Diophantische Gleichungen

A1:

Berechne mit dem Euklidischen Algorithmus:

a. ggT(150, 54) b. ggT(300, 468) c.ggT(44, 18) d. ggT(992, 999)

A2:

Berechne den ggT der Zahlen a und b und stelle ihn in der Form ax + by dar. a. a = 531, b = 93 b. a = 753, b = 64

A3:

Bestimme - falls möglich - eine Lösung (x/y) der angegebenen Gleichung:

a. 96x + 66y = 6 b. 96x + 66y = 18

d. 119x + 143y = 4 e. 91x + 35y = 12.

A4:

Vereinfache die Gleichung und finde möglichst viele Lösungen:

a. 42x + 126y = 84 b. 81x + 54y = 27 c. 77x + 121y = 44

Kongruenzen

A5:

Bestimme möglichst alle ganzzahligen Lösungen x der folgenden Gleichungen:

a. $5 + x \equiv 2 \mod 7$ b. $5 \cdot x \equiv 2 \mod 7$

c. $5 \cdot x \equiv 2 \mod 10$ d. $-34 \equiv x \mod 5$

A6:

Beweise die folgenden Aussagen:

a. Wenn $a \equiv b \mod m$ und $c \equiv d \mod m$, dann $a + c \equiv b + d \mod m$.

b. Wenn $a \equiv b \mod m$, dann $-a \equiv -b \mod m$.

c. Wenn $a \equiv b \mod m$ und $b \equiv c \mod m$, dann $a \equiv c \mod m$.

Restklassen

A7:

Bestimme mit dem erweiterten Euklidschen Algorithmus:

a. $\frac{\overline{5}}{\overline{33}}$ in \mathbb{Z}_{37} . b. $\frac{\overline{7}}{\overline{20}}$ in \mathbb{Z}_{89} .

A8:

Bestimme mit dem kleinen Satz von Fermat:

a. $\overline{4}^{-11}$ in \mathbb{Z}_{13} . b. $\overline{6}^{31}$ in \mathbb{Z}_{29} . c. $\overline{6}^{32}$ in \mathbb{Z}_{29} .

A 9:

Berechne in \mathbb{Z}_{23} die folgenden Brüche:

a.
$$\frac{\overline{1}}{\overline{5}^{21}}$$
 b. $\frac{\overline{1}}{\overline{10}^{13}}$ c. $\frac{\overline{7}}{\overline{10}^{12}}$ d. $\frac{\overline{7}}{\overline{22}}$

Diffie-Hellman

A10:

a. Alice und Bob vereinbaren die Primzahl p und die Primitivwurzel g. Alice wählt a, Bob wählt b. Welche Zahlen werden veröffentlicht und wie heißt der gemeinsame Schlüssel?

a. p = 7, g = 3, a = 3, b = 4.

b. p = 23, g = 7, a = 15, b = 17.

A11:

Alice und Bob vereinbaren p=11 und g=2. Alice schicht an Bob A=5 und Bob meldet an Alice B=8. Da die Zahlen klein sind, kann die Diffie-Hellman Verschlüsselung geknackt werden. Nutze die Potenztabelle für \mathbb{Z}_{11} . Wie heißt der Schlüssel K?

Spalte hoch Zeile

	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	1	4	9	5	3	3	5	9	4	1
3	1	8	5	9	4	7	2	6	3	10
4	1	5	4	3	9	9	3	4	5	1
5	1	10	1	1	1	10	10	10	1	10
6	1	9	3	4	5	5	4	3	9	1
7	1	7	9	5	3	8	6	2	4	10
8	1	3	5	9	4	4	9	5	3	1
9	1	6	4	3	9	2	8	7	5	10
10	1	1	1	1	1	1	1	1	1	1

RSA

A12:

Bob wählt p , q und Verschlüsselungsexponent e. Warum ist e ein zulässiger Verschlüsselungsexponent? Wie heißt der öffentliche, wie der private Schlüssel von Bob? Alice will an Bob die Nachricht n verschlüsselt übermitteln. Welche Zahl schickt sie an Bob? Wie entschlüsselt Bob die Nachricht?

a.
$$p = 3$$
, $q = 11$, $e = 7$, $n = 6$.

b.
$$p = 7$$
, $q = 11$, $e = 47$, $n = 2$