

Vector Databases 101

Stephen Batifol | Zilliz

Conf42 - Machine Learning Track

Product Portfolio

Partner with Industry Leaders

Cloud Service Provider

Data Platform

GenAl Tooling

Chip Manufacturer

- **01** Why Vector Databases?
- **02** Where do Vectors come from?
- **03 Vector Database Use Cases**
- **04** How do Vector Databases work?
- **05** What is Similarity Search?
- 06 Indexes
- **07 Milvus Architecture**

01

Why Vector Databases?

Why Vector Databases?

- Unstructured Data is 80% of data
- Vector Databases are really good with unstructured data
- Examples of Unstructured Data include text, images, videos, audio, etc

As Easy as a Numpy KNN?

```
import numpy as np
def euclidean_distance(a, b):
  return np.linalg.norm(a - b)
def knn(data, target, k):
  distances = [euclidean_distance(d, target) for d in data]
  distances = np.array(list(zip(distances,
range & den ( data) ! tance
   sorted_distances = distances[distances[:, 0].argsort()]
  closest_k_indices = sorted_distances[:k, 1].astype(int)
  return data[closest_k_indices]
```


Scale is a problem

Why Not Vector Search Libraries?

- Search Quality Hybrid Search? Filtering?
- Scalability Billions of vectors?
- Multi tenancy Isolating Multi-Tenant data
- Cost Memory, disk, S3?
- Security Data Safety and Privacy

TL;DR: Vector search libraries lack the infrastructure to help you scale, deploy, and manage your apps in production.

Why Not Use a SQL/NoSQL Database?

- Inefficiency in High-dimensional spaces
- Suboptimal Indexing
- Inadequate query support
- Lack of scalability
- Limited analytics capabilities
- Data conversion issues

TL;DR: Vector operations are too computationally intensive for traditional database infrastructures

What is Milvus/Zilliz ideal for?

Purpose-built to store, index and query vector embeddings from unstructured data at scale.

- Advanced filtering
- Hybrid search
- Multi-vector Search
- Durability and backups
- Replications/High Availability
- Sharding
- Aggregations
- Lifecycle management
- Multi-tenancy

- High query load
- High insertion/deletion
- Full precision/recall
- Accelerator support (GPU, FPGA)
- Billion-scale storage

Takeaway:

Vector Databases are purpose-built to handle indexing, storing, and querying vector data.

Milvus & Zilliz are specifically designed for high performance and **billion+** scale use cases.

02

Where do vectors come from?

Where do Vectors Come From?

Embeddings Models

Vector Embedding

[-0.096,-0.026,-0.044,0.012,...,-0.011]

Vector Space

03

Vector Database Use Cases

Common Al Use Cases

Retrieval Augmented Generation (RAG)

Expand LLMs' knowledge by incorporating external data sources into LLMs and your Al applications.

Recommender System

Match user behavior or content features with other similar ones to make effective recommendations.

Text/ Semantic Search

Search for semantically similar texts across vast amounts of natural language documents.

Image Similarity Search

Identify and search for visually similar images or objects from a vast collection of image libraries.

Video Similarity Search

Search for similar videos, scenes, or objects from extensive collections of video libraries.

Audio Similarity Search

Find similar audios in large datasets for tasks like genre classification or speech recognition

Molecular Similarity Search

Search for similar substructures. superstructures, and other structures for a specific molecule.

Anomaly Detection

Detect data points, events, and observations that deviate significantly from the usual pattern

Multimodal Similarity Search

Search over multiple types of data simultaneously, e.g. text and images

04

How do Vector Databases Work?

Example Entry

```
"id": "https://towardsdatascience.com/detection-of-credit-card-fraud-with-an-autoencoder-9275854"
"embedding": [-0.042092223,-0.0154002765,-0.014588429,-0.031147376,0.03801204,0.013369046,(
"date": "2023-06-01"
"paragraph": "We define an anomaly as follows:"
"reading_time": "11"
"subtitle": "A guide for the implementation of an anomaly..."
"publication": "Towards Data Science"
"responses": "1"
"article_url": "https://towardsdatascience.com/detection-of-credit-card-fraud-with-an-autoencoder-
"title": "Detection of Credit Card Fraud with an Autoencoder"
"claps": "229"
 ↑ Hide 6 fields
                   Q Vector search
```


05

What is Similarity Search?

Vector Search Overview

Image from Nvidia

Vector Similarity Measures: L2 (Euclidean)

$$d(\mathbf{p,q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Vector Similarity Measures: Inner Product (IP)

$$a\cdot b=\sum_{i=1}^n a_i b_i$$

Queen · King =
$$(0.3*0.5) + (0.9*0.7)$$

= $0.15 + 0.63 = 0.78$

Vector Similarity Measures: Cosine

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$
Queen = [0.3, 0.9]
King = [0.5, 0.7]

Choosing Vector Embedding Types

Distance: IP

Models: Splade, BGE-M3

Index: Wand, Graph

Distance: IP, L2, Cosine

Models: OpenAl, BGE, Cohere

Index: Faiss, HNSW

Distance: Hamming,

Superstructure, Jaccard, Tanimoto

Models: Cohere, Meta ESM-2

Index: Faiss

06

Indexes

Indexing strategies

- Tree based
- **Graph based**
- Hash based
- Cluster based

	Category	Index	Accuracy	Latency	Throughput	Index Time	Cost	
	Graph-based	Cagra (GPU)	High	Low	Very High	Fast	Very High	
		HNSW	High	Low	High	Slow	High	
		DiskANN	High	High	Mid	Very Slow	Low	
	Quantization-base d or cluster-based	ScaNN	Mid	Mid	High	Mid	Mid	
		IVF_FLAT	Mid	Mid	Low	Fast	Mid	
30 © Copyrig	r	IVF + Quantization	Low	Mid	Mid	Mid	Low	₩ zilliz

FLAT

FLAT Index

Inverted File FLAT (IVF-FLAT)

IVF-FLAT Index

IVF-FLAT Index

IVF-FLAT Index

Inverted File with Quantization

Scalar Quantization (IVF-SQ8)

Mapping Float ⇒ Integers

Scalar Quantization (IVF-SQ8)

Product Quantization (IVF-PQ)

- Consider the distribution of each dimension
- Divides vector embeddings into subvectors
- Performs clustering within each subvector to create centroids
- Encodes each subvector with the ID of the nearest centroid

Product Quantization (IVF-PQ)

Hierarchical Navigable Small World (HNSW)

HNSW - Skip List

HNSW - NSW Graph

- Built by randomly shuffling data points and inserting them one by one, with each point connected to a predefined number of edges (M).
 - ⇒ Creates a graph structure that exhibits the "small world".
 - ⇒ Any two points are connected through a relatively short path.

HNSW

Category	Index	Accuracy	Latency	Throughput	Index Time	Cost
Graph-based	Cagra (GPU)	High	Low	Very High	Fast	Very High
	HNSW	High	Low	High	Slow	High
Quantization-base d or cluster-based	DiskANN	High	High	Mid	Very Slow	Low
	MMco2	Mid	Mid	High	Mid	Mid
	IVF_FLAT	Mid	Mid	Low	Fast	Mid
© Copyrigt	IVF + Quantization	Low	Mid	Mid	Mid	Low

Picking an Index

- 100% Recall Use FLAT search if you need 100% accuracy
- 10MB < index_size < 2GB Standard IVF
- 2GB < index_size < 20GB Consider PQ and HNSW
- 20GB < index_size < 200GB Composite Index, IVF_PQ or HNSW_SQ
- Disk-based indexes

07

Milvus Architecture

High-level overview of Milvus' Architecture

Questions?

Check our Github

GitHub

github.com/milvus-io/

Chat with me on Discord!

discord.gg/FG6hMJStWu

