3.1 Binary number system

Binary Mumbers

Base 10 (decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Base 2 (binary): 0, 1

Base 16 (headcand): 0, 1, ... 9, A, B, C, D, E, F

example:
$$(17)_{10}$$
 $(1001)_2$ $(11)_{16}$

notation: $(115)_{10} = 1 \times (0^2 + 1 \times 10) + 5 \times 10^{\circ}$
 $(1001)_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^6 + 1 \times 2^{\circ}$

Conversion:

binary to decimal $(1011)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^4 + 1 \times 2^{\circ} = (11)_{10}$

decimal to binary: $A \Rightarrow (b \times 2^{04} + b_{D-2} \times 2^{02} + \cdots + b_1 \times 2^4 + b_0 \times 2^{\circ}) \stackrel{?}{+} 2$
 $(b_{D-1} \times 2^{0-2} + b_{D-2} \times 2^{0-3} + \cdots + b_1 \times 2^4 + b_0 \times 2^{\circ}) \stackrel{?}{+} 2$

example $(9)_{10} \stackrel{?}{+} 2$
 $(1)_{10} = 1 + 2$
 $(2)_{10} = 0 \stackrel{?}{+} 2$
 $(1)_{10} = 0 \stackrel{?}{+} 2$
 $(1)_{1$

1=1, connecting A to B; 1=0 no connection between A and B

if
$$\alpha=1$$
, then lights on $(L=1)$
 α [L] light if $\alpha=0$, then tights off $(L=0)$

L(x)=x Logie expression or Logie function

light's on if $x_1=1$ and $x_2=1$ otherwise off.

$$L(x_1, x_2) = x_1 \text{ and } x_2 = x_1 \cdot x_2 \text{ (e.g. } x_1 x_2)$$

$$= x_1 \cdot x_2 \text{ (e.g. } x_1 x_2)$$

$$= x_1 \cdot x_2 \text{ (e.g. } x_1 x_2)$$

AND" Switches in series

Lightian if $x_1=1$ or $x_2=1$ or both $L(x_1,x_2)=x_1$ or $x_2=x_1+x_2$ $=x_1 \mid x_2$

"OR" -> switches in parallel

Light's an if
$$x=0$$

$$L(x) = \overline{x} = !x = Not x = 0x$$

The system based on AND, OR, NOT with variables that can be "o" or "1" is called BOOLEAN LOGIC