Bayesian Workflow for Hierarchical and ODE-based Models using Stan

September 2023

Summer School on Advanced Bayesian Methods

Instructor:

Charles Margossian Flatiron Institute

Teaching Assistant:

Maxime Fajgenblat KU Leuven

Outline:

- Review of Bayesian analysis
- Markov chain Monte Carlo
- Basics of Stan
- ODE-based models
- Leave-one-out cross validation
- Hamiltonian Monte Carlo
- Tuning ODEs in a Bayesian context
- Hierarchical models
- Torsten: an extension of Stan for pharmacometrics
- Population models

An R notebook to do the exercises can be found at:

https://github.com/charlesm93/stanTutorial

You can run the R code on your local machine or on the Colab cloud server.

1

Review of Bayesian Analysis

Defined as a joint distribution

$$p(\theta, y)$$

over observed variables y and unknowns θ .

Defined as a joint distribution

$$p(\theta, y) = p(\theta)p(y \mid \theta)$$

over observed variables y and unknowns θ .

Defined as a joint distribution

$$p(\theta, y) = p(\theta)p(y \mid \theta)$$

over observed variables y and unknowns θ .

 $p(y \mid \theta)$ is the *likelihood*:

For a fixed θ , defines a data generating process.

Defined as a joint distribution

$$p(\theta, y) = p(\theta)p(y \mid \theta)$$

over observed variables y and unknowns θ .

 $p(y \mid \theta)$ is the *likelihood*:

For a fixed θ , defines a data generating process.

 $p(\theta)$ is the prior:

quantitative assumptions and understanding about θ information from previous analysis regularization tool

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser_©¹, Michel J. Counotte_©¹, Charles C. Margossian_©², Garyfallos Konstantinoudis_©³, Nicola Low_©¹, Christian L. Althaus¹, Julien Riou_©^{1,4}*

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser $_0^1$, Michel J. Counotte $_0^1$, Charles C. Margossian $_0^2$, Garyfallos Konstantinoudis $_0^3$, Nicola Low $_0^1$, Christian L. Althaus $_1^1$, Julien Riou $_0^{1.4*}$

Likelihood:

Epidemiological model of the disease dynamic Measurement model: test results, hospital deaths.

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser_©¹, Michel J. Counotte_©¹, Charles C. Margossian_©², Garyfallos Konstantinoudis_©³, Nicola Low_©¹, Christian L. Althaus¹, Julien Riou_©^{1,4}*

Likelihood:

Epidemiological model of the disease dynamic Measurement model: test results, hospital deaths.

Prior:

Constraints on interpretable parameters Meta-analysis for asymptomatic rate

Given observations y, want to learn about θ

Given observations y, want to learn about θ Proposition: Learn a posterior distribution

$$p(\theta \mid y) = \frac{p(\theta)p(y \mid \theta)}{p(y)}$$

Given observations y, want to learn about θ Proposition: Learn a posterior distribution

$$p(\theta \mid y) = \frac{p(\theta)p(y \mid \theta)}{p(y)}$$

For some transformation f of the parameters θ , can learn

$$p(f(\theta) \mid y)$$

Given observations y, want to learn about θ

Proposition: Learn a posterior distribution

$$p(\theta \mid y) = \frac{p(\theta)p(y \mid \theta)}{p(y)}$$

For some transformation f of the parameters θ , can learn

$$p(f(\theta) \mid y)$$

f may be predictions about the future, a useful summary (e.g. R_0 infection rate), etc.

Given observations y, want to learn about θ

Proposition: Learn a posterior distribution

$$p(\theta \mid y) = \frac{p(\theta)p(y \mid \theta)}{p(y)}$$

For some transformation f of the parameters θ , can learn

$$p(f(\theta) \mid y)$$

f may be predictions about the future, a useful summary (e.g. R_0 infection rate), etc.

The variance in $p(f(\theta) \mid y)$ accounts for both the modeled noise and the uncertainty in our estimation of θ .

Example: normal-normal model

$$p(\theta) = \text{normal}(\mu, \tau)$$

 $p(y_n \mid \theta) = \text{normal}(\theta, \sigma)$

Suppose we have N i.i.d observations y_1, y_2, \dots, y_N .

Example: normal-normal model

$$p(\theta) = \text{normal}(\mu, \tau)$$

 $p(y_n \mid \theta) = \text{normal}(\theta, \sigma)$

Suppose we have N i.i.d observations y_1, y_2, \dots, y_N . Then

$$p(\theta \mid \mathbf{y}) = \text{normal}\left(\frac{\mu/\tau^2 + N\bar{y}/\sigma^2}{1/\tau^2 + N/\sigma^2}, \frac{1}{1/\tau^2 + N/\sigma^2}\right)$$

Example: normal-normal model

$$\begin{array}{rcl} p(\theta) & = & \operatorname{normal}(\mu, \tau) \\ p(y_n \mid \theta) & = & \operatorname{normal}(\theta, \sigma) \end{array}$$

Suppose we have N i.i.d observations y_1, y_2, \dots, y_N . Then

$$p(\theta \mid \mathbf{y}) = \text{normal}\left(\frac{\mu/\tau^2 + N\bar{y}/\sigma^2}{1/\tau^2 + N/\sigma^2}, \frac{1}{1/\tau^2 + N/\sigma^2}\right)$$

In practice, the posterior is <u>not</u> tractable.

Need to estimate summary quantities: expectation values, variance, quantiles, \cdots

Bayesian learning

Suppose we obtain data over two observations, y_1 and y_2 .

Bayesian learning

Suppose we obtain data over two observations, \mathbf{y}_1 and \mathbf{y}_2 . Then the following two procedure are equivalent,

(1)

- Start with a prior $p(\theta)$.
- Compute the posterior $p(\theta \mid \mathbf{y}_1, \mathbf{y}_2)$.

or

(2)

- Start with a prior $p(\theta)$.
- Compute the posterior $p(\theta \mid \mathbf{y}_1)$
- Use $p(\theta \mid \mathbf{y}_1)$ as a new prior.
- Compute the posterior $\tilde{p}(\theta \mid \mathbf{y}_2) \propto p(\mathbf{y}_2 \mid \theta)p(\theta \mid \mathbf{y}_1)$.

Bayesian learning

Suppose we obtain data over two observations, \mathbf{y}_1 and \mathbf{y}_2 . Then the following two procedure are equivalent,

(1)

- Start with a prior $p(\theta)$.
- Compute the posterior $p(\theta \mid \mathbf{y}_1, \mathbf{y}_2)$.

or

(2)

- Start with a prior $p(\theta)$.
- Compute the posterior $p(\theta \mid \mathbf{y}_1)$
- Use $p(\theta \mid \mathbf{y}_1)$ as a new prior.
- Compute the posterior $\tilde{p}(\theta \mid \mathbf{y}_2) \propto p(\mathbf{y}_2 \mid \theta)p(\theta \mid \mathbf{y}_1)$.

$$\tilde{p}(\theta \mid \mathbf{y}_2) = p(\theta \mid \mathbf{y}_1, \mathbf{y}_2).$$

\mathbf{Model}

 $p(y,\theta)$

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser $_0^1$, Michel J. Counotte $_0^1$, Charles C. Margossian $_0^2$, Garyfallos Konstantinoudis $_0^3$, Nicola Low $_0^1$, Christian L. Althaus $_1^1$, Julien Riou $_0^{1.4*}$

The published model is the \sim 15th iteration.

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser $_0^1$, Michel J. Counotte $_0^1$, Charles C. Margossian $_0^2$, Garyfallos Konstantinoudis $_0^3$, Nicola Low $_0^1$, Christian L. Althaus $_1^1$, Julien Riou $_0^{1.4*}$

The published model is the \sim 15th iteration.

Grinsztajn et al. Bayesian workflow for disease transmission model in Stan, Statistics in Medicine (2021)

Gelman et al. Bayesian workflow, arXiv:2011.01808 (2020)

II

Markov chain Monte Carlo

Characterizing the posterior distribution

Quantities of interest can often be expressed as integrals with respect to a probability measure

$$\mathbb{E}[f(\theta)] = \int f(\theta) \ p(\theta \mid y) \ d\theta$$

Characterizing the posterior distribution

Quantities of interest can often be expressed as integrals with respect to a probability measure

$$\mathbb{E}[f(\theta)] = \int f(\theta) \ p(\theta \mid y) \ d\theta$$

Monte Carlo estimator:

$$\theta^{(1)}, \theta^{(2)}, \cdots, \theta^{(N)} \stackrel{\text{iid}}{\sim} p(\theta \mid y)$$

$$\widehat{\mathbb{E}}[f(\theta)] = \frac{1}{N} \sum_{n=1}^{N} f\left(\theta^{(n)}\right)$$

Characterizing the posterior distribution

Quantities of interest can often be expressed as integrals with respect to a probability measure

$$\mathbb{E}[f(\theta)] = \int f(\theta) \ p(\theta \mid y) \ d\theta$$

Monte Carlo estimator:

$$\theta^{(1)}, \theta^{(2)}, \cdots, \theta^{(N)} \stackrel{\text{iid}}{\sim} p(\theta \mid y)$$

$$\widehat{\mathbb{E}}[f(\theta)] = \frac{1}{N} \sum_{n=1}^{N} f\left(\theta^{(n)}\right)$$

Can get a sample estimator for mean, variance and quantiles.

How good is our Monte Carlo estimator $\widehat{\mathbb{E}}[f(\theta)]$?

How good is our Monte Carlo estimator $\widehat{\mathbb{E}}[f(\theta)]$? Ultimately want to control the expected squared error,

$$\mathbb{E}\left[\left(\widehat{\mathbb{E}}[f(\theta)] - \mathbb{E}[f(\theta)]\right)^{2}\right] = \operatorname{Bias}^{2} + \operatorname{Var}\left[\widehat{\mathbb{E}}[f(\theta)]\right]$$

How good is our Monte Carlo estimator $\widehat{\mathbb{E}}[f(\theta)]$? Ultimately want to control the expected squared error,

$$\mathbb{E}\left[\left(\widehat{\mathbb{E}}[f(\theta)] - \mathbb{E}[f(\theta)]\right)^2\right] = \operatorname{Bias}^2 + \operatorname{Var}\left[\widehat{\mathbb{E}}[f(\theta)]\right]$$

If $\theta^{(1)}, \theta^{(2)}, \cdots, \theta^{(N)}$ are i.i.d,

Bias = 0,
$$\operatorname{Var}\left[\widehat{\mathbb{E}}[f(\theta)]\right] = \frac{1}{N}\operatorname{Var}[\theta]$$

How good is our Monte Carlo estimator $\widehat{\mathbb{E}}[f(\theta)]$? Ultimately want to control the expected squared error,

$$\mathbb{E}\left[\left(\widehat{\mathbb{E}}[f(\theta)] - \mathbb{E}[f(\theta)]\right)^{2}\right] = \operatorname{Bias}^{2} + \operatorname{Var}\left[\widehat{\mathbb{E}}[f(\theta)]\right]$$

If $\theta^{(1)}, \theta^{(2)}, \cdots, \theta^{(N)}$ are i.i.d,

Bias = 0,
$$\operatorname{Var}\left[\widehat{\mathbb{E}}[f(\theta)]\right] = \frac{1}{N}\operatorname{Var}[\theta]$$

We also have a Central Limit Theorem, i.e. for large N

$$\widehat{\mathbb{E}}[f(\theta)] \overset{\text{approx}}{\sim} \operatorname{normal}\left(\mathbb{E}f(\theta), \sqrt{\frac{\operatorname{Var}[f(\theta)]}{N}}\right).$$

Markov chain Monte Carlo:

- Start with an initial draw $\theta^{(0)} \sim p_0(\theta)$. Apply a transition kernel, $\theta^{(i+1)} \sim \Gamma(\theta^{(i+1)} \mid \theta^{(i)})$.

Markov chain Monte Carlo:

- Start with an initial draw θ⁽⁰⁾ ~ p₀(θ).
 Apply a transition kernel, θ⁽ⁱ⁺¹⁾ ~ Γ(θ⁽ⁱ⁺¹⁾ | θ⁽ⁱ⁾).

Under certain conditions,

$$\lim_{n \to \infty} \theta^{(n)} \sim p(\theta \mid y),$$

and $p(\theta \mid y)$ is the stationary distribution.

Markov chain Monte Carlo:

- Start with an initial draw $\theta^{(0)} \sim p_0(\theta)$.
- Apply a transition kernel, $\theta^{(i+1)} \sim \Gamma(\theta^{(i+1)} \mid \theta^{(i)})$.

Under certain conditions,

$$\lim_{n \to \infty} \theta^{(n)} \sim p(\theta \mid y),$$

and $p(\theta \mid y)$ is the stationary distribution.

In practice, for large n,

$$\lim_{n\to\infty}\theta^{(n)} \stackrel{\text{approx.}}{\sim} p(\theta \mid y).$$

Markov chain Monte Carlo:

- Start with an initial draw $\theta^{(0)} \sim p_0(\theta)$.
- Apply a transition kernel, $\theta^{(i+1)} \sim \Gamma(\theta^{(i+1)} \mid \theta^{(i)})$.

Under certain conditions,

$$\lim_{n \to \infty} \theta^{(n)} \sim p(\theta \mid y),$$

and $p(\theta \mid y)$ is the stationary distribution.

In practice, for large n,

$$\lim_{n \to \infty} \theta^{(n)} \stackrel{\text{approx.}}{\sim} p(\theta \mid y).$$

• The first samples suffer from a large bias.

Markov chain Monte Carlo:

- Start with an initial draw $\theta^{(0)} \sim p_0(\theta)$.
- Apply a transition kernel, $\theta^{(i+1)} \sim \Gamma(\theta^{(i+1)} \mid \theta^{(i)})$.

Under certain conditions,

$$\lim_{n \to \infty} \theta^{(n)} \sim p(\theta \mid y),$$

and $p(\theta \mid y)$ is the stationary distribution.

In practice, for large n,

$$\lim_{n \to \infty} \theta^{(n)} \stackrel{\text{approx.}}{\sim} p(\theta \mid y).$$

- The first samples suffer from a large bias.
- Discard these samples during a burn-in or warmup phase.

• Start at an initial point in the parameter space, $\theta^{(0)} \sim p_0$.

- Start at an initial point in the parameter space, $\theta^{(0)} \sim p_0$.
- \bigcirc Apply the transition kernel N times:
 - Take a random step in the parameter space, from $\theta^{(i)}$ to $\theta^{(i+1)}$ to propose a new sample.
 - Accept the proposal with probability

$$\Pr = \min \left(\frac{p(\theta^{(i+1)} \mid z)}{p(\theta^{(i)} \mid z)}, 1 \right).$$

- Start at an initial point in the parameter space, $\theta^{(0)} \sim p_0$.
- \bigcirc Apply the transition kernel N times:
 - Take a random step in the parameter space, from $\theta^{(i)}$ to $\theta^{(i+1)}$ to propose a new sample.
 - Accept the proposal with probability

$$\Pr = \min \left(\frac{p(\theta^{(i+1)} \mid z)}{p(\theta^{(i)} \mid z)}, 1 \right).$$

3 Return the chain $(\theta^{(1)}, \theta^{(2)}, ..., \theta^{(N)})$.

Example: Metropolis algorithm

Figure from [Gelman et al., 2013].

Example: Metropolis algorithm

Benefits:

- Only requires evaluating $p(\theta, y) = p(\theta)p(y \mid \theta)$.
- Asymptotically, the algorithm samples from $p(\theta \mid y)$.

Drawbacks:

- In the finite regime, the samples are biased.
- The samples are <u>not</u> independent; there are correlated, which <u>increases</u> the <u>variance</u> of our Monte Carlo estimators.

Example: Continuous diffusion process

In the limit where we take infinitesimally small steps, many MCMC algorithms can be approximated by a random diffusion process [Gelman et al., 1997, Roberts and Rosenthal, 1998].

- Initial distribution: $p_0 = \text{normal}(\mu_0, \sigma_0^2)$.
- Target distribution: $p = \text{normal}(\mu, \sigma^2)$.

Example: Continuous diffusion process

In the limit where we take infinitesimally small steps, many MCMC algorithms can be approximated by a random diffusion process [Gelman et al., 1997, Roberts and Rosenthal, 1998].

- Initial distribution: $p_0 = \text{normal}(\mu_0, \sigma_0^2)$.
- Target distribution: $p = \text{normal}(\mu, \sigma^2)$.

Then after time T,

$$\theta^{(T)} \sim \text{normal} \left[(\mu_0 - \mu) e^{-T} + \mu, \ \left(\sigma_0^2 - \sigma^2 \right) e^{-2T} + \sigma^2 \right].$$

Example: Continuous diffusion process

In the limit where we take infinitesimally small steps, many MCMC algorithms can be approximated by a random diffusion process [Gelman et al., 1997, Roberts and Rosenthal, 1998].

- Initial distribution: $p_0 = \text{normal}(\mu_0, \sigma_0^2)$.
- Target distribution: $p = \text{normal}(\mu, \sigma^2)$.

Then after time T,

$$\theta^{(T)} \sim \text{normal} \left[(\mu_0 - \mu) e^{-T} + \mu, \quad \left(\sigma_0^2 - \sigma^2 \right) e^{-2T} + \sigma^2 \right].$$

For T large enough, the bias becomes negligible.

Variance of Monte Carlo estimator

Suppose the chain is *stationary*; i.e. we started at $p_0 = p(\theta \mid z)$ or we already ran the chain for an infinitely long time.

Variance of Monte Carlo estimator

Suppose the chain is *stationary*; i.e. we started at $p_0 = p(\theta \mid z)$ or we already ran the chain for an infinitely long time.

• Under certain conditions, Monte Carlo estimators observe a Central Limit Theorem, meaning that for large n,

$$\frac{1}{N} \sum_{i} f(\theta^{(n)}) \stackrel{\text{approx}}{\sim} \text{Normal}\left(\mathbb{E}[f(\theta)], \frac{\text{Var}f(\theta)}{N_{\text{eff}}}\right)$$

where N_{eff} is the effective sample size (ESS).

Variance of Monte Carlo estimator

Suppose the chain is *stationary*; i.e. we started at $p_0 = p(\theta \mid z)$ or we already ran the chain for an infinitely long time.

• Under certain conditions, Monte Carlo estimators observe a Central Limit Theorem, meaning that for large n,

$$\frac{1}{N} \sum_{i} f(\theta^{(n)}) \overset{\text{approx}}{\sim} \text{Normal}\left(\mathbb{E}[f(\theta)], \frac{\text{Var}f(\theta)}{N_{\text{eff}}}\right)$$

where N_{eff} is the effective sample size (ESS).

• The ESS by a process with autocorrelation ρ_t is

$$N_{\text{eff}} = \frac{N}{1 + 2\sum_{t=1}^{\infty} \rho_t}.$$

Here ρ_t is the chain's autocorrelation for two variables separated by t iterations.

Handling the error of MCMC

In practice, MCMC proceeds in two phases:

Handling the error of MCMC

In practice, MCMC proceeds in two phases:

Warmup phase: We run the process for several steps for the <u>bias</u> to become negligible but don't use any of those samples in our Monte Carlo estimator.

Handling the error of MCMC

In practice, MCMC proceeds in two phases:

Warmup phase: We run the process for several steps for the <u>bias</u> to become negligible but don't use any of those samples in our Monte Carlo estimator.

Sampling phase: Collect enough samples to have a large ESS and reduce the variance of the Monte Carlo estimator.

Metropolis, Metropolis-Hastings, Gibbs, Hamiltonian Monte Carlo, Metropolis-adjusted Langevin, ...

Metropolis, Metropolis-Hastings, Gibbs, Hamiltonian Monte Carlo, Metropolis-adjusted Langevin, ...

Hamiltonian Monte Carlo:

• Scales in high dimensions and can approximate ill-conditioned posteriors.

Metropolis, Metropolis-Hastings, Gibbs, Hamiltonian Monte Carlo, Metropolis-adjusted Langevin, ...

Hamiltonian Monte Carlo:

- Scales in high dimensions and can approximate ill-conditioned posteriors.
- Gradient based, requires evaluating $\nabla_{\theta} \log p(\theta \mid y)$.
- Difficult to tune!

Metropolis, Metropolis-Hastings, Gibbs, Hamiltonian Monte Carlo, Metropolis-adjusted Langevin, ...

Hamiltonian Monte Carlo:

- Scales in high dimensions and can approximate ill-conditioned posteriors.
- Gradient based, requires evaluating $\nabla_{\theta} \log p(\theta \mid y)$.
- Difficult to tune!
- Stan provides automated calculations of gradients and a self-tuning HMC algorithm.

III Basics of Stan

- Stan is an expressive language for joint distributions.
- It "automatically" computes derivatives.
- It "automatically" performs inference algorithms.

How Stan works

How Stan works

• The Stan file specifies the joint distribution

$$p(\theta, y) = p(y|\theta)p(\theta) \propto p(\theta \mid y)$$

- The input includes:
 - the data, y
 - tuning parameters for the algorithm
- The output can include:
 - an approximate sample from the posterior distribution
 - summaries of the run which can help us diagnose problems.

Inference algorithms in Stan

- Hamiltonian Monte Carlo (HMC)
- No-U Turn Sampler (NUTS)
- Automatic differentiation variational inference (ADVI)
- Pathfinder Variational Inference
- ...

We can manage the **Stan** file, the input, and the output using a scripting language, such as:

- R.
- Python
- Julia
- The command line
- . . .

Example: Bayesian linear regression

The data generating process is:

$$p(y \mid \theta) = \text{Normal}(\beta x, \sigma)$$

Our goal is to estimate $\theta = (\beta, \sigma)$, based on the observation z = (x, y) and prior knowledge we have of β and σ .

Example: Bayesian linear regression

As a prior, we use:

- $\beta \sim \text{Normal}(2.0, 1.0)$
- $\sigma \sim \text{Gamma}(1.0, 1.0)$

which encode information from previously observed data.

Writing the Stan file

We need a statement that specifies the log joint distribution. Recall:

$$p(\theta, y) = p(y \mid \theta)p(\theta)$$

Then:

$$\log p(\theta, y) = \log p(y \mid \theta) + \log p(\theta)$$

Stan retains certain C++ features:

- Variables need to be declared.
- Each statement must end with a semi-colon.

For example:

real x;

A Stan program is divided into coding blocks:

- data
- parameter
- model

```
data {
Declare the data that will be given as an input.
parameters {
Declare the parameters we want to sample.
model {
Compute the log joint distribution.
```

```
model {
  target += normal_lpdf(y | beta * x, sigma);

// or equivalently
  y ~ normal(beta * x, sigma);
}
```

Live demo.

Convergence diagnostic

Are the chains still biased by their initializations?

Proposition: Start each chain at a different location and check that they all converge to the same distribution. Look at:

- the trace plots and the density plots to compare estimates from each chain.
- the \widehat{R} statistic.

The \widehat{R} statistic,

$$\widehat{R} = \frac{\text{Standard deviation across all chains}}{\text{Standard deviation within chain}}$$

The \widehat{R} statistic,

$$\widehat{R} = \frac{\text{Standard deviation across all chains}}{\text{Standard deviation within chain}}$$

- If the chains sample from the same target, expect $\widehat{R} \approx 1$.
- If the chains are disagreement, $\widehat{R}\gg 1.$

Let $\theta^{(nm)}$ be the n^{th} sample from the m^{th} chain.

Let $\theta^{(nm)}$ be the n^{th} sample from the m^{th} chain.

Can write \widehat{R} as

$$\widehat{R} = \sqrt{\frac{N-1}{N} + \frac{\widehat{B}}{\widehat{W}}},$$

where

- \widehat{B} is the sample variance of $\overline{\theta}^{(\cdot m)}$.
- \widehat{W} is the (average) within-chain variance.

Let $\theta^{(nm)}$ be the n^{th} sample from the m^{th} chain.

Can write \widehat{R} as

$$\widehat{R} = \sqrt{\frac{N-1}{N} + \frac{\widehat{B}}{\widehat{W}}},$$

where

- \widehat{B} is the sample variance of $\overline{\theta}^{(\cdot m)}$.
- \bullet \widehat{W} is the (average) within-chain variance.

$$\widehat{R} \le 1 + \epsilon \iff \widehat{B} \le 2\epsilon \widehat{W} + \mathcal{O}(\epsilon^2).$$

Want to make sure $\operatorname{Var}\left(\bar{\theta}^{(\cdot m)}\right)$ is small.

Question. What can $Var(\bar{\theta}^{(\cdot m)})$ teach us about convergence and bias decay?

Question. What can $\operatorname{Var}\left(\bar{\theta}^{(\cdot m)}\right)$ teach us about convergence and bias decay?

$$\operatorname{Var}\left(\bar{\theta}^{(\cdot m)}\right) = \operatorname{Var}\left(\mathbb{E}\left(\bar{\theta}^{(\cdot m)} \mid \theta^{(0)}\right)\right) + \mathbb{E}\left(\operatorname{Var}\left(\bar{\theta}^{(\cdot m)} \mid \theta^{(0)}\right)\right).$$

Question. What can $\operatorname{Var}\left(\bar{\theta}^{(\cdot m)}\right)$ teach us about convergence and bias decay?

$$\operatorname{Var}\left(\bar{\theta}^{(\cdot m)}\right) = \operatorname{Var}\left(\mathbb{E}\left(\bar{\theta}^{(\cdot m)} \mid \theta^{(0)}\right)\right) + \mathbb{E}\left(\operatorname{Var}\left(\bar{\theta}^{(\cdot m)} \mid \theta^{(0)}\right)\right).$$

The nonstationary variance measures how well the chains forget their starting points.

Question. What can $\operatorname{Var}\left(\bar{\theta}^{(\cdot m)}\right)$ teach us about convergence and bias decay?

$$\operatorname{Var}\left(\bar{\theta}^{(\cdot m)}\right) = \operatorname{Var}\left(\mathbb{E}\left(\bar{\theta}^{(\cdot m)} \mid \theta^{(0)}\right)\right) + \mathbb{E}\left(\operatorname{Var}\left(\bar{\theta}^{(\cdot m)} \mid \theta^{(0)}\right)\right).$$

The nonstationary variance measures how well the chains forget their starting points.

As we warmup the chains, both the nonstationary variance and squared bias decay to 0, and so \widehat{R} acts as a "proxy clock" for bias.

- What quantity does \widehat{R} measure and how close to 1 should it be?
 - [Vehtari et al., 2021] propose checking that $\hat{R} \leq 1.01$.
 - [Moins et al., 2022] examine the property of \widehat{R} for stationary chains.
 - [Margossian et al., 2023] examine \widehat{R} for nonstationary chains and propose a more direct measure of the nonstationary variance.

• \widehat{R} (ideally) tells us if the warmup phase is long enough.

- \widehat{R} (ideally) tells us if the warmup phase is long enough.
- ESS and Monte Carlo standard error (MCSE) tell us if the sampling phase is long enough.

- \widehat{R} (ideally) tells us if the warmup phase is long enough.
- ESS and Monte Carlo standard error (MCSE) tell us if the sampling phase is long enough.
- ESS_{tail} quantifies information for tail estimates [Vehtari et al., 2021].

- \widehat{R} (ideally) tells us if the warmup phase is long enough.
- ESS and Monte Carlo standard error (MCSE) tell us if the sampling phase is long enough.
- ESS_{tail} quantifies information for tail estimates [Vehtari et al., 2021].
- Median, $M(\theta)$ and Median Absolute Deviation (MAD),

$$M(|\theta^{(i)} - M(\theta)|)$$

can be helpful when the first moments are not finite.

Posterior predictive checks

- Recall Box's loop.
- Does our model accurately describe the data?

Posterior predictive checks

Proposition:

Each time we draw a sample, $\theta^{(i)} = (\beta^{(i)}, \sigma^{(i)})$, we will also simulate data, according to:

$$y_{\text{pred}}^{(i)} \sim \text{Normal}\left(x\beta^{(i)}, \sigma^{(i)}\right)$$

Posterior predictive checks

Proposition:

Each time we draw a sample, $\theta^{(i)} = (\beta^{(i)}, \sigma^{(i)})$, we will also simulate data, according to:

$$y_{\text{pred}}^{(i)} \sim \text{Normal}\left(x\beta^{(i)}, \sigma^{(i)}\right)$$

Want to study the posterior predictive distribution,

$$p(y_{\text{pred}} \mid y) = \int_{\Omega} p(y_{\text{pred}} \mid \theta) p(\theta \mid y) d\theta.$$

Posterior	predictive checks	

To do this, we will use the generated quantities block.

Improving the model

- The ppc suggest our model can improve with an intercept parameter.
- Exercise: repeat the above procedure, but this time add an intercept parameter β_0 .

General resources to use Stan

- Stan User's Guide (https: //mc-stan.org/docs/stan-users-guide/index.html)
- Stan Language Reference Manual (https: //mc-stan.org/docs/reference-manual/index.html)
- Stan Language Functions Reference (https://mc-stan.org/docs/functions-reference/index.html)
- Stan Forum (http://discourse.mc-Stan.org/)

Parallel chains

• Each chain is completely independent and can be run on a different core.

IV ODE-based models

1978 influenza outbreak in a British boarding school. Data: daily number of students in bed.

Susceptible-Infected-Recovered (SIR) model

$$\begin{array}{lll} \dot{S} & = & -\beta SI/N \\ \dot{I} & = & \beta SI/N - \gamma I \\ \dot{R} & = & \gamma I \end{array}$$

Susceptible-Infected-Recovered (SIR) model

Susceptible-Infected-Recovered (SIR) model

$$\dot{S} = -\beta SI/N$$
 β : transmission rate.
 $\dot{I} = \beta SI/N - \gamma I$ γ : rate of recovery of infected individuals.

Interpretation:

- I/N is the proportion of infectious individuals.
- $\beta(I/N)$ is then the probability that a single susceptible individual becomes infected in one day.

Which measurement model should we use?

- Poisson likelihood parameterized by $\lambda(t) = I(t)$.
 - Then $\mathbb{E}(y(t)) = I(t)$ and $\operatorname{Var}(y(t)) = I(t)$.

Which measurement model should we use?

- **1** Poisson likelihood parameterized by $\lambda(t) = I(t)$.
 - Then $\mathbb{E}(y(t)) = I(t)$ and $\operatorname{Var}(y(t)) = I(t)$.
- **2** Negative-Binomial parameterized by $\mu = I(t)$ and ϕ .
- Then $\mathbb{E}(y(t)) = I(t)$ and $\operatorname{Var}(y(t)) = I(t) + \frac{I(t)^2}{4}$.

Which measurement model should we use?

- **1** Poisson likelihood parameterized by $\lambda(t) = I(t)$.
 - Then $\mathbb{E}(y(t)) = I(t)$ and $\operatorname{Var}(y(t)) = I(t)$.
 - ② Negative-Binomial parameterized by $\mu = I(t)$ and ϕ .
 - - Then $\mathbb{E}(y(t)) = I(t)$ and $\operatorname{Var}(y(t)) = I(t) + \frac{I(t)^2}{2}$.
 - In Stan use neg_binomial_2.
 - Define in parameters block ϕ^{-1} .

Which prior should we use?

- $p(\beta) = \text{normal}^+(2, 1)$: restricts β to be positive and $p(\beta < 4) = 0.975$.
- $p(\gamma) = \text{normal}^+(0.4, 0.5)$: restricts γ to be positive and $p(\gamma < 1) = 0.9$, i.e. 90% of the time, we expect the average time spent in bed to be less than 1 day).
- $p(\phi^{-1}) = \text{exponential}(5)$, see [Grinsztajn et al., 2021].

Need additional blocks to fit this model:

functions: Here we'll construct a function that returns $\{\dot{S}, \dot{I}, \dot{R}\}$, which we can then pass to an ODE solver.

- vector sir (real t, vector y, real beta, real
 gamma, int N) { ··· return dy_dt };
- t: time
- y: the solution to the ODE, y(t) = [S(t), I(t), R(t)]

Need additional blocks to fit this model:

functions: Here we'll construct a function that returns $\{\dot{S},\dot{I},\dot{R}\}$, which we can then pass to an ODE solver.

- vector sir (real t, vector y, real beta, real
 gamma, int N) { ··· return dy_dt };
- t: time
- y: the solution to the ODE, y(t) = [S(t), I(t), R(t)]

transformed parameters: Allows us to do manipulations on the parameters

- o compute I(t) by solving the ODE: array[n_days] vector[3] y = ode_rk45(sir, y0, t0, ts, beta, gamma, N);
- y0: initial condition for $t = t_0$.
- ts: times at which we require a solution.

Exercise: Write and fit an SIR model for the 1978 influenza outbreak.

- Check the standard diagnostics (\widehat{R} and ESS) and examine the density and trace plots. Is the inference reliable?
- Do the posterior predictive checks: does the model accurately describe the data?
- Report β , γ and

$$R_0 = \beta/\gamma$$
.

• Compare the two proposed measurement models: Poisson and negative binomial.

For more discussion about this model (e.g. choice of priors, sensitivity tests), see [Grinsztajn et al., 2021].

Model Comparison

• **Proposition:** Test model predictions on a validation set.

- **Proposition:** Test model predictions on a validation set.
 - Split the data into a **training** and a **validation** set.

- **Proposition:** Test model predictions on a validation set.
 - Split the data into a **training** and a **validation** set.
 - Training set: The data y_{train} used to learn the parameters, and on which we condition the posterior,

$$p(\theta \mid y_{\text{train}}).$$

- **Proposition:** Test model predictions on a validation set.
 - Split the data into a **training** and a **validation** set.
 - Training set: The data y_{train} used to learn the parameters, and on which we condition the posterior,

$$p(\theta \mid y_{\text{train}}).$$

• Validation set: The data y_{val} we use to "test" the model's predictions.

Example: At t = 12, the model predicts $\tilde{y}(t = 12)$. Compute the *prediction error*,

Err =
$$(\tilde{y}(t = 12) - y_{\text{val}}(t = 12))^2$$
.

Testing uncertainty calibration in (point) predictions

Testing uncertainty calibration in (point) predictions

Suppose we have a normal likelihood, with point estimates for the learned parameters, $\,$

Normal
$$(\hat{\mu}(t), \hat{\sigma})$$
.

Our "best" prediction is $\tilde{y}(t) = \hat{\mu}(t)$.

Testing uncertainty calibration in (point) predictions

Suppose we have a normal likelihood, with point estimates
for the learned parameters,

Normal
$$(\hat{\mu}(t), \hat{\sigma})$$
.

Our "best" prediction is $\tilde{y}(t) = \hat{\mu}(t)$.

Then the prediction error is

$$Err = (\hat{\mu}(t) - y_{val}(t))^2,$$

and $\hat{\sigma}$ is unaccounted for!

Testing uncertainty calibration in (point) predictions

Suppose we have a normal likelihood, with point estimates for the learned parameters,

Normal
$$(\hat{\mu}(t), \hat{\sigma})$$
.

Our "best" prediction is $\tilde{y}(t) = \hat{\mu}(t)$.

Then the prediction error is

$$Err = (\hat{\mu}(t) - y_{val}(t))^2,$$

and $\hat{\sigma}$ is unaccounted for!

Instead, let's evaluate the point-estimate log predictive density,

p-lpd =
$$\log p(y_{\text{val}}(t) \mid \hat{\mu}, \hat{\sigma})$$

 = $\text{const.} - \log \hat{\sigma} - \frac{1}{2\hat{\sigma}^2} (y_{\text{val}}(t) - \hat{\mu}(t))^2$.

Testing uncertainty calibration in (point) predictions Suppose we have a Bernoulli likelihood, with point estimates for the learned parameters,

Bernoulli(
$$\hat{\pi}(t)$$
).

Our "best" prediction is $\tilde{y}(t) = \mathbb{I}(\hat{\pi}(t) > 0.5)$. Then the prediction error is

$$\operatorname{Err} = \mathbb{I}(\tilde{y}(t) = y_{\text{val}}(t)).$$

Instead, let's evaluate the point-estimate log predictive density,

p-lpd =
$$\log p(y_{\text{val}}(t) | \hat{\pi}(t))$$

 = $y_{\text{val}}(t) \log \hat{\pi}(t) + (1 - y_{\text{val}}(t)) \log(1 - \hat{\pi}(t))$.

Testing uncertainty calibration in Bayesian predictions

We have a general strategy which accounts for uncertainty in the likelihood for a fixed θ ,

$$p-lpd = \log p(y_{val}(t) \mid \theta).$$

Testing uncertainty calibration in Bayesian predictions

We have a general strategy which accounts for uncertainty in the likelihood for a fixed θ ,

$$p$$
-lpd = log $p(y_{val}(t) \mid \theta)$.

To be Bayesian, we integrate with respect to the posterior and obtain the *expected log predictive density*,

elpd =
$$\log p(y_{\text{val}}(t) \mid y_{\text{train}})$$

 = $\log \int_{\Theta} p(y_{\text{val}}(t) \mid \theta) p(\theta \mid y_{\text{train}}) d\theta$.

How do we split the data (t, y) into a training and a test set?

Proposition: Do leave-one-out cross validation and compute

$$elpd_{loo} = \sum_{i=1}^{N} log p(y_i \mid y_{-i}),$$

where

$$p(y_i \mid y_{-i}) = \int_{\Omega} p(y_i \mid \theta) p(\theta \mid y_{-i}) d\theta.$$

Recap.

Prediction error based on "best" prediction, $(y_{\text{val}} - \tilde{y})^2$

 \rightarrow point-wise log predictive score, p-lpd = log $p(y_{\text{val}} \mid \hat{\theta})$

 \rightarrow expected log predictive score, elpd = log $p(y_{\text{val}} \mid y_{\text{train}})$

 \rightarrow loo CV, elpd_{loo} = $\sum_{i=1}^{N} \log p(y_i \mid y_{-i})$

 $7 \log C$, or $pa_{loo} = \sum_{i=1}^{n} \log p(g_i + g_{-i})$

How do we estimate elpd_{loo} efficiently?

• **Idea:** Suppose we need to estimate an expectation with respect to $\ell(\theta)$,

$$\int_{\Theta} f(\theta) \ell(\theta) d\theta,$$

but using samples from $q(\theta)$.

• **Idea:** Suppose we need to estimate an expectation with respect to $\ell(\theta)$,

$$\int_{\Theta} f(\theta) \ell(\theta) d\theta,$$

but using samples from $q(\theta)$.

• For example, $\ell(\theta) = p(\theta \mid y_{-i})$ and $q(\theta) = p(\theta \mid y)$.

• **Idea:** Suppose we need to estimate an expectation with respect to $\ell(\theta)$,

$$\int_{\Theta} f(\theta) \ell(\theta) d\theta,$$

but using samples from $q(\theta)$.

- For example, $\ell(\theta) = p(\theta \mid y_{-i})$ and $q(\theta) = p(\theta \mid y)$.
- Then, note that

$$\int_{\Theta} f(\theta) \ell(\theta) d\theta = \int_{\Theta} f(\theta) \frac{\ell(\theta)}{q(\theta)} q(\theta) d\theta.$$

• **Idea:** Suppose we need to estimate an expectation with respect to $\ell(\theta)$,

$$\int_{\Theta} f(\theta) \ell(\theta) d\theta,$$

but using samples from $q(\theta)$.

- For example, $\ell(\theta) = p(\theta \mid y_{-i})$ and $q(\theta) = p(\theta \mid y)$.
- Then, note that

$$\int_{\Theta} f(\theta) \ell(\theta) \mathrm{d}\theta = \int_{\Theta} f(\theta) \frac{\ell(\theta)}{q(\theta)} q(\theta) \mathrm{d}\theta.$$

• The IS Monte Carlo estimator is

$$\widehat{\mathbb{E}}f(\theta) = \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)}) \frac{\ell(\theta^{(s)})}{q(\theta^{(s)})}.$$

• The IS Monte Carlo estimator is

$$\widehat{\mathbb{E}}f(\theta) = \sum_{s=1}^{S} f(\theta^{(s)}) \frac{\ell(\theta^{(s)})}{q(\theta^{(s)})}.$$

• The IS Monte Carlo estimator is

$$\widehat{\mathbb{E}}f(\theta) = \sum_{s=1}^{S} f(\theta^{(s)}) \frac{\ell(\theta^{(s)})}{q(\theta^{(s)})}.$$

Practical concern: it is not uncommon for the IS estimator to have a non-finite variance and so we need $q(\theta) \approx \ell(\theta)$!

• The IS Monte Carlo estimator is

$$\widehat{\mathbb{E}}f(\theta) = \sum_{s=1}^{S} f(\theta^{(s)}) \frac{\ell(\theta^{(s)})}{q(\theta^{(s)})}.$$

Practical concern: it is not uncommon for the IS estimator to have a non-finite variance and so we need $q(\theta) \approx \ell(\theta)$!

Proposition

When the y_j 's are independent conditioned on θ , the importance sampling Monte Carlo estimator is

$$\widehat{p}(y_i \mid y_{-i}) = \frac{1}{\sum_{s=1}^{S} \frac{1}{p(y_i \mid \theta^{(s)})}},$$

where $\theta^{(s)} \sim p(\theta \mid y)$.

• Several steps need to be taken to stabilize IS estimators.

- Several steps need to be taken to stabilize IS estimators.
- We will use Pareto-smoothed importance sampling (PSIS) [Vehtari et al., 2017].

- Several steps need to be taken to stabilize IS estimators.
- We will use Pareto-smoothed importance sampling (PSIS) [Vehtari et al., 2017].
- PSIS comes with equipped with a \hat{k} diagnostic:
 - if $\hat{k} < 0.5$, PSIS estimators is reliable.
 - if $\hat{k} \geq 0.7$, importance weights have non-finite variance.

- Several steps need to be taken to stabilize IS estimators.
- We will use Pareto-smoothed importance sampling (PSIS) [Vehtari et al., 2017].
- PSIS comes with equipped with a \hat{k} diagnostic:
 - if $\hat{k} < 0.5$, PSIS estimators is reliable.
 - if $\hat{k} \geq 0.7$, importance weights have non-finite variance.
- The R package loo computes PSIS.
- In Stan's generated quantities, need to compute log_lik, where

```
log_lik[i] = log p(cases[i] | theta);
```

Exercise: Compare the predictive scores of the SIR models.

- Evaluate in generated quantities the log probability mass functions using poisson_lpmf and neg_binomial_2_lpmf.
- In R, use the loo package to compute the PSIS estimates of the $elpd_{loo}$.
- Check \hat{k} to see if the IS estimators are reliable.
- Which likelihood achieves the best predictive score?

VI	
Hamiltonian Monte Carlo	

Geometric structure in the distribution

Hamiltonian Monte Carlo

• Treat the Markov chain as a physical particle, which evolves over \mathbb{R}^D .

Hamiltonian Monte Carlo

- Treat the Markov chain as a physical particle, which evolves over \mathbb{R}^D .
- Give the particle a random shove, by it with a momentum $\xi_0 \in \mathbb{R}^D$,

$$\xi_0 \sim \text{normal}(0, M)$$

Hamiltonian Monte Carlo

- Treat the Markov chain as a physical particle, which evolves over \mathbb{R}^D .
- Give the particle a random shove, by it with a momentum $\xi_0 \in \mathbb{R}^D$,

$$\xi_0 \sim \text{normal}(0, M)$$

• Treat the negative log density as a physical potential,

$$U(\theta) = -\log p(\theta \mid y).$$

Simulate a the laws of classical mechanics for a time T,

$$(\theta_0, \xi_0) \to (\theta_T, \xi_T).$$

Hamiltonian Dynamics

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = M^{-1}\xi; \quad \frac{\mathrm{d}\xi}{\mathrm{d}t} = \nabla_{\theta} \log p(\theta \mid y).$$

Geometric structure in the distribution

$$\begin{array}{rcl} p(\xi,\theta) & = & p(\xi)p(\theta\mid y) \\ & \propto & \exp\left\{-\left(\frac{1}{2}\xi^TM^{-1}\xi - \log p(\theta\mid y)\right)\right\} \end{array}$$

$$p(\xi, \theta) = p(\xi)p(\theta \mid y)$$

$$\propto \exp\left\{-\left(\frac{1}{2}\xi^{T}M^{-1}\xi - \log p(\theta \mid y)\right)\right\}$$

 $H(\theta, \xi)$ is the energy (or *Hamiltonian* of the system) of the system,

$$H(\theta, \xi) = \underbrace{T(\xi)}_{\text{kinetic}} + \underbrace{U(\theta)}_{\text{potential}}.$$

$$\begin{array}{rcl} p(\xi,\theta) & = & p(\xi)p(\theta\mid y) \\ & \propto & \exp\left\{-\left(\frac{1}{2}\xi^TM^{-1}\xi - \log p(\theta\mid y)\right)\right\} \end{array}$$

 $H(\theta, \xi)$ is the energy (or *Hamiltonian* of the system) of the system,

$$H(\theta, \xi) = \underbrace{T(\xi)}_{\text{kinetic}} + \underbrace{U(\theta)}_{\text{potential}}.$$

During a Hamiltonian trajectory, $H(\theta, \xi)$ stays constant.

$$p(\xi, \theta) = p(\xi)p(\theta \mid y)$$

$$\propto \exp\left\{-\left(\frac{1}{2}\xi^{T}M^{-1}\xi - \log p(\theta \mid y)\right)\right\}$$

 $H(\theta, \xi)$ is the energy (or *Hamiltonian* of the system) of the system,

$$H(\theta, \xi) = \underbrace{T(\xi)}_{\text{kinetic}} + \underbrace{U(\theta)}_{\text{potential}}.$$

During a Hamiltonian trajectory, $H(\theta, \xi)$ stays constant. HMC can be seen as a Gibbs sampler, alternating between a random step $p(H \mid \theta)$ and a deterministic step $\delta(\theta \mid H)$.

Algorithm 1: Leapfrog integrator for simulating Hamiltonian trajectory.

input: trajectory length L, step size ϵ , mass matrix M, $\theta(0)$ $\mathcal{E}(0) \sim \text{normal}(0, M)$

$$t \leftarrow 0$$

for $i \in \{0, 1, \dots, L-1\}$ do

$$\begin{cases} \xi(t+\epsilon/2) \leftarrow \xi(t) + \frac{\epsilon}{2} \nabla_{\theta} \log p(\theta(t) \mid y) \\ \theta(t+\epsilon) \leftarrow \theta(t) + \epsilon M^{-1} \xi(t+\epsilon/2) \\ \xi(t+\epsilon) \leftarrow \xi(t+\epsilon/2) - \frac{\epsilon}{2} \nabla_{\theta} p(\theta(t+\epsilon) \mid y) \\ t \leftarrow t + \epsilon \end{cases}$$

 \mathbf{end}

return:
$$\theta(T = L\epsilon)$$

Algorithm 2: Leapfrog integrator for simulating Hamiltonian trajectory.

input: trajectory length L, step size ϵ , mass matrix M, $\theta(0)$ $\xi(0) \sim \text{normal}(0, M)$

$$t \leftarrow 0$$

for $i \in \{0, 1, \dots, L-1\}$ do

for
$$i \in \{0, 1, \dots, L-1\}$$
 do
$$\begin{cases} \xi(t+\epsilon/2) \leftarrow \xi(t) + \frac{\epsilon}{2} \nabla_{\theta} \log p(\theta(t) \mid y) \\ \theta(t+\epsilon) \leftarrow \theta(t) + \epsilon M^{-1} \xi(t+\epsilon/2) \\ \xi(t+\epsilon) \leftarrow \xi(t+\epsilon/2) - \frac{\epsilon}{2} \nabla_{\theta} \log p(\theta(t+\epsilon) \mid y) \\ t \leftarrow t + \epsilon \end{cases}$$

end

return: $\theta(T = L\epsilon)$

Step size ϵ :

• Leapfrog computes inexact Hamiltonian trajectories.

Step size ϵ :

- Leapfrog computes inexact Hamiltonian trajectories.
- This leads to *violation of energies*

$$H(\theta(0), \xi(0)) \neq H(\theta(T), \xi(T))$$

Step size ϵ :

- Leapfrog computes inexact Hamiltonian trajectories.
- This leads to *violation of energies*

$$H(\theta(0), \xi(0)) \neq H(\theta(T), \xi(T))$$

• This motivates a Metropolis accept/reject step,*

$$\Pr(\text{accept}) = \min \left(1, \exp \left(H(\theta(0), \xi(0)) - H(\theta(T), \xi(T)) \right) \right).$$

*Stan uses something a bit more sophisticated than a Metropolis step, see [Betancourt, 2017].

Step size ϵ :

- Leapfrog computes inexact Hamiltonian trajectories.
- This leads to *violation of energies*

$$H(\theta(0), \xi(0)) \neq H(\theta(T), \xi(T))$$

• This motivates a Metropolis accept/reject step,*

$$\Pr(\text{accept}) = \min \left(1, \exp \left(H(\theta(0), \xi(0)) - H(\theta(T), \xi(T)) \right) \right).$$

• Stan uses a stochastic optimization strategy to adjust ϵ and hit a target acceptance rate, adapt_delta,

$$\delta_{\rm adapt} = 0.8.$$

^{*}Stan uses something a bit more sophisticated than a Metropolis step, see [Betancourt, 2017].

Trajectory length L:

- If L is too short, the Markov chain has a large autocorrelation.
- If L is too long, we use too much compute for little gain.

Trajectory length L:

- If L is too short, the Markov chain has a large autocorrelation.
- If L is too long, we use too much compute for little gain.
- Idea: Maximize the squared jump distance

$$(\theta(T) - \theta(0))^T (\theta(T) - \theta(0)).$$

Trajectory length L:

- If L is too short, the Markov chain has a large autocorrelation.
- If L is too long, we use too much compute for little gain.
- Idea: Maximize the squared jump distance

$$(\theta(T) - \theta(0))^T (\theta(T) - \theta(0)).$$

• No U-Turn criterion,

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{(\theta(T)-\theta(0))^T(\theta(T)-\theta(0))}{2} = \left(\theta(T)-\theta(0)\right)^T\xi(T).$$

• Run simulation until $(\theta(T) - \theta(0))^T \xi(T) = 0$.

Mass matrix M:

• The mass matrix determines the resistance to acceleration.

Mass matrix M:

- The mass matrix determines the resistance to acceleration.
- Idea: set

$$M = \widehat{\Sigma}^{-1}(\theta),$$

where $\widehat{\Sigma}(\theta)$ is the sample covariance of the posterior.

Mass matrix M:

- The mass matrix determines the resistance to acceleration.
- Idea: set

$$M = \widehat{\Sigma}^{-1}(\theta),$$

where $\widehat{\Sigma}(\theta)$ is the sample covariance of the posterior.

• To make the leapfrog cheaper, Stan uses a diagonal M.

Stan 's HMC learns ϵ and M during the warmup phase and then "freezes" these tuning parameters.

Stan 's HMC learns ϵ and M during the warmup phase and then "freezes" these tuning parameters.

The resulting algorithm is called the No U Turn Sampler (NUTS) or dynamic Hamiltonian Monte Carlo.

Figure from [Hoffman and Gelman, 2014].

To implement HMC, need

 $\nabla_{\theta} \log p(\theta \mid y) = \nabla_{\theta} (\log p(\theta) + \log p(y \mid \theta) - \log p(y))$

 $= \nabla_{\theta} (\log p(\theta) + \log p(y \mid \theta)).$

To implement HMC, need

$$\nabla_{\theta} \log p(\theta \mid y) = \nabla_{\theta} (\log p(\theta) + \log p(y \mid \theta) - \log p(y))$$
$$= \nabla_{\theta} (\log p(\theta) + \log p(y \mid \theta)).$$

Stan implements automatic differentiation.

To implement HMC, need

$$\begin{split} \nabla_{\theta} \log p(\theta \mid y) &= \nabla_{\theta} \left(\log p(\theta) + \log p(y \mid \theta) - \log p(y) \right) \\ &= \nabla_{\theta} \left(\log p(\theta) + \log p(y \mid \theta) \right). \end{split}$$

Stan implements automatic differentiation.

Autodiff uses the chain rule to propagate derivatives through compositions of "analytical" functions; for some introductions, see [Baydin et al., 2018, Margossian, 2019].

Autodiff for implicit functions

Suppose our likelihood depends on an implicit function g,

$$\log p(y \mid \theta) = f \circ g(\theta).$$

Autodiff for implicit functions

Suppose our likelihood depends on an implicit function g,

$$\log p(y \mid \theta) = f \circ g(\theta).$$

E.g. g solves a differential equation.

$$\dot{g} = h(g, t, \theta).$$

Autodiff for implicit functions

Suppose our likelihood depends on an implicit function g,

$$\log p(y \mid \theta) = f \circ g(\theta).$$

E.g. g solves a differential equation.

$$\dot{g} = h(g, t, \theta).$$

Then

$$\nabla_{\theta} \log p(y \mid \theta) = \frac{\mathrm{d}f}{\mathrm{d}g} \cdot \frac{\mathrm{d}g}{\mathrm{d}\theta}.$$

$$\nabla_{\theta} \log p(y \mid \theta) = \frac{\mathrm{d}f}{\mathrm{d}g} \cdot \frac{\mathrm{d}g}{\mathrm{d}\theta}.$$

 $dg/d\theta$ saves the augmented differential equation,

$$dg/d\theta$$
 saves the augmented differential equation,

 $\frac{\mathrm{d}\dot{g}}{\mathrm{d}\theta} = \frac{\mathrm{d}}{\mathrm{d}\theta}h(g,\theta,t),$

$$\nabla_{\theta} \log p(y \mid \theta) = \frac{\mathrm{d}f}{\mathrm{d}g} \cdot \frac{\mathrm{d}g}{\mathrm{d}\theta}.$$

 $dg/d\theta$ saves the augmented differential equation,

$$dg/d\theta$$
 saves the augmented differential equation,

 $\frac{\mathrm{d}\dot{g}}{\mathrm{d}\theta} = \frac{\mathrm{d}}{\mathrm{d}\theta}h(g,\theta,t),$

$$\nabla_{\theta} \log p(y \mid \theta) = \frac{\mathrm{d}f}{\mathrm{d}g} \cdot \frac{\mathrm{d}g}{\mathrm{d}\theta}.$$

 $dg/d\theta$ saves the augmented differential equation,

$$rac{\mathrm{d}\dot{g}}{\mathrm{d} heta}=rac{\mathrm{d}}{\mathrm{d} heta}h(g, heta,t),$$

If $g \in \mathbb{R}^N$ and $\theta \in \mathbb{R}^K$, need to solve an ODE with N + NK states.

$$\nabla_{\theta} \log p(y \mid \theta) = \frac{\mathrm{d}f}{\mathrm{d}a} \cdot \frac{\mathrm{d}g}{\mathrm{d}\theta}.$$

 $dg/d\theta$ saves the augmented differential equation,

$$\frac{\mathrm{d}\dot{g}}{\mathrm{d}\theta} = \frac{\mathrm{d}}{\mathrm{d}\theta}h(g,\theta,t),$$

If $g \in \mathbb{R}^N$ and $\theta \in \mathbb{R}^K$, need to solve an ODE with N + NK states.

Stan also supports an adjoint method, which is an augmented ODE with 2N + K states solved by $df/dg \cdot dg/d\theta$ (but harder to use!).

$$\nabla_{\theta} \log p(y \mid \theta) = \frac{\mathrm{d}f}{\mathrm{d}g} \cdot \frac{\mathrm{d}g}{\mathrm{d}\theta}.$$

 $dg/d\theta$ saves the augmented differential equation,

$$\frac{\mathrm{d}\dot{g}}{\mathrm{d}\theta} = \frac{\mathrm{d}}{\mathrm{d}\theta}h(g,\theta,t),$$

If $g \in \mathbb{R}^N$ and $\theta \in \mathbb{R}^K$, need to solve an ODE with N+NK states.

Stan also supports an adjoint method, which is an augmented ODE with 2N + K states solved by $df/dg \cdot dg/d\theta$ (but harder to use!).

For a discussion on autodiff for implicit functions, see [Margossian and Betancourt, 2022].

data: variable declaration.

parameter: variable declaration.

data: variable declaration.

transformed data: evaluated once.

parameter: variable declaration.

data: variable declaration.

transformed data: evaluated once.

parameter: variable declaration.

transformed parameter: evaluated and differentiated once per leapfrog step, i.e. multiple times per iteration. model: evaluated and differentiated once per leapfrog step, i.e. multiple times per iteration.

data: variable declaration.

transformed data: evaluated once.

parameter: variable declaration.

transformed parameter: evaluated and differentiated once per leapfrog step, i.e. multiple times per iteration. model: evaluated and differentiated once per leapfrog step, i.e. multiple times per iteration.

generated quantities: evaluated once per iteration during the sampling phase.

VII

Tuning ODEs in a Bayesian Context

It is possible in **Stan** to specify the tuning parameters of the ODE integrator.

It is possible in **Stan** to specify the tuning parameters of the ODE integrator.

- rel_tol or δ_{rel} : the relative tolerance to error.
- abs_tol or δ_{abs} : the absolute tolerance to error.
- max_num_steps: the maximum number of steps before the integrator "gives" up.

 $\hat{\epsilon}$: estimated error.

 $\hat{\epsilon}$: estimated error.

Solve adaptively reduces the step size until

$$\sqrt{\sum_{i}^{N} \frac{1}{N} \frac{\hat{\epsilon}_{i}^{2}}{(\delta_{\text{abs}} + \delta_{\text{rel}} \hat{u}_{i})^{2}}} < 1.$$

 $\hat{\epsilon}$: estimated error.

Solve adaptively reduces the step size until

$$\sqrt{\sum_{i}^{N} \frac{1}{N} \frac{\hat{\epsilon}_{i}^{2}}{(\delta_{\mathrm{abs}} + \delta_{\mathrm{rel}} \hat{u}_{i})^{2}}} < 1.$$

When N=1, this is equivalent to

$$\hat{\epsilon}_1^2 < (\delta_{\mathrm{abs}} + \delta_{\mathrm{rel}} \hat{u}_1)^2$$
.

 $\hat{\epsilon}$: estimated error.

Solve adaptively reduces the step size until

$$\sqrt{\sum_{i}^{N} \frac{1}{N} \frac{\hat{\epsilon}_{i}^{2}}{(\delta_{\text{abs}} + \delta_{\text{rel}} \hat{u}_{i})^{2}}} < 1.$$

When N=1, this is equivalent to

$$\hat{\epsilon}_1^2 < (\delta_{abs} + \delta_{rel}\hat{u}_1)^2.$$

Remark: In Stan we're also setting a tolerance for the augmented ODE system which propagates derivatives.

Exercise: Fit an SIR model and specify tuning parameters for the ODE solvers.

- The default we used was $\delta_{tol} = \delta_{rel} = 10^{-6}$. You may experiment with either stricter or more lenient tolerances.
- Compare the runtime between the default tuning parameter and your choice using fit\$time().
- Compare the returned posterior for β , γ and R_0 .

Can we check if the tolerance is strict enough?

An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models

Juho Timonen¹, Nikolas Siccha¹, Ben Bales², Harri Lähdesmäki¹, and Aki Vehtari¹

¹Department of Computer Science, Aalto University, Finland ²Earth Institute, University of Columbia, New York, USA In practice, MCMC does not target $p(\theta \mid y)$ but a numerical approximation

$$p_{\delta}(\theta \mid y) \propto p_{\delta}(y \mid \theta)p(\theta)$$

In practice, MCMC does not target $p(\theta \mid y)$ but a numerical approximation

$$p_{\delta}(\theta \mid y) \propto p_{\delta}(y \mid \theta)p(\theta)$$

$$\widehat{\mathbb{E}}_{\mathrm{IS}}f(heta) = rac{\sum_{s=1}^S f(heta^{(s)}) r(heta^{(s)})}{\sum_{s=1}^S r(heta^{(s)})},$$

where

To correct for the error, can use IS estimator

 $r(\theta^{(s)}) = \frac{p(y \mid \theta^{(s)})}{n_{\delta}(y \mid \theta^{(s)})}.$

In practice, MCMC does not target $p(\theta \mid y)$ but a numerical approximation

$$p_{\delta}(\theta \mid y) \propto p_{\delta}(y \mid \theta)p(\theta)$$

To correct for the error, can use IS estimator

$$\widehat{\mathbb{E}}_{\mathrm{IS}} f(\theta) = \frac{\sum_{s=1}^{S} f(\theta^{(s)}) r(\theta^{(s)})}{\sum_{s=1}^{S} r(\theta^{(s)})},$$

where

$$r(\theta^{(s)}) = \frac{p(y \mid \theta^{(s)})}{p_{\delta}(y \mid \theta^{(s)})}.$$

Only feasible if

$$p_{\delta}(y \mid \theta^{(s)}) \approx p(y \mid \theta^{(s)}),$$

which we can check with PSIS and \hat{k} .

$$\widehat{\mathbb{E}}_{\mathrm{IS}} f(\theta) = \frac{\sum_{s=1}^{S} f(\theta^{(s)}) r(\theta^{(s)})}{\sum_{s=1}^{S} r(\theta^{(s)})},$$
 where
$$r(\theta^{(s)}) = \frac{p(y \mid \theta^{(s)})}{p_{\delta}(y \mid \theta^{(s)})}.$$

$$p_{\delta}(g \mid b \land \gamma)$$

$$\widehat{\mathbb{E}}_{\mathrm{IS}}f(\theta) = \frac{\sum_{s=1}^{S} f(\theta^{(s)}) r(\theta^{(s)})}{\sum_{s=1}^{S} r(\theta^{(s)})},$$
 where

Problem: we cannot compute
$$p(y \mid \theta^{(s)})$$
.

 $r(\theta^{(s)}) = \frac{p(y \mid \theta^{(s)})}{p_{\delta}(y \mid \theta^{(s)})}.$

Problem: we cannot compute
$$p(y \mid \theta^{(s)})$$
.

Instead we'll use a golden benchmark with
$$\delta^* \ll \delta$$
 and

 $\widehat{\mathbb{E}}_{\mathrm{IS}}f(\theta) = \frac{\sum_{s=1}^{S} f(\theta^{(s)}) r(\theta^{(s)})}{\sum_{s=1}^{S} r(\theta^{(s)})},$

 $r(\theta^{(s)}) = \frac{p(y \mid \theta^{(s)})}{n_s(y \mid \theta^{(s)})}.$

 $r_{\delta,\delta^*}(\theta^{(s)}) = \frac{p_{\delta^*}(y \mid \theta^{(s)})}{n_s(y \mid \theta^{(s)})}.$

$$\widehat{\mathbb{E}}_{\mathrm{IS}}f(\theta) = \frac{\sum_{s=1}^{S} f(\theta^{(s)}) r(\theta^{(s)})}{\sum_{s=1}^{S} r(\theta^{(s)})},$$

where

$$r(\theta^{(s)}) = \frac{p(y \mid \theta^{(s)})}{p_{\delta}(y \mid \theta^{(s)})}.$$

Problem: we cannot compute $p(y \mid \theta^{(s)})$.

Instead we'll use a golden benchmark with $\delta^* \ll \delta$ and

$$r_{\delta,\delta^*}(\theta^{(s)}) = \frac{p_{\delta^*}(y \mid \theta^{(s)})}{p_{\delta}(y \mid \theta^{(s)})}.$$

[Timonen et al., 2023] propose a strategy to find a suitable δ^* . We'll just stick to $\delta^* = 10^{-10}$.

data: variable declaration.

transformed data: evaluated once.

parameter: variable declaration.

transformed parameter: evaluated and differentiated once per leapfrog step, i.e. multiple times per iteration. model: evaluated and differentiated once per leapfrog step, i.e. multiple times per iteration.

generated quantities: evaluated once per iteration during the sampling phase.

Exercise: Check the tolerance of the ODE integrator in the SIR model.

• In generated quantities compute $log_{-ratios} = \sum_{i=1}^{N} log p_{\delta^*}(y_i \mid \theta) - log p_{\delta}(y_i \mid \theta).$

MCMC estimator.

- Do a PSIS fit and check whether \hat{k} has an acceptable value. If applicable compute the IS estimator and compare to
- What are the least strict tolerances with which we still get accurate posterior estimates?

Choices of ODE integrators in Stan

- rk45: Runge-Kutta 4th/5th order. Good place to start.
- bdf: Backward differentiation. Recommended for stiff systems.
- adams: Adams-Moulton solver higher-order than rk45 and useful when a high precision is required for a very smooth solution.
- ckrk: a variant on rk45 for non-stiff and semi-stiff systems. Designed for problems where the solution evolves rapidly, where the derivatives becomes large.

```
For more, see https:
//mc-stan.org/docs/stan-users-guide/ode-solver.html.
```

Case study: Michaelis-Menten pharmacokinetic model [Margossian et al., 2021]

- Which numerical integrator should we use in Stan?
 - \bullet RK4th/5th (non-stiff solver)
 - BDF (stiff solver)

Case study: Michaelis-Menten pharmacokinetic model [Margossian et al., 2021]

- Which numerical integrator should we use in Stan?
 - \bullet RK4th/5th (non-stiff solver)
 - BDF (stiff solver)

Case study: Michaelis-Menten pharmacokinetic model [Margossian et al., 2021]

- Which numerical integrator should we use in Stan?
 - RK4th/5th (non-stiff solver)
 - BDF (stiff solver)

Some ideas:

• Switch ODE during MCMC phases.

	Phase I	Phase II	Phase III	Sampling
RK45	RK45	RK45	RK45	RK45
BDF	BDF	BDF	$_{ m BDF}$	BDF
Early switch	$_{ m BDF}$	RK45	RK45	RK45
Late switch	BDF	BDF	RK45	RK45

Some ideas:

• Switch ODE during MCMC phases.

	Phase I	Phase II	Phase III	Sampling
RK45	RK45	RK45	RK45	RK45
BDF	BDF	BDF	BDF	BDF
Early switch	$_{ m BDF}$	RK45	RK45	RK45
Late switch	$_{ m BDF}$	BDF	RK45	RK45

• Use careful initializations, e.g. with fast approximation of $p(\theta \mid y)$ to bypass difficult regions.

VIII Hierarchical Modeling	

Suppose our data can be split into groups.

- medical measurements are grouped by patients
- sport measurements are grouped by players
- people's voting intention can be grouped by states, age group, etc.

Suppose our data can be split into groups.

- medical measurements are grouped by patients
- sport measurements are grouped by players
- people's voting intention can be grouped by states, age group, etc.

With a hierarchical model, we can:

- model heterogeneity between groups
- estimate how similar groups are to one another.
- estimate "local" parameters using information from the entire population.

Hierarchical model

Example: 8 schools experiment [Gelman et al., 2013, Chapter 5]

How effective are prep programs for a standardized exam?

- y_i : estimated coaching effect for school i, based on student scores and covariate adjustments.
- σ_i : sampling standard deviation.
- θ_i : latent coaching effect for school i.
- μ : population level coaching effect
- τ : population standard deviation.

Example: 8 schools experiment [Gelman et al., 2013, Chapter 5]

How effective are prep programs for a standardized exam?

- y_i : estimated coaching effect for school i, based on student scores and covariate adjustments.
- σ_i : sampling standard deviation.
- θ_i : latent coaching effect for school i.
- μ : population level coaching effect
- τ : population standard deviation.

Generative model:

$$\mu \sim \text{normal}(5,3)$$
 $\tau \sim \text{normal}^+(0,10)$
 $\theta_i \sim \text{normal}(\mu,\tau)$
 $y_i \sim \text{normal}(\theta_i,\sigma_i)$

Exercise: Write and fit the 8 schools model.

- Check the inference, i.e. \widehat{R} and ESS.
- Report any warning messages.
- Record the estimated posterior and .9 coverage for μ , τ and θ_1 .

Divergent transitions

"There were 29 divergent transitions after warmup."

A divergent transition occurs when we fail to accurately compute a Hamiltonian trajectory, i.e. energy conservation is brutally violated.

Demo: Plot divergent transitions amongst MCMC draws. In a hierarchical model, the joint prior $p(\tau, \theta)$ induces a funnel [Neal, 2003, Betancourt and Girolmi, 2015], which induces a high (sometimes non-finite) curvature.

 ${\color{red} \bullet}$ Increase the target acceptance rate of dynamic HMC.

Forces the leapfrog integrator to use a smaller step size. Stan 's default is adapt_delta = 0.8.

Exercise: Increase adapt_delta and report results.

2 Use a non-centered parameterization.

Consider the alternative data generative process,

$$\mu \sim \text{normal}(5,3)$$
 $\tau \sim \text{normal}^+(0,10)$
 $\eta_i \sim \text{normal}(0,1)$
 $\theta_i = \mu + \tau \eta_i$
 $y_i \sim \text{normal}(\theta_i, \sigma_i)$

② Use a non-centered parameterization.

Consider the alternative data generative process,

$$\mu \sim \text{normal}(5,3)$$
 $\tau \sim \text{normal}^+(0,10)$
 $\eta_i \sim \text{normal}(0,1)$
 $\theta_i = \mu + \tau \eta_i$
 $y_i \sim \text{normal}(\theta_i, \sigma_i)$

What structure do we expect from the joint prior $p(\tau, z)$?

② Use a non-centered parameterization.

Consider the alternative data generative process,

$$\mu \sim \text{normal}(5,3)$$
 $\tau \sim \text{normal}^+(0,10)$
 $\eta_i \sim \text{normal}(0,1)$
 $\theta_i = \mu + \tau \eta_i$
 $y_i \sim \text{normal}(\theta_i, \sigma_i)$

What structure do we expect from the joint prior $p(\tau, z)$?

Exercise: Implement a non-centered parameterization of the 8 schools model and report results.

- Marginalize out the local variable θ .
 - \bullet Use MCMC to sample from the marginal posterior,

$$p(\mu, \tau \mid y) \propto p(\mu)p(\tau)p(y \mid \mu, \tau).$$

• Then recover θ by sampling from the conditional

$$\theta \sim p(\theta \mid \mu, \tau, y).$$

- **3** Marginalize out the local variable θ .
 - Use MCMC to sample from the marginal posterior,

$$p(\mu, \tau \mid y) \propto p(\mu)p(\tau)p(y \mid \mu, \tau).$$

• Then recover θ by sampling from the conditional

$$\theta \sim p(\theta \mid \mu, \tau, y).$$

• This strategy works here because the marginal likelihood and the conditional admit analytical expressions.

$$p(y_i \mid \mu, \tau) = \operatorname{normal}\left(\mu, \sqrt{\tau^2 + \sigma_i^2}\right)$$

$$p(\theta_i \mid \mu, \tau, y) = \operatorname{normal}\left(\frac{y_i/\sigma_i^2 + \mu/\tau^2}{1/\sigma_i^2 + 1/\tau^2}, \sqrt{\frac{1}{1/\sigma_i^2 + 1/\tau^2}}\right)$$

- **3** Marginalize out the local variable θ .
 - Use MCMC to sample from the marginal posterior,

$$p(\mu, \tau \mid y) \propto p(\mu)p(\tau)p(y \mid \mu, \tau).$$

• Then recover θ by sampling from the conditional

$$\theta \sim p(\theta \mid \mu, \tau, y).$$

• This strategy works here because the marginal likelihood and the conditional admit analytical expressions.

$$p(y_i \mid \mu, \tau) = \operatorname{normal}\left(\mu, \sqrt{\tau^2 + \sigma_i^2}\right)$$

$$p(\theta_i \mid \mu, \tau, y) = \operatorname{normal}\left(\frac{y_i/\sigma_i^2 + \mu/\tau^2}{1/\sigma_i^2 + 1/\tau^2}, \sqrt{\frac{1}{1/\sigma_i^2 + 1/\tau^2}}\right)$$

Exercise: Write and fit a Stan model that samples from the marginal posterior and use generated quantities to recover draws for θ . Compare your results to previous strategies.

Disease map of Finland [Vanhatalo et al., 2010]

Mortality count due to alcoholism across the country

- The country is split into 911 cells and all cells have the same area.
- In most cells, the population is sparse.

Disease map of Finland [Vanhatalo et al., 2010]

• The death count in cell i is

$$y_i \sim \text{Poisson}\left(y_e^i \exp(\theta_i)\right),$$

where y_e^i is the standardized expected number of deaths, based on covariates, and $\exp(\theta_i)$ is the (relative) risk.

• Moreover $y_e^i \exp(\theta_i)$ is the expected number of deaths.

Disease map of Finland [Vanhatalo et al., 2010]

• The death count in cell i is

$$y_i \sim \text{Poisson}\left(y_e^i \exp(\theta_i)\right),$$

where y_e^i is the standardized expected number of deaths, based on covariates, and $\exp(\theta_i)$ is the (relative) risk.

- Moreover $y_e^i \exp(\theta_i)$ is the expected number of deaths.
- Expect similar risks in neighboring counties,

$$\boldsymbol{\theta} \sim \text{Normal}(0, K(\alpha, \rho))$$
.

• The covariance between θ_i and θ_j is

$$K_{ij} = \alpha^2 \exp\left(-\frac{||x_i - x_j||^2}{2\rho^2}\right),\,$$

where x_i is the 2D location of cell i.

Disease map of Finland [Vanhatalo et al., 2010] Full model:

$$\alpha \sim \text{invGamma}(10, 10)$$

$$\rho \sim \text{invGamma}(2.42, 14.8)$$

$$\boldsymbol{\theta} \sim \operatorname{Normal}(0, K(\alpha, \rho))$$

$$y_i \sim \text{Poisson}\left(y_e^i \exp(\theta_i)\right)$$

Disease map of Finland [Vanhatalo et al., 2010] Full model:

$$\alpha \sim \text{invGamma}(10, 10)$$
 $\rho \sim \text{invGamma}(2.42, 14.8)$
 $\boldsymbol{\theta} \sim \text{Normal}(0, K(\alpha, \rho))$
 $y_i \sim \text{Poisson}(y_e^i \exp(\theta_i))$

Tipp:

• This model admits a non-centered parameterization, with

$$\eta \sim \text{normal}(0, I) ; \; \theta = L\eta,$$

where L is the Cholesky decomposition of K, that is $K = LL^T$ and L is lower-triangular.

• For numerical stability, can add a "jitter" $\epsilon = 10^{-8}$ along the diagonal of K, to make sure eigenvalues are positive.

Exercise: Fit the disease map model.

- For convenience, we only examine 100 cells.
- Make sure there are no divergent transitions.
- Examine \widehat{R} , ESS, and the trace plots for α , ρ and θ_1 .

Tips:

- The type for x is array[n_obs] vector[n_coordinates].
- The following Stan functions may come in handy:
 - $gp_exp_quad_cov(x, alpha, rho)$
 - cholesky_decompose(Sigma)
 - inv_gamma()
 - poisson_log() (but ok to use poisson())

Can we marginalize out θ when $p(y \mid \theta)$ is non-Gaussian?

• Can do a Laplace approximation,

$$\operatorname{normal}(\mu^*, \Sigma^*) \approx p(\boldsymbol{\theta} \mid \boldsymbol{y}, \phi),$$

where μ^* matches the mode of $p(\boldsymbol{\theta} \mid \boldsymbol{y}, \phi)$ and Σ^* its curvature.

- This also gives us an approximation for $p(\mathbf{y} \mid \phi)$.
- This is the driving idea behind the *integrated Laplace* approximation [Rue et al., 2009].

Stan supports a prototype integrated Laplace approximation [Margossian et al., 2020, Margossian et al., 2023].

For this application, integrated Laplace approximation is ~ 10 times faster and does not require adjusting adapt_delta.

- Stan 's integrated Laplace approximation is a prototype.
- Works well for standard likelihoods and general linear models.

- Stan 's integrated Laplace approximation is a prototype.
- Works well for standard likelihoods and general linear models.
- The adjoint differentiated Laplace approximation [Margossian et al., 2020, Margossian, 2023] allows users to specify their own covariance function K and likelihood, rather than picking from a menu of options.
- The underlying autodiff method to compute $\nabla_{\phi} \log p_{\mathcal{G}}(\mathbf{y} \mid \phi)$ scales when ϕ is high-dimensional.
- Ongoing work: diagnostics to check if approximation is reliable.
- For more, see https://htmlpreview.github.io/?https://github.com/charlesm93/StanCon2020/blob/master/notebook-2022/lgm_stan.html

Strategies to deal with the geometry of hierarchical models:

- Increase the target acceptance probability, i.e. reduce the step size of the leap frog integrator.
- Use a non-centered parameterization.
- Marginalize out the local variables.

Strategies to deal with the geometry of hierarchical models:

- Increase the target acceptance probability, i.e. reduce the step size of the leap frog integrator.
- Use a non-centered parameterization.
- Marginalize out the local variables.
- Riemannian HMC: evaluate a dynamic mass matrix based on the local curvature [Girolami et al., 2011].
- Delayed rejection HMC: reduce step size after rejection [Modi et al., 2023].

IX

Torsten

Torsten offers additional built-in functions to write pharmacokinetics/pharmacodynamics (PK/PD) models

Each Torsten function requires users to specify:

- A system of ODEs and a method to solve it.
- An event schedule, following the PREDPP convention from NONMEM

Helpful references:

- User manual: https://metrumresearchgroup.github.io/Torsten/
- Tutorial in CPT: P&SP [Margossian et al., 2022]

Two compartment model with absorption from the gut

Two compartment model with absorption from the gut

$$y'_{
m gut} = -k_a y_{
m gut}$$
 $y'_{
m cent} = k_a y_{
m gut} - \left(\frac{CL}{V_{
m cent}} + \frac{Q}{V_{
m cent}}\right) y_{
m cent} + \frac{Q}{V_{
m peri}} y_{
m peri}$

 $y'_{\text{peri}} = \frac{Q}{V_{\text{cent}}} y_{\text{cent}} - \frac{Q}{V_{\text{peri}}} y_{\text{peri}}$

Two compartment model with a absorption from the gut

Denote $\theta = \{CL, Q, VC, VP, k_a\}$, the ODE parameters. Then

$$y' = f(y, t, \theta)$$

Given an initial condition $y_0 = y(t_0)$, solving the above ODE gives us the *natural evolution* of the system at any given time point.

The event schedule

An event can be a(n):

- Sate changer: an (exterior) intervention that alters the state of the system; for example a bolus dosing or the beginning of an infusion.
- Observation: measurement of a quantity of interest at a certain time.

Example: single patient model

Event schedule:

- Bolus doses with 1200 mg, administered every 12 hours, for a total of 15 doses.
- Many observations for the first, second, and last doses
- Additional observation every 12 hours

The observation are plasma drug concentration measurement.

See data/twoCpt.data.json.

Torsten function

- Returns a matrix[nCmt, nEvent] with the drug mass in each compartment at each event
- Takes in:
 - an ODE to solve, which takes in theta.
 - an event schedule
 - parameters for the ODEs
 - (optional) tuning parameters for ODEs

System function

Declare system in the functions block.

```
vector system(real time,
              vector y,
              real[] theta,
              real[] x_r,
              int[] x_i) {
 array[3] real dydt;
real CL = theta[1];
real Q = theta[2];
return dydt;
```

Remark: Torsten uses an older API for the ODE integrator, meaning f must follow a stricter signature (although not a less flexible one).

Prior:

$$CL \sim \log Normal(\log 10, 0.25)$$
 $Q \sim \log Normal(\log 15, 0.5)$
 $VC \sim \log Normal(\log 35, 0.25)$
 $VP \sim \log Normal(\log 105, 0.5)$

$$VP \sim \text{logNormal(log 36, 0.26)}$$

 $ka \sim \text{logNormal(log 2.5, 1)}$
 $\sigma \sim \text{Normal}^+(0, 1)$

Likelihood:

$$cObs \sim \operatorname{logNormal}\left(\operatorname{log}\left(\frac{y_2}{VC}\right), \sigma\right)$$

Exercice: write, fit, and criticize the two compartment model for a single patient.

- There's a bit of bookkeeping involved, so we'll write the data block together.
- As always, check the inference: \widehat{R} , ESS, and plots.
- Perform posterior predictive checks: do the simulations capture the characteristics in the data that we care about?
- Specify the control parameters of the ODE integrator and implement a PSIS diagnostic to check that the solver is sufficiently precise.

Torsten supports alternatives to numerical integrators.

• It possible to combine multiple methods, e.g. solve the PK analytically and the PD numerically [Margossian and Gillespie, 2017].

Torsten function

- Returns a matrix[nCmt, nEvent] with the drug mass in each compartment at each event
- Takes in:
 - an event schedule
 - parameters for the ODEs

Analytical solutions are also available for the one compartment model.

• This time $\theta = (k_a, CL, V_{\text{cent}})$.

Exercise: Fit the one and two compartment models using analytical solutions.

- Compare the posterior predictive checks obtain with each
- model.

• Estimate the loo-CV predictive score of both models.

X

Population models

Usuaully we have multiple patients in our clinical trial.

With a hierarchical model, we can:

- estimate parameters for each patient,
- estimate population parameters and simulate new patients.

Population two compartment model

For the i^{th} patient, estimate

$$\theta_i = (CL_i, Q_i, VC_i, VP_i, k_{a_i})$$

Hierarchical prior:

$$\log \theta_i \sim \text{Normal}(\log \theta_{\text{pop}}, \Omega)$$

$$\Omega = \left(egin{array}{ccccc} \omega_1 & 0 & 0 & 0 & 0 \ 0 & \omega_2 & 0 & 0 & 0 \ 0 & 0 & \omega_3 & 0 & 0 \ 0 & 0 & 0 & \omega_4 & 0 \ 0 & 0 & 0 & 0 & \omega_5 \end{array}
ight)$$

Population two compartment model

Priors:

$$CL_{\text{pop}} \sim \text{logNormal}(\log(10), 0.25)$$
 $Q_{\text{pop}} \sim \text{logNormal}(\log(15), 0.5)$
 $VC_{\text{pop}} \sim \text{logNormal}(\log(35), 0.25)$
 $VP_{\text{pop}} \sim \text{logNormal}(\log(105), 0.5)$
 $ka_{\text{pop}} \sim \text{logNormal}(\log(2.5), 0.25)$
 $\sigma \sim \text{normal}^+(0, 1)$
 $\omega_j \sim \text{normal}^+(0, 0.2)$

Likelihood:

cObs
$$\sim \text{normal}\left(\log\left(\frac{y_2}{VC}\right), \sigma\right)$$

Helpful bookkeeping

We now need to define parameters for each patient:

real theta[nSubjects, nTheta];

We sequentially compute the concentration for each patient:

• for (j in 1:nSubjects) {...}

The start and end variables tell us which events belong to each patient. For the j^{th} patient, we need:

- time[start[j]:end[j]], amt[start[j]:end[j]], ...
- theta[j,]

Helpful bookkeeping

We now need to define parameters for each patient:

real theta[nSubjects, nTheta];

We sequentially compute the concentration for each patient:

• for (j in 1:nSubjects) {...}

The start and end variables tell us which events belong to each patient. For the j^{th} patient, we need:

- time[start[j]:end[j]], amt[start[j]:end[j]], ...
- theta[j,]
- Such a for loop can be parallelized.

Exercise: Build, fit, and criticize a hierarchical two compartment model.

- Make sure the inference is reliable. There should be no divergent transitions, \hat{R} should be close to 1 for all variables of interest, and the ESS sufficiently large.
- Perform posterior predictive checks:
 - Simulate data for existing patients.
 - Simulate data for new patients, drawn from the population distribution.

Not every operation in **Stan** needs to be computed sequentially.

When there is conditional independence,

$$\log p(\mathbf{y} \mid \theta)$$

$$= \sum_{n=1}^{N} \log p(y_n \mid \theta)$$

$$= \left(\sum_{n=1}^{I} \log p(y_n \mid \theta)\right) + \left(\sum_{n=I+1}^{J} \log p(y_n \mid \theta)\right) + \cdots$$

and each sub-sum can be computed in parallel.

Can use the function

reduce_sum(F f, array[] T x, int grain_size, ...)

Can use the function

```
reduce_sum(F f, array[] T x, int grain_size, ...)
```

• f computes a partial sum, given a subset of x.

Each thread may compute more than one term in the sum.

Can use the function

reduce_sum(F f, array[] T x, int grain_size, ...)

- f computes a partial sum, given a subset of x.

 Each thread may compute more than one term in the sum.
- grain_size is the recommended number of terms in the sum computed on each thread.

Can use the function

reduce_sum(F f, array[] T x, int grain_size, ...)

- f computes a partial sum, given a subset of x.

 Each thread may compute more than one term in the sum.
- grain_size is the recommended number of terms in the sum computed on each thread.
- · · · additional arguments passed to all subsums.

• The partial sum has the following signature

```
f (array[] int x,
  int start_subject, int end_subject, ...)
```

- The partial sum has the following signature
- f (array[] int x,
- int start_subject, int end_subject, ...)

 We may pick w to be the index of the subject
- We may pick x to be the index of the subject,
 x = (1, 2, 3, 4, ..., n_subject)
- Then start_subject indexes the first subject and end_subject the last subject in the partial sum.

- The partial sum has the following signature
- f (array[] int x,
- int start_subject, int end_subject, ...)We may pick x to be the index of the subject,
- $x = (1, 2, 3, 4, \dots, n_{subject})$
- Then start_subject indexes the first subject and end_subject the last subject in the partial sum.
- For more guidance, see https://mc-stan.org/docs/stan-users-guide/reduce-sum.html.

Need to change our R script to enable multi-threading per chain:

Exercise: Write the two compartment model using reduce_sum to parallelize the solving of the ODE and the evaluation of the log likelihood across patients.

- Make sure your posterior estimate is consistent with the previous model.
- Try running 1, 2, 3, 4+ threads per chain and examine the run time for a single chain.

Torsten supports functions to do solve ODEs across patients using multiple threads,

pmx_solve_ode_group_*

 See https://metrumresearchgroup.github.io/Torsten/ function/ode-group-integ/

$\begin{array}{c} {\rm XI} \\ {\rm Concluding\ Remarks} \end{array}$

Where does Stan fit in the Bayesian modeler's toolkit?

Historical contribution:

- Stan was born around 2012.
- First intended as a well programmed version of BUGS and JAGS.

Where does Stan fit in the Bayesian modeler's toolkit?

Historical contribution:

- Stan was born around 2012.
- First intended as a well programmed version of BUGS and JAGS.

Several algorithms were developed as part of **Stan** 's development:

- Adaptive Hamiltonian Monte Carlo [Hoffman and Gelman, 2014, Betancourt, 2017]
- ADVI: a black box variational inference [Kucukelbir et al., 2017]
- PathFinder: an improved variational inference [Zhang et al., 2022].
- Delayed rejection HMC [Modi et al., 2023]
- Adjoint-differentiated Laplace approximation [Margossian et al., 2020]

• A flexible and expressive language, with (in my view) the best user interface amongst probabilistic programming languages for specifying a model.

- A flexible and expressive language, with (in my view) the best user interface amongst probabilistic programming languages for specifying a model.
- Algorithms that are efficient for full Bayesian inference, and that warn you when they fail.
- Many automatically deployed diagnostic tools.

- A flexible and expressive language, with (in my view) the best user interface amongst probabilistic programming languages for specifying a model.
- Algorithms that are efficient for full Bayesian inference, and that warn you when they fail.
- Many automatically deployed diagnostic tools.
- Reasonable support for parallelization across cores and GPUs (other languages are better in some settings).

- A flexible and expressive language, with (in my view) the best user interface amongst probabilistic programming languages for specifying a model.
- Algorithms that are efficient for full Bayesian inference, and that warn you when they fail.
- Many automatically deployed diagnostic tools.
- Reasonable support for parallelization across cores and GPUs (other languages are better in some settings).
- It's free and open-source.

Our goals:

- More expressive features.
- Improved computation for large systems of ODEs.
- Algorithms for fast approximate Bayesian inference
- BridgeStan: a package that makes it easy for users to specify their own inference algorithm and run them on Stan models (https://github.com/roualdes/bridgestan).

Stan by the people, for the people

- Stan is open source: https://github.com/stan-dev
- So is Torsten :
 https://github.com/metrumresearchgroup/Torsten
- Contributing new functions to Stan:
 https://github.com/stan-dev/stan/wiki/
 Contributing-New-Functions-to-Stan

Other probabilistic programming languages out there!

- PyMC:
 - Written in Python
- Turing
 - Written in Julia
 - Very clean autodiff and good support for ODE solvers.
- TensorFlow Probability
 - Interfaces with JAX and designed to work on GPUs.
 - Hackable inference algorithms.
 - Supports GPU-friendly samplers.
- PyTorch
 - Designed to work on GPUs.
 - Support for neural networks and optimization algorithms.

References

[Baydin et al., 2018] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2018).

Automatic differentiation in machine learning: a survey.

[Betancourt, 2017] Betancourt, M. (2017).

A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434v1.

[Betancourt and Girolmi, 2015] Betancourt, M. and Girolmi, M. (2015). Hamiltonian Monte Carlo for hierarchical models.

Current trends in Bayesian methodology with applications, 79

[Gelman et al., 2013] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013).
Revession Pata Analysis

Bayesian Data Analysis.

Chapman & Hall.

[Gelman et al., 1997] Gelman, A., Gilks, W. R., and Roberts, G. O. (1997).
Weak convergence and optimal scaling of random walk Metropolis algorithms.
Annals of Applied Probability, 7(1):110–120.

References II

- [Girolami et al., 2011] Girolami, M., Calderhead, B., and Chin, S. A. (2011).
 Riemann manifold Langevin and Hamiltonian Monte Carlo methods.
 Journal of the Royal Statistical Society, Series B, pages 123 214.
- [Grinsztajn et al., 2021] Grinsztajn, L., Semenova, E., Margossian, C. C., and Riou, J. (2021).

Bayesian workflow for disease transmission modeling in stan. $Statistics\ in\ Medicine.$

- [Hoffman and Gelman, 2014] Hoffman, M. D. and Gelman, A. (2014).
 - The No-U-Turn Sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo.

Journal of Machine Learning Research, pages 1593-1623.

[Kucukelbir et al., 2017] Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. (2017).

Automatic differentiation variational inference.

Journal of machine learning research, 18:1 – 45

[Margossian, 2019] Margossian, C. C. (2019).

A review of automatic differentiation and its efficient implementation.

WIREs Data Mining and Knowledge

References III

- [Margossian, 2023] Margossian, C. C. (2023).
 - General adjoint-differentiated Laplace approximation.
 - arXiv:2306.14976.
- [Margossian and Betancourt, 2022] Margossian, C. C. and Betancourt, M. (2022).
 - Efficient automatic differentiation of implicit functions.
- [Margossian and Gillespie, 2017] Margossian, C. C. and Gillespie, W. R. (2017).
 - Gaining efficiency by combining analytical and numerical methods to solve ODEs: Implementation in Stan and application to Bayesian PK/PD.
 - American Conference on Pharmacometrics
- [Margossian et al., 2023] Margossian, C. C., Hoffman, M. D., Sountsov, P., Riou-Durand, L., Vehtari, A., and Gelman, A. (2023).
 - Nested \widehat{R} : Assessing the convergence of Markov chain Monte Carlo when running many short chains.
 - Preprint. arXiv:2110.13017

References IV

- [Margossian et al., 2020] Margossian, C. C., Vehtari, A., Simpson, D., and Agrawal, R. (2020).
 - Hamiltonian Monte Carlo using an adjoint-differentiated Laplace approximation: Bayesian inference for latent Gaussian models and beyond.

 Neural Information Processing Systems
- [Margossian et al., 2021] Margossian, C. C., Zhang, L., Weber, S., and Gelman, A. (2021).
 - Solving ODEs in a Bayesian context: challenges and opportunities. *Population Approach Group in Europe.*
- [Margossian et al., 2022] Margossian, C. C., Zhang, Y., and Gillespie, W. R. (2022).
 - Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, part I.
 - CPT: Pharmacometrics & Systems Pharmacology, 11:1151 1169
- [Metropolis et al., 1953] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953).
 - Equations of state calculations by fast computing machines.

References V

[Modi et al., 2023] Modi, C., Barnett, A., and Carpenter, B. (2023). Delayed rejection Hamiltonian Monte Carlo for sampling multiscale distributions.

[Moins et al., 2022] Moins, T., Arbel, J., Dutfoy, A., and Girard, S. (2022).

On the use of a local \widehat{R} to improve MCMC convergence diagnostic.

[Neal, 2003] Neal, R. M

[Neal, 2003] Neal, R. M. (2003). Slice sampling.

[Roberts and Rosenthal, 1998] Roberts, G. O. and Rosenthal, J. S. (1998).
Optimal scaling of discrete approximations to Langevin diffusions.
Journal of the Royal Statistical Society, Series B, 60:255–268.

[Rue et al., 2009] Rue, H., Martino, S., and Chopin, N. (2009).

Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations.

Journal of Royal Statistics B, 71:319 – 392

References VI

waic.

- [Timonen et al., 2023] Timonen, J., Siccha, N., Bales, B., Lähdesmäki, H., and Vehtari, A. (2023).
 - An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models. Stat
- [Vanhatalo et al., 2010] Vanhatalo, J., Pietiläinen, V., and Vehtari, A. (2010). Approximate inference for disease mapping with sparse Gaussian processes. Statistics in Medicine, 29(15):1580–1607.
- [Vehtari et al., 2017] Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out cross-validation and
 - Statistics and Computing, 27:1413-1432
- [Vehtari et al., 2021] Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Bürkner, P.-C. (2021).
 - Rank-normalization, folding, and localization: An improved \widehat{R} for assessing convergence of MCMC (with discussion).
 - Bayesian Analysis, 16:667–718.

References VII

[Zhang et al., 2022] Zhang, L., Carpenter, B., Gelman, A., and Vehtari, A. (2022).

Pathfinder: Parallel quasi-Newton variational inference.

Journal of Machine Learning Research, 23(306):1–49.