IIT KANPUR

CS345A - AlgorithmsII

Assignment 5

Anjani Kumar 11101 Sumedh Masulkar 11736

Contents

1	An A	tmospheric Science Experiment: Part-1
	1.1	Instance of max-flow problem corresponding to instance of the given
		problem
	1.2	Theorem
	1.3	Proof
2	An A	tmospheric Science Experiment: Part-2 4
	2.1	Instance of max-flow problem corresponding to instance of the given
		problem
	2.2	Theorem
	2.3	Proof
3	Job S	Scheduling using Max-Flow
	3.1	Problem
	3.2	An Instance of the Max-Flow problem:
	3.3	Theorem
	3.4	Proof

1 An Atmospheric Science Experiment : Part-1

1.1 Instance of max-flow problem corresponding to instance of the given problem

Figure 1: Figure for part-1

A directed graph G = (V, E), where V is the set of vertices, and E is the set of edges of the graph.

- \underline{V} : The set of vertices of the graph contains,
 - A source s.
 - m vertices corresponding to m balloons.
 - n vertices corresponding to n atmospheric conditions.
 - A sink t.
- \underline{E} : The edges in the graph are,
 - $-(s, i), \forall i \in m \text{ vertices}(\text{corresponding to balloons}), s \text{ is the source}, and capacity}(s, i) = 2.$
 - $-(i, j), \forall i \in m \text{ vertices}(\text{corresponding to balloons}) \text{ to } j, \forall j \in S_i. \text{ Here edge capacity for all } (i, j) = 1.$
 - $-(j, t), \forall j \in n \text{ vertices}(\text{corresponding to conditions}), t \text{ is the sink}, and capacity}(j, t) = k.$

1.2 Theorem

There is a way to measure each condition by k different balloons, while each balloon only measures at most two conditions **iff** the value of maximum flow from s to t is nk.

1.3 Proof

• Proof for (=>): If there is a way to measure each condition by k different balloons, while each balloon measures at most two conditions, for given n conditions, the sets S_i for each of the m balloons and k, then the value of maximum flow from s to t in G must be nk.

Proof:

Let A be the set of m vertices corresponding to the balloons and B be the set of n vertices corresponding to the conditions.

Thus,
$$|A| = m$$
, and $|B| = n$.

Let S be a way to measure each condition by k different balloons while each balloon measures at most two conditions. Let S_j be the set of k balloons measuring condition $j \in B$.

Construction of corresponding max-flow:

- For each (j, t), where $j \in B$, assign flow from j to t to k.
- For each (i, j), where $j \in B$, and $i \in S_j$, assign flow from i to j to 1.
- For each (s, i), where $i \in A$, assign flow from s to i to $\sum_{j} flow(i, j)$ where $j \in B$.

Validity of constraints

- Capacity constraints:

- * For each (s, i), where $i \in A$, $flow(s, i) = \sum_{j} flow(i, j) \le 2 = capacity(s, i)$.
- * For each (i, j), if balloon i measures condition j, then flow(s, i) = 1, otherwise 0. Thus, $flow(s, i) \leq capacity(i, j)$.
- * For each (j, t), flow(j, t) = k = capacity(j, t).
- * Thus, all capacity constraints are satisfied.

- Conservation constraints:

- * The only intermediate vertices are $A \cup B$.
- * For each vertex i in A, $f_{in}(i) = f_{out}(i) = \sum_{j} flow(i, j)$ where $j \in B$.
- * For each vertex j in B, $f_{in}(j) = k$, since k balloons measure condition j. Also, $f_{out}(j) = k$.

* Thus, $f_{in}(j) - f_{out}(j) = 0 \ \forall \ u \in V - \{s, t\}.$

We know that value of max flow in $G \leq nk$, since |B| = n, and $f_{out}(j)$ for each $j \in B = k$.

Also, as per flows constructed above, value of flow = nk(Thus, it is the max-flow possible).

• Proof for (<=): If the value of maximum flow from s to t in G is nk, then there exists a way to measure each condition according to given constraints.

Proof:

- For each (s, i), where $i \in A$, capacity is 2, hence balloon i can measure at most 2 conditions.
- For each (i, j), where $i \in A$, and $j \in B$, capacity is 1, thus ensuring a balloon doesn't measure same condition twice. Since, flow is nk, there will be k i with flow 1 on a given j.
- For each (j, t), where $j \in B$, capacity is k, hence ensuring one condition is measured by at most k balloons.
- Thus, we can see this is a solution of the problem satisfying all constraints.

2 An Atmospheric Science Experiment: Part-2

2.1 Instance of max-flow problem corresponding to instance of the given problem

A directed graph G = (V, E), where V is the set of vertices, and E is the set of edges of the graph.

- \underline{V} : The set of vertices of the graph contains,
 - A source s.
 - 3 set of vertices, A1, A2, A3 corresponding to balloons from three contractors such that |A1| + |A2| + |A3| = m.
 - 3 set of n vertices, B1, B2, B3 corresponding to conditions for different contractors.
 - -n vertices corresponding to each condition(set C).
 - A sink t.
- \underline{E} : The edges in the graph are,
 - $-(s, i), \forall i \in A1, A2, A3$ (corresponding to balloons), s is the source, and capacity (s, i) = 2.

Figure 2: Figure for part-2

- $-(i, j), \forall i \in A1 \text{ to } j \in B1, \forall i \in A2 \text{ to } j \in B2, \forall i \in A3 \text{ to } j \in B3.$ Here all edges have capacity 1.
- -(j, l), i^{th} vertex of each $B_x(x=1,2,3)$ maps to i^{th} vertex of C, with capacity of each edge k-1.
- $-(l, t), \forall l \in C, t \text{ is the sink, and capacity}(l, t) = k.$

2.2 Theorem

There is a way to measure each condition by k different balloons, while each balloon only measures at most two conditions and no condition exists such that all k measurements come from balloons produced by a single contractor **iff** the value of maximum flow from s to t is nk.

2.3 Proof

• Proof for (=>): If there is a way to measure each condition by k different balloons, while each balloon measures at most two conditions and no condition exists such that all k measurements come from balloons produced by a single contractor, for given n conditions, the sets S_i for each of the m balloons and k, then the value of maximum flow from s to t in G must be nk.

Proof:

Let S be a way to measure each condition by k different balloons while each balloon measures at most two conditions and no condition exists such that all k measurements come from balloons produced by a single contractor. Let S_l be the set of k balloons measuring condition $l \in C$.

Construction of corresponding max-flow:

- For each (l, t), where $l \in C$, assign flow from l to t to k.
- For each (i, j), where $j \in B_x$, where $(1 \le x \le 3)$, and $i \in S_l$, assign flow from i to j to 1. To the remaining $i \in B1 \cup B2 \cup B3$, assign flow from i as 0.
- For each (s, i), where $i \in A_x$, assign flow from s to i to $\sum_j flow(i, j)$ where $j \in B_x$ and $1 \le x \le 3$.
- For each (j, l), where $j \in B_x$ and $1 \le x \le 3$ and $l \in C$, assign flow from j to l to $\sum_{i} flow(i, j)$ where $i \in A_x$.

Validity of constraints

- Capacity constraints:

- * For each (s, i), where $i \in A$, $flow(s, i) = \sum_{j} flow(i, j) \le 2 = capacity(s, i)$.
- * For each (i, j), if balloon i measures condition j, then flow(s, i) = 1, otherwise 0. Thus, $flow(s, i) \leq capacity(i, j)$.
- * For each (j, l), where $l \in C$, flow $\leq k-1 = \text{capacity of the edge}$.
- * For each (l, t), flow(l, t) = k = capacity(l, t).
- * Thus, all capacity constraints are satisfied.

- Conservation constraints:

- * The only intermediate vertices are $A_x \cup B_x \cup C$ and $1 \le x \le 3$.
- * For each vertex i in A_x , $f_{in}(i) = f_{out}(i) = \sum_j flow(i, j)$ where $j \in B_x$.
- * For each vertex j in B_x , $f_{in}(j) = \sum_i flow(i, j)$ where i in A_x .
- * For each $l \in C$, $f_{out}(l) = k$, and $f_{out}(l) = sum_j flow(i, j) k$, since S is a solution.
- * Thus, $f_{in}(j) f_{out}(j) = 0 \ \forall \ u \in V \{s, t\}.$

We know that value of max flow in $G \leq nk$, since |C| = n, and $f_{out}(l)$ for each $l \in C = k$.

Also, as per flows constructed above, value of flow = nk(Thus, it is the max-flow possible).

• Proof for (<=): If the value of maximum flow from s to t in G is nk, then there exists a way to measure each condition according to given constraints.

Proof:

- For each (s, i), where $i \in A_x$, capacity is 2, hence balloon i can measure at most 2 conditions.
- For each (i, j), where $i \in A_x$, and $j \in B_x$, capacity is 1, thus ensuring a balloon doesn't measure same condition twice.
- For each (j, l), capacity of the edge is k 1, ensuring all k balloons are not from the same contractor.
- For each (l, t), where $l \in C$, capacity is k, hence ensuring one condition is measured by at most k balloons.
- Thus, we can see this is a solution of the problem satisfying all constraints.

3 Job Scheduling using Max-Flow

3.1 Problem

Each job j has an arrival time a_j when it is first available for processing, a length l_j which indicates how much processing time it needs and a deadline d_j by which it must be finished. $(0 \le j \le d_j - a_j)$. Each job can be run on any of the processors, but only on one at a time; it can also be preempted and resumed from where it left off (possibly after a delay). Moreover, the collection of processors is not entirely static either: you have an overall pool of k possible processors; but for each processor i there is an interval of time $[t_i, t'_i]$ during which it is available; it is unavailable at all other times. Given all this data about job requirement and processor availability, we have to decide whether the jobs can all be completed or not.

3.2 An Instance of the Max-Flow problem:

Figure 3: A graph representing the Max-Flow diagram of the instance.

Salient features of the graph:

- l_i is the length of the i^{th} job.
- i_j is the length of the j^{th} interval.
- n_j is the number of processors active during the j^{th} interval.

Figure 4: Distribution of Intervals: An Interval timeline

Salient Points for creating intervals

• Plot the times $a_j, d_j \, \forall \text{ job } j \text{ and } t_i, t'_i \, \forall \text{ processor } i \text{ on a horizontal axis.}$

Validity of the interval set

The proposed interval distribution is valid because a job can be preempted only in the following 3 cases:

- A new job is to be processed.
- Deadline of the on-going job has been reached.
- The current job has been completed.
- A processor has completed its tenure or a new one enters for scheduling.

Since the distribution is done keeping the above cases in mind, the proposed distribution scheme is valid.

Construction of the Network Flow graph:

- insert a start point s, all the n jobs, all the intervals i and an end point t.
- Create an edge from s to job j_i with capacity $l_i \forall$ jobs in the job set.
- Create an edge from each job j in the job set to each interval set node i whose interval lies within a_i and d_i ; with the capacities being the length(i_i) of the intervals.
- Create an edge from interval set node i to end point $f \forall$ intervals; with capacity of edge being $i_i * n_i$. where i_i = length of interval i and n_i = number of processor active during the i^{th} interval.

3.3 Theorem

All the jobs can be scheduled before their deadline, if and only if \exists a maximum flow from s to t of value $\sum_{i=1}^{n} l_i$ where n = total number of jobs.

3.4 Proof

• Forward: If the jobs can be scheduled before their deadline, then \exists a **maximum** flow from s to t of value $\sum_{i=1}^{n} l_i$ where n = total number of jobs. Let Sched(j) denote the schedule for the j^{th} job.

Assigning the values of flow:

- For each edge (u, v) between the job set and the interval set, where $u \in \text{job}$ set and $v \in \text{set}$ of intervals present in Sched(u); flow f(u, v) = amount of time alloted to u in interval v. Set f(u, v) to 0 for other edges.
- For each edge (s, u) from the start point s to nodes of job set, flow $f(s, u) = l_u$; where l_u is the length for the job node u.
- For each edge (v,t) between interval set and the end point t, flow $f(v,t) = \sum_{u} f(u,v)$.

Satisfaction of Conservation constraint:

- For each node $u \in \text{job set}$, input flow $f_{in} = l_u$; output flow $f_{out} = \sum_v f(u, v) = l_u$ (since every job u must be processed for l_u time in the scheduler according to the given constraints.)

 Hence, $f_{out} f_{in} = 0$.
- For each node $v \in \text{interval set}$, output flow $f_{out} = \sum_{u} f(u, v) = f_{in}$ (trivial). Hence, $f_{out} - f_{in} = 0$.

Satisfaction of Capacity constraint:

- For each edge (s, u) from the start point s to nodes of job set, $capacity(s, u) = f(s, u) = l_u$; where l_u is the length for the job node u.
- For each edge (u, v) between the job set and the interval set, where $u \in \text{job}$ set and $v \in \text{interval}$ set; flow f(u, v) = amount of time allotted to u in interval v. Capacity(u, v) = length of interval v which is obviously greater than f(u, v).
- For each edge (v,t) between interval set and the end point t, flow $f(v,t) = \sum_{u} f(u,v)$, and $capacity(v,t) = i_v * n_v$. where i_v = length of interval v and n_v = number of processor active during the v^{th} interval.

Since the Schedule is valid therefore, $f(v,t) \leq capacity(v,t)$. Hence the capacity constraint is satisfied for all the edges.

Let the flow in the network be
$$f.$$
 $f leq \sum_{u} capacity(s, u)$
 $\sum_{u} capacity(s, u) = \sum_{i=1}^{n} l_{i}$
 $\rightarrow f leq \sum_{i=1}^{n} l_{i}$
 $f(s, u) = l_{u} \rightarrow f = \sum_{i=1}^{n} l_{i}$
where $n = \text{total number of jobs.}$

Hence f is a max flow in the given network.

• Backward: If \exists a **maximum flow** from s to t of value $\sum_{i=1}^{n} l_i$ where n = total number of jobs, then the jobs can be scheduled before their deadline. Let $f = \sum_{i=1}^{n} l_i$ where n = total number of jobs; be the maximum flow. Construction of a Schedule from Max-Flow f:

- Integrality theorem states that f will be integral.

- Processing time:

 $\sum_{u} f(s, u) = \sum_{i=1}^{n} l_i$ and $f = \sum_{i=1}^{n} l_i$ where n = total number of jobs, therefore each job u gets a processing time of l_u as given by the scheduling constraint.

- Meeting the deadline:

Each node u in the job set has edge only to those nodes v in the interval set which lie between u's arrival and deadline. Therefore, all the jobs will be scheduled after their arrival and before their deadline.

Availability of Processors:

 $capacity(v,t) = i_v * n_v$. where $i_v = \text{length of interval } v$ and $n_v = \text{number of processor}$ active during the v^{th} interval. The n_v part in the capacity lets only the active processors schedule the jobs.

- concurrency control:

Every edge between a job and an interval is assigned the capacity of the length of that interval. Therefore, assigning a job to multiple processors simultaneously is forbidden in case of max flow of f.

- Building the schedule Sched(u):

For each edge (u, v) between the job set and the interval set, where $u \in \text{job}$ set and $v \in \text{interval set}$; if f(u, v) = 0, we add that interval v and the processor in Sched(u) giving us a valid scheduler satisfying all the given constraints.