Homework 1

Problem 1

(Exercise 1.1.4 in Durrett) Suppose $\mathcal{F}_1, \mathcal{F}_2, \ldots$ are σ -fields over a sample space Ω , and suppose they are nested: $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \ldots$ Prove that

$$\bigcup_{n=1}^{\infty} \mathcal{F}_n$$

is a field. Is it necessarily a σ -field?

Solution

Part 1: Proving $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is a field

Proof:

- 1. $\Omega \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$: Since each \mathcal{F}_n is a σ -field, $\Omega \in \mathcal{F}_n$ for all n. Therefore, $\Omega \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$.
- 2. Closure under complementation: Let $A\in\bigcup_{n=1}^\infty\mathcal{F}_n$. Then there exists an $m\in\mathbb{N}$ such that $A\in\mathcal{F}_m$. Since \mathcal{F}_m is a σ -field, $A^c\in\mathcal{F}_m$. Therefore, $A^c\in\bigcup_{n=1}^\infty\mathcal{F}_n$.
- 3. Closure under finite unions:

Let $A,B\in\bigcup_{n=1}^\infty\mathcal{F}_n$. Then there exist $m,n\in\mathbb{N}$ such that $A\in\mathcal{F}_m$ and $B\in\mathcal{F}_n$. Let $k=\max(m,n)$. Since the σ -fields are nested, $A,B\in\mathcal{F}_k$. As \mathcal{F}_k is a σ -field, $A\cup B\in\mathcal{F}_k$. Therefore, $A\cup B\in\bigcup_{n=1}^\infty\mathcal{F}_n$.

Thus, $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is a field. \blacksquare

Part 2: $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is not necessarily a σ -field.

We will prove this by constructing a counterexample.

Counterexample

We construct a sequence of strictly nested σ -fields:

Let $\Omega = \mathbb{N}$, and define:

- $\mathcal{F}_1 = \sigma(\{\{1\}\})$
- $\mathcal{F}_2 = \sigma(\{\{1\}, \{2\}\})$
- $\mathcal{F}_3 = \sigma(\{\{1\}, \{2\}, \{3\}\})$
- ..

We assert that $igcup_{n=1}^\infty \mathcal{F}_n$ is not a σ -field, since $\{2k\} \in \mathcal{F}_{2k}$ but

$$igcup_{k=1}^{\infty}\{2k\}
otinigcup_{n=1}^{\infty}\mathcal{F}_n$$

Therefore, we conclude that while $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is always a field, it is not necessarily a σ -field. \blacksquare

For part 2, we have a more general result:

Statement: Let $\{\mathcal{F}_n\}_{n=1}^{\infty}$ be a sequence of σ -algebras. If the inclusion $\mathcal{F}_n \subsetneq \mathcal{F}_{n+1}$ is strict for all n, then $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is not a σ -algebra.

See The union of a strictly increasing sequence of σ -algebras is not a σ -algebra for more details.

Problem 2

Let Ω be an infinite set. Let $\mathcal F$ denote the collection of all sets $E\subseteq \Omega$ such that either E or E^c is finite.

- (a) Is \mathcal{F} a field? Prove that your answer is correct.
- (b) Is ${\mathcal F}$ a σ -field? Prove that your answer is correct.

Solution

(a) \mathcal{F} is a field.

Proof:

We will show that ${\mathcal F}$ satisfies the three properties of a field:

1. $\Omega \in \mathcal{F}$:

The complement of Ω is \emptyset , which is finite. Therefore, $\Omega \in \mathcal{F}$.

2. Closure under complementation:

Let $E\in\mathcal{F}$. By definition, either E or E^c is finite, which means either E^c or $(E^c)^c$ is finite. Therefore, $E^c\in\mathcal{F}$.

3. Closure under finite unions:

Let $A, B \in \mathcal{F}$. We consider two cases:

Case 1: If both A and B are finite, then $A \cup B$ is finite, so $A \cup B \in \mathcal{F}$.

Case 2: If at least one of A or B is infinite, without loss of generality, assume A is infinite.

Then A^c is finite. We have:

$$(A \cup B)^c = A^c \cap B^c$$

Since A^c is finite, $A^c\cap B^c$ is also finite. Therefore, $(A\cup B)^c$ is finite, which implies $A\cup B\in \mathcal{F}.$

Thus, ${\mathcal F}$ satisfies all properties of a field.

(b) ${\mathcal F}$ is not necessarily a σ -field.

Proof:

We will provide a counterexample to show that ${\mathcal F}$ is not closed under countable unions.

Let $\Omega=\mathbb{N}$, the set of all natural numbers. Define $E_k=\{2k\}$ for $k\in\mathbb{N}$.

- 1. Each $E_k \in \mathcal{F}$ because E_k is finite (it contains only one element).
- 2. Consider $E = \bigcup_{k=1}^\infty E_k = \{2,4,6,8,\dots\}$, the set of all even natural numbers.

- 3. E is infinite, and its complement $E^c=\{1,3,5,7,\dots\}$ (the set of all odd natural numbers) is also infinite.
- 4. Therefore, $E \notin \mathcal{F}$, as neither E nor E^c is finite.

This demonstrates that \mathcal{F} is not closed under countable unions, and thus is not a σ -field. \blacksquare

Problem 3

(Exercise 4.8 in Driver) Let Ω be a set, and let $\mathcal{E}_1,\mathcal{E}_2\subseteq 2^{\Omega}$ be collections of subsets of Ω .

Show that $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$ if and only if $\mathcal{E}_1 \subseteq \sigma(\mathcal{E}_2)$ and $\mathcal{E}_2 \subseteq \sigma(\mathcal{E}_1)$. Give an example where $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$, but $\mathcal{E}_1 \neq \mathcal{E}_2$.

Solution

Proof of "only if" part:

Suppose $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$. By definition of σ -algebra, $\mathcal{E}_1 \subseteq \sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$. Similarly, $\mathcal{E}_2 \subseteq \sigma(\mathcal{E}_1)$. Therefore, $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$.

Proof of "if" part:

Suppose $\mathcal{E}_1\subseteq\sigma(\mathcal{E}_2)$ and $\mathcal{E}_2\subseteq\sigma(\mathcal{E}_1)$. Since $\sigma(\mathcal{E}_1)$ is the smallest σ -algebra containing \mathcal{E}_1 , and $\mathcal{E}_1\subseteq\sigma(\mathcal{E}_2)$, we have $\sigma(\mathcal{E}_1)\subseteq\sigma(\mathcal{E}_2)$. Similarly, we have $\sigma(\mathcal{E}_2)\subseteq\sigma(\mathcal{E}_1)$. Therefore, $\sigma(\mathcal{E}_1)=\sigma(\mathcal{E}_2)$.

Thus, $\sigma(\mathcal{E}_1)=\sigma(\mathcal{E}_2)$ if and only if $\mathcal{E}_1\subseteq\sigma(\mathcal{E}_2)$ and $\mathcal{E}_2\subseteq\sigma(\mathcal{E}_1)$. \blacksquare

Example:

Let $\Omega = \{0,1\}$. Consider the collections:

• $\mathcal{E}_1 = \{\emptyset, \{0\}, \Omega\}$

• $\mathcal{E}_2 = \{\emptyset, \{0\}, \{1\}, \Omega\}$

Here, $\sigma(\mathcal{E}_1)=\sigma(\mathcal{E}_2)=\{\emptyset,\{0\},\{1\},\Omega\}$, but clearly $\mathcal{E}_1\neq\mathcal{E}_2$.

Problem 4

(Exercise 4.9 in Driver) Verify that the Borel σ -field $\mathcal{B}(\mathbb{R})$ is generated by any of the following collections of intervals:

(a)
$$\mathcal{E}_1=\{(a,\infty):a\in\mathbb{R}\}$$

(b)
$$\mathcal{E}_2 = \{(a, \infty) : a \in \mathbb{Q}\}$$

(c)
$$\mathcal{E}_3=\{[a,\infty):a\in\mathbb{Q}\}$$

Solution to Problem 4

We will verify that the Borel σ -field $\mathcal{B}(\mathbb{R})$ is generated by each of the given collections of intervals.

Preliminaries

Recall that:

- 1. $\mathcal{B}(\mathbb{R}) = \sigma(ext{all open sets of } \mathbb{R}) = \sigma(\{(a,b]: a < b, a, b \in \mathbb{R}\})$
- 2. For two collections \mathcal{E}_1 and \mathcal{E}_2 , $\sigma(\mathcal{E}_1)=\sigma(\mathcal{E}_2)$ if and only if $\mathcal{E}_1\subseteq\sigma(\mathcal{E}_2)$ and $\mathcal{E}_2\subseteq\sigma(\mathcal{E}_1)$

(a)
$$\mathcal{E}_1=\{(a,\infty):a\in\mathbb{R}\}$$

Let
$$\mathcal{E}_4 = \{(a,b]: a < b, a,b \in \mathbb{R}\}$$
. We know that $\sigma(\mathcal{E}_4) = \mathcal{B}(\mathbb{R})$.

To prove $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_4)$, we need to show:

- 1. $\mathcal{E}_1 \subseteq \sigma(\mathcal{E}_4)$: \mathcal{E}_1 is a subset of all open sets of \mathbb{R} , and $\sigma(\mathcal{E}_4) = \sigma(\text{all open sets of } \mathbb{R})$. Thus, $\mathcal{E}_1 \subseteq \sigma(\mathcal{E}_4)$.
- 2. $\mathcal{E}_4 \subseteq \sigma(\mathcal{E}_1)$: For any $(a,b] \in \mathcal{E}_4$, we have $(a,b] = (a,\infty) \cap ((b,\infty))^c$. Since σ -fields are closed under complementation and finite intersection, $(a,b] \in \sigma(\mathcal{E}_1)$.

Therefore, $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_4) = \mathcal{B}(\mathbb{R})$.

(b)
$$\mathcal{E}_2 = \{(a,\infty) : a \in \mathbb{Q}\}$$

We will prove $\sigma(\mathcal{E}_2) = \sigma(\mathcal{E}_1)$ by showing:

- 1. $\mathcal{E}_2 \subseteq \sigma(\mathcal{E}_1)$: This is obvious since $\mathcal{E}_2 \subseteq \mathcal{E}_1$.
- 2. $\mathcal{E}_1 \subseteq \sigma(\mathcal{E}_2)$: For any $(a,\infty) \in \mathcal{E}_1$, by the density of rationals, we can construct a monotonically decreasing sequence of rationals $\{a_n\}_{n=1}^{\infty}$ converging to a. Then:

$$(a,\infty)=igcup_{n=1}^\infty(a_n,\infty)$$

Since each $(a_n,\infty)\in\mathcal{E}_2$ and σ -fields are closed under countable unions, $(a,\infty)\in\sigma(\mathcal{E}_2)$.

Therefore, $\sigma(\mathcal{E}_2) = \sigma(\mathcal{E}_1) = \mathcal{B}(\mathbb{R}).$

(c)
$$\mathcal{E}_3=\{[a,\infty):a\in\mathbb{Q}\}$$

We will prove $\sigma(\mathcal{E}_3) = \sigma(\mathcal{E}_2)$ by showing:

1. $\mathcal{E}_3\subseteq\sigma(\mathcal{E}_2)$: For any $[a,\infty)\in\mathcal{E}_3$, we can write:

$$[a,\infty)=\bigcap_{n=1}^\infty (a-rac{1}{n},\infty)$$

Since $a\in\mathbb{Q}$, $a-\frac{1}{n}\in\mathbb{Q}$ for all $n\in\mathbb{N}$. Thus, $(a-\frac{1}{n},\infty)\in\mathcal{E}_2$ for all n. As σ -fields are closed under countable intersections, $[a,\infty)\in\sigma(\mathcal{E}_2)$.

2. $\mathcal{E}_2\subseteq\sigma(\mathcal{E}_3)$: For any $(a,\infty)\in\mathcal{E}_2$, we can write:

$$(a,\infty)=igcup_{n=1}^\infty[a+rac{1}{n},\infty)$$

Since $a\in\mathbb{Q}$, $a+rac{1}{n}\in\mathbb{Q}$ for all $n\in\mathbb{N}$. Thus, $[a+rac{1}{n},\infty)\in\mathcal{E}_3$ for all n. As σ -

fields are closed under countable unions, $(a, \infty) \in \sigma(\mathcal{E}_3)$.

Therefore, $\sigma(\mathcal{E}_3) = \sigma(\mathcal{E}_2) = \mathcal{B}(\mathbb{R})$.

Thus, we have verified that the Borel σ -field $\mathcal{B}(\mathbb{R})$ is generated by each of the given collections of intervals.

Problem 5

Let (Ω, \mathcal{F}, P) be a probability space, and suppose $A \in \mathcal{F}$ satisfies P(A) > 0. Define

$$\mathcal{F}_A:=\{B\in\mathcal{F}:B\subseteq A\}, ext{ and for }B\in\mathcal{F}_A ext{ define }P_A(B)=rac{P(B)}{P(A)}.$$

Prove that (A, \mathcal{F}_A, P_A) is a probability space.

Solution

Proof:

We need to prove that (A, \mathcal{F}_A, P_A) is a probability space. To do this, we will first show that \mathcal{F}_A is a σ -algebra on A, and then demonstrate that P_A is a probability measure on \mathcal{F}_A .

Part 1: \mathcal{F}_A is a σ -algebra on A

- 1. $A \in \mathcal{F}_A$: Since $A \subseteq A$ and $A \in \mathcal{F}$, we have $A \in \mathcal{F}_A$ by definition.
- 2. \mathcal{F}_A is closed under complementation: Let $B\in\mathcal{F}_A$. We need to show that $B_A^c:=A\smallsetminus B\in\mathcal{F}_A.$ We have

$$B^c_A = A \setminus B = A \cap B^c$$

Since $B\in\mathcal{F}$ and \mathcal{F} is a σ -algebra, $B^c\in\mathcal{F}$. As \mathcal{F} is closed under finite intersections, $A\cap B^c\in\mathcal{F}$. Besides, $A\cap B^c\subseteq A$. So by definition of \mathcal{F}_A , we have $B^c_A\in\mathcal{F}_A$.

3. \mathcal{F}_A is closed under countable unions: Let $\{B_i\}_{i=1}^\infty$ be a countable collection of sets in \mathcal{F}_A . For each i, $B_i \in \mathcal{F}$ and $B_i \subseteq A$. Since \mathcal{F} is a σ -algebra, $\bigcup_{i=1}^\infty B_i \in \mathcal{F}$. Moreover, $\bigcup_{i=1}^\infty B_i \subseteq A$ since each $B_i \subseteq A$. Therefore, $\bigcup_{i=1}^\infty B_i \in \mathcal{F}_A$.

Thus, \mathcal{F}_A is a σ -algebra on A.

Part 2: P_A is a probability measure on \mathcal{F}_A

1. Non-negativity: For any $B \in \mathcal{F}_A$,

$$P_A(B) = rac{P(B)}{P(A)} \geq 0$$

since $P(B) \ge 0$ and P(A) > 0.

2. Countable additivity: Let $\{B_i\}_{i=1}^\infty$ be a countable collection of disjoint sets in \mathcal{F}_A . Then,

$$egin{aligned} P_A(igcup_{i=1}^\infty B_i) &= rac{P(igcup_{i=1}^\infty B_i)}{P(A)} \ &= rac{1}{P(A)} \sum_{i=1}^\infty P(B_i) \quad ext{(by countable additivity of } P) \ &= \sum_{i=1}^\infty rac{P(B_i)}{P(A)} = \sum_{i=1}^\infty P_A(B_i) \end{aligned}$$

3. Normalization:

$$P_A(A) = rac{P(A)}{P(A)} = 1$$

Therefore, P_A is a probability measure on \mathcal{F}_A .

Since \mathcal{F}_A is a σ -algebra on A and P_A is a probability measure on \mathcal{F}_A , we conclude that (A, \mathcal{F}_A, P_A) is indeed a probability space.