# Improving the repositioning operation for bike sharing system

By Kevin Huang & Zitao Shen

University of Minnesota

5/6/2019

### Table of Content

- Motivation
- Literature Review
- Model
  - Model Settings
  - Policy Structure
- Case Study
  - Data Visualization
  - Simulation & Analysis
- Conclusion
- Reference

## Motivation: Background

- Dock based bike
  - repositioning is driven by the demand on bikes & docks
  - limited by the facility's locations
- Dockless bikes
  - repositioning is only driven by the demand on bikes
  - increased cost of finding a bike
- Mixed bike service
  - Nice Ride





## Motivation: Research Questions

Due to a potential mismatch of rental/return demand versus availability in dock-based/dockless system, operating an inventory rebalancing strategy could be beneficial.

- Find out the difference in the optimal rebalancing strategy and the optimal cost between two bike systems
- Utilizing empirical information to evaluate proposed policy performance

#### Literature Review

- [1] Inventory Repositioning in On-Demand Product Rental Networks
  - Motivating example: car2go.
  - State variable:  $(x, \gamma)$
  - Key assumption 1: return probability consists of "rental length" and "return location"

$$p_{t,ij}=p_tq_{t,ij}$$

Rental period can be greater than one.

 Key assumption 2: lost sales cost outweighs the repositioning cost

$$\rho c_{\max} - c_{\min} \leq p_{\min}(\beta - c_{\min})$$

- Utilize approximate dynamic programming approach to approximate the convex objective function.
  - Finding lower bounding hyperplanes to a convex function.

## Literature Review (contd.)

- [2] Robust Repositioning for Vehicle Sharing
  - Motivating example: car2go.
  - State variable: x
  - Key assumption: lost sales cost outweighs the repositioning cost

$$\overline{p}_{it} \geq \sum_{j \neq i} s_{ji(t+1)} \alpha_{ijt}$$

- A stochastic dynamic programming can be solved optimally with 2 region and the assumption of temporal independence among demands.
- Introduce distributionally robust optimization approach (DRO) to deal with uncertainty in the distribution, resulting in a multi-period robust optimization problem.
- An enhanced linear decision rule (ELDR) approximation is used to promote computational tractability.

## Literature Review (contd.)

- [3] BRAVO: Improving the Rebalancing Operation in Bike Sharing with Rebalancing Range Prediction.
  - Motivating example: Nice ride
  - Rebalancing interval: Utilizing the data sets to predict the demand on bikes/docks for each station.
  - Routing: approximate algorithm for TSP where each path's weight is the Euclidean distance
  - Rebalancing Amount Algorithm
    - reduces the total amount of loading/unloading bikes
    - "robbing Peter to pay Paul" problem

## Model Description

- To compare the performance/repositioning policy between dock-based/dockless system, we adopt the stochastic dynamic programming model in [2] to analyze results for 2-region system.
- Modeling dockless system: the original model in [2]
- Modeling the dock-based system: adding respective capacity limit at each location in the formulation.

## Model Settings for two locations

- Total bike numbers: N.
- State variable: number of bikes in location 1:  $x_t$  ( $N x_t$  for location 2).
- Reposition qunatity  $r_t$ , where  $r_t \ge 0$  represents reposition from location 1 to 2, and  $r_t \le 0$  represents otherwise.
- Return probability  $\alpha_{ijt}$ , where  $\sum_{j} \alpha_{ijt} = 1$  implies **one-period** rental.
- Unit repositioning cost per trip:  $s_{12t}$  and  $s_{21t}$ .
- Average lost sales cost in location 1 and 2:

$$\overline{p}_{1t} = p_{11t}\alpha_{11t} + p_{12t}\alpha_{12t} \overline{p}_{2t} = p_{22t}\alpha_{22t} + p_{21t}\alpha_{21t}$$

# Model Settings for two locations: Capacity limits

- Capacity limits:  $C = C_1 + C_2$ .
- Holding cost:  $h_{1t}$  and  $h_{2t}$ 
  - Instead of using hard constraint, we add it as an additional cost when return capacity is violated.

## DP formulation for dock based counterpart

$$V_t(x_t) = \min_{x_t - N \le r_t \le x_t} \{\underbrace{s_{12t}r_t^+ + s_{21t}r_t^-}_{\text{Repositioning cost}} + \mathbb{E}_{\mathbb{P}}[J_t(y_t, \boldsymbol{d}_t)]\}$$

where

$$J_{t}(y_{t}, \boldsymbol{d}_{t}) = \min_{w_{1t}, w_{2t}} \{ \overline{p}_{1t}(d_{1t} - w_{1t}) + \overline{p}_{2t}(d_{2t} - w_{2t}) + \underbrace{h_{1t}(x_{t+1} - C_{1})^{+} + h_{2t}(N - x_{t+1} - C_{2})^{+}}_{\text{The holding cost}} + V_{t+1}(x_{t+1}) \}$$

s.t. 
$$x_{t+1} = y_t - \alpha_{12t} w_{1t} + \alpha_{21t} w_{2t},$$
  
 $w_{1t} \le \min(y_t, d_{1t})$   
 $w_{2t} \le \min(N - y_t, d_{2t})$ 

where  $a^+ = \max(0, a)$  and  $a^- = -\min(0, a)$ 

• Terminal cost  $V_{T+1}(x_{T+1}) = 0$ .

## **Optimal Policy Structure**

- Assumption:  $\overline{p}_{it} \ge \alpha_{ijt}(h_{jt} + s_{ji(t+1)})$ , for  $j \ne i$  and  $i, j \in \{1, 2\}$ .
- Policy structure: a two threshold policy  $[\underline{x}_t, \overline{x}_t]$ :

$$y_t^*(x_t) = \underline{x}_t, \quad x_t \in [0, \underline{x}_t)$$
  
$$y_t^*(x_t) = x_t, \quad x_t \in [\underline{x}_t, \overline{x}_t]$$
  
$$y_t^*(x_t) = \overline{x}_t, \quad x_t \in (\overline{x}_t, N].$$

where  $y_t(x_t) = x_t - r_t$  is the target inventory level after repositioning, and  $\underline{x}_t, \overline{x}_t$  is the optimal reposition up-to and down-to level solved by the following convex programs:

$$\underline{x}_{t} = \arg\min_{0 \leq y \leq N} \{s_{21t}y + \mathbb{E}_{\mathbb{P}}[J_{t}(y, \boldsymbol{d}_{t})]\}$$

$$\overline{x}_{t} = \arg\min_{0 \leq y \leq N} \{-s_{12t}y + \mathbb{E}_{\mathbb{P}}[J_{t}(y, \boldsymbol{d}_{t})]\}$$

amao

# Optimal Policy Structure (contd.)

- The structure is the same as the original dockless settings, by seeing that adding terms  $h_{1t}(x_{t+1}-C_1)^+ + h_{2t}(N-x_{t+1}-C_2)^+$  to  $J_t$  doesn't change the convexity of the function.
- However, the upper and lower threshold do change comparing to its dockless counterpart.

## Data



## Data: Bike demand & Dock demand



#### Data: Observation

- Nice ride checkin/checkout records for September,October and November
- Spatial feature: The active region can be divided into 2 parts
- Time & Direction feature:
  - In the morning, the bike move from residential area(low bike density) to workplace (high bike density)
  - In the morning, the bike move from workplace (high bike density) to residential area (low bike density)
  - Off-peak time doesn't have clear trend

# Simulation Settings

- Study: The impact of different (total capacity)/(total bike number) ratio on the thresholds and optimal cost.
- Ratio: 0.2,0.4,0.6,...,2. Balanced capacity in two locations.
- Total number of bikes: 178. (scaled by 10)
- Total period: 3.
- $\alpha$ : one period

$$\alpha_t = \begin{pmatrix} 0.82 & 0.18 \\ 0.22 & 0.78 \end{pmatrix}$$

• p: Lost sales cost

$$p = \begin{pmatrix} 0.8176 & 0.9412 \\ 0.9956 & 0.53 \end{pmatrix}$$

# Simulation Settings (contd.)

- Repositioning cost: 1.5
- Holding cost: 1
- Demand mean :

$$\mu = \begin{pmatrix} 12.02 & 31.25 & 22.94 \\ 7.81 & 29.61 & 16.54 \end{pmatrix}$$

## Results - Two thresholds







# Results - Optimal cost





#### Remarks

#### Threshold policy:

- Dockless:
  - Large no-repositioning region: Large return-to-same-place probability  $(\alpha_{11}, \alpha_{22})$
- Dock-Based:
  - $\bullet$  Similar thresholds for extreme capacity ratio  $\Rightarrow$  large repositioning region
  - Repositioning becomes efficient when capacity ratio≈1 ⇒ small no-repositioning region
  - T3:Larger no-repositioning region in last period⇒ similar to dockless system.

#### Optimal cost

- Due to the lack of holding cost, the dockless system outperforms the dock-based one.
- By adding the dock cost, there exits an optimal capacity ratio

# Sensitivity Analysis - Settings

#### Holding cost h:

• Ratio: 0.5,0.6,...,2. Holding cost = ratio\*[1,1].

#### Repositioning cost s:

• Ratio: 0.5,0.6,...,2. Repositioning cost = ratio\*1.5.

#### Unbalanced dock numbers in two locations:

- Fixed total docks = 1.4\* total bikes.
- $C_1/C_2 = 0.5, 0.6, ..., 2.$

# Sensitivity analysis - holding cost



#### Remarks

- Higher holding cost⇒ more incentive to reposition ⇒ small no-repositioning region.
- By assumption  $\overline{p}_{it} \ge \alpha_{ijt}(h_{jt} + s_{ji(t+1)})$ , for  $j \ne i$  and  $i, j \in \{1, 2\}$ , the holding cost needs to be bounded, thus limiting the impact on the system.
- The thresholds in the later period are less sensitive to the increasing holding cost.

# Sensitivity analysis - Reposition cost



#### Remarks

- Higher repositioning cost ⇒ larger no-repositioning region.
- The total cost of the dock-based system is more sensitivity to the repositioning cost
- As opposed to t=3, where the system tends to not reposition, in t=1 the system tends to reposition more to account for the cost in future periods, hence the increased repositioning cost has less impact on the thresholds policy.

# Sensitivity analysis - Imbalanced docks between stations



#### Remarks

- The optimal cost is less sensitive to the change of the ratio  $C_1/C_2$ .
- The size of no-repositioning region doesn't change, but the target inventory level in location 1 increases as the ratio  $C_1/C_2$  increases.

 The project serves as an initial step to analyze the impact of capacity constraints on the repositioning policy in bike-rental system.

- The project serves as an initial step to analyze the impact of capacity constraints on the repositioning policy in bike-rental system.
- In general, one can view capacity (docks) as complement of products (bikes): too many bikes in a station implies few docks, both creating more incentive to reposition. Thus adding capacity cost reduces the no-repositioning region.

- The project serves as an initial step to analyze the impact of capacity constraints on the repositioning policy in bike-rental system.
- In general, one can view capacity (docks) as complement of products (bikes): too many bikes in a station implies few docks, both creating more incentive to reposition. Thus adding capacity cost reduces the no-repositioning region.
- Due to large state/action space, a repositioning policy with more theoretical basis (such as in [1] or [2]) becomes unsolvable when problem size grows larger. To apply in real scenario, certain aggregation methods need to be tested. However, some crucial effects could be cancelled out in a aggregated system.

- The project serves as an initial step to analyze the impact of capacity constraints on the repositioning policy in bike-rental system.
- In general, one can view capacity (docks) as complement of products (bikes): too many bikes in a station implies few docks, both creating more incentive to reposition. Thus adding capacity cost reduces the no-repositioning region.
- Due to large state/action space, a repositioning policy with more theoretical basis (such as in [1] or [2]) becomes unsolvable when problem size grows larger. To apply in real scenario, certain aggregation methods need to be tested. However, some crucial effects could be cancelled out in a aggregated system.
- In recent years, the "capacity constraints" in similar systems vanishes away as evolving to "dockless" settings. Needs to find new motivating examples for such research. For example: electric charging station.

#### Reference

(December 18, 2018). Available at SSRN: https://ssrn.com/abstract=2942921 or http://dx.doi.org/10.2139/ssrn.2942921 [2]He, Long and Hu, Zhenyu and Zhang, Meilin, Robust Repositioning for Vehicle Sharing (March 31, 2018). Forthcoming in Manufacturing Service Operations Management. Available at SSRN: https://ssrn.com/abstract=2973739 or http://dx.doi.org/10.2139/ssrn.2973739 [3] Wang, S., He, T., Zhang, D., Shu, Y., Liu, Y., Gu, Y., Liu, C., Lee, H., Son, S.H. (2018). BRAVO: Improving the Rebalancing Operation in Bike Sharing with Rebalancing Range Prediction. IMWUT. 2. 44:1-44:22.

[1]Benjaafar, Saif and Jiang, Daniel and Li, Xiang and Li, Xiaobo, Inventory Repositioning in On-Demand Product Rental Networks