§ 6. Алгоритъм на симплекс метода

6.1. Алгоритъм на симплекс метода

Тук ще систематизираме резултатите в предния въпрос. При прилагането на симплекс метода следваме следните стъпки:

1. Дадената задача привеждаме в канонична форма с неотрицателен вектор на ограниченията и задачата да е за max:

$$\max_{x \in X} c^T x$$

$$X : \begin{vmatrix} Ax = b, & b \ge 0 \\ x \ge 0. \end{vmatrix}$$

2. Привеждаме ограниченията в базисен вид, т.е. решаваме системата от ограничения Ax = b спрямо m променливи, които следва да бъдат положителни (базисни променливи) при нулева стойност на останалите (небазисни). Системата Ax = b следва да е еквивалентна на система $x_B + B^{-1}Nx_N = \beta$, където $\beta = B^{-1}b > 0$. Отбелязваме, че условието $\beta > 0$ при изродена задача е с нестрого неравенство.

Нека
$$x_B = (x_{k_1}, x_{k_2}, \dots, x_{k_m})$$
, тогава

$$B = (a_{k_1}, a_{k_2}, \dots, a_{k_m}), \quad N = (a_{j_1}, a_{j_2}, \dots, a_{j_{n-m}}).$$

За индексите имаме

$$I_B = \{k_1, k_2, \dots, k_m\}, \quad J_N = \{j_1, j_2, \dots, j_{n-m}\}, \quad I_B \cup J_N = \{1, 2, \dots, n\}.$$

Нека елементите на $B^{-1}(B|N)$ бележим с α_{ij} . Тогава системата от ограничения в базисен вид изглежда:

От горната система определяме началния опорен план (крайна точка на X):

$$x^{(0)} = \left(0, \dots, 0, \beta_1, 0, \dots, 0, \beta_2, 0, \dots, 0, \beta_m, 0, \dots, 0\right).$$

3. За текущия опорен план пресмятаме величините Δ_j :

$$\Delta = (\Delta_1, \dots, \Delta_{k_1}, \dots, \Delta_{k_2}, \dots, \Delta_{k_m}, \dots, \Delta_n),$$

по формулата $\Delta_j = c_B^T \alpha_j - c_j$, където

$$c_B = (c_{k_1}, c_{k_2}, \dots, c_{k_m})^T, \quad \alpha_j = (\alpha_{1j}, \alpha_{2j}, \dots, \alpha_{mj})^T.$$

Отбелязваме, че при $j=k_i,\,i=1,2,\ldots,m$, т.е. за базисните оценки имаме

$$\Delta_{k_i} = c_B^T \alpha_{k_i} - c_{k_i} = c_B^T e_{k_i} - c_{k_i} = c_{k_i} - c_{k_i} = 0.$$

Освен това пресмятаме и $\Delta_0 = c_B^T \beta$, което е стойността на целевата функция z в текущия опорен план $\bar{x} - z(\bar{x})$.

- **4.** Проверяваме критерия за оптималност, т.е. дали $\Delta_j \geq 0$ за всяко $j \in J_N$:
- **4.1.** Ако съществува $j \in J_N$, за който $\Delta_j < 0$, тогава измежду тях избираме най-малкото. Нека min $\{\Delta_j : \Delta_j < 0\} = \Delta_q$. Векторът на условията α_q (q-тият стълб на матрицата на условията) се нарича paspemasam или ключов стълб. Преминаваме към **т. 5**;
- **4.2.** Ако $\Delta_j > 0$ за всяко $j \in J_N$, то текущият опорен план е оптимален и е единствен такъв. Преминаваме към т. 7;
- **4.3.** Ако $\Delta_j \geq 0$ за всяко $j \in J_N$, но съществува $q \in J_N$, за който $\Delta_q = 0$, тогава текущият опорен план е оптимален и не е единствен. Съответстващите вектори на условията α_q на $\Delta_q = 0$ също се проявяват като *разрешаващи*. Преминаваме към **т. 5** толкова пъти, колкото разрешаващи стълбове има, т.е. за всеки поотделно. След намиране на всички съседни оптимални опорни планове на текущия план приемаме съседните

планове поотделно за текущи и преминаваме към **т. 3**. В тази точка съблюдаваме да не се получи връщане към вече запомнен оптимален опорен план, което е предпоставка за зацикляне на алгоритъма. След изчерпване на всички оптимални опорни планове преминаваме към **т. 6**.

5. Построяваме съседен опорен план на текущия план. Разглеждаме вектора на условията $\alpha_q = (\alpha_{1q}, \alpha_{2q}, \dots, \alpha_{mq})^T$.

Проверяваме дали $\alpha_q \leq 0$.

5.1. Ако $\alpha_q \leq 0$, то текущият опорен план няма съседен, в който да се подобрява стойността на целевата функция. Нещо повече, от текущия опорен план x излиза неограничен ръб с параметрично уравнение $x_t = x + t\ell, \ t \geq 0$, където ℓ е направляващ вектор с координати

$$\ell_q = 1,$$

$$\ell_{k_i} = -\alpha_{iq}, \quad i = 1, 2, \dots, m,$$

$$\ell_j = 0, \quad j = 1, 2, \dots, n \quad \text{и} \quad j \neq q, k_1, k_2, \dots, k_m.$$

Ако в тази точка сме дошли от **т. 4.3**, запомняме направляващия вектор ℓ и се връщаме в **4.3**, иначе задачата **няма решение** поради неограниченост на целевата функция, и преминаваме към **т. 7**.

5.2. Ако съществува $i \in \{1, 2, \dots, m\}$, за който $\alpha_{iq} > 0$, тогава избираме най-малкото отношение

$$\frac{\beta_{k_p}}{\alpha_{pq}} = \min \left\{ \frac{\beta_{k_p}}{\alpha_{iq}} : \alpha_{iq} > 0 \right\}.$$

Редът, в който се намира α_{pq} на матрицата на условията, т.е. p-тия, се нарича paspemasam или κ лючов ped, а самият елемент α_{pq} се нарича paspemasam или κ лючов eлеменm.

Новият опорен план, както казахме в предния въпрос, получаваме по формулата

$$x' = \begin{pmatrix} x_B - \frac{\beta_{k_p}}{\alpha_{pq}} \alpha_q \\ 0 \end{pmatrix} + \frac{\beta_{k_p}}{\alpha_{pq}} e_q,$$

откъдето за координатите имаме

$$x'_{k_i} = x_{k_i} - \frac{\beta_{k_p}}{\alpha_{pq}} \alpha_{iq} = \beta_{k_i} - \frac{\beta_{k_p}}{\alpha_{pq}} \alpha_{iq}, \quad i = 1, 2, \dots, m,$$

$$x'_{q} = \frac{\beta_{k_{p}}}{\alpha_{pq}},$$

 $x'_{j} = 0, \quad j = 1, 2, \dots, n, \quad j \neq q, k_{1}, k_{2}, \dots, k_{m}.$

Отбелязваме, че $x'_{k_p}=0$. Това означава, че x'_{k_p} излиза от базиса, а новата базисна променлива е x_q . С други думи, в множеството I_B от индекси на базисните променливи имаме промяната $k_p:=q$. Тази смяна на променливите изисква ново базисно представяне на системата ограничения, което се постига чрез еквивалентни преобразувания в системата, като се спазва условието новият вектор на условията $\alpha'_q=e_q$, т.е. $\alpha'_{pq}=1$ и $\alpha'_{iq}=0$ за $i=1,2\ldots,m,\ i\neq p$. Еквивалентните преобразувания се извършват по метода на Гаус за изключване на фиксирана променлива (в случая x_q) от всички уравнения, с изключение на едно (в случая p-тото), в което тя участва с коефициент единица.

Ще припомним тази стъпка от метода на Гаус: умножаваме ред p с $1/\alpha_{pq}$, след което новополучения ред, умножен последователно с $-\alpha_{iq}$, и прибавяме към i-ти ред. В резултат получаваме базисно представяне на ограниченията, базисно решение на което е опорният план x'. Елементите на новата матрица на условията и векторът на ограниченията се получават по формулите:

$$\alpha'_{pj} = \frac{\alpha_{pj}}{\alpha_{pq}}, \qquad j = 1, 2, \dots, n;$$

$$\alpha'_{ij} = \alpha_{ij} - \frac{\alpha_{iq}\alpha_{pj}}{\alpha_{pq}}, \qquad i = 1, 2, \dots, m, \ i \neq p,$$

$$j = 1, 2, \dots, m, \ i \neq p,$$

$$j = 1, 2, \dots, n;$$

$$\beta'_{q} = \frac{\beta_{q}}{\alpha_{pq}};$$

$$\beta'_{i} = \beta_{i} - \frac{\beta_{q}\alpha_{pj}}{\alpha_{pq}}, \qquad j = 1, 2, \dots, n.$$

Ако сме дошли от **т. 4.1**, се връщаме в **т. 3**, иначе запомняме построения опорен план, който също е оптимален, и се връщаме в **т. 4.3**.

6. Нека всички оптимални опорни планове са $x^{(1)}, x^{(2)}, \dots, x^{(\mu)}$ и всички направления, по които има неограничени ръбове на множеството

X са $\ell^1, \ell^2, \ldots, \ell^{\nu}$. Тогава общият запис на всички решения е

$$x = \sum_{k=1}^{\mu} \lambda_k x^{(k)} + \sum_{k=1}^{\nu} t_k \ell^k,$$

където

$$\sum_{k=1}^{\mu} \lambda_k = 1, \quad \lambda_k \ge 0, \quad t_k \ge 0;$$

7. Край.

Забележка 6.1. Ако задачата е неизродена, гореописаният алгоритъм на симплекс метода монотонно води до решение на задачата, но при изродена е възможно преминаване през изроден опорен план, при който минималното отношение в m. 5.2 се получава за k_p такова, че $\beta_{k_p} = 0$. Но при тази ситуация не се преминава към съседен опорен план, а само се променя басисът на текущия опорен план. При тази смяна не се променя стойността на функцията и при наличие на няколко базиса на един опорен план е твърде вероятно да настъпи зацикляне. За решаването на този проблем препоръчваме [7].

6.2. Таблична форма на симплекс метода

Гореописаният алгоритъм на симплекс метода се изпълнява обикновено в таблична форма. Задачата, приведена в канонична форма и базисен вид на ограниченията, се нанася в таблица, наречена *симплекс таблица*.

Таблица 6.1 е симплекс таблица, съответстваща на опорен план:

$$x = \left(0, \dots, 0, \beta_1, 0, \dots, 0, \beta_2, 0, \dots, 0, \beta_m, 0, \dots, 0\right).$$

Предполагаме, че в таблицата undeкchuяm ped (последният ред, в който са делтите) съдържа отрицателна Δ_j , което съгласно критерия за оптималност означава, че текущият опорен план не е оптимален. Освен това в този случай на неоптимален план в таблицата са отбелязани съответно разрешаващият стълб – q (Δ_q е най-малката оценка), разрешаващият ред – p (минималното отношение β_i/α_{iq} за $\alpha_{iq} > 0$ е β_p/α_{pq}) и разрешаващият елемент – α_{pq} .

Таблица 6.1: Симпл	екс таблина.
--------------------	--------------

				_										
			x_1		x_{k_1}		x_{k_2}		x_{k_p}		x_q		x_{k_m}	 x_n
B	c_B	β	c_1		c_{k_1}		c_{k_2}		c_{k_p}		c_q		c_{k_m}	 c_n
x_{k_1}	c_{k_1}	β_1	α_{11}		1		0		0		α_{1q}		0	 α_{1n}
x_{k_2}	c_{k_2}	β_2	α_{21}		0		1		0		α_{2q}		0	 α_{2n}
:	÷	:	:								÷			:
x_{k_p}	c_{k_p}	β_p	α_{p1}		0		0		1		α_{pq}		0	 α_{pn}
:	:	÷	:								i			:
x_{k_m}	c_{k_m}	β_m	α_{m1}		0		0		0		α_{mq}		1	 α_{mn}
$z(x) = \Delta_0 \qquad \Delta$					0		0		0		Δ_q		0	 Δ_n

Следващата Таблица 6.2 съответства на съседния опорен план на плана от Таблица 6.1.

Таблица 6.2: Симплекс таблица

			x_1	 x_{k_1}	 x_{k_2}	 x_{k_p}	 x_q	 x_{k_m}	 x_n
B	c_B	β	c_1	 c_{k_1}	 c_{k_2}	 c_{k_p}	 c_q	 C_{k_m}	 c_n
x_{k_1}	c_{k_1}	β_1'	α'_{11}	 1	 0	 α'_{1k_p}	 0	 0	 α'_{1n}
x_{k_2}	c_{k_2}	β_2'	α'_{21}	 0	 1	 α'_{2k_p}	 0	 0	 α'_{2n}
:	:	:	:				:		:
x_q	c_q	β_p'	α'_{p1}	 0	 0	 α'_{pk_p}	 1	 0	 α'_{pn}
:	:	:	:			- 1	:		:
x_{k_m}	c_{k_m}	β'_m	α'_{m1}	 0	 0	 α'_{mk_p}	 0	 1	 α'_{mn}
z($(x) = \Delta$	Δ_0	Δ_1	 0	 0	 Δ_p	 0	 0	 Δ_n

Елементите на Таблица 6.2 се пресмятат по формулите в **т. 5.2** от описания алгоритъм в предходната точка.

Със следващия пример ще покажем приложението на симплекс метода.

Пример 6.1. Да се реши със симплекс метода следната задача:

$$\max \{4x_1 + 2x_2\}$$

$$\begin{vmatrix}
-x_1 & +3x_2 & \leq & 9 \\
2x_1 & +3x_2 & \leq & 18 \\
2x_1 & -x_2 & \leq & 10 \\
x_1 \geq 0, & x_2 \geq 0;
\end{vmatrix}$$

Решение: На първа стъпка от алгоритъма установяваме, че задачата е за максимум и е в симетрична форма. Необходимо е да приведем в канонична форма с неотрицателен вектор на ограниченията. Във всяко ограничение от тип неравенство добавяме допълнителна неотрицателна такава и получаваме каноничната задача:

$$\max \{4x_1 + 2x_2\}$$

$$\begin{vmatrix}
-x_1 & +3x_2 & +x_3 & = 9 \\
2x_1 & +3x_2 & +x_4 & = 18 \\
2x_1 & -x_2 & +x_5 & = 10 \\
x_j \ge 0, \quad j = 1, 2, \dots, 5.$$

Векторът на ограниченията $b=(9,18,10)^T$ е положителен. Следователно условието $b\geq 0$ е удовлетворено.

На втора стъпка следва каноничната задача да се сведе до базисен вид на ограниченията. Но това също е налице. Нещо повече: винаги при привеждане на симетрична задача в канонична форма, системата от ограничения се привежда едновременно и в базисен вид.

Базисните променливи са: $x_3, \ x_4$ и x_5 . Матрицата на базиса B и матрицата N са:

$$B = \begin{pmatrix} a_3 & a_4 & a_5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad N = \begin{pmatrix} a_1 & a_2 \\ -1 & 3 \\ 2 & 3 \\ 2 & -1 \end{pmatrix}.$$

Въведените индексни множества в алгоритъма в този случай са:

$$I_B = \{3, 4, 5\}$$
 и $I_N = \{1, 2\}$.

Началният опорен план е

$$x^{(0)} = \begin{pmatrix} 0, & 0, & 9, & 18, & 10 \end{pmatrix}.$$

Продължаваме с табличната форма на алгоритъма. Всички данни от задачата нанасяме в симплекс таблица (СТ) – Таблица 6.3, и пресмятаме индексните оценки – Δ_i (трета стъпка от алгоритъма).

	Таблица 6.3: Първа СТ											
			x_1	x_2	x_3	x_4	x_5					
B	c_B	β	4	2	0	0	0	Отн.				
x_3	0	9	-1	3	1	0	0					
x_4	0	18	2	3	0	1	0	18/2				
x_5	0	10	2	-1	0	0	1	10/2 ←				
z(z)	$z(x^{(0)}) = 0$			-2	0	0	0					
Δ	Δ_j Δ_0		$\frac{1}{4}$	Δ_2	Δ_3	Δ_4	Δ_5					
								•				

На четвърта стъпка проверяваме критерия за оптималност. Оказва се, че опорният план $x^{(0)}$ не е оптимален, понеже съществуват отрицателни индексни оценки (попадаме в случай ${\bf 4.1}$).

Преминаваме към построяване на съседен опорен план (пета стъпка от алгоритъма). Избираме за разрешаващ(ключов) стълб a_1 , понеже Δ_1 е най-малката оценка. За разрешаващ ред избираме реда с най-малко отношение β_i/α_{i1} : $\alpha_{i1} > 0$, в случая избираме от $\{18/2; 10/2\}$ (попадаме на случай $\mathbf{5.2}$).

Построяваме новата симплекс таблица — Таблица 6.4 със съответния опорен план. Променливата x_1 сменя x_5 в базиса. Ключовия ред разделяме на ключовия елемент и записваме в новата таблица, след което прилагаме метода на Гаус за изключване на x_1 от първите две ограничения (редове на таблицата).

	Таблица 6.4: Втора CT												
			x_1	x_2	x_3	x_4	x_5						
B	c_B	β	4	2	0	0	0	Отн.					
x_3	0	14	0	$\frac{5}{2}$	1	0	$\frac{1}{2}$	28/5					
x_4	0	8	0	4	0	1	-1	10/4					
	4	-	1	1	0	0	1						

Новият опорен план е $x^{(1)} = (5, 0, 14, 10, 0)^T$, който също не е оптимален, понеже има отрицателна оценка в индексния ред. Преминаваме към нов съседен опорен план, като попълваме следващата Таблица 6.5:

Таблица 6.5: Трета СТ

			x_1	x_2	x_3	x_4	x_5
B	c_B	A	4	2	0	0	0
x_3	0	9	0	0	1	$-\frac{3}{8}$	<u>9</u> 8
x_2	2	2	0	1	0	$\frac{1}{4}$	$-\frac{1}{4}$
x_1	4	6	1	0	0	$\frac{1}{8}$	$\frac{3}{8}$
z(x)	(2)) =	= 28	d	0	0	1	1
			1				

Текущият опорен план $x^{(2)} = (6, 2, 9, 0, 0)$ се оказва оптимален, тъй като е изпълнен критерият за оптималност $\Delta_j \geq 0$. Освен това всички небазисни оценки са положителни, следователно каноничната задача има единствено решение (попадаме в т. 4.2 на алгоритъма).

Оптималното решение на изходната задача е $\bar{x} = (6,2)^T$ с максимална стойност на целевата функция $z_{max} = z(\bar{x}) = 28$.

Нека разгледаме и следващия пример:

Пример 6.2. Да се реши със симплекс метода следната задача:

$$\max\left\{x_1+x_2+x_3\right\}$$

$$\begin{vmatrix} x_1 +2x_2 -3x_3 = 3 \\ +2x_2 +5x_3 \le 5 \\ x_2 \ge 0, \ x_3 \ge 0. \end{vmatrix}$$

$$x_2 \ge 0$$
, $x_3 \ge 0$.

Решение: Привеждаме задачата в канонична форма. Тук освен ограничения от вида неравенства има и свободна променлива, която я представяме като разлика на две неотрицателни: $x_1 = x_1' - \xi$. Добавяме допълнителна неотрицателна променлива x_4 към лявата страна на второто ограничение(неравенството). Така получаваме каноничната задача:

$$\max \{x'_1 + x_2 + x_3 - \xi\}$$

$$\begin{vmatrix} x'_1 + x_2 & -3x_3 & -\xi & = & 3 \\ +2x_2 & +5x_3 & +x_4 & = & 5 \\ x'_1 \ge 0, \ \xi \ge 0, \ x_2 \ge 0, \ x_3 \ge 0. \end{vmatrix}$$

Получената КЗ е и в базисен вид на ограниченията. Базисни променливи са x'_1 и x_4 , а съответно базисно решение или опорен план на задачата е $x^{(0)} = (3,0,0,5,0)^T$. Продължаваме със симплекс таблиците:

	Таблица 6.6: СТ												
			x_1'	x_2	x_3	x_4	ξ						
B	c_B	β	1	1	1	0	-1	Отн					
x_1'	1	3	1	1	-3	0	-1						
x_4	0	5	0	2	5	1	0	5/5					
z(x)	$z(x^{(0)}) = 3$			0	-4	0	0						
x_1'	1	6	1	11 5	0	3 5	-1						
x_3	1	1	0	$\frac{2}{5}$	1	$\frac{1}{5}$	0						
z(x)	(1)) =	= 7	0	<u>8</u> 5	0	$\frac{4}{5}$	0						

В последната симплекс таблица всички индексни оценки са неотрицателни. Следователно полученият опорен план $x^{(1)}=(6,0,1,0,0)$ е оптимален. Освен това оценката, съответстваща на небазисната променлива ξ , е нула, следователно полученото решение не е единствено. Последният стълб в таблицата от коефициенти пред ξ е неположителен, което е признак, че няма друга крайна точка, а имаме неограничен ръб с направление $\ell=(1,0,0,0,1)$. Следователно общото решение на каноничната задача е

$$\hat{x} = x^{(1)} + t\ell = (6 + t, 0, 1, 0, 0 + t)^T, \quad t \ge 0.$$

Оттук решението на изходната задача е: $\bar{x} = (6,0,1)^T$ с максимална стойност на целевата функция $z_{max} = z(\bar{x}) = 7$.

В разгледаните примери по една или друга причина привеждането в базисен вид на ограниченията и изборът на начален опорен план беше сравнително лесно, но в общия случай това невинаги е така. Изборът на начален опорен план е разгледан в следващия въпрос.

Въпроси и задачи за самостоятелна работа

- Кога каноничната задача на ЛО има единствено решение?
- Да се реши задачата:

$$\max \{6x_1 + 4x_2 - 14x_3\}$$

$$\begin{vmatrix} x_1 & -x_2 & -3x_3 & +x_4 & = 1 \\ x_2 & +x_3 & -x_4 & = 2 \\ x_3 & +x_5 & = 4 \\ x_j \ge 0, \quad j = 2, 3, 4, 5.$$