EFFICIENT NONMYOPIC ACTIVE SEARCH

Shali Jiang, Gustavo Malkomes, Geoff Converse, Alyssa Shofner, Roman Garnett, Benjamin Moseley Washington University in St. Louis

12.10.16

1. ACTIVE SEARCH

Finding interesting points

Active search¹

- In active search, we consider active learning with an unusual goal: locating as many members of a particular class as possible.
- Numerous real-world examples:
 - drug discovery,
 - intelligence analysis,
 - product recommendation,
 - playing Battleship.

Active Search Active Search

¹Garnett, Krishnamurthy, Xiong, Schneider (CMU), Mann (Uppsala).

Battleship!

Another definition

Active search is Bayesian optimization with *binary rewards* and *cumulative regret*.

Our approach

We approach this problem via Bayesian decision theory.

- We define a natural utility function, and
- The location of the next evaluation will be chosen by maximizing the expected utility.

The utility function (cumulative reward)

The natural utility function for this problem is *the number of interesting points found*.

The Bayesian optimal policy

The optimal policy may be derived by sequentially maximizing the expected utility of the *final dataset*. With a budget of B, at time t, we select

$$\arg\max_{x_t} \mathbb{E} \big[u(\mathcal{D}_B) \mid x_t, \mathcal{D}_{t-1} \big]$$

The Bayesian optimal policy

This may be written recursively:

```
\begin{aligned} [\text{expected utility starting from point}] &= \\ & [\text{current utility}] + \\ & \underbrace{[\text{expected utility of point}]}_{\text{exploitation, } < 1} + \\ & \underbrace{\mathbb{E}_{y_t} \Big[[\text{success of remaining search}]\Big]}_{\text{exploration, } < B-t}. \end{aligned}
```

Automatic *dynamic* tradeoff between exploration and exploitation!

Lookahead

- Unfortunately, the computational cost of computing the optimal policy is expensive. (Exponential in the number of points!)
- In practice, we use a myopic approximation, where we effectively pretend there is only a small number of observations remaining.

The Bayesian optimal policy

```
\begin{aligned} [\text{expected utility starting from point}] &= \\ & [\text{current utility}] + \\ & [\text{expected utility of point}] + \\ & \underbrace{\mathbb{E}_{yt} \Big[ [\text{success of remaining search}] \Big]}_{\text{exploration, } < B-t}. \end{aligned}
```

ℓ -step myopic approximation

```
[\text{expected utility of next few points}] = \\ [\text{current utility}] + \\ [\text{expected utility of point}] + \\ [\text{exploitation}, < 1] \\ \mathbb{E}_{y_t} \Big[ [\text{success of next few points}] \Big] \,.
```

(ℓ is normally 2–3).

Problems

- The dependence on the budget has been lost!
- Exploration is heavily undervalued!

Lookahead can always help

Theorem (Garnett, et al.)

Let $\ell, m \in \mathbb{N}^+, \ell < m$. For any q>0, there exists a search problem $\mathcal P$ such that

$$\frac{\mathbb{E}_{\mathcal{D}}[u(\mathcal{D}) \mid m, \mathcal{P}]}{\mathbb{E}_{\mathcal{D}}[u(\mathcal{D}) \mid \ell, \mathcal{P}]} > q;$$

that is, the m-step active-search policy can outperform the ℓ -step policy by any arbitrary degree.

Our idea: Efficient nonmyopic active search

- Our idea is to approximate the remainder of the search differently. We assume that any remaining budget is selected *simultaneously in one big batch*.
- Similar idea to the GLASSES algorithm, in a different context (and in this case, *exact* and *efficient*).
- Exploration encouraged correctly! Automatic, dynamic tradeoff restored!

Active Search Expected utility 15

2. QUICK EXPERIMENT

CiteSeer data

- Includes papers from the 50 most popular venues present in the CiteSeer database.
- 42k nodes, 222k edges.
- We search for NIPS papers, 2.5k papers (6%).

Experiment

- We select a single NIPS paper at random, and begin with that single positive observation.
- The one- and two-step myopic approximations were compared with our method (ENS).

Results

Results: Zoom

Results: Budget

	query number				
policy	100	300	500	700	900
one-step two-step	25.5 24.9	80.5 89.8	141 155	209 220	273 287
ENS-900 ENS-700 ENS-500 ENS-300 ENS-100	25.9 28.0 28.7 26.4 30.7	94.3 105 112 105	163 188 189	239 259	308

2. THANK YOU!

Questions?