NOMBRE Y APELLIDOS:

Final - Análisis Funcional - 2023-24

- 1. [3 puntos] Teorema de representación de Riesz-Fréchet en espacios de Hilbert.
- 2. **[2.5 puntos]** Sea $E = \{u \in C([0,1]) : u(0) = 0\}$ con la norma usual

$$||u|| = \max_{t \in [0,1]} |u(t)|.$$

Consideremos el funcional lineal $f: E \longrightarrow \mathbb{R}$ dado por

$$f(u) = \int_0^1 u(t) dt, \quad \forall u \in E.$$

- a) Probad que $f \in E^*$ y calculad $||f||_{E^*}$.
- b) ¿Existe $u \in E$ tal que ||u|| = 1 y $f(u) = ||f||_{E^*}$?
- 3. [2.5 puntos] Sea E un espacio de Banach. Probad que si un subconjunto $A \subset E$ es compacto en la topología débil $\sigma(E, E^*)$, entonces A es acotado.
- 4. [2 puntos] Sea E un espacio de Banach reflexivo y $K \subset E$ un subconjunto convexo, cerrado y acotado. Dotamos a K con la topología débil $\sigma(E, E^*)$ (que hace compacto a K). Sea F = C(K) con la norma usual. Si $\mu \in F^*$ con $\|\mu\| = 1$ y

$$\langle \mu, u \rangle \ge 0$$
, $\forall u \in C(K)$ tal que $u \ge 0$ en K ,

probad que existe un único elemento $x_0 \in K$ tal que

$$\langle \mu, f \Big|_{K} \rangle = \langle f, x_o \rangle, \quad \forall f \in E^*.$$

Ayuda: Encontrad primero $x_0 \in E$ verificando $\langle \mu, f \Big|_K \rangle = \langle f, x_o \rangle$, $\forall f \in E^*$ y a continuación probad que $x_0 \in K$ usando el teorema de Hahn-Banach.

Soluciones

2 **[2.5 puntos]** Sea $E = \{u \in C([0,1]) : u(0) = 0\}$ con la norma usual

$$||u|| = \max_{t \in [0,1]} |u(t)|.$$

Consideremos el funcional lineal $f: E \longrightarrow \mathbb{R}$ dado por

$$f(u) = \int_0^1 u(t) dt, \quad \forall u \in E.$$

- a) Probad que $f \in E^*$ y calculad $||f||_{E^*}$.
- b) ¿Existe $u \in E$ tal que ||u|| = 1 y $f(u) = ||f||_{E^*}$?

Solución. a) Claramente, f es lineal (pues la integral es lineal). Además, como

$$|f(u)| = \left| \int_0^1 u(t) dt \right| \le \int_0^1 |u(t)| dt \le \int_0^1 ||u|| dt = ||u||, \quad \forall u \in E,$$

tenemos que f es acotado con $||f||_{E^*} \le 1$.

Además, si para $n \in \mathbb{N}$ tomamos

$$u_n(t) := \begin{cases} nt, & \text{si } 0 \le t \le \frac{1}{n}, \\ 1, & \text{si } \frac{1}{n} \le t \le 1 \end{cases}$$

claramente, $u_n \in E$ con

$$f(u_n) = \frac{1}{2n^2} + 1 - \frac{1}{n} \xrightarrow{n \to \infty} 1.$$

Así,

$$||f||_{E^*} = \sup_{\|u\| \le 1} |f(u)| \ge 1$$

que unido a la desigualdad anterior nos da $||f||_{E^*} = 1$.

b) No, no existe tal *u* porque por contradicción si existiese

$$||u|| = 1 \implies u(t) \le 1, \ \forall t \in [0,1]$$

$$1 = ||f||_{E^*} = f(u) = \int_0^1 u(t) \, dt$$

$$a \in C([0,1])$$

$$u(t) = 1, \ \forall t \in [0,1],$$

contradiciendo que u(0) = 0 pues $u \in E$.

3 [2.5 puntos] Sea E un espacio de Banach. Probad que si un subconjunto $A \subset E$ es compacto en la topología débil $\sigma(E, E^*)$, entonces A es acotado.

Solución. Empezamos probando que si $A \subset E$ es $\sigma(E, E^*)$ -compacto, entonces f(A) es compacto para todo funcional lineal $f \in E^*$.

En efecto, dado $f \in E^*$, si elegimos una sucesión cualquiera en f(A), esto es si elegimos $\{f(x_n)\}$ con $\{x_n\} \subset A$, la $\sigma(E, E^*)$ -compacidad de A implica que existe una subsucesión $\{x_{n_k}\}$ que converge débilmente (en la topología de $\sigma(E, E^*)$) hacía un $x \in E$.

Como la topología débil es la topología inicial, esto es, la topología más pequeña que hace continuos a todos los elementos de E^* , entonces f lleva sucesiones $\sigma(E, E^*)$ -convergentes en sucesiones convergentes; esto es,

$$\lim_{k\to\infty} f(x_{n_k}) = f(x).$$

Observando que $f(x) \in f(A)$, concluimos que hemos extraído una subsucesión $\{f(x_{n_k})\}$ de la sucesión de partida $\{f(x_n)\} \subset f(A)$ y que converge a un punto (f(x)) de f(A). Por tanto, hemos probado que f(A) es compacto (en \mathbb{R}).

Como consecuencia f(A) es acotado en \mathbb{R} para cualquier $f \in E^*$. Por uno de los corolarios del teorema de Banach-Steinhauss vistos en clase, esto implica que A es un subconjunto acotado de E.

4 **[2 puntos]** Sea E un espacio de Banach reflexivo y $K \subset E$ un subconjunto convexo, cerrado y acotado. Dotamos a K con la topología débil $\sigma(E, E^*)$ (que hace compacto a K). Sea F = C(K) con la norma usual. Si $\mu \in F^*$ con $\|\mu\| = 1$ y

$$\langle \mu, u \rangle \ge 0$$
, $\forall u \in C(K)$ tal que $u \ge 0$ en K ,

probad que existe un único elemento $x_0 \in K$ tal que

$$\langle \mu, f \Big|_{K} \rangle = \langle f, x_o \rangle, \quad \forall f \in E^*.$$

Ayuda: Encontrad primero $x_0 \in E$ verificando $\langle \mu, f \Big|_K \rangle = \langle f, x_o \rangle$, $\forall f \in E^*$ y a continuación probad que $x_0 \in K$ usando el teorema de Hahn-Banach.

Solución. Sea $\mu \in F^*$ con $||\mu|| = 1$ y

$$\langle \mu, u \rangle \ge 0$$
, $\forall u \in C(K)$ tal que $u \ge 0$ en K .

Tenemos que probar la existencia y unicidad de un punto $x_0 \in K$ tal que

$$\langle \mu, f \Big|_{K} \rangle = \langle f, x_0 \rangle, \quad \forall f \in E^*.$$
 (1)

Empezaremos viendo la unicidad:

Unicidad. Si tenemos dos puntos $x_0, y_0 \in K$ tales que

$$\langle \mu, f \Big|_{K} \rangle = \langle f, x_0 \rangle = \langle f, y_0 \rangle, \quad \forall f \in E^*,$$

entonces $\langle f, x_0 \rangle = \langle f, y_0 \rangle$ para todo $f \in E^*$. Como $\langle f, x_0 - y_0 \rangle = 0$ para todo $f \in E^*$, el teorema de Hanh-Banach implica $x_0 = y_0$ y la unicidad está probada.

Procedemos ahora con la prueba de la existencia de $x_0 \in K$.

Existencia. Lo haremos en dos pasos: primero vemos que existe $x_0 \in E$ verificando (1) y posteriormente que necesariamente $x_0 \in K$.

Paso 1. Definimos $\varphi : E^* \longrightarrow \mathbb{R}$ mediante

$$\langle \varphi, f \rangle := \langle \mu, f \Big|_{K} \rangle, \quad \forall f \in E^*.$$

Observemos que claramente ϕ es lineal y además es continuo porque tenemos

$$|\langle \mathbf{\phi}, f \rangle| = |\langle \mu, f \Big|_K \rangle| \overset{\mu \in F^*}{\leq} \underbrace{\|\mu\|}_{-1} \|f\Big|_K \| = \max_{x \in K} |\langle f, x \rangle| \overset{f \in E^*}{\leq} \max_{x \in K} \|f\|_{E^*} \|x\|_E.$$

Usando que K es acotado, existe C > 0 tal que $K \subset B(0,C)$. Así deducimos que

$$|\langle \varphi, f \rangle| \le C ||f||_{E^*}, \quad \forall f \in E^*.$$

Por tanto, φ es un funcional lineal acotado de E^* en \mathbb{R} , o lo que es igual, $\varphi \in E^{**}$.

Ahora como E es reflexivo, $J(E) = E^{**}$, donde J es la inclusión canónica de E en E^{**} . En particular, existe $x_0 \in E$ tal que $\varphi = J(x_0)$, o lo que es igual,

$$\langle \mu, f \Big|_{K} \rangle = \langle \phi, f \rangle = \langle f, x_0 \rangle, \quad \forall f \in E^*.$$

Paso 2. Vamos a probar por contradicción que necesariamente $x_0 \in K$. En efecto, si fuera $x_0 \notin K$, entonces por la primera forma geométrica del teorema de Hanh-Banach, los conjuntos $\{x_0\}$ (que es compacto) y K (que es convexo y cerrado) se pueden separar por un hiperplano; es decir, existen $f_0 \in E^* \setminus \{0\}$, $\alpha \in \mathbb{R}$ y $\varepsilon > 0$ tales que

$$\langle f_0, x \rangle \le \alpha - \varepsilon < \alpha + \varepsilon \le \langle f_0, x_0 \rangle, \quad \forall x \in K.$$
 (2)

Puesto que la topología débil de E es la topología inicial (la más pequeña) que hace continuos a los elementos de E^* , f_0 es $\sigma(E,E^*)$ -continua en el $\sigma(E,E^*)$ -compacto K y, por tanto, alcanza su máximo (y mínimo): $\exists y \in K$ tal que

$$\langle f_0, x \rangle \le \langle f_0, y \rangle =: M, \quad \forall x \in K.$$

Como $\mu \ge 0$, deducimos que

$$\langle f_0, x_0 \rangle = \langle \mu, f_0 \Big|_{K} \rangle = \overbrace{\langle \mu, f_0 \Big|_{K} - M \rangle}^{\leq 0} + \langle \mu, M \rangle \leq M \langle \mu, 1 \rangle,$$

donde 1 denota la función constante 1. Así usando que $\langle \mu,1\rangle \leq \|\mu\|\, \|1\|_{\infty} = \|\mu\| \leq 1$, nos queda

$$\langle f_0, x_0 \rangle \le M = \langle f_0, y \rangle, \quad \text{con } y \in K.$$

Esto contradice (2) y así prueba que $x_0 \in K$.