Homework for Wednesday, October 4

1. Determine whether

$$(((P \to Q) \to P) \to P)$$

is a tautology.

2. Show that neither of these two wff's tautologically implies the other

$$(A \leftrightarrow (B \leftrightarrow C))$$

$$((A \land (B \land C)) \lor ((\neg A) \land ((\neg B) \land (\neg C))))$$

- 3. Show that $\Sigma \cup \{\alpha\} \models \beta \text{ iff } \Sigma \models (\alpha \rightarrow \beta)$.
- 4. Consider a sequence $\alpha_1, \alpha_2, \alpha_3 \ldots$ of wff's. For any wff φ we form a new wff φ^* by replacing each occurrence of any sentence symbol A_i in φ by the wff α_i . (So, for example, if $\varphi = (A_1 \wedge A_3)$ then $\varphi^* = (\alpha_1 \wedge \alpha_3)$.)
 - (a) For any truth assignment v, we can define a new truth assignment u by setting

$$u(A_i) = \overline{v}(\alpha_i).$$

Show that for every wff φ ,

$$\overline{u}(\varphi) = \overline{v}(\varphi^*).$$

- (b) Show that if φ is a tautology, so is φ^* .
- 5. Prove the following lemma that we used in the proof of the Compactness Theorem: If Γ is a finitely satisfiable set of wff's, and α is any wff, then at least one of $\Gamma \cup \{\alpha\}$ and $\Gamma \cup \{(\neg \alpha)\}$ is finitely satisfiable.
- 6. In proving the Compactness Theorem, we needed to show: Suppose Δ is a finitely satisfiable set of wff's such that for every wff α , either $\alpha \in \Delta$ or $(\neg \alpha) \in \Delta$. Define a truth assignment by setting

$$v(A_i) = \begin{cases} T & \text{if } A_i \in \Delta \\ F & \text{if } A_i \notin \Delta. \end{cases}$$

Then for every wff α ,

$$\overline{v}(\alpha) = \begin{cases} T & \text{if } \alpha \in \Delta \\ F & \text{if } \alpha \notin \Delta. \end{cases}$$

Prove this by induction on α .