

Workshop Mechatronics II MERO Joshua Voll, M.Eng. Schmalkalden, 27.04.2023

Agenda

Additive Manufacturing (AM) in general

Stereolithography (SLA)

Selective Laser Sintering (SLS)

Fused Deposition Modeling (FDM)

Atomic Diffusion Additive Manufacturing (ADAM)

Conclusion

Difference between additive and subtractive manufacturing

Subtractive manufacturing

- Material is removed
- A lot of waste
- Drilling, milling...

Additive manufacturing

- Material is added
- Less waste
- SLA, FDM...

Source: 3Dnatives

Characteristics of additive manufacturing

Characteristics

- The parts are manufactured on the basis of digital 3D-CAD-data
- The objects are built up in layers
- Manufacture without the use of shaping tools
- Able to manufacture undercuts

Source: industrie.de

Additive vs. conventional manufacturing

Characteristics

- Additive manufacturing is economical with small quantities
- Additive manufacturing is economical for complex components

Strategies

Rapid Prototyping (RP):

is used for demonstration parts and prototypes (model production)

Avoid production errors

Rapid Tooling (RT):

- production of prototypes and pre-series of tools and molds
- E.g. production of injection molds

Rapid Manufacturing (RM):

- Planning and manufacturing products in small series
- E.g. hearing aids, implants...

Industries and areas of applications

Industry sectors

- Engineering
- Architecture
- Medicine
- Aerospace
- Art and design

Source: Münchner Merkur.de

Applications

- Prototyping
- Small series
- Spare parts
- Etc.

Source: vodafone.de

Additive manufacturing process

CAD-Systems

- many functions and modules are integrated
- Complex tools such as FE calculation, simulation, CAD, CAM and data management
- Recommended: Creo, SolidWorks

CAD-Systems → STL-File

- Export CAD-model into STL-File
 - Size of the triangles is influenced by the tolerance
- STL-File = triangulated shell model
 - Neutral data interface for AM
- Triangulated
 - The surface is modeled on triangles

Source: FH-Achen

Slicing program

- Function 1: cut the CAD file into horizontal layers
- Function 2: Define parameters for part generation

Parameter

 layer height, nozzle temperature, printing speed, infill, support structure

The lower the layer height, the more precisely the geometry is printed.

common slicer

Cura Eiger, Makerprint, XYZ-printing Simplify3D

- → Open source, user-friendly
- → printer specific, user-friendly
- → extended parameter setting possible, expert knowledge required

Folie 13

Additive Manufacturing (AM) in general

Printing (plastic)

Photopolymerization

Cured with

laser

Stereo Lithography

Cured with

projector

Direct Light Processing

Folie 14

Additive Manufacturing (AM) in general

Reworking

Remove the component from the building board

Scraper, print sheet

Remove support structure by:

- Mechanically (pliers, scalpel...)
- Non mechanically (solvent, water, heat...)

Rework

- Smooth surface by acetone
- Grinding, milling, drilling...

Source: filamentworld.de

Source: All3DP.com

Output

Possible applications

- Medicine (hearing aids, orthotics,...)
- Tools (Injection molding, hand tools,...)
- Spare parts

Source: Kaleidoskop.com

Source: industrie.de

Agenda

Additive Manufacturing (AM) in general

Stereolithography (SLA)

Selective Laser Sintering (SLS)

Fused Deposition Modeling (FDM)

Atomic Diffusion Additive Manufacturing (ADAM)

Conclusion

Stereolithography (SLA)

Method

https://www.youtube.co m/watch?v=jeCHKDxQQh 0

Process

- Material: Photosensitive liquid monomer (resin)
- 1. Local exposure (UV-light)
- 2. Solidification of the resin
- 3. Rising building board

Source: SKZ.de

Stereolithography (SLA)

Advantages, disadvantages and applications

Advantages

- High resolution
- Very low layer height (0,05 mm)
- Smooth surface
- Quite fast

Disadvantages

- Expensive material
- High purchase costs
- Difficult to clean
- Difficult material change
- Support necessary

Applications

- High precision components
- Transparent parts (optics)
- Examples: hearing aids, braces...

Source: 3daktur.com

Agenda

Additive Manufacturing (AM) in general

Stereolithography (SLA)

Selective Laser Sintering (SLS)

Fused Deposition Modeling (FDM)

Atomic Diffusion Additive Manufacturing (ADAM)

Conclusion

Selective Laser Sintering (SLS)

Method

https://www.youtube.com/watch?v=9E5MfBA V tA

Process

- Material: Thermoplastics (PLA, ABS, PA...)
- 1. Heat powder material
- 2. Spread the powder in an even layer over the building board
- 3. The laser scans the contours of the part, which causes the powder particles to adhere to each other by sintering
- 4. Lowering the building board (layer height)

Selective Laser Sintering (SLS)

Advantages and disadvantages

Advantages

- Comparatively mechanically resilient
- No support structures are necessary
- High variety of materials
- Most complex design possible

Disadvantages

- Slightly rough surface
- Slow manufacturing process
- Only single-color models are possible

Source: visiotech-gmbh.de

Agenda

Additive Manufacturing (AM) in general

Stereolithography (SLA)

Selective Laser Sintering (SLS)

Fused Deposition Modeling (FDM)

Atomic Diffusion Additive Manufacturing (ADAM)

Conclusion

-olie 23

Fused Deposition Modeling (FDM)

Method

Process

- Material: Thermoplastics (PLA, ABS, PA...)
- 1. Melt the filament
- 2. Place the molt plastic on the printing sheet, according to the geometry that has been loaded
- 3. Lowering the building board (layer height)

https://www.youtube.com/watch?v= GxLjDNrQBgs

Source: Klahn, C (Hrsg.); Meboldt, M (Hrsg.): Entwicklung und Konstruktion für die Additve Fertigung. Würzburg: Vogel Business Media GmbH, 2018

Fused Deposition Modeling (FDM)

Advantages and disadvantages

Advantages

- Various materials available
- Processing of different materials possible at the same time
- high volume throughputs possible

Disadvantages

- Resolution depends on nozzle width
- Nozzles tend to clog
- Support necessary
- Printed parts are comparative fragile

Agenda

Additive Manufacturing (AM) in general

Stereolithography (SLA)

Selective Laser Sintering (SLS)

Fused Deposition Modeling (FDM)

Atomic Diffusion Additive Manufacturing (ADAM)

Conclusion

Introduction

Atomic Diffusion Additive Manufacturing (ADAM)

- Additive process for the production of metal components with use of FDM-technology
- Developed: Markforged, presented in 2017
- Hardware: Metal-X (Sinter-1, printer, Wash-1)

Source: Mark3D.de

Process

Source: Mark3D.de

Process

Printing

- Additive manufacturing: FDM technology
- Filament: metal powder, plastic and wax (binder)
- Ceramic filament as an intermediate layer
- + 19.5% scaling

FDM

Bildquelle: Druckwege.de

Process

Washing

- Release the binder
- Novec 72DA / 73DE
- Washing temperature: 54 ° C
- Drying

Process

Sintering

- Burning out the plastic
- Sintering the metal powder
- Ceramic filament powdered
- Sintering time: depends on the material (~27h)

Bildquelle: Mark3D.de

Advantages, disadvantages and characteristics

Advantages

- low investment
- Process parameters fixed
- easy handling
- stable operation

Disadvantages

- high gas consumption
- Expensive: "Special gas" 2.9% H2
- Special cleaning liquid
- Component size limited by sintering furnace

Criteria	Characteristics
Layer height	0.05 mm / 0.125 mm
Installation space	235 x 68.3 x 65.5 [mm]
Material	Stainless steel Tool steel Nickel alloy Titanium alloy Copper

Agenda

Additive Manufacturing (AM) in general

Stereolithography (SLA)

Selective Laser Sintering (SLS)

Fused Deposition Modeling (FDM)

Atomic Diffusion Additive Manufacturing (ADAM)

Conclusion

Conclusion

Chances

- Exciting technology that is rapidly evolving
- Offers plenty of room for creativity (e.g. food printers, bio printers)
- Huge application area (e.g. customized medical devices)
- Unimagined design options

Problems

- Slow construction rate → no mass production
- Limited construction volume
- Often post-processing necessary
- Material diversity too low

Thank you for your attention