Reply to Office Action of March 27, 2003

This listing of claims will replace all prior versions, and listings, of claims in the application: Listing of Claims:

- 1. (Currently Amended) A process for reducing a fluorescence quenching caused by a measuring medium, in a fluorescence assay for an analyte using at least one fluorescent label, comprising introducing a fluorescent conjugate comprising an oligonucleotide bonded to a rare-earth metal cryptate into the measuring medium, thereby reducing the fluorescence quenching caused by the measuring medium, and wherein the fluorescent conjugate is bonded covalently to one member of a pair of molecules that specifically bind to one another.
- 2. (Previously Amended) The process as claimed in claim 1, wherein the oligonucleotide consists of a chain of ribonucleotide or deoxyribonucleotide units bonded to one another via phosphodiester bonds.
- 3. (Previously Amended) The process as claimed in claim 1, wherein the oligonucleotide consists of a chain of ribonucleotide or deoxyribonucleotide units or of analogous units of nucleotides modified on the sugar or on the base and bonded to one another via natural phosphodiester internucleotide bonds, some of the internucleotide bonds optionally being replaced with phosphonate, phosphoramide or phosphorothioate bonds.
- 4. (Previously Amended) The process as claimed in claim 1, wherein the oligonucleotide consists of a chain comprising both ribonucleotide or deoxyribonucleotide units bonded to one another via phosphodiester bonds and analogous units of nucleosides bonded to one another via amide bonds.
- 5. (Previously Amended) The process as claimed in claim 1, wherein the oligonucleotide consists of ribonucleotide or deoxyribonucleotide units, one of which may comprise a functional group of NH₂, COOH, CHO, OH, SH, halide, sulfonate, epoxide, or maleimide, introduced onto or generated on said unit, or the functional group introduced using a spacer arm bonded to the terminal phosphate group in the 3' or 5' position.

Reply to Office Action of March 27, 2003

- 6. (Previously Amended) The process as claimed in claim 5, wherein said unit is the 5' terminal unit or 3' terminal unit.
- 7. (Previously Amended) The process as claimed in claim 1, wherein the oligonucleotide comprises a chain of 5 to 50 nucleotides or a chain of 5 to 50 nucleotides and nucleotide or nucleoside analogs.
- 8. (Previously Amended) The process as claimed in claim 1, wherein the oligonucleotide consists of a chain of ribonucleotide or deoxyribonucleotide units bonded to one another via phosphodiester bonds and of analogous units of nucleosides bonded to one another via amide bonds, said oligonucleotide comprising at least 5 phosphodiester internucleotide bonds at the end intended to be bonded to the cryptate.
- 9. (Previously Amended) The process as claimed in claim 1, wherein the rareearth metal cryptate is bonded covalently to the oligonucleotide either directly or via a spacer arm.
- 10. (Previously Amended) The process as claimed in claim 1, wherein said rareearth metal cryptate consists of at least one rare-earth metal salt complexed with a macropolycyclic compound of formula

in which Z is an atom with 3 or 4 valencies, R is nothing or represents hydrogen, a hydroxy group, an amino group or a hydrocarbon-based radical, the divalent radicals (A), (B) and (C) are, independently of each other, hydrocarbon-based chains which optionally contain one or more hetero atoms and are optionally interrupted with a hetero macrocycle, at least one of the radicals (A), (B) and (C), also comprising at least one molecular unit or consisting

Appl. Serial No.: 09/936,563 Attorney Docket No.: LOM-24 Reply Dated August 27, 2003 Reply to Office Action of March 27, 2003

> essentially of a molecular unit, said molecular unit having a triplet energy which is greater than that of the emission level of the complexed rare-earth metal ion.

11. (Previously Amended) The process as claimed in claim 10, wherein the rareearth metal cryptate consists of a rare-earth metal salt complexed with one of the macrocyclic or macropolycyclic compounds below:

[2.2.phenanthroline]; [2.2.phenanthroline amide]; [2.2.anthracene]; [2.2.anthracene] amide]; [2.2.biisoquinoline]; [2.2.biphenyl-bis-pyridine]; [2.2.bipyridine]; [2.2.bipyridine] amide]; the macropolycycles trisbipyridine, trisphenanthroline, phenanthrolinebisbipyridine, biisoquinolinebisbipyridine, bisbipyridine diphenylbipyridine; a macropolycyclic compound comprising a molecular unit chosen from bipyrazines, bipyrimidines and nitrogen-containing heterocycles comprising N-oxide groups.

12. (Previously Amended) The process according to claim 1, wherein the rareearth metal cryptate consists of at least one rare-earth metal salt complexed with a macropolycyclic compound corresponding to one of the formulae II or III below:

$$Z-Y-NH-OC$$
 $CO-NH-Y-Z$ H_2C G CH_2

Page 4 of 10

Reply to Office Action of March 27, 2003

in which:

- the ring of formula

is one of the following rings:

-Y is a spacer group or spacer arm which consists of a divalent organic radical, chosen from linear or branched C_1 or C_{20} alkylene groups optionally containing one or more double bonds and/or optionally containing one or more hetero atoms such as oxygen, nitrogen, sulfur or phosphorus or one or more carbamoyl or carboxamido group(s); chosen from C_5 to C_8 cycloalkylene groups or chosen form C_6 to C_{14} arylene groups, said alkylene, cycloalkylene or arylene groups being optionally substituted with alkyl, aryl or sulfonate groups;

- -Z is a functional group capable of bonding covalently to a biological substance;
- -R is a methyl group or represents the group -Y-Z;

Reply to Office Action of March 27, 2003

-R' is hydrogen or a group -COOR" in which R" is a C₁ to C₁₀ alkyl group and preferably represents a methyl, ethyl or tert-butyl group, or alternatively R' is a group -CO-NH-Y-Z.

- 13. (Previously Amended) The process as claimed in claim 1, wherein the rare-earth metal cryptate is bonded to the oligonucleotide via a spacer arm consisting of a divalent organic radical chosen from C₁-C₂₀ linear or branched alkylene groups optionally containing one or more double bonds or triple bonds and/or optionally containing one or more hetero atoms, such as oxygen, nitrogen, sulfur, phosphorus or one or more cabamoyl or carboxamino group(s); C₅-C₈ cycloalkylene groups and C₆-C₁₄ arylene groups, said alkylene, cycloalkylene or arylene groups being optionally substituted with alkyl, aryl or sulfonate groups.
- 14. (Previously Amended) The process as claimed in claim 13, wherein the spacer arm is chosen from the groups:

$$-CONH$$
 NH
 $S-(CH_2)_n$
 $S-(CH_3)_n$

in which n = 2 to 6, and -CONH-(CH₂)₆-, the attachment via the group -CONH taking place on the cryptate.

15. (Previously Amended) The method as claimed in claim 1, wherein the rareearth metal cryptate is a europium cryptate.

Reply to Office Action of March 27, 2003

- 16. (Previously Amended) The process as claimed in claim 15, wherein the rareearth metal cryptate is the europium cryptate Eu trisbipyridine or Eu [bisdiethoxybipyridine.bipyridine].
- 17. (Previously Amended) The process as claimed in claim 1, wherein the fluorescent conjugate is used as the only label or as one of the fluorescent labels in the assay.
 - 18. (Cancelled)
- 19. (Previously Amended) The process as claimed in claim 1, wherein, in addition to said fluorescent conjugate, a fluorescent label comprising an acceptor fluorescent compound in the assay.