Numerical Computing :: Project Seven

Consider the parameterized family of functions,

$$f_{\theta}(x) = \frac{1}{1 + \exp(-\theta x)}, \quad x \in [-5, 5].$$

The parameter θ controls how smooth f_{θ} is near x = 0, as shown:

To start this homework, let $\theta = 1$.

- 1. Generate training data: Create a vector with n = 7 evenly spaced points in the interval [-5,5]. For each point x_i in this vector, compute $y_i = f_{\theta}(x_i)$. You should now have 7 pairs (x_i, y_i) . Make a nice table with the seven input/output pairs.
- 2. **Train the model:** Construct the Vandermonde system and solve for the coefficients of the unique degree-6 interpolating polynomial $p_6(x)$. Make a nice table of the 7 coefficients. And make a plot showing both $f_{\theta}(x)$ and $p_6(x)$ over the domain [-5,5]. Does this look like a good approximation? Explain your assessment.
- 3. Generate testing data: Create a new vector with 101 evenly spaced points in [-5, 5]. For each point x'_i , compute $y'_i = f_{\theta}(x'_i)$.

4. Compute the testing error: Compute and report the absolute testing error:

error =
$$\operatorname{error}_{\theta=1,n=7} = \operatorname{maximum} \frac{|y_i' - p_6(x_i')|}{|y_i'|}$$

If you're wondering how to compute $p_6(x_i')$, look up (np.polyval and use the coefficients you computed in Step 2. You're evaluating the polynomial model's prediction of $f_{\theta}(x_i')$.

5. Repeat steps 1-4 with $\theta = 10$. How does the error change? What does that tell you about the quality of the polynomial approximation for the two functions?