Examen la Calcul numeric

28 mai 2025

Setul 1

Problema 1 (a) Implementați metoda lui Newton pentru rădăcini multiple.

- (b) Se consideră ecuația $e^{-x^2} = \cos x + 1$ pe [0,4]. Ce se întâmplă dacă se aplică metoda lui Newton cu $x_0 = 0$ și $x_0 = 1$?
- (c) Remarcați convergența lentă, explicați fenomenul și găsiți un remediu.
- (d) Când este mai mic numărul de iterații: când se cunoaște multiplicitatea sau se estimează?

Problema 2 Deduceți o formulă de cuadratură de forma

$$\int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^2}} dt = A_0 f(-1) + A_1 f(t_1) + A_2 f(t_2) + A_3 f(t_3) + A_4 f(1) + R(f)$$

care să aibă grad maxim de exactitate.

Problema 3 Şirul $\varepsilon_n = e^{-e^n}$ converge către 0 când $n \to \infty$. Cât este ordinul de convergență?

Setul 2

Problema 4 (a) Implementați metoda lui Newton pentru rădăcini multiple.

- (b) Se consideră ecuația $\frac{1}{2}x^2+x+1-e^x=0$ pe [-1,1]. Ce se întâmplă dacă se aplică metoda lui Newton cu $x_0=1$?
- (c) Remarcați convergența lentă, explicați fenomenul și găsiți un remediu.
- (d) Când este mai mic numărul de iterații: când se cunoaște multiplicitatea sau se estimează?

Problema 5 Deduceți o formulă de cuadratură de forma

$$\int_{-1}^{1} f(t) dt = A_0 f(-1) + A_1 f(t_1) + A_2 f(t_2) + A_3 f(t_3) + A_4 f(1) + R(f)$$

care să aibă grad maxim de exactitate.

Problema 6 Şirul $x_n = 10^{-n^2}$ converge către 0 când $n \to \infty$. Arătați că converge superliniar. Ce se poate spune despre ordinul de convergență?