Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0334 CALIBRATION DATE: 06-Mar-15

SBE 4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g =	-4.22695907e+000	CPcor =	-9.5700e-008	(nominal)
h =	4.71400522e-001	CTcor =	3.2500e-006	(nominal)
2	4 00740066- 004			

j = 4.40302878e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.00000	2.99710	0.00000	0.00000
-1.0000	34.6939	2.79563	8.26592	2.79565	0.00002
1.0000	34.6941	2.96651	8.48189	2.96651	-0.00000
15.0000	34.6938	4.25817	9.96183	4.25814	-0.00003
18.5000	34.6933	4.60381	10.32127	4.60382	0.00001
29.0001	34.6907	5.68407	11.36976	5.68413	0.00006
32.5000	34.6819	6.05520	11.70758	6.05516	-0.00004

f = INST FREQ / 1000.0

Conductivity = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$ Siemens / meter

 $t = temperatur e[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

