FEUP/MIEIC THEORY OF COMPUTATION

EXERCISES ABOUT NON-DETERMINISTIC FINITE AUTOMATA WITH ε-TRANSITIONS (ε-NFAS)

- **1** Draw a ε -NFA for each language below:
- a) The set of strings consisting of 01 repeated one or more times or of 010 repeated one or more times.
- b) The set of binary strings such that at least one of the last 10 positions is a 1.
- **2** Consider the following ε -NFA:

	3	a	b	c
→p	{q,r}	Ø	{q}	{r}
Q	Ø	{p}	{r}	{p,q}
*r	Ø	Ø	Ø	{p}

- a) Show the closure-ε for each state.
- b) Show all the strings with length less or equal 3 accepted by the automaton.
- c) Convert the automaton to an equivalent DFA.
- 3 Give ε -NFAs the sets of strings correspondent to the following informal descriptions:
- a) The strings over $\{a,b\}$ without more than 3 contiguous a's.
- b) The strings over $\{a,b,c\}$ with even length containing na even number of c's.
- **4** Convert the following ε -NFA to a DFA.

	3	a	b	c	d
→p	{r}	{p}	{q,s}	{p}	Ø
*q	Ø	{r}	{r}	{r}	{p,s}
r	{q}	{q,s}	Ø	{p}	{p}
S	Ø	{r}	{p}	Ø	{q,r}