Modeling the Light Field in Macroalgae Aquaculture

TODO: - Fill in introduction - Move some of chapter 2 to chapter 4?

Chapter 1: Introduction

- Colloquial Motivation
 - What's the problem
 - Why is it important
 - Why is the math useful
 - What kind of math do we use
- Kelp Literature Review
 - Discuss history of kelp modeling
 - Present day farming practices
 - * Vertical vs. long lines
 - Ole Jacob's kelp model at SINTEF
- Radiative Transfer Literature Review
 - Chandrasekhar
 - Fundamentals of Stellar Astrophysics
 - Curtis Mobley
 - Discuss present and proposed light models in SINMOD (SL paper)
 - Discuss present shading model in Ole Jacob's model
- Outline rest of thesis
- Explain my contribution

Chapter 2: Problem Formulation

- Overview
 - Given frond areas over depth and surface irradiance:
 - 1. Calculate expected number of fronds shading every point in space
 - 2. Calculate absorption and scattering coefficients over space
 - 3. Radiative transfer to calculate radiance over space and angle
 - 4. Integrate to calculate total light absorbed at each depth layer
- Basics
 - Coordinate system
 - Spatial/angular grid
 - Boundary conditions

- Nondimensionalization
- Kelp Model
 - Frond shape model
 - Physical orientation
 - Superindividuals
 - Population distribution model
 - * Length distribution
 - * Angular distribution
 - * Combine independent distributions
 - Occupation probability calculation
 - * Frond coordinate system
 - * Conditions for occupation
 - * Minimum occupation length
 - * Occupation region
 - * Coordinate transform (?) and integration
 - Conversion to expected occupation
- Light Model
 - Define quantities
 - * Radiance
 - * Irradiance
 - * Absorption, scattering coefficients
 - * Volume scattering function
 - Calculate absorption, scattering coefficients
 - Introduce Radiative Transfer Equation
 - * State equation and describe
 - * Brief overview of solution techniques
 - * Formal statement of boundary conditions
 - Calculating Absorbed light
 - * Frond coordinate transform and Jacobian
 - * Rotation matrix
 - * Gaussian quadrature

Chapter 3: Experimental Determination of Parameters

- Angular Kelp Distribution
 - Horizontal (in-plane)
 - Lift (out-of-plane)
- Optical Properties
 - Absorption Coefficient
 - Scattering Coefficient
 - Volume Scattering Function

Chapter 4: Mathematical Solution Procedure

- Radiative Transfer Solution
 - Finite Difference
 - GMRES
 - Asymptotics
- Grid Study
- Sensitivity Analysis

Chapter 5: Results

- Run in SINMOD
 - Compare biomass to previous light model
 - CPU time vs previous light model
- Comparison to experimental light data

Chapter 6: Conclusions

- Restate contributions
- Happily ever after

Appendix A: Fortran Code

- Link to github repo
- Lots of code