Binomiális

Leírás

- Vegyünk egy κ véletlen kísérlet.
- Ebben a kísérletben válasszunk ki egy A eseményt.
- Jelölje \mathbf{p} az \mathbf{A} esemény valószínűségét: $\mathbf{p} = P(\mathbf{A})$.
- Hajtsuk végre a κ kísérletet **n**-szer!
- Jelölje X valószínűségi változó, hogy az n végrehajtás során hányszor következett be az A esemény!

Eloszlás paraméteres kiszámítása

Ekkor \mathbf{X} eloszlása:

- 1. $R_{\mathbf{X}} = \{0, 1, ..., \mathbf{n}\}$ Hiszen az \mathbf{A} esemény legrosszabb esetben egyszer sem, legjobb esetben minden alkalommal bekövetkezik.
- 2. $P(\mathbf{X}=i) = \binom{\mathbf{n}}{i} \mathbf{p}^i (1-\mathbf{p})^{\mathbf{n}-i}$ Hiszen $\mathbf{X}=i$ esetében egy kísérletsorozat i db \mathbf{A} és $\mathbf{n}-i$ db $\mathbf{\bar{A}}$ eseményből áll, tetszőleges sorrendben. Egy konkrét sorrend valószínűsége $\mathbf{p}^i (1-\mathbf{p})^{\mathbf{n}-i}$, ahol \mathbf{p} az \mathbf{A} -k, $1-\mathbf{p}$ pedig $\mathbf{\bar{A}}$ -k bekövetkezésének valószínűsége. Ezekből a sorrendekből pedig $\binom{\mathbf{n}}{i}$ db van, hiszen ennyiféleképpen választhatom ki azt az i db pozíciót ahova az \mathbf{A} események kerültek.

Jelölés

 \mathbf{X} valószínűségi változóra azt mondjuk, hogy Binomiális eloszlású \mathbf{n} és \mathbf{p} paraméterekkel. Ezt röviden $\mathbf{X} \in \mathbf{B}(\mathbf{n},\mathbf{p})$ jelöli. Ennek a jelentése: $\mathbf{B}(\mathbf{n},\mathbf{p})$ az \mathbf{n} és \mathbf{p} paraméterű binomiális eloszlású valószínűségi változók halmaza, \mathbf{X} pedig ennek a halmaznak egy eleme.

Példa

A valószínűségszámítás kurzust idén 600 hallgató vette fel. Az előző évek statisztikái alapján annak a valószínűsége, hogy egy hallgató aláírást szerez 0.6. Mennyi a valószínűsége annak, hogy az évfolyam legalább $\frac{2}{3}$ -a szerez idén aláírást?

A feladat illesztéséhez a következő fogalmakat kell a szövegben megtalálni:

- κ : Mi volt a kísérlet, amit n-szer megismételtünk?
- A: Mi volt az esemény amit ebben a kísérletben megfigyeltünk és számoltuk hányszor következett be?
- p: Mi ennek az eseménynek a valószínűsége?
- n: Hányszor hajtottuk végre a kísérletet?
- X: Milyen valószínűségi változót definiálhatunk a konkrét példában ami az események bekövetkezésének darabszámát adja meg?

Ebben a feladatban ezek a következők:

- \bullet κ : Egyetlen hallgató év végi eredményének megfigyelése.
- A: A hallgató aláírást szerzett év végén.
- $\mathbf{p} = 0.6$, mert feladat szövege megadta.
- $\mathbf{n} = 600$ hallgatót figyeltünk meg.
- X: Hány hallgató szerzett aláírást év végén?

Az így definiált \mathbf{X} valószínűségi változó binomiális eloszlású, $\mathbf{n}=600$ és $\mathbf{p}=0.6$ paraméterekkel, hiszen a definíciója megegyezik a binomiális eloszlású valószínűségi változók általános leírásával.

A feladat szövege azt kérdezi mennyi a valószínűsége annak, hogy legalább 400 hallgató szerez idén aláírást. Ez éppen a következő valószínűséggel egyezik meg:

$$P(400 \le X) = \sum_{i=400}^{600} P(X=i) = \sum_{i=400}^{600} {600 \choose i} * 0.6^i * 0.4^{600-i}$$

Geometriai

Leírás

- Vegyünk egy κ véletlen kísérlet.
- Ebben a kísérletben válasszunk ki egy A eseményt.
- Jelölje \mathbf{p} az \mathbf{A} esemény valószínűségét: $\mathbf{p} = P(\mathbf{A})$.
- \bullet Hajtsuk végre a κ kísérletet addig ameddig az ${\bf A}$ esemény be nem következik!
- Jelölje X valószínűségi változó, hogy hányszor kellett végrehajtani a kísérletet.

Eloszlás paraméteres kiszámítása

Ekkor \mathbf{X} eloszlása:

- 1. $R_{\mathbf{X}} = \{1, 2, 3, ...\}$ Hiszen előfordulhat bármilyen hosszú kísérletsorozat, mielőtt az \mathbf{A} esemény elsőre bekövetkezik.
- 2. $P(\mathbf{X} = i) = (1 \mathbf{p})^{\mathbf{i} \mathbf{1}} p$ Hiszen $\mathbf{X} = i$ esetében egy kísérletsorozat pontosan i 1 db $\bar{\mathbf{A}}$, majd 1 db \mathbf{A} eseményt tartalmaz, ebben a fix sorrendben.

Jelölés

 \mathbf{X} valószínűségi változóra azt mondjuk, hogy Geometriai eloszlású \mathbf{p} paraméterrel. Ezt röviden $\mathbf{X} \in \mathbf{G}(\mathbf{p})$ jelöli. Ennek a jelentése: $\mathbf{G}(\mathbf{p})$ a \mathbf{p} paraméterű geometriai eloszlású valószínűségi változók halmaza, \mathbf{X} pedig ennek a halmaznak egy eleme.

Példa

Bélának sikerült aláírást szereznie valószínűségszámításból, már csak a vizsgát kell sikeresen teljesítenie. Béla az aktuális félévben 3 vizsgaalkalmon tud részt venni. Annak a valószínűsége, hogy egy vizsgát sikeresen teljesít 0.7. Mennyi a valószínűsége annak, hogy Béla ebben a félévben sikeresen levizsgázik valószínűségszámításból?

A feladat illesztéséhez a következő fogalmakat kell a szövegben megtalálni:

- \bullet κ : Mi volt a kísérlet, amit addig ismétlünk ameddig a megfigyelt esemény be nem következik?
- A: Mi volt az esemény amit ebben a kísérletben megfigyeltünk?
- p: Mi ennek az eseménynek a valószínűsége?
- Az A esemény a megállási feltétele a kísérletsorozatnak.
- X: Milyen valószínűségi változót definiálhatunk a konkrét példában ami a kísérletek végrehajtásának darabszámát adja meg?

Ebben a feladatban ezek a következők:

- $\bullet \ \kappa$: Béla részt vesz egy vizsgaalkalmon.
- A: Béla sikeresen teljesíti a vizsgát.
- $\mathbf{p} = 0.7$, mert a feladat szövege megadta.
- Béla pontosan addig vesz részt a vizsgákon ameddig az egyiket nem teljesíti sikeresre.
- X: Hány vizsgán vett részt Béla?

Az így definiált \mathbf{X} valószínűségi változó geometriai eloszlású, $\mathbf{p}=0.7$ paraméterrel, hiszen a definíciója megegyezik a geometriai eloszlású valószínűségi változók általános leírásával.

A feladat szövege azt kérdezi mennyi a valószínűsége annak, hogy Béla még idén levizsgázik, azaz belefér a 3 vizsgaalkalomba. Ez éppen a következő valószínűséggel egyezik meg:

$$P(X \le 3) = \sum_{i=1}^{3} P(X = i) = \sum_{i=1}^{3} 0.3^{i-1} * 0.7$$

Poisson

 $X \in Po(\lambda)$, azaz X valószínűségi változó Poisson-eloszlású λ paraméterrel, ha az eloszlása a következő:

- 1. $R_X = \{0, 1, ...\}$
- 2. $P(X=i) = \frac{\lambda^i}{i!} * e^{-\lambda}$

A Poisson-eloszlás a binomiális eloszlás határeloszlása: Ez azt jelenti, hogy ha $X \in B(n,p)$, azaz X binomiális eloszlású n és p paraméterekkel, és teljesül, hogy $\lambda = n * p$, illetve $n->\infty$ és p->0, akkor ebből következik, hogy X Poisson-eloszlású $\lambda = n * p$ paraméterrel, azaz $X \in Po(\lambda)$.

A ZH szempontjából a Poisson-eloszlást a következő esetekben kell használni:

- A feladat szövege azt mondja, hogy Poisson-eloszlású a változó.
- A feladat szövege illeszkedik a binomiális eloszlásra, azonban valamely, akár mindkét paraméter hiányzik:
 - -n: Hiányzik a kísérletek végrehajtásának a száma, csak annyit tudunk, hogy az "elég nagy".
 - -p: Hiányzik az esemény bekövetkezésének valószínűsége, csak annyit tudunk, hogy az "elég kicsi".

Viszont valahonnan kikövetkeztethető a paraméterek szorzatának, azaz n * p-nek az értéke.

Egyenletes

Coming soon!

Exponenciális

Coming soon!

Normál

Coming soon!