Саморепродукция

Батарин Егор

30 апреля 2021 г.

Аннотация

Цель работы: изучения явления саморепродукции и применение его к измерению праметров периодических структур.

1 Теория

При дифрации на предмете с периодической структурой наблюдается явление саморепродукции: на некотором расстоянии от предмета вдоль волны направления распространения волны появляется изображение, которое потом периодически повторяется. Покажем, почему такой эффект имеет место быть:

Выражение для плоской монохроматической волны имеет вид:

$$E(\vec{r};t) = a_0 e^{-i(\omega t - \vec{k}\vec{r} - \psi_0)}$$

Здесь a_0 - действительное число, $\vec{k}\vec{r}=ux+vy+\sqrt{k^2-u^2-v^2}\cdot z$. Будем в дальнейшем опускать зависимость от времени $e^{-i\omega t}$. Тогда комлексная амплитуда запишется в виде:

$$f(x,y,z) = a_0 e^{i\psi_0} e^{i(ux+vy)} e^{i\sqrt{k^2 - u^2 - v^2} \cdot z} = f(x,y,0) e^{i\sqrt{k^2 - u^2 - v^2} \cdot z}$$

Пусть плоская волна падает на транспорант, описываемый функцией t(x,y) (рассмотрим, для простоты, одномерный случай t(x,y)=t(x), положим y=0). Если комплексная амплитуда на входе равна $a_0e^{i\psi_0}$, то на выходе получится $a_0e^{i\psi_0}t(x)$.

Считая транспорант периодической структурой, применим теорему Фурье:

$$f(x, 0_{+}) = a_{0}e^{i\psi_{0}}t(x) = a_{0} + \sum_{n=1}^{\infty} a_{n}\cos(nu_{n}x) + b_{n}\sin(nu_{n}x) = \sum_{n=-\infty}^{\infty} c_{n}e^{iu_{n}x} = \sum_{n=-\infty}^{\infty} c_{n}e^{i\frac{2\pi}{d}x}$$

Тогда решение уравнения Гельмгольца будет иметь вид:

$$f(x,z) = \sum_{n=-\infty}^{\infty} c_n e^{iu_n x} e^{i\sqrt{k^2 - u_n^2} \cdot z}$$

Каждая плоская волна в данной сумме приобрела при распространении от транспоранта до плоскости $z={\rm const}$ набег фазы равный

$$\phi_n = \sqrt{k^2 - u_n^2} \cdot z \approx kz - \frac{u_n^2}{2k}z$$

Положим $z=z_n=\frac{2d^2}{\lambda}\cdot N$, тогда $\frac{u_n^2}{2k}z=2\pi\cdot p$, где p - целое число, поэтому получим:

$$f(x,z) = e^{ikz} \cdot f(x,0_+)$$

Отсюда получаем, что поле волны в плоскости z= const полностью повторяет структуру поля волны в плоскости $z=0_+$, отличаясь лишь на фазовый множитель e^{ikz} .

2 Выполнение

2.1 Измерение периодов 5 различных решеток

В начале период d решеток определялся по простанственному спектру. Таблица результатов получилась следующая:

Определение периода решеток по их пространственному спектру								
	λ, м	<i>L</i> , м						
1	2	3	4	5	5,32E-07	1,353		
	dX, M	dL, M						
0,253	0,243	0,266	0,2	0,01	0,0005	0,0005		
		m						
7	7 10 22 33 2							
		$x = \frac{X}{m}, \mathbf{M}$						
0,036142857	0,0243	0,012091	0,006061	0,005				
		dx, M						
7,14286E-05	0,00005	2,27E-05	1,52E-05	0,00025				
	d, M							
1,99153E-05	2,96E-05	5,95E-05	0,000119	0,000143959				
4,6718E-08								

Таблица для результатов периодов по изображению, полученного с помощью линзы:

Определение периода решеток по изображению и линзе								
	а, м	<i>b</i> , м						
1	2 3 4 5				0,055	1,2		
	X, M							
0,008	0,008 0,01 0,003 0,049 0,063							
		\overline{m}						
20	20 15 2 17 16							
	$D = \frac{X}{m}$, M							
0,0004	0004 0,000667 0,0015 0,002882 0,0039375							
0,000025	0,000025 3,33E-05 0,00025 2,94E-05 0,00003125							
	d, M							
1,83333E-05								
1,32014E-06								

Окончательно, получаем периоды решеток через саморепродукцию:

Определение периода решеток по саморепродукции								
	<i>a</i> , м	<i>b</i> , м						
1	2 3 4 5				0,055	1,2		
		z_1 , M						
0,002	0,003	0,013	0,037	0,057				
		z_2 , M						
0,005	0,007	0,03	0,08	0,12				
0,006	0,01	0,045	0,104	0,165				
	z_4,M							
0,009	0,013	0,049	0,143	0,23				
2,31E-05								

Сопоставим результаты измерений:

	d, микрон						
спектр	19,9153	29,62123	59,532	118,76634	143,9592		
линза	18,33333	30,55556	68,75	132,10784	180,4688		
саморепродукция	23,06513	28,24889	58,80476171	99,206855	123,1341		

Графики саморепродукции имеют вид:

2.2 Мира

Укажем таблицу с результатами измерений периода миры 25 с помощью линзы и изображения на экране:

И	Измерение периода миры 25 с помощью линзы и законов геометрической оптики								
a, M b , M da , M db , M L , M m x , M d , M									
0	,054	1,28	0,0005	0,0005	0,018	35	0,000514	2,16964E-05	
	dL, M								
				0,0005					

В этом случае получился период $d \approx 22$ микрона.

Далее измеряем период с помощью саморепродукции. Получается таблица: В этом случае получился период $d\approx 22$ микрона. График саморепро-

Измерение периода миры 25 с помощью саморепродукции								
n								
1 2 3 4 5								
z_n								
0,0022	0,0051	0,0079	0,0112	0,0142				
наклон, м	<i>d</i> , м			1	ı			
0,003	2,82489E-05							

дукции, из которого был определен период d по MHK:

3 Вывод

В работе были измерены периоды решеток и миры тремя различными способами - везде были получены результаты, близкие друг к другу, что говорит об успешности проделанного эксперимента.