6. Formas canónicas de Jordan

6.1. Polinomios aplicados a operadores

Dado un espacio vectorial V sobre un cuerpo \mathbb{K} , como ya vimos en la unidad de transformaciones lineales, los operadores lineales $\mathcal{L}(V)$ juegan un rol destacado. Para $T \in \mathcal{L}(V)$, $T \circ T = TT = T^2$ también es un operador en $\mathcal{L}(V)$.

Definición 6.1 *Sea* $T \in \mathcal{L}(V)$ y $m \in \mathbb{Z}^+$. *Entonces*

- $T^m \in \mathcal{L}(V)$ es la composición m veces de T, i.e. $T^m = \underbrace{T \cdots T}_{m \, veces}$.
- $T^0 = I$, operador identidad en $\mathcal{L}(V)$.
- Si T es inversible con inversa T^{-1} , entonces $T^{-m} \in \mathcal{L}(V)$ está definido por $T^{-m} = (T^{-1})^m$.

Observación 6.1 Para $T \in \mathcal{L}(V)$, se verifica: $T^mT^n = T^nT^m = T^{m+n}$, $(T^m)^n = T^{mn}$, para $m, n \in \mathbb{Z}$ si T es inversible, para $m, n \in \mathbb{N}$ para T no inversible.

Definición 6.2 Sea $T \in \mathcal{L}(V)$ y $p \in \mathbb{K}[x]$ un polinomio dado por

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m.$$

Luego p(T) es un operador en $\mathcal{L}(V)$ definido por

$$p(T) = a_0 I + a_1 T + a_2 T^2 + \dots + a_m T^m.$$

Fijado un operador $T \in \mathcal{L}(V)$, la aplicación de $\mathbb{K}[x]$ en $\mathcal{L}(V)$ que a un polinomio dado $p \mapsto p(T)$ es una transformación lineal (verlo).

Definición 6.3 Sean $p,q \in \mathbb{K}[x]$, luego $pq \in \mathbb{K}[z]$ es el polinomio que se define como $(pq)(z) = p(z)q(z), \forall z \in \mathbb{K}$.

Proposición 6.1 Sean $p, q \in \mathbb{K}[x]$ $y T \in \mathcal{L}(V)$. Luego

- 1. $(pq)(T) = p(T)q(T), \forall T \in \mathcal{L}(V)$.
- 2. $p(T)q(T) = q(T)p(T), \forall T \in \mathcal{L}(V)$.

Demos: Ejercicio.

Proposición 6.2 Sean $T \in \mathcal{L}(V)$ $y p \in \mathbb{K}[x]$. Luego nul(p(T)) y img(p(T)) = p(T)(V) son subespacios invariantes bajo T.

Demos: Sea $u \in nul(p(T))$ i.e. p(T)(u) = 0. Luego

$$0 = T(0) = T(p(T)(u)) = (p(T)T)(u) = p(T)(Tu),$$

Por lo tanto $T(u) \in nul(p(T))$ y nul(T) es invariante bajo T.

Sea $u \in img(p(T))$, luego existe un $v \in V$ tal que u = p(T)(v). Así Tu = T(p(T)v) = p(T)(Tv). Concluimos que $Tu \in img(p(T))$.

Observación 6.2 Sean V espacio vectorial de dimensión finita sobre \mathbb{K} , $T \in \mathcal{L}(V)$. Se dice que un polinomio $p \in \mathbb{K}[x]$ anula a T si el operador p(T) = 0. La colección $M \subseteq \mathbb{K}[x]$ de polinomios p que anulan a T es un ideal en el álgebra de los polinomios $\mathbb{K}[x]$ (es decir que $pq \in M$, $\forall p \in M$, $q \in \mathbb{K}[x]$).

Proposición 6.3 Sean V espacio vectorial de dimensión finita sobre \mathbb{K} , $T \in \mathcal{L}(V)$. Se tiene que, el ideal $M \subseteq \mathbb{K}[x]$ de polinomios que anulan a T es $M \neq \{0\}$. Es decir que existe un polinomio distinto del polinomio nulo que anula a T.

Demos: Consideremos las primeras $(n^2 + 1)$ potencias de T

$$I, T, T^2, \cdots, T^{n^2}$$
.

Esta es una colección de $(n^2 + 1)$ operadores en $\mathcal{L}(V)$, cuya dimensión es n^2 . Por lo tanto nuestra colección es linealmente dependiente, con lo cual

$$c_0I + c_1T + c_2T^2 + \dots + c_{n^2}T^{n^2} = 0,$$

con c_i no todos nulos. En consecuencia hay un polinomio de grado menor o igual que n^2 que anula a T.

Definición 6.4 Un polinomio mómico es un polinomio tal que el coeficiente del término de mayor grado es igual a 1.

Proposición 6.4 Sean V espacio vectorial de dimensión finita sobre \mathbb{K} , $T \in \mathcal{L}(V)$. Existe un único polinomio mónico $p \in \mathbb{K}[x]$ de menor grado tal que p(T) = 0. Más aún grad $(p) \leq dim(V)$.

<u>Demos</u>: Para dim(V) = 0, la identidad I es el operador nulo en V y tomamos como p el polinomio constante 1.

Ahora hacemos inducción sobre dim(V). Supongamos dim(V) > 0 y supongamos que es cierta la tesis para todos los operadores definidos en espacios vectoriales de dimensión menor. Sea $0 \neq u \in V$. Consideremos el conjunto linealmente dependiente en V

$$\{u, Tu, \cdots, T^{dim(V)}u\}.$$

Luego existe un $m \le dim(V)$, el menor, tal que $T^m u$ es una combinación lineal de $u, Tu, \dots, T^{m-1}u$ (es más dicho conjunto es l.i.). Así existen escalares $c_0, c_{-1}, dots, c_{m-1} \in \mathbb{K}$ tales que

$$c_0 u + c_1 T u + \dots + c_{m-1} T^{m-1} u + T^m u = 0.$$
(15)

Definamos el polinomio mónico $q \in \mathbb{K}[x]$ como

$$q(x) = c_0 + c_1 x + \cdots + c_{m-1} x^{m-1} + x^m.$$

Entonces la ecuación (15) implica que q(T)u = 0.

Si $k \in \mathbb{N}$, se tiene que $q(T)(T^ku) = T^k(q(T)u) = T^k(0) = 0$. Esto más el hecho que $u, Tu, \dots, T^{m-1}u$ es l.i. implica que $dim(nulq(T)) \ge m$. Así

$$rg(q(T)) = dim(V) - dim(nul(q(T))) \le dim(V) - m.$$

Como img(q(T)) es invariante bajo T, podemos usar nuestra hipótesis de inducción en el operador $T|_{img(q(T))}$ en el espacio vectorial img(q(T)). Luego existe un polinomio mónico $s \in \mathbb{K}[x]$ con

$$grad(s) \leq dim(V) - m,$$
 $s(T|_{img(q(T))} = 0.$

Luego para todo $v \in V$ se tiene que

$$((sq)(T))(v) = s(T)(q(T)v) = 0,$$

pues $q(T)v \in img(q(T))$ y s(T)|img(q(T)) = s(T|img(q(T))) = 0. Así sq es un polinomio mónico tal que $grad(sq) \leq dim(V)$ y sq(T) = 0.

Teniendo la existencia de un polinomio mónico de grado menor que dim(V) que anula a T podemos afirmar que existe uno de menor grado que también anula a T con lo que queda probada la existencia.

Veamos la unicidad. Supongamos que $p, r \in \mathbb{K}[x]$ sos polinomios mónicos de menor grado tal que p(T) = r(T) = 0. Luego (p - r)(T) = 0 y grad(p - r) < grad(p). Así si p - r no es el polinomio nulo dividiendo por el coeficiente de mayor grado de (p - r) existiría un polinomio mónico de grado menor que grad(p) que anularía T. Luego p - r = 0.

Definición 6.5 Sean V espacio vectorial de dimensión finita sobre \mathbb{K} , $T \in \mathcal{L}(V)$. El **polinomio minimal** de T es el único polinomio mónico $p \in \mathbb{K}[x]$ de menor grado tal que p(T) = 0.

De manera análoga se tiene

Definición 6.6 Sean $\mathfrak{t} \in \mathcal{M}_n(\mathbb{K})$. El polinomio minimal de A es el único polinomio mónico $p \in \mathbb{K}[x]$ de menor grado tal que p(A) = 0.

Proposición 6.5 Si un operador $T \in \mathcal{L}(V)$ tiene asociada una matriz A fijada una cierta base ordenada del espacio vectorial V entonces T y A tienen el mismo polinomio minimal. Además todas las matrices semejantes tienen el mismo polinomio minimal.

<u>Demos</u>: Para cualquier polinomio $f \in \mathbb{K}[x]$, el operador f(T) tiene como matriz asociada en la misma base fijada a la matriz f(A). Luego f(T) = 0 si y solo si f(A) = 0. Si B es una matriz semejante a A, existe una matriz inversible P, tal que $B = P^{-1}AP$. Luego para cualquier polinomio $f \in \mathbb{K}[x]$ se tiene que $f(B) = f(P^{-1}AP) = P^{-1}f(A)P$.

Teorema 6.1 Sea V espacio vectorial de dimensión finita sobre \mathbb{K} y $T \in \mathcal{L}(V)$. Las raíces del polinomio minimal de T son los autovalores de T. Si $\mathbb{K} = \mathbb{C}$, entonces el polinomio minimal de T tiene la forma

$$p(z) = (z - \lambda_1) \cdots (z - \lambda_m)$$

siendo $\lambda_1, \dots, \lambda_m$ los autovalores de T, posiblemente con repetición.

Demos: Supongamos que λ es un cero de p, polinomio minimal de T. Luego podemos escribir

$$p(z) = (z - \lambda)q(z),$$

con $q \in \mathbb{K}[z]$ mónico. Como p(T) = 0 para todo $v \in V$ se tiene que

$$0 = p(T)v = (T - \lambda I)(q(T)v).$$

Luego, ya que grad(q) = grad(p) - 1 y p es el polinomio minimal de T debe existir al menos un vector $v \in V$, tal que $q(T)v \neq 0$ y la ecuación anterior implica que λ es un autovalor de T.

Recíprocamente, si λ es un autovalor de T, existe algún $0 \neq v \in V$ tal que $Tv = \lambda v$. Aplicando reiteradas veces T a ambos miembros de esta igualdad obtenemos que $T^kv = \lambda^k v$ para todo k entero no negativo. Así

$$p(T)v = p(\lambda)v$$
.

Como p es el polinomio minimal de T se tiene que P(T)v=0 y en consecuencia, como $v\neq 0$ resulta $p(\lambda)=0$, como queríamos ver.

La observación para $\mathbb{K} = \mathbb{C}$ surge de aplicar el teorema fundamental del álgebra.

Teorema 6.2 Sea V un espacio vectorial de dimensión finita sobre \mathbb{K} , $T \in \mathcal{L}(V)$ $y \in \mathbb{K}[x]$. Luego q(T) = 0 si y solo si q es un polinomio múltiplo del polinomio minimal de T.

<u>Demos</u>: Sea $p \in \mathbb{K}[x]$ el polinomio minimal de T. Por el algoritmo de la división para polinomios sabemos que existen polinomios $s, r \in \mathbb{K}[x]$ tales que

$$q = ps + r$$
, $grad(r) < grad(p)$.

Así se tiene que

$$0 = q(T) = p(T)s(T) + r(T) = r(T).$$

Esta igualdad implica que el polinomio r = 0, pues sino habría una contradicción con el hecho de que p es el polinomio minimal para T. De este modo se obtiene que q = ps, con lo cual q es múltiplo de p.

Recíprocamente, si q es un polinomio múltiplo de p, es decir existe un $s \in \mathbb{K}[x]$ tal que q = ps, se tiene que

$$q(T) = p(T)s(T) = 0s(T) = 0,$$

como queríamos probar.

6.2. Invariancia

Definición 6.7 Sea $T: V \to V$ una transformación lineal. Un subespacio W de V se dice **invariante por** T si T aplica a W en si mismo, i.e., si $v \in W \Rightarrow T(v) \in W$. En este caso T restringido a W define un operador lineal,

$$\begin{array}{cccc} \hat{T}: & W & \to & W \\ & w & \mapsto & \hat{T}(w) = T(w). \end{array}$$

Ejemplo 6.1 *Sea* $T : \mathbb{R}^3 \to \mathbb{R}^3$, *tal que* $T(x, y, z) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta, z)$. *Es el operador lineal que rota cada vector alrededor del eje* z *un ángulo* θ .

Observemos que cada vector $w = (a, b, 0) \in W$ donde W es el plano xy permanece en W al aplicarle la transformación T, luego W es invariante por T.

También resulta invariante el eje z.

Ejemplo 6.2 Los vectores propios de un operador lineal $T: V \to V$ pueden caracterizarse como generadores de subespacios invariantes por T de dimensión 1.

Supongamos que $T(v) = \lambda v, v \neq 0$, entonces $W = \{\alpha v : \alpha \in \mathbb{K}\}$ es invariante por T pues

$$T(\alpha v) = \alpha T v = \alpha(\lambda v) = (\lambda \alpha) v \in W.$$

Recíprocamente, supongamos que dim U=1, U=< u> y U invariante por T. Entonces como $T(u)\in U$ resulta $T(u)=\beta u$ para algún $\beta\in \mathbb{K}$, con lo que resulta u un autovector de T.

Teorema 6.3 Sea W un subespacio invariante de $T: V \to V$, espacio vectorial sobre \mathbb{K} de dimensión finita. Entonces T tiene una representación matricial por bloques

$$\begin{bmatrix} A & B \\ 0 & C \end{bmatrix},$$

donde A es una representación matricial de la restricción de T a W.

<u>Demos</u>: Sea una base ordenada $\{w_1, \dots, w_r\}$ de W y la extendemos a una base $\{w_1, \dots, w_r, v_1, \dots, v_s\}$ de V. Se tiene

$$\hat{T}(w_1) = T(w_1) = a_{11}w_1 + \dots + a_{1r}w_r
\vdots
\hat{T}(w_r) = T(w_r) = a_{r1}w_1 + \dots + a_{rr}w_r
T(v_1) = b_{11}w_1 + \dots + b_{1r}w_r + c_{11}v_1 + \dots + c_{1s}v_s
\vdots
T(v_s) = b_{s1}w_1 + \dots + b_{sr}w_r + c_{s1}v_1 + \dots + c_{ss}w_s$$

Pero la matriz de *T* en esta base es la transpuesta de la matriz de los coeficientes en el sistema anterior de ecuaciones. Por lo tanto tiene la forma

$$\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$$

Por el mismo argumento A es la matriz de \hat{T} relativa a la base $\{w_i\}$ de W.

6.3. Descomposición en suma directa de espacios invariantes

Recordemos que

Definición 6.8 Se dice que un espacio vectorial V es la **suma directa** de sus subespacios W_1, \dots, W_r , si todo vector $v \in V$ puede escribirse de manera única como

$$v = w_1 + \cdots + w_r, w_i \in W_i, i = 1, \cdots, r.$$

tal que $W_i \cap W_j = \{0\}, \forall i \neq j$. Se nota $V = W_1 \oplus \cdots \oplus W_r$.

Teorema 6.4 Sean W_1, \dots, W_r subespacios de V, y supongamos que $B_1 = \{w_1^1, \dots, w_{n_1}^1\}, \dots, B_r = \{w_1^r, \dots, w_{n_r}^r\}$ son bases de W_1, \dots, W_r respectivamente. Entonces V es la suma directa de los W_i si y sólo si $B = \{w_1^1, \dots, w_{n_1}^1, \dots, w_1^r, \dots, w_{n_r}^r\}$ es una base de V.

Demos: ←) Supongamos que *B* es base de *V*, luego para todo $v \in V$ existen escalares tales que

$$v = a_{11}w_1^1 + \dots + a_{1n_1}w_{n_1}^1 + \dots + a_{r1}w_1^r + \dots + a_{rn_1}w_{n_1}^r = w_1 + \dots + w_r,$$

con $w_i = a_{i1}w_1^i + \cdots + a_{in_i}w_{n_1}^i \in W_i$.

Veamos que la suma es única. Supongamos que $v = \tilde{w}_1 + \cdots + \tilde{w}_r$ con $\tilde{w}_i \in W_i$. Usando la base correspondiente a cada W_i se tendrá que existen escalares tales que $\tilde{w}_i = b_{i1}w_1^i + \cdots + b_{in_i}w_{n_i}^i$, luego se tiene que

$$v = b_{11}w_1^1 + \dots + b_{1n_1}w_{n_1}^1 + \dots + b_{r1}w_1^r + \dots + b_{rn_1}w_{n_1}^r.$$

Como B es una base de V, resulta $a_{ij} = b_{ij}$ para cada i y j, de ese modo los términos de la suma de v son únicos y así resulta V suma directa de W_i , \cdots , W_r .

 \Rightarrow) Supongamos que V suma directa de W_i, \dots, W_r . Luego todo $v \in V$ puede expresarse como $v = v_1 + \dots + v_r$ con $w_i \in W_i$ únicos. Como B_i es base de W_i , cada v_i es combinación lineal de los vectores $\{w_1^i, \dots, w_{n_i}^i\}$, resultando así v combinación lineal de los elementos de B por lo tanto $V = \langle B \rangle$.

Veamos que los vectores en *B* son *l.i.*. Consideremos

$$0 = a_{11}w_1^1 + \dots + a_{1n_1}w_{n_1}^1 + \dots + a_{r1}w_1^r + \dots + a_{rn_1}w_{n_1}^r.$$

Observemos que $a_{i1}w_1^i + \cdots + a_{in_i}w_{n_1}^i \in W_i$, por ser V suma directa de tales subespacios, el 0 se escribe de manera única y así se tiene que $a_{i1}w_1^i + \cdots + a_{in_i}w_{n_1}^i = 0$, $\forall i = 1, \cdots, r$. Además como $\{w_{1}^i, \cdots, w_{n_i}^i\}$ es base de W_i subespacio, se tiene que $a_{i1} = \cdots = a_{in_i} = 0$. Esto completa la prueba de que B es base de V.

Definición 6.9 Sean $T: V \to V$ un operador lineal sobre un espacio vectorial $V = W_1 \oplus \cdots \oplus W_r$, con W_i subespacios invariantes bajo $T(T(W_i) \subset W_i, i = 1, \cdots, r)$. Sea T_i la restricción de T a W_i . Se dice que T se descompone en los operadores T_i o que T es suma directa de los T_i y se escribe

$$T = T_1 \oplus T_2 \oplus \cdots \oplus T_r$$
.

También se dice que los subespacios W_1, \dots, W_r reducen a T, o que forman una descomposición de V en una suma directa invariante por T.

Observación 6.3 Consideremos los espacios U, W que reducen un operador $T: V \to V$, con $\{u_1, u_2\}$ y $\{w_1, w_2, w_3\}$ bases ordenadas de U y W respectivamente. Sean además T_1, T_2 las restricciones de T a U y a W respectivamente. Luego

$$T_1(u_1) = a_{11}u_1 + a_{12}u_2$$

 $T_1(u_2) = a_{21}u_1 + a_{22}u_2$, $T_2(w_1) = b_{11}w_1 + b_{12}w_2 + b_{13}w_3$
 $T_2(w_2) = b_{21}w_1 + b_{22}w_2 + b_{23}w_3$
 $T_2(w_3) = b_{31}w_1 + b_{32}w_2 + b_{33}w_3$

Quedan determinadas dos matrices

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \qquad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

que son las matrices asociadas a las transformaciones T_1 y T_2 relativas a las respectivas bases ordenadas dadas para U y W.

Por el teorema anterior sabemos que $\{u_1, u_2, w_1, w_2, w_3\}$ es una base de V. Además como $T(u_i) = T_1(u_i)$ y $T(w_i) = T_2(w_i)$, la matriz de T relativa a esta base es la matriz diagonal por bloques

$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}.$$

Teorema 6.5 Sea V, $e.v.s/\mathbb{K}$, $T:V\in\mathcal{L}(V)$ y V es la suma directa de subespacios invariantes invariantes por T, W_1, \cdots, W_r . Si A_i es la representación matricial de la restricción de T a W_i relativa a bases ordenadas dadas de W_i , entonces T tiene asociada la matriz diagonal por bloques

$$M = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_r \end{bmatrix},$$

relativa a la base ordenada que resulta de concatenar en orden las bases de cada uno de los W_i.

Observación 6.4 La matriz diagonal por bloques M con bloques diagonales A_1, \dots, A_r se llama a veces la suma directa de las matrices A_1, \dots, A_r y se representa $M = A_1 \oplus \dots \oplus A_r$.

6.4. Descomposición primaria

Teorema 6.6 Sea $T: V \to V$ lineal, $y \ f(t) = g(t)h(t)$ polinomios tales que $f(T) = 0 \ y \ g(t) \ y \ h(t)$ son primos relativos (es decir que su máximo común divisor es 1). Entonces V es la suma directa de los subespacios U y W invariantes por T, donde $U = nul(g(T)) \ y \ W = nul(h(T))$.

Demos: Como g(t) y h(t) son primos relativos, existen polinomios r(t) y s(t) tales que

$$r(t)g(t) + s(t)h(t) = 1.$$

Luego aplicado al operador T esto nos da

$$r(T)g(T) + s(T)h(T) = \mathbb{I}.$$
(16)

Sea $v \in V$, luego por la igualdad anterior se tiene que v = r(T)g(T)v + s(T)h(T)v. Se tiene que $r(T)g(T)v \in W = nul(h(T))$ pues

$$h(T)r(T)g(T)v = r(T)g(T)h(T)v = r(T)f(T)v = r(T)0v = 0.$$

De forma similar se tiene que $s(T)h(T)v \in U = nul(g(T))$. De este modo V es la suma de U y W. Para ver que $V = U \oplus W$ debemos mostrar que para cada $v = u + w \in V$ la forma de escribirlo es única con $u \in U$, $w \in W$. Observemos que

$$r(T)g(T)v = r(T)g(T)(u+w) = r(T)g(T)u + r(T)g(T)w = r(T)g(T)w.$$

Aplicando (16) a w se tiene

$$w = r(T)g(T)w + s(T)h(T)w = r(T)g(T)w.$$

De estas últimas dos igualdades surge que w=r(T)g(T)v, de este modo vemos que w está determinado por v. De modo análogo se obtiene que u=s(T)h(T)v. Luego $V=U\oplus W$, como queríamos ver.

Teorema 6.7 En el teorema 6.6, si f(t) es el polinomio minimal de T y (g(t) y h(t) son mónicos), entonces g(t) y h(t) son los polinomios minimales de $T_1 = T|U$ y $T_2 = T|W$ respectivamente.

<u>Demos</u>: Sean $m_1(t)$ y $m_2(t)$ los polinomios minimales de T_1 y T_2 respectivamente. Notemos que $g(T_1) = 0$ y $h(T_2) = 0$ pues U = nul(g(T)) y W = nul(h(T)).

Luego se tiene que $m_1(t)$ divide a g(t) y $m_2(t)$ divide a h(t). Por el teorema 6.6, f(t) es el mínimo común múltiplo de $m_1(t)$ y $m_2(t)$, pero ambos son primos relativos ya que lo son g(t) y h(t). En consecuencia $f(t) = m_1(t)m_2(t)$ y se tiene también que f(t) = g(t)h(t). Por lo tanto

$$m_1(t)m_2(t) = g(t)h(t)$$
 \Rightarrow $m_2(t) = \frac{g(t)}{m_1(t)}h(t) = p(t)h(t).$

con lo cual si p(t) es un polinomio de grado positivo resultaría de h un polinomio que anula a T_2 y de grado estrictamente menor que el $gr(m_2)$ lo que contradice el hecho de que m_2 sea el polinomio minimal de T_2 . En consecuencia resulta $g(t) = m_1(t)$ y $h(t) = m_2(t)$.

Teorema 6.8 Teorema de Descomposición Primaria

Sea $T: V \rightarrow V$ un operador lineal con polinomio minimal

$$m(t) = f_1(t)^{m_1} \cdots f_r(t)^{m_r},$$

donde los $f_i(t)$ son polinomios mónicos irreducibles diferentes. Entonces V es la suma directa de los subespacios invariantes por T, W_1, \cdots, W_r , donde W_i es el espacio nulo de $f_i(T)^{m_i}$. Además $f_i(t)^{m_i}$ es el polinomio minimal de la restricción de T a W_i .

Demos: Hacemos inducción sobre r. Para r = 1 es trivial.

Supongamos que el resultado es válido para r-1, veamos que vale para r. Por el Teorema 6.6 sabemos que V puede escribirse como la suma directa de subespacios invariantes por T, W_1 y V_1 , donde $W_1 = nul(f_1(T)^{n_1})$ y $V_1 = nul(f_2(t)^{n_2} \cdots f_r(t)^{n_r})$.

Por el Teorema 6.7, los polinomios minimales de la restricción de T a W₁ y V₁ son respectivamente

 $f_1(T)^{n_1} \mathbf{y} f_2(t)^{n_2} \cdots f_r(t)^{n_r}$.

Representemos la restricción de T a V_1 por T_1 . Por la hipótesis de inducción, V_1 es la suma directa de subespacios W_2, \dots, W_r tales que $W_i = nul(f_i(T)^{n_i})$ y tales que $f_i(T)^{n_i}$ es el polinomio minimal de la restricción de T_1 a W_i .

Se tiene que $nul(f_i(T)^{n_i}) \subset V_1$ para $i=2,\cdots,r$ pues cada $f_i(t)^{n_i}$ divide a $f_2(t)^{n_2}\cdots f_r(t)^{n_r}$, luego $nul(f_i(T)^{n_i})$ es el mismo que $nul(f_i(T_i)^{n_i})$ que es W_i . También la restricción de T a W_i es la misma restricción que de T_1 a W_i , $i=1,\cdots,r$, con lo cual $f_i(t)^{n_i}$ también es el polinomio minimal de la restricción de T a W_i .

Luego $V = W_1 \oplus W_2 \oplus \cdots \oplus W_r$ resulta la descomposición buscada.

Teorema 6.9 Un operador lineal $T: V \to V$ tiene una representación matricial diagonal por bloques si y sólo si su polinomio minimal m(t) es un producto de polinomios lineales diferentes.

<u>Demos</u>: \Leftarrow) Sea $m(t) = (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_r)$, donde los λ_i son escalares diferentes. Por el Teorema 6.8, V es la suma directa de subespacios W_1, \cdots, W_r donde $W_i = nul(T - \lambda_i I)$. Luego si $v \in W_i$ entonces $(T - \lambda_i I)v = 0$, es decir que todo vector de W_i es autovector de T correspondiente a λ_i .

Por el Teorema 6.4, la unión de bases de $W_1 \cdots$, W_r es una base de V. Esa base está formada por autovectores de T por lo tanto T es diagonalizable.

 \Rightarrow) Sea T diagonalizable, es decir que V tiene una base formada por autovectores de T. Sean $\lambda_1, \dots, \lambda_r$ los distintos autovalores de T. Luego el operador

$$f(T) = (T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_r I)$$

aplica cada vector de la base en 0. Resulta así f(T) = 0 y por lo tanto el polinomio minimal m(t) de T divide al polinomio

$$f(t) = (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_r) = m(t)$$

en consecuencia, m(t) es un producto de polinomios lineales diferentes.

Observación 6.5 Una forma equivalente del Teorema 6.9 es la siguiente:

Una matriz A es semejante a una matriz diagonal si y solo si su polinomio minimal m(t) es un producto de polinomios lineales diferentes.

6.5. Autovectores generalizados

Lema 6.1 Sean V e.v.s / \mathbb{K} de dimensión finita y $T \in \mathcal{L}(V)$. Luego se tiene que

$$\{0\} = nul(T^0) \subseteq nul(T^1) \subseteq \cdots \subseteq nul(T^k) \subseteq nul(T^{k+1}) \subseteq \cdots$$

<u>Demos</u>: Sea $k \in \mathbb{N}$ y sea $v \in nul(T^k)$, i.e. $T^k v = 0$. Luego $T^{k+1}v = T(T^k v) = T(0) = 0$ y se tiene que $v \in nul(T^{k+1})$.

Lema 6.2 Sean V e.v.s / \mathbb{K} de dimensión finita, $T \in \mathcal{L}(V)$ y $m \in \mathbb{N}_0$ tal que

$$nul(T^m) = nul(T^{m+1}).$$

Luego $nul(T^{m+k}) = nul(T^{m+k+1}), \forall k \in \mathbb{N}_0.$

Demos: Sea $v \in nul(T^{m+k+1})$, luego

$$T^{m+1}(T^kv)=T^{m+k+1}=0,\quad \Rightarrow \quad T^kv\in nul(T^{m+1})=nul(T^m).$$

Así $T^{m+k}v = T^m(T^kv) = 0$, con lo cual $v \in nul(T^{m+k})$. En consecuencia probamos que $T^{m+k+1} \subseteq T^{m+k}$ y la otra contención es consecuencia directa del lema anterior.

Nos preguntamos entonces cuando existe ese $m \in \mathbb{N}$ tal que $nul(T^m) = nul(T^{m+1})$.

Teorema 6.10 Sean V e.v.s / \mathbb{K} de dimensión finita, $T \in \mathcal{L}(V)$. Entonces se tiene que

$$nul(T^{dim(V)}) = nul(T^{dim(V)+1}) = nul(T^{dim(V)+2}) = \cdots$$

<u>Demos</u>: Solo hay que probar la primera igualdad. Supongamos que no es válido. Así usando los dos lemas anteriores se tiene que

$$\{0\} = nul(T^0) \subsetneq nul(T^1) \subsetneq \cdots \subsetneq nul(T^{dim(V)}) \subsetneq nul(T^{dim(V)+1}).$$

En todas las contenciones estrictas anteriores, la dimensión de los espacios aumenta al menos 1. Así resultaría $dim(nulT^{dim(V)+1}) \geqslant dim(V)+1$, lo que es un absurdo pues un subespacio no puede tener más dimensión que el espacio que lo contiene.

Observación 6.6 Notemos que para $T \in \mathcal{L}(V)$ no siempre vale que $V = nul(T) \oplus img(T)$. (Dar un contraejemplo). Sin embargo se tiene es siguiente resultado

Teorema 6.11 Sean V e.v.s $/ \mathbb{K}$, dim(V) = n y $T \in \mathcal{L}(V)$, luego

$$V = nul(T^n) \oplus img(T^n)$$
.

<u>Demos</u>: Veamos que $nul(T^n) \cap img(T^n) = \{0\}$.

Supongamos $v \in nul(T^n) \cap img(T^n) = \{0\}$. Luego $T^nv = 0$ y existe $u \in V$ tal que $v = T^nu$. Aplicando T^n a ambos miembros de la última ecuación se tiene que $T^nv = T^{2n}u$ y así $T^{2n}u = 0$ que por el teorema anterior implica que $0 = T^nu = v$. Con esto obtenemos que $nul(T^n) + img(T^n)$ es una suma directa.

Además

$$dim(nul(T^n) \oplus img(T^n)) = dim(nul(T^n)) + dim(img(T^n)) = dim(V),$$

esto implica que $V = nul(T^n) \oplus img(T^n)$.

Todos estos resultados nos serán útiles para los conceptos que definiremos a continuación. Nuestro objetivo sigue siendo, dado un operador $T \in \mathcal{L}(V)$ descomponer el espacio V en suma directa de adecuados subespacios invariantes por T, es decir poder escribir

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_r, T(V_k) \subseteq V_k, k = 1, \cdots, r.$$

El mejor de los casos sería que cada uno de esos subespacios fuese de dimensión 1, y esto ya vimos es posible si y sólo si el espacio V tiene una base de autovectores y en ese caso podemos tener la descomposición

$$V = E_{\lambda_1}(T) \oplus E_{\lambda_2}(T) \cdots \oplus E_{\lambda_m}(T)$$
,

con $\lambda_1, \dots, \lambda_m$ son autovalores distintos de T. Sabemos que este puede no ser el caso para todo operador T, las sumas de las dimensiones de los autoespacios puede ser menor estricto a la dim(V). Necesitamos más vectores.

Definición 6.10 Sean V e.v.s / \mathbb{K} , dim(V) = n, $T \in \mathcal{L}(V)$ y λ un autovalor de T. Un vector $v \in V$ es llamado autovector generalizado de T correspondiente a λ si $v \neq 0$ y

$$(T - \lambda I)^k v = 0,$$

para algún $k \in \mathbb{N}$.

Teorema 6.12 Sean V e.v.s $/\mathbb{C}$, dim(V) = n y $T \in \mathcal{L}(V)$. Existe una base de V formada por autovectores generalizados de T.

Demos: Haremos inducción sobre *n*.

Si n = 1 el resultado es cierto pues todo vector no nulo de V es autovector de T.

Supongamos n>1 y que el resultado es válido para todas las dimensiones de V menores a n. Sea λ un autovalor de T, usando el resultado del Teorema 6.11 al operador $(T-\lambda I)$ resulta

$$V = nul((T - \lambda I)^n) \oplus img((T - \lambda I)^n).$$

Si $nul((T - \lambda I)^n) = V$, luego todo vector no nulo en V es un autovector generalizado de T, así toda base de V estará formada por autovectores generalizados.

Podemos suponer entonces que $nul((T - \lambda I)^n) \neq V$, lo que implica que $img((T - \lambda I)^n) \neq \{0\}$. Por otro lado $nul((T - \lambda I)^n) \neq \{0\}$, pues λ es autovalor de T. Así se tiene que

$$0 < rg((T - \lambda I)^n) < n.$$

Más aún $img((T - \lambda I)^n)$ es invariante bajo T (considerar $p(z) = (z - \lambda)^n \in \mathbb{C}[z]$ y Teo.6.2). Sea $S \in \mathcal{L}(img((T - \lambda I)^n))$ la restricción de T al subespacio $img((T - \lambda I)^n)$. La hipótesis inductiva aplicada al operador S implica que existe una base de autovectores generalizados de S, que obviamente son autovectores generalizados de T. Agregando esta base de $img((T - \lambda I)^n)$ a la base de $nul((T - \lambda I)^n)$ tenemos una base de autovectores generalizados de T.

Observación 6.7 Si cambiamos $\mathbb{K} = \mathbb{C}$ por $\mathbb{K} = \mathbb{R}$ habrá operadores para los cuales haya una base de autovectores generalizados y otros que no.

Proposición 6.6 Sean V e.v.s / \mathbb{C} , dim(V) = n y $T \in \mathcal{L}(V)$. Luego, cada autovector generalizado corresponde a un único autovalor de T.

<u>Demos</u>: Supongamos que V es una autovector generalizado de T correspondiente a los autovalores α y λ de T. Sea m el menor natural tal que $(T - \alpha I)^m v = 0$. Luego

$$0 = (T - \lambda I)^n v = ((T - \alpha I) + (\alpha I - \lambda)I)^n v = \sum_{k=0}^n b_k (\alpha - \lambda)^{n-k} (T - \alpha I)^k v,$$

con $b_0=1$ y el resto no importan. Aplicando el operador $(T-\alpha I)^{m-1}$ a ambos miembros de la ecuación se llega a

$$0 = (\alpha - \lambda)^n (T - \alpha I)^{m-1} v.$$

Como $(T - \alpha I)^{m-1}v \neq 0$, luego la ecuación implica que $\alpha = \lambda$, como queríamos probar.

Teorema 6.13 Sean V e.v.s $/ \mathbb{C}$, dim(V) = n y $T \in \mathcal{L}(V)$. Luego toda lista de autovectores generalizados de T correspondientes a autovalores distintos de T son linealmente independientes.

<u>Demos</u>: Supongamos que el resultado es falso. Luego existe un menor natural m tal que existe un conjunto $\{v_1, \dots, v_m\}$ linealmente dependiente de autovectores generalizados de T correspondientes a autovalores distintos $\lambda_1, \dots, \lambda_m$. Luego existen $a_1, \dots, a_m \in \mathbb{K}$, ninguno de ellos igual a 0 (pues m es mínimo) tales que

$$a_1v_1+\cdots+a_mv_m=0.$$

Apliquemos el operador $(T - \lambda_m I)^n$ a ambos miembros de la igualdad anterior, se obtiene

$$a_1(T - \lambda_m I)^n v_1 + \dots + a_m (T - \lambda_m I)^n v_{m-1} = 0.$$
(17)

Supongamos $k \in \{1, 2, \dots, m-1\}$, luego $(T - \lambda_m I)^n v_k \neq 0$, ya que si no sería v_k un autovector generalizado de T correspondiente a dos autovalores distintos λ_k y λ_m . Sin embargo

$$(T - \lambda_k I)^n ((T - \lambda_m I)^n v_k) = (T - \lambda_m I)^n ((T - \lambda_k I)^n v_k) = 0.$$

Esto último muestra que $((T - \lambda_m I)^n v_k)$ es un autovector generalizado de T correspondiente al autovalor λ_k . Así, por la igualdad (17))resutan

$$((T-\lambda_m I)^n v_1), \cdots, ((T-\lambda_m I)^n v_{m-1})$$

autovectores generalizados correspondientes a autovalores distintos linealmente dependientes, lo que contradice la minimalidad de *m*. Y esto concluye la prueba.

6.6. OPERADORES NILPOTENTES

Definición 6.11 Un operador $T: V \to V$ se llama nilpotente si $T^n = 0$ para algún n natural.

Observación 6.8 *Un operador* $T \in \mathcal{L}(V)$ *es nilpotente si y solo si todo vector no nulo en* V *es un autovector generalizado de* T *correspondiente al autovalor* 0.

Ejemplo 6.3 1. El operador $T \in \mathcal{L}(\mathbb{K}^4)$ definido por

$$T(z_1, z_2, z_3, z_4) = (0, 0, z_1, z_2),$$

es nilpotente ya que $T^2 = 0$.

2. El operador en \mathbb{K}^3 cuya matriz asociada respecto de la base ordenada canónica es

$$\begin{bmatrix} -3 & 9 & 0 \\ -7 & 9 & 6 \\ 4 & 0 & -6 \end{bmatrix},$$

es un operador nilpotente y puede verse elevando al cubo la matriz anterior para obtener la matriz nula.

3. El operador derivación en el espacio $\mathbb{R}_m[x]$ es nilpotente ya que la derivada (m+1)-ésima de un polinomio a lo sumo de grado m es igual a 0.

Proposición 6.7 Sean V e.v.s / \mathbb{K} , dim(V) = n y $T \in \mathcal{L}(V)$ nilpotente. Entonces $T^n = 0$.

<u>Demos</u>: . Como T es nilpotente, existe un $k \in \mathbb{N}$ tal que $T^k = 0$. Así $null(T^k) = V$. Luego por (6.1) y (6.10) se tiene que $T^n = V$, y así $T^n = 0$.

Definición 6.12 Se llama *índice de nilpotencia de* T a $k \in \mathbb{N}$ tal que $T^k = 0$ y $T^{k-1} \neq 0$.

Definición 6.13 Análogamente, una matriz $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ se llama nilpotente si $A^n = 0$ para algún natural n y de **indice** de nilpotencia k si $A^k = 0$ y $A^{k-1} \neq 0$.

Proposición 6.8 Sean V e.v.s $/ \mathbb{K}$, dim(V) = n y $T \in \mathcal{L}(V)$.

- 1. Si T es nilpotente, luego 0 es el único autovalor de T.
- 2. $Si \mathbb{K} = \mathbb{C} y 0$ es el único autovalor de T, luego T es nilpotente

Demos · · ·

Teorema 6.14 Sea $T:V\to V$ un operador nilpotente de índice k, entonces T tiene una representación matricial diagonal por bloques y los bloques diagonales son de la forma

$$N = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & & & \end{bmatrix}$$

Existe al menos un bloque diagonal N de orden k y los restantes son de orden $\leq k$. El número de bloques diagonales para cada orden posible está determinado únicamente por T. Además, el número total de bloques diagonales de todos los órdenes es igual a la $\dim(nul(T))$.

Observación 6.9 Las matrices como la matriz N del teorema anterior son nilpotentes y su índice de nilpotencia es igual a su orden. Además notemos que la matriz N de orden 1 es la matriz 0.

6.7. Autoespacios generalizados

Definición 6.14 Sean V e.v.s / \mathbb{K} , dim(V) = n, $T \in \mathcal{L}(V)$ $y \in \mathbb{K}$. El autoespacio generalizado de T correspondiente a λ se nota como $G(,\lambda,T) = G_{\lambda}(T)$ y es el subespacio de V dado por

$$G_{\lambda}(T) = \{v \in V : (T - \lambda I)^k = 0, \text{ para algún } k \in \mathbb{N}\}.$$

Así $G_{\lambda}(T)$ es el conjunto de los autovalores generalizados de T correspondientes al autovalor λ unión $\{0\}$.

Notemos que siendo todo autovector de T correspondiente al autovalor λ un autovector generalizado de T correspondiente al autovalor λ resulta

$$E_{\lambda}(T) \subseteq_{s.e.} G_{\lambda}(T)$$

Proposición 6.9 Sean V e.v.s / \mathbb{K} , dim(V) = n, $T \in \mathcal{L}(V)$ $y \in \mathbb{K}$. Entonces $G_{\lambda}(T) = null(T - \lambda I)^n$.

Teorema 6.15 Sea $\mathbb{K} = \mathbb{C}$. Sean V e.v.s / \mathbb{C} , dim(V) = n, $T \in \mathcal{L}(V)$. Sean $\lambda_1, \lambda_2, \dots, \lambda_m$ los autovalores distintos de T. Luego

- 1. $G_{A_k}(T)$ es invariante bajo T para cada $k = 1, \dots, m$;
- 2. $(T \lambda_k I)|_{G_{\lambda_k}(T)}$ es nilpotente para cada $k = 1, \dots, m$;
- 3. $V = G_{\lambda_1}(T) \oplus \cdots \oplus G_{\lambda_m}(T)$.

Demos:

Este teorema nos está diciendo que cuando el campo de escalares es $\mathbb C$ y consideramos un operador lineal $T \in \mathcal L(V)$ podemos descomponer al espacio vectorial V en suma de subespacios invariantes, dados por los autoespacios generalizados correspondientes a cada uno de los autovalores distintos.

Si consideramos el subespacio $G_{\lambda_k}(T)$ observemos que podemos escribir $T|_{G_{\lambda_k}(T)} = (T - \lambda_k I)|_{G_{\lambda_k}(T)} + \lambda_k I|_{G_{\lambda_k}(T)}$ es decir como la suma de un operador diagonal y un operador nilpotente, es esto lo que aprovecharemos para elegir una base que nos sea conveniente.

6.8. Forma canónica de Jordan

Nota 6.1 Un operador T puede expresarse en la forma canónica de Jordan si sus polinomios minimales y característico se factorizan en polinomios lineales. Esto siempre es posible si $\mathbb{K} = \mathbb{C}$. En cualquier caso podemos extender el cuerpo \mathbb{K} a uno en el cual los polinomios minimales y característicos puedan factorizarse en factores lineales, entonces en un sentido amplio cualquier operador tiene una forma canónica de Jordan. Análogamente, toda matriz es semejante a una matriz en forma canónica de Jordan.

Teorema 6.16 Sea $T: V \to V$ un operador lineal cuyos polinomios minimal y característico son respectivamente

$$p(t) = \det(T - tI) = (t - \lambda_1)^{n_1} \cdots (t - \lambda_r)^{n_r}$$
$$m(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r},$$

donde los λ_i son escalares distintos. Entonces T tiene una representación matricial diagonal por bloques J cuyos elementos diagonales son de la forma

$$J_{ij} = \begin{bmatrix} \lambda_i & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_i & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_i & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda_i \end{bmatrix}.$$

Para cada λ_i los bloques correspondientes J_{ij} tienen las siguientes propiedades:

- *i)* Existe al menos un J_{ij} de orden m_i , los demás J_{ij} son de orden $\leq m_i$.
- ii) La suma de los órdenes de los Jij es ni.
- iii) La cantidad de J_{ij} es igual a la multiplicidad geométrica de λ_i (es decir la dimensión de su autoespacio).
- iv) La cantidad de Jij de cada orden posible está determinado únicamente por T.

A la matriz I se la llama forma canónica de Jordan.

<u>Demos</u>: Por el Teorema 6.8, T se puede descomponer en operadores T_1, \dots, T_r , esto es $T = T_1 \oplus \dots \oplus T_r$, donde $(t - \lambda_i)^{m_i}$ es el polinomio minimal de T_i . Luego en particular

$$(T_1 - \lambda_1 I)^{m_1} = 0, \cdots, (T_r - \lambda_r I)^{m_r} = 0.$$

Sea $N_i = T_i - \lambda_i I$, entonces para cada $i = 1, \dots, r$ $T_i = N_i + \lambda_i I$, con $N_i^{m_i} = 0$. Esto es, T_i es la suma del operador $\lambda_i I$ y un operador nilpotente N_i , el cual tiene índice m_i ya que $(t - \lambda_i)^{m_i}$ es el polinomio minimal de T_i .

Ahora, podemos elegir una base tal que N_i esté en su forma canónica. En esta base $T_i = N_i + \lambda_i I$ se representa por una matriz diagonal por bloques M_i , cuyos elementos de la diagonal son las matrices J_{ij} . La suma directa de las matrices M_i es una matriz J que es una forma canónica de Jordan y por el Teorema 6.5 es una representación matricial de T.

Por último, veamos que los bloques J_{ij} satisfacen las propiedades requeridas:

- *i*) Se obtiene por ser N_i de índice m_i .
- *ii*) Vale porque *T* y *J* tiene el mismo polinomio característico.
- *iii*) Vale pues la dim $(nul(N_i)) = \dim(nul(T_i \lambda_i I))$ es igual a la dimensión del autoespacio correspondiente a λ_i .
- iv) Vale por estar los T_i (y los N_i) determinados únicamente por T.

Observación 6.10 $J_{ij} = \lambda_i I + N_i$

Ejemplo 6.4 Hallar la forma canónica de Jordan de la siguiente matriz

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 4 & 3 & 1 & 1 \\ 0 & 0 & 2 & 3 & -2 & 3 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Primero calculamos el polinomio característico de B y así sus autovalores.

$$p_B(\lambda) = \det(B - \lambda I) = (1 - \lambda)^3 (2 - \lambda)^3.$$

Vemos que los autovalores son $\lambda=2$ y $\lambda=1$ ambos con multiplicidad algebraica 3. Por lo tanto existirán dos bloques de Jordan

$$J = \begin{bmatrix} J(1) & 0 \\ 0 & J(2) \end{bmatrix}.$$

Calculamos los rangos $rg_j((A-I)^j) = rg_j(1)$ y $rg_i((A-2I)^i) = rg_i(2)$ hasta que $rg_k(\star) = rg_{k+1}(\star)$, así tenemos:

Observamos que como dim(nul(B-I)) = 2 la dimensión del autoespacio correspondiente al autovalor $\lambda = 1$ es 2, en consecuencia habrá dos bloques de Jordan para este autovalor: $J_11(1)$ y $J_12(1)$.

Como dim(nul(B-2I))=1 la dimensión del autoespacio correspondiente al autovalor $\lambda=2$ es 1, en consecuencia habrá un bloques de Jordan para este autovalor: $J_21(2)$.

Además el índice correspondiente al autovalor $\lambda=1$ es $m_1=2$ y para $\lambda=2$ se tiene $m_2=3$. Luego el polinomio minimal de B está dado por $m_B(\lambda)=(1-\lambda)^2(2-\lambda)^3$.

Esto nos dice que el bloque de Jordan más grande de J(1) es 2×2 , mientras que el bloque de Jordan de J(2) es 3×3 .

Más aun, como $p_B(\lambda) = (\lambda - 1)^3 (\lambda - 2)^3$, sabemos que la suma de los órdenes de $J_{1j}(1)$ es 3 y la de $J_{2j}(2)$ también es 3. Así resulta que la forma canónica de Jordan de B es

$$J = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}.$$