

グリーンな計算資源を積極的に利用する取り組み

2024/10/11

トヨタ自動車株式会社情報システム本部 情報通信企画部InfoTech-IS E2Eコンピューティンググループグループ長 阿部 博

自己紹介

- •氏名
 - 阿部 博
 - 博士(情報科学)
- 所属
 - トヨタ自動車株式会社 情報システム本部情報通信企画部 InfoTech-IS
 - E2Eコンピューティンググループ グループ長
- 業務領域
 - GPU計算基盤企画推進
 - グリーンエネルギー利用の効率化
 - 分散コンピューティング基盤

背累

- ・データセンター需要、半導体、AIの利用などで電力消費が増加 →再工ネの豊富な地域で計算資源の確保したい
- ・デジタル赤字という問題(経済安全保障)→海外IT企業への富の流出を防ぐための国内インフラの活用

再エネ利活用の課題

- ・最も導入が進む太陽光発電
 - ・日本各地で発電ポテンシャルあり
 - ・コストダウンが進み、安価な電力に
- ・太陽光発電は季節変動性あり
 - ・天候に左右される
 - 需要よりも発電すると余剰になる
 - 電力会社の取組だけでは、電力需給バランスをとるのが困難

「経産省、「スペシャルコンテンツ」再エネの大量導入に向けて ~「系統制約」問題と対策]

再エネが多く生み出される地域に必ずしも 高帯域なネットワークが存在しない

TOYOTA

☑ n 🛛 🕜 🕆

北海道:風力+冷却も容易

北海道ニュートピアデータセンター研究会

ユーラス、北海道で31年にも最大級風力 AI電力需要照準

国内のグリーンな電力使用へのトライ

・グリーンな地域での計算資源確保

九州:再エネの余剰(ムダ)が年々増加

<u>九州デジタルインフラフォーラム</u>

2024年5月21日 10:31 (会員限定記事) 九州エリアの年間13.7億キロワット時は、 156MW=500EFLOPS相当の出力※ 豊田通商子会社で風力発電国内最大手のユーラスエナジーホールディングス(東京 ※ NVIDIA DGX H100 の場合 ば2031年ごろから稼働させる。生成AI(人工知能)で需要が高 (DC) を誘致し、再生可能エネルギー電力を地産地消する体制 出典) 日経新聞 帯域なネットワーク の期待

地域の再エネを活用した地産地消の分散コンピューティング基盤

北海道二ユートピアデータセンター研究会

- https://nutopia-hokkaido.org/
- トヨタは会員として加入

設立趣意書 北海道データセンター計画 組織概要 入会申し込み お問い合わせ English

北海道データセンター集中化への期待が高まっています ・我が国のデータの2極(東京・大阪)集中解消 ・北極海の氷融解 ・自然エネルギーの利用

ユーラスエナジー

- https://www.eurus-energy.com/
- 豊田通商100%子会社

ユーラス宗谷岬ウインドファーム

- 所在地: 稚内市
 - https://www.eurus-energy.com/project/project-jp/376/
 - 設備容量: 57,000kW
 - 運転開始: 2005/11
- 北海道北部風力送電株式会社
 - https://www.hokubusouden.com/
 - ・ 北海道北部における風力発電のための送電網&送電事業
 - 大規模蓄電設備
- 再エネの有効利用に関するPoCを実施予定
 - まずは実験ネットワークを稚内に延伸中

巨大な風車のブレード

送電網

コンテナDCを使った分散システム実証

・KDDI&Cisco協業でのコンテナ型DC実証実験(AECCでの協業)

全国複数拠点を接続する実験網の構築

- InfoTechが保持する実験ネットワーク
- 大手町、多摩、東富士、石狩、沖縄を接続

太陽光発電シミュレータと連動した2つのシナリオ

- Cisco InterSightを使った計算資源の分散制御
- SRv6を使ったネットワークの捻じ曲げ

AECCつて何?

- Automotive Edge Computing Consortium
 - https://aecc.org/

AECC

- トヨタが参加する目的
 - コネクティッド領域の研究開発を加速する には、**オープンイノベーションによる** 社外知見の取り込みの加速
 - AECCで企業間連携をリードし、 コネクティッド基盤のベストプラクティス を迅速に策定

AECC デモイベント in 東京 (2024年4月)

デモの様子 (満員御礼!)

トヨタからデモ12件を出展 (来場者の投票で2件が受賞)

授賞式の様子

Towards Safe Mobility KDDI, Toyota Motor Corporation 安全支援 Cooperation for Automation Toyota Motor North America Toyota Motor Corporation, Techno-Accel Hierarchical Edge Al Networks Corporation Traffic Steering to Optimal Edge Servers Toyota Motor Corporation, KDDI, Oracle エッジ Energy-Efficient Multi-Tier Edge Simulation KDDI, Toyota Motor Corporation Multi-LLM Voice-Interactive AI System Toyota Motor Corporation Green Connected Platform Field Trial Toyota Motor Corporation, KDDI, Cisco Toyota Motor Corporation, Denso D8 Service-Oriented Vehicle Diagnostics (SOVD) Corporation, Vector Japan Co., LTD. クルマ通信 D9 Packet Counter in Network Access Device **KDDI** Toyota Motor Corporation, Denso D10 Inter-Vehicle Edge Cloud over Wi-Fi Aware Corporation Toyota Motor Corporation, Toyota D11 Vehicle Teleoperation in Immersive Digital Twir Central R&D Labs マルチパス通信 D12 Next Generation of 5G & API Enabled Cars Ericsson, Toyota Motor Corporation D13 Dynamic Slice Switching via Telco API KDDI, Toyota Motor Corporation D14 Robust Vehicle-to-Cloud Communication **Toyota Motor Corporation**

新メンバが続々と AECCへ加入:

液浸サーバ実験@沖縄(KDDI協業)

- ・コンテナDCにおける液浸冷却実験
 - なぜ沖縄?:高温多湿なASEAN環境を想定
 - 冷却液の浴槽にサーバ丸ごと浸して冷却
 - サーバ全体から直接発熱を除くため、 高い冷却性能とエネルギー効率を実現
 - PUE 1.1~1.0程度の性能が期待される
 - ・ NVIDIA H100を沈める実証

沖縄コンテナでのNVIDIA H100評価

- ローカルLLMであるLoRA(Low-Rank Adaptation)による追加学習
 - 事前学習モデル: elyza/ELYZA-japanese-Llama-2-7b-instruct
 - ・ 学習観点: H100は高性能
 - 推論観点: H100, A100の性能差は低い

追加学習によりJetsonでも改善可能

・分散拠点で追加学習を行うには十分な性能

※比率ベース

GPU種別	H100	A100	Jetson
参考)整数演算能力	3026TOPS	624TOPS	275TOPS
学習時間※	0.7	1	14
推論時間※	0.8	1	9.5
推論時間(追加学習)※	1	1	2.5

太陽光効率利用のための発電シミュレータ

- いつ、どこで、どの程度の発電ポテンシャルがあるかを、
 - シミュレーションベースで見える化
 - ・太陽光発電に**適切な場所**はどこになるか
 - ・特に、直近の天気に左右されるため、 数時間から数日の時間軸で どの程度の**発電ポテンシャル**があるか
- ・直近の天気予報に連動した 発電状況をシミュレーションベースで**可視化**

日本各地の日射量の統計情報 [global solar atlas, https://globalsolaratlas.info/map]

発電量予測による計算資源の制御実験

- ・発電予測量が多い時間帯/拠点で、その拠点の計算資源を追加
- 利用可能な余剰電力を活用し、追加の計算能力を提供可能

OSS監視技術の手の内化

- Zabbix: https://www.zabbix.com/jp
 - ・世界的に有名な統合監視OSS
 - ・ 広域分散監視や冗長化、他システム連携が実現可能
 - ・太陽光発電シミュレータのダッシュボードとして利用
 - 入力・計算済みデータをKafkaを経由し他のシステムへ分配する仕組みも提供

https://www.zabbix.com/events/zabbix_summit_2024

昨年度よりZabbixの主要イベント(Zabbix Summit, Zabbix Conference Japan)にトヨタ社員は登壇者として参加

さらなるグリーン技術の模索

- コンテナ型DC
 - GPUサーバの高密度積載
- DLC(Direct Liquid Cooling)
 - ・ GPUの直接冷却

まとめ

- 国内拠点のグリーンな計算資源の積極利用へのトライ
 - ・各地域の再工ネを活用した**地産地消の分散コンピューティング基盤**の 実現に向けて取組中
 - ・KDDI&Cisco協業でのコンテナ型DC実証実験(北海道、沖縄)
 - 全国複数拠点を接続する実験ネットワーク網の構築
 - 大陽光発電量予測による各拠点での効率的な計算資源の分散制御
- ・太陽光発電・風力発電のポテンシャルを模索
 - ・豊田通商・ユーラスエナジーと連携
 - シミュレータの高度化
- 仲間募集中
 - AECCへご興味がある方は、個別にお問い合わせください

Mission

わたしたちは、幸せを量産する。

だから、ひとの幸せについて深く考える。

だから、より良いものをより安くつくる。

だから、1秒1円にこだわる。

だから、くふうと努力を惜しまない。

だから、常識と過去にとらわれない。

だから、この仕事は限りなくひろがっていく。

Vision

モビリティ

可動性を社会の可能性に変える。

不確実で多様化する世界において、

トヨタは人とモノの「可動性」=移動の量と質を上げ、

人、企業、自治体、コミュニティができることをふやす。

そして、人類と地球の持続可能な共生を実現する。

Value

トヨタウェイ

ソフトとハードを融合し、パートナーとともに トヨタウェイという唯一無二の価値を生み出す。

【ソフト】

よりよい社会を描くイマジネーションと 人起点の設計思想。

現地現物で本質を見極める

【ハード】

人とモノの可動性を高める装置。 パートナーと共につくるプラットフォーム。 これらをソフトによって柔軟に、 迅速に変化させていく。

【パートナー】

ともに幸せをつくる仲間(顧客、社会、 コミュニティ、社員、ステークホルダー) を尊重し、それぞれの力を結集する。

TOYOTA