Formale Grundlagen der Informatik II

Aufgabenblatt 2

Jan-Hendrik Briese (6523408) Lennart Braun (6523742) Marc Strothmann (6537646) Maximilian Knapperzbusch (6535090)

zum 27. Oktober 2014

Übungsaufgabe 2.3

zu 1.: Lösung:

$$L(A_{2.3}) = a(ba^*c)^* + bc(abc)^*(e+a)$$

$$L(A_{2.3})^{\omega} = a(ba^*c)^{\omega} + b(cab)^{\omega}$$

$$(L(A_{2.3}))^{\omega} = (a(ba^*c)^* + bc(abc)^*(e+a))^{\omega}$$

zu 2.: Lösung:

 $L^{\omega}(A_{2.3})$ ist die Sprache, die von einem Büchi-Automaten mit gleicher Konstruktion wie der vorliegende NFA akzeptiert wird. Zwei Wörter sind $w_1 = a(bc)^{\omega}$ (bzw. $w_1 = a(ba^*c)^{\omega}$) und $w_2 = b(cab)^{\omega}$.

 $(L(A_{2.3}))^{\omega}$ ist eine Sprache, dessen Teilwörter akzeptierte Wörter des NFA sind. Diese Teilwörter bilden (konkateniert) wiederum ω -Wörter der genannten Sprache. Zwei dieser Wörter sind u.A. $w_3 = (bca)^{\omega}$ oder $w_4 = (bce)^{\omega}$.

zu 3.: Lösung:

Konstruktionsverfahren:

Mit dem folgenden Verfahren wird aus einem NFA ein nicht-deterministischer Büchi-Automat A' konstruiert, der die Sprache $(L(A))^{\omega}$ akzeptiert.

Sei $A = (Q, \Sigma, \delta, Q_0, F)$ ein gegebener NFA.

Jeder ursprüngliche Startzustand in A wird nun zu einem Start- und Endzustand in A' ($Q_0 = F'$). Alle Kanten, die A aus $q_k \in Q$ in einen Endzustand überführt haben, werden in A' kopiert und bilden eine neue Kante von q'_k in die konstruierten Endzustände in A'.

 $\delta' = \delta \cup \{(q_k, a, q_l) | (q_k, a, q_f) \in \delta, q_f \in F, q_l \in Q_0, q_k \in Q\}$

Endzustände in A, die keinen Folgezustand besitzen, können in A' weggelassen werden. $Q' = Q \setminus \{q_l | \nexists (q_l, a, q_k)\}$ mit $q_k \in Q$ und $q_l \in F$. Der konstruierte Automat $A' = (Q', \Sigma', \delta', Q'_0, F')$ ist ein Büchi-Automat mit Omega-Abschluss.

Übungsaufgabe 2.4

- 1.
- 2.
- 3.
- 4.