MODUL BASIS DATA – PRAKTIKUM 8 NORMALISASI

1. Tujuan

Tujuan Instruksional Umum:

Mampu menjelaskan dan melakukan Normalisasi data.

Tujuan Instruksional Khusus:

- 1. Mampu menjelaskan tujuan normalisasi
- 2. Mampu menjelaskan bagaimana normalisasi berperan dalam desain basis data
- 3. Mampu menjelaskan redudansi data dan anomaly
- 4. Mampu menjelaskan kebergantungan fungsional
- 5. Mampu menjelaskan proses normalisasi
- 6. Mampu menjelaskan 1NF, 2NF dan 3NF

2. Durasi Waktu

2 x 55 menit

3. Dasar Teori

Normalisasi

Normalisasi adalah proses pembentukan struktur basis data sehingga sebagian besar *ambiguity* bisa dihilangkan. Tahal normalisasi dimuali dari tahap paling ringan (1NF) hingga paling ketat (5NF). Biasanya hanya sampai pada tingkat 3NF atau BCNF karena sudah cukup memadai untuk menghasilkan tabel-tabel yang berkualitas baik. Tujuan normalisasi untuk menghasilkan tabel pada basis data yang sesuai dengan kebutuhan perusahaan.

Keuntungan menggunakan basis data yang sesuai dengan kebutuhan :

- 1. Lebih mudah bagi user untuk mengakses dan memelihara data.
- 2. Membutuhkan tempat penyimpanan yang minimal pada komputer.

Staf

staffNo	sName	position	salary	branchNo
SL21	John White	Manager	30000	B005
SG37	Ann Beech	Assistant	12000	B003
SG14	David Ford	Supervisor	18000	B003
SA9	Mary Howe	Assistant	9000	B007
SG5	Susan Brand	Manager	24000	B003
SL41	Julie Lee	Assistant	9000	B005

Branch

branchNo	bAddress
B005	22 Deer Rd, London
B007	16 Argyll St, Aberdeen
B003	163 Main St, Glasgow

Staff Branch

staffNo	sName	position	salary	branchNo	bAddress
SL21	John White	Manager	30000	B005	22 Deer Rd, London
SG37	Ann Beech	Assistant	12000	B003	163 Main St, Glasgow
SG14	David Ford	Supervisor	18000	B003	163 Main St, Glasgow
SA9	Mary Howe	Assistant	9000	B007	16 Argyll St, Aberdeen
SG5	Susan Brand	Manager	24000	B003	163 Main St, Glasgow
SL41	Julie Lee	Assistant	9000	B005	22 Deer Rd, London

Redudansi Data dan Update Anomali

- 1. Tabel StaffBranch mempunyai redundansi data dimana detail dari cabang (branch) diulang untuk setiap staff
- 2. Sebaliknya, informasi cabang hanya muncul sekali untuk setiap cabang pada tabel Cabang dan hanya informasi nomor Cabang (branchNo) yang diulang pada tabel Staff sebagai informasi dimana setiap staff berlokasi
- 3. Tabel yang mempunyai redundansi data memiliki potensi untuk terjadi update anomali.
- 4. Update anomali termasuk:
 - a. Penambahan data (Insertion)

Misalkan akan ditambahkan (insert) data kedalam tabel StaffBranch yaitu staff baru yang berlokasi di cabang B007. Maka juga harus diinputkan detail dari cabang no B007, dan harus sesuai dengan data B007 lainnya.

Misalkan akan ditambahkan (insert) data kedalam tabel StaffBranch yaitu cabang baru dengan nomor B006 tetapi belum ada staff pada cabang tersebut. Maka harus membuat baris baru dimana staffNo diisi Null, dan karena staffNo adalah PK, maka tidak diperbolehkan.

b. Penghapusan data (Deletion)

Jika akan menghapus data staff tertentu pada cabang yang hanya mempunyai satu staff, akan berakibat menghapus data cabang tersebut.

Misal akan dihapus data staff SA9. Karena B007 adalah cabang yang hanya mempunyai satu staff SA9 saja, maka penghapusan SA9 mengakibatkan data cabang B007 terhapus dari basis data.

c. Modifikasi data

Jika akan memodifikasi atau mengubah satu data, maka harus merubah semua data yang sesuai atau data menjadi tidak konsisten.

Misal akan diubah data alamat cabang B003, maka perubahan data harus dilakukan di semua row yang mengandung branchNo B003 (bayangkan jika data berjumlah banyak row)

Kebergantungan Fungsional (KF)

KF merupakan konsep penting yang berhubungan dengan normalisasi. KF menjelaskan relasi atau hubunhan antar atribut.

Notasi KF: \rightarrow A \rightarrow B artinya B bergantung secara fungsional terhadap A (A dan B atribut) atau A menentukan B secara fungsional. A \rightarrow B menandakan setiap nilai dalam

atribut A berhubungan dengan tepat satu nilai atribut B dalam tabel. Dari KF A \rightarrow B,

A dinamakan determinant, yaitu atribut atau kelompok atribut di sisi kiri dari anak

panah.

Karakteristik KF:

1. Determinan harus mempunyai jumlah minimum atribut yang disebut

kebergantungan fungsional secara penuh

2. KF secara penuh, B bergantung secara fungsional terhadap A tetapi tidak

terhadap subset dari A, B dikatakan bergantung fungsional secara penuh

terhadap A

Kebergantungan Transitif (Transitive Dependencies)

Kebergantungan transitif adalah suatu kondisi dimana A, B dan C adalah atribut dari

suatu tabel dan berlaku jika A → B dan B → C, maka C bergantung secara transitif

terhadap A melalui B. keberadaan ketergantungan transitif dapat mengakibatkan

update anomaly dalam suatu tabel.

4. Peralatan:

1. SQL Server Management Studio

5. Percobaan

6. Latihan dan Evaluasi

KASUS I. Employee Case

58

1. Study the table below:

Енф-No	Енф-Nате	Dept	Манадег	Proj-id	Proj-Start-Date	Location	Weeks-on-Project
005	Smith	Marketing	Jones	A	12-93	Poole	11
		_		В	6-94	Plymouth	15
				С	09-94	Portsmouth	6
007	Bond	Accounts	Bloggs	В	06-94	Plymouth	3
				D	06-94	Berlin	9
009	King	Info Systems	Hume	С	09-94	Portsmouth	10
010	Holt	Accounts	Bloggs	A	12-93	Poole	21
			30	В	06-94	Belfast	10
				D	06-94	Hamburg	12

Answer the following question:

- a. Is the table having a good design? Give your reason!
- b. Is there a multivalued attributes?
- c. Define KF for the table.
- d. Decompose the tables as good as possible, based on KF you've define.
- 2. Study the new table you've created (as the result from table decomposition). Are they having a good design? Give your reason.
- 3. Apply 1st Normal Form if possible. To do so, remove the repeating group/multivalued attributes.
- 4. Apply 2nd Normal Form if possible. Remember that the 2nd Normal Form removes partial dependencies, i.e all non-primary key attribute <u>fully dependent</u> on the primary key (not partially
- 5. Apply 3rd Normal Form if possible. Remember that the 3rd Normal Form removes transitive dependencies, i.e remove dependencies on the non- primary key attributes.
- 6. How many tables do you have now?

KASUS II. Project Case

1. Study the table below:

	PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
١	15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	23.8
		-	101	John G. News	Database Designer	\$105.00	19.4
			105	Alice K. Johnson *	Database Designer	\$105.00	35.7
			106	v∕illiam Smithfield	Programmer	\$35.75	12.6
			102	David H. Senior	Systems Analyst	\$96.75	23.8
	18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	24.6
			118	James J. Frommer	General Support	\$18.36	45.3
			104	Anne K. Ramoras *	Systems Analyst	\$96.75	32.4
			112	Darlene M. Smithson	DSS Analyst	\$45.95	44.0
	22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	64.7
			104	Anne K. Ramoras	Systems Analyst	\$96.75	48.4
			113	Delbert K. Joenbrood *	Applications Designer	\$48.10	23.6
			111	Geoff B. Wabash	Clerical Support	\$26.87	22.0
			106	vVilliam Smithfield	Programmer	\$35.75	12.8
	25	Starflight	107	Maria D. Alonzo	Programmer	\$35.75	24.6
			115	Travis B. Bawangi	Systems Analyst	\$96.75	45.8
			101	John G. News *	Database Designer	\$105.00	56.3
			114	Annelise Jones	Applications Designer	\$48.10	33.1
			108	Ralph B. Washington	Systems Analyst	\$96.75	23.6
			118	James J. Frommer	General Support	\$18.36	30.5
			112	Darlene M. Smithson	DSS Analyst	\$45.95	41.4

Do this Case exactly with the same way as previous task (as you've done on Case 1)

KASUS III. Library Case

1. Study this table:

Catalog No	Title	Author	Publisher	Publisher Address	Copy No	Borrower ID	Borrower	Return Date
1	Understanding Business	Betty Schramper	Sams	Jakarta	1	001	Dedi	31/8/04
2	_				2	002	lwan	12/9/2004
3					3	003	Sri	12/9/2004
4	The Other Side of Midnight	Sidney Sheldon	Gramedia	Jakarta	1	004	Ade	31/8/04
5					2	005	Aditya	12/9/2004
6					3	001	Dedi	12/9/2004

Do this Case exactly with the same way as previous task (as you've done on Case 1)

7. Referensi

 Database system, A Practical Approach to Design, Implementation, and Management; Thomas Connolly, Carolyn Bagg, Pearson 6th edition, 2015