Technische Universität Berlin Fakultät II, Institut für Mathematik

Sekretariat MA 5–2, Dorothea Kiefer-Hoeft

1. Tutoriumsblatt Computerorientierte Mathematik I

1. Tutoriumsaufgabe

Stellt eure Tutor:innen Fragen, über die Vorlesung, über Mathematik, über das Studium... Sie freuen sich.

2. Tutoriumsaufgabe

Versuche, die folgenden Aussagen unter Benutzung von Logiksymbolen $\vee, \wedge, \neg, \exists, \forall$ umzuschreiben. Schreibe dann die Verneinung $\neg P$ jeder der folgenden Aussagen P.

- (i) 3 ist positiv, aber 4 ist es nicht.
- (ii) $\pi \notin \mathbb{Q}$ und $1 \in \mathbb{Q}$.
- (iii) Alle Äpfel sind rot.
- (iv) Jede nicht-negative reelle Zahl x besitzt eine reelle Wurzel $y = \sqrt{x}$.
- (v) Für jede $\alpha > 0$ existiert ein $n_0 \in \mathbb{N}$ so, dass für alle $n \geq n_0$ gilt: $f(n) \leq \alpha \cdot g(n)$.

3. Tutoriumsaufgabe

Versuche, die folgenden Aussagen unter Benutzung von Logiksymbolen $\vee, \wedge, \neg, \exists, \forall$ umzuschreiben. Schreibe dann die Kontraposition $\neg Q \Rightarrow \neg P$ jeder der folgenden Aussagen $P \Rightarrow Q$.

- (i) Wenn es Montag ist, haben wir Unterricht.
- (ii) Die Ampel ist grün, also können wir fahren.
- (iii) $x^2 \in \mathbb{Z} \Rightarrow x \in \mathbb{Z}$.
- (iv) Wenn x^2 ungerade ist, dann ist x ungerade.
- (v) Jede nicht-negative reelle Zahl x besitzt eine reelle Wurzel $y = \sqrt{x}$.

4. Tutoriumsaufgabe

- (i) Unten sind Funktionen $f, g: \mathbb{N} \to \mathbb{N}$ gegeben. Finde jeweils Zahlen $\alpha, n_0 > 0$ so, dass $f(x) \leq \alpha \cdot g(x)$ gilt für alle $x > n_0$.
 - a) f(x) = x, g(x) = 2024x
 - b) $f(x) = 14x^3$, $q(x) = x^4 + 6x^3$
 - c) $f(x) = 3^x$, g(x) = x!
- (ii) Was sagt unsere Arbeit in Teil (i) jeweils über die Relation zwischen f und g aus? Versuche, diese Relationen mit \mathcal{O} -Notation auszudrücken!

5. Tutoriumsaufgabe

- (i) Welche Möglichkeiten gibt es einem Programm von außen eine Eingabe zu übergeben? Was ist eine Funktion? Wozu werden Funktionen benötigt?
- (ii) Schreibe zwei Programme, welche die Summe von zwei Zahlen zurückgeben. Dabei sollen die zwei Zahlen einmal vom Nutzer eingegeben und beim zweiten Programm einer Funktion übergeben werden.
- (iii) Betrachte den folgenen Algorithmus in Pseudocode. Was gibt der Algorithmus für a=12 und b=8 aus? Was berechnet der Algorithmus im Allgemeinen? Wie könnte ein Python Programm aussehen, welches das Problem löst?

```
Require: a, b \in \mathbb{N} \setminus \{0\}

while b \neq 0 do

if a > b then

a := a - b

else

b := b - a

end if

end while

return a
```