HYBRID TAKE-HOME PLUS CLASS QUIZ: MONDAY NOVEMBER 12: TAYLOR SERIES AND POWER SERIES

MATH 153, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters):

PLEASE ATTEMPT THIS QUIZ BEFORE CLASS. I WILL GIVE YOU TIME TO RE-
VIEW AND UPDATE YOUR SOLUTIONS IN CLASS, BUT THIS WILL NOT BE SUFFI-
CIENT TO ATTEMPT ALL QUESTIONS FROM SCRATCH.
FEEL FREE TO DISCUSS ALL QUESTIONS, BUT ONLY ENTER ANSWER CHOICES
THAT YOU PERSONALLY ENDORSE.
For these questions, we denote by $C^{\infty}(\mathbb{R})$ the space of functions from \mathbb{R} to \mathbb{R} that are infinitely different
tiable everywhere in \mathbb{R} .
We denote by $C^k(\mathbb{R})$ the space of functions from \mathbb{R} to \mathbb{R} that are at least k times continuously differentiable
on all of \mathbb{R} . Note that for $k \geq l$, $C^k(\mathbb{R})$ is a subspace of $C^l(\mathbb{R})$. Further, $C^{\infty}(\mathbb{R})$ is the intersection of $C^k(\mathbb{R})$
for all k .
We say that a function f is analytic about c if the Taylor series of f about c converges to f on some
open interval about c . We say that f is globally analytic if the Taylor series of f about 0 converges to f
everywhere on \mathbb{R} .
It turns out that if a function is globally analytic, then it is analytic not only about 0 but about any other point. In particular, globally analytic functions are in $C^{\infty}(\mathbb{R})$.
(1) Which of the following functions is in $C^{\infty}(\mathbb{R})$ but is not analytic about 0? Two years ago: 3/26
(A) $f_1(x) := \begin{cases} (\sin x)/x, & x \neq 0 \end{cases}$
1, x = 0
correct (A) $f_1(x) := \begin{cases} (\sin x)/x, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (B) $f_2(x) := \begin{cases} e^{-1/x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ (C) $f_3(x) := \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ (D) $f_4(x) := \begin{cases} \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$
$(3) \int_{0}^{\pi} f(x) dx = 0$
(C) $f_2(x) := \begin{cases} e^{-1/x^2}, & x \neq 0 \end{cases}$
$(0) f_3(x) = 0 \qquad 0, x = 0$
(D) $f_{*}(x) := \int \sin(1/x), x \neq 0$
$(D) \int f(x) \cdot - \int 0, x = 0$
(E) All of the above.
Your answer:
Tour answer.
(2) Which of the following functions is in $C^{\infty}(\mathbb{R})$ and is analytic about 0 but is not globally analytic
Two years ago: 7/26 correct
(A) $x \mapsto \ln(1+x^2)$
(B) $x \mapsto \ln(1+x)$
(C) $x \mapsto \ln(1-x)$
(D) $x \mapsto \exp(1+x)$
(E) $x \mapsto \exp(1-x)$
Your answer:

(3) Suppose f and g are globally analytic functions and g is nowhere zero. Which of the following is not

necessarily globally analytic?

(A) f+g, i.e., the function $x\mapsto f(x)+g(x)$ (B) f-g, i.e., the function $x\mapsto f(x)-g(x)$

(C) fg , i.e., the function $x \mapsto f(x)g(x)$ (D) f/g , i.e., the function $x \mapsto f(x)/g(x)$ (E) $f \circ g$, i.e., the function $x \mapsto f(g(x))$
Your answer:
 (4) Which of the following is an example of a globally analytic function whose reciprocal is in C[∞](ℝ) but is not globally analytic? Two years ago: 10/26 correct (A) x (B) x² (C) x + 1 (D) x² + 1
$(E) e^x$
Your answer:
 (5) Consider the rational function 1/ ∏_{i=1}ⁿ(x - α_i), where the α_i are all distinct real numbers. This rational function is analytic about any point other than the α_is, and in particular its Taylor series converges to it on the interval of convergence. What is the radius of convergence for the Taylor series of the rational function about a point c not equal to any of the α_is? Two years ago: 10/26 correct (A) It is the minimum of the distances from c to the α_is. (B) It is the second smallest of the distances from c to the α_is. (C) It is the arithmetic mean of the distances from c to the α_is. (D) It is the second largest of the distances from c to the α_is. (E) It is the maximum of the distances from c to the α_is.
Your answer:
(6) What is the interval of convergence of the Taylor series for arctan about 0? Two years ago: 11/26 correct (A) (−1,1) (B) [−1,1) (C) (−1,1] (D) [−1,1] (E) All of ℝ Your answer:
 (7) What is the radius of convergence of the power series ∑_{k=0}[∞] 2^{√k} x^k? Please keep in mind the square root in the exponent. (A) 0 (B) 1/2 (C) 1/√2 (D) 1 (E) infinite Your answer: