

Adding a Reproducible Airplane Model to the Austin RCS Benchmark Suite

Jon T. Kelley¹, Andrew Maicke¹, David A. Chamulak², Clifton C. Courtney², and Ali E. Yilmaz¹

¹The University of Texas at Austin, Austin, TX 78712 ²Lockheed Martin Aeronautics Company, Palmdale, CA 93599

Outline

- Motivation
 - Complex aircraft models and Reproducibility
 - Austin RCS Benchmark Suite
- ☐ Complex Realistic Model
 - Model development
- ☐ Reliable Reference Results
 - Measurement campaign
 - Additive manufacturing
 - Material characterization
 - RCS measurement setup
 - Data processing
 - Simulation validation
- ☐ High-Fidelity CAD Model and Mesh(es)
 - Model curing
 - Validation
- ☐ Simple Public Access
 - Github site
- ☐ Conclusion

[5]

Motivation

[1]

☐ Complex Aircraft Models in CEM

- Numerous aircraft models presented in literature
- Simulation results using such models generally impossible to reproduce or corroborate [6]
- Published data insufficient to objectively compare different algorithms, software, hardware
- Partly because models are unavailable (inputs not replicable externally, or even internally after some time)

☐ Challenges for a Reproducible Airplane Model

- Complex realistic model
- Reliable reference results
- High-fidelity CAD model and mesh(es)

- Oct. 1997.
- [2] L. Gurel et al., "Validation through comparison: Measurement and calculation of the bistatic radar cross section of a stealth target," Radio Sci., vol. 38, no. 3, 1046, 2003.

[4]

- [3] Z. Peng, X.-C. Wang, and J.-F. Lee, "Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects," IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3328-3338, July 2011.
- [4] F. Wei and A. E. Yilmaz, "A hybrid message passing/shared memory parallelization of the adaptive integral method for multi-core clusters," *Parallel Comp.*, vol. 37, no. 6-7, pp. 279-301, June-July 2011.
- [5] S. Hughey et al., "Parallel wideband MLFMA for analysis of electrically large, nonuniform, multiscale structures," IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 1094-1107, Feb. 2019.
- [6] D. G. Feitelson, "From repeatability to reproducibility and corroboration," ACM SIGOPS Oper. Sys. Rev., vol. 49, no. 1, pp. 3-11, Jan. 2015.

Motivation

☐ Austin RCS Benchmark Suite

- Highly structured, gradually populated with scattering problems spanning difficulty levels
- Contains analytical, measurement, and simulation reference data
- Precisely defined quantities of interest, performance measures
- Emphasis on replicability, publicly available

References:

- [7] J. T. Kelley, D. A. Chamulak, C. C. Courtney, and A. E. Yılmaz, "EM programmers notebook-Rye Canyon RCS measurements of benchmark almond targets" in *IEEE Ant. Prop. Soc. Mag.*, Feb. 2020.
- [8] J. T. Kelley, D. A. Chamulak, C. C. Courtney, and A. E. Yılmaz, "Measurements of non-metallic targets for the Austin RCS Benchmark Suite," in *Proc. Ant. Meas. Tech. Assoc.*, Oct. 2019.

Motivation

☐ Austin RCS Benchmark Suite

- Highly structured, gradually populated with scattering problems spanning difficulty levels
- Contains analytical, measurement, and simulation reference data
- Precisely defined quantities of interest, performance measures
- Emphasis on replicability, publicly available

10.25 GHz, HH Polarization

References:

- [7] J. T. Kelley, D. A. Chamulak, C. C. Courtney, and A. E. Yılmaz, "EM programmers notebook-Rye Canyon RCS measurements of benchmark almond targets" in *IEEE Ant. Prop. Soc. Mag.*, Feb. 2020.
- [8] J. T. Kelley, D. A. Chamulak, C. C. Courtney, and A. E. Yılmaz, "Measurements of non-metallic targets for the Austin RCS Benchmark Suite," in *Proc. Ant. Meas. Tech. Assoc.*, Oct. 2019.

Motivation

☐ Austin RCS Benchmark Suite

- Highly structured, gradually populated with scattering problems spanning difficulty levels
- Contains analytical, measurement, and simulation reference data
- Precisely defined quantities of interest, performance measures
- Emphasis on replicability, publicly available

☐ Requirements for a Reproducible Airplane Model

- Complex realistic model
- Reliable reference results
- High-fidelity CAD model and mesh(es)
- Simple public access

☐ EXPEDITE-RCS Model

- High-fidelity airplane model
- Publicly available model and meshes
- PEC and dielectric
- Measurement and simulation reference data

Outline

		•		•	
IV/I	ot	IV/	at.	IO	n

- Complex aircraft models and Reproducibility
- Austin RCS Benchmark Suite
- ☐ Complex Realistic Model
 - Model development
- ☐ Reliable Reference Results
 - Measurement campaign
 - Additive manufacturing
 - Material characterization
 - RCS measurement setup
 - Data processing
 - Simulation validation
- ☐ High-Fidelity CAD Model and Mesh(es)
 - Model curing
 - Validation
- ☐ Simple Public Access
 - Github site
- ☐ Conclusion

Model Development

☐ Model Development Process

• Test platform designed as part of EXPEDITE program [9]

 Program structured to minimize proprietary information to allow collaboration and release of models

 Selected a particular realization from ensemble of parameterized designs: EXPEDITE-RCS

EXPEDITE = **EXP**anded muldisciplinary analysis and design optimization for **E**ffectiveness-based **D**es**I**gn **Te**chnologies

Design by the
Conceptual Design
team at Advanced
Development
Programs (the Skunk Works) of

Lockheed Martin Aeronautics

Model Development

References:

[9] C. Davies, "Lockheed Martin overview of the AFRL EXPEDITE program," in *Proc. AIAA Scietech*, Jan. 2019, pp. 1-12.

Outline

		•		•	
IV/I	ot	IV/	at.	IO	n

- Complex aircraft models and Reproducibility
- Austin RCS Benchmark Suite
- ☐ Complex Realistic Model
 - Model development
- ☐ Reliable Reference Results
 - Measurement campaign
 - Additive manufacturing
 - Material characterization
 - RCS measurement setup
 - Data processing
 - Simulation validation
- ☐ High-Fidelity CAD Model and Mesh(es)
 - Model curing
 - Validation
- ☐ Simple Public Access
 - Github site
- ☐ Conclusion

Measurement Campaign

☐ EXPEDITE-RCS Dimensions

• Nose-to-tail length \approx 15.1 m

Measurement Campaign

- ☐ EXPEDITE-RCS Dimensions
 - Nose-to-tail length ≈15.1 m
- ☐ Additive Manufacturing Scale-Models
 - Printed via stereolithography (SLA)
 - Two scale models approx. 1/64 and 1/32 of the fullsize model

Measurement Campaign

- EXPEDITE-RCS Dimensions
 - Nose-to-tail length ≈15.1 m
- Additive Manufacturing Scale-Models
 - Printed via stereolithography (SLA)
 - Two scale models approx. 1/64 and 1/32 of the fullsize model
- Material Characterization
 - Accura Xtreme White 200 photopolymer resin
 - Permittivity measured using well-known techniques with four test fixtures for different frequency bands

Used with WR-62

Used with WR-90

Used with WR-137

Used with Stripline

References:

≈14.8 m

Measurement Campaign

 10^{1}

 10^{0}

 10^{-1}

 10^{-2}

Magnitude

[10]

- EXPEDITE-RCS Dimensions
 - Nose-to-tail length ≈15.1 m
- Additive Manufacturing Scale-Models
 - Printed via stereolithography (SLA)
 - Two scale models approx. 1/64 and 1/32 of the fullsize model
- Material Characterization
 - Accura Xtreme White 200 photopolymer resin
 - Permittivity measured using well-known techniques with four test fixtures for different frequency bands
 - Fit measured data to a Debye Model

$$\epsilon_r(f) = A + \frac{B}{1 - jfC}$$

References:

Monostatic RCS Measurement

■ Measurement Setup

Compact chamber

Monostatic RCS Measurement

- Measurement Setup
 - Compact chamber
- □ Data Collection [8]
 - Dual calibration method
 - Coherent background subtraction: background measurements taken frequently
 - Data collected from $\phi \in [-30^\circ, 390^\circ]$ azimuthal range
 - Rotation rate of 0.29°/s: 24 min per polarization per target
 - Symmetry and averaging: correct for azimuthal misalignment and average data from two sides
 - Correlate with CEM predictions

References:

Measurement Validation by Simulation

- Measurement Setup
 - Compact chamber
- □ Data Collection [8]
 - Dual calibration method
 - Coherent background subtraction: background measurements taken frequently
 - Data collected from $\phi \in [-30^\circ, 390^\circ]$ azimuthal range
 - Rotation rate of 0.29°/s: 24 min per polarization per target
 - Symmetry and averaging: correct for azimuthal misalignment and average data from two sides
 - Correlate with CEM predictions
 Simulations supporting measurement campaigns:
 - 1. reduce measurement uncertainties
 - 2. increase confidence in measured results
 - 3. provide reference data to validate measurements and adjust them in real time

References:

Measurement Validation by Simulation

- Measurement Setup
 - Compact chamber
- □ Data Collection [8]
 - Dual calibration method
 - Coherent background subtraction: background measurements taken frequently
 - Data collected from $\phi \in [-30^\circ, 390^\circ]$ azimuthal range
 - Rotation rate of 0.29°/s: 24 min per polarization per target
 - Symmetry and averaging: correct for azimuthal misalignment and average data from two sides
 - Correlate with CEM predictions
 Simulations supporting measurement campaigns:
 - 1. reduce measurement uncertainties
 - 2. increase confidence in measured results
 - 3. provide reference data to validate measurements and adjust them in real time

References:

Measurement Validation by Simulation

- Measurement Setup
 - Compact chamber
- □ Data Collection [8]
 - Dual calibration method
 - Coherent background subtraction: background measurements taken frequently
 - Data collected from $\phi \in [-30^\circ, 390^\circ]$ azimuthal range
 - Rotation rate of 0.29°/s: 24 min per polarization per target
 - Symmetry and averaging: correct for azimuthal misalignment and average data from two sides
 - Correlate with CEM predictions
 Simulations supporting measurement campaigns:
 - 1. reduce measurement uncertainties
 - 2. increase confidence in measured results
 - 3. provide reference data to validate measurements and adjust them in real time

References:

Outline

		•		•	
IV/I	ot	IV/	at.	IO	n

- Complex aircraft models and Reproducibility
- Austin RCS Benchmark Suite
- ☐ Complex Realistic Model
 - Model development
- ☐ Reliable Reference Results
 - Measurement campaign
 - Additive manufacturing
 - Material characterization
 - RCS measurement setup
 - Data processing
 - Simulation validation
- ☐ High-Fidelity CAD Model and Mesh(es)
 - Model curing
 - Validation
- ☐ Simple Public Access
 - Github site
- ☐ Conclusion

High-Fidelity CAD Model and Mesh(es)

- EXPEDITE-RCS model originally developed in CAD software (CATIA 5) used to design EXPEDITE test platform
- ☐ CATIA model's surface description
 - exported in STL format → successfully used for additive manufacturing
 - meshed using CATIA tools → successfully used to compute RCS and support measurements
 - exported in IGS format → imported into common meshing tool (Trelis 16.5) → failed to mesh model
- ☐ IGS file
 - 220 surfaces
 - many were artifacts; including minute surfaces with edges smaller than 1 in.
 - requires defeaturing
- ☐ Goal: Improve surface description in IGS format so it can be meshed
 - accurately
 - independently
 - relatively easily

- ☐ Identified three general qualities in original IGS file which make meshing more difficult
 - Small features

- ☐ Identified three general qualities in original IGS file which make meshing more difficult
 - Small features
 - 2. Misaligned edges

- ☐ Identified three general qualities in original IGS file which make meshing more difficult
 - Small features
 - 2. Misaligned edges
 - 3. Tangentially vanishing surfaces

- ☐ Identified three general qualities in original IGS file which make meshing more difficult
 - Small features
 - 2. Misaligned edges
 - Tangentially vanishing surfaces
- ☐ Model cured with Rhinoceros 5 [10] software
 - Surfaces merged or reshaped by extracting surface isocurves, building new surfaces, and ensuring at least C1 curve continuity

11 total surfaces to represent front wing tip 3 total surfaces to represent front wing tip Problem 2: Misaligned Edges Elements can remain more uniform Elements shrink to respect edge **Problem 3: Tangentially Vanishing Surfaces** Back wing contains surfaces Asymptotes have been merged into surfaces which contain asymptotes, forcing small elements above/below

Problem 1: Small Features

[10] https://www.rhino3d.com/

[11] http://docs.mcneel.com/rhino/5/help/en-us/commands/networksrf.htm

- ☐ Identified three general qualities in original IGS file which make meshing more difficult
 - Small features
 - 2. Misaligned edges
 - 3. Tangentially vanishing surfaces
- ☐ Model cured with Rhinoceros 5 [10] software
 - Surfaces merged or reshaped by extracting surface isocurves, building new surfaces, and ensuring at least C1 curve continuity

Summary of Changes

	Original	Cured	
Total # of Surfaces	220	108	
Total # of Internal Edges	524	251	
Smallest Edge Length	0.01 in.	1 inch	
File Size	6 kB	15.3 kB	

- ☐ Identified three general qualities in original IGS file which make meshing more difficult
 - Small features
 - 2. Misaligned edges
 - 3. Tangentially vanishing surfaces
- ☐ Model cured with Rhinoceros 5 [10] software
 - Surfaces merged or reshaped by extracting surface isocurves, building new surfaces, and ensuring at least C1 curve continuity

Summary of Changes

	Original	Cured
Total # of Surfaces	220	108
Total # of Internal Edges	524	251
Smallest Edge Length	0.01 in.	1 inch
File Size	6 kB	15.3 kB

^[10] https://www.rhino3d.com/

Mesh Validation

☐ Cured model yields more uniform meshes

Mesh Validation

- ☐ Cured model yields more uniform meshes
- ☐ Confirm surface defeaturing did not impact EM analysis
- ☐ 7 EXPEDITE-RCS meshes made publicly available

			Target Edge Length [in]							
_			0.125	0.25	0.5	1	2	4	8	
	S	Average Edge Length	0.121	0.24	0.46	0.96	1.8	3.6	6.4	
Trelis Meshes	she	Max Edge Length	0.2	0.36	0.66	1.4	2.6	5.6	11.8	
	B	Min Edge Length	0.04	0.07	0.12	0.27	0.39	0.45	0.46	
	sils	Max/Min Edge Ratio	5.7	5.1	5.5	5.2	6.7	12.4	25.6	
	Tre	Number of Elements	4.5×10^{7}	1.2×10^{7}	3.1×10^{6}	7.1×10^{5}	2.0×10^{5}	5.1×10^{4}	1.4×10^{4}	

Public Release

☐ Austin RCS Benchmark Suite

- Feature Available:
 - **Problem Descriptic**
 - Reference Data
 - Simulation Data
 - Models
 - Meshes

Description of Scattering Object

A perfect electrically conducting (PEC) complex aircraft model.

Length Scale and Frequency Range

The problems of interest cover a range of ~64x in physical length scale and 1024x in frequency; the ranges are logarithmically sampled to yield 99 scattering problems. Because the aircrafts are PEC, there are only 17 + 12 unique scattering problems in Problem Set IVA. In these problems, the model sizes are in the range $0.007 \le L/\lambda_0 \le 514$, where λ_0 is the free-space wavelength.

Interesting Features

- 1. The logarithmic sampling is distorted along the size axis for the smallest model: the smallest EXPEDITE-RCS aircraft has L=9.1875'' (instead of $L\approx 9.261''$). The sampling is also distorted along the frequency axis: 7000, 10250} MHz are included in the problem set. These distortions are because of publicly available measurement data [1] and add 12 unique scattering problems to the set.
- 2. The model cannot be described sufficiently with a few equations, drawings, or pictures [1]; it presents modeling, meshing, and reproducibility challenges.

$$\sigma_{vw}(\theta^{s}, \phi^{s}, \theta^{i}, \phi^{i}) = \lim_{R \to \infty} 4\pi R^{2} \frac{|\hat{v}(\theta^{s}, \phi^{s}) \cdot \mathbf{E}^{scat}(\theta^{s}, \phi^{s})|^{2}}{|\hat{u}(\theta^{i}, \phi^{i}) \cdot \mathbf{E}^{scat}(\theta^{i}, \phi^{i})|^{2}} : RCS(m^{2})$$

Website:

https://github.com/UTAustinCEMGroup/AustinCEMBenchmarks/tr ee/master/Austin-RCS-Benchmarks

Conclusion

- ☐ Modern Benchmark for Advancing CEM
 - Reproducible
 - Realistic airplane model
 - CAD model and meshes
 - Reference measurement and simulation data
 - Easily accessible
- ☐ Acknowledgments

https://github.com/UTAustinCEMG roup/AustinCEMBenchmarks/tree/ master/Austin-RCS-Benchmarks

Advanced Development Programs