

Chapter 6 Dynamic Programming

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.

- . Dynamic programming = planning over time.
- . Secretary of Defense was hostile to mathematical research.
- . Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense" "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

- . Bioinformatics.
- . Control theory.
- . Information theory.
- . Operations research.
- . Computer science: theory, graphics, AI, compilers, systems,

Some famous dynamic programming algorithms.

- . Unix diff for comparing two files.
- . Viterbi for hidden Markov models.
- . Smith-Waterman for genetic sequence alignment.
- . Bellman-Ford for shortest path routing in networks.
- . Cocke-Kasami-Younger for parsing context free grammars.

Weighted Interval Scheduling

Weighted interval scheduling problem.

- . Job j starts at s_j , finishes at f_j , and has weight or value v_j .
- . Two jobs compatible if they don't overlap.
- . Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- . Consider jobs in ascending order of finish time.
- . Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Order jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$. Def. p(j) = largest index i < j such that job i is compatible with j.

Ex:
$$p(8) = 5$$
, $p(7) = 3$, $p(2) = 0$.

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- . <u>Case 1:</u> OPT selects job j.
 - collect profit Vi
 - can't use incompatible jobs $\{p(j) + 1, p(j) + 2, ..., j 1\}$
 - must include optimal solution to *sub-problem* consisting of remaining compatible jobs 1, 2, ..., p(j)

optimal substructure

- . <u>Case 2</u>: <u>OPT</u> does not select job <u>j</u>.
 - must include optimal solution to **sub-problem** consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ OPT(j) = & \text{otherwise} \end{cases}$$

$$\max \{ v_j + OPT(p(j)), OPT(j-1) \}$$

Weighted Interval Scheduling: Brute Force

Brute-force algorithm.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

Optimal Cost for the Input of size n is computed by function:

Comptute-Opt(j:= n)

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

But....

Q. How many different subproblems we have?

A. Only *n* !!!

Q. Can we fix an ordering to compute them?

A. Yes!

Define an Array M[1,...,n], where

 $M[j] := OPT(j) \equiv Optimum for the sub-problem {1,...,j}$

Key-Fact: To compute M[j], we needs only the entries

M[0], M[1], ..., M[j-2], M[j-1]

We can apply induction!

Weighted Interval Scheduling: ITERATIVE dynamic programming algorithm

Bottom-up dynamic programming. remove recursion.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(v_j + M[p(j)], M[j-1])
}
```

<u>Crucial Issue:</u> Find the correct order for computing the subproblems!

Weighted Interval Scheduling: Finding a Solution

- Q. Dynamic programming algorithms computes optimal <u>value</u> "only". What if we want the <u>solution</u> itself?
- A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

. # of recursive calls \leq n \Rightarrow O(n).

Weighted Interval Scheduling: Memoization

Memoization: Use Recursion but start a new call **only if** the the required value has not been computed yet.

Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

Compute p(1), p(2), ..., p(n)

for j = 1 to n global array

M[j] = empty

M[0] = 0

M-Compute-Opt(j) {

if (M[j] \text{ is empty})

M[j] = max(v_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[j]
}
```

Weighted Interval Scheduling: Running Time

```
M-Compute-Opt(j) {
if (M[j] is empty) (*) then
M[j] = max(v<sub>j</sub> + M-Compute-
Opt(p(j)), M-Compute-Opt(j-1))
return M[j]
```

Claim. Memoized version of algorithm takes $O(n \log n)$ time.

- . Sort by finish time: $O(n \log n)$.
- . Computing $p(\cdot)$: O(n log n) via sorting by start time (do as homework).
- . M-Compute-Opt(j): each invocation takes O(1) time and either
 - (i) returns an existing value M[j] (when (*) is true!),
 OR
 - (ii) fills-in one new entry M[j] and makes two recursive calls
- . Progress measure Φ = # nonempty entries of M[].
 - initially $\Phi = 0$, throughout $\Phi \leq \mathbf{n}$.
 - (ii) increases Φ by $\mathbf{1}$ \Rightarrow at most $\mathbf{2n}$ recursive calls.
- . Hence: Overall running time of M-Compute-Opt(n) is O(n).

Paradigm of Dynamic Programming (Informal Description)

Partition of the initial problem P(n) into a set of subproblems $P_1(n_1), P_2(n_2),, P_k(n_k)$ such that

- n_i < n for all i=1,...,k
- \cdot k = poly(n)
- P(n) can be computed from $P_1(n_1)$, $P_2(n_2)$,, $P_k(n_k)$ in polytime
- There is a natural *ordering* (from *smaller* to *bigger*) of the subproblems so that **recursion** can be applied efficiently.

HOMEWORKS:

- 1. Give formal definition of the Weighted Interval Scheduling
- Give an efficient Algorithm that, given any instance I={I1,...,In}, computes Predecessor Function p(j), for any j = 1, ..., n.