Machine Learning: Basic Principles Introduction

Salo, September 2018

Outline

About Me

Why Machine Learning?

What is Machine Learning?

About Me

- MSc (2008) and Phd (2012) in electrical engineering/signal processing at TU Vienna
- Assistant Professor TU Vienna 2013-2015
- since 2015, Ass. Prof. for Machine Learning at Aalto CS
- since 2018, Advisor for https://www.miils.com/

My Research Group

- heading the group "Machine Learning for Big Data"
- currently five Phd students, several MSc and BSc students
- we research fundamental limits and efficient algorithms for machine learning involving massive datasets (big data)
- guiding question(s):

When and How is Machine Learning Possible?

My Teaching

- since 2015, CS-E3210 "Machine Learning: Basic Principles" (500+? students)
- since 2016, CS-E4020 "Convex Optimization for Big Data" (50 students)
- from 2018, CS-E4800 "Artificial Intelligence" (500 students)

Outline

About Me

Why Machine Learning?

3 What is Machine Learning?

Data Is New Oil

Machine Learning Turns Raw Data Into Insights

ML refines raw data into important insights that can fuel your business!

ML for Finance

given the stock history, will it rise or fall?

ML for Cars

should i stay or should i go?

ML for Elderly People

given all current available information (vital sensors, temperature, daytime,...), how likely will a person fall at home

ML for Coast Guards

given this satellite image, when, where and how likely will a monster wave hit the coast?

ML for Snapshooters (Image Annotation)

```
IIVIO-ZU1/U...UUUO.Jpeg
                               ZO FED ZU17, ZU-33
  IMG-20170...0008.jpeg
                               26 Feb 2017, 20:33
                                                                 25
IMG-20170...A0010.jpg
                               26 Feb 2017, 20:33
                                                                 2
IMG-20170...A0011.ipeq
                               26 Feb 2017, 20:33
                                                                 38
IMG-20170...A0013.ipg
                               26 Feb 2017, 20:33
                                                                  1
IMG-20170...A0014.ipeq
                               26 Feb 2017, 20:33
                          0
                                                                 33
IMG-20170...A0007.ipg
                               26 Feb 2017, 20:33
IMG-20170...A0008.ipg
                               26 Feb 2017, 20:33
IMG-20170...A0009.ipg
                               26 Feb 2017, 20:33
                                                                 4
IMG-20170...A0010.ipg
                               26 Feb 2017, 20:33
                                                                 18
IMG-20170...A0011.jpg
                               26 Feb 2017, 20:33
                                                                 3
IMG-20170...A0012.jpg
                               26 Feb 2017, 20:33
                                                                 25
IMG-20170...A0013.jpeg
                          0
                               26 Feb 2017, 20:33
IMG-20170...A0015.jpeg
                               26 Feb 2017, 20:33
                                                                 16
IMG-20170...A0017.jpeg
                               26 Feb 2017, 20:33
IMG-20170...A0019.jpg
                               26 Feb 2017, 20:33
IMG-20170...A0020.jpg
                               26 Feb 2017, 20:33
IMG-20170...0006.jpeg
                               26 Feb 2017, 20:33
                                                                 3
  IMG-20170...0008.jpeg
                               26 Feb 2017, 20:33
                                                                 34
```

how to automatically rename pile of snapshots with meaningful filenames?

ML for Signal Processing

given this signal received by your smartphone antenna, did transmitter send "I LOVE YOU" or "F*** OFF" ?

ML for Coffee Connoisseurs

has this coffee been produced under fair working conditions?

ML for Reducing Emissions

what is the optimum timing of fuel injection? https://youtu.be/qQG7ocnE3EA

ML for Chemistry

ML for Chemists

Machine Learning Energies of 2 Million Elpasolite (ABC₂D₆) Crystals

what are the chemical properties of a given molecule? can we design new (unseen) structures with desired physicochemical properties?

figure donated by Prof. Mikko O. Hakala

ML for Forest Fire Management

where is a fire most likely to start?

ML for Finnish Meteorological Institute

figure donated by Roope Tervo

ML for Farmers

given this snapshot and weather forecast, when is optimum time to harvest?

ML for Cyclists

given this snapshot, will it rain in the next 2 hours? how reliable is the prediction?

ML for Hedonists

given this snapshot, where can i find the next Alko?

ML for Robots

given a video of human motion, how to imitate it?

ML for Mathematicians

Theorem 4. Consider a clustered graph signal $\mathbf{x}_c \in \mathcal{X}$ (cf. (5)) which is observed only at the sampling set $\mathcal{M} \subseteq \mathcal{V}$. If NNSP- $(\mathcal{M}, \mathcal{F})$ holds, then the solution of (4) is unique and coincides with \mathbf{x}_c .

given the theorem formulation, how would a solid proof look like?

Outline

About Me

2 Why Machine Learning?

3 What is Machine Learning?

What is Machine Learning?

- program computers to perform a particular task (find oil, find next Alko,...) by generalizing from examples
- program computers to extract patterns from raw data...
- ML based on "trial and error"
- e.g., program computer to distinguish between dog and cat by looking at tons of dog and cat pictures

Database of Cat Pictures

Database of Dog Pictures

The Classifier

a "classifier" is a (Python,..) routine which takes an image and parameter λ as input and outputs either "Dog" or "Cat"

ML is about finding the best value for tuning parameter λ

Optimize using Training Data

- consider routine $CatOrDog(image\ input,\ scalar\ \lambda)$
- ullet for particular choice of λ count error on database $f(\lambda):= \ \, {
 m nr.} \, \, {
 m of \, pictures \, which \, are \, classified \, wrong}$
- vary λ to minimize $f(\lambda)$
- "train" classifier using image database (e.g., ImageNet)
- database serves as "training data"

Three Main Components

- a ML method is typically based on three components
 - data model including representation (features)
 - performance measure/loss/risk
 - optimization to maximize performance (minimize error)

Two Main Pillars of Machine Learning

Statisticians Viewpoint on Data

- consider list of numbers $\mathbf{x}^{(1)} = 5, \mathbf{x}^{(2)} = 50, \dots, \mathbf{x}^{(N)} = 30$
- statistician thinks about underlying statistical model
- ullet e.g., each $\mathbf{x}^{(i)}$ is i.i.d. copy of $\mathbf{x} \sim \mathcal{N}(\mu, \sigma^2 \mathbf{I})$
- how to fit mean μ and variance σ^2 to $\mathbf{x}^{(1)}, \dots$?
- what can we predict from $\mathbf{x}^{(1)}, \dots$?

Computational Viewpoint on Data

- consider list of numbers $\mathbf{x}^{(1)} = 5, \mathbf{x}^{(2)} = 50, \dots, \mathbf{x}^{(N)} = 30$
- determining $\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$ is a computational problem
- how to compute $\hat{\mu}$ for $N=10^{10}$?
- ullet how to compute $\hat{\mu}$ if numbers are stored on different servers?
- is there an optimum way to compute $\hat{\mu}$?

Active vs. Passive Learning

- in this course we assume dataset given (passive learning)
- sometimes we can influence data generation (active learning)
- interaction between learning algorithm and data generator
- ullet artificial intelligence pprox active machine learning

Software

- all methods considered in this course already implemented
- powerful libraries (Theano, Tensorflow,...) available
- the challenge is to combine pieces in the right way

ML Engineering is about Choosing Right Tools

