机器学习工程师就业指南

要成为机器学习工程师,必须掌握的知识点?

- 能够比较每个算法的优劣,熟知他们的最佳使用场景。
- 能够有多种方式衡量模型的优劣。
- 熟悉多种监督学习算法,线性回归,对数回归,分类树,集成学习,支持向量机,随机森林,神经网络等。
- 包括有多个独立完成的机器学习项目

当招募一名机器学习工程师时,领先科技企业会在面试中考核哪些技能?

面试问题	Udacity 课程中的对应内容
为什么要使用特征选择 feature selection ?	非监督学习 特征工程
如果两个预测变量高度相关,它们对逻辑回归系数的影响是什么? 系数的置信区间是什么?	监督学习 逻辑回归
高斯混合模型(Gaussian Mixture Model)和 K-Means 之间有什么区别? 在 K-Means 中如何拾取 k? 你如何知道高斯混合模型是不是适用的?	非监督学习 聚类 非监督学习 项目 3

假设聚类模型的标签是已知的,你如何评估模型的性能?	
请解释 Gradient Boosting 是如何工作的	监督学习 集成学习
你会通过哪种特征来预测 Uber 司机是否会接受订单请求? 你会使用哪种监督学习算法来解决这个问题,如何比较算法的结果?	这个比较 open,但题目和我们监督学习,项目2类似
点出及描述三种不同的内核函数,在哪些情况下使 用哪种?	监督学习 支持向量机
如何防止过拟合(overfitting)? 如何处理数据中的离群值?	机器学习基础 模型评估方法
如何评估逻辑回归与简单线性回归模型预测的性能?	也贯穿整个课程
什么是交叉验证(cross-validation),为什么要 使用它?	

主成分分析(PCA)和线性和二次判别分析	非监督学习 特征工程
如何构建一个模型来预测信用卡诈骗? 在拥有两年交易历史的情况下,哪些特征可以用来预测信用 风险?	监督学习 项目 2
为什么 SVM 需要在支持向量之间最大化边缘?	监督学习 支持向量机
请解释过拟合,以及如何防止过拟合	机器学习基础 模型评估方法

Udacity "机器学习工程师" 纳米学位将如何帮助你成为抢手人才?

• 独家课程内容,项目直播辅导

除了学习来自硅谷领先企业的课程视频、实战项目,你还可以参与针对每个实战项目的专业直 播讲解!还有很多 Udacity 独家学习资料,等待你来探索。课程提供中文版。

• 加入同步学习小组,在导师监督下加速成长

你将加入学习小组,认识志同道合的伙伴,在专业导师全方位辅导和监督下, 用最高效率掌握 前沿技术,成为抢手人才。

• 独一无二的硅谷实战项目和代码审阅

亲自挑战我们与硅谷名企共同设计的技术实战项目,获得领域专家的逐行代码 审阅和反馈,学习最先进的技术标准,为学习更加进阶的纳米学位做好准备!

· 获得 Udacity 基石纳米学位认证

毕业后,你将获得 Udacity 和合作企业共同颁发的毕业证书,证明你的专业知识和技术水平!

