

# LEVERAGING DISCOURSE REWARDS FOR DOCUMENT-LEVEL NEURAL MACHINE TRANSLATION

Iñigo Jauregi Unanue, Nazanin Esmaili, Gholamreza Haffari and Massimo Piccardi



UNIVERSITY OF TECHNOLOGY SYDNEY

### INTRODUCTION

Document-level machine translation is widely regarded as a challenging task since the translation of the individual sentences in the document needs to retain aspects of the **discourse** at document level.

#### Related work

Most existing document-level NMT approaches aim to implicitly teach the model the discourse of a document by encoding the context from surrounding sentences with multiple encoders, extra attention layers and memory caches...

#### Our Approach

Instead, we have proposed to **explicitly** teach the model what good document structure is, by using discourse rewards in the objective function.

# LEXICAL COHESION AND COHERENCE

#### Lexical Cohesion (LC):

A measure of the frequency of semantically-similar words cooccurring in a document (or block of sentences)

$$LC = \frac{\# \ of \ cohesion \ devices \ in \ document}{\# \ of \ words \ in \ document}$$
 (1)

#### Coherence (COH):

A measure of how well adjacent sentences in a text are linked to each other. We have used a *topic-based* coherence metric, and uses a Latent Semantic Analysis (LSA) pretrained model to compute the topic vectors of each sentence ( $\mathbf{t}_i$ ) and measure the cosine distance.

$$COH = \frac{1}{k-1} \sum_{i=2}^{k} \cos(\mathbf{t}_i, \mathbf{t}_{i-1})$$
 (2)

# Expected Risk Minimization (Risk) Training

We have used reinforcement learning style training (**Risk**[1]) in order to be able to use discontinuous reward functions (LC and COH) during training. NLL has been used for pre-training to avoid a *cold-start* and as a mixed objective with Risk.



# EXPERIMENTS

#### TED talks (IWSLT Workshop):

| Model                                                                  | Zh-En (TED talks) |                |        |            | Cs-En (TED talks) |                |       |            | Es-En (TED talks) |                   |       |            |
|------------------------------------------------------------------------|-------------------|----------------|--------|------------|-------------------|----------------|-------|------------|-------------------|-------------------|-------|------------|
|                                                                        | BLEU              | LC             | COH    | $F_{BERT}$ | BLEU              | LC             | СОН   | $F_{BERT}$ | BLEU              | LC                | COH   | $F_{BERT}$ |
| Sentence-level NMT                                                     | 16.94             | 55.39          | 28.02  | 66.94      | 22.74             | 55.62          | 27.72 | 69.60      | 39.55             | 56.67             | 28.27 | 79.5       |
| HANjoin                                                                | 17.52             | 55.02          | 28.15  | 67.21      | 23.44             | 55.63          | 27.62 | 69.87      | 39.89             | 56.25             | 28.56 | 79.88      |
| Human reference                                                        |                   | 55.13          | 29.33  |            | _                 | 55.91          | 29.7  |            | _                 | 57.84             | 30.79 | _          |
| $Risk(1.0)$ - $BLEU_{doc} + LC_{doc} + COH_{doc}$                      | 18.15             | <b>57.48</b> * | 29.32* | 67.69      | 23.40             | <b>58.31</b> * | 28.17 | 70.09      | 37.4              | $59.41^{\dagger}$ | 28.92 | 78.86      |
| $Risk(0.8)$ - $BLEU_{doc} + LC_{doc} + COH_{doc}$                      | 17.82             | 55.18          | 28.68  | 67.60      | 23.43             | 56.03*         | 27.62 | 70.01*     | 39.52             | 57.53             | 28.79 | 79.11      |
| $Risk(0.5)$ - $BLEU_{doc} + LC_{doc} + COH_{doc}$                      | 17.83             | 54.70          | 28.30  | 67.73      | 23.42             | 56.07          | 27.78 | 69.95*     | 40.1              | 57.4              | 28.78 | 79.61      |
| Risk(0.2)-BLEU <sub>doc</sub> + LC <sub>doc</sub> + COH <sub>doc</sub> | 17.80             | 55.10          | 28.35  | 67.62      | 23.48             | 55.85          | 27.62 | 69.95      | 40.07             | 56.83             | 28.61 | 79.62      |

#### Movie subtitles (OpenSubtitles):

| Model                                                                                                                                                                                                                                          | Eu-  | En (mov           | ie subtit         | les)              | Es-En (movie subtitles) |                   |       |                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|-------------------|-------------------|-------------------------|-------------------|-------|-------------------|--|
| Wiodei                                                                                                                                                                                                                                         | BLEU | LC                | COH               | F <sub>BERT</sub> | BLEU                    | LC                | COH   | F <sub>BERT</sub> |  |
| Sentence-level NMT                                                                                                                                                                                                                             | 9.12 | 37.08             | 19.34             | 59.18             | 29.34                   | 58.31             | 22.70 | 67.57             |  |
| HANjoin                                                                                                                                                                                                                                        | 9.74 | 37.19             | 19.63             | 59.72             | 30.14                   | 58.11             | 22.58 | 67.73             |  |
| Human reference                                                                                                                                                                                                                                |      | 41.83             | 21.93             |                   | _                       | 57.28             | 24    | _                 |  |
| $Risk(1.0)$ - $BLEU_{doc} + LC_{doc} + COH_{doc}$                                                                                                                                                                                              | 1.19 | $72.51^{\dagger}$ | $27.67^{\dagger}$ | 36.72             | 3.37                    | $67.82^{\dagger}$ | 19.53 | 48.07             |  |
| Risk(0.8)-BLEU <sub>doc</sub> + LC <sub>doc</sub> + COH <sub>doc</sub>                                                                                                                                                                         | 9.67 | 40.66*            | 19.60             | 59.76             | 29.51                   | 58.34             | 22.82 | 67.51             |  |
| Risk(0.5)-BLEU <sub>doc</sub> + LC <sub>doc</sub> + COH <sub>doc</sub>                                                                                                                                                                         | 9.77 | 38.85*            | 19.80             | 59.62             | 29.79                   | 58.44             | 22.76 | 67.53             |  |
| $\begin{aligned} & \text{Risk}(0.5)\text{-}\text{BLEU}_{\text{doc}} + \text{LC}_{\text{doc}} + \text{COH}_{\text{doc}} \\ & \text{Risk}(0.2)\text{-}\text{BLEU}_{\text{doc}} + \text{LC}_{\text{doc}} + \text{COH}_{\text{doc}} \end{aligned}$ | 9.99 | 37.53             | 19.42             | 59.72             | 29.70                   | 58.39             | 22.96 | 67.50             |  |

#### News (WMT Workshop):

| Model                                             | Es-En (news) |        |                |            |  |  |
|---------------------------------------------------|--------------|--------|----------------|------------|--|--|
| Middel                                            | BLEU         | LC     | СОН            | $F_{BERT}$ |  |  |
| Sentence-level NMT                                | 21.79        | 32.97  | 28.1           | 67.88      |  |  |
| HANjoin                                           | 22.16        | 32.87  | 28.15          | 68.28      |  |  |
| Human reference                                   | _            | 38.66  | 30.97          | _          |  |  |
| $Risk(1.0)$ - $BLEU_{doc} + LC_{doc} + COH_{doc}$ | 20.67        | 32.81  | 28.14          | 67.84      |  |  |
| $Risk(0.8)$ - $BLEU_{doc} + LC_{doc} + COH_{doc}$ | 22.26        | 33.70* | <b>28.45</b> * | 68.14      |  |  |
| $Risk(0.5)$ - $BLEU_{doc} + LC_{doc} + COH_{doc}$ | 22.34        | 33.51* | 28.39          | 68.02      |  |  |
| $Risk(0.2)$ - $BLEU_{doc} + LC_{doc} + COH_{doc}$ | 22.45*       | 33.32* | 28.25          | 68.13      |  |  |

(\*) means that the differences are statistically significant with respect to the HAN<sub>ioin</sub> baseline with a p-value < 0.05 over a one-tailed Welch's t-test.

# REFERENCES

[1] Sergey Edunov, Myle Ott, Michael Auli, David Grangier, and Marc'Aurelio Ranzato. Classical structured prediction losses for sequence to sequence learning. *Proceedings of the North American Chapter of the Association for Computational Linguistics (NAACL)*, 2018.

#### CONCLUSION

Consistent improvement in LC and COH, while retaining comparable values of accuracy metrics such as BLEU and  $F_{BERT}$ . The best combination of discourse rewards, accuracy rewards and NLL has had to be selected by validation for each dataset.

In the **future** we plan to investigate how to automate this selection, and also explore the applicability of the proposed approach to other **natural language generation** tasks.

# CONTACT INFORMATION

inigo.jauregi@rozettatechnology.com nazanin.esmaili@uts.edu.au gholamreza.haffari@monash.edu massimo.piccardi@uts.edu.au