Kapitel 2: Sprachkommunikation

Bedeutung der Sprachkommunikation

- ✓ User-Interface verantwortlich für Kommunikationsfähigkeit des Systems
- ✓ wichtigste Komponenten eines interaktiven Systems:
 - Dialogkomponente (für Navigation im Menü)
 - Benutzerschnittstelle (für Ein-/Ausgabe)
- ✓ hierfür verschiedene Modalitäten möglich (Standard: Bildschirm, Tastatur, Maus)
- ✓ fortgeschrittene Ein-/Ausgabemethoden: Sprache, Handschrift, Gestik, Zeigen
- ✓ Sprachkommunikation: Hat größtes Potential aller Eingabemethoden, da auch beim Menschen die häufigste und natürlichste Kommunikationsform
- ✓ Sprachkommunikation: Ermittlung der geäußerten Wortfolge aus einem vorliegenden Sprachsignal und Verarbeitung dieser Information

Datenraten gängiger Systeme der MMK

<u>System</u>	<u>Verhalten</u>	Rate (KByte/sec)
Tastatur (ungeübt)	Eingabe	0.01
Tastatur (geübt)	Eingabe	0.025
Handschrift	Eingabe	0.0025
Spracheingabe	Eingabe	0.01-0.02
Maus	Eingabe	0.02
Sprachausgabe	Ausgabe	0.6
Text lesen	Ausgabe	0.03-0.3
Hören (CD)	Ausgabe	40
Sehen (Video)	Ausgabe	20 000

Die Sinne des Menschen und ihre Datenraten

Transversal- und Longitudinalwelle

Schematische Darstellung des Ohrs

Frequenzempfindlichkeit der Basilarmembrane

Psychoakustische Meßgrößen

Psychoakustik		Phys	Physik		
Bezeichnung	Einheit	Bezeichnung	Einheit		
Tonheit Z	Bark	Frequenz <i>f</i>	Hz		
Verhältnistonhöhe V	mel				
		Schalldruck p	$\frac{N}{m^2} = \frac{Ws}{m^3} = Pa$		
		Schallschnelle v	<u>m</u> s		
		Schallintensität /	$\frac{W}{m^2} = \frac{N}{s \cdot m}$		
Lautstärkepegel L_n	Phon	Schalldruckpegel <i>L</i>	dB		
Lautheit <i>N</i>	sone	Schallarder(pegel 2	dБ		
		Schallleistung P_{ak}	$W = \frac{N \cdot m}{s}$		
Bezugsschalldruck $p_0 = 2 \cdot 10^{-5} \frac{\text{N}}{\text{m}^2} = 20 \mu\text{Pa}$,					
Bezugsintensität $I_0 = 1.0 \cdot 10^{-12} \frac{\text{W}}{\text{m}^2}$					

Einige Schallquellen und ihre typischen Pegel

Schall ggf. Entfernungsangabe	Pegel
Düsenjäger, 30 m	$L = 140 dB \equiv p = 2.0 \cdot 10^2 Pa$
lautes Händeklatschen, 1 m	$L = 130 dB \equiv p = 63 Pa$
Trillerpfeife, 1 m	$L = 120 dB \equiv p = 20 Pa$
Discman	$L = 110 dB \equiv p = 6.3 Pa$
Presslufthammer, 10 m	$L = 100 \text{dB} \equiv p = 2 \text{Pa}$
laute Fabrikhalle	$L = 90 dB \equiv p = 6.3 \cdot 10^{-1} Pa$
starker Straßenverkehr	$L = 80 dB \equiv p = 2.0 \cdot 10^{-1} Pa$
Staubsauger, 1 m	$L = 70 dB \equiv p = 6.3 \cdot 10^{-2} Pa$
normale Sprache, 1 m	$L = 60 dB \equiv p = 2.0 \cdot 10^{-2} Pa$
Kühlschrank, 1 m	$L = 50 dB \equiv p = 6.3 \cdot 10^{-3} Pa$
normale Wohngeräusche, 1 m	$L = 40 dB \equiv p = 2.0 \cdot 10^{-3} Pa$
Flüstersprache	$L = 30 dB \equiv p = 6.3 \cdot 10^{-4} Pa$
mechanischer Wecker, 1 m	$L = 20 dB \equiv p = 2.0 \cdot 10^{-4} Pa$
Blätterrauschen in der Ferne	$L = 10 \text{dB} \equiv p = 6.3 \cdot 10^{-5} \text{Pa}$

Die Hoerfläche nach DIN.45.630

Filterkurven

Frequenzgruppen, Barkskala, Länge der Basilarmembran

Spektrale Verdeckung

Zeitliche Verdeckung

MP3 Codierungsschema

MP3 Dekodierungsschema

der menschliche Spracherzeugungsapparat

Phoneme: Aufzählung

Phonem	Aussprache	Phonem	Aussprache	Phonem	Aussprache
/a/	K <u>a</u> mpf	/a:/	K <u>ah</u> n	/ai/	w <u>ei</u> t
/au/	H <u>au</u> s	/ax/	mach <u>e</u>	/b/	<u>B</u> all
/d/	<u>d</u> eutsch	/eh/	w <u>e</u> nn	/eh:/	Aff <u>ä</u> re
/ey/	w <u>e</u> n	/f/	<u>f</u> ern	/g/	gern
/h/	<u>H</u> and	/i/	H <u>i</u> mmel	/i:/	H <u>ie</u> r
/j/	<u>J</u> unge	/jh/	<u>J</u> oystick	/k/	<u>K</u> ind
/١/	<u>l</u> inks	/m/	<u>m</u> att	/n/	<u>N</u> est
/ng/	lang	/o/	<u>o</u> ffen	/o:/	<u>O</u> fen
/oe/	H <u>ö</u> lle	/oe:/	H <u>ö</u> hle	/oy/	fr <u>eu</u> t
/p/	<u>P</u> aar	/r:/	<u>r</u> ennen	/s/	fa <u>ss</u> en
/sh/	<u>sch</u> ön	/t/	<u>T</u> afel	/u/	M <u>u</u> tter
/u:/	M <u>u</u> t	/v/	<u>w</u> er	/x/	la <u>ch</u> en
/y/	Т <u>у</u> р	/y:/	K <u>ü</u> bel	/z/	<u>s</u> ingen
/zh/	In <u>g</u> enieur	/sp/	"short pause"	/sil/	"silence"

Phoneme: Systematisch

Signalverlauf und Korrelationsfunktion

SPRACHSIGNAL STIMMLOSER F-LAUT

AUTOKORRELATIONSFUNKTION, RECHTECK-FENSTER

a = Stimmhaft

b = Stimmlos

AUTOKORRELATIONSFUNKTION, RECHTECK-FENSTER

Quelle : Sichert

Ergebnis der Fourier-Transformation

Originalergebnis

Ergebnis mit Hüllkurve

Formantkarte von Vokalen

3D-Darstellung eines Spektrogramms

2D-Darstellung eines Spektrogramms

Grammatik für natürliche Sätze

```
< Satz > \longrightarrow < Hauptsatz > < Nebensatz >
< Hauptsatz > \longrightarrow < Artikel >  < Hauptsatz > 
< Hauptsatz > \longrightarrow < Nomen >
    \langle Nomen \rangle \longrightarrow Sonne
    < Artikel > \longrightarrow Die
< Nebensatz > \longrightarrow < Verb >
       \langle \text{Verb} \rangle \longrightarrow \text{scheint}
        < Satz > \longrightarrow < Artikel > < Hauptsatz > < Nebensatz >
        < Satz > \longrightarrow < Artikel > < Nomen > < Nebensatz >
        < Satz > \longrightarrow < Artikel > < Nomen > < Verb >
        \langle \text{Satz} \rangle \longrightarrow \text{Die Sonne scheint}
```

Generierung mathematischer Formeln

- < Ausdruck $> \longrightarrow <$ Ausdruck > + < Ausdruck >
- < Ausdruck $> \longrightarrow <$ Ausdruck $> \cdot <$ Ausdruck >
- < Ausdruck $> \longrightarrow (<$ Ausdruck >)
- < Ausdruck $> \longrightarrow x$

$$<$$
 Ausdruck $> \longrightarrow <$ Ausdruck $> \cdot <$ Ausdruck $>$

- \longrightarrow (< Ausdruck >)· < Ausdruck >
- \longrightarrow (< Ausdruck > + < Ausdruck >)· < Ausdruck >
- \longrightarrow (< Ausdruck > \cdot < Ausdruck > + < Ausdruck >) \cdot
 - $\cdot < \text{Ausdruck} >$

$$\longrightarrow (x \cdot x + x) \cdot x = (x^2 + x) \cdot x$$

Kontextfreie Grammatik (CFG)

$$\mathcal{G} = \{V, T, P, S\}$$

 $V \equiv Variable, z. B. < Ausdruck > (Großbuchstaben)$

 $T \equiv Terminale, z. B. ,x'' (Kleinbuchstaben)$

 $P \equiv Produktionsregel, z. B. < Ausdruck > \longrightarrow , x$ "

 $S \equiv Startsymbol$

$$A \longrightarrow \alpha$$
, $A \in \{V\} \text{ und } \alpha \in \{V \bigcup T\}$

$$A \longrightarrow \alpha$$

$$A \longrightarrow \beta$$

$$A \longrightarrow \beta$$
 $A \longrightarrow \alpha \mid \beta \mid \gamma$

$$A \longrightarrow \gamma$$

Chomsky-Normalform (CNF)

Die Standardform CNF enthält nur Produktionsregeln, bei denen auf der rechten Seite entweder nur zwei Variablen oder nur ein terminaler Ausdruck steht, also:

A
$$\rightarrow$$
 BC oder A \rightarrow a
$$S \longrightarrow b \ A \mid a \ B$$
 Beispiel:
$$A \longrightarrow b \ A \ A \mid a$$

$$B \longrightarrow a \ B \mid b$$

1. Ersetzen von
$$S \longrightarrow b A$$
 in $S \longrightarrow C A$ und $C \longrightarrow b$
2. Ersetzen von $S \longrightarrow a B$ in $S \longrightarrow D B$ und $D \longrightarrow a$
3. Ersetzen von $A \longrightarrow b A A$ in $A \longrightarrow C A A$
4. Ersetzen von $A \longrightarrow C A A$ in $A \longrightarrow C B$ und $A \longrightarrow C B$
5. Ersetzen von $A \longrightarrow C B$ in $A \longrightarrow C B$ und $B \longrightarrow C B$ in $B \longrightarrow D B$ in $B \longrightarrow D B$ und $B \longrightarrow B$

Chomsky-Normalform (CNF)

Endergebnis der Transformation in CNF:

$$S \longrightarrow C A \mid D B$$

$$A \longrightarrow C E \mid a$$

$$B \longrightarrow D F \mid b$$

$$C \longrightarrow b$$

$$D \longrightarrow a$$

$$E \longrightarrow A A$$

$$F \longrightarrow B B$$

BNF und **EBNF**

```
<Ziffer außer Null> \longrightarrow 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

<Ziffer> \longrightarrow 0 | <Ziffer außer Null> 

<Ziffernfolge> \longrightarrow <Ziffer> <Ziffernfolge> | <Ziffer> 

<positive ganze Zahl> \longrightarrow <Ziffer außer Null> | <Ziffer außer Null> <Ziffer außer Zahl> | 0
```

ZifferAußerNull
$$\longrightarrow$$
 '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
Ziffer \longrightarrow '0' | ZifferAußerNull
Zahl \longrightarrow ['-'] ZifferAußerNull {Ziffer} | '0'

Kontextfreie Sprachen, einfache Grammatik

$$S \longrightarrow \underbrace{a \ S \ b} \mid \underbrace{a \ b}_{(2)}$$

Anwendung von (1):
$$S \longrightarrow a S b$$

$$\longrightarrow a a S b b$$

$$\longrightarrow a a a S b b b$$

$$\vdots$$

$$\longrightarrow a a \dots a S b b \dots b$$
Anwendung von (2): $S \longrightarrow a \dots a b b \dots b = a^n b^n$

Komplexere Grammatik

$$S \longrightarrow \underbrace{a B} \mid \underbrace{b A}$$

$$A \longrightarrow \underbrace{a S} \mid \underbrace{b A A} \mid \underbrace{a}$$

$$B \longrightarrow \underbrace{b S} \mid \underbrace{a B B} \mid \underbrace{b}$$

$$(6) \qquad (7) \qquad (8)$$

(Anzahl der Elemente a und b ist hier immer gleich)

Anwendung von (1)

Anwendung von (7) \longrightarrow a a B B

Anwendung von (8)

 \longrightarrow a a b b

Anwendung von (2) $S \longrightarrow b A$

 $S \longrightarrow a B$

Anwendung von $(3)\&(2) \longrightarrow b$ a b A

Anwendung von (4)

 \longrightarrow b a b b A A

 \longrightarrow b a b b b A A b A A

Anwendung von (5)

 \longrightarrow b a b b b a a b a a

Parse-Tree für mathematische Formeln

Gleiche Symbolfolge geparst mit verschiedenen Grammatiken

Ambiguitäten von Grammatiken:

Beispiel für uneindeutige Grammatik:

$$S \longrightarrow A B \mid B B$$
 $A \longrightarrow A C \mid C S \mid a$
 $B \longrightarrow B A \mid A C \mid b$
 $C \longrightarrow C A \mid c$

$$S = (c, a, b, b, a, c)$$

Gleiche Symbolfolge, gleiche Grammatik, unterschiedlicher Parse-Tree:

Zerlegung natürlicher Sprache

```
\mathcal{G} = \{V, T, P, S\}
V = \{ NP, VP, AUX, ADJ, PRE, DET, V, N \}
T = \{ der, die, das, \dots, groß, klein, \dots, wird, \dots, \}
        streicheln, \ldots, mit, in \ldots, Junge, Hund, Hand, \ldots
P = \{ SA \longrightarrow NP \ VP \mid VP \ NP, \}
        NP \longrightarrow DET N \mid ADJ N \mid DET NP \mid NP PP,
        VP \longrightarrow V NP \mid AUX V \mid V PP \mid V NP \mid VP PP \mid AUX VP
        PP \longrightarrow PRE NP,
        DET \longrightarrow ,der'', ,die'', ,das'', \ldots,
        ADJ \longrightarrow ,klein", ,groß", \ldots,
        AUX \longrightarrow , wird", \ldots,
        V \longrightarrow , streicheln", . . .
        PRE \longrightarrow ,in'', ,mit'', \ldots,
        N \longrightarrow "Junge", "Hund", "Hand" . . . }
```

Zerlegung natürlicher Sprache: Deutsch

Zerlegung natürlicher Sprache: Englisch

Geometrische Objekte als Grammatik

Prädikate:
$$"uber(X, Y)" \equiv X \text{ ist "uber Y}"$$

 $links(X, Y) \equiv X ist links von Y$

Grammatik:
$$S \longrightarrow \ddot{u}ber(h, X)$$

$$X \longrightarrow \ddot{u}ber(Y, h)$$

$$Y \longrightarrow links(v, v)$$

Parse-Tree: Horizontale und vertikale Linien

horizontale Linie: —— (h)

X: |

Y: |

Definition eines Zustandsautomaten

 $Z = (\mathcal{S}, \mathcal{X}, \mathbf{T}, s_0, \mathcal{F})$

Formal:

 ${\mathcal S}$ ein Set mit einer endlichen Anzahl von Zuständen

 ${\mathcal X}$ zulässiges Alphabet für die zu verarbeitende Symbolfolge X

 ${f T}$ Transitionsfunktionen für die Zustände in ${\cal S}$

 s_0 Anfangszustand

 $\mathcal{\tilde{F}}$ ein Set von festgelegten Endzuständen

Transitionsfunktion als Regel:

$$t(s^-, x_i^-) = s^+,$$

Beispiel:

$$\mathcal{S} = \{s_0, s_1, s_2, s_3\}$$

$$\mathcal{X} = \{0, 1\}$$

$$\mathcal{F} = \{s_0\}$$

Zustandsautomat

Transitionsregeln in Tabellenform

alter Zustand	Symbol-Input		
<i>s</i> ⁻	0	1	
<i>S</i> ₀	<i>s</i> ₂	s_1	
s_1	<i>S</i> ₃	<i>S</i> ₀	
<i>s</i> ₂	<i>S</i> ₀	<i>s</i> ₃	
<i>S</i> ₃	s_1	<i>s</i> ₂	

Verarbeitung einer Symbolfolge

Symbolfolge		1		0		1		1		0	
Zustandsfolge	<i>s</i> ₀		s_1		<i>S</i> ₃		<i>s</i> ₂		<i>S</i> ₃		s_1

Hinzufügen des Symbols '1' würde zur Akzeptanz der Gesamtfolge führen

(Anzahl der Symbole '0' und '1' muss jeweils gerade sein)

Nicht-deterministischer Zustandsautomat

Kellerautomat (pushdown automata)

Formale Definition eines Kellerautomaten

$$K = (\mathcal{S}, \mathcal{X}, \mathcal{Y}, \mathbf{T}, s_0, y_0, \mathcal{F})$$

 ${\mathcal S}$ ein Set mit endlichen Anzahl von Zuständen

 ${\mathcal X}$ zulässiges Alphabet für die zu verarbeitende Symbolfolge X

 ${\mathcal Y}$ zulässiges Alphabet für die Symbole im Stack

 ${f T}$ Transitionsfunktionen für die Zustände in ${\cal S}$

 s_0 Anfangszustand

 y_0 Startsymbol für den Stack

 \mathcal{F} ein Set von festgelegten Endzuständen (leere Menge für den Fall, dass Akzeptanz von X über den leeren Stack definiert ist)

Beispiel für einen Kellerautomaten

$$S \rightarrow 0 S 0 \mid 1 S 1 \mid z$$

Grammatik:

Erzeugt asymmetrische Symbolfolgen, z.B. der Form: $X = (0 \ 0 \ 1 \ 0 \ 1 \ z \ 1 \ 0 \ 1 \ 0)$

Kellerautomat zur Verarbeitung dieser Folgen:

$$\begin{split} \mathcal{S} &= \{s_0, s_1\} \\ \mathcal{X} &= \{0, 1, \mathbf{z}\} \\ \mathcal{Y} &= \{\mathbf{a}, \mathbf{b}, \mathbf{c}\} \\ \text{(hier entspricht a dem Symbol 0, b dem Symbol 1} \\ \text{und c dem Stack" Startsymbol.)} \\ y_0 &= \mathbf{c} \end{split}$$

Transitionsregeln für diesen Kellerautomaten

oberstes	alter	Symbol-Input				
Stacksymbol	Zustand s^-	0	1	, Z'		
, a'	<i>S</i> ₀	Verbleib in <i>s</i> ₀ , , a' auf Stack	Verbleib in <i>s</i> ₀ , ,b' auf Stack	Trans zu <i>s</i> ₁ , Stack bleibt		
	s_1	Verbleib in <i>s</i> ₁ , reduziere Stack	_	_		
, b'	<i>S</i> ₀	Verbleib in <i>s</i> ₀ , , a' auf Stack	Verbleib in <i>s</i> ₀ , ,b' auf Stack	Trans zu <i>s</i> ₁ , Stack bleibt		
	s_1		Verbleib in <i>s</i> ₁ , reduziere Stack	_		
, c'	<i>S</i> ₀	Verbleib in <i>s</i> ₀ , , a' auf Stack	Verbleib in <i>s</i> ₀ , ,b' auf Stack	Trans zu <i>s</i> ₁ , Stack bleibt		
	s_1	entferne sofort oberstes Stacksymbol				

Kellerautomat für die Verarbeitung einer Symbolfolge

asymmetrische Symbolfolge, z.B.: $X = (0 \ 0 \ 1 \ 0 \ z \ 0 \ 1 \ 0 \ 0)$

Verarbeitung durch Kellerautomaten:

Kellerautomat zur Verarbeitung einfacher Symbolfolgen

Symbolfolge: $X = (0^n 1^n)$

Transitionsformel der Form (y, x, op)

