Requirement already satisfied: joblib>=0.10 in /usr/local/lib/python3.11/dist-packages (from scikit-plot) (1.4.2) Requirement already satisfied: numpy<2.5,>=1.23.5 in /usr/local/lib/python3.11/dist-packages (from scipy) (2.0.2)

— 37.6/37.6 MB 20.5 MB/s eta 0:00:00

Downloading scipy-1.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.6 MB)

Downloading scikit_plot-0.3.7-py3-none-any.whl (33 kB)

Installing collected packages: scipy, scikit-plot

Found existing installation: scipy 1.14.1

Successfully uninstalled scipy-1.14.1
Successfully installed scikit-plot-0.3.7 scipy-1.15.2

from imblearn.over_sampling import RandomOverSampler

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler

from feature_engine.outliers.winsorizer import Winsorizer

from statsmodels.stats.outliers_influence import variance_inflation_factor

from sklearn.metrics import auc, accuracy score, confusion_matrix, mean_squared_error

Attempting uninstall: scipy

import pandas as pd
import numpy as np

import seaborn as sns

import feature_engine

import sklearn

import matplotlib.pyplot as plt

from sklearn.utils import resample

from sklearn.svm import SVC

import xgboost as xgb

import xgboost

df.head(6)

df.columns

from sklearn.impute import SimpleImputer

from sklearn.metrics import roc_curve

from sklearn.metrics import auc
#import scikitplot as skplt

from scipy.stats import norm

df = pd.read_csv("dataset.csv")

Next steps: (Generate code with df)

Uninstalling scipy-1.14.1:

Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=1.4.0->scikit-plot) (1.3.1)

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=1.4.0->scikit-plot) (0.12.1)

Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=1.4.0->scikit-plot) (4.56.0)

Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=1.4.0->scikit-plot) (1.4.8)

Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=1.4.0->scikit-plot) (24.2)

Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=1.4.0->scikit-plot) (11.1.0)

Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=1.4.0->scikit-plot) (3.2.1)

Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=1.4.0->scikit-plot) (2.8.2)

Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn>=0.18->scikit-plot) (3.6.0)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib>=1.4.0->scikit-plot) (1.17.0)

Age Gender Smoking Hx Smoking Hx Radiothreapy Thyroid Function Physical Examination Adenopathy Pathology Focality Risk T N M Stage

Euthyroid Single nodular goiter-right

Euthyroid Single nodular goiter-right

Euthyroid

Euthyroid

Euthyroid

New interactive sheet

No

View recommended plots

'Thyroid Function', 'Physical Examination', 'Adenopathy', 'Pathology',

→ Index(['Age', 'Gender', 'Smoking', 'Hx Smoking', 'Hx Radiothreapy', 'Recurred',

'Adenopathy_Bilateral', 'Adenopathy_Extensive', 'Adenopathy_Left',
'Adenopathy_Posterior', 'Adenopathy_Right', 'Pathology_Hurthel cell',
'Pathology_Micropapillary', 'Pathology_Papillary', 'Focality_Uni-Focal',

'Risk_Intermediate', 'Risk_Low', 'T_T1b', 'T_T2', 'T_T3a', 'T_T3b', 'T_T4a', 'T_T4b', 'N_N1a', 'N_N1b', 'M_M1', 'Stage_II', 'Stage_III',

#df_binary_encoded = pd.concat([df.drop(columns=categorical_columns)] + binary_encoded_dfs, axis=1)

'Response_Indeterminate', 'Response_Structural Incomplete'],

'Thyroid Function_Clinical Hypothyroidism',

'Thyroid Function_Subclinical Hyperthyroidism',
'Thyroid Function_Subclinical Hypothyroidism',
'Physical Examination_Multinodular goiter',

'Physical Examination_Single nodular goiter-left', 'Physical Examination_Single nodular goiter-right',

'Stage_IVA', 'Stage_IVB', 'Response_Excellent',

#categorical_columns = df.select_dtypes(include=['object']).columns

 $https://colab.research.google.com/drive/1FelMid5KCJy-ku7_zuYNwrho21UI7Umi\#scrollTo=QqJMV4Vxjsqj\&printMode=true$

Display the first few rows of the binary encoded dataset

new_df = df_encoded.replace(to_replace='False',value = 0)
new_df = df_encoded.replace(to_replace='True',value = 1)

#binary_encoded_dfs = [binary_encode(col) for col in categorical_columns]

'Thyroid Function_Euthyroid',

'Physical Examination_Normal',

dtype='object')

Re-identify categorical columns

Applying binary encoding again

#df_binary_encoded.head()

→ Index(['Age', 'Gender', 'Smoking', 'Hx Smoking', 'Hx Radiothreapy',

Single nodular goiter-left

Multinodular goiter

Multinodular goiter

Multinodular goiter

No Micropapillary Uni-Focal Low T1a N0 M0

No Micropapillary Multi-Focal Low T1a N0 M0

No Micropapillary Multi-Focal Low T1a N0 M0

Excellent

Excellent

Excellent

```
'Focality', 'Risk', 'T', 'N', 'M', 'Stage', 'Response', 'Recurred'],
                    dtype='object')
df.shape
 → (383, 17)
df.isnull().sum()
                        Gender
                      Smoking
                   Hx Smoking
                Hx Radiothreapy
               Thyroid Function
            Physical Examination 0
                   Adenopathy
                     Pathology
                      Focality
                     Response
                     Recurred
          dtype: int64
df = df.replace(to_replace='F',value = 0)
df = df.replace(to_replace='M',value = 1)
 <ipython-input-9-d7579330b916>:2: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
              df = df.replace(to_replace='M',value = 1)
 df = df.replace(to_replace='No',value = 0)
df = df.replace(to_replace='Yes',value = 1)
 <ipython-input-10-b4af9c9b07fa>:2: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
              df = df.replace(to_replace='Yes',value = 1)
new_df=df.drop(['Recurred'],axis=1)
# Perform one-hot encoding on categorical columns
df_encoded = pd.get_dummies(df, drop_first=True)
# Display the first few rows of the encoded dataset
df_encoded.head()
                          Gender Smoking Hx Smoking Hx Radiothreapy Recurred Thyroid Function_Clinical Hypothyroidism Thyroid Function_Euthyroid Function_Subclinical Hypothyroidism Thyroid Function_Subclinical Hypothyroidism Thyroidism Thyroidism Thyroidism Thyroidism Thyroidism Thyroidism Thyroidism Thyroidism
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    False
          2 30
                                                                                                                                                                                               False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   False
                                                                                                                                                                                                                                                    True
                                                                                                                                                                                                                                                                                                                                                                                                                                                          False False
         5 rows × 41 columns
 df_encoded.columns
```

3/31/25, 1:18 AM thyroid_cancer.ipynb - Colab

False

False

False

False

True

True

True

True

0.038916

-0.034852

0.037356

-0.042215

-0.026268

0.020013

-0.066894

-0.039939

-0.054303

-0.018476

-0.015980

-0.030926

0.044619

0.003636

-0.065186

0.033135

0.084819

-0.110217

-0.011635

0.003508

-0.134440

0.078570

0.014411

0.007251

-0.110926

-0.139526

0.021384

-0.050955

-0.039426

0.074347

4 rows × 41 columns								
new_df.corr()								
_	Age Gender Smoki	ng Hx Smoking	Hx Radiothreapy Recurred	Thyroid Function_Clinical Hypothyroidism	Thyroid Function_Euthyroid	Thyroid Function_Subclinical Hyperthyroidism	Thyroid Function_Subclinical Hypothyroidism N_N1a N_N1b M_M1 Stage_II Stage_III Stage_IVA Stage_IVB Response_Excellent Response_Indeterminate	Response_Structural Incomplete
Age	1.000000 0.186457 0.3095	36 0.134531	0.176588 0.258897	-0.023205	-0.028367	-0.085732	0.1002090.051278 0.075087 0.235401 0.369106 0.208210 0.141867 0.336617 -0.258453 0.055762	0.198518
Gender	0.186457 1.000000 0.6218	86 0.175755	0.235865 0.328189	-0.047227	-0.050344	0.004327	0.0860950.031137 0.246946 0.211540 0.147333 0.083175 0.110044 0.159335 -0.263805 -0.005657	0.302000
Smoking	0.309536 0.621886 1.0000	0.252773	0.297874 0.333243	-0.024016	-0.010933	-0.044052	0.0503540.060961 0.220617 0.321233 0.195086 0.191325 0.231977 0.261746 -0.276350 -0.038540	0.318792
Hx Smoking	0.134531 0.175755 0.2527	1.000000	0.261198 0.136073	0.007065	-0.126106	0.056064	0.1056390.026224 0.051487 0.127209 -0.012303 0.267138 0.088823 0.191920 -0.084694 -0.067416	0.102449
Hx Radiothreapy	0.176588 0.235865 0.2978	74 0.261198	1.000000 0.174407	-0.024539	-0.061267	-0.015693	-0.0265770.033683 0.104566 0.430214 0.029243 -0.014017 0.208984 0.443356 -0.109624 -0.059387	0.152818
Recurred	0.258897 0.328189 0.3332	43 0.136073	0.174407 1.000000	-0.046091	0.074827	-0.072075	0.032535 0.094672 0.605927 0.354360 0.335022 0.163932 0.141783 0.274397 -0.671568 -0.161760	0.863540
Thyroid Function_Clinical Hypothyroidism	-0.023205 -0.047227 -0.0240	0.007065	-0.024539 -0.046091	1.000000	-0.458868	-0.020684	-0.035031 0.020013 -0.066894 -0.039939 -0.054303 -0.018476 -0.015980 -0.030926 0.044619 0.003636	-0.065186
Thyroid Function_Euthyroid	-0.028367 -0.050344 -0.0109	33 -0.126106	-0.061267 0.074827	-0.458868	1.000000	-0.293443	$-0.496975 \qquad \dots -0.134440 \qquad 0.078570 \qquad 0.014411 \qquad 0.007251 \qquad -0.110926 \qquad -0.139526 \qquad 0.021384 \qquad \qquad -0.050955 \qquad \qquad -0.039426$	0.074347
Thyroid Function_Subclinical Hyperthyroidism	-0.085732 0.004327 -0.0440	0.056064	-0.015693 -0.072075	-0.020684	-0.293443	1.000000	-0.0224020.028392 -0.065130 -0.025540 -0.034726 -0.011815 -0.010219 -0.019777 0.105494 -0.050058	-0.064205
Thyroid Function_Subclinical Hypothyroidism	0.100209 0.086095 0.0503	54 0.105639	-0.026577 0.032535	-0.035031	-0.496975	-0.022402	1.000000 0.131297 0.051933 0.022486 0.092026 0.253706 0.140516 -0.033495 -0.072706 0.067307	0.022021
Physical Examination_Multinodular goiter	0.102101 0.084366 0.0501	36 0.057588	0.017860 0.150881	-0.012026	-0.021666	-0.039533	0.0254960.000973 0.177085 -0.014849 0.045120 0.028685 0.117060 0.064244 -0.174482 0.069671	0.124026
Physical Examination_Normal	-0.071016 -0.065089 -0.0522	0.036560	-0.018617 0.001131	-0.024539	-0.118639	-0.015693	0.1811580.033683 0.013649 -0.030300 -0.041198 -0.014017 -0.012123 -0.023463 -0.031365 -0.006120	0.015425
Physical Examination_Single nodular goiter-left	0.020799 0.087516 0.1409	-0.083275	0.017232 0.012412	-0.063466	0.070076	-0.008816	0.0245990.029551 -0.037644 0.140716 0.034941 0.004287 -0.048887 0.016429 -0.041378 0.030833	0.026926
Physical Examination_Single nodular goiter-right	-0.094108 -0.124909 -0.1446	0.015933	-0.022615 -0.138297	0.081337	0.058124	0.055995	-0.090066 0.045628 -0.126376 -0.091704 -0.052845 -0.024647 -0.067442 -0.065600 0.195568 -0.093308	-0.130745
Adenopathy_Bilateral	0.131884 0.268738 0.2233	35 0.132686	-0.041198 0.376962	-0.000141	0.007251	-0.034726	0.0920260.074538 0.489175 0.066703 0.113426 0.154612 0.080205 0.117561 -0.310239 -0.028277	0.385682
Adenopathy_Extensive	0.045049 0.135547 0.1228	0.036560	0.417933 0.217726	-0.024539	-0.061267	-0.015693	0.0772900.033683 0.240942 0.153906 0.099685 -0.014017 0.208984 0.093242 -0.148754 -0.059387	0.244414
Adenopathy_Left	-0.030813 0.027683 0.0313	-0.060527	-0.029406 0.203033	-0.038760	0.047155	-0.024787	-0.041979 0.110248 0.262312 0.131850 0.026556 -0.022141 -0.019149 0.038844 -0.158612 0.010131	0.207340
Adenopathy_Posterior	0.029399 -0.034562 -0.0277	51 -0.020348	-0.009886 0.115613	-0.013030	0.028397	-0.008333	-0.0141120.017886 0.127941 0.155085 0.239956 -0.007443 -0.006438 -0.012459 -0.078989 -0.031535	0.129785
Adenopathy_Right	-0.008665 0.022360 0.0674	99 0.075459	0.007225 0.288558	-0.022811	0.055513	-0.043535	0.010314 0.076013 0.466124 0.027728 0.085199 0.116257 -0.033633 0.029340 -0.238538 -0.013898	0.270431
Pathology_Hurthel cell	0.108446 0.069234 0.1911	87 0.114421	0.055590 0.009398	0.092521	-0.080724	0.076399	-0.0457210.007507 -0.050811 -0.052126 0.098780 -0.024114 0.112275 -0.040363 -0.090981 0.090273	0.061990
Pathology_Micropapillary	0.072205 -0.079106 -0.0977	0.014870	-0.051648 -0.237216	0.022456	-0.083755	0.025940	0.0103140.093445 -0.214358 -0.084060 -0.114293 -0.038887 -0.033633 -0.065091 0.268050 -0.057000	-0.211314
Pathology_Papillary	-0.164530 0.012346 -0.1211	69 -0.092151	-0.056014 0.121444	-0.034311	0.110237	-0.039633	0.016345 0.090992 0.271319 -0.013899 0.022227 0.059416 -0.016951 -0.044829 -0.083016 -0.028156	0.096387
Focality_Uni-Focal	-0.223847 -0.207634 -0.2384	94 -0.001204	-0.102415 -0.383776	0.008177	0.014298	0.037274	-0.0880570.027857 -0.368711 -0.221931 -0.268889 -0.084779 -0.119742 -0.199074 0.359902 -0.005061	-0.393386
Risk_Intermediate	0.062754 0.153387 0.0521	74 -0.010368	-0.082206 0.462566	-0.006639	-0.007263	-0.069292	0.102972 0.181276 0.526667 -0.077974 0.330390 -0.003793 -0.053532 -0.103603 -0.443404 0.141315	0.385329
Risk_Low	-0.228129 -0.269910 -0.2762	-0.088406	-0.145126 -0.708266	0.037660	0.002524	0.084371	-0.1196590.195349 -0.682578 -0.302717 -0.391810 -0.140042 -0.121120 -0.234408 0.601951 -0.054726	-0.632358
T_T1b	-0.138038 -0.105800 -0.1114	-0.004562	0.013219 -0.130964	-0.016485	-0.006674	0.177682	-0.0692700.087792 -0.124238 -0.078974 -0.107378 -0.036535 -0.031598 -0.061153 0.176776 -0.041780	-0.120802

-0.045717

-0.066517

-0.024014

-0.026996

-0.016798

-0.028392

-0.065130

-0.025540

-0.034726

-0.011815

-0.010219

-0.019777

0.105494

-0.050058

-0.064205

Age Gender Smoking Hx Smoking Hx Radiothreapy Recurred Thyroid Function_Clinical Hypothyroidism Thyroid Function_Euthyroid Function_Subclinical Hypothyroidism ... N_N1a N_N1b M_M1 Stage_II Stage_IVB Response_Excellent Response_Indeterminate Response_Structural Incomplete 🚃

False

False

False

False

False ... False False False

... False False False

... False False False

-0.043263

-0.016345

0.079358

-0.028450

0.131297

0.051933

0.022486

0.092026

0.253706

0.140516

-0.033495

-0.072706

0.067307

0.022021

False False False

False

False

False

True

False

False

False

0.225178

-0.316087

-0.201438

-0.232342

-0.159236

-0.156505

-0.458474

-0.242104

-0.272355

-0.112001

-0.096868

-0.187472

1.000000

-0.474515

-0.608614

-0.015325

0.192794

-0.055216

-0.102164

-0.063572

0.137872

-0.046793

-0.096656

0.074866

-0.044714

-0.038673

-0.074845

-0.474515

1.000000

-0.242978

-0.236970

0.101783

0.312699

0.365317

0.218741

0.020376

0.613815

0.368809

0.252664

0.184027

0.089574

0.271302

-0.608614

-0.242978

1.000000

True

True

False

False

... -0.015468 -0.145358 -0.153912 -0.185670 -0.082881 -0.071683 -0.106741

... -0.007507 0.222898 0.336066 0.141193 0.322225 0.112275 0.310981

... 1.000000 -0.139798 0.104243 0.087667 -0.025361 -0.021934 0.024734

... 0.104243 0.190739 1.000000 0.245042 -0.022814 -0.019731 0.700479

... 0.087667 0.225110 0.245042 1.000000 -0.031019 -0.026828 -0.051921

... 0.024734 0.121367 0.700479 -0.051921 -0.017666 -0.015279 1.000000

... -0.156505 -0.458474 -0.242104 -0.272355 -0.112001 -0.096868 -0.187472

 \dots 0.137872 -0.046793 -0.096656 0.074866 -0.044714 -0.038673 -0.074845

... 0.020376 0.613815 0.368809 0.252664 0.184027 0.089574 0.271302

0.167947 ... 0.228876 0.125234 0.138620 0.125597 0.106917 -0.018552 0.042229

False III

False

False

False

41 rows × 41 columns

T_T2

T_T3a

T_T3b

T_T4a

T_T4b

N_N1a

N_N1b

M_M1

Stage_II

Stage_III

Stage_IVA

Stage_IVB

Response_Excellent

Response_Indeterminate

Response_Structural Incomplete

-0.188722 -0.096133 -0.133058 -0.123951

0.039829 0.068303 0.076302 0.141887

0.242001 0.099435 0.261460 0.114421

-0.051278 -0.031137 -0.060961 -0.026224

0.075087 0.246946 0.220617 0.051487

0.235401 0.211540 0.321233 0.127209

0.208210 0.083175 0.191325 0.267138

0.141867 0.110044 0.231977 0.088823

-0.258453 -0.263805 -0.276350 -0.084694

0.055762 -0.005657 -0.038540 -0.067416

0.198518 0.302000 0.318792 0.102449

-0.070191 -0.268105

-0.078913 0.186500

-0.028489 0.275178

0.388970 0.233069

-0.033683 0.094672

0.104566 0.605927

0.430214 0.354360

0.029243 0.335022

-0.014017 0.163932

0.208984 0.141783

0.443356 0.274397

-0.109624 -0.671568

-0.059387 -0.161760

0.152818 0.863540

new_df.dtypes

new_df.head(4)

0 27

2 30

3 62

 $\overline{\Rightarrow}$ 0 Age int64 int64 Gender int64 Smoking int64 Hx Smoking int64 Hx Radiothreapy int64 Recurred Thyroid Function_Clinical Hypothyroidism bool Thyroid Function_Euthyroid bool Thyroid Function_Subclinical Hyperthyroidism bool Thyroid Function_Subclinical Hypothyroidism Physical Examination_Multinodular goiter Physical Examination_Normal bool Physical Examination_Single nodular goiter-left bool Physical Examination_Single nodular goiter-right bool Adenopathy_Bilateral bool Adenopathy_Extensive bool Adenopathy_Left bool Adenopathy_Posterior bool Adenopathy_Right bool Pathology_Hurthel cell bool Pathology_Micropapillary bool Pathology_Papillary bool Focality_Uni-Focal bool Risk_Intermediate bool Risk_Low bool T_T1b bool T_T2 bool T_T3a bool T_T3b bool T_T4a bool T_T4b bool N_N1a bool N_N1b bool M_M1 bool Stage_II bool Stage_III bool bool Stage_IVA Stage_IVB bool Response_Excellent bool Response_Indeterminate bool Response_Structural Incomplete bool

dtype: object
new_df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 383 entries, 0 to 382
 Data columns (total 41 columns):

Data columns (total 41 columns): Non-Null Count Dtype # Column --------383 non-null int64 0 Age 1 Gender 383 non-null int64 2 Smoking 383 non-null int64 3 Hx Smoking 383 non-null int64 383 non-null int64 4 Hx Radiothreapy 5 Recurred 383 non-null int64 6 Thyroid Function_Clinical Hypothyroidism 383 non-null bool 7 Thyroid Function_Euthyroid 383 non-null bool 8 Thyroid Function_Subclinical Hyperthyroidism 383 non-null bool 9 Thyroid Function_Subclinical Hypothyroidism 383 non-null bool 10 Physical Examination_Multinodular goiter 383 non-null bool 11 Physical Examination_Normal 383 non-null bool 12 Physical Examination_Single nodular goiter-left 383 non-null bool 13 Physical Examination_Single nodular goiter-right 383 non-null bool 14 Adenopathy_Bilateral 383 non-null bool 383 non-null 15 Adenopathy_Extensive bool 383 non-null bool 16 Adenopathy_Left 17 Adenopathy_Posterior 383 non-null bool 383 non-null 18 Adenopathy_Right bool 19 Pathology_Hurthel cell 383 non-null bool 20 Pathology_Micropapillary 383 non-null bool 21 Pathology_Papillary 383 non-null bool 22 Focality_Uni-Focal 383 non-null bool 23 Risk_Intermediate 383 non-null bool 24 Risk_Low 383 non-null bool 383 non-null 25 T_T1b bool 26 T_T2 383 non-null bool 27 T_T3a 383 non-null bool 28 T_T3b 383 non-null bool 29 T_T4a 383 non-null bool 30 T_T4b 383 non-null bool 31 N_N1a 383 non-null bool 32 N_N1b 383 non-null bool 33 M_M1 383 non-null bool 34 Stage_II 383 non-null bool 35 Stage_III 383 non-null bool 36 Stage_IVA 383 non-null bool 37 Stage_IVB 383 non-null bool 38 Response_Excellent 383 non-null bool 39 Response_Indeterminate 383 non-null bool 40 Response_Structural Incomplete 383 non-null bool dtypes: bool(35), int64(6) memory usage: 31.2 KB

 $https://colab.research.google.com/drive/1FelMid5KCJy-ku7_zuYNwrho21UI7Umi\#scrollTo=QqJMV4Vxjsqj\&printMode=true$

```
Smoking Hx Smoking Hx Radiothreapy Recurred
                 Gender
                                               383.000000 383.000000
count 383.000000 383.000000 383.000000 383.000000
mean 40.866841
               0.185379 0.127937
                                   0.073107
                                                 0.018277 0.281984
                0.389113 0.334457
                                   0.260653
                                                 0.134126 0.450554
                0.000000 0.000000
                                   0.000000
                                                 0.000000 0.000000
25% 29.000000
                                   0.000000
                                                 0.000000 0.000000
                0.000000 0.000000
50% 37.000000
                                                 0.000000 0.000000
                0.000000 0.000000
                                   0.000000
75% 51.000000 0.000000 0.000000
                                   0.000000
                                                 0.000000
                                                           1.000000
max 82.000000 1.000000 1.000000
                                   1.000000
                                                 1.000000 1.000000
```

import numpy as np import seaborn as sns import matplotlib.pyplot as plt from scipy.stats import norm

Plot the normal distribution curve for "Age"

plt.figure(figsize=(8, 5)) sns.histplot(df["Age"], bins=30, kde=True, stat="density", color="skyblue", label="Histogram")

Overlay the normal distribution curve mean_age = np.mean(df["Age"]) std_age = np.std(df["Age"])

x_values = np.linspace(min(df["Age"]), max(df["Age"]), 100) y_values = norm.pdf(x_values, mean_age, std_age)

plt.plot(x_values, y_values, color="red", label="Normal Distribution")

Labels and title plt.title("Normal Distribution Curve of Age") plt.xlabel("Age") plt.ylabel("Density")

plt.legend()

new_df['T_T1b'].dtypes

→ dtype('bool')

new_df['T_T1b'] = new_df['T_T1b'].astype(float) new_df['T_T2'] = new_df['T_T2'].astype(float) new_df['T_T3a'] = new_df['T_T3a'].astype(float) new_df['T_T3b'] = new_df['T_T3b'].astype(float) new_df['T_T4a'] = new_df['T_T4a'].astype(float)

new_df['T_T4b'] = new_df['T_T4b'].astype(float)

columns = ['T_T1b','T_T2','T_T3a','T_T3b','T_T4a','T_T4b'] # Changed 'T_3a' to 'T_T3a' plt.figure(figsize= (10,15),facecolor = 'white')

plotnumber = 1

for col in columns: ax = plt.subplot(3,2,plotnumber)

sns.distplot(new_df[col])

plt.xlabel(col,fontsize = 10) plotnumber+=1

plt.show()

<ipython-input-24-01a342c1cb55>:6: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(new_df[col]) <ipython-input-24-01a342c1cb55>:6: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(new_df[col]) <ipython-input-24-01a342c1cb55>:6: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(new_df[col]) <ipython-input-24-01a342c1cb55>:6: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0. Please adapt your code to use either `displot` (a figure-level function with

similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(new_df[col]) <ipython-input-24-01a342c1cb55>:6: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(new_df[col]) <ipython-input-24-01a342c1cb55>:6: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

target = df['Recurred']

rdsample=RandomOverSampler() target = df['Recurred'] x_sampled,y_sampled=rdsample.fit_resample(df,target)

sns.countplot(y_sampled)

target.value_counts()

Count
Recurred
0 275
1 108
dtype: int64

x_sampled=new_df

x sampled head(3)

x_sampled.head(3)

3 rows × 41 columns

→	age Geno	der Smo	king Hx Smo	king Hx Radio	othreapy Recur	ed Thyroid Funct	ion_Clinical Hypothyroidism Thyroid	Function_Euthyroid Thyroid Functi	on_Subclinical Hyperthyroidism Thyroid Function_Subclin	ical Hypothyroidism	. N_N1a N_N1b M_M1	Stage_II S	tage_III S	tage_IVA St	age_IVB Res	ponse_Excellent Response	_Indeterminate Response_	Structural Incomplete
0	27	0	0	0	0	0	False	True	False	False	. False False False	False	False	False	False	False	True	False II.
1	34	0	0	1	0	0	False	True	False	False	. False False False	False	False	False	False	True	False	False
2	30	0	0	0	0	0	False	True	False	False	. False False False	False	False	False	False	True	False	False

columns = ['T_T1b','T_T2','T_T3a','T_T3b','T_T4a','T_T4b'] # Changed 'T_3a' to 'T_T3a'
plt.figure(figsize= (10,15),facecolor = 'white')
plotnumber = 1
for col in columns:
 ax = plt.subplot(3,2,plotnumber)
 sns.boxplot(new_df[col])
 plt.xlabel(col,fontsize = 10)
 plotnumber+=1
plt.show()

winsorizer=Winsorizer(capping_method='gaussian',tail='both',fold=1.5,variables=['T_T4a'])
x_sampled['T_T4a']=winsorizer.fit_transform(x_sampled[['T_T4a']])
winsorizer=Winsorizer(capping_method='gaussian',tail='both',fold=1.5,variables=['T_T1b'])
x_sampled['T_T1b']=winsorizer.fit_transform(x_sampled[['T_T1b']])
winsorizer=Winsorizer(capping_method='gaussian',tail='both',fold=1.5,variables=['T_T4b'])
x_sampled['T_T4b']=winsorizer.fit_transform(x_sampled[['T_T4b']])
winsorizer=Winsorizer(capping_method='gaussian',tail='both',fold=1.5,variables=['T_T3b'])
x_sampled['T_T3b']=winsorizer.fit_transform(x_sampled[['T_T3b']])

Convert all columns of x_sampled to numeric, coercing errors to NaN for col in x_sampled.columns:

x_sampled[col] = pd.to_numeric(x_sampled[col], errors='coerce')

Impute NaN values if any (replace with mean, median, or other strategy)
imputer = SimpleImputer(strategy='mean') # Choose an appropriate strategy
x_sampled = pd.DataFrame(imputer.fit_transform(x_sampled), columns=x_sampled.columns)

def calc_vif(X):
 # Calculating VIF
 vif = pd.DataFrame()
 vif["variables"] = X.columns

vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
return(vif)

calc_vif(x_sampled)

→ VIF I variables Age 14.618290 11. Gender 2.326394 Smoking 2.604143 Hx Smoking 1.513784 Hx Radiothreapy 1.936078 Recurred 8.885628 Thyroid Function_Clinical Hypothyroidism 1.893348 Thyroid Function_Euthyroid 23.811943 Thyroid Function_Subclinical Hyperthyroidism 1.409991 Thyroid Function_Subclinical Hypothyroidism 2.134751 Physical Examination_Multinodular goiter 23.651938 Physical Examination_Normal 2.019277 **12** Physical Examination_Single nodular goiter-left 15.829113 **13** Physical Examination_Single nodular goiter-right 24.198110 Adenopathy_Bilateral 3.564836 Adenopathy_Extensive 1.979320 Adenopathy_Left 2.206877 Adenopathy_Posterior 1.337788 Adenopathy_Right 3.450868 Pathology_Hurthel cell 2.035612 Pathology_Micropapillary 12.129033 Pathology_Papillary 14.015717 Focality_Uni-Focal 4.996959 Risk_Intermediate 15.091287 Risk_Low 43.818909 T_T1b 10.413646 T_T2 35.405907 T_T3a 21.334791 T_T3b 4.916254 T_T4a 5.269054 T_T4b 3.619553 N_N1a 1.647335 N_N1b 8.476848 M_M1 3.587724 Stage_II 2.221883 Stage_III 1.679713 Stage_IVA 1.710554 Stage_IVB 3.656950 Response_Excellent 13.842402 Response_Indeterminate 4.350889

Response_Structural Incomplete 8.054639

5 N. 20, N. 10 7 M.					,										
<pre>x_sampled.corr()</pre>															
	Age Gender Smoking Smokin	lx Hx ng Radiothreapy Recurred	Thyroid Function_Clinical Hypothyroidism	Thyroid Function_Euthyroid	Thyroid Function_Subclinical Hyperthyroidism	Thyroid Function_Subclinical Hypothyroidism ''	. N_N1a	N_N1b	M_M1 St	age_II Sta	nge_III S	tage_IVA Stage_I\	/B Response_Excellent R	esponse_Indeterminate	Response_Structural Incomplete
Age	1.000000 0.186457 0.309536 0.13453	0.176588 0.258897	-0.023205	-0.028367	-0.085732	0.100209 .	0.051278	0.075087	0.235401 0.	369106 0.	.208210	0.141867 0.33661	7 -0.258453	0.055762	2 0.198518
Gender	0.186457 1.000000 0.621886 0.17575	0.235865 0.328189	-0.047227	-0.050344	0.004327	0.086095 .	0.031137	0.246946	0.211540 0.	147333 0.	.083175	0.110044 0.15933	-0.263805	-0.005657	0.302000
Smoking	0.309536	73 0.297874 0.333243	-0.024016	-0.010933	-0.044052	0.050354 .	0.060961	0.220617	0.321233 0.	195086 0.	.191325	0.231977 0.26174	-0.276350	-0.038540	0.318792
Hx Smoking	0.134531	0.261198 0.136073	0.007065	-0.126106	0.056064	0.105639 .	0.026224	0.051487	0.127209 -0.	012303 0.	.267138	0.088823 0.19192	-0.084694	-0.067416	0.102449
Hx Radiothreapy	0.176588 0.235865 0.297874 0.26119	08 1.000000 0.174407	-0.024539	-0.061267	-0.015693	-0.026577 .	0.033683	0.104566	0.430214 0.	029243 -0.	.014017	0.208984 0.44335	-0.109624	-0.059387	0.152818
Recurred	0.258897	73 0.174407 1.000000	-0.046091	0.074827	-0.072075	0.032535 .	0.094672	0.605927	0.354360 0.	335022 0.	.163932	0.141783 0.27439	-0.671568	-0.161760	0.863540
Thyroid Function_Clinical Hypothyroidism	-0.023205 -0.047227 -0.024016 0.00706	-0.024539 -0.046091	1.000000	-0.458868	-0.020684	-0.035031 .	0.020013	-0.066894 -0	0.039939 -0.	054303 -0.	.018476 -	-0.015980 -0.03092	0.044619	0.003636	-0.065186
Thyroid Function_Euthyroid	-0.028367 -0.050344 -0.010933 -0.12610	06 -0.061267 0.074827	-0.458868	1.000000	-0.293443	-0.496975 .	0.134440	0.078570	0.014411 0.	007251 -0.	.110926 -	-0.139526 0.02138	-0.050955	-0.039426	0.074347
Thyroid Function_Subclinical Hyperthyroidism	-0.085732 0.004327 -0.044052 0.05606	-0.015693 -0.072075	-0.020684	-0.293443	1.000000	-0.022402 .	0.028392	-0.065130 -0	0.025540 -0.	034726 -0.	.011815 -	-0.010219 -0.01977	77 0.105494	-0.050058	-0.064205
Thyroid Function_Subclinical Hypothyroidism	0.100209 0.086095 0.050354 0.10563	9 -0.026577 0.032535	-0.035031	-0.496975	-0.022402	1.000000 .	0.131297	0.051933	0.022486 0.	092026 0.	.253706	0.140516 -0.03349	-0.072706	0.067307	0.022021
Physical Examination_Multinodular goiter	0.102101 0.084366 0.050136 0.05758	0.017860 0.150881	-0.012026	-0.021666	-0.039533	0.025496 .	0.000973	0.177085 -	0.014849 0.	045120 0.	.028685	0.117060 0.06424	-0.174482	0.069671	0.124026
Physical Examination_Normal	-0.071016 -0.065089 -0.052261 0.03656	-0.018617 0.001131	-0.024539	-0.118639	-0.015693	0.181158 .	0.033683	0.013649 -	0.030300 -0.	041198 -0.	.014017 -	-0.012123 -0.02346	-0.031365	-0.006120	0.015425
Physical Examination_Single nodular goiter-left	0.020799 0.087516 0.140912 -0.08327	75 0.017232 0.012412	-0.063466	0.070076	-0.008816	0.024599 .	0.029551	-0.037644	0.140716 0.	034941 0.	.004287 -	-0.048887 0.01642	-0.041378	0.030833	0.026926
Physical Examination_Single nodular goiter-right	-0.094108 -0.124909 -0.144643 0.01593	-0.022615 -0.138297	0.081337	0.058124	0.055995	-0.090066 .	0.045628	-0.126376 -0	0.091704 -0.	052845 -0.	.024647 -	-0.067442 -0.06560	0.195568	-0.093308	-0.130745
Adenopathy_Bilateral	0.131884 0.268738 0.223335 0.13268	-0.041198 0.376962	-0.000141	0.007251	-0.034726	0.092026 .	0.074538	0.489175	0.066703 0.	113426 0.	.154612	0.080205 0.11756	-0.310239	-0.028277	0.385682
Adenopathy_Extensive	0.045049 0.135547 0.122806 0.03656	0.417933 0.217726	-0.024539	-0.061267	-0.015693	0.077290 .	0.033683	0.240942	0.153906 0.	099685 -0.	.014017	0.208984 0.09324	-0.148754	-0.059387	
Adenopathy_Left	-0.030813 0.027683 0.031315 -0.06052		-0.038760	0.047155	-0.024787	-0.041979 .		0.262312				-0.019149 0.03884		0.010131	
Adenopathy_Posterior	0.029399 -0.034562 -0.027751 -0.02034		-0.013030	0.028397	-0.008333	-0.014112 .						-0.006438 -0.01245		-0.031535	
Adenopathy_Right	-0.008665 0.022360 0.067499 0.07545		-0.022811	0.055513	-0.043535	0.010314 .		0.466124				-0.033633 0.02934		-0.013898	
Pathology_Hurthel cell	0.108446		0.092521	-0.080724	0.076399	-0.045721 .						0.112275 -0.04036		0.090273	
Pathology_Micropapillary	0.072205 -0.079106 -0.097766 0.01487 -0.164530 0.012346 -0.121169 -0.09215		0.022456 -0.034311	-0.083755 0.110237	0.025940 -0.039633	0.010314 . 0.016345 .		0.271319 -				-0.033633 -0.06509 -0.016951 -0.04482		-0.057000 -0.028156	
Pathology_Papillary Focality_Uni-Focal	-0.223847 -0.207634 -0.238494 -0.00120		0.008177	0.014298	0.037274	-0.088057 .		-0.368711 -0				-0.119742 -0.19907		-0.005061	
Risk_Intermediate	0.062754 0.153387 0.052174 -0.01036		-0.006639	-0.007263	-0.069292			0.526667 -(-0.113742 -0.19307 -0.053532 -0.10360		0.141315	
Risk_Low	-0.228129 -0.269910 -0.276274 -0.08840		0.037660	0.002524	0.084371							-0.121120 -0.23440		-0.054726	
T_T1b	-0.138038 -0.105800 -0.111453 -0.00456		-0.016485	-0.006674	0.177682	-0.069270 .						-0.031598 -0.06115		-0.041780	
_ T_T2	-0.188722 -0.096133 -0.133058 -0.12395	51 -0.070191 -0.268105	0.038916	0.033135	-0.045717	-0.043263 .	0.015468	-0.145358 -0	0.153912 -0.	185670 -0.	.082881 -	-0.071683 -0.10674		-0.015325	
T_T3a	0.058107	0 -0.078913 0.186500	-0.034852	0.084819	-0.066517	-0.016345 .	0.064357	0.136136 -	0.043035 0.	239035 -0.	.059416 -	-0.051388 -0.09945	-0.316087	0.192794	0.101783
T_T3b	0.039829 0.068303 0.076302 0.14188	-0.028489 0.275178	0.037356	-0.110217	-0.024014	0.167947 .	0.228876	0.125234	0.138620 0.	125597 0.	.106917 -	-0.018552 0.04222	-0.201438	-0.055216	0.312699
T_T4a	0.242001 0.099435 0.261460 0.11442	0.143207 0.348473	-0.042215	-0.011635	-0.026996	0.079358 .	0.007507	0.222898	0.336066 0.	141193 0.	.322225	0.112275 0.31098	-0.232342	-0.102164	0.365317
T_T4b	0.206634 0.259198 0.326673 0.16939	0.388970 0.233069	-0.026268	0.003508	-0.016798	-0.028450 .	0.036057	0.257921	0.312641 0.	021878 -0.	.015005	0.401228 0.41213	-0.159236	-0.063572	0.218741
N_N1a	-0.051278 -0.031137 -0.060961 -0.02622	-0.033683 0.094672	0.020013	-0.134440	-0.028392	0.131297 .	1.000000	-0.139798	0.104243 0.	087667 -0.	.025361 -	-0.021934 0.02473	-0.156505	0.137872	0.020376
N_N1b	0.075087 0.246946 0.220617 0.05148	0.104566 0.605927	-0.066894	0.078570	-0.065130	0.051933 .	0.139798	1.000000	0.190739 0.	225110 0.	.181413	0.087829 0.12136	-0.458474	-0.046793	0.613815
M_M1	0.235401 0.211540 0.321233 0.12720	0.430214 0.354360	-0.039939	0.014411	-0.025540	0.022486 .	0.104243	0.190739	1.000000 0.	245042 -0.	.022814 -	-0.019731 0.70047	9 -0.242104	-0.096656	0.368809
Stage_II	0.369106 0.147333 0.195086 -0.01230	0.029243 0.335022	-0.054303	0.007251	-0.034726	0.092026 .	0.087667	0.225110	0.245042 1.	000000 -0.	.031019 -	-0.026828 -0.05192	-0.272355	0.074866	0.252664
Stage_III	0.208210 0.083175 0.191325 0.26713	-0.014017 0.163932	-0.018476	-0.110926	-0.011815	0.253706 .	0.025361	0.181413 -	0.022814 -0.	031019 1.	.000000 -	-0.009128 -0.01766	-0.112001	-0.044714	0.184027
Stage_IVA	0.141867 0.110044 0.231977 0.08882		-0.015980	-0.139526	-0.010219							1.000000 -0.01527		-0.038673	
Stage_IVB	0.336617 0.159335 0.261746 0.19192		-0.030926	0.021384	-0.019777	-0.033495 .						-0.015279 1.00000		-0.074845	
Response_Excellent	-0.258453 -0.263805 -0.276350 -0.08469		0.044619	-0.050955	0.105494							-0.096868 -0.18747		-0.474515	
Response_Indeterminate	0.055762 -0.005657 -0.038540 -0.06741	6 -0.059387 -0.161760	0.003636	-0.039426	-0.050058	0.067307 .	0.137872	-0.046793 -0	0.096656 0.	074866 -0.	.044714 -	-0.038673 -0.07484	-0.474515	1.000000	-0.242978

-0.064205

... 0.020376 0.613815 0.368809 0.252664 0.184027 0.089574 0.271302

-0.608614

-0.242978

1.000000

-0.065186

0.074347

rdsample=RandomOverSampler() target = df['Recurred'] x_sampled,y_sampled=rdsample.fit_resample(df,target) train_set, test_set,train_label,test_label = train_test_split(x_sampled,y_sampled,test_size = 0.33,random_state = 42) print(train_set.shape)

0.198518 0.302000 0.318792 0.102449

0.152818 0.863540

Response_Structural Incomplete

41 rows × 41 columns

 $y = y_sampled.copy()$

→ (368, 17)

scaler = StandardScaler()

numerical_cols = train_set.select_dtypes(include=np.number).columns train_set_numerical = train_set[numerical_cols]

train_set_scaled = scaler.fit_transform(train_set_numerical)

from sklearn import svm

params = {'kernel':['linear','poly','rbf'],'degree':[3,4]}

KNN = KNeighborsClassifier(n_neighbors=2) # Fit the KNN model using the scaled training data KNN.fit(train_set_scaled, train_label) # Predict using the scaled test data predicted_values_KNN = KNN.predict(test_set_scaled) print(predicted_values_KNN) accuracy_KNN = accuracy_score(test_label, predicted_values_KNN) print(accuracy_KNN)

01100100111011001101101110000001110110 01001001101011111010000010011001011 0010010011110111101111001110011101111 0111101010110100001111100010001010]

train_set

1.0

https://colab.research.google.com/drive/1FelMid5KCJy-ku7_zuYNwrho21UI7Umi#scrollTo=QqJMV4Vxjsqj&printMode=true

ılı

3/31/25, 1:18 AM thyroid_cancer.ipynb - Colab

```
| Ref | Ref
```

Next steps: Generate code with train_set View recommended plots New interactive sheet

test_set

₹		Age	Gender	Smoking	Hx Smoking	Hx Radiothreapy	Thyroid Function	Physical Examination	Adenopathy	Pathology	Focality	Risk	T	N	М	Stage	Response	Recurred	
	195	61	1	0	0	0	Subclinical Hypothyroidism	Single nodular goiter-left	0	Papillary	Uni-Focal	Low	T2	N0	MO	I	Excellent	0	ılı
	79	50	0	0	0	0	Euthyroid	Multinodular goiter	0	Papillary	Multi-Focal	Low	T1b	N0	MO	1	Excellent	0	+//
	480	40	1	1	0	0	Euthyroid	Multinodular goiter	Bilateral	Papillary	Multi-Focal	High	T4b	N1b	MO	1	Structural Incomplete	1	
	109	60	0	0	0	0	Euthyroid	Single nodular goiter-right	0	Papillary	Uni-Focal	Low	T2	N0	MO	1	Biochemical Incomplete	0	
	522	51	0	0	0	0	Euthyroid	Multinodular goiter	0	Papillary	Multi-Focal	High	T4a	N1a	M1	Ш	Structural Incomplete	1	
	113	32	0	0	0	0	Euthyroid	Single nodular goiter-right	0	Papillary	Uni-Focal	Low	T2	N0	MO	1	Excellent	0	
	304	26	0	0	0	0	Euthyroid	Single nodular goiter-left	Left	Papillary	Uni-Focal	Intermediate	ТЗа	N1b	M1	1	Structural Incomplete	1	
	173	30	0	0	0	0	Euthyroid	Normal	0	Papillary	Uni-Focal	Low	T2	N0	MO	1	Indeterminate	0	
	362	80	0	1	1	0	Euthyroid	Multinodular goiter	Right	Papillary	Uni-Focal	High	T4a	N1b	MO	III	Structural Incomplete	1	
	208	24	0	0	0	0	Clinical Hypothyroidism	Multinodular goiter	Bilateral	Papillary	Multi-Focal	Intermediate	T2	N1b	MO	1	Excellent	0	
	182 ro	ows × ′	17 columr	ns															

Next steps: Generate code with test_set View recommended plots New interactive sheet

import pandas as pd from sklearn.impute import SimpleImputer from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score rdsample = RandomOverSampler() target = df['Recurred'] x_sampled, y_sampled = rdsample.fit_resample(new_df, target) # Use new_df here train_set, test_set, train_label, test_label = train_test_split(x_sampled, y_sampled, test_size=0.33, random_state=42) # Get numerical columns from train_set (after one-hot encoding) numerical_cols = train_set.select_dtypes(include=np.number).columns # Impute missing values in numerical columns of both train_set and test_set imputer = SimpleImputer(strategy='mean') # Or other strategies like 'median', 'most_frequent' train_set[numerical_cols] = imputer.fit_transform(train_set[numerical_cols]) test_set[numerical_cols] = imputer.transform(test_set[numerical_cols]) # Now fit the KNN model using the imputed data KNN_1 = KNeighborsClassifier(n_neighbors=2) KNN_1.fit(train_set, train_label) # And predict using the imputed test data predicted_values_KNN_1 = KNN_1.predict(test_set) print(predicted_values_KNN_1) accuracy_KNN_1 = accuracy_score(test_label, predicted_values_KNN_1) print(accuracy_KNN_1)

predict_knn = pd.DataFrame(predicted_values_KNN)

predict_knn.value_counts()

count

0

1 93

0 89

dtype: int64

Start coding or <u>generate</u> with AI.