

MATSim User Meeting 2023
Simulation-based investigation of transport policies - a case study in Gladbeck

Gregor Rybczak | Chair of Transport Systems Planning and Transport Telematics | Zürich

Project: Glamobi

- Car centric city, located in the Ruhr region
- Ambitious project goal:
 - Offer an inclusive mobility system
 - Reduce CO₂ emissions by 2030 by 68 % [1]
 - Reduction of motorized transport

Scenario

- Cut out of the <u>matsim-metropole-ruhr</u> scenario
 - Detailed Cycling
 - Parking cost and parameterized parking search traffic
 - · Income dependent scoring
- Total 151.305 agents
- Calibrated ASCs to match the modal split [2] but currently recalibrating

- Modeling policy cases:
 - Free public transport
 - Introducing a city-wide speed limit of 30 km/h
 - Cycling courses for refugees
 - Improvements to the cycling infrastructure
 - Temporary closing of streets in front of schools
 - Climate Coin

Speed Limit

- Multiply free speed by 0.6 on every link within Gladbeck (not motorways)
- Fewer car trips but rise in CO₂ emissions
- Average and total car trip distance increased;
- Average car speed reduced by a factor of 0.22 inside the city

Free Public Transport

- Setting the cost of the public transport to zero
- More trips with public transport but at the cost of walk and bike
- Especially more short trips with public transport
- Agents with a lower income tend to use the public transport

0.00 100.00 200.00

- Utilizing network change events to set capacity and free speed close to zero
- Congestion on one alternative link

Cycling improvements

- Surface improvements → all surfaces are modelled as asphalt:
 - Only small changes as most links are already asphalt
- Faster cyclists → Doubling cycling speeds to 25 km/h in Gladbeck:
 - Biggest increase in cycling at the cost of walk and public transport

Cycling improvements

- Bicycle ctreets → residential streets are closed for car traffic:
 - Agents still using the transport mode car must walk to the nearest car link
- Cycle paths → every link in Gladbeck receives a separate cycling path

Climate Coin

Collect Climate Coins

Use bicycle, e-bike, scooter

Ride bus and train

 Agents receive a monetary reward for cycling, walking and using public transport

 Reward is calculated using the travelled distance per mode

[3]

These are the CO2 savings that are stored in our Climate Coin app:

Running = 176 g/km CO2 saving Cycling = 176 g/km CO2 saving Public transport = 76 g/km CO2 saving Long-distance trains = 95 g/km CO2 saving

[4]

Table 1: Modal Shift all figures in [%]

policy	CO_2	NO_x	PM
free public transport	-2,5	-2,4	-2,3
closed school streets	-1,7	-1,7	-1,6
cycling streets	-12,5	-13,1	-12,9
cycle paths	-0,2	-0,4	-0,3
climate coin 1EUR	-1,2	-1,2	-1,2
climate coin 5EUR	-10,2	-10,2	-10,0
climate coin 10EUR	-24,3	-24,2	-24,0
faster cyclist	-4,8	-4,8	-4,6
speed limit	3,5	1,6	2,4
smooth surface	-0,7	-1,0	-1,0

Table 2: Changes in air pollution all figures in [%]

- No policy alone is sufficient
- Combining them to a strategy
- To what extent can electric vehicles help to achieve the goals Gladbeck set?
- Modeling of the remaining policy cases

Discussion

- Difficult to implement anything in reality
- Cycling courses for refuges → no effect
- Bursche Straße one new cycling path → very negative poll results
- Free public transport ticket → fewer trips with public transport

[5]

Future challenges

[6]

Thank you!

Any questions?

- [1] Gertec GmbH Ingenieurgesellschaft. (2022, January). Stadt Gladbeck Fortschreibung des Kli-maschutzkonzeptes (Tech. Rep.). Gertec GmbH Ingenieurgesellschaft and Stadt Gladbeck. (Retrieved from https://www.gladbeck.de/Leben_Wohnen/Klima_in_Gladbeck/Fortschreibung)
- [2] infas, DLR, & IVT. (2019). Mobilit\u00e4ti in Deutschland 2017 Ergebnisbericht (Tech. Rep.).
 Retrieved

```
from: http://www.mobilitaet-in-
deutschland.de/pdf/MiD2017_Ergebnisbericht.pdf
```


- [3] changers (2023, September). Save CO2 Earn Climate Coins. (Retrieved from https://klima-taler.com)
- [4] changers (2023, September). How do CO2 savings become climate coins? (Retrieved from: https://klima-taler.com/co2-savings-become-climate-coins/)
- [5] nexus Institut (2023, September). GlaMoBi Gladbecker Mobilität für Alle.

 Innerstädtische und interkommunale Neuorientierung urbaner Personenverkehre. (Retrieved from: https://www.zukunft-nachhaltige-mobilitaet.de/gladbecker-mobilitaet-fuer-alle-glamobi-innerstaedtische-und-interkommunale-neuorientierung-urbaner-personen-und-lieferverkehre/)
- [6] BUND Region Hannover. Die "Wander"-Bäume ziehen los! (Retrieved
 from: https://bund-regionhannover.de/service/meldungen/detail/news/die-wander-baeume-ziehenlos/)

