Utilizando transformada Z para resolver um problema de recorrência

Péricles Lopes Machado

July 25, 2016

Abstract

Neste artigo, a transformada Z é utilizada na resolução do problema:

$$F(0) = 0, \text{ para } n \le 0$$

$$F(n) = \frac{1}{n^2} \sum_{0 \le k < n} \left[\sum_{0 \le i < k} [1 + F(k)] + 1 + \sum_{k \le i < n} [1 + F(n - 1 - k)] \right], \text{ para } n > 0$$

$$(1)$$

1 Resolução

Simplificando-se a eq. (1):

$$n^{2}F(n) = n + \sum_{0 \le k < n} [k + kF(k)] + \sum_{0 \le k < n} [n - k + (n - k)F(n - 1 - k)]$$

$$n^{2}F(n) = n + \sum_{0 \le k < n} [k] + \sum_{0 \le k < n} [kF(k)] + \sum_{0 \le k < n} [n - k] + \sum_{0 \le k < n} [(n - k)F(n - 1 - k)]$$

$$n^{2}F(n) = n + \sum_{0 \le k < n} [n] + 2\sum_{0 \le k < n} [kF(k)]$$

$$n^{2}F(n) = (n^{2} + n)u(n - 1) + 2\sum_{k \ge 0} kF(k)u(n - 1 - k)$$

$$(2)$$

obtém-se:

$$n^{2}F(n) = (n^{2} + n)u(n - 1) + 2[nF(n)] * [u(n - 1)],$$
(3)

onde u(n) = 1, para $n \ge 0$ e u(n) = 0, para n < 0. Aplicando a transformada \mathcal{Z} em (3) e fazendo $Y = \mathcal{Z}\{F(n)\}$:

$$z^{2} \frac{d^{2}}{dz^{2}} Y = \mathcal{Z} \left\{ (n^{2} + n)u(n - 1) \right\} - 2z \frac{d}{dz} Y \mathcal{Z} \left\{ u(n - 1) \right\}$$

$$\begin{split} z^2 \frac{d^2}{dz^2} Y &= \mathcal{Z} \left\{ (n^2 + n) u(n-1) \right\} - 2z \left(\frac{z^{-1}}{1-z^{-1}} \right) \frac{d}{dz} Y \\ z^2 \frac{d^2}{dz^2} Y &= \mathcal{Z} \left\{ n^2 u(n-1) \right\} + \mathcal{Z} \left\{ n u(n-1) \right\} - \left(\frac{2z}{z-1} \right) \frac{d}{dz} Y \end{split}$$

$$\begin{split} z^2 \frac{d^2}{dz^2} Y &= \frac{z^{-2}(1+z^{-1})}{(1-z^{-1})^3} + \frac{z^{-2}}{(1-z^{-1})^2} - \left(\frac{2z}{z-1}\right) \frac{d}{dz} Y \\ z^2 \frac{d^2}{dz^2} Y &= \frac{z(1+z^{-1})}{(z-1)^3} + \frac{1}{(z-1)^2} - \left(\frac{2z}{z-1}\right) \frac{d}{dz} Y \\ z^2 \frac{d^2}{dz^2} Y &= \frac{(z+1)}{(z-1)^3} + \frac{1}{(z-1)^2} - \left(\frac{2z}{z-1}\right) \frac{d}{dz} Y \\ z^2 \frac{d^2}{dz^2} Y &= \frac{(z+1)}{(z-1)^3} + \frac{z-1}{(z-1)^3} - \left(\frac{2z}{z-1}\right) \frac{d}{dz} Y \\ z^2 \frac{d^2}{dz^2} Y &= \frac{2z}{(z-1)^3} - \left(\frac{2z}{z-1}\right) \frac{d}{dz} Y \\ \frac{d^2}{dz^2} Y &= \frac{2z}{z^2(z-1)^3} - \left(\frac{2z}{z^2(z-1)}\right) \frac{d}{dz} Y \end{split}$$

Por fim,

$$\frac{d^2}{dz^2}Y = \frac{2}{z(z-1)^3} - \left(\frac{2}{z(z-1)}\right)\frac{d}{dz}Y.$$
 (4)

Resolvendo a equação diferencial (4), usando o WolframAlpha:

$$Y(z) = (c_1 z^2 + 2log(1-z)((c_1-2)z - c_1 + z^2 - 2(z-1)log(z)) - c_1 z$$

$$-c_1 - 4(z-1)Li_2(z)$$

$$-2z^2log(z) + 2z + 2(z-1)log^2(1-z)$$

$$+4zlog(z) - 7)/(z-1) + c_2$$
(5)

Expandindo a expressão (5):

$$Y(z) = (c_1 z^2)/(z-1) - (c_1 z)/(z-1) + (2c_1 z \log(1-z))/(z-1) - (2c_1 \log(1-z))/(z-1) + (2c_2 \log(1-z))/(z-1) + (4Li_2(z))/(z-1) + (2z^2 \log(1-z))/(z-1) - (2z^2 \log(z))/(z-1) + (2z)/(z-1) - 7/(z-1) + (2z\log^2(1-z))/(z-1) - (2log^2(1-z))/(z-1) - (4z\log(1-z))/(z-1) - (4z\log(1-z)\log(z))/(z-1) + (4z\log(1-z)\log(z))/(z-1) + (4\log(1-z)\log(z))/(z-1) + (4\log(1-z)\log(z))/(z-1)$$