IN THE CLAIMS

- 1. (currently amended): An oligonucleotide comprising at least one <u>pentavalent</u> internucleotide phosphorus atom protected with a group of formula -X^aSiR³R⁴R⁵ wherein X^a represents O or S, and R³, R⁴ and R⁵ each independently are optionally substituted hydrocarbyl groups, selected such that total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more.
- 2. (original): An oligonucleotide according to claim 1, wherein the group of formula -XaSiR3R4R5 is a tert-butyldimethylsilyloxy group.
- 3. (original): An oligonucleotide according to either of claims 1 and 2, wherein a single group of formula -XaSiR3R4R5 is located at the terminal internucleotide linkage.
- 4. (currently amended): An oligonucleotide according to claim 1, having the Formula (1):

$$R^{1}-X^{1}$$
 $X^{2}=P-X^{a}-SiR^{3}R^{4}R^{5}$
 $X^{4}-R^{2}$

Formula (1)

wherein:

R¹ and R² independently are nucleoside, nucleotide or oligonucleotide moieties; R³, R⁴ and R⁵ each independently are optionally substituted hydrocarbyl groups, selected such that total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more;

X^a represents O or S, preferably O;

 X^1 and X^4 are each independently -O-, -CH₂-, -S- or NRⁿ, where Rⁿ represents H or C₁₋₄ alkyl, preferably both of X^4 and X^4 being O; and X^2 is O or S₁ preferably S.

- 5. (original): An oligonucleotide according to claim 4, wherein X^1 , X^a and X^4 are each O, and one of R^3 , R^4 and R^5 represents a tert-butyl group, with the others representing methyl groups.
- 6. (original): An oligonucleotide according to either claims 4 and 5, wherein R^1 is a nucleotide substituted at the 3'-position by X^1 , and R^2 represents an oligonucleotide substituted at the 5'-position by X^4 .
- 7. (currently amended): An oligonucleotide according to claim 4, of Formula (2):

Formula (2)

wherein:

X^a for each occurrence is independently -O- or S-;

 X^1 and X^4 are, independently, -O-, -CH₂-, -S- or NRⁿ, where Rⁿ represents H or C₁₋₄ alkyl;

X² for each occurrence is O or S;

 X^3 for each occurrence is, independently, -O-, -S-, -CH₂-, or -(CH₂)₂-;

R⁶ is H, an alcohol protecting group, an amino protecting group or a thio protecting group;

R⁷ for each occurrence is, independently, -H, -F -OR⁸, -NR⁹R¹⁰, -SR¹¹, or a substituted or unsubstituted aliphatic group, such as methyl or allyl;

R⁸ for each occurrence is, independently, -H, a substituted or unsubstituted aliphatic group (e.g., methyl, ethyl, methoxyethyl or allyl), a substituted or unsubstituted aryl

group, a substituted or unsubstituted aralkyl group, an alcohol protecting group, or - (CH₂)_a-NR^xR^y;

R⁹ and R¹⁰ for each occurrence are each, independently, -H, a substituted or unsubstituted aliphatic group, or an amine protecting group, or R⁹ and R¹⁰ taken together with the nitrogen to which they are attached are a heterocyclyl group; R¹¹ for each occurrence is, independently, -H, a substituted or unsubstituted aliphatic group, or a thio protecting group;

R¹² for each occurrence is, independently, a phosphorus protecting group, provided that at least one R¹² represents a group of formula -SiR³R⁴R⁵, in which R³, R⁴ and R⁵ are as previously defined each independently optionally substituted hydrocarbyl groups, selected such that that total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more;

R¹³ is for each occurrence is, independently, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group or a substituted or unsubstituted aralkyl group;

R¹⁴ is H a hydroxy protecting group, a thio protecting group, an amino protecting group, -(CH₂)_q-NR^xR^y, a solid support, or a cleavable linker attached to a solid support;

R^x and R^y are each, independently, -H, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted heteroaralkyl group or an amine protecting group, or, R^x and R^y taken together with the nitrogen to which they are attached form a heterocyclyl group;

q is an integer from 1 to about 6;

B is -H, a natural or unnatural nucleobase, or a protected natural or unnatural nucleobase; and

n is a positive integer.

8. (original): An oligonucleotide according to claim 7, wherein each X¹, X³ and X⁴ are O; R⁶ is H or an alcohol protecting group; R⁷ is H, F, OCH₃, OCH₂CH₂OCH₃ or Oprotecting group; R¹² is -CH₂CH₂CN or tert-butyldimethylsilyl, provided at least one R¹² is tert-butyldimethylsilyl; R¹⁴ is H or a cleavable linker attached to a solid support, and n is from 8 to 40.

9. (original): A process for the preparation of a compound of Formula (1) as defined in claim 4, which comprises oxidising or sulfurising a compound of Formula (3):

$$R^{1}-X^{1}$$
 $P-X^{a}-SiR^{3}R^{4}R^{5}$
 $X^{4}-R^{2}$

Formula (3)

wherein R¹, R², R³, R⁴, R⁵, X^a, X¹ and X⁴ are as defined in claim 4.

10. (canceled)

11. (currently amended): A compound of Formula (4):

$$R^{1}$$
- X^{1} - $P(NR^{17}R^{18})$ - X^{a} - $SiR^{3}R^{4}R^{5}$

wherein R⁴, R³, R⁴, R⁵, X^a and X⁴ are as defined in claim 4,

R¹ is a nucleoside, nucleotide or oligonucleotide moiety;

R³, R⁴ and R⁵ each independently are optionally substituted hydrocarbyl groups, selected such that total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more;

X^a represents O or S;

 X^1 is -O-, $-CH_{2^-}$, -S- or NR^n , where R^n represents H or $C_{1\cdot 4}$ alkyl; and R^{17} and R^{18} are each, independently, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aralkyl or R^{17} and R^{18} taken together with the nitrogen to which they are bound form a heterocyclyl group.

12. (currently amended): A process for the preparation of a compound of Formula (1) as defined in claim 4

$$R^{1}-X^{1}$$
 $X^{2}=P-X^{a}-SiR^{3}R^{4}R^{5}$
 $X^{4}-R^{2}$

Formula (1)

which comprises:

a) coupling a compound of Formula (4) as defined in claim 11,

with a compound of formula R²-X⁴-H wherein R² and X¹ are as defined in claim 4, in the presence of an activator; and b) oxidising or sulfurising the product of step a) wherein

R¹ and R² independently are nucleoside, nucleotide or oligonucleotide moieties; R³, R⁴ and R⁵ each independently are optionally substituted hydrocarbyl groups, selected such that that total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more;

X^a represents O or S;

 X^1 and X^4 are each independently -O-, -CH₂-, -S- or NRⁿ, where Rⁿ represents H or C₁₋₄ alkyl;

X² is O or S: and

R¹⁷ and R¹⁸ are each, independently, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl or R¹⁷ and R¹⁸ taken together with the nitrogen to which they are bound form a heterocyclyl group.

13. (currently amended): A process for the preparation of a compound of Formula (3) as-defined in claim 10

$$R^{1}-X^{1}$$
 $P-X^{3}-SiR^{3}R^{4}R^{5}$
 $X^{4}-R^{2}$
Formula (3)

which comprises coupling a compound of Formula (4) as defined in claim 11,

with a compound of formula R^2 - X^4 -H wherein R^2 and X^4 are as defined in claim 4, in the presence of an activator

wherein

R¹ and R² independently are nucleoside, nucleotide or oligonucleotide moieties; R³, R⁴ and R⁵ each independently are optionally substituted hydrocarbyl groups, selected such that total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more;

Xª represents O or S;

 X^1 and X^4 are each independently -O-, -CH₂-, -S- or NRⁿ, where Rⁿ represents H or C_{1-4} alkyl; and

R¹⁷ and R¹⁸ are each, independently, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl or R¹⁷ and R¹⁸ taken together with the nitrogen to which they are bound form a heterocyclyl group.

14. (currently amended): A process for the preparation of a compound of Formula (4) as defined in claim 11,

R¹-X¹-P(NR¹⁷R¹⁸)-X⁸SiR³R⁴R⁵

which comprises reacting a compound of formula R^1-X^1-H , wherein R^4 and X^4 are as defined in claim 4 with a compound of formula $R^3R^4R^5Si-X^a-P(NR^{17}R^{18})_2$ wherein X^a , R^3 , R^4 , R^5 , R^{17} and R^{18} are as defined in claim 5

R¹ is a nucleoside, nucleotide or oligonucleotide moiety;

R³, R⁴ and R⁵ each independently are optionally substituted hydrocarbyl groups, selected such that that total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more;

X^a represents O or S;

X¹ is -O-, -CH₂-, -S- or NR¹, where R¹ represents H or C₁₄ alkyl; and
R¹² and R¹³ are each, independently, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aralkyl or R¹² and R¹³ taken together with the nitrogen to which they are bound form a heterocyclyl group.

15. (currently amended): A process for the preparation of a compound of Formula (4)

R¹-X¹-P(NR¹⁷R¹⁸)-X⁸SiR³R⁴R⁵

wherein X^a is O which comprises a) reacting a compound of formula R¹-X¹-H, wherein R¹-and X¹-are as defined in claim 4 and with a compound of formula Z-P(NR¹⁷R¹⁸)₂ wherein R¹⁷-and R¹⁸-are as defined in claim 11 and Z represents a leaving group, preferably a chlorine atom, to form a compound of formula R¹-X¹-P(NR¹⁷R¹⁸)₂; b) hydrolysing the compound of formula R¹-X¹-P(NR¹⁷R¹⁸)₂ to form a compound of formula R¹-X¹-PH(=O)(NR¹⁷R¹⁸), the hydrolysis preferably taking place in the presence of a weak acid, such as tetrazole, S-ethyltetrazole, or an imidazole salt; and c) reacting the compound of formula R¹-X¹-PH(=O)(NR¹⁷R¹⁸) with a

silylating agent of formula Y¹-SiR³R⁴R⁵ wherein Y¹ is a leaving group, to form the compound of Formula (4)

wherein

R¹ is a nucleoside, nucleotide or oligonucleotide moiety;

R³, R⁴ and R⁵ each independently are optionally substituted hydrocarbyl groups, selected such that that total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more;

 X^1 and X^4 are each independently -O-, -CH₂-, -S- or NRⁿ, where Rⁿ represents H or C₁₋₄ alkyl;

R¹⁷ and R¹⁸ are each, independently, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl or R¹⁷ and R¹⁸ taken together with the nitrogen to which they are bound form a heterocyclyl group;

Y¹ and Z each independently represent a leaving group.

16.	(canceled)			
17.	(canceled)			
18.	(canceled)			
19.	(canceled)			
20.	(canceled)			
21.	(canceled)			
22.	(canceled)			
23.	(canceled)			

An oligonucleotide according to claim 4 wherein X1, Xa and X4 are

24. (new):

each O and X2 is S.