	Vagush
	Vageesh Baoa 1049
	Assignment -9
1.	1 101
\rightarrow	Assuming that engine operates steadily
	rissionary the series
	Acc. to ques the mass consumption Jate is
	* P
	$m = \int_{0}^{\infty} v^{2} = 0.89 \times 22 $ (m^{2})
	$(m^* - h)$
	=>- 0.0 h 221 c 17 /
	$= \frac{1}{2}m = \frac{0.8 \text{ h} \times 222}{1} = 17.6$
	<u> </u>
	Low test heating realing = 44x103 kJ/kg
	bien that fuels heating value = 44×103 kJ/kg
	= 77-4400x KJ = 215.11 kW
	36005
	Kence, the thermal efficiency can be given by
	η= wnet = 55 kw = 0.255 %. 25.57 %.
	A SIGNI bu
1	= 25.574.
	17= 25.57%
	16
-	

Assuming that Heatpump(HOP) operate strictly We knew that (cop) = 0 = 2.5 On in this case in diff. b/ur the heat last to autside HP (0W = 2.5 I heat generate from work => OH=60000 KJ = - 4000 KJ/n = 56000x kJ = 15.55 kw 3600 h naw ((op) = 2.5=0 = 15.55kw Hop wnet =) wnd = 15.55 kw= 6.22kw Pawer input from heat pump= 6.22kw Given ((OP) = 8.7; TH = 260 = 299K; W= 4.25 kw We know that , (cop) = a =) o = copxis

The state of heat rejected (on)=
$$0 + W$$

Point of heat rejected (on)= $0 + W$

The state of heat rejected (on)= $0 + W$

The state of heat rejected (on)= $0 + W$

The state of heat $0 + W$

The state of heat $0 + W$

The state of $0 + W$

T