Axes de symétrie d'une figure

31 mars 2015

Sommaire

- Rappels
- 2 Axes(s) de symétrie d'une figure
- Axes de symétrie de triangles
- 4 Axes de symétrie de quadrilatères usuels

Symétrique d'un point M par rapport à une droite (d)

Symétrique d'un point M par rapport à une droite (d)

Si M n'appartient pas à la droite (d)

Dire que le point M' est le symétrique du point M par rapport à la droite (d) signifie que la droite (d) est la médiatrice du segment [MM'].

Symétrique d'un point M par rapport à une droite (d)

Si M n'appartient pas à la droite (d)

Dire que le point M' est le symétrique du point M par rapport à la droite (d) signifie que la droite (d) est la médiatrice du segment [MM'].

Si M appartient à la droite (d)

Le symétrique M4 du point M par rapport à la droite (d) est lui-même. C'est à dire, les points M et M' sont confondus.

3 / 25

Sommaire

- Rappels
- Axes(s) de symétrie d'une figure
 - Définition
 - Axes de symétrie d'un segment
 - Axe de symétrie d'un angle
- Axes de symétrie de triangles
- 4 Axes de symétrie de quadrilatères usuels

Un axe de symétried'une figure F est une droite (d) telle que le symétrique de la figure F par rapport à la droite (d) est la figure F elle-même.

Un axe de symétried'une figure F est une droite (d) telle que le symétrique de la figure F par rapport à la droite (d) est la figure F elle-même.

0 axes de symétrie

Un axe de symétried'une figure F est une droite (d) telle que le symétrique de la figure F par rapport à la droite (d) est la figure F elle-même.

Un axe de symétried'une figure F est une droite (d) telle que le symétrique de la figure F par rapport à la droite (d) est la figure F elle-même.

0 axes de symétrie

1 axe de symétrie

2 axes de symétrie

Un axe de symétried'une figure F est une droite (d) telle que le symétrique de la figure F par rapport à la droite (d) est la figure F elle-même.

0 axes de symétrie

1 axe de symétrie

2 axes de symétrie

4 axes de symétrie

Exemple

Une infinité d'axes de symétrie

Un cercle admet une infité d'axes de symétrie :

Exemple

Une infinité d'axes de symétrie

Un cercle admet une infité d'axes de symétrie : toute droite passant par son centre.

Application

Exercices

- 35 p 212
- 36 p 212
- 37 p 212

Axe de symétrie d'un segment

Propriété

Un segment possède deux axes de symétrie :

8 / 25

Axe de symétrie d'un segment

Propriété

Un segment possède deux axes de symétrie :

sa médiatrice

Axe de symétrie d'un segment

Propriété

Un segment possède deux axes de symétrie :

- sa médiatrice
- la droite qui porte ce segment

Médiatrice

On sait que

[AB] est un segment et (d) est sa médiatrice.

9 / 25

Médiatrice

On sait que

[AB] est un segment et (d) est sa médiatrice.

Propriété

Si M n'appartient pas à la droite (d). Dire que le point M' est le symétrique du point M par rapport à la droite (d) signifie que la droite (d) est la médiatrice du segment [MM'].

9 / 25

Médiatrice

On sait que

[AB] est un segment et (d) est sa médiatrice.

Propriété

Si M n'appartient pas à la droite (d). Dire que le point M' est le symétrique du point M par rapport à la droite (d) signifie que la droite (d) est la médiatrice du segment [MM'].

Conclusion

B est le symétrique de A par rapport à (d) et A est le symétrique de B par rapport à (d). Donc le symétrique du segment [AB] par rapport à (d) est lui-même. Donc la médiatrice (d) est un axe de symétrie du segment [AB].

Droite portant le segment

On sait que

[AB] est un segment.

Droite portant le segment

On sait que

[AB] est un segment.

Propriété

Si M appartient à la droite (d). Le symétrique M' du point M par rapport à la droite (d) est lui-même. C'est-à-dire, les points M et M' sont confondus.

Droite portant le segment

On sait que

[AB] est un segment.

Propriété

Si M appartient à la droite (d). Le symétrique M' du point M par rapport à la droite (d) est lui-même. C'est-à-dire, les points M et M' sont confondus.

Conclusion

A est le symétrique de A par rapport à la droite (AB) et B est le symétrique de B par rapport à (AB). Donc le symétrique du segment [AB] par rapport à (AB) est lui-même. Donc la droite (AB) est un axe de symétrie du segment [AB].

Application

Exercices

- 39 p 212
- 40 p 212
- 41 p 212

Axe de symétrie d'un angle

Propriété (admise)

Un angle possède un axe de symétrie;

Axe de symétrie d'un angle

Propriété (admise)

Un angle possède un axe de symétrie; la droite qui porte sa bissectrice.

Exemple

L'angle \widehat{AOB} a pour bissectrice la demi-droite [OC) et donc pour axe de symétrie la droite (OC).

Application

Exercices

- 43 p 212
- 44 p 212
- 45 p 212

Sommaire

- Rappels
- 2 Axes(s) de symétrie d'une figure
- 3 Axes de symétrie de triangles
 - Le Triangle Isocèle
 - Le Triangle Équilatéral
- Axes de symétrie de quadrilatères usuels

Triangle Isocèle

Propriété

Un triangle isocèle possède un axe de symétrie :

Triangle Isocèle

Propriété

Un triangle isocèle possède un axe de symétrie : la médiatrice de sa base.

Triangle Isocèle

Propriété

Un triangle isocèle possède un axe de symétrie : la médiatrice de sa base.

Remarque

Cet axe de symétrie est aussi la bissectrice de l'angle au sommet principal.

On sait que

Le triangle DEF est isocèle en D et que la droite (DI) est la médiatrice du [EF].

On sait que

Le triangle DEF est isocèle en D et que la droite (DI) est la médiatrice du [EF].

Propriété

Si M appartient à la droite (d). Le symétrique M' du point M par rapport à la droite (d) est lui-même. C'est-à-dire, les points M et M' sont confondus. Si M n'appartient pas à la droite (d). Dire que le point M' est le symétrique du point M par rapport à la droite (d) signifie que la droite (d) est la médiatrice du segment [MM'].

On sait que

Le triangle DEF est isocèle en D et que la droite (DI) est la médiatrice du [EF].

Propriété

Si M appartient à la droite (d). Le symétrique M' du point M par rapport à la droite (d) est lui-même. C'est-à-dire, les points M et M' sont confondus. Si M n'appartient pas à la droite (d). Dire que le point M' est le symétrique du point M par rapport à la droite (d) signifie que la droite (d) est la médiatrice du segment [MM'].

Conclusion

Le symétrique du point D par rapport à la droite (DI) est lui-même. Le symétrique de E est F et le symétrique de F est E. Donc le symétrique du triangle DEF est lui-même. Donc (DI) est un axe de symétrie du triangle DEF.

Application

Exercices

- 48 p 213
- 70 p 215
- 71 p 215

Le Triangle Équilatéral

Propriété (admise)

Un triangle équilatéral possède trois axes de symétrie :

Le Triangle Équilatéral

Propriété (admise)

Un triangle équilatéral possède trois axes de symétrie : les médiatrices de ses côtés.

Le Triangle Équilatéral

Propriété (admise)

Un triangle équilatéral possède trois axes de symétrie : les médiatrices de ses côtés.

Remarque

Ces axes de symétrie sont aussi les bissectrices des angles.

Exemple

On sait que

Le triangle UVW est équilatéral. Les droites (d1), (d2) et (d3) sont les médiatrices des côtés [UV], [VW] et [UW].

Exemple

On sait que

Le triangle UVW est équilatéral. Les droites (d1), (d2) et (d3) sont les médiatrices des côtés [UV], [VW] et [UW].

Propriété

Un triangle équilatéral possède trois axes de symétrie : les médiatrices de ses côtés.

Exemple

On sait que

Le triangle UVW est équilatéral. Les droites (d1), (d2) et (d3) sont les médiatrices des côtés [UV], [VW] et [UW].

Propriété

Un triangle équilatéral possède trois axes de symétrie : les médiatrices de ses côtés.

Conclusion

Donc ce sont les axes de symétries du triangle UVW.

Application

Exercice

• 49 p 213

Sommaire

- Rappels
- 2 Axes(s) de symétrie d'une figure
- 3 Axes de symétrie de triangles
- Axes de symétrie de quadrilatères usuels
 - Le Losange
 - Le Rectangle
 - Le Carré

Le Losange

Définition

Un losange est un quadrilatère qui a quatre côtés de même longueur.

Le Losange

Définition

Un losange est un quadrilatère qui a quatre côtés de même longueur.

Propriété (admise)

Un losange possède deux axes de symétrie : ses diagonales.

Le Losange

Définition

Un losange est un quadrilatère qui a quatre côtés de même longueur.

Propriété (admise)

Un losange possède deux axes de symétrie : ses diagonales.

Propriété (admise)

Si un quadrilatère est un losange, alors :

- ses diagonales se coupent en leur milieu
- ses diagonales sont perpendiculaires
- ses angles opposés sont de même mesure

Application

Exercices

- 51 p 213
- 60 p 214
- 61 p 214

Le Rectangle

blabla

Le Carré

blabla

