Definition 15.3. Let A be an $n \times n$ matrix over a field K. Assume that all the roots of the characteristic polynomial $\chi_A(X) = \det(XI - A)$ of A belong to K, which means that we can write

$$\det(XI - A) = (X - \lambda_1)^{k_1} \cdots (X - \lambda_m)^{k_m},$$

where $\lambda_1, \ldots, \lambda_m \in K$ are the distinct roots of $\det(XI - A)$ and $k_1 + \cdots + k_m = n$. The integer k_i is called the *algebraic multiplicity* of the eigenvalue λ_i , and the dimension of the eigenspace $E_{\lambda_i} = \text{Ker}(\lambda_i I - A)$ is called the *geometric multiplicity* of λ_i . We denote the algebraic multiplicity of λ_i by $\text{alg}(\lambda_i)$, and its geometric multiplicity by $\text{geo}(\lambda_i)$.

By definition, the sum of the algebraic multiplicities is equal to n, but the sum of the geometric multiplicities can be strictly smaller.

Proposition 15.2. Let A be an $n \times n$ matrix over a field K and assume that all the roots of the characteristic polynomial $\chi_A(X) = \det(XI - A)$ of A belong to K. For every eigenvalue λ_i of A, the geometric multiplicity of λ_i is always less than or equal to its algebraic multiplicity, that is,

$$geo(\lambda_i) \leq alg(\lambda_i).$$

Proof. To see this, if n_i is the dimension of the eigenspace E_{λ_i} associated with the eigenvalue λ_i , we can form a basis of K^n obtained by picking a basis of E_{λ_i} and completing this linearly independent family to a basis of K^n . With respect to this new basis, our matrix is of the form

$$A' = \begin{pmatrix} \lambda_i I_{n_i} & B \\ 0 & D \end{pmatrix},$$

and a simple determinant calculation shows that

$$\det(XI - A) = \det(XI - A') = (X - \lambda_i)^{n_i} \det(XI_{n-n_i} - D).$$

Therefore, $(X - \lambda_i)^{n_i}$ divides the characteristic polynomial of A', and thus, the characteristic polynomial of A. It follows that n_i is less than or equal to the algebraic multiplicity of λ_i . \square

The following proposition shows an interesting property of eigenspaces.

Proposition 15.3. Let E be any vector space of finite dimension n and let f be any linear map. If u_1, \ldots, u_m are eigenvectors associated with pairwise distinct eigenvalues $\lambda_1, \ldots, \lambda_m$, then the family (u_1, \ldots, u_m) is linearly independent.

Proof. Assume that (u_1, \ldots, u_m) is linearly dependent. Then there exists $\mu_1, \ldots, \mu_k \in K$ such that

$$\mu_1 u_{i_1} + \cdots + \mu_k u_{i_k} = 0,$$

where $1 \leq k \leq m$, $\mu_i \neq 0$ for all $i, 1 \leq i \leq k$, $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, m\}$, and no proper subfamily of $(u_{i_1}, \ldots, u_{i_k})$ is linearly dependent (in other words, we consider a dependency relation with k minimal). Applying f to this dependency relation, we get

$$\mu_1 \lambda_{i_1} u_{i_1} + \dots + \mu_k \lambda_{i_k} u_{i_k} = 0,$$