Universidade do Sul de Santa Catarina - UNISUL - Campus: Grande Florianópolis Curso: Sistemas de Informação - Disciplina: Programação Linear e Grafos - Prof. Aran - Folha 3 - 2019-B (Algoritmo de Floyd)

1. Considere o grafo abaixo. Calcular o caminho de custo mínimo entre dois vértices qualquer do grafo.

	V_0	V_1	V_2	V_3	V_4
$\mathbf{V_0}$	0	6	inf	10	4
V_1	inf	0	9	inf	inf
V_2	inf	inf	0	inf	2
V_3	5	inf	3	0	1
V_4	inf	1	inf	2	0

- 2. Dadas a matriz de distância de um passo (D_1) e de até três passos (D_3) faça:
- a. Calcular os caminhos de custo mínimo de até 4 passos do vértice V_3 a qualquer outro vértice.
- **b.** Dada a matriz de roteamento final R indicar qual é a sequência de vértices a percorrer para encontrar o caminho mínimo de V_2 até V_1 ; de V_4 até V_2 e de V_5 até V_1 .

\mathbf{D}_1	V_1	V_2	V_3	V_4	V_5	\mathbf{D}_3	V_1	V_2	V_3	V_4	V_5
V_1	0	6	inf	10	4	V_1	0	5	9	6	4
V_2	inf	0	9	inf	inf	V_2	inf	0	9	13	11
V_3	inf	inf	0	inf	2	V_3	9	3	0	4	2
V_4	5	11	3	0	1	V_4	5	2	3	0	1
V_5	inf	1	inf	2	0	V_5	7	1	5	2	0
R	V_1	V_2	V_3	V_4	V_5	\mathbf{D}_4	V_1	V_2	V_3	V_4	V_5
V_1	0	V_5	V_5	V_5	V_5	V_1	0	5	9	6	4
V_2	V_3	0	V_3	V_5	V_3	V_2	18	0	9	13	11
V_3	V_5	V_5	0	V_5	V_5	V_3					
V_4	V_1	V_5	V_3	0	V_5	V_4	5	2	3	0	1
V_5	V_4	V_2	V_4	V_4	0	V_5	7	1	5	2	0

- 3. Dadas a matriz de distância de um passo (D_1) de até dois passos (D_2) e de até 5 passos (D_5)
 - a. Calcular os caminhos de até 2 passos do vértice V_4 a qualquer outro vértice.
 - b. Calcular o caminho mínimo do vértice V_3 a todos os vértices do grafo utilizando o algoritmo de Dijtrak's e compare o resultado com a matriz D_5
 - c. Calcular os caminhos do vértice V_4 ao vértice V_0 de até 3 passos.
 - d. Calcular os caminhos do vértice V_1 ao vértice V_5 de até 3 passos.
 - e. Dada a matriz de roteamento final R indicar qual é a seqüência de vértices a percorrer para encontrar o caminho mínimo de V_3 até V_2 ; de V_3 até V_5 e de V_1 até V_5 .

\mathbf{D}_1	V_0	V_1	V_2	V_3	V_4	V_5
V_0	0	4	6	inf	2	7
V_1	3	0	6	3	inf	9
V_2	inf	4	0	9	5	2
V_3	inf	4	2	0	7	10
V_4	inf	inf	inf	3	0	3
V_5	9	5	5	11	6	0

D ₅	V_0	V_1	V_2	V_3	V_4	V_5
V_0	0	4	6	5	2	5
V_1	3	0	5	3	5	7
V_2	7	4	0	7	5	2
V_3	7	4	2	0	7	4
V_4	10	7	5	3	0	3
V_5	8	5	5	8	6	0

\mathbf{D}_2	V_0	V_1	V_2	V_3	V_4	V_5
V_0	0	4	6	5	2	5
V_1	3	0	5	3	5	8
V_2	7	4	0	7	5	2
V_3	7	4	2	0	7	4
V_4						
V_5	8	5	5	8	6	0

R	V_0	V_1	V_2	V_3	V_4	V_5
V_0	0	V_1	V_2	V_4	V_4	V_4
V_1	V_0	0	V_3	V_3	V_0	V_3
V_2	V_1	V_1	0	V_1	V_4	V_5
V_3	V_1	V_1	V_2	0	V_4	V_2
V_4	V_3	V_3	V_3	V_3	0	V_5
V_5	V_1	V_1	V_2	V_1	V_4	0