

Spin Symmetry and the Graphical Unitary Group Approach

Werner Dobrautz

Max Planck Institute for Solid State Research

Stuttgart, June 20, 2017

Table of Contents

Spin as a Symmetry Property

Spin-free formulation of Quantum chemistry

The Unitary Group Approach

Irreps of U(n) - Gelfand-Tsetlin (GT) Basis

Young shapes - Weyl Tableaux Step-vector representation

Graphical UGA

Applications

Symmetries

Noether-Theorem: Symmetry ↔ Conservation law

$$[\hat{H},\hat{O}]=0$$

 Gauge invariance, Time reversal-, Translational and Rotational Symmetry

Symmetries routinely used in Electronic structure calculations:

- Translational symmetry: momentum space basis
- S_z symmetry: fix m_s value of SD
- ▶ Point Group Symmetry: Stay in same irrep of P_G

Symmetry adapted basis: invariant and irreducible under \hat{O}

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ト ・ 差 ・ かくで

SU(2) spin symmetry

Total spin symmetry: inherent to spin-preserving, non-relativistic Hamiltonians:

$$[\hat{H},\hat{S}^2]=0$$

usually neglected, due to *impractical implementation*. Symmetry adapted basis:

- target specific spin-states (singlet, triplet)
- no spin-contamination
- reduce Hilbert space size!
- ▶ lift degeneracies of different spin-sectors
- → Configuration state functions (CSFs)

4□ > 4周 > 4 = > 4 = > ■ 900

Roadmap to CSFs in the UGA

- ▶ *n* spatial and 2*n* spin-orbitals in \hat{H}
- ▶ Goal in the UGA: total anti-symmetric representation of U(2n)
- ▶ Ensured by direct product $U(2n) = U(n) \otimes U(2)$ of spatial part U(n) and spin U(2) part
- Express \hat{H} in terms on generators of U(n) and specify irreps and symmetry adapted basis thereof (CSFs)
- ▶ Spin-part U(2) determines symmetry of wavefunction

Roadmap to CSFs in the UGA

- ▶ *n* spatial and 2*n* spin-orbitals in \hat{H}
- ▶ Goal in the UGA: total anti-symmetric representation of U(2n)
- ▶ Ensured by direct product $U(2n) = U(n) \otimes U(2)$ of spatial part U(n) and spin U(2) part
- Express \hat{H} in terms on generators of U(n) and specify irreps and symmetry adapted basis thereof (CSFs)
- ▶ Spin-part U(2) determines symmetry of wavefunction

Eg. Two-particles:

- -antisymmetric spin function $(\alpha\beta-\beta\alpha)$ forces symmetric spatial function \to singlet state
- -symmetric spin functions ($\alpha\alpha, \alpha\beta + \beta\alpha, \beta\beta$) force anti-symmetric spatial function \to *triplet* states

page 6/24

Spin-free formulation

of a spin-preserving, non-relativistic Hamiltonian:

$$\hat{H} = \sum_{ij}^{n} \sum_{\sigma = \uparrow, \downarrow} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{1}{2} \sum_{ijkl}^{n} \sum_{\sigma, \tau = \uparrow, \downarrow} [ij; kl] c_{i\sigma}^{\dagger} c_{k\tau}^{\dagger} c_{l\tau} c_{j\sigma}$$

Spin-preserving substitution operators: $\left| E_{ij} = c_{i\uparrow}^{\dagger} c_{j\uparrow} + c_{i\downarrow}^{\dagger} c_{j\downarrow} \right|$ With

$$c_{i\sigma}^{\dagger}c_{k\tau}^{\dagger}c_{l\tau}c_{j\sigma} = c_{i\sigma}^{\dagger}c_{j\sigma}c_{k\tau}^{\dagger}c_{k\tau} - \delta_{jk}\delta_{\sigma\tau}c_{i\sigma}^{\dagger}c_{l\sigma}$$

We have

$$\sum_{\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} = E_{ij}, \quad \sum_{\sigma\tau} c_{i\sigma}^{\dagger} c_{k\tau}^{\dagger} c_{l\tau} c_{j\sigma} = E_{ij} E_{kl} - \delta_{jk} E_{il}$$

We get:

$$\widehat{H} = \sum_{ij}^{n} t_{ij} E_{ij} + \frac{1}{2} \sum_{ijkl}^{n} [ij; kl] (E_{ij} E_{kl} - \delta_{jk} E_{il})$$

Commutation relations:

Commutator:

$$\begin{aligned} [E_{ij}, E_{kl}] &= \sum_{\sigma\tau} c_{i\sigma}^{\dagger} c_{j\sigma} c_{k\tau}^{\dagger} c_{l\tau} - c_{k\tau}^{\dagger} c_{l\tau} c_{i\sigma}^{\dagger} c_{j\sigma} \\ &= \sum_{\sigma\tau} \cdots - c_{i\sigma}^{\dagger} c_{k\tau}^{\dagger} c_{l\tau} c_{j\sigma} - \delta_{il} c_{k\tau}^{\dagger} c_{j\sigma} \\ &= \sum_{\sigma\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} c_{k\tau}^{\dagger} c_{l\tau} - c_{i\sigma}^{\dagger} c_{j\sigma} c_{k\tau}^{\dagger} c_{l\tau} + \delta_{jk} c_{i\sigma}^{\dagger} c_{l\tau} - \delta_{il} c_{k\tau}^{\dagger} c_{j\sigma} \end{aligned}$$

$$[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{il} E_{kj}$$

◆ロ → ◆母 → ◆ き → ◆ き → り へ ()

- group of all $n \times n$ unitary matrices: $U^{\dagger}U = 1$
- ▶ Simple case U(1): all complex numbers z with |z| = 1
- ► Continous, real Lie group of dimension n^2
- ► All elements generated by a finite set of **generators**

- group of all $n \times n$ unitary matrices: $U^{\dagger}U = 1$
- ▶ Simple case U(1): all complex numbers z with |z| = 1
- ▶ Continous, real Lie group of dimension n^2
- ► All elements generated by a finite set of **generators**
- Arbitrary $U = \exp(iA)$ with an Hermitian matrix A

- group of all $n \times n$ unitary matrices: $U^{\dagger}U = 1$
- ▶ Simple case U(1): all complex numbers z with |z| = 1
- ▶ Continous, real Lie group of dimension n^2
- All elements generated by a finite set of generators
- ▶ Arbitrary $U = \exp(iA)$ with an Hermitian matrix A
- Arbitrary $A = \sum_{ij} \alpha_{ij} \mathbf{e}_{ij}, \ \alpha_{ij} = \alpha_{ji}^*$

- group of all $n \times n$ unitary matrices: $U^{\dagger}U = 1$
- ▶ Simple case U(1): all complex numbers z with |z| = 1
- ► Continous, real Lie group of dimension n^2
- All elements generated by a finite set of generators
- Arbitrary $U = \exp(iA)$ with an Hermitian matrix A
- Arbitrary $A = \sum_{ij} \alpha_{ij} \mathbf{e}_{ij}, \ \alpha_{ij} = \alpha_{ji}^*$

basic matrix units e_{ij}: only one non-vanishing element (1) at (i,j)

- group of all $n \times n$ unitary matrices: $U^{\dagger}U = 1$
- ▶ Simple case U(1): all complex numbers z with |z| = 1
- ▶ Continous, real Lie group of dimension n^2
- ► All elements generated by a finite set of **generators**
- Arbitrary $U = \exp(iA)$ with an Hermitian matrix A
- Arbitrary $A = \sum_{ij} \alpha_{ij} \mathbf{e}_{ij}, \ \alpha_{ij} = \alpha_{ji}^*$

basic matrix units e_{ij}: only one non-vanishing element (1) at (i,j)

$$\boxed{[\mathbf{e}_{ij}, \mathbf{e}_{kl}]} = \mathbf{e}_{ij} \mathbf{e}_{kl} - \mathbf{e}_{kl} \mathbf{e}_{ij} = \delta_{jk} \mathbf{e}_{il} - \delta_{il} \mathbf{e}_{kj}$$

This is the important relation between the **unitary group** and **electronic structure theory!**

←□ > ←団 > ←団 > ← 본 > ←본 > ←본 → 「芝」 切

Two key ideas in the UGA:

Two key ideas in the UGA:

Express the Hamiltonian in generators E_{ij} of U(n) √ n in U(n) is the number spatial orbitals!

Two key ideas in the UGA:

- Express the Hamiltonian in generators E_{ij} of U(n) √ n in U(n) is the number spatial orbitals!
- ightharpoonup Construct basis invariant and irreducible under action $E_{ij}
 ightarrow$ Gelfand-Tsetlin (GT) basis

Two key ideas in the UGA:

- Express the Hamiltonian in generators E_{ij} of U(n) √ n in U(n) is the number spatial orbitals!
- ightharpoonup Construct basis invariant and irreducible under action $E_{ij}
 ightarrow$ Gelfand-Tsetlin (GT) basis

First step: Identify and uniquely specify the **irreps** of U(n)!

Two key ideas in the UGA:

- \triangleright Express the Hamiltonian in generators E_{ii} of U(n) \checkmark n in U(n) is the number spatial orbitals!
- ightharpoonup Construct basis invariant and irreducible under action $E_{ii}
 ightarrow$ Gelfand-Tsetlin (GT) basis

First step: Identify and uniquely specify the **irreps** of U(n)! Analogy: group of rotations in 3D SO(3) and spherical Harmonics:

$$[\hat{L}^2, \hat{L}_z] = 0, \quad \hat{L}^2 Y_{lm} = I(I+1)Y_{lm}, \quad \hat{L}_z Y_{lm} = m_l Y_{lm}$$

Casimir operator of SO(3) \hat{L}^2 : $[\hat{L}^2, \hat{L}_i] = 0$, i = x, y, z \hat{L}_{z} Casimir operator and generator of rotations in 2D: SO(2)

4日 > 4周 > 4 3 > 4 3 > 3

Group subduction chain

 Y_{lm} symmetry adapted to group chain:

$$SO(3)\supset SO(2)$$

- ▶ **Irrep of SO(3)** specified by \hat{L}^2 eigenvalue I
- ▶ Basis states Y_{lm} of irrep labeled by \hat{L}_z eigenvalue m_l

$$-1 \leq m_1 \leq 1$$

 Y_{lm} : invariant and irreducible under action of generators of SO(3):

$$\hat{L}_{i}Y_{lm} = \sum_{m'=-l}^{l} c_{m'}Y_{lm'}$$

Similar to Y_{lm} the GT basis is based on the chain of subgroups:

$$U(n)\supset U(n-1)\supset\cdots\supset U(2)\supset U(1)$$

But U(n) has n^2 generators E_{ii} and n Casimir operators

Similar to Y_{lm} the GT basis is based on the chain of subgroups:

$$U(n)\supset U(n-1)\supset\cdots\supset U(2)\supset U(1)$$

But U(n) has n^2 generators E_{ij} and n Casimir operators

▶ **Irrep of U(n)** specfied by *n* eigenvalues:

$$\mathbf{m_n} = (m_{1n}, \ldots, m_{nn}), \quad m_{1,n} \geq m_{2,n} \geq \cdots \geq m_{n,n}$$

Similar to Y_{lm} the GT basis is based on the chain of subgroups:

$$U(n)\supset U(n-1)\supset\cdots\supset U(2)\supset U(1)$$

But U(n) has n^2 generators E_{ij} and n Casimir operators

- ▶ **Irrep of U(n)** specfied by n eigenvalues:
 - $\mathbf{m_n} = (m_{1n}, \dots, m_{nn}), \quad m_{1,n} \geq m_{2,n} \geq \dots \geq m_{n,n}$
- ▶ Basis states labeled by eigenvalues of U(n-1), ..., U(1)

Similar to Y_{lm} the GT basis is based on the chain of subgroups:

$$U(n)\supset U(n-1)\supset\cdots\supset U(2)\supset U(1)$$

But U(n) has n^2 generators E_{ij} and n Casimir operators

- ▶ **Irrep of U(n)** specfied by n eigenvalues:
 - $\mathbf{m_n} = (m_{1n}, \ldots, m_{nn}), \quad m_{1,n} \geq m_{2,n} \geq \cdots \geq m_{n,n}$
- ▶ Basis states labeled by eigenvalues of $U(n-1), \ldots, U(1)$

Arrange the eigenvalues of the Casimir operators:

$$U(n)$$
 m_{1n} m_{2n} \cdots $m_{n-1,n}$ m_n $U(n-1)$ $m_{1,n-1}$ \cdots $m_{n-1,n-1}$ \cdots $U(2)$ m_{12} m_{22} $U(1)$ m_{11}

$$U(2): m_{12} m_{22} m_{22} U(1): m_{11} m_{22}$$

Irreps labeled by top row: $m^S = (m_{12}, m_{22})$

$$U(2): m_{12} m_{22} m_{22}$$
 $U(1): m_{11} m_{22}$

Irreps labeled by top row: $m^S = (m_{12}, m_{22})$ Single particle of spin-1/2: $m^S = (1, 0)$:

$$|\!\uparrow\rangle={1\atop 1} {0\atop 1} \qquad |\!\downarrow\rangle={1\atop 0} \qquad 0$$

$$U(2): m_{12} m_{22} m_{22} U(1): m_{11} m_{22}$$

Irreps labeled by top row: $m^S = (m_{12}, m_{22})$ **Single** particle of spin-1/2: $m^S = (1,0)$:

$$|\uparrow\rangle = \begin{pmatrix} 1 & 0 \\ 1 & \end{pmatrix} |\downarrow\rangle = \begin{pmatrix} 1 & 0 \\ 0 & \end{pmatrix}$$

Two spin-1/2 particles: two irreps $m_1^S = (2,0), m_2^S = (1,1)$

$$U(2): m_{12} m_{22} m_{22}$$
 $U(1): m_{11} m_{22}$

Irreps labeled by top row: $m^S = (m_{12}, m_{22})$

Single particle of spin-1/2: $m^S = (1,0)$:

$$|\uparrow\rangle = {1 \atop 1} {0 \atop 1} \qquad |\downarrow\rangle = {1 \atop 0} {0 \atop 1}$$

Two spin-1/2 particles: two irreps $m_1^S = (2,0), \quad m_2^S = (1,1)$

(□) (□) (□) (□) (□) (□)

Young shapes and Weyl Tableaux

We can identify:

- ▶ Total particle number: $N = m_{12} + m_{22}$
- ► Total spin $S = (m_{12} m_{22})/2$

Young shapes and Weyl Tableaux

We can identify:

- ▶ Total particle number: $N = m_{12} + m_{22}$
- ► Total spin $S = (m_{12} m_{22})/2$

Pictorial representation:

- ▶ Irrep: **Young shape** N boxes, m_{12} in first row, m_{22} in second
- ▶ Basis states: **Weyl Tableau** filled with "tokens" (spins)

Young shapes and Weyl Tableaux

We can identify:

- ▶ Total particle number: $N = m_{12} + m_{22}$
- ▶ Total spin $S = (m_{12} m_{22})/2$

Pictorial representation:

- ▶ Irrep: **Young shape** N boxes, m_{12} in first row, m_{22} in second
- Basis states: Weyl Tableau filled with "tokens" (spins)

N = 3 particles:
$$m_1^S = (2,1), m_2^S = (3,0)$$

$$S = 1/2$$
 : $\uparrow \uparrow \uparrow$ $\downarrow \downarrow$ $S = 3/2$: $\uparrow \uparrow \uparrow \uparrow \uparrow$ $\uparrow \uparrow \uparrow \downarrow \uparrow$

$$\mathsf{U}(2\mathsf{n}) = \mathsf{U}(\mathsf{n}) \otimes \mathsf{U}(2)$$

- ▶ Spin-free formulation of $H \rightarrow U(2)$ only determines Young shape of spatial U(n)
- ▶ Irreps of U(n): $m_{ij} \le 2 \to \text{max.}$ two colums
- ▶ Total anti-symmetric representation of $U(2n) = U(n) \otimes U(2)$:

► Total spin S = b/2, Number of electrons N = 2a + b, Number of spatial orbitals n

2 electrons in 3 spatial orbitals

U(3) irreps determined by spin-state: Fill in orbital "tokens": (1,2,3) with no repetitions in same column to get **CSFs**:

2 electrons in 3 spatial orbitals

U(3) irreps determined by spin-state: Fill in orbital "tokens": (1,2,3) with no repetitions in same column to get **CSFs**:

$$S=0$$
:

$$S=1:$$
 \otimes

2 electrons in 3 spatial orbitals

U(3) irreps determined by spin-state: Fill in orbital "tokens": (1,2,3) with no repetitions in same column to get **CSFs**:

Sequential orbital coupling in UGA

Example:

N=8 electrons in n=7 spatial orbitals with total spin S=1 One possible **CSF**:

1	1
2	5
4	7
6	
7	

Sequential orbital coupling in UGA

1	1
2	5
4	7
6	
7	

Start with Null entry at bottom of the table

orbital (i)	aį	bi	Ni	S_i	di
7	3	2	8	1	3
6	2	2	6	1	1
5	2	1	5	1/2	2
4	1	2	4	1	1
3	1	1	3	1/2	0
2	1	1	3	1/2	1
1	1	0	2	0	3
0	0	0	0	0	

Adding orbital 1: d_i is the *step number* $d_1 = 3$: doubly occupied orbital

orbital (i)	aį	bi	Ni	Si	di
7	3	2	8	1	3
6	2	2	6	1	1
5	2	1	5	1/2	2
4	1	2	4	1	1
3	1	1	3	1/2	0
2	1	1	3	1/2	1
1	1	0	2	0	3
0	0	0	0	0	

Adding orbital 2: $d_2 = 1$: singly ocucpied orbital, raising S_i by 1/2

orbital (i)	aį	bi	Ni	Si	di
7	3	2	8	1	3
6	2	2	6	1	1
5	2	1	5	1/2	2
4	1	2	4	1	1
3	1	1	3	1/2	0
2	1	1	3	1/2	1
1	1	0	2	0	3
0	0	0	0	0	

Adding orbital 3: $d_3 = 0$: empty orbital, no change in S_i

orbital (i)	aį	bi	Ni	Si	di
7	3	2	8	1	3
6	2	2	6	1	1
5	2	1	5	1/2	2
4	1	2	4	1	1
3	1	1	3	1/2	0
2	1	1	3	1/2	1
1	1	0	2	0	3
0	0	0	0	0	

page 17/24

Adding orbitals 4: $d_4 = 1$ singly ocucpied orbital, raising S_i by 1/2

orbital (i)	aį	bi	Ni	Si	di
7	3	2	8	1	3
6	2	2	6	1	1
5	2	1	5	1/2	2
4	1	2	4	1	1
3	1	1	3	1/2	0
2	1	1	3	1/2	1
1	1	0	2	0	3
0	0	0	0	0	

Adding orbital 5: $d_5 = 2$: singly occupied orbital, lowering S_i by 1/2

orbital (i)	aį	bi	Ni	Si	di
7	3	2	8	1	3
6	2	2	6	1	1
5	2	1	5	1/2	2
4	1	2	4	1	1
3	1	1	3	1/2	0
2	1	1	3	1/2	1
1	1	0	2	0	3
0	0	0	0	0	

Werner Dobrautz

Adding orbitals 6: $d_6 = 1$ singly ocucpied orbital, raising S_i by 1/2

orbital (i)	aį	bi	Ni	Si	di
7	3	2	8	1	3
6	2	2	6	1	1
5	2	1	5	1/2	2
4	1	2	4	1	1
3	1	1	3	1/2	0
2	1	1	3	1/2	1
1	1	0	2	0	3
0	0	0	0	0	

Adding orbitals 8: $d_7 = 1$ doubly occupied orbital, no change in S_i

orbital (i)	aį	bi	Ni	Si	di
7	3	2	8	1	3
6	2	2	6	1	1
5	2	1	5	1/2	2
4	1	2	4	1	1
3	1	1	3	1/2	0
2	1	1	3	1/2	1
1	1	0	2	0	3
0	0	0	0	0	

Werner Dobrautz Stuttgart, June 20, 2017 page 17/24

Step vector representation

Step-vector: most efficient CSF encoding

$$|\mathbf{d}\rangle = |3, 1, 0, 1, 2, 1, 3\rangle$$

2 bits per spatial orbital \rightarrow same as Slater Determinants!

orbital (i)	aį	bi	Ni	S_i	di
7	3	2	8	1	3
6	2	2	6	1	1
5	2	1	5	1/2	2
4	1	2	4	1	1
3	1	1	3	1/2	0
2	1	1	3	1/2	1
1	1	0	2	0	3
0	0	0	0	0	

Step vector representation

h

Step-vector: most efficient CSF encoding

$$|\mathbf{d}\rangle = |3, 1, 0, 1, 2, 1, 3\rangle$$

2 bits per spatial orbital → same as Slater Determi-

nants!

Werner Dobrautz Stuttgart, June 20, 2017 page 18/24

UGA Summary

1. Hamiltonian in terms of **generators of U(n)**:

$$\hat{H} = \sum_{ij}^{n} t_{ij} E_{ij} + \frac{1}{2} \sum_{ijkl}^{n} [ij; kl] (E_{ij} E_{kl} - \delta_{jk} E_{il})$$

2. Physical relevant Irreps of U(n) related to (N, n, S) given by Young shape of U(2)

3. Efficient and unique labeling of **complete basis set** $|\mathbf{d}\rangle$

Werner Dobrautz Stuttgart, June 20, 2017 page 19/24

Hamiltonian Matrix elements

How to calculate:

$$\langle d' | \hat{H} | d \rangle = \sum_{ij}^{n} t_{ij} \langle d' | E_{ij} | d \rangle + \frac{1}{2} \sum_{ijkl}^{n} [ij; kl] \langle d' | (E_{ij} E_{kl} - \delta_{jk} E_{il}) | d \rangle$$

 E_{ij} moves electron from j to i without changing spin-state.

As opposed to SD more than one possible excitation:

$$E_{ij}|d\rangle = \sum_{k} r_{k}|d_{k}\rangle$$

All allowed spin-recouplings between i and j! Eg:

4□▶ 4圖▶ 4 ≧ ▶ 4 ≧ ▶ □ ♥ 9 Q €

Werner Dobrautz Stuttgart, June 20, 2017 page 20/24

Hamiltonian Matrix elements

How to calculate:

$$\langle d' | \hat{H} | d \rangle = \sum_{ij}^{n} t_{ij} \langle d' | E_{ij} | d \rangle + \frac{1}{2} \sum_{ijkl}^{n} [ij; kl] \langle d' | (E_{ij} E_{kl} - \delta_{jk} E_{il}) | d \rangle$$

 E_{ij} moves electron from j to i without changing spin-state.

As opposed to SD more than one possible excitation:

$$E_{ij}|d\rangle = \sum_{k} r_{k}|d_{k}\rangle$$

All allowed spin-recouplings between i and j! Eg:

$$E_{35}|3,1,0,1,2,1,3\rangle = r_1|3,1,1,2,0,1,3\rangle + r_2|3,1,2,1,0,1,3\rangle$$

Werner Dobrautz Stuttgart, June 20, 2017 page 20/24

Graphical UGA in FCIQMC

- ▶ In FCIQMC we only need **one** possible excitation given $|d\rangle$
- Through Shavitts Graphical Unitary Group Approach:

$$\langle d' | E_{ij} | d \rangle = \prod_{k=i}^{J} W(d'_k, d_k, b_k)$$

- ▶ Loop over $i \rightarrow j$:
- Use a branching diagram and randomly select **one** connected CSF!
- Calculate matrix element on the fly!

Werner Dobrautz Stuttgart, June 20, 2017 page 21/24

GUGA in NECI

Applications

- ▶ Scales linear with spatial orbitals O(n)
- Slightly slower then determinant based implementation: time per iteration and time-step
- No exponential bottleneck, like previous approaches

Worst case: A lot of open-shell orbitals, while targeting the low-spin eigenstates!

- Real-space Hubbard model for high U up to 20 lattice sites
- ► AF-reference state with only open-shell orbitals

- Hydrogen-lattice for large atomic distances
- Up to 20 Hydrogen atoms in a minimal basis set

Werner Dobrautz Stuttgart, June 20, 2017 page 23/24

Thank you for your attention!

Werner Dobrautz Stuttgart, June 20, 2017 page 24/24