### **Order statistics**

Select the *i*th smallest element of n elements (element with rank i).

- i = 1: minimum
- i = n: maximum
- $i = \lfloor (n+1)/2 \rfloor$  or  $\lfloor (n+1)/2 \rfloor$ : median

#### Naive algorithm

NAIVE-SELECT(A, i)

- 1. Merge-Sort(A)  $\triangleright$  Don't use quicksort—why?
- 2. return A[i]

Worst-case running time =  $\Theta(n \lg n)$ .

## Randomized divide-and-conquer algorithm

RAND-SELECT(A, p, r, i)

- 1. if p = r then return A[p]
- 2.  $q \leftarrow \text{RAND-PARTITION}(A, p, r)$
- 3.  $k \leftarrow q p + 1$
- 4. if i = k then return A[q]
- 5. if i < k
- 6. then return RAND-SELECT(A, p, q 1, i)
- 7. else return RAND-SELECT(A, q + 1, r, i k)



## **Example**

• Select the i = 7th smallest:



• Partition:



Select the 7-4=3rd smallest recursively

## **Analysis of Rand-Select**

- Lucky:  $T(n) = T(9n/10) + \Theta(n) = \Theta(n)$  by case 3 of the master method.
- Unlucky:  $T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$  which is worse than NAIVE-SELECT!

#### Summary:

- Linear expected time.
- Excellent algorithm in practice.
- But worst case is very bad. Imagine spending  $\Theta(n^2)$  time to find the minimum element :-(

#### Selection in worst-case linear time

- Algorithm due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].
- Idea: generate a good pivot recursively.

```
Select(i, n)
```

- 1. Divide the n elements into groups of 5.
- 2. Find the median of each 5-element group.
- 3. Recursively Select the median x of the  $\lfloor \frac{n}{5} \rfloor$  group medians to be the pivot.
- 4. Partition around the pivot x.
- 5. Let k = rank(x).
- 6. If i = k, then return x.
- 7. If i < k, then recursively Select the ith smallest element in first part.
- 8. If i > k, then recursively Select the (i k)th smallest element in last part.





 $\bullet$  Divide the n elements into groups of 5.



- $\bullet$  Divide the n elements into groups of 5.
- Find the median of each 5-element group.



ullet Recursively Select the median x of the  $\lfloor \frac{n}{5} \rfloor$  group medians to be the pivot.

## **Analysis**



• At least half the group medians are  $\leq x$ , which is at least  $\lfloor \lfloor \frac{n}{5} \rfloor / 2 \rfloor = \lfloor \frac{n}{10} \rfloor$  group medians.

# Analysis (assume all elements are distinct)



- At least half the group medians are  $\leq x$ , which is at least  $\lfloor \lfloor \frac{n}{5} \rfloor / 2 \rfloor = \lfloor \frac{n}{10} \rfloor$  group medians.
- Therefore, at least  $3\lfloor \frac{n}{10} \rfloor$  elements are  $\leq x$ .

# Analysis (assume all elements are distinct)



• Similarly, at least  $3\lfloor \frac{n}{10} \rfloor$  elements are  $\geq x$ .

# Minor simplification

- For  $n \ge 50$ , we have  $3\lfloor \frac{n}{10} \rfloor \ge n/4$ .
- Therefore, for  $n \geq 50$  the recursive call to Select in step 7–8 is executed recursively on  $\leq 3n/4$  elements.
- Thus, the recurrence for running time can assume that step 7–8 takes time T(3n/4) in the worst case.
- For n < 50, we know that the worst-case time is  $T(n) = \Theta(1)$ .

## Developing the recurrence

Select(i, n)

T(n)

- 1. Divide the n elements into groups of 5.
- 2. Find the median of each 5-element group.

 $\Theta(n)$ 

3. Recursively Select the median x of the  $\lfloor \frac{n}{5} \rfloor$  group medians to be the pivot.

T(n/5)

4. Partition around the pivot x.

 $\Theta(n)$ 

- 5. Let k = rank(x).
- 6. If i = k, then return x.
- 7. If i < k, then recursively Select the *i*th smallest element in first part.

T(3n/4)

8. If i > k, then recursively Select the (i - k)th smallest element in last part.

T(3n/4)

## Solving the recurrence

$$T(n) = T(\frac{1}{5}n) + T(\frac{3}{4}n) + \Theta(n)$$

Show T(n) = O(n) with substitution:  $T(n) \le cn$ :

$$T(n) \leq \frac{1}{5}cn + \frac{3}{4}cn + \Theta(n)$$

$$= \frac{19}{20}cn + \Theta(n)$$

$$= cn - (\frac{cn}{20} - \Theta(n)) \leq cn$$

if c is chosen large enough to handle both the  $\Theta(n)$  and the initial conditions.

### **Conclusions**

- Since the work at each level of recursion is a constant fraction  $(\frac{19}{20})$  smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly because the constant in front of n is large.
- The randomized algorithm is far more practical.
- Exercise: why not divide into groups of 3?