Hands-on Machine Learning

17. Autoencoders, GANs, and Diffusion Models

Autoencoders

- Autoencoders are neural networks capable of learning efficient representations of the unlabeled input data, called codings or latent representations.
 - The codings have a much lower dimensionality than the input data, making autoencoders useful for dimensionality reduction.
- Autoencoders also act as feature detectors, and can be used for unsupervised pretraining of deep neural networks.
- Some autoencoders are generative models: they can randomly generating new data that looks very similar to the training data.

Generative Adversarial Networks

Generative adversarial networks (GANs) are neural nets capable of generating data.

Diffusion Models

Diffusion models are another approach to generative learning, uniquely capable of generating high-quality data by progressively adding noise to a dataset and then learning to reverse this process (denoising).

Comparing Generative Models

- Autoencoders, GANs, and diffusion models are all:
 - unsupervised
 - > learn latent representations
 - > can be used as generative models
 - have many similar applications
- However, they work very differently:
 - Autoencoders are designed to simply learn how to copy their inputs to their outputs.
 - ➤ GANs are composed of two competing neural networks that are trained adversarially.
 - A denoising diffusion probabilistic model (DDPM) is trained to iteratively remove small amounts of noise from data.

1. Autoencoders

Efficient Data Representations

- Which of the following sequences do you find the easiest to memorize?
 - → 40, 27, 25, 36, 81, 57, 10, 73, 19, 68
 - > 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14
- The relationship between memory, perception, and pattern matching was famously studied by William Chase and Herbert Simon in the early 1970s.
 - They noted that expert chess players were able to memorize the positions of all the pieces in a game by looking at the board for just five seconds.
 - This was only the case when the pieces were placed in realistic positions (from actual games), not when the pieces were placed randomly.
 - > Chess experts don't have a much better memory than you and I; they just see chess patterns more easily, thanks to their experience with the game.
 - Noticing patterns helps them store information efficiently.

Autoencoder Architecture

- An autoencoder consists of two parts:
 - > an *encoder* (or *recognition network*) that converts the inputs to a latent representation.
 - ➤ a decoder (or generative network) that converts the internal representation to the outputs.
- ➤ The outputs are often called the reconstructions.

The cost function contains a *reconstruction loss* that penalizes the model when the reconstructions are different from the inputs.

Undercomplete Autoencoders

- Because the internal representation has a lower dimensionality than the input data, the autoencoder is said to be undercomplete.
 - ➤ It cannot trivially copy its inputs to the codings, yet it must find a way to output a copy of its inputs.
 - ➤ It is forced to learn the most important features in the input data and drop the unimportant ones.
- ➤ If the autoencoder uses only linear activations and the cost function is the mean squared error (MSE), then it ends up performing principal component analysis (PCA).
- An autoencoder performs a form of self-supervised learning, since it is based on a supervised learning technique with automatically generated labels (in this case simply equal to the inputs).

Performing PCA with Autoencoder

➤ Let's builds a linear undercomplete autoencoder to perform PCA on a 3D dataset, projecting it to 2D:

```
import tensorflow as tf
encoder = tf.keras.Sequential([tf.keras.layers.Dense(2)])
decoder = tf.keras.Sequential([tf.keras.layers.Dense(3)])
autoencoder = tf.keras.Sequential([encoder, decoder])

optimizer = tf.keras.optimizers.SGD(learning_rate=0.5)
autoencoder.compile(loss="mse", optimizer=optimizer)
```

Train the model on the same 3D dataset we generated in Chapter 8 for PCA:

```
X_train = [...] # generate a 3D dataset, like in Chapter 8
history = autoencoder.fit(X_train, X_train, epochs=500, verbose=False)
codings = encoder.predict(X_train)
```

Performing PCA with Autoencoder

Stacked Autoencoders

Autoencoders can have multiple hidden layers. In this case they are called *stacked autoencoders* (or *deep autoencoders*).

Implementing a Stacked Autoencoder

```
stacked encoder = tf.keras.Sequential([
                                                                                              Reconstructions
    tf.keras.layers.Flatten(),
                                                                      784 units
                                                                                Output layer
    tf.keras.layers.Dense(100, activation="relu"),
                                                                                 Hidden 3
                                                                         100 units
    tf.keras.layers.Dense(30, activation="relu"),
                                                                                              · Codinas
                                                                           30 units
                                                                                 Hidden 2
stacked decoder = tf.keras.Sequential([
    tf.keras.layers.Dense(100, activation="relu"),
                                                                         100 units
                                                                                  Hidden 1
    tf.keras.layers.Dense(28 * 28),
    tf.keras.layers.Reshape([28, 28])
                                                                      784 units
                                                                                 Input layer
stacked ae = tf.keras.Sequential([stacked encoder, stacked decoder])
stacked ae.compile(loss="mse", optimizer="nadam")
history = stacked ae.fit(X train, X train, epochs=20,
                           validation data=(X valid, X valid))
```

Visualizing the Reconstructions

Visualizing the Fashion MNIST Dataset

- We can use the trained stacked autoencoder to reduce the dataset's dimensionality.
 - For visualization, this does not give great results compared to other dimensionality reduction algorithms.
- The big advantage of autoencoders is that they can handle large datasets with many instances and many features.
 - ➤ We can use an autoencoder to reduce the dimensionality down to a reasonable level, then use another dimensionality reduction algorithm for visualization.
- We use the encoder from our stacked autoencoder to reduce the dimensionality of Fashion MNIST dataset to 30, then we'll use the t-SNE algorithm to reduce the dimensionality down to 2 for visualization.

Visualizing the Fashion MNIST Dataset

- We can use the trained stacked autoencoder to reduce the dataset's dimensionality.
 - For visualization, this does not give great results compared to other dimensionality reduction algorithms.
- ➤ The big advantage of autoencoders is that they can handle large datasets with many instances and many features.
 - ➤ We can use an autoencoder to reduce the dimensionality down to a reasonable level, then use another dimensionality reduction algorithm for visualization.

```
from sklearn.manifold import TSNE

X_valid_compressed = stacked_encoder.predict(X_valid)
tsne = TSNE(init="pca", learning_rate="auto", random_state=42)
X_valid_2D = tsne.fit_transform(X_valid_compressed)
```


Autoencoders for Unsupervised Pretraining

Tying Weights

- When an autoencoder is symmetrical, a common technique is to tie the weights of the decoder layers to the weights of the encoder layers.
 - > This halves the number of weights in the model, speeding up training and limiting the risk of overfitting.
- \triangleright If the autoencoder has a total of N layers (not counting the input layer), and W_L represents the connection weights of the L-th layer, then the decoder layer weights can be defined as:

$$\boldsymbol{W}_L = \boldsymbol{W}_{N-L+1}^{\mathsf{T}}$$

Building a Custom Layer

```
class DenseTranspose(tf.keras.layers.Layer):
   def init (self, dense, activation=None, **kwargs):
        super(). init (**kwargs)
        self.dense = dense
        self.activation = tf.keras.activations.get(activation)
   def build(self, batch input shape):
        self.biases = self.add weight(name="bias",
                                      shape=self.dense.input shape[-1],
                                      initializer="zeros")
        super().build(batch input shape)
   def call(self, inputs):
        Z = tf.matmul(inputs, self.dense.weights[0], transpose b=True)
        return self.activation(Z + self.biases)
```

Tying Weights

```
dense 1 = tf.keras.layers.Dense(100, activation="relu")
dense 2 = tf.keras.layers.Dense(30, activation="relu")
tied encoder = tf.keras.Sequential([
    tf.keras.layers.Flatten(),
    dense 1,
    dense 2
tied decoder = tf.keras.Sequential([
    DenseTranspose(dense 2, activation="relu"),
    DenseTranspose(dense 1),
    tf.keras.layers.Reshape([28, 28])
tied ae = tf.keras.Sequential([tied encoder, tied decoder])
```

Greedy Layerwise Training

Convolutional Autoencoders

- ➤ If you want to build an autoencoder for images (e.g., for unsupervised pretraining or dimensionality reduction), you will need to build a convolutional autoencoder.
- ➤ The encoder is a regular CNN composed of convolutional layers and pooling layers.
 - It typically reduces the spatial dimensionality of the inputs (i.e., height and width) while increasing the depth (i.e., the number of feature maps).
- The decoder must do the reverse (upscale the image and reduce its depth back to the original dimensions), and for this you can use transpose convolutional layers.

Convolutional Autoencoders

```
conv encoder = tf.keras.Sequential([
   tf.keras.layers.Reshape([28, 28, 1]),
   tf.keras.layers.Conv2D(16, 3, padding="same", activation="relu"),
   tf.keras.layers.MaxPool2D(pool size=2), # output: 14 x 14 x 16
   tf.keras.layers.Conv2D(32, 3, padding="same", activation="relu"),
   tf.keras.layers.MaxPool2D(pool size=2), # output: 7 x 7 x 32
   tf.keras.layers.Conv2D(64, 3, padding="same", activation="relu"),
   tf.keras.layers.MaxPool2D(pool size=2), # output: 3 x 3 x 64
   tf.keras.layers.Conv2D(30, 3, padding="same", activation="relu"),
   tf.keras.layers.GlobalAvgPool2D() # output: 30
conv decoder = tf.keras.Sequential([
   tf.keras.layers.Dense(3 * 3 * 16),
   tf.keras.layers.Reshape((3, 3, 16)),
   tf.keras.layers.Conv2DTranspose(32, 3, strides=2, activation="relu"),
   tf.keras.layers.Conv2DTranspose(16, 3, strides=2, padding="same", activation="relu"),
   tf.keras.layers.Conv2DTranspose(1, 3, strides=2, padding="same"),
   tf.keras.layers.Reshape([28, 28])
conv ae = tf.keras.Sequential([conv encoder, conv decoder])
```