Probability Theory
TR 1:00-2:30 CB 120
Grading Scheme
· 40% Assignments
· 20% Midterm Exam (February 25)
· 40% Final Exam (Same as comprehensive exam)
Material Covered:
- Probability Spaces
- Ranclom Variables and Distributions
- Expected Value
- Convergence of Random Variables
- Limit Theorems
- Characteristic Functions
- Conditional Probability and Expectation
- Martingales

Probability Spaces

Motivation The probability of an event

Examples Probability that

- (a) 2 heads in 3 coin tosses
- (B) 3 coin tosses land HHT
- (Y) At least 3 cm of snow on January 31.
- (8) Two random real numbers $x_1y \in Lo_{10}1$ such that x+y>4.

Definition: A probability measure $P: \mathcal{F} \to [D_1]$, where \mathcal{F} denotes the set of events, assigns a value in $[D_1]$ to an event.

To represent an event, we start with a sample space Ω representing the set of all possible events that can happen, in the context of interest. An event is a subset of Ω

Examples:

 $(\alpha)_{52} = \{0,1,2,3\}$, where n represents the number of heads in 3 tosses.

(B) $\Omega_2 = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$ using Ω_2 , event in (a) corresponds to $\{HHT, HTH, THH\}$. Using Ω_1 , event in (B) corresponds to $\{2\}$.

(7) $\Omega_3 = [0, \infty)$, $x \in \Omega_3$ represents exactly x cm of snow on January 31

Some Rules For P: \ → [0,1]

(i)
$$P(\Lambda) = 1$$
 and $P(\beta) = 0$

(ii) $P(A^c) = 1 - P(A)$. More generally, if $A_1 \cap A_2 = d$ then $P(A_1 \cup A_2) = P(A_1) + P(A_2)$.

Even more generally, if A_1, \ldots, A_n are pairwise disjoint,

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i})$$
 (finite additivity)

We want countable additivity. That is, if $(A_n)_{n=1}^{\infty}$

is a collection of disjoint events,

$$P\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}P(A_{n})$$

Examples: Consider Ω_2 from above. For $A \subset \Omega_2$,

$$P(A) = \sum_{x \in A} \{x\}$$

e.g. P({2 heads }) = P({HHT}) + P({HTH}) + P({THH})

If each sequence is equally likely as for a fair coin

then we get the above probability.

Note that countable (finite or infinite) additivity holds whenever I is countable.

In (r) and (δ) from above, Ω is uncountable.

Example: Consider $\Omega_y = [0,10]$ with a point chosen uniformly at random. Here, this means for $a < b \in [0,10]$

$$P([a_1b]) = \frac{b-a}{10}$$

Also,
$$P(\{x\}) = \frac{x-x}{10} = 0$$
.

Theorem: There is no way to define a countably additive function $P: \mathcal{F} \to [0,1]$, where \mathcal{F} denotes the subsets of [0,10], such that $\{a < b \in [0,10]\}$ $P([a,b]) = \frac{b-a}{10}$

Proof: (in notes)

The idea to avoid this to reduce the domain of P to a collection S of subsets of $\Omega = \text{Lo}_{10}$?

Need: (i) every subinterval is in [0,10]

(ii) 12, \$ & 5

(iii) $A_1, A_2 \in S \Rightarrow A_1 \cup A_2 \in S, A_1 \setminus A_2 \in S$

(iv)
$$(A_n)_{n=1}^{\infty} \in S \implies \bigcup_{n=1}^{\infty} A_n \in S$$
 and $\bigcap_{n=1}^{\infty} A_n \in S$

A collection of sets satisfying (ii) and (iii) is called an algebra, and those satisfying (ii)—(iv) are called a σ -algebra.

Undergraduate Probability Distributions

(a) Poisson, Binomial,... (Discrete)

 Ω is countable, $f(x) = P(\{x\}) \geqslant 0$ s.t.

 $\sum_{x \in \Omega} P(\{x\}) = 1$. For $A \subset \Omega$, $P(A) = \sum_{x \in A} P(\{x\})$

We can take S to be $P(\Omega)$, the collection of all subsets of Ω .

(B) Continuous, Normal, exponential, ...

IZ = IR or $IO, \infty),...$

 \exists probability density function $g(x) \ge 0$

$$P(IR) = \int_{-\infty}^{\infty} g(x) dx = 1$$

$$P([a,b]) = \int_{\alpha}^{b} g(x) dx$$

$$P(\{a\}) = 0.$$

For
$$A \subset IR$$
, $P(A) = \int_A g(x) dx$