HOMEWORK: CHAPTER 3

Notes: We only accept homework in pdf file format written in English or Chinese. All submissions will have to be uploaded in Tsinghua University Web Learning. All submissions after ddl will not be accepted.

Exercise 1

The sender side of rdt3.0 simply ignores (that is, takes no action on) all received packets that are either in error or have the wrong value in the acknum field of an acknowledgment packet. Suppose that in such circumstances, rdt3.0 were simply to retransmit the current data packet. Would the protocol still work? (*Hint*: Consider what would happen if there were only bit errors; there are no packet losses but premature timeouts can occur. Consider how many times the *n*th packet is sent, in the limit as *n* approaches infinity.)

Exercise 2

Consider the GBN protocol with a sender window size of 4 and a sequence number range of 1,024. Suppose that at time t, the next in-order packet that the receiver is expecting has a sequence number of k. Assume that the medium does not reorder messages. Answer the following questions:

- a. What are the possible sets of sequence numbers inside the sender's window at time *t*? Justify your answer.
- b. What are all possible values of the ACK field in all possible messages currently propagating back to the sender at time *t*? Justify your answer.

Exercise 3

Answer true or false to the following questions and briefly justify your answer:

- a. With the SR protocol, it is possible for the sender to receive an ACK for a packet that falls outside of its current window.
- b. With GBN, it is possible for the sender to receive an ACK for a packet that falls outside of its current window.
- c. The alternating-bit protocol is the same as the SR protocol with a sender and receiver window size of 1.
- d. The alternating-bit protocol is the same as the GBN protocol with a sender and receiver window size of 1.

Exercise 4

Consider transferring an enormous file of L bytes from Host A to Host B. Assume an MSS of 536 bytes.

- a. What is the maximum value of L such that TCP sequence numbers are not exhausted? Recall that the TCP sequence number field has 4 bytes.
- b. For the L you obtain in (a), find how long it takes to transmit the file. Assume that a total of 66 bytes of transport, network, and data-link header are added to each segment

before the resulting packet is sent out over a 155 Mbps link. Ignore flow control and congestion control so A can pump out the segments back to back and continuously.

Exercise 5

Consider sending a large file from a host to another over a TCP connection that has no loss.

- a. Suppose TCP uses AIMD for its congestion control without slow start. Assuming cwnd increases by 1 MSS every time a batch of ACKs is received and assuming approximately constant round-trip times, how long does it take for cwnd increase from 6 MSS to 12 MSS (assuming no loss events)?
- b. What is the average throughout (in terms of MSS and RTT) for this connection up through time = 6 RTT?

Exercise 6

Suppose that the UDP receiver computes the Internet checksum for the received UDP segment and finds that it matches the value carried in the checksum field. Can the receiver be absolutely certain that no bit errors have occurred? Explain.

Exercise 7

Host A and B are communicating over a TCP connection, and Host B has already received from A all bytes up through byte 126. Suppose Host A then sends two segments to Host B back-to-back. The first and second segments contain 80 and 40 bytes of data, respectively. In the first segment, the sequence number is 127, the source port number is 302, and the destination port number is 80. Host B sends an acknowledgment whenever it receives a segment from Host A.

- a. In the second segment sent from Host A to B, what are the sequence number, source port number, and destination port number?
- b. If the first segment arrives before the second segment, in the acknowledgment of the first arriving segment, what is the acknowledgment number, the source port number, and the destination port number?
- c. If the second segment arrives before the first segment, in the acknowledgment of the first arriving segment, what is the acknowledgment number?
- d. Suppose the two segments sent by A arrive in order at B. The first acknowledgment is lost and the second acknowledgment arrives after the first timeout interval. Draw a timing diagram, showing these segments and all other segments and acknowledgments sent. (Assume there is no additional packet loss.) For each segment in your figure, provide the sequence number and the number of bytes of data; for each acknowledgment that you add, provide the acknowledgment number