Lecture 06: Evaluation of evaluations

PPHA 34600

Prof. Fiona Burlig

Harris School of Public Policy University of Chicago

From last time: RCTs are the bee's knees

Randomized controlled trials are super powerful:

- Random assignment allows us to solve our selection problem
- We can implement them with tweaks to handle challenges:
 - Noncompliance: Dividing au^{ITT} by share of compliers $o au^{LATE}$
 - Spillovers: Proper design to avoid or measure
- More opportunities than you might imagine for implementation

Moving out of RCT land

We will spend the rest of the course on other research designs:

- Randomized controlled trials (RCTs)
- Trying to control for observable things
- Panel data
- Instrumental variables
- Regression discontinuity
- Big Data and machine learning

Why leave RCT land?

RCTs are the gold standard for a reason, but:

- They can be expensive
- Some programs require evaluation at scale
- RCTs can't always be implemented
- There's a lot to learn from non-RCTs

The ideal experiment

Even as we move away from RCTs, it's useful to consider the **ideal experiment**

The ideal experiment

Even as we move away from RCTs, it's useful to consider the **ideal experiment**

- "What experiment would I run to answer this question?"
- Useful to nail down your question of interest
- Valuable to think through problems with your non-RCT

The ideal experiment

Even as we move away from RCTs, it's useful to consider the **ideal experiment**

- "What experiment would I run to answer this question?"
- Can be totally feasible (RED for energy efficiency upgrades)...
- ...or totally infeasible (randomly warm one Earth while keeping the other cold)

We want to know how well our non-RCT toolkit works... **How can we test this?**

We want to know how well our non-RCT toolkit works... How can we test this?

- → Compare an actual RCT to other methods on the same data
 - Requires a setting with an RCT
 - (Usually) toss the control group
 - Use quasi-experimental methods to estimate \(\hat{\tau} \)
 - Compare the RCT to the quasi-experimental methods

We want to know how well our non-RCT toolkit works... How can we test this?

- → Compare an actual RCT to other methods on the same data
 - Requires a setting with an RCT
 - (Usually) toss the control group
 - Use quasi-experimental methods to estimate $\hat{ au}$
 - Compare the RCT to the quasi-experimental methods
- → What do we learn?

We want to know how well our non-RCT toolkit works...

How can we test this?

- → Compare an actual RCT to other methods on the same data
 - Requires a setting with an RCT
 - (Usually) toss the control group
 - Use quasi-experimental methods to estimate $\hat{ au}$
 - Compare the RCT to the quasi-experimental methods
- → What do we learn?

This is often referred to as a "LaLonde exercise" after LaLonde (1986)

Comparing RCTs with quasi-experiments teaches us:

• If the estimates are the same:

Comparing RCTs with quasi-experiments teaches us:

- If the estimates are the same:
 - Good sign!
 - This suggests that the quasi-experimental method is working properly

Comparing RCTs with quasi-experiments teaches us:

- If the estimates are the same:
 - Good sign!
 - This suggests that the quasi-experimental method is working properly
- If the estimates are different:

Comparing RCTs with quasi-experiments teaches us:

- If the estimates are the same:
 - Good sign!
 - This suggests that the quasi-experimental method is working properly
- If the estimates are different:
 - 2222
 - Something is likely going wrong with the non-RCT

Comparing RCTs with quasi-experiments teaches us:

- If the estimates are the same:
 - Good sign!
 - This suggests that the quasi-experimental method is working properly
- If the estimates are different:
 - 222
 - Something is likely going wrong with the non-RCT

Context is really important for this!

Leveraging an RCT we know and love

Blast from the past: We'll use the SMUD pricing RCT

Policy issue:

- The cost of providing electricity is time-varying
- Prices typically aren't
- This causes large welfare losses

Program:

- SMUD (randomly) implemented time-varying pricing
- Experimental run: 2011-2013
- Two flavors: "time-of-use" (TOU) and "critical peak pricing" (CPP)
- Both opt-in and opt-out versions

Fowlie & Wolfram et al results recap

Why did we want an RCT in this context?

Research question:

What is the effect of time-varying electricity pricing on consumption?

Why did we want an RCT in this context?

Research question:

What is the effect of time-varying electricity pricing on consumption?

Potential for selection into treatment on characteristics

- → People who participate in utility programs look different
- ightarrow Suppose no response to treatment: If units who choose treatment have different consumption patterns, we'll mistakenly measure $\hat{ au}>0$

Why did we want an RCT in this context?

Research question:

What is the effect of time-varying electricity pricing on consumption?

Potential for selection into treatment on characteristics

- → People who participate in utility programs look different
- ightarrow Suppose no response to treatment: If units who choose treatment have different consumption patterns, we'll mistakenly measure $\hat{ au}>0$

Potential for selection into treatment on τ_i

- ightarrow People who choose to get treated may have different price sensitivity
- → We know some of this is happening! (two LATEs)

What would the naive estimator do?

Recall our naive estimator:

$$\tau^{N} = \bar{Y}(1) - \bar{Y}(0)$$

What would the naive estimator do?

Recall our naive estimator:

$$\tau^{N} = \bar{Y}(1) - \bar{Y}(0)$$

Why is this problematic for electricity pricing?

Going beyond the naive estimator

We have a good idea that the naive estimator won't work...

... so we turn to alternative research designs

Going beyond the naive estimator

We have a good idea that the naive estimator won't work...

... so we turn to alternative research designs

A research design:

- Tries to solve the selection problem without randomization
- Invokes stronger assumptions than the RCT
- Allows us to make progress without randomization
- Best-case scenario: mimics an RCT

We will cover each of these methods in detail later:

We will cover each of these methods in detail later:

- Difference-in-differences
 - Essentially compares treated and untreated units over time
 - Intuition: I am similar to myself, treated or not...
 - ... but to rule out other stuff happening, I use never-treated units

We will cover each of these methods in detail later:

① Difference-in-differences

- Essentially compares treated and untreated units over time
- Intuition: I am similar to myself, treated or not...
- ... but to rule out other stuff happening, I use never-treated units

(Propensity score) matching

- Essentially a sophisticated way of "controlling for stuff"
- Tries to generate a (non-experimental) control group
- Goal is to make this similar to the treated group

We will cover each of these methods in detail later:

① Difference-in-differences

- Essentially compares treated and untreated units over time
- Intuition: I am similar to myself, treated or not...
- ... but to rule out other stuff happening, I use never-treated units

(Propensity score) matching

- Essentially a sophisticated way of "controlling for stuff"
- Tries to generate a (non-experimental) control group
- Goal is to make this similar to the treated group

8 Regression discontinuity

- Essentially compares just-treated units to just-untreated units
- · Leverages cutoffs in policy

- lacktriangle Compare treated unit i in time t to (pre-treatment) i in time t-1
 - Intuitive part: compare me to myself pre/post treatment

- **1** Compare treated unit i in time t to (pre-treatment) i in time t-1
 - Intuitive part: compare me to myself pre/post treatment
- **②** Compare untreated unit j in time t to untreated j in time t-1
 - Why do this?

- **1** Compare treated unit i in time t to (pre-treatment) i in time t-1
 - Intuitive part: compare me to myself pre/post treatment
- **Q** Compare untreated unit j in time t to untreated j in time t-1
 - Why do this?
 - → Control for common shocks to everyone
- 3 Subtract difference (1) from difference (2):

$$y_{it} = \alpha + \tau D_{it} + \underbrace{\gamma_i}_{i \text{ to itself}} + \underbrace{\delta_t}_{j \text{ over time}} + \varepsilon_i$$

The DD approach compares units to themselves over time (3 steps):

- lacktriangle Compare treated unit i in time t to (pre-treatment) i in time t-1
 - Intuitive part: compare me to myself pre/post treatment
- **Q** Compare untreated unit j in time t to untreated j in time t-1
 - Why do this?
 - → Control for common shocks to everyone
- 3 Subtract difference (1) from difference (2):

$$y_{it} = \alpha + \tau D_{it} + \underbrace{\gamma_i}_{i \text{ to itself}} + \underbrace{\delta_t}_{j \text{ over time}} + \varepsilon_{it}$$

For this to work, we require:

• Consumption for treated units is trending similarly to untreated units

The DD approach compares units to themselves over time (3 steps):

- lacktriangle Compare treated unit i in time t to (pre-treatment) i in time t-1
 - Intuitive part: compare me to myself pre/post treatment
- **Q** Compare untreated unit j in time t to untreated j in time t-1
 - Why do this?
 - → Control for common shocks to everyone
- 3 Subtract difference (1) from difference (2):

$$y_{it} = \alpha + \tau D_{it} + \underbrace{\gamma_i}_{i \text{ to itself}} + \underbrace{\delta_t}_{j \text{ over time}} + \varepsilon_{it}$$

For this to work, we require:

Consumption for treated units is trending similarly to untreated units

Note: Spurlock et al drop encouraged-but-untreated units

→ Was this necessary?

Difference in difference intuition

Comparing experimental and diff-in-diff results

PPHA 34600 Program Evaluation Lecture 06 16 / 25

(Propensity score) matching is a fancy way to control for stuff (2 steps):

(Propensity score) matching is a fancy way to control for stuff (2 steps):

- Use pre-treatment consumption to find untreated units that look like treated units
 - Eliminate dis-similar untreated units from the sample

(Propensity score) matching is a fancy way to control for stuff (2 steps):

- Use pre-treatment consumption to find untreated units that look like treated units
 - Eliminate dis-similar untreated units from the sample
- Estimate treatment effects for all treated units and selected untreated units only:

$$y_{it} = \alpha + \tau D_{it} + \gamma_i + \delta_t + \varepsilon_{it}$$

• (You can do this in several different ways)

(Propensity score) matching is a fancy way to control for stuff (2 steps):

- Use pre-treatment consumption to find untreated units that look like treated units
 - Eliminate dis-similar untreated units from the sample
- 2 Estimate treatment effects for all treated units and selected untreated units only:

$$y_{it} = \alpha + \tau D_{it} + \gamma_i + \delta_t + \varepsilon_{it}$$

• (You can do this in several different ways)

For this to work, we require:

Our selection control soaks up everything that matters!

Note: Same approach as DD, but now controlling for more

Comparing experimental and propensity score results

PPHA 34600

The RD compares unit i to a nearly-identical unit j below a cutoff:

The RD compares unit i to a nearly-identical unit j below a cutoff:

- Use a policy cutoff to "randomize" treatment
 - Compare a unit with pre-period consumption just below 100 to a unit with pre-period consumption just above 100

The RD compares unit i to a nearly-identical unit j below a cutoff:

- Use a policy cutoff to "randomize" treatment
 - Compare a unit with pre-period consumption just below 100 to a unit with pre-period consumption just above 100

For this to work, we require:

• Units on either side of the cutoff are otherwise similar

The RD compares unit i to a nearly-identical unit j below a cutoff:

- Use a policy cutoff to "randomize" treatment
 - Compare a unit with pre-period consumption just below 100 to a unit with pre-period consumption just above 100

For this to work, we require:

• Units on either side of the cutoff are otherwise similar

Note: Spurlock et al construct fake cutoffs

- They stitch together control group units with treatment group units
- The stitching point is their artificial cutoff

Regression discontinuity intuition

Comparing experimental and regression discontinuity

Comparing experimental and regression discontinuity

PPHA 34600 Program Evaluation Lecture 06 22 / 25

Spurlock et al find:

- Difference in difference estimates *understate* treatment effects
 - Due to unabsorbed selection

PPHA 34600 Program Evaluation Lecture 06 23 / 25

Spurlock et al find:

- Difference in difference estimates *understate* treatment effects
 - Due to unabsorbed selection
- Propensity score estimates understate treatment effects
 - Due to unabsorbed selection (controls make it worse!)

PPHA 34600 Program Evaluation Lecture 06 23 / 25

Spurlock et al find:

- Difference in difference estimates *understate* treatment effects
 - Due to unabsorbed selection.
- Propensity score estimates understate treatment effects
 - Due to unabsorbed selection (controls make it worse!)
- Regression discontinuity estimates overstate treatment effects
 - Due to unabsorbed selection
 - OR estimating a different LATE

Spurlock et al find:

- Difference in difference estimates *understate* treatment effects
 - Due to unabsorbed selection.
- Propensity score estimates understate treatment effects
 - Due to unabsorbed selection (controls make it worse!)
- Regression discontinuity estimates overstate treatment effects
 - Due to unabsorbed selection.
 - OR estimating a different LATE
- Opt-out treatments are less biased than opt-in treatments
 - Intuition: We do better with a less-selected treatment

Exercise caution with non-experimental results

"Even though I was unable to evaluate all non-experimental methods, this evidence suggests that policymakers should be aware that the available non-experimental evaluations...may contain large and unknown biases resulting from specification errors." — LaLonde (1986)

Recap

TL;DR:

- RCTs are (still) great!
- 2 Quasi-experimental methods can get things wrong
- We don't usually have a good experimental benchmark (
 ②)

25 / 25