$12a_{0268} \ (K12a_{0268})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 6u^{25} - 4u^{24} + \dots + b - 2, -9u^{25} + 23u^{24} + \dots + a + 31, u^{26} - 2u^{25} + \dots - 4u + 1 \rangle$$

$$I_2^u = \langle -u^2a + au + u^2 + b - u + 1, -u^2a + a^2 + 3au + u^2 - 2a - 3u + 2, u^3 - u^2 + 1 \rangle$$

$$I_3^u = \langle -50a^5 + 47a^4 - 54a^3 + 71a^2 + 1503b - 998a + 328, a^6 + 2a^4 + 2a^3 + 6a^2 + 11a - 23, u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 38 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 6u^{25} - 4u^{24} + \dots + b - 2, -9u^{25} + 23u^{24} + \dots + a + 31, u^{26} - 2u^{25} + \dots - 4u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 9u^{25} - 23u^{24} + \dots + 69u - 31 \\ -6u^{25} + 4u^{24} + \dots - 8u + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -4u^{25} + 14u^{24} + \dots - 43u + 27 \\ -u^{25} + u^{24} + \dots + 2u^{2} - 4u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -32u^{25} + 28u^{24} + \dots - 79u + 9 \\ 10u^{25} - 11u^{24} + \dots + 34u - 10 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 15u^{25} - 27u^{24} + \dots + 77u - 33 \\ -6u^{25} + 4u^{24} + \dots - 8u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 37u^{25} - 38u^{24} + \dots + 103u - 23 \\ -16u^{25} + 5u^{24} + \dots - 19u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 21u^{25} - 12u^{24} + \dots + 25u + 4 \\ -25u^{25} + 29u^{24} + \dots - 80u + 22 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 17u^{25} - 37u^{24} + \dots + 107u - 43 \\ -6u^{25} + 12u^{24} + \dots - 29u + 12 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$61u^{25} - 54u^{24} - 343u^{23} + 372u^{22} + 878u^{21} - 898u^{20} - 1579u^{19} + 1127u^{18} + 2535u^{17} - 859u^{16} - 3329u^{15} + 282u^{14} + 3349u^{13} + 450u^{12} - 2660u^{11} - 969u^{10} + 2067u^9 + 348u^8 - 518u^7 - 770u^6 + 524u^5 + 209u^4 - 85u^3 - 178u^2 + 111u - 12$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{26} - 12u^{25} + \dots - 6u + 1$
c_2,c_{12}	$u^{26} + 2u^{25} + \dots + 4u + 1$
<i>c</i> ₃	$u^{26} + 2u^{25} + \dots - 2u^2 + 1$
c_4	$u^{26} - 3u^{24} + \dots + 167u + 85$
c_5, c_8	$u^{26} - 2u^{25} + \dots - 4u + 1$
<i>c</i> ₆	$u^{26} - 2u^{25} + \dots - 2u^2 + 1$
	$u^{26} - 3u^{24} + \dots - 167u + 85$
<i>C</i> 9	$u^{26} + u^{24} + \dots + u^2 + 1$
c_{10}	$u^{26} + u^{24} + \dots + u^2 + 1$
c_{11}	$u^{26} + 12u^{25} + \dots + 6u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{26} - 8y^{24} + \dots + 22y + 1$
c_2, c_5, c_8 c_{12}	$y^{26} - 12y^{25} + \dots - 6y + 1$
c_3, c_6	$y^{26} - 20y^{25} + \dots - 4y + 1$
c_4, c_7	$y^{26} - 6y^{25} + \dots + 51331y + 7225$
c_9, c_{10}	$y^{26} + 2y^{25} + \dots + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.461384 + 0.912562I		
a = -0.080894 - 0.407248I	1.12657 + 3.32893I	5.69551 - 1.13200I
b = 0.575155 + 0.340795I		
u = -0.461384 - 0.912562I		
a = -0.080894 + 0.407248I	1.12657 - 3.32893I	5.69551 + 1.13200I
b = 0.575155 - 0.340795I		
u = 0.849370 + 0.605420I		
a = -1.25013 - 1.25835I	3.52283 - 2.38934I	15.7660 + 2.5226I
b = -0.14769 - 1.58072I		
u = 0.849370 - 0.605420I		
a = -1.25013 + 1.25835I	3.52283 + 2.38934I	15.7660 - 2.5226I
b = -0.14769 + 1.58072I		
u = -0.762938 + 0.732586I		
a = -0.154380 + 0.405636I	5.79972I	0 8.96426I
b = 0.965729 + 0.259552I		
u = -0.762938 - 0.732586I		
a = -0.154380 - 0.405636I	-5.79972I	0. + 8.96426I
b = 0.965729 - 0.259552I		
u = 0.998814 + 0.491144I		
a = 0.29293 + 2.27648I	-2.06063 - 7.20438I	-4.87470 + 7.46295I
b = -1.11561 + 0.93756I		
u = 0.998814 - 0.491144I		
a = 0.29293 - 2.27648I	-2.06063 + 7.20438I	-4.87470 - 7.46295I
b = -1.11561 - 0.93756I		
u = 0.742293 + 0.445659I		
a = 0.246099 - 0.102462I	-1.12657 + 3.32893I	-5.69551 - 1.13200I
b = 1.28686 + 0.76250I		
u = 0.742293 - 0.445659I		
a = 0.246099 + 0.102462I	-1.12657 - 3.32893I	-5.69551 + 1.13200I
b = 1.28686 - 0.76250I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.316384 + 0.759790I		
a = 0.202465 + 1.071890I	2.06063 + 7.20438I	4.87470 - 7.46295I
b = -0.525339 - 0.441494I		
u = -0.316384 - 0.759790I		
a = 0.202465 - 1.071890I	2.06063 - 7.20438I	4.87470 + 7.46295I
b = -0.525339 + 0.441494I		
u = 1.081650 + 0.521444I		
a = 0.05036 + 1.94989I	-1.82571 - 6.70629I	-2.75982 + 7.40474I
b = -0.811958 + 0.761507I		
u = 1.081650 - 0.521444I		
a = 0.05036 - 1.94989I	-1.82571 + 6.70629I	-2.75982 - 7.40474I
b = -0.811958 - 0.761507I		
u = 0.516527 + 0.544349I		
a = -0.92356 - 1.49397I	1.82571 + 6.70629I	2.75982 - 7.40474I
b = -0.655244 - 0.614530I		
u = 0.516527 - 0.544349I		
a = -0.92356 + 1.49397I	1.82571 - 6.70629I	2.75982 + 7.40474I
b = -0.655244 + 0.614530I		
u = 1.089350 + 0.612332I		
a = -0.17797 - 1.62097I	-11.5593I	0. + 10.56005I
b = 0.581197 - 0.813763I		
u = 1.089350 - 0.612332I		
a = -0.17797 + 1.62097I	11.5593I	0 10.56005I
b = 0.581197 + 0.813763I		
u = -0.632233 + 0.402098I		
a = 2.06829 - 1.29149I	2.02248 + 0.44868I	1.93644 - 3.28945I
b = -0.531949 - 0.961805I		
u = -0.632233 - 0.402098I		
a = 2.06829 + 1.29149I	2.02248 - 0.44868I	1.93644 + 3.28945I
b = -0.531949 + 0.961805I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.193370 + 0.413519I		
a = -0.631044 + 0.511481I	-2.02248 - 0.44868I	-1.93644 + 3.28945I
b = -0.440341 + 0.796171I		
u = -1.193370 - 0.413519I		
a = -0.631044 - 0.511481I	-2.02248 + 0.44868I	-1.93644 - 3.28945I
b = -0.440341 - 0.796171I		
u = 0.583202 + 0.387797I		
a = -0.56568 + 1.58491I	2.72365I	0 5.95098I
b = 0.877784 + 0.479057I		
u = 0.583202 - 0.387797I		
a = -0.56568 - 1.58491I	-2.72365I	0. + 5.95098I
b = 0.877784 - 0.479057I		
u = -1.49489 + 0.08893I		
a = -0.076473 + 0.557618I	-3.52283 + 2.38934I	-15.7660 - 2.5226I
b = -0.058595 + 0.627148I		
u = -1.49489 - 0.08893I		
a = -0.076473 - 0.557618I	-3.52283 - 2.38934I	-15.7660 + 2.5226I
b = -0.058595 - 0.627148I		

$$II. \\ I_2^u = \langle -u^2a + au + u^2 + b - u + 1, \ -u^2a + a^2 + 3au + u^2 - 2a - 3u + 2, \ u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2}a - au - u^{2} + u - 1 \\ -u^{2}a + au + 2u^{2} - 2u + 2 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2}a + au + u^{2} + a - u + 1 \\ u^{2}a - au - u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2}a - au - u^{2} + u - 1 \\ u^{2}a - au - 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2}a - au - 2u^{2} + u - 1 \\ u^{2}a - au - 2u^{2} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-10u^2a + 17au + 11u^2 14a 17u + 18$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4	u^6
c_5	$(u^3 - u^2 + 1)^2$
c_6, c_7	$u^6 + 3u^5 + 6u^4 + 7u^3 + 5u^2 + 2u - 1$
c_8,c_{11}	$(u+1)^6$
c_9,c_{10}	$u^6 + 2u^5 - 2u^4 - 3u^3 + 2u^2 + 2u - 1$
c_{12}	$(u-1)^6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5	$(y^3 - y^2 + 2y - 1)^2$
c_4	y^6
c_{6}, c_{7}	$y^6 + 3y^5 + 4y^4 - 3y^3 - 15y^2 - 14y + 1$
c_8, c_{11}, c_{12}	$(y-1)^6$
c_9,c_{10}	$y^6 - 8y^5 + 20y^4 - 27y^3 + 20y^2 - 8y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = 0.626026 + 0.207777I	4.66906 - 2.82812I	4.76162 + 1.20354I
b = -0.869124 - 0.347901I		
u = 0.877439 + 0.744862I		
a = -1.04326 - 1.13522I	4.66906 - 2.82812I	6.27312 + 3.54360I
b = 0.991685 - 0.396961I		
u = 0.877439 - 0.744862I		
a = 0.626026 - 0.207777I	4.66906 + 2.82812I	4.76162 - 1.20354I
b = -0.869124 + 0.347901I		
u = 0.877439 - 0.744862I		
a = -1.04326 + 1.13522I	4.66906 + 2.82812I	6.27312 - 3.54360I
b = 0.991685 + 0.396961I		
u = -0.754878		
a = 1.41297	0.531480	-8.86450
b = -0.452937		
u = -0.754878		
a = 3.42151	0.531480	-74.2050
b = 2.20781		

$$I_3^u = \langle -50a^5 + 1503b + \dots -998a + 328, \ a^6 + 2a^4 + 2a^3 + 6a^2 + 11a - 23, \ u + 1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0332668a^5 - 0.0312708a^4 + \dots + 0.664005a - 0.218230 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0.0312708a^5 + 0.0306055a^4 + \dots + 0.584165a + 0.234864 \\ 0.0232868a^5 - 0.0552229a^4 + \dots + 0.264804a + 0.713906 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0.0372588a^5 + 0.178310a^4 + \dots + 0.823686a + 1.20892 \\ 0.0312708a^5 + 0.0306055a^4 + \dots + 0.584165a + 0.234864 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0332668a^5 + 0.0312708a^4 + \dots + 0.335995a + 0.218230 \\ 0.0332668a^5 - 0.0312708a^4 + \dots + 0.664005a - 0.218230 \\ 0.0232868a^5 - 0.0312708a^4 + \dots + 0.584165a + 0.234864 \\ 0.0232868a^5 - 0.0552229a^4 + \dots + 0.584165a + 0.234864 \\ 0.0232868a^5 - 0.0312708a^4 + \dots + 0.785762a + 0.0991351 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0.0525615a^5 + 0.0372588a^4 + \dots + 0.769128a + 0.401863 \\ 0.0113107a^5 - 0.0172987a^4 + \dots + 0.785762a + 0.0991351 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0332668a^5 - 0.0312708a^4 + \dots + 0.664005a - 0.218230 \\ 0.0665336a^5 - 0.0625416a^4 + \dots + 0.328011a - 0.436460 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{625}{1503}a^5 + \frac{2341}{1503}a^4 - \frac{1394}{501}a^3 + \frac{9655}{1503}a^2 - \frac{13978}{1503}a + \frac{20132}{1503}a^3 + \frac{20132}{15$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_3, c_4	$u^6 - 3u^5 + 6u^4 - 7u^3 + 5u^2 - 2u - 1$
c_5	$(u+1)^6$
c_6, c_{11}	$(u^3 + u^2 + 2u + 1)^2$
	u^6
c ₈	$(u^3 - u^2 + 1)^2$
c_9, c_{10}	$u^6 - 2u^5 - 2u^4 + 3u^3 + 2u^2 - 2u - 1$
c_{12}	$(u^3 + u^2 - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^6$
c_3, c_4	$y^6 + 3y^5 + 4y^4 - 3y^3 - 15y^2 - 14y + 1$
c_6, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$
c ₇	y^6
c_8, c_{12}	$(y^3 - y^2 + 2y - 1)^2$
c_{9}, c_{10}	$y^6 - 8y^5 + 20y^4 - 27y^3 + 20y^2 - 8y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.02278	-0.531480	8.86450
b = 0.452937		
u = -1.00000		
a = -1.63797	-0.531480	74.2050
b = -2.20781		
u = -1.00000		
a = -0.77661 + 1.70410I	-4.66906 + 2.82812I	-6.27312 - 3.54360I
b = -0.991685 + 0.396961I		
u = -1.00000		
a = -0.77661 - 1.70410I	-4.66906 - 2.82812I	-6.27312 + 3.54360I
b = -0.991685 - 0.396961I		
u = -1.00000		
a = 1.08420 + 1.65504I	-4.66906 + 2.82812I	-4.76162 - 1.20354I
b = 0.869124 + 0.347901I		
u = -1.00000		
a = 1.08420 - 1.65504I	-4.66906 - 2.82812I	-4.76162 + 1.20354I
b = 0.869124 - 0.347901I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^3-u^2+2u-1)^2(u^{26}-12u^{25}+\cdots-6u+1)$
c_2, c_{12}	$((u-1)^6)(u^3+u^2-1)^2(u^{26}+2u^{25}+\cdots+4u+1)$
c ₃	$(u^3 - u^2 + 2u - 1)^2(u^6 - 3u^5 + 6u^4 - 7u^3 + 5u^2 - 2u - 1)$ $\cdot (u^{26} + 2u^{25} + \dots - 2u^2 + 1)$
c_4	$u^{6}(u^{6} - 3u^{5} + \dots - 2u - 1)(u^{26} - 3u^{24} + \dots + 167u + 85)$
c_5, c_8	$((u+1)^6)(u^3-u^2+1)^2(u^{26}-2u^{25}+\cdots-4u+1)$
<i>C</i> ₆	$(u^{3} + u^{2} + 2u + 1)^{2}(u^{6} + 3u^{5} + 6u^{4} + 7u^{3} + 5u^{2} + 2u - 1)$ $\cdot (u^{26} - 2u^{25} + \dots - 2u^{2} + 1)$
c_7	$u^{6}(u^{6} + 3u^{5} + \dots + 2u - 1)(u^{26} - 3u^{24} + \dots - 167u + 85)$
<i>c</i> 9	$(u^{6} - 2u^{5} - 2u^{4} + 3u^{3} + 2u^{2} - 2u - 1)$ $\cdot (u^{6} + 2u^{5} + \dots + 2u - 1)(u^{26} + u^{24} + \dots + u^{2} + 1)$
c_{10}	$(u^{6} - 2u^{5} - 2u^{4} + 3u^{3} + 2u^{2} - 2u - 1)$ $\cdot (u^{6} + 2u^{5} + \dots + 2u - 1)(u^{26} + u^{24} + \dots + u^{2} + 1)$
c_{11}	$((u+1)^6)(u^3+u^2+2u+1)^2(u^{26}+12u^{25}+\cdots+6u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$((y-1)^6)(y^3+3y^2+2y-1)^2(y^{26}-8y^{24}+\cdots+22y+1)$
c_2, c_5, c_8 c_{12}	$((y-1)^6)(y^3-y^2+2y-1)^2(y^{26}-12y^{25}+\cdots-6y+1)$
c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2(y^6 + 3y^5 + 4y^4 - 3y^3 - 15y^2 - 14y + 1)$ $\cdot (y^{26} - 20y^{25} + \dots - 4y + 1)$
c_4, c_7	$y^{6}(y^{6} + 3y^{5} + 4y^{4} - 3y^{3} - 15y^{2} - 14y + 1)$ $\cdot (y^{26} - 6y^{25} + \dots + 51331y + 7225)$
c_9,c_{10}	$((y^6 - 8y^5 + \dots - 8y + 1)^2)(y^{26} + 2y^{25} + \dots + 2y + 1)$