C*-Algebras

Ikhan Choi

September 12, 2023

Contents

I	Constructions	3
1	Completely positive maps 1.1 Operator systems and spaces 1.2 Dilations and Extensions 1.3 Completely bounded maps 1.4 Tensor products	4 4 5 6 6
2	Hilbert modules 2.1 Hilbert modules 2.2 Multiplier algebras 2.3 Pimsner algebras 2.4 Mortia equivalence	7 7 8 8 9
	3.1 Crossed products 3.2 Graph algebras 3.3 Groupoid algebras 3.4 Free products	10 10 11 11 11
II	Properties	12
4	Approximation properties4.1 Nuclearity and exactness	13 13 14 14
5	Amenability 5.1 Amenable groups	15 15 15 15 15
6	Simplicity	16
II	I Invariants	17
7	Operator K-theory 7.1 Homotopy of C*-algebras	18 18 19

8	KK-theory	20
	8.1 Cuntz pairs	20
	8.2 Kasparov modules	20
9	Cuntz semigroup	2 1
IV	V Classification	22
10) Simple nuclear algebras	23
	10.1 AF-algebras	23
	10.2 Elliott invariant	
	10.3 Kirchberg-Phillips theorem	
	10.4 Classifiability	
11	l Continuous fields	24
	11.1 Banach bundles	24
	11.2 Dixmier-Douady theory	24

Part I Constructions

Completely positive maps

1.1 Operator systems and spaces

- 1.1 (Choi-Effros characterization).
- 1.2 (Von Neumann inequality).
- **1.3** (*n*-positive maps). Let S be an operator system. Let A and B be C^* -algebras.
 - (a) (Cauchy-Schwarz inequality) Let $\varphi: A \to B$ be a 2-positive map. Then,

$$\varphi(a)^* \varphi(a) \le \lim_{\alpha} \|\varphi(e_{\alpha})\| \varphi(a^*a)$$

for all $a \in A$, where e_a be an approximate unit of A. In particular, $\lim_{\alpha} \|\varphi(e_{\alpha})\| = \|\varphi\|$.

(b) (Multiplicative domain) Let $\varphi: A \to B$ be a 4-positive map with $\|\varphi\| = 1$. If $a \in A$ satisfies $\varphi(a)^*\varphi(a) = \varphi(a^*a)$, then $\varphi(b)\varphi(a) = \varphi(ba)$ for all $b \in A$. In particular, if $\varphi: B \to C$ is an extension of a *-homomorphism $\pi: A \to C$, then $\varphi(ab) = \pi(a)\varphi(b)$ and $\varphi(ba) = \varphi(b)\pi(a)$ for $a \in A$ and $b \in B$.

Proof. (a) Consider B to act on a Hilbert space H non-degenerately and faithfully. The 2-positivity of φ and

$$\begin{pmatrix} e_{\alpha}^{2} & e_{\alpha}a \\ a^{*}e_{\alpha} & a^{*}a \end{pmatrix} = \begin{pmatrix} e_{\alpha} & a \\ 0 & 0 \end{pmatrix}^{*} \begin{pmatrix} e_{\alpha} & a \\ 0 & 0 \end{pmatrix} \ge 0$$

implies

$$\begin{pmatrix} \varphi(e_{\alpha}^2) & \varphi(e_{\alpha}a) \\ \varphi(a^*e_{\alpha}) & \varphi(a^*a) \end{pmatrix} \ge 0,$$

which is equivalent to have

$$\langle \varphi(e_{\alpha}^{2})\xi, \xi \rangle + 2\operatorname{Re}\langle \varphi(e_{\alpha}a)\eta, \xi \rangle + \langle \varphi(a^{*}a)\eta, \eta \rangle \geq 0$$

for any $\xi, \eta \in H$. We put $\xi := -(\|\varphi(e_a)\| + \varepsilon)^{-1} \varphi(e_a a) \eta$ for $\varepsilon > 0$ to get

$$(\|\varphi(e_{\alpha})\| + \varepsilon)\varphi(a^*a) \ge \varphi(e_{\alpha}a)^*(2 - (\|\varphi(e_{\alpha})\| + \varepsilon)^{-1}\varphi(e_{\alpha}^2))\varphi(e_{\alpha}a)$$

$$\ge \varphi(e_{\alpha}a)^*\varphi(e_{\alpha}a).$$

We have the desired inequality by taking limits for α and ε .

(b) The 2-positivity of φ_2 gives

$$\varphi_2\!\left(\!\left(\begin{matrix} a & b \\ 0 & 0 \end{matrix}\right)\!\right)^*\varphi_2\!\left(\!\left(\begin{matrix} a & b \\ 0 & 0 \end{matrix}\right)\!\right)\! \leq \varphi_2\!\left(\!\left(\begin{matrix} a^*a & a^*b \\ b^*a & b^*b \end{matrix}\right)\!\right),$$

so

$$\begin{pmatrix} 0 & \varphi(a^*b) - \varphi(a^*)\varphi(b) \\ \varphi(b^*a) - \varphi(b^*)\varphi(a) & \varphi(b^*b) - \varphi(b^*)\varphi(b) \end{pmatrix} \ge 0,$$

which implies $\varphi(b^*a) - \varphi(b^*)\varphi(a) = 0$ for any $b \in A$.

Note that $\|\pi\| = 1$ if π is not trivial. Using the above argument for a and a^* , we are done.

- **1.4** (Russo-Dye theorem). If $C(X) \to B$ is positive, then it is completely positive.
- **1.5** (Completely positive maps for matrix algebras). Let A be a C^* -algebra.
 - (a) Choi matrix
 - (b) There is a one-to-one correspondence

$$CP(M_n(\mathbb{C}), A) \to M_n(A)_+ : \varphi \mapsto [\varphi(e_{ij})].$$

(c) Let *A* be unital. There is a one-to-one correspondence

$$\mathrm{CP}(A, M_n(\mathbb{C})) \to M_n(A)_+^* : \varphi \mapsto (s_\varphi : [a_{ij}] \mapsto \sum_{i,j} \langle \varphi(a_{ij}) e_j, e_i \rangle).$$

(d) The above correspondences are (maybe?) isometric if we endow the complete norm on CP.

Proof. (b)

1.2 Dilations and Extensions

1.6 (Stinespring dilation). Let A be a C^* -algebra and $\varphi: A \to B(H)$ is a completely positive map. There exist a representation $\pi: A \to B(K)$ and a bounded linear operator $V: H \to K$ such that $\varphi(a) = V^*\pi(a)V$ for $a \in A$.

- (a) If $\|\varphi\| = 1$, then *V* is an isometry.
- **(b)**
- (c) We can take π to be minimal in the sense that $\overline{\pi(A)VH} = K$.

1.7 (Arveson extension). Let $A \subset B$ be C^* -algebras. Let $\varphi : A \to B(H)$ be a completely positive map and consider the following diagram:

- (a) The norm preserving completely positive extension $\widetilde{\varphi}$ of φ exists if B is unital and $1_B \in A$.
- (b) The norm preserving completely positive extension $\widetilde{\varphi}$ of φ exists if A is unital and $B = A \oplus \mathbb{C}$.
- (c) The norm preserving completely positive extension $\widetilde{\varphi}$ of φ exists if A is non-unital and $B = \widetilde{A}$.
- (d) The norm preserving completely positive extension $\widetilde{\varphi}$ of φ always exists.

extension of representations for ideals unique extension of c.p. maps for hereditary subalgebras.

1.3 Completely bounded maps

1.4 Tensor products

- **1.8** (Maximal tensor products). Let A and B be C^* -algebras.
 - (a) A commuting pair of *-homomorphisms $\pi: A \to B(H)$ and $\pi': B \to B(H)$ corresponds to a *-homomorphism $\Pi: A \odot B \to B(H)$ via the relation $\Pi(a \otimes b) = \pi(a)\pi'(b)$.
 - (b) $A \odot B$ admits a *-representation and every norms induced from these *-representations are uniformly bounded. So, we can define a maximal tensor norm on $A \odot B$.
 - (c) $a \otimes -: B \to A \odot B$ is a bounded linear map for each $a \in A$ with respect to any C*-norm on $A \odot B$. [BO, 3.2.5]
- 1.9 (Minimal tensor product). spatiality
- 1.10 (Takesaki theorem).

Tensors with $M_n(\mathbb{C})$, $C_0(X)$.

1.11 (Haagerup tensor product).

Trick

Exercises

1.12. Let *A* be a hereditary C*-subalgebra of a C*-algebra *B* and let $b \in B_+$. If for any $\varepsilon > 0$ there is $a \in A_+$ such that $b - a \le \varepsilon$, then $b \in A$.

Proof. For $a \in A_+$ satisfying $b \le a + \varepsilon \le (a^{\frac{1}{2}} + \varepsilon^{\frac{1}{2}})^2$, define

$$a_{\varepsilon} := a^{\frac{1}{2}} (a^{\frac{1}{2}} + \varepsilon^{\frac{1}{2}})^{-1} b a^{\frac{1}{2}} (a^{\frac{1}{2}} + \varepsilon^{\frac{1}{2}})^{-1} \in A.$$

Then,

$$\|b^{\frac{1}{2}} - b^{\frac{1}{2}}a^{\frac{1}{2}}(a^{\frac{1}{2}} + \varepsilon^{\frac{1}{2}})^{-1}\|^{2} = \varepsilon\|(a^{\frac{1}{2}} + \varepsilon^{\frac{1}{2}})^{-1}b(a^{\frac{1}{2}} + \varepsilon^{\frac{1}{2}})^{-1}\| \le \varepsilon.$$

Thus $a_{\varepsilon} \to b$ in norm as $\varepsilon \to 0$.

Hilbert modules

2.1 Hilbert modules

- **2.1** (Banach modules). Let A be a Banach algebra. A *Banach A-module* is a Banach space \mathcal{E} which is a A-module such that the action is bounded.
 - (a) (Cohen factorization theorem) If A has a left approximate unit, then $A\mathcal{E}$ is closed in \mathcal{E} .

Proof. Suppose ξ belongs to the closure of $A\mathcal{E}$ and take $\varepsilon > 0$. We will construct a decreasing sequence a_n in the unitization \widetilde{A} such that $a_n^{-1}\xi$ and a_n are both Cauchy. In order to do this, we first need to check $a_n^{-1} \in \widetilde{A} \setminus A$ can act on \mathcal{E} , which is easy anyway.

Let $a_0=1$ and suppose we have defined $a_n\geq 2^{-n}$. Take $b\in A$ and η such that $\|\xi-b\eta\|<\varepsilon 2^{-(2n+1)}$. Take $e\in A$ such that $\|a_n^{-1}b-ea_n^{-1}b\|\|\eta\|<\varepsilon 2^{-(n+1)}$. Now inductively define

$$a_{n+1} := a_n - 2^{-(n+1)}(1-e) \in \widetilde{A}$$

so that $a_{n+1} \ge 2^{-(n+1)}$ is invertible.

Then, we can check a_n is Cauchy whose limit point belongs to A, and $a_n^{-1}\xi$ is Cauchy because by the identity

$$a_{n+1}^{-1} - a_n^{-1} = a_{n+1}^{-1}(a_n - a_{n+1})a_n^{-1} = a_{n+1}^{-1}2^{-(n+1)}(1 - e)a_n^{-1}$$

we get

$$\begin{split} \|a_{n+1}^{-1}\xi-a_n^{-1}\xi\| &\leq \|a_{n+1}^{-1}-a_n^{-1}\| \|\xi-b\eta\| + \|(a_{n+1}^{-1}-a_n^{-1})b\| \|\eta\| \\ &\leq 2^n \cdot \varepsilon 2^{-(2n+1)} + \varepsilon 2^{-(n+1)} = \varepsilon 2^{-n}. \end{split}$$

2.2 (Finsler modules). Let A be a C^* -algebra.

- **2.3** (Hilbert modules). Let A be a C^* -algebra. A *Hilbert A-module* is a complex linear space \mathcal{E} which is a right A-module together with a
 - (i) a ring homomorphism $A^{op} \to \operatorname{End}_{\mathbb{C}}(\mathcal{E})$,
 - (ii) an *A*-valued inner product $\langle \cdot, \cdot \rangle : \mathcal{E} \times \mathcal{E} \to A$ which is *A*-linear in second argument,

which is complete with respect to the norm $\|\xi\| := \|\langle \xi, \xi \rangle\|^{\frac{1}{2}}$.

(a)

constructions: direct sum, tensor product, localization

examples: A itself

2.2 Multiplier algebras

- **2.4** (Double centralizer characterization). Let A be a C^* -algebra. A *double centralizer* of A is a pair (L,R) of bounded linear maps on A such that aL(b) = R(a)b for all $a, b \in A$. The *multiplier algebra* M(A) of A is defined to be the set of all double centralizers of A. There is another characterization $M(A) := L_A(A)$, the set of adjointable operators to itself.
- **2.5** (Cohen factorization theorem). Let *A* be a non-unital C^* -algebra and \mathcal{E} be a left Banach *A*-module, i.e. a Then,

This theorem is generalized to a non-unital Banach algebra A with a bounded left approximate unit.

- **2.6** (Strict topology). (a) $\|\pi(a-e_{\alpha}a)\xi\|^2$
- **2.7** (Essential ideals). (a) Hilbert C*-module description
- **2.8** (Examples of multiplier algebras). (a) $M(K(H)) \cong B(H)$.
 - (b) $M(C_0(\Omega)) \cong C_b(\Omega)$.

Proof. (a)

(b) First we claim $C_0(\Omega)$ is an essential ideal of $C_b(\Omega)$. Since $C_b(\Omega) \cong C(\beta\Omega)$, and since closed ideals of $C(\beta\Omega)$ are corresponded to open subsets of $\beta\Omega$, $C_0(\Omega) \cap J$ is not trivial for every closed ideal J of $C_b(\Omega)$.

Now we have an injective *-homomorphism $C_b(\Omega) \to M(C_0(\Omega))$, for which we want to show the surjectivity. Let $g \in M(C_0(\Omega))_+$.

2.3 Pimsner algebras

- **2.9** (C*-correspondences). Let A be a C*-algebra. A C^* -correspondence over A is a right Hilbert A-module \mathcal{E} together with a *-homomorphism $\varphi: A \to B(\mathcal{E})$, called the *left action*. We say \mathcal{E} is *faithful* or *non-degenerate* if φ is faithful or non-degenerate, respectively.
 - (a) If $\varphi: A \to M(B)$ is a unital completely positive map, then we can construct a natural A-B-correspondence \mathcal{E} by mimicking the GNS construction on $A \odot B$.
 - (b) If $\varphi: A \to M(B)$ is a non-degenerate *-homomorphism, $\varphi \in \text{Mor}(A, B)$ in other words, then we can associate a canonical A-B-correspondence B such that the left action is realized with φ . More precisely, $\iota: \mathcal{E} \to B: a \otimes b \mapsto \varphi(a)b$ provides a well-defined linear isomorphism (surjectivity follows from the density of $\varphi(A)B$ in B and the Cohen factorization theorem) and the two actions on \mathcal{E} is described by $\iota(a\xi b) = \varphi(a)\iota(\xi)b$.
- **2.10.** Let \mathcal{E} be a C*-correspondence over a C*-algebra A. Let B be a C*-algebra and see it as a trivial C*-correspondence over B. A *representation* of \mathcal{E} on B is a pair (π, τ) of a *-homomorphism $\pi: A \to B$ and a linear map $\tau: \mathcal{E} \to B$ such that

$$\pi(\langle \xi, \eta \rangle) = \tau(\xi)^* \tau(\eta), \qquad \tau(\varphi(a)\xi) = \pi(a)\tau(\xi).$$

We define the Katsura ideal

$$J(\mathcal{E}) := \varphi^{-1}(K(\mathcal{E})) \cap \varphi^{-1}(0)^{\perp}.$$

A covariant representation is a representation of \mathcal{E} such that

$$\psi(\varphi(a)) = \pi(a), \qquad a \in J(\mathcal{E}).$$

(a) Let (A, \mathbb{Z}, α) be a C*-dynamical system and consider the canonical C*-correspondence A over A with the left action $\varphi := \alpha_1 \in \operatorname{Aut}(A) \subset \operatorname{Mor}(A)$. This correspondence is full, faithful, and non-degenerate. Note that also we have $J(A) = \varphi^{-1}(A) \cap A = A$. If (π, τ) is an any representation of this C*-correspondence A on B, then

How can we decribe representations of C*-correspondence *A* with left action $\varphi \in \text{Aut}(A)$ in terms of covariant representations of the C*-dynamical system (A, \mathbb{Z}, α) with $\alpha_n = \varphi^n$?

as a morphism sub and quotient, direct sum, tensor product, Toeplitz-Cuntz Toeplitz-Pimsner Cuntz-Pimsner Cuntz-Krieger Coactions and Fell bundles

2.4 Mortia equivalence

Induced representations?

Examples

3.1 Crossed products

3.1 (Group algebras).

type I, subhomogeneous crystallographic discrete heisenberg free groups projectionless of $C_*^*(F_2)$

- **3.2** (Enveloping C^* -algebras). Let A be a *-algebra. A C^* -norm is an submultiplicative norm satisfying the C^* -identity. Does A have enough *-representations?
 - (a) A complete C*-norm is unique if it exists.
 - (b) For every C*-norm α on A, there is a *-isometry $\pi: A \to B(H)$.
 - (c) For maximal C*-norm, there is a universal property. The maximal C*-norm can be obtained by running through cyclic representations.
- **3.3** (C*-dynamical system). Let G be a locally compact group. A C^* -dynamical system or a G-C*-algebra is a C*-algebra A together with a group homomorphism $\alpha: G \to \operatorname{Aut}(A)$ that is continuous in the point-norm topology. We will often write a triple (A, G, α) instead of A to refer a C*-dynamical system.
 - (a) There is an equivalence between categories of locally compact transformation groups and C*-dynamical system on abelian C*-algebras.

On U(H), the strict topology and the strong operator topology are equal. Therefore, we have three topologies to consider: strong, weak, and σ -weak.

3.4 (Covariant representation). Let G be a locally compact group.

A covariant representation of a C*-dynamical system (A, G, α) is a G-equivariant *-homomorphism $\pi: (A, G, \alpha) \to (B(H), G, \beta)$ for a C*-dynamical system $(B(H), G, \beta)$, where a Hilbert space H.

- (a) There exists a unitary representation $u: G \to B(H)$ such that $\pi(\alpha_s a) = u_s \pi(a) u_s^*$.
- (b) (Integrated form) There is a one-to-one correspondence between covariant representations of (A, G, α) and *-representations of $L^1(G, A)$. (non-degenerate)

Note that we have a homeomorphism $\operatorname{Aut}(K(H)) \cong PU(H)$ between the point-norm topology and the strong operator topology.

 \mathbb{Z} -action, Homeo-action, left multiplication of subgroup induced representation regular representation $(C_0(G), G, \lambda) \to (B(L^2(G)), G, \lambda)$.

commutative case

- 3.2 Graph algebras
- 3.3 Groupoid algebras
- 3.4 Free products

Part II Properties

Approximation properties

4.1 Nuclearity and exactness

finite dimensional[BO, 3.3.2], abelian, AF permanence properties

- **4.1** (Completely positive approximation property). Let A be a C^* -algebra.
 - (a) If A has the CPAP, then A is nuclear.
 - (b) If A is nuclear, then A has the CPAP.

Proof. (b)

Let $E \subset A$ and $F \subset A^*$ be finite subsets and fix $\varepsilon > 0$. We want to find completely positive contractions $\varphi : A \to M_n(\mathbb{C})$ and $\psi : M_n(\mathbb{C}) \to A$ such that

$$|l(a) - l(\psi \circ \varphi(a))| < \varepsilon$$

for $a \in E$ and $l \in F$. To implement the approximation, we would like to regard a bounded linear operator on A as a state of a tensor product of C^* -algebras, which maps $\theta \in B(A)$ to the linear functional characterized by $a \otimes l \mapsto l(\theta(a))$. However, since A^* is not a C^* -algebra, we embed A^* locally in B(H) through the Radon-Nikodym type result. Let $\pi: A \to B(H)$ be the cyclic representation obtained from a positive linear functional that dominates F and Ω the cyclic vector such that there is a linear map $\pi': F \to \pi(A)'$ satisfying

$$l(a) = \omega_{\Omega}(\pi(a)\pi'(l)) = \langle \pi(a)\pi'(l)\Omega, \Omega \rangle$$

for $a \in E$ and $l \in F$.

Since *A* is nuclear, we have a well-defined representation

$$\pi \times i : A \otimes_{\min} \pi(A)' \to B(H).$$

If we take any faithful representation $\rho: A \to B(K)$, then we obtain a fathful representation

$$\rho \otimes i : A \otimes_{\min} \pi(A)' \to B(K \otimes H).$$

By the Hahn-Banach separation, the state $\omega_{\Omega} \circ (\pi \times i)$ on $A \otimes_{\min} \pi(A)'$ can be approximated weakly* by convex combinations of vector states in $B(K \otimes H)$. In particular, by the density of $\pi(A)\Omega$ in H, we have algebraic tensors $(\tau_k)_{k=1}^m \subset K \odot \pi(A)\Omega$ such that

$$\left|\omega_{\Omega}((\pi \times i)(a \otimes \pi'(l))) - \sum_{k=1}^{m} \lambda_{k} \omega_{\tau_{k}}((\rho \otimes i)(a \otimes \pi'(l)))\right| < \varepsilon \tag{\dagger}$$

for all $a \in E$ and $l \in F$, where $\lambda_k \ge 0$, $\sum_{k=1}^m \lambda = 1$.

If we write each element $\tau \in K \odot \pi(A)\Omega$ as

$$\tau = \sum_{i=1}^n \eta_i \otimes \pi(b_i) \Omega,$$

then

$$\omega_{\tau}((\rho \otimes i)(a \otimes \pi'(l))) = \left\langle (\rho(a) \otimes \pi'(l)) \left(\sum_{j=1}^{n} \eta_{j} \otimes \pi(b_{j}) \Omega \right), \left(\sum_{i=1}^{n} \eta_{i} \otimes \pi(b_{i}) \Omega \right) \right\rangle$$

$$= \sum_{i,j=1}^{n} \left\langle \rho(a) \eta_{j}, \eta_{i} \right\rangle \left\langle \pi'(l) \pi(b_{i}^{*}b_{j}) \Omega, \Omega \right\rangle$$

$$= l \left(\sum_{i,j=1}^{n} \left\langle \rho(a) \eta_{j}, \eta_{i} \right\rangle b_{i}^{*}b_{j} \right).$$

If we define completely positive contractions $\varphi: A \to M_n(\mathbb{C})$ and $\psi: M_n(\mathbb{C}) \to A$ for each τ such that

$$\varphi(a) := [\langle \rho(a)\eta_i, \eta_i \rangle], \quad \psi([e_{ij}]) := b_i^* b_j,$$

then we have $\omega_{\tau}(a \otimes \pi'(l)) = l(\psi \circ \varphi(a))$.

Since $\mu(a \otimes \pi'(l)) = l(a)$ and since the completely positive contractions which factor through a matrix algebra form a convex set, we have completely positive contractions $\varphi: A \to M_n(\mathbb{C})$ and $\psi: M_n(\mathbb{C}) \to A$ such that the inequality (†) is rewritten as

$$|l(a)-l(\psi\circ\varphi(a))|<\varepsilon$$
,

so we are done. \Box

quotients of nuclear local reflexivity

a separable C*-algebra is nuclear if and only if every factor representation is hyperfinite.

Extension properties weak expectation property relatively weakly injective maximal tensor product inclusion problem

4.2 Quasi-diagonality

- 4.2 (Weyl-von Neumann theorem). A self-adjoint bounded operator is quasi-diagonal.
- 4.3 (Glimm lemma).
- 4.4 (Voiculescu theorem).
- **4.5** (Quasi-diagonal algebras). An operator $a \in B(H)$ is called *quasi-diagonal* if there is a net of projections $p_i \in B(H)$ such that $[p_i, a] \to 0$ in norm and $p_i \uparrow \mathrm{id}_H$ strongly. A C*-algebra is called *quasi-diagonal* if it admits a faithful representation whose image is quasi-diagonal.

faithful non-degenerate essential representations of a quasi-diagonal C*-algebra are all quasi-diagonal locally quasi-diagonal

4.3 AF-embeddability

Amenability

5.1 Amenable groups

5.2 Amenable actions

crossed products Z_2 -grading Connes-Feldman-Weiss Anantharaman-Delaroche Gromov boundaries approximately central structure? dynamical Kirchberg-Phillips stably finite dynamical Elliott program Ornstein-Weiss-Rokhlin lemma

5.3 Exact groups

Exact groups

5.4 Other properties

Kazdahn property (T) factorization property Haagerrup property Kaplansky conjecture

Simplicity

Furstenburg boundary

Part III

Invariants

Operator K-theory

7.1 Homotopy of C*-algebras

7.1 (Homotopy of *-homomorphisms). Let A, B be C^* -algebras. Two *-homomorphisms in Mor(A, B) are said to be *homotopic* if they are connected by a path in Mor(A, B) that is continuous with the point-norm topology.

(a) For pointed compact Hausdorff spaces $(X, x_0), (Y, y_0)$, two pointed maps $\varphi_0, \varphi_1 : X \to Y$ are homotopic if and only if $\varphi_0^*, \varphi_1^* : C_0(Y \setminus \{y_0\}) \to C_0(X \setminus \{x_0\})$ are homotopic.

Proof. (a) Suppose φ_0 and φ_1 are connected by a homotopy φ_t . Fixing $g \in C_0(Y)$ and $t_0 \in I$, we want to show

$$\lim_{t \to t_0} \sup_{x \in V} |g(\varphi_t(x)) - g(\varphi_{t_0}(x))| = 0.$$

Since the function g is uniformly continuous, with respect to an arbitrarily chosen uniformity on Y, so that there is an entourage $E \subset Y \times Y$ such that $(y,y') \in E \circ E$ implies $|g(y)-g(y')| < \varepsilon$. Using compactness we have a finite sequence $(y_i)_{i=1}^n \subset Y$ such that for every y there is y_i satisfying $(y,y') \in E$. Then, $\varphi^{-1}(E[y_i])$ is a finite open cover of $X \times I$, so we have δ such that $|t-t_0| < \delta$ implies for any $x \in X$ the existence of i satisfying $(\varphi_t(x), y_i) \in E$ and $(\varphi_{t_0}(x), y_i) \in E$, which deduces the desired inequality.

Conversely, suppose φ_0^* and φ_1^* are connected by a homotopy φ_t^* . By taking dual, we can induce $\varphi_t: X \to Y$ such that $g(\varphi_t(x)) = (\varphi_t^*g)(x)$ for each $g \in C(Y)$ from φ_t^* via the embedding $X \to M(X)$ by Dirac measures. Let V be an open neighborhood of $\varphi_{t_0}(x_0)$ and take $g \in C(Y)$ such that $g(\varphi_{t_0}(x_0)) = 1$ and g(y) = 0 for $y \notin V$. Now we have an open neighborhood U of x_0 such that $x \in U$ implies $|(\varphi_{t_0}^*g)(x) - (\varphi_{t_0}^*g)(x_0)| < \frac{1}{2}$. Also we have $\delta > 0$ such that $|t - t_0| < \delta$ implies $||\varphi_t^*g - \varphi_{t_0}^*g|| < \frac{1}{2}$. Therefore, $(x,t) \in U \times (t_0 - \delta, t_0 + \delta)$ implies $g(\varphi_t(x)) > 0$, hence $\varphi_t(x) \in V$, which means $X \times I \to Y: (x,t) \mapsto \varphi_t(x)$ is continuous.

We have $\widetilde{K}^n(X, x_0) = K_n(C_0(X \setminus \{x_0\}))$ for a pointed compact Hausdorff space X. Now then since the inclusion $\{x_0\} \to X$ induces the section so that

$$0 \to K_0(C_0(X \setminus \{x_0\})) \to K_0(C(X)) \to K_0(\{x_0\}) \to 0$$

splits, we have

$$K^{0}(X) = \widetilde{K}^{0}(X, x_{0}) \oplus \mathbb{Z} = K_{0}(C_{0}(X \setminus \{x_{0}\})) \oplus K_{0}(\{x_{0}\}) = K_{0}(C(X))$$

for a compact connected Hausdorff space X. The additivity of K_0 and K^0 removes the connectedness condition.

$$K_0(\mathbb{C}) = \mathbb{Z}, \quad K_0(C_0(\mathbb{R})) = 0, \quad K_1(C_0(\mathbb{R})) = K_0(C_0(\mathbb{R}^2)) = \mathbb{Z}$$

 $K^0(*) = \mathbb{Z}, \quad K^0(S^1) = \mathbb{Z}, \quad K^1(S^1) = K^0(S^2) = \mathbb{Z}[x]/(x-1)^2$

7.2 Brown-Douglas-Fillmore theory

7.2 (Haagerup property).

Baum-Connes conjecture Non-commutative geometry Elliott theorem

KK-theory

- 8.1 Cuntz pairs
- 8.2 Kasparov modules

Cuntz semigroup

Part IV Classification

Simple nuclear algebras

- 10.1 AF-algebras
- 10.2 Elliott invariant
- 10.3 Kirchberg-Phillips theorem

10.4 Classifiability

Jiang-Su stability Universal coefficient theorem

Toms-Winter conjecture strongly self-absorbing nuclear dimension

successful in Kirchberg algebras

https://arxiv.org/pdf/2307.06480.pdf

Elliott classification problem Kirchberg-Phillipes theorem

operator K-theory and its pairing with traces

 \mathcal{Z} -stability, Rosenberg-Schochet universal coefficient theorem

Connes-Haagerup classification of injective factors

Kirchberg: unital simple separable \mathcal{Z} -stable algebra is either purely infinte or stably finite. Haagerup,

Blackadar, Handelman: unital simple stably finite algebra has a trace.

Glimm: uniformly hyperfinite algebras Murray-von Neumann: hyperfinite II_1 factors

Continuous fields

11.1 Banach bundles

11.1 (Banach bundles). A *Banach bundle*, introduced by Fell, is a continuous open surjection $\pi : E \to X$ between topological spaces together with Banach space structure on each fiber $\pi^{-1}(x)$ such that:

- (i) the addition $\{(e, e') : \pi(e) = \pi(e')\} \subset E \times E \to E : (e, e') \mapsto e + e'$ is continuous,
- (ii) the scalar multiplication $\mathbb{C} \times E \to E : (\lambda, e) \mapsto \lambda e$ is continuous,
- (iii) the norm $E \to \mathbb{R}_{\geq 0} : e \mapsto ||e||$ is continuous,
- (iv) the family of subsets

$${e \in B : \pi(e) \in U, \|e\| < r}_{U \in N(x), r > 0}$$

forms a neighborhood basis of $0 \in \pi^{-1}(x)$ in E.

The forth condition is equivalent to that if $||e_i|| \to 0$ and $\pi(e_i) \to x$ then $e_i \to 0_x \in \pi^{-1}(x)$.

- (a) For a Banach bundle $E \to X$, if X is locally compact Hausdorff and every fiber E_X shares a same finite dimension, then the bundle is locally trivial.
- 11.2 (Continuous fields of Banach spaces).
- **11.3** (Hilbert bundles). A *Hilbert bundle* is a Banach bundle whose norm function satisfies the parallelogram law.
 - (a) On a compact X, there is an equivalence between the category of Hilbert C(X)-modules and the category of Hilbert bundles over X.
 - (b) On a compact X, there is an equivalence between the category of algebraically finitely generated Hilbert C(X)-modules and the category of classical locally trivial finite-rank complex vector bundle over X. It is due to that finitely generatedness implies the projectivity and the Serre-Swan theorem.

11.2 Dixmier-Douady theory

Fell's condition

A C*-algebra A is called *continuous trace* if the set of all $a \in A$ such that $\widehat{A} \to \mathbb{R}_{\geq 0} : \pi \mapsto \operatorname{tr}(\pi(a^*a))$ is continuous is dense in A.

Dadarlat-Pennig theory