

What is the clique number of C_5 ?

- 2
- \bigcap 1
- 0 !
- \bigcirc 4
 - **⊘** Correct

Correct, the largest cliques in ${\cal C}_5$ has size 2.

2.

1/1 point

What is the independence number of C_5 ?

- O 4
- O 1
- 2
- \bigcirc 5
 - **⊘** Correct

Correct, the largest independent set in $C_{\mathbf{5}}$ has size 2.

1/1 point

What is the clique number of a bipartite graph with at least one edge?

- \bigcirc n
- O n/2
- \bigcirc 1
- 2

✓ Correct

Correct, a bipartite graph doesn't contain cycles of length 3, thus, it doesn't contain cliques of size 3 and larger.

4. Mantel's theorem says that a graph on n vertices without triangles has at most $\lfloor \frac{n^2}{4} \rfloor$ edges.

Which of these graphs has $\lfloor \frac{n^2}{4} \rfloor$ edges, and doesn't contain triangles for all values of n?

- $igotimes K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$
- A graph with n vertices and 0 edges
- $\bigcirc K_n$
- $\bigcirc C_n$

⊘ Correct

Correct, this graph is bipartite, so it doesn't cycles of length 3 (or triangles). Also, it has $\lfloor n/2 \rfloor \cdot \lceil n/2 \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.