

- If the azimuthal quantum number of an atom is 2, the magnetic quantum numbers
 can have values
 - (a) 1, 0, -1

(b) 2, 1, 0, -1, -2

(c) 1,-1

- (d) 2, 1, 0
- 7. With respect to σ and π bonding in Pt-HI in the structure given below, which of the following represent the correct bonding:

- (a) $M(\sigma) \rightarrow L(\sigma)$ and $M(\pi) \rightarrow L(\pi^*)$
 - (b) $L(\sigma)->M(\pi)$ and $L(\pi)->M(\pi)$
 - (c) $L(\pi)->M(\pi)$ and $L(\sigma)->M(\pi)$
 - (d) $I.(\pi) -> M(\sigma)$ and $M(\pi) -> I(\pi^*)$
- Water plays significant role in the following reactions

The correct role of water in each reaction is

(i)
$$2H_2O + Ca \rightarrow Ca^{2+} + 2OH + H_2$$

(ii)
$$nH_2O + Cl \rightarrow [Cl(H_2O)_n]$$

(iii)
$$6H_2O + Mg^{2+} \rightarrow [Mg(H_2O)_6]^{2-}$$

(iv)
$$2H_2O + 2F_2 \rightarrow 4HF + O_2$$

- (a) i. oxidant, ii. acid, iii. base, iv, reducdant
- (b) i. oxidant, ii, base, iii. acid, iv. reducdant
- (c) i. acid, ii, oxidant, iii. reductant, iv. base
- (d) Both A and C

14.	În qu	nalizative inorganic analysis of metal ions, the ion which precipitates as sulfide
	in th	e presence of H ₂ S in warm dilute HCl is:
	(3)	Cr3- (b) Al3-
	(c)	Co ²⁺ (d) Bi ³⁺
15.	The	C2 in their ground state is B2, Q2 and NO are paragragnetic NO, B2 and C2 are paragragnetic O2, C2 and NO are paragragnetic O3, C3 and C2 are paragragnetic O4, C4 and C5 are paragragnetic O5, C5 and C6 are paragragnetic
		C2 in their ground state is
	(a)	B2, Q2 and NO are paramagnetic
	(b)	NO, B2 and C2 are paragmagnetic
	(c)	O2, C2 and NO are paragmagnetic 55 " 5"
	(d)	O ₂ , C ₂ and NO are paragmagnetic O ₂ , B ₂ and C ₂ are paragmagnetic ong the following, the correct statement is:
16.	Am	nong the following, the correct statement is:
	(a)	The density follows the orcerCs > Rb> Li > Na.
d	(b)	The solubility in water follows the order,
		$Cs_2CO_3 > K_2CO_3 > Na_2CO_3 > Li_2CO_3$
9 1	(c)	The first ionization potential follows the order Li > K > Na \times Cs.
v	(d)	The melting point follows the order, MgCl ₂ >BeCl ₂ > CaCl ₂ > SrCl ₂
17.	Low	-spin iron (III) center is present in
	(a)	deoxy form of hemoglobin (b) oxy form of hemoglobin
	(c)	hemocyanin (d) carbonic anhydrase
VI-26	(SET-	B) (6)

3	1. W	nich of the following is no	ot a thermodynamic function?
			marmodynamic function?
	(a)	Enthalpy	(b) Work done
	(c)	63	(d) Internal energy
3.	2. A	carnot engine operating	between temperatures T_1 and T_2 , has the efficiency of
	0.4	. When 12 is lowered by	40 K, its efficiency increases to 0.5, then Time T.
	res	pectively	17 1 0.5 - Tain
	(a)	300 K and 100 K	(b) 400 K and 200 K
	(c)	600 K and 400 K	(d) 400 K and 300 K
33	3. The	e bond energy of an O-H b	oond is 109 kcal/mol. When a mole of water is formed,
	the		0.5- 12 145
	(a)	109 kcal is released	(b) 218 keal is released
	(c)	109 kcal is absorbed	(d) 218 kcal is absorbed
34.	Enth	nalpy is equal to	0.572
	(a)	$T^{2} \left[\frac{\partial (G/T)}{\partial T} \right]_{P}$	(b) $-T^2 \left[\frac{\partial (G/T)}{\partial T} \right]_P$
	(c)	$T^2 \left[\frac{\partial (G/T)}{\partial T} \right]_V$	$-T^{2} \left[\frac{\partial (G/T)}{\partial T} \right]_{V}$
M-20	6 (SET-	$T^{2}\left[\frac{\partial(O/I)}{\partial I}\right]_{V}$ $D_{I}^{M}\left[A^{1}S^{M}\right]_{V}$ $D_{I}^{M}\left[A^{1}S^{M}\right]_{V}$	(10) W 2 (00)

50. From the following E^0 values of half cells,

$$E^0 = -0.24 \text{V}$$

(ii)
$$B^- + \bar{e} \rightarrow B^{2-}$$

$$E^0 = +1.25 \text{ V}$$

(iii)
$$C^- + 2\overline{e} \rightarrow C^{3-}$$
;

$$E^0 = -1.25 \text{ V}$$

(iv)
$$D + 2\overline{e} \rightarrow D^{2-}$$
:

$$E^0 = +0.68 \text{ V}$$

What combination of two half cells would result in a cell with the largest potential?

35.	Ac	cording to Le Chatelier's	principle.	maximum max	ilmum yield of	NH _{2 is}
		ained at				
	(a)	High pressure	(b)	High temperate	are and low pres	BUTE .
	(c)	Low temperature	(d)	Low temperatu	re and high pres	soure .
36.	Equ	simolar concentrations of 1	I _{2 and} I _{2 a}	re heated at equi	librium in a 2 li	iter flusk.
	At	equilibrium, the forward a	nd backwa	rd rate constant	are found to	be equal.
	Wh	at percentage of initial con-	centration o	H ₂ has reacted	at equilibrium	
	(a)	33%	(b)	66%	1	1 1/4
	(c)	50%	(d)	40%	r se se	24
37.	Wh	at is the conjugate base of (OH-		. 4	
	(a)	02	(b)	H ¹ O	OX	
	(c)	0-	(d)	O2-		
38.	The	K _{SP} of Mg(OH) ₂ is 19	10 ⁻¹² and	, 0.01 M Mg ²	will precipita	ite at the
	limi	ting pH of:			E NOT	8 O 8
	(a)	3	(b)	9	6 Ag	
	(c)	5	(d)	8		
9.	Whi	ch one of the following is	he correct	quadratic form o	f Ostwald's dil	ution law
	equa	tion?				
	(a)	$\alpha^2C + \alpha K - K = 0$	(p)	$a^2C - aK - K$	× 0	
	(c)	$a^{2}C - aK + K = 0$	(d)	α^2 C + α K + K	= 0	P.T.O.
-26	(SFT.	·R)	(11)			

44.	In ti	he steady state approxima	tion, if I is	s the intermediate formed, th	en
	(a)	[1] = 0	(b)	[1]≠0	
	(c)	d[1]/dt = 0	(d)	none of these	X to
45.	For a	n ideal gas HAT. is			22
	(a)	zero	(b)	positive	25 23
	(c)	negative	(d)	infinity	13A
46.	The	maximum efficiency of	a steam o	engine operating between	100° C and
	25° C	Cis		227	
	(a)	20%	(b)	22.2% 72	26
	(c)	24.8%	(d)	25.1%	(0° 3.
47.	The 4	ΔH for a reaction is indep	endent of	180	16×10
	(a)	Temperature	((b)	path followed	100
0.0	(c)	initial and final states	(d)	volume	
48.	Which			has the lowest value of	equivalent
c	conduc	ctance?	12	24.0	10.33
(:	a)	1 M		0.1 M	13/0.3
(0) (0.01 M	(d)	0.001 M	3/
49. A	t infi	nite dilution, the equiv	alent con	ductances of CH3COONa	HCl and
				2 respectively at 25° C. The	
		CNI CII - v la Calva d	thatian mill	25	25 = 3
	naucu	ance of NaCi at infinite d	12.	100 100	In a
(a)	20	9	(b) 3	191	X
(c)	12	6 exel	6 (q) b	008 x 426 33	P.T.O.
1-26 (SE	Ť-В)	once of NaCi at infinite d	(13)Na	101 00 11	10
		1200	29	Mala	519
		- 5	and the same of th		The second second

21.	Consi	der the following four	venon compo	unds: XeF ₂ , XeF	4, XeP ₆ and XeO ₃ . The
	pair o	f xenon compounds exp	ected to have	non-zero dipole	momentis
	(a)	XeF4 and XeF6	"(b)	XeF2 and XeF4	
	(c)	XeF ₂ and XeO ₃	(d)	XeF ₆ and XeO ₃	
22.	Cons	ider the following six s	olid binary o	xides: CaO, Al ₂	O ₃ , PbO, Cs ₂ O, SiO ₂
		Sb ₂ O ₃ . The pair(s) of io	nic oxides is(are)	10 Co
	(a)	CaO and Al ₂ O ₃	(b)	CaO and PbO	4+ 1/(8-4-0)
	(c)	PbO and Al ₂ O ₃	(d)	SiO ₂ and Sb ₂ O	447(4)
23.	On h	ydrolysis, aluminium ca	rbide produce:	s F	OFF OFF
	(a)	CH ₄	(b)	C2H6	107F
100	(c)	C ₂ H ₄	(d)	C ₂ H ₂	eta fo
MC24	The	oredicted geometry of T	eF4 by VSEPI	R is	040
To the	(a)	Octahedral	(b)	Square planar	+
A.	(c)	Trigonal bypyramid	(d)	Tatrahedral	×103
25.	Then	netal ion in enzyme inv	olved in the hy	dration of CO2 i	5: 341 (8-6)
	(a)	Mg (II)	(b)	Zn(II)	3+12(2)
	(c)	Mg (II) Fe (II)	(d)	Cu(II)	3+1
26.		ning NaCl to be comp			
	solutio	on $(K_f = 1.86 \text{ kg}^{\circ}\text{C m})$	ol ⁻¹) is		Leso
124	(a)	−1.86 °C	(b)	−3.27 °C	JANNAN .
	(c)	+1.86 °C	(d)	+3.27 °C	200
M-26	(SET-B	" 10-	(8)	71	2+2.303+
				9	the

56.	Which	ch one of the follow	wing base is not pre	sent in ENAT		
	1					
	(a)	Adenine	(b)	Cytosine		
	(c)	Thymine	(d)	Uracii		
57.	Whi	ch of the vitamins;	given below in water	et soliuble?		
4						
100	(a)	Vitamin C	(6)	Vitamin D		
8"						
	(c)	Vitamin E	(d)	Vitamin K		
58.	l-Be	omo-3 chlorocyclo	ibutane will react wi	ith Na in ether	?gniaubonq	
				Be		
15	(a)		(%)			
Chie		SI				400
9	(c)	- FI	(d)	\Box	- 5	J
er.				and an artista	20	1 - W
59.	But-)-ene can be conv	ersed to butane by n	COLUMN WINE	W WIL	10
		and the same and	(61)	Zn-Hg		
	(a)	Zn-HCI	101	Larre	084	
		Pd/H ₂	(6)	Sn-HCI		
	(c)	10112	(*)			
			g compounds on by	drolysis zives	acetylene?	
60.	Whi	ich of the following	g components on ->			
		CaC ₂	(6)	Mg ₂ C ₁		
	(v)					
April 1		AU ₄ C ₃	18	Cu ₂ Cl ₂		
A	(c)					
146-	26 (SE	T-B)	(16)			

84.	The NMR spectra of the functional isomers of the molecular formula Cort							
	_	and signals resp	ectivel	y.				
	(a)	1.2	(b)	1, 3				
	(c)	1, 4	(d)	1.5				
85.	Meth	hanol fuel cells are						
	(a)	Stable at all conditions	(b)	Unstable at all conditions				
	(c)	Stable at some conditions	(d)	Unstable at some conditions				
86.	Base	ed on tacticity, the polymers are	divide	f into.				
	(a)	Two	(b)	Three				
	(c)	Four	(d)	Five				
87.	Con	abination of the organic and ino	rganic	polymers are called				
	(a)	Element organic polymers	(b)	Inorganic polymers				
	(c)	Fibres	(d)	Thermoplastic				
88.	Initi	ators are known to be:						
	(2)	Stable compounds	(b)	Unstable compounds				
	(c)	Partially stable compounds	(d)	Highly stable compounds				
89.	The	catalyst used in the co-ordinat	ion pol	ymerisation is				
	(a)	Ziegler-natta catalyst	(b)	Vanadium pent-oxid				
	(c)	Nitric Oxide	(d)	Zeonar				
90.	Num	ber of NMR signals obtained	in CH	COCH ₃ will be				
	(a)	6	(b)	3				
	(c)	2	(d	1				
M.7	(SE7	· Bi						

O show

Following is wrong about a phase diagram. It gives information on transformation rates. (b) Relative amount of different phases can be found under given equilibrium conditions. (c) It indicates the temperature at which different phases start to melt. (d) Solid solubility limits are depicted by it. Which if the following statements are true about the Eutectic point on a two component (compounds A and B) phase diagram? Both compounds are solid. (a) The melting point of the mixture is lower than the melting points of either of the individual compounds.

One compound is in the liquid phase whilst the other is in the solid phase

- None of the above
- The 1/2 of a reaction is doubled as the initial concentration of the reactant is 42 (b) 1 Pa(4) (d) 1.5 miles doubled. The order of the reaction is
 - (a)

(c)

Choose the correct statement 43.

- The rate constant of a reaction decreases with temperature (a)
- Order is always equal to molecularity of reaction (b)
- The unit of second-order rate constant is mol dm-3s-1 (c)
- The 1/2 of a first-order reaction is independent of the initial concentration (d)

16	. 0	I g of metal combines with	of ex	ygen at STP	. The equi-	valent weigh	nt no
	2	setal is					
	1,1	3 12	(b)	24			
	. (-	1 18	(d)	36			
79.	B	thich of the following is less aci	dic amor	ng the given h	alogen comp	ounds?	
	(a	CHCl ₃	(b)	CHI ₃			
	(4) CHBr ₃	(d)	CHF ₃			
80.	C	alcium carbide reacts with heavy	water to	form			
	(2	() C ₂ D ₂	(b)	CaD ₂			
	(c	CaD ₂ O	(d)	CD ₂			
SI.	ln	the extraction of Ag, Zn is remo	wed from	n the alloy of 2	n-Ag throu	gh	
	(1)	Cupellation	(b)	Fractional cry	ystallization		
	(c)	Distillation	(d)	Electrolytics	efining		
82.	The	transition zone for Raman spe	ctra is				
	(a)	Between vibrational and rot	ational le	rvels	47	16	
	(6)	Between electronic levels				N = 0.1	16
	(c)	Between magnetic levels of	nuclei			MEA	
	(d)	Between magnetic levels of	unpaired	electrons			
13.	The i	bio diesel is the long chain o	f carbon	atoms conta	ains	group at	
	end.				196	UF C HOI	
	(a)	Alcohol	(b)	Aldehyde			
	(c)	Ketone	(d)	Ester	000	x 000	T.C
14	SET-				0	n x/2	Ur
-31	- 1 Te	B)	(21)		* D.	0	

which of the following compound is not aromatic?

(1)

(II)

(III)

- Only I (2)
- Only III (0)

- (b) Only II
- (d) None

Which of the following diene does not participate in Diels-Alder reaction?

(c)

(d)

Correct order of carbonyl IR-stretching frequency for the following compounds is:

(II)

COCH,

(III)

- 1>11>111 (8)

- (b) III > II > I
- 111<1<11 (d)

How many ¹H and ¹³C-NMR = signals will be observed for anthracene molecules?

- (b) 3 and 4

3 and 3

P.T.O.

(0) 5 and 4 (d) 4 and 4

Which one of the compound is not isomer of others?

The most acidic compoundamong the following is: 98.

Which of the following is a natural fibre?

(a) Starch

Rubber (b)

(c) Cellulose

(d) Optical resolution

Total number of position isomers of trimethyl cyclohexane are:

(a)

(b) 6

(c)

at-	White	ch of the region of IR spectra	appears	between (1400-600) cm ⁻¹ ?
	(a)	Functional group region	(b)	Fingerprint region
	(c)	Low-frequency region	(d)	None of the mentioned
92	Whie	ch one of the following is the	best hea	t and corrosion resistant material?
	(a)	Metals	(b)	Ceramics
	(c)	Polymers	(d)	Semi-conductors
93.	Base	ed on the important category,	concrete	and fibre glass are the example of
	(a)	Ceramics	(b)	Polymers
	(c)	Composites	(d)	Semi-conductors
94.	Port	land cement is made by calcin	ing atter	mperature equals to
	(a)	3000°C	(b)	1500°C
	(c)	1800°C	(d)	2000°C
95.	One	letter code for 'Arginine' amin	o acid is:	
	(a)	N	(b)	K C√
*	(c)	R	(d)	A
6.	Whic	ch of the following compound	is know	n as oil of winter green?
		СНО		OMe
(a)	Он	(b)	СООН
		сно		ОН
fc) [(d)	COOMe

P.T.O.

- Given that the crystal field stabilization energy for [Co(H₂O)₆] is 7360 cm⁻¹ the calculated value of Δ₀ in kJ mol⁻¹
 - (a) Between 109-111

(b) Between 120-121

(c) Between 50-60

- (d) Between 48-32
- 19. Which plot represents a spectrophotometric titration, where the titrant alone absorbs light in the visible region?

- NaF, KF, MgO and Cao are crystalline solids. They have NaCl structure. Their lattice energies vary in the order
 - (a) NaF<KF <MgO<CaO
- (b) KF <NaF <CaO <MgO
- (c) MgO<CaO,NaF<KF
- (d) CaO<MgO<KF<NaF

P.T.O.

62 Which of the following compound will not give cyclic compound on heating?

63. Total number of aldol reactions involved in the following transformation is:

CH3CHO + HCHO conc. aq NaOH HO OH

(a) 1

(b) ?

(c) 3

(d) 4

P.T.O.

73. Arrange the following in increasing order of pKa value?

NHPh

(a) 1>11>111

(b) III > II > I

(c) III>1>II

- (d) II>1>III
- 74. The carboxyl functional group (-COOH) is present in:
 - (a) Ascorbic acid

(b) Squaric acid

(c) Barbituric acid

- (d) None of these
- Arrange the following in decreasing order of percentage enol content.

(IV) CH₃ CO₂Et

(a) 1>IV>II>III

(b) III > II > I > IV

(c) IV>III>I>II

- (d) 1>11>111>1V
- 76. The electronic transitions responsible for the volour of K2Cr2O7 is
 - (a) π→π*

(b) σ → π

(c) σ→σ

- (d) d → d
- 77. Iron obtained from chalcopyrite is
 - (a) FeSiO₃

(b) FeO

(c) Fe₂O₃

(d) FeS

M-26 (SET-B)

64. The total number of carboxylic acid groups in the product is:

(a) I

(d) 4

(c) 3

(0)

65. The main constituents of cell membranes are:

- (a) Simple triglycerides
- (b) Waxes

(c) Proteins

(d) Phospholipids

66. Which compound has the highest melting point?

- (a) p-Dibromobenzene
- (b) o-Dibromobenzene
- (c) m-Dibromobenzene
- (d) Bromobenzene

67. Which of the following has maximum dipole moment?

68. The most stable carbocation is:

(c) (_)—(_)—(_)—

(d) All have same stability

M-26 (SET-B)

(d) None of these

1. H

53. 2. NaBH,
3. H' Product

(a) (I)

(b) S

(c) OH

(d) HO—OH

54. Cellulose on hydrolysis yields

(a) β-D-Fructose

(b) β-D-Glucose

(c) a-D-Glucose

(d) a-D-Fructose

55. Which of the following amino acids is not optically active?

(a) Glycine

(b) Alanine

(c) Cysteine

(d) Phenylalanine

P.T.O.

M-26 (SET-B)