QUANTUM ALGORITHMS HOMEWORK 10 SELECTED SOLUTIONS

PROF. MATTHEW MOORE

2. Using the previous question, prove the assertion on page 119 that

$$\sum_{\substack{a,b\\x-y\in D}} (-1)^{a\cdot x-b\cdot y} \neq 0$$

if and only if $a = b \in D^{\perp}$ (the book uses E^*).

Solution:

Proof. Define

$$F = \{(x, y) \in (\mathbb{Z}_2^n)^2 \mid x - y \in D\}.$$

Observe that F is a subgroup of $(\mathbb{Z}_2^n)^2$: if $(x_1, y_1), (x_2, y_2) \in F$ then $(x_1 + x_2, y_1 + y_2) \in F$ since

$$(x_1 + x_1) - (y_1 + y_2) = (x_1 - y_1) + (x_2 - y_2) = 0 + 0 = 0.$$

It follows that

$$\sum_{\substack{a,b\\x-y\in D}} (-1)^{a\cdot x-b\cdot y} = \sum_{a,b} \sum_{(x,y)\in F} (-1)^{a\cdot x-b\cdot y} = \sum_{(a,b)\in (\mathbb{Z}_2^n)^2} \sum_{(x,y)\in F} (-1)^{(a,b)\cdot (x,y)}.$$

Using the result of Additional Problem 1 with $(\mathbb{Z}_2^n)^2$ in place of \mathbb{Z}_2^n and \mathbb{F} in place of \mathbb{A} , we obtain the claimed result.

- **3.** We say that a subgroup $\mathbb{A} \leq \mathbb{Z}_2^n$ is maximal if
 - $A \neq \mathbb{Z}_2^n$ and
 - if $\mathbb{A} \leq \mathbb{X} \leq \mathbb{Z}_2^n$ then $\mathbb{A} = \mathbb{X}$ or $\mathbb{X} = \mathbb{Z}_2^n$.

Similarly, $\mathbb{A} \leq \mathbb{Z}_2^n$ is minimal if

- $\{0\} \neq A$ and
- if $\{0\} \leq \mathbb{X} \leq \mathbb{A}$ then $\{0\} = \mathbb{X}$ or $\mathbb{X} = \mathbb{A}$.

Prove that \mathbb{A} is maximal if and only if \mathbb{A}^{\perp} is minimal (use this in your solution to 13.1).

Solution:

Proof. We begin with a claim.

Claim. The operator $(\cdot)^{\perp}$ is order reversing. That is, $\mathbb{A} \leq \mathbb{B}$ if and only if $\mathbb{B}^{\perp} \leq \mathbb{A}^{\perp}$.

Proof of claim. Implicit to this claim is that \mathbb{A}^{\perp} is a subgroup. This is easy to verify: if $\alpha_1, \alpha_2 \in \mathbb{A}^{\perp}$ then $\alpha_1 \cdot a = 0 = \alpha_2 \cdot a$ for all $a \in A$. Therefore

$$0 = \alpha_1 \cdot a + \alpha_2 \cdot a = (\alpha_1 + \alpha_2) \cdot a$$

for all $a \in A$, so $\alpha_1 + \alpha_2 \in \mathbb{A}^{\perp}$.

Date: April 21, 2021.

Suppose that $\mathbb{A} \leq \mathbb{B}$ and let $\beta \in \mathbb{B}^{\perp}$. It follows that $\beta \cdot b = 0$ for all $b \in B$. Since $A \subseteq B$, we therefore have that $\beta \cdot a = 0$ for all $a \in A$. Hence $\beta \in \mathbb{A}^{\perp}$ and so $\mathbb{B}^{\perp} \leq \mathbb{A}^{\perp}$. In turn, this implies that $\mathbb{A} \leq \mathbb{B}$ since $(\mathbb{A}^{\perp})^{\perp} = \mathbb{A}$.

We continue now with the main proof. Suppose that \mathbb{A} is maximal and consider \mathbb{A}^{\perp} . If $\mathbb{A}^{\perp} = \{0\}$ then $\mathbb{A} = \{0\}^{\perp} = \mathbb{Z}_2^n$, contradicting \mathbb{A} being maximal. If $\{0\} \leq \mathbb{X} \leq \mathbb{A}^{\perp}$ then

$$\mathbb{Z}_2^n \geq \mathbb{X}^{\perp} \geq \mathbb{A}^{\perp}$$
.

Since \mathbb{A} is maximal, this implies that $\mathbb{X}^{\perp} = \mathbb{Z}_2^n$ or $\mathbb{X}^{\perp} = \mathbb{A}^{\perp}$. This is equivalent to $\mathbb{X} = \{0\}$ or $\mathbb{X} = \mathbb{A}^{\perp}$. Hence \mathbb{A}^{\perp} is minimal. The proof that if \mathbb{A} is minimal then \mathbb{A}^{\perp} is maximal is quite similar.

4. In Simon's algorithm, what would happen if instead of measuring the first block of qubits, we measured the second block of qubits? Calculate the density matrix and describe what distribution it represents.

Solution: Simon's algorithm without any measurement is given by

$$(H^{\otimes n} \otimes I_m) \circ \hat{f} \circ (H^{\otimes n} \otimes I_m) |0^{n+m}\rangle$$

where \hat{f} is the unitary operator defined on basis vector $|x,y\rangle$ by $\hat{f}|x,y\rangle = |x,y+f(x)\rangle$. Evaluating it in stages, we have

$$|\psi_1\rangle = (H^{\otimes n} \otimes I_m) |0^{n+m}\rangle = \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x,0^m\rangle,$$

$$|\psi_2\rangle = \hat{f} |\psi_1\rangle = \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x,f(x)\rangle,$$

$$|\psi_3\rangle = (H^{\otimes n} \otimes I_m) |\psi_2\rangle = \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} H^{\otimes n} |x\rangle \otimes |f(x)\rangle.$$

The density matrix for the last state $|\psi_3\rangle$ is

$$\rho = |\psi_3\rangle \langle \psi_3| = \frac{1}{2^n} \Big(\sum_{x \in \{0,1\}^n} H^{\otimes n} |x\rangle \otimes |f(x)\rangle \Big) \Big(\sum_{y \in \{0,1\}^n} \langle y| H^{\otimes n} \otimes \langle f(y)| \Big)$$
$$= \frac{1}{2^n} \sum_{x,y \in \{0,1\}^n} H^{\otimes n} |x\rangle \langle y| H^{\otimes n} \otimes |f(x)\rangle \langle f(y)|$$

(recall that $H^{\dagger} = H$). Applying the partial trace on the first register yields

$$\operatorname{Tr}_{1}(\rho) = \frac{1}{2^{n}} \sum_{x, y \in \{0,1\}^{n}} \operatorname{Tr} \left(H^{\otimes n} |x\rangle \langle y| H^{\otimes n} \right) |f(x)\rangle \langle f(y)|.$$

We have

$$\operatorname{Tr}\left(H^{\otimes n}\left|x\right\rangle\left\langle y\right|H^{\otimes n}\right)=\operatorname{Tr}\left(H^{\otimes n}H^{\otimes n}\left|x\right\rangle\left\langle y\right|\right)=\operatorname{Tr}\left(\left|x\right\rangle\left\langle y\right|\right)=\begin{cases} 1 & \text{if } x=y,\\ 0 & \text{otherwise}, \end{cases}$$

so

$$\operatorname{Tr}_{1}(\rho) = \frac{1}{2^{n}} \sum_{x\{0,1\}^{n}} |f(x)\rangle \langle f(x)| = \frac{1}{2^{n}} \sum_{z\{0,1\}^{m}} F_{z} |z\rangle \langle z|,$$

where $F_z = |\{x \in \{0,1\}^n \mid f(x) = z\}|$. Since f(x) = f(y) if and only if x + D = y + D, each F_z is just the size of the coset x + D for f(x) = z. All cosets are of size |D|, so

$$\frac{1}{2^n} \sum_{z \mid 0,1 \mid x^m} F_z \mid z \rangle \langle z \mid = \frac{\mid D \mid}{2^n} \sum_{z \mid 0,1 \mid x^m} \mid z \rangle \langle z \mid = \frac{1}{2^m} \sum_{z \mid 0,1 \mid x^m} \mid z \rangle \langle z \mid$$

(we use the fact that $[G:D] = |G|/|D| = |f(G)| = 2^m$). This corresponds to the uniform distribution over the *output* space of f.