Giorgos ('Yorgos') Mamakoukas

giorgosmamakoukas@u.northwestern.edu • (847) 868 - 2198 • gmamakoukas.com

SUMMARY

Mechanical Engineering/Robotics Ph.D. researcher, specializing in algorithm development, optimization methods, real-time nonlinear control, system modeling, dynamics, machine learning, and numerical methods. Extensive research, teaching, and leadership experience with a rigorous mathematical background, first-author publications in top-tier peer-reviewed journals and conferences in robotics and control and hands-on experiments with robotic fish. Enthusiastic team player with an interest in the nexus of science, research, and management/business.

Keywords: nonlinear optimization and control, machine learning, algorithm development, numerical methods

SKILLS AND INTERESTS

Programming Languages: MATLAB, Python, C, C++, Mathematica, LaTeX

Software and Toolbox: Git, Simulink, Onshape

Languages: Greek (native), English (fluent), German (advanced)

Interests: Team sports (former soccer varsity athlete), Hiking, Mentoring, Chess

EDUCATION

Northwestern University, The Graduate School, Evanston, IL

Ph.D. in Mechanical Engineering | GPA: 3.93/4.0

Expected June 2020

Master of Science in Mechanical Engineering | GPA: 3.93/4.0

July 2017

Honors/Awards: Brady Scholars, Graduate Leadership and Service, Walter P. Murphy Fellowship

Northwestern University Kellogg School of Management, Evanston, IL

Certificate in Management for Scientists and Engineers, Kellogg School of Management

Aug 2018

Grinnell College, Grinnell, IA

Bachelor of Arts in Physics (Honors) | GPA: 3.97/4.0

May 2014

Honors/Awards: H. George Apostle Prize in Physics, Phi Beta Kappa Academic Award, George White Academic Scholarship

RESEARCH EXPERIENCE

Graduate Research Assistant, Interactive & Emergent Autonomy Lab, Northwestern University

Sept 2014 - Present

Machine Learning Algorithms for Prediction and Control (2 Publications)

- Created algorithm to ensure optimal and stable data-driven system identification and improve long-horizon accuracy
- Implemented and improved real-time data-driven control of robotic systems in simulation and experiments
- Developed novel simulations to assess the effectiveness and accuracy of predicting models

Data-Driven Control of Robotic Fish (3 Publications)

- Created technique to quantify and bound the model accuracy of data-driven models using Python & MATLAB
- Cleaned and analyzed data and performed error analysis to assess and improve model performance
- Employed algorithms on robotic fish for experimental tracking in disturbance using C++
- Led collaboration with Michigan State University to on-site troubleshoot and consult their experiments with robotic fish

Real-Time Optimal Control of Nonlinear Systems (7 Publications)

- Investigated and advanced nonlinear optimization and control algorithms
- Developed feedback algorithms using C++ software for guaranteed collision-free locomotion of robots

Independent Research on Magnetic Levitation, California Institute of Technology, CA

June - Aug 2013

- Selected for competitive and prestigious program for magnetic isolation of gravitational wave detectors from seismic noise
- Reduced experimental setup phase from 10 weeks to 13 days by re-planning and prioritizing
- Created the solution that realized a seismic isolation technique for detecting gravitational waves

Independent Research on Alloy Crystallography, Grinnell College, IA

June - July 2012

Pioneered experimentation with new \$220k X-ray diffractometer to discover new crystals

• Discovered new crystals and analyzed their atomic structure

SELECTED LEADERSHIP AND SERVICE EXPERIENCE

Brady Scholar Fellow, Northwestern University

June 2016 - June 2019

- Led sixteen Northwestern students to secure funding and perform energy audits for affordable housing
- Managed three grants (\$2k), training of 21 participants, and completion of 5 energy audits in Evanston apartments
- Conducted weekly meetings, coordinated tasks, and evaluated their progress

Presenter at Museum of Science and Industry Annual Robot Block Party

Apr 2015 - Apr 2019

Presented and communicated complex robotics research projects to hundreds of adults and children

President of Mechanical Engineering Graduate Student Society, Northwestern University

Sept 2016 - Feb 2018

- Expanded the program by creating new positions and establishing annual social and career development events
- Streamlined communication and outreach processes by creating a website and a contact e-mail address

Supervisor of Teaching Assistants, Grinnell College

Aug 2013 - May 2014

- Promoted to an inaugural role to assess and guide all 10+ science TAs to improve teaching and communication skills
- Oversaw and filmed TAs for 5 hours/week during their teaching and advised them on their strengths and weaknesses

SELECTED MENTORSHIP AND TEACHING EXPERIENCE

Robotics Teaching Assistant, Northwestern University

Sept 2016 - Dec 2016

• Received 97.8% positive evaluation from 73 students

Physics and Math Mentor, Grinnell College

Aug 2011 - May 2014

Identified and bridged knowledge gaps and motivated students both in 25+ student classes and in 1-on-1 tutoring

Modern Greek Instructor, Grinnell College

Aug 2011 – May 2012

- Collaborated with another student to design curriculum and teach a new credit-bearing college course
- Participated in seminars on effective communication styles and teaching methods

SELECTED PUBLICATIONS (5 of 12)

- **G. Mamakoukas,** M. Castano, X. Tan and T. D. Murphey, 'Online data-driven control of robotic systems using derivative-based Koopman operators', in *Transactions on Robotics*. Submitted 2020.
- **G. Mamakoukas**, M. Castano, X. Tan and T. D. Murphey, '<u>Local Koopman operators for data-driven control of robotic systems</u>', in *Robotics: Science and Systems*, 2019.
- **G. Mamakoukas**, M. A. MacIver, and T. D. Murphey, 'Feedback synthesis for underactuated systems using sequential second-order needle variations', in *International Journal of Robotics Research*, 2018. [Invited as best conference paper]
- **G. Mamakoukas,** M. A. MacIver, and T. D. Murphey, 'Superlinear convergence using controls based on second-order needle variations', in *Conference on Decision and Control*, 2018.
- **G. Mamakoukas**, M. A. MacIver, and T. D. Murphey, 'Feedback synthesis for controllable underactuated systems using sequential second-order actions', in *Robotics: Science and Systems*, 2017.