Youssef

Solution to Homework 1

Problem 1: (20 points)

a.

$$\begin{split} H &= -\sum_{\theta=a}^{f} P[\theta] \log P[\theta] \\ &= -\left(\frac{12}{32} \log \frac{12}{32} + \frac{10}{32} \log \frac{10}{32} + \frac{3}{32} \log \frac{3}{32} + \frac{4}{32} \log \frac{4}{32} + \frac{1}{32} \log \frac{1}{32} + \frac{2}{32} \log \frac{2}{32}\right) \\ &\approx 2.1 \end{split}$$

b. (Note that the eligible Huffman tree is not unique.)

Alphabet	Code
a	0
b	10
С	1110
d	110
е	11110
f	11111

c.

$$BR_{Huffman} = \frac{12}{32} \cdot 1 + \frac{10}{32} \cdot 2 + \frac{3}{32} \cdot 4 + \frac{4}{32} \cdot 3 + \frac{1}{32} \cdot 5 + \frac{2}{32} \cdot 5 \approx 2.2$$

d.

$$Input = a^5b^3d^3bdeba^4c^2baf$$

$$Coded\ Bitstream = (0^5)(10)^3(110)^3(10)(110)(11110)(10)(0000)(1110)^2(10)0(11111)$$

$$BR = \frac{52}{24} = 2.1$$

Problem 2: (20 points)

a.

1.

$$L = 0$$

$$R = 1$$

$$L + P[1^{st}bit = 0]\Delta = \frac{1}{2}$$

$$I = \left[0, \frac{1}{2}\right)$$

2.

$$L = 0$$

$$R = \frac{1}{2}$$

$$L + P[0|0]\Delta = \frac{61}{64} \cdot \frac{1}{2}$$

$$I = \left[0, \frac{61}{2(64)}\right)$$

3.

$$L = 0$$

$$R = \frac{61}{2(64)}$$

$$L + P[0|0]\Delta = \frac{61}{2(64)} \cdot \frac{61}{64}$$

$$I = \left[0, \frac{61^2}{2(64)^2}\right)$$

4.

$$L = 0$$

$$R = \frac{61^2}{2(64)^2}$$

$$L + P[0|0]\Delta = \frac{24389}{65536}$$

$$I = \left[\frac{61^2}{2(64)^2}, \frac{61^3}{2(64)^3}\right)$$

5.

$$L = \frac{61^2}{2(64)^2}$$

$$R = \frac{61^3}{2(64)^3}$$

$$L + P[0|1]\Delta = \frac{14560273}{33554432}$$

$$I = \left[\frac{14560273}{33554432}, \frac{61^3}{2(64)^3}\right)$$

6.

$$I = \left[\frac{933900301}{214748364}, \frac{61^3}{2(64)^3} \right)$$

$$t = \lceil -\log(R - L) \rceil = \left\lceil -\log\left(\frac{41537523}{2147483648}\right) \right\rceil = 6 \text{ (the coded bitstream will be 6 bits)}$$

$$\frac{L + R}{2} = 0.44 = (0.\mathbf{011100}01)_2$$

$$\therefore Code = 011100$$

$$BR_a = \frac{6}{6} = 1$$

b.

$$P[000] = P[0]P[0|0]P[0|0] = \frac{61^2}{8192}$$

$$P[001] = P[0]P[0|0]P[1|0] = \frac{183}{8192}$$

$$P[010] = P[0]P[1|0]P[0|1] = \frac{9}{8192}$$

$$P[011] = P[0]P[1|0]P[1|1] = \frac{183}{8192}$$

$$P[100] = P[1]P[0|1]P[0|0] = \frac{183}{8192}$$

$$P[101] = P[1]P[0|1]P[1|0] = \frac{9}{8192}$$
$$[110] = P[1]P[1|1]P[0|1] = \frac{183}{8192}$$
$$P[111] = P[1]P[1|1]P[1|1] = \frac{61^2}{8192}$$

(Note that the eligible Huffman tree is not unique.)

Block	Code
000	0
111	10
001	1100
011	1101
100	1110
110	11110
010	111111
101	111110

 \therefore Coded Bitstream = 0 10

$$BR_b = \frac{3}{6} < BR_a = \frac{6}{6}$$

Problem 3: (20 points)

a. (0, 1111) (1, 1011) (0, 1010) (1, 1101) (0, 1110) (1, 1001) Coded Bitstream = 1111101110101101111101001

b.

$$p(0) = \frac{39}{72}$$

$$\therefore MPB = 0$$

$$\frac{p \ln 2}{1 - p} = \frac{39}{72} \ln 2 \cdot \frac{33}{72} \approx 0.8$$

$$\therefore m = 1, \log_2 m = 0$$

$$0^{15}1: q = 15 \ r = 0 => 1^{15}0$$

 $0^{0}1: q = 0 \ r = 0 => 1^{0}0$
 $0^{10}1: q = 10 \ r = 0 => 1^{10}0$
 $0^{14}1: q = 14 \ r = 0 => 1^{14}0$

 $Tail\ bit = 1$

Coded Bitstream = $0.1^{15}0^{11} 1^{10}0^{13} 1^{14} 0^{9} 1$

c.

$$z' = 0^{15}10^{10}10^{9}10^{12}10^{13}10^{8}$$

$$MPB = 0, p = \frac{67}{72}$$

$$\frac{p \ln 2}{1 - p} \approx 9.28$$

$$\therefore m = 8, \log m = 3$$

Tail bit =0

Coded Bitstream = 0 10111 10010 10001 10100 10101 10000 0
$$BR_{RLE} = \frac{24}{72} < BR_{DG} = \frac{32}{72} < BR_G = \frac{74}{72}$$

Problem 4: (20 points)

a.

·		
i	j	Dict[i]
1	empty	0
2	1=1	0^2
3	10	0_3
4	11	0^{4}
5	100	0 ⁵
6	000	1
7	110	12
8	111	1 ³
9	1000	14
10	0110	10
11	0101	0 ⁵
12	0011	$0^{3}1$
13	1001	1 ⁵
14	1101	16
15	1010	100
16	1011	07
17	00101	0 ⁵ 1
18	01110	17
19	00110	empty

bits = 82
$$BR = \frac{82}{72} > BR_{RLE} = \frac{24}{72}$$

b.

$$y = a^4b^4ab^3aba^2ba^2b^2a^3$$

i	Dict[i]
1	а
2	a^2
3	ab
4	b
5	bb
6	ab^2
7	ba

8	baa
9	baab
10	ba^3

Code:
$$a(1,a)(01,b)(00,b)(100,b)(011,b)(100,a)(111,a)(1000,b)(1000,a)$$

Let $a=0$ and $b=1$:

Coded Bitstream = 0 1 0 011 001 1001 0111 1000 1110 10001 10000
bits = 35

 $BR = \frac{35}{25}$

Problem 5: (20 points)

The key solution is to subdivide the unit interval $[0\ 1]$ into 3 subintervals, of relative lengths P[a|y], P[b|y] and P[c|y], respectively, and to correctly select the corresponding sub-interval for every bit in the input stream.

Input: Input string x of alphabet = {a,b,c}

Output: a coded bitstream

Method:

1. Let I = [L, R) where initially L = 0, R = 1

2. For i = 1 to n do

Let
$$P_a=\Pr\left[a|x_1x_2\dots x_{i-1}\right]$$
, $P_b=\Pr\left[b|x_1x_2\dots x_{i-1}\right]$; $P_c=\Pr\left[c|x_1x_2\dots x_{i-1}\right]$. Let $\Delta=R-L$;
$$D1=L+P_a\Delta$$

$$D2=D1+P_b\Delta$$
 Divide interval into 3 subintervals:

Interval splitting: the algorithm splits the interval [L R) into three subintervals

If $(x_i == a)$, reduce I to [L, D1); Else if $(x_i == b)$, reduce I to [D1,D2); Else, reduce I to [D2,R);

[L, D1), [D1, D2) and [D2,R);

Subinterval selection (update of L and R)

3. Let $t = [-\log (R - L)]$, and r = (L+R)/2 expressed in binary as $0. r_1 r_2 \dots r_t \dots$ (stop at r_t)

Output = $r_1 r_2 \dots r_t$