We want to solve the equation ax + by = d, where $d = \gcd(a, b)$ which is known because we have a, b.

We know, $gcd(a, b) = gcd(b, a \mod b)$.

а	b	gcd(a,b)	
99	78	gcd(78, 21)	
78	21	gcd(21, 15)	
21	15	gcd(15, 6)	
15	6	gcd(6,3)	
6	3	gcd(3,0)	
3	0	gcd(3,0) = 3 = gcd(99,78)	

So we can derive an initial solution of the following form:

$$bx_0 + (a \bmod b)y_0 = \gcd(b, a \bmod b) = g = \gcd(a, b) \dots (1)$$

Since at the base of recursion b=0 and gcd(a,0)=a, so in the above equation $x_0=1$ and $y_0=0$ which satisfies $a.\ 1+0=a$ from our example:

$$3x_0 + (6 \mod 3)y_0 = \gcd(3, 6 \mod 3) = 3$$

Since, $6 \mod 3 = 0$, setting $x_0 = 1$ and $y_0 = 0$ satisfies the above equation.

But we want to solve for ax + by = g using the initial solution $x_0 = 1$, $y_0 = 0$.

Rearranging (1) as the following we get

$$bx_0 + \left(a - \left\lfloor \frac{a}{b} \right\rfloor b\right) y_0 = g \left[a \bmod b = a - \left\lfloor \frac{a}{b} \right\rfloor b\right]$$
$$bx_0 + ay_0 - b \left\lfloor \frac{a}{b} \right\rfloor y_0 = g$$
$$ay_0 + b \left(x_0 - y_0 \left\lfloor \frac{a}{b} \right\rfloor \right) = g$$

Now we have our desired form of the problem, here $x = y_0$ and $y = x_0 - y_0 \left| \frac{a}{b} \right|$.

а	b	$\lfloor a/b \rfloor$	g	х	y
99	78	1	3	-11	14
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

So the solution is 99(-11) + 78(14) = 3