Foundations of 3D Scene Modeling

Recap

Cornerstones of image generation:

- 3D scene
- Rendering algorithm
- Raster image

< IMAGE: high-level overview of three main components>

Where we are today

< IMAGE: tree-like structured knowledge of the course>

Introduction

Elements of any 3D scene:

- 3D model(s)
- Light source(s)
- Camera(s)

< IMAGE: high-level overview of three main components>

Complex example

< IMAGE: An motivation image that we will understand by the end of the lecture.>

Foundations of 3D models

Objects around us.

Representing 3D models requires:

- Representation of **shape** surface geometry
- Representation of material surface appearance

Foundations of shape representation

Foundational shape representations are:

- Meshes
- Curved surfaces

Foundations of Meshes

- Pros:
 - Simple, a lot of effort has been made to represent various shapes with meshes
- Cons:
 - Not every object is well suited to mesh representation:
 - Shapes that have geometrical detail at every level (e.g., fractured marble)
 - Some objects have structure which is unsuitable for mesh representation, e.g., hair which has more compact representations
- Common types:
 - Triangle mesh
 - Quad mesh

Triangle mesh introduction

- Triangle mesh is foundational and most widely used data-structure for representation of a shape in graphics
- Triangle mesh consists of many triangles joined along their edges to form a surface
- Triangle is fundamental and simple primitive:
 - All vertices lie in the same plane
- Triangle mesh has nice properties:
 - Uniformity: simple operations
 - Subdivision: single triangle is replaced with several smaller triangles. Used for smoothing
 - Simplification: replacing the mesh with the simpler one which has the similar shape (topological or geometrical). Used for level of detail

Example how certain flat shapes are created with triangles

Example how certain curved shapes are approximated with triangles

- Conceptual approximation: find points on complex shape and connect adjacent points with a mesh structure
 - For example: scanning and reconstruction
- Example: sphere vs icosahedron
 - Each point on icosahedron is close to point of sphere
 - Each normal vector of icosahedron is close to vector normal of the sphere in the same point. But, function that assigns normals to the sphere is continuous while for icosahedron is piecewise constant → this influences reflection of light!

Common basic shapes

- Now we can understand how to represent basic shapes using triangle meshes
- Every DCC Tool provides basic shapes:
 - Blender¹, Maya², 3DSMax³, Houdini⁴, etc.

2.

https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Maya-Basics/files/GUID-45D2EAD4-5BCF-42DA-A1AB-EC6EE09FE705-htm.html

3.

https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/3DSMax-Modeling/files/GUID-66152BDE-BA64-423F-8472-C1F0EB409E16-htm.html

4. https://www.sidefx.com/docs/houdini/model/create.html

^{1.} https://docs.blender.org/manual/en/latest/modeling/meshes/primitives.html

Complex shapes?

- How to represent complex shapes with triangle meshes?
- Digression: drawing complex form (3D shape)
 - Anything can be decomposed in simple forms^{1,2}:
 box, sphere, cylinder, torus, cones, etc.

^{1.} http://www.thedrawingwebsite.com/2015/02/18/practicing-your-draw-fu-forms-forms-are-like-sentences/

Complex shapes

https://www.youtube.com/watch?v=Q0qKO2JYR3Y &ab_channel=BlenderSecrets

Modeling of complex shapes in DCC Tools

- Choose right basic shape: https://www.youtube.com/watch?v=DcyY4RAHcA4&ab_channel=CGCookie
- Modeling with basic shapes (Blender):
 - https://www.youtube.com/watch?v=AD3gn2AyzgA&ab channel=LeeDanielsART
 - Procedural (and funny one): https://www.youtube.com/watch?v=Hf8s1Ckycdo&ab_channel=CGMatter
- Modeling with basic shapes (Maya)
 - https://www.youtube.com/watch?v=j3jwVfN8EcU&ab_channel=AnetaV
- Procedural shapes (Houdini):
 - https://www.youtube.com/watch?v=afHVjiNeH7A&ab_channel=AdrienLambert
 - https://www.youtube.com/watch?v=fxOxygaEOFk&ab_channel=SimonHoudini
 - Note that other geometry representation are used as well

Basic description of meshes

Description of mesh requires:

- List of vertices and triangles (edges are inferred from triangles)
 - Vertex table geometry
 - Triangle (faces) table topology


```
# www.blender.org
o Cube Cube.002
  -1.000000 -1.000000 1.000000
  -1.000000 1.000000 1.000000
  -1.000000 -1.000000 -1.000000
 1.000000 -1.000000 1.000000
v 1.000000 1.000000 1.000000
v 1.000000 -1.000000 -1.000000
v 1.000000 1.000000 -1.000000
vt 0.625000 0.000000
vt 0.375000 0.250000
vt 0.375000 0.000000
vt 0.625000 0.250000
vt 0.375000 0.500000
vt 0.625000 0.500000
vt 0.375000 0.750000
vt 0.625000 0.750000
vt 0.375000 1.000000
vt 0.125000 0.750000
vt 0.125000 0.500000
vt 0.875000 0.500000
vt 0.625000 1.000000
vt 0.875000 0.750000
vn -1.0000 0.0000 0.0000
vn 0.0000 0.0000 -1.0000
vn 1.0000 0.0000 0.0000
vn 0.0000 0.0000 1.0000
vn 0.0000 -1.0000 0.0000
vn 0.0000 1.0000 0.0000
s off
f 2/1/1 3/2/1 1/3/1
f 4/4/2 7/5/2 3/2/2
f 8/6/3 5/7/3 7/5/3
f 6/8/4 1/9/4 5/7/4
f 7/5/5 1/10/5 3/11/5
f 4/12/6 6/8/6 8/6/6
f 2/1/1 4/4/1 3/2/1
f 4/4/2 8/6/2 7/5/2
f 8/6/3 6/8/3 5/7/3
f 6/8/4 2/13/4 1/9/4
f 7/5/5 5/7/5 1/10/5
f 4/12/6 2/14/6 6/8/6
```

Blender v2.92.0 OBJ File:

Storing and transferring mesh

- Mesh datastructure can be stored in various formats which:
 - Are more or less compact
 - Are more or less human-readable
 - Can contain additional object data which is described with the mesh (textures, materials, etc.)
 - Can contain various metadata (e.g., physical behavior of object described with mesh)
 - Store only mesh information
 - Store whole scene and mesh is only one of elements
- Popular formats:
 - https://all3dp.com/2/most-common-3d-file-formats-model/
 - https://www.sidefx.com/docs/houdini/io/formats/geometry_formats.html
- 3D scene is not necessary created, rendered and used in same software. Usually, whole pipeline of software is used, at least:
 - DCC → game engines

Important properties of meshes

- Goal: not to go deep into definitions but rather to verify properties using simpler methods
- Mesh boundary: formal sum of vertices
- Closed mesh: mesh boundary is zero. Required for defining what is "inside" and "outside" by winding number rule
- Manifold mesh: each vertex has arriving and leaving edge
 - Manifolds are desired since it is easy to work with them (both manually and algorithmically)
 - Smooth vs not smooth manifolds (e.g., cube)
 - Self-intersecting meshes are not manifolds
 - In graphics we generally use polyhedral manifolds
- Oriented vs unoriented meshes
 - We use oriented meshes so that boundary can be defined

Quad mesh

- Often used as a modeling primitive
- Complexity:
 - Easy to create a quad where not all vertices lie on a plane
- In graphics pipeline it is always transformed to triangle.
- In raytracing rendering plane-ray intersection must be defined

Foundations of Curved surfaces

Foundations of surface material

Foundations of Light sources

- Sources of Light
- Models of light:
 - Distant lights
 - Point lights

Distant lights

Point lights

Foundations of camera

How camera works

Pinhole camera model and parameters

Cameras introduction

- In rendering camera model is required to, at least, define a portion of visible scene and perspective/orthographic projection.
- Now, we will understand how cameras work and how to simulate a real world camera.
 - Such camera model is similar to ones used in production software (e.g., Blender, Maya, 3DSMax, Houdini)
- Simulating real world camera is important for photo-realistic rendering which may be combined with live action footage. Also, camera effects enable certain expressive and artistic possibilities.

Camera model

- Image generation with real world camera is governed by optical laws → very costly to simulate
- Thus, we start with simplest camera model: pinhole camera
 - Much easier way to reproduce images, therefore used in most 3D applications and games
- Pinhole camera can be realized in a real world: small box with hole on one side and photographic film on opposite side.

< IMAGE OF PINHOLE CAMERA AND ITS RESULT>

- To simulate creation of image in a camera depends on:
 - Light traveling in space and its interaction with objects (matter) → determined by law of optics
 - Light which is entering the camera
- Once light enters camera, two main processes are important:
 - How image is stored on film → can be simulated (e.g., https://maxwellrender.com/) but out of scope
 - How image is formed in the camera

Image forming basics

<IMAGE OF BASIC PRINCIPLE OF IMAGE CREATION>

- Light rays from the world pass through the small hole and form an (inverted) image on plane (film) opposite to the hole.
 - Camera obscura is real-world realization of the described process without film

Pinhole Camera

- Real world realization: lightproof box with very small hole aperture, and light-sensitive film on the opposite side.
 - To take an image, open aperture to expose the film to light
 - Aperture is small so that only one ray reflected from the world in point P enters the camera and intersects film in one point each point in the visible portion of the scene corresponds to a single point on the film (note that in real world such hole must be very small)
 - Geometrically, pinhole is called center of projection all rays entering the camera converging at this point and diverging on the other size

< IMAGE OF PINHOLE CAMERA and its result>

Pinhole camera: aperture size

- Formed image is sharp if each point of the object maps to the one point of the film
- Ideal pinhole: aperture is so small that only one ray passes through it
 - Not possible in a real world because of diffraction
- It is never a single ray that passes the aperture the cone of rays (its angle) is determined by a size of aperture. Smaller cone → sharper image

<IMAGES COMPARING LARGE AND SMALL APERTURE SIZE (blur, circle of confusion)>

Pinhole camera: exposure

- If aperture is very small, longer time is needed for image to form on a film.
- Time of which the aperture is open is called exposure time (or just exposure)
 - In real cameras, longer exposure can produce blurred image if camera or objects in the scene are moving
 - Simulated camera do not have problem with this since simulated light transport is considered instant, therefore, simulation of motion blur requires additional simulation
- Therefore, generally, shorter exposure time is better

< IMAGE OF MOTION BLUR>

Pinhole camera vs lens camera

- Since very small aperture requires long exposure times to form an image, it is not possible to obtain sharp images easily (e.g., if camera or objects are not perfectly still)
- Large aperture is again not a solution since blurred images will always be formed
- Solution is to use lens in front of aperture so that rays entering camera are gathered (converged) and focused them to one point on a film plane
- With lenses, aperture can be larger enabling smaller exposure time with sharp images as result

<IMAGE OF LENS CAMERA>

• Introduction of lenses also introduces the depth of field — distance between nearest and the farthest object from the scene that appears sharp in the formed image

<DEPTH OF FIELD IMAGE>

- Pinhole cameras have infinite depth of field
 - Therefore, computer generated images will be sharp. Additional simulation is needed to produce depth of field.

Pinhole camera parameters

 Now when we understand the elements of pinhole camera, we will discuss parameters controlling those elements

Pinhole camera parameters: Focal length

- Moving image plane (film plane) closer to aperture effectively performs zoom out
- Moving film plane away from aperture effectively performs zooming in
- Therefore, distance of film plane from aperture defines amount of scene that we see
- This parameter is called focal length or focal distance

< IMAGE OF PINHOLE CAMERA WITH VARYING FOCAL DISTANCE AND RESULT>

Pinhole camera parameters: angle of view

- Zooming in and zooming out described by Focal length (focal distance) can be also described by angle of the apex of triangle defined with aperture and film edges
- This angle is called angle of view or field of view
- In 3D, this triangle is actually a pyramid and we distinguish horizontal and vertical FOV

< IMAGE OF PINHOLE CAMERA WITH VARYING FOV AND RESULTING IMAGES>

Observation - Pinhole camera: alternative representation

- Triangle introduced in FOV defines how much of the scene is visible
- This triangle can also be viewed as continuation of lines from film edges to aperture and to a scene
- This representation of pinhole camera model is used for simulation

< IMAGE COMPARING TWO REPRESENTATIONS OF PINHOLE CAMERA>

Pinhole camera parameters: film size

- Amount of scene that is captured also depends on film size (image sensor)
 - Film parameters are horizontal and vertical direction
- Smaller surface of film size implies smaller angle of view
- Larger film formats were developed for more details and better image quality
- Capturing the same extent of the scene with larger film requires adjusting focal length

< IMAGE SHOWING DIFFERENT FILM SIZES>

Pinhole camera parameters: quick recap

- Focal length (focal distance)
- Angle of view (field of view)
- Film size
- All three parameters are interconnected, knowing two we can infer the third.
- Angle of view is parameter we usually need for rendering and expose focal length and film size to the user

Pinhole camera parameters: image resolution and aspect ratio

- As discussed, size of film (image sensor) has an effect on angle of view
- Number of pixels (resolution of image) placed on image sensor doesn't have influence on angle of view
- Image quality depends both on image sensor size and number of pixels on it (resolution)
 - Higher resolution images will have more details
- Resolution is determined by width and height which defines number of pixels
- Image aspect ratio can be computed using width and height of resolution, e.g., 4:3, 5:3, 16:9

Transformations of 3D scene elements

Translation

Rotation

Scale

Coordinate systems

Coming together

A 3D scene completed

Back to the complex example

What have we learned

Literature

- Computer graphics: Principles and practice (J.F.Hughes)
- https://github.com/lorentzo/IntroductionToComputerGraphics/wiki/Foundations-of-3D-scene-modeling