

Student Name:			
Batch:	Roll No.:	Date: -	

	CHEMISTRY A	1551GNIVIEN I -2	CLA22 TITH CHE	WIICAL BONDING		
1.	Ionic bond is not a true	bond, because				
	(A) it is nondirectional		(B) it is not strong	(B) it is not strong		
	(C) it is directional		(D) it has repulsion	between ions		
2.	NH ₃ and BF ₃ combine	readily because of the	formation of :			
	(A) a covalent bond	(B) a hydrogen bond	(C) a coordination bond (D) an ionic bond			
3.	Iron is harder than sodi	um because				
	(A) iron atoms are sma	ller	(B) iron atoms are i	(B) iron atoms are more closely packed		
	(C) metallic bonds are	stronger is sodium	(D) metallic bonds	are stronger in iron		
4.	The types of bonds pre	sent in CuSO ₄ .5H ₂ O ar	re			
	(A) electrovalent and c	ovalent	(B) electrovalent ar	nd coordinate covalent		
	(C) covalent and coord	inate covalent				
	(D) electrovalent, cova	lent and coordinate cov	alent & H - bond			
5.	Which of the following	g has minimum energy	?			
	(A) σ bond	(B) π bond	(C) ionic bond	(D) hydrogen bond		
6.	A: tetracyanomethane	B: Carbondioxide	C: Benzene	D: 1,3-buta-di-ene		
	Ratio of sigma and pi b	onds is in order:				
	(A) A=B <c<d< td=""><td>(B) A=B<d<c< td=""><td>(C) $A=B=C=D$</td><td>(D) C < D < A < B</td></d<c<></td></c<d<>	(B) A=B <d<c< td=""><td>(C) $A=B=C=D$</td><td>(D) C < D < A < B</td></d<c<>	(C) $A=B=C=D$	(D) C < D < A < B		
7.	How many bonded elec	ctron pairs are present i	in IF ₇ molecule:			
	(A) 6	(B) 7	(C) 5	(D) 8		
8.	The ratio of σ and π bo	onds in benzene is:				
	(A) 2	(B) 6	(C) 4	(D) 8		
9.	PCl ₅ exists but NCl ₅ do	pes not because:				
	(A) Nitrogen has no va	cant 2d-orbital	(B) NCl ₅ is unstable	e		
	(C) Nitrogen atom is m	nuch smaller than p	(D) Nitrogen is high	hly inert		
10.	The p-p orbital overlap	ping is present in the fe	ollowing molecule			
	(A) Hydrogen	(B) Hydrogen bromio	de (C) Hydrogen chlor	ride (D) Chlorine		
11.	Number of bonds in SC	O_2				
	(A) Two σ and two π		(B) Two σ , One π			
	(C) Two σ , two π and	one lone pair	(D) Three σ bonds			
12.	Triple bond in ethyne i	s formed form				
	(A) Three sigma bonds	,	(B) Three pi bonds			
	(C) One sigma and two	pi bonds	(D) Two sigma and one pi bond			
13.	The bond in the format	ion of fluorine molecul	le will be			
	(A) Due to s-s overlapp	oing	(B) Due to s-p over	lapping		
	(C) Due to p-p overla	pping	(D) Due to hybridiz	zation		
14.	The number of shared j	pairs of electrons in pro	opane is			
	(A) 2	(B) 4	(C) 6	(D) 10		

15.	Mg_2C_3 reacts with water forming propyne , C_3^{4-} has :						
	(A) two sigma and	two pi bonds	(B) three sigma and o	(B) three sigma and one pi bonds			
	(C) two sigma and	one pi bonds	(D) two sigma and the	(D) two sigma and three pi bonds			
16.	How many σ- and	π - bonds are there in salicy	clic acid?				
	(A) 10σ , 4π	(B) 16σ,4π	(C) 18σ , 2π	(D) $16\sigma, 2\pi$			
17.	When 2s-2s, 2p-2p	and 2p-2s orbitals overlap,	, the bond strength decrea	ases in order			
	(A) $p-p > s-s > p-s$	(B) $p-p > p-s > s-s$	(C) $s-s > p-p > p-s$	(D) $s-s > p-s > p-p$			
18.	Fluorine molecule	is formed by the overlappir	ng of-				
	(A) s-p orbitals		(B) s-s orbitals				
	(C) p-p orbitals by	end to end manner	(D) p-p orbitals by sic	des to sides manner			
19.	In the XeF ₄ molecu	ale, the Xe atom is in the					
	(A) sp ² -hybridized	state	(B) sp ³ -hybridised sta	te			
	(C) sp ² d-hybridized	d state	(D) sp ³ d ² Hybridisatio	on			
20.	If a molecule MX ₃	has zero dipole moment, th	ne sigma bonding orbital	used by M			
	(atm.no. < 21) are:						
	(A) pure p	(B) sp hybrid	(C) sp ² hybrid	(D) sp ³ hybrid			
21.	In the context of ca	arbon, which of the following	ng is arranged in the corr	ect order of electronegativity?			
	(A) $sp>sp^2>sp^3$	(B) $sp^3>sp^2>sp$	(C) $sp^2>sp>sp^3$	(D) $sp^3>sp>sp^2$			
22.	In the series ethane	In the series ethane, ethylene and acetylene, the C-H bond energy is:					
	(A) The same in all	I the three compounds	(B) Greatest in ethane				
	(C) Greatest in ethy	ylene	(D) Greatest in acetyl	ene			
23.	The cenral atom in	a molecule is in sp ² hybrid	state. The shape of mole	ecule will be			
	(A) Pyramidal	(B) Tetrahedral	(C) Octahedral	(D) Trigoanl planar			
24.	A sp ³ hybridized or	rbital contains					
	(A) 1/4 s- characte	er (B) 1/2 s- character	(C) 2/3 s- character	(D) 3/4 s- character			
25.	The bond angle in	ethylene is					
	(A) 180°	(B) 120°	(C) 109°	(D) 90°			
26.	The mode of hybrid	dization of carbon in CO ₂ is	S				
	(A) sp	(B) sp^2	(C) sp^3	(D) None of these			
27.	CCl ₄ has the hybrid						
	(A) sp ³ d	(B) dsp^2	(C) sp	(D) sp^3			
28.	Which of the follow	wing hybridization results is	n non-planar orbitals				
	(A) sp ³	(B) dsp^2	(C) sp^2	(D) sp			
29.	Percentage of s-cha	aracter in sp ³ hybrid orbital	is				
	(A) 25	(B) 50	(C) 66	(D) 75			
30.	For which of the fo	llowing hybridization the b	ond angle is maximum				
	$(A) sp^2$	(B) sp	(C) sp^3	(D) dsp^2			
31.	s-character in sp hy	bridized orbitals are					
	(A) 1/3	(B) 1/2	(C) 1/4	(D) 2/3			
32.		owards bond angle is					
	$(A) sp < sp^2 < sp^3$	$(B) sp^2 < sp < sp^3$	$(C) sp^3 < sp^2 < sp$				
	(D) Bond angle does not depend on hybridization						

33.	The correct order of increasing X-O-X bond angle is $(X = H,F \text{ or }C1)$:							
	(A) $H_2O > Cl_2O >$	F_2O (B) $Cl_2O > H_2O > F_2C$	$(C) F_2O > Cl_2O > H_2O$	(D) $F_2O > H_2O > Cl_2O$				
34.	Hybridization of o	earbon in C ₃ O ₂ is:						
	(A) sp	(B) sp^2	(C) sp^3	(D) sp^3d				
35.	Carbon atoms in	$C_2(CN)_4$ are:						
	(A) sp hybridized		(B) sp ² hybridized					
	(C) sp and sp ² hyb	oridized	(D) sp,sp ² and sp ³ hybr	ridized				
36.	The bond angle in	PH ₃ is:						
	(A) Much lesser th	han NH ₃	(B) Equal to that in NH	I_3				
	(C) Much greater	than in NH ₃	(D) Slightly more than	in NH ₃				
37.	The hybridization	The hybridization of atomic orbitals of nitrogen in,RN ₃ and are						
	(A) sp^2 , sp^3 and sp	o ² respectively	(B) sp ² , sp and sp ² resp	pectively				
	(C) sp^2 , sp , sp^3 res	spectively	(D) sp^2 , sp^3 and sp res	pectively				
38.	Specify the coords BF ₃ and NH ₃	Specify the coordination geometry around and hybridization of N and B atoms in a 1:1 complex of						
		, sp ³ ; B: tetrahedral, sp ³	(B) N : pyramidal. sp ³	: B : pyramidal. sp ³				
		(C) N: pyramidal, sp ³ ; B: planar, sp ² (D) N: pyramidal, sp ³ ; B: tetrahedral, sp ³						
39.		eases in hybrid orbital, then l		, _ · · · · · · · · · · · · · · · · · ·				
	(A) decreases	(B) increases	(C) remains uncertain	(D) all are wrong				
40.	XeF ₂ involves hyb	• •	· /	·				
	(A) sp3	(B) sp ³ d	(C) sp^3d^2	(d) None of these				
41.	sp ³ hybridisation i	· · · · ·		. ,				
	(A) CO_3^{2-}	(B) BF ₃	(C) NO ₋₃	(D) NH ₃				
42.	BeCl ₂ has which	of the following types of orbi		. ,				
	$(A) sp^2-p$	(B) sp-p	(C) sp^3-p	(D) s-p				
43.	Octahedral molec	ular shape exists in hybrid	dization	•				
	(A) sp ³ d	(B) sp^3d^2	(C) sp^3d^3	(D) None of these				
44.	The structure and	hybridization of Si(CH ₃) ₄ is						
	(A) Bent, sp	(B) Trigonal, sp ²	(C) Octahedral, sp ³ d	(D) Tetrahedral, sp ³				
45.	Which compound	Which compound has bond angle of nearly to 90°						
	(A) H ₂ O	(B) H ₂ S	(C) NH ₃	(D) BF_3				
46.	True order of bon	d angle is						
	(A) $H_2O > H_2S >$	$H_2Se > H_2Te$	(B) $H_2Te > H_2Se > H_2Se > H_2O$					
	(C) $H_2S > H_2O > 1$	$H_2Se > H_2Te$	(D) $H_2O > H_2S > H_2Te$	$e > H_2Se$				
47.	During the compleundergo?	ete combustion of methane C	CH ₄ , what change in hybrid	dization does the carbon atom				
	(A) sp^3 to sp	(B) sp^3 to sp^2	(C) sp^2 to sp	(D) sp^2 to sp^3				
48.		KeF ₂ involves hybridization o	f the type:	•				
	$(A) sp^3$	(B) dsp^2	$(C) \operatorname{sp}^3 d$	(D) sp^3d^2				
49.		l ₄ +, PCl ₆ - and AsCl ₅ and are re	• •	• • •				
	-	, tetrahedral and see-saw	-	dral and trigonal bipyramidal				
	(C) tetrahedral, square planar and pentagonal bipyramidal							

	(D) trigonal bipyramidal, tetrahedral and square pyramidal						
50.	The shape of IF ₅ and IF ₇ are respectively: (A) Tetragonal pyramidal and pentagonal bi-pyramidal						
	(A) Tetragonal pyram	nidal and pentagonal bi-p	yramidal				
	(B) Octahedral and p	yramidal	(C) trigonal bipyramid	al and square antiprismatic			
	(D) Distorted square	planar and distorted octa	hedral				
51.	Molecular shapes of S	SF ₄ , CF ₄ and XeF ₄ are:					
	(A) the same, with 2,	0 and 1 lone pair of elect	rons respectively on centr	al atom			
	(B) the same, with 1,	1 and 1 lone pair of elect	rons respectively on centr	al atom			
	(C) different with 0,1	and 2 lone pair of electr	ons respectively on centra	ıl atom			
		_	ons respectively on centra				
52.	The shape of a molec	ule which has 3 bond pai	irs and one lone pair is:				
	(A) Octahedral	(B) Pyramidal	(C) Triangular planar	(D) Tetrahedral			
53.	Which molecule is lin	•	. ,				
	(A) NO ₂	(B) ClO ₂	$(C) CO_2$	(D) H_2S			
54.		ng molecules has trigona					
	(A) IF ₃	(B) PCl ₃	$(C) NH_3$	(D) BF ₃			
55.	Compound formed by	y sp ³ d hybridization will	have structure				
	(A) Planar	(B) Pyramidal	(C) Angular	(D) Trigonal bipyramidal			
56.	XeF ₆ is	•					
	(A) Octahedral	(B) Distorted octahed	lral (C)Planar	(D) Tetrahedral			
57.	H ₂ O is						
	(A) A liner triatomic	molecule	(B) A bent(angular) tri	atomic molecule			
	(C) Both of these		(D) None of these				
58.	In ICl ₄ , the shape is	square planar. The num	ber of bond pair – lone pa	ir repulsion at 90° are :			
	(A) 6	(B) 8	(C) 12	(D) 4			
59.	Among the following	species, identify the isos	structural pairs : NF ₃ , NO	O_3^- , BF ₃ , H ₃ O ⁺ , HN ₃			
	(A) [NF ₃ , NO ₃ -] and [$[BF_3, H_3O^+]$	(B) [NF ₃ , HN ₃] and [N	$[O_3^-,BF_3]$			
	(C) $[NF_3, H_3O^+]$ and	$[NO_3^-, BF_3]$	(D) [NF ₃ , H_3O^+] and [$[HN_3, BF_3]$			
60.	The structure of H ₂ O ₂	2 is					
	(A) Planar	(B) Non-Planar	(C) Spherical	(D) Linear			
61.	The smallest bond an	gle is found in					
	(A) IF_7	(B) CH ₄	(C) BeF_2	(D) BF_3			
62.	Which of the following	ng pairs is (are) isostruc	etural?				
	(A) SF ₄ and SiF ₄	(B) SF_6 and SiF_6^{2-}	(C) SiF_6^{2-} and SeF_6^{2-}	(D) XeO_6^{4-} and TeF_6^{2-}			
63.	Which has maximum	dipole moment?					
		Cl 		Cl			
	CI. CI	CI	Cl				
	(A)	(B)	(C)	(D)			
		l Cl	ĊI	C ₁			
64.		ng has the least dipole me					
	$(A) CH_4$	(B) CO	(C) SO_2	(D) NH_3			
65.	Which molecule has	the largest dipole momer	nt				

	(A) HCl	(B) HI	(C) HBr	(D) HF			
66.	Which bond angle	θ would result in the maximum.	imum dipole moment for	um dipole moment for the triatomic molecule YXY			
	(A) $\theta = 90^{\circ}$	(B) $\theta = 120^{\circ}$	(C) $\theta = 150^{\circ}$	(D) $\theta = 180^{\circ}$			
67.	Which of the following would have a permanent dipole moment						
	(A) BF ₃	(B) SiF ₄	(C) SF ₄	(D) XeF ₄			
68.	Zero dipole mome	ent is present in					
	$(A) NH_3$		(B) H ₂ O				
	(C) cis 1,2 – dichl	oroethene	(D) trans 1,2 –dichlor	roethene			
69.	Which molecule	loes not show zero dipole n	noment				
	$(A) BF_3$	(B) NH ₃	(C) CCl ₄	(D) CH ₄			
70.	The maximum po	ssible number of hydrogen	bonds in which a H ₂ O me	olecule can participate-			
	(A) 4	(B) 3	(C) 2	(D) 6			
71.	The volatility of I	HF is low because of:					
	(A) its low polariz	zability					
	(B) the weak disp	ersion interaction between	the molecules				
	(C) its small mole	cular mass	(D) its strong hydrog	en bonding			
72.	Two ice cubes are holding them toge	•	nd unite to form one cube.	Which force is responsible for			
	(A) van der Waal		(B) Covalent attraction	on			
	(C) Hydrogen bor		(D) Dipole-dipole att				
73.				to exhibit intermolecular H- bonding			
	I. Acetic acid	II. o-nitrophenol	III. m-nitrophenol	IV. o-boric acid			
	(A) I, II, III	(B) I, II, IV	(C) I, III, IV	(D) II, III, IV			
74.		following does not have in	termolecular H-bonding?	, ,			
	$(A) H_2O$	(B) o-nitro phenol	(C) HF	(D) CH ₃ COOH			
75.	Amongst H ₂ O, H ₂	S, H ₂ Se and H ₂ Te, the one	with the highest boiling p	point is			
	(A) H ₂ O because	of hydrogen bonding	(B) H ₂ Te because of	higher molecular weight			
	(C) H ₂ S because of	of hydrogen bonding	(D) H ₂ Se because of	(D) H ₂ Se because of lower molecular weight			
76.	Bond order of Be	2 is:					
	(A) 1	(B) 2	(C) 3	(D)0			
77.	During the format	ion of a molecular orbital f	From atomic orbitals, prob	ability of electron density is:			
	(A) minimum in t	he nodal plane	(B) maximum in the	(B) maximum in the nodal plane			
	(C) zero in the no	dal plane	(D) zero on the surface	ce of the lobe			
78.	Which of the follo	owing has fractional bond o	order :				
	(A) O_2^{2+}	(B) O ₂ ²⁻	(C) F_2^{2-}	(D) H_2^-			
79.	In N ₂ molecule, th	ne atoms are bonded by					
	(A) One σ , Two τ	(B) One σ , One π	(C) Two σ , One π	(D) Three σ bonds			
80.	Which of the follo	owing is true?					
	(A) Bond order ($\alpha = \frac{1}{\text{bond lenth}} \alpha \text{ bond en}$	ergy				
	(B) Bond order or	bond length $\alpha = \frac{1}{\text{bond energ}}$	- (C) Bond order α -	$\frac{1}{\text{bond lenth}} \alpha \frac{1}{\text{bond energy}}$			

	(D) Bond order α bond	l length α bond energy		
81.	Given the species: N_2 following	, CO, CN ⁻ and NO ⁺ . Wh	nich of the following state	ements are true for the
	(A) All species are para	amagnetic	(B) The species are iso	electronic
	(C) All the species hav	e dipole moment	(D) All the species are	linear
82.	When N_2 goes to N_2^+ , t	he N-N bond distance	. And when O ₂ goes to O	O ₂ +, the O-O bond distance
	(A) Decrease, increase	(B) Increase, decrease	(C) Increase, increase	(D) None of these
83.	Which of the following	g species is the least stabl	le	
	$(A) O_2$	(B) O_2^{2-}	(C) O_2^+	(D) O_2^{1-}
84.	The bond order is max	imum in		
	$(A) O_2$	(B) O_2^{-1}	(C) O_2^{+1}	(D) O_2^{2-}
85.	The bond order in N ₂ n	nolecule is		
	(A) 1	(B) 2	(C) 3	(D) 4
86.	Which one is paramagi	netic and has the bond or	der 1/2	
	$(A) O_2$	(B) N_2	$(C) F_2$	$(D)H_{2}^{+}$
87.	Which of the following	g species contain coordin	ate bond:	
	(A) AlCl ₃	(B) CO	$(C)[Fe(CN)_6]^{4-}$	(D) N_3^-
88.	A π - bond may form be approach each other ap	_	ontaining one unpaired e	lectron each when they
	(A) x- axis	(B) y-axis	(C) z- axis	(D) any direction
89.	The octet rule is not ob	eyed in:		
	$(A) CO_2$	(B) BCl ₃	(C) PCl ₅	(D) SiF ₄
90.	Which of the following	g species is(are) isostruct	ural with XeF ₄ ?	
	(A) ICl ₄ ⁻	(B) I_5^-	(C) BrF_4^-	(D) XeO ₄
91.	Which one of the follow	wing compounds has bor	nd angle of nearly 90°?	
	$(A) NH_3$	(B) H_2S	(C) H_2O	(D) SF_6
92.	Shape of NH ₃ is very s	imilar to :		
	(A) SeO32-	(B) CH ₃ ⁻	(C) BH ₃	(D) CH ₃ ⁺
93.	Which of the following	g have same shape as NH	I_2^+ ?	
	$(A) CO_2$	(B) SnCl ₂	(C) SO ₂	(D) BeCl ₂
94.	Which of the following	g species are linear?		
	(A) ICl_2^-	(B) I_{3}^{-}	(C) N_3^-	(D) ClO ₂
95.	Which of the following	g is (are) linear?		
	(A) I_3	(B) I_{3}^{+}	(C) PbCl ₂	(D) XeF_2
96.	Which of the following	g compounds possesses z	ero dipole moment?	
	(A) Water	(B) Benzene	(C) Carbon tetrachloric	de (D) Boron trifluoride
97.	Which of the following	g have identical bond ord	ler?	
	(A) O_2^{2+}	(B) NO ⁺	(C) CN ⁻	(D) CN ⁺
98.	Which of the following	g has unpaired electron(s	s)	
	(A) O_2^{2+}	(B) O_2^-	(C) NO	(D) H_2^+
99.	Which of the following	g species have a bond ord	der of 3?	
	(A) CO	(B) CN ⁻	(C) NO ⁺	(D) O_2^+

- 100. Which of the following is correct?
 - (A) During N₂⁺ formation, one electron is removed from the bonding molecular orbitals
 - (B) During O₂⁺ formation, one electron is removed from the antibonding molecular orbirtals
 - (C) During O₂- formation, one electron is added to the bonding molecular orbitals
 - (D) During CN⁻ formation, one electron is added to the bonding molecular orbtials
- 101. Which of the following are diamagnetic?
 - $(A) C_2$
- (B) O_2^{2-}
- (C) Li₂
- (D) N_2^+

Answer Key

1.	A	2. C	3.	D	4.	D	5.	D	6.	A	7.	В	8. C
9.	A	10. D	11.	A	12.	C	13.	C	14.	D	15.	A	16. B
17.	В	18. C	19.	D	20.	C	21.	A	22.	D	23.	D	24. A
25.	В	26. A	27.	D	28.	A	29.	A	30.	В	31.	В	32. C
33.	В	34. A	35.	C	36.	A	37.	В	38.	A	39.	A	40. B
41.	D	42. C	43.	В	44.	D	45.	В	46.	A	47.	A	48. C
49.	В	50. A	51.	D	52.	В	53.	C	54.	D	55.	D	56. B
57.	В	58. B	59.	C	60.	В	61.	A	62.	В	63.	A	64. A
65.	D	66. A	67.	C	68.	D	69.	В	70.	A	71.	D	72. C
73.	C	74. B	75.	A	76.	D	77.	C	78.	D	79.	A	80. A
81.	В	82. B	83.	В	84.	C	85.	C	86.	D	87.	ABC	88. BC
89.	BC	90. AC	91.	BD	92.	AB	93.	BC	94.	ABC	95.	AD	96. BCD
97.	ABC	98. BCD	99.	ABC	100.	ABD	101.	ABC					

Below are all the reduced topics for all Class 11th subjects in tabular form

Class 11 English Core - Hornbill Reduced Chapters/ Topics					
Chapter	Page No.	Dropped Chapters/ Topics			
Chapter 4: The Landscape of the Soul by Nathalie Trouveroy	34-40	Full chapter			
Chapter 6: The Browning Version by Terrence Rattigan	50-57	Full chapter			

Class 11 English Core - Snapshots Reduced Chapters/ Topics					
Chapter	Page No.	Dropped Chapters/ Topics			
Chapter 3: Ranga's Marriage by Venkatesha Iyengar	16-24	Full chapter			
Chapter 4: Albert Einstein at School by Patrick Pringle	25-31	Full chapter			

Class 11 Hindi Core - Aroh Reduced Chapters/ Topics					
पाठ का नाम	पृष्ठ	संशोधन (घटाए गए विषय)			
स्पीति में बारिश	68-78	पूरा पाठ			
आत्मा का ताप	118-126	पूरा पाठ			
पथिक	140-144	पूरा पाठ			
वे आँखें	145-150	पूरा पाठ			

Class 11 Hindi Core - Vitan Reduced Chapters/ Topics पाठ का नाम पृष्ठ संशोधन (घटाए गए विषय)

पुस्तक में कोई परिवर्तन नहीं

Class 11 Physics Reduced Chapters/ Topics					
Chapter	Page No.	Dropped Chapters/ Topics			
1. Physical World	1-15	1.1 What is physics?1.2 Scope and excitement of Physics1.3 Physics, technology and Society1.4 Fundamental forces in Nature1.5 Nature of physical laws			
2: Units and Measurements	18-27	2.3 Measurement of length2.4 Measurement of mass2.5 Measurement of time2.6 Accuracy, precision of instruments and errors in measurement			
	36-38	Exercises 2.13, 2.14, 2.19-22, 2.24 - 2.33			
3: Motion in a Straight Line	39-43; 51-53; 56 59 - 60; 61-64	3.2 Position, path length and displacement 3.3 Average velocity and average speed 3.7 Relative velocity Exercises 3.5, 3.7 - 3.9, and 3.23 - 3.28 Appendix 3.1			
4: Motion in a Plane	76-77;	4.9 Relative velocity in two dimensions			
	86-88	Exercises 4.12 - 4.14; 4.26 -4.32			

Class 11 Physics Reduced Chapters/ Topics			
5: Laws of Motion	111- 113	Exercises 5.24 - 5.40	
	126- 128;	6.10 Various forms of energy: the Law of conservation of energy	
6: Work, Energy and Power	137- 139	Exercises 6.24 - 6.29	
	164- 167;	7.10 Theorems of perpendicular and parallel axes;	
7: System of Particles and Rotational Motion	173- 175;	7.14 Rolling motion	
	178- 182	Exercises 7.10, 7.18 - 7.19, 7.21 - 7.33	
8: Gravitation	186;	8.11 Geostationary and polar satellites	
	196- 198;	8.12 Weightlessness	
	202 - 206	Exercises 8.3 - 8.5, 8.22 - 8.25 Appendix 8.1	
9: Mechanical Properties of Solids	236; 241; 249	9.2 Elastic behaviour of solids; 9.6.2 Determination of Young's Modulus of the Material of a Wire; Exercises 9.17 - 9.21	

10: Mechanical Properties of Fluids	260; 261; 269; 276-277; 274-275	10.4.2 Venturi-meter; 10.4.3 Blood Flow and Heart Attack 10.6.6 Detergents and Surface Tension; Appendix 10.1 10.6.6 Detergents and Surface Tension; Exercises 10.21 - 10.31
11: Thermal Properties of Matter	295-296; 302	11.9.5 Greenhouse Effect Exercises 11.21 - 11.22
12: Thermodynamics	313; 313-314; 322	12.9 Heat engines 12.10 Refrigerators and heat pumps Exercises 12.7 and 12.10
13. Kinetic Theory	335; 340	13.6.5 Specific Heat Capacity of Water Exercises 13.11 - 13.14)
14. Oscillations	352-353; 355-359; 365 - 366	14.9 Damped simple harmonic motion 14.10 Forced oscillations and resonance Exercises 14.16 (p. 365), 14.20 - 14.25
15: Waves	384-387; 393-394	15.8 Doppler effect Exercises 15.20 - 15.27
Answers	223-226; 228- 234; 396-402; 404	In accordance with the reduction in Exercises in text.

Class 11 Chemistry Reduced Chapters/ Topics		
Chapter	Page No.	Dropped Chapters/ Topics
Unit V: States of Matter: Gases and Liquids	136-159	Full chapter

Class 11 Chemistry Reduced Chapters/ Topics			
Unit IX: Hydrogen	284-298	Full chapter	
Unit X: s- Block Elements	299-314	Full chapter	
Unit XI: Some p-Block Elements	315-333	Full chapter	
Unit-XIV: Environmental Chemistry	406-422	Full chapter	

Class 11 Biology Reduced Chapters/ Topics			
Chapter Page No.		Dropped Chapters/ Topics	
	3-5	1.1 What Is 'Living'?	
	11-14	1.4 Taxonomical Aids	
Chapter 1: The Living World	12	1.4.2 Botanical Gardens	
	12	1.4.3 Museum	
	13	1.4.4 Zoological Parks	
Chapter 3: Plant Kingdom	40-41	3.5 Angiosperms	
	42-43	3.6 Plant Life Cycles and Alternation of Generations	
Chapter 5: Morphology of Flowering Plants	67-68	5.1.2 Modifications of Root	
	68-69	5.2.1 Modifications of Stem	
	71	5.3.4 Modifications of Leaves	
	78-79	5.9.1 Fabaceae	
	81	5.9.3 Liliaceae	

Class 11 Biology Reduced Chapters/ Topics				
	84	6.1 The Tissues		
	84-85	6.1.1 Meristematic Tissues		
	86-87	6.1.2.1 Simple Tissues (Para 2, 3)		
	87-88	6.1.2.2 Complex Tissues (Para 4)		
	94	6.4 Secondary Growth		
Chapter 6: Anatomy of Flowering Plants	94-95	6.4.1 Vascular Cambium		
r to wering r tailed	95	6.4.1.2 Activity of the cambial ring		
	95	6.4.1.3 Spring wood and autumn wood		
	96	6.4.1.4 Heartwood and sapwood		
	96-97	6.4.2 Cork Cambium		
	97-98	6.4.3 Secondary Growth in Roots		
Chapter 7: Structural Organisation in Animals	100 101- 102 102- 103 104- 105 105- 106 106- 111 106- 107 107- 108 111 111- 112 113-	7.1 Animal Tissues 7.1.1 Epithelial Tissue 7.1.2 Connective Tissue 7.1.3 Muscle Tissue 7.1.4 Neural Tissue 7.3 Earthworm 7.3.1 Morphology 7.3.2 Anatomy 7.4 Cockroach 7.4.1 Morphology 7.4.2 Anatomy Summary (Para 2, 3, 4) Question No. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14 (c)		

Class 11 Biology Reduced Chapters/ Topics				
		11: 12: 12: 12: 12:	0- 1 1-	
Chapter 9: Biomolecules 1		151 152 153 153 160- 161		9.8 Nature of Bond Linking Monomers in a Polymer 9.9 Dynamic State of Body Constituents - Concept of Metabolism 9.10 Metabolic Basis for Living 9.11 The Living State Question No. 2, 3, 5, 8, 10
Chapter 11: Transport in Plants	175- 193		Full	chapter
Chapter 12: Mineral Nutrition	194- 205		Full	chapter
Chapter 15: Plant Growth and Development	251 252 252 254		15.6 15.7	Photoperiodism Vernalisation Seed Dormancy stion No. 3, 5, 8, 10
Chapter 16: Digestion and Absorption	258- 267		Full	Chapter
Chapter 21: Neural Control and Coordination	322 322 322- 323 323 323- 324 324- 326 327 328 329- 330		21.6 21.6 21.6 21.6 21.6 21.6 Sum Ques	Reflex Action and Reflex Arc Sensory Reception and Processing .1 Eye .1.1 Parts of an eye .1.2 Mechanism of Vision .2 The Ear .2.1 Mechanism of Hearing mary (para 3&4) stion No. 1 (b, c), 2 (c), 4, (c, d), 5 (e, h), 6 (b, c), 7, 8 (b, c), 9 (c), 10 (a), 12 (c, d)

Class 11 Mathematics Reduced Chapters/ Topics			
Chapter	Page No.	Dropped Chapters/ Topics	
Chapter 1: Sets	12-13 21-24	1.7 Power set 1.12 Practical Problems on Union and Intersection of Two Sets	
Chapter 3: Trigonometric Functions	74-78 466- 473	3.5 Trigonometric equations 3.6 Proofs and Simple Applications of Sine and Cosine Formulae	
Chapter 4: Principle of Mathematical Induction	86-96	4.1 Introduction 4.2 Motivation 4.3 The Principle of Mathematical Induction	
Chapter 5: Complex Number	106 - 108, 108- 109, 474- 475	5.5.1 Polar representation of a complex number 5.6 Quadratic Equation 5.7 Square -root of a Complex Number	
Chapter 6: Linear Inequalities	123- 127, 127- 129	6.4 Graphical Solution of Linear Inequalities in Two Variables 6.5 Solution of System of Linear Inequalities in Two Variables	
Chapter 8: Binomial Theorem	167- 171	8.3 General Middle Terms	
Chapter 9: Sequences and Series	181- 186, 194- 196	9.4 Arithmetic Progression (A.) 9.7 Sum to n terms of Special Series	
Chapter 10: Straight Lines	210- 212 217- 220 2220- 224 and	10.2.4 Collinearity of three points 10.3.6 Normal forms 10.4 General Equation of a Line 10.6 Equation of Family of Lines Passing Through the Points of Intersection of Two Lines 10.7 Shifting of Origin	

Class 11 Mathematics Reduced Chapters/ Topics			
	227- 228 477- 478 478- 479		
Chapter 11: Conic Sections	248	11.5.2 Special cases of an ellipse	
Chapter 12: Introduction to Three Dimensional Geometry	273- 277	12.5 Section Formula	
Chapter 14: Mathematical Reasoning	321- 346	14.1 Introduction 14.2 Statements 14.3 New Statements from Old 14.4 Special Words/Phrases 14.5 Implications 14.6 Validating Statements	
Chapter-15: Statistics	372- 376	15.6 Analysis of Frequency distribution	

Class 11 Accountancy Reduced Chapters/ Topics			
Chapter	Page No.	Dropped Chapters/ Topics	
Chapter 2: Theory Base of Accounting	36-38	Textual content on IFRS	
Chapter 8: Bills of Exchange	Full Chapter	Full Chapter	
Chapter 11: Accounts from Incomplete Records	425-462	Full Chapter	
Chapter 12 & 13: Computers in Accounting	463-491	Full Chapters	

Class 11 Business Studies Reduced Chapters/ Topics		
Chapter	Page No.	Dropped Chapters/ Topics
Chapter 3: Private, Public and Global Enterprises	72-76,80	Joint Ventures
Chapter 4: Business Services	107- 109,113- 114	Warehousing and its functions
Chapter 5: Emerging Modes of Business	134- 140,141- 142, 143	Outsourcing - concept need and scope
Chapter 8: Sources of Business Finance	202-204, 208-210	Discounting of bill of exchange; ADR and GDR
Chapter 11: International Business	292-307	Complexities involved in International Business, Foreign Trade Promotion: Organisational Support and Incentives; Nature and Importance of Export Processing Zone

Class 11 Economics Reduced Chapters/ Topics			
Chapter	Page No.	Dropped Chapters/ Topics	
Chapter 4: Poverty	57-81	Full Chapter	
Chapter 8: Infrastructure	139-161	Full Chapter	

classante	
C Pale D	Classmate Dorts Page
Stateme of period & group where will you locate the 17th group period - 7 group - 14 Clock - P Lieby do Elevents in the same group have similar and chamical properties? The Elevents in a group have valence thell electronic configuration and hence have similar physical and chamical properties	Atomic Radii- from left to right across a period generally decreases due to therease in Effective nuclear charge from left to right across a period Il what do you understand by the Electronic species? Now a Species that will be no Electronic with Each of the following atoms / Jone (i) F (ii) AT (iii) ty 12 (iv) Rb sus the Electronic species are those species (dome/ rone) ushid have some somewher of Electrone. Iso Electronics
I what does atom making Fonic radius really means to you any thomas fadius. Internet between the centre of moderns to the auternest shoel of Electrons in the atom any flument is called Bromis fadius tradicion to Estimated by measuring the distance between cotions and curions in termic mystals.	(a) Not will Not the following effection: (b) Arrange Hum in order of turnessing Janic radic as All of these tames are no of flethern within the
them do stavie radius vary in a found and in a group? them do you explain the variation? and with a group stavier rodius survivarie down the group Reason - this is due to continuous increases in the	(b) In Isoleotronic officies, greater the nuclear change, lesser well be the alarmic or tenis radius At 12 x Mg 12 < No+ x F x 0. x x 12 = 1 Septem toly cations are smaller and arrions larger in
hunder of Electronic shells or orbitals numbers in the the structure of sterns of the Elevente deven a	radii than their parent atoms: A cation is smaller than the parent atom because it has fewer sharkoms ushaile its mustar change remain the same. The size of anion will be larger than that of purent along because the addition of one or more sharkoms would result in the recised among the sharkoms and a decrease in Efficience

Classmate Dete		
		CLASCAACE. Cate
15 Energy of an Elichan in the ground state atom is -2-18 x 10 185. Catantote the Longition Enthapty of	<u>I</u>	How would you Explain the fact the first is nizotion tuthalpy of Sodium 11 leaser than that of Nagoresium but its second transjation suthalpy is higher than that of magnesium?
any The Law inter Enthalter of I make atoms. Therefore	ave	suctionic configuration of Na and his
as & (ground state) = -2.18 × 10-18 7 × 6.522 × 10° = -1.312 × 10° J		Mg - 152 262 205 202
Formation entropy = 0 - (-1.312 × 10°) = 1.312 × 10° Junet		first Electron in both cases has to be removed from as orbital but the nuclear charge of Na(HI) is lower. Than of Mg (+102) thurspore first ionization sungy of sodium is lower than had a manufactured.
to bring the second paid thements, the actual familyation		Sodium is cower than that of magnesium. After the box of first election, the election configuration. Na+ - 152 83+ 896
Entropies are the order: Li < B < B < 0 < K < F < Ne Explain voly		Mgt - 15-25-29-351 Here Not has Atlained Ne confrigation which is
i) Be has higher DH, How B ii) O has lower DH, Ham N and F?		very stable and hence hemoval of second require
Le contribut volide in B (15° 25° 2p1) it is prosent in Le contribut volide in B (15° 25° 2p1) it is prosent in Le orthird Lince 2s - fleation are more shoughy	18	Enthalpy of the various factors due to ushich the provigat
attracted by the nucleus than ep- Elections, therefore leaver amount of Energy is required to	aus	down the group? is Streng / Shidding Effect
room on a 29 - Electron than a le - Cleation.		
(ii) the Electronic Configation Ny = 15 25 2p 2py 2pz O8 = 13 25 2p 2py 2pz		
we can observe in case of witnessen ep-priviled One Excelly half to filled Therefore it is difficult		Could be to the second of the
to semove an election from M from O.		

classmate	1	
Date Page		classwate Date Page
The first ionigation Enthough values (in KJ mol-) of grip 15 Plumints are B Al yn In \$1 T1 801 577 579 558 589 Home would you Explain this deviation from the general brend? The decrease in A.H., value from B to Al is due to the biggen size of Al. In acts go ture is 10 d' electron ustale does not cereen as is done by s and P electron. The same is to the way foor suithing Effect. This also increases the effective values of Ditti increases	22	(ii) The reason for deviation is due to the smaller of F. Due to Its small size, the Electron repulsion in the relatively compared of Subshell are comparatively large hence the attractive for incoming thether is test in the case of c. What is the basic difference between the terms thether gain turbulpy and electro regardinely? Yellstron gain thereon Enthalpy refers to an Isolated gaslow atom to accept an additional thection to form a regative for reference Electronegativity refers to tendency of the atom of an Element to attract shared pain of Electron towards in a covalent learner.
which of the fellowing pain of Elements would have to more regative element gain Enthalpy. (i) Out F ii) For cl (ii) Both O and F lie in I'm peoplet pained. As we make from 0 to F the atomic size decuased. Due to smaller size of F unclear charge increases. Further, grain of one Electron by, F > F For ions has west gas confrigation, while the gain of one Electron by Orive whose which does not have stable inset gas confrigation, Ban Sequently, the Energy released is much higher in going form. In other wood electron gain Enthapty of F is much more negative than that of Oxygen.	23 cure 24	More would you seart to the Statement that the Electo- usgatively of N on pauling Scale is 30 in all the wirogen compounds. On pauling Scale, the Electronegatively of Nitrogen (3.0) Indicated that it is sufficiently electronegative But it is not correct to say that the section egativity of nitrogen in all the compounds is 3. It deposed on state of Hybridisation - more is the schools in wore will be the electronegativity What you expect the first ionization enthodics of two potops of the same elements to be the same I different ! Austrity toniustion enthody among the first ionization depends outs electronic configuration and vuolear charge since voolopes of an Elements wave the same electronic and Same nuclear charge, they have same ionigation

	CONTRACTOR OF THE PARTY OF THE	100	谷.
	Classaute Date		
			Classmate Orde Orde
	11/4/2011		
	S what are major difference between metal & non metal	29	
	Nachal I New Medica		is the Nactor to be treather among group I werent
1-	1. Have shong tendancy to 1. Non nutale have a strong lose flections to hom tendency to accept Eliette		
V-		ang	The Elements of Group I have only one Election in Hisir
1	Cation to form culians Notation to form cultar are shong Reducing		and Hust being a strain ! !
1	agents are shory radius agent.		the tendency to been blocked to
	. Natal have love societion 3. Non metal have high		un depends upon the consistion tuthabus the
	Entrapies soughter soughter		wheat with the tron partivity. Since both of them dearen de
- 4	· Metal form basic oxider 1. Non metals from acidic		donon the group, the reactivity decreases
	and toute company oxides and covalent	3/0	Newson II a back of the second
	gomperd.		Assign the position of elemente having outer Electronic
- 2	L the periodic table and find and embedded		in NS-NPY for N=3
	is Elentify the Element with 5 shortons in order v		Wilned not for N=4
	in Identify the Element that would fend to lose two	4	iii) (n-2) f (n-1) d'ns for n=6 in periodic table?
	Elevents	ary	is p-black
-	is Edentify the Element that belong tout to gain two		group-16 y Sulphur
	Elevante.		3-rd poined
-	in Elements belonging to Nitrogen family (group 15) witrogen		(ii) 4th period ? Titarium
-	(ii) flowerth (slarging to Alkaline faith family (group 2)		group 4 J
-	Maguerium		(iii) 16th period ?
Jul 1	in stement belonging to Oxygen torruly (group 16)		+ block goddin.
-	Oxygen		grows 5
1			Jan Le about Land
~ 28	Write the general Electronic configuration of signal and	31	chosse the Justice oftion
n	f-those elements?	(b)	DW-3 (E) 170 h DW-9 100 E
- and	& 8- Alock Glements: Ns'- where n=2-7		of & Steatroms can occupy all the orbitals in a d-sub-
	iii) p - Block alements : NETup - (11)		Shell.
	(in) d- Not ellerent (N-1) d 1-100-2 11 10 11 2		
	cir) + - block statuouts (n-2) + 0-14 (n-1) d 0-185 where n = 6-1		
	as write n =6-1		

Classage	
Q Date Page	22 10 84 Classaute Classaute Company Classaute Classaute
in wind Ledicate	
33 In modern periode Fable, the period Sudicate	1) Becl is a polar compound yet Becl is a non polar
(c) principal quentum number	compund,
	2) Show or and it bond formation in Cotto, Cotto, Cotto
33 Predict the formulas of the stable Kingy compounds	byour Othern dicionaries oun lector on time
Prelict Hu formulas of me southingtion	3) Acount for discreping in board angle
that would formed by the service	a) ZHOM in coater
OM (4) 710	a) Zhira w NH
(b) Hg3N,	4) compare the bond order and relative stability of
(d) 210,	(i) 02, 07, 02-, 02+, 02+ (ii) 12, 12+
(e) PEt	
(f) fufz	Endich the magnetic character
M KM 3	5) Define Resonance, draw the resonance structure of
	6) Define Hybritakon is &F
35 drugting that Sufference the valence Electrons will after	7) In Pol- an all the P-of bond same?
the chamistry of Element	8) Define Hydrogen bond give condition for formation of H bond.
au (c) Nuclear mall	of H band
The state of the s	9) Discuss it types and give suitable eq
36 The six of iso steethonic species F, Ne and No is	0 0
affected by) Bed, is non polar because of the symmetrie Structu
ous (a) Nuclear charge	it's structure in linear so the Diopole moment :
A SALE ALLER	the compound becomes or the force of attraction
31 which of the following statement is incorrect in	of election of both dilarine atom neutralises.
relation to benization Eutholpy >	
(d) Removal of Electron from orbitals bearing lawer 1	cl = sc = (d).
value is gazier than form orbital howing higher is	Electro regativity
value.	So Be-d polar bond and operall it is non-
	polar legad.

