Testing probability distributions underlying aggregated data

"Please, sir, I want some more."

Who? Clément

Clément Canonne* Ronitt Rubinfeld[†]

From?

*Columbia University

†MIT and Tel Aviv University

When?

July 11th, 2014

Plan of the talk

Introduction: distribution testing

Two new models: Dual and Cumulative Dual access

Spoiler: the results

Main techniques

Linear is the new exponential.

"Recently there has been a lot of glorious hullabaloo about Big Data and how it is going to revolutionize the way we work, play, eat and sleep." (R. Servedio)

What is distribution testing?

Property testing

Big, hidden "object" X only accessible by local, expensive inspections (queries), and property \mathcal{P} : check in sublinear number of queries if (a) X has the property or (b) X is "far" from all objects having it.

What is distribution testing?

Property testing

Big, hidden "object" X only accessible by local, expensive inspections (queries), and property \mathcal{P} : check in sublinear number of queries if (a) X has the property or (b) X is "far" from all objects having it.

Testing distributions (standard model)

X is an unknown probability distribution D over some n-element set; the testing algorithm has blackbox sample access to D.

Distribution testing (1)

In more details.

Distance: total variation distance ($\propto \ell_1$). ORACLE_D: type of access to D (e.g. sampling).

Definition (Tester)

Tester for property \mathcal{P} : algorithm T which is given ε , n, makes $q(\varepsilon, n)$ calls to ORACLE_D, and:

- if $D \in \mathcal{P}$ then w.h.p. T outputs Yes;
- if $d_{\mathrm{TV}}(D,\mathcal{P}) \geq \varepsilon$ then w.h.p. T outputs No.

Distribution testing (1)

In more details.

Distance: total variation distance ($\propto \ell_1$). ORACLE_D: type of access to D (e.g. sampling).

Definition (*Tolerant* tester)

Tolerant tester for property \mathcal{P} : algorithm T which is given $\varepsilon_1, \varepsilon_2, n$, makes $q(\varepsilon_1, \varepsilon_2, n)$ calls to ORACLE_D, and:

- if $d_{\text{TV}}(D, \mathcal{P}) \leq \varepsilon_1$ then w.h.p. T outputs Yes;
 - if $d_{\mathrm{TV}}(D,\mathcal{P}) \geq arepsilon_2$ then w.h.p. T outputs No.

Distribution testing (2)

Testing vs. Tolerant testing, in an egg-shell.

Distribution testing (3)

Comments

A few remarks

"gray" area for $d_{\mathrm{TV}}(D,\mathcal{P}) \in (0,arepsilon)$

Distribution testing (3)

Comments

A few remarks

- "gray" area for $d_{\mathrm{TV}}(D,\mathcal{P}) \in (0,arepsilon)$
- tolerant testing usually much harder than testing.

Distribution testing (3)

Comments

A few remarks

- "gray" area for $d_{\mathrm{TV}}(D,\mathcal{P}) \in (0,arepsilon)$
- tolerant testing usually much harder than testing.
- focuses on the sample complexity (not the runtime).

Distribution testing (4)

Concrete example: testing uniformity

General outline

- \square Draw a bunch of samples from D;
- "Process" them (e.g. count the number of points seen more than once (collisions));
- Compare to what the uniform distribution would give;
- Reject if it differs too much; accept otherwise.

So what is the problem with that?

Fact

In the standard sampling model, most (natural) properties are "hard" to test; that is, require a strong dependence on n (at least $\Omega(\sqrt{n})$).

So what is the problem with that?

Fact

In the standard sampling model, most (natural) properties are "hard" to test; that is, require a strong dependence on n (at least $\Omega(\sqrt{n})$).

Example

Testing uniformity has $\Theta(\sqrt{n}/\varepsilon^2)$ sample complexity [GR00, BFR+10, Pan08], equivalence to a known distribution $\Theta(\sqrt{n}/\varepsilon^2)$ [BFF+01, Pan08]; equivalence of two unknown distributions $\Omega(n^{2/3})$ [BFR+10, Val11, CDVV14] (essentially tight)...

So what is the problem with that?

Fact

In the standard sampling model, most (natural) properties are "hard" to test; that is, require a strong dependence on n (at least $\Omega(\sqrt{n})$).

Example

Testing uniformity has $\Theta(\sqrt{n}/\varepsilon^2)$ sample complexity [GR00, BFR+10, Pan08], equivalence to a known distribution $\Theta(\sqrt{n}/\varepsilon^2)$ [BFF+01, Pan08]; equivalence of two unknown distributions $\Omega(n^{2/3})$ [BFR+10, Val11, CDVV14] (essentially tight)...

and more depressing for tolerant testing: $\Omega(n^{1-o(1)})$ for entropy, support size. . . even for uniformity! [VV11, VV10a]

Bypassing the lower bounds: changing the adversary

First idea

Focusing on subclasses of distributions: structure may help!

Shape: Mixtures:

monotone distributions, *k*-modal, log-concave... Gaussian mixtures, Poisson Binomial Distributions, Sums of Independent Integer R.V.s...

([BKR04, DDS⁺13], [DDS12, DDO⁺13] (learning)...)

Bypassing the lower bounds: changing the rules

Second idea

What if the oracle itself was too weak?

Bypassing the lower bounds: changing the rules

Second idea COND What if the oracle itself was too weak?

can ask for samples *conditioned on a subset* $S \subseteq [n]$ [CFGM13, CRS12, CRS14]

Bypassing the lower bounds: changing the rules

Second idea

What if the oracle itself was too weak?

COND

can ask for samples *conditioned on a subset* $S \subseteq [n]$ [CFGM13, CRS12, CRS14]

This work

can sample from *D* and *query* it: have either PMF (probability mass function) or CDF (cumulative distribution function) access.

Definition (Dual oracle)

Fix a distribution D over [n]. A dual oracle for D is a pair of oracles $(SAMP_D, EVAL_D)$:

- sampling oracle SAMP_D returns $i \in [n]$ drawn from D;
 - evaluation oracle EVAL_D takes $j \in [n]$, and returns D(j).

Definition (Cumulative Dual oracle)

A cumulative dual oracle for D is a pair of oracles $(SAMP_D, CEVAL_D)$:

sampling oracle $SAMP_D$ as above;

cumulative evaluation oracle CEVAL_D takes $j \in [n]$, and returns $D([j]) = \sum_{i=1}^{j} D(i)$.

A couple remarks

 $SAMP \leq (SAMP, EVAL) \leq (SAMP, CEVAL)$

A couple remarks

EVAL-only model considered in [RS09]; CEVAL-only in [BKR04]; (SAMP, EVAL) in part of [BDKR05, GMV05]

A couple remarks

- $SAMP \leq (SAMP, EVAL) \leq (SAMP, CEVAL)$
- EVAL-only model considered in [RS09]; CEVAL-only in [BKR04]; (SAMP, EVAL) in part of [BDKR05, GMV05]
 - Key point

SAMP: can get $D(i) \pm \varepsilon$ COND: can get $(1 \pm \varepsilon)D(i)$ here: can get D(i)

A couple remarks

- $SAMP \leq (SAMP, EVAL) \leq (SAMP, CEVAL)$
- EVAL-only model considered in [RS09]; CEVAL-only in [BKR04]; (SAMP, EVAL) in part of [BDKR05, GMV05]
- Key point

```
SAMP: can get D(i) \pm \varepsilon
COND: can get (1 \pm \varepsilon)D(i)
here: can get D(i)
```

How to motivate such a model?

Is that even a thing?

Free but huge dataset out there

Long and expensive analysis of it held by Merlin

Computationally limited Arthur working on the data

Is that even a thing?

Google n-gram data: pdf for sequences of n words + samples of sequences

Sorted files: samples in O(1) time, cdf and pdf queries in $O(\log n)$

Is that even a thing?

...and more.

- Connection between dual model and datastream algorithms [GMV05]
- Further understanding of distribution testing (what is hard in it, and why?)

Our results

(and comparison with the original sampling model)

Problem	SAMP	Dual	Cumulative Dual
Testing uniformity	$\Theta\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$		
$Testing \equiv D^*$	$\Theta \frac{\sqrt{n}}{\varepsilon^2}$	$\Theta(\frac{1}{\varepsilon})$	$\Theta(\frac{1}{\varepsilon})$
Testing $D_1 \equiv D_2$	$\Theta\left(\max\left(\frac{n^{2/3}}{\varepsilon^{4/3}},\frac{\sqrt{n}}{\varepsilon^2}\right)\right)$		
Tolerant uniformity	$O\left(\frac{1}{(\varepsilon_2 - \varepsilon_1)^2} \frac{n}{\log n}\right)$ $\Omega\left(\frac{n}{\log n}\right)$	$\Theta\left(\frac{1}{(\varepsilon_2-\varepsilon_1)^2}\right)$	$O\left(\frac{1}{(\varepsilon_2-\varepsilon_1)^2}\right)$
Tolerant D^*	$\Omega\left(\frac{n}{\log n}\right)$	$(\varepsilon_2-\varepsilon_1)^2$	$(\varepsilon_2-\varepsilon_1)^2$
Tolerant D_1, D_2	log n		
Estimating entropy to $\pm \Delta$	$\Theta\left(\frac{n}{\log n}\right)$	$O\left(\frac{\log^2\frac{n}{\Delta}}{\Delta^2}\right)$ $\Omega(\log n)$	$O\left(\frac{\log^2\frac{n}{\Delta}}{\Delta^2}\right)$
Estimating support size to $\pm \varepsilon n$	$\Theta\left(\frac{n}{\log n}\right)$	$\Theta\left(\frac{1}{\varepsilon^2}\right)$	$O\left(\frac{1}{\varepsilon^2}\right)$

Main technique

Techniques (1)

Upper bounds: Hey, we've got a hammer!

With Dual access: rewrite the quantity to estimate as

$$\mathbb{E}_{i\sim D}\left[\Phi(i,D(i))\right]$$

for bounded Φ .

Techniques (1)

Upper bounds: Hey, we've got a hammer!

Main technique

With Dual access: rewrite the quantity to estimate as

$$\mathbb{E}_{i\sim D}\left[\Phi(i,D(i))\right]$$

for bounded Φ .

Examples

Entropy, support size, distance to D^* or D_2 ...

Techniques (1)

Upper bounds: Hey, we've got a hammer!

Main technique

With Dual access: rewrite the quantity to estimate as

$$\mathbb{E}_{i\sim D}\left[\Phi(i,D(i))\right]$$

for bounded Φ .

Examples

Entropy, support size, distance to D^* or D_2 ...

$$H(D) = -\sum_{i \in [n]} D(i) \log D(i) = -\mathbb{E}_{i \sim D} \left[\log D(i) \right]$$

Techniques (2)

Lower bounds: if I had a hammer...

Fact

To distinguish between D^+ and D^- with constant probability, any SAMP algorithm needs

$$\Omega\!\left(rac{1}{\mathsf{d}_{\mathrm{TV}}(D^+,D^-)}
ight)$$

samples.

→ nice way to show lower bounds in the SAMP model!

Techniques (2)

Lower bounds: if I had a hammer...

Fact

To distinguish between D^+ and D^- with constant probability, any SAMP algorithm needs

$$\Omega\!\left(rac{1}{\mathsf{d}_{\mathrm{TV}}(D^+,D^-)}
ight)$$

samples.

→ nice way to show lower bounds in the SAMP model!

Sad fact

... no longer true in our extended models, and no similar all-powerful tool. Must make do with Yao's lemma, customized indistiguishability arguments

Techniques (2)

Lower bounds: if I had a hammer...

Fact

To distinguish between D^+ and D^- with constant probability, any SAMP algorithm needs

$$\Omega\!\left(rac{1}{\mathsf{d}_{\mathrm{TV}}(D^+,D^-)}
ight)$$

samples.

→ nice way to show lower bounds in the SAMP model!

Sad fact

... no longer true in our extended models, and no similar all-powerful tool. Must make do with Yao's lemma, customized indistiguishability arguments and biased coins.

Is Cumulative Dual any better?

Question

Do we have $(SAMP, EVAL) \not\preceq (SAMP, CEVAL)$?

Is Cumulative Dual any better?

Question

Do we have $(SAMP, EVAL) \not \leq (SAMP, CEVAL)$?

Intuition

Can only be the case with properties using the order structure of [n].

Is Cumulative Dual any better?

Question

Do we have $(SAMP, EVAL) \not \leq (SAMP, CEVAL)$?

Intuition

Can only be the case with properties using the order structure of [n].

Answer

Yes: for entropy of monotone distributions.

Is Cumulative Dual any better?

Question

Do we have $(SAMP, EVAL) \not \leq (SAMP, CEVAL)$?

Intuition

Can only be the case with properties using the order structure of [n].

Answer

Yes: for entropy of close to monotone distributions.

Conclusion

- Two new models for studying distributions
- Significant savings for property testing
- A general technique to get upper bounds with dual access

Conclusion

- Two new models for studying distributions
- Significant savings for property testing
- A general technique to get upper bounds with dual access
- Stronger separation between dual and cumulative dual oracles?
- More lower bounds for cumulative dual?
- What about other properties? (monotonicity (†), log-concavity...)
- What about learning? What about a "Lower Bound Hammer"?

Thank you.

References I

Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld, *The complexity of approximating the entropy*, SIAM Journal on Computing **35** (2005), no. 1, 132–150.

T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White, *Testing random variables for independence and identity*, Proceedings of FOCS, 2001, pp. 442–451.

T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, *Testing that distributions are close*, Proceedings of FOCS, 2000, pp. 189–197.

______, Testing closeness of discrete distributions, Tech. Report abs/1009.5397, ArXiv, 2010, This is a long version of [BFR+00].

T. Batu, R. Kumar, and R. Rubinfeld, *Sublinear algorithms for testing monotone and unimodal distributions*, Proceedings of STOC, 2004, pp. 381–390.

S.-O. Chan, I. Diakonikolas, G. Valiant, and P. Valiant, *Optimal Algorithms for Testing Closeness of Discrete Distributions*, Proceedings of SODA, 2014.

References II

- Constantinos Daskalakis, Ilias Diakonikolas, Ryan O'Donnell, Rocco A. Servedio, and Li-Yang Tan, *Learning sums of independent integer random variables*, FOCS, 2013, pp. 217–226.
- Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A. Servedio, *Learning poisson binomial distributions*, Proceedings of the 44th Symposium on Theory of Computing (New York, NY, USA), STOC '12, ACM, 2012, pp. 709–728.
- C. Daskalakis, I. Diakonikolas, R. Servedio, G. Valiant, and P. Valiant, *Testing k-modal distributions: Optimal algorithms via reductions*, Proceedings of SODA, 2013.

References III

- R. Rubinfeld and R. A. Servedio, *Testing monotone high-dimensional distributions*, RSA **34** (2009), no. 1, 24–44.
- P. Valiant, *Testing symmetric properties of distributions*, SICOMP **40** (2011), no. 6, 1927–1968.
- G. Valiant and P. Valiant, *A CLT and tight lower bounds for estimating entropy*, Tech. Report TR10-179, ECCC, 2010.
 - ______, Estimating the unseen: A sublinear-sample canonical estimator of distributions, Tech. Report TR10-180, ECCC, 2010.

References IV

_____, Estimating the unseen: an n/ log(n)-sample estimator for entropy and support size, shown optimal via new CLTs, Proceedings of STOC, 2011, See also [VV10a] and [VV10b], pp. 685–694.