16.	SUBCLASS	
10.G.F	CLASS	
APPROVED)- 46	DRAFTSMAN

FIG._1C

4-

A	-65909-1		
+	· •	3 / 52 O VH	
APPROVED O.G. FIG. 8Y CLASS SUBCLASS MAFTSHAH	NCCH ₂ CH ₂ O ^P N	NH NH	
APPROVED BY ORAFTSHAH	FIG1K	N11	Fe
	рмто 🔨 О 🔨 О	O O P O CN	FIG1L
	DMTO O O	. ~	ODMT NO
	FIG1M	FIG	BRANCHING
	_{рмто} о о о о о о о о о о о о о о о о о о	\o^\o^\o^-	PO CN
	FIG10	GLEN	VOIN

FIG._4

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

FIG._5

APPROVED O.G. FIG. BY CLASS SUBCLASS DRAFTSMAN	PNA	Howard Market State of the stat
	DNA NH2	#

F/G._6

9 / 52

FIG._7

0.6. FIG.	CLASS SUBCLASS	
APPROVED	>- 43	DRAFTSHAM

ANY POSITION ATTACHMENT

FIG._8B

APPROVED 0.G. F1G.

OY CLASS SUBCLASS

11 / 52

DMTO OH NH (CH₂)₁₅-S-C-
$$\frac{\text{NCCH}_2\text{CH}_2\text{OPCIN(iPr)}_2}{\text{CH}_3\text{CH}_3\text{N(IPr)}_3 / \text{CH}_2\text{Cl}_2}$$

FIG._9

l			12 / 52
APPROVED O.G. FIG. SY CLASS SUBCLASS	(tBu)(Ph) ₂ Si—(OCH ₂ CH ₂) $\frac{1}{n}$ OH n = 2, C119 n = 3, W55 n = 4, W72	(tBu)(Ph) ₂ Si $-(OCH_2CH_2)_{\Pi}O$ $-(DI_2Si)_{\Pi}O$ $-(DI_2Si)_{\Pi}O$ $= 2, C121$ n = 3, W69 n = 4, W74	$- = \left\langle \bigcirc \right\rangle - S - CH_2CH_2Si(CH_3)_3$ $Pd(dba)_2 / PPh_3 / CuI / HN(iPr)_2 / DMF$
	AgNO ₃ / DMF	I———ONa	H—————————————————————————————————————
		(tBu)(Ph) ₂ Si—(OCH ₂ CH ₂) _n Br n = 2, C120 n = 3, W68 n = 4, W73	$H - (OCH_2CH_2)_{\overline{h}} O - (OCH_2CH_2CH_2)_{\overline{h}} O - (OCH_2CH_2CH_2CH_2)_{\overline{h}} O - (OCH_2CH_2CH_2CH_2)_{\overline{h}} O - (OCH_2CH_2CH_2CH_2CH_2)_{\overline{h}} O - (OCH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$
	н— (осн ₂ сн ₂), он	CBr ₄ / PPh ₃ / CH ₂ Cl ₂	TBAF / THF

-S— $CH_2CH_2Si(CH_3)_3$

n = 2, H3 n = 3, W71 n = 4, W76

FIG._11A

14/52

FIG._11B

FIG._11C

ÓН

OCH₂CH₂CH₂O

N38

ည်

ũ

. Ž

BY CLASS SUBCLASS DAAFTSHAN	THIS PROCESS CAN BE REPEATED UNTIL THE DESIRED # OF FERROCENE IS OBTAINED, AND THEN HYDROXY GROUPS ON FERROCENE ARE CAPPED USING THE LEFT PHOSPHORAMIDITE IN	ORDER TO INCREASE THE SOLUBILITY OF FERROCENE IN WATER.
	DMTO—CH ₂ CH ₂ —S—CH ₂ CH ₂ —O—P OCH ₂ CH ₂ CN	H2 DMT OFF / CLEAVAGE AND DEPROTECTON

,

THIS COUPLING PROCESS CAN BE REPEATED UNTIL DESIRED # OF THE BRANCHING POINTS

DRAFTSMAK

APPROVED O.G. FIG.

FIG._14

FIG._18

FIG._16A

120 111 *-135 -*-135 112 106 - 108 / -107 FIG._16C

_

APPROVED | O.G. F.1G.

CLASS

26 / 52

= FIRST HYBRIDIZABLE PORTION OF LABEL PROBE
= RECRUITMENT LINKER

A = NUCLEOSIDE REPLACEMENT

B = ATTACHMENT TO A BASE

C = ATTACHEMENT TO A RIBOSE

D = ATTACHMENT TO A PHOSPHATE

E = METALLOCENE POLYMER, ATTACHED TO A RIBOSE, PHOSPHATE, OR BASE

F = DENDRIMER STRUCTURE, ATTACHED VIA A RIBOSE, PHOSPHATE OR BASE

FIG._17A

FIG._17B

CLASS

H = ATTACHMENT OF METALLOCENE POLYMERS
I = ATTACHMENT VIA DENDRIMER STRUCTURE
J = ATTACHMENT USING STANDARD LINKERS

FIG._17D

28 / 52

FIG._19

FIG._19A

CLASS

FIG._19A

FIG._19B

D179

5' - A(C15)CCTGGTCTTGACATCCACGGAAGGCGTGGAAATACGTATTCGTGCCTA - 3'

D309 (Dendrimer)

5' - (W38)(Branching)(Branching)CATGGTTAACGTCAATTGCTGCGGTTATTAA - 3'

D295

5' - (N6)G(N6)CT(N6)C(N6)G(N6)C(N6)CCCATGGTTAGACTGAATTGCTGCGGTTATTAA - 3'

D297

5' - (N6)G(N6)CT(N6)C(N6)G(N6)C(N6)TATGCTCTTGATGGTGCTGTGGAAATCTACTGG - 3'

5' - (N6)G(N6)CT(N6)C(N6)G(N6)C(N6)ATGGTGCTGTGGAAATCTACTGG - 3'

D296

5' - (N6)G(N6)CT(N6)C(N6)G(N6)C(N6)TGACTGAATTGCTGCGGTTATTAA - 3'

D112

5' - CTTCCGTGGATGTCAAGACCAGGAU - 4 unit wire (C11) - 3'

5' - ACCATGGACACAGAU - 4 unit wire (C11) - 3'

D109

5' - CTGCGGTTATTAACU - 4 unit wire (C11) - 3'

2Tar

5' – TAG GCA CGA ATA CGT ATT TCC ACG ATA AAT ATA ATT AAT AAC CGC AGC AAT TGA CGT ATA AAG CTA TCC CAG TAG ATT TCC ACA GC - 3'

D349

5' - A(C15)C (C15)GT GTC CAT GGT AGT AGC TTA TCG TGG AAA TAC GTA TTC GTG CCTA-3

D382

5' - (Y63)G(Y63) CT(Y63) C(Y63)G (Y63)C(Y63) CCC ATG GTT AGA CTG AAT TGC TGC GGT TAT TAA - 3'

D383

5' – (Y63)G(Y63) CT(Y63) C(Y63)G (Y63)C(Y63) CCC ATG GTT AGA CTG GCT GTG GAA ATC TAC TGG -3'

D468

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) (glen)(glen)(glen) CTT TAC TCC CTT CCT CCC CGC TGA AAG TAC-3'

29 / 52

APPROVED O.G. FIG.

BY CLASS SUBCLASS

MATISHAN

D449

-5' - CGG AGT TAG CCG GTG CTT CTT CTG CGG G(C131)(C131)(C131)(C131)(N6) G(N6)C T(N6)C (N6)G(N6) C(N6)T - 3'

D417

5'-CTT TAC TCC CTT CCT CCC CGC TGA AAG TAC TTT ACA ACC C-3'

EU1

5' - ATC CTG GTC TTG ACA TCC ACG GAA GAT GTC CCT ACA GTC TCC ATC AGG CAG TTT CCC AGA CA - 3'

MTI

5' - TCT ACA TGC CGT ACA TAC GGA ACG TAC GGA GCA TCC TGG TCT TGA CAT CCA CGG AAG - 3'

D358

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) CCG TAT GTA CGG CAT GTA GA - 3'

D334

5'-GCT ACT ACC ATG GAC ACA GAU-4 unit wire (C11)-3'

D335

5' - ACA GAC ATC AGA GTA ATC (N6)GC C(N6)G TC(N6) TGG (N6)T - 3'

LP280

5' - GAT TAC TCT GAT GTC TGT CCA TCT GTG TCC ATG GTA GTA GC - 3'

LN280

5' - GAT TAC TCT GAT GTC TGT CCT AGT ACG AGT CAG TCT CTC CA - 3'

NC112

5' – TCT ACA TGC CGT ACA TAC GGA ACG TAC GGA GCG ATT CGA CTG ACA GTC GTA ACC TCA – 3'

D336

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) GCG ACA ACT GTA CCA TCT GTG TCC ATG GT - 3'

D405

D429

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) (C131)AT CTG TGT CCA TGG TAG TAG C - 3'

FIG._19B

APPROVED O.G. FIG.

DRAFTSMAIL

POTENTIAL / V vs Ag / AgCl

APPROVED | D.G. FIG.

POTENTIAL / V vs Ag / AgCI

DRAFTSMAN

APPROVED O.G. FIG.

POTENTIAL / V vs Ag / AgCI

DRAFTSMAN

APPROVED O.G. FIG.

POTENTIAL / V vs Ag / AgCI

POTENTIAL / V

DRAFTSMAH

POTENTIAL / V vs Ag / AgCI

APPROVED | O.G. FIG.

POTENTIAL / V vs Ag / AgCI

CI. ASS SUBCLASS

APPROVED O.G. FIG.

CLASS SUBCLASS

DRAFTSMAN

APPROVED O.G. FIG.

POTENTIAL / V vs Ag / AgCI

APPROVED 0.G. FIG.

DRAFTSMAN

POTENTIAL / V vs Ag / AgCI

CLASS SUBCLASS

DRAFTSMAN

APPROVED 10.G. FIG.

POTENTIAL / V vs Ag / AgCI

APPROVED O. G. FIG.

POTENTIAL / V

+

APPROVED 0.6. F16.

POTENTIAL / V vs Ag / AgCI

CLASS SUBCLASS

DRAFTSMAH

APPROVED [O.G. F.IG.

POTENTIAL / V vs Ag / AgCI

+

APPROVED O.G. FIG.

ı

CLASS SUBCLASS APPROVED 10.6. FIG. DRAFTSMAN βY

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) TTC TGC ACC GTA GCC ATG AAA GAT TGT ACT GAG - 3'

5' - (H2)CC TTC CTT TCC ACA U - 4 UNIT WIRE (C11) - 3'

5' - ATG TGG AAA GGA AGG ACA CCA AAT GAA AGA TTG TAC TGA GAG ACA GGC TAA TTT TTT AGG GAA GAT CTG G-3' HIVCOMP

5' – CCA GAT CTT CCC TAA AAA ATT AGC CTG TCT CTC AGT ACA ATC TTT CAT TTG GTG T - 3'

FIG._22A POTENTIAL (mV) SUBCLASS 120 350 2 89 2 20 2 CLASS | 0.2506 0.8442 0.4778 ip (nA) 1.593 DRAFTSHAN 0.05 2.8 0.1 2.4 POTENTIAL (mV) 9499 9499 92 - 99 2000 2228 2388 560 9 1 STDEV ip (nA) 0.29 2.99 0.17 0.71 --0.51 **AVERAGE** ip (nA) 0.36 0.63 0.19 1.06 3.03 2.99 2.42 7.46 0.3146 0.3441 0.196 0.8547 0.722 0.7449 ip (nA) 2.661 0.9 1.2 7.376 12.49 9.278 0.586 1.756 0.77 1.426 3 3.7 1.571 4.088 2.448 0 0 1.42 0.1 1.6 3+ rRNA+ (2) 20-Fc ETMs+reg rRNA+ (2) 40-Fc ETMs+reg system 2+ rRNA EU2+ EU1, 2 reg helpers EU2+EŪ1, 2 reg rRNA EU2+reg + reg system (2) 40-Fc ETMs+reg helpers+reg helpers+reg helpers+reg (2) 20-Fc ETMs+reg system EU2+reg HYBRID CODE system system system system system ELECTRODE 126 22322 25 26 28 27 $\overline{\omega}$ $\overline{\omega}$ $\overline{\Delta}$ $\overline{\Delta}$ 2005 **ω** 4 − α FIE こちこの ი₽ი∞ **−** ω 4 ω **640** √∞ 0.0 7 9 7 5 MEASURER A B B B A A B B ABBB**BBBA** ΔBBB ABBBAABBM A M

APPROVED 10.G. FIG.

0.G. FIG.	CLASS SUBCLASS	
APPROVED	≻	DRAFTSHAH

	E ₀ (mV)	09		90	09	09			09	20 90 90		9	09 09		09	20	50 60	20	50
2/11.* 15.	(NA) P	4.465		96:0	2.1	1.64			1.147	1.04 0.1958		2.38	0.504		0.71	4.414	0.7741	2.319	3.173
	E_0 (mV)	170 170	021	170 180	170	180	170	8 8 8	160	170 160	160	160	160 190	170	160 170	170	170 170	170 170	170 160
	STDEV	1.25		2.03	22 6	6 .30		2.64		09.0	00.0	0.23	0.34		0.94	#DIV / 0I	1.29	3.22	0.88
2/π [*] i _p (nA)	AVERAGE	1.93		3.39	60.0	6.50	5.82		6.73		1 05	(2.1	95.0	0.50		1.22	4.68	5.12	4.96
	RAW DATA	1.041 2.811	5.7	1.862 2.613	0.6566	5.167	5.799	8.468 3.187	0.1988	1.382 0.6104	1.459	1.042	0.3208 0.7994	3.297	1.492 2.841	1.215	3.768 5.592	2.842 7.4	5.582 4.337
HYBRID	CODE	-9-		5+	9-)		† 9	1	-/	7+		-8		*	გ	†6	10-	10+
	ELECTRODE	46 47	41	43 44	53	56	49	2 <u>0</u> 2 <u>5</u>	61	62 64 64	58	59	70 71	65	67 68	92	73 74	78 80	77 79
i	FILE	3 2	•	1	5	ာ ဖ	က	44	7	∞ ∞	ဖ	7	100	တ	o 2	12	12	14 14	13 13
	MEASURER	JZ A	∢!	JZ A	A ₁	¥	Zſ	A JZ	Zſ	۸Ŋ	Zſ	A	JZ A	∢	Ζζ	Zſ	ζζ	JZ A	A JZ

FIG. 22B

╀

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSMAH

	r			-	1			-		
STDEV 2 / π * i _p (nA)	5.8	12.9	18.9	23.5	2.7	5.9	1.6	6.9		
AVERAGE 2 / π * i _p (nA)	14.5	9.09	45.5	74.9	1.6	8.3	3.7	9.0		
E ₀ (mV)	150 200 100 110	200 220 110 120	190 210 120 120	210 230 130 130	200 250 120 -	230 260 130 140	230 260 150 140	240 280 160 90		
2/π [*] i _p (nA)	22.6 9.622 14.51 11.15	53.52 71.13 71.66 45.9	72.4 30.67 44.49 34.43	105.8 48.66 70.42 74.77	5.665 0.6443 0.0864 0	10.24 14.57 7.881 0.5476	4.513 4.264 4.553 1.314	10.31 17.46 7.445 0.8812		
HYBRID	D548 (1x10)**	D549 (2x10)	D550 (2x5)	D551 (4x5)	D548 (1x10)	D549 (2x10)	D550 (2x5) D551 (4x5)			
SURFACE		"+" Surface 2:2:1	D94 / H6 / M44*, total thiol = 833 uM		"-" Surface 2:2:1 D109 / H6 M44*, thiol = 833 uM					
ELECTRODE	1 17 8 24	7 23 2 18	3 19 6 22	5 21 4 20	9 25 16 32	15 31 10 26	11 27 14 30	13 29 12 28		
FILE	1 17 8 22	8 22 1 1	4 18 7 19	7 19 4 18	9 25 16 30	16 30 9 25	12 26 15 27	15 27 12 26		
EXPT	409 409 73 73	409 409 73 73	409 409 73 73	409 409 73 73	409 409 73 73	409 409 73 73	409 409 73 73	409 409 73 73		
MEASURER	A A N	442	A A N	AANN	VVP	AANN	AANN	VVAA		

** Also note: (n x m) means there are m bristles, each with n Fc's.

* Note: M44 = M43.

APPROVED O.G. FIG.
BY CLASS SUBCLASS

5, 3, H _ D405 3' H _ Fc-PO ₄ -Fc-PO ₄
o ₄ 9

	<u> </u>	<u> </u>					
STDEV 2/π * i _p (nA	14.53	4.70					
HYBRID $2/\pi^*i_p$ (nA) E_o (mV) $2/\pi^*i_p$ (nA) $2/\pi^*i_p$ (nA)	18.04	3.12					
E _o (mV)	170 180 170 160	160 160 180					
2/π * i _p (nA)	4.81 20.63 37.42 9.31	0.1 9.97 0 2.425					
HYBRID	10 uM D405 in 6x SSC w/50% FCS	10 uM D405 in 6x SSC w/50% FCS					
SURFACE	"+" Surface 2:2:1 D94 / H6 / M44*, total thiol = 833 uM	"-" Surface 2:2:1 D109 / H6 / M44*, total thiol = 833 uM					
ELEC- TRODE	- e c 4	8675					
FILE	- 4 - 4	7 10 5					
EXPT	52 52 384 384	52 52 384 384					
MEASURER	AANN	V V					

*NOTE: M44 = M43

-1G._24B

+