Machine Learning for Engineering and Science Applications

Gradient Descent-2
Proof of Steepest Descent
Numerical Gradient calculation
Stopping criteria

Gradient and steepest change

Claim: The direction of maximum rate of change for a function J(w) is given by $\nabla_w J$

Proof: Recall that rate of change in a given direction
$$\mathbf{v}$$
 is given by $\frac{\partial J}{\partial \mathbf{v}}$.

That is, rate of change along \mathbf{v} is $\frac{\partial J}{\partial v} = \nabla \vec{J} \cdot \hat{\mathbf{v}}$ $\frac{\partial}{\partial v} = \nabla \vec{J} \cdot \hat{\mathbf{v}}$

,where $G = \nabla I$ and θ is the angle between the gradient and v

This is a maximum/minimum when $\theta = 0$ and π respectively.

That is, the maximum increase is along the gradient and maximum decrease is opposite to the gradient.

Proved

- In most cases, we do not have explicit expressions for the gradient.
- This can usually happen because of two reasons
 - There is no analytical expression for J as it is available only as a black box
 - □ The expression for J is available as a composition of functions and is too complicated.
- In both cases, the simplest solution is to use the Finite Difference Method

$$\frac{\partial J}{\partial w_j} \approx \frac{J(w_1, w_2, \dots w_j + \delta w_j) \dots w_n) - J(w_1, w_2, \dots w_j, w_m)}{\delta w_j}$$

- This can, however, become very expensive if the number of features is large
- In case <u>J</u> is analytical but result of a chain J = f(g(h(...))) one can use Automatic Differentiation
 - This is a cheaper, numerical way to calculate the derivative via chain rule
 - For Neural Networks the equivalent method is called Backpropagation

Stopping criteria

- Ideally, we should stop when $\nabla_w J = 0$. This almost never happens in practice as
 - The number of iterations required could be infinite
 - Because of finite precision
- In practice, we decide on some precision ϵ (say, $\epsilon \approx 10^{-5}$).
- Multiple options for stopping criteria. Stop when

$$\|\vec{w}^{k+1} - \vec{w}^k\| \le \epsilon \quad ()$$

$$\|\nabla_{w}J(w^{k})\| \leq \epsilon \cdot 2$$

$$|(J(w^{k+1}) - J(w^{k+1})| \le \epsilon$$

Summary of the Gradient Descent procedure

- 1. Decide on α , ϵ and stopping criterion
- 2. Make an initial guess for $w = w^0$
- 3. Calculate $w^{k+1} = w^k \alpha \nabla_w J$
 - 1. Calculate gradient numerically, if required
- Calculate stopping criterion
 - 1. If satisfied, stop
 - 2. If not satisfied, go to Step 3