

CHEMICAL BONDING

BONDING TYPES - Summary

CHEMICAL

ionic (or electrovalent)

covalent strong bonds

dative covalent (or co-ordinate)

metallic

PHYSICAL

weak bonds

 weakest van der Waals' forces

dipole-dipole interaction

hydrogen bonds

- between atoms on LHS and atoms on RHS of Periodic Table
 - electrons are TRANSFERRED between atoms
- atoms end up as ions
- strong electrostatic attraction between ions of opposite charge
 - giant ionic crystal lattice structure
- water soluble conduct when molten or in aqueous solution high melting points, brittle, compounds ...

COVALENT

- between atoms of the same element; (e.g. in N₂, O₂, diamond, graphite)
 between atoms of different elements on the RHS of table; (e.g. CO₂, SO₂)
- when one of the elements is in the middle of the table; (e.g. C, Si)
- head-of-the-group elements with high I.E.'s, (e.g. Be in BeCl₂)
- consists of a shared pair of electrons, one electron coming from each atom
 - atoms share to try and get an 'octet' of electrons
- leads to the formation of simple molecules and giant molecules (e.g. silica)

Н | 0° | Н °°°± °°°± °°°±

DATIVE COVALENT (CO-ORDINATE)

- consists of a shared pair of electrons, both electrons from one atom
 - one species is a lone pair donor LEWIS BASE
- other species has space in outer shell to accept a lone pair LEWIS ACID
 - once the bond has been formed it is the same as a covalent bond

METALLIC

- metal atoms arranged in regular lattice give up outer shell electrons
 - electrons form a mobile 'cloud' which binds metal ions together

- strength of bond depends on number of electrons and size of ions
- allow electricity to be conducted mobile electrons ...