Homework 1

姓名: 方嘉聪 学号: 2200017849

Problem 1. 对于 n 个事件 A_1, A_2, \dots, A_n ,从概率的公理化定义和条件概率的定义出发证明下述结论:

(1) 一般加法公式:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{1 \leq i < j \leq n} \mathbb{P}(A_{i}A_{j}) + \sum_{1 \leq i < j < k \leq n} \mathbb{P}(A_{i}A_{j}A_{k}) + \dots + (-1)^{n-1} \mathbb{P}(A_{1}A_{2} \cdots A_{n}).$$

(2) 一般 Union Bound:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mathbb{P}(A_i).$$

(3) 一般乘法公式: 若 $\mathbb{P}(A_1, A_2, \dots, A_n) > 0$, 有:

$$\mathbb{P}(A_1 A_2 \cdots A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_3 | A_1 A_2) \cdots \mathbb{P}(A_n | A_1 \cdots A_{n-1})$$

Solution. (1) 首先从概率的公理化定义出发证明 $\mathbb{P}(A-B) = \mathbb{P}(A) - \mathbb{P}(AB)$. 注意到我们有 $A = AB + A\bar{B}$, 且 $AB \cap A\bar{B} = \emptyset$, 那么 $\mathbb{P}(A) = \mathbb{P}(AB) + \mathbb{P}(A\bar{B})$, 进而有

$$\mathbb{P}(A - B) = \mathbb{P}(A\bar{B}) = \mathbb{P}(A) - \mathbb{P}(AB)$$

下面证明 $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(AB)$. 注意到 $A \cup B = A \cup (B - AB)$ 且 $A \cap (B - AB) = \emptyset$, 故

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B - AB) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(AB)$$

下面用数学归纳法来证明一般的加法公式. 假设当 n = k 时, 原命题成立, 即

$$\mathbb{P}\left(\bigcup_{i=1}^{k} A_{i}\right) = \sum_{j=1}^{k} \sum_{1 \leq i_{1} < \dots < i_{j} \leq k} (-1)^{j-1} \mathbb{P}(A_{i_{1}} A_{i_{2}} \cdots A_{i_{j}})$$

当 n = k + 1 时, 我们有

$$\mathbb{P}\left(\bigcup_{i=1}^{k+1} A_{i}\right) = \mathbb{P}\left[\left(\bigcup_{i=1}^{n} A_{i}\right) \cup A_{k+1}\right] = \mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) + \mathbb{P}(A_{k+1}) - \mathbb{P}\left(\bigcup_{i=1}^{n} (A_{i} A_{k+1})\right) \\
= \sum_{j=1}^{k} \sum_{1 \leq i_{1} < \dots < i_{j} \leq k} (-1)^{j-1} \mathbb{P}(A_{i_{1}} A_{i_{2}} \cdots A_{i_{j}}) + \mathbb{P}(A_{k+1}) \\
- \sum_{j=1}^{k} \sum_{1 \leq i_{1} < \dots < i_{j} \leq k} (-1)^{j-1} \mathbb{P}(A_{i_{1}} A_{i_{2}} \cdots A_{i_{j}} A_{k+1}) \\
= \sum_{i=1}^{k+1} \mathbb{P}(A_{i}) + (-1)^{k} \mathbb{P}(A_{1} A_{2} \cdots A_{k+1}) \\
+ \sum_{j=2}^{k} \left(\sum_{1 \leq i_{1} < \dots < i_{j} \leq k} (-1)^{j-1} \mathbb{P}(A_{i_{1}} \cdots A_{i_{j}}) + \sum_{1 \leq i_{1} < \dots < i_{j-1} \leq k} (-1)^{j-1} \mathbb{P}(A_{i_{1}} \cdots A_{i_{j-1}} A_{k+1})\right)$$

注意到,

$$\sum_{1 \leq i_1 < \dots < i_j \leq k} (-1)^{j-1} \mathbb{P}(A_{i_1} \cdots A_{i_j}) + \sum_{1 \leq i_1 < \dots < i_{j-1} \leq k} (-1)^{j-1} \mathbb{P}(A_{i_1} \cdots A_{i_{j-1}} A_{k+1})$$

$$= \sum_{1 \leq i_1 < \dots < i_j \leq k+1} (-1)^{j-1} \mathbb{P}(A_{i_1} \cdots A_{i_j})$$

那么

$$\mathbb{P}\left(\bigcup_{i=1}^{k+1} A_i\right) = \sum_{j=1}^{k+1} \sum_{1 \le i_1 < \dots < i_j \le k+1} (-1)^{j-1} \mathbb{P}(A_{i_1} A_{i_2} \cdots A_{i_j})$$

故由数学归纳法知一般加法公式成立.

(2) 在(1) 中我们已经证明了

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(AB) \le \mathbb{P}(A) + \mathbb{P}(B)$$

当 $AB=\emptyset$ 时等号成立. 下面我们用数学归纳法证明一般的 Union Bound. 假设当 n=k 时, 原命题成立, 即

$$\mathbb{P}\left(\bigcup_{i=1}^{k} A_i\right) \le \sum_{i=1}^{k} \mathbb{P}(A_i)$$

当 $\forall i \neq j, A_i A_i = \emptyset$ 时, 等号成立.

考虑 n = k + 1 时, 我们有

$$\mathbb{P}\left(\bigcup_{i=1}^{k+1} A_i\right) = \mathbb{P}\left[\left(\bigcup_{i=1}^{n} A_i\right) \cup A_{k+1}\right] = \mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) + \mathbb{P}(A_{k+1}) - \mathbb{P}\left(\bigcup_{i=1}^{n} (A_i A_{k+1})\right)$$

$$\leq \sum_{i=1}^{k} \mathbb{P}(A_i) + \mathbb{P}(A_{k+1}) = \sum_{i=1}^{k+1} \mathbb{P}(A_i)$$

当 $\forall i \neq j, A_i A_i = \emptyset$ 时, 等号成立. 故由数学归纳法知一般 Union Bound 成立.

(3) 由条件概率的定义可知

$$\mathbb{P}(AB) = \mathbb{P}(B) \cdot \mathbb{P}(A|B)$$

假设当 n = k 时一般乘法公式成立, 即

$$\mathbb{P}(A_1 A_2 \cdots A_k) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_3 | A_1 A_2) \cdots \mathbb{P}(A_k | A_1 \cdots A_{k-1})$$

考虑 n = k + 1 的情况有

$$\mathbb{P}(A_1 A_2 \cdots A_k A_{k+1}) = \mathbb{P}(A_1 A_2 \cdots A_k) \cdot \mathbb{P}(A_{k+1} | A_1 A_2 \cdots A_k)$$
$$= \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdots \mathbb{P}(A_k | A_1 \cdots A_{k-1}) \mathbb{P}(A_{k+1} | A_1 \cdots A_k)$$

由数学归纳法知一般乘法公式成立.

Problem 2. 对于三个事件 A, B, C, 若 $\mathbb{P}(C) > 0$, 我们称事件 A, B 在事件 C 发生时是条件独立的, 当且仅当

$$\mathbb{P}(AB|C) = \mathbb{P}(A|C)\mathbb{P}(B|C).$$

对于下述命题, 从概率公理化定义和条件概率的定义出发给出证明, 或给出反例.

 \triangleleft

 \triangleleft

- (1) 事件 A 和 B 在事件 C 发生时是条件独立的,且有 $0 < \mathbb{P}(C) < 1$,则事件 A 和 B 在事件 \bar{C} 发生时条件独立。这里,事件 \bar{C} 是事件 C 的对立事件。
- (2) 事件 A 和 B 相互独立,则对于任意事件 C, 若 $\mathbb{P}(C) > 0$, 事件 A 和 B 在事件 C 发生时是条件独立的.
- (3) 事件 A 和 B 相互独立,则事件 A 和事件 \bar{B} 相互独立. 这里,事件 \bar{B} 是事件 B 的对立事件.

Solution. (1) 该命题错误. 考虑如下反例, 有一个袋子里中质地大小相同的 4 个黑球与 1 个白球, 不放回的抽取 3 次. 考虑如下事件

$$C = \{ \hat{\mathbf{x}} \mid \hat{\mathbf{x}} \}$$
, $A = \{ \hat{\mathbf{x}} \mid \hat{\mathbf{x}} \}$, $B = \{ \hat{\mathbf{x}} \mid \hat{\mathbf{x}} \}$

那么有

$$\mathbb{P}(C) = \frac{1}{5}, \quad \mathbb{P}(AB|C) = \mathbb{P}(A|C) = \mathbb{P}(B|C) = 1 \implies \mathbb{P}(AB|C) = \mathbb{P}(A|C)\mathbb{P}(B|C)$$

即事件 A, B 在事件 C 发生时是条件独立, 且有 $0 < \mathbb{P}(C) < 1$. 但是我们有

$$\mathbb{P}(A|\bar{C}) = \frac{3}{4}, \quad \mathbb{P}(B|\bar{C}) = \mathbb{P}(A|\bar{C})\mathbb{P}(B|A\bar{C}) + \mathbb{P}(\bar{A})\mathbb{P}(B|\bar{A}\bar{C}) = \frac{3}{4}$$

$$\mathbb{P}(AB|\bar{C}) = \frac{\mathbb{P}(AB\bar{C})}{\mathbb{P}(\bar{C})} = \frac{\frac{4\times 3\times 2}{5\times 4\times 3}}{4/5} = \frac{1}{2} \neq \mathbb{P}(A|\bar{C})\mathbb{P}(B|\bar{C})$$

即事件 A, B 在事件 \bar{C} 发生时不是条件独立的.

(2) 该命题错误. 有如下简单反例, 投掷一个质地均匀的骰子, 考虑事件

$$A = \{1.2 \text{ 正面朝上}\}, B = \{2.3.6 \text{ 正面朝上}\}, C = \{1.6 \text{ 正面朝上}\}$$

那么有
$$\mathbb{P}(A) = 1/3, \mathbb{P}(B) = 1/2, \mathbb{P}(AB) = 1/6 = \mathbb{P}(A)\mathbb{P}(B)$$
. 但是

$$\mathbb{P}(A|C) = \frac{1}{2}, \quad \mathbb{P}(B|C) = \frac{1}{2}, \quad \mathbb{P}(AB|C) = \mathbb{P}(\{2\}|C) = 0 \neq \mathbb{P}(A|C)\mathbb{P}(B|C)$$

故事件 A, B 在事件 C 发生时不是条件独立的.

(3) 命题成立. 证明如下, 由于事件 A, B 相互独立, 我们有

$$\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B) \implies \mathbb{P}(A\bar{B}) = \mathbb{P}(A) - \mathbb{P}(AB) = \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A)\mathbb{P}(\bar{B})$$

故 A 和 \bar{B} 相互独立.

Problem 3. 在课上, 我们考虑了如下球与桶模型: 有 $n \ge 1$ 个球, 每个球都等可能被放到 $m \ge 1$ 个桶中的任一个. 用 $P_{n,m}$ 表示每个桶中至多有一个球的概率. 在课上, 我们已经证明了,

$$P_{n,m} \le \exp\left(-\frac{n(n-1)}{2m}\right).$$

现在, 请证明

$$P_{n,m} \ge \exp\left(-\frac{n(n-1)}{2m}\right) \cdot \left(1 - \frac{8n^3}{m^2}\right).$$

提示: 证明对于任意 $0 \le x \le 1/2$, $\ln(1-x) \ge -x - x^2$.

Solution. 我们先来证明 $\forall 0 \le x \le 1/2, \ln(1-x) \ge -x - x^2$. 设 $f(x) = \ln(1-x) + x + x^2$, 那么

$$f'(x) = -\frac{1}{1-x} + 1 + 2x = \frac{x(1-2x)}{1-x}$$

故当 $x \in [0, 1/2]$ 时, f(x) 单调递增, 那么 $f(x) \ge f(0) = 0$, 即 $\ln(1-x) \ge -x - x^2$. 下面来估计 $P_{n,m}$ 的下界, 当 $0 < m \le 2n$ 时, $1 - 8n^3/m^2 \le 1 - 2n < 0$, 原式显然成立. 下面考虑 m > 2n 的情况, 有

$$P_{n,m} = \prod_{i=1}^{n-1} \left(1 - \frac{i}{m} \right)$$

$$\implies \ln P_{n,m} = \sum_{i=1}^{n-1} \ln \left(1 - \frac{i}{m} \right) \ge \sum_{i=1}^{n-1} \left(-\frac{i}{m} - \frac{i^2}{m^2} \right)$$

$$= -\frac{n(n-1)}{2m} - \frac{n(n-1)(2n-1)}{6m^2}.$$

$$\implies P_{n,m} \ge \exp\left(-\frac{n(n-1)}{2m} \right) \cdot \exp\left(-\frac{n(n-1)(2n-1)}{6m^2} \right)$$

$$(e^x \ge 1 + x, \forall x \ge 0) \ge \exp\left(-\frac{n(n-1)}{2m} \right) \cdot \left(1 - \frac{n(n-1)(2n-1)}{6m^2} \right)$$

$$\ge \exp\left(-\frac{n(n-1)}{2m} \right) \cdot \left(1 - \frac{8n^3}{m^2} \right).$$

综上证毕.

Problem 4. 将一枚骰子投掷 $n \ge 1$ 次, 求在 n 次投掷中, 六个数字均出现过至少一次的概率.

$$\mathbb{P}(A_i) = \left(\frac{5}{6}\right)^n, \quad \mathbb{P}(A_i A_j) = \left(\frac{4}{6}\right)^n, \quad \mathbb{P}(A_i A_j A_k) = \left(\frac{3}{6}\right)^n, \dots \mathbb{P}(A_1 A_2 \dots A_6) = \left(\frac{0}{6}\right)^n = 0$$

那么由一般加法公式

$$\mathbb{P}\left(\bigcup_{i=1}^{6}A_{i}\right) = \sum_{j=1}^{6}\mathbb{P}(A_{j}) - \sum_{1\leq i< j\leq 6}\mathbb{P}(A_{i}A_{j}) + \sum_{1\leq i< j< k\leq 6}\mathbb{P}(A_{i}A_{j}A_{k}) + \dots + (-1)^{5}\mathbb{P}(A_{1}A_{2}\cdots A_{6})$$

$$= \binom{6}{1}\left(\frac{5}{6}\right)^{n} - \binom{6}{2}\left(\frac{4}{6}\right)^{n} + \binom{6}{3}\left(\frac{3}{6}\right)^{n} - \binom{6}{4}\left(\frac{2}{6}\right)^{n} + \binom{6}{5}\left(\frac{1}{6}\right)^{n} := p$$

$$\mathbb{P}(B) = 1 - p.$$

Problem 5. 某路由器有 A 和 B 两种运行模式. 路由器每天有等概率以 A 模式或者 B 模式运行,且 每天的运行模式均独立. 当以 A 模式运行时,有 90% 的概率网络堵塞,有 10% 的概率网络正常. 当以 B 模式运行时,有 10% 的概率网络堵塞,有 90% 的概率网络正常. 若某两天观测到网络堵塞,求这两天路由器均以 A 模式运行的概率.

Solution. 记事件 $A = \{\hat{\mathbf{x}} - \mathbf{x} \in \mathbf{x}\}, B = \{\hat{\mathbf{x}} - \mathbf{x} \in \mathbf{x}\}, C = \{\hat{\mathbf{x}} - \mathbf{x} \in \mathbf{x}\}, D = \{\hat{\mathbf{x}} - \mathbf{x} \in \mathbf{x}\}, A \notin \mathbf{x} \in \mathbf{x}\}$

$$\mathbb{P}(CD|AB) = \frac{\mathbb{P}(AB|CD)\mathbb{P}(CD)}{\mathbb{P}(AB)}$$

由于每一天的运行模式均独立,那么有 $\mathbb{P}(A)=\mathbb{P}(B)=\mathbb{P}(C)\mathbb{P}(A|C)+\mathbb{P}(\bar{C})\mathbb{P}(A|\bar{C})=1/2$. 进而有 $\mathbb{P}(AB)=\mathbb{P}(A)\mathbb{P}(B)=1/4$

又 $\mathbb{P}(CD) = 1/4$, $\mathbb{P}(AB|CD) = (9/10)^2 = 0.81$. 故

$$\mathbb{P}(CD|AB) = \frac{0.81 \times 1/4}{1/4} = 0.81$$

即这两天路由器均以 A 模式运行的概率为 0.81.

Problem 6. 对于自然数 n, m, k, 满足 $m \ge 2k$. 有 $2n \land \{1, 2, \dots, m\}$ 的子集 $A_1, B_1, \dots, A_n, B_n \subseteq \{1, 2, \dots, m\}$, 满足

- $\forall 1 \leq i \leq n, \ \vec{\uparrow} \ A_i \cap B_i = \emptyset;$
- (1) 考虑一个 $\{1,2,\cdots,m\}$ 的随机排列,每一种排列均等概率出现. 对于任意 $1 \le i \le n$,事件 U_i 表示在随机排列中,集合 A_i 中的元素均排在 B_i 前面. 证明

$$\mathbb{P}(U_i) = \frac{1}{\binom{2k}{k}}.$$

- (2) 证明: $n \leq {2k \choose k}$. 提示: 考虑事件 $\bigcup_{i=1}^n U_i$ 的概率.
- (3) 对于 $n = \binom{2k}{k}$,构造满足条件的 $A_1, B_1, A_2, B_2, \dots, A_n, B_n \subseteq \{1, 2, \dots, m\}$. 这里 m 可取任意自然数.

Solution. (1) 所有的排列总数为 m!. 满足 A_i 中的元素均排在 B_i 前面的排列数为

$$\binom{m}{2k}k! \cdot k! \cdot (2m-k)!$$

这是由于我们先从m个位置中选择2k个位置放置 A_i 与 B_i 中的元素,前k个位置放置 A_i 中的元素,后k个位置放置 B_i 中的元素,剩下的2m-k个位置放置剩下的元素.那么

$$\mathbb{P}(U_i) = \frac{\binom{m}{2k}k! \cdot k! \cdot (2m-k)!}{m!} = \frac{1}{\binom{2k}{k}}.$$

(2) 考虑事件 $U_iU_j(i \neq j)$, 我们来证明 $U_iU_j = \emptyset$. 由于 $\forall 1 \leq i,j \leq n$, 若 $i \neq j$, 有 $A_i \cap B_j \neq \emptyset$, 设

$$a \in A_i \cap B_i$$
, $b \in A_i \cap B_i \implies a \neq b$

假设存在某个排列满足 U_iU_j , 那么 a 必然在 b 前面, 且 b 在 a 前面, 矛盾. 故 $U_iU_j=\emptyset$. 类似的, 对 $\forall t \in \{1,2,\cdots,n\}, i_1 \neq i_2 \neq \cdots \neq i_t$, 有 $U_{i_1}U_{i_2}\cdots U_{i_t}=\emptyset$. 那么由一般加法公式有

$$\mathbb{P}\left(\bigcup_{i=1}^{n} U_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(U_{i}) - \sum_{1 \le i < j \le n} \mathbb{P}(U_{i}U_{j}) + \dots + (-1)^{n-1} \mathbb{P}(U_{1}U_{2} \cdots U_{n}) = \frac{n}{\binom{2k}{k}} \le 1$$

故 $n \leq {2k \choose k}$. 证毕.

(3) 令 $S = \{1, 2, \dots, 2k\} \subseteq \{1, 2, \dots, m\}$. 那么 S 的所有 k 元子集有 $\binom{2k}{k}$ 个. 对于每一个 k 元子集 T, 令 $A_i = T$, $B_i = S - T$, 那么满足题设条件. 证毕.

 \triangleleft

 \triangleleft