Chap 5² : Géométrie élémentaire du plan

 $\mathcal G$ plan affine de direction $\overrightarrow{\mathcal G}$

I. Repères

Base de $\vec{\mathcal{G}}$: 2 vecteurs non colinéaires

Repère de \mathcal{G} : point de \mathcal{G} + base de $\overrightarrow{\mathcal{G}}$ \rightarrow coordonnées

$$\Re_0 = (O, \vec{i}, \vec{j}), \Re = (\Omega, \vec{u}, \vec{v}) \text{ avec } \begin{cases} \vec{u} = \alpha \vec{i} + \beta \vec{j} \\ \vec{v} = \gamma \vec{i} + \delta \vec{j} \end{cases} \qquad \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} x_{\Omega} \\ y_{\Omega} \end{pmatrix} + \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_{\Omega} + (\alpha x + \gamma y) \\ y_{\Omega} + (\beta x + \delta y) \end{pmatrix}$$

II. Produit scalaire

 \mathcal{G} plan affine de repère (O,\vec{i},\vec{j}) . On considère $\vec{\mathcal{G}}$ muni de la base (\vec{i},\vec{j}) , en bijection avec \mathbb{R}^2

Produit scalaire canonique de \mathbb{R}^2 : $\forall \vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}, \vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ $\vec{u} \cdot \vec{v} = xx' + yy$

* Bilinéaire : $(\alpha \vec{u} + \beta \vec{v}) \cdot \vec{w} = \alpha \vec{u} \cdot \vec{w} + \beta \vec{v} \cdot \vec{w}$ $\vec{w} \cdot (\alpha \vec{u} + \beta \vec{v}) = \alpha \vec{w} \cdot \vec{u} + \beta \vec{w} \cdot \vec{v}$

* Symétrique : $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$

* Défini positif : $\forall \vec{u}, \quad \vec{u} \cdot \vec{u} \ge 0$ $\vec{u} \cdot \vec{u} = 0 \Leftrightarrow \vec{u} = \vec{0}$

Norme associée : $\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}}$

Inégalité de Cauchy-Schwarz : $|\vec{u} \cdot \vec{v}| \le ||\vec{u}||||\vec{v}||$ \Rightarrow Inégalité triangulaire : $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$

Preuve: $1.(\vec{u} + \lambda \vec{v}) \cdot (\vec{u} + \lambda \vec{v}) \ge 0 \implies \Delta \le 0$

2. Utiliser le carré

Produit scalaire sur $\vec{\mathcal{G}}$ de base (\vec{i}, \vec{j}) : $\forall \begin{cases} \vec{u} = x\vec{i} + y\vec{j} & \vec{u} \cdot \vec{v} = xx' + yy' \\ \vec{v} = x'\vec{i} + y'\vec{j} & \vec{u} \cdot \vec{v} = xx' + yy' \end{cases}$ Mêmes propriétés que dans \mathbb{R}^2

 \vec{u}, \vec{v} sont orthogonaux si $\vec{u} \cdot \vec{v} = 0$. (\vec{u}, \vec{v}) est une base orthogonale si $\vec{u} \cdot \vec{v} = 0$ et \vec{u} et \vec{v} non colinéaires (\vec{u}, \vec{v}) base orthonormée si $\vec{u} \cdot \vec{v} = 0$ et $||\vec{u}|| = ||\vec{v}|| = 1$

On a la même expression xx'+yy' du produit scalaire en cas de changement de base ORTHONORMEE

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos(\vec{u}, \vec{v}) \qquad a = aff(\vec{u}) \in \mathbb{C}, b = aff(\vec{v}) \in \mathbb{C} \qquad \vec{u} \cdot \vec{v} = \text{Re}(a\bar{b})$$

Preuve: poser une BON tq $\vec{u} = \|\vec{u}\| \vec{e_1}$, exprimer \vec{v} et le produit scalaire

III. Déterminant

Le déterminant dans \mathbb{R}^2 : $\det(\vec{u}, \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - x'y$ Bilinéaire, antisymétrique $(\det(\vec{u}, \vec{v}) = -\det(\vec{v}; \vec{u}))$

On définit le déterminant sur $\vec{\mathcal{G}}$ via les coordonnées

(et l'expression xy'-x'y est valable quelle que soit la BON considérée)

$$\det(\vec{u}, \vec{v}) = 0 \Leftrightarrow \vec{u} \text{ et } \vec{v} \text{ colinéaires}$$
 $\Rightarrow (\vec{u}, \vec{v}) \text{ base de } \vec{\mathcal{G}} \text{ } ssi \text{ } \det(\vec{u}, \vec{v}) \neq 0$
 $(\vec{u}, \vec{v}) \text{ base directe si } \det(\vec{u}, \vec{v}) > 0, \text{ indirecte si } \det(\vec{u}, \vec{v}) < 0$

$$\det(\vec{u}, \vec{v}) = \|\vec{u}\| \|\vec{v}\| \sin(\vec{u}, \vec{v}) \qquad \text{(angle orienté)} \qquad \qquad Aire(ABC) = \frac{1}{2} |\det(\overrightarrow{AB}, \overrightarrow{AC})|$$

$$a = aff(\vec{u}), b = aff(\vec{v}) \Rightarrow \det(\vec{u}, \vec{v}) = \text{Im}(a\bar{b}) \qquad \qquad \vec{u}, \vec{v} \text{ colinéaires } ssi \ a\bar{b} \in \mathbb{R}$$

IV. Droites

Caractérisation d'une droite :
$$-\vec{n}$$
 vecteur normal à $\mathfrak{D}, A \in \mathfrak{D}$ $M \in \mathfrak{D} \Leftrightarrow \overrightarrow{AM} \cdot \vec{n} = 0$

$$-\vec{u} \text{ vecteur directeur de } \mathfrak{D}, A \in \mathfrak{D} \qquad M \in \mathfrak{D} \Leftrightarrow \det(\overrightarrow{AM}, \vec{u}) = 0$$

$$d(M_0,\mathfrak{D}) = M_0 H = \frac{|\overrightarrow{AM_0} \cdot \overrightarrow{n}|}{\left\|\overrightarrow{n}\right\|} = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} \qquad (A \in \mathfrak{D}, \overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix} \text{ normal à } \mathfrak{D}, ax + by + c = 0 \text{ eq. cart\'es. de } \mathfrak{D})$$

Preuves: d(M₀,D)=M₀H: développer MM₀² (par rapport à H) et déduire le cas d'égalité

Exprimer $\overrightarrow{AM_0} \cdot \overrightarrow{n}$ en fonction de H \rightarrow résultat Ou : l'exprimer d'après l'équation

V. Cercles

$$\mathcal{C} = \{M \in \mathcal{G}, M\Omega = R\} = \{M \in \mathcal{G}, \overrightarrow{MA} \cdot \overrightarrow{MB} = 0\}$$
 où $[AB]$ diamètre de \mathcal{C} , et Ω centre de \mathcal{C}

Preuve : Développer $\overrightarrow{MA} \cdot \overrightarrow{MB}$ par rapport à Ω

Intersection avec une droite:

$$d(\Omega, D) > R : \emptyset$$
 $d(\Omega, D) = R : \{H\} \text{ (proj orth de } \Omega \text{ sur D)}$ $d(\Omega, D) < R : \{A, B\}$

 $\text{Intersection de 2 cercles}: \Omega_{{}_{\!1}}\Omega_{{}_{\!2}} < \mid R_{{}_{\!1}}-R_{{}_{\!2}} \mid \text{ ou } \Omega_{{}_{\!1}}\Omega_{{}_{\!2}} > R_{{}_{\!1}}+R_{{}_{\!2}} \qquad : \qquad \varnothing$

 $\Omega_1\Omega_2=|R_1-R_2|\neq 0$ ou $\Omega_1\Omega_2=R_1+R_2$: {H} (les deux cercles sont tangents)

 $\mid R_{1} - R_{2} \mid < \Omega_{1} \Omega_{2} < R_{1} + R_{2} \qquad \qquad : \qquad \{A, B\}$

Preuve analytique: Développer les équations, en déduire une droite, faire selon la distance à cette droite.

VI. Quelques lignes de niveau

$$\vec{u}$$
, A fixes $\vec{u} \cdot \overrightarrow{AM} = \alpha \Leftrightarrow M \in \mathfrak{D}$, droite de vecteur normal \vec{u} passant B tel que $\overrightarrow{AB} = \alpha / \|\vec{u}\|^2 \vec{u}$
$$\det(\vec{u}, \overrightarrow{AM}) = \alpha \Leftrightarrow M \in \mathfrak{D}$$
, droite de vecteur directeur \vec{u} passant B tel que $\overrightarrow{AB} = \alpha / \|\vec{u}\| \|\vec{v}\| \vec{v}$ avec $\vec{v} \perp \vec{u}$

VII. Coordonnées polaires

Coord. polaires de
$$M:(r,\theta)$$
 où $\begin{cases} r = OM \\ \theta \equiv (\vec{i}, \overrightarrow{OM})[2\pi] \end{cases}$ Base polaire $:(\overrightarrow{u_{\theta}}, \overrightarrow{v_{\theta}})$ BON $\overrightarrow{u_{\theta}} = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}, v_{\theta} = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}$

Droite passant par O : $M(r,\theta) \in D \Leftrightarrow \theta = \theta_0$

Droite ne passant pas par O : $H(d,\alpha)$ projeté orthogonal de O sur D. $M(r,\theta) \in D \Leftrightarrow r\cos(\theta - \alpha) = d$

Preuve: Prod scal OH, HM nul → Pythagore → Développer HM p/r O ...

Cercle passant par 0 : $M(r,\theta) \in C(\Omega(R,\alpha),R) \Leftrightarrow r = 2R\cos(\theta - \alpha)$