CS F364: Design & Analysis of Algorithm

R Quick Sort **Defective Chessboard**

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Jan 22, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Randomized Quick Sort

QuickSort(A,p,r)

- rQuickSort(A,p,r) **if** (p<r) q = rPartition(A,p,r)rQuickSort(A,p,q-1)rQuickSort(A,q+1,r)
- rPartition (A,p,r) i = random(p,r)
 swap A[r] <-> A[i]
 return Partition(A,p,r)

Randomized Quick Sort

- Pivot element can either be
 - **1** S_i or S_j : its probability is $\frac{2}{j-i+1}$
 - 2 Inside S_q from i < q < j, comparison not possible
 - Outside S_r from r < i or j < r, no effect on comparison

$$\sum_{i=1}^{n} \sum_{j>i} E[X_{ij}] = \sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1} = 2 \sum_{i=1}^{n} \sum_{k=1}^{n-i+1} \frac{1}{k}$$

$$\leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k} = 2nH_n = O(n \ln n)$$

as $H_n \sim \ln n + \Theta(1)$

Quick Sort

Which algorithm is better?

	Best Case	Worst Case	Average Case
Algo-01	n log n	n log n	n log n
Algo-02	n log n	n(n-1)	n log n

- If I tell you Algo-01 is merge sort and Algo-02 is quick sort then?
- Quick sort is popular because it always behaves like average case as the input size increases

Table: 1000 execution of randomized quick sort on random list

	Input size (# of items)				
Number of times runtime exceed	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
the average behavior					
10%	190	49	22	10	3
20%	28	17	12	3	0
50%	2	1	1	0	0
100%	0	0	0	0	0

Analysis of Randomized Quick Sort

Estimate number of comparisons performed during execution

- Let sorted list $\langle S_1, S_2, S_3, ..., S_n \rangle$ with S_i as i^{th} smallest element
- Define random variable X_{ii} as number of comparisons between S_i and S_i . X_{ij} could take a value 0 or 1
- Expected number of comparison is

$$E[\sum_{i=1}^{n}\sum_{j>i}X_{ij}]=\sum_{i=1}^{n}\sum_{j>i}E[X_{ij}]$$

• If p_{ij} be the probability of comparison between S_i and S_j . Then,

$$E[X_{ij}] = p_{ij} \times 1 + (1 - p_{ij}) \times 0 = p_{ij}$$

Decision Tree Model of Sorting

Sort three items a_1, a_2, a_3

Is it always to be a binary tree?

What is worst case time taken by this algorithm? O(height) How many leaves would be there with 4 items?

Lower Bound of Sorting

Any comparison sort needs $\Omega(n \log n)$ comparisons in the worst case.

- There are n! permutations of n items. Each should be at leaf
- Binary tree of height h has at most 2h leaves

$$n! \le 2^h$$
$$h \ge \log(n!)$$

• Stirling's approximation of n! is $(n/e)^n$

$$h \ge n \log(n) - n \log(e)$$

 $h = \Omega(n \log(n))$

Machine Learning (BITS F464) M W F (10-11AM) online@BITS-Pilani Lecture-03(Jan 22, 2021) 7/15

Counting Sort in action

Bucket Sort

(40 44AN) antice ○DITE Dilet:

Wish to sort in linear time O(n)? use Counting Sort

```
CountingSort(A,B,k)
Let C[0..k] be new array of zeros

for j=1 to A.length
C[A[j]] = C[A[j]] + 1

for i=1 to k
C[i] = C[i] + C[i-1]

for j=A.length down to 1
B[C[A[j]]] = A[j]
C[A[j]] = C[A[j] -1
```

Apply to Sort: 2, 5, 3, 0, 2, 3, 0, 3

Radix Sort

Use a stable sorting algorithm to sort array A on digit (1 to d)

Machine Learning (BITS F464) M W F (10-11AM) online@BITS-Pilani Lecture-03(Jan 22, 2021) 10/15

Bucket Sort

lachine Learning (BITS F464) M W F (10-11AM) online@BITS-Pilani Lecture-03(Jan 22, 2021) 12/15

Defective Chessboard

• Consider a chessboard of size $2^k \times 2^k$ where one cell is defective. Your task to cover it using a triomino.

Obviously

- Triomino cannot cover the defected one
- Triomino should not overlap
- Triomino must cover all other squares

Thank You!

Defective Chessboard

Divide and conquer

- **Divide:** in smaller size instances.
- 2 Recursive step: use same framework till it is trivially solvable
- Conquer: combine solutions of smaller instances to get overall solution
- $2^k \times 2^k$ size board is divided in four $2^{k-1} \times 2^{k-1}$ size board
 - Let T(n) be time to tile $2^k \times 2^k$ board

$$T(n) = t_d + 4T(n/2) + t_c = 4T(n/2) + c$$

$$= c + 4c + \dots + 4^{n-2}c + 4^{n-1}d$$

$$= c\frac{4^{n-1} - 1}{4 - 1} + 4^{n-1}d$$

$$= \left(\frac{c}{12} + \frac{d}{4}\right) \times 4^n - \frac{c}{3} = \Theta(4^n)$$

ing (BITS F464) M W F (10-11AM) online@BITS-Pilani Lecture-03(Jan 22, 2021) 14/15

Thank you very much for your attention! (Refere Queries ?

1 [1] Book - Introduction to Algorithm, By THOMAS H. CORMEN, CHARLES E. LEISERSON, RONAL CLIFFORD STEIN

Machine Learning (BITS F464)

M W F (10-11AM) online@BITS-Pilani

Lecture-03(

Name	Time Complexity (Best)	Time Complexity (Average)	Time Complexity (Worst)	Space Complexity	Stability
Bubble Sort	Ω(n)	Θ(n²)	O(n²)	O(1)	Stable
Selection Sort	$\Omega(n^2)$	Θ(n²)	O(n²)	O(1)	Unstable
Insertion Sort	Ω(n)	Θ(n²)	O(n²)	O(1)	Stable
Merge Sort	Ω(n log(n))	⊖(n log(n))	O(n log(n))	O(n)	Stable
Quick Sort	Ω(n log(n))	Θ(n log(n))	O(n²)	O(log(n))	Unstable
Heap Sort	Ω(n log(n))	Θ(n log(n))	O(n log(n))	O(1)	Unstable
Counting Sort	Ω(n+k)	⊖(n+k)	O(n+k)	O(k)	Stable
Radix Sort	Ω(nk)	Θ(nk)	O(nk)	O(n+k)	Stable