Chapter 35 Timer

35.1 Overview

Timer is a programmable timer peripheral. This component is an APBslave device. Timer count down from a programmed value and generate an interrupt when the count reaches zero.

35.1.1 Features

Timersupports the following features:

- One APB timers in the soc system, include six programmable 64 bits timer channel, acts as TIMER0~TIMER5
- Two operation modes: free-running and user-defined count.
- Maskable for each individual interrupt.

35.2 Block Diagram

Fig. 35-1Timers Block Diagram

The above figure shows the architecture of the APB timers (include two programmable timer channel) that in the peripheral subsystem.

35.3 Function description

35.3.1 Timer clock

TIMER0 \sim 5 are in the PERI subsystem, using timer ch0 \sim ch5 respectively. The timer clock is 24MHz OSC.

35.3.2 Programming sequence

- 1. Initialize the timer by the TIMERn_CONTROLREG ($0 \le n \le 1$)register:
- Disable the timer by writing a "0" to the timer enable bit (bit 0). Accordingly, the timer_enoutput signal is de-asserted.
- Program the timer mode—user-defined or free-running—by writing a "0" or "1" respectively to the timer mode bit (bit 1).
- Set the interrupt mask as either masked or not masked by writing a "0" or "1" respectively, tothe timer interrupt mask bit (bit 2).
- 2. Load the timer count value into the TIMERn_LOAD_COUNT1 ($0 \le n \le 5$) and TIMERn_ LOAD_COUNT0 ($0 \le n \le 5$)register.

3. Enable the timer by writing a "1" to bit 0 of TIMERn_CONTROLREG (0 \leq n \leq 5).

Fig. 35-2Timer Usage Flow

35.3.3 Loading a timer countvalue

The initial value for each timer—that is, the value from which it counts down—is loaded into the timer using the load count register (TIMERn_LOAD_COUNT1 (0 \leq n \leq 1) and TIMERn_LOAD_COUNT0 (0 \leq n \leq 1)). Two events can cause a timer to load the initial value from its load count register:

- Timer is enabled after reset or disabled.
- Timer counts down to 0, when timer is configured into free-running mode.

35.3.4 Timer mode selection

- User-defined count mode Timer loads TIMERn_LOAD_COUNT1($0 \le n \le 1$) and TIMERn_LOAD_COUNT0($0 \le n \le 1$) register as initial value. Timer will not automatically load the count register, when timer counts down to 0. User need to disable timer firstly and follow the programming sequence to make timer work again.
- Free-running mode Timer loads the TIMERn_LOAD_COUNT1($0 \le n \le 1$)and TIMERn_LOAD_ COUNT0($0 \le n \le 1$)register as initial value. Timer will automatically load the count register, when timer counts down to 0.

35.4 Register Description

This section describes the control/status registers of the design. Software should read and write these registers using 32-bits accesses.

35.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
TIMERO_LOAD_COUNTO	0x0000	W	0x00000000	Timer0 Load Count Register
TIMERO_LOAD_COUNT1	0x0004	W	0x00000000	Timer0 Load Count Register
TIMERO_CURRENT_VALUE0	0x0008	W	0x00000000	Timer0 Current Value Register
TIMERO_CURRENT_VALUE1	0x000C	W	0x00000000	Timer0 Current Value Register
TIMERO_CONTROLREG	0x0010	W	0×00000000	Timer0 Control Register

		,		
TIMERO_INTSTATUS	0x0018	W	0x00000000	Timer0 Interrupt Status Register
TIMER1_LOAD_COUNT0	0x0020	W	0x00000000	Timer1 Load Count Register
TIMER1_LOAD_COUNT1	0x0024	W	0x00000000	Timer1 Load Count Register
TIMER1_CURRENT_VALUE0	0x0028	W	0x00000000	Timer1 Current Value Register
TIMER1_CURRENT_VALUE1	0x002c	W	0x00000000	Timer1 Current Value Register
TIMER1_CONTROLREG	0x0030	W	0×00000000	Timer1 Control Register
TIMER1_INTSTATUS	0x0038	W	0×00000000	Timer1 Interrupt Status Register
TIMER2_LOAD_COUNT0	0x0020	W	0×00000000	Timer1 Load Count Register
TIMER2_LOAD_COUNT1	0x0024	W	0x00000000	Timer1 Load Count Register
TIMER2_CURRENT_VALUE0	0x0028	W	0x00000000	Timer1 Current Value Register
TIMER2_CURRENT_VALUE1	0x002c	W	0×00000000	Timer1 Current Value Register
TIMER2_CONTROLREG	0x0030	W	0×00000000	Timer1 Control Register
TIMER2_INTSTATUS	0x0038	W	0×00000000	Timer1 Interrupt Status Register
TIMER3_LOAD_COUNT0	0x0020	W	0x00000000	Timer1 Load Count Register
TIMER3_LOAD_COUNT1	0x0024	W	0x00000000	Timer1 Load Count Register
TIMER3_CURRENT_VALUE0	0x0028	W	0×00000000	Timer1 Current Value Register
TIMER3_CURRENT_VALUE1	0x002c	W	0x00000000	Timer1 Current Value Register
TIMER3_CONTROLREG	0x0030	W	0×00000000	Timer1 Control Register
TIMER3_INTSTATUS	0x0038	W	0x00000000	Timer1 Interrupt Status Register
TIMER4_LOAD_COUNT0	0x0020	W	0x00000000	Timer1 Load Count Register
TIMER4_LOAD_COUNT1	0x0024	W	0x00000000	Timer1 Load Count Register
TIMER4_CURRENT_VALUE0	0x0028	W	0x00000000	Timer1 Current Value Register
TIMER4_CURRENT_VALUE1	0x002c	W	0x00000000	Timer1 Current Value Register
TIMER4_CONTROLREG	0x0030	W	0x00000000	Timer1 Control Register
TIMER4_INTSTATUS	0x0038	W	0×00000000	Timer1 Interrupt Status Register
TIMER5_LOAD_COUNT0	0x0020	W	0×00000000	Timer1 Load Count Register
TIMER5_LOAD_COUNT1	0x0024	W	0x00000000	Timer1 Load

				Count Register
TIMER5_CURRENT_VALUE0	0x0028	W	0x00000000	Timer1 Current Value Register
TIMER5_CURRENT_VALUE1	0x002c	W	0x00000000	Timer1 Current Value Register
TIMER5_CONTROLREG	0x0030	W	0x00000000	Timer1 Control Register
TIMER5_INTSTATUS	0x0038	W	0x00000000	Timer1 Interrupt Status Register

Notes: <u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

35.4.2 Detail Register Description

TIMERn_LOAD_COUNTO

Address: Operational Base + offset(0x00+n*0x20)

Timer n Load Count Register($0 \le n \le 1$)

Bit	Attr	Reset Value	Description
31:0	RW	0x0	Low 32 bits Value to be loaded into Timer n. This is the value from which counting commences.

TIMERn_LOAD_COUNT1

Address: Operational Base + offset(0x04+n*0x20)

Timer n Load Count Register($0 \le n \le 1$)

Bit	Attr	Reset Value	Description
31:0	RW	0x0	High 32 bits Value to be loaded into Timer n. This is the value from which counting commences.

TIMERn_CURRENT_VALUE0

Address: Operational Base + offset(0x08+n*0x20)

Timer n Current Value Register($0 \le n \le 1$)

Bit	Attr	Reset Value	Description
31:0	R	0x0	Low 32 bits of Current Value of Timer n.

TIMERn_CURRENT_VALUE1

Address: Operational Base + offset(0x0c+n*0x20)

Timer n Current Value Register($0 \le n \le 1$)

Bit	Attr	Reset Value	Description
31:0	R	0x0	High 32 bits of Current Value of Timer n.

TIMERn_CONTROLREG

Address: Operational Base + offset(0x10+n*0x20)

Timer n Control Register($0 \le n \le 1$)

Bit	Attr	Reset Value	Description
31:3	ı	-	Reserved
			Timer interrupt mask.
2	RW	0x0	1'b0: mask
			1'b1: not mask
			Timer mode.
1	RW	0x0	1'b0: free-running mode
			1'b1: user-defined count mode
0	RW	0x0	Timer enable.

	1'b0: disable
	1'b1: enable

TIMERn_INTSTATUS

Address: Operational Base + offset(0x18+n*0x20)

Timer n Interrupt Status Register($0 \le n \le 1$)

Bit	Attr	Reset Value	Description
31:1	-	-	Reserved
0	RW	0x0	This register contains the interrupt status for timer n Write 1 to this register will clear the interrupt

Notes: Attr: RW - Read/writable, R - read only, W - write only

35.5 Application Notes

In the chip, the timer_clk is from 24MHz OSC, asynchronous to the pclk. When user disable the timer enable bit (bit 0 of TIMERn_CONTROLREG(0 $\!\!\!<\! n \!\!\!<\! 5)$), the timer_en output signal is de-asserted, and timer_clk will stop. When user enable the timer, the timer_en signal is asserted and timer_clk will start running.

The application is only allowed to re-config registers when timer_en is low.

Fig. 35-3Timing between timer_en and timer_clk

Please refer to funciton description section for the timer usage flow.