E-Learning Solutions

1. $T(x) = x^2 + \ln x + 98$ degree Fahrenheit gives the temperature of an oven x minutes after it's been turned on, 0.3 < x < 15. Complete the table below.

Solution:

x < 1	Slope of secant line from $(1,99)$ to $(x,T(x))$	<i>x</i> > 1	Slope of secant line from $(1,99)$ to $(x,T(x))$
x = 0.5	$\frac{T(1) - T(0.5)}{1 - 0.5} \approx 2.886$	x = 1.5	$\frac{T(1) - T(1.5)}{1 - 1.5} \approx 3.311$
x = 0.6	$\frac{T(1) - T(0.6)}{1 - 0.6} \approx 2.877$	x = 1.4	$\frac{T(1) - T(1.4)}{1 - 1.4} \approx 3.241$
x = 0.7	$\frac{T(1) - T(0.7)}{1 - 0.7} \approx 2.888$	x = 1.3	$\frac{T(1) - T(1.3)}{1 - 1.3} \approx 3.175$
x = 0.8	$\frac{T(1) - T(0.8)}{1 - 0.8} \approx 2.916$	x = 1.2	$\frac{T(1) - T(1.2)}{1 - 1.2} \approx 3.112$
x = 0.9	$\frac{T(1) - T(0.9)}{1 - 0.9} \approx 2.953$	x = 1.1	$\frac{T(1) - T(1.1)}{1 - 1.1} \approx 3.053$

1a. Using the table above, estimate T'(1), and then write a sentence of interpretation for this.

Solution: We estimate that

$$T'(1) = \lim_{x \to 1} \frac{T(1) - T(x)}{1 - x}$$

Sentence of Interpretation: The temperature of an oven is increasing by 3 degree Fahrenheit per minute, 1 minute after it's been turned on.

1b. Find the percentage rate of change when x = 1 and then write a sentence of interpretation for this.

Solution: We calculate the percentage rate of change when x = 1 to be

$$\frac{T'(1)}{T(1)} \cdot 100\% = \frac{3}{99} \cdot 100\%$$

$$\approx 3.03\%.$$

Sentence of Interpretation: The temperature of an oven is increasing by 3.03 percent per minute, 1 minute after it's been turned on.