Selection on Observable / Balancing Weight 労働経済学

川田恵介

Table of contents

1	Selection on observable	2
1.1	局所的な実験	2
2	識別	2
2.1	Conditional comparison	2
2.2	違反	3
3	識別: Conditional independence	3
3.1	Confounders	3
3.2	イメージ	3
3.3	イメージ: RCT	4
3.4	問題点: Unobservable confounders	4
3.5	問題点: Bad Control	4
3.6	イメージ	5
3.7	問題点: Bad Control	5
4	推定問題: Conditional comparison	5
4.1	Subsample Average Difference	5
4.2	Subsample size 問題	6
5	集計問題: Conditional average treatment effect	6
5.1	条件付き平均値としての集計	6
5.2	Average treatment effect	6
5.3	例:	7
6	推定: OLS	7
6.1	OLS の明確な問題点: Recap	7
6.2	OLS の不明確な問題点	7
6.2	tral	0

6.4	例: 記述統計 with OLS weight	8
6.5	例: 記述統計	8
6.6	解決策: マッチング法の併用	9
6.7	実装: WeightIt	9
6.8	実装: OLS との併用	9
6.9	まとめ 1	LO
Refere	ence 1	10

1 Selection on observable

- 統計的因果推論の基本的発想の一つは、Chance (偶然) を利用した因果効果の推論 (Imbens 2022)
- 母集団全体で(自然)実験が発生している応用はまれ
 - "局所的"に発生した実験的状況を活用できる

1.1 局所的な実験

- 多くの手法が発展
 - 操作変数、Regression Discontinuity
- 出発点となる方法は、Selection-on-observe を仮定し、因果効果を**識別**し、慎重な統計的に処理 (OLS with Balancing weight) を行い推定する

2 識別

- 以下が十分条件
- X が同じであれば、D はランダムに決まっている (Conditional independence)
- すべての x,d について、 $0 < \Pr[d|X = x] < 1$ (Positivity)
- 他者の d に影響を受けない (No interference)

2.1 Conditional comparison

- $0 < \Pr[d|X = x] < 1$ であれば、X が同じ事例内で比較できる
- X 内で D がランダムに決まり、他者の介入に影響を受けないのであれば、X 内で RCT が実行された と見做せる
- X 内での平均値の差 = Conditional average treatment effect

2.2 違反

- 例: $D = 「労働経済学」の講義への参加 <math>\rightarrow Y = 30$ 歳時点での所得
- 受講できない研究科が存在: Positivity 違反
- 勉強会などで非受講者にも講義内容を共有: No interference 違反
- そもそもの興味関心など、データから観察しにくい要因に、受講するかどうかが依存: Conditional independence 違反

3 識別: Conditional independence

• Conditional independence について、大量の議論が存在

3.1 Confounders

- Conditional independence について、より踏み込んだ議論のために、概念 Confounders (交絡因子) を 導入
- 例: 経済学研究科の院生の方が参加しやすい
 - 経済学研究科と他研究科の間で30歳時点での所得にも差異がある
 - * X として Balance させるべき (03OLS4Balance 参照)

3.2 イメージ

3.3 イメージ: RCT

3.4 問題点: Unobservable confounders

- すべての Confounders をデータから観察できるとは限らない
 - 観察できない (Unobservable) confounders が存在
 - * X 内の比較は、因果効果と一致しない
- Conditional independence は、Unobservable confounders が存在しないことを仮定
 - しばしば強すぎる仮定であり、代替案が提案されている

3.5 問題点: Bad Control

- データの中には、バランスすべきではない変数も通常含まれている
 - 理想的な RCT においても、D 間で差異が生まれる変数 (Post-treatment M)
- 例: M = 修士論文の内容

3.6 イメージ

3.7 問題点: Bad Control

- もし X 内で D がランダム化しており、Unobservable confounders が存在しなかったとしても、post-treatment を加えることで、confounders が" 復活" してしまう
- 例: M = 修士論文の内容
- D= 受講 &M= 実証研究 VS D= 未受講 &M= 実証研究
 - 後者の方が、そもそも実証研究に関心がある人の割合が多い?

4 推定問題: Conditional comparison

- 因果効果が識別できたとして、限られた事例数から、どのように推定するか?
 - Confounders のバランスを達成する必要がある
- Slide03/04の方法も使用可能だが、因果効果の異質性を考慮した場合、修正が必要

4.1 Subsample Average Difference

• Conditional average treatment effect が識別できたとしても、推定は容易ではない

• 最もシンプルな推定方法は、サブサンプルの平均差

$$\frac{\sum_{i|D_i=d,X_i=x}Y_i}{N(d,x)} - \frac{\sum_{i|D_i=d',X_i=x}Y_i}{N(d',x)}$$

• $N(d,x)=D_i=d, X_i=x$ を満たす事例数

4.2 Subsample size 問題

- X の数が多いと、サブサンプルサイズが小さくなり、推定精度が悪化する
- 条件付き平均効果の"集計値"を推定する必要がある
 - どのように集計するか、という問題が発生する

5 集計問題: Conditional average treatment effect

• 今日の労働経済学研究において、大きな注意が払われる

5.1 条件付き平均値としての集計

- 各 X 内で RCT が行われた際に識別できる因果効果 $\tau(X)$
 - 条件付き平均効果 (Conditional Average Treatment Effect; CATE)
 - ここまでは一定を仮定
- 解決策: CATE の平均値を Esitmand とする

5.2 Average treatment effect

• Estimand (平均効果) は以下のように定義できる

$$\tau = \sum_{X=x} \omega(x) \times \tau(x)$$

- Estimand は Y, D, X だけでなく、Weight $\omega(x)$ にも依存する
 - 研究者が指定する必要がある
- Average Treatment Effect: $\omega(X) = f(x)$

$$-f(x)=X_i=x$$
 の割合

5.3 例:

A tibble: 3 x 3

x `Tau(x)` `f(x)` <dbl> <dbl> 1 1 10 0.1 2 2 5 0.1 3 3 6 0.8

• Average Treatment Effect = 10 * 0.1 + 5 * 0.1 + 6 * 0.8 = 6.3

6 推定: OLS

- $Y = \beta_0 + \beta_D D + \beta_1 X_1 + .. + u$ を推定
 - X をバランスさせる Weight 推定として解釈できる (Slide03)
 - X を十分に複雑にすることで、X のバランスを達成
 - Double selection も併用可能
- 隠れた問題点が存在

6.1 OLS の明確な問題点: Recap

- X の平均値のみ揃えるので、Y-X に非線形な関係性があれば、信頼区間が信頼できなくなる
- 対策: モデルを複雑化させる (二乗項や交差項なども X に含める)

6.2 OLS の不明確な問題点

- X の D 間でのバランスを達成する Weight の中で、最も分散が小さいものが選ばれる
 - 修正済みデータについても、一般に、 $E[X|D=1]=E[X|D=0]\neq E[X]$
 - "存在しない"集団について、平均差を推定してしまう
 - Average Treatment Effect が推定できない
- 因果効果/格差の異質性が大きい場合、平均効果/格差からズレた値が推計されやすくなる
 - lmw package を利用し計算できる

6.3 例

Histogram of WeightOLS\$weights

6.4 例: 記述統計 with OLS weight

Characteristic	N = 534	
age	35 (27,41)	
education	13.14 (12.00,15.00)	
ethnicity		
cauc	440~(82%)	
hispanic	27~(5.0%)	
other	67~(13%)	
gender		
male	280~(52%)	
female	254~(48%)	

6.5 例: 記述統計

Characteristic	N = 534
age	37 (28,44)

Characteristic	N = 534
education	13.0 (12.0,15.0)
ethnicity	
cauc	440~(82%)
hispanic	27~(5.1%)
other	67~(13%)
gender	
male	289~(54%)
female	245~(46%)

6.6 解決策: マッチング法の併用

- 事前に X の分布をデータ全体と揃える非負の Weight を計算して使用する
 - CBPS (Imai and Ratkovic 2014), optitmal weight (Zubizarreta 2015) など
 - WeightIt パッケージで容易に実装可能
- Entropy weight (Hainmueller 2012) を実装
 - X の平均値をデータ全体と一致させ、かつばらつきを極力減らした Weight を計算

6.7 実装: WeightIt

```
library(WeightIt)
WeightBalance = weightit(
  married ~ education + age + ethnicity + gender, # G ~ X
  CPS1985, # Use DataClean
  method = "ebal", # Define EntropyWeight
  estimand = "ATE") # Define estimand
```

6.8 実装: OLS との併用

• 推定精度を上げるために、OLS との併用が望ましい

```
Fit = lm(
  log(wage) ~ married*(age + ethnicity + gender),
  CPS1985,
  weights = WeightBalance$weights) # MRI + CBPS weight
```

```
marginaleffects::avg_comparisons(
  Fit,
  variables = "married",
  vcov = "HC3")
```

```
Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % married mean(yes) - mean(no) 0.0931 0.0532 1.75 0.0801 3.6 -0.0112 97.5 % 0.197
```

Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, pred Type: response

6.9 まとめ

- コントロール変数で因果効果を識別するのであれば、X 内で RCT が行われている必要がある
- 因果効果の異質性を想定する場合、OLSによる推定は、平均効果を推定できない
 - X をサンプル平均とバランスさせる方法を併用する必要がある

Reference

Hainmueller, Jens. 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies." *Political Analysis* 20 (1): 25–46.

Imai, Kosuke, and Marc Ratkovic. 2014. "Covariate Balancing Propensity Score." *Journal of the Royal Statistical Society Series B: Statistical Methodology* 76 (1): 243–63.

Imbens, Guido W. 2022. "Causality in Econometrics: Choice Vs Chance." *Econometrica* 90 (6): 2541–66. Zubizarreta, José R. 2015. "Stable Weights That Balance Covariates for Estimation with Incomplete Outcome Data." *Journal of the American Statistical Association* 110 (511): 910–22.