Total No. of Questions: 8]		SEAT No. :
P4308	[4860]-1258	[Total No. of Pages : 2

M.E. (E & TC) (VLSI & Embedded Systems) EMBEDDED SIGNAL PROCESSORS (2013 Credit Pattern) (Semester-II) (504209)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer any 5 questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) All questions carry equal marks.
- 5) Use of calculator is allowed.
- 6) Assume suitable data, if necessary.
- **Q1)** a) What are the challenges in real time embedded signal processing? [3]
 - b) Explain the structure of 5-point and 10-point running average filter with suitable equations and also explain how increase in sampling frequency affects the output? [5]
 - c) What is the concept of moving window in signal processing. [2]
- **Q2)** a) Realize the FIR transfer function $H(z) = 1-3.6z^{-1} + 5.4z^{-2} 4.32z^{-3} + 1.944z^{-4} 0.466z^{-5} + 0.0467z^{-6}$ in the following forms: [6]
 - i) Direct form I
 - ii) Direct form II
 - iii) Cascade of six first order sections.
 - b) Explain how median filter reduces the impulse noise. [4]
- **Q3)** a) Find out the transfer function and the frequency response of the Hanning filter with coefficients {0.1, 0.2, 0.4, 0.2, 0.1}. Plot the magnitude and phase response. [5]
 - b) Design notch filter with suitable equations and explain how the location of pole affects its behavior. [5]

Q4)	a)	Draw the signal flow graph of 4 pt DIT-FFT. [4	4]
	b)	Explain adaptive FIR filter with the least mean square (LMS) algorithm [4	
	c)	Evaluate the stability of system $H(z) = z/(z - a)$ for different values of coefficient a. [2]	
Q5)	a)	Discuss finite wordlength effects. [4	[]
	b)	What are the important features of TMS320C67XX processor? Draw and explain the block diagram of TMS320C67XX. [6]	
Q6)	a)	Explain different addressing modes of TMS320C54XX. [4	[]
	b)	Compare TMS320C54XX and TMS320C67XX with respect t architecture, MIPS, memories and addressing modes.	.o [6]
Q7)	a)	Explain with an example how FFT algorithm can be implemented in TMS320C67XX. [4]	
	b)	Compare and contrast fixed and floating point processors. [3	3]
	c)	Justify the necessity of MAC and barrel shifter in DSP processor. [3	3]
Q8)	a)	Explain how performance of DSP processor can be improved wit pipelining.	:h []
	b)	Explain how Dual Tone Multi Frequency is generated using two III filters connected in parallel. How Goertzel filters are used for DTM detection.	F

••••