Задание 1в. Отображения

Если каждому элементу множества A поставлен в соответствие ровно один элемент множества B, то говорят, что задана функция (отображение) на множестве A со значениями в множестве B (также: функция из A в B). Обозначение $f:A\to B$ (читается: f функция из A в B). Элемент, сопоставляемый элементу $x\in A$, называется образом x при отображении f или значением f в точке x и обозначается f(x); также пишут $x\mapsto y$, если y=f(x). Если $x\mapsto y$, то x называется прообразом y. Множество тех $y\in B$, которые представляются в виде f(x) для некоторого $x\in A$ называется образом f и обозначается $\mathrm{Im} f=\{f(x)|x\in A\}$.

Отображение $f:A\to B$ называется **инъективным**, если у каждого $y\in B$ не более одного прообраза. Отображение $f:A\to B$ называется **сюрьективным**, если у каждого $y\in B$ не менее одного прообраза (то есть $\mathrm{Im} f=B$). Отображение $f:A\to B$ называется **биективным** или **взаимно однозначным**, если у каждого $y\in B$ ровно один прообраз.

Отображения $f,g:A\to B$ являются равными, если их значения на каждом элементе A совпадают, иными словами f=g тогда и только тогда, когда $\forall x\in A$ f(x)=g(x).

Отображение может быть задано

- явно, перечислением образов элементов. Пример: $f: \{1,2\} \to \{100,200\}, 1 \mapsto 200, 2 \mapsto 100;$
- формулой. Пример: $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$;

Задача 1. Выпишите (задавая явно) все отображения между следующими конечными множествами A и B и определите их количество. Определите среди них инъективные, сюрьективные и биективные, Im, а также их количество.

- (1) $A = \{1, 2\}, B = \{\diamondsuit, \blacktriangle\};$
- (4) $A = \{ \circlearrowleft \},$ $B = \{ \blacktriangle, \circlearrowleft, \odot, \{ 1, 4, 5, 6 \}, \{ 1, 2 \} \};$
- (7) $A = \{1, 2, 3\}, B = \{\diamondsuit, \blacktriangle\};$

- (2) $A = \{ \diamondsuit, \blacktriangle, \odot, \{1\}, \{1, 2\} \}, B = \{ \blacktriangle \};$
- (5) $A = \emptyset, B = \{ \heartsuit, \blacktriangle \};$
- (8) $A = \{1, 2\}, B = \{ \circlearrowleft, \blacktriangle, 100 \};$

- (3) $A = \{ \diamondsuit, \blacktriangle \}, B = A;$
- (6) $A = \{ \diamondsuit, \blacktriangle \}, B = \varnothing;$
- (9) $A = \{1, 2, 3\}, B = A;$

Задача 2. Среди этих отображений найдите инъективные, сюрьективные, биективные, а также вычислите ${\rm Im} f$:

- (1) $f: \mathbb{R} \to \mathbb{R}, f(x) = x;$
- (4) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$;
- (7) $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x;$

- (2) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = -x;$
- (5) $f: \mathbb{R} \to \{x \in \mathbb{R} | x \geqslant 0\}, f(x) = x^2;$ (8) $f: \mathbb{Q} \to \mathbb{N}, x$ переходит в знаме-
 - (8) $f: \mathbb{Q} \to \mathbb{N}$, x переходит в знаменатель записи x в виде несократимой дроби;

- (3) $f: \mathbb{N} \to \mathbb{Q}, f(x) = x;$
- (6) $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x;$

Если $f:A\to B$, а $g:B\to C$ для некоторых множеств A,B и C, то определена операция **композиции** (**суперпозиции**) $g\circ f:A\to C$, которая задана следующим образом: $g\circ f(x)=g(f(x))$.

Задача 3. Пусть Country — множество стран, City — множество городов. f: Country \to City ставит в соответствие каждой стране столицу этой страны. g: City \to Country ставит в соответствие каждому городу ту страну, в которой он находится. Определить, какие выражения корректны и вычислить их значения:

(1) f(Дрезден)

(4) $q(\Phi$ ранция)

(7) $q \circ f(\text{Солт Лейк Сити})$

(2) g(Новосибирск)

(5) $f \circ g($ Колумбия)

(8) $q \circ f(Венгрия)$

(3) f(Россия)

(6) $f \circ q(Мумбай)$

(9) $q \circ f \circ q(Actaha)$

Задача 4. Вычислите суперпозицию функций f и g:

- (1) $f(x) = 4x^2, g(x) = \sin x;$
- (4) $f(x) = x, q(x) = 15x^4$;
- (7) $f(x) = x^x, q(x) = 3;$

- (2) $f(x) = \frac{1}{x}, g(x) = \sin x + \cos x;$
- (5) $f(x) = \sin(\ln x), g(x) = x;$
- (8) $f(x) = \sqrt{x}, g(x) = 16x + 4$;

- (3) $f(x) = x \cos x, g(x) = \frac{1}{x}$;
- (6) $f(x) = \frac{1}{x+1}, g(x) = \ln x;$
- (9) $f(x) = e^x$, $q(x) = 2 \ln 3$;

Задача 5. Представьте следующие функции в виде суперпозиции более простых функций f и g:

(1) $h(x) = \sin(\cos x)$

(4) $h(x) = 3\sin(x^2)$

(7) $h(x) = \sqrt{18x^2 + 1}$

(2) $h(x) = e^{2x+4}$

 $(5) \quad h(x) = \sin^2(x)$

(8) $h(x) = \frac{1}{2x \sin \ln x}$

- (3) $h(x) = \sin(-5x + 2)$
- (6) $h(x) = \ln \frac{1+x}{1-x}$

 $(9) \quad h(x) = x^x$

Задача 6. Докажите, что композиция инъективных инъективна, композиция сюрьективных сюрьективна, композиция биективных биетивна. Если $g \circ f$ инъективно, верно ли, что а) f инъективно? б) g инъективно? Если $g \circ f$ сюрьективно, верно ли, что а) f сюрьективно? б) g сюрьективно?

Если A множество, то отображение $id_A:A\to A$, задаваемое формулой $id_A(x)=x$ называется тождественным отображением множества A. Если $f:A\to B$, то отображение $g:B\to A$ называется обратным f, если $g\circ f=id_A$ и $f\circ g=id_B$.

Задача 7. а) Докажите, что обратные отображения имеются только у взаимно однозначных функций. б) Для каждого из биективных отображений задачи 1 найдите обратное. в) Выразите обратное композиции $f \circ g$ через обратные к f и g.

Если существует взаимно однозначное отображение между множествами A и B, то такие множества называются равномощными, запись: |A| = |B|.

Задача 8. Докажите, что если |A| = |B| и |B| = |C|, то |A| = |C|.

Задание 2а. Векторы. Метод Гаусса

Векторным (линейным) пространством называется произвольное множество V с введёнными на нём двумя операциями $+: V \times V \to V$ и $\cdot: \mathbb{R} \times V \to V$, которые называются сложением и умножением на числа и удовлетворяют ряду аксиом. Элементы векторного пространства называются векторами. Аксиомы, в частности, влекут существование особенного вектора $\vec{0}$, удовлетворяющего соотношению $\forall v \in V \ v + \vec{0} = v$, и называемого **нулевым вектором**.

Пример: \mathbb{R}^n , то есть множество всех записей вида (x_1,\ldots,x_n) , в которых в скобках записано через запятую n произвольных действительных чисел. Сложение и умножение в R^n определяются по формулам: $(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=$ $(x_1+y_1,\ldots,x_n+y_n),\ a\cdot (x_1,\ldots,x_n)=(ax_1,\ldots,ax_n),$ где x_i,y_i,a — действительные числа.

Линейной комбинацией векторов v_1, \ldots, v_n называется вектор, который можно получить из v_1, \ldots, v_n применяя операции «+» и «·». Любую линейную комбинацию можно предствавить в виде $\alpha_1 \cdot v_1 + \cdots + \alpha_n \cdot v_n$, где $\alpha_1, \ldots \alpha_n$ некоторые действительные числа, называемые **коэффициентами** линейной комбинации. Векторы v_1, \ldots, v_n называют линейно независимыми, если любая их линейная комбинация, в которой котя бы один коэффициент отличен от нуля, не равна нулевому вектору.

Задача 1. Выразите в виде линейной комбинации (там, где это возможно):

- (1) (10,15) через (1,0) и (0,1);
- (5) $(0, \frac{3}{2}, 0)$ через (2, 1, 3), (-1, 0, 0) и (0, 0, 3);
- (0,1,0,0), (0,0,1,0) и (0,0,0,1);

(2) (4,-7) через (1,1) и (0,1);

(4) (5,10,0) через (3,6,-4) и $(0,0,\pi)$;

- (6) $(4, -\frac{7}{8}, 6)$ через (1, 0, 0) и (0, 1, 0);
- (3) (8, -8, 8) через (3, -3, 3);
- (7) (2,2,3,4)через
- (1,0,0,0),
- (9) $\vec{0}$ через (1,0), (0,2) и (2,1) ненулевым образом;

Задача 2. Найдите линейно зависимые наборы векторов и линейные зависимости для них:

(1) (1,0) μ (0,1);

(4) (1,2) μ (1,2);

(7) (1,0,2) и (2,0,4);

(2) (1,1) μ (0,1);

- (5) (1,2), (2,1) и (0,0);
- (8) $(3, \frac{5}{2}, \frac{5}{2}), (2, 0, 0)$ и (0, 8, 8);

(8) $\vec{0}$ через (2,3) и (5,3.5);

(3) (1,2) и (2,1);

- (6) (5,10) и (-7,-14);
- (9) (4,3,6), (2,1,1) и (0,2,8);

Набор векторов пространства V называется **базисом**, если он линейно независим и любой вектор V линейно выражается через вектора этого набора.

Задача 3. Какие из наборов векторов предыдущей задачи являются базисами в соответствующем пространстве, и

Элементарными преобразованиями строк матрицы называются:

(1) прибавить к одной строке любую (2) домножить одну строку на число; (3) поменять строки местами; другую, умноженную на число;

Элементарными преобразованиями дюбую матрицу можно привести к ступенчатому виду, то есть виду, в котором каждая строка матрицы начинается с большего количества нулей, чем предыдущая. Этот способ называется метод Гаусса и заключается в последовательном обнулении элементов матрицы преобразованиями (1) и (3). В ступенчатой матрице первый ненулевой элемент в каждой строке (если он есть) называется **лидером** ступенчатой матрицы. **Обрат**ный ход метода Гаусса заключается в обнулении всех элементов матрицы, стоящих над лидерами, с использованием элементарного преобразования (1).

Задача 4. Привести следующие матрицы к ступенчатому виду, а затем выполнить обратный ход метода Гаусса:

$$(1) \quad \begin{pmatrix} 3 & 6 \\ 2 & 8 \end{pmatrix}$$

$$(3) \quad \begin{pmatrix} 2 & 3 \\ 8 & 9 \\ -2 & 7 \end{pmatrix}$$

$$\begin{pmatrix}
-2 & -1 & 2 \\
4 & 1 & -3 \\
1 & 1 & -1
\end{pmatrix}$$

$$(2) \quad \begin{pmatrix} 0 & 4 & 5 \\ 2 & 2 & 6 \end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 1 \\
1 & 0 & 2 \\
3 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & -5 \\
0 & 3 & 8 \\
2 & 1 & 7
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 1 \\
1 & 0 & 2 \\
3 & 1 & 2
\end{pmatrix}$$

$$(6)
\begin{pmatrix}
1 & -1 & -5 \\
0 & 3 & 8 \\
2 & 1 & 7
\end{pmatrix}$$

$$(8)
\begin{pmatrix}
1 & -1 & -5 & 4 \\
3 & 0 & 8 & -1 \\
-6 & 9 & 7 & 4
\end{pmatrix}$$

Уравнение вида $a_1x_1 + \cdots + a_nx_n = b$, в котором a_i , b — конкретные числа, x_i - переменные называется **линей**ным. Метод Гаусса применяют для решения систем линейных уравнений. Для этого строится матрица, причём каждой переменной, учавствующей в системе, сопоставляют столбец матрицы, каждому уравнению — строку матрицы. Также, выделяют специальный столбец для правых частей уравнений. Выписывая все коэффициенты получают матрицу системы уравений. Элементарные преобразования строк матрицы системы приводят к матрицам равносильных систем, т. о. метод решения системы заключается в приведении её матрицы к ступенчатому виду и решении получившейся системы. Система линейных уравнений может не иметь решения, иметь одно решение, либо бесконечно много.

Задача 5. Выписать матрицы следующих систем уравнений:

$$(1) \begin{cases} 3x + 2y = 0 \\ x = 1 \end{cases}$$

$$(3) \begin{cases} 2x + 3y = 7 \\ 4x + 6y = 8 \end{cases}$$

(5)
$$\begin{cases} -2x_1 - x_2 + 2x_3 = 0\\ 4x_1 + x_2 - 3x_3 = 0\\ x_1 + x_2 + -x_3 = 0 \end{cases}$$

(3)
$$\begin{cases} 2x + 3y = 7 \\ 4x + 6y = 8 \end{cases}$$
 (5)
$$\begin{cases} -2x_1 - x_2 + 2x_3 = 0 \\ 4x_1 + x_2 - 3x_3 = 0 \\ x_1 + x_2 + -x_3 = 0 \end{cases}$$
 (7)
$$\begin{cases} x_1 + x_2 + 5x_3 = 4 \\ 3x_1 + 8x_3 = -1 \\ -6x_1 + 9x_2 + 7x_3 = 4 \end{cases}$$

(2)
$$\begin{cases} 2x + 3y + z = 5 \\ y + z - 1 = x \end{cases}$$

(4)
$$\begin{cases} 2x_1 + x_2 + x_3 = 0\\ x_1 + 2x_2 + 2x_3 = 0\\ 3x_1 + x_2 + 2x_3 = 0 \end{cases}$$

6)
$$\begin{cases} x - y - 5z = 0 \\ 3y + 8z = 0 \\ 7z + y + 2x = 0 \end{cases}$$

Задача 6. Примените к матрицам, получившимся в предыдущей задаче, метод Гаусса и его обратный ход, преобразуйте снова к системам уравнений и решите их.