STATS 2107

Statistical Modelling and Inference II Tutorial 5

Sharon Lee, Matt Ryan

Semester 2 2022

1. Suppose y_1, y_2, \ldots, y_n are independent $Po(\lambda_i)$ observations with

$$\lambda_i = \theta x_i$$

where $\theta > 0$ is the unknown parameter and x_1, x_2, \ldots, x_n are given positive constants.

- (a) Find the log-likelihood, $\ell(\theta; \boldsymbol{y})$, and the score function, $S(\theta; \boldsymbol{y})$.
- (b) Find the maximum likelihood estimate, $\hat{\theta}$, and the Fisher information, I_{θ} .
- 2. Consider a **single** binomial observation y from $Bin(n,\theta)$ where the number of trials is n and the probability of success is θ . Assume n is known.
 - (a) Give the log-likelihood $\ell(\theta; y)$.
 - (b) Find the Score function and the Fisher information about θ .
 - (c) Find the MLE $\hat{\theta}$.
 - (d) Find expressions for the score test statistic, U, and the log-likelihood ratio test statistic, G^2 , for testing the null hypothesis $H_0: \theta = \theta_0$ versus $H_a: \theta \neq \theta_0$.
 - (e) State the asymptotic distributions of U and G^2 , respectively, under H_0 .
- 3. Consider the simple linear regression model with no intercept, that is,

$$Y_i = \beta x_i + \epsilon_i, \quad \epsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2), \quad i = 1, 2, \dots, n,$$

where $\boldsymbol{\theta} = (\beta, \sigma^2)$ are the unknown parameters.

- (a) Write down the log-likelihood $\ell(\boldsymbol{\theta}; \boldsymbol{y})$
- (b) Find the score vector $S(\boldsymbol{\theta}; \boldsymbol{y})$.
- (c) Find the Fisher information matrix I_{θ} .
- (d) Find the MLEs $\hat{\beta}$ and $\hat{\sigma}^2$.
- 4. Suppose that Y_1, Y_2, \ldots, Y_n are independent and identically distributed with density function

$$f(y;\theta) = e^{-(y-\theta)}, \quad y \ge \theta$$

and $f(y; \theta) = 0$ otherwise.

Find the MLE of θ . Hint: Take note of the region $y \ge \theta$ where the density is positive.

5. Suppose $Y_1, Y_2, \dots, Y_n \overset{i.i.d.}{\sim} \operatorname{Exp}(\lambda)$ so that the density function is

$$f_{Y_i}(y;\lambda) = \lambda e^{-\lambda y_i}$$
.

Consider the equivalent parameterisation in terms of $\theta=\frac{1}{\lambda}$ where

$$f_{Y_i}(y;\theta) = \frac{1}{\theta} e^{-\frac{1}{\theta}y_i}$$
.

By considering the transformation $\Phi(\lambda) = \frac{1}{\lambda} = \theta$, do the following:

- (a) Calculate the log-likelihoods $\ell_{\lambda}(\lambda; \boldsymbol{y})$ and $\ell_{\theta}(\theta; \boldsymbol{y})$. Verify directly that $\ell_{\lambda}(\lambda; \boldsymbol{y}) = \ell_{\theta}(\Phi(\lambda); \boldsymbol{y})$ and $\ell_{\theta}(\theta; \boldsymbol{y}) = \ell_{\lambda}(\Phi^{-1}(\theta); \boldsymbol{y})$.
- (b) Calculate $\hat{\lambda}$, the maximum likelihood estimate of λ . Hence, calculate the maximum likelihood estimate of θ .