Homework for Math 351-003

Team Homework: Due Monday, April 1

- 1. Prove that if $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are differentiable at $x_0 \in \mathbb{R}$, then fg is differentiable at x_0 and $(fg)'(x_0) = f'(x_0)g(x_0) + g'(x_0)f(x_0)$.
- 2. a) Prove that the function $f: \mathbb{R} \setminus \{\frac{1}{2}\} \to \mathbb{R}$ given by $f(x) = \frac{3x+4}{2x-1}$ is differentiable at $x_0 = 1$ and evaluate f'(1).
 - b) Prove that the function $g: \mathbb{R} \to \mathbb{R}$ given by $g(x) = x^{\frac{1}{3}}$ is not differentiable at $x_0 = 0$.
- 3. Prove that if $f: D \to \mathbb{R}$ is differentiable at a point $a \in D$, then f is continuous at a. (Hint: Problem 4 from last week's team homework is helpful here.)
- 4. a) Suppose $f: D \to \mathbb{R}$ is a differentiable function, that D contains an open interval (a,b) for some a < b, and that f'(x) > 0 for all $x \in (a,b)$. Prove that f is strictly increasing on (a,b). That is, prove that if a < x < y < b, then f(x) < f(y).
 - b) Suppose $f: D \to \mathbb{R}$ is a differentiable function, that D contains an open interval (a,b) for some a < b, and that f'(x) < 0 for all $x \in (a,b)$. Prove that f is strictly decreasing on (a.b).