	TP 1: introduction à la résolution d'équations et systèmes différentiels
In [1]:	<pre>#Evite d'utiliser show : %matplotlib inline #les bons modules : import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint from ipywidgets import interact import scipy.optimize as opt</pre>
In [2]:	<pre># nos fonctions : def euler(f, yinit, tps): n=len(tps); l=len(yinit); y=np.zeros((n,l)); y[0,:]=yinit; for i in range(n-1):</pre>
	<pre>h=tps[i+1]-tps[i]; y[i+1,:]=y[i,:]+h*f(y[i,:],tps[i]); return y def euler_imp(f,yinit,tps): n=len(tps); l=len(yinit); y=np.zeros((n,l)); y[0,:]=yinit; for i in range(n-1):</pre>
	<pre>#print(i); h=tps[i+1]-tps[i]; def g(X):</pre>
	<pre>y=np.zeros((n,1)); y[0,:]=yinit; for i in range(n-1):</pre>
	<pre>n=len(tps); l=len(yinit); y=np.zeros((n,l)); y[0,:]=yinit; for i in range(n-1): #print(i); h=tps[i+1]-tps[i]; A=y[i,:]; B=y[i,:]+h/2*f(A,tps[i]); C=y[i,:]+h/2*f(B,tps[i]+h/2);</pre>
	D=y[i,:]+h*f(C,tps[i]+h); y[i+1,:]=y[i,:]+h/6*(f(A,tps[i])+2*f(B,tps[i]+h/2)+2*f(C,tps[i]+h/2)+f(D,tps[i]+h)); return y Exercice 1: résolution d'une équation différentielle On souhaite résoudre le problème de Cauchy
	$\begin{cases} y'(t)-2\frac{y(t)}{t}=-t^2y^2(t),\ t\in[1;5]\\ y(1)=5 \end{cases} \tag{1}$ Question 1 Donner la solution exacte de ce problème, après en avoir montré l'unicité.
	Question 2 Utiliser la commande "odeint", pour tracer la courbe (approchée numériquement) $\{(t,y(t)),\ t\in[1,5]\}$: on tracera la courbe pour $h=0.2$ et $h=0.01$.
	h1=0.2; h2=0.01; t1=np.arange(1,10+h1,h1); t2=np.arange(1,10+h2,h2); print("t1=",t1); print("t1.shape=",t1.shape); print("len(t1)=",len(t1)); print("t2.shape=",t2.shape); #test=np.zeros((len(t1),)); #print("test=",test);
	<pre>#print(test = ', test); #test2=np.zeros(t1.shape); #print("test2=", test2); def cauchy(y,t): ydot=-t*t*y*y+2*y/t; return ydot yode1=odeint(cauchy,y0,t1); yode2=odeint(cauchy,y0,t2); yeuler2=euler(cauchy,y0,t2);</pre>
	<pre>yeuler_imp2=euler_imp(cauchy, y0, t2); yRK2_2=RK2(cauchy, y0, t2); yRK4_2=RK4(cauchy, y0, t2); print("yode1.shape=", yode1.shape); print("yode2.shape=", yode2.shape); plt.plot(t2, yode2); #plt.plot(t2, yRK4_2, ''); #plt.plot(t2, yRK2_2, '');</pre>
	<pre>#plt.plot(t2,yeuler2,''); plt.plot(t2,yeuler_imp2,''); #plt.plot(t1,yode1,':s'); plt.xlabel("t"); plt.ylabel("y"); #plt.title("Résolution approchée par odeint/Euler explicite"); #plt.legend(["h2="+str(h2)+", odeint","h2="+str(h2)+", RK4","h2="+str(h2)+", RK2","h2="+str(h2)+", Euler exp."] t1=[1. 1.2 1.4 1.6 1.8 2. 2.2 2.4 2.6 2.8 3. 3.2 3.4 3.6 3.8 4. 4.2 4.4 4.6 4.8 5. 5.2 5.4 5.6 5.8 6. 6.2 6.4 6.6 6.8 7. 7.2 7.4 7.6 7.8 8. 8.2 8.4 8.6 8.8 9. 9.2</pre>
	9.4 9.6 9.8 10.] t1.shape= (46,) len(t1)= 46 t2.shape= (901,) yode1.shape= (46, 1) yode2.shape= (901, 1) Résolution approchée par odeint/Euler explicite 5
	4 - 3 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7
	Question 3 Que vaut la solution approchée en $t=1.8$ pour un pas $h=0.2$? $index1=int((1.8-t1[0])/h1);$
±11 [7].	<pre>print("index1=",index1); print("t1[index1]=",t1[index1]); print("yode1[index1]=",yode1[index1]); index2=int((1.8-t2[0])/h2); print("index2=",index2); print("t2[index2]=",t2[index2]); print("yode2[index2]=",yode2[index2]); index1= 4</pre>
	t1[index1] = 1.7999999999999999999999999999999999999
In [5]:	<pre>def exacte(t): return 5/(t**3) z1=exacte(t1); z2=exacte(t2); plt.plot(t1,z1); plt.plot(t1,yode1,':s'); plt.xlabel("t"); plt.ylabel("t");</pre>
	<pre>plt.title("h=0.2"); plt.legend(["exacte", "approchée"]); plt.figure(); plt.plot(t2,z2); plt.plot(t2,yode2,':'); plt.xlabel("t"); plt.xlabel("y"); plt.title("h=0.01"); plt.legend(["exacte", "approchée"]);</pre>
	h=0.2 5 4 3 > A A A A A B A B A B A B B
	2
	5 - exacte 4 - 3 - > 2 -
	Question 5 Tracer la courbe de l'erreur (en log sur l'axe des ordonnées)
In [6]:	<pre>#flatten errl=np.array(yodel).flatten()-z1; print(errl.shape); err2=np.array(yode2).flatten()-z2; print(err2.shape); plt.semilogy(t2,np.abs(err2)); plt.semilogy(t1,np.abs(err1),':s'); plt.xlabel("t"); plt.ylabel("err");</pre>
	plt.ylabel(eff); plt.title("Erreur"); plt.legend(["h2=0.01","h1=0.2"]); (46,) (901,) Erreur h2=0.01 h1=0.2
	10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹⁰
	Question 6 Tracer les champs de vecteurs associés au problème (1). tchp, ychp=np.meshgrid(np.arange(1,5,0.1),np.arange(0,5,0.1)); print("tchp.shape =",tchp.shape);
	<pre>print("ychp.shape =",ychp.shape); ftchp=np.ones(tchp.shape); fychp=2*ychp/tchp-tchp*tchp*ychp; ftchp_norm=ftchp/np.sqrt(ftchp**2+fychp**2); fychp_norm=fychp/np.sqrt(ftchp**2+fychp**2); plt.quiver(tchp,ychp,ftchp_norm,fychp_norm); plt.plot(t2,yode2,'-'); y0bis=1; yode2bis=odeint(cauchy,y0bis,t2);</pre>
	plt.plot(t2, yode2bis, '-'); plt.xlabel("t"); plt.ylabel("y"); plt.title("Résolution approchée par odeint"); plt.legend(["h2=0.01", "h1=0.2"]); tchp.shape = (50, 40) ychp.shape = (50, 40) Résolution approchée par odeint 5
	4 - h1=0.2
	Exercice 2 : résolution d'un système différentiel En 1925 et 1926, Alfred James Volta et Vito Volterra ont, indépendamment l'un de l'autre, proposé un modèle d'équations décrivant les
	évolutions conjointes d'une population de proies (initialement des lièvres) et de celle de leurs prédateurs (initialement des proies). Ces équations s'écrivent $\begin{cases} x'(t) &= x(t)(\alpha-\beta y(t)) \\ y'(t) &= -y(t)(\delta-\gamma x(t)) \end{cases}$ où $x(t)$ est l'effectif des proies au temps t , et $y(t)$ celui des prédateurs.
	Question 1 Expliquez en commentaire à quels phénomènes naturels correspondent selon vous les paramètres $\alpha, \beta, \gamma, \delta$. On pose à présent tous les paramètres ci-dessus égaux à 1. On initialise également les populations à $1/2$ (il s'agit plus donc ici d'une proportion de chaque espèce dans la population totale).
	<pre>Question 2 Définir la fonction associée à la résolution du système différentiel. alpha, beta, delta, gamma=np.array([1,1,1,1]); def cauchy2(z,t): x=z[0]; y=z[1]; xdot=x*(alpha-beta*y);</pre>
	<pre>ydot=-y*(delta-gamma*x); zdot=np.array([xdot,ydot]); return zdot def cauchy2bis(z,t): return np.array([z[0]*(alpha-beta*z[1]),-z[1]*(delta-gamma*z[0])])</pre> Question 3
In [9]:	Tracer les champs de vecteurs-vitesses sur le maillage $[0,4] \times [0,4]$ avec un pas de 0.2 .
	<pre>plt.quiver(xchp2,ychp2,fxchp_norm2,fychp_norm2); xchp2.shape = (23, 23) 2.5 2.0</pre>
	0.5 1.0 1.5 2.0 2.5
	Question 4 Appliquer la méthode "integrate.odeint" sur l'intervalle de temps $[0,100]$, avec un pas de 0.01 , puis afficher, sur le même graphique que le champ de vecteurs, et en rouge, la courbe estimée de $(x(t),y(t)),\ t\in[0,100]$. $z_0=np.array([1/2,1/2]);$ $hh=0.01;$
	<pre>tt=np.arange(0,100+hh,hh); print("tt.shape =",tt.shape); zode=odeint(cauchy2bis,z0,tt); zeuler=euler(cauchy2bis,z0,tt); print("zode.shape =",zode.shape); plt.plot(tt,zode[:,0]); plt.plot(tt,zode[:,1]); #plt.plot(tt,zode[:,1]);</pre>
	<pre>#plt.plot(tt,zeuler[:,0],''); #plt.plot(tt,zeuler[:,1],''); plt.xlabel("t"); plt.ylabel("x,y"); plt.title("Résolution approchée par odeint"); plt.legend(["x","y"]); plt.figure(); plt.quiver(xchp2,ychp2,fxchp_norm2,fychp_norm2); plt.plot(zode[:,0],zode[:,1]); plt.plot(zode[:,0],zode[:,1]);</pre>
	<pre>plt.plot(zeuler[:,0],zeuler[:,1],''); plt.xlabel("x"); plt.ylabel("y"); plt.title("Résolution approchée par odeint"); tt.shape = (10001,) zode.shape = (10001, 2)</pre>
	1.75 - 1.50 - \$\frac{1}{x}\$ 1.25 - \bigcup_{x} x \\ 1.00 - \bigcup_{x} x \\ 0.75 - \\ 0.50 -
	0 20 40 60 80 100 Résolution approchée par odeint 3.0 - 2.5 - 3.0 - 3.
	2.0 1.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	Question 5 Faire varier les paramètres $\alpha, \beta, \gamma, \delta$ au moyen de la commande "interact", dont un exemple d'utilisation est donné ci-dessous : $ \#p=1 $ $y0=10 $
	<pre>x=np.arange(0,5,0.001) def show(1): p=1 def fun(u,t): z=-p*u return z y = odeint(fun,y0,x) plt.plot(x,y,label="courbe 1",color="orange") plt.xlabel("x")</pre>
Out[11]: In [12]:	<pre>plt.ylabel("y") plt.legend() interact(show, l=(-10,10,1)) <functionmainshow(l)> def show(alpha,beta,delta,gamma):</functionmainshow(l)></pre>
-1•	<pre>def show(alpha, beta, defta, gamma): def cauchy2bis(z,t): return np.array([z[0]*(alpha-beta*z[1]),-z[1]*(delta-gamma*z[0])]) zode=odeint(cauchy2bis,z0,tt); plt.figure(); plt.plot(zode[:,0],zode[:,1]); plt.xlabel("x"); plt.ylabel("y"); plt.title("Résolution approchée par odeint"); interact(show,alpha=(0.4,1.7,0.2),beta=(0.4,1.7,0.2),delta=(0.4,1.7,0.2),gamma=(0.4,1.7,0.2));</pre>
	Exercice 3 : résolution d'une équation d'ordre > 1 On considère ici l'équation du pendule pesant, assortie de conditions initiales : $\begin{cases} y''(t) + \sin(y(t)) = 0 \\ y(0) = 0, \ y'(0) = 1 \end{cases} \tag{2}$
	Question 1 Ramener cette équation à un problème de Cauchy, en écrivant le code de la fonction associée
	Question 2 Utiliser la commande "integrate.odeint" pour tracer sur le même graphe et pour $t \in [0,6\pi]$ les courbes $(t,y(t))$ et $(t,y'(t))$, et sur un autre graphe la courbe $(y(t),y'(t))$. On choisira un pas de taille $\simeq 2\pi/n$ et on fera varier n pour constater la précision, au moyen d'"interact". $ 230 = np \cdot array([0,1]); $
	<pre>def show3(nn): h3=2*np.pi/nn; t3=np.arange(0,6*np.pi+h3,h3); z3ode=odeint(cauchy3,z30,t3); plt.plot(z3ode[:,0],z3ode[:,1]); plt.xlabel("y"); plt.ylabel("yp"); plt.title("Résolution approchée par odeint"); interact(show3,nn=(10,1000,50));</pre>
	<pre>NameError</pre>
In []:	NameError: name 'np' is not defined