PLSC 40601

Week 1: Course orientation.

Molly Offer-Westort

Department of Political Science, University of Chicago

Winter 2023

Overview

This course:

- Objectives.
- Course structure.
- Assignments.

Link to syllabus.

2

Final assignment

- Possibility of tutorial.
 - Illustrate what problem the tool is addressing, what an example use case is.
 - Still needs some amount of narrative contextualizing the problem.
 - Posted on class github.
 - Python, R, or Stata; compiled report.
 - Limited support with debugging.

Link to website. Link to tutorial.

3

How to read methods papers (Murphy, 1997)

- Who the authors are and where the article is published.
 - Econometrica? AER? Annual Review of Economics?
 - PNAS? Science? Nature?
 - JRSS B? JASA, Statistical Science?
 - SSRN, arXiv, PsyArXiv?
 - Machine learning conference proceedings?
 - Political science methods, biostatistics journal?

- What is the problem/gap/contribution?
- What is the background/methodological context for the paper?
 - Refer to references where it may be more clearly stated; textbooks are often clearer than original articles for understanding a new methodology.
 - Check out the bibliographic notes in a related section of Hastie et al. (2009), The Elements of Statistical Learning. (If you don't have this book already, download it right now.)
- (This is the role of final paper.)

- How would you explain this paper to someone else?
- What is a use case for the tools presented in the paper?
- (This is the role of paper presentation/discussion)

- How would you use the presented method on data?
 - Many of the papers have associated packages.
- When using real data, what are limitations of the assumptions required by the method?
- (Tutorial?)

Consider:

- Annotated bibliography?

References for notation:

- Hastie et al. (2009)
- Glossary of Aronow and Miller (2019) Foundations of Agnostic Statistics
- Other suggestions?

9

Potential outcomes framework.

Statistical setup.

- Population.
- Sample, units indexed i = 1, ..., N.
- Observed outcome, $Y_i \in \mathbb{R}$;
- Treatments, $W_i \in \{0, ..., K\}$; (or Z_i , or D_i , A_i ,...)
 - What do we mean by treatments?
 - "No causation without manipulation." (Holland, 1986)
- Covariates, $X_i \in \mathbb{R}^p$.

Statistical setup.

- Potential outcomes framework: $Y_i(w)$ represents the potential outcome for respondent i under treatment w. $Y_i = (Y_i(1), ..., Y_i(K))$.

- Y_i(1) is the outcome we would see only when individual i receives treatment 1.
- Alternatively, (for binary treatment, $W_i \in \{0, 1\}$)
 - $-Y_{i}^{1},Y_{i}^{0};$
 - $-Y_{i}^{w=1}, Y_{i}^{w=0};$
 - Y_{i1}, Y_{i0} ;
 - $Y|\operatorname{do}(W=1), Y|\operatorname{do}(W=0)$

(Some) Causal estimands

What is an estimand? What makes an estimand *causal*? Counterfactual comparison.

- Individual treatment effect:

$$\tau_i = Y_i(1) - Y_i(0)$$

Average treatment effect (ATE):

$$\tau = \mathrm{E}\left[\tau_i\right]$$

- Expectation over what?
- \rightarrow The population we previously defined.

(Some) Causal estimands

- Average treatment effect on the treated (ATT):

$$\tau_{ATT} = \mathrm{E}\left[\tau_i | W_i = 1\right]$$

- How is this different from the ATE?
- Why might we care about this?
- Conditional average treatment effect (CATE):

$$au_{CATE} = \mathrm{E}\left[\tau_i | X_i = x\right]$$

Many others!

Identification

- $Y_i(0), \ldots, Y_i(K)$ are *potential* outcomes; typically, we only get to see an individual outcome under one version of treatment.
- Fundamental problem of causal inference: we can't see counterfactual potential outcomes for a given unit at the same time.
- How do we move from what we observe to what we would like, ideally, to measure?

Identification

- Identification: We call a parameter identifiable if in the case that we had infinite data, we could approximate the true parameter value to arbitrary precision.
 - e.g., if you have infinite data randomly sampled from a distribution, by taking the empirical mean, you get the mean of that distribution with arbitrary precision.
 - If we're dealing with a **finite population**, we can think about identifying a target quantity about that population, as if we were to repeat the procedure through we observed data about that population, averaging *across repetitions*, we could approximate the true quantity to arbitrary precision.
 - We can consider parameters to be point identified or interval identified.

Identification

- Consistency/ Stable Unit Treatment Value Assumption (SUTVA):
 what we observe is interpretable in terms of potential outcomes.
 - no unobserved multiple versions of the treatment
 - no "interference between units"

Identification: randomization

- When we aren't in control of assigning treatment, we say the data is observational.
- SUTVA is not enough to get us to identification with observational data.
- Random assignment gives us:
 - $(Y_i(1), Y_i(0)) \perp W_i$ (independence of potential outcomes and treatment)
 - $0 < \Pr[W_i = 1] < 0$ (positivity)
- In this class, we will not spend a lot of time on identification, but it may be worth considering how various methods fare when these assumptions are violated.
- In particular, if you don't have identification, fancy estimating procedures will not save you.

Causal inference as a missing data problem

Units	Covariates X_i	Treatment W_i	$Y_i(1)$	$Y_i(0)$	Observed Y_i
1	1	1	1	?	1
2	0	0	?	0	0
3	1	1	0	?	0
÷	:	:	÷	:	÷
Ν	0	0	?	0	0

References I

- Aronow, P. M. and Miller, B. T. (2019). Foundations of agnostic statistics. Cambridge University Press.
- Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction, volume 2. Springer.
- Holland, P. W. (1986). Statistics and causal inference. *Journal of the American Statistical Association*, 81(396):945–960.
- Murphy, J. R. (1997). How to read the statistical methods literature: a guide for students. *The American Statistician*, 51(2):155–157.