1. NOÇÕES TOPOLÓGICAS EM R e INDUÇÃO MATEMÁTICA (SOLUÇÕES)

b) $int(B) = (-3, -1) \cup (1, 2)$,

1.2.

a)
$$int(A) = (1, 5)$$
,
 $ext(A) = (-\infty, 1) \cup (5, +\infty)$,
 $fr(A) = \{1, 5\}$,
 $A' = [1, 5] = \overline{A}$,
 $isol(A) = \emptyset$;

$$ext(A) = (-\infty, 1) \cup (5, +\infty), \qquad ext(B) = \mathbb{R} \setminus ([-3, -1] \cup [1, 2] \cup \{0, 4\}),$$

$$fr(A) = \{1, 5\}, \qquad fr(B) = \{-3, -1, 0, 1, 2, 4\},$$

$$A' = [1, 5] = \overline{A}, \qquad B' = [-3, -1] \cup [1, 2] = \overline{B},$$

$$isol(A) = \emptyset; \qquad isol(B) = \{0, 4\};$$

$$c) \ int(C) = (-5, 2) \cup (2, 9), \qquad d) \ int(D) = (-\infty, -2) \cup (2, +\infty),$$

$$ext(C) = (-\infty, -5) \cup (9, +\infty), \qquad ext(D) = (-2, 2),$$

$$fr(C) = \{-5, 2, 9\}, \qquad fr(D) = \{-2, 2\},$$

$$C' = [-5, 9] = \overline{C}, \qquad D' = (-\infty, -2] \cup [2, +\infty) = \overline{D},$$

$$isol(C) = \emptyset; \qquad isol(D) = \emptyset;$$

$$e) \ int(E) = \varnothing, \quad ext(E) = \mathbb{R} \setminus (E \cup \{1\}), \quad fr(E) = E \cup \{1\} = \overline{E}, \quad E' = \{1\}, \quad isol(E) = E.$$

1.3.

- a) $int(A) = \emptyset$, $ext(A) = \mathbb{R} \setminus A$, $fr(A) = A = \{1, 2, 3, 4, 5\}$, $A' = \emptyset$, $\overline{A} = A$, isol(A) = A, A é não aberto, mas é fechado;
- b) $int(B) = (-\infty, 4)$, $ext(B) = (4, +\infty)$, $fr(B) = \{4\}$, $B' = B = \overline{B}$, $isol(B) = \emptyset$, B' = Bé não aberto, mas é fechado;
- c) int(C) = C, $ext(C) = (-\infty, -3)$, $fr(C) = \{-3\}$, $C' = [-3, +\infty) = \overline{C}$, $isol(C) = \emptyset$, C é aberto, mas é não fechado;

- d) $int(D) = (-\infty, -1) \cup (0, +\infty)$, ext(D) = (-1, -0), $fr(D) = \{-1, 0\}$, $D' = D = \overline{D}$, $isol(D) = \emptyset$, D é não aberto, mas é fechado;
- e) $int(E)=\varnothing=E, \quad ext(E)=\mathbb{R}, \quad fr(E)=\varnothing, \quad E'=\varnothing=\overline{E}, \quad isol\left(E\right)=\varnothing, \quad E$ é aberto e fechado;
- $f) \ int(F) = F, \quad ext(F) = \mathbb{R} \setminus \left(\left[-\sqrt{3}, -1 \right] \cup \left[1, \sqrt{3} \right] \right), \quad fr(F) = \left\{ -\sqrt{3}, -1, 1, \sqrt{3} \right\}, \quad F' = \left[-\sqrt{3}, -1 \right] \cup \left[1, \sqrt{3} \right] = \overline{F}, \quad isol\left(D\right) = \varnothing, \quad F \text{ \'e aberto, mas \'e n\~ao fechado.}$
- g) $int(G)=\varnothing$, $ext(G)=\mathbb{R}\backslash\mathbb{N}$, fr(G)=G, $G'=\varnothing$, $\overline{G}=G$, $isol\ (G)=G$, G é não aberto, mas é fechado;
- h) $int(H)=\varnothing$, $ext(H)=\varnothing$, $fr(H)=\mathbb{R}$, $H'=\mathbb{R}=\overline{H}$, $isol\,(H)=\varnothing$, H não é aberto nem fechado;
- $i) \ int(I) = I, \ ext(I) = \varnothing, \ fr(I) = \varnothing, \ I' = I = \overline{I}, \ isol(I) = \varnothing, \ I \text{ \'e aberto e fechado.}$

1.4.

a)
$$D_f = (-\infty, -3) \cup (3, +\infty)$$
;

b)
$$int(D_f) = D_f$$
, $ext(D_f) = (-3,3)$, $fr(D_f) = \{-3,3\}$, $\overline{D_f} = (-\infty, -3] \cup [3, +\infty) = D'_f$;

c) D_f é aberto, porque $int(D_f) = D_f$; D_f é não fechado, porque $\overline{D_f} \neq D_f$; D_f não é limitado, pois não é majorado nem minorado.

1.5.

a)
$$D_q = (-\infty, -2) \cup (0, +\infty)$$
;

b)
$$int(D_q) = D_q$$
, $ext(D_q) = (-2, 0)$, $\overline{D_q} = (-\infty, -2] \cup [0, +\infty) = D'_q$;

c) D_g é aberto, mas não é fechado nem limitado.

1.6.

- a) $D_h = \mathbb{R} \setminus \{-1, 1\}$;
- b) $int(D_h) = \mathbb{R} \setminus \{-1, 1\}, \quad ext(D_h) = \emptyset, \quad fr(D_h) = \{-1, 1\}, \quad \overline{D_h} = \mathbb{R} \text{ e } isol(D_h) = \emptyset;$
- c) D_f é aberto, mas não é fechado nem limitado.

1.7.

- a) Como $Maj\ A=\varnothing$ e $Min\ A=(-\infty,5]$, então A é minorado, mas não é majorado, portanto, A não é limitado; inf (A)=5, mas não existe o $\sup(A)$, o $\max(A)$ e o $\min(A)$;
- b) Como $Maj\ B = [-2, +\infty)$ e $Min\ B = \emptyset$, então B é majorado, mas não é minorado, portanto, B não é limitado; $\sup(B) = \max(B) = -2$, mas não existe o $\inf(B)$ e o $\min(B)$;
- c) Como Maj $C=[3,+\infty)$ e Min $C=(-\infty,-3]$, então C é majorado e minorado, logo C é limitado; $\sup(C)=\max(C)=3$ e $\inf(C)=\min(C)=-3$;
- d) Como $Maj\ D=Min\ D=\varnothing$, então D não é majorado nem minorado, portanto, D não é limitado; Além disso, não existe o $\sup(D)$, o $\max(D)$, o $\inf(D)$ e o $\min(D)$;
- e) Como $Maj\ E=[10,+\infty)$ e $Min\ E=\left(-\infty,\sqrt{5}\right]$, então E é majorado e minorado, logo E é limitado; $\sup\left(E\right)=10$ e $\inf\left(E\right)=\min\left(E\right)=\sqrt{5}$, mas não existe o $\max\left(E\right)$;
- f) Como $Maj\ F = \emptyset$ e $Min\ F = (-\infty, 0]$, então F é minorado, mas não é majorado, portanto, F não é limitado; inf (F) = 0, mas não existe o $\sup(F)$, o $\max(F)$ e o $\min(F)$.

1.8.

a) Verdadeira, dado que se tem sempre $int(A) \subset A$ e se também se tem $A \subset int(A)$ (por hipótese), então conclui-se que int(A) = A, pelo que A é aberto;

- $b) \ \ \text{Falso, porque} \ \{-1,0,1\} \not\subseteq fr\left(A\right) = \{-1,1\};$
- c) Verdadeira, porque uma vez que $\overline{A}=A\cup fr\left(A\right) ,$ então tem-se $A\subset\overline{A};$
- d) Falso, porque $fr(\mathbb{R}\backslash A)=fr\left(A\right)$ e $fr\left(A\right)\cap ext(A)=\varnothing;$
- e) Falso, porque B não tem mínimo.