Resumen Física: Segundo Parcial

Agustín Curto

Práctico 1: Cinemática

• Velocidad media: $\overline{v} = \frac{\Delta x}{\Delta t}$

• $x(t) = x_0 + v_0 t + \frac{a}{2} t^2$

• $v(t) = v_0 + at$

 \bullet a = cte

• Aceleración media: $\overline{a} = \frac{\Delta v}{\Delta t}$

Práctico 2: Movimiento en el plano

• Trayectoria: y(x).

Ecuaciones de movimiento:

• Posición: $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$

• Velocidad: $\vec{v}(t) = v_x(t)\hat{i} + v_y(t)\hat{j}$

• Aceleración: $\vec{a}(t) = a_x(t)\hat{i} + a_y(t)\hat{j}$

Práctico 3: Movimiento circular

 $v = |\vec{v}|$

• Aceleración: $\vec{a} = \vec{a_c} + \vec{a_t}$ donde:

$$-\vec{a_c} = \frac{v^2}{r}$$

$$- |\vec{a_c}| = r\gamma = r\frac{d\omega}{dt} = r\ddot{\theta}$$

$$-\vec{a_t} = \frac{d\vec{v_t}}{dt}$$

$$- |\vec{a_t}| = r\omega^2 = r\dot{\theta}^2$$

• Velocidad angular: $\omega = \frac{v}{r} \left[\frac{rad}{sec} \right]$

• Velocidad tangencial: $v_t = \omega r \left[\frac{mts}{sec} \right]$

• Período: $T = \frac{2\pi}{\omega}$

• Frecuencia: $f = \frac{1}{T}$

• Perímetro: $P = 2\pi r$

Ecuaciones de movimiento en coordenadas polares:

 $\hat{r} = \neg \hat{n}, \ \hat{\theta} = \hat{t}. \ \dot{r} = \frac{dr}{dt}, \ \dot{\theta} = \frac{d\theta}{dt} = \omega.$

• Posición: $\vec{r}(t) = r(t)\hat{r}$

• Velocidad: $\vec{v}(t) = \dot{r}(t)\hat{r} + r(t)\dot{\theta}(t)\hat{\theta}$

• Aceleración: $\vec{a}(t) = (\ddot{r}(t) - r(t)\dot{\theta}^2(t))\hat{r} + (r(t)\ddot{\theta}(t) + 2\dot{r}(t)\dot{\theta}(t))\hat{\theta}$

Práctico 4: Dinámica

• Leves de Newton:

1. $\sum_{i} \vec{F}_{i} = 0 \Rightarrow \vec{a} = 0 \text{ y } \vec{v} = cte$ 2. $\vec{F} = m\vec{a} \Rightarrow \sum \vec{F} = m\vec{a}$

• Fuerza gravitacional: $\vec{P} = m\vec{g}$

• Fuerza de rozamiento: $|\vec{F_R}| = \mu |\vec{N}|$

• Fuerza centrípeta: $\vec{F_c} = m\vec{a_c}$

• Resortes: $F = k_e \Delta x$

– En paralelo: $k_e = \sum_i k_i$

- En serie: $k_e = \frac{1}{\sum_i \frac{1}{k_i}}$

Práctico 5: Trabajo y Energía

• Trabajo: $[W] = \left[\frac{N}{m}\right] = [J] (Joules)$

$$- W = \int_{P_i}^{P_f} \vec{F} d\vec{s}$$
$$- W = F \Delta x$$

- Energía Cinética: $K = \frac{1}{2}mv^2$, [K] = [J]
- Energía Potencial: U = mgh, [U] = [J]
- Teorema de Energía-Trabajo:

$$F\Delta x = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

• Conservación de la Energía:

$$E_{inicial} = E_{final}$$

$$K_i + U_i = K_f + U_f$$

- Potencia: $[P] = \left[\frac{J}{s}\right] = [W] (Watt)$
 - Potencia media: $\overline{P} = \frac{W}{\Delta t}$
 - Potencia instantanea: $\vec{P} = \frac{dT}{dt} = \vec{F} \cdot \vec{v}$

Práctico 6: Momento Lineal, Angular y de Torsión

- Momento lineal: $\vec{p} = m\vec{v}$ $[\vec{p}] = [\frac{kg \ m}{s}]$
- Momento angular: $\vec{L} = \vec{r} \times \vec{p}$ $[\vec{L}] = [\frac{Kg \ m^2}{s}]$
- Impulso: $\vec{J} = \Delta \vec{p} = \int_{t1}^{t2} \vec{F} dt$ $[\vec{p}] = [\frac{kg \ m}{s}]$
- Centro de masa: $\vec{r}_{CM} = \frac{m_1}{m_1 + m_2} \vec{r_1} + \frac{m_2}{m_1 + m_2} \vec{r_2}$
- Choque plástico:
 - Se conserva el momento
 - No se conserva la energía
- Choque elástico:

- Se conserva el momento
- Se conserva la energía
- \bullet Conservación del momento lineal: $\vec{p_i} = \vec{p_v}$
- Conservación de la energía: $\frac{1}{2}m_iv_i^2 = \frac{1}{2}m_fv_f^2$
- Energía cinética rotacional: $K = \frac{1}{2}I\omega^2$ $I = mr^2 \text{ (Momento de Inercia) } [I] = [Kg\ m^2]$
- Momento de torsión (Torque):

$$\vec{\tau} = \vec{r} \times \vec{F} = \vec{r} \times (m\vec{a}) \qquad [\vec{\tau}] = J$$

Práctico 7: Oscilaciones

- Trabajo realizado para estirar un resorte: $W_e = \frac{1}{2}k(\Delta l)^2$
- Oscilador Armónico Simple:
 - Posición: $x(t) = A\cos(\omega t + \phi)$
 - Velocidad: $v(t) = -\omega A \sin(\omega t + \phi)$
 - Aceleración: $a(t) = -\omega^2 A \cos(\omega t + \phi)$
 - Frecuencia angular: $\omega = \sqrt{\frac{k}{m}}$
 - Período del movimiento: $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$
 - Frecuencia: $f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$
 - Valores máximos:

- $* x_{max} = A$
- $* v_{max} = \omega A$
- $* a_{max} = \omega^2 A$
- Energía: $E = \frac{1}{2}kA^2$
- Velocidad en función de la posición:

$$v(x) = \pm \omega \sqrt{A^2 - x^2}$$

- Oscilador Amortiguado
 - $-x(t) = Ae^{\frac{-b}{2m}t}\cos(\omega t)$
 - $-\omega = \sqrt{\frac{k}{m} \left(\frac{b}{2m}\right)^2} = \sqrt{\omega_0 \alpha^2}$
 - Tipos de amortiguamiento:

- * Subamortiguado: $\omega_0 > \alpha$
- * Sobreamortiguado: $\omega_0 < \alpha$
- * Críticamente Amortiguado: $\omega_0 = \alpha$

Oscilaciones forzadas

$$-x(t) = A\cos(\omega t + \phi)$$

$$-v(t) = -\omega A \sin(\omega t + \phi)$$

$$-a(t) = -\omega^2 A \cos(\omega t + \phi)$$

Práctico 8: Calor

• Celsius, Farenheit y Kelvin:

$$-T_C = T_K - 273.15$$

$$-T_F = \frac{9}{5}T_C + 32$$

• Expansión térmica. α , coeficiente de expansión.

$$- 1D: \Delta L = \alpha L_i \Delta T$$

$$-2D: \Delta A = 2\alpha A_i \Delta T$$

$$-3D: \Delta V = 3\alpha V_i \Delta T$$

- Calor: $Q = C\Delta T = cm\Delta T$ [Q] = J.
- Calorias-Joules: 1[cal] = 4.186[J]
- Calor latente: $Q = L\Delta m$

 - Fusión: $Q = L_F \Delta m$, para el agua: $L_F = 80 \left[\frac{cal}{gr}\right]$

 - Vaporización: $Q = L_V \Delta m$, para el agua: $L_V = 540 \left[\frac{cal}{ar} \right]$
- Transferencia de calor: k: coef. de conducción térmica, A: superficie de contacto, L: longitud del cuerpo de contacto.
 - Conducción: $P = \frac{Q}{t} = \frac{kA}{L}(T_{desde} T_{hasta})$
 - Resistencia térmica: $R_T = \frac{\Delta L}{kA}$
 - Convección libre: $P = \frac{Q}{t} = hA(T T_0)$ h: coef. de convección
- Ley de OHM Térmica:

$$P = \frac{Q}{t} = \frac{\Delta}{R_T} = \frac{kA\Delta T}{\Delta L}$$

Práctico 9: Electroestática

• Ley de Coulomb: $k = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \left[\frac{N \ m^2}{C^2}\right],$ $\epsilon_0 = 8.85 \times 10^{-12} \left[\frac{C^2}{N \ m^2}\right]$

$$\vec{F}_{12} = \frac{kq_1q_2}{r^2}\hat{r}_{12}$$

- Electrón:
 - masa: $9.11 \times 10^{-31} [Kg]$
 - $\text{ carga: } -1.602\,17 \times 10^{-19}[C]$
- Campo eléctrico: $\vec{E}_{q_1}(r) = \frac{k \ q_2}{r^2} \hat{r}$ $[\vec{E}] = [\frac{N}{C}]$
- Fuerza en un campo eléctrico: $\vec{F} = q\vec{E}$
- Campo eléctrico en un punto $P: \vec{E} = k \sum_{i} \frac{q_i}{r_i} \hat{r}_i$
- Distribución lineal de carga: $\vec{E} = \frac{\lambda}{2\pi\epsilon_0}$

- Dipolo de \vec{E} : $\vec{\tau} = \vec{p} \times \vec{E}$
 - $[\Phi] = \left[\frac{N m^2}{C}\right]$
 - Ley de Gauss: $\epsilon_0 \Phi = q$
 - \vec{E} sobre una superficie conductora:

$$E = \frac{\sigma}{\epsilon_0}$$

 σ : densidad de carga superficial.

• Potencial eléctrico:

$$-W_{AB} = \Delta U = -q \int_A^B \vec{E} d\vec{s}$$

$$-\Delta V = V_B - V_A = \frac{W_{AB}}{q} = -\int_A^B \vec{E} d\vec{s}$$

$$V(r) = \frac{q}{kr}$$
 $[V] = [\frac{J}{C}] \ (Voltios)$