RESISTORES

Por Leandro Teodoro 30 jan 2012

Os resistores são componentes facilmente encontrados em circuitos elétricos. Abaixo são comentados sobre os processos de fabricação dos resistores, os principais tipos e os cálculos para o circuito resistivo em série e paralelo.

1. INTRODUÇÃO

Os resistores são utilizados com a finalidade de limitar a corrente nos circuitos elétricos. Este componente dissipa parte da energia elétrica em energia térmica, num processo que é chamado de efeito joule. O nome efeito joule é devido ao físico britânico James Prescott Joule que estudou a natureza do calor e relações entre o fluxo de corrente através de uma resistência elétrica e o calor dissipado.

2. TIPOS DE RESISTORES

Os resistores podem ter seu valor de resistência elétrica variável (chamados potenciômetros ou reostatos) ou fixo. O valor do resistor é apresentado no corpo de componente. Nos variáveis são indicados com números e letras e nos fixos com cores.

O resistor de carbono (CR) é largamente empregado, é fabricado com uma película de carbono depositada em um pequeno cilindro de cerâmica. O valor da resistência é automaticamente ajustada, dentro de limites estabelecidos, durante o processo de fabricação. Ao final do processo são adicionados os terminais e a cobertura isolante na cor bege, formando um encapsulamento chamado de axial.

Figura 1 - Resistor de Carbono

Os resistores de carbono são produzidos com uma tolerância de 10% ou 5% do seu valor nominal. Entretanto os de filme metálico (SFR) ou óxido de metal apresentam uma melhor precisão, e são encontrados em uma faixa de tolerância de 2% ou 1%. Estes últimos podem possuir mais um algarismo significativo em forma de código de cores, sendo conhecidos como resistores de precisão.

Outro tipo de resistor é o de fio, são produzidos enrolando um fio de níquel-cromo no corpo de cerâmica. Por causa do material utilizado pode ser fabricado com valores precisos. Estes podem ser encontrados com valores de potência, por exemplo, acima de 15W. E são indicados para aplicações onde

se tem alta corrente. As resistências utilizadas em chuveiros elétricos também são exemplos de resistores de fio, mas não apresentam o núcleo de cerâmica.

Figura 3 - Resistor de Carbono

Para notação em esquemas elétricos o resistor é representado por um retângulo ou em linha em "zig-zag". A primeira representação é mais utilizada na Europa e Reino Unido, enquanto a segunda é mais utilizada nas Américas e Japão. O resistor variável é representado da mesma forma, porém com uma seta no centro do símbolo.

Figura 4 - Representação de Resistores Fixos

Os resistores mais utilizados podem ser encontrados com potência de dissipação nominal (W) de: 1/8W, 1/4/W, 1/2W, 1W, 2W, 3W, 5W e 10W. Mas existem outros com potências superiores.

Nos resistores de precisão existe uma faixa de cor extra, que indica o coeficiente de temperatura. Pois a medida que a temperatura varia o valor da resistência elétrica também varia. Os fabricantes indicam esta variação em partes por milhão por graus Celsius.

3. CÓDIGO DE CORES

Um dos sistemas utilizados para a indicação do valor de resistência elétrica é a colocação de listras coloridas no resistor. Formando um código conhecido como código de cores. Neste padrão cada cor representa um valor numérico ou uma característica do componente.

Cor	Valor	Dígito Multiplicativo	Tolerância	Coeficiente de temperatura (ppm/°C)
PRATA	0,01	0,01	10%	
OURO	0,1	0,1	5%	
PRETO	0	1		
MARROM	1	10	1%	100
VERMELHO	2	100	2%	50

LARANJA	3	1000		15
AMARELO	4	10000		
VERDE	5	100000	0,5%	
AZUL	6	1000000		10
VIOLETA	7	10000000		5
CINZA	8	100000000		
BRANCO	9	1000000000		1

Tabela 1 - Código de Cores

No corpo do componente, as cores são organizadas da seguinte forma: A primeira e segunda faixa representam o valor da resistência elétrica. A terceira faixa representa o expoente da potência de base 10, o dígito multiplicativo. A quarta faixa representa a tolerância do valor nominal do resistor, a ausência de faixa indica uma tolerância de 20%.

Tendo como exemplo a figura 3, observa-se que o valor do resistor é 470 Ohm 5%. Pois a primeira faixa é amarela (4), a segunda é violeta (7) e a terceira marrom (10¹). A quarta faixa na cor dourada representa a tolerância de 5%.

Nos resistores SMD o valor da resistência nominal está indicada por números no corpo do componente. E segue a mesma lógica, sendo que os dois primeiros números indicam o valor e o terceiro o expoente da base 10. Para valores menores que 10 Ohms a letra "R" assume o lugar da vírgula. Por exemplo, um resistor de 6,2 Ohms é indicado como 6R2.

Figura 5 - Resistor SMD

Nos resistores de precisão, tanto os de filmes quanto o SMD, possuem um algarismo significativo a mais, antes do fator multiplicativo. No SMD é indicado por um número a mais e nos de filmes por uma faixa extra de cor.

4. VALORES PADRÃO DOS RESISTORES

Para fins de comercialização do componente, os resistores possuem valores padrão. Os intervalos entre os valores estão divididos conforme a série. As tabelas abaixo indicam os valores de 1 a 10 Ohms. Os valores seguintes são encontrados multiplicando por potência de base 10. Os resistores das séries E6, E12 e E24 possuem quatro faixas de cores (tabela 2). Os da série E48, E96 e E192 (tabelas 3, 4 e 5) possuem 5 faixas de cores por motivo suas maiores precisões. A tolerância para os valores nominais das séries são mostradas na tabela 6.

Série E6	1.0				1.5				2.2				3.3				4.7				6.8			
Série E12	1.0		1.2		1.5		1.8		2.2		2.7		3.3		3.9		4.7		5.6		6.8		8.2	
Série E24	1.0	1.1	1.2	1.3	1.5	1.6	1.8	2.0	2.2	2.4	2.7	3.0	3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1

Tabela 2 – Séries de resistores de 4 faixas

Série 1.96, 2.05, 2.15, 2.26, 2.37, 2.49 3.83, 4.02, 4.22, 4.42, 4.64, 4.83	7, 1.33, 1.40, 1.47, 1.54, 1.62, 1.69, 1.78, 1.87, 9, 2.61, 2.74, 2.87, 3.01, 3.16, 3.32, 3.48, 3.65, 7, 5.11, 5.36, 5.62, 5.90, 6.19, 6.49, 6.81, 7.15, 7, 8.25, 8.66, 9.09, 9.53
---	--

Tabela 3 – Série E48

	100 102 105 107 110 112 115 119 121 124 127 120 122 127
	1.00, 1.02, 1.05, 1.07, 1.10, 1.13, 1.15, 1.18, 1.21, 1.24, 1.27, 1.30, 1.33, 1.37,
	1.40, 1.43, 1.47, 1.50, 1.54, 1.58, 1.62, 1.65, 1.69, 1.74, 1.78, 1.82, 1.87, 1.91,
Série	1.96, 2.00, 2.05, 2.10, 2.15, 2.21, 2.26, 2.32, 2.37, 2.43, 2.49, 2.55, 2.61, 2.67,
	2.74, 2.80, 2.87, 2.94, 3.01, 3.09, 3.16, 3.24, 3.32, 3.40, 3.48, 3.57, 3.65, 3.74,
E96	3.83, 3.92, 4.02, 4.12, 4.22, 4.32, 4.42, 4.53, 4.64, 4.75, 4.87, 4.99, 5.11, 5.23,
	5.36, 5.49, 5.62, 5.76, 5.90, 6.04, 6.19, 6.34, 6.49, 6.65, 6.81, 6.98, 7.15, 7.32,
	7.50, 7.68, 7.87, 8.06, 8.25, 8.45, 8.66, 8.87, 9.09, 9.31, 9.53, 9.76

Tabela 4 - Série E96

	1.00, 1.01, 1.02, 1.04, 1.05, 1.06, 1.07, 1.09, 1.10, 1.11, 1.13, 1.14, 1.15, 1.17, 1.18, 1.20, 1.21, 1.23, 1.24, 1.26, 1.27, 1.29, 1.30, 1.32, 1.33, 1.35, 1.37, 1.38, 1.40, 1.42, 1.43, 1.45, 1.47, 1.49, 1.50, 1.52, 1.54, 1.56, 1.58, 1.60, 1.62, 1.64,
	1.65, 1.67, 1.69, 1.72, 1.74, 1.76, 1.78, 1.80, 1.82, 1.84, 1.87, 1.89, 1.91, 1.93,
	1.96, 1.98, 2.00, 2.03, 2.05, 2.08, 2.10, 2.13, 2.15, 2.18, 2.21, 2.23, 2.26, 2.29,
	2.32, 2.34, 2.37, 2.40, 2.43, 2.46, 2.49, 2.52, 2.55, 2.58, 2.61, 2.64, 2.67, 2.71,
Série	2.74, 2.77, 2.80, 2.84, 2.87, 2.91, 2.94, 2.98, 3.01, 3.05, 3.09, 3.12, 3.16, 3.20,
E192	3.24, 3.28, 3.32, 3.36, 3.40, 3.44, 3.48, 3.52, 3.57, 3.61, 3.65, 3.70, 3.74, 3.79,
	3.83, 3.88, 3.92, 3.97, 4.02, 4.07, 4.12, 4.17, 4.22, 4.27, 4.32, 4.37, 4.42, 4.48,
	4.53, 4.59, 4.64, 4.70, 4.75, 4.81, 4.87, 4.93, 4.99, 5.05, 5.11, 5.17, 5.23, 5.30,
	5.36, 5.42, 5.49, 5.56, 5.62, 5.69, 5.76, 5.83, 5.90, 5.97, 6.04, 6.12, 6.19, 6.26,
	6.34, 6.42, 6.49, 6.57, 6.65, 6.73, 6.81, 6.90, 6.98, 7.06, 7.15, 7.23, 7.32, 7.41,
	7.50, 7.59, 7.68, 7.77, 7.87, 7.96, 8.06, 8.16, 8.25, 8.35, 8.45, 8.56, 8.66, 8.76,
	8.87, 8.98, 9.09, 9.19, 9.31, 9.42, 9.53, 9.65, 9.76, 9.88.

Tabela 5 – Série E192

Tolerância das Séries						
E6	20%					
E12	10%					
E24	5%					
E48	2%					
E96	1%					
E192	0,5%					

Tabela 6 - Tolerâncias

5. ASSOCIAÇÕES ENTRE RESISTORES

O primeiro caso é a associação de resistores em série (figura 6).

Figura 6 - Resistores em Série

A resistência total ou equivalente do circuito é dada por:

$$R_T = R_1 + R_2 (Eq. 1)$$

Generalizando:

$$R_T = R_1 + R_2 + \cdots + R_n (Eq. 2)$$

A corrente I é calculada por:

$$I = \frac{V_T}{R_T} (Eq. 3)$$

A potência aplicada é dada por:

$$P_T = IV_T (Eq. 4)$$

Calculando a que de tensão no resistor R1 (V_{R1}) e no resistor R2 (V_{R2}):

$$V_{R1} = IR_1$$
 e $V_{R2} = IR_2$ (Eq. 5 e 6)

Ou utilizando a fórmula do divisor de tensão, pois o circuito possui somente dois resistores:

$$V_{R1} = \frac{R_1}{R_1 + R_2} V_T$$
 e $V_{R2} = \frac{R_2}{R_1 + R_2} V_T$ (Eq. 7 e 8)

No segundo caso temos a associação de resistores em paralelo (figura 7).

Figura 7 - Resistores em Paralelo

A resistência total ou equivalente do circuito é dada por:

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} (Eq. 8)$$

Generalizando:

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n} (Eq. 9)$$

Como existe somente dois resistores em paralelo, também pode-se usar a fórmula da equação 10:

$$R_T = \frac{R_1 \times R_2}{R_1 + R_2} (Eq. 10)$$

As correntes I_1 , I_2 e I_T são calculadas pelas fórmulas:

$$I_1 = \frac{V_T}{R_1}$$
 (Eq. 11)

$$I_1 = \frac{R_2}{R_1 + R_2} I_T (Eq. 12)$$

$$I_2 = \frac{V_T}{R_2} \ (Eq. 13)$$

$$I_2 = \frac{R_1}{R_1 + R_2} I_T (Eq. 14)$$

$$I_T = I_1 + I_2 (Eq. 15)$$

No caso da divisão de corrente em dois ramos, pode-se usar as equações 12 e 14.

Calculando a corrente que flui resistor R1 (I₁) e no resistor R2 (I₂):

$$I_1 = \frac{V_T}{R_1}$$
 e $I_2 = \frac{V_T}{R_2}$ (Eq. 16 e 17)

CONCLUSÃO

Os resistores são componentes muito utilizados nos circuitos elétricos e eletrônicos. São fabricados em diversos tipos e o projetista deve escolher o mais adequado a sua aplicação. O resistor SMD é menos susceptível a ruídos, pela ausência dos terminais. Para estes, o tamanho 1206 é o mais indicado quando a soldagem for manual. Montar os resistores que irão dissipar potências elevadas (vão esquentar) não encostados na placa, se esse procedimento não aumentar o ruído no circuito. Não ultrapasse os limites de potência de dissipação nominal do resistor. Em alguns casos é preferível a montagem dos resistores na placa em pé, o que ajuda a poupar espaço.

REFERÊNCIAS

UNICAMP. Resistores

Disponível em: < http://www.dsee.fee.unicamp.br/~sato/ET515/node10.htmlf >. Acesso em : 29 jan. 2012.

Newton C. Braga, Resistores

Disponível em: < http://www.newtoncbraga.com.br/index.php/almanaque/358-resistores.html >. Acesso em: 29 jan. 2012.

http://pt.scribd.com/doc/28323491/Resistores-de-fio

WIKIPEDIA. Lei de Joule

Disponível em: http://pt.wikipedia.org/wiki/Lei_de_Joule. Acesso em 30 jan 2012

ELETRICIDADE BÁSICA, Milton Gussow, Editora McGraw-Hill, 2ºEdição