigger control register 1.

Address: 0x40060164 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW		RW		RW		RW	
HW Access	R		R		R		R	
Name	STOP_E	OGE [7:6]	RELOAD_EDGE [5:4]		COUNT_EDGE [3:2]		CAPTURE_EDGE [1:0]	

Bits	15	14	13	12	11	10	9	8
SW Access		RW						
HW Access		None						
Name			START_E	DGE [9:8]				

Bits	23	23 22 21 20 19 18 17 16								
SW Access		None								
HW Access		None								
Name		None [23:16]								

Bits	31	30	29	28	27	26	25	24			
SW Access		None									
HW Access		None									
Name				None	31:24]						

Bits	Name	
9:8	START_EDGE	

Description

A start event will start the counter; i.e. the counter will become running. Starting does NOT enable the counter. A start event will not initialize the counter whereas the reload event does.

Default Value: 3 **0x0: RISING_EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH_EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

7:6 STOP EDGE A stop event, will stop the counter

A stop event, will stop the counter; i.e. it will no longer be running. Stopping will NOT disable the counter.

ountel.

Default Value: 3 **0x0: RISING_EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

TCPWM_CNT1_TR_CTRL1 (Continued)

5:4 RELOAD_EDGE A reload event will initialize the counter. When counting up, the counter is initialized to "0". When

counting down, the counter is initialized with PERIOD.

Default Value: 3 **0x0: RISING EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING_EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

3:2 COUNT EDGE A counter event will increase or decrease the counter by '1'.

Default Value: 3 **0x0: RISING EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH_EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

1:0 CAPTURE EDGE A capture event will copy the counter value into the CC register.

Default Value: 3 **0x0: RISING EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

$TCPWM_CNT1_TR_CTRL2$

Counter trigger control register 2.

Address: 0x40060168 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	No	ne	R'	W	RW		RW	
HW Access	None		R		R		F	7
Name	None [7:6]		UNDERFLOW_MODE [5:4]		OVERFLOW_MODE [3:2]		CC_MATCH_MODE [1:0]	

Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									

Bits	23	23 22 21 20 19 18 17 16									
SW Access		None									
HW Access		None									
Name				None	[23:16]						

Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None	31:24]					

Bits	Name	Description

5:4 UNDERFLOW_MODE Determines t

Determines the effect of a counter underflow event (COUNTER reaches "0") on the "line_out" output signals.

Default Value: 3

Ox0: SET:

Set to '1'

Ox1: CLEAR:
Set to '0'

Ox2: INVERT:
Invert

0x3: NO_CHANGE:

No Change

3:2 OVERFLOW_MODE

Determines the effect of a counter overflow event (COUNTER reaches PERIOD) on the "line_out"

output signals.
Default Value: 3

0x0: SET:

Set to '1'

Ox1: CLEAR:
Set to '0'

Ox2: INVERT:
Invert

0x3: NO_CHANGE:

No Change

TCPWM_CNT1_TR_CTRL2 (Continued)

1:0 CC_MATCH_MODE

Determines the effect of a compare match event (COUNTER equals CC register) on the "line_out" output signals. Note that INVERT is especially useful for center aligned pulse width modulation.

To generate a duty cycle of 0%, the counter CC register should be set to "0". For a 100% duty cycle, the counter CC register should be set to larger than the counter PERIOD register.

Default Value: 3

0x0: SET: Set to '1'

0x1: CLEAR: Set to '0' 0x2: INVERT:

Invert

0x3: NO_CHANGE:

No Change

TCPWM_CNT1_INTR

Interrupt request register Address: 0x40060170 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access			No	ne		•	RW1C	RW1C
HW Access			No	one			RW1S	RW1S
Name			None	e [7:2]			CC_MATCH	TC
Bits	15	14	13	12	11	10	9	8
SW Access			<u> </u>	<u>I</u> No	l one	1		
HW Access				No	one			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access			l	No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access			I	No	ne	I		
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
1	CC_MATCH	Counter matches CC register event. Set to '1', when event is detected. Write with '1' to clear bit. Default Value: 0
0	TC	Terminal count event. Set to '1', when event is detected. Write with '1' to clear bit. Default Value: 0

TCPWM_CNT1_INTR_SET

Interrupt set request register Address: 0x40060174 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			No	one		1	RW1S	RW1S	
HW Access			No	one			А	Α	
Name			None	e [7:2]			CC_MATCH	TC	
Bits	15	14	13	12	11	10	9	8	
SW Access			1	No	one	l			
HW Access				No	one				
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one	1			
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access	01				one				
HW Access	None								
Name				None	[31:24]				

Bits	Name	Description
1	CC_MATCH	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	TC	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

TCPWM_CNT1_INTR_MASK

Interrupt mask register Address: 0x40060178 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access			No	one		•	RW	RW
HW Access			No	one			R	R
Name			None	∋ [7:2]			CC_MATCH	TC
			1			1		
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne	·		
HW Access				No	ne			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne	1	LL_	
HW Access				No	ne			
Name				None	23:16]			
						1	T T	
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne	·		
HW Access				No	ne			
Name				None	31:24]			

Bits	Name	Description
1	CC_MATCH	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	TC	Mask bit for corresponding bit in interrupt request register. Default Value: 0

TCPWM_CNT1_INTR_MASKED

Interrupt masked request register Address: 0x4006017C

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access			No	ne	•	•	R	R
HW Access			No	ne			W	W
Name			None	[7:2]			CC_MATCH	TC
Bits	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access				No	ne			
Name				None	[15:8]			
Dit -					40	1 40		
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
					,	_		
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
1	CC_MATCH	Logical and of corresponding request and mask bits. Default Value: 0
0	TC	Logical and of corresponding request and mask bits. Default Value: 0

$TCPWM_CNT2_CTRL$

Counter control register Address: 0x40060180 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		N	one	•	RW	RW	RW	RW
HW Access		N	one		R	R	R	R
Name	None [7:4]				PWM_ STOP_ ON_KILL	PWM_ SYNC_KILL	AUTO_ RELOAD_ PERIOD	AUTO RELOAD_ CC
Bits	15	14	13	12	11	10	9	8
SW Access				R	W	<u> </u>		l
HW Access					R			
Name				GENER	IC [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access	No	ne	R	W	None	RW	RW	
HW Access	No	ne	F	3	None	R	R	
Name	None [23:22] QUADRATURE_MODE [21:20]			None	ONE_SHOT UP_DOWN_MODE [17:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	None RW							

R

MODE [26:24]

BitsNameDescription26:24MODECounter mode.

HW Access

Name

Default Value: 0

0x0: TIMER:
Timer mode

0x2: CAPTURE:
Capture mode

0x3: QUAD:

Quadrature encoding mode

0x4: PWM:

Pulse width modulation (PWM) mode

None None [31:27]

0x5: PWM_DT:

PWM with deadtime insertion mode

0x6: PWM_PR:

Pseudo random pulse width modulation

21:20 QUADRATURE MODE

In QUAD mode selects quadrature encoding mode (X1/X2/X4).

In PWM, PWM_DT and PWM_PR modes, these two bits can be used to invert "dt_line_out" and

"dt_line_compl_out". Inversion is the last step in generation of "dt_line_out" and "dt_line_compl_out"; i.e. a disabled output line "dt_line_out" has the value

QUADRATURE_MODE[0] and a disabled output line "dt_line_compl_out" has the value

QUADRATURE_MODE[1].

Default Value: 0

0x0: X1:

X1 encoding (QUAD mode)

0x1: X2:

X2 encoding (QUAD mode)

0x1: INV OUT:

When bit 0 is '1', QUADRATURE MODE[0] inverts "dt line out" (PWM/PWM DT modes)

0x2: X4:

X4 encoding (QUAD mode)

0x2: INV COMPL OUT:

When bit 1 is '1', QUADRATURE_MODE[1] inverts "dt_line_compl_out" (PWM/PWM_DT modes)

When '0', counter runs continuous. When '1', counter is turned off by hardware when a terminal

count event is generated.

Default Value: 0

17:16 UP DOWN MODE

ONE SHOT

18

Determines counter direction.

Default Value: 0

0x0: COUNT UP:

Count up (to PERIOD). An overflow event is generated when the counter reaches PERIOD.

Α

terminal count event is generated when the counter reaches PERIOD.

0x1: COUNT_DOWN:

Count down (to "0"). An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0".

0x2: COUNT_UPDN1:

Count up (to PERIOD), then count down (to "0"). An overflow event is generated when the counter reaches PERIOD. An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0".

0x3: COUNT UPDN2:

Count up (to PERIOD), then count down (to "0"). An overflow event is generated when the counter reaches PERIOD. An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches PERIOD (this counter direction can be used for PWM functionality with asymmetrical

updates).

Generic 8-bit control field. In PWM_DT mode, this field is used to determine the dead time: amount of dead time cycles in the counter clock domain. In all other modes, the lower 3 bits of

this field determine pre-scaling of the selected counter clock. Default Value: 0

0x0: DIVBY1:

Divide by 1 (other-than-PWM_DT mode)

0x1: DIVBY2:

Divide by 2 (other-than-PWM DT mode)

0x2: DIVBY4:

Divide by 4 (other-than-PWM_DT mode)

0x3: DIVBY8:

Divide by 8 (other-than-PWM DT mode)

0x4: DIVBY16:

Divide by 16 (other-than-PWM DT mode)

0x5: DIVBY32:

Divide by 32 (other-than-PWM_DT mode)

15:8 GENERIC

		0x6: DIVBY64:
		Divide by 64 (other-than-PWM_DT mode)
		0x7: DIVBY128:
		Divide by 128 (other-than-PWM_DT mode)
3	PWM_STOP_ON_KILL	Specifies whether the counter stops on a kill events:
		'0': kill event does NOT stop counter.
		'1': kill event stops counter.
		This field has a function in PWM, PWM_DT and PWM_PR modes only.
		Default Value: 0
2	PWM_SYNC_KILL	Specifies asynchronous/synchronous kill behavior:
		'1': synchronous kill mode: the kill event disables the "dt_line_out" and "dt_line_compl_out" signals till the next terminal count event (synchronous kill). In synchronous kill mode, STOP_EDGE should be RISING_EDGE.
		'0': asynchronous kill mode: the kill event only disables the "dt_line_out" and "dt_line_compl_out"
		signals when present. In asynchronous kill mode, STOP_EDGE should be NO_EDGE_DET.
		This field has a function in PWM and PWM_DT modes only. This field is only used when PWM_STOP_ON_KILL is '0'. Default Value: 0
1	AUTO_RELOAD_PERIOD	Specifies switching of the PERIOD and buffered PERIOD values. This field has a function in PWM, PWM_DT and PWM_PR modes. '0': never switch.
		'1': switch on a terminal count event with and actively pending switch event. Default Value: 0
0	AUTO_RELOAD_CC	Specified switching of the CC and huffered CC values. This field has a function in TIMED DWM

Specifies switching of the CC and buffered CC values. This field has a function in TIMER, PWM, PWM_DT and PWM_PR modes.

Timer mode: '0': never switch.

'1': switch on a compare match event. PWM, PWM_DT, PWM_PR modes:

'1': switch on a terminal count event with an actively pending switch event.

TCPWM_CNT2_STATUS

Counter status register Address: 0x40060184 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None								
HW Access				None				RW		
Name				None [7:1]				DOWN		
Bits	15	14	13	12	11	10	9	8		
SW Access				I	R					
HW Access				R	W					
Name				GENER	IC [15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access	R		•	•	None	•	•	•		
HW Access	RW	None								
Name	RUNNING				None [30:24]					

Bits	Name	Description
31	RUNNING	When '0', the counter is NOT running. When '1', the counter is running. Default Value: 0
15:8	GENERIC	Generic 8-bit counter field. In PWM_DT mode, this counter is used for dead time insertion. In all other modes, this counter is used for pre-scaling the selected counter clock. PWM_DT mode can NOT use prescaled clock functionality.
		Default Value: 0
0	DOWN	When '0', counter is counting up. When '1', counter is counting down. In QUAD mode, this field indicates the direction of the latest counter change: '0' when last incremented and '1' when last decremented.
		Default Value: 0

TCPWM_CNT2_COUNTER

Counter count register Address: 0x40060188 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access				R	W							
Name				COUNT	ER [7:0]							
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access		RW										
Name				COUNT	ER [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

Bits Name Description

COUNTER

15:0

16-bit counter value. It is advised to not write to this field when the counter is running.

TCPWM_CNT2_CC

Counter compare/capture register Address: 0x4006018C

Address: 0x4006018C Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access				R	W							
Name				CC	[7:0]							
	_											
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access		RW										
Name		CC [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
	_											
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

Bits Name Description

15:0

CC

In CAPTURE mode, captures the counter value. In other modes, compared to counter value.

TCPWM_CNT2_CC_BUFF

Counter buffered compare/capture register Address: 0x40060190

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				R	W	•					
HW Access				R	W						
Name				CC	[7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		RW									
Name		CC [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one	•					
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		•	•	No	one	•	-	•			
HW Access				No	one						
Name				None	[31:24]						

Bits Name Description

15:0 CC Additional buffer for counter CC register.

TCPWM_CNT2_PERIOD

Counter period register Address: 0x40060194 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access				R	W							
Name				PERIC	D [7:0]							
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access		RW										
Name				PERIO	D [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

Bits Name Description 15:0 PERIOD

Period value: upper value of the counter. When the counter should count for n cycles, this field should be set to n-1.

TCPWM_CNT2_PERIOD_BUFF

Counter buffered period register Address: 0x40060198

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access		RW										
Name				PERIC	DD [7:0]							
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access				R	W							
Name				PERIO	D [15:8]							
	_		_			_	_					
Bits	23	22	21	20	19	18	17	16				
SW Access				No	one							
HW Access				No	one							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	one							
HW Access				No	one							
Name				None	[31:24]							

Bits Name Description 15:0

PERIOD Additional buffer for counter PERIOD register.

$TCPWM_CNT2_TR_CTRL0$

Counter trigger control register 0 Address: 0x400601A0

Retention: Retained

	1						1				
Bits	7	6	5	4	3	3 2 1 0 RW					
SW Access		R	W			R	W				
HW Access		F	₹			F	₹				
Name		COUNT_	SEL [7:4]			CAPTURE	_SEL [3:0]				
	1		T	1	1	1	1				
Bits	15	14	13	12	11	10	9	8			
SW Access		R	W		RW						
HW Access		F	3		R						
Name		STOP_SE	EL [15:12]		RELOAD_SEL [11:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access		No	ne			R	W				
HW Access		No	ne			F	3				
Name		None	[23:20]			START_S	EL [19:16]				
Bits	31	30	29	28	27	26	25	24			
SW Access					one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
19:16	START_SEL	Selects one of the 16 input triggers as a start trigger. In QUAD mode, this is the second phase (phi B). Default Value: 0
15:12	STOP_SEL	Selects one of the 16 input triggers as a stop trigger. In PWM, PWM_DT and PWM_PR modes, this is the kill trigger. In these modes, the kill trigger is used to either temporarily block the PWM outputs (PWM_STOP_ON_KILL is '0') or stop the functionality (PWM_STOP_ON_KILL is '1'). For the PWM and PWM_DT modes, the blocking of the output signals can be asynchronous (STOP_EDGE should be NO_EDGE_DET) in which case the blocking is as long as the trigger is '1' or synchronous (STOP_EDGE should be RISING_EDGE) in which case it extends till the next terminal count event. Default Value: 0
11:8	RELOAD_SEL	Selects one of the 16 input triggers as a reload trigger. In QUAD mode, this is the index or revolution pulse. In this mode, it will update the counter with the value in the TCPWM_CNTn_PERIOD register. Default Value: 0
7:4	COUNT_SEL	Selects one of the 16 input triggers as a count trigger. In QUAD mode, this is the first phase (phi A). Default setting selects input trigger 1, which is always '1'. Default Value: 1
3:0	CAPTURE_SEL	Selects one of the 16 input triggers as a capture trigger. Input trigger 0 is always '0' and input trigger is always '1'. In the PWM, PWM_DT and PWM_PR modes this trigger is used to switch the values if the compare and period registers with their buffer counterparts. Default Value: 0

TCPWM_CNT2_TR_CTRL1

Counter trigger control register 1

Address: 0x400601A4 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	RW		R	W	R	W	RW		
HW Access	R		R		R		F	3	
Name	Name STOP_EDGE [7:6]		RELOAD_EDGE [5:4]		COUNT_EDGE [3:2]		CAPTURE_EDGE [1:0]		

Bits	15	14	13	12	11	10	9	8	
SW Access			RW						
HW Access		None							
Name		None [15:10]							

Bits	23	23 22 21 20 19 18 17 16									
SW Access		None									
HW Access				No	ne						
Name		None [23:16]									

Bits	31	30	29	28	27	26	25	24			
SW Access		None									
HW Access				No	ne						
Name		None [31:24]									

Bits	Name

9:8 START_EDGE

A start event will start the counter; i.e. the counter will become running. Starting does NOT enable the counter. A start event will not initialize the counter whereas the reload event does.

Default Value: 3

0x0: RISING_EDGE:

Description

Rising edge. Any rising edge generates an event.

0x1: FALLING_EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH_EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

7:6 STOP_EDGE

A stop event, will stop the counter; i.e. it will no longer be running. Stopping will NOT disable the

counter.

Default Value: 3 **0x0: RISING_EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

TCPWM_CNT2_TR_CTRL1 (Continued)

5:4 RELOAD_EDGE A reload event will initialize the counter. When counting up, the counter is initialized to "0". When

counting down, the counter is initialized with PERIOD.

Default Value: 3 **0x0: RISING EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING_EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

3:2 COUNT EDGE A counter event will increase or decrease the counter by '1'.

Default Value: 3 **0x0: RISING EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH_EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

1:0 CAPTURE EDGE A capture event will copy the counter value into the CC register.

Default Value: 3 **0x0: RISING EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

TCPWM_CNT2_TR_CTRL2

Counter trigger control register 2 Address: 0x400601A8

Address: 0x400601A8 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None		RW		RW		RW	
HW Access	None		R		R		R	
Name	None [7:6]		UNDERFLOW_MODE [5:4]		OVERFLOW_MODE [3:2]		CC_MATCH_MODE [1:0]	
Bits	15	14	13	12	11	10	9	8
SW Access			1		ne	1		
HW Access		None						
Name	None [15:8]							
		T	T	T	T	T	T	
Bits	23	22	21	20	19	18	17	16
SW Access		None						
HW Access		None						
Name	None [23:16]							
		T	1	1	T	1	1	T
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description
5:4	UNDERFLOW_MODE	Determines the effect of a counter underflow event (COUNTER reaches "0") on the "line_out" output signals.
		Default Value: 3
		0x0: SET:
		Set to '1'
		0x1: CLEAR:
		Set to '0'
		0x2: INVERT:
		Invert
		0x3: NO_CHANGE:
		No Change
3:2	OVERFLOW_MODE	Determines the effect of a counter overflow event (COUNTER reaches PERIOD) on the "line_out" output signals.
		Default Value: 3
		0x0: SET:
		Set to '1'
		0x1: CLEAR:
		Set to '0'
		0x2: INVERT:
		Invert

0x3: NO_CHANGE:No Change

TCPWM_CNT2_TR_CTRL2 (Continued)

1:0 CC_MATCH_MODE

Determines the effect of a compare match event (COUNTER equals CC register) on the "line_out" output signals. Note that INVERT is especially useful for center aligned pulse width modulation.

To generate a duty cycle of 0%, the counter CC register should be set to "0". For a 100% duty cycle, the counter CC register should be set to larger than the counter PERIOD register.

Default Value: 3

0x0: SET: Set to '1'

0x1: CLEAR: Set to '0'

0x2: INVERT:

Invert

0x3: NO_CHANGE:

No Change

TCPWM_CNT2_INTR

Interrupt request register Address: 0x400601B0 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None						RW1C	RW1C
HW Access		None RW1S RW						
Name		None [7:2] CC_MATCH TC						TC
Bits	15	14	13	12	11	10	9	8
SW Access	None							
HW Access	None							
Name	None [15:8]							
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description
1	CC_MATCH	Counter matches CC register event. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
0	TC	Terminal count event. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0

TCPWM_CNT2_INTR_SET

Interrupt set request register Address: 0x400601B4 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None						RW1S	RW1S
HW Access			No	one			А	Α
Name		None [7:2] CC_MATCH TC						TC
				1	1			
Bits	15	14	13	12	11	10	9	8
SW Access	None							
HW Access	None							
Name	None [15:8]							
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							
Name	None [23:16]							
			_		1			
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description
1	CC_MATCH	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0
0	TC	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0

TCPWM_CNT2_INTR_MASK

Interrupt mask register Address: 0x400601B8 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			No	one		•	RW	RW	
HW Access			No	one			R	R	
Name			None	∋ [7:2]			CC_MATCH	TC	
						1			
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							
Name		None [15:8]							
Bits	23	22	21	20	19	18	17	16	
SW Access			<u> </u>	No	ne				
HW Access				No	ne				
Name				None	[23:16]				
						1			
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne				
Name				None	31:24]				

Bits	Name	Description
1	CC_MATCH	Mask bit for corresponding bit in interrupt request register.
		Default Value: 0
0	TC	Mask bit for corresponding bit in interrupt request register.
		Default Value: 0

TCPWM_CNT2_INTR_MASKED

Interrupt masked request register Address: 0x400601BC

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			R	R							
HW Access			W	W							
Name				CC_MATCH	TC						
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
	·										
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
1	CC_MATCH	Logical and of corresponding request and mask bits.
		Default Value: 0
0	TC	Logical and of corresponding request and mask bits.
		Default Value: 0

TCPWM_CNT3_CTRL

Counter control register Address: 0x400601C0 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		N	one		RW	RW	RW	RW		
HW Access		N	one		R	R	R	R		
Name		Non	e [7:4]		PWM_ STOP_ ON_KILL	PWM_ SYNC_ KILL	AUTO_ RELOAD_ PERIOD	AUTO_ RELOAD_ CC		
Bits	15	14	13	12	11	10	9	8		
SW Access		RW								
HW Access	R									
Name				GENEF	RIC [15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access	No	ne	R	W	None RW		RW			
HW Access	No	ne	F	R	None	R	F	3		
Name	None [23:22] QUADRATURE_MODE [21:20]				None	ONE_SHOT	UP_DOWN_MODE [17:16]			
Bits	31	30	29	28	27	26	25	24		
SW Access			None	1	RW					
HW Access			None				R			

MODE [26:24]

BitsNameDescription26:24MODECounter mode.

Name

Default Value: 0
0x0: TIMER:
Timer mode
0x2: CAPTURE:
Capture mode
0x3: QUAD:

Quadrature encoding mode

0x4: PWM:

Pulse width modulation (PWM) mode

None [31:27]

0x5: PWM_DT:

PWM with deadtime insertion mode

0x6: PWM_PR:

Pseudo random pulse width modulation

21:20 QUADRATURE MODE

In QUAD mode selects quadrature encoding mode (X1/X2/X4).

In PWM, PWM_DT and PWM_PR modes, these two bits can be used to invert "dt_line_out" and

"dt_line_compl_out". Inversion is the last step in generation of "dt_line_out" and "dt_line_compl_out"; i.e. a disabled output line "dt_line_out" has the value

QUADRATURE_MODE[0] and a disabled output line "dt_line_compl_out" has the value

QUADRATURE_MODE[1].

Default Value: 0

0x0: X1:

X1 encoding (QUAD mode)

0x1: X2:

X2 encoding (QUAD mode)

0x1: INV OUT:

When bit 0 is '1', QUADRATURE_MODE[0] inverts "dt_line_out" (PWM/PWM_DT modes)

0x2: X4:

X4 encoding (QUAD mode)

0x2: INV COMPL OUT:

When bit 1 is '1', QUADRATURE_MODE[1] inverts "dt_line_compl_out" (PWM/PWM_DT modes)

When '0', counter runs continuous. When '1', counter is turned off by hardware when a terminal count event is generated.

Default Value: 0

17:16 UP_DOWN_MODE

GENERIC

15:8

ONE SHOT

18

Determines counter direction.

Default Value: 0

0x0: COUNT UP:

Count up (to PERIOD). An overflow event is generated when the counter reaches PERIOD.

A terminal count event is generated when the counter reaches PERIOD.

0x1: COUNT_DOWN:

Count down (to "0"). An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0".

0x2: COUNT UPDN1:

Count up (to PERIOD), then count down (to "0"). An overflow event is generated when the counter reaches PERIOD. An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0".

0x3: COUNT UPDN2:

Count up (to PERIOD), then count down (to "0"). An overflow event is generated when the counter reaches PERIOD. An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0" AND when the counter reaches PERIOD (this counter direction can be used for PWM functionality with asymmetrical

updates).

Generic 8-bit control field. In PWM_DT mode, this field is used to determine the dead time: amount of dead time cycles in the counter clock domain. In all other modes, the lower 3 bits of this field determine pre-scaling of the selected counter clock.

this field determine pre-scaling of the selected counter clock.

Default Value: 0

0x0: DIVBY1:

Divide by 1 (other-than-PWM_DT mode)

0x1: DIVBY2:

Divide by 2 (other-than-PWM_DT mode)

0x2: DIVBY4:

Divide by 4 (other-than-PWM_DT mode)

0x3: DIVBY8:

Divide by 8 (other-than-PWM_DT mode)

0x4: DIVBY16:

Divide by 16 (other-than-PWM_DT mode)

2..........

PWM_STOP_ON_KILL

3

0x5: DIVBY32:

Divide by 32 (other-than-PWM_DT mode)

0x6: DIVBY64:

Divide by 64 (other-than-PWM DT mode)

0x7: DIVBY128:

Divide by 128 (other-than-PWM_DT mode)

Specifies whether the counter stops on a kill events: '0': kill event does NOT stop counter.

'1': kill event stops counter.

This field has a function in PWM, PWM DT and PWM PR modes only.

Default Value: 0

2 PWM_SYNC_KILL Specifies asynchronous/synchronous kill behavior:

> '1': synchronous kill mode: the kill event disables the "dt_line_out" and "dt_line_compl_out" signals till the next terminal count event (synchronous kill). In synchronous kill mode,

STOP_EDGE should be RISING_EDGE.

'0': asynchronous kill mode: the kill event only disables the "dt_line_out" and

"dt line compl out"

signals when present. In asynchronous kill mode, STOP EDGE should be NO EDGE DET.

This field has a function in PWM and PWM_DT modes only. This field is only used when

PWM STOP ON KILL is '0'.

Default Value: 0

1 AUTO_RELOAD_PERIOD Specifies switching of the PERIOD and buffered PERIOD values. This field has a function in

PWM, PWM DT and PWM PR modes.

'0': never switch.

'1': switch on a terminal count event with and actively pending switch event.

Default Value: 0

Specifies switching of the CC and buffered CC values. This field has a function in TIMER, PWM_PMM_DT and PWM_PR modes. 0 AUTO RELOAD CC

Timer mode: '0': never switch.

'1': switch on a compare match event. PWM, PWM_DT, PWM_PR modes:

'0': never switch.

'1': switch on a terminal count event with an actively pending switch event.

TCPWM_CNT3_STATUS

Counter status register Address: 0x400601C4 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access			I.	None		·		R		
HW Access		None								
Name				None [7:1]				DOWN		
			_					<u>'</u>		
Bits	15	14	13	12	11	10	9	8		
SW Access		R								
HW Access		RW								
Name		GENERIC [15:8]								
			1			ı	1	1		
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access	R				None					
HW Access	RW				None					
Name	RUNNING	RUNNING None [30:24]								

Bits	Name	Description
31	RUNNING	When '0', the counter is NOT running. When '1', the counter is running. Default Value: 0
15:8	GENERIC	Generic 8-bit counter field. In PWM_DT mode, this counter is used for dead time insertion. In all other modes, this counter is used for pre-scaling the selected counter clock. PWM_DT mode can NOT use prescaled clock functionality. Default Value: 0
0	DOWN	When '0', counter is counting up. When '1', counter is counting down. In QUAD mode, this field indicates the direction of the latest counter change: '0' when last incremented and '1' when last decremented. Default Value: 0

TCPWM_CNT3_COUNTER

Counter count register Address: 0x400601C8 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW										
HW Access	RW										
Name		COUNTER [7:0]									
	1	T	T	T	1	1	1	1			
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access	RW										
Name				COUNT	ER [15:8]						
								,			
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits Name Description

COUNTER

15:0

16-bit counter value. It is advised to not write to this field when the counter is running.

TCPWM_CNT3_CC

Counter compare/capture register Address: 0x400601CC

Address: 0x400601CC Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access		RW										
Name		CC [7:0]										
	_											
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access		RW										
Name		CC [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
	_											
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

Bits	Name	Description

15:0 CC In CAPTURE mode, captures the counter value. In other modes, compared to counter value.

TCPWM_CNT3_CC_BUFF

Counter buffered compare/capture register Address: 0x400601D0

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access	RW											
Name		CC [7:0]										
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access		RW										
Name		CC [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				No	one	•						
HW Access				No	one							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access		•	•	No	one	•	-	•				
HW Access				No	one							
Name				None	[31:24]							

Bits Name Description

15:0 CC Additional buffer for counter CC register.

TCPWM_CNT3_PERIOD

Counter period register Address: 0x400601D4 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW										
HW Access	RW										
Name		PERIOD [7:0]									
	1	1		1	1	1	ı	1			
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		RW									
Name		PERIOD [15:8]									
	T	T	_	1	1	_	T	T			
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	ne						
Name				None	[23:16]						
			_	1		_		1			
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	ne						
Name				None	[31:24]						

Bits Name Description 15:0 PERIOD

Period value: upper value of the counter. When the counter should count for n cycles, this field should be set to n-1.

TCPWM_CNT3_PERIOD_BUFF

Counter buffered period register Address: 0x400601D8

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				R	W						
HW Access				R	W						
Name				PERIC	DD [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		RW									
Name		PERIOD [15:8]									
	_										
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits Name Description 15:0

PERIOD Additional buffer for counter PERIOD register.

TCPWM_CNT3_TR_CTRL0

Counter trigger control register 0 Address: 0x400601E0

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		R	W	•		R	W		
HW Access		F	3		R				
Name		COUNT_	SEL [7:4]		CAPTURE_SEL [3:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access		R	W			R	W		
HW Access		F	3		R				
Name		STOP_SEL [15:12]				RELOAD_	SEL [11:8]		
Bits	23	23 22 21 20 19 18 17					17	16	
SW Access	None					R	W		
HW Access		No	ne			F	7		
Name		None	[23:20]			START_S	EL [19:16]		
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne	1			
HW Access				No	ne				
Name				None	[31:24]				

Bits	Name	Description
19:16	START_SEL	Selects one of the 16 input triggers as a start trigger. In QUAD mode, this is the second phase (phi B). Default Value: 0
15:12	STOP_SEL	Selects one of the 16 input triggers as a stop trigger. In PWM, PWM_DT and PWM_PR modes, this is the kill trigger. In these modes, the kill trigger is used to either temporarily block the PWM outputs (PWM_STOP_ON_KILL is '0') or stop the functionality (PWM_STOP_ON_KILL is '1'). For the PWM and PWM_DT modes, the blocking of the output signals can be asynchronous (STOP_EDGE should be NO_EDGE_DET) in which case the blocking is as long as the trigger is '1' or synchronous (STOP_EDGE should be RISING_EDGE) in which case it extends till the next terminal count event. Default Value: 0
11:8	RELOAD_SEL	Selects one of the 16 input triggers as a reload trigger. In QUAD mode, this is the index or revolution pulse. In this mode, it will update the counter with the value in the TCPWM_CNTn_PERIOD register. Default Value: 0
7:4	COUNT_SEL	Selects one of the 16 input triggers as a count trigger. In QUAD mode, this is the first phase (phi A). Default setting selects input trigger 1, which is always '1'. Default Value: 1
3:0	CAPTURE_SEL	Selects one of the 16 input triggers as a capture trigger. Input trigger 0 is always '0' and input trigger is always '1'. In the PWM, PWM_DT and PWM_PR modes this trigger is used to switch the values if the compare and period registers with their buffer counterparts. Default Value: 0

TCPWM_CNT3_TR_CTRL1

Counter trigger control register 1

Address: 0x400601E4 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R	RW		RW		RW		RW	
HW Access	R		R		R		F	3	
Name	STOP_E	OGE [7:6]	RELOAD_EDGE [5:4]		COUNT_E	DGE [3:2]	CAPTURE_	EDGE [1:0]	

Bits	15	14	13	12	11	10	9	8
SW Access			RW					
HW Access			F	3				
Name			START_E	DGE [9:8]				

Bits	23	23 22 21 20 19 18 17 16										
SW Access		None										
HW Access		None										
Name				None [None [23:16]							

Bits	31	30	29	28	27	26	25	24			
SW Access		None									
HW Access		None									
Name				None	31:24]						

Bits	Name	
9:8	START_EDGE	

Description

A start event will start the counter; i.e. the counter will become running. Starting does NOT enable the counter. A start event will not initialize the counter whereas the reload event does.

Default Value: 3

0x0: RISING_EDGE:

Rising edge. Any rising edge generates an event.

0x1: FALLING_EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH_EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

7:6 STOP EDGE A stop event, will stop the counter;

A stop event, will stop the counter; i.e. it will no longer be running. Stopping will NOT disable the counter.

Default Value: 3

0x0: RISING_EDGE:

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

TCPWM_CNT3_TR_CTRL1 (Continued)

5:4 RELOAD_EDGE A reload event will initialize the counter. When counting up, the counter is initialized to "0". When

counting down, the counter is initialized with PERIOD.

Default Value: 3 **0x0: RISING EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING_EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

3:2 COUNT EDGE A counter event will increase or decrease the counter by '1'.

Default Value: 3 **0x0: RISING EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING_EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH_EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

1:0 CAPTURE EDGE A capture event will copy the counter value into the CC register.

Default Value: 3 **0x0: RISING EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

$TCPWM_CNT3_TR_CTRL2$

Counter trigger control register 2

Address: 0x400601E8 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	No	ne	RW		RW		RW	
HW Access	None		R		R		F	7
Name	None [7:6]		UNDERFLOW_MODE [5:4]		OVERFLOW_MODE [3:2]		CC_MATCH_MODE [1:0]	

Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						

Bits	23	23 22 21 20 19 18 17 16								
SW Access		None								
HW Access		None								
Name				None [[23:16]					

Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None [[31:24]					

Bits	Name	Description

5:4 UNDERFLOW_MODE Determines the effect of a counter underflow event (COUNTER reaches "0") on the "line_out"

output signals.
Default Value: 3

Ox0: SET:
Set to '1'

Ox1: CLEAR:
Set to '0'

Ox2: INVERT:
Invert

0x3: NO_CHANGE:

No Change

3:2 OVERFLOW_MODE Determines the effect of a counter overflow event (COUNTER reaches PERIOD) on the

"line_out" output signals. Default Value: 3

Ox0: SET: Set to '1' Ox1: CLEAR: Set to '0' Ox2: INVERT: Invert

0x3: NO_CHANGE:

No Change

TCPWM_CNT3_TR_CTRL2 (Continued)

1:0 OCC_MATCH_MODE

Determines the effect of a compare match event (COUNTER equals CC register) on the "line_out" output signals. Note that INVERT is especially useful for center aligned pulse width modulation.

To generate a duty cycle of 0%, the counter CC register should be set to "0". For a 100% duty cycle, the counter CC register should be set to larger than the counter PERIOD register.

Default Value: 3

0x0: SET: Set to '1'

0x1: CLEAR: Set to '0'

0x2: INVERT:

Invert

0x3: NO_CHANGE:

No Change

TCPWM_CNT3_INTR

Interrupt request register Address: 0x400601F0 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			No	one	•		RW1C	RW1C			
HW Access			No	one			RW1S	RW1S			
Name			None	e [7:2]			CC_MATCH	TC			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access				No	one						
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access		l	l	No	ne						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		<u>I</u>	1	No	ne ne	1					
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
1	CC_MATCH	Counter matches CC register event. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
0	TC	Terminal count event. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0

TCPWM_CNT3_INTR_SET

Interrupt set request register Address: 0x400601F4 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		I.	No	ne	ı		RW1S	RW1S		
HW Access			No	ne			А	Α		
Name			None	[7:2]			CC_MATCH	TC		
Bits	15	14	13	12	11	10	9	8		
SW Access		l		No	one					
HW Access		None								
Name		None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access		•		No	one	•	-			
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		<u>I</u>		No	one	1	,			
HW Access				No	one					
Name				None	[31:24]					

Bits	Name	Description
1	CC_MATCH	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0
0	TC	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0

TCPWM_CNT3_INTR_MASK

Interrupt mask register Address: 0x400601F8 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			No	ne	•		RW	RW	
HW Access			No	ne			R	R	
Name			None	e [7:2]			CC_MATCH	TC	
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access				No	ne				
Name		None [15:8]							
	T		ı	T	T	T	T		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	ne				
Name				None	[23:16]				
			T	T	1	1			
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	ne				
Name				None	[31:24]				

Bits	Name	Description
1	CC_MATCH	Mask bit for corresponding bit in interrupt request register.
		Default Value: 0
0	TC	Mask bit for corresponding bit in interrupt request register.
		Default Value: 0

TCPWM_CNT3_INTR_MASKED

Interrupt masked request register Address: 0x400601FC

Address: 0x400601FC Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			No	ne			R	R			
HW Access			No	one			W	W			
Name			None	e [7:2]			CC_MATCH	TC			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
1	CC_MATCH	Logical and of corresponding request and mask bits.
		Default Value: 0
0	TC	Logical and of corresponding request and mask bits.
		Default Value: 0

TCPWM_CNT4_CTRL

Counter control register Address: 0x40060200 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		Ne	one		RW	RW	RW	RW
HW Access		N	one		R	R	R	R
Name	None [7:4]				PWM_ STOP_ ON_KILL	PWM_ SYNC_KILL	AUTO_ RELOAD_ PERIOD	AUTO_ RELOAD_ CC
Bits	15	14	13	12	11	10	9	8
SW Access			1	R	W	l		I .
HW Access				İ	3			
Name				GENER	IC [15:8]			
		T	T	1	T			1
Bits	23	22	21	20	19	18	17	16
SW Access	No	ne	R	W	None	RW	R	W
HW Access	No	ne	F	7	None	R	F	7
Name	None [23:22] QUADRATURE_MODE [21:20]			None	ONE_SHOT	UP_DOW [17	/N_MODE :16]	
Bits	31	30	29	28	27	26	25	24

RW

R

MODE [26:24]

BitsNameDescription26:24MODECounter mode.

SW Access

HW Access

Name

Default Value: 0

0x0: TIMER:
Timer mode

0x2: CAPTURE:
Capture mode

0x3: QUAD:

Quadrature encoding mode

0x4: PWM:

Pulse width modulation (PWM) mode

None

None None [31:27]

0x5: PWM_DT:

PWM with deadtime insertion mode

0x6: PWM_PR:

Pseudo random pulse width modulation

21:20 QUADRATURE MODE

18

15:8

GENERIC

In QUAD mode selects quadrature encoding mode (X1/X2/X4).

In PWM, PWM DT and PWM PR modes, these two bits can be used to invert "dt line out" and

"dt_line_compl_out". Inversion is the last step in generation of "dt_line_out" and "dt_line_compl_out"; i.e. a disabled output line "dt_line_out" has the value

QUADRATURE MODE[0] and a disabled output line "dt line compl out" has the value

QUADRATURE_MODE[1].

Default Value: 0

0x0: X1:

X1 encoding (QUAD mode)

0x1: X2:

X2 encoding (QUAD mode)

0x1: INV OUT:

When bit 0 is '1', QUADRATURE MODE[0] inverts "dt line out" (PWM/PWM DT modes)

0x2: X4:

X4 encoding (QUAD mode)

0x2: INV COMPL OUT:

When bit 1 is '1', QUADRATURE_MODE[1] inverts "dt_line_compl_out" (PWM/PWM_DT

modes)

ONE SHOT When '0', counter runs continuous. When '1', counter is turned off by hardware when a terminal

count event is generated.

Default Value: 0

UP DOWN MODE Determines counter direction. 17:16

> Default Value: 0 0x0: COUNT UP:

Count up (to PERIOD). An overflow event is generated when the counter reaches PERIOD.

A terminal count event is generated when the counter reaches PERIOD.

0x1: COUNT DOWN:

Count down (to "0"). An underflow event is generated when the counter reaches "0". A terminal

count event is generated when the counter reaches "0".

Count up (to PERIOD), then count down (to "0"). An overflow event is generated when the counter reaches PERIOD. An underflow event is generated when the counter reaches "0".

A terminal count event is generated when the counter reaches "0".

0x3: COUNT UPDN2:

Count up (to PERIOD), then count down (to "0"). An overflow event is generated when the counter reaches PERIOD. An underflow event is generated when the counter reaches "0". A terminal count event is generated when the counter reaches "0" AND when the counter reaches PERIOD (this counter direction can be used for PWM functionality with asymmetrical

updates).

Generic 8-bit control field. In PWM DT mode, this field is used to determine the dead time: amount of dead time cycles in the counter clock domain. In all other modes, the lower 3 bits of

this field determine pre-scaling of the selected counter clock.

Default Value: 0

0x0: DIVBY1:

Divide by 1 (other-than-PWM DT mode)

0x1: DIVBY2:

Divide by 2 (other-than-PWM DT mode)

0x2: DIVBY4:

Divide by 4 (other-than-PWM_DT mode)

0x3: DIVBY8:

Divide by 8 (other-than-PWM DT mode)

0x4: DIVBY16:

Divide by 16 (other-than-PWM DT mode)

0x5: DIVBY32:

Divide by 32 (other-than-PWM DT mode)

		0x6: DIVBY64:
		Divide by 64 (other-than-PWM_DT mode)
		0x7: DIVBY128:
		Divide by 128 (other-than-PWM_DT mode)
3	PWM_STOP_ON_KILL	Specifies whether the counter stops on a kill events:
		'0': kill event does NOT stop counter.
		'1': kill event stops counter.
		This field has a function in PWM, PWM_DT and PWM_PR modes only.
		Default Value: 0
2	PWM_SYNC_KILL	Specifies asynchronous/synchronous kill behavior:
		'1': synchronous kill mode: the kill event disables the "dt_line_out" and "dt_line_compl_out" signals till the next terminal count event (synchronous kill). In synchronous kill mode, STOP_EDGE should be RISING_EDGE.
		'0': asynchronous kill mode: the kill event only disables the "dt_line_out" and "dt_line_compl_out"
		signals when present. In asynchronous kill mode, STOP_EDGE should be NO_EDGE_DET.
		This field has a function in PWM and PWM_DT modes only. This field is only used when PWM_STOP_ON_KILL is '0'. Default Value: 0
1	AUTO_RELOAD_PERIOD	Specifies switching of the PERIOD and buffered PERIOD values. This field has a function in PWM, PWM_DT and PWM_PR modes. '0': never switch.
		'1': switch on a terminal count event with and actively pending switch event. Default Value: 0
0	AUTO_RELOAD_CC	Specifies switching of the CC and buffered CC values. This field has a function in TIMER, PWM, PWM_DT and PWM_PR modes.
		Timer mode:
		'0': never switch.
		'1': switch on a compare match event. PWM, PWM_DT, PWM_PR modes:
		'0': never switch.
		'1': switch on a terminal count event with an actively pending switch event.
		Default Value: 0

TCPWM_CNT4_STATUS

Counter status register Address: 0x40060204 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		None										
HW Access		None										
Name				None [7:1]				DOWN				
Bits	15	14	13	12	11	10	9	8				
SW Access		R										
HW Access				R	W							
Name				GENER	IC [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne		1					
HW Access				No	one							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
		30	29	28		20	25	24				
SW Access	R				None							
HW Access	RW				None							
Name	RUNNING				None [30:24]							

Bits	Name	Description
31	RUNNING	When '0', the counter is NOT running. When '1', the counter is running. Default Value: 0
15:8	GENERIC	Generic 8-bit counter field. In PWM_DT mode, this counter is used for dead time insertion. In all other modes, this counter is used for pre-scaling the selected counter clock. PWM_DT mode can NOT use prescaled clock functionality.
		Default Value: 0
0	DOWN	When '0', counter is counting up. When '1', counter is counting down. In QUAD mode, this field indicates the direction of the latest counter change: '0' when last incremented and '1' when last decremented.
		Default Value: 0

TCPWM_CNT4_COUNTER

Counter count register Address: 0x40060208 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access		RW										
Name		COUNTER [7:0]										
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access				R	W							
Name				COUNT	ER [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

BitsNameDescription15:0COUNTER16-bit counter

16-bit counter value. It is advised to not write to this field when the counter is running.

TCPWM_CNT4_CC

Counter compare/capture register Address: 0x4006020C

Address: 0x4006020C Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access		RW										
Name		CC [7:0]										
	_											
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access				R	W							
Name				CC [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
	_											
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

Bits Name Description

15:0

CC

In CAPTURE mode, captures the counter value. In other modes, compared to counter value.

TCPWM_CNT4_CC_BUFF

Counter buffered compare/capture register Address: 0x40060210

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access				F	RW						
Name				CC	[7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		RW									
Name				CC	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
			_								
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits Name Description 15:0 CC

Additional buffer for counter CC register.

TCPWM_CNT4_PERIOD

Counter period register Address: 0x40060214 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access		RW										
Name		PERIOD [7:0]										
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access				R	W							
Name				PERIO	D [15:8]							
	_		_			_	_					
Bits	23	22	21	20	19	18	17	16				
SW Access				No	one							
HW Access				No	one							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	one							
HW Access				No	one							
Name				None	[31:24]							

Bits Name Description

PERIOD

15:0

Period value: upper value of the counter. When the counter should count for n cycles, this field should

be set to n-1.

TCPWM_CNT4_PERIOD_BUFF

Counter buffered period register Address: 0x40060218

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access		RW										
Name		PERIOD [7:0]										
Bits	15	14	13	12	11	10	9	8				
SW Access		RW										
HW Access				R	W							
Name				PERIO	D [15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

Bits Description Name PERIOD 15:0

Additional buffer for counter PERIOD register.

TCPWM_CNT4_TR_CTRL0

Counter trigger control register 0 Address: 0x40060220

Retention: Retained

	1						1	
Bits	7	6	5	4	3	2	1	0
SW Access		RW RW						
HW Access		F	₹			F	₹	
Name		COUNT_	SEL [7:4]			CAPTURE	_SEL [3:0]	
	1		T	1	1	1	1	
Bits	15	14	13	12	11	10	9	8
SW Access		R	W			R	W	
HW Access		F	3			F	3	
Name	STOP_SEL [15:12] RELOAD_SEL [11:8]					SEL [11:8]		
Bits	23	22	21	20	19	18	17	16
SW Access		No	ne			R	W	
HW Access		No	ne			F	3	
Name		None	[23:20]			START_S	EL [19:16]	
Bits	31	30	29	28	27	26	25	24
SW Access					lone			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
19:16	START_SEL	Selects one of the 16 input triggers as a start trigger. In QUAD mode, this is the second phase (phi B). Default Value: 0
15:12	STOP_SEL	Selects one of the 16 input triggers as a stop trigger. In PWM, PWM_DT and PWM_PR modes, this is the kill trigger. In these modes, the kill trigger is used to either temporarily block the PWM outputs (PWM_STOP_ON_KILL is '0') or stop the functionality (PWM_STOP_ON_KILL is '1'). For the PWM and PWM_DT modes, the blocking of the output signals can be asynchronous (STOP_EDGE should be NO_EDGE_DET) in which case the blocking is as long as the trigger is '1' or synchronous (STOP_EDGE should be RISING_EDGE) in which case it extends till the next terminal count event. Default Value: 0
11:8	RELOAD_SEL	Selects one of the 16 input triggers as a reload trigger. In QUAD mode, this is the index or revolution pulse. In this mode, it will update the counter with the value in the TCPWM_CNTn_PERIOD register. Default Value: 0
7:4	COUNT_SEL	Selects one of the 16 input triggers as a count trigger. In QUAD mode, this is the first phase (phi A). Default setting selects input trigger 1, which is always '1'. Default Value: 1
3:0	CAPTURE_SEL	Selects one of the 16 input triggers as a capture trigger. Input trigger 0 is always '0' and input trigger is always '1'. In the PWM, PWM_DT and PWM_PR modes this trigger is used to switch the values if the compare and period registers with their buffer counterparts. Default Value: 0

TCPWM_CNT4_TR_CTRL1

Counter trigger control register 1

Address: 0x40060224 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW		RW		RW		RW	
HW Access	ess R		F	7	F	₹	F	}
Name	Name STOP_EDGE [7:6]		RELOAD_EDGE [5:4]		COUNT_EDGE [3:2]		CAPTURE_EDGE [1:0]	

Bits	15	14	13	12	11	10	9	8	
SW Access			RW						
HW Access		None							
Name			START_E	DGE [9:8]					

Bits	23	23 22 21 20 19 18 17 16										
SW Access		None										
HW Access		None										
Name				None [23:16]								

Bits	31	30	29	28	27	26	25	24			
SW Access		None									
HW Access		None									
Name		None [31:24]									

Bits	Name	
9:8	START_EDGE	

A start event will start the counter; i.e. the counter will become running. Starting does NOT enable the counter. A start event will not initialize the counter whereas the reload event does.

Default Value: 3 0x0: RISING_EDGE:

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH_EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

7:6 STOP_EDGE

A stop event, will stop the counter; i.e. it will no longer be running. Stopping will NOT disable the counter.

Default Value: 3 0x0: RISING EDGE:

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

TCPWM_CNT4_TR_CTRL1 (Continued)

5:4 RELOAD_EDGE A reload event will initialize the counter. When counting up, the counter is initialized to "0". When

counting down, the counter is initialized with PERIOD.

Default Value: 3 **0x0: RISING EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

3:2 COUNT_EDGE A counter event will increase or decrease the counter by '1'.

Default Value: 3 **0x0: RISING_EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO EDGE DET:

No edge detection, use trigger as is.

1:0 CAPTURE_EDGE A capture event will copy the counter value into the CC register.

Default Value: 3 **0x0: RISING_EDGE:**

Rising edge. Any rising edge generates an event.

0x1: FALLING_EDGE:

Falling edge. Any falling edge generates an event.

0x2: BOTH_EDGES:

Rising AND falling edge. Any odd amount of edges generates an event.

0x3: NO_EDGE_DET:

No edge detection, use trigger as is.

$TCPWM_CNT4_TR_CTRL2$

Counter trigger control register 2

Address: 0x40060228 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None		RW		RW		RW	
HW Access	No	None		R		R		3
Name	None [7:6]		UNDERFLOW_MODE [5:4]		OVERFLOW_MODE [3:2]		CC_MATCH_MODE [1:0]	

Bits	15	14	13	12	11	10	9	8
SW Access	None							
HW Access	None							
Name	None [15:8]							

Bits	23	22	21	20	19	18	17	16
SW Access		None						
HW Access		None						
Name	None [23:16]							

Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits Name Description

5:4 UNDERFLOW_MODE Determines the effect of a counter underflow event (COUNTER reaches "0") on the "line_out"

output signals.
Default Value: 3

Ox0: SET:
Set to '1'

Ox1: CLEAR:
Set to '0'

Ox2: INVERT:
Invert

0x3: NO_CHANGE:

No Change

3:2 OVERFLOW_MODE Determines the effect of a counter overflow event (COUNTER reaches PERIOD) on the

"line_out" output signals. Default Value: 3

0x0: SET: Set to '1' 0x1: CLEAR: Set to '0' 0x2: INVERT: Invert

0x3: NO_CHANGE:

No Change

TCPWM_CNT4_TR_CTRL2 (Continued)

1:0 CC_MATCH_MODE

Determines the effect of a compare match event (COUNTER equals CC register) on the "line_out" output signals. Note that INVERT is especially useful for center aligned pulse width modulation.

To generate a duty cycle of 0%, the counter CC register should be set to "0". For a 100% duty cycle, the counter CC register should be set to larger than the counter PERIOD register.

Default Value: 3

0x0: SET: Set to '1'

0x1: CLEAR: Set to '0'

0x2: INVERT:

Invert

0x3: NO_CHANGE:

No Change

TCPWM_CNT4_INTR

Interrupt request register Address: 0x40060230 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access		l	No	one	l .		RW1C	RW1C
HW Access			No	one			RW1S	RW1S
Name			None	e [7:2]			CC_MATCH	TC
Bits	15	14	13	12	11	10	9	8
SW Access		<u> </u>	1	No	ne ne	<u> </u>		
HW Access		None						
Name		None [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access		None						
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name		None [31:24]						

Bits	Name	Description
1	CC_MATCH	Counter matches CC register event. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
0	TC	Terminal count event. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0

TCPWM_CNT4_INTR_SET

Interrupt set request register Address: 0x40060234 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None						
HW Access			No	one			А	Α
Name			None	e [7:2]			CC_MATCH	TC
Bits	15	15 14 13 12 11 10 9						
SW Access		15 14 13 12 11 10 9 8 None						
HW Access		None						
Name		None [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access		•	II.	No	one	1		
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access	None							
Name				None	[31:24]			

Bits	Name	Description
1	CC_MATCH	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0
0	TC	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0

TCPWM_CNT4_INTR_MASK

Interrupt mask register Address: 0x40060238 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access			RW	RW				
HW Access			No	one			R	R
Name			None	e [7:2]			CC_MATCH	TC
			_					
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
	23	22	21			10	17	
SW Access					ne			
HW Access				No	ne			
Name				None	23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access			1	l No	ne			
HW Access				No	ne			
Name				None	[31:24]			

Bits	Name	Description
1	CC_MATCH	Mask bit for corresponding bit in interrupt request register.
		Default Value: 0
0	TC	Mask bit for corresponding bit in interrupt request register.
		Default Value: 0

TCPWM_CNT4_INTR_MASKED

Interrupt masked request register Address: 0x4006023C

Retention: Not Retained

Bits	7	7 6 5 4 3 2 1 0									
SW Access		None R									
HW Access			No	ne			W	W			
Name			None	[7:2]			CC_MATCH	TC			
Bits	15	14	13	12	11	10	9	8			
SW Access				No	one						
HW Access				No	ne						
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access		None									
Name				None	[31:24]						

Bits	Name	Description
1	CC_MATCH	Logical and of corresponding request and mask bits.
		Default Value: 0
0	TC	Logical and of corresponding request and mask bits.
		Default Value: 0

CPU SUB SYSTEM (CPUSS) REGISTERS

This section discusses the CPUSS registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 4. REGISTER DETAILS

Register Name	Address
CPUSS_SYSREQ	0x40100004
CPUSS_SYSARG	0x40100008
CPUSS_FLASH_CTL	0x40100030
CPUSS_ROM_CTL	0x40100034

CPUSS_SYSREQ

SYSCALL control register Address: 0x40100004 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		RW								
HW Access				No	ne					
Name				SYSCALL_CC	MMAND [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access			<u> </u>	R'	W					
HW Access				No	ne					
Name				SYSCALL_CO	MMAND [15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access			1	No	ne	1	1	1		
HW Access		None								
Name		None [23:16]								

Bits	31	30	29	28	27	26	25	24
SW Access	RW	R	R	RW	RW	None		
HW Access	R	Α	RW	Α	R		None	
Name	SYSCALL_ REQ	HMASTER_ 0	ROM_ ACCESS_ EN	PRIVI- LEGED	DIS_ RESET_ VECT_REL		None [26:24]	

Bits	Name	Description
31	SYSCALL_REQ	CPU/DAP writes a '1' to this field to request a SystemCall. The HMASTER_0 field indicates the source of the write access. Setting this field to '1' immediate results in a NMI. The SystemCall NMI interrupt handler sets this field to '0' after servicing the request. Default Value: 0
30	HMASTER_0	Indicates the source of the write access to the SYSREQ register. '0': CPU write access. '1': DAP write access. HW sets this field when the SYSREQ register is written to and SYSCALL_REQ is '0' (the last time it is set is when SW sets SYSCALL_REQ from '0' to '1'). Default Value: 0
29	ROM_ACCESS_EN	Indicates that executing from Boot ROM is enabled. HW sets this field to '1', on reset or when the SystemCall NMI vector is fetched from Boot ROM. HW sets this field to '0', when the CPU is NOT executing from either Boot or System ROM. This bit is used for debug purposes only. Default Value: 1
28	PRIVILEGED	Indicates whether the system is in privileged ('1') or user mode ('0'). Only CPU SW executing from ROM can set this field to '1' when ROM_ACCESS_EN is '1' (the CPU is executing a SystemCall NMI interrupt handler). Any other write to this field sets is to '0'. This field is used as the AHB-Lite hprot[1] signal to implement proprietary user/privileged modes. These modes are used to enable/disable access to specific MMIO registers and memory regions. Default Value: 1

CPUSS_SYSREQ (Continued)

DIS_RESET_VECT_REL

Disable Reset Vector fetch relocation:

'0': CPU accesses to locations 0x0000:0000 – 0x0000:0007 are redirected to ROM.

'1': CPU accesses to locations 0x0000:0000 – 0x0000:0007 are made to flash.

Note that this field defaults to '0' on reset, ensuring actual reset vector fetches are always made to ROM. Note that this field does not affect DAP accesses. Flash DfT routines may set this bit to '1' to enable uninhibited read-back of programmed data in the first flash page.

Default Value: 0

Opcode of the system call being requested.

Default Value: 0

$CPUSS_SYSARG$

SYSARG control register Address: 0x40100008 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RW									
HW Access				No	one					
Name				SYSCALL	_ARG [7:0]					
	I	I	1	1	I	1		ı		
Bits	15	14	13	12	11	10	9	8		
SW Access				R	W					
HW Access				No	ne					
Name				SYSCALL_	ARG [15:8]					
	T	ı	1	1	ı	1	ı			
Bits	23	22	21	20	19	18	17	16		
SW Access				R	W					
HW Access				No	ne					
Name				SYSCALL_	ARG [23:16]					
			1	1		1				
Bits	31	30	29	28	27	26	25	24		
SW Access				R	W			·		
HW Access				No	ne					
Name				SYSCALL_A	ARG [31:24]					

Bits Name Description

31:0 SYSCALL_ARG

Argument to System Call specified in SYSREQ. Semantics of argument depends on system call made. Typically a pointer to a parameter block.

Default Value: 0

CPUSS_FLASH_CTL

FLASH control register Address: 0x40100030 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None		RW	None		F	RW	
HW Access		None R None							
Name		None [7:5] PREF_EN None [3:2] FLASH_						WS [1:0]	
	T		1			T		T	
Bits	15	14	13	12	11	10	9	8	
SW Access				None				RW	
HW Access				None				RW1C	
Name		None [15:9]							
Bits	23	22	21	20	19	18	17	16	
SW Access				No			1		
HW Access				No	ne				
Name				None [23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None [31:24]				

Bits	Name	Description
8	FLASH_INVALIDATE	'1': Invalidates the content of the flash controller's buffers.
		Default Value: 0
4	PREF_EN	Prefetch enable:
		'0': disabled. This is a desirable setting when FLASH_WS is "0" or when predictable execution behavior is required.
		'1': enabled.
		Default Value: 0
1:0	FLASH_WS	Amount of ROM wait states:
		"0": 0 wait states (fast flash: [0, 24] MHz system frequency, slow flash: [0, 16] MHz system frequency)
		"1": 1 wait state
		(fast flash: [24, 48] MHz system frequency, slow flash: [16, 32] MHz system frequency)
		"2": 2 wait states (slow flash: [32, 48] MHz system frequency)
		"3": undefined
		Default Value: 0

$CPUSS_ROM_CTL$

ROM control register Address: 0x40100034 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None								
HW Access				None				R		
Name				None [7:1]				ROM_WS		
						_	_			
Bits	15	14	13	12	11	10	9	8		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[15:8]					
						_	_			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
						_	_			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	one					
Name				None	[31:24]					

Bits Name 0 ROM_WS

Description

Amount of ROM wait states:

'0': 0 wait states. Use this setting for newer, faster ROM design. Use this setting for older, slower ROM design and frequencies in the range [0, 24] MHz.

'1': 1 wait state. Use this setting for older, slower ROM design and frequencies in the range [24, 48] MHz.

CPUSSv2 supports two types of ROM memory: an older, slower design (operating at up to 24 MHz) and a newer, faster design (operating at up to 48 MHz). The older design requires 1 wait state for frequencies above 24 MHz. The newer design never requires wait states. All chips after Street Fighter will use the newer design. As a result, all chips after Street Fighter can always use

0 wait states.
Default Value: 0

CONTINUOUS TIME BLOCK MINI REGISTERS

This section discusses the Continuous Time Block Mini registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 5. REGISTER DETAILS

Register Name	Address
CTBM0_CTB_CTRL	0x40300000
CTBM0_OA_RES0_CTRL	0x40300004
CTBM0_OA_RES1_CTRL	0x40300008
CTBM0_COMP_STAT	0x4030000C
CTBM0_INTR	0x40300020
CTBM0_INTR_SET	0x40300024
CTBM0_INTR_MASK	0x40300028
CTBM0_INTR_MASKED	0x4030002C
CTBM0_DFT_CTRL	0x40300030
CTBM0_OA0_SW	0x40300080
CTBM0_OA0_SW_CLEAR	0x40300084
CTBM0_OA1_SW	0x40300088
CTBM0_OA1_SW_CLEAR	0x4030008C
CTBM0_CTB_SW_HW_CTRL	0x403000C0
CTBM0_CTB_SW_STATUS	0x403000C4
CTBM0_OA0_OFFSET_TRIM	0x40300F00
CTBM0_OA0_SLOPE_OFFSET_TRIM	0x40300F04
CTBM0_OA0_COMP_TRIM	0x40300F08
CTBM0_OA1_OFFSET_TRIM	0x40300F0C
CTBM0_OA1_SLOPE_OFFSET_TRIM	0x40300F10
CTBM0_OA1_COMP_TRIM	0x40300F14

CTBM0_CTB_CTRL

global CTB and power control Address: 0x40300000

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				No	one	1	1	•
HW Access				No	one			
Name				None	e [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access				No	ne			
Name		None [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	RW	RW			N	one		
HW Access	R	R None						
Name	ENABLED	DEEP SLEEP_ON			None	[29:24]		

Bits	Name	Description
31	ENABLED	- 0: CTB IP disabled (put analog in power down, open all switches)- 1: CTB IP enabledDefault Value: 0
30	DEEPSLEEP_ON	 - 0: CTB IP disabled off during DeepSleep power mode - 1: CTB IP remains enabled during DeepSleep power mode (if ENABLED=1) Default Value: 0

$CTBM0_OA_RES0_CTRL$

Opamp0 and resistor0 control Address: 0x40300004

Retention: Retained

Name

Bits	7	6	5	4	3	2		0	
DIIS	,	6	5	4	3	2	1	U	
SW Access	RW	RW	RW	RW	None	RW	R'	W	
HW Access	R	R	R	R	None	R	F	3	
Name	OA0_DSI_ LEVEL	OA0_ BYPASS_ DSI_SYNC	OA0_ HYST_EN	OA0_ COMP_EN	None	OA0 DRIVE_ STR_SEL	OA0_PWR_MODE [1:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access	1		ne		RW	None	RW		
HW Access	None				R	None	R		
Name	None [15:12]			OA0_ PUMP_EN	None	OA0_COM	1PINT [9:8]		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name		None [23:16]							
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access				No	ne				
	+								

None [31:24]

Bits	Name	Description
11	OA0_PUMP_EN	Opamp0 pump enable
		Default Value: 0
9:8	OA0_COMPINT	Opamp0 comparator edge detect
		Default Value: 0
		0x0: DISABLE:
		Disabled, no interrupts will be detected
		0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:
		Both rising and falling edges
7	OA0_DSI_LEVEL	Opamp0 comparator DSI (trigger) out level: 0=pulse, 1=level
		Default Value: 0
6	OA0_BYPASS_DSI_SYNC	Opamp0 bypass comparator output synchronization for DSI (trigger) output: 0=synchronize (level or pulse), 1=bypass (output async)
		Default Value: 0
5	OA0_HYST_EN	Opamp0 hysteresis enable (10 mV)
		Default Value: 0
4	OA0_COMP_EN	Opamp0 comparator enable
		Default Value: 0

CTBM0_OA_RES0_CTRL (Continued)

2 OA0_DRIVE_STR_SEL Opamp0 output strenght select 0=1x, 1=10x

Default Value: 0

1:0 OA0_PWR_MODE Opamp0 power level

Default Value: 0 0x0: OFF: Off

0x1: LOW:

Low compensation setting (smallest cap, highest GBW). For gain=10: PM=60deg @Cload=50 pF for the output to pin driver and 10 pF for the internal only driver

0x2: MEDIUM:

Medium compensation setting. For gain=4: PM=60deg @ Cload=50 pF for the output to pin

driver and 10 pF for the internal only driver.

Highest compensation (largest cap, lowest GBW). For gain=1: PM=60deg @ Cload=50 pF for

the output to pin driver and 10 pF for the internal only driver

CTBM0_OA_RES1_CTRL

Opamp1 and resistor1 control Address: 0x40300008

Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access	RW	RW	RW	RW	None	RW	RW		
HW Access	R	R	R	R	None	R	F	₹	
Name	OA1_DSI_ L EVEL	OA1_ BYPASS_ DSI_SYNC	OA1_ HYST_EN	OA1_ COMP_EN	None	OA1 DRIVE_ STR_SEL	OA1_PWR_	OA1_PWR_MODE [1:0]	
Bits	15	14	13	12	11	10	9	8	
SW Access	None RW None RV				W				
HW Access	None				R	None	R		
Name	None [15:12]			OA1_ PUMP_EN	None	OA1_COMPINT [9:8]			
		T		T			<u> </u>		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	ne				
Name		None [23:16]							
		T		T	T		T	T	
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access				No	ne				
	+								

None [31:24]

Bits	Name	Description
11	OA1_PUMP_EN	Opamp1 pump enable
		Default Value: 0
9:8	OA1_COMPINT	Opamp0 comparator edge detect
		Default Value: 0
		0x0: DISABLE:
		Disabled, no interrupts will be detected
		0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:
		Both rising and falling edges
7	OA1_DSI_LEVEL	Opamp0 comparator DSI (trigger) out level: 0=pulse, 1=level
		Default Value: 0
6	OA1_BYPASS_DSI_SYNC	Opamp1 bypass comparator output synchronization for DSI output:
		0=synchronize, 1=bypass
		Default Value: 0
5	OA1_HYST_EN	Opamp1 hysteresis enable (10 mV)
		Default Value: 0
4	OA1_COMP_EN	Opamp1 comparator enable
		Default Value: 0

CTBM0_OA_RES1_CTRL (Continued)

2	OA1_DRIVE_STR_SEL	Opamp1 output strength select 0=1x, 1=10x Default Value: 0
1:0	OA1_PWR_MODE	Opamp1 power level: see description of OA0_PWR_MODE Default Value: 0

CTBM0_COMP_STAT

Comparator status Address: 0x4030000C Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None						
HW Access				None				W
Name		None [7:1]						OA0_COMP
	1		1	1	1			1
Bits	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access		None						
Name		None [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				None				R
HW Access				None				W
Name				None [23:17]				OA1_COMP
Bits	31	30	29	28	27	26	25	24
SW Access			<u> </u>		l one	1	1	
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
16	OA1_COMP	Opamp1 current comparator status
		Default Value: 0
0	OA0_COMP	Opamp0 current comparator status
		Default Value: 0

CTBMO_INTR

Interrupt request register Address: 0x40300020 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access			No	ne	·	1	RW1C	RW1C
HW Access			No	ne			RW1S	RW1S
Name			None	[7:2]			COMP1	COMP0
Bits	15	14	13	12	11	10	9	8
SW Access			<u> </u>	No	ne	1		1
HW Access		None						
Name		None [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access			1	No	ne			1
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access			1	l No	l one	<u> </u>		1
HW Access	None							
Name		None [31:24]						

Bits	Name	Description
1	COMP1	Comparator 1 Interrupt: hardware sets this interrupt when comparator 1 triggers. Write with '1' to clear bit.
		Default Value: 0
0	COMP0	Comparator 0 Interrupt: hardware sets this interrupt when comparator 0 triggers. Write with '1' to clear bit.
		Default Value: 0

CTBM0_INTR_SET

Interrupt request set register Address: 0x40300024 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
	,										
SW Access			No	one			RW1S	RW1S			
HW Access			No	one			Α	Α			
Name			None	e [7:2]			COMP1_SET	COMP0_SET			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access			•	No	one	•	•	•			
HW Access				No	one						
Name	None [31:24]										

Bits	Name	Description
1	COMP1_SET	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0
0	COMP0_SET	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0

CTBM0_INTR_MASK

Interrupt request mask Address: 0x40300028 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access			No	ne			RW	RW				
HW Access			No	ne			R	R				
Name			None	e [7:2]			COMP1_ MASK	COMP0_ MASK				
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name		None [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				No	one							
HW Access				No	one							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access			23		one		20	27				
HW Access		None										
Name				None	[31:24]							

Bits	Name	Description
1	COMP1_MASK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	COMP0_MASK	Mask bit for corresponding bit in interrupt request register. Default Value: 0

CTBM0_INTR_MASKED

Interrupt request masked Address: 0x4030002C Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access			No	ne	•	•	R	R				
HW Access			No	one			W	W				
Name			None	e [7:2]			COMP1 MASKED	COMP0 MASKED				
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name		None [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				No	one							
HW Access				No	one							
Name				None	[23:16]							
	T		T	1	1	1	1	T				
Bits	31	30	29	28	27	26	25	24				
SW Access				No	one							
HW Access				No	one							
Name				None	[31:24]							

Bits	Name	Description
1	COMP1_MASKED	Logical and of corresponding request and mask bits. Default Value: 0
0	COMP0_MASKED	Logical and of corresponding request and mask bits. Default Value: 0

CTBM0_DFT_CTRL

Was 'Analog DfT controls', now used as Risk Mitigation bits (RMP) Address: 0x40300030

Retention: Retained

SW Access

HW Access

Name

 RW

R

DFT_EN

Bits	7	6	5	4	3	2	1	0			
SW Access			RW								
HW Access			None		R						
Name		None [7:3]					OFT_MODE [2:0)]			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access			l	No	ne	l	<u>I</u>				
HW Access				No	one						
Name		None [23:16]									
	•										
Bits	31	30	29	28	27	26	25	24			

None

None

None [30:24]

Bits	Name	Description
31	DFT_EN	This bit is combined with the 3 bits 2:0, to form RMP[3:0]
		Default Value: 0
2:0	DFT_MODE	This bit is combined with bit 31, to form RMP[3:0], it must always be written with '3' for correct operation. Default Value: 0

CTBM0_OA0_SW

Opamp0 switch control Address: 0x40300080 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne		RW1S	RW1S	None	RW1S
HW Access		No	ne		RW1C	RW1C	None	RW1C
Name		None	[7:4]		OA0P_A30	OA0P_A20	None	OA0P_A00

Bits	15	14	13	12	11	10	9	8	
SW Access	None	RW1S		RW1S					
HW Access	None	RW1C		None					
Name	None	OA0M_A81			None [13:9]			OA0M_A11	

Bits	23	22	21	20	19	18	17	16
SW Access	None		RW1S	None		RW1S	None	
HW Access	None		RW1C	None		RW1C	None	
Name	None [23:22]		OA00_D81	None [20:19]		OA0O_D51	None [17:16]	

Bits	31	30	29	28	27	26	25	24		
SW Access	None									
HW Access	None									
Name	None [31:24]									

Bits	Name	Description
21	OA0O_D81	Opamp0 output switch to short 1x with 10x drive Default Value: 0
18	OA0O_D51	Opamp0 output sarbus0 (ctbbus2 in CTB) Default Value: 0
14	OA0M_A81	Opamp0 negative terminal Opamp0 output Default Value: 0
8	OA0M_A11	Opamp0 negative terminal P1 Default Value: 0
3	OA0P_A30	Opamp0 positive terminal ctbbus0 Default Value: 0
2	OA0P_A20	Opamp0 positive terminal P0 Default Value: 0
0	OA0P_A00	Opamp0 positive terminal amuxbusa Default Value: 0

CTBM0_OA0_SW_CLEAR

Opamp0 switch control clear Address: 0x40300084

Retention: Retained

Bits	7 6 5 4				3	2	1	0
SW Access		No	ne		RW1C	RW1C	None	RW1C
HW Access		None				Α	None	Α
Name		None	[7:4]		OA0P_A30	OA0P_A20	None	OA0P_A00

Bits	15	14	13	12	11	10	9	8
SW Access	None	RW1C	None					RW1C
HW Access	None	Α		None				
Name	None	OA0M_A81		None [13:9]				

Bits	23	22	21	20	19	18	17	16
SW Access	SW Access None		RW1C	None		RW1C	None	
HW Access	HW Access None		Α	None		Α	None	
Name	None [[23:22]	OA00_D81	None [20:19]		OA0O_D51	None [[17:16]

Bits	31	30	29	28	27	26	25	24	
SW Access	None None None [31:24]								
HW Access									
Name									

Bits	Name	Description
21	OA0O_D81	see corresponding bit in OA0_SW Default Value: 0
18	OA0O_D51	see corresponding bit in OA0_SW Default Value: 0
14	OA0M_A81	see corresponding bit in OA0_SW Default Value: 0
8	OA0M_A11	see corresponding bit in OA0_SW Default Value: 0
3	OA0P_A30	see corresponding bit in OA0_SW Default Value: 0
2	OA0P_A20	see corresponding bit in OA0_SW Default Value: 0
0	OA0P_A00	see corresponding bit in OA0_SW Default Value: 0

$CTBM0_OA1_SW$

Opamp1 switch control Address: 0x40300088 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None		RW1S	No	ne	RW1S	RW1S
HW Access	None			RW1C	None		RW1C	RW1C
Name	None [7:5]		OA1P_A43	None [3:2]		OA1P_A13	OA1P_A03	

Bits	15	14	13	12	11	10	9	8
SW Access	None	RW1S		None				
HW Access	None	RW1C		None				
Name	None	OA1M_A82		None [13:9]				

Bits	23	22	21	20	19	18	17	16
SW Access	None		RW1S	None	RW1S	RW1S	None	
HW Access	ccess None		RW1C	None	RW1C	RW1C	None	
Name	None [23:22]		OA10_D82	None	OA10_D62	OA10_D52	None [[17:16]

Bits	31	30	29	28	27	26	25	24	
SW Access	None None None [31:24]								
HW Access									
Name									

Bits	Name	Description
21	OA1O_D82	Opamp1 output switch to short 1x with 10x drive Default Value: 0
19	OA1O_D62	Opamp1 output sarbus1 (ctbbus3 in CTB) Default Value: 0
18	OA1O_D52	Opamp1 output sarbus0 (ctbbus2 in CTB) Default Value: 0
14	OA1M_A82	Opamp1 negative terminal Opamp1 output Default Value: 0
8	OA1M_A22	Opamp1 negative terminal P4 Default Value: 0
4	OA1P_A43	Opamp1 positive terminal ctbbus1 Default Value: 0
1	OA1P_A13	Opamp1 positive terminal P5 Default Value: 0
0	OA1P_A03	Opamp1 positive terminal amuxbusb Default Value: 0

CTBM0_OA1_SW_CLEAR

Opamp1 switch control clear Address: 0x4030008C

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None		RW1C	No	ne	RW1C	RW1C
HW Access	None			Α	None		Α	Α
Name	None [7:5]		OA1P_A43	None [3:2]		OA1P_A13	OA1P_A03	

Bits	15	14	13	12	11	10	9	8	
SW Access	None	RW1C	None					RW1C	
HW Access	None	Α		None					
Name	None	OA1M_A82			None [13:9]			OA1M_A22	

Bits	23	22	21	20	19	18	17	16
SW Access	None		RW1C	None	RW1C	RW1C	None	
HW Access	No	ne	Α	None	Α	Α	None	
Name	None	[23:22]	OA10_D82	None	OA10_D62	OA10_D52	None [17:16]	

Bits	31	30	29	28	27	26	25	24			
SW Access		None									
HW Access		None									
Name				None [31:24]						

Bits	Name	Description
21	OA1O_D82	see corresponding bit in OA1_SW Default Value: 0
19	OA1O_D62	see corresponding bit in OA1_SW Default Value: 0
18	OA1O_D52	see corresponding bit in OA1_SW Default Value: 0
14	OA1M_A82	see corresponding bit in OA1_SW Default Value: 0
8	OA1M_A22	see corresponding bit in OA1_SW Default Value: 0
4	OA1P_A43	see corresponding bit in OA1_SW Default Value: 0
1	OA1P_A13	see corresponding bit in OA1_SW Default Value: 0
0	OA1P_A03	see corresponding bit in OA1_SW Default Value: 0

$CTBM0_CTB_SW_HW_CTRL$

CTB bus switch control Address: 0x403000C0 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		No	ne		RW	RW	No	ne		
HW Access		No	one		R	R	No	None		
Name		None	e [7:4]		P3_HW_ CTRL	P2_HW_ CTRL	None	[1:0]		
Bits	15	14	13	12	11	10	9	8		
SW Access			•	No	one		•			
HW Access		None								
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access			•	No	one		•			
HW Access				No	one					
Name				None	[23:16]					
			I	I	T		T	T		
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	ne					
Name				None	[31:24]					

Bits	Name	Description
3	P3 HW CTRL	Pin P3 switches
		Default Value: 0
2	P2_HW_CTRL	Pin P2 switches
		Default Value: 0

CTBM0_CTB_SW_STATUS

CTB bus switch control status

Address: 0x403000C4 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			•	No	one	•					
HW Access				No	one						
Name	None [7:0]										
Bits	15	15 14 13 12 11 10 9 8									
SW Access	None										
HW Access				No	one						
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access			I	No	ne	1					
HW Access	None										
Name				None	[23:16]						

Bits	31	30	29	28	27	26	25	24
SW Access	None	R	R	R	None			
HW Access	None	W	W	W	None			
Name	None	OA1O_ D62_STAT	OA1O_ D52_STAT	OA0O_ D51_STAT		None	[27:24]	

Bits	Name	Description
30	OA1O_D62_STAT	see OA1O_D62 bit in OA1_SW Default Value: 0
29	OA1O_D52_STAT	see OA1O_D52 bit in OA1_SW Default Value: 0
28	OA0O_D51_STAT	see OA0O_D51 bit in OA0_SW Default Value: 0

$CTBM0_OA0_OFFSET_TRIM$

Opamp0 trim control Address: 0x40300F00 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	No	ne	RW								
HW Access	No	ne		R							
Name	None	[7:6]			OA0_OFFSET_TRIM [5:0]						
Dia-	1 45		10	10	- 44	10					
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access				No	one						
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits Name 5:0 OA0_OFFSET_TRIM **Description**Opamp0 offset trim
Default Value: 0

$CTBM0_OA0_SLOPE_OFFSET_TRIM$

Opamp0 trim control Address: 0x40300F04 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
			3	'	U						
SW Access	No	ne			R	W					
HW Access	No	ne		R							
Name	None	[7:6]		OA0_SLOPE_OFFSET_TRIM [5:0]							
Bits	15	14	13	12	11	10	9	8			
	13										
SW Access				No	one						
HW Access				No	one						
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
DIIS	23	22	21	20	19	10	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
	T		1	T	T	1	T	1			
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one			•			
Name				None	[31:24]						

Bits Name
5:0 OA0_SLOPE_OFFSET_TRIM

Description

Opamp0 slope offset drift trim

Default Value: 0

CTBM0_OA0_COMP_TRIM

Opamp0 trim control Address: 0x40300F08 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			No	ne		1	RW				
HW Access			No	one			F	3			
Name			None	e [7:2]			OA0_COMF	P_TRIM [1:0]			
Bits	15	14	13	12	11	10	9	8			
SW Access				No	ne						
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne			I			
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access	-		<u> </u>		ne			<u> </u>			
HW Access				No	ne						
Name				None	[31:24]						

Bits Name 1:0 OA0_COMP_TRIM Description

Opamp0 Compensation Capacitor Trim

Default Value: 0

$CTBM0_OA1_OFFSET_TRIM$

Opamp1 trim control Address: 0x40300F0C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	No	ne	RW							
HW Access	No	ne		R						
Name	None	[7:6]			OA1_OFFSE	T_TRIM [5:0]				
Bits	15	14	13	12	11	10	9	8		
	15	14	13			10	9	•		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access					ne					
HW Access				No	ne					
Name				None	[23:16]					
	T	I	T	1	1	T	T	1		
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 5:0 OA1_OFFSET_TRIM **Description**Opamp1 offset trim
Default Value: 0

$CTBM0_OA1_SLOPE_OFFSET_TRIM$

Opamp1 trim control Address: 0x40300F10 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	No	ne		RW							
HW Access	No	ne		R							
Name	None	[7:6]		O/	A1_SLOPE_OF	FSET_TRIM [5	:0]				
Dia-	45		40	10	- 44	10					
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		•	•	No	ne	•	•	•			
HW Access				No	one						
Name				None	[31:24]						

Bits Name
5:0 OA1_SLOPE_OFFSET_TRIM

Description

Opamp1 slope offset drift trim

Default Value: 0

CTBM0_OA1_COMP_TRIM

Opamp1 trim control Address: 0x40300F14 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access			No	ne		1	RW			
HW Access			No	one			F	3		
Name			None	e [7:2]			OA1_COMP_TRIM [1:0]			
Bits	15	14	13	12	11	10	9	8		
SW Access				No	ne					
HW Access		None								
Name				None	[15:8]					
	T		T	1	T	•				
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
	1		T	1	T	T	1			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 1:0 OA1_COMP_TRIM Description

Opamp1 Compensation Capacitor Trim

Default Value: 0

DEEP SLEEP AMPLIFIER BIAS (DSAB) REGISTERS

This section discusses the DSAB registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 6. REGISTER DETAILS

Register Name	Address				
PASS_DSAB_DSAB_CTRL	0x403F0E00				
PASS_DSAB_DSAB_DFT	0x403F0E04				

PASS_DSAB_DSAB_CTRL

global DSAB control Address: 0x403F0E00 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	No	ne	RW					
HW Access	No	ne	R					
Name	None	[7:6]			CURRENT	_SEL [5:0]		

Bits	15	14	13	12	11	10	9	8	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None [15:12]		SEL_OUT [11:8]				

Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None	[23:20]		REF_SWAP_EN [19:16]				

Bits	31	30	29	28	27	26	25	24
SW Access	RW	No	None RW Noi		None		RW	
HW Access	R	None		R		None		
Name	ENABLED	None	[30:29]	STARTUP_ RM		None [27:25]		BYPASS_ MODE_EN

Bits	Name	Description
31	ENABLED	This field (along with SEL_OUT and REF_SWAP_EN) provides bitwise selection of the current sources that drive the DSAB ZTC and PTAT outputs.
		See SEL_OUT field for truth tables.
		In SRSSLT devices, in active mode, this bit is overridden to '1', that is – it is always enabled in active mode.
		Default Value: 0
28	STARTUP_RM	Risk mitigation control
		1 – Force start the startup circuit
		Default Value: 0
24	BYPASS_MODE_EN	0 – DSAB PTAT generator is powered from DSAB regulator: VDDA must be at least 2.4 V
		1 – DSAB PTAT generator is pwoered directly from VDDA: VDDA cannot exceed 4.0 V
		Default Value: 0
19:16	REF_SWAP_EN	This field (along with SEL_OUT and ENABLED) provides bitwise selection of the current sources that drive the DSAB ZTC and PTAT outputs.
		See SEL_OUT field for truth tables.
		Default Value: 0

11:8 SEL_OUT

This field (along with REF_SWAP_EN and ENABLED) provides bitwise selection of the current sources that drive the DSAB ZTC and PTAT outputs. The available current sources are a function of the type of SRSS. The SRSS current sources are disabled in chip DeepSleep mode which is indicated by () entries in the truth table. CTB(m) factory trim has SRSS-ZTC and either SRSS-PTAT (SRSSv2) or DSAB_PTAT (SRSS-LITE) enabled. If different settings are used, then a periodic re-trim of CTB(m) offset should be performed.

Truth Table with SRSSv2

ENABLED	SEL_OUT	REF_SWAP_EN	"Chip Power Mode"	ZTC Output	PTAT Output
0	X	X	Active	SRSS-ZTC	SRSS-PTAT
0	X	X	Deepsleep	(SRSS-ZTC)	(SRSS-PTAT)
1	0	0	Active	SRSS-ZTC	SRSS-PTAT
1	0	0	DeepSleep	(SRSS-ZTC)	(SRSS-PTAT)
1	0	1	Active	SRSS-PTAT	SRSS-ZTC
1	0	1	DeepSleep	(SRSS-PTAT)	(SRSS-ZTC)
1	1	0	Active	DSAB-PTAT	SRSS-PTAT
1	1	0	DeepSleep	DSAB-PTAT	(SRSS-PTAT)
1	1	1	Active	SRSS-PTAT	DSAB-PTAT
1	1	1	DeepSleep	(SRSS-PTAT)	DSAB-PTAT

Truth Table with SRSS-LITE

ENABLED	SEL_OUT	REF_SWAP_EN	"Chip Power Mode"	ZTC Output	PTAT Output
0	X	X	Active	SRSS-ZTC	DSAB-PTAT
0	X	X	Deepsleep	(SRSS-ZTC)	_
1	0	0	Active	SRSS-ZTC	DSAB-PTAT
1	0	0	DeepSleep	(SRSS-ZTC)	_
1	0	1	Active	DSAB-PTAT	SRSS-ZTC
1	0	1	DeepSleep	DSAB-PTAT	(SRSS-ZTC)
1	1	0	Active	DSAB-PTAT	_
1	1	0	DeepSleep	DSAB-PTAT	_
1	1	1	Active	-	DSAB-PTAT
1	1	1	DeepSleep	-	DSAB-PTAT

5:0 CURRENT_SEL

DSAB DAC control field

Nominal DSAB Output Current = CURRENT_SEL * 0.075 μA

In products with SRSS-LITE, this setting impacts the CTB(m) offset. A value of 0x20 is used during factory trim and is required to maintain low offsets across temperature variation. If a different setting is used then a periodic re-trim of CTB(m) offset should be performed. Default Value: 0

$PASS_DSAB_DSAB_DFT$

DFT bits

Address: 0x403F0E04 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		N	one	II.	RW						
HW Access		N	one		R						
Name		Non	e [7:4]		EN_DFT [3:0]						
			1		1	1	I	ı			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one		<u> </u>	<u>I</u>			
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
	٥.										
SW Access				No	one						
HW Access		•		No	one			•			
Name				None	[31:24]						

Bits Name
3:0 EN_DFT

Description

- 0: DSAB DFT disabled

- 1: DSAB DFT enabled (connect output to amuxbus)

0001 - PTAT<0>
0010 - PTAT<1>
0011 - PTAT<1:0>
0100 - PTAT<2>
0111 - PTAT<2:0>
1000 - PTAT<3>
1111 - PTAT<3:0>
1001 - DSAB Reg Out Default Value: 0

GPIO - COMMON REGISTERS

This section discusses the GPIO registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 7. REGISTER DETAILS

Register Name	Address			
GPIO_INTR_CAUSE	0x40041000			

GPIO_INTR_CAUSE

Interrupt port cause register Address: 0x40041000 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	ss None R						1		
HW Access		None			W				
Name	None [7:5]					PORT_INT [4:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access					ne ···	1			
HW Access					one				
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access					l one				
HW Access				No	one				
Name				None	[23:16]				
	ı	I	I	I	ı	1	ı		
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 4:0 PORT_INT

Description

Each IO port has an associated bit field in this register. The bit field reflects the IO port's interrupt line (bit field i reflects "gpio_interrupts[i]" for IO port i). The register is used when the system uses a shared/combined interrupt line "gpio_interrupt". The SW ISR reads the register to determine which IO port(s) is responsible for the shared/combined interrupt line "gpio_interrupt". Once, the IO port(s) is determined, the IO port's INTR register is read to determine the IO pad(s) in the IO port that caused the interrupt. Default Value: 0

GPIO - PORT SPECIFIC REGISTERS

This section discusses the GPIO Port registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 8. REGISTER DETAILS

Register Name	Address
GPIO_PRT0_DR	0x40040000
GPIO_PRT0_PS	0x40040004
GPIO_PRT0_PC	0x40040008
GPIO_PRT0_INTR_CFG	0x4004000C
GPIO_PRT0_INTR	0x40040010
GPIO_PRT0_PC2	0x40040018
GPIO_PRT0_DR_SET	0x40040040
GPIO_PRTO_DR_CLR	0x40040044
GPIO_PRT0_DR_INV	0x40040048
GPIO_PRT1_DR	0x40040100
GPIO_PRT1_PS	0x40040104
GPIO_PRT1_PC	0x40040108
GPIO_PRT1_INTR_CFG	0x4004010C
GPIO_PRT1_INTR	0x40040110
GPIO_PRT1_PC2	0x40040118
GPIO_PRT1_DR_SET	0x40040140
GPIO_PRT1_DR_CLR	0x40040144
GPIO_PRT1_DR_INV	0x40040148
GPIO_PRT2_DR	0x40040200
GPIO_PRT2_PS	0x40040204
GPIO_PRT2_PC	0x40040208
GPIO_PRT2_INTR_CFG	0x4004020C
GPIO_PRT2_INTR	0x40040210
GPIO_PRT2_PC2	0x40040218
GPIO_PRT2_DR_SET	0x40040240
GPIO_PRT2_DR_CLR	0x40040244
GPIO_PRT2_DR_INV	0x40040248
GPIO_PRT3_DR	0x40040300
GPIO_PRT3_PS	0x40040304
GPIO_PRT3_PC	0x40040308
GPIO_PRT3_INTR_CFG	0x4004030C
GPIO_PRT3_INTR	0x40040310
GPIO_PRT3_PC2	0x40040318
GPIO_PRT3_DR_SET	0x40040340
GPIO_PRT3_DR_CLR	0x40040344
GPIO_PRT3_DR_INV	0x40040348
GPIO_PRT4_DR	0x40040400
GPIO_PRT4_PS	0x40040404

Table 8. REGISTER DETAILS (continued)

Register Name	Address
GPIO_PRT4_PC	0x40040408
GPIO_PRT4_INTR_CFG	0x4004040C
GPIO_PRT4_INTR	0x40040410
GPIO_PRT4_PC2	0x40040418
GPIO_PRT4_DR_SET	0x40040440
GPIO_PRT4_DR_CLR	0x40040444
GPIO_PRT4_DR_INV	0x40040448

$GPIO_PRT0_DR$

Name

Port output data register Address: 0x40040000 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	RW	RW	RW	RW	RW	RW	RW	RW	
HW Access	RW	RW	RW	RW	RW	RW	RW	RW	
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATAC	
	Ι	1	1	1	Ι	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access				No	one				
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne			I	
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access	None								

None [31:24]

Bits	Name	Description
7	DATA7	IO pad 7 output data.
		Default Value: 0
6	DATA6	IO pad 6 output data.
		Default Value: 0
5	DATA5	IO pad 5 output data.
		Default Value: 0
4	DATA4	IO pad 4 output data.
		Default Value: 0
3	DATA3	IO pad 3 output data.
		Default Value: 0
2	DATA2	IO pad 2 output data.
		Default Value: 0
1	DATA1	IO pad 1 output data.
		Default Value: 0
0	DATA0	IO pad 0 output data.
		Default Value: 0

GPIO_PRT0_PS

Name

Port IO pad state register Address: 0x40040004 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R	R	R	R	R	R	R	R	
HW Access	W	W	W	W	W	W	W	W	
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	
	l		l	I	l .				
Bits	15	14	13	12	11	10	9	8	
SW Access		•	•	None	•	•	•	R	
HW Access		None							
Name				None [15:9]				FLT_DATA	
	ı		ı		1			ı	
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	ne				
Name				None	[23:16]				
		_				_	_		
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access	None								

None [31:24]

Bits	Name	Description
8	FLT_DATA	Reads of this register return the logical state of the filtered pin.
		Default Value: 0
7	DATA7	IO pad 7 state.
		Default Value: 0
6	DATA6	IO pad 6 state.
		Default Value: 0
5	DATA5	IO pad 5 state.
		Default Value: 0
4	DATA4	IO pad 4 state.
		Default Value: 0
3	DATA3	IO pad 3 state.
		Default Value: 0
2	DATA2	IO pad 2 state.
		Default Value: 0
1	DATA1	IO pad 1 state.
		Default Value: 0
0	DATA0	IO pad 0 state:
		1: Logic high, if the pin voltage is above the input buffer threshold, logic high.
		0: Logic low, if the pin voltage is below that threshold, logic low.
		If the drive mode for the pin is set to high Z Analog, the pin state will read 0 independent of the voltage

on the pin. Default Value: 0

GPIO_PRT0_PC

Port configuration register Address: 0x40040008 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R ¹	W	RW			RW			
HW Access	F	}	R				R		
Name	DM2	[7:6]		DM1 [5:3]			DM0 [2:0]		

Bits	15	14	13	12	11	10	9	8
SW Access	RW	RW			RW			RW
HW Access	R	R			R			R
Name	DM5		DM4 [14:12]		DM3 [11:9]			DM2

Bits	23	22	21	20	19	18	17	16	
SW Access	RW			RW			RW		
HW Access	R			R			F	₹	
Name	DM7 [23:21]			DM6 [20:18]			DM5 [17:16]		

Bits	31	30	29	28	27	26	25	24
SW Access	R'	W	None			RW	RW	
HW Access	F	3	None				R	R
Name	PORT_IB_I [31	MODE_SEL :30]		None [29:26]			PORT_ SLOW	PORT_ VTRIP_SEL

Bits	Name	Description
31 : 30	PORT_IB_MODE_SEL	This field selects the input buffer reference. The size (1 or 2 bits) and functionality is dependent on the IO cell.
		For GPIOv2 IO cells, bit PORT_IB_MODE_SEL[1] is not used (GPIOv2 IO cell replaces GPIO IO cell):
		"0"/"2": CMOS input buffer (PORT_VTRIP_SEL is '0'), LVTTL input buffer (PORT_VTRIP_SEL is '1') "1"/"3": vechib.
		For GPIO_OVTv2 and SIOv2 IO cells: "0": CMOS input buffer (PORT_VTRIP_SEL is '0'), LVTTL input buffer (PORT_VTRIP_SEL is '1') "1": vcchib. "2": OVT.
		"3": Reference (possibly from reference generator cell). For SIO IO cell, this field is present but not used as the SIO IO cell does not provide input buffer mode select functionality (SIOv2 IO cell will replace SIO IO cell, as soon as it is available).
		Default Value: 0
25	PORT_SLOW	This field controls the output edge rate of all pins on the port: '0': fast.
		'1': slow.
		Default Value: 0
24	PORT_VTRIP_SEL	The GPIO cells include a VTRIP_SEL signal to alter the input buffer voltage. Note: this bit is ignored for SIO ports, the VTRIP_SEL settings in the SIO register are used instead (a separate VTRIP_SEL is provided for each pin pair).
		0: input buffer functions as a CMOS input buffer.
		1: input buffer functions as a LVTTL input buffer.
		Default Value: 0

GPIO_PRT0_PC (Continued)

23:21	DM7	The GPIO drive mode for IO pad 7. Default Value: 0
20:18	DM6	The GPIO drive mode for IO pad 6. Default Value: 0
17:15	DM5	The GPIO drive mode for IO pad 5. Default Value: 0
14:12	DM4	The GPIO drive mode for IO pad 4. Default Value: 0
11:9	DM3	The GPIO drive mode for IO pad 3. Default Value: 0
8:6	DM2	The GPIO drive mode for IO pad 2. Default Value: 0
5:3	DM1	The GPIO drive mode for IO pad 1. Default Value: 0
2:0	DM0	The GPIO drive mode for IO pad 0.

Note: when initializing IO's that are connected to a live bus (such as I^2C), make sure the HSIOM is properly configured (HSIOM_PRT_SELx) before turning the IO on here to avoid producing glitches on the bus.

Default Value: 0

0x0: OFF:

Mode 0 (analog mode): Output buffer off (high Z). Input buffer off.

0x1: INPUT:

Mode 1: Output buffer off (high Z). Input buffer on.

0x2: 0 PU:

Mode 2: Strong pull down ('0'), weak/resistive pull up (PU). Input buffer on.

0x3: PD 1:

 $\label{eq:mode 3: Weak/resistive pull down (PD), strong pull up (`1'). Input buffer on.}$

0x4: 0_Z:

Mode 4: Strong pull down ('0'), open drain (pull up off). Input buffer on.

0x5: Z 1:

Mode 5: Open drain (pull down off), strong pull up ('1'). Input buffer on.

0x6: 0 1:

Mode 6: Strong pull down ('0'), strong pull up ('1'). Input buffer on.

0x7: PD PU:

Mode 7: Weak/resistive pull down (PD), weak/resistive pull up (PU). Input buffer on.

GPIO_PRT0_INTR_CFG

Port interrupt configuration register Address: 0x4004000C

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW		RW		RW		RW	
HW Access	R		R		R		R	
Name	Name EDGE3_SEL [7:6]		EDGE2_SEL [5:4]		EDGE1_SEL [3:2]		EDGE0_SEL [1:0]	
·								

Bits	15	14	13	12	11	10	9	8
SW Access RW		RW		RW		RW		
HW Access	F	?	R		R		F	₹
Name EDGE7_SEL [15:14]		EDGE6_SEL [13:12]		EDGE5_SEL [11:10]		EDGE4_SEL [9:8]		

Bits	23	22	21	20	19	18	17	16
SW Access	None				RW	RW		
HW Access	None		R			F	3	
Name	ne None [23:21]		FLT_SEL [20:18]			FLT_EDGE_SEL [17:16]		

Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None	[31:24]					

interrupt.

Bits	Name	Description
20:18	FLT_SEL	Selects which pin is routed through the 50 ns glitch filter to provide a glitch-safe in Default Value: 0
17:16	FLT_EDGE_SEL	Same for the glitch filtered pin (selected by FLT_SELECT). Default Value: 0
		0x0: DISABLE:
		Disabled
		0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:
		Both rising and falling edges
15:14	EDGE7_SEL	Sets which edge will trigger an IRQ for IO pad 7. Default Value: 0
13:12	EDGE6_SEL	Sets which edge will trigger an IRQ for IO pad 6. Default Value: 0
11:10	EDGE5_SEL	Sets which edge will trigger an IRQ for IO pad 5. Default Value: 0
9:8	EDGE4_SEL	Sets which edge will trigger an IRQ for IO pad 4. Default Value: 0
7:6	EDGE3_SEL	Sets which edge will trigger an IRQ for IO pad 3. Default Value: 0

GPIO_PRT0_INTR_CFG (Continued)

5:4	EDGE2_SEL	Sets which edge will trigger an IRQ for IO pad 2. Default Value: 0
3:2	EDGE1_SEL	Sets which edge will trigger an IRQ for IO pad 1. Default Value: 0
1:0	EDGE0_SEL	Sets which edge will trigger an IRQ for IO pad 0. Default Value: 0
		0x0: DISABLE:
		Disabled
		0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:
		Both rising and falling edges

GPIO_PRT0_INTR

HW Access

Name

Port interrupt status register Address: 0x40040010 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
HW Access	Α	Α	Α	Α	А	А	А	Α
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
Bits	15	14	13	12	11	10	9	8
SW Access				None				RW1C
HW Access	None							
Name				None [15:9]				FLT_DATA
Bits	23	22	21	20	19	18	17	16
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	PS_DATA7	PS_DATA6	PS_DATA5	PS_DATA4	PS_DATA3	PS_DATA2	PS_DATA1	PS_DATA0
Bits	31	30	29	28	27	26	25	24
SW Access	_			None				R

None None [31:25] W

PS_FLT_ DA TA

Bits	Name	Description
24	PS_FLT_DATA	This is a duplicate of the contents of the PS register, provided here to allow reading of both pin state and interrupt state of the port in a single read operation.
		Default Value: 0
23	PS_DATA7	Default Value: 0
22	PS_DATA6	Default Value: 0
21	PS_DATA5	Default Value: 0
20	PS_DATA4	Default Value: 0
19	PS_DATA3	Default Value: 0
18	PS_DATA2	Default Value: 0
17	PS_DATA1	Default Value: 0
16	PS_DATA0	Default Value: 0
8	FLT_DATA	Deglitched interrupt pending (selected by FLT_SELECT). Default Value: 0
7	DATA7	Interrupt pending on IO pad 7. Firmware writes 1 to clear the interrupt. Default Value: 0
6	DATA6	Interrupt pending on IO pad 6. Firmware writes 1 to clear the interrupt. Default Value: 0
5	DATA5	Interrupt pending on IO pad 5. Firmware writes 1 to clear the interrupt. Default Value: 0
4	DATA4	Interrupt pending on IO pad 4. Firmware writes 1 to clear the interrupt. Default Value: 0
3	DATA3	Interrupt pending on IO pad 3. Firmware writes 1 to clear the interrupt. Default Value: 0

GPIO_PRT0_INTR (Continued)

2	DATA2	Interrupt pending on IO pad 2. Firmware writes 1 to clear the interrupt. Default Value: 0
1	DATA1	Interrupt pending on IO pad 1. Firmware writes 1 to clear the interrupt. Default Value: 0
0	DATA0	Interrupt pending on IO pad 0. Firmware writes 1 to clear the interrupt. Default Value: 0

GPIO_PRT0_PC2

Port configuration register 2 Address: 0x40040018 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	RW	RW	RW	RW	RW	RW	RW	RW	
HW Access	R	R	R	R	R	R	R	R	
Name	INP_DIS7	INP_DIS6	INP_DIS5	INP_DIS4	INP_DIS3	INP_DIS2	INP_DIS1	INP_DIS0	
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access				No	ne				
Name		None [15:8]							
	•								
Bits	23	22	21	20	19	18	17	16	

Bits	23	22	21	20	19	18	17	16		
SW Access	None									
HW Access	None									
Name	None [23:16]									

Bits	31	30	29	28	27	26	25	24		
SW Access	None									
HW Access	None									
Name	None [31:24]									

Bits	Name	Description
7	INP_DIS7	Disables the input buffer for IO pad 7.
		Default Value: 0
6	INP_DIS6	Disables the input buffer for IO pad 6.
		Default Value: 0
5	INP_DIS5	Disables the input buffer for IO pad 5.
		Default Value: 0
4	INP_DIS4	Disables the input buffer for IO pad 4.
		Default Value: 0
3	INP_DIS3	Disables the input buffer for IO pad 3.
		Default Value: 0
2	INP_DIS2	Disables the input buffer for IO pad 2.
		Default Value: 0
1	INP_DIS1	Disables the input buffer for IO pad 1.
		Default Value: 0
0	INP_DIS0	Disables the input buffer for IO pad 0 independent of the port control drive mode (PC.DM). This bit should be set when analog signals are present on the pin and PC.DM!= 0 is required to use the output driver.
		Default Value: 0

GPIO_PRT0_DR_SET

Port output data set register Address: 0x40040040 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access				R	W							
HW Access				A	4							
Name				DATA	A [7:0]							
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name				None	[15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access			•	No	ne	•	•	•				
HW Access				No	ne							
Name				None	[31:24]							

BitsNameDescription7:0DATAIO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] set to '1'.

GPIO_PRT0_DR_CLR

Port output data clear register Address: 0x40040044

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access				R	W							
HW Access				A	Ą							
Name				DATA	A [7:0]							
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name				None	[15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

Bits Description Name 7:0 DATA IO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] set to '0'.

GPIO_PRT0_DR_INV

Port output data invert register

Address: 0x40040048 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access			•	R	W	•	1	1				
HW Access				,	4							
Name				DATA	A [7:0]							
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name				None	[15:8]							
		1	_	1		_		1				
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	one							
Name				None	[23:16]							
						_						
Bits	31	30	29	28	27	26	25	24				
SW Access				No	one							
HW Access				No	ne							
Name				None	[31:24]							

BitsNameDescription7:0DATAIO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] inverted ('0' => '1', '1' => '0').

GPIO_PRT1_DR

Name

Port output data register Address: 0x40040100 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW	RW	RW	RW	RW	RW	RW	RW			
HW Access	RW	RW	RW	RW	RW	RW	RW	RW			
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0			
						1					
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one			<u>.I.</u>			
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		1	1	No	one	I		.1			
HW Access	None										

None [31:24]

Bits	Name	Description
7	DATA7	IO pad 7 output data.
		Default Value: 0
6	DATA6	IO pad 6 output data.
		Default Value: 0
5	DATA5	IO pad 5 output data.
		Default Value: 0
4	DATA4	IO pad 4 output data.
		Default Value: 0
3	DATA3	IO pad 3 output data.
		Default Value: 0
2	DATA2	IO pad 2 output data.
		Default Value: 0
1	DATA1	IO pad 1 output data.
		Default Value: 0
0	DATA0	IO pad 0 output data.
		Default Value: 0

GPIO_PRT1_PS

HW Access

Name

Port IO pad state register Address: 0x40040104 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R	R	R	R	R	R	R	R	
HW Access	W	W	W	W	W	W	W	W	
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	
			l			I	T -	1 -	
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access	None							W	
Name				None [15:9]				FLT_DATA	
Bits	23	22	21	20	19	18	17	16	
SW Access		1		No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
Ditto									

None

None [31:24]

Bits	Name	Description
8	FLT_DATA	Reads of this register return the logical state of the filtered pin. Default Value: 0
7	DATA7	IO pad 7 state. Default Value: 0
6	DATA6	IO pad 6 state. Default Value: 0
5	DATA5	IO pad 5 state. Default Value: 0
4	DATA4	IO pad 4 state. Default Value: 0
3	DATA3	IO pad 3 state. Default Value: 0
2	DATA2	IO pad 2 state. Default Value: 0
1	DATA1	IO pad 1 state. Default Value: 0
0	DATA0	IO pad 0 state: 1: Logic high, if the pin voltage is above the input buffer threshold

ld, logic high.

If the drive mode for the pin is set to high Z Analog, the pin state will read 0 independent of the voltage on the pin.

^{0:} Logic low, if the pin voltage is below that threshold, logic low.

GPIO_PRT1_PC

Port configuration register Address: 0x40040108 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R'	W		RW		RW			
HW Access	R		R			R			
Name	DM2	[7:6]	DM1 [5:3]			DM0 [2:0]			

Bits	15	14	13	12	11	10	8	
SW Access	RW		RW			RW		
HW Access	R		R			R		
Name	DM5		DM4 [14:12]			DM3 [11:9]		

Bits	23	22	21	20	19	18	17	16	
SW Access	RW			RW			RW		
HW Access	R			R			R		
Name	DM7 [23:21]			DM6 [20:18]			DM5 [17:16]		

Bits	31	30	29	28	27	26	25	24
SW Access	R	W		No	RW	RW		
HW Access	R			No	R	R		
Name		MODE_SEL :30]		None	PORT_ SLOW	PORT_ VTRIP_SEL		

Bits	Name	Description
31:30	PORT_IB_MODE_SEL	This field selects the input buffer reference. The size (1 or 2 bits) and functionality is dependent on the IO cell.
		For GPIOv2 IO cells, bit PORT_IB_MODE_SEL[1] is not used (GPIOv2 IO cell replaces GPIO IO cell):
		"0"/"2": CMOS input buffer (PORT_VTRIP_SEL is '0'), LVTTL input buffer (PORT_VTRIP_SEL is '1')
		is '1') "1"/"3": vechib.
		For GPIO_OVTv2 and SIOv2 IO cells:
		"0": CMOS input buffer (PORT_VTRIP_SEL is '0'), LVTTL input buffer (PORT_VTRIP_SEL is '1') "1": vechib.
		"2": OVT.
		"3": Reference (possibly from reference generator cell).
		For SIO IO cell, this field is present but not used as the SIO IO cell does not provide input buffer mode select functionality (SIOv2 IO cell will replace SIO IO cell, as soon as it is available).
		Default Value: 0
25	PORT SLOW	This field controls the output edge rate of all pins on the port:
		'0': fast.
		'1': slow.
		Default Value: 0
24	PORT_VTRIP_SEL	The GPIO cells include a VTRIP_SEL signal to alter the input buffer voltage. Note: this bit is ignored for SIO ports, the VTRIP_SEL settings in the SIO register are used instead (a separate VTRIP_SEL is provided for each pin pair).
		0: input buffer functions as a CMOS input buffer.
		1: input buffer functions as a LVTTL input buffer.
		Default Value: 0

GPIO_PRT1_PC (Continued)

23:21	DM7	The GPIO drive mode for IO pad 7. Default Value: 0
20:18	DM6	The GPIO drive mode for IO pad 6. Default Value: 0
17:15	DM5	The GPIO drive mode for IO pad 5. Default Value: 0
14:12	DM4	The GPIO drive mode for IO pad 4. Default Value: 0
11:9	DM3	The GPIO drive mode for IO pad 3. Default Value: 0
8:6	DM2	The GPIO drive mode for IO pad 2. Default Value: 0
5:3	DM1	The GPIO drive mode for IO pad 1. Default Value: 0
2:0	DM0	The GPIO drive mode for IO pad 0.

Note: when initializing IO's that are connected to a live bus (such as I^2C), make sure the HSIOM is properly configured (HSIOM_PRT_SELx) before turning the IO on here to avoid producing glitches on the bus.

Default Value: 0

0x0: OFF:

Mode 0 (analog mode): Output buffer off (high Z). Input buffer off.

0x1: INPUT:

Mode 1: Output buffer off (high Z). Input buffer on.

0x2: 0 PU:

Mode 2: Strong pull down ('0'), weak/resistive pull up (PU). Input buffer on.

0x3: PD_1:

 $\label{eq:mode 3: Weak/resistive pull down (PD), strong pull up (`1'). Input buffer on.}$

0x4: 0_Z:

Mode 4: Strong pull down ('0'), open drain (pull up off). Input buffer on.

0x5: Z 1:

Mode 5: Open drain (pull down off), strong pull up ('1'). Input buffer on.

0x6: 0 1:

Mode 6: Strong pull down ('0'), strong pull up ('1'). Input buffer on.

0x7: PD PU:

 $\label{eq:mode 7} \mbox{Mode 7: Weak/resistive pull down (PD), weak/resistive pull up (PU). Input buffer on.}$

GPIO_PRT1_INTR_CFG

Port interrupt configuration register Address: 0x4004010C

Retention: Retained

Bits	7 6		5	4	3	2	1	0
SW Access	RW		RW		RW		RW	
HW Access	R		R		R		R	
Name	EDGE3_SEL [7:6]		EDGE2_SEL [5:4]		EDGE1_SEL [3:2]		EDGE0_SEL [1:0]	
Bits	15	14	13	12	11	10	9	8

Bits	15	14	13	12	11	10	9	8
SW Access	RW		RW		RW		RW	
HW Access	R		R		R		R	
Name	Name EDGE7_SEL [15:14]		EDGE6_SEL [13:12]		EDGE5_SEL [11:10]		EDGE4_SEL [9:8]	

Bits	23	22	21	20	19	18	17	16	
SW Access		None			RW	RW			
HW Access	None				R	R			
Name	None [23:21]			FLT_SEL [20:18]			FLT_EDGE_SEL [17:16]		

Bits	31	30	29	28	27	26	25	24		
SW Access	None									
HW Access	None									
Name	None [31:24]									

Bits	Name	Description
20:18	FLT_SEL	Selects which pin is routed through the 50 ns glitch filter to provide a glitch-safe interrupt. Default Value: 0
17:16	FLT_EDGE_SEL	Same for the glitch filtered pin (selected by FLT_SELECT). Default Value: 0
		0x0: DISABLE:
		Disabled
		0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:
		Both rising and falling edges
15:14	EDGE7_SEL	Sets which edge will trigger an IRQ for IO pad 7. Default Value: 0
13:12	EDGE6_SEL	Sets which edge will trigger an IRQ for IO pad 6. Default Value: 0
11:10	EDGE5_SEL	Sets which edge will trigger an IRQ for IO pad 5. Default Value: 0
9:8	EDGE4_SEL	Sets which edge will trigger an IRQ for IO pad 4. Default Value: 0
7:6	EDGE3_SEL	Sets which edge will trigger an IRQ for IO pad 3. Default Value: 0

GPIO_PRT1_INTR_CFG (Continued)

5:4	EDGE2_SEL	Sets which edge will trigger an IRQ for IO pad 2. Default Value: 0
3:2	EDGE1_SEL	Sets which edge will trigger an IRQ for IO pad 1. Default Value: 0
1:0	EDGE0_SEL	Sets which edge will trigger an IRQ for IO pad 0. Default Value: 0
		0x0: DISABLE:
		Disabled
		0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:
		Both rising and falling edges

GPIO_PRT1_INTR

Port interrupt status register Address: 0x40040110 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW1C							
HW Access	Α	Α	Α	Α	Α	Α	Α	Α
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
Rite	15	14	13	12	11	10	a	8

Bits	15	14	13	12	11	10	9	8	
SW Access	None								
HW Access	None								
Name		None [15:9]							

Bits	23	22	21	20	19	18	17	16
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	PS_DATA7	PS_DATA6	PS_DATA5	PS_DATA4	PS_DATA3	PS_DATA2	PS_DATA1	PS_DATA0

Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access	None								
Name		None [31:25]							

Bits	Name	Description
24	PS_FLT_DATA	This is a duplicate of the contents of the PS register, provided here to allow reading of both pin state and interrupt state of the port in a single read operation.
		Default Value: 0
23	PS_DATA7	Default Value: 0
22	PS_DATA6	Default Value: 0
21	PS_DATA5	Default Value: 0
20	PS_DATA4	Default Value: 0
19	PS_DATA3	Default Value: 0
18	PS_DATA2	Default Value: 0
17	PS_DATA1	Default Value: 0
16	PS_DATA0	Default Value: 0
8	FLT_DATA	Deglitched interrupt pending (selected by FLT_SELECT).
		Default Value: 0
7	DATA7	Interrupt pending on IO pad 7. Firmware writes 1 to clear the interrupt. Default Value: 0
6	DATA6	Interrupt pending on IO pad 6. Firmware writes 1 to clear the interrupt.
		Default Value: 0
5	DATA5	Interrupt pending on IO pad 5. Firmware writes 1 to clear the interrupt. Default Value: 0
4	DATA4	Interrupt pending on IO pad 4. Firmware writes 1 to clear the interrupt.
4	DAIA4	Default Value: 0

GPIO_PRT1_INTR (Continued)

3	DATA3	Interrupt pending on IO pad 3. Firmware writes 1 to clear the interrupt. Default Value: 0
2	DATA2	Interrupt pending on IO pad 2. Firmware writes 1 to clear the interrupt. Default Value: 0
1	DATA1	Interrupt pending on IO pad 1. Firmware writes 1 to clear the interrupt. Default Value: 0
0	DATA0	Interrupt pending on IO pad 0. Firmware writes 1 to clear the interrupt. Default Value: 0

GPIO_PRT1_PC2

HW Access

Name

Port configuration register 2 Address: 0x40040118 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW	RW	RW	RW	RW	RW	RW	RW			
HW Access	R	R	R	R	R	R	R	R			
Name	INP_DIS7	INP_DIS6	INP_DIS5	INP_DIS4	INP_DIS3	INP_DIS2	INP_DIS1	INP_DIS0			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				l No	ne						
HW Access				No	ne						
Name		None [23:16]									
	•										
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne			ı			

Bits	Name	Description
7	INP_DIS7	Disables the input buffer for IO pad 7. Default Value: 0
6	INP_DIS6	Disables the input buffer for IO pad 6. Default Value: 0
5	INP_DIS5	Disables the input buffer for IO pad 5. Default Value: 0
4	INP_DIS4	Disables the input buffer for IO pad 4. Default Value: 0
3	INP_DIS3	Disables the input buffer for IO pad 3. Default Value: 0
2	INP_DIS2	Disables the input buffer for IO pad 2. Default Value: 0
1	INP_DIS1	Disables the input buffer for IO pad 1. Default Value: 0
0	INP_DIS0	Disables the input buffer for IO pad 0 independent of the port control drive mode (PC.DM). This bit should be set when analog signals are present on the pin and PC.DM != 0 is required to use the output driver. Default Value: 0

None

None [31:24]

GPIO_PRT1_DR_SET

Port output data set register Address: 0x40040140 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		A									
Name		DATA [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	one						
Name				None	[31:24]						

BitsNameDescription7:0DATAIO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] set to '1'.

GPIO_PRT1_DR_CLR

Port output data clear register Address: 0x40040144

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RW									
HW Access		A								
Name		DATA [7:0]								
Bits	15	14	13	12	11	10	9	8		
SW Access	None									
HW Access	None									
Name		None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one	•				
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	one					
Name		None [31:24]								

Bits Description Name 7:0 DATA IO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] set to '0'.

GPIO_PRT1_DR_INV

Port output data invert register

Address: 0x40040148 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW										
HW Access		A									
Name		DATA [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access	None										
HW Access	None										
Name		None [15:8]									
		_	_								
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name		None [31:24]									

BitsNameDescription7:0DATAIO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] inverted ('0' => '1', '1' => '0').

$GPIO_PRT2_DR$

Name

Port output data register Address: 0x40040200 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW	RW	RW	RW	RW	RW	RW	RW			
HW Access	RW	RW	RW	RW	RW	RW	RW	RW			
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0			
							_	_			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access		ı		No	ne						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
	0.		23			20	20				
SW Access				No.	one						
HW Access		None									

None [31:24]

Bits	Name	Description
7	DATA7	IO pad 7 output data. Default Value: 0
6	DATA6	IO pad 6 output data. Default Value: 0
5	DATA5	IO pad 5 output data. Default Value: 0
4	DATA4	IO pad 4 output data. Default Value: 0
3	DATA3	IO pad 3 output data. Default Value: 0
2	DATA2	IO pad 2 output data. Default Value: 0
1	DATA1	IO pad 1 output data. Default Value: 0
0	DATA0	IO pad 0 output data. Default Value: 0

GPIO_PRT2_PS

Name

Port IO pad state register Address: 0x40040204 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
			•	-			•	•
Bits	15	14	13	12	11	10	9	8
SW Access	None							
HW Access	None							W
Name		None [15:9]						
	1		1		1		1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
		_						
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access	None							

None [31:24]

Bits	Name	Description
8	FLT_DATA	Reads of this register return the logical state of the filtered pin.
		Default Value: 0
7	DATA7	IO pad 7 state.
		Default Value: 0
6	DATA6	IO pad 6 state.
		Default Value: 0
5	DATA5	IO pad 5 state.
		Default Value: 0
4	DATA4	IO pad 4 state.
		Default Value: 0
3	DATA3	IO pad 3 state.
		Default Value: 0
2	DATA2	IO pad 2 state.
		Default Value: 0
1	DATA1	IO pad 1 state.
		Default Value: 0
0	DATA0	IO pad 0 state:
		1: Logic high, if the pin voltage is above the input buffer threshold, logic high.
		0: Logic low, if the pin voltage is below that threshold, logic low.
		If the drive mode for the pin is set to high Z Analog, the pin state will read 0 independent of the voltage on the pin.

GPIO_PRT2_PC

Port configuration register Address: 0x40040208 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW			RW		RW		
HW Access	R		R			R		
Name	DM2 [7:6]		DM1 [5:3]			DM0 [2:0]		

Bits	15	14	13	12	11	10	9	8
SW Access	RW	RW			RW			RW
HW Access	R		R			R		
Name	DM5	DM4 [14:12]			DM3 [11:9]			DM2

Bits	23	22	21	20	19	18	17	16
SW Access	RW			RW			RW	
HW Access	R			R			F	3
Name	DM7 [23:21]			DM6 [20:18]			DM5 [17:16]	

Bits	31	30	29	28	27	26	25	24
SW Access	RW			No	RW	RW		
HW Access	R			No	R	R		
Name	PORT_IB_MODE_SEL [31:30]			None	PORT_ SLOW	PORT_ VTRIP_SEL		

Bits	Name	Description
31:30	PORT_IB_MODE_SEL	This field selects the input buffer reference. The size (1 or 2 bits) and functionality is dependent on the IO cell.
		For GPIOv2 IO cells, bit PORT_IB_MODE_SEL[1] is not used (GPIOv2 IO cell replaces GPIO IO cell):
		"0"/"2": CMOS input buffer (PORT_VTRIP_SEL is '0'), LVTTL input buffer (PORT_VTRIP_SEL is '1')
		is '1') "1"/"3": vechib.
		For GPIO_OVTv2 and SIOv2 IO cells:
		"0": CMOS input buffer (PORT_VTRIP_SEL is '0'), LVTTL input buffer (PORT_VTRIP_SEL is '1') "1": vechib.
		"2": OVT.
		"3": Reference (possibly from reference generator cell).
		For SIO IO cell, this field is present but not used as the SIO IO cell does not provide input buffer mode select functionality (SIOv2 IO cell will replace SIO IO cell, as soon as it is available).
		Default Value: 0
25	PORT SLOW	This field controls the output edge rate of all pins on the port:
		'0': fast.
		'1': slow.
		Default Value: 0
24	PORT_VTRIP_SEL	The GPIO cells include a VTRIP_SEL signal to alter the input buffer voltage. Note: this bit is ignored for SIO ports, the VTRIP_SEL settings in the SIO register are used instead (a separate VTRIP_SEL is provided for each pin pair).
		0: input buffer functions as a CMOS input buffer.
		1: input buffer functions as a LVTTL input buffer.
		Default Value: 0

GPIO_PRT2_PC (Continued)

23:21	DM7	The GPIO drive mode for IO pad 7. Default Value: 0
20:18	DM6	The GPIO drive mode for IO pad 6. Default Value: 0
17:15	DM5	The GPIO drive mode for IO pad 5. Default Value: 0
14:12	DM4	The GPIO drive mode for IO pad 4. Default Value: 0
11:9	DM3	The GPIO drive mode for IO pad 3. Default Value: 0
8:6	DM2	The GPIO drive mode for IO pad 2. Default Value: 0
5:3	DM1	The GPIO drive mode for IO pad 1. Default Value: 0
2:0	DM0	The GPIO drive mode for IO pad 0.

Note: when initializing IO's that are connected to a live bus (such as I^2C), make sure the HSIOM is properly configured (HSIOM_PRT_SELx) before turning the IO on here to avoid producing glitches on the bus.

Default Value: 0

0x0: OFF:

Mode 0 (analog mode): Output buffer off (high Z). Input buffer off.

0x1: INPUT:

Mode 1: Output buffer off (high Z). Input buffer on.

0x2: 0 PU:

Mode 2: Strong pull down ('0'), weak/resistive pull up (PU). Input buffer on.

0x3: PD 1:

 $\label{eq:mode 3: Weak/resistive pull down (PD), strong pull up (`1'). Input buffer on.}$

0x4: 0_Z:

Mode 4: Strong pull down ('0'), open drain (pull up off). Input buffer on.

0x5: Z 1:

Mode 5: Open drain (pull down off), strong pull up ('1'). Input buffer on.

0x6: 0 1:

Mode 6: Strong pull down ('0'), strong pull up ('1'). Input buffer on.

0x7: PD PU:

Mode 7: Weak/resistive pull down (PD), weak/resistive pull up (PU). Input buffer on.

GPIO_PRT2_INTR_CFG

Port interrupt configuration register Address: 0x4004020C

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW		RW		RW		RW	
HW Access	R		R R		3	R		
Name	EDGE3_SEL [7:6]		EDGE2_SEL [5:4]		EDGE1_SEL [3:2]		EDGE0_SEL [1:0]	
Bits	15	14	13	12	11	10	9	8

Bits	15	14	13	12	11	10	9	8
SW Access	RW		RW		RW		RW	
HW Access	R		R		R		R	
Name	EDGE7_SEL [15:14]		EDGE6_SEL [13:12]		EDGE5_SEL [11:10]		EDGE4_SEL [9:8]	

Bits	23	22	21	20	19	18	17	16
SW Access		None			RW	R	W	
HW Access		None			R	F	3	
Name	None [23:21]			FLT_SEL [20:18]			FLT_EDGE_	SEL [17:16]

Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description
20:18	FLT_SEL	Selects which pin is routed through the 50 ns glitch filter to provide a glitch-safe interrupt. Default Value: 0
17:16	FLT_EDGE_SEL	Same for the glitch filtered pin (selected by FLT_SELECT). Default Value: 0
		0x0: DISABLE:
		Disabled 0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:
		Both rising and falling edges
15:14	EDGE7_SEL	Sets which edge will trigger an IRQ for IO pad 7. Default Value: 0
13:12	EDGE6_SEL	Sets which edge will trigger an IRQ for IO pad 6. Default Value: 0
11:10	EDGE5_SEL	Sets which edge will trigger an IRQ for IO pad 5. Default Value: 0
9:8	EDGE4_SEL	Sets which edge will trigger an IRQ for IO pad 4. Default Value: 0
7:6	EDGE3_SEL	Sets which edge will trigger an IRQ for IO pad 3. Default Value: 0

GPIO_PRT2_INTR_CFG (Continued)

5:4	EDGE2_SEL	Sets which edge will trigger an IRQ for IO pad 2. Default Value: 0
3:2	EDGE1_SEL	Sets which edge will trigger an IRQ for IO pad 1. Default Value: 0
1:0	EDGE0_SEL	Sets which edge will trigger an IRQ for IO pad 0. Default Value: 0
		0x0: DISABLE:
		Disabled
		0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:
		Both rising and falling edges

GPIO_PRT2_INTR

Name

Port interrupt status register Address: 0x40040210 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
HW Access	Α	Α	Α	Α	Α	Α	Α	Α
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
Dite	45	44	40	10	- 44	40		
Bits	15	14	13	12	11	10	9	8
SW Access	None					RW1C		
HW Access	None				Α			
Name	None [15:9]				FLT_DATA			
	•							
Bits	23	22	21	20	19	18	17	16
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	PS_DATA7	PS_DATA6	PS_DATA5	PS_DATA4	PS_DATA3	PS_DATA2	PS_DATA1	PS_DATA0
			1	1	T	I	T	I
Bits	31	30	29	28	27	26	25	24
SW Access				None				R
HW Access				None				W

None [31:25]

Bits	Name	Description
24	PS_FLT_DATA	This is a duplicate of the contents of the PS register, provided here to allow reading of both pin state and interrupt state of the port in a single read operation.
		Default Value: 0
23	PS_DATA7	Default Value: 0
22	PS_DATA6	Default Value: 0
21	PS_DATA5	Default Value: 0
20	PS_DATA4	Default Value: 0
19	PS_DATA3	Default Value: 0
18	PS_DATA2	Default Value: 0
17	PS_DATA1	Default Value: 0
16	PS_DATA0	Default Value: 0
8	FLT_DATA	Deglitched interrupt pending (selected by FLT_SELECT).
		Default Value: 0
7	DATA7	Interrupt pending on IO pad 7. Firmware writes 1 to clear the interrupt. Default Value: 0
6	DATA6	Interrupt pending on IO pad 6. Firmware writes 1 to clear the interrupt. Default Value: 0
5	DATA5	Interrupt pending on IO pad 5. Firmware writes 1 to clear the interrupt. Default Value: 0
4	DATA4	Interrupt pending on IO pad 4. Firmware writes 1 to clear the interrupt. Default Value: 0

PS_FLT_ DATA

GPIO_PRT2_INTR (Continued)

3	DATA3	Interrupt pending on IO pad 3. Firmware writes 1 to clear the interrupt. Default Value: 0
2	DATA2	Interrupt pending on IO pad 2. Firmware writes 1 to clear the interrupt. Default Value: 0
1	DATA1	Interrupt pending on IO pad 1. Firmware writes 1 to clear the interrupt. Default Value: 0
0	DATA0	Interrupt pending on IO pad 0. Firmware writes 1 to clear the interrupt. Default Value: 0

GPIO_PRT2_PC2

HW Access

Name

Port configuration register 2 Address: 0x40040218 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access	RW	RW	RW	RW	RW	RW	RW	RW				
HW Access	R	R	R	R	R	R	R	R				
Name	INP_DIS7	INP_DIS6	INP_DIS5	INP_DIS4	INP_DIS3	INP_DIS2	INP_DIS1	INP_DIS0				
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name				None	[15:8]							
	•	T	T	1			T	ı				
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name		None [23:16]										
Bits	31	30	29	28	27	26	25	24				
SW Access	None											

Bits	Name	Description
7	INP_DIS7	Disables the input buffer for IO pad 7.
		Default Value: 0
6	INP_DIS6	Disables the input buffer for IO pad 6.
		Default Value: 0
5	INP_DIS5	Disables the input buffer for IO pad 5.
		Default Value: 0
4	INP_DIS4	Disables the input buffer for IO pad 4.
		Default Value: 0
3	INP_DIS3	Disables the input buffer for IO pad 3.
		Default Value: 0
2	INP_DIS2	Disables the input buffer for IO pad 2.
		Default Value: 0
1	INP_DIS1	Disables the input buffer for IO pad 1.
		Default Value: 0
0	INP_DIS0	Disables the input buffer for IO pad 0 independent of the port control drive mode (PC.DM). This bit should be set when analog signals are present on the pin and PC.DM != 0 is required to use the output driver.
		Default Value: 0

None

None [31:24]

GPIO_PRT2_DR_SET

Port output data set register Address: 0x40040240 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access				R	W							
HW Access				ļ	4							
Name				DATA	A [7:0]							
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name		None [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	one							
Name				None	[31:24]							

BitsNameDescription7:0DATAIO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] set to '1'.

GPIO_PRT2_DR_CLR

Port output data clear register Address: 0x40040244

Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access				R	W							
HW Access				A	Ą							
Name				DATA	A [7:0]							
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name		None [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

Bits Description Name 7:0 DATA IO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] set to '0'.

GPIO_PRT2_DR_INV

Port output data invert register

Address: 0x40040248 Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access			•	R	W	•	1	1				
HW Access				,	4							
Name				DATA	A [7:0]							
		1				_		1				
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name		None [15:8]										
		1	_	1		_		1				
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	one							
Name				None	[23:16]							
						_						
Bits	31	30	29	28	27	26	25	24				
SW Access				No	one							
HW Access				No	one							
Name				None	[31:24]							

BitsNameDescription7:0DATAIO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] inverted ('0' => '1', '1' => '0').

GPIO_PRT3_DR

Name

Port output data register Address: 0x40040300 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW	RW	RW	RW	RW	RW	RW	RW			
HW Access	RW	RW	RW	RW	RW	RW	RW	RW			
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATAC			
Bits	15	14	13	12	11	10	9	8			
SW Access				No	one		ı	ı			
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access		I.		No	one		ı	1			
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		I	I	No	one	I	1	1			
HW Access	None										

None [31:24]

Bits	Name	Description
7	DATA7	IO pad 7 output data. Default Value: 0
6	DATA6	IO pad 6 output data. Default Value: 0
5	DATA5	IO pad 5 output data. Default Value: 0
4	DATA4	IO pad 4 output data. Default Value: 0
3	DATA3	IO pad 3 output data. Default Value: 0
2	DATA2	IO pad 2 output data. Default Value: 0
1	DATA1	IO pad 1 output data. Default Value: 0
0	DATA0	IO pad 0 output data. Default Value: 0

GPIO_PRT3_PS

Name

Port IO pad state register Address: 0x40040304 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R	R	R	R	R	R	R	R	
HW Access	W	W	W	W	W	W	W	W	
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	
	1		1		1		1		
Bits	15	14	13	12	11	10	9	8	
SW Access				None				R	
HW Access		None							
Name				None [15:9]				FLT_DATA	
Bits	23	22	21	20	19	18	17	16	
SW Access			l	No	one		l		
HW Access				No	one				
Name				None	[23:16]				
		_				_			
Bits	31	30	29	28	27	26	25	24	
SW Access		•	•	No	ne	•	•		
HW Access				No	one				

None [31:24]

Bits	Name	Description
8	FLT_DATA	Reads of this register return the logical state of the filtered pin.
		Default Value: 0
7	DATA7	IO pad 7 state.
		Default Value: 0
6	DATA6	IO pad 6 state.
		Default Value: 0
5	DATA5	IO pad 5 state.
		Default Value: 0
4	DATA4	IO pad 4 state.
		Default Value: 0
3	DATA3	IO pad 3 state.
		Default Value: 0
2	DATA2	IO pad 2 state.
		Default Value: 0
1	DATA1	IO pad 1 state.
		Default Value: 0
0	DATA0	IO pad 0 state:
		1: Logic high, if the pin voltage is above the input buffer threshold, logic high.
		0: Logic low, if the pin voltage is below that threshold, logic low.
		If the drive mode for the pin is set to high Z Analog, the pin state will read 0 independent of the voltage on the pin.

GPIO_PRT3_PC

Port configuration register Address: 0x40040308 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R	W		RW		RW			
HW Access	F	}		R		R			
Name	DM2	[7:6]		DM1 [5:3]		DM0 [2:0]			

Bits	15	14	13	12	11	10	9	8	
SW Access	RW	RW				RW			
HW Access	R		R			R			
Name	DM5		DM4 [14:12]			DM3 [11:9]			

Bits	23	22	21	20	19	18	17	16	
SW Access	RW			RW			RW		
HW Access	R			R			R		
Name	DM7 [23:21]			DM6 [20:18]			DM5 [17:16]		

Bits	31	30	29	28	27	26	25	24
SW Access	R	W		No	ne		RW	RW
HW Access	F	₹		No	ne		R	R
Name		MODE_SEL :30]		None	[29:26]		PORT_ SLOW	PORT_ VTRIP_SEL

Bits	Name	Description
31:30	PORT_IB_MODE_SEL	This field selects the input buffer reference. The size (1 or 2 bits) and functionality is dependent on the IO cell.
		For GPIOv2 IO cells, bit PORT_IB_MODE_SEL[1] is not used (GPIOv2 IO cell replaces GPIO IO cell):
		"0"/"2": CMOS input buffer (PORT_VTRIP_SEL is '0'), LVTTL input buffer (PORT_VTRIP_SEL
		is '1')
		"1"/"3": vcchib.
		For GPIO_OVTv2 and SIOv2 IO cells:
		"0": CMOS input buffer (PORT_VTRIP_SEL is '0'), LVTTL input buffer (PORT_VTRIP_SEL is '1') "1": vcchib.
		"2": OVT.
		"3": Reference (possibly from reference generator cell).
		For SIO IO cell, this field is present but not used as the SIO IO cell does not provide input buffer mode select functionality (SIOv2 IO cell will replace SIO IO cell, as soon as it is available).
		Default Value: 0
25	PORT_SLOW	This field controls the output edge rate of all pins on the port:
		'0': fast.
		'1': slow.
		Default Value: 0
24	PORT_VTRIP_SEL	The GPIO cells include a VTRIP_SEL signal to alter the input buffer voltage. Note: this bit is ignored for SIO ports, the VTRIP_SEL settings in the SIO register are used instead (a separate VTRIP_SEL is provided for each pin pair).
		0: input buffer functions as a CMOS input buffer.
		1: input buffer functions as a LVTTL input buffer.
		Default Value: 0

GPIO_PRT3_PC (Continued)

23:21	DM7	The GPIO drive mode for IO pad 7. Default Value: 0
20:18	DM6	The GPIO drive mode for IO pad 6. Default Value: 0
17:15	DM5	The GPIO drive mode for IO pad 5. Default Value: 0
14:12	DM4	The GPIO drive mode for IO pad 4. Default Value: 0
11:9	DM3	The GPIO drive mode for IO pad 3. Default Value: 0
8:6	DM2	The GPIO drive mode for IO pad 2. Default Value: 0
5:3	DM1	The GPIO drive mode for IO pad 1. Default Value: 0
2:0	DMO	The GPIO drive mode for IO pad 0.

Note: when initializing IO's that are connected to a live bus (such as I^2C), make sure the HSIOM is properly configured (HSIOM_PRT_SELx) before turning the IO on here to avoid producing glitches on the bus.

Default Value: 0

0x0: OFF:

Mode 0 (analog mode): Output buffer off (high Z). Input buffer off.

0x1: INPUT:

Mode 1: Output buffer off (high Z). Input buffer on.

0x2: 0 PU:

Mode 2: Strong pull down ('0'), weak/resistive pull up (PU). Input buffer on.

0x3: PD 1:

 $\label{eq:mode 3: Weak/resistive pull down (PD), strong pull up (`1'). Input buffer on.}$

0x4: 0_Z:

Mode 4: Strong pull down ('0'), open drain (pull up off). Input buffer on.

0x5: Z 1:

Mode 5: Open drain (pull down off), strong pull up ('1'). Input buffer on.

0x6: 0 1:

Mode 6: Strong pull down ('0'), strong pull up ('1'). Input buffer on.

0x7: PD PU:

Mode 7: Weak/resistive pull down (PD), weak/resistive pull up (PU). Input buffer on.

GPIO_PRT3_INTR_CFG

Port interrupt configuration register Address: 0x4004030C

EDGE7_SEL [15:14]

Address: 0x4004030C Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access	R'	W	R	W	RW		R	W	
HW Access	F	3	F	R R R		R		R	
Name	EDGE3_	SEL [7:6]	EDGE2_	SEL [5:4]	EDGE1_SEL [3:2]		EDGE0_SEL [1:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access	R'	W	RW		RW		RW		
HW Access	F	3	R		ı	3	F	3	

Bits	23	22	21	20	19	18	17	16
SW Access	None			RW			RW	
HW Access		None			R		F	3
Name		None [23:21]		FLT_SEL [20:18]			FLT_EDGE_	SEL [17:16]

EDGE5_SEL [11:10]

EDGE4_SEL [9:8]

EDGE6_SEL [13:12]

Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access				No	ne			
Name				None	[31:24]			

Bits	Name	Description
20:18	FLT_SEL	Selects which pin is routed through the 50 ns glitch filter to provide a glitch-safe interrupt. Default Value: 0
17:16	FLT_EDGE_SEL	Same for the glitch filtered pin (selected by FLT_SELECT). Default Value: 0 Ox0: DISABLE: Disabled Ox1: RISING: Rising edge Ox2: FALLING: Falling edge
		0x3: BOTH: Both rising and falling edges
15:14	EDGE7_SEL	Sets which edge will trigger an IRQ for IO pad 7. Default Value: 0
13:12	EDGE6_SEL	Sets which edge will trigger an IRQ for IO pad 6. Default Value: 0
11:10	EDGE5_SEL	Sets which edge will trigger an IRQ for IO pad 5. Default Value: 0
9:8	EDGE4_SEL	Sets which edge will trigger an IRQ for IO pad 4. Default Value: 0
7:6	EDGE3_SEL	Sets which edge will trigger an IRQ for IO pad 3. Default Value: 0

GPIO_PRT3_INTR_CFG (Continued)

5:4	EDGE2_SEL	Sets which edge will trigger an IRQ for IO pad 2. Default Value: 0
3:2	EDGE1_SEL	Sets which edge will trigger an IRQ for IO pad 1. Default Value: 0
1:0	EDGE0_SEL	Sets which edge will trigger an IRQ for IO pad 0. Default Value: 0
		0x0: DISABLE:
		Disabled
		0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:
		Both rising and falling edges

GPIO_PRT3_INTR

Name

Port interrupt status register Address: 0x40040310 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
HW Access	Α	А	А	А	А	Α	Α	Α
Name	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
Bits	15	14	13	12	11	10	9	8
SW Access				None				RW1C
HW Access				None				Α
Name				None [15:9]				FLT_DATA
	-							
Bits	23	22	21	20	19	18	17	16
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	PS_DATA7	PS_DATA6	PS_DATA5	PS_DATA4	PS_DATA3	PS_DATA2	PS_DATA1	PS_DATA0
Bits	31	30	29	28	27	26	25	24
SW Access				None				R
HW Access				None				W

None [31:25]

Bits	Name	Description
24	PS_FLT_DATA	This is a duplicate of the contents of the PS register, provided here to allow reading of both pin state and interrupt state of the port in a single read operation.
		Default Value: 0
23	PS_DATA7	Default Value: 0
22	PS_DATA6	Default Value: 0
21	PS_DATA5	Default Value: 0
20	PS_DATA4	Default Value: 0
19	PS_DATA3	Default Value: 0
18	PS_DATA2	Default Value: 0
17	PS_DATA1	Default Value: 0
16	PS_DATA0	Default Value: 0
8	FLT_DATA	Deglitched interrupt pending (selected by FLT_SELECT).
		Default Value: 0
7	DATA7	Interrupt pending on IO pad 7. Firmware writes 1 to clear the interrupt.
		Default Value: 0
6	DATA6	Interrupt pending on IO pad 6. Firmware writes 1 to clear the interrupt. Default Value: 0
5	DATA5	Interrupt pending on IO pad 5. Firmware writes 1 to clear the interrupt.
		Default Value: 0
4	DATA4	Interrupt pending on IO pad 4. Firmware writes 1 to clear the interrupt.
		Default Value: 0

PS_FLT_ DATA

GPIO_PRT3_INTR (Continued)

3	DATA3	Interrupt pending on IO pad 3. Firmware writes 1 to clear the interrupt. Default Value: 0
2	DATA2	Interrupt pending on IO pad 2. Firmware writes 1 to clear the interrupt. Default Value: 0
1	DATA1	Interrupt pending on IO pad 1. Firmware writes 1 to clear the interrupt. Default Value: 0
0	DATA0	Interrupt pending on IO pad 0. Firmware writes 1 to clear the interrupt. Default Value: 0

GPIO_PRT3_PC2

SW Access

HW Access

Name

Port configuration register 2 Address: 0x40040318 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	RW								
HW Access	R	R	R	R	R	R	R	R	
Name	INP_DIS7	INP_DIS6	INP_DIS5	INP_DIS4	INP_DIS3	INP_DIS2	INP_DIS1	INP_DIS0	
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access				No	ne				
Name				None	[15:8]				
	1	T		T		T	I		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	

None

None

None [31:24]

Bits	Name	Description
7	INP_DIS7	Disables the input buffer for IO pad 7.
		Default Value: 0
6	INP_DIS6	Disables the input buffer for IO pad 6.
		Default Value: 0
5	INP_DIS5	Disables the input buffer for IO pad 5.
		Default Value: 0
4	INP_DIS4	Disables the input buffer for IO pad 4.
		Default Value: 0
3	INP_DIS3	Disables the input buffer for IO pad 3.
		Default Value: 0
2	INP_DIS2	Disables the input buffer for IO pad 2.
		Default Value: 0
1	INP_DIS1	Disables the input buffer for IO pad 1.
		Default Value: 0
0	INP_DIS0	Disables the input buffer for IO pad 0 independent of the port control drive mode (PC.DM). This bit should be set when analog signals are present on the pin and PC.DM != 0 is required to use the output driver.
		Default Value: 0

GPIO_PRT3_DR_SET

Port output data set register Address: 0x40040340 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				R	W						
HW Access				ļ	4						
Name				DATA	A [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	one						
Name				None	[31:24]						

BitsNameDescription7:0DATAIO pad i:

 $\hbox{`0': Output state DR.DATA[i] not affected}.$

'1': Output state DR.DATA[i] set to '1'.

GPIO_PRT3_DR_CLR

Port output data clear register Address: 0x40040344

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			•	R	W	•	1	1			
HW Access				,	4						
Name				DATA	A [7:0]						
		1				_		1			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
		1	_	1		_		1			
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	one						
Name				None	[23:16]						
						_					
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits Description Name 7:0 DATA IO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] set to '0'.

GPIO_PRT3_DR_INV

Port output data invert register

Address: 0x40040348 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			•	R	W	•	1	•			
HW Access				,	4						
Name				DATA	A [7:0]						
				_							
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

BitsNameDescription7:0DATAIO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] inverted ('0' => '1', '1' => '0').

GPIO_PRT4_DR

Port output data register Address: 0x40040400 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		No	one		RW	RW	RW	RW			
HW Access		No	one		RW	RW	RW	RW			
Name		None	∋ [7:4]		DATA3	DATA2	DATA1	DATA0			
	1				1						
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	e [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access					one						
HW Access				N	one						
Name				None	[23:16]						
	Ι				1						
Bits	31	30	29	28	27	26	25	24			
SW Access				N	one						
HW Access				N	one						
Name				None	[31:24]						

Bits	Name	Description
3	DATA3	IO pad 3 output data.
		Default Value: 0
2	DATA2	IO pad 2 output data.
		Default Value: 0
1	DATA1	IO pad 1 output data.
		Default Value: 0
0	DATA0	IO pad 0 output data.
		Default Value: 0

GPIO_PRT4_PS

Port IO pad state register Address: 0x40040404 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		No	one	•	R	R	R	R	
HW Access		No	one		W	W	W	W	
Name		None	e [7:4]		DATA3	DATA2	DATA1	DATA0	
Bits	15	14	13	12	11	10	9	8	
SW Access				None				R	
HW Access		None							
Name		None [15:9]							
Bits	23	22	21	20	19	18	17	16	
SW Access				N	one				
HW Access				N	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access			I	N	one	1	1	1	
HW Access				N	one				
Name				None	[31:24]				

Bits	Name	Description
8	FLT_DATA	Reads of this register return the logical state of the filtered pin. Default Value: 0
3	DATA3	IO pad 3 state. Default Value: 0
2	DATA2	IO pad 2 state. Default Value: 0
1	DATA1	IO pad 1 state. Default Value: 0
0	DATA0	IO pad 0 state: 1: Logic high, if the pin voltage is above the input buffer threshold, logic

high.

0: Logic low, if the pin voltage is below that threshold, logic low.

If the drive mode for the pin is set to high Z Analog, the pin state will read 0 independent of the voltage

on the pin.

GPIO_PRT4_PC

Port configuration register Address: 0x40040408 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	RW			RW		RW			
HW Access	F	R		R			R		
Name	DM2 [7:6]		DM1 [5:3]			DM0 [2:0]			

Bits	15	14	13	12	11	10	9	8	
SW Access		None				RW			
HW Access		No	ne		R			R	
Name		None [15:12]				DM3 [11:9]			

Bits	23	22	21	20	19	18	17	16		
SW Access		None								
HW Access		None								
Name		None [23:16]								

Bits	31	30	29 28 27 26			25	24	
SW Access	R'	W	None			RW	RW	
HW Access	F	3	None				R	R
Name		MODE_SEL :30]		None [29:26]			PORT_ SLOW	PORT_ VTRIP_SEL

Bits	Name	Description
31:30	PORT_IB_MODE_SEL	This field selects the input buffer reference. The size (1 or 2 bits) and functionality is dependent on the IO cell.
		For GPIOv2 IO cells, bit PORT_IB_MODE_SEL[1] is not used (GPIOv2 IO cell replaces GPIO IO cell):
		"0"/"2": CMOS input buffer (PORT_VTRIP_SEL is '0'), LVTTL input buffer (PORT_VTRIP_SEL is '1')
		"1"/"3": vechib.
		For GPIO_OVTv2 and SIOv2 IO cells:
		"0": CMOS input buffer (PORT_VTRIP_SEL is '0'), LVTTL input buffer (PORT_VTRIP_SEL is '1') "1": vcchib.
		"2": OVT.
		"3": Reference (possibly from reference generator cell).
		For SIO IO cell, this field is present but not used as the SIO IO cell does not provide input buffer mode select functionality (SIOv2 IO cell will replace SIO IO cell, as soon as it is available).
		Default Value: 0
25	PORT_SLOW	This field controls the output edge rate of all pins on the port:
	_	'0': fast.
		'1': slow.
		Default Value: 0
24	PORT_VTRIP_SEL	The GPIO cells include a VTRIP_SEL signal to alter the input buffer voltage. Note: this bit is ignored for SIO ports, the VTRIP_SEL settings in the SIO register are used instead (a separate VTRIP_SEL is provided for each pin pair).
		0: input buffer functions as a CMOS input buffer.
		1: input buffer functions as a LVTTL input buffer.
		Default Value: 0

GPIO_PRT4_PC (Continued)

DM3

11:9

	2	The same and the page of
		Default Value: 0
8:6	DM2	The GPIO drive mode for IO pad 2.
		Default Value: 0
5:3	DM1	The GPIO drive mode for IO pad 1.
		Default Value: 0
2:0	DM0	The GPIO drive mode for IO pad 0.
		Note: when initializing IO's that are connected to a live bus (such as I ² C), make sure the HSIOM is properly configured (HSIOM_PRT_SELx) before turning the IO on here to avoid producing glitches

The GPIO drive mode for IO pad 3.

on the bus.
Default Value: 0

0x0: OFF:

Mode 0 (analog mode): Output buffer off (high Z). Input buffer off.

0x1: INPUT:

Mode 1: Output buffer off (high Z). Input buffer on.

0x2: 0_PU:

Mode 2: Strong pull down ('0'), weak/resistive pull up (PU). Input buffer on.

0x3: PD 1:

Mode 3: Weak/resistive pull down (PD), strong pull up ('1'). Input buffer on.

0x4: 0 Z:

Mode 4: Strong pull down ('0'), open drain (pull up off). Input buffer on.

0x5: Z_1:

Mode 5: Open drain (pull down off), strong pull up ('1'). Input buffer on.

0x6: 0 1:

Mode 6: Strong pull down ('0'), strong pull up ('1'). Input buffer on.

0x7: PD_PU:

Mode 7: Weak/resistive pull down (PD), weak/resistive pull up (PU). Input buffer on.

GPIO_PRT4_INTR_CFG

Port interrupt configuration register Address: 0x4004040C

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW		RW		RW		RW	
HW Access	F	3	F	7	R		R	
Name	Name EDGE3_SEL [7:6]		EDGE2_SEL [5:4]		EDGE1_SEL [3:2]		EDGE0_SEL [1:0]	

Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access		None								
Name				None	[15:8]					

Bits	23	22	21	20	19	18	17	16
SW Access		None			RW	RW		
HW Access		None			R	R		
Name	None [23:21]			F	ELT_SEL [20:18	FLT_EDGE_SEL [17:16]		

Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits	Name	Description
20:18	FLT_SEL	Selects which pin is routed through the 50 ns glitch filter to provide a glitch-safe interrupt. Default Value: 0
17:16	FLT_EDGE_SEL	Same for the glitch filtered pin (selected by FLT_SELECT). Default Value: 0
		0x0: DISABLE:
		Disabled
		0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:
		Both rising and falling edges
7:6	EDGE3_SEL	Sets which edge will trigger an IRQ for IO pad 3. Default Value: 0
5:4	EDGE2_SEL	Sets which edge will trigger an IRQ for IO pad 2. Default Value: 0
3:2	EDGE1_SEL	Sets which edge will trigger an IRQ for IO pad 1. Default Value: 0

GPIO_PRT4_INTR_CFG (Continued)

1:0 EDGE0_SEL Sets which edge will trigger an IRQ for IO pad 0.

Default Value: 0

0x0: DISABLE:
Disabled

0x1: RISING:
Rising edge

0x2: FALLING:
Falling edge

0x3: BOTH:

Both rising and falling edges

GPIO_PRT4_INTR

Port interrupt status register Address: 0x40040410 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		No	ne		RW1C	RW1C	RW1C	RW1C		
HW Access		No	ne		Α	Α	Α	Α		
Name		None	e [7:4]		DATA3	DATA2	DATA1	DATA0		
Bits	15	14	13	12	11	10	9	8		
SW Access				None				RW1C		
HW Access				None				А		
Name				None [15:9]				FLT_DATA		
Bits	23	22	21	20	19	18	17	16		
SW Access		No	ne	•	R	R	R	R		

Bits	23	22	21	20	19	18	17	16
SW Access		No	ne		R	R	R	R
HW Access		No	ne		W	W	W	W
Name		None [23:20]		PS_DATA3	PS_DATA2	PS_DATA1	PS_DATA0

Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None [31:25]				PS_FLT_ DATA		

Bits	Name	Description
24	PS_FLT_DATA	This is a duplicate of the contents of the PS register, provided here to allow reading of both pin state and interrupt state of the port in a single read operation. Default Value: 0
19	PS_DATA3	Default Value: 0
18	PS_DATA2	Default Value: 0
17	PS_DATA1	Default Value: 0
16	PS_DATA0	Default Value: 0
8	FLT_DATA	Deglitched interrupt pending (selected by FLT_SELECT). Default Value: 0
3	DATA3	Interrupt pending on IO pad 3. Firmware writes 1 to clear the interrupt. Default Value: 0
2	DATA2	Interrupt pending on IO pad 2. Firmware writes 1 to clear the interrupt. Default Value: 0
1	DATA1	Interrupt pending on IO pad 1. Firmware writes 1 to clear the interrupt. Default Value: 0
0	DATA0	Interrupt pending on IO pad 0. Firmware writes 1 to clear the interrupt. Default Value: 0

GPIO_PRT4_PC2

Port configuration register 2 Address: 0x40040418 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		No	ne	•	RW	RW	RW	RW		
HW Access		No	ne		R	R	R	R		
Name		None	e [7:4]		INP_DIS3	INP_DIS2	INP_DIS1	INP_DIS0		
					1			l.		
Bits	15	14	13	12	11	10	9	8		
SW Access	None									
HW Access	None									
Name	None [15:8]									
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access			•	No	one	•	•	•		
HW Access				No	one					
Name				None	[31:24]					

Bits	Name	Description
3	INP_DIS3	Disables the input buffer for IO pad 3.
		Default Value: 0
2	INP_DIS2	Disables the input buffer for IO pad 2. Default Value: 0
1	INP_DIS1	Disables the input buffer for IO pad 1. Default Value: 0
0	INP_DIS0	Disables the input buffer for IO pad 0 independent of the port control drive mode (PC.DM). This bit should be set when analog signals are present on the pin and PC.DM != 0 is required to use the output driver.
		Default Value: 0

GPIO_PRT4_DR_SET

Port output data set register Address: 0x40040440 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access				ļ	4			
Name				DATA	A [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access		None						
HW Access				No	ne			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access		None						
Name				None	[31:24]			

BitsNameDescription7:0DATAIO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] set to '1'.

GPIO_PRT4_DR_CLR

Port output data clear register Address: 0x40040444

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access				ļ	4			
Name				DATA	A [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access		None						
HW Access				No	ne			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access		None						
Name				None	[31:24]			

Bits Description Name 7:0 DATA IO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] set to '0'.

GPIO_PRT4_DR_INV

Port output data invert register Address: 0x40040448

Address: 0x40040448 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access				ļ	4			
Name				DATA	A [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access		None						
HW Access				No	ne			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access		None						
Name				None	[31:24]			

BitsNameDescription7:0DATAIO pad i:

'0': Output state DR.DATA[i] not affected.

'1': Output state DR.DATA[i] inverted ('0' => '1', '1' => '0').

HIGH SPEED IO MATRIX (HSIOM) REGISTERS

This section discusses the HSIOM common registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 9. REGISTER DETAILS

Register Name	Address
HSIOM_AMUX_SPLIT_CTL0	0x40022100
HSIOM_AMUX_SPLIT_CTL1	0x40022104

HSIOM_AMUX_SPLIT_CTL0

AMUX splitter cell control Address: 0x40022100 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None	RW	RW	RW	None	RW	RW	RW
HW Access	None	R	R	R	None	R	R	R
Name	None	SWITCH_ BB_S0	SWITCH_ BB_SR	SWITCH_ BB_SL	None	SWITCH_ AA_S0	SWITCH_ AA_SR	SWITCH_ AA_SL
	1	1		1		I	I _	_
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access	None							
Name	1	None [31:24]						

Bits	Name	Description
6	SWITCH_BB_S0	T-switch control for AMUXBUSB vssa/ground switch. Default Value: 0
5	SWITCH_BB_SR	T-switch control for Right AMUXBUSB switch. Default Value: 0
4	SWITCH_BB_SL	T-switch control for Left AMUXBUSB switch. Default Value: 0
2	SWITCH_AA_S0	T-switch control for AMUXBUSA vssa/ground switch: '0': switch open. '1': switch closed. Default Value: 0
1	SWITCH_AA_SR	T-switch control for Right AMUXBUSA switch: '0': switch open. '1': switch closed. Default Value: 0
0	SWITCH_AA_SL	T-switch control for Left AMUXBUSA switch: '0': switch open. '1': switch closed. Default Value: 0

HSIOM_AMUX_SPLIT_CTL1

AMUX splitter cell control Address: 0x40022104 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None	RW	RW	RW	None	RW	RW	RW
HW Access	None	R	R	R	None	R	R	R
Name	None	SWITCH_ BB_S0	SWITCH_ BB_SR	SWITCH_ BB_SL	None	SWITCH_ AA_S0	SWITCH_ AA_SR	SWITCH_ AA_SL
	1	1		1		I	I _	_
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access	None							
Name	1	None [31:24]						

Bits	Name	Description
6	SWITCH_BB_S0	T-switch control for AMUXBUSB vssa/ground switch. Default Value: 0
5	SWITCH_BB_SR	T-switch control for Right AMUXBUSB switch. Default Value: 0
4	SWITCH_BB_SL	T-switch control for Left AMUXBUSB switch. Default Value: 0
2	SWITCH_AA_S0	T-switch control for AMUXBUSA vssa/ground switch: '0': switch open. '1': switch closed. Default Value: 0
1	SWITCH_AA_SR	T-switch control for Right AMUXBUSA switch: '0': switch open. '1': switch closed. Default Value: 0
0	SWITCH_AA_SL	T-switch control for Left AMUXBUSA switch: '0': switch open. '1': switch closed. Default Value: 0

HSIOM - PORT SPECIFIC REGISTERS

This section discusses the HSIOM Port Specific registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 10. REGISTER DETAILS

Register Name	Address
HSIOM_PORT_SEL0	0x40020000
HSIOM_PORT_SEL1	0x40020100
HSIOM_PORT_SEL2	0x40020200
HSIOM_PORT_SEL3	0x40020300
HSIOM_PORT_SEL4	0x40020400

HSIOM_PORT_SEL0

Port selection register Address: 0x40020000 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		R'	W	•	RW				
HW Access		R'	W			R	W		
Name		IO1_SE	EL [7:4]			IO0_SE	EL [3:0]		
				I	1		T	ı	
Bits	15	14	13	12	11	10	9	8	
SW Access		R	W			R	W		
HW Access		R	W		RW				
Name		IO3_SEI	L [15:12]		IO2_SEL [11:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		R	W	<u> </u>	RW				
HW Access		R	W		RW				
Name		IO5_SEI	L [23:20]		IO4_SEL [19:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access	RW				RW				
HW Access	RW				RW				
Name		IO7_SEL [31:28]				IO6_SEL [27:24]			

Bits	Name	Description
31:28	IO7_SEL	Selects connection for IO pad 7 route. Default Value: 0
27:24	IO6_SEL	Selects connection for IO pad 6 route. Default Value: 0
23:20	IO5_SEL	Selects connection for IO pad 5 route. Default Value: 0
19:16	IO4_SEL	Selects connection for IO pad 4 route. Default Value: 0
15:12	IO3_SEL	Selects connection for IO pad 3 route. Default Value: 0
11:8	IO2_SEL	Selects connection for IO pad 2 route. Default Value: 0
7:4	IO1_SEL	Selects connection for IO pad 1 route. Default Value: 0

3:0 IO0_SEL Selects connection for IO pad 0 route.

Default Value: 0 0x0: GPIO:

SW controlled GPIO.

0x1: GPIO_DSI:SW controlled "out", DSI controlled "oe_n".

0x2: DSI DSI:

DSI controlled "out" and "oe_n".

0x3: DSI_GPIO:

DSI controlled "out", SW controlled "oe_n".

0x4: CSD_SENSE:

CSD sense connection (analog mode)

0x5: CSD_SHIELD:

CSD shield connection (analog mode)

0x6: AMUXA:

AMUXBUS A connection.

0x7: AMUXB:

AMUXBUS B connection. This mode is also used for CSD GPIO charging. When CSD GPIO charging is enabled in CSD_CONTROL, "oe_n" is connected to "!csd_charge" signal (and IO pad is also still connected to AMUXBUS B).

0x8: ACT 0:

Chip specific Active source 0 connection.

0x9: ACT_1:

Chip specific Active source 1 connection.

0xa: ACT 2:

Chip specific Active source 2 connection.

0xb: ACT 3:

Chip specific Active source 3 connection.

0xc: LCD_COM:

LCD common connection. This mode provides DeepSleep functionality (provided that the LCD block is enabled and properly configured).

0xc: DS 0:

Chip specific DeepSleep source 0 connection.

0xd: LCD SEG:

LCD segment connection. This mode provides DeepSleep functionality (provided that the LCD block is enabled and properly configured).

0xd: DS_1:

Chip specific DeepSleep source 1 connection.

0xe: DS 2:

Chip specific DeepSleep source 2 connection.

0xf: DS 3:

Chip specific DeepSleep source 3 connection.

HSIOM_PORT_SEL1

Port selection register Address: 0x40020100 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW			RW				
HW Access	RW				RW			
Name	IO1_SEL [7:4]				IO0_SEL [3:0]			
				1		I	T	
Bits	15	14	13	12	11	10	9	8
SW Access	RW				RW			
HW Access	RW				RW			
Name	IO3_SEL [15:12]			IO2_SEL [11:8]				
Bits	23	22	21	20	19	18	17	16
SW Access	RW			RW				
HW Access	RW			RW				
Name	IO5_SEL [23:20]				IO4_SEL [19:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	RW			RW				
HW Access	RW			RW				
Name	IO7_SEL [31:28]			IO6_SEL [27:24]				

Bits	Name	Description
31:28	IO7_SEL	Selects connection for IO pad 7 route. Default Value: 0
27:24	IO6_SEL	Selects connection for IO pad 6 route. Default Value: 0
23:20	IO5_SEL	Selects connection for IO pad 5 route. Default Value: 0
19:16	IO4_SEL	Selects connection for IO pad 4 route. Default Value: 0
15:12	IO3_SEL	Selects connection for IO pad 3 route. Default Value: 0
11:8	IO2_SEL	Selects connection for IO pad 2 route. Default Value: 0
7:4	IO1_SEL	Selects connection for IO pad 1 route. Default Value: 0

3:0 IO0_SEL Selects connection for IO pad 0 route.

Default Value: 0 0x0: GPIO:

SW controlled GPIO.

0x1: GPIO_DSI:

SW controlled "out", DSI controlled "oe_n".

0x2: DSI DSI:

DSI controlled "out" and "oe_n".

0x3: DSI_GPIO:

DSI controlled "out", SW controlled "oe_n".

0x4: CSD_SENSE:

CSD sense connection (analog mode)

0x5: CSD_SHIELD:

CSD shield connection (analog mode)

0x6: AMUXA:

AMUXBUS A connection.

0x7: AMUXB:

AMUXBUS B connection. This mode is also used for CSD GPIO charging. When CSD GPIO charging is enabled in CSD_CONTROL, "oe_n" is connected to "!csd_charge" signal (and IO pad is also still connected to AMUXBUS B).

0x8: ACT 0:

Chip specific Active source 0 connection.

0x9: ACT_1:

Chip specific Active source 1 connection.

0xa: ACT 2:

Chip specific Active source 2 connection.

0xb: ACT 3:

Chip specific Active source 3 connection.

0xc: LCD_COM:

LCD common connection. This mode provides DeepSleep functionality (provided that the LCD block is enabled and properly configured).

0xc: DS 0:

Chip specific DeepSleep source 0 connection.

0xd: LCD SEG:

LCD segment connection. This mode provides DeepSleep functionality (provided that the LCD block is enabled and properly configured).

0xd: DS_1:

Chip specific DeepSleep source 1 connection.

0xe: DS 2:

Chip specific DeepSleep source 2 connection.

0xf: DS 3:

Chip specific DeepSleep source 3 connection.

HSIOM_PORT_SEL2

Port selection register Address: 0x40020200 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW				RW			
HW Access	RW				RW			
Name	IO1_SEL [7:4]				IO0_SEL [3:0]			
Bits	15	14	13	12	11	10	9	8
SW Access	RW				RW			
HW Access	RW				RW			
Name	IO3_SEL [15:12]				IO2_SEL [11:8]			
Bits	23	22	21	20	19	18	17	16
SW Access	RW				RW			
HW Access	RW				RW			
Name	IO5_SEL [23:20]				IO4_SEL [19:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	RW				RW			
HW Access	RW			RW				
Name	IO7_SEL [31:28]			IO6_SEL [27:24]				

Bits	Name	Description
31:28	IO7_SEL	Selects connection for IO pad 7 route. Default Value: 0
27:24	IO6_SEL	Selects connection for IO pad 6 route. Default Value: 0
23:20	IO5_SEL	Selects connection for IO pad 5 route. Default Value: 0
19:16	IO4_SEL	Selects connection for IO pad 4 route. Default Value: 0
15:12	IO3_SEL	Selects connection for IO pad 3 route. Default Value: 0
11:8	IO2_SEL	Selects connection for IO pad 2 route. Default Value: 0
7:4	IO1_SEL	Selects connection for IO pad 1 route. Default Value: 0

3:0 IO0_SEL Selects connection for IO pad 0 route.

Default Value: 0 0x0: GPIO:

SW controlled GPIO.

0x1: GPIO_DSI:

SW controlled "out", DSI controlled "oe_n".

0x2: DSI DSI:

DSI controlled "out" and "oe_n".

0x3: DSI GPIO:

DSI controlled "out", SW controlled "oe_n".

0x4: CSD_SENSE:

CSD sense connection (analog mode)

0x5: CSD_SHIELD:

CSD shield connection (analog mode)

0x6: AMUXA:

AMUXBUS A connection.

0x7: AMUXB:

AMUXBUS B connection. This mode is also used for CSD GPIO charging. When CSD GPIO charging is enabled in CSD_CONTROL, "oe_n" is connected to "!csd_charge" signal (and IO pad is also still connected to AMUXBUS B).

0x8: ACT 0:

Chip specific Active source 0 connection.

0x9: ACT_1:

Chip specific Active source 1 connection.

0xa: ACT 2:

Chip specific Active source 2 connection.

0xb: ACT 3:

Chip specific Active source 3 connection.

0xc: LCD_COM:

LCD common connection. This mode provides DeepSleep functionality (provided that the LCD block is enabled and properly configured).

0xc: DS 0:

Chip specific DeepSleep source 0 connection.

0xd: LCD SEG:

LCD segment connection. This mode provides DeepSleep functionality (provided that the LCD block is enabled and properly configured).

0xd: DS_1:

Chip specific DeepSleep source 1 connection.

0xe: DS_2:

Chip specific DeepSleep source 2 connection.

0xf: DS 3:

Chip specific DeepSleep source 3 connection.

HSIOM_PORT_SEL3

Port selection register Address: 0x40020300 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		R'	W	•	RW			
HW Access		R	W			R	W	
Name		IO1_SE	EL [7:4]			IO0_SE	EL [3:0]	
				I	1		T	ı
Bits	15	14	13	12	11	10	9	8
SW Access		R	W			R	W	
HW Access	RW				RW			
Name		IO3_SEI	L [15:12]		IO2_SEL [11:8]			
Bits	23	22	21	20	19	18	17	16
SW Access		R	W		RW			
HW Access		R	W		RW			
Name		IO5_SEI	L [23:20]		IO4_SEL [19:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	RW			RW				
HW Access	RW				RW			
Name		IO7_SEI	[31:28]		IO6_SEL [27:24]			

Bits	Name	Description
31:28	IO7_SEL	Selects connection for IO pad 7 route. Default Value: 0
27:24	IO6_SEL	Selects connection for IO pad 6 route. Default Value: 0
23:20	IO5_SEL	Selects connection for IO pad 5 route. Default Value: 0
19:16	IO4_SEL	Selects connection for IO pad 4 route. Default Value: 0
15:12	IO3_SEL	Selects connection for IO pad 3 route. Default Value: 0
11:8	IO2_SEL	Selects connection for IO pad 2 route. Default Value: 0
7:4	IO1_SEL	Selects connection for IO pad 1 route. Default Value: 0

3:0 IO0_SEL Selects connection for IO pad 0 route.

Default Value: 0

0x0: GPIO:

SW controlled GPIO.

0x1: GPIO_DSI:

SW controlled "out", DSI controlled "oe_n".

0x2: DSI DSI:

DSI controlled "out" and "oe_n".

0x3: DSI_GPIO:

DSI controlled "out", SW controlled "oe_n".

0x4: CSD_SENSE:

CSD sense connection (analog mode)

0x5: CSD_SHIELD:

CSD shield connection (analog mode)

0x6: AMUXA:

AMUXBUS A connection.

0x7: AMUXB:

AMUXBUS B connection. This mode is also used for CSD GPIO charging. When CSD GPIO charging is enabled in CSD_CONTROL, "oe_n" is connected to "!csd_charge" signal (and IO pad is also still connected to AMUXBUS B).

0x8: ACT 0:

Chip specific Active source 0 connection.

0x9: ACT_1:

Chip specific Active source 1 connection.

0xa: ACT 2:

Chip specific Active source 2 connection.

0xb: ACT 3:

Chip specific Active source 3 connection.

0xc: LCD_COM:

LCD common connection. This mode provides DeepSleep functionality (provided that the LCD block is enabled and properly configured).

0xc: DS 0:

Chip specific DeepSleep source 0 connection.

0xd: LCD SEG:

LCD segment connection. This mode provides DeepSleep functionality (provided that the LCD block is enabled and properly configured).

0xd: DS_1:

Chip specific DeepSleep source 1 connection.

0xe: DS_2:

Chip specific DeepSleep source 2 connection.

0xf: DS 3:

Chip specific DeepSleep source 3 connection.

HSIOM_PORT_SEL4

Port selection register Address: 0x40020400 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		R	W		RW				
HW Access		R	W			R'	W		
Name		IO1_SI	EL [7:4]			IO0_SE	EL [3:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access		R	W			R'	W		
HW Access		RW				RW			
Name		IO3_SE	L [15:12]			IO2_SE	L [11:8]		
						1			
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				Note	[23:16]				
						1			
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one			·	
HW Access				No	one				
Name				None	[31:24]				

Bits	Name	Description
15:12	IO3_SEL	Selects connection for IO pad 3 route.
		Default Value: 0
11:8	IO2_SEL	Selects connection for IO pad 2 route.
		Default Value: 0
7:4	IO1_SEL	Selects connection for IO pad 1 route.
		Default Value: 0

3:0 IO0_SEL Selects connection for IO pad 0 route.

Default Value: 0 0x0: GPIO:

SW controlled GPIO.

0x1: GPIO_DSI:

SW controlled "out", DSI controlled "oe_n".

0x2: DSI_DSI:

DSI controlled "out" and "oe_n".

0x3: DSI GPIO:

DSI controlled "out", SW controlled "oe_n".

0x4: CSD_SENSE:

CSD sense connection (analog mode)

0x5: CSD_SHIELD:

CSD shield connection (analog mode)

0x6: AMUXA:

AMUXBUS A connection.

0x7: AMUXB:

AMUXBUS B connection. This mode is also used for CSD GPIO charging. When CSD GPIO charging is enabled in CSD_CONTROL, "oe_n" is connected to "!csd_charge" signal (and IO pad is also still connected to AMUXBUS B).

0x8: ACT 0:

Chip specific Active source 0 connection.

0x9: ACT_1:

Chip specific Active source 1 connection.

0xa: ACT 2:

Chip specific Active source 2 connection.

0xb: ACT 3:

Chip specific Active source 3 connection.

0xc: LCD_COM:

LCD common connection. This mode provides DeepSleep functionality (provided that the LCD block is enabled and properly configured).

0xc: DS 0:

Chip specific DeepSleep source 0 connection.

0xd: LCD SEG:

LCD segment connection. This mode provides DeepSleep functionality (provided that the LCD block is enabled and properly configured).

0xd: DS_1:

Chip specific DeepSleep source 1 connection.

0xe: DS 2:

Chip specific DeepSleep source 2 connection.

0xf: DS 3:

Chip specific DeepSleep source 3 connection.

LOW POWER COMPARATOR (LPCOMP) REGISTERS

This section discusses the LPCOMP registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 11. REGISTER DETAILS

Register Name	Address
LPCOMP_ID	0x400D0000
LPCOMP_CONFIG	0x400D0004
LPCOMP_INTR	0x400D0010
LPCOMP_INTR_SET	0x400D0014
LPCOMP_INTR_MASK	0x400D0018
LPCOMP_INTR_MASKED	0x400D001C
LPCOMP_TRIM1	0x400DFF00
LPCOMP_TRIM2	0x400DFF04
LPCOMP_TRIM3	0x400DFF08
LPCOMP_TRIM4	0x400DFF0C

LPCOMP_ID

ID & Revision

Address: 0x400D0000 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	R									
HW Access				No	one					
Name				ID	[7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access				- 1	R					
HW Access	None									
Name				ID [15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				l	R					
HW Access				No	one					
Name				REVISIO	N [23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				I	R					
HW Access				No	one					
Name				REVISIO	N [31:24]					

Bits	Name	Description
31:16	REVISION	the version number is 0x0001
		Default Value: 1
15:0	ID	the ID of LPCOMP peripheral is 0xE0E0
		Default Value: 57568

LPCOMP_CONFIG

LPCOMP Configuration Register Address: 0x400D0004

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RW	R	F	W	RW	RW	R	RW		
HW Access	R	RW		R	R	R	R			
Name	ENABLE1	OUT1	INTTYF	PE1 [5:4]	FILTER1	HYST1	MODE	E1 [1:0]		
Bits	15	14	13	12	11	10	9	8		
SW Access	RW	R	R	W	RW	RW	RW			
HW Access	R	RW	R		R	R	R			
Name	ENABLE2	OUT2	INTTYPE2 [13:12]		FILTER2	HYST2	MODE2 [9:8]			
			_							
Bits	23	22	21	20	19	18	17	16		
SW Access	No	ne	RW	RW	No	ne	RW	RW		
HW Access	No	ne	R	R	No	ne	R	R		
Name	None [23:22]		DSI_ LEVEL2	DSI_ BYPASS2	None [19:18]		DSI_ LEVEL1	DSI_ BYPASS1		
					_					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
1047.4										

Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access	None								
Name				None [31:24]				

Bits	Name	Description
21	DSI_LEVEL2	Reserved bit – It should be set to 0
		Default Value: 0
20	DSI_BYPASS2	Reserved bit – It should be set to 0
		Default Value: 0
17	DSI_LEVEL1	Reserved bit – It should be set to 0
		Default Value: 0
16	DSI_BYPASS1	Reserved bit – It should be set to 0
		Default Value: 0
15	ENABLE2	Enable Comparator 1
		Default Value: 0
14	OUT2	Current output value of the Comparator 1
		Default Value: 0
13:12	INTTYPE2	Sets which edge in the Comparator 1 output triggers an interrupt
		Default Value: 0
		0x0: DISABLE:
		Disabled, no interrupts will be generated
		0x1: RISING:
		Rising edge
		0x2: FALLING:
		Falling edge
		0x3: BOTH:

Both rising and falling edges

LPCOMP_CONFIG (Continued)

11	FILTER2	Reserved bit – It should be set to 0. Default Value: 0
10	HYST2	10 mV hysteresis for Comparator 1 0: Enable Hysteresis 1: Disable Hysteresis Default Value: 0
9:8	MODE2	Sets the operating mode for Comparator 1 Default Value: 0 0x0: SLOW: Slow operating mode 0x1: FAST: Fast operating mode (Highest block current) 0x2: ULP: Ultra low power operating mode (lowest block current)
7	ENABLE1	Enable Comparator 0 Default Value: 0
6	OUT1	Current output value of the Comparator 0 Default Value: 0
5:4	INTTYPE1	Sets which edge in the Comparator 0 output triggers an interrupt Default Value: 0 Ox0: DISABLE: Disabled, no interrupts will be generated Ox1: RISING: Rising edge Ox2: FALLING: Falling edge Ox3: BOTH: Both rising and falling edges
3	FILTER1	Reserved bit – It should be set to 0. Default Value: 0
2	HYST1	10 mV hysteresis for Comparator 0 0: Enable Hysteresis 1: Disable Hysteresis Default Value: 0
1:0	MODE1	Sets the operating mode for Comparator 0 Default Value: 0 0x0: SLOW: Slow operating mode 0x1: FAST: Fast operating mode (Highest block current) 0x2: ULP: Ultra low power operating mode (lowest block current)

LPCOMP_INTR

LPCOMP Interrupt request register Address: 0x400D0010

Bits	7	6	5	4	3	2	1	0			
SW Access			No	ne	l	L	RW1C	RW1C			
HW Access			No	ne			RW1S	RW1S			
Name			None	e [7:2]			COMP2	COMP1			
			_		_						
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
				1	1	_	_	1			
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
						_					
Bits	31	30	29	28	27	26	25	24			
SW Access		•		No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
1	COMP2	Comparator 1 Interrupt: Hardware sets this bit when comparator 1 triggers. Write with '1' to clear bit. Default Value: 0
0	COMP1	Comparator 0 Interrupt: Hardware sets this bit when comparator 0 triggers. Write with '1' to clear bit. Default Value: 0

LPCOMP_INTR_SET

LPCOMP Interrupt set register Address: 0x400D0014

Bits	7	7 6 5 4 3 2 1 0						
SW Access			No	ne		•	RW1S	RW1S
HW Access			No	one			Α	Α
Name			None	e [7:2]			COMP2	COMP1
								•
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
				1		_		
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
1	COMP2	Write with '1' to set COMP2 bit in the interrupt request register. This triggers Comparator 1 interrupt. Default Value: 0
0	COMP1	Write with '1' to set COMP1 bit in the interrupt request register. This triggers Comparator 0 interrupt. Default Value: 0

LPCOMP_INTR_MASK

LPCOMP Interrupt request mask Address: 0x400D0018

Bits	7	6	5	4	3	2	1	0
SW Access			No	ne	•	•	RW	RW
HW Access			No	one			R	R
Name			None	e [7:2]			COMP2_ MASK	COMP1_ MASK
Bits	15	14	13	12	11	10	9	8
SW Access		1	•	No	one	•	•	1
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
			T	1	1	1	1	
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
1	COMP2_MASK	Interrupt mask bit for Comparator 1 Default Value: 0
0	COMP1_MASK	Interrupt mask bit for Comparator 0 Default Value: 0

LPCOMP_INTR_MASKED

LPCOMP Interrupt request masked Address: 0x400D001C

Bits	7	6	5	4	3	2	1	0
SW Access			No	ne			R	R
HW Access			No	ne			W	W
Name			None	[7:2]			COMP2 MASKED	COMP1 MASKED
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	one			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
1	COMP2_MASKED	Logical AND of the Comparator 1 interrupt request register bit and the interrupt mask bit. Default Value: 0
0	COMP1_MASKED	Logical AND of the Comparator 0 interrupt request register bit and the interrupt mask bit.

LPCOMP Trim Register Address: 0x400DFF00 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None			RW					
HW Access		None			R					
Name		None [7:5]			CC	MP1_TRIMA [4	4:0]			
Bits	15	14	13	12	11	10	9	8		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 4:0 COMP1_TRIMA

Description

 $\mbox{Trim A}$ for Comparator 0. These bits are used to correct/trim the comparator offset (Coarse tuning bits).

Trim A bits[3:0] control the amount of offset and Trim A bit[4] controls the polarity of offset ('1' indicates positive offset and '0' indicates negative offset).

LPCOMP Trim Register Address: 0x400DFF04 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None			RW					
HW Access		None			R					
Name		None [7:5]			CC	MP1_TRIMB [4	1:0]			
	T	T		T	T	T	T	T		
Bits	15	14	13	12	11	10	9	8		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 4:0 COMP1_TRIMB Description

Trim B for Comparator 0. These bits are used to correct/trim the comparator offset (fine tuning bits). These bits must be tuned after tuning Trim A bits for the comparator.

LPCOMP Trim Register Address: 0x400DFF08 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None			RW					
HW Access		None			R					
Name		None [7:5]			CC	MP2_TRIMA [4	4:0]			
Bits	15	14	13	12	11	10	9	8		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 4:0 COMP2_TRIMA

Description

 $\label{thm:comparator} \mbox{Trim A for Comparator 1. These bits are used to correct/trim the comparator offset (Coarse tuning bits) .}$

 $\label{thm:control} \mbox{Trim A bits} \mbox{[3:0] control the amount of offset and Trim A bit[4] controls the polarity of offset ('1' indicates positive offset and '0' indicates negative offset).}$

LPCOMP Trim

Register Address: 0x400DFF0C

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None		RW					
HW Access		None		R					
Name	None [7:5]				CC	MP2_TRIMB [4	4:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access				No	one				
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	one				
Name				None	[31:24]				

Bits Name 4:0 COMP2_TRIMB Description

Trim B for Comparator 1. These bits are used to correct/trim the comparator offset (fine tuning bits). These bits must be tuned after tuning Trim A bits for the comparator.

PASS MMIO REGISTERS

This section discusses the Programmable Analog Sub System Memory Mapped IO (PASS MMIO) registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 12. REGISTER DETAILS

Register Name	Address
PASS_INTR_CAUSE	0x403F0000
PASS_DFT_CTRL	0x403F0030
PASS_PASS_CTRL	0x403F0108
PASS_DSAB_TRIM	0x403F0F00

PASS_INTR_CAUSE

Interrupt cause register Address: 0x403F0000 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None								
HW Access		None V								
Name		None [7:1] CTB0_INT								
Bits	15	14	13	12	11	10	9	8		
SW Access	None									
HW Access	None									
Name		None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name
0 CTB0_INT

Description

CTB0 interrupt pending Default Value: 0

PASS_DFT_CTRL

DFT control register Address: 0x403F0030 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		None									
HW Access		None									
Name		None [7:1] DSAB									
Bits	15	15 14 13 12 11 10 9 8									
SW Access		None									
HW Access		None									
Name				None	[15:8]						
		T	1	1	1		ı	1			
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access					ne	1					
HW Access					one						
Name				None	[31:24]						

Bits	Name	Description
0	DSAB_ADFT_RES_EN	Close the switch to connect the DSAB ADFT resistor to the AMUXBUS

PASS_PASS_CTRL

PASS Control

Address: 0x403F0108 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			No	ne	•	•	RW	RW			
HW Access			No	one			R	R			
Name		None [7:2] PMPCLK_SRC									
Bits	15	15 14 13 12 11 10 9 8									
SW Access		RW									
HW Access		R									
Name		RMB_BITS [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
		T	T	1	1	1	T	T			
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
15:8	RMB_BITS	Risk mitigation bits Default Value: 0
1	PMPCLK_SRC	0: Pump clk is clk_hf1: Pump clk is direct from SRSSDefault Value: 0
0	PMPCLK_BYP	0: Pump clk is clk_hf/21: Pump clk is selected from PMPCLK_SRCDefault Value: 0

PASS_DSAB_TRIM

DSAB Trim bits Address: 0x403F0F00 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	None		RW		RW						
HW Access	No	ne	F	R R			3				
Name	None	[7:6]	DSAB_RME	3_BITS [5:4]		IBIAS_T	RIM [3:0]				
Bits	15	14	10	10	11	10					
DIIS	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
	23	22	21			10	17	10			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Dito	31	20	20	00	07	26	05	04			
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne			<u></u>			
Name				None	[31:24]						

Bits	Name	Description
5:4	DSAB_RMB_BITS	Risk mitigation bits
		Default Value: 0
3:0	IBIAS_TRIM	1111 = lowest, 0000 = highest

PERIPHERAL INTERCONNECT (PERI) REGISTERS

This section discusses the Clock Dividers and Peripheral Interconnect (PERI) registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 13. REGISTER DETAILS

Register Name	Address
PERI_DIV_CMD	0x40010000
PERI_PCLK_CTL0	0x40010100
PERI_PCLK_CTL1	0x40010104
PERI_PCLK_CTL2	0x40010108
PERI_PCLK_CTL3	0x4001010C
PERI_PCLK_CTL4	0x40010110
PERI_PCLK_CTL5	0x40010114
PERI_PCLK_CTL6	0x40010118
PERI_PCLK_CTL7	0x4001011C
PERI_PCLK_CTL8	0x40010120
PERI_PCLK_CTL9	0x40010124
PERI_PCLK_CTL10	0x40010128
PERI_PCLK_CTL11	0x4001012C
PERI_PCLK_CTL12	0x40010130
PERI_DIV_16_CTL0	0x40010300
PERI_DIV_16_CTL1	0x40010304
PERI_DIV_16_CTL2	0x40010308
PERI_DIV_16_CTL3	0x4001030C
PERI_DIV_16_CTL4	0x40010310
PERI_DIV_16_CTL5	0x40010314
PERI_DIV_16_5_CTL0	0x40010400
PERI_DIV_16_5_CTL1	0x40010404
PERI_DIV_16_5_CTL2	0x40010408
PERI_TR_CTL	0x40010600

Divider command register Address: 0x40010000 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access	R	W		•	F	W	•	•
HW Access	ı	7				R		
Name	SEL_TY	'PE [7:6]			SEL_C	OIV [5:0]		
		T	T	1	T	1	I	1
Bits	15	14	13	12	11	10	9	8
SW Access	R	W	RW					
HW Access	R		R					
Name	PA_SEL_T	YPE [15:14]	PA_SEL_DIV [13:8]					
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			l
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	20	- 00	28	07	26	05	04
DIIS	31	30	29	∠8	27	26	25	24
SW Access	RW	RW			No	one		

Bits	Name
31	ENABLE

RW1C

ENABLE

HW Access

Name

Description

RW1C

DISABLE

Clock divider enable command (mutually exclusive with DISABLE). Typically, SW sets this field to '1' to enable a divider and HW sets this field to '0' to indicate that divider enabling has completed. When a divider is enabled, its integer and fractional (if present) counters are initialized to "0". If a divider is to be re-enabled using different integer and fractional divider values, the SW should follow these steps:

None

None [29:24]

- 0: Disable the divider using the DIV_CMD.DISABLE field.
- 1: Configure the divider's DIV XXX CTL register.
- 2: Enable the divider using the DIV CMD ENABLE field.

The SEL_DIV and SEL_TYPE fields specify which divider is to be enabled. The enabled divider may be phase aligned to either "clk_hf" (typical usage) or to ANY enabled divider.

The PA_SEL_DIV and P_SEL_TYPE fields specify the reference divider.

The HW sets the ENABLE field to '0' when the enabling is performed and the HW set the DIV XXX CTL.EN field of the divider to '1' when the enabling is performed. Note that enabling with phase alignment to a low frequency divider takes time. E.g. To align to a divider that generates a clock of "clk_hf"/n (with n being the integer divider value INT_DIV+1), up to n cycles may be required to perform alignment. Phase alignment to "clk_hf" takes affect immediately. SW can set this field to '0' during phase alignment to abort the enabling process.

Default Value: 0

30 **DISABLE**

Clock divider disable command (mutually exlusive with ENABLE). SW sets this field to '1' and HW sets this field to '0'.

The SEL_DIV and SEL_TYPE fields specify which divider is to be disabled.

The HW sets the DISABLE field to '0' immediately and the HW sets the DIV_XXX_CTL.EN field of the divider to '0' immediately.

PERI_DIV_CMD(Continued)

15:14	PA_SEL_TYPE	Specifies the divider type of the divider to which phase alignment is performed for the clock enable command:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
13:8	PA_SEL_DIV	(PA_SEL_TYPE, PA_SEL_DIV) pecifies the divider to which phase alignment is performed for the clock enable command. Any enabled divider can be used as reference. This allows all dividers to be aligned with each other, even when they are enabled at different times.
7:6	SEL_TYPE	Specifies the divider type of the divider on which the command is performed:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
5:0	SEL_DIV	(SEL_TYPE, SEL_DIV) specifies the divider on which the command (DISABLE/ENABLE) is performed.
		If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock signal(s) are generated.
		Default Value: 63

Programmable clock control register

Address: 0x40010100 Retention: Retained

Name

Name

Bits

Bits	7	6	5	4	3	2	1	0		
SW Access	R'	W		None	•		RW			
HW Access	F	3		None			R			
Name	SEL_TY	PE [7:6]		None [5:3]			SEL_DIV [2:0]			
		1			1	1	1			
Bits	15	14	13	12	11	10	9	8		
SW Access	None									
HW Access	None									
Name				None	[15:8]					
		1		,	1	1	T			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	ne					
Name				None	[23:16]					
						_				
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					

7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
		If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

None [31:24]

Default Value: 7

Programmable clock control register

Address: 0x40010104 Retention: Retained

Name

Name

Bits

Bits	7	6	5	4	3	2	1	0		
SW Access	R'	W		None			RW			
HW Access	F	3		None			R			
Name	SEL_TY	PE [7:6]		None [5:3]			SEL_DIV [2:0]			
Bits	15	15 14 13 12 11				10	9	8		
SW Access					ne					
HW Access		None								
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne		<u> </u>			
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access	<u> </u>	None None								
HW Access	None									

7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
		If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		When transitioning a clock between two out of phase dividers, spurious clock control signals may be

None [31:24]

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

Default Value: 7

Programmable clock control register

Address: 0x40010108 Retention: Retained

Name

Name

Bits

Bits	7	6	5	4	3	2	1	0		
SW Access	R'	W		None			RW			
HW Access	F	3		None			R			
Name	SEL_TY	PE [7:6]		None [5:3]			SEL_DIV [2:0]			
Bits	15	15 14 13 12 11				10	9	8		
SW Access					ne					
HW Access		None								
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne		<u> </u>			
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access	<u> </u>	None None								
HW Access	None									

7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
		If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		When transitioning a clock between two out of phase dividers, spurious clock control signals may be

None [31:24]

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

Default Value: 7

Name

Name

Bits

Programmable clock control register

Address: 0x4001010C Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	R'	W		None	•		RW		
HW Access	F	3		None			R		
Name	SEL_TY	PE [7:6]		None [5:3]			SEL_DIV [2:0]		
		1			1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[15:8]				
		1		,	1	1	T		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	ne				
Name				None	[23:16]				
						_			
Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access				No	ne				

7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
		If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		When transitioning a clock hetween two out of phase dividers, sourious clock control signals may be

None [31:24]

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

Default Value: 7

Programmable clock control register

Address: 0x40010110 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0		
SW Access	F	RW		None	•		RW	u		
HW Access		R		None			R			
Name	SEL_T	YPE [7:6]		None [5:3]			SEL_DIV [2:0]			
Bits	15	15 14 13 12 11 1					9	8		
SW Access				No	ne					
HW Access	None									
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one			ı		
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access	None									
HW Access	None									

Bits	Name	Description
7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
	_	If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single

None [31:24]

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

Programmable clock control register

Address: 0x40010114 Retention: Retained

Name

Name

Bits

Bits	7	6	5	4	3	2	1	0			
SW Access	R	W		None			RW				
HW Access	F	?		None			R				
Name	SEL_TY	PE [7:6]		None [5:3]			SEL_DIV [2:0]				
Bits	15	14	13	12	11	10	9	8			
SW Access				No	ne						
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access			<u> </u>	No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access	None										
HW Access				No	one						

7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
		If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		When transitioning a clock between two out of phase dividers, spurious clock control signals may be

None [31:24]

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

Default Value: 7

Programmable clock control register

Address: 0x40010118 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0			
SW Access	R	W		None			RW				
HW Access	F	?		None			R				
Name	SEL_TY	PE [7:6]		None [5:3]			SEL_DIV [2:0]				
Bits	15	14	13	12	11	10	9	8			
SW Access				lNo	ne						
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access			<u> </u>	No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access	None										
HW Access				No	one						

Bits	Name	Description
7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
		If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these sourious clock signals

None [31:24]

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

Programmable clock control register

Address: 0x4001011C Retention: Retained

Name

Name

SEL_TYPE

Bits

7:6

Bits	7	6	5	4	3	2	1	0	
SW Access	R	W		None			RW		
HW Access	F	3		None			R		
Name	SEL_TY	PE [7:6]		None [5:3]			SEL_DIV [2:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access	None								
Name	None [15:8]								
Bits	23	22	21	20	19	18	17	16	
SW Access		None							
HW Access		None							
Name		None [23:16]							
Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access	None								

		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
	_	If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		the contract of the contract o

None [31:24]

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

Default Value: 7

Description

Specifies divider type:

Programmable clock control register

Address: 0x40010120 Retention: Retained

Name

Name

Bits

Bits	7	6	5	4	3	2	1	0	
SW Access	R'	W		None			RW		
HW Access	F	3		None		R			
Name	SEL_TY	PE [7:6]		None [5:3]			SEL_DIV [2:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access					ne				
HW Access	None								
Name	None [15:8]								
Bits	23	22	21	20	19	18	17	16	
SW Access	None								
HW Access				No	ne				
Name	None [23:16]								
Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access	None								

7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
		If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		When transitioning a clock between two out of phase dividers, spurious clock control signals may be

None [31:24]

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

Default Value: 7

Programmable clock control register

Address: 0x40010124 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access	R'	W		None			RW		
HW Access	F	3		None			R		
Name	SEL_TY	PE [7:6]		None [5:3]			SEL_DIV [2:0]		
		1			1	1		1	
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access	None								
Name	None [15:8]								
		1		,	1	1		1	
Bits	23	22	21	20	19	18	17	16	
SW Access	None								
HW Access	None								
Name	None [23:16]								
						_			
Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access	None								

Bits	Name	Description
7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
	_	If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

None [31:24]

Programmable clock control register

Address: 0x40010128 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access	R	W	None			RW			
HW Access	F	?		None			R		
Name	SEL_TY	PE [7:6]		None [5:3]			SEL_DIV [2:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access				lNo	ne				
HW Access	None								
Name	None [15:8]								
Bits	23	22	21	20	19	18	17	16	
SW Access		None							
HW Access		None							
Name	None [23:16]								
Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access	None								

Bits	Name	Description
7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
		If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single

None [31:24]

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

PERI_PCLK_CTL11

Programmable clock control register

Address: 0x4001012C Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0
SW Access	R	W		None			RW	
HW Access	F	7		None			R	
Name	SEL_TY	'PE [7:6]		None [5:3]			SEL_DIV [2:0]	
Bits	15	14	13	12	11	10	9	8
SW Access				l No	ne			
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access		l .		No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						

Bits	Name	Description
		•
7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
	_	If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		When transitioning a clock between two out of phase dividers, spurious clock control signals may be

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

None [31:24]

Default Value: 7

PERI_PCLK_CTL12

Programmable clock control register

Address: 0x40010130 Retention: Retained

Name

Name

Bits

Bits	7	6	5	4	3	2	1	0
SW Access	F	RW		None	•		RW	
HW Access		R		None			R	
Name	SEL_T	/PE [7:6]		None [5:3]			SEL_DIV [2:0]	
Bits	15	14	13	12	11	10	9	8
SW Access					l one			
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access			<u> </u>	No	one		1	I
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						

7:6	SEL_TYPE	Specifies divider type:
		0: 8.0 (integer) clock dividers.
		1: 16.0 (integer) clock dividers.
		2: 16.5 (fractional) clock dividers.
		3: 24.5 (fractional) clock dividers.
		Default Value: 3
2:0	SEL_DIV	Specifies one of the dividers of the divider type specified by SEL_TYPE.
		If SEL_DIV is "63" and "SEL_TYPE" is "3" (default/reset value), no divider is specified and no clock control signal(s) are generated.
		When transitioning a clock between two out of phase dividers, spurious clock control signals may be

None [31:24]

When transitioning a clock between two out of phase dividers, spurious clock control signals may be generated for one clk_hf cycle during this transition. These clock control signals may cause a single clock period that is smaller than any of the two divider periods. To prevent these spurious clock signals, the clock multiplexer can be disconnected (SEL_DIV is "63" and "SEL_TYPE" is "3") for a transition time that is larger than the smaller of the two divider periods.

Default Value: 7

Description

Divider control register (for 16.0 divider) Address: 0x40010300

Bits	7	6	5	4	3	2	1	0
SW Access		None						
HW Access				None				RW
Name				None [7:1]				EN
			_	_	1	_		
Bits	15	14	13	12	11	10	9	8
SW Access				R	W			
HW Access		R						
Name		INT16_DIV [15:8]						
					1	_	1	_
Bits	23	22	21	20	19	18	17	16
SW Access				R	W			
HW Access				I	R			
Name				INT16_D	IV [23:16]			
			_					
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
23:8	INT16_DIV	Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].
		Note: this type of divider does NOT allow for a fractional division.
		For the generation of a divided clock, the integer division range is restricted to [2, 65,536].
		For the generation of a 50/50% duty cycle digital divided clock, the integer division range is restricted to even numbers in the range [2, 65,536]. The generation of a 50/50 % duty cycle analog divided clock has no restrictions.
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
0	EN	Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as a result on a DISABLE command.
		Note that this field is retained. As a result, the divider does NOT have to be re-enabled after transitioning from DeepSleep to Active power mode.
		Default Value: 0

Divider control register (for 16.0 divider) Address: 0x40010304

Bits	7	6	5	4	3	2	1	0
SW Access				None				R
HW Access				None				RW
Name				None [7:1]				EN
							_	
Bits	15	14	13	12	11	10	9	8
SW Access				R	W			
HW Access				F	3			
Name				INT16_C	OIV [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				R	W			
HW Access				F	3			
Name				INT16_D	IV [23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
23:8	INT16_DIV	Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].
		Note: this type of divider does NOT allow for a fractional division.
		For the generation of a divided clock, the integer division range is restricted to [2, 65,536].
		For the generation of a 50/50% duty cycle digital divided clock, the integer division range is restricted to even numbers in the range [2, 65,536]. The generation of a 50/50 % duty cycle analog divided clock has no restrictions.
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
0	EN	Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as a result on a DISABLE command.
		Note that this field is retained. As a result, the divider does NOT have to be re-enabled after transitioning from DeepSleep to Active power mode.
		Default Value: 0

Divider control register (for 16.0 divider) Address: 0x40010308

Bits	7	6	5	4	3	2	1	0
SW Access		None						
HW Access				None				RW
Name				None [7:1]				EN
			_			_	_	
Bits	15	14	13	12	11	10	9	8
SW Access				R	W			
HW Access				I	7			
Name		INT16_DIV [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				R	W			
HW Access				I	7			
Name				INT16_D	IV [23:16]			
				_		_		_
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
23:8	INT16_DIV	Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].
		Note: this type of divider does NOT allow for a fractional division.
		For the generation of a divided clock, the integer division range is restricted to [2, 65,536].
		For the generation of a 50/50% duty cycle digital divided clock, the integer division range is restricted to even numbers in the range [2, 65,536]. The generation of a 50/50 % duty cycle analog divided clock has no restrictions.
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
0	EN	Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as a result on a DISABLE command.
		Note that this field is retained. As a result, the divider does NOT have to be re-enabled after transitioning from DeepSleep to Active power mode.
		Default Value: 0

Divider control register (for 16.0 divider) Address: 0x4001030C

Bits	7	6	5	4	3	2	1	0
SW Access				None	•	•	u.	R
HW Access				None				RW
Name				None [7:1]				EN
				_				
Bits	15	14	13	12	11	10	9	8
SW Access				R	W			
HW Access				F	3			
Name		INT16_DIV [15:8]						
			1			_	1	_
Bits	23	22	21	20	19	18	17	16
SW Access				R	W			
HW Access				F	3			
Name				INT16_D	IV [23:16]			
					,			_
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			<u></u>
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
23:8	INT16_DIV	Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].
		Note: this type of divider does NOT allow for a fractional division.
		For the generation of a divided clock, the integer division range is restricted to [2, 65,536].
		For the generation of a 50/50% duty cycle digital divided clock, the integer division range is restricted to even numbers in the range [2, 65,536]. The generation of a 50/50 % duty cycle analog divided clock has no restrictions.
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
0	EN	Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as a result on a DISABLE command.
		Note that this field is retained. As a result, the divider does NOT have to be re-enabled after transitioning from DeepSleep to Active power mode.
		Default Value: 0

Divider control register (for 16.0 divider) Address: 0x40010310

Bits	7	6	5	4	3	2	1	0		
SW Access			1	None				R		
HW Access		None								
Name		None [7:1]								
								1		
Bits	15	15 14 13 12 11 10 9								
SW Access				R	W		•			
HW Access		R								
Name				INT16_D	OIV [15:8]					
	1		1	1	ı	1	1			
Bits	23	22	21	20	19	18	17	16		
SW Access				R	W					
HW Access				F	3					
Name				INT16_D	IV [23:16]					
	1		1	1	ı	1	1			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one			·		
HW Access				No	one					
Name				None	[31:24]					

Bits	Name	Description
23:8	INT16_DIV	Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].
		Note: this type of divider does NOT allow for a fractional division.
		For the generation of a divided clock, the integer division range is restricted to [2, 65,536].
		For the generation of a 50/50% duty cycle digital divided clock, the integer division range is restricted to even numbers in the range [2, 65,536]. The generation of a 50/50 % duty cycle analog divided clock has no restrictions.
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
0	EN	Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as a result on a DISABLE command.
		Note that this field is retained. As a result, the divider does NOT have to be re-enabled after transitioning from DeepSleep to Active power mode.
		Default Value: 0

Divider control register (for 16.0 divider) Address: 0x40010314

			_		1 _	1 2		1 -		
Bits	7	6	5	4	3	2	1	0		
SW Access		None								
HW Access		None								
Name		None [7:1]								
Bits	15	15 14 13 12 11 10 9								
SW Access				R	W					
HW Access		R								
Name				INT16_C	OIV [15:8]					
				1	1			1		
Bits	23	22	21	20	19	18	17	16		
SW Access				R	W					
HW Access				F	7					
Name				INT16_D	IV [23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access		None								
Name		None [31:24]								

Bits	Name	Description
23:8	INT16_DIV	Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].
		Note: this type of divider does NOT allow for a fractional division.
		For the generation of a divided clock, the integer division range is restricted to [2, 65,536].
		For the generation of a 50/50% duty cycle digital divided clock, the integer division range is restricted to even numbers in the range [2, 65,536]. The generation of a 50/50 % duty cycle analog divided clock has no restrictions.
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
0	EN	Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as a result on a DISABLE command.
		Note that this field is retained. As a result, the divider does NOT have to be re-enabled after transitioning from DeepSleep to Active power mode.
		Default Value: 0

Divider control register (for 16.5 divider) Address: 0x40010400

Bits	7	6	5	4	3	2	1	0			
SW Access			RW	•	No	R					
HW Access			R			No	RW				
Name		F	RAC5_DIV [7:		None	e [2:1]	EN				
											
Bits	15	14	13	12	11	10	9	8			
SW Access				R	W						
HW Access				!	R						
Name				INT16_	OIV [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				R	:W			1			
HW Access					R						
Name				INT16_D	IV [23:16]						
			T	T	T						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
23:8	INT16_DIV	Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].
		Note:combined with fractional division, this divider type allows for a division in the range [1, 65,536 31/32] in 1/32 increments.
		For the generation of a divided clock, the division range is restricted to [2, 65,536 31/32].
		For the generation of a 50/50% duty cycle divided clock, the division range is restricted to [2, 65,536].
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
7:3	FRAC5_DIV	Fractional division by (FRAC5_DIV/32). Allows for fractional divisions in the range [0, 31/32].
		Note that fractional division results in clock jitter as some clock periods may be 1 "clk_hf" cycle longer than other clock periods.
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
0	EN	Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as a result on a DISABLE command.
		Note that this field is retained. As a result, the divider does NOT have to be re-enabled after transitioning from DeepSleep to Active power mode.
		Default Value: 0

Divider control register (for 16.5 divider) Address: 0x40010404

Bits	7	6	5	4	3	2	1	0
SW Access			RW	•	None			
HW Access			R			No	RW	
Name		F	RAC5_DIV [7:0		None	2:1]	EN	
Bits	15	14	13	12	11	10	9	8
SW Access				R	W			
HW Access				F	7			
Name				INT16_D	OIV [15:8]			
Dite	20	00	04	- 00	10	10	47	16
Bits	23	22	21	20	19	18	17	16
SW Access				R	W			
HW Access				F	3			
Name				INT16_D	IV [23:16]			
Bits	31	30	29	28	27	26	25	24
	01							
SW Access				No	ne			
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
23:8	INT16_DIV	Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].
		Note:combined with fractional division, this divider type allows for a division in the range [1, 65,536 31/32] in 1/32 increments.
		For the generation of a divided clock, the division range is restricted to [2, 65,536 31/32].
		For the generation of a 50/50% duty cycle divided clock, the division range is restricted to [2, 65,536].
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
7:3	FRAC5_DIV	Fractional division by (FRAC5_DIV/32). Allows for fractional divisions in the range [0, 31/32].
		Note that fractional division results in clock jitter as some clock periods may be 1 "clk_hf" cycle longer than other clock periods.
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
0	EN	Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as a result on a DISABLE command.
		Note that this field is retained. As a result, the divider does NOT have to be re-enabled after transitioning from DeepSleep to Active power mode.
		Default Value: 0

Divider control register (for 16.5 divider) Address: 0x40010408

Bits	7	6	5	4	3	2	1	0
SW Access			RW		None			
HW Access			R			No	RW	
Name		F	RAC5_DIV [7:3	3]		None	e [2:1]	EN
							_	
Bits	15	14	13	12	11	10	9	8
SW Access				R'	W			
HW Access				F	3			
Name				INT16_D	IV [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				R'	W		1	
HW Access				F	7			
Name				INT16_D	V [23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No.	ne		1	1
HW Access				No	ne			
Name				None	31:24]			

Bits	Name	Description
23:8	INT16_DIV	Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].
		Note:combined with fractional division, this divider type allows for a division in the range [1, 65,536 31/32] in 1/32 increments.
		For the generation of a divided clock, the division range is restricted to [2, 65,536 31/32].
		For the generation of a 50/50% duty cycle divided clock, the division range is restricted to [2, 65,536].
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
7:3	FRAC5_DIV	Fractional division by (FRAC5_DIV/32). Allows for fractional divisions in the range [0, 31/32].
		Note that fractional division results in clock jitter as some clock periods may be 1 "clk_hf" cycle longer than other clock periods.
		Note that this field is retained. However, the counter that is used to implement the division is not and will be initialized by HW to "0" when transitioning from DeepSleep to Active power mode.
		Default Value: 0
0	EN	Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as a result on a DISABLE command.
		Note that this field is retained. As a result, the divider does NOT have to be re-enabled after transitioning from DeepSleep to Active power mode.
		Default Value: 0

PERI_TR_CTL

Trigger control register Address: 0x40010600 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	None		RW							
HW Access	None		R							
Name	None				TR_SEL [6:0]					
	T I				T					
Bits	15	14	13	12	11	10	9	8		
SW Access		No	ne		RW					
HW Access		No	ne			F	3			
Name		None [[15:12]			TR_GROUP [11:8]				
Dito	23	00	21	20	19	10	17	16		
Bits	23	22	21	20	19	18	17	16		
SW Access				R	W					
HW Access			RW							
Name			TR_COUNT [23:16]							

Bits	31	30	29	28	27	26	25	24		
SW Access	RW	RW	None							
HW Access	RW1C	R		None						
Name	TR_ACT	TR_OUT			None	[29:24]				

Bits	Name	Description
31	TR_ACT	SW sets this field to '1' by to activate (set to '1') a trigger as identified by TR_SEL and TR_OUT for TR_COUNT cycles. HW sets this field to '0' when the cycle counter is decremented to "0".
		Note: A TR_COUNT value of 255 is a special case and trigger activation is under direct control of the TR_ACT field (the counter is not decremented).
		Default Value: 0
30	TR_OUT	Specifies whether trigger activation is for a specific input or output trigger of the trigger multiplexer. Activation of a specific input trigger, will result in activation of all output triggers that have the specific input trigger selected through their TR_OUT_CTL.SEL field. Activation of a specific output trigger, will result in activation of the specified TR_SEL output trigger only.
		'0': TR_SEL selection and trigger activation is for an input trigger to the trigger multiplexer.
		'1': TR_SEL selection and trigger activation is for an output trigger from the trigger multiplexer.
		Default Value: 0
23:16	TR_COUNT	Amount of cycles a specific trigger is activated. During activation (TR_ACT is '1'), HW decrements this field to "0" using a cycle counter. During activation, SW should not modify this register field. A value of 255 is a special case: HW does NOT decrement this field to "0" and trigger activation is under direct control of TR_ACT: when TR_ACT is '1' the trigger is activated and when TR_ACT is '0' the trigger is deactivated.
		Default Value: 0
11:8	TR_GROUP	Specifies the trigger group.
		Default Value: 0
6:0	TR_SEL	Specifies the activated trigger when TR_ACT is '1'. TR_OUT specifies whether the activated trigger is an input trigger or output trigger to the trigger multiplexer. During activation (TR_ACT is '1'), SW should not modify this register field. If the specified trigger is not present, the trigger activation has no effect. Default Value: 0

PROGRAMMABLE IO (PRGIO) REGISTERS

This section discusses the PRGIO registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 14. REGISTER DETAILS

Register Name	Address
PRGIO_PRT0_CTL	0x40050000
PRGIO_PRTO_SYNC_CTL	0x40050010
PRGIO_PRT0_LUT_SEL0	0x40050020
PRGIO_PRT0_LUT_SEL1	0x40050024
PRGIO_PRT0_LUT_SEL2	0x40050028
PRGIO_PRT0_LUT_SEL3	0x4005002C
PRGIO_PRT0_LUT_SEL4	0x40050030
PRGIO_PRT0_LUT_SEL5	0x40050034
PRGIO_PRT0_LUT_SEL6	0x40050038
PRGIO_PRT0_LUT_SEL7	0x4005003C
PRGIO_PRTO_LUT_CTL0	0x40050040
PRGIO_PRT0_LUT_CTL1	0x40050044
PRGIO_PRT0_LUT_CTL2	0x40050048
PRGIO_PRT0_LUT_CTL3	0x4005004C
PRGIO_PRT0_LUT_CTL4	0x40050050
PRGIO_PRT0_LUT_CTL5	0x40050054
PRGIO_PRT0_LUT_CTL6	0x40050058
PRGIO_PRT0_LUT_CTL7	0x4005005C
PRGIO_PRT0_DU_SEL	0x400500C0
PRGIO_PRT0_DU_CTL	0x400500C4
PRGIO_PRTO_DATA	0x400500F0
PRGIO_PRT1_CTL	0x40050100
PRGIO_PRT1_SYNC_CTL	0x40050110
PRGIO_PRT1_LUT_SEL0	0x40050120
PRGIO_PRT1_LUT_SEL1	0x40050124
PRGIO_PRT1_LUT_SEL2	0x40050128
PRGIO_PRT1_LUT_SEL3	0x4005012C
PRGIO_PRT1_LUT_SEL4	0x40050130
PRGIO_PRT1_LUT_SEL5	0x40050134
PRGIO_PRT1_LUT_SEL6	0x40050138
PRGIO_PRT1_LUT_SEL7	0x4005013C
PRGIO_PRT1_LUT_CTL0	0x40050140
PRGIO_PRT1_LUT_CTL1	0x40050144
PRGIO_PRT1_LUT_CTL2	0x40050148
PRGIO_PRT1_LUT_CTL3	0x4005014C
PRGIO_PRT1_LUT_CTL4	0x40050150
PRGIO_PRT1_LUT_CTL5	0x40050154
PRGIO_PRT1_LUT_CTL6	0x40050158
	1

Table 14. REGISTER DETAILS (continued)

Register Name	Address
PRGIO_PRT1_LUT_CTL7	0x4005015C
PRGIO_PRT1_DU_SEL	0x400501C0
PRGIO_PRT1_DU_CTL	0x400501C4
PRGIO_PRT1_DATA	0x400501F0

PRGIO_PRT0_CTL

Control register Address: 0x40050000 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access				F	3			
Name	BYPASS [7:0]							
<u>, </u>		T			1			r
Bits	15	14	13	12	11	10	9	8
SW Access		None		RW				
HW Access	None			R				
Name		None [15:13]		CLOCK_SRC [12:8]				
Bits	23	22	21	20	19	18	17	16
DIIS	۷3	22	۷۱	20	19	18	17	16
SW Access	None							
HW Access	None							

Bits	31	30	29	28	27	26	25	24
SW Access	RW			RW	RW			
HW Access	R			R	R			
Name	ENABLED			PIPELINE_ EN	HLD_OVR			

None [23:16]

Bits	Name	Description
31	ENABLED	Enable for programmable IO. Should only be set to '1' when the programmable IO is completely configured:
		'0': Disabled (signals are bypassed; behavior as if BYPASS is 0xFF). When disabled, the block
		(data unit and LUTs) reset is activated.
		If the IP is disabled:
		 The PIPELINE_EN register field should be set to '1', to ensure low power consumption by preventing combinatorial loops. The CLOCK_SRC register field should be set to "20"-"30" (clock is constant '0'), to ensure low
		power consumption.
		'1': Enabled. Once enabled, it takes 3 "clk_block" clock cycles till the block reset is de-activated and the block becomes fully functional. This ensures that the IO pins' input synchronizer states are flushed when the block is fully functional.
		Default Value: 0
25	PIPELINE_EN	Enable for pipeline register:
		'0': Disabled (register is bypassed).
		'1': Enabled.
		Default Value: 1

24 HLD OVR

IO cell hold override functionality. In DeepSleep power mode, the HSIOM holds the IO cell output and output enable signals by default. This is undesirable if the PRGIO is supposed to deliver DeepSleep output functionality on these IO pads. This field is used to control the hold override functionality from the PRGIO:

GPIO hold-override functionality in DeepSleep:

'0': The HSIOM controls the GPIO functionality in DeepSleep

'1': In bypass mode (ENABLED is '0' or BYPASS[i] is '1'), the HSIOM controls GPIO. In NON bypass mode (ENABLED is '1' and BYPASS[i] is '0'), the PRGIO controls the GPIO functionality in DeepSleep power mode.

Default Value: Undefined

12:8 CLOCK SRC

Clock ("clk_block") and reset ("rst_block_n") source selection: "0": io_data_in[0]/1'.

...

"7": io_data_in[7]/'1'.
"8": chip_data[0]/'1'.

...

"15": chip_data[7]/'1'.

"16": clk_prgio/rst_sys_act_n. Used for Active mode synchronous logic on "clk_prgio". This selection is intended for synchronous operation on a PCLK specified clock frequency ("clock_prgio"). Note that the block's clocked elements are frequency aligned, but NOT phase aligned to "clk_sys". This selection asserts reset in any power mode other than Active i.e. PRGIO is active only in Active power mode with clock from peripheral divider

"17": clk_prgio/rst_sys_dpslp_n. Used for DeepSleep mode synchronous logic on "clk_prgio" (note that "clk_prgio" is NOT available in DeepSleep power mode). This selection is intended for synchronous operation on a PCLK specified clock frequency ("clock_prgio"). This selection enables PRGIO in all power modes with clock from peripheral divider but the clock will not be active in DeepSleep power mode (i.e only asynchronous/combinational logics will work in DeepSleep).

"19": clk_lf/rst_lf_dpslp_n (note that "clk_lf" is only available in DeepSleep power mode). This selection is intended for synchronous operation on "clk_lf". Note that the block's clocked elements are frequency aligned, but NOT phase aligned to other "clk_lf" clocked elements. This selection enables PRGIO in all power modes with clock from ILO (clk_lf) synchronous operations in DeepSleep will use clk_lf.

"20"-"30": Clock source is constant '0'. Any of these clock sources should be selected when the IP is disabled to ensure low power consumption.

"31": clk_sys/"1'. This selection is NOT intended for "clk_sys" operation, but for asynchronous operation: three "clk_sys" cycles after enabling the IP, the IP is fully functional (reset is de-activated). To be used for asynchronous (clockless) block functionality.

Default Value: 20

7:0 BYPASS

Bypass of the programmable IO - BYPASS[i] is for IO pin i.

'0': No bypass '1': Bypass

Default Value: Undefined

PRGIO_PRTO_SYNC_CTL

Synchronization control register Address: 0x40050010

Bits	7	6	5	4	3	2	1	0
SW Access	RW							
HW Access				F	3			
Name				IO_SYNC	C_EN [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				R	W			
HW Access				F	3			
Name				CHIP_SYN	C_EN [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name				None	[31:24]			

Bits	Name	Description
15:8	CHIP_SYNC_EN	Synchronization of the chip input signals to "clk_block", one bit for each input:
		CHIP_SYNC_EN[i] is for input i.
		'0': No synchronization.
		'1': Synchronization.
		Default Value: Undefined
7:0	IO_SYNC_EN	Synchronization of the IO pin input signals to "clk_block", one bit for each IO pin: IO_SYNC_EN[i] is for IO pin i.
		'0': No synchronization.
		'1': Synchronization.
		Default Value: Undefined

LUT component input selection Address: 0x40050020

Address: 0x40050020 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne		RW			
HW Access		No	one			F	3	
Name	None [7:4]					LUT_TR0	_SEL [3:0]	
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne			R	W	
HW Access		No	one		R			
Name	None [15:12]				LUT_TR1_SEL [11:8]			
Bits	23	22	21	20	19	18	17	16
SW Access		No	ne			R)	W	
HW Access		No	one		R			
Name	e None [23:20] LUT_TR2_SEL [19:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description
19:10	6 LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "7": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
LUT_TR0_SEL
3:0
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x40050024

Address: 0x40050024 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access	•	No	one	•	RW				
HW Access		No	one				R		
Name		None [7:4]				LUT_TR0	_SEL [3:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access		No	ne		RW				
HW Access		No	one		R				
Name		None [15:12]				LUT_TR1_SEL [11:8]			
Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne	ı		P	RW		
HW Access	ccess None R								
Name		None	[23:20]			LUT_TR2_	SEL [19:16]		
Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access		None							

None [31:24]

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "6": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
LUT_TR0_SEL
3:0
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x40050028

Bits	7	6	5	4	3	2	1	0
SW Access	•	No	ne		RW			
HW Access		No	ne			F	3	
Name		None	[7:4]			LUT_TR0	_SEL [3:0]	
Bits	15	14	13	12	11	10	9	8
DIIS	15	14	13	12	- "	10	9	•
SW Access		No	ne			R ¹	W	
HW Access		No	ne		R			
Name		None	[15:12]		LUT_TR1_SEL [11:8]			
Bits	23	22	21	20	19	18	17	16
SW Access	L	No	ne		RW			
HW Access		No	ne		R			
Name		None	[23:20]			LUT_TR2_S	SEL [19:16]	
Bits	31	30	29	28	27	26	25	24
SW Access			l	No	ne	1	<u> </u>	
HW Access				No	ne			
Name				None [[31:24]			

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "7": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
3:0
          LUT_TR0_SEL
                                       LUT input signal "tr0_in" source selection:
                                        "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x4005002C

Address: 0x4005002C Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access		No	ne	•		RW			
HW Access		No	ne			I	3		
Name		None	[7:4]			LUT_TR0	_SEL [3:0]		
			T	I	1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access		No	ne			R	W		
HW Access		No	ne		R				
Name		None	[15:12]		LUT_TR1_SEL [11:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None	[23:20]			LUT_TR2_	SEL [19:16]		
Bits	31	30	29	28	27	26	25	24	
SW Access						1			
		None None							

None [31:24]

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
3:0
          LUT_TR0_SEL
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x40050030

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne		RW			
HW Access		No	one			F	₹	
Name		None	e [7:4]			LUT_TR0	_SEL [3:0]	
					l.			
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne			R'	W	
HW Access		No	one		R			
Name		None	[15:12]		LUT_TR1_SEL [11:8]			
Bits	23	23 22 21 20			19	18	17	16
SW Access	20		one	20	RW			
HW Access			one		R			
Name		None	[23:20]			LUT_TR2_	SEL [19:16]	
			T	T			1	
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL.
		Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection:
		"0": LUT 0 output.
		"1": LUT 1 output.
		"2": LUT 2 output.
		"3": LUT 3 output.
		"4": LUT 4 output.
		"5": LUT 5 output.
		"6": LUT 6 output.
		"7": LUT 7 output.
		"8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
		"9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
		"10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
		"11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7).
		"12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
		"13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
		"14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
		"15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
		Default Value: Undefined

```
LUT_TR0_SEL
3:0
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x40050034

Address: 0x40050034 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access		No	ne	•		RW			
HW Access		No	ne			I	3		
Name		None	[7:4]			LUT_TR0	_SEL [3:0]		
			T	I	1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access		No	ne			R	W		
HW Access		No	ne		R				
Name		None	[15:12]		LUT_TR1_SEL [11:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None	[23:20]			LUT_TR2_	SEL [19:16]		
Bits	31	30	29	28	27	26	25	24	
SW Access						1			
		None None							

None [31:24]

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL.
		Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection:
		"0": LUT 0 output.
		"1": LUT 1 output.
		"2": LUT 2 output.
		"3": LUT 3 output.
		"4": LUT 4 output.
		"5": LUT 5 output.
		"6": LUT 6 output.
		"7": LUT 7 output.
		"8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
		"9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
		"10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
		"11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7).
		"12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
		"13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
		"14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
		"15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
		Default Value: Undefined

```
LUT_TR0_SEL
3:0
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x40050038

Address: 0x40050038 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access		No	ne	•		RW			
HW Access		No	ne			I	3		
Name		None	[7:4]			LUT_TR0	_SEL [3:0]		
			T	I	1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access		No	ne			R	W		
HW Access		No	ne		R				
Name		None	[15:12]		LUT_TR1_SEL [11:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None	[23:20]			LUT_TR2_	SEL [19:16]		
Bits	31	30	29	28	27	26	25	24	
SW Access						1			
		None None							

None [31:24]

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "7": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
LUT_TR0_SEL
3:0
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x4005003C

Address: 0x4005003C Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne		RW			
HW Access		No	one			F	₹	
Name		None	e [7:4]			LUT_TR0	_SEL [3:0]	
					l.			
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne			R'	W	
HW Access		No	one		R			
Name		None	[15:12]		LUT_TR1_SEL [11:8]			
Bits	23	23 22 21 20			19	18	17	16
SW Access	20		one	20	RW			
HW Access			one		R			
Name		None	[23:20]			LUT_TR2_	SEL [19:16]	
			T	T			1	
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL.
		Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection:
		"0": LUT 0 output.
		"1": LUT 1 output.
		"2": LUT 2 output.
		"3": LUT 3 output.
		"4": LUT 4 output.
		"5": LUT 5 output.
		"6": LUT 6 output.
		"7": LUT 7 output.
		"8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
		"9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
		"10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
		"11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7).
		"12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
		"13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
		"14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
		"15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
		Default Value: Undefined

```
3:0
          LUT_TR0_SEL
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

PRGIO_PRT0_LUT_CTL0

LUT component control register

Address: 0x40050040 Retention: Retained

HW Access

Name

7:0

LUT

Bits	7	6	5	4	3	2	1	0
SW Access	RW							
HW Access	R							
Name	LUT [7:0]							
Bits	15	14	13	12	11	10	9	8
SW Access	None RW							W
HW Access	None R							
Name	None [15:10] LUT_OPC [9:						PC [9:8]	
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
+								

None None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5]. set = enable & (tr1_in ^ LUT[2]) & LUT[3]. clr = enable & (tr0_in ^ LUT[0]) & LUT[1]. Asynchronously (no clock required): lut_reg ≤ if (clr) '0' else if (set) '1'
		Default Value: Undefined

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg). Default Value: Undefined

$PRGIO_PRT0_LUT_CTL1$

LUT component control register

Address: 0x40050044 Retention: Retained

Name

7:0

LUT

Bits	7	6	5	4	3	2	1	0
SW Access	RW							
HW Access	R							
Name	LUT [7:0]							
Bits	15	14	13	12	11	10	9	8
SW Access	None RW							
HW Access	None R							
Name	None [15:10] LUT_OPC [9:8]							
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							

None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5]. set = enable & (tr1_in ^ LUT[0]) & LUT[1]. Asynchronously (no clock required):

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

Default Value: Undefined

Default Value: Undefined

 $lut_reg \le if (clr)$ '0' else if (set) '1'

PRGIO_PRT0_LUT_CTL2

LUT component control register

Address: 0x40050048 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW							
HW Access	R							
Name	LUT [7:0]							
Dito	45	44	10	10	44	10		
Bits	15	14	13	12	11	10	9	8
SW Access	None RW							
HW Access	None R							3
Name	None [15:10] LUT_OPC [9:8]						PC [9:8]	
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
DIIS	ا ا	30	29	28	21	20	25	24
SW Access	None							

ON Acces		None						
HW Access		None						
Name		None [31:24]						
Bits	Name	Description						

9:8 LUT_OPC

LUT opcode specifies the LUT operation:

"0": Combinatoral output, no feedback.

 $tr out = LUT[\{tr2 in, tr1 in, tr0 in\}].$

"1": Combinatorial output, feedback.

tr_out = LUT[{lut_reg, tr1_in, tr0_in}].

On clock:

 $lut_reg \leq tr_in2.$

"2": Sequential output, no feedback.

 $temp = LUT[\{tr2_in, tr1_in, tr0_in\}].$

tr_out = lut_reg.

On clock:

 $lut_reg \le temp.$

"3": Register with asynchronous set and reset.

tr out = lut reg.

enable = (tr2_in ^ LUT[4]) | LUT[5].

set = enable & (tr1_in ^ LUT[2]) & LUT[3].

clr = enable & (tr0_in ^ LUT[0]) & LUT[1].

Asynchronously (no clock required):

lut_reg ≤ if (clr) '0' else if (set) '1' Default Value: Undefined

LUT 7:0

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

Default Value: Undefined

LUT component control register

Address: 0x4005004C Retention: Retained

Name

7:0

LUT

Bits	7	6	5	4	3	2	1	0		
SW Access	RW									
HW Access		R								
Name		LUT [7:0]								
Bits	15	14	13	12	11	10	9	8		
SW Access		RW								
HW Access	None							R		
Name			None [[15:10]			LUT_OPC [9:8]			
Bits	23	22	21	20	19	18	17	16		
SW Access		I.	I .	No	one	-1	1	ı		
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		1	<u> </u>	No	one			1		
HW Access	None									

None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5]. set = enable & (tr1_in ^ LUT[2]) & LUT[3]. clr = enable & (tr0_in ^ LUT[0]) & LUT[1]. Asynchronously (no clock required): lut_reg ≤ if (clr) '0' else if (set) '1'
		Default Value: Undefined

Default Value: Undefined

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

LUT component control register

Address: 0x40050050 Retention: Retained

Name

7:0

LUT

Bits	7	6	5	4	3	2	1	0		
SW Access		RW								
HW Access		R								
Name		LUT [7:0]								
Bits	15	14	13	12	11	10	9	8		
SW Access		RW								
HW Access	None							R		
Name		None [15:10]						LUT_OPC [9:8]		
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access			1	No.	one		1			
HW Access	None									

None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5]. set = enable & (tr1_in ^ LUT[0]) & LUT[1].
		Asynchronously (no clock required):

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

Default Value: Undefined

Default Value: Undefined

 $lut_reg \le if (clr)$ '0' else if (set) '1'

LUT component control register

Address: 0x40050054 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RW									
HW Access		R								
Name		LUT [7:0]								
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access	None							R		
Name			None	[15:10]			LUT_OPC [9:8]			
Bits	23	22	21	20	19	18	17	16		
SW Access			l	No	ne			1		
HW Access				No	ne					
Name				None	[23:16]					
		·	1	<u> </u>	<u> </u>			1		
Bits	31	30	29	28	27	26	25	24		
SW Access	None									

SW Access	None									
HW Access	None									
Name	None [31:24]									

Bits Name 9:8 LUT_OPC

Description

LUT opcode specifies the LUT operation:

"0": Combinatoral output, no feedback.

 $tr out = LUT[\{tr2 in, tr1 in, tr0 in\}].$

"1": Combinatorial output, feedback.

tr_out = LUT[{lut_reg, tr1_in, tr0_in}].

On clock:

 $lut_reg \leq tr_in2.$

"2": Sequential output, no feedback.

temp = LUT[{tr2_in, tr1_in, tr0_in}].

tr_out = lut_reg.

On clock:

 $lut_reg \le temp.$

"3": Register with asynchronous set and reset.

tr out = lut reg.

enable = (tr2_in ^ LUT[4]) | LUT[5].

set = enable & (tr1_in $^LUT[2]$) & LUT[3].

clr = enable & (tr0_in ^ LUT[0]) & LUT[1].

Asynchronously (no clock required):

lut_reg ≤ if (clr) '0' else if (set) '1' Default Value: Undefined

7:0 LUT

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

LUT component control register

Address: 0x40050058 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RW									
HW Access		R								
Name		LUT [7:0]								
Bits	15	14	13	12	11	10	9	8		
SW Access		RW								
HW Access	None							R		
Name			None [[15:10]			LUT_OPC [9:8]			
Bits	23	22	21	20	19	18	17	16		
SW Access		I.	I .	No	one	-1	1	ı		
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		1	<u> </u>	No	one			1		
HW Access	None									

None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5]. set = enable & (tr1_in ^ LUT[2]) & LUT[1]. clr = enable & (tr0_in ^ LUT[0]) & LUT[1].
		Asynchronously (no clock required):

7:0 LUT

Name

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

Default Value: Undefined

Default Value: Undefined

 $lut_reg \le if (clr)$ '0' else if (set) '1'

LUT component control register

Address: 0x4005005C Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	RW								
HW Access	R								
Name				LUT	[7:0]				
Bits	15	14	13	12	11	10	9	8	
	13	14	No			10			
SW Access		RW							
HW Access	None							R	
Name			None [15:10]			LUT_OPC [9:8]		
Bits	23	22	21	20	19	18	17	16	
SW Access			l	No	one	1	l .		
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access			<u> </u>	No.	ne				
HW Access	None								

None [31:24]

9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock:
		lut_reg ≤ temp.
		"3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5].

Description

Default Value: Undefined

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

Default Value: Undefined

LUT

7:0

Name

Name

Bits

set = enable & (tr1_in ^ LUT[2]) & LUT[3]. clr = enable & (tr0_in ^ LUT[0]) & LUT[1].

Asynchronously (no clock required): $lut_reg \leq if \ (clr) \ \ '0' \ else \ if \ (set) \ \ '1'$

PRGIO_PRT0_DU_SEL

Data unit component input selection Address: 0x400500C0

Address: 0x400500C0 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None	[7:4]		DU_TR0_SEL [3:0]				
Bits	15	14	13	12	11	10	9	8	

Bits	15	14	13	12	11	10	9	8		
SW Access		No	ne		RW					
HW Access		No	ne		R					
Name		None [15:12]		DU_TR1_SEL [11:8]					

Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None [23:20]		DU_TR2_SEL [19:16]				

Bits	31	30	29	28	27	26	25	24	
SW Access	No	None		RW		None		RW	
HW Access	None		R		None		R		
Name	None [[31:30]	DU_DATA1_	SEL [29:28]	None	[27:26]	DU_DATA0_	SEL [25:24]	

Bits	Name	Description
29:28	DU_DATA1_SEL	Data unit input data "data1_in" source selection. Encoding is the same as for DU_DATA0_SEL. Default Value: Undefined
25:24	DU_DATA0_SEL	Data unit input data "data0_in" source selection: "0": Constant "0". "1": chip_data[7:0]. "2": io_data_in[7:0]. "3": PRGIO_PRTx_DATA.DATA register field. Default Value: Undefined
19:16	DU_TR2_SEL	Data unit input signal "tr2_in" source selection. Encoding is the same as for DU_TR0_SEL. Default Value: Undefined
11:8	DU_TR1_SEL	Data unit input signal "tr1_in" source selection. Encoding is the same as for DU_TR0_SEL. Default Value: Undefined
3:0	DU_TR0_SEL	Data unit input signal "tr0_in" source selection: "0": Constant '0'. "1": Constant '1'. "2": Data unit output. "10-3": LUT 7-0 outputs. Otherwise: Undefined. Default Value: Undefined

Data unit component control register

Address: 0x400500C4 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			None	•	1	RW			
HW Access			None				R		
Name			None [7:3]		DU_SIZE [2:0]				
Bits	15	15 14 13 12 11 10 9							
SW Access			ne		11 10 9 8 RW				
HW Access		No	one		R				
Name		None	[15:12]		DU_OPC [11:8]				
			1	1	1			1	
Bits	23	22	21	20	19	18	17	16	

Dita	25	22	21	20	1	10	17	10			
SW Access		None									
HW Access		None									
Name		None [23:16]									

Bits	31	30	29	28	27	26	25	24			
SW Access		None									
HW Access		None									
Name		None [31:24]									

Bits	Name	Description
------	------	-------------

11:8 DU_OPC Data unit opcode specifies the data unit operation:

> "1": INCR "2": DECR "3": INCR_WRAP "4": DECR_WRAP "5": INCR_DECR

"6": INCR_DECR_WRAP

"7": ROR "8": SHR "9": AND OR "10": SHR_MAJ3 "11": SHR_EQL. Otherwise: Undefined. Default Value: Undefined

2:0 DU_SIZE Size/width of the data unit data operands (in bits) is DU_SIZE+1. E.g., if DU_SIZE is 7, the width is

8 bits.

PRGIO_PRTO_DATA

Data register

Address: 0x400500F0 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				R	W						
HW Access				F	3						
Name				DATA	A [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

Bits Name Description

7:0 DATA Data unit input data source.

PRGIO_PRT1_CTL

Control register Address: 0x40050100 Retention: Retained

HW Access

Name

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W					
HW Access				F	7					
Name				BYPAS	SS [7:0]					
			T	T	T	1	T	1		
Bits	15	14	13	12	11	10	9	8		
SW Access		None		RW						
HW Access		None		R						
Name		None [15:13]			CI	LOCK_SRC [12	:8]			
Bits	23	22	21	20	19	18	17	16		
SW Access		None								

Bits	31	30	29	25	24		
SW Access	RW			RW	RW		
HW Access	R			R	R		
Name	ENABLED			None [30:26]		PIPELINE_ FN	HLD_OVR

None

None [23:16]

	·	
Bits	Name	Description
31	ENABLED	Enable for programmable IO. Should only be set to '1' when the programmable IO is completely configured:
		'0': Disabled (signals are bypassed; behavior as if BYPASS is 0xFF). When disabled, the block (data unit and LUTs) reset is activated.
		If the IP is disabled:
		 The PIPELINE_EN register field should be set to '1', to ensure low power consumption by preventing combinatorial loops. The CLOCK_SRC register field should be set to "20"-"30" (clock is constant '0'), to ensure low power consumption.
		'1': Enabled. Once enabled, it takes 3 "clk_block" clock cycles till the block reset is de-activated and the block becomes fully functional. This ensures that the IO pins' input synchronizer states are flushed when the block is fully functional.
		Default Value: 0
25	PIPELINE_EN	Enable for pipeline register:
		'0': Disabled (register is bypassed).
		'1': Enabled.
		Default Value: 1

24 HLD OVR

IO cell hold override functionality. In DeepSleep power mode, the HSIOM holds the IO cell output and output enable signals by default. This is undesirable if the PRGIO is supposed to deliver DeepSleep output functionality on these IO pads. This field is used to control the hold override functionality from the PRGIO:

GPIO hold-override functionality in DeepSleep:

'0': The HSIOM controls the GPIO functionality in DeepSleep

'1': In bypass mode (ENABLED is '0' or BYPASS[i] is '1'), the HSIOM controls GPIO. In NON bypass mode (ENABLED is '1' and BYPASS[i] is '0'), the PRGIO controls the GPIO functionality in DeepSleep power mode.

Default Value: Undefined

12:8 CLOCK SRC

Clock ("clk_block") and reset ("rst_block_n") source selection: "0": io_data_in[0]/1'.

...

"7": io_data_in[7]/'1'.
"8": chip_data[0]/'1'.

...

"15": chip_data[7]/'1'.

"16": clk_prgio/rst_sys_act_n. Used for Active mode synchronous logic on "clk_prgio". This selection is intended for synchronous operation on a PCLK specified clock frequency ("clock_prgio"). Note that the block's clocked elements are frequency aligned, but NOT phase aligned to "clk_sys". This selection asserts reset in any power mode other than Active i.e. PRGIO is active only in Active power mode with clock from peripheral divider

"17": clk_prgio/rst_sys_dpslp_n. Used for DeepSleep mode synchronous logic on "clk_prgio" (note that "clk_prgio" is NOT available in DeepSleep power mode). This selection is intended for synchronous operation on a PCLK specified clock frequency ("clock_prgio"). This selection enables PRGIO in all power modes with clock from peripheral divider but the clock will not be active in DeepSleep power mode (i.e only asynchronous/combinational logics will work in DeepSleep).

"19": clk_lf/rst_lf_dpslp_n (note that "clk_lf" is only available in DeepSleep power mode). This selection is intended for synchronous operation on "clk_lf". Note that the block's clocked elements are frequency aligned, but NOT phase aligned to other "clk_lf" clocked elements. This selection enables PRGIO in all power modes with clock from ILO (clk_lf) synchronous operations in DeepSleep will use clk_lf.

"20"-"30": Clock source is constant '0'. Any of these clock sources should be selected when the IP is disabled to ensure low power consumption.

"31": clk_sys/"1'. This selection is NOT intended for "clk_sys" operation, but for asynchronous operation: three "clk_sys" cycles after enabling the IP, the IP is fully functional (reset is de-activated). To be used for asynchronous (clockless) block functionality.

Default Value: 20

7:0 BYPASS

Bypass of the programmable IO - BYPASS[i] is for IO pin i.

'0': No bypass '1': Bypass

PRGIO_PRT1_SYNC_CTL

Synchronization control register Address: 0x40050110

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			•	R	N	•	1	•			
HW Access				F	?						
Name				IO_SYNC	_EN [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		R									
Name				CHIP_SYN	C_EN [15:8]						
						1		_			
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	23:16]						
	1		1	1			T				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	31:24]						

Bits	Name	Description
15:8	CHIP_SYNC_EN	Synchronization of the chip input signals to "clk_block", one bit for each input:
		CHIP_SYNC_EN[i] is for input i.
		'0': No synchronization.
		'1': Synchronization.
		Default Value: Undefined
7:0	IO_SYNC_EN	Synchronization of the IO pin input signals to "clk_block", one bit for each IO pin: IO_SYNC_EN[i] is for IO pin i.
		'0': No synchronization.
		'1': Synchronization.
		Default Value: Undefined

LUT component input selection

Address: 0x40050120 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	'	No	ne	II.		RW			
HW Access		No	ne			F	7		
Name		None	e [7:4]			LUT_TR0	_SEL [3:0]		
Bits	15	14	13	12	11	10	9	8	
	10			1.2					
SW Access		NC	one			R'	VV		
HW Access		No	one		R				
Name		None	[15:12]		LUT_TR1_SEL [11:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access	L	No	ne	I	RW				
HW Access		No	one		R				
Name		None	[23:20]			LUT_TR2_	SEL [19:16]		
Bits	31	30	29	28	27	26	25	24	
SW Access			I	No	ne	1			
HW Access				No	one				
Name				None	[31:24]				

Bits Name Description 19:16 LUT_TR2_SEL LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_ Default Value: Undefined 11:8 LUT_TR1_SEL LUT input signal "tr1_in" source selection:	
Default Value: Undefined	
11:8 LUT TR1 SEL LUT input signal "tr1 in" source selection:	
"0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "7": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined	

```
3:0
          LUT_TR0_SEL
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x40050124

Address: 0x40050124 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access		No	ne	•		RW			
HW Access		No	ne			I	3		
Name		None	[7:4]			LUT_TR0	_SEL [3:0]		
			T	I	1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access		No	ne			R	W		
HW Access		No	ne		R				
Name		None	[15:12]		LUT_TR1_SEL [11:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None	[23:20]		LUT_TR2_SEL [19:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access						1			
		None None							

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "7": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
3:0
          LUT_TR0_SEL
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x40050128

Address: 0x40050128 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne	•		F	W	
HW Access		No	one				R	
Name		None	e [7:4]			LUT_TR0	_SEL [3:0]	
Dia.			10	1 40		1 40		
Bits	15	14	13	12	11	10	9	8
SW Access		No	one			F	:W	
HW Access		No	one		R			
Name		None	[15:12]		LUT_TR1_SEL [11:8]			
					-			
Bits	23	22	21	20	19	18	17	16
SW Access		No	ne		RW			
HW Access		No	one		R			
Name		None	[23:20]		LUT_TR2_SEL [19:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one		<u> </u>	
HW Access		None None						

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "6": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
3:0
          LUT_TR0_SEL
                                       LUT input signal "tr0_in" source selection:
                                        "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection

Address: 0x4005012C Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access		No	ne	•		RW			
HW Access		No	ne			I	3		
Name		None	[7:4]			LUT_TR0	_SEL [3:0]		
			T	I	1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access		No	ne			R	W		
HW Access		No	ne		R				
Name		None	[15:12]		LUT_TR1_SEL [11:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None	[23:20]		LUT_TR2_SEL [19:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access						1			
		None None							

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "7": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
3:0
          LUT_TR0_SEL
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x40050130

Address: 0x40050130 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access		No	ne	•		RW			
HW Access		No	ne			I	3		
Name		None	[7:4]			LUT_TR0	_SEL [3:0]		
			T	I	1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access		No	ne			R	W		
HW Access		No	ne		R				
Name		None	[15:12]		LUT_TR1_SEL [11:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None	[23:20]		LUT_TR2_SEL [19:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access						1			
		None None							

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "7": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
LUT_TR0_SEL
3:0
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection

Address: 0x40050134 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne	•	RW			
HW Access		No	one			F	3	
Name		None	e [7:4]			LUT_TR0	_SEL [3:0]	
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne	1		R	W	
HW Access		No	one		R			
Name		None	[15:12]		LUT_TR1_SEL [11:8]			
Bits	23	22	21	20	19	18	17	16
SW Access		No	ne	· L	RW			
HW Access		No	one		R			
Name		None	[23:20]		LUT_TR2_SEL [19:16]			
Bits	31	30	29	28	27	26	25	24
SW Access			I	No	ne	1		
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "7": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
3:0
          LUT_TR0_SEL
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x40050138

Address: 0x40050138 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne	ı	RW			
HW Access		No	ne			F	7	
Name		None [7:4]				LUT_TR0	_SEL [3:0]	
	ı					1	1	
Bits	15	14	13	12	11	10	9	8
SW Access		No	one			R	W	
HW Access		No	ne		R			
Name	None [15:12]				LUT_TR1_SEL [11:8]			
Bits	23	22	21	20	19	18	17	16
SW Access		No	ne	<u>I</u>	RW			
HW Access		No	one		R			
Name		None	[23:20]			LUT_TR2_	SEL [19:16]	
Bits	31	30	29	28	27	26	25	24
SW Access					None			
HW Access	None							
Name				None	[31:24]			

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL.
		Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection:
		"0": LUT 0 output.
		"1": LUT 1 output.
		"2": LUT 2 output.
		"3": LUT 3 output.
		"4": LUT 4 output.
		"5": LUT 5 output.
		"6": LUT 6 output.
		"7": LUT 7 output.
		"8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
		"9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
		"10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
		"11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7).
		"12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
		"13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
		"14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
		"15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
		Default Value: Undefined

```
LUT_TR0_SEL
3:0
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component input selection Address: 0x4005013C

Address: 0x4005013C Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne		RW			
HW Access		No	one			F	₹	
Name		None [7:4]				LUT_TR0	_SEL [3:0]	
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne			R'	W	
HW Access		No	one		R			
Name	None [15:12]				LUT_TR1_SEL [11:8]			
Bits	23	22	21	20	19	18	17	16
SW Access	20		ne	20	RW			
HW Access			one		R			
Name		None	[23:20]		LUT_TR2_SEL [19:16]			
			T	T			1	
Bits	31	30	29	28	27	26	25	24
SW Access	No				lone			
HW Access	None							
Name				None	[31:24]			

Bits	Name	Description
19:16	LUT_TR2_SEL	LUT input signal "tr2_in" source selection. Encoding is the same as for LUT_TR1_SEL. Default Value: Undefined
11:8	LUT_TR1_SEL	LUT input signal "tr1_in" source selection: "0": LUT 0 output. "1": LUT 1 output. "2": LUT 2 output. "3": LUT 3 output. "4": LUT 4 output. "5": LUT 5 output. "6": LUT 6 output. "7": LUT 7 output. "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7). "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7). "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7). "11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7). "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7). "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7). "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7). Default Value: Undefined

```
3:0
          LUT_TR0_SEL
                                       LUT input signal "tr0_in" source selection:
                                       "0": Data unit output.
                                       "1": LUT 1 output.
                                       "2": LUT 2 output.
                                       "3": LUT 3 output.
                                       "4": LUT 4 output.
                                        "5": LUT 5 output.
                                       "6": LUT 6 output.
                                       "7": LUT 7 output.
                                       "8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7).
                                       "9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7).
                                       "10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7).
                                       "11": chip\_data[3] \ (for \ LUTs \ 0, \ 1, \ 2, \ 3); \ chip\_data[7] \ (for \ LUTs \ 4, \ 5, \ 6, \ 7).
                                       "12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7).
                                       "13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7).
                                       "14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7).
                                       "15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7).
                                        Default Value: Undefined
```

LUT component control register

Address: 0x40050140 Retention: Retained

Name

7:0

LUT

Bits	7	6	5	4	3	2	1	0		
SW Access		1	•	R	W	1	•	•		
HW Access					R					
Name				LUT	[7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access				ne			F	iW		
HW Access	None R									
Name			None	[15:10]			LUT_O	PC [9:8]		
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one	1				
HW Access				No	one					
Name				None	[23:16]					
Bits	31	31 30 29 28 27 26 25 24								
SW Access	None									
HW Access				No	one					

None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5]. set = enable & (tr1_in ^ LUT[2]) & LUT[3]. clr = enable & (tr0_in ^ LUT[0]) & LUT[1].
		Asynchronously (no clock required): lut_reg ≤ if (clr) '0' else if (set) '1'

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

Default Value: Undefined

LUT component control register

Address: 0x40050144 Retention: Retained

HW Access

Name

7:0

LUT

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	1	•			
HW Access				F	3					
Name				LUT	[7:0]					
Bits	15	15 14 13 12 11 10 9 8								
SW Access			No	ne		-1	R	w		
HW Access	None R							R		
Name			None	[15:10]			LUT_O	PC [9:8]		
Bits	23	22	21	20	19	18	17	16		
SW Access		l		No	ne	1				
HW Access				No	ne					
Name		None [23:16]								
Bits	31	31 30 29 28 27 26 25 24								
SW Access	None									

None None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}].
		On clock:
		lut_reg ≤ tr_in2.
		"2": Sequential output, no feedback.
		temp = LUT[{tr2_in, tr1_in, tr0_in}].
		tr_out = lut_reg.
		On clock:
		lut_reg ≤ temp.
		"3": Register with asynchronous set and reset.
		tr_out = lut_reg.
		enable = (tr2_in ^ LUT[4]) LUT[5].
		set = enable & (tr1_in $^LUT[2]$) & LUT[3].
		$clr = enable & (tr0_in ^ LUT[0]) & LUT[1].$
		Asynchronously (no clock required):

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg). Default Value: Undefined

Default Value: Undefined

 $lut_reg \le if (clr)$ '0' else if (set) '1'

LUT component control register

Address: 0x40050148 Retention: Retained

Name

7:0

LUT

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	III		
HW Access				ſ	R					
Name				LUT	[7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access	None RW									
HW Access	None R									
Name			None [[15:10]			LUT_O	PC [9:8]		
Bits	23	22	21	20	19	18	17	16		
SW Access		I.	I .	No	one	-1	l	ı		
HW Access				No	one					
Name				None	[23:16]					
Bits	31	31 30 29 28 27 26 25 24								
SW Access	None									
HW Access				No	one					

None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5]. set = enable & (tr1_in ^ LUT[0]) & LUT[1]. Asynchronously (no clock required):

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

Default Value: Undefined

Default Value: Undefined

 $lut_reg \le if (clr)$ '0' else if (set) '1'

LUT component control register

Address: 0x4005014C Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			•	R'	N	•			
HW Access				F	?				
Name				LUT	[7:0]				
		T	T				T		
Bits	15	14	13	12	11	10	9	8	
SW Access			No	ne			R	W	
HW Access	None R								
Name			None [15:10]			LUT_O	PC [9:8]	
Bits	23	22	21	20	19	18	17	16	
SW Access		<u> </u>		No	ne			<u>. </u>	
HW Access				No	ne				
Name				None	23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access				No	ne				

None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5].
		set = enable & (tr1_in ^ LUT[2]) & LUT[3]. clr = enable & (tr0_in ^ LUT[0]) & LUT[1].
		3" - 3" MADIO & ("3" LO 1[0]) & LO 1[1].

7:0 LUT

Name

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

Default Value: Undefined

Default Value: Undefined

Asynchronously (no clock required): $lut_reg \leq if \ (clr) \ \ '0' \ else \ if \ (set) \ \ '1'$

LUT component control register

Address: 0x40050150 Retention: Retained

HW Access

Name

7:0

LUT

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access				F	3						
Name		LUT [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access			RW								
HW Access	None F							R			
Name			None [[15:10]			LUT_OPC [9:8]				
Bits	23	22	21	20	19	18	17	16			
SW Access			<u>I</u>	No	ne	<u>I</u>	<u> </u>	ı			
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		None									

None

None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5]. set = enable & (tr1_in ^ LUT[2]) & LUT[3]. clr = enable & (tr0_in ^ LUT[0]) & LUT[1]. Asynchronously (no clock required): lut_reg ≤ if (clr) '0' else if (set) '1'
		Default Value: Undefined

Default Value: Undefined

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

LUT component control register

Address: 0x40050154 Retention: Retained

HW Access

Name

7:0

LUT

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access				ı	3						
Name		LUT [7:0]									
		1	1	1	1	T	1	ı			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access	None R							R			
Name		None [15:10]						LUT_OPC [9:8]			
Bits	23	22	21	20	19	18	17	16			
SW Access		l		No	one	· L	l	1			
HW Access				No	one						
Name				None	[23:16]						
Dito	31	20	00	28	07	06	05	04			
Bits	ن ا	30	29	28	27	26	25	24			
SW Access				No	one						

None None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5]. set = enable & (tr1_in ^ LUT[2]) & LUT[3]. clr = enable & (tr0_in ^ LUT[0]) & LUT[1]. Asynchronously (no clock required): lut_reg ≤ if (clr) '0' else if (set) '1'
		Default Value: Undefined

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

LUT component control register

Address: 0x40050158 Retention: Retained

Name

7:0

LUT

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		R									
Name		LUT [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access	None R							7			
Name			None [[15:10]			LUT_O	PC [9:8]			
Bits	23	22	21	20	19	18	17	16			
SW Access		I.	I .	No	one	-1	l	ı			
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		1	<u> </u>	No	one			1			
HW Access				No	one						

None [31:24]

Bits	Name	Description
9:8	LUT_OPC	LUT opcode specifies the LUT operation: "0": Combinatoral output, no feedback. tr_out = LUT[{tr2_in, tr1_in, tr0_in}]. "1": Combinatorial output, feedback. tr_out = LUT[{lut_reg, tr1_in, tr0_in}]. On clock: lut_reg ≤ tr_in2. "2": Sequential output, no feedback. temp = LUT[{tr2_in, tr1_in, tr0_in}]. tr_out = lut_reg. On clock: lut_reg ≤ temp. "3": Register with asynchronous set and reset. tr_out = lut_reg. enable = (tr2_in ^ LUT[4]) LUT[5].
		set = enable & (tr1_in ^ LUT[2]) & LUT[3]. clr = enable & (tr0_in ^ LUT[0]) & LUT[1].

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

Default Value: Undefined

Default Value: Undefined

Asynchronously (no clock required): lut_reg ≤ if (clr) '0' else if (set) '1'

LUT component control register

Address: 0x4005015C Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access				F	7						
Name		LUT [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access			RW								
HW Access		None									
Name		None [15:10]					LUT_OPC [9:8]				
Bits	23	22	21	20	19	18	17	16			
SW Access		•	•	No	ne	•		II.			
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access	None										

None

None [31:24]

Bits Name
9:8 LUT_OPC

LUT

7:0

HW Access

Name

Description

LUT opcode specifies the LUT operation:

"0": Combinatoral output, no feedback.

 $tr out = LUT[\{tr2 in, tr1 in, tr0 in\}].$

"1": Combinatorial output, feedback.

tr_out = LUT[{lut_reg, tr1_in, tr0_in}].

On clock:

 $lut_reg \leq tr_in2.$

"2": Sequential output, no feedback.

temp = LUT[{tr2_in, tr1_in, tr0_in}].

tr_out = lut_reg.

On clock:

 $lut_reg \le temp.$

"3": Register with asynchronous set and reset.

tr out = lut reg.

enable = (tr2_in ^ LUT[4]) | LUT[5].

set = enable & (tr1_in $^LUT[2]$) & LUT[3].

clr = enable & (tr0_in ^ LUT[0]) & LUT[1].

Asynchronously (no clock required):

lut_reg ≤ if (clr) '0' else if (set) '1'

Default Value: Undefined

LUT configuration. Depending on the LUT opcode LUT_OPC, the internal state lut_reg (captured in a flip-flop) and the LUT input signals tr0_in, tr1_in, tr2_in, the LUT configuration is used to determine the LUT output signal and the next sequential state (lut_reg).

Data unit component input selection Address: 0x400501C0

Address: 0x400501C0 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	None RW					W			
HW Access		None				R			
Name		None	e [7:4]		DU_TR0_SEL [3:0]				
Bits	15	14	13	12	11	10	9	8	

Bits	15	14	13	12	11	10	9	8			
SW Access		None None				RW					
HW Access	None				R						
Name	None [15:12]				DU_TR1_SEL [11:8]						

Bits	23	22	21	20	19	18	17	16		
SW Access		None				RW				
HW Access	None				R					
Name		None [23:20]			DU_TR2_9	SEL [19:16]			

Bits	31	30	29	28	27	26	25	24
SW Access	No	ne	RW		None		RW	
HW Access	None		R		None		R	
Name	None [[31:30]	DU_DATA1_SEL [29:28]		None [27:26]		DU_DATA0_SEL [25:24]	

Bits	Name	Description
29:28	DU_DATA1_SEL	Data unit input data "data1_in" source selection. Encoding is the same as for DU_DATA0_SEL. Default Value: Undefined
25:24	DU_DATA0_SEL	Data unit input data "data0_in" source selection: "0": Constant "0". "1": chip_data[7:0]. "2": io_data_in[7:0]. "3": PRGIO_PRTx_DATA. DATA register field. Default Value: Undefined
19:16	DU_TR2_SEL	Data unit input signal "tr2_in" source selection. Encoding is the same as for DU_TR0_SEL. Default Value: Undefined
11:8	DU_TR1_SEL	Data unit input signal "tr1_in" source selection. Encoding is the same as for DU_TR0_SEL. Default Value: Undefined
3:0	DU_TR0_SEL	Data unit input signal "tr0_in" source selection: "0": Constant '0'. "1": Constant '1'. "2": Data unit output. "10-3": LUT 7-0 outputs. Otherwise: Undefined. Default Value: Undefined

PRGIO_PRT1_DU_CTL

Data unit component control register

Address: 0x400501C4 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access					RW				
HW Access			None			R			
Name			None [7:3]				DU_SIZE [2:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access		None				RW			
HW Access	None					R			
Name		None	[15:12]						
Bits	23	22	21	20	19	18	17	16	
SW Access			<u> </u>	No	ne		L		
HW Access				No	one				
Name	None [23:16]								

Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access	None									
Name		None [31:24]								

Bits	Name	Description
------	------	-------------

11:8 DU_OPC Data unit opcode specifies the data unit operation:

"1": INCR
"2": DECR
"3": INCR_WRAP
"4": DECR_WRAP
"5": INCR_DECR
"6": INCR_DECR_WRAP

"7": ROR
"8": SHR
"9": AND_OR
"10": SHR_MAJ3
"11": SHR_EQL.

Otherwise: Undefined.
Default Value: Undefined

2:0 DU_SIZE Size/width of the data unit data operands (in bits) is DU_SIZE+1. E.g., if DU_SIZE is 7, the width is

8 bits.

Default Value: Undefined

PRGIO_PRT1_DATA

Data register

Address: 0x400501F0 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				R	W						
HW Access				F	3						
Name				DATA	A [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

Bits Name Description

7:0 DATA Data unit input data source.

Default Value: Undefined

CORESIGHT ROM TABLE REGISTERS

This section discusses the ROM Table registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 15. REGISTER DETAILS

Register Name	Address
ROMTABLE_ADDR	0xF0000000
ROMTABLE_DID	0xF0000FCC
ROMTABLE_PID4	0xF0000FD0
ROMTABLE_PID5	0xF0000FD4
ROMTABLE_PID6	0xF0000FD8
ROMTABLE_PID7	0xF0000FDC
ROMTABLE_PID0	0xF0000FE0
ROMTABLE_PID1	0xF0000FE4
ROMTABLE_PID2	0xF0000FE8
ROMTABLE_PID3	0xF0000FEC
ROMTABLE_CID0	0xF0000FF0
ROMTABLE_CID1	0xF0000FF4
ROMTABLE_CID2	0xF0000FF8
ROMTABLE_CID3	0xF0000FFC

$ROMTABLE_ADDR$

Link to Cortex M0 ROM Table

Address: 0xF0000000 Retention: Retained

Bits	7	6	5	4	3	2	1	0
						_		
SW Access				one			R	R
HW Access			No	one			R	R
Name			None	e [7:2]			FORMAT_ 32BIT	PRESENT
Bits	15	14	13	12	11	10	9	8
SW Access		R None						l
HW Access		İ	R		No	one		
Name		ADDR_OFFSET [15:12] No					[11:8]	
			1	1	1	1	1	I
Bits	23	22	21	20	19	18	17	16
SW Access				ſ	7			
HW Access				ı	7			
Name				ADDR_OFF	SET [23:16]			
		1	T	1		1		T
Bits	31	30	29	28	27	26	25	24
SW Access				I	7			
HW Access				ſ	7			
Name				ADDR OFF	SET [31:24]			

Bits	Name	Description
31:12	ADDR_OFFSET	Address offset of the Cortex-M0 ROM Table base address (0xe00f:f000) wrt. Chip specific ROM Table base address (0xf000:0000). ADDR_OFFSET[19:0] = 0xe00f:f - 0xf000:0 = 0xf00f:f. Default Value: 983295
		Delault value, 965295
1	FORMAT_32BIT	ROM Table format:
		'0': 8-bit format.
		'1': 32-bit format.
		Default Value: 1
0	PRESENT	
U	THESENT	Entry present.
		Default Value: 1

$ROMTABLE_DID$

Device Type Identifier register Address: 0xF0000FCC

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				ı	3					
HW Access				I	3					
Name				VALU	E [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		R								
HW Access		R								
Name		VALUE [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				ı	3					
HW Access				I	3					
Name				VALUE	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		•	•	ı	3	•	•	•		
HW Access				ſ	7					
Name				VALUE	[31:24]					

Bits Name Description 31:0 **VALUE**

Peripheral Identification Register 4 Address: 0xF0000FD0

Bits	7	6	5	4	3	2	1	0			
SW Access			R		R						
HW Access		!	R		R						
Name		COUN	IT [7:4]			JEP_CONTIN	NUATION [3:0]				
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
			_	_			_				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
7:4	COUNT	Size of ROM Table is 2^COUNT * 4 KByte.
		Default Value: 0
3:0	JEP_CONTINUATION	JEP106 continuation code. This value is product specific and specified as part of the product definition in the CPUSS.JEPCONTINUATION parameter.
		Default Value: Undefined

Peripheral Identification Register 5 Address: 0xF0000FD4

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				F	3					
HW Access				F	3					
Name				VALU	E [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		R								
HW Access		R								
Name		VALUE [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				F	3					
HW Access				F	3					
Name				VALUE	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				F	3					
HW Access				F	3					
Name				VALUE	[31:24]					

Bits Name Description 31:0 **VALUE**

Peripheral Identification Register 6 Address: 0xF0000FD8

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				F	3					
HW Access				F	3					
Name				VALU	E [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		R								
HW Access		R								
Name		VALUE [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				F	3					
HW Access				F	3					
Name				VALUE	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				F	3					
HW Access				F	3					
Name				VALUE	[31:24]					

Bits Name Description 31:0 **VALUE**

Peripheral Identification Register 7 Address: 0xF0000FDC

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				F	3						
HW Access				F	3						
Name				VALU	E [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		R									
Name		VALUE [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				F	3						
HW Access				F	3						
Name				VALUE	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				F	3						
HW Access				F	3						
Name				VALUE	[31:24]						

Bits Name Description 31:0 **VALUE**

Peripheral Identification Register 0 Address: 0xF0000FE0

Retention: Retained

Bits	7	6	5	4	3	2	1	0					
SW Access				ſ	3	•	1						
HW Access				F	7								
Name				PN_M	IN [7:0]								
	1	1	1	1	1			1					
Bits	15	14	13	12	11	10	9	8					
SW Access		None											
HW Access		None											
Name		None [15:8]											
					,			_					
Bits	23	22	21	20	19	18	17	16					
SW Access				No	ne		•						
HW Access				No	one								
Name				None	[23:16]								
						_							
Bits	31	30	29	28	27	26	25	24					
SW Access				No	one			•					
HW Access				No	one								
Name				None	None [31:24]								

Bits Name Description

PN_MIN

7:0

JEP106 part number. 4 lsbs of CPUSS.PARTNUMBER parameter. These part numbers are maintained in spec 40-9500.

Default Value: Undefined

Peripheral Identification Register 1 Address: 0xF0000FE4

1			1			1	ı	1				
Bits	7	6	5	4	3	2	1	0				
SW Access			R		R							
HW Access			R			F	3					
Name		JEPID_	MIN [7:4]		PN_MAJ [3:0]							
Du.				40	- 44	10						
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name				None	[15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne	1						
HW Access				No	ne							
Name				None	23:16]							
						1	1	1				
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne			·				
HW Access				No	ne							
Name				None	31:24]							

Bits	Name	Description
7:4	JEPID_MIN	JEP106 vendor id. 4 lsbs of CPUSS.JEPID parameter. This number is maintained in spec 40–9500.
		Default Value: Undefined
3:0	PN_MAJ	JEP106 part number. 4 msbs of CPUSS.PARTNUMBER parameter. These part numbers are maintained in spec 40–9500.
		Default Value: Undefined

Peripheral Identification Register 2 Address: 0xF0000FE8

Bits	7	6	5	4	3	2	1	0				
SW Access		F	3	l	None		R					
HW Access		F	3		None		R					
Name		REV	[7:4]		None		JEPID_MAJ [2:0]					
Bits	15	14	13	12	11	10	9	8				
SW Access		'-			ne	1 '9						
HW Access		None										
Name				None	[15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				l No	ne							
HW Access				No	one							
Name				None	[23:16]							
								1				
Bits	31	30	29	28	27	26	25	24				
SW Access				No	one							
HW Access				No	one							
Name				None	[31:24]							

Bits	Name	Description
7:4	REV	Major REVision number (chip specific). Identifies the design iteration of the component. For first tape out: 0x1. This field is implemented in RTL by an ECO-able tie-off structure and is incremented on subsequent tape outs. Default Value: Undefined
2:0	JEPID_MAJ	JEP106 vendor id. 4 msbs of CPUSS.JEPID parameter. This number is maintained in spec 40–9500. Default Value: Undefined

Peripheral Identification Register 3 Address: 0xF0000FEC

Bits	7	6	5	4	3	2 1						
SW Access		F	3		R							
HW Access		F	3		R							
Name		REV_A	ND [7:4]		CM [3:0]							
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name				None	[15:8]							
Bits	23	22	21	20	19	18	17	16				
SW Access				No	one							
HW Access				No	ne							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

Bits	Name	Description
7:4	REV_AND	Minor REVision number (chip specific). For first tape out: 0x1. This field is implemented in RTL by an ECO-able tie-off structure and is incremented on subsequent tape outs. Default Value: Undefined
3:0	СМ	Customer modified field. This field is used to track modifications to the original component design as a result of component IP reuse. Default Value: 0

$ROMTABLE_CID0$

Component Identification Register 0 Address: 0xF0000FF0

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		•			R	•	1	•			
HW Access					R						
Name				VALU	IE [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		R									
Name		VALUE [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access					R						
HW Access					R						
Name				VALUE	[23:16]						
							1	_			
Bits	31	30	29	28	27	26	25	24			
SW Access					R						
HW Access					R						
Name				VALUE	[31:24]						

Bits Name Description

VALUE

31:0

Component identification byte 0 of 4-byte component identification 0xB105:100D.

Component Identification Register 1 Address: 0xF0000FF4

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		•	•	F	3	1	•	•			
HW Access				F	3						
Name				VALU	E [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access	R										
Name		VALUE [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				F	7						
HW Access				F	7						
Name				VALUE	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				F	3						
HW Access				F	3						
Name				VALUE	[31:24]						

Bits Name Description

31:0 **VALUE** Component identification byte 1 of 4-byte component identification 0xB105:100D.

Component class: "ROM Table".

Component Identification Register 2 Address: 0xF0000FF8

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				F	3						
HW Access				F	3						
Name				VALUI	Ξ [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access	R										
Name		VALUE [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				F	3						
HW Access				F	3						
Name				VALUE	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				F	?						
HW Access				F	3						
Name				VALUE	[31:24]						

Bits Name Description

VALUE

31:0

Component identification byte 2 of 4-byte component identification 0xB105:100D.

Component Identification Register 3 Address: 0xF0000FFC

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				F	3						
HW Access				F	3						
Name				VALUI	Ξ [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access	R										
Name		VALUE [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				F	3						
HW Access				F	3						
Name				VALUE	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				F	?						
HW Access				F	3						
Name				VALUE	[31:24]						

Bits Name Description

VALUE

31:0

Component identification byte 3 of 4-byte component identification 0xB105:100D.

SAR REGISTERS

This section discusses the SAR registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 16. REGISTER DETAILS

Register Name	Address
SAR_CTRL	0x403A0000
SAR_SAMPLE_CTRL	0x403A0004
SAR_SAMPLE_TIME01	0x403A0010
SAR_SAMPLE_TIME23	0x403A0014
SAR_RANGE_THRES	0x403A0018
SAR_RANGE_COND	0x403A001C
SAR_CHAN_EN	0x403A0020
SAR_START_CTRL	0x403A0024
SAR_DFT_CTRL	0x403A0030
SAR_CHAN_CONFIG0	0x403A0080
SAR_CHAN_CONFIG1	0x403A0084
SAR_CHAN_CONFIG2	0x403A0088
SAR_CHAN_CONFIG3	0x403A008C
SAR_CHAN_CONFIG4	0x403A0090
SAR_CHAN_CONFIG5	0x403A0094
SAR_CHAN_CONFIG6	0x403A0098
SAR_CHAN_CONFIG7	0x403A009C
SAR_CHAN_CONFIG8	0x403A00A0
SAR_CHAN_CONFIG9	0x403A00A4
SAR_CHAN_CONFIG10	0x403A00A8
SAR_CHAN_CONFIG11	0x403A00AC
SAR_CHAN_CONFIG12	0x403A00B0
SAR_CHAN_CONFIG13	0x403A00B4
SAR_CHAN_CONFIG14	0x403A00B8
SAR_CHAN_CONFIG15	0x403A00BC
SAR_CHAN_WORK0	0x403A0100
SAR_CHAN_WORK1	0x403A0104
SAR_CHAN_WORK2	0x403A0108
SAR_CHAN_WORK3	0x403A010C
SAR_CHAN_WORK4	0x403A0110
SAR_CHAN_WORK5	0x403A0114
SAR_CHAN_WORK6	0x403A0118
SAR_CHAN_WORK7	0x403A011C
SAR_CHAN_WORK8	0x403A0120
SAR_CHAN_WORK9	0x403A0124
SAR_CHAN_WORK10	0x403A0128
SAR_CHAN_WORK11	0x403A012C
SAR_CHAN_WORK12	0x403A0130

Table 16. REGISTER DETAILS (continued)

Register Name	Address			
SAR_CHAN_WORK13	0x403A0134			
SAR_CHAN_WORK14	0x403A0138			
SAR_CHAN_WORK15	0x403A013C			
SAR_CHAN_RESULTO	0x403A0180			
SAR_CHAN_RESULT1	0x403A0184			
SAR_CHAN_RESULT2	0x403A0188			
SAR_CHAN_RESULT3	0x403A018C			
SAR_CHAN_RESULT4	0x403A0190			
SAR_CHAN_RESULT5	0x403A0194			
SAR_CHAN_RESULT6	0x403A0198			
SAR_CHAN_RESULT7	0x403A019C			
SAR_CHAN_RESULT8	0x403A01A0			
SAR_CHAN_RESULT9	0x403A01A4			
SAR_CHAN_RESULT10	0x403A01A8			
SAR_CHAN_RESULT11	0x403A01AC			
SAR_CHAN_RESULT12	0x403A01B0			
SAR_CHAN_RESULT13	0x403A01B4			
SAR_CHAN_RESULT14	0x403A01B8			
SAR_CHAN_RESULT15	0x403A01BC			
SAR_CHAN_WORK_VALID	0x403A0200			
SAR_CHAN_RESULT_VALID	0x403A0204			
SAR_STATUS	0x403A0208			
SAR_AVG_STAT	0x403A020C			
SAR_INTR	0x403A0210			
SAR_INTR_SET	0x403A0214			
SAR_INTR_MASK	0x403A0218			
SAR_INTR_MASKED	0x403A021C			
SAR_SATURATE_INTR	0x403A0220			
SAR_SATURATE_INTR_SET	0x403A0224			
SAR_SATURATE_INTR_MASK	0x403A0228			
SAR_SATURATE_INTR_MASKED	0x403A022C			
SAR_RANGE_INTR	0x403A0230			
SAR_RANGE_INTR_SET	0x403A0234			
SAR_RANGE_INTR_MASK	0x403A0238			
SAR_RANGE_INTR_MASKED	0x403A023C			
SAR_INTR_CAUSE	0x403A0240			
SAR_INJ_CHAN_CONFIG	0x403A0280			
SAR_INJ_RESULT	0x403A0290			
SAR_MUX_SWITCH0	0x403A0300			
SAR_MUX_SWITCH_CLEAR0	0x403A0304			
SAR_MUX_SWITCH1	0x403A0308			
SAR_MUX_SWITCH_CLEAR1	0x403A030C			

Table 16. REGISTER DETAILS (continued)

Register Name	Address
SAR_MUX_SWITCH_HW_CTRL	0x403A0340
SAR_MUX_SWITCH_STATUS	0x403A0348
SAR_PUMP_CTRL	0x403A0380
SAR_ANA_TRIM	0x403A0F00
SAR_WOUNDING	0x403A0F04

Analog control register Address: 0x403A0000 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW				No	one	
HW Access	R		R			None		
Name	VREF_BYP _CAP_EN	\	VREF_SEL [6:4]			None	e [3:0]	
	_							
Bits	15	14	13	12	11	10	9	8

Bits	15	14	13	12	11	10	9	8
SW Access	RW		RW	None	RW			None
HW Access	R		R	None	R			None
Name	PWR_CTRL_VREF [15:14]		SAR_HW_ CTRL_NEG VREF	None	NEG_SEL [11:9]			None

Bits	23	22	21	20	19	18	17	16
SW Access	None			RW	RW			
HW Access	None			R	R			
Name	None [23:21]			BOOST PUMP_EN	SPARE [19:16]			

Bits	31	30	29	28	27	26	25	24
SW Access	RW	RW	RW	RW	RW	None	RW	
HW Access	R	R	R	R	R	None	F	}
Name	ENABLED	SWITCH_ DI SABLE	DSI_MODE	DSI_SYNC _CONFIG	DEEP SLEEP_ON	None	ICONT_LV [25:24]	

Bits	Name	Description
31	ENABLED	Before enabling always make sure the SAR is idle (STATUS.BUSY==0)
		 - 0: SAR IP disabled (put analog in power down and stop clocks), also can clear FW_TRIGGER and INJ_START_EN (if not tailgaiting) on write.
		- 1: SAR IP enabled. Default Value: 0
30	SWITCH_DISABLE	Disable SAR sequencer from enabling routing switches (note DSI and firmware can always close switches independent of this control)
		 0: Normal mode, SAR sequencer changes switches according to pin address in channel configurations
		 1: Switches disabled, SAR sequencer does not enable any switches, it is the responsibility of the firmware or UDBs (through DSI) to set the switches to route the signal to be converted through the SARMUX
		Default Value: 0
29	DSI_MODE	SAR sequencer takes configuration from DSI signals (note this also has the same effect as SWITCH_DISABLE==1)
		 0: Normal mode, SAR sequencer operates according to CHAN_EN enables and CHAN_CONFIG channel configurations
		 - 1: CHAN_EN, INJ_START_EN and channel configurations in CHAN_CONFIG and INJ_CHAN_CONFIG are ignored
		Default Value: 0

28	DSI_SYNC_CONFIG	 - 0: bypass clock domain synchronization of the DSI config signals. - 1: synchronize the DSI config signals to peripheral clock domain.
		Default Value: 1
27	DEEPSLEEP_ON	 - 0: SARMUX IP disabled off during DeepSleep power mode - 1: SARMUX IP remains enabled during DeepSleep power mode (if ENABLED=1) Default Value: 0
25:24	ICONT_LV	SARADC low power mode. Default Value: 0 0x0: NORMAL PWR:
		normal power (default), max clk_sar is 18 MHz. 0x1: HALF_PWR:
		1/2 power mode, max clk_sar is 9 MHz. 0x2: MORE_PWR:
		1.333 power mode, max clk_sar is 18 MHz. 0x3: QUARTER_PWR:
		1/4 power mode, max clk_sar is 4.5 MHz.
20	BOOSTPUMP_EN	SARADC internal pump: 0=disabled: pump output is VDDA, 1=enabled: pump output is boosted. Default Value: 0
19:16	SPARE	Spare controls, not yet designated, for late changes done with an ECO. Default Value: 0
15:14	PWR_CTRL_VREF	VREF buffer low power mode. Default Value: 0
		0x0: NORMAL_PWR:
		normal power (default), bypass cap, max clk_sar is 18 MHz.
		0x1: HALF_PWR:
		Deprecated
		0x2: THIRD_PWR:
		2X power, no bypass cap, max clk_sar is 1.8 MHz
		0x3: QUARTER_PWR:
		deprecated
13	SAR_HW_CTRL_ NEGVR EF	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for VREF to NEG switch.
44.0	NEO OEL	Default Value: 0
11:9	NEG_SEL	SARADC internal NEG selection for Single ended conversion. Default Value: 0
		Ox0: VSSA_KELVIN: NEG input of SARADC is connected to "vssa_kelvin", gives more precision around zero. Note this
		opens both SARADC internal switches, therefore use this value to insert a break-before-make cycle on those switches when SWITCH_DISABLE is high.
		0x1: ART_VSSA:
		NEG input of SARADC is connected to VSSA in AROUTE close to the SARADC
		0x2: P1:
		NEG input of SARADC is connected to P1 pin of SARMUX
		0x3: P3:
		NEG input of SARADC is connected to P3 pin of SARMUX
		0x4: P5: NEG input of SARADC is connected to P5 pin of SARMUX
		0x5: P7:
		NEG input of SARADC is connected to P7 pin of SARMUX
		0x6: ACORE:
		NEG input of SARADC is connected to an ACORE in AROUTE
		0x7: VREF:
		NEG input of SARADC is shorted with VREF input of SARADC.

SAR_CTRL (Continued)

7 VREF_BYP_CAP_EN VREF bypass cap enable for when VREF buffer is on

Default Value: 0

6:4 VREF_SEL SARADC internal VREF selection.

Default Value: 0 0x0: VREF0:

VREF0 from PRB (VREF buffer on)

0x1: VREF1:

VREF1 from PRB (VREF buffer on)

0x2: VREF2:

VREF2 from PRB (VREF buffer on)

0x3: VREF_AROUTE:

VREF from AROUTE (VREF buffer on)

0x4: VBGR:

1.024 V from BandGap (VREF buffer on)

0x5: VREF_EXT:

External precision Vref direct from a pin (low impedance path).

0x6: VDDA_DIV_2: Vdda/2 (VREF buffer on)

0x7: VDDA: Vdda.

SAR_SAMPLE_CTRL

Sample control register Address: 0x403A0004 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW		RW		RW	RW	RW	RW
HW Access	R		R		R	R	R	R
Name	AVG_SHIFT	AVG_CNT [6:4]			DIFFEREN TIAL_ SIGNED	SINGLE_ ENDED_ SIGNED	LEFT_ALIGN	SUB_RESO LUTION
Bits	15	14	13	12	11	10	9	8
	15	14	13			10	9	•
SW Access		None						
HW Access		None						
Name		None [15:8]						
_	1		1	T	_	T	1	
Bits	23	22	21	20	19	18	17	16
SW Access		No	one		RW	RW	RW	RW
HW Access		No	one		R	R	R	R
Name	None [23:20]				DSI_SYNC _TRIGGER	DSI_ TRIGGER_ LEVEL	DSI_ TRIGGER_ EN	CONTINU- OUS
			1	Γ		Γ	1	
Bits	31	30	29	28	27	26	25	24
SW Access	RW				None			
HW Access	R	None						
Name	EOS_DSI_ OUT_EN		None [30:24]					

Bits	Name	Description
31	EOS_DSI_OUT_EN	Enable to output EOS_INTR to DSI. When enabled each time EOS_INTR is set by the hardware also a pulse is send on the dsi_eos signal. Default Value: 0
19	DSI_SYNC_TRIGGER	 0: bypass clock domain synchronization of the DSI trigger signal. 1: synchronize the DSI trigger signal to the SAR clock domain, if needed an edge detect is done in the peripheral clock domain. Default Value: 1
18	DSI_TRIGGER_LEVEL	 0: DSI trigger signal is a pulse input, a positive edge detected on the DSI trigger signal triggers a new scan. 1: DSI trigger signal is a level input, as long as the DSI trigger signal remains high the SAR will do continuous scans. Default Value: 0
17	DSI_TRIGGER_EN	0: firmware trigger only: disable hardware (DSI) trigger.1: enable hardware (DSI) trigger (e.g. from TCPWM, GPIO or UDB).Default Value: 0
16	CONTINUOUS	 0: Wait for next FW_TRIGGER (one shot) or hardware (DSI) trigger (e.g. from TPWM for periodic triggering) before scanning enabled channels. 1: Continuously scan enabled channels, ignore triggers. Default Value: 0

SAR_SAMPLE_CTRL (Continued)

7	AVG_SHIFT	Averaging shifting: after averaging the result is shifted right to fit in the sample resolution. For averaging the sample resolution is the highest resolution allowed by wounding.
		Default Value: 0
6: 4	AVG_CNT	Averaging Count for channels that have over sampling enabled (AVG_EN). A channel will be sampled back to back (1<<(AVG_CNT+1)) = [2256] times before the result is stored and the next enabled channel is sampled (1st order accumulate and dump filter).
		If shifting is not enabled (AVG_SHIFT=0) then the result is forced to shift right so that is fits in 16 bits, so right shift is done by max(0,AVG_CNT-3).
		Default Value: 0
3	DIFFERENTIAL_	Output data from a differential conversion as a signed value.
	SIGNED	Default Value: 1
		0x0: UNSIGNED:
		result data is unsigned (zero extended if needed)
		0x1: SIGNED:
		Default: result data is signed (sign extended if needed)
2	SINGLE_END-	Output data from a single ended conversion as a signed value.
	ED_SIGNE D	Default Value: 0
		0x0: UNSIGNED:
		Default: result data is unsigned (zero extended if needed)
		0x1: SIGNED:
		result data is signed (sign extended if needed)
1	LEFT_ALIGN	Left align data in data[15:0], default data is right aligned in data[11:0], with sign extension to 16 bits if the channel is differential.
		Default Value: 0
0	SUB_RESOLUTION	Conversion resolution for channels that have sub-resolution enabled (RESOLUTION=1) (otherwise resolution is 12-bit).
		Default Value: 0
		0x0: 8B:
		8-bit.
		0x1: 10B:
		10-bit.

SAR_SAMPLE_TIME01

Sample time specification ST0 and ST1 Address: 0x403A0010

Retention: Retained

HW Access

Name

Bits	7	6	5	4	3	2	1	0	
SW Access	RW								
HW Access		R							
Name				SAMPLE_	ΓΙΜΕ0 [7:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access		l	No	ne		I.	R	RW	
HW Access		None					ı	R	
Name			None	[15:10]			SAMPLE_TIME0 [9:8]		
Bits	23	22	21	20	19	18	17	16	
SW Access		l	l	R	W	<u>I</u>		l	
HW Access				F	3				
Name				SAMPLE_TI	ME1 [23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access	None RW							\^/	

Bits	Name	Description
25:16	SAMPLE_TIME1	Sample time1
		Default Value: 4
9:0	SAMPLE_TIME0	Sample time0 (aperture) in ADC clock cycles. Note that actual sample time is half a clock less than specified here. The minimum sample time is 194 ns, which is 3.5 cycles (4 in this field) with an 18 MHz clock. Minimum legal value in this register is 2. Default Value: 4

SAMPLE_TIME1 [25:24]

None None [31:26]

SAR_SAMPLE_TIME23

Sample time specification ST2 and ST3 Address: 0x403A0014

Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0		
SW Access		RW								
HW Access		R								
Name				SAMPLE_	TIME2 [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access		None						R		
Name			None	[15:10]			SAMPLE_TIME2 [9:8]			
Bits	23	22	21	20	19	18	17	16		
SW Access		1		R	W		1			
HW Access				ſ	R					
Name				SAMPLE_T	IME3 [23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		1	No	one	1	1	R	RW		
HW Access		None						R		

None [31:26]

SAMPLE_TIME3 [25:24]

Bits	Name	Description
25:16	SAMPLE_TIME3	Sample time3
		Default Value: 4
9:0	SAMPLE_TIME2	Sample time2
		Default Value: 4

SAR_RANGE_THRES

Global range detect threshold register Address: 0x403A0018

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		R									
Name		RANGE_LOW [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		R									
Name				RANGE_L	OW [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				R	W						
HW Access				F	3						
Name				RANGE_H	IGH [23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				R	W						
HW Access				F	3						
Name				RANGE_H	IGH [31:24]						

Bits	Name	Description
31:16	RANGE_HIGH	High threshold for range detect.
		Default Value: 0
15:0	RANGE_LOW	Low threshold for range detect.
		Default Value: 0

SAR_RANGE_COND

Global range detect mode register

Address: 0x403A001C Retention: Retained

		1	ı	1	ı		1				
Bits	7	6	5	4	3	2	1	0			
SW Access		None									
HW Access		None									
Name				None	e [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access	R	W			No	one		•			
HW Access	F	٦			No	one					

None [29:24]

Bits 31:30

Name

Name RANGE_COND Description

RANGE_COND [31:30]

Range condition select.

Default Value: 0 0x0: BELOW:

result < RANGE_LOW

0x1: INSIDE:

 $RANGE_LOW \leq result < RANGE_HIGH$

0x2: ABOVE:

 $RANGE_HIGH \leq result$

0x3: OUTSIDE:

 $result < RANGE_LOW \parallel RANGE_HIGH \leq result$

SAR_CHAN_EN

Enable bits for the channels Address: 0x403A0020 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		R									
Name		CHAN_EN [7:0]									
Dita	45										
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		R									
Name				CHAN_E	EN [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		•	•	No	ne	•	•	-			
HW Access				No	ne						
Name				None	[31:24]						

Bits Name 15:0 CHAN_EN Description

Channel enable.

- 0: the corresponding channel is disabled.

- 1: the corresponding channel is enabled, it will be included in the next scan.

SAR_START_CTRL

Start control register (firmware trigger)

Address: 0x403A0024 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			•	None	•	•	1	RW1S			
HW Access				None				RW1C			
Name				None [7:1]				FW_ TRIGGER			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one	•	u.	•			
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access			I	No	ne	I	I	1			
HW Access				No	one						
Name		None [31:24]									

Bits	Name
0	FW TRIGGER

Description

When firmware writes a 1 here it will trigger the next scan of enabled channels, hardware clears this bit when the scan started with this trigger is completed. If scanning continuously the trigger is ignored and hardware clears this bit after the next scan is done. This bit is also cleared when the SAR is disabled.

SAR_DFT_CTRL

DFT control register Address: 0x403A0030 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW	RW					
HW Access	None							R
Name			None	e [7:2]			HIZ	DLY_INC

Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access		None								
Name				None	[15:8]					

Bits	23	22	21	20	19	18	17	16
SW Access	None	RW			RW			
HW Access	None	R			R			
Name	None	DFT_OUTC [22:20]			DFT_INC [19:16]			

Bits	31	30	29	28	27	26	25	24
SW Access	RW	None	RW	RW	RW			
HW Access	R	None	R	R	R			
Name	ADFT_ OVERRIDE	None	DCEN	EN_CSEL_ DFT	SEL_CSEL_DFT [27:24]			

Bits	Name	Description
31	ADFT_OVERRIDE	During DeepSleep/hibernate mode keep SARMUX active, i.e. do not open all switches (disconnect), to be used for ADFT
		Default Value: 0
29	DCEN	Delay Control Enable for latch.
		 0: doubles the latch enable time.
		- 1: normal latch enable time (default).
		Default Value: 0
28	EN_CSEL_DFT	Mux select signal for DAC control
		Default Value: 0
27:24	SEL_CSEL_DFT	Usage 1: DFT bits for DAC array
		Usage 2: For [0]=1 (when dcen=0): Delay timing for latch enable increased by 20% [1]=1: comparator preamp power level increased by 25%
		Default Value: 0
22:20	DFT_OUTC	DFT control for preamp outputs
		Default Value: 0
19:16	DFT_INC	DFT control for preamp inputs
		Default Value: 0
1	HIZ	DFT control for getting higher input impedance, must be 1 (0 is deprecated).
		Default Value: 1
0	DLY_INC	DFT control: Control for delay circuits on sampling phase, =1 doubles the non-overlap delay. Default Value: 0

SAR_CHAN_CONFIG0

Channel configuration register Address: 0x403A0080

	Т	T	T	Т	1	1	Т	T
Bits	7	6 5 4		3	2	1	0	
SW Access	None	RW			None	RW		
HW Access	None	R			None	R		
Name	None	P	ORT_ADDR [6:	4]	None	PIN_ADDR [2:0]		
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	R'	RW		RW	RW	RW
HW Access	No	ne	R		None	R	R	R
Name	None	[15:14]	SAMPLE_TIME_SEL [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
		T	T	T	T	T		1
Bits	23	22	21	20	19	18	17	16
SW Access		None						
HW Access		None						
Name		None [23:16]						
						1		
Bits	31	30	29	28	27	26	25	24
SW Access	RW		None					
HW Access	R	None						
Name	DSI_OUT_ EN	None [30:24]						

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs.
		Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.

2:0

PIN_ADDR

8 DIFFERENTIAL EN Differential enable for this channel.

 $\scriptstyle -$ 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

- 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored

in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0
0x0: SARMUX:
SARMUX pins.
0x1: CTB0:
CTB0
0x2: CTB1:
CTB1
0x3: CTB2:
CTB2

0x4: CTB3: CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

SAR_CHAN_CONFIG1

Channel configuration register Address: 0x403A0084

	1	1	1	1			T	1
Bits	7	6	6 5 4		3	2	1	0
SW Access	None	RW			None	RW		
HW Access	None	R			None	R		
Name	None	P	ORT_ADDR [6:	4]	None	PIN_ADDR [2:0]		
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	R'	W	None	RW	RW	RW
HW Access	No	ne	ne R		None	R	R	R
Name	None	[15:14]	SAMPLE_TIME_SEL [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
		T	T	T				
Bits	23	22	21	20	19	18	17	16
SW Access		None						
HW Access		None						
Name		None [23:16]						
					_	_		1
Bits	31	30	29	28	27	26	25	24
SW Access	RW		None					
HW Access	R		None					
Name	DSI_OUT_ EN		None [30:24]					

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs.
		Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.

2:0

PIN_ADDR

8 DIFFERENTIAL EN Differential enable for this channel.

- 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored

in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:

CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Default Value: 0

www.onsemi.com

Channel configuration register Address: 0x403A0088

	•	1	1	1	1	1	T	
Bits	7	6	5	4	3	2	1	0
SW Access	None		RW			RW		
HW Access	None		R			R		
Name	None	Р	ORT_ADDR [6:	4]	None	PIN_ADDR [2:0]		
				1	1	_		
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	e RW			RW	RW	RW
HW Access	No	ne	e R		None	R	R	R
Name	None	[15:14]	SAMPLE_TIME_SEL [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
		I	I		1	1	1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
	1	T	T		1	1	1	1
Bits	31	30	29	28	27	26	25	24
SW Access	RW		None					
HW Access	R		None					
Name	DSI_OUT_ EN		None None [30:24]					

Bits Name Description DSI_OUT_EN DSI_OUT_EN DSI data output enable for this channel. - 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. - 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 SAMPLE_TIME_SEL Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0 Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution.			
- 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. - 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0	Bits	Name	Description
corresponding CHAN_DATA_VALID bit is set. - 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0	31	DSI_OUT_EN	DSI data output enable for this channel.
corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 SAMPLE_TIME_SEL Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0			
13:12 SAMPLE_TIME_SEL Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 10 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0			corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the
Default Value: 0 10 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0			Default Value: 0
10 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0	13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
sampling the addressed pin(s). Default Value: 0			Default Value: 0
2014410 101401 0	10	AVG_EN	
9 RESOLUTION Resolution for this channel When AVG. EN is set this hit is ignored and always a 12-bit resolution			Default Value: 0
(or highest resolution allowed by wounding) is used for this channel.	9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
Default Value: 0			Default Value: 0
0x0: MAXRES:			0x0: MAXRES:
The maximum resolution is used for this channel (maximum resolution depends on wounding).			The maximum resolution is used for this channel (maximum resolution depends on wounding).
0x1: SUBRES:			0x1: SUBRES:
The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.			

PIN_ADDR

8 DIFFERENTIAL EN Differential enable for this channel.

 $\scriptstyle -$ 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

- 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored

in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0
0x0: SARMUX:
SARMUX pins.
0x1: CTB0:
CTB0
0x2: CTB1:
CTB1
0x3: CTB2:
CTB2
0x4: CTB3:

CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Default Value: 0

www.onsemi.com

Channel configuration register Address: 0x403A008C

Address: 0x403A0080 Retention: Retained

HW Access

Name

R

DSI_OUT_ EN

Bits	7	6	5	4	3	2	1	0
SW Access	None		RW		None	RW		
HW Access	None		R			R		
Name	None	Р	ORT_ADDR [6:	:4]	None		PIN_ADDR [2:0)]
	1	1	T	1	1			1
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	e RW		None	RW	RW	RW
HW Access	No	ne	R		None	R	R	R
Name	None	[15:14]	SAMPLE_TIME_SEL [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
			T		T	1		T
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name	None [23:16]							
						_	_	_
Bits	31	30	29	28	27	26	25	24
SW Access	RW		None					

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 - 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs.
		Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for

None

None [30:24]

this channel.

PIN_ADDR

8 DIFFERENTIAL EN Differential enable for this channel.

- 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

in the corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Ox0: SARMUX:
SARMUX pins.
Ox1: CTB0:
CTB0
Ox2: CTB1:
CTB1
Ox3: CTB2:
CTB2
Ox4: CTB3:
CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register Address: 0x403A0090

Bits	7	6	5	4	3	2	1	0
SW Access	None	RW			None	RW		
HW Access	None		R		None	R		
Name	None	Р	ORT_ADDR [6:	4]	None	PIN_ADDR [2:0]		
			_					_
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	e RW		None	RW	RW	RW
HW Access	No	ne	e R		None	R	R	R
Name	None	[15:14]	SAMPLE_TIME_SEL [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			<u> </u>
HW Access				No	one			
Name				None	[23:16]			
	1 4					1		
Bits	31	30	29	28	27	26	25	24
SW Access	RW		None					
HW Access	R	_			None			
Name	DSI_OUT_ EN		None [30:24]					

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs.
		Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.

8 DIFFERENTIAL EN Differential enable for this channel.

- 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data resistor.

in the corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:

CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

PIN_ADDR Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register Address: 0x403A0094

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None	RW		None	RW			
HW Access	None		R			R		
Name	None	Р	ORT_ADDR [6:	4]	None	PIN_ADDR [2:0]		
	1					-1		
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	e RW		None	RW	RW	RW
HW Access	No	ne	F	R		R	R	R
Name	None	[15:14]	SAMPLE_TIME_SEL [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
	1	T	1	1	1	1	1	1
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	RW				None			
HW Access	R		None					
Name	DSI_OUT_ EN				None [30:24]			

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0
13:12	SAMPLE TIME SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.

PIN_ADDR

8 DIFFERENTIAL EN Differential enable for this channel.

- 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

in the corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:
CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register Address: 0x403A0098

Address: 0x403A0098 Retention: Retained

SW Access

HW Access

Name

RW

R

DSI_OUT_ EN

Bits	7	6	5	4	3	2	1	0
SW Access	None		RW		None	RW		
HW Access	None		R			R		
Name	None	Р	ORT_ADDR [6:	4]	None	PIN_ADDR [2:0]		
							_	
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	e RW		None	RW	RW	RW
HW Access	No	ne	e R		None	R	R	R
Name	None	[15:14]	5:14] SAMPLE_TIME_SE [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
			T	T		T	1	T
Bits	23	22	21	20	19	18	17	16
SW Access		None						
HW Access		None						
Name	None [23:16]							
			1				1	1
Bits	31	30	29	28	27	26	25	24

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs.
		Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel. Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).

None

None

None [30:24]

The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for

0x1: SUBRES:

this channel.

8 DIFFERENTIAL EN Differential enable for this channel.

 $\scriptstyle -$ 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

Title corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:
CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

PIN_ADDR Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register Address: 0x403A009C

Bits	7	6	5	4	3	2	1	0
SW Access	None	RW			None	RW		
HW Access	None		R			R		
Name	None	P	PORT_ADDR [6:4]			PIN_ADDR [2:0]		
					1			
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	e RW		None	RW	RW	RW
HW Access	No	ne	e R		None	R	R	R
Name	None [[15:14]	SAMPLE_TIME_SEL [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
	ı		1		1	1	1	1
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
	ı		1		-	1		ı
Bits	31	30	29	28	27	26	25	24
SW Access	RW				None			
HW Access	R		None					
Name	DSI_OUT_ EN				None [30:24]			

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs.
		Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.

PIN_ADDR

8 DIFFERENTIAL EN Differential enable for this channel.

- 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data resistor.

in the corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:
CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register Address: 0x403A00A0

DSI_OUT_ EN

Name

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		None	RW				
HW Access	None		R		None	R			
Name	None	Р	ORT_ADDR [6:	4]	None	1	PIN_ADDR [2:0]		
	1				l	•			
Bits	15	14	14 13 12		11	10	9	8	
SW Access	No	ne RW		None	RW	RW	RW		
HW Access	No	ne R		None	R	R	R		
Name	None	15:14] SAMPLE_TIME_SEL [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access		None							
Name		None [23:16]							
	•								
Bits	31	30	29	28	27	26	25	24	
SW Access	RW				None				
HW Access	R	None							

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel. Default Value: 0
		0x0: MAXRES:

None [30:24]

The maximum resolution is used for this channel (maximum resolution depends on wounding).

The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for

0x1: SUBRES:

this channel.

8 DIFFERENTIAL EN Differential enable for this channel.

- 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

in the corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:

CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

PIN_ADDR Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register Address: 0x403A00A4

Bits	7	6	5	4	3	2	1	0
SW Access	None		RW		None	RW		1
HW Access	None		R		None	R		
Name	None	F	PORT_ADDR [6:	:4]	None	PIN_ADDR [2:0]		
			,	1	1			
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	ne RW			RW	RW	RW
HW Access	No	ne	ne R		None	R	R	R
Name	None	[15:14]	SAMPLE_TIM [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
Bits	23	22	22 21 20 19 18 17 16					
SW Access	20		None					
HW Access				No	one			
Name				None	[23:16]			
		ı	_	1	1		1	1
Bits	31	30	29	28	27	26	25	24
SW Access	RW	None						
HW Access	R				None			
Name	DSI_OUT_ EN		None [30:24]					

Bits Name Description DSI_OUT_EN DSI_OUT_EN DSI data output enable for this channel. - 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. - 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 SAMPLE_TIME_SEL Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0 Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution.			
- 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. - 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0	Bits	Name	Description
corresponding CHAN_DATA_VALID bit is set. - 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0	31	DSI_OUT_EN	DSI data output enable for this channel.
corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 SAMPLE_TIME_SEL Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0			
13:12 SAMPLE_TIME_SEL Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 10 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0			corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the
Default Value: 0 10 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0			Default Value: 0
10 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0	13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
sampling the addressed pin(s). Default Value: 0			Default Value: 0
2014410 101401 0	10	AVG_EN	
9 RESOLUTION Resolution for this channel When AVG. EN is set this hit is ignored and always a 12-bit resolution			Default Value: 0
(or highest resolution allowed by wounding) is used for this channel.	9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
Default Value: 0			Default Value: 0
0x0: MAXRES:			0x0: MAXRES:
The maximum resolution is used for this channel (maximum resolution depends on wounding).			The maximum resolution is used for this channel (maximum resolution depends on wounding).
0x1: SUBRES:			0x1: SUBRES:
The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.			

PIN_ADDR

8 DIFFERENTIAL EN Differential enable for this channel.

 $\scriptstyle -$ 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

Title corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:
CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register Address: 0x403A00A8

	1	1	1	ı			T.		
Bits	7	6	5	4	3	2	1	0	
SW Access	None		RW		None	RW			
HW Access	None		R		None	R			
Name	None	Р	ORT_ADDR [6:	4]	None	PIN_ADDR [2:0]			
Bits	15	14	13	12	11	10	9	8	
SW Access	No	ne	ne RW			RW	RW	RW	
HW Access	No	ne	ne R		None	R	R	R	
Name	None	[15:14]	5:14] SAMPLE_TIME_S [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN	
-	1	I							
Bits	23	22	22 21 20 19 18 17 16						
SW Access			None						
HW Access				No	one				
Name				None	[23:16]				
	1								
Bits	31	30	30 29 28 27 26 25 24					24	
SW Access	RW		None						
HW Access	R				None				
Name	DSI_OUT_ EN		None [30:24]						

Bits Name Description DSI_OUT_EN DSI_OUT_EN DSI data output enable for this channel. - 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. - 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 SAMPLE_TIME_SEL Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0 Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution.			
- 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. - 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0	Bits	Name	Description
corresponding CHAN_DATA_VALID bit is set. - 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0	31	DSI_OUT_EN	DSI data output enable for this channel.
corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0 SAMPLE_TIME_SEL Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0			
13:12 SAMPLE_TIME_SEL Sample time select: select which of the 4 global sample times to use for this channel Default Value: 0 10 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0			corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the
Default Value: 0 10 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0			Default Value: 0
10 AVG_EN Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s). Default Value: 0	13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
sampling the addressed pin(s). Default Value: 0			Default Value: 0
2014410 101401 0	10	AVG_EN	
9 RESOLUTION Resolution for this channel When AVG. EN is set this hit is ignored and always a 12-bit resolution			Default Value: 0
(or highest resolution allowed by wounding) is used for this channel.	9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
Default Value: 0			Default Value: 0
0x0: MAXRES:			0x0: MAXRES:
The maximum resolution is used for this channel (maximum resolution depends on wounding).			The maximum resolution is used for this channel (maximum resolution depends on wounding).
0x1: SUBRES:			0x1: SUBRES:
The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.			

PIN_ADDR

8 DIFFERENTIAL EN Differential enable for this channel.

- 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

in the corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Ox0: SARMUX: SARMUX pins.
Ox1: CTB0:
CTB0
Ox2: CTB1:
CTB1
Ox3: CTB2:
CTB2
Ox4: CTB3:
CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Default Value: 0

www.onsemi.com

Channel configuration register Address: 0x403A00AC

Bits	7	6	5	4	3	2	1	0	
SW Access	None		RW		None	RW			
HW Access	None		R		None	R			
Name	None	F	PORT_ADDR [6:	:4]	None	PIN_ADDR [2:0]			
	1	T	1	1	ı	T	T	T	
Bits	15	14	13	12	11	10	9	8	
SW Access	No	ne	ne RW			RW	RW	RW	
HW Access	No	ne	ie R		None	R	R	R	
Name	None	[15:14]	SAMPLE_ [13	SAMPLE_TIME_SEL [13:12]		AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN	
Bits	23	22	22 21 20 19 18 17 16						
SW Access			None						
HW Access			None						
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access	RW	None 29 28 21 20 25 24							
HW Access	R				None				
Name	DSI_OUT_		None [30:24]						

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs.
		Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.

8 DIFFERENTIAL EN Differential enable for this channel.

- 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

in the corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:
CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

PIN_ADDR

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register

Address: 0x403A00B0 Retention: Retained

	T _		_	T _	_	T _	T -	1 _
Bits	7	6	5	4	3	2	1	0
SW Access	None		RW			RW		
HW Access	None		R		None	R		
Name	None	Р	ORT_ADDR [6:	4]	None	PIN_ADDR [2:0]		
			_					
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	ne RW			RW	RW	RW
HW Access	No	ne	ne R		None	R	R	R
Name	None	[15:14]	5:14] SAMPLE_TIME_SEL [13:12]		None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
	_	T						
Bits	23	22	22 21 20 19 18 17 16					
SW Access		None						
HW Access		None						
Name				None	[23:16]			
Bits	31	30	30 29 28 27 26 25 24					24
SW Access	RW				None			
HW Access	R				None			
Name	DSI_OUT_ EN		None [30:24]					

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs.
		Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.

PIN_ADDR

8 DIFFERENTIAL EN Differential enable for this channel.

- 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

in the corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:
CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register Address: 0x403A00B4

Bits	7	6	5	4	3	2	1	0
					_			
SW Access	None		RW		None	RW		
HW Access	None		R		None	R		
Name	None	Р	ORT_ADDR [6:	4]	None	PIN_ADDR [2:0]		
						_		
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	ne RW			RW	RW	RW
HW Access	No	ne	ne R		None	R	R	R
Name	None			TIME_SEL :12]	None	AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
	T	T						
Bits	23	22	22 21 20 19 18 17 16					
SW Access		None						
HW Access				No	one			
Name				None	[23:16]			
	·	T	T	r		1	T	_
Bits	31	30	29	28	27	26	25	24
SW Access	RW		None					
HW Access	R				None			
Name	DSI_OUT_ EN		None [30:24]					

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs.
		Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.

8 DIFFERENTIAL EN Differential enable for this channel.

- 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data resistor.

in the corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:

CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

PIN_ADDR

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register Address: 0x403A00B8

Bits	7	6	5	4	3	2	1	0
SW Access	None		RW			RW		
HW Access	None		R		None		R	
Name	None	F	PORT_ADDR [6:	:4]	None		PIN_ADDR [2:0	0]
	1	T	1	1	ı	T	T	T
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	R	W	None	RW	RW	RW
HW Access	No	ne	e R		None	R	R	R
Name	None	[15:14]	SAMPLE_ [13	SAMPLE_TIME_SEL [13:12]		AVG_EN	RESOLU- TION	DIFFEREN TIAL_EN
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	RW		None 29 28 27 20 23					
HW Access	R		None					
Name	DSI_OUT_		None [30:24]					

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs. Default Value: 0
13:12	SAMPLE TIME SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.

8 DIFFERENTIAL EN Differential enable for this channel.

- 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

in the corresponding data register.

 - 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0

0x0: SARMUX:
SARMUX pins.

0x1: CTB0:
CTB0

0x2: CTB1:
CTB1

0x3: CTB2:
CTB2

0x4: CTB3:
CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

PIN_ADDR Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Channel configuration register Address: 0x403A00BC

Retention: Retained

Name

None [15:14]

Bits	7	6	5	4	3	2	1	0
SW Access	None		RW			RW		
HW Access	None		R			R		
Name	None	P	PORT_ADDR [6:4]			PIN_ADDR [2:0]		
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	e RW		None	RW	RW	RW
HW Access	No	ne	e R			R	R	R

Bits	23	22	21	20	19	18	17	16
SW Access		None						
HW Access		None						
Name		None [23:16]						

None

RESOLU-TION

AVG_EN

DIFFEREN TIAL_EN

SAMPLE_TIME_SEL [13:12]

Bits	31	30	29	28	27	26	25	24
SW Access	RW	None						
HW Access	R		None					
Name	DSI_OUT_ EN	None [30:24]						

Bits	Name	Description
31	DSI_OUT_EN	DSI data output enable for this channel.
		 0: the conversion result for this channel is only stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set.
		- 1: the conversion result for this channel is stored in the channel data register and the corresponding CHAN_DATA_VALID bit is set. The same data (same formatting), together with the channel number, is sent out on the DSI communication channel for processing in UDBs.
		Default Value: 0
13:12	SAMPLE_TIME_SEL	Sample time select: select which of the 4 global sample times to use for this channel
		Default Value: 0
10	AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0
9	RESOLUTION	Resolution for this channel. When AVG_EN is set this bit is ignored and always a 12-bit resolution (or highest resolution allowed by wounding) is used for this channel.
		Default Value: 0
		0x0: MAXRES:
		The maximum resolution is used for this channel (maximum resolution depends on wounding).
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.

PIN_ADDR

8 DIFFERENTIAL EN Differential enable for this channel.

 $\scriptstyle -$ 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.

- 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored

in the corresponding data register. (PIN_ADDR[0] is ignored).

Default Value: 0

6:4 PORT_ADDR Address of the port that contains the pin to be sampled by this channel.

Default Value: 0
0x0: SARMUX:
SARMUX pins.
0x1: CTB0:
CTB0
0x2: CTB1:
CTB1
0x3: CTB2:
CTB2
0x4: CTB3:

CTB3

0x5: AROUTE_VIRT2:

AROUTE virtual port2 (VPORT2)

0x6: AROUTE_VIRT1:

AROUTE virtual port1 (VPORT1)

0x7: SARMUX VIRT:

SARMUX virtual port (VPORT0)

Address of the pin to be sampled by this channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair. For differential

the even pin of the pair is connected to \overline{V} plus and the odd pin of the pair is connected to Vminus.

Default Value: 0

www.onsemi.com

Channel working data register Address: 0x403A0100

Bits	7	6	5	4	3	2	1	0
SW Access		R						
HW Access				R'	W			
Name				WORI	< [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access				R'	W			
Name				WORK	[15:8]			
	-							
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
	-							
Bits	31	30	29	28	27	26	25	24
SW Access	R				None			
HW Access	W	None						
Name	CHAN_WO RK_VALID_ MIR	None [30:24]						

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0104

Bits	7	6	5	4	3	2	1	0
SW Access	Į.		l	F	7	1		
HW Access				R	W			
Name				WOR	K [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	7			
HW Access				R	W			
Name				WORK	C [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
				_		_	_	
Bits	31	30	29	28	27	26	25	24
SW Access	R				None			
HW Access	W				None			
Name	CHAN_WO RK_VALID_ MIR		None [30:24]					

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0108

Bits	7	6	5	4	3	2	1	0
SW Access	Į.		l	F	7	1		
HW Access				R	W			
Name				WOR	K [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	7			
HW Access				R	W			
Name				WORK	C [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
				_		_	_	
Bits	31	30	29	28	27	26	25	24
SW Access	R				None			
HW Access	W				None			
Name	CHAN_WO RK_VALID_ MIR		None [30:24]					

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A010C

Bits	7	6	5	4	3	2	1	0
SW Access		R						
HW Access				R	W			
Name				WOR	K [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	7			
HW Access				R	W			
Name				WORK	C [15:8]			
	•							
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R		None					
HW Access	W		None					
Name	CHAN_WO RK_VALID_ MIR		None [30:24]					

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0110

Bits	7	6	5	4	3	2	1	0
SW Access	Į.		l	F	7	1		
HW Access				R	W			
Name				WOR	K [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	7			
HW Access				R	W			
Name				WORK	C [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
				_		_	_	
Bits	31	30	29	28	27	26	25	24
SW Access	R		None					
HW Access	W		None					
Name	CHAN_WO RK_VALID_ MIR		None [30:24]					

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0114

Bits	7	6	5	4	3	2	1	0
SW Access		R						
HW Access				R	W			
Name				WOR	K [7:0]			
						1		
Bits	15	14	13	12	11	10	9	8
SW Access				!	R			
HW Access				R	ìW			
Name				WOR	K [15:8]			
			_	_				
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
			_	_				
Bits	31	30	29	28	27	26	25	24
SW Access	R	None						
HW Access	W	None						
Name	CHAN_WO RK_VALID_ MIR		None [30:24]					

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0118

1	1		1	I	1	1	1	
Bits	7	6	5	4	3	2	1	0
SW Access				I	7			
HW Access				R	W			
Name				WOR	K [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access		R						
HW Access				R	W			
Name				WOR	C [15:8]			
								_
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	None						
HW Access	W		None					
Name	CHAN_WO RK_VALID_ MIR		None [30:24]					

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A011C

Bits	7	6	5	4	3	2	1	0
SW Access		R						
HW Access				R'	W			
Name				WORI	< [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access				R'	W			
Name				WORK	[15:8]			
	-							
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
	-							
Bits	31	30	29	28	27	26	25	24
SW Access	R		None					
HW Access	W	None						
Name	CHAN_WO RK_VALID_ MIR		None [30:24]					

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0120

Bits	7	6	5	4	3	2	1	0
SW Access		R						
HW Access				R	iW			
Name				WOR	K [7:0]			
						1	_	
Bits	15	14	13	12	11	10	9	8
SW Access				!	R			
HW Access				R	iW			
Name				WOR	K [15:8]			
			_	_			_	_
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
			_	_			_	_
Bits	31	30	29	28	27	26	25	24
SW Access	R				None			
HW Access	W				None			
Name	CHAN_WO RK_VALID_ MIR				None [30:24]			

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0124

Bits	7	_						
	-	6	5	4	3	2	1	0
SW Access		R						
HW Access				R	W			
Name				WOR	K [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access				R	W			
Name		WORK [15:8]						
								_
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
						_		
Bits	31	30	29	28	27	26	25	24
SW Access	R				None			
HW Access	W				None			
Name	CHAN_WO RK_VALID_ MIR				None [30:24]			

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0128

Bits	7	6	5	4	3	2	1	0
SW Access		R						
HW Access				R	iW			
Name				WOR	K [7:0]			
						1	_	
Bits	15	14	13	12	11	10	9	8
SW Access				!	R			
HW Access				R	iW			
Name				WOR	K [15:8]			
			_	_			_	_
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
			_	_			_	_
Bits	31	30	29	28	27	26	25	24
SW Access	R				None			
HW Access	W				None			
Name	CHAN_WO RK_VALID_ MIR				None [30:24]			

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A012C

Bits	7	6	5	4	3	2	1	0
SW Access		R						
HW Access				F	RW			
Name				WOR	IK [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access					R			
HW Access		RW						
Name		WORK [15:8]						
						_		
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R				None			
HW Access	W				None			
Name	CHAN_WO RK_VALID_ MIR				None [30:24]			

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0130

Bits	7	6	5	4	3	2	1	0
SW Access		R						
HW Access				R	W			
Name					K [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access			•		1	1	•	•
HW Access				R	W			
Name				WOR	C [15:8]			
			_				_	
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R				None			
HW Access	W	None						
Name	CHAN_WO RK_VALID_ MIR		None [30:24]					

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0134

Bits	7	6	5	4	3	2	1	0
SW Access		R						
HW Access				R	iW			
Name				WOR	K [7:0]			
						1	_	
Bits	15	14	13	12	11	10	9	8
SW Access				!	R			
HW Access				R	iW			
Name				WOR	K [15:8]			
			_	_			_	_
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
			_	_			_	_
Bits	31	30	29	28	27	26	25	24
SW Access	R				None			
HW Access	W				None			
Name	CHAN_WO RK_VALID_ MIR				None [30:24]			

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A0138

Bits	7	6	5	4	3	2	1	0		
SW Access	Į.	R								
HW Access				R	W					
Name				WOR	K [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access				F	7					
HW Access		RW								
Name		WORK [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
				_		_	_			
Bits	31	30	29	28	27	26	25	24		
SW Access	R				None					
HW Access	W				None					
Name	CHAN_WO RK_VALID_ MIR		None [30:24]							

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel working data register Address: 0x403A013C

1	1		1	I	1	1	1	
Bits	7	6	5	4	3	2	1	0
SW Access				I	7			
HW Access				R	W			
Name				WOR	K [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				ſ	7			
HW Access		RW						
Name				WOR	C [15:8]			
								_
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R				None			
HW Access	W				None			
Name	CHAN_WO RK_VALID_ MIR				None [30:24]			

Bits	Name	Description
31	CHAN_WORK_VALID_MIR	mirror bit of corresponding bit in SAR_CHAN_WORK_VALID register Default Value: 0
15:0	WORK	SAR conversion working data of the channel. The data is written here right after sampling this channel.
		Default Value: Undefined

Channel result data register Address: 0x403A0180 Retention: Not Retained

		I			I		1	
Bits	7	6	5	4	3	2	1	0
SW Access				F	3			
HW Access				٧	٧			
Name				RESU	LT [7:0]			
								_
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access		W						
Name				RESUL	T [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W	W	None				
Name	CHAN_							

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A0184 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				ı	7			
HW Access				١	V			
Name				RESU	LT [7:0]			
	_							
Bits	15	14	13	12	11	10	9	8
SW Access				ı	7			
HW Access		W						
Name		RESULT [15:8]						
		1	T		1		ı	
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W	W	None				
Name	CHAN_ RESULT_ VALID_MIR	RANGE_ INTR_MIR	SATURATE _INTR_MIR	None [28:24]				

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A0188 Retention: Not Retained

	_	_	_	_	_	_		
Bits	7	6	5	4	3	2	1	0
SW Access				F	3			
HW Access				٧	٧			
Name				RESU	LT [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				ı	3			
HW Access		W						
Name				RESUL	.T [15:8]			
	_							
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
	_							
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W W None							
Name	CHAN_ RANGE_ SATURATE None [28:24] RESULT_ VALID_MIR INTR_MIR INTR_MIR							

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A018C Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				ı	7			
HW Access				١	V			
Name				RESU	LT [7:0]			
	_							
Bits	15	14	13	12	11	10	9	8
SW Access				ı	7			
HW Access		W						
Name		RESULT [15:8]						
		1	T		1		ı	
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W	W	None				
Name	CHAN_ RESULT_ VALID_MIR	RANGE_ INTR_MIR	SATURATE _INTR_MIR	None [28:24]				

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A0190 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				F	3			•
HW Access				V	V			
Name				RESU	_T [7:0]			
						1		
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access		W						
Name				RESUL	T [15:8]			
	•							
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			•
HW Access				No	ne			
Name				None	[23:16]			
	T 21		1 00 1					
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W	W	•		None		
Name	CHAN_ RESULT_ VALID_MIR	RANGE_ INTR_MIR	SATURATE _INTR_MIR	None [28:24]				

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A0194 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				F	3			
HW Access				V	V			
Name				RESUI	LT [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access		W						
Name				RESUL	T [15:8]			
	•							
Bits	23	22	21	20	19	18	17	16
SW Access		•		No	ne	•	•	•
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W	W			None		
Name	CHAN_ RESULT_ VALID_MIR	RANGE_ INTR_MIR	SATURATE _INTR_MIR			None [28:24]		

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled.

Channel result data register Address: 0x403A0198 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				F	3			
HW Access				٧	V			
Name				RESU	LT [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access		W						
Name		RESULT [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R		•	None	•	
HW Access	W	W W None						
Name	CHAN_ RESULT_ VALID_MĪR	RANGE_ INTR_MIR	SATURATE _INTR_MIR			None [28:24]		

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled.

Channel result data register Address: 0x403A019C Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				F	3			
HW Access				V	V			
Name				RESUI	LT [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access		W						
Name				RESUL	T [15:8]			
	•							
Bits	23	22	21	20	19	18	17	16
SW Access		•		No	ne	•	•	•
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W	W			None		
Name	CHAN_ RESULT_ VALID_MIR	RANGE_ INTR_MIR	SATURATE _INTR_MIR			None [28:24]		

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A01A0 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				F	3			
HW Access				V	V			
Name				RESUL	_T [7:0]			
								_
Bits	15	14	13	12	11	10	9	8
SW Access				F	7			
HW Access				V	V			
Name		RESULT [15:8]						
	1	T	1			1	•	1
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
	1	T	1			•	T	1
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W W None						
Name	CHAN_ RESULT_ VALID_MIR	RANGE_ INTR_MIR	SATURATE _INTR_MIR	None [28:24]				

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A01A4 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				ı	7			
HW Access				١	V			
Name				RESU	LT [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				ı	7			
HW Access		W						
Name				RESUL	T [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W W None							
Name	CHAN_ RESULT_ VALID_MIR	RANGE_ INTR_MIR	SATURATE _INTR_MIR	None [28:24]				

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A01A8 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				F	3			
HW Access				١	V			
Name				RESU	_T [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access				V	V			
Name				RESUL	T [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R	R None				
HW Access	W W None							
Name	CHAN_ RESULT_ VALID_MIR	RANGE_ INTR_MIR	SATURATE None [28:24] _INTR_MIR					

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A01AC Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				ı	7			
HW Access				١	V			
Name				RESU	LT [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				ı	7			
HW Access				١	V			
Name				RESUL	T [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one	•		
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R		•	None	•	
HW Access	W	W W None						
Name	CHAN_ RESULT_ VALID_MĪR	RANGE_ INTR_MIR	SATURATE _INTR_MIR			None [28:24]		

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A01B0 Retention: Not Retained

	_	_	_	_	_	_		
Bits	7	6	5	4	3	2	1	0
SW Access				F	3			
HW Access				٧	٧			
Name				RESU	LT [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				ı	3			
HW Access				٧	٧			
Name				RESUL	.T [15:8]			
	_							
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
	_							
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W W None						
Name	CHAN_ RESULT_ VALID_MIR	RANGE_ INTR_MIR	SATURATE _INTR_MIR			None [28:24]		

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A01B4 Retention: Not Retained

	_	_	_	_	_	_		
Bits	7	6	5	4	3	2	1	0
SW Access				F	3			
HW Access				٧	٧			
Name				RESU	LT [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				ı	3			
HW Access				٧	٧			
Name				RESUL	.T [15:8]			
	_							
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
	_							
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W W None						
Name	CHAN_ RESULT_ VALID_MIR	RANGE_ INTR_MIR	SATURATE _INTR_MIR			None [28:24]		

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A01B8 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				ı	7			
HW Access				١	V			
Name				RESU	LT [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				ı	7			
HW Access				1	V			
Name				RESUL	T [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W W None						
Name	CHAN RANGE SATURATE None [28:24] RESULT VALID_MIR INTR_MIR							

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

Channel result data register Address: 0x403A01BC Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				F	3			
HW Access				V	V			
Name				RESU	_T [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access				V	V			
Name				RESUL	T [15:8]			
	•							
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R			None		
HW Access	W	W W None						
Name	CHAN							

Bits	Name	Description
31	CHAN_RESULT_VALID_MIR	Mirror bit of corresponding bit in SAR_CHAN_RESULT_VALID register. Default Value: 0
30	RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_RANGE_INTR register. Default Value: 0
29	SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_SATURATE_INTR register. Default Value: 0
15:0	RESULT	SAR conversion result of the channel. The data is copied here from the WORK field after all enabled channels in this scan have been sampled. Default Value: Undefined

SAR_CHAN_WORK_VALID

Channel working data register valid bits

Address: 0x403A0200 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	R										
HW Access		RW									
Name		CHAN_WORK_VALID [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access				F	7						
HW Access				R	W						
Name				CHAN_WORK	K_VALID [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		•	•	No	one	•	•	•			
HW Access				No	one						
Name				None	[31:24]						

Bits Name 15:0 CHAN_WORK_VALID Description

If set the corresponding WORK data is valid, i.e. was already sampled during the current scan.

SAR_CHAN_RESULT_VALID

Channel result data register valid bits

Address: 0x403A0204 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	R										
HW Access		RW									
Name		CHAN_RESULT_VALID [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access				F	3						
HW Access				R	W						
Name				CHAN_RESUL	T_VALID [15:8]					
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
							_				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

BitsNameDescription15:0CHAN_RESULT_VALIDIf set the corn

If set the corresponding RESULT data is valid, i.e. was sampled during the last scan.

SAR_STATUS

Current status of internal SAR registers (mostly for debug) Address: 0x403A0208

	_	T	ı	1	1	1	1	1			
Bits	7	6	5	4	3	2	1	0			
SW Access		None			R						
HW Access		None		W							
Name		None [7:5]		CUR_CHAN [4:0]							
Bits	15	14	13	13 12 11 10 9 8							
SW Access		None									
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access		•		No	one	•	1	•			
HW Access				No	one						
Name				None	[23:16]						
							1				
Bits	31	30	29	28	27	26	25	24			
SW Access	R	R			No	one					
HW Access	W	W			No	one					
Name	BUSY	SW_VREF_ NEG			None	[29:24]					

Bits	Name	Description
31	BUSY	If high then the SAR is busy with a conversion. This bit is always high when CONTINUOUS is set. Firmware should wait for this bit to be low before putting the SAR in power down.
		Default Value: 0
30	SW_VREF_NEG	The current switch status, including DSI and sequencer controls, of the switch in the SARADC
		that shorts NEG with VREF input (see NEG_SEL).
		Default Value: 0
4:0	CUR_CHAN	Current channel being sampled (channel 16 indicates the injection channel), only valid if BUSY. Default Value: 0

SAR_AVG_STAT

Current averaging status (for debug) Address: 0x403A020C

Bits	7	6	5	4	3	2	1	0			
SW Access	R										
HW Access		W									
Name		CUR_AVG_ACCU [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		W									
Name				CUR_AVG_/	ACCU [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access		No	one				1 7				
HW Access		No	one		W						
Name		None	[23:20]		CUR_AVG_ACCU [19:16]						
Dita	21	20	20	20	07	26	05	04			
Bits	31	30	29	28	27	26	25	24			
SW Access				F	₹						
HW Access				V	V						
Name				CUR_AVG_	CNT [31:24]						

Bits	Name	Description
31:24	CUR_AVG_CNT	The current value of the averaging counter. Note that the value shown is updated after the sampling time and therefore runs ahead of the accumulator update. Default Value: 0
19:0	CUR_AVG_ACCU	The current value of the averaging accumulator. Default Value: 0

SAR_INTR

Interrupt request register Address: 0x403A0210 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C		
HW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S		
Name	INJ_ COLLISION_ INTR	INJ_ RANGE_ INTR	INJ_ SATURATE_ INTR	INJ_EOC_ INTR	DSI_ COLLISION_ INTR	FW_ COLLISION_ INTR	OVER FLOW_ INTR	EOS_INTR		
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access		None								
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access					ne					
HW Access					one					
Name				None	[31:24]					

Bits	Name	Description
7	INJ_COLLISION_INTR	Injection Collision Interrupt: hardware sets this interrupt when the injection trigger signal is asserted (INJ_START_EN==1 && INJ_TAILGATING==0) while the SAR is BUSY. Raising this interrupt is delayed to when the sampling of the injection channel has been completed, i.e. not when the preceeding scan with which this trigger collided is completed. When this interrupt is set it implies that the injection channel was sampled later than was intended. Write with '1' to clear bit. Default Value: 0
6	IN L DANCE INTO	
6	INJ_RANGE_INTR	Injection Range detect Interrupt: hardware sets this interrupt if the injection conversion result (after averaging) met the condition specified by the SAR_RANGE registers. Write with '1' to clear bit.
		Default Value: 0
5	INJ_SATURATE_INTR	Injection Saturation Interrupt: hardware sets this interrupt if an injection conversion result (before averaging) is either 0x000 or 0xFFF (for 12-bit resolution), this is an indication that the ADC likely saturated. Write with '1' to clear bit.
		Default Value: 0
4	INJ_EOC_INTR	Injection End of Conversion Interrupt: hardware sets this interrupt after completing the conversion for the injection channel (irrespective of if tailgating was used). Write with '1' to clear bit.
		Default Value: 0
3	DSI_COLLISION_INTR	DSI Collision Interrupt: hardware sets this interrupt when the DSI trigger signal is asserted while the SAR is BUSY. Raising this interrupt is delayed to when the scan caused by the DSI trigger has been completed, i.e. not when the preceeding scan with which this trigger collided is completed. When this interrupt is set it implies that the channels were sampled later than was intended (jitter). Write with '1' to clear bit. Default Value: 0

SAR_INTR (Continued)

2	FW_COLLISION_INTR	Firmware Collision Interrupt: hardware sets this interrupt when FW_TRIGGER is asserted while the SAR is BUSY. Raising this interrupt is delayed to when the scan caused by the FW_TRIGGER has been completed, i.e. not when the preceeding scan with which this trigger collided is completed. When this interrupt is set it implies that the channels were sampled later than was intended (jitter). Write with '1' to clear bit.
		Default Value: 0
1	OVERFLOW_INTR	Overflow Interrupt: hardware sets this interrupt when it sets a new EOS_INTR while that bit was not yet cleared by the firmware. Write with '1' to clear bit.
		Default Value: 0
0	EOS_INTR	End Of Scan Interrupt: hardware sets this interrupt after completing a scan of all the enabled channels. Write with '1' to clear bit. Default Value: 0

SAR_INTR_SET

Interrupt set request register Address: 0x403A0214 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S			
HW Access	Α	Α	Α	Α	Α	Α	Α	Α			
Name	INJ_ COLLISION_ SET	INJ_ RANGE_ SET	INJ SATURĀTE_ SET	INJ_EOC_ SET	DSI_ COLLISION_ SET	FW_ COLLISION_ SET	OVER FLOW_SET	EOS_SET			
Bits	15	15 14 13 12 11 10 9 8									
SW Access		None									
HW Access		None									
Name				None	[15:8]						
	T		1		1	T	T				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
7	INJ_COLLISION_SET	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
6	INJ_RANGE_SET	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
5	INJ_SATURATE_SET	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
4	INJ_EOC_SET	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
3	DSI_COLLISION_SET	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
2	FW_COLLISION_SET	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
1	OVERFLOW_SET	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	EOS_SET	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SAR_INTR_MASK

Interrupt mask register Address: 0x403A0218 Retention: Retained

	1		1	•	T		•	1			
Bits	\7	6	5	4	3	2	1	0			
SW Access	RW	RW	RW	RW	RW	RW	RW	RW			
HW Access	R	R	R	R	R	R	R	R			
Name	INJ_ COLLISION_ MASK	INJ_ RANGE_ MASK	INJ_ SATURĀTE_ MASK	INJ_EOC_ MASK	DSI_ COLLISION_ MASK	FW_ COLLISION_ MASK	OVER FLOW_ MASK	EOS_MASK			
Bits	15	15 14 13 12 11 10 9 8									
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access					ne		••				
HW Access				No	ne						
Name				None	[23:16]						
	1										
Bits	31	30	29	28	27	26	25	24			
SW Access		•		No	ne						
HW Access				No	ne						
Name				None	[31:24]						

Bits	Name	Description
7	INJ_COLLISION_MASK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
6	INJ_RANGE_MASK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
5	INJ_SATURATE_MASK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
4	INJ_EOC_MASK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
3	DSI_COLLISION_MASK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	FW_COLLISION_MASK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	OVERFLOW_MASK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	EOS_MASK	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SAR_INTR_MASKED

Interrupt masked request register Address: 0x403A021C

Retention: Not Retained

Name

Bits	7	6	5	4	3	2	1	0		
SW Access	R	R	R	R	R	R	R	R		
HW Access	W	W	W	W	W	W	W	W		
Name	INJ_ COLLISION_ MASKED	INJ_ RANGE_ MASKED	INJ SATURĀTE_ MASKED	INJ_EOC_ MASKED	DSI_ COLLISION_ MASKED	FW_ COLLISION_ MASKED	OVER FLOW_ MASKED	EOS MASKED		
Bits	15 14 13 12 11 10 9 8									
SW Access		None								
HW Access		None								
Name				None	[15:8]					
	1				- 10					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name		None [23:16]								
Bits	31	30	29	28	27	26	25	24		
SW Access	None									
HW Access		None								
	1									

None [31:24]

Bits	Name	Description
7	INJ_COLLISION_MASKED	Logical and of corresponding request and mask bits. Default Value: 0
6	INJ_RANGE_MASKED	Logical and of corresponding request and mask bits. Default Value: 0
5	INJ_SATURATE_MASKED	Logical and of corresponding request and mask bits. Default Value: 0
4	INJ_EOC_MASKED	Logical and of corresponding request and mask bits. Default Value: 0
3	DSI_COLLISION_MASKED	Logical and of corresponding request and mask bits. Default Value: 0
2	FW_COLLISION_MASKED	Logical and of corresponding request and mask bits. Default Value: 0
1	OVERFLOW_MASKED	Logical and of corresponding request and mask bits. Default Value: 0
0	EOS_MASKED	Logical and of corresponding request and mask bits. Default Value: 0

$SAR_SATURATE_INTR$

Saturate interrupt request register

Address: 0x403A0220 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RW1C									
HW Access	RW1S									
Name	SATURATE_INTR [7:0]									
Bits	15	14	13	12	11	10	9	8		
SW Access	RW1C									
HW Access		RW1S								
Name				SATURATE	_INTR [15:8]					
	_		_	_			_			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access		None								
Name		None [23:16]								
	<u> </u>									
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access	None									
Name	None [31:24]									

Bits Name 15:0 SATURATE_INTR

Description

Saturate Interrupt: hardware sets this interrupt for each channel if a conversion result (before averaging) of that channel is either 0x000 or 0xFFF (for 12-bit resolution), this is an indication that the ADC likely saturated. Write with '1' to clear bit.

SAR_SATURATE_INTR_SET

Saturate interrupt set request register

Address: 0x403A0224 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RW1S									
HW Access	A									
Name	SATURATE_SET [7:0]									
Bits	15	14	13	12	11	10	9	8		
SW Access	RW1S									
HW Access	A									
Name		SATURATE_SET [15:8]								
	_		_				_			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access		None								
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access	None									
Name	None [31:24]									

Bits Name Description

SATURATE_SET

15:0

Write with '1' to set corresponding bit in interrupt request register.

$SAR_SATURATE_INTR_MASK$

Saturate interrupt mask register Address: 0x403A0228

Address: 0x403A0228 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RW									
HW Access	R									
Name	SATURATE_MASK [7:0]									
Bits	15	14	13	12	11	10	9	8		
SW Access	RW									
HW Access		R								
Name				SATURATE_	MASK [15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
	·									
Bits	31	30	29	28	27	26	25	24		
SW Access	None									
HW Access	None									
Name	None [31:24]									

Bits Name 15:0 SATURATE_MASK Description

Mask bit for corresponding bit in interrupt request register.

$SAR_SATURATE_INTR_MASKED$

Saturate interrupt masked request register

Address: 0x403A022C Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access		R						
HW Access				V	V			
Name				SATURATE_N	MASKED [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access		W						
Name		SATURATE_MASKED [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access		None						
Name				None	[31:24]			

Bits Name Description ${\tt SATURATE_MASKED}$

15:0

Logical and of corresponding request and mask bits.

SAR_RANGE_INTR

Range detect interrupt request register

Address: 0x403A0230 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		RW1C							
HW Access				RW	/1S				
Name				RANGE_	INTR [7:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access		RW1C							
HW Access		RW1S							
Name		RANGE_INTR [15:8]							
	_								
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access		None							
Name				None	[31:24]				

Bits Name RANGE_INTR 15:0

Description

Range detect Interrupt: hardware sets this interrupt for each channel if the conversion result (after averaging) of that channel met the condition specified by the SAR_RANGE registers. Write with '1' to clear bit.

SAR_RANGE_INTR_SET

Range detect interrupt set request register Address: 0x403A0234

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		RW1S							
HW Access				,	4				
Name				RANGE_	SET [7:0]				
	_					_	_		
Bits	15	14	13	12	11	10	9	8	
SW Access		RW1S							
HW Access		A							
Name		RANGE_SET [15:8]							
	_								
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits Name Description

RANGE_SET

15:0

Write with '1' to set corresponding bit in interrupt request register.

SAR_RANGE_INTR_MASK

Range detect interrupt mask register Address: 0x403A0238

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access				F	3			
Name				RANGE_N	//ASK [7:0]			
	_							
Bits	15	14	13	12	11	10	9	8
SW Access				R	W			
HW Access		R						
Name		RANGE_MASK [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name				None	[31:24]			

Bits Name 15:0 ${\tt RANGE_MASK}$ Description

Mask bit for corresponding bit in interrupt request register.

$SAR_RANGE_INTR_MASKED$

Range interrupt masked request register Address: 0x403A023C

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		R							
HW Access				١	V				
Name				RANGE_M/	ASKED [7:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access		R							
HW Access		W							
Name		RANGE_MASKED [15:8]							
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 15:0 ${\tt RANGE_MASKED}$ Description

Logical and of corresponding request and mask bits.

SAR_INTR_CAUSE

Interrupt cause register Address: 0x403A0240 Retention: Not Retained

	T	1	Т	Т	1	1	1	ı
Bits	7	6	5	4	3	2	1	0
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	INJ_ COLLISION_ MASKED_ MIR	INJ_ RANGE_ MASKED_ MIR	INJ_ SATURĀTE_ MASKED_ MIR	INJ_EOC_ MASKED_ MIR	DSI_ COLLISION_ MASKED_ MIR	FW_ COLLISION_ MASKED_ MIR	OVER FLOW_ MASKED_ MIR	EOS_ MASKED_ MIR
Bits	15	14	13	12	11	10	9	8
SW Access		l		No	one	l	l	
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access	20					10	17	10
					one			
HW Access				No	one			
Name				None	[23:16]			
D.:								
Bits	31	30	29	28	27	26	25	24
SW Access	R	R	None					
HW Access	W	W	None					
Name	RANGE_ MASKED_ RED	SATURATE _MASKED_ RED			None	[29:24]		

Bits	Name	Description
31	RANGE_MASKED_RED	Reduction OR of all SAR_RANGE_INTR_MASKED bits. Default Value: 0
30	SATURATE_MASKED_RED	Reduction OR of all SAR_SATURATION_INTR_MASKED bits. Default Value: 0
7	INJ_COLLISION_MASKED_MIR	Mirror copy of corresponding bit in SAR_INTR_MASKED. Default Value: 0
6	INJ_RANGE_MASKED_MIR	Mirror copy of corresponding bit in SAR_INTR_MASKED. Default Value: 0
5	INJ_SATURATE_MASKED_MIR	Mirror copy of corresponding bit in SAR_INTR_MASKED. Default Value: 0
4	INJ_EOC_MASKED_MIR	Mirror copy of corresponding bit in SAR_INTR_MASKED. Default Value: 0
3	DSI_COLLISION_MASKED_MIR	Mirror copy of corresponding bit in SAR_INTR_MASKED. Default Value: 0
2	FW_COLLISION_MASKED_MIR	Mirror copy of corresponding bit in SAR_INTR_MASKED. Default Value: 0

SAR_INTR_CAUSE (Continued)

1 OVERFLOW_MASKED_MIR Mirror copy of corresponding bit in SAR_INTR_MASKED.

Default Value: 0

0 EOS_MASKED_MIR Mirror copy of corresponding bit in SAR_INTR_MASKED.

SAR_INJ_CHAN_CONFIG

Injection channel configuration register Address: 0x403A0280

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None		RW		None	RW		
HW Access	None		R		None	R		
Name	None	INJ_	PORT_ADDR	[6:4]	None	IN	J_PIN_ADDR [2	2:0]
Bits	15	14	13	12	11	10	9	8
SW Assess	Ma		D\A/			DW	DW	DW

Bits	15	14	13	12	11	10	9	8
SW Access	None		RW		None	RW	RW	RW
HW Access	None		R		None	R	R	R
Name	None [15:14]		INJ_SAMPLI [13	E_TIME_SEL :12]	None	INJ_AVG_ EN	INJ_RESO LUTION	INJ_DIFF ERENTIAL_ EN

Bits	23	22	21	20	19	18	17	16
SW Access		None						
HW Access		None						
Name	None [23:16]							

Bits	31	30	29	28	27	26	25	24
SW Access	RW1S	RW	None					
HW Access	RW1C	R	None					
Name	INJ_ START_EN	INJ_TAIL GATING	None [29:24]					

Bits	Name	Description
31	INJ_START_EN	Set by firmware to enable the injection channel. If INJ_TAILGATING is not set this bit also functions as trigger for this channel. Cleared by hardware after this channel has been sampled (i.e. this channel is always one shot even if CONTINUOUS is set). Also cleared if the SAR is disabled.
		Default Value: 0
30	INJ_TAILGATING	Injection channel tailgating.
		 0: no tailgating for this channel, SAR is immediately triggered when the INJ_START_EN bit is set.
		- 1: injection channel tailgating. The addressed pin is sampled after the next trigger and after all
		enabled channels have been scanned.
		Default Value: 0
13:12	INJ_SAMPLE_TIME_SEL	Injection sample time select: select which of the 4 global sample times to use for this channel. Default Value: 0
10	INJ_AVG_EN	Averaging enable for this channel. If set the AVG_CNT and AVG_SHIFT settings are used for sampling the addressed pin(s).
		Default Value: 0

SAR_INJ_CHAN_CONFIG (continued)

9	INJ_RESOLUTION	Resolution for this channel. Default Value: 0
		0x0: 12B:
		12-bit resolution is used for this channel.
		0x1: SUBRES:
		The resolution specified by SUB_RESOLUTION in the SAR_SAMPLE_CTRL register is used for this channel.
8	INJ_DIFFERENTIAL_EN	Differential enable for this channel.
		 0: The voltage on the addressed pin is measured (Single-ended) and the resulting value is stored in the corresponding data register.
		 1: The differential voltage on the addressed pin pair is measured and the resulting value is stored in the corresponding data register. (INJ_PIN_ADDR[0] is ignored).
		Default Value: 0
6:4	INJ_PORT_ADDR	Address of the port that contains the pin to be sampled by this channel. Default Value: 0
		0x0: SARMUX:
		SARMUX pins. 0x1: CTB0:
		CTB0
		0x2: CTB1:
		CTB1
		0x3: CTB2:
		CTB2
		0x4: CTB3:
		CTB3
		0x6: AROUTE_VIRT:
		AROUTE virtual port
		0x7: SARMUX_VIRT:
		SARMUX virtual port
2:0	INJ_PIN_ADDR	Address of the pin to be sampled by this injection channel. If differential is enabled then PIN_ADDR[0] is ignored and considered to be 0, i.e. PIN_ADDR points to the even pin of a pin pair.
		Default Value: 0

SAR_INJ_RESULT

Injection channel result register Address: 0x403A0290

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access	•	R						
HW Access		W						
Name		INJ_RESULT [7:0]						
Bits	15	14	13	12	11	10	9	8
SW Access		R						
HW Access		W						
Name		INJ_RESULT [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access	25		21			10	17	10
				No				
HW Access				No	ne			
Name			·	None [23:16]			

Bits	31	30	29	28	27	26	25	24
SW Access	R	R	R	R	None			
HW Access	W	W	W	W	None			
Name	INJ_EOC_ INTR_MIR	INJ_ RANGE_ INTR_MIR	INJ_ SATURATE_ INTR_MIR	INJ_ COLLISION_ INTR_MIR	None [27:24]			

Bits	Name	Description
31	IINJ_EOC_INTR_MIR	Mirror bit of corresponding bit in SAR_INTR register. Default Value: 0
30	INJ_RANGE_INTR_MIR	Mirror bit of corresponding bit in SAR_INTR register. Default Value: 0
29	INJ_SATURATE_INTR_MIR	Mirror bit of corresponding bit in SAR_INTR register. Default Value: 0
28	INJ_COLLISION_INTR_MIR	Mirror bit of corresponding bit in SAR_INTR register. Default Value: 0
15:0	INJ_RESULT	SAR conversion result of the channel. Default Value: Undefined

SAR_MUX_SWITCH0

SARMUX Firmware switch controls

Address: 0x403A0300 Retention: Retained

		1	П					
Bits	7	6	5	4	3	2	1	0
SW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S
HW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
Name	MUX_FW_ P7_VPLUS	MUX_FW_ P6_VPLUS	MUX_FW_ P5_VPLUS	MUX_FW_ P4_VPLUS	MUX_FW_ P3_VPLUS	MUX_FW_ P2_VPLUS	MUX_FW_ P1_VPLUS	MUX_FW_ P0_VPLUS
		T	T					
Bits	15	14	13	12	11	10	9	8
SW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S
HW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
Name	MUX_FW_ P7_VMINUS	MUX_FW_ P6_VMINUS	MUX_FW_ P5_VMINUS	MUX_FW_ P4_VMINUS	MUX_FW_ P3_VMINUS	MUX_FW_ P2_VMINUS	MUX_FW_ P1_VMINUS	MUX_FW_ P0_VMINUS
Bits	23	22	21	20	19	18	17	16
SW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S
HW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
Name	MUX_FW_ SARBUS1_ VPLUS	MUX_FW_ SARBUS0_ VPLUS	MUX_FW_ AMUXBUS B_VMINUS	MUX_FW_ AMUXBUS A_VMINUS	MUX_FW_ AMUXBUS B_VPLUS	MUX_FW_ AMUXBUS A_VPLUS	MUX_FW_ TEMP_ VPLUS	MUX_FW_ VSSA_ VMINUS
Bits	31	30	29	28	27	26	25	24
SW Access	No	ne	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S
HW Access	No	ne	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
Name	None	[31:30]	MUX_FW_ P7_CORE IO3	MUX_FW_ P6_CORE IO2	MUX_FW_ P5_CORE IO1	MUX_FW_ P4_CORE IO0	MUX_FW_ SARBUS1_ VMINUS	MUX_FW_ SARBUS0_ VMINUS

Bits	Name	Description
29	MUX_FW_P7_COREIO3	Firmware control: 0=open, 1=close switch between P7 and coreio3 signal. Write with '1' to set bit.
		Default Value: 0
28	MUX_FW_P6_COREIO	Firmware control: 0=open, 1=close switch between P6 and coreio2 signal. Write with '1' to set bit.
		Default Value: 0
27	MUX_FW_P5_COREIO1	Firmware control: 0=open, 1=close switch between P5 and coreio1 signal. Write with '1' to set bit.
		Default Value: 0
26	MUX_FW_P4_COREIO0	Firmware control: 0=open, 1=close switch between P4 and coreio0 signal. Write with '1' to set bit.
		Default Value: 0
25	MUX_FW_SARBUS1_VMINUS	Firmware control: 0=open, 1=close switch between sarbus1 and vminus signal. Write with '1' to set bit.
		Default Value: 0

SAR_MUX_SWITCH0 (Continued)

24	MUX_FW_SARBUS0_VMINUS	Firmware control: 0=open, 1=close switch between sarbus0 and vminus signal. Write with '1' to set bit. Default Value: 0
23	MUX_FW_SARBUS1_VPLUS	Firmware control: 0=open, 1=close switch between sarbus1 and vplus signal. Write with '1' to set bit. Default Value: 0
22	MUX_FW_SARBUS0_VPLUS	Firmware control: 0=open, 1=close switch between sarbus0 and vplus signal. Write with '1' to set bit.
21	MUX_FW_AMUXBUSB_VMINUS	Default Value: 0 Firmware control: 0=open, 1=close switch between amuxbusb and vminus signal. Write with '1' to set bit. Default Value: 0
20	MUX_FW_AMUXBUSA_VMINUS	Firmware control: 0=open, 1=close switch between amuxbusa and vminus signal. Write with '1' to set bit.
19	MUX_FW_AMUXBUSB_VPLUS	Default Value: 0 Firmware control: 0=open, 1=close switch between amuxbusb and vplus signal. Write with '1' to set bit.
18	MUX_FW_AMUXBUSA_VPLUS	Default Value: 0 Firmware control: 0=open, 1=close switch between amuxbusa and vplus signal. Write with '1' to set bit.
		Default Value: 0
17	MUX_FW_TEMP_VPLUS	Firmware control: 0=open, 1=close switch between temperature sensor and vplus signal, also powers on the temperature sensor. Write with '1' to set bit. Default Value: 0
16	MUX_FW_VSSA_VMINUS	Firmware control: 0=open, 1=close switch between vssa_kelvin and vminus signal. Write with '1' to set bit. Default Value: 0
15	MUX_FW_P7_VMINUS	Firmware control: 0=open, 1=close switch between pin P7 and vminus signal. Write with '1' to set bit.
		Default Value: 0
14	MUX_FW_P6_VMINUS	Firmware control: 0=open, 1=close switch between pin P6 and vminus signal. Write with '1' to set bit.
		Default Value: 0
13	MUX_FW_P5_VMINUS	Firmware control: 0=open, 1=close switch between pin P5 and vminus signal. Write with '1' to set bit. Default Value: 0
12	MUX_FW_P4_VMINUS	Firmware control: 0=open, 1=close switch between pin P4 and vminus signal. Write with '1' to set bit.
11	MUX_FW_P3_VMINUS	Default Value: 0 Firmware control: 0=open, 1=close switch between pin P3 and vminus signal. Write with '1' to set bit.
		Default Value: 0
10	MUX_FW_P2_VMINUS	Firmware control: 0=open, 1=close switch between pin P2 and vminus signal. Write with '1' to set bit. Default Value: 0
9	MUX_FW_P1_VMINUS	Firmware control: 0=open, 1=close switch between pin P1 and vminus signal. Write with '1' to set bit.
		Default Value: 0
8	MUX_FW_P0_VMINUS	Firmware control: 0=open, 1=close switch between pin P0 and vminus signal. Write with '1' to set bit.
_	MIN EW BY VEHIC	Default Value: 0
7	MUX_FW_P7_VPLUS	Firmware control: 0=open, 1=close switch between pin P7 and vplus signal. Write with '1' to set bit. Default Value: 0
6	MUX_FW_P6_VPLUS	Firmware control: 0=open, 1=close switch between pin P6 and vplus signal. Write with '1' to set bit. Default Value: 0

SAR_MUX_SWITCH0 (Continued)

5	MUX_FW_P5_VPLUS	Firmware control: 0=open, 1=close switch between pin P5 and vplus signal. Write with '1' to set bit. Default Value: 0
4	MUX_FW_P4_VPLUS	Firmware control: 0=open, 1=close switch between pin P4 and vplus signal. Write with '1' to set bit.
		Default Value: 0
3	MUX_FW_P3_VPLUS	Firmware control: 0=open, 1=close switch between pin P3 and vplus signal. Write with '1' to set bit.
		Default Value: 0
2	MUX_FW_P2_VPLUS	Firmware control: 0=open, 1=close switch between pin P2 and vplus signal. Write with '1' to set bit.
		Default Value: 0
1	MUX_FW_P1_VPLUS	Firmware control: 0=open, 1=close switch between pin P1 and vplus signal. Write with '1' to set bit.
		Default Value: 0
0	MUX_FW_P0_VPLUS	Firmware control: 0=open, 1=close switch between pin P0 and vplus signal. Write with '1' to set bit.
		Default Value: 0

$SAR_MUX_SWITCH_CLEAR0$

SARMUX Firmware switch control clear

Address: 0x403A0304 Retention: Retained

				ı				1
Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
HW Access	Α	Α	Α	Α	Α	Α	Α	Α
Name	MUX_FW_ P7_VPLUS	MUX_FW_ P6_VPLUS	MUX_FW_ P5_VPLUS	MUX_FW_ P4_VPLUS	MUX_FW_ P3_VPLUS	MUX_FW_ P2_VPLUS	MUX_FW_ P1_VPLUS	MUX_FW_ P0_VPLUS
	_							
Bits	15	14	13	12	11	10	9	8
SW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
HW Access	А	Α	Α	Α	Α	Α	Α	Α
Name	MUX_FW_ P7_VMINUS	MUX_FW_ P6_VMINUS	MUX_FW_ P5_VMINUS	MUX_FW_ P4_VMINUS	MUX_FW_ P3_VMINUS	MUX_FW_ P2_VMINUS	MUX_FW_ P1_VMINUS	MUX_FW_ P0_VMINUS
		•	•					
Bits	23	22	21	20	19	18	17	16
Bits SW Access	23 RW1C	22 RW1C	21 RW1C	20 RW1C	19 RW1C	18 RW1C	17 RW1C	16 RW1C
SW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
SW Access HW Access	RW1C A MUX_FW_ SARBUS1_	RW1C A MUX_FW_ SARBUS0_	RW1C A MUX_FW AMUXBUS	RW1C A MUX_FW AMUXBUS	RW1C A MUX_FW AMUXBUS	RW1C A MUX_FW AMUXBUS	RW1C A MUX_FW_ TEMP_	RW1C A MUX_FW_ VSSA_
SW Access HW Access	RW1C A MUX_FW_ SARBUS1_	RW1C A MUX_FW_ SARBUS0_	RW1C A MUX_FW AMUXBUS	RW1C A MUX_FW AMUXBUS	RW1C A MUX_FW AMUXBUS	RW1C A MUX_FW AMUXBUS	RW1C A MUX_FW_ TEMP_	RW1C A MUX_FW_ VSSA_
SW Access HW Access Name	RW1C A MUX_FW_ SARBUS1_ VPLUS	RW1C A MUX_FW_ SARBUSO_ VPLUS 30	RW1C A MUX FW AMUXBUS B_VMINUS	RW1C A MUX_FW AMUXBUS A_VMINUS	RW1C A MUX FW AMUXBUS B_VPLUS	RW1C A MUX FW AMUXBUS A_VPLUS	RW1C A MUX_FW_ TEMP_ VPLUS	RW1C A MUX_FW_ VSSA_ VMINUS
SW Access HW Access Name	RW1C A MUX_FW_ SARBUS1_ VPLUS 31	RW1C A MUX_FW_ SARBUSO_ VPLUS 30	RW1C A MUX_FW AMUXBUS B_VMINUS	RW1C A MUX_FW AMUXBUS A_VMINUS	RW1C A MUX_FW_ AMUXBUS B_VPLUS	RW1C A MUX_FW_ AMUXBUS A_VPLUS	RW1C A MUX_FW_ TEMP_ VPLUS	RW1C A MUX_FW_ VSSA_ VMINUS

Bits	Name	Description
29	MUX_FW_P7_COREIO3	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
28	MUX_FW_P6_COREIO	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
27	MUX_FW_P5_COREIO1	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
26	MUX_FW_P4_COREIO0	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
25	MUX_FW_SARBUS1_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
24	MUX_FW_SARBUS0_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
23	MUX_FW_SARBUS1_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
22	MUX_FW_SARBUS0_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
21	MUX_FW_AMUXBUSB_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0

SAR_MUX_SWITCH_CLEAR0 (Continued)

20	MUX_FW_AMUXBUSA_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
19	MUX_FW_AMUXBUSB_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
18	MUX_FW_AMUXBUSA_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
17	MUX_FW_TEMP_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
16	MUX_FW_VSSA_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
15	MUX_FW_P7_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
14	MUX_FW_P6_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
13	MUX_FW_P5_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
12	MUX_FW_P4_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
11	MUX_FW_P3_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
10	MUX_FW_P2_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
9	MUX_FW_P1_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
8	MUX_FW_P0_VMINUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
7	MUX_FW_P7_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
6	MUX_FW_P6_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
5	MUX_FW_P5_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
4	MUX_FW_P4_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
3	MUX_FW_P3_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
2	MUX_FW_P2_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
1	MUX_FW_P1_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0
0	MUX_FW_P0_VPLUS	Write '1' to clear corresponding bit in MUX_SWITCH0. Default Value: 0

SAR_MUX_SWITCH1

SARMUX Firmware switch controls

Address: 0x403A0308 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None				RW1S	RW1S	RW1S	RW1S
HW Access		No	one		RW1C	RW1C	RW1C	RW1C
Name		None [7:4]				MUX_FW_ ADFT0_ SARBUS0	MUX_FW_ P5_DFT_ INM	MUX_FW_ P4_DFT_ INP
Bits	15	14	13	12	11	10	9	8
SW Access				No	one	l		I.
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access			I.	No	one	<u> </u>		<u> </u>
HW Access				No	one			
Name				None	[23:16]			
	1							
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
3	MUX_FW_ADFT1_SARBUS1	Firmware control: 0=open, 1=close switch between adft1 signal and sarbus1 signal. Write with '1' to set bit.
		Default Value: 0
2	MUX_FW_ADFT0_SARBUS0	Firmware control: 0=open, 1=close switch between adft0 signal and sarbus0 signal. Write with '1' to set bit.
		Default Value: 0
1	MUX_FW_P5_DFT_INM	Firmware control: 0=open, 1=close switch between P5 pin and dft_inm signal. Write with '1' to set bit.
		Default Value: 0
0	MUX_FW_P4_DFT_INP	Firmware control: 0=open, 1=close switch between P4 pin and dft_inp signal. Write with '1' to set bit.
		Default Value: 0

SAR_MUX_SWITCH_CLEAR1

SARMUX Firmware switch control clear

Address: 0x403A030C Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		N	one	•	RW1C	RW1C	RW1C	RW1C
HW Access		Ne	one		Α	Α	Α	А
Name		None	e [7:4]		MUX_FW_ ADFT1_ SARBUS1	MUX_FW_ ADFT0_ SARBUS0	MUX_FW_ P5_DFT_ INM	MUX_FW_ P4_DFT_ INP
Bits	15	15 14 13 12				10	9	8
SW Access		None						
HW Access		None						
Name		None [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access			II.	No	one			I.
HW Access				No	one			
Name				None	[23:16]			
	1		ı		ı	I	I	ı
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access	None							
Name				None	[31:24]			

Bits	Name	Description
3	MUX_FW_ADFT1_SARBUS1	Write '1' to clear corresponding bit in MUX_SWITCH1. Default Value: 0
2	MUX_FW_ADFT0_SARBUS0	Write '1' to clear corresponding bit in MUX_SWITCH1. Default Value: 0
1	MUX_FW_P5_DFT_INM	Write '1' to clear corresponding bit in MUX_SWITCH1. Default Value: 0
0	MUX_FW_P4_DFT_INP	Write '1' to clear corresponding bit in MUX_SWITCH1. Default Value: 0

$SAR_MUX_SWITCH_HW_CTRL$

SARMUX switch hardware control

Address: 0x403A0340 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW	RW	RW	RW	RW	RW	RW
HW Access	R	R	R	R	R	R	R	R
Name	MUX_HW_ CTRL_P7	MUX_HW_ CTRL_P6	MUX_HW_ CTRL_P5	MUX_HW_ CTRL_P4	MUX_HW_ CTRL_P3	MUX_HW_ CTRL_P2	MUX_HW_ CTRL_P1	MUX_HW_ CTRL_P0

Bits	15	14	13	12	11	10	9	8
SW Access		None						
HW Access		None						
Name	None [15:8]							

Bits	23	22	21	20	19	18	17	16
SW Access	RW	RW	None		RW	RW	RW	RW
HW Access	R	R	None		R	R	R	R
Name	MUX_HW_ CTRL_SAR BUS1	MUX_HW_ CTRL_SAR BUS0	None [21:20]		MUX_HW_ CTRL_AMU XBUSB	MUX_HW_ CTRL_AMU XBUSA	MUX_HW_ CTRL_TEMP	MUX_HW_ CTRL_VSSA

Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access		None						
Name	None [31:24]							

Bits	Name	Description
23	MUX_HW_CTRL_SARBUS1	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for sarbus1 switches. Default Value: 0
22	MUX_HW_CTRL_SARBUS0	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for sarbus0 switches. Default Value: 0
19	MUX_HW_CTRL_AMUXB USB	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for amuxbusb switches. Default Value: 0
18	MUX_HW_CTRL_AMUXB USA	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for amuxbusa switches. Default Value: 0
17	MUX_HW_CTRL_TEMP	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for temp switch. Default Value: 0
16	MUX_HW_CTRL_VSSA	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for vssa switch. Default Value: 0

SAR_MUX_SWITCH_HW_CTRL (Continued)

7	MUX_HW_CTRL_P7	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for pin P7 switches. Default Value: 0
		Default Value: 0
6	MUX_HW_CTRL_P6	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for pin P6 switches.
		Default Value: 0
5	MUX_HW_CTRL_P5	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for pin P5 switches.
		Default Value: 0
4	MUX_HW_CTRL_P4	Hardware control: $0=$ only firmware control, $1=$ hardware control masked by firmware setting for pin P4 switches.
		Default Value: 0
3	MUX_HW_CTRL_P3	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for pin P3 switches.
		Default Value: 0
2	MUX_HW_CTRL_P2	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for pin P2 switches.
		Default Value: 0
1	MUX_HW_CTRL_P1	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for pin P1 switches.
		Default Value: 0
0	MUX_HW_CTRL_P0	Hardware control: 0=only firmware control, 1=hardware control masked by firmware setting for pin P0 switches.
		Default Value: 0

SAR_MUX_SWITCH_STATUS

SARMUX switch status Address: 0x403A0348 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	MUX_FW_ P7_VPLUS	MUX_FW P6_VPLUS	MUX_FW_ P5_VPLUS	MUX_FW_ P4_VPLUS	MUX_FW_ P3_VPLUS	MUX_FW P2_VPLUS	MUX_FW_ P1_VPLUS	MUX_FW_ P0_VPLUS
Bits	15	14	13	12	11	10	9	8
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	MUX_FW_ P7_VMINUS	MUX_FW_ P6_VMINUS	MUX_FW_ P5_VMINUS	MUX_FW_ P4_VMINUS	MUX_FW_ P3_VMINUS	MUX_FW_ P2_VMINUS	MUX_FW_ P1_VMINUS	MUX_FW_ P0_VMINUS
Bits	23	22	21	20	19	18	17	16
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	MUX_FW_ SARBUS1_ VPLUS	MUX_FW_ SARBUS0_ VPLUS	MUX_FW_ AMUXBUS B_VMINUS	MUX_FW_ AMUXBUS A_VMINUS	MUX_FW_ AMUXBUS B_VPLUS	MUX_FW_ AMUXBUS A_VPLUS	MUX_FW_ TEMP_ VPLUS	MUX_FW_ VSSA_ VMINUS
		T	T				T	
Bits	31	30	29	28	27	26	25	24
SW Access	None						R	R
HW Access	None						W	W
Name	None [31:26]					MUX_FW_ SARBUS1_ VMINUS	MUX_FW_ SARBUSO_ VMINUS	

Bits	Name	Description
25	MUX_FW_SARBUS1_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
24	MUX_FW_SARBUS0_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
23	MUX_FW_SARBUS1_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
22	MUX_FW_SARBUS0_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
21	MUX_FW_AMUXBUSB_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
20	MUX_FW_AMUXBUSA_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
19	MUX_FW_AMUXBUSB_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
18	MUX_FW_AMUXBUSA_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
17	MUX_FW_TEMP_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
16	MUX_FW_VSSA_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0

SAR_MUX_SWITCH_STATUS (Continued)

15	MUX_FW_P7_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
14	MUX_FW_P6_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
13	MUX_FW_P5_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
12	MUX_FW_P4_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
11	MUX_FW_P3_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
10	MUX_FW_P2_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
9	MUX_FW_P1_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
8	MUX_FW_P0_VMINUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
7	MUX_FW_P7_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
6	MUX_FW_P6_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
5	MUX_FW_P5_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
4	MUX_FW_P4_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
3	MUX_FW_P3_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
2	MUX_FW_P2_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
1	MUX_FW_P1_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0
0	MUX_FW_P0_VPLUS	Switch status of corresponding bit in MUX_SWITCH0. Default Value: 0

SAR_PUMP_CTRL

Switch pump control Address: 0x403A0380 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None								
HW Access				None				R		
Name				None [7:1]				CLOCK_SEL		
Bits	15	14	13	12	11	10	9	8		
	15	14	13			10	9	•		
SW Access				No	one					
HW Access		None								
Name				None	[15:8]					
		Г	1	1			Т	1		
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
	.	T	1	T			T	1		
Bits	31	30	29	28	27	26	25	24		
SW Access	RW				None					
HW Access	R		None							
Name	ENABLED				None [30:24]					

Bits	Name	Description
31	ENABLED	0=disabled: pump output is VDDA_PUMP, 1=enabled: pump output is boosted. Default Value: 0
0	CLOCK_SEL	Clock select: 0=external clock, 1=internal clock (deprecated). Default Value: 0

SAR_ANA_TRIM

Analog trim register Address: 0x403A0F00 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne	RW	RW			
HW Access		No	ne		R		R	
Name		None	: [7:4]		TRIMUNIT	(CAP_TRIM [2:0]]
			ı	1			1	
Bits	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name		None [31:24]						

Bits	Name	Description
3	TRIMUNIT	Attenuation cap trimming.
		Default Value: 0
2:0	CAP_TRIM	Attenuation cap trimming.
		Default Value: 0

$SAR_WOUNDING$

SAR wounding register Address: 0x403A0F04 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	None						RW1S		
HW Access			No	one			F	R	
Name			None	e [7:2]			WOUND_RE	SOLUTION 0]	
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one	1			
HW Access		None							
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one	II.	-		
HW Access				No	one				
Name				None	[23:16]				
			T		T	Т			
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access	None								
Name				None	[31:24]				

Bits Name

1:0 WOUND_RESOLUTION

Description

Maximum SAR resolution allowed.

Default Value: 0 **0x0: 12BIT:**

unwounded: up to full 12-bit SAR resolution allowed

0x1: 10BIT:

wounded: max resolution up to 10-bit SAR resolution allowed

0x2: 8BIT:

wounded: only 8-bit SAR resolution allowed

0x3: 8BIT_TOO:

wounded: only 8-bit SAR resolution allowed

SERIAL COMMUNICATION BLOCK (SCB) REGISTERS

This section discusses the SCB registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 17. REGISTER DETAILS

Register Name	Address
SCB0_CTRL	0x40080000
SCB0_STATUS	0x40080004
SCB0_SPI_CTRL	0x40080020
SCB0_SPI_STATUS	0x40080024
SCB0_UART_CTRL	0x40080040
SCB0_UART_TX_CTRL	0x40080044
SCB0_UART_RX_CTRL	0x40080048
SCB0_UART_RX_STATUS	0x4008004C
SCB0_UART_FLOW_CTRL	0x40080050
SCB0_I2C_CTRL	0x40080060
SCB0_I2C_STATUS	0x40080064
SCB0_I2C_M_CMD	0x40080068
SCB0_I2C_S_CMD	0x4008006C
SCB0_I2C_CFG	0x40080070
SCB0_TX_CTRL	0x40080200
SCB0_TX_FIFO_CTRL	0x40080204
SCB0_TX_FIFO_STATUS	0x40080208
SCB0_TX_FIFO_WR	0x40080240
SCB0_RX_CTRL	0x40080300
SCB0_RX_FIFO_CTRL	0x40080304
SCB0_RX_FIFO_STATUS	0x40080308
SCB0_RX_MATCH	0x40080310
SCB0_RX_FIFO_RD	0x40080340
SCB0_RX_FIFO_RD_SILENT	0x40080344
SCB0_EZ_DATA0	0x40080400
SCB0_EZ_DATA1	0x40080404
SCB0_EZ_DATA2	0x40080408
SCB0_EZ_DATA3	0x4008040C
SCB0_EZ_DATA4	0x40080410
SCB0_EZ_DATA5	0x40080414
SCB0_EZ_DATA6	0x40080418
SCB0_EZ_DATA7	0x4008041C
SCB0_EZ_DATA8	0x40080420
SCB0_EZ_DATA9	0x40080424
SCB0_EZ_DATA10	0x40080428
SCB0_EZ_DATA11	0x4008042C
SCB0_EZ_DATA12	0x40080430
SCB0_EZ_DATA13	0x40080434

Table 17. REGISTER DETAILS (continued)

Register Name	Address
SCB0_EZ_DATA14	0x40080438
SCB0_EZ_DATA15	0x4008043C
SCB0_EZ_DATA16	0x40080440
SCB0_EZ_DATA17	0x40080444
SCB0_EZ_DATA18	0x40080448
SCB0_EZ_DATA19	0x4008044C
SCB0_EZ_DATA20	0x40080450
SCB0_EZ_DATA21	0x40080454
SCB0_EZ_DATA22	0x40080458
SCB0_EZ_DATA23	0x4008045C
SCB0_EZ_DATA24	0x40080460
SCB0_EZ_DATA25	0x40080464
SCB0_EZ_DATA26	0x40080468
SCB0_EZ_DATA27	0x4008046C
SCB0_EZ_DATA28	0x40080470
SCB0_EZ_DATA29	0x40080474
SCB0_EZ_DATA30	0x40080478
SCB0_EZ_DATA31	0x4008047C
SCB0_INTR_CAUSE	0x40080E00
SCB0_INTR_I2C_EC	0x40080E80
SCB0_INTR_I2C_EC_MASK	0x40080E88
SCB0_INTR_I2C_EC_MASKED	0x40080E8C
SCB0_INTR_SPI_EC	0x40080EC0
SCB0_INTR_SPI_EC_MASK	0x40080EC8
SCB0_INTR_SPI_EC_MASKED	0x40080ECC
SCB0_INTR_M	0x40080F00
SCB0_INTR_M_SET	0x40080F04
SCB0_INTR_M_MASK	0x40080F08
SCB0_INTR_M_MASKED	0x40080F0C
SCB0_INTR_S	0x40080F40
SCB0_INTR_S_SET	0x40080F44
SCB0_INTR_S_MASK	0x40080F48
SCB0_INTR_S_MASKED	0x40080F4C
SCB0_INTR_TX	0x40080F80
SCB0_INTR_TX_SET	0x40080F84
SCB0_INTR_TX_MASK	0x40080F88
SCB0_INTR_TX_MASKED	0x40080F8C
SCB0_INTR_RX	0x40080FC0
SCB0_INTR_RX_SET	0x40080FC4
SCB0_INTR_RX_MASK	0x40080FC8
SCB0_INTR_RX_MASKED	0x40080FCC
SCB1_CTRL	0x40090000

Table 17. REGISTER DETAILS (continued)

Register Name	Address
SCB1_STATUS	0x40090004
SCB1_SPI_CTRL	0x40090020
SCB1_SPI_STATUS	0x40090024
SCB1_UART_CTRL	0x40090040
SCB1_UART_TX_CTRL	0x40090044
SCB1_UART_RX_CTRL	0x40090048
SCB1_UART_RX_STATUS	0x4009004C
SCB1_UART_FLOW_CTRL	0x40090050
SCB1_I2C_CTRL	0x40090060
SCB1_I2C_STATUS	0x40090064
SCB1_I2C_M_CMD	0x40090068
SCB1_I2C_S_CMD	0x4009006C
SCB1_I2C_CFG	0x40090070
SCB1_TX_CTRL	0x40090200
SCB1_TX_FIFO_CTRL	0x40090204
SCB1_TX_FIFO_STATUS	0x40090208
SCB1_TX_FIFO_WR	0x40090240
SCB1_RX_CTRL	0x40090300
SCB1_RX_FIFO_CTRL	0x40090304
SCB1_RX_FIFO_STATUS	0x40090308
SCB1_RX_MATCH	0x40090310
SCB1_RX_FIFO_RD	0x40090340
SCB1_RX_FIFO_RD_SILENT	0x40090344
SCB1_EZ_DATA0	0x40090400
SCB1_EZ_DATA1	0x40090404
SCB1_EZ_DATA2	0x40090408
SCB1_EZ_DATA3	0x4009040C
SCB1_EZ_DATA4	0x40090410
SCB1_EZ_DATA5	0x40090414
SCB1_EZ_DATA6	0x40090418
SCB1_EZ_DATA7	0x4009041C
SCB1_EZ_DATA8	0x40090420
SCB1_EZ_DATA9	0x40090424
SCB1_EZ_DATA10	0x40090428
SCB1_EZ_DATA11	0x4009042C
SCB1_EZ_DATA12	0x40090430
SCB1_EZ_DATA13	0x40090434
SCB1_EZ_DATA14	0x40090438
SCB1_EZ_DATA15	0x4009043C
SCB1_EZ_DATA16	0x40090440
SCB1_EZ_DATA17	0x40090444
SCB1_EZ_DATA18	0x40090448

Table 17. REGISTER DETAILS (continued)

Register Name	Address
SCB1_EZ_DATA19	0x4009044C
SCB1_EZ_DATA20	0x40090450
SCB1_EZ_DATA21	0x40090454
SCB1_EZ_DATA22	0x40090458
SCB1_EZ_DATA23	0x4009045C
SCB1_EZ_DATA24	0x40090460
SCB1_EZ_DATA25	0x40090464
SCB1_EZ_DATA26	0x40090468
SCB1_EZ_DATA27	0x4009046C
SCB1_EZ_DATA28	0x40090470
SCB1_EZ_DATA29	0x40090474
SCB1_EZ_DATA30	0x40090478
SCB1_EZ_DATA31	0x4009047C
SCB1_INTR_CAUSE	0x40090E00
SCB1_INTR_I2C_EC	0x40090E80
SCB1_INTR_I2C_EC_MASK	0x40090E88
SCB1_INTR_I2C_EC_MASKED	0x40090E8C
SCB1_INTR_SPI_EC	0x40090EC0
SCB1_INTR_SPI_EC_MASK	0x40090EC8
SCB1_INTR_SPI_EC_MASKED	0x40090ECC
SCB1_INTR_M	0x40090F00
SCB1_INTR_M_SET	0x40090F04
SCB1_INTR_M_MASK	0x40090F08
SCB1_INTR_M_MASKED	0x40090F0C
SCB1_INTR_S	0x40090F40
SCB1_INTR_S_SET	0x40090F44
SCB1_INTR_S_MASK	0x40090F48
SCB1_INTR_S_MASKED	0x40090F4C
SCB1_INTR_TX	0x40090F80
SCB1_INTR_TX_SET	0x40090F84
SCB1_INTR_TX_MASK	0x40090F88
SCB1_INTR_TX_MASKED	0x40090F8C
SCB1_INTR_RX	0x40090FC0
SCB1_INTR_RX_SET	0x40090FC4
SCB1_INTR_RX_MASK	0x40090FC8
SCB1_INTR_RX_MASKED	0x40090FCC
SCB2_CTRL	0x400A0000
SCB2_STATUS	0x400A0004
SCB2_SPI_CTRL	0x400A0020
SCB2_SPI_STATUS	0x400A0024
SCB2_UART_CTRL	0x400A0040
SCB2_UART_TX_CTRL	0x400A0044

Table 17. REGISTER DETAILS (continued)

Register Name	Address
SCB2_UART_RX_CTRL	0x400A0048
SCB2_UART_RX_STATUS	0x400A004C
SCB2_UART_FLOW_CTRL	0x400A0050
SCB2_I2C_CTRL	0x400A0060
SCB2_I2C_STATUS	0x400A0064
SCB2_I2C_M_CMD	0x400A0068
SCB2_I2C_S_CMD	0x400A006C
SCB2_I2C_CFG	0x400A0070
SCB2_TX_CTRL	0x400A0200
SCB2_TX_FIFO_CTRL	0x400A0204
SCB2_TX_FIFO_STATUS	0x400A0208
SCB2_TX_FIFO_WR	0x400A0240
SCB2_RX_CTRL	0x400A0300
SCB2_RX_FIFO_CTRL	0x400A0304
SCB2_RX_FIFO_STATUS	0x400A0308
SCB2_RX_MATCH	0x400A0310
SCB2_RX_FIFO_RD	0x400A0340
SCB2_RX_FIFO_RD_SILENT	0x400A0344
SCB2_EZ_DATA0	0x400A0400
SCB2_EZ_DATA1	0x400A0404
SCB2_EZ_DATA2	0x400A0408
SCB2_EZ_DATA3	0x400A040C
SCB2_EZ_DATA4	0x400A0410
SCB2_EZ_DATA5	0x400A0414
SCB2_EZ_DATA6	0x400A0418
SCB2_EZ_DATA7	0x400A041C
SCB2_EZ_DATA8	0x400A0420
SCB2_EZ_DATA9	0x400A0424
SCB2_EZ_DATA10	0x400A0428
SCB2_EZ_DATA11	0x400A042C
SCB2_EZ_DATA12	0x400A0430
SCB2_EZ_DATA13	0x400A0434
SCB2_EZ_DATA14	0x400A0438
SCB2_EZ_DATA15	0x400A043C
SCB2_EZ_DATA16	0x400A0440
SCB2_EZ_DATA17	0x400A0444
SCB2_EZ_DATA18	0x400A0448
SCB2_EZ_DATA19	0x400A044C
SCB2_EZ_DATA20	0x400A0450
SCB2_EZ_DATA21	0x400A0454
SCB2_EZ_DATA22	0x400A0458
SCB2_EZ_DATA23	0x400A045C

Table 17. REGISTER DETAILS (continued)

Register Name	Address
SCB2_EZ_DATA24	0x400A0460
SCB2_EZ_DATA25	0x400A0464
SCB2_EZ_DATA26	0x400A0468
SCB2_EZ_DATA27	0x400A046C
SCB2_EZ_DATA28	0x400A0470
SCB2_EZ_DATA29	0x400A0474
SCB2_EZ_DATA30	0x400A0478
SCB2_EZ_DATA31	0x400A047C
SCB2_INTR_CAUSE	0x400A0E00
SCB2_INTR_I2C_EC	0x400A0E80
SCB2_INTR_I2C_EC_MASK	0x400A0E88
SCB2_INTR_I2C_EC_MASKED	0x400A0E8C
SCB2_INTR_SPI_EC	0x400A0EC0
SCB2_INTR_SPI_EC_MASK	0x400A0EC8
SCB2_INTR_SPI_EC_MASKED	0x400A0ECC
SCB2_INTR_M	0x400A0F00
SCB2_INTR_M_SET	0x400A0F04
SCB2_INTR_M_MASK	0x400A0F08
SCB2_INTR_M_MASKED	0x400A0F0C
SCB2_INTR_S	0x400A0F40
SCB2_INTR_S_SET	0x400A0F44
SCB2_INTR_S_MASK	0x400A0F48
SCB2_INTR_S_MASKED	0x400A0F4C
SCB2_INTR_TX	0x400A0F80
SCB2_INTR_TX_SET	0x400A0F84
SCB2_INTR_TX_MASK	0x400A0F88
SCB2_INTR_TX_MASKED	0x400A0F8C
SCB2_INTR_RX	0x400A0FC0
SCB2_INTR_RX_SET	0x400A0FC4
SCB2_INTR_RX_MASK	0x400A0FC8
SCB2_INTR_RX_MASKED	0x400A0FCC

$SCB0_CTRL$

Generic Control Register Address: 0x40080000 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	None					R'	W	l	
HW Access		No	one		R				
Name		None	e [7:4]			OVS	[3:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access		No	one		RW	RW	RW	RW	
HW Access		None				R	R	R	
Name	None [15:12]				BYTE_ MODE	EZ_MODE	EC_OP_ MODE	EC_AM_ MODE	
			1	1	1	1	ı	ı	
Bits	23	22	21	20	19	18	17	16	
SW Access			No	one			RW	RW	
HW Access			No	one			R	R	
Name		None [23:18]					BLOCK	ADDR_ ACCEPT	
	1		1	1	1	T	T	T	
Bits	31	30	29	28	27	26	25	24	
SW Access	RW	None				RW			
HW Access	R	None				R			
Name	ENABLED			None [30:26]			MODE [25:24]		

Bits	Name	D	
31	ENABLED	S	

25:24

Description

SCB block is enabled ('1') or not ('0'). The proper order in which to initialize SCB is as follows:

- Program protocol specific information using SPI_CTRL, UART_CTRL (and UART_TX_CTRL and UART_RX_CTRL) or I2C_CTRL registers. This includes selection of a submode, master/slave functionality and transmitter/receiver functionality when applicable.
- Program generic transmitter (TX_CTRL) and receiver (RX_CTRL) information. This includes enabling of the transmitter and receiver functionality.
- Program transmitter FIFO (TX_FIFO_CTRL) and receiver FIFO (RX_FIFO_CTRL) information.
- Program CTRL register to enable SCB, select the specific operation mode and oversampling factor.

When this block is enabled, no control information should be changed. Changes should be made

AFTER disabling this block, e.g. to modify the operation mode (from I^2C to SPI) or to go from externally to internally clocked. The change takes effect after the block is re-enabled. Note that disabling the block will cause re-initialization of the design and associated state is lost (e.g. FIFO content).

Default Value: 0

MODE Default Value: 3

0x0: I2C: 0x1: SPI: 0x2: UART: 17 BLOCK

Only used in externally clocked mode. If the externally clocked logic and the internal CPU accesses to EZ memory coincide/collide, this bit determines whether the CPU access should block and result in bus wait states (BLOCK is '1') or not (BLOCK is '0'). IF BLOCK is 0 and the accesses collide, CPU read operations return 0xffff:ffff and CPU write operations are ignored. Colliding accesses are registered as interrupt causes: INTR_TX.BLOCKED and INTR_RX.BLOCKED.

Default Value: 0

16 ADDR_ACCEPT

Determines whether a received matching address is accepted in the RX FIFO ('1') or not ('0'). In I²C mode, this field is used to allow the slave to put the received slave address or general call address in the RX FIFO. Note that a received matching address is put in the RX FIFO when this bit is '1' for both I²C read and write transfers.

In multi-processor UART receiver mode, this field is used to allow the receiver to put the received address in the RX FIFO. Note: non-matching addresses are never put in the RX FIFO.

Default Value: 0

11 BYTE_MODE

Default Value: 0

10 EZ_MODE

Non EZ mode ('0') or EZ mode ('1').

In EZ mode, a meta protocol is applied to the serial interface protocol. This meta protocol adds meaning to the data frames transferred by the serial interface protocol: a data frame can represent a memory address, a write memory data element or a read memory data element. EZ mode is only used for synchronous serial interface protocols: SPI and I²C. In SPI mode, only Motorola submode (all Motorola modes: 0, 1, 2, 3) is supported and the transmitter should use continuous data frames; i.e. data frames not separated by slave deselection. This mode is only applicable to slave functionality. In EZ mode, the slave can read from and write to an addressable memory structure of 32 bytes. In EZ mode, data frames should 8-bit in size and should be transmitted and received with the Most Significant Bit (MSB) first.

In UART mode this field should be '0'.

Default Value: 0

9 EC OP MODE

This field specifies the clocking for the SCB block

'0': Internally clocked mode

'1': externally clocked mode

In internally clocked mode, the serial interface protocols run off the SCB clock. In externally clocked mode, the serial interface protocols run off the clock as provided by the serial interface.

Externally clocked operation mode is only used for synchronous serial interface protocols (SPI and I²C) in slave mode AND EZ mode. In SPI mode, only Motorola submode (all Motorola modes: 0, 1, 2, 3) is supported. The maximum SPI slave, EZ mode bitrate is 48 Mbps (transmission and IO delays outside the IP will degrade the effective bitrate).

In UART mode this field should be '0'.

Default Value: 0

8 EC_AM_MODE

This field specifies the clocking for the address matching (I²C) or slave selection detection logic (SPI) '0': Internally clocked mode

'1': Externally clocked mode

In internally clocked mode, the serial interface protocols run off the SCB clock. In externally clocked mode, the serial interface protocols run off the clock as provided by the serial interface.

The clocking for the rest of the logic is determined by CTRL.EC_OP_MODE.

Externally clocked mode is only used for synchronous serial interface protocols (SPI and I^2C) in slave mode. In SPI mode, only Motorola submode (all Motorola modes: 0, 1, 2, 3) is supported.

In UART mode this field should be '0'.

3:0 OVS

Serial interface bit period oversampling factor expressed in SCB clock cycles. Used for SPI and UART functionality. OVS + 1 SCB clock cycles constitute a single serial interface clock/bit cycle. This field is NOT used in externally clocked mode. If OVS is odd, the oversampling factor is even and the low and high phase of the interface clock period are the same. If OVS is even, the oversampling factor is odd and the low and high phase can differ by 1 SCB clock period.

In SPI master mode, the valid range is [3, 15]. At an SCB frequency of 48 MHz, the maximum SPI bit rate is 12 Mbps, assuming ideal (0 ns) IO cell and routing (chip and board) delay. The calculated maximum bit rate decreases, when realistic chip and routing delays are taken into account. The effective system bit rate is dependent on the external SPI slave that we communicate with. If the SPI output clock to SPI MISO input round trip delay is significant (multiple SPI output clock cycles), it may be necessary to increase OVS and/or to set SPI CTRL.LATE MISO SAMPLE to '1' to achieve the maximum possible system bit rate.

In SPI slave mode, the OVS field is NOT used. However, there is a frequency requirement for the SCB clock wrt. the SPI input clock (IF) on the interface to guarantee functional correct behavior. This requirement is expressed as a ratio: SCB clock/IF clock. The ratio is dependent on the setting of RX_CTRL.MEDIAN and the external SPI master's capability to support "late MISO sample" functionality (similar to our SPI master functionality represented by SPI CTRL.LATE MISO SAMPLE):

- MEDIAN is '0' and external SPI master has NO "late MISO sample functionality": SCB clock/IF clock \geq 6. At a SCB frequency of 48 MHz, the maximum bit rate is 8 Mbps.
- MEDIAN is '0' and external SPI master has "late MISO sample functionality": SCB clock/IF clock ≥ 3.
 At a SCB frequency of 48 MHz, the maximum bit rate is 16 Mbps.
- MEDIAN is '1' and external SPI master has NO "late MISO sample functionality": SCB clock/IF clock \geq 8. At a SCB frequency of 48 MHz, the maximum bit rate is 6 Mbps.
- MEDIAN is '1' and external SPI master has "late MISO sample functionality": SCB clock/IF clock ≥4.
 At a SCB frequency of 48 MHz, the maximum bit rate is 12 Mbps.

As discussed earlier, the calculated maximum bit rate decreases, when realistic chip and routing delays are taken into account. In UART standard submode (including LIN), the valid range is [7, 15]. In UART Smart-Card submode, the valid range is [7, 15].

In UART TX IrDA submode this field indirectly specifies the oversampling. The oversampling determines the interface clock/bit cycle and the width of the pulse. Only normal transmission mode is supported, the pulse is roughly 3/16 of the bit period (for all bit rates). There is only one valid OVS value:

- 0: 16 times oversampling

```
SCB clock frequency of 16*115.2 KHz for 115.2 Kbps. SCB clock frequency of 16*57.6 KHz for 57.6 Kbps. SCB clock frequency of 16*38.4 KHz for 38.4 Kbps. SCB clock frequency of 16*19.2 KHz for 19.2 Kbps. SCB clock frequency of 16*9.6 KHz for 9.6 Kbps. SCB clock frequency of 16*2.4 KHz for 2.4 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps. all other values are not used in normal mode.
```

In UART RX IrDA submode (1.2, 2.4, 9.6, 19.2, 38.4, 57.6 and 115.2 Kbps) this field indirectly specifies the oversampling. The oversampling determines the interface clock/bit cycle and the width of the pulse. In normal transmission mode, this pulse is roughly 3/16 of the bit period (for all bit rates). In low power transmission mode, this pulse is potentially smaller (down to 1.62 μ s typical and 1.41 μ s minimal) than 3/16 of the bit period (for < 115.2 Kbps bitrates). Pulse widths greater or equal than two SCB clock cycles are guaranteed to be detected by the receiver. Pulse widths less than two SCB clock cycles and greater or equal than one SCB clock cycle may be detected by the receiver. Pulse widths less than one SCB clock cycle will not be detected by the receiver. RX_CTRL.MEDIAN should be set to '1' for IrDA receiver functionality. The SCB clock (as provided by the programmable clock block) and the oversampling together determine the IrDA bitrate. Normal mode, OVS field values (with the required SCB clock frequency):

- 0: 16 times oversampling.

```
SCB clock frequency of 16*115.2 KHz for 115.2 Kbps. SCB clock frequency of 16*57.6 KHz for 57.6 Kbps. SCB clock frequency of 16*38.4 KHz for 38.4 Kbps. SCB clock frequency of 16*19.2 KHz for 19.2 Kbps. SCB clock frequency of 16*9.6 KHz for 9.6 Kbps. SCB clock frequency of 16*2.4 KHz for 2.4 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps.
```

- all other values are not used in normal mode.

Low power mode, OVS field values (with the required SCB clock frequency):

- 0: 16 times oversampling.
 - SCB clock frequency of 16*115.2 KHz for 115.2 Kbps.
- 1: 32 times oversampling.
 - SCB clock frequency of 32*57.6 KHz for 57.6 Kbps.
- 2: 48 times oversampling.
 - SCB clock frequency of 48*38.4 KHz for 38.4 Kbps.

SCB0_CTRL (Continued)

- 3: 96 times oversampling.SCB clock frequency of 96*19.2 KHz for 19.2 Kbps.
- 4: 192 times oversampling.
 SCB clock frequency of 192*9.6 KHz for 9.6 Kbps.

– 5: 768 times oversampling. SCB clock frequency of 768*2.4 KHz for 2.4 Kbps.

- 6: 1536 times oversampling.

SCB clock frequency of 1536*1.2 KHz for 1.2 Kbps.

- all other values are not used in low power mode.

SCB0_STATUS

Generic Status Register Address: 0x40080004 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None						R
HW Access		None					W	
Name		None [7:1]					EC_BUSY	
Bits	15	14	13	12	11	10	9	8
SW Access	None							
HW Access		None						
Name		None [15:8]						
	_							
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits Name
0 EC_BUSY

Description

Indicates whether the externally clocked logic is potentially accessing the EZ memory (this is only possible in EZ mode). This bit can be used by SW to determine whether it is safe to issue a SW access to the EZ memory (without bus wait states (a blocked SW access) or bus errors being generated). Note that the INTR_TX.BLOCKED and INTR_RX.BLOCKED interrupt causes are used to indicate whether a SW access was actually blocked by externally clocked logic.

Default Value: Undefined

SPI Control Register Address: 0x40080020 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	No	ne	RW	RW	RW	RW	RW	RW
HW Access	None		R	R	R	R	R	R
Name	None [7:6]		SCLK_CON- TINUOUS	LATE_MISO _SAMPLE	CPOL	СРНА	SELECT_ PRECEDE	CONTINU- OUS
	1	I	1	1	T		T	
Bits	15	14	13	12	11	10	9	8
SW Access		None				RW	RW	RW
HW Access		None				R	R	R
Name		None [15:12]				SSEL POLARITY2	SSEL POLARITY1	SSEL POLARITY0
		1	•	1				1
Bits	23	22	21	20	19	18	17	16
SW Access		None					RW	
HW Access		None					R	
Name	None [23:17]					LOOPBACK		
			_	1				
Bits	31	30	29	28	27	26	25	24
SW Access	RW	RW None F				RW F		W
HW Access	R	R None R					3	
Name	MASTER		None [30:28]		SLAVE SELECT [27:26] MODE			[25:24]

Bits	Name	Description
31	MASTER_MODE	Master ('1') or slave ('0') mode. In master mode, transmission will commence on availability of data frames in the TX FIFO. In slave mode, when selected and there is no data frame in the TX
		FIFO, the slave will transmit all '1's. In both master and slave modes, received data frames will be lost if the RX FIFO is full.
		Default Value: 0
27:26	SLAVE_SELECT	Selects one of the four outgoing SPI slave select signals:
		- 0: Slave 0, SPI_SELECT[0].
		- 1: Slave 1, SPI_SELECT[1].
		- 2: Slave 2, SPI_SELECT[2].
		- 3: Slave 3, SPI_SELECT[3].
		Only used in master mode. SCB block should be disabled when changes are made to this field. Default Value: 0
25:24	MODE	Submode of SPI operation (3: Reserved).
		Default Value: 3

0x0: SPI_MOTOROLA:

SPI Motorola submode. In master mode, when not transmitting data (Slave SELECT is inactive), SCLK is stable at CPOL. In slave mode, when not selected, SCLK is ignored; i.e. it can be either stable or clocking. In master mode, when there is no data to transmit (TX FIFO is empty), Slave SELECT is inactive.

0x1: SPI_TI:

MODE

SPI Texas Instruments submode. In master mode, when not transmitting data, SCLK is stable at '0'. In slave mode, when not selected, SCLK is ignored; i.e. it can be either stable or clocking. In master mode, when there is no data to transmit (TX FIFO is empty), Slave SELECT is inactive; i.e. no pulse is generated.

_	_	
		0x2: SPI NS:
		SPI National Semiconducturs submode. In master mode, when not transmitting data, SCLK is stable at '0'. In slave mode, when not selected, SCLK is ignored; i.e. it can be either stable or clocking. In master mode, when there is no data to transmit (TX FIFO is empty), Slave SELECT is inactive.
16	LOOPBACK	Local loopback control (does NOT affect the information on the pins). Only used in master mode. Not used in National Semiconductors submode. '0': No local loopback
		'1': the SPI master MISO line is connected to the SPI master MOSI line. In other words, in loop-back mode the SPI master receives on MISO what it transmits on MOSI. Default Value: 0
11	SSEL_POLARITY3	Slave select polarity. SSEL_POLARITY3 applies to the outgoing SPI slave select signal 3 (master mode). Default Value: 0
10	SSEL_POLARITY2	Slave select polarity. SSEL_POLARITY2 applies to the outgoing SPI slave select signal 2 (master mode).
		Default Value: 0
9	SSEL_POLARITY1	Slave select polarity. SSEL_POLARITY1 applies to the outgoing SPI slave select signal 1 (master mode). Default Value: 0
	COEL BOLABITY	
8	SSEL_POLARITY0	Slave select polarity. SSEL_POLARITY0 applies to the outgoing SPI slave select signal 0 (master mode) and to the incoming SPI slave select signal (slave mode). For Motorola and National Semiconductors submodes:
		'0': slave select is low/"0' active.
		'1': slave select is high/'1' active. For Texas Instruments submode:
		'0': high/"1' active precede/coincide pulse.
		'1': low/'0' active precede/coincide pulse.
		Default Value: 0
5	SCLK_CONTINUOUS	Only applicable in master mode.
		'0': SCLK is generated, when the SPI master is enabled and data is transmitted.
		'1': SCLK is generated, when the SPI master is enabled. This mode is useful for slave devices that use SCLK for functional operation other than just SPI functionality. Default Value: 0
4	LATE_MISO_SAMPLE	Changes the SCLK edge on which MISO is captured. Only used in master mode.
		When '0', the default applies (for Motorola as determined by CPOL and CPHA, for Texas Instruments on the falling edge of SCLK and for National Semiconductors on the rising edge of SCLK).
		When '1', the alternate clock edge is used (which comes half a SPI SCLK period later). Late sampling addresses the round trip delay associated with transmitting SCLK from the master to the slave and transmitting MISO from the slave to the master. Default Value: 0
3	CPOL	Indicates the clock polarity. Only used in SPI Motorola submode. This field, together with the CPHA field, indicates when MOSI data is driven and MISO data is captured:
		- CPOL is 0: SCLK is 0 when not transmitting data.
		- CPOL is 1: SCLK is 1 when not transmitting data.
		Default Value: 0
2	СРНА	Only applicable in SPI Motorola submode. Indicates the clock phase. This field, together with the CPOL field, indicates when MOSI data is driven and MISO data is captured:
		 Motorola mode 0. CPOL is 0, CPHA is 0: MOSI is driven on a falling edge of SCLK. MISO is captured on a rising edge of SCLK.
		 Motorola mode 1. CPOL is 0, CPHA is 1: MOSI is driven on a rising edge of SCLK. MISO is captured on a falling edge of SCLK.
		 Motorola mode 2. CPOL is 1, CPHA is 0: MOSI is driven on a rising edge of SCLK. MISO is captured on a falling edge of SCLK.
		 Motorola mode 3. CPOL is 1, CPHA is 1: MOSI is driven on a falling edge of SCLK. MISO is captured on a rising edge of SCLK.
		Default Value: 0

SCB0 SPI CTRL (Continued)

0

1 SELECT_PRECEDE Only used in SPI Texas Instruments' submode.

When '1', the data frame start indication is a pulse on the Slave SELECT line that precedes the

transfer of the first data frame bit.

When '0', the data frame start indication is a pulse on the Slave SELECT line that coincides with

the transfer of the first data frame bit.

Default Value: 0
CONTINUOUS Continuous SPI

Continuous SPI data transfers enabled ('1') or not ('0'). This field is used in master mode. In slave mode, both continuous and non-continuous SPI data transfers are supported independent of this

field.

When continuous transfers are enabled individual data frame transfers are not necessarily separated by slave deselection (as indicated by the level or pulse on the SELECT line): if the TX FIFO has multiple data frames, data frames are send out without slave deselection.

When continuous transfers are not enabled individual data frame transfers are always separated by slave deselection: independent of the availability of TX FIFO data frames, data frames are sent

out with slave deselection.

Default Value: 0

SCB0_SPI_STATUS

SPI Status Register Address: 0x40080024 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			No	one			R	R	
HW Access			No	one			W	W	
Name		None					SPI_EC_ BUSY	BUS_BUSY	
	T	T	T	1	ı	T	T	1	
Bits	15	14	13	12	11	10	9	8	
SW Access		R							
HW Access		W							
Name		CURR_EZ_ADDR [15:8]							
	1								
Bits	23	22	21	20	19	18	17	16	
SW Access		W CURR_EZ_ADDR [15:8] 8 22 21 20 19 18 17 16 R							
HW Access				\	V				
Name				BASE_EZ_A	ADDR [23:16]				
	1								
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	one				
Name				None	[31:24]				

Bits	Name	Description
23:16	BASE_EZ_ADDR	SPI base EZ address. Address as provided by a SPI write transfer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable, as clock domain synchronization is not performed in the design.
		Default Value: Undefined
15:8	CURR_EZ_ADDR	SPI current EZ address. Current address pointer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable (during an ongoing transfer when SPI_EC_BUSY is '1'), as clock domain synchronization is not performed in the design.
		Default Value: Undefined
1	SPI_EC_BUSY	Indicates whether the externally clocked logic is potentially accessing the EZ memory and/or updating BASE_ADDR or CURR_ADDR (this is only possible in EZ mode). This bit can be used by SW to determine whether BASE_ADDR and CURR_ADDR are reliable. Default Value: Undefined
0	BUS_BUSY	SPI bus is busy. The bus is considered busy ('1') during an ongoing transaction. For Motorola and National submodes, the busy bit is '1', when the slave selection (low active) is activated. For TI submode, the busy bit is '1' from the time the preceding/coinciding slave select (high active) is activated for the first transmitted data frame, till the last MOSI/MISO bit of the last data frame is transmitted. Default Value: Undefined

UART Control Register Address: 0x40080040 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		None									
HW Access				No	one						
Name				None	e [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access		23 22 21 20 19 18 17 None						RW			
HW Access				None				R			
Name				None [23:17]				LOOPBACK			
								•			
Bits	31	30	29	28	27	26	25	24			
SW Access		•	No	ne	•	•	F	RW			
HW Access			No	ne				R			

Bits Name Description

MODE

LOOPBACK

Name

25:24

16

Submode of UART operation (3: Reserved)

None [31:26]

Default Value: 3 **0x0: UART_STD:**

Standard UART submode.

0x1: UART_SMARTCARD:

SmartCard (ISO7816) submode. Support for negative acknowledgement (NACK) on the receiver side and retransmission on the transmitter side.

MODE [25:24]

0x2: UART IRDA:

Infrared Data Association (IrDA) submode. Return to Zero modulation scheme. In this mode,

the oversampling factor should be 16, that is OVS should be set to 15.

Local loopback control (does NOT affect the information on the pins).

0: Loopback is not enabled

1: UART_TX is connected to UART_RX. UART_RTS is connected to UART_CTS. This allows a SCB

UART transmitter to communicate with its receiver counterpart.

Default Value: 0

$SCB0_UART_TX_CTRL$

UART Transmitter Control Register Address: 0x40080044

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	No	ne	RW	RW	None		RW	
HW Access	No	ne	R	R	None		R	
Name	None	7:6]	PARITY_ ENABLED	PARITY	None	\$	STOP_BITS [2	:0]
Bits	15	14	13	12	11	10	9	8
SW Access	10	1.4	10	None		10		RW
HW Access	None							R
Name				None [15:9]			RETRY_ ON_NACK	
	1	T	_	T	ı	T	•	·
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits 8	Name RETRY_ON_NACK	Description When '1', a data frame is retransmitted when a negative acknowledgement is received. Only applicable to the SmartCard submode. Default Value: 0
5	PARITY_ENABLED	Parity generation enabled ('1') or not ('0'). Only applicable in standard UART submodes. In SmartCard submode, parity generation is always enabled through hardware. In IrDA submode, parity generation is always disabled through hardware. Default Value: 0
4	PARITY	Parity bit. When '0', the transmitter generates an even parity. When '1', the transmitter generates an odd parity. Only applicable in standard UART and SmartCard submodes. Default Value: 0
2:0	STOP_BITS	Stop bits. STOP_BITS + 1 is the duration of the stop period in terms of halve bit periods. Valid range is [1, 7]; i.e. a stop period should last at least one bit period. Default Value: 2

SCB0 UART RX CTRL

UART Receiver Control Register

Address: 0x40080048 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW	RW	RW	None		RW		
HW Access	None	R	R	R	None		R		
Name	None	POLARITY	PARITY_ ENABLED	PARITY	None	STOP_BITS [2:0]			
	T	1	T	T	T	T	T	ı	
Bits	15	14	13	12	11	10 9 8		8	
SW Access	No	ne	RW	RW	None	RW	RW	RW	

SW Access	No	ne	RW	RW	None	RW	RW	RW
HW Access	No	ne	R	R	None	R	R	R
Name	None [15:14]	SKIP_START	LIN_MODE	None	MP_MODE	DROP_ON_ FRAME_ ERROR	DROP_ON_ PARITY_ ERROR

Bits	23	22	21	20	19	18	17	16
SW Access	23 22 21 20 None None None [23:20]		RW					
HW Access		No	ne			F	3	
Name		None [23:20]			BREAK_WI	DTH [19:16]	

Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access				No	ne			
Name				None [31:24]			

Bits Name 19:16 BREAK_WIDTH

Description

Break width. BREAK_WIDTH + 1 is the minimum width in bit periods of a break. During a break the transmitted/received line value is '0'. This feature is useful for standard UART submode and LIN submode ("break field" detection). Once, the break is detected, the INTR_RX_BREAK_DETECT bit is set to '1'. Note that break detection precedes baud rate detection, which is used to synchronize/refine the receiver clock to the transmitter clock. As a result, break detection operates with an unsynchronized/unrefined receiver clock. Therefore, the receiver's definition of a bit period is imprecise and the setting of this field should take this imprecision into account. The LIN standard also accounts for this imprecision: a LIN start bit followed by 8 data bits allows for up to 9 consecutive '0' bit periods during regular transmission, whereas the LIN break detection should be at least 13 consecutive '0' bit periods. This provides for a margin of 4 bit periods. Therefore, the default value of this field is set to 10, representing a minimal break field with of 10+1 = 11 bit periods; a value in between the 9 consecutive bit periods of a regular transmission and the 13 consecutive bit periods of a break field. This provides for slight imprecisions of the receiver clock wrt. the transmitter clock. There should not be a need to program this field to any value other than its default value.

Default Value: 10

13	SKIP_START	Only applicable in standard UART submode. When '1', the receiver skips start bit detection for the first received data frame. Instead, it synchronizes on the first received data frame bit, which should be a '1'. This functionality is intended for wake up from DeepSleep when receiving a data frame. The transition from idle ('1') to START ('0') on the RX line is used to wake up the CPU. The transition detection (and the associated wake up functionality) is performed by the GPIO2 IP. The woken up CPU will enable the SCB's UART receiver functionality. Once enabled, it is assumed that the START bit is ongoing (the CPU wakeup and SCB enable time should be less than the START bit period). The SCB will synchronize to a '0' to '1' transition, which indicates the first data frame bit is received (first data frame bit should be '1'). After synchronization to the first data frame bit, the SCB will resume normal UART functionality: subsequent data frames will be synchronized on the receipt of a START bit. Default Value: 0
12	LIN_MODE	Only applicable in standard UART submode. When '1', the receiver performs break detection and baud rate detection on the incoming data. First, break detection counts the amount of bit periods that have a line value of '0'. BREAK_WIDTH specifies the minimum required amount of bit periods. Successful break detection sets the INTR_RX.BREAK_DETECT interrupt cause to '1'. Second, baud rate detection counts the amount of peripheral clock periods that are use to receive the synchronization byte (0x55; least significant bit first). The count is available through UART_RX_STATUS.BR_COUNTER. Successful baud rate detection sets the INTR_RX.BAUD_DETECT interrupt cause to '1' (BR_COUNTER is reliable). This functionality is used to synchronize/refine the receiver clock to the transmitter clock. The receiver software can use the BR_COUNTER value to set the right IP clock (from the programmable clock IP) to guarantee successful receipt of the first LIN data frame (Protected Identifier Field) after the synchronization byte. Default Value: 0
10	MP_MODE	Multi-processor mode. When '1', multi-processor mode is enabled. In this mode, RX_CTRL.DATA_WIDTH should indicate a 9-bit data frame. In multi-processor mode, the 9th received bit of a data frame separates addresses (bit is '1') from data (bit is '0'). A received address is matched with RX_MATCH.DATA and RX_MATCH.MASK. In the case of a match, sub-sequent received data are sent to the RX FIFO. In the case of NO match, subsequent received data are dropped. Default Value: 0
9	DROP_ON FRAME_ERROR	Behavior when an error is detected in a start or stop period. When '0', received data is sent to the RX FIFO. When '1', received data is dropped and lost. Default Value: 0
8	DROP_ON_ PARITY_ERROR	Behavior when a parity check fails. When '0', received data is sent to the RX FIFO. When '1', received data is dropped and lost. Only applicable in standard UART and SmartCard submodes (negatively acknowledged SmartCard data frames may be dropped with this field). Default Value: 0
6	POLARITY	Inverts incoming RX line signal. Inversion is after local loopback. This functionality is intended for IrDA receiver functionality. Default Value: 0
5	PARITY_ENABLED	Parity checking enabled ('1') or not ('0'). Only applicable in standard UART submode. In SmartCard submode, parity checking is always enabled through hardware. In IrDA submode, parity checking is always disabled through hardware. Default Value: 0
4	PARITY	Parity bit. When '0', the receiver expects an even parity. When '1', the receiver expects an odd parity. Only applicable in standard UART and SmartCard submodes. Default Value: 0
2:0	STOP_BITS	Stop bits. STOP_BITS + 1 is the duration of the stop period in terms of halve bit periods. Valid range is [1, 7]; i.e. a stop period should last at least one bit period. If STOP_BITS is '1', stop bits error detection is NOT performed. If STOP_BITS is in [2, 7], stop bits error detection is performed and the associated interrupt cause INTR_RX.FRAME_ERROR is set to '1' if an error is detected. In other words, the receiver supports data frames with a 1 bit period stop bit sequence, but requires at least 1.5 bit period stop bit sequences to detect errors. This limitation is due to possible transmitter and receiver clock skew that prevents the design from doing reliable stop bit detection for short (1 bit bit period) stop bit sequences. Note that in case of a stop bits error, the successive data frames may get lost as the receiver needs to resynchronize its start bit detection. The amount of lost data frames depends on both the amount of stop bits, the idle ('1') time between data frames and the data frame value. Default Value: 2

$SCB0_UART_RX_STATUS$

UART Receiver Status Register

Address: 0x4008004C Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				ſ	3	II.		•	
HW Access				V	V				
Name				BR_COUN	NTER [7:0]				
Bits	15	14	13	12	11	10	9	8	
	13	14	13	12	"				
SW Access		None R							
HW Access		No	one		W				
Name		None	[15:12]		BR_COUNTER [11:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		•	•	No	ne	•	•	•	
HW Access				No	one				
Name				None	[31:24]				

Bits Name 11:0 BR_COUNTER

Description

Amount of peripheral clock periods that constitute the transmission of a 0x55 data frame (sent least significant bit first) as determined by the receiver. BR_COUNTER / 8 is the amount of peripheral clock periods that constitute a bit period. This field has valid data when INTR_RX.BAUD_DETECT is set to '1'.

SCB0_UART_FLOW_CTRL

UART Flow Control Register Address: 0x40080050

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		No	one		RW				
HW Access		None				R			
Name		None [7:4]				TRIGGER_LEVEL [3:0]			
1				•					
Bits	15	14	13	12	11	10	9	8	
SW Access		•	•	No	ne	•	•		
HW Access	None								
Name	None [15:8]								

Bits	23	22	21	20	19	18	17	16
SW Access	None							RW
HW Access	None							R
Name	None [23:17]							RTS_ POLARITY

Bits	31	30	29	28	27	26	25	24
SW Access		RW	RW					
HW Access				R	R			
Name	None [31:26]							CTS_ POLARITY

Bits	Name	Description
25	CTS_ENABLED	Enable use of CTS input signal by the UART transmitter:
	_	'0': Disabled. The UART transmitter ignores the CTS input signal and transmits when a data frame is available for transmission in the TX FIFO or the TX shift register.
		'1': Enabled. The UART transmitter uses CTS input signal to qualify the transmission of data. It transmits when CTS input signal is active and a data frame is available for transmission in the TX FIFO or the TX shift register.
		If UART_CTRL.LOOPBACK is '1', the CTS input signal is driven by the RTS output signal locally in SCB (both signals are subjected to signal polarity changes are indicated by RTS_POLARITY and CTS_POLARITY).
		Default Value: 0
24	CTS_POLARITY	Polarity of the CTS input signal
		'0': CTS is active low;
		'1': CTS is active high;
		Default Value: 0
16	RTS_POLARITY	Polarity of the RTS output signal:
		'0': RTS is active low;
		'1': RTS is active high;
		During SCB reset (Hibernate system power mode), RTS output signal is '1'. This represents an inactive state assuming an active low polarity.
		Default Value: 0
3:0	TRIGGER_LEVEL	Trigger level. When the receiver FIFO has less entries than the amount of this field, a Ready To Send (RTS) output signal is activated. By setting this field to "0", flow control is effectively disabled (may be useful for debug purposes). Default Value: 0
		Delault value. 0

SCB0_I2C_CTRL

I²C Control Register Address: 0x40080060 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		R	W		RW			
HW Access		F	٦		R			
Name		LOW_PHAS	E_OVS [7:4]		HIGH_PHASE_OVS [3:0]			
Bits	15	14	13	12	11	10	9	8
CW A	D\A/	DW	DW	DW	D\4/	NI	DW	D\A/

Bits	15	14	13	12	11	10	9	8
SW Access	RW	RW	RW	RW	RW	None	RW	RW
HW Access	R	R	R	R	R	None	R	R
Name	S_NOT_ READY_ DATA_NACK	S_NOT_ READY_ ADDR_ NACK	S_READY_ DATA_ACK	S_READY_ ADDR_ACK	S_ GENERAL_ IGNORE	None	M_NOT_ READY_ DATA_NACK	M_READY_ DATA_ACK
Dita	00	00	0.4		40	40	4-7	40

Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							R
Name	None [23:17]							LOOPBACK

Bits	31	30	29	28	27	26	25	24
SW Access	RW	RW	None					
HW Access	R	R	None					
Name	MASTER_ MODE	SLAVE_ MODE	None [29:24]					

Bits	Name	Description
31	MASTER_MODE	Master mode enabled ('1') or not ('0'). Note that both master and slave modes can be enabled at the same time. This allows the IP to address itself. Default Value: 0
30	SLAVE_MODE	Slave mode enabled ('1') or not ('0'). Default Value: 0
16	LOOPBACK	Local loopback control (does NOT affect the information on the pins). Only applicable in master/slave mode. When '0', no loopback When '1', loopback is enabled internally in the peripheral, and as a result unaffected by other I ² C devices. This allows a SCB I ² C peripheral to address itself. Default Value: 0

15	S_NOT_READY_	Only used when:
	DATA_NACK	- non EZ mode
		Functionality is as follows:
		- 1: a received data element byte the slave is immediately NACK'd when the receiver FIFO is full.
		O: clock stretching is performed (till the receiver FIFO is no longer full). Default Value: 1.
	O NOT DEADY	Default Value: 1
14	S_NOT_READY_ ADDR_NACK	This field is used during an address match or general call address in internally clocked mode Only used when:
		 EC_AM_MODE is '0', EC_OP_MODE is '0', S_GENERAL_IGNORE is '0] and non EZ mode. Functionality is as follows:
		 1: a received (matching) slave address is immediately NACK'd when the receiver FIFO is full.
		 0: clock stretching is performed (till the receiver FIFO is no longer full).
		For externally clocked logic (EC_AM is '1') on an address match or general call address (and S_GENERAL_IGNORE is '0'). Only used when (NOT used when EC_AM is '1' and EC_OP is '1' and address match and EZ mode):
		- EC_AM is '1' and EC_OP is '0'.
		 EC_AM is '1' and general call address match. EC_AM is '1' and non EZ mode. Functionality is as follows:
		<u>-</u>
		 1: a received (matching or general) slave address is always immediately NACK'd. There are two possibilities:
		1). the SCB clock is available (in Active system power mode) and it handles the rest of the current transfer. In this case the $\rm I^2C$ master will not observe the NACK.
		2).SCB clock is not present (in DeepSleep system power mode). In this case the I ² C master will observe the NACK and may retry the transfer in the future (which gives the internally clocked logic the time to wake up from DeepSleep system power mode).
		 - 0: clock stretching is performed (till the SCB clock is available). The logic will handle the ongoing transfer as soon as the clock is enabled.
		Default Value: 1
13	S_READY_ DATA_ACK	When '1', a received data element by the slave is immediately ACK'd when the receiver FIFO is not full. In EZ mode, this field should be set to '1'. Default Value: 1
12	S_READY_ ADDR_ACK	When '1', a received (matching) slave address is immediately ACK'd when the receiver FIFO is not full. In EZ mode, this field should be set to '1'. Default Value: 1
11	S_GENERAL_ IGNORE	When '1', a received general call slave address is immediately NACK'd (no ACK or clock stretching) and treated as a non matching slave address. This is useful for slaves that do not need any data supplied within the general call structure. Default Value: 1
9	M_NOT_READY_ DATA_NACK	When '1', a received data element byte the master is immediately NACK'd when the receiver FIFO is full. When '0', clock stretching is used instead (till the receiver FIFO is no longer full).
0	M DEADY	Default Value: 1
8	M_READY_ DATA_ACK	When '1', a received data element by the master is immediately ACK'd when the receiver FIFO is not full. Default Value: 1
7:4	LOW_PHASE_OVS	Serial I ² C interface low phase oversampling factor. LOW_PHASE_OVS + 1 SCB clock periods constitute the low phase of a bit period. The valid range is [7, 15] with input signal median filtering and [6, 15] without input signal median filtering. The field is only used in master mode. In slave mode, the field is NOT used. However, there is
		a frequency requirement for the SCB clock wrt. the regular (no stretching) interface (IF) low time to guarantee functionally correct behavior. With input signal median filtering, the IF low time should be \geq 8 SCB clock cycles and \leq 16 IP clock cycles. Without input signal median filtering, the IF low time should be \geq 7 SCB clock cycles and \leq 16 SCB clock cycles. Default Value: 8
3:0	HIGH_PHASE_OVS	Serial I ² C interface high phase oversampling factor. HIGH_PHASE_OVS + 1 SCB clock periods
		constitute the high phase of a bit period. The valid range is [5, 15] with input signal median filtering and [4, 15] without input signal median filtering.
		The field is only used in master mode. In slave mode, the field is NOT used. However, there is a frequency requirement for the SCB clock wrt. the regular interface (IF) high time to guarantee functional correct behavior. With input signal median filtering, the IF high time should be \geq 6 SCB clock cycles and \leq 16 SCB clock cycles. Without input signal median filtering, the IF high time should be \geq 5 SCB clock cycles and \leq 16 SCB clock cycles. Default Value: 8

SCB0_I2C_STATUS

I²C Status Register Address: 0x40080064 Retention: Not Retained

	T	1	1					1	
Bits	7	6	5	4	3	2	1	0	
SW Access	None		R	R	None		R	R	
HW Access	No	ne	W	W	No	ne	W	W	
Name	None [7:6]		M_READ	S_READ	None	9 [3:2]	I2C_EC_ BUSY	BUS_BUSY	
		T	ı	1	ı	T	1	1	
Bits	15	14	13	12	11	10	9	8	
SW Access				F	3				
HW Access		W							
Name		CURR_EZ_ADDR [15:8]							
Bits	23	22	21	20	19	18	17	16	
SW Access				F	3				
HW Access				V	V				
Name				BASE_EZ_A	DDR [23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access		None							
Name				None	[31:24]				

Bits	Name	Description
23:16	BASE_EZ_ADDR	I ² C slave base EZ address. Address as provided by an I ² C write transfer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable, as clock domain synchronization is not performed in the design.
		Default Value: Undefined
15:8	CURR_EZ_ADDR	I ² C slave current EZ address. Current address pointer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable (during an ongoing transfer when I2C_EC_BUSY is '1'), as clock domain synchronization is not performed in the design.
		Default Value: Undefined
5	M_READ	I ² C master read transfer ('1') or I ² C master write transfer ('0'). When the I ² C master is inactive/idle or transmitting START, REPEATED START, STOP or an address, this field is '0'.
		Default Value: 0
4	S_READ	I ² C slave read transfer ('1') or I ² C slave write transfer ('0'). When the I ² C slave is inactive/idle or receiving START, REPEATED START, STOP or an address, this field is '0'.
		Default Value: 0
1	I2C_EC_BUSY	Indicates whether the externally clocked logic is potentially accessing the EZ memory and/or updating BASE_ADDR or CURR_ADDR (this is only possible in EZ mode). This bit can be used by SW to
		determine whether BASE_ADDR and CURR_ADDR are reliable.
		Default Value: Undefined

0 BUS_BUSY

 I^2C bus is busy. The bus is considered busy ('1'), from the time a START is detected or from the time the SCL line is '0'. The bus is considered idle ('0'), from the time a STOP is detected. If SCB block is disabled, BUS_BUSY is '0'. After enabling the block, it takes time for the BUS_BUSY to detect a busy bus. This time is the maximum high time of the SCL line. For a 100 kHz interface frequency, this maximum high time may last roughly 5 μ s (half a bit period).

For single master systems, BUS_BUSY does not have to be used to detect an idle bus before a master starts a transfer using I2C_M_CMD.M_START (no bus collisions).

For multi-master systems, BUS_BUSY can be used to detect an idle bus before a master starts a transfer using I2C_M_CMD.M_START_ON_IDLE (to prevent bus collisions).

Default Value: 0

$SCB0_I2C_M_CMD$

I²C Master Command Register Address: 0x40080068

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0				
SW Access	None			RW	RW	RW	RW	RW				
HW Access		None		RW1C	RW1C	RW1C	RW1C	RW1C				
Name		None [7:5]		M_STOP	M_NACK	M_ACK	M_START_ ON_IDLE	M_START				
Bits	15	14	13	12	11	10	9	8				
	13											
SW Access		None										
HW Access		None										
Name		None [15:8]										
Bits	23	22	21	20	19	18	17	16				
SW Access	20	LL	21		ne	10	17	10				
HW Access				No	one							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access		I	I	No	ne		I					
HW Access				No	one							
Name				None	[31:24]							

Bits	Name	Description
4	M_STOP	When '1', attempt to transmit a STOP. When this action is performed, the hardware sets this field to '0'. This command has a higher priority than I2C_M_CMD.M_START: in situations where both a STOP and a REPEATED START could be transmitted, M_STOP takes precedence over M_START.
		Default Value: 0
3	M_NACK	When '1', attempt to transmit a negative acknowledgement (NACK). When this action is performed, the hardware sets this field to '0'. Default Value: 0
2	M_ACK	When '1', attempt to transmit an acknowledgement (ACK). When this action is performed, the hardware sets this field to '0'.
		Default Value: 0
1	M_START_ON_IDLE	When '1', transmit a START as soon as the bus is idle (I2C_STATUS.BUS_BUSY is '0', note that BUSY has a default value of '0'). For bus idle detection the hardware relies on STOP detection. As a result, bus idle detection is only functional after at least one I2C bus transfer has been detected on the bus (default/reset value of BUSY is '0'). A START is only transmitted when the master state machine is in the default state. When this action is performed, the hardware sets this field to '0'.
		Default Value: 0
0	M_START	When '1', transmit a START or REPEATED START. Whether a START or REPEATED START is transmitted depends on the state of the master state machine. A START is only transmitted when the master state machine is in the default state. A REPEATED START is transmitted when the master state machine is not in the default state, but is working on an ongoing transaction. The REPEATED START can only be transmitted after a NACK or ACK has been received for a transmitted data element or after a NACK has been transmitted for a received data element. When this action is performed, the hardware sets this field to '0'. Default Value: 0
		Delault value. U

$SCB0_I2C_S_CMD$

I²C Slave Command Register Address: 0x4008006C

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0				
SW Access			RW	RW								
HW Access			RW1C	RW1C								
Name			S_NACK	S_ACK								
		15 14 13 12 11 10 9 8										
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access		None										
Name		None [15:8]										
							_					
Bits	23	22	21	20	19	18	17	16				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[23:16]							
							_					
Bits	31	30	29	28	27	26	25	24				
SW Access				No	ne							
HW Access				No	ne							
Name				None	[31:24]							

Bits	Name	Description
1	S_NACK	When '1', attempt to transmit a negative acknowledgement (NACK). When this action is performed, the hardware sets this field to '0'. In EZ mode, this field should be set to '0' (it is only to be used in non EZ mode). This command has a higher priority than I2C_S_CMD.S_ACK, I2C_CTRL.S_READY_ADDR_ACK or I2C_CTRL.S_READY_DATA_ACK. Default Value: 0
0	S_ACK	When '1', attempt to transmit an acknowledgement (ACK). When this action is performed, the hardware sets this field to '0'. In EZ mode, this field should be set to '0' (it is only to be used in non EZ mode). Default Value: 0

SCB0_I2C_CFG

I²C Configuration Register Address: 0x40080070 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None		RW	None		R'	RW	
HW Access		None		R	No	one	F	₹	
Name		None [7:5]		SDA_IN_ FILT_SEL	None	9 [3:2]	SDA_IN_FIL	T_TRIM [1:0]	
Bits	15	14	13	12	11	10	9	8	
SW Access	None			RW	No	ne	R'	RW	
HW Access	None			R	None		R		
Name	None [15:13]			SCL_IN_ FILT_SEL	None [11:10]		SCL_IN_FILT_TRIM [9:8]		
Dia.	-				40	10	1 4-	40	
Bits	23	22	21	20	19	18	17	16	
SW Access	No	ne	RI		RW		R'	W	
HW Access	No	ne	R		R		R		
Name	None	[23:22]		FILT2_TRIM :20]	SDA_OUT_ [19	FILT1_TRIM :18]	SDA_OUT_ [17	FILTO_TRIM :16]	
		T	T	T	T			T	
Bits	31	30	29	28	27	26	25	24	
SW Access	No	ne	R	W	None				
HW Access	No	ne	F	3	None				
Name	None	[31:30]	SDA_OUT_FILT_SEL [29:28]		None [27:24]				

Bits	Name	Description
29:28	SDA_OUT_FILT_SEL	Selection of cumulative filter delay on SDA output to meet tHD_DAT parameter
		"0": 0 ns.
		"1": 50 ns (filter 0 enabled).
		"2": 100 ns (filters 0 and 1 enabled).
		"3": 150 ns (filters 0, 1 and 2 enabled).
		Default Value: 0
21:20	SDA_OUT_FILT2_TRIM	Trim settings for the 50 ns delay filter on SDA output used to guarantee tHD_DAT I ² C parameter. Default setting meets the I ² C spec. Programmability available if required. Default Value: 2
19:18	SDA_OUT_FILT1_TRIM	Trim settings for the 50 ns delay filter on SDA output used to guarantee tHD_DAT I ² C parameter. Default setting meets the I ² C spec. Programmability available if required. Default Value: 2
17:16	SDA_OUT_FILTO_TRIM	Trim settings for the 50 ns delay filter on SDA output used to guarantee tHD_DAT I ² C parameter. Default setting meets the I ² C spec. Programmability available if required. Default Value: 2
12	SCL_IN_FILT_SEL	Enable for 50 ns glitch filter on SCL input '0': 0 ns. '1: 50 ns (filter enabled). Default Value: 1

SCB0_I2C_CFG (Continued)

9:8	SCL_IN_FILT_TRIM	Trim settings for the 50 ns glitch filter on the SDA input. Default setting meets the I^2C glitch rejections specs. Programmability available if required. Default Value: 0
4	SDA_IN_FILT_SEL	Enable for 50 ns glitch filter on SDA input '0': 0 ns. '1: 50 ns (filter enabled). Default Value: 1
1:0	SDA_IN_FILT_TRIM	Trim settings for the 50 ns glitch filter on the SDA input. Default setting meets the I ² C glitch rejections specs. Programmability available if required. Default Value: 3

SCB0_TX_CTRL

Transmitter Control Register Address: 0x40080200

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	•	N	one	1	RW				
HW Access		N	one			R			
Name		None [7:4]				DATA_WI	DTH [3:0]		
Du.	45		10	1 40	44	10			
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							
Name		None [15:9]							
Bits	23	22	21	20	19	18	17	16	
SW Access				l No	ne				
HW Access				No	one				
Name				None	[23:16]				
			1	1	1	1			
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	one				
Name				None	[31:24]				

Bits	Name	Description
8	MSB_FIRST	Least significant bit first ('0') or most significant bit first ('1'). For I ² C, this field should be '1'. Default Value: 1
3:0	DATA_WIDTH	Dataframe width. DATA_WIDTH + 1 is the amount of bits in a transmitted data frame. This number does not include start, parity and stop bits. For UART mode, the valid range is [3, 8]. For SPI, the valid range is [3, 15]. For I2C the only valid value is 7. Default Value: 7

SCB0_TX_FIFO_CTRL

Transmitter FIFO Control Register Address: 0x40080204

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		Ne	one	J		F	RW			
HW Access		Ne	one				R			
Name		None	e [7:4]			TRIGGER_	_LEVEL [3:0]			
Bits	15	14	13	12	11	10	9	8		
SW Access				INo	ne one					
HW Access		None								
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access			No	one	ı		RW	RW		
HW Access			No	one			R	R		
Name			None	[23:18]			FREEZE	CLEAR		
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one		<u> </u>			
HW Access				No	one					
Name				None	[31:24]					

Bits	Name	Description
17	FREEZE	When '1', hardware reads from the transmitter FIFO do not remove FIFO entries. Freeze will not advance the TX FIFO read pointer.
		Default Value: 0
16	CLEAR	When '1', the transmitter FIFO and transmitter shift register are cleared/invalidated. Invalidation will last for as long as this field is '1'. If a quick clear/invalidation is required, the field should be set to '1' and be followed by a set to '0'. If a clear/invalidation is required for an extended time period, the field should be set to '1' during the complete time period.
		Default Value: 0
3:0	TRIGGER_LEVEL	Trigger level. When the transmitter FIFO has less entries than the number of this field, a transmitter trigger event is generated.
		Default Value: 0

SCB0_TX_FIFO_STATUS

Transmitter FIFO Status Register Address: 0x40080208

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None			•	R		
HW Access		None				W		
Name		None [7:5]				USED [4:0]		
		1		1	1	1		
Bits	15	14	13	12	11	10	9	8
SW Access	R				None			
HW Access	W				None			
Name	SR_VALID				None [14:8]			
Bits	23	22	21	20	19	18	17	16
SW Access		No	ne		R			
HW Access		No	ne		W			
Name		None [23:20]		RD_PTR [19:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	1	No			R			
HW Access		No			W			
Name		None [WR_PTR [27:24]			

Bits	Name	Description
27:24	WR_PTR	FIFO write pointer: FIFO location at which a new data frame is written. Default Value: 0
19:16	RD_PTR	FIFO read pointer: FIFO location from which a data frame is read by the hardware. Default Value: 0
15	SR_VALID	Indicates whether the TX shift registers holds a valid data frame ('1') or not ('0'). The shift register can be considered the top of the TX FIFO (the data frame is not included in the USED field of the TX FIFO). The shift register is a working register and holds the data frame that is currently transmitted (when the protocol state machine is transmitting a data frame) or the data frame that is transmitted next (when the protocol state machine is not transmitting a data frame). Default Value: 0
4:0	USED	Amount of entries in the transmitter FIFO. The value of this field ranges from 0 to FF_DATA_NR. Default Value: 0

$SCB0_TX_FIFO_WR$

Transmitter FIFO Write Register

Address: 0x40080240 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				V	V			
HW Access				F	3			
Name				DATA	· [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				V	V			
HW Access				F	3			
Name				DATA	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name				None	[31:24]			

BitsNameDescription15:0DATAData frame w

Data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation. Note that when CTRL.BYTE_MODE is '1', only DATA[7:0] are used.

A write to a full TX FIFO sets INTR_TX.OVERFLOW to '1'.

Default Value: 0

SCB0_RX_CTRL

HW Access

Name

Receiver Control Register Address: 0x40080300 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		N	one	•	RW			
HW Access		N	one				R	
Name		Non	e [7:4]			DATA_W	/IDTH [3:0]	
Dia.	4=	1 44	1 40	10	- 44	1 40	T .	Τ .
Bits	15	14	13	12	11	10	9	8
SW Access			N	one			RW	RW
HW Access	None R R						R	
Name			None	[15:10]			MEDIAN	MSB_FIRST
Bits	23	22	21	20	19	18	17	16
SW Access		<u>I</u>		No	ne			
HW Access				No	ne			
Name		None [23:16]						
Bits	31	30	29	28	27	26	25	24
SW Access	None							

Bits	Name	Description
9	MEDIAN	Median filter. When '1', a digital 3 taps median filter is performed on input interface lines. This filter should reduce the susceptibility to errors. However, its requires higher oversampling values. For UART IrDA submode, this field should always be '1'. Default Value: 0
8	MSB_FIRST	Least significant bit first ('0') or most significant bit first ('1'). For I ² C, this field should be '1'. Default Value: 1
3:0	DATA_WIDTH	Dataframe width. DATA_WIDTH + 1 is the expected amount of bits in received data frame. This number does not include start, parity and stop bits. For UART mode, the valid range is [3, 8]. For SPI, the valid range is [3, 15]. For I ² C the only valid value is 7. In EZ mode (for both SPI and I ² C), the only valid value is 7. Default Value: 7

None

None [31:24]

SCB0_RX_FIFO_CTRL

Receiver FIFO Control Register Address: 0x40080304

Retention: Retained

Bits	7	6	5	4	3	2	1 1	0
	,							
SW Access		No	one			ŀ	RW	
HW Access		No	one				R	
Name		None	e [7:4]			TRIGGER	_LEVEL [3:0]	
Bits	15	14	13	12	11	10	9	8
SW Access	l		1	No	one	1		
HW Access				No	one			
Name	None [15:8]							
Bits	23	22	21	20	19	18	17	16
SW Access			No	one			RW	RW
HW Access			No	one			R	R
Name			None	[23:18]			FREEZE	CLEAR
Bits	31	30	29	28	27	26	25	24
	31	30	29			26	25	24
SW Access				No	one			
HW Access	None							
Name		None [31:24]						

Bits	Name	Description
17	FREEZE	When '1', hardware writes to the receiver FIFO have no effect. Freeze will not advance the RX FIFO write pointer.
		Default Value: 0
16	CLEAR	When '1', the receiver FIFO and receiver shift register are cleared/invalidated. Invalidation will last for as long as this field is '1'. If a quick clear/invalidation is required, the field should be set to '1' and be followed by a set to '0'. If a clear/invalidation is required for an extended time period, the field should be set to '1' during the complete time period. Default Value: 0
3:0	TRIGGER_LEVEL	Trigger level. When the receiver FIFO has more entries than the number of this field, a receiver trigger event is generated. Default Value: 0

SCB0_RX_FIFO_STATUS

Receiver FIFO Status Register Address: 0x40080308

Address: 0x40080308 Retention: Not Retained

SW Access

HW Access Name

Bits	7	6	5	4	3	2	1	0	
SW Access		None				R			
HW Access		None				W			
Name		None [7:5]				USED [4:0]			
	1		T	T	_	T			
Bits	15	14	13	12	11	10	9	8	
SW Access	R				None				
HW Access	W		None						
Name	SR_VALID				None [14:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne	•	R				
HW Access		one		W					
Name		None	[23:20]		RD_PTR [19:16]				

None

None

None [31:28]

Bits	Name	Description
27:24	WR_PTR	FIFO write pointer: FIFO location at which a new data frame is written by the hardware. Default Value: 0
19:16	RD_PTR	FIFO read pointer: FIFO location from which a data frame is read.
		Default Value: 0
15	SR_VALID	Indicates whether the RX shift registers holds a (partial) valid data frame ('1') or not ('0'). The shift register can be considered the bottom of the RX FIFO (the data frame is not included in the USED field of the RX FIFO). The shift register is a working register and holds the data frame that is currently being received (when the protocol state machine is receiving a data frame). Default Value: 0
		Default Value: 0
4:0	USED	Amount of entries in the receiver FIFO. The value of this field ranges from 0 to FF_DATA_NR. Default Value: 0

R

W

WR_PTR [27:24]

SCB0_RX_MATCH

Slave Address and Mask Register Address: 0x40080310

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				R	W			
HW Access				F	3			
Name				ADDF	R [7:0]			
			_				_	
Bits	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access				No	ne			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				R	W			
HW Access				F	3			
Name				MASK	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access	None							
Name				None	[31:24]			

Bits	Name	Description
23:16	MASK	Slave device address mask. This field is a mask that specifies which of the slave address bits take part in the matching. MATCH = ((ADDR & MASK) == ("slave address" & MASK)).
		Default Value: 0
7:0	ADDR	Slave device address.
		In UART multi-processor mode, all 8 bits are used.
		In I ² C slave mode, only bits 7 down to 1 are used. This reflects the organization of the first transmitted byte in a I ² C transfer: the first 7 bits represent the address of the addressed slave, and the last 1 bit is a read/write indicator ('0': write, '1': read).
		Default Value: 0

SCB0_RX_FIFO_RD

Receiver FIFO Read Register

Address: 0x40080340 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access		l	l	F	3			
HW Access				V	V			
Name				DATA	A [7:0]			
						_		•
Bits	15	14	13	12	11	10	9	8
SW Access				F	3			
HW Access				V	V			
Name				DATA	[15:8]			
						_		•
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
						_	_	_
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access	None							
Name				None	[31:24]			

Bits	Name
15:0	DATA

Description

Data read from the receiver FIFO. Reading a data frame will remove the data frame from the FIFO; i.e. behavior is similar to that of a POP operation. Note that when CTRL.BYTE_MODE is '1', only DATA[7:0] are used.

A read from an empty RX FIFO sets INTR_RX.UNDERFLOW to '1'.

When this register is read through the debugger, the data frame will not be removed from the FIFO. Similar in operation to RX_FIFO_RD_SILENT.

$SCB0_RX_FIFO_RD_SILENT$

Receiver FIFO Read Register

Address: 0x40080344 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				F	3		ı	1			
HW Access				V	V						
Name				DATA	A [7:0]						
			_								
Bits	15	14	13	12	11	10	9	8			
SW Access	R										
HW Access	W										
Name				DATA	[15:8]						
			_								
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
			_								
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

BitsNameDescription15:0DATAData read fro

Data read from the receiver FIFO. Reading a data frame will NOT remove the data frame from the FIFO; i.e. behavior is similar to that of a PEEK operation. Note that when CTRL.BYTE_MODE is '1', only DATA[7:0] are used.

A read from an empty RX FIFO sets INTR_RX.UNDERFLOW to '1'.

Memory Buffer Registers Address: 0x40080400 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				R	W	•	•				
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
					1	1	1				
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
					1	1	1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
		T	T								
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080404 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			•	R	W	•	•	•			
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
	1	T	1	T	ı	T	1	1			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
	T	T	,	T	1	T		1			
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one			<u></u>			
HW Access				No	one						
Name				None	[31:24]						

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080408 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				R	W	•	•				
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
					1	1	1				
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
					1	1	1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
		T	T								
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4008040C Retention: Retained

Bits	7	6	5	4	3	2	1	0				
SW Access		RW										
HW Access		RW										
Name				EZ_DA	TA [7:0]							
Bits	15	14	13	12	11	10	9	8				
SW Access		None										
HW Access				No	one							
Name				None	[15:8]							
	_		_									
Bits	23	22	21	20	19	18	17	16				
SW Access				No	one							
HW Access				No	one							
Name				None	[23:16]							
Bits	31	30	29	28	27	26	25	24				
SW Access				No	one							
HW Access				No	one							
Name				None	[31:24]							

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080410 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	R	W	•	•	•
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	1	1	1	1	I			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
					,			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080414 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	R	W	•	•	•
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	1	1	1	1	I			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
					,			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080418 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	R	W	•	•	•
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	1	1	1	1	I			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
					,			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4008041C Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	R	W	•	•	•
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	1	1	1	1	I			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
					,			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080420 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	R	W	•	•	•
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	1	1	1	1	I			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
					,			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080424 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080428 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access			•	R	W	•	•	•		
HW Access				R'	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
						1	1			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4008042C Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W	•	•		
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access		None							
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080430 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W	•	•		
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access		None							
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080434 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080438 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W					
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14 13 12 11 10 9 8								
SW Access				No	one					
HW Access		None								
Name				None	[15:8]					
	_		_							
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	one					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4008043C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	I	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080440 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	I	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080444 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W	•	•		
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access		None							
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
		T	T						
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080448 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W	•	•		
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access		None							
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
		T	T						
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4008044C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	I	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080450 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W	•	•		
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access		None							
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
		T	T		T				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080454 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		RW EZ_DATA [7:0] 15					•			
HW Access		EZ_DATA [7:0] 15								
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	٥	Q		
	13	14	15			10				
SW Access				No	one					
HW Access										
Name				None	[15:8]					
	1	None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080458 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		RW EZ_DATA [7:0] 15					•			
HW Access		EZ_DATA [7:0] 15								
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	٥	Q		
	13	14	15			10				
SW Access				No	one					
HW Access										
Name				None	[15:8]					
	1	None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4008045C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		RW EZ_DATA [7:0] 15					•			
HW Access		EZ_DATA [7:0] 15								
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	٥	Q		
	13	14	15			10				
SW Access				No	one					
HW Access										
Name				None	[15:8]					
	1	None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080460 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W					
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access				No	one					
HW Access		None								
Name				None	[15:8]					
	_		_							
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	one					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080464 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		RW EZ_DATA [7:0] 15					•			
HW Access		EZ_DATA [7:0] 15								
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	٥	Q		
	13	14	15			10				
SW Access				No	one					
HW Access										
Name				None	[15:8]					
	1	None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080468 Retention: Retained

			•	•						
Bits	7	6	5	4	3	2	1	0		
SW Access		RW EZ_DATA [7:0] 15 14 13 12 11 10 9 8 None None None None None [23:16]								
HW Access		RW EZ_DATA [7:0] 15								
Name				EZ_DA	TA [7:0]					
						_				
Bits	15	14	13	12	11	10	9	8		
SW Access				No	ne					
HW Access		None								
Name				None	[15:8]					
	1		1	1	1					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30 29 28 27 26 25 24								
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4008046C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14	13	12	11	10	9	8		
SW Access				No	ne					
HW Access		None								
Name				None	[15:8]					
					1	1	1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T		T					
Bits	31	30 29 28 27 26 25 24								
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080470 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14	13	12	11	10	9	8		
SW Access				No	ne					
HW Access		None								
Name				None	[15:8]					
					1	1	1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T							
Bits	31	30 29 28 27 26 25 24								
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080474 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		RW EZ_DATA [7:0] 15					•			
HW Access		EZ_DATA [7:0] 15								
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	٥	Q		
	13	14	15			10				
SW Access				No	one					
HW Access										
Name				None	[15:8]					
	1	None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40080478 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		RW EZ_DATA [7:0] 15					•			
HW Access		EZ_DATA [7:0] 15								
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	٥	Q		
	13	14	15			10				
SW Access				No	one					
HW Access										
Name				None	[15:8]					
	1	None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4008047C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14	13	12	11	10	9	8		
SW Access				No	ne					
HW Access		None								
Name				None	[15:8]					
					1	1	1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T							
Bits	31	30 29 28 27 26 25 24								
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

SCB0_INTR_CAUSE

Active Clocked Interrupt Signal Register Address: 0x40080E00

Retention: Retained

Bits

SW Access

HW Access

Name

31

30

Bits	7	6	5	4	3	2	1	0
SW Access	No	ne	R	R	R	R	R	R
HW Access	No	ne	W	W	W	W	W	W
Name	None	[7:6]	SPI_EC	I2C_EC	RX	TX	S	М
<u>, </u>			1	1	1	_		
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
		1	1	1	T		ı	ı
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name		None [23:16]						

28

None

None

None [31:24]

27

26

25

24

Bits	Name	Description
5	SPI_EC	Externally clocked SPI interrupt active ("interrupt_spi_ec"): INTR_SPI_EC_MASKED != 0. Default Value: 0
4	I2C_EC	Externally clock I ² C interrupt active ("interrupt_i2c_ec"): INTR_I2C_EC_MASKED != 0. Default Value: 0
3	RX	Receiver interrupt active ("interrupt_rx"): INTR_RX_MASKED != 0. Default Value: 0
2	TX	Transmitter interrupt active ("interrupt_tx"): INTR_TX_MASKED != 0. Default Value: 0
1	S	Slave interrupt active ("interrupt_slave"): INTR_S_MASKED != 0. Default Value: 0
0	М	Master interrupt active ("interrupt_master"): INTR_M_MASKED != 0. Default Value: 0

29

SCB0_INTR_I2C_EC

Externally Clocked I^2C Interrupt Request Register Address: 0x40080E80

Bits	7	6	5	4	3	2	1	0	
SW Access		No	one		RW1C	RW1C	RW1C	RW1C	
HW Access		No	one		Α	Α	А	А	
Name		None	e [7:4]		EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP	
Bits	15	15 14 13 12 11 10 9 8							
SW Access			I.	No	one	<u> </u>		<u> </u>	
HW Access				No	one				
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		•		No	one	•			
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		<u> </u>	1	No	one	<u> </u>		I	
HW Access	None								
Name				None	[31:24]				

Bits	Name	Description
3	EZ_READ_STOP	STOP detection after a read transfer occurred. Activated on the end of a read transfer (I ² C STOP). This event is an indication that a buffer memory location has been read from.
		Only available for a slave request with an address match, in EZ and CMD_RESP modes, when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
2	EZ_WRITE_STOP	STOP detection after a write transfer occurred. Activated on the end of a write transfer (I ² C STOP). This event is an indication that a buffer memory location has been written to. For EZ mode: a transfer that only writes the base address does NOT activate this event.
		Only available for a slave request with an address match, in EZ and CMD_RESP modes, when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
1	EZ_STOP	STOP detection. Activated on the end of a every transfer (I ² C STOP).
		Only available for a slave request with an address match, in EZ and CMD_RESP modes, when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
0	WAKE_UP	Wake up request. Active on incoming slave request (with address match). Only used when CTRL.EC_AM_MODE is '1'. Default Value: 0

SCB0_INTR_I2C_EC_MASK

Externally Clocked I^2C Interrupt Mask Register Address: 0x40080E88

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne		RW	RW	RW	RW
HW Access		No	ne		R	R	R	R
Name		None	[7:4]		EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	one			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
	23	22	21			16	17	10
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Γ	T	T	T	1	T	T	T	
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	ne			
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	EZ_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	EZ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	WAKE_UP	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB0_INTR_I2C_EC_MASKED

Externally Clocked I^2C Interrupt Masked Register Address: 0x40080E8C

Bits	7	6	5	4	3	2	1	0			
SW Access		No	one		R	R	R	R			
HW Access		No	one		W	W	W	W			
Name		None	e [7:4]		EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
3	EZ_READ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
2	EZ_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0
1	EZ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
0	WAKE_UP	Logical and of corresponding request and mask bits. Default Value: 0

SCB0_INTR_SPI_EC

Externally Clocked SPI Interrupt Request Register Address: 0x40080EC0

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne		RW1C	RW1C	RW1C	RW1C
HW Access		No	ne		Α	А	Α	Α
Name		None	7:4]		EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	14	13	12	11	10	9	8
SW Access				No	one		<u> </u>	<u> </u>
HW Access				No	one			
Name				None	[15:8]			
	1 00			T	1 40	1.0		
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne	l	l	I
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	STOP detection after a read transfer occurred. Activated on the end of a read transfer (SPI deselection). This event is an indication that a buffer memory location has been read from.
		Only used in EZ and CMD_RESP modes and when CTRL.EC_OP_MODE is '1'. Default Value: 0
2	EZ_WRITE_STOP	STOP detection after a write transfer occurred. Activated on the end of a write transfer (SPI deselection). This event is an indication that a buffer memory location has been written to. For EZ mode: a transfer that only writes the base address does NOT activate this event.
		Only used in EZ and CMD_RESP modes and when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
1	EZ_STOP	STOP detection. Activated on the end of a every transfer (SPI deselection).
		Only available in EZ and CMD_RESP mode and when CTRL.EC_OP_MODE is '1'. Default Value: 0
0	WAKE_UP	Wake up request. Active on incoming slave request when externally clocked selection is '1'. Only used when CTRL.EC_AM_MODE is '1'. Default Value: 0

SCB0_INTR_SPI_EC_MASK

Externally Clocked SPI Interrupt Mask Register Address: 0x40080EC8

Bits	7	6	5	4	3	2	1	0			
SW Access		No	ne	<u>I</u>	RW	RW	RW	RW			
HW Access		No	ne		R	R	R	R			
Name		None	e [7:4]		EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP			
Bits	15	15 14 13 12 11 10 9 8									
SW Access		None									
HW Access				No	one						
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
		T	T	1	1	1	T	T			
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
3	EZ_READ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	EZ_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	EZ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	WAKE_UP	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB0_INTR_SPI_EC_MASKED

Externally Clocked SPI Interrupt Masked Register Address: 0x40080ECC

	1	1	1			1	1	
Bits	7	6	5	4	3	2	1	0
SW Access		No	ne		R	R	R	R
HW Access		No	ne		W	W	W	W
Name		None	e [7:4]		EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
		l	l		l			
Bits	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	-1							
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
2	EZ_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0
1	EZ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
0	WAKE_UP	Logical and of corresponding request and mask bits. Default Value: 0

SCB0_INTR_M

Master Interrupt Request Register Address: 0x40080F00

Address: 0x40080F00 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
DI13	,	0	3	4				
SW Access		None		RW1C	None	RW1C	RW1C	RW1C
HW Access		None		RW1S	None	RW1S	RW1S	RW1S
Name	None [7:5]			I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
		1	l	1 1		1	1 -	_
Bits	15	14	13	12	11	10	9	8
SW Access			No	one			RW1C	RW1C
HW Access		None					RW1S	RW1S
Name		None [15:10] SP					SPI_DONE	I2C_BUS_ ERROR
		T	ı			ı	1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
Bits SW Access	31	30	29	28 No		26	25	24
	31	30	29		ne	26	25	24

Bits	Name	Description
9	SPI_DONE	SPI master transfer done event: all data frames in the transmit FIFO are sent and the transmit FIFO is empty. Default Value: 0
8	I2C_BUS_ERROR	$\rm I^2C$ master bus error (unexpected detection of START or STOP condition). Default Value: 0
4	I2C_STOP	I ² C master STOP. Set to '1', when the master has transmitted a STOP. Default Value: 0
2	I2C_ACK	I ² C master acknowledgement. Set to '1', when the master receives a ACK (typically after the master transmitted the slave address or TX data).
		Default Value: 0
1	I2C_NACK	I^2C master negative acknowledgement. Set to '1', when the master receives a NACK (typically after the master transmitted the slave address or TX data).
		Default Value: 0
0	I2C_ARB_LOST	$\rm I^2C$ master lost arbitration: the value driven by the master on the SDA line is not the same as the value observed on the SDA line.
		Default Value: 0

SCB0_INTR_M_SET

Master Interrupt Set Request Register Address: 0x40080F04

	T	1	ı			T	Г	ı
Bits	7	6	5	4	3	2	1	0
SW Access		None		RW1S	None	RW1S	RW1S	RW1S
HW Access		None		Α	None	Α	Α	Α
Name	None [7:5]			I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
Bits	45	44	10	10	44	10		8
Bits	15	14	13	12	11	10	9	8
SW Access			No	one			RW1S	RW1S
HW Access		None					Α	Α
Name	None [15:10] SPI_DONE				SPI_DONE	I2C_BUS_ ERROR		
		ī	T	1				ı
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access				No	ne			
Name				None	31:24]			

Bits	Name	Description
9	SPI_DONE	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
2	I2C_ACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
1	I2C_NACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	I2C_ARB_LOST	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

$SCB0_INTR_M_MASK$

Master Interrupt Mask Register Address: 0x40080F08

Bits	7	6	5	4	3	2	1	0
SW Access	None			RW	None	RW	RW	RW
HW Access		None		R	None	R	R	R
Name	None [7:5]			I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
	1	T		I	I	T	I	
Bits	15	14	13	12	11	10	9	8
SW Access			No	ne			RW	RW
HW Access		None R					R	R
Name	None [15:10] SPI_DONE					I2C_BUS_ ERROR		
	•							
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	ne			
Name				None	[23:16]			
	_							
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access		None						
Name		None [31:24]						

Bits	Name	Description
9	SPI_DONE	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	I2C_ACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	I2C_NACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	I2C_ARB_LOST	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB0_INTR_M_MASKED

Master Interrupt Masked Request Register Address: 0x40080F0C

Bits	7	6	5	4	3	2	1	0
SW Access		None			None	R	R	R
HW Access		None		W	None	W	W	W
Name	None [7:5]			I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
Bits	15	14	13	12	11	10	9	8
SW Access		l	No	one		I	R	R
HW Access			No	one			W	W
Name		None [15:10]					SPI_DONE	I2C_BUS_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access		•		No	ne	•		
HW Access				No	ne			
Name				None	[23:16]			
		T	T	T	T			T
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access		None						
Name				None	[31:24]			

Bits 9	Name SPI_DONE	Description Logical and of corresponding request and mask bits. Default Value: 0
8	I2C_BUS_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
4	I2C_STOP	Logical and of corresponding request and mask bits. Default Value: 0
2	I2C_ACK	Logical and of corresponding request and mask bits. Default Value: 0
1	I2C_NACK	Logical and of corresponding request and mask bits. Default Value: 0
0	I2C_ARB_LOST	Logical and of corresponding request and mask bits. Default Value: 0

SCB0_INTR_S

Slave Interrupt Request Register Address: 0x40080F40

	1	1	1	T	1		1	
Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
HW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
	1	T	Ī	Ī	1		T	
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		RW1C	RW1C	RW1C	RW1C
HW Access		None				RW1S	RW1S	RW1S
Name	None [15:12]				SPI_BUS_ ERROR	SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR
		I	T	T	I		I	
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
11	SPI_BUS_ERROR	SPI slave deselected at an unexpected time in the SPI transfer. The Firmware may decide to clear the TX and RX FIFOs in case of this error. Default Value: 0
10	SPI_EZ_STOP	SPI slave deselected after any EZ SPI transfer occurred. Default Value: 0
9	SPI_EZ_WRITE_STOP	SPI slave deselected after a write EZ SPI transfer occurred. Default Value: 0
8	I2C_BUS_ERROR	I ² C slave bus error (unexpected detection of START or STOP condition). This should not occur, it represents erroneous I ² C bus behavior. In case of a bus error, the I ² C slave state machine abort the ongoing transfer. The Firmware may decide to clear the TX and RX FIFOs in case of this error. Default Value: 0
7	I2C_GENERAL	I ² C slave general call address received. If CTRL.ADDR_ACCEPT, the received address 0x00 (including the R/W bit) is available in the RX FIFO. In the case of externally clocked address matching (CTRL.EC_AM_MODE is '1') and internally clocked operation (CTRL.EC_OP_MODE is '0'), this field is set when the event is detected. Default Value: 0
6	I2C_ADDR_MATCH	I ² C slave matching address received. If CTRL.ADDR_ACCEPT, the received address (including the R/W bit) is available in the RX FIFO. In the case of externally clocked address matching (CTRL.EC_AM_MODE is '1') and internally clocked operation (CTRL.EC_OP_MODE is '0'), this field is set when the event is detected. Default Value: 0

SCB0_INTR_S (Continued)

5	I2C_START	I ² C slave START received. Set to '1', when START or REPEATED START event is detected. In the case of externally clocked address matching (CTRL.EC_AM_MODE is '1') AND clock stretching is performed (I2C_CTRL.S_NOT_READY_ADDR_NACK is '0'), this field is NOT set. The Firmware should use INTR_S_EC.WAKE_UP, INTR_S.I2C_ADDR_MATCH and INTR_S.I2C_GENERAL. Default Value: 0
4	I2C_STOP	I ² C STOP event for I ² C (read or write) transfer intended for this slave (address matching is performed). Set to '1', when STOP or REPEATED START event is detected. The REPEATED START event is included in this interrupt cause such that the I ² C transfers separated by a REPEATED START can be distinguished and potentially treated separately by the Firmware. Note that the second I ² C transfer (after a REPEATED START) may be to a different slave address.
		The event is detected on any I2C transfer intended for this slave. Note that a I^2 C address intended for the slave (address is matching) will result in a I2C_STOP event independent of whether the I^2 C address is ACK'd or NACK'd.
		Default Value: 0
3	I2C_WRITE_STOP	I ² C STOP event for I ² C write transfer intended for this slave (address matching is performed). Set to '1', when STOP or REPEATED START event is detected. The REPEATED START event is included in this interrupt cause such that the I ² C transfers separated by a REPEATED START can be distinguished and potentially treated separately by the Firmware. Note that the second I ² C transfer (after a REPEATED START) may be to a different slave address.
		In non EZ mode, the event is detected on any I ² C write transfer intended for this slave. Note that a I ² C write address intended for the slave (address is matching and a it is a write transfer) will result in a I ² C_WRITE_STOP event independent of whether the I ² C address is ACK'd or NACK'd.
		In EZ mode, the event is detected only on I ² C write transfers that have EZ data written to the memory structure (an I ² C write transfer that only communicates an I ² C address and EZ address, will not result in this event being detected).
		Default Value: 0
2	I2C_ACK	I ² C slave acknowledgement received. Set to '1', when the slave receives a ACK (typically after the slave transmitted TX data).
		Default Value: 0
1	I2C_NACK	1 ² C slave negative acknowledgement received. Set to '1', when the slave receives a NACK (typically after the slave transmitted TX data). Default Value: 0
0	I2C_ARB_LOST	I ² C slave lost arbitration: the value driven on the SDA line is not the same as the value observed on the SDA line (while the SCL line is '1'). This should not occur, it represents erroneous I ² C bus behavior. In case of lost arbitration, the I ² C slave state machine aborts the ongoing transfer. The Firmware may decide to clear the TX and RX FIFOs in case of this error. Default Value: 0

SCB0_INTR_S_SET

Slave Interrupt Set Request Register Address: 0x40080F44

Bits	7	6	5	4	3	2	1	0
SW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S
HW Access	Α	Α	Α	Α	Α	Α	Α	Α
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
	1	I	1	1	<u> </u>		1	
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		RW1S	RW1S	RW1S	RW1S
HW Access		No	ne		Α	Α	Α	Α
Name	None [15:12]				SPI_BUS_ ERROR	SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access					ne		.,	10
HW Access		None						
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	ne			
Name				None	[31:24]			

Bits 11	Name SPI_BUS_ERROR	Description Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
10	SPI_EZ_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
9	SPI_EZ_WRITE_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
7	I2C_GENERAL	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
6	I2C_ADDR_MATCH	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
5	I2C_START	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
3	I2C_WRITE_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SCB0_INTR_S_SET (Continued)

2	I2C_ACK	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0
1	I2C_NACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	I2C_ARB_LOST	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SCB0_INTR_S_MASK

Slave Interrupt Mask Register Address: 0x40080F48

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW	RW	RW	RW	RW	RW	RW
HW Access	R	R	R	R	R	R	R	R
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
Bits	15	14	13	12	11	10	9	8
SW Access	10			12				
SW Access		INC	ne		RW	RW	RW	RW
HW Access		No	ne		R	R	R	R
Name		None [15:12]				SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access				l No	ne			
HW Access				No	one			
Name		None [23:16]						
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
11	SPI_BUS_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
10	SPI_EZ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
9	SPI_EZ_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
7	I2C_GENERAL	Mask bit for corresponding bit in interrupt request register. Default Value: 0
6	I2C_ADDR_MATCH	Mask bit for corresponding bit in interrupt request register. Default Value: 0
5	I2C_START	Mask bit for corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
3	I2C_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB0_INTR_S_MASK (Continued)

2	I2C_ACK	Mask bit for corresponding bit in interrupt request register.
		Default Value: 0
1	I2C_NACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	I2C ARB LOST	Mask bit for corresponding bit in interrupt request register.
		Default Value: 0

SCB0_INTR_S_MASKED

Slave Interrupt Masked Request Register Address: 0x40080F4C

Bits	7	6	5	4	3	2	1	0	
SW Access	R	R	R	R	R	R	R	R	
HW Access	W	W	W	W	W	W	W	W	
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST	
Bits	15	14	13	12	11	10	9	8	
DIIS	15	14	13	12	11	10	9	•	
SW Access		No	ne		R	R	R	R	
HW Access		No	ne		W	W	W	W	
Name		None [15:12]				SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR	
Bits		00	04	00	10	40	47	40	
	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name		None [23:16]							
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access				No	one				
Name				None	[31:24]				

Bits	Name	Description
11	SPI_BUS_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
10	SPI_EZ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
9	SPI_EZ_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0
8	I2C_BUS_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
7	I2C_GENERAL	Logical and of corresponding request and mask bits. Default Value: 0
6	I2C_ADDR_MATCH	Logical and of corresponding request and mask bits. Default Value: 0
5	I2C_START	Logical and of corresponding request and mask bits. Default Value: 0
4	I2C_STOP	Logical and of corresponding request and mask bits. Default Value: 0
3	I2C_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0

SCB0_INTR_S_MASKED (Continued)

2	I2C_ACK	Logical and of corresponding request and mask bits.
		Default Value: 0
1	I2C_NACK	Logical and of corresponding request and mask bits. Default Value: 0
0	I2C_ARB_LOST	Logical and of corresponding request and mask bits. Default Value: 0

SCB0_INTR_TX

Transmitter Interrupt Request Register Address: 0x40080F80

Bits	7	6	5	4	3	2	1	0		
SW Access	RW1C	RW1C	RW1C	RW1C	١	lone	RW1C	RW1C		
HW Access	RW1S	RW1S	RW1S	RW1S	١	lone	RW1S	RW1S		
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	Nor	ne [3:2]	NOT_FULL	TRIGGER		
Bits	15	14	13	12	11	10	9	8		
SW Access			None	l		RW1C	RW1C	RW1C		
HW Access			None			RW1S	RW1S	RW1S		
Name			None [15:11]	UART_ARB _LOST	ART_ DONE	UART_ NACK				
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	one					
Name				None	[23:16]					
	1		T	ī	ı		T			
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None	[31:24]					

Bits	Name	Description
10	UART_ARB_LOST	UART lost arbitration: the value driven on the TX line is not the same as the value observed on the RX line. This condition event is useful when transmitter and receiver share a TX/RX line. This is the case in LIN or SmartCard modes. Set to '1', when event is detected. Write with '1' to clear bit. Default Value: 0
		Delault Value: 0
9	UART_DONE	UART transmitter done event. This happens when the IP is done transferring all data in the TX FIFO; i.e. EMPTY is '1'. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
8	UART_NACK	UART transmitter received a negative acknowledgement in SmartCard mode. Set to '1', when event is detected. Write with '1' to clear bit. Default Value: 0
_	DI 001/5D	
7	BLOCKED	SW cannot get access to the EZ memory (EZ data access), due to an externally clocked EZ access. This may happen when STATUS.EC_BUSY is '1'.
		Default Value: 0
6	UNDERFLOW	Attempt to read from an empty TX FIFO. This happens when SCB is ready to transfer data and EMPTY is '1'.
		Only used in FIFO mode.
		Default Value: 0
5	OVERFLOW	Attempt to write to a full TX FIFO.
		Only used in FIFO mode.
		Default Value: 0

SCB0_INTR_TX (Continued)

EMPTY TX FIFO is empty; i.e. it has 0 entries.

Only used in FIFO mode.

Default Value: 0

TX FIFO is not full. Dependent on CTRL.BYTE_MODE: BYTE_MODE is '0': # entries != FF_DATA_NR/2. BYTE_MODE is '1': # entries != FF_DATA_NR. Only used in FIFO mode. NOT_FULL

Default Value: 0

0 TRIGGER Less entries in the TX FIFO than the value specified by TX_FIFO_CTRL.

Only used in FIFO mode.

SCB0_INTR_TX_SET

Transmitter Interrupt Set Request Register Address: 0x40080F84

Address: 0x40080F84 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	RW1S	RW1S	RW1S	RW1S	1	None	RW1S	RW1S	
HW Access	А	Α	Α	Α	1	None	Α	А	
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	No	None [3:2]		TRIGGER	
Bits	15	14	13	12	11	10	9	8	
	13	14		12	!!				
SW Access			None			RW1S	RW1S	RW1S	
HW Access		None					Α	Α	
Name			None [15:11]	UART_ARB _LOST	ART_ DONE	UART_ NACK			
Dite			0.1		10	10	1-	- 10	
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
	1	T	T	T	1	1	T	T	
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits	Name	Description
10	UART_ARB_LOST	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
9	UART_DONE	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
8	UART_NACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
7	BLOCKED	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
6	UNDERFLOW	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
5	OVERFLOW	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
4	EMPTY	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
1	NOT_FULL	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	TRIGGER	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SCB0_INTR_TX_MASK

Transmitter Interrupt Mask Register Address: 0x40080F88

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW	RW	RW	ı	None	RW	RW
HW Access	R	R	R	R	1	None	R	R
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	No	ne [3:2]	NOT_FULL	TRIGGER
Bits	15	14	13	12	11	10	9	8
SW Access	1		None			RW	RW	RW
HW Access								R
Name		None [15:11] UA					ART_ DONE	UART_ NACK
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	31	None 29 28 27 26 25 24						24
HW Access	None							
Name		None [31:24]						

Bits	Name	Description
10	UART_ARB_LOST	Mask bit for corresponding bit in interrupt request register. Default Value: 0
9	UART_DONE	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	UART_NACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
7	BLOCKED	Mask bit for corresponding bit in interrupt request register. Default Value: 0
6	UNDERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
5	OVERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
4	EMPTY	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	NOT_FULL	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	TRIGGER	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB0_INTR_TX_MASKED

Transmitter Interrupt Masked Request Register Address: 0x40080F8C

Bits	7	6	5	4	3	2	1	0
SW Access	R	R	R	R	No	one	R	R
HW Access	W	W	W	W	No	one	W	W
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	None [3:2] NOT_FULL TRIGG			TRIGGER
	1	I	T	I	Ι	1	1	Ι
Bits	15	14	13	12	11	10	9	8
SW Access		None R R						R
HW Access		None W W W						W
Name							UART_ NACK	
_	1	I	I	I	I		1	ı
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
						_		
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access	None							
Name		None [31:24]						

Bits	Name	Description
10	UART_ARB_LOST	Logical and of corresponding request and mask bits. Default Value: 0
9	UART_DONE	Logical and of corresponding request and mask bits. Default Value: 0
8	UART_NACK	Logical and of corresponding request and mask bits. Default Value: 0
7	BLOCKED	Logical and of corresponding request and mask bits. Default Value: 0
6	UNDERFLOW	Logical and of corresponding request and mask bits. Default Value: 0
5	OVERFLOW	Logical and of corresponding request and mask bits. Default Value: 0
4	EMPTY	Logical and of corresponding request and mask bits. Default Value: 0
1	NOT_FULL	Logical and of corresponding request and mask bits. Default Value: 0
0	TRIGGER	Logical and of corresponding request and mask bits. Default Value: 0

SCB0_INTR_RX

Receiver Interrupt Request Register Address: 0x40080FC0

Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	None	RW1C	RW1C	None	RW1C
HW Access	RW1S	RW1S	RW1S	None	RW1S	RW1S	None	RW1S
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGER
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		RW1C	RW1C	RW1C	RW1C
HW Access		None				RW1S	RW1S	RW1S
Name	None [15:12]				BREAK_ DETECT	BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
	31	30	29			20	25	24
SW Access	None							
HW Access	None							
Name				None	[31:24]			

Bits	Name	Description
11	BREAK_DETECT	Break detection is successful: the line is '0' for UART_RX_CTRL.BREAK_WIDTH + 1 bit period. Can occur at any time to address unanticipated break fields; i.e. "break-in-data" is supported.
		This feature is supported for the UART standard and LIN submodes. For the UART standard submodes, ongoing receipt of data frames is NOT affected; i.e. Firmware is ecpected to take the proper action. For the LIN submode, possible ongoing receipt of a data frame is stopped and the (partially) received data frame is dropped and baud rate detection is started. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
10	BAUD_DETECT	LIN baudrate detection is completed. The receiver software uses the UART_RX_STATUS.BR_COUNTER value to set the right IP clock (from the programmable clock IP) to guarantee successful receipt of the first LIN data frame (Protected Identifier Field) after the synchronization byte. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
9	PARITY_ERROR	Parity error in received data frame. Set to '1', when event is detected. Write with '1' to clear bit. If UART_RX_CTL.DROP_ON_PARITY_ERROR is '1', the received frame is dropped. If UART_RX_CTL.DROP_ON_PARITY_ERROR is '0', the received frame is send to the RX FIFO. In SmartCard submode, negatively acknowledged data frames generate a parity error. Note that Firmware can only identify the erroneous data frame in the RX FIFO if it is fast enough to read the data frame before the hardware writes a next data frame into the RX FIFO. Default Value: 0

8	FRAME_ERROR	Frame error in received data frame. Set to '1', when event is detected. Write with '1' to clear bit. This can be either a start or stop bit(s) error:
		Start bit error: after the detection of the beginning of a start bit period (RX line changes from '1' to '0'), the middle of the start bit period is sampled erroneously (RX line is '1'). Note: a start bit error is detected BEFORE a data frame is received.
		Stop bit error: the RX line is sampled as '0', but a '1' was expected. Note: a stop bit error may result in failure to receive successive data frame(s). Note: a stop bit error is detected AFTER a data frame is received.
		A stop bit error is detected after a data frame is received, and the UART_RX_CTL.DROP_ON_FRAME_ERROR field specifies whether the received frame is dropped or send to the RX FIFO. If UART_RX_CTL.DROP_ON_FRAME_ERROR is '1', the received data frame is dropped. If UART_RX_CTL.DROP_ON_FRAME_ERROR is '0', the received data frame is send to the RX FIFO. Note that Firmware can only identify the erroneous data frame in the RX FIFO if it is fast enough to read the data frame before the hardware writes a next data frame into the RX FIFO; i.e. the RX FIFO does not have error flags to tag erroneous data frames.
		Default Value: 0
7	BLOCKED	SW cannot get access to the EZ memory (EZ_DATA accesses), due to an externally clocked EZ access. This may happen when STATUS.EC_BUSY is '1'.
		Default Value: 0
6	UNDERFLOW	Attempt to read from an empty RX FIFO.
		Only used in FIFO mode.
		Default Value: 0
5	OVERFLOW	Attempt to write to a full RX FIFO. Note: in I2C mode, the OVERFLOW is set when a data frame is received and the RX FIFO is full, independent of whether it is ACK'd or NACK'd.
		Only used in FIFO mode.
		Default Value: 0
3	FULL	RX FIFO is full. Note that received data frames are lost when the RX FIFO is full. Dependent on CTRL.BYTE_MODET:
		BYTE_MODE is '0': # entries == FF_DATA_NR/2.
		BYTE_MODE is '1': # entries == FF_DATA_NR.
		Only used in FIFO mode.
		Default Value: 0
2	NOT_EMPTY	RX FIFO is not empty.
		Only used in FIFO mode.
		Default Value: 0
0	TRIGGER	More entries in the RX FIFO than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTL.
		Only used in FIFO mode.
		Default Value: 0

SCB0_INTR_RX_SET

Receiver Interrupt Set Request Register Address: 0x40080FC4

Bits	7	6	5	4	3	2	1	0
SW Access	RW1S	RW1S	RW1S	None	RW1S	RW1S	None	RW1S
HW Access	Α	Α	Α	None	Α	Α	None	Α
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGER
		T			T	T	T	ı
Bits	15	14	13	12	11	10	9	8
SW Access		None				RW1S	RW1S	RW1S
HW Access		None				А	Α	Α
Name		None [15:12]				BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR
				_				
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	+	55						
		None						
HW Access		None						
Name			None [31:24]					

Bits	Name	Description
11	BREAK_DETECT	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
10	BAUD_DETECT	Write with '1' to set corresponding bit in interrupt status register.
9	PARITY_ERROR	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
8	FRAME_ERROR	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
7	BLOCKED	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
6	UNDERFLOW	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
5	OVERFLOW	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
3	FULL	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
2	NOT_EMPTY	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
0	TRIGGER	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0

$SCB0_INTR_RX_MASK$

Receiver Interrupt Mask Register

Address: 0x40080FC8 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW	RW	None	RW	RW	None	RW
HW Access	R	R	R	None	R	R	None	R
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGER
	1			I	<u> </u>	I	I	1
Bits	15	14	13	12	11	10	9	8
SW Access		None				RW	RW	RW
HW Access		None				R	R	R
Name		None [15:12]				BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access				No	ne			

None [31:24]

Bits	Name	Description
11	BREAK_DETECT	Mask bit for corresponding bit in interrupt request register. Default Value: 0
10	BAUD_DETECT	Mask bit for corresponding bit in interrupt request register. Default Value: 0
9	PARITY_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	FRAME_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
7	BLOCKED	Mask bit for corresponding bit in interrupt request register. Default Value: 0
6	UNDERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
5	OVERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
3	FULL	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	NOT_EMPTY	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	TRIGGER	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB0_INTR_RX_MASKED

Receiver Interrupt Masked Request Register Address: 0x40080FCC

Bits	7	6	5	4	3	2	1	0						
SW Access	R	R	R	None	R	R	None	R						
HW Access	W	W	W	None	W	W	None	W						
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGEF						
		l	l	l		l		1 _						
Bits	15	14	13	12	11	10	9	8						
SW Access		None				R	R	R						
HW Access		None				W	W	W						
Name		None [15:12]				BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR						
		I	I	I			I	1						
Bits	23	22	21	20	19	18	17	16						
SW Access				No	one									
HW Access				No	one									
Name				None	[23:16]									
Dia.				1 00										
Bits	31	30	29	28	27	26	25	24						
SW Access				No	one									
HW Access		None												
Name				None	[31:24]		None [31:24]							

Bits	Name	Description
11	BREAK_DETECT	Logical and of corresponding request and mask bits. Default Value: 0
10	BAUD_DETECT	Logical and of corresponding request and mask bits. Default Value: 0
9	PARITY_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
8	FRAME_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
7	BLOCKED	Logical and of corresponding request and mask bits. Default Value: 0
6	UNDERFLOW	Logical and of corresponding request and mask bits. Default Value: 0
5	OVERFLOW	Logical and of corresponding request and mask bits. Default Value: 0
3	FULL	Logical and of corresponding request and mask bits. Default Value: 0
2	NOT_EMPTY	Logical and of corresponding request and mask bits. Default Value: 0
0	TRIGGER	Logical and of corresponding request and mask bits. Default Value: 0

Generic Control Register Address: 0x40090000 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	1	No	one	- I	RW					
HW Access		No	one		R					
Name		None	e [7:4]			OVS	[3:0]			
			•					•		
Bits	15	14	13	12	11	10	9	8		
SW Access		No	one		RW	RW	RW	RW		
HW Access		None R						R		
Name		None [15:12] BYTE_ EZ_MODE MODE						EC_AM_ MODE		
Bits	23	22	21	20	19	18	17	16		
SW Access	<u> </u>			lone			RW	RW		
HW Access			N	lone			R	R		
Name			None	[23:18]			BLOCK	ADDR_ ACCEPT		
Bits	31	30	29	28	27	26	25	24		
SW Access	RW	None 20 20 20 20 20 20 20 20 20 20 20 20 20						W		
HW Access	R									
Name	ENABLED									

Bits	Name	
31	ENABLED	

25:24

Description

SCB block is enabled ('1') or not ('0'). The proper order in which to initialize SCB is as follows:

- Program protocol specific information using SPI_CTRL, UART_CTRL (and UART_TX_CTRL and UART_RX_CTRL) or I2C_CTRL registers. This includes selection of a submode, master/slave functionality and transmitter/receiver functionality when applicable.
- Program generic transmitter (TX_CTRL) and receiver (RX_CTRL) information. This includes enabling of the transmitter and receiver functionality.
- Program transmitter FIFO (TX_FIFO_CTRL) and receiver FIFO (RX_FIFO_CTRL) information.
- Program CTRL register to enable SCB, select the specific operation mode and oversampling factor.

When this block is enabled, no control information should be changed. Changes should be made

AFTER disabling this block, e.g. to modify the operation mode (from I^2C to SPI) or to go from externally to internally clocked. The change takes effect after the block is re-enabled. Note that disabling the block will cause re-initialization of the design and associated state is lost (e.g. FIFO content).

Default Value: 0

MODE Default Value: 3

0x0: I2C: 0x1: SPI: 0x2: UART: 17 BLOCK

Only used in externally clocked mode. If the externally clocked logic and the internal CPU accesses to EZ memory coincide/collide, this bit determines whether the CPU access should block and result in bus wait states (BLOCK is '1') or not (BLOCK is '0'). IF BLOCK is 0 and the accesses collide, CPU read operations return 0xffff:ffff and CPU write operations are ignored. Colliding accesses are registered as interrupt causes: INTR_TX.BLOCKED and INTR_RX.BLOCKED.

Default Value: 0

16 ADDR_ACCEPT

Determines whether a received matching address is accepted in the RX FIFO ('1') or not ('0'). In I²C mode, this field is used to allow the slave to put the received slave address or general call address in the RX FIFO. Note that a received matching address is put in the RX FIFO when this bit is '1' for both I²C read and write transfers.

In multi-processor UART receiver mode, this field is used to allow the receiver to put the received address in the RX FIFO. Note: non-matching addresses are never put in the RX FIFO.

Default Value: 0

11 BYTE_MODE

Default Value: 0

10 EZ_MODE

Non EZ mode ('0') or EZ mode ('1').

In EZ mode, a meta protocol is applied to the serial interface protocol. This meta protocol adds meaning to the data frames transferred by the serial interface protocol: a data frame can represent a memory address, a write memory data element or a read memory data element. EZ mode is only used for synchronous serial interface protocols: SPI and I²C. In SPI mode, only Motorola submode (all Motorola modes: 0, 1, 2, 3) is supported and the transmitter should use continuous data frames; i.e. data frames not separated by slave deselection. This mode is only applicable to slave functionality. In EZ mode, the slave can read from and write to an addressable memory structure of 32 bytes. In EZ mode, data frames should 8-bit in size and should be transmitted and received with the Most Significant Bit (MSB) first.

In UART mode this field should be '0'.

Default Value: 0

9 EC OP MODE

This field specifies the clocking for the SCB block

'0': Internally clocked mode

'1': externally clocked mode

In internally clocked mode, the serial interface protocols run off the SCB clock. In externally clocked mode, the serial interface protocols run off the clock as provided by the serial interface.

Externally clocked operation mode is only used for synchronous serial interface protocols (SPI and I^2C) in slave mode AND EZ mode. In SPI mode, only Motorola submode (all Motorola modes: 0, 1, 2, 3) is supported. The maximum SPI slave, EZ mode bitrate is 48 Mbps (transmission and IO delays outside the IP will degrade the effective bitrate).

In UART mode this field should be '0'.

Default Value: 0

8 EC_AM_MODE

This field specifies the clocking for the address matching (I^2C) or slave selection detection logic (SPI)

'0': Internally clocked mode

'1': Externally clocked mode

In internally clocked mode, the serial interface protocols run off the SCB clock. In externally clocked mode, the serial interface protocols run off the clock as provided by the serial interface.

The clocking for the rest of the logic is determined by CTRL.EC_OP_MODE.

Externally clocked mode is only used for synchronous serial interface protocols (SPI and I^2C) in slave mode. In SPI mode, only Motorola submode (all Motorola modes: 0, 1, 2, 3) is supported.

In UART mode this field should be '0'.

3:0 OVS

Serial interface bit period oversampling factor expressed in SCB clock cycles. Used for SPI and UART functionality. OVS + 1 SCB clock cycles constitute a single serial interface clock/bit cycle. This field is NOT used in externally clocked mode. If OVS is odd, the oversampling factor is even and the low and high phase of the interface clock period are the same. If OVS is even, the oversampling factor is odd and the low and high phase can differ by 1 SCB clock period.

In SPI master mode, the valid range is [3, 15]. At an SCB frequency of 48 MHz, the maximum SPI bit rate is 12 Mbps, assuming ideal (0 ns) IO cell and routing (chip and board) delay. The calculated maximum bit rate decreases, when realistic chip and routing delays are taken into account. The effective system bit rate is dependent on the external SPI slave that we communicate with. If the SPI output clock to SPI MISO input round trip delay is significant (multiple SPI output clock cycles), it may be necessary to increase OVS and/or to set SPI CTRL.LATE MISO SAMPLE to '1' to achieve the maximum possible system bit rate.

In SPI slave mode, the OVS field is NOT used. However, there is a frequency requirement for the SCB clock wrt. the SPI input clock (IF) on the interface to guarantee functional correct behavior. This requirement is expressed as a ratio: SCB clock/IF clock. The ratio is dependent on the setting of RX_CTRL.MEDIAN and the external SPI master's capability to support "late MISO sample" functionality (similar to our SPI master functionality represented by SPI CTRL.LATE MISO SAMPLE):

- MEDIAN is '0' and external SPI master has NO "late MISO sample functionality": SCB clock/IF clock \geq 6. At a SCB frequency of 48 MHz, the maximum bit rate is 8 Mbps.
- MEDIAN is '0' and external SPI master has "late MISO sample functionality": SCB clock/IF clock ≥ 3.
 At a SCB frequency of 48 MHz, the maximum bit rate is 16 Mbps.
- MEDIAN is '1' and external SPI master has NO "late MISO sample functionality": SCB clock/IF clock \geq 8. At a SCB frequency of 48 MHz, the maximum bit rate is 6 Mbps.
- MEDIAN is '1' and external SPI master has "late MISO sample functionality": SCB clock/IF clock ≥4.
 At a SCB frequency of 48 MHz, the maximum bit rate is 12 Mbps.

As discussed earlier, the calculated maximum bit rate decreases, when realistic chip and routing delays are taken into account. In UART standard submode (including LIN), the valid range is [7, 15]. In UART Smart-Card submode, the valid range is [7, 15].

In UART TX IrDA submode this field indirectly specifies the oversampling. The oversampling determines the interface clock/bit cycle and the width of the pulse. Only normal transmission mode is supported, the pulse is roughly 3/16 of the bit period (for all bit rates). There is only one valid OVS value:

- 0: 16 times oversampling

SCB clock frequency of 16*115.2 KHz for 115.2 Kbps. SCB clock frequency of 16*57.6 KHz for 57.6 Kbps. SCB clock frequency of 16*38.4 KHz for 38.4 Kbps. SCB clock frequency of 16*19.2 KHz for 19.2 Kbps. SCB clock frequency of 16*9.6 KHz for 9.6 Kbps. SCB clock frequency of 16*2.4 KHz for 2.4 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps.

- all other values are not used in normal mode.

In UART RX IrDA submode (1.2, 2.4, 9.6, 19.2, 38.4, 57.6 and 115.2 Kbps) this field indirectly specifies the oversampling. The oversampling determines the interface clock/bit cycle and the width of the pulse. In normal transmission mode, this pulse is roughly 3/16 of the bit period (for all bit rates). In low power transmission mode, this pulse is potentially smaller (down to 1.62 μ s typical and 1.41 μ s minimal) than 3/16 of the bit period (for < 115.2 Kbps bitrates). Pulse widths greater or equal than two SCB clock cycles are guaranteed to be detected by the receiver. Pulse widths less than two SCB clock cycles and greater or equal than one SCB clock cycle may be detected by the receiver. Pulse widths less than one SCB clock cycle will not be detected by the receiver. RX_CTRL.MEDIAN should be set to '1' for IrDA receiver functionality. The SCB clock (as provided by the programmable clock block) and the oversampling together determine the IrDA bitrate. Normal mode, OVS field values (with the required SCB clock frequency):

- 0: 16 times oversampling.

SCB clock frequency of 16*115.2 KHz for 115.2 Kbps. SCB clock frequency of 16*57.6 KHz for 57.6 Kbps. SCB clock frequency of 16*38.4 KHz for 38.4 Kbps. SCB clock frequency of 16*19.2 KHz for 19.2 Kbps. SCB clock frequency of 16*9.6 KHz for 9.6 Kbps. SCB clock frequency of 16*2.4 KHz for 2.4 Kbps. SCB clock frequency of 16*2.4 KHz for 1.2 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps.

- all other values are not used in normal mode.

Low power mode, OVS field values (with the required SCB clock frequency):

- 0: 16 times oversampling.
 - SCB clock frequency of 16*115.2 KHz for 115.2 Kbps.
- 1: 32 times oversampling.
 - SCB clock frequency of 32*57.6 KHz for 57.6 Kbps.
- 2: 48 times oversampling.
 - SCB clock frequency of 48*38.4 KHz for 38.4 Kbps.

SCB1_CTRL (Continued)

- 3: 96 times oversampling.SCB clock frequency of 96*19.2 KHz for 19.2 Kbps.
- 4: 192 times oversampling.
 SCB clock frequency of 192*9.6 KHz for 9.6 Kbps.

– 5: 768 times oversampling. SCB clock frequency of 768*2.4 KHz for 2.4 Kbps.

- 6: 1536 times oversampling.

SCB clock frequency of 1536*1.2 KHz for 1.2 Kbps.

- all other values are not used in low power mode.

SCB1_STATUS

Generic Status Register Address: 0x40090004 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None								
HW Access		None								
Name		None [7:1] EC_BU								
		1			1		,			
Bits	15	14	13	12	11	10	9	8		
SW Access				No	one					
HW Access		None								
Name				None	[15:8]					
		1			1	_	,			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
				1	1		_			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access		None								
Name				None	[31:24]					

Bits Name
0 EC_BUSY

Description

Indicates whether the externally clocked logic is potentially accessing the EZ memory (this is only possible in EZ mode). This bit can be used by SW to determine whether it is safe to issue a SW access to the EZ memory (without bus wait states (a blocked SW access) or bus errors being generated). Note that the INTR_TX.BLOCKED and INTR_RX.BLOCKED interrupt causes are used to indicate whether a SW access was actually blocked by externally clocked logic.

Default Value: Undefined

SPI Control Register Address: 0x40090020 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	No	None		RW	RW	RW	RW	RW
HW Access	No	ne	R	R	R	R	R	R
Name	None	e [7:6]	SCLK_CON- TINUOUS	LATE_MISO _SAMPLE	CPOL	СРНА	SELECT PRECEDE	CONTINU- OUS
Bits	15	14	13	12	11	10	9	8
SW Access	1	None				RW	RW	RW
HW Access			one		RW R	R	R	R
Name		None [15:12]				SSEL_ POLARITY2	SSEL POLARITY1	SSEL_ POLARITY0
D''-	1 00	1 00			10	10	1 4-	10
Bits	23	22	21	20	19	18	17	16
SW Access				None				RW
HW Access				None				R
Name				None [23:17]				LOOPBACK
Bits	31	30	29	28	27	26	25	24
SW Access	RW		None		RW F			W
HW Access	R							R
Name	MASTER_		None [30:28]		SLAVE_SEL	ECT [27:26]	MODE	[25:24]

Bits	Name	Description
31	MASTER_MODE	Master ('1') or slave ('0') mode. In master mode, transmission will commence on availability of data frames in the TX FIFO. In slave mode, when selected and there is no data frame in the TX
		FIFO, the slave will transmit all '1's. In both master and slave modes, received data frames will be lost if the RX FIFO is full.
		Default Value: 0
27:26	SLAVE_SELECT	Selects one of the four outgoing SPI slave select signals: - 0: Slave 0, SPI_SELECT[0]. - 1: Slave 1, SPI_SELECT[1]. - 2: Slave 2, SPI_SELECT[2]. - 3: Slave 3, SPI_SELECT[3]. Only used in master mode. SCB block should be disabled when changes are made to this field. Default Value: 0
25:24	MODE	Submode of SPI operation (3: Reserved). Default Value: 3

0x0: SPI_MOTOROLA:

SPI Motorola submode. In master mode, when not transmitting data (Slave SELECT is inactive), SCLK is stable at CPOL. In slave mode, when not selected, SCLK is ignored; i.e. it can be either stable or clocking. In master mode, when there is no data to transmit (TX FIFO is empty), Slave SELECT is inactive.

0x1: SPI_TI:

MODE

SPI Texas Instruments submode. In master mode, when not transmitting data, SCLK is stable at '0'. In slave mode, when not selected, SCLK is ignored; i.e. it can be either stable or clocking. In master mode, when there is no data to transmit (TX FIFO is empty), Slave SELECT is inactive; i.e. no pulse is generated.

_	_	
		0x2: SPI NS:
		SPI National Semiconducturs submode. In master mode, when not transmitting data, SCLK is stable at '0'. In slave mode, when not selected, SCLK is ignored; i.e. it can be either stable or clocking. In master mode, when there is no data to transmit (TX FIFO is empty), Slave SELECT is inactive.
16	LOOPBACK	Local loopback control (does NOT affect the information on the pins). Only used in master mode. Not used in National Semiconductors submode. '0': No local loopback
		'1': the SPI master MISO line is connected to the SPI master MOSI line. In other words, in loop-back mode the SPI master receives on MISO what it transmits on MOSI. Default Value: 0
11	SSEL_POLARITY3	Slave select polarity. SSEL_POLARITY3 applies to the outgoing SPI slave select signal 3 (master mode). Default Value: 0
10	SSEL_POLARITY2	Slave select polarity. SSEL_POLARITY2 applies to the outgoing SPI slave select signal 2 (master mode).
		Default Value: 0
9	SSEL_POLARITY1	Slave select polarity. SSEL_POLARITY1 applies to the outgoing SPI slave select signal 1 (master mode). Default Value: 0
	COEL BOLABITY	
8	SSEL_POLARITY0	Slave select polarity. SSEL_POLARITY0 applies to the outgoing SPI slave select signal 0 (master mode) and to the incoming SPI slave select signal (slave mode). For Motorola and National Semiconductors submodes:
		'0': slave select is low/"0' active.
		'1': slave select is high/'1' active. For Texas Instruments submode:
		'0': high/"1' active precede/coincide pulse.
		'1': low/'0' active precede/coincide pulse.
		Default Value: 0
5	SCLK_CONTINUOUS	Only applicable in master mode.
		'0': SCLK is generated, when the SPI master is enabled and data is transmitted.
		'1': SCLK is generated, when the SPI master is enabled. This mode is useful for slave devices that use SCLK for functional operation other than just SPI functionality. Default Value: 0
4	LATE_MISO_SAMPLE	Changes the SCLK edge on which MISO is captured. Only used in master mode.
		When '0', the default applies (for Motorola as determined by CPOL and CPHA, for Texas Instruments on the falling edge of SCLK and for National Semiconductors on the rising edge of SCLK).
		When '1', the alternate clock edge is used (which comes half a SPI SCLK period later). Late sampling addresses the round trip delay associated with transmitting SCLK from the master to the slave and transmitting MISO from the slave to the master. Default Value: 0
3	CPOL	Indicates the clock polarity. Only used in SPI Motorola submode. This field, together with the CPHA field, indicates when MOSI data is driven and MISO data is captured:
		- CPOL is 0: SCLK is 0 when not transmitting data.
		- CPOL is 1: SCLK is 1 when not transmitting data.
		Default Value: 0
2	СРНА	Only applicable in SPI Motorola submode. Indicates the clock phase. This field, together with the CPOL field, indicates when MOSI data is driven and MISO data is captured:
		 Motorola mode 0. CPOL is 0, CPHA is 0: MOSI is driven on a falling edge of SCLK. MISO is captured on a rising edge of SCLK.
		 Motorola mode 1. CPOL is 0, CPHA is 1: MOSI is driven on a rising edge of SCLK. MISO is captured on a falling edge of SCLK.
		 Motorola mode 2. CPOL is 1, CPHA is 0: MOSI is driven on a rising edge of SCLK. MISO is captured on a falling edge of SCLK.
		 Motorola mode 3. CPOL is 1, CPHA is 1: MOSI is driven on a falling edge of SCLK. MISO is captured on a rising edge of SCLK.
		Default Value: 0

SCB1 SPI CTRL (Continued)

0

SELECT_PRECEDE Only used in SPI Texas Instruments' submode.

When '1', the data frame start indication is a pulse on the Slave SELECT line that precedes the

transfer of the first data frame bit.

When '0', the data frame start indication is a pulse on the Slave SELECT line that coincides with

the transfer of the first data frame bit.

Default Value: 0
CONTINUOUS Continuous SPI

Continuous SPI data transfers enabled ('1') or not ('0'). This field is used in master mode. In slave mode, both continuous and non-continuous SPI data transfers are supported independent of this

field.

When continuous transfers are enabled individual data frame transfers are not necessarily separated by slave deselection (as indicated by the level or pulse on the SELECT line): if the TX

FIFO has multiple data frames, data frames are send out without slave deselection.

When continuous transfers are not enabled individual data frame transfers are always separated by slave deselection: independent of the availability of TX FIFO data frames, data frames are sent

out with slave deselection.

SCB1_SPI_STATUS

SPI Status Register Address: 0x40090024 Retention: Not Retained

	1	1	5	4	3	2	1	1			
Bits	7	6	1	0							
SW Access				R	R						
HW Access		None W W									
Name			None	7:2]			SPI_EC_ BUSY	BUS_BUSY			
Dit -	1 4-										
Bits	15	14	13	12	11	10	9	8			
SW Access				ŀ	7						
HW Access		W									
Name				CURR_EZ_	ADDR [15:8]						
	_										
Bits	23	22	21	20	19	18	17	16			
SW Access				ı	7						
HW Access				١	V						
Name				BASE_EZ_A	ADDR [23:16]						
	1	1			1	1		1			
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access		None									
Name				None	[31:24]						

Bits	Name	Description
23:16	BASE_EZ_ADDR	SPI base EZ address. Address as provided by a SPI write transfer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable, as clock domain synchronization is not performed in the design. Default Value: Undefined
15:8	CURR_EZ_ADDR	SPI current EZ address. Current address pointer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable (during an ongoing transfer when SPI_EC_BUSY is '1'), as clock domain synchronization is not performed in the design. Default Value: Undefined
1	SPI_EC_BUSY	Indicates whether the externally clocked logic is potentially accessing the EZ memory and/or updating BASE_ADDR or CURR_ADDR (this is only possible in EZ mode). This bit can be used by SW to determine whether BASE_ADDR and CURR_ADDR are reliable. Default Value: Undefined
0	BUS_BUSY	SPI bus is busy. The bus is considered busy ('1') during an ongoing transaction. For Motorola and National submodes, the busy bit is '1', when the slave selection (low active) is activated. For TI submode, the busy bit is '1' from the time the preceding/coinciding slave select (high active) is activated for the first transmitted data frame, till the last MOSI/MISO bit of the last data frame is transmitted.
		Default Value: Undefined

UART Control Register Address: 0x40090040 Retention: Retained

		ı	ı	ı	1	1		1		
Bits	7	6	5	4	3	2	1	0		
SW Access		None								
HW Access		None								
Name				None	e [7:0]					
	_				1			_		
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access		None								
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				None				RW		
HW Access				None				R		
Name				None [23:17]				LOOPBACK		
		ı	ı	T	ı	1	1			
Bits	31	30	29	28	27	26	25	24		
SW Access		None RW								
HW Access		None R								

Bits Name Description

MODE

LOOPBACK

Name

25:24

16

Submode of UART operation (3: Reserved)

None [31:26]

Default Value: 3 **0x0: UART_STD:**

Standard UART submode.

0x1: UART SMARTCARD:

SmartCard (ISO7816) submode. Support for negative acknowledgement (NACK) on the receiver side and retransmission on the transmitter side.

MODE [25:24]

0x2: UART_IRDA:

Infrared Data Association (IrDA) submode. Return to Zero modulation scheme. In this mode, the oversampling factor should be 16, that is OVS should be set to 15.

Local loopback control (does NOT affect the information on the pins).

0: Loopback is not enabled

1: UART_TX is connected to UART_RX. UART_RTS is connected to UART_CTS. This allows a SCB

UART transmitter to communicate with its receiver counterpart.

SCB1_UART_TX_CTRL

UART Transmitter Control Register Address: 0x40090044

Bits	7	6	5	4	3	2	1	0	
SW Access	None		RW	RW	None		RW		
HW Access	No	ne	R	R	None		R		
Name	None [7:6] PARITY PARITY None STOP_B				STOP_BITS [2	2:0]			
Bits	15	14	13	12	11	10	9	8	
SW Access				None				RW	
HW Access		None							
Name		None [15:9]						RETRY_ ON_NACK	
Bits	23	22	21	20	19	18	17	16	
SW Access				No.	ne				
HW Access				No	one				
Name				None	[23:16]				
			ı	T	1	ı	1	_	
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access		None							
Name				None	[31:24]				

Bits 8	Name RETRY_ON_NACK	Description When '1', a data frame is retransmitted when a negative acknowledgement is received. Only applicable to the SmartCard submode. Default Value: 0
5	PARITY_ENABLED	Parity generation enabled ('1') or not ('0'). Only applicable in standard UART submodes. In SmartCard submode, parity generation is always enabled through hardware. In IrDA submode, parity generation is always disabled through hardware. Default Value: 0
4	PARITY	Parity bit. When '0', the transmitter generates an even parity. When '1', the transmitter generates an odd parity. Only applicable in standard UART and SmartCard submodes. Default Value: 0
2:0	STOP_BITS	Stop bits. STOP_BITS + 1 is the duration of the stop period in terms of halve bit periods. Valid range is [1, 7]; i.e. a stop period should last at least one bit period. Default Value: 2

SCB1_UART_RX_CTRL

UART Receiver Control Register

Address: 0x40090048 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None	RW	RW	RW	None	RW		
HW Access	None	R	R	R	None	R		
Name	None	POLARITY	PARITY_ ENABLED	PARITY	None	STOP_BITS [2:0]		
Bits	15	14	13	12	11	10	9	8

Bits	15	14	13	12	11	10	9	8
SW Access	None		RW	RW	None	RW	RW	RW
HW Access	None		R	R	None	R	R	R
Name	None [15:14]		SKIP_START	LIN_MODE	None	MP_MODE	DROP_ON_ FRAME_ ERROR	DROP_ON_ PARITY_ ERROR

Bits	23	22	21	20	19 18 17				
SW Access		No	ne		RW				
HW Access		No	ne		R				
Name		None [23:20]		BREAK_WIDTH [19:16]				

Bits	31 30 29 28 27 26 25 2 ⁴							24		
SW Access		None								
HW Access	None									
Name		None [31:24]								

Bits Name 19:16 BREAK_WIDTH

Description

Break width. BREAK_WIDTH + 1 is the minimum width in bit periods of a break. During a break the transmitted/received line value is '0'. This feature is useful for standard UART submode and LIN submode ("break field" detection). Once, the break is detected, the INTR_RX_BREAK_DETECT bit is set to '1'. Note that break detection precedes baud rate detection, which is used to synchronize/refine the receiver clock to the transmitter clock. As a result, break detection operates with an unsynchronized/unrefined receiver clock. Therefore, the receiver's definition of a bit period is imprecise and the setting of this field should take this imprecision into account. The LIN standard also accounts for this imprecision: a LIN start bit followed by 8 data bits allows for up to 9 consecutive '0' bit periods during regular transmission, whereas the LIN break detection should be at least 13 consecutive '0' bit periods. This provides for a margin of 4 bit periods. Therefore, the default value of this field is set to 10, representing a minimal break field with of 10+1 = 11 bit periods; a value in between the 9 consecutive bit periods of a regular transmission and the 13 consecutive bit periods of a break field. This provides for slight imprecisions of the receiver clock wrt. the transmitter clock. There should not be a need to program this field to any value other than its default value.

13	SKIP START	Only applicable in standard UART submode. When '1', the receiver skips start bit detection for the first
	G. K.I G / W II.	received data frame. Instead, it synchronizes on the first received data frame bit, which should be a '1'. This functionality is intended for wake up from DeepSleep when receiving a data frame. The transition from idle ('1') to START ('0') on the RX line is used to wake up the CPU. The transition detection (and the associated wake up functionality) is performed by the GPIO2 IP. The woken up CPU will enable the SCB's UART receiver functionality. Once enabled, it is assumed that the START bit is ongoing (the CPU wakeup and SCB enable time should be less than the START bit period). The SCB will synchronize to a '0' to '1' transition, which indicates the first data frame bit is received (first data frame bit should be '1'). After synchronization to the first data frame bit, the SCB will resume normal UART functionality: subsequent data frames will be synchronized on the receipt of a START bit. Default Value: 0
12	LIN_MODE	Only applicable in standard UART submode. When '1', the receiver performs break detection and baud rate detection on the incoming data. First, break detection counts the amount of bit periods that have a line value of '0'. BREAK_WIDTH specifies the minimum required amount of bit periods. Successful break detection sets the INTR_RX.BREAK_DETECT interrupt cause to '1'. Second, baud rate detection counts the amount of peripheral clock periods that are use to receive the synchronization byte (0x55; least significant bit first). The count is available through UART_RX_STATUS.BR_COUNTER. Successful baud rate detection sets the INTR_RX.BAUD_DETECT interrupt cause to '1' (BR_COUNTER is reliable). This functionality is used to synchronize/refine the receiver clock to the transmitter clock. The receiver software can use the BR_COUNTER value to set the right IP clock (from the programmable clock IP) to guarantee successful receipt of the first LIN data frame (Protected Identifier Field) after the synchronization byte. Default Value: 0
10	MP_MODE	Multi-processor mode. When '1', multi-processor mode is enabled. In this mode, RX_CTRL.DATA_WIDTH should indicate a 9-bit data frame. In multi-processor mode, the 9th received bit of a data frame separates addresses (bit is '1') from data (bit is '0'). A received address is matched with RX_MATCH.DATA and RX_MATCH.MASK. In the case of a match, sub-sequent received data are sent to the RX FIFO. In the case of NO match, subsequent received data are dropped.
	DDOD ON	Default Value: 0
9	DROP_ON_ FRAME_ERROR	Behavior when an error is detected in a start or stop period. When '0', received data is sent to the RX FIFO.
	_	When '1', received data is dropped and lost. Default Value: 0
8	DROP ON	Behavior when a parity check fails.
· ·	PARITY_ERROR	When '0', received data is sent to the RX FIFO.
		When '1', received data is dropped and lost.
		Only applicable in standard UART and SmartCard submodes (negatively acknowledged SmartCard data frames may be dropped with this field). Default Value: 0
6	POLARITY	
6	FOLANIT	Inverts incoming RX line signal. Inversion is after local loopback. This functionality is intended for IrDA receiver functionality. Default Value: 0
5	PARITY_ENABLED	Parity checking enabled ('1') or not ('0'). Only applicable in standard UART submode. In SmartCard submode, parity checking is always enabled through hardware. In IrDA submode, parity checking is always disabled through hardware. Default Value: 0
4	PARITY	Parity bit. When '0', the receiver expects an even parity. When '1', the receiver expects an odd parity. Only applicable in standard UART and SmartCard submodes. Default Value: 0
2:0	STOP_BITS	Stop bits. STOP_BITS + 1 is the duration of the stop period in terms of halve bit periods. Valid range is [1, 7]; i.e. a stop period should last at least one bit period. If STOP_BITS is '1', stop bits error detection is NOT performed. If STOP_BITS is in [2, 7], stop bits error detection is performed and the associated interrupt cause INTR_RX.FRAME_ERROR is set to '1' if an error is detected. In other words, the receiver supports data frames with a 1 bit period stop bit sequence, but requires at least 1.5 bit period stop bit sequences to detect errors. This limitation is due to possible transmitter and receiver clock skew that prevents the design from doing reliable stop bit detection for short (1 bit bit period) stop bit sequences. Note that in case of a stop bits error, the successive data frames may get lost as the receiver needs to resynchronize its start bit detection. The amount of lost data frames depends on both the amount of stop bits, the idle ('1') time between data frames and the data frame value. Default Value: 2

$SCB1_UART_RX_STATUS$

UART Receiver Status Register

Address: 0x4009004C Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			•	F	3	•	•	•	
HW Access				V	V				
Name				BR_COUN	NTER [7:0]				
Dite	45	44	40	40	44	10	1 0		
Bits	15	14	13	12	11	10	9	8	
SW Access	None R								
HW Access		No	one		W				
Name	None [15:12] Bf						NTER [11:8]		
Bits	23	22	21	20	19	18	17	16	
	20	22	21			19 18 17 16			
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access			<u> </u>	No.	ne		1		
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 11:0 BR_COUNTER

Description

Amount of peripheral clock periods that constitute the transmission of a 0x55 data frame (sent least significant bit first) as determined by the receiver. BR_COUNTER / 8 is the amount of peripheral clock periods that constitute a bit period. This field has valid data when INTR_RX.BAUD_DETECT is set to '1'.

Default Value: Undefined

SCB1_UART_FLOW_CTRL

UART Flow Control Register Address: 0x40090050

			ı			1				
Bits	7	6	5	4	3	2	1	0		
SW Access		No	ne		RW					
HW Access		No	ne		R					
Name	None [7:4] TRIGGER_LEVEL [3:0]									
Bits	15 14 13 12 11 10 9 8									
DILS	15	14	13	12	11	10	9	8		
SW Access	15	14	13	12 No		10	9	8		
	15	14	13		ne	10	9	8		

Bits	23	22	21	20	19	18	17	16		
SW Access	None									
HW Access		None								
Name				None [23:17]				RTS_ POLARITY		

Bits	31	25	24					
SW Access		RW	RW					
HW Access			R	R				
Name			None	[31:26]			CTS_ ENABLED	CTS_ POLARITY

Bits	Name	Description
25	CTS_ENABLED	Enable use of CTS input signal by the UART transmitter:
	_	'0': Disabled. The UART transmitter ignores the CTS input signal and transmits when a data frame is available for transmission in the TX FIFO or the TX shift register.
		'1': Enabled. The UART transmitter uses CTS input signal to qualify the transmission of data. It transmits when CTS input signal is active and a data frame is available for transmission in the TX FIFO or the TX shift register.
		If UART_CTRL.LOOPBACK is '1', the CTS input signal is driven by the RTS output signal locally in SCB (both signals are subjected to signal polarity changes are indicated by RTS_POLARITY and CTS_POLARITY).
		Default Value: 0
24	CTS_POLARITY	Polarity of the CTS input signal
		'0': CTS is active low;
		'1': CTS is active high;
		Default Value: 0
16	RTS_POLARITY	Polarity of the RTS output signal:
		'0': RTS is active low;
		'1': RTS is active high;
		During SCB reset (Hibernate system power mode), RTS output signal is '1'. This represents an inactive state assuming an active low polarity.
		Default Value: 0
3:0	TRIGGER_LEVEL	Trigger level. When the receiver FIFO has less entries than the amount of this field, a Ready To Send (RTS) output signal is activated. By setting this field to "0", flow control is effectively disabled (may be useful for debug purposes). Default Value: 0
		Doladit Valdo. 0

SCB1_I2C_CTRL

I²C Control Register Address: 0x40090060 Retention: Retained

SW Access RW RW HW Access R R Name LOW_PHASE_OVS [7:4] HIGH_PHASE_OVS [3:0]	Bits	7	6	5	4	3	2	1	0	
	SW Access		R	W		RW				
Name LOW_PHASE_OVS [7:4] HIGH_PHASE_OVS [3:0]	HW Access		F	3		R				
	Name		LOW_PHAS	E_OVS [7:4]		HIGH_PHASE_OVS [3:0]				
						·				
Bits 15 14 13 12 11 10 9 8	Bits	15	14	13	12	11	10	9	8	

Bits	15	14	13	12	11	10	9	8
SW Access	RW	RW	RW	RW	RW	None	RW	RW
HW Access	R	R	R	R	R	None	R	R
Name	S_NOT_ READY_ DATA_NACK	S_NOT_ READY_ ADDR_ NACK	S_READY_ DATA_ACK	S_READY_ ADDR_ACK	S_ GENERAL_ IGNORE	None	M_NOT_ READY_ DATA_NACK	M_READY_ DATA_ACK
Dir.		22	0.1		40	40	4=	40
Bits	23	22	21	20	19	18	17	16

Bits	23	22	21	20	19	18	17	16
SW Access	None							RW
HW Access	None						R	
Name	None [23:17]						LOOPBACK	

Bits	31	30	29	28	27	26	25	24
SW Access	RW	RW	None					
HW Access	R	R	None					
Name	MASTER_ MODE	SLAVE_ MODE	None [29:24]					

Bits	Name	Description
31	MASTER_MODE	Master mode enabled ('1') or not ('0'). Note that both master and slave modes can be enabled at the same time. This allows the IP to address itself.
		Default Value: 0
30	SLAVE_MODE	Slave mode enabled ('1') or not ('0').
		Default Value: 0
16	LOOPBACK	Local loopback control (does NOT affect the information on the pins). Only applicable in master/slave mode.
		When '0', no loopback
		When '1', loopback is enabled internally in the peripheral, and as a result unaffected by other I ² C
		devices. This allows a SCB I ² C peripheral to address itself.
		Default Value: 0

15	S_NOT_READY_	Only used when:
	DATA_NACK	- non EZ mode
		Functionality is as follows:
		- 1: a received data element byte the slave is immediately NACK'd when the receiver FIFO is full.
		O: clock stretching is performed (till the receiver FIFO is no longer full). Default Value: 1.
	O NOT DEADY	Default Value: 1
14	S_NOT_READY_ ADDR_NACK	This field is used during an address match or general call address in internally clocked mode Only used when:
		 EC_AM_MODE is '0', EC_OP_MODE is '0', S_GENERAL_IGNORE is '0] and non EZ mode. Functionality is as follows:
		- 1: a received (matching) slave address is immediately NACK'd when the receiver FIFO is full.
		 0: clock stretching is performed (till the receiver FIFO is no longer full).
		For externally clocked logic (EC_AM is '1') on an address match or general call address (and S_GENERAL_IGNORE is '0'). Only used when (NOT used when EC_AM is '1' and EC_OP is '1' and address match and EZ mode):
		- EC_AM is '1' and EC_OP is '0'.
		 EC_AM is '1' and general call address match. EC_AM is '1' and non EZ mode. Functionality is as follows:
		<u>-</u>
		 1: a received (matching or general) slave address is always immediately NACK'd. There are two possibilities:
		1). the SCB clock is available (in Active system power mode) and it handles the rest of the current transfer. In this case the $\rm I^2C$ master will not observe the NACK.
		2).SCB clock is not present (in DeepSleep system power mode). In this case the I ² C master will observe the NACK and may retry the transfer in the future (which gives the internally clocked logic the time to wake up from DeepSleep system power mode).
		 - 0: clock stretching is performed (till the SCB clock is available). The logic will handle the ongoing transfer as soon as the clock is enabled.
		Default Value: 1
13	S_READY_ DATA_ACK	When '1', a received data element by the slave is immediately ACK'd when the receiver FIFO is not full. In EZ mode, this field should be set to '1'. Default Value: 1
12	S_READY_ ADDR_ACK	When '1', a received (matching) slave address is immediately ACK'd when the receiver FIFO is not full. In EZ mode, this field should be set to '1'. Default Value: 1
11	S_GENERAL_ IGNORE	When '1', a received general call slave address is immediately NACK'd (no ACK or clock stretching) and treated as a non matching slave address. This is useful for slaves that do not need any data supplied within the general call structure. Default Value: 1
9	M_NOT_READY_ DATA_NACK	When '1', a received data element byte the master is immediately NACK'd when the receiver FIFO is full. When '0', clock stretching is used instead (till the receiver FIFO is no longer full).
0	M DEADY	Default Value: 1
8	M_READY_ DATA_ACK	When '1', a received data element by the master is immediately ACK'd when the receiver FIFO is not full. Default Value: 1
7:4	LOW_PHASE_OVS	Serial I ² C interface low phase oversampling factor. LOW_PHASE_OVS + 1 SCB clock periods constitute the low phase of a bit period. The valid range is [7, 15] with input signal median filtering and [6, 15] without input signal median filtering. The field is only used in master mode. In slave mode, the field is NOT used. However, there is
		a frequency requirement for the SCB clock wrt. the regular (no stretching) interface (IF) low time to guarantee functionally correct behavior. With input signal median filtering, the IF low time should be \geq 8 SCB clock cycles and \leq 16 IP clock cycles. Without input signal median filtering, the IF low time should be \geq 7 SCB clock cycles and \leq 16 SCB clock cycles. Default Value: 8
3:0	HIGH_PHASE_OVS	Serial I ² C interface high phase oversampling factor. HIGH_PHASE_OVS + 1 SCB clock periods
		constitute the high phase of a bit period. The valid range is [5, 15] with input signal median filtering and [4, 15] without input signal median filtering.
		The field is only used in master mode. In slave mode, the field is NOT used. However, there is a frequency requirement for the SCB clock wrt. the regular interface (IF) high time to guarantee functional correct behavior. With input signal median filtering, the IF high time should be \geq 6 SCB clock cycles and \leq 16 SCB clock cycles. Without input signal median filtering, the IF high time should be \geq 5 SCB clock cycles and \leq 16 SCB clock cycles. Default Value: 8

SCB1_I2C_STATUS

I²C Status Register Address: 0x40090064 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None		R	R	None		R	R
HW Access	No	ne	W	W	No	one	W	W
Name	None [7:6]		M_READ	S_READ	None	e [3:2]	I2C_EC_ BUSY	BUS_BUSY
Bits	15	14	13	12	11	10	9	8
SW Access			•	F	3		1	•
HW Access		W						
Name	CURR_EZ_ADDR [15:8]							
Bits	23	22	21	20	19	18	17	16
SW Access				F	3		•	
HW Access				V	٧			
Name	BASE_EZ_ADDR [23:16]							
Bits	31 30 29 28 27 26 25 24							
SW Access								
		None						
HW Access		None						
Name		None [31:24]						

Bits	Name	Description
23:16	BASE_EZ_ADDR	I ² C slave base EZ address. Address as provided by an I ² C write transfer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable, as clock domain synchronization is not performed in the design.
		Default Value: Undefined
15:8	CURR_EZ_ADDR	I ² C slave current EZ address. Current address pointer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable (during an ongoing transfer when I2C_EC_BUSY is '1'), as clock domain synchronization is not performed in the design.
		Default Value: Undefined
5	M_READ	I ² C master read transfer ('1') or I ² C master write transfer ('0'). When the I ² C master is inactive/idle or transmitting START, REPEATED START, STOP or an address, this field is '0'.
		Default Value: 0
4	S_READ	I^2C slave read transfer ('1') or I^2C slave write transfer ('0'). When the I^2C slave is inactive/idle or receiving START, REPEATED START, STOP or an address, this field is '0'.
		Default Value: 0
1	I2C_EC_BUSY	Indicates whether the externally clocked logic is potentially accessing the EZ memory and/or updating BASE_ADDR or CURR_ADDR (this is only possible in EZ mode). This bit can be used by SW to
		determine whether BASE_ADDR and CURR_ADDR are reliable.
		Default Value: Undefined

0 BUS_BUSY

 I^2C bus is busy. The bus is considered busy ('1'), from the time a START is detected or from the time the SCL line is '0'. The bus is considered idle ('0'), from the time a STOP is detected. If SCB block is disabled, BUS_BUSY is '0'. After enabling the block, it takes time for the BUS_BUSY to detect a busy bus. This time is the maximum high time of the SCL line. For a 100 kHz interface frequency, this maximum high time may last roughly 5 μ s (half a bit period).

For single master systems, BUS_BUSY does not have to be used to detect an idle bus before a master starts a transfer using I2C_M_CMD.M_START (no bus collisions).

For multi-master systems, BUS_BUSY can be used to detect an idle bus before a master starts a transfer using I2C_M_CMD.M_START_ON_IDLE (to prevent bus collisions).

SCB1_I2C_M_CMD

I²C Master Command Register Address: 0x40090068

Address: 0x40090068 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None			RW	RW	RW	RW	RW
HW Access		None		RW1C	RW1C	RW1C	RW1C	RW1C
Name	None [7:5]			M_STOP	M_NACK	M_ACK	M_START_ ON_IDLE	M_START
Bits	15	14	13	12	11	10	9	8
SW Access		l		No	ne			
HW Access	None							
Name	None [15:8]							
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
		1		1	I		1	
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
4	M_STOP	When '1', attempt to transmit a STOP. When this action is performed, the hardware sets this field to '0'. This command has a higher priority than I2C_M_CMD.M_START: in situations where both a STOP and a REPEATED START could be transmitted, M_STOP takes precedence over M_START.
		Default Value: 0
3	M_NACK	When '1', attempt to transmit a negative acknowledgement (NACK). When this action is performed, the hardware sets this field to '0'.
		Default Value: 0
2	M_ACK	When '1', attempt to transmit an acknowledgement (ACK). When this action is performed, the hardware sets this field to '0'.
		Default Value: 0
1	M_START_ON_IDLE	When '1', transmit a START as soon as the bus is idle (I2C_STATUS.BUS_BUSY is '0', note that BUSY has a default value of '0'). For bus idle detection the hardware relies on STOP detection. As a result, bus idle detection is only functional after at least one I2C bus transfer has been detected on the bus (default/reset value of BUSY is '0') . A START is only transmitted when the master state machine is in the default state. When this action is performed, the hardware sets this field to '0'.
		Default Value: 0
0	M_START	When '1', transmit a START or REPEATED START. Whether a START or REPEATED START is transmitted depends on the state of the master state machine. A START is only transmitted when the master state machine is in the default state. A REPEATED START is transmitted when the master state machine is not in the default state, but is working on an ongoing transaction. The REPEATED START can only be transmitted after a NACK or ACK has been received for a transmitted data element or after a NACK has been transmitted for a received data element. When this action is performed, the hardware sets this field to '0'. Default Value: 0

SCB1_I2C_S_CMD

I²C Slave Command Register Address: 0x4009006C

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			No	ne			RW	RW			
HW Access		None RW1C									
Name			None	[7:2]			S_NACK	S_ACK			
Bits	15	14	13	12	11	10	9	8			
SW Access				No	one						
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne	I					
HW Access				No	one						
Name				None	[23:16]						
	<u> </u>		1		I	T	T				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	ne						
Name				None	[31:24]						

Bits	Name	Description
1	S_NACK	When '1', attempt to transmit a negative acknowledgement (NACK). When this action is performed, the hardware sets this field to '0'. In EZ mode, this field should be set to '0' (it is only to be used in non EZ mode). This command has a higher priority than I2C_S_CMD.S_ACK, I2C_CTRL.S_READY_ADDR_ACK or I2C_CTRL.S_READY_DATA_ACK. Default Value: 0
0	S_ACK	When '1', attempt to transmit an acknowledgement (ACK). When this action is performed, the hardware sets this field to '0'. In EZ mode, this field should be set to '0' (it is only to be used in non EZ mode). Default Value: 0

SCB1_I2C_CFG

I²C Configuration Register Address: 0x40090070 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None	I.	RW	None		RW		
HW Access		None		R	No	one	R		
Name	None [7:5]			SDA_IN_ FILT_SEL	None	9 [3:2]	SDA_IN_FIL	SDA_IN_FILT_TRIM [1:0]	
Bits	15	14	13	12	11	10	9	8	
SW Access		None	<u> </u>	RW	No	ne	R'	W	
HW Access	None			R	No	one	R		
Name	None [15:13]			SCL_IN_ FILT_SEL	None [11:10]		SCL_IN_FILT_TRIM [9:8]		
Bits	23	22	21	20	19	18	17	16	
SW Access	No			W		W	R'		
HW Access	No	ne	e R		R		F	₹	
Name	None [[23:22]		FILT2_TRIM :20]	SDA_OUT_ [19	FILT1_TRIM :18]	SDA_OUT_FILT0_TRIM [17:16]		
		I	1	I	1	I	1		
Bits	31	30	29	28	27	26	25	24	
SW Access	No	ne	R	W	None				
HW Access	No	ne	F	3	None				
Name	None [[31:30]		_FILT_SEL :28]	None [27:24]				

Bits	Name	Description
29:28	SDA_OUT_FILT_SEL	Selection of cumulative filter delay on SDA output to meet tHD_DAT parameter "0": 0 ns.
		"1": 50 ns (filter 0 enabled).
		"2": 100 ns (filters 0 and 1 enabled).
		"3": 150 ns (filters 0, 1 and 2 enabled).
		Default Value: 0
21:20	SDA_OUT_FILT2_TRIM	Trim settings for the 50 ns delay filter on SDA output used to guarantee tHD_DAT I ² C parameter. Default setting meets the I ² C spec. Programmability available if required. Default Value: 2
19:18	SDA_OUT_FILT1_TRIM	Trim settings for the 50 ns delay filter on SDA output used to guarantee tHD_DAT I ² C parameter. Default setting meets the I ² C spec. Programmability available if required. Default Value: 2
17:16	SDA_OUT_FILTO_TRIM	Trim settings for the 50 ns delay filter on SDA output used to guarantee tHD_DAT I ² C parameter. Default setting meets the I ² C spec. Programmability available if required. Default Value: 2
12	SCL_IN_FILT_SEL	Enable for 50 ns glitch filter on SCL input '0': 0 ns. '1: 50 ns (filter enabled). Default Value: 1

SCB1_I2C_CFG (Continued)

9:8	SCL_IN_FILT_TRIM	Trim settings for the 50 ns glitch filter on the SDA input. Default setting meets the I^2C glitch rejections specs. Programmability available if required. Default Value: 0
4	SDA_IN_FILT_SEL	Enable for 50 ns glitch filter on SDA input '0': 0 ns. '1: 50 ns (filter enabled). Default Value: 1
1:0	SDA_IN_FILT_TRIM	Trim settings for the 50 ns glitch filter on the SDA input. Default setting meets the I ² C glitch rejections specs. Programmability available if required. Default Value: 3

SCB1_TX_CTRL

Transmitter Control Register Address: 0x40090200

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		Ne	one		RW			
HW Access		N	one			ſ	3	
Name		None	e [7:4]			DATA_W	IDTH [3:0]	
Dia	45							
Bits	15	14	13	12	11	10	9	8
SW Access		None						
HW Access		None						
Name				None [15:9]				MSB_FIRST
			,				_	
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
8	MSB_FIRST	Least significant bit first ('0') or most significant bit first ('1'). For I ² C, this field should be '1'. Default Value: 1
3:0	DATA_WIDTH	Dataframe width. DATA_WIDTH + 1 is the amount of bits in a transmitted data frame. This number does not include start, parity and stop bits. For UART mode, the valid range is [3, 8]. For SPI, the valid range is [3, 15]. For I2C the only valid value is 7. Default Value: 7

SCB1_TX_FIFO_CTRL

Transmitter FIFO Control Register Address: 0x40090204

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		Ne	one	J		F	RW	
HW Access		Ne	one				R	
Name		None	e [7:4]			TRIGGER_	_LEVEL [3:0]	
Bits	15	15 14 13 12 11 10 9						8
SW Access				INo	ne one			
HW Access				No	one			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access			No	one	ı		RW	RW
HW Access			No	one			R	R
Name			None	[23:18]			FREEZE	CLEAR
Bits	31	30	29	28	27	26	25	24
SW Access				No	one		<u> </u>	
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
17	FREEZE	When '1', hardware reads from the transmitter FIFO do not remove FIFO entries. Freeze will not advance the TX FIFO read pointer.
		Default Value: 0
16	CLEAR	When '1', the transmitter FIFO and transmitter shift register are cleared/invalidated. Invalidation will last for as long as this field is '1'. If a quick clear/invalidation is required, the field should be set to '1' and be followed by a set to '0'. If a clear/invalidation is required for an extended time period, the field should be set to '1' during the complete time period.
		Default Value: 0
3:0	TRIGGER_LEVEL	Trigger level. When the transmitter FIFO has less entries than the number of this field, a transmitter trigger event is generated. Default Value: 0

SCB1_TX_FIFO_STATUS

Transmitter FIFO Status Register Address: 0x40090208

Address: 0x40090208 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None			•	R		•	
HW Access		None				W			
Name		None [7:5]				USED [4:0]			
Bits	15	14	13	12	11	10	9	8	
		17	10	12		10			
SW Access	R				None				
HW Access	W				None				
Name	SR_VALID				None [14:8]				
Bits	23	22	21	20	19	18	17	16	
	23			20	13			10	
SW Access		No	ne			F	R		
HW Access		No	ne			٧	W		
Name		None [[23:20]			RD_PTF	R [19:16]		
Bits	31	30	29	28	27	26	25	24	
	31								
SW Access		No	ne			F	}		
HW Access		No	ne		W				
Name		None [[31:28]			WR_PTF	R [27:24]		

Bits	Name	Description
27:24	WR_PTR	FIFO write pointer: FIFO location at which a new data frame is written. Default Value: 0
19:16	RD_PTR	FIFO read pointer: FIFO location from which a data frame is read by the hardware. Default Value: 0
15	SR_VALID	Indicates whether the TX shift registers holds a valid data frame ('1') or not ('0'). The shift register can be considered the top of the TX FIFO (the data frame is not included in the USED field of the TX FIFO). The shift register is a working register and holds the data frame that is currently transmitted (when the protocol state machine is transmitting a data frame) or the data frame that is transmitted next (when the protocol state machine is not transmitting a data frame). Default Value: 0
4:0	USED	Amount of entries in the transmitter FIFO. The value of this field ranges from 0 to FF_DATA_NR. Default Value: 0

SCB1_TX_FIFO_WR

Transmitter FIFO Write Register

Address: 0x40090240 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	W									
HW Access		R								
Name		DATA [7:0]								
Bits	15	14	13	12	11	10	9	8		
SW Access		W								
HW Access		R								
Name				DATA	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

BitsNameDescription15:0DATAData frame w

Data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation. Note that when CTRL.BYTE_MODE is '1', only DATA[7:0] are used.

A write to a full TX FIFO sets INTR_TX.OVERFLOW to '1'.

Default Value: 0

$SCB1_RX_CTRL$

Name

Receiver Control Register Address: 0x40090300 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		No	one	•	RW				
HW Access		No	one				R		
Name		None	e [7:4]			DATA_V	VIDTH [3:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access				one '2	· · ·	10	RW	RW	
HW Access			R	R					
Name		None [15:10]						MSB_FIRS	
Bits	23	22	21	20	19	18	17	16	
	23	22	21			10	17	10	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		1	1	No	ne	1	<u> </u>	1	
HW Access		None							

Bits	Name	Description
9	MEDIAN	Median filter. When '1', a digital 3 taps median filter is performed on input interface lines. This filter should reduce the susceptibility to errors. However, its requires higher oversampling values. For UART IrDA submode, this field should always be '1'. Default Value: 0
8	MSB_FIRST	Least significant bit first ('0') or most significant bit first ('1'). For I ² C, this field should be '1'. Default Value: 1
3:0	DATA_WIDTH	Dataframe width. DATA_WIDTH + 1 is the expected amount of bits in received data frame. This number does not include start, parity and stop bits. For UART mode, the valid range is [3, 8]. For SPI, the valid range is [3, 15]. For I ² C the only valid value is 7. In EZ mode (for both SPI and I ² C), the only valid value is 7. Default Value: 7

None [31:24]

SCB1_RX_FIFO_CTRL

Receiver FIFO Control Register Address: 0x40090304

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		No	one			RW					
HW Access		No	one			ſ	3				
Name		None	e [7:4]			TRIGGER_LEVEL [3:0]					
Dia.	45		1 40	1 40		1 40	1 0				
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access			No	l one			RW	RW			
HW Access			No	one			R	R			
Name			None	[23:18]			FREEZE	CLEAR			
	T		1	1	T		1	T			
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one			·			
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
17	FREEZE	When '1', hardware writes to the receiver FIFO have no effect. Freeze will not advance the RX FIFO write pointer.
		Default Value: 0
16	CLEAR	When '1', the receiver FIFO and receiver shift register are cleared/invalidated. Invalidation will last for as long as this field is '1'. If a quick clear/invalidation is required, the field should be set to '1' and be followed by a set to '0'. If a clear/invalidation is required for an extended time period, the field should be set to '1' during the complete time period. Default Value: 0
3:0	TRIGGER_LEVEL	Trigger level. When the receiver FIFO has more entries than the number of this field, a receiver trigger event is generated.
		Default Value: 0

SCB1_RX_FIFO_STATUS

Receiver FIFO Status Register Address: 0x40090308

Address: 0x40090308 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None		R						
HW Access		None		W						
Name		None [7:5]			USED [4:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access	R				None					
HW Access	W				None					
Name	SR_VALID				None [14:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access		No	ne			F	3			
HW Access		No	ne	W						
Name		None [23:20]				RD_PTR [19:16]				

Bits	31	30	29	28	27	26	25	24	
SW Access		No	ne		R				
HW Access		No	ne		W				
Name		None [[31:28]		WR_PTR [27:24]				

Bits	Name	Description
27:24	WR_PTR	FIFO write pointer: FIFO location at which a new data frame is written by the hardware. Default Value: 0
19:16	RD_PTR	FIFO read pointer: FIFO location from which a data frame is read. Default Value: 0
15	SR_VALID	Indicates whether the RX shift registers holds a (partial) valid data frame ('1') or not ('0'). The shift register can be considered the bottom of the RX FIFO (the data frame is not included in the USED field of the RX FIFO). The shift register is a working register and holds the data frame that is currently being received (when the protocol state machine is receiving a data frame).
		Default Value: 0
4:0	USED	Amount of entries in the receiver FIFO. The value of this field ranges from 0 to FF_DATA_NR. Default Value: 0

SCB1_RX_MATCH

Slave Address and Mask Register Address: 0x40090310

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW										
HW Access	R										
Name		ADDR [7:0]									
			_					•			
Bits	15	14	13	12	11	10	9	8			
SW Access	None										
HW Access	None										
Name	None [15:8]										
Bits	23	22	21	20	19	18	17	16			
SW Access				R	W						
HW Access				F	7						
Name				MASK	[23:16]						
			_					•			
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
23:16	MASK	Slave device address mask. This field is a mask that specifies which of the slave address bits take part in the matching. MATCH = ((ADDR & MASK) == ("slave address" & MASK)).
		Default Value: 0
7:0	ADDR	Slave device address.
		In UART multi-processor mode, all 8 bits are used.
		In I ² C slave mode, only bits 7 down to 1 are used. This reflects the organization of the first transmitted byte in a I ² C transfer: the first 7 bits represent the address of the addressed slave, and the last 1 bit is a read/write indicator ('0': write, '1': read).
		Default Value: 0

SCB1_RX_FIFO_RD

Receiver FIFO Read Register

Address: 0x40090340 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	R									
HW Access	W									
Name	DATA [7:0]									
		ī	1	ī	ı	T		1		
Bits	15	14	13	12	11	10	9	8		
SW Access	R									
HW Access	W									
Name				DATA	[15:8]					
Bits	23	22	21	20	19	18	17	16		
	23	22	21			10	.,,	10		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
		00	23			20	23			
SW Access				No	one					
HW Access				No	one					
Name				None	[31:24]					

Bits Name 15:0 DATA Description

Data read from the receiver FIFO. Reading a data frame will remove the data frame from the FIFO; i.e. behavior is similar to that of a POP operation. Note that when CTRL.BYTE_MODE is '1', only DATA[7:0] are used

A read from an empty RX FIFO sets INTR_RX.UNDERFLOW to '1'.

When this register is read through the debugger, the data frame will not be removed from the FIFO. Similar in operation to RX_FIFO_RD_SILENT.

$SCB1_RX_FIFO_RD_SILENT$

Receiver FIFO Read Register

Address: 0x40090344 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		R									
HW Access		W									
Name		DATA [7:0]									
	1	T		I	I	1		T			
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		W									
Name		DATA [15:8]									
	1	T	1	T	1	1	•				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

BitsNameDescription15:0DATAData read fro

Data read from the receiver FIFO. Reading a data frame will NOT remove the data frame from the FIFO; i.e. behavior is similar to that of a PEEK operation. Note that when CTRL.BYTE_MODE is '1', only DATA[7:0] are used.

A read from an empty RX FIFO sets INTR_RX.UNDERFLOW to '1'.

Memory Buffer Registers Address: 0x40090400 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		RW									
Name				EZ_DA	TA [7:0]						
Bits	15	14	13	12	11	10	9	8			
	13	14	15			10					
SW Access		None									
HW Access		None									
Name		None [15:8]									
	1	1	1	T	T		1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
							T.				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090404 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W					
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	one					
Name				None	[15:8]					
	_		_							
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	one					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090408 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
					1	1	1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4009040C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090410 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W					
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access			•	No	ne	•	•	•		
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090414 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
					1	1	1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T							
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090418 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	I	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4009041C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W					
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	one					
Name				None	[15:8]					
	_		_							
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	one					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090420 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W					
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	one					
Name				None	[15:8]					
	_		_							
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	one					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090424 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
					1	1	1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T							
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090428 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	I	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4009042C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	I	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090430 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
					1	1	1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T							
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090434 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				R	W	•	•	
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
					1	1	1	
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
					1	1	1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
		T	T					
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access				No	ne			
Name				None	[31:24]			

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090438 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				R	W	•	•	
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
					1	1	1	
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
					1	1	1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
		T	T					
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access				No	ne			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4009043C Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				R	W	•	•	
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
					1	1	1	
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
					1	1	1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
		T	T					
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access				No	ne			
Name				None	[31:24]			

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090440 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	R	W	•	•	•
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	1	1	1	1	I			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
					,			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090444 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	R	W	•	•	•
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	1	1	1	1	I			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
					,			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090448 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	R	W	•	•	•
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	1	1	1	1	I			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
					,			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4009044C Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				R	W	•	•	
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
					1	1	1	
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
					1	1	1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
		T	T					
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access				No	ne			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090450 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	R	W	•	•	•
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	1	1	1	1	I			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	ne			
Name				None	[23:16]			
					,			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090454 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		•	•	R	W	•	•	•
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
	1	1	1	1	I			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	ne			
Name				None	[23:16]			
					,			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090458 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				R	W	•	•	
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
					1	1	1	
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
					1	1	1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
		T	T					
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access				No	ne			
Name				None	[31:24]			

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4009045C Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				R	W	•	•				
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
					1	1	1				
Bits	15	14	13	12	11	10	9	8			
SW Access				No	ne						
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
		T	T								
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access		None									
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090460 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		•	•	R	W	•	•	•			
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
Bits	15	14	13	12	11	10	9	8			
	13	14	15			10					
SW Access		None									
HW Access		None									
Name				None	[15:8]						
	1	1	1	I	T		1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
							T.				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access		None									
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090464 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		•	•	R	W	•	•	•			
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
Bits	15	14	13	12	11	10	9	8			
	13	14	15			10					
SW Access		None									
HW Access		None									
Name				None	[15:8]						
	1	1	1	I	T		1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
							T.				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access		None									
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090468 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		•	•	R	W	•	•	•			
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
Bits	15	14	13	12	11	10	9	8			
	13	14	15			10					
SW Access		None									
HW Access		None									
Name				None	[15:8]						
	1	1	1	I	T		1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
							T.				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access		None									
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4009046C Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access				R	W						
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access				No	one						
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access			•	No	ne	•	•	•			
HW Access		None									
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090470 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		•	•	R	W	•	•	•			
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
Bits	15	14	13	12	11	10	9	8			
	13	14	15			10					
SW Access		None									
HW Access		None									
Name				None	[15:8]						
	1	1	1	I	T		1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
							T.				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access		None									
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090474 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		•	•	R	W	•	•	•			
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
Bits	15	14	13	12	11	10	9	8			
	13	14	15			10					
SW Access		None									
HW Access		None									
Name				None	[15:8]						
	1	1	1	T	T		1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
							T.				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access		None									
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x40090478 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		•	•	R	W	•	•	•			
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
Bits	15	14	13	12	11	10	9	8			
	13	14	15			10					
SW Access		None									
HW Access		None									
Name				None	[15:8]						
	1	1	1	T	T		1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
							T.				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access		None									
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x4009047C Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		•	•	R	W	•	•	•			
HW Access				R	W						
Name				EZ_DA	TA [7:0]						
Bits	15	14	13	12	11	10	9	8			
	13	14	15			10					
SW Access		None									
HW Access		None									
Name				None	[15:8]						
	1	1	1	T	T		1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
							T.				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access		None									
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

SCB1_INTR_CAUSE

Active Clocked Interrupt Signal Register Address: 0x40090E00

Bits	7	6	5	4	3	2	1	0	
SW Access	No	ne	R	R	R	R	R	R	
HW Access	None		W	W	W	W	W	W	
Name	None [7:6]		SPI_EC	I2C_EC	RX	TX	S	М	
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							

SW Access		None							
HW Access		None							
Name		None [15:8]							
Dita	00	20	04	20	10	10	47	46	

Bits	23	22	21	20	19	18	17	16
SW Access		None						
HW Access		None						
Name		None [23:16]						

Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access		None						
Name		None [31:24]						

Bits	Name	Description
5	SPI_EC	Externally clocked SPI interrupt active ("interrupt_spi_ec"): INTR_SPI_EC_MASKED != 0. Default Value: 0
4	I2C_EC	Externally clock I ² C interrupt active ("interrupt_i2c_ec"): INTR_I2C_EC_MASKED != 0. Default Value: 0
3	RX	Receiver interrupt active ("interrupt_rx"): INTR_RX_MASKED != 0. Default Value: 0
2	TX	Transmitter interrupt active ("interrupt_tx"): INTR_TX_MASKED != 0. Default Value: 0
1	S	Slave interrupt active ("interrupt_slave"): INTR_S_MASKED != 0. Default Value: 0
0	М	Master interrupt active ("interrupt_master"): INTR_M_MASKED != 0. Default Value: 0

SCB1_INTR_I2C_EC

Externally Clocked I²C Interrupt Request Register Address: 0x40090E80

Bits	7	6	5	4	3	2	1	0
SW Access		No	one	•	RW1C	RW1C	RW1C	RW1C
HW Access		No	one		Α	А	Α	Α
Name		None	e [7:4]		EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	15 14 13 12 11 10 9						8
SW Access			1	No	one	l	l	I.
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access			1	No	one	<u> </u>	<u> </u>	1
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	STOP detection after a read transfer occurred. Activated on the end of a read transfer (I ² C STOP). This event is an indication that a buffer memory location has been read from.
		Only available for a slave request with an address match, in EZ and CMD_RESP modes, when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
2	EZ_WRITE_STOP	STOP detection after a write transfer occurred. Activated on the end of a write transfer (I ² C STOP). This event is an indication that a buffer memory location has been written to. For EZ mode: a transfer that only writes the base address does NOT activate this event.
		Only available for a slave request with an address match, in EZ and CMD_RESP modes, when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
1	EZ_STOP	STOP detection. Activated on the end of a every transfer (I ² C STOP).
		Only available for a slave request with an address match, in EZ and CMD_RESP modes, when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
0	WAKE_UP	Wake up request. Active on incoming slave request (with address match). Only used when CTRL.EC_AM_MODE is '1'. Default Value: 0
		

SCB1_INTR_I2C_EC_MASK

Externally Clocked I^2C Interrupt Mask Register Address: 0x40090E88

Bits	7	6	5	4	3	2	1	0
SW Access	None				RW	RW	RW	RW
HW Access		No	ne		R	R	R	R
Name	None [7:4]				EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	15 14 13 12			11	10	9	8
SW Access				No	ne			
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
	23	22	21			16	17	10
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Г	T	T	T	1	T	T	T	
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	ne			
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	EZ_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	EZ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	WAKE_UP	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_I2C_EC_MASKED

Externally Clocked I^2C Interrupt Masked Register Address: 0x40090E8C

Bits	7	6	5	4	3	2	1	0
SW Access		None				R	R	R
HW Access		No	one		W	W	W	W
Name		None	e [7:4]		EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
		T						
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
2	EZ_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0
1	EZ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
0	WAKE_UP	Logical and of corresponding request and mask bits. Default Value: 0

SCB1_INTR_SPI_EC

Externally Clocked SPI Interrupt Request Register Address: 0x40090EC0

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne	<u>I</u>	RW1C	RW1C	RW1C	RW1C
HW Access		No	ne		Α	А	Α	А
Name		None [7:4]				EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	15 14 13 12			11	10	9	8
SW Access				No	one	l	l	l
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access					ne			
HW Access				No	one			
Name				None	[23:16]			
	1	Ī	Ī	1	1	1	T	T
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	STOP detection after a read transfer occurred. Activated on the end of a read transfer (SPI deselection). This event is an indication that a buffer memory location has been read from.
		Only used in EZ and CMD_RESP modes and when CTRL.EC_OP_MODE is '1'. Default Value: 0
2	EZ_WRITE_STOP	STOP detection after a write transfer occurred. Activated on the end of a write transfer (SPI deselection). This event is an indication that a buffer memory location has been written to. For EZ mode: a transfer that only writes the base address does NOT activate this event.
		Only used in EZ and CMD_RESP modes and when CTRL.EC_OP_MODE is '1'. Default Value: 0
1	EZ_STOP	STOP detection. Activated on the end of a every transfer (SPI deselection). Only available in EZ and CMD_RESP mode and when CTRL.EC_OP_MODE is '1'. Default Value: 0
0	WAKE_UP	Wake up request. Active on incoming slave request when externally clocked selection is '1'. Only used when CTRL.EC_AM_MODE is '1'. Default Value: 0

SCB1_INTR_SPI_EC_MASK

Externally Clocked SPI Interrupt Mask Register Address: 0x40090EC8

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne	<u>I</u>	RW	RW	RW	RW
HW Access		No	ne		R	R	R	R
Name		None [7:4]				EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	15 14 13 12			11	10	9	8
SW Access				No	ne			
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
		T	T	1	1	1	T	T
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	EZ_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	EZ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	WAKE_UP	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_SPI_EC_MASKED

Externally Clocked SPI Interrupt Masked Register Address: 0x40090ECC

Bits	7	6	5	4	3	2	1	0
SW Access		None				R	R	R
HW Access		No	one		W	W	W	W
Name		None [7:4]				EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	14	13	12	11	10	9	8
SW Access			•	No	one		•	
HW Access		None						
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
			1	ı	ı		1	
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
2	EZ_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0
1	EZ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
0	WAKE_UP	Logical and of corresponding request and mask bits. Default Value: 0

SCB1_INTR_M

Master Interrupt Request Register Address: 0x40090F00

Address: 0x40090F00 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None			None	RW1C	RW1C	RW1C
HW Access		None		RW1S	None	RW1S	RW1S	RW1S
Name	None [7:5]			I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARE LOST
Bits	15	14	13	12	11	10	9	8
SW Access			N	lone			RW1C	RW1C
HW Access			N	lone			RW1S	RW1S
Name		None [15:10] SPI_[SPI_DONE	I2C_BUS ERROF
Bits	23	22	21	20	19	18	17	16
SW Access		I	l	Noi	ne	Į.	I	I.
HW Access				No	ne			
Name				None [23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		ı	1	No	ne	ı	1	I
HW Access		None						
Name				None [31:24]			

Bits	Name	Description
9	SPI_DONE	SPI master transfer done event: all data frames in the transmit FIFO are sent and the transmit FIFO is empty. Default Value: 0
8	I2C_BUS_ERROR	$\rm I^2C$ master bus error (unexpected detection of START or STOP condition). Default Value: 0
4	I2C_STOP	I ² C master STOP. Set to '1', when the master has transmitted a STOP. Default Value: 0
2	I2C_ACK	I ² C master acknowledgement. Set to '1', when the master receives a ACK (typically after the master transmitted the slave address or TX data).
		Default Value: 0
1	I2C_NACK	I^2C master negative acknowledgement. Set to '1', when the master receives a NACK (typically after the master transmitted the slave address or TX data).
		Default Value: 0
0	I2C_ARB_LOST	$\rm I^2C$ master lost arbitration: the value driven by the master on the SDA line is not the same as the value observed on the SDA line.
		Default Value: 0

SCB1_INTR_M_SET

Master Interrupt Set Request Register Address: 0x40090F04

	T	1	ı			T	T	ı
Bits	7	6	5	4	3	2	1	0
SW Access		None		RW1S	None	RW1S	RW1S	RW1S
HW Access		None		Α	None	Α	Α	Α
Name		None [7:5]		I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
Bits	45	44	10	10	44	10		8
Bits	15	14	13	12	11	10	9	8
SW Access			No	one			RW1S	RW1S
HW Access		None				Α	Α	
Name			None	[15:10]			SPI_DONE	I2C_BUS_ ERROR
		ī	T	1				ı
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access				No	ne			
Name				None	31:24]			

Bits 9	Name SPI_DONE	Description Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
2	I2C_ACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
1	I2C_NACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	I2C_ARB_LOST	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_M_MASK

Master Interrupt Mask Register Address: 0x40090F08

Bits	7	6	5	4	3	2	1	0
SW Access	None			RW	None	RW	RW	RW
HW Access		None		R	None	R	R	R
Name	None [7:5]			I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
Bits	15	14	13	12	11	10	9	8
SW Access	- 10			one	•••		RW	RW
			IN	one			R	
HW Access		Nor			ne			R
Name			None	[15:10]			SPI_DONE	I2C_BUS_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access				No		1		1.5
HW Access				No				
Name				None				
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne	1		l
HW Access		None						
Name				None	31:24]			

Bits	Name	Description
9	SPI_DONE	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	I2C_ACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	I2C_NACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	I2C_ARB_LOST	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_M_MASKED

Master Interrupt Masked Request Register Address: 0x40090F0C

	•	1		1	1	1	1	1
Bits	7	6	5	4	3	2	1	0
SW Access	None			R	None	R	R	R
HW Access		None		W	None	W	W	W
Name	None [7:5]			I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
		T	T	1	ī	T	T	T
Bits	15	14	13	12	11	10	9	8
SW Access			No	one			R	R
HW Access			No	one			W	W
Name	None [15:10]						SPI_DONE	I2C_BUS_ ERROR
		ı	ı	1	T	T	·	
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access		None						
Name				None	[31:24]			

Bits 9	Name SPI_DONE	Description Logical and of corresponding request and mask bits. Default Value: 0
8	I2C_BUS_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
4	I2C_STOP	Logical and of corresponding request and mask bits. Default Value: 0
2	I2C_ACK	Logical and of corresponding request and mask bits. Default Value: 0
1	I2C_NACK	Logical and of corresponding request and mask bits. Default Value: 0
0	I2C_ARB_LOST	Logical and of corresponding request and mask bits. Default Value: 0

SCB1_INTR_S

Slave Interrupt Request Register Address: 0x40090F40

Address: 0x40090F40 Retention: Not Retained

	1	1	1	Т	1		1	
Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
HW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
	1	T	Ī	Ī	1		T	
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		RW1C	RW1C	RW1C	RW1C
HW Access		No	ne		RW1S	RW1S	RW1S	RW1S
Name	None [15:12]				SPI_BUS_ ERROR	SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR
		I	T	T	I		I	
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access		None						
Name				None	[31:24]			

Bits	Name	Description
11	SPI_BUS_ERROR	SPI slave deselected at an unexpected time in the SPI transfer. The Firmware may decide to clear the TX and RX FIFOs in case of this error. Default Value: 0
10	SPI_EZ_STOP	SPI slave deselected after any EZ SPI transfer occurred. Default Value: 0
9	SPI_EZ_WRITE_STOP	SPI slave deselected after a write EZ SPI transfer occurred. Default Value: 0
8	I2C_BUS_ERROR	I ² C slave bus error (unexpected detection of START or STOP condition). This should not occur, it represents erroneous I ² C bus behavior. In case of a bus error, the I ² C slave state machine abort the ongoing transfer. The Firmware may decide to clear the TX and RX FIFOs in case of this error. Default Value: 0
7	I2C_GENERAL	I ² C slave general call address received. If CTRL.ADDR_ACCEPT, the received address 0x00 (including the R/W bit) is available in the RX FIFO. In the case of externally clocked address matching (CTRL.EC_AM_MODE is '1') and internally clocked operation (CTRL.EC_OP_MODE is '0'), this field is set when the event is detected.
6	I2C ADDR MATCH	Default Value: 0 I ² C slave matching address received. If CTRL.ADDR ACCEPT, the received address (including
J	120_ADDIT_WATOTT	the R/W bit) is available in the RX FIFO. In the case of externally clocked address matching (CTRL.EC_AM_MODE is '1') and internally clocked operation (CTRL.EC_OP_MODE is '0'), this field is set when the event is detected. Default Value: 0

5	I2C_START	I ² C slave START received. Set to '1', when START or REPEATED START event is detected. In the case of externally clocked address matching (CTRL.EC_AM_MODE is '1') AND clock stretching is performed (I2C_CTRL.S_NOT_READY_ADDR_NACK is '0'), this field is NOT set. The Firmware should use INTR_S_EC.WAKE_UP, INTR_S.I2C_ADDR_MATCH and INTR_S.I2C_GENERAL.
		Default Value: 0
4	I2C_STOP	I ² C STOP event for I ² C (read or write) transfer intended for this slave (address matching is performed). Set to '1', when STOP or REPEATED START event is detected. The REPEATED START event is included in this interrupt cause such that the I ² C transfers separated by a REPEATED START can be distinguished and potentially treated separately by the Firmware. Note that the second I ² C transfer (after a REPEATED START) may be to a different slave address.
		The event is detected on any I2C transfer intended for this slave. Note that a I ² C address intended for the slave (address is matching) will result in a I2C_STOP event independent of whether the I ² C address is ACK'd or NACK'd.
		Default Value: 0
3	I2C_WRITE_STOP	I ² C STOP event for I ² C write transfer intended for this slave (address matching is performed). Set to '1', when STOP or REPEATED START event is detected. The REPEATED START event is included in this interrupt cause such that the I ² C transfers separated by a REPEATED START can be distinguished and potentially treated separately by the Firmware. Note that the second I ² C transfer (after a REPEATED START) may be to a different slave address.
		In non EZ mode, the event is detected on any I ² C write transfer intended for this slave. Note that a I ² C write address intended for the slave (address is matching and a it is a write transfer) will result in a I ² C_WRITE_STOP event independent of whether the I ² C address is ACK'd or NACK'd.
		In EZ mode, the event is detected only on I ² C write transfers that have EZ data written to the memory structure (an I ² C write transfer that only communicates an I ² C address and EZ address, will not result in this event being detected).
		Default Value: 0
2	I2C_ACK	$\rm I^2C$ slave acknowledgement received. Set to '1', when the slave receives a ACK (typically after the slave transmitted TX data).
		Default Value: 0
1	I2C_NACK	I^2C slave negative acknowledgement received. Set to '1', when the slave receives a NACK (typically after the slave transmitted TX data).
		Default Value: 0
0	I2C_ARB_LOST	I ² C slave lost arbitration: the value driven on the SDA line is not the same as the value observed on the SDA line (while the SCL line is '1'). This should not occur, it represents erroneous I ² C bus behavior. In case of lost arbitration, the I ² C slave state machine aborts the ongoing transfer. The Firmware may decide to clear the TX and RX FIFOs in case of this error. Default Value: 0

SCB1_INTR_S_SET

Slave Interrupt Set Request Register Address: 0x40090F44

Bits	7	6	5	4	3	2	1	0
SW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S
HW Access	Α	Α	Α	Α	Α	Α	Α	Α
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
	1	I	1	1	<u> </u>		1	
Bits	15	14	13	12	11	10	9	8
SW Access		None			RW1S	RW1S	RW1S	RW1S
HW Access		No	ne		Α	Α	Α	Α
Name	None [15:12]			SPI_BUS_ ERROR	SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR	
Bits	23	22	21	20	19	18	17	16
SW Access					one		.,	10
HW Access		None						
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description
11	SPI_BUS_ERROR	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
10	SPI_EZ_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
9	SPI_EZ_WRITE_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
7	I2C_GENERAL	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
6	I2C_ADDR_MATCH	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
5	I2C_START	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
3	I2C_WRITE_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_S_SET (Continued)

2	I2C_ACK	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0
1	I2C_NACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	I2C_ARB_LOST	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_S_MASK

Slave Interrupt Mask Register Address: 0x40090F48

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW	RW	RW	RW	RW	RW	RW
HW Access	R	R	R	R	R	R	R	R
Name	I2C_ GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
							_	_
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		RW	RW	RW	RW
HW Access	None				R	R	R	R
Name	None [15:12]				SPI_BUS_ ERROR	SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access	20						17	10
		None						
HW Access		None						
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access		None						
Name		None [31:24]						

Bits	Name	Description
11	SPI_BUS_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
10	SPI_EZ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
9	SPI_EZ_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
7	I2C_GENERAL	Mask bit for corresponding bit in interrupt request register. Default Value: 0
6	I2C_ADDR_MATCH	Mask bit for corresponding bit in interrupt request register. Default Value: 0
5	I2C_START	Mask bit for corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
3	I2C_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_S_MASK (Continued)

2	I2C_ACK	Mask bit for corresponding bit in interrupt request register.
		Default Value: 0
1	I2C_NACK	Mask bit for corresponding bit in interrupt request register.
		Default Value: 0
0	I2C_ARB_LOST	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_S_MASKED

Slave Interrupt Masked Request Register Address: 0x40090F4C

Bits	7	6	5	4	3	2	1	0
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
		ı	1	ı	1		ı	
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		R	R	R	R
HW Access		No	ne		W	W	W	W
Name	None [15:12]				SPI_BUS_ ERROR	SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR
Bits	23	22	21	20	19	18	17	16
	23	22	21			10	17	10
SW Access				No	one			
HW Access				No	one			
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description
11	SPI_BUS_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
10	SPI_EZ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
9	SPI_EZ_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0
8	I2C_BUS_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
7	I2C_GENERAL	Logical and of corresponding request and mask bits. Default Value: 0
6	I2C_ADDR_MATCH	Logical and of corresponding request and mask bits. Default Value: 0
5	I2C_START	Logical and of corresponding request and mask bits. Default Value: 0
4	I2C_STOP	Logical and of corresponding request and mask bits. Default Value: 0
3	I2C_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0

SCB1_INTR_S_MASKED (Continued)

2	I2C_ACK	Logical and of corresponding request and mask bits.
		Default Value: 0
1	I2C_NACK	Logical and of corresponding request and mask bits. Default Value: 0
0	I2C_ARB_LOST	Logical and of corresponding request and mask bits. Default Value: 0

SCB1_INTR_TX

Transmitter Interrupt Request Register Address: 0x40090F80

Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	RW1C	N	one	RW1C	RW1C
HW Access	RW1S	RW1S	RW1S	RW1S	N	one	RW1S	RW1S
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	Non	e [3:2]	NOT_FULL	TRIGGER
Bits	15	14	13	12	11	10	9	8
	15	14		12				
SW Access	None RW1C RW1C R				RW1C			
HW Access			None RW1S RW1S RW1			RW1S		
Name	None [15:11]				UART_ NACK			
		T	T		T	1	T	T
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name		None [23:16]						
Bits	31	30	29	28	27	26	25	24
SW Access	 							
SW Access				INC	one			
HW Access		None						
Name		None [31:24]						

Bits	Name	Passavintian
10	UART_ARB_LOST	Description UART lost arbitration: the value driven on the TX line is not the same as the value observed on the RX line. This condition event is useful when transmitter and receiver share a TX/RX line. This is the case in LIN or SmartCard modes. Set to '1', when event is detected. Write with '1' to clear bit. Default Value: 0
9	UART_DONE	UART transmitter done event. This happens when the IP is done transferring all data in the TX FIFO; i.e. EMPTY is '1'. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
8	UART_NACK	UART transmitter received a negative acknowledgement in SmartCard mode. Set to '1', when event is detected. Write with '1' to clear bit. Default Value: 0
7	BLOCKED	SW cannot get access to the EZ memory (EZ data access), due to an externally clocked EZ access. This may happen when STATUS.EC_BUSY is '1'. Default Value: 0
6	UNDERFLOW	Attempt to read from an empty TX FIFO. This happens when SCB is ready to transfer data and EMPTY is '1'. Only used in FIFO mode. Default Value: 0
5	OVERFLOW	Attempt to write to a full TX FIFO. Only used in FIFO mode. Default Value: 0

SCB1_INTR_TX (Continued)

EMPTY TX FIFO is empty; i.e. it has 0 entries. Only used in FIFO mode. Default Value: 0

TX FIFO is not full. Dependent on CTRL.BYTE_MODE: BYTE_MODE is '0': # entries != FF_DATA_NR/2. BYTE_MODE is '1': # entries != FF_DATA_NR. Only used in FIFO mode. NOT_FULL

Default Value: 0

0 TRIGGER Less entries in the TX FIFO than the value specified by TX_FIFO_CTRL.

Only used in FIFO mode.

Default Value: 0

SCB1_INTR_TX_SET

Transmitter Interrupt Set Request Register Address: 0x40090F84

Bits	7	6	5	4	3	2	1	0
SW Access	RW1S	RW1S	RW1S	RW1S	١	None	RW1S	RW1S
HW Access	Α	Α	Α	Α	١	None	Α	Α
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	None [3:2] NOT_FULL TR			TRIGGER
Bits	15	14	13	12	11	10	9	8
SW Access	10	17	None		••	RW1S	RW1S	RW1S
HW Access			None			A	A	A
Name		None [15:11]					ART_ DONE	UART_ NACK
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name		None [23:16]						
	1	ı	ı	1	ı	1	ı	I
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name		None [31:24]						

Bits	Name	Description
10	UART_ARB_LOST	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
9	UART_DONE	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
8	UART_NACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
7	BLOCKED	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
6	UNDERFLOW	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
5	OVERFLOW	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
4	EMPTY	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
1	NOT_FULL	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	TRIGGER	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_TX_MASK

Transmitter Interrupt Mask Register Address: 0x40090F88

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW	RW	RW	١	lone	RW	RW
HW Access	R	R	R	R	N	lone	R	R
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	None [3:2] NOT_FULL TR			TRIGGER
Bits	15	14	13	12	11	10	9	8
	13	14		12				
SW Access			None			RW	RW	RW
HW Access		None R					R	R
Name		None [15:11] U.					ART_ DONE	UART_ NACK
	1	1		I	ı	1	1	I
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name		None [23:16]						
						-		T
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name		None [31:24]						

Bits	Name	Description
10	UART_ARB_LOST	Mask bit for corresponding bit in interrupt request register. Default Value: 0
9	UART_DONE	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	UART_NACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
7	BLOCKED	Mask bit for corresponding bit in interrupt request register. Default Value: 0
6	UNDERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
5	OVERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
4	EMPTY	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	NOT_FULL	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	TRIGGER	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_TX_MASKED

Transmitter Interrupt Masked Request Register Address: 0x40090F8C

Bits	7	6	5	4	3	2	1	0
	-			_	_			
SW Access	R	R	R	R	None R		R	R
HW Access	W	W	W	W	No	one	W	W
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	None [3:2] NOT_FULL TRIGO			TRIGGER
	T	T	T	T	T	1	T	
Bits	15	14	13	12	11	10	9	8
SW Access			None			R	R	R
HW Access			None			W	W	W
Name	None [15:11]					UART_ARB _LOST	ART_ DONE	UART_ NACK
	1	ı	ı	ı	T	1		
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Logical and of corresponding request and mask bits. Default Value: 0 UART_DONE Logical and of corresponding request and mask bits. Default Value: 0 UART_NACK Logical and of corresponding request and mask bits. Default Value: 0 BLOCKED Logical and of corresponding request and mask bits. Default Value: 0 UNDERFLOW Logical and of corresponding request and mask bits. Default Value: 0 OVERFLOW Logical and of corresponding request and mask bits. Default Value: 0 EMPTY Logical and of corresponding request and mask bits. Default Value: 0 NOT_FULL Logical and of corresponding request and mask bits. Default Value: 0 TRIGGER Logical and of corresponding request and mask bits. Default Value: 0 TRIGGER Logical and of corresponding request and mask bits. Default Value: 0	Bits	Name	Description
Default Value: 0 8 UART_NACK Logical and of corresponding request and mask bits. Default Value: 0 7 BLOCKED Logical and of corresponding request and mask bits. Default Value: 0 6 UNDERFLOW Logical and of corresponding request and mask bits. Default Value: 0 5 OVERFLOW Logical and of corresponding request and mask bits. Default Value: 0 4 EMPTY Logical and of corresponding request and mask bits. Default Value: 0 1 NOT_FULL Logical and of corresponding request and mask bits. Default Value: 0 1 TRIGGER Logical and of corresponding request and mask bits.	10	UART_ARB_LOST	
Default Value: 0 Pofault Value: 0 Default Value: 0 UNDERFLOW Logical and of corresponding request and mask bits. Default Value: 0 OVERFLOW Logical and of corresponding request and mask bits. Default Value: 0 Logical and of corresponding request and mask bits. Default Value: 0 EMPTY Logical and of corresponding request and mask bits. Default Value: 0 NOT_FULL Logical and of corresponding request and mask bits. Default Value: 0 TRIGGER Logical and of corresponding request and mask bits.	9	UART_DONE	
Default Value: 0 6 UNDERFLOW Logical and of corresponding request and mask bits. Default Value: 0 5 OVERFLOW Logical and of corresponding request and mask bits. Default Value: 0 4 EMPTY Logical and of corresponding request and mask bits. Default Value: 0 1 NOT_FULL Logical and of corresponding request and mask bits. Default Value: 0 0 TRIGGER Logical and of corresponding request and mask bits.	8	UART_NACK	
Default Value: 0 5 OVERFLOW Logical and of corresponding request and mask bits. Default Value: 0 4 EMPTY Logical and of corresponding request and mask bits. Default Value: 0 1 NOT_FULL Logical and of corresponding request and mask bits. Default Value: 0 0 TRIGGER Logical and of corresponding request and mask bits.	7	BLOCKED	
Default Value: 0 4 EMPTY Logical and of corresponding request and mask bits. Default Value: 0 1 NOT_FULL Logical and of corresponding request and mask bits. Default Value: 0 0 TRIGGER Logical and of corresponding request and mask bits.	6	UNDERFLOW	
Default Value: 0 1 NOT_FULL Logical and of corresponding request and mask bits. Default Value: 0 0 TRIGGER Logical and of corresponding request and mask bits.	5	OVERFLOW	
Default Value: 0 TRIGGER Logical and of corresponding request and mask bits.	4	EMPTY	
9	1	NOT_FULL	
	0	TRIGGER	

SCB1_INTR_RX

Receiver Interrupt Request Register Address: 0x40090FC0

Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	None	RW1C	RW1C	None	RW1C
HW Access	RW1S	RW1S	RW1S	None	RW1S	RW1S	None	RW1S
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGER
	1	I	ı	ı	ı	I	ı	ı
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		RW1C	RW1C	RW1C	RW1C
HW Access		No	ne		RW1S	RW1S	RW1S	RW1S
Name	None [15:12]				BREAK DETECT	BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR
		T	T		T	T	T	T
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name		None [23:16]						
	1	T	T	T	T	T	T	T
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name				None	[31:24]			

Bits	Name	Description
11	BREAK_DETECT	Break detection is successful: the line is '0' for UART_RX_CTRL.BREAK_WIDTH + 1 bit period. Can occur at any time to address unanticipated break fields; i.e. "break-in-data" is supported.
		This feature is supported for the UART standard and LIN submodes. For the UART standard submodes, ongoing receipt of data frames is NOT affected; i.e. Firmware is ecpected to take the proper action. For the LIN submode, possible ongoing receipt of a data frame is stopped and the (partially) received data frame is dropped and baud rate detection is started. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
10	BAUD_DETECT	LIN baudrate detection is completed. The receiver software uses the UART_RX_STATUS.BR_COUNTER value to set the right IP clock (from the programmable clock IP) to guarantee successful receipt of the first LIN data frame (Protected Identifier Field) after the synchronization byte. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
9	PARITY_ERROR	Parity error in received data frame. Set to '1', when event is detected. Write with '1' to clear bit. If UART_RX_CTL.DROP_ON_PARITY_ERROR is '1', the received frame is dropped. If UART_RX_CTL.DROP_ON_PARITY_ERROR is '0', the received frame is send to the RX FIFO. In SmartCard submode, negatively acknowledged data frames generate a parity error. Note that Firmware can only identify the erroneous data frame in the RX FIFO if it is fast enough to read the data frame before the hardware writes a next data frame into the RX FIFO. Default Value: 0

8	FRAME_ERROR	Frame error in received data frame. Set to '1', when event is detected. Write with '1' to clear bit. This can be either a start or stop bit(s) error:
		Start bit error: after the detection of the beginning of a start bit period (RX line changes from '1' to '0'), the middle of the start bit period is sampled erroneously (RX line is '1'). Note: a start bit error is detected BEFORE a data frame is received.
		Stop bit error: the RX line is sampled as '0', but a '1' was expected. Note: a stop bit error may result in failure to receive successive data frame(s). Note: a stop bit error is detected AFTER a data frame is received.
		A stop bit error is detected after a data frame is received, and the UART_RX_CTL.DROP_ON_FRAME_ERROR field specifies whether the received frame is dropped or send to the RX FIFO. If UART_RX_CTL.DROP_ON_FRAME_ERROR is '1', the received data frame is dropped. If UART_RX_CTL.DROP_ON_FRAME_ERROR is '0', the received data frame is send to the RX FIFO. Note that Firmware can only identify the erroneous data frame in the RX FIFO if it is fast enough to read the data frame before the hardware writes a next data frame into the RX FIFO; i.e. the RX FIFO does not have error flags to tag erroneous data frames.
		Default Value: 0
7	BLOCKED	SW cannot get access to the EZ memory (EZ_DATA accesses), due to an externally clocked EZ access. This may happen when STATUS.EC_BUSY is '1'.
		Default Value: 0
6	UNDERFLOW	Attempt to read from an empty RX FIFO.
		Only used in FIFO mode.
		Default Value: 0
5	OVERFLOW	Attempt to write to a full RX FIFO. Note: in I2C mode, the OVERFLOW is set when a data frame is received and the RX FIFO is full, independent of whether it is ACK'd or NACK'd.
		Only used in FIFO mode.
		Default Value: 0
3	FULL	RX FIFO is full. Note that received data frames are lost when the RX FIFO is full. Dependent on CTRL.BYTE MODET:
		BYTE_MODE is '0': # entries == FF_DATA_NR/2.
		BYTE_MODE is '1': # entries == FF_DATA_NR.
		Only used in FIFO mode.
		Default Value: 0
2	NOT_EMPTY	RX FIFO is not empty.
		Only used in FIFO mode.
		Default Value: 0
0	TRIGGER	More entries in the RX FIFO than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTL.
		Only used in FIFO mode.
		Default Value: 0
		

SCB1_INTR_RX_SET

Receiver Interrupt Set Request Register Address: 0x40090FC4

	ı	I	ı	T	1	ı	ı	1
Bits	7	6	5	4	3	2	1	0
SW Access	RW1S	RW1S	RW1S	None	RW1S	RW1S	None	RW1S
HW Access	А	А	А	None	А	А	None	А
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGER
						I	_	_
Bits	15	14	13	12	11	10	9	8
SW Access		None				RW1S	RW1S	RW1S
HW Access		None				А	Α	А
Name		None [15:12]			BREAK DETECT	BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
							1	•
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name		None [31:24]						

Bits	Name	Description
11	BREAK_DETECT	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
10	BAUD_DETECT	Write with '1' to set corresponding bit in interrupt status register.
9	PARITY_ERROR	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
8	FRAME_ERROR	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
7	BLOCKED	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
6	UNDERFLOW	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
5	OVERFLOW	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
3	FULL	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
2	NOT_EMPTY	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
0	TRIGGER	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0

SCB1_INTR_RX_MASK

Receiver Interrupt Mask Register Address: 0x40090FC8

Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW	RW	None	RW	RW	None	RW
HW Access	R	R	R	None	R	R	None	R
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGEF
	1	ı	ı	1	ı	1	1	1
Bits	15	14	13	12	11	10	9	8
SW Access		None				RW	RW	RW
HW Access	None				R	R	R	R
Name		None	[15:12]		BREAK DETECT	BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access	23	22	21		ne	10	17	10
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						

None [31:24]

Bits	Name	Description
11	BREAK_DETECT	Mask bit for corresponding bit in interrupt request register. Default Value: 0
10	BAUD_DETECT	Mask bit for corresponding bit in interrupt request register. Default Value: 0
9	PARITY_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	FRAME_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
7	BLOCKED	Mask bit for corresponding bit in interrupt request register. Default Value: 0
6	UNDERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
5	OVERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
3	FULL	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	NOT_EMPTY	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	TRIGGER	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB1_INTR_RX_MASKED

Receiver Interrupt Masked Request Register Address: 0x40090FCC

Address: 0x40090FCC Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
Dita				7			•	_
SW Access	R	R	R	None	R	R	None	R
HW Access	W	W	W	None	W	W	None	W
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGER
	.	Ī		T	Ī	T	T	T
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		R	R	R	R
HW Access		None				W	W	W
Name	None [15:12]				BREAK DETECT	BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access		None						
Name		None [31:24]						

Bits	Name	Description
11	BREAK_DETECT	Logical and of corresponding request and mask bits. Default Value: 0
10	BAUD_DETECT	Logical and of corresponding request and mask bits.
9	PARITY_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
8	FRAME_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
7	BLOCKED	Logical and of corresponding request and mask bits. Default Value: 0
6	UNDERFLOW	Logical and of corresponding request and mask bits. Default Value: 0
5	OVERFLOW	Logical and of corresponding request and mask bits. Default Value: 0
3	FULL	Logical and of corresponding request and mask bits. Default Value: 0
2	NOT_EMPTY	Logical and of corresponding request and mask bits. Default Value: 0
0	TRIGGER	Logical and of corresponding request and mask bits. Default Value: 0

Generic Control Register Address: 0x400A0000 Retention: Retained

	1					1	I	1	
Bits	7	6	5	4	3	2	1	0	
SW Access		No	one		RW				
HW Access		No	one		R				
Name		None	e [7:4]			OVS	[3:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access		No	one		RW	RW	RW	RW	
HW Access		None				R	R	R	
Name		None [15:12] BYTE_MODE					EC_OP_ MODE	EC_AM_ MODE	
			1	1	1	ı	ı	1	
Bits	23	22	21	20	19	18	17	16	
SW Access			N	lone			RW	RW	
HW Access			N	lone			R	R	
Name			None	[23:18]			BLOCK	ADDR_ ACCEPT	
			1	1	1		ı	1	
Bits	31	30	29	28	27	26	25	24	
SW Access	RW		None					W	
HW Access	R			None			F	3	
Name	ENABLED	None [30:26]						[25:24]	

Bits	Name	De
31	ENABLED	SC

25:24

Description

SCB block is enabled ('1') or not ('0'). The proper order in which to initialize SCB is as follows:

- Program protocol specific information using SPI_CTRL, UART_CTRL (and UART_TX_CTRL and UART_RX_CTRL) or I2C_CTRL registers. This includes selection of a submode, master/slave functionality and transmitter/receiver functionality when applicable.
- Program generic transmitter (TX_CTRL) and receiver (RX_CTRL) information. This includes enabling of the transmitter and receiver functionality.
- Program transmitter FIFO (TX_FIFO_CTRL) and receiver FIFO (RX_FIFO_CTRL) information.
- Program CTRL register to enable SCB, select the specific operation mode and oversampling factor.

When this block is enabled, no control information should be changed. Changes should be made

AFTER disabling this block, e.g. to modify the operation mode (from I^2C to SPI) or to go from externally to internally clocked. The change takes effect after the block is re-enabled. Note that disabling the block will cause re-initialization of the design and associated state is lost (e.g. FIFO content).

Default Value: 0

MODE Default Value: 3

0x0: I2C: 0x1: SPI: 0x2: UART: 17 BLOCK

Only used in externally clocked mode. If the externally clocked logic and the internal CPU accesses to EZ memory coincide/collide, this bit determines whether the CPU access should block and result in bus wait states (BLOCK is '1') or not (BLOCK is '0'). IF BLOCK is 0 and the accesses collide, CPU read operations return 0xffff:ffff and CPU write operations are ignored. Colliding accesses are registered as interrupt causes: INTR_TX.BLOCKED and INTR_RX.BLOCKED.

Default Value: 0

16 ADDR_ACCEPT

Determines whether a received matching address is accepted in the RX FIFO ('1') or not ('0'). In I²C mode, this field is used to allow the slave to put the received slave address or general call address in the RX FIFO. Note that a received matching address is put in the RX FIFO when this bit is '1' for both I²C read and write transfers.

In multi-processor UART receiver mode, this field is used to allow the receiver to put the received address in the RX FIFO. Note: non-matching addresses are never put in the RX FIFO.

Default Value: 0

11 BYTE_MODE

Default Value: 0

10 EZ_MODE

Non EZ mode ('0') or EZ mode ('1').

In EZ mode, a meta protocol is applied to the serial interface protocol. This meta protocol adds meaning to the data frames transferred by the serial interface protocol: a data frame can represent a memory address, a write memory data element or a read memory data element. EZ mode is only used for synchronous serial interface protocols: SPI and I²C. In SPI mode, only Motorola submode (all Motorola modes: 0, 1, 2, 3) is supported and the transmitter should use continuous data frames; i.e. data frames not separated by slave deselection. This mode is only applicable to slave functionality. In EZ mode, the slave can read from and write to an addressable memory structure of 32 bytes. In EZ mode, data frames should 8-bit in size and should be transmitted and received with the Most Significant Bit (MSB) first.

In UART mode this field should be '0'.

Default Value: 0

9 EC OP MODE

This field specifies the clocking for the SCB block

'0': Internally clocked mode

'1': externally clocked mode

In internally clocked mode, the serial interface protocols run off the SCB clock. In externally clocked mode, the serial interface protocols run off the clock as provided by the serial interface.

Externally clocked operation mode is only used for synchronous serial interface protocols (SPI and I²C) in slave mode AND EZ mode. In SPI mode, only Motorola submode (all Motorola modes: 0, 1, 2, 3) is supported. The maximum SPI slave, EZ mode bitrate is 48 Mbps (transmission and IO delays outside the IP will degrade the effective bitrate).

In UART mode this field should be '0'.

Default Value: 0

8 EC_AM_MODE

This field specifies the clocking for the address matching (I²C) or slave selection detection logic (SPI) '0': Internally clocked mode

'1': Externally clocked mode

In internally clocked mode, the serial interface protocols run off the SCB clock. In externally clocked mode, the serial interface protocols run off the clock as provided by the serial interface.

The clocking for the rest of the logic is determined by CTRL.EC_OP_MODE.

Externally clocked mode is only used for synchronous serial interface protocols (SPI and I^2C) in slave mode. In SPI mode, only Motorola submode (all Motorola modes: 0, 1, 2, 3) is supported.

In UART mode this field should be '0'.

3:0 OVS

Serial interface bit period oversampling factor expressed in SCB clock cycles. Used for SPI and UART functionality. OVS + 1 SCB clock cycles constitute a single serial interface clock/bit cycle. This field is NOT used in externally clocked mode. If OVS is odd, the oversampling factor is even and the low and high phase of the interface clock period are the same. If OVS is even, the oversampling factor is odd and the low and high phase can differ by 1 SCB clock period.

In SPI master mode, the valid range is [3, 15]. At an SCB frequency of 48 MHz, the maximum SPI bit rate is 12 Mbps, assuming ideal (0 ns) IO cell and routing (chip and board) delay. The calculated maximum bit rate decreases, when realistic chip and routing delays are taken into account. The effective system bit rate is dependent on the external SPI slave that we communicate with. If the SPI output clock to SPI MISO input round trip delay is significant (multiple SPI output clock cycles), it may be necessary to increase OVS and/or to set SPI CTRL.LATE MISO SAMPLE to '1' to achieve the maximum possible system bit rate.

In SPI slave mode, the OVS field is NOT used. However, there is a frequency requirement for the SCB clock wrt. the SPI input clock (IF) on the interface to guarantee functional correct behavior. This requirement is expressed as a ratio: SCB clock/IF clock. The ratio is dependent on the setting of RX_CTRL.MEDIAN and the external SPI master's capability to support "late MISO sample" functionality (similar to our SPI master functionality represented by SPI CTRL.LATE MISO SAMPLE):

- MEDIAN is '0' and external SPI master has NO "late MISO sample functionality": SCB clock/IF clock \geq 6. At a SCB frequency of 48 MHz, the maximum bit rate is 8 Mbps.
- MEDIAN is '0' and external SPI master has "late MISO sample functionality": SCB clock/IF clock ≥ 3.
 At a SCB frequency of 48 MHz, the maximum bit rate is 16 Mbps.
- MEDIAN is '1' and external SPI master has NO "late MISO sample functionality": SCB clock/IF clock \geq 8. At a SCB frequency of 48 MHz, the maximum bit rate is 6 Mbps.
- MEDIAN is '1' and external SPI master has "late MISO sample functionality": SCB clock/IF clock ≥4. At a SCB frequency of 48 MHz, the maximum bit rate is 12 Mbps.

As discussed earlier, the calculated maximum bit rate decreases, when realistic chip and routing delays are taken into account. In UART standard submode (including LIN), the valid range is [7, 15]. In UART Smart-Card submode, the valid range is [7, 15].

In UART TX IrDA submode this field indirectly specifies the oversampling. The oversampling determines the interface clock/bit cycle and the width of the pulse. Only normal transmission mode is supported, the pulse is roughly 3/16 of the bit period (for all bit rates). There is only one valid OVS value:

- 0: 16 times oversampling

```
SCB clock frequency of 16*115.2 KHz for 115.2 Kbps. SCB clock frequency of 16*57.6 KHz for 57.6 Kbps. SCB clock frequency of 16*38.4 KHz for 38.4 Kbps. SCB clock frequency of 16*19.2 KHz for 19.2 Kbps. SCB clock frequency of 16*9.6 KHz for 9.6 Kbps. SCB clock frequency of 16*2.4 KHz for 2.4 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps.
```

all other values are not used in normal mode.

In UART RX IrDA submode (1.2, 2.4, 9.6, 19.2, 38.4, 57.6 and 115.2 Kbps) this field indirectly specifies the oversampling. The oversampling determines the interface clock/bit cycle and the width of the pulse. In normal transmission mode, this pulse is roughly 3/16 of the bit period (for all bit rates). In low power transmission mode, this pulse is potentially smaller (down to 1.62 μ s typical and 1.41 μ s minimal) than 3/16 of the bit period (for < 115.2 Kbps bitrates). Pulse widths greater or equal than two SCB clock cycles are guaranteed to be detected by the receiver. Pulse widths less than two SCB clock cycles and greater or equal than one SCB clock cycle may be detected by the receiver. Pulse widths less than one SCB clock cycle will not be detected by the receiver. RX_CTRL.MEDIAN should be set to '1' for IrDA receiver functionality. The SCB clock (as provided by the programmable clock block) and the oversampling together determine the IrDA bitrate. Normal mode, OVS field values (with the required SCB clock frequency):

- 0: 16 times oversampling.

```
SCB clock frequency of 16*115.2 KHz for 115.2 Kbps. SCB clock frequency of 16*57.6 KHz for 57.6 Kbps. SCB clock frequency of 16*38.4 KHz for 38.4 Kbps. SCB clock frequency of 16*19.2 KHz for 19.2 Kbps. SCB clock frequency of 16*9.6 KHz for 9.6 Kbps. SCB clock frequency of 16*2.4 KHz for 2.4 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps. SCB clock frequency of 16*1.2 KHz for 1.2 Kbps.
```

- all other values are not used in normal mode.

Low power mode, OVS field values (with the required SCB clock frequency):

- 0: 16 times oversampling.

SCB clock frequency of 16*115.2 KHz for 115.2 Kbps.

- 1: 32 times oversampling.

SCB clock frequency of 32*57.6 KHz for 57.6 Kbps.

- 2: 48 times oversampling.

SCB clock frequency of 48*38.4 KHz for 38.4 Kbps.

SCB2_CTRL (Continued)

- 3: 96 times oversampling.SCB clock frequency of 96*19.2 KHz for 19.2 Kbps.
- 4: 192 times oversampling.
 SCB clock frequency of 192*9.6 KHz for 9.6 Kbps.

– 5: 768 times oversampling. SCB clock frequency of 768*2.4 KHz for 2.4 Kbps.

- 6: 1536 times oversampling.

SCB clock frequency of 1536*1.2 KHz for 1.2 Kbps.

- all other values are not used in low power mode.

SCB2_STATUS

Generic Status Register Address: 0x400A0004 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None							
HW Access		None							
Name		None [7:1] EC_BUSY							
			1						
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							
Name		None [15:8]							
		ı	1	1	T	T-	T	1	
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
		T	1	1	T	T	T		
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne		•		
Name				None	[31:24]				

Bits Name
0 EC_BUSY

Description

Indicates whether the externally clocked logic is potentially accessing the EZ memory (this is only possible in EZ mode). This bit can be used by SW to determine whether it is safe to issue a SW access to the EZ memory (without bus wait states (a blocked SW access) or bus errors being generated). Note that the INTR_TX.BLOCKED and INTR_RX.BLOCKED interrupt causes are used to indicate whether a SW access was actually blocked by externally clocked logic.

Name

MASTER

MODE

SPI Control Register Address: 0x400A0020 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	No	ne	RW	RW	RW	RW	RW	RW
HW Access	No	ne	R	R	R	R	R	R
Name	None	[7:6]	SCLK_CON- TINUOUS	LATE_MISO _SAMPLE	CPOL	СРНА	SELECT_ PRECEDE	CONTINU- OUS
Bits	15	14	13	12	11	10	9	8
SW Access	10	None			RW	RW	RW	RW
HW Access			one		R	R	R	R
Name		None	[15:12]		SSEL POLARITY3	SSEL POLARITY2	SSEL POLARITY1	SSEL POLARITY0
			1	1			I	
Bits	23	22	21	20	19	18	17	16
SW Access				None				RW
HW Access				None				R
Name		None [23:17]						LOOPBACK
Dite	1 04		00	1 00	07	00	05	04
Bits	31	30	29	28	27	26	25	24
SW Access	RW	RW None				RW		
HW Access	R		None		R		F	7
	t	l						

Bits	Name	Description
31	MASTER_MODE	Master ('1') or slave ('0') mode. In master mode, transmission will commence on availability of data frames in the TX FIFO. In slave mode, when selected and there is no data frame in the TX
		FIFO, the slave will transmit all '1's. In both master and slave modes, received data frames will be lost if the RX FIFO is full.
		Default Value: 0
27:26	SLAVE_SELECT	Selects one of the four outgoing SPI slave select signals:
		- 0: Slave 0, SPI_SELECT[0].
		- 1: Slave 1, SPI_SELECT[1].
		- 2: Slave 2, SPI_SELECT[2].
		- 3: Slave 3, SPI_SELECT[3].
		Only used in master mode. SCB block should be disabled when changes are made to this field. Default Value: 0
25:24	MODE	Submode of SPI operation (3: Reserved).
		Default Value: 3

0x0: SPI_MOTOROLA:

None [30:28]

SPI Motorola submode. In master mode, when not transmitting data (Slave SELECT is inactive), SCLK is stable at CPOL. In slave mode, when not selected, SCLK is ignored; i.e. it can be either stable or clocking. In master mode, when there is no data to transmit (TX FIFO is empty), Slave SELECT is inactive.

SLAVE_SELECT [27:26]

MODE [25:24]

0x1: SPI_TI:

SPI Texas Instruments submode. In master mode, when not transmitting data, SCLK is stable at '0'. In slave mode, when not selected, SCLK is ignored; i.e. it can be either stable or clocking. In master mode, when there is no data to transmit (TX FIFO is empty), Slave SELECT is inactive; i.e. no pulse is generated.

_	_	
		0x2: SPI NS:
		SPI National Semiconducturs submode. In master mode, when not transmitting data, SCLK is stable at '0'. In slave mode, when not selected, SCLK is ignored; i.e. it can be either stable or clocking. In master mode, when there is no data to transmit (TX FIFO is empty), Slave SELECT is inactive.
16	LOOPBACK	Local loopback control (does NOT affect the information on the pins). Only used in master mode. Not used in National Semiconductors submode. '0': No local loopback
		'1': the SPI master MISO line is connected to the SPI master MOSI line. In other words, in loop-back mode the SPI master receives on MISO what it transmits on MOSI. Default Value: 0
11	SSEL_POLARITY3	Slave select polarity. SSEL_POLARITY3 applies to the outgoing SPI slave select signal 3 (master mode). Default Value: 0
10	SSEL_POLARITY2	Slave select polarity. SSEL_POLARITY2 applies to the outgoing SPI slave select signal 2 (master mode).
		Default Value: 0
9	SSEL_POLARITY1	Slave select polarity. SSEL_POLARITY1 applies to the outgoing SPI slave select signal 1 (master mode). Default Value: 0
	COEL BOLABITY	
8	SSEL_POLARITY0	Slave select polarity. SSEL_POLARITY0 applies to the outgoing SPI slave select signal 0 (master mode) and to the incoming SPI slave select signal (slave mode). For Motorola and National Semiconductors submodes:
		'0': slave select is low/"0' active.
		'1': slave select is high/'1' active. For Texas Instruments submode:
		'0': high/"1' active precede/coincide pulse.
		'1': low/'0' active precede/coincide pulse.
		Default Value: 0
5	SCLK_CONTINUOUS	Only applicable in master mode.
		'0': SCLK is generated, when the SPI master is enabled and data is transmitted.
		'1': SCLK is generated, when the SPI master is enabled. This mode is useful for slave devices that use SCLK for functional operation other than just SPI functionality. Default Value: 0
4	LATE_MISO_SAMPLE	Changes the SCLK edge on which MISO is captured. Only used in master mode.
		When '0', the default applies (for Motorola as determined by CPOL and CPHA, for Texas Instruments on the falling edge of SCLK and for National Semiconductors on the rising edge of SCLK).
		When '1', the alternate clock edge is used (which comes half a SPI SCLK period later). Late sampling addresses the round trip delay associated with transmitting SCLK from the master to the slave and transmitting MISO from the slave to the master. Default Value: 0
3	CPOL	Indicates the clock polarity. Only used in SPI Motorola submode. This field, together with the CPHA field, indicates when MOSI data is driven and MISO data is captured:
		- CPOL is 0: SCLK is 0 when not transmitting data.
		- CPOL is 1: SCLK is 1 when not transmitting data.
		Default Value: 0
2	СРНА	Only applicable in SPI Motorola submode. Indicates the clock phase. This field, together with the CPOL field, indicates when MOSI data is driven and MISO data is captured:
		 Motorola mode 0. CPOL is 0, CPHA is 0: MOSI is driven on a falling edge of SCLK. MISO is captured on a rising edge of SCLK.
		 Motorola mode 1. CPOL is 0, CPHA is 1: MOSI is driven on a rising edge of SCLK. MISO is captured on a falling edge of SCLK.
		 Motorola mode 2. CPOL is 1, CPHA is 0: MOSI is driven on a rising edge of SCLK. MISO is captured on a falling edge of SCLK.
		 Motorola mode 3. CPOL is 1, CPHA is 1: MOSI is driven on a falling edge of SCLK. MISO is captured on a rising edge of SCLK.
		Default Value: 0

SCB2 SPI CTRL (Continued)

1 SELECT_PRECEDE Only used in SPI Texas Instruments' submode.

When '1', the data frame start indication is a pulse on the Slave SELECT line that precedes the

transfer of the first data frame bit.

When '0', the data frame start indication is a pulse on the Slave SELECT line that coincides with

the transfer of the first data frame bit.

Default Value: 0

O CONTINUOUS Continuous SPI data transfers enabled ('1') or not ('0'). This field is used in master mode. In slave mode, both continuous and non-continuous SPI data transfers are supported independent of this

ield.

When continuous transfers are enabled individual data frame transfers are not necessarily separated by slave deselection (as indicated by the level or pulse on the SELECT line): if the TX

FIFO has multiple data frames, data frames are send out without slave deselection.

When continuous transfers are not enabled individual data frame transfers are always separated by slave deselection: independent of the availability of TX FIFO data frames, data frames are sent

out with slave deselection.

SCB2_SPI_STATUS

SPI Status Register Address: 0x400A0024 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			No	ne			R	R	
HW Access		None W W							
Name			None	e [7:2]			SPI_EC_ BUSY	BUS_BUSY	
	1	T	T		T	T	T	T	
Bits	15	14	13	12	11	10	9	8	
SW Access				F	3				
HW Access		W							
Name		CURR_EZ_ADDR [15:8]							
Bits	23	22	21	20	19	18	17	16	
SW Access				F	3				
HW Access				V	V				
Name				BASE_EZ_A	DDR [23:16]				
	1	T	T	1	T	T	T	1	
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	one				
Name				None	[31:24]				

Bits	Name	Description
00.40		2 de di Pilon
23:16	BASE_EZ_ADDR	SPI base EZ address. Address as provided by a SPI write transfer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable, as clock domain synchronization is not performed in the design. Default Value: Undefined
15:8	CURR_EZ_ADDR	SPI current EZ address. Current address pointer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable (during an ongoing transfer when SPI_EC_BUSY is '1'), as clock domain synchronization is not performed in the design. Default Value: Undefined
1	SPI_EC_BUSY	Indicates whether the externally clocked logic is potentially accessing the EZ memory and/or updating BASE_ADDR or CURR_ADDR (this is only possible in EZ mode). This bit can be used by SW to determine whether BASE_ADDR and CURR_ADDR are reliable. Default Value: Undefined
0	BUS_BUSY	SPI bus is busy. The bus is considered busy ('1') during an ongoing transaction. For Motorola and National submodes, the busy bit is '1', when the slave selection (low active) is activated. For TI submode, the busy bit is '1' from the time the preceding/coinciding slave select (high active) is activated for the first transmitted data frame, till the last MOSI/MISO bit of the last data frame is transmitted. Default Value: Undefined

UART Control Register Address: 0x400A0040 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			•	No	ne	1	•	1			
HW Access				No	one						
Name				None	e [7:0]						
Bits	15	14	13	12	11	10	9	8			
	10		10			10					
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access			l .	None	l	I		RW			
HW Access				None				R			
Name				None [23:17]				LOOPBACK			
Bits	31	30	29	28	27	26	25	24			
SW Access				one		1					
HW Access			No	one				R			
Name			None	[31:26]			MODI	E [25:24]			

Bits	Name	Description
Bits	Name	Description

LOOPBACK

16

25:24 MODE

Submode of UART operation (3: Reserved)

Default Value: 3 0x0: UART_STD:

Standard UART submode.

0x1: UART SMARTCARD:

SmartCard (ISO7816) submode. Support for negative acknowledgement (NACK) on the receiver side

and retransmission on the transmitter side.

0x2: UART IRDA:

Infrared Data Association (IrDA) submode. Return to Zero modulation scheme. In this mode, the oversampling factor should be 16, that is OVS should be set to 15.

Local loopback control (does NOT affect the information on the pins).

0: Loopback is not enabled

1: UART TX is connected to UART RX. UART RTS is connected to UART CTS. This allows a SCB

UART transmitter to communicate with its receiver counterpart.

SCB2_UART_TX_CTRL

UART Transmitter Control Register Address: 0x400A0044

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	No	ne	RW	RW	None		RW		
HW Access	No	ne	R	R	None		R		
Name	None	[7:6]	PARITY_ ENABLED	PARITY	None	STOP_BITS [2:0]			
Bits	15	14	13	12	11	10	9	8	
SW Access		'7	10	None	''	10		RW	
		None							
HW Access									
Name	None [15:9]								
			_						
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	one				
Name				None	[31:24]				

Bits 8	Name RETRY_ON_NACK	Description When '1', a data frame is retransmitted when a negative acknowledgement is received. Only applicable to the SmartCard submode.
5	PARITY_ENABLED	Default Value: 0 Parity generation enabled ('1') or not ('0'). Only applicable in standard UART submodes. In SmartCard submode, parity generation is always enabled through hardware. In IrDA submode, parity generation is always disabled through hardware. Default Value: 0
4	PARITY	Parity bit. When '0', the transmitter generates an even parity. When '1', the transmitter generates an odd parity. Only applicable in standard UART and SmartCard submodes. Default Value: 0
2:0	STOP_BITS	Stop bits. STOP_BITS + 1 is the duration of the stop period in terms of halve bit periods. Valid range is [1, 7]; i.e. a stop period should last at least one bit period. Default Value: 2

SCB2 UART RX CTRL

UART Receiver Control Register

Address: 0x400A0048 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None	RW	RW	RW	None		RW	
HW Access	None	R	R	R	None		R	
Name	None	POLARITY	PARITY_ ENABLED	PARITY	None	STOP_BITS [2:0]		
Bits	15	14	13	12	11	10	9	8
SW Access	No	ne	RW	RW	None	RW	RW	RW
HW Access	No	ne	R	R	None	R	R	R
Name	None [15:14]		SKIP_START	LIN_MODE	None	MP_MODE	DROP_ON_ FRAME_ ERROR	DROP_ON PARITY_ ERROR
Bits	23	22	21	20	19	18	17	16

Dito						10 17				
SW Access		No	ne		RW					
HW Access		No	ne		R					
Name		None	[23:20]		BREAK_WIDTH [19:16]					
	<u> </u>									

Bits	31	30	29	28	27	26	25	24				
SW Access		None										
HW Access		None										
Name				None [[31:24]							

Bits Name 19:16 BREAK_WIDTH

Description

Break width. BREAK_WIDTH + 1 is the minimum width in bit periods of a break. During a break the transmitted/received line value is '0'. This feature is useful for standard UART submode and LIN submode ("break field" detection). Once, the break is detected, the INTR_RX_BREAK_DETECT bit is set to '1'. Note that break detection precedes baud rate detection, which is used to synchronize/refine the receiver clock to the transmitter clock. As a result, break detection operates with an unsynchronized/unrefined receiver clock. Therefore, the receiver's definition of a bit period is imprecise and the setting of this field should take this imprecision into account. The LIN standard also accounts for this imprecision: a LIN start bit followed by 8 data bits allows for up to 9 consecutive '0' bit periods during regular transmission, whereas the LIN break detection should be at least 13 consecutive '0' bit periods. This provides for a margin of 4 bit periods. Therefore, the default value of this field is set to 10, representing a minimal break field with of 10+1 = 11 bit periods; a value in between the 9 consecutive bit periods of a regular transmission and the 13 consecutive bit periods of a break field. This provides for slight imprecisions of the receiver clock wrt. the transmitter clock. There should not be a need to program this field to any value other than its default value.

13	SKIP_START	Only applicable in standard UART submode. When '1', the receiver skips start bit detection for the first received data frame. Instead, it synchronizes on the first received data frame bit, which should be a '1'. This functionality is intended for wake up from DeepSleep when receiving a data frame. The transition from idle ('1') to START ('0') on the RX line is used to wake up the CPU. The transition detection (and the associated wake up functionality) is performed by the GPIO2 IP. The woken up CPU will enable the SCB's UART receiver functionality. Once enabled, it is assumed that the START bit is ongoing (the CPU wakeup and SCB enable time should be less than the START bit period). The SCB will synchronize to a '0' to '1' transition, which indicates the first data frame bit is received (first data frame bit should be '1'). After synchronization to the first data frame bit, the SCB will resume normal UART functionality: subsequent data frames will be synchronized on the receipt of a START bit. Default Value: 0
12	LIN_MODE	Only applicable in standard UART submode. When '1', the receiver performs break detection and baud rate detection on the incoming data. First, break detection counts the amount of bit periods that have a line value of '0'. BREAK_WIDTH specifies the minimum required amount of bit periods. Successful break detection sets the INTR_RX.BREAK_DETECT interrupt cause to '1'. Second, baud rate detection counts the amount of peripheral clock periods that are use to receive the synchronization byte (0x55; least significant bit first). The count is available through UART_RX_STATUS.BR_COUNTER. Successful baud rate detection sets the INTR_RX.BAUD_DETECT interrupt cause to '1' (BR_COUNTER is reliable). This functionality is used to synchronize/refine the receiver clock to the transmitter clock. The receiver software can use the BR_COUNTER value to set the right IP clock (from the programmable clock IP) to guarantee successful receipt of the first LIN data frame (Protected Identifier Field) after the synchronization byte. Default Value: 0
10	MP_MODE	Multi-processor mode. When '1', multi-processor mode is enabled. In this mode, RX_CTRL.DATA_WIDTH should indicate a 9-bit data frame. In multi-processor mode, the 9th received bit of a data frame separates addresses (bit is '1') from data (bit is '0'). A received address is matched with RX_MATCH.DATA and RX_MATCH.MASK. In the case of a match, sub-sequent received data are sent to the RX FIFO. In the case of NO match, subsequent received data are dropped. Default Value: 0
9	DROP ON FRAME_ERROR	Behavior when an error is detected in a start or stop period. When '0', received data is sent to the RX FIFO. When '1', received data is dropped and lost. Default Value: 0
8	DROP_ON_ PARITY_ERROR	Behavior when a parity check fails. When '0', received data is sent to the RX FIFO. When '1', received data is dropped and lost. Only applicable in standard UART and SmartCard submodes (negatively acknowledged SmartCard data frames may be dropped with this field). Default Value: 0
6	POLARITY	Inverts incoming RX line signal. Inversion is after local loopback. This functionality is intended for IrDA receiver functionality. Default Value: 0
5	PARITY_ENABLED	Parity checking enabled ('1') or not ('0'). Only applicable in standard UART submode. In SmartCard submode, parity checking is always enabled through hardware. In IrDA submode, parity checking is always disabled through hardware. Default Value: 0
4	PARITY	Parity bit. When '0', the receiver expects an even parity. When '1', the receiver expects an odd parity. Only applicable in standard UART and SmartCard submodes. Default Value: 0
2:0	STOP_BITS	Stop bits. STOP_BITS + 1 is the duration of the stop period in terms of halve bit periods. Valid range is [1, 7]; i.e. a stop period should last at least one bit period. If STOP_BITS is '1', stop bits error detection is NOT performed. If STOP_BITS is in [2, 7], stop bits error detection is performed and the associated interrupt cause INTR_RX.FRAME_ERROR is set to '1' if an error is detected. In other words, the receiver supports data frames with a 1 bit period stop bit sequence, but requires at least 1.5 bit period stop bit sequences to detect errors. This limitation is due to possible transmitter and receiver clock skew that prevents the design from doing reliable stop bit detection for short (1 bit bit period) stop bit sequences. Note that in case of a stop bits error, the successive data frames may get lost as the receiver needs to resynchronize its start bit detection. The amount of lost data frames depends on both the amount of stop bits, the idle ('1') time between data frames and the data frame value. Default Value: 2

$SCB2_UART_RX_STATUS$

UART Receiver Status Register

Address: 0x400A004C Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			l	F	3	· L	l		
HW Access				V	V				
Name				BR_COUN	NTER [7:0]				
D ::			10	- 10		1 10	1 -	1 _	
Bits	15	14	13	12	11	10	9	8	
SW Access		No	one			I	7		
HW Access		No	ne		W				
Name		None	[15:12]		BR_COUNTER [11:8]				
Dit -	00		0.4	00	10	10	1-7	10	
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
Dit.	0.4			1 00					
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 11:0 BR_COUNTER

Description

Amount of peripheral clock periods that constitute the transmission of a 0x55 data frame (sent least significant bit first) as determined by the receiver. BR_COUNTER / 8 is the amount of peripheral clock periods that constitute a bit period. This field has valid data when INTR_RX.BAUD_DETECT is set to '1'.

SCB2_UART_FLOW_CTRL

UART Flow Control Register Address: 0x400A0050

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		No	one		RW				
HW Access		No	one		R				
Name		None [7:4] TRIGGER_LEVEL [3:0]							
D!4-									
Bits	15	14	13	12	11	10	9	8	
SW Access	15	14	13	12		10	9	8	
	15	14	13		ne	10	9	8	

Bits	23	22	21	20	19	18	17	16		
SW Access		None								
HW Access	None									
Name				None [23:17]				RTS_ POLARITY		

Bits	31	31 30 29 28 27 26							
SW Access		RW	RW						
HW Access			R	R					
Name			None	[31:26]			CTS_ ENABLED	CTS_ POLARITY	

Bits	Name	Description
25	CTS_ENABLED	Enable use of CTS input signal by the UART transmitter:
	_	'0': Disabled. The UART transmitter ignores the CTS input signal and transmits when a data frame is available for transmission in the TX FIFO or the TX shift register.
		'1': Enabled. The UART transmitter uses CTS input signal to qualify the transmission of data. It transmits when CTS input signal is active and a data frame is available for transmission in the TX FIFO or the TX shift register.
		If UART_CTRL.LOOPBACK is '1', the CTS input signal is driven by the RTS output signal locally in SCB (both signals are subjected to signal polarity changes are indicated by RTS_POLARITY and CTS_POLARITY).
		Default Value: 0
24	CTS_POLARITY	Polarity of the CTS input signal
		'0': CTS is active low;
		'1': CTS is active high;
		Default Value: 0
16	RTS_POLARITY	Polarity of the RTS output signal:
		'0': RTS is active low;
		'1': RTS is active high;
		During SCB reset (Hibernate system power mode), RTS output signal is '1'. This represents an inactive state assuming an active low polarity.
		Default Value: 0
3:0	TRIGGER_LEVEL	Trigger level. When the receiver FIFO has less entries than the amount of this field, a Ready To Send (RTS) output signal is activated. By setting this field to "0", flow control is effectively disabled (may be useful for debug purposes). Default Value: 0
		Delault value. 0

SCB2_I2C_CTRL

I²C Control Register Address: 0x400A0060 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		R	W		RW				
HW Access		F	3		R				
Name		LOW_PHAS	E_OVS [7:4]		HIGH_PHASE_OVS [3:0]				
Bits	15	14	13	12	11	10	9	8	

Bits	15	14	13	12	11	10	9	8
SW Access	RW	RW	RW	RW	RW	None	RW	RW
HW Access	R	R	R	R	R	None	R	R
Name	S_NOT_ READY_ DATA_NACK	S_NOT_ READY_ ADDR_ NACK	S_READY_ DATA_ACK	S_READY_ ADDR_ACK	S_ GENERAL_ IGNORE	None	M_NOT_ READY_ DATA_NACK	M_READY_ DATA_ACK

Bits	23	22	21	20	19	18	17	16	
SW Access		None							
HW Access		None							
Name				None [23:17]				LOOPBACK	

Bits	31	30	29	28	27	26	25	24	
SW Access	RW	RW	None						
HW Access	R	R	None						
Name	MASTER_ MODE	SLAVE_ MODE			None	[29:24]			

Bits	Name	Description
31	MASTER_MODE	Master mode enabled ('1') or not ('0'). Note that both master and slave modes can be enabled at the same time. This allows the IP to address itself. Default Value: 0
30	SLAVE_MODE	Slave mode enabled ('1') or not ('0'). Default Value: 0
16	LOOPBACK	Local loopback control (does NOT affect the information on the pins). Only applicable in master/slave mode. When '0', no loopback When '1', loopback is enabled internally in the peripheral, and as a result unaffected by other I ² C devices. This allows a SCB I ² C peripheral to address itself. Default Value: 0

15	S_NOT_READY_	Only used when:
	DĀTA_NĀCK	- non EZ mode
		Functionality is as follows:
		- 1: a received data element byte the slave is immediately NACK'd when the receiver FIFO is full.
		 0: clock stretching is performed (till the receiver FIFO is no longer full).
		Default Value: 1
14	S_NOT_READY_ ADDR_NACK	This field is used during an address match or general call address in internally clocked mode Only used when:
		 EC_AM_MODE is '0', EC_OP_MODE is '0', S_GENERAL_IGNORE is '0] and non EZ mode. Functionality is as follows:
		- 1: a received (matching) slave address is immediately NACK'd when the receiver FIFO is full.
		 0: clock stretching is performed (till the receiver FIFO is no longer full).
		For externally clocked logic (EC_AM is '1') on an address match or general call address (and S_GENERAL_IGNORE is '0'). Only used when (NOT used when EC_AM is '1' and EC_OP is '1' and address match and EZ mode): – EC_AM is '1' and EC_OP is '0'.
		- EC AM is '1' and general call address match.
		- EC AM is '1' and non EZ mode. Functionality is as follows:
		- 1: a received (matching or general) slave address is always immediately NACK'd. There are two
		possibilities:
		1). the SCB clock is available (in Active system power mode) and it handles the rest of the current transfer. In this case the I ² C master will not observe the NACK.
		2).SCB clock is not present (in DeepSleep system power mode). In this case the I ² C master will observe the NACK and may retry the transfer in the future (which gives the internally clocked logic the time to wake up from DeepSleep system power mode).
		 0: clock stretching is performed (till the SCB clock is available). The logic will handle the ongoing transfer as soon as the clock is enabled.
		Default Value: 1
13	S_READY_ DATA_ACK	When '1', a received data element by the slave is immediately ACK'd when the receiver FIFO is not full. In EZ mode, this field should be set to '1'. Default Value: 1
12	S_READY_ ADDR_ACK	When '1', a received (matching) slave address is immediately ACK'd when the receiver FIFO is not full. In EZ mode, this field should be set to '1'. Default Value: 1
11	S_GENERAL_ IGNORE	When '1', a received general call slave address is immediately NACK'd (no ACK or clock stretching) and treated as a non matching slave address. This is useful for slaves that do not need any data supplied within the general call structure. Default Value: 1
9	M_NOT_READY_ DATA_NACK	When '1', a received data element byte the master is immediately NACK'd when the receiver FIFO is full. When '0', clock stretching is used instead (till the receiver FIFO is no longer full). Default Value: 1
0	M DEADY	
8	M_READY_ DATA_ACK	When '1', a received data element by the master is immediately ACK'd when the receiver FIFO is not full. Default Value: 1
7:4	LOW_PHASE_OVS	Serial I ² C interface low phase oversampling factor. LOW_PHASE_OVS + 1 SCB clock periods constitute the low phase of a bit period. The valid range is [7, 15] with input signal median filtering and [6, 15] without input signal median filtering. The field is only used in master mode. In slave mode, the field is NOT used. However, there is
		a frequency requirement for the SCB clock wrt. the regular (no stretching) interface (IF) low time to guarantee functionally correct behavior. With input signal median filtering, the IF low time should be \geq 8 SCB clock cycles and \leq 16 IP clock cycles. Without input signal median filtering, the IF low time should be \geq 7 SCB clock cycles and \leq 16 SCB clock cycles.
		Default Value: 8
3:0	HIGH_PHASE_OVS	Serial I ² C interface high phase oversampling factor. HIGH_PHASE_OVS + 1 SCB clock periods constitute the high phase of a bit period. The valid range is [5, 15] with input signal median filtering and [4, 15] without input signal median filtering.
		The field is only used in master mode. In slave mode, the field is NOT used. However, there is a frequency requirement for the SCB clock wrt. the regular interface (IF) high time to guarantee functional correct behavior. With input signal median filtering, the IF high time should be \geq 6 SCB clock cycles and \leq 16 SCB clock cycles. Without input signal median filtering, the IF high time should be \geq 5 SCB clock cycles and \leq 16 SCB clock cycles. Default Value: 8

SCB2_I2C_STATUS

I²C Status Register Address: 0x400A0064 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	No	ne	R	R	No	one	R	R	
HW Access	No	one	W	W	No	one	W	W	
Name	None	e [7:6]	M_READ	S_READ	None	None [3:2]		BUS_BUSY	
Bits	15	14	13	12	11	10	9	8	
SW Access				<u>l</u>	<u> </u>				
HW Access		W							
Name				CURR_EZ_	ADDR [15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				F	3	1	1	1	
HW Access				V	V				
Name				BASE_EZ_A	DDR [23:16]				
	I	1	1	1	Ι			1	
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	one			<u> </u>	
Name				None	[31:24]				

Bits	Name	Description
23:16	BASE_EZ_ADDR	I ² C slave base EZ address. Address as provided by an I ² C write transfer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable, as clock domain synchronization is not performed in the design.
		Default Value: Undefined
15:8	CURR_EZ_ADDR	I ² C slave current EZ address. Current address pointer. This field is only reliable in internally clocked mode. In externally clocked mode the field may be unreliable (during an ongoing transfer when I2C_EC_BUSY is '1'), as clock domain synchronization is not performed in the design.
		Default Value: Undefined
5	M_READ	I ² C master read transfer ('1') or I ² C master write transfer ('0'). When the I ² C master is inactive/idle or transmitting START, REPEATED START, STOP or an address, this field is '0'.
		Default Value: 0
4	S_READ	I ² C slave read transfer ('1') or I ² C slave write transfer ('0'). When the I ² C slave is inactive/idle or receiving START, REPEATED START, STOP or an address, this field is '0'.
		Default Value: 0
1	I2C_EC_BUSY	Indicates whether the externally clocked logic is potentially accessing the EZ memory and/or updating BASE_ADDR or CURR_ADDR (this is only possible in EZ mode). This bit can be used by SW to determine whether BASE_ADDR and CURR_ADDR are reliable.
		Default Value: Undefined

0 BUS_BUSY

 I^2C bus is busy. The bus is considered busy ('1'), from the time a START is detected or from the time the SCL line is '0'. The bus is considered idle ('0'), from the time a STOP is detected. If SCB block is disabled, BUS_BUSY is '0'. After enabling the block, it takes time for the BUS_BUSY to detect a busy bus. This time is the maximum high time of the SCL line. For a 100 kHz interface frequency, this maximum high time may last roughly 5 μ s (half a bit period).

For single master systems, BUS_BUSY does not have to be used to detect an idle bus before a master starts a transfer using I2C_M_CMD.M_START (no bus collisions).

For multi-master systems, BUS_BUSY can be used to detect an idle bus before a master starts a transfer using I2C_M_CMD.M_START_ON_IDLE (to prevent bus collisions).

SCB2_I2C_M_CMD

I²C Master Command Register Address: 0x400A0068

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None		RW	RW	RW	RW	RW	
HW Access		None		RW1C	RW1C	RW1C	RW1C	RW1C	
Name		None [7:5]		M_STOP	M_NACK	M_ACK	M_START_ ON_IDLE	M_START	
Bits	15	14	13	12	11	10	9	8	
SW Access			l	No	ne				
HW Access		None							
Name		None [15:8]							
Bits	23	22	21	20	19	18	17	16	
SW Access		ı	l	No	ne		ı		
HW Access				No	one				
Name				None	[23:16]				
	T	1	1	1	1	T	1		
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	one				
Name				None	[31:24]				

Bits	Name	Description
4	M_STOP	When '1', attempt to transmit a STOP. When this action is performed, the hardware sets this field to '0'. This command has a higher priority than I2C_M_CMD.M_START: in situations where both a STOP and a REPEATED START could be transmitted, M_STOP takes precedence over M_START.
		Default Value: 0
3	M_NACK	When '1', attempt to transmit a negative acknowledgement (NACK). When this action is performed, the hardware sets this field to '0'.
		Default Value: 0
2	M_ACK	When '1', attempt to transmit an acknowledgement (ACK). When this action is performed, the hardware sets this field to '0'.
		Default Value: 0
1	M_START_ON_IDLE	When '1', transmit a START as soon as the bus is idle (I2C_STATUS.BUS_BUSY is '0', note that BUSY has a default value of '0'). For bus idle detection the hardware relies on STOP detection. As a result, bus idle detection is only functional after at least one I2C bus transfer has been detected on the bus (default/reset value of BUSY is '0') . A START is only transmitted when the master state machine is in the default state. When this action is performed, the hardware sets this field to '0'. Default Value: 0
0	M_START	When '1', transmit a START or REPEATED START. Whether a START or REPEATED START is transmitted depends on the state of the master state machine. A START is only transmitted when the master state machine is in the default state. A REPEATED START is transmitted when the master state machine is not in the default state, but is working on an ongoing transaction. The REPEATED START can only be transmitted after a NACK or ACK has been received for a transmitted data element or after a NACK has been transmitted for a received data element. When this action is performed, the hardware sets this field to '0'. Default Value: 0

SCB2_I2C_S_CMD

I²C Slave Command Register Address: 0x400A006C Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	No	one	•	•	RW	RW		
HW Access			No	one			RW1C	RW1C		
Name		None	S_NACK	S_ACK						
		T		T	T		T			
Bits	15	14	13	12	11	10	9	8		
SW Access				No	one					
HW Access		None								
Name		None [15:8]								
		1	1	T	T	1	1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
		,		1		_				
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	one					
Name				None	[31:24]					

Bits	Name	Description
1	S_NACK	When '1', attempt to transmit a negative acknowledgement (NACK). When this action is performed, the hardware sets this field to '0'. In EZ mode, this field should be set to '0' (it is only to be used in non EZ mode). This command has a higher priority than I2C_S_CMD.S_ACK, I2C_CTRL.S_READY_ADDR_ACK or I2C_CTRL.S_READY_DATA_ACK. Default Value: 0
0	S_ACK	When '1', attempt to transmit an acknowledgement (ACK). When this action is performed, the hardware sets this field to '0'. In EZ mode, this field should be set to '0' (it is only to be used in non EZ mode). Default Value: 0

SCB2_I2C_CFG

I²C Configuration Register Address: 0x400A0070 Retention: Retained

	1	ı					1	
Bits	7	6	5	4	3	2	1	0
SW Access		None		RW	None		RW	
HW Access		None		R	No	one	F	₹
Name	None [7:5]			SDA_IN_ FILT_SEL	None	e [3:2]	SDA_IN_FILT_TRIM [1:0]	
Bits	15	14	13	12	11	10	9	8
SW Access	None			RW	No	one	RW	
HW Access		None		R	None		R	
Name	None [15:13]			SCL_IN_ FILT_SEL	None [11:10]		SCL_IN_FILT_TRIM [9:8]	
Bits	23	22	21	20	19	18	17	16
SW Access	No	ne —	R'	W		W	R	
HW Access	No	ne	F	₹	R		R	
Name	None	[23:22]	SDA_OUT_FILT2_TRIM [21:20]		SDA_OUT_ [19	FILT1_TRIM ::18]	SDA_OUT_ [17	FILTO_TRIM :16]
	ı	I		I		1	ı	I
Bits	31	30	29	28	27 26 25 24		24	
SW Access	No	ne	R	W		No	one	·
HW Access	No	ne	F	₹		None		
Name	None	[31:30]	SDA_OUT	T_FILT_SEL None [27:24]				

Bits	Name	Description
29:28	SDA_OUT_FILT_SEL	Selection of cumulative filter delay on SDA output to meet tHD_DAT parameter "0": 0 ns.
		"1": 50 ns (filter 0 enabled).
		"2": 100 ns (filters 0 and 1 enabled).
		"3": 150 ns (filters 0, 1 and 2 enabled).
		Default Value: 0
21:20	SDA_OUT_FILT2_TRIM	Trim settings for the 50 ns delay filter on SDA output used to guarantee tHD_DAT I ² C parameter. Default setting meets the I ² C spec. Programmability available if required. Default Value: 2
19:18	SDA_OUT_FILT1_TRIM	Trim settings for the 50 ns delay filter on SDA output used to guarantee tHD_DAT I ² C parameter. Default setting meets the I ² C spec. Programmability available if required. Default Value: 2
17:16	SDA_OUT_FILTO_TRIM	Trim settings for the 50 ns delay filter on SDA output used to guarantee tHD_DAT I ² C parameter. Default setting meets the I ² C spec. Programmability available if required. Default Value: 2
12	SCL_IN_FILT_SEL	Enable for 50 ns glitch filter on SCL input '0': 0 ns. '1: 50 ns (filter enabled). Default Value: 1

SCB2_I2C_CFG (Continued)

9:8	SCL_IN_FILT_TRIM	Trim settings for the 50 ns glitch filter on the SDA input. Default setting meets the I^2C glitch rejections specs. Programmability available if required. Default Value: 0
4	SDA_IN_FILT_SEL	Enable for 50 ns glitch filter on SDA input '0': 0 ns. '1: 50 ns (filter enabled). Default Value: 1
1:0	SDA_IN_FILT_TRIM	Trim settings for the 50 ns glitch filter on the SDA input. Default setting meets the I ² C glitch rejections specs. Programmability available if required. Default Value: 3

SCB2_TX_CTRL

Transmitter Control Register Address: 0x400A0200 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		N	one	•	RW					
HW Access		N	one		R					
Name		Non	e [7:4]			DATA_W	IDTH [3:0]			
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access		None								
Name				None [15:9]				MSB_FIRST		
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	one					
Name				None	[23:16]					
			1	1	1	1				
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	one					
Name				None	[31:24]					

Bits	Name	Description
8	MSB_FIRST	Least significant bit first ('0') or most significant bit first ('1'). For I ² C, this field should be '1'. Default Value: 1
3:0	DATA_WIDTH	Dataframe width. DATA_WIDTH + 1 is the amount of bits in a transmitted data frame. This number does not include start, parity and stop bits. For UART mode, the valid range is [3, 8]. For SPI, the valid range is [3, 15]. For I2C the only valid value is 7. Default Value: 7

SCB2_TX_FIFO_CTRL

Transmitter FIFO Control Register Address: 0x400A0204

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		Ne	one	J		F	RW	
HW Access		Ne	one				R	
Name		None	e [7:4]			TRIGGER_	_LEVEL [3:0]	
Bits	15	14	13	12	11	10	9	8
SW Access				l No	ne one			
HW Access				No	one			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access			No	one	ı		RW	RW
HW Access			No	one			R	R
Name			None	[23:18]			FREEZE	CLEAR
Bits	31	30	29	28	27	26	25	24
SW Access				No	one		<u> </u>	
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
17	FREEZE	When '1', hardware reads from the transmitter FIFO do not remove FIFO entries. Freeze will not advance the TX FIFO read pointer.
		Default Value: 0
16	CLEAR	When '1', the transmitter FIFO and transmitter shift register are cleared/invalidated. Invalidation will last for as long as this field is '1'. If a quick clear/invalidation is required, the field should be set to '1' and be followed by a set to '0'. If a clear/invalidation is required for an extended time period, the field should be set to '1' during the complete time period.
		Default Value: 0
3:0	TRIGGER_LEVEL	Trigger level. When the transmitter FIFO has less entries than the number of this field, a transmitter trigger event is generated.
		Default Value: 0

SCB2_TX_FIFO_STATUS

Transmitter FIFO Status Register Address: 0x400A0208

Address: 0x400A0208 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None			R					
HW Access		None				W				
Name		None [7:5]				USED [4:0]				
	1	1		1	1		_			
Bits	15	14	13	12	11	10	9	8		
SW Access	R				None					
HW Access	W				None					
Name	SR_VALID				None [14:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access		No	ne	•	R					
HW Access		No	ne		W					
Name		None [23:20]			RD_PTF	R [19:16]			
Bits	31	30	29	28	27	26	25	24		
SW Access		No	ne	1	R					
HW Access		No	ne		W					
Name		None [31:28]				WR_PTR [27:24]				

Bits	Name	Description
27:24	WR_PTR	FIFO write pointer: FIFO location at which a new data frame is written. Default Value: 0
19:16	RD_PTR	FIFO read pointer: FIFO location from which a data frame is read by the hardware. Default Value: 0
15	SR_VALID	Indicates whether the TX shift registers holds a valid data frame ('1') or not ('0'). The shift register can be considered the top of the TX FIFO (the data frame is not included in the USED field of the TX FIFO). The shift register is a working register and holds the data frame that is currently transmitted (when the protocol state machine is transmitting a data frame) or the data frame that is transmitted next (when the protocol state machine is not transmitting a data frame). Default Value: 0
4:0	USED	Amount of entries in the transmitter FIFO. The value of this field ranges from 0 to FF_DATA_NR. Default Value: 0

SCB2_TX_FIFO_WR

Transmitter FIFO Write Register

Address: 0x400A0240 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	W										
HW Access		R									
Name		DATA [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access		W									
HW Access				F	3						
Name				DATA	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

BitsNameDescription15:0DATAData frame w

Data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation. Note that when CTRL.BYTE_MODE is '1', only DATA[7:0] are used.

A write to a full TX FIFO sets INTR_TX.OVERFLOW to '1'.

SCB2_RX_CTRL

Receiver Control Register Address: 0x400A0300 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		No	one			R	:W				
HW Access		No	one				R				
Name		None	e [7:4]			DATA_W	IDTH [3:0]				
Bits	15	15 14 13 12 11 10 9 8									
DILS	15	14	13	12	11	10	9	•			
SW Access			No	one			RW	RW			
HW Access			No	ne			R	R			
Name			None	[15:10]			MEDIAN	MSB_FIRST			
Bits	23	22	21	20	19	18	17	16			
DIIS	23	22	21	20	19	10	17	10			
SW Access				No	one						
HW Access				No	one						
Name				None	[23:16]						
	ı		1	ı	1			1			
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
9	MEDIAN	Median filter. When '1', a digital 3 taps median filter is performed on input interface lines. This filter should reduce the susceptibility to errors. However, its requires higher oversampling values. For UART IrDA submode, this field should always be '1'. Default Value: 0
8	MSB_FIRST	Least significant bit first ('0') or most significant bit first ('1'). For I^2C , this field should be '1'. Default Value: 1
3:0	DATA_WIDTH	Dataframe width. DATA_WIDTH + 1 is the expected amount of bits in received data frame. This number does not include start, parity and stop bits. For UART mode, the valid range is [3, 8]. For SPI, the valid range is [3, 15]. For I ² C the only valid value is 7. In EZ mode (for both SPI and I ² C), the only valid value is 7. Default Value: 7

SCB2_RX_FIFO_CTRL

Receiver FIFO Control Register Address: 0x400A0304

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		None									
HW Access		None						R			
Name		None	e [7:4]			TRIGGER_	_LEVEL [3:0]				
	1		1			1 40					
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access				N	one						
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				one	1		RW	RW			
HW Access			No	one			R	R			
Name			None	[23:18]			FREEZE	CLEAR			
					1						
Bits	31	30	29	28	27	26	25	24			
SW Access				N	one						
HW Access				N	one						
Name				None	[31:24]						

Bits	Name	Description
17	FREEZE	When '1', hardware writes to the receiver FIFO have no effect. Freeze will not advance the RX FIFO write pointer.
		Default Value: 0
16	CLEAR	When '1', the receiver FIFO and receiver shift register are cleared/invalidated. Invalidation will last for as long as this field is '1'. If a quick clear/invalidation is required, the field should be set to '1' and be followed by a set to '0'. If a clear/invalidation is required for an extended time period, the field should be set to '1' during the complete time period. Default Value: 0
3:0	TRIGGER_LEVEL	Trigger level. When the receiver FIFO has more entries than the number of this field, a receiver trigger event is generated.
		Default Value: 0

SCB2_RX_FIFO_STATUS

Receiver FIFO Status Register Address: 0x400A0308

Retention: Not Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access	,	None			<u> </u>	R			
HW Access		None				W			
Name	None [7:5]					USED [4:0]			
Bits	15	14	13	12	11	10	9	8	
SW Access	R				None	<u> </u>			
HW Access	W				None				
Name	SR_VALID				None [14:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access		No	ne		R				
HW Access		No	ne	W					
Name		None	[23:20]	RD_PTR [19:16]					
Bits	31	30	29	28	27	26	25	24	
SW Access		None R							
HW Access	None				W				

Bits	Name	Description
27:24	WR_PTR	FIFO write pointer: FIFO location at which a new data frame is written by the hardware. Default Value: 0
19:16	RD_PTR	FIFO read pointer: FIFO location from which a data frame is read. Default Value: 0
15	SR_VALID	Indicates whether the RX shift registers holds a (partial) valid data frame ('1') or not ('0'). The shift register can be considered the bottom of the RX FIFO (the data frame is not included in the USED field of the RX FIFO). The shift register is a working register and holds the data frame that is currently being received (when the protocol state machine is receiving a data frame). Default Value: 0
4:0	USED	Amount of entries in the receiver FIFO. The value of this field ranges from 0 to FF_DATA_NR. Default Value: 0

None [31:28]

WR_PTR [27:24]

SCB2_RX_MATCH

Slave Address and Mask Register Address: 0x400A0310

Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		R									
Name		ADDR [7:0]									
	1	T	1	T	ı	_	1	1			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access				No	ne						
Name				None	[15:8]						
		1				_	_	•			
Bits	23	22	21	20	19	18	17	16			
SW Access				R	W						
HW Access				F	7						
Name				MASK	[23:16]						
								•			
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one			•			
HW Access				No	one						
Name				None	[31:24]						

Bits	Name	Description
23:16	MASK	Slave device address mask. This field is a mask that specifies which of the slave address bits take part in the matching. MATCH = ((ADDR & MASK) == ("slave address" & MASK)).
		Default Value: 0
7:0	ADDR	Slave device address.
		In UART multi-processor mode, all 8 bits are used.
		In I ² C slave mode, only bits 7 down to 1 are used. This reflects the organization of the first transmitted byte in a I ² C transfer: the first 7 bits represent the address of the addressed slave, and the last 1 bit is a read/write indicator ('0': write, '1': read).
		Default Value: 0

SCB2_RX_FIFO_RD

Receiver FIFO Read Register Address: 0x400A0340 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		R									
HW Access		W									
Name		DATA [7:0]									
	1			I	·	1	_				
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access				V	V						
Name		DATA [15:8]									
								_			
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	one						
Name				None	[31:24]						

Bits Name 15:0 DATA Description

Data read from the receiver FIFO. Reading a data frame will remove the data frame from the FIFO; i.e. behavior is similar to that of a POP operation. Note that when CTRL.BYTE_MODE is '1', only DATA[7:0] are used.

A read from an empty RX FIFO sets INTR_RX.UNDERFLOW to '1'.

When this register is read through the debugger, the data frame will not be removed from the FIFO. Similar in operation to RX_FIFO_RD_SILENT.

$SCB2_RX_FIFO_RD_SILENT$

Receiver FIFO Read Register Address: 0x400A0344 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		R								
HW Access		W								
Name		DATA [7:0]								
Bits	15	14	13	12	11	10	9	8		
SW Access		R								
HW Access				٧	٧					
Name				DATA	[15:8]					
							1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
							1			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access				No	ne					
Name				None	[31:24]					

BitsNameDescription15:0DATAData read fro

Data read from the receiver FIFO. Reading a data frame will NOT remove the data frame from the FIFO; i.e. behavior is similar to that of a PEEK operation. Note that when CTRL.BYTE_MODE is '1', only DATA[7:0] are used.

A read from an empty RX FIFO sets INTR_RX.UNDERFLOW to '1'.

SCB2_EZ_DATA0

Memory Buffer Registers Address: 0x400A0400 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		RW									
Name		EZ_DATA [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access				No	ne						
Name				None	[15:8]						
					1	1	1				
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
		T	T								
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0404 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W	•	•		
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
		T	T		T				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0408 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W	•	•		
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
		T	T						
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A040C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0410 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0414 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0418 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A041C Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W				
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access		None							
Name				None	[15:8]				
	_		_						
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	one				
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0420 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0424 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W				
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access		None							
Name				None	[15:8]				
	_		_						
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	one				
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0428 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W	•	•		
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
		T	T						
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A042C Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W	•	•		
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
		T	T						
Bits	31	30	29	28	27	26	25	24	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0430 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				R	W				
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access		None							
Name				None	[15:8]				
	_		_						
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	one				
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0434 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W					
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	one					
Name				None	[15:8]					
	_									
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0438 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W					
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	one					
Name				None	[15:8]					
	_									
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A043C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T							
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0440 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T							
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0444 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T							
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0448 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T							
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A044C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access		None								
Name				None	[31:24]					

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0450 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							T.			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0454 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
		T	T							
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0458 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access				R	W	•	•			
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
					1	1	1			
Bits	15	14 13 12 11 10 9 8								
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A045C Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							1			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0460 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		•	•	R	W	•	•	•		
HW Access				R	W					
Name				EZ_DA	TA [7:0]					
Bits	15	14	13	12	11	10	9	8		
	13	14	15			10				
SW Access		None								
HW Access				No	ne					
Name				None	[15:8]					
	1	1	1	T	T		1			
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
							1			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access		None								
Name				None	[31:24]					

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0464 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0468 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access				R	W				
Name				EZ_DA	TA [7:0]				
					1	1	1		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[15:8]				
					1	1	1		
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits Name
7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A046C Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
	1	1	1	T	T		1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
							1	
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access		None						
Name		None [31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0470 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	10	10	11	10		8
DIIS	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access				No	one			
Name				None	[15:8]			
		r	1	1	1		1	T
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	ne			
Name				None	[23:16]			
		T	1	1				1
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access	None							
Name		None [31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0474 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
	1	1	1	T	T		1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
							1	
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access		None						
Name		None [31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A0478 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
	1	1	1	I	T		1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
							1	
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access		None						
Name		None [31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

Memory Buffer Registers Address: 0x400A047C Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access				R	W			
Name				EZ_DA	TA [7:0]			
Bits	15	14	13	12	11	10	9	8
	13	14	15			10		
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
	1	1	1	I	T		1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
							1	
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access		None						
Name		None [31:24]						

Bits Name 7:0 EZ_DATA

Description

Data in buffer memory location. In case of a blocked discarded access, a read access returns 0xffff:ffff and a write access is dropped. Note that the 0xffff:ffff value is unique (not a legal EZ_DATA byte value) and can be detected by SW. Note that a discarded write access can be detected by reading back the written value.

SCB2_INTR_CAUSE

HW Access

Name

Active Clocked Interrupt Signal Register Address: 0x400A0E00

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	No	ne	R	R	R	R	R	R
HW Access	No	ne	W	W	W	W	W	W
Name	None	[7:6]	SPI_EC	I2C_EC	RX	TX	S	М
								•
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne	•	•	
HW Access				No	ne			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access		None						

Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name	None [31:24]							

None

None [23:16]

Bits	Name	Description
5	SPI_EC	Externally clocked SPI interrupt active ("interrupt_spi_ec"): INTR_SPI_EC_MASKED != 0. Default Value: 0
4	I2C_EC	Externally clock I ² C interrupt active ("interrupt_i2c_ec"): INTR_I2C_EC_MASKED != 0. Default Value: 0
3	RX	Receiver interrupt active ("interrupt_rx"): INTR_RX_MASKED != 0. Default Value: 0
2	TX	Transmitter interrupt active ("interrupt_tx"): INTR_TX_MASKED != 0. Default Value: 0
1	S	Slave interrupt active ("interrupt_slave"): INTR_S_MASKED != 0. Default Value: 0
0	М	Master interrupt active ("interrupt_master"): INTR_M_MASKED != 0. Default Value: 0

SCB2_INTR_I2C_EC

Externally Clocked I^2C Interrupt Request Register Address: 0x400A0E80

Bits	7	7 6 5 4 3 2 1							
SW Access		No	ne		RW1C	RW1C	RW1C	RW1C	
HW Access		No	one		Α	А	Α	Α	
Name		None	e [7:4]		EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP	
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access				No	one				
Name				None	[15:8]				
	T		T	T	1		T	ı	
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
Bits	21	20	00	00	07	06	05	04	
	31	31 30 29 28 27 26 25 24							
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits	Name	Description
3	EZ_READ_STOP	STOP detection after a read transfer occurred. Activated on the end of a read transfer (I ² C STOP). This event is an indication that a buffer memory location has been read from.
		Only available for a slave request with an address match, in EZ and CMD_RESP modes, when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
2	EZ_WRITE_STOP	STOP detection after a write transfer occurred. Activated on the end of a write transfer (I ² C STOP). This event is an indication that a buffer memory location has been written to. For EZ mode: a transfer that only writes the base address does NOT activate this event.
		Only available for a slave request with an address match, in EZ and CMD_RESP modes, when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
1	EZ_STOP	STOP detection. Activated on the end of a every transfer (I ² C STOP).
		Only available for a slave request with an address match, in EZ and CMD_RESP modes, when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
0	WAKE_UP	Wake up request. Active on incoming slave request (with address match). Only used when CTRL.EC_AM_MODE is '1'. Default Value: 0

SCB2_INTR_I2C_EC_MASK

Externally Clocked I^2C Interrupt Mask Register Address: 0x400A0E88

Bits	7	6	5	4	3	2	1	0
SW Access	None				RW	RW	RW	RW
HW Access		None				R	R	R
Name	None [7:4]				EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	14	13	12	11	10	9	8
SW Access	None							
HW Access	None							
Name	None [15:8]							
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							
Name	None [23:16]							
		T	T	1	1	T	T	
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description
3	EZ_READ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	EZ_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	EZ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	WAKE_UP	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB2_INTR_I2C_EC_MASKED

Externally Clocked I^2C Interrupt Masked Register Address: 0x400A0E8C

Bits	7	6	5	4	3	2	1	0
SW Access	None				R	R	R	R
HW Access	None				W	W	W	W
Name	None [7:4]				EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	14	13	12	11	10	9	8
SW Access	None							
HW Access	None							
Name	None [15:8]							
							·	
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits	Name	Description
3	EZ_READ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
2	EZ_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0
1	EZ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
0	WAKE_UP	Logical and of corresponding request and mask bits. Default Value: 0

SCB2_INTR_SPI_EC

Externally Clocked SPI Interrupt Request Register Address: 0x400A0EC0

Bits	7	6	5	4	3	2	1	0
SW Access	None				RW1C	RW1C	RW1C	RW1C
HW Access		None				А	Α	А
Name	None [7:4]				EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	14	13	12	11	10	9	8
SW Access	None							
HW Access	None							
Name	None [15:8]							
	1 00			T	1 40	1.0		
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits 3	Name EZ READ STOP	Description STOP detection after a read transfer occurred. Activated on the end of a read transfer
		(SPI deselection). This event is an indication that a buffer memory location has been read from. Only used in EZ and CMD_RESP modes and when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
2	EZ_WRITE_STOP	STOP detection after a write transfer occurred. Activated on the end of a write transfer (SPI deselection). This event is an indication that a buffer memory location has been written to. For EZ mode: a transfer that only writes the base address does NOT activate this event.
		Only used in EZ and CMD_RESP modes and when CTRL.EC_OP_MODE is '1'.
		Default Value: 0
1	EZ_STOP	STOP detection. Activated on the end of a every transfer (SPI deselection).
	_	Only available in EZ and CMD_RESP mode and when CTRL.EC_OP_MODE is '1'. Default Value: 0
0	WAKE_UP	Wake up request. Active on incoming slave request when externally clocked selection is '1'. Only used when CTRL.EC_AM_MODE is '1'. Default Value: 0
		Doladi. Valdo. 0

SCB2_INTR_SPI_EC_MASK

Externally Clocked SPI Interrupt Mask Register Address: 0x400A0EC8

Bits	7	6	5	4	3	2	1	0
SW Access		No	ne		RW	RW	RW	RW
HW Access		No	ne		R	R	R	R
Name		None	e [7:4]		EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
Bits	15	14	13	12	11	10	9	8
SW Access		<u> </u>	1		ne	1		
HW Access		None						
Name				None	[15:8]			
	1							
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	EZ_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	EZ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	WAKE_UP	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB2_INTR_SPI_EC_MASKED

Externally Clocked SPI Interrupt Masked Register Address: 0x400A0ECC

	1	1	1			1	1	
Bits	7	6	5	4	3	2	1	0
SW Access		No	ne		R	R	R	R
HW Access		No	ne		W	W	W	W
Name	None [7:4]				EZ_READ_ STOP	EZ_WRITE_ STOP	EZ_STOP	WAKE_UP
		l	l		l			
Bits	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access		None						
Name		None [15:8]						
	-1							
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
3	EZ_READ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
2	EZ_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0
1	EZ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
0	WAKE_UP	Logical and of corresponding request and mask bits. Default Value: 0

SCB2_INTR_M

Master Interrupt Request Register Address: 0x400A0F00

Bits	7	6	5	4	3	2	1	0
SW Access		None		RW1C	None	RW1C	RW1C	RW1C
HW Access		None		RW1S	None	RW1S	RW1S	RW1S
Name		None [7:5]		I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
Bits	15	14	13	12	11	10	9	8
SW Access		1	N	one			RW1C	RW1C
HW Access					ne			RW1S
Name		None					SPI_DONE	I2C_BUS ERROR
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			<u> </u>
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access				No	ne			·
Name				None	[31:24]			

Bits	Name	Description
9	SPI_DONE	SPI master transfer done event: all data frames in the transmit FIFO are sent and the transmit FIFO is empty. Default Value: 0
8	I2C_BUS_ERROR	$\rm I^2C$ master bus error (unexpected detection of START or STOP condition). Default Value: 0
4	I2C_STOP	I ² C master STOP. Set to '1', when the master has transmitted a STOP. Default Value: 0
2	I2C_ACK	I ² C master acknowledgement. Set to '1', when the master receives a ACK (typically after the master transmitted the slave address or TX data).
		Default Value: 0
1	I2C_NACK	I ² C master negative acknowledgement. Set to '1', when the master receives a NACK (typically after the master transmitted the slave address or TX data).
		Default Value: 0
0	I2C_ARB_LOST	$\rm I^2C$ master lost arbitration: the value driven by the master on the SDA line is not the same as the value observed on the SDA line.
		Default Value: 0

SCB2_INTR_M_SET

Master Interrupt Set Request Register Address: 0x400A0F04

Bits	7	6	5	4	3	2	1	0
SW Access		None		RW1S	None	RW1S	RW1S	RW1S
HW Access		None		Α	None	Α	Α	Α
Name		None [7:5]		I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB LOST
Bits	15	14	13	12	11	10	9	8
SW Access			N	one I			RW1S	RW1S
HW Access					ne			Α
Name		None [SPI_DONE	I2C_BUS ERROR
Bits	23	22	21	20	19	18	17	16
SW Access		l		No	ne			l
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No.				
HW Access		None						
Name				None	31:24]			

Bits	Name	Description
9	SPI_DONE	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
2	I2C_ACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
1	I2C_NACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	I2C_ARB_LOST	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

$SCB2_INTR_M_MASK$

Master Interrupt Mask Register Address: 0x400A0F08

Address: 0x400A0F08 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	None			RW	None	RW	RW	RW
HW Access		None		R	None	R	R	R
Name	None [7:5]			I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
	1	T		I	I	T	I	
Bits	15	14	13	12	11	10	9	8
SW Access			No	ne			RW	RW
HW Access	N			one			R	R
Name	None [[15:10]			SPI_DONE	I2C_BUS_ ERROR
	•							
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	ne			
Name				None	[23:16]			
	_							
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
9	SPI_DONE	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	I2C_ACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	I2C_NACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	I2C_ARB_LOST	Mask bit for corresponding bit in interrupt request register. Default Value: 0

$SCB2_INTR_M_MASKED$

Master Interrupt Masked Request Register Address: 0x400A0F0C

D:4-	_		_		•	1 .		•
Bits	7	6	5	4	3	2	1	0
SW Access		None		R	None	R	R	R
HW Access		None		W	None	W	W	W
Name		None [7:5]		I2C_STOP	None	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
Bits	15	14	13	12	11	10	9	8
DIIS	15	14	13	12	11	10	9	•
SW Access			No	one			R	R
HW Access			No	ne			W	W
Name	None [15:10] SPI					SPI_DONE	I2C_BUS_ ERROR	
		1	T			1	1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None [[23:16]			
	0.4	30	29	28	27	26	25	24
Bits	31						J	ļ
Bits SW Access	31	00		No	ne			
	31	00		No No				

Bits	Name	Description
9	SPI_DONE	Logical and of corresponding request and mask bits. Default Value: 0
8	I2C_BUS_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
4	I2C_STOP	Logical and of corresponding request and mask bits. Default Value: 0
2	I2C_ACK	Logical and of corresponding request and mask bits. Default Value: 0
1	I2C_NACK	Logical and of corresponding request and mask bits. Default Value: 0
0	I2C_ARB_LOST	Logical and of corresponding request and mask bits. Default Value: 0

SCB2_INTR_S

Slave Interrupt Request Register Address: 0x400A0F40

Bits	7	6	5	4	3	2	1	0
	-	_	_		_		-	_
SW Access	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C	RW1C
HW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
Bits	15	14	13	12	11	10	9	8
SW Access	None			RW1C	RW1C	RW1C	RW1C	
HW Access	None			RW1S	RW1S	RW1S	RW1S	
Name	None [15:12]			SPI_BUS_ ERROR	SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR	
Dito	00	00	01	20	10	10	17	16
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name	None [23:16]							
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name		None [31:24]						

Bits	Name	Description
11	SPI_BUS_ERROR	SPI slave deselected at an unexpected time in the SPI transfer. The Firmware may decide to clear the TX and RX FIFOs in case of this error. Default Value: 0
10	SPI_EZ_STOP	SPI slave deselected after any EZ SPI transfer occurred. Default Value: 0
9	SPI_EZ_WRITE_STOP	SPI slave deselected after a write EZ SPI transfer occurred. Default Value: 0
8	I2C_BUS_ERROR	I ² C slave bus error (unexpected detection of START or STOP condition). This should not occur, it represents erroneous I ² C bus behavior. In case of a bus error, the I ² C slave state machine abort the ongoing transfer. The Firmware may decide to clear the TX and RX FIFOs in case of this error. Default Value: 0
7	I2C_GENERAL	I ² C slave general call address received. If CTRL.ADDR_ACCEPT, the received address 0x00 (including the R/W bit) is available in the RX FIFO. In the case of externally clocked address matching (CTRL.EC_AM_MODE is '1') and internally clocked operation (CTRL.EC_OP_MODE is '0'), this field is set when the event is detected.
6	IOC ADDD MATCH	Default Value: 0
O	I2C_ADDR_MATCH	I ² C slave matching address received. If CTRL.ADDR_ACCEPT, the received address (including the R/W bit) is available in the RX FIFO. In the case of externally clocked address matching (CTRL.EC_AM_MODE is '1') and internally clocked operation (CTRL.EC_OP_MODE is '0'), this field is set when the event is detected. Default Value: 0

5	I2C_START	I ² C slave START received. Set to '1', when START or REPEATED START event is detected. In the case of externally clocked address matching (CTRL.EC_AM_MODE is '1') AND clock stretching is performed (I2C_CTRL.S_NOT_READY_ADDR_NACK is '0'), this field is NOT set. The Firmware should use INTR_S_EC.WAKE_UP, INTR_S.I2C_ADDR_MATCH and INTR_S.I2C_GENERAL.
		Default Value: 0
4	I2C_STOP	I ² C STOP event for I ² C (read or write) transfer intended for this slave (address matching is performed). Set to '1', when STOP or REPEATED START event is detected. The REPEATED START event is included in this interrupt cause such that the I ² C transfers separated by a REPEATED START can be distinguished and potentially treated separately by the Firmware. Note that the second I ² C transfer (after a REPEATED START) may be to a different slave address.
		The event is detected on any I2C transfer intended for this slave. Note that a I ² C address intended for the slave (address is matching) will result in a I2C_STOP event independent of whether the I ² C address is ACK'd or NACK'd.
		Default Value: 0
3	I2C_WRITE_STOP	I ² C STOP event for I ² C write transfer intended for this slave (address matching is performed). Set to '1', when STOP or REPEATED START event is detected. The REPEATED START event is included in this interrupt cause such that the I ² C transfers separated by a REPEATED START can be distinguished and potentially treated separately by the Firmware. Note that the second I ² C transfer (after a REPEATED START) may be to a different slave address.
		In non EZ mode, the event is detected on any I ² C write transfer intended for this slave. Note that a I ² C write address intended for the slave (address is matching and a it is a write transfer) will result in a I ² C wRITE_STOP event independent of whether the I ² C address is ACK'd or NACK'd.
		In EZ mode, the event is detected only on I ² C write transfers that have EZ data written to the memory structure (an I ² C write transfer that only communicates an I ² C address and EZ address, will not result in this event being detected).
		Default Value: 0
2	I2C_ACK	I^2C slave acknowledgement received. Set to '1', when the slave receives a ACK (typically after the slave transmitted TX data).
		Default Value: 0
1	I2C_NACK	I ² C slave negative acknowledgement received. Set to '1', when the slave receives a NACK (typically after the slave transmitted TX data).
		Default Value: 0
0	I2C_ARB_LOST	I ² C slave lost arbitration: the value driven on the SDA line is not the same as the value observed on the SDA line (while the SCL line is '1'). This should not occur, it represents erroneous I ² C bus behavior. In case of lost arbitration, the I ² C slave state machine aborts the ongoing transfer. The Firmware may decide to clear the TX and RX FIFOs in case of this error. Default Value: 0

SCB2_INTR_S_SET

Slave Interrupt Set Request Register Address: 0x400A0F44

Bits	7	6	5	4	3	2	1	0
SW Access	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S	RW1S
HW Access	Α	Α	Α	Α	Α	Α	Α	Α
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
	1	I	1	1	<u> </u>		1	
Bits	15	14	13	12	11	10	9	8
SW Access	None			RW1S	RW1S	RW1S	RW1S	
HW Access	None				Α	Α	Α	Α
Name	None [15:12]			SPI_BUS_ ERROR	SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR	
Bits	23	22	21	20	19	18	17	16
SW Access					one		.,	10
HW Access				No	one			
Name		None [23:16]						
		T	T	T			T	
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access	None							
Name		None [31:24]						

Bits	Name	Description
11	SPI_BUS_ERROR	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
10	SPI_EZ_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
9	SPI_EZ_WRITE_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
7	I2C_GENERAL	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
6	I2C_ADDR_MATCH	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
5	I2C_START	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
3	I2C_WRITE_STOP	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SCB2_INTR_S_SET (Continued)

2	I2C_ACK	Write with '1' to set corresponding bit in interrupt request register.
		Default Value: 0
1	I2C_NACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	I2C_ARB_LOST	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SCB2_INTR_S_MASK

Slave Interrupt Mask Register Address: 0x400A0F48

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW	RW	RW	RW	RW	RW	RW
HW Access	R	R	R	R	R	R	R	R
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
								_
Bits	15	14	13	12	11	10	9	8
SW Access	None			RW	RW	RW	RW	
HW Access	None			R	R	R	R	
Name	None [15:12]			SPI_BUS_ ERROR	SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR	
Bits	23	22	21	20	19	18	17	16
SW Access					ne		••	
HW Access					one			
Name		None [23:16]						
	Tions [Est. 6]							
Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access	None							
Name		None [31:24]						

Bits	Name	Description
11	SPI_BUS_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
10	SPI_EZ_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
9	SPI_EZ_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	I2C_BUS_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
7	I2C_GENERAL	Mask bit for corresponding bit in interrupt request register. Default Value: 0
6	I2C_ADDR_MATCH	Mask bit for corresponding bit in interrupt request register. Default Value: 0
5	I2C_START	Mask bit for corresponding bit in interrupt request register. Default Value: 0
4	I2C_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0
3	I2C_WRITE_STOP	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB2_INTR_S_MASK (Continued)

2	I2C_ACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	I2C_NACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	I2C_ARB_LOST	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB2_INTR_S_MASKED

Slave Interrupt Masked Request Register Address: 0x400A0F4C

Bits	7	6	5	4	3	2	1	0
SW Access	R	R	R	R	R	R	R	R
HW Access	W	W	W	W	W	W	W	W
Name	I2C GENERAL	I2C_ADDR_ MATCH	I2C_START	I2C_STOP	I2C_WRITE _STOP	I2C_ACK	I2C_NACK	I2C_ARB_ LOST
		ı	1	ı	1		ı	
Bits	15	14	13	12	11	10	9	8
SW Access		None			R	R	R	R
HW Access	None			W	W	W	W	
Name	None [15:12]			SPI_BUS_ ERROR	SPI_EZ_ STOP	SPI_EZ_ WRITE_ STOP	I2C_BUS_ ERROR	
Bits	23	22	21	20	19	18	17	16
	23	22	21			10	17	10
SW Access				No	one			
HW Access				No	one			
Name		None [23:16]						
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name		None [31:24]						

Bits	Name	Description
11	SPI_BUS_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
10	SPI_EZ_STOP	Logical and of corresponding request and mask bits. Default Value: 0
9	SPI_EZ_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0
8	I2C_BUS_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
7	I2C_GENERAL	Logical and of corresponding request and mask bits. Default Value: 0
6	I2C_ADDR_MATCH	Logical and of corresponding request and mask bits. Default Value: 0
5	I2C_START	Logical and of corresponding request and mask bits. Default Value: 0
4	I2C_STOP	Logical and of corresponding request and mask bits. Default Value: 0
3	I2C_WRITE_STOP	Logical and of corresponding request and mask bits. Default Value: 0

SCB2_INTR_S_MASKED (Continued)

2	I2C_ACK	Logical and of corresponding request and mask bits.
		Default Value: 0
1	I2C_NACK	Logical and of corresponding request and mask bits. Default Value: 0
0	I2C_ARB_LOST	Logical and of corresponding request and mask bits. Default Value: 0

SCB2_INTR_TX

Transmitter Interrupt Request Register Address: 0x400A0F80

Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	RW1C	1	None	RW1C	RW1C
HW Access	RW1S	RW1S	RW1S	RW1S	1	None	RW1S	RW1S
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	No	ne [3:2]	NOT_FULL	TRIGGER
Bits	15	14	13	12	11	10	9	8
DILS	15	14	13	12	11	10	9	•
SW Access			None			RW1C	RW1C	RW1C
HW Access			None			RW1S	RW1S	RW1S
Name			None [15:11]			UART_ARB _LOST	ART_ DONE	UART_ NACK
Bits	23	22	21	20	19	18	17	16
SW Access			<u> </u>	No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	- 31				ne Zi			
HW Access				No	ne			
Name				None	[31:24]			

Bits	Name	Description
10	UART_ARB_LOST	UART lost arbitration: the value driven on the TX line is not the same as the value observed on the RX line. This condition event is useful when transmitter and receiver share a TX/RX line. This is the case in LIN or SmartCard modes. Set to '1', when event is detected. Write with '1' to clear bit. Default Value: 0
		Delault Value: 0
9	UART_DONE	UART transmitter done event. This happens when the IP is done transferring all data in the TX FIFO; i.e. EMPTY is '1'. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
8	UART_NACK	UART transmitter received a negative acknowledgement in SmartCard mode. Set to '1', when event is detected. Write with '1' to clear bit. Default Value: 0
_	DI 001/5D	
7	BLOCKED	SW cannot get access to the EZ memory (EZ data access), due to an externally clocked EZ access. This may happen when STATUS.EC_BUSY is '1'.
		Default Value: 0
6	UNDERFLOW	Attempt to read from an empty TX FIFO. This happens when SCB is ready to transfer data and EMPTY is '1'.
		Only used in FIFO mode.
		Default Value: 0
5	OVERFLOW	Attempt to write to a full TX FIFO.
		Only used in FIFO mode.
		Default Value: 0

SCB2_INTR_TX (Continued)

EMPTY TX FIFO is empty; i.e. it has 0 entries. Only used in FIFO mode.

Default Value: 0

TX FIFO is not full. Dependent on CTRL.BYTE_MODE: BYTE_MODE is '0': # entries != FF_DATA_NR/2. BYTE_MODE is '1': # entries != FF_DATA_NR. Only used in FIFO mode. NOT_FULL

Default Value: 0

0 TRIGGER Less entries in the TX FIFO than the value specified by TX_FIFO_CTRL.

Only used in FIFO mode.

SCB2_INTR_TX_SET

Transmitter Interrupt Set Request Register Address: 0x400A0F84

Bits	7	6	5	4	3	2	1	0
SW Access	RW1S	RW1S	RW1S	RW1S	1	None	RW1S	RW1S
HW Access	Α	Α	Α	А	1	None	А	Α
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	No	ne [3:2]	NOT_FULL	TRIGGER
Bits	15	14	13	12	11	10	9	8
SW Access			None			RW1S	RW1S	RW1S
HW Access			None			Α	Α	А
Name			None [15:11]			UART_ARB _LOST	ART_ DONE	UART_ NACK
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
		I	I	I	ı		I	I
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	ne			
Name				None	[31:24]			

Bits	Name	Description
10	UART_ARB_LOST	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
9	UART_DONE	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
8	UART_NACK	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
7	BLOCKED	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
6	UNDERFLOW	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
5	OVERFLOW	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
4	EMPTY	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
1	NOT_FULL	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0
0	TRIGGER	Write with '1' to set corresponding bit in interrupt request register. Default Value: 0

SCB2_INTR_TX_MASK

Transmitter Interrupt Mask Register Address: 0x400A0F88

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW	RW	RW	N	lone	RW	RW
HW Access	R	R	R	R	N	lone	R	R
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	Nor	ne [3:2]	NOT_FULL	TRIGGER
Bits	15	14	13	12	11	10	9	8
SW Access			None			RW	RW	RW
HW Access			None			R	R	R
Name			None [15:11]			UART_ARB _LOST	ART_ DONE	UART_ NACK
			T	1		T	ī	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
	1	T	T	1		1	1	T
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access				No	ne			
Name				None	[31:24]			

Bits	Name	Description
10	UART_ARB_LOST	Mask bit for corresponding bit in interrupt request register. Default Value: 0
9	UART_DONE	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	UART_NACK	Mask bit for corresponding bit in interrupt request register. Default Value: 0
7	BLOCKED	Mask bit for corresponding bit in interrupt request register. Default Value: 0
6	UNDERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
5	OVERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
4	EMPTY	Mask bit for corresponding bit in interrupt request register. Default Value: 0
1	NOT_FULL	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	TRIGGER	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB2_INTR_TX_MASKED

Transmitter Interrupt Masked Request Register Address: 0x400A0F8C

Bits	7	6	5	4	3	2	1	0
DIIS	/	6	5	4	, s	2	ı	U
SW Access	R	R	R	R	No	ne	R	R
HW Access	W	W	W	W	No	ne	W	W
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	EMPTY	None	[3:2]	NOT_FULL	TRIGGER
Bits	15	14	13	12	11	10	9	8
SW Access			None			R	R	R
HW Access			None			W	W	W
Name			None [15:11]			UART_ARB _LOST	ART_ DONE	UART_ NACK
			ı	ı			ı	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	ne			
HW Access				No	ne			
Name				None	[31:24]			

Bits	Name	Description
10	UART_ARB_LOST	Logical and of corresponding request and mask bits. Default Value: 0
9	UART_DONE	Logical and of corresponding request and mask bits. Default Value: 0
8	UART_NACK	Logical and of corresponding request and mask bits. Default Value: 0
7	BLOCKED	Logical and of corresponding request and mask bits. Default Value: 0
6	UNDERFLOW	Logical and of corresponding request and mask bits. Default Value: 0
5	OVERFLOW	Logical and of corresponding request and mask bits. Default Value: 0
4	EMPTY	Logical and of corresponding request and mask bits. Default Value: 0
1	NOT_FULL	Logical and of corresponding request and mask bits. Default Value: 0
0	TRIGGER	Logical and of corresponding request and mask bits. Default Value: 0

SCB2_INTR_RX

Receiver Interrupt Request Register Address: 0x400A0FC0

Bits	7	6	5	4	3	2	1	0
SW Access	RW1C	RW1C	RW1C	None	RW1C	RW1C	None	RW1C
HW Access	RW1S	RW1S	RW1S	None	RW1S	RW1S	None	RW1S
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGER
				•				
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		RW1C	RW1C	RW1C	RW1C
HW Access		No	ne		RW1S	RW1S	RW1S	RW1S
Name		None	[15:12]		BREAK DETECT	BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR
						I		
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
	1			1	1	T	T	1
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
11	BREAK_DETECT	Break detection is successful: the line is '0' for UART_RX_CTRL.BREAK_WIDTH + 1 bit period. Can occur at any time to address unanticipated break fields; i.e. "break-in-data" is supported.
		This feature is supported for the UART standard and LIN submodes. For the UART standard submodes, ongoing receipt of data frames is NOT affected; i.e. Firmware is ecpected to take the proper action. For the LIN submode, possible ongoing receipt of a data frame is stopped and the (partially) received data frame is dropped and baud rate detection is started. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
10	BAUD_DETECT	LIN baudrate detection is completed. The receiver software uses the UART_RX_STATUS.BR_COUNTER value to set the right IP clock (from the programmable clock IP) to guarantee successful receipt of the first LIN data frame (Protected Identifier Field) after the synchronization byte. Set to '1', when event is detected. Write with '1' to clear bit.
		Default Value: 0
9	PARITY_ERROR	Parity error in received data frame. Set to '1', when event is detected. Write with '1' to clear bit. If UART_RX_CTL.DROP_ON_PARITY_ERROR is '1', the received frame is dropped. If UART_RX_CTL.DROP_ON_PARITY_ERROR is '0', the received frame is send to the RX FIFO. In SmartCard submode, negatively acknowledged data frames generate a parity error. Note that Firmware can only identify the erroneous data frame in the RX FIFO if it is fast enough to read the data frame before the hardware writes a next data frame into the RX FIFO. Default Value: 0

8	3	FRAME_ERROR	Frame error in received data frame. Set to '1', when event is detected. Write with '1' to clear bit. This can be either a start or stop bit(s) error:
			Start bit error: after the detection of the beginning of a start bit period (RX line changes from '1' to '0'), the middle of the start bit period is sampled erroneously (RX line is '1'). Note: a start bit error is detected BEFORE a data frame is received.
			Stop bit error: the RX line is sampled as '0', but a '1' was expected. Note: a stop bit error may result in failure to receive successive data frame(s). Note: a stop bit error is detected AFTER a data frame is received.
			A stop bit error is detected after a data frame is received, and the UART_RX_CTL.DROP_ON_FRAME_ERROR field specifies whether the received frame is dropped or send to the RX FIFO. If UART_RX_CTL.DROP_ON_FRAME_ERROR is '1', the received data frame is dropped. If UART_RX_CTL.DROP_ON_FRAME_ERROR is '0', the received data frame is send to the RX FIFO. Note that Firmware can only identify the erroneous data frame in the RX FIFO if it is fast enough to read the data frame before the hardware writes a next data frame into the RX FIFO; i.e. the RX FIFO does not have error flags to tag erroneous data frames. Default Value: 0
-	7	BLOCKED	SW cannot get access to the EZ memory (EZ_DATA accesses), due to an externally clocked EZ
			access. This may happen when STATUS.EC_BUSY is '1'. Default Value: 0
(6	UNDERFLOW	Attempt to read from an empty RX FIFO. Only used in FIFO mode. Default Value: 0
į	5	OVERFLOW	Attempt to write to a full RX FIFO. Note: in I2C mode, the OVERFLOW is set when a data frame is received and the RX FIFO is full, independent of whether it is ACK'd or NACK'd. Only used in FIFO mode. Default Value: 0
(3	FULL	RX FIFO is full. Note that received data frames are lost when the RX FIFO is full. Dependent on CTRL.BYTE_MODET: BYTE_MODE is '0': # entries == FF_DATA_NR/2. BYTE_MODE is '1': # entries == FF_DATA_NR. Only used in FIFO mode. Default Value: 0
2	2	NOT_EMPTY	RX FIFO is not empty. Only used in FIFO mode. Default Value: 0
(0	TRIGGER	More entries in the RX FIFO than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTL. Only used in FIFO mode. Default Value: 0

SCB2_INTR_RX_SET

Receiver Interrupt Set Request Register Address: 0x400A0FC4

Address: 0x400A0FC4 Retention: Not Retained

	т —	ı		1		1	1	1
Bits	7	6	5	4	3	2	1	0
SW Access	RW1S	RW1S	RW1S	None	RW1S	RW1S	None	RW1S
HW Access	А	Α	А	None	Α	Α	None	Α
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGER
				I			1	Ι
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		RW1S	RW1S	RW1S	RW1S
HW Access		No	ne		Α	Α	Α	Α
Name		None	[15:12]		BREAK DETECT	BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	ne			
Name				None	[23:16]			
	_	Ī	T	T		T	1	1
			29	28	27	26	25	24
Bits	31	30	23					
Bits SW Access	31	30	25	No.	ne			
	31	30	23	No	ne ne			

Bits	Name	Description
11	BREAK_DETECT	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
10	BAUD_DETECT	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
9	PARITY_ERROR	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
8	FRAME_ERROR	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
7	BLOCKED	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
6	UNDERFLOW	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
5	OVERFLOW	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
3	FULL	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
2	NOT_EMPTY	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0
0	TRIGGER	Write with '1' to set corresponding bit in interrupt status register. Default Value: 0

SCB2_INTR_RX_MASK

Receiver Interrupt Mask Register

Address: 0x400A0FC8 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0
SW Access	RW	RW	RW	None	RW	RW	None	RW
HW Access	R	R	R	None	R	R	None	R
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGER
		ı	ı	1	ı	ı	ı	1
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		RW	RW	RW	RW
HW Access		No	ne		R	R	R	R
Name		None	[15:12]		BREAK_ DETECT	BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR
	-				•	•	•	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access		None						

None [31:24]

Bits	Name	Description
11	BREAK_DETECT	Mask bit for corresponding bit in interrupt request register. Default Value: 0
10	BAUD_DETECT	Mask bit for corresponding bit in interrupt request register. Default Value: 0
9	PARITY_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
8	FRAME_ERROR	Mask bit for corresponding bit in interrupt request register. Default Value: 0
7	BLOCKED	Mask bit for corresponding bit in interrupt request register. Default Value: 0
6	UNDERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
5	OVERFLOW	Mask bit for corresponding bit in interrupt request register. Default Value: 0
3	FULL	Mask bit for corresponding bit in interrupt request register. Default Value: 0
2	NOT_EMPTY	Mask bit for corresponding bit in interrupt request register. Default Value: 0
0	TRIGGER	Mask bit for corresponding bit in interrupt request register. Default Value: 0

SCB2_INTR_RX_MASKED

Receiver Interrupt Masked Request Register Address: 0x400A0FCC

Bits	7	6	5	4	3	2	1	0	
Dita				7			•	_	
SW Access	R	R	R	None	R	R	None	R	
HW Access	W	W	W	None	W	W	None	W	
Name	BLOCKED	UNDER- FLOW	OVER- FLOW	None	FULL	NOT_ EMPTY	None	TRIGGER	
	.	Ī		T	Ī	T	T	T	
Bits	15	14	13	12	11	10	9	8	
SW Access		No	ne		R	R	R	R	
HW Access		No	ne		W	W	W	W	
Name	None [15:12]				BREAK DETECT	BAUD_ DETECT	PARITY_ ERROR	FRAME_ ERROR	
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name		None [31:24]							

Bits	Name	Description
11	BREAK_DETECT	Logical and of corresponding request and mask bits. Default Value: 0
10	BAUD_DETECT	Logical and of corresponding request and mask bits. Default Value: 0
9	PARITY_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
8	FRAME_ERROR	Logical and of corresponding request and mask bits. Default Value: 0
7	BLOCKED	Logical and of corresponding request and mask bits. Default Value: 0
6	UNDERFLOW	Logical and of corresponding request and mask bits. Default Value: 0
5	OVERFLOW	Logical and of corresponding request and mask bits. Default Value: 0
3	FULL	Logical and of corresponding request and mask bits. Default Value: 0
2	NOT_EMPTY	Logical and of corresponding request and mask bits. Default Value: 0
0	TRIGGER	Logical and of corresponding request and mask bits. Default Value: 0

SUPERVISORY FLASH (SFLASH) REGISTERS

This section discusses the SFLASH registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 18. REGISTER DETAILS

Register Name	Address
SFLASH_SILICON_ID	0x0FFFF144
SFLASH_HIB_KEY_DELAY	0x0FFFF150
SFLASH_DPSLP_KEY_DEIAY	0x0FFFF152
SFLASH_SWD_CONFIG	0x0FFFF154
SFLASH_SWD_LISTEN	0x0FFFF158
SFLASH_FLASH_START	0x0FFFF15C
SFLASH_CSDV2_CSD0_ADC_TRIM1	0x0FFFF160
SFLASH_CSDV2_CSD0_ADC_TRIM2	0x0FFFF161
SFLASH_SAR_TEMP_MULTIPLIER	0x0FFFF164
SFLASH_SAR_TEMP_OFFSET	0x0FFFF166
SFLASH_IMO_TCTRIM_LT0	0x0FFFF1CC
SFLASH_IMO_TCTRIM_LT1	0x0FFFF1CD
SFLASH_IMO_TCTRIM_LT2	0x0FFF1CE
SFLASH_IMO_TCTRIM_LT3	0x0FFFF1CF
SFLASH_IMO_TCTRIM_LT4	0x0FFFf1D0
SFLASH_IMO_TCTRIM_LT5	0x0FFFf1D1
SFLASH_IMO_TCTRIM_LT6	0x0FFFF1D2
SFLASH_IMO_TCTRIM_LT7	0x0FFFf1D3
SFLASH_IMO_TCTRIM_LT8	0x0FFFf1D4
SFLASH_IMO_TCTRIM_LT9	0x0FFFF1D5
SFLASH_IMO_TCTRIM_LT10	0x0FFFF1D6
SFLASH_IMO_TCTRIM_LT11	0x0FFFF1D7
SFLASH_IMO_TCTRIM_LT12	0x0FFFF1D8
SFLASH_IMO_TCTRIM_LT13	0x0FFFF1D9
SFLASH_IMO_TCTRIM_LT14	0x0FFFF1DA
SFLASH_IMO_TCTRIM_LT15	0x0FFFF1DB
SFLASH_IMO_TCTRIM_LT16	0x0FFFF1DC
SFLASH_IMO_TCTRIM_LT17	0x0FFFF1DD
SFLASH_IMO_TCTRIM_LT18	0x0FFFF1DE
SFLASH_IMO_TCTRIM_LT19	0x0FFFF1DF
SFLASH_IMO_TCTRIM_LT20	0x0FFFF1E0
SFLASH_IMO_TCTRIM_LT21	0x0FFF1E1
SFLASH_IMO_TCTRIM_LT22	0x0FFFF1E2
SFLASH_IMO_TCTRIM_LT23	0x0FFFF1E3
SFLASH_IMO_TCTRIM_LT24	0x0FFFF1E4
SFLASH_IMO_TRIM_LT0	0x0FFF1E5
SFLASH_IMO_TRIM_LT1	0x0FFFF1E6
SFLASH_IMO_TRIM_LT2	0x0FFFF1E7

Table 18. REGISTER DETAILS (continued)

Register Name	Address
SFLASH_IMO_TRIM_LT3	0x0FFFF1E8
SFLASH_IMO_TRIM_LT4	0x0FFFF1E9
SFLASH_IMO_TRIM_LT5	0x0FFFF1EA
SFLASH_IMO_TRIM_LT6	0x0FFFF1EB
SFLASH_IMO_TRIM_LT7	0x0FFFF1EC
SFLASH_IMO_TRIM_LT8	0x0FFFF1ED
SFLASH_IMO_TRIM_LT9	0x0FFFF1EE
SFLASH_IMO_TRIM_LT10	0x0FFFF1EF
SFLASH_IMO_TRIM_LT11	0x0FFFF1F0
SFLASH_IMO_TRIM_LT12	0x0FFFF1F1
SFLASH_IMO_TRIM_LT13	0x0FFFF1F2
SFLASH_IMO_TRIM_LT14	0x0FFFF1F3
SFLASH_IMO_TRIM_LT15	0x0FFFF1F4
SFLASH_IMO_TRIM_LT16	0x0FFFF1F5
SFLASH_IMO_TRIM_LT17	0x0FFFF1F6
SFLASH_IMO_TRIM_LT18	0x0FFFF1F7
SFLASH_IMO_TRIM_LT19	0x0FFFF1F8
SFLASH_IMO_TRIM_LT20	0x0FFFF1F9
SFLASH_IMO_TRIM_LT21	0x0FFF1FA
SFLASH_IMO_TRIM_LT22	0x0FFFF1FB
SFLASH_IMO_TRIM_LT23	0x0FFFF1FC
SFLASH_IMO_TRIM_LT24	0x0FFFF1FD

SFLASH_SILICON_ID

Silicon ID

Address: 0x0FFFF144 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	RW									
HW Access				No	ne					
Name				ID [7:0]					
Bits	15	14	13	12	11	10	9	8		
SW Access		RW								
HW Access		None								
Name				ID [1	15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No	ne					
HW Access		None								
Name				None	[31:24]					

BitsNameDescription15:0IDSilicon ID

SFLASH_HIB_KEY_DELAY

Hibernate Wakeup Value for PWR_KEY_DELAY

Address: 0x0FFFF150 Retention: Retained

Bits	7	6	5	4	3	2	1	0						
SW Access		RW												
HW Access		R												
Name				WAKEUP_HO	DLDOFF [7:0]			WAKEUP_HOLDOFF [7:0]						

Bits	15	14	13	12	11	10	9	8
SW Access		RW						
HW Access			R					
Name				WAKEUP_HO	OLDOFF [9:8]			

Bits	Name
9:0	WAKEUP_HOLDOFF

Description

Delay (in 12 MHz IMO clock cycles) to wait for references to settle on wakeup from hibernate/deepsleep. PBOD is ignored and system does not resume until this delay expires. Note that the same delay on POR is hard-coded.

$SFLASH_DPSLP_KEY_DELAY$

DeepSleep Wakeup Value for PWR_KEY_DELAY

Address: 0x0FFFF152 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		RW								
HW Access		R								
Name				WAKEUP_HO	DLDOFF [7:0]					

Bits	15	14	13	12	11	10	9	8
SW Access			No	ne			R	W
HW Access			No	ne			F	3
Name			None [[15:10]			WAKEUP_HO	OLDOFF [9:8]

BITS	Name
a·n	WAKELIP HOLDOFF

Description

Delay (in 12 MHz IMO clock cycles) to wait for references to settle on wakeup from hibernate/deepsleep. PBOD is ignored and system does not resume until this delay expires. Note that the same delay on POR is hard-coded.

SFLASH_SWD_CONFIG

SWD Pinout Selector (not present in TSG4/TSG5-M) Address: 0x0FFFF154

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				None				RW
HW Access				None				None
Name				None [7:1]				SWD_ SELECT

Bits Description Name

0 SWD_SELECT 0: Use Primary SWD location

1: Use Alternate SWD location

SFLASH_SWD_LISTEN

Listen Window Length Address: 0x0FFFF158 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				R	W			
HW Access				No	ne			
Name				CYCLE	ES [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				R	W			
HW Access				No	ne			
Name				CYCLE	S [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				R	W			
HW Access				No	ne			
Name				CYCLES	S [23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				R	W			
HW Access				No	ne			
Name				CYCLES	S [31:24]			

Bits Name 31:0 CYCLES Description

Number of clock cycles Default Value: X

SFLASH_FLASH_START

Flash Image Start Address Address: 0x0FFFF15C Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				R'	W			
HW Access				No	ne			
Name				ADDRE	SS [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access				R	W			
HW Access				No	ne			
Name				ADDRES	SS [15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access				R'	W			
HW Access				No	ne			
Name				ADDRES	S [23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				R'	W			
HW Access				No	ne			
Name				ADDRES	SS [31:24]			

Bits Name 31:0 ADDRESS **Description**Start Address
Default Value: X

SFLASH_CSDV2_CSD0_ADC_TRIM1

CSDV2 CSD0 ADC TRIM 1 Address: 0x0FFFF160 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				R	W			
HW Access				No	ne			
Name				CSD_ADC_C	AL_LSB [7:0]			

Bits Name Description

7:0 CSD_ADC_CAL_LSB Low byte of CSDv2 Calibration

SFLASH_CSDV2_CSD0_ADC_TRIM2

CSDV2 CSD0 ADC TRIM2 Address: 0x0FFFF161

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access				R'	W			
HW Access				No	ne			
Name				CSD_ADC_C	AL_MSB [7:0]			

Bits Name Description

7:0 CSD_ADC_CAL_MSB High byte of CSDv2 Calibration

$SFLASH_SAR_TEMP_MULTIPLIER$

SAR Temperature Sensor Multiplication Factor

Address: 0x0FFFF164 Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0
SW Access	•		•	R	W	•		
HW Access				No	ne			
Name				TEMP_MULT	TIPLIER [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access	l		l	R	W	l		
HW Access				No	ne			

Bits Name Description

Multiplier value for SAR temperature sensor in fixed point 0.16 format. Note: this field exists in products that contain SAR (m0s8sar) only. 15:0 TEMP_MULTIPLIER

TEMP_MULTIPLIER [15:8]

$SFLASH_SAR_TEMP_OFFSET$

SAR Temperature Sensor Offset

Address: 0x0FFFF166 Retention: Retained

15:0

Bits	7	6	5	4	3	2	1	0
SW Access				R'	W			
HW Access				No	ne			
Name				TEMP_OF	FSET [7:0]			
Bits	15	14	13	12	11	10	9	8
Bits SW Access	15	14	13	12		10	9	8
	15	14	13	l R'		10	9	8

Bits Name Description

Offset value for SAR temperature sensor in fixed point 10.6 format. Note: this field exists in products that contain SAR (m0s8sar) only. TEMP_OFFSET

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1CC

Bits	7	6	5	4	3	2	1	0	
SW Access	None	R\	W	RW					
HW Access	None	R		R					
Name	None	TCTRI	M [6:5]	STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1CD

Bits	7	6	5	4	3	2	1	0	
SW Access	None	R\	W	RW					
HW Access	None	R		R					
Name	None	TCTRI	M [6:5]	STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1CE

Bits	7	6	5	4	3	2	1	0	
SW Access	None	R\	W	RW					
HW Access	None	R		R					
Name	None	TCTRI	M [6:5]	STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1CF

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRI	M [6:5]	STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1D0

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRI	M [6:5]	STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1D1

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRI	M [6:5]	STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1D02

Bits	7	6	5	4	3	2	1	0		
SW Access	None	RW		RW						
HW Access	None	R		R						
Name	None	TCTRI	M [6:5]		;	STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1D03

Bits	7	6	5	4	3	2	1	0		
SW Access	None	RW		RW						
HW Access	None	R		R						
Name	None	TCTRI	M [6:5]		;	STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1D4

Bits	7	6	5	4	3	2	1	0		
SW Access	None	RW		RW						
HW Access	None	R		R						
Name	None	TCTRI	M [6:5]		;	STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1D5

Bits	7	6	5	4	3	2	1	0		
SW Access	None	RW		RW						
HW Access	None	R		R						
Name	None	TCTRI	M [6:5]		;	STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1D6

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRI	M [6:5]	STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1D7

Bits	7	6	5	4	3	2	1	0		
SW Access	None	RW		RW						
HW Access	None	R		R						
Name	None	TCTRI	M [6:5]		;	STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1D8

Bits	7	6	5	4	3	2	1	0	
SW Access	None	R\	W	RW					
HW Access	None	R		R					
Name	None	TCTRIM [6:5]		STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1D9

Bits	7	6	5	4	3	2	1	0	
SW Access	None	R\	W	RW					
HW Access	None	R		R					
Name	None	TCTRIM [6:5]		STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1DA

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRI	TCTRIM [6:5]		STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1DB

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRIM [6:5]		STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1DC

Bits	7	6	5	4	3	2	1	0	
SW Access	None	R\	W	RW					
HW Access	None	R		R					
Name	None	TCTRI	TCTRIM [6:5]		STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1DD

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRI	TCTRIM [6:5]		STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1DE

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRIM [6:5]		STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1DF

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRI	TCTRIM [6:5]		STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1E0

Bits	7	6	5	4	3	2	1	0	
SW Access	None	R	W	RW					
HW Access	None	R		R					
Name	None	TCTRI	M [6:5]	STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1E1

Bits	7	6	5	4	3	2	1	0		
SW Access	None	RW		RW						
HW Access	None	R		R						
Name	None	TCTRI	M [6:5]	STEPSIZE [4:0]						

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1E2

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRI	TCTRIM [6:5]		STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1E3

Bits	7	6	5	4	3	2	1	0	
SW Access	None	RW		RW					
HW Access	None	R		R					
Name	None	TCTRIM [6:5]		STEPSIZE [4:0]					

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

IMO TempCo Trim Register (SRSS-Lite) Address: 0x0FFFF1E4

Bits	7	6	5	4	3	2	1	0		
SW Access	None	RW		RW						
HW Access	None	R		R						
Name	None	TCTRI	M [6:5]		;	STEPSIZE [4:0]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency.
		Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims.
		Default Value: 16

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1E5

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		None									
Name				OFFSE	T [7:0]						

Bits Name Description OFFSET

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH.

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1E6

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		None									
Name				OFFSE	T [7:0]						

Bits Name Description OFFSET

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH.

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1E7

Retention: Retained

7:0

Bits	7	7 6		4	3	2	1	0			
SW Access		RW									
HW Access		None									
Name				OFFSE	T [7:0]						

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1E8

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		None									
Name				OFFSE	T [7:0]						

Bits Name Description OFFSET

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH.

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1E9

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		None									
Name				OFFSE	T [7:0]						

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1EA

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		None									
Name				OFFSE	T [7:0]						

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1EB

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		None									
Name		OFFSET [7:0]									

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1EC

Retention: Retained

7:0

Bits	7	7 6		4	3	2	1	0			
SW Access		RW									
HW Access		None									
Name				OFFSE	T [7:0]						

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1ED

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		None									
Name				OFFSE	T [7:0]						

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1EE

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		None									
Name		OFFSET [7:0]									

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1EF

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0
SW Access	RW							
HW Access	None							
Name	OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1F0

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1F1

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1F2

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1F3

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1F4

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description OFFSET

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH.

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1F5

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1F6

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1F7

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1F8

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1F9

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1FA

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description OFFSET

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH.

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1FB

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0	
SW Access		RW							
HW Access		None							
Name		OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1FC

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0
SW Access	RW							
HW Access		None						
Name	OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

IMO Frequency Trim Register (SRSS-Lite) Address: 0x0FFFF1FD

Retention: Retained

7:0

Bits	7	6	5	4	3	2	1	0
SW Access		RW						
HW Access		None						
Name	OFFSET [7:0]							

Bits Name Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. OFFSET

SPC INTERFACE (SPCIF) REGISTERS

This section discusses the System Performance Controller Interface (SPCIF) registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 19. REGISTER DETAILS

Register Name	Address
SPCIF_GEOMETRY	0x40110000
SPCIF_INTR	0x401107F0
SPCIF_INTR_SET	0x401107F4
SPCIF_INTR_MASK	0x401107F8
SPCIF_INTR_MASKED	0x401107FC

SPCIF_GEOMETRY

Flash/NVL Geometry Information Address: 0x40110000

Address: 0x40110000 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	R							
HW Access		W						
Name	FLASH [7:0]							

Bits	15	14	13	12	11	10	9	8		
SW Access	R		R							
HW Access	W		W							
Name	SFLASH [15:14]		FLASH [13:8]							

Bits	23	22	21	20	19	18	17	16	
SW Access	R		R			R			
HW Access	W		V	V	W				
Name	FLASH_ROW [23:22]		NUM_FLA	SH [21:20]	SFLASH [19:16]				

Bits	31	30	29	28	27	26	25	24
SW Access	RW	None						
HW Access	None		None					
Name	DE_CPD_LP	None [30:24]						

Bits	Name	Description
31	DE_CPD_LP	'0': SRAM busy wait loop has not been copied.
		'1': Busy wait loop has been written into SRAM.
		Default Value: 0
23:22	FLASH_ROW	Page size in 64 Byte multiples (chip dependent):
		"0": 64 byte
		"1": 128 byte
		"2": 192 byte
		"3": 256 byte
		The page size is used to determine the number of Bytes in a page for Flash page based operations (e.g. PGM_PAGE).
		Note: the field name FLASH_ROW is misleading, as this field specifies the number of Bytes in a page, rather than the number of Bytes in a row. In a single plane flash macro architecture, a page consists of a single row. However, in a multi-plane flash macro architecture, a page consists of multiple rows from different planes.
		Default Value: Undefined
21:20	NUM_FLASH	Number of flash macros (chip dependent):
		"0": 1 flash macro
		"1": 2 flash macros
		"2": 3 flash macros
		"3": 4 flash macros
		Default Value: Undefined

SPCIF_GEOMETRY (Continued)

Supervisory flash capacity in 256 Byte multiples (chip dependent). If multiple flash macros are present, this field provides the supervisory flash capacity of all flash macros together: 19:14 SFLASH

"0": 256 Bytes. "1": 2*256 Bytes.

"63": 64*256 Bytes. Default Value: Undefined

Regular flash capacity in 256 Byte multiples (chip dependent). If multiple flash macros are present, this 13:0 **FLASH**

field provides the flash capacity of all flash macros together:

"0": 256 Bytes. "1": 2*256 Bytes.

"16383": 16384*256 Bytes. Default Value: Undefined

SPCIF_INTR

SPCIF Interrupt Request Register

Address: 0x401107F0 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None						RW1C
HW Access		None						RW1S
Name		None [7:1]						TIMER
Bits	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access		None						
Name		None [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				No	one	•		•
HW Access				No	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name		None [31:24]						

Bits	Name	Description
		2000p

TIMER

0

Timer counter value reaches "0". Set to '1', when event is detected. Write INTR field with '1', to clear bit. Write INTR_SET field with '1', to set bit.

SPCIF_INTR_SET

SPCIF Interrupt Set Request Register Address: 0x401107F4

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access				None				RW1S
HW Access		None						Α
Name		None [7:1]						TIMER
Bits	15	14	13	12	11	10	9	8
SW Access				N	one			
HW Access		None						
Name		None [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				N	one			
HW Access				N	one			
Name				None	[23:16]			
Bits	31	30	29	28	27	26	25	24
SW Access				N	one			
HW Access				N	one			
Name		None [31:24]						

Bits	Name	Description
0	TIMER	Write INTR_S

Write INTR_SET field with '1' to set corresponding INTR field.

SPCIF_INTR_MASK

SPCIF Interrupt Mask Register Address: 0x401107F8

Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access				None				RW	
HW Access				None				R	
Name				None [7:1]				TIMER	
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							
Name		None [15:8]							
				_					
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
							_		
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access				No	one				
Name				None	[31:24]				

Bits Description Name TIMER 0

Mask for corresponding field in INTR register.

$SPCIF_INTR_MASKED$

SPCIF Interrupt Masked Request Register Address: 0x401107FC

Retention: Not Retained

Bits	7	6	5	4	3	2	1	0
SW Access			•	None	•	1	•	R
HW Access				None				W
Name		None [7:1]						TIMER
				_				
Bits	15	14	13	12	11	10	9	8
SW Access		None						
HW Access		None						
Name		None [15:8]						
	•							
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
				_				
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name		None [31:24]						

Bits	Name	Description

Logical and of corresponding request and mask fields. 0 TIMER

SYSTEM RESOURCES SUB SYSTEM REGISTERS

This section discusses the System Resources Sub System (SRSS) registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 20. REGISTER DETAILS

Register Name	Address			
PWR_CONTROL	0x40030000			
PWR_KEY_DELAY	0x40030004			
PWR_DDFT_SELECT	0x4003000C			
TST_MODE	0x40030014			
CLK_SELECT	0x40030028			
CLK_ILO_CONFIG	0x4003002C			
CLK_IMO_CONFIG	0x40030030			
CLK_DFT_SELECT	0x40030034			
WDT_DISABLE_KEY	0x40030038			
WDT_COUNTER	0x4003003C			
WDT_MATCH	0x40030040			
SRSS_INTR	0x40030044			
SRSS_INTR_SET	0x40030048			
SRSS_INTR_MASK	0x4003004C			
RES_CAUSE	0x40030054			
CLK_IMO_SELECT	0x40030F08			
CLK_IMO_TRIM1	0x40030F0C			
CLK_IMO_TRIM2	0x40030F10			
PWR_PWRSYS_TRIM1	0x40030F14			
CLK_IMO_TRIM3	0x40030F18			

PWR_CONTROL

HW Access

Name

Power Mode Control Address: 0x40030000 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	None		R	R	R			1	
HW Access	No	None RW RW					RW		
Name	None	[7:6]	LPM_ READY	DEBUG_ SESSION		POWER_	MODE [3:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access	None								
Name	None [15:8]								
Bits	23	22	21	20	19	18	17	16	
SW Access	RW		None			R	RW	RW	
HW Access	Α		None		F	RW	R R		
Name	EXT_VCCD	None [22:20]			SPARE	E [19:18]	[19:18] OVER_ OVER_ TEMP_EN		
Bits	31	30	29	28	27	26	25	24	
	None None								

Bits 23	Name EXT_VCCD	Description Always write 0. Default Value: 0
19:18	SPARE	Spare AHB readback bits that are hooked to PWR_PWRSYS_TRIM1.SPARE_TRIM[1:0] through spare logic equivalent to bitwise inversion. Engineering only. Default Value: 0
17	OVER_TEMP_THRESH	Over-temperature threshold. 0: TEMP_HIGH condition occurs between 120°C and 125°C. 1: TEMP_HIGH condition occurs between 60°C and 75°C (used for testing). Default Value: 0
16	OVER_TEMP_EN	Enables the die over temperature sensor. Must be enabled when using the TEMP_HIGH interrupt. Default Value: 0

None

None [31:24]

PWR_CONTROL (Continued)

5 Indicates whether the low power mode regulator is ready to enter DEEPSLEEP mode. LPM_READY 0: If DEEPSLEEP mode is requested, device will enter SLEEP mode. When low power regulators are ready, device will automatically enter the originally requested mode. 1: Normal operation. DEEPSLEEP works as described. Default Value: 0 4 DEBUG_SESSION Indicates whether a debug session is active (CDBGPWRUPREQ signal is 1) . Default Value: 0 0x0: NO_SESSION: No debug session active 0x1: SESSION_ACTIVE: Debug session is active POWER_MODE 3:0 Current power mode of the device. Note that this field cannot be read in all power modes on actual silicon. 0x0: RESET: RESET state 0x1: ACTIVE: **ACTIVE** state 0x2: SLEEP: SLEEP state 0x3: DEEP_SLEEP:

DEEP_SLEEP state

PWR_KEY_DELAY

Power System Key Register Address: 0x40030004 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	RW							
HW Access				F	7			
Name				WAKEUP_H	OLDOFF [7:0]			
Bits	15	14	13	12	11	10	9	8
SW Access	None RW							
SW Access			INC	orie			Г	ivv
HW Access	None R							R
Name	None [15:10] WAKEUP_HOLDOFF [9						OLDOFF [9:8]	
Bits	23	22	21	20	19	18	17	16
SW Access				No	ne			
HW Access				No	one			
Name				None	[23:16]			
			1				_	
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits Name
9:0 WAKEUP_HOLDOFF

Description

Delay to wait for references to settle on wakeup from deepsleep. BOD is ignored and system does not resume until this delay expires. Note that the same delay on POR is hard-coded. The default assumes the output of the predivider is 48~MHz + 3%. Firmware may scale this setting according to the fastest actual clock frequency that can occur when waking from DEEPSLEEP.

PWR_DDFT_SELECT

Power DDFT Mode Selection Register

Address: 0x4003000C Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0	
SW Access		R	W		RW				
HW Access		ŀ	٦		R				
Name		DDFT1_	SEL [7:4]		DDFT0_SEL [3:0]				
Bits	15	14	13	12	11	10	9	8	
SW Access		None							
HW Access		None							

Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access		None						
Name	None [23:16]							

None [15:8]

Bits	31	30	29	28	27	26	25	24
SW Access	None							
HW Access	None							
Name	None [31:24]							

Bits Name 7:4 DDFT1_SEL Description

Select signal for power DDFT output #1

Default Value: 0

0x0: WAKEUP:

Wakeup

0x1: AWAKE:

Awake

0x2: ACT_POWER_EN:

act_power_en

0x3: ACT_POWER_UP:

act_power_up

0x4: ACT_POWER_GOOD:

act_power_good

0x5: ACT_REF_VALID: act_ref_valid

0x6: ACT_REG_VALID:

act_reg_valid

0x7: ACT_COMP_OUT:

act_comp_out

0x8: ACT_TEMP_HIGH:

act_temp_high

0x9: DPSLP_COMP_OUT:

dpslp_comp_out

0xa: DPSLP_POWER_UP:

dpslp_power_up

0xb: AWAKE DELAYED:

awake_delayed

0xc: LPM READY:

Ipm_ready

0xd: SLEEPHOLDACK_N:

sleepholdack_n

0xe: GND: 1'b0

0xf: PWR:

1'b1

3:0 DDFT0_SEL

Select signal for power DDFT output #0

Default Value: 0

0x0: WAKEUP:

wakeup

0x1: AWAKE:

awake

0x2: ACT_POWER_EN:

act_power_en

0x3: ACT_POWER_UP:

act_power_up

0x4: ACT_POWER_GOOD:

act_power_good

0x5: ACT REF EN:

srss adft control act ref en

0x6: ACT COMP EN:

srss_adft_control_act_comp_en

0x7: DPSLP_REF_EN:

srss_adft_control_dpslp_ref_en

0x8: DPSLP_REG_EN:

srss_adft_control_dpslp_reg_en

0x9: DPSLP_COMP_EN:

srss_adft_control_dpslp_comp_en

0xa: OVER_TEMP_EN:

pwr_control_over_temp_en

0xb: SLEEPHOLDREQ_N:

sleepholdreq_n

0xc: ADFT_BUF_EN:

adft_buf_en

0xd: ATPG OBSERVE:

ATPG observe point (no functional purpose)

0xe: GND:

1'b0

0xf: PWR:

1'b1

TST_MODE

Test Mode Control Register Address: 0x40030014 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		1	None	R	No	one			
HW Access			None			RW	No	one	
Name		None [7:3]					None	e [1:0]	
Bits	15	14	13	12	11	10	9	8	
SW Access		1		No	ne	<u> </u>			
HW Access		None							
Name		None [15:8]							
	1	1						1	
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None [23:16]				
	T					T		1	
Bits	31	30	29	28	27	26	25	24	
SW Access	RW	R	None	RW		Non	ie		
HW Access	R	RW	None	А		Non	ie		
Name	TEST_ MODĒ	TEST_KEY _DFT_EN	None	BLOCK_ ALT_XRES	None [27:24]				

Bits	Name	Description
31	TEST_MODE	0: Normal operation mode
		1: Test mode (any test mode)
		Setting this bit will prevent BootROM from yielding execution to Flash image.
		Default Value: 0
30	TEST_KEY_DFT_EN	This bit is set when a XRES test mode key is shifted in. It is the value of the test_key_dft_en signal. When this bit is set, the BootROM will not yield execution to the FLASH image (same function as setting TEST_MODE bit below).
		Default Value: 0
28	BLOCK_ALT_XRES	Relevant only for parts that have the alternate XRES mechanism of overloading a GPIO pin temporarily as alternate XRES during test. When set, this bit blocks the alternate XRES function, such that the pin can be used for normal I/O or for ddft/adft observation. This register bit only resets for XRES, POR, or a detected BOD. Default Value: 0
2	SWD CONNECTED	0: SWD not active
	-	1: SWD activated (Line Reset & Connect sequence passed)
		(Note: this bit replaces TST_CTRL.SWD_CONNECTED and is present in all M0S8 products except TSG4)
		Default Value: 0

CLK_SELECT

Clock Select Register Address: 0x40030028 Retention: Retained

HW Access

Name

5:4

Bits	7	6	5	4	3	2	1	0	
SW Access	R'	W	F	RW	F	RW	F	RW	
HW Access	R		R		R		R		
Name	SYSCLK_	_DIV [7:6]	PUMP_	SEL [5:4]	HFCLK_	_DIV [3:2]	HFCLK_SEL [1:0]		
		T	T	•	1	T	T	1	
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access	None								
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access			<u>I</u>	No	one		1	<u> </u>	
HW Access				No	one				
Name		None [23:16]							
		<u> </u>	1	1	1	<u> </u>	1	_	
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				

Bits Name Description

7:6 SYSCLK_DIV Select clk_sys prescaler value.

Default Value: 0

0x0: NO_DIV:
clk_sys= clk_hf/1

0x1: DIV_BY_2:
clk_sys= clk_hf/2

0x2: DIV_BY_4:

clk_sys= clk_hf/4 **0x3: DIV_BY_8:**

clk_sys= clk_hf/8

PUMP_SEL

Selects clock source for charge pump clock. This clock is not guaranteed to be glitch free when

None

None [31:24]

changing any of its sources or settings.

Default Value: 0 **0x0: GND:**

No clock, connect to gnd

0x1: IMO:

Use main IMO output

0x2: HFCLK:

Use clk_hf (using selected source after predivider but before prescaler)

CLK_SELECT (Continued)

3:2 HFCLK_DIV Selects clk_hf predivider value.

Default Value: 2 **0x0: NO DIV:**

Transparent mode, feed through selected clock source w/o dividing.

0x1: DIV_BY_2:

Divide selected clock source by 2

0x2: DIV_BY_4:

Divide selected clock source by 4

0x3: DIV_BY_8:

Divide selected clock source by 8

1:0 HFCLK_SEL Selects a source for clk_hf and dsi_in[0]. Note that not all products support all clock sources. Selecting

a clock source that is not supported will result in undefined behavior.

Default Value: 0

0x0: IMO:

IMO - Internal R/C Oscillator

0x1: EXTCLK:

EXTCLK - External Clock Pin

0x2: ECO:

ECO - External-Crystal Oscillator or PLL subsystem output

CLK_ILO_CONFIG

ILO Configuration Address: 0x4003002C Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	None										
HW Access	None										
Name				None	e [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access	RW				None						
HW Access	RW	RW None									
Name	ENABLE				None [30:24]						

Bits Nam	e Description
----------	---------------

ENABLE

31

 $\label{lem:master} \textbf{Master enable for ILO oscillator. This bit is hardware set whenever the WD_DISABLE_KEY is not set to the magic value.}$

CLK_IMO_CONFIG

IMO Configuration Address: 0x40030030 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	None										
HW Access	None										
Name				None	e [7:0]						
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access	None										
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access	RW				None						
HW Access	R	R None									
Name	ENABLE				None [30:24]						

Bits	Name	Description
------	------	-------------

ENABLE

31

Master enable for IMO oscillator. Clearing this bit will disable the IMO. Don't do this if the system is running off it.

running off it.

Default Value: 1

CLK_DFT_SELECT

Clock DFT Mode Selection Register Address: 0x40030034

Retention: Retained

Name

Bits	7	6	5	4	3	2	1	0		
SW Access	None	RW	RW		RW					
HW Access	None	R	R		R					
Name	None	DFT EDGE0	DFT_DIV0 [5:4]			DFT_SEL0 [3:0]				
	T	T		1	1	1	1			
Bits	15	14	13	12	11	10	9	8		
SW Access	None	RW	R	RW RW						
HW Access	None	R	R R				7			
Name	None	DFT_ EDGE1	DFT_DIV1 [13:12]		DFT_SEL1 [11:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access		I.		No	one	ı	ı			
HW Access				No	one					
Name				None	[23:16]					
Dite	1 04	00	00		07	00	05	04		
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access				No	one					

None [31:24]

Bits 14	Name DFT_EDGE1	Description Edge sensitivity for in-line divider on output #1 (only relevant when DIV1 > 0). Default Value: 0
		0x0: POSEDGE: Use posedge for divider
13:12	DFT_DIV1	Ox1: NEGEDGE: Use negedge for divider DFT Output Divide Down. Default Value: 0
		0x0: NO_DIV: Direct Output
		0x1: DIV_BY_2: Divide by 2
		0x2: DIV_BY_4: Divide by 4 0x3: DIV_BY_8: Divide by 8

11:8 DFT_SEL1 Select signal for DFT output #1 Default Value: 0 0x0: NC: Disabled - output is 0 0x1: ILO: clk_ilo: ILO output 0x2: IMO: clk_imo: IMO primary output 0x3: ECO: clk_eco: ECO output 0x4: EXTCLK: clk_ext: external clock input 0x5: HFCLK: clk_hf: root of the high-speed clock tree 0x6: LFCLK: clk If: root of the low-speed clock tree 0x7: SYSCLK: clk_sys: root of the CPU/AHB clock tree (gated version of clk_hf) 0x8: PUMPCLK: clk_pump: clock provided to charge pumps in FLASH and PA 0x9: SLPCTRLCLK: clk slpctrl: clock provided to SleepController 6 DFT_EDGE0 Edge sensitivity for in-line divider on output #0 (only relevant when DIV0 > 0). Default Value: 0 0x0: POSEDGE: Use posedge for divider 0x1: NEGEDGE: Use negedge for divider DFT DIV0 DFT Output Divide Down. 5:4 Default Value: 0 0x0: NO DIV: **Direct Output** 0x1: DIV_BY_2: Divide by 2 0x2: DIV_BY_4: Divide by 4 0x3: DIV_BY_8: Divide by 8 Select signal for DFT output #0 3:0 DFT_SEL0 Default Value: 0 0x0: NC: Disabled - output is 0 0x1: ILO: clk ilo: ILO output 0x2: IMO: clk_imo: IMO primary output 0x3: ECO:

clk eco: ECO output

CLK_DFT_SELECT (Continued)

0x4: EXTCLK:

clk_ext: external clock input

0x5: HFCLK:

clk_hf: root of the high-speed clock tree

0x6: LFCLK:

clk_lf: root of the low-speed clock tree

0x7: SYSCLK:

clk_sys: root of the CPU/AHB clock tree (gated version of clk_hf)

0x8: PUMPCLK:

clk_pump: clock provided to charge pumps in FLASH and PA

0x9: SLPCTRLCLK:

clk_slpctrl: clock provided to SleepController

WDT_DISABLE_KEY

Watchdog Disable Key Register Address: 0x40030038

Address: 0x40030038 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW										
HW Access	R										
Name				KEY	[7:0]						
							_				
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		R									
Name				KEY	[15:8]						
							_				
Bits	23	22	21	20	19	18	17	16			
SW Access				R	W						
HW Access				F	3						
Name				KEY [23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				R	W						
HW Access		R									
Name				KEY [31:24]						

Bits Name Description

KEY

31:0

Disables WDT reset when equal to 0xACED8865. The WDT reset functions normally for any other ...

setting.

WDT_COUNTER

Watchdog Counter Register Address: 0x4003003C Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access		R									
HW Access	RW										
Name		COUNTER [7:0]									
	<u> </u>										
Bits	15	14	13	12	11	10	9	8			
SW Access		R									
HW Access		RW									
Name				COUNT	ER [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

Bits Name 15:0 COUNTER Description

Current value of WDT Counter

WDT_MATCH

Watchdog Match Register Address: 0x40030040 Retention: Retained

				•		•					
Bits	7	6	5	4	3	2	1	0			
SW Access		RW									
HW Access		R									
Name		MATCH [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access		R									
Name				MATCH	l [15:8]						
	1		1	1			1	ı			
Bits	23	22	21	20	19	18	17	16			
SW Access		No	one		RW						
HW Access		No	one		R						
Name		None	[23:20]		IGNORE_BITS [19:16]						
	1		T	1		1					
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access		None									
Name				None	[31:24]						

Bits	Name	Description
19:16	IGNORE_BITS	The number of MSB bits of the watchdog timer that are NOT checked against MATCH. This value provides control over the time-to-reset of the watchdog (which happens after 3 successive matches). Note that certain products may enforce a minimum value for this register through design time configuration.
		Default Value: 0
15:0	MATCH	Match value for Watchdog counter. Every time WDT_COUNTER reaches MATCH an interrupt is generated. Two unserviced interrupts will lead to a system reset (i.e. at the third match).
		Default Value: 4096

SRSS_INTR

SRSS Interrupt Register Address: 0x40030044 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			No	ne	•	•	RW1C	RW1C			
HW Access			No	ne			Α	Α			
Name		None [7:2] TEMP_HIGH WDT_MATCH									
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name		None [15:8]									
Bits	23	22	21	20	19	18	17	16			
SW Access			1	No	one	•					
HW Access				No	one						
Name				None	[23:16]						
	T		T	T	T	1	1 1				
Bits	31	30	29	28	27	26	25	24			
SW Access				No	one						
HW Access		•		No	ne			•			
Name				None	[31:24]						

Bits	Name	Description
1	TEMP_HIGH	Regulator over-temp interrupt. This interrupt can occur when a short circuit exists on the vccd pin or when extreme loads are applied on IO-cells causing the die to overheat. Firmware is encourage to shutdown all IO cells and then go to DeepSleep mode when this interrupt occurs if protection against such conditions is desired. Default Value: 0
0	WDT_MATCH	WDT Interrupt Request. This bit is set each time WDT_COUNTR==WDT_MATCH. Clearing this bit also feeds the watch dog. Missing 2 interrupts in a row will generate brown-out reset. Due to internal synchronization, it takes 2 SYSCLK cycles to update after a W1C. Default Value: 0

$SRSS_INTR_SET$

SRSS Interrupt Set Register Address: 0x40030048 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access			No	ne	•	•	RW1S	None	
HW Access			No	ne			Α	None	
Name			None	[7:2]			TEMP_HIGH	None	
	1								
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access		None							
Name		None [15:8]							
Dita	00		04		10	10	47	46	
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
					1	_			
Bits	31	30	29	28	27	26	25	24	
SW Access				No	one				
HW Access		None							
Name				None	[31:24]				

Bits Name
1 TEMP_HIGH

Description

Writing 1 to this bit internally sets the over-temp interrupt. This can be observed by reading SRSS_INTR.TEMP_HIGH. This bit always reads back as zero.

SRSS_INTR_MASK

SRSS Interrupt Mask Register Address: 0x4003004C

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access			RW	RW						
HW Access		None R								
Name		None [7:2] TEMP_HIGH WDT_MATCH						WDT_ MATCH		
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access		None								
Name		None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	30	29	28	27	26	25	24		
SW Access				No.	ne	1	1			
HW Access				No	one					
Name				None	[31:24]					

Bits	Name	Description
1	TEMP_HIGH	Masks REG_OVERTEMP interrupt.
		Default Value: 0
0	WDT_MATCH	Clearing this bit will not forward the interrupt to the CPU. It will not, however, disable the WDT
		reset generation on 2 missed interrupts.
		Default Value: 0

RES_CAUSE

Reset Cause Observation Register Address: 0x40030054

Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None		RW1C	RW1C	None		RW1C		
HW Access		None		Α	А	None		Α		
Name		None [7:5]		RESET_ SOFT	RESET_ PROT_ FAULT	None [2:1]		RESET_ WDT		
Bits	15	14	13	12	11	10	9	8		
SW Access		None								
HW Access		None								
Name		None [15:8]								
Bits	23	22	21	20	19	18	17	16		
SW Access		1		No	one		<u>I</u>			
HW Access				No	one					
Name				None	[23:16]					
		T			1		Т			
Bits	31	30	29	28	27	26	25	24		
SW Access				No	one					
HW Access		None								
Name				None	[31:24]					

Bits	Name	Description
4	RESET_SOFT	Cortex-M0 requested a system reset through it's SYSRESETREQ. This can be done via a debugger probe or in firmware. Default Value: 0
3	RESET_PROT_FAULT	A protection violation occurred that requires a RESET. This includes, but is not limited to, hitting a debug breakpoint while in Privileged Mode.
		Default Value: 0
0	RESET_WDT	A WatchDog Timer reset has occurred since last power cycle. Default Value: 0

CLK_IMO_SELECT

IMO Frequency Select Register

Address: 0x40030F08 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access			None	•	RW						
HW Access			None			R					
Name			None [7:3]				FREQ [2:0]				
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				No	one		l				
HW Access				No	one						
Name				None	[23:16]						
Bits	31	31 30 29 28 27 26 25 24									
SW Access		None									
HW Access	None										

None [31:24]

Bits Name Description

Name

2:0 FREQ Select operating frequency.

Default Value: 0

0x0: 24_MHZ:

IMO runs at 24 MHz

0x1: 28_MHZ:IMO runs at 28 MHz

0x2: 32_MHZ: IMO runs at 32 MHz

0x3: 36_MHZ: IMO runs at 36 MHz

0x4: 40_MHZ: IMO runs at 40 MHz

0x5: 44_MHZ: IMO runs at 44 MHz

0x6: 48_MHZ: IMO runs at 48 MHz

CLK_IMO_TRIM1

IMO Trim Register Address: 0x40030F0C Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW										
HW Access	RW										
Name		OFFSET [7:0]									
	1	T	T	T	T	I	I	T			
Bits	15	14	13	12	11	10	9	8			
SW Access		None									
HW Access		None									
Name				None	[15:8]						
					1	1	1	1			
Bits	23	22	21	20	19	18	17	16			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[23:16]						
		T	T								
Bits	31	30	29	28	27	26	25	24			
SW Access				No	ne						
HW Access				No	ne						
Name				None	[31:24]						

Bits Name 7:0 OFFSET

Description

Frequency trim bits. These bits are determined at manufacturing time for each FREQ setting (IMO_TRIM2) and stored in SFLASH. This field is hardware updated during USB osclock mode. This field is mapped to the most significant bits of the IMO trim imo_clk_trim[10:3]. The step size of

This field is mapped to the most significant bits of the IMO trim imo_clk_trim[10:3]. The step size of 1 LSB on this field is approximately 120 kHz.

CLK_IMO_TRIM2

IMO Trim Register Address: 0x40030F10 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None RW						
HW Access			None				RW	
Name			None [7:3]			F	SOFFSET [2:0]
	T		T	T	ı		T	T
Bits	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access		None						
Name		None [15:8]						
	T		T	T	ı		T	T
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	ne			
Name				None	[23:16]			
	1		1	1	1		1	1
Bits	31	31 30 29 28 27 26 25 24						
SW Access		None						
HW Access		None						
Name				None	[31:24]			

Bits Name
2:0 FSOFFSET

Description

Frequency trim bits. These bits are not trimmed during manufacturing and kept at 0 under normal operation. This field is hardware updated during USB osclock mode. This field is mapped to the least significant bits of the IMO trim imo_clk_trim[2:0]. The step size of 1 LSB on this field is approximately 15 kHz.

PWR_PWRSYS_TRIM1

Power System Trim Register Address: 0x40030F14

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access	•	R'	W	•		R	W	•
HW Access		F	3			F	7	
Name		SPARE_T	TRIM [7:4]			DPSLP_REF	_TRIM [3:0]	
			T	1		1		ı
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne			
HW Access				No	ne			
Name				None	[15:8]			
Bits	23	22	21	20	19	18	17	16
SW Access	None							
HW Access	None							
Name	None [23:16]							

Bits	31	30	29	28	27	26	25	24
SW Access		None						
HW Access		None						
Name	None [31:24]							

Bits	Name	Description
7:4	SPARE_TRIM	Active-Reference temperature compensation trim (repurposed from spare bits).
		Bits [7:6] – trim the Active-Reference IREF temperature coefficient (TC).
		00: TC = 0 (unchanged)
		01: TC = +80 ppm/C 10: TC = -80 ppm/C
		11: TC = -150 ppm/C
		Bits [5:4] – trim the Active-Reference VREF temperature coefficient (TC).
		00: TC = 0 (unchanged) 01: TC = -50ppm/C 10: TC = -80ppm/C 11: TC = +150ppm/C
		Default Value: 0
3:0	DPSLP_REF_TRIM	Trims the DeepSleep reference that is used by the DeepSleep regulator and DeepSleep power comparator.
		Default Value: 0

CLK_IMO_TRIM3

IMO Trim Register Address: 0x40030F18 Retention: Retained

Bits	7	6	5	4 3 2 1 0					
SW Access	None	R	W	RW					
HW Access	None	F	3			R			
Name	None	TCTRI	M [6:5]			STEPSIZE [4:0]			
Bits	15	14	13	12	11	10	9	8	
SW Access		<u> </u>			ne		<u> </u>	<u> </u>	
HW Access		None							
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
		T	T	1	I		I	I	
Bits	31	31 30 29 28 27 26 25 24							
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits	Name	Description
6:5	TCTRIM	IMO temperature compensation trim. These bits are determined at manufacturing time to adjust for temperature dependence. This bits are dependent on frequency. Default Value: 2
4:0	STEPSIZE	IMO trim stepsize bits. These bits are determined at manufacturing time to adjust for process variation. They are used to tune the stepsize of the FSOFFSET and OFFSET trims. Default Value: 16

TIMER, COUNTER, PWM (TCPWM) REGISTERS

This section discusses the Timer, Counter, PWM (TCPWM) registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 21. REGISTER DETAILS

Register Name	Address
TCPWM_CTRL	0x40060000
TCPWM_CMD	0x40060008
TCPWM_INTR_CAUSE	0x4006000C

$TCPWM_CTRL$

TCPWM Control Register 0 Address: 0x40060000 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None			RW					
HW Access		None				R				
Name		None [7:5]			COU	NTER_ENABLE	D [4:0]			
		ı	T	1	T	T	ı	1		
Bits	15	14	13	12	11	10	9	8		
SW Access				No	one					
HW Access				No	one					
Name				None	[15:8]					
Bits	23	22	21	20	19	18	17	16		
SW Access			ı	No	one					
HW Access				No	one					
Name				None	[23:16]					
Bits	31	31 30 29 28 27 26 25 24								
SW Access		None 25 25 27 27								
HW Access		None								
Name				None	[31:24]					

Bits Name 4:0 COUNTER_ENABLED

Description

Counter enables for counters 0 up to CNT_NR-1.

'0': counter disabled.

'1': counter enabled.

Counter static configuration information (e.g. CTRL.MODE, all TR_CTRL0, TR_CTRL1, and TR_CTRL2 register fields) should only be modified when the counter is disabled. When a counter is disabled, command and status information associated to the counter is cleared by HW, this includes:

- the associated counter triggers in the CMD register are set to '0'.
- the counter's interrupt cause fields in counter's INTR register.
- the counter's status fields in counter's STATUS register..
- the counter's trigger outputs ("tr overflow", "tr underflow" and "tr compare match").
- the counter's line outputs ("line_out" and "line_compl_out").

$TCPWM_CMD$

TCPWM Command Register Address: 0x40060008 Retention: Not Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None		RW1S					
HW Access		None				RW1C			
Name		None [7:5]			COUN	TER_CAPTUR	E [4:0]		
Bits	15	14	13	12	11	10	9	8	
SW Access		None				RW1S			
HW Access	None			RW1C					
Name		None [15:13]		COUNTER_RELOAD [12:8]					
		I		1		T	T	T	
Bits	23	22	21	20	19	18	17	16	
SW Access		None		RW1S					
HW Access		None		RW1C					
Name		None [23:21]			COU	NTER_STOP [2	20:16]		
Dia.					27			24	
Bits	31 30 29			28 27 26 25					
SW Access	None					RW1S			
HW Access		None			RW1C				
Name		None [31:29]			COUNTER_START [28:24]				

Bits	Name	Description
28:24	COUNTER_START	Counters SW start trigger. For HW behavior, see COUNTER_CAPTURE field. Default Value: 0
20:16	COUNTER_STOP	Counters SW stop trigger. For HW behavior, see COUNTER_CAPTURE field. Default Value: 0
12:8	COUNTER_RELOAD	Counters SW reload trigger. For HW behavior, see COUNTER_CAPTURE field. Default Value: 0
4:0	COUNTER_CAPTURE	Counters SW capture trigger. When written with '1', a capture trigger is generated and the HW sets the field to '0' when the SW trigger has taken effect. It should be noted that the HW operates on the counter frequency. If the counter is disabled through CTRL.COUNTER_ENABLED, the field is immediately set to '0'.
		Default Value: 0

TCPWM_INTR_CAUSE

TCPWM Counter Interrupt Cause Register

Address: 0x4006000C Retention: Not Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None			R					
HW Access		None				W				
Name		None [7:5]			CC	OUNTER_INT [4	4:0]			
				1		1	1			
Bits	15	15 14 13 12 11 10 9								
SW Access				No	ne					
HW Access				No	ne					
Name				None	[15:8]					
	1	T	T	ı		1	1	1		
Bits	23	22	21	20	19	18	17	16		
SW Access				No	ne					
HW Access				No	ne					
Name				None	23:16]					
	1		1			1	1	1		
Bits	31	31 30 29 28 27 26 25 24								
SW Access		None								
HW Access		None								
Name				None	31:24]					

Bits Name 4:0 COUNTER_INT Description

Counters interrupt signal active. If the counter is disabled through CTRL.COUNTER_ENABLED, the associated interrupt field is immediately set to '0'.

PERI TRIGGER GROUP CONTROL REGISTERS

This section discusses the PERI Trigger Group Control (TR_GROUP) registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 22. REGISTER DETAILS

Register Name	Address
PERI_TR_GROUP0_TR_OUT_CTL0	0x40012000
PERI_TR_GROUP0_TR_OUT_CTL1	0x40012004
PERI_TR_GROUP0_TR_OUT_CTL2	0x40012008
PERI_TR_GROUP0_TR_OUT_CTL3	0x4001200C
PERI_TR_GROUP0_TR_OUT_CTL4	0x40012010
PERI_TR_GROUP0_TR_OUT_CTL5	0x40012014
PERI_TR_GROUP0_TR_OUT_CTL6	0x40012018
PERI_TR_GROUP1_TR_OUT_CTL	0x40012200

Trigger Control Register Address: 0x40012000 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None		RW					
HW Access		None				R			
Name		None [7:5]				SEL [4:0]			
				I	ı	1	1 -		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access				No	one				
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits	Name	
4 ⋅0	SEI	

Description

Specifies input trigger. This field is typically set during the setup of a chip use case scenario.

Changing this field while activated triggers are present on the input triggers may result in unpredictable behavior. Note that input trigger 0 (default value) is typically connected to a constant signal level of '0', and as a result will not cause HW activation of the output trigger.

Trigger Control Register Address: 0x40012004 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None		RW					
HW Access		None				R			
Name		None [7:5]				SEL [4:0]			
				I	ı	1	1 -		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access				No	one				
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits	Name
4.0	SEI

Description

Specifies input trigger. This field is typically set during the setup of a chip use case scenario.

Changing this field while activated triggers are present on the input triggers may result in unpredictable behavior. Note that input trigger 0 (default value) is typically connected to a constant signal level of '0', and as a result will not cause HW activation of the output trigger.

Trigger Control Register Address: 0x40012008 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None		RW					
HW Access		None				R			
Name		None [7:5]				SEL [4:0]			
				I	ı	1	1 -		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access				No	one				
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits	Name
4.0	SEI

Description

Specifies input trigger. This field is typically set during the setup of a chip use case scenario.

Changing this field while activated triggers are present on the input triggers may result in unpredictable behavior. Note that input trigger 0 (default value) is typically connected to a constant signal level of '0', and as a result will not cause HW activation of the output trigger.

Trigger Control Register Address: 0x4001200C Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None		RW					
HW Access		None				R			
Name		None [7:5]				SEL [4:0]			
				I	ı	1	1 -		
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access				No	one				
Name				None	[15:8]				
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits	Name
4 ⋅0	SEL

Description

Specifies input trigger. This field is typically set during the setup of a chip use case scenario.

Changing this field while activated triggers are present on the input triggers may result in unpredictable behavior. Note that input trigger 0 (default value) is typically connected to a constant signal level of '0', and as a result will not cause HW activation of the output trigger.

Trigger Control Register Address: 0x40012010 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	None			RW					
HW Access		None				R			
Name		None [7:5]				SEL [4:0]			
	1							1	
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access				No	one				
Name		None [15:8]							
Bits	23	22	21	20	19	18	17	16	
SW Access				No	one				
HW Access				No	one				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits	Name
4.0	SEI

Description

Specifies input trigger. This field is typically set during the setup of a chip use case scenario.

Changing this field while activated triggers are present on the input triggers may result in unpredictable behavior. Note that input trigger 0 (default value) is typically connected to a constant signal level of '0', and as a result will not cause HW activation of the output trigger.

Trigger Control Register Address: 0x40012014 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access		None			RW					
HW Access		None				R				
Name		None [7:5]				SEL [4:0]				
	T	ī	ī	T	ī	1	T			
Bits	15	14	13	12	11	10	9	8		
SW Access				No	one					
HW Access				No	ne					
Name		None [15:8]								
						1		T		
Bits	23	22	21	20	19	18	17	16		
SW Access				No	one					
HW Access				No	ne					
Name				None	[23:16]					
	T					_		1		
Bits	31	30	29	28	27	26	25	24		
SW Access		None								
HW Access		None								
Name				None	[31:24]					

Bits	Name
4 ·∩	SEL

Description

Specifies input trigger. This field is typically set during the setup of a chip use case scenario.

Changing this field while activated triggers are present on the input triggers may result in unpredictable behavior. Note that input trigger 0 (default value) is typically connected to a constant signal level of '0', and as a result will not cause HW activation of the output trigger.

Trigger Control Register Address: 0x40012018 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access		None			RW				
HW Access		None R							
Name		None [7:5]				SEL [4:0]			
Bits	15	14	13	12	11	10	9	8	
SW Access				No	one				
HW Access		None							
Name		None [15:8]							
Bits	23	22	21	20	19	18	17	16	
SW Access				No	ne				
HW Access				No	ne				
Name				None	[23:16]				
Bits	31	30	29	28	27	26	25	24	
SW Access		None							
HW Access		None							
Name				None	[31:24]				

Bits	Name
4.0	SEI

Description

Specifies input trigger. This field is typically set during the setup of a chip use case scenario.

Changing this field while activated triggers are present on the input triggers may result in unpredictable behavior. Note that input trigger 0 (default value) is typically connected to a constant signal level of '0', and as a result will not cause HW activation of the output trigger.

Trigger Control Register Address: 0x40012200 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None		RW				
HW Access		None				R		
Name		None [7:5]				SEL [4:0]		
	T	ī	ī	T	ī	T	T	
Bits	15	14	13	12	11	10	9	8
SW Access				No	one			
HW Access		None						
Name		None [15:8]						
								T
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	ne			
Name				None	[23:16]			
	T					_		1
Bits	31	30	29	28	27	26	25	24
SW Access		None						·
HW Access		None						
Name				None	[31:24]			

Bits	Name
4 ·∩	SEL

Description

Specifies input trigger. This field is typically set during the setup of a chip use case scenario.

Changing this field while activated triggers are present on the input triggers may result in unpredictable behavior. Note that input trigger 0 (default value) is typically connected to a constant signal level of '0', and as a result will not cause HW activation of the output trigger.

WATCH CRYSTAL OSCILLATOR (WCO) REGISTERS

This section discusses the WRK8 registers. It lists all the registers in mapping tables, in address order.

Register Details

Table 23. REGISTER DETAILS

Register Name	Address
WCO_CONFIG	0x40070000
WCO_STATUS	0x40070004
WCO_DPLL	0x40070008
WCO_WDT_CTRLOW	0x40070200
WCO_WDT_CTRHIGH	0x40070204
WCO_WDT_MATCH	0x40070208
WCO_WDT_CONFIG	0x4007020C
WCO_WDT_CONTROL	0x40070210
WCO_WDT_CLKEN	0x40070214
WCO_TRIM	0x40070F00

WCO_CONFIG

WCO Configuration Register Address: 0x40070000

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access			None		l	RW	RW	RW
HW Access			None			R	R	R
Name	None [7:3]				LPM_EN			
Bits	15	14	13	12	11	10	9	8
SW Access				l No	ne			
HW Access				No	one			
Name				None	[15:8]			
Rite	22	22	21	20	10	10	17	16

Bits	23	22	21	20	19	18	17	16
SW Access		RW						
HW Access		R						
Name	ENBUS [23:16]							

Bits	31	30	29	28	27	26	25	24
SW Access	RW	RW	None					
HW Access	R	R	None					
Name	IP_ENABLE	DPLL_ ENABLE	None [29:24]					

Bits	Name	Description
31	IP_ENABLE	Master enable for IP – disables both WCO and DPLL. Default Value: 0
30	DPLL_ENABLE	Enable DPLL operation. The Oscillator is specified to be stable after 500 ms thus the DPLL should be asserted no sooner than that after IP_ENABLE is set. Default Value: 0
23:16	ENBUS	Test Mode Control bits enbus[7] – N/A enbus[6] – 1=enable both primary Beta Multipliers enbus[5] – N/A enbus[4] – N/A enbus[3] – Load Resistor Control enbus[2] – Load Resistor Control enbus[1] – Load Resistor Control enbus[0] – Load Resistor Control Default Value: 71
2	EXT_INPUT_EN	Disables the load resistor and allows external clock input for pad_xin Default Value: 0

WCO_CONFIG (Continued)

1 LPM_AUTO Automatically control low power mode (only relevant when LPM_EN=0):

0: Do not enter low power mode (LPM) in DeepSleep

1: Enter low power mode (LPM) in DeepSleep. The logic monitors !act_power_en to determine the

device has entered DeepSleep.

Default Value: 1

0 LPM_EN Force block into Low Power Mode:

0: Do not force low power mode (LPM) on

1: Force low power mode (LPM) on

WCO_STATUS

WCO Status Register Address: 0x40070004 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		None						
HW Access				None				RW
Name				None [7:1]				OUT_ BLNK_A
Bits	15	14	13	12	11	10	9	8
SW Access				No	one		<u> </u>	
HW Access		None						
Name		None [15:8]						
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	one			
Name				None	[23:16]			
Dia-				T 00		1 00	T 0=	
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access		None						
Name				None	[31:24]			

Bits Name
0 OUT_BLNK_A

Description

 $Indicates\ that\ output\ has\ transitioned\ -\ This\ bit\ is\ intended\ for\ Test\ Mode\ Only\ and\ is\ not\ a\ reliable$

indicator.

WCO_DPLL

WCO DPLL Register Address: 0x40070008 Retention: Retained

HW Access

Name

None

None [31:30]

Bits	7	6	5	4	3	2	1	0
SW Access				R	W			
HW Access				F	7			
Name				DPLL_M	ULT [7:0]			
Bits	15	15 14 13 12 11 10 9 8						8
SW Access			None		RW			
HW Access		None R						
Name	None [15:11] DPLL_MULT [10:8]				8]			
	_							
Bits	23	22	21	20	19	18	17	16
SW Access	R\	W		RW			RW	
HW Access	R R				R			
Name	DPLL_LF_LIMIT [23:22] DPLL_LF_PGAIN [21:19] DPLL_LF_IGAIN [18:16]					3:16]		
	•	'						
Bits	31	30	29	28	27	26	25	24
SW Access	None RW				RW			

R

DPLL_LF_LIMIT [29:24]

Bits	Name	Description
29:22	DPLL_LF_LIMIT	Maximum IMO offset allowed (used to prevent DPLL dynamics from selecting an IMO frequency that the logic cannot support)
		Default Value: 255
21:19	DPLL_LF_PGAIN	DPLL Loop Filter Proportional Gain Setting
		0x0 - 0.0625
		0x1 - 0.125
		0x2 - 0.25
		0x3 - 0.5
		0x4 - 1.0
		0x5 - 2.0
		0x6 - 4.0
		0x7 - 8.0
		Default Value: 0
18:16	DPLL_LF_IGAIN	DPLL Loop Filter Integral Gain Setting
		0x0 - 0.0625
		0x1 - 0.125
		0x2 - 0.25
		0x3 - 0.5
		0x4 - 1.0
		0x5 - 2.0
		0x6 - 4.0
		0x7 - 8.0
		Default Value: 0
10:0	DPLL_MULT	Multiplier to determine IMO frequency in multiples of the WCO frequency Fimo = (DPLL_MULT + 1) * Fwco
		Default Value: 0

WCO_WDT_CTRLOW

Watchdog Counters 0/1 Address: 0x40070200 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	R										
HW Access		RW									
Name		WDT_CTR0 [7:0]									
	1	T	T	1	T	1	1	ı			
Bits	15	14	13	12	11	10	9	8			
SW Access				F	3						
HW Access				R	W						
Name				WDT_CT	R0 [15:8]						
				1		1					
Bits	23	22	21	20	19	18	17	16			
SW Access				F	3						
HW Access				R	W						
Name				WDT_CT	R1 [23:16]						
				1		1					
Bits	31	30	29	28	27	26	25	24			
SW Access				F	7			·			
HW Access				R	W						
Name				WDT_CT	R1 [31:24]						

Bits	Name	Description
31:16	WDT_CTR1	Current value of WDT Counter 1 Default Value: 0
15:0	WDT_CTR0	Current value of WDT Counter 0

$WCO_WDT_CTRHIGH$

Watchdog Counter 2 Address: 0x40070204 Retention: Retained

Bits	7	6	5	4	3	2	1	0		
SW Access	R									
HW Access	RW									
Name	WDT_CTR2 [7:0]									
	T	T	1	T	ī	T	1	T		
Bits	15	14	13	12	11	10	9	8		
SW Access				F	3					
HW Access				R	W					
Name				WDT_CT	R2 [15:8]					
	I	1	T	I	I	1	T	1		
Bits	23	22	21	20	19	18	17	16		
SW Access				F	3					
HW Access				R	W					
Name				WDT_CT	R2 [23:16]					
Dita	04		00		07	00	0.5	04		
Bits	31	30	29	28	27	26	25	24		
SW Access				F	7					
HW Access				R	W			·		
Name				WDT_CT	R2 [31:24]					

Bits Name Description

WDT_CTR2

31:0

Current value of WDT Counter 2

WCO_WDT_MATCH

Watchdog Counter Match Values Address: 0x40070208

Address: 0x40070208 Retention: Retained

Bits	7	6	5	4	3	2	1	0			
SW Access	RW										
HW Access		R									
Name		WDT_MATCH0 [7:0]									
Bits	15	14	13	12	11	10	9	8			
SW Access		RW									
HW Access				F	3						
Name				WDT_MAT	CH0 [15:8]						
Bits	23	22	21	20	19	18	17	16			
SW Access				R	W						
HW Access				F	3						
Name				WDT_MAT	CH1 [23:16]						
Bits	31	30	29	28	27	26	25	24			
SW Access		•	•	R	W	•	•	•			
HW Access				F	7						
Name				WDT_MAT	CH1 [31:24]						

Bits	Name	Description
31:16	WDT_MATCH1	Match value for Watchdog Counter 1
		Default Value: 0
15:0	WDT_MATCH0	Match value for Watchdog Counter 0
		Default Value: 0

WCO_WDT_CONFIG

Watchdog Counters Configuration Address: 0x4007020C

Retention: Retained

Name

LFCLK_SEL [31:30]

Bits	7	6	5	4	3	2	1	0
SW Access	None				RW	RW RW RW		W
HW Access		No	one		R	R	F	7
Name		None	e [7:4]		WDT_CAS CADE0_1	WDT_CLEA R0	WDT_MC	DE0 [1:0]
				T		T		
Bits	15	14	13	12	11	10	9	8
SW Access		No	one		RW	RW	R ^t	W
HW Access		No	one		R	R	F	3
Name		None [15:12]				WDT_ CLEAR1	WDT_MC	DE1 [9:8]
Bits	23	22	21	20	19	18	17	16
SW Access				None				RW
HW Access				None				R
Name				None [23:17]				WDT_ MODE2
				T	1	1		
Bits	31	30	29	28	27	26	25	24
SW Access	RV	V	None			RW		
HW Access	R	R None R						

None

Bits	Name	Description
31:30	LFCLK_SEL	Select source for LFCLK:
		0: ILO - Internal R/C Oscillator
		1: WCO – Internal Crystal Oscillator
		2–3: Reserved – do not use
		Note that not all products support all clock sources. Selecting a clock source that is not supported will result in undefined behavior.
		To safely change LFCLK_SEL wait for WDT_CTRLOW/WDT_CTRHIGH to change then change the setting immediately.
		Default Value: 0
28:24	WDT_BITS2	Bit to observe for WDT_INT2:
		0: Assert when bit0 of WDT_CTR2 toggles (one int every tick)
		31: Assert when bit31 of WDT_CTR2 toggles (one int every 2^31 ticks)
		Default Value: 0
16	WDT_MODE2	Watchdog Counter 2 Mode.
		Default Value: 0
		0x0: NOTHING:
		Free running counter with no interrupt requests
		0x1: INT:
		Free running counter with interrupt request when a specified bit in CTR2 toggles (see WDT_BITS2)

WDT_BITS2 [28:24]

11	WDT_CASCADE1_2	Cascade Watchdog Counters 1,2. Counter 2 increments the cycle after WDT_CTR1=WDT_MATCH1. It is allowed to cascade all three WDT counters. 0: Independent counters 1: Cascaded counters. When cascading all three counters, WDT_CLEAR1 must be 1 Default Value: 0
10	WDT_CLEAR1	Clear Watchdog Counter when WDT_CTR1=WDT_MATCH1. In other words WDT_CTR1 divides LFCLK by (WDT_MATCH1+1). 0: Free running counter 1: Clear on match Default Value: 0
9:8	WDT_MODE1	Watchdog Counter Action on Match (WDT_CTR1=WDT_MATCH1). Default Value: 0 0x0: NOTHING: Do nothing
		0x1: INT: Assert WDT_INTx
		0x2: RESET: Assert WDT Reset – Not Supported – here for backwards compatibility
		0x3: INT_THEN_RESET: Assert WDT_INTx, assert WDT Reset after 3rd unhandled interrupt – Not supported – here for backwards compatibility.
3	WDT_CASCADE0_1	Cascade Watchdog Counters 0,1. Counter 1 increments the cycle after WDT_CTR0=WDT_MATCH0. 0: Independent counters 1: Cascaded counters Default Value: 0
2	WDT_CLEAR0	Clear Watchdog Counter when WDT_CTR0=WDT_MATCH0. In other words WDT_CTR0 divides LFCLK by (WDT_MATCH0+1). 0: Free running counter 1: Clear on match Default Value: 0
1:0	WDT_MODE0	Watchdog Counter Action on Match (WDT_CTR0=WDT_MATCH0). Default Value: 0 0x0: NOTHING: Do nothing 0x1: INT: Assert WDT_INTx 0x2: RESET: Assert WDT Reset – Not Supported – here for backwards compatibility 0x3: INT_THEN_RESET: Assert WDT_INTx, assert WDT Reset after 3rd unhandled interrupt. Not supported – here for Backwards compatibility.

WCO_WDT_CONTROL

Watchdog Counters Control Address: 0x40070210 Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access		No	one	•	RW1S	RW1C	R	RW
HW Access		No	ne		RW0C	А	RW	R
Name		None	e [7:4]		WDT_ RESET0	WDT_INT0	WDT_ ENABLED0	WDT_ ENABLE0
Bits	15	14	13	12	11	10	9	8
SW Access		No	ne		RW1S	RW1C	R	RW
HW Access		No	ne		RW0C	Α	RW	R
Name		None	[15:12]		WDT RESET1	WDT_INT1	WDT ENABLED1	WDT_ ENABLE1
	T	T	T				T	
Bits	23	22	21	20	19	18	17	16
SW Access		No	one		RW1S	RW1C	R	RW
HW Access		No	ne		RW0C	Α	RW	R
Name		None	[23:20]		WDT_ RESET2	WDT_INT2	WDT_ ENABLED2	WDT_ ENABLE2
Bits	31	30	29	28	27	26	25	24
	31	30	29			20	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
19	WDT_RESET2	Resets counter 2 back to 0000_0000. Hardware will reset this bit after counter was reset. This will take several LFCLK cycles to take effect. Wait until the reset completes before enabling the WDT.
		Default Value: 0
18	WDT_INT2	WDT Interrupt Request. This bit is set by hardware as configured by this registers. This bit must be cleared by firmware. After W1C, WDT_CONTROL must be read for the hardware to internally remove the clear flag. Failure to do this may result in missing the next interrupt.
		Default Value: 0
17	WDT_ENABLED2	Indicates actual state of counter. May lag WDT_ENABLE2 by up to 3 LFCLK cycles. After changing WDT_ENABLE2, do not enter DEEPSLEEP mode until this field acknowledges the change. Default Value: 0
16	WDT ENABLE2	Enable Counter 2
		0: Counter is disabled (not clocked)
		1: Counter is enabled (counting up)
		Note: This field takes considerable time (up to 3 LFCLK cycles) to take effect. It must not be changed more than once in that period.
		Default Value: 0

WCO_WDT_CONTROL (continued)

11	WDT_RESET1	Resets counter 1 back to 0000. Hardware will reset this bit after counter was reset. This will take several LFCLK cycles to take effect. Wait until the reset completes before enabling the WDT.
		Default Value: 0
10	WDT_INT1	WDT Interrupt Request. This bit is set by hardware as configured by this registers. This bit must be cleared by firmware. After W1C, WDT_CONTROL must be read for the hardware to internally remove the clear flag. Failure to do this may result in missing the next interrupt. Default Value: 0
0	WDT ENABLED	Indicates actual state of equator May les WIDT ENABLE1 by up to 2 LECLY evalue. After changing
9	WDT_ENABLED1	Indicates actual state of counter. May lag WDT_ENABLE1 by up to 3 LFCLK cycles. After changing WDT_ENABLE1, do not enter DEEPSLEEP mode until this field acknowledges the change.
		Default Value: 0
8	WDT ENABLE1	Enable Counter 1
	_	0: Counter is disabled (not clocked)
		1: Counter is enabled (counting up)
		Note: This field takes considerable time (up to 3 LFCLK cycles) to take effect. It must not be changed more than once in that period.
		Default Value: 0
3	WDT_RESET0	Resets counter 0 back to 0000. Hardware will reset this bit after counter was reset. This will take several LFCLK cycles to take effect. Wait until the reset completes before enabling the WDT.
		Default Value: 0
2	WDT_INT0	WDT Interrupt Request. This bit is set by hardware as configured by this registers. This bit must be cleared by firmware. Clearing this bit also prevents Reset from happening when WDT_MODEx=3. After W1C, WDT_CONTROL must be read for the hardware to internally remove the clear flag. Failure to do this may result in missing the next interrupt.
		Default Value: 0
1	WDT_ENABLED0	Indicates actual state of counter. May lag WDT_ENABLE0 by up to 3 LFCLK cycles. After changing WDT_ENABLE0, do not enter DEEPSLEEP mode until this field acknowledges the change.
		Default Value: 0
0	WDT ENABLE0	Enable Counter 0
	_	0: Counter is disabled (not clocked)
		1: Counter is enabled (counting up)
		Note: This field takes considerable time (up to 3 LFCLK cycles) to take effect. It must not be changed more than once in that period.
		Default Value: 0

WCO_WDT_CLKEN

Watchdog Counters Clock Enable Address: 0x40070214

Retention: Retained

Bits	7	6	5	4	3	2	1	0
SW Access			RW	RW				
HW Access			No	ne			R	R
Name			CLK_ILO_E N_FOR_W DT	CLK_WCO_ EN_FOR_ WDT				
Bits	15	14	13	12	11	10	9	8
SW Access				No	ne	•		•
HW Access				No	one			
Name				None	[15:8]			
•	1			T		1	1	
Bits	23	22	21	20	19	18	17	16
SW Access				No	one			
HW Access				No	ne			
Name				None	[23:16]			
•	1			T		1	1	
Bits	31	30	29	28	27	26	25	24
SW Access				No	one			
HW Access				No	one			
Name				None	[31:24]			

Bits	Name	Description
1	CLK_ILO_EN_FOR_WDT	Enables the ILO clock for use by the WDT logic. Wait at least 4 ILO clock cycles for a change to take effect. Must be 0 when switching WDT_CONFIG.LFCLK_SEL. Should be 0 if CLK_WCO_EN_FOR_WDT=1. Default Value: 0
0	CLK_WCO_EN_FOR_WDT	Enables the WCO clock for use by the WDT logic. Wait at least 4 WCO clock cycles for a change to take effect. Must be 0 when switching WDT_CONFIG.LFCLK_SEL. Should be 0 if CLK_ILO_EN_FOR_WDT=1 Default Value: 0

WCO_TRIM

WCO Trim Register Address: 0x40070F00 Retention: Retained

Bits	7	6	5	4	3	2	1	0	
SW Access	None		RW		None	RW			
HW Access	None		R		None	R			
Name	None [7:6]		LPM_GM [5:4]		None	XGM [2:0]			
Bits	15	14	13	12	11	10	9	8	
SW Access	None								
HW Access	None								
Name	None [15:8]								
Bits	23	22	21	20	19	18	17	16	
SW Access	None								
HW Access	None								
Name	None [23:16]								
Bits	31	30	29	28	27	26	25	24	
SW Access	None								
HW Access	None								
Name	None [31:24]								

Bits	Name	Description
5:4	LPM_GM	GM setting for LPM (bandwidth = DC/ms) – Used when WCO.LPM_AUTO=0 or when LPM_AUTO=1 and not in DeepSleep mode. Default Value: 1
		Delault Value: 1
2:0	XGM	Amplifier GM setting – Used when WCO.LPM_AUTO=0 or when LPM_AUTO=1 and not in DeepSleep mode.
		0x0 – 3370 nA
		0x1 – 2620 nA
		0x2 – 2250 nA
		0x3 – 1500 nA
		0x4 – 1870 nA
		0x5 – 1120 nA
		0x6 – 750 nA
		0x7 -0 nA
		Default Value: 1

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Portions Copyright 2018 Cypress Semiconductor Corporation, used with permission, all other Cypress Semiconductor Corporation rights reserved.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify an

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative

♦ AND9835/D