Contents

1	Elementary Basis Function Analysis		3
	1.1	Normalization	3
	1.2	The Gaussian Product Theorem	4
	1.3	Products of Contracted Cartesian Gaussians	7
2	\mathbf{S}_{ij} -	- Overlap Integrals	10
	2.1	Overlap of primitive $1s$ functions on different centers	10
	2.2	Overlap of generally contracted $1s$ functions	10
	2.3	Overlap of primitive arbitrary angular momentum functions	11
3	T_{ij} -Kinetic Energy Integrals		12
	3.1	$ abla^2 \phi(\mathbf{r}) \dots \dots$	12
	3.2	Asymmetric form of T_{ij}	13
	3.3	Symmetric form of T_{ij}	13
4	$V_i j$	- Nuclear Attraction Integrals	15
	4.1	The need for a transformation	15
	4.2	Laplace transform	15
	4.3	Fourier transform	17
5	Elec	ctron Repulsion Integrals	18

1 Elementary Basis Function Analysis

1.1 Normalization

As you no doubt are aware, the standard basis functions used in *ab initio* MO theory are cartesian gaussian functions, or linear combinations thereof.

$$\phi_{\mu}(\mathbf{r}) = x^l y^m z^n e^{-\alpha \mathbf{r}^2} \tag{1.1}$$

This is a basis function of angular momentum (l+m+n) centered at the origin, with orbital exponent α . Standard notation. These atomic orbital–like basis functions need not be othogonal to one another, but for later convenience, it would be nice to have them normalized. Thus impose the condition

$$\int \phi_{\mu}^{*}(\mathbf{r})\phi_{\mu}(\mathbf{r})d\mathbf{r} = 1. \tag{1.2}$$

Just for fun and to warm up some, evaluate this integral. Assume a Normalization constant of N for ϕ_{μ} , and call 1.2 a self-overlap integral, SO.

SO =
$$\int N^2 (x^l y^m z^n e^{-\alpha \mathbf{r}^2}) (x^l y^m z^n e^{-\alpha \mathbf{r}^2}) d\mathbf{r}$$
 (1.3)

$$= N^2 \int x^{2l} y^{2m} z^{2n} e^{-2\alpha \mathbf{r}^2} d\mathbf{r}$$
 (1.4)

This integral over all space is separable when done in cartesian coordinates (one of the reasons for using gaussian rather than slater orbitals). Using $\mathbf{r}^2 = x^2 + y^2 + z^2$ and $d\mathbf{r} = dxdydz$, we get

SO =
$$N^2 \int dx x^{2l} e^{-2\alpha x^2} \int dy y^{2m} e^{-2\alpha y^2} \int dz z^{2n} e^{-2\alpha z^2}$$
 (1.5)

$$= N^2 I_x I_y I_z \tag{1.6}$$

Full derivation of these integrals $(I_x, \text{ etc})$ can be found in Appendix I. The result is that we find

$$I_x = \int_{-\infty}^{\infty} dx x^{2l} e^{-2\alpha x^2} = \frac{(2l-1)!!\sqrt{\pi}}{(4\alpha)^l \sqrt{2\alpha}}.$$
 (1.7)

Recall that $(2l-1)!! = 1 \cdot 3 \cdot 5 \cdots (2l-1)$. Thus

SO =
$$N^2 \left[\frac{(2l-1)!!(2m-1)!!(2n-1)!!\pi^{3/2}}{(4\alpha)^{(l+m+n)}(2\alpha)^{3/2}} \right] = 1$$
 (1.8)

Rearranging that to solve for N, the normalization constant,

$$N = \left[\left(\frac{2}{\pi} \right)^{3/4} \frac{2^{(l+m+n)} \alpha^{(2l+2m+2n+3)/4}}{\left[(2l-1)!!(2m-1)!!(2n-1)!! \right]^{1/2}} \right]$$
(1.9)

This result is completly general – for uncontracted functions. But before we go on to contrations, let's consider the product of two gaussian functions on different centers.

1.2 The Gaussian Product Theorem

The Gaussian Product Theorem states that the product of two arbitrary angular momentum gaussian functions on different centers can be written as

$$G_{1}G_{2} = G_{1}(\alpha_{1}, \mathbf{A}, l_{1}, m_{1}, n_{1})G_{2}(\alpha_{2}, \mathbf{B}, l_{2}, m_{2}, n_{2})$$

$$= \exp\left[-\alpha_{1}\alpha_{2}(\overline{\mathbf{A}}\overline{\mathbf{B}})^{2}/\gamma\right] \times$$

$$\begin{bmatrix} \sum_{i=0}^{l_{1}+l_{2}} f_{i}(l_{1}, l_{2}, \overline{\mathbf{P}}\overline{\mathbf{A}}_{x}, \overline{\mathbf{P}}\overline{\mathbf{B}}_{x})x_{P}^{i}e^{-\gamma x_{P}^{2}} \end{bmatrix} \times$$

$$\begin{bmatrix} \sum_{j=0}^{m_{1}+m_{2}} f_{j}(m_{1}, m_{2}, \overline{\mathbf{P}}\overline{\mathbf{A}}_{y}, \overline{\mathbf{P}}\overline{\mathbf{B}}_{y})y_{P}^{j}e^{-\gamma y_{P}^{2}} \end{bmatrix} \times$$

$$\begin{bmatrix} \sum_{k=0}^{n_{1}+n_{2}} f_{k}(n_{1}, n_{2}, \overline{\mathbf{P}}\overline{\mathbf{A}}_{z}, \overline{\mathbf{P}}\overline{\mathbf{B}}_{z})z_{P}^{k}e^{-\gamma z_{P}^{2}} \end{bmatrix}.$$

$$(1.10)$$

To show this, we first define the multiplicands as

$$G_1 = G_1(\alpha_1, \mathbf{A}, l_1, m_1, n_1) = x_A^{l_1} y_A^{m_1} z_A^{n_1} e^{-\alpha_1 \mathbf{r}_A^2}$$
(1.11)

$$G_2 = G_2(\alpha_2, \mathbf{B}, l_2, m_2, n_2) = x_B^{l_2} y_B^{m_2} z_B^{n_2} e^{-\alpha_2 \mathbf{r}_B^2}.$$
 (1.12)

Here, $\mathbf{r}_A = \mathbf{r} - \mathbf{A}$, etc. For primary analysis, take the angular momentum of G_1 and G_2 to be zero, so

$$G_1 = e^{-\alpha_1 \mathbf{r}_A^2}; \qquad G_2 = e^{-\alpha_2 \mathbf{r}_B^2}.$$
 (1.13)

These are unnormalized, but normalization can be calculated as in section 1.1. It would be convenient if this product could be written as a third gaussian, ie. $G_1 \cdot G_2 = G_3$, or

$$e^{-\alpha_1 \mathbf{r}_A^2} e^{-\alpha_2 \mathbf{r}_B^2} = K e^{-\gamma \mathbf{r}_P^2}.$$
 (1.14)

Expand equation 1.14 using the definition of $\mathbf{r}_A, \mathbf{r}_B, \mathbf{r}_P$ given above.

$$e^{-\alpha_{1}\mathbf{r}_{A}^{2}-\alpha_{2}\mathbf{r}_{B}^{2}} = \exp[-(\alpha_{1}+\alpha_{2})\mathbf{r}\cdot\mathbf{r}+2(\alpha_{1}\mathbf{A}+\alpha_{2}\mathbf{B})\cdot\mathbf{r} -\alpha_{1}\mathbf{A}\cdot\mathbf{A}-\alpha_{2}\mathbf{B}\cdot\mathbf{B}]$$

$$= K \exp[-\gamma(\mathbf{r}\cdot\mathbf{r}-\mathbf{r}\cdot\mathbf{P}+\mathbf{P}\cdot\mathbf{P})]$$
(1.15)

Comparing terms,

$$\gamma = \alpha_1 + \alpha_2$$

$$\gamma \mathbf{P} = (\alpha_1 \mathbf{A} + \alpha_2 \mathbf{B}), \text{ thus } \mathbf{P} = \frac{\alpha_1 \mathbf{A} + \alpha_2 \mathbf{B}}{\gamma}$$
(1.17)

which leads to the conclusion that

$$Ke^{-\gamma \mathbf{P} \cdot \mathbf{P}} = e^{-\alpha_1 \mathbf{A} \cdot \mathbf{A} - \alpha_2 \mathbf{B} \cdot \mathbf{B}}$$
 (1.18)

$$K = e^{-\alpha_1 \mathbf{A} \cdot \mathbf{A} - \alpha_2 \mathbf{B} \cdot \mathbf{B} + \gamma \mathbf{P} \cdot \mathbf{P}}$$
 (1.19)

From equation 1.17, we expand $\mathbf{P} \cdot \mathbf{P}$ and use that to get a final expression for K,

$$\gamma \mathbf{P} \cdot \mathbf{P} = \gamma^{-1} \left[\alpha_1^2 \mathbf{A} \cdot \mathbf{A} + 2\alpha_1 \alpha_2 \mathbf{A} \cdot \mathbf{B} + \alpha_2^2 \mathbf{B} \cdot \mathbf{B} \right]$$

$$K = \exp \left[-\alpha_1 \mathbf{A} \cdot \mathbf{A} - \alpha_2 \mathbf{B} \cdot \mathbf{B} + (\alpha_1^2 \mathbf{A} \cdot \mathbf{A} + 2\alpha_1 \alpha_2 \mathbf{A} \cdot \mathbf{B} + \alpha_2^2 \mathbf{B} \cdot \mathbf{B}) / \gamma \right]$$

$$= \exp \left[(-\alpha_1^2 \mathbf{A} \cdot \mathbf{A} - \alpha_1 \alpha_2 \mathbf{A} \cdot \mathbf{A} - \alpha_1 \alpha_2 \mathbf{B} \cdot \mathbf{B} - \alpha_2^2 \mathbf{B} \cdot \mathbf{B} + \alpha_1^2 \mathbf{A} \cdot \mathbf{A} + 2\alpha_1 \alpha_2 \mathbf{A} \cdot \mathbf{B} + \alpha_2^2 \mathbf{B} \cdot \mathbf{B}) \gamma^{-1} \right]$$

$$= e^{-[\alpha_1 \alpha_2 (\overline{\mathbf{A}} \overline{\mathbf{B}}^2) / \gamma]}$$

$$= e^{-[\alpha_1 \alpha_2 (\overline{\mathbf{A}} \overline{\mathbf{B}}^2) / \gamma]}$$

$$(1.21)$$

if we define $\overline{AB} = (A - B)$. For two 1–s orbitals,

$$e^{-\alpha_1 \mathbf{r}_A^2} e^{-\alpha_2 \mathbf{r}_B^2} = \exp\left[-\alpha_1 \alpha_2 (\overline{\mathbf{A}}\overline{\mathbf{B}}^2)/\gamma\right] \exp\left[-\gamma (\mathbf{r} - \mathbf{P})^2\right]$$
 (1.22)

For more general Cartesian gaussians, ones with arbitrary angular momentum,

$$G_1 G_2 = x_A^{l_1} x_B^{l_2} y_A^{m_1} y_B^{m_2} z_A^{n_1} z_B^{n_2} \underbrace{e^{-(\alpha_1 \alpha_2 (\overline{\mathbf{AB}})^2/\gamma)}}_{K} e^{\gamma \mathbf{r}_P^2}$$
(1.23)

where we've used equation 1.22 to take care of the product of the exponentials. Now, $x_A^{l_1}, x_B^{l_2}$ and the like need to be considered.

$$x_A^{l_1} x_B^{l_2} = (x - A_x)^{l_1} (x - B_x)^{l_2} (1.24)$$

$$(x - A_x)^{l_1} = [(x - P_x) + (P_x - A_x)]^{l_1} = (x_P - (\overline{\mathbf{PA}})_x)^{l_1}.$$
 (1.25)

Using a standard binomial expansion,

$$(x_P - (\overline{\mathbf{PA}})_x)^{l_1} = \sum_{i=0}^{l_1} (x_P)^i (\overline{\mathbf{PA}})_x^{l_1 - i} \frac{l_1!}{i!(l_1 - i)!} = \sum_{i=0}^{l_1} (x_P)^i (\overline{\mathbf{PA}})_x^{l_1 - i} \begin{pmatrix} l_1 \\ i \end{pmatrix}$$
(1.26)

Likewise,

$$(x - B_x)^{l_2} = (x_P - (\overline{\mathbf{PB}})_x)^{l_2} = \sum_{j=0}^{l_2} (x_P)^j (\overline{\mathbf{PB}})_x^{l_2 - j} \begin{pmatrix} l_2 \\ j \end{pmatrix}.$$
(1.27)

Using these, we can write $x_A^{l_1}x_B^{l_2}$ as a summation of x_P to various powers.

$$x_A^{l_1} x_B^{l_2} = \sum_{k=0}^{l_1+l_2} x_P^k f_k(l_1, l_2, (\overline{\mathbf{PA}})_x, (\overline{\mathbf{PB}})_x).$$
 (1.28)

The coefficient of x_P^k in the product $x_A^{l_1}x_B^{l_2}$ is given by

$$f_k(l_1, l_2, \overline{\mathbf{P}}\overline{\mathbf{A}}_x, \overline{\mathbf{P}}\overline{\mathbf{B}}_x) = \sum_{i=0, l_1}^{i+j=k} \sum_{j=0, l_2} (\overline{\mathbf{P}}\overline{\mathbf{A}})_x^{l_1-i} \begin{pmatrix} l_1 \\ i \end{pmatrix} (\overline{\mathbf{P}}\overline{\mathbf{B}})_x^{l_2-j} \begin{pmatrix} l_2 \\ j \end{pmatrix}$$
(1.29)

Perhaps more conveniently for implementing in a computational scheme, f_k can be redefined as

$$f_{k} = \sum_{\substack{q=\max(-k,k-2l_{2})}}^{\min(k,2l_{1}-k)^{*}} {l_{1} \choose i} {l_{2} \choose j} (\overline{\mathbf{PA}})_{x}^{l_{1}-i} (\overline{\mathbf{PB}})_{x}^{l_{2}-j}$$

$$2i = k+q$$

$$2j = k-q$$
*increments of 2

Whence we write the full Gaussian Product Theorem as equation 1.10. A derivation of equation 1.30 might be found in appendix II.

1.3 Products of Contracted Cartesian Gaussians

Examine some contracted 1–s functions. Let

$$\phi(\mathbf{r}) = N \sum_{i}^{n} a_i e^{-\alpha_i \mathbf{r}^2}$$
 (1.31)

where n is the number of primitive functions in the contracted function $\phi(\mathbf{r})$, and a_i are the contraction coefficients. The product $\phi^*(\mathbf{r})\phi(\mathbf{r})$ can be written

$$\phi^*(\mathbf{r})\phi(\mathbf{r}) = N^2 \left[\sum_{i=1}^n a_i e^{-\alpha_i \mathbf{r}^2} \sum_{j=1}^n a_j e^{-\alpha_j \mathbf{r}^2} \right].$$
 (1.32)

Since the bracketed term contains a product of two polynomials, only two types of terms can result; the square of each uncontracted function and the products of all different pairs of uncontracted functions. Take an example where n is three:

$$[a_{1}e^{-\alpha_{1}\mathbf{r}^{2}} + a_{2}e^{-\alpha_{2}\mathbf{r}^{2}} + a_{3}e^{-\alpha_{3}\mathbf{r}^{2}}]^{2} = [a_{1}^{2}e^{-2\alpha_{1}\mathbf{r}^{2}} + a_{2}^{2}e^{-2\alpha_{2}\mathbf{r}^{2}} + a_{3}^{2}e^{-2\alpha_{3}\mathbf{r}^{2}} + 2\alpha_{1}\alpha_{2}e^{-(\alpha_{1}+\alpha_{2})\mathbf{r}^{2}} + 2\alpha_{1}\alpha_{3}e^{-(\alpha_{1}+\alpha_{3})\mathbf{r}^{2}} + 2\alpha_{2}\alpha_{3}e^{-(\alpha_{2}+\alpha_{3})\mathbf{r}^{2}}]$$

$$+2\alpha_{2}\alpha_{3}e^{-(\alpha_{2}+\alpha_{3})\mathbf{r}^{2}}]$$

$$(1.33)$$

In this case, as in all others, there are only two types of terms of which the integral needs to be taken. They may be written and evaluated as

1.
$$\int a_i^2 e^{-2\alpha_i \mathbf{r}^2} d\mathbf{r} = a_i^2 \left(\frac{\pi}{2\alpha_i}\right)^{3/2}$$
 (1.34)

2.
$$\int 2a_i a_j e^{-(\alpha_i + \alpha_j)\mathbf{r}^2} d\mathbf{r} = 2a_i a_j \left(\frac{\pi}{\alpha_i + \alpha_j}\right)^{3/2}.$$
 (1.35)

It is realized that 1. above can be obtained by setting i = j in 2., and henceforth only the general case need be considered. Generalizing to arbitrary n is straightforward, and so the normalization of contracted gaussian functions can proceed as

$$\int \phi^*(\mathbf{r})\phi(\mathbf{r})d\mathbf{r} = N^2 \pi^{3/2} \left[\frac{a_1^2}{(2\alpha_1)^{3/2}} + \dots + \frac{2\alpha_1 \alpha_2}{(\alpha_1 + \alpha_2)^{3/2}} + \dots \right]
= N^2 \pi^{3/2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_i a_j}{(\alpha_i + \alpha_j)^{3/2}} = 1,$$
(1.36)

thus the normalization constant for the entire contraction will be

$$N = \pi^{-3/4} \left[\sum_{i,j}^{n} \frac{a_i a_j}{(\alpha_i + \alpha_j)^{3/2}} \right]^{-1/2}$$
 (1.37)

General contractions (of arbitrary angular momentum) are a tad worse, but if we assume all of the contracted functions to be of the same angular momentum

$$\phi(\mathbf{r}) = N \left[a_1 x^l y^m z^n e^{-\alpha_1 \mathbf{r}^2} + a_2 x^l y^m z^n e^{-\alpha_2 \mathbf{r}^2} + \cdots \right]$$
$$= N x^l y^m z^n \sum_{i=1}^n a_i e^{-\alpha_i \mathbf{r}^2}$$
(1.38)

$$\int \phi^*(\mathbf{r})\phi(\mathbf{r})d\mathbf{r} = N^2 \int x^{2l} y^{2m} z^{2n} \left[\sum_{i=1}^n a_i e^{-\alpha_i \mathbf{r}^2} \cdot \sum_{j=1}^n a_j e^{-\alpha_j \mathbf{r}^2} \right] d\mathbf{r} \quad (1.39)$$

$$\int \phi^*(\mathbf{r})\phi(\mathbf{r})d\mathbf{r} = N^2 \sum_{i=0}^n \sum_{j=0}^n \int y^{2n} z^{2n} e^{-\alpha_i \mathbf{r}^2} e^{-\alpha_2 \mathbf{r}^2}$$
(1.40)

The product in brackets in equation 1.40 we've encountered before. Analogous to equation 1.7, the general form for one integral in the double sum is

$$\int x^{2l} y^{2m} z^{2n} a_i^2 e^{-2\alpha_i \mathbf{r}^2} d\mathbf{r} = a_i^2 \pi^{3/2} \frac{(2l-1)!!(2m-1)!!(2m-1)!!(2n-1)!!}{2^{(l+m+n)}(2\alpha_i)^{(l+m+n+3/2)}}.$$
 (1.41)

Thus the product can be written as one sum if we're clever. The self overlap is then

$$\int \phi^*(\mathbf{r})\phi(\mathbf{r})d\mathbf{r} = \frac{N^2 \pi^{3/2} (2l-1)!! (2m-1)!! (2n-1)!!}{2^{l+m+n}} \sum_{i,j}^n \frac{a_i a_j}{(\alpha_i + \alpha_j)^{l+m+n+3/2}}.$$
(1.42)

Calling l + m + n = L, the angular momentum of the shell, and solving for N,

$$\int \phi^* \phi = \frac{N^2 \pi^{3/2} (2l-1)!! (2m-1)!! (2n-1)!!}{2^L} \sum_{i,j}^n \frac{a_i a_j}{(\alpha_i + \alpha_j)^{L+3/2}} = 1 \quad (1.43)$$

$$N = \left[\frac{\pi^{3/2}(2l-1)!!(2m-1)!!(2n-1)!!}{2^L} \sum_{i,j}^n \frac{a_i a_j}{(\alpha_i + \alpha_j)^{L+3/2}} \right]^{-1/2}$$
(1.44)

${f 2} \quad {f S}_{ij} - {f Overlap \; Integrals}$

2.1 Overlap of primitive 1s functions on different centers

$$\int \phi_1^*(\mathbf{r})\phi_2(\mathbf{r})d\mathbf{r} = \int e^{-\alpha_1 \mathbf{r}_A^2} e^{-\alpha_2 \mathbf{r}_B^2} d\mathbf{r}$$
(2.1)

Using the gaussian product theorem as it appears in equation 1.22

$$S_{12} = \int e^{-\alpha_1 \alpha_2 (\overline{\mathbf{AB}})^2 / \gamma} e^{-\gamma \mathbf{r}_P^2} d\mathbf{r}$$
 (2.2)

$$= e^{-\alpha_1 \alpha_2 (\overline{\mathbf{A}} \overline{\mathbf{B}})^2 / \gamma} \int_{-\infty}^{\infty} e^{-\gamma x_P^2} dx \int_{-\infty}^{\infty} e^{-\gamma y_P^2} dy \int_{-\infty}^{\infty} e^{-\gamma z_P^2} dz \qquad (2.3)$$

$$S_{12} = e^{-\alpha_1 \alpha_2 (\overline{\mathbf{AB}})^2 / \gamma} \left(\frac{\pi}{\gamma}\right)^{3/2} \tag{2.4}$$

2.2 Overlap of generally contracted 1s functions

Take now $\phi_1(\mathbf{r})$ to be centered on **A** and $\phi_2(\mathbf{r})$ to be centered on **B**, as

$$\phi_1(\mathbf{r}) = N_1 \sum_{i=1}^{n} a_i e^{-\alpha_i \mathbf{r}_A^2}, \phi_2(\mathbf{r}) = N_2 \sum_{j=1}^{m} b_j e^{-\beta_j \mathbf{r}_B^2}$$
 (2.5)

$$S_{12} = \int \phi_1^*(\mathbf{r})\phi_2(\mathbf{r})d\mathbf{r} = N_1 N_2 \sum_{i=1}^n \sum_{j=1}^m a_i b_j \int e^{-\alpha_i \mathbf{r}_A^2} e^{-\beta_j \mathbf{r}_B^2} d\mathbf{r}$$
(2.6)

Examining one term in the double sum,

$$\int e^{-\alpha_i \mathbf{r}_A^2} e^{-\beta_j \mathbf{r}_B^2} d\mathbf{r} = \int e^{-\alpha_i \beta_j (\overline{\mathbf{A}} \overline{\mathbf{B}})^2 / \gamma} e^{-\gamma \mathbf{r}_P^2} d\mathbf{r}$$
 (2.7)

$$= e^{-\alpha_i \beta_j (\overline{\mathbf{A}}\overline{\mathbf{B}})^2 / \gamma_{ij}} \left(\frac{\pi}{\gamma_{ij}}\right)^{3/2}$$
 (2.8)

where $\gamma_{ij} = \alpha_i + \beta_j$ and $\mathbf{P}_{ij} = \frac{\alpha_i \mathbf{A} + \beta_j \mathbf{B}}{\gamma_{ij}}$. So

$$S_{12} = N_1 N_2 \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j e^{-\alpha_i \beta_j (\overline{\mathbf{A}} \overline{\mathbf{B}})^2 / \gamma_{ij}} \left[\frac{\pi}{\gamma_{ij}} \right]^{3/2}$$

$$(2.9)$$

2.3 Overlap of primitive arbitrary angular momentum functions

Overlap of arbitrary–*l* functions:

$$S_{12} = \int G_1(\alpha_1, \mathbf{A}, l_1, m_1, n_1) G_2(\alpha_2, \mathbf{B}, l_2, m_2, n_2) d\mathbf{r}$$

$$= \int x_A^{l_1} x_B^{l_2} y_A^{m_1} y_B^{m_2} z_A^{n_1} z_B^{n_2} \exp[-\alpha_1 \alpha_2 (\overline{\mathbf{A}} \overline{\mathbf{B}})^2 / \gamma] e^{-\gamma x_P^2} e^{-\gamma y_P^2} e^{-\gamma z_P^2} (2.11)$$

with γ and **P** defined as before. Applying the fullness of the gaussian product theorem (equation 1.10),

$$S_{12} = \exp[-\alpha_1 \alpha_2 (\overline{\mathbf{AB}})^2 / \gamma] I_x I_y I_z. \tag{2.12}$$

where

$$I_x = \int \sum_{i=0}^{l_1+l_2} f_i(l_1, l_2, \overline{\mathbf{P}}\overline{\mathbf{A}}_x, \overline{\mathbf{P}}\overline{\mathbf{B}}_x) x_P^i e^{-\gamma x_P^2} dx$$
 (2.13)

$$= \sum_{i=0}^{l_1+l_2} f_i(l_1, l_2, \overline{\mathbf{PA}}_x, \overline{\mathbf{PB}}_x) \int_{-\infty}^{\infty} x_P^i e^{-\gamma x_P^2} dx$$
 (2.14)

Noting that any odd value of i produces a zero integral, and then using equation 1.41 for $\int x_P^i e^{-\gamma x_P^2} dx$,

$$I_x = \sum_{i=0}^{(l_1 + l_2)/2} f_{2i}(l_1, l_2, \overline{\mathbf{PA}}_x, PB_x) \frac{(2i-1)!!}{(2\gamma)^i} \left(\frac{\pi}{\gamma}\right)^{1/2}$$
(2.15)

by equation 860.17 in Dwight.

3 T_{ij} -Kinetic Energy Integrals

3.1 $\nabla^2 \phi(\mathbf{r})$

The kinetic energy operator is $-\frac{1}{2}\nabla^2$, or $-\frac{1}{2}(\partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2)$ in cartesian coordinates. So the kinetic energy integral over general, uncontracted gaussian functions is

$$\mathbf{T}_{12} = \int \phi_{1}^{*}(\mathbf{r})(-\frac{1}{2}\nabla^{2})\phi_{2}d\mathbf{r}$$

$$= -\frac{1}{2}\int x_{A}^{l_{1}}y_{A}^{m_{1}}z_{A}^{n_{1}}e^{-\alpha_{1}r_{A}^{2}}(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}})x_{B}^{l_{2}}y_{B}^{m_{2}}z_{B}^{n_{2}}e^{-\alpha_{1}r_{A}^{2}}d\mathbf{r}$$
(3.1)
$$= I_{x} + I_{y} + I_{z}$$

where we now define I_x as

$$I_x = -\frac{1}{2} \int x_A^{l_1} y_A^{m_1} z_A^{n_1} e^{-\alpha_1 r_A^2} (\frac{\partial^2}{\partial x^2}) x_B^{l_2} y_B^{m_2} z_B^{n_2} e^{-\alpha_1 r_A^2} d\mathbf{r}$$
 (3.2)

Now we need to determine the action of the lagrangian (or any piece thereof) on a particular gaussian function. Sequentially applying the differential operator,

$$\frac{\partial}{\partial x}(x_B^{l_2}e^{-\alpha_2 x_B^2}) = l_2 x_B^{l_2-1}e^{-\alpha_2 x_B^2} - 2\alpha_2 x_B^{l_2+1}e^{-\alpha_2 x_B^2} \qquad (3.3)$$

$$\frac{\partial}{\partial x}(\frac{\partial}{\partial x}(x_B^{l_2}e^{-\alpha_2 x_B^2})) = l_2(l_2 - 1)x_B^{l_2-2}e^{-\alpha_2 x_B^2} + \alpha_2(2l_2 + 1)x_B^{l_2}e^{-\alpha_2 x_B^2}$$

$$-2\alpha_2(l_2 + 1)x_B^{l_2}e^{-\alpha_2 x_B^2} + 4\alpha_2^2 x_B^{l_2+2}e^{-\alpha_2 x_B^2}$$

$$-\frac{1}{2}\frac{\partial^2}{\partial x^2}(x_b^{l_2}e^{-\alpha_2 x_B^2}) = -\frac{l_2(l_2 - 1)}{2}x_B^{l_2-2}e^{-\alpha_2 x_B^2}$$

$$+\alpha_2(2l_2 + 1)x_B^{l_2}e^{-\alpha_2 x_B^2} - 2\alpha_2^2 x_B^{l_2+2}e^{-\alpha_2 x_B^2}$$

$$(3.3)$$

Clearly, this is just a sum of three gaussian functions related to the original by a shift of 0, 2, or -2 in the angular momentum portion, aside from some constants.

3.2 Asymmetric form of T_{ij}

Simply applying the results shown in equation 3.5 within equation 3.1 gives a form of T_{ij} which appears as a sum of three overlap—type integrals with various multiplicative constants. To display the particular overlap integrals involved in that sum we will use a particular notation derived from the bra and ket notation common in physics. Let $\langle \pm n |_{\gamma}$ denote a gaussian where the angular momentum has been increased or decreased by n in the γ coordinate. In other words,

$$\langle +2|_x = x^{l+2} y^m z^n e^{-\alpha r^2}$$
 (3.6)

Thus, given that the overlap between two gaussians G_1 and G_2 is

$$\int G_1 G_2 = \langle 0|0\rangle, \tag{3.7}$$

the construction $\langle 0| + 2\rangle_x$ denotes an overlap integral between G_1 and a gaussian derived from G_2 by incrementing the exponent of x by 2. In this way, we can write the asymmetric form of the kinetic energy integral using equations 3.2 and 3.5 as

$$I_x = \alpha_2(2l_2 + 1)\langle 0|0\rangle - 2\alpha_2^2\langle 0| + 2\rangle_x - \frac{l_2(l_2 - 1)}{2}\langle 0| - 2\rangle_x$$
 (3.8)

I havn't yet got this to work in my program.

3.3 Symmetric form of T_{ij}

Time to try a different approach. Starting with the old definition of I_x ,

$$I_x = -\frac{1}{2} \int \int \int \phi_1^*(\mathbf{r}) \frac{\partial^2}{\partial x^2} \phi_2(\mathbf{r}) dx dy dz$$
 (3.9)

and integrating by parts in x,

$$I_{x} = -\frac{1}{2} \left[\int \int \left(\phi_{1}^{*}(\mathbf{r}) \frac{\partial \phi_{2}(\mathbf{r})}{\partial x} \Big|_{-\infty}^{+\infty} dy dz - \int \int \int \frac{\partial \phi_{1}^{*}(\mathbf{r})}{\partial x} \frac{\partial \phi_{2}(\mathbf{r})}{\partial x} dx dy dz \right]$$
(3.10)

The first term is of course zero because both $\phi_1(\mathbf{r})$ and $\partial \phi_2(\mathbf{r})/\partial x$ go to zero as $x \to \pm \infty$. So

$$I_{x} = \frac{1}{2} \int \int \int \frac{\partial \phi_{1}}{\partial x} \frac{\partial \phi_{2}}{\partial x} dx dy dz$$
 (3.11)

Recalling equation 3.3,

$$I_{x} = \frac{1}{2} \int \int \int \left[l_{2} x_{A}^{l_{1}-1} - 2\alpha_{1} x_{A}^{l_{1}+1} \right] y_{A}^{m_{1}} z_{A}^{n_{1}} e^{\alpha_{1} r_{A}^{2}}$$

$$\cdot \left[l_{2} x_{B}^{l_{2}-1} - 2\alpha_{2} x_{B}^{l_{2}+1} \right] y_{B}^{m_{2}} z_{B}^{n_{2}} e^{-\alpha_{2} r_{B}^{2}} dx dy dz.$$

$$(3.12)$$

Thus we can reduce this cumbersome notation to something a little simpler for those of us with overlap integrals all coded up already as a simple subroutine...

$$I_{x} = \frac{1}{2}l_{1}l_{2}\langle -1| -1\rangle_{x} + 4\alpha_{1}\alpha_{2}\langle +1| +1\rangle_{x} -2\alpha_{1}l_{2}\langle +1| -1\rangle_{x} - 2\alpha_{2}l_{1}\langle -1| +1\rangle_{x}$$
(3.13)

This I got to work. It is somewhat more appealing, since T_{ij} should be a symmetric matrix, i.e. $T_{ij} = T_{ji}$. This is an obvious truth when equation 3.13 is used to calculate T, but is not so from the asymmetric form. There is no good reason for this – Wesley Allen and I proved all this quite rigorously, so there must be something wrong with my coding of it.

4 V_{ij} - Nuclear Attraction Integrals

4.1 The need for a transformation

Since the potential energy is due to coulombic interaction of the nuclei with the electron in question, the operator to deal with is $1/r_C$. Thus the integral we need to evaluate is

$$V_{ij}^{C} = \int \phi_{i} \frac{1}{r_{C}} \phi_{j} d\mathbf{r}$$

$$= \int x_{A}^{l_{1}} y_{A}^{m_{1}} z_{A}^{n_{1}} e^{-\alpha_{1} r_{A}^{2}} \frac{1}{r_{c}} x_{B}^{l_{2}} y_{B}^{m_{2}} z_{B}^{n_{2}} e^{-\alpha_{2} r_{B}^{2}} d\mathbf{r}$$

$$(4.1)$$

Since the operator does not affect the operand (ϕ) , we can combine the two orbitals via the gaussian product theorem, and make the final statement

$$V_{ij}^{C} = K \sum_{l} \sum_{m} \sum_{n} f_{l}(l_{1}, l_{2}, \overline{\mathbf{P}} \overline{\mathbf{A}}_{x}, \overline{\mathbf{P}} \overline{\mathbf{B}}_{x}) f_{m}(m_{1}, m_{2}, \overline{\mathbf{P}} \overline{\mathbf{A}}_{y}, \overline{\mathbf{P}} \overline{\mathbf{B}}_{y})$$

$$\cdot f_{n}(n_{1}, n_{2}, \overline{\mathbf{P}} \overline{\mathbf{A}}_{z}, \overline{\mathbf{P}} \overline{\mathbf{B}}_{z}) \int x_{P}^{l} y_{P}^{m} z_{P}^{n} e^{-\gamma r_{P}^{2}} \frac{1}{r_{C}} d\mathbf{r}$$

$$(4.2)$$

where $K = e^{-\alpha_1\alpha_2(\overline{\mathbf{AB}}^2/\gamma)}$. This is still intractible, since we've failed to write everything in terms of the integration variables, \mathbf{r}_P . At this point, we want to apply some sort of transform to the $\frac{1}{r_C}$ to turn it into some sort of an exponential which can be combined with the other gaussians and result in resolution of the variables. There are two standard possibilities – the one I like and the one everyone uses. First things first...

4.2 Laplace transform

Use the standard Laplace transform,

$$r^{-\lambda} = \left[\Gamma(\frac{\lambda}{2})\right]^{-1} \int_0^\infty e^{-sr^2} s^{\lambda/2 - 1} ds. \tag{4.3}$$

You can just evaluate the rhs to confirm this. We want the instance where $\lambda = 1$, thus

$$\frac{1}{r_C} = \pi^{-1/2} \int_0^\infty e^{-sr_C^2} s^{-1/2} ds. \tag{4.4}$$

What occurs when we use this in the context of a potential energy integral involving only 1s functions?

$$V = \int e^{-\alpha_1 r_A^2} e^{-\alpha_2 r_B^2} \frac{1}{r_C} d\mathbf{r}$$

$$= K \int e^{-\gamma r_P^2} \frac{1}{r_C} d\mathbf{r}$$

$$= K \pi^{-1/2} \int e^{-\gamma r_P^2} \int_0^\infty e^{-sr_C^2} s^{-1/2} ds d\mathbf{r}$$

$$(4.5)$$

Conveniently, the laplace transform takes r_c^{-1} into a function with the appearance of a 1s gaussian of orbital exponent s centered on \mathbf{C} . A second application of the GPT and we can switch the order of integration, evaluating the integral over s second.

$$V = K\pi^{-1/2} \int_{0}^{\infty} ds s^{-1/2} \int e^{-\gamma r_{P}^{2}} e^{-sr_{C}^{2}} d\mathbf{r}$$

$$= K\pi^{-1/2} \int_{0}^{\infty} ds s^{-1/2} e^{-\gamma s \overline{\mathbf{PC}}^{2}/(\gamma+s)} \int d\mathbf{r} e^{-(\gamma+s)r_{D}^{2}}$$

$$= K\pi \int_{0}^{\infty} ds s^{-1/2} (\gamma+s)^{-3/2} e^{-\gamma s \overline{\mathbf{PC}}^{2}/(\gamma+s)}.$$
(4.6)

Now making the substitution $t^2 = \frac{s}{(\gamma + s)}$, $ds = \frac{2}{\gamma} s^{1/2} (\gamma + s)^{3/2} dt$ amazingly cancels just about everything leaving

$$V = \frac{K\pi^2}{\gamma} \int_0^1 e^{-\gamma \overline{\mathbf{PC}}^2 t^2} dt \tag{4.8}$$

which everyone recognizes as a standard error function,

$$V = \frac{K\pi^{5/2}}{2\gamma^{3/2}\overline{\mathbf{PC}}}\operatorname{erf}(\gamma^{1/2}\overline{\mathbf{PC}}). \tag{4.9}$$

4.3 Fourier transform

When I get around to type setting this, it will be here, but it is non-essential to the lecture.

5 Electron Repulsion Integrals

These are just a little more complicated than potential energy integrals.