

## Politechnika Wrocławska

## Wydział Informatyki i Telekomunikacji

Informatyczne systemy automatyki

# Sprawozdanie III - Komunikacja PROFIBUS

Autorzy:

Damian Filipowski id. 272555 Konrad Landzberg id. 272508 Przedmiot: ISP - laboratorium

# Spis treści

| 1  | Wste                                 | ęp:                                                                                                                                                                                                | 2                |
|----|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 2  | Konf<br>2.1<br>2.2<br>2.3<br>2.4     | figuracja: Przydział adresów oraz urządzeń dodatkowych: Układ powiązań pomiędzy urządzeniami w sieci PROFIBUS: Tablica zmiennych: Dostępne adresy cyfrowe i analogowe dla poszczególnych urządzeń. | 2 2 3 4          |
| 3  | Kod                                  | programu                                                                                                                                                                                           | 5                |
| 4  | Wnie                                 | oski:                                                                                                                                                                                              | 6                |
| Sp | ois ry                               | rsunków                                                                                                                                                                                            |                  |
|    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | Zakres adresów dla kasety oddalonej VIPA 200                                                                                                                                                       | 3<br>4<br>4<br>4 |
| Sp | ois ta                               | bel                                                                                                                                                                                                |                  |
|    | 1<br>2<br>3                          | Tabela konfiguracji urządzeń Master w sieci PROFIBUS                                                                                                                                               |                  |

## 1 Wstęp:

Celem laboratorium było skonfigurowanie komunikacji PROFIBUS między sterownikiem Siemens Simatic S7-1200, pełniącym rolę Mastera, a czterema urządzeniami Slave jakimi były kasety oddalone: VIPA 353-1DP01, VIPA 253-1DP01, VersaMax NIU oraz Turck BL20.

## 2 Konfiguracja:

#### 2.1 Przydział adresów oraz urządzeń dodatkowych:

| Urządzenie                | Adres IP       | Maska podsieci | Podłączone urządzenia |
|---------------------------|----------------|----------------|-----------------------|
| Sterownik Siemens S7-1200 | 192.168.22.145 | 255.255.255.0  | Zadajnik prądowy      |

Tabela 1: Tabela konfiguracji urządzeń Master w sieci PROFIBUS.

| Urządzenie     | Adres Slave | Podłączone urządzenia |
|----------------|-------------|-----------------------|
| VIPA 353-1DP01 | 04          | -                     |
| VIPA 253-1DP01 | 07          | Czujnik odbiciowy     |
| VersaMax NIU   | 08          | Zadajnik prądowy      |
| Turck BL20     | 20          | -                     |

Tabela 2: Tabela konfiguracji urządzeń Slave w sieci PROFIBUS.

#### 2.2 Układ powiązań pomiędzy urządzeniami w sieci PROFIBUS:

W zakładce Device & Networks skonfigurowano komunikację pomiędzy urządzeniami. Fioletowe linie w interfejsie graficznym odzwierciedlały rzeczywiste połączenia urządzeń podpiętych szeregowo do jednej magistrali w sieci, a każdemu urządzeniu nadano właściwy adres PROFIBUS, co zapewniło poprawną wymianę danych między sterownikiem PLC a kasetami oddalonymi.



Rysunek 1: Schemat połączenia urządzeń w środowisku TiaPortal.

### 2.3 Tablica zmiennych:

| Adres zmiennej w PLC | Rodzaj zmiennej   | Opis działania                                                                                                            |
|----------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------|
| %I2.0                | Cyfrowe wejście   | Pierwsze wejście VIPA200 (czujnik odbiciowy) 1 - wyjście %Q0.0 i %Q6.0 aktywne. 0 - wyjście %Q0.0 i %Q6.0 deaktywowane.   |
| %I3.0                | Cyfrowe wejście   | Pierwsze wejście Turck 1 - wyjście %Q2.0 i %Q7.0 aktywne 0 - wyjście %Q2.0 i %Q7.0 deaktywne                              |
| %I6.0                | Cyfrowe wejście   | Pierwsze wejście VersaMax.  1 - aktywny jeden warunek do aktywacji %Q3.0  0 - nieaktywny jeden warunek do aktywacji %Q3.0 |
| %I8.0                | Cyfrowe wejście   | Pierwsze wejście VIPA300.  1 - aktywny jeden warunek do aktywacji %Q3.0.  0 - nieaktywny jeden warunek do aktywacji %Q3.0 |
| %Q0.0                | Cyfrowe wyjście   | Pierwsze wyjście sterownika<br>PLC.                                                                                       |
| %Q2.0                | Cyfrowe wyjście   | Pierwsze wyjście VIPA200.                                                                                                 |
| %Q3.0                | Cyfrowe wyjście   | Pierwsze wyjście Turck.                                                                                                   |
| %Q6.0                | Cyfrowe wyjście   | Pierwsze wyjście VersaMax.                                                                                                |
| %Q7.0                | Cyfrowe wyjście   | Pierwsze wyjście VIPA300.                                                                                                 |
| %IW64                | Analogowe wejście | Zadajnik prądowy podpięty do<br>sterownika PLC                                                                            |
| %IW76                | Analogowe wejście | Zadajnik prądowy podpięty do<br>kanału 0 VersaMax                                                                         |
| %QW64                | Analogowe wyjście | Pierwsze wyjście analogowe sterownika PLC                                                                                 |
| %QW76                | Analogowe wyjście | Pierwsze wyjście analogowe VI-<br>PA300                                                                                   |

Tabela 3: Lista zmiennych sterownika PLC.



Rysunek 2: Tablica zmiennych dla sterownika PLC.

### 2.4 Dostępne adresy cyfrowe i analogowe dla poszczególnych urządzeń



Rysunek 3: Zakres adresów dla kasety oddalonej VIPA 300.



Rysunek 4: Zakres adresów dla kasety oddalonej VIPA 200.



Rysunek 5: Zakres adresów dla kasety oddalonej VersaMax.



Rysunek 6: Zakres adresów dla kasety oddalonej Turck.

## 3 Kod programu



Rysunek 7: Networki sterownika PLC cz. 1.

Network 1: Kopiowanie wartości z zadajnika prądowego podpiętego do pierwszego wejścia analogowego sterownika PLC na pierwsze wyjście anaglowe kasety oddalonej VIPA300.

Network 2: Kopiowanie wartości z zadajnika prądowego podpiętego do pierwszego wejścia analogowego kasety oddalonej VersaMax na pierwsze wyjście anaglowe sterownika PLC.

Network 3: Załączanie pierwszego wyjścia cyfrowego kasety oddalonej VIPA200 oraz VIPA300 przy aktywnym pierwszym wejściu cyfrowywm kasety Turck.



Rysunek 8: Networki sterownika PLC cz. 2.

Network 4: Załączanie pierwszego wyjścia cyfrowego kasety oddalonej VersaMax oraz sterownika PLC przy aktywnym pierwszym wejściu cyfrowywm kasety VIPA200.

Network 5: Załączanie pierwszego wyjścia cyfrowego Turck przy spełnionym warunku AND dla aktywnych pierwszych wejść cyfrowych VersaMax i VIPA300.

### 4 Wnioski:

- W PROFIBUS urządzenia są połączone szeregowo (topologia magistrali), co oznacza, że każde kolejne urządzenie jest wpięte do wspólnej linii komunikacyjnej.
- Adresy kaset oddalonych należy traktować tak, jakby były to fizyczne wejścia i wyjścia sterownika PLC, co pozwala na ich bezpośrednią konfigurację i wykorzystanie w programie sterującym.
- PROFIBUS nie wykorzystuje adresów IP do komunikacji, lecz opiera się na adresach indywidualnie przypisanych urządzeniom Slave w sieci. Każde urządzenie Slave w sieci PROFI-BUS otrzymuje unikalny adres liczbowy, który umożliwia jego identyfikację i komunikację z urządzeniem Master.