COMP SCI 5401 FS2016 Assignment 2c

Robert Jones rbj2q2@mst.edu

December 7, 2016

Contents

1	Exp	periment Comparisons 2
	1.1	Methodology
	1.2	Experimental Setup
	1.3	Results
	1.4	Discussion
	1.5	Conclusion
2	Bor	nus 1
	2.1	Methodology
	2.2	Experimental Setup
	2.3	Results
	2.4	Discussion
	2.5	Conclusion
3	Bor	nus 2
	3.1	Methodology
	3.2	Experimental Setup
	3.3	Results
	3.4	Results
	3.5	Discussion
	3.6	Conclusion
4	Bor	nus 3 17
	4.1	Methodology
	4.2	Experimental Setup
	4.3	Results
	4.4	Discussion
	4.5	Conclusion

1 Experiment Comparisons

1.1 Methodology

For this experiment, both pac controllers and ghost controllers are evolved in competitive co-evolution. All parameters for evolution of both populations are independent and the fitnesses of pac and ghosts are related to the scores in mutual games the pacs get; Where pac score positively affects pac fitness, it negatively affects ghost fitness. Additionally, pac and ghosts are evaluated in a shared game instance. All population members have to be re-evaluated each generation.

For this group of experiments, the mutation rate was experimented on to find the optimal rate. The tested rate are 10the base for all other experiments. It is expected that 50decent, where the other two are potentially destructive.

1.2 Experimental Setup

EA parameters were chosen to be as close as possible to the default configuration to minimize changes caused by other forces. In other words, the only variable desired was the variable being tested. The variable parameter was chosen as such to match expectations for the assigned bonus. The random number value was seeded randomly.

In terms of algorithms, this experiment consisted of vectors of each population that are tested concurrently. Trees are nearly identical in terms of sensors, except that the ghost controllers do not have wall, pill or fruit sensors. Scores for pac controllers scale positively with game score, while ghost controllers scale negatively with pac scores. Ramped Half-and-Half initialization is used. Over-Selection is used for parent selection, sub-tree crossover is used for recombination, and sub-tree mutation is used for mutation. Truncation is used for survival selection and parsimony pressure is used for bloat control. The only termination condition is number of evaluations, which is 2000 per run with 30 runs per experiment.

Figure 1: Results of Default Configuration

Figure 2: Results of Low Mutation Configuration

Figure 3: Results of High Mutation Configuration

			fault vs Low Mutation	
F-Test Two-Sample	for Variance	S	t-Test: Two-Sample Assuming Equal Variar	ces
	Variable 1	Variable 2	Variable	1 Variable 2
Mean	19.803704	19.08889	Mean 19.8037	19.0888889
Variance	21.657635	20.83504	Variance 21.6576	353 20.8350427
Observations	27	27	Observations	27 27
df	26	26	Pooled Variance 21.246	339
F	1.0394812		Hypothesized Mean Difference	0
P(F<=f) one-tail	0.4610559		df	52
F Critical one-tail	1.9292127		t Stat 0.56979	166
			P(T<=t) one-tail 0.28563	527
			t Critical one-tail 1.67468	15
			P(T<=t) two-tail 0.57127)55
			t Critical two-tail 2.00664	i81

Figure 4: Statistical Analysis of Default Configuratin vs Low Mutation

			Default vs High Mutation	
F-Test Two-	Sample for Va	riances	t-Test: Two-Sample Assuming Equal Variano	es
	Variable 1	Variable 2	Variable 1	Variable 2
Mean	19.8037037	-217.409		-217.4086
Variance	21.65763533	5558.675	Variance 21.65764	5558.6753
Observatio	27	27	Observations 27	27
df	26	26	Pooled Variance 2790.166	
F	0.003896186		Hypothesized Mean Difference 0	
P(F<=f) one	0		df 52	
F Critical or	0.518346169		t Stat 16.5002	
			P(T<=t) one-tail 1.29E-22	
			t Critical one-tail 1.674689	
			P(T<=t) two-tail 2.58E-22	
			t Critical two-tail 2.006647	

Figure 5: Statistical Analysis of Default Configuratin vs High Mutation

			fault vs Low Mutation	
F-Test Two-Sample	for Variance	S	t-Test: Two-Sample Assuming Equal Variance	s
	Variable 1	Variable 2	Variable 1	Variable 2
Mean	19.803704	19.08889	Mean 19.803703	19.0888889
Variance	21.657635	20.83504	Variance 21.657635	20.8350427
Observations	27	27	Observations 27	27
df	26	26	Pooled Variance 21.246339	
F	1.0394812		Hypothesized Mean Difference)
P(F<=f) one-tail	0.4610559		df 52	2
F Critical one-tail	1.9292127		t Stat 0.56979460	i
			P(T<=t) one-tail 0.2856352	,
			t Critical one-tail 1.6746891	5
			P(T<=t) two-tail 0.5712705	5
			t Critical two-tail 2.00664683	

Figure 6: Statistical Analysis of Low Mutation vs High Mutation

1.4 Discussion

The mean of the basic configuration is greater than the mean of the low mutation configuration, and F is less than F Critical, so equal variances can be assumed. The absolute value of T stat is less than the absolute value of t critical two-tail, so it can not be determined with 95confidence whether either configuration is better.

The mean of the basic configuration is greater than the mean of the high mutation configuration, and F is less than F Critical, so equal variances can be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95confidence that using the high mutation configuration is less evolutionarily advantageous for pac controllers than the basic configuration.

The mean of the low mutation configuration is greater than the mean of the high mutation configuration , and F is less than F Critical, so equal variances can be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95confidence that using the high mutation configuration is less evolutionarily advantageous for pac controllers than the low mutation configuration.

1.5 Conclusion

The high mutation configuration is markedly worse than the base configuration and the low mutation configuration. It is possible that the high mutation rate is more beneficial for a smaller number of terminal options. In this case, the ghost controller would have an advantage, which would explain the behavior of the high mutation graph, where ghost controllers quickly dominate the pac controllers. As such, increasing the mutation rate can be an extremely useful tool when a population with small trees needs to be pushed towards equilibrium with a population with larger trees that are dominant.

2 Bonus 1

2.1 Methodology

For this experiment, a unique ghost controller was used for each ghost. To do this, a vector of different ghosts is used and passed in until the limit of ghosts is reached. The results are then recorded and compared against a configuration file with the same parameters except it doesn't have unique ghost controllers.

2.2 Experimental Setup

EA parameters were chosen to be as close as possible to the default configuration to minimize changes caused by other forces. In other words, the only variable desired was the variable being tested. The variable parameter was chosen as such to match expectations for the assigned bonus. The random number value was seeded randomly.

Figure 7: Results of Default Configuration

Figure 8: Results of Configuration with Unique Ghost Controller

		Defa	ult vs Unique Ghosts		
F-Test Two-Sample for Variances			t-Test: Two-Sample Assuming E	qual Variance	es
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	19.8037037	19.319753	Mean	19.803704	19.319753
Variance	21.6576353	12.577971	Variance	21.657635	12.577971
Observations	27	27	Observations	27	27
df	26	26	Pooled Variance	17.117803	
F	1.72187037		Hypothesized Mean Difference	0	
P(F<=f) one-tail	0.08629093		df	52	
F Critical one-tail	1.92921267		t Stat	0.4297777	
			P(T<=t) one-tail	0.3345665	
			t Critical one-tail	1.6746892	
			P(T<=t) two-tail	0.6691331	
			t Critical two-tail	2.0066468	

Figure 9: Statistical Analysis of Default Configuration vs Configuration with Unique Ghost Controllers

2.4 Discussion

The mean of the default configuration is less than the mean of the configuration with ghost controllers, and F is less than F Critical, so equal variances can be assumed. The absolute value of T stat is less than the absolute value of t critical two-tail, so it can not be determined with 95either configuration is better.

However, the curve of the unique ghost controller shows a gradual lowering of the best pac controller. However, the average of pac controllers continued to increase for average pac controller fitness. This combination of weakening the most fit individual but allowing an increase in the average could show more successful co-evolution.

2.5 Conclusion

In conclusion, both same and unique ghost controllers have strengths and weaknesses that appear to balance each other out. It may be beneficial to use both forms of controller usage. This should be investigated for meta-EAs.

3 Bonus 2

3.1 Methodology

For this experiment, two pac men were used in conjunction with three ghosts per game. Each game will only end when both pac are killed by a ghost. To improve pac ability to coordinate, a sensor was added in pac controllers that detects the distance to another pac. Experiments without unique controllers, with only unique pac controllers, with only unique ghost controllers, and with both both populations having unique controllers.

3.2 Experimental Setup

EA parameters were chosen to be as close as possible to the default configuration to minimize changes caused by other forces in the event that comparison to the default was desired. In other words, the only variables desired were the variables being tested. The variable parameter was chosen as such to match expectations for the assigned bonus. The random number value was seeded randomly.

Figure 10: Results of Default Configuration with 2 Pac

Figure 11: Results of Configuration with 2 Unique Pac Controllers

3.4 Results

Figure 12: Results of Default Configuration with 2 Pac and Unique Ghost Controllers

Figure 13: Results of Configuration with 2 Unique Pac Controllers and Unique Ghost Controllers

	2 Pac Cont	rollers with	ue Ghost Controllers vs 2 Pac Control	lers	
F-Test Two-Sample for Variances			t-Test: Two-Sample Assuming U	nequal Var	riances
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	28.01605	28.53704	Mean	28.01605	28.53704
Variance	6.862767	17.07618	Variance	6.862767	17.07618
Observations	27	27	Observations	27	27
df	26	26	Hypothesized Mean Difference	0	
F	0.401891		df	44	
P(F<=f) one-tail	0.011783		t Stat	-0.553295	
F Critical one-tail	0.518346		P(T<=t) one-tail	0.291431	
			t Critical one-tail	1.68023	
			P(T<=t) two-tail	0.582862	
			t Critical two-tail	2.015368	

Figure 14: Statistical Analysis of Unique Ghost Controllers vs Basic

		2 Pac Controll	ers vs Unique Pac Controllers			
F-Test Two-Samp	e for Varia	nces	t-Test: Two-Sample Assuming Unequal Variances			
	Variable 1	Variable 2		Variable 1	Variable 2	
Mean	28.537037	30.697531	Mean	28.537037	30.697531	
Variance	17.076182	13.901703	Variance	17.076182	13.901703	
Observations	27	27	Observations	27	27	
df	26	26	Hypothesized Mean Difference	0		
F	1.2283518		df	51		
P(F<=f) one-tail	0.3019162		t Stat	-2.017015		
F Critical one-tail	1.9292127		P(T<=t) one-tail	0.0244864		
			t Critical one-tail	1.675285		
			P(T<=t) two-tail	0.0489729		
			t Critical two-tail	2.0075838		

Figure 15: Statistical Analysis of Basic vs Unique Pac Controllers

2	Pac Control	lers vs Unique	Pac Controllers with Unique Ghost Cont	rollers			
F-Test Two-Sample for Variances			t-Test: Two-Sample Assuming U	t-Test: Two-Sample Assuming Unequal Variances			
	Variable 1	Variable 2		Variable 1	Variable 2		
Mean	28.537037	32.91761	Mean	28.537037	32.91761		
Variance	17.076182	14.305966	Variance	17.076182	14.305966		
Observations	27	53	Observations	27	53		
df	26	52	Hypothesized Mean Difference	0			
F	1.1936406		df	49			
P(F<=f) one-tail	0.2876382		t Stat	-4.611449			
F Critical one-tail	1.7096195		P(T<=t) one-tail	1.445E-05			
			t Critical one-tail	1.6765509			
			P(T<=t) two-tail	2.89E-05			
			t Critical two-tail	2.0095752			

Figure 16: Statistical Analysis of Basic vs Unique Ghost and Pac Controllers

2	Pac Contro	llers with Ur	Ghost Controllers vs Unique Pac Cont	rollers	
F-Test Two-Sample for Variances			t-Test: Two-Sample Assuming U	nequal Vari	ances
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	28.016049	30.697531	Mean	28.016049	30.697531
Variance	6.8627667	13.901703	Variance	6.8627667	13.901703
Observations	27	27	Observations	27	27
df	26	26	Hypothesized Mean Difference	0	
F	0.4936637		df	47	
P(F<=f) one-tail	0.0388108		t Stat	-3.05771	
F Critical one-tail	0.5183462		P(T<=t) one-tail	0.0018371	
			t Critical one-tail	1.6779267	
			P(T<=t) two-tail	0.0036741	
			t Critical two-tail	2.0117405	

Figure 17: Statistical Analysis of Unique Ghost Controllers v
s Unique Pac Controllers $\,$

2 Pac Controllers	with Unique	Ghost Contr	llers vs Unique Pac Controllers with Uni	ique Ghost	Controllers
F-Test Two-Sample for Variances			t-Test: Two-Sample Assuming U	nequal Var	iances
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	28.016049	32.91761	Mean	28.01605	32.91761
Variance	6.8627667	14.30597	Variance	6.862767	14.305966
Observations	27	53	Observations	27	53
df	26	52	Hypothesized Mean Difference	0	
F	0.4797136		df	71	
P(F<=f) one-tail	0.0223086		t Stat	-6.7706	
F Critical one-tail	0.5498744		P(T<=t) one-tail	1.54E-09	
			t Critical one-tail	1.6666	
			P(T<=t) two-tail	3.08E-09	
			t Critical two-tail	1.993943	

Figure 18: Statistical Analysis of Unique Ghost Controllers vs Unique Ghost and Pac Controllers

Unio	ue Pac Con	trollers vs U	e Pac Controllers with Unique Ghost Co	ntrollers	
F-Test Two-Sample for Variances			t-Test: Two-Sample Assuming Equ	ual Variano	es
	Variable 1	Variable 2	V	/ariable 1	Variable 2
Mean	30.697531	32.91761	Mean	30.697531	32.91761
Variance	13.901703	14.305966	Variance	13.901703	14.305966
Observations	27	53	Observations	27	53
df	26	52	Pooled Variance	14.171212	
F	0.9717417		Hypothesized Mean Difference	0	
P(F<=f) one-tail	0.4817379		df	78	
F Critical one-tail	0.5498744		t Stat	-2.494249	
			P(T<=t) one-tail	0.0073686	
			t Critical one-tail	1.6646246	
			P(T<=t) two-tail	0.0147371	
			t Critical two-tail	1.9908471	

Figure 19: Statistical Analysis of Unique Pac Controllers v
s Unique Ghost and Pac Controllers $\,$

3.5 Discussion

The mean of the basic configuration is greater than the mean of the configuration with unique ghost controllers, and F is less than F Critical, so equal variances can be assumed. The absolute value of T stat is less than the absolute value of t critical two-tail, so it can not be determined with 95confidence whether either configuration is better.

The mean of the basic configuration is less than the mean of the configuration with unique pac controllers, and F is less than F Critical, so equal variances cannot be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95confidence that using unique pac controllers gives the pac controllers an evolutionary advantage.

The mean of the basic configuration is less than the mean of the configuration with unique pac controllers, and F is greater than F Critical, so equal variances can be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95confidence that using unique ghost controllers and unique pac controllers gives the pac controllers an evolutionaryy advantage.

The mean of the configuration with unique ghost controllers is less than the mean of the configuration with unique pac controllers, and F is less than F Critical, so equal variances cannot be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95evolutionary advantage to pac controllers that strictly unique ghost controllers does not give.

The mean of the configuration with unique pac controllers is less than the mean of the configuration with unique ghost and pac controllers, and F is greater than F Critical, so equal variances can be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95ghost controllers gives a distinct evolutionary advantage to pac controllers that strictly unique ghost controllers does not give.

The mean of the configuration with unique ghost controllers is less than the mean of the configuration with unique ghost and pac controllers, and F is less than F Critical, so equal variances cannot be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95controllers gives a distinct evolutionary advantage to pac controllers that strictly unique ghost controllers does not give.

3.6 Conclusion

This is interesting data that implies that using multiple pac controllers when using multiple pac is always beneficial. Additionally, unique ghost controllers give unique pac even more of an advantage. Unless the pac controllers use the same controller, unique ghost controllers gives an advantage to pac controllers.

4 Bonus 3

4.1 Methodology

For this experiment, a speed ratio was implemented and tested. The previously defined defauly configuration was used. Additionally, four speeds were tested, with ranges of .3, .5, 1.5, 2.5. Values were chosen to compare both slow and fast speeds of pac controllers against each other.

4.2 Experimental Setup

Specific implementation utilized a float set to 0. Each game round, the speed ratio is added to the float. While the speed ratio variable is greater than or equal to 1, the float variable is decremented by 1 and each pac makes a move. This is a simple method for implementing a controlled speed ratio.

Figure 20: Results of Default Configuration

Figure 21: Results of Slow Pac Controllers

Figure 22: Results of Slowest Pac Controllers

Figure 23: Results of Fast Pac Controllers

Figure 24: Results of Fastest Pac Controllers

		Defau	lt vs Fast Pac Controller		
F-Test Two-Samp	le for Varia	nces	t-Test: Two-Sample Assuming U	nequal Var	iances
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	19.8037	19.691358	Mean	19.803704	19.691358
Variance	21.65764	32.336888	Variance	21.657635	32.336888
Observations	27	27	Observations	27	27
df	26	26	Hypothesized Mean Difference	0	
F	0.66975		df	50	
P(F<=f) one-tail	0.156518		t Stat	0.0794444	
F Critical one-tail	0.518346		P(T<=t) one-tail	0.4684981	
			t Critical one-tail	1.675905	
			P(T<=t) two-tail	0.9369963	
			t Critical two-tail	2.0085591	

Figure 25: Results of Default Configuration vs Fast Pac Controllers

		Default v	s Fastest Pac Controller		
F-Test Two-Sample for Variances		t-Test: Two-Sample Assuming Equal Variances			
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	19.803704	22.911111	Mean	19.803704	22.911111
Variance	21.657635	39.777265	Variance	21.657635	39.777265
Observations	27	27	Observations	27	27
df	26	26	Pooled Variance	30.71745	
F	0.5444727		Hypothesized Mean Difference	0	
P(F<=f) one-tail	0.0637985		df	52	
F Critical one-tail	0.5183462		t Stat	-2.060025	
			P(T<=t) one-tail	0.0222085	
			t Critical one-tail	1.6746892	
			P(T<=t) two-tail	0.0444169	
			t Critical two-tail	2.0066468	

Figure 26: Results of Default Configuration vs Fastest Pac Controllers

		Defa	ult vs Slow Pac Controller		
F-Test Two-Sample for Variances		t-Test: Two-Sample Assuming Equal Variances			
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	19.803704	8.8481481	Mean	19.803704	8.8481481
Variance	21.657635	11.659943	Variance	21.657635	11.659943
Observations	27	27	Observations	27	27
df	26	26	Pooled Variance	16.658789	
F	1.8574392		Hypothesized Mean Difference	0	
P(F<=f) one-tail	0.0603978		df	52	
F Critical one-tail	1.9292127		t Stat	9.862331	
			P(T<=t) one-tail	8.371E-14	
			t Critical one-tail	1.6746892	
			P(T<=t) two-tail	1.674E-13	
			t Critical two-tail	2.0066468	

Figure 27: Results of Default Configuration vs Slow Pac Controllers

		Default	vs Slowest Pac Controller			
F-Test Two-Sample for Variances		nces	t-Test: Two-Sample Assuming Unequal Variances			
	Variable 1	Variable 2		Variable 1	Variable 2	
Mean	19.803704		Mean		8.2382716	
Variance	21.657635	9.5952738	Variance	21.657635	9.5952738	
Observations	27	27	Observations	27	27	
df	26	26	Hypothesized Mean Difference	0		
F	2.2571149		df	45		
P(F<=f) one-tail	0.0212514		t Stat	10.749754		
F Critical one-tail	1.9292127		P(T<=t) one-tail	2.573E-14		
			t Critical one-tail	1.6794274		
			P(T<=t) two-tail	5.145E-14		
			t Critical two-tail	2.0141034		

Figure 28: Results of Default Configuration vs Slowest Pac Controllers

		Fast Pac Cont	roller vs Fastest Pac Controller		
F-Test Two-Samp	le for Varia	nces	t-Test: Two-Sample Assuming E	qual Varian	ces
	Variable 1	Variable 2		Variable 1	Variable 2
Mean	19.69136	22.91111	Mean	19.691358	22.911111
Variance	32.33689	39.77726	Variance	32.336888	39.777265
Observations	27	27	Observations	27	27
df	26	26	Pooled Variance	36.057077	
F	0.812949		Hypothesized Mean Difference	0	
P(F<=f) one-tail	0.300676		df	52	
F Critical one-tail	0.518346		t Stat	-1.970127	
			P(T<=t) one-tail	0.0270799	
			t Critical one-tail	1.6746892	
			P(T<=t) two-tail	0.0541598	
			t Critical two-tail	2.0066468	

Figure 29: Results of Fast Pac Controllers vs Fastest Pac Controllers

		Slowest Pac Co	ontroller vs Fast Pac Controller			
F-Test Two-Sample for Variances		nces	t-Test: Two-Sample Assuming Unequal Variances			
	Variable 1	Variable 2		Variable 1	Variable 2	
Mean	8.238272	19.691358	Mean	8.2382716	19.691358	
Variance	9.595274	32.336888	Variance	9.5952738	32.336888	
Observations	27	27	Observations	27	27	
df	26	26	Hypothesized Mean Difference	0		
F	0.296728		df	40		
P(F<=f) one-tail	0.001434		t Stat	-9.190323		
F Critical one-tail	0.518346		P(T<=t) one-tail	1.04E-11		
			t Critical one-tail	1.683851		
			P(T<=t) two-tail	2.08E-11		
			t Critical two-tail	2.0210754		

Figure 30: Results of Slowest Pac Controllers vs Fast Pac Controllers

		Slow Pac Cor	ntroller vs Fast Pac Controller			
F-Test Two-Sample for Variances			t-Test: Two-Sample Assuming Unequal Variances			
	Variable 1	Variable 2		Variable 1	Variable 2	
Mean	8.8481481	19.69136	Mean	8.8481481	19.691358	
Variance	11.659943	32.33689	Variance	11.659943	32.336888	
Observations	27	27	Observations	27	27	
df	26	26	Hypothesized Mean Difference	0		
F	0.3605772		df	43		
P(F<=f) one-tail	0.0058101		t Stat	-8.494328		
F Critical one-tail	0.5183462		P(T<=t) one-tail	4.783E-11		
			t Critical one-tail	1.6810707		
			P(T<=t) two-tail	9.566E-11		
			t Critical two-tail	2.0166922		

Figure 31: Results of Slow Pac Controllers vs Fast Pac Controllers

		JIOW Fac Contro	oller vs Slowest Pac Controller		
F-Test Two-Samp	le for Variar	nces	t-Test: Two-Sample Assuming E	qual Varian	ces
	Variable 1	Variable 2		Variable 1	Variable 2
Mean		8.2382716	Mean		8.2382716
Variance	11.659943	9.5952738	Variance	11.659943	9.5952738
Observations	27	27	Observations	27	27
df	26	26	Pooled Variance	10.627608	
F	1.2151756		Hypothesized Mean Difference	0	
P(F<=f) one-tail	0.3114544		df	52	
F Critical one-tail	1.9292127		t Stat	0.6873707	
			P(T<=t) one-tail	0.2474518	
			t Critical one-tail	1.6746892	
			P(T<=t) two-tail	0.4949036	
			t Critical two-tail	2.0066468	

Figure 32: Results of Slow Pac Controllers vs Slowest Pac Controllers

4.4 Discussion

The mean of the basic configuration is less than the mean of the fast configuration, and F is greater than F Critical, so equal variances can be assumed. The absolute value of T stat is less than the absolute value of t critical two-tail, so it can not be determined with 95confidence whether either configuration is better.

The mean of the basic configuration is less than the mean of the fastest configuration, and F is greater than F Critical, so equal variances can be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95confidence that using the fastest controllers gives the pac controllers an evolutionary advantage compared to the basic configuration.

The mean of the basic configuration is greater than the mean of the slow configuration , and F is less than F Critical, so equal variances can be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95confidence that using slow configurations is an evolutionary disadvantage for pac controllers compared to the basic configuration.

The mean of the basic configuration is greater than the mean of the slowest configuration, and F is greater than F Critical, so equal variances cannot be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95disadvantage for pac controllers compared to the basic configuration.

The mean of the fast configuration is less than the mean of the fastest configuration, and F is greater than F Critical, so equal variances can be assumed. The absolute value of T stat is less than the absolute value of t critical two-tail, so it can not be determined with 95confidence whether either configuration is better.

The mean of the slowest configuration is less than the mean of the fast configuration, and F is less than F Critical, so equal variances cannot be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95controllers gives a distinct evolutionary advantage to pac controllers that the slowest pac controllers do not have.

The mean of the slowest configuration is less than the mean of the fastest configuration, and F is less than F Critical, so equal variances cannot be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95evolutionary disadvantage compared to the fastest pac controllers.

The mean of the slow configuration is less than the mean of the fast configuration, and F is less than F Critical, so equal variances cannot be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95controllers an evolutinary advantage over slow configurations.

The mean of the slow configuration is less than the mean of the fastest

configuration, and F is less than F Critical, so equal variances cannot be assumed. The absolute value of T stat is greater than the absolute value of t critical two-tail, so it can be stated with 95controllers an evolutionary advantage over pac controllers that use the slow configuration.

The mean of the slow configuration is greater than the mean of the slowest configuration, and F is less than F Critical, so equal variances can be assumed. The absolute value of T stat is less than the absolute value of t critical two-tail, so it cannot be stated with 95

4.5 Conclusion

Generally, any configuration is not worse than any slower configuration. The larger the speed gap, the greater the chance that the faster configuration is better. If co-evolution has stagnated, then changing speed is an easy way to push up or down a given population.