Econometría Aplicada con STATA Practica 2

Edinson Tolentino MSc Economics

email: edinson.tolentino@upn.pe

Twitter: @edutoleraymondi

18 de agosto de 2022

Contenido

Introducción

Data y Variables

Pregunta 1

Pregunta 2

Pregunta 3

 La propuesta del presente ejercicio es para examinar los drivers o determinantes de variables demograficas (edad, genero del empresario) y caracteristicas de la empresa sobre acceder a un crédito

- La propuesta del presente ejercicio es para examinar los drivers o determinantes de variables demograficas (edad, genero del empresario) y caracteristicas de la empresa sobre acceder a un crédito
- Las variables economicas (o oferta laboral) relacionada hacia las caracteristicas individuales empleo principal (por ejemplo, salarios del empleo y princiaples horas de trabajo). Asimismo, drivers sobre la decision de realizar un negocio (decisiones de empresa)

- La propuesta del presente ejercicio es para examinar los drivers o determinantes de variables demograficas (edad, genero del empresario) y caracteristicas de la empresa sobre acceder a un crédito
- Las variables economicas (o oferta laboral) relacionada hacia las caracteristicas individuales empleo principal (por ejemplo, salarios del empleo y princiaples horas de trabajo). Asimismo, drivers sobre la decision de realizar un negocio (decisiones de empresa)
- El presente analisis buscará analizar los determinantes o drivers para que una empresa pueda acceder al credito y realizar su negocio.

| EDÚCATE PERÚ | CONSULTORES

- La propuesta del presente ejercicio es para examinar los drivers o determinantes de variables demograficas (edad, genero del empresario) y caracteristicas de la empresa sobre acceder a un crédito
- Las variables economicas (o oferta laboral) relacionada hacia las caracteristicas individuales empleo principal (por ejemplo, salarios del empleo y princiaples horas de trabajo). Asimismo, drivers sobre la decision de realizar un negocio (decisiones de empresa)
- El presente analisis buscará analizar los determinantes o drivers para que una empresa pueda acceder al credito y realizar su negocio.
- En otras palabras, examinaremos los factores que determinan el grado de participación en el acceso al crédito de una empresa (Micro o Pequeña) para realizar un negocio.

Descripción de Información

- La información que se utilizará es proveniente de la base de datos de la Encuesta Nacional de Empresas (ENE). Se procesa la base de datos del modulos correspondiente a las Micro y Pequeñas empresas.
- Se analizará los determinantes o drivers para que una Micro y Pequeña empresa que accede a un credito para poder iniciar sus negocios.

Cuadro: Descripción de variables

Variables	Descripción
rcredito In(prod) rlima rmujer redad	== 1 , si la empresa acceder credito Logaritmo productividad (Soles) ==1, si la empresa se encuentra en lima ==1, mujer edad del propietario años de edad

Datos y Variables

Cuadro: Estadisticas descriptivas

	Empresas	Promedio	Mediana	Min.	Max.	Std
==1 empresas accede credito	7573	0.39	0.00	0.00	1.00	0
rmujer	7573	0.29	0.00	0.00	1.00	0
==1, empresa en Lima	7573	0.16	0.00	0.00	1.00	0
Log-productividad	7573	10.21	10.17	4.93	15.41	1
edad del owners	7573	48.39	47.00	20.00	93.00	12

Fuente: ENE - 2015. Elaboracion: Autor

- Alrededor de 39% de las empresas en la muestra accedieron a un credito para inciar su negocio.
- La participación de la mujer en como propietario es solo un 29 % entre las empresas Micro y Pequeñas. Asimismo, la edad promedio de los propietarios es de 48 años
- ▶ El 16 % de las empresas se encuentra en la region Lima.

► Se tiene un mayor detalle sobre la informacion de los drivers sobre el rol del credito en las empresas (Beck, T., Demirguc-Kunt, A., 2006) Small and medium-size enterprises: Access to finance as a growth constraint

- Se tiene un mayor detalle sobre la informacion de los drivers sobre el rol del credito en las empresas (Beck, T., Demirguc-Kunt, A., 2006) Small and medium-size enterprises: Access to finance as a growth constraint
- Se propone la siguiente especificación :

$$prob\left[rcredito_{i}=1\right]=\Phi\left(lpha_{0}+lpha_{1}rmujer_{i}+lpha_{2}rlima_{i}+lpha_{3}lnrprod_{i}+lpha_{4}redad
ight)$$
 (1)

▶ Donde $i=1,2,\cdots n$ y $\Phi(ullet)$ denota la función de distribución acumulada para el operador de una normal estandar

- Se tiene un mayor detalle sobre la informacion de los drivers sobre el rol del credito en las empresas (Beck, T., Demirguc-Kunt, A., 2006) Small and medium-size enterprises: Access to finance as a growth constraint
- Se propone la siguiente especificación :

$$prob\left[rcredito_{i}=1\right]=\Phi\left(lpha_{0}+lpha_{1}rmujer_{i}+lpha_{2}rlima_{i}+lpha_{3}lnrprod_{i}+lpha_{4}redad
ight)$$
 (1)

- ▶ Donde $i=1,2,\cdots n$ y $\Phi(ullet)$ denota la función de distribución acumulada para el operador de una normal estandar
- Ello implica una un modelo de regresión probit dado al operador CDF especifico

1 Estime el modelo de la ecuación (1) . Interprete precisamente los estimadores de maxima verosimilitud (maximum likelihood) para α_1 y α_3 para este caso.

Cuadro: Modelo No lineal

	OLS	5	Prob	it
main				
rmujer	0.026**	(0.01)	0.068**	(0.03)
==1, empresa en Lima	-0.156***	(0.02)	-0.432***	(0.04)
Log-productividad	0.014***	(0.01)	0.036**	(0.01)
edad del owners	-0.003***	(0.00)	-0.007***	(0.00)
Constant	0.398***	(0.06)	-0.252	(0.16)
Observaciones	7573		7573	
Log (L)	-5243.3		-4996.8	

Errores estandar en parentesis ()

Fuente: ENE - 2015. Elaboracion: Autor

Cuadro: Modelo No lineal

	Probit
==1 empresas accede credito	
rmujer	0.068**
	(0.03)
==1, empresa en Lima	-0.432***
	(0.04)
Log-productividad	0.036**
	(0.01)
edad del owners	-0.007***
	(0.00)
Constant	-0.252
	(0.16)
Observaciones	7573
Log (L)	-4996.8

Errores estandar en parentesis () Fuente: ENE - 2015.

Elaboracion: Autor

| EDÚCATE PERÚ | CONSULTORES

Pregunta 1

Cuadro: Modelo No lineal

	Probit
==1 empresas accede credito	
rmujer	0.068**
	(0.03)
==1, empresa en Lima	-0.432***
	(0.04)
Log-productividad	0.036**
	(0.01)
edad del owners	-0.007***
	(0.00)
Constant	-0.252
	(0.16)
Observaciones	7573
Log (L)	-4996.8

Errores estandar en parentesis () Fuente: ENE - 2015. Flaboracion: Autor Provea una interpretación para los estimadores α_1 (variable rmujer) y α_3 (correspondiente logaritmo de productividad).

Cuadro: Modelo No lineal

	Probit
==1 empresas accede credito	
rmujer	0.068**
	(0.03)
==1, empresa en Lima	-0.432***
•	(0.04)
Log-productividad	0.036**
Log-productividad	(0.01)
	(0.01)
edad del owners	-0.007***
	(0.00)
Constant	-0.252
	(0.16)
Observaciones	7573
Log (L)	-4996.8

Errores estandar en parentesis () Fuente: ENE - 2015. Flaboracion: Autor

- Provea una interpretación para los estimadores α₁ (variable rmujer) y α₃ (correspondiente logaritmo de productividad).
- Si es una mujer aumenta el indice estadarizado de probit por parte de una empresa para poder exportar en 0.068 desviaciones estandar respecto a los hombres , en promedio y manteniendo todo lo demas constante

Cuadro: Modelo No lineal

	Probit
==1 empresas accede credito	
rmujer	0.068**
	(0.03)
==1, empresa en Lima	-0.432***
,	(0.04)
Log-productividad	0.036**
	(0.01)
edad del owners	-0.007***
	(0.00)
Constant	-0.252
	(0.16)
Observaciones	7573
Log (L)	-4996.8

Errores estandar en parentesis () Fuente: ENE - 2015. Flaboracion: Autor

- Provea una interpretación para los estimadores α₁ (variable rmujer) y α₃ (correspondiente logaritmo de productividad).
- Si es una mujer aumenta el indice estadarizado de probit por parte de una empresa para poder exportar en 0.068 desviaciones estandar respecto a los hombres, en promedio y manteniendo todo lo demas constante
- ► Si se incrementa un incremento de 10 % en la productividad mensual , aumenta el indice estandarizado probit para realizar una exportación en 0.003 desviaciones estandar, en promedio y manteniendo todo lo demas constante

▶ El indice estandarizado de probit (z) es espresado como:

$$z_i = \alpha_0 + \alpha_1 rmujer_i + \alpha_2 rlima_i + \alpha_3 lnrprod_i + \alpha_4 redad_i$$

Donde:

$$\frac{\partial z}{\partial Inrprod} = \hat{\alpha}_3 = 0.035$$

$$\partial ln(rprod) = \frac{\partial rprod}{rprod}$$

- ► En otras palabras, ∂In(rprod) es el cambio proporcional en la productividad mensual
- ightharpoonup Un incremento de $10\,\%$ en la productividad mensual es expresado como una proporción de $0.10\,$

▶ El indice estandarizado de probit (z) es espresado como:

$$z_i = \alpha_0 + \alpha_1 rmujer_i + \alpha_2 rlima_i + \alpha_3 lnrprod_i + \alpha_4 redad_i$$

Donde:

$$\frac{\partial z}{\partial Inrprod} = \hat{\alpha}_3 = 0.035$$

$$\partial ln(rprod) = \frac{\partial rprod}{rprod}$$

- ▶ En otras palabras, $\partial ln(rprod)$ es el cambio proporcional en la productividad mensual
- ▶ Un incremento de 10 % en la productividad mensual es expresado como una proporción de 0.10
- ▶ Entonces, $\partial ln(rprod) = 0.10$

$$\partial z = 0.0358 \times \partial ln(rprod)$$

$$\partial z = 0.0358 \times 0.10 = 0.00358$$

2 Usando el comando margins calcule los efectos de impacto o marginales para estas variables sobre la probabilidad para que una empresas pueda acceder a un credito en su negocio.

Cuadro: Efectos Marginales

	Marginal Effect	
rmujer	0.026**	(0.01)
==1, empresa en Lima	-0.163***	(0.02)
Log-productividad	0.014**	(0.01)
edad del owners	-0.003***	(0.00)
Observations	7573	

Errores estandar en parentesis.

Fuente: ENE - 2015. Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

Cuadro: Efectos Marginales

	Marginal Effect	
rmujer	0.026**	(0.01)
==1, empresa en Lima	-0.163***	(0.02)
Log-productividad	0.014**	(0.01)
edad del owners	-0.003***	(0.00)
Observations	7573	

Errores estandar en parentesis.

Fuente: ENE - 2015. Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

 Las variables rmujer y rsmall son variables de caracteristicas del propietario y de la empresa, las cuales son variables dummies.

| EDÚCATE PERÚ | CONSULTORES

Pregunta 2

Cuadro: Efectos Marginales

	Marginal Effect	
rmujer	0.026**	(0.01)
==1, empresa en Lima	-0.163***	(0.02)
Log-productividad	0.014**	(0.01)
edad del owners	-0.003***	(0.00)
Observations	7573	

Errores estandar en parentesis.

Fuente: ENE - 2015. Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

- Las variables rmujer y rsmall son variables de caracteristicas del propietario y de la empresa, las cuales son variables dummies.
- El efecto estimado sobre estas variables dummies son conocidos efecto impacto

Cuadro: Efectos Marginales

	Marginal Effect	
rmujer	0.026**	(0.01)
==1, empresa en Lima	-0.163***	(0.02)
Log-productividad	0.014**	(0.01)
edad del owners	-0.003***	(0.00)
Observations	7572	

Errores estandar en parentesis.

Fuente: FNF - 2015 Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

- Las variables rmujer y rsmall son variables de características del propietario y de la empresa, las cuales son variables dummies
- El efecto estimado sobre estas variables dummies son conocidos efecto impacto
- ▶ El efecto que se observa sugiere que si el dueño de la empresa es mujer, en promedio y ceteris peribus, aumenta la probabilidad de acceder a un credito en 2.58 puntos porcentuales

| EDÚCATE PERÚ | CONSULTORES

Pregunta 2

Cuadro: Efectos Marginales

	Marginal Effect	
rmujer	0.026**	(0.01)
==1, empresa en Lima	-0.163***	(0.02)
Log-productividad	0.014**	(0.01)
edad del owners	-0.003***	(0.00)
Observations	7573	

Errores estandar en parentesis.

Fuente: ENE - 2015. Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

- Las variables rmujer y rsmall son variables de caracteristicas del propietario y de la empresa, las cuales son variables dummies.
- El efecto estimado sobre estas variables dummies son conocidos efecto impacto
- El efecto que se observa sugiere que si el dueño de la empresa es mujer, en promedio y ceteris peribus, aumenta la probabilidad de acceder a un credito en 2.58 puntos porcentuales
- El efecto de la dummy rlima estimado sugiere que si la empresa se encuentra en lima, en promedio y ceteris peribus, se reduce la probabilidad de acceder a un credito en 16.3 puntos porcentuales.

3 El indice estandarizado de probit es calculado en este caso para un valor de 1.96 considerando las características promedio. ¿Como interpretar dicho resultado?

 Utilizaremos la información del modelo probit (coeficiente) y los resultados del efetos marginal para corroborar.

- Utilizaremos la información del modelo probit (coeficiente) y los resultados del efetos marginal para corroborar.
- Calcule el efecto marginal para In(rprod) sobre la probabilidad para que una empresa pueda exportar

- Utilizaremos la información del modelo probit (coeficiente) y los resultados del efetos marginal para corroborar.
- Calcule el efecto marginal para In(rprod) sobre la probabilidad para que una empresa pueda exportar
- En general , la formula para el efecto marginal de una kth variable sobre la probabilidad de exportar para el modelo probit esta dado por:

- Utilizaremos la información del modelo probit (coeficiente) y los resultados del efetos marginal para corroborar.
- Calcule el efecto marginal para In(rprod) sobre la probabilidad para que una empresa pueda exportar
- En general , la formula para el efecto marginal de una kth variable sobre la probabilidad de exportar para el modelo probit esta dado por:

$$\frac{\partial Prob(second = 1)}{\partial X_k} = \phi(z)x\beta_k$$

- Utilizaremos la información del modelo probit (coeficiente) y los resultados del efetos marginal para corroborar.
- Calcule el efecto marginal para In(rprod) sobre la probabilidad para que una empresa pueda exportar
- En general , la formula para el efecto marginal de una kth variable sobre la probabilidad de exportar para el modelo probit esta dado por:

$$\frac{\partial Prob(second = 1)}{\partial X_k} = \phi(z) \times \beta_k$$

▶ Donde β_k es el coeficiente del modelo probit correspondiente para la X_k variable.

• Se conoce el valor de β_k en este caso

- Se conoce el valor de β_k en este caso
- ▶ Según el modelo del probit estimado para $In((\mathit{rprod})) = 0.0358$

- Se conoce el valor de β_k en este caso
- ▶ Según el modelo del probit estimado para In((rprod)) = 0.0358
- Nosotros tambien conocimos que el valor de z usando la muestra de la data es 0.33

- Se conoce el valor de β_k en este caso
- ▶ Según el modelo del probit estimado para In((rprod)) = 0.0358
- Nosotros tambien conocimos que el valor de z usando la muestra de la data es 0.33
- ▶ Nosotros evaluamos la curva normal estandar para este valor en z

Pregunta 3

- Se conoce el valor de β_k en este caso
- ▶ Según el modelo del probit estimado para In((rprod)) = 0.0358
- Nosotros tambien conocimos que el valor de z usando la muestra de la data es 0.33
- ▶ Nosotros evaluamos la curva normal estandar para este valor en z
- ▶ En otras palabras, nosotros calculamos $\phi(0.33)$

¿Cómo procesamos y analizamos esto?

 $\phi(0.33)$

Pregunta 3

- Se conoce el valor de β_k en este caso
- ▶ Según el modelo del probit estimado para In((rprod)) = 0.0358
- Nosotros tambien conocimos que el valor de z usando la muestra de la data es 0.33
- ▶ Nosotros evaluamos la curva normal estandar para este valor en z
- En otras palabras, nosotros calculamos $\phi(0.33)$

¿Cómo procesamos y analizamos esto?

$$\phi(0.33)$$

 Calcumamos la pdf de la table conteniendo las coordenadas de la distribución normal estandar

Example

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.3989	.3989	.3989	.3988	.3986	.3984	.3982	.3980	.3977	.3973
.1	.3970	.3965	.3961	.3956	.3951	.3945	.3939	.3932	.3925	.3918
.2	.3910	.3902	.3894	.3885	.3876	.3867	.3857	.3847	.3836	.3825
.3	.3814	.3802	.3790	.3778	.3765	.3752	.3739	.3725	.3712	.3697
.4	.3683	.3668	.3653	.3637	.3621	.3605	.3589	.3572	.3555	.3538
.5 .6 .7 .8	.3521 .3332 .3123 .2897 .2661	.3503 .3312 .3101 .2874 .2637	.3485 .3292 .3079 .2850 .2613	.3467 .3271 .3056 .2827 .2589	.3448 .3251 .3034 .2803 .2565	.3429 .3230 .3011 .2780 .2541	.3410 .3209 .2989 .2756 .2516	.3391 .3187 .2966 .2732 .2492	.3372 .3166 .2943 .2709 .2468	.3352 .3144 .2920 .2685 .2444
1.0	.2420	2396	.2371	.2347	.2323	.2299	.2275	.2251	.2227	.2203
1.1	.2179	.2155	.2131	.2107	.2083	.2059	.2036	.2012	.1989	.1965
1.2	.1942	.1919	.1895	.1872	.1849	.1826	.1804	.1781	.1758	.1736
1.3	.1714	.1691	.1669	.1647	.1626	.1604	.1582	.1561	.1539	.1518
1.4	.1497	.1476	.1456	.1435	.1415	.1394	.1374	.1354	.1334	.1315
1.5	.1295	.1276	.1257	.1238	.1219	.1200	.1182	.1163	.1145	.1127
1.6	.1109	.1092	.1074	.1057	.1040	.1023	.1006	.0989	.0973	.0957
1.7	.0940	.0925	.0909	.0893	.0878	.0863	.0848	.0833	.0818	.0804
1.8	.0790	.0775	.0761	.0748	.0734	.0721	.0707	.0694	.0681	.0669
1.9	.0656	.0644	.0632	.0620	.0608	.0596	.0584	.0573	.0562	.0551

Pregunta 3

ullet Por tanto, calculamos $\phi(0.33)=$ 0.378 usando la tabla

ightharpoonup Por tanto, calculamos $\phi(0.33)=0.378$ usando la tabla

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{ln}(\textit{rprod})} = \phi(\textit{z}) \textit{x} \beta_{\textit{ln}(\textit{rprod})}$$

Pregunta 3

lacktriangle Por tanto, calculamos $\phi(0.33)=$ 0.378 usando la tabla

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{ln}(\textit{rprod})} = \phi(\textit{z}) \textit{x} \beta_{\textit{ln}(\textit{rprod})}$$

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{Inypm}} = \phi(0.33) \times \beta_{\textit{In}(\textit{rprod})}$$

lacktriangle Por tanto, calculamos $\phi(0.33)=$ 0.378 usando la tabla

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{ln}(\textit{rprod})} = \phi(\textit{z}) \textit{x} \beta_{\textit{ln}(\textit{rprod})}$$

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{Inypm}} = \phi(0.33) x \beta_{\textit{In}(\textit{rprod})}$$

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{Inypm}} = \phi(0.33) \times \beta_{\textit{In}(\textit{rprod})}$$

Pregunta 3

lacktriangle Por tanto, calculamos $\phi(0.33)=0.378$ usando la tabla

$$\frac{\partial Prob(\mathit{rexporta} = 1)}{\partial \mathit{In}(\mathit{rprod})} = \phi(z) \times \beta_{\mathit{In}(\mathit{rprod})}$$

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{Inypm}} = \phi(0.33) \times \beta_{\textit{In}(\textit{rprod})}$$

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{Inypm}} = \phi(0.33) \times \beta_{\textit{In}(\textit{rprod})}$$

$$\frac{\partial Prob(\textit{rexporta} = 1)}{\partial \textit{In}(\textit{rprod})} = \phi(0.33)x(0.0358)$$

Pregunta 3

ightharpoonup Por tanto, calculamos $\phi(0.33)=0.378$ usando la tabla

$$\begin{split} \frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} &= \phi(z) \times \beta_{ln(rprod)} \\ \frac{\partial Prob(rexporta=1)}{\partial lnypm} &= \phi(0.33) \times \beta_{ln(rprod)} \\ \frac{\partial Prob(rexporta=1)}{\partial lnypm} &= \phi(0.33) \times \beta_{ln(rprod)} \\ \frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} &= \phi(0.33) \times (0.0358) \\ \frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} &= 0.378 \times (0.0358) \end{split}$$

Pregunta 3

ightharpoonup Por tanto, calculamos $\phi(0.33)=0.378$ usando la tabla

$$\begin{split} \frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} &= \phi(z) \times \beta_{ln(rprod)} \\ \frac{\partial Prob(rexporta=1)}{\partial lnypm} &= \phi(0.33) \times \beta_{ln(rprod)} \\ \frac{\partial Prob(rexporta=1)}{\partial lnypm} &= \phi(0.33) \times \beta_{ln(rprod)} \\ \frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} &= \phi(0.33) \times (0.0358) \\ \frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} &= 0.378 \times (0.0358) \\ \frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} &= 0.0135 \end{split}$$

▶ Por tanto, calculamos $\phi(0.33) = 0.378$ usando la tabla

$$\frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} = \phi(z) \times \beta_{ln(rprod)}$$

$$\frac{\partial Prob(rexporta=1)}{\partial lnypm} = \phi(0.33) \times \beta_{ln(rprod)}$$

$$\frac{\partial Prob(rexporta=1)}{\partial lnypm} = \phi(0.33) \times \beta_{ln(rprod)}$$

$$\frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} = \phi(0.33) \times (0.0358)$$

$$\frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} = 0.378 \times (0.0358)$$

$$\frac{\partial Prob(rexporta=1)}{\partial ln(rprod)} = 0.0135$$

► Esto es (aproximadamente) el estimado para el efecto marginal reportado por STATA usando margins del cual es 0.0135 ≡ 0.0135

Por lo tanto:

Pregunta 3

► Por lo tanto:

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{In}(\textit{rprod})} = 0.0135$$

Por lo tanto:

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{ln}(\textit{rprod})} = 0.0135$$

Ahora, suponiendo que tenemos un efecto de 5 % como incremento en la productividad

Pregunta 3

Por lo tanto:

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{ln}(\textit{rprod})} = 0.0135$$

- Ahora, suponiendo que tenemos un efecto de 5 % como incremento en la productividad
- ▶ El efecto estimado para este cambio es calculado como:

Por lo tanto:

$$\frac{\partial Prob(\textit{rexporta} = 1)}{\partial \textit{ln}(\textit{rprod})} = 0.0135$$

- Ahora, suponiendo que tenemos un efecto de 5 % como incremento en la productividad
- ▶ El efecto estimado para este cambio es calculado como:

$$0.0135 \times 0.05 = 0.0006$$

Por lo tanto:

$$\frac{\partial \textit{Prob}(\textit{rexporta} = 1)}{\partial \textit{ln}(\textit{rprod})} = 0.0135$$

- Ahora, suponiendo que tenemos un efecto de 5 % como incremento en la productividad
- ▶ El efecto estimado para este cambio es calculado como:

$$0.0135 \times 0.05 = 0.0006$$

▶ Por tanto, un incremento en los salarios de 5 % aumenta la decision de exportar por parte de las empresas en 0.06 puntos porcentuales, en promedio & ceteris paribus.

La varianza de una variable aleatoria distribuida logistica es $\frac{\pi^2}{3}$

- La varianza de una variable aleatoria distribuida logistica es $\frac{\pi^2}{3}$
- \blacktriangleright Use esta información para proveer un estimado aproximado del coeficiente del modelo logistico correspondiente al modelo estimado probit obtenido por α_1

- La varianza de una variable aleatoria distribuida logistica es $\frac{\pi^2}{3}$
- Use esta información para proveer un estimado aproximado del coeficiente del modelo logistico correspondiente al modelo estimado probit obtenido por α₁
- Interprete este logit estimado

Pregunta 4

► El coeficiente probit es un coeficiente estandarizado definido como:

$$\beta_{\textit{probit}} \div \sigma$$

Pregunta 4

▶ El coeficiente probit es un coeficiente estandarizado definido como:

$$\beta_{probit} \div \sigma$$

• Sin embargo, dado σ es el igual a 1 en el probit (dado el supuesto de la normal estandar) es usualmente expresada como β_{probit}

► El coeficiente probit es un coeficiente estandarizado definido como:

$$\beta_{probit} \div \sigma$$

- Sin embargo, dado σ es el igual a 1 en el probit (dado el supuesto de la normal estandar) es usualmente expresada como β_{probit}
- ► En contraposición , el coeficiente es no estandarizado

► El coeficiente probit es un coeficiente estandarizado definido como:

$$\beta_{probit} \div \sigma$$

- Sin embargo, dado σ es el igual a 1 en el probit (dado el supuesto de la normal estandar) es usualmente expresada como β_{probit}
- ► En contraposición , el coeficiente es no estandarizado
- Si nosotros estandarizamos el coeficiente logit por dividir esto a través de esto, por su derivación estandar esto podria ser comparado por el coeficiente probit

Pregunta 4

La varianza para el logistico esta dado por:

$$\frac{\pi^2}{3}$$

Pregunta 4

La varianza para el logistico esta dado por:

$$\frac{\pi^2}{3}$$

La desviación estandar para el logit esta dado por

$$\frac{\pi}{\sqrt{3}} = \sigma_{logit}$$

La varianza para el logistico esta dado por:

$$\frac{\pi^2}{3}$$

La desviación estandar para el logit esta dado por

$$\frac{\pi}{\sqrt{3}} = \sigma_{logit}$$

Por tanto:

$$\frac{\beta_{logit}}{\sigma_{logit}} = \beta_{probit}$$

Pregunta 4

La varianza para el logistico esta dado por:

$$\frac{\pi^2}{3}$$

La desviación estandar para el logit esta dado por

$$\frac{\pi}{\sqrt{3}} = \sigma_{logit}$$

Por tanto:

$$\frac{\beta_{logit}}{\sigma_{logit}} = \beta_{probit}$$

$$\beta_{logit} = \beta_{probit} x \sigma_{logit}$$

Pregunta 4

Entonces

$$\frac{\pi}{\sqrt{3}} = 1.8138$$

Entonces

$$\frac{\pi}{\sqrt{3}} = 1.8138$$

• Por tanto, $\beta_{logit} \approx 0.036 \times 1.8138 = 0.065$

Pregunta 4

Entonces

$$\frac{\pi}{\sqrt{3}} = 1.8138$$

- ightharpoonup Por tanto, $eta_{logit} pprox 0.036 imes 1.8138 = 0.065$
- Esto ahora tiene un log odds ratio interpretación

Entonces

$$\frac{\pi}{\sqrt{3}} = 1.8138$$

- ▶ Por tanto, $\beta_{logit} \approx 0.036 \times 1.8138 = 0.065$
- Esto ahora tiene un log odds ratio interpretación
- ▶ Por tanto, un incremento de 10 % en la ,en promedio y ceteris paribus , aumenta el odds ratio para que la empresa exporte en 6.5 % (aproximado)