

Networks & Operating Systems Essentials

Dr Nikos Ntarmos

<Nikos.Ntarmos@Glasgow.ac.uk>

School of Computing Science, Room: S122

Today, on NOSE2...

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS

Source: https://xkcd.com/927/

The nice thing about standards is that you have so many to choose from.

(Andrew S. Tanenbaum)

Image source: http://www.linux-magazine.com/Online/News/Why-Can-t-Computers-Just-Work-All-the-Time

Based on slides © 2018 Colin Perkins

PROTOCOLS & LAYERS

Network Protocols

- Communication occurs when two (or more) hosts exchange messages across a network
- To be meaningful, the messages need follow some well known syntax, and have agreed semantics
 - A network protocol is an agreed language for encoding messages, along with the rules defining what messages mean and when they can be sent
 - c.f. a programming language, where syntax and semantics define the legal programs
 - Numerous network protocols exist; some operate between hosts, some between routers, and some between hosts and routers
 - The protocols define the behaviour of the network

Network Protocols

- A protocol will comprise different types of message
 - Known as protocol data units (PDUs)
- Each type of PDU will have a particular syntax
 - Describes what information is included in the PDU, and how it's formatted
 - PDUs may be formatted as textual information or as binary data
 - Textual PDUs have a syntax and grammar that describes their format
 - Much like a programming language has a grammar
 - Examples: HTTP/1.1, SMTP, SIP, Jabber
 - Binary PDUs similarly have rules describing their format
 - Is data big or little endian? 32 or 64 bit? Fixed or variable length? What are the alignment requirements?
 - Examples: TCP/IP, RTP
- PDUs define what messages are legal to send
- Protocol semantics define when PDUs can be sent, and what response is needed
 - Define who can send PDUs, and when they can be sent
 - Define roles for the hosts (e.g., client and server, peer-to-peer)
 - Define what are the entities that communicate and how they are named
 - Define how errors are handled
- Commonly described using state-transition diagram
 - States indicate stages of protocol operation
 - Transitions occur in response to PDUs, and may result in other PDUs being sent

Network Protocols

- A simple network protocol: Morse code and the telegraph
 - Signals on electrical cable form the channel
 - Syntax: pattern of dots and dashes signals letters

Α	•	7	•	S	• •
В	- • • •	K	- • -	\dashv	•
С		L	• • • •	U	• • •
D	- • •	М		٧	•••
Ε	•	Ν		W	•
F	••••	0		X	- • • •
G		Р	• • • •	Υ	
Н	•••	Ø		Z	
Ι	••	R	• - •		

- Different gap lengths to signal end of word, end of letter
- Use of STOP for end of message

Protocol Layering

- Communications systems are typically organised as a series of protocol layers
 - Structured design to reduce complexity
 - Each layer offers services to the next higher layer, which it implements using the services of the lower layer – well defined interfaces
 - Highest layer is the communicating application
 - Lowest layer is the physical communications channel
 - Peers at some layer, i, communicate via a layer i protocol, using lower layer services
- Example: web browser talking to a web server
 - Simplified view with five protocol layers
 - HTML
 - HTTP
 - TCP
 - IP
 - Ethernet

OSI Reference Model

- A standard way of thinking about layered protocol design
- A design tool; real implementations are more complex

Physical Layer

- Defines characteristics of the cable or optical fibre used:
 - Size and shape of the plugs
 - Maximum cable/fibre length
 - Type of cable: electrical voltage, current, modulation
 - Type of fibre: single- or multi-mode, optical clarity, colour, power output, and modulation of the laser

- For wireless links:
 - Radio frequency, transmission power, modulation scheme, type of antenna, etc.

Data Link Layer

- Structure and frame physical layer bit stream
 - Split the bit stream into messages
 - Detect/correct errors in messages
 - Parity and error correcting codes
 - (Negative) acknowledgements + retransmission
 - Perform media access control
 - Assign addresses to hosts on the link
 - Arbitrate access to link, and determine when hosts are allowed to send message
 - Ensure fair access to the link and provide flow control to avoid overwhelming hosts
 - Examples: Ethernet, 802.11

Network Layer

- Interconnects multiple links to form a wide area network from source host to destination host
 - Data delivery
 - Naming and addressing
 - Routing
 - Admission/Flow control
- Examples: IP, ICMP

Transport Layer

- End-to-end transfer of data from the source to the destination(s)
 - Transfers data between a session level service at the source, and corresponding service at the destination
 - May provide reliability, ordering, framing, congestion control, etc.
 - Depends on guarantees provided by the network layer
- Examples: TCP, UDP

Session Layer

- Manages (multiple) transport layer connections
- Example session layer functions:
 - Open several TCP/IP connections to download a web page using HTTP
 - Use SMTP to transfer several email messages over a single TCP/IP connection
 - Coordinate control, audio and video flows making up a video conference

Presentation Layer

- Manages the presentation, representation, and conversion of data:
 - Character set, language, etc.
 - Data markup languages (e.g., XML, HTML, JSON)
 - Data format conversion (e.g., big or little endian)
 - Content negotiation (e.g., MIME, SDP)
- Common services used by many applications

Application Layer

- User application protocols
 - Not the application programs themselves
- Examples:
 - REST APIs
 - WebRTC

Protocol Standards

- A formal description of a network protocol
- Ensure interoperability of diverse implementations
- Variety of standards setting procedures:
 - Open or closed standards development process
 - Free or restricted standards availability
 - Rules around disclosure of intellectual property rights, use of encumbered technologies
 - Individual vs. corporate vs. national membership
 - Lead technical development vs. describe existing practices
 - Collaborative vs. combative process
- Not all players in the standards process have the same goals
 - Delaying a standard to allow a proprietary solution to gain market share
 - Incorporating intellectual property, patented technologies, etc.
 - Enhancing, or subverting, the security of a protocol
 - ...

Key Standards Organisations

- Internet Engineering Task Force
 - http://www.ietf.org/
 - http://www.rfc-editor.org/

- http://www.itu.int/ (part of the United Nations)
- 3rd Generation Partnership Project
 - http://www.3gpp.org/
- World Wide Web Consortium
 - http://www.org/

Coming up next...

Source: https://xkcd.com/454/

THERE ARE FEW FORCES MORE POWERFUL THAN GEEKS DESPERATELY TRYING TO GET INTERNET IN A NEW APARTMENT.

Source: https://xkcd.com/466/

