STM32F4xx cihazlarında 12-bit, 10-bit, 8-bit veya 6-bit çözünürlüğe ayarlanabilen 12-bit başarımsal yaklaşımlı (succesive approximation) ADC bulunmaktadır.

Analog aralık: 0 - 3.3 V

Çözünürlük: 3.3/4096=0.81mV

1/20

Analog Dijital Çevirici ADC

ADC Channel	ADC1	ADC2	ADC3
ADC channel 0	PA0	PA0	PA0
ADC channel 1	PA1	PA1	PA1
ADC channel 2	PA2	PA2	PA2
ADC channel 3	PA3	PA3	PA3
ADC channel 4	PA4	PA4	
ADC channel 5	PA5	PA5	
ADC channel 6	PA6	PA6	
ADC channel 7	PA7	PA7	
ADC channel 8	PB0	PB0	
ADC channel 9	PB1	PB1	
ADC channel 10	PCO	PCO	PC0
ADC channel 11	PC1	PC1	PC1
ADC channel 12	PC2	PC2	PC2
ADC channel 13	PC3	PC3	PC3
ADC channel 14	PC4	PC4	
ADC channel 15	PC5	PC5	

STM32F407 işlemcisinde 3 tane ADC bulunmaktadır.

- 19 tane veri seçiciye (multiplexer) bağlanmış kanal; 16 harici, 2 dahili kaynak ve 1 Vbat kanalından sinyal ölçmeye izin vermektedir.
- A/D çevrimi tek, sürekli, tarama veya süreksiz modlarda yapılabilir.
- ADC çevrim sonucu elde edilen değer 16 bit yazmaçta sol veya sağ hizalı olarak saklanabilir.

3/20

Analog Dijital Çevirici ADC

- ADC_CR2 yazmacının ADON bitiyle ADC'ye enerji verilir.
- Çevrim SWSTART bitinin set edilmesiyle başlatılır.
- ADON biti 0 yapılarak ADC'nin enerjisi kesilir.
- Analog işlemler için ADCCLK sinyali, APB2 çevriminden elde edilir.
- On ölçekleyici ile bu sinyal 2, 4, 6 veya 8'e bölünür.
- A/D çevrimi sonucu elde edilen dijtal verilere ulaşmak için APB2 çevrimi kullanılır.
- RCC_APB2ENR ile bu çevre birimdeki çevrim sinyali etkinleştirilir.

Analog Dijital Çevirici ADC

- Sürekli Çevim Modu: ADC bu modda bir önceki çevrim biter bitmez yeni çevrime başlar.
- Bu mod harici bir tetikleme ile CONT biti 1 yapılarak veya ADC_CR2 yazmacındaki SWSTRT biti set edilerek başlatılır.

Her çevrimden sonra

- Çevrilen veri 16 bit yazmaçta saklanır.
- EOC bayrağı set edilir.
- Eğer EOCIE biti set edilmişse bir kesme üretilir.

Zamanlama:

Figure 45. Timing diagram

Çevrime başlamadan önce t_{TSAB} kadar stabil hale gelmesi için zaman gereklidir. ADC çevrimi ve 15 çevrim sonunda EOC bayrağı set ediir.

Analog Dijital Çevirici ADC

Diğer Özellikler:

- Analog watchdog: Voltajın belirli bir seviyenin üstüne çıkması veya altında kalması durumunda AWD durum biti set edilir.
- Tarama modu: Birden fazla pinden analog değer okunacaksa belirlenen sırayla bu pinlerden okuma gerçekleştirilir.
- Enjekte kanal: Enjekte tetiği oluşursa mevcut okuma resetlenir, enjekte okuma tek tarama modunda yapılır ve düzenli okuma kaldığı çevrimin başından yerden devam eder.
- Devamsız mod: Çok fazla sayıda olmayan ardışık çeviriye ihtiyaç var ise bu mod kullanılabilir.

Veri hizalama:

- ADC_CR2 yazmacındaki ALIGN biti verinin sağ veya sola yaslanmasını ayarlar.
- Çevrilen veri bir ofset değeri tarafından azaltılabilir. Bundan dolayı sonuç negatif olabilir.
- Eğer sonuç sağa yaslanmışsa sol taraftaki bitler işaret biti ile doldurulur.
- Sola yaslanmışsa en solda işaret biti ve sonra 12 bit ADC verisi olur.

9/20

Analog Dijital Çevirici ADC

Örnekleme Zamanı:

- ADC değiştirilebilen sayıda ADCCLK çevriminde analog değeri örnekleyebilir.
- ADC_SMPR1 ve ADC_SMPR2 yazmaçlarındaki SMP[2:0] bitleri ile örnekleme zamanı değiştirilebilir.
- Toplam çevrim zamanı= Örnekleme zamanı + 12 çevrim
- Örneğin ADCCLK 30 MHz ve örnekleme zamanı 3 olarak ayarlanmışsa 60 MHz APB2 hızında 3+12=15 çevrim $=0.5~\mu \text{sn'de}$ çevrim tamamlanır.

Çevrim harici bir tetikleme ile de başlatılabilir. Örneğin TIMER veya EXTI kesmeleri ile çevirici tetiklenebilir.

10/20

Örnekleme Zamanı:

- ADC çözünürlüğü düşürülerek çevrim süresi kısaltılabilir.
- 12 bit: 3+12=15 ADCCLK çevrimi
- 10 bit: 3+10=13 ADCCLK çevrimi
- 8 bit: 3+8=11 ADCCLK çevrimi
- 6 bit: 3+6=9 ADCCLK çevrimi

Direct Memory Access: A/D sonucu elde edilen veri işlemciye gönderilmeden DMA ünitesi ile doğrudan bellekteki hedef adresine taşınabilir.

Multi ADC: STM32F4 kartında 3 tane ADC işlemi aynı anda yapılabilir.

11/20

Analog Dijital Çevirici ADC

Sıcaklık Sensörü:

- STM32F40x cihazlarında ADC1_IN16 kanalına bağlı dahili sıcaklık sensörü bulunmaktadır.
- Sıcaklık sensörü -40 ile 125 °C arasında ± 1.5 °C hassasiyetle sıcaklı ölçümü yapabilir.

ADC status register (ADC_SR)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Boo	oniod					OVR	STRT	JSTRT	JEOC	EOC	AWD
				Res	erved					rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bit 1 EOC: Regular channel end of conversion

This bit is set by hardware at the end of the conversion of a regular group of channels. It is cleared by software or by reading the ADC_DR register.

- 0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1)
- 1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1)

13/20

Analog Dijital Çevirici ADC

ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Pasan	od		OVRIE	RE	S	AWDEN	JAWDEN			Rese	nvod		
	Reserved				rw	rw	rw	rw	rw			Kese	iveu		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
С	ISCNUM	[2:0]	JDISCE N	DISC EN	JAUTO	AWDSG L	SCAN	JEOCIE	AWDIE	EOCIE	AWDCH[4:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 25:24 RES[1:0]: Resolution

These bits are written by software to select the resolution of the conversion.

00: 12-bit (15 ADCCLK cycles) 01: 10-bit (13 ADCCLK cycles) 10: 8-bit (11 ADCCLK cycles) 11: 6-bit (9 ADCCLK cycles)

ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Pasan	ad		OVRIE	RE	S	AWDEN	JAWDEN			Rese	nvod		
	Reserved					rw	rw	rw	rw			Rese	rveu		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIS	CNUM[2:0]	JDISCE N	DISC EN	JAUTO	AWDSG L	SCAN	JEOCIE	AWDIE	EOCIE	AWDCH[4:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit 8 SCAN: Scan mode

This bit is set and cleared by software to enable/disable the Scan mode. In Scan mode, the inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted.

0: Scan mode disabled

1: Scan mode enabled

Note: An EOC interrupt is generated if the EOCIE bit is set:

- At the end of each regular group sequence if the EOCS bit is cleared to 0
- At the end of each regular channel conversion if the EOCS bit is set to 1

15/20

ADC control register 2 (ADC_CR2) $tal\ \c evirici\ ADC$

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
reserved	SWST ART	EX	TEN		EXTS	EL[3:0]		reserved	JSWST ART	JEXT	EN		JEXTS	EL[3:0]	
	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	rocor	vod		ALIGN	EOCS	DDS	DMA			Reserv	und.			CONT	ADON
reserved rw rw rw rw				rw]		Reserv	reu			rw	rw			

Bit 11 ALIGN: Data alignment

This bit is set and cleared by software. Refer to Figure 48 and Figure 49.

0: Right alignment

1: Left alignment

Bit 1 CONT: Continuous conversion

This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared.

0: Single conversion mode

1: Continuous conversion mode

Bit 0 ADON: A/D Converter ON / OFF

This bit is set and cleared by software.

Note: 0: Disable ADC conversion and go to power down mode

1: Enable ADC

16/20

ADC sample time register 1 (ADC_SMPR1)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Р	eserved			5	SMP18[2:	0]	S	MP17[2:0	0]	s	MP16[2:0)]	SMP1	5[2:1]
	, ,	eserveu			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP15_0	SMP15_0 SMP14[2:0]			s	SMP13[2:	0]	S	MP12[2:0	0]	s	MP11[2:0)]	S	MP10[2:0	0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 26:0 SMPx[2:0]: Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel. During sampling cycles, the channel selection bits must remain unchanged.

Note: 000: 3 cycles

001: 15 cycles 010: 28 cycles 011: 56 cycles 100: 84 cycles 101: 112 cycles 110: 144 cycles 111: 480 cycles

17/20

Analog Dijital Çevirici ADC

ADC regular sequence register 1 (ADC_SQR1)

Address offset: 0x2C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Pos	erved					L[3	3:0]			SQ1	6[4:1]	
			Rese	aiveu				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ16_0		SQ15[4:0]]				SQ13[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw				rw	rw	rw	rw	rw

L[3:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular channel conversion sequence.

0000: 1 conversion 0001: 2 conversions

...

1111: 16 conversions

SQ16[4:0]: 16th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 16th in the conversion sequence.

ADC regular data register (ADC_DR)

Address offset: 0x4C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DAT	A[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:0 DATA[15:0]: Regular data

These bits are read-only. They contain the conversion result from the regular channels. The data are left- or right-aligned as shown in *Figure 48* and *Figure 49*.

19/20

Analog Dijital Çevirici ADC

ADC common control register (ADC_CCR)

Address offset: 0x04 (this offset address is relative to ADC1 base address + 0x300)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Pas	erved				TSVREFE	VBATE		Rese	nyod		ADO	CPRE
			1,63	BIVEU				rw	rw		Rese	nveu		rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DMA	\[1:0]	DDS	Res.		DELA	AY[3:0]			eserved				MULTI[4:	0]	
rw	rw	rw	Res.	rw	rw	rw	rw		eserveu		rw	rw	rw	rw	rw

Bits 17:16 ADCPRE: ADC prescaler

Set and cleared by software to select the frequency of the clock to the ADC. The clock is common for all the ADCs.

Note: 00: PCLK2 divided by 2

01: PCLK2 divided by 4 10: PCLK2 divided by 6 11: PCLK2 divided by 8