12. SVM & Flexible Discriminants

Introduction

- The Support Vector Classifier
- Support Vector Machines and Kernels
- Curse of dimensionality
- Regularization parameter for SVM
- SVM for Regression

The Support Vector Classifier

- Binary case: N-pairs training data $\{x_i, y_i\}_1^N, x_i \in \mathbb{R}^p, y_i \in \{-1, 1\}$
- Hyper plane. $\{x : f(x) = x^T \beta + \beta_0 = 0, \|\beta\| = 1\}$
- Classification rule induced by f(x). G(x) = sign[f(x)].
- For linearly separable case, $y_i f(x_i) > 0$ for all i. Then the optimization problem:

$$\max_{\beta,\beta_0,\|\beta\|=1} M \text{ subject to } y_i(x_i^T\beta+\beta_0) \geq M, \ \forall i$$

Equivalently,

 $\min_{\beta,\beta_0} \|\beta\|$ subject to $y_i(x_i^T\beta + \beta_0) \ge 1$, $\forall i$ where $M = 1/\|\beta\|$

Which is a **convex** optimization problem (quadratic criterion, linear equality constraints).

Linearly separable case

The Support Vector Classifier

- For linearly non-separable case: Allow for some points to be on the wrong side of the margin. Define the slack variables $\xi = (\xi_1, \dots, \xi_N)$.
- Modify the constraints.
 - Option 1. $y_i f(x_i) \ge M \xi_i, \; \xi_i \ge 0$, $\forall i$, and $\sum_i \xi_i \le \text{constant}$ (measures overlap in actual distance from margin)
 - Option2. $y_i f(x_i) \ge \underline{M(1-\xi_i)}, \ \xi_i \ge 0$, $\forall i$, and $\sum_i \xi_i \le \text{constant}$ (measures overlap in relative distance from margin)

 Misclassification occurs at $\xi_i > 1$

e.g. constant K says, bounds # training misclassification.

• First constraint results in a non-convex optimization, while the second is convex.

$$\min_{\beta,\beta_0} \|\beta\| \text{ subject to } y_i f(x_i) \ge 1 - \xi_i, \ \xi_i \ge 0, \forall i, \ \sum_i \xi_i \le \text{constant}$$

Points well inside their class boundary do not play a big role in shaping the boundary.

Linearly non-separable case

Computing the SVC

- Optimization: $\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 + C \sum_i \xi_i$ subject to $y_i f(x_i) \ge 1 \xi_i, \ \xi_i \ge 0, \forall i$ For linearly separable case, $C \to \infty$
- Primal: $L_p = \frac{1}{2} \|\beta\|^2 + C \sum_i \xi_i \sum_i \alpha_i [y_i f(x_i) (1 \xi_i))] \sum_i \mu_i \xi_i$, which maximize w.r.t. β, β_0, ξ_i 's.
- **Dual:** $L_D = \sum_i \alpha_i \frac{1}{2} \sum_i \sum_{i'} \alpha_i \alpha_{i'} y_i y_{i'} x_i^T x_{i'}$, which is $L_p(\beta^*, \beta_0^*, \xi_i^*)$ where each are derivatives to 0. $0 = \sum_i \alpha_i y_i$ $\alpha_i = C \mu_i, \forall i$
- Our goal: maximize L_D subject to $0 \le \alpha_i \le C$, and $\sum_i \alpha_i y_i = 0$ (due to derivation), and KKT condition include the constraints

1.
$$\alpha_i[f(x_i) - (1 - \xi_i)] = 0$$
, 2. $\mu_i \xi_i = 0$, 3. $y_i f(x_i) - (1 - \xi_i) \ge 0$, $\forall i$. (1 is complementary slackness and 2&3 are primal feasibility.)

These equations uniquely characterize the solution to the primal and dual problem. The solution for eta has the form

$$\hat{\beta} = \sum_{i} \hat{\alpha}_{i} y_{i} x_{i}$$
 (x_{i} is called **support vector** if the coefficient $\hat{\alpha}_{i}$ is non-zero.)

Computing the SVC

- Among these support points $(\hat{\alpha}_i > 0)$, some will lie on the edge of the margin $(\hat{\xi}_i = 0)$, called **margin points**) can be used to solve for β_0 , and we typically use an average of all the solutions for numerical stability. (complementary slackness)
- $0 \le \hat{\alpha}_i \le C$, $\forall i. \ \hat{\alpha}_i = C$ if $\hat{\xi}_i > 0$. (primal feasibility & dual condition)
- Given the solutions $\hat{\beta}_0$ and $\hat{\beta}$, the decision function can be written as $\hat{G}(x) = sign[\hat{f}(x)] = sign[x^T\hat{\beta} + \hat{\beta}_0]$.
- Thu tuning parameter of SVC is the cost parameter *C*.

Cost parameter C

- ullet Larger values of C focus attention more on correctly classified points near the decision boundary.
- The optimal value for C can be estimated by cross-validation. If validation set does not include support vector, then the solution is un-changed. i.e. LOOCV is not recommended.

- Use basis functions $h_m: \mathbb{R}^p \to \mathbb{R}$, m=1,...,M and fit the SVC using input $h(x_i)=(h_1(x_i),\ldots,h_M(x_i)) \in \mathbb{R}^m$ instead $x_i \in \mathbb{R}^p$.
- The support vector machine classifier is an extension of this idea, where the dimension of the enlarged space is allowed to get very large.
- The classifier is $\hat{G}(x) = sign(\hat{f}(x))$ where $\hat{f}(x) = h(x)^T \hat{\beta} + \hat{\beta}_0$
- **Dual:** $L_D = \sum_i \alpha_i \frac{1}{2} \sum_i \sum_{i'} \alpha_i \alpha_{i'} y_i y_{i'} \langle h(x_i), h(x_{i'}) \rangle$ and the solution has the form $\hat{\beta} = \sum_i \hat{\alpha}_i y_i h(x_i)$.
- Thus, the solution function is $\hat{f}(x) = h(x)^T \hat{\beta} + \hat{\beta}_0 = \sum_i \alpha_i y_i \langle h(x), h(x_i) \rangle + \hat{\beta}_0$ which means we need not specify the transformation h(x) at all, but require only knowledge of the kernel function $K(x, x') = \langle h(x), h(x') \rangle$.
- K should be a symmetric positive semi-definite functions.

• Popular choices K in the SVM literature are dth-Degree polynomial: $K(x,x') = (1 + \langle x,x' \rangle)^d$,

Radial basis: $K(x, x') = \exp(-\gamma ||x - x'||^2)$,

Neural network: $K(x, x') = \tanh(\kappa_1 \langle x, x' \rangle + \kappa_2)$.

• The role of the cost parameter C is clearer, since perfect separation is often achievable there. A large value of C will often lead to an overfit wiggly boundary in the original feature space.

SVM - Degree-4 Polynomial in Feature Space

SVM - Radial Kernel in Feature Space

In each case C was tuned to approximately achieve the best test error performance, and C=1 worked well in both cases.

 $\begin{aligned} \text{SVM optimization:} \quad & \min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 + C \sum_i \xi_i \text{ subject to } y_i f(x_i) \geq 1 - \xi_i, \ \xi_i \geq 0, \forall i \\ & \min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 + C \sum_i \xi_i \text{ subject to } \xi_i \geq [1 - y_i f(x_i)]_+, \forall i \end{aligned}$

• It is only the support vectors ($\xi_i = [1 - y_i f(x_i)]_+$) that affects the solution, above solution is equivalent to solve following optimization problem:

$$\min_{\beta,\beta_0} C[\frac{1}{2C} \|\beta\|^2 + \sum_i [1 - y_i f(x_i)]_+]$$

$$= \min_{\beta,\beta_0} \sum_i [1 - y_i f(x_i)]_+ + \frac{\lambda}{2} \|\beta\|^2 \text{ where } \lambda = 1/C$$

Loss Function	L[y,f(x)]	Minimizing Function
Binomial Deviance (Logistic regression)	$\log[1 + e^{-yf(x)}]$	$f(x) = \log \frac{\Pr(Y = +1 x)}{\Pr(Y = -1 x)}$
SVM Hinge Loss	$[1-yf(x)]_+$	$f(x) = \text{sign}[\Pr(Y = +1 x) - \frac{1}{2}]$
Squared Error (LDA)	$[y - f(x)]^2 = [1 - yf(x)]^2$	$f(x) = 2\Pr(Y = +1 x) - 1$
"Huberised" Square Hinge Loss	$-4yf(x), yf(x) < -1$ $[1 - yf(x)]_+^2$ otherwise	$f(x) = 2\Pr(Y = +1 x) - 1$

The SVM hinge loss estimates the mode of the posterior class probabilities, whereas the others estimate a linear transformation of these probabilities.

Reproducing kernels

- Suppose the basis h arises from the Eigen expansion of a positive definite kernel $K(x,x') = \sum_{m=1}^{\infty} \phi_m(x)\phi_m(x')\delta_m$.
- Let $h_m(x) = \sqrt{\delta_m} \phi_m(x)$. Then, $\theta_m = \sqrt{\delta_m} \beta_m$, we can rewrite the hinge loss:

$$\min_{\beta_0, \theta} \sum_{i=1}^{N} \left[1 - y_i (\beta_0 + \sum_{m=1}^{\infty} \theta_m \phi_m(x_i)) \right]_{+} + \frac{\lambda}{2} \sum_{m=1}^{\infty} \frac{\theta_m^2}{\delta_m}$$

• The theory of reproducing kernel Hilbert spaces described there guarantees a finite-dimensional solution of the form

$$f(x) = \beta_0 + \sum_{i=1}^{N} \alpha_i K(x, x_i)$$

• For $K(x, x') = h(x)^T h(x')$, above optimization problem is equivalent to

$$\min_{\beta_0, \theta} \sum_{i=1}^{N} [1 - y_i f(x_i)]_+ + \frac{\lambda}{2} \alpha^T \mathbf{K} \alpha \text{ where } \mathbf{K}_{ij} = K(x_i, x_j), \ i, j = 1, ..., N$$

Reproducing kernels

- The optimization problem can be expressed more generally as $\min_{f \in \mathcal{H}} \sum_{i=1}^{r} [1 y_i f(x_i)]_+ + \lambda J(f)$ where \mathcal{H} is the structured space of functions, and J(f) an appropriate regularizer.
- e.g. Suppose $\mathscr{H} = \left\{ f: f(x) = \sum_{j=1}^p f_j(x_j), \ x = (x_1, \dots, x_p)^T \right\}$ and $J(f) = \sum_j \int \{f_j''(x_j)\}^2 dx_j$. Then the solution is an additive cubic spline, and has a kernel $K(x, x') = \sum_j K_j(x_j, x_j')$ where each of the K_j is the univariate smoothing spline in x_j .

- Conversely, any of the kernels we mentioned can be used with any convex loss function, and will also lead to a finite-dimensional representation.
- e.g. For the binomial log-likelihood loss, $\hat{f}(x) = logit(\hat{P}r(Y=1|x)) = \hat{\beta}_0 + \sum_{i=1}^N \hat{\alpha}_i K(x,x_i)$.

Curse of dimensionality

 $X_1, X_2, X_3, X_4 |_{v=-1} \sim N(0,1)$ for noise cases, add 6 standardized normal noise for both labels.

$$X_1, X_2, X_3, X_4|_{y=1} \sim N(0,1)$$
 subject to $9 \le \sum_j X_j^2 \le 16$

TABLE 12.2. Skin of the orange: Shown are mean (standard error of the mean) of the test error over 50 simulations. BRUTO fits an additive spline model adaptively, while MARS fits a low-order interaction model adaptively.

		Test Error (SE)		
	Method	No Noise Features	Six Noise Feature	es
1	SV Classifier	0.450 (0.003)	0.472 (0.003)	
2	SVM/poly 2	0.078 (0.003)	0.152 (0.004)	It is also very sensitive to the choice of
3	SVM/poly 5	0.180 (0.004)	0.370 (0.004)	kernel and adversely affected by the six noise features
4	SVM/poly 10	0.230 (0.003)	$0.434 \ (0.002)$	Hoise realures
5	BRUTO	0.084 (0.003)	0.090 (0.003)	
6	MARS	0.156 (0.004)	0.173 (0.005)	
	Bayes	0.029	0.029	

A path algorithm for the SVC

Test Error Curves - SVM with Radial Kernel

FIGURE 12.6. Test-error curves as a function of the cost parameter C for the radial-kernel SVM classifier on the mixture data. At the top of each plot is the scale parameter γ for the radial kernel: $K_{\gamma}(x,y) = \exp{-\gamma||x-y||^2}$. The optimal value for C depends quite strongly on the scale of the kernel. The Bayes error rate is indicated by the broken horizontal lines.

The regularization parameter for the SVM is C or $1/\lambda$. To set C high, leading often to some what overfit classifiers.

We need to determine a good choice for C, perhaps by cross-validation.

A path algorithm for the SVC

$$\beta_{\lambda} = \frac{1}{\lambda} \sum_{i} \alpha_{i} y_{i} x_{i}, \ \alpha_{i} \in [0,1] \ \forall i$$

KKT optimality conditions imply that:

- $y_i f(x_i) > 1$, $\alpha_i = 0$ for correctly classified and outside their margins
- $y_i f(x_i) = 1$, $\alpha_i \in (0,1)$ for sitting on their margins
- $y_i f(x_i) < 1$, $\alpha_i = 1$ for inside their margins.

Since margin is $1/\|\beta_{\lambda}\|$, as λ decreases, margin gets narrower.

All that changes as λ decreases are the $\alpha_i \in (0,1)$ of those points on the margin.

Exactly, the same idea works for non linear models, SVMs.

SVM for regression

• For linear regression model $f(x) = x^T \beta + \beta_0$, we consider minimization of $H(\beta, \beta_0) = \sum_{i=1}^N V(y_i - f(x_i)) + \frac{\lambda}{2} ||\beta||^2$ where

$$V_{\epsilon}(r) = \begin{cases} 0 & \text{if } |r| < \epsilon, \\ |r| - \epsilon, & \text{otherwise.} \end{cases}$$
, "\$\epsilon\$-insensitive" error measure, ignoring errors size less than \$\epsilon\$. \$\epsilon\$ depends on the scale of \$r\$.

Rough analogy with the SVC setup, where points on the **correct side** of the decision boundary and **far away** from it, are **ignored** in the optimization.

The solution function has the form:

$$\hat{\beta} = \sum_{i=1}^{N} \frac{(\hat{\alpha}_i^* - \hat{\alpha}_i)x_i}{(\hat{\alpha}_i^* - \hat{\alpha}_i)x_i}, \quad \hat{f}(x) = \sum_{i=1}^{N} \frac{(\hat{\alpha}_i^* - \hat{\alpha}_i)\langle x, x_i \rangle + \beta_0}{(\hat{\alpha}_i^* - \hat{\alpha}_i)(\hat{\alpha}_i^* - \hat{\alpha}_i)}$$

where $\hat{\alpha}_i$, $\hat{\alpha}_i^*$ are positive and solve

$$\min_{\alpha_{i},\alpha_{i}^{*}} \epsilon \sum_{i=1}^{N} (\alpha_{i}^{*} + \alpha_{i}) - \sum_{i=1}^{N} y_{i}(\alpha_{i}^{*} - \alpha_{i}) + \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} (\alpha_{i}^{*} - \alpha_{i})(\alpha_{i'}^{*} - \alpha_{i'}) \langle x_{i}, x_{i'}' \rangle$$

subject to
$$\alpha_i, \alpha_i^* \in [0, 1/\lambda], \alpha_i \alpha_i^* = 0 \ \forall i, \ \sum_i (\alpha_i^* - \alpha_i) = 0$$

SVM for regression and kernels

- Suppose we consider approximation of the regression function in terms of a set of basis $\{h_m(x)\}_1^M$: $f(x) = \sum_{m=1}^M \beta_m h_m(x) + \beta_0$
- To estimate β and β_0 we minimize $H(\beta,\beta_0) = \sum_{i=1}^N V(y_i f(x_i)) + \frac{\lambda}{2} \|\beta\|^2$ for some error measure V(r).
- For any choice of V(r), the solution has the form

$$\hat{f}(x) = \sum_{m} \hat{\beta}_{m} h_{m}(x) + \hat{\beta}_{0} = \sum_{i=1}^{N} \hat{a}_{i} K(x, x_{i}) \text{ where } K(x, y) = \sum_{m} h_{m}(x) h_{m}(y).$$

- Without constant term β_0 , the optimization problem re-written as $H(\beta) = V(\mathbf{y}, \mathbf{H}\beta) + \frac{\lambda}{2} \|\beta\|^2$ where $\mathbf{H}_{im} = h_m(x_i)$
- For squared error loss, $\hat{\alpha} = (\mathbf{H}\mathbf{H}^T + \lambda \mathbf{I})^{-1}\mathbf{H}\mathbf{H}^T\mathbf{y}$. Since $\mathbf{H}\mathbf{H}_{ii'}^T = K(x_i, x_{i'})$, only the inner product kernel K need be evaluated, at the N-training points for each i, i'.