Tight example for the analysis of List-Scheduling

Given m, consider an instance consisting of m(m-1) unit-length jobs, followed by a single job of length m. After the unit-jobs are scheduled, the load on every machine is exactly m-1. The long jobs is then added on some machine to determine a makespan of 2m-1. An optimal schedule assign the long job on one machine, and m unit-jobs on each of the remaining m-1 machines.

The makespan is m. The ratio is $\frac{2m-1}{m} = 2 - \frac{1}{m}$

Analysis of LPT algorithm:

Theorem: LPT achieves approximation ratio $\frac{4}{3} - \frac{1}{3m}$ to the minimum makespan problem.

Recall that the jobs are sorted such that $p_1 \le p_2 \le ... \le p_n$

Claim 1: If OPT assigns at most two jobs on every machine then LPT is optimal.

Proof: If n \leq m then a possible optimal solution puts a single job on some n machines. If m<n \leq 2m then an optimal schedule places job k alone for k<2m-n+1, and pair jobs k and (2m-k+1) for k>= 2m-n+1. Every schedule that does not fulfil this property can be exchanged to fulfill it without hurting the makespan. Observe that this is exactly what is done by LPT.

Proof of Thm: For an instance I, denote the value of an optimal solution by $C^*(I)$, and the value of the makespan produced by LPT by $C_A(I)$. Assume by contradiction that I is an instance for which the statement is false. Let k be the job determining the makespan $C_A(I)$. W.I.o.g., k is the shortest job in I, as otherwise, we can remove all the shorter jobs and get a smaller instance I' such that $C_A(I') = C_A(I)$ and $C^*(I') \le C^*(I)$, therefore, also for I' we have

$$\frac{C_A(I')}{C^*(I')} \ge \frac{C_A(I)}{C^*(I)} > \frac{4}{3} - \frac{1}{3m}.$$

In the analysis of List-scheduling, which is valid also here, we saw that $C_A(I) \leq \frac{\sum_j p_j}{m} + \frac{p_k(m-1)}{m}$.

Therefore,
$$\frac{4}{3} - \frac{1}{3m} < \frac{\sum_{j} p_{j}}{mC^{*}(I)} + \frac{p_{k}(m-1)}{mC^{*}(I)}$$
.

It holds that $C^*(I) \geq \frac{\sum_j p_j}{m}$, therefore, $\frac{4}{3} - \frac{1}{3m} < 1 + \frac{p_k(m-1)}{mC^*(I)}$.

Multiple by
$$C^*(I)$$
 to get: $\frac{4}{3}C^*(I) - \frac{C^*(I)}{3m} < C^*(I) + \frac{m-1}{m}p_k$.

Rearranging yields
$$\frac{\mathcal{C}^*(I)}{3} \left(1 - \frac{1}{m}\right) < \left(1 - \frac{1}{m}\right) p_k$$
. Thus, $\mathcal{C}^*(I) < 3p_k$.

Therefore, in an optimal schedule there are at most two jobs on each machine. By Claim 1 above, LPT is optimal for such an instance, contradicting our assumption that the instance I does not fulfil the statement.