

# ROBUST TEXT CLASSIFICATION IN THE PRESENCE OF CONFOUNDING BIAS

Virgile Landeiro & Aron Culotta Illinois Institute of Technology Chicago

#### INTRODUCTION

- Development of text classification over more than 50 years<sup>1</sup>
- Mostly centered around categorization of documents into topics
- New areas of research (computational science):
  - Public health surveillance
  - Political science
  - Marketing
  - etc
- But algorithms stay the same: standard supervised classification algorithms
- To ensure validity of study → need classifiers robust to confounding variables

| nyc        | angeles | ny       | york      | california |
|------------|---------|----------|-----------|------------|
| los        | la      | brooklyn | snow      | disneyland |
| jersey     | city    | san      | ca        | hollywood  |
| monica     | santa   | nj       | manhattan | losangeles |
| earthquake | team    | dodgers  | hills     | cute       |
| heart      | vegas   | chill    | state     | happiness  |
| makeup     | pacific | cali     | father    | brother    |
| also       | guess   | socal    | field     | job        |
| cant       | venice  | tacos    | boo       | wonderful  |

# 50 TOP FEATURES FOR LOGISTIC REGRESSION

single

train

laugh

Female (resp. Male) and New York (resp. Los Angeles) are highly correlated.

brothers

wanna

| nyc        | angeles | ny       | york      | calitornia |
|------------|---------|----------|-----------|------------|
| los        | la      | brooklyn | snow      | disneyland |
| jersey     | city    | san      | ca        | hollywood  |
| monica     | santa   | nj       | manhattan | losangeles |
| earthquake | team    | dodgers  | hills     | cute       |
| heart      | vegas   | chill    | state     | happiness  |
| makeup     | pacific | cali     | father    | brother    |
| also       | guess   | socal    | field     | job        |
| cant       | venice  | tacos    | boo       | wonderful  |

# 50 TOP FEATURES FOR LOGISTIC REGRESSION

single

train

laugh

Male (resp. Female) and New York (resp. Los Angeles) are highly correlated.

brothers

wanna

## WHAT IS A CONFOUNDING VARIABLE?



- Prediction vs. causal inference.
- Small training datasets;

 Assume same impact in training and testing sets. Confounder shifts over time.

#### RELATED WORK

- Social science:
  - Matching
  - Stratification
  - J. Pearl developed the backdoor adjustment

- Machine learning:
  - Selection bias<sup>1</sup>:

$$P_{train}(X) \neq P_{test}(X)$$

Changing target distribution:

$$P_{train}(Y) \neq P_{test}(Y)$$

We focus on:

$$P_{train}(Y|Z) \neq P_{test}(Y|Z)$$

### BACK-DOOR ADJUSTMENT FOR TEXT CLASSIFICATION

• 
$$D = \{(x_i, y_i, z_i)\}_{i=1}^n$$

- The back-door criterion requires that:
  - No node in Z is a descendant of X;
  - $lacksymbol{\cdot} Z$  blocks every path between X and Y that contains an arrow pointing to X.
- The back-door criterion is met:

#### confounder



term vector

$$p(y|do(x)) = \sum_{z \in Z} p(y|x,z) \times p(z)$$

# BACK-DOOR ADJUSTMENT FOR TEXT CLASSIFICATION

$$p(y|do(x)) = \sum_{z \in Z} p(y|x,z) \times p(z)$$

- Restrict to binary variables.
- Fit a logistic regression model on p(y|x,z) at training time by appending two features  $c_{i,0}$  and  $c_{i,1}$  to every  $x_i$ .
- ullet Z is not observed at testing time.

| Features matrix |       |       |       |  |
|-----------------|-------|-------|-------|--|
| $x_0$           | $x_1$ | $c_0$ | $c_1$ |  |
| 0               | 0     | 0     | 1     |  |
| 0               | 1     | 0     | 1     |  |
| 1               | 0     | 1     | 0     |  |
| 1               | 1     | 0     | 1     |  |

 $\boldsymbol{Z}$ 

1

0

|                        | City of Los Angeles                              | Male of Female                                |  |
|------------------------|--------------------------------------------------|-----------------------------------------------|--|
| IMDb                   | Sentiment of the review:<br>Positive or Negative | Genre of the film:<br>Horror or Other         |  |
| Canadian<br>Parliament | Political affiliation: Liberal or Conservative   | Political position: Government or Opposition  |  |
|                        | DATASETS                                         | 3 different datasets to experiment with back- |  |

Target variable

City or Los Angeles

Location of a user: New York

**Dataset** 

**Twitter** 

Confounder

Gender of the user:

Male or Female

door adjustment.

# INJECTING CONFOUNDING BIAS

- Introduce confounding bias according to the following constraints:
- $P_{train}(Y) = P_{test}(Y)$
- $P_{train}(Z) = P_{test}(Z)$
- P(Y = 1|Z = 1) = b

#### INJECTING CONFOUNDING BIAS



#### INJECTING CONFOUNDING BIAS



## **BASELINES**

Back-door Adjustment (BA and BAZ10)

$$L(D, \theta) = \sum_{i \in D} \log p_{\theta}(y_i | \mathbf{x}_i, z_i) - \lambda_x \sum_{k} (\theta_k^x)^2 - \lambda_z \sum_{k} (\theta_k^z)^2$$
 with  $\lambda_z < \lambda_x$ .

Logistic Regression (LR)

Matching (M)

Subsampling (S)

Sum Out (S)

### RESULTS FOR THE TWITTER DATASET



#### RESULTS FOR THE TWITTER DATASET



#### EFFECTS OF BACK-DOOR ADJUSTMENT

#### Simpson's Paradox



#### EFFECTS OF BACK-DOOR ADJUSTMENT

Coefficients of features predictive of the confounding



# CONCLUSION / FUTURE WORK

- Efficient and effective method to use back-door adjustment in text classification.
- Use back-door adjustment with a vector of confounders.
- Use back-door adjustment with a noisy measurement of the confounder.