Algoritmos e Programação de Computadores $3^{\underline{a}}$ Prova

Nome:	
RGA: 201121902014	

Instruções: Não é permitida consulta a qualquer material. *Somente serão consideradas respostas nos espaços marcados.* Use os versos das folhas como rascunho.

Questão	Valor	Nota	
1	3,0		
2	2,5		
3	2,5		
4	2,0		
Total	10,0		

1. O programa a seguir faz a leitura de seu RGA e armazena os quatro últimos dígitos em um vetor de inteiros. Este vetor é utilizado para preencher uma matriz de inteiros.

```
1 #include <stdio.h>
2
3 int main() {
4
      int vetor[4], matriz[4][4], i, j, coluna, x, maior;
5
      long rga;
      scanf("%ld", &rga);
6
7
      for(i = 4; i > 0; i--) { /* Leitura dos quatros últimos dígitos do seu RGA */
           vetor[i-1] = rga % 10;
8
9
           rga /= 10;
10
      }
11
12
      /* Início da etapa de preenchimento */
      for(i = 0; i < 4; i++)
13
14
           for(j = 0; j < 4; j++)
15
                matriz[i][j] = i + j;
16
17
      for(i = 0; i < 4; i++)
           matriz[i][i] = vetor[i];
18
19
      /* Fim da etapa de preenchimento */
20
21
      coluna = 3;
22
      maior = matriz[3][coluna];
23
      for(i = 3; i >= 0; i--) {
           for(j = 3; j \ge 0; j--) {
24
25
                if(matriz[i][j] > maior) {
26
                     maior = matriz[i][j];
27
                     coluna = j;
28
                }
           }
29
30
       }
       x = 0;
31
       for(i = 0; i < 4; i++)
32
33
            x += matriz[i][coluna];
34
35
       printf("x = %d\n", x);
36
       return 0;
37 }
```

a) Mostre a matriz obtida por este programa após a etapa de preenchimento.

2 1 2 3 Observe que os quatros últimos dígitos do RGA ocupam a diagonal
1 0 3 4 principal da matriz.
2 3 1 5
3 4 5 4

b) Qual o valor é impresso na linha 35? O que a variável x representa?

Neste caso, o valor impresso é 11.

A variável x representa a soma dos elementos da matriz localizados na coluna que contém o maior valor da matriz.

c) Mostre uma matriz de tamanho 4×4 , para a qual, em uma execução deste código, é máxima a quantidade de vezes em que as instruções das linhas 26 e 27 são executadas.

15 14 13 12		
11 10 09 08		
07 06 05 04		
03 02 01 00		

2. A seguinte função recursiva recebe um número inteiro positivo n e um vetor v contendo n números inteiros em ordem crescente. Preencha os espaços deixados em branco para que a função verifique se v possui números repetidos. Os valores 1 e 0 devem ser devolvidos, respectivamente, para indicar se há ou não repetições.

3. Escreva uma função recursiva que recebe dois números inteiros a e b como parâmetro e calcula, utilizando somente subtrações, o resultado da divisão inteira de a por b. Para a=10 e b=3, por exemplo, a função deve devolver 3.

<pre>int div(int a, int b) {</pre>
if(a < b)
return 0;
return 1 + div(a-b, b);
}

4. O programa a seguir recebe uma cadeia de caracteres contendo uma mensagem escondida. A mensagem foi codificada considerando as diagonais de uma matriz de tamanho $n \times n$ (veja exemplo). O programa deverá mostrar a mensagem na tela. As funções main e tamanho_frase são dadas. Implemente as outras duas funções.

Exemplo de mensagem de entrada 11cpskl+y5mcpj3bpbsllcrehfmeokecwitsnglrex(tj(xypynbqfxx)uvgfaj)

Mensagem em formato matricial

1	1	c	p	S	k	1	+
У	5	m	С	p	j	3	b
p	b	S	1	1	c	r	e
h	f	m	е	0	k	e	c
W	i	t	S	n	g	1	r
e	X	(t	j	(X	у
p	у	n	Ъ	q	f	X	X
)	u	v	g	f	a	j)

Mensagem escondida

15sen(x) + 3cos(y)

```
#include <stdio.h>
#include <math.h>
int tamanho_frase(char frase[]);
void preencher_matriz(char frase[], char matriz[100][100], int n);
void mostrar_mensagem(char matriz[100][100], int n);
int main()
{
    char matriz[100][100];
    char frase[10000];
    int n;
    scanf("%s", frase);
    n = sqrt(tamanho_frase(frase));
    preencher_matriz(frase, matriz, n);
    mostrar_mensagem(matriz, n);
    return 0;
}
```

```
int tamanho_frase(char frase[])
{
    int i = 0;
    while(frase[i]!= '\0') i++;
    return i;
}
```

a) Implemente a função preencher_matriz, que recebe uma cadeia de caracteres de tamanho $n \times n$ e preenche a matriz com estes caracteres.

b) Implemente a função mostrar_mensagem que imprime a mensagem escondida nas diagonais da matriz.

```
void mostrar_mensagem(char matriz[100][100], int n) {
    int i;
    for(i = 0; i < n; i++)
        printf("%c", matriz[i][i]);
    for(i = 0; i < n; i++)
        printf("%c", matriz[i][n-i-1]);
}</pre>
```