Matematika 4 — Logika pre informatikov 10. sada teoretických úloh

Táto sada úloh obsahuje **hodnotenú časť**. Jej riešenie odovzdajte najneskôr v **pondelok 9. mája 2022 o 9:00**.

Ē Čísla úloh v zátvorkách odkazujú do zbierky¹, kde nájdete riešené príklady a ďalšie úlohy na precvičovanie.

E Riešenia niektorých úloh si môžete skontrolovať pomocou prieskumníka štruktúr²alebo editora tabiel³.

 $oldsymbol{0}$ Ak nie je uvedené inak, o každom použitom jazyku $\mathcal L$ relačnej logiky prvého rádu predpokladáme, že jeho množina indivíduových premenných $\mathcal V_{\mathcal L}$ obsahuje všetky reťazce písmen nasledované čiselnými indexmi, ktoré nie sú prvkami množín $\mathcal C_{\mathcal L}$ a $\mathcal P_{\mathcal L}$.

Cvičenie 10.1. (7.1.1) Sformalizujte nasledujúce tvrdenia v jazyku prvorádovej logiky s funkčnými symbolmi a s rovnosťou. Zamýšľanou doménou sú ľudia. V maximálnej miere využite funkčné symboly na vyjadrenie vzťahov so vždy existujúcich a jednoznačným predmetom.

- 1. Každého matka je žena a otec je muž.
- 2. Každý má práve dvoch rodičov, svoju matku a svojho otca.
- 3. Súrodenec je niekto a len niekto, s kým máte spoločného rodiča, ale nie ste to vy.
- 4. Každý, kto má súrodenca, má aj najvyššieho súrodenca.
- 5. Každý rodičovský pár má najstaršie dieťa.
- 6. Najstaršie dieťa rodičovského páru je staršie ako všetky ostatné deti tohto páru.
- 7. Kto je jedináčik, je najstarším dieťaťom svojich dvoch rodičov.

Vyskúšajte si. Nájdite model sformalizovanej teórie, ktorým dokážete, že táto teória je splniteľná, aj to, že všetky predikáty sú súčasne splniteľné, teda ich interpretácie budú v modeli neprázdne.

¹ https://fmfi-uk-1-ain-412.github.io/lpi/teoreticke-ain/zbierka.pdf

² https://fmfi-uk-1-ain-412.github.io/structure-explorer/

³ https://fmfi-uk-1-ain-412.github.io/tableauEditor/

Cvičenie 10.2. (7.4.1) Pomocou tabla pre logiku prvého rádu dokážte:

$$\{x \doteq y, \text{rodič}(\text{matka}(v), x), \neg \text{rodič}(\text{matka}(w), y)\} \models w \neq v$$

Cvičenie 10.3. (7.4.2, 7.4.3) Nasledujúce úsudky môžu pôsobiť prekvapujúco. Sformalizujte ich a dokážte ich správnosť prvorádovým tablom.

a) Každý sa bojí Drakulu. Drakula sa bojí iba mňa. Takže som Drakula.

Vyskúšajte si.

- b) Drakula je nadprirodzená bytosť. Nadprirodzené bytosti sa boja iba nadprirodzených bytostí. Drakula sa však bojí len a len tých, ktorí zjedli cesnak. Takže ak som zjedol cesnak, som nadprirodzená bytosť.
- O Použite jazyk logiky prvého rádu \mathcal{L} , kde $\mathcal{C}_{\mathcal{L}}=\{$ Drakula, ja $\}$, $\mathcal{F}_{\mathcal{L}}=\emptyset$. Množinu $\mathcal{P}_{\mathcal{L}}$ si vhodne zvoľte.

Snažte sa o čo najkratší dôkaz s využitím korektných pravidiel ako MP, MT, ale tiež pravidiel pre ekvivalenciu a kvantifikátory.

Vyskúšajte si. (7.4.6) Dokážte alebo vyvráťte nasledujúce tvrdenia:

- a) Existuje formula *s rovnosťou*, ktorá je splnená iba v štruktúre, ktorá má:
 - i. najviac dvojprvkovú doménu;
 - ii. aspoň dvojprvkovú doménu.
- b) Existuje formula bez rovnosti, ktorá je splnená iba v štruktúre, ktorá má:
 - i. aspoň dvojprvkovú doménu;
 - ii. najviac dvojprvkovú doménu.

Hodnotená časť

- Riešenie **odovzdajte** najneskôr v pondelok **9. mája 2022 o 9:00** cez odovzdávací formulár pre tu10/11⁴.
- Odovzdávajte:
 - Jeden dokument vo formáte PDF obsahujúci text celého riešenia aj matematický zápis štruktúry a zobrazenie tabiel. Riešenie musí byť čitateľné a mať primerane malý rozsah.
 - Export z prieskumníka štruktúr² povinne, ak ho pri riešení použijete.

- Export z editora tabiel³ povinne, ak ho pri riešení použijete.
- Na riešenie sa vzťahujú všeobecné **pravidlá**⁵. Riešenia odovzdané po termíne sa považujú za opravy neodovzdaných riešení s príslušnými dôsledkami podľa pravidiel.

Úloha 10.4. (7.5.5)

- a) Sformalizujte v logike prvého rádu nasledujúce tvrdenia o knihomoľoch a knihách.
 - 1. Knihomol' je ten a iba ten, kto prečítal všetky svoje knihy.
 - 2. Knihomoľ je skromný práve vtedy, keď si nekúpi v jednom obchode viac ako jednu knihu.
 - 3. Za náročného knihomoľa definujeme toho, kto k spokojnosti vyžaduje, aby mal všetky knihy, ktoré chce.
 - 4. Snobský je práve taký knihomoľ, ktorý je spokojný, iba ak si kúpi všetky knihy, ktoré chce.
 - 5. Knihomoľ je šťastný práve vtedy, keď nepozná knihu, ktorú by nečítal.
 - 6. Každá kniha je vydaná v práve jednom vydavateľstve.
 - Pokiaľ ide o knihomoľovu najobľúbenejšiu knihu, tak ju chce, aj ak už má knihu s rovnakým názvom. Inak dve knihy s rovnakým názvom nechce.
- b) Nájdite model sformalizovanej teórie, ktorým dokážete, že táto teória je splniteľná, aj to, že všetky predikáty sú súčasne splniteľné, teda ich interpretácie budú v modeli neprázdne.
- Pomôcka 1. Väčšina definícií je podmienená, teda vzťahuje sa iba na niektoré druhy objektov. Správne to sformalizujte.
- Pomôcka 2. Vzťahy s jednoznačne priradenými objektmi formalizujte funkčnými symbolmi tak, ako sme to robili v cvičení|10.1. Tým automaticky dostanete existenciu a jednoznačnosť priradených objektov. Potom stačí sformalizovať iba ich druh a ďalšie vlastnosti. Použitie predikátov v týchto prípadoch by veľmi skomplikovalo formalizáciu.

Úloha 10.5. (7.5.6) V logike prvého rádu môžeme sformalizovať (axiomatizovať) teóriu množín. Úplná formalizácia je pomerne komplikovaná. Pre naše účely postačí nasledujúci fragment T_{set} so základnými vzťahmi a operáciami v jazyku \mathcal{L} ,

⁴ https://forms.gle/VvGMqcA3huu7ZnKh9

⁵ https://dai.fmph.uniba.sk/w/Course:Mathematics 4/sk#pravidla-uloh

kde
$$\mathcal{C}_{\mathcal{L}} = \{\text{empty}\}, \mathcal{P}_{\mathcal{L}} = \{\text{in}^2, \text{subseteq}^2\} \text{ a } \mathcal{F}_{\mathcal{L}} = \{\text{union}^2, \text{inter}^2, \text{diff}^2\}.$$

$$\forall x \, \forall y (\, \forall z (\text{in}(z, x) \leftrightarrow \text{in}(z, y)) \rightarrow x \doteq y \,) \qquad (\text{extenzionalita})$$

$$\forall x \, \forall y (\, \text{subseteq}(x, y) \leftrightarrow \forall z (\text{in}(z, x) \rightarrow \text{in}(z, y)) \,) \qquad (\text{podmnožina})$$

$$\forall z \, \neg \text{in}(z, \text{empty}) \qquad (\text{prázdna mn.})$$

$$\forall x \, \forall y \, \forall z (\, \text{in}(z, \text{inter}(x, y)) \leftrightarrow (\text{in}(z, x) \land \text{in}(z, y)) \,) \qquad (\text{prienik})$$

$$\forall x \, \forall y \, \forall z (\, \text{in}(z, \text{union}(x, y)) \leftrightarrow (\text{in}(z, x) \land \neg \text{in}(z, y)) \,) \qquad (\text{zjednotenie})$$

$$\forall x \, \forall y \, \forall z (\, \text{in}(z, \text{diff}(x, y)) \leftrightarrow (\text{in}(z, x) \land \neg \text{in}(z, y)) \,) \qquad (\text{rozdiel})$$

Prvorádovými tablami rozšírenými o pravidlá γ^* a δ^* a pravidlá z úlohy 5.3.1 dokážte, že z T_{set} vyplývajú nasledujúce formuly:

 $(X_1) \ \forall x \ \forall y (\ \text{diff}(x,y) \doteq \text{empty} \rightarrow \text{subseteq}(x,y))$ $(X_2) \forall u \forall x \forall y (subseteq(union(x, y), u) \rightarrow subseteq(x, u))$

Prémiová časť

Táto úloha je dobrou prípravou na skúšku.

Prémiová úloha 10.6. (1 bod, 7.6.2) Zadefinujte syntax logiky prvého rádu s funkčnými symbolmi a s kvantifikátorom ≤ 1 ("pre najviac jedno", t.j. $\leq 1x$ A je splnená, keď A je splnená pre najviac jeden objekt x) namiesto klasických kvantifikátorov - teda jazyk a pojmy ako term, formula.

Zadefinujte pojmy hodnota termu v štruktúre pri ohodnotení a štruktúra spĺňa formulu pri ohodnotení pre formuly v tejto syntaxi.