

Práctica 03

DOCENTE	CARRERA	CURSO
Marcela Quispe Cruz	Maestría en Ciencia de la	Teoría de la Computación
	Computación	

PRÁCTICA	TEMA	DURACIÓN
03	Lenguajes de Libre Contexto	3 horas

1. Datos de los estudiantes

- Grupo: 9
- Integrantes:
 - Abarca Murillo, Jhonatan Piero
 - Apari Pinto, Christian Timoteo
 - Suca Velando, Christian Anthony
 - Vargas Zuni, Arturo

2. Ejercicios

2.1. Pregunta 1

Considere las siguiente gramáticas:

1.
$$S \to AbS|a, A \to a$$

2.
$$S \rightarrow Sa|AB, A \rightarrow aA|a, B \rightarrow b$$

3.
$$S \rightarrow aS|b$$

4.
$$S \rightarrow aS|aA, A \rightarrow bS|bA|\epsilon$$

5.
$$S \rightarrow aSa|b$$

6.
$$S \to aA|aS, A \to ab$$

7.
$$S \to ASB|AB, A \to aA|\epsilon, B \to b$$

8.
$$S \to Ab, A \to AA|a$$

9.
$$S \to AS|b, A \to AA|a$$

Indique cual gramática corresponde a cada lenguaje abajo. Puede haber más de una o ninguna gramática para cada lenguaje.

(a)
$$L_1: \{a^ib|i \ge 1\}$$
 \Box 1 \Box 2 \Box 3 \Box 4 \Box 5 \Box 6 \Box 7 \Box 8 \Box 9

(c)
$$L_3:\{a^ib|i\geq 2\}$$
 \square 1 \square 2 \square 3 \square 4 \square 5 \square 6 \square 7 \square 8 \square 9

(d)
$$L_4: \{a^iba^j|i\geq 1, j\geq 0\}$$
 \Box 1 \Box 2 \Box 3 \Box 4 \Box 5 \Box 6 \Box 7 \Box 8 \Box 9

(f) $L_6: \{a^ib^j i \ge 0, j > 0\}$ \Box 1 \Box 2 \Box 3 \Box 4 \Box 5 \Box 6 \boxtimes 7
--

(g)
$$L_7: \{(ab)^i | i \ge 0\}$$
 $\Box 1 \ \Box 2 \ \Box 3 \ \Box 4 \ \Box 5 \ \Box 6 \ \Box 7 \ \Box 8 \ \Box 9$

Resolución

Parte 1 Representando lenguajes [Sipser(2013)]

(a)
$$L_1: \{a^i b | i \ge 1\}$$

 $L_1: \{ab, aab, aaab, aaaab\}$

(b)
$$L_2: \{(ab)^i a | i \geq 0\}$$

 $L_2: \{a, aba, ababa, abababa\}$

(c)
$$L_3: \{a^i b | i \geq 2\}$$

 $L_3: \{aab, aaab, aaaab, aaaaab\}$

(d)
$$L_4: \{a^iba^j|i\geq 1, j\geq 0\}$$

 $L_4: \{ab, aba, aaba, aabaa\}$

(e)
$$L_5: \{a^i b | i \geq 0\}$$

 $L_5: \{b, ab, aab, aaab\}$

(f) $L_6: \{a^i b^j | i \ge 0, j > 0\}$

 $L_6:\{b,ab,aab,abb\}$

(g) $L_7: \{(ab)^i | i \geq 0\}$

 $L_7: \{\varepsilon, ab, abab, ababab\}$

Parte 2 Producción y Derivación de Gramáticas [Hopcroft and Ullman(1979)]

1. $S \to AbS|a, A \to a$

 $\blacksquare L_2 : \{abababa\}$

Pruducción: $S \to AbS, S \to AbS, S \to AbS, S \to AbS, A \to a, A \to a, A \to a, S \to a$

Derivación: S, AbS, AbAbS, AbAbAbS, abAbAbS, ababAbS, abababS, abababa

2. $S \rightarrow Sa|AB, A \rightarrow aA|a, B \rightarrow b$

 $\blacksquare L_1: \{aaaab\}, L_3: \{aaaaab\}$

Pruducción: $S \to AB$, $A \to aA$, $A \to aA$, $A \to aA$, $A \to a$, $B \to b$

Derivación: AB, aAB, aaAB, aaaAB, aaaaB, aaaaB

 $\blacksquare L_4: \{aabaa\}$

Pruducción: $S \to Sa$, $S \to Sa$, $S \to AB$, $A \to aA$, $A \to a$, $B \to b$

Derivación: Sa , Saa , ABaa , aABaa , aaBaa , aabaa

3. $S \rightarrow aS|b$

• $L_1: \{aaaab\}, L_3: \{aaaaab\}$

Pruducción: $S \rightarrow aS$, $S \rightarrow aS$, $S \rightarrow aS$, $S \rightarrow aS$, $S \rightarrow b$

Derivación: aS , aaS , aaaS , aaaaS , aaaab

■ $L_5:\{b\}$

Pruducción: $S \to b$

Derivación: b

4. $S \to aS|aA, A \to bS|bA|\varepsilon$

- $L_1: \{aaaab\}, L_3: \{aaaaab\}$ Pruducción: $S \to aS$, $S \to aS$, $S \to aS$, $S \to aA$, $A \to bA$, $A \to \varepsilon$ Derivación: aS, aaS, aaaS, aaaaA, aaaabA, aaaab
- $L_2:\{abababa\}$ Pruducción: $S \to aA$, $A \to bS$, $S \to aA$, $A \to bS$, $S \to aA$, $A \to bS$, $S \to aA$, $A \to \varepsilon$ Derivación: aA, abS, abaA, ababS, ababaA, abababA, abababA, abababA
- $L_4: \{aabaa\}$ Pruducción: $S \to aS$, $S \to aA$, $A \to bS$, $S \to aS$, $S \to aA$, $A \to \varepsilon$ Derivación: aS, aaA, aabS, aabaaA, aabaaA, aabaa
- 5. $S \rightarrow aSa|b$
 - Ninguno
- 6. $S \to aA|aS, A \to ab$
 - $L_3:\{aaaaab\}$ Pruducción: $S \to aS$, $S \to aS$, $S \to aS$, $S \to aA$, $A \to ab$ Derivación: aS, aaS, aaaS, aaaaA, aaaaab
- 7. $S \to ASB|AB, A \to aA|\epsilon, B \to b$
 - $L_1: \{aaaab\}, L_3: \{aaaaab\}$ Pruducción: $S \to AB$, $A \to aA$,
 - $L_5: \{b\}$ Pruducción: $S \to b$ Derivación: b
 - $L_6:\{abb\}$ Pruducción: $S \to ASB$, $A \to aA$, $S \to AB$, $A \to \lambda$, $A \to \lambda$, $B \to b$, $B \to b$ Derivación: ASB, aASB, aAABB, aABB, aBB, abB, abb
- 8. $S \to Ab, A \to AA|a$
 - $L_1:\{aaaab\}, L_3:\{aaaaab\}$ Pruducción: $S \to Ab$, $A \to AA$, $A \to a$, $A \to a$
- 9. $S \to AS|b, A \to AA|a$
 - $L_1: \{aaaab\}, L_3: \{aaaaab\}$ Pruducción: $S \to AS$, $S \to AS$, $A \to AA$, $A \to AA$, $S \to AS$, $A \to a$, $A \to a$
 - $L_5: \{b\}$ Pruducción: $S \to b$ Derivación: b

2.2. Pregunta 2

Para cada lenguaje abajo, determine una gramática que la genere. Cuando no especificado, w es un string sobre el alfabeto $\sum = \{a,b\}$ [Rodger(1993)]

(a) $L = \{w|w \text{ posee la misma cantidad de ocurrencias de }a$'s y de b's $\}$

Gramática

- \blacksquare $S \to SS$
- $S \rightarrow aSb|bSa|\varepsilon$

Derivación

Para los casos en donde se requiere que la cantidad de a y b's estan ubicados de manera seguida, se puede reusar la doble combinación de aSb.

$$S \Rightarrow_{lm} aSb$$

Para el caso donde se tiene recursivamente b's y a's de manera seguida

$$S \Rightarrow_{lm} bSa$$

Y para el caos en donde se requiera concatenacion de pares de ab's o ba's se usa la producción

$$S \Rightarrow_{lm} SS$$

Cadena con ubicación de a's seguidas de b's y b's y a's seguidas bbbaaabbbaaa				
Producción	Derivación	Árbol		
Inicio o S	S			
$S \rightarrow bSa$	bSa	(5) (a)		
$S \rightarrow bSa$	b bSa a	b		
$S \rightarrow bSa$	bb bSa aa	b		
$S \rightarrow aSb$	bbb aSb aaa	a 9 b		
$A \rightarrow aSb$	bbba aSb baaa	(a) (b)		
$A \rightarrow aSb$	bbbaa aSb bbaaa	<u> </u>		
S o arepsilon	bbbaaabbbaaa			
Cadena con ubicación de ba	Cadena con ubicación de ba 's concatenada con a 's seguidas de b 's externamente : aabababb			
Producción	Derivación	Árbol		
$Inicio \rightarrow S$	S			
S o aSb	aSb	9		
S o aSb	aaSbb S	a 5		
$S \rightarrow bSa$	aabSabb			
$S \rightarrow aSb$	aabaSbabb			
S o arepsilon	aabababb			

Cadena con ubicación de ab 's concatenada con ba 's en los extremos : baababba		
Producción	Derivación	Árbol
$\begin{array}{l} Inicio \rightarrow S \\ S \rightarrow bSa \\ S \rightarrow aSb \\ S \rightarrow aSb \\ S \rightarrow bSa \\ S \rightarrow \varepsilon \end{array}$	S bSa baSba S baaSbba baabSabba baababba	
$S \to \varepsilon$	baababba	()

(b) $L = \{w | \text{ el tamaño de } w \text{ es impar y el símbolo del medio es } a\}$

Gramática

- $\blacksquare S \rightarrow ASA \mid a$
- $\blacksquare A \rightarrow a \mid b$

Derivación

Para los casos mas pequeños por ejempo decir que la ocurrencia impar tambien puede ser tomado como el unico valor permitido a.

$$S \Rightarrow_{lm} a$$

Igualmente para el caso de tener solo b's

$$S \Rightarrow_{lm} ASA \Rightarrow_{lm} bSA \Rightarrow_{lm} baA \Rightarrow_{lm} bab$$

Igualmente para el caso de tener solo a's

$$S \Rightarrow_{lm} ASA \Rightarrow_{lm} aSA \Rightarrow_{lm} aaA \Rightarrow_{lm} aaa$$

O ambos

$$S \Rightarrow_{lm} ASA \Rightarrow_{lm} aSA \Rightarrow_{lm} aaA \Rightarrow_{lm} aab$$

Cadena con cualquier	r cantidad de a's y b's: abbabba	
Producción	Derivación	
$Inicio \rightarrow S$	S	
$S \to ASA$	ASA	_
$S \to ASA$	AASAA	S
$S \to ASA$	AAASAAA	
$A \rightarrow a$	aAASAAA	
$A \rightarrow b$	abASAAA	S
$A \rightarrow b$	abbSAAA	
$S \rightarrow a$	abbaAAA	(A) (A) (S) (A) (A) (A)
$A \rightarrow b$	abbabAA	
$A \rightarrow b$	abbabbA	
$A \rightarrow a$	abbabbb	

Cadena con a's y b's	en cada lado: bbaaa	
Producción	Derivación	
Inicio o S	S	
$S \to ASA$	ASA	
$S \to ASA$	AASAA	
$A \rightarrow b$	bASAA	
$A \rightarrow b$	bbSAA	
$S \rightarrow a$	bbaAA	(A) (A) (S) (A) (A)
$A \rightarrow a$	bbaaA	
$A \rightarrow a$	bbaaa	(b) (b) (a) (a)

Cadena grande de a's	y b 's: aabbbabbaaa	
Producción	Derivación	
$Inicio \rightarrow S$	S	
$S \to ASA$	ASA	
$S \to ASA$	AASAA	
$S \to ASA$	AAASAAA	
$S \to ASA$	AAAASAAAA	S
$S \to ASA$	AAAAASAAAAA	
$A \rightarrow a$	aAAAASAAAA	
$A \rightarrow a$	aaAAASAAAA	S
$A \rightarrow b$	aabAASAAAA	S
$A \rightarrow b$	aabbASAAAA	
$A \rightarrow b$	aabbbSAAAA	
$S \to a$	aabbbaAAAA	
$A \rightarrow b$	aabbbabAAAA	
$A \rightarrow b$	aabbbabbAAA	
$A \rightarrow a$	aabbbabbaAA	
$A \rightarrow a$	aabbbabbaaA	
$A \rightarrow a$	aabbbabbaa	

(c) $L = \{w|w \text{ posee, máximo, 2 ocurrencias de }a\}$

Gramática

- $\blacksquare S \rightarrow \epsilon \mid BXBXB$
- $\blacksquare B \rightarrow Bb \mid \epsilon$
- $\blacksquare X \rightarrow a \mid \epsilon$

Derivación

	Cadena co	n dos a's: babba
Producción	Derivación	Árbol
$S \rightarrow BXBXB$ $B \rightarrow Bb$ $B \rightarrow Bb$ $B \rightarrow \epsilon$ $X \rightarrow a$ $B \rightarrow \epsilon$ $X \rightarrow a$ $B \rightarrow \epsilon$	BXBXB BXBbXB BbXBbbXB BbXBbbXB bXBbbXB baBbbXB babbAB babbAB	B b & B b & B

Cadena con una a: bbbbab		
Producción	Derivación	Árbol
$S \rightarrow BXBXB$ $B \rightarrow Bb$ $B \rightarrow Bb$ $B \rightarrow Bb$ $B \rightarrow Bb$ $B \rightarrow \epsilon$ $X \rightarrow \epsilon$ $B \rightarrow \epsilon$ $X \rightarrow a$ $B \rightarrow \epsilon$	BXBXB BbXBXB BbXBbXB BbbXBbbXB BbbXBbbXB	B b B b B b A A A A A A
	Cadena sin 1	ninguna a's: bbb
Producción	Derivación	Árbol
$S \rightarrow BXBXB$ $B \rightarrow Bb$ $B \rightarrow Bb$ $B \rightarrow \epsilon$ $X \rightarrow \epsilon$ $B \rightarrow \epsilon$ $X \rightarrow \epsilon$ $B \rightarrow \epsilon$ $A \rightarrow \epsilon$ $B \rightarrow \epsilon$	BXBXB BbXBXB BbXBbXBb bXBbXBb bBbXBb bbXBb bbXBb	B b X B b X B b

(d) $L = \{a^n b^m c^m d^n | n \ge 0 \text{ e } m > 0\}$

Gramática

- $\blacksquare G \to MbIcN$
- $\quad \blacksquare \ I \to bIc|\varepsilon$
- $lacksquare M \to aM|arepsilon$
- $N \to dN | \varepsilon$

Derivación

Para el caso en que sol puede ser b y c's siendo a's y d's ceros

$$I \Rightarrow_{lm} bIc|\varepsilon$$

Para el caso en donde puede haber almenos b y c's y varios casos de a y d's respetando la posicion

$$G \Rightarrow_{lm} MIN$$

Y para el caso en donde se requiere varias veces las a y d's

$$M \Rightarrow_{lm} aM | \varepsilon N \Rightarrow_{lm} dN | \varepsilon$$

Cadena con solo las letras b y c sin contar con a y d bbbccc		
Producción	Derivación	Árbol
Inicio ightarrow G	G	
$G \rightarrow MbIcN$	MbIcN	b
$I \rightarrow bIc$	MbbIccN	6
$I \rightarrow bIc$	MbbbIcccN	
$M \to \varepsilon$	bbbIcccN	
$I \to \varepsilon$	bbbcccN	
$N o \varepsilon$	bbbccc	
Cadena con ubicación de b'	s y c's seguidas concatenado con a's	s y d al extremo : abbbcccd
Producción	Derivación	Árbol
Inicio ightarrow G	G	
$G \to MbIcN$	MbIcN	_
$I \rightarrow bIc$	MbcIccN S	0
$M \to aM$	aMbcIccN	В
$I \rightarrow bIc$	aMbbbIcccN	
N o dN	aMbbbIcccdN	(a) (b) (b) (c) (d) (N)
$M o \varepsilon$	abbbIcccdN	A A
$I o \varepsilon$	abbbcccdN	
$N o \varepsilon$	abbbcccd	

Cadena con ubicación unica b' y c' concatenado con a 's y d 'c al extremo: aaabcddd		
Producción	Derivación	Árbol
Inicio o G	G	
G o MbIcN	MbIcN	
$M \to aM$	aMbIcN S	6
$N \to dN$	aMbIcdN	(h) (c) (d)
$M \to aM$	aaMbIcdN	a M d N
$N \to dN$	aaMbIcddN	o M d N
$M \to aM$	aaaMbIcddN	a w a a
$N \to dN$	aaaMbIcdddN	(A) (A)
M o arepsilon	aaabIcdddN	
$I \to \varepsilon$	aaabcdddN	
$N o \varepsilon$	aaabcddd	

- (e) $L=\{a^nb^m|0\leq n\leq m\leq 2n\}$ Gramática
 - $\blacksquare S \rightarrow \epsilon \mid aSR$
 - $\blacksquare R \rightarrow bb \mid b$

Derivación

Cadena con $m = n : ab$		
Producción	Derivación	Árbol
$S \to aSR$ $S \to \epsilon$ $R \to b$	aSR aR ab	a S R

Cadena con $m > n$: aabbb		
Producción	Derivación	Árbol
$S o aSR$ $S o aSR$ $S o \epsilon$ $R o bb$ $R o b$	aSR aaSRR aaRR aabbR aabbb	a S R R

Cadena con $m = 2n$: aabbbb		
Producción	Derivación	Árbol
$S ightarrow aSR$ $S ightarrow aSR$ $S ightarrow \epsilon$ $R ightarrow bb$ $R ightarrow bb$	aSR aaSRR aaRR aabbR aabbbb	a a S R R

(f)
$$L = \{a^i b^j c^k | k = i + j\}$$

Gram'atica

- lacksquare S
 ightarrow aSc
- $\mathbf{S} \to B|\varepsilon$
- $B \to bBc|\varepsilon$

Derivación

Para el caso del conteo de las a's y como primera posición de la cadena antes de las c's

$$S \Rightarrow_{lm} aSc$$

Para el caso del conte
o de las b's con recursividad llamamos a
 By como segunda posición de la cadena antes de las
 c's

$$B \Rightarrow_{lm} bBc|\varepsilon$$

Cadena con tres a 's y dos b 's resulta cinco c 's aaabbccccc			
Producción	Derivación	Árbol	
Inicio o S	S		
$S \rightarrow aSc$	aSc	(s)	
$S \rightarrow aSc$	aaScc	a	
$S \rightarrow aSc$	aaaSccc	(a) (5) (c)	
$S \to B$	aaaBccc	b B c	
$B \rightarrow bBc$	aaabBcccc	6 6 6	
$B \rightarrow bBc$	aaabbBccccc		
$B o \varepsilon$	aaabbccccc		
Cadena con una unica letra b eso resulta en una unica c : bc			
Producción	Derivación	Árbol	
Inicio o S	S	(5)	
$S \rightarrow B$	EGc	I	
$B \rightarrow bBc$	bGc S	B	
$B \to \varepsilon$	bc	b c	
		A	

Cadena con solo 5 a 's y unica b concatenado con 5 c 's extremo: aaaaabcccccc		
Producción	Derivación	Árbol
Inicio o S	S	
$S \rightarrow aSc$	aSc	
$S \rightarrow aSc$	aaScc	
$S \rightarrow aSc$	aaaSccc	a
$S \rightarrow aSc$	aaaaScccc	a
$S \rightarrow aSc$	aaaaaSccccc	a 3 C
$S \to B$	aaaaaBccccc	
$B \rightarrow bBc$	aaaaabBcccccc	6
$b \to \varepsilon$	aaaaabcccccc	

- (g) $L=\{a^nb^{n+m}c^m|n,m\geq 0\}$ Gramática
 - $\blacksquare S \rightarrow \epsilon \mid XY$
 - $\blacksquare X \rightarrow aXb \mid \epsilon$
 - $\blacksquare Y \rightarrow bYc \mid \epsilon$

Derivación

Cadena con $n = 0$, $m = 3$: bbbccc		
Producción	Derivación	Árbol
$S \to XY$ $Y \to bYc$ $Y \to bYc$ $Y \to bYc$ $X \to \epsilon$ $Y \to \epsilon$	XY XbYc XbbYcc XbbbYccc bbbYccc bbbccc	b v c

Cadena con $m = 0$, $n = 2$: aabb			
Producción	Derivación	Árbol	
$S \to XY$ $X \to aXb$ $X \to aXb$ $X \to \epsilon$ $Y \to \epsilon$	XY aXbY aaXbbY aabbY aabb	a X b V	

Cadena con $m = 1$, $n = 3$: aaabbbbc		
Producción	Derivación	Árbol
$S \to XY$ $X \to aXb$ $X \to aXb$ $X \to aXb$ $Y \to bYc$ $X \to \epsilon$ $Y \to \epsilon$	XY aXbY aaXbbY aaaXbbbY aaaXbbbbYc aaabbbbYc	a X b b V c

Referencias

[Sipser(2013)] M. Sipser, Introduction to the Theory of Computation, 3rd ed. Boston, MA: Course Technology, 2013.

[Hopcroft and Ullman(1979)] J. E. Hopcroft and J. D. Ullman, *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Publishing Company, 1979.

[Rodger(1993)] S. H. Rodger, "JFLAP," https://www.jflap.org/, 1993, [Java Formal Languages and Automata Package].