Simplex Method

Presentation by: Narayan Upreti (Roll no:03)

: Shrilata Wagle (Roll no:43)

Optimization & why?

In general optimization means the action of making the best or most effective use of a situation or resources.

Mathematical optimization problems deals with maximizing or minimizing some function relative to some set, often representing a range of choices available in a certain situation.

Application area of optimization: Manufacturing, Production, Inventory control, Transportation, Scheduling, Networks, Finance, Engineering, Mechanics, Economics, Control engineering, Marketing, Policy Modeling, etc

Optimization technique

It is a technique to solve the given optimization problem to find its best optimal solution (value).

Different technique can be used to solve the optimization problem.

Some of them are:

- 1. Graphical method
- 2. Simplex method

Some Terminologies

- **1. Linear Programming Problems(LPP):** process which takes certain linear relationships to obtain best possible solution.
- 2. Slack Variable: In any lpp, if a constraint has lesser than or equal to value of sign then in order to make it equal, we need to add something positive to LHS.
- **3. Surplus Variable:** If a constraint has greater than or equal to value of sign then in order to make it equal, we need to subtract something positive to LHS.
- **4. Unrestricted variable:** Any variable x_i which takes either positive, negative or zero values is called as unrestricted variables.

Canonical form of LPP

It is said to be in canonical form if it has the following characteristics.

- -Objective function is of maximization / minimization type.
- -All constraints are of \leq / \geq type.
- -All decision variables are of ≥ 0 .

The canonical form is:

Max
$$Z = 3x_1 + 2x_2 + 7x_3$$

 $-6x_1 + 2x_2 - 5x_3 \le -5$
 $-x_1 + 3x_2 - 4x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

Standard form of LPP

A general LPP is said to be in standard form if it has the following characteristics.

- -RHS of each constraint is positive.
- -All constraints are of = type.
- -All decision variable are of ≥ 0 .

The Standard form is:

Max
$$Z = 2x_1 - 3x_2 + 6x_3$$

 $x_1 - 3x_2 - s_1 = 4$
 $2x_1 - 8x_2 + 3x_3 + s_2 = 4$
 $-x_1 - x_2 + s_3 = 7$
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

Simplex Method Algorithm

- 1. Convert the given general LPP into standard LPP.
 - -Objective function of Lpp must be maximized. If it is to be minimized then we have to convert it into a problem of maximization by Max $Z'=-Min\ Z$
 - -Check all the decision variables are greater than zero.
 - -Express the problem in standard form by introducing slack or surplus variable to convert the inequality constraints into equation.
 - -All the values of right hand side must be positive.
- 2. Write the values of initial basic feasible solution.
- 3. Write the standard form Lpp into matrix form.
- 4. Construct the initial simplex table.
- 5. Calculate the value of $Z_j C_j = C_B X_j C_j$

Simplex Method Algorithm

- I. If all $(Z_i C_i) \ge 0$, the optimal solution will obtained.
- II. If at least one $(Z_j C_j)$ is –ve then indicate it by an arrow and this column is called key column.
- III. If more than one $(Z_i C_i)$ is –ve then choose the most negative of them and this
- IV. column is called key column.
- 6. Calculate minimum positive ratio. ie min.ratio = $\frac{X_B}{C_k}$, C_k = key column, > 0
- 7. Construct the new simplex table by entering incoming vector.
- 8. Repeat step 5,6.

Simplex Method Maximization Example

		Ci	3	2	5	0	0	0	1 ×8
Co	B	Xa	211	[212]	Na	SA	So	53	Min-ratio = * Bex
0	(51	200	-1/2	2	0	1	-1/2	0	20/2 = 100)
5	nz	230	3/2	0	1	0	1/2	0	-
0	53	420	1	ч	0	0	0	1	42% = 105
	zj-cj		9/2	-29	0	0	5/2	0	

2 Second Iteration.

								-
	cj	3	2	5	0	0	0	
CB B	XB	211	212	213	Sn	52	53	
2 7/2	100	-1/4	1	0	1/2	-1/4	0	T
5 n3	230	3/2	0	1	0	1/2	0	
0 53	20	2	0	0	-2	1	1	
Zj-C	i	4	0	0	1	2	0	10

Calculation for above table,

$$\frac{420 \times 2 - 200 \times 4}{2} = 20$$

$$\frac{1 \times 2 - (-\frac{1}{2}) \times 4}{2} = 2$$

$$\frac{0 \times 2 - 4 \times 1}{2} = -2$$

$$\frac{0 \times 2 - 4 \times 1}{2} = 1$$

$$\frac{1 \times 2 - 4 \times 0}{2} = 1$$

$$Z_{j}-C_{j}=C_{B}X_{j}-C_{j}$$

$$Z_{1}-C_{1}=C_{B}X_{1}-C_{1}$$

$$=(2X-)_{4}+5\cdot3_{2}+0\times2)-3$$

$$=4$$

$$Z_{2}-C_{2}=(BX_{2}-C_{2}$$

$$=(2\times1+5\times0+0\times0)-2$$
and some for other.

Since all zj-cj zo, the solution is optimum and given by $N_2 = 100$, $N_3 = 230$, $N_1 = 0$ Max Z = GXB $=(2\times100+5\times230+0\times20)$ = 1350

Simplex Method Minimization Example

	itial sim	Trex to	18(6							
					incor	ning v	recto	٧		
	C. 10	Gi	-1	3/	-2	0	0	0		
	CB B 0 S1	XB	211	12	213	SA	52	53	Min ratios XB	
utgoing-	0 52	7	3	THE BELLEVILLE OF	2	Mineral Land Company	A DESIGNATION OF THE PERSON OF		121 - 0	
ector				4	O	0	1	0	12/4 = 3	
	0 53	10	-4	3	8	0	0	1	10/3 = 3.33	
	Zj-Cj 1 -31 2 0 0 0 No optimal									
	calculation for initial simplex table.									
						., 10	10 (6.			
	Zj-G=									
	21-61=	G X1	- 4							
	=	lox3.	+ 0 x -	2+0)	K-4)*	(-1)				
		= 1								
	Z2-C2	= Cp	X2 -	(
		=(0x1	-1)+0	DX4+	0x3	1 - 2				

		1							
	,	Cj	-1	3	-2	0	0	0	
GB	B	XB	2/2	2	M3	SI	52	53	Min-Ratio = XB/
Co	SI	10	15/2	0	2	1	1/4	0	10/5/9=4)
3	212	3	-1/2	1	0	0	1/4	0	-
0	53	1	-5/2	0	8	0	-3/4	1	-
- 3-G			-1/21	0	2	0	3/4	0	

@ Second Iteration

			Ta						
t			14	-1	3	-2	0	0	-
1	B	B	XB	24	7/2	23	SA	6	0
	1	24	14	1	0	4/5	2	2/10	<u>S3</u>
3		2/2	5	0	1		15		0
10		52			_	2/5	75	3/10	0
-	1	3	11	0	0	10	1	-1,	
21-61				0	0	13/2	110	1/2	1
	RI	_	0 .			15	1/5	1/5	0

optimal

 $R_2 \rightarrow R_2 + \frac{1}{2}R_1$ $R_3 \rightarrow R_3 + \frac{5}{2}R_1$ Calculation Z_j - C_j for above table Z_j - $C_j = C_B X_j - C_j$

$$Z_1 - C_1 = C_B \times_1 - C_1$$

= $(-1 \times 1 + 3 \times 0 + 0 \times 0) - (-1)$
= 0

$$73^{-1}3 = (-1 \times \frac{1}{5} + 3 \times \frac{3}{5} + 0 \times 10) - 2$$

= $1\frac{3}{5}$

and same process for others.

Since, all zj-Cj zo, then solution is optimum.

The optimal solution is given by, $Max 2' = C_B X_B$ $= (-1 \times U + 3 \times S + 0 \times 11)$

$$= -11$$

COL 6: $n_1 = 4$, $n_2 = 5$, $n_3 = 0$

CAMERA

Thank you!!!