Artificial Intelligence

Review 3: Association Rule Mining

인공지능학과 Department of Artificial Intelligence

정 우 환 (whjung@hanyang.ac.kr) Fall 2021

Association Rules

- 데이터 상호간의 연관 규칙
- Example) '{라면, 우유}->{커피}'
 - 라면과 우유를 산 사람은 커피도 같이 산다

사용 사례

- 고객들의 물품 구매 패턴을 분석한 결과에 기반하여
 - 연관 물품 쿠폰이나 할인 행사 제공
 - 온라인 서점에서 다른 구매자들이 구매한 책 정보를 함께 제공

\$10.17

Customers Who Bought This Item Also Bought

A PhD Is Not Enough!: A
Guide to Survival in ...
> Peter J. Feibelman

****** (58)
Paperback

Surviving Your Stupid, Stupid Decision to Go ... > Adam Ruben

Get Into Graduate School Kaplan

<예: 아마존(amazon.com)의 상품 추천>

문제점의) Association Rule Mining

- Given:
 - A database of customer transactions D
 - Each transaction is a set of items
 - *MinSupp*: minimum support
 - *MinConf*: minimum confidence
- Find all rules $X \rightarrow Y$ such that
 - $Support(X) \ge MinSupp$

$$Support(X) = \frac{\# \ transactions \ that \ contains \ X}{\# \ transactions \ in \ D}$$

• $Confidence(X \rightarrow Y) \ge MinConf$

TID	Items
10	a, c, d
20	b, c, e
30	a, b, c, e
40	b, e

$$Support(\{b\}) = 0.75$$

 $Support(\{b,c\}) = 0.5$
 $Confidence(\{b\} \rightarrow \{c\}) = 0.66$

$$Confidence(X \to Y) = \frac{\#\ transactions\ that\ contains\ X\ and\ Y}{\#\ transactions\ that\ contains\ X} = \frac{Support(X \cup Y)}{Support(X)}$$

Association Rule Mining

- Consists of 2 steps
 - Step 1: Find all frequent itemsets that have minimum support
 - Find all X such that $Support(X) \ge MinSupp$
 - Most expensive phase
 - Lots of research
 - Step 2: Find all rules by using the frequent itemsets
 - Find all $X \to Y$ such that $Confidence(X \to Y) \ge MinConf$
 - Straightforward

Step 1: Find all frequent itemsets

Itemsets & Counts

TID	Items	
10	A,C,D	
20	B,C,E	
30	A,B,C,E	
40	B,E	

Itemset	Count
Α	1
С	1
D	1
A,C	1
A,D	1
C,D	1
A,C,D	1

Itemsets & Counts

TID	Items	
10	A,C,D	
20	B,C,E	6
30	A,B,C,E	
40	B,E	

Itemset	Count
Α	1
С	2
D	1
A,C	1
A,D	1
C,D	1
A,C,D	1
В	1
Е	1
В,С	1
B,E	1
C,E	1
B,C,E	1

Itemsets & Counts

TID	Items	
10	A,C,D	
20	B,C,E	
30	A,B,C,E	6 1
40	B,E	

Itemset	Count
Α	2
С	3
D	1
A,C	2
A,D	1
C,D	1
A,C,D	1
В	2
Е	2
В,С	2
B,E	2
C,E	2
B,C,E	2

Count
1
1
1
1
1

Itemsets & Counts

TID	Items
10	A,C,D
20	B,C,E
30	A,B,C,E
40	B,E

Itemset	Count
Α	2
С	3
D	1
A,C	2
A,D	1
C,D	1
A,C,D	1
В	3
Е	3
В,С	2
B,E	3
C,E	2
B,C,E	2

Itemset	Count
A,B	1
A,E	1
A,B,C	1
A,B,E	1
A,B,C,E	1

Frequent itemsets

Transactions

TID	Items
10	A,C,D
20	B,C,E
30	A,B,C,E
40	B,E

Itemset	Count
Α	2
С	3
D	1
A,C	2
A,D	1
C,D	1
A,C,D	1
В	3
Е	3
В,С	2
B,E	3
C,E	2
B,C,E	2

Itemset	Count
A,B	1
A,E	1
A,B,C	1
A,B,E	1
A,B,C,E	1

We may need 2ⁿ itemset entries for counts!

Naïve Counting

• Given d items, there are 2^d itemsets

Apriori: A Candidate Generation-and-Test Approach

 Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!

(Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)

- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can b generated

Candidate Itemset Generation by Apriori

An Apriori Example

