

Parámetros Denavit-Hartenberg

Robot antropomórfico (proyecto)

Práctica 1

8°B T/M

ASIGNATURA: CINEMÁTICA DE ROBOTS
PROFESOR: ENRIQUE MORÁN GARABITO
ALUMNO: MARCO ANTONIO LOZANO OCHOA

UNIVERSIDAD POLITÉCNICA DE LA ZONA METROPOLITANA DE GUADALAJARA | Ingeniería mecatrónica

Robot antropomórfico (3 GDL)

i	a_{i-1}	\propto_{i-1}	d_i	$\boldsymbol{\theta_i}$
1	0	-90	0	$ heta_1$
2	L_1	0	0	$ heta_2$
3	L_2	0	0	$ heta_3$

$$T_{1}^{0} = \begin{bmatrix} C\theta_{1} & -S\theta_{1} & 0 & 0 \\ S\theta_{1} & C\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{2}^{1} = \begin{bmatrix} C\theta_{2} & -S\theta_{2} & 0 & L_{1} \\ 0 & 0 & 1 & 0 \\ -S\theta_{2} & -C\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{3}^{2} = \begin{bmatrix} C\theta_{3} & -S\theta_{3} & 0 & L_{2} \\ S\theta_{3} & C\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{3}^{0} = T_{1}^{0}T_{2}^{1}T_{3}^{2} = \begin{bmatrix} C\theta_{3} & -S\theta_{3} & 0 & L_{2} \\ S\theta_{3} & C\theta_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Evidencia

