Unsupervised learning

Supervised Learning

- Data: labeled data, feature-response pairs (x, y)
- Goal: to learn a mapping from x to y
- Problem type:
 - Classification
 - Regression

Unsupervised Learning

- Data: unlabeled data, features x
- Goal: to uncover hidden structure, patterns, clusters, ...
- Typical tasks
 - Clustering analysis: cluster features or observations into groups with common traits
 - **Dimension reduction:** transform data from highdimensional space to a low-dimensional space while preserving as much information as possible
 - **.....**

Reinforcement Learning

- Data: a sequence of state-action pairs and a cumulative reward
- Goal: to learn a policy (a mapping from state to action) that maximizes the cumulative reward.
- Typical applications:
 - Game-playing (e.g., AlphaGo, Dota2),
 - Robotics control
 - **.....**

Quick Summary

Aspect	Supervised Learning	Unsupervised Learning	Reinforcement Learning
Goal	Learn a mapping from x to y	Discover hidden structure/patterns in <i>x</i>	Learn a policy that maximizes reward
Data	Labeled data	Unlabeled data	State-action pairs, and delayed rewards
Typical output	Classification or regression model	Clusters, low- dimensional embeddings	Policy

Clustering Analysis

- Popular techniques in analysis of complex data (e.g., genomics data)
- Aims to detecting homogeneous subgroups among the observations or the features
- Identities of the learned subgroups are unknown, but can often lead to meaningful interpretation after linked with additional information.
- We can cluster observations or features.
 - observations: clustering cancer samples to find similar cancer sub-types
 - features: clustering genes based on similar functions

Meaningful clusters

Without the groundtruth labels, how do we claim that our clusters results are meaningful?

Link to a clustering playground

Similarity and dissimilarity measures

Often we have to come up with numeric metrics to measure the similarity or dissimilarity between observations

- Similarity measures
 - Pearson correlation
 - Spearman correlation
 - Kendall's τ
- Dissimilarity measures
 - Euclidean distance
 - Manhattan distance

Similarity measures

When the features are numeric:

- Pearson correlation: This is the "usual" correlation coefficient, and measures the **linear** association between X_i and X_j .
- Spearman correlation. This is essentially the Pearson correlation applied to **ranked** observations.
- Kendall's τ . This correlation coefficient uses directly rankings among pairs of observations.

•

When the features are not numeric...

Dissimilarity measure

• Euclidean distance: sum of squared difference between feature values (ℓ_2 -norm)

$$d_{E}(i,j) = \left[\sum_{l=1}^{p} (X_{i,l} - X_{j,l})^{2}\right]^{1/2}$$

• Manhattan distance: sum of absolute difference between feature values (ℓ_1 -norm)

$$d_{M}(i,j) = \sum_{l=1}^{p} |X_{i,l} - X_{j,l}|$$

•

Checkout this example.

Common Clustering Methods

• Hierarchical clustering

- Sequence of solutions organized in a hierarchical tree structure, called the dendrogram
- Maintain a hierarchical structure

When the number of clusters decrease, observations in the same cluster stays in the same cluster

• k-Means clustering

- One of the most popular clustering method
- Computationally efficient
- No hierarchy among clusters
 When k decreases, observations in the same clusters
 might be reassigned to different clusters

• And many other methods

Dimension Reduction

- Goal: to transform data from a high-dimensional space to a lowdimensional space, without losing too much information
- Versatile tools for
 - Exploratory data analysis (e.g., tSNE)
 - Data processing for downstream analysis (e.g., principal component regression)
 - Uncover true latent pattern (e.g., intrinsic dimension of neural activities)
- Typical methods:
 - Principal Component Analysis (PCA)
 - <u>t-distributed Stochastic Neighbor Embedding</u> (tSNE)

Processing math: 100%