Тема:

Языки и грамматики

Сергей Витальевич Рыбин svrybin@etu.ru

СПбГЭТУ «ЛЭТИ», кафедра «Алгоритмической математики»

20 июня 2023 г.

 $oldsymbol{1}$ Порождающая грамматика G — четверка объектов (V_T,V_N,P,S) :

- $oldsymbol{1}$ Порождающая грамматика G четверка объектов (V_T,V_N,P,S) :
 - $\checkmark\ V_T$ алфавит (словарь) терминальных символов (терминалов или примитивов);

- $oldsymbol{1}$ Порождающая грамматика G четверка объектов (V_T,V_N,P,S) :
 - V_T алфавит (словарь) терминальных символов (терминалов или примитивов);
 - 🗸 V_N алфавит (словарь) нетерминальных символов (нетерминалов), предполагается, что $V_T \cap V_N = \emptyset;$

- $oldsymbol{1}$ Порождающая грамматика G четверка объектов (V_T,V_N,P,S) :
 - ✓ V_T алфавит (словарь) терминальных символов (терминалов или примитивов);
 - 🗸 V_N алфавит (словарь) нетерминальных символов (нетерминалов), предполагается, что $V_T \cap V_N = \emptyset;$
 - \checkmark множество P конечное подмножество декартова произведения

$$(V_T \cup V_N)^+ \times (V_T \cup V_N)^*$$
.

Элементы (α,β) множества P называют правилами вывода (продукционными правилами или продукциями) и записывают в виде $\alpha o \beta$;

- $oldsymbol{1}$ Порождающая грамматика G четверка объектов (V_T,V_N,P,S) :
 - V_T алфавит (словарь) терминальных символов (терминалов или примитивов);
 - 🗸 V_N алфавит (словарь) нетерминальных символов (нетерминалов), предполагается, что $V_T \cap V_N = \emptyset;$
 - \checkmark множество P конечное подмножество декартова произведения

$$(V_T \cup V_N)^+ \times (V_T \cup V_N)^*.$$

Элементы (lpha,eta) множества P называют правилами вывода (продукционными правилами или продукциями) и записывают в виде lpha oeta;

 \checkmark S — начальный символ (цель или аксиома) грамматики, $S \in V_N$.

- $oldsymbol{1}$ Порождающая грамматика G четверка объектов (V_T,V_N,P,S) :
 - ✓ V_T алфавит (словарь) терминальных символов (терминалов или примитивов);
 - 🗸 V_N алфавит (словарь) нетерминальных символов (нетерминалов), предполагается, что $V_T \cap V_N = \emptyset;$
 - \checkmark множество P конечное подмножество декартова произведения

$$(V_T \cup V_N)^+ \times (V_T \cup V_N)^*.$$

Элементы (lpha,eta) множества P называют правилами вывода (продукционными правилами или продукциями) и записывают в виде lpha oeta;

- \checkmark S начальный символ (цель или аксиома) грамматики, $S \in V_N.$
- 2 Для того чтобы различать терминальные и нетерминальные символы, принято обозначать терминальные символы строчными, а нетерминальные символы прописными буквами латинского алфавита.

- $oldsymbol{1}$ Порождающая грамматика G четверка объектов (V_T,V_N,P,S) :
 - $m{\prime}$ V_T алфавит (словарь) терминальных символов (терминалов или примитивов);
 - 🗸 V_N алфавит (словарь) нетерминальных символов (нетерминалов), предполагается, что $V_T \cap V_N = \emptyset$;
 - \checkmark множество P конечное подмножество декартова произведения

$$(V_T \cup V_N)^+ \times (V_T \cup V_N)^*.$$

Элементы (lpha,eta) множества P называют правилами вывода (продукционными правилами или продукциями) и записывают в виде lpha oeta;

- \checkmark S начальный символ (цель или аксиома) грамматики, $S \in V_N$.
- 2 Для того чтобы различать терминальные и нетерминальные символы, принято обозначать терминальные символы строчными, а нетерминальные символы прописными буквами латинского алфавита.
- \bigcirc Для записи n правил с одинаковыми левыми частями

$$\alpha \to \beta_1, \dots, \alpha \to \beta_n$$

часто используют сокращенную запись

$$\alpha \to \beta_1 \mid \ldots \mid \beta_n \, .$$

- $oldsymbol{1}$ Порождающая грамматика G четверка объектов (V_T,V_N,P,S) :
 - $m{\prime} \ \ V_T$ алфавит (словарь) терминальных символов (терминалов или примитивов);
 - 🗸 V_N алфавит (словарь) нетерминальных символов (нетерминалов), предполагается, что $V_T \cap V_N = \emptyset;$
 - \checkmark множество P конечное подмножество декартова произведения

$$(V_T \cup V_N)^+ \times (V_T \cup V_N)^*.$$

Элементы (lpha,eta) множества P называют правилами вывода (продукционными правилами или продукциями) и записывают в виде lpha oeta;

- $\checkmark\ S$ начальный символ (цель или аксиома) грамматики, $S\in V_N.$
- 2 Для того чтобы различать терминальные и нетерминальные символы, принято обозначать терминальные символы строчными, а нетерминальные символы прописными буквами латинского алфавита.
- (3) Для записи n правил с одинаковыми левыми частями

$$\alpha \to \beta_1, \dots, \alpha \to \beta_n$$

часто используют сокращенную запись

$$\alpha \to \beta_1 \mid \ldots \mid \beta_n \, .$$

4 Иногда при описании грамматики словари терминальных и нетерминальных символов не указывают.

В таком случае обычно предполагается, что грамматика содержит только те терминальные и нетерминальные символы, которые встречаются в правилах вывода.

 $oldsymbol{0}$ Цепочка $eta \in (V_T \cup V_N)^*$ непосредственно выводима из цепочки $lpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают lpha o eta), если

$$\alpha=\xi_1\gamma\xi_2,\ \beta=\xi_1\delta\xi_2,\qquad \xi_1,\xi_2,\delta\in (V_T\cup V_N)^*,\ \gamma\in (V_T\cup V_N)^+$$

и правило вывода $\gamma \to \delta$ содержится в P.

 $oldsymbol{0}$ Цепочка $eta \in (V_T \cup V_N)^*$ непосредственно выводима из цепочки $lpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают lpha o eta), если

$$\alpha=\xi_1\gamma\xi_2,\ \beta=\xi_1\delta\xi_2,\qquad \xi_1,\xi_2,\delta\in (V_T\cup V_N)^*,\ \gamma\in (V_T\cup V_N)^+$$

и правило вывода $\gamma \to \delta$ содержится в P.

 $oldsymbol{2}$ Цепочка $oldsymbol{eta}\in (V_T\cup V_N)^*$ выводима из цепочки $oldsymbol{lpha}\in (V_T\cup V_N)^+$ в грамматике $G=(V_T,V_N,P,S)$ (обозначают $lpha\Rightarroweta$), если существует последовательность цепочек γ_0,\ldots,γ_n такая, что

$$\alpha = \gamma_0 \to \dots \to \gamma_n = \beta$$
.

 $oldsymbol{0}$ Цепочка $eta \in (V_T \cup V_N)^*$ непосредственно выводима из цепочки $lpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают lpha o eta), если

$$\alpha=\xi_1\gamma\xi_2,\ \beta=\xi_1\delta\xi_2,\qquad \xi_1,\xi_2,\delta\in (V_T\cup V_N)^*,\ \gamma\in (V_T\cup V_N)^+$$

и правило вывода $\gamma \to \delta$ содержится в P.

(2) Цепочка $\beta \in (V_T \cup V_N)^*$ выводима из цепочки $\alpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают $\alpha \Rightarrow \beta$), если существует последовательность цепочек $\gamma_0, \dots, \gamma_n$ такая, что

$$\alpha = \gamma_0 \to \dots \to \gamma_n = \beta$$
.

3 Последовательность $\gamma_0, \dots, \gamma_n$ называют выводом длины n.

 $oldsymbol{0}$ Цепочка $eta \in (V_T \cup V_N)^*$ непосредственно выводима из цепочки $lpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают lpha o eta), если

$$\alpha=\xi_1\gamma\xi_2,\ \beta=\xi_1\delta\xi_2,\qquad \xi_1,\xi_2,\delta\in (V_T\cup V_N)^*,\ \gamma\in (V_T\cup V_N)^+$$

и правило вывода $\gamma \to \delta$ содержится в P.

(2) Цепочка $\beta \in (V_T \cup V_N)^*$ выводима из цепочки $\alpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают $\alpha \Rightarrow \beta$), если существует последовательность цепочек $\gamma_0, \dots, \gamma_n$ такая, что

$$\alpha = \gamma_0 \rightarrow ... \rightarrow \gamma_n = \beta$$

- 3 Последовательность γ_0,\dots,γ_n называют выводом длины n.
- 4 Языком, порождаемым грамматикой G, называют множество $L(G) = \{\alpha \in V_T^* | S \Rightarrow \alpha\}$, т. е. L(G) все цепочки в алфавите V_T , которые выводимы из начального символа S с помощью правил вывода P.

 $oldsymbol{0}$ Цепочка $eta \in (V_T \cup V_N)^*$ непосредственно выводима из цепочки $lpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают lpha o eta), если

$$\alpha=\xi_1\gamma\xi_2,\ \beta=\xi_1\delta\xi_2,\qquad \xi_1,\xi_2,\delta\in (V_T\cup V_N)^*,\ \gamma\in (V_T\cup V_N)^+$$

и правило вывода $\gamma \to \delta$ содержится в P.

(2) Цепочка $\beta \in (V_T \cup V_N)^*$ выводима из цепочки $\alpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают $\alpha \Rightarrow \beta$), если существует последовательность цепочек $\gamma_0, \dots, \gamma_n$ такая, что

$$\alpha = \gamma_0 \rightarrow ... \rightarrow \gamma_n = \beta$$

- 3 Последовательность $\gamma_0, \dots, \gamma_n$ называют выводом длины n.
- **④** Языком, порождаемым грамматикой G, называют множество $L(G) = \{\alpha \in V_T^* | S \Rightarrow \alpha\}$, т. е. L(G) все цепочки в алфавите V_T , которые выводимы из начального символа S с помощью правил вывода P.

Пример 1. Рассмотрим грамматику $G_1 = (\{a,b\},\{A,S\},P_1,S)$, где множество P_1 состоит из правил

$$S
ightarrow a \, A \, b \quad (1), \quad a \, A
ightarrow a \, a \, A \, b \quad (2), \quad A
ightarrow \epsilon \quad (3)$$

 $oxed{1}$ Цепочка $eta \in (V_T \cup V_N)^*$ непосредственно выводима из цепочки $lpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают lpha o eta), если

$$\alpha=\xi_1\gamma\xi_2,\ \beta=\xi_1\delta\xi_2,\qquad \xi_1,\xi_2,\delta\in (V_T\cup V_N)^*,\ \gamma\in (V_T\cup V_N)^+$$

и правило вывода $\gamma \to \delta$ содержится в P.

(2) Цепочка $\beta \in (V_T \cup V_N)^*$ выводима из цепочки $\alpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают $\alpha \Rightarrow \beta$), если существует последовательность цепочек $\gamma_0, \dots, \gamma_n$ такая, что

$$\alpha = \gamma_0 \rightarrow ... \rightarrow \gamma_n = \beta$$

- 3 Последовательность $\gamma_0, \dots, \gamma_n$ называют выводом длины n.
- **4 Языком**, порождаемым грамматикой G, называют множество $L(G) = \{\alpha \in V_T^* | S \Rightarrow \alpha\}$, т. е. L(G) все цепочки в алфавите V_T , которые выводимы из начального символа S с помощью правил вывода P.

Пример 1. Рассмотрим грамматику $G_1 = (\{a,b\},\{A,S\},P_1,S)$, где множество P_1 состоит из правил

$$S \rightarrow a\,A\,b \quad (1)\,, \quad a\,A \rightarrow a\,a\,A\,b \quad (2)\,, \quad A \rightarrow \epsilon \quad (3)$$

Цепочка $a\,a\,Ab\,b$ непосредственно выводима из цепочки $a\,A\,b$.

 $oldsymbol{0}$ Цепочка $eta \in (V_T \cup V_N)^*$ непосредственно выводима из цепочки $lpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают lpha o eta), если

$$\alpha=\xi_1\gamma\xi_2,\ \beta=\xi_1\delta\xi_2,\qquad \xi_1,\xi_2,\delta\in (V_T\cup V_N)^*,\ \gamma\in (V_T\cup V_N)^+$$

и правило вывода $\gamma \to \delta$ содержится в P.

(2) Цепочка $\beta \in (V_T \cup V_N)^*$ выводима из цепочки $\alpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают $\alpha \Rightarrow \beta$), если существует последовательность цепочек $\gamma_0, \dots, \gamma_n$ такая, что

$$\alpha = \gamma_0 \to \dots \to \gamma_n = \beta.$$

- 3 Последовательность $\gamma_0, \dots, \gamma_n$ называют выводом длины n.
- $oldsymbol{4}$ Языком, порождаемым грамматикой G, называют множество $L(G)=\{\alpha\in V_T^*|S\Rightarrow \alpha\}$, т. е. L(G) все цепочки в алфавите V_T , которые выводимы из начального символа S с помощью правил вывода P.

Пример 1. Рассмотрим грамматику $G_1 = (\{a,b\},\{A,S\},P_1,S)$, где множество P_1 состоит из правил

$$S
ightarrow a \, A \, b \quad (1) \, , \quad a \, A
ightarrow a \, a \, A \, b \quad (2) \, , \quad A
ightarrow \epsilon \quad (3)$$

Цепочка $a\,a\,A\,b\,b$ непосредственно выводима из цепочки $a\,A\,b$.

Пример 2. В грамматике G_1 из примера 1 $S\Rightarrow a\,a\,a\,b\,b\,b$, так как существует вывод

$$S \overset{1}{\rightarrow} aAb \overset{2}{\rightarrow} aaAbb \overset{2}{\rightarrow} aaaAbbb \overset{3}{\rightarrow} aaabbb.$$

При этом длина вывода равна 4.

 $oldsymbol{0}$ Цепочка $eta \in (V_T \cup V_N)^*$ непосредственно выводима из цепочки $lpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают lpha o eta), если

$$\alpha=\xi_1\gamma\xi_2,\ \beta=\xi_1\delta\xi_2,\qquad \xi_1,\xi_2,\delta\in (V_T\cup V_N)^*,\ \gamma\in (V_T\cup V_N)^+$$

и правило вывода $\gamma \to \delta$ содержится в P.

(2) Цепочка $\beta \in (V_T \cup V_N)^*$ выводима из цепочки $\alpha \in (V_T \cup V_N)^+$ в грамматике $G = (V_T, V_N, P, S)$ (обозначают $\alpha \Rightarrow \beta$), если существует последовательность цепочек $\gamma_0, \dots, \gamma_n$ такая, что

$$\alpha = \gamma_0 \to \dots \to \gamma_n = \beta.$$

- 3 Последовательность $\gamma_0, \dots, \gamma_n$ называют выводом длины n.
- $oldsymbol{4}$ Языком, порождаемым грамматикой G, называют множество $L(G)=\{\alpha\in V_T^*|S\Rightarrow \alpha\}$, т. е. L(G) все цепочки в алфавите V_T , которые выводимы из начального символа S с помощью правил вывода P.

Пример 1. Рассмотрим грамматику $G_1 = (\{a,b\},\{A,S\},P_1,S)$, где множество P_1 состоит из правил

$$S
ightarrow a \, A \, b \quad (1) \, , \quad a \, A
ightarrow a \, a \, A \, b \quad (2) \, , \quad A
ightarrow \epsilon \quad (3)$$

Цепочка $a\,a\,Ab\,b$ непосредственно выводима из цепочки $a\,Ab$.

Пример 2. В грамматике G_1 из примера 1 $S\Rightarrow a\,a\,a\,b\,b\,b$, так как существует вывод

$$S \overset{1}{\rightarrow} aAb \overset{2}{\rightarrow} aaAbb \overset{2}{\rightarrow} aaaAbbb \overset{3}{\rightarrow} aaabbb.$$

При этом длина вывода равна 4.

 \bigcirc Для грамматики G_1 из предыдущих примеров $L(G_1) = \{a^nb^n \mid n>0\} = \{ab, aabb, aaabb, ...\}.$

Пример 3

1 Построить грамматику G, порождающую язык

$$L(G) = \{a^nbc^m \, | \, n\,,\, m>0\}.$$

Пример 3

 $oldsymbol{1}$ Построить грамматику G, порождающую язык

$$L(G) = \{a^nbc^m \,|\, n\,,\, m>0\}.$$

 $oldsymbol{2}$ Структура любой цепочки языка имеет вид lpha beta, где часть lpha состоит только из символов a, а часть eta — только из символов c.

Пример 3

 \bigcirc Построить грамматику G, порождающую язык

$$L(G)=\{a^{\,n}\,b\,c^{\,m}\mid n\,,\,m>0\}.$$

- 2 Структура любой цепочки языка имеет вид $\alpha b \beta$, где часть α состоит только из символов a, а часть β только из символов c.
- 3 Обе части можно порождать независимо друг от друга. Получаем следующую грамматику:

$$S
ightarrow A\,b\,C; \quad A
ightarrow a\,A \mid a; \quad C
ightarrow c\,C \mid c\,.$$

Пример 3

 \bigcirc Построить грамматику G, порождающую язык

$$L(G) = \{a^{\,n}\,b\,c^{\,m} \mid n\,,\, m>0\}.$$

- $oldsymbol{2}$ Структура любой цепочки языка имеет вид $oldsymbol{lpha}beta$, где часть $oldsymbol{lpha}$ состоит только из символов $oldsymbol{a}$, а часть $oldsymbol{eta}$ только из символов $oldsymbol{c}$.
- 3 Обе части можно порождать независимо друг от друга. Получаем следующую грамматику:

$$S
ightarrow A\,b\,C; \quad A
ightarrow a\,A \mid a\,; \quad C
ightarrow c\,C \mid c\,.$$

Пример 4

 $oldsymbol{1}$ Построить грамматику G, порождающую язык

$$L(G)=\{\alpha\alpha^R\,|\,\alpha\in\{a\,,b\}^*\},$$

где α^R обозначает слово α , записанное в обратном порядке.

Пример 3

1 Построить грамматику G, порождающую язык

$$L(G) = \{a^n \, b \, c^m \, | \, n \, , \, m > 0\}.$$

- $oldsymbol{2}$ Структура любой цепочки языка имеет вид $oldsymbol{lpha}beta$, где часть $oldsymbol{lpha}$ состоит только из символов $oldsymbol{a}$, а часть $oldsymbol{eta}$ только из символов $oldsymbol{c}$.
- 3 Обе части можно порождать независимо друг от друга. Получаем следующую грамматику:

$$S
ightarrow A\,b\,C; \quad A
ightarrow a\,A \mid a; \quad C
ightarrow c\,C \mid c\,.$$

Пример 4

 \bigcirc Построить грамматику G, порождающую язык

$$L(G)=\{\alpha\alpha^R\,|\,\alpha\in\{a\,,\,b\}^*\},$$

где α^R обозначает слово α , записанное в обратном порядке.

2 Имеем

$$S \rightarrow a\,S\,a \mid b\,S\,b \mid \epsilon$$

Пример 3

1 Построить грамматику G, порождающую язык

$$L(G) = \{a^n \, b \, c^m \, | \, n \, , \, m > 0\}.$$

- 2 Структура любой цепочки языка имеет вид $\alpha b \beta$, где часть α состоит только из символов a, а часть β только из символов c.
- 3 Обе части можно порождать независимо друг от друга. Получаем следующую грамматику:

$$S
ightarrow A\,b\,C\;; \quad A
ightarrow a\,A \mid a\;; \quad C
ightarrow c\,C \mid c\;.$$

Пример 4

 \bigcirc Построить грамматику G, порождающую язык

$$L(G)=\{\alpha\alpha^R\,|\,\alpha\in\{a\,,\,b\}^*\},$$

где α^R обозначает слово α , записанное в обратном порядке.

2 Имеем

$$S \rightarrow a\,S\,a \mid b\,S\,b \mid \epsilon$$

3 $L(G) = \{aa, bb, abba, ...\}$

Пример 5

1 Построить грамматику G, порождающую язык

$$L(G)=\{a^n\mid n>0\}.$$

Пример 5

 $oldsymbol{1}$ Построить грамматику G, порождающую язык

$$L(G)=\{a^n\mid n>0\}.$$

2 Имеем: $S \to aS \mid a$.

Пример 5

1 Построить грамматику G, порождающую язык

$$L(G) = \{a^{\,n} \mid n > 0\}.$$

2 Имеем: $S \rightarrow aS \mid a$.

Пример 6

 $oldsymbol{1}$ Усложним предыдущий пример. Построим грамматику G, порождающую язык

$$L(G)=\{a^{2n+1}\mid n\geqslant 0\}.$$

Пример 5

1 Построить грамматику G, порождающую язык

$$L(G) = \{a^{\,n} \mid n > 0\}.$$

 \bigcirc Имеем: $S \rightarrow aS \mid a$.

Пример 6

 $oldsymbol{1}$ Усложним предыдущий пример. Построим грамматику G, порождающую язык

$$L(G)=\{a^{2n+1}\mid n\geqslant 0\}.$$

2 Имеем: $S \rightarrow aB \mid a; B \rightarrow aS$.