2018-2019-2A 答案及评分标准

一、选择题(每题1分,共25分) 得分:

1. A	2. D	3. D	4. A	5. A	6. B	7. C	8.C	9. B	10.B
11. C	12.C	13.B	14.A	15.A	16.B	17.D	18.B	19.B	20.D
21. C	22.A	23.D	24.D	25.C					

评分标准:每小题正确1分,错误0分。

二、综合题: (共75分)

1、(10分)

简答: (1) 开始执行该程序时,系统会为其创建一个进程,分配必要的内存资源,插入就绪队列,系统按时间片轮转进行 CPU 调度. (2) 系统调度该进程到 CPU 上运行,布置现场信息,进程从就绪转变为运行态。(3) 进程运行时,请求磁盘 读操作,发出 read()系统调用,CPU 运行状态从用户态转变为核心态处理该磁盘 I/O 请求,当前进程从运行状态转变为阻塞状态。(4) 磁盘读操作完成后,由驱动程序进程把该进程唤醒,进程从阻塞转变为就绪态,插入就绪队列。(5) 进程再次被 CPU 调度,布置现场信息,从就绪转变为运行状态,执行数据计算功能,中间可能因为时间片到而转变为就绪状态,之后再被调度。(6) 计算处理完成后,请求输出打印操作,进程进入阻塞状态。(7) 打印输出完成后,进程被唤醒,进入就绪状态。(8) 第 3 次被 CPU 调度运行,执行完成,终止该进程,撤销进程,回收进程占据的资源,进程从系统消失。

评分标准:每个步骤 1.1 分,核心内容达到即可。

2、(13分)

解答:分析:有同步关系的进程:医生、病人、发药员病人之间需要互斥使用的资源:自助挂号终端,取药柜台评分标准:信号量设置:2分,医生代码:3分,发药员代码:3分,病人代码:5分

patient, call_patient, finish: semaphore;	void patienti() {
mutex1,mutex2: semaphore	wait(mutex1); //申请挂号终端
nurse,medicine:semaphore;	挂号
main() {	signal(mutex1);
patient, call_patient,finish=0;	signal(patient);
mutex1,mutex2=1,1	wait(call_patient);
nurse,medicine=0,0	看病
parbegin(doctor,patienti,nurce)	wait(finish);

```
wait(mutex2); //申请取药柜台
                                         将药方交给发药员
void doctor() {
                                         signal(nurse);
  do{
                                         wait(medicine);
wait(patient);
                                         拿药
signal(call_patient);
     给病人看病:
                                         signal(mutex2);
                                         离开医院
     开药方;
                                      }
    signal(finish)
  }while(1)
void nurse () {
   do{
     wait(nurse);
     给病人拿药;
     signal(medicine);
  }while(1)
```

3、(11分)

(1)6分

物理块	1	2	3	4	5	6	7	8	9	10
逻辑记录	Α	В	С	D	Е	F	G	Н	ı	J

题中磁盘旋转速度为 20ms/r,每个磁道存放 10 个记录,因此读出一个记录的时间为 20/10=2ms。(1 分)

对于第一种记录分布情况,读出并处理记录 A 需要 6ms,(1 分)则此时读写头已转到记录 D 的开始处,因此为了读出记录 B,必须再转一圈少两个记录(从记录 D 到记录 B),处理时间是: 8*2+2+4=22ms后续 8 个记录的读取及处理与此相同,(2 分)于是,处理 10 个记录的总时间为 9*(2+4+16)+(2+4)=204。(2 分)

(2) 5分

优化方式: 2分

物理块	1	2	3	4	5	6	7	8	9	10
逻辑记录	Α	Н	E	В	I	F	C	J	G	D

答:

对于第二种记录分布情况,读出并处理记录 A 后,读写头刚好转到记录 B 的 开始处,因此立即就可以读出并处理,后续记录的读取与处理情况相同。于 是处理 10 个记录的总时间为 10*6=60ms (3 分)

4、(11分)

- 答: (1) 普通文件,最大可以占有 10+256+256²+256³ 个磁盘块。(2分)
 - (2) 读\A\D\K\O 中的某一块。因为目录文件采用链接结构,每个磁盘

块存放 10 个下级文件的描述,一个目录下最多存放 40 个下级文件,故一个目录 文件最多占 4 个磁盘块。根目录文件已经在内存,故不必启动磁盘读入它。

	最少	最多
根目录文件	0 次	0 次
A 目录文件	1 次	1次
D目录文件	1 次	1次
K目录文件	1 次	1次
o 文件某一块	1 次	4 次
共计	4 次	7 次

其中目录检索 3 分,读文件 0 的某一块最少 1 次(1 分),最多 4 次(2 分)总计 4 次和 7 次,(1 分)

(3) 可以引入当前目录方法或者索引节点。(2分)

5、(10分)

答案: 1)程序控制,中断控制,DMA,通道;(2分,每项0.5分)

2)(4分,每项1分)

程序控制:循环查询,直至设备可用;

中断控制:设备可用向 CPU 中断, CPU 暂停当前任务的执行,进

行中断处理;

DMA 控制: 外存和内存直接通过 DMA 直接进行数据传输; 通道控制: 通过通道执行 I/O 指令实现数据传输;

3)(4分,每项1分)

程序控制: 优点就是简单,不需要硬件支持; 缺点就是一直占用 CPU,资源浪费:

中断控制: 优点相对程序控制,实现设备和 CPU 之间并行处理,效率提高; 缺点就是需要硬件支持;

DMA 控制: 优点可以实现大量数据的高效传输; 缺点是需要硬件支持; 通道控制: 优点是不需要 CPU 参与,可以实现并行处理; 缺点是需求一个独立的处理单元。

6、(10分)

答:

初始状态 0 128K 256K 384K 512K 640K 768K 896K 1M

A 申 请 70KB	А	128K	25	56K	512K
B 申 请 35KB	А	B 64	25	56K	512K
C 申 请 80KB	Α	B 64	С	128K	512K

A结束	128K	В	64	С	128K	512K					
D 申 请 60KB	128K	В	D	С	128K	512K					
B 结束	128K	64	D	С	128K	512K					
D结束	25	6K		С	128K	512K					
C结束	1M										

7、(10分)

答:页面大小为 100 字,所以访问的页面走向是: 1、2、1、0、4、1、3、4、2、1 (1分)

分配 300 字主存, 所以有 300/100=3 个物理块(1')。

- 0号页面初始调入主存。
- (1)(4')按 FIFO 调度算法将产生 5 次缺页中断, 依次淘汰的页号为: 0, 1, 2; 缺页中断率为: 5/10=50%

P₀	1₽	2↩	1₽	0₽	4₽	1₽	3₽	4₽	2↩	1₽
0₊□	0₊□	0₽	e)	4	4₽	4	4₽	4	e)	4₽
1₽	1₽	1₽	₽	e)	1₽	e)	3₽	₽	e)	3₽
2₽	42	2₊□	₽.	4	2₽	42	2₽	₽	e)	1₽
F₽	+₽	+₽	e)	e e	+₽	٠	+₽	e)	e)	+₽

(2)(4')按 LRU 调度算法将产生 6 次缺页中断; 依次淘汰的页号为: 2, 0, 1, 3; 缺页中断率为: 6/10=60%

P⇔	1₽	2↩	1₽	l	l	1₽	3₽	4₽	2₽	1₽
0₀	0₽	0₊□	¢	÷	0₽	4	3₽	4	l	l
1₽	1₽	1₽	47	٠	1₽	₽	1₽	47	2₽	2↩
2₽	4	2₽	4	٠	4₽	4	4₽	4	4₽	4₽
F₽	+₽	+₽	42	٥	+₽	42	+₽	42	+₽	+₽