# 微生物多重PCR引物设计流程 引物设计与筛选

#### 一. 背景简介

多重PCR: 在一个PCR反应管中扩增多个目标片段。

#### 主要难点:

- 引物相互作用,有些反应无法扩增
- 非特异结合和扩增
- 不同反应扩增效率有差异,导致均一性差

#### 微生物多重PCR难点:

- 序列差异大
- 没有SNP数据
- 样本浓度可能有较大差异

#### 解决方法:

- 使用简并引物
- 排除引物之间可能存在的相互作用,引物与Amplicon可能存在的相互作用
- 使用Universal Tag等方法提高扩增均一性

# 一. 使用JCVI Primer Designer生成候选简并引物

该软件用于生成微生物扩增用高通量测序引物,可生成简并引物, J. Craig Venter Institute 在2008年发布的开源软件<sup>[1]</sup>。

要求序列简并度最好<13%,使用过程中显示序列简并度<20%也可使用。

需在Linux操作系统下使用。按照说明书按照软件后仍可能无法直接使用,需修改一下代码。

#### 主要特点:

- 将简并引物还原为ATGC序列再设计引物,并检测非特异扩增,发卡结构,引物退火温度,引物相互作用等。
- 使用Primer3生成候选引物,检测引物相互作用
- 调用EMBOSS: palindrome, 检测回文序列, 避免发卡结构影响
- 调用NCBI BLAST toolkit: dust,排除低复杂度序列
- 对于较大的基因组(简并度较低),调用NCBI BLAST: blastall, bl2seq, formatdb,检测引物非特异结合
- 对于较小的基因组(简并度较高),调用EMBOSS: Dreg检测引物非特异结合

# 二. 排除有相互作用的引物,生成用于实验的引物

排除相互作用的引物的规则主要参考以下资料[2][3]:

Methods=

# A genotyping system capable of simultaneously analyzing >1000 single nucleotide polymorphisms in a haploid genome

Hui-Yun Wang,<sup>1,4</sup> Minjie Luo,<sup>1,4</sup> Irina V. Tereshchenko,<sup>1</sup> Danielle M. Frikker,<sup>1</sup> Xiangfeng Cui,<sup>1</sup> James Y. Li,<sup>3</sup> Guohong Hu,<sup>1</sup> Yi Chu,<sup>1</sup> Marco A. Azaro,<sup>1</sup> Yong Lin,<sup>2</sup> Li Shen,<sup>1</sup> Qifeng Yang,<sup>1</sup> Manousos E. Kambouris,<sup>1</sup> Richeng Gao,<sup>1</sup> Weichung Shih,<sup>2</sup> and Honghua Li<sup>1,5</sup>

Richard Schoske · Pete M. Vallone Christian M. Ruitberg · John M. Butler

# Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci

# 2.0 排除简单重复序列

- 1. No SNPs in the primer regions (within 50 nucleotide on any side of target sequences).
- 2. No  $\geq$  10 consecutive mononucleotides the primer regions.
- 3. No  $\geq$  9 dinucleotide repeating units the primer regions.
- 4. No  $\geq$  5 trinucleotide repeating units in the primer regions.
- 5. CG content: 25%-75%.

## 2.1 检测引物之间的相互作用

1. 两引物3'末端(连续)互补碱基数<4(实际应用中有时会修改为5)

2. 两引物3'末端 (with one mismatch) 互补碱基<7

3. 两引物任意位置(连续)互补碱基<10

#### 4. 两引物任意位置 (with one mismatch) 互补碱基<12

#### 5. 两引物任意区域 (min = 14bp) 互补碱基比例<75%

根据第二篇参考文献加入了检测alignment score的方法,排除alignment score >= 8的引物组合。

#### 6. 两引物alignment score < 8

TACCAACCCAACCATTATACAT and ATTGGGTTGACAGGTGCAGT violate rule No.6 the score is

TACCAACCCAACCATTATACAT

| | | | | | | | |

TGACGTGGACAGTTGGGTTA

#### alignment score计算方法:

match : score +1

mismatch open : score -2

mismatch extension : score -1

## 2.2 检测引物与Amplicon之间的相互作用

引物3'端与amplicon间的互补碱基数<13.(实际应用中,因为引物和amplicon均为简并序列, 因此,设置为引物3'末端14bp序列与amplicon比对分数<12)

Score反映Primer与Amplicon结合的概率

Score = (Primer and Amplicon in common) / Amplicon

Score <=1

| Primer | Amplicon | Score |
|--------|----------|-------|
| N      | Α        | 1     |
| Α      | N        | 1/4   |
| В      | D        | 2/3   |

#### B: [CGT], D: [AGT]

```
Found one match between the primer and amplicon above threshold, the match score is 12.0.

The primer 3 end seq is ATCHGGNTTYCCAT it is on forward strand.

The amplicon seq is AYCAGGGTTTYYAY

Find 1 matches of primer Norovirus_GI#F#0 in amplicon Adenovirus_F-G
```

# 三. 引物筛选流程及主要操作步骤

# 3.1 主要用途:

- 设计多重PCR引物,用于同时扩增多个靶点,每个靶点设置为一个组别
- 将简并引物还原为ATGC, 计算退火温度范围, 排除退火温度不合适的引物
- 检测引物之间的相互作用;
- 检测引物-Amplicon间的相互作用;
- 设置Amplicon Size , 以及Amplicon间的最小差值 , 排除扩增大小不合适的引物组合 ;
- 将经检测符合以上要求的引物进行组合,输出可行组合。

# 3.2 输入文件:

候选引物文件, fasta格式

```
>组别#F/R#序号
 1.
 2.
     引物序列
     例如:
    >Norovirus GI#F#3
 5.
     GARAARTTYTACAGRAAGAT
     >Norovirus_GI#R#4
7.
    RACCCARCCATTRTACATY
8.
    >Rotavirus A#F#0
9.
     GGCWTTTAATGCTTTTCAGT
10.
     >Rotavirus A#R#0
11.
     TTWACRCCWGARTCATCCAT
12.
```

#### Amplicon文件, fasta格式,包括候选引物所在区域

```
    >Amplicon名称
    Amplicon序列
    例如:
    >SapoVirus_GI_consensus_seq
    RGWYGTTGACCYKCCTGGCRCRRYDGGYCCGRCCACATCCMAYGTTGTTKKCTAATCCRGARCAACCCAATGGGS
    .....
```

#### 3.3 运行脚本

如果候选引物文件名为test\_primers.fasta, Amplicion文件名为test\_input\_region.fasta将上述文件拷贝至脚本程序所在文件夹,打开cmd窗口,输出下列命令运行脚本

```
    python 脚本名 候选引物文件名 (Amplicon文件名)
    例如:
    python PrimerCheck.py test_primers.fasta
    PrimerSelector_Group.py. test_primers.fasta
    python PrimerSelector_Amplicon.py test_primers.fasta test_input_region.fasta
```

#### 3.4 输出文件

将候选引物文件从简并引物转变为ATGC之后的文件

```
1.
     文件名为:
     候选引物文件名_atgc.fasta
    例如:
 3.
    test_primers_atgc.fasta
 5.
     >Norovirus_GI#F#0#0
 6.
    CTGCCATCTGGGTTTCCAT
    >Norovirus_GI#F#0#1
 7.
 8.
    CTGCCATCTGGGTTCCCAT
 9.
    >Norovirus GI#F#0#2
10.
    CTGCCATCTGGTTTTCCAT
11.
     >Norovirus_GI#F#0#3
12.
     CTGCCATCTGGTTTCCCAT
13.
     >Norovirus_GI#F#0#4
     CTGCCATCTGGCTTTCCAT
14.
15.
```

引物相关信息,包括引物长度、简并度、Tm值范围, Flag标记等。如果简并度或Tm范围,不符合预先设定的值,则Flag标记变为0,被排除掉,不进行后面的运算。

```
    文件名为:
    候选引物文件名_information.txt
    例如:
    test_primers_primer_information.txt
```

| Name                   | Sequence                    |        | DegNu<br>mber | Max<br>Tm | Min<br>Tm | FI<br>ag |
|------------------------|-----------------------------|--------|---------------|-----------|-----------|----------|
| Adenovirus_f-<br>g#F#8 | CTACTCYGGCTCCRTYC<br>CMTAC  | 2<br>2 | 16            | 66.1<br>3 | 58.3<br>2 | 0        |
| Astrovirus_1-8<br>#F#1 | GGGRARCTCCTRTGCT<br>AYCAGT  | 2 2    | 16            | 66.3<br>3 | 57.6<br>3 | 0        |
| Astrovirus_1-8<br>#R#2 | GRCTTRCTAGCCATCRC<br>ACTYCT | 2 3    | 16            | 67.7<br>2 | 58.2<br>6 | 0        |
| SapoVirus_GI<br>#F#4   | GGYCCGRCCACATCCM<br>AY      | 1<br>8 | 16            | 66.4<br>5 | 57.1<br>9 | 0        |
| Norovirus_GI#<br>F#0   | CTNCCATCHGGNTTYCC<br>AT     | 1<br>9 | 96            | 63.0<br>2 | 51.7<br>9 | 1        |
| Norovirus_GI#<br>R#0   | GTKGAVACWATYTCATC<br>ATCACC | 2 3    | 24            | 59.9<br>6 | 54.6<br>2 | 1        |
| Norovirus_GI#<br>R#1   | ATCATCATTTACRWAWT<br>CGG    | 2<br>0 | 8             | 52.0<br>2 | 48.8<br>7 | 1        |
| Norovirus_GI#<br>F#1   | WGGDTGGCARGCCATG<br>TT      | 1<br>8 | 12            | 62.5<br>1 | 57.3<br>8 | 1        |

. . . . .

候选引物相互作用报告

```
1.
     文件名为:
 2.
     候选引物文件名_confiliction_report.fasta
 3.
     例如:
     test_primers_confliction_report.fasta
 4.
 5.
     主要包括:
     1. 引物在Amplicon上的位置
 6.
     SapoVirus GI#R#3
 7.
 8.
     ('SapoVirus_GI_consensus_seq', 'reverse', 816)
 9.
     Norovirus_GI#F#3
10.
     ('Norovirus_GI_consensus_seq', 'forward', 478)
11.
     Adenovirus_f-g#R#0
     ('Adenovirus_F-G', 'reverse', 329)
12.
13.
     Astrovirus_1-8#F#4
14.
     ('Astrovirus_1-8_consensus_seq', 'forward', 281)
15.
     . . . . . .
16.
     2. 候选引物间可能存在的相互作用
17.
     The confliction of primers are :
18.
19.
20.
     GGAAACTCCTATGCTATCAGTTG and TTGATACCATAGATTGGAA violate rule No.6 the score i
21.
     GGAAACTCCTATGCTATCAGTTG
             22.
23.
      AAGGTTAGATACCATAGTT
24.
     The panelty_score is 1
     Rotavirus_A#F#2#5 and Astrovirus_1-8#F#3#14 may have interaction.
25.
26.
     ATGTTGGGATGAAGCGATATAGA and TCAGTCATCCAATTTCTAT violate rule No.1 the score j
27.
     ATGTTGGGATGAAGCGATATAGA
28.
                       29.
                       TATCTTTAACCTACTGACT
30.
     The panelty_score is 1
31.
     Rotavirus A#R#1#19 and SapoVirus GI#R#0#0 may have interaction.
32.
     . . . . . .
33.
     3. 各引物的罚分
34.
35.
     The panelty score of degenerate primers are :
     SapoVirus GI#R#1
36.
37.
     Adenovirus f-g#F#0
                                                65
38.
     Astrovirus 1-8#F#7
                                                32
39.
     Astrovirus_1-8#F#6
                                                276
40.
     Adenovirus_f-g#F#4
                                                4
41.
     Rotavirus A#F#2
                                                84
42.
     Astrovirus_1-8#R#1
                                                40
43.
     Norovirus_GII#R#0
                                                194
44.
     Astrovirus_1-8#F#1
                                                144
45.
     . . . . . .
```

1. 文件名为:

候选引物名\_confiliction\_table.csv

例如:

4. test\_primers\_confliction\_table.csv

| Confl<br>iction<br>_Tabl<br>e | Sapo<br>Virus<br>_GI#R<br>#3 | Noro<br>virus<br>_GI#F<br>#3 | Adeno<br>virus_<br>f-g#R#<br>0 | Astro virus_ 1-8#F# | Norov<br>irus_<br>GI#F#<br>1 | Adeno<br>virus_<br>f-g#R#<br>4 | SapoV<br>irus_<br>GI#R#<br>2 |
|-------------------------------|------------------------------|------------------------------|--------------------------------|---------------------|------------------------------|--------------------------------|------------------------------|
| SapoV<br>irus_G<br>I#R#3      | 2                            | 0                            | 1                              | 0                   | 0                            | 0                              | 0                            |
| Norov<br>irus_G<br>I#F#3      | 0                            | 2                            | 1                              | 0                   | 0                            | 0                              | 0                            |
| Adeno virus_ f-g#R# 0         | 1                            | 1                            | 0                              | 0                   | 0                            | 0                              | 0                            |
| Astro virus_ 1-8#F# 4         | 0                            | 0                            | 0                              | 2                   | 0                            | 0                              | 0                            |
| Norov<br>irus_G<br>I#F#1      | 0                            | 0                            | 0                              | 0                   | 0                            | 0                              | 0                            |

. . . . . .

候选引物组合

```
1.
      文件名为:
 2.
     候选引物名_combinations.txt
 3.
     例如:
     test_primers_combinations.txt
 4.
 5.
     主要包括:
     1. 可选引物组合:
 6.
     Primer Combinations Without Interaction:
 7.
 8.
     Amplicon Length are : [115, 179, 238, 320, 398, 532]
 9.
     >Norovirus_GI#F#1
10.
     WGGDTGGCARGCCATGTT
11.
     >SapoVirus_GI#R#1
12.
     GGTGGTAYGACAGAAGCAATGAT
13.
     >Adenovirus_f-g#R#7
14.
     CACGTTGTAYCCTTCMCCRTC
15.
     . . . . . .
16.
     2. 自身存在相互作用的引物:
17.
18.
     The self interaction primers are:
19.
     >Norovirus GI#F#0
20.
     CTNCCATCHGGNTTYCCAT
21.
     >Norovirus_GI#F#3
22.
     GARAARTTYTACAGRAAGAT
     >SapoVirus_GI#R#3
23.
24.
     ATTGGRTTRACNGGTGCVGT
25.
     >Adenovirus_f-g#R#8
26.
     AAACCCTGRTAKCCRATRTTGTA
27.
     >SapoVirus_GI#R#2
28.
     AGTGATRCGAGCATCAACGAAAG
29.
     . . . . . .
30.
     3. 尝试引物组合数以及可用引物组合数:
31.
32.
     The total combination number is 846720, the combination number without intera
33.
     The primers can be used are:
     >Adenovirus f-g#F#0
34.
35.
     TACATGAACGGKCGKGTKRC
     >Norovirus GII#F#3
36.
37.
     GCTCCCRRTKKTGTGAATGAAG
38.
     >Adenovirus_f-g#F#6
39.
     CMAACATGCTKTAYCCCATHCC
40.
     >Adenovirus f-g#F#2
41.
     GCATYAAYCTGTAYGCYAACTTTTT
42.
     >Norovirus_GI#F#1
43.
     WGGDTGGCARGCCATGTT
44.
     . . . . . .
45.
46.
     4. 可用引物出现次数:
47.
     The primers can be used and there appearance value are:
48.
     Adenovirus_f-g#F#0
                                          6
49.
     Norovirus_GII#F#3
                                          56
50.
     Adenovirus f-g#F#6
                                          39
51.
     Adenovirus_f-g#F#2
                                          55
52.
     Norovirus_GI#F#1
                                          311
53.
     Adenovirus_f-g#R#4
                                          77
```

```
54.
     Norovirus GII#F#2
55.
     Rotavirus A#R#0
                                         311
56.
                                         172
     Norovirus_GII#R#0
57.
     Adenovirus_f-g#R#0
                                         56
58.
59.
     5. 引物-Amplicon相互作用, >1则可能有引物与其他Amplicon有非特异结合
60.
61.
     Primer Amplcion interaction number are:
62.
     SapoVirus GI#R#3
63.
     Norovirus_GI#F#3
                                     1
64.
     Adenovirus_f-g#R#0
                                     1
65.
     Norovirus_GII#R#2
                                     2
66.
     Adenovirus_f-g#R#5
67.
68.
69.
     6. 没有出现非特异结合的引物
70.
     Primers with unspecific interactions are:
71.
     >Norovirus GI#R#4
72.
     >RACCCARCCATTRTACATY
73.
     >Astrovirus_1-8#R#5
74.
     >GAGTRCTYCCWGTAGCRTCCTTA
75.
     >Norovirus GI#R#0
76.
     >GTKGAVACWATYTCATCATCACC
77.
     >Astrovirus 1-8#R#3
78.
     >TTACGGACACGYTGAKWAGAYTG
79.
     >Adenovirus_f-g#R#8
     >AAACCCTGRTAKCCRATRTTGTA
80.
81.
```

# 四. 实验方面的建议

- 先进行单管扩增验证引物,从目前实验结果来看,单管扩增成功的都能实现共同扩增。
- 2. 引物浓度对扩增的影响并不大,建议采用0.1uM\*简并度为初始引物浓度。
- 3. 对于AT含量较高的Amplicon ,多重PCR中使用dUTP可能无法很好地扩增。在dUTP中加入少量dNTP(1/8),可以较好地实现同时扩增。
- 4. 提高Mg<sup>2+</sup>浓度,降低退火温度等有助于共同扩增,但可能出现较多引物二聚体。
- 5. 使用F,R相同Universal Tag (HANDS系统<sup>[5]</sup>)有助于减少引物二聚体,可能对提高扩增均一性和检测限有帮助。



# 五. 一些改进

仅根据碱基互补配对,检测引物间的相互作用。相当于仅考虑碱基之间的氢键。没有考虑碱基堆积力等作用力,也没有考虑退火温度、Mg<sup>2+</sup>浓度、dNTP浓度等对反应的影响。



Neareast Neighbor Model:研究分子热动力学的模型,认为两条链上碱基的相互作用,除了与自身相关,与邻近碱基也相关。

- 是目前主流引物设计软件预测引物相互作用,计算引物Tm值的方法。
- 将碱基堆积力纳入计算,在某些情况下,可能具有更好的效果。
- 很多人进行过相关研究,计算得到的参数不尽相同,可能应用范围也有所不同。

将MPprimer中计算delta G值的方法补充到脚本中用于运算<sup>[6]</sup>。MPprimer使用SantaLucia的模型进行计算,主要参数及计算方法如下<sup>[7]</sup>:

$$\begin{split} \Delta G_{37}^{\circ}(\text{total}) &= \Delta G_{37\,\text{initiation}}^{\circ} + \Delta G_{37\,\text{symmetry}}^{\circ} + \Sigma \Delta G_{37\,\text{stack}}^{\circ} + \Delta G_{\text{AT\,terminal}}^{\circ} \\ 5'\text{-CGTTGA-3'} &= \Delta G_{37\,\text{initiation}}^{\circ} + \Delta G_{37\,\text{symmetry}}^{\circ} \\ 3'\text{-GCAACT-5'} &+ CG + GT + TT + TG + GA + AT_{\text{terminal}} \\ & GC & CA & AA & AC & CT \\ \Delta G_{37}^{\circ}\left(\text{predicted}\right) &= 1.96 + 0 - 2.17 - 1.44 - 1.00 - 1.45 - 1.30 + 0.05 \\ \Delta G_{37}^{\circ}\left(\text{predicted}\right) &= -5.35\,\text{kcal mol}^{-1}. \end{split}$$

TABLE 1 Nearest-neighbor thermodynamic parameters for DNA Watson-Crick pairs in 1 M NaCl

| Propagation sequence | $\Delta  m H^\circ$ (kcal mol $^{-1}$ ) | ΔS°<br>(e.u.) | $\Delta G_{37}^{\circ}$ (kcal mol $^{-1}$ ) |
|----------------------|-----------------------------------------|---------------|---------------------------------------------|
| AA/TT                | -7.6                                    | -21.3         | -1.00                                       |
| AT/TA                | -7.2                                    | -20.4         | -0.88                                       |
| TA/AT                | -7.2                                    | -21.3         | -0.58                                       |
| CA/GT                | -8.5                                    | -22.7         | -1.45                                       |
| GT/CA                | -8.4                                    | -22.4         | -1.44                                       |
| CT/GA                | -7.8                                    | -21.0         | -1.28                                       |
| GA/CT                | -8.2                                    | -22.2         | -1.30                                       |
| CG/GC                | -10.6                                   | -27.2         | -2.17                                       |
| GC/CG                | -9.8                                    | -24.4         | -2.24                                       |
| GG/CC                | -8.0                                    | -19.9         | -1.84                                       |
| Initiation           | +0.2                                    | -5.7          | +1.96                                       |
| Terminal AT penalty  | +2.2                                    | +6.9          | +0.05                                       |
| Symmetry correction  | 0.0                                     | -1.4          | +0.43                                       |

TABLE 2 Nearest-neighbor delta G°<sub>37</sub> increments (kcal mol<sup>-1</sup>) for internal single mismatches next to Watson-Crick pairs in 1 M NaCl

| Propagation |   | Y     |      |       |       |  |  |
|-------------|---|-------|------|-------|-------|--|--|
| sequence    | X | A     | C    | G     | T     |  |  |
| GX/CY       | A | 0.17  | 0.81 | -0.25 | WC    |  |  |
|             | C | 0.47  | 0.79 | WC    | 0.62  |  |  |
|             | G | -0.52 | WC   | -1.11 | 0.08  |  |  |
|             | T | WC    | 0.98 | -0.59 | 0.45  |  |  |
| CX/GY       | A | 0.43  | 0.75 | 0.03  | WC    |  |  |
|             | C | 0.79  | 0.70 | WC    | 0.62  |  |  |
|             | G | 0.11  | WC   | -0.11 | -0.47 |  |  |
|             | T | WC    | 0.40 | -0.32 | -0.12 |  |  |
| AX/TY       | A | 0.61  | 0.88 | 0.14  | WC    |  |  |
|             | C | 0.77  | 1.33 | WC    | 0.64  |  |  |
|             | G | 0.02  | WC   | -0.13 | 0.71  |  |  |
|             | T | WC    | 0.73 | 0.07  | 0.69  |  |  |
| TX/AY       | A | 0.69  | 0.92 | 0.42  | WC    |  |  |
|             | C | 1.33  | 1.05 | WC    | 0.97  |  |  |
|             | G | 0.74  | WC   | 0.44  | 0.43  |  |  |
|             | T | WC    | 0.75 | 0.34  | 0.68  |  |  |

采用MPprimer中默认的盐浓度等参数,设置cutoff值为-9kcal/mol<sup>-1</sup>,两引物deltaG value > -9kcal,则标记为可能存在相互作用。从目前结果来看,基本与rule No.6及rule No.5一致,但也可以检测到一些之前没有的相互作用。

# 六. 相关资源及参考文献

1. JCVI Primer Designer:

https://sourceforge.net/projects/primerdesigner/

2. MPprimer:

https://sourceforge.net/projects/mpprimer/ http://biocompute.bmi.ac.cn/MPprimer/

3. Thermo Fisher Multiple Primer Analyzer:

https://www.thermofisher.com/cn/zh/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-primer-analyzer.html

4. Primer Pooler:

http://people.ds.cam.ac.uk/ssb22/pooler/

[1]Li K, Brownley A, Stockwell T B, et al. Novel computational methods for increasing PCR primer design effectiveness in directed sequencing[J]. BMC bioinformatics, 2008, 9(1): 191.

[2]Wang H Y, Luo M, Tereshchenko I V, et al. A genotyping system capable of simultaneously analyzing> 1000 single nucleotide polymorphisms in a haploid genome[J]. Genome research, 2005, 15(2): 276-283.

[3]Schoske R, Vallone P M, Ruitberg C M, et al. Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci[J]. Analytical and Bioanalytical Chemistry, 2003, 375(3): 333-343.

[4]Brownie J, Shawcross S, Theaker J, et al. The elimination of primer-dimer accumulation in PCR[J]. Nucleic acids research, 1997, 25(16): 3235-3241.

[5]Shen Z, Qu W, Wang W, et al. MPprimer: a program for reliable multiplex PCR primer design[J]. BMC bioinformatics, 2010, 11(1): 143.

[6]SantaLucia Jr J, Hicks D. The thermodynamics of DNA structural motifs[J]. Annu. Rev. Biophys. Biomol. Struct., 2004, 33: 415-440.