

Multiagent decision making: Bayesian Games

Alberto Sardinha

jose.alberto.sardinha@tecnico.ulisboa.pt

Outline

- Introduction to Bayesian games
- First definition
- Second definition
- Analyzing Bayesian games
- Exercises

- So far, all of the games make the following assumption:
 - All agents know what game is being played
- More specifically, we assume to be common knowledge for all agents:
 - the number of agents
 - the actions available to each agent
 - the payoff associated with each joint action

What if the agents are uncertain about the game being played?

- Bayesian games (or games of incomplete information) allow us to:
 - Represent agents' uncertainties about the game being played
 - The uncertainty regarding the game is represented as a probability distribution over a set of possible games

- Two key assumptions in Bayesian games:
 - The games differ only in their payoffs
 - Hence, all possible games have the same number of agents and the same action set for each agent
 - The beliefs of the different agents are posteriors
 - We obtain the posteriors by conditioning a common prior on individual private signals

Outline

- Introduction to Bayesian games
- First definition
- Second definition
- Analyzing Bayesian games
- Exercises

- A Bayesian game consists of:
 - A set of games that differ only in their payoffs
 - A common prior defined over the games
 - A partition structure over the games for each agent

- **Definition** (Bayesian game: information sets): A **Bayesian game** is a tuple (N, G, P, I) where:
 - *N* is a set of agents
 - *G* is a set of games with *N* agents each
 - such that, if $g, g' \in G$ then for each agent $i \in N$ the action sets in g is identical to the action sets in g'
 - $P \in \Pi(G)$ is a common prior over games
 - where $\Pi(G)$ is the set of all probability distributions over G
 - $I = (I_1, ..., I_N)$ is a tuple of partitions of G, one for each agent

There are four possible games that might be played

MP = Matching Pennies Coord = Coordination game PD = Prisoner's dilemma BoS = Battle of Sexes

All games have the same number of agents

 $I_{2,1}$ $I_{2,2}$ MP PD 0, 22, 20, 32,0 $I_{1,1}$ 0, 22,03, 01, 1p = 0.3p = 0.1Coord BoS 2,20, 02, 10, 0 $I_{1,2}$ 0, 01, 10, 01, 2p = 0.2p = 0.4

 $I_{2,2}$

 $I_{2,1}$

A common prior over the games

E.g., there is 0.4 chance that the Agents will play BoS

The action sets are the same in all games

Information sets for agent 1 (indistinguishable sets) $I_{2,1}$

 $I_{2,2}$

(i.e., either playing Coord or BoS, but not MP or PD)

E.g., agent 1 is

that he is in this

E.g., if nature decides that the game being played is BoS

Information sets for agent 2 (indistinguishable sets) $I_{2,1}$

 $I_{2,2}$

E.g., agent 2 is going to find out that she is in this equivalence class

 $I_{1,1}$ $egin{array}{c|c|c} MP & & & PD \ \hline 2,0 & 0,2 & \\ \hline 0,2 & 2,0 & \\ \hline p=0.3 & & p=0.1 \\ \hline \end{array}$

(i.e., either playing PD or BoS, but not MP or Coord)

 $I_{1,2}$

 $egin{bmatrix} 2,2 & 0,0 \ 0,0 & 1,1 \ \end{pmatrix} \ p = 0.2$

Coord

 $\begin{array}{|c|c|c|}
\hline
2,1 & 0,0 \\
0,0 & 1,2 \\
\hline
p = 0.4
\end{array}$

BoS

E.g., if nature decides that the game being played is BoS

- So what does this mean?
 - When the agents are **deciding what action to take**:
 - They decide without fully knowing the game that will be played
 - They have to reason about the other agents without knowing what the other agents are going to think

So what do the agents know?

- They know everything about this setting: $I_{1,1}$
 - The games
 - The common prior

 The equivalence classes of all agents

Outline

- Introduction to Bayesian games
- First definition
- Second definition
- Analyzing Bayesian games
- Exercises

Bayesian Games – Second Definition

- An alternative definition of Bayesian games
 - It is mathematically equivalent to the first definition
- This definition has a different presentation
 - It is based on types a way of defining uncertainty directly over a game's payoff function

Bayesian Games – Second Definition

- **Definition** (Bayesian game: types): A **Bayesian game** is a tuple (N, A, θ, p, u) where:
 - *N* is a set of agents
 - $A = A_1 \times ... \times A_n$, where A_i is the set of actions available to agent i
 - $\blacksquare \Theta = \Theta_1 \times ... \times \Theta_n$, where Θ_i is the type space of agent i
 - $p: \Theta \mapsto [0,1]$ is a common prior over types
 - $u = (u_1, ..., u_n)$, where $u_i : A \times \Theta \mapsto \mathbb{R}$ is the utility function for agent i

Bayesian Games – Second Definition

a_1	a_2	$ heta_1$	$ heta_2$	u_1	u_2
U	L	$ heta_{1,1}$	$ heta_{2,1}$	2	0
U	L	$ heta_{1,1}$	$ heta_{2,2}$	2	2
U	L	$ heta_{1,2}$	$ heta_{2,1}$	2	2
U	L	$ heta_{1,2}$	$ heta_{2,2}$	2	1
U	R	$ heta_{1,1}$	$ heta_{2,1}$	0	2
U	R	$ heta_{1,1}$	$ heta_{2,2}$	0	3
U	R	$ heta_{1,2}$	$ heta_{2,1}$	0	0
U	R	$ heta_{1,2}$	$ heta_{2,2}$	0	0

Agent 1's

types

a_1	a_2	$ heta_1$	$ heta_2$	u_1	u_2
D	L	$ heta_{1,1}$	$ heta_{2,1}$	0	2
D	L	$ heta_{1,1}$	$ heta_{2,2}$	3	0
D	L	$ heta_{1,2}$	$ heta_{2,1}$	0	0
D	L	$ heta_{1,2}$	$ heta_{2,2}$	0	0
D	R	$ heta_{1,1}$	$ heta_{2,1}$	2	0
D	R	$ heta_{1,1}$	$ heta_{2,2}$	1	1
D	R	$ heta_{1,2}$	$ heta_{2,1}$	1	1
D	R	$ heta_{1,2}$	$ heta_{2,2}$	1	2

Outline

- Introduction to Bayesian games
- First definition
- Second definition
- Analyzing Bayesian games
- Exercises

- We will reason about a Bayesian game using types (i.e., second definition)
- How?
 - Bayesian Nash Equilibrium = A plan of action for each player as a function of types that maximize each type's utility:
 - Expecting over the actions of the other players
 - Expecting over the types of the other players

- Given a Bayesian game (N, A, Θ, p, u) with a finite set of agents, actions, and types
- We can define strategies as follows:
 - Pure strategy: α_i : $\Theta_i \mapsto A_i$
 - A mapping from every type (from agent i) to an action (from agent i)

Three standard notions of expected utility (depending on the timing of the decision)

ex-ante

 The agent knows nothing about anyone's actual type (including his own)

interim

An agent knows her own type but not the types of the other agents

ex-post

The agent knows all agents' types

- Given a Bayesian game (N, A, θ, p, u) with a finite set of agents, actions, and types.
- Agent *i*'s *interim expected utility* with respect to θ_i and a pure strategy profile α is:

$$EU_{i}(\alpha|\theta_{i}) = \sum_{\theta_{-i} \in \Theta_{-i}} p(\theta_{-i}|\theta_{i}) u_{i}(\alpha, \theta_{i}, \theta_{-i})$$

 Definition: A Bayesian Nash equilibrium is a pure strategy profile a that satisfies

$$\alpha_i \in \operatorname*{argmax} EU_i(\alpha'_i,\alpha_{-i}|\theta_i)$$

$$\alpha'_i \qquad \qquad \text{Best responses}$$

■ The above is defined based on the *interim* stage

Outline

- Introduction to Bayesian games
- First definition
- Second definition
- Analyzing Bayesian games
- Exercises

A sheriff faces an armed suspect and they must (simultaneously)
 decide whether to shoot the other or not

- A sheriff faces an armed suspect and they must (simultaneously) decide whether to shoot the other or not, and:
 - The suspect is either a criminal with probability p or innocent with probability 1-p
 - The sheriff would rather shoot if the suspect shoots, but not if the suspect does not
 - The criminal would rather shoot even if the sheriff does not, as the criminal would be caught if it does not shoot
 - The innocent suspect would rather not shoot even if the sheriff shoots

Consider a game where a Firm is recruiting a Worker

- A worker can be of high ability, in which case he would like to work when he is hired
- Or a worker can be of low ability, in which case he would rather shirk (i.e., to avoid work)
- The firm would want to hire the worker that will work but not the worker that will shirk
- The worker knows his ability level
- The firm does not know whether the worker is of high ability or low ability

- \blacksquare The firm believes that the worker is of high ability with probability p and low ability with probability 1-p
- Most importantly, the firm knows that the worker knows his own ability level

- To model this situation, we let Nature choose between a worker with high ability and low ability, with probabilities p and 1 p, respectively.
- We then let the worker observe the choice of Nature, but we do not let the firm observe Nature's choice.

- Given a Bayesian game (N, A, Θ, p, u) with a finite set of agents, actions, and types
- One can write the game in this exercise as a Bayesian game as follows:
 - $N = \{F, W\}$
 - $A_F = \{hire, dont\}, A_W = \{work, shirk\}$
 - $\bullet \Theta_F = \{t_f\}, \Theta_W = \{high, low\}$
 - $p(t_f, high) = p$
 - $p(t_f, low) = 1 p$

F = firmW = worker

- One can write the game in this exercise as a Bayesian game as follows:
 - The utility function $u(a_F, a_W, \theta_F, \theta_W)$ is defined by the following tables:

 $u(a_F, a_W, \theta_F = t_f, \theta_W = high)$

 $u(a_F, a_W, \theta_F = t_f, \theta_W = low)$

Consider:

$$p = \frac{3}{4}$$

- the pure strategy profile $\alpha^* = (\alpha_F^*, \alpha_W^*)$ where
 - $\alpha_F^*(t_f) = hire$
 - $\alpha_W^*(high) = work$
 - $\alpha_W^*(low) = shirk$
- Check if this pure strategy profile is a Bayes Nash equilibrium.

Thank You

jose.alberto.sardinha@tecnico.ulisboa.pt rui.prada@tecnico.ulisboa.pt