Linear Algebra Crash Course

Sungjun Eom

February 11, 2024

Contents

1	Vector Spaces and Subspaces	3		
2	Linear Independence			
3	Basis, Representation and Orthonormalization 3.1 Basis 3.2 Representation 3.2.1 Vector 3.2.2 Matrix 3.3 Orthonormalization 3.3.1 Orthonormal 3.3.2 Gram-Schmidt process	3 3 3 3 4 4 4		
4	Linear Algebraic Equation 4.1 Projection	4 4 6 7		
5	Similarity Transformation	7		
6	Diagonal Form and Jordan Form 6.1 Eigenvalues and Eigenvectors 6.2 Eigendecomposition 6.3 Multiplicities 6.3.1 Algebraic Multiplicities 6.3.2 Geometric Multiplicities 6.4 Generalized Eigenvectors 6.5 Jordan Form	7 7 7 7 7 7 7		
7	Functions of a Square Matrix 7.1 Polynomials	7 7 7		
8	Sylvester's Equation 8.1 Solution with a Vec Operator	7 7 7		

9	Some Useful Formulas			
	9.1	Ranks	7	
	9.2	Diagonal Expansion	7	
	9.3	Determinants	7	
10	Spe	cial Matrices	7	
	10.1	Symmetric Matrices	7	
	10.2	Idempotent Matrices	7	
11		adratic Forms and Positive Definiteness	7	
	11.1	Quadratic Forms	7	
	11.2	Positive Definiteness	7	
12	Sing	gular Value Decomposition	7	
	12.1	Singular Value	7	
	12.2	Singular Value Decomposition	7	
13	Nor	rms of Matrices	7	
14	Mat	trix Calculus	7	

1. Vector Spaces and Subspaces

2. Linear Independence

If there are only zero α_i for all i which satisfy the equation below, we say a set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent.

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0 \tag{1}$$

3. Basis, Representation and Orthonormalization

3.1 Basis

Basis is a set of linearly independent vectors $\{x_1, \ldots, x_n\}$ which is used to form an n-dimensional space. \iff Basis $\{x_1, \ldots, x_n\}$ spans n-dimensional space.

3.2 Representation

In this subsection, we restrict vectors to arrays. Representation of vectors and representation of matrices are introduced differently in this article.

3.2.1 Vector

x is a vector whose basis is I. Q is a new basis on which we want to represent the vector. \bar{x} is a representation for the vector x with respect to the basis Q.

$$x = Q\bar{x} \tag{2}$$

We assume the basis Q is formed by stacking linearly independent column vectors q_1, q_2, \ldots, q_n .

$$Q := \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix}$$

3.2.2 Matrix

A representation of matrix A is \bar{A} . \bar{A}_i means the i^{th} column of the basis Q.

$$Aq_i = Q\bar{A}_i \tag{3}$$

Why does the representation of a matrix look like this? What we really want to do is actually this: to represent y = Ax in another form $\bar{y} = \bar{A}\bar{x}$. So we should start from the equation y = Ax.

$$y = Ax$$
$$Q\bar{y} = AQ\bar{x}$$

Suppose Q is an $n \times n$ matrix. The matrix Q consists of vectors from the basis so the column vectors of the matrix are linearly independent. Then the matrix Q is invertible.

$$\bar{y} = Q^{-1}AQ\bar{x}$$
$$\bar{y} = \bar{A}\bar{x}$$

¹Actually we cannot say Q is a basis. Q is just a matrix made up of vectors of the basis.

We get the equation:

$$\bar{A} = Q^{-1}AQ \tag{4}$$

Next we go forward to get the equation 3.

$$AQ = Q\bar{A}$$

$$A \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix} = Q \begin{bmatrix} \bar{A}_1 & \dots & \bar{A}_n \end{bmatrix}$$

$$\begin{bmatrix} Aq_1 & \dots & Aq_n \end{bmatrix} = \begin{bmatrix} Q\bar{A}_1 & \dots & Q\bar{A}_n \end{bmatrix}$$

If we choose i^{th} column then we get the equation $3 Aq_i = Q\bar{A}_i$.

3.3 Orthonormalization

3.3.1 Orthonormal

Two vectors v_1 and v_2 are **orthogonal** if and only if

$$v_1^T v_2 = 0$$

If all orthogonal vectors in a set have magnitude one then we say them **orthonormal**.

$$||v_i|| = 1$$
 or $v_i^T v_i = 1$

3.3.2 Gram-Schmidt process

Suppose we have vectors e_1, e_2, \ldots, e_n which we want to orthonormalize. The following steps are called Gram-Schmidt processs and are used to make orthonormal vectors q_1, q_2, \ldots, q_n .

$$v_{1} := e_{1} \qquad q_{1} := \frac{v_{1}}{||v_{1}||}$$

$$v_{2} := e_{2} - q_{1}^{T} e_{2} \qquad q_{2} := \frac{v_{2}}{||v_{2}||}$$

$$v_{3} := e_{3} - q_{1}^{T} e_{3} - q_{2}^{T} e_{3} \qquad q_{2} := \frac{v_{3}}{||v_{3}||}$$

$$\vdots$$

$$v_{n} := e_{n} - \sum_{i=1}^{n-1} q_{i}^{T} e_{n} \qquad q_{n} := \frac{v_{n}}{||v_{n}||}$$

This process incremently removes the effect of former vectors from the current vector and normalizes the current vector.

4. Linear Algebraic Equation

A linear algebraic equation is:

$$\mathbf{y}_{n\times 1} = \mathbf{A}_{n\times m} \mathbf{x}_{m\times 1} \tag{5}$$

4.1 Projection

Let $\{z_1, \ldots, z_n\}$ be an orthonormal basis for \mathbb{R}^n , $\{z_1, \ldots, z_r\}$ be basis for V, and $\{z_{r+1}, \ldots, z_n\}$ be basis for V^{\perp} . Next, we form matrices:

$$Z = \begin{bmatrix} z_1 & \dots & z_n \end{bmatrix}_{n \times n}, \quad Z_1 = \begin{bmatrix} z_1 & \dots & z_r \end{bmatrix}_{n \times r}, \quad Z_2 = \begin{bmatrix} z_{r+1} & \dots & z_n \end{bmatrix}_{n \times n-r}$$

C(Z) means a space spanned by column vectors of Z. Then the equations below hold.

$$\mathbb{R}^n = C(Z) = span(\{z_1, \dots, z_n\}), \quad V = C(Z_1) = span(\{z_1, \dots, z_r\}), \quad V^{\perp} = C(Z_2) = span(\{z_{r+1}, \dots, z_n\})$$

Just to be clear, we write relations between them.

$$V \subset \mathbb{R}^n$$
, $V^{\perp} \subset \mathbb{R}^n$, $V \perp V^{\perp}$

Definition of projection: We say a linear mapping $\pi_V : \mathbb{R}^n \to V$ is a projection onto V when the equation below holds.

$$\forall \mathbf{v} \in V, \quad \forall \mathbf{x} \in \mathbb{R}^n, \quad \langle \mathbf{v}, \pi_V(\mathbf{x}) - \mathbf{x} \rangle = 0$$

Definition of projection matrix: P is a projection matrix when the following equation holds.

$$\pi_V(\mathbf{x}) = P\mathbf{x}$$

 $Z_1Z_1^T$ is a projection matrix onto V. Likewise $Z_2Z_2^T$ is a projection matrix onto V^{\perp} . We verify this: For $\forall \mathbf{x} = Z\alpha \in \mathbb{R}^n$,

$$Z_{1}Z_{1}^{T}\mathbf{x} = Z_{1}Z_{1}^{T}Z\alpha$$

$$= Z_{1}Z_{1}^{T} \begin{bmatrix} Z_{1} & Z_{2} \end{bmatrix} \alpha$$

$$= Z_{1}Z_{1}^{T} (Z_{1}\alpha_{1} + Z_{2}\alpha_{2})$$

$$= Z_{1}Z_{1}^{T}Z_{1}\alpha_{1} + Z_{1}Z_{1}^{T}Z_{2}\alpha_{2}$$

$$= Z_{1}\alpha_{1}$$

We used the fact that $Z_1^T Z_1 = I$. Also, notice that $I - Z_1 Z_1^T$ is a projection matrix onto V^{\perp} and $I - Z_2 Z_2^T$ is a projection matrix onto V.

In the paragraph above, we only consider the case of orthogonal Zs. The next question which arises will be how we form a projection matrix when the matrices don't have orthonormal column vectors. Although a matrix doesn't have orthonormal columns, we can make them be orthonormal. For example, Gram-Schmidt process. So there is always a matrix $A_{r\times r}$ which converts vectors of a matrix $X_{n\times r}$ to be orthonormal.

$$Z_1 = XA$$

Use what we already know:

$$Z_1 Z_1^T = X A A^T X^T$$
&
$$I_r = Z_1^T Z_1 = A^T X^T X A$$

$$\iff (A^T)^{-1} A^{-1} = X^T X$$

$$A A^T = (X^T X)^{-1}$$

Finally, we get the equation below.

$$\therefore Z_1 Z_1^T = X(X^T X)^{-1} X^T$$

This is a projection matrix onto V. Likewise, $I - X(X^TX)^{-1}X^T$ is a projection matrix onto V^{\perp} . We conclude that the projection onto V is:

$$\pi_V(x) = X(X^T X)^{-1} X^T x$$

And its projection matrix is:

$$P_{\pi} = X(X^T X)^{-1} X^T$$

4.2 Least Square Method

Consider a linear model $y = X\beta + \epsilon$. We want to minimize the square sum of errors $\epsilon^T \epsilon = \epsilon_1^2 + \dots + \epsilon_n^2$.

$$\min_{\beta} e^{T} e = (y - X\beta)^{T} (y - X\beta)$$
$$= \langle y - X\beta, y - X\beta \rangle$$
$$= \langle y - X\beta, y - X\beta \rangle$$

- 4.3 Generalized Inverses
- 5. Similarity Transformation
- 6. Diagonal Form and Jordan Form
- 6.1 Eigenvalues and Eigenvectors
- 6.2 Eigendecomposition
- 6.3 Multiplicities
- 6.3.1 Algebraic Multiplicities
- 6.3.2 Geometric Multiplicities
- 6.4 Generalized Eigenvectors
- 6.5 Jordan Form
- 7. Functions of a Square Matrix
- 7.1 Polynomials
- 7.2 Cayley-Hamilton Theorem
- 7.3 Exponential
- 8. Sylvester's Equation
- 8.1 Solution with a Vec Operator
- 8.2 Eigenvalues
- 9. Some Useful Formulas
- 9.1 Ranks
- 9.2 Diagonal Expansion
- 9.3 Determinants
- 10. Special Matrices
- 10.1 Symmetric Matrices
- 10.2 Idempotent Matrices
- 11. Quadratic Forms and Positive Definiteness
- 11.1 Quadratic Forms
- 7