Recursion formula for $U_q(e_6)$ knot invariants

Thesis Defense

How do we tell knots apart?

How do we tell knots apart?

· Knot diagrams represent knots in 2D space, up to planar isotopy

How do we tell knots apart?

Knot diagrams represent knots in 2D space, up to planar isotopy

· Reidemeister moves completely characterizes diagram equivalence

How do we tell knots apart?

· Knot diagrams represent knots in 2D space, up to planar isotopy

· Reidemeister moves completely characterizes diagram equivalence

Definition 1. A knot invariant assigns a value to every knot diagram such that it is invariant under Reidemeister moves.

• Planar isotopy is still non-combinatoric/algebraic.

• Planar isotopy is still non-combinatoric/algebraic.

Definition 2 (Reshetikhin–Turaev). A **ribbon category** is a braided monoidal category C with duals, equipped with a twist $\theta: \mathrm{Id}_C \to \mathrm{Id}_C$ compatible with braiding and dual.

• Planar isotopy is still non-combinatoric/algebraic.

Definition 2 (Reshetikhin–Turaev). A **ribbon category** is a braided monoidal category C with duals, equipped with a twist $\theta: \mathrm{Id}_C \to \mathrm{Id}_C$ compatible with braiding and dual.

(Lurie) An SO(3) fixpoint in the space of braided categories with duals.

• Planar isotopy is still non-combinatoric/algebraic.

Definition 2 (Reshetikhin–Turaev). A **ribbon category** is a braided monoidal category C with duals, equipped with a twist $\theta : \operatorname{Id}_C \to \operatorname{Id}_C$ compatible with braiding and dual.

(Lurie) An SO(3) fixpoint in the space of braided categories with duals.

"Ribbons" are oriented and framed.

• Planar isotopy is still non-combinatoric/algebraic.

Definition 2 (Reshetikhin–Turaev). A **ribbon category** is a braided monoidal category C with duals, equipped with a twist $\theta: \mathrm{Id}_C \to \mathrm{Id}_C$ compatible with braiding and dual.

(Lurie) An SO(3) fixpoint in the space of braided categories with duals.

"Ribbons" are oriented and framed.

Definition 3. A (ribbon) knot invariant is a ribbon category.

How do we get knot invariants?

How do we get knot invariants?

How do we get knot invariants?

How do we get knot invariants?

How do we get knot invariants?

How do we get knot invariants?

• Idea: consider tensors between vector spaces.

· Plan: find a vector space equipped with tensors satisfying some equations

How do we get knot invariants?

- Plan: find a vector space equipped with tensors satisfying some equations
- Yang-Baxter equation for $R_{k\ell}^{ji} = \check{R}_{k\ell}^{ij}$: $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$.
 - Related to exact solutions in statistical mechanics

How do we find these tensors?

• Trivial solution: Finite dimensional vector space *V*.

- Trivial solution: Finite dimensional vector space V.
 - Orientation: V and its dual V*
 - Crossing: exchange map $\tau: V \otimes V \to V \otimes V$
 - Caps and cups: $V \otimes V^* \to \mathbf{1}$ and $\mathbf{1} \to V \otimes V^*$
 - Twist: identity map

- Trivial solution: Finite dimensional vector space V.
 - Orientation: V and its dual V*
 - Crossing: exchange map $\tau: V \otimes V \to V \otimes V$
 - Caps and cups: $V \otimes V^* \to \mathbf{1}$ and $\mathbf{1} \to V \otimes V^*$
 - Twist: identity map
 - Calculates the number of link components.

- Trivial solution: Finite dimensional vector space V.
 - Orientation: V and its dual V*
 - Crossing: exchange map $\tau: V \otimes V \to V \otimes V$
 - Caps and cups: $V \otimes V^* \to \mathbf{1}$ and $\mathbf{1} \to V \otimes V^*$
 - Twist: identity map
 - Calculates the number of link components.
- Drinfeld found a recipe to construct these tensors, given a Cartan matrix.

- Trivial solution: Finite dimensional vector space V.
 - Orientation: V and its dual V*
 - Crossing: exchange map $\tau: V \otimes V \to V \otimes V$
 - Caps and cups: $V \otimes V^* \to \mathbf{1}$ and $\mathbf{1} \to V \otimes V^*$
 - Twist: identity map
 - Calculates the number of link components.
- Drinfeld found a recipe to construct these tensors, given a Cartan matrix.
 - More on this later.

- Brute force:
 - Pick a basis and evaluate the tensors!
 - Software packages: QuantumGroup` in Mathematica, QuaGroup in GAP

- Brute force:
 - Pick a basis and evaluate the tensors!
 - Software packages: QuantumGroup` in Mathematica, QuaGroup in GAP
- Skein relations:

$$\times - \times = z \mid \mid$$

- Brute force:
 - Pick a basis and evaluate the tensors!
 - Software packages: QuantumGroup` in Mathematica, QuaGroup in GAP
- Skein relations:

$$\times - \times = z \mid \mid$$

· Diagrammatic calculus for more complicated case

- Brute force:
 - Pick a basis and evaluate the tensors!
 - Software packages: QuantumGroup` in Mathematica, QuaGroup in GAP
- Skein relations:

$$\times - \times = z \mid \mid$$

- Diagrammatic calculus for more complicated case
- Recursion formula

Recursion formula

• Picking a basis \iff Pick isomorphism $V \cong \mathbb{C}^{\oplus n}$

- Picking a basis \iff Pick isomorphism $V \cong \mathbb{C}^{\oplus n}$
- Replace with isomorphism $V \cong W_1 \oplus \cdots \oplus W_k$

- Picking a basis \iff Pick isomorphism $V \cong \mathbb{C}^{\oplus n}$
- Replace with isomorphism $V \cong W_1 \oplus \cdots \oplus W_k$
- Tensors break into block matrices

- Picking a basis \iff Pick isomorphism $V \cong \mathbb{C}^{\oplus n}$
- Replace with isomorphism $V \cong W_1 \oplus \cdots \oplus W_k$
- Tensors break into block matrices, i.e. invariants calculated by a sum of other invariants ⇒ evaluate using other methods, or recursively.

- Picking a basis \iff Pick isomorphism $V \cong \mathbb{C}^{\oplus n}$
- Replace with isomorphism $V \cong W_1 \oplus \cdots \oplus W_k$
- Tensors break into block matrices, i.e. invariants calculated by a sum of other invariants

 evaluate using other methods, or recursively.
- How do we pick a convenient splitting?

• Idea: Choose vector spaces to be modules/representations, and let the tensors be chosen from homomorphisms.

- Idea: Choose vector spaces to be modules/representations, and let the tensors be chosen from homomorphisms.
- Structure on algebra to support tensor product and duals: Hopf algebra.

- Idea: Choose vector spaces to be modules/representations, and let the tensors be chosen from homomorphisms.
- Structure on algebra to support tensor product and duals: Hopf algebra.
- Structure to support braiding and twists: ribbon Hopf algebra.

- Idea: Choose vector spaces to be modules/representations, and let the tensors be chosen from homomorphisms.
- Structure on algebra to support tensor product and duals: Hopf algebra.
- Structure to support braiding and twists: ribbon Hopf algebra.
- Group algebras $\mathbb{C}[G]$ and universal enveloping algebras $U(\mathfrak{g})$ have trivial ribbon structures, they are *cocommutative*.

- Idea: Choose vector spaces to be modules/representations, and let the tensors be chosen from homomorphisms.
- Structure on algebra to support tensor product and duals: Hopf algebra.
- Structure to support braiding and twists: ribbon Hopf algebra.
- Group algebras $\mathbb{C}[G]$ and universal enveloping algebras $U(\mathfrak{g})$ have trivial ribbon structures, they are *cocommutative*.
- Deform $U(\mathfrak{g})$ with an infinitesimal parameter h, or $q=e^h$, to get $U_q(\mathfrak{g})$.
 - Caveat Lector: problems with infinite sums

For a Cartan matrix C corresponding to a semisimple Lie algebra \mathfrak{g} , the representation theory of $U_q(\mathfrak{g})$ is parallel to that of \mathfrak{g} , for generic q.

For a Cartan matrix C corresponding to a semisimple Lie algebra g, the representation theory of $U_q(g)$ is parallel to that of g, for generic q.

By complete reducibility, tensor products of irreps split into irreps:

$$V \otimes V \cong \operatorname{Sym}_q^2(V) \oplus \operatorname{Alt}_q^2(V)$$

where V is the fundamental representation of $U_q(\mathfrak{sl}_n)$.

For a Cartan matrix C corresponding to a semisimple Lie algebra g, the representation theory of $U_q(g)$ is parallel to that of g, for generic q.

By complete reducibility, tensor products of irreps split into irreps:

$$V \otimes V \cong \operatorname{Sym}_q^2(V) \oplus \operatorname{Alt}_q^2(V)$$

where V is the fundamental representation of $U_q(\mathfrak{sl}_n)$.

An explanation of skein relations: Schur's lemma implies $R: V \otimes V \to V \otimes V$ acts as scalars on irreps, hence $\{R, R^{-1}, id\}$ has a linear relation.

For a Cartan matrix C corresponding to a semisimple Lie algebra g, the representation theory of $U_a(g)$ is parallel to that of g, for generic q.

By complete reducibility, tensor products of irreps split into irreps:

$$V \otimes V \cong \operatorname{Sym}_q^2(V) \oplus \operatorname{Alt}_q^2(V)$$

where V is the fundamental representation of $U_q(\mathfrak{sl}_n)$.

An explanation of skein relations: Schur's lemma implies $R:V\otimes V\to V\otimes V$ acts as scalars on irreps, hence $\{R,R^{-1},\operatorname{id}\}$ has a linear relation.

HOMFLY polynomials characterized by $xR + yR^{-1} + z$ id = 0 up to normalization. Equivalent to $U_q(\mathfrak{sl}_n)$ -invariants by a substitution.

For a Cartan matrix C corresponding to a semisimple Lie algebra g, the representation theory of $U_a(g)$ is parallel to that of g, for generic q.

By complete reducibility, tensor products of irreps split into irreps:

$$V \otimes V \cong \operatorname{Sym}_q^2(V) \oplus \operatorname{Alt}_q^2(V)$$

where V is the fundamental representation of $U_q(\mathfrak{sl}_n)$.

An explanation of skein relations: Schur's lemma implies $R:V\otimes V\to V\otimes V$ acts as scalars on irreps, hence $\{R,R^{-1},\operatorname{id}\}$ has a linear relation.

HOMFLY polynomials characterized by $xR + yR^{-1} + z$ id = 0 up to normalization. Equivalent to $U_q(\mathfrak{sl}_n)$ -invariants by a substitution.

Kauffman polynomials (\neq Kauffman bracket) given by B_n , C_n , D_n families.

Restrictions and branching rules

A Dynkin subdiagram induces a ribbon Hopf subalgebra $U_q(f) \subseteq U_q(g)$.

Restrictions and branching rules

A Dynkin subdiagram induces a ribbon Hopf subalgebra $U_q(f) \subseteq U_q(g)$.

Irreps of $U_a(\mathfrak{g})$ split into direct sums, $V \cong W_1 \oplus \cdots \oplus W_n$.

Restrictions and branching rules

A Dynkin subdiagram induces a ribbon Hopf subalgebra $U_q(f) \subseteq U_q(g)$.

Irreps of $U_q(\mathfrak{g})$ split into direct sums, $V \cong W_1 \oplus \cdots \oplus W_n$.

"Convenient splitting": W_i are just representations of a smaller quantum group, hence they have equally nice properties.

We consider the case with no multiplicity, i.e. splitting is canonical up to constants.

Fundamental representation dim $V_{\omega_1} = 27$.

Fundamental representation dim $V_{\omega_1} = 27$.

Branching rule $\mathbf{27} \cong \mathbf{10} \oplus \mathbf{16} \oplus \mathbf{1}$.

Fundamental representation dim $V_{\omega_1} = 27$.

Branching rule $\mathbf{27} \cong \mathbf{10} \oplus \mathbf{16} \oplus \mathbf{1}$.

Invariant of the trefoil:

$$q^{52}(q-1+q^{-1})^{2}(q+1+q^{-1})^{2}(q^{2}-1+q^{-2})$$

$$(q^{3}-1+q^{-3})(q^{3}+1+q^{-3})(q^{4}-1+q^{-4})$$

$$(q^{26}-q^{16}-q^{10}-q^{6}+q^{-10}+q^{-16}+q^{-20})$$

Since $\mathbf{27} \cong \mathbf{10} \oplus \mathbf{16} \oplus \mathbf{1}$, the tensor $\check{R}: \mathbf{27} \otimes \mathbf{27} \to \mathbf{27} \otimes \mathbf{27}$ splits into a 9×9 matrix:

$$A = q^{-1/3} \times \qquad \qquad B = q^{1/6} \times \qquad \qquad D = q^{1/6} \times \qquad \qquad D = q^{1/6} \times \qquad \qquad D = q^{1/6} \times \qquad \qquad \qquad F = q^{-1/12} \times \qquad \qquad \qquad F = q^{-1/12} \times \qquad \qquad \qquad H = q^{-1/3} \times \qquad \qquad \qquad H = q^{-1/3} \times \qquad \qquad \qquad J = \tau^{\dagger} \times \qquad \qquad \qquad J = \tau^{\dagger} \times \qquad \qquad \qquad \qquad K = (q^{-4/3} - q^{2/3} - q^{20/3} + q^{26/3}) \mid L = q^{-1/3} \times \qquad \qquad M = (q^{-4/3} - q^{2/3}) \mid \qquad \qquad N = q^{-4/3} \qquad \qquad \qquad \qquad \tau \tau^{\dagger} = q^{-2/3} (q^4 - 1)^2 (q^4 - q^2 + 1) (q^4 + 1)$$

Ř		10 ⊗			16⊗			1⊗		
		10	16	1	10	16	1	10	16	1
10⊗	10	A								
	16				В					
	1							С		
16⊗	10		D		E					
	16					F		G		
	1								Н	
1⊗	10			I		J		K		
	16						L		M	
	1									Ν

Calculating methods:

• Brute force (?)

Calculating methods:

- Brute force (?)
- Irrep structure and Schur's lemma \implies The entry $\mathbf{10} \otimes \mathbf{10} \rightarrow \mathbf{10} \otimes \mathbf{1}$ is zero.
 - Have matching irreps ⇒ The action is a scalar

Calculating methods:

- Brute force (?)
- Irrep structure and Schur's lemma \implies The entry $\mathbf{10} \otimes \mathbf{10} \rightarrow \mathbf{10} \otimes \mathbf{1}$ is zero.
 - Have matching irreps \Longrightarrow The action is a scalar
- Analyze weight structure ⇒ Kills almost half of the remaining entries

Calculating methods:

- Brute force (?)
- Irrep structure and Schur's lemma \Longrightarrow The entry $\mathbf{10} \otimes \mathbf{10} \to \mathbf{10} \otimes \mathbf{1}$ is zero.
 - Have matching irreps ⇒ The action is a scalar
- Analyze weight structure ⇒ Kills almost half of the remaining entries
- Spectral decomposition (Reshetikhin):

$$\check{R}_{V \otimes W} = \sum_{U \text{ irrep}} \pm q^{\frac{c(V) + c(W) - c(U)}{2}} P_U$$

Calculating methods:

- Brute force (?)
- Irrep structure and Schur's lemma \Longrightarrow The entry $\mathbf{10} \otimes \mathbf{10} \to \mathbf{10} \otimes \mathbf{1}$ is zero.
 - Have matching irreps ⇒ The action is a scalar
- Analyze weight structure ⇒ Kills almost half of the remaining entries
- Spectral decomposition (Reshetikhin):

$$\check{R}_{V\otimes W} = \sum_{U \text{ irrep}} \pm q^{\frac{c(V)+c(W)-c(U)}{2}} P_U$$

· Yang-Baxter equation determines the final few coefficients.

Interpreting the trivalent node in $U_a(\delta_5)$

The main result involved a map $16 \otimes 10 \rightarrow 16$. Dually we have $16 \otimes 10 \rightarrow 16$.

Interpreting the trivalent node in $U_q(\delta_5)$

The main result involved a map $16 \otimes 10 \rightarrow \overline{16}$. Dually we have $\overline{16} \otimes 10 \rightarrow 16$.

These are classically the gamma matrices acting on Weyl spinors.

$$\gamma_i \gamma_j + \gamma_j \gamma_i = 2 \operatorname{id} \eta_{ij}$$
.

What's the quantization?

Interpreting the trivalent node in $U_q(\delta_5)$

The main result involved a map $16 \otimes 10 \rightarrow 16$. Dually we have $16 \otimes 10 \rightarrow 16$.

These are classically the gamma matrices acting on Weyl spinors.

$$\gamma_i \gamma_j + \gamma_j \gamma_i = 2 \operatorname{id} \eta_{ij}$$
.

What's the quantization?

Interpreting the trivalent node in $U_a(\delta_5)$

The main result involved a map $16 \otimes 10 \rightarrow 16$. Dually we have $16 \otimes 10 \rightarrow 16$.

These are classically the gamma matrices acting on Weyl spinors.

$$\gamma_i \gamma_j + \gamma_j \gamma_i = 2 \operatorname{id} \eta_{ij}$$
.

What's the quantization?

Agrees with quantized Clifford algebra of Faddeev, Reshetikhin, Takhtajan.

Further work

Deligne conjectures that

$$a_1, a_2, b_4, g_2, f_4, e_6, e_7, e_8$$

form an exceptional series of Lie groups/algebras.

Further work

Deligne conjectures that

$$a_1, a_2, \delta_4, g_2, f_4, e_6, e_7, e_8$$

form an exceptional series of Lie groups/algebras.

Corresponding quantum deformation $U_q(e_n)$ would provide an exceptional two variable knot polynomial, like HOMFLY (a_n) and Kauffman (b_n, c_n, δ_n) .

Further work

Deligne conjectures that

$$a_1, a_2, \delta_4, g_2, f_4, e_6, e_7, e_8$$

form an exceptional series of Lie groups/algebras.

Corresponding quantum deformation $U_q(e_n)$ would provide an exceptional two variable knot polynomial, like HOMFLY (a_n) and Kauffman (b_n, c_n, b_n) .

As mentioned, there are three methods:

- Brute force definition
- Diagrammatic calculus
- Recursion formula to δ_n or α_n

Questions?

Knot invariants	
Computing quantum invariants	Ę
Quantum groups	-
The case of $\delta_5 \subseteq e_6$	10
Further work	14