

FCC PART 15C TEST REPORT

For

HHC Changzhou Corp.

No 61, Xinggang Road, Zhonglou District, Changzhou, Jiangsu, China, 213023

FCC ID: 2AEQWWG02HHC013

Report Type: Original Report		Product Type: Wireless Charger
Test Engineer:	Stone Zhang	Stone Zhang
Report Number:	RSHA18101500	05-00B
Report Date:	2018-11-01	
Reviewed By:	Oscar Ye RF Leader	Oscar. Ye
Prepared By:		88934268

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLEBLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC §1.1307& §1.1310 – RF EXPOSURE	
APPLICABLE STANDARDEUT SETUP	
RESULT	
TEST DATA	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARYTEST DATA	
FCC §15.209 & §15.205 - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
1131 1231 3	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	HHC Changzhou Corp.		
Tested Model	WG02		
Product Type	Wireless Charger		
Dimension	146 mm(L)×100 mm(W)×115 mm(H)		
Power Supply	DC 5V		

Report No.: RSHA181015005-00B

Objective

This report is prepared on behalf of HHC Changzhou Corp. in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207 and 15.209 rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Item		Uncertainty
AC Power Lines Conducted Emissions		3.19 dB
Radiated emission	9kHz~30MHz	3.19dB
Radiated emission	30MHz~1GHz	6.11dB
Temperature		1.0℃
1	Humidity	6%

FCC Part 15C Page 3 of 22

^{*}All measurement and test data in this report was gathered from production sample serial number: 20181015005. (Assigned by BACL, Kunshan). The EUT was received on 2018-10-15.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Report No.: RSHA181015005-00B

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15C Page 4 of 22

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user)

Report No.: RSHA181015005-00B

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

No Exercise Software was used.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
ZHAOXIN	DC Power Supply	RXN-605D	DC002
ННС	Wireless Charging Receiver	Universal	/
HUAWEI	Mobile Phone	BKL-AL20	869979032903895

External I/O Cable

Cable Description	Length (m)	From Port	То	
Power Cable	Power Cable 1.2		DC Source	

FCC Part 15C Page 5 of 22

Block Diagram of Test Setup

For Radiated Emissions(Below 30MHz):

FCC Part 15C Page 6 of 22

For Radiated Emissions(Above 30MHz):

FCC Part 15C Page 7 of 22

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307 & §1.1310	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209	Spurious Emissions	Compliance

Report No.: RSHA181015005-00B

FCC Part 15C Page 8 of 22

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date				
Radiated Emission Test (Chamber 1#)									
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2017-11-12	2018-11-11				
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25				
Sonoma Instrunent	Pre-amplifier	310N	171205	2018-08-15	2019-08-14				
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/				
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-08-14				
MICRO-COAX	Coaxial Cable	Cable-9	009	2018-08-15	2019-08-14				
MICRO-COAX	Coaxial Cable	Cable-10	010	2018-08-15	2019-08-14				
ZHAOXIN	DC Power Supply	RXN-605D	DC002	2018-10-10	2019-10-09				
	Radiated Em	nission Test (Chan	nber 2#)						
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2017-11-12	2018-11-11				
ETS-LINDGREN	PASSIVE LOOP	6512	108100	2016-01-09	2019-01-08				
Sonoma Instrunent	Pre-amplifier	310N	185700	2018-08-15	2019-08-14				
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/				
MICRO-COAX	Coaxial Cable	Cable-6	006	2018-08-15	2019-08-14				
MICRO-COAX	Coaxial Cable	Cable-11	011	2018-08-15	2019-08-14				
MICRO-COAX	Coaxial Cable	Cable-12	012	2018-08-15	2019-08-14				
MICRO-COAX	Coaxial Cable	Cable-13	013	2018-08-15	2019-08-14				
ZHAOXIN	DC Power Supply	RXN-605D	DC002	2018-10-10	2019-10-09				
	Cond	lucted Emission Te	est						
Rohde & Schwarz	EMI Test Receiver	ESCS30	834115/007	2017-11-12	2018-11-11				
ZHAOXIN	DC Power Supply	RXN-605D	DC002	2018-10-10	2019-10-09				
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2017-11-12	2018-11-11				
BACL	Auto test Software	BACL-EMC	CE001	/	/				
Narda	Attenuator/6dB	10690812-2	26850-6	2018-01-10	2019-01-09				
MICRO-COAX	Coaxial Cable	Cable-15	015	2018-08-15	2019-08-14				
		RF Exposure							
Narda	Electromagnetic Field Meter	ELT-400	/	2017-11-17	2018-11-16				
Narda	Electric field probe	EF0391	/	2017-11-17	2018-11-16				
Narda	Magnetic field probe / sensor	HF3061	/	2017-11-17	2018-11-16				
ZHAOXIN	DC Power Supply	RXN-605D	DC002	2018-10-10	2019-10-09				

Report No.: RSHA181015005-00B

FCC Part 15C Page 9 of 22

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307& §1.1310 – RF EXPOSURE

Applicable Standard

FCC §1.1307 & 1.1310

According to the item 5.2 of KDB 680106 D01 RF Exposure Wireless Charging Apps v03: Inductive wireless power transfer applications that meet all of the following requirements are excluded from submitting an RF evaluation.

- a) Power transfer frequency is less that 1 MHz.
- b) Output power from each primary coil is less than or equal to 15 watts.
- c) The transfer system includes only single primary and secondary coils. This includes charging systems that may have multiple primary coils and clients that are able to detect and allow coupling only between individual pairs of coils.

Report No.: RSHA181015005-00B

- d) Client device is placed directly in contact with the transmitter.
- e) Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion).
- f) The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.

Limits for Maximum Permissible Exposure (MPE)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Power Density (mW/cm²)	Averaging Time (minutes)			
	(A) Limits for	Occupational/Controll	ed Exposure			
0.3-3.0	614	1.63	*100	6		
3.0-30	1842/f	4.89/f	*900/f ²	6		
30-300	61.4	0.163	1.0	6		
300-1,500			f/300	6		
1,500-100,000			5	6		
	(B) Limits for Gen	eral Population/Uncon	trolled Exposure			
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	*(180/f²)	30		
30-300	27.5	0.073	0.2	30		
300-1500			f/1500	30		
1500-100,000			1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

FCC Part 15C Page 10 of 22

EUT Setup

Report No.: RSHA181015005-00B

Result

- a) Power transfer frequency is less that 1 MHz. Yes, the device operates in the frequency 110 kHz-200 kHz.
- b) Output power from each primary coil is less than or equal to 15 watts. Yes, the maximum output power of the primary coil is 5W<15W.
- c) The transfer system includes only single primary and secondary coils. This includes charging systems that may have multiple primary coils and clients that are able to detect and allow coupling only between individual pairs of coils..

Yes, the transfer system including a charging system with only single primary coils is to detect and allow only between individual of coils.

- d) Client device is inserted in or placed directly in contact with the transmitter. Yes, client device is placed directly in contact with the transmitter.
- e) Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion). Yes, this is a mobile device.
- f) The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit. The EUT H-field Strength levels at 15cm and 20 cm above the top surface are less than 50% the MPE limit.

FCC Part 15C Page 11 of 22

Test Data

Environmental Conditions

Temperature:	24.2℃
Relative Humidity:	51 %
ATM Pressure:	101.2 kPa

The testing was performed by Stone Zhang on 2018-10-31.

H-Filed Strength

Frequency	Position	Position	Position	Position	Position	Limit	Ratio of
Range	A	B	C	D	E	Test	MPE
(kHz)	(A/m)	(A/m)	(A/m)	(A/m)	(A/m)	(A/m)	Limit
110-200	0.178	0.196	0.213	0.155	0.437	1.63	26.81%

Report No.: RSHA181015005-00B

E-Filed Strength

Frequency	Position	Position	Position	Position	Position	Limit	Ratio of
Range	A	B	C	D	E	Test	MPE
(kHz)	(V/m)	(V/m)	(V/m)	(V/m)	(V/m)	(V/m)	Limit
110-200	2.83	2.81	2.13	3.75	6.50	614	1.06%

Note:

1: According with KDB 680106 D01 RF Exposure Wireless Charging Apps v03, Emissions between 100 kHz to 300 kHz should be assessed versus the limits at 300 kHz in Table 1 of Section 1.1310: 614V/m and 1.63 A/m. Aggregate leakage fields at 10 cm surrounding the device from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.

2: The distance for position A, B, C, D are 15cm, the distance for position E is 20cm.

FCC Part 15C Page 12 of 22

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: RSHA181015005-00B

Antenna Connector Construction

The EUT has an integrated loop antenna arrangement, which the antenna gain is 0dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15C Page 13 of 22

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Report No.: RSHA181015005-00B

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

FCC Part 15C Page 14 of 22

Corrected Factor & Margin Calculation

The Corrected Factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RSHA181015005-00B

Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V) – Corrected Amplitude (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	24.2℃
Relative Humidity:	51 %
ATM Pressure:	101.2 kPa

The testing was performed by Stone Zhang on 2018-10-23.

EUT operation mode: charging and communication

FCC Part 15C Page 15 of 22

AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Detector (PK/AV/QP)	Bandwidth (kHz)	Line	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Comment
0.200	23.27	QP	9.000	L1	16.01	63.61	40.34	Compliance
0.200	11.17	AV	9.000	L1	16.01	53.61	42.44	Compliance
0.390	21.37	QP	9.000	L1	16.05	58.06	36.69	Compliance
0.390	11.29	AV	9.000	L1	16.05	48.06	36.77	Compliance
0.665	17.32	QP	9.000	L1	15.97	56.00	38.68	Compliance
0.665	11.12	AV	9.000	L1	15.97	46.00	34.88	Compliance
13.950	16.73	QP	9.000	L1	16.18	60.00	43.27	Compliance
13.950	12.70	AV	9.000	L1	16.18	50.00	37.30	Compliance
21.000	25.33	QP	9.000	L1	16.44	60.00	34.67	Compliance
21.000	20.17	AV	9.000	L1	16.44	50.00	29.83	Compliance
29.700	32.60	QP	9.000	L1	16.58	60.00	27.40	Compliance
29.700	24.74	AV	9.000	L1	16.58	50.00	25.26	Compliance

FCC Part 15C Page 16 of 22

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Detector (PK/AV/QP)	Bandwidth (kHz)	Line	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Comment
0.180	22.19	QP	9.000	N	16.05	64.49	42.30	Compliance
0.180	11.74	AV	9.000	N	16.05	54.49	42.75	Compliance
0.325	21.95	QP	9.000	N	16.08	59.58	37.63	Compliance
0.325	11.08	AV	9.000	N	16.08	49.58	38.50	Compliance
0.440	20.48	QP	9.000	N	16.10	57.06	36.58	Compliance
0.440	11.49	AV	9.000	N	16.10	47.06	35.57	Compliance
14.200	16.76	QP	9.000	N	16.01	60.00	43.24	Compliance
14.200	12.91	AV	9.000	N	16.01	50.00	37.09	Compliance
21.000	25.99	QP	9.000	N	16.18	60.00	34.01	Compliance
21.000	22.39	AV	9.000	N	16.18	50.00	27.61	Compliance
29.450	30.62	QP	9.000	N	16.33	60.00	29.38	Compliance
29.450	25.83	AV	9.000	N	16.33	50.00	24.17	Compliance

Note:

1) Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

2) Margin (dB) = Limit (dB μ V) – Corrected Amplitude (dB μ V)

FCC Part 15C Page 17 of 22

FCC §15.209 & §15.205 - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.209; §15.205;

EUT Setup

Report No.: RSHA181015005-00B

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.205 limits.

EMI Test Receiver Setup

The system was investigated from 9 kHz to1GHz.

During the radiated emission test, the EMI test receiver setup was set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
9 kHz – 150 kHz	200 kHz	1 kHz	QP
150 kHz – 30MHz	9kHz	30kHz	QP
30 MHz – 1000 MHz	120 kHz	300 kHz	QP

Note: For the frequency bands 9-90 kHz and 110-490 kHz, the test was based on average detector.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

FCC Part 15C Page 18 of 22

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

Report No.: RSHA181015005-00B

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205 and 15.209.

Test Data

Environmental Conditions

Temperature:	24.2℃		
Relative Humidity:	51 %		
ATM Pressure:	101.2 kPa		

The testing was performed by Stone Zhang on 2018-10-31.

EUT operation mode: charging and communication

FCC Part 15C Page 19 of 22

9kHz-30MHz:

(Pre-scan in the X,Y and Z axes of orientation, the worst case in X-axis of orientation was recorded)

9kHz-150kHz (PK)

Date: 31.OCT.2018 10:11:58

150kHz-30MHz (PK)

Date: 31.0CT.2018 10:15:34

FCC Part 15C Page 20 of 22

9kHz-490kHz:

Indicated				FCC Part 15.209			
Frequency (kHz)	Corrected Amplitude (dBµV/m) @3m	PK/QP/Ave.	Corrected Factor (dB/m)	Limit (dBµV/m) @3m	Limit (dBµV/m) @300m	Margin (dB)	
35.21	74.29	PK	38.1	116.67	36.67	42.38	
64.13	65.49	PK	31.2	111.46	31.46	45.97	
73.63	63.27	PK	30.1	110.26	30.26	46.99	
108.88	51.66	PK	28.1	106.87	26.87	55.21	
146.75	84.05	PK	25.1	104.27	24.27	20.22	
293.51	66.84	PK	19.8	98.25	18.25	31.41	

Report No.: RSHA181015005-00B

Note: The average emissions which fall into frequencies 9-90 kHz, 110-490 kHz was not recorded, because the peak emissions are below the average limit.

490kHz-30MHz

Indic	cated			FCC Part 15.209			
Frequency (MHz)	Corrected Amplitude (dBµV/m) @3m	PK/QP/Ave.	Corrected Factor (dB/m)	Limit (dBµV/m) @3m	Limit (dBµV/m) @30m	Margin (dB)	
4.17	39.85	PK	0.3	69.54	29.54	29.69	
10.48	35.99	PK	-2.1	69.54	29.54	33.55	

Note:

Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V /m)

FCC Part 15C Page 21 of 22

30MHz-1GHz

(Pre-scan in the X,Y and Z axes of orientation, the worst case in X-axis of orientation was recorded)

Frequency	Corrected Amplitude	Rx A	ntenna	Turntable	Corrected	Limit (dBµV/m)	Margin (dB)
(MHz)	QuasiPeak (dB µ V/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)		
30.940695	32.48	100.0	V	47.0	-4.6	40.00	7.52
56.058250	25.17	100.0	V	99.0	-17.8	40.00	14.83
141.451150	26.92	100.0	V	237.0	-12.0	43.50	16.58
192.890800	25.98	100.0	V	37.0	-12.8	43.50	17.52
254.220750	28.49	100.0	V	2.0	-12.0	46.00	17.51
338.842500	24.24	100.0	Н	247.0	-9.6	46.00	21.76

Note:

Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V /m)

***** END OF REPORT *****

FCC Part 15C Page 22 of 22