

Introduction

Lithographic and Non-Lithographic Processes are techniques for nanostructure fabrication.

Lithographic Process: Uses chemical/mask-based patterning.

Non-Lithographic Process: Based on self-organization and deposition techniques.

Used in **semiconductor and nanomaterial industries**.

Lithographic Processes

1. Photolithography

Uses **light and a photomask** to transfer
patterns onto a
substrate.

Deep Ultraviolet (DUV) Lithography: Uses 248 nm & 193 nm light for small features (down to 50 nm).

Used in: Fabrication of silicon-based electronic & photonic devices.

2. Electron Beam Lithography (E-Beam Lithography) Uses a beam of electrons to create patterns at the nanoscale.

Advantages: Can overcome the diffraction limit of light and create sub-20 nm features.

Limitations: Very slow, mainly used in research and mask-making.

Non-Lithographic Process

Definition:

→ Fabrication technique based on **natural self-organization** rather than masks.

Types:

- ightarrow Vacuum-Based Deposition Process
- \rightarrow Solution-Based Deposition Process

Advantages:

→ Cost-effective, flexible for nanomaterial synthesis.

Limitations:

 \rightarrow Not yet fully integrated into industrial semiconductor fabrication.

Vacuum-Based Deposition Processes

 \rightarrow Deposition occurs in high vacuum (10⁻⁸ to 10⁻¹¹ mbar).

Advantages:

- → **Highly pure & clean** process with minimal contamination.
- → Suitable for advanced device fabrication.

Disadvantages:

→ Requires expensive and complex equipment (vacuum pumps, gauges, leak-proof accessories).

Examples:

- ightarrow Plasma Arc Deposition
- ightarrow Evaporation
- \rightarrow Sputtering
- ightarrow Chemical Vapor Deposition (CVD)
- → Molecular Beam Epitaxy (MBE)

Solution-Based Deposition Processes

ightarrow Deposition occurs through chemical reactions in a liquid medium.

Advantages:

→ **Simple, cost-effective**, and can synthesize a wide range of materials.

Disadvantages:

- → Not as clean as vacuum-based processes.
- → Impurities may affect material properties.
- → **Not fully compatible** with solid-state electronics.

Examples:

- ightarrow Sol-gel Dip Coating
- \rightarrow Spin Coating
- \rightarrow Spray Pyrolysis
- \rightarrow Electrodeposition
- \rightarrow Chemical Bath Deposition

ThankYou