GraphMAD: Graph Mixup for Data Augmentation using Data-Driven Convex Clustering

Madeline Navarro and Santiago Segarra

Department of Electrical and Computer Engineering

Rice University

13 Jun 2023 **Graph Signal Processing Workshop 2023**

Contact:

Email: nav@rice.edu

Graph classification required in many fields

Brain connectivity
S.-H. Chu, K. K. Parhi, C. Lenglet,
Scientific Reports 2018

Drug discovery S.-H. Chu, K. K. Parhi, C. Lenglet, Scientific Reports 2018

Wireless Communication
A. Chowdhury *et al.*,
IEEE Trans. Wireless Commun. 2021

Graph Neural Networks (GNNs) highly successful for graph classification

Mixup for data augmentation via linear combinations of data pairs

Non-Euclidean graph data is difficult to mixup

Pairwise linear mixup may ignore useful regions

Pairwise mixup only considers space between pairs of classes

Pairwise linear mixup may ignore useful regions

Pairwise mixup only considers space between pairs of classes

Linear mixup may add uncertainty in ways that are unhelpful

Pairwise mixup ignores most of the dataset when mixing two samples

Label
Class 0: 0
Class 1: 1

Label

Class 0: 1

Class 1: 0

Pairwise mixup ignores most of the dataset when mixing two samples

Pairwise mixup ignores most of the dataset when mixing two samples

What kind of new samples should we add to the dataset?

Limitations of pairwise linear mixup:

Convex combinations are nontrivial for graph data

Pairwise mixup may ignore useful sample regions

Linear mixup may add uncertainty in ways that are unhelpful

Sampling for linear mixup does not take the data into account

Graph Mixup for Augmenting Data (GraphMAD) – Concept

Graph Mixup for Augmenting Data (GraphMAD) – Concept

Graph Mixup for Augmenting Data (GraphMAD) – Concept

Graph Mixup for Augmenting Data (GraphMAD) – Details

Given set of labeled graphs $\{(G_i, \mathbf{y}_i)\}_{i=1}^T$:

Step 1: Convert each graph G_i to a continuous descriptor $\boldsymbol{\theta}(G_i)$

Step 2: Obtain nonlinear mixup function $\hat{\mathbf{u}}(\lambda)$ from descriptors $\{(\boldsymbol{\theta}(G_i), \mathbf{y}_i)\}_{i=1}^T$

Step 3: Sample new graphs G_i^{new} from a point in mixup function $\boldsymbol{\theta}^{\text{new}} = \widehat{\mathbf{u}}(\lambda)$

Then perform graph classification on original dataset + new labeled graphs

GraphMAD Step 1: Convert each graph to graphon

Convert each graph G_i to a continuous descriptor $\theta(G_i)$, graphon, a bounded, continuous symmetric function

Graphon $W: [0,1]^2 \rightarrow [0,1]$

GraphMAD Step 1: Convert each graph to graphon

Convert each graph G_i to a continuous descriptor $\theta(G_i)$, graphon, a bounded, continuous symmetric function

GraphMAD Step 1: Convert each graph to graphon

Convert each graph G_i to a continuous descriptor $\theta(G_i)$, graphon, a bounded, continuous symmetric function

Clustering methods such as hierarchical clustering use relationships among data to assign data to groups

$$\left\{\widehat{\mathbf{u}}_{j}(\lambda)\right\}_{j=1}^{T} = \underset{\mathbf{u}}{\operatorname{argmin}} \sum_{j=1}^{T} \left\|\mathbf{u}_{j} - \boldsymbol{\theta}(G_{j})\right\|_{2}^{2} + \frac{\lambda}{1-\lambda} \sum_{i < j} w_{ij} \left\|\mathbf{u}_{i} - \mathbf{u}_{j}\right\|_{1}$$

- $\theta(G_i)$: Each graphon
- $\hat{\mathbf{u}}_i(\lambda)$: Cluster centroid for each graphon at $\lambda \in [0,1]$

Convex clustering tradeoff between fusing clusters and fitting to samples

$$\left\{\widehat{\mathbf{u}}_{j}(\lambda)\right\}_{j=1}^{T} = \underset{\mathbf{u}}{\operatorname{argmin}} \sum_{j=1}^{T} \left\|\mathbf{u}_{j} - \boldsymbol{\theta}(G_{j})\right\|_{2}^{2} + \frac{\lambda}{1-\lambda} \sum_{i < j} w_{ij} \left\|\mathbf{u}_{i} - \mathbf{u}_{j}\right\|_{1}$$

- $\theta(G_i)$: Each graphon
- $\hat{\mathbf{u}}_i(\lambda)$: Cluster centroid for each graphon at $\lambda \in [0,1]$
- λ : Fusion parameter

Convex clustering tradeoff between fusing clusters and fitting to samples

$$\left\{\widehat{\mathbf{u}}_{j}(\lambda)\right\}_{j=1}^{T} = \underset{\mathbf{u}}{\operatorname{argmin}} \sum_{j=1}^{T} \left\|\mathbf{u}_{j} - \boldsymbol{\theta}(G_{j})\right\|_{2}^{2} + \frac{\lambda}{1-\lambda} \sum_{i < j} w_{ij} \left\|\mathbf{u}_{i} - \mathbf{u}_{j}\right\|_{1}$$

- λ tunes between original dataset and total fusion (dataset mean)
 - $\lambda = 0$: *T* singleton clusters
 - $\lambda \in (0,1)$: Data samples begin to fuse into clusters
 - $\lambda = 1$: All samples in one cluster

Convex clustering tradeoff between fusing clusters and fitting to samples

GraphMAD Step 3: Sample new graphs given mixup function

Graphon $W: [0,1]^2 \rightarrow [0,1]$

GraphMAD Step 3: Sample new graphs given mixup function

Graphon $W: [0,1]^2 \rightarrow [0,1]$

GraphMAD Step 3: Sample new graphs given mixup function

Graph classification accuracy on molecule and bioinformatics datasets

Method	
Data mixup	Label mixup
None	None
	Linear
т.	Sigmoid
Linear	Logit
	Clusterpath
	Linear
Clusterpath	Sigmoid
	Logit
	Clusterpath

Graph classification accuracy on molecule and bioinformatics datasets

Method		DD	PROTEINS	ENZYMES	AIDS	MUTAG	NCI109
Data mixup	Label mixup	2 classes	2 classes	6 classes	$2 ext{ classes}$	2 classes	2 classes
None	None						
Linear	Linear						
	Sigmoid						
	Logit						
	Clusterpath						
Clusterpath	Linear						
	Sigmoid						
	Logit						
	Clusterpath						

Graph classification accuracy on molecule and bioinformatics datasets

Method		DD	PROTEINS	ENZYMES	AIDS	MUTAG	NCI109
Data mixup	Label mixup	2 classes	2 classes	6 classes	2 classes	2 classes	2 classes
None	None	68.77 ± 2.35	69.51 ± 1.20	26.43 ± 2.55	96.18 ± 2.57	84.59 ± 5.53	68.23 ± 2.13
Linear	Linear	67.01 ± 1.72	65.15 ± 2.53	24.88 ± 3.38	96.82 ± 1.39	85.71 ± 7.15	68.16 ± 2.72
	Sigmoid	64.89 ± 1.49	68.42 ± 3.94	24.76 ± 4.10	96.07 ± 1.42	85.71 ± 4.63	65.96 ± 2.34
	Logit	66.22 ± 3.82	69.25 ± 2.94	25.95 ± 5.48	96.07 ± 1.27	80.08 ± 5.60	66.81 ± 4.07
	Clusterpath	68.22 ± 3.71	69.38 ± 2.04	24.64 ± 2.39	95.86 ± 1.88	87.22 ± 4.96	65.01 ± 3.07
Clusterpath	Linear	67.11 ± 1.56	67.51 ± 2.62	26.67 ± 6.49	97.15 ± 1.00	87.24 ± 4.21	68.61 ± 1.41
	Sigmoid	68.23 ± 3.61	64.60 ± 5.07	32.62 ± 6.35	97.07 ± 1.35	85.20 ± 3.53	67.50 ± 2.06
	Logit	70.07 ± 2.51	67.26 ± 2.84	25.71 ± 4.26	95.87 ± 1.47	80.10 ± 14.77	65.33 ± 3.35
	Clusterpath	70.44 ± 3.79	71.18 ± 3.98	24.52 ± 3.30	97.22 ± 0.54	85.71 ± 5.40	68.54 ± 3.16

Data augmentation with GraphMAD consistently outperforms linear mixup, and different label mixup functions can improve accuracy

Graph classification accuracy on social datasets

Met	thod	COLLAB	IMDB-B	IMDB-M	
Data mixup	Data mixup Label mixup		2 classes	3 classes	
None	None	80.00 ± 0.96	73.14 ± 3.15	47.71 ± 4.25	
	Linear	77.60 ± 1.53	72.07 ± 2.06	47.24 ± 4.21	
Linear	Sigmoid	78.21 ± 1.16	74.00 ± 2.14	49.67 ± 2.15	
Linear	Logit	78.19 ± 1.61	72.64 ± 1.73	47.43 ± 2.45	
	Clusterpath	78.41 ± 0.99	71.43 ± 3.25	47.29 ± 5.21	
	Linear	78.93 ± 2.63	70.57 ± 4.89	45.52 ± 4.09	
Claratamanth	Sigmoid	77.89 ± 1.30	75.00 ± 5.13	44.48 ± 2.78	
Clusterpath	Logit	80.39 ± 1.20	73.43 ± 4.75	48.76 ± 2.43	
	Clusterpath	79.55 ± 2.29	71.43 ± 4.72	49.71 ± 4.33	

Data augmentation with GraphMAD consistently outperforms linear mixup, and different label mixup functions can improve accuracy

GraphMAD provides data-driven graph generation with learned regions of interest

Conclusion

Nonlinear mixup that considers all samples instead of pairs

Uncertainty dependent on existing data instead of enforced linear behavior

GraphMAD provides data-driven graph generation with learned regions of interest

Conclusion

Nonlinear mixup that considers all samples instead of pairs

Uncertainty dependent on existing data instead of enforced linear behavior

Next steps

Replace graphons as descriptors with learned descriptors

Applicable beyond graphs: higher-order networks, image data, etc.