Linear Algebra

Trivandrum School on Communication, Coding and Networking 2017

Prasad Krishnan

Signal Processing and Communications Research Centre, International Institute of Information Technology, Hyderabad

January 27-30, 2017

Linear Algebra

- Vector Spaces
 - Definitions : Fields and Vector Space.
 - Linear Combinations.
 - Linear Independence and Dependence.
 - Subspaces
 - Basis and Dimension.
 - Vectors as tuples.
 - Basis change matrix.
- Linear Transformations.
 - Definition.
 - Linear Transformations as Matrices.
 - Similar matrices.
 - Range and Null Space of Linear Transformations.
 - Rank-Nullity Theorem.
 - Eigen values and vectors of a Linear Operator.

General ideas about Math-based Education and Research

- Math is not hard!
- There are only sets and maps (relations between sets).
- Start from basic axioms.
- ► Connect simple facts to create bigger facts (not always easy!).
- Imagination and Creativity.

Fields (Scalars): A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?

- Fields (Scalars): A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples?

- Fields (Scalars): A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- ► Temperature (

- Fields (Scalars): A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- ► Temperature (No).
- ightharpoonup Examples : $(\mathbb{R},+,.)$ (

- Fields (Scalars): A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- ► Temperature (No).
- Examples : $(\mathbb{R}, +, .)$ (**Yes**)
- ▶ $(\mathbb{F}_p, + (mod \ p), x \ (mod \ p))$ (integers modulo p). (

- Fields (Scalars): A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- ► Temperature (No).
- Examples : $(\mathbb{R}, +, .)$ (**Yes**)
- ▶ $(\mathbb{F}_p, + (mod \ p), x (mod \ p))$ (integers modulo p). (Yes)

- ► Space = set.
- ▶ Vector space V over a field of scalars \mathbb{F} : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].

- ► Space = set.
- ▶ Vector space V over a field of scalars \mathbb{F} : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- ▶ Examples: $\{(a,b): a,b \in \mathbb{Z}\}$ over \mathbb{R}

- ► Space = set.
- ▶ Vector space V over a field of scalars \mathbb{F} : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- ► Examples: $\{(a,b): a,b \in \mathbb{Z}\}$ over \mathbb{R} (No!).

- ► Space = set.
- ▶ Vector space V over a field of scalars \mathbb{F} : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- ▶ Examples: $\{(a,b): a,b \in \mathbb{Z}\}$ over \mathbb{R} (**No!**).
- ▶ Examples: $\{(a,b): a,b \in \mathbb{R}\}$ over \mathbb{R}

- ► Space = set.
- ▶ Vector space V over a field of scalars \mathbb{F} : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- ▶ Examples: $\{(a,b): a,b \in \mathbb{Z}\}$ over \mathbb{R} (**No!**).
- ► Examples: $\{(a, b) : a, b \in \mathbb{R}\}$ over \mathbb{R} (**Yes!**),

- ► Space = set.
- ▶ Vector space V over a field of scalars \mathbb{F} : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- ▶ Examples: $\{(a,b): a,b \in \mathbb{Z}\}$ over \mathbb{R} (**No!**).
- ► Examples: $\{(a, b) : a, b \in \mathbb{R}\}$ over \mathbb{R} (**Yes!**),
- ▶ Set of finite energy signals over \mathbb{R} .

- ► Space = set.
- ▶ Vector space V over a field of scalars \mathbb{F} : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- ▶ Examples: $\{(a,b): a,b \in \mathbb{Z}\}$ over \mathbb{R} (**No!**).
- ► Examples: $\{(a, b) : a, b \in \mathbb{R}\}$ over \mathbb{R} (**Yes!**),
- ▶ Set of finite energy signals over ℝ. **(Yes!)**

- ► Space = set.
- ▶ Vector space V over a field of scalars \mathbb{F} : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- ▶ Examples: $\{(a,b): a,b \in \mathbb{Z}\}$ over \mathbb{R} (**No!**).
- ► Examples: $\{(a, b) : a, b \in \mathbb{R}\}$ over \mathbb{R} (**Yes!**),
- ▶ Set of finite energy signals over \mathbb{R} . **(Yes!)**
- $\blacktriangleright \mathbb{F}^n = \{(x_1, ..., x_n) : x_i \in \mathbb{F}\} \text{ over } \mathbb{F}.$

- ► Space = set.
- ▶ Vector space V over a field of scalars \mathbb{F} : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- ▶ Examples: $\{(a,b): a,b \in \mathbb{Z}\}$ over \mathbb{R} (**No!**).
- ► Examples: $\{(a, b) : a, b \in \mathbb{R}\}$ over \mathbb{R} (**Yes!**),
- ▶ Set of finite energy signals over \mathbb{R} . **(Yes!)**
- $ightharpoonup \mathbb{F}^n = \{(x_1,...,x_n) : x_i \in \mathbb{F}\} \text{ over } \mathbb{F}.$ (Yes!)
- ightharpoonup Set of locations within a room, over $\mathbb R$

- ► Space = set.
- ▶ Vector space V over a field of scalars \mathbb{F} : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- ▶ Examples: $\{(a,b): a,b \in \mathbb{Z}\}$ over \mathbb{R} (**No!**).
- ► Examples: $\{(a, b) : a, b \in \mathbb{R}\}$ over \mathbb{R} (**Yes!**),
- ▶ Set of finite energy signals over \mathbb{R} . **(Yes!)**
- $ightharpoonup \mathbb{F}^n = \{(x_1,...,x_n) : x_i \in \mathbb{F}\} \text{ over } \mathbb{F}.$ (Yes!)
- ▶ Set of locations within a room, over \mathbb{R} (No!)

For $\mathbf{x} = \mathbf{x}(t)$, $\mathbf{y} = \mathbf{y}(t)$ (complex-valued functions), define

$$<\mathbf{x},\mathbf{y}>=\int_{-\infty}^{\infty}x(t)y^{*}(t)dt\in\mathbb{C}.$$

▶ For $\mathbf{x} = x(t)$, $\mathbf{y} = y(t)$ (complex-valued functions), define

$$<\mathbf{x},\mathbf{y}>=\int_{-\infty}^{\infty}x(t)y^{*}(t)dt\in\mathbb{C}.$$

- Energy of the signal x(t), $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle$.
- ▶ If $||\mathbf{x}|| < \infty$, then signal x(t) has finite energy.

▶ For $\mathbf{x} = x(t)$, $\mathbf{y} = y(t)$ (complex-valued functions), define

$$<\mathbf{x},\mathbf{y}>=\int_{-\infty}^{\infty}x(t)y^{*}(t)dt\in\mathbb{C}.$$

- Energy of the signal x(t), $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle$.
- ▶ If $||\mathbf{x}|| < \infty$, then signal x(t) has finite energy.

Theorem

Finite-energy signals form a vector space over \mathbb{C} .

▶ For $\mathbf{x} = x(t)$, $\mathbf{y} = y(t)$ (complex-valued functions), define

$$<\mathbf{x},\mathbf{y}>=\int_{-\infty}^{\infty}x(t)y^{*}(t)dt\in\mathbb{C}.$$

- Energy of the signal x(t), $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle$.
- ▶ If $||\mathbf{x}|| < \infty$, then signal x(t) has finite energy.

Theorem

Finite-energy signals form a vector space over \mathbb{C} .

Proof:

- ▶ If x(t) is finite-energy, then so is cx(t) for any $c \in \mathbb{C}$.
- ▶ To show : If x(t), y(t) are finite-energy, then so is x(t) + y(t).

▶ For $\mathbf{x} = x(t)$, $\mathbf{y} = y(t)$ (complex-valued functions), define

$$<\mathbf{x},\mathbf{y}>=\int_{-\infty}^{\infty}x(t)y^{*}(t)dt\in\mathbb{C}.$$

- Energy of the signal x(t), $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle$.
- ▶ If $||\mathbf{x}|| < \infty$, then signal x(t) has finite energy.

Theorem

Finite-energy signals form a vector space over \mathbb{C} .

Proof:

- ▶ If x(t) is finite-energy, then so is cx(t) for any $c \in \mathbb{C}$.
- ▶ To show : If x(t), y(t) are finite-energy, then so is x(t) + y(t).
- Given : $||\mathbf{x}|| < \infty$, $||\mathbf{y}|| < \infty$, show $||\mathbf{x} + \mathbf{y}|| < \infty$.

$$\begin{aligned} ||\mathbf{x} + \mathbf{y}||^2 &= ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle \\ &\leq ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2|\langle \mathbf{x}, \mathbf{y} \rangle|. \\ &\leq ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2||\mathbf{x}||.||\mathbf{y}|| \ \ \text{(if } |\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}||.||\mathbf{y}||) \\ &< \infty \qquad \text{(as each of the above terms are finite)} \end{aligned}$$

.

$$\begin{split} ||x+y||^2 &= ||x||^2 + ||y||^2 + \langle x,y \rangle + \langle y,x \rangle \\ &\leq ||x||^2 + ||y||^2 + 2|\langle x,y \rangle|. \\ &\leq ||x||^2 + ||y||^2 + 2||x||.||y|| \quad \text{(if } |\langle x,y \rangle| \leq ||x||.||y||)} \\ &< \infty \qquad \text{(as each of the above terms are finite)} \end{split}$$

Cauchy-Schwarz inequality

$$|< x, y > | \le ||x||.||y||$$

Proof: Fact: $||x - \lambda y||^2 \ge 0$, for any $\lambda \in \mathbb{C}$. Expand this and substitute $\lambda = \frac{\langle x, y \rangle}{||y||^2}$.

$$\begin{split} ||x+y||^2 &= ||x||^2 + ||y||^2 + \langle x, y \rangle + \langle y, x \rangle \\ &\leq ||x||^2 + ||y||^2 + 2|\langle x, y \rangle|. \\ &\leq ||x||^2 + ||y||^2 + 2||x||.||y|| \quad \text{(if } |\langle x, y \rangle| \leq ||x||.||y||)} \\ &< \infty \qquad \text{(as each of the above terms are finite)} \end{split}$$

Cauchy-Schwarz inequality

$$|< x, y > | \le ||x||.||y||$$

Proof: Fact: $||x - \lambda y||^2 \ge 0$, for any $\lambda \in \mathbb{C}$. Expand this and substitute $\lambda = \frac{\langle x, y \rangle}{||y||^2}$.

(Turns out that < x, y > is also an example of a linear algebraic object called inner product)

1. Finite-energy signals form a vector space over \mathbb{C} .

Definition: Fields

A *field* \mathbb{F} is a set S with two operations (addition (+) and multiplication(.)) such that

▶ For any $a, b \in S$, $a + b \in S$ (closure under addition)

Definition: Fields

A field $\mathbb F$ is a set S with two operations (addition (+) and multiplication(.)) such that

- ▶ For any $a, b \in S$, $a + b \in S$ (closure under addition)
- ▶ Given $a, b, c \in S$, then a + (b + c) = (a + b) + c. (Addition is associative).

Definition: Fields

A *field* \mathbb{F} is a set S with two operations (addition (+) and multiplication(.)) such that

- ▶ For any $a, b \in S$, $a + b \in S$ (closure under addition)
- ▶ Given $a, b, c \in S$, then a + (b + c) = (a + b) + c. (Addition is associative).
- ▶ There exists a special element $0 \in S$ such that a + 0 = 0 + a = a for all $a \in S$ (Additive identity exists).

Definition: Fields

A field \mathbb{F} is a set S with two operations (addition (+) and multiplication(.)) such that

- ▶ For any $a, b \in S$, $a + b \in S$ (closure under addition)
- ▶ Given $a, b, c \in S$, then a + (b + c) = (a + b) + c. (Addition is associative).
- ▶ There exists a special element $0 \in S$ such that a + 0 = 0 + a = a for all $a \in S$ (Additive identity exists).
- ▶ For $a \in S$ there exists an element $b \in S$ such that a + b = b + a = 0. (We write this element b as -a and call it the *Additive inverse* of a in S. **Note:** Subtraction is just addition with additive inverse.)

Definition: Fields

A field \mathbb{F} is a set S with two operations (addition (+) and multiplication(.)) such that

- ▶ For any $a, b \in S$, $a + b \in S$ (closure under addition)
- ▶ Given $a, b, c \in S$, then a + (b + c) = (a + b) + c. (Addition is associative).
- ▶ There exists a special element $0 \in S$ such that a + 0 = 0 + a = a for all $a \in S$ (Additive identity exists).
- ▶ For $a \in S$ there exists an element $b \in S$ such that a + b = b + a = 0. (We write this element b as -a and call it the *Additive inverse* of a in S. **Note: Subtraction is just addition with additive inverse.**)
- ▶ For all $a, b \in S$, a + b = b + a (Addition is Commutative)

Definition: Fields (continued)

..such that..

- S is closed under multiplication.
- Multiplication is associative.
- Multiplicative identity exists (denoted by 1).
- Multiplicative inverses exist for all elements but 0.
- Multiplication is commutative.

Definition: Fields (continued)

..such that..

- ▶ *S* is closed under multiplication.
- Multiplication is associative.
- Multiplicative identity exists (denoted by 1).
- Multiplicative inverses exist for all elements but 0.
- Multiplication is commutative.

...such that...

For all $a, b, c \in S$, a.(b+c) = a.b + a.c (Distributivity of multiplication).

It is really over! (I think)

Fields: Informally

Fields

A set where we can add, multiply, subtract (add with additive inverses), and divide (multiply with multiplicative inverses) and things work out *nicely*.

- ▶ Examples: \mathbb{R} , \mathbb{C} , \mathbb{F}_p .
- ▶ Non-examples: $\mathbb{R}^{m \times k}$ matrices $(m = k \neq 1)$.

Fields: Informally

Fields

A set where we can add, multiply, subtract (add with additive inverses), and divide (multiply with multiplicative inverses) and things work out *nicely*.

- ▶ Examples: \mathbb{R} , \mathbb{C} , \mathbb{F}_p .
- ▶ Non-examples: $\mathbb{R}^{m \times k}$ matrices $(m = k \neq 1)$.
- ► Think: What kind of structure exist if k = m = 1?, k = m?, $k \neq m$?.

Vector Spaces: Formal Definition

A set V is a vector space over \mathbb{F} (field of scalars) if the following properties are satisfied :

▶ V is closed under vector addition, which is commutative and associative. $\forall \mathbf{v}, \mathbf{w} \in V$, $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} \in V$.

Vector Spaces: Formal Definition

A set V is a vector space over \mathbb{F} (field of scalars) if the following properties are satisfied :

- ▶ V is closed under vector addition, which is commutative and associative. $\forall \mathbf{v}, \mathbf{w} \in V$, $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} \in V$.
- ▶ There exists $\mathbf{0} \in V$, $\mathbf{x} + \mathbf{0} = \mathbf{x}$ [Zero vector (Additive identity)]

Vector Spaces: Formal Definition

A set V is a vector space over \mathbb{F} (field of scalars) if the following properties are satisfied :

- ▶ V is closed under vector addition, which is commutative and associative. $\forall \mathbf{v}, \mathbf{w} \in V$, $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} \in V$.
- ▶ There exists $\mathbf{0} \in V$, $\mathbf{x} + \mathbf{0} = \mathbf{x}$ [Zero vector (Additive identity)]
- ▶ $\forall x \in V$, there exists $y \in V$ such that x + y = 0. (Additive inverse exists).

Vector Space: Formal Definition

...if the following properties are satisfied :

V is closed under Scalar Multiplication.

$$\forall \mathbf{x} \in \mathbf{V}, \forall \alpha \in \mathbb{F}, \alpha \mathbf{x} \in \mathbf{V}.$$

Vector Space: Formal Definition

...if the following properties are satisfied :

V is closed under Scalar Multiplication.

$$\forall \mathbf{x} \in \mathbf{V}, \forall \alpha \in \mathbb{F}, \alpha \mathbf{x} \in \mathbf{V}.$$

- $ightharpoonup orall oldsymbol{x}, oldsymbol{y} \in V ext{ and } lpha, eta \in \mathbb{F}$
 - 1. 1x = x
 - 2. $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$
 - 3. $(\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x})$
 - $4. \ (\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$

Vector Space: Informal Definition

Vector space V over $\mathbb F$

A set closed under addition, scalar multiplication (multiplication by scalars from \mathbb{F}).

Notation:

Vector Space: Informal Definition

Vector space V over \mathbb{F}

A set closed under addition, scalar multiplication (multiplication by scalars from \mathbb{F}).

Notation:

- ▶ Normal font, (α, β) for scalars.
- Bold fonts (v, w) for vectors.
- Caps for Vector spaces (V, W).
- ▶ F for field.

- ▶ $W \subseteq V$ is called a subspace if it is a vector space (over \mathbb{F}).
- ▶ Checking whether a subset is a subspace:
 - For all $\mathbf{v}, \mathbf{w} \in V$, $\alpha \mathbf{v} + \mathbf{w} \in V, \forall \alpha$.

- ▶ $W \subseteq V$ is called a subspace if it is a vector space (over \mathbb{F}).
- Checking whether a subset is a subspace:
 - ▶ For all $\mathbf{v}, \mathbf{w} \in V$, $\alpha \mathbf{v} + \mathbf{w} \in V, \forall \alpha$.
- Examples:
- $V = \mathbb{R}^3$

$$W = \{(x_1, x_2, x_3) \in : x_1 + 2x_2 + 5x_3 = 0\}$$

- ▶ $W \subseteq V$ is called a subspace if it is a vector space (over \mathbb{F}).
- Checking whether a subset is a subspace:
 - ▶ For all $\mathbf{v}, \mathbf{w} \in V$, $\alpha \mathbf{v} + \mathbf{w} \in V, \forall \alpha$.
- Examples:
- $V = \mathbb{R}^3$

$$W = \{(x_1, x_2, x_3) \in : x_1 + 2x_2 + 5x_3 = 0\}$$

(Yes!)

- ▶ $W \subseteq V$ is called a subspace if it is a vector space (over \mathbb{F}).
- Checking whether a subset is a subspace:
 - ▶ For all $\mathbf{v}, \mathbf{w} \in V$, $\alpha \mathbf{v} + \mathbf{w} \in V, \forall \alpha$.
- Examples:
- $V = \mathbb{R}^3$

$$W = \{(x_1, x_2, x_3) \in : x_1 + 2x_2 + 5x_3 = 0\}$$

(Yes!)

 $V = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = x_1 + 1\}$

- ▶ $W \subseteq V$ is called a subspace if it is a vector space (over \mathbb{F}).
- Checking whether a subset is a subspace:
 - ▶ For all $\mathbf{v}, \mathbf{w} \in V$, $\alpha \mathbf{v} + \mathbf{w} \in V, \forall \alpha$.
- Examples:
- $V = \mathbb{R}^3$

$$W = \{(x_1, x_2, x_3) \in : x_1 + 2x_2 + 5x_3 = 0\}$$

(Yes!)

- $V = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = x_1 + 1\}$ (No!)
- Set of all polynomials of degree only 5.

- ▶ $W \subseteq V$ is called a subspace if it is a vector space (over \mathbb{F}).
- Checking whether a subset is a subspace:
 - ▶ For all $\mathbf{v}, \mathbf{w} \in V$, $\alpha \mathbf{v} + \mathbf{w} \in V, \forall \alpha$.
- Examples:
- $V = \mathbb{R}^3$

$$W = \{(x_1, x_2, x_3) \in : x_1 + 2x_2 + 5x_3 = 0\}$$

(Yes!)

- $V = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = x_1 + 1\}$ (No!)
- ► Set of all polynomials of degree only 5. (No!)

Linear Combination of vectors

▶ A linear combination of a set of vectors $S = \{v_i : i = 1, ..., r\} \subset V$ is

$$\sum_{i=1}^r \alpha_i \, \mathbf{v_i},$$

for some $\alpha_i \in \mathbb{F}$.

- Note that if $\alpha_i = 0, \forall i$, then the linear combination gives the $\mathbf{0} \in V$.
- ► Examples: $S = \{(1\ 0\ 0), (0\ 1\ 0)\}$. Then $(1\ 1\ 0)$ is a linear combination.

Linear Dependence

Linear Dependence of vectors

▶ Vectors $\{v_i : i = 1, ..., r\}$ are called *linearly dependent*

$$\sum_{i=1}^r \alpha_i \, \mathbf{v_i} = \mathbf{0},$$

for some α_i s, at least one of which is non-zero.

Linear Dependence

Linear Dependence of vectors

▶ Vectors $\{v_i : i = 1, ..., r\}$ are called *linearly dependent*

$$\sum_{i=1}^r \alpha_i \, \mathbf{v_i} = \mathbf{0},$$

for some α_i s, at least one of which is non-zero.

▶ If $\alpha_j \neq 0$ for some $1 \leq j \leq r$ then

$$\mathbf{v_j} = \sum_{i=1, i \neq j}^r \beta_i \mathbf{v_i},$$

where
$$\beta_i = \frac{-\alpha_i}{\alpha_i}$$
.

Linear Independence

- ▶ If $\{v_i : i = 1, ..., r\}$ is not linearly dependent, then they are linearly independent.
- ▶ Only zero-linear combination gives **0**.

▶ Consider the vectors (from \mathbb{R}^2)

$$S = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \tag{1}$$

▶ The set $\{v_1, v_2\}$ is linearly

▶ Consider the vectors (from \mathbb{R}^2)

$$S = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \tag{1}$$

▶ The set $\{v_1, v_2\}$ is linearly independent.

▶ Consider the vectors (from \mathbb{R}^2)

$$S = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \tag{1}$$

- ▶ The set $\{v_1, v_2\}$ is linearly independent.
- ▶ Consider $S \cup \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. This is linearly

▶ Consider the vectors (from \mathbb{R}^2)

$$S = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \tag{1}$$

- ▶ The set $\{v_1, v_2\}$ is linearly independent.
- lacktriangleright Consider $S \cup \left(egin{array}{c} 1 \\ 3 \end{array}
 ight)$. This is linearly dependent.
- ▶ Consider $S \cup \{\mathbf{0}\}$. This is linearly

▶ Consider the vectors (from \mathbb{R}^2)

$$S = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \tag{1}$$

- ▶ The set $\{v_1, v_2\}$ is linearly independent.
- ▶ Consider $S \cup \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. This is linearly dependent.
- ▶ Consider $S \cup \{0\}$. This is linearly dependent.

Span

The span of a set of vectors $S = \{v_i : i = 1, ..., r\}$ is the set of all linear combinations of the vectors in that set.

$$span(S) = \left\{ \sum_{i=1}^r \alpha_i v_i : \alpha_i \in \mathbb{F} \right\}.$$

Span

The span of a set of vectors $S = \{v_i : i = 1, ..., r\}$ is the set of all linear combinations of the vectors in that set.

$$span(S) = \left\{ \sum_{i=1}^{r} \alpha_i \mathbf{v_i} : \alpha_i \in \mathbb{F} \right\}.$$

Row space =
$$\left\{ \sum_{i=1}^{m} \alpha_i \mathbf{a}_i : \mathbf{a}_i \text{ is the } i^{th} \text{ row of } A, \ \alpha_i \in \mathbb{F} \right\}.$$

Span

The span of a set of vectors $S = \{v_i : i = 1, ..., r\}$ is the set of all linear combinations of the vectors in that set.

$$span(S) = \left\{ \sum_{i=1}^{r} \alpha_{i} v_{i} : \alpha_{i} \in \mathbb{F} \right\}.$$

Row space =
$$\left\{ \sum_{i=1}^{m} \alpha_i \mathbf{a}_i : \mathbf{a}_i \text{ is the } i^{th} \text{ row of } A, \ \alpha_i \in \mathbb{F} \right\}.$$

$$S = \{(1,2), (1,1), (-4,9)\}.$$
 Span(S) =

Span

The span of a set of vectors $S = \{v_i : i = 1, ..., r\}$ is the set of all linear combinations of the vectors in that set.

$$span(S) = \left\{ \sum_{i=1}^{r} \alpha_{i} \mathbf{v}_{i} : \alpha_{i} \in \mathbb{F} \right\}.$$

Row space =
$$\left\{ \sum_{i=1}^{m} \alpha_i \mathbf{a}_i : \mathbf{a}_i \text{ is the } i^{th} \text{ row of } A, \ \alpha_i \in \mathbb{F} \right\}.$$

$$S = \{(1,2),(1,1),(-4,9)\}.$$
 Span $(S) = \mathbb{R}^2.$

Span

The span of a set of vectors $S = \{v_i : i = 1, ..., r\}$ is the set of all linear combinations of the vectors in that set.

$$span(S) = \left\{ \sum_{i=1}^{r} \alpha_{i} \mathbf{v}_{i} : \alpha_{i} \in \mathbb{F} \right\}.$$

Row space =
$$\left\{ \sum_{i=1}^{m} \alpha_i \mathbf{a}_i : \mathbf{a}_i \text{ is the } i^{th} \text{ row of } A, \ \alpha_i \in \mathbb{F} \right\}.$$

$$S = \{(1,2),(1,1),(-4,9)\}.$$
 Span $(S) = \mathbb{R}^2.$

Basis of a Subspace

Basis of a subspace W

A subset B of W is called a basis of W if

- 1. *B* is linearly independent set
- 2. B spans W
- ▶ A subspace $W \subseteq V$ can have multiple bases.

Basis of a Subspace

Basis of a subspace W

A subset B of W is called a basis of W if

- 1. B is linearly independent set
- 2. B spans W
- ▶ A subspace $W \subseteq V$ can have multiple bases.
- ▶ Examples: Let $V = \{p_0 + p_1t + p_2t^2 : p_i \in \mathbb{F}\}$. Basis for V is $\{1, t, t^2\}$ (so is $\{1 + t, 1 + t^2, 1 + t + t^2\}$).

Basis of a Subspace

Basis of a subspace W

A subset B of W is called a basis of W if

- 1. *B* is linearly independent set
- 2. B spans W
- ▶ A subspace $W \subseteq V$ can have multiple bases.
- ▶ Examples: Let $V = \{p_0 + p_1t + p_2t^2 : p_i \in \mathbb{F}\}$. Basis for V is $\{1, t, t^2\}$ (so is $\{1 + t, 1 + t^2, 1 + t + t^2\}$).
- ▶ Any set of k-linearly independent vectors of \mathbb{F}^k .

Theorem

Any two bases for a subspace contain the same number of vectors

Theorem

Any two bases for a subspace contain the same number of vectors Proof:

1. Consider two bases $B = \{ \mathbf{b_i} : i = 1, ..., n \}$, $C = \{ \mathbf{c_i} : i = 1, ..., m \}$. Suppose n < m.

Theorem

Any two bases for a subspace contain the same number of vectors Proof:

- 1. Consider two bases $B = \{ \mathbf{b_i} : i = 1, ..., n \}$, $C = \{ \mathbf{c_i} : i = 1, ..., m \}$. Suppose n < m.
- 2. Consider $A_1 = \{c_1, b_1, ..., b_n\}$. This is a linearly dependent set.

Theorem

Any two bases for a subspace contain the same number of vectors Proof:

- 1. Consider two bases $B = \{ \mathbf{b_i} : i = 1, ..., n \}$, $C = \{ \mathbf{c_i} : i = 1, ..., m \}$. Suppose n < m.
- 2. Consider $A_1 = \{c_1, b_1, ..., b_n\}$. This is a linearly dependent set.
- 3. Note that $c_1 \neq 0$. This means we should have some $b_i \in span(\{c_1, b_1, ..., ..., b_n\} \setminus b_i)$.

Theorem

- 1. Consider two bases $B = \{ \mathbf{b_i} : i = 1, ..., n \}$, $C = \{ \mathbf{c_i} : i = 1, ..., m \}$. Suppose n < m.
- 2. Consider $A_1 = \{c_1, b_1, ..., b_n\}$. This is a linearly dependent set.
- 3. Note that $c_1 \neq 0$. This means we should have some $b_i \in span(\{c_1, b_1, ..., ..., b_n\} \setminus b_i)$.
- 4. Let $B_1=\{m{c_1},m{b_1},...,m{b_n}\}\backslash m{b_i}$. Then B_1 spans V and $|B_1|=|B|$.

Theorem

- 1. Consider two bases $B = \{ \mathbf{b_i} : i = 1, ..., n \}$, $C = \{ \mathbf{c_i} : i = 1, ..., m \}$. Suppose n < m.
- 2. Consider $A_1 = \{c_1, b_1, ..., b_n\}$. This is a linearly dependent set.
- 3. Note that $c_1 \neq 0$. This means we should have some $b_i \in span(\{c_1, b_1, ..., ..., b_n\} \setminus b_i)$.
- 4. Let $B_1 = \{c_1, b_1, ..., b_n\} \setminus b_i$. Then B_1 spans V and $|B_1| = |B|$.
- 5. Continue this. To get B_{k+1} , we add one vector from C to B_k and remove one vector from B_k (while maintaining spanning property).

Theorem

- 1. Consider two bases $B = \{ \mathbf{b_i} : i = 1, ..., n \}$, $C = \{ \mathbf{c_i} : i = 1, ..., m \}$. Suppose n < m.
- 2. Consider $A_1 = \{c_1, b_1, ..., b_n\}$. This is a linearly dependent set.
- 3. Note that $c_1 \neq 0$. This means we should have some $b_i \in span(\{c_1, b_1, ..., ..., b_n\} \setminus b_i)$.
- 4. Let $B_1 = \{c_1, b_1, ..., b_n\} \setminus b_i$. Then B_1 spans V and $|B_1| = |B|$.
- 5. Continue this. To get B_{k+1} , we add one vector from C to B_k and remove one vector from B_k (while maintaining spanning property).
- 6. At stage n, we get $B_n = \{c_1,, c_n\}$ which is a spanning set

Theorem

- 1. Consider two bases $B = \{ \mathbf{b_i} : i = 1, ..., n \}$, $C = \{ \mathbf{c_i} : i = 1, ..., m \}$. Suppose n < m.
- 2. Consider $A_1 = \{c_1, b_1, ..., b_n\}$. This is a linearly dependent set.
- 3. Note that $c_1 \neq 0$. This means we should have some $b_i \in span(\{c_1, b_1, ..., ..., b_n\} \setminus b_i)$.
- 4. Let $B_1=\{\pmb{c_1},\pmb{b_1},...,\pmb{b_n}\}\backslash \pmb{b_i}$. Then B_1 spans V and $|B_1|=|B|$.
- 5. Continue this. To get B_{k+1} , we add one vector from C to B_k and remove one vector from B_k (while maintaining spanning property).
- 6. At stage n, we get $B_n = \{c_1, ..., c_n\}$ which is a spanning set
- 7. But that means C is dependent (contradiction).

Basis and Dimension

The following are equivalent:

- ▶ B is linearly independent and spans W.
- \triangleright B is a maximal linearly independent set of W.
- B is a minimal set which spans W.

Basis and Dimension

The following are equivalent:

- ▶ *B* is linearly independent and spans *W*.
- B is a maximal linearly independent set of W.
- ightharpoonup B is a minimal set which spans W.

Dimension of a Subspace W

dim(W) = No. of vectors in any basis of W.

Theorem

Let V be a finite dimensional vector space and S be a linearly independent subset of vectors from V. Then S can be extended to a basis of V, i.e., there is a basis B for V such that $S \subseteq B$.

Theorem

Let V be a finite dimensional vector space and S be a linearly independent subset of vectors from V. Then S can be extended to a basis of V, i.e., there is a basis B for V such that $S \subseteq B$.

Proof idea:

▶ If span(S) = V, then nothing to prove

Theorem

Let V be a finite dimensional vector space and S be a linearly independent subset of vectors from V. Then S can be extended to a basis of V, i.e., there is a basis B for V such that $S \subseteq B$.

Proof idea:

- If span(S) = V, then nothing to prove
- ▶ If $span(S) \neq V$, choose a vector $\mathbf{v} \notin span(S)$, and form $S_1 = S \cup \{\mathbf{v}\}$.

Theorem

Let V be a finite dimensional vector space and S be a linearly independent subset of vectors from V. Then S can be extended to a basis of V, i.e., there is a basis B for V such that $S \subseteq B$.

Proof idea:

- If span(S) = V, then nothing to prove
- ▶ If $span(S) \neq V$, choose a vector $\mathbf{v} \notin span(S)$, and form $S_1 = S \cup \{\mathbf{v}\}$.
- ▶ If $span(S_1) = V$, then we are done. Else find a vector outside $span(S_1)$ and add. ... (repeat).

Theorem

Let V be a finite dimensional vector space and S be a linearly independent subset of vectors from V. Then S can be extended to a basis of V, i.e., there is a basis B for V such that $S \subseteq B$.

Proof idea:

- If span(S) = V, then nothing to prove
- ▶ If $span(S) \neq V$, choose a vector $\mathbf{v} \notin span(S)$, and form $S_1 = S \cup \{\mathbf{v}\}$.
- ▶ If $span(S_1) = V$, then we are done. Else find a vector outside $span(S_1)$ and add. ... (repeat).
- ▶ We will have a basis for V at the end.

Vectors from *n*-dimensional V.S as *n*-tuples

Unique representation of vectors using basis vectors

Let V be a n-dimensional vector space with basis $B = \{b_1, ..., b_n\}$. Then any vector $\mathbf{v} \in V$ can be written as a unique linear combination of the basis vectors

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{b_i}.$$

Vectors from *n*-dimensional V.S as *n*-tuples

Unique representation of vectors using basis vectors

Let V be a n-dimensional vector space with basis $B = \{b_1, ..., b_n\}$. Then any vector $\mathbf{v} \in V$ can be written as a unique linear combination of the basis vectors

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{b_i}.$$

▶ In terms of the basis B, we can represent \mathbf{v} as the n-tuple,

$$[\mathbf{v}]_B = (\alpha_1, \alpha_2, ..., \alpha_n).$$

► This is only a representation, and may change with the basis chosen.

Vectors as coordinates

- ▶ Let $V = \mathbb{R}^2$. Let $B = \{ \boldsymbol{b_1} = (1,0), \boldsymbol{b_2} = (0,1) \}$.
- Consider a vector $\mathbf{v} = (5, 6)$.
- $\mathbf{v} = 5\mathbf{b}_1 + 6\mathbf{b}_2.$
- ▶ In terms of B, we have

$$[\mathbf{v}]_B = \left[\begin{array}{c} 5 \\ 6 \end{array} \right].$$

How do vector-representations change with change in the basis (from $B=\{\pmb{b_i}:i=1..n\}$ to $C=\{\pmb{c_i}:i=1..n\}$) chosen?

Given $[\mathbf{v}]_B$, what is $[\mathbf{v}]_C$?

How do vector-representations change with change in the basis (from $B = \{ \boldsymbol{b_i} : i = 1..n \}$ to $C = \{ \boldsymbol{c_i} : i = 1..n \}$) chosen?

Given $[\mathbf{v}]_B$, what is $[\mathbf{v}]_C$?

▶ Given $B = \{b_i\}$, we have

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{b}_i,$$

how to get β_i s such that

$$\mathbf{v} = \sum_{i=1}^{n} \beta_i \mathbf{c_i},$$

i.e. what is $[\mathbf{v}]_C$?

Note that

$$[\mathbf{v}]_{C} = \sum_{i=1}^{n} \alpha_{i} [\mathbf{b}_{i}]_{C}.$$

$$= \begin{bmatrix} [\mathbf{b}_{1}]_{C} [\mathbf{b}_{2}]_{C} \dots [\mathbf{b}_{n}]_{C} \end{bmatrix} \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix}$$

Note that

$$[\mathbf{v}]_{C} = \sum_{i=1}^{n} \alpha_{i} [\mathbf{b}_{i}]_{C}.$$

$$= \left[[\mathbf{b}_{1}]_{C} [\mathbf{b}_{2}]_{C} \dots [\mathbf{b}_{n}]_{C} \right] \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix}$$

$$[\boldsymbol{b_1}]_{\mathcal{C}}$$
 $[\boldsymbol{b_2}]_{\mathcal{C}}$ $[\boldsymbol{b_n}]_{\mathcal{C}}$ is known as the basis change matrix.

Basis change: Example

- Consider the basis $C = \{c_1 = (1,0), c_2 = (1,1)\}$ for \mathbb{R}^2 .
- ▶ Let $\mathbf{v} = (5,6)$. What is $[\mathbf{v}]_C$?

Basis change: Example

- ► Consider the basis $C = \{c_1 = (1,0), c_2 = (1,1)\}$ for \mathbb{R}^2 .
- Let $\mathbf{v} = (5,6)$. What is $[\mathbf{v}]_C$?

$$[\mathbf{v}]_{C} = 5[\mathbf{b}_{1}]_{C} + 6[\mathbf{b}_{2}]_{C}$$

$$= 5\begin{bmatrix} 1 \\ 0 \end{bmatrix} + 6\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 \\ 6 \end{bmatrix}.$$

• Check : $\mathbf{v} = -1\mathbf{c_1} + 6\mathbf{c_2}$.

 \mathcal{L} =Finite energy signals which are also time-limited from [0, T].

Theorem

A basis for C is

$$f_i(t) = \frac{1}{\sqrt{T}}e^{j2\pi it/T}, \ i = 0, \pm 1, \pm 2, ...$$

Proof:

► Fourier Series expansion.

1. Finite-energy time-bounded signals form a vector space.

- 1. Finite-energy time-bounded signals form a vector space.
- 2. Span of time-limited sinusoids = Time-limited Finite-Energy signals
 - ► The sinusoidal basis helps to easily characterize output signal when the signal is passed through 'linear time-invariant' systems.
 - Can think of signals as vectors. Makes Digital Communication possible!

Linear Transformations

- ▶ Maps between Vector Spaces (defined over a common field \mathbb{F}).
- ▶ We like linearity.

Linear Transformation

Let V and W be vector spaces over the field F. A function $T: V \to W$ is a linear transformation if

$$T(c\mathbf{v_1}+\mathbf{v_2})=cT(\mathbf{v_1})+T(\mathbf{v_2}), \forall \mathbf{v_1}, \mathbf{v_2} \in V, \mathrm{and}, \forall c \in \mathbb{F}.$$

If V = W, then T is called a *linear operator*.

Linear Tranformation : Examples and Non-Examples

1. T: $R^{2\times 2} \to R$ where T is defined as $T\left(\left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array}\right]\right) = x_1 + x_4$.

Linear Tranformation : Examples and Non-Examples

- 1. T: $R^{2\times 2} \to R$ where T is defined as $T\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\right) = x_1 + x_4$. **(Yes!)**
- 2. $T: \mathbb{R}^2 \to \mathbb{R}^3$ where T is defined as $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$.

Linear Tranformation: Examples and Non-Examples

- 1. T: $R^{2\times 2} \to R$ where T is defined as $T\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\right) = x_1 + x_4$. **(Yes!)**
- 2. $T: R^2 \to R^3$ where T is defined as $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$. **(Yes!)**
- 3. $T: R^2 \to R^3$ where T is defined as $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1x_2 \end{bmatrix}$.

Linear Tranformation: Examples and Non-Examples

- 1. T: $R^{2\times 2} \to R$ where T is defined as $T\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\right) = x_1 + x_4$. **(Yes!)**
- 2. $T: R^2 \to R^3$ where T is defined as $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$. **(Yes!)**
- 3. $T: R^2 \to R^3$ where T is defined as $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1x_2 \end{bmatrix}$. (No!)
- 4. $T: \mathbb{R}^3 \to \mathbb{R}^3$ where T is defined as $T\left(\begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} \right) = \begin{vmatrix} x_1 \\ x_2 \\ a \end{vmatrix}$.

Linear Tranformation: Examples and Non-Examples

- 1. T: $R^{2\times 2} \to R$ where T is defined as $T\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\right) = x_1 + x_4$. **(Yes!)**
- 2. $T: R^2 \to R^3$ where T is defined as $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$. **(Yes!)**
- 3. $T: R^2 \to R^3$ where T is defined as $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1x_2 \end{bmatrix}$. (No!)
- 4. $T: R^3 \to R^3$ where T is defined as $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ a \end{bmatrix}$. (No if $a \neq 0$, Yes if a = 0)

Linear Transformation: Examples and Non-Examples

- $y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau.$
- Is this is a linear transformation? (What are its domain and codomain?)

Linear Transformation : Examples and Non-Examples

- $y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau.$
- Is this is a linear transformation? (What are its domain and codomain?)
- Linear Transformation.

Linear Transformation: Examples and Non-Examples

- $y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau.$
- Is this is a linear transformation? (What are its domain and codomain?)
- Linear Transformation.
- ▶ Domain=Codomain=Vector Space of Finite energy signals.

1. Finite-energy time-bounded signals form a vector space.

- 1. Finite-energy time-bounded signals form a vector space.
- 2. Span of time-limited sinusoids = Time-limited Finite-Energy signals.

- 1. Finite-energy time-bounded signals form a vector space.
- 2. Span of time-limited sinusoids = Time-limited Finite-Energy signals.
- 3. LTI systems are Linear Operators on the Space of Finite Energy Signals.

Sum and Composition of Linear Transformations

▶ T_1 and T_2 are linear transformations from $V \to W$. Then so is their 'sum' T defined as

$$T(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v}).$$

ightharpoonup So is T' ('composition') defined as

$$T'(\mathbf{v}) = T_2(T_1(\mathbf{v})).$$

Sum and Composition of Linear Transformations

▶ T_1 and T_2 are linear transformations from $V \to W$. Then so is their 'sum' T defined as

$$T(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v}).$$

► So is T' ('composition') defined as

$$T'(\mathbf{v}) = T_2(T_1(\mathbf{v})).$$

Series and Parallel LTI systems.

Range and Null Space of a Linear Transformation

Range (Image) and Null-Space (Kernel) of T

► Range (Image):

$$R(T) = \{ \boldsymbol{w} \in W : T(\boldsymbol{v}) = \boldsymbol{w}, \text{for some } \boldsymbol{v} \in V \}.$$

Nullspace (kernel):

$$N(T) = \{ v \in V : T(v) = 0 \in W \}.$$

Range and Null Space of a Linear Transformation

Range (Image) and Null-Space (Kernel) of T

► Range (Image):

$$R(T) = \{ \boldsymbol{w} \in W : T(\boldsymbol{v}) = \boldsymbol{w}, \text{for some } \boldsymbol{v} \in V \}.$$

Nullspace (kernel):

$$N(T) = \{ \mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0} \in W \}.$$

- ightharpoonup R(T) is a subspace of W.
- \triangleright N(T) is a subspace of V.

Range and Null Space

Rank Nullity Theorem

Rank and Nullity

- Rank(T) = dim(R(T)).
- Nullity(T) = dim(N(T)).

Rank Nullity Theorem

Let V be a finite dimensional vector space and $T:V\to W$ be a L.T. Then

$$dim(V) = Rank(T) + Nullity(T).$$

▶ Let n = dim(V), k = dim(N(T)). We want to show that dim(R(T)) = n - k.

- Let n = dim(V), k = dim(N(T)). We want to show that dim(R(T)) = n k.
- ▶ Let $\{v_1, \ldots, v_k\}$ be basis for N(T).

- ▶ Let n = dim(V), k = dim(N(T)). We want to show that dim(R(T)) = n k.
- ▶ Let $\{v_1, \ldots, v_k\}$ be basis for N(T).
- ▶ We can extend this to a basis $B = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$ for V.

- ▶ Let n = dim(V), k = dim(N(T)). We want to show that dim(R(T)) = n k.
- ▶ Let $\{v_1, \ldots, v_k\}$ be basis for N(T).
- ▶ We can extend this to a basis $B = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$ for V.
- ▶ It suffices to show that $\{T(v_{k+1}), \dots, T(v_n)\}$ is a basis for R(T).

▶ We first show $\{T(v_{k+1}), \ldots, T(v_n)\}$ are independent. And then have to show that it spans R(T).

- ▶ We first show $\{T(v_{k+1}), \ldots, T(v_n)\}$ are independent. And then have to show that it spans R(T).
- ▶ Suppose not. Then, for some α_i s not all zero,

$$\mathbf{0} = \sum_{i=k+1}^{n} \alpha_{i} T(\mathbf{v}_{k+i})$$
$$= T(\sum_{i=k+1}^{n} \alpha_{i} \mathbf{v}_{i}).$$

- ▶ We first show $\{T(v_{k+1}), \ldots, T(v_n)\}$ are independent. And then have to show that it spans R(T).
- ▶ Suppose not. Then, for some α_i s not all zero,

$$\mathbf{0} = \sum_{i=k+1}^{n} \alpha_i T(\mathbf{v}_{k+i})$$
$$= T(\sum_{i=k+1}^{n} \alpha_i \mathbf{v}_i).$$

▶ This means $\sum_{i=1}^{n-k} \alpha_i \mathbf{v_{k+i}} \in N(T)$. Thus,

$$\sum_{i=k+1}^{n} \alpha_i \mathbf{v_i} = \sum_{i=1}^{k} \beta_i \mathbf{v_i}.$$

Rearranging,

$$\sum_{i=k+1}^{n} \alpha_{i} \mathbf{v}_{i} - \sum_{i=1}^{k} \beta_{i} \mathbf{v}_{i} = \mathbf{0},$$

for α_i s not all zero.

Rearranging,

$$\sum_{i=k+1}^{n} \alpha_{i} \mathbf{v}_{i} - \sum_{i=1}^{k} \beta_{i} \mathbf{v}_{i} = \mathbf{0},$$

for α_i s not all zero.

- ▶ This is a contradiction as $\{v_i : i = 1, ..., n\}$ is a basis.
- ▶ Thus $\{T(v_{k+1}), \dots, T(v_n)\}$ is linearly independent.

▶ Have to still show $B_R = \{T(v_{k+1}), ..., T(v_n)\}$ spans R(T).

- ▶ Have to still show $B_R = \{T(\mathbf{v_{k+1}}), \dots, T(\mathbf{v_n})\}$ spans R(T).
- ▶ For any vector $\mathbf{w} \in R(T)$, show that $\mathbf{w} \in span(B_R)$.

- ▶ Have to still show $B_R = \{T(\mathbf{v_{k+1}}), \dots, T(\mathbf{v_n})\}$ spans R(T).
- ▶ For any vector $\mathbf{w} \in R(T)$, show that $\mathbf{w} \in span(B_R)$.
- ▶ There exists a $\mathbf{v} \in V$ such that $T(\mathbf{v}) = \mathbf{w}$.

- ▶ Have to still show $B_R = \{T(\mathbf{v_{k+1}}), \dots, T(\mathbf{v_n})\}$ spans R(T).
- ▶ For any vector $\mathbf{w} \in R(T)$, show that $\mathbf{w} \in span(B_R)$.
- ▶ There exists a $\mathbf{v} \in V$ such that $T(\mathbf{v}) = \mathbf{w}$.
- We have $\mathbf{v} = \sum_{i=1}^{n} \gamma_i \mathbf{v_i}$ (as B is a basis for V).

- ▶ Have to still show $B_R = \{T(\mathbf{v_{k+1}}), \dots, T(\mathbf{v_n})\}$ spans R(T).
- ▶ For any vector $\mathbf{w} \in R(T)$, show that $\mathbf{w} \in span(B_R)$.
- ▶ There exists a $\mathbf{v} \in V$ such that $T(\mathbf{v}) = \mathbf{w}$.
- We have $\mathbf{v} = \sum_{i=1}^{n} \gamma_i \mathbf{v_i}$ (as B is a basis for V).
- Apply T on both sides to get the result.

Example

Let

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{array}\right)$$

- ▶ Consider the linear transformation from $\mathbb{R}^3 \to \mathbb{R}^3$ given by $\mathbf{x} \to A\mathbf{x}$.
- ▶ What is the N(T)? What is R(T)?
- Check if R-N theorem is satisfied.

Characterising linear transformations

Theorem

Let $T: V \to W$ be a L.T. Let $B = \{v_i : i = 1.., n\}$. Then the action of T on any arbitrary $v \in V$ is completely specified by its action on the basis vectors $\{v_i : i = 1,..,n\}$.

▶ Let dim(V) = n, dim(W) = m. Let $T(\mathbf{v}) = \mathbf{w}$.

- ▶ Let dim(V) = n, dim(W) = m. Let T(v) = w.
- ▶ Already know: Choosing a basis B_V for V enables us to write \mathbf{v} as a n-tuple $[\mathbf{v}]_{B_V}$.

- ▶ Let dim(V) = n, dim(W) = m. Let T(v) = w.
- ▶ Already know: Choosing a basis B_V for V enables us to write \mathbf{v} as a n-tuple $[\mathbf{v}]_{B_V}$.
- ► Choosing a basis B_W for W enables us to write \mathbf{w} as a m-tuple $[\mathbf{w}]_{B_W}$.

- ▶ Let dim(V) = n, dim(W) = m. Let $T(\mathbf{v}) = \mathbf{w}$.
- ▶ Already know: Choosing a basis B_V for V enables us to write \mathbf{v} as a n-tuple $[\mathbf{v}]_{B_V}$.
- ► Choosing a basis B_W for W enables us to write \mathbf{w} as a m-tuple $[\mathbf{w}]_{B_W}$.
- ▶ Fixing B_V and B_W , we have a matrix representation [T] for T.

$$[T][\mathbf{v}]_{B_V} = [\mathbf{w}]_{B_W}$$

► How to get [*T*]?

▶ How to get [T]?

$$i^{th}$$
 column of $[T] = [T(\mathbf{v_i})]_{B_W}$.

Example

Consider the Lin. Operator on the space of real polynomials of degree upto 2, defined as follows.

$$T(a_0 + a_1t + a_2t^2) = (a_0 + a_2) + (a_1 + a_2)t + (a_0 + 2a_1 + 3a_2)t^2.$$

Find its representation under (a) Basis $B = \{1, t, t^2\}$ (b) Basis $C = (1 + t, 1 + t^2, 1 + t + t^2)$.

4. Linear Transformations are heavily used in Coding Theory and Cryptography.

- 4. Linear Transformations are heavily used in Coding Theory and Cryptography.
 - ► Embed a low-D subspace in a High-D vector space to a Low-D vector space. (Compression or Source Coding)

- 4. Linear Transformations are heavily used in Coding Theory and Cryptography.
 - ► Embed a low-D subspace in a High-D vector space to a Low-D vector space. (Compression or Source Coding)
 - ► Embed a low-D vector space as a Low-D subspace of a High-D vector space (Channel Coding).

Let $T: V \to V$ be a Linear Operator.

Eigen values and vectors

A non-zero $\mathbf{v} \in V$ and a constant $\lambda \in \mathbb{F}$ are called the eigen vector and its eigen value of T if

$$T(\mathbf{v}) = \lambda \mathbf{v}.$$

For certain types of Lin. Operators, there exists a basis $B = \{v_i\}$ for V consisting of eigen vectors (with eigen values λ_i s).

- ▶ For certain types of Lin. Operators, there exists a basis $B = \{v_i\}$ for V consisting of eigen vectors (with eigen values λ_i s).
- ▶ Understanding the I/O relationships of such Lin Operators are easy with such a basis.

- ▶ For certain types of Lin. Operators, there exists a basis $B = \{v_i\}$ for V consisting of eigen vectors (with eigen values λ_i s).
- Understanding the I/O relationships of such Lin Operators are easy with such a basis.

Þ

$$T(\mathbf{v}) = T\left(\sum \alpha_i \mathbf{v}_i\right)$$

$$= \sum \alpha_i T(\mathbf{v}_i)$$

$$= \sum \alpha_i \lambda_i \mathbf{v}_i$$

Example for Eigen vectors and Values

- ▶ \mathcal{L} =Finite energy signals which are also time-limited from [0, T].
- ► A basis for *L* is

$$f_i(t) = \frac{1}{\sqrt{T}}e^{j2\pi it/T}, \ i = 0, \pm 1, \pm 2, ...$$

Example for Eigen vectors and Values

- ▶ \mathcal{L} =Finite energy signals which are also time-limited from [0, T].
- ► A basis for *L* is

$$f_i(t) = \frac{1}{\sqrt{T}}e^{j2\pi it/T}, \ i = 0, \pm 1, \pm 2, ...$$

▶ The function $f_i(t)$ are the eigen vectors for any LTI system given by L, with eigen value being the fourier series coefficient of h(t) at $2\pi i/T$.

- 1. Finite-energy time-bounded signals form a vector space.
- 2. Span of time-limited sinusoids = Time-limited Finite-Energy signals.
- 3. LTI systems are Linear Operators on the Space of Finite Energy Signals.
- 4. Linear Transformations are heavily used in Coding Theory and Cryptography.

- 1. Finite-energy time-bounded signals form a vector space.
- 2. Span of time-limited sinusoids = Time-limited Finite-Energy signals.
- 3. LTI systems are Linear Operators on the Space of Finite Energy Signals.
- 4. Linear Transformations are heavily used in Coding Theory and Cryptography.
- 5. Fourier basis are also eigen vectors of LTI systems. So understanding I/O relationships of LTI systems is easy.

Thank You

