Status-quo prospect theory

$$\kappa_{SK}^G = 0.826417299824664$$
 $\kappa_{SK}^L = 1.0$ $\sigma_{KS}^G = \text{nan}$ $\sigma_{KS}^L = 1.0$ $\sigma_{KS}^L = 1.0$ $\sigma_{KS}^L = 1.0$ $\sigma_{KS}^L = 0.0$ $\sigma_{KQ}^L = 0.0$ $\sigma_{SQ}^L = 0.0$ $\sigma_{SK}^L = 0.0$ $\sigma_{SK}^L = 0.0$ $\sigma_{KC}^L = 0.0$ $\sigma_{KC}^L = 0.0$ $\sigma_{KC}^L = 0.0$ $\sigma_{SC}^L = 0.0$ $\sigma_{SC}^L = 0.0$ $\sigma_{SC}^L = 0.0$ $\sigma_{SC}^L = 0.0$

$$\kappa^G = 0.13913380229777708$$
 $\kappa^L = 0.609639736580517$ $\rho^G = 0.0$ $\rho^L = 0.0$

PGR = 0.02922400232138597PLR = 0.1114401963220676

Model parameters : β = 0.9, λ = 3 Stochastic environment : τ = 2, n = 4 p_h = 0.55, p_l = 0.45, u = 1.3, d = 0.8 θ = 2.0