Course: Intelligent Systems

Unit 4: Language Technologies

Language technologies Part 2

Mariano Rico 2022 Technical University of Madrid

NLP at a glance

- Session 1 (29th Nov)
 - Encodings
 - Corpus
 - Normalization
 - Hands-on 1
- Session 2 (in 2 weeks, Today)
 - Part of Speech
 - Sparse Vector models
 - TF-IDF
 - Sentiment analysis
 - Hands-on 2
- Session 3 (in 3 weeks, Tue 20 Dec)
 - Document classification
 - Information extraction
 - Hands-on 3
- Session 4 (after Xmas, Tue 10 Jan)
 - The neural revolution
 - Language Models 4 NLP tasks
 - Hands-on 4

First of all

- Take the satisfaction survey (30 min) http://servicios.upm.es/encuestas
 - Enter your email (without @alumnos.upm.es) and passwd
 - Evaluate anonymously your teachers
 - Mari Carmen Suárez / Asunción Gómez
 - Daniel Manrique
 - Martín Molina
 - Mariano Rico

Table of Contents

- 1. Part of Speech
- 2. Sparse Vector models
- 3. <u>TF-IDF</u>
- 4. Sentiment Analysis
- 5. Hands-on 2

PART OF SPEECH

Part-of-speech tagging

Part of speech (POS):

 Noun, verb, pronoun, preposition, adverb, conjunction, participle, article, etc.

POS Tagging

 Automatic assignment of part-of-speech descriptors (tags) to input tokens

Lexical classes of English words

- Two broad categories
 - Open class types. Commonly accept the addition of new words
 - Nouns, verbs, adjectives, adverbs
 - Closed class types. New words are rarely added
 - Prepositions, determiners, pronouns, conjunctions, etc.

Others

- Interjections (oh, ah, hey, man, alas, uh, um)
- Negatives (no, not)
- Politeness markers (please, thank you)
- Greetings (hello, goodbye)
- The existential there (there are two on the table)

– ...

- Framework for a coherent annotation of
 - POS
 - grammar trees
 - Syntactic dependencies
- Created by an open community
 - More than 300 collaborators
 - 200 treebanks
 - More than 100 languages
- UD annotations are the evolution of
 - Stanford Universal Dependencies. <u>More info</u>.
 - Google Universal POS. <u>More info</u>.
 - Interlingua from Interset for morph syntactic tagsets. More info.
- Even more info

Treebanks for Spanish

- IULA Spanish LSP Treebank
 - Syntactic annotation of 42.000 phrases (590.000 tokens, 631.642 lines)
 - 41MB (uncompressed) in CONLL format (<u>CONLL tagset</u>)
 - Warning, it is NOT CONLL-U.
 - The corpus contains text from newspapers, and texts from areas like law, economy, medicine, genomics, etc.

- Tags (labels) for POS
 - The most important (core)
 - More info
 - Additional properties

Open class words	Closed class words	Other
ADJ	<u>ADP</u>	PUNCT
ADV	<u>AUX</u>	SYM
INTJ	CCONJ	<u>X</u>
<u>NOUN</u>	DET	
PROPN	<u>NUM</u>	
<u>VERB</u>	PART	
	PRON	
	SCONJ	

Lexical features*	Inflectional features*		
	Nominal*	Verbal*	
PronType	<u>Gender</u>	<u>VerbForm</u>	
<u>NumType</u>	<u>Animacy</u>	Mood	
Poss	NounClass	<u>Tense</u>	
Reflex	Number	Aspect	
<u>Foreign</u>	<u>Case</u>	<u>Voice</u>	
<u>Abbr</u>	<u>Definite</u>	Evident	
<u>Typo</u>	<u>Degree</u>	<u>Polarity</u>	
		Person	
		<u>Polite</u>	
		Clusivity	

Source: <u>Jurafsky 3rd ed.</u>

POS tags in detail (Nivre et al. 2016)

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
C	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open	VERB	words for actions and processes	draw, provide, go
Ō	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
\mathbf{S}		spacial, temporal, or other relation	
Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Class	DET	Determiner: marks noun phrase properties	a, an, the, this
\Box	NUM	Numeral	one, two, first, second
Closed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
C10	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
er	PUNCT	Punctuation	; ,()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

- Tags for relations
 - The most relevant:
 - nsubj: the subject

obj: the direct object

• iobj: the indirect objet

root: the verb

Not represented explicitly in CoNLL-U

root
ROOT I love French fries .

	Nominals	Clauses	Modifier words	Function Words
Core arguments	nsubj	<u>csubj</u>		
	<u>obj</u>	ccomp		
	<u>iobj</u>	xcomp		
Non-core dependents	obl.	advcl	advmod*	aux
	vocative		discourse	cop
	<u>expl</u>			mark
	dislocated			
Nominal dependents	nmod	acl	amod	det
	appos			clf
	nummod			case
Coordination	MWE	Loose	Special	Other
coni	fixed	list	orphan	punct
cc	flat	parataxis	goeswith	root
	compound		reparandum	dep

* The advised relation is used for modifiers not only of predicates but also of other modifier words.

UD from R

```
library(udpipe)
model <- udpipe_download_model(language = "spanish-ancora") #Alternative: "spanish-gsd"
udmodel_es <- udpipe_load_model(file = model$file_model)

txt <- c("En un lugar de La Mancha, Don Quijote y Sancho esperaban a Cervantes.")
anno <- udpipe_annotate(udmodel_es, x = txt)
df <- as.data.frame(anno)
#Has 14 columns doc_id, paragraph_id, sentence_id, sentence, token_id, token,
# lemma, upos, xpos, feats, head_token_id,
# dep_rel, deps, misc

df[,5:14]

token_id token lemma upos xpos feats head_token_id dep_rel deps AdpType=Prep 3 case <NA>
```

to	ken_id	token	lemma	upos	xpos	feats h	head_token_id de	p_rel d	leps	misc
1	1	En	en	ADP	ADP	AdpType=Prep	3	case	<na></na>	<na></na>
2	2	un	uno	DET	DET	Definite=Ind Gender=Masc Number=Sing PronType=Art	3	det	<na></na>	<na></na>
3	3	lugar	lugar	NOUN	NOUN	Gender=Masc Number=Sing	12	obl	<na></na>	<na></na>
4	4	de	de	ADP	ADP	AdpType=Prep	6	case	<na></na>	<na></na>
5	5	La	el	DET	DET	Definite=Def Gender=Fem Number=Sing PronType=Art	6	det	<na></na>	<na></na>
6	6	Mancha	Mancha	PROPN	PROPN	<na></na>	3	nmod	<na></na>	SpaceAfter=No
7	7	,	,	PUNCT	PUNCT	PunctType=Comm	3	punct	<na></na>	<na></na>
8	8	Don	Don	PROPN	PROPN	<na></na>	12	nsubj	<na></na>	<na></na>
9	9	Quijote	Quijote	PROPN	PROPN	<na></na>	8	flat	<na></na>	<na></na>
10	10	у	у	CCONJ	CCONJ	<na></na>	11	cc	<na></na>	<na></na>
11	11	Sancho	Sancho	PROPN	PROPN	<na></na>	8	conj	<na></na>	<na></na>
12	12	esperaban	esperar	VERB	VERB	Mood=Ind Number=Plur Person=3 Tense=Imp VerbForm=Fin	0	root	<na></na>	<na></na>
13	13	a	a	ADP	ADP	AdpType=Prep	14	case	<na></na>	<na></na>
14	14	Cervantes	Cervantes	PROPN	PROPN	<na></na>	12	obj	<na></na>	SpaceAfter=No
15	15			PUNCT	PUNCT	PunctType=Peri	12	punct	<na></na>	SpacesAfter=\\n

¡Warn!, anno is a list containing 3 things (the last two things were lost when converted to dataframe):

- 1) x: The x character vector with text.
- 2) conllu: annotation in CONLL-U format
- 3) error: A vector with the same length of x containing possible errors when annotating x cat(anno\$conllu, file = "my_annotacion.conllu") #You can load it with udpipe_read_conllu()

CoNLL-U tools

UniversalDependencies/Tools

- Relevant command line tools
 - validate.py Verifies that a file is CoNLL-U
 - normalize_Unicode.pl Convierta UTF-8 to NFC format
 - conllu_to_conllx.pl Convierts from CoNLL-U to the previous format (CoNLL-X) that some tools still use
 - restore_conlu_lines.pl Joins a CoNLL-U file with a CoNLL-X, returning a CoNLL-U file

UD Tools

This repository contains various scripts in Perl and Python that can be used as tools for Universal Dependencies.

Playing with CoNLL-U files (1/2)

- CoNLL-U Viewer
 - One of the tools in UD

CoNLL-U File

- URL:

https://universaldependencies.org/conllu_vie

wer.html

- It is interactive! (0.9kb loaded)

Load CoNLL-U File .

Playing with CoNLL-U files (2/2)

- The tool created by Kleiweg
 - Developed at Univ. Groningen
 - URL: https://urd2.let.rug.nl/~kleiweg/conllu
 - Load the file created previously

Dependencies with SpaCy

- SpaCy (spacy.io) now it is explosion.ai
- Web app to test dependencies
 - For Spanish only has the sm(all) model
- Spacy is faster than UD

Processing the parse tree

- You can be interested in finding specific syntactical structures
 - E.g.: find all tokens where upos is "VERB", and that have a child with the relation "nsubj" AND a child with the relation "obj".
- In R you can use the package <u>rsyntax</u>

Evaluating POS taggers

Tagset metrics

- Informativeness. Not easy to measure; rough measures:
 - Size of the tagset
 - Amount of ambiguity present in the input
- Specificability. Degree to which different linguists uniformly use the tagset when independently tagging the same texts
- Tagger metrics (using a benchmark corpus)
 - Precision/accuracy
 - Recall
 - Error rate
 - Ambiguity. Average number of analyses in the tagger's output

POS tagging applications

- Syntax parsing
 - Basic unit for parsing
- Information extraction
 - Indication of names, relations
- Machine translation
 - The meaning of a particular word depends on its POS tag
- Sentiment analysis
 - Adjectives are the major opinion holders
 - Good vs Bad, Excellent vs Terrible
- Linguistic studies
 - Thanks to large tagged text corpora
- ...

Table of Contents

- 1. Part of Speech
- 2. Sparse Vector models
- 3. TF-IDF
- 4. Document classification
- 5. Hands-on 2

SPARSE VECTOR MODELS

The term-document matrix

- Each row is a word (token) in the vocabulary
- Each columns is a document in the corpus
- The cell value is the number of occurrences of the word in the document
 - Example: 4 plays by Shakespeare

Occurrence table

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

The term-document matrix

- Each row is a word (token) in the vocabulary
- Each columns is a document in the corpus
- The cell value is the number of occurrences of the word in the document
 - Example: 4 plays by Shakespeare

Occurrence table

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

The term-document matrix

- Let us make a projection to 2 dimensions
 - Over any 2 axis in the space
 - Example: over axis fool and battle

As You Like It Twelfth Night Julius Caesar Henry V battle 89 114 80 62 good Epic plays (high values of *battle*) 36 fool wit 20 15 Henry V [4,13] battle Comedies (high values of *fool*) 10 Julius Caesar [1,7] Twelfth Night [58,0] As You Like It [36,1] 30 35 fool X

Occurrence table

X

Semantic similarity Similarity between words and vectors

- Operation with two vectors: dot product $a \cdot b$
 - We have to normalize the vectors (more words frequency do not implies more similarity)

$$\frac{a \cdot b}{|a| \ |b|}$$

- It is the $\cos \theta$
- As occurrences are always positive, the value of $\cos \theta$ is always between 0 and 1.

Term 3

Semantic similarity Similarity between words and vectors

An example (Jurafsky 2021)

Occurrence table over the dimensions of the columns

	У		X
	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

$$\cos(\text{cherry,information}) = \frac{442*5+8*3982+2*3325}{\sqrt{442^2+8^2+2^2}\sqrt{5^2+3982^2+3325^2}} = .017$$

$$\cos(\text{digital,information}) = \frac{5*5+1683*3982+1670*3325}{\sqrt{5^2+1683^2+1670^2}\sqrt{5^2+3982^2+3325^2}} = .996$$

Semantic similarity TF-IDF matrix

- TF from *term-frequency*
 - A Word occurring 100 times in a document is not 100 times more important than a word occurring only once
 - Calculate the **matrix** tf so:

$$tf_{t,d} = \log_{10}(1 + occurrences(t,d))$$

If $occurrences(t,d) = 0$ then $tf_{t,d} = 0$

- - it's a hyphen, not a minus
- IDF from *inverse document frequency*
 - Gives a higher weight to words occurring only in some documents (valuable words for charactering)
 - Calculate the **vector** idf_t (it is not a matrix) so:

$$idf_t = \log_{10}\left(\frac{N}{df_t}\right)$$
, where $\begin{cases} N & \text{number of documents in the corpus} \\ df_t & \text{number of documents containing } t \end{cases}$

Semantic similarity **TF-IDF** matrix

Example with plays by Shakespeare

Occurrence table

Matrix *term-frequency* (the cell's value is the number of occurrences of the term (word in the row) in the document of the column). Let's compute: $tf_{t,d} = \log_{10}(1 + occurrencies(t,d))$

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36 log(1+36)		1	4
wit	20 log(1+20)	= 1.322 15	2	3

Vector df (number of documents containing the word)

Word	df	idf	
Romeo	1	1.57	
salad	2	1.27	
Falstaff	4	0.967	
forest	12	0.489	
battle	21	0.246	
wit	34	0.037	
fool	36	0.012	į
good	37	0	
sweet	37	0	

log(N/df)

etc...

= log(37/1) = 1.57= log(37/2) = 1.27= log(37/4) = 0.967

$$idf_t = \log_{10} \left(\frac{N}{df_t} \right)$$

We know that N (number of plays) is 37

TF-IDF matrix: $w_{t,d} = tf_{t,d} * idf_t$

		As You Like It	Twelfth Night	Julius Caesar	Henry V
	battle	0.074	0	0.22	0.28
7	good	0	0	0	0
	fool	0.019	0.021	0.0036	0.0083
	wit	0.049	0.044	0.018	0.022

$$w_{wit,As\ You\ Like\ It} = tf_{wit,As\ You\ Like\ It} * idf_{wit}$$
$$= 1.322 * 0.037 = 0.049$$

Semantic similarity TF-IDF matrix

From R

- The quanteda package computes the tf-idf matrix from a given corpus
 - Function <u>textstat_simil()</u> returns a matrix of similarities
 - Function <u>textstat dist()</u> returns a matrix of distances
 - With distances you can do dendrograms

Table of Contents

- 1. Part of Speech
- 2. Sparse Vector models
- 3. TF-IDF
- 4. Sentiment analysis
- 5. Hands-on 2

SENTIMENT ANALYSIS

Sentiment analysis

- It is a case of text classification
 - Sentiment Polarity
 - Each text has a label: A or B (binary)
 - In favor of A, against A (in favor of B)
 - I like A, I do not like A (I like B)
 - Republican, monarchist
 - Spam, not spam
 - Sentiment Valence
 - Each text has a number
 - Examples:
 - » Evaluation "starts": from 1 (I like not much) to 5 (I like very much)
 - » Continuous variables: between 0.0 and 1.0

Polar sentiments

- Given a dictionary of polar words
 - We compute the **polarity** of any text
 - Counting the occurrences of words classified as positive (npos) and negative words (nneg)
 - using an evaluation function
 - Typical functions: log(npos/nneg) (so-called "logit" scale)
 - » With quanteda, use the function textstat polarity()

```
library("quanteda") #Contains the corpus data corpus inaugural
library("quanteda.sentiment") #Has several sentiment dictionaries
#One of these is data_dictionary_geninqposneg (General Inquirer dictionary positive-negative)
print(data dictionary geninqposneg, max nval = 5)
Dictionary object with 2 key entries.
Polarities: pos = "positive"; neg = "negative"
  - abide, ability, able, abound, absolve [ ... and 1,648 more ]
  - abandon, abandonment, abate, abdicate, abhor [ ... and 2,005 more ]
#We calculate sentiments for corpus texts
tail(data corpus inaugural) %>%
  textstat polarity(dictionary = data dictionary geninqposneg)
             doc id sentiment
## 1
          2001-Bush 0.9233579
## 2
          2005-Bush 0.9829457
## 3
         2009-Obama 0.5666378
         2013-Obama 0.7597420
```

Sentiments with valence

- Given a dictionary of words with valence
 - We compute the valence of any text
 - Calculating the average valence of its words (for a given **sentiment**)

```
library("quanteda.sentiment") #Has several sentiment dictionaries
#One of them is data dictionary ANEW (Affective Norms for English Words)
print(data dictionary ANEW, max nval = 5)
Dictionary object with 3 key entries.
Valences set for keys: pleasure, arousal, dominance
- [pleasure]:
  - abduction, able, abortion, absent, absurd [ ... and 2,466 more ]
- [arousal]:
  - abduction, able, abortion, absent, absurd [ ... and 2,466 more ]
- [dominance]:
  - abduction, able, abortion, absent, absurd [ ... and 2,466 more ]
lapply(valence(data dictionary ANEW), head, 8) #Print the valence of dictionary words
$pleasure
                                         absurd abundance
abduction
              able abortion
                               absent
                                                             abuse
                                                                      accept
    2.76
              6.74
                        3.50
                                 3.69
                                           4.26
                                                     6.59
                                                              1.80
                                                                        6.80
$arousal
abduction
              able abortion
                               absent
                                         absurd abundance
                                                             abuse
                                                                      accept
    5.53
              4.30
                        5.39
                                 4.73
                                          4.36
                                                     5.51
                                                              6.83
                                                                        5.53
$dominance
abduction
              able abortion
                               absent
                                         absurd abundance
                                                             abuse
                                                                      accept
              6.83
                        4.59
                                           4.73
                                                     5.80
     3.49
                                 4.35
                                                              3.69
                                                                        5.41
tail(data corpus inaugural) %>% #Computes the valence of corpus texts
  textstat valence(dictionary = data dictionary ANEW["pleasure"])
         doc id sentiment
       2001-Bush 6.091330
       2005-Bush 6.308839
```

On sentiments

The 8 Plutchik's emotions (1980)

- Anger (ira), fear (miedo),
 Sadness (tristeza), disgust
 (aversión), surprise (sorpresa),
 anticipation (anticipación),
 trust (confianza) and joy
 (alegría).
- 3 intensity levels for each emotion
- Like colors, emotions can be combined
 - E.g.: joy+trust = love
- Advanced systems can measure these emotions and their intensity

Creating dictionaries with quanteda (1/3)

- Quanteda has several functions to
 - creating dictionaries (here a <u>tutorial</u>)
 - Dictionaries can be
 - Created from lists of characters by using dictionary() or as.dictionary()
 - Converted to named lists of characters by using as.list()
 - Checked by using is.dictionary()
 - reading dictionaries
 - Manage several dictionary formats:
 - "wordstat". Used by the software <u>WordStat</u> (Provalis Research)
 - "LIWC". Used by Linguistic Inquiry and by software Word Count
 - "yoshikoder". Used by software <u>Yoshikoder</u>
 - "lexicoder" v2 and v3. Used by <u>Lexicoder</u>
 - "YAML". The standard YAML format

Creating dictionaries with quanteda (2/3)

- In kwic()
 - We can show text windows centered on words from any category of the dictionary

```
head(kwic(tokens(data corpus inaugural),
          pattern=data dictionary LSD2015["neg positive"]
                                 long-lost liberty, it was
                                                                              that the agitation of the
   [1801-Jefferson, 561:562]
                                                             not wonderful
   [1801-Jefferson, 706:707]
                                                                              enough; but would the
                                 , that this Government is
                                                               not strong
   [1805-Jefferson, 772:773]
                                         in any view is it
                                                                              that the opposite bank of
                                                               not better
 [1805-Jefferson, 1591:1592]
                                      unaided by power, is
                                                             not sufficient |
                                                                              for the propagation and protection
 [1805-Jefferson, 2055:2056] human nature that they should
                                                                              and support them. In
                                                              not approve
     [1813-Madison, 176:177] successful termination. May we
                                                                              this sentiment without presumption
                                                              not cherish
head(kwic(tokens(data corpus inaugural),
          pattern=data dictionary LSD2015["neg positive"]
 [1797-Adams, 329:330] to its recommendations, if | not disobedience | to its authority, not
       [1797-Adams, 428:429] the people of America were
                                                                             by their usual good sense
                                                           not abandoned
       [1797-Adams, 675:676]
                                      and theirs, I did
                                                            not hesitate
                                                                             to express my approbation of
    [1797-Adams, 2352:2353]
                                     in early life, and
                                                                             but exalted by experience and
                                                            not obscured
 [1805-Jefferson, 2092:2093]
                                  interest; and we need
                                                                             that truth, reason,
                                                             not doubt
     [1809-Madison, 336:337] time been distressing us is
                                                           not chargeable
                                                                             on any unwarrantable views,
```

Creating dictionaries with quanteda (3/3)

- In tokens_lookup()
 - We can replace tokens by their category in the dictionary

```
dict4 <- dictionary(list(paper = "New York Times", city = "New York"))</pre>
toks4 <- tokens("The New York Times is a New York paper.")
tokens lookup(toks4, dict4, nested scope = "key", exclusive = FALSE)
Tokens consisting of 1 document.
text1:
[1] "The"
           "PAPER" "CITY" "is" "a" "CITY" "paper" "."
tokens lookup(toks4, dict4, nested scope = "dictionary", exclusive = FALSE)
Tokens consisting of 1 document.
text1:
           "PAPER" "is"
                               "CITY" "paper" "."
[1] "The"
tokens lookup(tokens(data corpus inaugural), dictionary = data dictionary LSD2015) %>%
     dfm() %>% head()
Document-feature matrix of: 59 documents, 4 features (19.07% sparse) and 4 docvars.
                 features
docs
                  negative positive neg_positive neg_negative
  1789-Washington
                        43
                                 122
  1793-Washington
                                 10
 1797-Adams
                                 239
  1801-Jefferson
                        70
                                 177
  1805-Jefferson
                                 164
  1809-Madison
                                 138
```

Dictionaries available in quanteda

- Dictionaries included in package quanteda.sentiment
 - None in Spanish

Name	Description	Polarity	Valence
data_dictionary_AFINN	Nielsen's (2011) 'new ANEW' valenced word list		✓
data_dictionary_ANEW	Affective Norms for English Words (ANEW)		✓
data_dictionary_geninqposneg	Augmented General Inquirer <i>Positiv</i> and <i>Negativ</i> dictionary	✓	
data_dictionary_HuLiu	Positive and negative words from Hu and Liu (2004)	✓	
data_dictionary_LoughranMcDonald	Loughran and McDonald Sentiment Word Lists	✓	
data_dictionary_LSD2015	Lexicoder Sentiment Dictionary (2015)	✓	
data_dictionary_NRC	NRC Word-Emotion Association Lexicon	✓	
data_dictionary_Rauh	Rauh's German Political Sentiment Dictionary	✓	
data_dictionary_sentiws	SentimentWortschatz (SentiWS)	✓	✓

Usage examples

Creating dictionaries

• For **Spanish**:

- Polarity
 - Cruz, F. L. *et al.* (2014). Building layered, multilingual sentiment lexicons at synset and lemma levels. Expert Systems with Applications, 41(13), 5984-5994.
 - Dataset <u>ML-SentiCon</u> (en XML)
- Valence
 - Hinojosa, J. A. et al. (2016). Affective norms of 875 Spanish words for five discrete emotional categories and two emotional dimensions. Behavior research methods, 48(1), 272-284.
 - Dataset (Excel spreadsheet)
 - » Descriptive statistics for valence, arousal (and concreteness), as well as for each of five discrete emotions (happiness, anger, sadness, fear, disgust).

Download files sentim_es.rds and polar_es.rds from https://tinyurl.com/MRADSNLP

Other dictionaries

- Dictionaries included in the syuzhet package
 - Has 4 sentiment lexicons
 - AFINN (by Nielsen F. A. in the AFINN WORD DATABASE)
 - BING (Minqing H. and Bing L. in the OPINION LEXICON)
 - NRC (Saif M. and Turney P. D. in the NRC EMOTION LEXICON)
 - 8 emotions and 2 sentiments
 - Support for several languages(Spanish among them)
 - Computes the "emotional entropy" to detect contradictory text sections (that can produce surprise).
 - Dividing of texts and analysis of each piece.

Advanced systems

- They use machine learning (and, probably, deep learning)
 - The order of words is very important (bag of words)
 - "The hotel was very good and not expensive"
 - "The hotel was very expensive and not good"
- Can detect several sentiments (not only binaries)
 - Example: detection of sadness, joy, anger, surprise, disgust, fear and "others".

Embeddings

- We show that converting words into vectors we can get clusters
- The TF-IDF matrices also allow you filtering
 - Example of filtering TF-IDF matrices (with quanteda)
- Projections from nD to 2D or 3D
 - Tensoflow embedding projector
 - Projections to 2D or 3D
 - Neighbors of a word
 - In the original space
 - In the projected space

Questions?

Course: Intelligent Systems

Unit 4: Language Technologies

Language technologies Part 2

Mariano Rico 2022 Technical University of Madrid

