Лабораторная работа №1 "Линейная регрессия"

```
In [3]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

1) Загрузите набор данных ex1data1.txt из текстового файла.

```
In [4]:
```

```
def load_data1():
    df = pd.read_csv('data/ex1data1.txt', header=None, names = ["population", "profit"])
    return df['population'], df['profit']

x_train, y_train = load_data1()
```

2) Постройте график зависимости прибыли ресторана от населения города, в котором он расположен.

```
In [4]:
```

```
ax1 = df.plot.scatter(x='population', y='profit')
```


3) Реализуйте функцию потерь J(θ) для набора данных ex1data1.txt.

```
In [5]:
```

```
def cost_func(x, y, theta):
    j = 0
    count = len(y)
    for i in range(count):
        h = theta[0] + theta[1] * x[i]
        j += (h - y[i]) **2
    return j / (2 * count)
```

4. Реализуйте функцию градиентного спуска для выбора параметров модели. Постройте полученную модель (функцию) совместно с графиком из пункта 2.

```
def f(x, y, theta):
   return theta[0] + x * theta[1] - y
def gradient descent(x, y, theta, a, iter count):
   training_logs = []
    for i in range(iter count):
       dj dt0, dj dt1 = 0, 0
        count = len(x)
        for j in range(len(x)):
           h = f(x[j], y[j], theta)
            dj_dt0 += h
           dj_dt1 += x[j] * h
        dj dt0 /= count
        dj dt1 /= count
        theta[0] -= a * dj_dt0
       theta[1] -= a * dj_dt1
        curr_cost = cost_func(x, y, theta)
        training_logs.append([i, curr_cost, theta[0], theta[1]])
    return theta, training_logs
```

In [7]:

```
theta, logs = gradient_descent(
    x = df['population'], y = df['profit'],
    theta=[0,0],
    a=0.01,
    iter_count=1000
)
```

In [8]:

```
fig, ax = plt.subplots()
ax.scatter(df['population'], df['profit'])
ax.set_xlabel('population')
ax.set_ylabel('profit')
x = np.linspace(5, 25, 3)
ax.plot(x, theta[0] + theta[1]*x, 'g')
```

Out[8]:

[<matplotlib.lines.Line2D at 0x1129fc1d0>]

In [9]:

```
theta
```

Out[9]:

 $\hbox{\tt [-3.241402144274422, 1.1272942024281842]}$

5. Постройте трехмерный график зависимости функции потерь от параметров модели (00 и 01) как в виде поверхности. так и в виде

изолиний (contour plot).

```
In [10]:
```

```
logs_df = pd.DataFrame(logs, columns=['iter', 'loss', 'theta0', 'theta1'])
data = logs_df[logs_df['theta1'] > 1]
X, Y = np.meshgrid(data['theta0'], data['theta1'])
Z = np.zeros((data['theta0'].size, data['theta1'].size))

for i, theta0 in enumerate(data['theta0']):
    for j, theta1 in enumerate(data['theta1']):
        Z[i, j] = cost_func(x_train, y_train, [theta0, theta1])
```

In [11]:

```
from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0)
ax.set_title('Зависимость функции потерь от параметров (3D поверхность)')
ax.set_xlabel('Theta 0')
ax.set_ylabel('Theta 1')
ax.set_zlabel('Loss function')
plt.show()
```

5.4 5.2 5.0 5.0 4.8 4.6

Зависимость функции потерь от параметров (3D поверхность)

In [12]:

```
fig, ax = plt.subplots()
CS = ax.contour(X, Y, Z, cmap='viridis')
ax.clabel(CS, inline=1, fontsize=10)
ax.set_title('Countour plot for loss function')
ax.set_xlabel('Theta 0')
ax.set_ylabel('Theta 1')
plt.show()
```


6. Загрузите набор данных ex1data2.txt из текстового файла

```
In [12]:
```

```
def load_data2():
    df = pd.read_csv('data/ex1data2.txt', header=None, names = ["area", "rooms_count", "price"])
    return df.filter(['area', 'rooms_count']), df['price']
x_train, y_train = load_data2()
```

7. Произведите нормализацию признаков. Повлияло ли это на скорость сходимости градиентного спуска? Ответ дайте в виде графика.

```
In [6]:
```

```
def normalize_features(X):
    N = X.shape[1]
    copy_X = X.copy()
    for i in range(N):
        feature = X[:, i]
        mean = np.mean(feature)
        delta = np.max(feature) - np.min(feature)
        copy_X[:, i] -= mean
        copy_X[:, i] /= delta
    return copy_X
```

In [7]:

```
def cost_func_vectorized(x, y, theta):
    m = len(x)
    j = (x * theta.T - y).T * (x * theta.T - y)
    return j/(2 * m)
```

In [8]:

```
def gradient_descent_vectorized(x, y, theta, a, iter_count):
    m = x.shape[0]
    logs = []

for iter_num in range(iter_count):
        summ = np.subtract(x * theta.T, y).T * x
        theta = np.subtract(theta, summ*a/m)

    loss = cost_func_vectorized(x, y, theta).item((0, 0))
    logs.append([iter_num, loss])

return theta, logs
```

In [9]:

```
def train_dfs_to_mat(x_train, y_train):
    x_train_matrix = np.mat(x_train)
    y_train_matrix = np.mat(y_train).T
    return x_train_matrix.astype('float64'), y_train_matrix.astype('float64')
```

In [74]:

```
x_train_matrix, y_train_matrix = train_dfs_to_mat(x_train, y_train)
# добавляем 1 как нулевую фичу(для удобства перемножения х и theta)
x_train_matrix = np.column_stack((np.ones(x_train_matrix.shape[0]), x_train_matrix))
theta, logs = gradient_descent_vectorized(
    x_train_matrix, y_train_matrix,
    theta=np.matrix([0,0,0]),
    a=0.005,
    iter_count=50
)
logs_df = pd.DataFrame(logs, columns=['iter', 'current_cost'])

x_train_matrix, y_train_matrix = train_dfs_to_mat(x_train, y_train)
x_train_normalized = normalize_features(x_train_matrix)
# добавляем 1 как нулевую фичу(для удобства перемножения х и theta)
x_train_normalized = np.column_stack((np.ones(x_train_normalized.shape[0]), x_train_normalized))
theta, logs = gradient_descent_vectorized(
```

```
x_train_normalized, y_train_matrix,
    theta=np.matrix([0,0,0]),
    a=0.01,
    iter count=50
logs df normalized = pd.DataFrame(logs, columns=['iter', 'current cost'])
fig, ax1 = plt.subplots()
ax1.plot(logs df['iter'], logs df['current cost'])
ax1.set xlabel('Number of steps')
ax1.set_ylabel('Cost function')
ax1.set_title('Not normalized')
fig2, ax2 = plt.subplots()
ax2.plot(logs_df_normalized['iter'], logs_df_normalized['current_cost'])
ax2.set xlabel('Number of steps')
ax2.set_ylabel('Cost function')
ax2.set title('Normalized')
plt.show()
```


8. Реализуйте функции потерь J(θ) и градиентного спуска для случая многомерной линейной регрессии с использованием векторизации.

Функции были реализованы в пункте 7: cost_func_vectorized, gradient_descent_vectorized

9. Покажите, что векторизация дает прирост производительности.

Загрузим еще раз данные из первого файла. Реализованная ранее функция градиентного спуска работает только для случая одномерной линейной регрессии. Поэтому протестируем производительность на первом примере.

```
In [5]:
```

```
x_train, y_train = load_data1()
```

```
In [40]:
import time
start time = time.time()
theta, logs = gradient_descent(
  x=x train, y=y_train,
   theta=[0,0],
   a=0.01,
   iter count=1000
runtime = time.time() - start time
In [41]:
runtime
Out[41]:
3.8987977504730225
In [42]:
x_mat, y_mat = train_dfs_to_mat(x_train, y_train)
x_mat = x_mat.T
x mat = np.column stack((np.ones(x mat.shape[0]), x mat))
start time = time.time()
theta, logs = gradient descent vectorized(
   x=x_mat, y=y_mat,
   theta=np.matrix([0,0]),
   a=0.01,
   iter_count=1000
runtime_vector = time.time() - start_time
In [43]:
runtime vector
Out[43]:
0.0784602165222168
In [45]:
runtime / runtime_vector
Out[45]:
49.691396777741986
На наших небольших данных мы видим, что прирост в производительности составляет 50 раз. Если фичей и размер
обучающей выборки будет больше, то мы бы получили еще большую разницу во времени.
10. Попробуйте изменить параметр а (коэффициент обучения). Как при
этом изменяется график функции потерь в зависимости от числа
итераций градиентного спуск? Результат изобразите в качестве
графика.
In [13]:
x_train, y_train = load_data2()
```

def fit(x_train, y_train, a=0.01):

x_train_matrix, y_train_matrix = train_dfs_to_mat(x_train, y_train)
y_train_normalized = normalize features(y_train_matrix)

```
A CLAIM MOLMALIZEU - MOLMALIZE LEACULES (A CLAIM MACLIA)
    \# добавляем 1 как нулевую фичу(для удобства перемножения х и theta)
    x\_train\_normalized = np.column\_stack((np.ones(x\_train\_normalized.shape[0]), x\_train\_normalized)
    theta, logs = gradient_descent_vectorized(
        x_train_normalized, y_train_matrix,
        theta=np.matrix([0,0,0]),
        a=a,
        iter count=50
    logs df normalized = pd.DataFrame(logs, columns=['iter', 'current cost'])
    return logs df normalized
logs df = fit(x train, y train, a=0.01)
fig, ax1 = plt.subplots()
ax1.plot(logs_df['iter'], logs_df['current_cost'])
ax1.set xlabel('Number of steps')
ax1.set_ylabel('Cost function')
ax1.set_title('a=0.01')
logs df2 = fit(x train, y train, a=0.5)
fig2, ax2 = plt.subplots()
ax2.plot(logs df2['iter'], logs df2['current cost'])
ax2.set_xlabel('Number of steps')
ax2.set_ylabel('Cost function')
ax2.set title('a = 0.5')
plt.show()
4
```


В первом случае мы взяли а=0.01, во втором а=0.5. Как видим, чем больше значение а, тем быстрее мы найдем точку, где достигается минимальное значение функции потерь. Однако, при выборе большого а существует вероятность пройти мимо точки минимума.

11. Постройте модель, используя аналитическое решение, которое может быть получено методом наименьших квадратов. Сравните результаты панной модель с полученной с помощью градиентного

даппои модели с моделью, полученной с помощью градиентного СПУСКА.

```
In [57]:
def ols(X, y):
    # https://en.m.wikipedia.org/wiki/Linear least squares
    return np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
In [73]:
x train matrix, y train matrix = train dfs to mat(x train, y train)
x_train_normalized = normalize_features(x_train_matrix)
x_train_normalized = np.column_stack((np.ones(x_train_normalized.shape[0]), x_train_normalized))
theta analytic = ols(x train normalized, y train)
theta analytic
Out[73]:
matrix([[340412.65957447, 504777.90398791, -34952.07644931]])
In [74]:
theta, logs = gradient descent vectorized(
    x_train_normalized, y_train_matrix,
    theta=np.matrix([0,0,0]),
    a=0.5,
    iter count=1000
theta
Out[74]:
matrix([[340412.65957447, 504748.49956828, -34914.28507364]])
In [75]:
cost func vectorized(x train normalized, y train matrix, theta)
Out[75]:
matrix([[2.04328007e+09]])
In [76]:
cost func vectorized(x train normalized, y train matrix, theta analytic)
Out[76]:
matrix([[2.04328005e+09]])
```

Как видим, с помощью аналитического метода мы получаем точный результат выполнив всего несколько операций над матрицами, в то время как нахождение минимума с помощью алгоритма градиентного спуска требует времени, а также подбора нужного кол-ва итераций и выбор нужного шага.