Practice problems # 3 (Submission Due date: 29th February, 2020 in Class)

1. Boeing 777 aircraft is powered by four CF-6 turbofan engines manufactured by General Electric Company. Each engine has the following data:

Thrust force	24.0 KN
Air mass flow rate	125 Kg/s
By pass ratio	5.0
Fuel mass flow rate	0.75 Kg/s
Operating Mach number	0.8
Altitude	10 Km
Ambient temperature	223.2 K
Ambient pressure	26.4 KPa
Fuel heating value	42,800 KJ/Kg

If the thrust generated from the fan is 75% of the total thrust, determine the following assuming that the exit pressures of the cold and hot streams are equal to the ambient pressure.

- (i) The jet velocities of the cold air and hot gases
- (ii) The specific thrust
- (iii) TSFC
- (iv) The propulsive efficiency
- (v) The thermal efficiency
- (vi) The overall efficiency [40 points]
 - 2. A three-spool turbofan (forward fan) engine has the following data:

Fan pressure ratio	1.42:1
Overall compressor pressure ratio	25
HPC pressure ratio	5
BPR	5:1
Fan air mass flow rate	500 Kg/s
Fuel-to-air ratio (at take-off thrust)	0.0177
Ambient pressure	1.0 bar
Ambient temperature	288 K
Total pressure recovery at inlet	98%
Fan efficiency	0.99
Intermediate compressor efficiency	0.89
HPC efficiency	0.9
HPT efficiency	0.9

Intermediate	pressure	turbine	0.9
efficiency			
LPT efficiend	ey		0.9
Combustion chamber efficiency		0.98	
Mechanical efficiency		0.99	
Percentage b	leeding air of	core mass	2%
flow			
Fuel heating	value		45,000 kJ/Kg
Hot gases	nozzle and	fan nozzle	0.87
efficiency			
Percentage to	otal pressure	drop in the	2%
combustion chamber relative to HPC			
Percentage p	ressure losses	in the jet	2%
pipe relative	to LPT		
Engine weigh	nt		28.8 kN
Maximum diameter		2172 mm	
Maximum fro	ontal area		2.79 m2

Calculate the take-off thrust at M-0.2. (γ_t =1.33, C_{pt} =1.147 kJ/Kg-K; for all elements up to the Combustion chamber γ =1.4, C_p =1.005 kJ

[60 points]