Stars trapped at bar resonances

Master's Student at Observatory of Paris (PSL)

LIU at GEPI, Observatory of Paris

Adrian Szpilfidel, supervised by Paola Di Matteo

Academic Year 2024/2025

Stars trapped at bar resonances, long term evolution Table of contents

► Scientific context

▶ Method

- ► Results
- **▶** Conclusion

► Scientific context

▶ Method

▶ Results

Conclusion

Stellar bars in disk galaxies

1 Scientific context

- Barred galaxies : $\sim 70\%$ of disk galaxies
- Mostly made by stars
- Rotates at a certain velocity : the pattern speed $\boldsymbol{\Omega}_p$

NGC 1300. Credits: HST

The orbital resonances

1 Scientific context

Corotation

$$\Omega - \Omega_{\rm p} = 0^*$$

The star is rotating at the same speed as the bar.

 $^*\Omega$ (azimuthal frequency)

Inner Lindblad

$$\Omega - \Omega_{\rm p} = \frac{\kappa}{2}^*$$

One anticlockwise rotation, two radial oscillations.

 $^*\kappa$ (radial frequency)

Outer Lindblad

$$\Omega - \Omega_{\rm p} = -\frac{\kappa}{2}$$

One clockwise rotation, two radial oscillations.

- Scientific context
- ► Method

► Results

Conclusion

2 Method

I. Generate initial conditions using AGAMA (E.Vasiliev, 2018)

- 1. Define the galactic potential (Thin disk + Thick disk + Dark matter halo)
- 2. Generate disk particles

2 Method

I. Generate initial conditions using AGAMA (E.Vasiliev, 2018)

- 1. Define the galactic potential (Thin disk + Thick disk + Dark matter halo)
- 2. Generate disk particles

II. Define the bar potential

- Long-Murali potential (Long & Murali, 1992)
- Corotation radius : 6 kpc
- Pattern speed : $\Omega_{\rm p}=31.85$ km/s/kpc

2 Method

I. Generate initial conditions using AGAMA (E.Vasiliev, 2018)

- 1. Define the galactic potential (Thin disk + Thick disk + Dark matter halo)
- 2. Generate disk particles

II. Define the bar potential

- Long-Murali potential (Long & Murali, 1992)
- Corotation radius : 6 kpc
- Pattern speed : $\Omega_{\rm p}=31.85$ km/s/kpc

III. Integration over a large timescale (5 Gyr)

• Tstrippy code (S.Ferrone and al. 2023)

2 Method

I. Generate initial conditions using AGAMA (E.Vasiliev, 2018)

- 1. Define the galactic potential (Thin disk + Thick disk + Dark matter halo)
- 2. Generate disk particles

II. Define the bar potential

- Long-Murali potential (Long & Murali, 1992)
- Corotation radius: 6 kpc
- Pattern speed : $\Omega_{\rm p}=31.85$ km/s/kpc

III. Integration over a large timescale (5 Gyr)

• Tstrippy code (S.Ferrone and al. 2023)

IV. Calculation of orbital frequencies

• Compute Fast Fourier Transform on all particles

- Scientific context
- Method
- ► Results

Conclusion

Initial conditions

Initial disks with 2×10^6 particles

Bar formation

Integration of 80×10^3 particles

Resonances

Resonances

- Scientific contex
- ▶ Method

- ► Results
- **▶** Conclusion

- This numerical simulation has shown presence of orbital resonances due to the bar
- New use of the tstrippy code
- Improvement: Noise in the resonance histogram affects the resonance selection
- Perspectives: make the bar grow progressively, modify the bar features (mass and pattern speed) during the integration

Thank you for listening!
Any questions?