DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN

Object Detection and Recognition I

Kim Steenstrup Pedersen

Plan for today

- General comments on your solutions to assignment 1
- Object detection and recognition?
- Interest point based approaches:
 - SIFT

Comments to your solutions for assignment 1

- Patch extraction: Remember to handle boundary conditions
- Matching: Compare all patches from image A with all patches in image B using NCC.
 Thresholding or best / 2nd best ratio thresholding?
- What was the best patch size?
- Remember to answer the questions in the assignment, include figures and make sure we can run your code (e.g. don't use absolute file paths – only relative paths)

Remember:

If you have to resubmit, do so at the latest on Friday via the assignment in Absalon

Plan for today

- Object detection and recognition?
- Interest point based approaches:
 - SIFT

What is in this image?

Where?

Object alignment?

Cars

Window

Lamp post

NOT Content-Based Image Retrieval (CBIR)

Search result

Query image

Clarification of terms

- In CBIR we compare images with images
- In object recognition we want to infer whether or not a specific object category is present in an image.
- In object detection we want to localize specific instances from object categories in images
- Object detection is a harder problem than object recognition and CBIR

- Interest point based approaches:
 - SIFT
- Dense feature template approaches:
 - Histogram of Oriented Gradients (HoG)
 - Deformable parts models (DPM)

Interest point based approaches to object detection

Training:

- Detect interest points and extract features on localized object examples
- For each object, store in a database a representation of interest points found on the object

Query image:

- Detect interest points and extract features
- Look up best matching object in the database by matching the interest points

Query image

Recognition and detection

To the

Objects

We will look at object detection by Lowe'04: Can detect specific objects under heavy occlusion and scene clutter

- Building the object database:
 - For each object, collect one or more training images of the object.
 - Training images: One view of object in the image center without background clutter.
 - For each training image:
 - Extract DoG interest points and SIFT descriptors.
 - Per interest point store the location relative to object, scale, orientation (x,y,σ,θ) , SIFT descriptor vector, and object label.

- Recognition given a query image:
 - Detect DoG interest points and extract SIFT descriptors in query image.
 - For all interest points in query image, match SIFT descriptors with descriptors in the object database. This is performed by a nearest neighbor search.
 - NOTICE: We might match to interest points from different objects in the database.

Recall SIFT matching:

 SIFT features are compared with Euclidean distance (L2norm):

$$d_2(F_1, F_2) = \sqrt{\sum_{i=1}^{128} (F_1(i) - F_2(i))^2}$$

- Matching SIFT features:
 - A match if this is true

$$\frac{\text{Best}}{\text{2nd Best}} \le 0.8$$

- Best refers to the distance for the pair of features with smallest distance.
- 2nd Best refers to the distance for the pair of features with second smallest distance.

- Recognition given a query image:
 - Detect DoG interest points and extract SIFT descriptors in query image.
 - For all interest points in query image, match SIFT descriptors with descriptors in the object database. This is performed by a nearest neighbor search.
 - NOTICE: We might match to interest points from different objects in the database.
- For all matched SIFT descriptors:
 - Find object categories by majority vote among descriptors.
 - Cluster matching descriptors using Hough voting to handle object occlusion and determine rough estimate of position, scale and orientation.
 - Improve estimate of position, orientation, scale and shear of object using an affine model.

- For each potential object category:
 - For all matching interest points have this object category:
 - Apply Hough transform to the 4 parameters (x, y, σ, θ)
 - Find all maxima in Hough space with more than 3 points in the bin. These are potential object candidates (one or more detections).
 - For each object candidate (x,y,σ,θ) , refine the estimate using an affine transformation model.

Hough transform:

A 4 dimensional histogram tilling the parameter space.

Improving the estimate of location, orientation and scale

- Using all interest points that vote for candidate (x,y,σ,θ) , improve the estimate by:
 - Solving for affine transformation parameters model points (x,y) and query points (u,v)

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

Using all matching points then improve by least squares solution:

$$\begin{pmatrix} x_1 & y_1 & 0 & 0 & 1 & 0 \\ 0 & 0 & x_1 & y_1 & 0 & 1 \\ & & \cdots & & & \\ & & & t_y \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_x \\ t_y \end{pmatrix} = \begin{pmatrix} u_1 \\ v_1 \\ \vdots \end{pmatrix} \quad \Leftrightarrow \mathbf{A}\mathbf{z} = \mathbf{b} \Rightarrow \mathbf{z} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

Interest point based approach using SIFT (Quick overview)

• Post-processing: Check if estimated (x,y,σ,θ) and interest points in query and database fit closely, otherwise discard.

Decision (scoring):
 Use a probability model and only accept object detections when we are really sure according to the model.

SIFT Results

SIFT Results

Problems

This approach:

 Only works well for detecting specific objects or welldefined object categories with low intra-class variability

In general:

Inter-class versus intra-class variability

Examples of inter-class proximity(Flowers dataset, Oxford Visual Geometry Group)

English Marigold

Barbeton Daisy

Tree Poppy

Japanese Anemone

Hibiscus

Azalea

Examples of large intra-class variation (Caltech-UCSD Birds 200 dataset – North American birds)

Black capped Vireo

Black footed Albatross

Black Tern

Problems

This approach:

 Only works well for detecting specific objects or well defined object categories with low intra-class variability

In general:

- Inter-class versus intra-class variability
- Large variation in view-point and illumination (intra-class variation)

Summary

- Object detection and recognition is harder than CBIR
- Interest point based approaches:
 - SIFT

Literature

Reading material:

• Lowe IJCV 2004 (Sec. 7 − 9)