Homework 2 - Logic

January 30, 2018

1

(a) Use a truth-table to show that the following propositions are logically equivalent.

i. $X \to Y$

XY	$\mathrm{X} ightarrow \mathrm{Y}$
ТТ	Τ
TF	F
F T	Τ
F F	${ m T}$

ii. $\neg Y \rightarrow \neg X$

XY	$\neg \ Y \to \neg \ X$
ТТ	T
T F	F
F T	T
F F	${ m T}$

iii. $\neg(X \land \neg Y)$

X	Y	$\neg(X \land \neg Y)$
Т	Т	Т
Τ	F	F
F	Τ	T
F	F	${ m T}$

iv. $\neg X \lor Y$

X Y	$\neg~X~\vee~Y$
ТТ	T
TF	\mathbf{F}
FT	${ m T}$
FF	${ m T}$

- (b) Use truth-table to show that the following propositions are logically equivalent.
- i. $X \equiv Y$

XY	$X \equiv Y$
ТТ	Т
T F	F
F T	F
F F	${ m T}$

ii. $X \leftrightarrow Y$

$$\begin{array}{c|cccc} X & Y & X \leftrightarrow Y \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \\ \end{array}$$

iii. $(X \to Y) \land (Y \to X)$

$$\begin{array}{c|ccc} X & Y & (X \rightarrow Y) \land (Y \rightarrow X) \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \\ \end{array}$$

$$\mathrm{iv.}(X \to Y) \land (\neg X \to \neg Y)$$

$$\begin{array}{c|cccc} X & Y & & (X \rightarrow Y) \land (\neg X \rightarrow \neg Y) \\ \hline T & T & & T \\ T & F & & F \\ F & T & & F \\ F & F & & T \\ \end{array}$$

v.
$$(X \wedge Y) \vee (\neg X \wedge \neg Y)$$

$$\begin{array}{c|cccc} X & Y & & (X \wedge Y) \vee (\neg X \wedge \neg Y) \\ \hline T & T & & T \\ T & F & & F \\ F & T & & F \\ F & F & & T \\ \end{array}$$

- 2. Prove that for every interger n, n^2 is odd **if and only if** n is odd. Break the proof in two parts:
- (a) Prove that if n is odd, then n^2 is odd. Suppose that n is odd. Then n = 2k + 1 for some interger k

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

2

Since k is an integer, k is odd.

(b) Prove that if n is not odd, then n^2 is not odd. Suppose that n is not odd. Then n = 2k for some integer k

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2)$$

Since k is an integer, k is not odd.

- 3. Let A and B be two sets.
- (a) Use algebraic method to prove the following set equality.

$$(A \cup B) - B = A - B$$

Set Difference Rule

$$(A \cup B) \cap \overline{B} = A \cap \overline{B}$$

Distributive Law

$$(A \cap \overline{B}) \cup (B \cap \overline{B} = A \cap \overline{B}$$

Complement Law

$$(A \cap \overline{B}) \cup (\emptyset) = A \cap \overline{B}$$

Bound Law

$$A \cap \overline{B} = A \cap \overline{B}$$

(b) Prove the following set equality is valid if and only if sets A and B are disjoint.

$$(A \cup B) - B = A$$

i.In the case of sets A and B being disjointed, the union of said sets would include no initally shared elements, and thus, subtractions of the B set thereafter would result again in and exclusive A set.

ii. In the case of sets A and B are not disjointed, there would exist an X $\in (A \cap B)$, and the removal of B from the union of $A \cup B$ would remove element x. Therefore the resulting set would not include all elements of the inital A set.

4. Let S be the following implication. This problem is to find the simplest equivalent form for $\neg S$.

$$S:(P\to Q)$$

(a) First, use a truth table to show that the following proposition is not equivalent to $\neg S$.

$$\begin{array}{c|cccc} P \rightarrow \neg Q \\ \hline P & Q & P \rightarrow Q & P \wedge \neg Q \\ \hline T & T & T & T \\ T & F & F & F \\ F & T & T & F \\ F & F & T & F \\ \end{array}$$

(In fact, $\neg S$ cannot be expressed in the form of another implication!)

(b) Find an equivalent expression for $\neg S$. This can be done by first expressing the implication S in terms of $\{\land, \lor, \neg\}$ operations, and then finding the negation.

P Q	$P \rightarrow Q$	$\neg(P \land \neg Q)$	$\neg P \vee Q$
ТТ	Т	Τ	Т
T F	F	\mathbf{F}	\mathbf{F}
F T	T	${ m T}$	${ m T}$
F F	Т	${ m T}$	${ m T}$

5. (a) Determine the truth value of each of the following propositions, where the domain of discourse is intergers. Justify your answers.

$$i. \forall x \forall y, [x+y=0]$$

This statement is false, because given x = 0 every y > 0 will not fulfill the conditions of [x + y = 0]

Counterexample: x = 1 and y = 2, $[1 + 2 \neq 0]$

ii.
$$\exists x \forall y, [x+y=0]$$

This is false because if there exists one x, only one y will satisfy the equation, specifically x=-y

(b) Express the negation of each of the above propositions in symbolic form. That is the truth value of each resulting proposition and why.

$$i.\exists x\exists y, [x+y=0]$$

This statement is true, because there exists one x that is sated by one y **Example:** x = -3 and y = 3, [(-3) + (3) = 0]

ii.
$$\forall x \exists y, [x+y=0]$$

This statement is true, because for all x there exists only one cooresponding y to make the statement true y=-x

6. (a) Determine the truth value of each of the following propositions, where the domain of discourse is real numbers. Justify your answers.

i.
$$\forall x \forall y, [(x < y) \rightarrow (x^2 < y^2)]$$

This statement is false given x < 0 and y is x < y < 0

Example:
$$x = -3$$
, $y = -2$ $[(-3 < -2) \rightarrow (9 < 4)]$

ii.
$$\forall x \exists y, [(x < y) \rightarrow (x^2 < y^2)]$$

This statement is true, because for every given x, there can always be a y given that the y = |x| + 1

Example:
$$x = 2$$
, $y = |2| + 1 = 3$ [$(2 < 3) \rightarrow (4 < 9)$]

iii. $\exists x \forall y, [(x < y) \rightarrow (x^2 < y^2)]$

This statement is true because given x > 0 all y will fulfill $x^2 < y^2$.

Example: $x = 3, y = 4, [(3 < 4) \rightarrow (9 < 16)]$

iv. $\exists x \exists y, [(x < y) \to (x^2 < y^2)]$

This statement is true because given that x = 2 and y = 4 we meet the criterion.

Example: $x = 2, y = 4, [(4 < 16) \rightarrow (4 < 16)]$

- 7. Let A(S,C) be the propositional function (predicate) "student S who takes course C receives and A grade." Let the domain of discourse be the set of NJIT students and courses, respectively.
- (a) Express each of the following propositions in symbolic form.
- i. There are NJIT students with all A's. $\exists S \forall C, A(S,C)$
- ii. There are NJIT courses that give all A's. $\forall S \exists C, A(S,C)$
- iii. Every NJIT student gets some A's. $\forall S \forall C, \neg A(S, C)$
- iv. Every NJIT course gives some A's. $\forall S \forall C, \neg A(S, C)$
- v. There are NJIT students with no A's. $\exists S, \forall C, \neg A(S,C)$
- (b) Express the negation of each of the above propositions, both in words and in symbolic form

i.In some courses, every student doesn't get an A $\forall S, \exists C, \neg A(S,C)$

- ii. There are NJIT courses that give all A's. Some students in all their courses get no A's $\exists S, \forall C, \neg A(S, C)$
- iii. Every NJIT student gets some A's. In some courses, some students get no A's $\exists S, \exists C, A(S,C)$
- iv. Every NJIT course gives some A's. A few students get A's in a couple of courses $\exists S, \exists C, A(S, C)$
- v. There are NJIT students with no A's. All students get A's in all courses! $\forall S, \exists C, A(S, C)$