HW₆

DUE: Friday, March 9, 9am

Section 2.9. 2, 6, 8, 18;

Section 3.1: 10, 28, 32, 38, 40;

Section 3.2: 2, (3).

Section 2.9

Exercises 2, 6, (8), 18

2.9.2. Find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ and the given basis \mathcal{B} . Illustrate your answer with a figure, as in the solution to Practice Problem 2 in the textbook.

$$\mathcal{B} = \left\{ \left[egin{array}{c} -2 \ 1 \end{array}
ight], \left[egin{array}{c} 3 \ 1 \end{array}
ight]
ight\}, \ [\mathbf{x}]_{\mathcal{B}} = \left[egin{array}{c} -1 \ 3 \end{array}
ight].$$

2.9.6. Let
$$\mathcal{B}=\{\mathbf{b}_1,\mathbf{b}_2\}$$
, where $\mathbf{b}_1=\begin{bmatrix} -3\\1\\-4\end{bmatrix}$ and $\mathbf{b}_2=\begin{bmatrix} 7\\5\\-6\end{bmatrix}$. The vector $\mathbf{x}=\begin{bmatrix} 11\\0\\7\end{bmatrix}$ belongs to

 $\mathrm{Span}\{\mathbf{b}_1,\mathbf{b}_2\}$. Find the \mathcal{B} -coordinate representation of \mathbf{x} .

2.9.8. (recommended)

Let
$$\mathbf{b}_1 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$,

$$\mathbf{z} = \begin{bmatrix} -1 \\ -2.5 \end{bmatrix}$$
, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Use the figure to estimate

 $[\mathbf{x}]_{\mathcal{B}}, [\mathbf{y}]_{\mathcal{B}}$, and $[\mathbf{z}]_{\mathcal{B}}$. Confirm your estimates of $[\mathbf{y}]_{\mathcal{B}}$ and $[\mathbf{z}]_{\mathcal{B}}$ by using them and $\{\mathbf{b}_1, \mathbf{b}_2\}$ to compute \mathbf{y} and \mathbf{z} .

- **2.9.18.** Mark each statement True or False. Justify each answer. Here A is an $m \times n$ matrix.
- **a.** If \mathcal{B} is a basis for a subspace H, then each vector in H can be written in only one way as a linear combination of the vectors in \mathcal{B} .
- **b.** If $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a basis for a subspace H of \mathbb{R}^n , then the correspondence $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ makes H look and act the same as \mathbb{R}^p .
- **c.** The dimension of Nul A is the number of variables in the equation $A\mathbf{x} = \mathbf{0}$.
- **d.** The dimension of the column space of A is rank A.
- **e.** If H is a p-dimensional subspace of \mathbb{R}^n , then a linearly independent set of p vectors in H is a basis for H.

Section 3.1

Exercises: 10, 28, 32, 38, 40

3.1.10. Compute the determinant of the following matrix using cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

$$\left|\begin{array}{ccccc} 1 & -2 & 5 & 2 \\ 0 & 0 & 3 & 0 \\ 2 & -4 & -3 & 5 \\ 2 & 0 & 3 & 5 \end{array}\right|$$

3.1.28. Compute the determinant of the elementary matrix,

$$\begin{bmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3.1.32. What is the determinant of an elementary scaling matrix with k on the diagonal?

3.1.38. Let
$$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and let k be a scalar. Find a formula that relates $\det(kA)$ to k and $\det A$.

- **3.1.40.** Let A be an $n \times n$ matrix. Mark each of the following statements True or False. Justify.
- ${f a.}$ The cofactor expansion of ${
 m det}A$ down a column is equal to the cofactor expansion along a row.
- **b.** The determinant of a triangular matrix is the sum of the entries on the main diagonal.

Section 3.2

Exercises: 2, (3)

3.2.2. The following equation illustrates a property of determinants. State the property.

$$\begin{vmatrix} 1 & 2 & 2 \\ 0 & 3 & -4 \\ 3 & 7 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 2 \\ 0 & 3 & -4 \\ 0 & 1 & -2 \end{vmatrix}$$

3.2.3. (recommended, not required) The following equation illustrates a property of determinants. State the property.

$$\begin{vmatrix} 3 & -6 & 9 \\ 3 & 5 & -5 \\ 1 & 3 & 3 \end{vmatrix} = 3 \begin{vmatrix} 1 & -2 & 3 \\ 3 & 5 & -5 \\ 1 & 3 & 3 \end{vmatrix}$$