München, 2019-04-25

Autonomous Parking

Overview + 1st Sprint

Praktikum, Summer Semester 2019

Hernan Ponce de Leon, Sudeep Kanav, Marco Volpe

Thomas Böhm, Martin Eisenmann

Overall Goals

- Enable rover's autonomous parking:
 - 1. Sense in the environment:
 - an appropriate parking location
 - possible obstacles
 - **2. Plan** a path:
 - reaching the parking location
 - avoiding possible obstacles
 - **3.** Act in the environment:
 - by moving according to the path planned

2 25.04.19 Autonomous Parking fortiss

Robot control phases

Our Components

Sense

Our Toolbox: sensors at our disposal

- Wide angle camera
 - > 200 degrees angle
 - ➤ Image resolution: 2952x1944
 - Used for reading QR code
 - Used for lane detection
 - More information <u>here</u>
- LIDAR: distance sensor
 - Used for sensing distance of the obstacle straight ahead.

- Ultrasound
 - Used for sensing obstacle distance on the sides
- LIDAR: 360 laser range scanner
 - Obstacle detection
 - We provide a c file which reads the values
 - More info here

Act

Our Toolbox

- ► Rover
- ► AF3 model
- ► Current implementation

1st Sprint

A working prototype in a basic environment

- ► Goals:
 - > Define interface between *sense* and *plan* (environment model)
 - Sense
 - Integrate all sensors
 - Use input datas from cameras and LIDAR to define a simple environment model
 - > Plan
 - Plan in a simple environment model
 - Communicate with low-level driving functions

Test Scenario 1

25.04.19

Move straight to the goal location

► Expected tasks

- ➤ Define interface sense/plan
- Define the physical scenario
- Integrate data from camera for QR
 - Improve existing code
 - Support higher resolution for longer distance
- Detect goal location
- Create environment model
- Support basic planning to reach the goal
- Transmit output data to low-level driving functions

Parking assistant fortiss

Test Scenario 2

Curve to reach the goal location

- ► Expected tasks
 - Define the physical scenario
 - Integrate data from camera for QR
 - Angle is also relevant here
 - Detect goal location
 - Even if not in front of the camera
 - Support basic planning to reach the goal
 - Change of direction is also relevant
 - Transmit output data to low-level driving functions
 - Change of direction is also relevant

Test Scenario 3

Avoid (at least) one obstacle

- ► Expected tasks
 - Define the physical scenario
 - Integrate data from LIDAR
 - Detect obstacles
 - Support planning to reach the goal
 - > By avoiding obstacles

Open questions

- How do we model the environment?
 - Will we need a more advanced model for localization in next sprints?
- Do we need a kinematic model of the rover in this sprint?
- Which algorithms to use for path planning?
 - Need for replanning?
- Which programming languages/tools shall we use?