

Course 22525

Medical Image Analysis Introduction

Axel Thielscher

Axel Thielscher (DTU Health Tech, course responsible)

Oula Puonti (Danish Research Centre for MR & Martinos Center, Harvard U)

Rasmus Paulsen (DTU Compute)

TA Saverio Procopio

Audience: Who are you?

67 students from ...

- Biomedical Engineering
- Mathematical Modelling and Computation
- Human-Centered Artificial Intelligence
- Physics and Technology
- Bioinformatics and System Biology
- Information Technology
- Autonomous Systems Engineering
- Guest and PhD students

Lectures

Tuesdays 13:00-15:00 (approx.) in B341-A022

Exercises – Reports – Student Presentations

- Weekly exercises covering the majority of course topics
- directly after the lecture in the same room until 17:00 (TA present; use the time to clarify questions!)
- use the Discussion section in DTU Learn, no individual emails
- done in groups of 4 (5 as exception)
- are turned into **reports**, which are handed in on Learn
- reports are reviewed in a **peer review system** on Learn
- each student will once be assigned to present one report

Exercises

- should be implemented in Python
- Exercise material and additional information will be provided on the course github

https://github.com/oulap/MIA

and the course homepage

https://oulap.github.io/MIA/

- For each exercise, a **jupyter notebook** is provided with information and instruction on the setup and environment
- The github also contains a link to the course webpage, where lecture slides will be available
- Python and Jupyter Notebooks:
 - https://lectures.scientific-python.org/
 - https://www.dataquest.io/blog/jupyter-notebook-tutorial/

Reports

- Each report covers one course topic and is prepared by each group (not individually)
- Handed in as one (!!) pdf file on Learn
- Mandatory structure:
 - Background: Short introduction to the topic. Equations and concepts should be shortly explained here.
 - Methods and Results: Your jupyter notebook including the code, comments and explanations (where necessary) and output like graphs/figures.
 - Discussion: Review the learning objective and discuss if your result match the expected output (and why?)

Peer review system for the reports on Learn

- Each student will be assigned two reports of other groups on which they should provide feedback based on a provided questionnaire
- Each group will receive anonymous feedback on their report from students and feedback from the TA
- Review should be done within one week after hand-in

Presentations

- Each student will be once part of combined groups (> 4 people) to present the exercise solution (based on the handed in reports)
- Presentations are held during the exercise session
- Presentation should include a 15 min power point talk covering the background, methods, results and discussion of the report

Exam

- Individual oral exams (20 min) in week 51
- Upon arrival, you will draw a question/problem that you then will address and discuss with the examiners
- Followed by further questions of the examiners not limited to the question/problem
- Both lectures and exercises are important.

Questions??

Course Schedule

Lecture # Date	Who	Topic
1 Tue 9 Sep	AT, SP	Course intro
2 Tue 16 Sep	AT	Regression and coordinate systems
3 Tue 23 Sep	AT	Linear spatial transformations, landmark-based registration, interpolation
4 Tue 30 Sep	AT	Intensity-based methods for registration
5 Tue 7 Oct	OP	Non-linear deformations
Tue 14 Oct	HOLIDAY	
6 Tue 21 Oct	AT	Surface-based metrics
7 Tue 28 Oct	RRP	Surface-based registration
8 Tue 4 Nov	OP	Generative models for segmentation I
9 Tue 11 Nov	OP	Generative models for segmentation II
10 Tue 18 Nov	OP	Neural Networks for medical image analysis
11 Tue 25 Nov	OP	Neural Networks for medical image analysis I
12 Tue 2 Dec	OP	Neural Networks for medical image analysis III

AT	Axel Thielscher
RRP	Rasmus R. Paulsen
OP	Oula Puonti
SP	Saverio Procopio

Medical images are amazing diagnostic tools, but present some specific challenges for automatic analysis methods

- 1) Often volumetric (3D) data (voxel -> mm):
- Visualization not straightforward
- Methods for (2D) image analysis don't work "out of the box"

Deep convolutional NN | Second | Convert | Co

Neena, Geetha IEEE ICCSP 2017

2) Often complex object geometries and textures, with individual and diseaserelated anatomical variability

Deep brain areas Relatively stereotypic geometries

Cortex folding Individual and complex

- 3) Applications and outcome metrics relevant for diagnostics, e.g.
- Bring images in spatial correspondence
- Segmentation and volume quantification
- Localization and characterization of pathological changes
- Prediction/early detection of diseases

Brain age from MRI

MR – PET co-registration

Langen et al, Cancers 2023

BRaTS 2021 Dataset

MS lesion localization

Grazianoa et al NI Clinical 2015

3) Varying contrasts, resolutions and coverage: Little standardization

CT: Hounsfield units (HU) a relative quantitative measurement of radio density

-> absolute intensity levels facilitate analyses

"Segmentation" by simple thresholding

3) Varying contrasts, resolutions and coverage: Little standardization

MR: normally **not quantitative**, very flexible in terms of contrast

- + Optimize acquisition for targeted pathology
- Makes automatized analyses more challenging

Leveraging different MR relaxation mechanisms

Contrast enhanced

Water-diffusion weighted

https://case.edu/med/neurology/NR/MRI%20Basics.htm

3) Varying contrasts, resolutions and coverage: Little standardization

Resolution and coverage are usually set according to local clinical needs (acquisition as short as possible) & technical scanner specifications

T2-w, 0.8x0.8x2.0 mm, axial slices

4) Usually small dataset sizes, in particular for manual "ground truth" segmentations

Manually segmenting a high-resolution 3D brain or head scan takes ~1 week for a trained person

5) Artefacts and imperfections

CT metal artefact

MR bias field

5) Artefacts and imperfections

MRI has a lot to "offer" in terms of artifacts...

Ghosting due to pulsation

Gibbs ringing

Ghosting due to eye movements

https://mriquestions.com

Take-home message

Medical images have a number of specific properties that makes their automated analyses challenging (and interesting...), and that

- require adaptation and extension of image analyses methods originally designed for other domains
- have triggered the development of domain-specific methods

Not mentioned: Time-dependent measurements (e.g. heart, blood flow, breathing)

Learning Objectives

After this course you should be able to:

- ✓ Implement smoothing and interpolation operations in images
- ✓ Explain coordinate systems used in medical imaging
- ✓ Perform landmark-based, intensity-based, and surface-based image registration
- ✓ Select the most appropriate similarity measure for specific image registration problems
- ✓ Implement rigid, affine and nonlinear spatial transformation models
- ✓ Solve segmentation problems using generative models
- ✓ Perform image segmentation using example-based learning
- ✓ Weigh the advantages and limitations of model- vs. example-based techniques
- ✓ Weigh the advantages and limitations of voxel- and surface-based medical image analyses