

Entrance exam 2002-2003

Mathematics

Duration: 3 hours July 2002

Remarks: The use of the non-programmable calculator is allowed. The distribution of the grades is over 25

I- (9 points) The parts A and B are independent.

Suppose that the plane of coordinates is referred to an orthonormal system $(O; \vec{i}, \vec{j})$.

- A- Consider the function f defined on $]-\infty, 0[\cup]0,+\infty[$, by $f(x) = x \ln|x|$ and designate by (C) its representative curve.
 - 1) a- Show that $\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to 0} f(x) = +\infty$
 - b- Deduce an asymptote to (C)
 - 2) Verify that $f'(x) = \frac{x-1}{x}$. Draw a table of variation of f.
 - 3) a- Prove that the straight (d) of equation y = x is an asymptotic direction for (C)
 - b- Study the relative position of (C) and (d)
 - 4) Draw (d) and (C) in the same system of coordinates.
 - 5) a- Prove that the equation $x = \ln |x|$ admits only one root.
 - b- Let α be the root. Verify that -0,568< α < -0,566. Take α = -0,567.
- B-1) Consider the differential equation (E): $y'' + 2y' + y = -2e^{-x}$. Let $y = ze^{-x}$
 - a- Prove that z verifies a differential equation (E'). Solve (E')
 - b- Determine the general solution of (E). Deduce the particular solution of (E) verifying y(0) = -1 and y'(0) = -1
 - 2) Consider the function g, defined, on IR, by $g(x) = -(x+1)^2 e^{-x}$ and designate by (C') its representative curve.
 - a- Calculate $\lim_{x\to\infty} g(x)$ and $\lim_{x\to+\infty} g(x)$ Deduce an asymptote to (C')
 - b-Verify that $g'(x) = (x^2 1) e^{-x}$ and deduce the table of variation of g. Draw (C´).
 - c- Calculate the area of the domain limited by (C'), the x- axis and the two straight lines equations x = -1 and x = 1. (You can find a primitive G of g at the form $G(x) = (ax^2 + bx + c)e^{-x}$).
 - d- By a graphical reading, indicate, according to the values of the real number k, the number of solutions of the equation g(x) = k.
- C- Prove that the equation $g(x) = \ln |g(x)|$ admits 3 roots whose one of them β is positive. Give an inclusion (framing) of β of amplitude of 10^{-2} .

II- (8 points) the parts A, B and C of the problem are independent

In the oriented plane (P), consider the figure drawn aside, formed by the two squares DABC and OEFD so that DA = L. and DF = l. Designate by r the rotation of center D which transform A in C and by s the direct similar of center D,

of ratio
$$\frac{\sqrt{2}}{2}$$
 and of angle $+\frac{\pi}{4}$

A-1) a- Precise the angle of r and determine r (O). b-Determine the angle of the straight lines (AO) and (CF).

- 2) a- Determine s(B) and s(E).
 - b- Determine the angle $(\overrightarrow{BE}, \overrightarrow{CF})$.
- 3) a- Prove that the point **I**, intersection (CF) and (BE) is a point of circum circle of the square ABCD.
 - b- Deduce the nature of triangle AIC.
 - c- Prove that the straight lines (AO), (BE) and (CF) are concurrent.

B- Consider the points A_1 , A_2 , A_3 , A_i ,.....defined by; $A_1 = s(A)$, $A_2 = s(A_1)$,

 $A_3 = s(A_2), \dots, A_i = s(A_{i-1}) \dots$ Let $l_1 = AA_1, l_2 = A_1A_2, l_3 = A_2A_3, \dots l_i = A_{i-1}A_i, \dots$

- 1) Locate, on the figure, the points A₁, A₂, A₃, A₄.
- 2) Show that the sequence of general term l_i is a geometric sequence whose first term and common ratio are to be determined.
- 3) Calculate l_i in terms of L and i.
- 4) Show that A_8 belongs to [DA].
- 5) Find a relation between L and l for A_8 to be coinciding with F.

C- Suppose (P) is referred to an orthonormal system $(O; \overrightarrow{u}, \overrightarrow{v})$ so that $\overrightarrow{u} = -\overrightarrow{OD}$ and $\overrightarrow{v} = \overrightarrow{OE}$

- 1) Write the complex forms of the rotation r and the similar s
- 2) Suppose L = 3. Designate by (γ) the circle circumscribed about the square OEFD and by (γ') the circum circle of DABC.
 - a- Determine the affix of the center w of the positive homothety h which transforms (γ) into (γ') .
 - b- Write the complex form of h.

- **III-** (3 points) In a school there are 3 classes of twelve grades: The class T₁ of 20 students containing 8 girls, the class T₂ of 30 students containing 10 girls and the class T₃ of 40 students containing 24 girls. We choose at random a class and from this class we choose at random a student to represent the school during the celebration of the end of the year.
 - 1) What is the probability of the event A: « the chosen student is a girl of T_3 »?
 - 2) What is the probability of the event B: « the chosen student is a girl »?
 - 3) Knowing that the chosen student is a girl. What is the probability that this student is from T₃?
- **IV-** (5 points) Suppose the space is referred to an orthonormal system $(O; \vec{i}, \vec{j}, \vec{k})$ and designate by (P) the plane of equation 4x-3z+12=0 Let M(X,Y,0) a point of plane (xOy).
 - 1- Calculate, in tems of X, the distance MH of the point M to the plane (P) and show that if MO = MH, then X and Y must verify the relation $9X^2 + 25Y^2 96X 144 = 0$
 - 2- Deduce from this relation that the set of points, of the plane (xOy), equidistant from O and (P) is an ellipse (E) whose center, its focii and the eccentricity are to be determined.
 - 3- The plane (P) cuts (xOy) along a straight line (d).
 - a- Write a system of parametric equations of (d).
 - b- Show that (d) is a directrice of (E).

Entrance Exam 2002-2003

Solution of Mathematics

Duration: 3 hours July 2002

I. Part A

1) a-
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left(1 - \frac{\ln|x|}{x} \right) = +\infty$$
$$\lim_{x \to -\infty} f(x) = -\infty - \infty = -\infty$$
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} -\ln|x| = +\infty$$

b- x = 0 is an asymptote to (C)

2) $f'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$, then the table of variations of f is the following:

$-\infty$	0		1	$+\infty$
+		_	0 +	
-	$-\infty$ $+ \infty$	0	. "	+ ∞
1				7
$-\infty$			1	
	+	+ 0 + 0	+ 0 + 0	+ 0 + 0 +

3) a-
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 - \frac{\ln|x|}{x} \right) = 1$$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left(1 - \frac{\ln|x|}{x} \right) = 1$$

$$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} (-\ln|x|) = -\infty$$

$$\lim_{x \to -\infty} (f(x) - x) = \lim_{x \to -\infty} (-\ln|x|) = -\infty$$

Then, the straight line of equation y = x is an asymptotic direction to (C) at $+\infty$ and at $-\infty$

b- $f(x) - x = -\ln|x|$ then the following 3 cases result :

- (d) is above (C) for |x| < 1 that is for -1 < x < 1 with $x \ne 0$.
- (d) is below (C) for x > 1 or x < -1.
- (d) cuts (C) at the points of abscissas (1;1) and (-1;-1).

4)

5) a- The equation $x = \ln|x|$ is equivalent to $x - \ln|x| = 0$ that is to f(x) = 0, so it is sufficient to study the intersection between (C) and the axis x'(x).

Graphically, we notice that (C) cuts x' at a unique point of negative abscissa.

b-:
$$f(-0.568) = -0.002 < 0$$
 and $f(-0.566) = 0.0031 > 0$

then
$$-0.568 < \alpha < -0.566$$
. so $\alpha = -0.567$

B-1) a-
$$y' = e^{-x} (z' - z)$$
 and $y'' = e^{-x} (z'' - 2z' + z)$

Replacing y' and y'' in (E) we get: z'' = -2 (E').

Which gives z' = -2x + a and $z = -x^2 + ax + b$

b- The general solution (E) is $y = (-x^2 + a x + b) e^{-x}$

at
$$y(0) = -1$$
 gives $b = -1$.

 $y' = e^{-x} (-2x + a + x^2 - a + x - b), y'(0) = -1$ gives a - b = -1 then a = -2 and consequently the particular solution of (E) is : $y = (-x^2 - 2x - 1) e^{-x} = -(x+1)^2 e^{-x}$.

2) a-
$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} [-(x+1)^2 e^{-x}] = -\infty$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \left[\frac{-(x+1)^2}{e^x} \right] = 0$$

Then, the axis x'x is an asymptote to (C').

$$\lim_{x \to -\infty} \frac{g(x)}{x} = \lim_{x \to -\infty} [-(x+1)^2 \frac{e^{-x}}{x}] = +\infty$$

Hence, y'y is an asymptotic direction to (C') at $+\infty$.

b- $g'(x) = -2(x+1)e^{-x} + e^{-x}(x+1)^2 = (x^2-1)e^{-x}$, then, the table of variations of g is:

x	-8	-1		1 +∞
g'(x)	+	0	_	0 +
g(x)	-8	0		$-\frac{4}{e}$

$$-\frac{4}{a} \approx -1,471.$$

c-
$$A = -\int_{-1}^{1} g(x)dx$$
, if $G(x) = (ax^2 + bx + c)e^{-x}$ is antiderivative of g we get:

$$G'(x) = g(x)$$
, which gives: $-ax^2 - (b-2a)x - (-b+c) = -x^2 - 2x - 1$,

so
$$a = 1$$
; $b = 4$; $c = 5$ and consequently $G(x) = (x^2 + 4x + 5) e^{-x}$

Therefore,
$$A = -[G(x)]_{-1}^{1} = G(-1) - G(1) = 2e - \frac{10}{e}u^{2}$$

d- Let (d) be the straight line of equation y = k, parallel to x'x

If $k < -\frac{4}{e}$; (d) cuts (C) in a unique point, then the equation has one root only.

If $k = -\frac{4}{e}$, there are two roots which one is a double root x = 1

If $-\frac{4}{e} < k < 0$ there are three roots.

If k = 0, there is one double root x = -1

If k > 0, there are no roots.

C- The equation $x = \ln |x|$ has one negative root $\alpha = -0.567$ then $g(x) = \ln |x|$ has solutions for

g(x) = -0.567 But -1 < -0.567 < 0 then there 3 values of x of which one only is positive; $\beta > 1$. And since g(3,63) = -0.568 and g(3,64) = -0.565, we deduce that $3.63 < \beta < 3.64$.

II-

A- 1) a-
$$(\overrightarrow{DA}, \overrightarrow{DC}) = \frac{\pi}{2}(2\pi)$$
 and $DA = DC$ then $r = rot\left(D, \frac{\pi}{2}\right)$

$$r(O) = F$$
, since $DO = DF$ and $(\overrightarrow{DO}, \overrightarrow{DF}) = \frac{\pi}{2}(2\pi)$.

b- r(A) = C and r(O) = F, then, $(\overrightarrow{AO}, \overrightarrow{CF}) = \frac{\pi}{2}(2\pi)$ so the two straight lines (AO) and (CF)are perpendicular.

2) a- we have
$$\int DC = \frac{\sqrt{2}}{2}DB$$
 and
$$\int DF = \frac{\sqrt{2}}{2}DE$$

$$(\overrightarrow{DB}, \overrightarrow{DC}) = \frac{\pi}{4} (\text{mod } 2\pi)$$

$$(\overrightarrow{DE}, \overrightarrow{DF}) = \frac{\pi}{4} (2\pi)$$

and
$$DF = \frac{\sqrt{2}}{2}DE$$

$$(\overrightarrow{DE}, \overrightarrow{DF}) = \frac{\pi}{4}(2\pi)$$

then s(B) = C and s(E) = F

b-
$$s(B) = C$$
 and $s(E) = F$, then $(\overrightarrow{BE}, \overrightarrow{CF}) = \frac{\pi}{4}(2\pi)$

- 3) a- $(\vec{IB}, \vec{IC}) = (\vec{AB}, \vec{AC}) = \frac{\pi}{4}(2\pi)$ then the points *I*, *A*, *B* and *C* belong to the same circle then I is a point of the circle circumscribed about square ABCD
 - b-[AC] is a diameter of the circle circumscribe about square ABCD then $\stackrel{\circ}{AIC} = 90^{\circ}$ and consequently triangle AIC is right at I.
 - c- (AI) is perpendicular to (CF) and (AO) is perpendicular to (CF) then A, I, O are collinear, consequently, (AO), (BE) and (CF) are concurrent at I.
- B- 1) a- $A_1 = s(A)$, then A_1 is the midpoint of [BD] $A_2 = s(A_1)$, then triangle DA_1A_2 is right isosceles and $A_2 \in (CD)$.

 $A_3 = s(A_2)$, then triangle DA_2A_3 is right isosceles and $A_3 \in (DE)$.

 $A_4 = s(A_3)$, then triangle DA_3A_4 is right isosceles and $A_4 \in (DA)$;

2)
$$\ell_i = A_{i-1}A_i$$
, then $\ell_i = AA_1 = \frac{\sqrt{2}}{2}DA = \frac{\sqrt{2}}{2}L$

Triangle $DA_{i-1}A_i$ is right isosceles at A_i , then:

$$\ell_i = \frac{\sqrt{2}}{2}DA_{i-1} = \frac{\sqrt{2}}{2}A_{i-2}A_{i-1} = \frac{\sqrt{2}}{2}\ell_{i-1}$$
 so (ℓ_i) is a geometric sequence of the first term

 $\ell_1 = \frac{\sqrt{2}}{2}L$ and of common ratio $\frac{\sqrt{2}}{2}$.

3)
$$\ell_i = \ell_1 \left(\frac{\sqrt{2}}{2}\right)^{i-1} = \frac{\sqrt{2}}{2} L \left(\frac{\sqrt{2}}{2}\right)^{i-1} = L \left(\frac{\sqrt{2}}{2}\right)^{i}$$

4) $(\overrightarrow{DA}, \overrightarrow{DA}_8) = 8 \times \frac{\pi}{4} (2\pi) = 0(2\pi)$ and $DA_8 < L$. Therefore, $A_8 \in [DA]$.

5)
$$A_8 = F$$
 gives $A_7 A_8 = \ell_8 = DA_8 = DF$ Therefore: $\ell = \ell_8 = L \left(\frac{\sqrt{2}}{2}\right)^8 so$ $\ell = \frac{L}{16}$

C -1) D (-1; 0), the complex form of r is:

 $r: z \rightarrow Z = az + b$, with a = i and $-1 = \frac{b}{1-i}$; b = -1 + i therefore Z = iz + i - 1.

The complex form of s is: s: $z \rightarrow Z = az + b$ with: $a = \frac{\sqrt{2}}{2}e^{i\frac{\pi}{4}} = \frac{1+i}{2}$ and

$$-1 = \frac{b}{1 - \frac{1}{2} - \frac{i}{2}}$$
 so $b = \frac{i}{2} - \frac{1}{2}$ therefore $Z = \left(\frac{1+i}{2}\right)z - \frac{1}{2}(1-i)$

2) a- The ratio of the dilation is k = 3. The center of (γ) is $I\left(-\frac{1}{2}, \frac{1}{2}\right)$ and the center of (γ') is $I'\left(-\frac{5}{2}, \frac{3}{2}\right)$.

h(I) = I' then $\overrightarrow{WI'} = 3\overrightarrow{WI}$ then $z_r - z_w = 3z_1 - 3z_w$ which gives

$$2z_w = 3z_1 - 3z_r = 1$$
, so $z_w = \frac{1}{2}$

b- The complex form of h is : h: $z \rightarrow Z = kz + b$ with k = 3 and $\frac{1}{2} = \frac{b}{1-3}$ therefore b = -1 and consequently Z = 3z - 1.

III-1)
$$p(A) = p(F \cap T_3) = p(T_3).p(F/T_3) = \frac{1}{3} \times \frac{24}{40} = \frac{1}{5}$$

2)
$$p(B) = p(F) = p(F \cap T_1) + p(F \cap T_2) + p(F \cap T_3) = \frac{4}{9}$$

= $\frac{1}{3} \times \frac{8}{20} + \frac{1}{3} \times \frac{10}{30} + \frac{1}{3} \times \frac{24}{40} = \frac{4}{9}$

3)
$$p(T_3/F) = \frac{p(T_3 \cap F)}{p(F)} = \frac{p(A)}{p(B)} = \frac{9}{20}$$

IV- 1)
$$MH = \frac{|4x+12|}{\sqrt{16+9}} = \frac{4}{5}|x+3|.$$

MO =MH gives $\overline{MO}^2 = \overline{MH}^2$ then:

$$x^{2} + y^{2} = \frac{16}{25}(x^{2} + 9 + 6x) = 0$$
 that is $9x^{2} + 25y^{2} - 96x - 144 = 0$

2) The set of points of the plane (XOY) equidistant from O and from (P) is the curve of equation

$$9x^2 + 25y^2 - 96x - 144 = 0$$
 which is equivalent to :
$$\frac{\left(x - \frac{16}{3}\right)^2}{\frac{400}{9}} + \frac{y^2}{16} = 1$$

It is an ellipse of center $w(\frac{16}{3},0)$ and focal axis x'x.

But
$$c^2 = a^2 - b^2 = \frac{400}{9} - 16 = \frac{256}{9}$$
 then $c = \frac{16}{3}$.

The foci are:
$$F(\frac{16}{3} + \frac{16}{3}, 0) = F(\frac{32}{3}, 0)$$
 and $F'(\frac{16}{3} - \frac{16}{3}, 0) = F'(0, 0)$ and $e = \frac{c}{a} = \frac{\frac{16}{3}}{\frac{20}{3}} = \frac{4}{5}$

3) (d) is the intersection of (P) and (xOy), then : (d)
$$\begin{cases} 4x - 3z + 12 = 0 \\ z = 0 \end{cases}$$

a-A system of parametric equations of (d) is:
$$x = -3$$

(d) $\begin{cases} x = -3 \\ y = m \\ z = 0 \end{cases}$

b- One of the foci is 0

$$MO = MH = \frac{4}{5}|x+3|$$
 and $d(M;(d)) = |x+3|$, therefore $\frac{MO}{d(M,(d))} = \frac{\frac{4}{5}|x+3|}{|x+3|} = \frac{4}{5} = e$

Hence, (d) is the directrix of (E) associated to the focus O.