# **CS321: Computer Networks**



## DNS

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

# **DNS - Internet's Directory Service**



- Just as humans can be identified in many ways, so too can Internet hosts.
  - Hostname (e.g., gmail.co.in, iitj.ac.in)
    - these are mnemonic, user friendly for Humans
  - IP Address (e.g., 121.7.106.83, 172.17.0.10)
    - these are structured numeric digits, user friendly for Routers
- The Internet needs to have a directory system that can map a name to an address.
- The Internet is so huge today, a central directory system cannot hold all the mapping.
- A better solution distribute the directory information among many computers in the world.
- The host that needs mapping can contact the closest computer holding the needed information.
- This method is used by the **Domain Name System (DNS)**.



- The DNS is a combination of :
  - a distributed database implemented in a hierarchy of DNS servers, and
  - an application-layer protocol that allows hosts to query the distributed database
- Let the purpose of accessing the Internet is to make a connection between the file transfer client and server,
- but before this can happen, another connection needs to be made between the DNS client and DNS server
  - DNS protocol runs over UDP and uses port 53.
  - The DNS servers are running the Berkeley Internet Name Domain (BIND) software





- Design for DNS:
  - Centralized
  - Distributed
- The problems with a centralized design include:
  - A single point of failure: DNS server crashes, so does the entire Internet!
  - Traffic volume: A single DNS server would have to handle all DNS queries generated from hundreds of millions of hosts
  - Distant centralized database: A single DNS server cannot be "close to" all the querying clients.
  - Maintenance: The single DNS server would have to keep records for all Internet hosts. Management of it becomes very difficult!



- DNS provides a few other important services in addition to translating hostnames to IP addresses:
  - Host aliasing: relay1.west-coast.enterprise.com could have, say, two aliases such as enterprise.com and www.enterprise.com
  - Mail server aliasing: the canonical hostname of the Hotmail server might be something like relay1.west-coast.hotmail.com but the mail server is simply hotmail.com
  - Load distribution: used to perform load distribution among replicated servers. For replicated servers, a set of IP addresses is thus associated with one canonical hostname.

## Name Space



- the names must be unique because the addresses are unique.
- A name space that maps each address to a unique name can be organized in two ways:
  - flat
  - hierarchical
- flat name space
  - a name is assigned to an address
  - a name is a sequence of characters without structure
  - The names may or may not have a common section
  - Disadvantage: it cannot be used in a large system such as the Internet because it must be centrally controlled to avoid ambiguity and duplication



- hierarchical name space: each name is made of several parts
  - the first part can define the nature of the organization
  - the second part can define the name of an organization
  - the third part can define departments in the organization

#### Advantages

- the authority to assign and control the name spaces can be decentralized.
- A central authority can assign the part of the name. E.g, name & nature of the organization
  Rest of the name can be assigned by the organization itself



## **Domain Name Space**



 the names are defined in an inverted-tree structure with the root at the top.





#### Label:

- Each node in the tree has a label, which is a string with a maximum of 63 characters.
- The root label is a null string (empty string).

#### Domain Name:

- Each node in the tree has a domain name.
- A full domain name is a sequence of labels separated by dots (.)
- The domain names are always read from the node up to the root.
- The last label is the label of the root (null).

#### Fully qualified domain name (FQDN):

- If a label is terminated by a null string.
- Else, it is Partially qualified domain name (PQDN)





## **Domain**



A domain is a subtree of the domain name space



## **Distribution of Name Space**



- The information contained in the domain name space must be stored.
- It is very inefficient and also not reliable to have just one computer store such a huge amount of information
- Soln: Many DNS Servers following a hierarchy





 Zone: What a server is responsible for or has authority over is called a zone.

A root server is a server whose zone consists of the

whole tree.



## **DNS** in the Internet



- DNS is a protocol that can be used in different platforms.
- In the Internet, the domain name space (tree) was originally divided into three different sections:
  - generic domains
  - country domains
  - inverse domains

Note: The inverse domains are now deprecated.

### **Generic Domains**



 The generic domains define registered hosts according to their generic behavior.



| Label | Description                   | Label  | Description                  |
|-------|-------------------------------|--------|------------------------------|
| aero  | Airlines and aerospace        | int    | International organizations  |
| biz   | Businesses or firms           | mil    | Military groups              |
| com   | Commercial organizations      | museum | Museums                      |
| coop  | Cooperative organizations     | name   | Personal names (individuals) |
| edu   | Educational institutions      | net    | Network support centers      |
| gov   | Government institutions       | org    | Nonprofit organizations      |
| info  | Information service providers | pro    | Professional organizations   |
|       |                               |        |                              |

## **Country Domains**



- The country domains section uses two-character country abbreviations.
- Second labels can be organizational, or they can be more specific national designations.
- E.g., The address *uci.ca.us*. can be translated to University of California, Irvine, in the state of California in the United States.



## Name-Address Resolution



- Mapping a name to an address is called name-address resolution
- DNS is designed as a client-server application.
- The resolver (DNS client) accesses the closest DNS server with a mapping request.
- If the server has the information, it satisfies the resolver;
- otherwise, it either refers the resolver to other servers or asks other servers to provide the information.
- A resolution process can be
  - Recursive
  - Iterative

## Recursive vs Iterative Resolution





## **Caching**



- Each time a server receives a query for a name that is not in its domain, it needs to search its database for a server IP address.
- Reduction of this search time would increase efficiency.
- DNS handles this with a mechanism called caching
- Caching speeds up resolution, but it can also be problematic.
- If a server caches a mapping for a long time, it may send an outdated mapping to the client.
- To counter this, TTL (time-to-live) based technique is used.

## **DNS Messages**



- The identification field is used by the client to match the response with the query.
- The flag field defines whether the message is a query or response.



#### Note:

The query message contains only the question section. The response message includes the question section, the answer section, and possibly two other sections.



- DNS can use either UDP or TCP.
- In both cases the well-known port used by the server is port 53.

## Example:

 In UNIX and Windows, the nslookup utility can be used to retrieve address/name mapping.

#### \$nslookup www.forouzan.biz

Name: www.forouzan.biz

Address: 198.170.240.179



# Thanks!