First Steps in ANTLR

Programming Languages Lab

Samuele Buro

Programming Languages (AY 2020-21) University of Verona November 6, 2020

$$[\![\mathbf{int}]\!]_{\mathcal{S}}(P,i) = [\![P]\!]_{\mathcal{L}}(i)$$

• What happens if $P \notin \mathcal{L}$?

- What happens if $P \notin \mathcal{L}$?
 - \circ We would like int to be able to decide if $P \in \mathcal{L}$

- What happens if $P \notin \mathcal{L}$?
 - \circ We would like int to be able to decide if $P \in \mathcal{L}$
 - if $P \in \mathcal{L}$, then compute $[\![P]\!]_{\mathcal{L}}(i)$

- What happens if $P \notin \mathcal{L}$?
 - \circ We would like int to be able to decide if $P \in \mathcal{L}$
 - if $P \in \mathcal{L}$, then compute $[\![P]\!]_{\mathcal{L}}(i)$
 - if $P \notin \mathcal{L}$, then return an error

Case 1: No restriction on $\mathcal L$

Case 1: No restriction on $\mathcal L$

• $P \in \mathcal{L}$ is undecidable

Case 1: No restriction on \mathcal{L}

- $P \in \mathcal{L}$ is undecidable
 - (Spoiler Fondamenti dell'Informatica)

Case 1: No restriction on $\mathcal L$

- $P \in \mathcal{L}$ is undecidable
 - (Spoiler Fondamenti dell'Informatica)

Case 2: Suppose $\mathcal{L} = \mathsf{Lang}(G)$, where G is a CFG

Case 1: No restriction on \mathcal{L}

- $P \in \mathcal{L}$ is undecidable
 - (Spoiler Fondamenti dell'Informatica)

Case 2: Suppose $\mathcal{L} = \mathsf{Lang}(G)$, where G is a CFG

• $P \in \mathcal{L}$ is decidable

Case 1: No restriction on $\mathcal L$

- $P \in \mathcal{L}$ is undecidable
 - (Spoiler Fondamenti dell'Informatica)

Case 2: Suppose $\mathcal{L} = \mathsf{Lang}(G)$, where G is a CFG

- $P \in \mathcal{L}$ is decidable
 - (Spoiler Compilatori)

 ${\color{red} \textbf{ANTLR}} = {\color{red} \textbf{ANother Tool for Language Recognition}}$

 ANTLR

ANTLR = ANother Tool for Language Recognition

ANTLR = ANother Tool for Language Recognition

ANTLR = ANother Tool for Language Recognition

Parser generator

 Parser_G

No indirect left recursion!

 $S o \mathtt{a} S$

No indirect left recursion!

 $S \to \mathtt{a} S$

$$S o \mathtt{a} S$$
 $S o S\mathtt{a}$

$$S o aS$$
 \checkmark $S o Sa$

$S o \mathtt{a} S$	✓
S o Sa	✓
$\overline{S \to S}$	

$S o \mathtt{a} S$	✓
$\overline{S o S}$ a	✓
$\overline{S o S}$	Х

$\overline{S o \mathtt{a} S}$	✓
$\overline{S o S}$ a	✓
$S \to S$	Х
$ \begin{array}{c} S \to T \\ T \to S \end{array} $	

✓
✓
Х
×

$S o \mathtt{a} S$	✓
$\overline{S o S}$ a	✓
$\overline{S o S}$	X
$\overline{S o T}$	
$T \to S$	X
$\overline{S o T}$	
$T o S \mid \mathtt{a} S$	

$\overline{S o \mathtt{a} S}$	✓
$\overline{S o S}$ a	✓
$\overline{S o S}$	×
$\overline{S \to T}$	
$T \to S$	×
$\overline{S \to T}$	
$T \to S \mid aS$	Х

Exercise

Define

$$\lambda(A) = \{ (a_1, \dots, a_n) \mid n \in \mathbb{N} \land a_1 \dots a_n \in A \}$$

Write a context-free grammar able to generate the language $\mathcal L$ of all the lists of decimal digits:

$$\mathcal{L} = \lambda(\mathtt{Dig})$$

where $\mathtt{Dig} = \{0, 1, \dots, 9\}$. Note that, if n = 0, then $() \in \mathcal{L}$.

Exercise

Define, for $i \in \mathbb{N}$,

$$\begin{cases} \lambda^{0}(A) = A \\ \lambda^{i+1}(A) = \lambda \left(\bigcup_{0 \le j \le i} \lambda^{j}(A) \right) \end{cases}$$

Change the context-free grammar of the previous exercise to generate the language $\widehat{\mathcal{L}}$ of all the recursive lists of digits, i.e., lists of digits whose elements can also be recursive lists of digits:

$$\widehat{\mathcal{L}} = igcup_{i>0} \lambda^i(\mathtt{Dig})$$