

Inferência Estatística

AC2: Comparações Envolvendo Médias

Prof. Gilberto Perez

AC2: Banco de Dados => Salario Alpha IT Company 1 (Amostras de Salários Homem x Mulher)

Como o N. de cada Amostra é >= 30 – Assumir Normalidade

- 1) Efetuar Estatística Descritiva dos Salários de Homen e Mulheres
- 2) Testar Hipótese de Normalidade de Salário de Homen e Mulheres (Sig = 0.05, ou 95% Confiabilidade).
- 3) Fazer a Análise de Intervalos de Média para a amostra completa. O que se pode dizer da Média de salários Homem x Mulher
- 4) Fazer a Análise de Intervalos de Média para amostras com N1, e N2 = 50 e com N1, e N2 = 100. O que se pode inferir?

AC2: Banco de Dados => **Vestibular 2022**

1) Efetuar Estatística Descritiva das Notas: Matemática, Linguas, Humanidades, Naturais, Português.

2) Separar notas por cursos, sendo:

3 = "Administracao"

5 = "Psicologia"

7 = "Ciencia da computacao"

8 = "Sistemas de Informacao"

9 = "Direito"

3) Testar a Normalidade dessas Notas.

Inferência Estatística em Comparações de Médias

Estimação da diferença entre médias de duas Populações: Amostras Independentes

Vamos começar a abordagem mostrando como a estimação da diferença entre as médias de duas populações pode ser desenvolvida, a partir de um estudos de amostras simples dessas populações.

Isso pode ser feito relativamente fácil, utilizando-se o Excel.

Vamos tomar como exemplo duas populações da Loja XPTO - Capital e Interior:

 $\mu 1$ = média da população 1: (média da idade de todos os clientes que compram na Capital.

μ2 = média da população 2: (média da idade de todos os clientes que compram no Interior.

Estimação da diferença entre médias de duas Populações: Amostras Independentes

Como x1 é o ponto de estimação de µ1 e x2 é o ponto de estimação de µ2, o ponto de estimação da amostra é expressado como.

Ponto de Estimação da Diferença entre Médias da duas Populações:

$$\bar{X}_{1} - \bar{X}_{2}$$
 (1)

Estimação da diferença entre médias de duas Populações: Amostras Independentes

A diferença entre as médias das duas Populações é: μ1 - μ2

Para estimar $\mu 1$ - $\mu 2$, vamos selecionar uma amostra simples de n1 clientes da população 1, e uma amostra simples de n2 clientes da população 2.

Como a amostra simples de clientes n1 é selecionada independente da amostra simples de clientes n2, elas são chamadas: **Amostras Aleatórias Simples e Independentes.**

Amostra Aleatória Simples Clientes da Capital n1

 X_1 = média de idade da amostra de clientes da Capital

Amostra Aleatória Simples Clientes do Interior n2

X₂= média de idade da amostra de clientes da Capital

Comparações Envolvendo Médias

População 1

Clientes de uma Loja da Capital da XPTO

μ1 = média da idade dos clientes da capital

População 2

Clientes de uma Loja do Interior da XPTO

μ2 = média da idade dos clientes do Interior

 $\mu 1$ - $\mu 2$ = diferença entre a média de idade das **populações**

Amostra Aleatória Simples Clientes da Capital n1

 \overline{X}_1 = média de idade da amostra de clientes da Capital

Amostra Aleatória Simples Clientes do Interior n2

 \overline{X}_2 = média de idade da amostra de clientes da Capital

$$\overline{X}_1 - \overline{X}_2 = \text{Ponto de Estimação de } \mu 1 - \mu 2$$
 (1)

Distribuições de Amostragem

Distribuições da Amostragem de $\overline{X}_1 - \overline{X}_2$

Valor Esperado: E (
$$\overline{X}_1 - \overline{X}_2$$
) = $\mu 1 - \mu 2$ (2)

Desvio Padrão:
$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 (3)

Com:

σ1 = Desvio padrão da população 1

σ2 = Desvio padrão da população 2

n1 = tamanho da amostra aleatória da população 1

n2 = tamanho da amostra aleatória da população 2

Distribuições de Amostragem

Distribuições da Amostragem de $\overline{X}_1 - \overline{X}_2$

Valor Esperado: E (
$$X_1 - X_2$$
) = $\mu 1 - \mu 2$ (2)

Desvio Padrão:
$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 (3)

Com:

σ1 = Desvio padrão da população 1

σ2 = Desvio padrão da população 2

n1 = tamanho da amostra aleatória da população 1

n2 = tamanho da amostra aleatória da população 2

Forma de Distribuição: Se o tamanho das amostras forem ambas grandes (n1 e n2 \geq 30), a distribuição da amostra de X_1 - X_2 pode ser aproximada a uma distribuição de probabilidade normal.

Distribuições da Amostra $\overline{x_1}$ - $\overline{x_2}$ em Relação às Distribuições das Amostras $\overline{x_1}$ e $\overline{x_2}$.

Estimação da diferença entre médias de duas Populações: Amostras Independentes

Em casos de amostras grandes ($n \ge 30$) p<u>o</u>de-<u>se</u> aplicar o teorema do limite central e a distribuição da amostra x1 - x2 pode ser aproximada pela distribuição normal de probabilidade.

Com essa aproximação pode-se usar a seguinte expressão para estimar o intervalo de diferença entre as médias de duas populações:

Interval Estimate of the Difference Between the Means of Two Populations: Large-Sample Case $(n_1 \ge 30 \text{ and } n_2 \ge 30)$ with σ_1 and σ_2 Assumed Known

$$\bar{x}_1 - \bar{x}_2 \pm z_{\alpha/2} \sigma_{\bar{x}_1 - \bar{x}_2} \tag{4}$$

Obs: No Excel $Z_{\alpha/2}$ = INV.NORMP(1- $\alpha/2$), sendo α é o Nível de Significância (sig.) estatística e **1-** α é o coeficiente de confiança. Se α = 0.05, o Coef. De Confiança é 95%,

Estimação da diferença entre médias de duas Populações: Amostras Independentes

Note que na equação (3) é necessário conhecer os desvios padrões das Populações. Se os desvios padrões das populações são desconhecidos, um recurso é usar o desvio padrão das amostras para calcular o **ponto de estimação**:

Point Estimator of
$$\sigma_{\bar{x}_1 - \bar{x}_2}$$

$$s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2 + \frac{s_2^2}{n_1}}{n_1 + \frac{s_2^2}{n_2}}}$$
(5)

Quando σ_1 e σ_2 são estimados por s_1 e s_2 , podemos utilizar o seguinte intervalo de confiança para estimar a diferença entre a média das duas populações

Interval Estimate of the Difference Between the Means of Two Populations: Large-Sample Case $(n_1 \ge 30 \text{ and } n_2 \ge 30)$ with σ_1 and σ_2 Estimated by s_1 and s_2 $\bar{x}_1 - \bar{x}_2 \pm z_{\alpha/2} s_{\bar{x}_1 - \bar{x}_2} \tag{6}$

Obs: No Excel $Z_{\alpha/2}$ = INV.NORMP(1- $\alpha/2$), sendo α é o Nível de Significância (sig.) estatística e **1-** α é o coeficiente de confiança. Se α = 0.05, o Coef. De Confiança é 95%

Estimação da diferença entre médias de duas Populações: Amostras Independentes

Loja da XPTO	Amostra Simples	Média Idade Amostra	Desvio Padrão Amostra
Cidade	n ₁ =36	x ₁ =40 anos	s ₁ =9 anos
	_		<u>-</u>
Interior	n ₂ =49	_x ₂ =35 anos	s ₂ =10 anos

$$s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{(9)^2}{36} + \frac{(10)^2}{49}} = 2.07$$
 (5)

Com α =0.05 -> $z_{\alpha/2}$ = $z_{.025}$ = 1,96 a expressão (6) resulta no Coef. de Confiança de 95%

$$\bar{x}_1 - \bar{x}_2 \pm z_{\alpha/2} s_{\bar{x}_1 - \bar{x}_2}$$
 (6)

$$5 \pm (1.96)(2.07)$$

 5 ± 4.06

Com o Coef. de Confiança de 95%, a margem de erro é de 4.06 anos e o intervalo de estimação de diferença das médias das populações é de 0.94 a 9.06 anos.