In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Out[2]:		date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PI
	0	2004- 08-01 01:00:00	NaN	0.66	NaN	NaN	NaN	89.550003	118.900002	NaN	40.020000	39.990
	1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22.950
	2	2004- 08-01 01:00:00	NaN	1.02	NaN	NaN	NaN	93.389999	138.600006	NaN	20.860001	49.480
	3	2004- 08-01 01:00:00	NaN	0.53	NaN	NaN	NaN	87.290001	105.000000	NaN	36.730000	31.070
	4	2004- 08-01 01:00:00	NaN	0.17	NaN	NaN	NaN	34.910000	35.349998	NaN	86.269997	54.080
	245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999	30.900
	245492	2004- 06-01 00:00:00	2.49	0.75	2.44	4.57	NaN	97.139999	146.899994	2.34	7.740000	37.689
	245493	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.13	102.699997	132.600006	NaN	17.809999	22.840
	245494	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.09	82.599998	102.599998	NaN	NaN	45.630
	245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000	24.389

245496 rows × 17 columns

In [3]: data.head(10)

\sim		+	Гэ.	ι.
υ	u	L	13	H

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10
0	2004- 08-01 01:00:00	NaN	0.66	NaN	NaN	NaN	89.550003	118.900002	NaN	40.020000	39.990002
1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22.950001
2	2004- 08-01 01:00:00	NaN	1.02	NaN	NaN	NaN	93.389999	138.600006	NaN	20.860001	49.480000
3	2004- 08-01 01:00:00	NaN	0.53	NaN	NaN	NaN	87.290001	105.000000	NaN	36.730000	31.070000
4	2004- 08-01 01:00:00	NaN	0.17	NaN	NaN	NaN	34.910000	35.349998	NaN	86.269997	54.080002
5	2004- 08-01 01:00:00	3.24	0.63	5.55	9.72	0.06	103.800003	144.800003	5.04	32.480000	59.110001
6	2004- 08-01 01:00:00	NaN	0.43	NaN	NaN	0.17	54.270000	64.279999	NaN	66.589996	54.270000
7	2004- 08-01 01:00:00	1.41	0.47	2.35	NaN	0.02	71.730003	87.519997	NaN	53.270000	45.180000
8	2004- 08-01 01:00:00	NaN	1.28	NaN	NaN	NaN	147.699997	202.500000	NaN	10.280000	52.430000
9	2004- 08-01 01:00:00	NaN	0.43	NaN	NaN	0.27	54.290001	68.099998	NaN	66.709999	54.700001
4 6											

In [4]: data.tail(20)

Out[4]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	Pl
245476	2004- 06-01 00:00:00	NaN	1.09	NaN	NaN	NaN	97.199997	130.300003	NaN	5.100000	24.520
245477	2004- 06-01 00:00:00	NaN	0.60	NaN	NaN	NaN	82.959999	109.099998	NaN	31.730000	ı
245478	2004- 06-01 00:00:00	NaN	0.64	NaN	NaN	0.07	96.010002	148.399994	NaN	5.580000	13.590
245479	2004- 06-01 00:00:00	NaN	0.53	NaN	NaN	NaN	84.010002	96.470001	NaN	13.110000	5.030
245480	2004- 06-01 00:00:00	NaN	0.52	NaN	NaN	0.15	95.650002	116.400002	NaN	8.750000	21.959
245481	2004- 06-01 00:00:00	NaN	0.96	NaN	NaN	NaN	89.629997	162.800003	NaN	9.710000	31.590
245482	2004- 06-01 00:00:00	5.90	0.78	4.18	NaN	0.21	99.489998	181.399994	NaN	9.670000	24.059
245483	2004- 06-01 00:00:00	NaN	0.29	NaN	NaN	NaN	89.970001	115.099998	NaN	12.730000	19.049
245484	2004- 06-01 00:00:00	NaN	0.62	NaN	NaN	NaN	94.419998	141.100006	NaN	5.490000	36.720
245485	2004- 06-01 00:00:00	NaN	0.07	NaN	NaN	0.75	71.010002	81.650002	NaN	18.910000	38.970
245486	2004- 06-01 00:00:00	NaN	0.74	NaN	NaN	NaN	104.400002	199.100006	NaN	3.370000	45.700
245487	2004- 06-01 00:00:00	NaN	0.73	NaN	NaN	NaN	103.000000	132.699997	NaN	3.960000	7.770
245488	2004- 06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	79.470001	99.080002	NaN	15.180000	5.160
245489	2004- 06-01 00:00:00	4.80	0.51	NaN	NaN	NaN	64.680000	126.199997	NaN	6.610000	46.759
245490	2004- 06-01 00:00:00	NaN	0.71	NaN	NaN	0.29	105.800003	165.100006	NaN	5.770000	23.280
245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999	30.900
245492	2004- 06-01 00:00:00	2.49	0.75	2.44	4.57	NaN	97.139999	146.899994	2.34	7.740000	37.689

	date	BEN	CO	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PI
245493	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.13	102.699997	132.600006	NaN	17.809999	22.840
245494	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.09	82.599998	102.599998	NaN	NaN	45.630
245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000	24.389

In [5]: data.describe()

_				
I	+	- 1	ь г	۰
U	uι		<i>_</i>	
_		т ц.	- 1	

	BEN	СО	EBE	MXY	NMHC	NO_2	
count	65158.000000	226043.000000	56781.000000	39867.000000	107630.000000	243280.000000	:
mean	2.126076	0.654113	2.754981	5.241563	0.167904	60.757049	
std	2.479568	0.610924	3.547181	5.544696	0.168483	33.765691	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.660000	0.290000	1.000000	1.610000	0.060000	35.290001	
50%	1.390000	0.490000	1.840000	3.600000	0.120000	56.459999	
75%	2.750000	0.820000	3.300000	6.970000	0.220000	80.410004	
max	46.180000	12.000000	81.860001	99.320000	4.810000	398.500000	
4			_				

In [6]: np.shape(data)

Out[6]: (245496, 17)

In [7]: np.size(data)

Out[7]: 4173432

In [8]: data.isna()

Out[8]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PM25	PXY
0	False	True	False	True	True	True	False	False	True	False	False	False	True
1	False	True	False										
2	False	True	False	True	True	True	False	False	True	False	False	True	True
3	False	True	False	True	True	True	False	False	True	False	False	True	True
4	False	True	False	True	True	True	False	False	True	False	False	True	True
245491	False												
245492	False	False	False	False	False	True	False	False	False	False	False	True	False
245493	False	True	True	True	True	False	False	False	True	False	False	False	True
245494	False	True	True	True	True	False	False	False	True	True	False	True	True
245495	False												

245496 rows × 17 columns

4

In [9]: data.dropna()

Out[9]:		date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	Р
	5	2004- 08-01 01:00:00	3.24	0.63	5.55	9.72	0.06	103.800003	144.800003	5.04	32.480000	59.11
	22	2004- 08-01 01:00:00	0.55	0.36	0.54	0.86	0.07	31.980000	32.799999	0.50	79.040001	43.54
	26	2004- 08-01 01:00:00	1.80	0.46	2.28	4.62	0.21	62.259998	75.470001	2.47	54.419998	46.63
	32	2004- 08-01 02:00:00	1.94	0.67	3.14	4.91	0.06	113.500000	165.800003	2.56	26.980000	86.93
	49	2004- 08-01 02:00:00	0.29	0.30	0.47	0.76	0.07	33.919998	34.840000	0.46	75.570000	48.95
	245463	2004- 05-31 23:00:00	0.62	0.08	0.54	0.70	0.04	44.360001	45.450001	0.42	43.419998	19.29
	245467	2004- 05-31 23:00:00	2.39	0.67	2.49	3.92	0.20	89.809998	132.800003	2.09	14.740000	31.80
	245473	2004- 06-01 00:00:00	3.72	1.12	4.33	8.79	0.24	113.900002	253.600006	4.51	9.380000	21.21
	245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999	30.900
	245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000	24.389
	10307 r	ows × 17 (columi	ne								
	1000110	JVV3 ~ 17 (Joiuiiii	10			_					>
[10]:	data.co	olumns										
2 2												

```
'PM10', 'PM25', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
dtype='object')

In [11]: sd=data[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
```

In [12]: dd=sd.head(20) dd

Out	· [1	121	
out	- 1 -		

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx
0	NaN	0.66	NaN	NaN	NaN	89.550003	118.900002
1	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001
2	NaN	1.02	NaN	NaN	NaN	93.389999	138.600006
3	NaN	0.53	NaN	NaN	NaN	87.290001	105.000000
4	NaN	0.17	NaN	NaN	NaN	34.910000	35.349998
5	3.24	0.63	5.55	9.72	0.06	103.800003	144.800003
6	NaN	0.43	NaN	NaN	0.17	54.270000	64.279999
7	1.41	0.47	2.35	NaN	0.02	71.730003	87.519997
8	NaN	1.28	NaN	NaN	NaN	147.699997	202.500000
9	NaN	0.43	NaN	NaN	0.27	54.290001	68.099998
10	NaN	0.60	NaN	NaN	NaN	73.410004	87.059998
11	NaN	0.22	NaN	NaN	1.11	26.730000	28.510000
12	NaN	0.37	NaN	NaN	NaN	33.570000	37.590000
13	2.93	0.40	1.36	NaN	0.02	64.830002	78.709999
14	NaN	0.21	NaN	NaN	NaN	80.660004	87.050003
15	NaN	0.37	NaN	NaN	NaN	36.279999	38.810001
16	NaN	0.23	NaN	NaN	0.37	42.150002	44.810001
17	NaN	0.41	NaN	NaN	NaN	47.110001	51.950001
18	NaN	0.46	NaN	NaN	NaN	50.250000	56.279999
19	NaN	0.30	NaN	NaN	NaN	52.410000	54.599998

In [13]: dd.plot.bar()

Out[13]: <AxesSubplot:>


```
In [14]: dd.plot.bar(color='r')
```

Out[14]: <AxesSubplot:>


```
In [15]: dd.plot.scatter(x='CO',y='NO_2')
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='NO_2'>


```
In [16]: dd.plot.pie(y='NO_2')
```

Out[16]: <AxesSubplot:ylabel='NO_2'>

In [17]: dd.plot.box()

Out[17]: <AxesSubplot:>


```
In [18]: dd.plot.hist()
```

Out[18]: <AxesSubplot:ylabel='Frequency'>

In [19]: dd.plot.line()

Out[19]: <AxesSubplot:>


```
In [20]: dd.plot.area()
```

Out[20]: <AxesSubplot:>

In [21]: dd.plot.bar()

Out[21]: <AxesSubplot:>

In [22]: sns.pairplot(dd)

Out[22]: <seaborn.axisgrid.PairGrid at 0x20e04f434c0>


```
In [23]: sns.distplot(dd['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='NO_2', ylabel='Density'>


```
In [24]: ds=data.fillna(20)
In [25]: ssd=ds.head(20)
```

```
In [26]: sd1=ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
```

In [27]: sns.heatmap(ssd.corr())

Out[27]: <AxesSubplot:>

LinearRegression()

```
In [28]: x= ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
         y=ssd['station']
In [29]: from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [30]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[30]: LinearRegression()
In [31]: print(lr.intercept_)
         28079021.311735038
         coeff= pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [32]:
         coeff
Out[32]:
                 Co-efficient
            BEN
                   0.177250
             CO
                 -27.148781
            EBE
                   0.104523
            MXY
                   0.448197
          NMHC
                   0.146942
           NO_2
                  -0.863192
            NOx
                   0.593036
```

```
In [33]: | prediction = lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[33]: <matplotlib.collections.PathCollection at 0x20e0c6a1940>
           20
           15
           10
           5
           0
                              15
                       10
                                    20
                                           25
                                                 30
                                                       35
                                                    +2.8079e7
In [34]: print(lr.score(x_test,y_test))
          -1.4128224526907096
In [35]: |lr.score(x_test,y_test)
Out[35]: -1.4128224526907096
In [36]: |lr.score(x_train,y_train)
Out[36]: 0.4262556086742496
```

Ridge, Lasso

```
In [41]: | la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[41]: Lasso(alpha=10)
In [42]: |la.score(x_test,y_test)
Out[42]: 0.26341352476396396
In [43]: |la.score(x_train,y_train)
Out[43]: 0.3762533769377412
         ElasticNet
In [44]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[44]: ElasticNet()
In [45]: |print(en.coef_)
         [ 0.05686951 -0.
                                 -0.00942888]
In [46]: print(en.intercept )
         28079028.679425504
In [47]: prediction=en.predict(x_test)
In [48]: |print(en.score(x_test,y_test))
         0.14866260315832935
In [49]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [50]: from sklearn.linear_model import LogisticRegression
In [51]: feature_matrix = ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
         target_vector=ssd['station']
```

```
In [52]: | feature_matrix.shape
Out[52]: (20, 7)
In [53]: |target_vector.shape
Out[53]: (20,)
In [54]: from sklearn.preprocessing import StandardScaler
In [55]: fs=StandardScaler().fit_transform(feature_matrix)
In [56]: logr= LogisticRegression()
         logr.fit(fs,target_vector)
Out[56]: LogisticRegression()
In [57]: observation =[[1.2,2.3,3.3,4.3,5.3,6.3,7.3]]
In [58]:
         prediction=logr.predict(observation)
         print(prediction)
         [28079009]
In [59]: logr.classes_
Out[59]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079017, 28079018, 28079019, 28079021, 28079035, 28079036,
                28079039, 28079040], dtype=int64)
In [60]: logr.predict proba(observation)[0][0]
Out[60]: 0.026985460953367686
In [61]: |ged=data[['BEN','CO','EBE','MXY','NMHC','NO_2','NOX','OXY','O_3','PM10','PXY',
In [62]: d=ged.fillna(20)
In [63]: dg=d.head(100)
In [64]: x=dg[['BEN','CO','EBE','MXY','NMHC','NO_2','NOx','OXY','O_3','PM10','PXY','SO_2
         y=dg['station']
In [65]: |print(len(x))
         print(len(y))
         100
         100
```

```
In [66]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [67]: | from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[67]: RandomForestClassifier()
In [68]: paramets = {'max_depth':[1,2,3,4,5,6,7],
                       'min_samples_leaf':[5,10,15,20,25,30,35],
                       'n_estimators':[10,20,30,40,50,60,70]}
In [69]: from sklearn.model selection import GridSearchCV
         grid search= GridSearchCV(estimator = rfc,param grid=paramets,cv=2,scoring="ac
         grid search.fit(x train,y train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model selection\ split.py:
         666: UserWarning: The least populated class in y has only 1 members, which is
         less than n splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[69]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5, 6, 7],
                                   'min_samples_leaf': [5, 10, 15, 20, 25, 30, 35],
                                   'n estimators': [10, 20, 30, 40, 50, 60, 70]},
                      scoring='accuracy')
In [70]: |grid_search.best_score
Out[70]: 0.4285714285714286
In [71]: rfc_best=grid_search.best_estimator_
```

```
In [73]: from sklearn.tree import plot tree
                  plt.figure(figsize=(50,40))
                  plot_tree(rfc_best.estimators_[5],filled=True)
Out[73]: [Text(1395.0, 1956.96, 'X[8] <= 79.375\ngini = 0.945\nsamples = 42\nvalue =
                  [2, 6, 2, 3, 0, 3, 1, 1, 3, 2, 3, 1, 4, 3 n3, 2, 2, 1, 2, 2, 3, 1, 6, 7, 0,
                  6, 1]'),
                   Text(1141.3636363636363, 1522.0800000000002, 'X[3] <= 14.86 \ngini = 0.931 \ns
                  amples = 34\nvalue = [2, 6, 2, 3, 0, 3, 1, 1, 3, 2, 3, 0, 0, 2\n3, 2, 2, 0,
                  2, 2, 0, 1, 6, 7, 0, 0, 1]'),
                   Text(507.27272727272725, 1087.2, 'X[3] \le 4.115 \setminus i = 0.724 \setminus i = 10
                  6, 0, 0, 0, 1]'),
                   Text(253.63636363636363, 652.320000000000, 'gini = 0.722\nsamples = 5\nvalu
                  0, 0, 1]'),
                   Text(760.9090909090909, 652.3200000000002, 'gini = 0.375\nsamples = 5\nvalue
                  0, 0]'),
                   Text(1775.4545454545455, 1087.2, 'X[11] <= 6.64 \ngini = 0.908 \nsamples = 24
                  \nvalue = [2, 6, 2, 0, 0, 3, 1, 1, 3, 2, 3, 0, 0, 2 \ 2, 2, 0, 0, 0, 0, 1, ]
                  0, 7, 0, 0, 0]'),
                   Text(1268.181818181818, 652.320000000000, 'X[11] <= 5.895 \cdot i = 0.765 \cdot i = 
                  mples = 11\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2\n3, 0, 2, 0, 0,
                  0, 0, 1, 0, 7, 0, 0, 0]'),
                   Text(1014.5454545454545, 217.4400000000000, 'gini = 0.781\nsamples = 6\nval
                  0, 0, 0]'),
                   Text(1521.8181818181818, 217.4400000000000, 'gini = 0.58\nsamples = 5\nvalu
                  0, 0, 0]'),
                   Text(2282.72727272725, 652.3200000000000, 'X[1] <= 0.585\ngini = 0.851\nsa
                  0, 0, 0, 0, 0, 0, 0, 0]'),
                   Text(2029.090909090909, 217.4400000000005, 'gini = 0.817\nsamples = 8\nvalu
                  0, 0, 0]'),
                   Text(2536.363636363636, 217.4400000000000, 'gini = 0.494\nsamples = 5\nvalu
                  0, 0, 0]'),
                   Text(1648.6363636363635, 1522.080000000000, 'gini = 0.75\nsamples = 8\nvalu
```

0, 6, 0]')]

Conclusion : LinearRegression() 0.4262556086742496 HIGH RANGE

In []: