Overview of the Hydraulic Systems Condition Monitoring Dataset

Dataset Title: Condition Monitoring of Hydraulic Systems

Source:

 Link: https://archive.ics.uci.edu/dataset/447/condition+monitoring+of+hydraulic+systems

• Creator: Nikolai Helwig, ZeMA gGmbH, Saarbrücken

• **Donors:** M. Bastuck, T. Schneider

• **Date:** April 2018

Figure 1. Illustration of the hydraulic system.

Table 1. Hydraulic system sensors.

Sensor	Description	Unit	Rate (Hz)	Packet Size (KB)
PS1-6	Pressure	bar	100	47.02
EPS1	Motor power	W	100	47.02
FS1-2	Volume flow	L/min	10	4.84
TS1-4	Temperature	°C	1	0.62
VS1	Vibration	mm/s	1	0.62
CE (Virtual)	Cooling efficiency	%	1	0.62
CP (Virtual)	Cooling power	kW	1	0.62
SE (Virtual)	Efficiency factor	%	1	0.62

Table 2. Hydraulic fault component targets.

Component	Fault Condition	Control Parameter	States	Samples
Cooler (C1)	Cooling power decrease	Fan duty cycle of C1	100%: Full efficiency 20%: Reduced efficiency 3%: Close to total failure	732 732 741
Valve (V10)	Switching degradation	Switchable bypass orifices V9	100%: Optimal behavior 90%: Small lag 80%: Severe lag 73%: Close to total failure	1125 360 360 360
Pump (MP1)	Internal leakage	Control current of V10	0: No leakage 1: Weak leakage 2: Severe leakage	1221 492 492
Accumulator (A1–4)	Gas leakage	Pakage A1-4 with different pre-charge pressures pre-charge pressures 130 bar: Optimal pressures 115 bar: Slightly reduction 100 bar: Severely reduction 90 bar: Close to total factors.		599 399 399 808

Dataset Characteristics:

- **Instances:** 2205
- Attributes: 43680, derived from sensors measuring:
 - o Pressure sensors (PS1-6): 6000 attributes each at 100 Hz
 - o Motor power sensor (EPS1): 6000 attributes at 100 Hz
 - o Volume flow sensors (FS1/2): 600 attributes each at 10 Hz
 - o Temperature sensors (TS1-4): 60 attributes each at 1 Hz
 - Vibration sensor (VS1): 60 attributes at 1 Hz
 - Efficiency factor (SE), Cooling Efficiency (CE), and Cooling Power (CP):
 60 attributes each at 1 Hz

Relevant Information:

- **Experimental Setup:** Data was acquired using a hydraulic test rig simulating real-world conditions with both a primary working circuit and a secondary cooling-filtration circuit. The system undergoes 60-second load cycles.
- **Objective:** To monitor and predict the condition of four critical components: cooler, valve, pump, and hydraulic accumulator.

Attribute Details:

• Sensors measure different parameters at varying frequencies, providing a comprehensive view of the system's operational state over time.

Past Usage:

1. Feature Extraction and Classification:

- Utilized multivariate statistics for monitoring, with automated feature extraction showing perfect classification for simpler targets like coolers and valves, but more challenging for accumulators.
- Techniques like Pearson correlation and various classification algorithms were applied.

2. Sensor Fault Compensation:

 Methods to detect and compensate for sensor drift or failure were developed, allowing for continued system monitoring.

3. Advanced Feature Selection:

 Techniques like Automatic Learning Algorithms (ALA) and Recursive Feature Elimination with Support Vector Machines (RFESVM) significantly reduced classification error rates for complex components.

Class Distribution:

- Cooler Condition: Reflects efficiency degradation.
- Valve Condition: Indicates switching behavior degradation.
- Pump Leakage: Monitors internal leakage levels.
- Hydraulic Accumulator: Tracks pressure maintenance capability.
- Stable Flag: Indicates whether static conditions were achieved during measurement.

Usage for Predictive Maintenance:

- **Predictive Modeling:** This dataset is ideal for developing predictive models to forecast component failures or degradation.
- Fault Detection: The detailed sensor data allows for robust fault detection systems, which can predict when maintenance is required before a failure occurs.

• **Optimization:** By understanding component behavior under various conditions, maintenance schedules can be optimized to reduce downtime and costs.

Relevant AI models for this dataset:

1. Long Short-Term Memory (LSTM):

- Why: LSTMs are excellent for sequential data analysis due to their ability to remember long-term dependencies. This makes them ideal for time-series data from hydraulic systems where past states can significantly influence future conditions.
- **Application:** Predicting future component degradation or system failure based on historical sensor data patterns

2. Gated Recurrent Unit (GRU):

- Why: GRUs are simpler alternatives to LSTMs with similar capabilities in handling sequential data but with fewer parameters, making them faster to train while still capturing temporal dependencies.
- **Application:** Predicting future states of hydraulic components or detecting anomalies in system behavior over time, useful for early warning systems in maintenance.

3. Random Forest:

- Why: Random Forests are great for handling large datasets with numerous features, providing insights through feature importance, and are less prone to overfitting.
- **Application:** Classification of component health states or predicting failure types and severities.

4. Gradient Boosting Machines (GBM) or XGBoost:

- Why: These models build upon decision trees with a boosting mechanism, often yielding high accuracy and can handle missing data (if any occurs in future datasets).
- **Application:** Predicting remaining useful life of components or optimizing maintenance schedules.