ECONOMETRIA I O estimador de Mínimos Quadrados Ordinários

Luis A. F. Alvarez

24 de março de 2025

Ambiente

- Pesquisador observa n pares (Y_i, X_i) , $i = 1 \dots, n$, para os quais supõe um modelo linear da forma:

$$Y_i = X_i'\beta + \epsilon_i \dots i = 1, \dots n, \qquad (1)$$

onde $\beta \in \mathbb{R}^k$ é um parâmetro desconhecido, e ϵ_i , $i=1,\ldots,n$ são variáveis aleatórias não observadas.

- Recorde-se, da última aula, que cabe ao pesquisador postular o modelo e a interpretação dos coeficientes.
- No caso mais comum, $(Y_i, X_i) \stackrel{d}{=} (Y, X)$ para i = 1, ..., n, onde a distribuição de (Y, X) representa a distribuição das variáveis numa população de interesse.
 - Por exemplo, podemos ter que $\{(Y_i,X_i)\}_{i=1}^n$ é uma amostra aleatória de uma população com distribuição $\mathbb{P}_{Y,X}$, para a qual postulamos um modelo linear.
 - Mas também podemos ter que as observações entre pares apresentem dependência entre si, embora com leis $\mathbb{P}_{(Y_i,X_i)}$ comuns a todo i.
- De modo mais geral, no entanto, pode ser que os (Y_i, X_i) não possuam a mesma distribuição conjunta, mas haja uma relação comum e estável ao longo de i.

Notação matricial

- No que segue, definimos as seguintes matrizes aleatórias:

$$m{y} = egin{bmatrix} Y_1 \ Y_2 \ dots \ Y_n \end{bmatrix}, \quad m{X} = egin{bmatrix} X_1' \ X_2' \ dots \ X_n' \end{bmatrix}, \quad m{\epsilon} = egin{bmatrix} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_n \end{bmatrix}$$

 Com base na notação acima introduzida, podemos reescrever (1) em notação matricial como:

$$\mathbf{y} = \mathbf{X}\beta + \boldsymbol{\epsilon} \tag{2}$$

Estimador de mínimos quadrados ordinários

- O estimador de mínimos quadrados ordinários de β , denotado por \hat{b} , consiste em estimar β minimizando a distância, na norma Euclidiana, entre \mathbf{y} e uma combinação linear das colunas de \mathbf{X} , i.e.

$$\hat{b} \in \operatorname{argmin}_{b \in \mathbb{R}^k} \| \boldsymbol{y} - \boldsymbol{X} b \|_2^2 = \operatorname{argmin}_{b \in \mathbb{R}^k} \frac{1}{n} \sum_{i=1}^n (Y_i - X_i' b)^2 \,,$$

- Em outras palavras, encontramos o coeficiente b que maximiza a contribuição dos X_i à explicação de Y_i, tal qual medida pela média da distância ao quadrado entre os Y_i e X'_ib.
- Condições de primeira ordem podem ser escritas como:

$$\mathbf{0}_{k \times 1} = \sum_{i=1}^{n} X_i (Y_i - X_i' b) = \mathbf{X}' (\mathbf{y} - \mathbf{X} b)$$

Condição de posto e unicidade do mínimo

Sob a condição

HIPÓTESE

A matriz X apresenta posto k.

Temos que X'X é invertível (por quê), de modo que existe uma única solução ao problema de otimização, dada por:

$$\hat{b} = (\mathbf{X}'\mathbf{X})(\mathbf{X}'\mathbf{y}).$$

- Condição de posto requer que nenhuma das colunas seja escrita como combinação linear das demais.
 - Se a primeira entrada dos X_i corresponde a um intercepto (i.e. $X_{i,1}=1$ para todo $i=1,\ldots,n$), nenhuma das colunas pode ser escrita como função afim das demais
- Observe que, como rank $(X) \le \min\{n, k\}$, condição implica que $n \ge k$.

UM CASO SIMPLES

- Considere, para fixar as ideias, o caso em que $X_i = egin{bmatrix} 1 & \mathcal{T}_i \end{bmatrix}'$.
- Nesse caso, a matriz X'X é dada por:

$$\begin{bmatrix} n & \sum_{i=1}^{n} T_i \\ \sum_{i=1}^{n} T_i & \sum_{i=1}^{n} T_i^2 \end{bmatrix}$$
 (3)

de modo que a condição de posto é equivalente a

$$\widehat{V(T)} = \frac{1}{n} \sum_{i=1}^{n} T_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} T_i\right)^2 > 0.$$

Se condição de posto é satisfeita, estimador de MQO é dado por:

$$\hat{b}_2 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(T_i - \bar{T})}{\sum_{i=1}^{n} (T_i - \bar{T})^2} = \frac{\widehat{\text{cov}(T, Y)}}{\widehat{V(T)}}$$

MQO: Propriedades Algébricas

Matriz de projeção

- Definimos a matriz de projeção de **X** como:

$$P = \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'$$

- Observe que a matriz de projeção é tal que $X\hat{b} = P\mathbf{y}$.
- Pz é a projeção (em termos de minimização da distância Euclidiana) de $z \in \mathbb{R}^n$ no espaço gerado pelas colunas de X.
- Matriz de projeção tem as seguintes propriedades:
 - Simétrica.
 - Idempotente ($P^2 = P$).
 - Os autovalores de P são ou 0 ou 1.
 - trace(P) = k = rank(P).

Matriz residualizadora

A matriz residualizadora (residual-maker) de X é dada por:

$$M = (I - P)$$

- Matriz residualizadora tem as seguintes propriedades:
 - Simétrica.
 - Idempotente ($M^2 = M$).
 - Os autovalores de M são ou 0 ou 1.
 - trace(M) = n k = rank(M).
 - X'M = 0, MX = 0, PM = MP = 0.
- Matriz residualizadora devolve o erro de projeção z Pz.
 - Como Pz é o minimizador da distância Euclidiana no espaço gerado pelas colunas de X,temos que:

$$(Mz) \cdot (XI) = z'MXI = 0 \quad \forall z \in \mathbb{R}^n, I \in \mathbb{R}^k.$$

VISUALIZAÇÃO GRÁFICA

FIGURE 3.2 Projection of y into the Column Space of X.

FÓRMULA DA INVERSA PARTICIONADA

- Suponha que particionemos a matriz $\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 \end{bmatrix}$ onde \mathbf{X}_1 e \mathbf{X}_2 são matrizes de dimensão $n \times k_1$ e $n \times k_2$.
- Nesse caso, a fórmula da inversa particionada nos indica que:

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} \mathbf{X}_1'\mathbf{X}_1 & \mathbf{X}_1'\mathbf{X}_2 \\ \mathbf{X}_2'\mathbf{X}_1 & \mathbf{X}_2'\mathbf{X}_2 \end{bmatrix}^{-1} = \begin{bmatrix} (\mathbf{X}_1'\mathbf{X}_1)^{-1} + (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_2\mathbf{F}\mathbf{X}_2'\mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1} & -(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_2\mathbf{F} \\ -\mathbf{F}\mathbf{X}_2'\mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1} & \mathbf{F} \end{bmatrix}$$

onde $\mathbf{F} = (\mathbf{X}_2'\mathbf{X}_2 - \mathbf{X}_2'\mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_2)^{-1} = (\mathbf{X}_2'\mathbf{M}_1\mathbf{X}_2)^{-1}$ onde \mathbf{M}_1 é a residualizadora de \mathbf{X}_1 .

- Inversa de $\mathbf{X}_2'\mathbf{M}_1\mathbf{X}_2$ existe pois matriz \mathbf{X} tem posto cheio.

TEOREMA DE FRISCH-WAUGH-LOVELL

-

- Da propriedade acima, segue o importante resultado abaixo:

TEOREMA (FRISCH-WAUGH-LOVELL)

$$\hat{b}_2 = (\boldsymbol{X}_2' M_1 \boldsymbol{X}_2)^{-1} (\boldsymbol{X}_2' M_1 \boldsymbol{y}) = ((M_1 \boldsymbol{X}_2)' (M_1 \boldsymbol{X}_2))^{-1} ((M_1 \boldsymbol{X}_2)' (M_1 \boldsymbol{y}))$$

- Resultado acima nos mostra que estimadores de MQO associados a X_2 em uma regressão que inclui X_1 e X_2 são idênticos a:
 - Regredir \boldsymbol{y} em \boldsymbol{X}_1 , e guardar os resíduos $\boldsymbol{e}_{\boldsymbol{y}}$.
 - Para cada $j=1,\ldots k_2$, regredir a j-ésima coluna de \boldsymbol{X}_2 em \boldsymbol{X}_1 , e guardar os resíduos \boldsymbol{e}_j .
 - Regredir e_y em $e_1, \dots e_{k_2}$ e recuperar os coeficientes.