Calibrating the SIDM Gravothermal Catastrophe with N-body Simulations

Charlie Mace ^{1,2} Shengqi Yang ^{3,4} Annika H. G. Peter ^{1,2,5,6} Zhichao Carton Zeng ^{1,2,7} Xiaolong Du ^{4,8} Andrew Benson ⁴

¹Department of Physics, The Ohio State University Center for Cosmology and Astroparticle Physics, The Ohio State University ³Los Alamos National Laboratory ⁴Carnegie Observatories ⁵Department of Astronomy, The Ohio State University ⁶School of Natural Sciences, Institute for Advanced Study ⁷Department of Physics and Astronomy, Texas A&M University ⁸Department of Physics and Astronomy, University of California, Los Angeles

Background

The nature of dark matter is one of the most persistent mysteries in our Universe. One dark matter candidate, self-interacting dark matter (SIDM), predicts that dark matter halos experience gravothermal catastrophe, a process where the halo's inner region rapidly increases in density and decreases in size. Models for the collapse process require calibration to N-body simulations, but the meaning of that calibration is unclear, and there are many differing values of the calibration parameter across the literature.

In this work we use the N-body code Arepo to study this calibration, and to extend the useful range of core-collapse models. We show that the effective value of this calibration changes as a function of halo parameters and SIDM cross-section, but can be well described as a function of just one variable. With this calibrated model, dark matter researchers can study the nature of SIDM without running costly numerical simulations.

The Gravothermal Catastrophe

Figure 1. Two regimes for SIDM: smfp (dominated by self-scattering) and Imfp (dominated by gravitational interaction).

SIDM halos can be broadly categorized into the *long* mean-free-path and *short* mean-free-path regimes (Figure 1). The dimensionless cross-section $\hat{\sigma}$, a function of the initial halo parameters and SIDM cross-section, gives an approximation of which region best describes a halo.

Figure 2. The halo central density evolution for several different $\hat{\sigma}$ values. The dashed line is the expected evolution in the lmfp regime, with β_{eff} as a fit parameter.

Figure 2 shows an example of gravothermal core-collapse for halos with various $\hat{\sigma}$ values. Numerical gravothermal fluid models have been successful in predicting the evolution of halos in the lmfp regime [1], but those models face two major challenges:

- 1. These models **require calibration** to N-body simulations to get an accurate heat transfer rate.
- 2. These models **break down** as $\hat{\sigma}$ approaches 1, limiting their application.

To resolve these issues, we derive a model for an effective calibration parameter β_{eff} , based on the expected variation in heat transfer between the smfp and Imfp regimes:

$$\beta_{\text{eff}}(\hat{\sigma}) = \frac{1}{0.20\hat{\sigma}} \left((0.20\beta\hat{\sigma})^{-\alpha} + \left(\frac{0.63}{\hat{\sigma}} \right)^{-\alpha} \right)^{-1/\alpha}.$$

This model is a function of $\hat{\sigma}$, with two fit parameters β and α .

Results

We run 96 simulations across a variety of halo and SIDM parameters to test our β_{eff} model and to fit the β and α parameters. We select numerical parameters based on our previous SIDM convergence study [2].

Figure 3. The effective calibration parameter $\beta_{\rm eff}$ as a function of $\hat{\sigma}$. Different halo masses are shown by marker, and each $\beta_{\rm eff}$ value is averaged over halo concentrations. Each line is a fit to Equation 1, with 0, 1, or 2 free parameters.

We find that our model accurately describes the evolution of halos with $\hat{\sigma} < 1$, and fit parameters $\beta = 0.949$ and $\alpha = 0.899$ (Figure 3). The success of this model shows that regardless of the specific concentration, mass, and cross-section of a halo, its evolution can be predicted with just $\hat{\sigma}$.

Applications

Figure 4. Substructure lensing convergence maps for CDM halos (top) and SIDM halos (bottom).

 K_{tot}

Our $\beta_{\rm eff}$ model allows dark matter researchers to:

- Model core-collapsing halos without expensive N-body simulations
- Apply Imfp core-collapse models for halos with $\hat{\sigma}$ close to 1

While the predicted variation in $\beta_{\rm eff}$ is small, there are applications that call for this level of precision.

One such application for precise collapse timescales is substructure lensing, where the gravitational lensing caused by dark subhalos within a galaxy can be used to infer the properties of dark matter. If subhalos of the lensing galaxy undergo gravothermal core-collapse, the properties of the lensed image can change drastically (Figure 4). Since the end of the core-collapse evolution is extremely quick, small changes in collapse time could lead to large changes in observable quantities.

Future Work

During the final year of my PhD I am working on several projects, some of which may continue into post-doctoral work:

- 1. Applying this core-collapse model to substructure lensing predictions, to make testable predictions for SIDM.
- 2. **Running hydrodynamical simulations** of merging clusters to study observable signatures of SIDM.
- 3. **Further study of N-body simulations** with SIDM, and an investigation of where unexplained numerical errors originate.
- 4. **Studying how tidal effects alter core-collapse** with OSU graduate students Angelica Whisnant and Chloe Zheng.

References

charliemace.com mace.103@osu.edu

^[1] Shengqi Yang et al. Gravothermal solutions of sidm halos: Mapping from constant to velocity-dependent cross section. The Astrophysical Journal, 946(1):47, Mar. 2023.

^[2] Charlie Mace *et al.* Convergence tests of self-interacting dark matter simulations. *Phys. Rev. D*, 110:123024, Dec. 2024.

^[3] Daniel Gilman et al. Strong lensing signatures of self-interacting dark matter in low-mass haloes. Monthly Notices of the Royal Astronomical Society, 507(2):2432–2447, Oct. 2021.