Instruction of BCT parallelism

Jinyong Feng

03/13/2015

Step1: modify genbc.f to generate the coordinate positions from different processors on inflow surface

Make sure the "Reading BCT" in solver.inp is 0

Input: one-step simulation from PHASTA (you can change the numstart.dat to be 0 after you are ready to run the case on multi processors); bct.dat (come from bct.*.dat generated from Varts_BCT, with * is the ID of time window)

Output: bct.dat.*, with * is the ID of the processors

Step2: modify Coin.f to remove the repeated coordinates

Locations of Coin.f: Process_bctinflow/Coin.f

Input: myrank.txt (containing the ID of those processors that have boundary points); bct.dat.*, with * is the ID of the processors

Output: bctin.dat.*, with * is the ID of the cores

Step3: modify Vart_BCT.f to generate velocity information of all nodes for different time windows

Locations of Vart_BCT.f: /Varts_BCT

Input: vbct.inp, xyzts.dat, varts_run01.dat (come from BCTMerge code, locations: \BCTMerge)

Output: bct.*.dat, with * is the ID of the time window

Screenshot of vbct.inp:

Deltat is the simulation time for each bct.dat.*

Phdt is the timestep size for stable simulation (read from phasta output)

```
Start Simulation Time, End Simulation Time:

0
5.58

Deltat
0.565

phdt
6.670E-4

Start Time Step, End Time Step
0
8400

ioverlap to expand timestep range for slight overlap
20
```

Step4: create bct_partition.f to generate the selected nodes information for different time window and cores

Location: /Varts_BCT

Input: myrank.txt, bctin.dat.*, bct.*.dat, "bct_input" folder (need to create this folder in \varts)

Output: bct.dat.*1.*2, with *1 is the ID of time window and *2 is the ID of the processors

Step 5: add a step function "Reading BCT" in solver.inp; modify bctint.f to read bct.dat.* to run the case on different processor; add "iextsbct" in some subroutines, like itrdrv.f and genini.f which will distinguish between those nodes having boundary points and the nodes not having boundary points

Reading BCT: 0 means the PHASTA code will read the bct.dat and generate multiple bct.dat.* for further steps

Reading BCT: 1 means the PHASTA code will read the bct.dat.* and run the bct files on different processors

Input: bct.dat.1.*, with * is the ID of processor