Social Simulations with the Actor Model for HPC

Sumihiko Natsu

CSG, Dept. of Creative Informatics, The University of Tokyo

Last Rinko

Implement a "stone" interpreter with Lex & Yacc & LLVM

Distributed particle simulation with JavaScript

Ex. Fibonacci sequence

```
def fib(n:int):int {
   if (n > 1) {
     fib(n - 1) + fib(n - 2)
   } else {
     n
   }
}
fib(10)
```


Last Rinko

Implement a "stone" interpreter with Lex & Yacc & LLVM

Ex. Fibonacci sequence

```
def fib(n:int):int {
   if (n > 1) {
     fib(n - 1) + fib(n - 2)
   } else {
     n
   }
}
fib(10)
```


Social Simulations on HPC

Background

- Only few social simulations run on supercomputer
 - Users don't know what they can do by using HPC
 - They are not computer experts
 - Implementing social simulations on HPC is difficult
 - MPI, the de facto standard library on HPC, is too low level
 - Typical HPC applications (e.g. matrix multiplication)
 - Regular and synchronous
 - Social simulations
 - Irregular and asynchronous

Social simulation (agent based)

- Large scale traffic simulation (Kyoto)
 - Roads: 50000 links, 100000nodes

100000 Agents

200 days

Agent

- Destination selection
- Speed regulation
- Collision avoidance
- Optimum path finding

Actor Model [1973]

- A concurrent computation model
 - for distributed systems
 - message passing model
 - consists of many concurrent and autonomous entities called actors
- Each actor
 - has its own thread of control and state
 - sends and receives message with each other
 - updates its own local state by processing received messages

Actor Model

- Gained attention recently
 - > The advent of multi-core CPUs and Cloud computing
 - Scala support actor on its standard library
- Other concurrent/parallel computing solutions
 - Threads + Socket
 - MPI
 - MapReduce
- Many social simulations
 - consist of a lot of objects modelled from real-world
 - interact with each other

Play with Actor

- Solve shortest path problem with actor model
 - Bellman-Ford algorithm
 - Very simple self-made actor framework
 - Macbook Pro
 - Akka
 - fx10
- Read some papers related to Actor
 - Actor Frameworks for the JVM Platform: A Comparative Analysis [Rajesh K. Karmani, et al., PPPJ 2009]
 - Actor Oriented Programming in Chapel [Amin Shali]
 - CUDAを用いたメッセージ送信型並行計算Actorモデルの 実装[高柳 亘, et al.]

Play with MPI

- To study differences between TCP/IP and MPI
 - Many actor libraries and researches aimed at TCP/IP
 - MPI is faster than TCP/IP in most supercomputer
- We found a serious performance degradation in a specific situation when using MPI
 - This might be happen if create a new actor library with MPI
 - Investigate the cause
 - OS, MPI, OpenMPI, OpenMPI Java binding?
- Conclusion
 - Misunderstanding about MPI's blocking and non-blocking send
 - Blocking-send is not "block until message received" but is "block until message safely copied to the buffer"

Research direction

- Create a actor library which can be used for social simulations on HPC
 - Problems
 - Scheduling
 - Locality
 - Fault tolerant

The importance of fault tolerance for HPC

- As the number of HPC nodes grows, the possibility of failure also grows
 - Today's HPC have 100,000 nodes or more and this will increase if HPC become exascale
 - Ex.) Tianhe-1A
 - Fastest supercomputer in the TOP500 list (2010/11 ~ 2011/7)
 - MTBF: 6 hours

The study of fault tolerant system for message passing model, especially MPI, became more popular recently

Fault tolerant system for message passing model

- Coordinate checkpointing
- Message logging
- Hybrid

Coordinate checkpointing

- Take distributed system's snapshots with Chandy-Lamport algorithm
- Advantage
 - Easy to implement
- Disadvantage
 - Saving and retrieving a checkpoint can be very slow
 - When a failure occurs, all processes roll back to the last checkpoint

Message logging

- Messages are logged during failure-free execution and replayed in the same order after a failure
- Advantage
 - Only failed process has to roll back
- Disadvantage
 - Logs can grow very fast leading to a huge memory use

Fault tolerant actor system

- Social simulation's agents (= actors) are unbalanced
- ➤ Use idle HPC nodes to run backup actors
 - Receive corresponding message logs and replay them in advance

- Shorten MTTR furthermore than Hybrid
 - Availability = MTBF / (MTBF + MTTR)
- Replaying message logs in advance will reduce memory
 - HPC's memory size per CPU is small
- No need to save processes' entire stack trace
 - Only actor's states and mailbox

Future Work

- Implement a fault tolerant actor system
- Hold hearings from social simulation scientists to investigate ...
 - Is it really easy to write social simulation programs with Actor Model?
 - What they want if run the simulation on HPC?