Лабораторная работа №3

Численное интегрирование

Постановка задачи. Для указанного вида интеграла и указанной подынтегральной функции:

- Используя базовую квадратурную формулу из варианта, построить составную квадратурную формулу и включить ее в отчет.
- Применить полученную ранее составную квадратурную формулу для вычисления указанного в варианте интеграла с точностью $\epsilon = 10^{-4}$, $\epsilon = 10^{-6}$, $\epsilon = 10^{-8}$. Для оценки погрешности воспользоваться правилом Рунге. В каждом эксперименте следует подсчитать количество вычислений подынтегральной функции и включить в отчет.
- Используя какую-либо систему компьютерной алгебры (Wolphram Mathematica, Maple, MatLab) произвести вычисление указанного в варианте интеграла и сравнить с ранее полученным. Достигнута ли требуемая точность?
- Для указанного типа интегралов построить квадратурную формулу наивысшей алгебраической степени точности (HACT) с указанным количеством узлов и включить ее в отчет.
- Используя ранее полученную формулу НАСТ произвести вычисление интеграла из варианта.
- Результаты эксперимента оформить в таблицу:

Тип квадра-	Требуемая	Достигнутая	Количество	
турной фор-	точность,	точность	вычислений	
мулы	испольуемая		подынтегральной	
	в правиле		функции	
	Рунге			
Составная	10^{-4}			
Составная	10^{-6}			
Составная 10 ⁻⁸		• • •		
HACT –				

Здесь под достигнутой точностью подразумевается модуль разности между значением интеграла, полученным вашей программой и значением, полученным в используемой вами системе компьютерной алгебры. Требуемая точность для квадратурной формулы HACT не указывается.

Замечания по выполнению:

- При построении квадратурных формул НАСТ разрешается (и приветствуется!) использование систем компьютерной алгебры. При этом все исходные файлы должны быть приложены к отчету. Также можно попробовать воспользоваться программой из лабораторной работы по решению нелинейных уравнений (но возможны проблемы с выбором начального приближения).
- Отчет сдается в формате pdf. Исходные тексты программ добавляются в конец отчета или прикладываются к письму.
- Отчет отправляется в электронном виде на ящик $bondarIvan\ V@gmail.com$. В теме письма указать ваши фамилию, имя, номер группы и номер лабораторной работы.

Исходные данные

Номер	Весовая функ-	Подынтегральная	Пределы	Базовая квад-	Количество
вари-	ция $\rho(x)$	ϕ ункция $f(x)$	интегри-	ратурная фор-	узлов для
анта			рования	мула	к.ф.
					HACT
1.	$\sqrt{1-x^2}$	$e^{x^2}cos(x)$	[-1, 1]	Симпсона	6
2.	$\sqrt{1-x^2}$	$e^{-x^2}sin(x)$	[-1, 1]	Тапеций	7
3.	$\sqrt{1-x^2}$	$cos(e^{-x^2})$	[-1, 1]	Средних прямо-	10
				угольников	
4.	(1-x)(1+x)	$x^2 sin(x^4)$	[-1, 1]	Левых прямо-	9
				угольников	
5.	$(1-x)^2(1+x)$	$n(\cos^4(x))$	[-1, 1]	Правых прямо-	8
				угольников	
6.	$(1-x)(1+x)^2$	$sin(-ln(x^8+1))$	[-1, 1]	Симпсона	10
7.	$(1-x)^2(1+x)^2$	$cos(ln(x^6+2))$	[-1, 1]	Левых прямо-	9
				угольников	
8.	$(1-x)^4(1+x)^2$	$\cos(1-\sin(e^{x^5}))$	[-1, 1]	Правых прямо-	9
				угольников	
9.	$(1-x)^5(1+x)^3$	$sin(1-cos(e^{x^5}))$	[-1, 1]	Трапеций	8
10.	$(1-x)(1+x)^5$	$-xe^{(\cos^2(e^{-x}))}$	[-1, 1]	Средних прямо-	9
				угольников	
11.	$(1-x)^8(1+x)^2$	$\cos(\sin((x^6+2)))$	[-1, 1]	Левых прямо-	6
				угольников	
12.	$(1-x)^3(1+x)^2$	$x^2 cos(5 - sin(e^{x^5}))$	[-1, 1]	Правых прямо-	5
				угольников	

Вариант	Исполнитель		
1.	Михалюк В.		
2.	Пашкевич С.		
3.	Капитонов И.		
4.	Гулин К.		
5.	Разумова М.		
6.	Счастный Д.		
7.	Ульяницккий В.		
8.	Кизенков К.		
9.	Буйко Б.		
10.	Яскевич Е.		
11.	Киселев В.		