Noções de probabilidade Parte 1

Prof. Eduardo Vargas Ferreira

Curso de Especialização em Data Science & Big Data Universidade Federal do Paraná

16 de março de 2018

Aplicação e Toy Models

- Probabilidade e Estatística são amplamente utilizadas nas engenharias, medicina, ciências sociais, economia, ciência da computação etc.
- A lista de aplicações é essencialmente infinita como: probabilidades e estratégias de jogo, previsão econômica, epidemiologia, dentre outros;
- ► Dadas tantas aplicações interessantes, você pode se perguntar "por que vamos passar tanto tempo pensando em *toy models* como moedas e dados?"
- ► Resposta: a fim de desenvolveremos boas percepções para a essência simples dentro de muitos problemas complexos do mundo real.

Teoria de conjuntos

- ► Elemento: escrevemos x ∈ Ω para significar que o elemento x está no conjunto Ω;
- ▶ Subconjunto: Dizemos que o conjunto A é um subconjunto de Ω se todos os seus elementos estiverem em Ω . Nós escrevemos isso como $A \subset \Omega$;
- ► Complemento: O complemento de A em Ω é o conjunto de elementos de Ω que não estão em A. Nós escrevemos isso como A^c ou Ω-A;
- ► União: A união de A e B é o conjunto de todos os elementos em A ou B (ou ambos). Nós escrevemos isso como A ∪ B;
- Interseção: A interseção de A e B é o conjunto de todos os elementos em A e B. Escrevemos isto como A ∩ B:

Teoria de conjuntos

- ▶ **Disjunto:** $A \in B$ são disjuntos se não tiverem elementos comuns. Ou seja, se $A \cap B = \emptyset$:
- ▶ Diferença: a diferença de A e B é o conjunto de elementos em A que não estão em B. Nós escrevemos isso como A−B;

Exemplo: Sejam A, B e C eventos associados a um experimento aleatório. Expresse em notação de conjuntos e faça os diagramas de Venn:

- i Somente A ocorre;
- ii A e B ocorrem, mas C não;
- iii Pelo menos um deles ocorre;
- iv Não mais que dois deles ocorrem.

Teoria de conjuntos

Princípio da inclusão-exclusão

O Princípio da inclusão-exclusão diz:

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

A figura abaixo exemplifica essa questão. S representa todos os pontos, A são os pontos no interior do círculo azul, e B no interior do vermelho.

- Uma banda é composta de cantores e guitarristas:
- 7 pessoas cantam;
- 4 tocam guitarra;
- 2 fazem ambos.

Quantas pessoas estão na banda?

Resposta: seja *C* o conjunto dos cantores e *G* o conjunto dos guitarristas. O tamanho da banda é dado por:

Tamanho da banda =
$$|C \cup G| = |C| + |G| - |C \cap G| = 7 + 4 - 2 = 9$$
.

Produto cartesiano

▶ O produto cartesiano de *R* e *S* é dado pelo par ordenado:

$$S \times T = \{(s, t) | s \in S, t \in T\}$$

Exemplo

×	1	2	3	4		
1	(1,1)	(1,2)	(1,3)	(1,4)		
2	(2,1)	(2,2)	(2,3)	(2,4)		
3	(3,1)	(3,2)	(3,3)	(3,4)		
$\{1,2,3\} \times \{1,2,3,4\}$						

$$\{1,2,3\} \times \{1,2,3,4\}$$

Regra do produto

► A Regra do Produto diz:

"Se houver n maneiras de executar a ação 1 e m maneiras de executar a ação 2, então existem $n \times m$ maneiras para executar a ação 1 seguida da ação 2."

► Também chamaremos isso de regra de multiplicação.

Exemplo: Se você tem 3 camisas e 4 calças, então você pode fazer $3 \times 4 = 12$ combinações de roupas.

Exemplo: Existem 5 competidores na final de 100m nas Olimpíadas. De quantas formas as medalhas de ouro, prata e bronze podem ser distribuídas? $5 \times 4 \times 3$

- Eu não usarei verde e vermelho juntos. E acho que o preto ou o azul vão bem com qualquer coisa. Abaixo está o meu guarda-roupa.
 - Camisas: 3 pretas, 3 vermelhas e 2 verdes;
 - ▶ Blusas: 1 preta, 2 vermelhas, 1 verde;
 - Calças: 2 azuis, 2 pretas.

Quantas combinações de roupa posso utilizar?

Número de possibilidades = $(3 \times 3 \times 4) + (3 \times 4 \times 4) + (2 \times 2 \times 4) = 100$

Combinando vários modelos

- ► As camadas de modelos envolvem algoritmos do tipo:
 - Regressão Linear;
 - Regressão logística;
 - ► KNN;
 - Gradiente Boosting;

- ► Naive Bayes;
- Redes Neurais Artificiais;
- Árvores de decisão;
- Random Forests etc.

Cáculo de Probabilidades

- A probabilidade é uma quantidade que pode ser utilizada para se medir a incerteza sobre certos eventos ou características de interesse:
- Tais eventos, em geral, estão associados a experimentos aleatórios (experimento para qual não se tem certeza sobre seu resultados, a priori);
- As probabilidades geralmente são baseadas em:
 - ▶ Procedimento empírico: calculada com base nos valores observados.
 - Procedimento teórico: proposto pelo pesquisador para representar a distribuição de frequência populacional.

- **Exemplo:** estudar as probabilidades de ocorrência das faces de um dado.
 - Procedimento empírico: lançar o dado um certo número de vezes e contar quantas vezes a face i = 1, 2, 3, 4, 5, 6 ocorreu;
 - $f_i = \frac{n_i}{n}$ é a distribuição empírica das probabilidades;
 - Para diferentes vezes que esse experimento for realizado, a distribuição de frequência terá resultados diferentes;
 - Procedimento teórico: construir a distribuição de frequências populacionais (probabilidades) através de suposições teóricas.

Distribuição de Frequências

Exemplo: Salário (variável quantitativa contínua)

Faixa salarial	Frequência (n _i)	Proporção (f _i)	% (100 \times f_i)
4.00-8.00	10	0.2778	27.78
8.00-12.00	12	0.3333	33.33
12.00-16.00	8	0.2222	22.22
16.00-20.00	5	0.1389	13.89
20.00-24.00	1	0.0278	2.78
Total	36	1.0000	100.00
12.00-16.00 16.00-20.00 20.00-24.00	8 5 1	0.2222 0.1389 0.0278	22.22 13.89 2.78

Faixa salarial	Capital	Interior	Outro	Marginal
[4 – 8)	4	3	3	10
[8 - 12)	3	4	6	13
[12 - 16)	1	3	3	7
[16 - 20)	3	1	1	5
[20 - 24]	0	1	0	1
Marginal	11	12	13	36

Espaço Amostral

São todos os resultados possíveis do experimento (aleatório), denotado por $\Omega = \{\omega_1, \omega_2, ...\};$

Exemplo: lançar uma moeda duas vezes:

$$C = cara$$
 $K = coroa$

- $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$ $\omega_1 = (C, C); \omega_2 = (C, K); \omega_3 = (K, C); \omega_4 = (K, K);$
- ► Considerando que a moeda é honesta: $P(\omega_i) = \frac{1}{4}$, $\forall i = 1, 2, 3, 4$.
- Seja o evento $A = \{\omega_1, \omega_4\} = \text{obter duas faces iguais}$ $P(A) = P(\{\omega_1, \omega_4\}) = P(\omega_1) + P(\omega_4) = \frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2}.$

- ► Três jogadores A, B e C disputam um torneio de tênis;
- ► Inicialmente, A joga com B e o vencedor joga com C, e assim por diante;
- O torneio termina quando um jogador ganha duas vezes seguidas ou quando são disputadas, ao todo, quatro partidas;
- Quais são os resultados possíveis do torneio?

Fonte: Morettin & Bussab, Estatística Básica 5^a edição, pág 105.

Solução

 $\Omega = \{AA, BB, ACC, BCC, ACBA, ACBB, BCAA, BCAB\}$

Exercício

- ▶ Defina o espaço amostral dos seguintes experimentos aleatórios:
 - (i) Numa linha de produção, conta-se o número de peças defeituosas num intervalo de uma hora;
 - (ii) Investigam-se famílias com três crianças, anotando-se a configuração segundo o sexo;
 - (iii) Numa entrevista telefônica com 250 assinantes, anota-se se o proprietário tem ou não máquina de secar roupa;
 - (iv) Uma lâmpada é retirada de um lote e é medido seu tempo de vida antes de queimar.

