COL 351: Analysis and Design of Algorithms

Lecture 37

NP Complete Some NP Complete Problems A problem X in NP class is said to be NP-Complete if for each $A \in NP$, **SAT** we have $A \leq_{P} X$ 3-SAT Vertex-**Independent-Set** (Easy) Cover **GIS Strongly** (tutorial) **Tracking-Set Independent Dominating-Hitting-Set** (tutorial) (assignment) Set (assignment)

(Lecture 34)

Vertex Cover

Given: A graph G = (V, E) with n vertices.

Def: A subset $W \subseteq V$ such that for each $(a, b) \in E$, one end-point of (a, b) lies in W.

Example:

Optimization Version:

Find a vertex-cover of minimum size.

Decision Version:

Find if there is a vertex-cover of size k.

2-Approximate Vertex Cover

```
S = \phi;

While (E has an uncovered edge):

(x,y) \leftarrow An arbitrary uncovered edge;

S = S \cup \{x,y\};

Mark edges incident to x, y as covered;

Return S;
```

Claim 1: The set S is a vertex-cover for the input graph G = (V, E).

Claim 2: We have
$$\frac{|S|}{|S_{opt}|}$$
 is at most 2.

(See TecTure 3)

Set Cover Problem

Given: A universe $U=\{1,...,n\}$ with n elements. A family $F=\{S_1,...,S_m\}$ of m subsets of U. That is, $S_1,...,S_m\subseteq U$.

<u>Definition:</u> Subsets $S_{j_1}, ..., S_{j_k}$ lying in F whose union is U.

Example:

Optimization Version:

Find a set-cover of minimum size.

Decision Version:

Find if there is a set-cover of size k.

Dominating-Set \leq_P **Set-Cover**

Instance of Dominating Set: A graph

$$G = (V = \{v_1, ..., v_n\}, E = \{e_1, ..., e_m\})$$
 and a parameter k .

Generating an Instance of Set-Cover

- 1. Define $U = \{v_1, ..., v_n\}$, the parameter k remains same.
- 2. For each i, define the set $S_i = N(v_i) \cup \{v_i\}$. Thus, $|S_i| = 1 + deg(v_i)$.

Natural approaches: Approximate Set Cover

Approach 1:

Greedily pick set of largest size.

$$|V| = n$$

$$|opt - sol^n| = 2$$

$$|greedy sol^n| = \frac{m}{3} + 1$$

$$|opt - sol^n| = \frac{m}{3} + 1$$

$$|op$$

Natural approaches: Approximate Set Cover

Approach 1:

Greedily pick set of largest size. - 52 (n) approximation bound in worst case

Approach 2:

Greedily pick set containing largest number of uncovered elements.

- O (log n) approximation bound

Approximate Set Cover

$$\left[\bigcup \right] = \mathcal{N}$$

Approximate-Set-Cover(U, F)

$$F = \{S_1 - S_m \}$$

$$A \leftarrow \{\}$$
 /*empty family*/
 $X \leftarrow U$. /*uncovered elements*/

While (|X| > 0):

- 1. Select an $S \in F$ that maximizes $X \cap S$.
- 2. A = Add S to A.
- 3. X = X S.

Return A.

- No of unconered elements in S.

Approximate Set Cover

Approximate-Set-Cover(U, F)

$$A \leftarrow \{\}$$
 /*empty family*/ $X \leftarrow U$. /*uncovered elements*/

While (|X| > 0):

- 1. Select an $S \in F$ that maximizes $|X \cap S|$.
- 2. A = Add S to A.
- 3. X = X S.

Return A.

$$\Delta = \{ S_1, S_2, S_3, S_4, S_5, S_6 \}$$

Ingeneral,
appear-factor is
$$SZ(\log n)$$
 in
worst case.

Finding Approximate Set Cover

Approximate-Set-Cover(U, F)

Example

$$|U| = 20$$

1A (= L

Observations

Claim 1:
$$\sum_{\substack{w \in S : w \text{ was} \\ \text{covered by } S}} c(w) = 1.$$

Proof

Suppose S covered k elements, 2, 22 -- 2k

Then
$$C(x_i) = \frac{1}{k}$$
, $i = 1 \text{ loc} k$

Observations

Proof

Claim 2:
$$\sum_{w \in S} c(w) \le \log n$$
.

Suppose
$$S = \{ \chi_1 \dots \chi_k \}$$
,

elements are covered is also x, ... xx.

blog when x, is covered there is a set (S) $C(x_i) \leq \frac{1}{k}$ with k uncovered elements.

$$C(n_2) \in \frac{1}{k-1}$$
 by when n_2 is covered there is a set (S) with $(k-1)$ uncovered elements.

" sum total cost < 1+1+...+] < C (N/k) € 1

Observations

Claim 3:
$$|A| \leq |A_{opt}| \times \log n$$
.

By Claim 1,
$$|A| = \sum_{\omega \in U} cost(\omega)$$

Now RHS
$$\leq \sum_{\text{S} \in Aopt} \sum_{\text{cost}(\omega)} \leq |Aopt| * log n$$
 (due to claim 2)

Thus,
$$|A| \leq |Aopt| * log(n)$$