

2024년 상반기 K-디지털 트레이닝

컴퓨터 개론

[KB] IT's Your Life

컴퓨터 하드웨어

🧿 기타 하드웨어

ㅇ 시스템 버스

CPU의 기본 구성과 명령어 실행 순서

편의상

- 적재 과정(메모리 → CPU)
- 저장 과정(CPU → 메모리)

○ 명령어 사이클

■ 인출 부사이클

■ 실행 부사이클

■ 간접 부사이클

■ 인터럽트 부사이클

인출 사이클

실행 사이클 (명령어 디코딩, 실행, 피드백)

간접 사이클

인터럽트 사이클

클럭(Clock)

○ CPU가 어떤 동작을 수행하기 위한 시간을 알려주는 장치

명령어 실행 사이클

🗸 CPU의 동작 속도

o CPU에 공급되는 CLOCK 속도에 의해 결정

ㅇ 시간 단위

- s > ms > us > ns
- ms: 0.001 초
- us: 0.000001초
- ns: 0.00000001초
 - 직관적이지 않음
 - 초 당 몇 개로 표현하는게 좀 더 직관적임 → 주파수로 표현

ㅇ 주파수 단위

- Hz: 1 Hz 초 당 1개
- KHz: 1,000 Hz 초 당 천개
- MHz: 1,000,000 Hz 초 당 백만개
- GHz: 1,000,000,000 Hz 초 당 10억개

예) 4개의 클럭으로 1개의 명령어를 수행한다면 4GHz 클럭 주파수 인 경우 초당 10억개의 명령어를 실행하게 됨

☑ CPU와 메모리

☑ 입출력(I/O)

- 입출력 장치는 자신만의 컨트롤러를 가짐
- 컨트롤러도 자체 클럭을 가지며 장치마다 매우 다양함(kHz ~ MHz)
 - CPU가 사용하는 클럭에 비해 매우 느림 → I/O 작업은 시간이 많이 걸림(언제 끝날지 모르는 경우 도 있음)
- 입출력 장치 자체의 명령은 컨트롤러에서 실행됨
 - CPU는 입출력 지시만 내릴 뿐 직접 관여하지 않음

🗸 컴퓨팅 모델

🗸 버퍼

- CPU와 I/O장치간의 속도 차이를 보완하기 위한 메모리
- 입출력 데이터를 임시로 보관함
- o Output
 - CPU → Buffer → 출력 장치
- o Input
 - 입력 장치 → Buffer → CPU

☑ 2진수의 계산

- 비트 수에 따른 경우의 수 계산
 - $2^0 = 1$
 - $2^1 = 2$
 - $2^2 = 4$
 - $2^3 = 8$
 - $2^4 = 16$
 - $2^5 = 32$
 - $2^6 = 64$
 - $2^7 = 127$
 - $2^8 = 255$
 - $2^9 = 512$
 - $2^{10} = 1,024 => 1,000 = 1$ K
 - $2^{11} = 2^{10} \times 2^{1} = 1K \times 2 => 2K = 2,000$
 - $2^{12} = 2^{10} \times 2^2 = 1K \times 4 => 4K = 4,000$
 - $2^{16} = 2^{10} \times 2^6 = 1 \times 64 = 64,000$
 - $2^{24} = 2^{10} \times 2^{10} \times 2^4 = 1K \times 1K \times 16 = 16M = 16,000,000$
 - $2^{32} = 2^{10} \times 2^{10} \times 2^{10} \times 2^{2} = 1K \times 1K \times 1K \times 4 = 1G \times 4 = 4G = 4,000,000,000$