ro rs	0	0	0
Error Definition			
Comment s			
Time Stamp	2002/02/2 5 11:04	2002/02/2 5 11:04	2002/02/2 5 11:24
DBs	USPA T; US-P GPUB; JPO; JPO; TENT; TBM	USPA US-P GPUB ; JPO; DERW ENT; TDB	USPA T; US-P GPUB; JPO; UPCRW ENT; IBM TDB
Search Text	cerbb2 or c-erbb2 or cerbb-2 or c-erbb-2 or her2 or her-2 or p185 or neu	antibod\$3	1 with 2
Hits	4710	12054	4 8 3
#	L1	L2	. L.3
Type	BRS	BRS	BRS
	П	8	m

H CH	0	0
Error Definition		
Comment		
Time Stamp	2002/02/2 5 11:25	2002/02/2 5 11:26
DBs	USPA T; US-P GPUB; JPO; JPO; DERW ENT; IBM	USPA T; US-P GPUB; JPO; DERW ENT; IBM TDB
Search Text	bispecific or multispecific or bi-specific or multi-specific	3 with 4
Hits	1952	31
#	1 4	1.5
Туре	BRS	BRS
	4	r.

(FILE 'HOME' ENTERED AT 10:53:59 ON 25 FEB 2002)

	FILE 'MEDLINE, EMBASE, BIOSIS, CAPLUS, CANCERLIT, SCISEARCH' ENTERED AT
	10:54:23 ON 25 FEB 2002
L1	33549 S CERBB2 OR C-ERBB2 OR CERBB-2 OR C-ERBB-2 OR HER2 OR HER-2
OR	
L2	2427006 S ANTIBOD###
L3	4126 S L1 (10A)L2
L4	9591 S BISPECIFIC OR MULTISPECIFIC OR BI-SPECIFIC OR MULTI-SPECIFIC
L5	242 S L3 (30A) L4
L6	104 DUP REM L5 (138 DUPLICATES REMOVED)

FILE 'MEDLINE, EMBASE, BIOSIS, CAPLUS, CANCERLIT, SCISEARCH' ENTERED AT

15:45:36 ON 23 FEB 2002 134 S 452F2 OR 741F8 OR 759E3 OR 113F1 OR 454C11

38 DUP REM L1 (96 DUPLICATES REMOVED)

L1

L2

Type L	т #	Hits	Search Text	DBs	Time Stamp	Comment	Error Definition	Er ro rs
BRS 1	L	. 21	452f2 or 741f8 or 759e3 or 113f1 or 454c11	USPA US-P US-P GPUB ; JPO; DERW ENT; IBM	2002/02/2			0

STIC-ILL

From:

Hunt, Jennifer

Sent:

Monday, February 25, 2002 11:44 AM STIC-ILL

To:

Subject:

References for 08/349,489

Please send me the following references ASAP:

Journal of Experimental Medicine 175:217-225 (Jan. 1, 1992)

Int. J. Cancer 50:800-804 (1992)

Int. J. Cancer, Suppl. (1992), 7(Bispecific Antibodies Targeted Cell Cytotoxic.), 42-4

PROC AM ASSOC CANCER RES ANNU MEET. (1992) 33 (0), 344

INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, (1993 Oct-Dec) 8 (4) 233-9

Cancer Immunol. Immunother. (1994), 39(1), 41-8

Proceedings of the American Association for Cancer Research Annual Meeting, (1994) Vol. 35, No. 0, pp. 219

Thanks,

Jennifer Hunt Patent Examiner, Art Unit 1642 CM1-8D06 (mailbox 8E12) (703)308-7548 ·

Development of Humanized Bispecific Antibodies Reactive with Cytotoxic Lymphocytes and Tumor Cells Overexpressing the HER2 Protooncogene

By M. Refaat Shalaby,* H. Michael Shepard,* Len Presta,‡
Maria L. Rodrigues,‡ Peter C. L. Beverley,§ Marc Feldmann,
and Paul Carter‡

From the *Departments of Cell Biology and *Protein Engineering, Genentech, Inc., South San Francisco, California 94080; and Simperial Cancer Research Fund, London, W1P8PT; and The Charing Cross Sunley Research Centre, London, W68LW, United Kingdom

Summary

The HER2 protooncogene encodes a 185-kD transmembrane phosphoglycoprotein, human epidermal growth factor receptor 2 (p185HER2), whose amplified expression on the cell surface can lead to malignant transformation. Overexpression of HER2/p185HER2 is strongly correlated with progression of human ovarian and breast carcinomas. Recent studies have shown that human T cells can be targeted with bispecific antibody to react against human tumor cells in vitro We have developed a bispecific F(ab')2 antibody molecule consisting of a humanized arm with a specificity to p185HER2 linked to another arm derived from a murine anti-CD3 monoclonal antibody that we have cloned from UCHT1 hybridoma. The antigen-binding loops for the anti-CD3 were installed in the context of human variable region framework residues, thus forming a fully humanized BsF(ab')2 fragment. Additional variants were produced by replacement of amino acid residues located in light chain complementarity determining region 2 and heavy chain framework region 3 of the humanized anti-CD3 arm. Flow cytometry analysis showed that the bispecific F(ab')2 molecules can bind specifically to cells overexpressing p185HER2 and to normal human peripheral blood mononuclea: cells bearing the CD3 surface marker. In additional experiments, the presence of bispecific F(ab')2 caused up to fourfold enhancement in the cytotoxic activities of human T cells against tumor cells overexpressing p185HER2 as determined by a SICT . release assay. These bispecific molecules have a potential use as therapeutic agents for the treatment of cancer.

Recent studies have revealed an association between overexpression of the HER2 protooncogene and the progression of breast and ovarian carcinomas accompanied by worsened clinical outcome (1-3). HER2 encodes a transmembrane phosphoglycoprotein receptor tyrosine kinase with an
approximate molecular weight of 185,000 (p185^{HER2}) whose
amplified expression can lead to malignant transformation
as determined in soft agar assays and in nude mice model.
(4, 5). Thus, HER2 may play a crucial role in the tumorigenesis of breast and ovarian carcinomas in humans (2). Of
relevance, cells overexpressing HER2/p185^{HER2} exhibit more
resistance to cytotoxic effects of monocytes and TNF-α, a
cytokine that has direct antitumor activities and is thought
to mediate immune cell killing of tumor cells (5).

Bispecific mAbs (BsmAbs) with dual specificities for tumorassociated antigens on tumor cells and for surface markers 🚜 on immune effector cells have been described (6, 7). These BsmAbs have been shown to be effective in directing and triggering effector cells to kill tumor cell targets (8). One approach to produce BsmAb involves the fusion of two mAbproducing hybridomas to form quadromas that secrete BsmAb in addition to undesirable chain combinations including parental mAbs. Another approach utilizes directed chemical coupling of Pab' fragments from two different mAbs to assemble a BsmAb with the desired specificities (9). Limitations associated with such approaches include the ability of rodent-derived BamAb to elicit immune response in humans. To this end, genetic engineering techniques have been applied to production of less im munogenic "humanized" antibodies (10, 11). Recently, we have described the humanization of murine mAb 4D5 (mumAb4D5), which is directed against the extracellular domain (ECD) of p185HER2. The

...

¹ Albreviations used in this paper: BsmAb, bispecific mAb, FR, framework region; hu, humanized; p185^{HER2}, human epidermal growth factor receptor 2.

humanized (hu) antibody, humAb4D5-8, consists of the antigen-binding hypervariable regions from the murine parent mAb together with human variable region framework residues

and constant domains (12).

In this report, we describe the production of humanized RsF(ab'); with specificities toward the extracellular domain of p185HER2, and the human T cell surface marker CD3. Thus, one arm is humAb4D5-8 and the other a humanized version of murine anti-CD3 mAb, UCHT1. Our approach involved separate Escherichia coli secretion of each Fab' followed by directed chemical coupling reaction in vitro to form the BsF(ab')2 fragment. Data are presented demonstrating the biological properties of these BsF(ab')2 molecules, including the specific binding to cells overexpressing p185HER2 and to normal human T cells; and their ability to trigger the lytic activity of human CTL against breast tumor targets.

Materials and Methods

Cloning of Anti-CD3 Variable Region Genes. The mumAb anti-CD3-producing hybridoma UCHTI (13) was used for extraction of mRNA (14). The genes encoding mumAb anti-CD3 variable domains were isolated by PCR amplification of mRNA as described (15). NH2-terminal sequencing of mumAb anti-CD3 light and heavy chains was used to design the sense strand PCR primers, whereas the antisense PCR primers were based upon consensus sequences of murine FR residues (16) incorporating unique restriction sites for directional cloning shown by underlining and listed after the sequences: V, sense, 5' TTTA ACGCGT ACGCT-GACATCCAGATGACCCAGACCACCTCCTCCCTGTCTGC CTCCCTGGGCGAY3', MluI; V, antisense, 5' TTTGCATGCGT-CTTTGGGGTAGAAGTTGTTCAAGAAGCA 3', SphI; V_H sense, 5' AACGCGTACGCTGARGTSCARCTSCARCARTC 3', Milul and Vn antisense 5' GGCAGAGATCCAGGGGCCCGTGGATA-GACAGATGG 3', Apel; where Y = T or C, R = A or G, and S = C. For each variable domain, the products from two independent PCR reactions were cloned into the pUC119-based phagemid pAK2 (12), and a total of at least five clones was sequenced by the didecay method (17).

Molecular Modeling and Construction of Humanized mAb Anti-CD3 Genes. Humanizacion of mumAb anti-CD3 by installing CDR residues from this murine antibody into the context of consensus human FR sequences was performed as previously described for mumAb4D5-8 (12). Briefly, mumAb anti-CD3 was humanized by judicious recruitment of corresponding CDR residues and a lew FR residues into the humabiD5-8 molecule. Differences between mumAb anti-CD3 and the human consensus FR residues (see Fig. 1) were individually modeled to investigate their possible influence on CDR conformation and/or binding to CD3. Genes encoding humAb anti-CD3 variant 1 V, and V, domains were assembled by gene conversion mutagenesis of corresponding humAb4D5 gene segments cloned in pUC119 (12) using 246-mer and 283-mer presssembled oligonucleotides, respectively. Briefly, sets of four contiguous oligonucleotides were designed to create humAb anti-CD3 V, and V, utilizing codons commonly found in highly expressed E. coli genes (see Fig. 1). These oligonucleotides are 54-85 residues in length, contain 7-17 mismatches to the humAb4D5 templates. and are constrained to have eight or nine perfectly matched residues at each end to promote efficient annealing and ligation of adjacent oligonucleotides. The sets of oligonucleotides were phosphorylated, annealed to corresponding templates, and ligated. Pull-length

oligomers were isolated after electrophoresis on a 6% acrylamide sequencing gel and then used for an efficient mutagenesis procedure (12). Clones precisely encoding mumAb anti-CD3 V_a and V_t (Fig. 1) were identified by nucleotide sequencing (17).

Additional humAb anti-CD3 variants were designed in which one or more minuth anti-CD3 residues were replaced by their human counterparts in order to test their role in at tigen binding. namely V₁₁ K73D and/or V₁ R53S (a single letter code for the original amino acid followed by the residue number according to Kabbat et al. [16] and then the amino acid replacement). The murine V_n residue, K73, is located in a loop that is close to heavy chain CDRs H1 and H2 (Fig. 2), and might be involved in antigen binding. In contrast, our humAbs usually contain an aspartate at this position as they are derived from a consensus sequence of V. group III, which is the most abundant human group in the compilation of Kahat et al. (16). V. residue 53 is an arginize in mumAbantiCD3 that is located towards the COOH terminus of CDR L2 and may be able to reach up and assist in antigen binding waile also interacting with the phenyl ring of V. Y50 (see Fig. 2). In our humAbs, this residue is normally a serine derived from a consensus sequence of V. k subgroup I, which is the most abundant human light chain subgroup (16). These additional variants were generated by an efficient site-directed mutagenesis method (18) using the oligonucléotides:

V. R53\$ 5' CTATACCTCCAGCCTCGAGTCTAGGAG 3' X b o 1

and the second of the second o

V_R K73D 5' AAGCGTAGATGACTCCAAAAACACAGCCTACCTGCAAAT GAATTCTCTGCGTGCTG 3' E c o R I

where an asterisk indicates a mismatch and unique restriction sites introduced are underlined.

Fab. Fragment Expression for hum Ab4D5-8 and Anti-CD3 mAb variants. We previously described the vector, pAK19, for the cosecretion of humAb4D5 light chain and heavy chain Fd' fragments from E. coli (19), which is available upo equest to the authors. Briefly, the Fab expression unit is dicistroric with both chains under the transcriptional control of the phoA promoter (20), ands with the bacteriophage A 6 transcriptional terminator (21) and is cloned between the EcoRI and HindIII .. ite of pBR322 (22). The humanized V, and V, domains (12) are precisely fused on their 5' ends to a gene segment encoding the heat-stable enterotoxin II signal sequence (23) and on their 3' side to human x1 (C1) (24) and IgC1 (Ca1) (25), followed by the hinge sequence CvsAlaAla (19) constant domains, respectively. Chimeric and humanized versions of mumAb anti-CD3 Fab were constructed by precisely replacing gene segments encoding humAb4D5-8: Vi and Va in pAK19 with appropriate genes encoding mAb anti-CD3 V. and V_n variants by subcloning (26) and site-directed mutagenesis as described (12). Fab' fragments were expressed in a phage-resistantderivative of E coli strain RV308 (27) at high cell density in the fermentor as previously described (19).

Construction of Bispecific R(ab)₂ Fragments. Intact and functionally active humAb45D5-8 Pab' has been recovered from E. con fermentation passes with the impaired hinge systems present mainly (75-90%) in the labile-free thiol form (Pab'-SH) by affinity purification using Streptococcal protein G at pH ~5 in the presence of 10 mM EDTA (19). The anti-CD3 mAb Fab'-SH was recovered by similar procedures and reacted with 5,5'-dithiobis (2-

nitrobeazoic acid) (DTNB) (28) to form the thior itrobeazoate derivative (Fab'-TNB). The construction of bispecific (Bs) F(ab')2 fragments was completed by directed chemical coupling (29) of Fab'-TNB derivative of the anti-CD3 mAb with humAb4D5-6 Fab'-SH. Equimolar quantities of Fab'-TNB (by TNB content) and Fab'-CH (by SH content) were coupled at a combined concentration of >0.25 mg/ml in the presence of 100 mM Tris-HCl, pH 7.5, and 10 mM EDTA for 1 h at 37°C. The resulting BsP(ab'); fingments were isolated from the coupling reaction by S100-HR gei filtration (Pharmacia Fine Chemicals, Piscataway, NJ) in the presence of PBS. The BsF(ab')2 samples were passed through a sterile 0.2-um filter and stored either at 4°C or flash frozen in liquid nitrogen and stored at -70°C until used.

Cell Lines. Breast tumor cell lines SK-BR-3 and MDA-MB-175 were purchased from the American Type Culture Collection (Rockville, MD). NR6/10 cells (NIH 3T3 fibroblasts overexpressing p185/1222) were obtained from Dr. D. Slamon, University of California (Los Angeles, CA). With the exception of MDA-MB-175; these cell lines overexpress HER2/p185HER2 25 reported (3). The cells were grown in an equal mixture of DME and F12 Ham (Gibco Laboratories, Grand Island, NY) supplemented with 10% heat-inactivated (30 min. 56°C) FCS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 µg/ml Streptomycin (Gibco Laboratories) (com-

plete medium).

Human Cytotoxic Lymphocytes. Blood of normal volunteers was drawn into heparinized syringes, mixed with an equal volume of PBS layered onto Ficoll/Hypaque gradient (specific gravity 1.077) and centrifuged for 45 min at 400 g. The separated band of PBMC was aspirated, washed three times in ice cold PBS, and resuspended in complete medium. PBMC were depleted of monocytes by adherence to plastic for 60 min in 100 × 60-mm plates (Costar Corp., Cambridge, MA) at 37°C-5% CO2. Nonadherent PBMC were activated by incubation in the presence of IL-2 for 24 h and were used as effector CTL against SiCr-labeled tumor targets in a 4-h Cr release cyto.oxicity assay (30). In some experiments, effector CTLs were tested against targets prepared by PHA blastogenic stimulation of PBMC obtained from the same donor of effector cells

as detailed previously (30)

SK-BR-3, or NR6/10 cells (3 × 106/ml), Cytotoxicity Assay. were labeled with 150 μCi of Na251CrO4 (Amersham Corp. Arlington Heights, IL) for 60 min, washed, adjusted to 10 cells/ 50 µl of complete medium, and dispensed into round-bottomed microtiter places containing quadruplicates of various numbers of effector CTLs in 100 µl of complete medium. Various concentrations of Bs F(ab')2 fragments alone or mixed with p185HER2 ECD were then added in 50-ul volumes (final volume per well = 200 μί) and the plates were incubated at 37°C-5% CO2. After 4 h, the supernatants were harvested (Skatron Inc., Sterling, VA), and their radioactivity was determined using a gamma counter (Micromedic Systems, Inc., Horsham, PA). Percent cytotoxicity was calculated as follows: percent cytotoxicity = 100× (A - B)/(C B); where A represents the mean counts per minute (cpm) in test supernatants, B represents the mean cpm in supernatants of targets alone (spontaneous 51Cr release), and C represents he mean cpm in supernatants of targets lysed with 1% SDS (maximum SICr release).

Flow Cytometric Analysis of BsF(ab)2 Binding. Aliquots of 10 cells were mixed in either PBS + 1% FCS (PBS + 1%) or PBS + 1% containing chimeric or humanized BsF(ab')2 (10 ug/ml). The cells were incubated on ice for 45 min, washed twice in PBS + 1%, and stained with fluorescein-labeled goat anti-h nan Fab (Tago Inc., Burlingame, CA) for 45 min. In experiments involving the blocking of BsF(ab'), binding, cells were treated with BsF(ab')2 antibody in the absence or presence of soluble p185/HER2 extracellular domain preparation of the p185HER2, or rCD4 receptor as a negative control (50 µg/ml) before addition of the flucescein-labeled reagent. The stained cells were washed four times in ice-cold PBS + 1% and analyzed using a FACS® (Becton Dickinson & Co., Mountain View, CA): 10° cells were acquired by list mode, and measurements were performed on a single-cell basis and were displaned as frequency distribution histograms. Dead cells and debris were gated out of the analysis on the basis of forward light scatter.

Results

Humanization of mumAb Anti-CD3 V, and V. The gene segments encoding mumAb anti-CD3 V, and V, were first cloned by PCR from the corresponding hybridoma, UCHTI, and sequenced (Fig. 1). Next, the deduced variable domain amino acid sequences and molecular modeling were used to design a humanized variant of mumAb anti-CD3 (v1) (Fig. 2) as previously described for mumAb4D5 (12). Corresponding genes for humanized anti-CD3 v1 were created by gene conversion mutagenesis (12) starting from humAb4D5 genes and using long preassembled oligonucleotides (Fig. 1). As detailed in Materials and Methods, further humanized anti-CD3 variants were created by replacement of two additional residues from mumAb anti-CD3 with their human counterparts to investigate their role in antigen binding. Thus, humanized anti-CD3 v2 and v3 incorporate the replacements Va K73D and Vi R53S, respectively, whereas v4 includes both of these

Preparation of BsF(ab)2 Fragments. We have previously described the secretion of functional humAb4D5 Pab' fragments from E. coli at titers of 1-2 g/liter as judged by antigen-binding. ELISA after affinity purification on Staphylococcal protein A (19). Chimeric and humanized versions of anti-CD3 were expressed in the same vector (pAK19) at titers of up to 400 mg/liter as judged by total Ig ELISA. Fab' fragments were recovered from E coli cell pastes with the hinge cysteine present mainly (75–90%) as the fire thiol (Pab'-SH). This was achieved by affinity purification of Pab'-SH on Screptococcal protein G at pH 5 to maintain the thiol in the less reactive protonated form and in the presence of EDTA to chelate metal ions capable of catalyzing disulfide bond formation. Bs F(ab)2 fragments were then constructed by directed chemical coupling in vitro of humAb4D5 Fab' and anti-CD3 mAb Fab' using the proocclure of Brennan et al. (29). One arm of the BsF(ab)2 was always the most potent humanized anti-p185#EN variant previously identified (humAb4D5-8), which binds p1857ER2 ECD threefold more tightly than the murine parent Ab (12). The other arm was either a chimeric or humanized variant of the anti-CD3 mAb. Henceforth in this text the term chimeric BsF(2b')2 refers to a molecule in which one arm is the humanized anti-p185HER2 and the other arm is the chimeric anti-CD3; and the terms BsF(ab')2 v1, v2, v3, and v4 describe a molecule in which one arm is humanized antipistizza and the other arm is humanized anti-CLD3 variant

2, 3, and 4, respectively (Fig. 2).

Specific Binding of BaF(ab)₂ Fugments to Cells. Binding of BsF(ab')2 fragments to NR6/10 cells overexpressing HER2

Figure 1. Amino acid and nucleotide sequences of mumAb anti-CD3 and humAb anti-CD3 variant 1 V_L (A) and V_R (B). Amino acids are numbered using the scheme of Kabat et al. (16) to accommodate differences in V domain lengths. For example, the residues between V_R positions 82 and 83 are designated 82a, 82b, and 82c, respectively. The 5' end of mumAb anti-CD3 V_L and V_R nucleotide sequences are derived from the corresponding PCR primers and are identified by lower case (see Materials and Methods). Amino acid sequence differences between mumAb and humAb anti-CD3 are shown by asterisks, and residues that were replaced in generating additional humanized variants are indicated by pound signs (see text). The CDR residues according to sequence (16) and structural (39) definitions are shown by overlining and underlining of the CDR label, respectively. Genes encoding humAb anti-CD3 V_L and V_R variant 1 were created by gene conversion mutagenesis (12) of corresponding mumAb4D5 genes using sets of four contiguous eligonucleotides whose 5' and 3' ends are shown by arrows below the sequences (see Materials and Methods).

p185^{HER2} was investigated by flow cytometric analysis (Fig. 3). Chimeric BsF(ab')₂ significantly bound to NR6/10 cells as shown by a significant increase in the fluorescence intensity compared with background level (A and B). The presence of p185^{HER2} ECD (50 µg/ml) in the binding assay reduced the binding of chimeric BsF(ab')₂ almost to background level (C), whereas addition of an irrelevant soluble receptor (rCD4) at a similar concentration did not interfere with the binding (D). These results demonstrate the specificity of chimeric BsF(ab')₂ binding to cells overexpressing p185^{HER2}. Similar results were obtained using BsF(ab')₂ v1-v4.

Additional FACS® experiments were performed to quantify the binding of Bar(ab'p fragments to human CTLs and to breast tumor SK-BR-3 cells. All Bs F(ab'v fragments bound to SK-BR-3 cells with equal efficiency as anticipated since the anti-p185HER2 arm is identical in these molecules

(Fig. 4, left). In contrast, there were significant differences in the binding efficiency of these molecules to human CTLs. Chimeric Bsi (ab') antibody was most effective in hinding (Fig. 4, right, B) followed by BsF(ab') v1 (C), v3 (E), and v2 (D), as reflected by different peaks of fluorescence intensities; IsF (ab') v4 antibody was least effective in its binding to cytotoxic lymphocytes (F). Thus, the manipulation of the anti-CD3 arm of the BsF(ab') fragments profoundly altered its binding to lymphocytes.

Targeting of Tumor Cell Killing by BsF(ab)₂: Fragments. The killing of cells overexpressing p185HER2 (NR6/10) or breast tumor cells SK-BR-3 by activated human cytotoxic lymphocytes was examined in the presence of various doses of BsF(ab)₂, and preliminary results indicated that as little as 10 ng/ml f chimeric BsF(ab)₂ or BsF(ab)₂ vi was sufficient to cause maximal enhancement in the cytotoxic activity of CTLs. This dose (10 ng/ml) was used to compare the ability

Figure 2. Stereoview of humanized anti-CD3 Variant I. V₁ and V₂ domains. An occarbon tree is shown with side chains of residues that differ between the murine and humanized versions. The six CDRs are labeled, and the side chains of V₁ R53 and V₂ K73 are represented by space-filling balls.

of chimeric BsF(:b')₂ to enhance the cytotoxic activity of CTL with each of the BsF(ab')₂ variant molecules. The addition of 10 ng/ml of chimeric BsF(ab')₂, BsF(ab')₂ v1, or v3 caused a three to fourfold enhancement of the cytotoxicity of CTLs against SK-BR-3 breast tumor cells (Fig. 5 A) whereas the presence of BsF(ab')₂ v2 or v4 resulted in no enhancement above control values. Enhancement caused by

Figure 3. Flow cytometric analysis of NR6/10 cells bound to chimeric BsF(ab')₂. Cells were incubated with PBS (A), chimeric BsF(ab')₂ (B), chimeric BsF(ab')₂ mixed with p185/HER2 ECD (C), or chimeric BsF(ab')₂ mixed with recombinant CD4 (D) oefore staining with goat anti-human F(sb')₂ FFTC (conjugated Ab).

B.F(ab')2 v1 was reversed by the addition of p185HER2 ECD to the assay mixture (Fig. 5 A) demonstrating the specificity of antibody action. The results from an independent experiment (Fig. 5 B) demonstrate that 10 ng/ml of BsF(ab')2 v1 consistently enhanced the function of CTLs against SK-BR-3 targets known to overexpress p185HER2 (64 pg/µg cell protein; 3, 12) but had no effect on the cytotoxicity of CTLs against MDA-MB-175 targets, which express low to moderate levels of p185HER2 (7.7 pg/µg cell protein; 3, 12). These results demonstrate the efficacy of chimeric BsF(ab')2 v1, and v3 in directing cytotoxic lymphocytes to kill breast tumor targets overexpressing p185HER2 but not targets with low pi65" expression. The cytotoxicity data (Fig. 5 A) correlate well with FACS® binding data (Fig. 4) in that BsF(ab')2 v2 and v4, which were inefficient in binding to cytotoxic lymphocytes, failed to direct tumor cell killing in the cytotoxicity assay. None of these BsF(ab')2 molecules affected the cytotoxic activity of human CTL when tested against PHAinduced plastogenic targets derived from the same donor, demonstrating that these BsF(ab')2 do not mediate the lysis of normal autologous lymphoid cells.

Discussion

Considerable progress has been made toward the development of BsmAbs as therapeutic agents for human cancer (reviewed in reference ?). Human CTLs directed with BsmAb

Figure 4. Flow, cytometric analysis of the binding of BsF(ab')₂ antibodies to human CTLs and human breast tumor SK-BR-3 cells. Histograms on the left illustrate SK-BR-3 cells incubated with PBS (A), chimetric BsF(ab')₂ (B), BsF(ab')₂ v1 (C), v2 (D), v3 (E), or v4 (F) before staining with the FTTC-conjugated Ab. Histograms on the right illustrate human CTLs incubated with PBS (A), chimeric BsF(ab')₂ (B), BsF(a'')₂ v1 (C), v2 (D), v3 (E), or v4 (F) before staining with FTTC conjugated Ao.

have been shown to block the growth of human tumor xenographs in nude mice (31, 32). In other studies involving carcinoma patients, local lysis of tumor cells was observed after infusion of T cells activated with BsmAb (8). In addition, the efficacy of antitumor associated antigen × anti-CD3bispecific antibody in the management of malignant glioma has been reported (33). A major drawback for the application of murine mAbs has been the elicitation of an immune response after repeated administration into humans. The humanization of Barr Ab may reduce the immunogenicity of these reagents, thus avoiding possible untoward effects in human subjects (10, 11, 34).

The development of biologically active fully humanized BsF(ab')2 fragments as demonstrated in this study has not been reported previously. We have used an efficient E. coli expression system (19) for the production of humanized Fab molecules with anti-p185HER2 and anti-CD3 specificities. The Fab' molecules were recovered with the unpaired hinge cysteine present as the free thiol and used to form the BsF(ab)2 by directed chemical coupling in vitro (29). The approaches used in this study obviate the inherent problems in generating Pab'-SH from intact antibodies: differences in susceptibility to proteolysis and nonspecific cleavage resulting in heterogeneity, low yield, as well as partial reduction that is not completely selective for the hinge disulfide bonds (29). Furthermore, by engineering the hinge region to leave a single cysteine residue, we prevent intrahinge disulfide bonding without resorting to the use of highly toxic arsenite to chelate vicinal thiols (29). The purified BsF(ab')2 antibody fragments are reactive with human T cells and cells overexpressing p185HER2. The ability of these BsF(ab')2 to mediate targeted killing of tumor cells correlated well with their efficiency of binding to CTLs as revealed by FACS analysis.

The humanization of the anti-CD3 arm (as in v1) resulted in a decrease in the binding efficiency to CTL but did not alter the ability of the molecule to enhance CTL cytotoxicity against tumor targets at the lowest BsF(ab)₂ concentration studied (10 ng/ml). The observation that <2% occupancy by antibody is sufficient to trigger T cell activation (35), together with the high degree of purity of the BsF(ab)₂ used may explain the observed potency of the humanized version in mediating tumor cell killing at pharmacological concentrations (10 ng/ml).

Replacement of the murine residue V. 1.53 with serine

Targeting of breast tumor Figure 5. cell killing by BsF(ab')2. 51 Cr-labeled SK-BR-3 targets (T) were co-inculated with effector (E) CTLs at different E/T ratios for 4 h. In A, percent cytotoxicity was calculated based on 51Cr re lease in cultures with no antibody added (A), in the presence of 10 ng/ml of chimeric BsF(sb')2 (1), BsF(ab')2 v1 (0), v2 (♦), v3 (■), v4 (△), or v1 + p185HERZECD ([]). in B, two different 51Cr-labeled target cells were used. MDA-MB-175 targets tested in the absence (O) or presence (O) of 10 ing/mi of Bartaba vi; and SK-BR-3 targets rested in the absence () or presence (Δ) of 10 ng/ml of BsF(ab')2 v1. The MDA-MB-175 cells express low to moderate k 4 of p185HER2 as quantitatiraly state in Results.

Brgeted Rumor Killing With Bispecific Antibodies

(human residue) in humanized anti-CD3 v1 to create v3 resulted in little or no change in the binding efficiency to CTL, suggesting that V₁ R53 is probably not an essential antigen-binding determinant. The binding efficiency of vl, however, was severely reduced upon the replacement of Va-K73 with the human counterpart, Asp, in FR3 to make v2. Further reduction of the binding to CTLs was observed when V, R53 in v2 was replaced by Ser to create v4, whose binding capacity to CTLs was almost completely abolished. Given the fact that V_H K73 is outside of the CDRs, these results imply that contact between selected amino acid residues in FRs with other residues in adjacent CDRs or direct interaction with antigen can influence the antigen-binding efficiency and specificity of the hypervariable loops (11, 36). However, additional amino acid replacements are required to determine whether murine residue V_s K73 is an important binding determinant or whether the human residue D73 compromises binding. Nevertheless, these data demonstrate that amino acid residues outside CDRs should be considered in mAb humanization. Additional amino acid replacements are corrently being installed in the humanized anti-CD3 Fab' in an effort to improve its binding efficiency. A three-dimensional molecular model of the humanized (v1) anti-CD3 arm V₁ and V₂ domains is presented (Fig. 2), illustrating the side chains of residues that differ between murine and humanized versions of anti-CD3 arm. This figure shows that 1 K73 in FR3 is located in a loop proximal to CDRs H1 and H2.

The fact that a number of adenocarcinomas are characterized by an overexpression of p185 PER2 presents a unique opportunity for testing the frasibility as well as the efficacy of targeted tumor immunotherapy whereby patients CTLs can be redirected with BsmAb for tumor killing. Fully humanized BsF(ab')2 fragments are shown here to be effective mediators of human breast tumor target lysis in vitro at pharmacologically relevant concentrations. We are currently investigating whether these molecules may be capable of targeting breast tumor cells in vivo for destruction by CTLs. The fact that these molecules are fully humanized and, therefore, less likely to elicit an immune response in cancer patients further advances their potential use in targeted immunotherapy. Importantly, the BsF(ab')2 molecules failed to mediate the killing of normal lymphoid cells (PHA-blasts) or even tumor cells expressing only low to moderate levels of p185HER2.

The mechanism(s) by which CTLs cause the lysis of tumor targets are not known. However, it has been reported that the cytolytic activity is induced by the binding of antibodytarget conjugates to specific receptors on the effector cell surface (6). One view proposes that the crosslinking by BernAha between clusters of receptors on tumor targets and triggering structures on immune effector cells can induce the release of effector cytolytic substances including cytolysin which may contribute to target killing (8). Crosslinking may also activate T cells for production of cytokines, e.g., TNP-or and IFN-y, both of which can exert cytotoxic effects on tumor cells in vitro. The data in this report are consistent with the crucial requirement for crosslinking in order to trigger effector killing of tumor target. Thus two of the BsF(ab')2 variants, v2 and v4, shown to be perfectly capable of binding to target cells but not to effector CTLs, failed to direct tumor killing in the cytotoxicity essay. Further, the presence of p185HER? ECD, which is shown to block BsF(ab)2 binding to the target, caused a marked inhibition of directed CTL killing of tumor targets.

Our E. coli Fab' expression system in combination with. directed chemical coupling as described here has proven effective in the production of clinically relevant quantities of functional humanized antibody fragments. The availability of purified material should facilitate the imitiation of clinical studies to evaluate the efficacy of BsF(ab')2 in redirecting CTL killing of tumor cells. It should be noted that the use of F(ab')2 fragments should permit for a more efficient tissue penetration in vivo (37). The systems used here also allow for replacements of amino acid residues in CDRs and FRs making it possible to study structure function relationships among the different variant Ab fragments.

Collectively, the data presented here demonstrate the feasibility of producing genetically engineered fully humanized BsF(ab')2 shown to be biologically active in two different in vitro assays. The expression systems described can be applied efficiently for the production of Pab molecules with selected specificities, and offer an opportunity for understanding the structure-function relationship among the produced Ab fragments. These and similar studies will advance the potential use of BsmAbs in targeted immunotherapy of cancer in Assay & humans. I will rate you know the firm of more many

423

We thank Bill Lenzel for NH-terminal sequence analysis of muMAb anti-CD3, Mark Vasser, Parketh Jhurani, and Peter Ng for synthesizing oligonucleotides, Mike Covarrubias and Brad Snedecor for E. celi fermentations of all Fab' variants, Mark Rehse for operating FACS, Wayne Austine and Louis Tamayo for graphics, and Bob Kelley for helpful discussions.

Artes Top Track Care

Address correspondence to M. Refaat Shalaby, Department of Cell Biology, Genentech Inc., 460 Point San Bruno Boulevard, South San Francisco, CA 94060.

Received for publication 23 July 1991 and in revised form 12 September 1991:

References

1. Slamon, D.J., G.M., Clark, S.G. Wong, W.J. Levin, A. Ullrich, and W.L. McGuire. 1987. Human breast cancer: correlation f relapse and survival with amplification of the HER2/neu oncogene. Science (Wash. DC). 235:177.

2. Sizmon, D.J., W. Godolphin, L.A. Jones, J.A. Holi, S.G. Woug, D.E. Keith, W.J. Levin, S.G. Stuart, J. Udove, A. Ullrich, et al. 1989. Studies of HER2/neu proto-oncogene in human breast and ovarian cancer. Science (Wash. DC). 244:707.

Shepard, H.M., G.D. Lewis, J.S. Sarup, B.M. Fendly, D. Maneval, J. Mordenti, I. Figari, C.E. Kotts, M.A. Palladino, Jr., A. Ullrich, et al. 1991. Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J. Clin. Immunol. 11:117. 🔐 🥙 Brown to the same of the

4. Hudziak, R.M., J. Schlessinger, and A. Ullrich. 1987. Increased expression of the putative growth factor receptor p185#222 causes transformation and tumorigenesis of NIH3T3 cells. Proc.

Natl. Acad. Sci. USA. 84:7159.

5. Hudziak, R. A., G.D. Lewis, M.R. Shalaby, T.E. Eesalu, B.B. Aggarwal, A. Ullrich, and H.M. Shepard. 1988. Amplified expression of the HER2/ErbB2 oncogene induces resistance to tumor necrosis factor-a in NIH3T3 cells. Proc. Natl. Acad. Sci. USA. 85:5102.

6. Liu, M.A., D.M. Kranz, J.T. Kurnick, L.A. Boyle, R. Levy and H.N. Eisen. 1985. Heteroantibody duplexes target cells for lysis by cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA, 82:8648.

7. Perez, P., R.W. Hoffman, S. Shaw, J.A. Bluestone, and D.M. Segal. 1985. Specific targeting of cytotoxic T cells by anti-T3 linking to anti-target cell antibody. Nature (Lond.). 316:354.

8. Fanger, M.W., D.M. Segal, and J. Romet-Lemonne. 1991. Hispecific antibodies and targeted cellular cytotoxicity. Immuno. Today. 12:51.

Nolan, O., and R. O'Kennedy. 1990. Bifunctional autibodies: concept, production and applications. Biochim. Biophys. Acta. 1040:1.

10. Hale, G., M.R. Clark, R. Marcus, G. Winter, M.J.S. Dyer, J.M. Phillips, L. Riechmann, and H. Waldmann. 1988. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody campath-1H. Lancet. i:1394.

11. Reichmann, L., M. Clark, H. Waldmann, and G. Winter. 1988. Reshaping human antibodies for therapy. Nature (Lond.).

322,323.

12. Carter, P., L. Presta, C.M. Gorman, J.B.B. Ridgway, D. Henner, W.L.T. Wong, A.M. Rowland, C.E. Kotts, M.E. Carver, and H.M. Shepard. 1991. Humanization of an antip185HER2 antibody for human cancer therapy. Proc Natl. Acad. ici. USA. In press.

13. Beverley, P.C.L., and R.E. Callard. 1981. Distinctive functional characteristics of human "T" lymphocytes defined by E rosetting or a monoclonal anti-T cell antibody. Eur. J. Immunol.

11:329.

Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 7.12-7.15.

15. Orlandi, R., D.H. Güssow, P.T. Jones, and G. Winter. 1989. Cloning immunoglobulin variable domains from expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA. 86:3833

16. Kabat, E.A., T.T. Wu, M. Reid-Miller, H.M. Perry, and K.S. Gottesmann, 1987. Sequences of Proteins of Jamunological Interest. U.S. Departments of Health and Liuman Services,

U.S. Government Printing Office, Washington, DC.

17. Sang ; F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sa. USA. 74:5463.

Carter, P. 1991. Mutagenesis facilitated by the removal or introduction of unique restriction sites. In Directed Mutagenais a reactical Approach. M.J. McPherson, editor. Oxford

University Press, Oxford. 1-25.

19. Carrer, P., R.F. Kelley, M.L. Rodrigues, B.R. Snedecor, M. Covarrubias, M.D. Velligan, W.T. Wong, A.M. Rowland, C.E. Kotis, M.E. Carver, et al. 1991. High level Escherichia coli expression of bivalent humanized antibody fragments for therapy. Biotechnology. In press.

20. Chang, C.N., W.J. Kuag, and E.Y. Chen. 1986. Nucleotide sequence of the alkaline phosphatase gene of Escherichia coli.

Gene. 44:121.

21. Scholitssek, S., and F. Grosse. 1987. A cloning carriage of λ to terminator. Nucleic Acids Res. 15:3185.

22. Bolivar, F., R.L. Rodriguez, P.J. Greene, M.C. Betlach, H.L. Heyneker, H.W. Boyer, J.H. Crosa, and S. Falkow. 1977. Construction and characterization of new cloning vehicles. II. A

multipurpose cloning system. Gene (Amst.). 2:95. 23. Picken, R.N., A.J. Maniatis, W.K. Maas, M. Rey, and H. Heyneker. 1983. Nucleotide sequence of the gene for heat-stable enterotoxin II of Escherichia coli. Infect. Immunol. 42:269.

24. Palm, W., and N. Hilschmann. 1975. The primary structure of a cystalline monoclonal immunoglobulin K-type t-chain. subgroup 1. Z. Physiol. Chem. 35: 67.

25. Ellison, J.W., B.J. Berson, and L.E. a nod 1982. The nucleotide sequence of a human immunoglobulin Cyl gene. Nucleic

Acids Res. 10:4071.

26. Boyle, A. 1990. Current Protocols in Molecular Biology. F.A. Ansubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, editors. Greene Publishing and Wiley Interscience, New York. Chapter 3.

4.13

27. Maurer, R., B.J. Meyer, and M. Ptashne. 1980. Gene regulation at the right operator (OR) of bacteriophage A. I. OR3 and autogenous negative control by repressor. J. Mol. Biol.

139:147.

28. Ellman, G.L. 1959. Tissue sulfhydryl groups. Anh. Bischem

Biophys. 82:70.

29. Brennan, M., P.F. Davison, and H. Paulus. 1985. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin Gi fragments, Science (Wash. DC). Land Bright State College History and the college

30. Shalaby, M.R., and A.J. Ammann. 1988. Suppression of immune cell function in vitro by recombinant human transforming

growth factor & Cell. Immunol. 112:343.

31. Titus, J.A., M.A. Garrido, T.T. Hecht, D.F. Winkler, J.R. Wunderlich, and D.M. Segal. 1987. Human T cells targeted with anti-T3 cross-linked to anti-tumor antibody prevent tumor

growth in nude mice. J. immunol. 138:4018.

32. Garrido, M.A., M.J. Valdayo, D.F. Winkler, J.A. Titus, T.T. Hecht, P. Perez, D.M. Segal, and J.R. Wunderlich. 1990, Targeting human T-lymphocytes with bispecific antibodies to react against human ovarian carcinoma cells growing in mu/mu mice. Cancer Res. 50:4227.

33. Nitta, T., K. Sato, H. Yagita, K. Okumura, and S. Ishn. 1990. Preliminary trial of specific targeting therapy against malig-

nant glioma. Lancet. 335:368.

34. Brüggemann, M., G. Winter, H. Waldmann, and M.S. Neu-

- berger. 1989. The immunogenicity of chimeric antibodies. J. Exp. Med. 170:2153.
- Lanzavecchia, A., and D. Scheidegger. 1987. The use of hybridomas to target human cytotoxic T lymphocytes. Eur. J. Immunol. 17:105.
- 36. Verhoeyen, N., C. Milstein, and G. Winter. 1988. Reshaping human antibodies: grafting an antilysozyme activity. Science (Wash. DC). 239:1534.

- Blumenthal, R.D., R.M. Sharkey, and D.M. Goldenberg. 1990. Current perspectives and challenges in the use of monoclonal antibodies as imaging and therapeutic agents. Acii Drug Delivery Rev. 4:279.
- Chothia, C., and A.M. Lesk. 1987. Cononical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196:901.

and the second second

E-ILL

ACALIA IST

/m: nt: Hunt, Jennifer

Monday, February 25, 2002 11:44 AM

STIC-ILL

ubject:

References for 08/349,489

lease send me the following references ASAP:

Journal of Experimental Medicine 175:217-225 (Jan. 1, 1992)

Int. J. Cancer 50:800-804 (199<u>2)</u>

Int. J. Cancer, Suppl. (1992), 7(Bispecific Antibodies Targeted Cell Cytotoxic.), 42-4

PROC AM ASSOC CANCER RES ANNU MEET. (1992) 33 (0), 344

INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, (1993 Oct-Dec) 8 (4) 233-9

Cancer Immunol. Immunother. (1994), 39(1), 41-8

Proceedings of the American Association for Cancer Research Annual Meeting, (1994) Vol. 35, No. 0, pp. 219

Thanks,

Jennifer Hunt Patent Examiner, Art Unit 1642 CM1-8D06 (mailbox 8E12) (703)308-7548

HUMAN c-erbB-2 PROTO-ONCOGENE PRODUCT AS A TARGET FOR BISPECIFIC-ANTIBODY-DIRECTED ADOPTIVE TUMOR **IMMUNOTHERAPY**

Takashi Nishimura^{1,6}, Yoshihiko Nakamura², Hideo Tsukamoto¹, Yasuhiro Takeuchi¹, Yutaka Tokuda³, Megumi Iwasawa³, Tadashi Yamamoto⁴, Takashi Masuko⁵, Yoshiyuki Hashimoto⁵ and Sonoko Habu¹

¹Department of Immunology, ²Blood Transfusion Service Center, and ³Department of Surgery, Tokai University School of Medicine, Bohseidai, Isehara 259-11; Department of Oncology, Institute of Medical Science, Tokyo University, Tokyo 108; Department of Hygienic Chemistry, Tohoku University Pharmaceutical Institute, Sendai 980, Japan.

To develop an efficient strategy for the targeting of antitumor effector cells, we prepared bispecific antibody (BsAb) containing anti-CD3 and an anti-c-erbB-2 proto-oncogene product. The prepared BsAb specifically reacts with both c-erbB-2positive tumor cells and CD3+ CTL. Human CD4+ helper/killer T cells, induced from peripheral-blood mononuclear cells by activation with immobilized anti-CD3 monoclonal antibody (MAb) plus IL-2, showed no significant cytotoxicity against tumor cells. However, treatment of human CD4+ helper/killer cells with the BsAb caused the induction of specific cytotoxicity against c-erbB-2-positive tumor cells. CD4+ helper/killer cells also produced significant amounts of IL-2 during co-culture with c-erbB-2-positive tumor cells in the presence of the BsAb. Moreover, by combination with the BsAb, CD4+ helper/killer cells showed a strong in vivo anti-tumor effect against c-erbB-2 transfectant or human colon-cancer cells implanted in nude mice. Our results strongly suggest that the c-erb8-2 protooncogene product on human tumor cells may be a good target for BsAb-directed adoptive tumor immunotherapy.

It has been reported that adoptive immunotherapy using IL-2-activated killer cells is a useful strategy for tumor therapy in both animal and human systems (Mule et al., 1984; Nishimura et al., 1986; Rosenberg et al., 1985). One of the major problems of adoptive tumor immunotherapy has been the difficulty of targeting effector cells to the tumor sites. However, recent development of bispecific antibody (BsAb), which reacts with both killer and target cells, has made it possible to deliver anti-tumor effector cells specifically to target cells (Perez et al., 1985; Staerz et al., 1985; Franger et al., 1991). Several experimental and clinical studies have shown that adoptive tumor immunotherapy combined with anti-CD3 × anti-tumor BsAb was an effective strategy for tumor therapy (Nitta et al., 1990a; Titus et al., 1987). This BsAb-directed adoptive tumor immunotherapy may become a common protocol for clinical application, if good target molecules, widely distributed on tumor cells, can be found.

Our colleagues have produced MAbs recognizing the extracellular domain of the human c-erbB-2 proto-oncogene products (Masuko et al., 1989). The c-erbB-2 gene and its product are amplified in a variety of adenocarcinomas, including breast, gastric and colon cancer (Slamon et al., 1987; Semba et al., 1985; Hudziak et al., 1989; Yokota et al., 1986). Therefore, we supposed that BsAb containing anti-c-erbB-2 and anti-CD3 might become a good tool for the therapy of human cancer.

In this study we investigated the targeting of CD4⁺ helper/ killer T cells induced by immobilized anti-CD3 plus IL-2 using anti-CD3 × anti-c-erbB-2 BsAb. The BsAb can trigger both helper and killer functions of CD4+ helper/killer cells in vitro. Moreover, BsAb-directed CD4⁺ helper/killer cells showed a strong inhibitory effect on the growth of c-erbB-2-positive human tumor cells implanted in nude mice. These results strongly suggested that the human c-erbB-2 proto-oncogene product may become a good target for BsAb-directed adoptive tumor immunotherapy in humans.

MATERIAL AND METHODS

Monoclonal antibody

Hybridoma cells producing OKT3 or OKT4 MAb were purchased from ATCC (Rockville, MD). SER-4 MAb recognizing the p185-kDa extracellular domain of the c-erbB-2 gene product was produced by Dr. T. Masuko from the mice immunized with SK-BR-3 breast cancer cells (Masuko et al., 1989).

Cells

NIH-3T3, SV11 (NIH-3T3 cells transfected with normal c-erbB-2 gene), A4-15 (NIH-3T3 cells transfected with mutated c-erbB-2 gene), RAScD (NIH-3T3 cells transfected with EJ ras gene), KATOIII (human gastric cancer), LS174T (human colon cancer; kindly donated by Dr. H. Fukamachi, Tokyo University, Tokyo) SK-BR-3 (human mammary cancer) Molt-4F (human T-lymphoma cells) and Daudi (human B-lymphoma cells) were used for the experiments. The characteristics of oncogene transfectants were described in previous paper (Masuko et al., 1989). All the cells were maintained in RPMI1640 medium supplemented with glutamine, penicillin, streptomycin, HEPES buffer and 10% heat-inactivated FCS.

Preparation of BsAb containing anti-CD3 and anti-c-erbB-2

The BsAb containing anti-CD3 and anti-c-erbB-2 were prepared from OKT3 and SER-4 MAbs as reported (Nitta et al., 1989, 1990b). Briefly, F(ab')2 fragments prepared from the 2 MAbs by treatment with pepsin or papain were reduced to Fab-SH by incubation with 0.5 mM dithiothreitol (DTT) in 0.1 M PBS for 30 min at room temperature. OKT3-Fab-S-NB derivatives were further prepared from Fab-SH derivatives by incubation with 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB) in PBS for 30 min at room temperature. OKT3-Fab-S-NB was mixed with SER-4-Fab-SH derivatives at a 1:1 ratio and incubated for 4 hr at 37°C. Then, anti-CD3 × anti-c-erbB-2 BsAb was purified by FPLC chromatography (Pharmacia, Uppsala, Sweden).

Generation of CD4⁺ helper/killer cells

CD4+ helper/killer cells were induced from peripheral blood mononuclear cells (PBMC) of breast tumor patients. Briefly, CD4+ T cells were freshly isolated from PBMC of tumor patients by using FACStar (Becton Dickinson, Mountain View, CA) and then the cells were cultured in the presence of recombinant IL-2 (2,000 U/ml) and immobilized anti-CD3 MAb for 10-14 days. Anti-CD3 MAb was immobilized to plastic plates by incubation of the plates with 5 µg/ml of anti-CD3 MAb for 1 hr at 37°C. Over 98% of the activated cells were CD3*CD4* T cells and used as CD4* helper/killer cells. The activated CD4+ helper/killer cells could be expanded for long periods (over 50 days) by periodic restimula-

To whom correspondence and reprint requests should be sent.

Received: September 6, 1991.

tion with IL-2 plus immobilized anti-CD3 MAb (Nishimura et al., 1991).

Flow cytometry

Analysis of cell-surface markers was carried out by FACS-can using a Consort 30 program. Details of staining and sorting have been reported (Nishimura et al., 1990). Fluorescence data were collected with logarithmic amplification. For each sample, data from 10,000 volume-gated viable cells were collected.

IL-2 assay

CD4⁺ helper/killer cells (10⁶/ml) were cultured with A4-15 c-erbB-2 transfectant (10⁵/ml) in the presence or absence of

Fluorescence intensity

FIGURE 1 – Reactivity of anti-c-erbB-2 SER-4 MAb with various cell lines. The reactivity of SER-4 MAb was determined by flow cytometry as described in the text. (a) NIH-3T3 cells; (b) A4-15 c-erbB-2 transfectant; (c) SV11 c-erbB-2 transfectant; (d) RAScD EJras transfectant; (e) LS174T colon cancer; (f) KATOIII gastric cancer; (g) SK-BR-3 breast cancer; (h) Molt-4F T lymphoma; (i) Daudi B lymphoma.

FIGURE 2 – Preparation and reactivity of anti-CD3 × anti-cerbB-2 bispecific antibody (BsAb). BsAb was construted from F(ab')₂ fragments of 2 MAbs (OKT3 and SER-4) as described in the text. The reaction scheme is illustrated in the right panel. The reactivity of the prepared BsAb was analyzed by FACScan using CD4⁺ helper/killer cells (a) or c-erbB-2 transfectant, A4-15 (b). a, control unstained profile; b, profile of the cells stained with native OKT3 MAb; c, profile of the cells stained with native SER-4 MAb; d, profile of the cells stained with BsAb.

BsAb (0.5 μ g/ml) for 24 hr. After incubation, the culture supernatants were harvested from the plate and their IL-2 activity was determined using the IL-2-dependent HT-2 cell line. Briefly, HT-2 cells (10^4 /well) were cultured with diluted samples for 24 hr and then pulsed with 3 H-TdR (0.5 μ Ci/well) for 4 hr. The growth of HT-2 cells in culture supernatants from CD4+ helper/killer cells was strongly blocked by anti-IL-2 MAb but not by anti-IL-4 MAb (data not shown).

Cytotoxicity assay

The cytotoxicity of CD4⁺ helper/killer cells was determined by the 4-hr ⁵¹Cr-release assay in the presence or absence of anti-CD3 × anti-c-*erbB*-2 BsAb (0.5 µg/ml). Percentage cytotoxicity was calculated as reported by Nishimura *et al.* (1987).

In vivo neutralization assay

The *in vivo* anti-tumor activity of CD4⁺ helper/killer cells was determined by Winn's (1961) assay using c-erbB-2 transfectant, EJras transfectant or LS174T human colon cancer cells. Briefly, tumor cells (2×10^6) were injected i.d. into the abdomen of BALB/c nude mice with or without BsAb ($10~\mu g$), CD4⁺ helper/killer cells (2×10^7) or CD4⁺ helper/killer cells plus BsAb. The growth of tumor was determined by measuring tumor size in perpendicular diameters. Ten nude mice were used for each group.

FIGURE 3 – The anti-CD3 × anti-c-erbB-2 BsAb induced CD4+helper/killer-cell-mediated cytotoxicity in a dose-dependent manner. The cytotoxicity of CD4+ helper/killer cells against A4-15 c-erbB-2 transfectant was determined by a 4-hr ^{51}Cr -release assay in the presence (O) or absence () of various concentrations of diluted SER-4 MAb. SER-4 MAb was diluted 2-fold from 2 $\mu\text{g/ml}$. Effector to target ratio was 20:1.

RESULTS

The SER-4 MAb recognizing the 185-kDa c-erbB-2 gene product specifically reacted with c-erbB-2 gene transfectants (SV11 and A4-15) but not with untransfected NIH-3T3 cells or EJras transfectant (RAScD). Moreover, SER-4 MAb showed strong reactivity with some human tumor cell lines such as KATOIII, SK-BR-3 and LS174T but not with non-epithelial tumor such as Daudi B lymphoma and Molt-4F T lymphoma cells (Fig. 1). According to the method previously reported (Nitta et al., 1989, 1990b), both anti-CD3 Fab'-S-NB derivative and anti-erbB-2 Fab'-SH derivative were prepared and then coupled to constract F(ab')2 BSAb containing anti-CD3 and anti-c-erbB-2. As shown in Figure 2, the prepared BsAb reacted with both c-erbB-2 transfected and CD3+CD4+ helper/ killer cells. However, the BsAb showed no reactivity with either c-erbB-2-negative tumor cells or CD3- killer cells (data not shown).

Using the prepared BsAb, we next tried *in vitro* targeting of CD4⁺ helper/killer cells to c-erbB-2-expressing transfectants or LS174T human colon cancer cells. CD4⁺ helper/killer cells were induced from freshly isolated CD4⁺ T cells of tumor patients by activation with immobilized anti-CD3 MAb plus recombinant IL-2. The activated CD4⁺ helper/killer cells showed marginal cytotoxicity against various target cells. However, addition of BSAb into the culture resulted in the induction of a strong cytotoxicity against c-erbB-2 transfectants (A4-15) in a dose-dependent manner (Fig. 3). The BsAb alone had no cytotoxic effect on the target cells (data not shown). To determine the specificity of BsAb-treated CD4⁺ helper/killer cells, we next investigated the cytotoxicity of CD4⁺ helper/killer cells against c-erbB-2-positive or -negative cell lines. As shown in Figure 4, CD4⁺ helper/killer cells lysed c-erbB-2 transfectants (SV11 and A4-15) and c-erbB-2-expressing tumor

FIGURE 4 – Specific in vitro targeting of CD4⁺ helper/killer cells using BsAb. CD4⁺ T cells isolated from peripheral blood mononuclear cells of breast cancer patients using FACStar were cultured with immobilized anti-CD3 plus recombinant IL-2 for 14 days. The cytotoxicity of activated CD4⁺ helper/killer cells was determined by the 4-hr 5¹Cr-release assay in the presence (hatched columns) or absence (open columns) of anti-CD3 × anti-c-erbB-2 BsAb (0.5 µg/ml). Effector to target ratio was 20:1. Oncogene transfectants (SV11, A4-15, RAScD) and human tumor cell lines (KATOIII, Daudi B lymphoma, LS174T) were used as target cells. The cell-surface expression of c-erbB-2 was determined by FACScan.

cells (KATOIII and LS174T) by targeting with BsAb. However, native NIH-3T3, EJras-transfectant (RAScD) or c-erbB-2-negative Daudi B-lymphoma cells were resistant to CD4+ helper/killer cells even in the presence of BsAb. Thus, F(ab')₂ BsAb containing anti-CD3 plus anti-c-erbB-2 enabled us to carry out specific targeting of CD4+ helper/killer cells in vitro. Consistent with the lack of CD4+ helper/killer-cell-mediated cytotoxicity in the absence of BsAb, IL-2 production of CD4+ helper killer cells was not induced by co-culture with c-erbB-2-expressing A4-15 cells. However, if CD4+ helper/killer cells were bridged with A4-15 cells by the addition of BsAb, significant IL-2 production was observed in the culture supernatants (Fig. 5).

Finally, we investigated the in vivo anti-tumor effect of CD4+ helper/killer cells in combination with BsAb. The results are illustrated in Figure 6. When c-erbB-2 transfectant (A4-15) was inoculated i.d. into the abdomen of nude mice, the cells grew rapidly. In contrast, injection of A4-15 cells with CD4+ helper/killer cells and BsAb resulted in a marked inhibition of cell growth. No such in vivo anti-tumor effect was observed when A4-15 cells were inoculated with BsAb alone or CD4+ helper/killer cells alone, and no BsAb-directed in vivo antitumor effects of CD4+ helper/killer cells were demonstrated in RAScD transfectant, indicating that anti-CD3 × anti-c-erbB-2 BsAb specifically delivered CD4⁺ helper/killer cells to c-erbB-2-expressing tumor cells in vivo. Interestingly, the growth of c-erbB-2-expressing human colon cancer (LS174T) was also completely blocked by BsAb-directed CD4+ helper/killer therapy.

FIGURE 5 – BsAb can trigger the IL-2 production of CD4⁺ helper/killer cells. CD4⁺ helper/killer cells were co-cultured with A4-15 cells in the presence () or absence (O) of BsAb (0.5 μ g/ml) for 20 hr at 37°C. After incubation, the IL-2 activity of the culture supernatants was measured using HT-2 cell lines as described in the text. The ³H-TdR incorporation (cpm) of HT-2 cells is shown. Mean \pm SE of triplicate samples is indicated.

FIGURE 6 – BsAb-directed *in vivo* anti-tumor effect of CD4⁺ helper/killer cells. The *in vivo* anti-tumor effect of CD4⁺ helper/killer cells was examined by Winn's assay using c-erbB-2 transfectant, A4-15 (a), EJras transfectant, RAScD (b) or LS174T human colon cancer cells (c). Tumor cells (2×10^6) were inoculated i.d. into the abdomen of nude mice with or without (O) CD4⁺ helper/killer cells (2×10^7) plus BsAb (10 µg) (\bigcirc), CD4⁺ helper/killer cells alone (\triangle) or BsAb alone (\triangle). The tumor diameter shown is the mean of 2 perpendicular diameters. Ten nude mice per group were used for the experiment.

DISCUSSION

In this report, we present an efficient strategy for human cancer therapy using anti-CD3 × anti-c-erbB-2 BsAb and CD4⁺ helper/killer cells. Since the CD3 molecule is a key molecule for the triggering of T-cell functions (van Seventer et al., 1987, Hoffman et al., 1985), anti-CD3 × anti-tumor BsAb can activate the cytotoxic machinery of CTL in addition to bridging the effector cells to the tumor target cells (Perez et al., 1985; Staerz et al., 1985; Franger et al., 1991). Nitta et al. (1990a) reported that targeting therapy using LAK cells treated with anti-CD3 × anti-glioma BsAb was more successful than currently used LAK therapy (Rosenberg et al., 1985). Several other investigators have also demonstrated the efficacy of BsAb-directed adoptive tumor immunotherapy in animal models (Titus et al., 1987). These results strongly indicate that targeting adoptive immunotherapy might become a widely available tool for human cancer therapy if we can produce an MAb which reacts with cell-surface molecules expressed on a variety of human tumor cells.

This report indicates that MAb recognizing a human c-erbB-2 proto-oncogene product is a good candidate for use in BsAb-directed adoptive tumor immunotherapy. It has been shown that the c-erbB-2 gene and gene product are amplified in a variety of human adenocarcinoma cells and the amplification of the gene is correlated with poor clinical prognosis for certain cancer patients (Slamon et al., 1987; Semba et al., 1985; Hudziak et al., 1989; Yokota et al., 1986). As shown in Figure 1, SER-4 MAb recognizing the p185 c-erbB-2 gene product reacts with c-erbB-2 transfectants such as SV11 and A4-15 but not native NIH-3T3 or other transfectants. Moreover, gastric, colon and breast-cancer cell lines were also reactive with SER-4 MAb

In the present study, we prepared F(ab')₂ BsAb containing anti-CD3 and anti-c-erbB-2 (Fig. 2) and applied this BsAb to the targeting of CD4⁺ T cells which have both helper and killer functions. CD4⁺ T cells possess both helper and killer activity at the clonal level (Fleisher and Wagner, 1986; Moretta, 1983).

Moreover, several groups have reported that activation of T cells with immobilized anti-CD3 MAb caused the induction of CD4+ CTL as well as CD8+ CTL (Jung et al., 1987; Garrido et al., 1990). Although freshly isolated CD4+ T cells cannot directly respond to IL-2 because of the lack of p75 IL-2 receptor (Nakamura et al., 1991), we found that activation of freshly isolated CD4⁺ T cells with immobilized anti-CD3 plus IL-2 resulted in the proliferation and generation of CD4+ helper/killer T cells which have both IL-2-producing activity and cytotoxic activity (Nishimura et al., 1991, 1992). If the CD4⁺ helper/killer cells were targeted to local tumor sites by combination with BsAb, it would become possible to augment "local help" to facilitate the activation of anti-tumor effector cells at local tumor sites. As illustrated in Figures 3 and 4, the addition of BsAb containing anti-CD3 plus anti-c-erbB-2 resulted in the specific targeting of CD4⁺ helper/killer cells to c-erbB-2-expressing transfectants and human tumor cells in vitro. Interestingly, CD4⁺ helper/killer cells produced significant amounts of IL-2 during co-culture with c-erbB-2expressing tumor cells in the presence of the BsAb (Fig. 5). These results suggest that BsAb-treated CD4+ helper/killer cells may act effectively as both killer and IL-2 producing cells at targeted tumor sites.

Using oncogene transfectants and LS174T human colon cancer which were implanted into nude mice, we also investigated the therapeutic efficacy of BsAb-treated CD4⁺ helper/killer cells. As clearly indicated in Figure 6, CD4⁺ helper/killer cells showed a strong anti-tumor activity against c-erbB-2 transfectant or c-erbB-2-expressing LS174T human colon cancer by combination with anti-CD3 × anti-cerbB-2 BsAb. However, no therapeutic effect of BsAb-directed CD4⁺ helper/killer cells was demonstrated against EJras transfectant, indicating that the BsAb specifically targeted CD4⁺ helper/killer cells in vivo.

Thus, our data show that the human c-erbB-2 protooncogene product might become a good target molecule for BsAb-directed adoptive tumor immunotherapy and confirm that CD4⁺ helper/killer cells will provide an efficient strategy for BsAb-directed adoptive tumor immunotherapy in humans. We have already established a large-scale culture system of CD4⁺ helper/killer cells. Therefore, it will be possible to submit this BsAb-directed CD4⁺ helper/killer therapy to clinical trial after extensive checking of any side-effects of anti-CD3 × anti-c-erbB-2 BsAb.

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, Japan, Tokai University Medical School Research Aid, Kanagawa Academy Science and Technology Foundation, and The Japanese Foundation for Multidisplinary Treatment of Cancer.

REFERENCES

FLEISHER, B. and WAGNER, H., Significance of T4 or T8 phenotype of human cytotoxic T-lymphocyte clones. *Curr. Top. Microbiol. Immunol.*, 126, 101–119 (1986).

Franger, M.W., Segal, D.M. and Romet-Lemonne, J.-L., Bispecific antibodies and targeted cellular cytotoxicity. *Immunol. Today*, 12, 51-54 (1991).

GARRIDO, M.A., PEREZ, P., TITUS, J.A., VALDAYO, M.J., WINKLER, D.F., BARBIERI, S.A., WUNDERLICH, J.R. and SEGAL, D.M., Targeted cytotoxic cells in human peripheral blood lymphocytes. *J. Immunol.*, 144, 2891–2898 (1990).

HOFFMAN, R.W., BLUESTONE, J.A., LEO, O. and SHAW, S., Lysis of anti-T3-bearing murine hybridoma cells by human allospecific cytotoxic T cell clones and inhibition of that lysis by anti-T3 and anti-LFA-1 antibodies. *J. Immunol.*, 135, 5-6 (1985).

HUDZIAK, R.M., LEWIS, G.D., WINGET, M., FENDLY, B.M., SHEPARD, H.M. and ULLRICH, A., p185^{HER-2} monoclonal antibody has antiproliferation effects *in vitro* and sensitizes human breast tumor cells to tumor necrosis factor. *Mol. cell. Biol.*, **9**, 1165–1172 (1989).

JUNG, G., MARTIN, J.A.D.E. and MULLER-EBERHARD, H.J., Induction of cytotoxicity in human peripheral blood mononuclear cells by monoclonal antibody OKT3. *J. Immunol.*, 139, 639-643 (1987).

MASUKO, T., SUGAHARA, K., KOZONO, M., OTSUKI, S., AKIYAMA, T., YAMAMOTO, T., TOYOSHIMA, K. and HASHIMOTO, Y., A murine monoclonal antibody that recognizes an extracellular domain of the human c-erbB-2 protooncogene product. *Ipn. J. Cancer Res.*, 80, 10–14 (1989).

MORETTA, A., Frequency and surface phenotype of human T lymphocytes producing interleukin 2. Analysis by limiting dilution and cell cloning. *Europ. J. Immunol.*, 15, 148–155 (1983).

MULÉ, J.J., SHU, S., SCHWARZ, S.L. and ROSENBERG, S.A., Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. *Science*, 225, 1487–1489 (1984).

NAKAMURA, Y., NISHIMURA, T., TOKUDA, Y., KOBAYASHI, N., WATANABE, K., NOTO, T., MITOMI, T., SUGAMURA, K. and HABU, S., Macrophage-T cell interaction is essential for the induction of p75 interleukin 2 (IL-2) receptor and IL-2 responsiveness in human CD4⁺ T cells. *Jpn. J. Cancer Res.*, 82, 257-261 (1991).

NISHIMURA, T., BURAKOFF, S.J. and HERRMANN, S.H., Protein kinase C required for cytotoxic T lymphocyte triggering. *J. Immunol.*, 130, 2888–2891 (1987).

NISHIMURA, T., NAKAMURA, Y., TAKEUCHI, Y., GAO, X., TOKUDA, Y., OKUMURA, K. and HABU, S., Bispecific antibody-directed antitumor activity of human CD4⁺ helper/killer T cells induced by anti-CD3 monoclonal antibody plus interleukin 2. *Jpn. J. Cancer Res.*, 82, 1207-1210 (1991).

NISHIMURA, T., NAKAMURA, Y., TAKEUCHI, Y., TOKUDA, Y., IWASAWA, M., KAWASAKI, A., OKUMURA, K. and HABU, S., Generation, propagation, and targeting of human CD4* helper/killer T cells induced by anti-CD3 monoclonal antibody plus recombinant IL-2. An efficient strategy for adoptive tumor immunotherapy. J. Immunol., 148, 285–291 (1992).

NISHIMURA, T., TAKEUCHI, Y., ICHIMURA, Y., GAO, X., AKATSUKA, A., TAMAOKI, N., YAGITA, H., OKUMURA, K. and HABU, S., Thymic

stromal cell clone with nursing activity supports the growth and differentiation of murine CD4*8* thymocytes in vitro. J. Immunol., 145, 4012–4017 (1990).

NISHIMURA, T., UCHIYAMA, Y., YAGI, H. and HASHIMOTO, Y., Slowly-released administration of recombinant interleukin 2: augmentation of the therapeutic efficacy of the adoptive immunotherapy with lymphokine-activated killer (LAK) cells. *J. immunol. Meth.*, 91, 21–27 (1986).

NITTA, T., SATO, K., YAGITA, H., OKUMURA, K. and ISHII, S., Preliminary trial of specific targeting therapy against malignant glioma. *Lancet*, 335, 368–371 (1990a).

NITTA, T., SATO, K., OKUMURA, K. and ISHII, S., Induction of cytotoxicity in human T cells coated with anti-glioma × anti-CD3 bispecific antibody against human glioma cells. *J. Neurosurg.*, 72, 476–481 (1990b).

NITTA, T., YAGITA, H., AZUMA, T., SATO, K. and OKUMURA, K., Bispecific F(ab'), monomer prepared with anti-CD3 and anti-tumor monoclonal antibodies is most potent in induction of cytolysis of human T cells. *Europ. J. Immunol.*, 19, 1437–1441 (1989).

PEREZ, P., R. HOFFMAN, W., SHAW, S., BLUESTONE, J.A. and SEGAL, D.M., Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. *Nature (Lond.)*, **316**, 354–358 (1985).

ROSENBERG, S.A., LOTZE, M.T., MUUL, L.M., LEITMAN, S., CHANG, A.E., ETTINGHAUSEN, S.E., MATORY, Y.L., SKIBBER, J.M., SHILONI, E., VETTO, J.T., SEIPP, C.A., SIMPSON, C. and REICHERT, C.M., Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med., 315, 1485–1492 (1985).

SEMBA, K., KAMATA, K., TOYOSHIMA, K. and YAMAMOTO, T., A v-erbB-related proto-oncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth-factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc. nat. Acad. Sci. (Wash.), 82, 6497-6501 (1985).

SLAMON, D.J., CLARK, G.M., WONG, S.G., LEVIN, W.J., ULLRICH, A. and MCGUIRE, W.L., Human breast cancer: correlation of relapse and survival with amplification of HER-2/neu oncogene. Science, 230, 943–945 (1987).

STAERZ, U.D., KANAGAWA, O. and BEVAN, M.J., Hybrid antibodies can target sites for attack by T cells. *Nature (Lond.)*, 314, 628-631 (1985).

TITUS, J.A., GARRIDO, M.A., HECHT, T.T., WINKLER, D.F., WUNDER-LICH, J.R. and SEGAL, D.M., Human T cells targeted with anti-T3 cross-linked to antitumor antibody prevent tumor growth in nude mice. J. Immunol., 138, 4018–4022 (1987).

VAN SEVENTER, G.A., KULIPERS, K.C., VAN LIER, R.A.W., DE GROOT, E.R.D., AARDEN, L.A. and MELIEF, C.J.M., Mechanism of inhibition and induction of cytolytic activity in cytotoxic T lymphocytes by CD3 monoclonal antibodies. *J. Immunol.*, 139, 2545–2550 (1987).

WINN, H.J., Immune mechanisms in homotransplantation. II. Quantitative assay of the immunologic activity of lymphoid cells stimulated by tumor homografts. *J. Immunol.*, **86**, 228–234 (1961).

YOKOTA, J., YAMAMOTO, T., TOYOSHIMA, K., TERADA, M., SUGUMURA, T., BATTIFORA, H. and KLINE, J.M., Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. Lancet, 1, 765-767 (1986).

STIC-ILL

From: Sent:

Hunt, Jennifer

To:

Monday, February 25, 2002 11:44 AM

STIC-ILL

Subject:

References for 08/349,489

Please send me the following references ASAP:

Journal of Experimental Medicine 175:217-225 (Jan. 1, 1992)

Int. J. Cancer 50:800-804 (1992)

Int. J: Cancer, Suppl. (1992), 7(Bispecific Antibodies Targeted Cell Cytotoxic.), 42-4

PROC AM ASSOC CANCER RES ANNU MEET. (1992) 33 (0), 344

INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, (1993 Oct-Dec) 8 (4) 233-9

Cancer Immunol. Immunother. (1994), 39(1), 41-8

Proceedings of the American Association for Cancer Research Annual Meeting, (1994) Vol. 35, No. 0, pp. 219

Thanks,

Jennifer Hunt Patent Examiner, Art Unit 1642 CM1-8D06 (mailbox 8E12) (703)308-7548

ADONIS - Electronic Journal Services

Requested by

Adonis

Article title Possible targets on carcinoma for bMAb retargeting of lymphocyte or drug cytotoxicity

Article identifier

002071369200484L

Authors

Canevari_S Mezzanzanica_D Menard_S Ferrini_S Moretta_L Colnaghi_M_I

Journal title

International Journal of Cancer

ISSN Publisher 0020-7136 Wiley-Liss

Year of publication

1992

Volume issue

SUPPL.

Supplement Page range Number of pages

42-44

User name Cost centre

Adonis **Development**

PCC

\$17.50

Date and time

Monday, February 25, 2002 2:34:04 PM

Copyright © 1991-1999 ADONIS and/or licensors.

The use of this system and its contents is restricted to the terms and conditions laid down in the Journal Delivery and User Agreement. Whilst the information contained on each CD-ROM has been obtained from sources believed to be reliable, no liability shall attach to ADONIS or the publisher in respect of any of its contents or in respect of any use of the system.

Int. J. Cancer: Supplement 7, 42-44 (1992) © 1992 Wiley-Liss, Inc.

POSSIBLE TARGETS ON CARCINOMA FOR bMAb RETARGETING OF LYMPHOCYTE OR DRUG CYTOTOXICITY

Silvana CANEVARI^{1,3}, Delia MEZZANZANICA¹, Sylvie MÉNARD¹, Silvano FERRINI², Lorenzo MORETTA² and Maria Ines Colnaghi¹

¹Istituto Nazionale Tumori, Milan; and ²Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.

Retargeting of drugs or lymphocyte cytotoxicity through bi-specific monoclonal antibodies (bMAbs) has been proven a therapeutic tool against human carcinoma both in pre-clinical in vitro and in vivo studies. Some of these reagents have already been introduced into clinical trials and preliminary results appear to be promising. However, improvement of the specificity of this approach could be achieved by selecting more suitable target molecules on tumor cells. The research focused on developing MAbs directed against molecules with tumor-restricted distribution and homogeneous expression. Cellmembrane receptors for nutrients or growth factors which operationally represent tumor-specific molecules due to their overexpression, could be considered appropriate targets. Several bMAb anti-nutrients (the folate-binding protein) or growth-factor receptor (c-erbB1, c-erbB2)/anti-triggering molecules have been generated and all were able to efficiently retarget the relevant population of lymphocytes on tumor cells. In order to design a more reliable and selective therapeutic tool, the following parameters were analyzed: correlation between cytotoxicity and antigen level, potency and possible modulation of the target molecule. © 1992 Wiley-Liss, Inc.

CHOICE OF SUITABLE TARGET STRUCTURE ON HUMAN CARCINOMA

After the initial demonstration, about 10 years ago, that bifunctional monoclonal antibodies (bMAbs) could specifically direct the cytotoxic activity of the ricin toxin against tumor cells (Raso, 1982), bMAbs were exploited to efficiently re-target cytotoxic lymphocytes of any specificity against selected target cells (Perez et al., 1985). In an attempt to develop therapeutic tools against human carcinomas, which might be more selective than conventional chemo- or radio-therapeutic agents, the bMAb methodology has been widely applied. In the majority of the initial reports, the selected target molecules were those recognized by the first generation of anti-tumor MAbs, i.e., onco-fetal, differentiation or generically defined cancer-associated antigens (Table I). The bMAbs thus obtained have been found to be very potent both in pre-clinical in vitro and in in vivo studies, and some of these reagents have already been introduced into clinical trials. Although the results appear to be promising, the selected targets present 2 major limitations: they are expressed at a relatively high level on some normal tissues, whereas within a single tumor they are not present on all cells.

Improvement of the specificity of bMAb re-targeting could be achieved by selecting more suitable target molecules on tumor cells with tumor-restricted distribution and homogeneous expression. Some particular cell-surface molecules, such as receptors for hormones, nutrients and growth factors, have been suggested as being appropriate targets for antibody-driven therapy (Harris, 1990). Although they are expressed at a very low level on some normal tissues, their over-expression on tumor cells endows them with an perational tumor specificity. Among nutrient receptors, the folate-binding protein (FBP) is homogeneously over-expressed in almost all ovary carcinomas (Coney et al., 1991). Several bMAb anti-FBP/anti-triggering molecules have been generated either by the hybrid-hybridoma technique or by chemical reassociation. All of them were able to specifically target the relevant population

of lymphocytes ($T\alpha\beta$, $T\gamma\delta$, NK) against ovary carcinoma (Lanzavecchia and Scheidegger, 1987; Mezzanzanica et al., 1988; Ferrini et al., 1989, 1991). For the anti-FBP/anti-CD3 biMAb, after a complete validation in pre-clinical short-term and long-term in vivo studies (Mezzanzanica et al., 1991) and toxicity evaluation in a phase-I clinical trial (Mezzanzanica, 1991), a phase-II clinical trial is now in progress.

For growth-factor receptors, the c-erbB1 and c-erbB2 proteins were found to be homogeneously over-expressed in about one third of breast and ovary tumors, the former being expressed in a majority of glioma and squamous-cell carcin mas. Such over-expression has been correlated with rapid relapse and poor survival (Rilke et al., 1991).

An anti-c-erbB1 MAb has been used in our laboratory t generate bMAbs either with anti-CD3 (data not shown) or anti-doxorubicin MAbs (Balsari et al., 1988) using conventional technology. Another research group has reported the generation of bMAb anti-c-erbB2/anti-CD3 using molecular engineering (Shalaby et al., 1992). All these reagents appeared active in in vitro pre-clinical evaluation.

EVALUATION OF SOME CRITICAL ISSUES

With the aim of designing a more reliable and selective therapeutic tool, 2 bMAbs were selected. Both reagents, obtained in our laboratory using the hybrid hybridoma technique, were used in purified form after removal of the parental species. The anti-FBP/anti-CD3 was kindly provided by Dr. S. Warnaar (Centocor, Leiden, The Netherlands) as bi-F(ab')₂, whereas the anti c-erbB1/anti-CD3 was used as an intact bMAb. These bMAbs were used to analyze several aspects relevant to the specificity of determination of anti-tumor cytotoxicity, i.e., antigenic expression, potency and possible modulation of the target structure.

As reported in Table II, both bMAbs at nanomolar concentration in the presence of CTL clones promoted specific lysis only of those cell lines which expressed the relevant Ag. However, when the level of cytotoxicity was compared to the number of antigenic sites/cell, no direct correlation was observed. On the contrary, when the same anti-c-erbB1 MAb was used alone or after conjugation to alpha sarcin, good correlation between the inhibition of cell proliferation and the antigenic level was observed (Tosi et al., 1992). Moreover, a bMAb anti-c-erbB1/anti-doxorubicin, although less active than the bMAb anti-c-erbB1/anti-CD3, exhibited a certain degree of correlation (data not shown). The different mechanisms of action involved in these therapeutic approaches probably account for the observed differences.

The potency of bMAbs in CTL re-targeting was compared with that of other MAb-driven therapeutic approaches. Although the experimental systems adopted to evaluate their activity were quite different, the relative potencies were compared on a MAb molar basis. As shown in Table III, the anti-FBP MAb according to the very low affinity of murine IgG₁ for human Fc receptors was unable to mediate ADCC.

³To whom correspondence should be addressed at Oncologia Sperimentale E, Istituto Nazionale Tumori, Via Venezian 1, I-20133 Milan, Italy.

TARGETS ON CARCINOMA FOR bMAb-DRIVEN THERAPY

TABLE I - TARGET STRUCTURES ON HUMAN CARCINOMA CELLS FOR 5MA5 RE-TARGETING

Category	Distribution on relevant cancers	Partner MAb for re-targeting	Level of analysis	References
Oncofetal differentiation Ag				
CEA	Heterogeneous, on colon, breast, lung carcinoma	Anti-Vinca alkaloid	Pre-clinical in vivo	Smith et al., 1990
N-CAM	Heterogeneous, on gliomas, small-cell lung carcinomas	Anti-CD3	Clinical trial	Nitta et al., 1990
Cancer-associated Ag	U			
Ca-G250	Homogeneous, on renal carci- noma	Anti-CD3	Preclinical in vivo	Van Dijk et al., 1991
gp40	Heterogeneous, on various car-	Anti-CD3	Pre-clinical in vivo	Barr et al., 1989
	Cinomas		Clinical trial	De Leij et al., 1991
gp72	Heterogeneous, on various car- cinomas and sarcomas	Anti-MTX	Pre-clinical in vitro	Pimm et al., 1990
3e6/CAMA1	Heterogeneous, on breast carci- nomas	Anti-CD3	Pre-clinical in vivo	Nelson et al., 1991
Ca19-9	Heterogeneous, on colon and pancreatic carcinomas	Anti-CD16	Pre-clinical in vitro	De Palazzo et al., 1990
Nutrient receptors	P			
FBP	Homogeneous, on ovarian carci- nomas	Anti-TCR Anti-CD16	Pre-clinical in vitro	Ferrini et al., 1989 Ferrini et al., 1991
•	11011145	Anti-CD3	Clinical trial	Mezzanzanica et al., 1991
Growth factor receptors				
c-erbB1	Homogeneous, on head and neck, ovarian, breast carcinomas, gliomas	Anti-CD3 Anti-doxorubicin	Pre-clinical in vitro	
c-erbB2	Homogeneous, on breast, ovar- ian and bladder carcinomas	Anti-CD3	Pre-clinical in vitro	Shalaby et al., 1992

TABLE II – SPECIFICITY OF CTL RE-TARGETING AND CORRELATION WITH THE ANTIGENIC LEVEL IN THE CASE OF bMAbs DIRECTED AGAINST FBP OF c-erbB1

.		Percentage lysis in the presence of CTL and bMAb ¹	
Parameter	Variable	Anti-FBP/ anti-CD3	Anti-c-erbB1/ anti-CD3
Specificity	Target cells ²	,	
	Relevant Ag+	60	50
	Relevant Ag-	6	1
Correlation with amount	Number of si- tes/cell ³	,	
of antigen	$>1 \times 10^{6}$	55	50
	2×10^{5}	80	ND
	7×10^4	82	45
	3×10^4	ND	75
	Undetectable	12	2

¹bi F(ab')₂ or intact bMAbs at 100 ng/ml were used to retarget CTL clones against the reported target cells at an effector/target ratio of 10:1 in a standard ⁵¹Cr-release assay. → The expression of the relevant Ag was monitored by MAb binding. In the case of FBP the relevant Ag⁺ line was IGROV1 (ovarian carcinoma) and the relevant Ag⁻ line was Mewo (melanoma). In the case of c-erbB1, the relevant Ag⁺ line was NIH 3T3 HEGFR (mouse fibroblasts transfected with hEGFR cDNA kindly provided by Dr. DiFiore, NIH Bethesda, MD) and the relevant Ag⁻ line was NIH 3T3 (mouse fibroblasts). → The number of sites/cell was defined by analyzing the binding data of the relevant ¹²⁵I ligand (MOv18 MAb for FBP, EGF for c-erbB1), using Scatchard analysis. The lines used for FBP were: NIH OVCAR3 (4.5 × 106 sites/cell); OVCA432 (2 × 105 sites/cell); SW626 (7 × 104 sites/cell) and U937 (number of sites/cell undetectable). The lines used for c-erbB1 were: A431 (1.4 × 106 sites/cell); IGROV1 (3 × 104 sites/cell); U87 (6.7 × 104 sites/cell); Raji (number of sites/cell) undetectable).

On the contrary, the chimeric version of the MAb (kindly provided by Dr. L. Coney, Centocor Malvern, PA), in which the murine constant regions were replaced by human $\gamma 1$ and k regions, efficiently mediated ADCC in the presence of PBMC. However, on a molar basis, bMAb re-targeting of T-cell

TABLE III - POTENCY OF TUMOR-CELL ELIMINATION: COMPARISON OF DIFFERENT MAB-DRIVEN THERAPEUTIC APPROACHES

Target structure	Therapeutic approach	MAb concentration needed to eliminate 50% of relevant tumor cells
FBP ¹	bMAb + CTL ADCC murine MAb	$5.3 \times 10^{-12} \mathrm{M}$ Not applicable ³
c-erbB12	ADCC chimeric MAb bMAb + CTL	Not applicable ³ $1.3 \times 10^{-10} \mathrm{M}$ $6.6 \times 10^{-10} \mathrm{M}$
	immunotoxin	$5.0 \times 10^{-10} \mathrm{M}_{\odot}$

¹Lysis of the IGROV1 cell line in the presence of a CTL clone (E/T 10:1) and the bMAb anti-FBP/anti-CD3 or of fresh PBMC (E/T 50:1) and the murine MAb against the FBP (mIgG₁κ) or its Vmurine/C human chimeric version (hIgG₁κ) in a standard ³¹Cr-release assay. ⁻²Lysis of the A431 cell line in the presence of CTL clone (E/T 10:1) and bMAb anti-c-erbB1/anti-CD3 in a standard ³¹Cr-release assay and inhibition of A431 protein synthesis in the presence of the immunotoxin anti-c-erbB1 MAb-α sarcin in a standard aminoacid incorporation assay. ⁻³Less than 10% lysis, even at the maximum concentration tested (10⁻⁸M).

cytotoxicity was about 20 times more efficient than the chimeric MAb-mediated ADCC. In the case of the c-erbB1 target structure, bMAb re-targeting was compared with the activity of the immunotoxin. As reported in Table III, the 2 therapeutic agents exhibited similar potency.

Finally, the possible influence of the target-structure modulation on bMAb cytotoxicity was analyzed. The 2 target structures studied had different internalization behavior upon parental MAb binding. The binding of the anti-FBP MAb to its antigen induces slow and unreliable internalization, whereas that of the anti-c-erbB1 MAb promotes prompt and reliable modulation of about one third of the antigenic sites (Mezzanzanica et al., 1988; Tosi et al., 1992). In order to evaluate the relevance of the MAb bivalence, the internalization ability of 2 monovalent forms of the parental anti-c-erbB1 MAb was tested. The F(ab') fragment was unable to induce internalization (data not shown), whereas the bMAb anti-c-erbB1/anti-doxorubicin almost completely maintained its ability to induce antigen modulation (data not shown). Except for their internal-

ization behavi ur, the 2 target structures were similarly sensitive to bMAb re-targeted lysis (Table II). Similar efficiency may be ascribed to the known absence of correlation between cytotoxicity and the number of antigenic sites/cell.

Cell-membrane receptors for nutrients (FBP) and growth factors (c-erbB1 and c-erbB2 oncoproteins) may be considered as appropriate targets for bMAb re-targeting of T-cell cytotoxicity due to their homogeneous overexpression on a relevant percentage of epithelial human tumors. Their use for locoregional treatment of relevant tumors may thus be considered feasible.

Our findings illustrate how much further efforts are needed to develop better predictive in vitro tests and suitable in vivo models in order to mimic as closely as possible the distribution of the target structure in human patients.

ACKNOWLEDGEMENTS

We thank Ms. L. Mameli and Ms. M. Hatton for preparing this manuscript. This work was partially supported by grants from the Italian Research Council and the Associazi ne Italiana per la Ricerca sul Cancro.

REFERENCES

Balsari, A., Alzani, R., Parrello, D., Morelli, D., Tagliabue, E., Gianni, L., Isetta, A.N.I., Ménard, S., Colnaghi, M.I. and Ghione, M., Monoclonal antibodies against doxorubicin. *Int. J. Cancer*, 42, 798–802 (1988).

BARR, I.G., MIESCHER, S., VON FLIEDNER, V., BUCHEGGER, F., BARRAS, C., LANZAVECCHIA, A., MACH, J.P. and CARREL, S., In vivo localization of a bispecific antibody which targets human T lymphocytes to lyse human colon cancer cells. Int. J. Cancer, 43, 501–507 (1989).

CONEY, L.R., TOMASSETTI, A., CARAYANNOPOULOS, L., FRASCA, V., KAMEN, B.A., COLNAGHI, M.I. and ZURAWSKI, V.R., Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. *Cancer Res.*, 51, 6125–6132 (1991).

DE LEIJ, L., DE JONGE, M., TER HAAR, A., SPAKMAN, H., THE, H., DE VRIES, L., MULDER, N., BERENDSEN, H., ELIAS, M. and SMIT-SIBINGA, C., Intrapleural and intraperitoneal application of bispecific antibody retargeted lymphocytes to cancer patients. In: J.L. Romet-Lemonne, M.W. Fanger and D.M. Segal (eds.), Bispecific antibodies and targeted cellular cytotoxicity, pp. 249–253, Fondation Nationale de Transfusion Sanguine, Les Ulis, France (1991).

DE PALAZZO, I.G., GERCEL-TAYLOR, C., KITSON, J. and WEINER, L.M., Potentiation of tumor lysis by a bispecific antibody that binds to Ca19-9 antigen and the Fcy receptor expressed by human large granular lymphocytes. *Cancer Res.*, 50, 7123-7128 (1990).

FERRINI, S., PRIGIONE, I., MAMMOLITI, S., COLNAGHI, M.I., MÉNARD, S. and MORETTA, A., Re-targeting of T-cell-receptor gamma/delta⁺ lymphocytes against tumor cells by bispecific monoclonal antibodies. Induction of cytolytic activity and lymphokine production. *Int. J. Cancer*, Suppl. 4, 53–55 (1989).

FERRINI, S., PRIGIONE, I., MIOTTI, S., CICCONE, E., CANTONI, C., CHEN, Q., COLNAGHI, M.I. and MORETTA, L., Bispecific monoclonal antibodies directed to CD16 and to a tumor-associated antigen induce target-cell lysis by resting NK cells and by a sub-set of NK clones. *Int. J. Cancer*, 48, 227–233 (1991).

HARRIS, A.L., The epidermal growth factor receptor as a target for therapy. Cancer Cells, 2, 321-323 (1990).

LANZAVECCHIA, A. and SCHEIDEGGER, D., The use of hybrid hybridomas to target human cytotoxic T lymphocytes. *Europ. J. Immunol.*, 17, 105–111 (1987).

MEZZANZANICA, D., On behalf of the international group for ovarian carcinoma therapy, human PBL re-targeting by bispecific antibodies: pre-clinical data and phase-I clinical trial. J. Cell Biochem., 15E, 137 (1991).

MEZZANZANICA, D., CANEVARI, S., MÉNARD, S., PUPA, S.M., TAGLIABUE, E., LANZAVECCHIA, A. and COLNAGHI, M.I., Human ovarian carcinoma lysis by cytotoxic T cells targeted by bispecific monoclonal antibodies: analysis of the antibody components. *Int. J. Cancer*, 41, 609-615 (1988).

MEZZANZANICA, D., GARRIDO, M.A., NEBLOCK, D.S., DADDONA, P.E., ANDREW, S.M., ZURAWSKI, V.R., JR., SEGAL, D.M. and WUNDERLICH, J.R., Human T-lymphocytes targeted against an established human ovarian carcinoma with a bispecific F(ab')₂ antibody prolong host survival in a murine xenograft model. Cancer Res., 51, 5716-5721 (1991).

NELSON, H., RAMSEY, P.S., McKEAN, D.J., Dozois, R.R. and Dono-HUE, J.H., Anti-tumor X anti-lymphocyte heteroconjugates augment colon tumor cell lysis in vitro and prevent tumor growth in vivo. Dis. Colon Rectum, 34, 140–147 (1991).

NITTA, T., SATO, K., YAGITA, H., OKUMURA, K. and ISHI, S., Preliminary trial of specific targeting therapy against malignant glioma. *Lancet*, 335, 368-371 (1990).

PEREZ, P., HOFFMAN, R.W., SHAW, S., BLUESTONE, J.A. and SEGAL, D.M., Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell biology. *Nature (Lond.)* 316, 241–245 (1985).

PIMM, M.V., ROBINS, R.A., EMBLETON, M.J., JACOBS, E., MARKHAM, A.J., CHARLESTON, A. and BALDWIN, R.W., A bispecific monoclonal antibody against methotrexate and a human tumor-associated antigen augments cytotoxicity of methotrexate-carrier conjugate. *Brit. J. Cancer*, 61, 508–513 (1990).

RASO, V., Antibody-mediated delivery of toxic molecule to antigenbearing target cells. *Immunol. Rev.*, 62, 93-117 (1982).

RILKE, F., COLNAGHI, M.I., CASCINELLI, N., ANDREOLA, S., BALDINI, M.T., BUFALINO, R., DELLA PORTA, G., MENARD, S., PIEROTTI, M.A. and TESTORI, A., Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors. *Int. J. Cancer*, 49, 44-49 (1991).

SHALABY, M.R., SHEPARD, H.M., PRESTA, L., RODRIGUES, M.L., BEVERLEY, P.C.L., FELDMANN, M. and CARTER, P., Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells over-expressing the HER2 protooncogene. J. exp. Med., 175, 217-225 (1992).

SMITH, W., GORE, V.A., BRANDON, D.R., LYNCH, D.N., CRANSTONE, S.A. and CORVALAN, J.R.F., Suppression of well-established tumor xenografts by a hybrid-hybrid monoclonal antibody and vinblastine. Cancer Immunol. Immunother., 31, 157-163 (1990).

Tosi, E., Benigni, F., Casalini, P., Ferraris Di Celle, E., Gadina, M., MEZZANZANICA, D., CANEVARI, S. and Colnaghi, M.I., In vitro and in vivo biological activities of an anti-EGF-R MAb compared with EGF and relevant immunotoxin. In: A.A. Epenetos (ed.), Advances in the applications of monoclonal antibodies in clinical oncology, Chapman and Hall, London (1992).

VAN DIJK, J., ZEGVELD, S.T., FLEUREN, G.J. and WARNAAR, S.O., Localization of monoclonal antibody G250 and bispecific monoclonal antibody CD3/G250 in human renal-cell carcinoma xenografts: relative effects of size and affinity. *Int. J. Cancer*, 48, 738-743 (1991).

STIC-ILL

X02/25

From: Sent:

Hunt, Jennifer

Monday, February 25, 2002 11:44 AM

STIC-ILL

To: Subject:

References for 08/349,489

Please send me the following references ASAP:

Journal of Experimental Medicine 175:217-225 (Jan. 1, 1992)

Int. J. Cancer 50:800-804 (1992)

Int. J. Cancer, Suppl. (1992), 7(Bispecific Antibodies Targeted Cell Cytotexic.), 42(4)

PROC AM ASSOC CANCER RES ANNU MEET. (1992) 33 (0), 344

INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, (1993 Oct-Dec) 8 (4) 233-9

Cancer Immunol. Immunother. (1994), 39(1), 41-8

Proceedings of the American Association for Cancer Research Annual Meeting, (1994) Vol. 35, No. 0, pp. 219

Thanks,

Jennifer Hunt Patent Examiner, Art Unit 1642 CM1-8D06 (mailbox 8E12) (703)308-7548

7908024

Immunohistochemical detection of c-erbB-2 expression by neoplastic human tissue using monospecific and bispecific monoclonal antibodies

I. GARCIA DE PALAZZO, A. KLEIN-SZANTO, L. M. WEINER

Fox Chase Cancer Center, Philadelphia, PA 19111 - USA

ABSTRACT: Selected murine monoclonal antibodies (MAb) have been shown to inhibit relevant tumor growth in vitro and in animal models. Recently, bispecific antibodies (BsMAb) have been developed which target cytolytic effector cells via one antibody binding site and tumor antigen by the other specificity. For example, the BsMAb 2B1 possesses specificity for c-erbB-2 and FcyRIII, the low affinity Fcy receptor expressed by polymorphonuclear leukocytes (PMN), macrophages and large granular lymphocytes (LGL). The human homologue of the rat neu oncogene, c-erbB-2, has been demonstrated to be amplified in breast, gastrointestinal, lung and ovarian carcinomas. Tumor expression of c-erbB-2 has been shown to be an important prognostic indicator in breast and ovarian carcinomas. The restricted expression of the c-erbB-2 protooncogene product in normal human tissues and the wide distribution of c-erbB-2 expression in such tumors may justify attempts to use an appropriately constructed BsMAb in clinical trials. In this report we have addressed this issue by immunohistochemically evaluating the expression of c-erbB-2 oncogene product in a variety of malignant tumors utilizing 2BI and the anti-c-erbB-2 monovalent parent of 2BI, 520C9. Among the studied neoplasms, c-erbB-2 expression was detected in 49% of primary carcinomas stained with 520C9 and in 39% of those stained with 2B1. In the group of metastatic tumors, c-erbB-2 oncoprotein was detected in 52% of cases by 520C9 and in 41% by 2B1. Our results indicate that immunocytochemistry using hispecific monoclonal 2B1 is a reliable method for the detection of c-erbB-2 expression, and that this BsMAb detects c-erbB-2 expression in tumors nearly as well as its anti-cerbB-2 monovalent parent antibody. (Int J Biol Markers, 1993; 8: 233-9)

KEY WORDS: C-erbB-2 expression, Oncogenes, Monoclonal antibodies

INTRODUCTION

Protooncogenes are cellular genes with fundamental roles in cell growth, development and differentiation. They can be activated (oncogenes) by several molecular mechanisms. Numerous studies have shown that oncogenes are involved in human cancer both in the initial conversion of normal to malignant cells and in tumor progression (1). The protooncogene designated c-erbB-2 (HER2/neu) is a cellular oncogene whose product is a transmembrane type MW 185,000 glycoprotein (p185) with tyrosine kinase activity; p185 is also a growth factor receptor for an as yet unidentified ligand (2-5).

Slamon et al have shown that the prognostic value of c-erbB-2 gene amplification in breast cancer may be

independent of other well-recognized prognostic factors such as hormonal receptor status and lymph node-positive disease (6). Recently, it has been suggested that, as in breast cancer, overexpression of c-erbB-2 in ovarian cancer might be associated with poor survival (13). Overexpression of c-erbB-2 has also been reported in other human adenocarcinomas of the salivary gland, colon, stomach and lung (2, 7-12, 14), but its roles in the progression or prognosis of these neoplasms remains speculative.

Analyses by immunocytochemistry using MAbs that recognize distinct epitopes of the extracellular domain of p185 have been reported in a variety of normal and transformed human tissues (15-17), but to our knowledge only monospecific antibodies have been utilized. Hybrid antibodies containing two differ-

ent antigen-binding sites may be produced by chemical recombination or from the fusion of two hybridoma lines. The latter method was employed for the production of the bispecific monoclonal antibody (BsMAb) 2B1, which is the fusion product of hybridomas 520C9 (murine IgG₁ recognizing an extracellular domain epitope of c-erbB-2) and 3G8 (murine IgG₁ recognizing an extracellular domain epitope of human FcyRIII) (16).

The goal of the present study was to determine if the bispecific antibody retained the ability of its parental anti c-erbB-2 antibody, 520C9, to recognize the expression of this oncogene product by malignant neoplasms. A secondary objective was to examine the spectrum of malignancies in which 2B1 therapy might be employed to determine the likelihood of identifying suitable candidates in each malignancy. We have examined 126 malignant tumors by immunocytochemical analysis of frozen sections and analyzed the relationship between detection of c-erbB-2 by 520C9 and 2B1. Our findings suggest that 2B1 is equivalent to 520C9 in its ability to recognize c-erbB-2, and that c-erbB-2 expression may increase in metastatic adenocarcinomas of the colon, breast and lung.

MATERIAL AND METHODS

Tissue: The tissues used in this study included ovarian, gastric, lung, colon and metastatic carcinomas. They were obtained from the tumor bank of the Fox Chase Cancer Center, Department of Pathology. A total of 126 tumors were used for the study.

Monoclonal Antibodies: Monoclonal antibody 520C9 (murine IgG₁ recognizing the protooncogene product c-erbB-2) and bispecific monoclonal antibody 2B1 were generously provided by Dr. David Ring, (Chiron Corporation, Emeryville, CA). Briefly, hybrid hybridoma 2B1 was developed by somatic cell fusion of 520C9 and 3G8 (murine IgG₁ recognizing human FcγRIII), as described (16). The active bispecific antibody was purified from the hybridoma supernatant containing the bispecific antibody and its parental antibodies by sequential ion exchange chromatography, yielding greater than 99% pure bispecific antibody (16).

Immunocytochemistry: Localization of the c-erbB-2 proto-oncogene product was evaluated using serial frozen sections. Sections were obtained using a Hacker Bught OTS-AS-EC-MR Cryostat. Histological evaluation of each tumor specimen was performed on a section stained with hematoxylin and eosin. Monoclonal antibody (AE1/AE3) to cytokeratin

(Biogenex Laboratories, San Jose, CA) was used to confirm the presence of viable tumor cells in the section

A negative control slide incubated with non-specific mouse IgG (Sigma Immunochemicals, St. Louis, MO) was examined to assess non-specific binding. Duplicate slides for each case were stained with 520C9 (10μg/ml) and 2B1 (10μg/ml). As a positive control, 2B1 and 520C9 were used to stain cells of the SK-OV-3 line (American Type Culture Collection, Rockville, MD); these cells express high levels of c-erbB-2 message and protein.

The Stravigen Super Sensitive Alkaline Phosphatase Immunostaining Kit (Biogenex Laboratories) was used for all the immunohistology procedures. Five µm frozen sections were mounted onto poly-L-lysine-coated slides, fixed for 15 minutes in cold acetone and dried at room temperature for 2 hours. Sections were blocked for 30 minutes with normal mouse ascites to diminish non-specific binding. Slides then were incubated overnight at 4°C with monoclonal antibodies 2B1, 520C9 and controls.

Then the slides were washed with PBS 2% BSA, incubated for 30 min at room temperature with goat anti-mouse antibody (Stravigen Super Sensitive Alkaline Phosphatase Kit), and washed. Substrate was added (Fast Red) and the slides were incubated 5 minutes, washed and counterstained with Meyer's hematoxylin solution (Sigma, St. Louis, MO). The slides were independently evaluated by two pathologists. The intensity of staining was graded as: 0, no greater than the negative control; 1+, weak; 2+, moderate; and 3+ equal to or greater than positive control.

RESULTS

A total of 101 primary lung, breast, colon and ovarian neoplasms and 25 metastases from diverse neoplasms were stained using bispecific antibody 2B1 and parental antibody 520C9. C-erbB-2 expression was detected in 41% of the tumors stained with 2B1 while 520C9 detected 52% of all cases. Table I shows the percentage of cases stained with 520C9 and 2B1 in each tumor group, and Table II shows the distribution of staining intensity for each studied tumor type. Overexpression of c-erbB-2 was defined as the presence of an immunostaining signal at the surface membranes of the malignant epithelium. The signal was represented by a distinct chromogen staining. In all cases only membrane staining was considered.

Table III shows the 2B1 and 520C9 staining pat-

to

:C-

is,

.g. 29

ol.

-3

le,

:s)

ve

le-

nd

re to n-

.es

A, at ve as 5 c's he

10 +, ve

nd rse B1 on B1 ws in on er-of of ed 1ly

TABLE 1 - DETECTION OF c-erbB-2 BY IMMUNOHISTOCHEMI-CAL ANALYSIS USING 520C9 AND 2B1

Summary of Immunohistochemical Reactivity for 2B1 and 520C9					
Tissue source	Positive S	amples			
	2B1	520C9			
(Total# samples)	# samples (%)	# samples (%)			
Lung (25)	7 (28%)	9 (36%)			
Breast (25)	9 (36%)	13 (52%)			
Colon (25)	12 (48%)	14 (56%)			
Ovary (26)	12 (46%)	14 (53%)			
Metastases (25)	12 (48%)	15 (60%)			
Total	52 (41%)	65 (52%)			

terns, related to the histological classification of the tumors. Of the 25 cases of breast carcinoma stained with 2B1 and 520C9, 20 were classified as invasive ductal carcinoma (IDC). Of these, 8 cases showed binding by 2B1 and 11 cases by 520C9. All cases that stained with either antibody showed a comedo pattern characterized by centrally necrotic ducts with higher nuclear and mitotic grade. In all these cases, the tumor was mostly composed of an invasive component. The three cases of IDC that failed to stain with 2B1, but were positive with 520C9, were classified as high grade. Of the IDC cases that did not stain with 520C9 (9) or 2B1 (12), all were characterized by a histological pattern of moderate tubule formation or a predominant papillary and cribiform pattern with low to moderate nuclear and mitotic grade.

When the in situ component of IDC was analyzed,

TABLE II - RESULTS OF IMMUNOHISTOCHEMICAL STAINING INTENSITY OF PRIMARY NEOPLASMS USING BISPECIFIC 2B1 AND PARENTAL MONOCLONAL 520C9

Tissue source	Immunohi Grading	stochemical Intensity	
(total # of samples)	520C9	2B1	# per group
Ovary (26)	+++ +++ ++	+++ ++ ++ -	(5) (2) (3) (2)
	. *	+	(3) (2) (2) (2) (10)
Total	. 14	. 12	•
Lung (25)	+++ ++ ++ +	+ + + + + - + - -	(4) (2) (1) (1) (1) (16)
Total	9	7	
Breast (25)	+++ ++ + +	+++ ++ +	(2) (5) (2) (4) (12)
Total	13	9	
Colon (25)	+++ ++ ++ ++	+++ ++ + - +	(5) (4) (1) (2) (2) (11)
l Cotal	14	12	

TABLE III - NUMBER OF CASES STAINED WITH 2B1 AND 520C9 CLASSIFIED BY HISTOLOGICAL TYPE

# of Cases		# of Reactive Tumors	
	Ovary:	2B1	520C9
	15 Papillary serous carcinomas	7	7
	4 Papillary mucinous adenocarcinomas	2	3
	4 Endometrioid adenocarcinomas	2	3
	3 Undifferentiated	1	I
Total	26	12	14
	Lung:	•	ς.
	17 Adenocarcinomas	5	4
	5 Squamous cell carcinomas	2 0	ð
	2 Small cell carcinoma	0	· ŏ
	1 Bronchioalveolar carcinoma	7	ğ
Total	25	,	•
	Breast		
	20 Ductal (invasive)	8	11
	3 Ductal (in situ)	1	2
	1 Lobular (invasive)	0	0
	1 Lobular (in situ)	0	0
Total	25	9	13
	Colon	•	
	5 Well differentiated adenocarcinomas	2	3
	13 Moderately differentiated adenocarci-	-	
	nomas	8	10
	6 Undifferentiated adenocarcinomas	2	1
	1 Adenocarcinoid	ō	0
Total	25	12	14

all cases that stained with 2B1 or 520C9 showed binding to the *in situ* ductal carcinoma (ISDC). In three cases, ISDC was the only component of the tumor; two stained positively with 520C9, and one was stained by 2B1. The only two examined lobular carcinomas (one classified as *in situ* and one invasive) failed to stain with either antibody.

The pattern of staining in breast cancer specimens was rather homogenous. In most positive cases, between 70 and 80% of the cells stained with both antibodies, even in the groups classified as in situ. A few tumor sections contained adjacent normal tissue. Normal breast ducts immediately adjacent to the carcinomas stained with both 520C9 and 2B1, although the intensity of staining was very weak when compared with the tumor.

When the colon carcinomas were studied, of the total (n=20), 14 were detected by 520C9 and 12 by 2B1. In this group, those classified as moderately differentiated carcinomas were best detected with both antibodies. In the colon carcinoma group, staining was observed not only in the membrane but also in cytoplasm and was mostly homogeneous. A high percentage (50-60%) of cells within the tumor stained with both antibodies. Two cases had normal glands im-

mediately adjacent to the tumor and binding was detected in both cases with 520C9 and 2B1. However, the intensity of staining in either case was very weak compared with the tumor.

Lung carcinomas were characterized by a focal pattern of staining. Only one case of squamous carcinoma showed diffuse staining. In all cases the stroma was not bound by either antibody, binding to normal lung structures was not observed (scattered, minimal staining of bronchial epithelial cells was noted with both antibodies). When 2B1 was used, alveolar macrophages were stained by that antibody. Of a total of 17 lung adenocarcinomas, 5 were stained by 2B1 and 520C9. The pattern of staining was rather similar for both antibodies in this group, which was characterized by a focal pattern comprising between 20 to 30% of the tumor cells. In the squamous carcinoma group 520C9 detected 4 cases out of 5 while 2B1 detected 2 out of 5. In this group, a higher percentage (50-60%) of tumor cells were stained with both antibodies, when compared to adenocarcinomas. Small cell carcinomas (n=2) were not stained by either antibody.

In ovarian cancer, 14 of 26 specimens were detected by 520C9 while 2B1 detected 12 of 26. In all cases where staining was present, it was confined to the epithelial

:d

re

al

TABLE IV - PATTERNS OF 2B1 AND 520C9 REACTIVITY IN METASTATIC TUMOR SAMPLES

Tissue source	Immunohistochemical Grading Intensity		
(# of samples)	520C9	2B1	# per group
Colon (10)	+++ ++ +	+++ ++ - -	(5) (2) (1) (2)
Breast (8)	+++ +++ ++	++	(3) (1) (1) (3)
Unknown (5)	+++ +++ -	++	(1) (1) (3)
Ovary (1)	++	++	(1)
Appendix (1)	-	-	(1)

component. Papillary serous carcinomas were found to stain heavily with both antibodies while the other histological patterns demonstrated a less intense reaction. In all positive samples, a homogeneous pattern of staining characterized by membrane staining of every cell in the tumor was dominant.

Immunohistochemically detectable c-erbB-2 oncogene was noted in normal ovarian epithelium in 5 cases of 6 examined. In these cases, every epithelial cell was stained but the intensity was very low. In all cases, adjacent ovarian stroma was not bound by the antibodies.

The detection of metastasis by 2B1 and 520C9 showed patterns of staining similar to their corresponding primary tumors. However, a higher degree of intensity and percentage of stained cells was observed in this group when compared with the primary lesions. Table IV shows patterns of reactivity in the tumor samples.

DISCUSSION

For BsMAb to be therapeutically useful, it is necessary that the expression of the tumor antigen to be targeted is largely restricted to neoplasms. The c-erbB-2 oncogene product is an attractive candidate target antigen for several reasons. The expression patterns of this antigen can be molecularly defined and correlated with protein expression by a variety of techniques. Thus, the sensitivity and specificity of an antibody's

detection capabilities can be more easily defined. The expression of this antigen by a significant percentage of common neoplasms makes it a potentially generally useful target. As expression of this protein may be associated with poor prognosis, the targeting and elimination of c-erbB-2 positive cells may be particularly useful. Finally, the importance of this protein in regulating tumor growth is suggested by the ability of several anti-c-erbB-2 antibodies to inhibit growth of relevant neolasms in vitro and in appropriate animal models.

The studies presented in this report confirm previous examination of c-erbB-2 expression by human neoplasms, and extend previous findings. The increased expression of c-erbB-2 by metastatic lesions observed in these studies may have been due to the small number of the metastases which were examined. It must be pointed out that matched pairs of primary and metastatic lesions were not available for these studies from the same patient. However, if confirmed. these results suggest that therapeutic strategies targeting c-erbB-2 may directly attack a biologically important target in the setting of metastatic disease.

2B1 has a number of characteristics that suggest it may have therapeutic potential. These include potent redirection of cytotoxicity by large granular lymphocytes and macrophages (19), and substantial antitumor effects on human xenografts in immunodeficient mouse models (20). The studies presented in this report confirm that 2B1 recognizes c-erbB-2 expression by human neoplasms nearly as well as 520C9. Thus, the

minor reductions in c-erbB-2 detection by 2B1, manifested either by less staining intensity or the identification of fewer c-erbB-2 lesions, can be attributed to the reduced avidity of the BsMAb compared with 520C9. The process of producing 2B1 therefore had little effect on the ability of its 520C9-derived portion to bind c-erbB-2. Based on these results, 2B1 is sufficiently capable of detecting c-erbB-2 expression by human neoplasms to justify its continued evaluation as a therapeutic reagent.

The Authors are grateful to Dr. David Ring, Chiron Corporation, for generously providing 520C9 and 2B1 for these studies. Support from the Bernard A. and Rebecca S. Bernard Foundation is gratefully acknowledged. The Authors gratefully acknowledge the expert secretarial assistance of Catherine Thompson.

ACKNOWLEDGEMENT

This work was supported by grants NIH CA06927, CA50633 and an appropriation from the Commonwealth of Pennsylvania.

Reprint requests to: Louis M. Weiner, M.D. Fox Chase Cancer Center 7701 Burholme Avenue Philadelphia, PA 19111, USA

REFERENCES

1. Garrett CT. Oncogenes. Clin Chim Acta 1986; 156: 1-40.

 Semba K, Kamata N, Yoshida M, Sasaki M, Suzuki T, Semba K, Toyoshima K, Yamamoto T. Localization of a novel v-erbB related gene, c-erbB-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Proc Natl Acad Sci USA 1985; 82: 6497-501.

3. Yamamoto T, Ikawa SH, Akiyama T, Semba K, Nomura N, Miyajima N, Saito T, Toyoshima K. Similarity of protein encoded by the human c-erb-B-2 gene to epiderma growth factor receptor. Nature (Lond) 1986; 319: 230-4.

4. Akiyama T, Sudo Ch, Ogawara H, Toyoshima K, Yamamoto T. The product of the human c-erbB-2 gene: A 185-kilodalton glycoprotein with tyrosine kinase activity. Science 1986; 232: 1644-6.

 Bargmann CI, Weinberg RA. Increased tyrosine kinase activity associated with the protein encoded by the activated neu oncogene. Proc Natl Acad Sci USA 1988; 85: 5394-8.

 Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177-81.

7. Fukushige S-I, Matsubara K-I, Yoshida M, Sasaki M, Suzuki T, Semba K, Toyoshima K, Yamamoto T. Localization of an novel v-erbB-related gene, c-erbB-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Mol Cell Biol 1986; 6: 955-8.

8. Gusterson BA, Machin LG, Gullick WJ, Gibbs NM, Powles TJ, Elliott C, Ashley S, Monaghan P, Harrison S. c-erbB-2 expression in benign and malignant breast

disease. Br J Cancer 1988; 58: 453-7.

 Kameda T, Yasui W, Yoshida K, Tsujino T, Nakayama I, Ito M, Ito H, Tahara E. Expression of erbB2 in human gastric carcinomas: relationship between p185^{ERBB2} expression and the gene amplification. Cancer Res 1990; 50: 8002-9.

 Yonemura Y, Ninomiya I, Yamaguchi A, Fushida S, Kimura H, Ohoyama S, Miyazaki I, Endou Y, Tanaka M, Sasaki T. Evaluation of immunoreactivity for erbB-2 protein as a marker of poor short term prognosis in gastric cancer. Cancer Res 1991; 51: 1034-8.

11. Salmon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, Press MF. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707-12.

 Kern JA, Schwartz DA, Nordberg JE, Weiner DB, Greene MI, Torney L, Robinson RA. p185neu expression in human lung adenocarcinomas predicts shortened survival. Cancer Res 1990; 50: 5184-91.

13. Weiner DB, Nordberg J, Robinson R, Nowell PC, Gazdar A, Greene MI, Williams WV, Cohen JA, Kern JA. Expression of the neu gene-encoded protein (P185neu) in human non-small cell carcinomas of the lung. Cancer Res 1990; 50: 421-5.

 Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R, Soper JT, Dodge R, Clarke-Pearson DL, Marks P, McKenzie S, Yin S, Bast RC Jr. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 1990; 50: 4087-91.

 Natali PG, Nicotra MR, Bigotti A, Ventura I, Slamon DJ, Fendly BM, Ullrich A. Expression of the p185 na an B2 .es

S, ka Bin

ng ch toice

B, exor'C, ein the

G,)L, exval 90; ion

- encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer 1990; 45: 457-61.
- Shi T, Eaton AM, Ring DB. Selection of hybrid hybridomas by flow cytometry using a new combination of fluorescent vital stains. J Immunol Meth 1991; 141: 165-75.
- 17. Venter DJ, Tuzi NL, Kuman S, Gullick WJ. Overexpression of the c-erbB-2 oncoptrotein in human breast carcinomas: Immunohistological assessment correlates with gene amplification. The Lancet 1987; 11: 69-72.
- Thor AD, Schwartz LH, Koerner FC, et al. Analysis of c-erbB-2 expression in breast carcinoma with clinical follow-up. Cancer Res 1989; 49: 7147-52.
- Hsieh-Ma ST, Eaton AM, Shi T, Ring DB. In vitro cytotoxic targeting by human mononuclear cells and bispecific antibody 2B1, recognizing c-erbB-2 protooncogene product and Fcγ receptor III. Cancer Res 1992; 52: 6832-9.
- Weiner LM, Holmes M, Adams GP, La Creta F, Watts P, de Palazzo IG. A human tumor xenograft model of therapy with a bispecific monoclonal antibody targeting c-erbB-2 and CD16. Cancer Res 1993; 53: 94-100.

Received February 3, 1993 Accepted May 19, 1993

STIC-ILL

From:

Hunt, Jennifer

Sent:

Monday, February 25, 2002 11:44 AM

To:

STIC-ILL

Subject:

References for 08/349,489

Please send me the following references ASAP:

Journal of Experimental Medicine 175:217-225 (Jan. 1, 1992)

Int. J. Cancer 50:800-804 (1992)

Int. J. Cancer, Suppl. (1992), 7(Bispecific Antibodies Targeted Cell Cytotoxic.), 42-4

PROC AM ASSOC CANCER RES ANNU MEET. (1992) 33 (0), 344

INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, (1993 Oct-Dec) 8 (4) 233-9

Cancer Immunol. Immunother. (1994), 39(1), 41-8

Proceedings of the American Association for Cancer Research Annual Meeting, (1994) Vol. 35, No. 0, pp. 219

Thanks,

Jennifer Hunt Patent Examiner, Art Unit 1642 CM1-8D06 (mailbox 8E12) (703)308-7548

Hunt, Jennifer

From:

Hunt, Jennifer

Sent:

Monday, February 25, 2002 11:44 AM

To:

STIC-ILL

Subject:

References for 08/349,489

Please send me the following references ASAP:

Journal of Experimental Medicine 175:217-225 (Jan. 1, 1992)

Int. J. Cancer 50:800-804 (1992)

Int. J. Cancer, Suppl. (1992), 7(Bispecific Antibodies Targeted Cell Cytotoxic.), 42-4

PROC AM ASSOC CANCER RES ANNU MEET. (1992) 33 (0), 344

INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, (1993 Oct-Dec) 8 (4) 233-9

Cancer Immunol. Immunother. (1994), 39(1), 41-8

Proceedings of the American Association for Cancer Research Annual Meeting, (1994) Vol. 35, No. 0, pp. 219

Thanks,

Jennifer Hunt Patent Examiner, Art Unit 1642 CM1-8D06 (mailbox 8E12) (703)308-7548

ADONIS - Electronic Journal Services

Requested by

Adonis

Article title Antigen forks: bispecific reagents that inhibit cell growth by binding selected pairs of tumor antigens

Article identifier

034070049410036A

Authors

Ring_D_B Hsieh_Ma_S_T Shi_T Reeder_J

Journal title

Cancer immunology immunotherapy

ISSN 0340-7004
Publisher Springer
Year of publication 1994
Volume 39
Issue 1
Supplement 0
Page range 41-48
Number of pages 8

User name Cost centre Adonis Development

PCC

\$25.00

Date and time

Monday, February 25, 2002 12:52:56 PM

Copyright © 1991-1999 ADONIS and/or licensors.

The use of this system and its contents is restricted to the terms and conditions laid down in the Journal Delivery and User Agreement. Whilst the information contained on each CD-ROM has been obtained from sources believed to be reliable, no liability shall attach to ADONIS or the publisher in respect of any of its contents or in respect of any use of the system.

Cancer Immunol Immunother (1994) 39: 41-48

Antigen forks: bispecific reagents that inhibit cell growth by binding selected pairs of tumor antigens

David B. Ring, Sylvia T. Hsieh-Ma, Tim Shi, John Reeder

Department of Immunotherapeutics, Chiron Corporation, Emeryville, CA 94608, USA

Received: 25 July 1993/Accepted: 1 April 1994

Abstract. Bispecific antibodies of a new category, termed "antigen forks", were constructed by crosslinking antibodies that recognized pairs of distinct tumor cell surface antigens. At concentrations of 1-100 nM, several such forks inhibited the growth of human tumor cell lines bearing both relevant antigens. The same cells were not inhibited by unconjugated component antibodies, and the active conjugates did not inhibit the growth of human cell lines that expressed lower levels of relevant antigens. The three most active antigen forks all contained monoclonal antibody 454A12, which recognizes human transferrin receptor. This antibody was conjugated respectively to antibodies 113F1 (against a tumor-associated glycoprotein complex), 317G5 (against a 42-kDa tumor-associated glycoprotein), or 520C9 (against the c-erbB-2 protooncogene product). The 317G5-454A12 fork strongly inhibited the HT-29 and SW948 human colorectal cancer cell lines, while the 113F1-454A12 and 520C9-454A12 forks strongly inhibited the SK-BR-3 human breast cancer cell line and the 113F1-454A12 fork was also effective against SW948. By designing forks against antigens of incompatible function that are co-expressed at high levels on tumor cells but not on normal tissues, it may be possible to generate reagents that inhibit tumor growth with enhanced selectivity.

Key words: Bispecific antibodies - Tumor-associated antigens - Cell growth inhibition

Introduction

Many monoclonal antibodies recognizing human tumor cell surface antigens are now available. More often than not, binding of such antibodies to tumor cells has little effect on cell function, unless the antibody is linked to a cytotoxic

Correspondence to: D. B. Ring, Chiron Corporation, 4560 Horton Street, Emeryville, CA 94608, USA

moiety such as a drug, toxin or radioactive isotope. In some cases, antibody binding alone may initiate or block signal transduction, leading to a change in cell state, or may alter antigen turnover by enhancing or inhibiting endocytosis or changing the route of intracellular processing. The effect of antibody binding may vary according to valency. Binding of monovalent antibody fragments often has little or no effect, implying that antigen crosslinking significantly affects the consequences of binding.

Some antibodies that bind to cell surface antigens have direct effects on tumor cell growth. For instance, some monoclonal antibodies to the c-erbB-2 protooncogene product inhibit tumor cell proliferation in vitro and tumor xenograft growth in animal models [1, 13, 27-30]. Antibodies to transferrin receptor inhibit cell growth, alone [33, 35, 36] or in combination with the iron-chelating drug deferoxamine [14, 15, 37]. Antibodies to the Apo-1 antigen and the Fas oncogene product trigger apoptosis in a variety of cells, leading to programmed cell death [32, 39], and antibodies to P-glycoprotein have been reported to increase the drug sensitivity of multidrug-resistant tumor cells [8]. Such antiproliferative or cytotoxic effects on tumor cells may result from a number of mechanisms, including blockage of growth signals or down modulation of growth factor receptors, triggering of programmed death or differentiation signals, blockage of nutrient transport, or blockage of toxin excretion.

While examples can be found of antibodies that strongly inhibit tumor growth, and also of antibodies that are highly selective for tumors as opposed to normal tissues, the availability of antibodies that meet both criteria is limited. To circumvent this scarcity, we speculated that bispecific antibodies recognizing two distinct tumor antigens with different properties would be more likely to disrupt cellular function than a single antibody, and could also be more tumor-selective if antigens with little overlap of expression on normal tissues were chosen. Because of their ability to bind two antigens simultaneously, and to distinguish them from bispecific antibodies that direct labels or effector moieties to a target cell, we refer to such reagents as

"antigen forks".

The most obvious way to construct an antigen fork is as a bispecific antibody (although forks could also be built using ligand or receptor subunits, peptides or even small molecules as binding elements). Bispecific antibodies may be chemically synthesized as antibody heteroconjugates by covalently attaching two monoclonal antibodies [12] or monoclonal antibody fragments [4, 7] with different antigenic specificities. Alternatively, bispecific antibodies may be produced from hybrid hybridomas [20, 21, 24]. In order to test whether any "antigen fork" bispecific antibodies will actually inhibit tumor cell growth, we have constructed simple chemically crosslinked whole-antibody conjugates from a set of six monoclonal antibodies recognizing distinct tumor surface antigens.

Materials and methods

Antibodies and cell lines. Murine IgG monoclonal antibodies 2G3, 113F1, 260F9, 317G5, 454A12 and 520C9 were raised by immunizing Balb/c mice with human breast cancer membranes or cell lines [5]. The isotype, immunogen and antigenic specificity of these antibodies is shown in Table 1, along with comments on antigen function (if known). Cell lines were obtained as follows: the HT-29 human colorectal and SK-BR-3 human breast cancer cell lines as gifts from the late Dr. J. Fogh of the Sloan Kettering Institute for Cancer Research; the HBL-100 human mammary cell line from the Mason Research Institute (collection now transferred to the American Type Culture Collection); the SW948 human colorectal cancer cell line from Dr. Lonis M. Weiner of the Fox Chase Cancer Center; the SK-OV-3 human ovarian cancer cell line from the American Type Culture Collection.

Flow cytometry. Samples containing 1×10⁶ cells were washed with phosphate-buffered saline (PBS) containing 1% bovine serum albumin (PBS/BSA) and incubated for 30 min at 4° C in PBS/BSA containing first antibody at a final dilution of 20 μg/ml. After washing three times in PBS/BSA, the cells were incubated with fluorescein-isothiocyanate(FITC)-conjugated F(ab')2 fragment of goat anti-(mouse IgG Fc) (Jackson ImmunoResearch, West Grove, Pa.) for another 30 min at 4° C. The last wash contained 50 μg/ml propidium iodide to stain dead cells. Samples were analyzed on an EPICS V cell sorter (Coulter Electronics. Hialeah, Fla.). Dead cells and cellular debris were eliminated based on their forward-angle light scatter and red fluorescence. At least 20000 live cells were scored for each sample and the intensity of green fluorescence was measured on a logarithmic scale.

SPDP derivatization of antibodies. The two antibodies to be coupled were separately concentrated to 10–20 mg/ml using a Centricon 100 apparatus (Amicon Inc., Beverly, Mass.), and dialysed into coupling buffer (100 mM KPO4, 100 mM NaCl, pH 7.5). Each antibody was stirred for 3 h at room temperature with a sixfold molar excess of SPDP [N-succinimidyl-3-(2-pyridyldithio)propionate; Pierce, Rockford, Ill.] pre-dissolved at 6.25 mg/ml in dimethylsulfoxide before adding to the antibody solution. Excess SPDP was removed by chromatographing the antibody solutions over PD10 columns (Pharmacia Biotech, Piscataway, N.J.). Antibody A was chromatographed in acetate buffer (100 mM sodium acetate, 100 mM NaCl, pH 4.5) and antibody B in PBS (20 mM NaPO4, 150 mM NaCl, i mM EDTA, 0.02% NaN3, pH 7.2). In either case, fractions were monitored by absorbance at 280 nm and protein-containing fractions were pooled.

Antibody coupling. Derivatized antibody A in acetate buffer was brought to 40 mM dithiothreitol (Sigma Chemical, St. Louls, Mo.) by addition of 24 mg/ml dithiothreitol in acetate buffer, and stirred 30 min at room temperature. It was then chromatographed on a PD10 column in PBS to remove excess dithiothreitol, and peak fractions were again pooled on the basis of their absorbance at 280 nm. Antibody A was then immediately combined with antibody B (in 1:1 molar ratio), and coupling was allowed to proceed for 4 h at room temperature. At the end of this incubation, the reaction was stopped and excess free thiol groups were blocked by addition of 100 mg/ml iodoacetamide (1 mg iodoacetamide to a reaction containing 10 mg each antibody).

Heteroconjugate purification. The reaction mixture was centrifuged for 30 s at 12 000 rpm in an Eppendorf microfuge, applied to a Bio-Sil TSK400 HPLC column (BloRad, Richmond, Callf.) equilibrated in PBS, and eluted at room temperature with PBS at a flow rate of 0.7 ml/min, collecting 0.375-ml fractions and monitoring absorbance at 280 nm. Fractions were analyzed by nonreduced sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) on 4%-15% gradient Phast gels (Pharmacia). Fractions containing monomeric immunoglobulin were discarded, and fractions containing dimers and low oligomers were pooled for further use.

MTT assay for cell growth. Samples containing 5000-10000 target cells in 100 µl growth medium (isoue's medium +10% heat-inactivated fetal bovine serum +2 mM glutamine +50 µg/ml gentamycin) were seeded in triplicate in 96-well flat-bottom tissue-culture plates, and incubated overnight at 37° C in 5% CO₂. Serial twofold dilutions of antibodies were made in the wells leaving 100 µl final volume per well, and the plates were incubated for 3-6 days. An MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay kit (CellTiter 96, no. G+100, Promega Corp., Madison, Wis.) was used to evaluate the number of viable cells remaining in the wells. A 15-µl sample of dye solution was added per well and the plate was incubated

Table 1. Antigen fork component antibodies

Antibody	Immunogen	Isotype	Antigen	Function Modulation of adhesion?		
2G3	Breast cancer membranes	IgG1	High-molecular-mass mucin			
113FI	MCF-7 breast cancer cell line	JgG3	40/60/100/200 kDa glyco- protein complex	Unknown		
260F9	Breast cancer membranes from liver metastasis	TgGl	55 kDa glycoprotein	Unknown .		
317G5	BT-20 breast cancer cell line	1gG1	42 kDa glycoprotein	Unknown		
454A12	SK-BR-3 breast cancer cell line	IgGl	Human transferrin receptor	Iron transport		
520C9	Breast cancer membranes	IgG1	c-erbB-2 protooncogene product (heregulin)	Growth/differentiation factor receptor		

Six previously characterized murine monoclonal antibodies raised against human breast cancer [3, 5] were chosen for their recognition of distinct tumor-associated antigens

Fig. 1a, b. Effects of antigen forks and unconjugated component antibodies on cell growth. HT-29 cells (a) or SK-BR-3 cells (b) were seeded at 5000 cells/well and serial dilutions of antigen fork heteroconjugates or component antibodies were tested for anti-proliferative effects in 6-day MTT growth assays. Dilutions of sodium azide were included as a cytotoxic positive control. Results are expressed as a percentage of control cell growth in the absence of any antibody or conjugate, and error bars indicate 95% confidence intervals for mean growth data

for 4 h at 37° C in 5% CO₂ before the addition of 100 µl solubilization solution. Plates were read for absorbance at 570/630 nm on an enzymelinked immunosorbent assay plate reader after all blue crystals had dissolved (typically 1-5 days at room temperature in a moist chamber). Error bars on MTT data represent 95% confidence intervals for the means of replicate data.

Results

Cell line binding by component antibodies

Six monoclonal antibodies were selected as potential components for antigen forks (Table 1). These antibodies

recognize a high-molecular-mass mucin, several smaller glycoproteins or glycoprotein complexes, the c-erbB-2 protooncogene product, and human transferrin receptor. Three cell lines were chosen for initial testing and two more were added in later experiments. HBL-100 is a non-tumorigenic human mammary epithelial cell line that expresses low to undetectable levels of the antigens recognized by our antibody set. It may be considered as a surrogate for normal cells lacking some tumor-associated antigens and expressing others at low levels. HT-29, SK-BR-3, SK-OV-3 and SW948 are, respectively, colorectal, breast, ovarian and colorectal human cancer cell lines

Table 2. Cell line binding of antigen fork component antibodies

Cell line	mlg	2G3	113F1	260F9	317G5	454A12	520C9
HBL-100	0 (3)	+ (74)	+ (87)	± (34)	0 (5)	+ (77)	± (14)
HT-29	0 (6)	± (16)	± (15)	0 (7)	++ (171)	+ (59)	± (38)
SK-BR-3	± (11)	+ (81)	++ (141)	++ (138)	++ (133)	+ (78)	++ (171)
SK-OV-3	0 (3)	+ (66)	0 (3)	+ (78)	+ (70)	+ (61)	++ (165)
SW948	0 (5)	± (26)	++ (123)	0 (9)	++ (175)	+ (53)	± (38)

Binding of six chosen monoclonal antibodies or normal polyclonal mouse immunoglobulin (mlg) to the HBL-100 human mammary epithelial cell line and four human tumor cell lines was evaluated by flow cytometry as described in Materials and methods. Results are categorized as negative (0; mean fluorescence intensity = 0-10),

weakly positive (±; MFI = 11-50), moderately positive (+; MFI = 51-100) or strongly positive (++; MFI > 100). The actual mean fluorescence intensity in channel number is given in parentheses, with 25 channels equal to a doubling in signal intensity

chosen for higher expression levels of selected antigens. Table 2 presents mean fluorescence intensity binding data for the six antibodies on these cell lines, as determined by flow cytometry.

Preparation of antigen fork heteroconjugates

Antigen fork heteroconjugates were produced by SPDP crosslinking, and separated from uncoupled monomeric antibodies by size-exclusion HPLC. Fractions were analyzed by nonreduced SDS-PAGE; those containing large amounts of monomeric antibody or higher oligomers were discarded and those containing primarily material of antibody heterodimer size were pooled for use. Fork preparations unavoidably contained a certain amount of antibody trimer and tetramer, so an average fork molecular mass of approximately 400 000 Da has been estimated for the purpose of calculating molar concentrations.

Effects of antigen forks versus component antibodies on cell growth

The ability of monoclonal antibodies or forks to inhibit growth of the HBL-100, SK-BR-3 and HT-29 cell lines was

studied using a 6-day MTT growth assay. None of the cell lines was significantly inhibited by any of the six unconjugated antibodies at concentrations up to 100 nM, and none of the antigen forks significantly inhibited the growth of the non-tumorigenic, low-antigen-expressing HBL-100 line (data not shown). However, the 317G5-454A12 antigen fork significantly inhibited HT-29 colorectal cancer cells (25%-45%) at fork concentrations of $0.8-20 \mu g/ml$ (2-50 nM). Figure 1 a compares the 317G5-454A12 fork to its unconjugated component antibodies. Using SK-BR-3 breast cancer cells, the 113F1-454A12 fork caused signifleant inhibition (56%-78%) at $0.8-20~\mu g/ml$, and the 520C9-454A12 fork caused significant inhibition (52%-72%) at 0.16-20 µg/ml. The inhibition curves for these forks and their parent antibodies are shown in Fig. 1 b. Three other forks (2G3-454A12, 2G3-520C9 and 260F9-454A12) caused lesser (up to 39%), but significant inhibition of SK-BR-3 cells at fork concentrations of $0.8-20 \mu g/ml$ (data not shown).

Results from additional MTT assays are summarized in Table 3, which also includes data from experiments on the SW948 colorectal and SK-OV-3 ovarian cancer cell lines. Results representing more than 30% inhibition of cell growth are highlighted. The three forks chosen for presentation in Fig. 1 remained the most consistently active. The 113F1-454A12 fork caused more than 30% growth

Table 3. Growth of cell lines in the presence of antigen forks

	Assay	Days	ays Fork	Growth (% control)														
	no.		(nM)	G1	G2	G3	G 4	G5	12	13	14	15	23	24	25	34	35	45
HBL-100	F3	3	50				100		****		88			87		98		94
	F4	3	50	102	126	99	82	88			87			75		91		99
	F5	5	50	98	103	100	103	101	100	99	93	103		98		98		103
	F6	3	50	105	107	109	111	95	98	104	87	97		110		92		94
	F7	6	50	92	106	98	104	95	111	101	93	101		101		103		112
	F8a	6	50	82			91	94	97	99	89	99	97	106	108	100	99	95
	F8b	6	<i>5</i> 0						99	95		96						
SK-BR-3	F1	3	62.5				97				66			81		87		68
O14-210	F2	3.75	50			•	99				68			96		101		78
	F3	3	50				93				57			92		116		65
	F4	3	50	88	93	105		99										
	F5	5	50	77	101	100	94	96	94	75	46	77		86		94		58
	F6	3	50	67	107	103	108	103	76	82	62	82		103		93		65
	F7	6	50	62	100	99	65	74	74	76	25	73		64	0.	80		31
	F8a	6	50	64			76	84	72	67	25	55	. 82	63	70	82	64	40
	F8b	6	50						98	104		66						
SK-OV-3	F9	6	25	99	100	99	78	84	89	98	68	97	90	81	99	81	89	66
	F10	6	50				95				85			89		103		85
HT-29	F3	3	50				102				92			101		66		- 100
111-27	F4	3	50	105	111	105	103	101			72			95		64	<u> </u>	92
	F5	5	50	97	107	113	101	95	105	100	84	106		93		48		104
	F6	3	50	101	103	94	102	104	100	97	89	102		100		81		87
	F7	6	50	94	99	103	110	107	106	91	91	105		100		57		106
	F8a	6	50	103			103	96	98	109	102	103	106	104	.114	52	114	110
	F8b	6	50		,				106	104		102						
SW948	F9	6	25	103	101	96	107	109	107	102	54	106	96	104	102	40	102	101
	F10	6	25		7						36					43		

Fifteen antigen forks built from six monoclonal antibodies were tested in 11 MTT assays. Fork names are abbreviated as two-letter codes in which G stands for 2G3, 1 for 113F1, 2 for 260F9, 3 for 317G5, 4 for 454A12 and 5 for 520C9; e.g., "34" stands for 317G5-454A12 fork.

Assay results are shown as percentages of control growth in the absence of any fork or antibody treatment. Results representing more than 30% inhibition of cell growth are shown in bold

Fig. 2. Effects of antigen forks compared to single or combined component antibodies. Component antibodies, equimolar mixtures of component antibodies, or corresponding antibody heteroconjugates were tested for anti-proliferative effects in 7-day MTT growth assays. The 113F1-454A12 and 317G5-454A12 forks and their components were tested on SW948 colorectal cancer cells seeded at 5000 cells/well, while the 520C9-454A12 fork and its components were tested on SK-BR-3 breast cancer cells seeded at 10 000 cells/well. All antibodies were used at 20 μg/ml (133 nM); the 113F1-454A12 fork was used at 10 μg/ml (approximately 25 nM) and the other two forks at 20 μg/ml (approximately 50 nM). Results are expressed as a percentage of control cell growth in the absence of any antibody or conjugate, and *error bars* indicate 95% confidence intervals for the means of growth data

inhibition in 7/7 experiments with SK-BR-3, 2/2 experiments with SW948 and 1/2 experiments with SK-OV-3. The 317G5-454A12 fork caused more than 30% inhibition in 5/6 assays with HT-29 and 2/2 assays with SW948, while the 454A12-520C9 fork gave more than 30% inhibition in 6/7 tests with SK-Br-3 and 1/2 tests with SK-OV-3. Certain other forks showed lower or less consistent levels of activity against the SK-BR-3 cell line, e.g., 2G3-113F1, 2G3-454A12, 113F1-260F9, 113F1-317G5, 113F1-520C9, 260F9-454A12 and 317G5-520C9.

The inhibitory effects of 113F1-454A12, 317G5-454A12 and 520C9-454A12 depended on covalent conjugation of the forks. Figure 2 compares cell growth in the presence of antigen fork heteroconjugates, single-component antibodies, or equimolar mixtures of component antibodies. When 520C9-454A12 and its components were tested on SK-BR-3 cells, only the antigen fork significantly

affected growth (69% inhibition). On SW948 cells, component antibody 317G5 alone or combined with 454A12 had no significant effect, and single-component antibodies 113F1 and 454A12 caused marginally significant effects at 12% and 11% inhibition respectively. The combination of 113F1 and 454A12 caused more significant inhibition (20%), but much less than that observed with the 113F1-454A12 fork (71%) or the 317G5-454A12 fork (39%).

Since the three most active antigen forks all contained antibody 454A12 against human transferrin receptor, and since antibodies to transferrin receptor have been reported to inhibit cell growth [33, 35, 36], we compared the three active fork heteroconjugates with a similar SPDP-crosslinked 454A12-454A12 homoconjugate (Table 4). While the 454A12 homoconjugate slightly affected the growth of HBL-100 mammary epithelial cells (7% inhibition; marginally significant at the 95% confidence level), it had no significant effect on the growth of HT-20 or SK-BR-3 cancer cells. As expected from previous experiments, HT-29 cells were significantly affected by 113F1-454A12 and 317G5-454A12 (56% and 46% inhibition, respectively), and SK-BR-3 cells were significantly affected by 520C9-454A12 fork (50% and 68% inhibition in two experiments)

Discussion

We have described a set of "antigen forks" constructed as antibody heteroconjugates. Binding of an antigen fork to a tumor cell is expected to crosslink heterologously two distinct cell surface antigens. Crosslinking of surface markers (as opposed to monovalent binding) frequently affects antigen turnover and/or signal transduction. The effects of an antigen fork may be relatively selective if crosslinking occurs only on cells having both surface antigens, and is not experienced by bystander cells exhibiting only one of the antigens. Furthermore, if the antigens crosslinked have different biological functions, one or both functions may be impaired by the crosslinking, leading to cell death or inhibition of cell growth.

Our antigen forks were generated from a set of mouse monoclonal antibodies recognizing six different human tumor surface antigens. Antibody 2G3 (also called W1) recognizes a high-molecular-mass mucin expressed on carcinoma cells as well as normal mammary epithelium and milk fat globule membranes [17]. Such mucins are

Table 4. Growth inhibition by antigen forks compared to 454A12 homoconjugate

Conjugate	Mean growth (% con	Mean growth (% control)								
	HBL-100	HT-29	SK-BR-3, Expt. 1	SK-BR-3, Expt. 2						
Medium only	100.0±2.4	100.0±3.7	100.0 ± 1.9	100.0 ± 3.5						
113F1-454A12	99.1 ± 3.2	44.4±7.9*	97.3 ± 25.4	ND						
317G5-454A12	95.3 ± 2.1	54.1 ± 9.5*	104.0±4.5	ND						
454A12-454A12	93.2±4.2*	84.2±17.0	97.9 ± 3.0	97.7 ± 4.4						
520C9-454A12	104.5±21.9	85.2 ± 1.7*	50.3 ± 4.9*	32.4±1.3*						

Cell lines were grown 6 days with or without 10 µg/ml antigen fork heteroconjugate or 454A12-454A12 homoconjugate and growth was measured by MTT assay. Results shown are mean growth ±95% confidence interval of mean from triplicate wells containing antibody

conjugate, expressed as a percentage of control growth in wells without conjugate. ND, not determined

* Results where 95% confidence intervals do not overlap with those for control growth

thought to prevent unwanted cell adhesion and to mediate adhesion via carbohydrate/selectin interactions [9]. While antibodies that bind mucins are in general poorly endocytosed, 2G3 may be exceptional, since its ricin A chain conjugate was moderately cytotoxic to mucin-expressing tumor cell lines [3].

Antibodies 113F1, 260F9 and 317G5 recognize smaller cell-surface glycoproteins found on a wide range of carcinomas and on secretory epithelial structures in a number of normal tissues. The functions of the 113F1 and 260F9 antigens are unknown. Antibody 317G5 binds the pan-epithelial glycoprotein recognized by monoclonal antibodies 17-1A, KS1/4, 323/A3 and GA733; the function of this antigen is also unknown, although sequence homologies to other proteins have been identified [2]. Studies with immunotoxins constructed from 113F1, 260F9 and 317G5 suggest that the antigens recognized by these antibodies are endocytosed at moderate rates [3].

Antibody 454A12 recognizes human transferrin receptor, which has a central role in cellular iron uptake [31]. Transferrin receptor is found at high levels in many tumors, and is also expressed on essentially all rapidly dividing normal cells [16]. It is rapidly and efficiently endocytosed and recycled intact to the cell surface [31, 34].

Finally, antibody 520C9 recognizes an extracellular epitope of the c-erbB-2 (HER2/neu) human protooncogene product [25, 26]. This antigen is the most nearly tumor-restricted in the set, occurring at amplified levels in many breast, colorectal, ovarian and other carcinomas, but on very few normal human tissues [22, 25]; its rate of endocytosis, on the basis of immunotoxin experiments, was moderate [3]. The c-erbB-2 product has been characterized as a growth or differentiation factor receptor involved in signal transduction [10, 18, 19, 23, 38]. Although certain antibodies to c-erbB-2 have been reported to inhibit the growth of cancer cells simply by binding [1, 13, 27–30], we have not observed strong growth inhibition with antibody 520C9.

While some of the above antigens are poorly characterized, and none is perfectly restricted to tumors, they constitute six distinct cell-surface molecules, presumably representing a number of different functions, at least some of which may be sensitive to heterologous crosslinking caused by an antigen fork. When we constructed and tested the 15 possible antigen forks from our set of six antibodies, three forks had particularly strong anti-growth effects against tumor cells. The 113F1-454A12 and 520C9-454A12 forks inhibited SK-BR-3 breast cancer cells, and 113F1-454A12 also inhibited SW948 colorectal cancer cells. The 317G5-454A12 fork was effective against both colorectal cancer cell lines. HT-29 and SW948, but not against SK-BR-3. In each case, one target antigen was strongly expressed on the target cells and the other target antigen (human transferrin receptor) was moderately expressed. Significant growth inhibition was seen at fork concentrations of 0.4-40 µg/ml, or approximately 1-100 nM. Unconjugated component antibodies had little or no effect within the same concentration range. As expected, forks did not affect the growth of the non-tumorigenic HBL-100 mammary line, which expresses low to negligible levels of the relevant antigens.

All three of the most active forks contain an antibody against transferrin receptor, and each also recognizes a cellsurface glycoprotein. Experiments with radiolabeled antibodies and forks indicate that the three highly active forks are endocytosed into their optimal target cells less rapidly than transferrin receptor antibody 454A12, but more rapidly than their other component antibodies (T. Shi, J. Reeder and D. Ring, unpublished data). This suggests that the mechanisms of these three forks may be related either to interference with normal transferrin receptor cycling (and thus with iron transport) or to removal of the other antigens from the cell surface. In the case of 520C9-454A12, the second antigen is the c-erbB-2 growth factor receptor, and its removal may interfere with signal transduction. Although unconjugated antibodies to transferrin receptor have been reported to inhibit the growth of certain cells [33, 35, 36], neither unconjugated 454A12 nor its SPDP-linked homoconjugate was nearly as inhibitory as the 113F1-454A12 and 317G5-454A12 forks to HT-29 cells or the 520C9-454A12 fork to SK-BR-3 cells. The low activity of the 454A12 homoconjugate suggests that the higher activity of the heteroconjugate forks involves their second antigenic specificity, and is not simply a result of increasing the valency or avidity of 454A12 via conjugation.

For the two colorectal cancer cell lines tested, sensitivity to antigen forks correlated with higher levels of antigen expression. The only fork active against HT-29 was 317G5-454A12, and the component antibodies of this fork were the only ones to bind HT-29 (317G5) or moderately (454A12). The two forks active against SW948 were 113F1-454A12 and 317G5-454A12. In this case, 113F1 and 317G5 bound SW948 cells strongly, 454A12 bound moderately, and the other component antibodies bound weakly or not at all.

For SK-BR-3 breast cancer cells, the most consistently active forks were 113F1-454A12 and 520C9-454A12. In both of these combinations, the first component antibody bound SK-BR-3 strongly and the second bound moderately. Interestingly, the 317G5-454A12 fork did not inhibit growth of SK-BR-3 cells despite the facts that (a) 317G5 bound SK-BR-3 strongly and 454A12 bound moderately, and (b) the same fork preparation was active against the HT-29 and SW948 lines, which showed comparable high/ moderate levels of component antibody reactivity.

Several forks failed to inhibit growth of cell lines that reacted strongly to moderately with both their component antibodies (e.g. 113F1-317G5 on SW948 cells or 260F9-317G5, 260F9-520C9, 317G5-454A12 and 317G5-520C9 on SK-BR-3 cells). We assume that the 317G5-454A12 preparation contained active bispecific molecules because it inhibited cell lines (HT-29, SW948) that were not inhibited by its component antibodies or by the 454A12 homoconjugate. In other cases where no cell line was strongly inhibited, we cannot rule out the possibility that apparently inactive forks were actually damaged during SPDP conjugation, since we screened only for anti-growth effects and did not separately measure the binding ability of our antibody heteroconjugates after crosslinking.

While we expect antigen forks primarily to crosslink antigens on the same cell, it is possible that a fork could cause cell complexing by binding antigens on different cells. Such complexing might extend to cells that do not

simultaneously express both antigens, and could conceivably affect their growth. We do not believe that cell/cell complexing was a significant factor in the results presented above. The cells used in our assays were adherent, and few cells were in contact in the lightly seeded wells at the time bispecific antibodies were added. Flow-cytometric experiments (data not shown) indicated that our forks at 20 µg/ml had only a limited ability to complex suspended SW948 or SK-BR-3 cells, which did not correlate with their ability to inhibit growth of these cell lines at considerably lower fork concentrations. The highly inhibitory 317G5-454A12 and 520C9-454A12 forks failed to complex SW948 cells and SK-BR-3 cells respectively. The highly inhibitory 113F1-454A12 fork did complex SW948 cells, but so did the inactive 113F1-317G5 fork, to a similar extent.

In vivo, we believe that heterologous crosslinking of antigens on the same cell will be more important than bridging of antigens on different cells. Cell/cell bridging would be limited to contact zones of different solid-tissue cell types, or to interactions of circulating blood cells with solid tissues. In many situations, steric and kinetic factors may disfavor binding of an antibody molecule to two cells rather than two antigens on the same cell. Nevertheless, the possibility of cell bridging deserves continued attention, since it could undermine any enhanced tumor selectivity of antigen forks, and might result in effects on normal tissues that express only one antigen.

While several of the forks we screened showed strong effects on tumor cell proliferation, none completely inhibited growth or killed all tumor cells at the concentrations used, although greater inhibition was observed in longer MTT assay periods. In subsequent experiments, we have observed that combinations of antigen forks with small-molecule chemotherapeutic drugs, including cisplatin and the iron chelater deferoxamine, provide synergistic and complete killing of target tumor cells (Sylvia T. Hsieh-Ma, unpublished data). Furthermore, monovalent antigen forks constructed by linking Fab' fragments instead of whole antibodies retain activity (Tim Shi and Sylvia T. Hsieh-Ma, unpublished data), which has led us to begin making fork-secreting hybrid hybridomas.

The three active antigen forks identified in this paper may be interesting as prototypes of cancer therapeutic agents, since their tumor selectivity is likely to be greater than that of their component antibodies. The 520C9-454A12 fork is particularly attractive, since the c-erbB-2 antigen recognized by 520C9 already has a very restricted normal tissue distribution [22, 25], which does not overlap with the normal tissue structures that express high levels of transferrin receptor [6, 11]. Antibodies 113F1 and 317G5 bind considerably more normal tissue structures than 520C9 (unpublished data), but again, there is little overlap between the secretory epithelial structures recognized by these antibodies and sites of high transferrin receptor expression.

References

- Bacus SS, Stancovski I, Huberman E, Chin D, Hurwitz E, Mills GB, Ullrich A, Sela M, Yarden Y (1992) Tumor-inhibitory monoclonal antibodies to the HER2/neu receptor induce differentiation of human breast cancer cells. Cancer Res 52: 2580-2589
- Bergsagel PL, Victor-Kobrin C, Timblin CR, Trepel J, Kuehl WM (1992) A murine cDNA encodes a pan-epithelial glycoprotein that is also expressed on plasma cells. J Immunol 148: 590-596
- Bjorn MJ, Ring DB, Frankel AE (1985) Evaluation of monoclonal antibodies for the development of breast cancer immunotoxins. Cancer Res 45: 1214-1221
- Brennan M, Davison PF, Paulus H (1985) Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229: 81-83
- Frankel AE, Ring DB, Tringale F, Hsieh-Ma ST (1985) Tissue distribution of breast cancer associated antigens defined by monoclonal antibodies. J Biol Response Mod 4: 273-286
- Gatter KC, Brown G, Trowbridge IS, Woolston R-E, Mason DY (1983) Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 36: 539-545
- Glennie MJ, McBride HM, Worth AT, Stevenson GT (1987)
 Preparation and performance of bispecific F(ab' gamma)2 antibody containing thioether-linked Fab' gamma fragments. J Immunol 139: 2367-2375
- Hamada H, Tsuruo T (1986) Functional role for the 170- to 180kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies. Proc Natl Acad Sci USA 83: 7785-7789
- Hitkens J, Ligtenberg MJL, Vos HL, Litvinov SV (1992) Cell membrane-associated mucins and their adhesion-modulating property. Trends Biochem Sci 17: 359-363
- Huang SS, Huang JS (1992) Purification and characterization of the newlerbB2 ligand-growth factor from bovine kidney. J Biol Chem 267: 11508-11512
- Jefferies WA, Brandon MR. Hunt SV, Williams AF. Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312: 162-163
- Karpovsky B, Titus JA, Stephany DA, Segal DM (1984) Production of target-specific effector cells using hetero-cross-linked aggregates containing anti-target cell and anti-Pc gamma receptor antibodies. J Exp Med 160: 1686-1701
- Kasprzyk PG, Song SU, Di FP, King CR (1992) Therapy of an animal model of human gastric cancer using a combination of antierbB-2 monoclonal antibodies. Cancer Res 52: 2771-2776
- 14. Kemp JD, Smith KM, Kanner LJ, Gomez F, Thorson JA, Naumann PW (1990) Synergistic inhibition of lymphoid tumor growth in vitro by combined treatment with the iron chelator deferoxamine and an immunoglobulin G monoclonal antibody against the transferrin receptor. Blood 76: 991-995
- Kemp JD, Thorson JA, Stewart BC, Naumann PW (1992) Inhibition of hematopoietic tumor growth by combined treatment with deferoxamine and an IgG monoclonal antibody against the transferrin receptor: evidence for a threshold model of iron deprivation toxicity. Cancer Res 52: 4144-4148
- Lazarus AH, Baines MG (1985) A rapid and efficient microtechnique for the analysis of functional transferrin receptors on tumor cells. J Immunol Methods 79: 213-221
- Linsley PS, Ochs V, Laska S, Horn D, Ring DB, Frankel AE. Brown JP (1986) Elevated levels of a high molecular weight antigen detected by antibody W1 in sera from breast cancer patients. Cancer Res 46: 5444-5450
- Lupu R, Colomer R, Zugmaier G, Sarup J, Shepard M, Slamon D. Lippman ME (1990) Direct interaction of a ligand for the erbB2 oncogene product with the EGF receptor and p185erbB2. Science 249: 1552-1555
- Lupu R, Dickson RB, Lippman ME (1992) The role of erbB-2 and its ligands in growth control of malignant breast epithelium. J Steroid Biochem Mol Biol 43: 229-236

- Milstein C, Cuello AC (1983) Hybrid hybridomas, their use in immunohistochemistry. Nature 305: 537-540
- Milstein C, Cuello AC (1984) Hybrid hybridomas, the production of bi-specific monoclonal antibodies. Immunol Today 5: 299-304
- Natali PG, Nicotra MR, Bigotti A, Venturo I, Slamon DJ. Fendly BM, Ullrich A (1990) Expression of the p185 encoded by HER2 oncogenen in normal and transformed human tissues. Int J Cancer 45: 457-461
- Peles E, Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG, Levy RB, Yarden Y (1992) Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 69: 205-216
- Reading CL (1984) Procedures for in vitro immunization and monoclonal antibody production. In: Baldwin TH, Allison JP (eds) Hybridomas and cellular immortality. Plenum Press, New York, p 235
- 25. Ring DB, Kassel JNA, Hsieh-Ma ST, Bjorn MJ, Tringale F, Eaton AM, Reid SA, Frankel AE, Nadji M (1989) Distribution and physical properties of BCA200, a 200 000 Mr glycoprotein selectively associated with human breast cancer. Cancer Res 49: 3070-3080
- Ring DB, Clark R, Saxena A (1991) Identity of BCA200 and c-erbB-2 indicated by reactivity of monoclonal antibodies with recombinant c-erbB2. Mol Immunol 28: 915-917
- 27. Shepard HM, Lewis GD, Sarup JC, Fendley BM, Maneval D, Mordenti J, Figari 1, Kotts CE, Palladino MJ, Ullrich A, et al (1991) Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J Clin Immunol 11: 117-127
- Stancovski I, Hurwitz E, Leitner O, Ullrich A, Yarden Y, Sela M (1991) Mechanistic aspects of the opposing effects of monoclonal antibodies to the arbB2 receptor on tumor growth. Proc Natl Acad Sci USA 88: 8691-8695
- Stancovski I, Peles E, Ben LR, Lemprecht R, Kelman Z, Goldman MR, Hurwitz E, Bacus S, Sela M, Yarden Y (1992) Signal

- transduction by the new/erbB-2 receptor: a potential target for antitumor therapy. J Steroid Biochem Mol Biol 43: 95-103
- Tagliabue E, Centis F, Campiglio M, Mastroianni A, Martignone S, Pellegrini R, Casalini P, Lanzi C, Menard S, Colnaghi MI (1991) Selection of monoclonal antibodies which induce internalization and phosphorylation of p185HER2 and growth inhibition of cells with HER2/neu gene amplification. Intl J Cancer 47: 933-937
- Thorstensen K, Romslo I (1990) The role of transferrin in the mechanism of cellular iron uptake. Biochem J 271: 1-10
- Trauth BC, Klas C, Peters AMJ, Matzku S, Moller P, Falk W, Debatin K-M, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301-305
- Trowbridge IS (1989) Transferrin receptor as a potential therapeutic target. Prog Allergy 45: 121-146
- Trowbridge IS (1991) Endocytosis and signals for internalization.
 Curr Opin Cell Biol 3: 634-641
- Trowbridge IS, Lopez F (1982) Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro. Proc Natl Acad Sci USA 79: 1175
- Trowbridge IS, Lesley J, Schulte R (1932) Murine cell surface transferria receptor: studies with an anti-receptor monoclonal antibody. J Cell Physiol 112: 403-410
- White S, Taetle R, Seligman PA, Rutherford M, Trowbridge IS
 (1990) Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo:
 evidence for synergistic antiproliferative effects. Cancer Res 50:
 6296-6301
- Yarden Y, Peles E (1991) Biochemical analysis of the ligand for the neu oncogenic receptor. Biochemistry 30: 3543-3550
- Yonehara S, Ishii A, Yonehara M (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169: 1747-1756

From:

Hunt, Jennifer

Sent: To:

Monday, February 25, 2002 11:44 AM

STIC-ILL

Subject:

References for 08/349,489

Please send me the following references ASAP:

Journal of Experimental Medicine 175:217-225 (Jan. 1, 1992)

Int. J. Cancer 50:800-804 (1992)

Int. J. Cancer, Suppl. (1992), 7(Bispecific Antibodies Targeted Cell Cytotoxic.), 42-4

PROC AM ASSOC CANCER RES ANNU MEET. (1992) 33 (0), 344

INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, (1993 Oct-Dec) 8 (4) 233-9

Cancer Immunol. Immunother. (1994), 39(1), 41-8

Proceedings of the American Association for Cancer Research Annual Meeting, (1994) Vol. 35, No. 0, pp. 219

Thanks,

Jennifer Hunt Patent Examiner, Art Unit 1642 CM1-8D06 (mailbox 8E12) (703)308-7548 1305

A Phase I clinical trial in cancer patients with a new monoclonal antibody (MAb), FC-2.15. Mordoh J., Silva C., Alberellos M. & Kairryama C. Instituto de Investigaciones Bioquimicus "Fundacion Campomar" and Instituto Alexander Fleming, Buenos Aires. Argentina.

PC-2.15 is a new martine IgM MAb that recognizes previously undescribed antigens present in proliferating breast cancer cells and normal peripheral granulocytes. A Phase I clinical trial was performed in 10 patients with advanced cancer (breast-4, colon=1, melanoma=2, lung= 1, medullary thyroid=1, skin epidermoid curcinoma=1). PC-2.15 was administered by i.v. infusion every other day; nine patients received 4 infusions and one patient 3 infusions. One patient received 2 cycles of treatment. Total doses of PC-2.15 ranged between 2.4 and 5.1 mg/kg. Maximal PC-2.15 serum concentration ranged between 2.2 µg/ml and 5.5 µg/ml, and its serum balf-life (€11/2) was about 9 hr. All patients developed HAMA. The mort consistent side effect (10/10 patients) was a profound and selective neutropenia witch occurred within 1 hr after the start of each influsion and reversed within 1 hr after in discontinuation. Other frequent side effects included fever <38 °C and chills that were easily manageable. None of these effects required dose reduction or treatment interruption; the patient which received two treatment cycles did not develop allergic reactions. A complete response of a basocellular carcinoma and a suntained (6 months) >50 % partial response of breast carcinoma liver metastases were observed.

1306

Radioimmunodetection of epithelial cancers with an anti-MUC1 murine monoclonal antibody. Sharkey, R.M., Dion, A.S., Swayne, L.C., Conte, P., Markowitz, A., and Goldenberg, D.M. Garden State Cancer Center at the Center for Molecular Medicine and Immunology, and St. Michael's Newark, NJ 07103, and Morristown Memorial Hospital, Morristown, NJ 07950.

We have investigated an IgG₁ murine monoclonal antibody (MAb) that is reactive with a tandemly repeated peptide epitope of MUC1. Immunohistology indicated that the MAb reacted with 84% (21/25) and 93% (13/14) of primary and metastatic breast cancers, respectively. Also, significantly elevated serum levels of MUC1 were found for at least 50% of breast (all stages), colon, lung, prostate, ovarian, and pancreatic cancer patients. Clinical trials have been initiated to determine the targeting ability of this antibody. ¹³⁷I-labeled IgG or F(ab')₂, as well as ³⁶Tc-Fab' fragments, have been studied in 5 breast, 3 ovarian and 1 lung cancer patient. Tumors were localized in all but 1 of the breast cancer patients. In 2 patients, disease was first seen by radioantibody imaging with subsequent confirmation by magnetic resonance imaging. Although MUC1 is found in the plasma, < 25% of radiolabeled antibody in the plasma was complexed after injection in only 3/6 assessible patients. These studies suggest that this anti-MUC1 MAb may be a useful antibody for detection or therapy of epithelial cancers. (Supported in part by PHS grant CA39841.)

1307

Initial clinical investigations of PAM4, a new murine monoclonal antibody against pancreatic cancer. Sharkey, R.M., Gold, D.V., Markowitz, A., Swayne, L.C., Conte, P., and Goldenberg, D.M. Garden State Cancer Center at the Center for Molecular Medicine and Immunology and St. Michael's Hospital, Newark, NJ 07103, and Morristown Memorial Hospital, Morristown, NJ 07950.

A new murine monoclonal antibody designated PAM4 was generated against a mucin from pancreatic cancer. By immunohistology, PAM4 showed reactivity with greater than 80% of pancreatic cancers and yet was unreactive with normal adult pancreatic tissue. Animal studies showed excellent targeting with ¹⁰I-labeled PAM4 (21 to 44 percent of injected dose per gram of tumor at day 3 post injection for 4 different human pancreatic rumor lines). Five patients with proven pancreatic cancer have been studied using ¹⁰I-PAM4 IgG or **Tc-PAM4 Fab'. Definitive tumor localization was seen in 4/5 patients. Dosimetry from 2 patients receiving ¹⁰I-PAM4 IgG predicted rumors received 10-20 cGy/mCi with tumor/red marrow dose ratios ranging from 3-10. These results suggest that PAM4 is a promising antibody for targeting pancreatic cancer. (Supported in part by PHS grants CA39841 and CA54425 and a grant from the Robert Leet and Clara Guthrie Patterson Trust.)

1308

Clinical evaluation of Tc-99m labelled anti-TF MAb 170 in the assessment of metastatic colorectal cancer. Kirsh. J., Smith A., Reilly R., Gallinger S., & Stern H. Departments of Surgery and Nuclear Medicine. Mount Sinai Hospital and The Toronto Hospital, University of Toronto, Toronto, Ontario M5G 1X5.

MAb is an antibody directed against a membrane protein associated with the Thomsen-Friedenreich antigen, expressed on the majority of human adenocarcinomas. Our objective was to evaluate the efficacy of Tc-99m labelled MAb 170 for assessment of metastatic colorectal cancer (MCRC). Twenty patients (6 with concomitant primary CRC) were injected i.v. with 1800 MBq (2 mg) of Te-99m MAb 170. At 22 h p.i. planar and SPECT images of the abdomen and pelvis were obtained. Sixteen patients (pts) underwent laparotomy within 48 h p.i. and samples of tumor and normal tissues were obtained. Radioactivity in these tissues (%ID/g) was measured by scintillation counting. MAb 170 correctly identified the primary tumor in 3/6 pts and MCRC in 3/5 pts with biopsy confirmation. Two FN studies were in 1 pt with liver metastases and 1 pt with a pelvic nodule.Two additional pts with positive MAb 170 scans await surgical follow-up. CT or US identified MCRC in 4/5 pts. Two pts with negative MAb 170 scans who underwent laparotomy after radiological tests suggested MCRC were found to have nonmalignant disease. Two pts with high, rising CEA exhibited positive MAb 170 scans but MCRC could not be identified at laparotomy (FP). Radioactivity in the tumor or normal bowel was 0.00004-0.005%1D/g and 0.00001-0.005%1D/g respectively. We conclude that Tc-99m MAb 170 may have an important role in the assessment of occult MCRC.

1309

Phase I trial of a bispecific murine monoclonal antibody targeting c-erbB-2 and CD16. Weiner, L.M., Ring, D.¹, Li, W., Palazzo, I.E., Davey, M., Rivera, V., Alpaugh, R.K. Fox Chase Cancer Center, Philadelphia, PA 19111, ¹Chiron Corp., Emeryville, CA 94608.

Bispecific monoclonal antibodies (BsMAb) can direct tumor lysis by effector cells via defined cytotoxic trigger molecules. The BsMAb 2B1 promotes c-erbB-2 tumor cell lysis by human NK cells and macrophages expressing CD16 (i.e., FcyRIII), and is effective in murine xenograft models. Neutrophils (PMN) express an isoform of CD16 that does not trigger lysis. In a dose-escalating Phase I clinical trial, nine patients with c-erbB-2(+) tumors have been treated i.v. with 1 hr BsMAb infusions on days 1,4,5,6,7 and 8, at 1 mg/m² (n=3) or 2.5 mg/m² (n=6) 2B1 per dose. The MTD has not been reached. Treatment causes fevers, rigors, reversible neutropenia and loss of circulating monocytes and NK cells. Treatment also alters the distribution of 111 In-labeled autologous leukocytes, with tumor localization noted in at least one patient. Circulating 2B1 retains its dual binding characteristics. Peak levels of 240-2260 ng/ml murine IgG have been detected, with binding to circulating and peritoneal PMN, NK cells and mononuclear phagocytes. One clinical response has been observed in a patient with chest wall recurrence of breast cancer. The binding of this BsMAb to CD16-expressing leukocytes has potent biological effects which may be exploited at higher, tumor-binding 2B1

1310

Induction of complete remission in advanced refractory chronic lymphocytic leukemia (B-CLL) by CAMPATH-1H with disappearance of malignant trisomy-12 clone determined by fluorescence in altuhylndization (FISH). H. Ozer, A. Steagall, C. Coppedge, M.A. Collier and J. Purvis. University of North Carolina, Chapel Hill, NC 27599 and Burroughs Wellcome Co., RTP, NC 27709.

CAMPATH-1H is under investigation in the therapy of non-Hodgkin's lymphoma and B-CLL. CAMPATH 1-H, a "humanized" version of CAMPATH-1G (secreting IgG2b) is produced by introducing hypervariable regions from the heavy and light chain variable domains of the rodent antibody (Ab) into a human IgG-1 framework. The Ab is directed against CDw52 (CAMPATH-1) antigen which is present on at least 95% of all human peripheral blood B and T lymphocytes and can selectively lyse lymphocytes in the presence of complement. Patient 67 was a 47 year old white male diagnosed in 1984. pretreated for 8 years with pentostatin/interferon, chlorambucil, splenic irradiation, and fludarabine, refractory to each regimen. In 9/92 he developed splenomegaly ≥ 14 cm. WBC > 600.000 and a 4 cm right upper lung mass. He received CAMPATH-1H beginning at 25 mg/m² escalated to 75 mg/m² tiw IV for 3 months per protocol BW-01. He achieved a complete remission (CR) at 4 weeks and has remained in unmaintained CR for 12 months. Karyotyping in 9/92 confirmed presence of a trisomy 12-positive clone with a normal 46 XY karyotype in 2/93. Absence of minimal residual disease by FISH was documented in 2/93. These data confirm the potential for major clinical and cytogenetic responses in advanced refractory CLL to CAMPATH-1H.

PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH VOLUME 35 • MARCH 1994 219

2.5, S, tion of w cells um TfR 4-hour 1/6 but ectable to 349 s of 50 wo pts veloped

showed

d. One

s after

pgically

balation

eptor

Taylor

umomab opment. Medicine,). single i.v.

een well of HAMA elopment s with In-A) for the ial serum infusions 3 detected ıles (27%) ious MAb response ·r positive o normal 6.5 days). 3 multiple formation observed of 32 pts.

ts with in M, gh and ersity, ted for phase 992) in

led us active id. The nd the tissue endent or dose R. -DP sponse multias not re not

single

rest.

7

205/0

Cytor, xicity of Conjugates Between LL2 and Derivatives of *Pseudomonas* Exotoxin Toward B-Cell Non-Hodgkin's Lymphoma. Kreitman; R.J., FitzGerald, D.J., Hansen, H., Goldenberg, D.M., and Pastan, I. Lab. of Molecu iar Biology, DCBDC, NCI, NHI, Bethesde, MD 20892; Immuntymedics Inc., Warren, NJ 07059; Center for Molecular Medicine and Immuntology, Newark, NJ 07103.
L12 is a pan-B-cell monoclonal antibody which in radioiodinated form has induced remissions in nations, with Imphoma. We have chemically

LL2: is a pan-B-cell monoclonal antibody which in radioiodinated form has induced remissions in patients with lymphoma. We have chemically coupled LL2 to PE38KDEL, a derivative of *Pseudomonas* exotoxin (PE) which focs not bind to the PE receptor. PE38KDEL is devoid of amino acids: 252 and 365-380 of PE, and contains a -KDEL mutation instead of -REDi; X at the carboxyl terminus. LL2-PE38KDEL was cytotoxic toward severa: Burkitt's lymphoma lines, with an ID₅₀ of 2 ng/ml on Daudi cells and about 6 ng/ml on Raji, CA-46 and JD-38 cells. LL2 alone had no cytotoxicity toward the malignant cells and excess LL2 could prevent the cytotoxicity of LL2-PE38KDEL, indicating the immunotoxin and LL2 bind to the same antigen. LL2-PE38KDEL was produced by chemically coupling the Fab' fragment of LL2 to PE38KDEL. LL2-Fab'-PE38KDEL was also cytotoxic, with an ID₅₀ of 2 ng/ml toward CA-46 cells. LL2-Fab'-PE38KDEL was also cytotoxic, with an iD₅₀ of 2 ng/ml toward CA-46 cells. LL2-Fab'-PE38KDEL was also cytotoxic, with an iD₅₀ of 2 ng/ml toward CA-46 cells. LL2-Fab'-PE38KDEL was also cytotoxic, with an iD₅₀ of 2 ng/ml toward CA-46 cells. LL2-Fab'-PE38KDEL was also cytotoxic, with an iD₅₀ of 2 ng/ml toward CA-46 cells. LL2-Fab'-PE38KDEL was also cytotoxic, with an iD₅₀ of 2 ng/ml toward CA-46 cells. LL2-Fab'-PE38KDEL are being investigated as potential therapcutic agents for non-Hodgkin's lymphoma. Supported in part by NIH grant CA39841 CDMG.

2051

TUMOR NECROSIS TREATMENT OF HUMAN CANCERS. Epstein, A.L., Khawli, L.A., Strum, S.*, Thompson, L.* and Taylor, C.R. Department of Pathology, University of Southern California School of Medicine, Los Angeles, CA 90033 and *Brotman Medical Center, Culver City, CA. 90231.

A new method of cancer imaging and therapy has been developed which utilizes necrotic cells as the target for the selective binding of monoclonal antibodies (MAbs) to human tumors. Designated Tumor Necrosis Treatment (TNT), this novel approach is applicable to a broad spectrum of human cancers and circumvents many of the limitations of MAb therapy directed against tumor cell surface antigens. Initial imaging trials in man utilizing 2-5 mCi I-131 labeled TNT-1 F(ab')2 demonstrated positive images in 5/7 cases at sites of known primary and secondary lesions including liver metastases in two patients and lymph nodes in one. Whole body and region of interest scans showed no evidence of MAb accumulation in normal organs. More recently, an IND sponsored therapeutic protocol which included weekly x 3 doses of biotinylated TNT-1 MAb followed 4 days later by 20 mCi of I-131 labeled streptavidin was begun for advanced prostate cancer patients. Early results indicate several significant findings including (1) rapid uptake of radiolabeled streptavidin in bone metastases first seen at 5 hours, (2) evidence of tumor destruction determined by rising prostate specific antigen (PSA) early after therapy (tumor lysis) followed by a decreased PSA value, (3) decreased bone pain, and (4) no evidence of toxicity. Finally, dehalogenation of the radiolabeled streptavidin was not observed. These early findings indicate that TNT is a promising new approach for the imaging and therapy of solid tumors such as prostate carcinoma.

2052

Radioimmunotherapy of Relapsed B-Cell Lymphoma with ⁹⁰Yttrium Anti-Idiotype Monoclonal Antibodies. Royston, I., Parker, B.A.*, White, C.A., Miller, R.A.**, Hupf, H.***, Starr, R., Shawler, D.L., and Halpern, S.E., San Diego Regional Cancer Center, San Diego, CA 92121, *UCSD, La Jolla, CA 92093, **Idee Pharmaceutical Corp., Mountain View, CA 94043, and ***Hybritech, Inc., San Diego, CA 92121.

We initiated a phase I/II trial of ⁹⁰Yttrium (Y)-conjugated anti-idiotype (anti-Id) monoclonal antibody therapy to evaluate its toxicity and afficient in

We initiated a phase I/II trial of 90 trium (Y)-conjugated anti-idiotype (anti-Id) monoclonal antibody therapy to evaluate its toxicity and efficacy in relapsed B-cell non-Hodgkin's lymphoma. Six patients received 90 Y-anti-Id with cumulative doses of 10-54 mCi 90 Y and 1000-4550 mg unlabeled anti-Id. Tumor imaging with 111 In anti-Id was demonstrated prior to 90 Y infusion for each patient. Bone marrow toxicities were nadir WBC 1800-4600, nadir granulocytes 680-3270, and nadir platelets 34,000-178,000. Non-hematopoietic toxicities were minimal. No patients developed human anti-mouse antibodies. Dosimetry calculations suggest tumors received a dose of 18-43 cGy/mCi 90 Y. One patient had a complete response, 2 had partial responses, 2 had stable disease, and 1 had progressive disease. Response duration was 2-12 months. The complete response relapsed at a new site with Id disease after 12 months. The attainment of free circulating mouse IgG in the presence of low circulating Id appeared important for tumor targeting and clinical benefit. The observation of anti-tumor responses in a heavily pretreated population warrants further study of repetitive, low dose 90 Y-anti-Id therapy.

2053

Monoclonal antibody distribution in tumors: Theoretical and experimental validation of the "binding site barrier" hypothesis. Weinstein, J.N.*, Juweid, M.*, van Osdol, W.*, Sato, J.*‡, Fujimori, K.*, Saga, T.**, Heya, T.*‡, and Neumann, R.** "National Cancer Institute, **Clinical Center, NIH, Bethesda, MD 20815, U.S.A.; ‡Takeda, Inc., Osaka, Japan.

We recently developed new quantitative models for the penetration of monoclonal antibodies (MAb) and MAb radioconjugates into microscopic nodules representing either primary or metastatic solid tumor (Canc. Res. 51: 4776-4784, 4821-4827, 1991). These models refine the "binding site barrier" hypothesis, the idea that MAbs can be prevented from penetrating tissues or tumors by the very fact of their successful binding to antigen (Annals N.Y. Acad. Sci. 507: 199, 1987); they also highlight the consequences of non-uniform distribution for radiation microdosimetry. Previous experimental studies have shown heterogeneous antibody distribution in tumors, but there has been no direct experimental proof of the "binding site barrier" hypothesis. Using the new quantitative models to guide design of multiple-label experiments, we have now obtained such proof in Line 10 bile duct carcinoma of guinea pigs -- by using a combination of double-label autoradiography and double-label immunohistochemistry to determine simultaneously the histological location in tumor of (i) l.v.-administered MAb; (ii) co-administered isotype-matched control MAb; (iii) antigen; (iv) blood vessels. At low MAb dose, binding severely hindered penetration into antigenic patches as small as 300 µm; the barrier could be overcome by raising the dose but at a cost in specificity ratio. The same general principles of micropharmacology are expected to apply to biological ligands other than antibodies, including those secreted by genetically modified cells.

2054

Effective targeting of human lymphocytes and macrophages to tumor by a bispecific monoclonal antibody (BsMAb) binding human c-erbB-2 and FcγRIII. Lee,G., Weiner,L., Ring,D.¹, Holmes,M., Alpaugh,K., Garcia de Palazzo,I. Fox Chase Cancer Center, Philadelphia, PA 19111 and ¹Cetus Corporation, Emeryville, CA 94608.

BsMAbs which bind to tumor and effector cells can trigger cytotoxicity even when effector cell Fc7 receptors (Fc7R) are occupied by competing immunoglobulin. The BsMAb 2B1 is produced by a quadroma derived by fusion of hybridomas 520C9 (anti-c-erbB-2) and 3G8 (anti-Fc7RIII). Highly purified 2B1 is a potent promoter of in vitro lysis of c-erbB-2-expressing tumors by human large granular lymphocytes (LGLs) and macrophages expressing Fc7RIII. Prior cellular activation by cytokines is not required for substantial lysis, which is unimpeded in human serum or whole blood. 2B1 recognizes nearly all tumors known to overexpress c-erbB-2 protein despite its monovalent antigen binding properties. Treatment of scid mice bearing SK-OV-3 human tumor xenografts with 2B1 results in significant prolongation of survival and some cures. 2B1 meets the criteria for clinical development to test the hypothesis that BsMAbs can promote in vivo accumulation of cytotoxic effectors in tumor.

2055

Selective photodynamic killing of human B lymphoma cells using monoclonal antibody-porphyrin conjugates.
W.C. Biddle, J.D. Pancook, D.A. Musser, A. Oseroff.
Life Technologies Inc., Grand Island, N.Y. and Dept. of Dermatology, Roswell Park Cancer Institute, Buffalo, N.Y.

A model system for the selective killing of B cell malignancies utilizing the photosensitizer 5,10,15,20-tetracarboxyphenylporphine (TCPP), covalently coupled to the murine monoclonal antibody (MAb) Lym-1, was expanded to include several other B cell-reactive MAb's. The B1, B3, B4 and J5 MAb's bind the CD20, CD22, CD19, and CD10 antigens respectively. A water soluble carbodiimide and N-hydroxysuccinimide were used to covalently attach TCPP to immunoglobulin molecules, which retained binding specificity and exhibited photodynamic activity subsequent to conjugation. Upon light activation, the conjugates showed selective in vitro killing of antigen-positive cells, characterized by severe membrane damage. Cytotoxicity was studied using the conjugates individually and in combination. Results indicated that these photoactive immunoconjugates may have utility for ex vivo purging of bone marrow for autologous transplantation procedures.

TUMOR IMMUNOLOGY

*978

PHASE I TRIAL OF 2B1, A BISPECIFIC MURINE MONOCLONAL ANTIBODY TARGETING c-erbB-2 AND CD16. L.M. Weiner, D. Ring W. Li, I.E. Palazzo, M. Davey, V. Rivera, R.K. Alpaugh, Fox Chase Cancer Center, Philadelphia, PA 19111 and ¹Chiron Corp., Emeryville, CA 94608.

Bispecific monoclonal antibodies (BsMAb) can direct tumor lysis by effector cells via defined cytotoxic trigger molecules without competition by host IgG. The BsMAb 2B1 promotes c-erbB-2 tumor cell lysis by human NK cells and macrophages expressing CD16 (i.e., FcyRIII), and is effective in a murine xenograft model. Neutrophils (PMN) abundantly express an isoform of CD16 that does not trigger tumor lysis. In a dose-escalating Phase I clinical trial, eleven patients with c-erbB-2(+) tumors and ECOG P.S. = 0 or 1 have been treated i.v. with 1 hr BsMAb infusions on days 1,4,5,6,7 and 8, at 1 mg/m^2 (n=3), 2.5 mg/m^2 (n=6) or 5.0 mg/m^2 (n=2) 2B1 per dose. The MTD has not been reached. The severity of fevers, rigors, transient Grade 4 neutropenia and the loss of circulating monocytes and NK cells are not dosedependent. Peak serum levels of TNF (2400 pg/ml), IL-6 (9000 pg/ml), IL-8 (11 pg/ml) and elastase (600 ng/ml) are found 1-4h following the start of BsMAb infusion. Tumor localization of 111 In-labeled autologous leukocytes has been noted. Dose-related peak serum levels of 240-2260 ng/ml murine IgG have been detected, as has HAMA. Circulating 2B1 retains its dual binding characteristics and can be found on circulating and peritoneal PMN, NK cells and mononuclear phagocytes by flow cytometry. Treatment enhances peripheral blood NK activity and LAK precursors, resulting in augmented in vitro growth inhibition of c-erbB-2(+) SK-OV-3 cells. A clinical response was observed in a patient with an evaluable chest wall recurrence of breast cancer. This first clinical trial of a BsMAb targeting tumor and CD16 has demonstrated potent biological effects which may be exploited at higher, tumor-binding 2B1 doses. The role of PMN in promoting these effects requires examination.

979

SELECTIVE T-CELL (CD5/CD8) DEPLETION OF BONE MARROW UTILIZING POLYSTYRENE DEVICES. L. YU. Department of Pediatrics, LSU Medical Center and Children's Hospital, New Orleans, LA

Pediatrics, LSU Medical Center and Children's Hospital, New Orleans, LA

In various animal model systems, it has been demonstrated that graft vs. host disease (GVHD) is mediated by the mature T-cells present in the donor marrow inoculum. We report here the use of a simple system in which T-cells from bone marrow (BM) are depleted through passage on the T25 microcelletor cell culture flask (Applied Immune Sciences Inc., Menlo Park, CA) a solid phase polystyrene device to which monoclonal antibodies to CD5, CD8, and SBA have been covalently bound yielding an SBA (5/8) cell fraction. In this procedure, BM mononuclear cells (BMMC) obtained from 15 consecutive malignant patients undergoing follow-up BM exams, were incubated with T25 SBA flasks for 1 hour. The non-adherent cell suspension (SBA") was then incubated with the T25 CD5/CD8 flasks for another hour. Samples of marrow at successive stages of processing were analyzed by immunofluorescence using flow cytometry. Recovery of non-adherent SBA" (5/8) cells was 74% after double passage over AIS Cellector system. The mean log T-cell depletion was 2.3 (range 2-3). The use of T25 microcellector - T-cell has the advantages of comparable, if not better cell recovery, ease of operation and manipulation in a closed system. Clinical trials will determine the relevance of these results on engraftment, GVHD, and immune

980

PROTEIN A IMMUNOADSORPTION TREATMENT OF HIGHLY REFRACTORY THROMBOCYTOPENIC PURPURA (ITP). R. Anderson, J. H. Saiers, D. A. Clark, D. R. McKinney. Veterans Affairs Medical Center, Albuquerque, NM 87108

Chronic ITP frequently complicates lymphoid malignancy and dysregulation and may be life threatening. We report a case of a 70 year old man who had recurrent bleeding from lupus-associated ITP refractory to splenectomy and immunomodulation with prednisone, cyclophosphamide, vincristine, vinblastine, azathioprine, alpha-interferon, danazol and cyclosporin, as well as exhaustive plasmapheresis. For two years after failure of these treatments he received 220gms per month maintenance intravenous immune globulin (IVIG) to maintain an average platelet count of 35x10*/L (range 8-75x10*/L). He was then treated with extra-corporeal immunoadsorption of 2000ml plasma on staphylococcal protein-A silica columns (Prosorba) every other day for six treatments. Four weeks after this treatment his platelet count stabilized at an average of 29x10*/L for ten weeks. The patient received no IVIG therapy during this period. Since, he has required IVIG only for exacerbations of thrombocytopenia and bleeding with intercurrent viral infection in maintaining an average platelet count of 26x10*/L. Prior to immunoadsorption the cost of IVIG averaged \$4500/month. The cost of IVIG therapy since immunoadsorption has decreased by greater than 75%. This case emphasizes the efficacy of this treatment modality in extraordinarily refractory ITP as well as its potential cost-effectiveness.

981

ORAL PENTOXIFYLLINE AS INHIBITION OF THE CYTOKINE SYNDROME INDUCED BY ANTI-CD3 STIMULATION. Q. Wesly, J. Hank, M. Albertini, J. Schiller, J. Gan, K. Oettel, A. Borchert, K. Moore, A.M. Bastin, R. Bechhofer, B. Storer, C. Gambacorti, and P.M. Sondel. University of Wisconsin Comprehensive Cancer Center, Madison, WI 53792

In vivo T lymphocyte stimulation with anti-CD3 monoclonal antibodies (OKT3), induces a cytokine syndrome which results from production of large quantities of TNFα, IL-2 and IL-6 by the simulated lymphocyte population. We have conducted a Phase I clinical trial of escalating doses of anti-CD3 monoclonal antibodies (from 6 μg/m² to 3000 μg/m²) with continuous infusion IL-2 at 3x10° U/M² as immune stimulation in patients with advanced malignancies. At the 600 and 3000 µg/m² anti-CD3 summation in patients with advanced mangrancies. At the cow and 3000 µg/m ann-club dose levels patients experienced marked toxicity following antibody infusion characterized by hypotension, fever, vasodilation and elevations in serum BUN. creatinine and bilirubin. Those patients developing marked symptomatology also showed markedly elevated $TNF\alpha$ levels in serum one hour post anti-CD3 administration. In an effort to abrogate the clinical toxicity associated with high levels of $TNF\alpha$, a group of 4 patients was treated at the 600 µg/m² anti-CD3 dose level with oral Pentoxifylline (PTX) (at 2 grams daily in 5 divided doses) before, during and after anti-CD3 dosing PTX is a methylxanthine shown in vitro to be capable of inhibiting TNFα production following anti-CD3 stimulation. Patients in the PTX group appeared clinically more stable after anti-CD3 treatment than those patients previously treated with similar doses of anti-CD3 but without PTX. The PTX group showed smaller elevations and smaller percentage changes from baseline in BUN, Creatinine, and Bilirubin levels as well as nore stability in blood pressure determinations. However, statistical significance for the differences between the PTX treated and non treated groups was not demonstrated possibly reflecting the low numbers of patients treated in the PTX group. Only one of postury refrecting use flow nonmers to passents treated in the First group. Only once
four patients on the arth-CD3+PTX regimen was observed to have marked
symptomatology following anti-CD3 administration, and GI upset may have impeded this patient from receiving all of the planned PTX dose. TNFa levels were found not to be lower in the PTX-treated as compared to the PTX-untreated group. Thus our results do not prove a correlation between improved clinical outcome and lower TNF α levels. Nonetheless as others have documented, PTX can ameliorate some clinical toxicities of cytokine treatment. This limited clinical experience indicates PTX may be useful in cliorating toxicities due to the cytokine syndrome following anti-CD3 admi

STIS-ILL

ACKGI. AT AYL

From: Sent:

Hunt, Jennifer

Monday, February 25, 2002 11:44 AM

STIC-ILL

To: Subject:

References for 08/349,489

Please send me the following references ASAP:

Journal of Experimental Medicine 175:217-225 (Jan. 1, 1992)

Int. J. Cancer 50:800-804 (1992)

Int. J. Cancer, Suppl. (1992), 7(Bispecific Antibodies Targeted Cell Cytotoxic.), 42-4

PROC AM ASSOC CANCER RES ANNU MEET. (1992) 33 (0), 344

INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, (1993 Oct-Dec) 8 (4) 233-9

Cancer Immunol. Immunother. (1994), 39(1), 41-8

Proceedings of the American Association for Cancer Research Annual Meeting, (1994) Vol. 35, No. 0, pp. 219

Thanks,

Jennifer Hunt Patent Examiner, Art Unit 1642 CM1-8D06 (mailbox 8E12) (703)308-7548

> 2) 184 AGL 2/26-R.C

Eighty-Third Annual Meeting of the American Association for Cancer Research

May 20–23, 1992 San Diego, California Volume 33 March 1992