ВАСИЛЬЕВ Артем Викторович

Выпускная квалификационная работа

Эволюционные особенности структуры гена Nxf1 (nuclear export factor) у животных

Уровень образования: магистратура
Направление 06.04.01 "Биология"
Основная образовательная программа магистратуры "Биоинформатика"
(шифр ВМ.5758.2023)

Работа выполнена на базе лаборатории генетики животных кафедры генетики и биотехнологии СПбГУ

Научный руководитель: к.б.н., доцент, кафедра генетики и биотехнологии, Голубкова Елена Валерьевна

Рецензент:

заведующая лабораторией, ведущий научный сотрудник, лаборатория эволюционной геномики и палеогеномики, ЗИН, к.б.н., с.н.с., Абрамсон Наталья Иосифовна

Санкт-Петербург 2025

Оглавление

1	Вве	дение	3
	1.1	Цель работы	4
	1.2	Задачи	4
2	Обз	ор литературы	5
	2.1	Механизмы усложнения организации генома	5
	2.2	Значимость интронов	5
	2.3	Семейство генов <i>Nxf</i>	6
	2.4	Структура и функции гена Nxf1 и его белковых продуктов	7
3	Mar	гериалы и методы	9
	3.1	Первичный анализ	9
	3.2	Загрузка данных	9
	3.3	Увеличение выборок	9
	3.4	Парсинг результатов	10
	3.5	Множественные выравнивания	10
	3.6	Поиск консервативных мотивов внутри "кассетного" интрона	10
	3.7	Построение и анализ вторичных структур РНК	10
	3.8	Филогенетический анализ	11
	3.9	Настройки системы и доступность скриптов	11
4	Рез	ультаты	12
	4.1	Анализ всех найденных видов	12
	4.2	Подробный анализ Actinopterygii	13
5	Обо	уждение	19
	5.1	Анализ всех найденных видов	19
	5.2	Подробный анализ Actinopterygii	20
6	Вы	воды	21
7	Спи	исок литературы	22
8	Прі	иложение	26
9	Бла	огодарности	33

Введение

Для большинства генов высших эукариот характерна мозаичная структура, в составе которой выделяют кодирующие участки — экзоны и некодирующие — интроны. В процессе созревания транскрипта интроны, как правило, вырезаются в процессе сплайсинга, и из ядра выходит мРНК, лишенная интронных последовательностей. Однако альтернативный сплайсинг позволяет получать несколько различных зрелых мРНК из одной пре-мРНК, что значительно расширяет протеом без увеличения числа генов.

Особый интерес представляют транскрипты, сохраняющие интрон (intron retention, IR). Как правило, в таком интроне присутствует преждевременный стоп-кодон (premature termination codon, PTC), поэтому существует специальный механизм для проверки качества транскриптов перед выходом из ядра — нонсенс-опосредованный распад мРНК (nonsense mediated mRNA decay, NMD), который препятствует выходу таких транскриптов в цитоплазму. Однако, несмотря на наличие специфического механизма, среди различных групп, эволюционно далеких друг от друга, описаны случаи существования транскриптов с сохраненным интроном. Отдельно можно выделить дрозофилу и человека, для которых известно семейство генов Nxf (nuclear export factor), в котором нас заинтересовал ген Nxf1. Данный ген кодирует белок, являющийся основным транспортером мРНК из ядра в цитоплазму.

В состав последовательности гена *Nxf1* (nuclear export factor 1) входит так называемая "консервативная кассета", которая включает два коротких экзона размером 110 и 37 нуклеотидов в каноническом варианте и "кассетный" интрон между ними. Названия сформулированы нашей научной группой и будут использоваться в дальнейшем повествовании. Эта структура сохраняется также и у представителей других филогенетических групп. Благодаря образованию специфической вторичной структуры или наличию в последовательности интрона специфических последовательностей, например конститутивного транспортного элемента (constitutive transport element, CTE), транскрипт, содержащий преждевременный стоп-кодон, избегает NMD и может кодировать укороченную форму белка.

Анализ подобных транскриптов показал, что консервативные элементы "кассеты" Nxf1 специфичны для разных клад организмов, а интрон-содержащие транскрипты формируют уникальные вторичные структуры, что подчеркивает эволюционную и функциональную значимость интронов.

Научная новизна работы заключается в сравнительном анализе структуры гена Nxf1 у представителей различных филогенетических групп, данных по которым ранее не было, с целью выявления закономерностей эволюции нуклеотидной последовательности гена Nxf1 и его белковых продуктов.

В бакалаврской работе было показано, что "консервативная кассета" сохраняет свойства внутри артропод, особенно внутри семейства Drosophilidae, однако вопрос о степени консервативности и специфике структурных элементов у более широкого

круга организмов остается открытым. Помимо сравнительного анализа последовательностей, важной частью исследования является построение вторичных структур интрон-содержащих транскриптов и выявление консервативных мотивов внутри интрона, способствующих его сохранению и избеганию нонсенс-опосредованного распада.

Цель работы

Изучить структуру гена Nxf1 у представителей разных филогенетических групп животных для выявления эволюционных закономерностей и особенностей "кассетной" структуры, а также проанализировать вторичные структуры интрон-содержащих транскриптов.

Задачи

- 1. Найти нуклеотидные и аминокислотные последовательности гена *Nxf1* у различных групп животных.
- 2. Произвести поиск "консервативной кассеты" в нуклеотидной последовательности гена у найденных организмов.
- 3. Выполнить анализ структуры "консервативной кассеты", сравнить полученные последовательности между собой.
- 4. Выявить и охарактеризовать консервативные участки "кассетного" интрона и прилегающих экзонов у видов из исследуемых таксонов.
- 5. Провести анализ вторичной структуры интрон-содержащих транскриптов и оценить консервативные мотивы внутри интрона, потенциально способствующие его сохранению.

Обзор литературы

Механизмы усложнения организации генома

Увеличение разнообразия транскриптома и протеома у эукариот во многом достигается не только за счет классического эксцизионного сплайсинга [1], но и за счет ряда альтернативных механизмов обработки пре-мРНК. В частности, альтернативный сплайсинг позволяет из одного транскрипта формировать несколько зрелых мРНК, отличающихся включением или исключением отдельных экзонов и участков [2].

Одним из ключевых вариантов такого процесса является удержание интронов (intron retention, IR), когда интрон не удаляется и остается в составе зрелой мРНК [3]. Часто подобное сохранение интрона приводит к появлению в получившемся транскрипте преждевременных стоп-кодонов (premature termination codons, PTC), что запускает нонсенс-опосредованный распад (nonsense mediated mRNA decay, NMD) [4]. Тем не менее в ряде случаев, последовательность интрона может включать специфические, функционально-значимые последовательности, такие как, например, конститутивный транспортный элемент (constitutive transport element, CTE) [5]. Также интроны могут оказывать влияние на формирование устойчивой вторичной структуры, препятствующей связыванию факторов NMD, что позволяет транскриптам не подвергаться деградации [6]. Примечательно, что избегающие распада транскрипты способны даже участвовать в дальнейшем синтеза белка [7].

Кроме IR, альтернативный сплайсинг включает пропуск экзонов, использование альтернативных сайтов на 5'- и 3'-концах и кассетное включение/исключение блоков экзонов [4]. В совокупности эти механизмы значительно расширяют репертуар возможных транскриптов без необходимости увеличения числа генов. Например, у многих многоклеточных организмов до 95% генов подвергаются хотя бы одному типу альтернативного сплайсинга [7]. Для разных организмов продемонстрирована консервативность наличия транскрипта с сохраненным интроном, что подчеркивает эволюционную значимость интронов [6].

Таким образом, именно через комбинирование альтернативных способов сплайсинга, особенно удержания интронов, эукариоты получают мощный инструмент транскрипционной и белковой вариативности, что способствует адаптации и усложнению биологических процессов.

Значимость интронов

Традиционно интроны воспринимались лишь как "ненужные" вставки, но современные исследования убедительно показывают, что их функции выходят далеко за рамки простой "пустоты". Во-первых, наличие интронных последовательностей может значительно усиливать уровень экспрессии генов. Эксперименты на клеточных системах SV40, дрожжах Saccharomyces cerevisiae и млекопитающих демонстрируют, что удаление ключевых интронов приводит к резкому снижению эффективности транскрипции и трансляции [8, 9]. На этих же дрожжах более 10 лет назад наблюда-

ли, как короткие открытые рамки считывания (open reading frame, ORF) эволюционировали в функциональные гены благодаря непрерывному эволюционному процессу [10].

Во-вторых, интроны влияют на чувствительность мРНК к нонсенс-опосредованному распаду. Если интрон попадает в 5'- или 3'-UTR, его присутствие может менять архитектуру сплайсосомного комплекса, корректируя доступность РТС и, соответственно, баланс между сохранением транскрипта и его деградацией через NMD [4, 11].

Третья важная роль интронов заключается в транспорте мРНК из ядра в цитоплазму. Долгое время считалось, что только полностью сплайсированные транскрипты эффективно экспортируются, однако при помощи флуоресцентной гибридизации in situ (fluorescent in situ hybridization (FISH)) было показано, что РНК с сохраненными интронами также могут накапливаться в цитоплазме и функционировать там [11—13]. Это потребовало пересмотра классических представлений об экспорте мРНК.

Кроме регуляции экспрессии и транспорта, интроны участвуют в организации хроматиновой структуры. Концевые последовательности интронов образуют участки с пониженной плотностью нуклеосом, что способствует более четкому разделению экзонов и облегчает процесс транскрипции [14].

Наконец, интроны могут выполнять более специфические функции. Так, первый интрон гена oskar у Drosophila участвует в локализации мРНК в ооците [15], а длинные интронные вставки могут снижать интерференцию Хилла—Робертсона, улучшая кроссинговер в определенных регионах генома [16]. Результаты, полученные с помощью полногеномного поиска ассоциаций (genome-wide association study, GWAS) показывают, что однонуклеотидные варианты (single nucleotide variants, SNV) в интронных областях часто связаны с предрасположенностью к различным метаболическим и иммунным заболеваниям человека [17].

Таким образом, интроны выполняют сложные регуляторные функции — от контроля уровня экспрессии до обеспечения оптимальной архитектуры хроматина и тканеспецифической регуляции транскриптов.

Семейство генов Nxf

Перед описанием основного объекта данного исследования следует сказать несколько вводных слов про само семейство.

Семейство генов Nxf (nuclear export factor) названо по функции продукта их наиболее известного представителя — Nxf1, который обеспечивает экспорт большинства мРНК из ядра в цитоплазму. Распространение этих генов наблюдается у всех эукариот группы Opisthokonta, однако их число и структурные особенности заметно различаются между таксонами. У грибов обычно присутствует единственная копия Nxf, тогда как в геномах растений и некоторых протистов такие гены могут отсутствовать полностью. У животных же часто встречается от двух до пяти паралогов, что свидетельствует об активных дупликационных процессах в эволюции этого семейства [6].

Характерной особенностью гена *Nxf1* является наличие в составе его структуры "кассетного" интрона, расположенного между двумя небольшими экзонами размером 110 и 37 пар нуклеотидов в каноническом варианте. При альтернативном сплайсинге этот интрон может сохраняться в зрелой мРНК, неся внутри себя преждевременный стоп-кодон, возникающий за счет особенностей размеров упомянутых ранее экзонов. Сохранению интрона может способствовать наличие определенных транспортных последовательностей, как у млекопитающих, или формирование устойчивой вторичной структуры, как у дрозофил. В итоге такие транскрипты избегают NMD и могут кодировать укороченные, но функционально активные белки [6, 18].

В одной из первых статей нашей научной группы были определены следующие характеристики "кассетного" интрона у 3 таксономических групп животных:

- Позвоночные. У гена *Nxf1* интрон располагается между 10-м и 11-м экзонами. Вставка содержит несколько консервативных мотивов, включая фрагмент, похожий на СТЕ, необходимый для экспорта частично сплайсированных РНК.
- Дрозофилиды. У представителей данного семейства кассетный интрон локализуется между 5-м и 6-м экзонами. В нем отсутствуют длинные гомологичные вставки, но присутствуют два тракта, обогащенные аденином (А) и формирующие прочную вторичную структуру, которая предположительно защищает транскрипт от деградации в ядре [6].
- **Нематоды.** Интрон может располагаться между 5-м и 6-м или 6-м и 7-м экзонами, но он гораздо короче и богат тимином (Т). Участки протяженной гомологии отсутствуют.

Перечисленные различия отражают долгую эволюцию семейства Nxf: от сравнительно простой короткой вставки у нематод до сложных СТЕ-подобных мотивов у позвоночных, подчеркивая ключевую роль "кассетного" интрона в посттранскрипционной регуляции [6, 18]. Перейдем к более подробному рассмотрению гена Nxf1.

Структура и функции гена Nxf1 и его белковых продуктов

Первоначально белок Nxf1 у человека был охарактеризован как кофактор белка Тір герпеса saimiri и был назван TAP — Тір-associated protein, или белок, ассоциированный с Тір [19]. Позже было выяснено, что он отвечает за экспорт несплайсированных и частично сплайсированных ретровирусных мРНК путем распознавания СТЕ-структуры в их последовательностях [5]. У дрозофилид этот ген также называют sbr от small bristles (маленькие щетинки), и мы предполагаем, что функцию СТЕ у них выполняет образуемая благодаря сохранению интрона вторичная структура.

Рис. 1: Интрон-экзонная структура для генов *Hs Nxf1* и *Dm Nxf1*. Стрелки обозначают "кассетный" интрон. Цвета экзонов отображают белковые домены [6].

Белок Nxf1 включает несколько функциональных доменов (рис. 1): RBD (домен связывания PHK), четыре лейцин-обогащенных повтора (LRR), NTF2-подобный домен, UBA-подобный домен и сигналы ядерной локализации в нетранслируемой области до экзонов. В совокупности эти домены обеспечивают узнавание мPHK и вза-имодействие с компонентами ядерного порового комплекса, делая Nxf1 основным экспортером мPHK [6, 20].

Кассетный интрон, встроенный между сегментами RBD+LRR и NTF2L+UBA, выступает в роли "переключателя". При его сохранении происходит синтез укороченных изоформ белка, обладающих специфической активностью [6].

Кроме классического транспорта мРНК, у Drosophila melanogaster sbr выполняет органо- и тканеспецифические функции. В сперматогенных клетках ген продуцирует укороченную форму sbr, необходимую для нормального сперматогенеза: без нее наблюдается резкое снижение фертильности [21]. В центральной нервной системе sbr участвует в формировании границ между областями мозгового вещества зрительной системы, локализуясь в специфических нейронах и глиальных клетках и регулируя их ядерно-цитоплазматические комплексы [22].

У млекопитающих подобные семенниково-специфические транскрипты не выявлены, однако для мышей $Mus\ musculus$ и человека известны паралоги из семейства генов Nxf, обладающие подобной функцией [7].

Аналогичные эволюционно значимые особенности кассетного интрона отмечены у Chiroptera (Летучие мыши). Сравнительный анализ продемонстрировал значимость кассетного интрона в эволюции гена Nxf1 у данной группы организмов [23].

Также в моей бакалаврской работе было показано, что структура "консервативной кассеты" является специфической для таксонов более низкого ранга у всех взятых в анализ артропод (89 видов), а интрон-содержащие транскрипты проанализированных дрозофилид (37 видов) формируют специфические вторичные структуры, имеющие А-обогащенные участки.

Таким образом, Nxf1 представляет собой пример многофункционального белка, чья доменная организация и альтернативные формы позволяют выполнять как основную задачу — экспорт мРНК, так и специализированные функции в разных тканях у разных таксонов.

Материалы и методы

Первичный анализ

В качестве отправной точки был произведен поиск гена *Nxf1* внутри веб-сервиса NCBI [24]. Полученные данные были сохранены в текстовом формате и загружены в виде tsv-таблицы с помощью пакета pandas v2.2.3 [25] для языка программирования Python v3.12.6 [26]. Всего был найден 651 вид, содержащий анализируемый ген, большинство из которых относятся к Deuterostomia (Вторичноротые) – 436 видов. Таким образом, в качестве материалов выступали нуклеотидные и белковые последовательности, соответствующие гену *Nxf1*, из открытых баз данных NCBI [24].

Большинство этапов последующего анализа реализовано в виде отдельных скриптов, разработанных в рамках данной работы, если не указано другое. Для логического разделения на блоки был использован Jupyter Notebook v1.1.1 [27].

По данным из полученной таблицы в порядке поискового эксперимента было построено филогенетическое дерево по найденным видам для оценки количества видов в таксонах более низкого ранга. Для глубокого анализа было принято решение сфокусироваться на организмах, относящихся к группе Protostomia (Первичноротые), Cnidaria (Стрекающие), а также на всех группах из Deuterostomia за исключением Маmmalia (Млекопитающие).

Загрузка данных

Для найденных организмов с помощью пакета NCBI E-utilities из BioPython v1.85 [28] и NCBI Datasets Command-Line Interface (CLI) v18.0.2 [29] были загружены нуклеотидные последовательности гена, кодирующих участков и мРНК, а также аминокислотные последовательности белка в формате FASTA и аннотации для гена в GenBank-формате, необходимые для получения нуклеотидных последовательностей экзонов и поиска "консервативной кассеты". Затем были получены и проанализированы интересующие нас участки экзон-интрон-экзонной структуры и созданы файлы со всеми экзонами и "кассетным" интроном для всех организмов, у которых получилось найти "кассету". Данные файлы будут необходимы для последующего анализа.

Увеличение выборок

Учитывая очень маленькие выборки во многих анализируемых группах (например, Cnidaria – 4 вида, Spiralia – 9 видов), было принято решение по увеличению их количества. Для этой цели, учитывая разнообразия полученных генов даже внутри одной таксономической группы, самым эффективным вариантом оказалось использование PSI-BLAST [30]. В качестве запроса (Query), или референса, использовались белковые последовательности тех организмов, у которых была найдена "кассета". Для проведения PSI-BLAST были выбраны настройки по-умолчанию за исключением параметра Organism: поиск проводился внутри таксономической группы, к которой принадлежал референс, также референс был исключен из поиска.

Парсинг результатов

Парсинг результатов BLAST также осуществлялся с помощью пакета BioPython [28] и специально разработанных скриптов. Он включал в себя фильтрацию данных по параметрам процента покрытия (Query Coverage, QC), длине и сходству (Per. Ident) найденных последовательностей (Subject), а также загрузку нуклеотидных и белковых последовательностей, однако реализация отличалась изза особенностей баз данных NCBI [24]. Получение "кассеты" было произведено по тому же принципу, но, опять же, с отличиями. Благодаря данному шагу удалось увеличить выборки суммарно на 117 видов. К сожалению, для некоторых таксономических групп увеличение выборки оказалось невозможным в связи с отсутствием у некоторых организмов интересующего нас участка.

Множественные выравнивания

Множественные выравнивания осуществлялись с помощью алгоритма MAFFT [31], 10 итераций, остальные настройки по-умолчанию, в программе Unipro UGENE v52.0 [32].

Поиск консервативных мотивов внутри "кассетного" интрона

Анализ видов из Deuterostomia изначально шел более благоприятно за счет большого сходства последовательностей, в том числе интронных, и большего количества видов в группах. Для них также были загружены все необходимые файлы и про-изведен поиск и анализ "консервативной кассеты". Мы решили сосредоточить свое внимание на организмах из Actinopterygii (Лучеперые рыбы), 72 вида, так как данных по ним ранее получено не было.

Учитывая большую степень сходства интронных последовательностей, с помощью пакета инструментов MEME Suite v5.5.8 [33] локально был произведен поиск консервативных мотивов внутри "кассетного" интрона. Найденные мотивы, у которых E-value < 0.05 также локально были проанализированы с помощью Tomtom [34] из того же пакета. Для описанного шага была взята база данных JASPAR2024 CORE (NON-REDUNDANT) DNA.

Построение и анализ вторичных структур РНК

С помощью инструмента RNAfold v2.7.0 из пакета ViennaRNA [35] были построены вторичные структуры РНК для нуклеотидных последовательностей в двух вариантах (МFE и Centroid), содержащих экзоны и "кассетный" интрон, так как мы предполагаем, что избегание интроном сплайсинга может быть опосредовано образованной им специфической вторичной структурой. Учитывая данное предположение, разумным шагом также являлся анализ "силы сайтов сплайсинга", проведенный с помощью MaxEntScan [36].

Также с помощью скриптов цветом были выделены интронные последовательности внутри вторичной структуры и найденный мотив у Actinopterygii, который предположительно является СТЕ.

Филогенетический анализ

Для Actinopterygii также был проведен филогенетический анализ, включающий построение и визуализацию деревьев. Для данной цели использовались самые популярные и проверенные временем инструменты. Построение деревьев осуществлялось с помощью IQ-TREE v2.4.0 [37], визуализация – с помощью Figtree v1.4.4 [38].

Настройки системы и доступность скриптов

Работа проводилась в виртуальном окружении Mamba v1.5.5 [39], использованные пакеты и примеры анализа в Jupyter Notebooks можно найти в GitHub [40] репозитории автора: https://github.com/ArtemVaska/Diploma.

Для написания ВКР была использована система верстки LaTeX v4.76 [41], таблицы генерировались в веб-сервисе TablesGenerator [42]. Большинство рисунков обработано с помощью веб-сервиса draw.io [43]. Построение графиков осуществлялось с помощью пакета для Python matplotlib v3.10.3 [44].

Все шаги анализа проводились на базе операционной системы Linux Ubuntu 22.04 [45].

Результаты

Анализ всех найденных видов

Были проанализированы 413 нуклеотидных последовательностей гена *Nxf1* у представителей различных филогенетических групп из клад Cnidaria (Стрекающие) и Bilateria (Двусторонне-симметричные). Организмы, относящиеся к Mammalia, в анализ не были взяты в связи с уже имеющимися для них данными.

Для таксономических групп более низкого ранга с небольшим количеством видов в них с помощью PSI-BLAST были увеличены выборки, где это оказалось возможным, результат продемонстрирован на таблице 1.

T-6 1. D		ки с помощью PSI-BLAST.
- таолина т: гезультат	-vвеличения выоорк	ки с помошью Рэг-Бгаэт.
	, zeriii ieiiiii zziepi	

Филогенетическая группа	Таксон высокого ранга	Видов до PSI-BLAST	Видов добавлено	Итого видов
Bilateria → Protostomia	Ecdysozoa Spiralia	56 6	42 63	98 69
Cnidaria	Anthozoa	2	12	14

В итоге для 353 видов удалось найти "консервативную кассету" и продолжить дальнейший анализ.

На рисунке 2 отображено распределение исследованных видов по таксонам высокого ранга. Последовательно идущие таксоны объединены в один блок и разделены пунктиром.

Рис. 2: Количество видов, взятых в анализ, для разных таксономических групп.

Для всех видов, имеющих "консервативную кассету", были построены вторичные структуры для интрон-содержащего транскрипта с выделением цветом "кассетного" интрона.

Подробный анализ Actinopterygii

Для таксономической группы Actinopterygii проводился более углубленный анализ, так как на текущий момент данных по гену *Nxf1* для них не было. Были взяты все найденные нуклеотидные последовательности гена у представители данной филогенетической группы – 72 вида.

В таблице 2 показана характеристика "консервативной кассеты" исследуемой группы. Результаты по другим группам можно найти в приложении, таблицы 3–8.

Таблица 2: Сводная таблица с характеристикой кассетного интрона для таксономической группы Actinopterygii. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Chanos chanos	1	110	3568	37
Danio rerio	1	110	3580	37
Denticeps clupeoides	7	110	2629	37
Labrus bergylta	10	110	2684	37
Cottoperca gobio	16	110	2388	37
Xiphophorus couchianus	22	110	2227	37
Larimichthys crocea	22	110	2340	37
Lates calcarifer	22	110	2434	37
Notothenia coriiceps	22	110	2886	37
Betta splendens	22	110	2274	37
Poecilia reticulata	22	110	2262	37
Takifugu rubripes	22	110	2114	37
Salarias fasciatus	22	110	3855	37
Poecilia mexicana	22	110	2247	37
Stegastes partitus	22	110	2900	37
Clupea harengus	22	110	3219	37
Archocentrus centrarchus	22	110	2644	37
Esox lucius	22	110	2848	37
Monopterus albus	22	110	2353	37
Echeneis naucrates	22	110	2314	37
Paralichthys olivaceus	22	110	3148	37
Maylandia zebra	22	110	2565	37
Parambassis ranga	22	110	2484	37
Sander lucioperca	22	110	2494	37
Xiphophorus maculatus	22	110	2231	37
Nothobranchius furzeri	22	110	2290	37
Anabas testudineus	22	110	2352	37
Acanthochromis polyacanthus	22	110	2797	37
Anarrhichthys ocellatus	22	110	2355	37
Boleophthalmus pectinirostris	22	110	1702	37
Sparus aurata	22	110	2361	37
Oryzias melastigma	22	110	2212	37
Seriola dumerili	22	110	2494	37
Poecilia formosa	22	110	2259	37
Oreochromis niloticus	22	110	2580	37
Kryptolebias marmoratus	22	110	2556	37
Xiphophorus hellerii	22	110	2240	37
Poecilia latipinna	22	110	2261	37
Pundamilia nyererei	22	110	2527	37

Hippocampus comes	22	110	2622	37
Oreochromis aureus	22	110	2579	37
Amphiprion ocellaris	22	110	2752	37
Seriola lalandi dorsalis	22	110	2481	37
Austrofundulus limnaeus	22	110	2541	37
Puntigrus tetrazona	25	110	2440	37
Fundulus heteroclitus	25	110	2476	37
Cyprinodon variegatus	28	110	2533	37
Haplochromis burtoni	31	110	2535	37
$A statotilapia\ calliptera$	31	110	2571	37
$Gouania\ will de nowi$	37	110	2616	37
Oryzias latipes	40	110	2331	37
Sphaeramia orbicularis	43	110	2376	37
Pygocentrus nattereri	46	110	2649	37
Astyanax mexicanus	46	110	2791	37
Colossoma macropomum	46	110	2644	37
Ictalurus punctatus	46	110	3166	37
$Tachysurus\ fulvidraco$	46	110	3493	37
Pangasianodon hypophthalmus	46	110	3348	37
Erpetoichthys calabaricus	55	110	3662	37
Perca flavescens	58	110	2378	37
$Mastacembelus\ armatus$	64	110	2371	37
$Salmo\ salar$	67	110	3553	37
Gadus morhua	67	110	3151	37
$Etheostoma\ spectabile$	97	110	2457	37
Scleropages formosus	112	110	3412	37
Myripristis murdjan	112	110	2492	37
Paramormyrops kingsleyae	121	110	2929	37
Carassius auratus	148	110	3854	37
Sinocyclocheilus grahami	148	110	3330	37
Sinocyclocheilus rhinocerous	154	110	3449	37
Sinocyclocheilus anshuiensis	154	110	4202	37
Electrophorus electricus	283	110	2874	37

На рисунках 3 и 4 показано распределение длин части "кассетного" интрона до стоп-кодона и длин "кассетного" интрона, соответственно.

Рис. 3: Распределение длин части "кассетного" интрона до стоп-кодона у Actinopterygii

Рис. 4: Распределение длин "кассетного" интрона у Actinopterygii

На рисунке 5 представлены результаты оценки "силы сайтов сплайсинга" - "ящики с усами", отображающие распределение MaxEntScan score для таксонов более низкого ранга внутри группы Actinopterygii. Разбиение на подгруппы основано на их удаленности друг от друга. Порядок групп на графике не несет смысловой нагрузки.

Рис. 5: Результаты проведения MaxEntScan для Actinopterygii.

Рисунок 6 демонстрирует результаты, полученные с помощью MEME Suite.

Найденные мотивы присутствуют не у всех видов, взятых в анализ изначально, их количество отображено в столбце Sites. Нас заинтересовал 2-й найденный мотив, так как его начало схоже с предложенной авторами [46] консенсусной последовательностью для СТЕ из рисунка 7. К сожалению, использование Tomtom для сравнения найденных консервативных мотивов из "кассетного" интрона с базой данных не дало статистически значимых результатов.

.

	Logo 🔞	E-value ?	Sites 🛚	Width ?
1.	- ACCCGACTATGGAACCCTGGATAGCC_ATGACCGGTAAGATCCCACCTG_AAAcccg_GGG	2.1e-827	67	60
2.	ACCTAACGCACCCACACTCACGATTACTC_GCCTG	6.5e-448	68	36
3.	GTGCTTGTGTTGCT+C+CCATGTCAGATCTGTGTATATCACCATA+TGGGGGAGAGGG+G	2.8e-508	44	60
4.	EASCSA_I_T_TCCCCTCCCTCATAGCA-CS_TGCCCA_TGGCCA_TGGCCCCT	3.5e-340	46	50
5.	₽ PGIGGIGGGACTGCTGGGT-CAGCTCACTITGAGACC	2.7e-258	46	36

Рис. 6: Результат поиска мотивов внутри "кассетного" интрона с помощью MEME Suite для Actinopterygii. Черным прямоугольником выделен участок, похожий на консенсусную последовательность СТЕ (рис. 7) [46]

Рис. 7: Консенсусный конститутивный транспортный элемент (СТЕ) [46].

Репрезентация вторичной структуры интрон-содержащего транскрипта с выделенным кассетным интроном и найденным мотивом показана на рисунке 8. У всех видов были сходные структуры и в качестве иллюстрации представлен один из проанализированных видов.

Учитывая тот факт, что мотив с интересующим нас участком, был найден у 68 видов, именно для них был проведен последующий анализ.

Рисунок 9 отображает результаты множественного выравнивания, а на рисунке 10 представлено филогенетическое дерево, построенное по результатам этого выравнивания.

Рис. 8: Вторичная структура РНК-транскрипта для *Chanos chanos* из Otomorpha, содержащая "кассетный" интрон.

Рис. 9: Результаты множественного выравнивания для Actinopterygii.

Рис. 10: Филогенетическое дерево для Actinopterygii.

Обсуждение

Анализ всех найденных видов

У всех проанализированных видов размер второго экзона из "консервативной кассеты" равен 37 нуклеотидам, в то время как размер первого экзона варьирует в различных группах. На рисунке 11 показано распределение длины первого экзона из "кассеты" для Protostomia.

Рис. 11: Распределение длины первого экзона из "консервативной кассеты" для Protostomia.

Для Ecdysozoa и Cnidaria первый экзон как правило размером 110 нуклеотидов, но встречаются и исключения. У Spiralia размер этого экзона гораздо больше и чаще всего составляет 239 нуклеотидов. По данному отличию и встречающимся уникальным вариантам размера экзона требуется углубленное исследование.

У Deuterostomia размер первого экзона в абсолютном большинстве случаев (171 из 172 исследованных видов) составляет 110 нуклеотидов, что также характерно и для млекопитающих.

Длина участка внутри интрона до стоп-кодона, как и длина самого интрона, варьирует в более широких пределах в разных группах. Тем не менее внутри отдельных групп, например Lepidosauria (таблица 8 в приложении), наблюдается высокая степень консервативности обоих параметров.

Также встречаются виды, у которых происходит частичная или даже полная трансляция "кассетного" интрона, потому что в нем не встречается преждевременный стоп-кодон. Например, таким видом является давно изученная в данном контексте *Caenorhabditis elegans*, у которой преждевременный стоп-кодон встречается в одном из экзонов после "кассетного" интрона. В данном исследовании были найдены еще 2 вида, у которых интрон полностью считывается: Aves — *Vidua chalybeata*, Paraneoptera — *Rhopalosiphum maidis*. Упомянутые виды также требуют тщательного изучения.

Подробный анализ Actinopterygii

Данная группа организмов была исследована более подробно по перечисленным ранее причинам. Внутри группы размеры первого и второго экзона из "консервативной кассеты" для всех исследованных видов составляют 110 и 37 нуклеотидов, соответственно. Длина участка внутри интрона до стоп-кодона у большинства видов составляет 22 нуклеотида (39 из 72 исследованных в работе). Размер "кассетного" интрона варьирует от 1702 до 4202 нуклеотидов (в среднем 2705).

Анализ "сайтов силы сплайсинга" (рис. 5) говорит о том, что практически у всех видов данный интрон успешно вырезается сплайсосомой. Учитывая большую выборку видов, взятую для анализа, было принято решение ориентироваться на эмпирическую интерпретацию результатов, которая выглядит следующим образом:

- 0-3: слабый сайт сплайсинга
- 3-6: умеренный сайт сплайсинга
- >6: сильный сайт сплайсинга

Так как у большинства видов значение MaxEntScan score больше или около 6, был сделан вывод, высказанный выше. Соответственно, удержание интрона является не ошибкой сплайсинга, а закономерным событием варианта альтернативного сплайсинга. В связи с этим и было принято решение о поиске консервативных мотивов внутри "кассетного" интрона.

Несмотря на то, что на рисунке 6 представлено 5 найденных мотивов, их количество может быть больше, потому что данное значение мотивов было ограничением запуска MEME Suite. Учитывая высокую степень сходства начала 2-го найденного мотива с консенсусной последовательностью СТЕ из рисунка 7, можно предположить сохранение интрона благодаря этой и возможно другим структурам внутри интрон-содержащего транскрипта (рис. 8). Было бы интересно узнать, как именно СТЕ-подобная последовательность оказалось в данном интроне.

Проведенное множественное выравнивание на рисунке 9 говорит о высокой степени консервативности как кодирующих участков – левый и правый крайние части диаграммы под выравниванием, так и некоторых участков внутри интрона – центр диаграммы под выравниванием.

Филогенетическое древо (рис. 10), построенное по результатам выравнивания, несмотря на наличие "кассетного" интрона в последовательности, использованной для его построения, успешно разделяет виды на таксоны более высокого ранга – Otomorpha и Euteleosteomorpha.

Остальные группы, не включенные в подробный анализ, требуют его проведения.

Выводы

- 1. "Консервативная кассета" имеет определенные характеристики, которые меняются в пределах разных таксономических ветвей. Вариативность характеристик больше у тех групп, которые дальше эволюционно друг от друга.
- 2. Внутри "кассетного" интрона существуют участки, которые способствуют формированию особой вторичной структуры интрон-содержащего транскрипта. За счет их наличия возможно сохранение такого транскрипта и последующая трансляция с синтезом укороченной формы белка.

Список литературы

- Jurica M. S., Roybal G. A. RNA splicing // Encyclopedia of Biological Chemistry: Second Edition. — Elsevier, 2013. — P. 185–190. — DOI: 10.1016/B978-0-12-378630-2.00674-5.
- 2. Krebs J. E., Goldstein E. S., Kilpatrick S. T. Lewin's GENES XII. 12th ed. Burlington, MA: Jones & Bartlett Learning, 2017. ISBN 9781284104493.
- 3. Intron retention enhances gene regulatory complexity in vertebrates / U. Schmitz [et al.] // Genome Biology. 2017. Vol. 18, no. 1. P. 216. DOI: 10.1186/s13059-017-1339-3.
- 4. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis / M. Kalyna [et al.] // Nucleic Acids Research. 2012. Vol. 40, no. 6. P. 2454–2469. DOI: 10.1093/nar/gkr932.
- 5. Retroviral Constitutive Transport Element Evolved from Cellular TAP(NXF1)-Binding Sequences / A. S. Zolotukhin [et al.] // Journal of Virology. 2001. Vol. 75, no. 12. P. 5567–5575. DOI: 10.1128/jvi.75.12.5567–5575.2001.
- 6. Mamon L. A., Kliver S. F., Golubkova E. V. Evolutionarily conserved features of the retained intron in alternative transcripts of the nxf1 (nuclear export factor) genes in different organisms // Open Journal of Genetics. 2013. Vol. 3, no. 3. P. 159–170. DOI: 10.4236/ojgen.2013.33018.
- 7. Mamon L. A., Ginanova V., Golubkova E. V. Organ-specific transcripts as a source of gene multifunctionality: Lessons learned from the Drosophila melanogaster sbr (Dm nxf1) gene // Biological Communications. 2019. Vol. 64, no. 2. P. 146–157. DOI: 10.21638/spbu03.2019.206.
- 8. Splicing as a requirement for biogenesis of functional 16S mRNA of simian virus 40 / P. Gruss [et al.] // Proceedings of the National Academy of Sciences of the United States of America. 1979. Vol. 76, no. 9. P. 4317–4321. DOI: 10.1073/pnas.76.9.4317.
- 9. Juneau K., Nislow C., Davis R. W. Introns regulate RNA and protein abundance in yeast // Genetics. 2006. Vol. 174, no. 1. P. 511–518. DOI: 10.1534/genetics.106.058560.
- 10. Proto-gene and de novo gene birth / A.-R. Carvunis [et al.] // Nature. 2012. Vol. 487, no. 7407. P. 370–374. DOI: 10.1038/nature11184.
- 11. Jo B.-S., Choi S. S. Introns: The Functional Benefits of Introns in Genomes // Genomics & Informatics. 2015. Vol. 13, no. 4. P. 112. DOI: 10.5808/gi.2015.13.4.112.

- 12. Valencia P., Dias A. P., Reed R. Splicing promotes rapid and efficient mRNA export in mammalian cells // Proceedings of the National Academy of Sciences of the United States of America. 2008. Vol. 105, no. 9. P. 3386–3391. DOI: 10.1073/pnas.0800250105.
- 13. Roy S. W., Gilbert W. The evolution of spliceosomal introns: Patterns, puzzles and progress // Nature Reviews Genetics. 2006. Vol. 7, no. 3. P. 211–221. DOI: 10.1038/nrg1807.
- 14. Schwartz S., Meshorer E., Ast G. Chromatin organization marks exon-intron structure // Nature Structural and Molecular Biology. 2009. Vol. 16, no. 9. P. 990–995. DOI: 10.1038/nsmb.1659.
- 15. Cadherin 23 Is a component of the tip link in hair-cell stereocilla / J. Siemens [et al.] // Nature. 2004. Vol. 428, no. 6986. P. 950–955. DOI: 10.1038/nature02483.
- 16. Comeron J. M., Williford A., Kliman R. M. The Hill-Robertson effect: Evolutionary consequences of weak selection and linkage in finite populations // Heredity. 2008. Vol. 100, no. 1. P. 19–31. DOI: 10.1038/sj.hdy.6801059.
- 17. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations / D. Welter [et al.] // Nucleic Acids Research. 2014. Vol. 42, no. D1. P. 1001–1006. DOI: 10.1093/nar/gkt1229.
- Golubkova E., Shidlovskii Y., Schedl P. The evolutionarily conserved family of nuclear export factor (NXF) in Drosophila melanogaster // Drosophila Melanogaster: Life Cycle, Genetics and Development. — 2012. — P. 63–82. — Published December 2015.
- 19. Tap: A novel cellular protein that interacts with tip of herpesvirus saimiri and induces lymphocyte aggregation / D. W. Yoon [et al.] // Immunity. 1997. Vol. 6, no. 5. P. 571–582. DOI: 10.1016/S1074-7613(00)80345-3.
- 20. Herold A., Klymenko T., Izaurralde E. TAP (NXF1) Belongs to a Multigene Family of Putative RNA Export Factors with a Conserved Modular Architecture // Molecular and Cellular Biology. 2000. Vol. 20, no. 23. P. 8996–9008. DOI: 10.1128/mcb.20.23.8996–9008.2000.
- 21. Testis-specific products of the Drosophila melanogaster sbr gene, encoding nuclear export factor 1, are necessary for male fertility / V. Ginanova [et al.] // Gene. 2016. Vol. 577, no. 2. P. 153–160. DOI: 10.1016/j.gene.2015.11.030.
- 22. The RNA-Binding Protein SBR (Dm NXF1) Is Required for the Constitution of Medulla Boundaries in Drosophila melanogaster Optic Lobes / L. Mamon [et al.] // Cells. 2021. Vol. 10, no. 5. P. 1144. DOI: 10.3390/cells10051144.

- 23. Bondaruk D. D., Golubkova E. V., Mamon L. A. Contribution of the intron retained in the Nxf1 gene transcript to the phylogeny of the order Chiroptera // Ecological Genetics. 2022. Vol. 20, no. 2. P. 73–88. DOI: 10.17816/ecogen90940.
- 24. Database resources of the National Center for Biotechnology Information / E. W. Sayers, E. E. Bolton, J. R. Brister, [et al.] // Nucleic Acids Research. 2022. Vol. 50, no. D1. P. D20–D26. DOI: 10.1093/nar/gkab1112.
- 25. McKinney W. Data Structures for Statistical Computing in Python. 2010.
- 26. Python Software Foundation. Python, Version 3.12. 2023. https://www.python.org/downloads/release/python-3120/.
- 27. Jupyter Notebooks a publishing format for reproducible computational workflows / T. Kluyver [et al.]. 2016. DOI: 10.3233/978-1-61499-649-1-87.
- 28. Biopython: Freely available Python tools for computational molecular biology and bioinformatics / P. J. A. Cock [et al.] // Bioinformatics. 2009. Vol. 25, no. 11. P. 1422–1423. DOI: 10.1093/bioinformatics/btp163.
- 29. Exploring and retrieving sequence and metadata for species across the tree of life with NCBI Datasets / N. A. O'Leary [et al.] // Scientific Data. 2024. Vol. 11, no. 1. P. 732. DOI: 10.1038/s41597-024-03571-y.
- 30. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs / S. F. Altschul [et al.] // Nucleic Acids Research. 1997. Vol. 25, no. 17. P. 3389–3402. DOI: 10.1093/nar/25.17.3389.
- 31. Katoh K., Standley D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability // Molecular Biology and Evolution. 2013. Vol. 30, no. 4. P. 772–780. DOI: 10.1093/molbev/mst010.
- 32. Unipro UGENE: a unified bioinformatics toolkit / K. Okonechnikov [et al.] // Bioinformatics. 2012. Vol. 28, no. 8. P. 1166–1167. DOI: 10.1093/bioinformatics/bts091.
- 33. The MEME Suite / T. L. Bailey [et al.] // Nucleic Acids Research. 2015. Vol. 43, W1. W39–W49. DOI: 10.1093/nar/gkv416.
- 34. Quantifying similarity between motifs / S. Gupta [et al.] // Genome Biology. 2007. Vol. 8, no. 2. R24. DOI: 10.1186/gb-2007-8-2-r24.
- 35. ViennaRNA Package 2.0 / R. Lorenz [et al.] // Algorithms for Molecular Biology. 2011. Vol. 6, no. 1. P. 26. DOI: 10.1186/1748-7188-6-26.
- 36. Yeo G., Burge C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals // Bioinformatics. 2004. Vol. 20, no. 3. P. 327–335. DOI: 10.1093/bioinformatics/btg005.

- 37. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era / B. Q. Minh [et al.] // Molecular Biology and Evolution. 2020. Vol. 37, no. 5. P. 1530–1534. DOI: 10.1093/molbev/msaa015.
- 38. Rambaut A. FigTree v1.4.4. 2018. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/.
- 39. QuantStack, contributors mamba. Mamba: The Fast Cross-Platform Package Manager. 2024. https://github.com/mamba-org/mamba.
- 40. GitHub, Inc. GitHub. 2008. URL: https://github.com.
- 41. Lamport L. LaTeX: A Document Preparation System. 2nd ed. Reading, Massachusetts: Addison-Wesley, 1994.
- 42. Tables Generator.com. Tables Generator LaTeX Tables Editor. 2025. URL: https://www.tablesgenerator.com.
- 43. diagrams.net. draw.io Online Diagram Software. 2025. URL: https://www.diagrams.net/.
- 44. Hunter J. D. Matplotlib: A 2D Graphics Environment // Computing in Science & Engineering. 2007. Vol. 9, no. 3. P. 90–95. DOI: 10.1109/MCSE.2007. 55.
- 45. Canonical Ltd. Ubuntu 22.04 LTS (Jammy Jellyfish). 2022. https://releases.ubuntu.com/22.04/.
- 46. Replication of Human Herpesvirus 6A and 6B Is Associated with Distinct Nuclear Domains / F. Tajima [et al.] // Journal of Virology. 2001. Vol. 75, no. 12. P. 5567–5575. DOI: 10.1128/JVI.75.12.5567–5575.2001.

Приложение

Таблица 3: Сводная таблица с характеристикой кассетного интрона для Ecdysozoa. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Trichinella spiralis	1	83	417	37
Priapulus caudatus	1	110	2114	37
$Galendromus\ occidentalis$	1	110	1491	37
Ixodes scapularis	1	110	3567	37
Limulus polyphemus	1	110	915	37
$Parasteatoda\ tepidariorum$	1	110	1725	37
$Cryptotermes\ secundus$	1	110	4335	37
Maniola hyperantus	1	110	920	37
$Cimex\ lectularius$	1	110	4437	37
$Vespa\ mandarinia$	1	113	379	37
$Zerene\ cesonia$	1	110	1162	37
Pararge aegeria	1	110	2657	37
Myzus persicae	1	107	772	37
Halyomorpha halys	1	110	7270	37
Diuraphis noxia	1	107	742	37
Sipha flava	1	107	58	37
$Manduca \ sexta$	1	110	1796	37
$Apis\ laboriosa$	1	113	1254	37
Orussus abietinus	1	113	74	37
Danaus plexippus	1	110	1009	37
Colletes gigas	1	113	379	37
Ostrinia furnacalis	1	110	1946	37
Vespa crabro	1	113	381	37
Venturia canescens	1	113	621	37
Papilio polytes	1	110	1674	37
Vespa velutina	1	113	377	37
Cephus cinctus	1	113	75	37
Bombus pyrosoma	1	113	244	37
Papilio xuthus	1	110	999	37
_	1	110	2352	37
Vanessa tameamea			373	37
Megalopta genalis	1	113 113	363	37
Vespula pensylvanica	1			37
Leptopilina heterotoma	1	113	921 438	
Acromyrmex echination	1	113	240	37 37
Aphidius gifuensis	1	113	1	
Polistes fuscatus	$\frac{1}{7}$	113	400	37
Dirofilaria immitis Odontomachus brunneus	7 10	98	248 498	37
	10	113	662	37
Diploscapter pachys		110	1	37
Bactrocera dorsalis	13	110	1808	37
Drosophila melanogaster	13	110	1602	37
Ceratitis capitata	19	110	2023	37
Pediculus humanus corporis	19	110	631	37
Aphelenchoides avenae	19	110	441	37
Litomosoides sigmodontis	19	110	242	37
Acanthocheilonema viteae	19	110	225	37
$Aethina\ tumida$	19	110	1729	37

Lepeophtheirus salmonis 22 110 1555 Anoplophora glabripennis 22 110 3664 Varroa jacobsoni 22 110 3077 Varroa destructor 22 110 3077 Thelazia callipaeda 25 110 209 Bursaphelenchus xylophilus 25 110 638	37 37 37 37 37 37
Varroa jacobsoni 22 110 3077 Varroa destructor 22 110 3077 Thelazia callipaeda 25 110 209	37 37 37
Varroa jacobsoni 22 110 3077 Varroa destructor 22 110 3077 Thelazia callipaeda 25 110 209	37 37
Varroa destructor 22 110 3077 Thelazia callipaeda 25 110 209	37
Thelazia callipaeda 25 110 209	
Acyrthosiphon pisum 28 107 68	37
Anisakis simplex 30 219 665	37
Tetranychus urticae 31 122 648	37
Homarus americanus 31 110 9821	37
Bursaphelenchus okinawaensis 37 110 593	37
Globodera pallida 43 113 47	37
Amphibalanus amphitrite 73 110 369	37
Cotesia glomerata 73 116 236	37
Caenorhabditis angaria 79 110 96	37
Onchocerca ochengi 88 110 243	37
Brugia pahangi 91 110 232	37
Ditylenchus destructor 97 307 1167	37
Mesorhabditis belari	37
Melanaphis sacchari 97 107 71	37
Enterobius vermicularis 100 110 195	37
Pristionchus mayeri 103 110 131	37
Cercopithifilaria johnstoni 103 110 238	37
Steinernema carpocapsae 106 110 131	37
Wuchereria bancrofti 106 125 242	37
Parelaphostrongylus tenuis 112 110 228	37 37
Toxocara canis 115 110 228 110 1062	37 37
Necator americanus 136 110 243	37 37
Brugia malayi 139 110 243	37 37
Caenorhabditis auriculariae 145 110 245	37 37
Auanema sp. JU1783 145 110 80	37 37
	37 37
	37 37
	37 37
	37 37
Angiostrongylus cantonensis 181 110 213	
Dictyocaulus viviparus 190 110 832	37 27
Caenorhabditis elegans 193 110 106	37 27
Cooperia oncophora 205 110 215	37 27
Caenorhabditis sp. 36 PRJEB53466 205 110 133 142	37 27
Caenorhabditis nigoni 214 110 142	37
Pristionchus pacificus 214 110 251	37
Trichostrongylus colubriformis 214 110 224	37
Caenorhabditis briggsae 217 110 145	37
Cylicocyclus nassatus 229 110 239	37
Haemonchus contortus 304 110 220	37
Caenorhabditis bovis 316 110 235	37
Nippostrongylus brasiliensis 316 110 235	37
Dracunculus medinensis 334 110 122	37
Mesorhabditis spiculigera 376 110 173	37
Pollicipes pollicipes 436 110 367	37
Rhopalosiphum maidis 1345 107 69	37

Таблица 4: Сводная таблица с характеристикой кассетного интрона для Spiralia. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

	Кол-во			
Название	нуклеотидов	Длина	Длина	Длина
организма	до стоп-кодона	1-го экзона	кассетного	2-го экзона
организма	в интроне	в кассете	интрона	в кассете
Schistosoma haematobium	<u>в интроне</u> 1	239	652	37
Magallana gigas	1	110	1537	37
Mya arenaria	1	110	1727	37
Crassostrea virginica	1	110	1613	37
	1	221	4146	37
Aplysia californica	1	110	1869	37
Gigantopelta aegis				
Mercenaria mercenaria	1	110	1690	37
Dreissena polymorpha	1	110	2207	37
Ruditapes philippinarum	1	110	1646	37
Mactra antiquata	1	110	2319	37
Mytilus coruscus	1	110	1234	37
Potamilus streckersoni	1	110	4567	37
Saccostrea echinata	1	110	1556	37
Mytilus edulis	1	110	1360	37
Mytilus trossulus	1	110	1357	37
Pecten maximus	1	110	5000	37
Ostrea edulis	1	110	1643	37
Mizuhopecten yessoensis	1	110	4836	37
$Saccostrea\ cuccullata$	1	110	1706	37
Ylistrum balloti	1	110	4649	37
Argopecten irradians	1	110	5057	37
$Magallana\ angulata$	1	110	1534	37
$Mytilus\ californianus$	1	110	1248	37
Pinctada imbricata	1	110	4144	37
Haliotis asinina	1	110	2375	37
$Sin anodonta\ woodiana$	1	110	4580	37
Haliotis cracherodii	1	110	2506	37
Haliotis rufescens	1	110	2505	37
Patella caerulea	1	110	1362	37
Patella vulgata	1	110	1384	37
Lymnaea stagnalis	1	221	2705	37
Batillaria attramentaria	1	110	8614	37
Schistosoma turkestanicum	1	239	905	37
Paragonimus westermani	1	239	13971	37
Pomacea canaliculata	1	56	255	37
Bradybaena similaris	1	221	3811	37
Elysia crispata	1	221	8063	37
Elysia chlorotica	1	221	7182	37
Bulinus truncatus	1	221	1873	37
Biomphalaria pfeifferi	1	221	1885	37
Biomphalaria glabrata	1	221	1889	37
Schistosoma guineensis	1	239	652	37
Schistosoma guineensis Schistosoma curassoni	1	239	652	37
	1	239	652	37
Schistosoma bovis				
Schistosoma margrebowiei	1	239	650	37
Schistosoma intercalatum	1	239	652	37
Schistosoma rodhaini	1	239	671	37
Schistosoma japonicum	1	239	847	37
Clonorchis sinensis	1	242	6006	37
Hydatigera taeniaeformis	1	242	375	37

Taenia crassiceps	1	242	278	37
Taenia asiatica	1	242	480	37
Heterobilharzia americana	1	239	2163	37
$Trichobilharzia\ szidati$	1	239	1336	37
Trichobilharzia regenti	1	239	996	37
$Opisthorchis\ felineus$	1	242	14603	37
$Rodentolepis\ nana$	1	242	222	37
$Calicophoron\ daubneyi$	1	239	4214	37
Taenia solium	1	242	480	37
Echinococcus granulosus	1	242	521	37
Fasciola hepatica	1	239	2631	37
Fasciola gigantica	1	239	2581	37
$Schistosoma\ mattheei$	1	239	649	37
Fasciolopsis buskii	1	239	1303	37
Dicrocoelium dendriticum	1	239	2612	37
Paragonimus heterotremus	1	239	18219	37
Hymenolepis diminuta	1	242	224	37
Solemya velum	4	110	2071	37
Littorina saxatilis	19	218	6746	37

Таблица 5: Сводная таблица с характеристикой кассетного интрона для Cnidaria. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
$Actinia\ tenebrosa$	10	116	173	37
Dendronephthya gigantea	10	116	328	37
Nematostella vectensis	25	116	991	37
$Montipora\ foliosa$	31	116	907	37
Pocillopora verrucosa	34	116	390	37
Acropora digitifera	40	116	670	37
$Acropora\ millepora$	40	116	682	37
Acropora muricata	40	116	679	37
Pocillopora damicornis	46	116	392	37
Pocillopora meandrina	46	116	392	37
Porites lutea	61	116	711	37
Porites evermanni	61	116	711	37
Exaiptasia diaphana	76	86	227	37
Xenia sp. Carnegie-2017	103	116	116	37

Таблица 6: Сводная таблица с характеристикой кассетного интрона для Sauropsida. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Molothrus aeneus	1	110	745	37
Taeniopygia guttata	1	110	443	37
Lonchura striata	1	110	629	37
Gallus gallus	7	110	1616	37

Cygnus atratus	25	110	1257	37
Haliaeetus leucocephalus	$\frac{25}{25}$	110	1375	37
Phalacrocorax carbo	$\frac{25}{25}$	110	1345	37
Grus americana	$\frac{25}{25}$	110	1659	37
Haliaeetus albicilla	$\frac{25}{25}$	110	1378	37
Oxyura jamaicensis	$\frac{25}{25}$	110	1246	37
Anser cygnoides	$\frac{25}{25}$	110	1279	37
Ciconia boyciana	$\frac{25}{25}$	107	1459	37
Anas acuta	$\frac{25}{25}$	110	1346	37
Astur gentilis	$\frac{25}{25}$	110	1393	37
Aquila chrysaetos chrysaetos	$\frac{25}{25}$	110	1375	37
Aythya fuligula	$\frac{25}{25}$	110	1227	37
Struthio camelus	$\frac{25}{64}$	110	1405	37
Chelonia mydas	79	110	1674	37
Dermochelys coriacea	79	110	1661	37
Caretta caretta	79	110	1656	37
Ammospiza caudacuta	82	110	3942	37
Antinospiza caudacata Aphelocoma coerulescens	85 85	110	3626	37
Gopherus flavomarginatus	142	110	$\frac{3020}{1655}$	37
Chelonoidis abingdonii	$\begin{array}{ c c c }\hline & 142 \\ 142 \\ \end{array}$	110	1645	37
_	142	110	$1645 \\ 1652$	37
Malaclemys terrapin pileata	$\begin{array}{ c c c }\hline & 142 \\ 142 \\ \hline \end{array}$	110	$\frac{1652}{1662}$	37
Mauremys mutica	142		1661	1
Mauremys reevesii		110		37
Trachemys scripta elegans	142	110	1661	37
Chrysemys picta bellii	142	110	1662	37
Emys orbicularis	142	110	1650	37
Alligator sinensis	148	110	1497	37
Alligator mississippiensis	148	110	1618	37
Caloenas nicobarica	184	110	1245	37
Rissa tridactyla	205	110	1388	37
Terrapene triunguis	211	110	1662	37
Emydura macquarii macquarii	223	110	1647	37
Catharus ustulatus	241	110	3252	37
Gopherus evgoodei	301	110	1639	37
Strigops habroptila	457	110	1317	37
Neopsephotus bourkii	502	110	1245	37
Melopsittacus undulatus	517	110	1257	37
Apteryx rowi	541	110	1359	37
Apteryx mantelli	541	110	1359	37
Dromaius novaehollandiae	553	110	1365	37
Chroicocephalus ridibundus	562	110	1373	37
Pezoporus wallicus	568	110	1328	37
Pezoporus flaviventris	568	110	1328	37
Rhea pennata	568	110	1348	37
Pezoporus occidentalis	568	110	1319	37
Pelodiscus sinensis	640	110	1643	37
Phaenicophaeus curvirostris	892	110	2155	37
Camarhynchus parvulus	1360	110	2456	37
Vidua chalybeata	1519	110	678	37

Таблица 7: Сводная таблица с характеристикой кассетного интрона для Amphibia. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Ambystoma mexicanum	1	110	10340	37
Pelobates fuscus	1	110	2424	37
Bufo bufo	7	110	3002	37
Bufo gargarizans	7	110	2879	37
Hyperolius riggenbachi	10	110	3902	37
Rana temporaria	10	110	3036	37
Pseudophryne corroboree	19	110	3561	37
Spea bombifrons	25	110	2840	37
Engystomops pustulosus	25	110	2004	37
Nanorana parkeri	25	110	3038	37
Hyla sarda	25	110	3029	37
Pyxicephalus adspersus	25	110	2917	37
Ranitomeya imitator	37	110	2650	37
Xenopus tropicalis	46	110	2596	37
Xenopus laevis	52	110	3791	37
Geotrypetes seraphini	55	110	3065	37
Rhinatrema bivittatum	103	110	4053	37
Pleurodeles waltl	151	110	3245	37
Microcaecilia unicolor	187	110	2784	37

Таблица 8: Сводная таблица с характеристикой кассетного интрона для Lepidosauria. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Python bivittatus	1	110	2374	37
Notechis scutatus	1	110	2507	37
Pseudonaja textilis	1	110	2519	37
Anolis sagrei	1	110	4667	37
Pituophis catenifer annectens	1	110	2420	37
Lacerta agilis	1	110	2499	37
Candoia aspera	1	110	2293	37
$Sphae rodactylus\ town sendi$	1	110	2825	37
$Tham nophis\ elegans$	1	110	2426	37
$Aha etulla\ prasina$	1	110	2432	37
Gekko japonicus	1	110	2924	37
Crotalus tigris	1	110	3091	37
Pogona vitticeps	1	110	2746	37
Podarcis raffonei	1	110	2495	37
Protobothrops mucrosquamatus	1	110	3264	37
Varanus komodoensis	1	110	2658	37
Pantherophis guttatus	1	110	2411	37
Elgaria multicarinata webbii	1	110	2800	37
Rhineura floridana	1	110	2581	37
Podarcis muralis	1	110	2506	37
$Heteronotia\ binoei$	1	110	3002	37

Anolis carolinensis	1	110	4026	37
Erythrolamprus reginae	1	110	2638	37
$Sceloporus\ undulatus$	1	110	2380	37
Eublepharis macularius	1	110	2577	37
Euleptes europaea	1	110	2901	37
Hemicordylus capensis	1	110	2830	37
$Zootoca\ vivipara$	1	110	2516	37

Благодарности

Я хотел бы поблагодарить моего научного руководителя, Голубкову Елену Валерьевну, и моего куратора, Бондарука Дмитрия Денисовича, за постоянную поддержку и помощь в обсуждении результатов работы.

Отдельно я хотел бы поблагодарить Абрамсон Наталью Иосифовну за повторное рецензирование работы моего авторства.

Также хочу выразить благодарность преподавателям программы "Биоинформатика" и кафедры генетики и биотехнологии СПбГУ, и коллективу преподавателей и ассистентов Института Биоинформатики за полученные знания в процессе обучения, благодаря которым стало возможным осуществление данной работы.