Appln. No.: 10/536,571 AOY-3992US

Amendment Dated May 15, 2007

Reply to Office Action of March 21, 2007

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- 1. (Previously Presented) A control method of a switched reluctance motor comprising:
 - (a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;
- (c) comparing the calculated flux-linkage λ_{ph} with a reference flux-linkage λ_r , the reference flux-linkage λ_r related to a reference angle θ_r which lies between angles corresponding to aligned rotor position and non-aligned rotor position in the motor; and
- (d) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase, based on a timing at which the calculated flux-linkage λ_{ph} becomes greater than the reference flux-linkage λ_r .
- 2. (Currently Amended) A control method of a switched reluctance motor comprising:
- (a) calculating an estimated rotor position θ_{est} by adding up an incremental rotor angle $\Delta\theta$ every predetermined control period;
 - (b) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (c) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;
- (d) comparing the calculated flux-linkage λ_{ph} with a reference flux-linkage λ_r , the reference flux-linkage λ_r related to a reference angle θ_r which lies between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;
- (e) when the calculated flux-linkage λ_{ph} becomes greater than the reference fluxlinkage λ_r during the active conduction of a phase, performing once the following procedures including,
 - (a_1) 1a determining estimated rotor position information θ_{cal} which is set at the reference angle θ_r related to the flux-linkage λ_r , or
 - (a_2) -1b determining estimated rotor position information θ_{cal} from the fluxlinkage λ_{ph} by using either one of a predetermined flux-linkage model or inductance model, or

Appln. No.: 10/536,571

Amendment Dated May 15, 2007

Reply to Office Action of March 21, 2007

 (a_3) -1c determining estimated rotor position information θ_{cal} by adding a correction angle Φ to the reference angle θ_r related to the flux-linkage λ_r ; and

- (b) 2 calculating an absolute rotor position θ_{abs} by adding the estimated rotor position information θ_{cal} to a stoke angle of the motor, and
- (e)—3 determining and updating the incremental rotor angle $\Delta\theta$ by processing an error between the absolute rotor position θ_{abs} and the estimated rotor position θ_{est} through either one of a proportional-integral control and a proportional control; and
- (f) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase based on the estimated rotor position θ_{est} .
- 3. (Currently Amended) A control method of a switched reluctance motor comprising:
 - (a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;
- (c) comparing the calculated flux-linkage λ_{ph} with a reference flux-linkage λ_r , the reference flux-linkage λ_r related to a reference angle θ_r which lies between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;
- (d) when the calculated flux-linkage λ_{ph} becomes greater than the reference flux-linkage λ_r during the active conduction of a phase, performing once the following procedures including,
- (a)1 determining estimated rotor position information θ_{cal} which is set at the reference angle θ_r related to the flux-linkage λ_r ;
- \$(b)2\$ calculating and updating an incremental rotor angle $\Delta\theta$ by using an elapsed time from the instant at which the estimated rotor position information θ_{cal} in the previous cycle is determined; and
- (e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next phase, based on the incremental rotor angle $\Delta\theta$, and the turn-off delay and turn-on delay relating to the reference angle θ_r .
- 4. (Currently Amended) A control method of a switched reluctance motor comprising:
 - (a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;

Appln. No.: 10/536,571 AOY-3992US

Amendment Dated May 15, 2007 Reply to Office Action of March 21, 2007

(b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;

- (c) comparing the calculated flux-linkage λ_{ph} with a reference flux-linkage λ_r , the reference flux-linkage λ_r related to a reference angle θ_r which lies between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;
- (d) when the calculated flux-linkage λ_{ph} becomes greater than the reference flux-linkage λ_r during the active conduction of a phase, performing once the following procedures including,
 - $(a_{\pm})1a$ determining estimated rotor position information θ_{cal} from the flux-linkage λ_{ph} by using either one of a predetermined flux-linkage model and inductance model, or
 - $(a_2)1b$ determining estimated rotor position information θ_{cal} by adding a correction angle Φ to the reference angle θ_r related to the flux-linkage λ_r ; and
 - (b)2 calculating and updating an incremental rotor angle $\Delta\theta$ by using an elapsed time from the instant at which the estimated rotor position information θ_{cal} in the previous cycle is determined; and
 - (e)3 correcting a turn-on delay and a turn-off delay which are related to the reference angle θ_r based on the estimated rotor position information θ_{cal} ; and
- (e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next phase, based on the incremental rotor angle $\Delta\theta_{i}$ and the corrected turn-off and turn-on delays.

5. (Cancelled)

- 6. (Currently Amended) A control method of a switched reluctance motor comprising:
- (a) calculating an estimated rotor position θ_{est} by adding up an incremental rotor angle $\Delta\theta$ every predetermined control period;
 - (b) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (c) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;

Appln. No.: 10/536,571

Amendment Dated May 15, 2007

Reply to Office Action of March 21, 2007

(d) comparing the calculated flux-linkage λ_{ph} with a plurality of reference flux-linkages λ_{rn} (n=1,..,k), each of the reference flux-linkages λ_{rn} (n=1,..,k) related to each of reference angles θ_{rn} (n=1,..,k) which lie between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;

- (e) each time the calculated flux-linkage λ_{ph} becomes greater than each of the reference flux-linkages λ_{rn} during the active conduction of a phase, performing once the following procedures including,
 - $\frac{(a_{\pm})1a}{n}$ determining estimated rotor position information θ_{caln} (n=1,..,k) which is set at the reference angle θ_{rn} related to the flux-linkages λ_{rn} , or
 - $(a_2)1b$ determining estimated rotor position information θ_{caln} (n=1,..,k) from the flux-linkage λ_{ph} by using either one of a predetermined flux-linkage model or inductance model, or
 - $(a_3)1c$ determining estimated rotor position information θ_{caln} (n=1,..,k) by adding a correction angle Φ to the reference angle θ_{rn} related to the flux-linkages λ_{rn} ; and
 - $\frac{(b)2}{(b)}$ calculating an absolute rotor position θ_{abs} by adding the estimated rotor position information θ_{cain} to a stoke angle of the motor, and
 - (c)3 determining and updating the incremental rotor angle $\Delta\theta$ by processing an error between the absolute rotor position θ_{abs} and the estimated rotor position θ_{est} through either one of a proportional-integral control and a proportional control; and
- (f) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase based on the estimated rotor position θ_{est} .
- 7. (Currently Amended) A control method of a switched reluctance motor comprising:
 - (a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;
- (c) comparing the calculated flux-linkage λ_{ph} with a plurality of reference flux-linkages λ_r (n=1,..,k), each of the reference flux-linkages λ_r (n=1,..,k) related to each of reference angles θ_r (n=1,..,k) which lie between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;

Appln. No.: 10/536,571

Amendment Dated May 15, 2007

Reply to Office Action of March 21, 2007

(d) each time the calculated flux-linkage λ_{ph} becomes greater than each of the reference flux-linkages λ_{rn} during the active conduction of a phase, performing once the following procedures including,

(a)1 determining estimated rotor position information θ_{caln} (n=1,..,k) which is set at the reference angle θ_{rn} related to the flux-linkages λ_{rn} ;

 $\frac{\{b\}2}{2}$ calculating and updating an incremental rotor angle $\Delta\theta_n$ (n=1,..,k) by using an elapsed time from the instant at which the estimated rotor position information θ_{caln} in the previous cycle is determined;

(c)3 when the calculated flux-linkage λ_{ph} becomes greater than the maximum reference flux-linkage λ_{rk} , averaging the incremental rotor angles $\Delta\theta_n$ (n=1,..,k) to determine and update an incremental rotor angle $\Delta\theta$; and

- (e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next phase, based on the incremental rotor angle $\Delta\theta$, and turn-off delay and turn-on delay related to the reference angle θ_{rn} (n=1,..,k).
- 8. (Currently Amended) A control method of a switched reluctance motor comprising:
 - (a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;
- (c) comparing the calculated flux-linkage λ_{ph} with a plurality of reference flux-linkages λ_{rn} (n=1,..,k), each of the reference flux-linkages λ_{rn} related to each of reference angles θ_{rn} (n=1,..,k) which lie between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;
- (d) each time the calculated flux-linkage λ_{ph} becomes greater than each of the reference flux-linkages λ_{rn} during the active conduction of a phase, performing once the following procedures including,

 $\frac{(a)\underline{1}}{l} \ determining \ estimated \ rotor \ position \ information \ \theta_{caln} \ (n=1,..,k) \ from the flux-linkage \ \lambda_{ph} \ by \ using \ either \ one \ of \ a \ predetermined \ flux-linkage \ model \ and \ inductance model,$

 $\frac{(b)2}{2} \ \text{calculating and updating an incremental rotor angle} \ \Delta\theta \ \text{by using an}$ elapsed time from the instant at which the estimated rotor position information θ_{caln} in the previous cycle is determined,

Appln. No.: 10/536,571

Amendment Dated May 15, 2007

Reply to Office Action of March 21, 2007

(e)3 when the calculated flux-linkage λ_{ph} becomes greater than the maximum reference flux-linkage λ_{rk} , averaging the incremental rotor angles $\Delta\theta_n$ (n=1,..,k) to determine and update an incremental rotor angle $\Delta\theta$, and

 $\frac{(d)4}{(d)} \ \text{correcting a turn-on delay and turn-off delay which are related to the}$ reference flux-linkages λ_{rn} , based on the estimated rotor position information θ_{cain} ; and

- (e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next phase, based on the incremental rotor angle $\Delta\theta_{r}$ and the corrected turn-off and turn-on delays.
- 9. (Currently Amended) A control method of a switched reluctance motor comprising:
 - (a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;
- (c) comparing the calculated flux-linkage λ_{ph} with a plurality of reference flux-linkages λ_{rn} (n=1,..,k), each of the reference flux-linkage λ_{rn} (n=1,..,k) related to each of reference angles θ_{rn} (n=1,..,k) which lie between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;
- (d) each time the calculated flux-linkage λ_{ph} becomes greater than each of the reference flux-linkages λ_{rn} during the active conduction of a phase, performing once the following procedures including,
- (a)1 determining estimated rotor position information θ_{caln} (n=1,..,k) by adding a correction angle Φ to the reference angle θ_{rn} related to the reference flux-linkages λ_{rn} ,
- $\frac{\{b\}2}{calculating an incremental rotor angle $\Delta\theta_n$ (n=1,..,k) by using an elapsed time from the instant at which the estimated rotor position information θ_{caln} in the previous cycle is determined, and$
- $\frac{(c)3}{(c)3}$ when the calculated flux-linkage λ_{ph} becomes greater than the maximum reference flux-linkage λ_{rk} , averaging the incremental rotor angles $\Delta\theta_n$ (n=1,..,k) to determine and update an incremental rotor angle $\Delta\theta$;
- (e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next phase, based on the incremental rotor angle $\Delta\theta_{i}$ and a turn-off delay and a turn-on delay which are determined according to the reference angle θ_{rn} .

10. (Cancelled)

Appln. No.: 10/536,571 AOY-3992US

Amendment Dated May 15, 2007 Reply to Office Action of March 21, 2007

(Cancelled)

12. (Previously Presented) A control method of a switched reluctance motor comprising:

- (a) calculating an estimated rotor position θ_{est} by adding up an incremental rotor angle $\Delta\theta$ every predetermined control period;
 - (b) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (c) calculating an estimated current I_s from the sensed d.c.-link voltage V_{dc} , the sensed phase current I_{ph} , and a value completely or approximately equal to the minimum value of a motor inductance;
 - (d) comparing the sensed phase current I_{ph} with the estimated current I_s ; and
- (e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase, based on a timing when an error between the sensed phase current I_{ph} and the estimated current I_s becomes equal to or less than a predetermined value.
- 13. (Currently Amended) A control method of a switched reluctance motor comprising:
- (a) calculating an estimated rotor position θ_{est} by adding up an incremental rotor angle $\Delta\theta$ every predetermined control period;
 - (b) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (c) calculating an estimated current I_s from the sensed d.c.-link voltage V_{dc} , the sensed phase current I_{ph} , and a value completely or approximately equal to the minimum value of a motor inductance;
 - (d) comparing the sensed phase current I_{ph} with the estimated current I_s ;
- (e) when an error between the sensed phase current I_{ph} and the estimated current I_{s} becomes equal to or less than a predetermined value, performing once the following procedures including,
- $\frac{\text{(a)}\underline{1}}{\text{determining a rotor position }\theta_{\text{app}}} \text{ which is related to the estimated}$ current I_s in advance,
- $\frac{(b)2}{(b)a} \ \text{calculating an absolute rotor position} \ \theta_{\text{abs}} \ \text{by adding the rotor position}$ $\theta_{\text{app}} \ \text{to a stoke angle of the motor, and}$
- (c)3 determining and updating the incremental rotor angle $\Delta\theta$ by processing an error between the absolute rotor position θ_{abs} and the estimated rotor position θ_{est} through either one of a proportional-integral control and a proportional control; and

Appln. No.: 10/536,571 AOY-3992US

Amendment Dated May 15, 2007

Reply to Office Action of March 21, 2007

(f) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase, based on the estimated rotor position θ_{est} .

- 14. (Currently Amended) A control method of a switched reluctance motor comprising:
 - (a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (b) calculating an estimated current I_s from the sensed d.c.-link voltage V_{dc} , the sensed phase current I_{ph} , and a value completely or approximately equal to the minimum value of the motor inductance;
 - (c) comparing the sensed phase current I_{ph} with the estimated current I_s ;
- (d) when an error between the sensed phase current I_{ph} and the estimated current I_{s} becomes equal to or less than a predetermined value, performing once the following procedures including,

(a)1 determining a rotor position θ_{app} which is related to the estimated current I_s in advance;

\$(b)2\$ calculating and updating an incremental rotor angle $\Delta\theta$ by using an elapsed time from the instant at which the rotor position θ_{app} in the previous cycle is determined; and

(e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase, based on the incremental rotor angle $\Delta\theta$, and a turn-off delay and a turn-on delay which are related to the rotor position θ_{app} .

15.-20. (Cancelled)