Assignment 4, Specification

SFWR ENG 2AA4

April 12, 2019

This Module Interface Specification (MIS) document contains modules, types and methods for implementing the state of a game of Conway's Game of Life

In applying the specification, there will be cases that involve undefinedness. We will interpret undefinedness following [?]:

If $p: \alpha_1 \times \times \alpha_n \to \mathbb{B}$ and any of $a_1, ..., a_n$ is undefined, then $p(a_1, ..., a_n)$ is False. For instance, if p(x) = 1/x < 1, then p(0) =False. In the language of our specification, if evaluating an expression generates an exception, then the value of the expression is undefined.

Cell ADT Module

Module

Cell

Uses

N/A

Syntax

Exported Constants

None

Exported Types

Cell = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new Cell		Cell	none
new Cell	boolean	Cell	none
get_life		boolean	none
get_neighbours		int	none
set_life	boolean		none
set_neighbours	int		out_of_range

Semantics

State Variables

S: boolean # Alive or Dead N: int # Number of neighbors

State Invariant

 $n \leq 8$

Assumptions and Design Decisions

• The Cell(S) or Cell() constructor is called for each object instance before any other access routine is called for that object. The constructor can only be called once.

Access Routine Semantics

new Cell():

- S, N := false, 0
- output: out := self
- exception: none

new Cell(s):

- S, N := s, 0
- output: out := self
- exception: none

get_life():

- output: out := S
- exception: none

get_neighbours():

- output: out := N
- exception: none

set_life(s):

- transition: S := s
- output: none
- exception: none

set_neighbours(n):

- transition: N := n
- output: none
- exception: $exc := (n > \theta \Rightarrow out_of_range)$

Game Board ADT Module

Template Module

BoardT

Uses

Cell

View

Syntax

Exported Constants

None

Exported Types

BoardT

Exported Access Programs

Routine name	In	Out	Exceptions
new BoardT	seq of CardT	BoardT	invalid_argument

Semantics

State Variables

S: Cells #2DArray of Cells

State Invariant

$$|T| = 10$$

$$|F| = 8$$

 $\operatorname{cnt_cards}(T, F, D, W, \lambda c : \operatorname{True}) = \operatorname{TOTAL_CARDS}$

4

Assumptions & Design Decisions

- The BoardT constructor is called before any other access routine is called on that instance. Once a BoardT has been created, the constructor will not be called on it again.
- The Foundation stacks must start with an ace, but any Foundation stack can start with any suit. Once an Ace of that suit is placed there, this Foundation stack becomes that type of stack and only those type of cards can be placed there.
- Once a card has been moved to a Foundation stack, it cannot be moved again.
- For better scalability, this module is specified as an Abstract Data Type (ADT) instead of an Abstract Object. This would allow multiple games to be created and tracked at once by a client.
- The getter function is provided, though violating the property of being essential, to give a would-be view function easy access to the state of the game. This ensures that the model is able to be easily integrated with a game system in the future. Although outside of the scope of this assignment, the view function could be part of a Model View Controller design pattern implementation (https://blog.codinghorror.com/understanding-model-view-controller/)
- A function will be available to create a double deck of cards that consists of a random permutation of two regular decks of cards (TOTAL_CARDS cards total). This double deck of cards can be used to build the game board.

Access Routine Semantics

BoardT(deck):

• transition:

```
T, F, D, W := \text{tab\_deck}(deck[0..39]), \text{init\_seq}(8), \text{CardStackT}(deck[40..103]), \text{CardStackT}(\langle \rangle)
```

• exception: $exc := (\neg two_decks(init_seq(10), init_seq(8), CardStackT(deck), CardStackT(\langle \rangle)) \Rightarrow invalid_argument)$

is_valid_tab_mv (c, n_0, n_1) :

• output:

	out :=
c = Tableau	$valid_tab_tab(n_0,n_1)$
c = Foundation	valid_tab_foundation (n_0, n_1)
c = Deck	False
c = Waste	False

• exception:

	exc :=
$c = \text{Tableau} \land \neg(\text{is_valid_pos}(\text{Tableau}, n_0) \land \text{is_valid_pos}(\text{Tableau}, n_1))$	out_of_range
$c = \text{Foundation} \land \neg(\text{is_valid_pos}(\text{Tableau}, n_0) \land \text{is_valid_pos}(\text{Foundation}, n_1))$	out_of_range

is_valid_waste_mv(c, n):

• output:

	out :=
c = Tableau	$valid_waste_tab(n)$
c = Foundation	$valid_waste_foundation(n)$
c = Deck	False
c = Waste	False

• exception:

	exc :=
W.size() = 0	$invalid_argument$
$c = \text{Tableau} \land \neg \text{is_valid_pos}(\text{Tableau}, n)$	out_of_range
$c = \text{Foundation} \land \neg \text{is_valid_pos}(\text{Foundation}, n)$	out_of_range

$is_valid_deck_mv()$:

 $\bullet \ \text{output:} \ out := D. \text{size}() > 0$

• exception: None

 $tab_mv(c, n_0, n_1)$:

• transition:

c = Tableau	$T[n_0], T[n_1] := T[n_0].pop(), T[n_1].push(T[n_0].top())$
c = Foundation	$T[n_0], F[n_1] := T[n_0].pop(), F[n_1].push(T[n_0].top())$

• exception: $exc := (\neg is_valid_tab_mv(c, n_0, n_1) \Rightarrow invalid_argument)$

 $waste_mv(c, n)$:

• transition:

c = Tableau	W, T[n] := W.pop(), T[n].push(W.top())
c = Foundation	W, F[n] := W.pop(), F[n].push(W.top())

• exception: $exc := (\neg is_valid_waste_mv(c, n) \Rightarrow invalid_argument)$ deck_mv():

- transition: D, W := D.pop(), W.push(D.top())
- exception: $exc := (\neg is_valid_deck_mv() \Rightarrow invalid_argument)$ get_tab(i):
 - output: out := T[i]
- exception: exc : (\neg is_valid_pos(Tableau, i) \Rightarrow out_of_range) get_foundation(i):
 - output: out := F[i]
- exception: exc: (\neg is_valid_pos(Foundation, i) \Rightarrow out_of_range) get_deck():
 - output: out := D
 - exception: None

get_waste():

- \bullet output: out := W
- exception: None

valid_mv_exists():

 \bullet output: $out := \text{valid_tab_mv} \vee \text{valid_waste_mv} \vee \text{is_valid_deck_mv}()$ where

```
valid_tab_mv \equiv (\exists c : \text{CategoryT}, n_0 : \mathbb{N}, n_1 : \mathbb{N} | c \in \{\text{Tableau}, \text{Foundation}\} \land \text{is\_valid\_pos}(\text{Tableau}, n_0) \land \text{is\_valid\_pos}(c, n_1) : \text{is\_valid\_tab\_mv}(c, n_0, n_1))
```

valid_waste_mv \equiv ($\exists c$: CategoryT, n : $\mathbb{N}|c \in \{\text{Tableau}, \text{Foundation}\} \land \text{is_valid_pos}(c, n)$: is_valid_waste_mv(c, n))

• exception: None

is_win_state():

- output: $out := (\forall i : \mathbb{N} | i \in [0..7] : F[i].size() > 0 \land F[i].top().r = KING)$
- exception: None

Local Types

SeqCrdStckT = seq of CardStackT

Local Functions

```
two\_decks : SeqCrdStckT \times SeqCrdStckT \times CardStackT \times CardStackT \rightarrow \mathbb{B}
two_decks(T, F, D, W) \equiv
(\forall st : \text{SuitT}, rk : \text{RankT} | st \in \text{SuitT} \land rk \in \text{RankT} : \text{cnt\_cards}(T, F, D, W, \lambda c : c.s = st \land c.r = rk) = 2)
cnt\_cards\_seq : SeqCrdStckT \times (CardT \rightarrow \mathbb{B}) \rightarrow \mathbb{N}
\operatorname{cnt\_cards\_seq}(S, f) \equiv (+s : \operatorname{CardStackT} | s \in S : \operatorname{cnt\_cards\_stack}(s, f))
\operatorname{cnt\_cards\_stack} : \operatorname{CardStackT} \times (\operatorname{CardT} \to \mathbb{B}) \to \mathbb{N}
\operatorname{cnt\_cards\_stack}(s, f) \equiv (+c : \operatorname{CardT}|c \in s.\operatorname{toSeq}() \land f(c) : 1)
cnt\_cards : SeqCrdStckT \times SeqCrdStckT \times CardStackT \times (CardT \rightarrow \mathbb{B}) \rightarrow \mathbb{N}
\operatorname{cnt\_cards}(T, F, D, W, f) \equiv \operatorname{cnt\_cards\_seq}(T, f) + \operatorname{cnt\_cards\_seq}(F, f) + \operatorname{cnt\_cards\_stack}(D, f) +
\operatorname{cnt\_cards\_stack}(W, f)
init\_seq : \mathbb{N} \to SeqCrdStckT
init_seq(n) \equiv s such that (|s| = n \land (\forall i \in [0..n-1] : s[i] = \text{CardStackT}(\langle \rangle))
tab\_deck : (seq of CardT) \rightarrow SeqCrdStckT
tab\_deck(deck) \equiv T such that (\forall i : \mathbb{N} | i \in [0..9] : T[i].toSeq() = deck[4i..4(i+1)-1])
is_valid_pos: CategoryT \times \mathbb{N} \to \mathbb{B}
is_valid_pos(c, n) \equiv (c = \text{Tableau} \Rightarrow n \in [0..9] | c = \text{Foundation} \Rightarrow n \in [0..7] | \text{True} \Rightarrow \text{True})
valid_tab_tab: \mathbb{N} \times \mathbb{N} \to \mathbb{B}
valid_tab_tab (n_0, n_1) \equiv
```

$T[n_0]$.size() > 0	$T[n_1].size() > 0$	$tab_placeable(T[n_0].top(), T[n_1].top())$
	$T[n_1].size() = 0$	True
$T[n_0].size() = 0$	$T[n_1].size() > 0$	False
	$T[n_1].size() = 0$	False

valid_tab_foundation: $\mathbb{N} \times \mathbb{N} \to \mathbb{B}$ valid_tab_foundation $(n_0, n_1) \equiv$

$T[n_0].size() > 0$	$F[n_1].size() > 0$	foundation_placeable($T[n_0].top(), F[n_1].top()$)
	$F[n_1].size() = 0$	$T[n_0].top().r = ACE$
$T[n_0].size() = 0$	$F[n_1].size() > 0$	False
	$F[n_1].size() = 0$	False

valid_waste_tab: $\mathbb{N} \to \mathbb{B}$ valid_waste_tab $(n) \equiv$

T[n].size() > 0	$tab_placeable(W.top(), T[n].top())$
T[n].size() = 0	True

valid_waste_foundation: $\mathbb{N} \to \mathbb{B}$ valid_waste_foundation $(n) \equiv$

F[n].size() > 0	$foundation_placeable(W.top(), F[n].top())$
F[n].size() = 0	W.top().r = ACE

tab_placeable: CardT \times CardT \to $\mathbb B$

 ${\tt tab_placeable}(c,d) \equiv c.s = d.s \land c.r = d.r - 1$

foundation_placeable: CardT \times CardT $\to \mathbb{B}$

foundation_placeable(c, d) \equiv c.s = d.s \land c.r = d.r + 1

Critique of Design