Regularization for uplift regression supplementary material

Krzysztof Rudaś 1,2 and Szymon Jaroszewicz 1,2

Institute of Computer Science, Polish Academy of Sciences
 Faculty of Mathematics and Information Science, Warsaw University of Technology

1 Additional plots of regularization regions

Figure 1 shows regions analogous to Figure 1 in the main paper for the squared L_2 norm regularization. For easier comparison, regularization regions in L_1 and L_2 norm for different types of interaction models for $\lambda_1 = \lambda_2 = 1$ and p = 1 are superimposed in Figure 2.

2 Proof of Theorem 2

Proof. $\lambda_2 \to \infty$ implies that the optimal estimator must satisfy $\beta^S = 0$. The form of the model thus simplifies to

$$y_i = \left(t_i - \frac{1}{2}\right) x_i \beta^U + \varepsilon_i,$$

which leads to the estimator

$$\hat{\beta}^{U} = \arg\min_{\beta^{U}} \sum_{i=1}^{n} \left(y_{i} - \left(t_{i} - \frac{1}{2} \right) x_{i} \beta^{U} \right)^{2} + \lambda_{1} \|\beta^{U}\|_{q}^{q}$$

$$= \arg\min_{\beta^{U}} \frac{1}{4} \sum_{i=1}^{n} \left(\frac{y_{i}}{t_{i} - \frac{1}{2}} - x_{i} \beta^{U} \right)^{2} + \lambda_{1} \|\beta^{U}\|_{q}^{q}$$

$$= \arg\min_{\beta^{U}} \sum_{i=1}^{n} \left(\bar{y}_{i} - x_{i} \beta^{U} \right)^{2} + 4\lambda_{1} \|\beta^{U}\|_{q}^{q},$$

where the second equality is obtained by factoring out $t_i - \frac{1}{2}$ and noting that $(t_i - \frac{1}{2})^2 = \frac{1}{4}$.

3 Coefficients used to simulate synthetic data

Values of β^C , β^U , and β^T for different scenarios used in experiments are presented in the table below

	β^C	eta^U	eta^T
Scenario 1	(-4, -4, -4, 0,, 0)	(7.8, 7.8, 7.8, 0,, 0)	(3.8, 3.8, 3.8, 0,, 0)
Scenario 2	(-4, -4, -4, 0,, 0)	(3.8, 3.8, 3.8, 0,, 0)	(-0.2, -0.2, -0.2, 0,, 0)
Scenario 3	(-0.2, -0.2, -0.2, 0,, 0)	(-3.8, -3.8, -3.8, 0, 0, 0)	(-4, -4, -4, 0,, 0)
Scenario 4	(-4, -4, -4, 0,, 0)	(-0.2, -0.2, -0.2, 0, 0, 0)	(-3.8, -3.8, -3.8, 0,, 0)

Fig. 1: Regularization regions in L_2 norm for different types of estimators and different parameters λ_1 , λ_2 for p=1

4 Experimental results for L_2 norm regularization on synthetic data

Figure 3 presents the MSE of L_2 regularized models for the four scenarios of synthetic data generation. Comparing with analogous results for the L_1 norm in Figure 2 of the main paper, the main difference is the relatively good performance of the unregularized method. Only when β^U is small regularization works significantly better. Another difference is that when $\beta^T \approx 0$ or $\beta^C \approx 0$ the double regularized model does not work as well as it did for L_1 regularization.

5 Results on Lalonde dataset

The second dataset we consider is the well known Lalonde dataset [1] describing the effects of a job training program which addressed a population of low skilled adults. A randomly selected sample of the population was invited to take part in a job training program. Their income in the third year *after* randomization is the target variable. Our goal is to build a model predicting how effective will the program be for a given individual. There are a total of 297 treatment records and 425 controls.

Fig. 2: Regularization regions in L_1 and L_2 norms for different types of interaction models for $\lambda_1=\lambda_2=1$ and p=1

Figure 4 shows the results. For this dataset, the performance of all of regularizers is comparable (for both L_1 and L_2 regularization) but we may notice that the symmetric interaction method obtains slightly better results for the L_2 case.

References

1. Lalonde, R.: Evaluating the econometric evaluations of training programs. American Economic Review ${\bf 76},\,604-620\,\,(1986)$

4 Krzysztof Rudaś and Szymon Jaroszewicz

Fig. 3: Predictive MSE of estimators with L_2 penalty under different simulation scenarios

Fig. 4: Results for the Lalonde dataset