

Homework 1: Section 2

Algebra

Author

Paul Beggs BeggsPA@Hendrix.edu

Instructor

Dr. Christopher Camfield, Ph.D.

Due

September 4, 2025

Exercises 1 through 4 concern the binary operation * defined on $S = \{a, b, c, d, e\}$ by means of Table 2.26.

Table 2.26*

*	a	b	c	d	e
a	a	b	a	e	c
\overline{b}	c	a	b	b	a
c	c	a	b	b	a
d	b	e	b	e	d
\overline{e}	d	b	a	d	c

*(Code partially from Tex StackExchange)

1. Compute b * d, c * c, and [(a * c) * e] * a.

Solution. From the table, we see that b*d=b and c*c=b. For the last equation we work from the inside out:

$$[(a*c)*e]*a = [a*e]*a = c*a = c.$$

2. Compute (a*b)*c and a*(b*c). Can you say on the basis of this [sic] computations whether * is associative?

Solution. For the first equation, we see that (a*b)*c=b*c=b. Then, for the second we see that a*(b*c) = a*b = b. Since these two computations yield the same answer, it shows that * is associative for these elements, but not necessarily for the whole set, S.

3. Compute (b*d)*c and b*(d*c). Can you say on the basis of this computation whether * is associative?

Solution.

(a)
$$(b*d)*c = b*c = b$$
, and
(b) $b*(d*c) = b*b = a$.

(b)
$$b*(d*c) = b*b = a$$

Since these computations are not equal, * is not associative.

4. Is * commutative? Why?

Solution. It is not commutative because e * a = d, but a * e = c.

In exercises 7 through 10, determine whether the binary operation * defined is commutative and whether * is associative.

7. * defined on \mathbb{Z} by letting a * b = a - b.

Solution. This binary operation is not commutative or associative. Two counterexamples:

- (a) Commutativity: $3-4=-1 \neq 1=4-3$
- (b) Associativity: $(3-4)-2=-3 \neq 1=3-(4-2)$
- **8**. * defined on \mathbb{Q} by letting a * b = ab + 1.

Solution. Since rational multiplication is commutative, $ab \in \mathbb{Q}$. Then, because addition is commutative and $1 \in \mathbb{Q}$, then

$$ab + 1 = ba + 1$$
.

Therefore, * is commutative. To check associativity, we compute the following equations:

$$(a*b)*c = (ab+1)*c = (ab+1)c+1 = abc+c+1,$$

and

$$a * (b * c) = a(bc + 1) = abc + a + 1.$$

Therefore, * is not associative because $abc + c + 1 \neq abc + a + 1$ (for distinct elements $a, b, c \in \mathbb{Q}$).

10. * defined on \mathbb{Z}^+ by letting $a * b = 2^{ab}$.

Solution. If $ab \in \mathbb{Z}^+$, then $ba \in \mathbb{Z}^+$ because the non-negative set of integers are commutative. Hence, $2^{ab} = 2^{ba}$, and * is commutative. We can check associativity by working out the following equations:

$$(a*b)*c = 2^{ab}*c = 2^{2^{ab}c}.$$

and

$$a(b*c) = a*2^{bc} = 2^{a2^{bc}}.$$

Therefore, * is not associative because $2^{2^{ab}c} \neq 2^{a2^{bc}}$

- **23**. Let H be the subset of $M_2(\mathbb{R})$ consisting of all matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ for $a, b \in \mathbb{R}$. Is H closed under
 - (a) matrix addition?

(b) matrix multiplication?

Solution.

(a) The set H is closed under matrix addition because for any elements $a, b, c, d \in \mathbb{R}$:

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix},$$

where we can see that the operations a+c and b+d results in some sum $e,f\in\mathbb{R}$:

$$\begin{bmatrix} e & -(f) \\ f & e \end{bmatrix} = \begin{bmatrix} e & -f \\ f & e \end{bmatrix}.$$

(b) The same can be shown for matrix multiplication:

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} ac - bd & -(ad + bc) \\ bc + ad & -bd + ac \end{bmatrix} = \begin{bmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{bmatrix}.$$

26. Prove that if * is an associative and commutative binary operation on a set S, then

$$(a*b)*(c*d) = [(d*c)*a]*b$$

for all $a, b, c, d \in S$. Assume the associative law only for triples as in the definition, that is, assume only

$$(x*y)*z = x*(y*z)$$

for all $x, y, z \in S$.

Proof. Suppose that * is an associative and commutative binary operation on set S. Consider the equation

$$[(b*c)*a]*b.$$

We can rearrange the innermost parentheses using commutativity:

$$[(c*b)*a]*b.$$

Now, consider the substitution x = (c*b), y = a, and z = b. By using associativity and substituting back, we can write this as

$$x * (y * z) = (c * b) * (a * b).$$

Finally, by employing commutativity once again, we get

$$(a*b)*(c*b).$$

Therefore, we have shown (a * b) * (c * d) = [(d * c) * a] * b

37. Suppose that * is an associative and commutative binary operation on a set S. Show that $H = \{a \in S \mid a * a = a\}$ is closed under *. (The elements of H are **idempotents** of the binary operation *.)

Proof. Suppose that * is an associative and commutative binary operation on set S. Let $a, b \in H$ and consider the following:

$$(a*b)*(a*b) = (b*a)*(a*b) \qquad \text{commutative property,}$$

$$= b*(a*a)*b \qquad \text{associative property,}$$

$$= b*a*b \qquad \text{definition of } H,$$

$$= b*b*a \qquad \text{commutative property,}$$

$$= (b*b)*a \qquad \text{associative property,}$$

$$= b*a \qquad \text{property of } H,$$

$$= a*b \qquad \text{commutativity property.}$$

Therefore, H is closed because $a * b \in H$.