Calculus: Continuity, Integration, Series

Autumn Term 2024

Instructor: Abbas Edalat

Second Part of Assessed Coursework: Questions 3b, 4c, 5d, 9 are assessed.

- 1. Suppose $f:(a,b)\to\mathbb{R}$ and $g:(c,d)\to\mathbb{R}$ with $x_0\in(a,b)$ and $f(x)\in(c,d)$ for all $x\in(a,b)$. Assuming that f is continuous at x_0 and g is continuous at $f(x_0)$, prove that the composition function $g\circ f:(a,b)\to\mathbb{R}$ is coontinuous at x_0 in two different ways as follows:
 - (a) Directly, using the $\epsilon \delta$ definition of continuity.
 - (b) Indirectly, reducing the continuity of the two functions to convergence of sequences.

- 2. **Exam 2024** Let $f:[0,1] \to \mathbb{R}$ be given by $f(x)=x^3$. Consider the partition P_n of [0,1] into n equal intervals of length 1/n.
 - Using the monotonicity of x^3 in [0,1], find the lower sum $L(f, P_n)$ and the upper sum $U(f, P_n)$.
 - Hence, show that f is integrable and find $\int_0^1 x^3 dx$.

(You can use the formula $\sum_{i=1}^{n} i^3 = (n(n+1))^2/4$.)

- 3. Use the Comparison Test to establish whether each of the series below converges or diverges. You may assume common series convergence results.
 - (a) $\sum_{n=1}^{\infty} \frac{2}{5n+6}$ Exam standard.
 - (b) $\sum_{n=1}^{\infty} \frac{4}{5n^2 4}$

- (c) $\sum_{n=5}^{\infty} \frac{1}{n-4}$ Exam standard.
- (d) $\sum_{n=1}^{\infty} \frac{1}{(n+1)^3}$
- 4. Use the Limit Comparison Test to investigate the convergence or otherwise of the following series. You may assume common series convergence and divergence results.
 - (a) $\sum_{n=1}^{\infty} \frac{1}{n+2}$
 - (b) $\sum_{n=1}^{\infty} \frac{1}{2n^3 + 9}$
 - (c) $\sum_{n=1}^{\infty} \frac{1}{3n^2 + 4n 2}$ Exam standard.
 - (d) $\sum_{n=1}^{\infty} \frac{1}{\alpha^n}$ for $\alpha > 2$ Exam standard.
- 5. Use d'Alembert's *Limit* Ratio Test to determine the convergence or divergence of the following series. You may assume common series convergence and divergence results.
 - (a) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$
 - (b) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ Exam standard.
 - (c) $\sum_{n=1}^{\infty} \frac{3^n}{n^3 2^n}$ Exam standard.
 - (d) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ Exam standard.

You may use the fact that $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$.

- 6. Using the Integral Test to show that $\sum_{n=1}^{\infty} \frac{1}{e^n}$ converges.
- 7. **Exam standard.** Using a suitable convergence technique, show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ converges for all $\alpha > 1$.
- 8. **Exam standard.** Using any technique, investigate the convergence or divergence properties (for different values of the parameter x, if present) of each of the following series.

2

- (a) $\sum_{n=1}^{\infty} \frac{1}{3n+2}$
- (b) $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$
- (c) $\sum_{n=1}^{\infty} n! x^n$
- (d) $\sum_{n=1}^{\infty} \left(\frac{x}{n}\right)^n$
- (e) $\sum_{n=1}^{\infty} \sin \frac{\pi}{n}$ using the fact that $2x/\pi < \sin x < x$ for $0 < x < \pi/2$
- (f) $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$
- 9. Use an appropriate test to determine whether the series

$$\sum_{n=1}^{\infty} \frac{(2n)!}{2^{2n}(n!)^2}$$

converges.