Module 13 - Higher Order Systems

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 4 - Example - 2DOF Mass Spring System

Topic 4 - Example - 2DOF Mass Spring System

- Equation Decomposition
- State Space Equation
- Output Equation
- —

Equation Decomposition

Begin with the model and EOM we derived previously.

Equation of Motion for Mass 1:

$$m_1\ddot{x}_1 + c_1(\dot{x}_1 - \dot{x}_2) + k_1(x_1 - x_2) = 0$$

Equation of Motion for Mass 2:

$$m_2\ddot{x}_2 + k_2x_2 - c_1(\dot{x}_1 - \dot{x}_2) - k_1(x_1 - x_2) = 0$$

Equation Decomposition

Make a substitution for each dependent variable and its first derivative then re-write the system of equations as four first order differential equations.

let
$$z_1 = x_1$$
 and $z_2 = x_2$
also $z_3 = \dot{x}_1$ and $z_4 = \dot{x}_2$

You are choosing the *states* of your model during this process.

State Space Equation

Write the State Equation.

$$\dot{x} = Ax + Bu$$

Equation Decomposition
State Space Equation
Output Equation

State Space Equation

Output Equation

Write the the Output Equation.

$$y = Cx + Du$$

Output Equation

Equation Decomposition State Space Equation Output Equation Equation Decomposition State Space Equation Output Equation

References

• System Dynamics, Palm III, Third Edition - Section 8.1 - Response of First Order Systems - pg. 475