Sujet 1

Champ électrostatique dans une cavité

1. Démontrez le théorème de Gauss pour le champ électrostatique par intégration de l'équation de Maxwell-Gauss.

Une sphère de centre O_1 et de rayon R_1 de densité de charge volumique uniforme ρ_e est percé d'un trou sphérique de centre O_2 et de rayon R_2 (donc de densité de charge volumique nulle). On cherche à déterminer le champ électrostatique à l'intérieur de cette sphère.

- 2. Donnez le champ électrostatique $_1$ créé par une sphère de centre O_1 et de rayon R_1 , de densité de charge volumique uniforme ρ_e , au point M (dans le cas où M est à l'**intérieur** de cette première sphère). On l'exprimera alors en fonction du vecteur $\overrightarrow{O_1M}$.
- 3. Déterminez le champ électrostatique $_2$ créé par une sphère de centre O_2 et de rayon R_2 , de densité de charge volumique uniforme ρ'_e , au point M (dans le cas où M est à l'**intérieur** de cette seconde sphère). On l'exprimera alors en fonction du vecteur $\overrightarrow{O_2M}$.

- 4. En utilisant l'additivité des champ électrostatiques, déterminez le champ réel à l'intérieur de la cavité en fonction de $_1$ et $_2$.
- 5. En déduire le champ électrostatique en tout point M de la cavité et montrez qu'il s'exprime simplement en fonction de $\overrightarrow{O_1O_2}$.

Sujet 2

I Phénomène d'écrantage

On considère un conducteur plan infini d'équation x=0 portant une charge surfacique uniforme positive égale à σ .

- 1. Déterminez la valeur du champ \vec{E}_0 en tout point du demi-espace vide.
- 2. En déduire, à une constante près, l'expression de $V_0(x)$ en tout point du demi-espace vide.

On place alors voisinage du conducteur métallique une distribution volumique uniforme de charge dont la densité volumique de charge est notée ρ , répartie dans la tranche comprise entre les valeurs x=0 et x=L. La charge volumique ρ est de signe opposé à σ .

- 3. Déterminez l'expression du champ \vec{E}_{tot} en tout point de l'intervalle [0,L].
- 4. Montrez que \vec{E}_{tot} est uniforme pour toute valeur x > L.

On dit que la distribution de charge écrante la distribution surfacique de charge lorsque le champ \overrightarrow{E}_{tot} s'annule pour tout x > L.

- 5. Donnez la relation portant sur σ , ρ et L pour laquelle la condition d'écrantage est satisfaite. Dans la suite, on suppose cette condition vérifiée.
- 6. Donnez l'expression de $V_{tot}(x)$ en tout point du demi-espace x > 0. On choisira conventionnellement $V_{tot}(L) = 0$.
- 7. Représentez graphiquement l'amplitude de \overrightarrow{E}_{tot} en fonction de x. Tracez également l'allure du carré du champ.

Sujet 3

I | Modèle de Thomson

On propose dans cet exercice d'estimer la taille d'un atome d'hydrogène à partir du modèle de Thomson et du principe d'incertitude de Heisenberg.

L'électron est supposé ponctuel, de charge -e et de masse m alors que le noyau, de charge positive +e est modélisé par une distribution de charge homogène sphériques de densité volumique de charges ρ et de rayon a. La masse du noyau est très grande devant celle de l'électron, de sorte que le noyau est considéré comme fixe, centré sur l'origine O de l'axe des x.

- 1. Déterminer l'expression de ρ en fonction des autres données.
- 2. Déterminer le champ électrique créé par le noyau au niveau de l'électron d'abscisse x.
- 3. Montrer que l'abscisse x(t) de l'électron vérifie une équation différentielle de type oscillateur harmonique, et en donner la forme de la solution pour une position initiale $x_0 < a$ et une vitesse initiale nulle.
- 4. En appliquant le principe de Heisenberg au mouvement de l'électron, montrer que le rayon a de l'atome doit être supérieur à une valeur minimale que l'on exprimera en fonction de m, e, ϵ_0 et \hbar .