Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky

Projekt 5

Skladové hospodářství pomocí RFID a RaspberryPi

Plzeň 2016 Jan Kohlíček

Obsah

1	Úvo	od	-
2	IoT	pro skladové hospodářství	•
3	-	Dis zařízení Raspberry Pi	
4	Ana	alýzu problému	
	4.1	Přidávání/odebírání zboží	
	4.2	informovat o stavu čtečky	
	4.3	Návrh komunikace	
		4.3.1 Komunikace s RFID čtečkou	
		4.3.2 Komunikace s UI klientem	
	4.4	Zabezpečení	

1 Úvod

- 1) Seznamte se s Raspberry Pi 2 (RPi), čtečkou čárových (RFID) kódů, zapojením daných zařízení a diskutujte možnosti využití pro skladové hospodářství. Proved'te analýzu problému a zvolte vhodný programovací jazyk.
- 2) Vytvořte serverový program, který umožní vzdáleně komunikovat s klientskou aplikací a samotným RFID zařízením. Vyberte vhodný způsob komunikace mezi klientem a serverem, způsob uložení dat a diskutujte výhody/nevýhody vámi vybraného řešení.
- 3) Vytvořte klientskou část s uživatelským rozhraním pro PC či mobilní zařízení, která umožní vizualizaci dat skladového hospodářství.
- 4) Vytvořený systém otestujte, zhodnot'te jeho praktickou použitelnost a diskutujte jeho možná vylepšení.

2 IoT pro skladové hospodářství

obecne, co je skladove hospdarstvi, jak funguje, problematika hospodarstvi co se pouziva

3 Popis zařízení

3.1 Raspberry Pi

Raspberry Pi (RPi) je řada malých jedno deskových počítačů, vyvíjená ve Velké Británii.

Pro tento projekt se požije Raspberry Pi 2 Model B, číslovka v názvu určuje generaci a model B značí osazení Ethernetovým portem na rozdíl od modelu A. RPi má procesor Broadcom BCM2836 ARM Cortex-A7 Quad Core 700 MHz zle přetaktovat na 900 MHz, 1GB RAM, 4x USB 2.0, HDMI, 4-pólový jack a již zmiňovaný 10/100 Ethernet, který je velmi pomalý, protože je napojený na USB řadič.

MicroSDHC slot microSD kartou na kartu nahrává OS.

Na desce jsou ještě umístěny 2 řady pinů, takzvané GPIO viz. 3.1. Chybí RTC (Real Time Clock), získávání aktuálního času se řeší pomocí NTP (Network Time Protocol).

Obrázek 3.1: Popis Raspberry Pi 2 a GPIO

Popis zařízení Čtečka RFID

3.1.1 GPIO

GPIO (General Purpose Input/Output) je 40 pinů umístěných na desce ve 2 řadách. Jednotlivé piny lze za běhu programově ovládat, všechny piny nejsou stejné, dělí se na několik skupin napájení 5V, napájení 3v3, zem a ostatní piny se od sebe ještě trošku liší, ale jedno mají společné, lze nastavit na vstup/výstup.

3.1.2 Operační systémy

Raspbian

Raspbian je oficiální systém vychází z linuxové distribuce Debian Java, C++, Python, Nodejs

Windows 10 IoT Core

Sytém od Microsoftu Windows 10 IoT Core je systémem pro malé počítače a řídící elektroniku c#, C++, Python, Nodejs teprve v zacatcich webové rozhraní pro spravu potřeba visual studio k náhrání applikace

knihovny pro GPIO v Alfa verzi

3.2 Čtečka RFID

RFID (Radio-frequency identification) používá elektromagnetické pole k automatické identifikaci. Byl navržen k identifikaci zboží jako náhrada za systém čárových kódů.

Tagy obsahují uložené identifikační číslo (UID), některé mají prostor pro další informace, do kterého lze ukládat. Pasivní tagy sbírají energii z blízké RFID čtečky k nabití svého napájecího kondenzátoru a odešlou rádiový signál. Aktivní tagy mají vlastní zdroj energie jako je baterie.

Pro tento projekt se požije čtečka RFID-RC522, k RPi je připojí pomocí 7 pinu do GPIO viz. 3.2.

Popis zařízení Čtečka RFID

Obrázek 3.2: Schéma zapojení RFID-RC522 do GPIO

4 Analýzu problému

4.1 Přidávání/odebírání zboží

4.2 Informovat o stavu čtečky

k čemu je RFID, jak nám pomůžu Proved'te analýzu problému a zvolte vhodný programovací jazyk.

4.3 Návrh komunikace

4.3.1 Komunikace s RFID čtečkou

MQTT diskutujte výhody/nevýhody vámi vybraného řešení

4.3.2 Komunikace s UI klientem

REST API diskutujte výhody/nevýhody vámi vybraného řešení

4.4 Zabezpečení