Tutorial

Show that this generates all strings with equal no. of a's and b's.

(>) Induction on length of derivation. Check base cases

1H: Any of derived in n steps from S has $\#a(\alpha') = \#b(\alpha')$.

Let B be such that S > B

$$S \xrightarrow{n+1} \beta$$

$$S \xrightarrow{n} \propto \xrightarrow{1} \beta$$

(i)
$$\alpha = \alpha_1 S \alpha_2$$
, $\beta = \alpha_1 a S b \alpha_2$
(ii) $\alpha = \beta = \alpha_1 b S a \alpha_2$
(iii) $\beta = \alpha_1 s S \alpha_2$
(iv) $\beta = \alpha_1 \alpha_2$

$$(\Leftarrow)$$
 Given χ s.t $\#a(\chi) = \#b(\chi)$ $\exists S \rightarrow ^* \zeta \chi$.

Yy, Consider f(y) = #a(y) - #b(y)

Statement: Given x = 5.1 # a(x) = # b(x), one of 3 conditions hold

(i) x is of form axb

(iii) r in of form 2, 2 s.t #a(n)= (tb(n) & #a(n2) = (tb(n2)

Then, induct on length of a. Check base cases.

IH: If |y| < n, $S \rightarrow * y$.

Take n, |n/=n.

S-aSb-ayb=x Cases: (i) $S \rightarrow^* n_1$ by IH and (ii) $S \rightarrow^* n_1$, $S \rightarrow^* n_2$ by IH and (iii) $S \rightarrow^* n_1$, $S \rightarrow^* n_2$ by IH S-> bSa-> bxa=x

and $S \rightarrow SS \rightarrow^* 24S \rightarrow^* 242 = 2$

Qut: What is a CFG for the net of strings in {a,b}* s.t #a's > #b's?

Q2. Give a CFG for $L_2 = \{ \chi \in \{0,1\}^* \mid \chi^{\text{rev}} = \chi \}$ If $\chi = 0.101$, $\chi^{\text{rev}} = 1.010$, $\chi = 1.010$

Properties: 0 x must have even length 0 xa = 7/n-a

Grammer: $S \to \mathcal{E} | 150 | 051$ Ensures even bongth of sentence Ensures even # of terminals, flipping of bits equidistant from both ends.

Q3. What is the language generated by $S \rightarrow bS|Sa|aSb|E$ $Z = \{a,b\}$ N = S

Answer: Σ^* Induction on length of string. Check base cases IH: Any $y \in \Sigma^*$, |y| < n is generated. Take z, |z| = n

(i) $\chi = b \chi_1$: $S \rightarrow bS \rightarrow_G^* b \chi_1$ 14: $S \rightarrow_G^* \chi_1$

(ii) x = 24 a : S > Sa -> x 4 a 14: S -> x 7,

(iii) x = ayb : S→aSb→ ayb

(iv) [Part of base case] $n=E: S \rightarrow E$.

Q4. What is a CFG for

(a)
$$\{a^m b^n \mid m \le 2n\}$$

(b) $7\{a^n b^n \mid n > 0\} = G$

(a) $S \rightarrow aaSb|aSb|Sb|E$

(b)
$$G_1 = \{ \chi \in \{a,b\}^* \mid A b \text{ in followed by an } a \}$$

$$(a+b)^* b (a+b)^* a (a+b)^* \neq \text{ what in a CFG?}$$

$$G_2 = \{ a^m b^n \mid m \neq n \geqslant 0 \}$$

$$L(G) = L(G_1) \cup L(G_2) .$$

Q5. What is the CFG for $L_5 = \{ 2 \in \{a,b\}^* \mid \#a(a) \neq \#b(a) \}$

Q6. Convert S-> 65 | Sa | aSb | E b CNF.