CMPEN 411 VLSI Digital Circuits Spring 2012

Lecture 20: Multiplier Design

[Adapted from Rabaey's *Digital Integrated Circuits*, Second Edition, ©2003 J. Rabaey, A. Chandrakasan, B. Nikolic]

Review: Basic Building Blocks

- Datapath
 - Execution units
 - Adder, multiplier, divider, shifter, etc.
 - Register file and pipeline registers
 - Multiplexers, decoders
- Control
 - Finite state machines (PLA, ROM, random logic)
- Interconnect
 - Switches, arbiters, buses
- Memory
 - Caches (SRAMs), TLBs, DRAMs, buffers

The Binary Multiplication

Multiply Operation

Multiplication is just a a lot of additions

Multiplication Approaches

- Right shift and add
 - Partial product array rows are accumulated from top to bottom on an N-bit adder
 - After each addition, right shift (by one bit) the accumulated partial product to align it with the next row to add
 - Time for N bits $T_{\text{serial mult}} = O(N T_{\text{adder}}) = O(N^2)$ for a RCA
- Making it faster
 - Use a faster adder
 - Use higher radix (e.g., base 4) multiplication O(N/2 T_{adder})
 - Use multiplier recoding to simplify multiple formation (booth)
 - Form the partial product array in parallel and add it in parallel
- Making it smaller (i.e., slower)
 - Use serial-parallel mult
 - Use an array multiplier
- Very regular structure with only short wires to nearest neighbor cells. Thus, very simple and efficient layout in VLSI Can be easily Sp12 CMPEN 411 Land efficiently pipelined

Serial-parallel multiplier structure

The Array Multiplier

Booth multiplier

- Encoding scheme to reduce number of stages in multiplication.
- Performs two bits of multiplication at once—requires half the stages.
- Each stage is slightly more complex than simple multiplier, but adder/subtracter is almost as small/fast as adder.

Booth encoding

- □ Two's-complement form of multiplier:
 - $y = -2^n y_n + 2^{n-1} y_{n-1} + 2^{n-2} y_{n-2} + ...$ (first bit is the sign bit) (example, y=18=010010 y=-18=101110)
- □ Rewrite using $2^a = 2^{a+1} 2^a$:
 - $y = 2^{n}(y_{n-1}-y_n) + 2^{n-1}(y_{n-2}-y_{n-1}) + 2^{n-2}(y_{n-3}-y_{n-2}) + ...$
- Consider first two terms: by looking at three bits of y, we can determine whether to add x, 2x to partial product.

Booth actions

•
$$y = 2^{n}(y_{n-1}-y_n) + 2^{n-1}(y_{n-2}-y_{n-1}) + 2^{n-2}(y_{n-3}-y_{n-2}) + ...$$

Consider first two terms: by looking at three bits of y, we can determine whether to add x, 2x to partial product.

y _i y _{i-1} y _{i-2} increment	
000	0
0 0 1	X
0 1 0	X
0 1 1	2x
100	-2x
1 0 1	-X
110	-X
111	0

Booth example

- $\mathbf{x} = 1001 \ (9_{10}), \ \mathbf{y} = 0111 \ (7_{10}).$
- $y_3y_2y_1=011 \quad y_1y_0y_{-1}=11(0)$
- $y_1y_0y_{-1} = 110, P_1 = P_0 (1001) = 11110111$
- x shift left for 2 bits to be 100100
- $y_3y_2y_1 = 011, P_2 = P_1 + (10*100100) =$ $11110111 + 01001000 = 001111111 (63_{10})$
- An array multiplier needs N addtions, booth multiplier needs only N/2 additions

Review: A 64-bit Adder/Subtractor

add/subt

- Ripple Carry Adder (RCA) built out of 64 FAs
- Subtraction complement all subtrahend bits (xor gates) and set the low order carry-in
- RCA
 - advantage: simple logic, so small (low cost)
 - disadvantage: slow (O(N) for N bits) and lots of glitching (so lots of energy consumption)

Booth structure

Wallace-Tree Multiplier

Partial products

First stage

Second stage

Final adder

(d)

Wallace-Tree Multiplier

Full adder = (3,2) compressor

Making it Faster: Tree Multiplier Structure

(4,2) Counter

- Built out of two (3,2) counters (just FA's!)
 - all of the inputs (4 external plus one internal) have the same weight (i.e., are in the same bit position)
 - the internal carry output is fed to the next higher weight position (indicated by the ←)

Note: Two carry outs - one "internal" and one "external"

Tiling (4,2) Counters

- Reduces columns four high to columns only two high
 - Tiles with neighboring (4,2) counters
 - Internal carry in at same "level" (i.e., bit position weight) as the internal carry out

4x4 Partial Product Array Reduction

□ Fast 4x4 multiplication using (4,2) counters

8x8 Partial Product Array Reduction

An 8x8 Multiplier Layout

How should it be laid out?

Multipliers —Summary

- Optimization Goals Different Vs Binary Adder
- Once Again: Identify Critical Path
- Other possible techniques
 - Logarithmic versus Linear (Wallace Tree Mult)
 - Data encoding (Booth)
 - Pipelining

FIRST GLIMPSE AT SYSTEM LEVEL OPTIMIZATION

Next Lecture and Reminders

- Next lecture
 - Shifters, decoders, and multiplexers
 - Reading assignment Rabaey, et al, 11.5-11.6