Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 8

Aufgabe 8.1 (4 Punkte)

Für einen Graphen $G = (\mathbb{G}_n, E)$ definieren wir

$$E_0 = E \cup I$$

$$\forall k \in \mathbb{N}_0 : E_{k+1} = E_k \cup \{(i,j) \mid (i,k) \in E_k \land (k,j) \in E_k\}$$

Zeichnen Sie für $k \in \{1, 2, ..., 6\}$ die Graphen $G_k = (\mathbb{G}_n, E_k)$ für folgenden Ausgangsgraphen G:

Aufgabe 8.2 (2+2+1 Punkte)

Hinweis: Um eine Aussage der Form $\forall n \in \mathbb{N}_0 : n \geq k \Rightarrow A(n)$ durch Induktion zu beweisen, kann man für den Induktionsanfang den Fall n = k wählen.

a) Zeigen Sie: $\forall n \in \mathbb{N}_0 : n \ge 4 \Rightarrow 2n+1 \le 2^n$.

Induktionsanfang: n = 4: $2n + 1 = 9 < 16 = 2^4 = 2^n \sqrt{16}$

Induktionsvoraussetzung: Für festes, aber beliebiges $n \ge 4$ gilt: $2n + 1 \le 2^n$. Induktionsschritt: Wir zeigen: Dann gilt auch für n + 1: $2(n + 1) + 1 < 2^{n+1}$.

$$2(n+1) + 1 = 2n + 3 = (2n+1) + 2 \le 2^n + 2 < 2^n + 2^n = 2^{n+1}.$$

Damit ist die Behauptung gezeigt.

b) Zeigen Sie: $\forall n \in \mathbb{N}_0 : n \ge 4 \Rightarrow n^2 \le 2^n$.

Induktionsanfang: n = 4: $n^2 = 16 = 2^4 \le 2^n \sqrt{ }$

Induktionsvoraussetzung: Für festes, aber beliebiges $n \ge 4$ gilt: $n^2 \le 2^n$.

Induktionsschritt: Wir zeigen: Dann gilt auch für n+1: $(n+1)^2 < 2^{n+1}$.

$$(n+1)^2 = n^2 + 2n + 1 \stackrel{a)}{\leq} n^2 + 2^n \stackrel{IV}{\leq} 2^n + 2^n = 2^{n+1}.$$

Damit ist die Behauptung gezeigt.

c) Welche der folgenden Aussagen folgt (folgen) aus Teilaufgabe b): $n^2 \in O(2^n), n^2 \in \Omega(2^n), n^2 \in \Theta(2^n)$?

$$n^2 \in O(2^n)$$

Aufgabe 8.3 (2+1+2+1) Punkte

Gegeben sei die Funktion $T:\{2^k\mid k\in\mathbb{N}_0\}\to\mathbb{N}_0$ durch

$$T(1) = 0$$

$$\forall n \in \{2^k \mid k \in \mathbb{N}_+\} : T(n) = 8T(\frac{n}{2}) + n^3$$

a) Berechnen Sie T(2), T(4), T(8), T(16).

$$T(2) = 8, T(4) = 128, T(8) = 1536, T(16) = 16384.$$

b) Geben Sie eine geschlossene Formel für $T(2^k)$ an.

$$T(2^k) = k \cdot 8^k$$

c) Beweisen Sie durch vollständige Induktion, dass Ihre Formel aus Teilaufgabe b) korrekt ist.

Induktionsanfang: k = 0: $T(2^0) = T(1) = 0 = 0 \cdot 8^0 \sqrt{}$

Induktionsvoraussetzung: Für festes, aber beliebiges $k \in \mathbb{N}_0$ gilt: $T(2^k) = k \cdot 8^k$.

Induktionsschritt: Wir zeigen: Dann gilt auch für k+1: $T(2^{k+1}) = (k+1) \cdot 8^{k+1}$. $T(2^{k+1}) = 8T(2^k) + (2^{k+1})^3 \stackrel{IV}{=} 8(k \cdot 8^k) + 8^{k+1} = k \cdot 8^{k+1} + 8^{k+1} = (k+1)8^{k+1}$. Damit ist die Behauptung gezeigt.

d) Geben Sie für allgemeine $n \in \{2^k \mid k \in \mathbb{N}_0\}$ eine Formel für T(n) an.

$$T(n) = n^3 \cdot \log_2 n$$

Aufgabe 8.4 (2+2 Punkte)

Eine Polynomfunktion $p: \mathbb{N}_0 \to \mathbb{N}_0$ sei für alle $n \in \mathbb{N}_0$ gegeben durch $p(n) = \sum_{i=0}^d a_i n^i$ mit $\forall i \in \mathbb{G}_{d+1} : a_i \in \mathbb{Z}$ und $a_d > 0$.

a) Geben Sie eine Zahl c an, so dass für alle $n \in \mathbb{N}_0$ gilt: $p(n) \leq cn^d$.

So wie die Aufgabe gestellt war, geht das gar nicht, denn für n=0 und $a_0>0$ ist p(n)>0, aber $cn^d=0$. Wenn man sich auf $n\geq 1$ beschränkt, dann ist die Aufgabe lösbar, z.B. durch die Wahl von $c=(d+1)\cdot \max\{|a_0|,\ldots,|a_d|\}$.

b) Zeigen Sie, dass für Ihre Zahl c aus Teilaufgabe a) gilt: $p(n) \leq cn^d$.

Sei $a = \max\{|a_0|, \ldots, |a_d|\}$. Dann gilt:

$$p(n) = \sum_{i=0}^{d} a_i n^i \le \sum_{i=0}^{d} |a_i| n^i \le \sum_{i=0}^{d} a n^i \le \sum_{i=0}^{d} a n^d = (d+1)a n^d = c \cdot n^d$$