Exemplu 3.1 Să se calculeze diferențiala de ordinul doi a funcțici $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = x^3 + 2y^3 - 3xyz^2$ în punctul $a = (1,1,1)$.	$df(a) = \frac{\sigma_J}{\partial x_1}(a)dx_1 + \frac{\sigma_J}{\partial x_2}(a)dx_2 + \dots + \frac{\sigma_J}{\partial x_n}(a)dx_n.$
$f_{x_n x_1}^{"}(a) f_{x_n x_2}^{"}(a) \dots f_{x_n}^{"}(a)$	deci notând $h_k = dx_k, \ 1 \le k \le n$
$H_f(a) = \begin{pmatrix} J_{x_1^2}(a) & J_{x_1x_2}(a) & \cdots & J_{x_1x_n}(a) \\ f_{x_2x_1}''(a) & f_{x_2^2}''(a) & \cdots & f_{x_2x_n}''(a) \end{pmatrix}$	$g'(0) = \frac{\partial f}{\partial u_1}(a)h_1 + \frac{\partial f}{\partial u_2}(a)h_2 + \dots + \frac{\partial f}{\partial u_n}(a)h_n,$
Matricea diferențialei de ordinul 2 a funcției f intr-un punct a se numește matricea hessiană și este dată de $\begin{pmatrix} f'' & (a) & f'' & (a) \end{pmatrix}$	$= \frac{\partial f}{\partial u_1}(a+th)h_1 + \frac{\partial f}{\partial u_2}(a+th)h_2 + \dots + \frac{\partial f}{\partial u_n}(a+th)h_n,$
Juneze pounomana, omogena ae graau a aonea namua jorna patrauca.	$g'(t) = \frac{\partial f}{\partial u}(a+th)u'_1(t) + \frac{\partial f}{\partial u}(a+th)u'_2(t) + \dots + \frac{\partial f}{\partial u}(a+th)u'_n(t) \qquad \dots$
Observație 21 Diferențiala a doua a unei funcții într-un punct este o	Derivând obţinem
$d^{2} f(x, y, z) = f_{x2}'' dx^{2} + f_{y2}'' dy^{2} + f_{z2}'' dz^{2} + 2f_{xy}'' dx dy + 2f_{xz}'' dx dz + 2f_{yz}'' dy dz.$	$g(t) = f(\underbrace{a_1 + th_1}_{u_1}, \underbrace{a_2 + th_2}_{u_2}, \dots, \underbrace{a_n + th_n}_{u_n}).$
ullet Pentru o functie de 3 variabile $f(x,y,z)$ avem	Avem
	$d^{p}f(a)(h) = g^{(p)}(0).$
$d^2 f(x,y) = f_{x2}'' dx^2 + f_{y2}'' dy^2 + 2f_{xx}'' dx dy.$	se definește prin formula
ullet Pentru o functie de 2 variabile $f(x,y)$ avem	Definiție 4 Diferențiala de ordinul $p, 1 \le p \le m$, a funcției f în punctul a
$i=1 \qquad 1 \leq i < j \leq n$	clasă $\mathcal{C}^m(-r,r)$.
$d^2 f(a)(dx) = \sum_{n=1}^{\infty} f''_{n}(a)dx^2 + 2 \sum_{n=1}^{\infty} f''_{n-1}(a)dx_i dx_i$	unde $t \in (-r,r)$, iar $r > 0$ este ales astfel ca $a + th \in A$. Funcția g este de
sau înlocuind h_i cu dx_i , $1 \le i \le n$, avem:	g(t) = f(a+th),
$i=1$ $1 \le i < j \le n$	$f\in C^m(A)$. Fie $h=(h_1,h_2,\ldots,h_n)\in\mathbb{R}^n$, definim funcția g prin relația
$d^{2}f(a)(h) = \sum_{i} f''_{i}(a)h_{i}^{2} + 2 \sum_{i} f''_{i}(a)h_{i}h_{i}$	Fie $A \subseteq \mathbb{R}^n$ o multime deschisă, $a = (a_1, a_2, \dots, a_n) \in A$ și $f : A \to \mathbb{R}$,
Calculând derivata de ordinul 2 a funcției g și punând $t=0$ se obține relația	Diferențiale de ordin superior
12.12.2021	Note Title
Curo 12	$\mathcal{C}_{\mathcal{U}}$

$f(x) = \underbrace{f(a) + \frac{1}{1!}}_{T_m(x)} df(a)(x - a) + \dots + \frac{1}{m!} d^m f(a)(x - a) + \underbrace{\frac{1}{(m+1)!}}_{R_m(x)} d^{(m+1)} f(c)(x - a).$	$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$ Teorema f (Formula lui Taylor) Fie $A \subseteq \mathbb{R}^n$ o mulţime convexă şi deschisă, $f: A \to \mathbb{R}, f \in C^{m+1}(A)$. Atunci pentru orice $x, a \in A$ există $c \in [a, x]$ astfel $\hat{n}c\hat{a}t$	In acest paragraf ne propunem să extindem formula lui Taylor pentru funcții de o variabilă reală la funcții de mai multe variabile reale. Reamintim această formulă pentru funcții de o variabilă reală. Fie $f: I \to \mathbb{R}$ o funcție de $(n+1)$ ori derivabilă pe I . Atunci pentru orice $x, x_0 \in I$ cu $x \neq x_0$ există c cuprins între x și x_0 astfel încât	Formula lui Taylor pentru funcții de mai multe variabile	$d^{2}f(a)(dx, dy, dz) = 6dx^{2} + 12dy^{2} - 6dz^{2} - 6dxdy - 12dydz - 12dxdz.$ $H_{s}(a) = \begin{pmatrix} 6 & -3 & -6 \\ -3 & 12 & -6 \end{pmatrix}.$	$J_{xy} = -3z^{-}, J_{yz} = -6xz, J_{xz} = -6yz.$ Oblinem	$f'_x = 3x^2 - 3yz^2, f'_y = 6y^2 - 3xz^2, f'_z = -6xyz.$ $f''_{x^2} = 6x, f''_{y^2} = 12y, f''_{z^2} = -6xy;$ $f''_{x^2} = 6xy, f''_{x^2} = 6xy, f''_{x$	
(-a).	$F''(t) = d^2 f(a + t(x - a))(x - a) $ $F^{(m+1)}(t) = d^{m+1} f(a + t(x - a))(x - a) $ $F^{(m+1)}(t) = d^{m+1} f(a + t(x - a))(x - a) $	$+t(x_1-a_1),\ldots,$ $\frac{\partial f}{\partial u_i}(a+t(x-a))$	(1) F(n)=F(0)+ 1/2 F(0)++ 1/m/b)+ (m+1) F(m+1)(0),02011.	Tuicha Fail de closé Comt per [0,1]. Aplicam lui F Jamuelo	F: [0,1]-> R, F(E)= f(a+ E(x-a)) > (a c x	$T_m(x), R_m(x)$ se numesc polinomul Taylor de ordin m , respectiv rest de ordinul m în formula lui Taylor.	

Pentru functio de donc variable fermula lus Taylo cue est de ordinul 2 este data de: du relatirle anternoare in (1) obtinem. Intournd, + (x)(0), 0 & K = m, respectiv + (+) $F^{(m+1)}(\theta)$ $F^{(m)}(0)$ F(1)F(0)П $= d^{m+1}f(\mathfrak{C})(x-a) : \mathfrak{C} = a + \theta(x-a).$ $d^m f(a)(x-a)$ df(a)(x-a)f(x)f(a)

> punctului (1,1).Exemplu \Longrightarrow Să se scrie primii trei termeni din formula lui Taylor pentru funcția $f(x,y)=x^2+xy+\ln(x+y-1),\ (x,y)\in\mathbb{R}^2,\ x+y>1$ în jurul

Soluţie 2 Fie $(x_0, y_0) = (1, 1)$. Avem

$$f'_x(x,y) = 2x + y + \frac{1}{x+y-1}, \quad f'_y(x,y) = x + \frac{1}{x+y-1}$$

$$f_{x^2}''(x,y) = 2 - \frac{1}{(x+y-1)^2}, \quad f_{xy}''(x,y) = 1 - \frac{1}{(x+y-1)^2}, \quad f_{y^2}''(x,y) = -\frac{1}{(x+y-1)^2}$$
 \hat{s}^i

$$\begin{split} f(x,y) &= f(1,1) &+ \frac{1}{1!} \left(f_x''(1,1)(x-1) + f_y'(1,1)(y-1) \right) \\ &+ \frac{1}{2!} \left(f_{x2}''(1,1)(x-1)^2 + 2 f_{xy}''(1,1)(x-1)(y-1) + f_{y2}''(1,1)(y-1)^2 \right) + \cdots \\ f(x,y) &= 2 + 4(x-1) + 2(y-1) + \frac{1}{2}(x-1)^2 - \frac{1}{2}(y-1)^2 + \cdots . \end{split}$$

Corolar \mathbf{Q} . Fie $f \in \mathcal{C}^3(A)$, $A \subseteq \mathbb{R}^2$ deschisă şi convexă, $(x_0, y_0) \in A$.

$$\begin{split} f(x,y) &= f(x_0,y_0) + \frac{1}{1!} \left(f_x'(x_0,y_0)(x-x_0) + f_y'(x_0,y_0)(y-y_0) \right) + \\ &+ \frac{1}{2!} \left((f_{x2}''(x_0,y_0)(x-x_0)^2 + 2f_{xy}''(x_0,y_0)(x-x_0)(y-y_0) + f_{y2}''(x_0,y_0)(y-y_0)^2 \right) + R_2(x,y). \\ &+ \frac{1}{2!} \left((f_{x2}''(x_0,y_0)(x-x_0)^2 + 2f_{xy}''(x_0,y_0)(x-x_0)(y-y_0) + f_{y2}''(x_0,y_0)(y-y_0)^2 \right) + R_2(x,y). \\ &+ \frac{1}{2!} \left((f_{x2}''(x_0,y_0)(x-x_0)^2 + 2f_{xy}''(x_0,y_0)(x-x_0)(y-y_0) + f_{y2}''(x_0,y_0)(y-y_0)^2 \right) + R_2(x,y). \end{split}$$

Extreme pentre surclie de mai multe variabile

Dem Trasapun ca a at pumot de minim-local al lu f. Aturici unde se Pameste un vector fixal on 1/1/11=1. Defining: $(-a, a) \subseteq A$ and $f(a) \in f(x)$, $\forall x \in B(a, a)$. Regulto et of (9)= 0 pronceductes, pour arman Enform le oreisee fur Ferne at pentur fernéfie de o somethic reals. Determinant 5/10)= line 9(1)-9(0)= luci f (a+ts)-f(0) = df (a) 9(0)= f(a) = f(a+ts) = g(+), tt e(-n, n), duc t= 0 TOM: a manufactor 3/2 (a)=0, partin KE5/12)---, m) diferențiabilă în a. Dacă a este punct de extrem local al lui f atunci df(a) = 0 $\iff \frac{\partial f}{\partial x_1}(a) = \frac{\partial f}{\partial x_2}(a) = \dots = \frac{\partial f}{\partial x_n}(a) = 0.$ $\textbf{Teorema} \textbf{2} \textbf{4} \text{ (Fermat) } \textit{Fie } A \subseteq \mathbb{R}^n, \ a \in \text{int} A, \ \textit{i} \ f : A \to \mathbb{R} \ \textit{o function}$ pend stationer at lent, pund outre ASP Mr pund a coul A Observație 2.2 ii) Reciproca teoremei lui Fermat este falsă. Într-adevăr pentru funcția Inamte de a presente conditie sufrie este pontra ca un punet outre Fermble potrotice suit fluidie polintuiale ontogens de graduel dot.

De ex lundie $\psi(x_1, x_1) = x_1 - 3x_1x_1 + 2x_2, (x_1, x_1) \in \mathbb{R}^2$ constant în nicio vecinătate a lui (0,0). Deci (0,0) nu e punct de $h^2 \geq 0,$ pentru orice $h \in \mathbb{R}.$ Decif(x,y) - f(0,0)nu păstrează semn printre punctele critice ale lui f. $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = x^2 - y^2 \ aven$ extrem local a lui f. \implies (0,0) punct critic al lui f. Dar $f(0,h) = -h^2 \le 0$ şi f(h,0) =diferențiabilă pe o mulțime deschisă punctele de extrem local se găsesc O farmia patratica she o functie p: 12" -> R data de V(4,, V2, Y3)=X,-2X2+4X3+5X, X2+3X2X,+ X3X, (X,,X2,X3)ER unde aij e / a aij = gji > i, J e 2/12, ..., m], P(x)= 2 Rig xix; , x= (x,,-, x~) E/12 patratice i) Teorema lui Fermat ne spune că pentru o funcție $f'_x(x,y) = 2x$, $f'_y(x,y) = -2y$

Definite of farma patieties p: 12 -> 12 S.m.: 1. pozitiv definité des (p(x) > 0, +x \in 1207; 2. negativ definité des (p(x) < 0, +x \in 1207; 3. nedefinité des exista x, y \in 120, (p(x) < 0, (p($A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2 & -3 \\ 1 & -3 & 6 \end{pmatrix}.$	$\varphi(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 6x_3^2 - 2x_1x_2 - 6x_2x_3 + 2x_3x_1$ are matrices:	Extuplu: Fenus potratees	Poemai some sub fames:	Matricea stimetura A= (a1) E Ha (D) S M matricea former patratice Q. Dru reletis 911 = Q. 1=12 m upillo co
$ \begin{array}{c} \lambda = \begin{pmatrix} Q_{m} & \dots & Q_{mn} \\ Q_{mn} & \dots & Q_{mn} \end{pmatrix}, Q_{ij} = Q_{ij} & \lambda = i, j \leq n. $ $ \lambda (Q_{mn} - \dots - Q_{mn}) \\ \lambda (Q_{mn} - \dots - Q_$	te 9: 12° - 12 o James patretro de	Ex3 $Q(x_1,x_2)$ = $(x_1 - 2x_1x_2 + x_2)$ = $(x_1 - x_2)$ =	Exr. $\varphi(x_1, x_1) = x_1 - 2x_1x_1 - x_1 \in modefondo panha co$ $\varphi(A_1, o) = 1 > 0; \varphi(o, t) = 1 < 0.$	Ex1 \(\varphi(\kappa, \times_1) = \ki_1 - 2\xi_1 \times_1 2\xi_2 + 2\xi_2 \\ \text{postive defenute} \\ \left\) fundom c\(\varphi(\kappa, \ki_1) = (\times_1 - \times_1)^2 + \times_2 > 0, \(\times_1 \ki_1 \times_1 \) \(\times_1 \ki_2 \times_1 \)	5 megetive semidefinite does $p(x) \leq 0$, $\forall x \in \mathbb{R}^m$ is $\exists x_0 \in \mathbb{R}^m, x_0 \neq 0$, and $p(x_0) = 0$.

8)		8	<u></u>								
3) q at redefente = 3×20, >30.	[-15" Bm >0 = 1,60, 1260, -, 1m 60		1) que postro defunita es 0, 20, 20, 20, 20, 20, 20, 20	Rozema (Bhtorullii Silvester)	Dm = det A.	OK, * ON OKK (19, dx	0 0	Notain: $\Delta_1 = q_{ij}, \Delta_2 = \begin{vmatrix} q_{i1} & q_{i2} \\ q_{21} & q_{22} \end{vmatrix}$	Cum Aestimetuca => >KER, 12KEM.
	Janu dete metade de de de senderel		plus a eximun over a ma .	3) La co de fa) que e defauto es a mu ast	2) do on a +(a) she negative defends -> 0 m fuller	de miles bold et les for	1) fre detal at postis definite => and punct	rain puet oritie et lu 1.	Unichous regulación.	Notice punctela critice di unu functi si poeti dicide un	Obs. Ir f(a) et o fermio portratia.

$f_{x} = 12x^{2}$, $f_{xy}^{y} = -4$, $f_{yy}^{y} = 12y^{2}$	$\frac{d^{2} + (x,y) = \frac{1}{x^{2}} dx + 2 dx dy + 2 dy}{dx} dy$	Studien d'i presetele Oritice Arous	?mde outré (0,0); (1,1); (-1,-1)	$(\Rightarrow \chi(\chi^{8}-1)=b\Rightarrow \chi_{1}=0, \chi_{2}=1, \chi_{3}=-1$	$\left(\begin{array}{c} 3 \\ y^{2} \\ x = 0 \end{array}\right) \left(\begin{array}{c} 3 \\ y^{2} \\ x = 0 \end{array}\right) \left(\begin{array}{c} 3 \\ y^{2} \\ x = 0 \end{array}\right)$	$\int x^2 - 5 = 0 \qquad y = x^2 \rightarrow x^2 - x = 0$	$\begin{cases} f'_{1} = 0 \iff \begin{cases} h_{3} - h_{X} = 0 \end{cases} \end{cases}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\mathcal{L}(\mathcal{L}(S)) = \mathcal{L}(S) + \mathcal{L}(S) $	Cocal al fenote: f: R' -> n	X Disart Some 17 Thomas of
	(-1,-1) e pund de munion local.	a d=1-1,-1)=12h,-8h, h, +12h, e pos definite=	de de f(14,1) e positiv defenda > (1,1) e pend de núm tozal	$+4(n,1) = (-4(12)) \Delta_2 = (-4(12)) = 1.28 > 0$	0 f(h,t) =	et nodefinds -> 10,0) mi e peuis de Almee.	$PA : h_1 = h_2 = 1 \implies d^2 \neq (0,0) = -8 < 0 \implies d^2 \neq (0,0)$ $h_4 = 0, h_2 = 1 \implies d^2 \neq (0,0) = 8 > 0 \implies d^2 \neq (0,0)$	· dation = -8h, br	de fley) = 12x2h, -8h, h2 + 12yhr, (hybr) ED	12/1/4/1= 12× dx-8dxdy +125241	