

FUNDAMENTALS OF INFORMATION SCIENCE:

PART 4: SECURITY

Shandong University 2025 Spring

Lecture 4.1: What is Cryptography?

Cryptography is Everywhere

Secure communication:

- web traffic: HTTPS
- wireless traffic: 802.11i WPA2 (and WEP), GSM, Bluetooth

Encrypting files on disk: EFS, TrueCrypt

Content protection (e.g. DVD, Blu-ray): CSS, AACS

User authentication

... and much much more

Secure Communication

Protect Files on Disk

Analogous to secure communication:

Alice today sends a message to Alice tomorrow

Building Block: Symmetric Encryption

E, D: cipher k: secret key (e.g. 128 bits)

m, c: plaintext, ciphertext

Encryption algorithm is publicly known

Never use a proprietary cipher

Crypto Core

Secret key establishment:

Secure communication:

But Crypto can Do Much More

Digital signatures

Anonymous communication

But Crypto can Do Much More

Digital signatures

Anonymous communication

Anonymous digital cash

- Can I spend a "digital coin" without anyone knowing who I am?
- How to prevent double spending?

Protocol

Elections

Winner = MAJ [votes]

Protocol

Elections

Goal: compute $f(x_1, x_2, x_3, x_4)$

"Thm:" anything that can done with trusted auth. can also be done without

Crypto Magic

Privately outsourcing computation

A rigorous science

The three steps in cryptography:

Precisely specify threat model

Propose a construction

Prove that breaking construction under threat mode will solve an underlying hard problem

Symmetric Cipher

the same key

Few Historic Examples (all badly broken)

1. Substitution cipher

C: = E(k, "bcza") = "wnac"

$$k := c \rightarrow n$$

 $D(k, c) = "bcza"$
 $z \rightarrow a$

Caesar Cipher (no key)

Shift by 3

How to break a substitution cipher?

What is the most common letter in English text?

How to break a substitution cipher?

(1) Use frequency of English letters

e: 12.7% t: 9.1% a:8.1%

(2) Use frequency of pairs of letters (digrams)

he an in th

An Example

UKBYBIPOUZBCUFEEBORUKBYBHOBBRFESPVKBWFOFERVNBCVBZPRUBOFERVNBCVBPCYYFVUFO FEIKNWFRFIKJNUPWRFIPOUNVNIPUBRNCUKBEFWWFDNCHXCYBOHOPYXPUBNCUBOYNRVNIWN CPOJIOFHOPZRVFZIXUBORJRUBZRBCHNCBBONCHRJZSFWNVRJRUBZRPCYZPUKBZPUNVPWPCYVF ZIXUPUNFCPWRVNBCVBRPYYNUNFCPWWJUKBYBIPOUZBCUIPOUNVNIPUBRNCHOPYXPUBNCUB OYNRVNIWNCPOJIOFHOPZRNCRVNBCUNENVVFZIXUNCHPCYVFZIXUPUNFCPWZPUKBZPUNVR

В	36	→ E
N	34	
U	33	→ T
Р	32	→ A
С	26	

UB 10	NC	11	→ IN
	PU	10	→ AT
UN 9	UB	10	
	UN	9	

digrams

2. Data Encryption Standard (1974)

DES: $\# \text{ keys} = 2^{56}$, block size = 64 bits

Today: AES (2001), Salsa20 (2008) (and many others)

Lecture 4.2: One Time Pad

Symmetric Ciphers: Definition

```
<u>Def</u>: a cipher defined over (K, M, C)
is a pair of "efficient" algs (E, D) where E: K \times M \to C D: K \times C \to M
s.t \forall m \in M, k \in K D(k, E(k, m)) = m
```

E is often randomized. **D** is always deterministic.

First example of a "secure" cipher

$$M = C = \{0, 1\}^n$$
 $K = \{0, 1\}^k$

key = (random bit string as long the message)

$$c$$
: = $E(k, m) = k \oplus m$

$$D(k,c) = k \oplus c$$

msg: 0 1 1 0 1 1 1

key: 1 0 1 1 0 1 0

CT:

Indeed:

$$D(k, E(k, m)) = k \oplus k \oplus m = m$$

You are given a message (m) and its OTP encryption (c). Can you compute the OTP key from m and c?

No, I cannot compute the key.

Yes, the key is $k = m \oplus c$.

I can only compute half the bits of the key.

Yes, the key is $k = m \oplus m$.

```
Very fast enc/dec!!
... but long keys (as long as plaintext)
```

Is the OTP secure? What is a secure cipher?

What is a secure cipher?

Attacker's abilities: CT only attack (for now)

Possible security requirements:

attempt #1: attacker cannot recover secret key

attempt #2: attacker cannot recover all of plaintext

Shannon's idea:

CT should reveal no "info" about PT

Information Theoretic Security (Shannon 1949)

<u>Def</u>: A cipher *(E,D)* over (K,M,C) has **perfect secrecy** if $\forall m_0, m_1 \in M \ (|m_0| = |m_1|)$ and $\forall c \in C$ $Pr[E(k,m_0)=c] = Pr[E(k,m_1)=c]$ where k is uniform in K, denoted by k ← K

- 1. Given CT cannot tell if message is m_0 or m_1 (for all m_0 , m_1)
- 2. Most powerful adversary learns nothing about PT from CT
- 3. No CT only attack!

Information Theoretic Security (Shannon 1949)

Lemma: OTP has perfect secrecy.

Proof:

$$\# \{k \in K, s.t. E(k,m)=c\} = const.$$

→ cipher has perfect security

Information Theoretic Security (Shannon 1949)

<u>Lemma</u>: OTP has perfect secrecy.

Proof:

$$\#\{k \in K, s.t. E(k,m)=c\} = const. = 1$$

→ cipher has perfect security

The bad news

Thm: perfect secrecy \Rightarrow $|\mathcal{K}| \geq |\mathcal{M}|$

i.e. key length ≥ message length

had to use in practice

Another Definition

The mutual information between ciphertexts and plaintexts is almost 0:

$$I[m, c] -> 0$$

i.e. ciphertexts do not imply any information about plaintexts.

What is secure cipher?

Attacker's abilities: **obtains one ciphertext** (for now)

Possible security requirements:

attempt #1: attacker cannot recover secret key

attempt #2: attacker cannot recover all of plaintext

Recall Shannon's idea:

CT should reveal no "info" about PT

Recall Shannon's perfect secrecy

Let (E,D) be a cipher over (K,M,C)

```
(E,D) has perfect secrecy if \forall m_0, m_1 \in M (|m_0| = |m_1|)  \{ E(k,m_0) \} = \{ E(k,m_1) \} \text{ where } k \leftarrow K  (E,D) has semantic secrecy if \forall m_0, m_1 \in M (|m_0| = |m_1|)  \{ E(k,m_0) \} \approx_p \{ E(k,m_1) \} \text{ where } k \leftarrow K
```

... but also need adversary to exhibit $m_0, m_1 \in M$ explicitly