#### **Qubits**

A **qubit** is a physical object (for instance, elementary particle) with two "orthogonal" states, typically denoted by  $|0\rangle$  and  $|1\rangle$ . Like the spin (spin up is  $|0\rangle$  and spin down is  $|1\rangle$ ), or low and high electron orbits in a atom.

For quantum computings ignormant Poragical femapart dual physical realization of qubit and use a mathematical definition for it.

https://tutorcs.com

**Def.** A pure quantum state of qubit is a unit norm vector  $|v\rangle \in \mathbb{C}^2$ ,  $||v\rangle| = 1$ , i.e.

$$|v\rangle = \alpha |0\rangle + \beta |1\rangle, \ \alpha, \beta \in \mathbb{C}, \ |\alpha|^2 + |\beta|^2 = 1$$

**Measurement** of |v> (with respect to |0> and |1>)



**Measurement** (special case) During the measurement of the quantum state |v> it collapses either to |0> or |1>. The Classical Output shows us to which state (|0> or |1>) |v> collapsed. Q. mechanics predicts the probabilities of collapsing to |0> and |1>:

| Cl. Output | Q. Output            | Probability $ \alpha ^2$    |     |
|------------|----------------------|-----------------------------|-----|
| j=0        | j>= 0>               | at Droible Even Uel         | اما |
| j=1        | Assignment $ j>= 1>$ | nt Proj <b>ect</b> Exam Hel | lp  |
|            | https:/              | //tutorcs.com               |     |

Let us assume that we have n qubits 1 2 ••• n WeChat: Cstutorcs

**Postulate 1** A pure state of n qubits is a unit vector 
$$|v\rangle \in \mathbb{C}^{2^n}$$
, i.e.,  $|v\rangle = \alpha_{0...00}|0...00\rangle + \alpha_{0...01}|0...01\rangle + ... + \alpha_{1...11}|1...11\rangle$   $|\alpha_{0...00}|^2 + |\alpha_{0...01}|^2 + ... + |\alpha_{1...11}|^2 = 1$ 

An overall phase rotation does not change the state, so the vectors  $|v\rangle$  and  $e^{i\psi}|v\rangle$ ,  $i^2=\sqrt{-1}$ , define the same quantum state

#### Arithmetic Rules for Dirac notations

#### Multiplication:

$$|0\rangle|1\rangle = |01\rangle, \ |0\rangle|00\rangle = |000\rangle$$

We can combine like terms:

$$\alpha|00\rangle + Assignment Project/From Holp$$

We can factor out: https://tutorcs.com

$$\alpha|0010\rangle + \beta|0011\rangle = |00\rangle(\alpha|10\rangle + \beta|11\rangle)$$

If we have two qubits:

$$\begin{array}{ccc} \mathbf{1} & \mathbf{2} \\ \alpha |0\rangle + \beta |1\rangle & \gamma |0\rangle + \delta |1\rangle \end{array}$$

Then their joint state is obtained as the product:

Assignment Project Exam Help 
$$(\alpha|0\rangle+\beta|1\rangle)(\gamma|0\rangle+\delta|1\rangle) = \alpha\gamma|00\rangle+\alpha\delta|01\rangle+\beta\gamma|10\rangle+\beta\delta|11\rangle$$

#### https://tutorcs.com

Qubits may have a joint state that is not representable as a product of individual states, for example Chat: cstutorcs

$$\frac{1}{\sqrt{2}}(|00\rangle + \delta|11\rangle)$$

In this case we say that these qubits are *entangled*, or that this is an *entangled* state.

**Example 1** A generic quantum state of 3 qubits has the form

$$|v\rangle = \alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \dots + \alpha_{111}|111\rangle$$

If, for example, all the coefficients are  $1/\sqrt{8}$  we have the state

$$|v\rangle = 1/\sqrt{8}(|000\rangle + |001\rangle + \dots + |111\rangle)$$





The joint state of n qubits before the measurement is

$$|v\rangle = \alpha_{0...00}|0...00\rangle + \alpha_{0...01}|0...01\rangle + ... + \alpha_{1...11}|1...11\rangle$$

**Postulate 2** Upon the measurement each qubit collapses either to  $|0\rangle$  or  $|1\rangle$ . The probabilities of the classical and quantum outcomes are

| Cl. Output      | Q. Output                        | Probability                  |
|-----------------|----------------------------------|------------------------------|
| $j_1,\dots,j_n$ | $ j_1\rangle,\ldots, j_n\rangle$ | $ \alpha_{j_1,\dots,j_n} ^2$ |

**Example 2** Let 2 qubits have the state

$$|v\rangle = 0.2$$
 Signment Projects Exam Help

Note that  $0.2^2 + 0.4^2$  https://tutorcs.com
The possible results of the measurement with the corresponding probabilities are

| Cl. Output | We Chat: cst            | tutor coability |
|------------|-------------------------|-----------------|
| 0 0        | $ 0\rangle$ $ 0\rangle$ | 0.04            |
| 0 1        | $ 0\rangle$ $ 1\rangle$ | 0.16            |
| 1 0        | $ 1\rangle$ $ 0\rangle$ | 0               |
| 1 1        | $ 1\rangle$ $ 1\rangle$ | 0.8             |

Using Postulate 2, we can find the probability whether the m-th qubit will collapse to |0> (or to |1>). We simply sum up the probabilities of all the outputs in which the m-th qubit collapses to |0> (or to |1>).

| Cl. Output | Q. Output                 | Probability                |
|------------|---------------------------|----------------------------|
| $j_m = 0$  | $ j_m\rangle =  0\rangle$ | $\sum  \alpha_{j_1j_n} ^2$ |
|            |                           | $j_1j_n:j_m=0$             |

Assignment Project Exam Help

this is summation over all possible binary

https://tutorcs.com $j_n \cdots j_n$ , but always with  $j_m = 0$ 

In **Example 2** we have

Cl. Output 
$$0.$$
 Output: CSPUTATIONS  $j_1 = 0$   $|j_1\rangle = |0\rangle$   $|\alpha_{00}|^2 + |\alpha_{01}|^2 = 0.2^2 + 0.4^2 = 0.2$   $|j_1\rangle = 1$   $|j_1\rangle = |1\rangle$   $|\alpha_{10}|^2 + |\alpha_{11}|^2 = 0^2 + 0.8 = 0.8$   $|j_2\rangle = 0$   $|j_2\rangle = |0\rangle$   $|\alpha_{00}|^2 + |\alpha_{10}|^2 = 0.2^2 + 0^2 = 0.04$   $|j_2\rangle = |1\rangle$   $|\alpha_{01}|^2 + |\alpha_{11}|^2 = 0.4^2 + 0.8 = 0.96$ 

**Postulate 2 (continued)** What if we measure only m of n qubits? We consider the case of measuring 2 of 3 qubits: (you will be able to generalize it to any other case)



Assignment Project Exam Help  $|\psi\rangle$  is the joint quantum state of all 3 qubits

Each of the first 2 qubits collapses (either to  $|0\rangle$  or  $|1\rangle$ ). The 3-rd qubit does not collapse. Classical and quantum outcomes, and the corresponding probabilities are WeChat: cstutorcs

Cl. Output

Q. Output

**Probability** 

$$j_{1} = 0, j_{2} = 0 \quad |\psi\rangle = \gamma(\alpha_{000}|000\rangle + \alpha_{001}|001\rangle) \quad |\alpha_{000}|^{2} + |\alpha_{001}|^{2}$$
$$= |00\rangle(\gamma\alpha_{000}|0\rangle + \gamma\alpha_{001}|1\rangle),$$
$$\gamma = 1/\sqrt{|\alpha_{000}|^{2} + |\alpha_{001}|^{2}}$$

Here  $\gamma$  is a normalization factor to insure that  $||\psi\rangle|| = 1$  (see Postulate 1).

Note that the 3-rd qubit is in the state:  $\gamma \alpha_{000} | 0 \rangle + \gamma \alpha_{001} | 1 \rangle$ 

#### Cl. Output

#### Q. Output

#### **Probability**

$$j_{1} = 0, j_{2} = 1 \quad |\psi\rangle = \gamma(\alpha_{010}|010\rangle + \alpha_{011}|011\rangle)$$
$$= |01\rangle(\gamma\alpha_{010}|0\rangle + \gamma\alpha_{011}|1\rangle),$$
$$\gamma = 1/\sqrt{|\alpha_{010}| + |\alpha_{011}|^{2}}$$

$$j_1 = 1, j_2 = 0$$

$$|\psi\rangle = |10\rangle(\gamma\alpha_{100}|0\rangle + \gamma\alpha_{101}|1\rangle),$$

$$|\alpha_{100}|^2 + |\alpha_{101}|^2$$

 $|\alpha_{010}|^2 + |\alpha_{011}|^2$ 

### Assignment Project Exam Help

$$j_1 = 1, j_2 = 1$$
  $|\psi\rangle = |11\rangle(\gamma\alpha_{110}|0\rangle + \gamma\alpha_{111}|1\rangle),$   $|\alpha_{110}|^2 + |\alpha_{111}|^2$   $\gamma = 1/\sqrt{|\alpha_{110}| + |\alpha_{111}|^2}$ 

WeChat: cstutorcs

**Def.** A linear operator (matrix) U is unitary iff  $U^{-1} = U^{\dagger}$ .

#### Example 3

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}, U^{\dagger} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}, UU^{\dagger} = I_2$$

Postulate 3 The evolution of a closed quantum system is described by a unitary operator.

Time Assignments are oject Exam Help

Note that U depends on  $t_1$ ,  $t_2$  WeChat: cstutorcs

#### **Quantum Circuits**

**Classical Not Gate:** 



**Quantum Not Gate:** 

The corresponding unitary operator:

$$\alpha | \mathbf{A} \mathbf{stightment} \mathbf{Project} | \mathbf{E} \mathbf{xam}_{NOT} \mathbf{Help} = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Quantum CNOT (control hoth Prate (analog CF cfassical XOR)



The intrate of stanting before the gate is

$$|v\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$$

CNOT flips 2-nd qubit if 1-st qubit is 1, that is in each  $|ab\rangle$  it flips b if a=1.

The state after the gate is

$$|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|11\rangle + \alpha_{11}|10\rangle$$

Unitary operator of CNOT gate is

$$U_{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Indeed, in linear algebra notation we have

$$|v\rangle = \alpha_{00}|00\rangle$$
 Assignment Project Exam Helpo1  $\alpha_{10}$  https://tutorcs.com

Switching from Dirac's notations to linear algebra notations and back, we get

$$U_{CNOT}|v\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{pmatrix} = \begin{pmatrix} \alpha_{01} \\ \alpha_{11} \\ \alpha_{10} \end{pmatrix}$$
$$= \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|11\rangle + \alpha_{11}|10\rangle = |\psi\rangle$$

**Hadamard Gate:** 



S Gate:

Assignment Project Exam Help 
$$\alpha|0\rangle + \beta|1\rangle$$
  $\alpha|0\rangle + i\beta|1\rangle$  https://tutorcs.com

**Toffoli Gate:** 



**Theorem** Classical AND and NOT gates form a universal set, i.e., they allow one to implement any Boolean function.

Let us assume that we have a quantum circuit with input  $|v\rangle$  and output  $|\psi\rangle$ :

We will say that this circuit approximate a Officery Speration U with error e if for all (or almost all) states  $|v\rangle$  we have

$$||U||_{v}$$
 Chat: estutores  $||U||_{v}$   $\leq e$ .

**Theorem** H, S, CNOT, and Toffoli gates form a universal set, in the sense that for any given unitary operator U these gates allow one to construct a quantum circuit that approximates U with arbitrary small error e.

Note that there are many other universal sets of quantum gates.

- For making the approximation error *e* smaller and smaller, one ,typically, should make the circuit larger and larger (in terms of used quantum gates).
- Let U be a unitary operator that acts on n qubits, that is U is a  $2^n \times 2^n$  unitary matrix. Can this U be approximated with small error e and polynomial number of gates, i.e.  $O(n^t)$  gates (t is a positive constant)?
- Unfortunately, NOT. There are infinitely many  $2^n \times 2^n$  unitary operators U, and for most of them we need exponentially many, i.e.,  $2^{\alpha n}$  ( $\alpha$  is a positive constant), gates.
- Only some "nice" Us can be implemented with Small size quantum circuits.
- Good news is that among the chrates destructed that are very useful for solving certain computational problems.

Einstein, Podolsky, Rosen (EPR) pair is a pair of qubits in the state

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

This state happened to be very surprising and useful for many quantum protocols. Note that this is an entangled state (see page 4). Below we consider Quantum Teleportation.

## **Assignment Project Exam Help**Quantum Teleportation

Let us pre-share an EPR pair between Alice (A) and Bob (B). Thus, A has in her possession qubit 1 and Bob has qubit 2 Chat: cstutorcs

Let A have another qubit 0 in the state  $\alpha |1\rangle + \beta |0\rangle$ . Alice does not know  $\alpha$  and  $\beta$ 

**Goal:** create in Bob's possession a qubit in the state  $\alpha |1\rangle + \beta |0\rangle$  using only classical communication; sending qubits to Bob is not allowed.

**Actions of Alice:** 1. She applies CNOT to qubits 0 and 1; 2. she applies H gate to 0; 3. she measures 0 and 1, and sends classical outputs  $M_1, M_2$  to Bob.

On the next page we analyze how the q. state of all 3 qubits evolves during these steps



Appling CNOT for 0-th and 1-st qubits, and next factoring out |0> and |1>, we obtain:

$$|\psi_1\rangle = \frac{1}{\sqrt{2}}(\alpha|000\rangle + \alpha|011\rangle + \beta|110\rangle + \beta|101\rangle)$$
$$= \frac{\alpha}{\sqrt{2}}|0\rangle(|00\rangle + |11\rangle) + \frac{\beta}{\sqrt{2}}|1\rangle(|10\rangle + |01\rangle$$

After applying H gate to 0-th qubit, making expansion, and factoring out |00>, |01>, |10>, and |11>, we obtain

$$|\psi_{2}\rangle = \frac{\alpha}{2}(|0\rangle + |1\rangle)(|00\rangle + |11\rangle) + \frac{\beta}{2}(|0\rangle - |1\rangle)(|10\rangle + |01\rangle)$$

$$= |00\rangle(\frac{\alpha}{2}|0\rangle + \frac{\beta}{2}|1\rangle) + |01\rangle(\frac{\alpha}{2}|1\rangle + \frac{\beta}{2}|0\rangle)$$

$$+ |10\rangle(\frac{\alpha}{2}|0\rangle \mathbf{A}_{2}^{\beta}\mathbf{ignment}\rangle \mathbf{Project}_{2}^{\alpha}\mathbf{ignm Help}$$

Using Measurement Postula tet (Postulatet & Page 8) me obtain:

| Cl. Output         | W Q Output cstutores                                           | <b>Probability</b> |
|--------------------|----------------------------------------------------------------|--------------------|
| $M_1 = 0, M_2 = 0$ | We Chartestutores $ 00\rangle(\alpha 0\rangle+\beta 1\rangle)$ | 1/4                |
| $M_1 = 0, M_2 = 1$ | $ 01\rangle(\alpha 1\rangle+\beta 0\rangle)$                   | 1/4                |
| $M_1 = 1, M_2 = 0$ | 10 angle(lpha 0 angle-eta 1 angle)                             | 1/4                |
| $M_1 = 1, M_2 = 1$ | 11 angle(lpha 1 angle-eta 0 angle)                             | 1/4                |

To get these results you have to apply carefully the measurement postulate to  $|\psi_2\rangle$ ; do not forget about normalization factor  $\gamma$ , which is 2 in this case.

Note that the state of qubit  $\bigcirc$  collapsed (either to  $|0\rangle$  or  $|1\rangle$ ).

• Bob gets bits  $M_1, M_2$  and depending on their values he applies a particular unitary operator to qubit (2), as it is shown in the following table.

# Values of $M_1, M_2$ Bob's Unitary Operator for qubit $M_1=0, M_2=0$ $I_4$ (meaning do nothing) X $M_1=0, M_2=1$ X $M_1=1, M_2=0$ Z $M_1=1, M_2=1$ Project Exam Help here $X=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Z=\begin{pmatrix} 1 & 2X \\ -1 & 0 \end{pmatrix}$ https://tutorcs.com

- In particular, if  $M_1 = 0$ ,  $M_2 = 0$ , then 2 is already in exactly the same state  $\alpha|0\rangle + \beta|1\rangle$  as Alice's qubit 0 was originally (see measurement results on the previous page), and so Bob does not have to do anything more
- If  $M_1=0, M_2=1$ , then qubit (2) is in the state  $\alpha|1\rangle+\beta|0\rangle$ , and therefore Bob has to apply X to move it to the needed state  $\alpha|0\rangle+\beta|1\rangle$
- Thus, we transferred (teleported) the unknown state  $\alpha|0\rangle+\beta|1\rangle$  to Bob without sending any qubit. Amazing!

Cases of other values of  $M_1, M_2$  are similar

Quantum teleportation finds many applications. In particular, it is very important for quantum internet and for quantum data exchange inside of a quantum computer.

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs