Extended evaluation of differential chromatin interaction detection analysis using real Hi-C data

John Stansfield, Mikhail Dozmorov

Contents

Introduction	1
The effect of fold change	1
The effect of introduced number of changes	

Introduction

To evaluate the performance of different normalization methods on the detection of chromatin interaction differences, controlled changes were used. Real Hi-C data is used: GM12878, Chromosome 1, MboI vs. DpnII restriction enzymes, 1Mb resolution. The dimensions of the chromatin interaction matrices are 250 x 250. The performance of the joint (loess) and individual (ChromoR, Iterative Correction and Eigenvector decomposition - ICE, Knight-Ruiz - KR, Sequential Component Normalization - SCN) normalization methods at varying fold changes (1.5 by default) and varying number of controlled changes (500 by default) is investigated. The data were globally rescaled to have the same total count of interaction frequencies.

Fold changes are applied to one of the datasets by up-regulating the selected IF if the difference between the datasets is positive. If the difference between the datasets at that point is negative the IF is down-regulated by the specified fold change. This method of making changes ensures that the fold change specified is actually realized on the MD plot.

The effect of fold change

1.5 Fold change

	loess	$\operatorname{chromoR}$	ice	kr	scn
true positive	211	14	11	13	7
false positive	1000	1440	1150	1200	1200
true negative	24900	29400	23800	24700	24700
false negative	289	486	467	487	493
${f Total}$	26400	31400	25400	26400	26400
$ ext{TPR}$	0.422	0.028	0.023	0.026	0.014
\mathbf{SPC}	0.961	0.953	0.954	0.954	0.954
$\mathbf{F1}$	0.975	0.968	0.967	0.967	0.967
\mathbf{AUC}	0.855	0.541	0.766	0.752	0.701
$\mathbf{AUC}\ 20\%$	0.115	0.0216	0.0786	0.0761	0.057
\mathbf{FDR}	0.826	0.99	0.991	0.989	0.994
Accuracy	0.951	0.939	0.936	0.936	0.936
Precision	0.174	0.00964	0.00944	0.0107	0.0058
\mathbf{FPR}	0.0388	0.0466	0.0463	0.0463	0.0463
\mathbf{FNR}	0.578	0.972	0.977	0.974	0.986
\mathbf{FOR}	0.0115	0.0162	0.0193	0.0193	0.0196
NPV	0.989	0.984	0.981	0.981	0.98

2.0 Fold change

	loess	chromoR	ice	kr	scn
true positive	369	9	39	42	50
false positive	856	1450	1130	1180	1160
true negative	25000	29400	23800	24700	24700
false negative	131	491	440	458	450
${f Total}$	26400	31400	25400	26400	26400
$ ext{TPR}$	0.738	0.018	0.0814	0.084	0.1
\mathbf{SPC}	0.967	0.953	0.955	0.954	0.955
$\mathbf{F1}$	0.981	0.968	0.968	0.968	0.968
\mathbf{AUC}	0.963	0.582	0.57	0.576	0.598
$\mathbf{AUC}\ 20\%$	0.169	0.0256	0.0317	0.0329	0.0355
\mathbf{FDR}	0.699	0.994	0.967	0.966	0.959
Accuracy	0.963	0.938	0.938	0.938	0.939
Precision	0.301	0.00617	0.0334	0.0344	0.0413
\mathbf{FPR}	0.0331	0.0469	0.0452	0.0455	0.0449
\mathbf{FNR}	0.262	0.982	0.919	0.916	0.9
\mathbf{FOR}	0.0052	0.0164	0.0181	0.0182	0.0179
\mathbf{NPV}	0.995	0.984	0.982	0.982	0.982

4.0 Fold change

	loess	$\operatorname{chromoR}$	ice	kr	scn
true positive	477	82	386	397	340
false positive	735	1380	792	827	867
true negative	25200	29500	24200	25100	25000
false negative	23	418	93	103	160
Total	26400	31400	25400	26400	26400
\mathbf{TPR}	0.954	0.164	0.806	0.794	0.68
\mathbf{SPC}	0.972	0.955	0.968	0.968	0.967
$\mathbf{F1}$	0.985	0.971	0.982	0.982	0.98
\mathbf{AUC}	0.992	0.508	0.972	0.966	0.95
${f AUC~20\%}$	0.192	0.0211	0.177	0.173	0.163
\mathbf{FDR}	0.606	0.944	0.672	0.676	0.718
Accuracy	0.971	0.943	0.965	0.965	0.961
Precision	0.394	0.0563	0.328	0.324	0.282
\mathbf{FPR}	0.0284	0.0445	0.0317	0.0319	0.0335
\mathbf{FNR}	0.046	0.836	0.194	0.206	0.32
\mathbf{FOR}	0.000913	0.014	0.00384	0.00409	0.00635
NPV	0.999	0.986	0.996	0.996	0.994

10.0 fold change

	loess	chromoR	ice	kr	scn
true positive	492	364	471	490	480
false positive	726	1090	698	730	728
true negative	25200	29800	24200	25200	25200
false negative	8	136	10	10	20

	loess	chromoR	ice	kr	scn
Total	26400	31400	25400	26400	26400
\mathbf{TPR}	0.984	0.728	0.979	0.98	0.96
\mathbf{SPC}	0.972	0.965	0.972	0.972	0.972
$\mathbf{F1}$	0.986	0.98	0.986	0.986	0.985
\mathbf{AUC}	0.995	0.864	0.994	0.994	0.987
${ m AUC}~20\%$	0.195	0.148	0.195	0.195	0.189
\mathbf{FDR}	0.596	0.749	0.597	0.598	0.603
Accuracy	0.972	0.961	0.972	0.972	0.972
Precision	0.404	0.251	0.403	0.402	0.397
\mathbf{FPR}	0.028	0.0352	0.028	0.0282	0.0281
\mathbf{FNR}	0.016	0.272	0.0208	0.02	0.04
\mathbf{FOR}	0.000318	0.00454	0.000412	0.000397	0.000794
NPV	1	0.995	1	1	0.999

Bar plots

The bar plots show comparisons of the effect of different fold changes using fixed numbers of controlled changes on different performance metrics.

Summary

For the real data with changes added, loess was once again able to detect the most true changes compared to the other normalization methods. loess was clearly superior at the lower fold changes (1.5 and 2) with much higher TPRs compared to the other methods with TPRs below 10%. loess also had the lowest number of false negatives compared to the other methods. The gap in detection once again began to close at the higher fold changes between loess, KR, SCN, and ICE however loess still was slightly better. ChromoR once again proved to be the worst normalization method and had the lowest detection rates.

The effect of introduced number of changes

A given number of interaction frequencies were increased or decreased to produce a 1.5-fold change.

1 change

	loess	chromoR	ice	kr	scn
true positive	1	0	0	0	0
false positive	1200	1460	1180	1220	1220
true negative	25200	29900	24200	25200	25200
false negative	0	1	1	1	1
Total	26400	31400	25400	26400	26400
\mathbf{TPR}	1	0	0	0	0
\mathbf{SPC}	0.955	0.953	0.954	0.954	0.954
$\mathbf{F1}$	0.977	0.976	0.976	0.976	0.976
\mathbf{AUC}	0.981	0.54	0.996	0.996	0.77
$\mathbf{AUC}\ 20\%$	0.181	0	0.196	0.196	0
\mathbf{FDR}	0.999	1	1	1	1
Accuracy	0.955	0.953	0.954	0.954	0.954
Precision	0.000833	0	0	0	0
\mathbf{FPR}	0.0455	0.0466	0.0463	0.0462	0.0463
\mathbf{FNR}	0	1	1	1	1
\mathbf{FOR}	0	3.34e-05	4.12e-05	3.97e-05	3.97e-05
NPV	1	1	1	1	1

100 changes

	loess	chromoR	ice	kr	scn
true positive	51	3	4	4	4
false positive	1170	1460	1160	1220	1210
true negative	25100	29800	24200	25100	25100
false negative	49	97	95	96	96
Total	26400	31400	25400	26400	26400
\mathbf{TPR}	0.51	0.03	0.0404	0.04	0.04
\mathbf{SPC}	0.956	0.953	0.954	0.954	0.954
$\mathbf{F1}$	0.976	0.975	0.975	0.975	0.975
\mathbf{AUC}	0.877	0.542	0.772	0.766	0.72
$\mathrm{AUC}\ 20\%$	0.122	0.0208	0.0907	0.089	0.0734
FDR	0.958	0.998	0.997	0.997	0.997
Accuracy	0.954	0.95	0.951	0.95	0.95
Precision	0.0419	0.00205	0.00344	0.00328	0.00329
\mathbf{FPR}	0.0444	0.0467	0.0457	0.0462	0.0461
\mathbf{FNR}	0.49	0.97	0.96	0.96	0.96
FOR	0.00195	0.00324	0.00392	0.00381	0.00381
\mathbf{NPV}	0.998	0.997	0.996	0.996	0.996

200 changes

	loess	$\operatorname{chromoR}$	ice	kr	scn
true positive	93	2	2	2	3
false positive	1110	1460	1160	1210	1210
true negative	25100	29700	24100	25000	25000
false negative	107	198	189	198	197
${f Total}$	26400	31400	25400	26400	26400
$ ext{TPR}$	0.465	0.01	0.0105	0.01	0.015
\mathbf{SPC}	0.958	0.953	0.954	0.954	0.954
$\mathbf{F1}$	0.976	0.973	0.973	0.973	0.973
\mathbf{AUC}	0.87	0.547	0.755	0.738	0.699
${ m AUC}~20\%$	0.118	0.0241	0.0733	0.0706	0.0635
\mathbf{FDR}	0.923	0.999	0.998	0.998	0.998
Accuracy	0.954	0.947	0.947	0.947	0.947
Precision	0.0773	0.00136	0.00173	0.00165	0.00247
\mathbf{FPR}	0.0424	0.047	0.0458	0.0463	0.0462
\mathbf{FNR}	0.535	0.99	0.99	0.99	0.985
\mathbf{FOR}	0.00425	0.00662	0.00779	0.00786	0.00782
\mathbf{NPV}	0.996	0.993	0.992	0.992	0.992

1000 changes

	loess	$\operatorname{chromoR}$	ice	kr	scn
true positive	340	33	7	11	18
false positive	869	1430	1160	1190	1200
true negative	24500	28900	23300	24200	24200
false negative	660	967	953	989	982
Total	26400	31400	25400	26400	26400
\mathbf{TPR}	0.34	0.033	0.00729	0.011	0.018

	loess	chromoR	ice	kr	scn
SPC	0.966	0.953	0.953	0.953	0.953
$\mathbf{F1}$	0.97	0.96	0.957	0.957	0.957
\mathbf{AUC}	0.847	0.515	0.784	0.776	0.72
$\mathbf{AUC}\ 20\%$	0.11	0.0161	0.0825	0.0805	0.0616
\mathbf{FDR}	0.719	0.977	0.994	0.991	0.985
Accuracy	0.942	0.924	0.917	0.917	0.918
Precision	0.281	0.0225	0.006	0.00914	0.0148
\mathbf{FPR}	0.0342	0.0472	0.0474	0.047	0.047
\mathbf{FNR}	0.66	0.967	0.993	0.989	0.982
\mathbf{FOR}	0.0262	0.0323	0.0393	0.0393	0.039
NPV	0.974	0.968	0.961	0.961	0.961

5000 changes

	loess	chromoR	ice	kr	scn
true positive	657	165	29	56	56
false positive	557	1290	1130	1170	1160
true negative	20800	25100	19500	20200	20200
false negative	4340	4840	4780	4940	4940
${f Total}$	26400	31400	25400	26400	26400
$ ext{TPR}$	0.131	0.033	0.00603	0.0112	0.0112
\mathbf{SPC}	0.974	0.951	0.945	0.945	0.946
$\mathbf{F1}$	0.895	0.891	0.868	0.869	0.869
\mathbf{AUC}	0.775	0.507	0.832	0.819	0.752
$\mathbf{AUC}\ 20\%$	0.0795	0.0152	0.0977	0.0945	0.0669
\mathbf{FDR}	0.459	0.887	0.975	0.954	0.954
Accuracy	0.814	0.805	0.767	0.769	0.769
Precision	0.541	0.113	0.025	0.0458	0.0459
\mathbf{FPR}	0.026	0.0491	0.055	0.0545	0.0544
\mathbf{FNR}	0.869	0.967	0.994	0.989	0.989
\mathbf{FOR}	0.172	0.162	0.197	0.196	0.196
\mathbf{NPV}	0.828	0.838	0.803	0.804	0.804

Bar plots

Below are bar plots showing comparisons of the different normalization methods over the varying numbers of changes at a fixed fold change for selected metrics.

Summary

loess was able to detect a single true change added at a 1.5 fold change. loess also detected the most changes that were added for all levels changes made compared to the other methods. loess again had the lowest numbers of false negatives compared to the other methods. Interestingly, ChromoR seemed to detect more differences when a large number of changes were made (1000 and 5000) compared to KR, SCN, and ICE.