Funciones

[1] Definición de función

Sea f una relación de A a B, se dice que f es función si se cumple:

$$a \in A \Rightarrow \exists! b \in B \ (a, b) \in f$$

→ Dominio y codominio

A es el dominio de f y se nota Dom(f). B es el codominio de f y se nota Codom(f).

→ Notación

Si f es una función con Dom(f) = A y Codom(f) = B entonces se puede declarar usando la notación $f: A \to B$.

Como el conjunto imagen de cualquier elemento $a \in A$ es un conjunto con un solo elemento empleamos la siguiente notación: f(a) = b en vez de $f(a) = \{b\}$.

[2] Función inyectiva

Una función $f: A \rightarrow B$ es invectiva si:

$$\forall a_1 \in A \ \forall a_2 \in A \ f(a_1) = f(a_2) \rightarrow a_1 = a_2$$

[3] Sobre el conjunto imagen de un subconjunto

Sea $f: A \to B, A_1 \subseteq A$ y $A_2 \subseteq A$ entonces:

- 1. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- 2. $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
- 3. $f(A_1 \cap A_2) = f(A_1) \cap f(A_2) \Leftrightarrow f$ es inyectiva

[4] Restricciones y extensiones

Sea $f: A \to B$ y $A_1 \subseteq A \subseteq A_2$

- 1. La restricción de f a A_1 es $f|_{A_1}:A_1\to B$ tal que $a\in A_1\Rightarrow f|_{A_1}(a)=f(a)$
- 2. La expansión de f a A_2 es $g: A_2 \to B$ tal que $a \in A \Rightarrow g(a) = f(x)$

[5] Sobre el conjunto pre-imagen de un subconjunto

Sea $f: A \to B, B_1 \subseteq B$ y $B_2 \subseteq B$

- 1. $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
- $\begin{array}{ll} 2. & f^{-1}(B_1\cap B_2)=f^{-1}(B_1)\cap f^{-1}(B_2)\\ 3. & f^{-1}\left(\overline{B_1}\right)=\overline{f^{-1}(B_1)} \end{array}$

[6] Función sobreyectiva

Una función $f:A\to B$ es sobreyectiva si:

$$\forall b \in B \ \exists a \in A \ f(a) = b$$

[7] Función biyectiva

Una función $f:A\to B$ es biyectiva si es inyectiva y sobreyectiva simultáneamente.

[8] Composición de funciones

Sean $f:A\to B, g:B\to C, h:C\to D, a\in A$ y $c\in C$, entonces la composición de A con B es $g\circ f$ tal que:

$$\begin{aligned} \operatorname{Dom}(g \circ f) &= \{x \in \operatorname{Dom}(f) : f(x) \in \operatorname{Dom}(g)\} \\ \forall x \in \operatorname{Dom}(g \circ f) \ (g \circ f)(x) &= g(f(x)) \end{aligned}$$

Si $\operatorname{Im}(f) \cap \operatorname{Dom}(g) = \emptyset$ la composición no es posible.

→ Propiedades

- 1. La composición de funciones no es conmutativa.
- 2. La composición de funciones es asociativa: $(h \circ g) \circ f = h \circ (g \circ f)$
- 3. Si f y g son inyectivas entonce $g \circ f$ es inyectiva.
- 4. Si f y g son sobrevectivas entonce $g \circ f$ es sobrevectiva.

[9] Función inversible

[TODO: Aclarar que significa id_A y id_B (son alguna función identidad)]

Una función $f:A\to B$ es inversible si existe $g:B\to A$ tal que $g\circ f=\mathrm{id}_A\wedge f\circ g=\mathrm{id}_B$

→ Propiedades

- 1. Si una función f es inversible la inversa es única y se nota f^{-1}
- 2. Toda función es inversible si y solo sí es biyectiva.
- 3. Dadas las funciones f y g inversibles: $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$
- 4. Dada una función inversible $f:A\to B$ donde las cantidades de elementos de A y B son finitas e iguales, entonces se cumple: f invectiva $\Leftrightarrow f$ sobreyectiva $\Leftrightarrow f$ biyectiva.

Operaciones

[10] Definición de operación.

Cualquier función de la forma $f:A\times A\to B$ es una operación binaria en A. Si además $\mathrm{Im}(f)\subseteq A$ entonces es cerrada en A. Notamos f(a,b) como $a\otimes b$

Cualquier función de la forma $g:A\to A$ es una operación monaria a en A.

[11] Operaciones conmutativas

Dada $f: A \times A \rightarrow B$ es conmutativa si y solo si:

$$x \otimes y = f(x, y) = f(y, x) = y \otimes x$$

[12] Operaciones asociativas

Dada $f: A \times A \rightarrow B$ cerrada en A es asociativa si y solo si:

$$(x\otimes y)\otimes z=f(f(x,y),z)=f(x,f(y,z))=x\otimes (y\otimes z)$$

[13] Elemento neutro

Dada $f:A\times A\to A$ tiene elemento neutro si $\exists e\in A\ e\otimes a=a\otimes e=a$

→ Unicidad del neutro

Si una operación tiene neutro este es único.

[14] Elemento inverso

Dada $f:A\times A\to A$ con e elemento neutro de f entonces f tiene inversos si se cumple:

$$\forall a \in A \ \exists a' \in A \ a \otimes a' = a' \otimes a = e$$

→ Unicidad de inversos

Si $f:A\times A\to A$ es una operación asociativa y conmutativa con elemento neutro $e\in A$ que posee inversos. Entonces cada elemento posee un único inverso.