Анализ временных рядов часть 2

Алёна Ким

ниу вшэ

9 ноября, 2018

Автокорреляционная функция (АСГ)

Временной ряд Y^T : $y_1,\dots,y_T,\dots,y_t\in\mathbb{R}$ - значения признака, измеренные через постоянные временные интервалы. Автокорреляция:

$$r_{\tau} = r_{y_t t_{t+\tau}} = \frac{\sum_{t=1}^{T-\tau} (y_t - \vec{y})(y_{t+\tau} - \vec{y})}{\sum_{t=1}^{T} (y_t - \vec{y})^2}, \vec{y} = \frac{1}{T} \sum_{t=1}^{T} y_t.$$

 $\mathit{r}_{ au} \in [-1,1], au$ – лаг автокорреляции

Нулевая гипотеза: $H_0: r_{ au} = 0$;

Альтернативная гипотеза: $H_1: r_{\tau} \neq 0$;

Статистика:
$$T(Y^T) = \frac{r_{\tau}\sqrt{T-\tau-2}}{\sqrt{1-r_{\tau}^2}};$$

Автокорреляционная функция (АСF) 35000 Объём продаж вина 25000 15000 1980 1985 1990 1995 Time 8.0 9.0 0.4 ACF 0.2 10 Lag

Нестационарность

сезонность

Нестационарность

тренд

Нестационарность

меняющаяся дисперсия

Стабилизация дисперсии

Логарифмирование как стабилизирующее преобразование:

Преобразования Бокса-Кокса

$$y_t' = \begin{cases} \ln y_t, \lambda = 0, \\ \frac{y_t^{\lambda} - 1}{\lambda}, \lambda \neq 0, \end{cases}$$

Параметр λ выбирается так, чтобы минимизировать дисперсию или максимизировать правдоподобие

Преобразования Бокса-Кокса

$$\hat{y}_t = egin{cases} \exp(\hat{y}_t'), \lambda = 0, \ (\lambda \hat{y}_t' + 1) rac{1}{\lambda}, \lambda
eq 0, \end{cases}$$

Если какие-то $y_t < 0$, преобразования Бокса-Кокса невозможны

Дифференцирование ряда

Временной ряд Y^T : $y_1, ..., y_T$ Дифференцирование:

$$y_1, \dots, y_T \rightarrow y'_2, \dots, y'_T$$

$$y'_t = y_t - y_{t-1}$$

Зачем?

- стабилизирует значение ряда
- избавляет от сезонности/тренда

Неоднократное дифференцирование

$$y_1,\ldots,y_T \to y_2',\ldots,y_T' \to y_3'',\ldots,y_T''$$

Сезонное дифференцирование ряда

Переход к попарным разностям значений в соседних сезонах

$$y_1, \dots, y_T \to y'_{s+1}, \dots, y'_T$$

$$y'_t = y_t - y_{t-s}$$

Обычное и сезонное дифференцирование можно выполнять в любом порядке.

Если ряд кажется сезонным, сначала лучше выполнить сезонное дифференцирование. После этого ряд может уже быть стационарным

Дифференцирование ряда

Критерий KPSS: Для исходного ряда p-value < 0.01Для ряда первых разностей p-value > 0.1

Критерий KPSS (Kwiatkowski-Philips-Schmidt-Shin)

```
ряд ошибок прогноза: \epsilon^T = \epsilon_1, \dots, \epsilon_T; нулевая гипотеза: H_0: ряд \epsilon^T стационарен; альтернативная гипотеза: H_1: ряд \epsilon^T описывается моделью вида \epsilon_t = \alpha \epsilon_{t-1}; статистика: KPSS(\epsilon^T) = \frac{1}{T^2 \lambda^2} \sum_{i=1}^T (\sum_{t=1}^i \epsilon_t)^2;
```

Пусть у нас есть независимый одинаково распределённый во времени шум

AR(p), MA(q)

$$AR(p): y_t = \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \epsilon_t,$$

$$MA(q): y_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q},$$

где y_t – стационарный ряд с нулевым средним, ϕ_t, θ_t – константы, ϵ_t – гауссов белый шум с нулевым средним и постоянной дисперсией σ^2_ϵ

Если среднее равно μ :

$$AR(p): y_t = \alpha + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \epsilon_t,$$

$$\alpha = \mu (1 - \phi_1 - \dots - \phi_p)$$

$$MA(q): y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q},$$

ARMA (Autoregressive moving average)

 $ARMA(p,q): y_t=\phi_1y_{t-1}+\ldots+\phi_py_{t-p}+\epsilon_t+\theta_1\epsilon_{t-1}+\ldots+\theta_q\epsilon_{t-q},$ где y_t - стационарный ряд с нулевым средним, ϕ_t,θ_t - константы, ϵ_t - гауссов белый шум с нулевым средним и постоянной дисперсией σ_ϵ^2

Если среднее равно μ :

$$y_t = \alpha + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q},$$

 $\alpha = \mu(1 - \phi_1 - \ldots - \phi_p)$ Другой способ записи:

$$\phi(B)y_t = \theta(B)\epsilon_t,$$

где B – разностный оператор ($By_t = y_{t-1}$)

$$\phi(B)y_t = (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p)y_t =$$

$$=\epsilon_t(1+\theta_1B+\ldots+\theta_qB^q)=\theta(B)\epsilon_t$$

Теорема Вольда

Любой стационарный ряд может быть аппроксимирован моделью ARMA(p,q) с любой точностью

ARIMA (Autoregressive integrated moving average)

Ряд описывается моделью ARIMA(p,d,q), если ряд его разностей

$$\nabla^d y_t = (1 - B)^d y_t$$

описывается моделью ARMA(p,q)

$$\phi(B)\nabla^d y_t = \theta(B)\epsilon_t$$

Подбор коэффициентов

- $\triangleright \alpha, \theta, \epsilon$
 - если все остальные параметры фиксированы, коэффициенты регрессии подбираются методом наименьших квадратов
 - чтобы найти коэффициенты θ , шумовая компонента предварительно оценивается с помощью остатков авторегрессии
 - если шум белый, то МНК даёт оценки максимального правдоподобия
- a
 - порядки дифференцирования подбираются так, чтобы ряд стал стационарным
 - чем меньше раз продифференцируем, тем меньше будет дисперсия итогового прогноза
- ▶ p, q
 - начальные приближения можно выбрать с помощью автокорреляций

Частичная автокорреляционная функция (РАСF)

Частичная автокорреляция: стационарного ряда y_t – автокорреляция остатков авторегрессии предыдущего порядка

$$\phi_h h = \begin{cases} r(y_{t+1}, y_t), h = 1, \\ r(\epsilon_{t+h}, \epsilon_t), h > 1, \end{cases}$$

р – номер последнего лага при котором РАСГ значима

q – номер последнего лага при котором ACF значима

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Построение ARIMA(4,1,13)

Дискретное преобразование Фурье

DFT, Discrete Fourier Transform

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn} =$$

$$\textstyle \sum_{n=0}^{N-1} x_n \cdot \left[cos(\frac{2\pi kn}{N}) - i \cdot sin(\frac{2\pi kn}{N}) \right],$$

$$(k=0,\ldots,N-1)$$

Ограничения:

При анализе с помощью преобразования Фурье, мы исходим из предположения, что он периодический на текущем временном интервале и состоит из элементарных синусоид.

Дискретное преобразование Фурье

- Получаем комплексные числа, содержащий информацию об амплитудном и фазовом спектрах анализируемого кадра. Причём спектры также являются дискретными с шагом (частота дискретизации)/(N отсчётов).
- Разложение в базис в некотором пространстве периодических функций. Коофициенты - веса этих функций.
- ▶ Выполняется за O(Nlog(N)) БПФ.

Ссылки