

PYTHON PARA QAs

REVISÃO AULA 6

- Como estruturar um projeto Python corretamente.
- Como criar e testar uma API.
- Como utilizar requests para fazer chamadas HTTP.
- Como escrever testes automatizados com pytest.
- Como manipular logs e gerar relatórios com Pandas.

MÓDULO 4 - PERSISTÊNCIA E MANIPULAÇÃO DE DADOS

- 1. Manipulação de arquivos (CSV, JSON, XML).
- 2. Integração de Python com ferramentas de Bl.
- 3. Boas práticas para persistência de dados.

AULA 7 - MANIPULAÇÃO DE ARQUIVOS

Objetivos da aula:

- Leitura, escrita e manipulação de arquivos em diferentes formatos;
- Persistência de dados em arquivos CSV, JSON e XML;
- Converter dados entre diferentes formatos (JSON ↔ CSV ↔ XML);
- Implementar boas práticas para manipulação e organização de arquivos;
- Gerenciamento de dados estruturados e não estruturados;
- Preparar dados para integração com ferramentas externas.

INTRODUÇÃO À PERSISTÊNCIA DE DADOS

- Como os dados manipulados na API são armazenados atualmente?
- Quais desafios enfrentamos ao persistir dados entre execuções?
- O que é persistência de dados?
 - Armazenamento permanente de informações
 - Mantém histórico e consistência de dados.
 - Principais tipos de persistência:
 - Arquivos
 - JSON
 - CSV
 - XML
 - Bancos de Dados
 - MySQL
 - PostgreSQL
 - MongoDB
 - Serviços Online
 - Google Sheets
 - Firebase

COMPARAÇÃO ENTRE CSV, JSON, XML E GOOGLE SHEETS

Formato	Vantagens	Desvantagens	Melhor uso para
csv	Simples e leve; Compatível com Excel e Google Sheets; Fácil de manipular com Pandas.	Não suporta hierarquia/aninhamento; Difícil validar estrutura.	Relatórios de testes, logs e exportação de dados tabulares
JSON	Estruturado e organizado Suporta aninhamento (objetos e listas) Padrão para APIs Fácil conversão para dicionários Python	Pode ser maior que um CSV; Não tem suporte nativo em Excel.	APIs, integração entre sistemas, armazenamento de dados estruturados
XML	Formato padrão para intercâmbio de dados; Suporta aninhamento e metadados; Muito usado em sistemas antigos e governamentais.	Mais verboso que JSON; Manipulação pode ser mais complexa; Requer parsing (bibliotecas específicas).	Integração entre sistemas legados, configuração de aplicações
Google Sheets	Fácil de visualizar e compartilhar; Integração com ferramentas de BI; Permite automação via API Armazena dados em tempo real.	Requer conexão com internet; API exige autenticação; Limitações para grandes volumes de dados.	Relatórios compartilhados, análise de execuções de testes, integração com times não técnicos

QUANDO USAR CADA FORMATO?

CSV

- Relatórios de testes;
 - Logs;
- Tabelas exportáveis.

JSON

- APIs;
- Configuração de aplicações.

XML

- Integração com sistemas legados
- Metadados.

Google Sheets

- Para relatórios
- Colaboração em tempo real.

ATIVIDADE PRÁTICA

- Criar um arquivo dados.json contendo informações simuladas de usuários e carregar esses dados em um script Python;
- Manipular os dados do arquivo dados.json;
- Converter o arquivo dados.json para um arquivo XML;
- Converter o arquivo XML gerado para json;
- Converter o arquivo dados.json para um arquivo CSV;
- Converter o arquivo CSV gerado para json;
- Refatorar o código para modularizar as conversões;
- Testar as funções criadas para as conversões;
- Criar um sistema de conversão de arquivos;

alura + FIMP

REVISÃO

- Persistência de dados e por que é importante.
- Diferenças entre JSON, CSV, XML e Google Sheets.
- Operações CRUD em arquivos JSON.
- Conversão de arquivos entre diferentes formatos.
- Criação de uma API para converter arquivos.
- Testes automatizados para validar a conversão e a API.

ATIVIDADE

- Documentar o nosso projeto no github
 - Criar um README.md descrevendo e detalhando tudo que o sistema faz (quais funcionalidades) e como rodar.
- Crie um sistema que:
 - o Baixe automaticamente um arquivo JSON de uma URL.
 - https://jsonplaceholder.typicode.com/users
 - Converta esse JSON para CSV e XML usando os módulos desenvolvidos.

Podemos contar com o seu feedback?

Escaneie o QR Code ao lado e responda nossa Pesquisa de Avaliação.

PARA EMPRESAS

OBRIGADO

PARA EMPRESAS

Copyright © 2019 | Professor (a) Nome do Professor

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamento proibido sem consentimento formal, por escrito, do professor/autor.