

Prof. Dr. Florian Kauffeldt

Notation and Formulae Statistics

Content

1	No	tation (commonly used in Textbooks)	3
	1.1	Population and Sample Elements	3
	1.2	Probabilities	3
	1.3	Parameters and Statistics	4
	1.4	Special Symbols	4
2	Fo	rmulae for Variance, Covariance and Correlation	5
	2.1	Expected Value	5
	2.2	Variance and Covariance	5
	2.3	Pearson Correlation Coefficient	5
	2.4	Pearson Partial Correlation Coefficient	5
3	Fo	rmulae for Conditional Probability, Independence, and Standard Score	6
	3.1	Conditional Probability	6
	3.2	Stochastic Independence	6
	3.3	Standard Score (z Score)	6
4	Fo	rmulae for Inferential Statistics	6
	4.1	Finite Sample Correction of Standard Error	6
	4.2	Point Estimators	6
	4.3	Interval Estimators	7
	4.4	P-Value for z Tests	7
5	Te	st Statistics of Parametric Tests	8
	5.1	One- and Two-Sample Z Test of Means	8
	5.2	Correlation Tests	8

6	Tes	st Statistics of Non-Parametric Tests	10
	6.1	Mann Whitney U Test	10
	6.2	Chi2 Test	10
7	γ2	- and T-Distribution	10

1 Notation (commonly used in Textbooks)

1.1 Population and Sample Elements

Symbol	Meaning
X,Y,Z,(capital letters)	Random variables (range = population elements)
x, y, z,(lowercase letters)	A subset of the range of a random variable (e.g., a sample)
$x_i, y_i, z_i,$ (lowercase letters with subscript)	A single specific value (number) that a random variable may take on
N	Population size
n	Sample size

1.2 Probabilities

Symbol	Meaning	
P(x)	Short for $P(X \in x)$, i.e., the probability that event x occurs.	
	Examples:	
	 Random variable takes on x_i (x = x_i): P(x_i) := P(X = x_i) Random variable in interval x = [x_i, x_j]: P([x_i, x_j]) := P(x_i ≤ X ≤ x_j) 	
$P(x \mid y)$	Short for $P(X \in x Y \in y)$, i.e., the conditional probability that event x occurs, given that event y has occurred.	
P(x,y)	Short for $P(X \in x, Y \in y)$, i.e., the joint probability that x and y occur.	
f_X	Probability densitiy function (pdf) of a continuous random variable <i>X</i>	
F_X	Cumulative distribution function (cdf) of a continuous random variable <i>X</i>	

1.3 Parameters and Statistics

Paramter / Statistic	Notation Parameter	Notation Statistic
Population / sample mean	μ	\bar{x}
Population / sample standard deviation and variance	σ or $sd(X)$ σ^2 or $var(X)$	$s \text{ or } sd(x)$ $s^2 \text{ or } var(x)$
Population / sample <i>covariance</i> of the variables <i>X</i> and <i>Y</i>	σ_{XY} or $cov(X,Y)$	s_{xy} or $cov(x,y)$
Population / sample <i>Pearson</i> correlation coefficient of the variables <i>X</i> and <i>Y</i>	$ ho_{XY}$	r_{xy}
Population / sample <i>Pearson</i> partial correlation coefficient of the variables <i>X</i> and <i>Y</i> when controlling for <i>Z</i>	$ ho_{XY Z}$	$r_{xy z}$
Population / sample Spearman rho correlation coefficient	$ ho_{XY}^{\mathcal{S}}$	r_{xy}^S

1.4 Special Symbols

Symbol	Meaning
$ar{X}$	Random variable of the sample mean
E[X], E[x]	Expected value of population / sample
se	Standard error (= standard deviation) of the distribution (random variable) of a statistic
û	Estimate of the population mean
$\hat{\sigma}^2$	Estimate of the population variance
H_0, H_1	Null / Alternative Hypothesis

2 Formulae for Variance, Covariance and Correlation

2.1 Expected Value

Let x be a sample of size n with v unique values, then:

$$E[x] = \frac{frequency \ x_1}{n} \cdot x_1 + \dots + \frac{frequency \ x_v}{n} \cdot x_v = P(x_1) \cdot x_1 + \dots + P(x_v) \cdot x_v,$$

i.e., the expected value is the probability-weighted sum of the unique values of a (sample) random variable.

2.2 Variance and Covariance

Let (x, y) be a sample of size n, then:

$$var(x) = \frac{(x_1 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n} = E[(x - \bar{x})^2]$$

$$cov(x, y) = \frac{(x_1 - \bar{x})(y_1 - \bar{y}) + \dots + (x_n - \bar{x})(y_n - \bar{y})}{n} = E[(x - \bar{x})(y - \bar{y})]$$

Observe that cov(x, x) = var(x).

2.3 Pearson Correlation Coefficient

Sample Pearson correlation coefficient:

$$r_{xy} = \frac{cov(x, y)}{sd(x) \cdot sd(y)}$$

2.4 Pearson Partial Correlation Coefficient

Sample Pearson partial correlation coefficient for one contol variable (z):

$$r_{xy|z} = \frac{r_{xy} - r_{xz} \cdot r_{yz}}{\sqrt{1 - r_{xz}^2} \cdot \sqrt{1 - r_{yz}^2}}$$

Sample Pearson partial correlation coefficient for k contol variables $(z_1, ..., z_k)$:

$$r_{xy|z_1...z_k} = \frac{r_{xy} - (r_{xz_1} \cdot r_{yz_1} + \dots + r_{xz_1} \cdot r_{yz_k})}{\sqrt{1 - (r_{xz_1}^2 + \dots + r_{xz_k}^2)} \cdot \sqrt{1 - (r_{yz_1}^2 + \dots + r_{yz_k}^2)}}$$

3 Formulae for Conditional Probability, Independence, and Standard Score

3.1 Conditional Probability

The probability that x occurs, given y has occured is:

$$P(x \mid y) = \frac{P(y \mid x) \cdot P(x)}{P(y)} = \frac{P(x, y)}{P(y)}$$

3.2 Stochastic Independence

Two random variables are stochastically independent if

$$P(x,y) = P(x) \cdot P(y)$$
 for all x, y

3.3 Standard Score (z Score)

The z score of a value x_i of a random variable X is:

$$z(x_i) = \frac{x_i - mean_X}{sd(X)}$$

If X is normally distributed Z_X is standard normally distributed.

4 Formulae for Inferential Statistics

4.1 Finite Sample Correction of Standard Error

lf

- (i). sampling is done without replacement from a finite population and
- (ii) the sample size (n) is large relative to the population size (N), the standard error (se) must be muliplied by fpc (finite population correction):

$$se = se_{without fpc} \cdot fpc$$
,

where
$$fpc = \sqrt{\frac{N-n}{N-1}}$$
.

4.2 Point Estimators

• The estimator for the population mean is the sample mean:

$$\hat{\mu} = \bar{x}$$

 The estimator for the population variance is the Bessel-corrected sample variance:

$$\hat{\sigma}^2 = s^2 \cdot \frac{n}{n-1}$$

• The estimator for a correlation coefficient is the sample correlation coefficient:

$$\hat{\rho} = r$$

4.3 Interval Estimators

• The general formula for an interval estimator is:

point estimate
$$\pm$$
 moe,

where the margin of error (moe) is some multiple of the standard error (se):

$$moe = m \times se$$

• Interval estimator of mean with confidence level α and known population variance:

$$\bar{x} \pm z_{(1-\alpha)} \cdot se$$

4.4 P-Value for z Tests

Let ts be the test statistic, then

$$p = 1 - \Phi(|ts|) = P(X > |ts|),$$

where Φ is the cumulative distribution function of the standard normal distribution. Then:

$$One - tailed p - value = p$$

$$Two - tailed p - value = p \times 2$$

5 Test Statistics of Parametric Tests

5.1 One- and Two-Sample Z Test of Means

5.1.1 One-sample z test of means

Let x be a sample of size n (with sample mean \bar{x}) of random variable X (with poulation standard deviation σ).

• The *standard error* (*se*) of the distribution of sample means (\bar{X}) is:

$$se = \frac{\sigma}{\sqrt{n}}$$

• The $test\ statistic$ of testing X against a pre-specified level μ_0 is:

$$z = \frac{\bar{x} - \mu_0}{se}$$

5.1.2 Two-sample z test of means

Let x, y be samples of size n_x, n_y (with sample means \bar{x}, \bar{y}) of random variable X, Y (with poulation standard deviation σ_X, σ_Y).

Then, the random variable D = X - Y has sample mean $\bar{d} = \bar{x} - \bar{y}$.

• The *pooled standard error* (se) of the distribution of sample means (\overline{D}) is:

$$se_{\bar{D}} = \sqrt{se_X^2 + se_Y^2},$$

where $se_X = \sigma_X/\sqrt{n_x}$ and $se_Y = \sigma_Y/\sqrt{n_y}$.

• The $test\ statistic$ of testing D against a pre-specified level μ_0 (= 0, usually) is:

$$z = \frac{\bar{d} - \mu_0}{se_D}$$

5.2 Correlation Tests

5.2.1 Pearson Correlation Test

Let r_{xy} be the sample correlation coefficient of a sample (x, y) of size n.

• The $standard\ error\ (se_R)$ of the distribution of correlation coefficients (R) is

$$se_R = \sqrt{\frac{1 - r_{xy}^2}{n - 2}}.$$

• The test statistic of R against a pre-specified level ρ_0 (= 0, usually) is:

$$t_{n-2} = \frac{r_{xy} - \rho_0}{se_R},$$

which follows a t-distribution with n-2 degrees of freedom.

5.2.2 Pearson Partial Correlation Test

Let $r_{xy|z_1...z_k}$ be the sample partial correlation coefficient of a sample $(x, y, z_1, ..., z_k)$ of size n.

• The standard error (se_R) of the distribution of correlation coefficients (R) is

$$se_R = \sqrt{\frac{1 - r_{xy}^2}{n - k - 3}},$$

where *k* denotes the number of control variables.

• The test statistic of R against a pre-specified level ρ_0 (= 0, usually) is:

$$t_{n-k-3} = \frac{r_{xy|z_1\dots z_k} - \rho_0}{se_R},$$

which follows a t-distribution with n - k - 3 degrees of freedom.

5.2.3 Fisher Transformation

• The Fisher transformation of a correlation coefficient r is:

$$r^f = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) = \operatorname{artanh} (r)$$

and has the following standard error (se_f) :

$$se_f = \sqrt{\frac{1}{n-3}}$$

The Fisher test statistic is then:

$$z_{fisher} = \frac{r_f}{se_f}$$

and follows a standard normal distribution if n is sufficiently large.

A Fisher z Test based on the Fisher test statistic can be used to test any of the aforementioned correlations plus Spearman rank correlation.

6 Test Statistics of Non-Parametric Tests

6.1 Mann Whitney U Test

• The *U* statistic is:

$$U = n_{max} \cdot n_{min} + \frac{n_{max}(n_{max} + 1)}{2} - R_{max},$$

where n_{max} , n_{min} are the sample sizes of the samples with the highest / lowest rank sum and R_{max} ist he highest rank sum.

• If there are no tied ranks, the standard error of U is:

$$se_u\sqrt{\frac{n_{max}\cdot n_{min}(n_{max}+n_{min}+1)}{12}}.$$

The normal approximated test statistic is:

$$z_U = \frac{U - \frac{n_{max} \times n_{min}}{2}}{se_U}.$$

6.2 Chi2 Test

• The *chi*² statistic is:

$$\chi^2 = \sum \frac{(O-E)^2}{E},$$

where O are the observed and E are the expected frequencies.

The normal approximated test statistic is:

$$z_{\chi^2} = \frac{\chi^2 - dof}{\sqrt{2 \times dof}},$$

where dof = degrees of freedom.

7 χ^2 – and T-Distribution

Let $Z_1, ..., Z_k$ be independent standard normally distributed random variables, then the sum of their squares follows a χ^2 -distribution with k degrees of freedom:

$$\chi_k^2 = Z_1^2 + \dots + Z_k^2.$$

Let Z be a standard normally distributed and χ_k^2 a χ^2 –distributed random variable, then the following is t-distributed with k degrees of freedom:

$$T_k = \frac{Z}{\sqrt{\chi_k^2/k}}.$$