Passive Scalar Transport Equation

Core Components and Initialization

The PassiveScalarTransportEq class, implemented in C#, models the transport of a passive scalar (e.g., a tracer or pollutant) in an estuary. The domain spans a length L, discretized into n grid points with spatial step $\Delta x = L/n$. Key parameters include:

• Estuary length: L

• Grid points: n

• Spatial step: $\Delta x = L/n$

• River boundary concentration: C_{river}

• Ocean boundary concentration: C_{ocean}

• Salt wedge position: x_s

The class initializes arrays for the passive scalar concentration (C) and relies on external inputs for velocity (u) and eddy diffusivity (κ).

Functioning Logic

The SolvePassiveScalarTransport method advances the passive scalar concentration over a time step Δt , performing:

- 1. Advection-diffusion computation using a finite difference scheme.
- 2. Application of boundary conditions at the river (x = 0) and ocean (x = L).
- 3. Mixing adjustment near the salt wedge position using a Gaussian weighting function.

Transport Computation

The method solves the advection-diffusion equation for the passive scalar concentration:

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = \frac{\partial}{\partial x} \left(\kappa \frac{\partial C}{\partial x} \right) \tag{1}$$

using an explicit finite difference scheme:

Advection term: Central difference approximation:

$$u\frac{\partial C}{\partial x} \approx u_i \frac{C_{i+1} - C_{i-1}}{2\Delta x}$$
 (2)

• **Diffusion term**: Second-order finite difference:

$$\frac{\partial}{\partial x} \left(\kappa \frac{\partial C}{\partial x} \right) \approx \frac{\kappa_{i+1} (C_{i+1} - C_i) / \Delta x - \kappa_i (C_i - C_{i-1}) / \Delta x}{\Delta x}$$
 (3)

• Time update: Explicit Euler step:

$$C_i^{m+1} = C_i^m + \Delta t \left(-u_i \frac{C_{i+1} - C_{i-1}}{2\Delta x} + \frac{\kappa_{i+1}(C_{i+1} - C_i) - \kappa_i(C_i - C_{i-1})}{\Delta x^2} \right)$$
(4)

Boundary conditions are:

- River (x = 0): $C_0 = C_{river}$
- Ocean (x = L): $C_{n-1} = C_{\text{ocean}}$

Mixing Near Salt Wedge

A Gaussian mixing factor is applied near the salt wedge position x_s :

$$m_i = \exp\left(-\frac{(i\Delta x - x_s)^2}{0.1L^2}\right) \tag{5}$$

The concentration is adjusted as:

$$C_i^{n+1} = (1 - m_i)C_i^{n+1} + m_iC_i^n$$
(6)

This smooths the concentration field near x_s , simulating enhanced mixing at the salt wedge interface.

Physical and Mathematical Models

The PassiveScalarTransportEq class simulates the transport of a passive scalar using the following models:

• Advection-Diffusion Equation:

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = \frac{\partial}{\partial x} \left(\kappa \frac{\partial C}{\partial x} \right) \tag{7}$$

where C is the scalar concentration, u is the velocity, and κ is the eddy diffusivity.

- Finite Difference Discretization:
 - Advection: $u_i \frac{C_{i+1} C_{i-1}}{2\Delta x}$
 - Diffusion: $\frac{\kappa_{i+1}(C_{i+1}-C_i)-\kappa_i(C_i-C_{i-1})}{\Delta x^2}$
 - Time stepping: $C_i^{n+1} = C_i^n + \Delta t \left(-\text{advection} + \text{diffusion} \right)$
- Boundary Conditions:

$$C_0 = C_{\text{river}} \tag{8}$$

$$C_{n-1} = C_{\text{ocean}} \tag{9}$$

• Salt Wedge Mixing:

$$m_{i} = \exp\left(-\frac{(i\Delta x - x_{s})^{2}}{0.1L^{2}}\right)$$

$$C_{i}^{n+1} = (1 - m_{i})C_{i}^{n+1} + m_{i}C_{i}^{n}$$
(10)

$$C_i^{n+1} = (1 - m_i)C_i^{n+1} + m_iC_i^n$$
(11)

These models capture the transport and mixing of a passive scalar in an estuarine environment, with numerical stability ensured by explicit time stepping and boundary constraints.