Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

@ URL	<u>Delving Deep into Rectifiers.pdf</u>
ः Status	Done

1. Introduction

- ReLU를 parametric하게 만들어서 사용
- ReLU에 맞는 weight 초기화 방법을 사용
- ImageNet으로 실험 진행

2. Parametric Rectifiers

- 기존 ReLU는 0으로 가기 때문에 dying ReLU, 가중치가 없는 문제
- PReLU는 0이 음수일 때 av 값을 사용해서 성능을 더 좋게 만든 방법

• Generic form of Rectifier Linear Function:

$$f(y_i) = \begin{cases} y_i, & \text{if } y_i > 0 \\ a_i y_i, & \text{if } y_i \le 0 \end{cases}.$$

- ReLU: $a_i = 0$, $f(x_i) = max(0, x_i)$
- ullet PReLU: when a_i is a learnable parameter, $f(x_i) = max(0,x_i) + a_i max(0,x_i)$ ightarrow 음수 부분에 학습 가능한 a_i
- ullet LReLU(Leaky ReLU): $a_i=0.01, f(x_i)=max(0,x_i)+0.01max(0,x_i)$

Optimization

 PReLU can be trained using backpropagation and optimized simultaneously with other layers.

$$\frac{\partial \mathcal{E}}{\partial a_i} = \sum_{y_i} \frac{\partial \mathcal{E}}{\partial f(y_i)} \frac{\partial f(y_i)}{\partial a_i}$$

• The gradient of the activation is given by:

$$\frac{\partial f(y_i)}{\partial a_i} = \begin{cases} 0, & \text{if } y_i > 0 \\ y_i, & \text{if } y_i \leq 0 \end{cases}$$

• Momentum method when updating a_i

$$\Delta a_i := \mu \Delta a_i + \epsilon \frac{\partial \mathcal{E}}{\partial a_i}$$

3. Initialization of Filter Weights for Rectifiers

Weight initialization

• Zero or same value

- It sends out the same output value of all neurons.
- At the backward propagation stage, each neuron has the same gradient value.
- If the weights are the same, they work as if they were one regardless of the number of neurons.

• Small random values

- If the initial value of the weights is large, gradient vanishing occurs because it converges to 0 and 1.
- If ReLU is large, dead ReLU problem occurs when negative.
- Therefore, the initial value of the weights must be initialized small to be random without having the same initial value.
- Typically, we randomly initialize to a value that follows a normal distribution with an average initial value of 0, standard deviation of 0.01.
- In shallow neural networks, there is no problem, but the deeper the problem becomes.
- If the right plot randomly initializes to a normal distribution with an average of 0, standard deviation of 1, and tanh is used as an activation function, the gradient vanishing problem occurs as the output is concentrated to -1 and 1.
- In conclusion, methods to initialize with small random numbers can also be said to be unsuitable in DNNs.

Xavier Normal Initialization

$$W \sim N(0, Var(W))$$
, $Var(W) = \sqrt{\frac{2}{n_{input} + n_{output}}}$

Xavier Uniform Initialization

$$W \sim U = (\sqrt{\frac{6}{n_{input} + n_{output}}}, + \sqrt{\frac{6}{n_{input} + n_{output}}})$$

- "Understanding the difficulty of training deep feedforward neural networks"
- With fixed standard deviations (e.g., 0.01), very deep models (e.g., >8 conv layers) have difficulties to converge, as reported by the VGG team and also observed in our experiments.
- Its derivation is based on the assumption that the activations are linear. This assumption is invalid for ReLU and PReLU.

Forward Propagation

$$y_{l} = W_{l}x_{l} + b_{l}$$

$$x_{l} = f(y_{l-1})$$

$$Y = W_{1}x_{1} + W_{2}x_{2} + \dots + W_{n}x_{n}$$

 x_l : mutually independent, same distribution x_l , W_l : independent n: size of layer $E[w_l] = 0$

$$Goal: Var[y_l] = n_l Var[w_l x_l]$$

$$Var[w_{l}x_{l}] = E[w_{l}^{2}]E[x_{l}^{2}] - [E[x_{l}]]^{2}[E[w_{l}]]^{2}$$

$$Var[w_{l}x_{l}] = E[w_{l}^{2}]E[x_{l}^{2}] \quad 0$$

$$Var[w_{l}] = E[w_{l}^{2}] - [E[w_{l}]]^{2}$$

$$Var[w_{l}] = E[w_{l}^{2}]$$

$$Var[w_{l}x_{l}] = E[w_{l}^{2}]$$

$$Var[w_{l}x_{l}] = E[w_{l}^{2}]E[x_{l}^{2}] = Var[w_{l}]E[x_{l}^{2}]$$

$$Goal: Var[y_l] = n_l Var[w_l x_l] = n_l Var[w_l] E[x_l^2]$$

$$Goal: Var[y_l] = n_l Var[w_l x_l] = n_l Var[w_l] E[x_l^2]$$

 $w_{l-1} = symmetric\ distribution\ around\ zero\ and\ b_{l-1} = 0$ $y_{l-1} = zero\ mean\ and\ symmetric\ distribution\ around\ zero$

$$E(x_{l}^{2}) = \frac{1}{\sigma_{y_{l-1}\sqrt{2\pi}}} \int_{0}^{\infty} x^{2} e^{\frac{x^{2}}{2\sigma_{y_{l-1}}^{2}}} dx$$

$$= \left(\frac{1}{2}\right) \frac{1}{\sigma_{y_{l-1}\sqrt{2\pi}}} \int_{-\infty}^{\infty} x^{2} e^{\frac{x^{2}}{2\sigma_{y_{l-1}}^{2}}} dx$$

$$= \frac{\sigma_{y_{l-1}}^{2}}{2} = \frac{1}{2} Var(y_{l-1})$$

$$Goal: Var[y_l] = n_l Var[w_l] E\left[x_l^2\right] = \frac{1}{2} n_l Var[w_l] Var[y_{l-1}]$$

Backward Propagation

$$\begin{split} &\Delta x_{l} = \widehat{W}_{l} \Delta y_{l} \\ &\Delta y_{l} = f'(y_{l}) \ \Delta x_{l+1} \\ &x_{l}, \ \Delta y_{l} : independent \\ &\Delta x_{l} : zero \ mean \ for \ all \ l \\ &f'(y_{l}) : For \ the \ ReLU \ case, zero \ or \ one \ and \ their \ probabilities \ are \ equal \\ &f'(y_{l}), \ \Delta x_{l+1} : independent \ of \ each \ other \\ &Goal : Var \Delta x_{l} = \widehat{n}_{l} Var[x_{l}] Var[\Delta y_{l}] \\ &E[\Delta y_{l}] = E[f'(y_{l}) \Delta x_{l+1}] = E[f'(y_{l})] E[\Delta x_{l+1}] \\ &= \frac{1}{2} E[\Delta x_{l+1}] = 0 \\ &Var(w_{l} \cdot \Delta y_{l}) = [E(w_{l})]^{2} Var(\Delta y_{l}) + [E(\Delta y_{l})]^{2} Var(w_{l}) + Var(w_{l}) Var(\Delta y_{l}) \\ &Var[\Delta y_{l}] = Var[f'(y_{l}) \ \Delta x_{l+1}] = E[(f'(y_{l}))^{2}] E[(\Delta x_{l+1})^{2}] - [E[f'(y_{l})]]^{2} [E[\Delta x_{l+1}]]^{2} = E\left[\left(f'(y_{l})\right)^{2}\right] E[(\Delta x_{l+1})^{2}] - 0 \end{split}$$

$$\begin{split} &Goal: Var[\Delta x_{l}] = \hat{n}_{l}Var[x_{l}]Var[\Delta y_{l}] \\ &Var(\Delta y_{l}) = \frac{1}{2}E[(\Delta x_{l+1})^{2}] = Var[x_{l+1}] \end{split}$$

$$\begin{aligned} & \textit{Goal:} Var \Delta x_l = \frac{1}{2} \hat{n}_l Var[x_l] Var[x_{l+1}] \\ & \frac{1}{2} \hat{n}_l Var[x_l] = 1, \forall l. \end{aligned}$$

Normal Initialization (backward)

$$W \sim N(0, \sqrt{\frac{2}{n_t}})$$
 and $b = 0$

Normal Initialization (forward)

$$W \sim N(0, \sqrt{\frac{2}{n_t}})$$
 and $b = 0$

Figure 2. The convergence of a **22-layer** large model (B in Table 3). The x-axis is the number of training epochs. The y-axis is the top-1 error of 3,000 random val samples, evaluated on the center crop. We use ReLU as the activation for both cases. Both our initialization (red) and "Xavier" (blue) [7] lead to convergence, but ours starts reducing error earlier.

Figure 3. The convergence of a **30-layer** small model (see the main text). We use ReLU as the activation for both cases. Our initialization (red) is able to make it converge. But "Xavier" (blue) [7] completely stalls - we also verify that its gradients are all diminishing. It does not converge even given more epochs.

• Relu를 사용할 떄, Xavier보다 더 좋은 성능이 나옴

4. Experiments on ImageNet

- Dataset
 - 100-calss ImageNet 2012 dataset
 - 1.2M training images, 40K validation images, 100K test images

\circ Results measured by top-1/top-5 error rates

	team	top-1	top-5
in competition ILSVRC 14	MSRA [11]	27.86	9.08 [†]
	VGG [25]	-	8.43 [†]
	GoogLeNet [29]	-	7.89
	VGG [25] (arXiv v2)	24.8	7.5
	VGG [25] (arXiv v5)	24.4	7.1
post-competition	Baidu [32]	24.88	7.42
	MSRA (A, ReLU)	24.02	6.51
	MSRA (A, PReLU)	22.97	6.28
	MSRA (B, PReLU)	22.85	6.27
	MSRA (C, PReLU)	21.59	5.71

Table 6. The single-model results for ImageNet 2012 val set. †: Ev	valuated from the test set.
--	-----------------------------

	team	top-5 (test)
in competition ILSVRC 14	MSRA, SPP-nets [11]	8.06
	VGG [25]	7.32
	GoogLeNet [29]	6.66
post-competition	VGG [25] (arXiv v5)	6.8
	Baidu [32]	5.98
	MSRA, PReLU-nets	4.94

Table 7. The **multi-model** results for the ImageNet 2012 test set.