Отчёт по ЛР №1 по ТМО

Водка Игорь, ИУ5-61

1) Текстовое описание набора данных

В качестве набора данных возьмём набор World University Rankings с Kaggle: https://www.kaggle.com/mylesoneill/world-university-rankings/home) Мне интересна эта тема.

Датасет состоит лишь из одного файла: timesData.csv, который нам предстоит разделить на обучающую и тестовую выборки. В выборке содержится множество колонок:

- world rank рейтинг (или вилка)
- university name название университета
- country страна
- teaching рейтинг качества преподавания
- international рейтинг международного признания
- research рейтинг исследований
- · citations industry income (knowledge transfer)
- income доход
- total_score общий счёт в рейтинге (целевой признак!)
- num_students число студентов
- student_staff_ratio кол-во студентов на одного преподавателя
- international_students процент студентов из других стран
- female male ratio отношение количества студентов мужского пола к женскому
- year бесполезно

```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Делим выборку на обучающую и тестовую

```
In [2]: from sklearn.model_selection import train_test_split

# Будем анализировать данные только на обучающей выборке
data = pd.read_csv('timesData.csv', sep=",", thousands=',')
# train, test = train_test_split(df, test_size=0.2)
```

2) Основные характеристики датасета

Так, давайте посмотрим...

```
In [3]: # Первые 5 строк датасета
         data.head()
Out[3]:
            world_rank university_name country teaching international research citations income total_score num_students
                             Harvard
                                      States
          0
                                               99.7
                                                          72.4
                                                                   98.7
                                                                           98.8
                                                                                  34.5
                                                                                            96.1
                                                                                                      20152.0
                    1
                            University
                                         of
                                     America
                                      United
                            California
                                      States
                    2
                                               97.7
                                                          54.6
                                                                   98.0
                                                                           99.9
                                                                                  83.7
                                                                                            96.0
                                                                                                       2243.0
                           Institute of
                                         of
                           Technology
                                    America
                                      United
                        Massachusetts
                                      States
          2
                    3
                           Institute of
                                               97.8
                                                          82.3
                                                                   91.4
                                                                           99.9
                                                                                  87.5
                                                                                            95.6
                                                                                                      11074.0
                                        of
                           Technology
                                    America
                                      United
                             Stanford
                                      States
                                                          29.5
                                                                   98.1
                                                                           99.2
                                                                                  64.3
                                                                                            94.3
                                                                                                      15596.0
                    4
                                               98.3
                            University
                                        of
                                    America
                                      United
                            Princeton
                                      States
                    5
                                               90.9
                                                          70.3
                                                                   95.4
                                                                           99.9
                                                                                            94.2
                                                                                                      7929.0
                            University
                                         of
                                     America
In [4]: | # Размер датасета
         data.shape
Out[4]: (2603, 14)
In [5]: total count = data.shape[0]
         print('Bcero ctpok: {}'.format(total_count))
         Всего строк: 2603
In [6]: # Список колонок
         data.columns
'year'],
                dtype='object')
In [7]: # Проверим наличие пустых значений
         # Цикл по колонкам датасета
         for col in data.columns:
              # Количество пустых значений - все значения заполнены
              temp null count = data[data[col].isnull()].shape[0]
              print('{} - {}'.format(col, temp_null_count))
         world rank - 0
         university_name - 0
         country -\frac{1}{0} teaching -0
         international - 0
         research - 0
         citations - 0
         income - 0
         total score - 0
         num students - 59
         student staff ratio - 59
         international_students - 67
         female_male_ratio - 233
         year - 0
```

```
In [8]: # Многовато... Давайте пока выкинем NaN просто.
        data = data.fillna(data.mean())
        data = data.dropna()
        # Немного уменьшилась наша выборка... ну и ладно.
        data.shape
Out[8]: (2362, 14)
In [9]: # Интерполируем international, research, citations, income, total score
        def adjust_total_score(df_line):
            cols = ['international', 'research', 'citations', 'income', 'total_score']
            for col in cols:
                if df_line[col] == '-':
                    # get all non-hyphen similar rating cols
                    non_empty_cols = filter(lambda x: x != '-', map(lambda colName: df_line[colN
        ame], cols))
                    # floatify
                    non_empty_cols = list(map(lambda s: float(s), non_empty_cols))
                    # interpolate
                    df_line[col] = sum(non_empty_cols) / len(non_empty_cols)
            return df_line
        fixed_data = data.apply(adjust_total_score, axis=1)
```

In [10]: fixed_data

	world_rank	university_name	country	teaching	international	research	citations	income	total_score	num_stı
1	2	California Institute of Technology	United States of America	97.7	54.6	98.0	99.9	83.7	96.0	:
2	3	Massachusetts Institute of Technology	United States of America	97.8	82.3	91.4	99.9	87.5	95.6	1
3	4	Stanford University	United States of America	98.3	29.5	98.1	99.2	64.3	94.3	1!
4	5	Princeton University	United States of America	90.9	70.3	95.4	99.9	89.95	94.2	
5	6	University of Cambridge	United Kingdom	90.5	77.7	94.1	94.0	57.0	91.2	1
6	6	University of Oxford	United Kingdom	88.2	77.2	93.9	95.1	73.5	91.2	1!
7	8	University of California, Berkeley	United States of America	84.2	39.6	99.3	97.8	81.95	91.1	3
8	9	Imperial College London	United Kingdom	89.2	90.0	94.5	88.3	92.9	90.6	1!
9	10	Yale University	United States of America	92.1	59.2	89.7	91.5	82.475	89.5	1
10	11	University of California, Los Angeles	United States of America	83.0	48.1	92.9	93.2	80.475	87.7	3
11	12	University of Chicago	United States of America	79.1	62.8	87.9	96.9	83.625	86.9	1.
12	13	Johns Hopkins University	United States of America	80.9	58.5	89.2	92.3	100.0	86.4	1!
13	14	Cornell University	United States of America	82.2	62.4	88.8	88.1	34.7	83.9	2.
14	15	ETH Zurich – Swiss Federal Institute of Techno	Switzerland	77.5	93.7	87.8	83.1	87	83.4	1
15	15	University of Michigan	United States of America	83.9	53.3	89.1	84.1	59.6	83.4	4.
18	19	University of Pennsylvania	United States of America	71.8	32.9	82.7	93.6	43.7	79.5	21
19	20	Carnegie Mellon University	United States of America	70.3	39.1	79.3	95.7	53.7	79.3	1
20	21	University of Hong Kong	Hong Kong	68.4	91.4	71.4	96.1	56.5	79.2	1!
21	22	University College London	United Kingdom	74.0	90.8	81.6	80.6	39.0	78.4	21
22	23	University of Washington	United States of America	68.2	49.0	77.1	95.9	32.8	78.0	4.
23	24	Duke University	United States of America	66.8	49.4	71.5	92.3	100.0	76.5	1!
24	25	Northwestern University	United States of America	64.5	60.5	68.8	95.3	75.125	75.9	1
26	27	Georgia Institute of Technology	United States of America	67.9	73.2	72.6	83.2	95.1	75.3	1!
27	28	Pohang University of Science and Technology	South Korea	69.5	32.6	62.5	96.5	100.0	75.1	;

	world_rank	university_name	country	teaching	international	research	citations	income	total_score	num_stı
28	29	University of California, Santa Barbara	United States of America	56.6	64.3	68.0	98.8	89.8	75.0	2:
29	30	University of British Columbia	Canada	65.1	93.3	74.8	80.3	42.6	73.8	51
30	30	University of North Carolina at Chapel Hill	United States of America	70.9	21.5	75.1	85.0	50.2	73.8	2
31	32	University of California, San Diego	United States of America	59.8	31.6	76.3	90.8	51.8	73.2	2
32	33	University of Illinois at Urbana- Champaign	United States of America	68.1	55.9	80.9	72.9	70.675	73.0	4:
33	34	National University of Singapore	Singapore	65.5	97.8	72.6	78.7	40.5	72.9	3.
2572	601-800	Technical University of Madrid	Spain	21.8	39.5	14.6	24.5	38.3	29.225	4.
2573	601-800	University of Tehran	Iran	26.1	16.5	16.9	15.8	16.4	16.4	5
2574	601-800	University of Texas at El Paso	United States of America	18.6	30.4	18.7	18.4	22.5	22.5	1!
2575	601-800	Texas Tech University	United States of America	27.9	36.8	17.2	22.0	25.3333	25.3333	2!
2576	601-800	Tokai University	Japan	17.9	19.3	7.6	15.3	34.4	19.15	2!
2577	601-800	Tokushima University	Japan	25.3	16.8	21.6	12.8	59.6	27.7	
2578	601-800	Tokyo University of Marine Science and Technology	Japan	27.9	24.5	12.4	7.7	57.9	25.625	;
2579	601-800	Tokyo University of Science	Japan	23.0	15.4	24.1	21.4	37.6	24.625	21
2580	601-800	Tomsk State University	Russian Federation	34.8	36.9	20.8	7.6	44.0	27.325	10
2581	601-800	Tottori University	Japan	24.3	16.7	10.1	9.6	34.5	17.725	1
2582	601-800	Toyohashi University of Technology	Japan	22.0	25.4	18.9	15.8	50.3	27.6	:
2583	601-800	Universiti Kebangsaan Malaysia	Malaysia	24.3	29.7	15.9	10.9	28.4	21.225	2.
2584	601-800	Universiti Putra Malaysia	Malaysia	25.3	50.1	20.9	10.2	34.2	28.85	2:
2585	601-800	Universiti Sains Malaysia	Malaysia	26.9	44.2	16.6	12.4	34.4	26.9	2
2586	601-800	Universiti Teknologi MARA	Malaysia	15.2	14.8	7.7	18.2	28.3	17.25	6!
2587	601-800	Ural Federal University	Russian Federation	24.8	17.3	10.6	16.8	35.6	20.075	2
2588	601-800	V.N. Karazin Kharkiv National University	Ukraine	21.7	48.4	8.9	1.7	28.8	21.95	1.
2589	601-800	University of Vigo	Spain	18.4	30.7	10.5	31.8	38.1	27.775	2:
2590	601-800	Vilnius University	Lithuania	18.3	40.8	13.6	26.1	41.0	30.375	1!
2591	601-800	Warsaw University of Technology	Poland	19.4	20.7	8.5	40.3	47.4	29.225	3,
2592	601-800	Waseda University	Japan	23.6	29.7	14.6	29.4	32.4	26.525	5.

	world_rank	university_name	country	teaching	international	research	citations	income	total_score	num_stı
2593	601-800	University of West Bohemia	Czech Republic	16.3	23.1	9.7	29.8	32.1	23.675	1!
2594	601-800	University of the West of England	United Kingdom	16.9	48.5	11.2	34.6	28.5	30.7	2:
2595	601-800	West University of Timişoara	Romania	16.1	21.0	3.9	22.4	15.7667	15.7667	1:
2596	601-800	University of Westminster	United Kingdom	17.3	81.9	11.7	21.1	28.5	35.8	10
2597	601-800	Xidian University	China	17.9	12.8	12.1	8.9	83.7	29.375	3:
2598	601-800	Yeungnam University	South Korea	18.6	24.3	10.9	26.5	35.4	24.275	2.
2599	601-800	Yıldız Technical University	Turkey	14.5	14.9	7.6	19.3	44.0	21.45	3:
2601	601-800	Yokohama National University	Japan	20.1	23.3	16.0	13.5	40.4	23.3	1
2602	601-800	Yuan Ze University	Taiwan	16.2	17.7	18.3	28.6	39.8	26.1	1

2362 rows × 14 columns

4

In [11]: # Основные статистические характеристки набора данных fixed_data.describe()

Out[11]:

	teaching	research	citations	num_students	student_staff_ratio	year
count	2362.000000	2362.000000	2362.000000	2362.000000	2362.000000	2362.000000
mean	37.146190	35.310288	61.004953	23845.077053	18.707282	2014.092295
std	17.145579	20.876934	23.091455	18008.833624	11.530523	1.682795
min	9.900000	2.900000	1.200000	462.000000	0.600000	2011.000000
25%	24.500000	19.400000	45.500000	12551.000000	12.200000	2013.000000
50%	33.100000	30.100000	62.700000	20584.000000	16.300000	2014.000000
75%	45.700000	46.200000	79.200000	30333.000000	21.900000	2016.000000
max	98.300000	99.400000	100.000000	379231.000000	162.600000	2016.000000

```
In [12]: # Определим уникальные значения для целевого признака data['world_rank'].unique()
```

```
Out[12]: array(['2', '3', '4', '5', '6', '8', '9', '10', '11', '12', '13', '14', '15', '19', '20', '21', '22', '23', '24', '25', '27', '28', '29' '30', '32', '33', '34', '35', '36', '39', '40', '42', '43', '47'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     '29',
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        '47'
                                                                                                                    '48', '49', '51', '52', '53', '54', '56', '58', '59', '60', '61'

'63', '64', '65', '66', '67', '68', '71', '72', '73', '75', '76'

'77', '78', '79', '81', '83', '85', '87', '88', '90', '93', '95'

'98', '99', '100', '101', '102', '103', '104', '105', '106', '10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            '75', '76',
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       '106', '107',
                                                                                                                                                                 '111', '112', '114', '115', '124', '127', '128', '129', '139', '140', '142', '143', '152', '155', '156', '159', '168', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '179', '1
                                                                                                                                                                                                                                                                                                                                                                  '117', '118', '119', '120',
'130', '132', '135', '137',
'144', '145', '147', '149',
                                                                                                                     '109',
                                                                                                                      '122'
                                                                                                                     '138'
                                                                                                                                                                                                                                                                                                                      '159',
                                                                                                                                                                                                                                                                                                                                                                       '161', '163', '164', '165',
                                                                                                                     '151'
                                                                                                                                                                                                                                                                                                                      '172',
                                                                                                                                                                     '168',
                                                                                                                                                                                                                    '170', '171',
                                                                                                                                                                                                                                                                                                                                                                       '173', '174', '177', '178',
                                                                                                                     '167'
                                                                                                                  '167', '168', '170', '171', '172', '173', '174', '177', '178', '181', '182', '183', '184', '185', '186', '187', '189', '190', '193', '195', '196', '197', '199', '1', '7', '16', '17', '18', '26', '31', '37', '38', '44', '45', '46', '55', '57', '69', '70', '74', '84', '86', '89', '91', '92', '94', '96', '97', '108', '110', '113', '121', '123', '125', '131', '133', '134', '141', '146', '148', '150', '154', '157', '162', '169', '176', '180', '191', '194', '200', '201-225', '226-250', '251-275', '276-300', '301-350', '350-400', '41', '50', '62', '80', '116', '153', '158', '166', '192', '198', '351-400', '126', '136', '160', '188', '82', '175', '239', '244', '247', '256', '260', '265', '276', '276', '282',
                                                                                                                     '175', '=39', '=44', '=47', '=56', '=60', '=65', '=76', '=82', '=88', '=90', '=94', '=99', '=101', '=104', '=106', '=110', '=113',
                                                                                                                    '=120', '=123', '=125', '=127', '=131', '=133', '=138', '=144', '=149', '=158', '=161', '=164', '=167', '=172', '=176', '179', '=180', '=182', '=185', '=190', '=193', '=196', '201-250', '251-300', '401-500', '501-600', '601-800'], dtype=object)
```

In [13]: fixed_data

	world_rank	university_name	country	teaching	international	research	citations	income	total_score	num_stı
1	2	California Institute of Technology	United States of America	97.7	54.6	98.0	99.9	83.7	96.0	:
2	3	Massachusetts Institute of Technology	United States of America	97.8	82.3	91.4	99.9	87.5	95.6	1
3	4	Stanford University	United States of America	98.3	29.5	98.1	99.2	64.3	94.3	1!
4	5	Princeton University	United States of America	90.9	70.3	95.4	99.9	89.95	94.2	
5	6	University of Cambridge	United Kingdom	90.5	77.7	94.1	94.0	57.0	91.2	1
6	6	University of Oxford	United Kingdom	88.2	77.2	93.9	95.1	73.5	91.2	1!
7	8	University of California, Berkeley	United States of America	84.2	39.6	99.3	97.8	81.95	91.1	3
8	9	Imperial College London	United Kingdom	89.2	90.0	94.5	88.3	92.9	90.6	1!
9	10	Yale University	United States of America	92.1	59.2	89.7	91.5	82.475	89.5	1
10	11	University of California, Los Angeles	United States of America	83.0	48.1	92.9	93.2	80.475	87.7	3
11	12	University of Chicago	United States of America	79.1	62.8	87.9	96.9	83.625	86.9	1.
12	13	Johns Hopkins University	United States of America	80.9	58.5	89.2	92.3	100.0	86.4	1!
13	14	Cornell University	United States of America	82.2	62.4	88.8	88.1	34.7	83.9	2.
14	15	ETH Zurich – Swiss Federal Institute of Techno	Switzerland	77.5	93.7	87.8	83.1	87	83.4	1
15	15	University of Michigan	United States of America	83.9	53.3	89.1	84.1	59.6	83.4	4.
18	19	University of Pennsylvania	United States of America	71.8	32.9	82.7	93.6	43.7	79.5	21
19	20	Carnegie Mellon University	United States of America	70.3	39.1	79.3	95.7	53.7	79.3	1
20	21	University of Hong Kong	Hong Kong	68.4	91.4	71.4	96.1	56.5	79.2	1!
21	22	University College London	United Kingdom	74.0	90.8	81.6	80.6	39.0	78.4	21
22	23	University of Washington	United States of America	68.2	49.0	77.1	95.9	32.8	78.0	4.
23	24	Duke University	United States of America	66.8	49.4	71.5	92.3	100.0	76.5	1!
24	25	Northwestern University	United States of America	64.5	60.5	68.8	95.3	75.125	75.9	1
26	27	Georgia Institute of Technology	United States of America	67.9	73.2	72.6	83.2	95.1	75.3	1!
27	28	Pohang University of Science and Technology	South Korea	69.5	32.6	62.5	96.5	100.0	75.1	;

	world_rank	university_name	country	teaching	international	research	citations	income	total_score	num_stı
28	29	University of California, Santa Barbara	United States of America	56.6	64.3	68.0	98.8	89.8	75.0	2:
29	30	University of British Columbia	Canada	65.1	93.3	74.8	80.3	42.6	73.8	51
30	30	University of North Carolina at Chapel Hill	United States of America	70.9	21.5	75.1	85.0	50.2	73.8	2
31	32	University of California, San Diego	United States of America	59.8	31.6	76.3	90.8	51.8	73.2	2
32	33	University of Illinois at Urbana- Champaign	United States of America	68.1	55.9	80.9	72.9	70.675	73.0	4:
33	34	National University of Singapore	Singapore	65.5	97.8	72.6	78.7	40.5	72.9	3.
2572	601-800	Technical University of Madrid	Spain	21.8	39.5	14.6	24.5	38.3	29.225	4.
2573	601-800	University of Tehran	Iran	26.1	16.5	16.9	15.8	16.4	16.4	5
2574	601-800	University of Texas at El Paso	United States of America	18.6	30.4	18.7	18.4	22.5	22.5	1!
2575	601-800	Texas Tech University	United States of America	27.9	36.8	17.2	22.0	25.3333	25.3333	2!
2576	601-800	Tokai University	Japan	17.9	19.3	7.6	15.3	34.4	19.15	2!
2577	601-800	Tokushima University	Japan	25.3	16.8	21.6	12.8	59.6	27.7	
2578	601-800	Tokyo University of Marine Science and Technology	Japan	27.9	24.5	12.4	7.7	57.9	25.625	;
2579	601-800	Tokyo University of Science	Japan	23.0	15.4	24.1	21.4	37.6	24.625	21
2580	601-800	Tomsk State University	Russian Federation	34.8	36.9	20.8	7.6	44.0	27.325	10
2581	601-800	Tottori University	Japan	24.3	16.7	10.1	9.6	34.5	17.725	1
2582	601-800	Toyohashi University of Technology	Japan	22.0	25.4	18.9	15.8	50.3	27.6	:
2583	601-800	Universiti Kebangsaan Malaysia	Malaysia	24.3	29.7	15.9	10.9	28.4	21.225	2.
2584	601-800	Universiti Putra Malaysia	Malaysia	25.3	50.1	20.9	10.2	34.2	28.85	2:
2585	601-800	Universiti Sains Malaysia	Malaysia	26.9	44.2	16.6	12.4	34.4	26.9	2
2586	601-800	Universiti Teknologi MARA	Malaysia	15.2	14.8	7.7	18.2	28.3	17.25	6!
2587	601-800	Ural Federal University	Russian Federation	24.8	17.3	10.6	16.8	35.6	20.075	2
2588	601-800	V.N. Karazin Kharkiv National University	Ukraine	21.7	48.4	8.9	1.7	28.8	21.95	1.
2589	601-800	University of Vigo	Spain	18.4	30.7	10.5	31.8	38.1	27.775	2:
2590	601-800	Vilnius University	Lithuania	18.3	40.8	13.6	26.1	41.0	30.375	1!
2591	601-800	Warsaw University of Technology	Poland	19.4	20.7	8.5	40.3	47.4	29.225	3,
2592	601-800	Waseda University	Japan	23.6	29.7	14.6	29.4	32.4	26.525	5.

	world_rank	university_name	country	teaching	international	research	citations	income	total_score	num_stı
2593	601-800	University of West Bohemia	Czech Republic	16.3	23.1	9.7	29.8	32.1	23.675	1!
2594	601-800	University of the West of England	United Kingdom	16.9	48.5	11.2	34.6	28.5	30.7	2:
2595	601-800	West University of Timişoara	Romania	16.1	21.0	3.9	22.4	15.7667	15.7667	1:
2596	601-800	University of Westminster	United Kingdom	17.3	81.9	11.7	21.1	28.5	35.8	1
2597	601-800	Xidian University	China	17.9	12.8	12.1	8.9	83.7	29.375	3:
2598	601-800	Yeungnam University	South Korea	18.6	24.3	10.9	26.5	35.4	24.275	2.
2599	601-800	Yıldız Technical University	Turkey	14.5	14.9	7.6	19.3	44.0	21.45	3.
2601	601-800	Yokohama National University	Japan	20.1	23.3	16.0	13.5	40.4	23.3	1
2602	601-800	Yuan Ze University	Taiwan	16.2	17.7	18.3	28.6	39.8	26.1	1

2362 rows × 14 columns

◆

```
In [14]: # Чуть поправляем данные
```

```
fixed_data.international_students = fixed_data.international_students.str.replace('\%',
numeric cols = ['teaching', 'international', 'research', 'citations', 'income', 'total s
core', 'num students', 'international students']
fixed_data[numeric_cols] = fixed_data[numeric_cols].apply(pd.to_numeric)
fixed_data.dtypes
def fix_female_male_ratio(x):
    if \overline{x} == ' - \overline{'}:
        return 1
    else:
        split = x.split(' : ')
        f = int(split[0])
        m = int(split[1])
        if m == 0:
            m = 0.01
        \textbf{return} \ \textbf{f} \ / \ \textbf{m}
def fix_world_rank(x):
    return int(x.split('-')[0].replace('=', ''))
fixed_data.female_male_ratio = fixed_data.female_male_ratio.apply(fix_female_male_ratio)
fixed_data.world_rank = fixed_data.world_rank.apply(fix_world_rank)
```

```
In [15]: def group_all_years(years):
    sorted_years = years.sort_values('year', ascending=False)
    first_year = sorted_years.head(1)
    last_year = sorted_years.tail(1)
    for col in ['teaching', 'international', 'research', 'citations', 'income', 'total_s
    core', 'num_students', 'international_students']:
        last_year[col + '_progress'] = years.iloc[0][col] / years.iloc[-1][col]
    return last_year

fixed_data_with_progress = fixed_data.groupby('university_name').apply(group_all_years)
    fixed_data_with_progress = fixed_data_with_progress.drop('year', axis=1)
    fixed_data_with_progress
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: RuntimeWarning: invalid v alue encountered in long_scalars

		world_rank	university_name	country	teaching	international	research	citations	income
university_name									
AGH University of Science and Technology	2405	601	AGH University of Science and Technology	Poland	14.2	17.9	3.7	35.7	19.100000
Aalborg University	501	301	Aalborg University	Denmark	19.0	75.3	20.0	27.1	36.400000
Aalto University	502	301	Aalto University	Finland	26.2	49.0	22.2	37.5	61.900000
Aarhus University	166	167	Aarhus University	Denmark	38.1	33.4	55.6	57.3	61.500000
Aberystwyth University	476	276	Aberystwyth University	United Kingdom	19.8	63.8	15.5	56.6	35.500000
Adam Mickiewicz University	2404	601	Adam Mickiewicz University	Poland	20.0	25.7	11.0	15.3	28.700000
Aix-Marseille University	2057	251	Aix-Marseille University	France	36.7	63.0	22.1	64.9	33.100000
Ajou University	2406	601	Ajou University	South Korea	19.5	20.0	11.9	23.9	45.700000
Alexandria University	146	147	Alexandria University	Egypt	29.5	19.3	28.0	99.8	36.000000
Alexandru Ioan Cuza University	2409	601	Alexandru Ioan Cuza University	Romania	24.9	46.9	13.6	7.0	28.200000
Aligarh Muslim University	2410	601	Aligarh Muslim University	India	28.3	18.7	10.0	20.9	29.600000
American University	2204	401	American University	United States of America	42.2	28.9	16.5	41.1	35.900000
American University of Beirut	2303	501	American University of Beirut	Lebanon	27.7	93.0	11.2	31.9	45.366667
American University of Sharjah	2411	601	American University of Sharjah	United Arab Emirates	12.4	95.6	10.6	13.3	33.300000
Amirkabir University of Technology	2304	501	Amirkabir University of Technology	Iran	24.5	7.7	25.7	34.8	55.700000
Anadolu University	2413	601	Anadolu University	Turkey	12.2	14.3	22.6	10.9	100.000000
Andhra University	2414	601	Andhra University	India	34.8	7.2	6.9	1.2	31.300000
Aristotle University of Thessaloniki	2416	601	Aristotle University of Thessaloniki	Greece	22.6	36.6	15.0	29.5	33.600000
Arizona State University	160	161	Arizona State University	United States of America	43.0	24.1	44.1	66.9	46.350000
Asia University, Taiwan	2417	601	Asia University, Taiwan	Taiwan	14.4	18.3	15.9	30.5	38.400000
Athens University of Economics and Business	2418	601	Athens University of Economics and Business	Greece	13.4	39.2	18.8	31.2	66.500000
Auburn University	552	350	Auburn University	United States of America	33.7	22.5	18.7	10.3	47.300000
Auckland University of Technology	2419	601	Auckland University of Technology	New Zealand	17.3	95.6	9.8	21.7	28.500000
Austral University of Chile	2420	601	Austral University of Chile	Chile	16.7	45.2	9.7	14.2	41.100000
Australian National University	42	43	Australian National University	Australia	51.9	93.9	62.4	81.0	76.075000
Autonomous University of Barcelona	400	201	Autonomous University of Barcelona	Spain	33.7	45.9	27.9	57.9	37.000000

university_name		world_rank	university_name	country	teaching	international	research	citations	income
Autonomous University of Madrid	477	276	Autonomous University of Madrid	Spain	28.8	39.7	21.4	47.5	32.500000
Babeş-Bolyai University	2308	501	Babeş-Bolyai University	Romania	27.9	35.4	12.5	32.1	28.600000
Bangor University	450	251	Bangor University	United Kingdom	24.9	67.1	23.8	48.0	29.000000
Bar-Ilan University	504	301	Bar-Ilan University	Israel	27.9	47.0	32.2	15.7	28.500000
Vilnius University	2590	601	Vilnius University	Lithuania	18.3	40.8	13.6	26.1	41.000000
Virginia Polytechnic Institute and State University	474	251	Virginia Polytechnic Institute and State Unive	United States of America	36.9	25.1	40.4	30.3	24.200000
Vrije Universiteit Brussel	548	301	Vrije Universiteit Brussel	Belgium	23.4	49.4	21.1	36.7	66.200000
VŠB - Technical University of Ostrava	2150	301	VŠB - Technical University of Ostrava	Czech Republic	18.8	22.3	15.7	85.5	32.100000
Wageningen University and Research Center	143	144	Wageningen University and Research Center	Netherlands	58.5	24.3	48.8	53.0	44.500000
Wake Forest University	91	90	Wake Forest University	United States of America	54.6	24.4	42.9	79.2	51.050000
Warsaw University of Technology	2591	601	Warsaw University of Technology	Poland	19.4	20.7	8.5	40.3	47.400000
Waseda University	599	350	Waseda University	Japan	25.4	27.1	17.3	29.7	27.300000
Washington State University	549	301	Washington State University	United States of America	28.8	31.0	24.5	33.5	34.300000
Wayne State University	475	251	Wayne State University	United States of America	34.7	24.6	16.4	55.2	32.066667
West University of Timişoara	2595	601	West University of Timişoara	Romania	16.1	21.0	3.9	22.4	15.766667
Western Sydney University	1800	351	Western Sydney University	Australia	17.8	50.1	22.4	58.7	30.400000
William & Mary	74	75	William & Mary	United States of America	53.1	20.9	36.1	95.6	53.250000
Wuhan University of Technology	1353	301	Wuhan University of Technology	China	14.8	18.9	7.8	78.1	58.700000
Xiamen University	2302	401	Xiamen University	China	26.7	25.0	15.6	47.0	29.200000
Xidian University	2597	601	Xidian University	China	17.9	12.8	12.1	8.9	83.700000
Xi'an Jiaotong University	2401	501	Xi'an Jiaotong University	China	28.7	25.8	22.5	25.5	70.400000
Yale University	9	10	Yale University	United States of America	92.1	59.2	89.7	91.5	82.475000
Yeshiva University	69	68	Yeshiva University	United States of America	63.5	53.3	46.7	74.4	58.950000
Yeungnam University	2598	601	Yeungnam University	South Korea	18.6	24.3	10.9	26.5	35.400000
Yokohama National University	2601	601	Yokohama National University	Japan	20.1	23.3	16.0	13.5	40.400000

		$world_rank$	university_name	country	teaching	international	research	citations	income
university_name									
York University	500	276	York University	Canada	19.9	57.7	27.7	41.2	41.700000
Yuan Ze University	601	350	Yuan Ze University	Taiwan	10.8	12.8	9.6	58.3	29.200000
Yıldız Technical University	2599	601	Yıldız Technical University	Turkey	14.5	14.9	7.6	19.3	44.000000
Zhejiang University	197	197	Zhejiang University	China	54.6	29.6	41.3	44.3	70.300000
École Normale Supérieure	41	42	École Normale Supérieure	France	66.8	44.9	48.2	95.7	30.700000
École Normale Supérieure de Lyon	99	100	École Normale Supérieure de Lyon	France	51.1	37.6	34.4	88.8	26.100000
École Polytechnique	38	39	École Polytechnique	France	57.9	77.9	56.1	91.4	73.725000
École Polytechnique Fédérale de Lausanne	47	48	École Polytechnique Fédérale de Lausanne	Switzerland	55.0	100.0	56.1	83.8	38.000000
Örebro University	2134	301	Örebro University	Sweden	18.3	39.4	10.4	87.8	29.800000
739 rows × 21 co	lumns								
4									>

3) Визуальное исследование датасета

In [16]: data = fixed_data_with_progress
 data

		world_rank	university_name	country	teaching	international	research	citations	income
university_name									
AGH University of Science and Technology	2405	601	AGH University of Science and Technology	Poland	14.2	17.9	3.7	35.7	19.100000
Aalborg University	501	301	Aalborg University	Denmark	19.0	75.3	20.0	27.1	36.400000
Aalto University	502	301	Aalto University	Finland	26.2	49.0	22.2	37.5	61.900000
Aarhus University	166	167	Aarhus University	Denmark	38.1	33.4	55.6	57.3	61.500000
Aberystwyth University	476	276	Aberystwyth University	United Kingdom	19.8	63.8	15.5	56.6	35.500000
Adam Mickiewicz University	2404	601	Adam Mickiewicz University	Poland	20.0	25.7	11.0	15.3	28.700000
Aix-Marseille University	2057	251	Aix-Marseille University	France	36.7	63.0	22.1	64.9	33.100000
Ajou University	2406	601	Ajou University	South Korea	19.5	20.0	11.9	23.9	45.700000
Alexandria University	146	147	Alexandria University	Egypt	29.5	19.3	28.0	99.8	36.000000
Alexandru Ioan Cuza University	2409	601	Alexandru Ioan Cuza University	Romania	24.9	46.9	13.6	7.0	28.200000
Aligarh Muslim University	2410	601	Aligarh Muslim University	India	28.3	18.7	10.0	20.9	29.600000
American University	2204	401	American University	United States of America	42.2	28.9	16.5	41.1	35.900000
American University of Beirut	2303	501	American University of Beirut	Lebanon	27.7	93.0	11.2	31.9	45.366667
American University of Sharjah	2411	601	American University of Sharjah	United Arab Emirates	12.4	95.6	10.6	13.3	33.300000
Amirkabir University of Technology	2304	501	Amirkabir University of Technology	Iran	24.5	7.7	25.7	34.8	55.700000
Anadolu University	2413	601	Anadolu University	Turkey	12.2	14.3	22.6	10.9	100.000000
Andhra University	2414	601	Andhra University	India	34.8	7.2	6.9	1.2	31.300000
Aristotle University of Thessaloniki	2416	601	Aristotle University of Thessaloniki	Greece	22.6	36.6	15.0	29.5	33.600000
Arizona State University	160	161	Arizona State University	United States of America	43.0	24.1	44.1	66.9	46.350000
Asia University, Taiwan	2417	601	Asia University, Taiwan	Taiwan	14.4	18.3	15.9	30.5	38.400000
Athens University of Economics and Business	2418	601	Athens University of Economics and Business	Greece	13.4	39.2	18.8	31.2	66.500000
Auburn University	552	350	Auburn University	United States of America	33.7	22.5	18.7	10.3	47.300000
Auckland University of Technology	2419	601	Auckland University of Technology	New Zealand	17.3	95.6	9.8	21.7	28.500000
Austral University of Chile	2420	601	Austral University of Chile	Chile	16.7	45.2	9.7	14.2	41.100000
Australian National University	42	43	Australian National University	Australia	51.9	93.9	62.4	81.0	76.075000
Autonomous University of Barcelona	400	201	Autonomous University of Barcelona	Spain	33.7	45.9	27.9	57.9	37.000000

university_name		world_rank	university_name	country	teaching	international	research	citations	income
Autonomous University of Madrid	477	276	Autonomous University of Madrid	Spain	28.8	39.7	21.4	47.5	32.500000
Babeş-Bolyai University	2308	501	Babeş-Bolyai University	Romania	27.9	35.4	12.5	32.1	28.600000
Bangor University	450	251	Bangor University	United Kingdom	24.9	67.1	23.8	48.0	29.000000
Bar-Ilan University	504	301	Bar-Ilan University	Israel	27.9	47.0	32.2	15.7	28.500000
Vilnius University	2590	601	Vilnius University	Lithuania	18.3	40.8	13.6	26.1	41.000000
Virginia Polytechnic Institute and State University	474	251	Virginia Polytechnic Institute and State Unive	United States of America	36.9	25.1	40.4	30.3	24.200000
Vrije Universiteit Brussel	548	301	Vrije Universiteit Brussel	Belgium	23.4	49.4	21.1	36.7	66.200000
VŠB - Technical University of Ostrava	2150	301	VŠB - Technical University of Ostrava	Czech Republic	18.8	22.3	15.7	85.5	32.100000
Wageningen University and Research Center	143	144	Wageningen University and Research Center	Netherlands	58.5	24.3	48.8	53.0	44.500000
Wake Forest University	91	90	Wake Forest University	United States of America	54.6	24.4	42.9	79.2	51.050000
Warsaw University of Technology	2591	601	Warsaw University of Technology	Poland	19.4	20.7	8.5	40.3	47.400000
Waseda University	599	350	Waseda University	Japan	25.4	27.1	17.3	29.7	27.300000
Washington State University	549	301	Washington State University	United States of America	28.8	31.0	24.5	33.5	34.300000
Wayne State University	475	251	Wayne State University	United States of America	34.7	24.6	16.4	55.2	32.066667
West University of Timişoara	2595	601	West University of Timişoara	Romania	16.1	21.0	3.9	22.4	15.766667
Western Sydney University	1800	351	Western Sydney University	Australia	17.8	50.1	22.4	58.7	30.400000
William & Mary	74	75	William & Mary	United States of America	53.1	20.9	36.1	95.6	53.250000
Wuhan University of Technology	1353	301	Wuhan University of Technology	China	14.8	18.9	7.8	78.1	58.700000
Xiamen University	2302	401	Xiamen University	China	26.7	25.0	15.6	47.0	29.200000
Xidian University	2597	601	Xidian University	China	17.9	12.8	12.1	8.9	83.700000
Xi'an Jiaotong University	2401	501	Xi'an Jiaotong University	China	28.7	25.8	22.5	25.5	70.400000
Yale University	9	10	Yale University	United States of America	92.1	59.2	89.7	91.5	82.475000
Yeshiva University	69	68	Yeshiva University	United States of America	63.5	53.3	46.7	74.4	58.950000
Yeungnam University	2598	601	Yeungnam University	South Korea	18.6	24.3	10.9	26.5	35.400000
Yokohama National University	2601	601	Yokohama National University	Japan	20.1	23.3	16.0	13.5	40.400000

		world_rank	university_name	country	teaching	international	research	citations	income
university_name									
York University	500	276	York University	Canada	19.9	57.7	27.7	41.2	41.700000
Yuan Ze University	601	350	Yuan Ze University	Taiwan	10.8	12.8	9.6	58.3	29.200000
Yıldız Technical University	2599	601	Yıldız Technical University	Turkey	14.5	14.9	7.6	19.3	44.000000
Zhejiang University	197	197	Zhejiang University	China	54.6	29.6	41.3	44.3	70.300000
École Normale Supérieure	41	42	École Normale Supérieure	France	66.8	44.9	48.2	95.7	30.700000
École Normale Supérieure de Lyon	99	100	École Normale Supérieure de Lyon	France	51.1	37.6	34.4	88.8	26.100000
École Polytechnique	38	39	École Polytechnique	France	57.9	77.9	56.1	91.4	73.725000
École Polytechnique Fédérale de Lausanne	47	48	École Polytechnique Fédérale de Lausanne	Switzerland	55.0	100.0	56.1	83.8	38.000000
Örebro University	2134	301	Örebro University	Sweden	18.3	39.4	10.4	87.8	29.800000

739 rows × 21 columns

```
In [17]: fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='total_score', y='world_rank', data=data)
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5cee250ef0>


```
In [18]: fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['total_score'])
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5cee0257b8>

In [19]: sns.jointplot(x='total_score', y='world_rank', data=data)

Out[19]: <seaborn.axisgrid.JointGrid at 0x7f5d21f0e908>

Out[20]: <seaborn.axisgrid.PairGrid at 0x7f5ceddd1e80>

In [21]: sns.catplot(y='world_rank', x='citations', data=data, kind="violin", split=True)

Out[21]: <seaborn.axisgrid.FacetGrid at 0x7f5cedf75fd0>

4) Информация о корреляции признаков

In [22]: data.corr()

Out[22]:

	world_rank	teaching	international research		esearch citations		total_score	num_st
world_rank	1.000000	-0.732092	-0.365120	-0.785236	-0.805942	-0.317702	-0.853945	0.0
teaching	-0.732092	1.000000	0.143880	0.908191	0.521600	0.408316	0.770419	-0.0
international	-0.365120	0.143880	1.000000	0.240472	0.273609	0.013415	0.484897	-0
research	-0.785236	0.908191	0.240472	1.000000	0.561164	0.444592	0.846262	0.0
citations	-0.805942	0.521600	0.273609	0.561164	1.000000	0.167780	0.792220	-0.0
income	-0.317702	0.408316	0.013415	0.444592	0.167780	1.000000	0.498773	-0.0
total_score	-0.853945	0.770419	0.484897	0.846262	0.792220	0.498773	1.000000	-0.0
num_students	0.065192	-0.020426	-0.137339	0.005305	-0.099872	-0.005632	-0.075964	1.0
student_staff_ratio	0.080110	-0.232529	0.056522	-0.136723	-0.055355	-0.008549	-0.087236	0.4
international_students	-0.393047	0.275345	0.803313	0.339426	0.279234	0.058790	0.503380	-0.
female_male_ratio	0.003110	-0.018707	-0.014194	-0.018145	0.016426	0.033576	0.005745	-0.0
teaching_progress	-0.231821	0.438598	-0.096220	0.365263	0.177647	0.177694	0.236082	-0.
international_progress	0.308062	-0.225894	0.156078	-0.268961	-0.189165	-0.072636	-0.205629	-0.
research_progress	-0.177708	0.246676	-0.109139	0.267249	0.192014	0.035306	0.172600	0.0
citations_progress	0.056633	-0.102778	-0.131552	-0.118460	0.191262	-0.054486	-0.004056	0.0
income_progress	-0.065488	0.108176	-0.059840	0.123628	0.110871	0.361134	0.177728	-0.0
total_score_progress	0.023829	0.056909	-0.179233	0.027362	0.219279	0.082414	0.114138	0.0
num_students_progress	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
international_students_progress	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

In [23]: sns.heatmap(data.corr(), cmap='YlGnBu', fmt='.0f')

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5ce530b278>

In []:

Отчёт по ЛР №2 по ТМО

Водка Игорь, ИУ5-61

Example of using pandasql library for data analysis

```
In []: %matplotlib inline
    import pandas as pd
    import pandasql as ps
    from datetime import datetime
    import seaborn
    import matplotlib.pyplot as plt

    %config InlineBackend.figure_format = 'svg'
    from pylab import rcParams
    rcParams['figure.figsize'] = 8, 5
In []: pd.__version__

In []: project_submissions = pd.read_csv('./data/project_submissions.csv')
    daily_engagements = pd.read_csv('./data/daily_engagement.csv')
    enrollments = pd.read_csv('./data/enrollments.csv')
```

Simple SQL query

getting accounts and date with maximum total time spent on Udacity

```
In [ ]: # pandasql code
        def example1 pandasql(daily engagements):
            simple_query =
                SELECT
                    acct,
                    total_minutes_visited,
                    utc date
                FROM daily_engagements
                ORDER BY total_minutes_visited desc
                LIMIT 10
            return ps.sqldf(simple_query, locals())
        # pandas code
        def example1_pandas(daily_engagements):
            return daily_engagements[['acct', 'total_minutes_visited', 'utc_date']].sort_values(
        by ='total_minutes_visited', ascending = False)[:10]
In [ ]: example1_pandasql(daily_engagements)
In [ ]: example1_pandas(daily_engagements)
```

SQL query with aggregating functions

Let's see whether there's weekly seasonality: on average students spent more time on weekends then on weekdays

```
In []: # ТУТ НЕ РАБОТАЛО. ДОБАВИЛ list() ВОКРУГ map()
        daily_engagements['weekday'] = list(map(lambda x: datetime.strptime(x, '%Y-%m-%d').strft
        ime('%A'), daily_engagements.utc_date))
In [ ]: daily_engagements.head()
In [ ]: # pandasql code
        def example2_pandasql(daily_engagements):
            aggr_query = '
                SELECT
                    avg(total_minutes_visited) as total_minutes_visited,
                    weekday
                FROM daily_engagements
                GROUP BY weekday
            return ps.sqldf(aggr query, locals()).set index('weekday')
        # pandas code
        def example2 pandas(daily engagements):
            return pd.DataFrame(daily_engagements.groupby('weekday').total_minutes_visited.mean
        ())
In [ ]: weekday engagement = example2 pandasql(daily engagements)
        weekday engagement
In [ ]:
        example2 pandas(daily engagements)
In [ ]:
        week order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunda
        y']
        weekday engagement.loc[week order].plot(kind = 'bar', rot = 45, title = 'Total time spen
        t on Udacity by weekday')
```

Joining tables

Let's see whether students that canceled program was spending less time on Udacity within first week of enrollment. Note we need to filter out Udacity test users not to spoil statistics. Also we need to take into account the fact that student may join several times.

```
In [ ]: | # pandasql code
        def example3_pandasql(enrollments, daily_engagements):
            join_query =
                SELECT
                    avg(avg_acct_total_minutes) as avg_total_minutes,
                     status
                FROM
                     (SELECT
                         avg(total_minutes_visited) as avg_acct_total_minutes,
                        status.
                        account key
                    FR0M
                         (SELECT
                             e.account key,
                             e.status,
                             de.total_minutes_visited,
                             (cast(strftime('%s',de.utc_date) as interger) - cast(strftime('%s',
        e.join_date) as interger))/(24*60*60) as days_since_joining,
                             (cast(strftime('%s',e.cancel_date) as interger) - cast(strftime('%s
         ', de.utc_date) as interger))/(24*60*60) as days_before_cancel
                        FROM enrollments as e JOIN daily_engagements as de ON (e.account_key = d
        e.acct)
                        WHERE (is_udacity = 0) AND (days_since_joining < 7) AND (days_since_join
        ing >= 0
                             AND ((days before cancel >= 0) OR (status = 'current'))
                    GROUP BY status, account_key)
                GROUP BY status
            return ps.sqldf(join_query, locals()).set_index('status')
        # pandas code
        def example3_pandas(enrollments, daily_engagements):
            join_df = pd.merge(daily_engagements,
                            enrollments[enrollments.is_udacity == 0],
                           how = 'inner'
                            right_on ='account_key',
                           left on = 'acct')
            join df = join df[['account key', 'status', 'total minutes visited', 'utc date', 'jo
        in date', 'cancel date']]
            join_df['days_since_joining'] = map(lambda x: x.days,
                                                 pd.to_datetime(join_df.utc_date) - pd.to_datetim
        e(join_df.join_date))
            join_df['before_cancel'] = (pd.to_datetime(join_df.utc_date) <= pd.to_datetime(join_</pre>
        df.cancel date))
            join_df = join_df[join_df.before_cancel | (join_df.status == 'current')]
            join_df = join_df[(join_df.days_since_joining < 7) & (join_df.days_since_joining >=
        0)1
            avg account total minutes = pd.DataFrame(join df.groupby(['account key', 'status'],
        as_index = False)
                                                              .total_minutes_visited.mean())
            avg_total_minutes= pd.DataFrame(avg_account_total_minutes.groupby('status').total_mi
        nutes_visited.mean())
            avg total minutes.columns = ['avg total minutes']
            return avg_total_minutes
In [ ]: example3 pandasql(enrollments, daily engagements)
In [ ]: example3_pandas(enrollments, daily_engagements)
```

```
Estimating time elapsed
```

```
In [ ]: import time

def count_mean_time(func, params, N =5):
    total_time = 0
    for i in range(N):
        time1 = time.time()
        if len(params) == 1:
            tmp_df = func(params[0])
        elif len(params) == 2:
            tmp_df = func(params[0], params[1])
        time2 = time.time()
        total_time += (time2 - time1)
    return total_time/N
```

Example #1

```
In [ ]: ex1_times = []
    for count in range(1000, 137000, 1000):
        pandasql_time = count_mean_time(example1_pandasql, [daily_engagements[:count]])
        pandas_time = count_mean_time(example1_pandas, [daily_engagements[:count]])
        ex1_times.append({'count': count, 'pandasql_time': pandasql_time, 'pandas_time': pandas_time})
In [ ]: ex1_times_df = pd.DataFrame(ex1_times)
        ex1_times_df.columns = ['number of rows in daily_engagements', 'pandas time', 'pandasql_time']
        ex1_times_df = ex1_times_df.set_index('number of rows in daily_engagements')

In [ ]: ax = ex1_times_df.plot(title = 'Example #1 time elapsed (seconds)', subplots = True)
```

Example #2

```
In [ ]: ex2_times = []
    for count in range(1000, 137000, 1000):
        pandasql_time = count_mean_time(example2_pandasql, [daily_engagements[:count]])
        pandas_time = count_mean_time(example2_pandas, [daily_engagements[:count]])
        ex2_times.append({'count': count, 'pandasql_time': pandasql_time, 'pandas_time': pandas_time})

In [ ]: ex2_times_df = pd.DataFrame(ex2_times)

In [ ]: ex2_times_df.columns = ['number of rows in daily_engagements', 'pandas time', 'pandasql time']
        ex2_times_df = ex2_times_df.set_index('number of rows in daily_engagements')

In [ ]: ax = ex2_times_df.plot(title = 'Example #2 time elapsed (seconds)', subplots = True)
```

Example #3

```
In [ ]: all_users = enrollments.account_key.unique().tolist()
len(all_users)
```

```
In [ ]: | ex3_times = []
         for users_count in range(10, 1310, 10):
             users = all_users[:users_count]
             enrollments_sample = enrollments[enrollments.account_key.isin(users)]
             daily_engagements_sample = daily_engagements[daily_engagements.acct.isin(users)]
             count = daily_engagements_sample.shape[0]
             pandasql_time = count_mean_time(example3_pandasql, [enrollments_sample, daily_engage
         ments_sample])
             pandas_time = count_mean_time(example3_pandas, [enrollments_sample, daily_engagement
         s_sample])
            ex3_times.append({'count': count, 'pandasql_time': pandasql_time, 'pandas_time': pan
         das_time})
In [ ]: ex3_times_df = pd.DataFrame(ex3_times).set_index('count')
In [ ]: | ax = ex3_times_df.plot(title = 'Example #3 time elapsed')
         ax.set_xlabel('number of rows in daily_engagements')
ax.set_ylabel('time, seconds')
In [ ]:
```

Лабораторная работа 3 по ТМО

Водка Игорь, ИУ5-61

Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных

```
In [69]: # read the data
import pandas as pd
reviews = pd.read_csv("./winemag-data-130k-v2.csv", index_col=0)
pd.set_option('max_rows', 5)
```

Смотрим тип данных (допустим, цену):

Пропуски в данных. Простая замена

Как видим, существует довольно много строк, где не указана страна:

taster_twitter_hand	taster_name	region_2	region_1	province	price	points	designation	description	country	
@worldwineguy	Mike DeSimone	NaN	NaN	NaN	30.0	87	Asureti Valley	Amber in color, this wine has aromas of peach	NaN	913
@vossroge	Roger Voss	NaN	NaN	NaN	NaN	83	Partager	Soft, fruity and juicy, this is a pleasant, si	NaN	3131
@worldwineguy	Mike DeSimone	NaN	NaN	NaN	30.0	90	Shah	A blend of 60% Syrah, 30% Cabernet Sauvignon a	NaN	129590
@worldwineguy	Mike DeSimone	NaN	NaN	NaN	32.0	91	NaN	This wine offers a delightful bouquet of black	NaN	129900

```
In [73]: for column in ["country", "region_1", "region_2"]:
    reviews[column] = reviews[column].fillna("Unknown")
```

Сработало:

```
In [74]: reviews[reviews.country.isnull()]

country description designation points price province region_1 region_2 taster_name taster_twitter_handle title

In [75]: reviews[reviews.region_1.isnull()]

Out[75]: country description designation points price province region_1 region_2 taster_name taster_twitter_handle title

In [76]: reviews[reviews.region_2.isnull()]

Out[76]: country description designation points price province region_1 region_2 taster_name taster_twitter_handle title
```

Пропуски в данных. Импьютация

У нас в датасете больше нет NaN. Но импьютацию из лекции опробовать охота. Сделаем виртуальный датасет:

```
In [77]: from sklearn.impute import SimpleImputer
         from sklearn.impute import MissingIndicator
In [78]:
         # Фильтр для проверки заполнения пустых значений
                'name': ['Dasha', 'Tanya', 'Andrey', 'Igor', 'Katya', 'Rodion', 'Artyom'],
                'mood': [30, None, 20, 20, 25, None, 22]
         df = pd.DataFrame(data=d)
         moods = df[['mood']]
         indicator = MissingIndicator()
         mask_missing_values_only = indicator.fit_transform(moods)
         mask_missing_values_only
Out[78]: array([[False],
                 [ True],
                 [False],
                [False],
                 [False],
                 [True],
                 [False]])
In [79]: | strategies=['mean', 'median', 'most_frequent']
In [80]: def test num impute(strategy param):
             imp_num = SimpleImputer(strategy=strategy_param)
             data num imp = imp num.fit transform(moods)
             return data_num_imp[mask_missing_values_only]
In [81]: for strategy in strategies:
             print(strategy, test_num_impute(strategy))
         mean [23.4 23.4]
         median [22. 22.]
         most_frequent [20. 20.]
```

```
In [82]: pd.set_option('display.max_rows', 500)
          df.head(n=100500)
Out[82]:
              name mood
           0 Dasha
                     30.0
           1
              Tanya
                     NaN
           2 Andrey
                     20.0
           3
                Igor
                     20.0
              Katya
                     25.0
           5 Rodion
                     NaN
           6 Artyom
                     22.0
```

После импьютации:

```
In [83]: | test_num_impute('mean')[0]
Out[83]: 23.4
In [84]: | df_imputed = df
          df imputed['mood'] = df imputed['mood'].fillna(test num impute('mean')[0])
          df_imputed.head(n=100500)
Out[84]:
              name mood
                     30.0
          0 Dasha
          1
              Tanya
                     23.4
          2 Andrey
                     20.0
                     20.0
               Igor
                     25.0
              Katya
           5 Rodion
                     23.4
           6 Artyom
                     22.0
```

А ещё можно просто выкидывать:

```
In [85]: reviews = reviews.dropna()
```

Преобразование в категориальные признаки данных

Label encoding

Ничего не потерялось.

One hot encoding

```
In [90]: df
Out[90]:
                name mood
            0 Dasha
                        30.0
            1
               Tanya
                        23.4
            2 Andrey
                        20.0
                        20.0
                  Igor
                Katya
                        25.0
            5 Rodion
                        23.4
            6 Artyom
                        22.0
In [91]: ohe = OneHotEncoder(categories="auto")
           cat_enc_ohe = ohe.fit_transform(df[["mood"]])
In [92]: cat enc ohe.shape
Out[92]: (7, 5)
In [93]: cat_enc_ohe.todense()
Out[93]: matrix([[0., 0., 0., 0., 1.],
                      [0., 0., 1., 0., 0.],
                     [1., 0., 0., 0., 0.],
                     [1., 0., 0., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 1., 0., 0.],
[0., 1., 0., 0., 0.]])
```

Масштабирование данных

```
In [94]: from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
import seaborn as sns
import matplotlib.pyplot as plt
```

```
In [95]: sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(reviews[['points']])
```

/home/igor-vodka/.local/lib/python3.6/site-packages/sklearn/preprocessing/data.py:323: Da taConversionWarning: Data with input dtype int64 were all converted to float64 by MinMaxS caler.

return self.partial_fit(X, y)

```
In [96]: plt.hist(reviews['points'], 50)
plt.show()
```



```
In [97]: plt.hist(sc1_data, 50)
plt.show()
```


Немного нормализации данных

```
In [98]: sc3 = Normalizer(norm='l1')
sc3_data = sc3.fit_transform([[1, 9], [2, 8]])
```

```
In [99]: plt.hist(sc3_data, 50)
plt.show()
```


Готово.

00...

```
In [ ]:
```

Лабораторная работа 4 по ТМО

Водка Игорь, ИУ5-61

Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей.

Выберите набор данных (датасет) для решения задачи классификации или регресии.

Возьмём из прошлой лабы. ../lab3/winemag-data-130k-v2.csv

В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.

```
In [355]: # read the data
    import pandas as pd
    reviews = pd.read_csv("../lab3/winemag-data-130k-v2.csv", index_col=0)
    pd.set_option('max_rows', 5)

for column in ["country", "region_1", "region_2"]:
        reviews[column] = reviews[column].fillna("Unknown")

reviews['price'] = reviews.groupby('country').transform(lambda x: x.fillna(x.mean()))

In [356]: from sklearn.preprocessing import LabelEncoder, OneHotEncoder

# country ok, winery ok
for feature in ['country', 'province', 'region_1', 'region_2', 'variety', 'winery']:
    le = LabelEncoder()
    reviews[feature] = reviews[feature].dropna()
    processed = pd.DataFrame({'result': reviews[feature]})
    reviews[feature] = le.fit_transform(processed['result'].astype(str))
```

In [357]:	reviews	5									
Out[357]:		country	description	designation	points	price	province	region_1	region_2	taster_name	taster_twitter_handle
	0	22	Aromas include tropical fruit, broom, brimston	Vulkà Bianco	87	87.0	331	424	15	Kerin O'Keefe	@kerinokeefe
	1	31	This is ripe and fruity, a wine that is smooth	Avidagos	87	87.0	108	1094	15	Roger Voss	@vossroger
	129969	15	A dry style of Pinot Gris, this is crisp with	NaN	90	90.0	11	21	15	Roger Voss	@vossroger
	129970	15	Big, rich and off-dry, this is powered by inte	Lieu-dit Harth Cuvée Caroline	90	90.0	11	21	15	Roger Voss	@vossroger
	129971 r	ows × 13	3 columns								
	4										•

С использованием метода train_test_split разделите выборку на обучающую и тестовую.

```
In [358]: from sklearn.model_selection import train_test_split

X = reviews[['country', 'price', 'province', 'region_1', 'variety', 'winery']]
y = reviews['points']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
```

Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью трех подходящих для задачи метрик.

```
In [363]: # пусть первая метрика - максимальный модуль разности
metric1 = max(abs(y_test.values[k] - v) for k, v in enumerate(y_pred))
print("Метрика №1:", metric1)

# пусть вторая метрика - самопальная mean_squared_error
metric2 = sum(pow(y_test.values[k] - v, 2) for k, v in enumerate(y_pred)) / len(y_pred)
print("Метрика №2:", metric2)

Метрика №1: 10.0
Метрика №2: 4.792521926450363
```

Постройте модель и оцените качество модели с использованием кроссвалидации. Проведите эксперименты с тремя различными стратегиями кроссвалидации.

```
In [ ]:
In [364]: from sklearn.model selection import cross val score
         estimator = neigh
         scores = cross val score(estimator, X train, y train, cv=10) # 10 folds by Stratified)KF
         old
         scores
Out[364]: array([0.46893334, 0.46132663, 0.4546627, 0.45731714, 0.45293478,
                0.47408317, 0.4616699, 0.43496419, 0.443433, 0.45459557])
In [365]: print("Точность в первом случае: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
         Точность в первом случае: 0.46 (+/- 0.02)
In [366]: | from sklearn.model_selection import ShuffleSplit
         cv = ShuffleSplit(n_splits=10, test_size=0.15, random_state=3)
         scores2 = cross_val_score(estimator, X_train, y_train, cv=cv)
         scores2
In [367]:
         print("Точность во втором случае: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() *
         2))
         Точность во втором случае: 0.44 (+/- 0.02)
```

Произведите подбор гиперпараметра K с использованием GridSearchCV и кросс-валидации.

```
In [368]: from sklearn.model_selection import GridSearchCV

In [369]: grid_search = GridSearchCV(estimator, cv=5, param_grid={'n_neighbors': [1, 2, 3]})
grid_search.fit(X_train, y_train)
y_pred2 = grid_search.predict(X_test)

In [370]: # пусть первая метрика - максимальный модуль разности
metric1 = max(abs(y_test.values[k] - v) for k, v in enumerate(y_pred2))
print("Метрика №1 для найденного параметра:", metric1)

# пусть вторая метрика - самопальная mean_squared_error
metric2 = sum(pow(y_test.values[k] - v, 2) for k, v in enumerate(y_pred2)) / len(y_pred2))
print("Метрика №2 для найденного параметра:", metric2)

Метрика №1 для найденного параметра: 12.0
Метрика №2 для найденного параметра: 4.034966917987383
```

Лабораторная работа №5. Линейные модели, SVM и деревья решений.

Водка Игорь, ИУ5-61

Выберите набор данных (датасет) для решения задачи классификации или регресии.

```
In [101]:
            import numpy as np
            import pandas as pd
            import seaborn as sns
            import matplotlib.pyplot as plt
            %matplotlib inline
In [102]: from sklearn.datasets import load diabetes
            from sklearn.model_selection import train_test_split
            data = pd.DataFrame(load_diabetes().data)
            target = pd.DataFrame(load_diabetes().target)
            data.columns = load_diabetes().feature_names
            data.head()
Out[102]:
                    age
                              sex
                                       bmi
                                                 bp
                                                           s1
                                                                     s2
                                                                                        s4
                                                                                                 s5
                                                                                                          s6
                0.038076
                         0.050680
                                   0.061696
                                            0.021872
                                                     -0.044223
                                                               -0.034821
                                                                        -0.043401
                                                                                  -0.002592
                                                                                            0.019908
                                                                                                     -0.017646
               -0.001882 -0.044642 -0.051474
                                            -0.026328
                                                               -0.019163
                                                                                           -0.068330
                                                                                                     -0.092204
                                                     -0.008449
                                                                         0.074412
                                                                                 -0.039493
                0.085299
                         0.050680
                                   0.044451 -0.005671
                                                     -0.045599
                                                               -0.034194
                                                                        -0.032356
                                                                                  -0.002592
                                                                                            0.002864
                                                                                                     -0.025930
               -0.089063 -0.044642 -0.011595 -0.036656
                                                      0.012191
                                                               0.024991
                                                                        -0.036038
                                                                                  0.034309
                                                                                           0.022692
                                                                                                    -0.009362
                0.005383 -0.044642 -0.036385
                                            0.021872
                                                      0.003935
                                                               0.015596
                                                                         0.008142
                                                                                 -0.002592
                                                                                           -0.031991
```

В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.

```
In [103]: | from sklearn.preprocessing import MinMaxScaler
In [104]:
           sc1 = MinMaxScaler()
           for i in data.columns:
                data[i] = sc1 data = sc1.fit transform(pd.DataFrame(data[i]))
           data.head()
Out[104]:
                  age
                       sex
                               hmi
                                        ad
                                                 s1
                                                         s2
                                                                  s3
                                                                          s4
                                                                                  s5
                                                                                           s6
            0 0.666667
                       1.0 0.582645 0.549296
                                            0.562217 0.439394
              0.483333
                       0.0
                           0.148760
                                   0.352113
                                            0.421569
                                                    0.306773
                                                            0.623377 0.141044
                                                                             0.222443
            2 0.883333
                       1.0 0.516529
                                            0.289216  0.258964  0.246753  0.282087
                                                                             0.496584 0.409091
                                   0.436620
              0.083333
                       0.0 0.301653 0.309859
                                            0.495098
                                                    0.447211 0.233766 0.423131
                                                                             0.572936 0.469697
              0.516667 0.0 0.206612 0.549296 0.465686 0.417331 0.389610 0.282087 0.362369 0.333333
```

С использованием метода train_test_split разделите выборку на обучающую и тестовую.

```
In [105]: train data, test data, train target, test target = train test split(data, target, random
           state=42)
           train_data.head()
Out[105]:
                   age sex
                                        bp
                                                                                         s6
            16 0.466667
                        0.0 \quad 0.508264 \quad 0.661972 \quad 0.539216 \quad 0.291833 \quad 0.623377 \quad 0.141044 \quad 0.686869 \quad 0.606061
           408 0.783333
                       0.0 0.152893 0.901408 0.563725 0.429283 0.298701 0.382228 0.709045 0.651515
            432 0.533333
                       0.0 0.557851 0.436620 0.656863 0.509960 0.350649 0.380818 0.699975 0.893939
           316 0.566667 1.0 0.400826 0.464789 0.455882 0.299801 0.246753 0.423131 0.774234 0.651515
                                           3 0.083333
                        0.0 0.301653 0.309859
In [106]: | from sklearn.linear_model import LinearRegression
           reg = LinearRegression().fit(train_data, train_target)
In [107]:
          from sklearn.metrics import mean absolute error, mean squared error, mean squared log er
           ror, median absolute error, r2 score
In [108]: | def metrics(data, target):
               print("Mean absolute error:", mean_absolute_error(data, target))
               print("Mean squared error:", mean squared error(data, target))
               print("Median absolute error:", median_absolute_error(data, target))
           metrics(reg.predict(test_data), test_target)
          Mean absolute error: 41.548363283252066
           Mean squared error: 2848.295307932943
          Median absolute error: 35.207936652961706
```

Обучите 1) одну из линейных моделей, 2) SVM и 3) дерево решений. Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.

```
In [109]: from sklearn.svm import SVR
           reg = SVR(gamma='auto').fit(train_data, train_target)
           /home/igor-vodka/.local/lib/python3.6/site-packages/sklearn/utils/validation.py:761: Data
           ConversionWarning: A column-vector y was passed when a 1d array was expected. Please chan ge the shape of y to (n_samples, ), for example using ravel().
             y = column_or_ld(y, warn=True)
In [110]: | metrics(reg.predict(test_data), test_target)
          Mean absolute error: 62.19052723285024
           Mean squared error: 5247.927904086744
          Median absolute error: 57.78011108207377
In [111]: from sklearn.tree import DecisionTreeRegressor
           reg = DecisionTreeRegressor(max_depth=2)
           reg.fit(train_data, train_target)
Out[111]: DecisionTreeRegressor(criterion='mse', max_depth=2, max_features=None,
                      max_leaf_nodes=None, min_impurity_decrease=0.0,
                       min_impurity_split=None, min_samples_leaf=1,
                      min_samples_split=2, min_weight_fraction_leaf=0.0,
                       presort=False, random_state=None, splitter='best')
In [112]: metrics(reg.predict(test_data), test_target)
           Mean absolute error: 47.902763313772496
           Mean squared error: 3649.4090253107397
```

Median absolute error: 39.9816513761468

```
In [113]: from sklearn.model selection import GridSearchCV
           reg = LinearRegression()
           param = {'n_jobs':range(10)}
           GV = GridSearchCV(reg, param, cv=3)
           GV.fit(train_data, train_target)
           GV.best estimator
Out[113]: LinearRegression(copy X=True, fit intercept=True, n jobs=0, normalize=False)
In [114]: metrics(GV.predict(test data), test target)
           Mean absolute error: 41.548363283252066
           Mean squared error: 2848,295307932943
           Median absolute error: 35.207936652961706
In [115]: reg = SVR(gamma='auto')
           param = {'degree':range(1,10)}
           GV = GridSearchCV(reg, param, cv=3)
           GV.fit(train data, train target[0])
Out[115]: GridSearchCV(cv=3, error_score='raise-deprecating',
                  estimator=SVR(C=1.0, cache size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='aut
           0'
             kernel='rbf', max iter=-1, shrinking=True, tol=0.001, verbose=False),
                  fit_params=None, iid='warn', n_jobs=None,
                  param_grid={'degree': range(1, 10)}, pre_dispatch='2*n_jobs',
                   refit=True, return_train_score='warn', scoring=None, verbose=0)
In [116]: GV.best estimator
Out[116]: SVR(C=1.0, cache_size=200, coef0=0.0, degree=1, epsilon=0.1, gamma='auto',
             kernel='rbf', max iter=-1, shrinking=True, tol=0.001, verbose=False)
In [117]: metrics(GV.predict(test data), test target)
           Mean absolute error: 62.19052723285024
           Mean squared error: 5247.927904086744
           Median absolute error: 57.78011108207377
In [118]: reg = DecisionTreeRegressor( )
           param = {'max_depth':range(1,10)}
           GV = GridSearchCV(reg, param, cv=3)
           GV.fit(train_data, train_target)
           /home/igor-vodka/.local/lib/python3.6/site-packages/sklearn/model_selection/_search.py:84 1: DeprecationWarning: The default of the `iid` parameter will change from True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-s
           et sizes are unequal.
             DeprecationWarning)
Out[118]: GridSearchCV(cv=3, error score='raise-deprecating',
                  estimator=DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=Non
           e,
                       max_leaf_nodes=None, min_impurity_decrease=0.0,
                       min_impurity_split=None, min_samples_leaf=1,
                       min_samples_split=2, min_weight_fraction_leaf=0.0,
                       presort=False, random state=None, splitter='best'),
                  fit_params=None, iid='warn', n_jobs=None,
                  param_grid={'max_depth': range(1, 10)}, pre_dispatch='2*n_jobs',
                   refit=True, return train score='warn', scoring=None, verbose=0)
In [119]: GV.best estimator
Out[119]: DecisionTreeRegressor(criterion='mse', max depth=2, max features=None,
                       max_leaf_nodes=None, min_impurity_decrease=0.0,
                       min_impurity_split=None, min_samples_leaf=1,
                       min_samples_split=2, min_weight_fraction_leaf=0.0,
                       presort=False, random_state=None, splitter='best')
In [120]: metrics(GV.predict(test data), test target)
           Mean absolute error: 47.902763313772496
           Mean squared error: 3649.4090253107397
```

Median absolute error: 39.9816513761468

```
In [121]: reg = LinearRegression().fit(train_data, train_target)
           reg.fit(train data, train target)
           metrics(reg.predict(test_data), test_target)
           Mean absolute error: 41.548363283252066
           Mean squared error: 2848.295307932943
          Median absolute error: 35.207936652961706
In [122]: reg = SVR(degree=1, gamma='auto').fit(train_data, train_target)
           reg.fit(train_data, train_target)
           metrics(reg.predict(test_data), test_target)
          Mean absolute error: 62.19052723285024
           Mean squared error: 5247.927904086744
          Median absolute error: 57.78011108207377
           /home/igor-vodka/.local/lib/python3.6/site-packages/sklearn/utils/validation.py:761: Data
           ConversionWarning: A column-vector y was passed when a 1d array was expected. Please chan
           ge the shape of y to (n_samples, ), for example using ravel().
            y = column_or_1d(y, warn=True)
           /home/igor-vodka/.local/lib/python3.6/site-packages/sklearn/utils/validation.py:761: Data
           ConversionWarning: A column-vector y was passed when a 1d array was expected. Please chan ge the shape of y to (n_samples, ), for example using ravel().
            y = column_or_1d(y, warn=True)
In [123]: reg = DecisionTreeRegressor(max_depth=3)
           reg.fit(train data, train target)
           mean_absolute_error(reg.predict(test_data), test_target)
Out[123]: 47.34495703928109
```

Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

Ну, стало неплохо!

In []:

Лабораторная работа №6

Водка Игорь, ИУ5-61

Ансамбли моделей машинного обучения.

Выберите набор данных (датасет) для решения задачи классификации или регресии.

В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.

С использованием метода train_test_split разделите выборку на обучающую и тестовую.

Ладно, давайте вернёмся к нашему любимому датасету. ../lab3/winemag-data-130k-v2.csv

```
In [82]: # read the data
    import pandas as pd
    reviews = pd.read_csv("../lab3/winemag-data-130k-v2.csv", index_col=0)
    pd.set_option('max_rows', 5)

for column in ["country", "region_1", "region_2"]:
        reviews[column] = reviews[column].fillna("Unknown")

reviews['price'] = reviews.groupby('country').transform(lambda x: x.fillna(x.mean()))

In [83]: from sklearn.preprocessing import LabelEncoder, OneHotEncoder

# country ok, winery ok
for feature in ['country', 'province', 'region_1', 'region_2', 'variety', 'winery']:
    le = LabelEncoder()
    reviews[feature] = reviews[feature].dropna()
    processed = pd.DataFrame({'result': reviews[feature]})
    reviews[feature] = le.fit_transform(processed['result'].astype(str))
```

```
In [84]:
            reviews
Out[84]:
                     country description designation points price province region_1 region_2 taster_name taster_twitter_handle
                                 Aromas
                                 include
                                               Vulkà
                                                                                                      Kerin
                  0
                         22
                                                         87
                                                             87.0
                                                                        331
                                                                                 424
                                                                                            15
                                 tropical
                                                                                                                    @kerinokeefe
                                              Bianco
                                                                                                    O'Keefe
                             fruit, broom.
                              brimston...
                              This is ripe
                              and fruity, a
                                            Avidagos
                                                             87.0
                                                                                1094
                                                                                                 Roger Voss
                                                                                                                     @vossroger
                              wine that is
                                smooth...
                               A dry style
                                 of Pinot
             129969
                                                             90.0
                                                                         11
                                                                                  21
                                                                                            15
                         15
                                                NaN
                                                         90
                                                                                                 Roger Voss
                                                                                                                     @vossroger
                              Gris, this is
                             crisp with ...
                                 Big, rich
                                              Lieu-dit
                              and off-dry,
                                                             90.0
             129970
                         15
                                  this is
                                         Harth Cuvée
                                                         90
                                                                         11
                                                                                  21
                                                                                            15
                                                                                                 Roger Voss
                                                                                                                     @vossroger
                              powered by
                                             Caroline
                                   inte...
            129971 rows × 13 columns
In [85]: | from sklearn.model_selection import train_test_split
            X = reviews[['country', 'price', 'province', 'region_1', 'variety', 'winery']]
            y = reviews['points']
            train_data, test_data, train_target, test_target = train_test_split(X, y, test_size=0.1,
             random state=42)
```

Обучите две ансамблевые модели. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.

Возьмём полюбившуюся функцию из прошлой лабораторной работы:

```
In [88]: def metrics(data, target):
    print("Mean absolute error:", mean_absolute_error(data, target))
    print("Mean squared error:", mean_squared_error(data, target))
    print("Median absolute error:", median_absolute_error(data, target))
```

```
In [89]: metrics(reg.predict(test data), test target)
         Mean absolute error: 2.276448165395061e-13
         Mean squared error: 7.267538121100085e-26
         Median absolute error: 2.1316282072803006e-13
In [90]: from sklearn.ensemble import RandomForestRegressor
In [91]: req = RandomForestRegressor(max depth=2, random state=0, n estimators=100)
         reg.fit(train data, train target)
Out[91]: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=2,
                    max_features='auto', max_leaf_nodes=None,
                    min_impurity_decrease=0.0, min_impurity_split=None,
                    min_samples_leaf=1, min_samples_split=2,
                    min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,
                    oob_score=False, random_state=0, verbose=0, warm_start=False)
In [92]: metrics(reg.predict(test_data), test_target)
         Mean absolute error: 0.7349767393856221
         Mean squared error: 0.9189615236579426
         Median absolute error: 0.9655417152699357
```

Произведите для каждой модели подбор значений одного гиперпараметра. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.

```
In [93]: from sklearn.model_selection import GridSearchCV
Довольно долго:
   In [94]: reg = RandomForestRegressor(random state=0, n estimators=30)
            param = {'max_depth':range(1,10)}
            GV = GridSearchCV(reg, param, cv=3)
            GV.fit(train_data, train_target)
   Out[94]: GridSearchCV(cv=3, error_score='raise-deprecating',
                   estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                        max_features='auto', max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=None,
                        oob score=False, random state=0, verbose=0, warm start=False),
                   fit_params=None, iid='warn', n_jobs=None,
                   param_grid={'max_depth': range(1, 10)}, pre_dispatch='2*n_jobs',
                    refit=True, return_train_score='warn', scoring=None, verbose=0)
   In [95]: GV.best estimator
   Out[95]: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=8,
                       max_features='auto', max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=None,
                        oob_score=False, random_state=0, verbose=0, warm_start=False)
   In [96]: reg = RandomForestRegressor(max_depth=3, random_state=0, n_estimators=30)
             reg.fit(train_data, train_target)
            prediction = reg.predict(test_data)
            metrics(prediction, test target)
```

Mean absolute error: 0.40311575864292687 Mean squared error: 0.2554229628905424 Median absolute error: 0.42376576783307485

```
In [97]: print("Prediction =", len(prediction))
print("Test target =", len(test_target))
           Prediction = 12998
           Test target = 12998
 In [98]: | comparison = pd.DataFrame(
                     "predictions": prediction,
                     "real target": test_target
                }
            )
            comparison['diff'] = comparison.apply(lambda row: abs(row['predictions'] - row['real tar
            get']), axis=1)
            comparison = comparison.sort_values('diff')
 In [99]: comparison.head()
 Out[99]:
                  predictions real target diff
            27523
                        0.88
                                   88 0.0
             4253
                        0.88
                                   88 0.0
            17168
                        89.0
                                   89 0.0
            42835
                        89.0
                                   89 0.0
            41600
                        0.88
                                   88 0.0
In [100]: comparison.tail()
Out[100]:
```

	predictions	real target	diff
116141	94.620707	99	4.379293
114973	94.620707	99	4.379293
60880	94.620707	99	4.379293
7335	94.620707	100	5.379293
123545	94.620707	100	5.379293

Московский государственный технический университет

им. Н.Э. Баумана

УТВЕРЖДАЮ:	
Гапанюк Ю.Е.	""2019 г.
Курсовая работа по курсу «Технологии маш	инного обучения»
Пояснительная записка	
<u>пояснительная записка</u> (вид документа)	
<u>писчая бумага</u> (вид носителя)	
20 (количество листов)	
исполнители:	
студент группы ИУ5-61 Водка И.Э.	""2019 г.

Содержание

1. Задание:	3
1. Задание:	
1.2. Задание данной курсовой работы	
2. Введение	
3. Основная часть	
3.1. Подготовка датасета	
3.2. Jupyter Notebook	
Сбор данных из датасета	
Описание модели глубокого обучения на Keras	
Обучение модели	
Графики	14
Результат	
Заключение	19
Список использованных источников	

1. Задание:

1.1. Общее задание

Схема типового исследования, проводимого студентом в рамках курсовой работы, содержит выполнение следующих шагов:

- Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее трех метрик и обосновать выбор.
- Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее пяти моделей, две из которых должны быть ансамблевыми.
- Формирование обучающей и тестовой выборок на основе исходного набора данных.
- Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется постройение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д.

Приведенная схема исследования является рекомендуемой. Возможно выполнение курсовой работы на нестандартную тему, которая должна быть предварительно согласована с ответственным за прием курсовой работы.

1.2. Задание данной курсовой работы

Для своей курсовой работы я выбрал нестандартную тему. Причины такого поступка:

- Требования, изложенные выше, характерны как для данной курсовой работы, так и для лабораторных работ, выполненных ранее.
- Тем не менее, многие интересные аспекты работы с технологиями машинного обучения не были рассмотрены в практических работах в данном семестре.
- Значит, нет проблемы в том, чтобы использовать собственный вариант выполнения курсовой работы, т.к. третий раз закреплять одно и то же хорошо, но рассмотреть что-то новое тоже неплохо.

Соответственно, задание курсовой работы было придумано самостоятельно и выглядит следующим образом:

Необходимо разработать систему, предварительно обученную на обучающей выборке и определяющую по фотографии, сделана ли фотография в городе России или Великобритании. Т.е., классификатор.

Используемые технологии:

- Node.JS для получения выборки фотографий из Google Street View;
- Python (Anaconda) + Jupyter Notebook;
- Keras (сверточная нейронная сеть)
- прочие инструменты (Matplotlib, Pandas, Numpy, Sklearn...)

2. Введение

Задача обработки изображений — весьма сложная, но с ней неплохо справляются свёрточные нейронные сети.

Цитата из Википедии:

Свёрточная нейронная сеть (англ. convolutional neural network, CNN) специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная эффективное на распознавание образов, входит в технологий глубокого обучения (англ. deep learning). Использует некоторые

особенности зрительной коры, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого набора простых клеток. Таким образом, идея свёрточных нейронных сетей заключается в чередовании свёрточных слоёв (англ. convolution layers) и субдискретизирующих слоёв (англ. subsampling layers или англ. pooling layers, слоёв подвыборки). Структура сети — однонаправленная (без обратных связей), принципиально многослойная. Для обучения используются стандартные методы, чаще всего метод обратного распространения ошибки. Функция активации нейронов (передаточная функция) — любая, по выбору исследователя.

Название архитектура сети получила из-за наличия операции свёртки, суть которой в том, что каждый фрагмент изображения умножается на матрицу (ядро) свёртки поэлементно, а результат суммируется и записывается в аналогичную позицию выходного изображения.

Работу в этой курсовой работе я выполнял на "инженерном" уровне, не сильно вдаваясь в математические подробности, однако основы архитектуры я рассмотрел.

Подробнее о выполнении работы – в основной части данного документа.

Ещё один важный этап выполнения — **подготовить хороший датасет**. Вместо использования готового датасета я написал небольшой скрипт на Node.JS, загружающий изображения с Google Street View. Далее эти данные следовало обработать (описывается в первой части основного раздела).

Наконец, после завершения работы нейронной сети были сделаны **выводы с графиками** и небольшими расчётами.

3. Основная часть

3.1. Подготовка датасета

```
const request = require('request-promise');
const { execSync } = require('child_process');
const fs = require('fs');
const mkdirp = require('mkdirp-promise');
const sharp = require('sharp');
const IMAGE_SIZE = 400:
const ATTEMPTS = 10;
const ROUND RATIO = 100000;
const GENERATE_TEST = true;
// Генерирует случайные координаты в прямоугольнике
const randomCoordsInSquare = ({lat1, lng1, lat2, lng2}) => {
 const minLat = Math.min(lat1, lat2);
const maxLat = Math.max(lat1, lat2);
const minLng = Math.min(lng1, lng2);
  const maxLng = Math.max(lng1, lng2);
  const lat = minLat + Math.random() * (maxLat - minLat);
  const lng = minLng + Math.random() * (maxLng - minLng);
  return { lat: Math.round(lat * ROUND_RATIO) / ROUND_RATIO, lng: Math.round(lng
* ROUND_RATIO) / ROUND_RATIO };
};
// Находит картинку в "прямоугольнике" координат
const findPictureForSquare = async (square, country) => {
  const makeUri = (lat, lng) => {
    return [
'https://maps.googleapis.com/maps/api/js/GeoPhotoService.SingleImageSearch',
         ?pb=!1m5!1sapiv3!5sUS!11m2!1m1!1b0!2m4!1m2!3d${lat}!4d${lnq}!2d100!
3m18!2m2!1sru!2sRU!`,
         '9m1!1e2!11m12!1m3!1e2!2b1!3e2!1m3!1e3!2b1!3e2!1m3!1e10!2b1!3e2!4m6!1e1!
1e2!1e3!1e4!1e8!1e6',
         '&callback=respond'
      ].join('');
  };
  let downloaded = false, attemptsRemaining = ATTEMPTS, city, panoId;
  while(!downloaded && attemptsRemaining > 0) {
    const coords = randomCoordsInSquare(square);
    const uri = makeUri(coords.lat, coords.lng);
    const result = await request.get(uri);
    const respond = async (results) => {
      if (results.length === 1 || !Array.isArray(results[1][3][2])) {
        console.error('Attempt #' + (ATTEMPTS - attemptsRemaining + 1)
          + ' failed! ' + JSON.stringify(coords));
        downloaded = false;
        attemptsRemaining--;
        await execSync('sleep 0.05');
      } else {
        console.log('Success!');
```

```
city = results[1][3][2][0][0];
        panoId = results[1][1][1];
        downloaded = true;
   };
   eval(result);
 if (!downloaded) {
   console.error('Failed!');
   return;
 const rawDir = `${__dirname}/raw/${panoId}`;
 await mkdirp(rawDir);
 execSync(`google_streetview --pano=${panoId} -size=${IMAGE_SIZE}x${IMAGE_SIZE}
--save_downloads=${rawDir}`);
 const newPath = `${__dirname}/` + GENERATE_TEST ? 'images_test' :
'images_train';
  await mkdirp(newPath);
  sharp(`${rawDir}/gsv_0.jpg`)
    .resize({ height: Math.round(IMAGE_SIZE * 0.75), width: IMAGE_SIZE })
    .grayscale()
    .toFile(`${newPath}/${panoId}.jpg`);
 const line = [panoId, country].join(',');
 fs.appendFileSync(GENERATE_TEST ? 'dataset_test.csv' : 'dataset_train.csv',
line + "\n");
 console.log(line);
// В этом словаре – список мест, из которых берутся фотографии
const places = {
 moscow: {
   count: 10
   coords: {lat1: 55.894966, lng1: 37.382917, lat2: 55.610124, lng2:
37.819175},
   country: 'ru',
 },
  spb: {
   count: 5,
   coords: {lat1: 60.039628, lng1: 30.145742, lat2: 59.881093, lng2:
30.537374},
   country: 'ru',
  },
 ekb: {
   count: 3,
   coords: {lat1: 56.862860, lng1: 60.538415, lat2: 56.822548, lng2:
60.688518},
   country: 'ru',
 nino: {
   count: 3,
   coords: {lat1: 56.333229, lng1: 43.898472, lat2: 56.277297, lng2:
44.087820},
   country: 'ru',
  },
  kazan: {
   count: 3,
    coords: {lat1: 55.880916, lng1: 49.043136, lat2: 55.744434, lng2:
49.238918},
```

```
country: 'ru',
  },
  krasnodar: {
    count: 3,
    coords: {lat1: 45.067626, lng1: 38.936263, lat2: 45.014970, lng2:
39.047241},
    country: 'ru',
  },
  london: {
    count: 10,
    coords: {lat1: 51.548547, lng1: -0.207508, lat2: 51.439893, lng2: 0.029800},
    country: 'uk'
  },
  birmingham: {
    count: 5,
    coords: {lat1: 52.538597, lng1: -1.991987, lat2: 52.424620, lng2: -
1.782344},
    country: 'uk',
  liverpool: {
    count: 3,
    coords: {lat1: 53.449859, lng1: -2.999910, lat2: 53.359085, lng2: -
2.822562},
    country: 'uk',
  },
  manchester: {
    count: 3,
    coords: {lat1: 53.499370, lng1: -2.287626, lat2: 53.455022, lng2: -
2.191537},
    country: 'uk',
  southampton: {
    count: 3,
    coords: {lat1: 50.953016, lng1: -1.479036, lat2: 50.898672, lng2: -
1.317257},
    country: 'uk',
  },
  bristol: {
    count: 3,
    coords: {lat1: 51.469197, lng1: -2.620845, lat2: 51.448589, lng2: -
2.554304},
    country: 'uk',
 },
};
(async () \Rightarrow {
  Object.entries(places)
    .forEach(async ([placeName, placeData]) => {
      console.log('Handling: ' + placeName);
      for (let i = 0; i < placeData.count; i++) {</pre>
        await findPictureForSquare(placeData.coords, placeData.country);
      }
  });
})();
```

После запуска и некоторого ожидания получаем папку с фотографиями:

Также получаем файл "dataset_train.csv" следующего вида:

file, country _kdYaGTQTUV1eqQZmfTDvw,ru e94B91epyBFaUHMCKsXR7g,uk BoDz-ngJQjhS_PszrCEvJA, ru VhdZx6hrKM-VJWSjDQk2mw,uk HT_VTtPVt7RONFBnRe-rvg,uk P1dkmyQnUJYxBbf8mfCQ6Q,uk Pc_R4Bzn6Q5aXG5Yf-t19A,ru sKKRClFHoDzPAE82YGGm3g, ru _JZ0Dh1crToE8JPyRySiuA,uk CUhnn0Bw6h3FYgQzuaSBnQ, uk Wg_vkIBuZo8rxqsPpN8K_g,ru O OBMBXJMmO65GeNJvWqqw,ru vKlOvyLmghgBffE3g94DzA,uk ZEdc0xugROGBQkNM8CJM0A, uk 3JfkU18SVcAw_qAYa3KS-A, uk tn4_Cw5Un16LnJDpU5JM9w,uk Wt7Tgh-aIq69lkYlt2lFQg,ru

Аналогично поступаем с тестовым датасетом. Наконец, все файлы готовы, и мы можем приступать непосредственно к разработке классификатора.

3.2. Jupyter Notebook

model.add(MaxPooling2D(pool_size=(2,2)))

model.add(BatchNormalization())

```
In [2]:
from PIL import Image
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
Убедимся, что используются GPU. Так скорость обучения увеличивается в разы.
In [4]:
from keras import backend as K
K.tensorflow_backend._get_available_gpus()
Out[4]:
['/job:localhost/replica:0/task:0/device:GPU:0']
Сбор данных из датасета
In [5]:
def load_image(dirname, file):
    arr = np.array(Image.open('./' + dirname + '/' + file +
'.jpg').convert('L'))
    return arr.reshape(400, 300, 1)
In [6]:
dataset = pd.read_csv('./dataset.csv')
dataset['image'] = dataset.apply(lambda x: load_image('images', x.file), axis=1)
dataset['label'] = dataset.apply(lambda x: np.array([x.country == 'ru',
x.country == [uk'], axis=1)
dataset.iloc[0].image.shape
Out[6]:
(400, 300, 1)
Описание модели глубокого обучения на Keras
In [7]:
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D,
BatchNormalization, Dropout, Flatten
N_{IMAGES} = len(dataset)
IMG_W = 400
IMG_H = 300
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), use_bias=False, input_shape=(IMG_W,
IMG_H, 1)))
```

```
model.add(Activation('relu'))
model.add(Conv2D(64, kernel_size=(3,3), use_bias=False))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(64, kernel_size=(3,3), use_bias=False))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(128, kernel_size=(3,3), use_bias=False))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(64, kernel_size=(3,3), use_bias=False))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(32, kernel_size=(3,3), use_bias=False))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(2, use_bias=False))
model.add(BatchNormalization())
model.add(Activation('softmax'))
In [8]:
dataset['image'].iloc[0].shape
Out[8]:
(400, 300, 1)
Обучение модели
Компилируем модель, указывая лосс и используемый оптимизатор (стандартные значения, в
общем):
In [9]:
from keras import optimizers
from keras import losses
model.compile(loss=losses.mean_squared_error, optimizer='sqd')
In [10]:
```

x = np.array(dataset['image'].tolist())

```
y = np.array(dataset['label'].tolist())
print 'x shape is', x.shape
print 'y shape is', y.shape
x shape is (4672, 400, 300, 1)
y shape is (4672, 2)
Запускаем непосредственно обучение, применяя k-fold cross validation:
In [11]:
from sklearn.model_selection import train_test_split
from keras.callbacks import EarlyStopping, ModelCheckpoint
# set early stopping criteria
patience = 2 # this is the number of epochs with no improvement after which the
training will stop
early stopping = EarlyStopping(monitor='val loss', patience=patience, verbose=1)
#define the model checkpoint callback -> this will keep on saving the model as a
physical file
model_checkpoint = ModelCheckpoint('./checkpoint.h5', verbose=1,
save_best_only=True)
n folds = 7
epochs = 5
batch_size = 10
model_history = []
def fit_and_evaluate(t_x, val_x, t_y, val_y, used_epochs, used_batch_size):
   results = model.fit(t_x, t_y, epochs=used_epochs,
batch_size=used_batch_size, callbacks=[early_stopping, model_checkpoint],
            verbose=1, validation_split=0.1)
   print "Validation Score: ", model.evaluate(val_x, val_y)
   return results
for i in range(n_folds):
   print "Training on fold: ", i+1
   t_x, val_x, t_y, val_y = train_test_split(x, y, test_size=0.1, random_state)
= np.random.randint(1,1000, 1)[0])
   model_history.append(fit_and_evaluate(t_x, val_x, t_y, val_y, epochs,
batch size))
   print "======" * 12 + "\n\n\n"
('Training on fold: ', 1)
Train on 3783 samples, validate on 421 samples
Epoch 00001: val_loss improved from inf to 0.20808, saving model to ./checkpoint.h5
Epoch 00002: val_loss improved from 0.20808 to 0.20075, saving model to ./checkpoint.h5
Epoch 00003: val_loss improved from 0.20075 to 0.19018, saving model to ./checkpoint.h5
Epoch 00004: val_loss did not improve from 0.19018
Epoch 5/5
Epoch 00005: val_loss did not improve from 0.19018
Epoch 00005: early stopping
468/468 [=========== ] - 4s 8ms/step
```

```
('Training on fold: ', 2)
Train on 3783 samples, validate on 421 samples
Epoch 1/5
Epoch 00001: val_loss improved from 0.19018 to 0.17217, saving model to ./checkpoint.h5
Epoch 00002: val_loss did not improve from 0.17217
Epoch 00003: val_loss did not improve from 0.17217
Epoch 00003: early stopping
('Validation Score: ', 0.19958432540934309)
_____
('Training on fold: ', 3)
Train on 3783 samples, validate on 421 samples
Epoch 1/5
Epoch 00001: val_loss did not improve from 0.17217
Epoch 00002: val_loss did not improve from 0.17217
Epoch 3/5
Epoch 00003: val_loss did not improve from 0.17217
Epoch 4/5
Epoch 00004: val_loss did not improve from 0.17217 Epoch 00004: early stopping
468/468 [=========== ] - 2s 4ms/step
('Validation Score: ', 0.21811382275106561)
______
('Training on fold: ', 4)
Train on 3783 samples, validate on 421 samples
Epoch 1/5
Epoch 00001: val_loss improved from 0.17217 to 0.15843, saving model to ./checkpoint.h5
Fnoch 2/5
Epoch 00002: val_loss improved from 0.15843 to 0.15779, saving model to ./checkpoint.h5
Epoch 3/5
Epoch 00003: val_loss did not improve from 0.15779
Epoch 4/5
Epoch 00004: val_loss improved from 0.15779 to 0.14469, saving model to ./checkpoint.h5
Epoch 5/5
Epoch 00005: val_loss did not improve from 0.14469
('Validation Score: ', 0.16414279917366484)
```

('Validation Score: ', 0.1868088143503564)

('Training on fold: ', 5)

```
Train on 3783 samples, validate on 421 samples
Epoch 1/5
Epoch 00001: val_loss did not improve from 0.14469
Epoch 00002: val_loss did not improve from 0.14469
Epoch 3/5
Epoch 00003: val_loss did not improve from 0.14469
Epoch 00003: early stopping
468/468 [========
           ('Validation Score: ', 0.16832360905459803)
                    ('Training on fold: ', 6)
Train on 3783 samples, validate on 421 samples
Epoch 1/5
Epoch 00001: val_loss improved from 0.14469 to 0.10448, saving model to ./checkpoint.h5
Epoch 2/5
Epoch 00002: val_loss did not improve from 0.10448
Epoch 3/5
Epoch 00003: val_loss did not improve from 0.10448
Epoch 00003: early stopping
('Validation Score: ', 0.11283582665471949)
('Training on fold: ', 7)
Train on 3783 samples, validate on 421 samples
Epoch 1/5
Epoch 00001: val_loss improved from 0.10448 to 0.10243, saving model to ./checkpoint.h5
Epoch 2/5
Epoch 00002: val_loss improved from 0.10243 to 0.09300, saving model to ./checkpoint.h5
Epoch 3/5
Epoch 00003: val_loss did not improve from 0.09300
Epoch 00004: val_loss did not improve from 0.09300
Epoch 00004: early stopping
468/468 [=========== ] - 2s 4ms/step
('Validation Score: ', 0.11498103360844474)
______
```

Графики

По горизонтальной оси - номер эпохи, а по вертикальной - показатель loss (средний квадрат ошибки). Здесь видим, что с каждым фолдом loss уменьшается.

```
In [13]:
plt.title('Losses vs Epochs')
```

```
for i in range(0, n_folds):
    plt.plot(model_history[i].history['loss'], label='Fold ' + str(i) + ' loss')
plt.legend()
plt.show()
```


Ещё один график - здесь обычными линиями обозначены изменения функции loss, а пунктирными - изменение loss при валидации. Важно, чтобы ошибка при валидации не росла: таким образом мы уменьшаем переобучение.

```
In [15]:
```

```
# Validation loss must not rise!
plt.title('Train loss vs Validation loss')

colors = ['blue', 'red', 'green', 'gray', 'orange', 'cyan', 'brown', 'magenta',
'black', 'purple']

for i in range(0, n_folds):
    plt.plot(model_history[i].history['loss'], label='Fold ' + str(i) + ' loss',
color=colors[i])
    plt.plot(model_history[i].history['val_loss'], label='Fold ' + str(i) + '
val loss', color=colors[i], linestyle = "dashdot")

# plt.legend()
plt.show()
```


Результат

```
In [65]:
```

```
from matplotlib.font_manager import FontProperties
test_images = pd.read_csv('./dataset_test.csv')
```

```
predictions = []
quesses = 0
font = FontProperties()
font.set_size('large')
for index, row in test_images.iterrows():
   image = row['file']
   real_country = row['country']
   test_image = load_image('images_test', image)
   prediction = model.predict(test_image.reshape(1, 400, 300, 1))
   if prediction[0][0] > 0.50:
       guessed_country = 'ru'
       confidence = prediction[0][0]
   elif prediction[0][1] > 0.50:
       guessed_country = 'uk'
       confidence = prediction[0][1]
   if guessed_country == real_country:
       guesses += 1
       verdict = 'SUCCESS'
       color = 'b'
   else:
       verdict = 'FAILURE'
       color = 'r'
   plt.imshow(Image.open('./images_test/' + image + '.jpg'), cmap="inferno")
   plt.text(
       Θ,
       -10.
       + ",\nconfidence = " + str(confidence * 100) + "%",
       fontproperties=font,
       color=color
   plt.axis('off')
   plt.show()
```

SUCCESS TkYmbfuxFWHXT_sxdmvnYA.jpg real country = uk, guessed country = uk, confidence = 0.575528

SUCCESS 3jqtlzQcznOzExfQSh16Hw.jpg real country = uk, guessed country = uk, confidence = 0.961929

SUCCESS QyMUVdLL2rvc9paP9NqFQg.jpg real country = ru, guessed country = ru, confidence = 0.879323

SUCCESS
-_NCIRAiN9dhOy2f-ki2jg.jpg
real country = ru,
guessed country = ru,
confidence = 0.562479

SUCCESS psnR35sNniFhNQxqVmYHyw.jpg real country = ru, guessed country = ru, confidence = 0.567515

SUCCESS W2HBrww7uZGvzU7_4Vm7ug.jpg real country = uk, guessed country = uk, confidence = 0.988308

FAILURE H0fw7ZfPePi7O5mb2AaTnA.jpg real country = uk, guessed country = ru, confidence = 0.915967

FAILURE pM0amffa8fkmn6bld9U59Q.jpg real country = uk, guessed country = ru, confidence = 0.98214

FAILURE 4PO-FDhrXycYfhKrMh4FMg.jpg real country = ru, guessed country = uk, confidence = 0.981155

SUCCESS 9lCn-1B8gNEy6j0vNlESJw.jpg real country = ru, guessed country = ru, confidence = 0.696675

FAILURE O_YxltbAnKqKxZw2v7388A.jpg real country = ru, guessed country = uk, confidence = 0.681674

SUCCESS NCIVN2Tv5Wr8S2D_6C5j4w.jpg real country = ru, guessed country = ru, confidence = 0.600631

[...и так далее...]

In [27]:

print 'Угадано:', guesses print 'Ошибок:', total - guesses print 'Всего:', total

print 'Точность:', guesses / float(total) * 100, '%'

Угадано: 83 Ошибок: 25 Всего: 108

Точность: 76.8518518519 %

Заключение

Машинное обучение – очень перспективная технология, которая привлекает множество специалистов, инвестиций и пользователей в последнее время. Не обошло оно стороной и нашу кафедру, и всех нас.

Поэтому я не смог обойти его стороной и просто сделать шаблонную курсовую работу. Мне было интересно ощутить, насколько сильны алгоритмы машинного обучения на практике.

Мне действительно понравилось выполнять курсовую работу, и на мой взгляд она неплохо справилась со своей задачей, но её также можно улучшить:

- увеличить обучающую выборку;
- доработать модель глубокого обучения;
- подобрать гиперпараметры, увеличить число эпох и folds;
- закрашивать небо одним цветом, чтобы уменьшить его влияние на оценку;
- и т.д. и т.п.

Список использованных источников

- 1. Лекции по курсу ТМО (Гапанюк Ю.Е., 2019)
 2. Google Street View https://www.google.com/streetview/
 3. Документация Keras https://keras.io/