Tarea: Matrices Diagonales de Bloques

JHONNY LANZUISI, 1510759

TEOREMA. Si $A=A_{11}\oplus A_{22}\oplus \cdots \oplus A_{mm}$ es una matriz bloque diagonal, entonces

I. El polinomio característico de A, p_A, esta dado por

$$p_A(t) = \prod_{i=1}^m p_{A_{ii}}(t).$$

II. El polinomio minimal de A, m_A, esta dado por

$$m_A = mcm(A_{11}, ..., A_{mm}).$$

III. Para cualquier polinomio f se tiene que

$$f(A) = f(A_{11}) \oplus f(A_{22}) \oplus \cdots \oplus f(A_{mm}).$$

DEMOSTRACIÓN. Para ver (I), hagamos $p_A(t) = det(A - tI_m)$ y supongamos que las matrices A_{ii} son de tamaño $n_i \times n_i$ donde los n_i son números positivos ($0 \leqslant i \leqslant m$), luego

$$\begin{split} p_{A}(t) &= \det \left((A_{11} - t I_{n_{1}}) \oplus (A_{22} - t I_{n_{2}}) \oplus \cdots \oplus (A_{mm} - t I_{n_{m}}) \right) \\ &= \det \left(A_{11} - t I_{n_{1}} \right) \cdots \det \left(A_{mm} - t I_{n_{m}} \right) \\ &= p_{A_{11}}(t) p_{A_{22}}(t) \cdots p_{A_{mm}}(t). \end{split}$$

Consideremos (III). Sea $f(t)=t^n+a_{n-1}t^{n-1}+\cdots+a_1t+a_0$ un polinomio en t; entonces, tomando en cuenta que las potencias de una matriz diagonal se obtienen elevando los elementos de la diagonal, tenemos

$$\begin{split} f(A) &= A^n + \alpha_{n-1}A^{n-1} + \cdots + \alpha_1 A + \alpha_0 I \\ &= (A^n_{11} \oplus \cdots \oplus A^n_{mm}) \\ &\quad + \alpha_{n-1}(A^{n-1}_{11} \oplus \cdots \oplus A^{n-1}_{mm}) + \cdots \\ &\quad + \alpha_1(A_{11} \oplus \cdots \oplus A_{mm}) + \alpha_0 I \\ &= (A^n_{11} + \alpha_{n-1}A^{n-1}_{11} + \cdots + \alpha_1 A_{11} + \alpha_0 I) \oplus \cdots \\ &\quad \oplus (A^n_{mm} + \alpha_{n-1}A^{n-1}_{mm} + \cdots + \alpha_1 A_{mm} + \alpha_0 I) \\ &= f(A_{11}) \oplus f(A_{22}) \oplus \cdots \oplus f(A_{mm}). \end{split}$$

Consideremos ahora (II). Llamemos m_i al polinomio minimal asociado a A_{ii} (0 \leq i \leq m), entonces tenemos que $m_A(A_{ii})=0$ y m_i divide a m_a de donde se sigue $mcm(A_{11},\ldots,A_{mm})$ divide a m_A . Por otro lado, tenemos que $mcm(A_{11},\ldots,A_{mm})(A)=0$ por lo que m_A divide a $mcm(A_{11},\ldots,A_{mm})$ y se obtiene la igualdad $m_A=mcm(A_{11},\ldots,A_{mm})$.

Noviembre, 2019