## REGRESSION

## WILLIAM MCCLOSKEY

## 1. Regression

1.1. **Overview.** Consider the linear regression model  $y = X\beta + \epsilon$ , where  $X \in \mathbb{R}^{m \times n}$   $m \gg n$  is the design matrix of m data points,  $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$  is the noise vector, and y is the output vector. The goal is to estimate  $\beta$ .

The usual estimate  $\hat{\beta}$  of  $\beta$  is obtained by minimizing the mean-squared error

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta} \|y - X\beta\|_{2}^{2}$$

In statistics, it is usually assumed that X is full rank, and we get the estimate

$$\hat{\beta} = (X^T X)^{-1} X^T y.$$

The output vector  $y \sim \mathcal{N}(X\beta, \sigma^2 I)$  is normally distributed, so  $\hat{\beta}$  is normally distributed as well with

$$\hat{\beta} \sim \mathcal{N}(\beta, \, \sigma^2(X^T X)^{-1}).$$

Likewise the residual vector  $r = y - X\hat{\beta}$  has a normal distribution

$$r \sim \mathcal{N}(0, \sigma^2(I - X(X^T X)X^T)).$$

Geometrically  $X\hat{\beta}$  is the orthogonal projection of y onto the column space C(X) of X.



## 1.2. Distributional Results.

1.2.1. Estimating  $\sigma^2$ . The dimension of the space  $C(X)^{\perp}$  that contains the residual vector r is also called the degrees of freedom of r. This dimension is m-n.

Notice that r is normally distributed with  $r \sim \mathcal{N}(0, \sigma^2(I-X(X^TX)X^T))$ . Since  $I - X(X^TX)X^T$  is the projection matrix onto  $C(X)^{\perp}$ , it can be diagonalized in the form  $QI_{(m-n)}Q^T$  for some orthogonal matrix Q. Here  $I_{(m-n)}$  is a diagonal matrix with (m-n) ones and n zeros on the diagonal.

As a consequence, we see that  $Q^T r \sim \mathcal{N}(0, \sigma^2 I_{(m-n)})$ . Since orthogonal matrices are norm-preserving, we can calculate the distribution of the sum of squared residuals:

$$\sum_{i=1}^{m} r_i^2 = ||r||_2^2$$

$$= ||Q^T r||_2^2$$

$$= \sigma^2 \sum_{i=1}^{m-n} z_i^2$$

where  $z_i \stackrel{iid}{\sim} \mathcal{N}(0, 1)$ . So we get the distributional result

$$\sum_{i=1}^{m} r_i^2 \sim \sigma^2 \chi_{(m-n)}^2.$$

As a result, the estimator  $\hat{\sigma}^2 = \frac{1}{m-n} \sum_{i=1}^m r_i^2$  has the distribution

$$\hat{\sigma}^2 \sim \sigma^2 \left( \frac{1}{m-n} \chi^2_{(m-n)} \right)$$

with expectation  $\sigma^2$ .

1.2.2. The F-test. The vector  $y \sim \mathcal{N}(X\beta, \sigma^2 I)$  is multivariate normal. We can make use of the following property of multivariate normal variables.

**Property 1.** Suppose  $y \in \mathbb{R}^m$  is a multivariate normal random variable with covariance matrix  $\sigma^2 I$  and  $U, V \subset \mathbb{R}^m$  are orthogonal subspaces. Then  $z_1 = \operatorname{Proj}_U(y)$  and  $z_2 = \operatorname{Proj}_V(y)$  are each (possibly degenerate) multivariate normal random variables. Moreover,  $z_1$  and  $z_2$  are independent.

*Proof.* First consider the case where U, V are subspaces spanned by standard basis vectors. Then the result holds since  $y_1, \ldots, y_m$  are independent random normal variables (because the covariance matrix of y is  $\sigma^2 I$ ). The general case reduces to the previous case by multiplying by an orthogonal matrix so that U and V are spanned by standard

basis vectors, and noting that the covariance matrix of y is unchanged by this transformation.

We get the following distributional results.

**Property 2.** Consider the setting of Property 1, and suppose additionally that  $\mathbb{E}(z_1) = \mathbb{E}(z_2) = 0$ . Then the following distributional results hold:

$$||z_1||_2^2 \sim \sigma^2 \chi_{\dim(U)}^2$$

$$||z_2||_2^2 \sim \sigma^2 \chi_{\dim(V)}^2$$

In particular,

$$\frac{\|z_1\|_2^2/\dim(U)}{\|z_2\|^2/\dim(V)} \sim F_{\dim(U),\dim(V)}.$$

*Proof.* As in the proof of Property 1, let Q be an orthogonal matrix so that QU is spanned by the first  $\dim(U)$  standard basis vectors  $e_1, \ldots, e_{\dim(U)}$ . Then by orthogonality

$$||z_1||_2^2 = ||Qz_1||_2^2.$$

We additionally have the following equalities

$$Qz_1 = Q\operatorname{Proj}_U(y)$$

$$= \operatorname{Proj}_{QU}(Qy)$$

$$= ((Qy)_1, \dots, (Qy)_{\dim(U)}, 0, \dots, 0)$$

Since  $\mathbb{E}(z_1) = 0$  and Qy has covariance matrix  $\sigma^2 I$ , we obtain

$$||z_1||_2^2 = ||((Qy)_1, \dots, (Qy)_{\dim(U)})||_2^2 \sim \sigma^2 \chi^2_{\dim(U)}.$$

The rest of the result follows by applying the definition of the F distribution and noting that  $z_1$  and  $z_2$  are independent.

The F distribution in the F-test and ANOVA arises exactly from Property 2.

For the F test, we consider a model obtained by linear regression but with some of the columns of X removed. We are testing the null hypothesis that  $\beta_{i_1} = \beta_{i_2} = \ldots = \beta_{i_\ell} = 0$  for the coefficients corresponding to these columns. Denote the full design matrix by  $X_{\text{FULL}}$  and the design matrix with columns removed by  $X_{\text{SUB}}$ , so that under the null hypothesis  $X_{\text{FULL}}\beta = X_{\text{SUB}}\beta_{\text{SUB}}$ . Likewise, let  $(X\hat{\beta})_{\text{FULL}}$  and  $(X\hat{\beta})_{\text{SUB}}$  be the respective projections of y onto  $C(X_{\text{FULL}})$  and  $C(X_{\text{SUB}})$ .



We want to apply Property 2 to obtain the F distribution. To do so, we need to choose suitable orthogonal subspaces U and V. Let  $U = C(X_{SUB})^{\perp} \cap C(X_{FULL})$  and let  $V = C(X_{FULL})^{\perp}$ . Then we have

$$(X\hat{\beta})_{\text{FULL}} - (X\hat{\beta})_{\text{SUB}} = \text{Proj}_{U}(y)$$
  
 $r_{\text{FULL}} = \text{Proj}_{V}(y)$ 

Next, observe that under the null hypothesis, we can write

$$y = X_{\text{FULL}}\beta + \epsilon = X_{\text{SUB}}\beta_{\text{SUB}} + \epsilon,$$

and it follows that the projected means  $\mathbb{E}(\text{Proj}_U(y))$  and  $\mathbb{E}(\text{Proj}_V(y))$  are 0. As a result, we can apply Property 2 to get the F-distribution

$$\frac{\|(X\hat{\beta})_{\text{FULL}} - (X\hat{\beta})_{\text{SUB}}\|_2^2 / \dim(U)}{\|r_{\text{FULL}}\|_2^2 / \dim(V)} \sim F_{\dim(U),\dim(V)}.$$

Finally, by orthogonality  $||r_{\text{SUB}}||_2^2 - ||r_{\text{FULL}}||_2^2 = ||(X\hat{\beta})_{\text{FULL}} - (X\hat{\beta})_{\text{SUB}}||_2^2$ , so we get the F-test

$$\frac{(\|r_{\text{SUB}}\|_{2}^{2} - \|r_{\text{FULL}}\|_{2}^{2})/\dim(U)}{\|r_{\text{FULL}}\|_{2}^{2}/\dim(V)} \sim F_{\dim(U),\dim(V)}.$$

In particular, if  $X_{FULL}$  is a full rank  $m \times n$  matrix and  $X_{SUB}$  is  $m \times p$ , we get  $\dim(U) = n - p$  and  $\dim(V) = m - n$  so

$$\frac{(\|r_{\text{SUB}}\|_2^2 - \|r_{\text{FULL}}\|_2^2)/(n-p)}{\|r_{\text{FULL}}\|_2^2/(m-n)} \sim F_{n-p,m-n},$$

which is the familiar formula for the F-test.

1.2.3. One-way ANOVA. The F-distribution for one-way ANOVA arises in the same manner as the F test. Suppose we have a one-way ANOVA model with k groups and let  $X_{\rm FULL}$  be the  $m \times k$  matrix such that

$$(X_{\text{FULL}})_{i,j} = \begin{cases} 1 & \text{if measurement } i \text{ belongs to the } j \text{th group} \\ 0 & \text{otherwise} \end{cases}$$

Likewise, index y by letting  $y_{i,j}$  correspond to the ith measurement of the jth group. The null hypothesis is that  $\beta_j = \mathbb{E}(y_{\cdot,\cdot})$  for  $j = 1, \ldots, k$ , i.e. that the expected measurement for each group is the same.

Next, let  $X_{\text{SUB}} = \mathbf{1}_{m \times 1}$  and observe that under the null hypothesis  $X_{\text{FULL}}\beta = X_{\text{SUB}}\beta_1 \subseteq C(X_{\text{SUB}})$ . As a result, one can show that the arguments from Section 2 apply here as well. Writing  $\bar{y}^{(j)}$  as the mean for the j-th group and noting that  $(X\hat{\beta})_{\text{SUB}} = \mathbf{1}_{m \times 1}\bar{y}$ , we find

$$\|(X\hat{\beta})_{\text{FULL}} - (X\hat{\beta})_{\text{SUB}}\|_{2}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{m_{j}} (\bar{y}^{(j)} - \bar{y})^{2}$$

$$||r_{\text{FULL}}||_2^2 = \sum_{j=1}^k \sum_{i=1}^{m_j} (y_{i,j} - \bar{y}^{(j)})^2.$$

From the previous section,

$$\frac{\|(X\hat{\beta})_{\text{FULL}} - (X\hat{\beta})_{\text{SUB}}\|_2^2 / \dim(U)}{\|r_{\text{FULL}}\|_2^2 / \dim(V)} \sim F_{\dim(U),\dim(V)},$$

so we obtain the familiar one-way ANOVA test

$$\frac{\left(\sum_{j=1}^{k}\sum_{i=1}^{m_j}(\bar{y}^{(j)}-\bar{y})^2\right)/(k-1)}{\left(\sum_{j=1}^{k}\sum_{i=1}^{m_j}(y_{i,j}-\bar{y}^{(j)})^2\right)/(m-k)} \sim F_{k-1,m-k}.$$

1.2.4. Intuition. Intuitively, what's going on in the previous two sections is as follows. The null hypothesis is that  $X_{\text{FULL}}\beta = X_{\text{SUB}}\beta_{\text{SUB}}$ , i.e. that  $y = X_{\text{SUB}}\beta_{SUB} + \epsilon$ , where  $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$ . In this scenario, Property 1 says that the component  $z_1$  of the noise  $\epsilon$  in the subspace  $U = C(X_{\text{FULL}}) \cap C(X_{\text{SUB}})^{\perp}$  and the component  $z_2$  in the subspace  $V = C(X_{\text{FULL}})^{\perp}$  are independent Gaussians whose covariance matrices are essentially  $\sigma^2 I_{\dim(U)}$  and  $\sigma^2 I_{\dim(V)}$ . As a result,

$$\frac{\|z_1\|_2^2/\dim(U)}{\|z_2\|_2^2/\dim(V)} \sim F_{\dim(U),\dim(V)}.$$

A helpful way to think of the distribution of  $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$  is that  $\epsilon$  is a random variable that can be written as

$$\epsilon = \sigma(\sum_{i=1}^{m} \alpha_i q_i)$$

where  $\alpha_1 \dots \alpha_m$  are independent  $\mathcal{N}(0, 1)$  random variables and  $q_1 \dots q_m$  is any arbitrary orthonormal basis. After selecting  $q_1, \dots, q_m$  by extending orthonormal bases for U and V (note U, V are orthogonal), one can see that  $||z_1||_2^2 / \dim(U) \sim \sigma^2 \chi^2_{\dim(U)}$  and  $||z_2||_2^2 / \dim(V) \sim \sigma^2 \chi^2_{\dim(V)}$  are independent so their ratio has distribution  $F_{\dim(U),\dim(V)}$ .

1.2.5. Sample Variance. Suppose  $Y_1, \ldots, Y_m$  are i.i.d. random variables. The naive estimator  $\frac{1}{m} \sum_{i=1}^m (Y_i - \hat{\mu})^2$  for the variance is biased, and instead the sample variance  $\hat{\sigma}^2$  is defined as

$$\hat{\sigma}^2 = \frac{1}{m-1} \sum_{i=1}^{m} (Y_i - \hat{\mu})^2,$$

which is unbiased. The usual intuition is that the sample mean  $\hat{\mu}$  is correlated with each  $Y_i$ . Consequently, each term in the sum is slightly smaller than if one were to replace  $\hat{\mu}$  instead of  $\mu$ , and then some algebra is done to compute that m-1 is the correct normalizing factor.

Our previous work provides another way to obtain this (m-1) factor. Consider the case where  $Y_1 \dots Y_m$  are independent  $N(\mu, \sigma^2)$  random variables. Letting X be the  $m \times 1$  design matrix of ones  $X = \mathbf{1}_{m \times 1}$  and also writing  $\beta = \mu$  and  $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$ , we obtain the regression model  $Y = X\beta + \epsilon$ . So our unbiased estimate for the variance from section 1.2.1 yields

$$\hat{\sigma}^2 = \frac{1}{m-1} \sum_{i=1}^m r_i^2$$
$$= \frac{1}{m-1} \sum_{i=1}^m (Y_i - \hat{\mu})^2$$

To make things clear here, n=1 because X has one column. This means C(X) is one dimensional so  $r \in C(X)^{\perp}$  lives in an m-1 dimensional subspace.