Lecture 3: Wrapping up and Q&A

Can you explain the difference between Hamming weight and Hamming distance models?

$r0_{i-1}$	r0 _i	
0	0	
0	1	
0	1	
0	0	
0	1	
0	1	
0	0	
0	0	

r0 _{i-1}	r0 _i
1	1
0	0
1	1
1	1
0	0
1	1
0	0
1	1

- Can you explain the difference between Hamming weight and Hamming distance models?
- What shall we do if we don't know previous register value 'X'?

$r0_{i-1}$	r0 _i	
0	0	
0	1	
0	1	
0	0	
0	1	
0	1	
0	0	
0	0	

r0 _{i-1}	$r0_i$
1	1
0	0
1	1
1	1
0	0
1	1
0	0
1	1

0_{i-1}	$r0_i$
Χ	1
Χ	0
Χ	1
Χ	1
Χ	0
Χ	1
Χ	0
X	1

■ Taken into account that $i(0 \to 1) = \alpha$, $i(1 \to 0) = \beta$ and $\alpha \neq \beta$ can we construct better models that Hamming Distance?

r0 _{i-1}	$r0_i$	i
1	0	β
0	1	α
1	1	0
1	0	β
0	1	α
1	0	β
0	1	α
1	1	0

- Consider a big register of 128 bits (16 bytes) commonly used in AES-128 hardware implementation.
- Will side-channel on one byte will work?
- Does this change anything to you?
- Can you write the model for this example?
- The image below is for bytes (not bits as before).

$Sbox[p_{i,0} \oplus k_{0,0}]$
$Sbox[p_{i,1} \oplus k_{0,1}]$
$Sbox[p_{i,2} \oplus k_{0,2}]$
$Sbox[p_{i,3} \oplus k_{0,3}]$
$Sbox[p_{i,13} \oplus k_{0,13}]$
$Sbox[p_{i,14} \oplus k_{0,14}]$
$Sbox[p_{i,15} \oplus k_{0,15}]$

Attack this byte only
X
X
X
X
X
X
X

- Side-channels can work with 1 bit models: Differential Power Analysis
 - Probably faster than PCC
 - Does not rely on any special dependency between Hamming weight and real power consumption.
 - Relies only on the fact that $\alpha \neq \beta$,
- DPA works for White-Box Crypto (sometimes) while other attacks don't

_
$Sbox[p_{i,0} \oplus k_{0,0}]$
$Sbox[p_{i,1} \oplus k_{0,1}]$
$Sbox[p_{i,2} \oplus k_{0,2}]$
$Sbox[p_{i,3} \oplus k_{0,3}]$
$Sbox[p_{i,13} \oplus k_{0,13}]$
$Sbox[p_{i,14} \oplus k_{0,14}]$
$Sbox[p_{i,15} \oplus k_{0,15}]$
$DOX[p_{i,15} \oplus k_{0,15}]$

$Sbox[p_{i,0} \oplus k_j]\&$	0x01
X	
X	
X	
Х	
X	
X	
X	
	₹ €

Differential Power Analysis

6.3 1.9 5.5

 $Sb^{-1}[K_0\oplus 5d] \& 0x1 = 1$

 $5b^{-1}[K_{FF} \oplus 5d] \& 0x1 = 0$

Ь7

 C^n

6.3

8.5

4.4

Differential Power Analysis

- Side-channels can work with 1 bit models: Differential Power Analysis
- Fix the bit you want to attack: assume 0x01
- Take a key candidate k_i
- Compute a target operation $Sbox^{-1}[k_i \oplus p_{:,0}]$
- Take one bit from this operation $Sbox^{-1}[k_i \oplus p_{:,0}]\&0x01$
- Split traces in two groups:
 - Group 0: traces for which your model bit is 0
 - Group 1: traces for which your model bit is 1
- Compute difference of means $abs(\mu(Group_1) \mu(Group_0))$ (mean over columns)
- For a concrete key k_i take the maximum value from this group $max(abs(\mu(Group_1) \mu(Group_0)))$
- \blacksquare Repeat the process for all k_i and then select the key with the maximum difference of means

Instead of difference of means you can use Welch's T-test

$$\mathcal{T} = \frac{\mathsf{abs}(\mu(\mathsf{Group}_1) - \mu(\mathsf{Group}_0))}{\sqrt{\frac{\sigma(\mathsf{Group}_1)}{n_1} - \frac{\sigma(\mathsf{Group}_0)}{n_0}}}$$

- $\sigma(Group_1)$ is a standard deviation (again for each column)
- n_i is the number of column elements (number of traces in each group)
- T-test can be used instead of simple difference of means in DPA
- Also T-test can be used to characterise if two sets of data have different power distribution (and this is useful)

- Assume, you have a device where you control everything for AES: a key, a plaintext, and a ciphertext
- Your task is to tell if this device leaks power or not (and also where it leaks power in time)
- What would you do?

- T-test can be used for leakage recognition
- One of the main approaches is called: random versus fixed
- You acquire *N* traces with all fixed values (key, plaintext)
- You acquire *N* traces where you modify the plaintext
- You compute a Ttest between two groups of traces.
- Ttest > 5 will illustrate you where the two groups have different power distribution
- Since the only difference is plaintext differences in power distribution will highlight all places where plaintext has impact (plaintext transfer and AES)

Example of Ttest usage for ECDH

- T-test is also used to assess EM leakage
- EM leakage is stronger over a block we attack (e.g. AES hardware engine)
- Since we don't know where AES is located inside the chip we need to try various positions of the probe
- Instead of doing an entire attack we can use Ttest to approximate location of the "nice" leakage

- Leakage assessment is very common task in side-channel attacks
- You have a device running an algorithm (ECDH, homomorphic encryption, etc)
- You control everything there
- How to check if there is any leakage associated with the algorithm processing?
- Lets discuss a bit this point.

- Similar task is an attack against a new algorithm
- Post-quantun algorithms require "new" attacks
- How would you proceed to get a new attack?
- Getting Hamming weight/distance of internal operations?