Lecture 4: Neural Networks and Backpropagation

Administrative: Assignment 1

Assignment 1 due Wednesday April 17, 11:59pm

If using Google Cloud, you don't need GPUs for this assignment!

We will distribute Google Cloud coupons by this weekend

Administrative: Alternate Midterm Time

If you need to request an alternate midterm time:

See Piazza for form, fill it out by 4/25 (two weeks from today)

Lecture 4 - 3

Administrative: Project Proposal

Project proposal due 4/24

Administrative: Discussion Section

Discussion section tomorrow (1:20pm in Gates B03):

How to pick a project / How to read a paper

Lecture 4 - 5

Where we are...

$$s = f(x; W) = Wx$$
 Linear score function

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM loss (or softmax)}$$

$$L = rac{1}{N} \sum_{i=1}^N L_i + \lambda \sum_k W_k^2$$
 data loss + regularization

How to find the best W?

Finding the best W: Optimize with Gradient Descent


```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

<u>Landscape image</u> is <u>CC0 1.0</u> public domain <u>Walking man image</u> is <u>CC0 1.0</u> public domain

Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn one template per class

Geometric Viewpoint

Linear classifiers can only draw linear decision boundaries

One Solution: Feature Transformation

Histogram of Oriented Gradients (HoG)

Image features vs ConvNets

Today: Neural Networks

(**Before**) Linear score function:
$$f=Wx$$

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

(**Before**) Linear score function: f = Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

(**Before**) Linear score function: f=Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

(**Before**) Linear score function: f=Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

(**Before**) Linear score function: f=Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Activation functions

ReLU is a good default choice for most problems

Sigmoid

Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

ReLU
$$\max(0,x)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neural networks: Architectures

Example feed-forward computation of a neural network


```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # vations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Setting the number of layers and their sizes

more neurons = more capacity

Do not use size of neural network as a regularizer. Use stronger regularization instead:

(Web demo with ConvNetJS: http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

This image by Fotis Bobolas is licensed under CC-BY 2.0

Biological Neurons: Complex connectivity patterns

input layer

output layer

hidden layer 2

Neurons in a neural network:

computational efficiency

hidden layer 1

Organized into regular layers for

This image is CC0 Public Domain

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Problem: How to compute gradients?

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function

$$L_i = \sum_{i \neq u_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$R(W) = \sum_k W_k^2 \quad \text{Regularization}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization}$$

If we can compute $\ \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2}$ then we can learn W_1 and W_2

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{i \neq j} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

$$\nabla_{W} L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Better Idea: Computational graphs + Backpropagation

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission

Figure reproduced with permission from a <u>Twitter post</u> by Andrej Karpathy.

$$f(x,y,z)=(x+y)z$$

$$f(x,y,z)=(x+y)z$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Another example: $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$

Another example: $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + e^{-(w_0x_0 + e^{-(w_0x_0 + w_1x_1 + e^{-(w_0x_0 + e^{-(w_0x_0 + w_1x_1 + e^{-(w_0x_0 + e^{-(w_0x$$

$$egin{aligned} f(x) &= e^x &
ightarrow & rac{df}{dx} &= e^x & f(x) &= rac{1}{x} &
ightarrow & rac{df}{dx} &= -1/x \ f_a(x) &= ax &
ightarrow & rac{df}{dx} &= a & f_c(x) &= c + x &
ightarrow &
ightarrow & rac{df}{dx} &= 1 \end{aligned}$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x \hspace{1cm} f_c(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Upstream

Local

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \ f_c(x)=c+x \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ \hline f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ \hline \end{pmatrix} egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ \hline f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \ \hline \end{pmatrix}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_1 + w_2 x_2 + w_1 x_2 + w_2 x_2$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Another example:
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1/x \ rac{df}{d$$

Another example:

 $f_a(x) = ax$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Another example:

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Computational graph

representation may not

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \ \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \ \left(1 - \sigma(x)
ight)\sigma(x)$$

Computational graph

representation may not

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

be unique. Choose one where local gradients at **Sigmoid** function each node can be easily expressed! 0.20 w1 -3.00 **Sigmoid** 1.00 w2 -3.00 [upstream gradient] x [local gradient] 0.20 $[1.00] \times [(1 - 0.73)(0.73)] = 0.2$

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight) \sigma(x)$$

Computational graph

representation may not

add gate: gradient distributor

add gate: gradient distributor

mul gate: "swap multiplier"

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Forward pass: Compute output

Backward pass: Compute grads

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Base case

```
grad L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Sigmoid

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Add gate

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Add gate

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3

grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
```

 $grad_x0 = grad_s0 * w0$

Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

Multiply gate

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

Multiply gate

"Flat" Backprop: Do this for assignment 1!

Stage your forward/backward computation!

"Flat" Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = \#... function of X,W1,b1
scores = #... function of h1, W2, b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1,dW2,db2 = #...
dW1, db1 = #...
```

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

```
class ComputationalGraph(object):
    # . . .
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes topologically sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

(x,y,z are scalars)

```
class Multiply(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x, y):
                                            Need to stash
    ctx.save_for_backward(x, y)
                                            some values for
                                            use in backward
   z = x * y
    return z
 @staticmethod
                                             Upstream
 def backward(ctx, grad_z):
                                             gradient
   x, y = ctx.saved_tensors
    grad_x = y * grad_z # dz/dx * dL/dz
                                             Multiply upstream
    grad_y = x * grad_z # dz/dy * dL/dz
                                             and local gradients
    return grad_x, grad_y
```

Example: PyTorch operators

SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ago
Tanh.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveAveragePoolin	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAveragePooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingTrilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
inear_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ago
pooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ago
unfold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago

```
#ifndef TH GENERIC FILE
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                    Forward
              THNNState *state,
              THTensor *input,
              THTensor *output)
      THTensor_(sigmoid)(output, input);
    void THNN_(Sigmoid_updateGradInput)(
              THNNState *state,
14
              THTensor *gradOutput,
              THTensor *gradInput,
              THTensor *output)
18
19
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor_(resizeAs)(gradInput, output);
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput_data = *gradOutput_data * (1. - z) * z;
      );
    #endif
```

PyTorch sigmoid layer

Source

```
#ifndef TH GENERIC FILE
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                    Forward
              THNNState *state,
              THTensor *input,
              THTensor *output)
      THTensor_(sigmoid)(output, input);
    void THNN (Sigmoid updateGradInput)(
              THNNState *state,
14
              THTensor *gradOutput,
              THTensor *gradInput,
              THTensor *output)
18
19
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor (resizeAs)(gradInput, output);
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput data = *gradOutput data * (1. - z) * z;
      );
    #endif
```

PyTorch sigmoid layer

```
static void sigmoid_kernel(TensorIterator& iter) {
   AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {
      unary_kernel_vec(
        iter,
        [=](scalar_t a) -> scalar_t {      return (1 / (1 + std::exp((-a)))); },
        [=](Vec256<scalar_t> a) {
        a = Vec256<scalar_t>((scalar_t)(0)) - a;
        a = a.exp();
        a = Vec256<scalar_t>((scalar_t)(1)) + a;
        a = a.reciprocal();
        return a;
        Forward actually
    });
        defined elsewhere...
```

```
return (1 / (1 + std::exp((-a))));
```

Source

```
#ifndef TH GENERIC FILE
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN (Sigmoid updateOutput)(
                                                                     Forward
              THNNState *state,
              THTensor *input,
              THTensor *output)
      THTensor_(sigmoid)(output, input);
    void THNN (Sigmoid updateGradInput)(
14
              THNNState *state,
              THTensor *gradOutput,
16
              THTensor *gradInput,
              THTensor *output)
18
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor (resizeAs)(gradInput, output);
21
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar t z = *output data;
        *gradInput data = *gradOutput data * (1. - z) * z;
      );
```

PyTorch sigmoid layer

Backward

$$(1-\sigma(x))\,\sigma(x)$$

Source

#endif

So far: backprop with scalars

What about vector-valued functions?

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Recap: Vector derivatives

Scalar to Scalar

Vector to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Regular derivative:

Derivative is **Gradient**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount then how much will y change?

Recap: Vector derivatives

Scalar to Scalar

Vector to Scalar

Vector to Vector

 $x \in \mathbb{R}, y \in \mathbb{R}$

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

 $x \in \mathbb{R}^N, y \in \mathbb{R}^M$

Regular derivative:

Derivative is **Gradient**:

Derivative is **Jacobian**:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

 $\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n} \quad \frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \quad \left(\frac{\partial y}{\partial x}\right)_{n = \infty} = \frac{\partial y_m}{\partial x_n}$ For each element of x, if it changes by a small

amount then how much

will y change?

For each element of x, if it changes by a small amount then how much will each element of y change?

If x changes by a small amount, how much will y change?

April 11, 2019

4D input x: 4D output y:
$$\begin{bmatrix}
1 \\
-2
\end{bmatrix} \longrightarrow f(x) = max(0,x) \longrightarrow \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
3 \\
-1
\end{bmatrix} \longrightarrow \begin{bmatrix}
0
\end{bmatrix}$$
(elementwise) $\begin{bmatrix}
0
\end{bmatrix}$

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

[3 2 1 -2]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Also see derivation in the course notes:

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

[3 2 1 -2]

Matrix Multiply

dL/dy

dL/dy: [N×M] - [2 3-3 9]

[-8 1 4 6]

y: [N×M]

[13 9 -2 -6]

[52171]

Jacobians:

dy/dx: $[(N\times D)\times (N\times M)]$ dy/dw: $[(D\times M)\times (N\times M)]$

For a neural net we may have N=64, D=M=4096
Each Jacobian takes 256 GB of memory!
Must work with them implicitly!

[3 2 1 -2]

element of x?

[13 9 -2 -6] [5 2 17 1] dL/dy: [N×M]

y: [N×M]

[2 3 -3 9] [-8 1 4 6]

[3 2 1 -2]

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

dL/dy: [N×M]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

3 9 -2 -6]
5 2 17 1]

dL/dy: [N×M]

[2 3 -3 9]

Q: How much [-8 1 4 6]

does $x_{n,d}$

affect $y_{n,m}$?

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

$$lackbox{Q: How much}$$

A:
$$x_{n,d}$$
 affects the whole row $y_{n,\cdot}$

affect
$$y_{n,m}$$
?

does $x_{n,d}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$$

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

A:
$$x_{n,d}$$
 affects the whole row y_n .

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$$

Q: How much

affect $y_{n,m}$?

does $x_{n,d}$

 $\mathbf{A}: w_{d,m}$

dL/dy: [N×M]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

dL/dy: [N×M]

By similar logic:

[3 2 1 -2]

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

[D×M] [D×N] [N×M]
$$\frac{\partial L}{\partial x} = x^T \left(\frac{\partial L}{\partial x}\right)$$

These formulas are easy to remember: they are the only way to make shapes match up!

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Next Time: Convolutional Networks!

A vectorized example: $f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$
 $\in \mathbb{R}^n\in\mathbb{R}^{n\times n}$

A vectorized example: $f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$= \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_X$$

$$q=W\cdot x=\begin{pmatrix} W_{1,1}x_1+\cdots+W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1+\cdots+W_{n,n}x_n \end{pmatrix}$$

 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.16 \\ 1.00 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$\frac{\partial f}{\partial q_i} = 2q_i$$

$$\nabla_q f = 2q$$

 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 \\ 0.7 \\ 0.7 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 \\ 0.7 \\ 0.7 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 \\$$

 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$= 2^k_i x_i$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} W$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} X$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix} X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix} \xrightarrow{\partial q_k} 1.00$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix} \xrightarrow{\frac{\partial f}{\partial W_{i,j}}} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial W_{i,j}}$$

$$= \sum_k (2q_k)(\mathbf{1}_{k=i}x_j)$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$= 2a_i x_i$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \\ 0.104 & 0.208 \end{bmatrix} W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix} \times \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix} \times \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix} \times \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.116 \\ 1.00 \end{bmatrix}$$
 Always check: The gradient with respect to a variable should have the same shape as the variable
$$\frac{\partial f}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$\frac{\partial f}{\partial W_{i,j}} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial W_{i,j}}$$

$$= \sum_k (2q_k)(\mathbf{1}_{k=i}x_j)$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$= 2q_i x_i$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} W$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} W$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} W$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.2 \\ 0.44 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.116 \\ 1.00 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$\begin{bmatrix} \frac{\partial q_k}{\partial x_i} = W_{k,i} \\ \frac{\partial f}{\partial x_i} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial x_i} \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{bmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$= \sum_k 2q_k W_{k,i}$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \\ 0.104 & 0.208 \end{bmatrix} W \qquad \qquad \begin{bmatrix} 0.22 \\ 0.4 \\ 0.636 \end{bmatrix} X \qquad \qquad \begin{bmatrix} 0.22 \\ 0.44 \\ 0.52 \end{bmatrix} \qquad \qquad \begin{bmatrix} 0.116 \\ 1.00 \\ \hline 0.44 \\ 0.52 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix} \qquad \frac{\partial q_k}{\partial x_i} = W_{k,i}$$

$$\frac{\partial f}{\partial x_i} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial x_i}$$

$$= \sum_k 2q_k W_{k,i}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

In discussion section: A matrix example...

$$z_1 = XW_1$$
 $h_1 = \operatorname{ReLU}(z_1)$
 $\hat{y} = h_1W_2$
 $L = ||\hat{y}||_2^2$
 $\frac{\partial L}{\partial W_2} = ?$

