Large-Scale Synthesis and Microwave Absorption Enhancement of Actinomorphic Tubular ZnO/CoFe₂O₄ Nanocomposites

Jing Cao, Wuyou Fu,* Haibin Yang, Qingjiang Yu, Yanyan Zhang, Shikai Liu, Peng Sun, Xiaoming Zhou, Yan Leng, Shuangming Wang, Bingbing Liu, and Guangtian Zou

State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, PR China

Received: October 22, 2008; Revised Manuscript Received: January 14, 2009

Actinomorphic tubular $ZnO/CoFe_2O_4$ nanocomposites were fabricated in large scale via a simple solution method at low temperature. The phase structures, morphologies, particle size, shell thickness, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The as-synthesized nanocomposites were uniformly dispersed into the phenolic resin then the mixture was pasted on metal plate with the area of $200 \text{ mm} \times 200 \text{ mm}$ as the microwave absorption test plate. The test of microwave absorption was carried out by the radar-absorbing materials (RAM) reflectivity far field radar cross-section (RCS) method. The range of microwave absorption is from 2 to 18 Hz and the best microwave absorption reach to 28.2 dB at 8.5 Hz. The results indicate that the composites are of excellence with respect to microwave absorption.

Introduction

Along with the development of scientific technology and modern society, the problem of electromagnetic interference has became more and more serious due to wide applications of electromagnetic waves in the GHz range for mobile phone, local area network, radar systems, and also television image interference of high-rise buildings, microwave dark-room, and so on.¹⁻³ Therefore, microwave absorbing materials are not only applied to the stealth technology of military4 but also used in the people's production and life in all aspects. On the basis of these reasons, the demands to develop more economical electromagnetic wave absorbers with wider absorbing bandwidths and more effective absorbing are ever increasing. In the past years, extensive study has been carried out to develop new microwave absorbing materials with a high magnetic and electric loss.^{5–9} Soft magnet CoFe₂O₄ ferrite has a large saturation magnetization and high Snoek's limit, which results in high complex permeability values at a wide frequency range. This factor makes CoFe₂O₄ highly useful as a thin absorber working at a highfrequency band. 10,11 However, magnet CoFe₂O₄ ferrite is quite heavy, which restricts their usefulness in the applications requiring lightweight mass. 12 In recent years, it has been shown that magnetic nanocomposites are used as microwave absorbing materials due to their advantages in respect to lightweight, low cost, design flexibility, and microwave absorption properties over pure ferrites. 12 It is well-known, some research work has been focused on one-dimensional (1D) nanostructure ZnO, which can be used as microwave absorbing materials.¹³ The large scale synthesis of ZnO is easily realized and the cost of preparation process for commercial application is very low. So ZnO is promising and vivid as a microwave absorption material. Many different morphological 1D ZnO nanomaterials have been fabricated by using various approaches. 14-24 Compared with other structures, tubular structures exhibit higher porosity, thus provide an effective way to optimize the performances of electromagnetic wave absorbing materials. On the basis of these characteristics, novel electromagnetic wave absorption properties are expected from ZnO nanotubes/CoFe₂O₄ nanocomposites. However, to date, large scale preparation of ZnO nanotubes/CoFe₂O₄ nanocomposites is still overlooked in literature, and the related properties investigations are still absent.

In the present work, we report for the first time the actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites by a simple chemical solution method. Characterization was accomplished using various techniques, such as powder X-ray diffraction, scanning electron microscopy, X-ray energy-dispersive spectroscopy, and so on. Moreover, the aim of this paper is to develop the core—shell structure materials based on ZnO and CoFe₂O₄ using the two-step coprecipitation method and investigate their magnetic properties and microwave absorption characteristics.

Experimental Section

Materials. Zinc nitrate and hexamethylenetetramine (HMT) were purchased from Beijing Chemicals Co. Ltd. Cobalt nitrate (Co(NO₃)₂·4H₂O), iron nitrate (Fe(NO₃)₃·9H₂O), sodium hydroxide (NaOH) of analytical reagent grade were obtained from Beijing Chemical Corporation. All reagents were used without further purification. Distilled water was used in all the experiments.

Preparation of Actinomorphic Tubular ZnO/CoFe₂O₄ Nanocomposites. Synthesis of the ZnO nanotubes was based on our previous study, ²⁵ in which 100 mL of aqueous solution of zinc nitrate and 100 mL of hexamethylenetetramine (HMT) aqueous solution of equal concentration (0.1 M) were mixed together and kept under mild magnetic stirring for 5 min. Then, the solution was transferred into a 500 mL flask and heated at 90 °C for 24 h with refluxing. Subsequently, the resulting white products were centrifuged, washed with deionized water and ethanol two times and dried at 60 °C in air for further characterization. Whereafter, a simple chemical solution reaction was employed to build actinomorphic tubular ZnO/CoFe₂O₄

^{*} To whom correspondence should be addressed. E-mail address: fuwy@jlu.edu.cn. Tel.: $+86\,431\,85168763$. Fax: $+86\,431\,85168763$.

nanocomposite bundles with a coprecipitation method. First, 100 mL of iron nitrate aqueous solution (0.005 M) and 100 mL of cobalt nitrate aqueous solution (0.0025 M) were mixed together and kept under mild mechanical stirring for 5 min. Then the fabricated ZnO nanotubes bundles of 0.9 g were immersed in the prepared solution at room temperature for 1 h concomitant stirring. This mixture was slowly added to 100 mL of 0.08 M NaOH solution, and this mixture was transferred into a 500 mL flask and kept at 90 °C for 2 h, sealed, with nonstop stirring. The mixture was allowed to cool to room temperature. Subsequently the resulting products were washed and centrifuged with deionized water and ethanol two times and dried at 80 °C in air for further characterization.

Preparation of Microwave Test Plate. Pure CoFe₂O₄, actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites, whose ZnO mass fraction were 40, 60, and 80 wt %, and pure ZnO were uniformly dispersed into the ethanol solution of phenolic resin, respectively. Then the mixture was painted on a metal plate with the area of 200 mm × 200 mm, and the spreading thickness was 1.5 mm. To make the microwave test plate, the mixture was solidified for 24 h at 80 °C to obtain microwave test plate nos. 1, 2, 3, 4, and 5, respectively.

Characterization. The products were characterized by X-ray diffraction (XRD), which was conducted on a Rigaku D/max-2500 X-ray diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å). Field-emission scanning electron microscopy (FESEM), it was obtained on a JEOL JEM-6700F microscope operating at 5 KV. X-ray energy-dispersive spectroscopy (EDX) attached to SEM, while EDS analysis was performed to understand their chemical constituents. Transmission electron microscopy (TEM) was obtained on a JEOL JEM-2000EX microscope. The magnetization measurements were carried out at room temperature by using a vibrating sample magnetometer (model TM-VSM1230-HHHS) with a maximum applied field of 15 kOe. Reflection loss was measured using a HP8510C network vector analyzer working at the $2\sim18$ GHz band. The remaining sample was pressed full circle for complex relative permittivity (ε_r = $\varepsilon' - j\varepsilon''$) and permeability ($\mu_r = \mu' - j\mu''$) measurements, with the American HP8722 microwave network vector analyzer determination of the sample complex magnetic permeability and the duplicate coefficient of dielectrical loss; the sweep frequency scope is $2\sim18$ GHz, each 0.5 GHz surveys data.

Result and Discussion

XRD Patterns. The X-ray powder diffraction patterns of the as-prepared pure ZnO, CoFe₂O₄, and actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites are shown in Figure 1a-g, respectively. In Figure 1a, the diffraction peaks at 31.8°, 34.45°, and 36.35° come from ZnO (JCPDS 79-0205). No diffraction peaks from other crystalline forms are detected, which indicates a high purity and crystallinity of these ZnO samples. In Figure 1b, the diffraction peaks at 30.25°, 35.55°, 43.40°, 57.15°, and 62.75° come from CoFe₂O₄ nanoparticles (JCPDS 22-1086), all diffraction peaks can be indexed to a typical spinel structured CoFe₂O₄. In Figure 1c, the diffraction peaks corresponding to both ZnO and CoFe₂O₄ can be seen clearly. From Figure 1c, we can obtain that, although the two diffraction peaks position of CoFe₂O₄ at $2\theta = 35.55^{\circ}$ (main peak) and ZnO at $2\theta = 36.35^{\circ}$ (main peak) are quite close to each other, the existence of the two peaks can be still seen clearly. Besides, there are no other diffraction peaks except ZnO and CoFe₂O₄. Figure 1 panels d-g show the ZnO/CoFe₂O₄ composites in which the content of ZnO is 20, 40, 60, and 80 wt %, respectively. It is can be seen that when the content of ZnO is 40 and 60 wt %, the peaks of ZnO

Figure 1. XRD patterns of (a) pure ZnO nanotube bundles, (b) pure CoFe₂O₄ nanoparticles, (c) actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites, and (d-g) ZnO/CoFe₂O₄ composites in which the content of ZnO is 20, 40, 60, and 80 wt %, respectively.

and CoFe₂O₄ can be seen clearly. When the content of ZnO is 80 wt %, the peaks belonging to CoFe₂O₄ are not obvious due to the low relative content of CoFe₂O₄, but we can distinguish the existence of the peaks at 35.55° and 43.40° belonging to CoFe₂O₄ at curve of ZnO 80 wt %. Likewise, when the content of ZnO is 20 wt %, the peaks belonging to ZnO are not obvious due to the low relative content of ZnO, but we can distinguish the existence of the peaks at 31.8° and 47.65°, which belong to ZnO at the curve of ZnO 20 wt%. In addition, the peaks at 35.55°, 57.15°, and 62.75° broaden significantly, because ZnO and CoFe₂O₄ both have peaks close to each other around these places. Hence, it is concluded that the as-synthesized core/shell structured composites are composed of crystalline ZnO and CoFe₂O₄.

Morphologies, Particle Size, and Chemical Compositions **Analysis.** The magnified FESEM images shown in Figure 2a and 2c indicate the detailed morphology of pure ZnO and the ZnO/CoFe₂O₄ nanotube bundles. As can be seen from Figure 2a, the wall thickness of the ZnO nanotubes is about 60 nm, inner diameters of the tubes are about 350 nm, and each tube outer wall has the obvious six edge angles, which because of ZnO have a hexagonal structure. ²⁵ In comparison with Figure 2a, the average length of the ZnO nanotubes has not obviously changed (Figure 2c), while the six edge angles of the outer wall have disappeared, and some small particles can clearly be found on the surface of the ZnO nanotube. It indicates that ZnO nanotubes have been coated with CoFe₂O₄ nanoparticles, and the size of CoFe₂O₄ nanoparticles are below 40 nm (inset a of Figure 2c). EDX patterns of a single nanotube for these two samples are also shown in Figure 2b and 2d to get the composition of the samples. The EDX pattern of the ZnO nanotubes shows only the presence of O and Zn elements. Co and Fe elements are found to be present after the nanotube is coated with CoFe₂O₄ nanoparticles, which provides powerful evidence for the successful coating of CoFe₂O₄ on the surface of ZnO nanotubes. This is consistent with the broad peaks of CoFe₂O₄ in the XRD spectra (Figure 1b,c). It can be seen that the coating of CoFe₂O₄ nanoparticles is continuous and uniform. Figure 3 shows the magnified FESEM images of ZnO/CoFe₂O₄ composites with different relative content of ZnO. It can be seen that with the decreasing of relative content of ZnO, the coating thickness increases significantly. However, in compari-

Figure 2. (a,c) Magnified FESEM images of ZnO nanotubes and ZnO nanotubes/CoFe₂O₄ (insets show the circled areas magnified several times); (b,d) EDX of ZnO nanotubes and ZnO nanotubes/CoFe₂O₄, respectively.

Figure 3. Magnified FESEM images of ZnO/CoFe₂O₄ composites with different relative content of ZnO: (a) 80%; (b) 60%; (c) 40%.

son with Figure 2a, the tubular structures are not obviously changed. Figure 4 is a TEM image of typical area of actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites. It can be seen that CoFe₂O₄ is coating the surface of ZnO (average 100 nm thick) as a thin layer. It also illustrates that CoFe₂O₄ nanoparticles coat ZnO nanotubes compactly, and there is no obvious crack in the core—shell of the ZnO/CoFe₂O₄ structure. This is in agreement with the result which is concluded from SEM.

Magnetic Property. The magnetic properties of the assynthesized $CoFe_2O_4$ and the representative actinomorphic tubular $ZnO/CoFe_2O_4$ nanocomposites were measured at room temperature as shown in Figure 5. In the case of $CoFe_2O_4$ nanoparticles, saturated magnetization (\mathbf{M}_s), remnant magnetization (\mathbf{M}_r) and coercive force (\mathbf{H}_c) were estimated to be \mathbf{M}_s =

Figure 4. TEM image of the typical area of the actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites.

63.0 emu/g, $\mathbf{M}_r=10.0$ emu/g and $\mathbf{H}_c=193.0$ emu/g, respectively. A similar behavior for the actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites was observed. In contrast, \mathbf{M}_s of the ZnO coated with CoFe₂O₄ decreased to 27 emu/g, mainly due to the volume of the nonmagnetic to the total sample volume.

Microwave Absorption Property. Figure 6 is the RAM reflectivity far field RCS method spectrum of five microwave test plates. Number 1 test plate is the pure CoFe₂O₄ nanoparticles

Figure 5. Magnetization curves of (a) pure CoFe₂O₄; (b) actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites.

Figure 6. Reflection loss determined in the phenolic cement: (1) pure CoFe₂O₄ nanoparticles; actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites in which content of ZnO is (2) 40 wt %, (3) 60 wt %, (4) 80 wt%; (5) pure ZnO nanotubes bundles.

as the microwave absorbents. Numbers 2, 3, and 4 test plates are ZnO/CoFe₂O₄ composites in which the content of ZnO is 40, 60, and 80 wt % as the microwave absorbents and will be designated as ZC1, ZC2, and ZC3, separately. Number 5 test plate is pure ZnO nanotubes bundles as the microwave absorbents. It can be seen that the reflection loss of pure ZnO nanotubes and CoFe₂O₄ nanoparticles are rather low for all frequencies between $2\sim18$ GHz and the peak values are 8.3 and 10.5 dB, respectively. For actinomorphic tubular ZnO/ CoFe₂O₄ nanocomposites, the microwave absorption is evidently improved (much better than that of both ZnO nanotubes and CoFe₂O₄ particles). As shown in Figure 6, the sample ZC1 shows the maximum reflection loss of 17.2 dB at 9.1 GHz, the sample ZC2 shows the maximum reflection loss of 28.3 dB at 8.6 GHz, and the sample ZC3 shows the maximum reflection loss of 20.6 dB at 8.0 GHz. The maximum reflection loss increases from 10.5 dB to about 28.3 dB for the weight ratio of $CoFe_2O_4 \le 40\%$. When the weight ratio of ZnO is 60%, the composites have good compatible dielectric and magnetic properties, and hence the microwave absorbing properties show the maximum value. However, when the weight ratio of ZnO is 40%, the maximum reflection loss decreases to 17.2 dB, which may be due to deteriorating the dielectric property when the weight ratio of CoFe₂O₄ exceeds a critical value. Hence, the CoFe₂O₄ particle-functionalized ZnO nanotubes exhibit a better microwave absorption. The improvement of microwave absorption obviously originates from the combination of ZnO nanotubes and CoFe₂O₄ nanoparticles. Therefore, the difference on reflection loss maximum as a function of the samples is associated with the magnetocrystalline anisotropy and structure anisotropy of as-synthesized ZnO nanotubes/CoFe₂O₄ nanocomposites. Compared with that of pure ZnO nanotubes and CoFe₂O₄ nanoparticles, enhanced microwave absorption of actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites at 2~18 GHz was observed and the possible mechanism was discussed.

Complex Relative Permittivity and Permeability. To investigate the possible mechanisms and effects about the enhancement of microwave absorption, we independently measured the complex relative permittivity and permeability of the samples. Figure 7 shows the real and imaginary parts of permittivity $(\varepsilon', \varepsilon'')$ and permeability (μ', μ'') spectra of pure CoFe₂O₄-phenolic cement composites and ZnO/CoFe₂O₄ (weight ratio of ZnO = 40%, 60%, 80%, 100%)-phenolic cement composites. As shown in Figure 7, the real parts of the permittivity of the specimens remain almost constant in the whole frequency range, where the ε' largely increases with the increase of the weight ratio of ZnO. Compared with the pure CoFe₂O₄, ZnO has high ε' . So the existence of ZnO will result in the large increase of ε' . Compared with the pure CoFe₂O₄, the imaginary parts of the complex relative permittivity for $ZnO/CoFe_2O_4$ (weight ratio of ZnO = 40%, 60%, 80%, 100%)-phenolic cement composites show a small resonance peak at 9.1, 8.4, 7.9, and 7.1 GHz, for samples 2, 3, 4, 5, respectively. We analyzed the mechanism of the change in the ε' and ε'' with frequency for ZnO/CoFe₂O₄ (weight ratio of ZnO = 0% 40%, 60%, 80%, 100%)-wax composites. First, it has been shown in the previous paper^{26,27} that the properties of interfaces could have a dominant role in determining dielectric performance. The characteristic feature of the ZnO is dielectric materials; the dominant dipolar polarization and the associated relaxation phenomena constitute the loss mechanisms. Composite materials, in which dielectric nanotubes coated with magnetic particles nanolayers, additional dielectric interfaces, and more polarization charges on the surface of the particles make the behaviors of dielectric relaxation more complex. Second, since the ZnO nanotubes/CoFe₂O₄ nanocomposites is a heterogeneous system, interfacial polarization is an important polarization process and associated relaxation also will give rise to loss mechanism. The real and imaginary parts of the complex permeability are shown in Figure 7c,d. Either the real part or the imaginary parts of the complex relative permeability of the ZnO/CoFe₂O₄ composites is lower than that of pure CoFe₂O₄. The lower values of the complex relative permeability for the ZnO/CoFe₂O₄ composites observed in these samples may be attributed to the presence of nonmagnetic polymer between the neighboring crystallites which weakens the intergranular magnetic interaction. We can find that μ'' largely increases with the increase of the weight ratio of CoFe₂O₄ in the whole frequency range. This result can be explained by the magnetic dissipation. According to Vander Zaag's suggestion, 28 the magnetic dissipation of ferrite includes hysteresis loss, eddy current loss, residual loss, ferromagnetic resonance loss, and domain wall loss.In this study, however, the enhancement of conductance of ZnO nanotubes/CoFe₂O₄ nanocomposites might contribute to higher μ'' of the ZnO nanotubes/CoFe2O4 nanocompositesphenolic cement composites because of ZnO nanotubes/ CoFe2O4 being a magnetic semiconductor. The normalized input impedance Z_{in} of a metal-backed microwave absorption layer could be obtained from the following expression: Zin = $(\mu_r/\varepsilon_r)^{1/2} \tanh[j(2\pi/c)(\mu/\varepsilon_r)^{1/2}fd]$ where μ_r and ε_r are the

Figure 7. (a) Real (ε') and (b) imaginary (ε'') parts of the relative complex permittivity, (c) real (μ') and (d) imaginary (μ'') parts of the relative complex permeability of ZnO/CoFe₂O₄ composites in which the weight ratio of ZnO is 0% (1), 40% (2), 60% (3), 80% (4), and 100% (5).

relative permeability and permittivity of the composite medium, c is the velocity of electromagnetic waves in free space, f is the frequency of microwaves, and d is the thickness of the absorber. Accordingly, the reflection loss is associated with $Z_{\rm in}$ as reflection loss (dB) = $20 \log Z_{\rm in} - 1/Z_{\rm in} + 1.^{29,30}$ It can be seen that the microwave absorption would be improved when the magnetic contribution matches the dielectric contribution based on the requirement of the tanh mathematics function, that is, $\tanh[j(2\pi/c)(\mu/\epsilon_r)^{1/2}fd]$. With the combined effect of dielectric dissipation ZnO nanotubes and magnetic dissipation of CoFe_2O_4 nanoparticles, when the weight ratio of CoFe_2O_4 is 40%, the microwave absorbency of the ZnO nanotubes/CoFe₂O₄ nanocomposites—phenolic cement composites shows the maximum value.

Conclusion

In summary, large-scale actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites were successfully prepared, in which core ZnO nanotubes bundles were synthesized by a single solution method at a mild temperature of 90 °C, and shell CoFe₂O₄ nanoparticles were produced at low temperature without using any catalysts, templates, or substrates. The microwave absorption properties of pure CoFe₂O₄, actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites in which ZnO mass fraction were 40, 60, and 80 wt % and pure ZnO were investigated, and the results indicate that the composites are excellent with respect to microwave absorption. Taking actinomorphic tubular ZnO/CoFe₂O₄ nanocomposites as the microwave absorbent, the microwave absorption is higher than 28 GHz. Compared with pure CoFe₂O₄, it can not only greatly reduce the mass of microwave absorbing materials, but also enhance the microwave absorption effect. The CoFe₂O₄-coated ZnO nanotube bundles have promise in their potential application to lightweight and strong absorption microwave absorbers.

Acknowledgment. The authors are grateful for the financial support from the Doctoral Foundation New Teacher project (200801831006) and National Basic Research Program of China (2005 CB724400).

References and Notes

- (1) Liu, Z. F.; Bai, G.; Huang, Y.; Li, F. F.; Ma, Y. F.; Guo, T. Y.; He, X. B.; Lin, X.; Gao, H. J.; Chen, Y. S. *J. Phys. Chem. C* **2007**, *111*, 13696–13700.
- (2) Motojima, S.; Hoshiya, S.; Hishikawab, Y. Carbon 2003, 41, 2653–2689.
- (3) Xu, P.; Han, X.; Jiang, J.; Wang, X.; Li, X.; Wen, A. J. Phys. Chem. C 2007, 111, 12603–12608.
- (4) Wen, H.; Cao, M. H.; Sun, G. B.; Xu, W. G.; Wang, D.; Zhang, X. Q.; Hu, C. W. J. Phys. Chem. C 2008, 112, 15948–15955.
- (5) Purcell, W. P.; Fish, K.; Smyth, C. P. J. Am. Chem. Soc. 1960, 82, 6299–6301.
- (6) Heston, W. M., Jr.; Smyth, C. P. J. Am. Chem. Soc. 1950, 72, 99-
- (7) Grubb, E. L.; Smyth, C. P. J. Am. Chem. Soc. 1961, 83 (20), 4122–4124.
- (8) Kalman, O. F.; Smyth, C. P. J. Am. Chem. Soc. 1960, 82 (4), 783–787.
- (9) Roberti, D. M.; Smyth, C. P. J. Am. Chem. Soc. 1960, 82 (9), 2106–2110.
- (10) Wan, J.; Wang, X.; Wu, Y.; Zeng, M.; Wang, Y.; Jiang, H.; Zhou, W.; Wang, G.; Liu, J. *Appl. Phys. Lett.* **2005**, *86*, 122501.
- (11) Manova, E.; Kunev, B.; Paneva, D.; Mitov, I.; Petrov, L. Chem. Mater. 2004, 16, 5689.
- (12) Fu, W. Y.; Liu, S. K.; Fan, W. H.; Yang, H. B.; Pang, X. F.; Xu, J.; Zou, G. T. *J. Magn. Magn. Mater.* **2007**, *316*, 54.
- (13) Zhuo, R. F.; Feng, H. T.; Chen, J. T.; Yan, D.; Feng, J. J.; Li, H. J.; Geng, B. S.; Cheng, S.; Xu, X. Y.; Yan, P. X. J. Phys. Chem. C 2008, 112 (31), 11767–11775.
- (14) Zhang, H.; Yang, D.; Ma, X.; Du, N.; Wu, J.; Que, D. J. Phys. Chem. B 2006, 110 (2), 827–830.
- (15) Zhang, Y.; Jia, H.; Luo, X.; Chen, X.; Yu, D.; Wang, R. J. Phys. Chem. B 2003, 107 (33), 8289–8293.
- (16) Zhang, H.; Yang, D.; Ji, Y.; Ma, X.; Xu, J.; Que, D. J. Phys. Chem. B 2004, 108 (13), 3955–3958.
- (17) Gao, P.; Wang, Z. L. J. Phys. Chem. B 2002, 106 (49), 12653–12658.

- (18) Jiang, C.; Zhang, W.; Zou, G.; Yu, W.; Qian, Y. J. Phys. Chem. B **2005**, 109 (4), 1361–1363.
- (19) Zhang, Y.; Wang, L.; Liu, X.; Yan, Y.; Chen, C.; Zhu, J. J. Phys. Chem. B 2005, 109 (27), 13091–13093.
- (20) Han, X. H.; Wang, G. Z.; Jie, J. S.; Luo, Y.; Yuk, T. I.; Choy, W. C. H.; Hou, J. G. *J. Phys. Chem. B* **2005**, *109* (7), 2733–2738.
- (21) Sun, X. H.; Lam, S.; Sham, T. K.; Heigl, F.; Jurgensen, A.; Wong, N. B. *J. Phys. Chem. B* **2005**, *109* (8), 3120–3125.
- (22) Huang, H.; Yang, S.; Gong, J.; Liu, H.; Duan, J.; Zhao, X.; Zhang, R.; Liu, Y.; Liu, Y. J. Phys. Chem. B 2005, 109 (44), 20746–20750.
- (23) Jie, J. S.; Wang, G. Z.; Han, X. H.; Hou, J. G. J. Phys. Chem. B **2004**, 108 (44), 17027–17031.
- (24) Song, J. H.; Wang, X. D.; Riedo, E.; Wang, Z. L. J. Phys. Chem. B 2005, 109 (20), 9869–9872.
- (25) Yu, Q. J.; Fu, W. Y.; Yu, C. L.; Yang, H. B.; Wei, R. H.; Li, M. H.; Liu, S. K.; Sui, Y. M.; Liu, Z. L.; Yuan, M. X.; Zou, G. T. J. Phys. Chem. C 2007, 111, 17521–17526.
 - (26) Lewis, T. J. J. Phys. D: Appl. Phys. 2005, 38, 202.
 - (27) Kim, S.; Yoon, Y. J. J. Appl. Phys. 2005, 97, 10F905.
 - (28) Vander Zaag, PJ. J. Magn. Magn. Mater. 1999, 315, 196-197.
- (29) Miles, P. A.; Westphal, W. B.; Hippel, A. V. Rev. Mod. Phys. 1957, 29, 279.
- (30) Ishino, K.; Narumiya, Y. Ceram. Bul. 1987, 66, 1469.

JP8093287