First let us see the definition of Euler's Totient Function.

Euler's totient function denoted as $\varphi(n)$, is an arithmetic function that counts the positive integers less than or equal to N that are relatively prime to N.

For this question we need to find the sum of all $\varphi(n)$ for all i between 1 to N. We see that the constraints are very high and we have multiple test cases, so we would prefer to pre-process all the values in one go so that we can answer each query in O(1) time.

How can we find $\varphi(N)$ for a single N?

Properties of Euler's Totient Function

- 1. If **N** is prime then $\varphi(N) = N-1$, as all numbers less than **N** are relatively prime to **N**.
- 2. If N is prime and k > 0, then $\varphi(N^k) = N^k N^{k-1}$.
- 3. If x and y are relatively prime, then $\varphi(x,y) = \varphi(x) \times \varphi(y)$.

Now we will use these properties to find $\phi(N)$ when N is not prime.

 $N = P_1^{k_1}.P_2^{k_2}...P_m^{k_m}$, where P_i are the prime factors of N.

$$\phi(N) = \phi(P_1^{k_1}).\phi(P_2^{k_2})...\phi(P_m^{k_m})$$

Let
$$X = P_1^{k_1}.P_2^{k_2}...P_{m-1}^{k_{m-1}}$$

 $\phi(N) = \phi(X).\phi(P_m^{k_m})$
 $\phi(N) = (P_1^{k_1} - P_1^{k_1-1})(P_2^{k_2} - P_2^{k_2-1})....(P_m^{k_m} - P_m^{k_m-1})$
 $\phi(N) = \phi(X)(P_m^{k_m}(1-(1/P_m)))$

Here we see that **X** will always be less than **N** thus if we use dynamic programming to solve for $\varphi(N)$ we will always have the value of $\varphi(X)$. All that remains is to find P_m and $P_m^{k_m}$.

 $P_m^{k_m} = N/X$ In order to find P_m we can simply modify the Sieve of Eratosthenes to store the largest prime that divides any number.

```
for (int i=2; i <= MAX; i++)
    if (prime[i] == 0)
        for (int j = i + i; j < = MAX; j += i)
             prime[j] = i;
```

If prime[N] is equal to 0, then the N is prime or else it represents the largest prime that divides N. When prime[N] is not equal to 0, we can find X by diving N with prime[N] until N is divisible by prime[N]. Now since we have all the requisites to calculate $\varphi(N)$ we can do it dynamically by iterating from 1 to N.

Now once we have the values of $\phi(N)$ for all possible N, we can simply pre-process the sum till the i^{th} position so that we can answer each query in O(1) after preprocessing of O(N log N).