1. Перечислите виды планирования в ОС и укажите для каждого вида планирования его место в жизненном цикле процесса в ОС: из какого состояния (состояний) в какое состояние переводится процесс по соответствующему плану.

Краткосрочное планирование: Готов — Выполняется

Среднесрочное планирование: ожидание в оперативной памяти → ожидание вне оперативной памяти (swap)

Долгосрочное планирование: Рождение → Готов

- ✓ 2. Перечислите основные критерии планирования процессов
- 1. Критерий справедливости
- 2. Критерий эффективности
- 3. Критерий сокращения полного времени выполнения
- 4. Критерий сокращения времени ожидания
- 5. Критерий сокращения времени отклика
 - ✓ 3. В чем разница невытесняющих и вытесняющих алгоритмов планирования?

Невытесняющее планирование – если мы дали процессу выполняться, то он только сам может приостановить или завершить свое выполнение

Вытесняющее планирование – есть механизм, который позволяет прервать выполнение текущего процесса, чтобы передать ресурс процессора следующему процессу

✓ 4. В каком случае алгоритм First-Come, First-Served окажется эффективнее алгоритма Round Robin и почему?

FCFS эффективнее, если у процессов равное время выполнения, а квант исполнения у RR меньше, чем это время. В этом случае среднее время ожидания при обоих алгоритмах будет одинаково (т. к. равное время выполнения процессов), однако у FCFS будет минимальное число переключений контекста (n-1), т. к. процесы выполняются последовательно, а у RR это число будет больше (т. к. квант исполнения меньше времени выполнения процесса).

✓ 5. Для приведенных данных о CPU-burst и времени рождения процессов постройте диаграмму выполнения процессов на процессоре, используя вытесняющий алгоритм Short Job First: буква «И» в клетке таблицы обозначает, что процесс в этот момент времени находится в состоянии «Исполнение»; буква «Г» в таблице обозначает, что процесс в этот момент времени находится в состоянии «Готовность»; пустая ячейка обозначает, что процесс еще не родился или завершил выполнение. Квант непрерывного выполнения составляет три единицы времени.

Процесс	Время появления в очереди очередного	Продолжительность					
	CPU-burst процесса (в этот момент времени	очередного					
	он должен быть в состоянии «Готовность»	CPU-burst процесса					
	или «Исполнение)						
p_0	0	8					
p_1	1	3					
p_2	0	7					
p_3	12	4					

Время	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
p_0	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	Γ	Γ	Γ	Γ	И	И	И	И	И		
p_1		Γ	Γ	И	И	И																		
p_2	И	И	И	Γ	Γ	Γ	И	И	И	И														
p_3													Γ	И	И	И	И							