Exercice 1 Critère des suites pour les fermés

Soit X un espace topologique et F une partie de X. Montrer que si F est fermée alors, pour toute suite x_n d'éléments de F qui converge dans X, la limite est dans F. Montrer que la réciproque est vraie dans les espaces métriques et donner un contre-exemple dans le cas général.

Exercice 2

Topologie

Soit | | une norme sur \mathbb{R}^n et v un vecteur de norme 1. Pour tout réel positif t, on définit une fonction f_t sur \mathbb{R}^n par : $f_t(x) = |x + tv| - t$.

- 1. Montrer que, pour tout x de \mathbb{R}^n , la fonction $t \mapsto f_t(x)$ est décroissante.
- 2. Montrer que la famille de fonctions $(f_t)_{t\geq 0}$ converge simplement sur \mathbb{R}^n , et que la convergence est uniforme sur les compacts.
- 3. Calculer la limite lorsque | | est la norme euclidienne.

Exercice 3

Soit E l'ensemble des fonctions lipschitziennes de [0,1] dans \mathbb{R} . On considère l'application $N:E\to\mathbb{R}$

$$f \mapsto N(f) = \sup_{x \in [0,1]} |f(x)| + \sup_{x \neq y} \left| \frac{f(x) - f(y)}{x - y} \right|.$$

Montrer que N est une norme. L'espace métrique (E, N) est-il complet ?

Exercice 4 – Espaces ℓ^p

On note ℓ^p l'ensemble des suites de nombres complexes $a=(a_n)$ telles que la série $\sum |a_n|^p$ converge, et on le munit de la norme $||a||_p=(\sum_n|a_n|^p)^{1/p}$. On note ℓ^∞ l'ensemble des suites bornées, muni de la norme $||.||_{\infty}$, et c_0 le sous-ensemble formé des suites qui tendent vers 0.

- 1. Montrer que ℓ^p et ℓ^∞ sont des espaces de Banach.
- 2. Montrer que $\ell^p \subset c_0$ pour tout p, que $\ell^p \subset \ell^\infty$ et que pour $1 \leq p \leq p'$, on a $\ell^p \subset \ell^{p'}$.
- 3. Les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$ sont-elles équivalentes sur ℓ^{1} ? Que dire de $\|\cdot\|_{p}$ et $\|\cdot\|_{p'}$ sur ℓ^{p} pour 1 ?
- 4. Quelle est l'adhérence dans ℓ^{∞} des suites presque nulles?
- 5. Quelle est l'adhérence de ℓ^p dans ℓ^∞ ?
- 6. Démontrer que c_0 est un espace de Banach séparable; que ℓ^p est séparable; que ℓ^∞ n'est pas séparable.

Exercice 5 Montrer que pour tout ouvert \mathcal{U} d'un espace métrique complet (X, d), il existe une métrique d' sur \mathcal{U} telle que (\mathcal{U}, d') est complet et les topologies induites sur \mathcal{U} par d et d' sont les mêmes.

Exercice 6 Soit Ω un ouvert connexe par arcs de \mathbb{R}^d , on veut étudier l'action du groupe des homéomorphismes de Ω sur Ω .

- Montrer que pour tout $x, y \in \Omega$, il existe γ un homéomorphisme de Ω tel que $\gamma x = y$.
- Montrer que pour tout couple de n-uplet $(x_1,...,x_n),(y_1,...,y_n)$ de points distincts, il existe un homéomorphisme de Ω tel que $\gamma x_i = y_i$, si $d \ge 2$. Que se passe-t-il si n = 1?

Exercice 7 Montrer qu'un homéomorphisme de \mathbb{R} est d'ordre 1,2 ou infini. En déduire que Homéo(\mathbb{R}) n'est pas isomorphe à Homéo(\mathbb{R}^n) si $n \ge 2$.