\mathbf{a}

f(n) sei
$$\sum_{i=1}^{n-1} (n-i)$$
, so ist das $(n-1) + (n-2) + ... + (n-(n-1))$ in umgekehrter Reihenfolge also $1 + 2 + 3 + ... + (n-2) + (n-1)$ und das ergibt mit "dem kleinen Gauß": $\sum_{i=1}^{n-1} (i) = \frac{n(n-1)}{2} = \frac{n^2 - n}{2}$

Nun zur asymptotischen Betrachtung:

sei f(n) wie oben gegeben und $g(n) = n^2$, dann gilt zu zeigen:

$$f = O(g)$$
 und $f = \Omega(g)$

$$f = O(g)$$
: mit c = 1 lässt sich leicht erkennen: ab $n_0 = 2$ gilt:

$$f(n) \le c \cdot g(n)$$
, denn $\frac{n^2 - n}{2} < n^2$

$$f = \Omega(g)$$
: mit $c = 4$ lässt sich leicht erkennen: ab $n_0 = 2$ gilt:

$$g \leq c \cdot f(n),$$
bzw. $c \cdot f(n) \geq g(n)$ denn

$$4 \cdot \frac{n^2 - n}{2} = 2n^2 - 2n = n^2 + (n^2 - 2n) \ge n^2$$
, ($n^2 \ge 2n$ gilt ab n = 2)

Damit gilt:
$$f(n) = \sum_{i=1}^{n-1} (n-i) = \Theta(n^2)$$

b)

Probieren wir mal was mit n^n . Ist $(n+1)^{n+1} = \Theta(n^n)$?

Das würde bedeuten es gäbe eine Konstante c, sodass $(n+1)^{n+1} \leq c \cdot n^n$ $(n+1)^{n+1} = (n+1)^n \cdot (n+1) \geq n^n \cdot n$ und damit müsste c größer als n sein, für alle $n > n_0$, so ein c gibt es nicht, damit folgt:

Es gibt Funktionen für die nicht gilt $f(n+1) = \Theta(f(n))$

 $\mathbf{c})$

Sei
$$f(n) = O(n^r) \Rightarrow \exists c_k : f(n) \le c_k \cdot n^r$$
 ab $n > n_0$

Was ist mit log(f(n))? Da der Logarithmus monoton wachsend auf $\mathbb{R}_{\geq 0}$ ist gilt damit $log(f(n)) \leq log(c_k \cdot n^r)$ und mit den logarithmusgesetzen folgt: $log(f(n)) \leq log(c_k) + r \cdot log(n)$, und damit gilt: Es gibt eine Konstante c_r , sodass $log(f(n)) \leq c_r \cdot log(n)$

d)

Untersuchen wir den Bruch $\frac{f(n)}{n^r}$ so gilt mit $\lim_{n\to\infty} \frac{f(n)}{n^r} = 0$, der Argumentation aus c) und den Logarithmusgesetzen folgt:

$$\lim_{n\to\infty} \frac{\log(f(n))}{\log(n^r)} = 0$$
 und somit $\frac{1}{r}\lim_{n\to\infty} \frac{\log(f(n))}{\log(n)} = 0$.

Also log(f(n)) = o(log n)

LEIDER FALSCH!

Gegenbeweis durch Beispiel:

$$f(n) = n$$
 ; $r = 2$ $n = o(n^2)$ aber $f(n) = log(n) = \Theta(log n)$

e)

$$f_1 = n^{1.5}$$
; $f_2 = log(n)$; $f_3 = nlog(n)$; $f_4 = n$; $f_5 = O(1)$

Assymptotische Reihenfolge: $f_5 < f_2 < f_4 < f_3 < f_1$

Mehr?

Prüfen wir $n^{log_b(a)}$

 \mathbf{a}

$$(n^{\log_3(27)}) = n^3 = \Omega(n^9) \; ; \quad \Theta(n^9)$$

b)

$$\begin{array}{l} 2+3\cdot (T(n-3))=2+3\cdot (2+3T(n-6))=2\cdot 3^0+2\cdot 3^1+3^2(2+T(n-9))\\ =\sum_{i=0}^{i=n/3}2\cdot 3^i=2\frac{3^{1+n/3}-1}{2}=3\cdot 3^{n/3}-1=\Theta(3^{n/3}) \end{array}$$

 $\mathbf{c})$

 $n^{\log_3(1)}$, also $\log(n) = \Omega(n^{0+\epsilon})$, das gilt nicht!

Es ist auch nicht $log(n) = \Theta(n)$ oder $(log \ n) = O(n^{-\epsilon})$

Also kein Master-Theorem!

Die Untersuchung ergibt bei T(0) begonnen:

$$T(1) = 0 \; ; \; T(3) = T(1) + 1 \; ; \; T(9) = (T(3) + 2) = ((T(1) + 1) + 2) = 0 + 1 + 2$$

$$T(n) = \sum_{i=0}^{\log_3(n)} i = \frac{\log_3(n)(\log_3(n) + 1)}{2} = (k^2 + k)/2, \; \text{mit} \; k = \log_3(n)$$

mal mit Algo

Wir laufen immer n mal eine kleine for schleife durch. In jedem Durchlauf ändert sich der Endwert der kleinen Schleife.

a)

n-1 Durchläufe + n-2 + n-3 +...+ 0 Durchläufe, wenn i = n, also 0 + 1 + 2 + ... +
$$n-2+n-1=\sum_{i=0}^{n-1}=\frac{n(n-1)}{2}$$

b)

 $\log(1)$ Durchläufe + $\log(2)$ Durchläufe + $\log(3)$ + $\log(4)$ + ... + $\log(n-1)$ + $\log(n)$ Mit den Logarithmusgesetzen folgt:

$$log(1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n) = log(n!) = \Theta(nlog(n))$$

c $\sqrt{1} + \sqrt{2} + \dots + \sqrt{n} = \sum_{i=1}^{n} i^{1/2} = \Theta(n^{1,5})$

Wälder und Bäume?

Siehe Jans Lösung