MAEG 5720: Computer Vision in Practice

Lecture 14a:

Introduction to Structure from Motion (SFM)

Dr. Terry Chang

2021-2022

Semester 1

Structure from motion

N. Snavely, S. Seitz, and R. Szeliski, Photo tourism: Exploring photo collections in 3D, SIGGRAPH 2006.

Two views

- Search for correspondences
- Compute fundamental matrix/Essential matrix
- Factorize into camera intrinsic, rotation and translation
- Triangulate the 3D points

What about more than two view?

• The geometry of three views is described as *trifocal tensor*

• The geometry of four views is described by *quadrifocal tensor*

- How about more camera views?
 - How can we figure out where are the cameras?
 - How to reconstruct the 3D model of the scene?
 - This is the *structure from motion* problem.

Structure from motion

- Input:
 - Images with points in correspondence $p_{i,j} = (u_{i,j}, v_{i,j})$
- Output:
 - Structure: 3D location x_i for each p_i
 - Motion: camera parameters R_j , t_j and possibly K_j
- Objective minimize reprojection error

Also doable by video

Structure from motion

Драконь, видимый подъ различными углами зрінія По граворі на міли изи "Oculus artificiatis teledioptricus" Цана. 1702 года.

Camera calibration & triangulation

- Suppose we know 3D points
 - And have matches between these points and an image
 - How can we compute the camera parameters?
- Suppose we have know camera parameters, each of which observes a point
 - How can we compute the 3D location of that point?
- SFM solves both of these problems at once
- A kind of chicken-and-egg problem
 - (but solvable)

Structure from motion

• Given a set of corresponding **2D** image points $(u_{f,p}, v_{f,p})$ in two or more images, compute the camera parameters and the **3D** point coordinates (P_p)

Let's look at a simple orthographic projection

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

From 3D to 2D: Orthographic Projection

When the distance of scene from the camera centre is large compared to the depth of the object, we can use orthographic project for approximation

From 3D to 2D: Orthographic Projection

$$u = i \cdot X_c = i^T X_c = i^T (P - C)$$

$$v = j \cdot X_c = j^T X_c = j^T (P - C)$$

$$u = i^{T}(P - C)$$
$$v = j^{T}(P - C)$$

Orthographic Structure from motion

Given: a set of corresponding **2D** image points $\{u_{f,p}, v_{f,p}\}$ in two or more images

Compute: the camera parameters and the *Scene Point* $\{P_p\}$, Camera position $\{C_f\}$, camera orientation $\{i_f, j_f\}$

Orthographic Structure from motion

Image of point P_p in camera frame f:

$$u_{f,p} = i_f^T (P_p - C_f)$$
$$v_{f,p} = j_f^T (P_p - C_f)$$

Assume origin of world at centroid of the scene point

$$\frac{1}{N}\sum_{p=1}^{N}P_p=\bar{P}=0$$

How to eliminate the centroid?

Centroid (\bar{u}_f, \bar{v}_f) of the image pints in frame f:

$$\bar{u}_f = \frac{1}{N} \sum_{p=1}^{N} u_{f,p} = \frac{1}{N} \sum_{p=1}^{N} i_f^T (P_p - C_f)$$

$$\bar{u}_f = \frac{1}{N} i_f^T \sum_{p=1}^{N} P_p - \frac{1}{N} i_f^T \sum_{p=1}^{N} C_f$$

$$\Rightarrow \qquad \bar{u}_f = i_f^T C_f$$

Similarly we have

$$\overline{v}_f = j_f^{\mathrm{T}} C_f$$

How to eliminate the centroid?

Shift the camera origin to the centroid (\bar{u}_f, \bar{v}_f)

Image points with respect to (\bar{u}_f, \bar{v}_f)

$$\widetilde{u}_{f,p} = u_{f,p} - \overline{u}_f
\widetilde{u}_{f,p} = i_f^T (P_p - C_f) - i_f^T C_f
\widetilde{u}_{f,p} = i_f^T P_p$$

Similarly

$$\tilde{v}_{f,p} = \mathbf{j}_f^{\mathrm{T}} P_p$$

Camera location removed from the equations

Observation matrix W

We have

$$\tilde{u}_{f,p} = i_f^T P_p$$

$$\tilde{v}_{f,p} = i_f^T P_p$$

In matrix form

$$\begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} = \begin{bmatrix} i_f^T \\ j_f^T \end{bmatrix} P_p$$

Putting all frame and points we have

$$\begin{split} \tilde{u}_{f,p} &= \mathrm{i}_{f}^{\mathrm{T}} \, P_{p} \\ \tilde{v}_{f,p} &= \mathrm{j}_{f}^{\mathrm{T}} \, P_{p} \\ \mathrm{trix} \, \mathrm{form} \\ \begin{bmatrix} \tilde{u}_{f,p} \\ \tilde{v}_{f,p} \end{bmatrix} &= \begin{bmatrix} \mathrm{i}_{f}^{\mathrm{T}} \\ \mathrm{j}_{f}^{\mathrm{T}} \end{bmatrix} \, P_{p} \\ \begin{bmatrix} \tilde{u}_{1,1} & \tilde{u}_{1,2} & \dots & \tilde{u}_{1,N} \\ \tilde{u}_{2,1} & \tilde{u}_{2,2} & \dots & \tilde{u}_{2,N} \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{u}_{F,1} & \tilde{u}_{F,2} & \dots & \tilde{u}_{F,N} \\ \tilde{v}_{1,1} & \tilde{v}_{1,2} & \tilde{v}_{1,3} & \tilde{v}_{1,4} \\ \tilde{v}_{2,1} & \tilde{v}_{2,2} & \tilde{v}_{2,3} & \tilde{v}_{2,4} \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{v}_{F,1} & \tilde{v}_{F,2} & \tilde{v}_{F,3} & \tilde{v}_{F,4} \end{bmatrix} = \begin{bmatrix} i_{1}^{T} \\ i_{2}^{T} \\ \vdots \\ i_{T}^{T} \\ j_{T}^{T} \\ \vdots \\ \vdots \\ j_{T}^{T} \end{bmatrix} [P_{1} \quad P_{2} \quad \dots \quad P_{N}] \end{split}$$

 $W_{2F\times N}$ Centroid-subtracted image points (Known)

 $M_{2F\times3}$ Camera Motion (UnKnown)

Rank of Observation Matrix

$$W = M \times S$$

$$2F \times N$$
 $2F \times 3$ $3 \times N$

Therefore

$$Rank(W) = Rank(M \times S) \le \min(3, N, 2F)$$

Since N and 2F always >3, we can assume

$$Rank(W) \leq 3$$

Using SVD

• $W = U\Sigma V^T$

$$SVD(W) = [U] \begin{bmatrix} \sigma_1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \end{bmatrix} [V^T]$$

 $2F \times 2F$

 $2F \times N$

 $N \times N$

Using SVD

• $W = U\Sigma V^T$

$$SVD(W) = \begin{bmatrix} U_1 & | & U_2 \\ 0 & \sigma_2 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} V_1^T \\ - \\ V_2^T \end{bmatrix} \xrightarrow{N-3}$$

 $2F \times 2F$ $2F \times 3$ $N \times N$

$$W = U_1 \Sigma V_1^T$$
$$(2F \times 3)(3 \times 3)(3 \times P)$$

Factorization (Finding M, S)

The observation matrix is

$$W = U_1 \Sigma_1 V_1^T$$
 $W = U_1 (\Sigma_1)^{1/2} (\Sigma_1)^{1/2} \Sigma_1$
M?

The decomposition is not unique, we can put any 3x3 non-singular matrix Q

$$W = U_1(\Sigma_1)^{1/2} Q Q^{-1}(\Sigma_1)^{1/2} \Sigma_1$$
=M =S

If we solve Q

Solving Q

• The motion matrix M is

$$M = \begin{bmatrix} i_{1}^{T} \\ i_{2}^{T} \\ \vdots \\ i_{F}^{T} \\ j_{1}^{T} \\ j_{2}^{T} \\ \vdots \\ j_{F}^{T} \end{bmatrix} = U_{1} (\Sigma_{1})^{1/2} Q = \begin{bmatrix} i_{1}^{T} Q \\ i_{2}^{T} Q \\ \vdots \\ i_{F}^{T} Q \\ j_{1}^{T} Q \\ j_{2}^{T} Q \\ \vdots \\ j_{F}^{T} Q \end{bmatrix}$$

• The orthonormal Constraints:

•
$$i_f \cdot i_f = i_f^T \cdot i_f = 1$$

•
$$j_f \cdot j_f = j_f^T \cdot j_f = 1$$

•
$$i_f \cdot j_f = i_f^T \cdot j = 0$$

- Therefore
- $i_f^T Q Q^T i_f = 1$
- $j_f^T Q Q^T j_f = 1$
- $i_f^T Q Q^T j_f = 0$

Solving Q

When have for each frame 3 equations (where Q is unknown)

```
i_f^T Q Q^T i_f = 1
j_f^T Q Q^T j_f = 1
i_f^T Q Q^T j_f = 0
```

- Q is 3x3 matrix, 9 variables, For F frame, we have 3F quadratic equations
- Q can be solved with 3 or more images using Newton's Method.
- Final Solution
 - $M = U_1(\Sigma_1)^{1/2}Q$
 - $S = Q^{-1}Q (\Sigma_1)^{1/2}V^T$

Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

Dealing with missing data

- So far, we have assumed that all points are visible in all views
- In reality, the measurement matrix typically looks something like this:

Sequential structure from motion

•Initialize motion from two images using fundamental matrix

Initialize structure by triangulation

- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image – calibration

Sequential structure from motion

- •Initialize motion from two images using fundamental matrix
- Initialize structure by triangulation
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image – calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera – triangulation

Sequential structure from motion

- •Initialize motion from two images using fundamental matrix
- Initialize structure by triangulation
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image – calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera – triangulation
- Refine structure and motion: bundle adjustment

Large-scale structure from motion

Standard way to view photos

Photo Tourism

Incremental structure from motion

Final reconstruction

More examples

More examples

More examples

SFM Softwares

- Bundler
- OpenSfM
- OpenMVG
- VisualSFM
- See also <u>Wikipedia's list of toolboxes</u>

Reference

Richard Szeliski, Computer Vision: Algorithms and Applications,
 Springer 2010, Chapter 7