

Review on Neural machine

translation system jointly

trained to align and translate

Author: Youssef Ameur

Contact: ameuryoussef94@gmail.com

Overview

- Different approaches to Machine Translation.
 - Classical approaches to machine translation
 - Neural machine translation
- Changes brought to the typical neural machine translation systems
 - Replacing the fixed length vector.
- Translation quality improvement for long sentences
 - Quantitative evaluation
 - The training's setting
 - BLEU-Score comparison
 - Qualitative evaluation
- Conclusion
 - Advantages and disadvantages

Classical approaches to machine translation

- Classical approaches to machine translation
- Statistical machine translation (SMT)

- Classical approaches to machine translation
- Statistical machine translation (SMT)
 - In this paradigm, statistical models are computed for bilingual text corpora, on which a translation for an input text is generated.
 - The translation can be word-, phrase- or syntax- based

- Classical approaches to machine translation
- Statistical machine translation (SMT)
 - In this paradigm, statistical models are computed for bilingual text corpora, on which a translation for an input text is generated.
 - The translation can be word-, phrase- or syntax- based
- Rule-based machine translation (RBMT)

- Classical approaches to machine translation
- Statistical machine translation (SMT)
 - In this paradigm, statistical models are computed for bilingual text corpora, on which a translation for an input text is generated.
 - The translation can be word-, phrase- or syntax- based
- Rule-based machine translation (RBMT)
 - Linguistic rules are determined for the source and target language (e.g. morphological, syntactic and semantic)
 - Translation from one language to another is generated based on these rules

Neural machine translation (NMT)

- Neural machine translation (NMT)
 - Such translation systems rely purely on one neural network
 - A classic architecture for the neural network is the encoder-decoder design pattern
 - Typically, a source sentence is encoded into a fixed length vector, which in turn is decoded to generate a translation.

- Neural machine translation (NMT)
 - Typical Encoder-Decoder architecture:

- Neural machine translation (NMT)
 - Typical Encoder-Decoder architecture:
 - Consists of two Recurrent Neural Networks (RNN)
 - Encoder generates vector c.

- Neural machine translation (NMT)
 - Typical Encoder-Decoder architecture:
 - Consists of two Recurrent Neural Networks (RNN)
 - Encoder generates vector c.
 - Decoder predicts target words based on previous predicted words and c

$$p(y_t|\{y_1,\ldots,y_{t-1}\},c)=g(y_{t-1},s_t,c)$$

- Neural machine translation (NMT)
 - Typical Encoder-Decoder architecture:
 - Consists of two Recurrent Neural Networks (RNN)
 - Encoder generates vector c.
 - Decoder predicts target words based on previous predicted words and c

$$p(y_t|\{y_1,\ldots,y_{t-1}\},c)=g(y_{t-1},s_t,c)$$

Problem: Long sentences, long term dependencies.

- Replacing the fixed length vector.
 - Proposed by Cho et al. in the paper "Neural machine translation by jointly learning to align and translate (2014)".

- Replacing the fixed length vector.
 - Proposed by Cho et al. in the paper "Neural machine translation by jointly learning to align and translate (2014)".
 - Replace the fixed length vector, output by the encoder, by a sequence of hidden states h_i
 - Each hidden state h_i contains information about the whole input sequence, with an emphasis around the i-th word.

- Replacing the fixed length vector.
 - Proposed Encoder-Decoder architecture:
 - Encoder consists of two Bidirectional recurrent neural networks.
 - A sequence of forward and backward hidden states is then generated.

- Replacing the fixed length vector.
 - Proposed Encoder-Decoder architecture:
 - Encoder consists of two Bidirectional recurrent neural networks.
 - A sequence of forward and backward hidden states is then generated.
 - Decoder computes a vector c_i based on the output of the encoder and an assigned weight to each state.
 - Then predicts target word based on context vector and previously predicted words. $p(y_i|y_1,\ldots,y_{i-1},x)=g(y_{i-1},s_i,c_i)$

Quantitative evaluation

- Quantitative evaluation
 - BLEU (Bilingual Evaluation Understudy) is an algorithm for computing a score, that represents the quality of the translation compared to professional human translation.

- Quantitative evaluation
 - BLEU (Bilingual Evaluation Understudy) is an algorithm for computing a score, that represents the quality of the translation compared to professional human translation.
 - Although this method has many drawbacks, e.g.:
 - Do not consider meaning
 - Do not directly consider sentence structure
 - Still widely used in comparing performance of different systems on the same task.

Training's setting

- Training's setting
 - Language pair: English-French
 - Data set: Bilingual parallel corpora provided by ACL WMT'14¹
 - Each model was trained twice:
 - Corpus containing sentences of length up to 30 Words.
 - Corpus containing sentences of length up to 50 Words.

BLEU-Score comparison

Figure 1: A graph showing performance of each model (in terms of BLEU-Score) with respect to the length's of the sentences.

BLEU-Score comparison

Model	All	No UNK
RNNenc-30 RNNsearch-30	13.93 21.50	24.19 31.44
RNNenc-50 RNNsearch-50	17.82 26.72	26.71 34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

Table 1: In second column BLEU-Scores, on all sentences, and in the third for sentences that do not contain unknown words.

^{*}Model was trained until no until the performance on the development set stopped improving

- Qualitative evaluation
- Source sentence:
 - An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.

- Qualitative evaluation
- Source sentence:
 - An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.
- RNNenc-50:
 - Un privilége d'admission est le droit d'un médecin de reconnaitre un patient à l'hôpital ou un centre médical <u>d'un diagnostic ou de prendre un diagnostic en fonction de son état de santé.</u> [based on his state of health]

- Qualitative evaluation
- Source sentence:
 - An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.

RNNenc-50:

 Un privilége d'admission est le droit d'un médecin de reconnaitre un patient à l'hôpital ou un centre médical <u>d'un diagnostic ou de prendre un diagnostic</u> <u>en fonction de son état de santé.</u> [based on his state of health]

RNNsearch-50:

 Un privilége d'admission est le droit d'un médecin d'admettre un patient à un hôpital ou un centre médical <u>pour effectuer un diagnostic ou une</u> <u>procédure, selon son statut de travailleur des soins de santé à l'hôpital</u>.

Conclusion

Conclusion

- Advantages
- Performance comparable to state-of-the-art translation systems.
- Easier to train, since the system relies on one single neural network.

Conclusion

- Advantages
- Performance comparable to state-of-the-art translation systems.
- Easier to train, since the system relies on one single neural network.
- Disadvantages
- Performance drops when dealing with inputs
 - that are related to specialized domain (e.g. Legal, Finance, etc...).
 - That contain a large number of unknown words.

Thank you for your attention

References

- Table 1: KyungHyun Cho, Yoshua Bengio, (2014). Neural machine translation by jointly learning to align and translate.
- Figure1: KyungHyun Cho, Yoshua Bengio, (2014). Neural machine translation by jointly learning to align and translate.