

Exercícios

- Representa a seguinte base de conhecimentos na linguagem da Lógica de Predicados de Primeira Ordem:
 - i. Os super heróis têm super poderes
 - ii. Existe pelo menos um x que não tem super poderes
 - Só existem super heróis ou infra heróis iii.

e sabendo que existem os seguintes predicados:

SuperHeroi	SuperHeroi(x) significa que x é um super herói
InfraHeroi	InfraHeroi(x) significa que x é um infra herói
TemSuperPoderes	TemSuperPoderes(x) significa que x tem super poderes

- *i*. \forall x (SuperHeroi(x) \Rightarrow TemSuperPoderes(x))
- ii. $\exists x \neg TemSuperPoderes(x)$
- *iii.* $\forall x \text{ (SuperHeroi}(x) \lor \text{InfraHeroi}(x))$
- Usando a seguinte base de conhecimentos anterior mostra que se pode derivar que existe pelo menos um infra herói.
 - i. $\forall x (SuperHeroi(x) \Rightarrow TemSuperPoderes(x))$ Δ ii. $\exists x \neg TemSuperPoderes(x)$ Δ iii. $\forall x (SuperHeroi(x) \lor InfraHeroi(x))$ Δ iv. $\neg TemSuperPoderes(SK)$ ii) EI $SuperHeroi(SK) \Rightarrow TemSuperPoderes(SK)$ i) UI ν. $\neg SuperHeroi(SK)$ vi. iv), v) MTiii) UI
 - $SuperHeroi(SK) \lor InfraHeroi(SK)$ vii.

viii. InfraHeroi(SK) vii), vi) OE

ix. $\exists x InfraHeroi(x)$ viii) EG

- 3. Representa a seguinte base de conhecimentos na linguagem da Lógica de Predicados de Primeira Ordem:
 - i. Os alunos universitários estão inscritos num curso
 - ii. Se um aluno estiver inscrito em dois cursos um deles é uma pós-graduação
 - iii. Os alunos de licenciatura estão inscritos apenas num curso.
 - iv. LEI é uma licenciatura
 - v. METI confere o grau de mestrado e não de pós-graduação
 - vi. O João é aluno do METI e de CD
 - vii. Os cursos, LEI, METI e CD são todos diferentes

Considere que existem definidas as seguintes constantes:

LEI – representa a Licenciatura em Engenharia Informática

METI – representa o Mestrado em Engenharia de Telecomunicações e Informática

CD – representa o curso de Ciência de Dados

Joao – representa o aluno João

PG – representa uma pós-graduação

Mestrado - representa um mestrado

Licenciatura - representa uma licenciatura

E sabendo que existem os seguintes predicados:

Aluno	Aluno(x) significa que x é um aluno universitário
Curso	Curso(x) significa que x é um curso
Inscrito	Inscrito(a, c) significa que o aluno a está inscrito no curso c
Grau	Grau(c, g) significa que o curso c confere o grau g

Resposta:

- 1. $\forall x [Aluno(x) \Rightarrow \exists c (Curso(c) \land Inscrito(x, c))]$
- 2. $\forall a \ \forall c1 \ \forall c2 \ ((Inscrito(a, c1) \land Inscrito(a, c2) \land c1 \neq c2) \Rightarrow (Grau(c1, PG) \lor Grau(c2, PG)))$
- 3. $\forall a \ \forall c \ 1((Inscrito(a, c1) \land Grau(c1, Licenciatura)) \Rightarrow \neg (\exists c2 \ (Inscrito(a, c2) \land c1 \neq c2)))$
- 4. Inscrito(Joao, METI) ∧ Inscrito(Joao, CD)
- 5. (Curso(METI) \land Grau(METI, Mestrado) $\land \neg$ Grau(METI, PG))
- 6. Curso(LEI) ∧ Grau(LEI, Licenciatura)
- 7. (LEI \neq METI) \wedge (LEI \neq CD) \wedge (METI \neq CD)

4. Usando a base de conhecimentos anterior mostra que se pode derivar:

Se necessário pode usar a seguinte regra de inferência:

AND-NEGATION (AN)
$$\neg (A \land B)$$

$$(\neg A) \lor (\neg B)$$

a) Mostra que se pode derivar que Ciência de Dados é uma pós-graduação.

1.	. Inscrito(Joao, METI) ∧ Inscrito(Joao, CD)	
2.	. $(LEI \neq METI) \land (LEI \neq CD) \land (METI \neq CD)$	
3.	. $\forall a \ \forall c1 \ \forall c2 \ ((Inscrito(a, c1) \land Inscrito(a, c2) \land c1 \neq c2) \Rightarrow (Grau(c1, PG) \lor Grau(c2, PG)))$	
4.	. $(Curso(METI) \land Grau(METI, Mestrado) \land \neg Grau(METI, PG))$	
5.	$6. (METI \neq CDA)$	
6.	. (Inscrito(Joao, METI) \land Inscrito(Joao, CDA) \land (METI \neq CDA))	
7.	. $((Inscrito(Joao, METI) \land Inscrito(Joao, CDA) \land METI \neq CDA) \Rightarrow$	
	$(Grau(METI, PG) \vee Grau(CDA, PG)))$	3×UI(3)
8.	$Grau(METI, PG) \vee Grau(CDA, PG)$	MP (7, 6)
9.	9. ¬Grau(METI, PG)	
10	. Grau(CDA, PG)	OE (8, 9)

b) Mostra que se pode derivar que o João não pode estar inscrito em LEI.

- i. Inscrito(Joao, METI) ∧ Inscrito(Joao, CDA) Δ ii. $(LEI \neq METI) \land (LEI \neq CDA) \land (METI \neq CDA)$ iii. $\forall a \ \forall c1((Inscrito(a, c1) \land Grau(c1, Licenciatura)) \Rightarrow \neg (\exists c2 \ (Inscrito(a, c2) \land c1 \neq c2)))$ Δ Curso(LEI) ∧ Grau(LEI, Licenciatura) iv. Inscrito(Joao, METI) i) AE v. vi. (LEI ≠ METI) ii) AE Inscrito(Joao, METI) \land (LEI \neq METI) v) vi) AI vii. viii. ((Inscrito(Joao, LEI) ∧ Grau(LEI, Licenciatura)) ⇒
- ix. ¬(∃c2 (Inscrito(Joao, c2) ∧ LEI≠c2))) iii) 2xUI
- x. $\exists c2 \text{ (Inscrito(Joao, c2)} \land \text{LEI} \neq c2)$ vii) EG
- xi. $\neg(\neg(\exists c2 (Inscrito(Joao, c2) \land LEI \neq c2)))$ ix) DNI
- xii. ¬ ((Inscrito(Joao, LEI) ∧ Grau(LEI, Licenciatura)) viii) x) MT
- xiii. (¬ (Inscrito(Joao, LEI)) ∨ (¬Grau(LEI, Licenciatura)) xi) AN
- xiv. Grau(LEI, Licenciatura) iv) AE
- xv. $\neg(\neg(Grau(LEI, Licenciatura))$ xiii) DNI

5. Considera a seguinte base de conhecimentos

i) $\forall x [TemCartaoJovem(x) \Rightarrow \exists i (Idade(x, i) \land i \le 18)]$

ii) TemCartaoJovem(Ana)

Mostra que ∃i Idade(Ana, i).

Resolução:

iii) TemCartaoJovem(Ana) $\Rightarrow \exists i \text{ (Idade(Ana, i)} \land i \leq 18)$ i) UI

iv) $\exists i$ (Idade(Ana, i) \land i \leq 18) iii), ii) MP

v) Idade(Ana, SK) \wedge SK \leq 18 iv) EI

vi) Idade(Ana, SK) v) AE

vii) ∃i Idade(Ana, i) vi) EG