不純物濃度から抵抗率を計算する

2016/10/11

(有)たかもり 髙橋誓

今村さまによる測定結果

	Poly 10kΩ	N-well 100kΩ	N-well 500k Ω (900k Ω)
2015 年度	11kΩ	4.2kΩ	45kΩ
2016 年度	17kΩ	5.0kΩ	50kΩ

(*)poly 抵抗が 1.7 倍になり、こちらでは若干問題発生

北九州プロセスの P-SUB 基板はその抵抗率が

 $\rho=10\sim15\Omega cm$

抵抗率から不純物濃度を計算してくれる便利なページを発見

http://www.solecon.com/sra/rho2ccal.htm

これより

10Ωcm ⇒ 1.32e15/cm³ (P型)

15Ωcm ⇒ 8.76e14 \cm3 (P型)

シート抵抗は接合深さ Xj=1.5E-7m の場合

 $R(P-sub) \square = 8.76E15*1E-4/(1E-4*1.5E-5)=5.84E20\Omega$

さすがにほぼ絶縁状態。

---おまけ----

チップの厚さを 200u と仮定すると 3.2mm 角のチップの両面間の抵抗は

 $R=15*2E-2/(0.32^2)=2.93\Omega$

一方裏面に GND を設けない場合、チップの大きさを無限大として 1000u 離れた 10u の p-sub コンタクト 2 点間の抵抗値は

$$R = \frac{15}{0.02\,\pi} \ln 100 = 1100\,\Omega$$

となるらしい。やはり基板裏面に銀ペーストなどで接着する方が正しいやり方の様に思われる。

不純物濃度(P)と移動度の関係も発見

http://www.ioffe.ru/SVA/NSM/Semicond/Si/Figs/137.gif

これによると移動度 μ =500 $cm^2V^{-1}s^{-1}$ @Na 10 1 5 1 0 1 6 300K ちなみに N 型の場合は以下のグラフになるみたいです。

移動度 $\mu(N)$ =1.5e3 $cm^2V^{-1}s^{-1}$ @ <1e16 cm^{-3}

http://www.ioffe.ru/SVA/NSM/Semicond/Si/Figs/132.gif

これらの結果を踏まえて次の仮定をします。

1) P-Well N-Well は少なくても P-sub の濃度の 10 倍以上は必要である。

仮に $1e17 cm^{-3}$ とします。この場合、先ほどの便利な変換を使うと

 ρ =8.41e-2 Ω •cm

接合の深さ Xj=1.5E-7m=1.5E-5cm を用いてシート抵抗を出すと

 $R\Box = 8.41E-2*1E-4/(1E-4*1.5E-5)=5.61*E3=5.61kΩ$

今一歩中途半端な結果。

2) 測定の結果より

実測した測定値からシート抵抗を求める。

	21.7kΩ□	実測値	5.61 k $\Omega\Box$ (Nd=1e17 cm^{-3})
① 100kΩ L/W=104/22	102.6k	5.1k	26.52k
② 900kΩ L/W=332/8	900.6k	46.0k	232.8k
2/1	8.78	9.02	8.78

設計値と実測値の間には約20倍の開きがある。これからシート抵抗を逆算すると

 $R = 21.7 \text{k}/20 = 1.085 \text{k}\Omega$

3)逆に n-well 抵抗のシート抵抗が正しいとした場合。

ρ□=21.7kΩ□から ρ=3.25E-1Ω•cm

ρ□=1.085kΩ□から ρ=1.63E-2Ω•cm

http://www.solecon.com/sra/rho2ccal.htm このページから

15Ωcm Na=8.76e14 cm^{-3} (P型)

21.7k Ω Nd=1.70e16 cm^{-3} (N-Well)

1.085kΩ□ Nd=1.80e18 cm^{-3} (N-Well 実測)

当然の結果ですが、XJ= 1.5E-7mを用いて計算したら、シート抵抗の差が出るには N-Well の濃度の差が 2 桁近くあることがわかりました。

おまけ

n+抵抗、p+抵抗の不純物濃度

n+抵抗のシート抵抗は話を単純にするために深さを XJ= 1.5E-7m とします。

Rn+ \square =81Ω \square pn+=81*1.5E-5=1.215E-3 Ωcm Nd=5.82e19 cm^{-3}

p+抵抗も同様に計算します。

Rp+ \square =135 Ω \square ρp+=135*1.5E-5=2.025E-3 Ω cm Na=5.65e19 cm^{-3}

2 SPICE モデルから考える

SPICE では内部抵抗 RDSW を扱えるが、原理的にはソース端子からゲートのソース側の端までの抵抗を Rs、ドレイン側の抵抗を Rd と考えている。しかし、このままでは内部ノードが発生し計算時間がかかるため、Bsim3 からはこれら2つの抵抗を合わせて Rds として扱い、内部ノードが増えない形で計算している。

ここで考えなければいけないのは、単位ゲート幅辺りの抵抗値 RDSW は北九州プロセスでは $2.33E3\Omega$ である。レイアウトパタン上からソースコンタクト中心からゲート端までの距離は $0.4\mu m$ 、両側で $0.8\mu m$ である。

ソース―ドレイン間の抵抗は次式で表される。

$$R_{tot} = \frac{L}{\mu_{eff} C_{ox} W (V_{gst} - V_{ds} / 2)} + \frac{R_{dsw} (1 + P_{rwg} V_{gst} + P_{rwb} (\sqrt{\Phi_s - V_{bseff}}) - \sqrt{\Phi_s})}{(10^6 W_{eff})^{W_r}}$$

実際シミュレーションでLを振ってみると

L=0(実際にはLの加工精度によるずれが入っている)の点で抵抗があることがわかる。

L=0 ということは、ゲートがなくソースとドレインがつながった抵抗ということになる。

この状態でシート抵抗を求めると R□=2.9kΩとなる。

もし、これが本当に抵抗として使えるのなら Tr のゲートとソース/ドレインの距離を変えると RDSW が変ってしまうという事態が発生する。

この部分の工程は P-Well ⇒ N-Select ⇒ Vth_Nである。

以上