Survival _II

Kelvin Nyongesa

2023-06-08

```
# Load the survival package
library(survival)
# Filter the dataset to include only observed events
kidney_observed <- kidney[kidney$status == 1, ]</pre>
# Create a survival object with the observed times
surv_obj <- Surv(kidney_observed$time)</pre>
# Fit the Kaplan-Meier estimator
km_fit <- survfit(surv_obj ~ 1)</pre>
# Access the estimated survival probabilities at each observed time point
km_survival <- km_fit$surv</pre>
# Print the estimated survival probabilities
library(knitr)
km_table<-summary(km_fit)</pre>
km_table
## Call: survfit(formula = surv_obj ~ 1)
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
             58
                           0.9828 0.0171
                                                 0.94982
                                                                 1.000
       2
                       1
                                                                 1.000
##
       7
             57
                           0.9483 0.0291
                                                 0.89296
##
                       2
                           0.9138 0.0369
       8
             55
                                                 0.84434
                                                                 0.989
##
       9
             53
                           0.8966 0.0400
                                                                 0.978
                       1
                                                 0.82150
##
      12
             52
                       2
                           0.8621 0.0453
                                                 0.77774
                                                                 0.956
##
      13
             50
                       1
                           0.8448 0.0475
                                                 0.75660
                                                                 0.943
##
                       2
      15
             49
                           0.8103 0.0515
                                                 0.71548
                                                                 0.918
##
      16
             47
                       1
                           0.7931 0.0532
                                                 0.69541
                                                                 0.905
##
      17
             46
                           0.7759 0.0548
                                                                 0.891
                       1
                                                 0.67563
##
      22
             45
                       1
                           0.7586 0.0562
                                                 0.65611
                                                                 0.877
##
      23
             44
                       1
                           0.7414 0.0575
                                                 0.63684
                                                                 0.863
##
      24
             43
                       1
                           0.7241 0.0587
                                                 0.61778
                                                                 0.849
      25
##
             42
                       1
                           0.7069 0.0598
                                                 0.59894
                                                                 0.834
##
      26
             41
                           0.6897 0.0607
                                                 0.58030
                                                                 0.820
                       1
      27
##
             40
                       1
                           0.6724 0.0616
                                                 0.56186
                                                                 0.805
##
      28
             39
                           0.6552 0.0624
                       1
                                                 0.54359
                                                                 0.790
##
      30
             38
                           0.5862 0.0647
                                                 0.47222
                                                                 0.728
##
      34
             34
                       1
                           0.5690 0.0650
                                                 0.45478
                                                                 0.712
##
      38
             33
                       1
                           0.5517
                                    0.0653
                                                 0.43750
                                                                 0.696
##
      39
             32
                           0.5345 0.0655
                                                 0.42036
                                                                 0.680
```

```
##
      43
             30
                       1
                           0.5000 0.0657
                                                0.38655
                                                               0.647
      53
                           0.4828 0.0656
                                                               0.630
##
             29
                                                0.36986
##
      58
             28
                           0.4655 0.0655
                                                0.35332
                                                               0.613
                       1
##
      63
             27
                       1
                           0.4483 0.0653
                                                0.33694
                                                               0.596
##
      66
             26
                       1
                           0.4310 0.0650
                                                0.32070
                                                               0.579
##
      78
             25
                       1
                           0.4138 0.0647
                                                0.30462
                                                               0.562
##
      96
             24
                           0.3966 0.0642
                                                               0.545
                       1
                                                0.28868
##
     114
             23
                       1
                           0.3793 0.0637
                                                0.27291
                                                               0.527
##
     119
             22
                           0.3621 0.0631
                                                               0.510
                       1
                                                0.25730
##
     130
             21
                      1
                           0.3448 0.0624
                                                0.24185
                                                               0.492
##
                           0.3276 0.0616
                                                               0.474
     132
             20
                                                0.22657
                       1
##
                           0.3103 0.0607
     141
             19
                      1
                                                0.21146
                                                               0.455
                      2
##
     152
             18
                           0.2759 0.0587
                                                0.18181
                                                               0.419
##
     154
             16
                       1
                           0.2586 0.0575
                                                0.16727
                                                               0.400
##
     156
             15
                       1
                           0.2414 0.0562
                                                0.15295
                                                               0.381
##
     177
             14
                       1
                           0.2241 0.0548
                                                0.13886
                                                               0.362
                           0.2069 0.0532
##
     185
             13
                       1
                                                0.12500
                                                               0.342
##
     190
             12
                           0.1897 0.0515
                                                0.11141
                                                               0.323
                      1
                           0.1724 0.0496
##
     196
             11
                       1
                                                0.09811
                                                               0.303
##
     201
             10
                       1
                           0.1552 0.0475
                                                0.08512
                                                               0.283
##
     245
              9
                      1
                           0.1379 0.0453
                                                0.07248
                                                               0.262
##
                           0.1207 0.0428
                                                               0.242
     292
              8
                                                0.06025
                      1
##
     318
              7
                      1
                           0.1034 0.0400
                                                0.04849
                                                               0.221
##
     333
                           0.0862 0.0369
                                                0.03730
                                                               0.199
              6
                      1
##
     402
              5
                      1
                           0.0690 0.0333
                                                0.02679
                                                               0.178
##
     447
              4
                           0.0517 0.0291
                                                0.01718
                                                               0.156
                      1
##
     511
              3
                      1
                           0.0345 0.0240
                                                0.00883
                                                               0.135
##
              2
                           0.0172 0.0171
                                                0.00247
                                                               0.120
     536
                       1
##
                           0.0000
     562
              1
                       1
                                      NaN
                                                     NA
                                                                  NA
# Assuming you have a survfit object named 'survfit_obj'
summary_obj <- km_table</pre>
# Extract relevant information from the summary object
summary_data <- summary_obj$surv</pre>
lower_ci <- summary_obj$lower</pre>
upper_ci <- summary_obj$upper</pre>
# Create a data frame from the extracted information
summary_df <- data.frame(Survival = summary_data, Lower_CI = lower_ci, Upper_CI = upper_ci)</pre>
# Display the table using kable
kable(summary_df, format = "markdown", digits = 2, caption = "Survival Summary")
```

0.40338

0.663

0.5172 0.0656

##

40

31

Table 1: Survival Summary

Survival	Lower_CI	Upper_CI
0.98	0.95	1.00
0.95	0.89	1.00
0.91	0.84	0.99
0.90	0.82	0.98
0.86	0.78	0.96
0.84	0.76	0.94

Survival	Lower_CI	Upper_CI
0.81	0.72	0.92
0.79	0.70	0.90
0.78	0.68	0.89
0.76	0.66	0.88
0.74	0.64	0.86
0.72	0.62	0.85
0.71	0.60	0.83
0.69	0.58	0.82
0.67	0.56	0.80
0.66	0.54	0.79
0.59	0.47	0.73
0.57	0.45	0.71
0.55	0.44	0.70
0.53	0.42	0.68
0.52	0.40	0.66
0.50	0.39	0.65
0.48	0.37	0.63
0.47	0.35	0.61
0.45	0.34	0.60
0.43	0.32	0.58
0.41	0.30	0.56
0.40	0.29	0.54
0.38	0.27	0.53
0.36	0.26	0.51
0.34	0.24	0.49
0.33	0.23	0.47
0.31	0.21	0.46
0.28	0.18	0.42
0.26	0.17	0.40
0.24	0.15	0.38
0.22	0.14	0.36
0.21	0.13	0.34
0.19	0.11	0.32
0.17	0.10	0.30
0.16	0.09	0.28
0.14	0.07	0.26
0.12	0.06	0.24
0.10	0.05	0.22
0.09	0.04	0.20
0.07	0.03	0.18
0.05	0.02	0.16
0.03	0.01	0.13
0.02	0.00	0.12
0.00	NA	NA

```
# Access the confidence interval values from the data set
ci_lower <- km_fit$lower
ci_upper <- km_fit$upper

# Plot the survival function with 95% point wise confidence intervals
plot(km_fit, xlab = "Time", ylab = "Survival Function", main = "Kaplan-Meir Estimate of the Survival Fulines(km_fit, col = "blue")</pre>
```

Kaplan-Meir Estimate of the Survival Function

Figure 1: KM–Estimate Time

Estimating the Cummulative Hazard using the Nelson Aalen Estimator

```
#Create a survival object using the Surv() function, considering only the observed event times
```

```
kidney_data<-kidney
surv_obj <- Surv(time = kidney_data$time[kidney_data$status == 1], event=kidney_data$status[kidney_data</pre>
```

 $\# {\rm Apply}$ the Nelson-Aalen estimator to estimate the cumulative hazard

```
na_fit <- survfit(surv_obj ~ 1, data = kidney_data, type = "fh")</pre>
```

#Extract the cumulative hazard estimates and the confidence intervals

```
na_cumhaz <- -log(na_fit$surv)
na_lower <- -log(na_fit$lower)
na_upper <- -log(na_fit$upper)
time <- na_fit$time</pre>
```

#Create a data frame with the cumulative hazard estimates and the confidence intervals

```
library(knitr)
df_nelson <- data.frame(time, na_cumhaz, na_lower, na_upper)
na_table<-kable(df_nelson)
na_table</pre>
```

time	na_cumhaz	na_lower	na_upper
2	0.0172414	0.0510339	0.0000000
7	0.0526424	0.1122179	0.0000000
8	0.0893427	0.1676786	0.0110068
9	0.1082106	0.1948367	0.0215846
12	0.1470493	0.2490377	0.0450608
13	0.1670493	0.2763114	0.0577871
15	0.2082908	0.3316012	0.0849803
16	0.2295673	0.3597383	0.0993964
17	0.2513065	0.3882733	0.1143397
22	0.2735287	0.4172539	0.1298035
23	0.2962560	0.4467257	0.1457862
24	0.3195118	0.4767337	0.1622899
25	0.3433213	0.5073226	0.1793200
26	0.3677116	0.5385379	0.1968852
27	0.3927116	0.5704264	0.2149967
28	0.4183526	0.6030366	0.2336686
30	0.5280446	0.7417605	0.3143287
34	0.5574564	0.7788102	0.3361025
38	0.5877594	0.8169428	0.3585760
39	0.6190094	0.8562360	0.3817828
40	0.6512675	0.8967747	0.4057602
43	0.6846008	0.9386522	0.4305494
53	0.7190836	0.9819711	0.4561960
58	0.7547978	1.0268450	0.4827507
63	0.7918349	1.0734004	0.5102693
66	0.8302964	1.1217785	0.5388144
78	0.8702964	1.1721376	0.5684552
96	0.9119631	1.2246567	0.5992694
114	0.9554413	1.2795386	0.6313441
119	1.0008959	1.3370148	0.6647769
130	1.0485149	1.3973512	0.6996787
132	1.0985149	1.4608551	0.7361748
141	1.1511465	1.5278846	0.7744085
152	1.2655256	1.6742800	0.8567712
154	1.3280256	1.7547408	0.9013104
156	1.3946923	1.8409646	0.9484199
177	1.4661208	1.9338369	0.9984048
185	1.5430439	2.0344590	1.0516288
190	1.6263772	2.1442243	1.1085302
196	1.7172863	2.2649297	1.1696430
201	1.8172863	2.3989458	1.2356268
245	1.9283975	2.5494878	1.3073071
292	2.0533975	2.7210620	1.3857329
318	2.1962546	2.9202526	1.4722566
333	2.3629213	3.1572010	1.5686415
402	2.5629213	3.4486631	1.6771794
447	2.8129213	3.8251613	1.8006813
111	2.0120210	5.0201010	1.0000010

time	na_cumhaz	na_lower	na_upper
511	3.1462546	4.3510195	1.9414896
536	3.6462546	5.1992592	2.0932500
562	4.6462546	7.1469109	2.1455983

Plot of the Cumulative Hazard function

```
# Plot the hazard function with 95% confidence intervals
plot(df_nelson$time, df_nelson$na_cumhaz, type = "s", col = "red",
     xlab = "Time", ylab = "Hazard", main = "Nelson-Aalen Estimate of the Cumulative Hazard")
# Add the upper and lower confidence intervals
lines(df_nelson$time, df_nelson$na_lower, type = "s", col = "purple", lty = 2)
lines(df_nelson$time, df_nelson$na_upper, type = "s", col = "green", lty = 2)
# Add a legend
legend("topleft", legend = c("Hazard Function", "Upper","Lower"),
       col = c("red", "purple", "green"), lty = c(1, 2,2), bty = "n")
# Add figure label
mtext("Figure 2: NA Estimator", side = 1, line = 3, at = 0.5, cex = 1.2)
```

Nelson-Aalen Estimate of the Cumulative Hazard

Figure 2: NA Estimator