Задание на типовой расчет по теме «Арифметические и логические основы ЭВМ»

Вариант задания соответствует порядковому номеру студента в журнале преподавателя.

Часть 1. Арифметические основы ЭВМ

- 1. Перевести целое число (таблица 1, столбец 1) из десятичной системы счисления в двоичную, шестнадцатеричную, восьмеричную.
- 2. Записать в двоичной системе счисления прямой, обратный и дополнительный коды отрицательного числа, модуль которого задан в таблице (столбец 1). Формат 1 байт. Результат представить также в 16-ричной записи.

Пример:

Число	- 16		
код	прямой	обратный	дополнительный
двоичная система счисления	1 001 0000	1 110 1111	1 111 0000
запись в 16-ричной системе счисления	90	EF	F0

3. Перевести дробное число (таблица 1, столбец 2) из десятичной системы счисления в двоичную. Формат результата — 1.7: старший бит — знаковый, после которого подразумевается двоичная запятая, далее дробное число в дополнительном коде. Результат представить также в 16-ричной записи.

Пример:

Исходное число	Число в формате 1.7	Число в ф. 1.7 в 16-ричной записи
0,54	01000101	45
-0,54	10111011	BB

Какова ошибка округления?

- 4. Сложить целые числа в формате 8 бит в дополнительном коде (таблица 1, столбец 3). Как установятся флаги переноса, дополнительного переноса, переполнения, четного, отрицательного и нулевого результата и почему?
- 5. Сложить дробные числа в формате 1.7 (таблица 1, столбец 4). Проверьте, не произошло ли переполнение.
- 6. Умножить целые числа в формате 8 бит (таблица 1, столбец 3). Как установятся флаги переноса и переполнения и почему?
- 7. Представить дробное число (таблица 1, столбец 2) в формате с плавающей точкой: одинарной точности (4 байта), двойной точности (8 байт), расширенной точности (10 байт). Проверить результат в листинге программы на ассемблере:

X_4 dd 0.28; формат одинарной точности

 X_8 dq 0.28; формат двойной точности

 $X_10 dt 0.28$; формат расширенной точности

Таблица 1

NC.	Числа			
№ вар.	1	2	3	4
1.	28	0,28	28; -43	0,28; -0,43
2.	39	0,39	39; -23	0,39; -0,23
3.	73	0,73	-73; 85	-0,73; 0,85
4.	115	0,115	115; -20	0,115; -0,2
5.	96	0,96	-96; 34	-0,96; 0,34
6.	87	0,87	87; 46	0,87; 0,46
7.	36	0,36	-36; -10	-0,36; -0,1
8.	45	0,45	45; -47	0,45; -0,47
9.	54	0,54	-54; 40	-0,54; 0,4
10.	67	0,67	67; -50	0,67; -0,5
11.	103	0,103	103; -25	0,103; -0,25
12.	110	0,110	-110; 30	-0,110; 0,3
13.	98	0,98	98; 42	0,98; 0,42
14.	86	0,86	86; -50	0,86; -0,5
15.	75	0,75	-75; -30	-0,75; -0,3
16.	63	0,63	63; 60	0,63; 0,6
17.	57	0,57	57; -44	0,57; -0,44
18.	42	0,42	-42; -70	-0,42; -0,7
19.	39	0,39	39; 26	0,39; 0,26
20.	44	0,44	44; -33	0,44; -0,33
21.	56	0,56	-56; 92	-0,56; 0,92
22.	65	0,65	65; -94	0,65; -0,94
23.	76	0,76	-76; 37	-0,76; 0,37
24.	83	0,83	83; 55	0,83; 0,55
25.	117	0,117	-117; 15	-0,117; 0,15

Часть 2. Логические основы ЭВМ. Проектирование цифровых устройств. Синтез комбинационной схемы

Построить заданную схему в заданном функциональном базисе (таблица 2)

2.1.1. Абстрактный синтез

Составить таблицу истинности.

Минимизировать с помощью карт Карно.

Преобразовать в заданные базисы.

Выбрать две формы для структурного синтеза.

2.1.2. Структурный синтез в заданных базисах

Синтезировать 1-ю форму.

Синтезировать 2-ю форму.

Оценить сложность построенных схем.

2.1.3. Выводы

Таблица 2

No	Схема	Базис
вар	Chema	Busile
1	Преобразователь двоично-десятичного кода 8-4-2-1 (ПрК) в	1, 2, 3
	код 4-2-2-1	<i>y y</i> -
2	ПрК 4-3-1-1	1, 2, 4
3	ПрК 4-3-2-1	1, 2, 5
4	ПрК 5-3-1-1	1, 3, 4
5	ПрК 5-2-1-1	1, 3, 5
6	ПрК 5-3-2-1	1, 2, 3
7	ПрК с избытком 3	1, 2, 4
8	Преобразователь двоично-десятичного кода 4-3-1-1 в код	1, 2, 5
	семисегментного индикатора (ПрКИ)	
9	ПрКИ 4-3-2-1	1, 3, 4
10	ПрКИ 3-3-2-1	1, 3, 5
11	ПрКИ 5-3-1-1	1, 2, 3
12	ПрКИ 5-2-1-1	1, 2, 4
13	ПрКИ 5-3-2-1	1, 2, 5
14	ПрКИ с избытком 3	1, 3, 4
15	Пороговый элемент на 5 входов с порогом, большим или	1, 3, 5
	равным 2. Выходной сигнал равен 1, если число входов,	
	равных $1, \ge 2 \ (\Pi \ni 5,2)$	
16	ПЭ 5, 3	1, 2, 3
17	ПЭ 5, 4	1, 2, 4
18	ПЭ 4, 3	1, 2, 5
19	ПЭ 4, 2	1, 3, 4
20	ПЭ 4, 1	1, 3, 5
	Базисы: 1 – И, ИЛИ, HE; 2 – И-HE; 3 – ИЛИ-HE; 4 – И, HE; 5	– ИЛИ, НЕ

Часть 3. Логические основы ЭВМ. Проектирование цифровых устройств. Синтез цифрового автомата

Построить схему синхронного двоичного счетчика с заданным коэффициентом пересчета К на заданном типе триггеров (таблица 3). Базис комбинационной схемы брать из первой части задания (первый заданный базис).

2.2.1. Абстрактный синтез

Составить граф автомата.

Построить таблицы переходов и выходов автомата.

2.2.2. Структурный синтез

Определить необходимое количество элементарных автоматов (триггеров). Построить кодированные таблицы переходов и выходов.

Комбинационный синтез (минимизировать функции возбуждения и выходов в заданной системе элементов).

2.2.3. Выводы.

Таблица 3

№ вар	К	Тип триггера	№ вар	К	Тип триггера
1	5	JK	14	9	D
2	6	D	15	10	T
3	7	T	16	11	JK
4	9	JK	17	12	D
5	10	D	18	13	T
6	11	Т	19	14	JK
7	12	JK	20	15	D
8	13	D	21	5	T
9	14	Т	22	6	JK
10	15	JK	23	7	D
11	5	D	24	9	T
12	6	T	25	10	JK
13	7	JK			

Список рекомендуемой литературы

- 1. Савельев А.Я. Основы информатики. М.: Изд-во МГТУ им. Н.Е. Баумана, 2001.
- 2. Угрюмов Е.П. Цифровая схемотехника: Учеб. пособие для вузов. СПб.: БХВ-Петербург, 2010.
- 3. Пухальский Г.И., Новосельцева Т.Я. Проектирование дискретных устройств на интегральных микросхемах. М.: Радио и связь, 1996.
- 4. Бойко В. Схемотехника электронных систем. Цифровые устройства. СПб.: БХВ-Петербург, 2004.
- 5. Справочники по интегральным микросхемам.