Autore: Prof. Gabriel Rovesti

1. SISTEMI DI ELABORAZIONE

1.1 Definizione di Sistema

Un sistema è un insieme di elementi interconnessi che interagiscono tra loro per raggiungere uno scopo comune. Nei sistemi informatici, questi elementi includono componenti hardware e software che lavorano insieme per elaborare informazioni.

1.2 Classificazione dei Sistemi

I sistemi informatici possono essere classificati in base a diversi criteri:

Per architettura: CPU/BUS/cache

• Per dimensione: microcomputer, minicomputer, mainframe, supercomputer

• Per scopo: general-purpose, special-purpose

• Per tipologia: embedded, real-time, distribuiti, centralizzati

1.3 II Computer

Il computer è un sistema elettronico programmabile in grado di eseguire elaborazioni automatiche su dati. È costituito da:

- Unità di elaborazione (CPU)
- Unità di memoria (RAM, ROM, cache)
- Unità di input/output
- Bus di interconnessione

1.4 Hardware, Software e Firmware

- Hardware: componenti fisiche del sistema (circuiti elettronici, dispositivi meccanici)
- Software: insieme dei programmi che permettono al sistema di funzionare (sistema operativo, applicazioni)
- Firmware: software integrato nell'hardware che ne controlla le funzionalità di base (BIOS, UEFI)

1.5 Memorie e Gerarchie

La gerarchia delle memorie è organizzata in livelli con diverse caratteristiche di velocità, capacità e costo:

Registri: all'interno della CPU, velocissimi ma di capacità minima

- 2. Cache: memoria ad alta velocità che fa da intermediario tra CPU e RAM
- 3. Memoria principale (RAM): memoria volatile ad accesso rapido
- 4. Memoria secondaria: dischi, SSD, ecc., non volatile ma più lenta
- 5. Memoria terziaria: backup, archivi, ecc., accesso molto lento

1.6 Periferiche di I/O

Dispositivi che permettono la comunicazione tra il computer e l'esterno:

- Input: tastiera, mouse, scanner, microfono, webcam
- Output: monitor, stampante, altoparlanti
- I/O: touchscreen, dispositivi di rete, dispositivi di memorizzazione esterni

2. CPU E ARCHITETTURA

2.1 La Macchina di Von Neumann

Architettura fondamentale dei computer moderni, caratterizzata da:

- Unità di elaborazione (CPU)
- Memoria principale
- Unità di controllo
- Dispositivi di I/O
- Bus di sistema unico per dati e istruzioni

2.2 Confronto Von Neumann e Harvard

Von Neumann	Harvard
Memoria unica per dati e programmi	Memorie separate per dati e programmi
Un solo bus	Bus separati per dati e istruzioni
Flessibile ma potenziale bottleneck	Migliori prestazioni ma meno flessibile
Usata nella maggior parte dei computer general- purpose	Usata in sistemi embedded e DSP

2.3 La CPU e la Sua Architettura Interna

La CPU (Central Processing Unit) è il cervello del computer e contiene:

- Unità di controllo (CU)
- Unità aritmetico-logica (ALU)

- Registri
- Cache interna (L1, L2)
- Interfacce per il collegamento con il resto del sistema

2.4 I Registri

Piccole memorie ad altissima velocità interne alla CPU:

Registri di uso speciale:

- PC (Program Counter): indirizzo della prossima istruzione
- SR (Status Register): contiene i flag di stato (zero, overflow, carry, ecc.)
- SP (Stack Pointer): punta al top dello stack
- IR (Instruction Register): contiene l'istruzione corrente
- MAR (Memory Address Register): indirizzo di memoria da accedere
- MDR (Memory Data Register): dati da/per la memoria

Registri di uso generale:

- Accumulatore: usato per operazioni aritmetiche
- Registri generici: R0, R1, ..., Rn

2.5 L'Unità di Controllo (CU)

Coordina il funzionamento della CPU:

- Preleva le istruzioni dalla memoria
- Le decodifica
- Genera i segnali di controllo per gli altri componenti
- Può essere implementata tramite circuiti logici (hardwired) o microprogrammazione

2.6 L'Unità Aritmetico-Logica (ALU)

Esegue operazioni matematiche e logiche:

- Operazioni aritmetiche: addizione, sottrazione, moltiplicazione, divisione
- Operazioni logiche: AND, OR, NOT, XOR
- Operazioni di confronto
- Operazioni di shift e rotazione

2.7 Bus di Sistema

Canali di comunicazione tra i vari componenti del sistema:

- Bus dati: trasporta i dati tra i componenti (ampiezza in bit: 8, 16, 32, 64...)
- Bus indirizzi: trasporta gli indirizzi di memoria
- Bus di controllo: trasporta i segnali di controllo (lettura, scrittura, ecc.)

2.8 Banda Passante (Bandwidth) del FSB

Il Front Side Bus collega la CPU alla memoria e al chipset:

- Misurata in bit per secondo (bps) o multipli (Mbps, Gbps)
- Influenza significativamente le prestazioni del sistema
- Dipende da frequenza del bus e ampiezza (numero di linee parallele)

2.9 II Clock

Segnale che sincronizza le operazioni della CPU:

- Frequenza misurata in Hertz (Hz, MHz, GHz)
- Determina la velocità di esecuzione delle istruzioni
- Legato al consumo energetico e alla generazione di calore

2.10 II Ciclo Macchina

Sequenza di operazioni elementari che la CPU esegue per ogni istruzione:

1. Fetch: preleva l'istruzione dalla memoria

2. Decode: decodifica l'istruzione

3. Execute: esegue l'istruzione

4. Eventuale aggiornamento dei registri e memoria

2.11 Prestazioni di un Microprocessore

Metriche per misurare le prestazioni:

- MIPS (Millions of Instructions Per Second): numero di istruzioni eseguite al secondo
- FLOPS (Floating Point Operations Per Second): operazioni in virgola mobile al secondo
- Benchmark: test standardizzati che misurano le prestazioni in scenari reali (SPEC, Cinebench, Geekbench)

3. MEMORIE E COMPONENTI

3.1 Case, Alimentatore, Scheda Madre

- Case: struttura che contiene e protegge i componenti
- Alimentatore: fornisce energia elettrica ai componenti
- Scheda Madre (Motherboard): circuito principale su cui sono montati o collegati gli altri componenti
- CPU Socket: connettore specifico per tipo di CPU

3.2 II Chipset

Insieme di circuiti integrati che controllano il flusso di dati tra processore, memoria e periferiche:

- Northbridge (Memory Controller Hub):
 - Gestisce comunicazioni ad alta velocità
 - Controlla accesso a RAM
 - Si interfaccia con GPU (attraverso PCle o AGP)
 - Nei sistemi moderni è spesso integrato nella CPU
- Southbridge (I/O Controller Hub):
 - Gestisce periferiche più lente
 - Controlla SATA, USB, audio, rete
 - Si interfaccia con dispositivi di I/O

3.3 Memorie Primarie, Secondarie e Periferiche

- Memorie primarie:
 - RAM (Random Access Memory): volatile, ad accesso rapido
 - ROM (Read-Only Memory): non volatile, sola lettura
 - Cache: memoria veloce tra CPU e RAM
- Memorie secondarie:
 - HDD (Hard Disk Drive): magnetico, non volatile
 - SSD (Solid State Drive): elettronico, non volatile, più veloce degli HDD
 - Unità ottiche (CD, DVD, Blu-ray)
- Memorie periferiche:
 - USB flash drive
 - Schede di memoria (SD, microSD)
 - Unità di backup esterne

3.4 Memorie Ottiche

Tecnologie per la memorizzazione ottica dei dati:

- CD (Compact Disc): capacità ~700 MB
- DVD (Digital Versatile Disc): capacità 4.7-17 GB
- Blu-ray: capacità 25-128 GB
- Differiscono per lunghezza d'onda del laser e densità di memorizzazione

3.5 Pipeline

Tecnica di elaborazione che consente di sovrapporre fasi diverse dell'esecuzione di istruzioni consecutive:

Aumenta il throughput (istruzioni completate per unità di tempo)

- Non riduce la latenza della singola istruzione
- Fasi tipiche: fetch, decode, execute, memory access, write-back
- Problemi: hazard strutturali, dipendenze dai dati, branch prediction

4. ARCHITETTURE AVANZATE

4.1 Architettura a Virgola Mobile

Sistema specializzato per calcoli con numeri in virgola mobile:

- Unità FPU (Floating Point Unit): integrata nella CPU moderna
- Standard IEEE 754 per rappresentazione numeri
- Formati: precisione singola (32 bit), doppia (64 bit), quadrupla (128 bit)
- Operazioni specializzate per calcoli scientifici e grafica

4.2 Architetture CISC e RISC

Due filosofie di progettazione dei set di istruzioni:

CISC (Complex Instruction Set Computer)	RISC (Reduced Instruction Set Computer)
Molte istruzioni complesse	Set di istruzioni ridotto e semplice
Istruzioni di lunghezza variabile	Istruzioni di lunghezza fissa
Modalità di indirizzamento multiple	Pochi modi di indirizzamento
Codice più compatto	Codice più esteso
Più complesso da implementare	Più semplice da implementare
Es: x86, x86-64	Es: ARM, MIPS, RISC-V

4.3 Assembly e Tipi di Instruction Set

- Assembly: linguaggio di programmazione a basso livello specifico per una CPU
- Instruction Set Architecture (ISA): insieme delle istruzioni che la CPU può eseguire
- Tipi di istruzioni:
 - Trasferimento dati (MOV, LOAD, STORE)
 - Aritmetiche (ADD, SUB, MUL, DIV)
 - Logiche (AND, OR, NOT, XOR)
 - Controllo di flusso (JMP, CALL, RET)
 - Gestione I/O

5. RAPPRESENTAZIONE DELLE INFORMAZIONI

5.1 Tipi di Memoria: ROM, RAM, Cache

ROM e tipi:

- ROM tradizionale: programmata in fabbrica
- PROM (Programmable ROM): programmabile una sola volta
- EPROM (Erasable PROM): cancellabile con UV
- EEPROM (Electrically EPROM): cancellabile elettricamente
- Flash: evoluzione dell'EEPROM, base di SSD e memorie USB

RAM e tipi:

- SRAM (Static RAM): veloce, costosa, usata per cache
- DRAM (Dynamic RAM): più economica, richiede refresh
- SDRAM (Synchronous DRAM): sincronizzata col clock
- DDR SDRAM (Double Data Rate): trasferisce dati su entrambi i fronti del clock

Cache e località:

- Località temporale: dati usati recentemente probabilmente riusati presto
- Località spaziale: dati vicini a quelli acceduti probabilmente acceduti presto
- Livelli: L1 (nella CPU), L2, L3 (condivisa tra core)

5.2 Tipi di Indirizzamento

Modi in cui un processore può identificare gli operandi:

- Immediato: il valore è parte dell'istruzione (es: ADD R1, #5)
- Diretto: l'istruzione contiene l'indirizzo del dato (es: ADD R1, [100])
- Indiretto: l'istruzione contiene l'indirizzo dell'indirizzo del dato (es: ADD R1, 100)
- Indicizzato: l'indirizzo effettivo è somma di un registro indice e un offset (es: ADD R1, [R2+10])
- Basato su registro: l'operando è in un registro (es: ADD R1, R2)
- Relativo al PC: indirizzamento relativo al Program Counter (usato nei salti)

5.3 Rappresentazione delle Informazioni e Codifiche

- Sistema binario: base 2 (0,1), usato internamente dai computer
- Sistema ottale: base 8 (0-7), poco usato oggi
- **Sistema esadecimale**: base 16 (0-9, A-F), usato per rappresentare dati binari in modo compatto

Conversioni:

- Binario a esadecimale: raggruppare 4 bit
- Binario a ottale: raggruppare 3 bit

Codifiche caratteri:

- ASCII: 7 bit, 128 caratteri
- Extended ASCII: 8 bit, 256 caratteri

Unicode: standard universale (UTF-8, UTF-16, UTF-32)

5.4 Digitalizzazione

Processo di conversione di segnali analogici in digitali:

- Campionamento: misurazione del segnale ad intervalli regolari
- Quantizzazione: arrotondamento dei valori campionati a livelli discreti
- Codifica: rappresentazione dei valori quantizzati in bit
- Compressione:
 - Lossless: senza perdita di informazioni (ZIP, PNG)
 - Lossy: con perdita accettabile di informazioni (JPEG, MP3)
 - Tecniche: codifica entropia, compressione predittiva, trasformate

6. SISTEMI OPERATIVI

6.1 Introduzione ai Sistemi Operativi

Il sistema operativo è un software che gestisce l'hardware del computer e fornisce servizi ai programmi applicativi:

- Intermediario tra utente e hardware
- Gestore delle risorse di sistema
- Fornisce un'interfaccia per i programmi applicativi (API)
- Garantisce sicurezza e isolamento

6.2 Tipi di OS e Processi

- Tipi di OS:
 - Monolitici: kernel unico (Linux, Unix tradizionali)
 - A microkernel: funzioni minime nel kernel (MINIX)
 - Ibridi: combinano aspetti monolitici e microkernel (Windows, macOS)
 - Real-time: garantiscono tempi di risposta deterministici
 - Embedded: per dispositivi dedicati
 - Distribuiti: su più macchine fisiche
- Processi e stati:
 - Processo: programma in esecuzione con risorse associate
 - Stati principali: nuovo, pronto, in esecuzione, in attesa, terminato
 - Transizioni tra stati gestite dallo scheduler

6.3 Politiche di Gestione dei Processi

FCFS/FIFO (First Come First Served):

- I processi vengono eseguiti nell'ordine di arrivo
- Semplice ma inefficiente, può causare convoy effect

• SJF (Shortest Job First):

- Si esegue prima il processo più breve
- Ottimale per il tempo medio di completamento
- Difficile prevedere la durata dei processi

Round Robin:

- A ciascun processo è assegnato un quanto di tempo
- Allo scadere del tempo, il processo torna in coda
- Buon compromesso tra responsività e equità

Priorità:

- Processi con priorità più alta vengono eseguiti prima
- Rischio di starvation per processi a bassa priorità

6.4 Gestione della Memoria

Paginazione:

- Memoria fisica divisa in frame di dimensione fissa
- Memoria logica divisa in pagine della stessa dimensione
- Tabella delle pagine per mappare pagine logiche su frame fisici
- Vantaggi: riduce frammentazione esterna, supporta memoria virtuale

Segmentazione:

- Divisione in segmenti logici di dimensione variabile
- Ogni segmento ha un nome e una lunghezza
- Supporta naturalmente la protezione e la condivisione
- Svantaggi: può causare frammentazione esterna

6.5 Permessi ed Errori

Permessi di accesso:

- Lettura (R)
- Scrittura (W)
- Esecuzione (X)
- Controllati per garantire protezione

• Memory Faults:

- Segmentation Fault: accesso a memoria non allocata
- Page Fault: accesso a pagina non in memoria principale
- Protection Fault: violazione dei permessi di accesso
- Bus Error: accesso a indirizzo fisicamente invalido

7. LIVELLO FISICO

7.1 Introduzione allo Strato Fisico

Lo strato fisico (livello 1 del modello ISO/OSI) si occupa della trasmissione di bit grezzi attraverso il canale di comunicazione:

- Definisce caratteristiche elettriche, meccaniche e funzionali
- Si occupa della modulazione e codifica del segnale
- Gestisce il mezzo trasmissivo

7.2 Teoria dei Segnali

- Tipi di segnali:
 - Analogici: variano con continuità nel tempo
 - Digitali: discreti, rappresentati da sequenze di 0 e 1
- Caratteristiche:
 - Ampiezza: intensità del segnale
 - Frequenza: cicli per secondo (Hertz)
 - Fase: posizione relativa nell'onda
 - Larghezza di banda: intervallo di frequenze utilizzate

7.3 Tipologie di Cavo e Trasmissione

- Cavi in rame:
 - Doppino intrecciato (UTP, STP): economico, sensibile a interferenze
 - Cavo coassiale: migliore schermatura, maggiore larghezza di banda
- Fibra ottica:
 - Monomodale: distanze maggiori, più costosa
 - Multimodale: distanze minori, più economica
 - Vantaggi: immunità alle interferenze, alta velocità, sicurezza
- Trasmissione wireless:
 - Radio: WiFi, Bluetooth, cellulare
 - Infrarossi: line-of-sight, limitata distanza
 - Microonde: collegamenti punto-punto
- Problemi di trasmissione:
 - Attenuazione: perdita di energia del segnale
 - Distorsione: alterazione della forma del segnale
 - Rumore: interferenze elettriche
 - Jitter: variazioni nel tempo di arrivo

7.4 Gestione Errori, Framing e Flusso

Gestione errori:

- Rilevazione: parità, CRC, checksum
- Correzione: codici a correzione d'errore (Hamming, Reed-Solomon)

• Framing:

- Delimitazione dei frame: flag, conteggio caratteri, violazioni di codifica
- Sincronizzazione

Controllo di flusso:

- Stop-and-wait: attesa di ACK prima di inviare il frame successivo
- Sliding window: invio di più frame prima di ricevere ACK

7.5 Modulazioni

Tecniche per adattare il segnale digitale al mezzo trasmissivo:

- Modulazione di ampiezza (AM): varia l'ampiezza dell'onda portante
- Modulazione di frequenza (FM): varia la frequenza
- Modulazione di fase (PM): varia la fase
- Modulazioni digitali:
 - ASK (Amplitude Shift Keying)
 - FSK (Frequency Shift Keying)
 - PSK (Phase Shift Keying)
 - QAM (Quadrature Amplitude Modulation): combina ampiezza e fase

7.6 Architetture di Rete

- Problemi:
 - Scalabilità: capacità di crescere senza degradazione
 - Distribuzione: gestione efficiente di risorse distribuite
- Quality of Service (QoS):
 - Parametri: larghezza di banda, ritardo, jitter, perdita di pacchetti
 - Tecniche: prioritizzazione, prenotazione di risorse, shaping del traffico
- Tipi di reti per dimensione:
 - PAN (Personal Area Network): pochi metri
 - LAN (Local Area Network): edificio o campus
 - MAN (Metropolitan Area Network): città
 - WAN (Wide Area Network): paesi o continenti
- Architetture client/server vs peer-to-peer

7.7 Ridondanza e Tolleranza all'Errore

- Ridondanza: duplicazione di componenti critici
- Tecniche di fault tolerance:
 - Replicazione

- Standby systems
- Fail-over automatico
- RAID per lo storage

7.8 Dispositivi di Rete

- Hub: ripete il segnale su tutte le porte (livello 1)
- Switch: inoltra i frame in base all'indirizzo MAC (livello 2)
- Bridge: collega segmenti di rete (livello 2)
- Router: instrada pacchetti tra reti diverse (livello 3)
- Gateway: traduce tra protocolli diversi (livelli superiori)

7.9 Topologie di Rete

- A stella: dispositivi collegati a un nodo centrale
 - Vantaggi: facile implementazione, isolamento guasti
 - Svantaggi: single point of failure
- Ad anello: ogni nodo collegato a due vicini
 - Vantaggi: accesso deterministico, nessuna collisione
 - Svantaggi: un guasto può interrompere l'anello
- A bus: tutti i nodi collegati a un unico canale
 - · Vantaggi: semplice, economico
 - Svantaggi: limitata scalabilità, vulnerabile a guasti
- A maglia (mesh):
 - Completa: ogni nodo collegato a tutti gli altri
 - Parziale: collegamenti selettivi
 - Vantaggi: alta affidabilità, percorsi alternativi
 - Svantaggi: costo elevato, complessità
- Ad albero: gerarchia di nodi
 - Vantaggi: scalabilità, gestione semplificata
 - Svantaggi: dipendenza dai nodi superiori

7.10 Ethernet e Tecnologie

- Ethernet: standard dominante per LAN (IEEE 802.3)
- Struttura pacchetto Ethernet:
 - Preambolo (7 byte)
 - SFD Start Frame Delimiter (1 byte)
 - Indirizzo MAC destinazione (6 byte)
 - Indirizzo MAC sorgente (6 byte)
 - EtherType/Length (2 byte)

- Payload (46-1500 byte)
- FCS Frame Check Sequence (4 byte, CRC-32)
- Token Ring: tecnica di accesso con passaggio di token
 - Accesso deterministico
 - Poco usato oggi, sostituito da Ethernet

8. ALGORITMI DI CONTESA

8.1 Algoritmi di Contesa a Livello Fisico

ALOHA:

- Trasmissione immediata
- In caso di collisione, ritrasmissione dopo tempo casuale
- Efficienza massima teorica: 18%

Slotted ALOHA:

- Tempo diviso in slot
- Trasmissione solo all'inizio di uno slot
- Efficienza massima teorica: 37%
- CSMA (Carrier Sense Multiple Access):
 - Ascolta prima di trasmettere
 - Varianti:
 - 1-persistente: trasmette subito se canale libero
 - Non-persistente: attende tempo casuale se canale occupato
 - p-persistente: trasmette con probabilità p se canale libero
- CSMA/CD (CSMA with Collision Detection):
 - Rileva collisioni durante la trasmissione
 - In caso di collisione, interrompe e ritrasmette dopo tempo casuale
 - Usato in Ethernet tradizionale

8.2 Problemi MAC (Medium Access Control)

- Collisioni: due o più stazioni trasmettono contemporaneamente
- Hidden terminal: stazioni che non possono sentirsi a vicenda
- Exposed terminal: inibizione non necessaria di trasmissioni
- Fairness: equità nell'accesso al mezzo
- Overhead: costo di gestione del protocollo

8.3 Frequenze Wireless e Spettro

- Bande di frequenza:
 - 2.4 GHz: WiFi, Bluetooth, microonde
 - 5 GHz: WiFi più recente

- 60 GHz: WiGig, comunicazioni ad alta velocità
- · Licenziate vs non licenziate
- Regolamentazione: ITU, autorità nazionali
- Allocazione dello spettro: statica vs dinamica

8.4 Reti Infrarossi, Telefoniche e Satellitari

- Reti infrarossi:
 - Line-of-sight, corto raggio
 - IrDA, telecomandi
- Reti telefoniche cellulari:
 - Celle e riuso delle frequenze
 - Handoff: trasferimento di connessione tra celle
 - Soft handoff vs hard handoff
- Reti satellitari:
 - LEO (Low Earth Orbit): 500-2000 km, bassa latenza, vita breve
 - MEO (Medium Earth Orbit): 8000-20000 km
 - GEO (Geostationary Earth Orbit): 36000 km, alta latenza, copertura ampia

8.5 Generazioni Reti Cellulari e Modulazioni

- **1G**: analogico (AMPS)
- 2G: digitale (GSM, CDMA)
- 3G: dati a banda larga (UMTS, CDMA2000)
- 4G/LTE: IP-based, alta velocità
- 5G: latenza ultra-bassa, IoT, slicing di rete
- Modulazioni telefoniche:
 - AMPS (Advanced Mobile Phone System): analogico
 - CDMA (Code Division Multiple Access): codici unici per utente
 - TDMA (Time Division Multiple Access): slot temporali
 - FDMA (Frequency Division Multiple Access): canali in frequenza

8.6 Standard ISO/IEEE

- ISO (International Organization for Standardization):
 - Modello OSI
 - Standard per formati di documenti, sicurezza, ecc.
- IEEE (Institute of Electrical and Electronics Engineers):
 - 802.3: Ethernet
 - 802.11: WiFi
 - 802.15: Bluetooth, ZigBee

8.7 Commutazione e Switching

Commutazione di circuito:

- Connessione dedicata per tutta la durata
- Risorse riservate, QoS garantita
- Inefficiente per traffico a burst
- Es: rete telefonica tradizionale

Commutazione di pacchetto:

- I dati divisi in pacchetti indipendenti
- Condivisione delle risorse
- Più efficiente, ma senza garanzie di QoS
- Es: Internet

8.8 Protocolli per LAN Wireless

Problemi specifici:

- Stazione esposta: inibizione non necessaria
- Stazione nascosta: impossibilità di rilevare collisioni
- MACA (Multiple Access with Collision Avoidance):
 - Usa RTS (Request To Send) e CTS (Clear To Send)
 - Risolve il problema della stazione nascosta
- MACAW (MACA for Wireless):
 - Evoluzione di MACA
 - Aggiunge ACK e backoff adattivo

8.9 Ethernet: Codifica e Backoff

Codifica Manchester:

- Transizione a metà bit
- Alto-basso per 0, basso-alto per 1
- Autosincronia, rilevamento errori

Algoritmo di backoff esponenziale:

- Dopo una collisione, attesa casuale
- Finestra di contesa raddoppia ad ogni collisione consecutiva
- Limitato a un massimo (10 in Ethernet)

8.10 Tipi di Trasmissione

• Unicast: da uno a uno

Broadcast: da uno a tutti

Multicast: da uno a molti

Anycast: da uno a uno qualsiasi di un gruppo

9. MODELLI DI RIFERIMENTO

9.1 Modello ISO/OSI

Modello a 7 livelli per standardizzare le comunicazioni di rete:

1. **Livello fisico**: trasmissione di bit grezzi

2. Livello data link: framing e controllo errori

3. Livello rete: routing e indirizzamento

4. Livello trasporto: connessione end-to-end affidabile

5. Livello sessione: gestione delle sessioni

6. Livello presentazione: rappresentazione dati

7. Livello applicazione: servizi di rete all'utente

9.2 Modello TCP/IP

Modello a 4 livelli usato in Internet:

1. Livello di accesso alla rete: corrisponde ai livelli 1 e 2 di OSI

2. Livello internet: corrisponde al livello 3 di OSI (protocollo IP)

3. **Livello di trasporto**: corrisponde al livello 4 di OSI (TCP, UDP)

4. Livello applicazione: corrisponde ai livelli 5, 6 e 7 di OSI

9.3 Confronto tra ISO/OSI e TCP/IP

Caratteristica	ISO/OSI	TCP/IP	
Numero di livelli	7	4	
Orientamento	Teorico	Pratico	
Sviluppo	Prima il modello, poi i protocolli	Prima i protocolli, poi il modello	
Adozione	Limitata	Universale	
Complessità	Maggiore	Minore	
Flessibilità	Rigido	Flessibile	

9.4 Livello 2: LLC/MAC

Il livello data link è suddiviso in due sottolivelli:

- LLC (Logical Link Control):
 - Fornisce un'interfaccia verso il livello superiore (rete)

- Indipendente dal mezzo fisico
- Controllo di flusso e gestione errori
- MAC (Media Access Control):
 - Gestisce l'accesso al mezzo condiviso
 - Indirizzamento MAC (48 bit)
 - Specifico per il tipo di rete (Ethernet, WiFi, ecc.)

10. LIVELLO DI RETE

10.1 Introduzione al Livello 3

Il livello di rete si occupa di:

- Routing dei pacchetti tra reti diverse
- Indirizzamento logico (IP)
- Frammentazione e riassemblaggio dei pacchetti
- Controllo della congestione
- Qualità del servizio

10.2 Tipi di Routing

Routing statico:

- Percorsi configurati manualmente dall'amministratore
- Non si adatta ai cambiamenti topologici
- Basso overhead, ma poca flessibilità
- Adatto a reti piccole e stabili

Routing dinamico:

- I router scambiano informazioni sulla topologia
- Si adatta automaticamente ai cambiamenti
- Maggiore overhead, ma più flessibile
- Protocolli: RIP, OSPF, BGP, ecc.

10.3 Algoritmi di Routing: Link State e Distance Vector

Distance Vector:

- Basato sull'algoritmo di Bellman-Ford
- Ogni router condivide con i vicini la propria visione della rete
- Problemi: slow convergence, count-to-infinity
- Esempi: RIP, RIPv2

Link State:

- Basato sull'algoritmo di Dijkstra
- Ogni router costruisce una mappa completa della rete

- Convergenza più rapida, ma maggior consumo di risorse
- Esempi: OSPF, IS-IS

10.4 Routing Table

Tabella contenente le informazioni per l'inoltro dei pacchetti:

- Prefisso di destinazione (indirizzo di rete)
- Maschera di sottorete
- Next hop (indirizzo del router successivo)
- Interfaccia di uscita
- Metrica (costo del percorso)
- Flag e timer

10.5 Algoritmo di Bellman-Ford

Utilizzato nei protocolli distance vector:

- Calcola il percorso più breve tra nodi in un grafo
- Funziona anche in presenza di pesi negativi
- Complessità: O(V×E) dove V è il numero di vertici e E il numero di archi
- Problemi in reti con cicli

10.6 Algoritmo di Dijkstra

Utilizzato nei protocolli link state:

- Calcola il percorso più breve da un nodo a tutti gli altri
- Funziona solo con pesi positivi o nulli
- Complessità: O(V²) o O(E log V) con coda di priorità
- Più efficiente in reti dense

10.7 Routing Mobile

Gestione di nodi che cambiano posizione:

- Home Agent: gestisce la posizione corrente del nodo mobile
- Foreign Agent: fornisce servizi al nodo in roaming
- Tunneling: incapsulamento dei pacchetti per il forwarding
- Protocolli: Mobile IP, NEMO

10.8 Algoritmi di Congestione

- Leaky Bucket:
 - Regola il flusso di pacchetti come un secchio che perde

- Rata di uscita costante
- Traffico in eccesso viene scartato

Token Bucket:

- Genera token a velocità costante
- Un pacchetto può essere trasmesso solo se c'è un token disponibile
- Consente burst controllati di traffico

10.9 Algoritmi di Routing Avanzati

- BGP (Border Gateway Protocol):
 - Protocollo di routing esterno (EGP)
 - Utilizzato tra Autonomous System (AS)
 - Path vector, policy-based
 - Considera fattori politici, economici oltre ai tecnici
- OSPF (Open Shortest Path First):
 - Protocollo di routing interno (IGP)
 - Link state
 - Supporta aree gerarchiche
 - Convergenza rapida

10.10 Algoritmi di Controllo

- ICMP (Internet Control Message Protocol):
 - Segnalazione di errori
 - Echo request/reply (ping)
 - Redirect
 - Time exceeded
- RIP (Routing Information Protocol):
 - Distance vector
 - Metrica: numero di hop (max 15)
 - Aggiornamenti periodici ogni 30 secondi
 - · Limitato per reti grandi

10.11 Struttura Pacchetto IPv4

- Versione (4 bit): IPv4 = 4
- IHL (4 bit): lunghezza dell'header in parole da 32 bit
- ToS/DSCP (8 bit): tipo di servizio / punto di codice per servizi differenziati
- Lunghezza totale (16 bit): lunghezza totale in byte
- Identificazione (16 bit): identifica i frammenti di un pacchetto
- Flag (3 bit): controllo frammentazione

- Offset frammentazione (13 bit): posizione del frammento
- TTL (8 bit): time to live, decrementato ad ogni hop
- Protocollo (8 bit): protocollo di livello superiore (TCP=6, UDP=17, ICMP=1)
- Checksum header (16 bit): verifica integrità header
- Indirizzo sorgente (32 bit)
- Indirizzo destinazione (32 bit)
- Opzioni (variabile): opzioni aggiuntive
- Dati (variabile): payload

10.12 Differenze tra IPv4 e IPv6

Caratteristica	IPv4	IPv6	
Lunghezza indirizzo	32 bit (4 byte)	128 bit (16 byte)	
Notazione	Decimale puntata	Esadecimale con :	
Numero di indirizzi	~4,3 miliardi	~3,4×10^38	
Header	Variabile, complesso	Fisso, semplificato	
Frammentazione	Router e host	Solo host	
Checksum	Presente	Assente (delegato ai livelli superiori)	
Configurazione	Manuale o DHCP	Autoconfigurazione o DHCPv6	
NAT	Comune	Non necessario	
Sicurezza	Opzionale (IPsec)	Integrata	
QoS	Basata su ToS	Flow Label	
Multicast	Limitato	Integrato e migliorato	
Broadcast	Supportato	Sostituito da multicast	

10.13 Internetworking e Topologie di Rete

- Internetworking: connessione di reti eterogenee
- Dispositivi di interconnessione:
 - Bridge: livello 2, collega segmenti LAN
 - Router: livello 3, collega reti diverse
 - Gateway: livelli superiori, traduce protocolli
- Topologie di internetworking:
 - Backbone: rete principale ad alta velocità
 - Star-based: reti satelliti collegate a hub centrali
 - Mesh: connessioni ridondanti tra reti
 - Gerarchica: reti organizzate a livelli

10.14 Algoritmi di Congestione Avanzati

Choke Packet:

- Il router congestionato invia pacchetti di "strozzamento" alla sorgente
- La sorgente riduce la velocità di trasmissione

Leaky Bucket:

- Limita il traffico a una velocità costante
- I pacchetti in eccesso vengono bufferizzati o scartati

Token Bucket:

- Limita il traffico medio ma permette burst
- Tokens generati a velocità costante, consumati dai pacchetti

11. LIVELLO DI TRASPORTO

11.1 TCP e UDP: Caratteristiche e Confronto

- TCP (Transmission Control Protocol):
 - Orientato alla connessione
 - Affidabile: garantisce consegna in ordine e senza duplicati
 - Controllo di flusso e congestione
 - Overhead maggiore
 - · Applicazioni: web, email, file transfer
- UDP (User Datagram Protocol):
 - Senza connessione
 - Non affidabile: possibili perdite, duplicati, disordine
 - Nessun controllo di flusso o congestione
 - Overhead minimo
 - Applicazioni: streaming, VoIP, DNS

Caratteristica	ТСР	UDP
Affidabilità	Alta	Bassa
Ordine pacchetti	Garantito	Non garantito
Velocità	Più lenta	Più veloce
Overhead	Alto	Basso
Handshake	3-way	Nessuno
Controllo congestione	Sì	No
Dimensione header	20-60 byte	8 byte

11.2 Algoritmi di Controllo Flusso

Stop-and-wait:

- Il mittente invia un pacchetto e attende ACK
- Semplice ma inefficiente
- Utilizzabile per collegamenti ad alta velocità e bassa latenza

Go-back-N:

- Finestra scorrevole di N pacchetti
- Se timeout, ritrasmette tutti i pacchetti dalla posizione N
- Efficiente ma può ritrasmettere pacchetti già ricevuti

Selective Repeat:

- Finestra scorrevole con ACK selettivi
- Ritrasmette solo i pacchetti persi
- Più efficiente ma più complesso

11.3 Port e Socket

Port:

- Identificatore numerico (16 bit) per processi/servizi
- Tipi: well-known (0-1023), registered (1024-49151), dynamic (49152-65535)
- Esempi: HTTP=80, HTTPS=443, FTP=21, SSH=22

Socket:

- Endpoint di comunicazione
- Identificato da IP:porta
- API per la comunicazione di rete
- Tipi: stream (TCP), datagram (UDP), raw

11.4 Connessione e Disconnessione

TCP Three-way Handshake:

- 1. SYN: client → server (inizializza sequenza)
- 2. SYN+ACK: server → client (conferma e inizializza sequenza)
- 3. ACK: client → server (conferma)

TCP Four-way Termination:

- 1. FIN: client → server (chiusura in un senso)
- 2. ACK: server → client (conferma)
- 3. FIN: server → client (chiusura nell'altro senso)
- 4. ACK: client → server (conferma)

11.5 Gestione Problemi di Rete

Perdita di pacchetti:

Rilevamento: timeout, ACK duplicati

Mitigazione: ritrasmissione

Congestione:

- Rilevamento: aumento RTT, perdita pacchetti
- Algoritmi: slow start, congestion avoidance, fast retransmit, fast recovery

Latenza:

- Monitoraggio RTT (Round Trip Time)
- Adaptive timeout

Jitter:

- Buffer di playout (per applicazioni multimediali)
- Prioritizzazione del traffico

12. PRINCIPI FONDAMENTALI DI SICUREZZA

12.1 Triade CIA

Tre principi fondamentali della sicurezza informatica:

- Confidenzialità (Confidentiality):
 - Protezione da accessi non autorizzati
 - Tecniche: crittografia, controllo accessi, autenticazione
- Integrità (Integrity):
 - Garanzia che i dati non siano alterati
 - Tecniche: hash, firme digitali, controlli di integrità
- Disponibilità (Availability):
 - Garanzia che i servizi siano accessibili quando necessario
 - Tecniche: ridondanza, backup, disaster recovery

12.2 Autenticazione, Autorizzazione, Accounting (AAA)

- Autenticazione: verifica dell'identità
 - Fattori: qualcosa che sai, hai, sei
 - Tecniche: password, token, biometria
- Autorizzazione: concessione di privilegi
 - RBAC (Role-Based Access Control)
 - ACL (Access Control List)
 - Principio del privilegio minimo
- Accounting: tracciamento delle attività
 - Logging
 - Auditing
 - Non ripudio

12.3 Minacce, Vulnerabilità e Rischi

- Minaccia: potenziale causa di un incidente
 - Naturale: disastri naturali
 - Involontaria: errori umani
 - Intenzionale: attacchi
- Vulnerabilità: debolezza che può essere sfruttata
 - Software: bug, configurazioni errate
 - · Hardware: difetti di progettazione
 - Organizzativa: procedure inadeguate
- Rischio: probabilità che una minaccia sfrutti una vulnerabilità
 - Risk = Threat × Vulnerability × Asset Value
 - Gestione del rischio: identificazione, analisi, mitigazione

13. VULNERABILITÀ A LIVELLO DI RETE E TRASPORTO

13.1 Vulnerabilità a Livello 2 (Data Link)

ARP Spoofing/Poisoning:

- Falsificazione di risposte ARP
- Permette man-in-the-middle su LAN
- Contromisure: DHCP snooping, DAI, static ARP

MAC Flooding:

- Saturazione della tabella CAM dello switch
- Forza lo switch in modalità hub
- Contromisure: port security, MAC limit

Rogue DHCP:

- Server DHCP non autorizzato
- Può reindirizzare traffico o negare servizio
- Contromisure: DHCP snooping, autenticazione 802.1X

13.2 Vulnerabilità a Livello 3 (Network)

IP Spoofing:

- Falsificazione dell'indirizzo IP sorgente
- Usato per attacchi DoS o bypass di filtri
- Contromisure: ingress/egress filtering, RPF

ICMP Attacks:

- Ping flood
- Smurf attack (amplificazione broadcast)
- ICMP redirect illegittimo
- Contromisure: filtraggio ICMP, rate limiting

Routing Attacks:

- Route poisoning
- Black hole routing
- Contromisure: autenticazione routing, filtri

13.3 Vulnerabilità a Livello 4 (Transport)

TCP SYN Flood:

- Invio massivo di SYN senza completare handshake
- Esaurisce le risorse del server
- Contromisure: SYN cookies, firewall

Session Hijacking:

- Intercettazione e furto di sessione attiva
- Possibile con sniffing e sequenza prevedibile
- · Contromisure: crittografia, random sequence numbers

• UDP Flood:

- Invio massivo di pacchetti UDP
- Possibili attacchi di amplificazione
- Contromisure: rate limiting, filtri

14. SOCIAL ENGINEERING E ATTACCHI A LIVELLO UMANO

14.1 Definizione e Tecniche Principali

Il social engineering sfrutta la psicologia umana anziché vulnerabilità tecniche:

Principi psicologici sfruttati:

- Autorità
- Scarsità
- Simpatia
- Reciprocità
- Impegno e coerenza
- Prova sociale
- Urgenza

14.2 Phishing e Varianti

Phishing generico:

- Email o messaggi che sembrano da fonti legittime
- Induce l'utente a rivelare credenziali o dati personali

Spear Phishing:

- Phishing mirato a specifici individui o organizzazioni
- Personalizzato con informazioni su target
- Vishing (Voice Phishing):
 - Phishing tramite telefono
 - Sfrutta social engineering vocale

14.3 Pretexting e Baiting

- Pretexting:
 - Creazione di scenario fittizio per ottenere informazioni
 - L'attaccante si finge un'altra persona (HR, IT, ecc.)
- Baiting:
 - Usa curiosità o avidità come esca
 - Es: chiavette USB infette lasciate in luoghi pubblici

14.4 Contromisure e Prevenzione

- Formazione e sensibilizzazione:
 - Training regolare degli utenti
 - Simulazioni di phishing
- Politiche e procedure:
 - · Verifica multi-canale per richieste sensibili
 - Principio del "need to know"
- Tecnologie:
 - Filtri anti-phishing
 - Autenticazione multi-fattore
 - Analisi comportamentale

15. ACCENNI AI LIVELLI SUCCESSIVI ISO/OSI

15.1 Livello 5 – Sessione

- Funzioni principali:
 - Stabilimento, gestione e chiusura delle sessioni
 - Sincronizzazione del dialogo
 - Controllo del token
 - Ripristino della sessione
- Protocolli:
 - NetBIOS
 - RPC
 - SSL/TLS (aspetti di sessione)

15.2 Livello 6 - Presentazione

Funzioni principali:

- Traduzione, compressione e crittografia dei dati
- Conversione di formato
- Negoziazione della sintassi

Standard e formati:

- ASCII, Unicode
- JPEG, MPEG, GIF
- XDR (External Data Representation)

15.3 Livello 7 - Applicazione

Funzioni principali:

- Interfaccia per le applicazioni utente
- Servizi di rete
- Identificazione dei partner comunicanti

Protocolli comuni:

- HTTP/HTTPS (web)
- SMTP, POP3, IMAP (email)
- FTP, SFTP (file transfer)
- DNS (risoluzione nomi)
- DHCP (configurazione IP)
- Telnet, SSH (terminal)

GLOSSARIO TERMINI CHIAVE

- ALU (Arithmetic Logic Unit): componente della CPU che esegue operazioni aritmetiche e logiche
- ALOHA: protocollo di accesso al mezzo trasmissivo ad alto rischio di collisione
- ARP (Address Resolution Protocol): protocollo per mappare indirizzi IP in indirizzi MAC
- ASK (Amplitude Shift Keying): modulazione che varia l'ampiezza del segnale
- BGP (Border Gateway Protocol): protocollo di routing tra Autonomous System
- CISC (Complex Instruction Set Computer): architettura con set di istruzioni complesso
- CRC (Cyclic Redundancy Check): tecnica di rilevamento errori
- CSMA/CD (Carrier Sense Multiple Access with Collision Detection): protocollo di accesso al mezzo con rilevamento collisioni
- CU (Control Unit): componente della CPU che coordina le operazioni

- DHCP (Dynamic Host Configuration Protocol): protocollo per assegnazione automatica indirizzi IP
- **Dijkstra**: algoritmo per trovare il percorso minimo in un grafo
- DNS (Domain Name System): sistema per tradurre nomi di dominio in indirizzi IP
- **EEPROM** (Electrically Erasable Programmable ROM): memoria cancellabile elettricamente
- Ethernet: tecnologia per LAN standardizzata IEEE 802.3
- FIFO (First In First Out): politica di scheduling che processa richieste nell'ordine di arrivo
- FPU (Floating Point Unit): unità specializzata per calcoli in virgola mobile
- FSB (Front Side Bus): bus che collega CPU e northbridge
- FTP (File Transfer Protocol): protocollo per trasferimento file
- **GEO** (Geostationary Earth Orbit): orbita satellitare a 36000 km
- HTTP (Hypertext Transfer Protocol): protocollo applicativo per il web
- ICMP (Internet Control Message Protocol): protocollo per messaggi di controllo IP
- **IEEE** (Institute of Electrical and Electronics Engineers): organizzazione per standardizzazione
- **IP** (Internet Protocol): protocollo di rete fondamentale di Internet
- ISA (Instruction Set Architecture): insieme delle istruzioni eseguibili da una CPU
- ISO (International Organization for Standardization): organizzazione per standardizzazione
- LLC (Logical Link Control): sottolivello superiore del livello data link
- MAC (Media Access Control): sottolivello inferiore del livello data link
- MACA (Multiple Access with Collision Avoidance): protocollo di accesso wireless
- MIPS (Million Instructions Per Second): misura di performance CPU
- NAT (Network Address Translation): traduzione indirizzi di rete
- OSPF (Open Shortest Path First): protocollo di routing link state
- PCIe (Peripheral Component Interconnect Express): bus per periferiche ad alta velocità
- QAM (Quadrature Amplitude Modulation): modulazione che combina ampiezza e fase
- QoS (Quality of Service): gestione priorità traffico di rete
- RAID (Redundant Array of Independent Disks): tecnologia di ridondanza dati
- RAM (Random Access Memory): memoria volatile ad accesso casuale
- RIP (Routing Information Protocol): protocollo di routing distance vector
- RISC (Reduced Instruction Set Computer): architettura con set di istruzioni ridotto
- ROM (Read-Only Memory): memoria non volatile di sola lettura
- RTS/CTS (Request To Send/Clear To Send): meccanismo di controllo accesso in reti wireless
- RTT (Round Trip Time): tempo di andata e ritorno di un pacchetto
- SJF (Shortest Job First): politica di scheduling che prioritizza processi più brevi
- SMTP (Simple Mail Transfer Protocol): protocollo per invio email
- SSD (Solid State Drive): dispositivo di memoria non volatile basato su flash

- TCP (Transmission Control Protocol): protocollo di trasporto affidabile
- TTL (Time To Live): campo IP che limita la vita del pacchetto
- **UDP** (User Datagram Protocol): protocollo di trasporto non affidabile
- **UTP** (Unshielded Twisted Pair): cavo a coppie intrecciate non schermato
- VoIP (Voice over IP): tecnologia per trasmissione voce su IP
- WAN (Wide Area Network): rete geografica estesa