(9) BUNDESREPUBLIK

[®] Offenlegungsschrift

₀ DE 3110128 A1

(5) Int. Cl. ³:

A61 K35/14

A 61 M 1/03

DEUTSCHLAND

DEUTSCHES PATENTAMT

② Aktenzeichen:

② Anmeldetag:

Offenlegungstag:

P 31 10 128.3

16. 3.81

23. 9.82

Belürdeneigenden

① Anmelder:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München, DE

(72) Erfinder:

Hasenfratz-Schreier, Hermann, Dr. Dipl.-Chem.; Kulbe, Klaus-Dieter, Dr. Dipl.-Chem., 7000 Stuttgart, DE

Verfahren und Vorrichtung zur Entgiftung und Regeneration von Blut, Blutbestandteilen und bei der Blutreinigung anfallenden Lösungen sowie Kit für die Durchführung des Verfahrens

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Entgiftung und Regeneration von Blut, Blutbestandteilen und bei der Blutreinigung anfallenden Lösungen. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß man in einer ersten Verfahrensstufe (T) N-haltige und/oder aromatische Toxine entfernt und gegebenenfalls Harnstoff in Ammoniumhydrogencarbonat spaltet, in einer Verfahrensstufe (K) die gestörte Bilanz der als Kationen vorliegenden Substanzen in den zu regenerierenden Lösungen wiederherstellt, in einer Verfahrensstufe (A) die gestörte Bilanz der als Anionen vorliegenden Substanzen wiederherstellt und gleichzeitig den pH-Wert den physiologischen Erfordernissen angleicht und das erhaltene Regenerat in den Blutkreislauf des Patienten zurückführt oder erneut zur Entgiftung und Regeneration verwendet. Die Erfindung betrifft weiterhin eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, die sich dadurch auszelchnet, daß sie einen Behälter für die Adsorbentien der Verfahrensstufe (T), der Kationenaustauscher, Molekularsiebe sowie Anionenaustauscher mit starrer oder flexibler Begrenzung, eine für CO2 durchlässige Membran in der Verfahrensstufe (K), einen Sterilfilter am Auslaß der Regenerationseinheit und eine pH-Meßstelle vor der Rückführung des Regenerats zu einem weiteren Blutentgiftungszyklus aufweist. (31.10.128)

BUNDESDRUCKEREI BCRLIN 08.82 230 038/531

15/70

2646 AW/an

FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

8000 München 19

1 Verfahren und Vorrichtung zur Entgiftung und Regeneration von Blut, Blutbestandteilen und bei der Blutreinigung anfallenden Lösungen sowie Kit für die Durchführung des Verfahrens

PATENTANSPRÜCHE

- 10 1. Verfahren zur Entgiftung und Regeneration von Blut, Blutbestandteilen und bei der Blutreinigung anfallenden Lösungen, dadurch gekennzeichnet, daß
- (1) in einer ersten Verfahrensstufe T N-haltige und/ oder aromatische Toxine entfernt werden und gegebenenfalls Harnstoff in Ammoniumhydrogencarbonat gespalten wird,
- (2) in einer Verfahrensstufe K die gestörte Bilanz der
 20 als Kationen vorliegenden Substanzen in den zu regenerierenden Lösungen wiederhergestellt wird,

BNSDOCID: <DE_____3110128A1_[>

- 1 (3) in einer Verfahrensstufe A die gestörte Bilanz der als Anionen vorliegenden Substanzen wiederhergestellt und gleichzeitig der pH-Wert den physiologischen Erfordernissen angeglichen wird und
 - (4) das erhaltene Regenerat in den Blutkreislauf des Patienten zurückgeführt wird oder erneut zur Entgiftung und Regeneration zur Verfügung steht.
- 10 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als bei der Blutreinigung anfallende Lösungen, das bei der Hämodialyse, der Peritonealdialyse oder Intestinaldialyseerhaltene Dialysat, das bei der
 Hämofiltration oder Membranplasmapherese gewonnene Filtrat
 15 verwendet oder die bei mehreren solchen miteinander kombinierten Verfahren anfallenden Lösungen verwendet.
- 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man bei der Verzobertalten die zu reinigende Flüssigkeit über vorbehandelte Aktivkohle leitet, deren Volumenanteil am Gesamtsystem zwischen 6 und 12% beträgt, und anschließend gegebenenfalls über mit Urease belegte Aktivkohle leitet, deren Volumenanteil am Gesamtsystem zwischen 3 und 6% beträgt.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeich net, daß in der Verfahrensstufe K die gestörte Bilanz der als Kationen vorliegenden Sub-30 stanzen wieder eingestellt wird, indem man die zu behandelnde Flüssigkeit mit einem Gemisch von stark- und schwachsauren Kationenaustauschern, deren Gesamtanteil zwischen 20 und 40 Vol.-% liegt, und mit Molekularsieben mit Ionenaustauschereigenschaften behandelt, deren Gesamtanteil zwischen 20 und 50 Vol.-% beträgt.

5

- 15. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Gemisch der Kationenaustauscher
 seinerseits zu 2 bis 8 Vol.-% in der Na⁺-Form, zu 2 bis 8
 Vol.-% in der K⁺-Form, zu 0 bis 6 Vol.-% in der Ca²⁺-Form,
 zu 0 bis 6 Vol.-% in der Mg²⁺-Form und der Rest jeweils in
 der H⁺-Form vorliegt.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeich ach net, daß man bei der Verfahrens10 stufe A die gestörte Bilanz der als Anionen vorliegenden Substanzen wieder einstellt, indem man die zu behandelnde Flüssigkeit mit einem Anionenaustauscherharz mit neutralen Gruppen behandelt, dessen Volumenanteil am Gesamtsystem zwischen 15 und 50% umfaßt.

15

- 7. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeich net, daß man Gemische aus Ionenaustauschern in den verschiedenen Formen und/oder aus Molekularsieben verwendet oder daß man jeweils getrennte 20 Schichten aus den Harzen in den einzelnen Formen und/oder aus den Molekularsieben verwendet.
- 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeich ich net, daß der pH-Wert des Regene25 rats im physiologisch erforderlichen Bereich von 7,0 bis 7,8, vorzugsweise 7,2 bis 7,4, gebracht wird.
- Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeich chnet, daß die Behandlung so durch-30 geführt wird, daß das Regenerat einen den physiologischen Erfordernissen entsprechenden Elektrolytgehalt aufweist, so daß beim Erwachsenen

der Natriumgehalt 115 bis 165 mval/l, vorzugsweise 130 bis 150 mval/l,

der Kaliumgehalt 2,0 bis 6,5 mval/l, vorzugsweise 3,1 bis 5,0 mval/l,

- der Calciumgehalt 3,0 bis 6,8 mval/1, vorzugsweise 4,0 bis 5,8 mval/1, der Magnesiumgehalt 1,0 bis 3,0 mval/1, vorzugsweise 1,2 bis 2,0 mval/1,
- der Chloridgehalt 85 bis 120 mval/l, vorzugsweise 95 bis 107 mval/l, der Phosphatgehalt (anorganisch) 0 bis 6,0 mg/dl, vorzugsweise 2,0 bis 4,8 mg/dl, der Sulfatgehalt (anorganisch) 0,20 bis 1,20 mval/l
- und vorzugsweise weniger als 0,70 mval/l ist, die Hydrogencarbonatkonzentration 20 bis 30 mval/l beträgt,

der Kreatiningehalt kleiner als 5,0 mg/dl, vorzugsweise kleiner als 2,5 mg/dl,

- der Harnsäuregehalt kleiner als 5 mg/dl, vorzugsweise kleiner als 2,5 mg/dl, ist, der Harnstoff-Stickstoffgehalt auf mindestens 60% des Ausgangswerts und
- die Konzentration der Mittelmoleküle auf mindestens
 50% des Ausgangswerts reduziert werden,
 die Konzentration des Ammoniak weniger als 1,8 mg/l ist.
 - 10. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, gekennzeich net durch einen Behälter (4) für die Adsorbentien der Verfah-
- 25 rensstufe T, der Kationenaustauscher, Molekularsiebe sowie Anionenaustauscher mit starrer oder flexibler Begrenzung, eine für CO₂ durchlässige Membran (5) in der Verfahrensstufe K, einen Sterilfilter (6) am Auslaß der Regenerationseinheit und eine pH-Meßstelle (8) vor der Rück30 führung des Regenerats zu einem weiteren Blutentgiftungs-
- 30 führung des Regenerats zu einem weiteren Blutentgiftungszyklus.
- 11. Vorrichtung nach Anspruch 9, gekenn-zeichnet durch ein Ventil (7) und eine Pumpe (3),35 die durch die pH-Meßstelle (8) reguliert werden.

- 1 12. Vorrichtung nach Anspruch 10 oder 11, g e k e n n z e i c h n e t weiterhin durch einen Blutleckdetektor (2), eine Entgiftungs- oder Blutreinigungsvorrichtung (1) sowie übliche Zuleitungen etc.
- 13. Kit zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, g e k e n n z e i c h n e t durch eine Regenerationseinheit aus einem Behälter (4), der mit 10 Aktivkohle, Kationenaustauschergemisch, Molekularsieb und Neutralharz gefüllt ist, sowie einen Behälter (9), der mit einer Lösung gefüllt ist, die 6000 bis 10000 Einheiten Urease sowie Anionen und Kationen in Konzentrationen enthält, welche zur gewünschten partiellen Vorbelegung 15 der Adsorbentien führen.
- 14. Kit nach Anspruch 13, gekennzeich net durch die Regenerationseinheit nach Anspruch 11 sowie einen Behälter, der gefriergetrocknete Urease sowie die erforderlichen Anionen und Kationen in fester Form enthält.

BNSDOCID: <DE_____3110128A1_I_>

BESCHREIBUNG

1 Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Entgiftung und Regeneration von Blut, Blutbestandteilen und bei der Blutreinigung anfallenden Lösungen, wie sie zum Beispiel bei der Hämodialyse, der Peritonealdialy-5 se, Intestinaldialyse, Hämofiltration oder Membranplasma-

pherese erhalten werden, oder Lösungen, die bei Kombinationen dieser Verfahren erhalten werden.

Erfindungsgemäß werden in getrennten Verfahrensstufen die 10 stickstoffhaltigen und/oder aromatischen Toxine entfernt, die gestörte Bilanz der als Kationen vorliegenden und die gestörte Bilanz der als Anionen vorliegenden Substanzen wieder den physiologischen Erfordernissen angeglichen, so daß das so erhaltene Regenerat wieder dem Patienten reinfundiert oder als Dialyseflüssigkeit verwendet werden kann.

Die Nieren sind lebenswichtige Organe. Sie haben die Aufgabe, Blutplasma abzufiltrieren und daraus den Urin zu

20 bilden. Außerdem sind sie maßgeblich an der Aufrechterhaltung des Säuren-Basen-Gleichgewichts und der Regulation des Salz-Wasser-Haushalts beteiligt.

Die weitaus wichtigste Leistung der Nieren ist die Urinbil25 dung. Mit dem Urin werden Wasser, Schlackenstoffe, Salze
und Säuren aus dem Körper ausgeschieden. Versagt die Niere,
so muß es zum Rückstau ihrer Ausscheidungsprodukte kommen.
Der Grundstoffwechsel der Körperzellen ist jedoch nicht zu
stoppen und liefert auch bei einem Versagen der Niere aus30 scheidungsbedürftige Abfallprodukte. Dazu gehören neben
giftigen Stoffen auch Kalium- und Säureionen, die erst zur
Schädigung und dann zum Tode des Körpers durch eine Blutharnvergiftung (Urämie) führen können.

1 Die Niere versagt je nach den Umständen akut oder chronisch . Das langsame Nierenversagen (chronische Niereninsuffizienz) kann bis zum völligen Nierenversagen führen. Der mit dem Begriff "Nierenversagen" verknüpfte Vergiftungszustand des Körpers drückt sich vor allem in einem Ansteigen der Harnstoff-, Harnsäure-, Kreatinin- und Phosphatkonzentrationen und in einem vermehrten Auftreten harnpflichtiger Metaboliten des Proteinstoffwechsels im Blut aus. "Harnpflichtig" heißen Stoffwechselendprodukte, die im Körper nicht weiter verwendbar sind und ausgeschieden werden müssen, zum Beispiel Phenolderivate, Indol-Peptide, Guanidin und urämische Moleküle (sogenannte Mittelmoleküle, die oft für periphere Neuropathie verantwortlich gemacht werden).

15

Versagt die Niere und führen die gängigen Behandlungsmethoden nicht zu einer Wiederherstellung der Ausscheidungsfunktion der Niere, so kann in vielen Fällen nur noch der Einsatz künstlicher Nieren die Entschlackung des Körpers 20 sicherstellen.

So müssen ab einem gewissen Stadium der Nierenfehlfunktion extrarenale Behandlungsverfahren angewendet werden, wie zum Beispiel die Hämofiltration, die Hämodialyse, die Pe25 ritonealdialyse, die Intestinaldialyse, Plasmaseparation oder miteinander kombinierte Verfahren.

Bei der Hämofiltration wird dem Blut unter Einwirkung eines geringen hydrostatischen Druckes nach dem Prinzip der Ul30 trafiltration durch großporige Membranen ein Plasmawasserfiltrat entzogen, das alle Substanzen einschließlich der
Giftstoffe bis zu einer membranabhängigen Ausschlußgrenze
(Molekulargewichte vorzugsweise zwischen 13000 und 60000
Dalton) identisch ihrer Konzentration im Blut enthält. Das
35 entzogene Volumen (20 bis 30 1) muß volumenidentisch bis
auf einen Entzug von 2 bis 3 1 substituiert werden. Eine

1 Regeneration des Hämofiltrats ist hinsichtlich der Miniaturisierung, einer Vereinfachung der Bedienung und vor allem nicht zuletzt einer enormen Kosteneinsparung (die Substitutionsflüssigkeit kostet zur Zeit pro Patient und 5 Jahr ca. DM 10000,--) erstrebenswert.

Bei der Hämodialyse diffundieren die harnpflichtigen Substanzen aus dem Blut durch eine semipermeable Dialysemembran in eine Dialysierflüssigkeit, die die physiologisch oerforderlichen Bestandteile des Blutplasmas in Konzentrationen enthält, wie sie durchschnittlich beim gesunden Menschen auftreten. Es entsteht über die Membran für die harnpflichtigen Substanzen ein Konzentrationsgefälle, so daß diese das Blut verlassen und in die Dialyseflüssigkeit übertreten.

Im allgemeinen werden 300 bis 400 l frische Dialyselösung für eine sechs- bis achtstündige Behandlung eines Patienten benötigt. Dieses Verfahren ist daher technisch kompli20 ziert und aufwendig.

Bei der Peritonealdialyse wird als Austauschmembran das Bauchfell (Peritoneum) benutzt. Die Spülflüssigkeit läßt man durch einen Peritonealkatheter in die Bauchhöhle ein25 fließen. Je nach der Größe des Patienten werden 500 bis 200 ml in die Bauchhöhle instilliert. Nach 30 Minuten bis zwei Stunden wird die Spüllösung durch Ablassen entnommen und extrakorporal durch einen Dialysator geleitet, entschlackt und ist für die Wiederverwendung verfügbar. Nach 30 der Entnahme der Spüllösung wird gleichzeitig neue Spüllösung in den Peritonealraum gegeben. Innerhalb von 24 Stunden können somit 20 l verbrauchte Spülflüssigkeit anfallen, die durch Dialyse gereinigt werden müssen, so daß sie wiederverwendbar sind.

Die Peritonealdialyse besitzt viele Nachteile. Zur Vermeidung von Bauchfellentzündungen (Peritonitis) müssen Anti-

BNSDOCID: <DE______ 3110128A1, I, >

35

1 biotika verabreicht werden, und außerdem treten Überwässerungen sowie Eiweißverluste auf.

Eine weitere Form der künstlichen Niere stellt die Inte5 stinaldialyse dar. Mit Hilfe einer im Dünndarm liegenden
Sonde wird Infusionsflüssigkeit in den Darm (Intestinum)
gepumpt und wieder abgesaugt, wobei die in den Darm ausgeschiedenen Stoffwechselschlacken ausgewaschen werden.
Die verbrauchte Infusionslösung wird dann zu ihrer Rege10 nerierung einer Dialyse unterworfen.

Bei der Plasmapherese wird das Blut zur Blutreinigung durch eine Membran großer Ausschlußgrenze vornehmlich in der Größenordnung von 1 000 000 bis 3 000 000 Dalton in eine Zellfraktion und eine Plasmafraktion separiert. Das anfallende Filtrat kann dann einer Detoxikationseinheit zugeführt werden, wo es z.B durch Dialyse gereinigt wird. Es kann nach der Entgiftung wieder injiziert werden.

- 20 Bei den obigen Verfahren fallen große Mengen an toxinhaltigen Lösungen an, die entweder verworfen oder zu ihrer Wiedergewinnung regeneriert werden müssen. Die Regeneration derartiger Lösungen ist mit Schwierigkeiten verbunden, da einerseits große Flüssigkeitsmengen gehandhabt 25 werden müssen und andererseits die Konzentration der einzelnen Bestandteile der frischen Lösung bestimmte, innerhalb enger Grenzen liegende "Normwerte" aufweisen muß, damit bei den entsprechenden Verfahren möglichst solche Kon-
- 30 Patienten auftreten.

Aus den obigen Ausführungen folgt, daß die derzeit verfügbaren Verfahren und Vorrichtungen für die direkte oder
indirekte Blutentgiftung sehr aufwendig sind und daß damit
35 die Kosten sehr hoch sind. Es kann daher heute nur eine
beschränkte Anzahl von Patienten, deren Blut entgiftet

zentrationen im Blut erreicht werden, wie sie bei gesunden

1 werden muß, behandelt werden. Es besteht daher ein großer Bedarf nach Verfahren, mit denen Körpergifte entfernt werden, die weniger kompliziert und einfacher durchzuführen sind als die bekannten Verfahren.

5

In der DE-OS 2 032 061 wurde ein Rezirkulations-Dialysat-System vorgeschlagen, gemäß dem die toxischen Substanzenaus der verbrauchten Dialyselösung entfernt werden können und gemäß dem die regenerierte Dialyselösung recycliert werden kann. Bei

- 10 diesem bekannten Regenerationssystem für Dialysat auf Aluminiumoxid fixierte Urease Harnstoff enzymatisch in Ammoniumcarbonat umgewandelt. In einer weiteren Stufe werden durch Zirkoniumphosphat Ammoniumionen entfernt, und in einer nachfolgenden Stufe werden die Phosphat- und Sulfat-
- 15 ionen durch Zirkonoxid entfernt. Die Vorteile dieses Verfahrens bestehen in der wesentlichen Verminderung des bei der Hämodialysebehandlung mittels künstlicher Niere benötigten Volumens der Dialyseflüssigkeit von ca. 300 bis 400 l auf ca. 20 bis 40 l. Damit ist jedoch der Patient
- 20 nicht von einer Behandlung in der Dialysestation unabhängig.

Für dieses Verfahren ist jedoch eine Reihe von Nachteilen bekannt / vgl. C. Fuchs et al., Artif. Organs 3 (3), 279 -280 (1979)/. Als wesentlicher Nachteil erwies sich so zum Beispiel die vollständige Entfernung von Kalium, Calcium und Magnesium, so daß diese vor der Wiederverwendung des Regenerats nachdosiert werden müssen. Die Nachdosierung ist mit Schwierigkeiten verbunden und erfordert zu-

sätzliche Meß- und Analyseanordnungen.

30

Bei der Peritonealdialyse muß zusätzlich Glucose zugesetzt werden / vgl. K. Maeda et al., Artif. Organs 3 (4), 336 -340 (1979) 7. Auch hierzu sind zusätzliche Meß- und Analyseanordnungen erforderlich.

35

Ein weiterer Nachteil des bekannten Systems ist der, daß das Aluminiumoxid, das als Ureaseträger verwendet wird,

1 Aluminiumionen freisetzt, denen neurotoxische Wirkungen zugeschrieben werden.

Die Verwendung von Zirkonphosphat in dieser Regenerations5 vorrichtung bewirkt außerdem eine Freisetzung von Fluoridionen, die den Knochenstoffwechsel störend beeinflussen
können. Weiterhin werden Protonen freigesetzt, die eine
Übersäuerung des Blutes (Acidose) bewirken. Gelegentlich
wurden auch Durchbrüche des besonders toxischen Ammoniaks
10 registriert.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Regenerationssystem zur Verfügung zu stellen, mit dem auf einfache Art und Weise die bei den zuvor beschriebenen

- 15 Verfahren anfallenden Flüssigkeiten gereinigt werden können, so daß sie den physiologischen Erfordernissen entsprechen und einer Wiederverwendung zugeführt werden können. Insbesondere sollen mit dem erfindungsgemäßen System
 Depletionssyndrome vermieden werden, die toxischen Sub-
- 20 stanzen sollen entfernt werden, und eine den physiologischen Verhältnissen angepaßte Ionen- und insbesondere Protonenbilanz soll erzeugt werden. Die Einstellung soll innerhalb der Regenerationseinheit selbst erfolgen, so daß keine zusätzlichen technischen Dosiervorrichtungen erfor-25 derlich sind.

Erfindungsgemäß soll insbesondere auch ein System zur Verfügung gestellt werden, mit dem Blut oder Blutbestandteile, wie Plasma oder Serum, direkt entgiftet werden können, ohne daß es erforderlich ist, das Blut bzw. die Plasmabestandteile anderen bekannten Behandlungsverfahren zur Entgiftung zu unterwerfen.

Gegenstand der Erfindung ist somit ein Verfahren zur Ent-35 giftung und Regeneration von Blut, Blutbestandteilen und bei der Blutreinigung anfallenden Lösungen, das dadurch

- 1 gekennzeichnet ist, daß in einer ersten Verfahrensstufe T N-haltige und/oder aromatische Toxine entfernt werden und gegebenenfalls Harnstoff in Ammoniumhydrogencarbonat gespalten wird, in einer Verfahrensstufe K die gestörte Bi-
- 5 lanz der als Kationen vorliegenden Substanzen in den zu regenerierenden Lösungen wiederhergestellt wird, in einer Verfahrensstufe A die gestörte Bilanz der als Anionen vorliegenden Substanzen wiederhergestellt und gleichzeitig der pH-Wert den physiologischen Erfordernissen angegli-
- 10 chen wird und das erhaltene Regenerat in den Blutkreislauf des Patienten zurückgeführt wird oder erneut zur Entgiftung und Regeneration zur Verfügung steht.
- Gegenstand der Erfindung ist weiterhin eine Vorrichtung
 zur Durchführung des oben beschriebenen Verfahrens, die
 gekennzeichnet ist durch einen Behälter für die Adsorbentien der Verfahrensstufe T, der Kationenaustauscher, Molekularsiebe sowie Anionenaustauscher mit starrer oder
 flexibler Begrenzung, eine für CO₂ durchlässige Membran in
 20 der Verfahrensstufe K, einen Sterilfilter am Auslaß der
 Regenerationseinheit und eine pH-Meßstelle vor der Rückführung des Regenerats zu einem weiteren Blutentgiftungszyklus.
- 25 Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, daß die vornehmlich urämischen To-xine aus dem menschlichen Blut oder aus Blutbestandteilen oder aus bei der Blutreinigung anfallenden Lösungen auf einfache Weise entfernt werden können und daß durch Einstellung der Konzentrationen der Elektrolyte in dem Regenerat entsprechend den physiologischen Erfordernissen das erhaltene Regenerat direkt wieder infundiert oder einer Wiederverwendung zugeführt werden kann.
- 35 Überraschenderweise wurde gefunden, daß es mit dem erfindungsgemäßen Verfahren möglich ist, die Elektrolytgehalte

1 in dem Blut den physiologischen Erfordernissen anzupassen. So wird durch das erfindungsgemäße Verfahren erreicht, daß nach Durchführung des Verfahrens folgende Konzentrationen im Blutplasma oder Serum erhalten werden (die Grundlagen der Angaben bilden die Durchschnittswerte bei Erwachsenen in Documenta Geigy, Wissenschaftliche Tabellen, G. Thieme Verlag, Stuttgart, 1975, 7. Ausgabe, Seiten 553 ff.):

Natriumionen: 115 bis 165 mval/l, vorzugsweise 10 130 bis 150 mval/l, Kaliumionen: 2,0 bis 6,5 mval/l, vorzugsweise 3,1 bis 5,0 mval/l,Calciumionen: 3,0 bis 6,8 mval/1, vorzugsweise 4;0 bis 5,8 mval/l, 15 Magnesiumionen: 1,0 bis 3,0 mval/l, vorzugsweise 1,2 bis 2,0 mval/1, Phosphat (anorg.): O bis 6,0 mg/dl, vorzugsweise 2,0 bis 4,8 mg/dl, Sulfat (anorg.): 0,2 bis 1,2 mval/1, vorzugsweise 20 weniger als 0,7 mval/1, Hydrogencarbonat: 20 bis 30 mval/l, Kreatinin: weniger als 5,0 mg/dl, vorzugsweise weniger als 2,5 mg/dl, weniger als 5,0 mg/dl, vorzugsweise Harnsäure: 25 weniger als 2,5 mg/dl, Harnstoff-Stickstoff: mindestens 60% des Ausgangswerts Mittelmoleküle: mindestens 50% des Ausgangswerts Ammoniak: weniger als 1,8 mg/l Die Kombinationsfähigkeit dieses Regenerationsverfahrens

Die Kombinationsfähigkeit dieses Regenerationsverfahrens
30 mit den gebräuchlichen Hämofiltrations- und Dialysesystemen in der sogenannten "künstlichen Niere" gestattet eine
deutliche Reduzierung des Dialysat- und Hämofiltratvolumens, erlaubt eine Miniaturisierung und dadurch eine einfachere Bedienung der gesamten Einheit. Die Mobilität des
35 Nierenpatienten kann erheblich erhöht werden. Dem oben beschriebenen Regenerationsverfahren kommt nicht zuletzt da-

1 durch eine enorme wirtschaftliche Bedeutung zu, daß eine Wasseraufbereitungsanlage und unter anderem auch weitere verborgenen Kostenquellen entfallen. So kostet allein die Substitutionsflüssigkeit pro Patient und Jahr ca. 5000,--5 bis 10000,-- DM, also in der Bundesrepublik Deutschland ca. 100 Millionen DM jährlich.

Hinzu kommt, daß ein immer höherer Aufwand, der für Überwachung und zusätzliche Dosierungsvorrichtungen bei her-10 kömmlichen Verfahren getrieben werden muß, vermieden wird.

Das erfindungsgemäße Verfahren schafft durch Auswahl, Vorbehandlung und Anordnung geeigneter Komponenten ein Regenerationssystem, welches in der Lage ist, unter Vermeidung von Depletionssyndromen (Mangelerscheinungen) neben der Entfernung der toxischen Substanzen auch für eine den physiologischen Verhältnissen angepaßte Ionen- und insbesondere Protonenbilanz zu sorgen. Dies erübrigt zusätzliche aufwendige Steuer- und Dosiervorrichtungen.

20

Die sogenannten urämischen Mittelmoleküle, die sich in den Körperflüssigkeiten von Urämiepatienten anreichern und für das Auftreten bestimmter pathophysiologischer Erscheinungen verantwortlich zu machen sind / J. Bergström und P.

25 Fürst, Uremic Middle Molecules, Clinical Nephrology, Vol. 5, Nr. 4 (19767, werden entfernt, zumindest aber auf die Hälfte der Ausgangswerte reduziert.

Die vorliegende Erfindung kann zur Regeneration des Blut30 plasmas direkt, des bei der Hämodialyse, der Peritonealdialyse
oder Intestinaldialyse erhaltenen Dialysats, des bei der
Hämofiltration oder Membranplasmapherese gewonnenen Filtrats verwendet werden.

35 Die wesentlichsten Merkmale des erfindungsgemäßen Verfahrens sind die Stufen T, A und K. Die Stufen A und K kön-

1 nen in beliebiger Reihenfolge durchgeführt werden. Es ist jedoch bevorzugt, daß die Stufe K vor der Stufe A durchgeführt wird. Wird die Stufe A vor der Stufe K durchgeführt, so muß anschließend der pH-Wert den physiologischen Bedin-5 gungen angepaßt werden.

Bevor die erfindungsgemäßen Stufen T, K und A durchgeführt werden, kann die zu reinigende Flüssigkeit zur mechanischen Vorreinigung von feinen Teilen und Verunreini-10 gungen in an sich bekannter Weise über präparative Adsorbentien geleitet werden.

Bei der Verfahrensstufe T wird die zu reinigende Flüssigkeit über anorganische und/oder organische Adsorbermateria-15 lien hoher spezifischer Oberfläche (zum Beispiel Gläser, Aluminiumoxid, poröse Metalloxide, etc., besonders bevorzugt Aktivkohle) geleitet, damit die Toxine adsorptiv gebunden werden.

- 20 Die Adsorbereigenschaften müssen wie folgt sein: hohe spezifische Oberfläche (größer 250 m²/g, vorzugsweise über 1000 m²/g nach BET-Methode / Lehrbuch der Chemischen Verfahrenstechnik, VEB Verlag Leipzig, 1969, Seiten 635 bis 640/ bestimmt;), hohe Adsorptionskapazität und schnelle 25 Adsorptionskinetik. Die Korngröße ist beliebig: um schnelle Adsorptionskonetiken zu erhalten, sollte sie möglichst klein sein, um den Druckabfall beim Durchströmen gering zu
- 30 chenförmig oder auch sphärisch sein. Eine Vorbehandlung in Anlehnung an die Arbeiten von R.A. Van Wagenen et al. __Biomater., Med. Dev., Art. Org. 3 (3), 319 364 (1975) ist durchzuführen, um die Materialien von wasserlöslichen Substanzen zu befreien. Die Adsorbermaterialien sollen ei-

halten, ist sie zweckmäßigerweise O,5 bis 1 mm. Die Form der Adsorberpartikel kann unregelmäßig gebrochen, stäb-

35 ne nach BET-Methode bestimmte Porenvolumenverteilung dergestalt haben, daß ca. 80%der inneren Oberfläche vorzugsweise im Porenradienbereich von 40 bis 100 Å vorhanden ist. 1 Folgende Adsorptionskinetikkennwerte sollen für das Adsorbermaterial erfüllt sein: für Acetylsalicylsäure als Adsorptiv soll innerhalb von 10 Minuten die Konzentration in der Lösung auf ca. 20% der Ausgangskonzentration, vorzugsweise ca. 10%, herabgesetzt werden; für Kreatinin als Adsorptiv soll innerhalb von 10 Minuten die Konzentration auf weniger als 50% der Ausgangskonzentration gesenkt werden. Zur Beschreibung der Adsorptionskinetik verschiedener Adsorbermaterialien werden jeweils 10 g des Adsorbermaterials des Korngrößenbereichs 0,5 bis 1,0 mm in ein auf 37°C thermostatisiertes Becherglas, welches mit 400 ml einer PBS-gepufferten Acetylsalicylsäure bzw. Kreatininlösung (Konzentration c = 2 g/l PBS-Lösung) gefüllt ist, zugegeben.

Die Adsorptivlösung wird mit einem Propellerrührer ständig umgerührt. Zum Zeitpunkt der Adsorberzugabe wird der Startpunkt des Versuchs festgelegt und als t = o bezeichnet.

Durch Adsorption an die Aktivkohle sinkt die Konzentration des Adsorptivs in der Pufferlösung ab. Die Konzentrationsabnahme zur Zeit t wird bestimmt. Neben Kinetikmessungen geben Messungen der Adsorptivkonzentration, zum Beispiel Kreatinin am Säulenausgang, weitere Informationen über das Adsorptionsverhalten der unterschiedlichen Adsorbermaterialien.

Von einem Vorratsbehälter, der mit 5 1 Kreatininlösung Konzentration von c = 1 g Kreatinin/l pBS-Lösung gefüllt ist, wird mit einer Schlauchpumpe bei einer Förderleistung 30 von 10 ml/min diese Lösung über eine auf 37 C thermostatisierte Glassäule geleitet, die einen Durchmesser von 2,5 cm, eine Höhe von ca. 4,5 cm hat und mit 10 g Adsorbermaterial der Korngröße 0,5 bis 1,0 mm gefüllt ist. Nach dieser Versuchsanordnung soll ein Durchbruch für Kreatinin 35 frühestens dann erfolgen, wenn ca. 800 ml der Lösung durch die Säule geflossen sind, d.h. die Konzentration von Kreatinin im Säulenauslauf 10% der Ausgangskonzentration erreicht hat.

1 Bei einer bevorzugten erfindungsgemäßen Ausführungsform wird Aktivkohle verwendet, die mit dem Enzym Urease belegt ist. Um die bei einem Urämiker üblicherweise vor einer Behandlung mit der künstlichen Niere im Blut vorhande-5 ne Menge Harnstoff (ca. 80 mg/dl Harnstoff-Stickstoff) innerhalb der Behandlungsdauer von vier bis sechs Stunden in Ammoniumhydrogencarbonat umwandeln zu können, müssen ca. 6000 bis 10000 U des Enzyms Urease EC 3.5.1.5. (vorzugsweise gereinigtes und getrocknetes Enzym aus "jack bean"; 10 Definition und Bestimmung der U siehe G. Talsky et al., <u>/ Hoppe-Seyler's Z. Physiol. Chem. 348, 1372-1376 (1967)</u> auf dem Adsorbermaterial der Verfahrensstufe T vorhanden sein. Vorzugsweise wird die benötigte Menge der Urease in phosphatgepufferter, isotoner Kochsalzlösung (PBS-Lösung) 15 gelöst und adsorptiv auf das gewählte Adsorbermaterial aufgebracht. Nach der o.a. Literaturstelle wird dann die Aktivität des präparierten Materials in Units U/mg bestimmt. Man kann bei der Verfahrensstufe T auch ein Gemisch aus verschiedenen Adsorbentien, zum Beispiel aus Aktiv-20 kohle (wie oben ausgeführt) und Aktivkohle, die mit Urease belegt ist, verwenden. Ein solches Gemisch kann man einer-Schicht einsetzen, oder man kann die Aktivkohle und das mit Urease belegte Adsorbermaterial vermischen und dann die zu reinigende Flüssigkeit über ein sol-25 ches Gemisch leiten.

Verwendet man ein solches Gemisch, so wird die Aktivkohle das Kreatinin, die Harnsäure, die Mittelmoleküle und N-haltige Metaboliten, zum Beispiel Aminosäuren, adsorbie30 ren, und die Urease auf dem Adsorbermaterial wird den Harnstoff in Ammoniumhydrogencarbonat spalten.

Die Mittelmoleküle werden durch ihr Elutionsprofil bei der Gelpermeationschromatographie anhand der Absorptionen im 35 ultravioletten Bereich (bei 254 nm und bei 280 nm) und mittels Eichsubstanzen bekannten Molekulargewichts charakterisiert.

1 Nach der Stufe T erhält man eine Lösung, die als Kationen NH₄⁺-Ionen enthält sowie die in der Lösung ursprünglich bereits vorhandenen Kationen, wie Na⁺, K⁺, Ca⁺⁺ und Mg⁺⁺. In den meisten Fällen sind die Konzentrationen dieser Kationen zu hoch. Dies gilt insbesondere bei chronischer Urämie. Unter allen Umständen müssen aber die NH₄⁺-Ionen entfernt werden. Die Lösung enthält weiterhin als Anionen Phosphat-, Chlorid-, Sulfat- und Carbonationen, die gegebenenfalls auch in Hydrogenform vorliegen können. Die Konzentration der Kationen ab und ist im allgemeinen zu hoch.

Zur Entfernung der Kationen wird die zu reinigende Flüssigkeit in einer Verfahrensstufe K über ein Gemisch von
15 stark- und schwachsauren Kationenaustauschern und über Molekularsiebe geleitet.

Bei der Verfahrensstufe K wird die nach der Passage der Stufe T anfallende Flüssigkeit noch über Molekularsiebe 20 und Ionenaustauscher geleitet. Als Molekularsiebe kommen für Ammoniumionen spezifische Molekularsiebe der Korngrößen 0,3 bis 2 mm und der Austauschkapazität 2,5 bis 7,5 mEqu pro g zur Anwendung /s. DE-OS 2 512 212; und R.M. Barrer, Zeolites and Clay Materials as Sorbents and Mole-25 cular Sieves, Academic Press London, New York, San Francicso 1978/. Als schwachsaure Kationenaustauscher fungieren organische Polymere mit austauschaktiven Gruppen der Kapazität 2,1 bis 3,5 mEqu pro ml Schüttvolumen bei einem pK-Wert von 5,6 bis 6,5, vorzugsweise 6,1, und einer Korn-30 größe von ca. 0,2 bis 2,0 mm, vorzugsweise 0,3 bis 1,2 mm; als starksaure Kationenaustaucher fungieren organische Polymere mit austauschaktiven Gruppen der Kapazität 1,6 bis 2,5 mEqu pro ml Schüttvolumen und der Konrgröße 0,2 bis 2,0 mm, vorzugsweise 0,3 bis 1,2 mm.

Nach den Vorschriften der Hersteller werden diese Ionenaustauscher zum Teil in die Natrium- Kalium-, Calcium-

35

1 und/oder Magnesiumform überführt. Dies kann auf mehreren Wegen geschehen. Beispielsweise kann man Proben der Ionenaustauscher mit Natrium-, Kalium-, Calcium- oder Magnesiumsalzlösungen, wie vom Hersteller angegeben, behan-5 deln und die erhaltenen Ionenaustauscher in den jeweiligen kationischen Formen in einer Säule mit vorbestimmten Mengenverhältnissen übereinanderschichten. Man kann jedoch auch die erhaltenen Ionenaustauscher in Natrium-, Kalium-, Calcium- oder Magnesiumform in bestimmten Gewichtsprozenten 10 miteinander vermischen und das Gemisch dann bei dem erfindungsgemäßen Verfahren und der erfindungsgemäßen Vorrichtung verwenden. Eine andere Möglichkeit besteht darin, daß man eine Lösung herstellt, die Natrium-, Kalium-, Calciumund/oder Magnesiumsalze im Gemisch enthält, und diese Lö-15 sung zur Behandlung der Ionenaustauscher verwendet. Man erhält dann Ionenaustauscher, in denen Natrium-, Kalium-, Calcium- und/oder Magnesiumformen gleichzeitig vorliegen.

Bei der Verfahrensstufe A wird die gestörte Bilanz der als 20 Anionen vorliegenden Substanzen wiederhergestellt, d.h. im allgemeinen müssen die oben erwähnten Anionen aus der zu reinigenden Flüssigkeit entfernt werden. Als Anionenaustauscher werden organische Polymere mit primären, sekundären und tertiären Aminogruppen in der neutralen Form mit 25 einer Totalaustauschkapazität von 1,4 bis 2,0 mEqu pro ml Schüttvolumen, vorzugsweise 1,7 mEqu/ml der Körnung 0,2 bis 2,0 mm, eingesetzt. Bei der Behandlung mit den Anionenaustauschern werden alle mehrwertigen Anionen gebunden, insbesondere Phosphat-, Hydrogencarbonat-, Sulfat- und gegebenenfalls Chloridionen entfernt.

Erfindungsgemäß kann der pH-Wert nach bzw. vor den einzelnen Verfahrensstufen gemessen und gegebenenfalls durch
physiologisch annehmbare Verbindungen auf den physiologi35 schen Bereich eingestellt werden. Vorzugsweise wird der
pH-Wert gleich bei der Durchführung der Verfahrensstufe A

1 den physiologischen Bedingungen angepaßt. Er liegt bevorzugt im Bereich von 7,0 bis 7,8 bevorzugt im Bereich von 7,2 bis 7,4.

Die bei dem erfindungsgemäßen Verfahren erhaltene behan5 delte Flüssigkeit wird einer Wiederverwendung zugeführt,
was im Falle der Hämofiltration und der Plasmaseparation
über eine als Sterilfilter wirkende Membran, vorzugsweise
eine in der ersten Verfahrensstufe bereits benutzte gleichartige Membran, geschieht, um bei der Rückgabe der ent10 gifteten Flüssigkeit in den Blutkreislauf Sterilität bzw.
Pyrogenfreiheit zu garantieren. Im Falle der Peritonealdialyse muß das Peritonealdialysat ebenfalls über eine geeignete Membran bzw. ein geeignetes Sterilfilter in den
Dialysekreislauf zurückgeführt werden. Bei der Hämodialyse
15 ist dies nicht unbedingt erforderlich.

Um die Sterilität bzw. Pyrogenfreiheit zu garantieren, wird das Regenerat im Falle der Hämofiltration und der Plasmaseparation über eine als Sterilfilter fungierende

20 Membran, vorzugsweise eine in der ersten Stufe bereits benutzte gleichartige Membran, dem externen Blutkreislauf zurückgegeben. Im Falle der Peritonealdialyse muß das Peritonealdialysat ebenfalls über eine geeignete Membran bzw. ein geeignetes Sterilfilter in den Dialysekreislauf zurück-25 gegeben werden. Bei der Hämodialyse ist dies nicht unbedingt erforderlich.

In den beigefügten Zeichnungen wird die Erfindung näher erläutert. Es zeigen:

30

Figur 1 eine schematische Darstellung des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung.

35 Wie aus der Figur 1 erkennbar ist, besteht die Stufe T aus einer Schicht aus einem Adsorbens, vorzugsweise Aktivkoh-

- 1 le, und einer Schicht aus einem Adsorbens, das mit Urease belegt ist, vorzugsweise auch mit Urease belegte Aktivkohle. Der Volumenanteil der Schicht T am Gesamtsystem liegt zwischen 5 und 25, vorzugsweise 9 und 18, Vol.-%, wobei
- 5 der Volumenanteil an Adsorbens zwischen 5 und 15, vorzugsweise 6 und 12 Vol.-%, und der an Adsorbens, das mit Aktivkohle belegt ist, zwischen 0 und 10, vorzugsweise 3 und 6, Vol.-% liegt.
- 10 Bei der in der Figur dargestellten Stufe K werden zwei verschiedene Schichten an Kationenaustauscher und eine Schicht an Molekularsieb verwendet.
- Der Gesamtvolumenanteil der Schicht K beträgt 15 bis 50, 15 vorzugsweise 20 bis 40 Vol.-%. Der Gesamtanteil an den Molekularsieben mit Ionenaustauschereigenschaften beträgt zwischen 20 und 50 Vol.-%.
- 20 Das Gemisch aus Kationenaustauscher enthält seinerseits 2 bis 8 Vol.-% in der Na⁺-Form, 2 bis 8 Vol.-% in der K⁺-Form, 0 bis 6 Vol.-% in der Ca⁺⁺-Form, 0 bis 6 Vol.-% in der Mg⁺⁺-Form und der Rest jeweils in H⁺-Form, wobei die einzelnen Formen als Schichten oder als Mischung vorlie-
- 25 gen können. Bei der in Figur 1 dargestellten Ausführungsform wird ein Gemisch aus Kationenaustauscher verwendet,
 welches mit Na⁺, K⁺, Ca⁺⁺ vorbelegt ist, und dann wird
 Kationenaustauscher in der Mg⁺⁺-Form verwendet. Der Volumenanteil am Gesamtsystem des Anionenaustauscherharzes be-
- 30 trägt 10 bis 60 Vol.-%, bevorzugt 15 bis 50 Vol.-%.

In Figur 1 sind die Verfahren, die in den einzelnen Stufen ablaufen, schematisch dargestellt. In der Stufe T erfolgt eine Adsorption von Kreatinin, Harnsäure, Mittelmolekülen

35 und anderen N-haltigen Metaboliten, wie Aminosäuren. Weiterhin wird der Harnstoff in Ammoniak und CO₂ bevorzugt bei einem pH-Wert von 8,5 bis 8,8 gespalten. Bei der Stufe

1 K erfolgt die Bilanzierung einwertiger Kationen durch Adsorption/Desorption und die vollständige Umwandlung von NH₃ in NH₄. Bei der Stufe K findet eine Bilanzierung zweiwertiger Kationen an den Kationenaustauschern statt, und an den Molekularsieben werden die Ammoniumionen (bevorzugt bei einem pH-Wert von 5,0 bis 6,0) gebunden. Bei der Stufe A erfolgt eine Bilanzierung der Anionen durch Adsorption und/oder Desorption, und gleichzeitig wird der pH-Wert auf den physiologisch annehmbaren Bereich von 7,0 bis 7,8,

In der Figur 2 ist die erfindungsgemäße Vorrichtung schematisch dargestellt. Anhand der beigefügten Figur 2 wird die erfindungsgemäße Vorrichtung näher erläutert. Die Vor-15 richtung zur Durchführung des Verfahrens besteht aus einem Behälter 4 mit starrer oder flexibler Begrenzung. Der Behälter 4 kann in Form einer chromatographischen Säule oder speziell geformter Kartuschen ausgebildet sein. Er kann auch als flexibler Schlauch vorliegen, der um den menschli-20 chen Körper befestigt wird. Hinsichtlich des Behälters 4 gibt es keinerlei Beschränkungen, und alle üblichen Vorrichtungen, die geeignet sind, die verschiedenen Adsorbermaterialien aufzunehmen, sind als Behälter 4 geeignet. Der Behälter 4 dient zur Aufnahme von speziell vorbehandelten 25 und eventuell teilweise mit Urease belegten Adsorbentien, vorzugsweise Aktivkohlen, die bei der Stufe T verwendet werden, für die Aufnahme von Kationenaustauschern und Molekularsieben, die bei der Stufe K verwendet werden, sowie für die Aufnahme von in Anionenaustauscher überführbaren 30 Neutralharzen (A). In dem Behälter ist in der Verfahrensstufe K eine für CO, durchlässige Membran 5 angebracht, die im einfachsten Fall ein Stück der Wandung des Behälters 4 ausmacht. Vorzugsweise ist jedoch eine CO2-Falle vorgesehen, in der diese Membran angebracht ist. Am Auslaß des 35 Behälters 4 befindet sich ein Sterilfilter 6, durch das das Regenerat vor Verlassen der Regenerationseinheit geleitet wird. Die Vorrichtung umfaßt weiterhin eine pH-Meß1 stelle 8, über die Pumpen 3, ein oder mehrere Ventile 7 gesteuert werden können. Bei Über- oder Unterschreiten eines vorgegebenen pH-Bereichs (vorzugsweise pH 7,2 bis 7,4) können sowohl das Ventil 7 als auch die Säuleneinlaßpumpe 3 geschlossen werden und damit der Regenerationsvorgang unterbrochen werden. Die weiteren Ab- und Zuleitungen zu und von der erfindungsgemäßen Vorrichtung sowie die eingebauten Detektoren 2, Pumpen 3 und insbesondere die für die primäre Blutentgiftung verwendeten Module 1 sind handelsübliche Vorrichtungen zur Hämodialyse, Hämofiltration und Plasmapherese (durch Membran- oder Zentrifugationstechniken), die stark vereinfacht und vereinheitlichend dargestellt sind.

Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß das Regenerat nach Passieren des Behälters für den Fall, daß es in den Blutstrom des Patienten zurückgeführt werden soll, die Membran des Moduls 1 erneut, wenn auch in umgekehrter Richtung, passieren muß. Dadurch gewinnt das Behandlungs-verfahren für den Patienten zusätzlich an Sicherheit. Der Be-20 hälter 4 kann grundsätzlich auch von unten nach oben durchströmt werden, wobei jedoch die Reihenfolge der einzelnen Komponenten geändert werden müßte.

Die Erfindung betrifft weiterhin ein Kit zur Durchführung 25 des erfindungsgemäßen Verfahrens, bestehend aus einem Behälter, vorzugsweise einer Säule oder einem Schlauch, wie oben beschrieben, der mit Kationenaustauschem, Molekularsieben und Anionenaustauschern gefüllt ist, wobei die Kationenaustauscher, Molekular-

- 30 siebe sowie Anionenaustauscher in den vorher beschriebenen Volumenprozenten vorliegen. In dem Behälter ist, wie oben beschrieben, eine für CO₂ durchlässige Membran angebracht. Der mit den verschiedenen Adsorbentien gefüllte Behälter wird in der vorliegenden Anmeldung als Regenerationseinheit
- 35 bezeichnet. Das Kit umfaßt zusätzlich zu dem Behälter 4 einen weiteren Behälter 9 (vorzugsweise ein Fläschchen), in dem sich die Salze für die Vorbelegung der Adsorbentien mit den zuvor angegebenen Kationen in den genannten Kon-

- 1 zentrationen befinden. Zur Inbetriebnahme des Kits gibt man zu dem Behälter mit den Salzen eine vorbestimmte Menge an sterilem Wasser und läßt dann die erhaltene Lösung über die Adsorbentien in den Behälter 4 fließen. Das Kit kann zusätzlich noch einen Behälter mit Ureaselösung oder vor-
- 5 zusätzlich noch einen Behälter mit Ureaselösung oder vorzugsweise in gefriergetrockneter Form enthalten. Zu dieser Urease fügt man Wasser vorzugsweise vom pH 7 und gibt diese Lösung in den Behälter, der als erste Schicht z. B. Aktivkohle enthält.

Das erfindungsgemäße Kit ist besonders für eine Vorbehandlung der im trockenen Zustand oder feucht jedoch enzymfrei gelagerten Regenerationseinheit geeignet.

Das erfindungsgemäße Regenerationssystem ist sehr vorteil-

- 15 haft bezüglich einer enormen Reduzierung des Dialysatbzw. Hämofiltratvolumens, einer Miniaturisierung der gesamten Anlage, Vereinfachung der Bedienungs- und Überwachungselemente und nicht zuletzt auch wegen der erhöhten Wirtschaftlichkeit durch Wegfall einer Wasseraufbereitungs-
- 20 anlage bei der Hämodialyse und durch Wegfall der Substitutionsflüssigkeiten.

Die folgenden Beispiele erläutern die Erfindung.

25

Beispiel 1

"On line"-Regeneration von 20 1 Hämofiltrat eines Nierenpatienten

30 20 1 Hämofiltrat, die bei der Hämofiltration von Blut eines Nierenpatienten durch einen Hämofiltrator 1 (Fig. 2) erhalten werden und welche die urämischen Toxine enthalten, werden nach dem erfindungsgemäßen Verfahren gereinigt.

35

- 1 zentrationen befinden. Zur Inbetriebnahme des Kits gibt man zu dem Behälter mit den Salzen eine vorbestimmte Menge an sterilem Wasser und läßt dann die erhaltene Lösung über die Adsorbentien in den Behälter 4 fließen. Das Kit kann
- 5 zusätzlich noch einen Behälter mit Ureaselösung oder vorzugsweise in gefriergetrockneter Form enthalten. Zu dieser Urease fügt man Wasser vorzugsweise vom pH 7 und gibt diese Lösung in den Behälter, der als erste Schicht z. B. Aktivkohle enthält.

10

Das erfindungsgemäße Kit ist besonders für eine Vorbehandlung der im trockenen Zustand oder feucht jedoch enzymfrei gelagerten Regenerationseinheit geeignet.

Das erfindungsgemäße Regenerationssystem ist sehr vorteil-

- 15 haft bezüglich einer enormen Reduzierung des Dialysatbzw. Hämofiltratvolumens, einer Miniaturisierung der gesamten Anlage, Vereinfachung der Bedienungs- und Überwachungselemente und nicht zuletzt auch wegen der erhöhten Wirtschaftlichkeit durch Wegfall einer Wasseraufbereitungs-
- 20 anlage bei der Hämodialyse und durch Wegfall der Substitutionsflüssigkeiten.

Die folgenden Beispiele erläutern die Erfindung.

25

Beispiel 1

"On line"-Regeneration von 20 1 Hämofiltrat eines Nierenpatienten

30 20 1 Hämofiltrat, die bei der Hämofiltration von Blut eines Nierenpatienten durch einen Hämofiltrator 1 (Fig. 2) erhalten werden und welche die urämischen Toxine enthalten, werden nach dem erfindungsgemäßen Verfahren gereinigt.

35

Das auf 37°C tem-

U/mg) aufgebracht worden sind.

- 1 perierte Hämofiltrat wird durch die Verfahrensstufe I geleitet, in der sich 100 g präparierte Aktivkohle mit einer Korngröße von 0,5 bis 1,0 mm auf Kokosnußschalenbasis mit einer BET-Oberfläche von ca. 1100 bis 1300 m² befinden. Durch diese 5 Aktivkohle werden Feinteile und Verunreinigungen entfernt. In der Stufe I befinden sich weiterhin 40 g derselben Aktivkohle, auf die 200 mg des Enzyms Urease (Aktivität 50
- 10 Nach Durchgang durch die Stufe I wird das Hämofiltrat durch die Verfahrensstufe K geleitet. Diese Stufe besteht aus einem Gemisch von 300 bis 600 ml Schüttvolumen (vorzugsweise 500 ml) eines schwach sauren Kationenaustauscherharzes (Korngröße 0,3 bis 1,2 mm) mit einem pK-Wert
- to von ca. 6 und einer Kapazität von 3,5 val/1, 20 bis 30 ml Schüttvolumen eines stark sauren Kationenaustauschers mit einer Kapazität von 1,8 bis 2,5 val/1, vorzugsweise 2,1 val/1, in der Calciumform, der gleichen Menge in der Magnesiumform, der gleichen Menge in der Kaliumform und der
- 20 gleichen Menge in der Natriumform. Über diesem Gemisch wird 750 bis 900 ml Schüttvolumen, vorzugsweise 800 ml, eines ammoniumionenspezfischen Molekularsieb-Zeoliths (zum Beispiel Clinoptilolit) der Korngröße 0,8 bis 2 mm und der Austauschkapazität 2,5 mEqu./g angeordnet. Es kön-
- 25 nen auch entsprechend weniger eines Zeoliths mit höherer Austauschkapazität (bis 7,0 mEqu./g sind bekannt) benutzt werden.

Anschließendwird das Hämofiltrat durch die Ver30 fahrensstufe A geleitet. Diese Stufe besteht
aus 400 bis 500 ml Schüttvolumen eines gemischt schwach
und stark basischen Anionenaustauschers mit der Kapazität
2,4 bis 3,0 mEqu./ml, der mit Natriumhydrogencarbonat zum
Teil in die Hydrogencarbonatform und mit Natriumchlorid
35 zum Teil in die Chloridform gebracht wird. Das "on line"
über die drei Verfahrensstufen T, K und A geleitete Regenerat wird analysiert.

1 Die Gehalte der Ionen und organischen Substanzen werden damit in die Bereiche, die in den Ansprüchen genannt sind, gebracht.

5

Beispiel 2

Regeneration von 20 l Hämofiltrat 1m geschlossenen Kreislauf

10 Frisches Hämofiltrat eines Nierenpatienten wird in einen geschlossenen Kreislauf während 4 bis 5 Stunden über die Verfahrensstufen T, K und A gepumpt.

Die Verfahrensstufe T besteht wiederum aus den in Beispiel 15 1 genannten Aktivkohlen.

Die Verfahrensstufe K besteht aus einem Gemsich von 250 bis 350 ml, vorzugsweise 300 ml, schwach saurem Ionenaustauscherharz (vorzugsweise 30 bis 50 mesh Korngröße) mit

- 20 dem pK-Wert 5,6 bis 6,5, vorzugsweise 6,1, und der Kapazität 2,1 bis 3,5 mEqu./ml; 45 bis 55 ml eines stark sauren Ionenaustauschers, zweckmäßigerweise in der Korngröße 0,4 bis 1,2 mm und der Kapazität 1,6 bis 2,1 mEqu./ml, vorzugsweise 1,9 mEqu./ml, in der Calciumform; 40 bis 50
- 25 ml eines stark sauren Ionenaustauscherharzes, zweckmäßigerweise der Korngröße 0,4 bis 1,2 mm, und mit der Austauschkapazität 1,6 bis 2,1 mEqu./ml in der Natriumform;
 65 bis 85 ml eines stark sauren Ionenaustauschers, bevorzugt in der Korngröße 0,4 bis 1,2 mm und mit der Kapazität
- 30 1,6 bis 2,1 mEqu./ml in der Kaliumform; und 450 bis 600 ml eines Molekularsiebaustauschers, der bevorzugt Ammoniumionen bindet, mit bevorzugt 2,5 mEqu./g Kapazität.

Die Verfahrensstufe A besteht aus 420 bis 550 ml, bevor-35 zugt 470 ml, eines schwach basischen Anionenaustauscherharzes, das sekundäre und tertiäre Amine enthält und in der Hydroxidform (Lieferform) eingesetzt wird.

1 Beispiel 3

Regeneration von Hämofiltrat eines Nierenpatienten

Die Verfahrensstufe T hat dieselbe Zusammensetzung wie die 5 des Beispiels 2.

Die Verfahrensstufe K setzt sich zusammen aus: 180 bis 250 ml, bevorzugt 210 ml, eines schwach sauren Ionenaustauscherharzes mit dem pK-Wert 5,6 bis 6,5, vor-

10 zugsweise 6,1, der bevorzugten Korngröße 0,4 bis 1,2 mm und der Austauschkapazität 2,1 bis 3,5 mEqu./ml in der Protonenform;

600 bis 800 ml, bevorzugt 750ml, Schüttvolumen eines Molekularsiebaustauschers mit der Kapazität von ca. 2,5 mEqu.

- 15 /g für Ammioniumionen und einer Mischung aus
 - 90 bis 110 ml eines schwach sauren Ionenaustauscherharzes in der Natriumform,
 - 70 bis 85 ml eines schwach sauren Ionenaustauscherharzes in der Magnesiumform,
- 20 70 bis 85 ml eines schwach sauren Ionenaustauscherharzes in der Calciumform und 45 bis 60 ml eines schwach sauren Ionenaustauscherharzes in der Kaliumform.
- 25 Bei den letzten vier schwach sauren Ionenaustauschern handelt es sich wieder um solche mit einer Austauschkapazität von 2,1 bis 3,5 mEqu./ml und dem pK-Wert von ca. 5,6 bis 6,5, bevorzugt 6,1.
- 30 Die Verfahrensstufe A wird bevorzugt wieder von ca. 450 bis 550 ml eines schwach basischen Ionenaustauscherharzes gebildet, das zum Teil in der Hydrogencarbonatform (Lieferform) und zum Teil in der Hydroxidform vorliegt, mit primären und sekundären Aminen als neutrale Austauschgruppen und der To-
- 35 talaustauschkapazität von 1,4 bis 2,0 mEqu./ml, bevorzugt 1,7 mEqu./ml.

BNSDOCID: <DE______ 3110128A1_1_>

Hämodialysator / Hämofiltrator / Plasmaseparator

4 Regenerationseinhei 3 Pumpe Blutleckdetektor

7 Ventil 6 Sterilfilter gasdurchlässige Membran

FIGUR 2

INTERNATIONAL SEARCH REPORT

International Application No PCT/US2005/001605

A. CLASS IPC 7	A61M1/36 A61M1/34		
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
IPC 7	ocumentation searched (classification system followed by classifica A61M A61K		
	tion searched other than minimum documentation to the extent that		
	lata base consulted during the international search (name of data be ternal, WPI Data, PAJ	ase and, where practical, seal	cn terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.
X	EP 0 787 500 A (BELLCO S.P.A) 6 August 1997 (1997-08-06)		1-6,9-16
Y	page 3, line 49 - line 59; figur	e 1	7,8
Y	US 5 091 091 A (TERMAN ET AL) 25 February 1992 (1992-02-25) column 7, line 18		7
Y	DE 31 10 128 A1 (FRAUNHOFER-GESE ZUR FOERDERUNG DER ANGEWANDTEN F E.V) 23 September 1982 (1982-09- page 20, line 17 - line 21	ORSCHUNG	8
	·		
Further documents are listed in the continuation of box C.		χ Patent family membe	rs are listed in annex.
'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filling date 'L' document which may throw doubts on priority claim(s) or		 *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 	
O document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu- ments, such combination being obvious to a person skilled in the art.	
later than the priority date claimed		*8* document member of the same patent family	
Date of the actual completion of the international search 2 November 2005		Date of mailing of the international search report 14/11/2005	
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2		Authorized officer	
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Böttcher, S	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
TINES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.