Formelsammlung zur Klausur "Mathematische Grundlagen der Wirtschaftsinformatik"

Wirtschaftswissenschaftliche Grundlagen

Preis-Absatz-Funktion

P(x)

Ertragsfunktion

 $E(x) = P(x) \cdot x$

Kostenfunktion

 $K(x) = K_{var}(x) + K_{fix}$

 $K_{var}(x)$ - Variable Kosten

 K_{fix} - Fixkosten

Gewinnfunktion

G(x) = E(x) - K(x)

Grenzkostenfunktion

GK(x) = K'(x)

Grenzertragsfunktion

GE(x) = E'(x)

Stück-/Durchschnittskostenfunktion

$$DK(x) = \frac{K(x)}{x}$$

Notationen

Summenzeichen

$$\sum_{k=m} a_k = a_m + a_{m+1} + a_{m+2} + \ldots + a_{n-1} + a_n$$

$$\prod_{k=m} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdot \ldots \cdot a_{n-1} \cdot a_n$$

Fakultät

$$n! = \prod_{k=1}^{n} k = 1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n$$
$$0! = 1$$

Einfaches Rechnen

Betrag

Für eine reelle Zahl x ist der (Absolut-)Betrag definiert durch:

$$|x| = \sqrt{x^2} = \begin{cases} x : x > 0 \\ 0 : x = 0 \\ -x : x < 0 \end{cases}$$

Rechnen mit Beträgen

Für reelle Zahlen x,y und eine nicht-negative reelle Zahl pgelten die folgenden Regeln:

$$\begin{array}{ll} |x| \geq 0 & |x| = 0 \Longleftrightarrow x = 0 \\ |x \cdot y| = |x| \cdot |y| & \\ |x \cdot p| = |x| \cdot p & |x \cdot (-p)| = |x| \cdot p \\ |x + y| \leq |x| + |y| & |x - y| \geq ||x| - |y|| \\ \left| \frac{x}{|x|} \right| = \frac{|x|}{|x|} \end{array}$$

Bruchrechnen

Für alle Zahlen a, b, c, d mit $c \neq 0$ und $d \neq 0$ gilt:

$$\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$$

$$\frac{a}{c} - \frac{b}{d} = \frac{ad - bc}{cd}$$

$$\frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd}$$

$$\frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd}$$

Potenzrechengesetze

Für reelle Zahlen $a \neq 0$ und $b \neq 0$, reelle Zahlen r und s falls a > 0 und rationale Zahlen r und s falls a < 0 ist gilt:

$$a^{0} = 1$$

$$a^{r+s} = a^{r} \cdot a^{s}$$

$$(a \cdot b)^{r} = a^{r} \cdot b^{r}$$

$$(a^{r})^{s} = a^{r \cdot s}$$

$$a^{r-s} = \frac{a^{r}}{a^{s}}$$

$$\left(\frac{a}{b}\right)^{r} = \frac{a^{r}}{b^{r}}$$

Für positive Zahlen a kann man die Potenz durch Exponentialfunktion und Logaritmus ausdrücken:

$$x^r = \exp(r \cdot \ln(x))$$

Wurzelrechnengesetze

Für positive Zahlen a und b und $n, m, k \in \mathbb{N}$ gilt:

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b} \qquad \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[k]{\sqrt[n]{a}} = \sqrt[k \cdot n]{a} \qquad a^{\frac{m}{n}} = \sqrt[n]{a^{m}} = \left(\sqrt[n]{a}\right)^{m}$$

$$a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}} \qquad \sqrt[n]{a} \cdot \sqrt[m]{a} = a^{\frac{1}{n} + \frac{1}{m}} = \sqrt[n m]{a^{n+m}}$$

Höhere Wurzeln aus positiven Zahlen x kann man wie jede Potenz durch Exponentialfunktion und Logarithmus ausdrücken:

$$\sqrt[n]{x} = x^{1/n} = \exp\left(\frac{\ln(x)}{n}\right)$$

Logarithmengesetze

Für reellen, positive Zahlen a,b,x,y mit $a,b\neq 1$, einem reellen r und einer natürlichen Zahl n gilt:

$$\log_a(1) = 0$$

$$\mathrm{lb}(x) = \log_2(x) \qquad \qquad \ln(x) = \log_e(x) \qquad \qquad \lg(x) = \log_{10}(x)$$

$$\begin{split} \log_a(x \cdot y) &= \log_a(x) + \log_a(y) \\ \log_a\left(\frac{x}{y}\right) &= \log_a(x) - \log_a(y) \\ \log_a(x^r) &= r \cdot \log_a(x) \\ \log_a\left(\frac{1}{x}\right) &= -\log_a(x) \\ \log_a(x+y) &= \log_a(x) + \log_a\left(1+\frac{x}{y}\right) \\ \log_b\left(\sqrt[n]{x}\right) &= \log_b\left(x^{\frac{1}{n}}\right) &= \frac{1}{n}\log_b x \\ \log_a(x) &= \frac{\log_b(x)}{\log_a(a)} \end{split}$$

Binomische Formeln

Für reelle Zahlen x und y gelten die folgenden Regeln:

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$
$$(x - y)^{2} = x^{2} - 2xy + y^{2}$$
$$(x - y)(x + y) = x^{2} - y^{2}$$

Binomischer Lehrsatz

Für zwei reelle Zahlen x, y und eine natürliche Zahl n gilt:

$$(x+y)^n = \sum_{k=0}^n {k \choose n} x^{n-k} y^k$$

Normalform von Polynomgleichungen

Jede Polynomgleichung (2. Grades) der Form $ax^2 + bx + c = d$, mit $a \neq 0$ lässt sich umformen in Normalform der Art $x^2 + px + q = 0.$

Diskriminante

Für eine Polynomgleichung (2. Grades) ist die **Diskriminante** definiert durch $D = \frac{p^2 - 4 \cdot q}{4}$.

Es gilt:

- D < 0: die Gleichung hat keine (reelle) Lösung!
- D=0: die Gleichung hat eine Lösung nämlich $-\frac{p}{3}$.
- D > 0: die Gleichung hat zwei Lösungen. (-> pq-Formel)

Für eine Polynomgleichung (2. Grades) mit positiver Diskriminante findet sich die Nullstellen $x_{1/2}$ durch

$$x_{1/2} = -\frac{p}{2} \pm \sqrt{D} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

Satz von Vieta

Für die Lösungen x_1 und x_2 einer Polynomgleichung (2. Grades) in Normalform gilt:

$$x_1 \cdot x_2 = q \text{ und } -(x_1 + x_2) = p$$

Logik

Aussagen

Sätze, die entweder wahr oder falsch sind, heißen Ausagen. Aussageformen / offene Aussagen

Hängte die Wahrheit einer Aussage von einem Parameter x ab, so nennt man die Aussage A(x) eine **offene Aussage** oder **Aussageform**.

Lösungsmenge

Die Menge der Werte x, die eine Aussageform A(x) zu einer wahren Aussage machen heißt Lösungemenge.

Es seien A und B Aussagen, dann gilt:

Implikation (Aus A folge B)

 $A \Longrightarrow B$: falls A wahr ist, dann ist auch B wahr.

Äquivalenz

 $A \iff B : A \text{ ist genau dann wahr, falls } B \text{ wahr ist.}$

Konjunktion

 $A \wedge B : A$ ist wahr und B ist wahr.

Disjunktion

 $A \vee B : A$ ist wahr oder B ist wahr.

Negation

 $\neg A$ ist wahr $\iff A$ ist falsch.

Allquantor

∀: "Für alle"

Existenzquantor

∃: "Es gibt ein"

Mengenlehre

Für beliebige Mengen A und B gilt:

Element

Ist a ist ein **Element** von A, dann schreiben wir $a \in A$. Teilmenge

 $A \subset B \iff (x \in A \Rightarrow x \in B)$

Echte Teilmenge

 $A \subseteq B \iff (A \subset B \land \exists z \in B : z \notin A)$

Gleichheit von Mengen

 $A = B \iff A \subset B \land B \subset A$

Vereinigungsmenge zweier Mengen

 $A \cup B = \{x | x \in A \lor x \in B\}$

Schnittmenge zweier Mengen

 $A \cap B = \{x | x \in A \land x \in B\}$

Kompliment einer Menge

 $A^c = \{x | x \in U \land x \not\in A\}, U \text{ ein Universum mit } A \subset U$

Differenz von Mengen

 $A \setminus B = \{x | x \in A \land x \notin B\} = A \cap B^c$

Gleichmächtigkeit von Mengen

A und B sind gleichmächtig, falls es eine Bijektion $f:A \leftrightarrow B$ gibt.

Endlichkeit

Eine Menge ist **endlich**, wenn sie **gleichmächtig** zu einem Element von \mathbb{N}_0 im Sinne von von Neumann ist.

Abzählbar

Eine Menge ist abzählbar, wenn sie endlich ist oder gleichmächtig zu einer Teilmenge von \mathbb{N} ist.

Unendlichkeit

Eine nicht endliche Menge ist unendlich

Mächtigkeit von Mengen (allgemein)

|A|heißt ${\bf Betrag}$ der Menge A und bezeichnet die Mächtigkeit der Menge.

Mächtigkeit von endlichen Mengen

|A|ist die Anzahl der unterscheidbaren Elemente der (endlichen) Menge A.

Potenzmenge

 $\mathcal{P}(A) = \{U|U \subset A\}$

Satz von Cantor

Für jede Menge A gilt: $|A| < |\mathcal{P}(A)|$

Produktmenge

 $A \times B = \{(x; y) | x \in A \land y \in B\}$

De Morgansche Regeln

 $(A \cup B)^c = A^c \cap B^c \text{ und } (A \cap B)^c = A^c \cup B^c$

Disjunktheit

A und B sind **disjunkt** $\iff A \cap B = \emptyset$

Zerlegung / Partition

Die Mengen $A_1, ..., A_n$ mit $A_1 \cup A_2 \cup \cdots \cup A_n = A$ und $A_i \cap A_j = \emptyset$ für alle $0 \le i \ne j \le n$ heißt **Partition** oder **Zerlegung** von A.

Zahlen

Natürliche Zahlen

 $\mathbb{N} = \{1, 2, 3, 4, ...\}$

Natürliche Zahlen mit Null:

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, 4, ...\}$

Ganze Zahlen

 $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Rationale Zahlen

 $\mathbb{Q} = \left\{ \frac{q}{p} \middle| q \in \mathbb{Z}, p \in \mathbb{N}, p \text{ und } q \text{ sind teilerfremd} \right\}$

Reelle Zahlen

 \mathbb{R}

Komplexe Zahlen

 $\mathbb{C} = \{ x + y \cdot i \, | x, y \in \mathbb{R} \, \}$

Es gilt:

 $\mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

Vollständige Induktion

Sei A(n) eine Aussageform, die es für alle $n \in \mathbb{N}$ zu beweisen gilt.

- Induktionsanfang: A(1) gilt.
- Induktionsschritt: Unter der Annahme das A(n) gilt zeigt man, dass A(n+1) gilt.

- Induktionsannahme: Es gelte A(n).
- Induktionsschluss: Zu zeigen ist dann, dass A(n+1) gilt.

Folgen

Konvergenz und Grenzwert

Eine Folge (a_n) heißt **konvergent** gegen eine (reelle) Zahl a, falls es zu jedem $\epsilon > 0$ einen Folgenindex n_0 gibt, so dass für alle $n \ge n_0$ gilt:

$$|a_n - a| < \epsilon$$

Man schreibt dafür $\lim_{n\to\infty} a_n = a$ oder $a_n \to a$ für $n\to\infty$ und nennt a den **Grenzwert** der Folge (a_n) .

Divergenz

Jede nicht konvergente Folge ist divergent.

Monotonie

Eine Folge (a_n) heißt

- monoton wachsend, falls $a_n < a_{n+1}$
- monoton fallend, falls $a_n \geq a_{n+1}$
- **konstant**, falls $a_n = a_{n+1}$
- alterniered, falls $a_n \cdot a_{n+1} < 0$

gilt, für alle $n \in \mathbb{N}$.

Man nutzt das Wort **streng**, falls jeweils > bzw. < statt \le bzw. > gilt.

Beschränktheit

Eine Folge \$(a n) heißt

- nach oben beschränkt, falls es ein $K \in \mathbb{R}$ gibt mit $a_n \leq K$ für alle $n \in \mathbb{N}$
- nach unten beschränkt, falls es ein $k \in \mathbb{R}$ gibt mit $a_n > k$ für alle $n \in \mathbb{N}$
- beschränt, falls sie sowohl nach oben als auch nach unten beschränkt ist.

Arithmetische Folge

Das sind Folgen die dem Bildungsgesetz $a_k = a_0 + k \cdot d$ mit einer Konstanten d gehorchen.

Geometrische Folge

Das sind Folgen die dem Bildungsgesetz $a_k = a_0 \cdot q^k$ ist, mit einer Konstanten g gehorchen.

Bekannte Folgen und deren Grenzwerte

- $\lim c = c$ für jedes konstante c
- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ für a > 0
- $\lim_{n \to \infty} \sqrt[n]{n} = 1$
- $\lim_{n\to\infty} \sqrt[n]{n^k} = 1$ für eine feste natürliche Zahl k
- $\lim_{n \to \infty} \frac{\ln(n)}{n} = 0$
- $\begin{array}{ll} \bullet & \lim_{n \to \infty} \frac{1}{n^s} = 0 & \text{für alle reelen } s \geq 1 \\ \bullet & \lim_{n \to \infty} q^n = 0 & \text{für alle reellen } |q| < 1 \end{array}$
- $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$

Rechenregeln für konvergente Folgen

Seien (a_n) und (b_n) konvergente Folgen mit den Grenzwerten a und b. Weiter sei $c \in \mathbb{R}$. Dann gilt:

- $\lim_{n \to \infty} (c \cdot a_n) = c \cdot a$ $\lim_{n \to \infty} (a_n \pm b_n) = a \pm b$
- $\bullet \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b}$, falls $b\neq 0$

Reihen

Reihe

Zu einer gegebenen Folge (a_n) nennt man den (formalen) Ausdruck $\sum_{k=1} a_k = a_1 + a_2 + a_3 + \dots$ (unendliche) Reihe.

Partialsumme

Für eine Folge (a_n) ist $s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n$ die

n-te Partialsumme.

Konvergenz und Grenzwert

Konvergiert die Folge (s_n) der **Partialsummen** einer Reihe gegen einen Wert s, so nennt man die Reihe konvergent. Man schreibt dann auch

$$\lim_{n \to \infty} s_n = \sum_{k=0}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=0}^{n} a_k = s.$$

Damit eine Reihe $\sum a_k$ konvergiert muss (a_k) eine Nullfolge sein.

Divergenz

Eine nicht konvergente Reihe heißt divergent.

Absolute Konvergenz

Konvergiert nicht nur $\sum_{k=1}^{\infty} a_k$, sondern auch $\sum_{k=1}^{\infty} |a_k|$, so heißt die Reihe **absolut konvergent**.

Jede absolut konvergente Reihe konvergiert auch gewöhnlich. Es gibt aber konvergente Reihen, die nicht absolut konvergieren.

Arithmetische Reihen

Basieren auf arithmetischen Folgen, es gilt

$$s_n = \frac{n}{2} \cdot (2 \cdot a_1 + (n-1) \cdot d).$$

Geometrische Reihen

Basieren auf geometrischen Folgen, es gilt

$$s_n = \sum_{k=0}^{n} q^k = \frac{q^{n+1} - 1}{q - 1}.$$

Für |q| < 1 ist die Reihe dann konvergent gegen $\frac{1}{1-q}$, für |q| > 1 ist sie **divergent**.

Majorantenkriterium

Eine Reihe $\sum a_k$ konvergiert absolut, wenn es eine konvergente Reihe $\sum_{k=0}^{\infty} b_k$ gibt mit $b_k \geq 0$, so dass ab einem Index $n_0 = |a_n| \leq b_n$ gilt für alle $n > n_0$. Man nennt dann die Reihe $\sum_{k=0}^{\infty} b_k$ die Majorante zu $\sum_{k=0}^{\infty} a_k$.

Eine Reihe $\sum a_k$ divergiert, wenn es eine divergente Reihe $\sum b_k$ gibt, so dass ab einem Index n_0 alle $a_n \geq b_n$ sind für

Man nennt dann die Reihe $\sum a_k$ eine **Minorante** zu $\sum a_k$.

Eine Reihe $\sum a_k$ mit $a_k \neq 0$ konvergiert absolut, wenn es eine Zahl q gibt, mit $0 \leq 0 < 1$, so dass für alle k ab einem Index $k_0 \left| \frac{a_{k+1}}{a_k} \right| \le q < 1$ gilt.

Das gilt insbesondere dann, falls $\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=q<1$ ist.

Wenn dagegen für alle k ab einem Index $k_0 \left| \frac{a_{k+1}}{a_k} \right| > 1$ gilt, so ist die Reihe $\sum a_k$ divergent.

Das gilt insbesondere dann, falls $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = q > 1$ ist.

Konvergenzkriterium von Leibniz

Sei (a_n) eine reelle, monoton fallende Nullfolge, dann konvergiert die alternierende Reihe

$$s = \sum_{n=0}^{\infty} \left[(-1)^n \cdot a_n \right] .$$

Kombinatorik

Summenregel

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Inklusion und Exklusion

 $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$ Produktregel

 $|A \times B| = |A| \cdot |B|$

k-Permutationen / Variation

$$P(n,k) = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Permutation

$$P(n,n) = n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1$$

Binomialkoeffizient

$$\binom{n}{k} = C(n,k) = \frac{P(n,k)}{k!} = \frac{n!}{k! \cdot (n-k)!}$$

Für die Anzahl der Möglichkeiten aus n Objekten k Objekte auszuwählen, gelten die folgenden Regeln:

Auswahl	mit Beachtung der Reihenfolge (Variation)	ohne Beachtung der Reihenfolge (Kombination)
ohne Zurücklegen	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$
mit Zurücklegen	n^k	$\binom{n+k-1}{k}$

Wahrscheinlichkeitsrechnung

In einem Wahrscheinlichkeitsraum (Ω, Σ, P) ist Ω die Ergebnismenge, Σ der Ereignisraum und P ein Wahrscheinlichkeitsmaß.

Es gilt dann für die beliebigen Ereignisse A, B und C bzw. die **disjunkten** Ereignisse $A_1, ..., A_n$ aus Σ :

Gegenereignis von Ereignis A

$$\overline{A} = A^c = \Omega \setminus A$$

Sicheres Ereignis

Unmögliches Ereignis

Ø oder {}

Teilereignis A von B

 $A \subset B$

Disjunktheit / Unverträglichkeit

A und B sind disjunkt oder unverträglich \iff $A \cap B = \emptyset$ Nichtnegativität der Wahrscheinlichkeitsfunktion

$$P(A) \in [0; 1]$$

Normiertheit der Wahrscheinlichkeitsfunktion

$$P(\Omega) = 1$$

Wahrscheinlichkeit des Gegenereignisses von A

$$P(\overline{A}) = 1 - P(A)$$

Wahrscheinlichkeit des unmöglichen Ereignisses

$$P(\emptyset) = 0$$

Summeregel

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Siebformel von Poincaré und Sylvester für drei Ereignisse

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Additivität

Für eine paarweise disjunkte Ereignisse $A_1, ..., A_n$ gilt:

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$$

Stochastische Unabhänigkeit

A und B sind unabhängig $\iff P(A \cap B) = P(A) \cdot P(B)$

Bedingte Wahrscheinlichkeit von A unter der Bedingung B

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Multiplikationssatz

$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

Satz von der totalen Wahrscheinlichkeit

Sei $\{E_1, \ldots, E_k\}$ eine **Zerlegung** von Ω mit $P(E_i) > 0$. Dann ist

$$P(E) = \sum_{i=1}^{k} P(E_i) \cdot P(E \mid E_i)$$

Satz von Bayes

Für zwei Ereignisse A und B mit P(B) > 0 gilt:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Satz von Bayes für Gegenereignisse

Da ein Ereignis A und sein Gegenereignis \bar{A} stets eine Zerlegung der

Ergebnismenge darstellen, gilt insbesondere:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A) + P(B \mid \bar{A}) \cdot P(\bar{A})}.$$

Laplace-Experiment

Ein Zufallsexperiment mit endliche Ergebismenge und gleicher Wahrscheinlichkeit aller Ergebnisse nennt man Laplace-Experiment.

Klassische Wahrscheinlichkeitsfunktion bei Laplace-Experimenten

$$P(A) = \frac{\text{"Anzahl der für A günstigen Fälle"}}{\text{"Anzahl der möglichen Fälle"}}$$

Differentialrechnung

Differentialquotient

Die Ableitung oder der Differentialquotient einer Funkti-

on f an der Stelle x_0 ist, falls der Grenzwert existiert $f'(x_0) = \frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = \lim_{x \to x_0} \frac{f(x_0) - f(x)}{x_0 - x}$

Ableitungsregeln:

Für differenzierbare, reelle Funktionen $f,\ g,\ z$ und n gelten die folgenden Regeln:

Summenregel

$$[f \pm g]'(x) = f'(x) \pm g'(x)$$

Produktregel

$$[f \cdot g]'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Produktregel für eine reelle Konstante c

$$[c \cdot f]'(x) = c \cdot f'(x)$$

Quotientenregel

$$\left[\frac{z(x)}{n(x)}\right]' = \frac{z'(x) \cdot n(x) - z(x) \cdot n'(x)}{(n(x))^2}$$

Kettenregel

$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

Ableitung elementarer Funktionen

$$[\ln(x)]' = \frac{1}{x}$$

$$[\log_a(x)]' = \frac{1}{x \cdot \ln(a)}$$

$$[x^b]' = b \cdot x^{b-1}$$

$$[\sin(x)]' = \cos(x)$$

$$[\cos(x)]' = -\sin(x)$$

Monotonie und Krümmung

Für eine im Intervall [a; b] differenzierbare Funktion f(x) gilt:

f ist in [a;b] - (streng) monoton wachsend $\iff f'(x) \ge (>)0$ - (streng) monoton fallend $\iff f'(x) \le (<)0$ - (streng) monoton konkav $\iff f''(x) \le (<)0$ - (streng) monoton konvex $\iff f''(x) > (>)0$

Extremstellen

Für eine differenzierbare Funktion f(x) ist definiert

Kritischer Punkt

Ein Wert x mit f'(x) = 0 heißt kritischer Punkt

Lokales Minimum

Ein **kritischer Punkt** x ist ein **lokales Minimum**, falls f''(x) > 0

Lokales Maximum

Ein **kritischer Punkt** x ist ein **lokales Maximum**, falls f''(x) < 0

Sattelpunkt

Ein **kritischer Punkt** x ist ein **Sattelpunkt**, falls f''(x) = 0 und $f'''(x) \neq 0$.

Wendepunkt

Ein Punkt x mit $f'(x) \neq 0$, f''(x) = 0 und $f'''(x) \neq 0$ ist ein **Wendepunkt**.