${\it FYS2140}$ Kvantefysikk, Oblig1

 ${\rm Mitt} \,\, {\bf navn} \,\, {\rm og} \,\, {\bf gruppenummer}$

15. januar 2014

Obliger i FYS2140 merkes med navn og gruppenummer!

Dette oppgavesettet er ment å friske opp en del grunnleggende matematikk som dere forventes å beherske, og som er helt avgjørende for å komme seg helskinnet gjennom kurset.

Oppgave 1 Lek med komplekse tall

- a) For hvert av de oppgitte komplekse tallene, beregn z^* , |z| og $|z|^2$. Sjekk eksplisitt at $zz^* = |z|^2$.
 - (i) z = i.
 - (ii) z = 3 + 4i.
 - (iii) z = -3.
 - (iv) z = 1 i.
 - (v) z = -3 4i.

Forklar hvorfor svarene for (ii) og (v) er så like.

- **b)** Forenkle de oppgitte uttrykkene og skriv resultatet på formen a+bi. *Hint:* Bruk relasjonen $z_1/z_2=z_1z_2^*/|z_2|^2$.
 - (i) $\frac{3+4i}{1-2i}$.
 - (ii) $\frac{\sqrt{3}+i}{(1-i)(\sqrt{3}-i)}.$
 - (iii) $\frac{1-2i}{3-4i} \frac{2+i}{5i}$.
- c) Skriv hvert av de følgende komplekse tallene på polarform, $z = r \exp(i\theta)$, det vil si bestem r og θ . Hint: Bruk relasjonen $\exp(i\theta) = \cos \theta + i \sin \theta$ (Eulers formel). Velg θ slik at $-\pi < \theta \le \pi$.
 - (i) z = 2i.
 - (ii) $z = -6 + 6\sqrt{3}i$.
 - (iii) $z = 2\sqrt{3} 2i$.
- d) Finn $z = z_1 z_2$ når:
 - (i) $z_1 = e^{i\frac{2\pi}{3}} \text{ og } z_2 = e^{i\frac{\pi}{3}}.$
 - (ii) $z_1 = 2e^{-i\pi} \text{ og } z_2 = 3e^{i\frac{\pi}{3}}$
 - (iii) $z_1 = e^{-i\frac{\pi}{5}} \text{ og } z_2 = e^{i\frac{\pi}{5}}.$

Hva skjer geometrisk (i det komplekse planet) med et komplekst tall dersom du multipliserer det med $e^{i\frac{\pi}{2}}$?

Oppgave 2 Et par viktige differensialligninger

a) Skriv ned den generelle løsningen til differensialligningen

$$\frac{df(x)}{dx} = bf(x),\tag{1}$$

hvor b er en konstant. Vi setter så følgende randbetingelser: f(0) = 1 og f'(0) = 3. Bruk dette til å bestemme de to ukjente konstantene og skriv ned løsningen for f(x) med disse randbetingelsene.

b) Vi skal så se på differensialligningen

$$\frac{d^2f(x)}{dx^2} = af(x),\tag{2}$$

der a er en konstant. Anta først at a er positiv. Vis at den generelle løsningen kan skrives som

$$f(x) = Ae^{\sqrt{a}x} + Be^{-\sqrt{a}x},\tag{3}$$

der A og B er vilkårlige konstanter. Hva kan vi si om konstanten A dersom vi krever at f(x) skal gå mot null for $x \to \infty$? Hva blir B dersom vi i stedet krever at f(x) skal gå mot null for $x \to -\infty$? Skriv til slutt om løsningen (3) som en lineærkombinasjon av hyperbolske funksjoner, $\sinh(\sqrt{a}x)$ og $\cosh(\sqrt{a}x)$, i stedet for eksponentialfunksjonen.

c) Nå betrakter vi i stedet tilfellet a < 0, dvs. a = -|a|. Hvordan modifiseres løsningen (3)? Skriv ned den generelle løsningen for dette tilfellet, både uttrykt ved eksponentialfunksjoner og uttrykt ved hjelp av trigonometriske funksjoner $\sin(\sqrt{|a|}x)$ og $\cos(\sqrt{|a|}x)$.

Oppgave 3 Litt integralregning

a) Finn følgende gaussiske integraler (det er lov å bruke Rottmann):

$$\int_{-\infty}^{\infty} e^{-x^2 - 4x - 1} dx. \tag{4}$$

$$\int_0^\infty x e^{-2x^2} dx. \tag{5}$$

b) Løs følgende integral:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-2\sqrt{x^2 + y^2 + z^2}} dx dy dz. \tag{6}$$

 $\mathit{Hint:}$ gjør om til **sfæriske koordinater** og bruk den (meget nyttige!) formelen

$$\int_0^\infty x^n e^{-\alpha x} dx = \frac{1}{\alpha^{n+1}} n!, \tag{7}$$

der n er et heltall.