## Quiz Assignment 4 (Deadline: 4<sup>th</sup>, October 2020)

## Instructions

- The quiz contains 10 questions, for a total of 20 points.
- The score for each question is given next to each question, there are no negative marks.
- Each question has only one correct choice, unless specified otherwise.
- All qubit states/operations are given in the big endian notation.

## Questions

| 1. | 1. It is always possible to copy the state of one qubit into another qubit. [1 point]                         |          |
|----|---------------------------------------------------------------------------------------------------------------|----------|
|    | a) True                                                                                                       | b) False |
|    |                                                                                                               |          |
| 2. | A quantum gate is a physical object and the qubit state changes when it interacts with this object. [1 point] |          |
|    | a) True                                                                                                       | b) False |
|    |                                                                                                               |          |
| 3. | A classical computer is required in order to use a quantum computer. [1 point]                                |          |
|    | a) True                                                                                                       | b) False |
|    |                                                                                                               |          |

- **4.** The quantum oracle of an *n*-bit Boolean function requires a quantum computer with exactly *n*-qubits. [1 point]
  - a) True
- b) False
- 5. The operation performed on the two-qubit system in the quantum circuit shown in (Figure 1) is: [2 points]



Figure 1: Circuit for Question 5

a)  $(H \otimes I) \circ \text{CNOT}$ 

b)  $(H \otimes H) \circ \text{CNOT}$ 

c) CNOT  $\circ$   $(H \otimes I)$ 

- d) CNOT  $\circ$   $(I \otimes H)$
- 6. The operation performed on the two-qubit system in the quantum circuit shown in (Figure 2) is: [2 points]



Figure 2: Circuit for Question 6

- a)  $\text{CNOT}_0^1 \circ (H \otimes Z) \circ \text{CNOT}_0^1$  b)  $\text{CNOT}_1^0 \circ (H \otimes Z) \circ \text{CNOT}_0^1$
- c)  $\text{CNOT}_0^1 \circ (H \otimes Z) \circ \text{CNOT}_1^0$  d)  $\text{CNOT}_1^0 \circ (H \otimes Z)$

7. The operation performed by the gates in the shaded area of the quantum circuit in (Figure 3) is: [1 points]



Figure 3: Circuit for Question 7

a)  $(Z \otimes I \otimes H)$ 

b)  $(H \otimes Z)$ 

c)  $(H \otimes I \otimes Z)$ 

- d)  $(H \otimes Z \otimes I)$
- 8. The resultant state for the quantum circuit shown in (Figure 4) is: [3 points]



Figure 4: Circuit for Question 8

a)  $\frac{1}{\sqrt{2}} \left( |00\rangle + |11\rangle \right)$ 

b)  $\frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$ 

c)  $\frac{1}{\sqrt{2}} \left( |00\rangle - |01\rangle \right)$ 

d)  $\frac{1}{\sqrt{2}} (|00\rangle - |10\rangle)$ 

9. The resultant state for the quantum circuit shown in (Figure 5) is: [4 points]



Figure 5: Circuit for Question 9

a)  $\frac{1}{\sqrt{2}} (|000\rangle - |111\rangle)$ 

b)  $\frac{1}{\sqrt{2}} (|010\rangle - |101\rangle)$ 

c)  $\frac{1}{\sqrt{2}} (|011\rangle - |101\rangle)$ 

- d)  $\frac{1}{\sqrt{2}} (|100\rangle |111\rangle)$
- **10.** The Boolean function represented by the oracle given in (Figure 6), where  $x_0, x_1 \in \{0, 1\}$  and + denotes the XOR operation. More than one option may be correct: [4 points]



Figure 6: Circuit for Question 10

a)  $x_0 + \overline{x_1}$ 

b)  $\overline{x_0 + x_1}$ 

c)  $\overline{x_0} + \overline{x_1}$ 

d)  $1 + x_0 + x_1$