Algorithm Fourth Homework

Zhang Yuan

Student ID: 2015E8013261189

1 Problem 3: Interval Scheduling Problem

1. This problem can be formulated as follows:

$$maximize \sum_{i,j} y_{ij}$$

 y_{ij} means in the ith classroom, whether arranging the jth class. s.t.

$$y_{ij} = 0$$
 or 1
 $\sum_{i=1}^{m} y_{ij} \le 1$ $j = 1, ..., n$
 $y_{ij} + y_{ik} \le 1$ $i = 1, ..., m$

jth job can not arrange in several classrooms. jth and kth job can not arrange in the same classroom. I construct an instance as follows:

My input as follows:

```
/* Variables */
var y_11 >= 0, integer;
var y_21 >= 0, integer;
var y_12 >= 0, integer;
var y_12 >= 0, integer;
var y_13 >= 0, integer;
var y_23 >= 0, integer;
var y_14 >= 0, integer;
var y_14 >= 0, integer;
var y_15 >= 0, integer;
var y_15 >= 0, integer;
var y_16 >= 0, integer;
var y_16 >= 0, integer;
var y_26 >= 0, integer;
```

```
/*var x >= 0, integer;
var y >= 0, integer;
var z >= 0, integer; */
/* Object function */
maximize q: y_11 + y_12 + y_21 + y_22 + y_13 + y_23 + y_14 + y_24 + y_15 + y_2
/*minimize q: -2*x + -3*y + -2*z; */
/* Constraints */
s.t. con1: y_11 + y_21 \le 1;
s.t. con2: y_12 + y_22 \le 1;
s.t. con3: y_13 + y_23 \le 1;
s.t. con4: y_14 + y_24 \le 1;
s.t. con5: y_15 + y_25 <= 1;
s.t. con6: y_16 + y_26 <= 1;
s.t. con7: y_11 + y_12 \le 1;
s.t. con8: y_21 + y_22 \le 1;
s.t. con9: y_11 + y_13 \le 1;
s.t. con10: y_21 + y_23 \le 1;
s.t. con11: y_11 + y_14 \le 1;
s.t. con12: y_21 + y_24 \le 1;
s.t. con13: y_11 + y_15 \le 1;
s.t. con14: y_21 + y_25 \le 1;
s.t. con15: y_12 + y_13 \le 1;
s.t. con16: y_22 + y_23 \le 1;
s.t. con17: y_13 + y_14 \le 1;
s.t. con18: y_23 + y_24 \le 1;
s.t. con19: y_14 + y_15 \le 1;
s.t. con20: y_24 + y_25 \le 1;
s.t. con21: y_14 + y_16 \le 1;
s.t. con22: y_24 + y_26 \le 1;
s.t. con23: y_15 + y_16 \le 1;
s.t. con24: y_25 + y_26 \le 1;
/*s.t. con1: -2*x + -y + -z >= -4;
s.t. con2: -x + -2*y + -z >= -7;
s.t. con3: -z >= -5; \star/
end;
```

The output solved by GLPK as follows:

Problem: glpsolEx
Rows: 25
Columns: 12 (12 integer, 0 binary)
Non-zeros: 60
Status: INTEGER OPTIMAL
Objective: q = 4 (MAXimum)

No. Row name Activity Lower bound Upper bound

		_					
1	q			4			
	con1			1			1
3	con2			1			1
4	con3			0			1
5	con4			1			1
6	con5			0			1
7	con6			1			1
8	con7			1			1
9	con8			1			1
10	con9			0			1
11	con10			1			1
12	con11			1			1
13	con12			1			1
14	con13			0			1
15	con14			1			1
16	con15			1			1
17	con16			0			1
	con17			1			1
19	con18			0			1
20	con19			1			1
	con20			0			1
	con21			1			1
	con22			1			1
	con23			0			1
25	con24			1			1
No.	Column name	_	Activity		Lower bound	Upper	bound
1	y_11	*		0	0		
	y_21	*		1	0		
	y_12	*		1	0		
	y_22	*		0	0		
	y_13	*		0	0		
	y_23	*		0	0		
	y_14	*		1	0		
	y_24	*		0	0		
	y_15	*		0	0		
	y_25	*		0	0		
	y_16	*		0	0		
	y_26	*		1	0		

Integer feasibility conditions:

KKT.PE: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0
 High quality

```
KKT.PB: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality
```

End of output

We can see the optimal solution is 4, which arrange class 1 and class 6 on room 2, and arrange class 2 and class 4 on room 1. After analyzing the instance, we know the result is right, but we can also find other suitable arrangements.

2.

No, if we change the requirement above, set $s_6=10$ and $f_6=12$, apparently we will get answer is 5, we can get the answer as follows:

Problem: glpsolEx

Rows: 21 Columns: 12 Non-zeros: 52

Status: OPTIMAL

Objective: q = 6 (MAXimum)

Row name	St	Activity	Lower bound	Upper bound	Marginal
q	В	6			
con1	NU	1		1	
con2	NU	1		1	
con3	NU	1		1	
con4	NU	1		1	<
con5	В	1		1	
con6	NU	1		1	
con7	NU	1		1	<
con8	В	1		1	
con9	NU	1		1	<
con10	В	1		1	
con11	В	1		1	
con12	В	1		1	
con13	NU	1		1	<
con14	В	1		1	
con15	В	1		1	
con16	NU	1		1	<
con17	В	1		1	
con18	В	1		1	
con19	NU	1		1	
con20	NU	1		1	
Column name	St	Activity	Lower bound	Upper bound	Margina.
y_11	В	0.5	0		
y_21	В	0.5	0		
y_12	В	0.5	0		
	q con1 con2 con3 con4 con5 con6 con7 con8 con9 con10 con11 con12 con13 con14 con15 con16 con17 con18 con19 con20 Column name	q B con1 NU con2 NU con3 NU con4 NU con5 B con6 NU con7 NU con8 B con9 NU con10 B con11 B con12 B con13 NU con14 B con15 B con16 NU con17 B con18 B con19 NU Column name St y_11 B y_21 B	q B 6 con1 NU 1 con2 NU 1 con3 NU 1 con4 NU 1 con5 B 1 con6 NU 1 con7 NU 1 con8 B 1 con9 NU 1 con10 B 1 con11 B 1 con12 B 1 con13 NU 1 con14 B 1 con15 B 1 con16 NU 1 con17 B 1 con18 B 1 con20 NU 1 Column name St Activity	q B 6 con1 NU 1 con2 NU 1 con3 NU 1 con4 NU 1 con5 B 1 con6 NU 1 con7 NU 1 con8 B 1 con9 NU 1 con10 B 1 con11 B 1 con12 B 1 con13 NU 1 con14 B 1 con15 B 1 con16 NU 1 con17 B 1 con18 B 1 con20 NU 1 Column name St Activity Lower bound	con1 NU 1 1 con2 NU 1 1 con3 NU 1 1 con4 NU 1 1 con5 B 1 1 con6 NU 1 1 con7 NU 1 1 con8 B 1 1 con9 NU 1 1 con10 B 1 1 con11 B 1 1 con12 B 1 1 con13 NU 1 1 con14 B 1 1 con15 B 1 1 con17 B 1 1 con18 B 1 1 con20 NU 1 1 Column name St Activity Lower bound Upper bound

4	y_22	В	0.5	0
5	y_13	В	0.5	0
6	y_23	В	0.5	0
7	y_14	В	0.5	0
8	y_24	В	0.5	0
9	y_15	В	0.5	0
10	y_25	В	0.5	0
11	y_16	В	1	0
12	y_26	NL	0	0

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0
 High quality

KKT.PB: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0
 High quality

KKT.DE: max.abs.err = 0.00e+00 on column 0
 max.rel.err = 0.00e+00 on column 0
 High quality

KKT.DB: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0
 High quality

End of output

But in ILP, the answer as follows:

Problem: glpsolEx

Rows: 21

Columns: 12 (12 integer, 0 binary)

Non-zeros: 52

Status: INTEGER OPTIMAL Objective: q = 5 (MAXimum)

No.	Row name	Activity	Lower bound	Upper bound
1	~	5		
1	q	3		
2	con1	0		1
3	con2	1		1
4	con3	1		1
5	con4	1		1
6	con5	1		1
7	con6	1		1
8	con7	1		1

9	con8	0	1
10	con9	0	1
11	con10	1	1
12	con11	1	1
13	con12	0	1
14	con13	0	1
15	con14	1	1
16	con15	1	1
17	con16	1	1
18	con17	1	1
19	con18	1	1
20	con19	1	1
21	con20	1	1

No. Column name		Activity	Lower bound	Upper bound
1 y_11	*			
2 y_21	*	0	0	
3 y_12	*	1	0	
4 y_22	*	0	0	
5 y_13	*	0	0	
6 y_23	*	1	0	
7 y_14	*	1	0	
8 y_24	*	0	0	
9 y_15	*	0	0	
10 y_25	*	1	0	
11 y_16	*	0	0	
12 <u>y</u> _26	*	1	0	

Integer feasibility conditions:

```
KKT.PE: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality
```

```
KKT.PB: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality
```

End of output

According to lemma, we can not always set each column of A has at most one +1 entry and at most one -1 entry.

2 Problem 5: Stable Matching Problem

I select condition 1 as my condition, the problem can be formulated as follows:

$$maximize \sum_{i,j,l,k} y_{i,j,l,k}$$
 s.t.
$$\sum_{i,l \in p} y_{i,j(i),l,k(l)} S_{i,j(i),l,k(l)} = 0 \quad p \in P$$

P means permutations including all pairs between man and woman, we can conclude the number of permutations is $(n!)^2$. So we wanna find a permutation can meet the constraint and in the mean time, its optimal function can also be max of all p in P. In an instance p of P, pairs are fixed, all we need to do is to meet the constraints and get the maximum.

I give an instance as follows:

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ A & 3 & 2 & 1 \\ B & 2 & 1 & 3 \\ C & 3 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & A & B & C \\ 1 & C & B & A \\ 2 & A & B & C \\ 3 & C & B & A \end{bmatrix}$$

My input as follows:

```
/* Variables */
var y_1_B_2_A >= 0, binary;
var y_1_A_2_B >= 0, binary;
var y 1 C 2 B \geq= 0, binary;
var y_1_B_2_C >= 0, binary;
var y_1_A_3_C >= 0, binary;
var y_1_C_3_A >= 0, binary;
var y_1_C_2_A >= 0, binary;
var y_1_A_2_C >= 0, binary;
var y_1_B_3_A >= 0, binary;
var y_1_A_3_B >= 0, binary;
var y_1_B_3_C >= 0, binary;
var y_1_C_3_B >= 0, binary;
var y_2_B_3_A >= 0, binary;
var y_2_A_3_B >= 0, binary;
var y_2_A_3_C >= 0, binary;
var y_2_C_3_A >= 0, binary;
var y_2B_3C >= 0, binary;
var y 2 C 3 B \geq 0, binary;
/* Object function */
/*maximize q: y_1_A_2_B + y_1_A_3_C + y_2_B_3_C;*/
/*maximize r: y_1_A_2_C + y_1_A_3_B + y_2_C_3_B;*/
maximize s: y_1_B_2_A + y_1_B_3_C + y_2_A_3_C;
/*maximize t: y_1_B_2_C + y_1_B_3_A + y_2_C_3_A; */
/*maximize u: y_1_C_2_A + y_1_C_3_B + y_2_A_3_B;*/
```

```
/*maximize v: y_1_C_2_B + y_1_C_3_A + y_2_B_3_A; */
/* Constraints */
s.t. con1: y_1_A_2_B * 1 + y_1_A_3_C * 0 + y_2_B_3_C * 0 = 0;
s.t. con2: y_1A_2C * 1 + y_1A_3B * 1 + y_2C_3B * 1 = 0;
s.t. con3: y_1_B_2_A * 0 + y_1_B_3_C * 0 + y_2_A_3_C * 0 = 0;
s.t. con4: y_1_B_2_C * 1 + y_1_B_3_A * 0 + y_2_C_3_A * 1 = 0;
s.t. con5: y_1_c_2_A * 0 + y_1_c_3_B * 1 + y_2_A_3_B * 1 = 0;
s.t. con6: y_1_C_2_B * 0 + y_1_C_3_A * 1 + y_2_B_3_A * 0 = 0;
/*s.t. con1: S_1_B_2_A = 0;
s.t. con2: S_1_A_2_B = 1;
s.t. con3: S_1_C_2_B = 0;
s.t. con4: S_1_B_2_C = 1;
s.t. con5: S_1_A_3_C = 0;
s.t. con6: S_1_C_3_A = 1;
s.t. con7: S_1_C_2_A = 0;
s.t. con8: S_1_A_2_C = 1;
s.t. con9: S 1 B 3 A = 0;
s.t. con10: S_1_A_3_B = 1;
s.t. con11: S_1_B_3_C = 0;
s.t. con12: S_1_C_3_B = 1;
s.t. con13: S_2_B_3_A = 0;
s.t. con14: S_2_A_3_B = 1;
s.t. con15: S_2_A_3_C = 0;
s.t. con16: S_2_C_3_A = 1;
s.t. con17: S_2_B_3_C = 0;
s.t. con18: S_2_C_3_B = 1; */
end;
```

My output as follows:

Problem: StableMatch

Rows: 7

Columns: 12 (12 integer, 12 binary)

Non-zeros: 12

Status: INTEGER OPTIMAL Objective: s = 3 (MAXimum)

No.	Row name	Activity	Lower bound	Upper bound
1	S	3		
2	con1	0	-0	=
3	con2	0	-0	=
4	con3	0	-0	=
5	con4	0	-0	=
6	con5	0	-0	=
7	con6	0	-0	=

No. Co.	lumn name	Activity	Lower bound	Upper bound
1	1 D 0 7			
т У_	1_B_2_A *	1	U	1
2 y_	1_A_2_B *	0	0	1
3 y_	1_B_2_C *	0	0	1
4 y_	1_C_3_A *	0	0	1
5 y_	1_A_2_C *	0	0	1
6 у_	1_A_3_B *	0	0	1
7 y_	1_B_3_C *	1	0	1
8 y_	1_C_3_B *	0	0	1
9 у_	2_A_3_B *	0	0	1
10 y_	2_A_3_C *	1	0	1
11 y_	2_C_3_A *	0	0	1
12 y_	2_C_3_B *	0	0	1

Integer feasibility conditions:

```
KKT.PE: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality

KKT.PB: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality
End of output
```

So we can see that, the answer means 1 and B, 2 and A, 3 and C are the stable pairs, we can verify it.

3 Problem 7: Simplex Algorithm

I use the big-M method to get the initial situation, and use simplex algorithm to solve the problem.

```
import numpy as np

class Simplex_Table:

    def __init__(self,obj):
        self.obj=obj
        self.rows=[]
        self.columns=[]

    def addConstraint(self,expression,value):
        self.rows.append(expression)
        self.columns.append(value)
```

```
def check (self):
    if max(self.obj[0:-1]) \le 0: return 1
    else:return 0
def display(self):
    print '\n', np.matrix([self.obj]+self.rows)
def select_column(self):
    high=0
    index=[]
    for i in range (0, len(self.obj)-1):
        if self.obj[i]>high:
            index.append(i)
    if index==[]: return -1
    return index[0]
def select_row(self,col):
    right=[self.rows[i][-1] for i in range(len(self.rows))]
    left=[self.rows[i][col] for i in range(len(self.rows))]
    ratio=[]
    for i in range(len(right)):
        if left[i] == 0:
            ratio.append(999*abs(max(right)))
            continue
        ratio.append(right[i]/left[i])
    if ratio[np.argmin(ratio)]<0:</pre>
        return -1
    return np.argmin(ratio)
def pivot(self,row,col):
    e=self.rows[row][col]
    self.rows[row] = self.rows[row]/e
    for r in range(len(self.rows)):
        if r==row:continue
        self.rows[r]=self.rows[r]-self.rows[r][col]*self.rows[row]
    self.obj-=self.obj[col]*self.rows[row]
def solve(self):
    # build a simplex table
    for i in range(len(self.rows)):
        self.obj+=[-99999]
        col=[0 for r in range(len(self.rows))]
        col[i]=-1
        self.rows[i]+=col+[self.columns[i]]
        self.rows[i]=np.array(self.rows[i],dtype=float)
    self.obj=np.array(self.obj+[0],dtype=float)
    self.display()
```

```
checkNum=0
        value_value=0
        while not self.check():
             checkNum+=1
             if checkNum>9999:
                 print "No answer!"
                 break
             columns=self.select_column()
             rows=self.select_row(columns)
             if rows==-1:
                 print "No optimal answer!"
             self.pivot(rows, columns)
            print '\nPivot column: %s\n Pivot row: %s'%(columns+1,rows+1)
             self.display()
if name ==' main ':
        In the program, we use the big-M method to set the initial situation
        min z=-2x+-3y+-2z
        s.t.
        -2x+-y+-z-a=-4
        -x+-2y+-z-b=-7
        -z-c
                 =-5
        x, y, z, a, b, c >= 0
    t=Simplex_Table([2,3,2,0,0,0])
    t.addConstraint([-2, -1, -1, -1, 0, 0], -4)
    t.addConstraint([-1, -2, -1, 0, -1, 0], -7)
    t.addConstraint([0,0,-1,0,0,-1],-5)
    t.solve()
  Compared the GLPK, we use two program solving the same problem, the answer shows below:
```

GLPK:

Problem: glpsolEx

Rows: 4 3 Columns: Non-zeros: 10

OPTIMAL Status:

Objective: q = -11 (MINimum)

No.	Row name	St	Activity	Lower bound	Upper bound	Marginal
1	q	В	-11			
2	con1	NL	-4	-4		
3	con2	NL	-7	-7		
4	con3	В	-1	-5		

No.	Column name	St	Activity		Lower bound	Upper bound	Margina!
1	X	NL		0	0		
2	У	В		3	0		
3	Z	В		1	0		

Karush-Kuhn-Tucker optimality conditions:

```
KKT.PE: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality
```

End of output

My Program:

```
[[ 2.0000000e+00
                     3.00000000e+00
                                       2.00000000e+00
                                                        0.00000000e+00
    0.00000000e+00
                     0.00000000e+00
                                      -9.99990000e+04
                                                       -9.99990000e+04
   -9.99990000e+04
                     0.00000000e+001
 [-2.00000000e+00]
                    -1.00000000e+00
                                      -1.00000000e+00
                                                       -1.00000000e+00
    0.00000000e+00
                     0.00000000e+00
                                      -1.000000000e+00
                                                        0.000000000e+00
    0.00000000e+00
                    -4.00000000e+00]
 [-1.00000000e+00
                    -2.00000000e+00
                                      -1.00000000e+00
                                                        0.00000000e+00
   -1.000000000e+00
                     0.00000000e+00
                                       0.00000000e+00
                                                       -1.00000000e+00
    0.00000000e+00
                    -7.00000000e+001
 [ 0.0000000e+00
                     0.00000000e+00
                                      -1.00000000e+00
                                                        0.00000000e+00
                                       0.00000000e+00
    0.00000000e+00
                    -1.00000000e+00
                                                        0.00000000e+00
   -1.000000000e+00
                    -5.00000000e+0011
Pivot column: 1
Pivot row: 1
    0.00000000e+00
                     2.00000000e+00
1.00000000e+00
                                                      -1.00000000e+00
    0.000000000e+00
                     0.00000000e+00 -1.0000000e+05
                                                       -9.99990000e+04
```

```
-9.99990000e+04
                    -4.00000000e+00]
 [ 1.0000000e+00
                     5.00000000e-01
                                       5.0000000e-01
                                                        5.00000000e-01
   -0.00000000e+00
                    -0.00000000e+00
                                       5.00000000e-01
                                                       -0.00000000e+00
   -0.00000000e+00
                     2.00000000e+00]
 [ 0.0000000e+00
                    -1.50000000e+00
                                      -5.00000000e-01
                                                        5.0000000e-01
   -1.00000000e+00
                     0.00000000e+00
                                       5.00000000e-01
                                                       -1.00000000e+00
    0.00000000e+00
                    -5.00000000e+001
 [ 0.0000000e+00
                     0.00000000e+00
                                      -1.000000000e+00
                                                        0.00000000e+00
    0.00000000e+00
                                       0.00000000e+00
                                                        0.00000000e+00
                    -1.00000000e+00
   -1.00000000e+00
                    -5.00000000e+0011
Pivot column: 2
Pivot row: 2
[[ 0.0000000e+00
                     0.00000000e+00
                                       3.3333333e-01
                                                        -3.33333339e-01
   -1.33333333e+00
                     0.00000000e+00
                                      -9.99993333e+04
                                                       -1.00000333e+05
   -9.99990000e+04
                    -1.06666667e+011
 [ 1.0000000e+00
                     0.00000000e+00
                                       3.3333333e-01
                                                        6.66666667e-01
   -3.3333333e-01
                     0.00000000e+00
                                       6.6666667e-01
                                                       -3.33333338-01
    0.00000000e+00
                     3.3333333e-011
 [-0.00000000e+00
                     1.00000000e+00
                                       3.3333333e-01
                                                       -3.33333338-01
    6.66666667e-01
                    -0.00000000e+00
                                      -3.3333333e-01
                                                        6.6666667e-01
   -0.00000000e+00
                     3.3333333e+00]
 [ 0.0000000e+00
                     0.00000000e+00
                                      -1.00000000e+00
                                                        0.00000000e+00
                                       0.00000000e+00
                                                        0.00000000e+00
    0.00000000e+00
                    -1.00000000e+00
   -1.00000000e+00
                    -5.00000000e+00]
Pivot column: 3
Pivot row: 1
[[-1.00000000e+00]
                     0.00000000e+00
                                       0.00000000e+00
                                                       -1.00000000e+00
   -1.00000000e+00
                     0.00000000e+00
                                      -1.00000000e+05
                                                       -1.00000000e+05
   -9.99990000e+04
                    -1.10000000e+01]
   3.00000000e+00
                     0.00000000e+00
                                       1.00000000e+00
                                                        2.00000000e+00
   -1.00000000e+00
                     0.00000000e+00
                                       2.00000000e+00
                                                       -1.00000000e+00
    0.00000000e+00
                     1.00000000e+00]
 [-1.00000000e+00
                     1.00000000e+00
                                       0.00000000e+00
                                                       -1.00000000e+00
    1.00000000e+00
                    -0.00000000e+00
                                      -1.00000000e+00
                                                        1.00000000e+00
   -0.00000000e+00
                     3.00000000e+00]
 1 3.00000000e+00
                     0.00000000e+00
                                       0.00000000e+00
                                                        2.00000000e+00
   -1.00000000e+00
                    -1.00000000e+00
                                       2.00000000e+00
                                                       -1.00000000e+00
   -1.00000000e+00
                    -4.00000000e+00]
```

We can see the results above, the answers are same, after testing several cases, I verify the fact that my program is correct, but wastes more time due to python's high time cost.