	Projection Matrix.
	$P = \times (x^{T}x)^{-1}x^{T} \cdot M = I_{n} - P y = x\beta + e$ $P = (x^{T}x)^{-1}x^{T} \cdot Y$
a)	Pir idem potent
b)	$P = X(x^{T}x)^{-1}(x^{T} \cdot x)(x^{T}x)^{-1}x^{T}$ $= X(x^{T}x)^{-1} I_{n}x^{T}$ $= X(x^{T}x)^{-1}x^{T}$ $= P$ $M = i clempatent$ R
	$M_{+}M = (I_{n}-P)(I_{n}-P)$ $= I_{n}I_{n}-I_{n}P-PI_{n}+P.P$ $= I_{n}-I_{n}P-PI_{n}+P.P$
- c)	$= I_{N} - I_{OP} - P + P$ $= I_{N} - P = M$ $P Y = \hat{y}$
	$\hat{p}\hat{y} = \hat{x}\hat{\beta} \qquad \hat{p}$ $= \hat{x}(\hat{x}^{T}\hat{x})^{T}\hat{x}^{T}\hat{y}$ $= \hat{p}\hat{y}$
_d)	$MY = \vec{e}$ $\vec{e} = y - \vec{y}$ $= y - PY$
	$= \chi(I_1 - P)$ $= M \chi$

Scanned with CamScanner

(10) PY+MY= Y PY+MY=PY+(In-P)Y =PX+InY-PX= In Y = Y (2) = PY(P-P,P)Y = Y(P-P)Y = Y(0)YHence proved its orthogonal.