Securing Network infrastructure

Slides taken from:

Matsuzaki 'maz' Yoshinobu

Our Goals

- Ensuring Network Availability
- Controlling Routing Policy
- Protecting Information
- Preventing Misuse
- Mitigating Attacks
- Responding to Incidents
- etc.

RISKS

protecting devices

AAA server and remote access

- Authentication, Authorization, Accounting
- tacacs, radius
- each operators has own login account
- You can set privileges per tasks of the operator
- logging at AAA servers
- where (device)
- who (login account)
- what (command)

Remote Access to Devices

- in-band access
- vty, snmp, ntp, etc...
- IP reachability is required
- useful for daily operations
- out-of-band access
- serial console
- workable without IP reachability
- useful for restoration

Access Control for in-band access

- operations need to access remote devices to manage the devices
- packet filtering on vty, snmp and etc
- to protect devices from unauthorized access
- allow access from trusted network only
 - source IP address based filtering

Step Hosts

- are placed on a trusted network
- useful to enforce more restricted control
- each operations has own login account

multiple ACLs to protect Devices

Infrastructure ACL

- to protect our management traffic
 - not too much
 - ping, traceroute to our devices should be workable
- deny packets from INFRA and to INFRA on edge
 - INFRA: routers, step hosts and so on
 - these ip range should stay inside

Infrastructure ACL (iACL)

enforce a policy on the network edge

maz@iij.ad.jp

11

Infrastructure Filters

- Develop list of required protocols that are sourced from outside your AS and access core routers
 - Example: eBGP peering, GRE, IPSec, etc.
 - Use classification filters as required
- Identify core address block(s)
 - This is the protected address space
 - Summarization is critical for simpler and shorter filters

Config Audit

- configuration files are periodically gathered
- by in-house automated tool
- sanity check
- filtering rules
- routing configuration
- and so on

Monitoring

- what's happened in the past
- syslog
- to record messages from devices/softwares
- snmp
- to monitor resources
- netflow
- to monitor packet flows

SYSLOG Messages

 Nov 9 15:19:14.390 UTC:config[65775]: %MGBL-SYS-5-CONFIG_I :Configured from console by maz on vty0(2001:db8:120:100:e1dd:97f3:fd98:a51f)

 Nov 12 13:53:38 maz sudo: maz : user NOTin sudoers ; TTY=pts/3 ; PWD=/home/maz ;USER=root ; COMMAND=/bin/bash

Synced Timestamp

- makes log messages useful
- to compare incidents among devices
- to compare time-related events
- Use ntp to sync clocks
- choose a proper clock source
- national ntp server
- stable clocks
- ATOM, GPS

Clock = Oscillation + Counter

- TAI = weighted average of atom clocks
- TAI: International Atomic Time
- UTC = TAI + leap seconds
- UTC: Coordinated Universal Time
- leap seconds: to adjust clock to Earth's rotation
- atom clocks are adjusted to TAI
- localtime = UTC + timezone (+ summer time)

Leap Second

 Based on current predictions, the next leap second should be added on June 30, 2020.

 make sure your applications works as usual even the leap second introduced

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=6b43ae8a619d17c4935c33 20d2ef9e92bdeed05d

remote logging

- log messages could be modified/deleted
- if the system is compromised
- remote logging servers
- receive log messages from other devices

protecting syslog

SNMP

- can read/write information and send a trap
- use version 3, and set password
- prevent 'write' function, or just disable it on agents
- snmp agent/manager

snmp monitoring system

SNMP Counters

- frequency of updating counters
- depends on agents (0-30sec)
- 5min is widely used as snmp polling time
- counter overflow
- 32bit counters(ifIn/OutOctets) could wrap in 5.7min at 100Mbps
- consider 64bit counters(ifHCInOctets) for 1Gbps or more interfaces

Useful information via SNMP MIBs

- interface
- bytes, packets, errors
- system
- cpu load
- memory usage
- temperature
- icmp, udp
- ntp

SNMP Use Case

- usage monitoring
- bandwidth and traffic volume
- visualize
- stackable graph
- useful for multiple links between POPs
- grouping
- international links

Netflow

- to monitor flow information
- packet header
- most routers support it
- require more storage
- even with sampling, still need to expect huge data
- not for long term monitoring
- useful for analysis and anomaly detection

Netflow and Sampling

- sampled netflow is widely used
- just to know trend
- to reduce data
- margin of error
- sampled netflow and actual traffic
- depends on routers
- worst case: 20%
- IIJ uses magic number as sampling rate
- 1/16382

netflow monitoring system

Netflow Analysis

- combination of parameters
- AS, IP address, protocol, port number
- too many patterns to pre-generate every graphs
- Graphs
- pre-defined graphs
- dynamic graph system

case 1: bps

• traffic was suddenly doubled on a link

also found a missing traffic

case 1: 2 links between routers

case 1: total traffic: bps

Monitoring and Detection

- snmp is useful to check
- trend
- threshold

- netflow is useful to analysis
- anomaly
- change

Implication of CPEs Exploited

Magnitude of Problem

- 4.5 Million CPEs (ADSL Modems) using a unique malicious DNS
- In early 2012 more than 300,000 CPEs still infected
- 40 malicious DNS servers found

reflection attacks

Amplifiers

- dns amplification attack
- a huge size record
- amplification ratio: ~60
- ntp amplification attack
- amplification ratio: ~200
- Memcached attack
- amplification ratio: ~10K

dns amp attack

solutions against ip reflection attacks

Client Authorization

- Incoming interface base
- useful for home users and enterprises
- allow from inside, deny from outside
- source IP address base
- useful for service providers
- allow from customer network
- you can simply disable the service if it's not necessary

RFC2827 (BCP38) – Ingress Filtering

- If an ISP is aggregating routing announcements for multiple downstream networks, strict traffic filtering should be used to prohibit traffic which claims to have originated from outside of these aggregated announcements.
- The ONLY valid source IP address for packets originating from a customer network is the one assigned by the ISP (whether statically or dynamically assigned).
- An edge router could check every packet on ingress to ensure the user is not spoofing the source address on the packets which he is originating.

Guideline for BCP38

- Networks connecting to the Internet
 - Must use inbound and outbound packet filters to protect network
- Configuration example
 - Outbound—only allow my network source addresses out
 - Inbound—only allow specific ports to specific destinations in

Techniques for BCP38

- Static ACLs on the edge of the network
- Unicast RPF strict mode

packet forwarding – dst-ip based

- routing_table(dst-ip) => outgoing interface
 - lookup by 10.0.0.1 => if.i
 - then router forwards the packet

ip: 192.0.2.1

uRPF — lookup by the src-ip

- routing_table(src-ip) => interface
 - lookup by 192.0.2.1 => if.o
 - The result MUST match the incoming interface

ip: 192.0.2.1

Blackhole Routing

- routers are good at forwarding
- not packet filtering
- use the forwarding function to discard packets
- null routing

Protecting Routing

- To keep your network working
- as you designed
- as you configured
- Static Routing
- mostly depends on design
- Dynamic Routing
- possibility of remote attacks

Threat Model for Routing

- Neighboring Relationship
- Unexpected Neighboring
- Shutdown by Someone else
- Spoofed Neighbor
- Routing Information
- Propagation of Wrong Information
- Unintended Routing Policy
- Hit a Hardware Limitation

OSPF Neighbors

- Establishing a relationship among trusted neighbors only
- Disabled by default
- Especially on a link to other parties (IX,customer) to avoid unexpected neighbors if you have to enable on these links, use 'passive' feature
- Enabled where it is needed like backbone
- Authentication
- MD5 authentication (OSPFv2, RFC2328)

BGP4 Neighbors

- Protecting TCP sessions
- md5 authentication
- Peering with other parties
- possibility of injection
- needs more attention about routing information