Bazy danych przestrzennych, Ćwiczenia 3

- 1. Zaimportuj następujące pliki shapefile do bazy, przyjmij wszędzie układ WGS84:
 - T2018_KAR_BUILDINGS
 - T2019_KAR_BUILDINGS

Pliki te przedstawiają zabudowę miasta Karlsruhe w latach 2018 i 2019.

Znajdź budynki, które zostały wybudowane lub wyremontowane na przestrzeni roku (zmiana pomiędzy 2018 a 2019).

- 2. Zaimportuj dane dotyczące POIs (Points of Interest) z obu lat:
 - T2018_KAR_POI_TABLE
 - T2019_KAR_POI_TABLE

Znajdź ile nowych POI pojawiło się w promieniu 500 m od wyremontowanych lub wybudowanych budynków, które znalezione zostały w zadaniu 1. Policz je wg ich kategorii.

- 3. Utwórz nową tabelę o nazwie 'streets_reprojected', która zawierać będzie dane z tabeli T2019_KAR_STREETS przetransformowane do układu współrzędnych DHDN.Berlin/Cassini.
- 4. Stwórz tabelę o nazwie 'input_points' i dodaj do niej dwa rekordy o geometrii punktowej. Użyj następujących współrzędnych:

X	Υ
8.36093	49.03174
8.39876	49.00644

Przyjmij układ współrzędnych GPS.

- 5. Zaktualizuj dane w tabeli 'input_points' tak, aby punkty te były w układzie współrzędnych DHDN.Berlin/Cassini. Wyświetl współrzędne za pomocą funkcji ST_AsText().
- 6. Znajdź wszystkie skrzyżowania, które znajdują się w odległości 200 m od linii zbudowanej z punktów w tabeli 'input_points'. Wykorzystaj tabelę T2019_STREET_NODE. **Dokonaj** reprojekcji geometrii, aby była zgodna z resztą tabel.
- 7. Policz jak wiele sklepów sportowych ('Sporting Goods Store' tabela POIs) znajduje się w odległości 300 m od parków (LAND_USE_A).
- 8. Znajdź punkty przecięcia torów kolejowych (RAILWAYS) z ciekami (WATER_LINES). Zapisz znalezioną geometrię do osobnej tabeli o nazwie 'T2019 KAR BRIDGES'.