

Graph Convolutional Networks

Mì Al

What's up?

- + What is a Graph?
- + NetworkX package in Python
- + Graph Neural Network (GNN)
- + Graph Convolution Network (GCN)
- + Handson

What's Graph?

A Graph is the type of data structure that contains nodes and edges. A node can be a person, place, or thing, and the edges define the relationship between nodes. The edges can be directed and undirected based on directional dependencies.

What's Graph?

- + Nodes can be:
- + Edges can be:

NetworkX

NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

https://networkx.org/

GNN

Graph Neural Networks (GNNs) is a type of deep learning approach that performs inference on graph-described data.

GNN

The main goal of GNN is for each of the nodes to learn an embedding containing information about its surroundings. This process of embedding can be used for many applications like node labeling, node prediction, edge prediction, etc.

Thus, once we've assigned embeddings to each node, we may transform edges by adding feed-forward neural network layers and merge graphs with neural networks.

GNN

Graph Convolutional Network

Graph Auto-Encoder Network

- Graph Classification
- Node Classification
- Link Prediction ←
- Graph Clustering: Clustering node or clustering graphs
- Graph visualization

"To-buy-together" Recommendations

Human-object interaction

Need to define a loss function on the embeddings, $\mathcal{L}(z_u)!$

AN INFORMATION EXTRACTION PIPELINE

$$RD_{L} = (Right(Word_{Left}) - Left(Word_{Source})) / \underline{Width_{Page}}$$

$$RD_{T} = (Bottom(Word_{Top}) - Top(Word_{Source})) / \underline{Height_{Page}}$$

$$RD_{R} = (Left(Word_{Right}) - Right(Word_{Source})) / Width_{Page}$$

$$RD_{B} = (Top(Word_{Bottom}) - Bottom(Word_{Source})) / Height_{Page}$$

Handson

- Planetoid dataset/ https://graphsandnetworks.com/the-cora-dataset/

The citation network datasets "Cora", "CiteSeer" and "PubMed" from the "Revisiting Semi-Supervised Learning with Graph Embeddings" paper.

The Cora dataset consists of 2708 scientific publications classified into one of seven classes. The citation network consists of 5429 links. Each publication in the dataset is described by a 0/1-valued word vector indicating the absence/presence of the corresponding word from the dictionary. The dictionary consists of 1433 unique words.

Handson

	TARGET	SOURCE	LABEL
3581	72908	93923	cites
5303	656231	103531	cites
2005	14531	592830	cites
987	4330	37884	cites
1695	10183	1120713	cites

	W_0	W_1	W_2	W_3	W_4	W_5	W_6	W_7	W_8	W_9	•••	W_1424	W_1425	W_1426
31336	0	0	0	0	0	0	0	0	0	0		0	0	1
1061127	0	0	0	0	0	0	0	0	0	0	***	0	1	0
1106406	0	0	0	0	0	0	0	0	0	0		0	0	0
13195	0	0	0	0	0	0	0	0	0	0		0	0	0
37879	0	0	0	0	0	0	0	0	0	0		0	0	0

```
set(node_data["subject"])
{'Case_Based',
  'Genetic_Algorithms',
  'Neural_Networks',
  'Probabilistic_Methods',
  'Reinforcement_Learning',
  'Rule_Learning',
  'Theory'}
```

Handson

Node Classification with GNN

We will create a GCN model structure that contains two **GCNConv** layers **relu** activation and a **dropout** rate of 0.5. The model consists of 16 hidden channels.