Entrega Nº 3

Objetivo

Determinar en que lavado va a encontrarse cada prenda en un período de tiempo T sujeto a las incompatibilidades de encontrarse en un mismo lavado entre cada una de ellas para minimizar el tiempo total de lavados.

Hipótesis

- No hay demanda mínima del tiempo que necesita un lavado.
- Existe capacidad ilimitada de prendas que puede llevar un lavado.
- No hay límite en la cantidad de lavados a utilizar.
- No existe una demanda para la cantidad mínima de lavados a utilizar.
- No hay demanda mínima para el tiempo total de los lavados.

Variables

 $Aij = 1\{La \text{ prenda i es incompatible con la prenda j}\}. (Variable bivalente)$

Yik = **1**{La prenda i se encuentra en el lavado k}. (Variable bivalente)

MAXik = **1**{La prenda i es la de mayor tiempo del lavado k}. (Variable bivalente)

MEDik = **1**{La prenda i no es la de mayor ni la de menor tiempo de lavado}. (Variable bivalente)

Ti = Tiempo de lavado de la prenda i. [t] con t una medida de tiempo. (Constante)

N = Cantidad de prendas. (Constante)

Tk = Tiempo del lavado k.

 $Tk = \Sigma (Ti * MAXik) (I desde 1 hasta N)$

Restricciones

Todas las prendas deben estar en algún lavado

 $\Sigma \Sigma \text{ Yik} = N \text{ (k desde 1 a N, i desde 1 a N)}$

Incompatibilidad

$$Yik + Yjk \le 1 + Aij$$

Las prendas deben estar en un solo lavado

 Σ Yik = 1 (K desde 1 hasta N) \forall i

Tiempo de cada lavado

$$MAXik * Tj \le Ti * Yik \le Tj + M * (MAXik + MEDik)$$

$$\Sigma$$
 MAXik = 1 (i desde 1 hasta N) \forall k

La prenda i tiene que estar en el lavado ${\bf k}$

Funcional

$$Z(min) = \Sigma Tk$$
 (k desde 1 hasta N)