Kinematics and Dynamics of a Rigid body

Discord Physics organized by Róbert Jurčo

In developement - 2021

Contents

Chapter 1

Kinematics of a Rigid body

0.1 Definition: Rigid body

0.2 Chasles theorem: General motion of a rigid body has six degrees of freedom, three which represents translational motion of one given point of the rigid body, and three describing rotation around the same point.

Proof: Here will come the proof.

0.3 Definition: Basis fixed in space

0.4 Definition: Co-rotating basis

1.1 Angular velocity

Let $\{e_i\}$ be a basis fixed in space, $\{e_i'(t)\}$ a basis co-rotating with a rigid body. As a co-rotating ortonormal basis is only rotated with respect to a fixed ortonormal basis, we can write $e_i'(t) = A_{ik}(t)e_k$. Consider now an arbitrary, time dependent vector $\mathbf{w} = \mathbf{w}(t)$ and express it in both bases, $\mathbf{w}(t) = \mathbf{w}_i(t)e_i = \mathbf{w}_i'(t)e_i'(t)$. Time derivative of $\mathbf{w}(t)$ with respect to the inertial fixed basis but expressed in the co-rotating bassis is

$$\frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t} = \frac{\mathrm{d}w_i'}{\mathrm{d}t}\boldsymbol{e}_i' + w_i'\frac{\mathrm{d}\boldsymbol{e}_i'}{\mathrm{d}t} = \frac{\mathrm{d}w_i'}{\mathrm{d}t}\boldsymbol{e}_i' + w_i'\frac{\mathrm{d}A_{ik}}{\mathrm{d}t}\boldsymbol{e}_k = \frac{\mathrm{d}w_i'}{\mathrm{d}t}\boldsymbol{e}_i' + w_i'\frac{\mathrm{d}A_{ik}}{\mathrm{d}t}A_{jk}\boldsymbol{e}_j'. \tag{1}$$

Therefore, we can formulate a definition:

Definition: Let $\{e_i\}$ be an ortonormal basis¹ fixed in space, $\{e'_i(t)\}$ an ortonormal basis co-rotating with a rigid body and $A_{ij}(t) \in C^1(\mathbb{R})$ elements of orthogonal matrix² such that $e'_i(t) = A_{ij}(t)e_j$. Then the *tenzor of angular velocity* $\Omega: V \times V \to \mathbb{R}$ is defined as

$$\Omega = \frac{\mathrm{d}A}{\mathrm{d}t}A^t,\tag{2}$$

with elements

$$\Omega = \frac{\mathrm{d}A_{ik}}{\mathrm{d}t}A_{jk}.\tag{3}$$

¹Both bases are bases of V, what is defined as a vector space over \mathbb{R} , such that dim V=3.

 $^{^{2}}A^{t}=A^{-1}$ and $A_{ik}A_{jk}=\delta_{ij}$