DATA 624 - Homework 7

OMER OZEREN

Table of Contents

Question 6.2	1
PART A	2
Part B	2
Part C	2
PART D	3
Part E	4
Elastic Net Regression	4
PART F	5
Question 6.3	6
PART A	6
Part B	9
PART C	9
PART D	
Part E	11
Part F	

Exercises 6.2 & 6.3

```
library(AppliedPredictiveModeling)
library(caret)
library(elasticnet)
library(knitr)
library(pls)
library(ggplot2)
library(tidyverse)
library(kableExtra)
library(RANN)
library(corrplot)
```

Question 6.2

Developing a model to predict permeability (see Sect. 1.4) could save significant resources for a pharmaceutical company, while at the same time more rapidly identifying molecules that have a sufficient permeability to become a drug:

PART A

Start R and use these commands to load the data:

```
data(permeability)
```

The fingerprints matrix holds **165 unique compounds**; **1107 molecular fingerprints**

Part B

the fingerprints predictors indicate the presense or absense of substructures of a molecule and are often sparse meaning that relatively few of the molecules contain each substructure. Filter out the predictors that have low frequencies using the nearZeroVar function from the caret package. How many are left for modeling?

```
fingerprints %>%
  nearZeroVar() %>%
  length()
## [1] 719
```

There are 719 variables left after filtering out the near zero variables.

Part C

Split the data into a training and a test set, pre-process the data, and tune a PLS model. How many latent variables are optimal and what is the corresponding resampled estimate of R2?

I'm going to split the data 70% for training and 30% for testign.

```
data_clear <- as.data.frame(fingerprints[, nearZeroVar(fingerprints)]) %>%
  mutate(y = permeability)
set.seed(42)
data clear <- cbind(data.frame(permeability),data clear)</pre>
n <- floor(0.70 * nrow(data clear))</pre>
idx <- sample(seq_len(nrow(data_clear)), size = n)</pre>
training_df <- data_clear[idx, ]</pre>
testing df <- data clear[-idx, ]</pre>
# build PLS model
pls model <- train(</pre>
  y ~ ., data = training_df, method = "pls",
  center = TRUE,
  trControl = trainControl("cv", number = 10),
  tuneLength = 25
)
#results
plot(pls model$results$Rsquared,
xlab = "ncomp",
```

```
ylab = "Rsquared"
)
```



```
pls_model$results %>%
  filter(ncomp == pls_model$bestTune$ncomp) %>%
  select(ncomp, RMSE, Rsquared) %>%
  kable() %>%
  kable_styling()

ncomp
RMSE
Rsquared
```

25 6.15e-05

1

As we can see above plot, the optimal components number in model is 25.In addition to that, the PLS model captures 100% of the permeability .

PART D

Predict the response for the test set. What is the test set estimate of R2?

```
# Make predictions
pred <- predict(pls_model, testing_df)
# Error Metric/Model Evaluation</pre>
```

We got the same R^2 which is 1.I actually also tried for 80/20 % split. However, I got the same R^2 .

Part E

Try building other models discussed in this chapter. Do any have better predictive performance?

I'll use Elastic Net Regression

Elastic Net Regression

```
data clear <- fingerprints[, -nearZeroVar(fingerprints)]</pre>
data clear <- cbind(data.frame(permeability),data clear) #adding permeability
number <- floor(0.70 * nrow(data_clear)) # 70/30 split</pre>
idx <- sample(seg len(nrow(data clear)), size = number)</pre>
train df <- data clear[idx, ]</pre>
test_df <- data_clear[-idx, ]</pre>
#train the Elastic Net model
elastic model <- train(x=train df[,-1],
                 y=train df$permeability,
                 method='enet',
                 metric='RMSE', # error mettric
                 tuneGrid=expand.grid(.fraction = seq(0, 1, by=0.2),
                                        .lambda = seq(0, 1, by=0.2)),
                 trControl=trainControl(method='cv',number=10),
                 preProcess=c('center','scale'))
## Warning: model fit failed for Fold09: lambda=0.0, fraction=1 Error in if
(zmin < gamhat) { : missing value where TRUE/FALSE needed</pre>
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info =
trainInfo, :
## There were missing values in resampled performance measures.
```

plot(elastic_model)


```
#best params
elastic_model$bestTune

## fraction lambda
## 3  0.4  0

#perf of best params
getTrainPerf(elastic_model)

## TrainRMSE TrainRsquared TrainMAE method
## 1 10.18728  0.6116537 7.391802 enet
```

As we can see on graph on above R^2 declined from 1 to 0.55

PART F

Would you recommend any of your models to replace the permeability laboratory experiment?

No, it is obvious that the predictive power from Elastic Net Regression is not as good as the laboratory experiment.

Question 6.3

A chemical manufacturing process for a pharmaceutical product was discussed in Sect. 1.4. In this problem, the objective is to understand the relationship between biological measurements of the raw materials (predictors), 6.5 Computing 139 measurements of the manufacturing process (predictors), and the response of product yield. Biological predictors cannot be changed but can be used to assess the quality of the raw material before processing. On the other hand, manufacturing process predictors can be changed in the manufacturing process. Improving product yield by 1% will boost revenue by approximately one hundred thousand dollars per batch:

PART A

Start R and use these commands to load the data:

```
data(ChemicalManufacturingProcess)
chem <- ChemicalManufacturingProcess</pre>
head(chem)
##
     Yield BiologicalMaterial01 BiologicalMaterial02 BiologicalMaterial03
## 1 38.00
                             6.25
                                                  49.58
                                                                         56.97
## 2 42.44
                             8.01
                                                  60.97
                                                                         67.48
## 3 42.03
                             8.01
                                                  60.97
                                                                         67.48
## 4 41.42
                             8.01
                                                  60.97
                                                                         67.48
## 5 42.49
                             7.47
                                                  63.33
                                                                        72.25
## 6 43.57
                             6.12
                                                  58.36
                                                                         65.31
     BiologicalMaterial04 BiologicalMaterial05 BiologicalMaterial06
##
## 1
                     12.74
                                            19.51
                                                                  43.73
## 2
                     14.65
                                            19.36
                                                                  53.14
## 3
                                                                  53.14
                     14.65
                                            19.36
## 4
                                            19.36
                                                                  53.14
                     14.65
## 5
                                            17.91
                                                                  54.66
                     14.02
## 6
                     15.17
                                            21.79
                                                                  51.23
##
     BiologicalMaterial07 BiologicalMaterial08 BiologicalMaterial09
## 1
                       100
                                            16.66
                                                                  11.44
## 2
                       100
                                            19.04
                                                                  12.55
## 3
                       100
                                            19.04
                                                                  12.55
## 4
                       100
                                            19.04
                                                                  12.55
## 5
                       100
                                            18.22
                                                                  12.80
## 6
                       100
                                            18.30
                                                                  12.13
     BiologicalMaterial10 BiologicalMaterial11 BiologicalMaterial12
##
## 1
                      3.46
                                          138.09
                                                                  18.83
## 2
                      3.46
                                          153.67
                                                                  21.05
## 3
                      3.46
                                          153.67
                                                                  21.05
## 4
                      3.46
                                          153.67
                                                                  21.05
## 5
                      3.05
                                          147.61
                                                                  21.05
## 6
                      3.78
                                                                  20.76
                                          151.88
##
     ManufacturingProcess01 ManufacturingProcess02 ManufacturingProcess03
## 1
                                                                            NA
                          NA
                                                   NA
```

##	2	0.0	0	NA
##	3	0.0	0	NA
##	4	0.0	0	NA
##	5	10.7	0	NA
##	6	12.0	0	NA
##			ManufacturingProcess05	
##	1	NA	NA	NA
##		917	1032.2	210.0
##		912	1003.6	207.1
##		911	1014.6	213.3
##		918	1027.5	205.7
##		924	1016.8	208.9
##	U		ManufacturingProcess08	
##	1	NA	NA	43.00
##		177	178	46.57
##		177	178	45.07
##		178	178	44.92
##		178	178	44.96
##	ь	178	178	45.32
##		<u> </u>	ManufacturingProcess11	•
##		NA	NA	NA
##		NA	NA	0
##		NA	NA	0
##		NA	NA	0
##		NA	NA	0
##	6	NA	NA	0
##			ManufacturingProcess14	-
##	1	35.5	4898	6108
##		34.0	4869	6095
	2		4869 4878	6095 6087
##	2 3	34.0	4869	
## ##	2 3 4	34.0 34.8	4869 4878	6087
## ## ##	2 3 4 5	34.0 34.8 34.8 34.6 34.0	4869 4878 4897 4992 4985	6087 6102 6233 6222
## ## ## ##	2 3 4 5	34.0 34.8 34.8 34.6 34.0	4869 4878 4897 4992	6087 6102 6233 6222
## ## ## ##	2 3 4 5 6	34.0 34.8 34.8 34.6 34.0	4869 4878 4897 4992 4985	6087 6102 6233 6222
## ## ## ## ##	2 3 4 5 6	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16	4869 4878 4897 4992 4985 ManufacturingProcess17	6087 6102 6233 6222 ManufacturingProcess18
## ## ## ## ## ##	2 3 4 5 6	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5	6087 6102 6233 6222 ManufacturingProcess18 4865
## ## ## ## ## ##	2 3 4 5 6 1 2 3	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0	6087 6102 6233 6222 ManufacturingProcess18 4865 4867
## ## ## ## ## ##	2 3 4 5 6 1 2 3 4	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877
## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872
## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635 4733 4786	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8 34.8	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872 4886 4862
## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5 6	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635 4733 4786	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8 34.8 33.9 33.4	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872 4886 4862
## ## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5 6 1	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635 4733 4786 ManufacturingProcess19	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8 34.8 33.9 33.4 ManufacturingProcess20	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872 4886 4862 ManufacturingProcess21
## ## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5 6 1 2	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635 4733 4786 ManufacturingProcess19 6049	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8 34.8 33.9 33.4 ManufacturingProcess20 4665	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872 4886 4862 ManufacturingProcess21 0.0
## ## ## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5 6 1 2 3	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635 4733 4786 ManufacturingProcess19 6049 6097	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8 34.8 33.9 33.4 ManufacturingProcess20 4665 4621	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872 4886 4862 ManufacturingProcess21 0.0 0.0
## ## ## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5 6 1 2 3 4	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635 4733 4786 ManufacturingProcess19 6049 6097 6078	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8 34.8 33.9 33.4 ManufacturingProcess20 4665 4621	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872 4886 4862 ManufacturingProcess21 0.0 0.0 0.0
## ## ## ## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635 4733 4786 ManufacturingProcess19 6049 6097 6078 6073 6073	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8 34.8 33.9 33.4 ManufacturingProcess20 4665 4621 4621 4611 4659	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872 4886 4862 ManufacturingProcess21 0.0 0.0 0.0 0.0
## ## ## ## ## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635 4733 4786 ManufacturingProcess19 6049 6097 6078 6073 6102 6115	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8 34.8 33.9 33.4 ManufacturingProcess20 4665 4621 4621 4611 4659 4696	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872 4886 4862 ManufacturingProcess21 0.0 0.0 0.0 0.0 0.0
## ## ## ## ## ## ## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635 4733 4786 ManufacturingProcess19 6049 6097 6078 6073 6102 6115 ManufacturingProcess22	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8 34.8 33.9 33.4 ManufacturingProcess20 4665 4621 4611 4659 4696 ManufacturingProcess23	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872 4886 4862 ManufacturingProcess21 0.0 0.0 0.0 0.0 0.0 0.0 ManufacturingProcess24
## ## ## ## ## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1	34.0 34.8 34.8 34.6 34.0 ManufacturingProcess16 4682 4617 4617 4635 4733 4786 ManufacturingProcess19 6049 6097 6078 6073 6102 6115	4869 4878 4897 4992 4985 ManufacturingProcess17 35.5 34.0 34.8 34.8 33.9 33.4 ManufacturingProcess20 4665 4621 4621 4611 4659 4696	6087 6102 6233 6222 ManufacturingProcess18 4865 4867 4877 4872 4886 4862 ManufacturingProcess21 0.0 0.0 0.0 0.0 0.0

## 3	4	1	4
## 4	5	2	5
## 5	8	4	18
## 6	9	1	1
##		ManufacturingProcess26	
## 1	4873	6074	4685
## 2	4869	6107	4630
## 3	4897	6116	4637
## 4	4892	6111	4630
## 5	4930	6151	4684
## 6	4871	6128	4687
##	ManufacturingProcess28	ManufacturingProcess29	ManufacturingProcess30
## 1	10.7	21.0	9.9
## 2	11.2	21.4	9.9
## 3	11.1	21.3	9.4
## 4	11.1	21.3	9.4
## 5	11.3	21.6	9.0
## 6	11.4	21.7	10.1
##	ManufacturingProcess31	ManufacturingProcess32	
## 1	69.1	156	66
## 2		169	66
## 3	69.3	173	66
## 4	69.3	171	68
## 5	69.4	171	70
## 6	68.2	173	70
•	55.2	=: -	. •
##	ManufacturingProcess34	ManufacturingProcess35	ManufacturingProcess36
## ## 1		ManufacturingProcess35 486	
## 1	2.4	486	0.019
## 1 ## 2	2.4 2.6	486 508	0.019 0.019
## 1 ## 2 ## 3	2.4 2.6 2.6	486 508 509	0.019 0.019 0.018
## 1 ## 2 ## 3 ## 4	2.4 2.6 2.6 2.5	486 508 509 496	0.019 0.019 0.018 0.018
## 1 ## 2 ## 3 ## 4 ## 5	2.4 2.6 2.6 2.5 2.5	486 508 509 496 468	0.019 0.019 0.018 0.018 0.017
## 1 ## 2 ## 3 ## 4 ## 5	2.4 2.6 2.6 2.5 2.5 2.5	486 508 509 496 468 490	0.019 0.019 0.018 0.018 0.017 0.018
## 1 ## 2 ## 3 ## 4 ## 5 ## 6	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37	486 508 509 496 468 490 ManufacturingProcess38	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39
## 1 ## 2 ## 3 ## 4 ## 5 ## 6	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5	486 508 509 496 468 490 ManufacturingProcess38	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2
## 1 ## 2 ## 3 ## 4 ## 5 ## 6 ## 1	2.4 2.6 2.5 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0	486 508 509 496 468 490 ManufacturingProcess38 3	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2
## 1 ## 2 ## 3 ## 4 ## 5 ## 6 ## 1 ## 2 ## 3	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7	486 508 509 496 468 490 ManufacturingProcess38 3 2	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2
## 1 ## 2 ## 3 ## 4 ## 5 ## 6 ## ## 1 ## 2 ## 3 ## 4	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2	486 508 509 496 468 490 ManufacturingProcess38 3 2 2	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2
## 1 ## 2 ## 3 ## 4 ## 5 ## 1 ## 2 ## 3 ## 4 ## 5	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2	486 508 509 496 468 490 ManufacturingProcess38 3 2 2 2	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2
## 1 ## 2 ## 3 ## 4 ## 5 ## 1 ## 2 ## 3 ## 4 ## 5 ## 6	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2	486 508 509 496 468 490 ManufacturingProcess38 2 2 2 2	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2
## 1 ## 3 ## 4 ## 5 ## 1 ## 2 ## 3 ## 4 ## 5	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2 0.4 ManufacturingProcess40	486 508 509 496 468 490 ManufacturingProcess38 3 2 2 2 ManufacturingProcess41	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
## 1 ## 2 ## 3 ## 4 ## 5 ## 6 ## 1 ## 2 ## 3 ## 4 ## 5 ## 1	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2 0.4 ManufacturingProcess40 NA	486 508 509 496 468 490 ManufacturingProcess38 2 2 2 ManufacturingProcess41 NA	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
## 1 ## 3 ## 4 ## 5 ## 1 ## 2 ## 3 ## 5 ## 1 ## 1	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2 0.4 ManufacturingProcess40 NA 0.1	486 508 509 496 468 490 ManufacturingProcess38 2 2 2 ManufacturingProcess41 NA 0.15	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 11.6 11.1
## 1 ## 3 ## 4 ## 5 ## 1 ## 5 ## 5 ## 5 ## 4 ## 5 ## 1 ## 2	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2 0.4 ManufacturingProcess40 NA 0.1 0.0	486 508 509 496 468 490 ManufacturingProcess38 3 2 2 2 2 ManufacturingProcess41 NA 0.15 0.00	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2 7.2 1.6 11.1 12.0
## 1 ## 3 ## 4 ## 5 6 ## 1 2 ## 3 ## 5 6 ## 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.4 2.6 2.5 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2 0.4 ManufacturingProcess40 NA 0.1 0.0	486 508 509 496 468 490 ManufacturingProcess38 2 2 2 2 ManufacturingProcess41 NA 0.15 0.00 0.00	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2 7.2 11.6 11.1 12.0 10.6
## 1 ## 3 ## 4 ## 5 ## 1 ## 2 ## 3 ## 5 6 ## 1 ## 2 ## 3 ## 4 ## 5	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2 0.4 ManufacturingProcess40 NA 0.1 0.0 0.0	486 508 509 496 468 490 ManufacturingProcess38 2 2 2 ManufacturingProcess41 NA 0.15 0.00 0.00	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2 7.2 11.6 11.1 12.0 10.6 11.0
## 1 ## 3 ## 4 ## 5 6 ## 1 ## 2 3 ## 4 ## 5 6 ## 1 1 2 3 4 4 4 4 5 6 4 4 4 4 5 6 4 4 4 4 5 6 6 7 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2 0.4 ManufacturingProcess40 NA 0.1 0.0 0.0 0.0	486 508 509 496 468 490 ManufacturingProcess38 2 2 2 2 ManufacturingProcess41 NA 0.15 0.00 0.00 0.00 0.00	0.019 0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2 11.6 11.1 12.0 10.6 11.0 11.5
## 1 ## 3 ## 4 ## 5 6 ## 1 2 ## 5 6 ## 1 2 4 4 5 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.4 2.6 2.6 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2 0.4 ManufacturingProcess40 NA 0.1 0.0 0.0 0.0 ManufacturingProcess43	486 508 509 496 468 490 ManufacturingProcess38 3 2 2 2 2 ManufacturingProcess41 NA 0.15 0.00 0.00 0.00 0.00 ManufacturingProcess44	0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2 7.2 1.6 11.1 12.0 10.6 11.0 11.5 ManufacturingProcess45
## 1 ## 3 ## 4 ## 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 5 6 1 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.4 2.6 2.5 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2 0.4 ManufacturingProcess40 NA 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	486 508 509 496 468 490 ManufacturingProcess38 3 2 2 2 ManufacturingProcess41 NA 0.15 0.00 0.00 0.00 ManufacturingProcess44 1.8	0.019 0.018 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2 7.2 1.6 11.6 11.1 12.0 10.6 11.0 11.5 ManufacturingProcess45 2.4
## 1 ## 3 ## 4 ## 5 6 ## 1 2 ## 5 6 ## 1 2 4 4 5 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.4 2.6 2.5 2.5 2.5 2.5 ManufacturingProcess37 0.5 2.0 0.7 1.2 0.2 0.4 ManufacturingProcess40 NA 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	486 508 509 496 468 490 ManufacturingProcess38 3 2 2 2 2 ManufacturingProcess41 NA 0.15 0.00 0.00 0.00 0.00 ManufacturingProcess44	0.019 0.018 0.018 0.017 0.018 ManufacturingProcess39 7.2 7.2 7.2 7.2 7.2 7.2 7.2 1.6 11.1 12.0 10.6 11.0 11.5 ManufacturingProcess45

## 4	1.1	1.8	2.1
## 5	1.1	1.7	2.1
## 6	2.2	1.8	2.0

The matrix Chemical Manufacturing Process has the 57 explanatory variable

- 12 of 57 explanatory variable is biological material and
- 45 of 57 explanatory variable is the process variable for the 176 manufacturing purposes.

Part B

A small percentage of cells in the predictor set contain missing values. Use an imputation function to fill in these missing values (e.g., see Sect. 3.8).

I will imputer missing values with KNN to impute values.

```
# Make this reproducible
set.seed(42)
knn_model <- preProcess(ChemicalManufacturingProcess, "knnImpute")
df_no_missing <- predict(knn_model, ChemicalManufacturingProcess)</pre>
```

PART C

Split the data into a training and a test set, pre-process the data, and tune a model of your choice from this chapter. What is the optimal value of the performance metric?

I will split the data 70/30 the same as question 6.2 part c

```
number <- floor(0.70 * nrow(df_no_missing)) # 70/30 split
idx <- sample(seq_len(nrow(df_no_missing)), size = number)
training_df <- df_no_missing[idx, ]
testing_df <- df_no_missing[-idx, ]</pre>
```

I will buila PLS model since I got really good results for question 6.2


```
pls_model$results %>%
  filter(ncomp == pls_model$bestTune$ncomp) %>%
  select(ncomp, RMSE, Rsquared) %>%
  kable() %>%
  kable_styling()
```

ncomp RMSE Rsquared 3 0.702369 0.526431

As we can see above plot, the optimal components number in model is 3.In addition to that, the PLS model captures 53% of the Yield.

PART D

Predict the response for the test set. What is the value of the performance metric and how does this compare with the resampled performance metric on the training set?

```
Rsquared = caret::R2(pred, testing_df$Yield))
results %>%
kable() %>%
kable_styling()
```

Model

RMSE

Rsquared

PLS Model

0.5571291

0.6854267

As we see above display, the error metric RMSE is lower and \mathbb{R}^2 is higher with test data set.

Part E

Which predictors are most important in the model you have trained? Do either the biological or process predictors dominate the list?

```
pls_importance <- varImp(pls_model)$importance %>%
   as.data.frame() %>%
   rownames_to_column("Variable") %>%
   filter(Overall >= 50) %>% # set a threshold for vairables importance
   arrange(desc(Overall)) %>%
   mutate(importance = row_number())
varImp(pls_model) %>%
   plot(., top = max(pls_importance$importance), main = "PLS Model Feature
Importance")
```

PLS Model Feature Importance

The PLS Model Feature importances indicates that ManufacturingProcess32 is the most importance variable for the PL model.In order to move forward, We can set a threshold and only pass the variables that threshold.Here I set a threshold as at least 50 % importance for PLS model.

Part F

Explore the relationships between each of the top predictors and the response. How could this information be helpful in improving yield in future rounds of the manufacturing process?

The purpose of relationship between each of the top predictors and the response, I plotted the corrrelation relations for each important variable to respond variable. The correlation heat map shows that variables are positively correleted with Yield respond. The Manufacuring process 32 is the most correleted variable to respond variable. Some variables are negatively correleted to othe explanatory variable. For example, Manufacuring process 32 is negatively correlated with manufacturing process 13.