

Physical quantities:

- 1) Measured quantities (length, mass, and time).
- 2) Calculated quantities (volume, velocity, acceleration,)

Types of errors:

- 1) Personal error.
- 2) Systematic error (instrument error)
- 3) Random error.

*The error of measurement (Δx):

1)The smallest division for digital instruments.

Example: **Balance**: error = least count = 0.01g

2) Half smallest division for **non digital** instruments.

Example: Ruler, or meter stick: least count = 0.1 cm \rightarrow error = $\frac{0.1}{2}$ cm = 0.05 cm

1) if $z=x\pm y$ then: $\Delta z = \Delta x + \Delta y$, where x and y are measured quantities, z is calculated quantity(The errors are cumulative.)

- 2) if z=xy or z=x/y, then:
- a. take normal logarithm to both sides: $Ln(z)=Ln(x^*/y)=Ln(x) \pm Ln(y)$
- b. derive explicitly : $\frac{\Delta z}{z} = \frac{\Delta x}{x} + \frac{\Delta y}{y}$
- 3) $z=a x^n$, where a, and n are constants, or unmeasured quantities.

$$\frac{\Delta z}{z} = n \frac{\Delta x}{x}$$

Any experimental value measured or calculated written as: $x\pm\Delta x$, where x is the value and Δx is the error in this value.

Example: Find the relative error in the volume of the cylinder?

$$\sqrt{\frac{\pi D^2 h}{4}} \rightarrow \frac{\Delta V}{V} = \frac{2 \Delta D}{D} + \frac{\Delta h}{h}$$

*Graphics:

y = a x + b where a: the slope, and b:y-intercept.

*Conclusions:

- I) Compare between real values and experimental values, why the similarities/differences?
- II) Are you investigate the objectives of the experiment, how?
- III) The errors that being in the experiment.
- IV)The relation between x and y is linear and the constant of proportionality is

1) *Vernier caliper*:

For measure diameter of the cylinder (D).

Least count =
$$\frac{1 mm}{20}$$
 = 0.05 mm
Error= $\frac{0.05}{2}$ mm = 0.025 mm

Error=
$$\frac{0.05}{2}$$
 mm = 0.025 mm

The reading of the Vernier caliper = 1.1cm+7 *0.1 mm = 11mm + 0.7 mm= 11.7 mm.

II) Micrometer: (most accurate instrument to measure length)

For measure height of the cylinder (h).

Least count =
$$\frac{0.5 \text{ mm}}{50}$$
 = 0.01 mm

Error =
$$\frac{0.01}{2}$$
 mm = 0.005 mm

The reading of the Micrometer = 5.5 mm + 27*0.01 mm = 5.77 mm.

The density of the cylinder:

Density =
$$\frac{\text{mass}}{\text{Volume}} \rightarrow \rho = \frac{\text{m}}{\frac{\pi D^2 h}{4}}$$

#	h (mm) ±0.005	D (mm) ± 0.025	V(<i>cm</i> ³)	m (g) ± 0.01
1				
2				
3				
4				

THANK YOU

