

Ceramics and polymers

41680 Introduction to advanced materials

DTU Construct

Department of Civil and Mechanical Engineering

Structures of ceramics

DTU Construct

Department of Civil and Mechanical Engineering

Interstitial sites in cubic lattices

	Simple cubic (sc)	Face- centered cubic (fcc)		Body- centered cubic (bcc)
Crystal lattice			7	
Atomic packing factor	52%	74%		68%
Interstitial site	Hexahedral	Octah.	Tetrah	Octahedral
Sites per atom	1	1	2	3
Size r / R	0.732	0.414	0.230	0.150

DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Ionic crystals Aⁿ⁺Xⁿ⁻

- Smaller cations A^{n+} (missing electrons), ion radius R_A
- Larger anions X^{n-} (extra electrons), ion radius R_X
- How many larger anions fit around a smaller cation?
- Depending on ratio R_A/R_X (or R_X/R_A in case of $R_A > R_X$)
- Planar configurations

- -Slightly to small cations are unstable
- -Slightly to large cations push anions from each other

Structure of ceramics An+Xn-

• Sodium chloride

- Cl- on fcc sublattice
- Na+ in octahedral sites (forming an fcc sublattice)
- $r_0/R_x = 0.414$
- Coordination number 6:6
- 5 DTU Construct, Technical University of Denmark

• Cesium chloride

- Cl- on sc sublattice
- Cs+ in hexahedral sites (forming an sc sublattice)
- $r_H/R_X = 0.732$
- Coordination number 8:8

41680 Intro to advanced materials

F24

Structure of ceramics An+Xn-

R_A/R_X range	>0.732	0.414-0.732	<0.414
Structure type	CsCl	NaCl	ZnS
	Cesium chloride	Sodium chloride	Zinc blende
R_A/R_X comp.	0.92	0.56	0.40

Ion	Ionradius
Cs ⁺	0.167 nm
Cl-	0.181 nm
Na+	0.102 nm
S ²⁻	0.184 nm
Zn ²⁺	0.074 nm

Structure of ceramics (ZnS) Polymorphism

• Zinc blende structure

- S on fcc sublattice
- Zn in tetrahedral sites (forming an fcc sublattice)
- Coordination number 4:4
- DTU Construct, Technical University of Denmark

Wurtzite structure

- S on hcp sublattice
- Zn in tetrahedral sites (forming an hcp sublattice)
- Coordination number 4:4

41680 Intro to advanced materials

F24

Mass density

- Two different type of atoms CsCl structure
- Radii R₁, R₂
- Molar masses m_1 , m_2
- Number in unit cell N_1 , N_2
- Avogadro constant N_A
- Mass density (general)

$$\rho = \frac{N_1 m_1 + N_2 m_2}{N_A V_{unitcell}}$$

$$V_{unitcell} = a^3$$

 Relation between lattice constant and radii

$$2R_1 + 2R_2 = \sqrt{3}a$$

Lattice defects in ionic ceramics

• Point defects

Point defect pairs

- Electric charge
- Do not exist in equilibrium
- Electric neutral
- Relevant for
 - optical properties
 - AC conductivity

10 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Diamond structure

- Coordination number
- Number of atoms in unit cell
- Relation between radius and lattice constant (are there spheres touching each other?)
- Atomic packing factor 0.34
- Examples: Diamond, Si, Ge

Diamond structure

- Coordination number 4
- Number of atoms in unit cell 4 + 6/2 + 4/8 = 8
- Relation between radius and lattice constant (are there spheres touching each other?)

$$2R = a\sqrt{3}/4$$

• Atomic packing factor 0.34

$$\frac{V_{atoms}}{V_{unitcell}} = \frac{8}{a^3} \left(\frac{4\pi}{3} \left(\frac{a\sqrt{3}}{8} \right)^3 \right) = \frac{\pi\sqrt{3}}{16}$$

12 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Structure of ceramics (C)

• Diamond structure

- Coordination number 4
- Packing factor 0.34

• Graphite structure

- Coordination number 3
- Covalent bonds within plane
- Van der Waals bond between

Allotropy in carbon

Diamond	Graphite
Highest hardness	Low hardness
Best grinding material	Very good lubricant
Electrical isolator	Good electrical conductor
Best thermal conductor	Good thermal conductor
Transparent	Opaque
JewelryCutting toolsGrinding tools	Pencils, batteries, motorsLubricantSteel

4 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Even more allotropes of carbon

- 6 electrons, electron configuration 1s² 2s² 2p²
- 4 valence electrons = 4 covalent bonds
- diamond (hardest material)
- Graphite (thermodynamically stable)
- Graphite fibers (1958)

- Fullerenes (1985) "Buckyballs"
- Carbon-nanotubes (1991)

Amorphous solids

Solids without crystalline arrangement

Order	Disorder
Crystals	Glass
Liquid crystals	Melt
Quartz	Quartzglass
Trigonal	Fused silica
	类菜
	Crystals Liquid crystals Quartz

F24

DTU

Amorphous solids

• SiO₄ tetrahedron

• Crystalline phase (Cristobalite)

• Glass

• Net builder Na

Defects in ceramics

Lattice defects in crystalline ceramics

- Point defects
- Dislocations
 - Motion may or may not to lead to neighboring ions with same charge
 - Low number of slip systems
- Grain boundaries

General for all ceramics

- Pores (from manufacturing)
 - Lower density and related properties (conductivities, strength)
- Microcracks

DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Structures of polymers

DTU Construct

Department of Civil and Mechanical Engineering

Polymers

- Common term
 - Plastics
 - Rubber
 - -Viscos oils
- Meaning of the term

poly - mer πολύς μέρος many parts

- An individual part is called monomer
- 23 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Monomer

- Individual molecule before assembled to polymer
- Covalent bonds

- Polymerization
- Monomers must have possibility to react in chemical reaction with other monomers
 - Extra electron pair from double bond
 - Reaction by releasing a small molecule (e.g. H_2O)

Polymerization

• Chain polymerization

26 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Carbon skeleton (Hydrocarbons)

• Polyethylene

Repeat unit

• Monomer (Ethylene, Ethene)

Polymers (more examples)

• Monomer H H with side group R C=C H R

• Aromatic side group

 $R=C_6H_5$

Polystyrene

28 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Polymers (another example)

Polybutadiene R = H repeating unit
 H H H H H H R
 Polybutadiene R = H repeating unit
 H H H H H H R
 H H H H H H R

 $R = CH_3$ isoprene

Polymers (PLA biodegradable)

• Polylactic acid

repeating unit

• Monomer

31 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Example R=CH₃ Polypropylene

Stereoisomerism

- Arrangement of side groups
- Isotactic
- R groups on same side
- Syndiotactic
- R groups on alternate sides

Stereoisomerism

- Arrangement of side groups

- Atactic
- R groups at random positions

- Geometrical isomerism
- Cis-isoprene (natural rubber)

$$CH_3$$
 $C=C$ CH_2

• Trans-isoprene

$$CH_3$$
 $C=C$ H

34 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Co-polymers

- Two different monomers
- Nylon 6,6

$$-N - \begin{bmatrix} H \\ | \\ -C - \\ | \\ H \end{bmatrix}_{6}^{O} \begin{bmatrix} H \\ | \\ -C - \\ -C - \\ | \\ H \end{bmatrix}_{4}^{O}$$

• Hexane-1,6-diamine

Hexane-1,6-dicarboxylic acid

H₂O

• Hexa-methylene-diamine

Adipic acid

• Condensation reaction!

Molar mass (Molar weight)

The more monomers in a chain, ...

- the longer the chain
- the higher the molar mass
- the higher the melting temperature
- Molar mass of chain molecule

M = nm

- Molar mass or repeating unit m
- Number of repeating units *n*

36 DTU Construct, Technical University of Denmark

Distribution of molar masses

• Not all chains have same length "3 [

 Average molar mass (number weighted)

$$\overline{M}_n = \sum x_i M_i$$

 Fraction x_i of all chains having molar mass M_i

41680 Intro to advanced materials

F24

Degree of polymerization

• IUPAC Definition: number of monomers in a chain

$$N = M/m$$

- Molar mass of chain M
- Molar mass of monomer *m*
- In case of co-polymers:
 - average molar mass of monomers \overline{m}
 - Degree of polymerization is **not** number of repeat units (as in Callister Rethwish), but number of monomers!!
- Chain length distribution
 - Degree of polymerization $N = M_n/m$ or $N = M_n/\overline{m}$
 - Number weighted average molar mass M_n

Structure property relation

 Molar mass and melting temperature

DTU Construct, Technical University of Denmark

• Melting temperature T_m

$T_m \uparrow$

- High molar mass
- Low chain flexibility
 - Large side groups
 - Double bonds or aromatic rings in chain
 - -Strong secondary bonds

$T_m \downarrow$

- Side branches
- randomly ordered side groups (atactic)

41680 Intro to advanced materials

F24

Bonds

- Carbon has four bonds, e.g. methane
- Bond angle $\theta_{CC} = 109^{\circ}$

• Carbon skeleton: free rotation around single bonds

- Straightened chain length $L = N_{cc} d_{cc} \sin(\theta_{cc}/2)$
 - Bond length $d_{CC} = 0.154$ nm
 - Number of single carbon carbon bonds along chain $N_{\it CC}$

Flexible chains with different shape (conformation)

- Average start to end distance
- Average: spherical shape

- Bond length $d_{CC} = 0.154$ nm
- \bullet Number of single carbon carbon bonds along chain N_{CC}
- 42 DTU Construct, Technical University of Denmark

Considerations on shape

- Which conformation has the longest start to end distance?
- How many conformations have this longest start to end distance?
- How many conformations have a start to end length equal to the average?
- What does that mean thermodynamically?

41680 Intro to advanced materials

F24

Stiff monomers and stiff chains

• No rotational degree of freedom for double bonds

 No rotational degree of freedom for aromatic rings (Kevlar)

Copolymers

- Two different types of monomers A and B
- Advantage: better spatial distribution of not-miscible polymer types
- Note: Average molar mass of monomers for degree of polymerization

DTU Construct, Technical University of Denmark

Random

Alternating

Chains "knitted" into each other

Each individual monomer

- Does not recognize end of its chain
- Can not distinguish between own and alien chains
- Can not pass through other parts of the chain

Interaction between chains

• Along chains: covalent bonds

• Between chains: secondary bonds (or covalent bonds)

Linear Side chains chains Branches

angenementalis angenementalis become distribute

Covalent cross bonds

Typical for

thermoplast thermoplast (PE-LD)

elastomer

thermoset

46 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Thermoplastic versus Thermoset

	Thermoplastic	Thermoset
Heating	Softening (and melting)	Neither becoming softer, nor melting
Cooling	Harder	Become hard during manufacturing
Typically	Chains with few branches	Network with cross bonds
Bonds	Secondary bonds (van der Waals)	Covalent cross bonds
Manufacturing	High temperature and high pressure	Hardening during cooling or radiation
	Reversible	Irreversible
Degradation	At too high temperatures	At too high temperatures

Crystallinity

- Crystalline regions
- Thin platelets with folded chains
- Chains are locally straightened

8 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Semi-crystalline polymers

- Both amorphous and crystalline regions
- Crystalline regions act as cross links
- Maximum crystallinity about 80%
- Spherulites
- Properties
 - Higher density
 - Higher melting temperature
 - Mechanically stronger
 - Not translucent

Semi-crystalline polymers (density)

- Crystalline regions
- $\rho_a < \rho_c$ Amorphous regions (less dense)
- Semi-crystalline polymers

$$\rho_{sc} = f_c \rho_c + (1 - f_c) \rho_a$$

$$f_c = \frac{\rho - \rho_a}{\rho_c - \rho_a}$$
• Crystallinity (mass fraction)

$$X = \frac{m_c}{m_{sc}} = \frac{f_c \rho_c}{\rho_{sc}} = \frac{\rho_c}{\rho_{sc}} \frac{\rho_{sc} - \rho_a}{\rho_c - \rho_a}$$

Polyolefine (polyalkene)

	Poly- ethylene (LD)		Poly- ethylene (HD)		Poly- propylene (isotactic)	Poly- butylene
Mass density g/cm ³	0.9	910-0.940	0.94	1-0.954	0.895-0.92	0.910-0.915
Melting temp.		115 °C		137 °C	175 °C	126 °C
Glass transition temperature	es	-110 °C		-90 °C	-10 °C	-17 °C
Young's modulus MPa	branches	172-282	linear	1080	1140-1550	290-295
Yield strength GPa	br	8-15	≟	20-30	31-37	12-17
Strain at yield		20%		12%	20%	24%
Tensile strength MPa		8-31		22-31	31-41	36.5
Max. elongation		10-650 %	10-	1200 %	100-800 %	300-380 %

Group exercises

Polychlorotrifluoroethylene
 Degree of polymerization

Molar mass C₂ClF₃

$$m = (2 * 12 + 35.5 + 3 * 19)$$
 g/mol
= 116.5 g/mol

DTU Construct, Technical University of Denmark

$$\overline{N} = \overline{M}/m$$

= 1000000 g/mol/116.5 g/mol

- = 8580
- Straightened chain length

$$L = N_{\rm CC} d_{\rm CC} \sin(\theta/2)$$

 $= 2*8580*0.154 \text{ nm}*\sin(109^{\circ}/2)$

- = 2150 nm
- Start to end distance

$$r = d_{cc} \sqrt{N_{cc}}$$

 $= 0.154 \text{ nm} * \sqrt{2*8580}$

= 20.2 nm

41680 Intro to advanced materials

F24

Group exercises

- Magnesium oxide

$$f_{lon} = 1 - \exp\left[-\frac{\left(X_A - X_B\right)^2}{4}\right]$$

$$=1-e^{-\frac{(X_A-X_B)^2}{4}}=70\%$$

Ratio between ion radii

$$\frac{r_{Mg^{2+}}}{r_{O^{2-}}} = 0.51$$

Sodium chloride structure

Density

$$\rho = m/V$$
= 4 · 40.3 g/mol / $\left(6.022 \cdot 10^{23} \text{ mol}^{-1} \cdot \left(424 \cdot 10^{-10} \text{ cm}\right)^{3}\right)$
= 3.51 g/cm³