

⁽¹⁾ Publication number:

0 516 069 A1

12

EUROPEAN PATENT APPLICATION

(21) Application number: **92108916.5**

22 Date of filing: **27.05.92**

(51) Int. CI.⁵: **C07D 213/81**, C07D 277/46, C07D 401/06, C07D 401/12, C07D 401/14, C07D 417/12, C07D 417/14, C07D 241/24, C07C 233/82, A61K 31/44, A61K 31/425

³⁰ Priority: **31.05.91 JP 157725/91**

Date of publication of application:02.12.92 Bulletin 92/49

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI NL PT SE

71 Applicant: SUMITOMO PHARMACEUTICALS COMPANY, LIMITED 2-8, Doshomachi 2-chome, Chuo-ku Osaka-shi Osaka 541(JP)

Inventor: Nagata, Hideo 2-29-7, Ooike Ibaraki-shi, Osaka 567(JP) Inventor: Kawakami, Hajime 6-32-702,Fukazu-cho Nishinomiya-shi, Hyogo 663(JP)

Representative: von Kreisler, Alek,
Dipl.-Chem. et al
Patentanwälte Von Kreisler-Selting-Werner,
Deichmannhaus am Hauptbahnhof
W-5000 Köln 1(DE)

54 Leukotriene B4 antagonist.

57 Leukotriene B₄ antagonists of the formula:

$$\begin{array}{c|c}
R^4 & O - A - B \longrightarrow O \\
N - R^6 \\
R^5 & R^5
\end{array}$$

wherein each symbol is as defined in the specification, processes for producing them, and pharmaceutical compositions containing them. The compounds of the present invention are very useful as the drugs for the treatment of allergic and inflammatory diseases.

BACKGROUND OF THE INVENTION

TECHNICAL FIELD

The present invention relates to compounds effective as leukotriene B₄ antagonists.

More particularly, this invention relates to leukotriene B₄ antagonists, to processes for producing them and to pharmaceutical compositions containing at least one of those leukotriene B₄ antagonists, which have excellent anti-leukotriene B₄ activity and are useful as an anti-allergic agent or an anti-inflammatory agent.

PRIOR ART

5

10

15

25

30

35

40

45

50

55

In 1979 B. Sammuelsson reported the isolation and biological effects of leukotrienes (B. Sammuelsson et al. (1980): Advances in Prostaglandin and Thromboxane Research, Vol. 6, edited by B. Sammuelsson, R. Ramwell, and R. Paaletti, P. I. Raven Press, New York).

Since then, a tremendous amount of research in the synthetic organic chemistry and pharmacology of leukotriene A₄, B₄, C₄, D₄, etc. has been performed.

Leukotrienes induce an increase in capillary permeability and cause smooth muscle contraction. Leukotriene B_4 , one of leukotrienes which is shown below, has different pharmacological properties from the others. It is chemotactic for macrophages and neutrophils at concentrations of ~ 1 ng/ml (greater than any other known lipid chemotactic factor). It is detected in the synovia of patients with rheumatoid arthritis or gouty arthritis, and in the sputum of obstructive airways diseases which suggest that it is a primary mediator of inflammatory and allergic states.

In recent research some compounds having an antagonism on LTB₄ have been reported. For example, 1) EP-A-0183177 (SUMITOMO PHARMACEUTICALS CO.)

$$R^{1}$$
OH
$$R^{2}$$
OH
$$R^{3}$$
 CH_{2}) $_{n}$ - Y

2) EP-A-276065 (ELI LILLY & CO)

$$\begin{array}{c|c}
R^2 & d \\
R^1 & d - Zd - C \\
0 & R^3 & d
\end{array}$$

3) EP-A-276064 (ELI LILLY & CO)

Ae-
$$(CH_2)_{ne}$$
-De

$$Ee-(CH_2)_{ne}$$
-Ze

4) EP-A-0405116 (ONO PHARMACEUTICAL CO)

15

10

20

5) EP-A-292977 (SEARLE G D & CO)

25

$$\begin{array}{c|c}
C & R^2 \\
R^3 & C & R^4 & R^5 \\
\hline
0-W-0 & R^4 & R^5 \\
\end{array}$$

30

6) WO-A-8805045 (UPJOHN CO)

B-C-C \cong CH₂C(M₂)-C \cong C-Y-C(M₁)-A B-C-C \cong CH₂C(M₂)-C \cong C-P-R₅-A

SUMMARY OF THE INVENTION

40

In accordance with the present invention, leukotriene B₄ antagonists of the following general formula [I] and their non-toxic pharmaceutically acceptable salts are provided, which have potent anti-leukotriene B₄ activity which include suppression of chemotaxis, degranulation and O₂-production of leukocytes, and modulation of lymphocytes activity, etc. This action may render these compounds very useful as the drugs for the treatment of inflammatory states or immunological disorders such as allergy, rheumatoid arthritis, inflammatory bowel disease.

DISCLOSURE OF THE INVENTION

The novel leukotriene B₄ antagonists provided by the present invention are those represented by the formula [I]:

$$\begin{array}{c|c}
R^4 & 0 \\
0 - A - B \\
\hline
 & N - R^6 \\
\hline
 & R^5 \\
\hline
 & R^5
\end{array}$$

10

5

wherein

A is a C₁-C₅ alkylene chain;

B is a phenylene or 6 membered heteroaromatic group which is constituted by carbon atoms and one or two nitrogen atoms, and B may be, optionally substituted with one or two substituents selected from the group, consisting of a C₁-C₅ alkyl group, a C₁-C₅ alkoxy group, a hydroxyl group, a carboxyl group, a nitro group and a halogen atom;

R¹ is a C₁-C₅ alkyl group;

R² is a hydroxyl group or a C₁-C₅ alkoxy group;

 R^3 and R^4 are each independently a hydrogen atom, a C_1 - C_5 alkyl group, a C_2 - C_5 alkenyl group or a C_2 - C_5 alkynyl group;

R⁵ is a hydrogen atom, a C₁-C₅ alkyl group or a hydroxy C₁-C₅ alkyl group;

R⁶ is a group of the formula:

-X-Y-Z-R⁶'

25

30

35

wherein X is a phenylene group or a monocyclic 5~ 6 membered hetero aromatic group, and X is optionally substituted with one or two substituents selected from the group consisting of a C₁ -C₅ alkyl group, a hydroxyl group, a carboxyl group, a nitro group and a halogen atom;

Y is a single bond or an oxygen atom;

Z is a single bond or a C₁-C₅ alkylene chain;

provided that when Y is an oxygen atom,

X is a phenylene group and Z is a C₁-C₅ alkylene chain;

R⁶' is a COOR⁷ group,

a CONR8R9 group,

a CONHCHR²⁰ (CH₂)_nCOOR⁷ group,

a CONHCHR²⁰ (CH₂)_nCONR⁸ R⁹ group,

a CONHCHR²⁰ CONHCHR²²CO₂R⁷ group or

a sulfamoyl group,

wherein R⁷ is a hydrogen atom, a benzyl group, a C₁-C₅ alkyl group or an C₁-C₅ alkyl group substituted with an aminoheteroaromatic group wherein the heteroaromatic group is a monocyclic 5~6 membered heteroaromatic group;

R⁸ and R⁹ are each independently a hydrogen atom, a C₁-C₅ alkyl group, hydroxy C₁ -C₅ alkyl group, a hydroxyethylpyridyl group or a hydroxyethylthiazolyl group, or the group of the formula:

45 -NR⁸ R⁹

55

represents a pyrrolidino, a piperidino or a morpholino group;

R²⁰ is a hydrogen atom, a hydroxyl group, a C₁-C₅ alkyl group, a phenyl group, a hydroxyphenyl group, a benzyl group, a hydroxyl group or a substituted C₁-C₅ alkyl group wherein the substituent is selected from the group consisting of a hydroxyl group, a C₁-C₅ alkoxy group, a mercapto group, a methylthio group, an amino group, an indolyl group, an imidazolyl group, a carboxyl group, a C₁-C₅ alkoxycarbonyl group, a carbamoyl group and a guanidino group;

n is 0, 1, 2, 3, 4 or 5; and

 R^{22} is a hydrogen atom, a C_1 - C_5 alkyl group or a C_1 - C_5 hydroxyalkyl group;

or R⁶ is a CHR²⁰(CH₂)_nCOOR⁷ group,

a CH₂CHR²⁰COOR⁷ group,

a CHR²⁰ (CH₂)_nCONR⁸ R⁹ group,

a CH₂CHR²⁰CONR⁸R⁹ group,

- a CHR²⁰ (CH₂)_nOH group,
- a CR²⁰R²²(CH₂)_nOH group,
- a CH₂CHR²⁰OH group, or

10

20

30

35

- a CHR²⁰ CONHCHR²²CO₂R⁷ group,
- wherein R⁷, R⁸, R⁹, R²⁰, R²² and n are as defined above, or the group of the formula:

$$N < \frac{1}{1}$$

represents an azetidino group, pyrrolidino group, a piperidino group or a homopiperidino group, which is optionally substituted with one to two substituents selected from the group consisting of a hydroxyl group, a C_1 - C_5 hydroxyalkyl group, carboxyl group, C_1 - C_5 alkoxycarbonyl group and benzyloxycarbonyl group; or pharmaceutically acceptable salts thereof.

In the definitions as used above, the term ${}^{\circ}C_1 - C_5$ alkylene" means a straight or branched chain $C_1 - C_5$ alkylene (e.g. methylene, ethylene, trimethylene, tetramethylene, pentamethylene, 1-methylene, 2-ethyltrimethylene, etc.).

The term "C₁-C₅ alkyl" means a straight or branched chain C₁-C₅ alkyl (e.g. methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyl, neo-pentyl, etc.).

The term "C₂-C₅ alkenyl" means a straight or branched chain C₂-C₅ alkenyl (e.g. 1-methylethenyl, 1-ethylethenyl, 1-propenyl, 2-propenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-1-propenyl, 1-n-butenyl, 2-n-butenyl, 3-n-butenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, etc.).

The term " C_2 - C_5 alkynyl" means a straight or branched chain C_2 - C_5 alkynyl (e.g. ethynyl, 1-propynyl, 2-propynyl, 1-methyl-2-propynyl, 1-n-butynyl, 2-n-butynyl, 3-n-butynyl, 3-methyl-1-butynyl, 1-methyl-2-butynyl, 2-methyl-3-butynyl, 1-pentynyl 2-pentynyl, 3-pentynyl, 4-pentynyl, etc.).

The term " C_1 - C_5 alkoxy" means alkoxy having C_1 - C_5 alkyl moiety (e.g. methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, sec-pentoxy, neo-pentoxy, etc.).

The term "6 membered heteroaromatic group which is constituted by carbon atoms and one or two nitrogen atoms" includes pyridinediyl, pyrazinediyl, pyrimidinediyl, etc.

The term "monocyclic 5~6 membered heteroaromatic group" contains, for example, 1-3 hetero atoms which can be a nitrogen, oxygen or sulfur atom, or an oxydized nitrogen atom (N \rightarrow O), and examples of the monocyclic 5-6 membered heteroaromatic group are a pyridinediyl group and any one of the group of the formula (i)-(viii):

(i)
$$S = N$$
 (ii) $N = N$ (iii) $N = N$ (iii) $N = N$ (iii) $N = N$ (iv) $N = N$ (vi) $N = N$ (vii) $N = N$ (viii) $N = N$

The term "hydroxyphenyl group" may be a 2-hydroxyphenyl, a 3-hydroxyphenyl or a 4-hydroxyphenyl group.

The term "hydroxybenzyl group" may be a 2-hydroxybenzyl, a 3-hydroxybenzyl or a 4-hydroxybenzyl group.

The term "halogen" may be a chlorine, a bromine or a fluorine atom.

The term "indolyl group" may be a 2-indolyl or 3-indolyl group.

The term "imidazolyl group" may be a 4-imidazolyl group.

A basic object of the present invention is to provide novel compounds effective as leukotriene B₄ antagonists [I] having excellent pharmacological activities.

Another object of the present invention is to provide processes for producing those compounds [I]. A further object of the present invention is to provide a pharmaceutical composition containing a compound of the formula [I]. These and other objects will be apparent to those skilled in the art to which the present invention pertains from the foregoing and subsequent descriptions.

The novel leukotriene B₄ antagonists [I] of the invention can be prepared by the following methods:

15

5

10

25

20

35

30

40

45

50

$$\begin{array}{c|c}
R^4 & O \\
O-A-B & N-X-Y-Z-COOH \\
R^5 & [VII]
\end{array}$$

Method A H_2N-C-R^{14} [VIII]

Method C NaOH

$$\begin{array}{c|c}
R^4 & O-A-B & O \\
R^3 & R^3 & [XI]
\end{array}$$
Method D
$$\begin{array}{c|c}
R^4 & O-A-B & O & O \\
R^4 & O-A-B & N & Y-Z-R^6
\end{array}$$

$$\begin{array}{c|c}
R^1 & R^3 & [XII]
\end{array}$$

25

5

10

15

20

35

45

 $\begin{array}{c|c}
R^4 & 0-A-B & 0 & 0 \\
N & N & X-Y-Z-R^1 \\
R^3 & R^3
\end{array}$ [XIII]

Method C R^{4} O-A-B N R^{5} R^{3} [XIV]

R¹² is a group of the formula:

X-Y-Z-COOR⁷',

X-Y-Z-CONHCHR²⁰ (CH₂)_n COOR⁷',

X-Y-Z-CONHCHR²⁰CONHCHR²²CO₂R⁷',

 $CHR^{20}(CH_2)_nCOOR^7$ ',

CH₂CHR²⁰COOR⁷', or

5 CHR²⁰ CONHCHR²² COOR⁷',

wherein X, Y, Z, R^{20} , R^{22} and n are as defined above, and R^7 is the same as R^7 but it does not mean a hydrogen atom,

(wherein A, B, R¹, R², R³, R⁴, R⁵, R⁶', X, Y, Z and R²⁰ are as defined above, and

R¹¹ is the same as R⁶', but it does not mean free carboxylic group;

R¹³ is a group of the formula: X-Y-Z-COOH, X-Y-Z-CONHCHR²⁰ (CH₂)_n COOH, X-Y-Z-CONHCHR²⁰ CONHCHR²²CO₂H, CHR²⁰ (CH₂)_nCOOH, CH₂CHR²⁰COOH, or CHR²⁰ CONHCHR²² COOH, wherein X, Y, Z, R²⁰, R²² and n are as defined above. R¹⁴ is a group of the formula: (CH₂)_nCOOR⁷', orCONHCHR²²COOR⁷', 15 wherein R7', R22 and n are as defined above. R¹⁵ is a group of the formula: COOR7', $CONHCHR^{20}(CH_2)_nCOOR^7$ ', or CONHCHR²⁰ CONHCHR²² CO₂ R⁷', wherein R7', R20, R22 and n are as defined above. R¹⁶ is a group of the formula: 25 COOH, CONHCHR²⁰ (CH₂)_nCOOH, or CONHCHR²⁰ CONHCHR²²CO₂ H, wherein R²⁰, R²² and n are as defined above. R²⁶ is a group of the formula: (CH₂)_nCOOH, or

Method A

35

40

CONHCHR²²COOH,

wherein R²² and n are as defined above.

The amide compound [IV] or [IX] can be prepared from an acid compound [II] or [VII] by reacting an amine compound [III] or [VIII] in the presence of a condensing agent (e.g. dicyclohexylcarbodiimide, ethyldimethylaminopropylcarbodiimide hydrochloride, etc.), hydroxybenzotriazole and a tertiary amine (e.g. triethylamine, 4-dimethylaminopyridine, etc.) in an inert solvent (e.g. dichloromethane, mixed solvent of dichloromethane and N,N-dimethylformamide, etc.) at a temperature in the range from 0°C to the boiling temperature of the solvent.

If a substituent of R²⁰ of compound [VIII] is an impediment group (e.g. mercapto, carboxyl, amino group, etc.), the compound is previously protected by a protecting group (e.g. benzyl, benzyloxycarbonyl, t-butoxycarbonyl group, etc.), and after the reaction is carried out, the protecting group is eliminated. The protection and deprotection of R²⁰ can be carried out by the conventional procedure. [Protective Group in Organic Chemistry, Edited by J. F. W. McOmic (1973) 95 - 143].

Method B

The amide compound [IV] or [IX] can be obtained from an acid chloride or an acid anhydride of an acid compound [II] or [VII] by reacting with an amine compound [III] or [VIII] in the presence of a tertiary amine (e.g. triethylamine, etc.), or by reacting with a salt of an amine compound [III] or [VIII] (e.g. sodium salt, potassium salt, etc.) in the absence of amine in an inert solvent (e.g. tetrahydrofuran, etc.) at a temperature in the range from 0 °C to a boiling temperature of the solvent.

The transformation of an acid group to an acid chloride group can be carried out by treating the acid compound with phosphorous oxychloride or thionyl chloride in an inert solvent (e.g. chloroform, etc.) or in the absence of solvent at a temperature in the range of from -40°C to the boiling temperature of the reaction mixture.

The transformation of an acid group to an acid anhydride group can be carried out by treating the acid compound with chloroformate ester (e.g. ethyl chloroformate, etc.) in the presence of a tertiary amine (e.g. triethylamine, etc.) in an inert solvent (e.g. chloroform, etc.) at a temperature in the range of from -40 °C to the boiling temperature of the solvent.

If a substituent of R²⁰ of compound [VIII] is a impediment group (e.g. mercapto, carboxyl, amino group, etc.), the compound is previously protected by a protecting group (e.g. benzyl group, benzyloxycarbonyl group, t-butoxycarbonyl group, etc.), and after the reaction is carried out, the protecting group is eliminated.

The protection and deprotection of R²⁰ can be carried out by the conventional procedure [Protective Group in Organic Chemistry, Edited by J. F. W. McOmic (1973) 95 - 143].

15 Method C

5

20

25

30

35

40

45

50

The acid compound [VI], [X] or [XIV] can be prepared by hydrolysis of the ester compound [V], [IX) or [XIII] by treating with an aqueous alkali (e.g. sodium hydroxide, lithium hydroxide) in an inert solvent (e.g. tetrahydrofuran, methanol, ethanol, etc.).

Method D

The N-oxide compound [XII] can be prepared from pyridine compound [XI] by treating with an oxidizing agent (e.g. m-chloroperbenzoic acid, etc.) in an inert solvent (e.g. methylene chloride, etc.).

The amine compounds [III] and [VIII] are known compounds or easily obtained as described in e.g. J. Goto, K. Sakane, Y. Nakai, T. Teraji, The journal of antibiotics, 37, 532 (1984), I. Csendes, B. W. Müller, W. Tosch, The journal of antibiotics, 36, 1020 (1983), M. Ohta, Yakugaku zassi, 72, 1536 (1983), JP-A-58-23697. And, the starting compounds [II], [II-1] and [II-2] can be obtained by the following method.

(wherein A, B, R^1 , R^2 , R^3 and R^4 are as defined above, R^{17} is a C_1 - C_5 alkyl group, R^{18} is a C_1 - C_5 alkyl group, Hal is a chlorine or bromine atom)

Alkylation of the compound [XV] into the compound [XVII] can be accomplished by treating the former with the compound [XVI] in an inert solvent (e.g. N,N-dimethylformamide, etc.) in the presence of a base (e.g. anhydrous potassium carbonate, etc.). Optionally, the compound [XVII] can be alkylated to produce the compound [XVIII] by the same procedure as used in the synthesis of the compound [XVIII] from the compound [XVI]. And, the compound (II-1) and (II-2), respectively, can be prepared from the compound [XVIII] and [XVIII] by hydrolysis (Method C).

The compound [XV] is a known compound or easily obtained as described in e.g. J. Hurst, J. Wibberley, Journal of Chemical Society, 1962, 119.

The compound [XVI] is obtained by;

- (1) In the case where both Hal and B of compound [XVI] are jointed to the same carbon atom: the compound [XVI] is a known compound or easily obtained as described in e.g. J. Hurst, J. Wibberley, Journal of Chemical Society, 1962, 119, etc,
- (2) In the case that there are two carbon atoms between Hal and B in compound [XVI]:

55

45

(wherein A, B and Hal are as defined above, R^{19} is a C_1 - C_5 alkyl group (but, there is at least one hydrogen atom at the α carbon bonded to B), R^{21} , R^{23} are each independently a hydrogen atom or a C_1 - C_5 alkyl group, R^{24} is a C_1 - C_5 alkyl group, and R^{25} is a C_1 - C_5 alkyl group or phenyl group) the compound [XVI] is prepared in the following way:

45

50

55

first step: the carboxylic acid group of a compound [XX] is protected to yield a 4,4-dimethyl-2-oxazoline compound,

second step: the 4,4-dimethyl-2-oxazoline compound is treated with a base to deprotonate a hydrogen atom attached to a carbon atom adjacent to B group (e.g. sodium amide, n-butyl lithium, etc.),

third step: the deprotected compound is reacted with the compound of the formula [XXI] (aldehyde or ketone) to yield a hydroxy compound,

fourth step: the hydroxyl compound is alkylated by reacting with a compound of the formula R²⁴-Hal, fifth step: the alkylated compound is treated with halogenated hydrogen (e.g. hydrogen chloride, hydrogen bromide, etc.) in the alcohol represented by R¹⁷OH.

(3) In the case that there are 3 or more carbon atoms between Hal and B in the compound [XVI]: the compound [XVI] is prepared in the same way, except modifying the alkylation reaction, as described in above (2), i.e., the compound [XX] is protected and deprotonated, and then alkylated by alkylhalide [XXII]. The alkylated product is treated with halogenated hydrogen (e.g. hydrogen chloride, hydrogen bromide, etc.) in the alcohol represented by R¹⁷OH.

Specific examples of the leukotriene B₄ antagonists are as follows:

Table 1

 $\begin{array}{c|c}
R^4 & O - CH_2 & N & N \\
\hline
 & R^5 & N
\end{array}$

R ³	H	Н	Н	n-Pr	Н	Ι	Н	н	н
R ⁴	Me	n-Pr	n-Pr	Н	Et	Et	Εt	E1	Et
R ⁵	H	H	Н	Н	сн₃	Εt	n-Pr	i-Pr	H
R ⁶	CONH ₂	CONH₂	CONH ₂	СОИНМе					

5

Table 2

А	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH₂-	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-(CH ₂) ₄ -	-(CH ₂) ₅ -
R ⁶	CONMe ₂	CONHIP	C C C	0 °C '×	0 2-2 0	CONH ₂	CONH2	CONH₂	CONH ₂

Table 3

А	-CHMe-	-CH ₂ -	-CH ₂ -	-CH₂-	-CH₂-	-CH₂-	-CH ₂ -	-CH ₂ -	-CH ₂ -
В			I'N I	IN.	INI	I'N I	I'N I	IN N	NN
Z	-CH ₂ -	single bond	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-(CH ₂) ₄ -	-(CH ₂) ₅ -	-CH ₂ -	single bond

Table 4

	В	N N	Z Z Z	N N N N N N N N N N N N N N N N N N N	N N	N N N N N N N N N N N N N N N N N N N	Z=\ \(\frac{2}{2}\)	Z=-<	Z=\ Z	z=\ \
40	z	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-(CH ₂) ₄ -	single bond	-CH₂-	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-(CH ₂) ₄ -

Table 5

$$\begin{array}{c|c}
0 \\
N - X \\
0
\end{array}$$

$$\begin{array}{c|c}
0 \\
N - X
\end{array}$$

В	N N	OMe	COOH	CI					IN
X	S	ZZ Z	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S	10 / N	ZZ I	2= 2	2 2 0	ZZZI

Table 6

40	В	N		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N.L	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N	\\\	
	X	N	TN	N	U		C			TN T
45	Z	single bond	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-(CH ₂) ₄ -	single bond	-CH ₂ -	-(CH ₂) ₂ -	single bond

Table 7

5

10

15

20

-CH₂-

25

30

35

40

45

50

В	I'N I	N	IN I	IN.	I'N I	I,	IN N	L'NY NY	IN
x	TN T	LN C	U	₩,	T	T	T	~~~	\n\

single single -(CH₂)₂--(CH₂)₂- -(CH₂)₃- -(CH₂)₄--CH₂--CH2bond bond

Table

X single -(CH₂)₄--CMe2--CH₂--(CH₂)₃--(CH₂)₂- -(CH₂)₃- -(CH₂)₄--(CH₂)₂bond

Table 9

$$0$$

$$N - X - Z - R^{6}$$

$$H$$

x	T	Q	V	Q	V	V	V	T	TN
Z	single bond	single bond	single bond	single bond	-CH ₂ -	-(CH ₂) ₂ -	-CH ₂ -	-(CH ₂) ₂ -	-CH ₂ -
R ⁶	CONH ₂	CONH ₂	SO ₂ NH ₂	SO ₂ NH ₂	CONH ₂	CONH ₂	SO2NH2	SO ₂ NH ₂	SO ₂ NH ₂

Table 10

$$\begin{array}{c|c}
0 \\
N - X - Y - Z - R^6
\end{array}$$

				N-				· · . · . · . · · · · · · · · · · ·	
R ²	он	он	он	он	ОМе	он	он	он	OH .
R ⁵	н	н	Н	н	н	н	Me	Et	n-Pr
x	V		Q	Q	× × × ×	YS X	S N	ST Z	S N-Z
Υ	-0-	-0-	-0-	-0-	single bond	single bond	single bond	single bond	single bond
Z	-CH ₂ -	-(CH ₂) ₂ -	-CH ₂ -	-(CH ₂) ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -
R ⁵	CONH ₂	CONH ₂	CONH ₂	CONH ₂	CONH ₂	CO ₂ Et	CO ₂ E1	CO ₂ Et	CO₂Et

Table 11

5

-CH₂-

Н

-CH₂-

-CH₂-

-(CH₂)₂- -(CH₂)₃-

-CH₂-

Н

-CH₂-

H

-CH₂-

-CH₂- -(CH₂)₂- -(CH₂)₃- -(CH₂)₄- -(CH₂)₅- -CHMe-

H

-CH₂-

10

15

В

Z

i-Pr

-CH2-

Н

-CH₂-

Н

-CH2-

20

25

Table 12

Н

-CH₂-

H

-CH₂-

35

30

40

45

50

Table 13

5

10

15

X

Z

-CH2-

-CH2-

20

25

Table 14

-CH2-

-(CH₂)₂- -(CH₂)₃-

-CH2-

-(CH₂)₂- -(CH₂)₃-

30

-CH₂-

40

35

45

50

Table 15

5

$$\begin{array}{c|c}
0 & N & N - X - Y - Z - R^{6}
\end{array}$$

10

15

X

Y

Z

-0-

-CH₂-

CO₂Et

-0-

-CH₂-

CO₂E1

-0-

CO₂Et

 $-(CH_2)_2--(CH_2)_2-$

-0-

CO₂Et

20

25

Table 16

single

single

CO2H

bond

bond

single

-CH₂-

CO₂H

bond

single

CO₂H

 $\quad \text{bond} \quad$

single

-(CH₂)₂- -(CH₂)₃- -(CH₂)₄-

CO2H

 ${\tt bond}$

single

CO₂H

bond

35

30

40

45

x	N-Z	NN	NN	H N	H N H	S. Z. Z.	S.N N	22/	22002
Z	-(CH ₂) ₅ -	-CH ₂ -	-(CH ₂) ₂ -	-CH ₂ -	-(CH ₂) ₂ -	-CH₂-	-(CH ₂) ₂ -	-CH ₂ -	-(CH ₂) ₂ -

50

Table 17

 $0 \qquad N = X - Z - \infty_2 H$

Table 18

	R ⁵	Н	н	Н	Me	Et	n-Pr	I-Pr	n-Bu	i-Bu
40	x			Z	N.Z	S N	S N-	S N	YS N-1	S N
45	z	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-CH ₂ -	-CH₂-	-CH₂-	-CH ₂ -	-CH ₂ -	-CH ₂ -

Table 19

U

$$Z - CH_2 - (CH_2)_2 - CH_2 - (CH_2)_2 - CH_2 - (CH_2)_2 - (CH_2)$$

Table 20

В	N			IN I	IN N	N N	I'N)	Z Z Z	N N N
X	N	N-Z	S	S		N		S N	YS N
Z	-(CH ₂) ₃ -	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-CH₂-	-(CH ₂) ₂ -

Table 21

$$0 B N - X - Z - \infty_2 H$$

Table 22

А	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -
В	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N N	N N N N N N N N N N N N N N N N N N N	2 2	× × × × × × × × × × × × × × × × × × ×	2 2	2 2 2		
x	N	\s\ N	\s\ N_	S	N N N N N N N N N N N N N N N N N N N	N		YS N	S _N
Z	-(CH ₂) ₃ -	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₃ -	-CH ₂ -	-CH ₂ -

Table 23

R ⁴	Et	Et	Et	Me	Et	n-Pr	n-Bu	—ÇH₂ CH±CH₂	CH ₂ C≖CH
A	-(CH ₂) ₄ -	-(CH ₂) ₅ -	-CHMe-	-CH ₂ -					

Table 24

R ³	Me	Et	n-Pr	n-Bu	n-Pentyl	–ÇH₂ CH=CH₂	CH ₂ C≡CH	Me	Et
R ⁴	Εt	Et	Et	Et	Et	Et	Et	н	Н

Table 25

5

10

Et R¹ n-Pr Me Me Me Me Me Me Me 15 R² ОН ОН HO. ОН ОН OН OMe OEt O-n-Pr I-Pr n-Pentyl i-Bu n-Bu Н Н H H H 20

H

Н

25

R⁴

Н

H

Table 26

Ët

Et

Et

Et '

Et

35

30

40

45

R ¹	n-Bu	n-Pentyl	Me	Me	Me
R ⁶	со₂н	CO₂H	O CN·CH₂CO₂Me H	Ö CM-(CH²)³CO³We Ö	O CN·CH₂CO₂H H

50

Table 27

$$\begin{array}{c|c}
0 & N & R^{e}
\end{array}$$

15	x	N-Z		N	TN	₩,
20	R [€]	О Си-(СН₂)₂СО₂Н Н	O ČN·CH₂CO₂Me H	О СN-(СН ₂)₂СО ₂ Ме Н	Ö CN·CH³CO³H H	Н СИ-(СН ²) ² СО ² Н О

Table 28

$$0 \qquad N \qquad N \qquad R^{e}$$

X		N-L	S N-L	S N-Z	N-L
R ⁶	О Си-(СН ₂)₃СО ₂ Н Н	O ¦Pr CN·CHCO₂Me H	H ÇN∙ÇHCC³H Ö CH²CO⁵H	O (CH ₂) ₄ NH ₂ CN-CHCO ₂ H H	CN CHCO ¹ H CN CHCO ¹ H

Table 29

O N N R⁶

R ⁶	CH₂ CO₂ H	(CH ₂) ₂ CO ₂ H	(CH ₂) ₃ CO ₂ H	(CH ₂) ₄ CO ₂ H	CH₂ CO₂ Me	\$
----------------	-----------	---	---	---	------------	----

Table 30

R ^e	CH₂ CO₂ Et	CH ₂ CO ₂ CH ₂ -(CHCO ₂ H CH ₃	CHCO₂ H	CHCO₂ H	
----------------	------------	--	-------------------------------------	---------	---------	--

Table 31

5

10

15

R ⁶	CHCO₂ H
	\

CHCO₂ H

CHCO₂ H

CHOO₂ H OH

CHCO₂ H ○H

20

25

Table 32

30

$$\begin{array}{c|c} & H \\ \hline 0 & N \\ \hline 0 & OH \\ \end{array}$$

40

45

*3*5

R ⁶	CH2 CO2 H ↓OH	

CH₂CO₂H OH CH₂ CO₂ H
SMe

CH₂ CO₂ H SH

CHCO₂ H (CH₂)₄ NH₂

50

Table 33

CHCO ₂ H R ⁶ H	CHCO₂ H N N H	CHCO ₂ H CH ₂ CO ₂ H	CHCO2 H CH2 CH2 CO2 H	CHCO2 H CH2 CH2 CONH2
--------------------------------------	------------------	--	--------------------------	--------------------------

Table 34

R ⁶ CHCO ₂ H (CH ₂) ₄ NHCNH ₂ CH ₂ CONH ₂ CH ₂ CONHCH ₃ CH ₂ CONMe ₂ CH ₂ CONHCH ₃ CH ₂ CONMe ₂

Table 35

R ⁶	(CH ₂) ₂ CONH ₂	(CH ₂) ₃ CONMe ₂	CH ₂ CON	CH ₂ CON O	CH ₂ CON
----------------	---	--	---------------------	-----------------------	---------------------

Table 36

R ⁶	CHCONH ₂ CH ₃	CHCONH ₂	CHCONMe ₂	CHCONMe ₂ OH	CHOONHMe United

Table 37

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
--

Table 38

$$R^{1} \longrightarrow 0 \longrightarrow N \longrightarrow 0$$

$$R^{2} \longrightarrow R^{3}$$

$$R^{3} \longrightarrow 0$$

R1-	Et	n-Pr	Me	Me	Me
R²	ОН	OН	OMe	Œt	OH
R ³	Н	Н	н	Н	n-Pr
R ⁴	Et	Et	Et	Et	Н

Table 39

$$\begin{array}{c|c}
R^4 & R^5 \\
\hline
0-A & N-R^6 \\
\hline
0 & R^2 & R^3
\end{array}$$

R²	OH	OMe .	OMe	OН	OH
R³	n-Pr	n-Pr	n-Pr	Н	H
R ⁴	Н	H	H	Et	Et
A	CH₂ -	-CH₂ -	CH₂	-(CH ₂) ₂ -	-CH₂ -
R ⁵	Н	H	H	Н	Me
R ⁶	CHOO₂ H CH₃	CHCO₂ H CH₃	(CH ₂) ₂ OO ₂ H	(CH ₂) ₂ CO ₂ H	(CH ₂) ₂ OO ₂ H

Table 40

5

$$\begin{array}{c|c}
 & R^5 \\
 & N \\
 & N \\
 & O \\
 & O
\end{array}$$

10

15

R ⁵	Et	n-Pr	isoBu	sec-Bu	(CH ₂) ₂ OH
1			i di		

20

Table 41

25

30

H

Et

n-Pr

H

CHCO₂ H CH₂ CO₂ H

35

 \mathbb{R}^3 H H H 40 \mathbb{R}^4 Et Et Et 45 CHCO₂ H CH₃ Re $(CH_2)_2 OO_2 H$ CHCO₂ H CHCO₂ H - OH ĊH₂ CO₂ H 50

Table 42

R²	OMe	OH	OH	OH	OН
R³	n-Pr	H	Н	H	Н
R4	Н	Et	Et	Et	Et
В	, IN				
R ⁶	CHCO₂ H CH₂ CO₂ H	(CH ₂) ₂ CO ₂ H	CHCO₂ H CH₃	CHCO₂ H OH	CHCO₂ H CH₂ CO₂ H

Table 43

 $\begin{array}{c|c}
R^4 & H \\
\hline
O-CH_2-B & N-R^6 \\
\hline
\end{array}$

R²	ОН	O.Me	ОН	OH	ОН
R³	n-Pr	n-Pr	Н	Н	Н
R ⁴	H	H	Et	Et	Et
В			N N	N N	N N
R ⁶	CHOO₂ H CH₂ OO₂ H	CHCO ₂ H CH ₂ CO ₂ H	(CH ₂) ₂ CO ₂ H	CHCO₂ H CH₃	CHCO₂ H ○OH

Table 44

OH

CH₂ CO₂ H

OH

 $CH_2 CO_2 H$

 \mathbb{R}^2

5

$$\begin{array}{c|c}
R^4 & N & H \\
\hline
0 & N & N & R^6
\end{array}$$

0Me

OH

-OH

OH

CH3

10

15

20

25

30

H H \mathbb{R}^3 H n-Pr n-Pr Et Et Et Н R⁴ H CHCO₂ H CHCO₂ H CHCO₂ H R^{6} CHCO₂ H CHOO₂ H

ĊH₂ CO₂ H

35

40

Table 45

45

R6 CHCO ₂ H N OH	N OH	CHCO₂ H OH	CHC112 CO2 H
-----------------------------	------	---------------	--------------

50

Table 46

5

 $R^{1} \longrightarrow 0 \longrightarrow N \longrightarrow N \longrightarrow R^{0}$

Me

(CH₂)₄OH

Me

CHCH2 OH

CH₃

Me

CHCH₂ OH

CH₂ CH₃

10

15

 \mathbb{R}^{1}

R⁶

Me

 $(CH_2)_2OH$

20

25

Table 47

Et

 $(CH_2)_3OH$

30

$$\begin{array}{c|c}
R^4 & & R^5 \\
\hline
0 & N & R^6 \\
\hline
0 & R^2 & R^3
\end{array}$$

35

40

*4*5

50

R ²	ОН	0- _n -Pr	OH	ОН	OH
R ³	Me	Н	Н	Н	Н
R ⁴	Me	Н	Et	Et	Et
R ⁵	Н	Н	Н	Me	Н
Re	(CH ₂) ₂ CO ₂ H	(CH ₂) ₂ CO ₂ H	CH(CH ₂ OH) ₂	CH(CH2OH)2	CH2 CONHCH2 CO2 H

Among the leukotriene B₄ antagonists thus obtained, the compound [I] can be converted to a pharmaceutically acceptable salt form. The pharmaceutically acceptable salts of these leukotriene B₄ antagonists can be formed with pharmaceutically acceptable metal cation such as sodium, potassium, magnesium and calcium, ammonium or amine cations.

The preparations of pharmaceutical compositions can be carried out by conventional methods. For

example, leukotriene B₄ antagonists [I] may be mixed with carriers, diluents, lubricants, fillers and/or binders such as lactose, sucrose, calcium phosphate, starch, talcum, casein, magnesium stearate, methyl cellulose, polyglycols, tragacanth and the like, sometimes together with stabilizers and emulsifying agents. The resulting mixture may be processed in a usual manner to tablets, capsules, pills, injections, ointment, suppositories and the like. In a clinical practice, the leukotriene B₄ antagonists [I] can be administered orally, intranasally, intradermally or the like.

The daily dosage may vary depending upon the administration route, symptom, age or weight of the patient, and the usual oral dosage of the active ingredient is between about 1 mg and about 1000 mg daily for human beings.

DESCRIPTION OF THE PREFERED EMBODIMENTS

Practical and prefered embodiments of the present invention are illusturated in the following examples, which are not intended to limit the scope of the invention.

Reference Example 1

10

15

35

45

50

5-Ethyl-2,4-dihydroxyacetophenone (0.97 g, 5.0 mmol) and methyl 6-bromomethylpyridine-2-carboxylate (1.38 g, 5.8 mmol) were dissolved in an N,N-dimethylformamide solution (50 ml), and anhydrous potassium carbonate (480 mg) was added to the above solution, and the mixture was stirred at room temperature for 16 hours. The reaction mixture was poured into water and extracted with ethyl acetate (100 ml \times 3).

The extract was dried, concentrated and chromatographed on silica gel to give methyl 6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxylate.

25 Reference Example 2

Methyl 6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy) methyl]pyridine-2-carboxylate (38 mg, 12 mmol) was dissolved in a methanol solution (2 ml), and one normal sodium hydroxide (1 ml) was added to the above solution at 0 °C, and the mixture was stirred at room temperature for 1 hour. One-tenth normal potassium bisulfate was titrated to the above solution until it became pH2. Then, precipitated white crystals were filtered off, and washed with water, and dried to give 6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxylic acid.

Reference Example 3

3-n-Propyl-2,4-dihydroxyacetophenone (816 mg, 4.2 mmol) was added to a methanol solution (10 ml), sodium metal was added to the solution at 0°C, and the mixture was stirred for 30 min, and evaporated under reduced pressure, and dried to give a sodium salt of 3-n-propyl-2.4-dihydroxyacetophenone. The salt was dissolved in N,N-dimethylformamide (10 ml), and it was added to a N,N-dimenthylformamide solution (10 ml) of methyl-6-bromo-methylpyridine-2-carboxylate (920 mg, 4.0 mmol) at room temperature, and the mixture was stirred for 1 hour.

The reaction mixture was poured into water, and normal potassium bisulfate was titrated until it became pH3, and extracted with ethyl acetate (100 ml \times 3). The extract was dried, concentrated and chromatographed on silica gel to give methyl 6-[(4-acetyl-3-hydroxy-2-n-propylphenoxy)methyl]pyridine-2-carboxylate.

Reference Example 4

According to the procedure of Reference Example 2, 6-[(4-acetyl-3-hydroxy-2-n-propylphenoxy)methyl]-pyridine-2-carboxylic acid was obtained by hydrolysis of methyl 6-[(4-acetyl-3-hydroxy-2-n-propylphenoxy)methyl]pyridine-2-carboxylate.

Reference Example 5

Anhydrous potassium carbonate (1.0 g) was added to a N,N-dimethylformamide solution (10 ml) of methyl 6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxylate (500 mg, 1.4 mmol) and methyliodide (5 ml),and the mixture was stirrered at 70°C for 2 hours.

The reaction mixture was poured into water and extracted with ethylacetate and washed with saturated aqueous sodium chloride. Then, the extract was dried, concentrated and chromatographed on silica gel to

give methyl 6-[(4-acetyl-2-ethyl-5-methoxyphenoxy)methyl]pyridine-2-carboxylate.

Reference Example 6

According to the procedure of Reference Example 2, 6-[(4-acetyl-2-ethyl-5-methoxyphenoxy)methyl]-pyridine-2-carboxylic acid was obtained by hydrolysis of methyl 6-[(4-acetyl-2-ethyl-5-methoxy-phenoxy)methyl]pyridine-2-carboxylate.

Reference Example 7

10

20

According to the procedure of Reference Example 5, methyl 6-[(4-acetyl-2-n-propyl-3-methoxy-phenoxy)methyl]pyridine-2-carboxylate was obtained from methyl 6-[(4-acetyl-3-hydroxy-2-n-propyl-phenoxy)methyl]pyridine-2-carboxylate.

5 Reference Example 8

According to the procedure of Reference Example 2, 6-[(4-acetyl-2-n-propyl-3-methoxyphenoxy)-methyl]pyridine-2-carboxylic acid was obtained by hydrolysis of methyl 6-[(4-acetyl-2-n-propyl-3-methoxyphenoxy)methyl]pyridine-2-carboxylate.

Reference Example 9 (a compound included in formula [XVI])

A mixture of 6-methylpyridine-2-carboxylic acid (13.7 g, 100 mmol) and thionyl chloride (40 ml) was stirred at 70 °C for 1 hour. The mixture was dried, and dichloromethane (40 ml) was added to the residue. The solution was added to a dichloromethane solution of 2-amino-2-methyl-propanol (36.0 g, 400 mmol), and stirred. The mixture was washed with water, and dried over anhydrous magnesium sulfate. The extract was concentrated and chromatographed on silica gel to give an amide compound. 4,4-Dimethyl-2-oxazoline compound was obtained by reacting the amide compound and thionyl chloride in dichloromethane. 4,4-Dimethyl-2-oxazoline compound was reacted with n-butyl lithium at 78 °C in anhydrous tetrahydrofuran, and chlorophenyl ether (782 mg, 5 mmol) was added. Purified alkylated compound was treated with ethanol saturated with HCl to give ethyl 6-(3-chloropropyl)-pyridine-2-carboxylate.

Reference Example 10 (a compound included in formula [II])

According to the procedure of Reference Examples 1,2, 6-[3-(4-acetyl-2-ethyl-5-hydroxyphenoxy)-propyl]pyridine-2-carboxylic acid was obtained from ethyl 6-(3-chloropropyl)pyridine-2-carboxylate and 5-ethyl-2,4-dihydroxyacetophenone.

40

45

50

Table 48

5		,
10	1	O OMe
15		
20	2	O OH
25		
30	3	O OH
35	4	O N OH
40		O OH
45		
50		

Table 49

		¹ H-NMR	δppm
5	1	(solvent:CDCL $_3$) 0.99(3H,t,J=7.4Hz), 1.62(2H,tq,J=7.4Hz), 5.39(2H,s), 6.46(1H,d,J=8.9Hz), 7.59(1H 7.92(1H,dd,J=6.6Hz,J=7.9Hz), 8.10(1H,d,J=7.9Hz)	,d,J=8.9Hz), 7.79(1H,d,J=6.6Hz),
10	2	(solvent:CDCL $_3$) 1.26(3H,t,J=7.6Hz), 2.59(3H,S), 2.67.51(1H,s), 7.78(1H,d,J=6.9Hz), 8.04(1H,dd,J=6.9Hz)	, , , , , , , , , , , , , , , , , , , ,
	3	(solvent:CDCL ₃) $0.99(3H,t,J=7.4Hz)$, $1.62(2H,tq,J=7.4Hz)$, $4.04(3H,s)$, $5.39(2H,s)$, $6.46(1H,d,J=8.9Hz)$, $7.92(1H,dd,J=6.6Hz,J=7.9Hz)$, $8.10(1H,d,J=7.9Hz)$,d,J=8.9Hz), 7.79(1H,d,J=6.6Hz),
15	4	(solvent:CDCL ₃) $0.99(3H,t,J=7.4Hz)$, $1.62(2H,tq,J=7.4Hz,J=7.4Hz)$, $2.57(3H,s)$, $2.76(2H,t,J=7.4Hz)$, $5.34(2H,s)$, $6.45(1H,d,J=8.9 Hz)$, $7.60(1H,d,J=8.9Hz)$, $7.79(1H,dd,J=1.0Hz,J=6.9Hz)$, $8.04(1H,dd,J=6.9Hz,J=7.4Hz)$, $8.21(1H,dd,J=1.0Hz,J=7.4Hz)$	

Table 50

Table 51

		¹ H-NMR	δppm
5	5	(solvent:CDCL ₃) 1.24(3H,t,J=7.6Hz), 2.58(3H,s), 5.40(2H,s), 7.72(1H,s), 7.79(1H,d,J=7.9Hz), 7.94 8.11(1H,d,J=7.6Hz)	
10	6	(solvent:CDCL $_3$) 1.24(3H,t,J = 7.4Hz),2.57(3H,s), 6.64(1H,s), 7.65(1H,s), 7.80(1H,d,J = 7.3Hz), 8.13(1H,d,J = 7.9Hz)	, , , , , , , , , , , , , , , , , , , ,
	7	(solvent:CDCL ₃) 1.02(3H,t,J=7.5Hz), 1.66(2H,q, 3.78(3H,s), 5.31(2H,s), 6.70(1H,d,J=8.6Hz), 7.56 8.04(1H,dd,J=7.6Hz,J=7.9Hz), 8.21(1H,d,J=7.6	6(1H,d,J=8.9Hz), 7.90(1H,d,J=7.9Hz),
15	8 (solvent:CDCL ₃) 1.02(3H,t,J=7.6Hz), 1.65(2H,q,J=7.7Hz), 2.62(3H,s), 2.75(2H,t,J=7.8H 3.78(3H,s), 5.31(2H,s), 6.70(1H,d,J=8.6Hz), 7.56(1H,d,J=8.9Hz), 7.90(1H,d,J=7.9Hz), 8.04(1H,dd,J=7.6Hz,J=7.9Hz), 8.21(1H,d,J=7.6Hz)		6(1H,d,J=8.9Hz), 7.90(1H,d,J=7.9Hz),
20			

Example 1

A mixture of 6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxylic acid (63 mg, 0.20 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (40 mg, 0.20 mmol), 1-hydroxyben-zotriazole (30 ml, 0.22 mmol), 2-aminothiazole-4-carboxamide (35 mg, 0.24 mg) and triethylamine (20 mg), 0.20 mmol) in a mixed solution of dichloromethane (2 ml) and N,N-dimethylformamide (2 ml) was stirred at room temperature for 44 hours. The reaction mixture was poured into water and extracted with ethyl acetate (80 ml×3). The extract was dried over anhydrous magnesium sulfate, concentrated under reduced pressure and chromatographed on silica gel to give 2[6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)-methyl]pyridine-2-carboxamide]thiazol-4-ylcarboxamide.

Example 2~35,62,88,90,92

According to the procedure of Example 1, the compounds (Example 2~ 35,62,88,90,92) were obtained.

Example 36

35

40

45

50

55

Ethyl 2-[6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyride-2-carboxamide]thiazole-4-ylcarboxylate (24 mg, 0.05 mmol) was suspended in methanol (1.5 ml), followed by addition of one-second normal sodium hydroxide (1.0 ml).

After the solution was stirred for 2 hr, it was made acidic with one-second normal potassium bisulfate. Precipitated crystals were separated by filtration, and washed with water, and dried to give 2-[6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxamide]thizaol-4-ylcarboxylic acid.

Example 37~52,61,87,89,91

According to the procedure of Example 36, the compounds (Example 37 ~52, 61, 87, 89, 91) were obtained.

Example 54~56,64,67,68,70,72,74,76,78,80,82,84,86,94,96,100, 102,104,106,108,112,114,115,116-121,123,126,127,138,141

According to the procedure of Example 1, the title compounds were obtained.

Example 53,57~60,63,65,69,71,73,75,77,79,81,83,85,93,95,99, 101,105,107,111,113,122,130

According to the procedure of Example 36, the title compounds were obtained.

Example 98

Ethyl 2-[6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]pyridine-2-carboxamide]pyridine-6-ylcarboxylate (280 mg, 0.60 mM) was dissolved in dichloromethane (5 ml), followed by addition of m-chloroperbenzoic acid (124 mg, 0.72 mM). After being stirred at room temperature for 16 hours, the reaction mixture was washed with aqueous sodium sulfite-sodium bicarbonate, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give ethyl 2-[6-[(4-acetyl-2-ethyl-5-hydroxyphenoxy)methyl]-pyridine-2-carboxamide]pyridine-N-oxide-6-ylcarboxylate.

10 Example 110,125,129,131,134,136,139,142

According to the procedure of Example 98, the title compounds were obtained.

Example 97,109,124,128,132,133,135,137,140

According to the procedure of Example 36, the title compounds were obtained.

Example 143~178, 212,214,216,218,222,225,226

According to the procedure of Example 1, the title compounds were obtained.

Example 179~211,213,215,223,224

According to the procedure of Example 36, the title compounds were obtained.

35

15

20

25

30

40

45

50

Table 52

5	Ex. No.	Structural formula
10	1	H N N N N N N N N N N N N N N N N N N N
15		
20	2	H NH2 OH OH
25	3	Me NH ₂ O S O
30		
35	4	Et NH2
40		
45	5	NH ₂ OH OH NH ₂

55

Table 53

		¹ H-NMR	δppm
5	1	(solvent:CDCL ₃) 1.28(3H,t,J = 7.6Hz, 2.60(3H,s), 2 6.48(1H,s), 7.05(1H,bs), 7.52(1H,s), 7.77(1H,d,J = J = 7.3Hz), 8.28(1H,d,J = 7.3Hz), 10.98(1H,bs), 12.	7.3Hz, 9.90(1H,s), 8.04 (1H,dd,J=6.6Hz,
0	2	(solvent:CDCL ₃) 1.27(3H,J = 7.6Hz), 2.59(3H,s), 2. 5.43(1H,bs), 6.45(1H,s), 6.60(1H,bs), 6.86(1H,s), 7 8.02(1H,t,J = 6.9Hz), 8.27(1H,d,J = 6.9Hz), 12.68(1	7.51(1H,s), $7.74(1H,d,J = 6.9Hz)$,
5	3	(solvent:CDCL ₃) 1.26(3H,t,J = 7.6Hz), 2.58(3H,s), 2.539(1H,s), 5.43(1H,bs), 6.46(1H,s), 6.70(1H,bs), 6.764(1H,dd,J = 1.0Hz,J = 7.9Hz), 7.79(1H,dd,J = 7.95(1H,dd,J = 1.0Hz,J = 7.6Hz), 12.65(1H,s)	5.88(1H,s), 7.49(1H,s),
20	4	(solvent:CDCL ₃) 1.26(3H,t,J = 7.6Hz, 1.44(3H,t,J = 3.69(2H,S), 4.36(2H,q,J = 6.9Hz) 5.25(1H,s), 5.44(7.49(1H,s), 7.64(1H,d,J = 7.9Hz), 7.74(1H,d,J = 6.912), 12.66(1H,s)	1H,bs), 6.43(1H,s), 6.67(1H,bs), 6.89(1H,s),
5 (solvent:CDCL ₃) 0.78(6H,d,J=6.6Hz), 1.26(3H,t,J=7.6Hz), 2.0-2.2(1H,m), 2 2.68(2H,q,J=7.6Hz), 3.66(2H,s), 4.33(2H,d,J=7.3Hz), 5.21(2H,s), 5.84(1H,l 6.60(1H,bs), 6.88(1H,s), 7.49(1H,s), 7.62(1H,d,J=7.6Hz), 7.74(1H,d,J=7.9Hz), 12.66(1H,s)		Hz), 5.21(2H,s), 5.84(1H,bs), 6.42(1H,s),	

Table 54

5	Ex. No.	Structural formula
10	6	H N N N N N N N N N N N N N N N N N N N
15		
20	7	H NMe ₂ O OH
25	8	H NHiPr
30		
35	. 9	H NH.2 NH.2 OH
40		
45	1 0	H NHZ

50

Table 55

		¹ H-NMR	δppm		
5	6	3.67(2H,s), 5.33(2H,s), 6.45(1H,s), 6.48(1H,b)	(solvent:CDCL ₃) 1.28(3H,t,J=7.6Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 2.84(3H,d,J=5.0Hz), 3.67(2H,s), 5.33(2H,s), 6.45(1H,s), 6.48(1H,bs), 6.85(1H,s), 7.51(1H,s), 7.74(1H,d,J=6.6Hz), 8.02(1H,t,J=6.6Hz), 8.27(1H,d,J=6.6Hz), 11.06(1H,bs), 12.70(1H,s)		
10	7	3.83(2H,s), 5.28(2H,s), 6.43(1H,s), 6.86(1H,b	(solvent:CDCL ₃) $1.27(3H,t,J=7.6Hz)$, $2.59(3H,s)$, $2.70(2H,q,J=7.6Hz)$, $3.01(3H,s)$, $3.11(1H,s)$, $3.83(2H,s)$, $5.28(2H,s)$, $6.43(1H,s)$, $6.86(1H,b)$, $7.51(1H,s)$, $7.72(1H,dd,J=1.0Hz,J=7.9Hz)$, $8.00(1H,t,J=7.9Hz)$, $8.25(1H,dd,J=1.0Hz,J=7.9Hz)$, $11.08(1H,bs)$, $12.70(1H,s)$		
	8	3.63(2H,s), 4.0-4.2(1H,m), 5.32(1H,s), 6.06(1	8H,t,J=7.6Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), H,bs), 6.45(1H,s), 6.85(1H,s), 7.51(1H,s), 27(1H,d,J=7.9Hz), 11.06(1H,bs), 12.70(1H,s)		
15	9	(solvent:CDCL ₃) 1.27(3H,t,J=7.6Hz), 1.31(3H,s), 1.34(3H,s), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 3.1-3.2(1H,m), 5.30(2H, s), 6.44(1H,s), 6.62(1H,s), 7.51(1H,s), 7.71(1H,d,J=7.9Hz), 7.99(1H,dd,J=6.6Hz,J=7.9Hz), 8.26(1H,d,J=6.6Hz), 11.05(1H,bs), 12.67(1H,s)			
20	10	(solvent:CDCL ₃) 1.23(3H,t,J = 7.6Hz), 2.60(3H, 7.35-7.55(2H,m), 7.6-7.8(3H,m), 8.0-8.3(5H,m)	H,s), 2.65(2H,q,J=7.6Hz), 5.49(2H,s), 6.64(1H,s), n), 10.59(1H,bs), 12.60(1H,s)		

Table 56

5	Ex. No.	Structural formula
10	1 1	H N N N N N N N N N N N N N N N N N N N
15		
20	1 2	H N N N N N N N N N N N N N N N N N N N
25 30	1 3	O N N N N N N N N N N N N N N N N N N N
35	1 4	H N OEI
45	1 5	H N OEI

55

Table 57

		¹ H-NMR	δppm		
5	11	(solvent:CDCL ₃) 1.22(3H,t,J=7.6Hz), 2.58(3H,s), 2.67(2H,q,J=7.6Hz), 5.49(1H,s), 6.64(1H,s), 7.53(1H,bs), 7.71(1H,s), 7.80-7.85(1H,m), 8.1-8.4(5H,m), 8.85-8.90(1H,m), 10.63(1H,bs), 12.56(1H,s)			
	12	·	olvent:CDCL ₃) 1.20(3H,t,J=7.6Hz), 2.58(2H,s), 2.64(2H,q,J=7.6Hz), 5.47(2H,s), 6.62(1H,s), 30(2H,s), 7.71(1H,s), 7.75-7.90(3H,m), 8.0-8.2(4H,m), 10.75(1H,bs), 12.56(1H,s)		
10	13	(solvent:CDCL ₃) $1.00(3H,t,J=7.4Hz)$, $1.63(2H,tq,J=7.4Hz,J=7.4Hz)$, $2.58(3H,s)$, $2.77(2H,t,J=7.4Hz)$, $3.69(2H,s)$, $5.36(2H,s)$, $5.40(1H,bs)$, $6.47(1H,d,J=9.2Hz)$, $6.50(1H,bs)$, $6.87(1H,s)$, $7.62(1H,d,J=9.2Hz)$, $7.76(1H,d,J=7.9Hz)$, $8.26(1H,d,J=7.9Hz)$			
15	14	(solvent:CDCL $_3$) 1.27(3H,t,J=7.6Hz), 1.43(3H,t,J=7.1Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 4.45(2H,q,J=7.1Hz), 5.28(1H,s) 6.43(1H,s), 7.52(1H,s), 7.73(1H,d,J=7.9Hz), 7.94(1H,d,J=0.7Hz) 8.01(1H,t,J=7.9Hz), 8.25(1H,d,J=7.9Hz), 11.32(1H,bs), 12.66(1H,s)			
20	15	(solvent:CDCL ₃) 1.27(3H,t,J=7.6Hz), 1.30(3H,t,J=7.3Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 3.76(2H,d,J=0.7Hz), 4.22(2H,q,J=7.3Hz), 5.28(1H,s), 6.43(1H,s), 6.90(1H,d,J=0.7 Hz), 7.51(1H,s), 7.72(1H,d,J=7.9Hz), 8.00(1H,dd,J=7.6Hz,J=7.9Hz), 8.25(1H,d,J=7.6Hz), 11.11(1H,bs), 12.67(1H,s)			

Table 58

5	Ex. No.	Structural formula
10	1 6	H N O O EI
15		
20	1 7	Me N N OEt O OH
25 30	1 8	Et N N N OEL
35	1 9	IBU OEI
45	2 0	O N S OEI
	<u> </u>	

55

Table 59

		¹ H-NMR	δppm	
5	16	(solvent:CDCL ₃) 1.25(3H,t,J=7.3Hz), 1.27(3H,t,J $3.05(2H,t,J=7.3Hz)$, 4.15(2H,q,J= $7.3Hz$), 5.30(27.71(1H,d,J= $7.7Hz$), 7.97(1H,t,J= $7.7Hz$), 8.24(1	2H,s), 6.44(1H,s), 6.69(1H,s), 7.51 (1H,s),	
10	17	(solvent:CDCL $_3$) 1.27(3H,t,J=7.6Hz), 1.43(3H,t,J 4.45(2H,q,J=7.1Hz), 5.28(1H,s) 6.43(1H,s), 7.52(7.94(1H,d,J=0,7Hz), 8.01(1H,t,J=7.9Hz), 8.25(1	(1H,s), 7.73(1H,d,J=7.9Hz),	
15	18	(solvent:CDCL ₃) 1.26(3H,t,J=7.6Hz), 1.28(3H,t,J=7.1Hz), 1:40(3H,t,J=6.9Hz), 2.58(3H,s),2.69(2H,q,J=7.6Hz), 3.76(2H,d,J=0.7Hz), 4.20(2H,q,J=7.1Hz), 4.32(2H,q,J=6.9Hz), 5.25(1H,s), 6.44(1H,s), 6.92(1H,s), 7.49(1H,s), 7.62(1H,d,J=7.6Hz), 7.70(1H,d,J=6.9Hz), 7.92(1H,dd,J=6.9Hz,J=7.6Hz), 12.65(1H,s)		
20	19	(solvent:CDCL ₃) 0.76(6H,d,J=6.6Hz), 1.26(3H,t,d) 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.74(2H,s), 4.18 5.21(2H,s), 6.43(1H,s), 6.91(1H,s), 7.49(1H,s), 7.5 7.90(1H,t,J=7.9Hz), 12.63(1H,s)	(2H,d,J = 7.1Hz), 4.28(2H,d,J = 6.9Hz),	
	20	(solvent:CDCL ₃) 1.27(3H,t,J=7.4Hz), 1.29(3H,t,J 2.69(2H,q,J=7.4Hz), 3.73(2H,s), 4.20(2H,q,J=7.5 7.71(1H,d,J=7.9Hz), 7.99(1H,t,J=7.9Hz), 8.24(1	3Hz), 5.27(2H,s), 6.43(1H,s), 7.51(1H,s),	

Table 60

5	Ex. No.	Structural formula
10	2 1	OH OH OEI
15		
20	2 2	H S OME N-N O N-N
25 30	23	OH OH
35	24	O OH OEI
40		
45	2 5	O OH O OE1

50

Table 61

		¹ H-NMR	δppm	
5	21	(solvent:CDCL ₃) 1.27(3H,t,J=7.6Hz). 1.32(3H,t,J=7.1Hz), 2.59(3H,s), 2.71(2H,q,J=7.1Hz), 4.16(2H,s), 4.27(2H,q,J=7.6Hz) 5.32(2H,s), 6.44(1H,s), 7.52(1H,s), 7.75(1H,d,J=7.6Hz), 8.02(1H,t,J=7.6Hz), 8.26(1H,d,J=7.6Hz), 11.21(1H,bs), 12.67(1H,s)		
10	22	(solvent:CDCL ₃) 1.27(3H,t,J=7.4Hz), 2.58(3H,s), 2 3.40(2H,t,J=7.3Hz), 3.73(3H,s), 5.32(2H,s), 6.43(1 8.01(1H,t,J=7.9Hz), 8.24(1H,d,J=7.9Hz), 11.18(1H	H,s), $7.51(1H,s)$, $7.75(1H,d,J=7.9Hz)$,	
	23	(solvent:CDCL ₃) 1.27(3H,t,J = 7.3Hz), 1.27(3H,t,J = 3.66(2H,s), 4.17(2H,q,J = 7.3Hz) 5.32(2H,s), 6.52(1 7.65-7.7(2H,m), 7.97(1H,t,J = 7.7Hz), 8.26(1H,dd,J	H,s), 7.0-7.1(1H,m), 7.3-7.4(1H,m), 7.51(1H,s),	
15	24	(solvent:CDCL ₃) 1.26(3H,t,J=7.1Hz), 1.27(3H,t,J=3.62(2H,s), 4.16(2H,q,J=7.1Hz) 5.32(2H,s), 6.51(17.67(1H,d,J=7.3Hz), 7.75(1H,d,J=8.6Hz), 7.98(1H9.90(1H,bs), 12.68(1H,s)	H,s), $7.32(1H,d,J=8.6Hz)$, $7.51(1H,s)$,	
20	25	(solvent:CDCL ₃) 1.28(3H,t,J = 7.6Hz), 1.29(3H,t,J = 3.80(2H,s), 4.21(2H,q,J = 7.3Hz) 5.34(2H,s), 6.47(1 7.65-7.85(2H,m), 7.97(1H,t,J = 7.6Hz), 8.26(1H,t,J = 12.66(1H,s)	H,s), $7.09(1H,d,J=6.9Hz)$, $7.51(1H,s)$,	

Table 62

5	Ex. No.	Structural formula
10	2 6	O N N N O E I
15		
20	2 7	H N N OEI
25		
30	28	H N N OE!
35	29	OH OH OEI
40		
45	3 0	H N OE! O OMe

50

Table 63

26 28 29	(solvent:CDCL ₃) 1.25(3H,t,J = 7.3Hz), 1.30(3H,t,J = 7.3Hz), 2.59(3H,s), 2.71(2H,q,J = 7.5Hz), 3.77(2H,s), 3.92(4.22(2H,q,J = 7.5Hz), 5.32(2H,s), 6.91(1H,s), 7.73(1H,s), 7.80(1H,d,J = 7.5Hz), 3.77(2H,s), 3.92(4.22(2H,q,J = 7.5Hz), 5.32(2H,s), 6.91(1H,s), 7.73(1H,s), 7.80(1H,d,J = 7.5Hz), 3.80(2H,s), 3.92(4.22(2H,q,J = 7.9Hz,J = 7.6Hz), 1.28(3H,t,J = 7.4Hz), 2.59(3H,s), 2.72(2H,q,J = 7.5Hz), 3.80(2H,s), 3.92(4.21(2H,q,J = 7.5Hz), 5.38(2H,s), 7.10(1H,dd,J = 7.0Hz,J = 7.0Hz), 7.73(1H,dd,J = 7.9Hz,J = 1.0Hz) (3.21(2H,q,J = 7.5Hz), 1.040(1H,s)) (3.21(2H,q,J = 7.9Hz), 1.30(3H,t,J = 7.1Hz), 1.63(2H,q,J = 7.9Hz), 1.27(2H,s), 4.22(2H,q,J = 7.0Hz), 5.32(1H,s), 6.46(1H,d,J = 8.9Hz), 7.74(1H,d,J = 7.9Hz), 1.30(3H,t,J = 7.0Hz), 5.32(1H,s), 6.46(1H,d,J = 8.9Hz), 7.74(1H,d,J = 7.9Hz), 1.29(3H,t,J = 7.2Hz), 1.64(2Hz,J = 7.6Hz,J = 7.2Hz), 1.29(3H,t,J = 7.2Hz), 1.64(2Hz,J = 7.6Hz,J = 7.2Hz), 2.78(2H,t,J = 7.2Hz), 3.81(2H,s), 4.21(2H,q,J = 7.0Hz), 5.38(2H,s), 6.50(1H,d,J = 8.9Hz), 7.76(1H,dd,J = 8.9Hz), 7.76(1H,d,J = 7.9Hz), 7.76(1H,d,J = 8.9Hz), 7.76(1H,d,J = 7.9Hz), 7.76(1H,d,J = 7.9Hz), 7.76(1H,d,J = 8.9Hz), 7.76(1H,d,J = 7.9Hz), 7.76(1H,d,J = 8.9Hz), 7.76(1H,d,J = 7.9Hz), 7.76(1H,d,J = 7.9Hz), 7.76(1H,d,	\$\frac{\partial \text{\$\text{\$\superstack{\$\superstack{2.59(3H,s)}}}}{73(1H,s), 7.80(1H,d,J=7.5Hz),} 3.77(2H,s), 3.92(2H,s),} 18(1H,s) \$\text{\$\text{\$\superstack{2.59(3H,s)}}}}{1.8(1H,s)}, 7.80(1H,d,J=7.5Hz), 3.80(2H,s), 3.92(3H,s),} 3.2.59(3H,s),} 2.59(3H,s), 7.73(1H,s), 7.76(1H,dd,J=8.3Hz,s),} 2.59(3H,s),} 2.6Hz,J=7.9Hz), 8.27(1H,dd,J=7.9Hz,J=1.0Hz),} 2.58(3H,s),} 2.6Hz,J=7.9Hz), 8.24(1H,dd,J=7.6Hz,J=0.6Hz),} 3.56(1H,d,J=8.9Hz),} 2.58(3H,s),} 3.56(1H,d,J=8.9Hz),} 2.58(3H,s),} 3.56(1H,d,J=8.9Hz),} 3.58(3H,s),} 3.56(1H,d,J=8.9Hz),} 3.58(3H,s),} 3.59(1H,d,J=8.9Hz),} 3.76(1H,dd,J=8.0Hz,J=7.9Hz),} 3.76(1H,dd,J=8.0Hz,J=7.9Hz),} 3.76(1H,d,J=8.0Hz,J=7.9Hz),} 3.76(1H,d,J=8.0Hz,J=8.0Hz,J=7.9Hz),} 3.76(1H,d,J=8.0Hz,J=8.0Hz,J=7.9Hz),} 3.76(1H,d,J=8.0Hz,J=
30	7.97(1 H, dd, J = 7.9 Hz, J = 7.6 Hz), 8.25(1 H, d, J = 6.9 Hz), 8.36(1 H, d, J = 7.6 Hz) (solvent:CDCL ₃) 1.03(3H,t,J = 7.3 Hz), 1.64(2H,tq,J = 7.6 Hz,J = 7.8 Hz), 2.59(3H,s), 2.74(2H,t,J = 8.0 Hz), 3.78(3H,s), 3.82(2H,s), 5.31(2H,s), 6.71(1H,d,J = 8.9 Hz), 6.83(1H,s), 7.53(1H,d,J = 8.9 Hz), 7.70(1H,d,J = 7.6 Hz), 7.97(1H,dd,J = 7.6 Hz), 8.19(1H,d,J = 7.6 Hz)	3(1H,d,J=7.6Hz) J=7.8Hz), 2.59(3H,s), 2.74(2H,t,J=8.0Hz), 3.78(3H,s), 3(1H,d,J=8.9Hz), 7.70(1H,d,J=7.6Hz),

Table 64

5	

Ex. No.	Structural formula
3 1	HN NOE! OMe
3 2	N N N OEI
3 3	OH OH
3 4	OH OH OE!

Table 65

	1H-NMR	δρρm
31	(solvent:CDCL ₃) 1.03(3H,t,J=7.3Hz), 1.65(2H,tq,J=7.6Hz,J=7.9Hz), 2.63(3H,s), 2.76(2H,t,J=7.6Hz), 3.79(3H,s), 3.90(2H,s), 5.3 7(2H,s), 6.81(1H,d,J=8.6Hz), 7.06(1H,d,J=7.6Hz), 7.59(1H,d,J=8.9Hz), 7.75(1H,d,J=6.9Hz), 7.83(1H,dd,J=7.9Hz,J=7.9Hz), 8.01(1 H,dd,J=7.9Hz,J=7.9Hz), 8.28(1H,d,J=6.37(1H,d,J=7.9Hz))	6Hz,J=7.9Hz), 2.63(3H,s), 2.76(2H,t,J=7.6Hz), z), 7.06(1H,d,J=7.6Hz), 7.59(1H,d,J=8.9Hz), 8.01(1 H,dd,J=7.9Hz,J=7.9Hz), 8.28(1H,d,J=6.9Hz),
32	(solvent:CDCL ₃) 1.27(3H,t,J=7.6Hz), 1.28(3H,t,J=7.1Hz), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.72(2H,s), 4.17(2H,q,J=7.3Hz) 5.32(2H,s), 6.43(1H,s), 6.89(1H,s), 7.51(1H,s), 7.67(1H,dd,J=0.7Hz,J=8.2Hz), 8.29(1H,dd,J=2.3Hz,J=8.2Hz), 9.14(1H,dd,J=0.7Hz,J=2.3Hz), 9.58(1H,bs), 12.66(1H,s)	2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.72(2H,s), 51(1H,s), 7.67(1H,dd,J=0.7Hz,J=8.2Hz), 2.3Hz), 9.58(1H,bs), 12.66(1H,s)
33	(solvent:CDCL ₃) 1.27(3H,t,J=7.6Hz), 1.32(3H,t,J=7.3Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 4.30(2H,q,J=7.3Hz), 4.68(2H,s) 5.32(2H,s), 6.51(1H,s), 6.70-6.80(1H,m), 7.25-7.35(2H,m) 7.51(1H,s), 7.55-7.65(1H,m), 7.68(1H,d,J=7.6Hz), 7.98(1H,dd,J=6.6Hz,J=7.6Hz), 8.26(1H,d,J=6.6Hz), 9.90(1H,bs), 12.67(1H,s)	2.59(3H,s), 2.70(2H,q,J=7.6Hz), 70-6.80(1H,m), 7.25-7.35(2H,m) 7.51(1H,s), 1z,J=7.6Hz), 8.26(1H,d,J=6.6Hz), 9.90(1H,bs),
34	(solvent:CDCL ₃) 1.27(3H,t,J=7.6Hz), 1.31(3H,t,J=7.3Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 4.26(2H,q,J=7.3Hz), 4.63(2H,s) 5.31(2H,s), 6.51(1H,s), 6.96(2H,d,J=9.1Hz), 7.51(1H,s), 7.51(1H,s), 7.51(1H,d,J=8.6Hz), 7.71(2H,d,J=9.1Hz), 7.97(1H,dd,J=7.6Hz,J=8.6Hz), 8.26(1H,d,J=7.6Hz), 9.82(1H,s), 12.67(1H,s)	2.59(3H,s), 2.70(2H,q,J=7.6Hz), 36(2H,d,J=9.1Hz), 7.51(1H,s), 7.6Hz,J=8.6Hz), 8.26(1H,d,J=7.6Hz), 9.82(1H,s),
35	(solvent:CDCL ₃) 1.27(3H,t,J=7.3Hz), 1.27(3H,t,J=7.3Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 3.73(2H,s), 4.07(2H,d,J=5.3Hz) 4.20(2H,q,J=7.3Hz), 5.32(2H,s), 6.45(1H,s), 6.88(1H,s), 7.03(1H,b), 7.51(1H,s), 7.74(1H,dd,J=1.0Hz,J=7.6Hz), 8.01(1H,dd,J=7.6Hz,J=7.9Hz), 8.25(1H,dd,J=1.0Hz,J=7.9Hz), 11.08(1H,bs), 12.67(1H,s)	Hz), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 3.73(2H,s), 6.45(1H,s), 6.88(1H,s), 7.03(1H,b), 7.51(1H,s), 7.9Hz), 3.73(2H,dd,J=1.0Hz,J=7.9Hz),

Table 66

Ex. No.	Structural formula
3 6	H N OH
3 7	HN S OH
3 8	O OH
3 9	H S OH
4 0	H S OH

Table 67

		¹ H-NMR	δppm	
5	36	(solvent:DMSO-d ₆) 1.20(3H,t,J = 7.6Hz), 2.59(3H,s), 2.63(2H,q,J = 7.6Hz), 5.44(2H,s), 6.71(1H,s), 7.45(1H,s), 7.66,(1H,s), 7.7-7.8(1H,m), 8.10-8.20(2H,m), 12.60(1H,bs)		
	37	(solvent:DMSO-d ₆) 1.21(3H,t,J=6Hz), 2.58(3H,s), 2.65(2H,q,J=7.6Hz), 3.67(2H,s), 5.46(2H,s), 6.63(1H,s), 7.11(1H,s), 7.70(1H,s), 7.78(1H,dd,J=1.3Hz,J=7.3Hz), 12.04(1H,bs), 12.55(1H,s)		
10	38	(solvent:DMSO- d_6) 1.21(3H,t,J = 7.4Hz), 2.59(3H,s), 2.55-2.75(4H,m), 2.89(2H,t,J = 7.6Hz), 5.47(2H,s), 6.63(1H,s), 6.95 (1H,s), 7.70(1H,s), 7.78(1H,d,J = 7.3Hz), 8.10-8.20(2H,m), 11.94(1H,bs), 12.57(1H,s)		
	39		58(3H,s), 2.65(2H,q,J = 7.4Hz), 4.15(2H,s), 5.47(2H,s),), 8.10-8.20(2H,m), 12.50(1H,bs), 12.56(1H,s)	
15	40		59(3H,s), 2.55-2.75(4H,m), 2.89(2H,t,J = 7.6Hz), 5.47(2H,s), ,d,J = 7.3Hz), 8.10-8.20 (2H,m), 11.94(1H,bs), 12.57(1H,s)	

Table 68

5	Ex. No.	Structural formula
10	4 1	O OH OH OH
15		I O I H
20	4 2	О ОН О ОН О ОН О ОН
25		TO N N OH
30	43	O O N N N N O H
35	4 4	ON NON OH SON
40		Ö ÖMe
45	4 5	H N OH
50		

Table 69

		¹ H-NMR	δppm	
5	41	(solvent:DMSO-d ₆) 1.20(3H,t,J=7.6Hz), 2.58(3H,s), 2.65(2H,q,J=7.6Hz), 3.58(1H,s), 5.47(2H,s), 6.63(1H,s), 7.04(1H,d,J=7.9Hz), 7.33(1H,m), 7.7-7.8(4H,m), 8.1-8.2(2H,m), 10.41(1H,s), 12.56(1H,s)		
42 (solvent:DMSO-d ₆) 1.20(3H,t,J=7.6Hz), 2.58(3H,s), 2.65(2H,q,J=7.6Hz), 5.7.27(2H,d,J=8.2Hz) 7.65-7.85(4H,m), 8.05-8.20(2H,m), 8.10-8.20(2H,m), 10.10-10.				
	43	, , , , , , , , , , , , , , , , , , , ,	2.58(3H,s), 2.67(2H,q,J=7.6Hz), 3.71(2H,s), 5.49(2H,s), s), 7.75-7.95(2H,m), 8.10-8.20 (3H,m), 10.33(1H,s),	
15	44	(solvent:CDCL ₃) 1.25(3H,t,J=7.4Hz), 2.57 5.35(2H,s), 6.52(1H,s), 6.88(1H,s), 7.70(1H 8.03(1H,dd,J=7.9Hz,J=7.6Hz), 8.24(1H,d		
20	45	5.39(2H,s), 6.55(1H,s), 7.07(1H,d,J=7.3H	9(3H,s), 2.72(2H,q,J=6.9Hz), 3.91(2H,s), 3.93(3H,s), z), 7.74(1H,s), 7.83(1H,d,J=6.6Hz) dd,J=7.9Hz,J=7.9Hz), 8.29(1H,d,J=6.6Hz),	

Table 70

5	Ex. No.	Structural formula
10	46	O OH
15		O N N OH
20	4 7	O OH OH OH
25		HON N N OH
30	4 8	O S O S
35	4 9	H N N OH
		OMe
40		O S O O O O O O O O O O O O O O O O O O
45	5 0	O OH

63

50

Table 71

		¹ H-NMR	δppm	
5	46	(solvent:DMSO-d ₆) 0.92(3H,t,J=7.3Hz), 1.55(2H,tq,J=6.9Hz, J=7.7Hz), 2.52(3H,s), 2.67(2H,t,J=7.6Hz), 3.67(2H,s), 5.50(2H,s), 6.77(1H,d,J=9.2Hz), 7.11(1H,s), 7.76(1H,d,J=7.2Hz) 7.81(1H,d,J=8.9Hz), 8.11(1H,dd,J=7.6Hz,J=7.6Hz), 8.13(1H,d,J=7.6Hz)		
10	47	(solvent:CDCL ₃) $1.00(3H,t,J=7.4Hz)$, $1.64(2H,tq,J=7.6Hz, J=7.3Hz)$, $2.59(3H,s)$, $2.78(2H,t,J=7.6Hz)$, $3.91(2H,s)$, $5.40(2H,s)$, $6.55(1H,d,J=8.9Hz)$, $7.07(1H,d,J=6.6Hz)$, $7.63(1H,d,J=8.2Hz)$, $7.77(1H,d,J=6.9Hz)$, $7.85(1H,dd,J=7.9Hz,J=7.9Hz)$, $8.02(1H,dd,J=7.6Hz,J=7.9Hz)$, $8.27(H,d,J=6.9Hz)$, $8.39(1H,d,J=8.3Hz)$		
15	48	$(solvent:CDCL_3)\ 1.03(3H,t,J=7.3Hz),\ 1.64(2H,tq,J=7.6Hz,J=7.8Hz),\ 2.59(3H,s), \\ 2.74(2H,t,J=8.0Hz),\ 3.78(3H,s),\ 3.82(2H,s)\ 5.31(2H,s),\ 6.71(1H,d,J=8.9Hz),\ 6.83(1H,s), \\ 7.53(1H,d,J=8.9Hz),\ 7.70(1H,d,J=7.6Hz),\ 7.97(1H,dd,J=7.6Hz,J=7.9Hz),\ 8.19(1H,d,J=7.6Hz)$		
20	49	$(solvent:CDCL_3)\ 1.03(3H,t,J=7.3Hz),\ 1.65(2H,tq,J=7.6Hz,J=7.9Hz\),\ 2.63(3H,s), \\ 2.76(2H,t,J=7.6Hz),\ 3.79(3H,s),\ 3.90(2H,s),\ 5.37(2H,s),\ 6.81(1H,d,J=8.6Hz),\ 7.06(1H,d,J=7.6Hz), \\ 7.59(1H,d,J=8.9Hz),\ 7.75(1H,d,J=6.9Hz),\ 7.83(1H,dd,J=7.9Hz), \\ 8.01(1H,dd,J=7.9Hz,J=7.9Hz),\ 8.28(1H,d,J=6.9Hz)\ 8.37(1H,d,J=7.9Hz)$		
50 (solvent:DMSO-d ₆) 1.20(3H,t,J=7.6Hz), 2.58(3H,s), 2.64(2H,q,J=7.6Hz), 3.6 6.57(1H,s), 7.06(1H,s), 7.66(1H,d,J=8.6Hz), 7.69(1H,s), 8.48(1H,dd,J=2.0Hz) 9.22(1H,d,J=2.0Hz), 12.54(1H,s)				

Table 72

5	Ex. No.	Structural formula
10	5 1	OH OH N OH OH
15		
20	5 2	O OH O OH
25 30	53	H N N N N N N N N N N N N N N N N N N N
35	5 4	H N N N OM.
40 45	5 5	H N E OMe

55

Table 73

		¹ H-NMR	δppm	
5	51	(solvent:DMSO-d $_6$) 1.19(3H,t,J = 7.6Hz), 2.58(3H,s), 2.64(2H,q,J = 7.6Hz), 4.64(2H,s), 5.45(2H,s), 6.62(1H,s), 6.93(2H,d,J = 8.2Hz), 7.65-7.85(4H,m), 8.05-8.20(2H,m), 10.35(1H,s), 12.55(1H,s)		
	52	(solvent:DMSO-d ₆) 1.20(3H,t,J = 7.6Hz), 2.58(3H,s), 2.64(2H,q,J = 7.6Hz), 4.66(2H,s), 5.46(2H,s), 6.62(1H,s), 6.65-6.75(1H,m), 7.20-7.80(5H,m), 8.05-8.20(2H,m), 10.41(1H,s) 12.56(1H,s),		
10	58	(solvent:DMSO-d ₆) 1.21(3H,t,J = 7.3 Hz), 2.58(3H,s), 2.65(2H,q,J = 7.3 Hz), 3.60(2H,s), 3.79(2H,d,J = 5.6 Hz), $5.46(2$ H,s) 6.63(1H,s), $7.09(1$ H,s), $7.70(1$ H,s), $7.75-7.85(1$ H,m), $8.1-8.4(3$ H,m), 12.04(1H,bs), 12.56(1H,s)		
15	54	(solvent:CDCL ₃) 1.31(3H,t,J=7.6Hz), 1.52(2H,d,J=6.9Hz), 2.57(3H,s), 2.74(2H,q,J=7.6Hz), 3.71(2H,s), 4.60(1H,dq,J=7.6Hz,J=7.9Hz), 5.49(2H,s), 6.84(1H,s), 7.01(1H,d,J=7.3Hz), 7.51(1H,s), 7.63(1H,d,J=7.6Hz), 7.75(1H,dd,J=7.6Hz,J=8.2Hz), 7.93(1H,dd,J=7.6Hz,J=7.6Hz), 8.22(1H,d,J=7.9Hz), 8.33(1H,d,J=8.3Hz)		
20	55	(solvent:CDCL $_3$) 1.27(3H,t,J=7.6Hz), 1.43(2H,d,J=7.3Hz), 2.59(3H,s), 2.71(2H,q,J=7.3Hz), 3.72(3H,s), 3.74(2H,s), 4.61(2H,dq,J=6.9Hz,J=7.2Hz), 5.39(2H,s), 6.49(1H,s), 7.06(1H,d,J=7.6Hz), 7.51(1H,s), 7.72(1H,d,J=7.6Hz), 7.76(1H,dd,J=7.2Hz,J=3.4Hz), 8.00(1H,dd,J=7.6Hz,J=7.9Hz), 8.27(1H,d,J=7.9Hz), 8.34(1H,d,J=8.6Hz)		

Table 74

5	Ex. No.	Structural formula
10	5 6	H N OME
15		
20	5 7	OH OH OH
25	5 8	HO N N N N N N N N N N N N N N N N N N N
30		OH STATE OF
35	5 9	OH OH N N N OH OH
40		
45	6 0	HOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHO

55

Table 75

	C / BINE I	
	¹H-NMR	δρρm
56	(solvent:CDCL ₃) 1.28(3H,t,J=7.4Hz), 2.59(3H,s), 2.54(2H,t, J=6.1Hz), 2.70(2H,t,J=7.4Hz), 3.55(3H,s), 3.56(2H,dd,J=5.9Hz, J=6.3Hz), 3.69(2H,s), 5.39(2H,s), 6.50(1H,s), 7.06(1H,d, J=7.6Hz), 7.51(1H,s), 7.75(1H,dd,J=7.9Hz,J=7.9Hz,J=7.9Hz,J=7.9Hz,J=7.9Hz,J=7.9Hz,J=7.9Hz,J=7.9Hz,J=8.3Hz)	1,t, J=6.1Hz), 2.70(2H,t,J=7.4Hz), 3.55(3H,s), 6.50(1H,s), 7.06(1H,d, J=7.6Hz), 7.51(1H,s), =7.9Hz), 7.99(1H,dd,J=7.6Hz,J=7.9Hz), 8.30(1H,d,
27	(solvent:CDCL ₃) 1.28(3H,t,J=7.6Hz), 2.60(3H,s), 2.72(2H,q, J=7.5Hz), 3.76(2H,s), 5.40(2H,s), 6.55(1H,s), 7.13(1H,d,J=7.3Hz), 7.54(1H,s), 7.76(1H,dd,J=7.3Hz, J=7.6Hz), 7.81(1H,d,J=7.6Hz), 8.02(1H,dd,J=7.9Hz), 8.25(1H,d,J=7.3Hz), 8.31(1H,d,J=8.2Hz)	H,q, J=7.5Hz), 3.76(2H,s), 5.40(2H,s), 6.55(1H,s), J=7.6Hz), 7.81(1H,d,J=7.6Hz), 8.02(1H,dd,J=7.9Hz,
58	(solvent:CDCL ₃) 1.31(3H,t,J=7.6Hz), 1.52(2H,d,J=6.9Hz), 2.57(3H,s), 2.74(2H,q,J=7.6Hz), 3.71(2H,s), 4.60(1H,dq,J=7.6Hz,J=7.9Hz), 5.49(2H,s), 6.84(1H,s), 7.01(1H,d,J=7.3Hz), 7.51(1H,s), 7.63(1H,d,J=7.5(1H,dd,J=7.6Hz,J=8.2Hz), 7.93(1H,dd,J=7.6Hz,J=7.6Hz), 8.22(1H,d,J=7.9Hz), 8.33(1H,d,J=8.3	tz), 2.57(3H,s), 2.74(2H,q,J=7.6Hz), 3.71(2H,s), 7.01(1H,d,J=7.3Hz), 7.51(1H,s), 7.63(1H,d,J=7.6Hz), = 7.6Hz), 8.22(1H,d,J=7.9Hz), 8.33(1H,d,J=8.3Hz)
59	(solvent:CDCL ₃) 1.28(3H,t,J=7.6Hz), 2.58(3H,s), 2.60(2H,q,J=5.9Hz), 2.71(2H,q,J=7.9Hz), 3.70(2H,s), 3.60(2H,q,J=5.7Hz), 5.44(1H,s), 6.74(1H,s), 7.03(1H,d,J=7.6Hz) 7.50(1H,s), 7.73(1H,d,J=7.3Hz), 7.74(1H,dd,J=8.5Hz,J=7.3Hz), 8.00(1H,dd,J=7.9Hz,J=7.6Hz), 8.25(1H,d,J=7.6Hz), 8.31(1H,d,J=8.2	H,q,J=5.9Hz), 2.71(2H,q,J=7.9Hz), 3.70(2H,s), J=7.6Hz) 7.50(1H,s), 7.73(1H,d,J=7.3Hz), =7.6Hz), 8.25(1H,d,J=7.6Hz), 8.31(1H,d,J=8.2Hz)
09	(solvent:CDCL ₃) 1.29(3H,t,J=7.6Hz), 2.60(3H,s), 2.73(2H,q, J=7.5Hz), 2.85(1H,dd,J=17.2Hz,J=5.3Hz), 3.00(1H,dd,J=14.2Hz,J= 4.6Hz), 3.76(2H,s), 4.78(1H,t,J=5.0Hz), 5.41(2H,s), 6.55(1H,s), 7.13(1H,d,J=7.9Hz), 7.79(1H,dd,J=7.6Hz,J=8.2Hz), 8.02(1H,dd,J=7.6Hz,J=7.9Hz), 8.30(1H,d,J=8.6Hz)	H,q, J=7.5Hz), 2.85(1H,dd,J=17.2Hz,J=5.3Hz), J=5.0Hz), 5.41(2H,s), 6.55(1H,s), 7.13(1H,d,J=7.6Hz) =8.2Hz), 8.02(1H,dd,J=7.6Hz,J=7.9Hz),

Table 76

6 3

Ex. No.

Structural formula

N N N OH

O O

 $\begin{array}{c|c}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$

Table 77

		¹ H-NMR	δppm	
5	61	(solvent:DMSO- d_6) 1.19(3H,t,J=7.6Hz), 2.59(3H,s), 2.64(2H,q,J=7,6Hz), 3.67(2H,s), 5.49(2H,s), 6.69(1H,s), 7,12(1H,s), 7,71 (1H,s), 9,04(1H,s), 9.27(1H,s), 10.06(1H,s), 12.58(1H,br)		
10	62	(solvent:CDCL $_3$) 1.26(3H,t,J=7.6Hz), 1.30(3H,t,J=7.3Hz), 2.60 (3H,s), 2.69(2H,q,J=7,6Hz), 3.76(2H,d,J=0.7Hz), 4.22(2H,q,J=7.3Hz), 5.33(2H,s), 6.47(1H,s), 6.94(1H,s), 7.53(1H,s), 9.08 (1H,s), 9.48(1H,s), 10.90(1H, br), 12.70(1H,s)		
	63	$(solvent:DMSO-d_6)\ 1.19(3H,t,J=7,6Hz),\ 2.59(3H,s),\ 2.66(2H,q,J=7,6Hz),\\ 2.89(1H,dd,J=8.3Hz,15.0Hz),\ 3.00(1H,dd,J=5.3Hz,15.0\ Hz),\ 3.58(2H,s),\ 4.4-4.5(1H,m),\ 5.49(2H,s),\\ 6.68(1H,s),\ 6.94\ (1H,s),\ 7.00(1H,s),\ 7.71(1H,s),\ 7.87(1H,s),\ 8.33(1H,d,J=7.6\ Hz),\ 9.05(1H,s),\\ 9.27(1H,s),\ 12.60(1H,br)$		
15	64	(solvent:CDCl ₃) 1.20(3H,t,J=7.3Hz), 2.60(3H,s), 2.70(2H,q,J=7.3Hz), 3.1-3.2(2H,m), 3.72(3H,s), 3.75(2H,s), 4.8-4.9(1H,m), 5.36(2H,s), 6.48(1H,s), 6.79(1H,s), 6.91(1H,s), 7.53(1H,s), 7.56(1H,s), 9.10(1H,s), 9.48(1H,s), 12.78(1H,br)		
20	65	(solvent:DMSO-d ₆) $1.19(3H,t,J=7.6Hz)$, $2.59(3H,s)$, $2.6-2.7(4H,m)$, $3.61(2H,s)$, $4.5-4.6(1H,m)$, $5.49(2H,s)$, $6.69(1H,s)$, $7.08(1H,s)$, $8.35(1H,d,J=7.6Hz)$, $9.05(1H,s)$, $9.27(1H,s)$, $12.60(1H,s)$,		

Table 78

_	Ex. No.	Structural formula
10	6 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15 20	6 7	O OH CONH CONH 2
25 30	6 8	H CONH CONH ₂
35	6 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
40 45	7 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

50

Table 79

		¹ H-NMR	δ ppm	
5	66	$ \begin{array}{l} \text{(solvent:CDCl}_3) \ 1.16(3\text{H,t,J}=7.6\text{Hz}), \ 1.25(3\text{H,t,J}=7.6\text{Hz}), \ 1.26 \ (3\text{H,t,J}=7.6\text{Hz}), \ 2.59(3\text{H,s}), \\ 2.69(2\text{H,q,J}=7.6\text{Hz}), \ 2.8\text{-}3.1(2\text{H,m}), \ 3.71(2\text{H,s}), \ 4.11(2\text{H,q,J}=7.6\text{Hz}), \ 4.21(2\text{H,q,J}=7.6\text{Hz}), \\ 4.8\text{-}4.9 \ 1\text{H,m}), \ 5.37(2\text{H,s}), \ 6.47(1\text{H,s}), \ 6.91(1\text{H,s}), \ 7.52(1\text{H,s}), \ 8.03 \ (1\text{H,s}), \ 9.08(1\text{H,s}), \\ 9.49(1\text{H,s}), \ 12.68(1\text{H,s}), \end{array} $		
10	67	(solvent:CDCl ₃) 1.27(3H,t,J = 7.6Hz), 2.59(3H,t), 3.78(2H,d,J = 0.7Hz), 5.28(2H,s), 6.43(1H, s), 7.5 1.0Hz), 8.00(1H, dd,J = 7.9, 7.6Hz), 8.25(1H,d,J = 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9,	51(1H,s), $6.90(1H,s)$, $7.72(1H,dd,J=7.9)$	
15	68	$(solvent:CDCl_3)\ 1.28(3H,t,J=7.4Hz),\ 2.58(3H,s),\ 2.72(2H,q,J=7.5Hz),\ 3.77(2H,s),\\ 4.05(2H,d,J=5.0Hz),\ 5.46(2H,s),\ 6.89(1H,s),\ 7.03(1H,d,J=6.6Hz),\ 7.5(1H,s),\\ 7.72(1H,d,J=7.9Hz),\ 7.76\ (1H,dd,J=7.6,\ 7.9Hz),\ 7.99(1H,dd,J=7.6,\ 7.9Hz),\ 8.24(1H,d,J=7.6Hz),\ 8.30(1H,d,J=8.3Hz)$		
20	69	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 2.59(3H,s), 3.8-4.0(2H,m), 4.58(3H,t,J=3.8Hz), 5.33 (2H,s), 7.76(1H,d,J=7.6 Hz), 8.03(1H,dd,J=7.9, 7.9Hz)	6.48(1H,s), 6.94(1H,s), 7.52(1H,s),	
-	70 (solvent:CDCl ₃) 1.27(3H,t,J=7.4Hz), 2.60(3H,s), 2.71(2H,q,J=7.5Hz), 3.37(2H,s), 3.73(3H,s), 3.87(1H,dd,J=11.5, 3,3Hz), 3.97 (1H,dd,11.5, 3,3Hz), 4.6-4.7(1H,m), 5.34(2H 6.48(1H, s), 6.96(1H,s), 7.54(1H,s), 7.77(1H,d,J=7.6Hz), 8.04(1H,dd,J=7.9, 7.9Hz), 8.25(1H,d,J=7.6Hz)			

Table 80

5	Ex. No.	Structural formula
10	7 1	O OH S CO ₂ H
15		A
20	7 2	O OH CO2 CH2
25 30	7 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
35	7 4	O OH CONH CONH CO2Et
40		
45	7 5	H CO ₂ H O OH N N N N N N N N N N N N N N N N N N N

73

50

	1H-NMR	Mggs
71	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 1.5-2.2(4H,m), 2.59(3H,s), 2.70(2H,q,J=7.6Hz), 3.5-3.7(2H,m), 3.85(2H,d,J=2.3Hz), 4.6-4.7 (1H,m), 5.32(2H,s), 6.49(1H,s), 6.92(1H,s), 7.51(1H,s), 7.73 (1H,d,J=7.9Hz), 7.99(1H,dd,J=7.9, 7.9Hz), 8.23(1H,d,J=7.9Hz)	s), 2.70(2H,q,J=7.6Hz), 3.5-3.7(2H, 6.92(1H,s), 7.51(1H,s), 7.73 (1H,d,J
72	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 1.9-2.3(4H,m), 2.59(3H,s), 2.70(2H,q,J=7.5Hz), 3.6-3.8(2H,m), 3.82(2H,s), 4.12(2H,q,J=7.2Hz), 4.63(1H,dd,J=8.3, 3.6Hz), 5.18(2H,d,J=7.9Hz), 5.27(2H,s), 6.44(1H,s), 6.94(1H,s), 7.72(1H,d,J=6.9Hz), 8.00(1H,dd,J=7.9, 7.9Hz), 8.25(1H,d,J=7.9Hz)	s), 2.70(2H,q,J=7.5Hz), 3.6-3.8(2H,r I=7.9Hz), 5.27(2H, s), 6.44(1H,s), 6.9 :7.9, 7.9Hz), 8.25(1H,d,J=7.9Hz)
73	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 2.60(3H,s), 2.71(2H,q,J=7.3Hz), 2.8-3.1(2H,m), 3.37(2H,d,J=5.0Hz), 3.71(2H,s), 4.80 (1H,t,J=4.8Hz), 5.35(2H,s), 6.49(1H,s), 6.93(1H,s), 7.54(1H,s), 7.76(1H,d,J=7.9Hz), 8.23(1H,d,J=7.9Hz)	1,q,J= 7.3Hz), 2.8-3.1(2H,m), 3.37(2H,d,J=5 6.93(1H,s), 7.54(1H, s), 7.76(1H,d,J=7.9Hz),
74	(solvent:CDCl ₃) 1.19(3H,t,J=7.1Hz), 1.24(3H,t,J=7.4Hz), 1.27 (3H,t,J=7.8Hz), 2.59(3H,s), 2.70(2H,q,J=7.2Hz), 2.85(1H,dd,J=17.2. 4.6Hz), 3.02(1H,dd,J=16.8, 4.6Hz), 3.72(2H,s), 4.10(2H,q,J=7.2Hz), 4.20(2H,q,J=7.1Hz), 4.85(1H,td, J=4.9, 7.6Hz), 5.31(2H,s), 6.44(1H,s), 6.89(1H,s), 7.51(1H,s), 7.74(1H,d,J=7.6Hz), 8.26(1H,d,J=7.6Hz)), 1.27 (3H,t,J=7.8Hz), 2.59(3H,s), 2.70(2H,q,J=7.2Hz), 3.72(2H,s), 4.10(2H, q,J=7.2Hz), 4.20(2H,q,J=7.1Hz), 1H,s), 7.51(1H,s), 7.74(1H,d,J=7.6Hz),
75	(solvent:CDCl ₃) 1.27(3H,t,J = 7.5Hz), 2.59(3H,s), 2.69(2H,q,J = 7.3Hz), 3.26(2H,d,J = 5.0Hz), 3.70(2H,s), 4.70(1H,t,J = 5.0Hz), 5.33(2H,s), 6.48(1H,s), 6.95(1H,s), 7.05(1H,s), 7.50(1H,s), 7.76(1H,d,J = 8.0, 8.0Hz), 8.22(1H,d,J = 8.0 Hz)	1,q,J= 7.3Hz), 3.26(2H,d,J=5.0Hz), 3.70(2H 7.05(1H,s), 7.50(1H,s), 7.76(1H,d,J=8.0Hz),

5		Table 82
	Ex. No.	Structural formula
10	7 6	$\begin{array}{c c} & H \\ & N \\ & O \\ $
20	7 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
30	7 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
35 40	7 9	O OH CONH CO2H
45	8 0	O OH CONH CONH CONH
50		

Table 83

		¹ H-NMR	δppm
5	76	(solvent:CDCl ₃) 1.26(3H,t,J=7.5Hz), 2.59(3H,s), 2.69 3.71(3H,s), 3.73(2H,s), 4.84(1H, dt, J=7.3, 4.2Hz), 5 7.50(1H,s), 7.59(1H,s), 7.72(1H,d,J=7.6Hz), 8.01(1H	.31(2H,s), 6.45(1H,s), 6.78(1H,s), 6.88(1H, s),
10	77	(solvent:CDCl ₃) 1.27(3H,t,J = 7.5Hz), 1.9-2.5(4H,m), 2 3.70(2H,s), 4.56(1H,t,J = 4.0Hz), 5.35(2H,s), 6.49(1H 8.04(1H,dd,J = 7.6, 7.9Hz), 8.24(1H,d,J = 7.6Hz)	
15	78	$\begin{array}{l} (\text{solvent:CDCl}_3) \ 1.21(3\text{H,t,J}=7.1\text{Hz}), \ 1.26(3\text{H,t,J}=7.4\text{Hz}), \ 2.59(3\text{H,s}), \ 2.70(2\text{H,q,J}=7.4\text{Hz}), \ 3.70(2\text{H,s}), \ 4.09(2\text{Htd,J}=3.7, \ 7.6\text{Hz}), \ 5.33(2\text{H,s}), \ 6.47(1\text{H,s}), \ 6.88(1\text{H,s}), \ 8.02(1\text{H,dd,J}=6.9, \ 7.6\text{Hz}), \ 8.26(1\text{H,d,J}=6.9\text{Hz}) \end{array}$,q,J=7.2Hz), 4.19(2H,q,J=6.9Hz), 4.63(1H,
20	79	$(solvent:CDCl_3)$ 1.21(3H,t,J=7.6Hz), 2.51(3H,s), 2.62 4.71(1H,t,J=5.3Hz), 5.23(2H,s), 6.43(1H, s), 7.41(1H 7.61(1H,dd,J=7.9Hz), 7.67(1H,dd,J=7.9, 7.9Hz), 7.8 8.19(1H,d,J=8.3Hz),	s), 7.05(1H,s), 7.05(1H,d,J=7.3Hz), 7.31(1H,s),
25	80	(solvent:CDCl ₃) 1.27(3H,t,J=7.4Hz), 2.59(3H,s), 2.70 3.67(3H,s), 3.77(2H,s), 4.82(1H, dt,J=6.9, 5.0 Hz), 5 (1H,d,J=7.3Hz), 7.45(1H,s), 7.51(1H,s), 7.67(1H,d,J=7.98(1H,dd,J=7.9, 7.9Hz), 8.26(1H,d,J=6.9Hz), 8.3	.22(2H,s), 6.35(1H,s), 6.71(1H,s), 7.07 = 7.3Hz), 7.76(1H,dd,J = 7.9, 7.9Hz),

Table 84

5	Ex. No.	Structural formula
10	8 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15		
20	8 2	$ \begin{array}{c} $
25	8 3	O OH CO ₂ H
35	8 4	O OH CON
45	8 5	H O OH CONH CONH O OH

55

	1H-NMR	δρρm
81	(solvent:CDCl ₃) 1.28(3H,t,J=7.4Hz), 1.9-2.5(4H,m), 2.60(3H,s), 2.72(2H,q,J=7.4Hz), 3.84(2H,s), 4.5-4.6(5.42H,s), 6.56(2H,s), 7.26(1H,d,J=7.9Hz), 7.54(1H,s), 7.76(1H,d,J=8.3 Hz, 7.94(1H,dd,J=7.9, 7.9Hz), 8.03(1H,dd,J=7.9, 7.6Hz), 8.24 (1H,d,J=7.9Hz), 8.39(1H,d,J=8.6Hz)	H,s), 2.72(2H,q,J=7.4Hz), 3.84(2H,s), 4.5-4.6(1H,m), 76(1H,d,J=8.3 Hz, 7.94(1H,dd,J=7.9, 7.9Hz), 1,J=8.6Hz)
82	(solvent:CDCl ₃) 1.16(3H,t,J=7.3Hz), 1.20(3H,t,J=7.1Hz), 1.27 (3H,t,J=7.4Hz), 2.59(3H,s), 2.59(3H,s), 2.71(2H,q,J=7.4Hz), 2.74(4H,m), 3.74(2H,s), 4.03(2H,q,J=7.1Hz), 4.1-4.3(2H,m), 4.65(1H,t,d,J=7.6, 5.3Hz), 5.39(2H,s), 6.49(1H,s), 7.06(1H,d,J=6.6Hz), 7.51 (1H,s), 7.71(1H,d,J=7.3Hz), 7.73(1H,dd,J=7.9, 7.9Hz), 7.99(1H,d,J=7.9Hz), 8.34(1H,d,J=7.9Hz)	.27 (3H,t,J=7.4Hz), 2.59(3H,s), =7.1Hz), 4.1-4.3(2H,m), 4.65(1H,t,d,J=7.6, 5.3Hz), 71(1H,d,J=7.3Hz), 7.73(1H,dd,J=7.9, 7.9Hz), 7.99(1H,
83	(solvent:CDCl ₃) 1.27(3H,t,J=7.4Hz), 2.0-2.1(4H,m), 2.58(3H,s), 2.71(2H,q,J=7.4Hz), 3.67(2H,m), 3.94(2H,d,J=4.3Hz), 4.75(1H, d,J=5.9Hz), 5.39(2H,s), 6.56(2H,s), 7.10(1H,d,J=7.6Hz), 7.50 (1H,s), 7.71(1H,d,J=7.9Hz), 7.78(1H,dd,J=7.9, 7.9Hz), 7.98(1H, dd, J=7.9, 7.6Hz), 8.24(1H,d,J=7.6Hz), 8.37(1H,d,J=8.3Hz)	H,s), 2.71(2H,q,J=7.4Hz), 3.67(2H,m), 3(2H,s), 7.10(1H,d,J=7.6Hz), 7.50 (1H,s), 1d, J=7.9, 7.6Hz), 8.24(1H,d,J=7.6Hz),
84	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 1.9-2.3(4H,m), 2.58(3H,s), 2.70(2H,q,J=7.5Hz), 3.6-3.8(2H,m), 3.88(2H,s), 4.12(2H,q,J=7.2 Hz), 4.63(1H,dd,J=8.3, 3.6Hz), 5.17(2H,d,J=7.9Hz), 5.31(2H,s), 6.47(1H,s), 7.34(5H,m), 7.50(1H,s), 7.67 (1H,d,J=7.6Hz), 7.68(1H,dd,J=7.9, 7.6Hz), 7.6Hz), 8.26(1H,d,J=6.9Hz), 8.30(1H,d,J=8.3Hz)	H,s), 2.70(2H,q,J=7.5Hz), 3.6-3.8(2H,m), 3.88(2H,s), 1,J=7.9Hz), 5.31(2H,s), 6.47(1H,s), = 7.9Hz), 7.68(1H,dd,J=7.9, 7.6Hz), 7.97(1H,dd,J=7.9,
85	(solvent:CDCl ₃) 1.28(3H,t,J=7.4Hz), 2.60(3H,s), 2.72(2H,q,J=7.4Hz), 3.79(2H,s), 3.8-4.1(2H,m), 4.59(1H,t,J=3.5Hz), 5.39 (2H,s), 6.52(1H,s), 7.54(1H,s), 7.74(1H,d,J=7.9Hz), 7.80(1H,dd,J=7.6, 8.3Hz), 8.02(1H,dd,J=7.9, 7.6Hz), 8.24(1H,d,J=7.9 Hz), 8.31(1H,d,J=8.2Hz), 7.15(1H,d,J=7.3Hz)	J = 7.4Hz), 3.79(2H,s), 3.8-4.1(2H,m), 74(1H,d,J = 7.9Hz), 7.80(1H, dd,J = 7.6, 8.3Hz), 1,J = 8.2Hz), 7.15(1H,d,J = 7.3Hz)

Table 86

5

Ex. No.	Structural formula
8 6	H CO ₂ Me OH OH
8 7	O OH OH
8 8	O OH OE1
8 9	O OH O OH O OH
9 0	OE1

Table 87

		¹ H-NMR	δppm
5	86	(solvent:CDCl ₃) 1.27(3H,t,J=7.4Hz), 2.58(3H,s), 3.79(2H,s), 4.00(2H,d,J=3.3Hz), 4.71(1H, dt,J=7.05(1H,d,J=6.6Hz), 7.49(1H,s), 7.70(1H,d,J=7.4Hz), 8.25(1H,d,J=6.6Hz), 8.25(1H,d,J=6.6Hz)	7.3, 3.6Hz), 5.38(2H,s), 6.50(1H,s), 7.9Hz), 7.75(1H,dd,J = 7.6, 8.2Hz), 7.98
10	87	(solvent:DMSO- d_6) 1.19(3H,t,J=7.6Hz), 2.60(3H5.49(2H,s), 6.55(1H,s), 6.89(1H,s), 7.64 (1H,s), 8	
	88	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 1.29(3H,t,J 3.76(2H,s), 4.21(2H,q,J=7.3Hz), 5.43(2H,s), 6.4 8.13(1H,d,J=5.0Hz), 9.09(1H,d,J=5.0Hz), 10.9	1(1H,s), 6.94(1H,s), 7.51(1H,s),
15	89	(solvent:DMSO-d ₆) 1.22(3H,t,J=7.6Hz), 2.59(2H 5.56(2H,s), 6.71(1H,s), 7.20(1H,d,J=7.6 Hz), 7.7 8.16(1H,d,J=7.9 Hz), 9.08(1H,s), 9.32(1H,s), 10	71(1H,s), 7.89(1H,dd,J=7.6Hz,7.9Hz),
20	90	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 1.28(3H,t,J 3.80(2H,s), 4.21(2H,q,J=7.3Hz), 5.38(2H,s), 6.5 7.52(1H,s), 7.78(1H,t,J=7.9Hz), 8.34(1H,d,J=8.	0(1H,s), 7.12(1H,dd,J=0.7Hz,7.6Hz),

Table 88

5	Ex. No.	Structural formula
10	9 1	O OH CO ₂ H
15		H
20	9 2	O OH CO2Et
25 30	9 3	H H CO ₂ H
35	94	H CO ₂ Me O OH
45	9 5	H O N CO ₂ H O OH

81

50

Table 89

		¹ H-NMR	δppm
5	91	(solvent:CDCl ₃) 1.22(3H,t,J=7.6Hz), 2.58(3H,s), 2. 6.47(1H,s), 6.87(1H,s), 7.50 (1H,s), 7.58(1H,dd,J=d,J=7.6Hz), 8.09(1H,s)	
10	92	(solvent:CDCl ₃) 1.22(3H,t,J=7.4Hz), 1.28(3H,t,J=7.69(2H,s), 4.19(2H,q,J=7.1Hz), 5.18(2H,s), 6.45(17.6, 7.6Hz), 7.68(1H,d,J=7.6Hz), 7.88(1H,d,J=7.6Hz)	IH,s), 6.86(1H,s), 7.47(1H,s), 7.57(1H,dd,J=
15	93	(solvent:CDCl ₃) 1.28(3H,t,J = 7.6Hz), 1.47(3H,d,J = 3.89(2H,s), 4.50(1H,dt,J = 7.2, 7.3 Hz), 5.45(2H,s), 7.78(1H,d,J = 7.9Hz), 8.02(1H,dd,J = 7.6, 7.9Hz), 8.45(1H,d,J = 8.2Hz),	6.57(1H,s), 7.34(1H,d,J=7.6Hz), 7.53(1H,s),
20	94	(solvent:CDCl ₃) 1.27(3H,t,J = 7.6Hz), 1.43(3H,d,J = 3.72(3H,s), 3.74(2H,s), 4.61(1H, qd,J = 7.1Hz), 5.39 (1H,s), 7.72(1H,d,J = 7.3Hz), 7.76(1H,dd,J = 7.9, 7.6 8.27(1H,d,J = 8.6Hz), 8.34(1H,d,J = 8.3Hz)	9(2H,s), 6.49(1H,s), 7.06(1H,d,J=7.3Hz), 7.51
	95	(solvent:CDCl ₃ /MeoD(4/1)) 1.28(3H,t,J = 7.6Hz), 2.6 3.97(2H,s), 3.99(2H,s), 5.38 (2H,s), 6.53(1H,s), 7.14 J = 7.9Hz), 7.79(1H,dd,J = 7.6, 8.2Hz), 8.02(1H,dd, 8.30(1H,d,J = 8.2Hz)	4(1H,d,J=7.6Hz), 7.37(1H,s), 7.75(1H,d,
25		•	

Table 90

5	Ex. No.	Structural formula
10	9 6	H O N CO ₂ Me
15		
20	9 7	O OH CO2H
25		
30	98	H Q CO ₂ Et
35	9 9	H H CO ₂ H
40		Ö Ö CO ₂ H
45	1 0 0	O OH CO ₂ Et
50		

	¹H-NMR	δppm
96	(solvent:CDCl ₃) 1.21(3H,t,J=7.1Hz), 1.27(3H,t,J=7.4Hz), 2.58 (3H,s) (2H,q,J=7.1Hz), 5.40(2H,s), 6.52(1H,s), 7.07(1H,d,J=7.3Hz), 7.50((17.99 (1H,dd,J=7.9, 7.9Hz), 8.27(1H,d,J=8.6Hz), 8.30(1H,d,J=8.9Hz	l,s), 2.71(2H,q,J=7.4Hz), 3.78(2H,s), 4.0-4.1(4H,m), 4.12 ((1H,s), 7.72(1H,d,J=7.9Hz), 7.76(1H,t,J=8.3, 7.6Hz), Hz)
6	(solvent:DMSO-d ₆) 1.30(3H,t,J=7.6Hz), 2.59(3H,s), 2.72(2H,q,J=7.6Hz), 3.49(1H,s), 4.13(2H,s), 5.40(2H,s), 6.48(1H,s), 7.17 (1H,dd,J=1.8Hz,7.9Hz), 7.51(1H,s), 7.61(1H,dd,J=7.9Hz,8.3Hz), 7.76(1H,d,J=7.9Hz), 8.02(1H,dd,J=7.9Hz,7.9Hz), 12.18(1H,br), 12.63(1H,s),	7.6Hz), 3.49(1H,s), 4.13(2H,s), 5.40(2H,s), 6.48(1H,s), Hz), 7.76(1H,d,J=7.9Hz), 8.02(1H,dd,J=7.9Hz, 7.9Hz), 2.63(1H,s),
86	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 1.31(1H,t,J=7.1Hz), 2.58 (3H,s), 2.70(2H,q,J=7.6Hz), 3.99(2H,s), 4.26(2H,q,J=7.1Hz), 5.35(2H,s), 6.46(1H,s), 7.11(1H,dd,J=1.7Hz,7.9Hz), 7.36(1H,dd,J=7.9Hz,7.9Hz), 7.49(1H,s), 7.72(1H,dd,J=1.0Hz,7.9Hz), 8.63(1H,dd,J=2.0Hz,8.6Hz), 12.29(1H,br), 12.62(1H,s)	l,s), 2.70(2H,q,J=7.6Hz), 3.99(2H,s), 4.26(2H,q,J=7.1Hz), =7.9Hz,7.9Hz), 7.49(1H,s), 7.72(1H,dd,J=1.0Hz,7.9Hz), 1,dd, J=2.0Hz,8.6Hz), 12.29(1H,br), 12.62(1H,s)
66	(solvent:CDCl ₃) 1.29(3H,t,J=7.4Hz), 2.57(3H,s), 2.72(2H,t,J= 7.4Hz), 2.96(1H,dd,J=17.0, 4.5Hz), 3.09(1H,dd,J=17.0, 4.5Hz), 3.77(2H,s), 4.85(1H,br), 5.49(2H,d,J=3.3Hz), 6.72(1H,s), 7.02 (1H,d,J=8.3Hz), 7.49(1H,s), 7.65(1H,dd,J=7.9, 7.6 Hz), 8.19(1H,d,J=7.6Hz), 7.94(1H,dd,J=7.6, 8.3Hz), 7.94(1H,dd,J=7.6, 8.3Hz), 7.94(1H,dd,J=7.6, 8.3Hz), 7.94(1H,dd,J=7.6, 8.3Hz)	4z), 2.96(1H,dd,J=17.0, 4.5Hz), 3.09(1H,dd,J=17.0, .02 (1H,d,J=8.3Hz), 7.49(1H,s), 7.65(1H,d,J=7.9Hz), .J=7.9, 7.6 Hz), 8.19(1H,d,J=7.6Hz),
100	(solvent:CDCl ₃) 1.10(3H,t,J=7.0Hz), 1.17(3H,t,J=7.1Hz), 1.28 (3H,t,J=7.4Hz), 2.59(3H,s), 2.71(2H,q,J=7.4Hz), 2.85(1H,dd,J= 17.0, 4.6Hz), 3.02(1H,dd,J=17.0, 4.6Hz), 3.75(2H,s), 4.00(2H, q,J=7.1Hz), 4.16(2H,q,J=7.0Hz), 4.85(1H,qt,J=7.6, 4.6Hz), 5.39 (2H,s), 6.49(1H,s), 7.05(1H,d,J=7.3Hs), 7.51(1H,s), 7.72(1H,d,J=7.6Hz), 7.73(1H,dd,J=7.3, 7.99(1H,dd,J=7.6, 7.9Hz), 8.27(1H,d,J=7.3Hz), 8.34(1H,d,J=8.3Hz)	l,t,J=7.4Hz), 2.59(3H,s), 2.71(2H,q,J=7.4Hz), s), 4.00(2H, q,J=7.1Hz), 4.16(2H,q,J=7.0Hz), 3Hs), 7.51(1H,s), 7.72(1H,d, J=7.6Hz), 7.73(1H,dd,J=7.3, ,J=8.3Hz)

Table 92

5	Ex. No.	Structural formula
10	1 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15		
20	1 0 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
25		
30	103	$\begin{array}{c c} & H \\ & N-N \\ & O $
<i>3</i> 5	1 0 4	$\begin{array}{c c} & H \\ \hline 0 & N-N \\ \hline 0 & OH \end{array}$ $\begin{array}{c} & H \\ \hline 0 & N-N \\ \hline 0 & O \\ \end{array}$ $\begin{array}{c} & CO_2Et \\ \hline 0 & CO_2Et \end{array}$
		H

50

	S CIER I	
	1H-NMR	δρρm
101	(solvent:DMSO-d ₆) 1.17(3H,t,J=7.6Hz), 2.56(3H,s), 2.59(1H,m), 2.69(1H,m), 3.59(2H,s), 3.6-4.3(2H,br), 4.56(1H5.29(2H,s), 6.60(1H,s), 6.96(1H,s), 7.56(1H,t,J=7.9Hz), 7.64(1H,s), 7.68(1H,d,J=7.9Hz), 8.07(1H,d,J=7.6Hz), 12.6(1H,s)	2.69(1H,m), 3.59(2H,s), 3.6-4.3(2H,br), 4.56(1H,m), s), 7. 68(1H,d,J=7.9Hz), 8.07(1H,d,J=7.9Hz),
102	(solvent:CDCl ₃ /DMSO-d ₆ (10/1)) 1.15-1.31(9H,m), 2.57(3H,s), 2.64(2H,q,J=7.3Hz), 2.84(1H,dd,J=17.2, 4.6Hz), 3.03(1H,dd,J= 17.2, 4.3Hz), 3.67(2H,s), 4.15-4.27(4H,m), 4.85(1H,ddd,J=7.9, 4.6, 4.3Hz), 5.19(1H,s), 6.46(1H,s), 7.48(1H,s), 7.57(1H,t,J=7.9Hz), 7.69(1H,d,J=7.9Hz), 7.94(1H,brd,J=8.3Hz), 7.97(1H,d,J=7.9Hz), 8.10(1H,s), 12.68(1H,s)	4(2H,q,J=7.3Hz), 2.84(1H,dd,J=17.2, 4.6Hz), H,ddd,J=7.9, 4.6, 4.3Hz), 5.19(1H,s), 6.46(1H,s), , 7.94(1H,brd,J=8.3Hz), 7.97(1H,d,J=7.9Hz),
103	(solvent:DMSO0-d ₆) 1.21(3H,t,J=7.3Hz), 2.58(H,s), 2.6-2.7(4H, m), 4.08(1H,s), 4.60(1H,m), 5.46(2H,s), 5.6-6.4(2H,br), 6.62 (1H,s), 7.68(1H,s), 7.80(2H,d), 8.15(2H,m), 8.78(1H,d,J=7.9 Hz), 12.55(1H,s)	m), 4.08(1H,s), 4.60(1H,m), 5.46(2H,s), 5.6-6.4(2H,br), 9 Hz), 12.55(1H,s)
104	(solvent:CDCl ₃) 1.23-1.65(9H,m), 2.59(3H,s), 2.70(2H,q,J=7.3 Hz), 2.85(1H,dd,J=17.2, 4.6Hz), 3.05(1H 4.6Hz), 4.10(2H,s), 4.15(2H,q,J=7.3Hz), 4.22(2H,q,J=7.3Hz), 4.87(1H, dt,J=7.9, 4.6Hz), 5.32(1H,s), 6.4 7.24(,1H,brd), 7.52 (1H,s), 7.75(1H,d,J=7.3Hz), 8.01(1H,t,J=7.9Hz), 8.26(1H,d,J=7.9Hz), 12.67 (1H,s)	чz), 2.85(1H,dd,J=17.2, 4.6Hz), 3.05(1H,dd,J=17.2, 1.87(1H, dt,J=7.9, 4.6Hz), 5.32(1H,s), 6.45(1H,s), 9Hz), 8.26(1H,d,J= 7.9Hz), 12.67 (1H,s)
105	(solvent:DMSO-d ₆) 0.96(6H,m), 1.30(3H,t,J=7.6Hz), 2.17(1H,m), 2.58(3H,s), 2.73(2H,q,J=7.6Hz), 3.75(2H,m), 4.67(1H,m), 5.42 (2H,s), 6.83(1H,s), 7.02(1H,d,J=7.9Hz), 7.51(1H,s), 7.65(1H,d,J=7.9Hz), 7.75(1H,t,J=7.9Hz), 8.22(1H,d,J=7.9Hz), 8.32(1H,d,J=7.9Hz), 8.91(1H,brd), 10.87(1H,s)), 2.58(3H,s), 2.73(2H,q,J=7.6Hz), 3.75(2H,m), H,s), 7.65(1H,d, J=7.9Hz), 7.75(1H,t,J=7.9Hz), 8.91(1H,brd), 10.87(1H,s)

Table 94

Ex. No.	Structural formula
1 0 6	H H CO₂Me O OH
1 0 7	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
1 0 8	H O OH N N N N CO₂Et SMe
1 0 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 1 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

<u>ک</u> ا
o a
2
<u>۳</u>

	I adie 30	
	1H-NMR	åppm
106	(solvent:CDCl ₃) 0.91(3H,m), 1.27(3H,t,J=7.3Hz), 2.18(1H,m), 2.59(3H,s), 2.71(2H,q,J=7.3Hz), 3.71(3H,s), 3.76(2H,s), 4.60 (1H,s), 5.34(2H,s), 6.46(1H,s), 7.05(1H,d,J=7.9Hz), 7.51(1H, s), 7.73(1H,t,J=7.6Hz), 7.78(1H,d,J=7.9Hz), 7.97(1H,br), 8.00 (1H,t,J=7.9Hz), 8.27(1H,d,J=7.9Hz), 10.54 (1H,s), 12.62(1H,s)	(2H,q,J=7.3Hz), 3.71(3H,s), 3.76(2H,s), 4.60 (1H,s), 5.34(2H,s), = 7.9Hz), 7.97(1H,br), 8.00 (1H,t,J=7.9Hz), 8.27(1H,d,J=7.9Hz),
107	(solvent:DMSO-d ₆) 1.31(3H,t,J=7.6Hz), 2.01(3H,s), 2.15(1H,m), 2.35(1H,m), 2.55(2H,m), 2.58(3H,s), 2.74(2H,q,J=7.6Hz), 3.80 (1H,d,J=15.8Hz), 3.68(1H,d,J=15.8Hz), 4.73(1H,m), 5.48(2H,s), 6.83(1H,s), 7.02(1H,d,J=7.6Hz), 7.51(1H,s), 7.63(1H,d,J=7.6 Hz), 7.75(1H,t,J=7.6 Hz), 8.33(1H,d,J=7.6 Hz), 9.08(1H,brd), 10.87(1H,s)	2.55(2H,m), 2.58(3H,s), 2.74(2H,q,J=7.6Hz), 3.80 (1H,d,J=15.8Hz), ?), 7.51(1H,s), 7.63(1H,d,J=7.6 Hz), 7.75(1H,t,J=7.6Hz), 10.87(1H,s)
108	(solvent-CDCl ₃) 1.1-1.3(6H,m), 2.00(3H,s), 2.05-2.2(2H,m), 2.47(2H,m), 2.59(3H,s), 2.70(2H,q,J=7.3Hz), 3.74(2H,s), 4.16 (2H,m), 4.71(1H,m), 5.40(2H,s), 6.50(1H,s), 7.06(1H,d,J=7.6 Hz), 7.51(1H,t,J=7.6Hz), 7.77(1H,d,J=7.9Hz), 7.96 (1H,br), 8.00(1H,t,J=7.6Hz), 8.27(1H,d,J=7.3Hz), 8.34(1H,d,J=8.3Hz), 10.53(1H,s), 12.63(1H,s)	8H,s), 2.70(2H,q,J=7.3Hz), 3.74(2H,s), 4.16 (2H,m), 4.71(1H,m), 7.77(1H,d,J=7.9Hz), 7.96 (1H,br), 8.00(1H,t,J=7.6Hz),
109	(solvent:DMSO-d ₆) 1.21(3H,t,J=7.3Hz), 2.51(3H,s), 2.63(4H,m), 3.89(2H,s), 4.59(1H,m), 5.42(2H,s), 6.63(1H,s), 7.29(1H,d,J=8.3Hz), 7.44(1H,t,J=8.3Hz), 7.65(1H,s), 7.83(1H,d,J=7.3Hz), 8.18(1H,t,J=7.3Hz), 8.23(1H,brd), 8.47(1H,d,J=8.3Hz), 8.59(1H,d,J=7.3Hz), 12.6(2H,br)	.59(1H,m), 5.42(2H,s), 6.63(1H,s), 7.29(1H,d,J= 8.3Hz), :3(1H,brd), 8.47(1H,d,J=8.3Hz), 8.59(1H, d,J=7.3Hz), 12.16(1H,s),
110	(solvent:CDCl ₃) 1.15(3H,t,J = 7.3Hz), 1.17(3H,t,J = 7.3Hz), 1.27 (3H,t,J = 7.3Hz), 2.59(3H,s), 2.71(1H,q,J = 7.3Hz), 2.83(1H,dd,J = 16.8Hz,5.3Hz), 2.94(1H,dd,J = 16.8Hz,5.3Hz), 3.96(1H,d,J = 13.5 Hz), 4.07(1H,d,J = 13.5Hz), 4.11(2H,q,J = 7.3Hz), 4.12(2H,q,J = 7.3Hz), 4.12(2H,q,J = 7.3Hz), 7.18(1H,dd,J = 7.9Hz,1.7Hz), 7.41(1H,t,J = 7.9Hz), 7.50(1H,d), J = 7.9Hz), 8.01(1H,t,J = 7.9Hz), 8.69(1H,d,J = 8.2Hz), 12.32(1H,s), 12.61(1H,s)), 2.59(3H,s), 2.71(1H,q,J=7.3Hz), 2.83(1H,dd,J= 16.8Hz,5.3Hz), 1.11(2H,q,J=7.3Hz), 4.12(2H,q,J=7.3H z),4.81(1H,dt,J=8.2Hz,5.3Hz), 1.11(2H,s), 7.76(1H,d, J=7.9Hz), 8.01(1H,t,J=7.9Hz), 8.25(1H,d,J=7.9Hz),

Table 96

:	7	
•	_	

Ex. No.	Structural formula
1 1 1	H H CO ₂ H O OH
1 1 2	H CO ₂ Me
1 1 3	O OH CO2H
1 1 4	H O OH CO ₂ Me
1 1 5	$\begin{array}{c c} & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$

	ו מטוס טי	
	1H-NMR	δppm
111	(solvent:DMSO-d ₆) 1.12(3H,d,J=6.6Hz), 1.22(3H,t,J=7.6Hz), 2.30 (1H,dd,J=15.2Hz,7.3Hz), 2.58(3H,s), 2.67(2H,q,J=7.6Hz), 3.56(2H,s), 4.10(1H,m), 5.47(2H,s), 6.64(2H,s), 7.13(1H,d,J=7.6Hz), 7.69(1H,s), 7.80-7.86(2H,m), 8.10-8.30(4H,m), 10.35(1H,s), 12.17(1H,s), 12.56(1H,s)), 2.30 (1H,dd,J=15.2Hz,7.3Hz), tz), 3.56(2H,s), 4.10(1H,m), 5.47(2H,s), 6.64(2H,s), (4H,m), 10.35(1H,s), 12.17(1H,s), 12.56(1H,s)
112	(solvent:CDCl ₃) 1.26(6H,m), 2.53(2H,d,J=5.3Hz), 2.59(3H,s), 2.71(3H,s), 2.71(2H,m), 3.55(3H,s), 3.68(2H,s), 4.36(1H,m), 5.36(2H,s), 6.47(1H,s), 7.06(1H,d,J=7.6Hz), 7.42(1H,brd,J=7.9 Hz), 7.51(1H,s), 7.70(1H,d,J=7.6Hz), 7.75(1H,t,J=7.6Hz), 10.48 (1H,s), 12.65(1H,s)	2.71(3H,s), 2.71(2H,m), 3.55(3H,s), 3.68(2H,s), (1H,brd,J=7.9 Hz), 7.51(1H,s), 7.70(1H,d,J=7.6Hz),), 8.31(1H,d,J=7.6Hz), 10.48 (1H,s), 12.65(1H,s)
113	(solvent:DMSO-d ₆) 1.23(3H,t,J=7.3Hz), 2.14(1H,m), 2.6(1H,m), 2.58(3H,s), 2.67(2H,q,J=7.3Hz), 3.45-3.70(2H,m), 3.83(1H,m), 4.22(1H,m), 5.02(0.4H,m), 4.57(0.6H,m), 5.48(2H,s), 6.65(1H, s), 7.14(1H,m), 7.69(1H,s), 7.65-7.90(2H,m), 8.15-8.30(3H,m), 10.32(0.6H,s), 10.34(0.4H,s), 12.55(1H,s), 12.90(1H,br)), 2.58(3H,s), 2.67(2H,q,J=7.3Hz), 3.45-3.70(2H,m), s), 6.65(1H, s), 7.14(1H,m), 7.69(1H,s), s), 12.55(1H,s), 12.90(1H,br)
114	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 2.20-2.40(1H,m), 2.5-2.7 (1H,m), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.64(0.4H,s), 3.68(0.6 H,s), 3.77(0.6H,s), 3.80(0.4H,s), 4.05-4.40(2H,m), 4.79(0.6H, m), 4.95(0.4H,m), 5.34(2H,s), 6.48(1H,s), 7.13(0.4H,d,J=7.6 Hz), 7.19(0.6H,d,J=7.6Hz), 7.51(1H,s), 7.70(1H,d,J=7.6Hz), 7.75(1H,m), 7.98(1H,t,J=7.6Hz), 8.32(1H,d,J=7.6Hz), 10.34(1H,s), 12.67(1H,s)	(1H,m), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.64(0.4H,s), 9(0.6H, m), 4.95(0.4H,m), 5.34(2H,s), 6.48(1H,s), 0(1H,d,J=7.6Hz), 7.75(1H,m), 7.98(1H,t,J=7.6Hz), (1H,s)
115	(solvent:CDCl ₃) 1.28(3H,t,J=7.6Hz), 2.58(3H,s), 2.72(2H,q,J=7.6Hz), 2.91(2H,t,J=5.7Hz), 3.87(2H,s), 3.92(2H,t,J=5.7Hz), 5.46(2H,s), 6.60(1H,s), 6.88(1H,d,J=7.3Hz), 7.12(1H,d,J=6.6 Hz), 7.50(1H,s), 7.50(1H,s), 7.62(1H,dd,J=7.6, 8.3Hz), 7.73(1H,d,J=7.9Hz), 7.78(1H,dd,J=7.6, 8.3Hz), 7.98(1H,dd,J=7.6 7.9Hz), 8.40(1H,d,J=7.6Hz)	7.6Hz), 2.91(2H,t,J=5.7Hz), 3.87(2H,s), lz), 7.12(1H,d,J=6.6 Hz), 7.50(1H,s), =7.6, 8.3Hz),7.98(1H,dd,J=7.6 7.9Hz), 8.06(1H,d,

Table 98

Ex. No.	Structural formula
1 1 6	$\begin{array}{c c} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$
1 1 7	O OH CON OH
1 1 8	OH OH OH
1 1 9	H CONH OH
1 2 0	H O OH NH2

Table 99

		¹ H-NMR	δppm
5	116	(solvent:CDCl ₃ /MeODC(1/4))1.28(3H,t,J=7.6Hz), 2.6 2.88(2H,t,J=6.3Hz), 3.86(2H,t,J=6.3Hz), 3.97(2H,s), 7.19(1H,d,J=7.6Hz), 7.55(1H,s), 7.76(1H,d,J=7.9Hz 8.05(1H,dd,J=7.6,J=7.9Hz), 8.25(1H,d,J=7.6Hz), 8	5.39(2H,s), 6.52(1H,s), 6.68(1H,s),), 7.83(1H,dd,J = 8.2,7.6Hz),
10	117	(solvent:CDCl ₃) 1.0-1.3(5H,m), 2.59(2H,s), 2.71(2H,q 3.93(2H,s), 5.35(2H,s), 6.49(1H,s), 7.0-7.2(1H,m), 7.5	
	118	(solvent:CDCl ₃) 1.27(3H,t,J=7.4Hz), 2.58(3H,s), 2.70 5.35(2H,s), 6.51(1H,s), 7.11(1H,d,J=7.6Hz), 7.50(1H,7.76(1H,dd,J=7.6,7.6Hz), 7.97(1H,dd,J=7.6,7.9Hz),	,s), $7.70(1H,d,J=7.6Hz)$,
15	119	(solvent:CDCl ₃) 1.28(3H,t,J=7.4Hz), 2.60(3H,s), 2.71 3.68(2H,t,J=6.6Hz), 3.71(2H,s), 5.37(2H,s), 6.50(1H, 7.74(1H,d,J=7.6Hz), 7.76(1H,dd,J=8.2,7.6Hz), 8.02 8.27(1H,d,J=8.2Hz)	s), 7.13(1H,d,J=7.6Hz), 7.53(1H,s),
20	120	(solvent:CDCl ₃) 1.27(3H,t,J=7.4Hz), 2.59(3H,s), 2.71 4.48(2H,t,J=6.8Hz), 5.32(2H,s), 6.31(1H,d,J=8.1Hz) 7.29(1H,d,J=8.1,8.1Hz), 7.69(1H,d,J=7.6Hz) 7.71(18.26(1H,d,J=7.6Hz), 8.33(1H,d,J=7.6Hz)	, 6.45(1H,d,J = 8.1Hz), 7.03(1H,d,J = 7.6Hz),

Table 100

5	Ex. No.	Structural formula
10	121	H O OH OH
15		
20	122	H H OO2H OOH
25 30	123	H H OO2 Me
35	1 2 4	H O N H O OO2 H O OH
45	1 2 5	O N H O CO ₂ Et

93

50

(solvent:CDCl ₃) 1.28(3H,t,J=7.4Hz), 2.59(3H,s), 2.71(2H,s) 3.96(2H,t,J=5.5Hz), 5.33(2H,s), 6.45(1H,s), 6.73(1H,s), 7.8(01H,dd,J=7.9,7.6Hz), 8.25(1H,dd,J=7.6Hz) (solvent:DMSO-d ₆) 0.41(3H,t,J=7.6Hz), 1.30(3H,t,J=7.6Hz) 3.74(2H,ABq,J=15.4Hz,5.5Hz), 4.66(1H,m), 5.46(2H,s), 6.73(1H,d,J=7.6Hz), 7.75(1H,t,J=7.6Hz), 7.94(1H,t,J=7.6Hz), 8.94(1H,m), 10.86(1H,s) (solvent:CDCl ₃) 0.88(3H,t,J=7.3Hz), 1.27(3H,t,J=7.6Hz), 3.71(3H,s), 3.74(2H,s), 4.63(1H,m), 5.37(2H,s), 6.47(1H,s) 7.75(1H,t,J=7.6Hz), 7.86(1H,m), 8.00(1H,t,J=7.6Hz), 8.27(1H,t,J=7.9Hz), 7.51(1H,t,J=7.9Hz), 7.51(1H,t,J=7.9Hz), 7.51(1H,t,J=7.9Hz), 7.51(1H,t,J=7.9Hz), 7.69(1H,s), 8.46(1H,s), 12.50(1H,br), 12.54(1H,s) (solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 1.31(3H,t,J=7.3Hz), 1.26(3H,t,J=7.6Hz), 1.31(3H,t,J=7.3Hz),	βρρπ (2H,q,J = 7.4Hz), 2.96(2H,t,J = 5.5Hz),), 7.51(1H,s), 7.72(1H,d,J = 6.9Hz), 7.6Hz), 1.7-1.9(2H,m), 2.57(3H,s), = 7.6Hz), 1.7-1.9(2H,m), 2.57(3H,s), = 7.6Hz), 8.22(1H,d,J = 7.6Hz), 8.32(1H,d,J = 7.6Hz), Hz), 1.7-1.9(2H,m), 2.59(3H,s), 2.71(2H,q,J = 7.6Hz), H,s), 7.06(1H,d,J = 7.6Hz), 7.71(1H,d,J = 7.6Hz), 8.27(1H,d,J = 7.6Hz), 8.35(1H,m,J = 7.6Hz), 10.53(1H,s), 8.46(1H,d,J = 7.9Hz), 9.13(1H,s), 9.37(1H,s), 8.46(1H,d,J = 7.9Hz), 9.13(1H,s), 9.37(1H,s),
4.25(2H,q,J=7.3Hz), 5.39(2H,s), 6.47(1H,s), 7.15(1H,dd,J 8.61(1H,dd,J=8.3Hz,2.0Hz), 9.07(1H,s), 9.46(1H,s), 12.12	=8.3Hz, 2.0Hz), 7.39(1H,t,J=8.3Hz), 7.52(1H,s), (1H,s)
	1 1:5565 1 0 0 1 1 4 4 1 1 1 1 4 0 11

		Table 102
5	Ex. No.	Structural formula
10	126	HO NO
10		
20	127	H N N CO2 Et O OH O OH O OH
25		ע ה ה
30	128	H O H O H O H O DE H
35	129	$ \begin{array}{c c} H & O \\ \hline O & N \\ O & N \\ \hline O & N \\ $
40		
45	1 3 0	H ₂ O _N N _N N _N OO ₂ H

က
9
Ф
ā
ū

	I ADIE 103	
	H-NMR	δρρm
126	(solvent:CDCl ₃) 1.28(3H,t,J=7.4Hz), 2.58(3H,s), 2.71(2H,q,J=7.4Hz), 3.02(2H,t,J=5.5Hz), 4.05(2H,t,J=5.5Hz), 5.34(2H,s), 6.49(1H,s), 6.98(1H,d,J=7.6Hz), 7.50(1H,s), 7.70(1H,d,J=7.9Hz), 7.72(1H,dd,J=7.9,7.9Hz), 7.98(1H,d,J=7.9,7.6Hz), 8.30(1H,d,J=8.2Hz)	tHz), 3.02(2H,t,J=5.5Hz), 4.05(2H,t,J=5.5Hz), 5.34(2H,s), , 7.72(1H,dd,J=7.9,7.9Hz), 7.98(1H,d,J=7.9,7.6Hz),
127	(solvent:CDCl ₃) 1.10(3H,t,J=7.1Hz), 1.17(3H,t,J=7.3Hz), 1.27(3H,t,J=8.1Hz), 2.59(3H,s), 2.71(2H,q,J=7.2Hz), 2.84(1H,dd,J=16.8,4.6Hz), 3.02(1H,dd,J=16.8,4.3Hz), 3.75(2H,s), 4.00(2H,q,J=7.1Hz), 4.16(2H,q,J=7.0Hz), 4.85(1H,dt,J=7.9,4.6Hz), 5.39(2H,s), 6.49(1H,s), 7.05(1H,dd,J=7.6,0.6Hz), 7.51(1H,s), 7.72(1H,dd,J=8.2,0.7Hz), 7.75(1H,dd,J=7.9,7.9Hz), 7.99(1H,dd,J=7.6,7.9Hz), 8.26(1H,dd,J=8.6,1.0Hz), 8.34(1H,dd,J=8.2,0.7Hz)	1,t,J=8.1Hz), 2.59(3H,s), 2.71(2H,q,J=7.2Hz),), 4.00(2H,q,J=7.1Hz), 4.16(2H,q,J=7.0Hz), 7.6,0.6Hz), 7.51(1H,s), 7.72(1H,d,J=7.6Hz), J=8.6,1.0Hz), 8.34(1H,dd,J=8.2,0.7Hz)
128	(solvent:DMSO-d ₆) 0.90(3H,d,J=7.6Hz), 0.91(3H,d,J=7.6Hz), 1.19(3H,t,J=7.3Hz), 2.07(1H,m), 2.58(3H,s), 2.65(2H,q,J=7.3Hz) 3.92(2H,ABq,J=21.8,15.5Hz), 4.18(1H,dd,J=8.3,5.6Hz), 5.42(2H,s), 6.62(1H,s), 7.29(1H,dd,J=8.3,2.0Hz), 7.48(1H,t,J=8.3Hz), 7.68(1H,s), 7.85(1H,m), 8.20(2H,m), 8.45(1H,dd,J=8.3,2.0Hz), 8.46(1H,d,J=8.3Hz), 12.17(1H,s), 12.51(1H,s), 12.60(1H,s)	19(3H,t,J=7.3Hz), 2.07(1H,m), 2.58(3H,s), = 8.3,5.6Hz), 5.42(2H,s), 6.62(1H,s), H,m), 8.20(2H,m), 8.45(1H,dd,J=8.3,2.0Hz),
129	(solvent:CDCl ₃) $0.88(3H,t,J=7.3Hz)$, $0.89(3H,t,J=7.3Hz)$, $1.27(3H,t,J=7.6Hz)$, $2.18(1H,m)$, $2.59(3H,s)$, $2.71(2H,q,J=7.6Hz)$ $3.65(3H,s)$, $4.04(2H,ABq,J=17.5,13.2Hz)$, $4.40(1H,m)$, $5.36(2H,s)$ $6.45(1H,s)$, $7.18(1H,dd,J=8.3,2.0Hz)$, $7.74(1H,d,J=7.9Hz)$, $8.00(1H,t,J=7.9Hz)$, $8.25(1H,d,J=7.9Hz)$, $8.63(1H,dd,J=8.3,2.0Hz)$, $8.75(1H,d,J=8.6Hz)$, $12.38(1H,s)$, $12.62(1H,s)$	1,t,J=7.6Hz), 2.18(1H,m), 2.59(3H,s), 2.71(2H,q,J=7.6Hz) 6.45(1H,s), 7.18(1H,dd,J=8.3,2.0Hz), =7.9Hz), 8.25(1H,d,J=7.9Hz), 8.63(1H,dd,J=8.3,2.0Hz),
130	(solvent:DMSO-d ₆) 1.10(3H,d,J=7.3Hz), 1.22(3H,t,J=7.6Hz), 2.58(3H,s), 2.67(2H,q,J=7.6Hz), 3.76(2H,ABq,J=20.5,14.9Hz), 4.17(1H,br), 4.26(1H,m), 4.95(1H,m), 5.47(2H,s), 6.63(1H,s), 7.20(1H,s), 7.82(2H,m), 8.18(4H,m), 10.36(1H,s), 12.50(1H,br), 12.55(1H,s)	;8(3H,s), 2.67(2H,q,J=7.6Hz), n), 5.47(2H,s), 6.63(1H,s), 7.20(1H,d,J=7.6Hz), 2.55(1H,s)

Table 104

5	

Ex. No.	Structural formula
1 3 1	H O H N N N NOO2 Me O OH
1 3 2	H O H OO2H O OH
1 3 3	H O H O OH O OH
1 3 4	H O H O ON N N N OO2 Me
1 3 5	H O H OO2H OOH OOH

	H-NMR	δppm
131	(solvent:CDCl ₃) 1.16(3H,d,J=7.3Hz), 1.26(3H,t,J=7.6Hz), 2.57(3H,s), 2.69(2H,q,J=7.6Hz), 3.01(1H,br), 3.69(3H,s), 4.05(2H,ABq,J=20.1Hz,13.9Hz), 4.50(1H,m), 4.54(1H,m), 5.36(2H,s), 6.49(1H,s), 7.20(1H,dd,J=8.3Hz, 1.7Hz), 7.72(1H,d,J=7.9Hz), 7.98(1H,t,J=7.9Hz), 8.21(1H,d,J=7.9Hz), 8.51(1H,d,J=8.3,1.7Hz), 12.34(1H,s), 12.64(1H,s)	,s), 2.69(2H,q,J=7.6Hz), 3.01(1H,br), 3.69(3H,s), ,s), 6.49(1H,s), 7.20(1H,dd,J=8.3Hz, 1.7Hz), ?7.9Hz), 8.21(1H,d,J=7.9Hz), 8.51(1H,d,J=8.6Hz),
132	(solvent:DMSO-d ₆) 1.19(3H,t,J=7.3Hz), 1.31(3H,d,J=7.3Hz), 2.58(3H,s), 2.64(2H,q,J=7.6Hz), 3.85(2H,m), 4.24(1H,m), 5.43(2H,s), 6.63(1H,s), 7.31(1H,dd,J=8.3,1.7Hz), 7.47(1H,t,J=8.3Hz), 7.68(1H,s), 7.85(1H,m), 8.21(2H,m), 8.54(1H,d,J=7.9Hz), 12.15(1H,s), 12.50(1H,s), 12.55(1H,br)	(3H,s), 2.64(2H,q,J=7.6Hz), 3.85(2H,m), 4.24(1H,m), 4z), 7.68(1H,s), 7.85(1H,m), 8.21(2H,m), (1H,s), 12.55(1H,br)
133	(solvent:DMSO-d ₆) 0.92(3H,t,J=7.6Hz), 1.20(3H,t,J=7.6Hz), 1.6-1.9(1H,m), 2.58(3H,s), 2.65(2H,q,J=7.6Hz), 3.89(2H,ABq,J=20.8,15.8Hz), 4.17(1H,m), 5.42(2H,s), 6.63(1H,s), 7.30(1H,dd,J=8.3Hz,2.0Hz), 7.47(1H,t,J=8.3Hz), 7.85(2H,m), 8.21(2H,m), 8.45(1H,dd,J=8.3,2.0Hz), 8.50(1H,d,J=7.9Hz), 12.16(1H,s), 12.50(1H,s), 12.55(1H,b)	.9(1H,m), 2.58(3H,s), 2.65(2H,q,J=7.6Hz), 7.30(1H,dd,J=8.3Hz,2.0Hz), 7.47(1H,t,J=8.3Hz), 7. H,d,J=7.9Hz), 12.16(1H,s), 12.50(1H,s), 12.55(1H,br)
134	(solvent:CDCl ₃) 0.89(3H,t,J=7.3Hz), 1.27(3H,t,J=7.6Hz), 1.70-1.85(2H,m), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.66(3H,s), 4.02(2H,ABq,J=18.8,13.2Hz), 4.45(1H,m), 5.38(2H,s), 6.48(1H,s), 7.18(1H,dd,J=7.9,2.0Hz), 7.41(1H,t,J=7.9Hz), 7.50(1H,s), 7.75(1H,d,J=7.9Hz), 8.00(1H,t,J=7.9Hz), 8.25(1H,d,J=7.9Hz), 8.61(1H,brd), 8.63(1H,dd,J=7.9Hz,2.0Hz), 12.33(1H,s), 12.63(1H,s)	5(2H,m), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.66(3H,s), 7.18(1H,dd,J=7.9,2.0Hz), 7.41(1H,t,J=7.9Hz), =7.9Hz), 8.61(1H,brd), 8.63(1H,dd,J=7.9Hz,2.0Hz),
135	(solvent:DMSO-d ₆) 1.20(3H,t,J=7.6Hz), 2.58(3H,s), 2.65(2H,q,J=7.6Hz), 2.7-2.9(2H,m), 3.87(2H,s), 4.58(1H,m), 5.43(2H,s), 6.64(1H,s), 7.30(1H,dd,J=8.3,2.0Hz), 7.47(1H,t,J=8.3Hz), 7.68(1H,s), 7.84(1H,m), 8.21(1H,m), 8.21(1H,m), 8.46(1H,dd,J=8.3Hz,2.0Hz), 8.61(1H,d,J=7.9Hz), 12.14(1H,s), 12.51(1H,s), 12.55(2H,br)	7.6Hz), 2.7-2.9(2H,m), 3.87(2H,s), 4.58(1H,m), 5.43(2H,s), 1,s), 7.84(1H,m), 8.21(1H,m), 5.1(1H,m), 5.1(1H,s), 12.55(2H,br)

Table 106

Ex. No.	Structural formula
1 3 6	H O H OO2Et OOH OOH
137	H O H O OH O OH O OH O OH O OH O OH O O
1 3 8	H H N N N N N N N N N N N N N N N N N N
1 3 9	H O H O OH OO2 Me
1 4 0	H O N N N N O OO ₂ H

	'H-NMR	δppm
136	(solvent:CDCl ₃) 1.15(3H,t,J=7.3Hz), 1.17(3H,t,J=7.3Hz), 1.27(3H,t,J=7.6Hz), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 2.80-2.95(2H,m), 3.93-4.16(6H,m), 4.81(1H,m), 5.39(2H,s), 6.47(1H,s), 7.18(1H,d,J=8.3Hz), 7.41(1H,t,J=8.3Hz), 7.51(1H,s), 7.76(1H,d,J=7.9Hz), 8.01(1H,t,J=7.9Hz), 8.25(1H,d,J=7.9Hz), 8.62(1H,dd,J=8.3,1.7Hz), 8.69(1H,d,J=7.9Hz), 12.31(1H,s), 12.61(1H,s)	t,J=7.6Hz), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 1,s), 7.18(1H,d,J=8.3Hz), 7.41(1H,t,J=8.3Hz), =7.9Hz), 8.62(1H,dd,J=8.3,1.7Hz), 8.69(1H,d,J=7.9Hz),
137	(solvent:DMSO-d ₆) 1.09(3H,d,J=7.6Hz), 1.20(3H,t,J=7.6Hz), 2.58(3H,s), 2.66(2H,q,J=7.6Hz), 3.96(2H,ABq,J=20.8,15.8Hz), 4.10(1H,br), 4.24(1H,m), 4.90(1H,m), 5.42(2H,s), 6.63(1H,s), 7.31(1H,d 7.48(1H,t,J=7.9Hz), 7.68(1H,s), 7.85(1H,m), 8.17-8.30(3H,m), 12.16(1H,s), 12.50(1H,s), 12.55(1H,br)	(3H,s), 2.66(2H,q,J=7.6Hz),), 5.42(2H,s), 6.63(1H,s), 7.31(1H,dd,J=7.9,2.0Hz), 16(1H,s), 12.50(1H,s), 12.55(1H,br)
138	(solvent:CDCl ₃) 1.18(2H,d,J=6.6Hz), 1.27(3H,t,J=7.6Hz), 2.58(3H,s), 2.69(2H,q,J=7.6Hz), 3.72(3H,s), 3.80(2H,s), 4.34(4H,m), 4.61(1H,m), 5.37(2H,s), 6.49(1H,s), 7.06(1H,d,J=7.9Hz), 7.49(1H,s), 7.70(1H,d,J=7.9Hz), 7.76(1H,t,J=7.9Hz), 10.57(1H,s), 12.70(1H,s)	I,s), 2.69(2H,q,J=7.6Hz), 3.72(3H,s), 3.80(2H,s), Iz), 7.49(1H,s), 7.70(1H,d,J=7.9Hz), 7.76(1H,t,J=7.9Hz), 46(1H,brd,J=8.3Hz), 10.57(1H,s), 12.70(1H,s)
139	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 1.41(3H,d,J=7.3Hz), 2.59(3H,s), 2.71(2H,q,J=7.6Hz), 3.66(3H,s), 4.01(2H,ABq,J=29.7Hz,13.2Hz), 4.51(1H,m), 5.40(2H,s), 6.50(1H,s), 7.18(1H,dd,J=8.3,2.0Hz), 7.41(1H,z), 7.75(1H,d,J=7.9Hz), 8.00(1H,t,J=7.9Hz), 8.26(1H,d,J=7.9Hz), 8.52(1H,d,J=7.6Hz), 8.64(112.31(1H,s), 12.63(1H,s)	I,s), 2.71(2H,q,J=7.6Hz), 3.66(3H,s), s), 7.18(1H,dd,J=8.3,2.0Hz), 7.41(1H,t,J=8.3Hz), =7.9Hz), 8.52(1H,d,J=7.6Hz), 8.64(1H,dd,J=8.3,2.0Hz),
140	(solvent:DMSO-d ₆) 1.20(3H,t,J=7.6Hz), 1.90-2.52(4H,m), 2.58(3H,s), 2.66(2H,q,J=7.6Hz), 3.70(2H,m), 3.99(2H,ABq,J=29.7,16.2Hz), 4.29(1H,m), 5.24(2H,s), 6.63(1H,s), 7.33(1H,dd,J=7.6,2.0Hz), 7.47(1H,t,J), 7.68(1H,s), 7.85(1H,dd,J=5.6,3.3Hz), 8.20(2H,s), 8.46(1H,dd,J=8.3,2.0Hz), 12.14(1H,s), 12.51(1H,s)	,s), 2.66(2H,q,J=7.6Hz), 3.70(2H,m), 7.33(1H,dd,J=7.6,2.0Hz), 7.47(1H,t,J=8.3Hz), 3,2.0Hz), 12.14(1H,s), 12.51(1H,s)

5	,

Structural formula Ex. No.

Table 109

		¹ H-NMR	δppm
5	141	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 1.9-2.3(4H,m), 2.3.6-3.9(2H,m), 3.87(2H,m), 4.55(1H,m), 5.33(2H,s), 6.7.69(1H,d,J=7.9Hz), 7.74(1H,t,J=7.9Hz), 7.98(1H,t,J=8.31(1H,d,J=7.9Hz), 10.34(1H,s), 12.67(1H,s)	.47(1H,s), 7.18(1H,d,J=7.9Hz), 7.51(1H,s),
10	142	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 1.9-2.3(4H,m), 2 3.7-3.9(2H,m), 3.90(1H,d,J=15.8Hz), 4.26(1H,d,J=17.25(1H,brd), 7.37(1H,t,J=7.9Hz), 7.50(1H,s), 7.73(18.24(1H,d,J=7.9Hz), 8.59(1H,d,J=7.9Hz), 12.29(1H,d,J=7.9Hz), 1	5.8Hz), 4.61(1H,m), 5.35(2H,s), 6.46(1H,s), H,d,J = 7.9Hz), 7.98(1H,t,J = 7.9Hz),
15			

Table 110

5	Ex. No.	Structural formula
10	1 4 3	$ \begin{array}{c c} & H \\ & N - CHCO_2 Et \\ \hline & O & = \\ \hline & CH_2 CO_2 Et \end{array} $
15		
20	1 4 4	H O OEt
25		H
30	1 4 5	O OH O OEt
35	1 4 6	l
40		O OH
45	1 4 7	$\begin{array}{c c} & H & O \\ \hline & N & N & OMe \\ \hline & OH \end{array}$

55

	ONIN III	wood,
		IIIQQo
143	(solvent:CDCl ₃) 1.26(3H,t,J = 7.4Hz), 1.27(3H,t,J = 7.4Hz), 1	, $1.30(3H,t,J=7.0Hz)$, $2.58(3H,t)$, $2.69(2H,q,J=7.4Hz)$,
	2.97(1H,dd,J=16.8,4.6Hz), 3.13(1H,dd,J=16.8,4.0Hz), 4.19	4.19(2H,qd,J=7.3,3.0Hz), 4.27(2H,q,J=7.3,3.0Hz)
	5.06(1H, td, J = 8.3, 5.0Hz), 5.27(1H, s), 6.46(1H, s), 7.49(1H, s), 7.64(1H, dd, J = 7.6, 1.0Hz), 7.91(1H, dd, J = 7.6, 7.6Hz), 6.44(1H, dd, J = 7.6, 1.0Hz), 7.91(1H, dd, J = 7.6, 7.6Hz), 6.44(1H, dd, J = 7.6, 1.0Hz), 7.91(1H, dd, J = 7.6, 1.0	7.64(1 H, dd, J = 7.6, 1.0 Hz), 7.91(1 H, dd, J = 7.6, 7.6 Hz),
	0.14(1H,UU,J - 7.0,1.0HZ)	
144	~ <u>`</u> ` ^	2.58(3H,s), 2.68(2H,q,J=7.6Hz), 4.2-4.3(4H,m),
	3.20(211,5), 0.43(111,5), 7.43(111,5), 7.04(111,4,5 = 7.0112), 7.3 12.66(1H,S)	7.32(111,44,4 - 0.3,7.0112), 0.13(111,4,4 - 0.3112),
145	(solvent:CDCl ₃) 1.25(3H,t,J = 7.6Hz), 1.28(3H,t,J = 7.3Hz), 2	, $2.6-2.7(4H,m)$, $3.7-3.8(2H,m)$, $4.1-4.2(2H,q,J=7.3Hz)$,
	5.24(2H,s), 6.45(1H,s), 7.49(1H,s), 7.61(1H,d,J=7.9Hz), 7.9 8.42(1H.br), 12.66(1H.s)	7.90(1H,dd,J = $6.6,7.9$ Hz), $8.14(1H,d,J=6.6$ Hz),
7		
140		= 7.6Hz), 2.2-2.4(1H,m), 2.58(3H,S),
	2.69(2H,q,J=7.6Hz), 3.78(3H,s), 4.75(1H,dd,J=5.3,9.2Hz),	z), 5.29(2H,s), 6.49(1H,s), 7.50(1H,s),
	7.64(1H,d,J=7.9Hz), 7.91(1H,dd,J=7.9,7.9Hz), 8.15(1H,d,J)	d,J = 7.9Hz, 8.44(1H,d,J = 9.2Hz), 12.66(1H,s)
147	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68(2H,q,	,q,J=7.6Hz), 3.85(3H,s), 4.0-4.2(2H,m), 4.8-4.9(1H,m),
	5.29(2H,s), 6.51(1H,s), 7.49(1H,s), 7.65(1H,d,J=7.6Hz), 7.9	7.92(1H,dd,J=7.6,7.9Hz), 8.15(1H,d,J=7.9Hz),
	8.80(1H,d,J=7.9Hz), 12.70(1H,s)	

Table 112

5	

Ex. No.	Structural formula	
1 4 8	H O OEt O OH SMe	
1 4 9	$\begin{array}{c c} & H & O \\ & N & N & O \\ & & N & N & O \\ & & & & & \\ & & & & & \\ & & & & & $	
1 5 0	H O OMe	
1 5 1	$\begin{array}{c c} & H & O \\ & N & N & O \\ & N & N & N & N \\ & N & N & N & N \\ & N & N & N & N \\ & N & N & N & N & N \\ & N & N & N & N & N \\ & N & N & N & N & N \\ & N & N & N & N & N \\ & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N & N \\ & N & N & N & N & N $	
1 5 2	H O OME	

Table 113

		¹ H-NMR	δppm	
5	148	$(solvent:CDCl_3) \ 1.26(3H,t,J=7.6Hz), \ 1.32(3H,t,J=7.3Hz), \ 2.0-2.2(1H,m), \ 2.12(3H,s), \ 2.3-2.4(1H,m), \ 2.5-2.7(4H,m), \ 2.58(3H,s), \ 4.26(2H,q,J=7.3Hz), \ 4.8-5.0(1H,m), \ 5.29(2H,s), \ 6.47(1H,s), \ 7.50(1H,s), \ 7.64(1H,dd,J=1.0,7.6Hz), \ 7.91,(1H,dd,J=7.6,7.6Hz), \ 8.14(1H,dd,J=1.0Hz,7.6Hz), \ 8.52(1H,d,J=8.6Hz), \ 12.66(1H,s)$		
10	149	$(solvent:CDCl_3) \ 1.25(3H,t,J=7.6Hz), \ 2.58(3H,s), \ 2.67(2H,q,J=7.6Hz), \ 3.26(2H,dd,J=1.8Hz,6.3Hz), \\ 3.75(3H,s), \ 5.07(1H,dt,J=8.3,6.3Hz), \ 5.22(2H,s), \ 6.45(1H,s), \ 7.1-7.4(5H,m), \ 7.50(1H,s), \\ 7.62(1H,d,J=7.3Hz), \ 7.89(1H,dd,J=6.9Hz,7.3Hz), \ 8.11(1H,d,J=6.9Hz), \ 8.41(1H,d,J=8.3Hz), \\ 12.67(1H,s)$		
15	150	$(solvent:CDCl_3) \ 1.25(3H,t,J=7.6Hz), \ 2.58(3H,s), \ 2.68(2H,q,J=7.6Hz), \ 3.1-3.2(2H,m), \ 3.76(3H,s), \\ 5.02(1H,dt,J=8.6Hz,5.9Hz), \ 5.21(2H,d,J=2.0Hz), \ 6.09(1H,s), \ 6.42(1H,s), \\ 6.76(1H,dd,J=2.3Hz,8.9Hz), \ 7.02(1H,d,J=8.9Hz), \ 7.50(1H,s), \ 7.61(1H,d,J=7.6Hz), \\ 7.88(1H,dd,J=7.5Hz,7.6Hz), \ 8.10(1H,d,J=7.5Hz), \ 8.40(1H,d,J=8.6Hz), \ 12.63(1H,s)$		
20	151 (solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.30(2H,d,J=5.6Hz), 3.79(3H,s), 5.0-5.1(1H,m), 5.27(2H,d,J=4.62Hz), 6.42(1H,s), 6.86(1H,d,J=1.3Hz), 7.49(1H,s), 7.6-7.7(2H,m), 7.89(1H,dd,J=7.6Hz,7.6Hz), 8.12(1H,dd,J=1.0Hz,7.9Hz), 8.8-8.9(1H,m), 12.		42(1H,s), 6.86(1H,d,J = 1.3Hz), 7.49(1H,s),	
25	152	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 1.57(3H,d,J=6.3.80(3H,s), 4.82(1H,dq,J=6.9Hz,8.3Hz), 5.28(2H,s), 7.63(1H,dd,J=1.0Hz,7.9Hz), 7.91(1H,dd,J=7.9Hz,7.8.43(1H,d,J=8.3Hz), 12.66(1H,s)	6.47(1H,s), 7.50(1H,s),	

Table 114

5	Ex. No.	Structural formula
10	153	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15		
20	154	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
25 30	1 5 5	H O N N OEt O OH
	•	
35	1 5 6	O OH OME
40		
45	1 5 7	H O OME

107

50

Table 115

		¹ H-NMR	δppm	
5	153	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 1.57(3H,d,J=7.3Hz), 2.58(3H,s), 2.69(2H,q,J=7.6Hz), 3.80(3H,s), 4.82(1H,dq,J=7.3Hz,7.9Hz), 5.28(2H,s), 6.45(1H,s), 7.50(1H,s), 7.63(1H,d,J=7.6Hz), 7.91(1H,dd,J=7.6,7.6Hz), 8.14(1H,d,J=7.6Hz), 8.43(1H,d,J=7.9Hz), 12.66(1H,s)		
10	154 (solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 2.1-2.5(4H,m), 2.58(3H,s), 2.69(2H,q,J=7.6Hz), 3.66(3H,s), 3.70(3H,s), 4.8-4.9(1H,m), 5.29(2H,s), 6.48(1H,s), 7.50(1H,s), 7.64(1H,dd,J=1.0Hz,7.6Hz), 7.91(1H,dd,J=7.6Hz,7.6Hz), 8.13(1H,dd,J=1.0,7.6Hz), 8.47(1H,d J=8.6Hz), 12.65(1H,s)			
15	155	(solvent:CDCl ₃) 1.25(3H,t,J=7.3Hz), 1.26(3H,t,J=7.6Hz), 2.58(3H,s), 2.69(2H,q,J=7.6Hz), 3.68(2H,d,J=1.0Hz), 4.17(2H,q,J=7.3Hz), 4.42(2H,d,J=6.3Hz), 5.26(2H,s), 6.45(1H,s), 6.82(1H,t,J=1.0Hz), 7.50(1H,s), 7.69(1H,d,J=7.9Hz), 7.96(1H,dd,J=7.9Hz,8.9Hz), 8.63(1H,br), 9.80(1H,br), 12.67(1H,s)		
20	156	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 2.97(1H,dd,J=6.3Hz,15.8Hz), 3.09(1H,dd,J=6.6,15.8Hz), 3.64(3H,s), 5.27(2H,s), 5.64(1H,ddd,J=6.3Hz,6.6Hz,8.9Hz), 6.49(1H,s), 7.2-7.5(5H,m), 7.49(1H,s), 7.63(1H,d,J=7.3Hz), 7.90(1H,dd,J=7.3Hz,7.3Hz), 8.15(1H,d,J=7.3Hz), 8.80(1H,d,J=8.9Hz), 12.66(1H,s)		
	157	(solvent:CDCl ₃) 1.25(3H,t,J = 7.6Hz), 1.9-2.1(2H,m), 2 2.68(2H,q,J = 7.6Hz), 3.54(2H,m), 3.68(3H,s), 5.25(2H, 2.90(1H,dd,J = 7.6Hz,7.9Hz), 8.10(1H,br), 8.15(1H,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d	I,s), 6.47(1H,s), 7.50(1H,s), 7.61(1H,d,J=7.6Hz),	
25		I		

Table 116

5	Ex. No.	Structural formula
10	1 5 8	H O OME O OH
15		H OH
20	159	O OH OH
25	160	O OH O OH
30		
35	161	OH OH
40		
45	162	$\begin{array}{c c} & H \\ \hline 0 & N \\ \hline 0 & OH \\ \end{array}$
	<u> </u>	·

55

Table 117

		¹ H-NMR	δppm		
5	158	2.68(2H,q,J = 7.6Hz), 3.4-3.5(2H,m), 3.67(3H	$CDCl_3$) 1.25(3H,t,J=7.6Hz), 1.3-1.5(2H,m), 1.6-1.8(4H,m), 2.34(2H,t,J=7.6Hz), 2.58(3H,s), $q_1J=7.6Hz$), 3.4-3.5(2H,m), 3.67(3H,s), 5.25(2H,s), 6.47(1H,s), 7.49(1H,s), 4.4-3.5(2H,m), 3.67(3H,s), 8.02(1H,br), 8.16(1H,d,J=7.9Hz), 12.67(1H,s)		
10	159 (solvent:DMSO-d ₆) 1.19(3H,t,J=7.6Hz), 2.52(3H,s), 2.60(2H,q,J=7.6Hz), 3.5-3.7(2H,m), 4.6-4.8(1H,m), 5.36(2H,s), 5.57(1H,d,J=4.3Hz), 6.58(1H,s), 6.6-6.7(1H,m), 6.8-6.9(2H,m), 7.1-7.2(1H,m), 7.7-7.8(2H,m), 7.9-8.2(2H,m), 8.5-8.6(1H,m), 9.34(1H,s), 12.56(1H,s)		Hz), 6.58(1H,s), 6.6-6.7(1H,m), 6.8-6.9(2H,m),		
	160	$(solvent:DMSO-d_6) \ 1.25(3H,t,J=7.6Hz), \ 2.59(3H,s), \ 2.67(2H,q,J=7.6Hz), \ 2.73(1H,t,J=5.4Hz), \\ 3.6-3.7(2H,m), \ 3.8-3.9(2H,m), \ 5.25(2H,m), \ 6.49(1H,s), \ 7.49(1H,s), \ 7.62(1H,d,J=7.6Hz), \\ 7.91(1H,dd,J=7.6Hz,7.6Hz), \ 8.16(1H,d,J=7.6Hz), \ 8.40(1H,br), \ 12.69(1H,s)$			
15	161	(solvent:DMSO- d_6) 1.24(3H,t,J=7.6Hz), 2.5 5.84(1H,t,J=4.6Hz), 6.43(1H,s), 7.49(1H,s), 7.95(1H,dd,J=7.6Hz,7.6Hz), 12.62(1H,s)	9(3H,s), 2.68(2H,q,J=7.6Hz), 3.6-4.0(9H,m), 5.25(2H,s), 7.62(1H,d,J=7.6Hz), 7.81(1H,d,J=7.6Hz),		
20	162		-1.9(2H,m), 2.58(3H,s), 2.67(2H,q,J=7.6Hz), 7.63(1H,d,J=7.6Hz), 7.91(1H,dd,J=7.6Hz,7.6Hz), s)		

Table 118

5	Ex. No.	Structural formula
10	163	O OH OH
20	164	H CO ₂ Et
25		
30	165	$0 \qquad \qquad 0 \qquad \qquad \qquad 0 \qquad \qquad \qquad 0 \qquad \qquad $
35 40	1 6 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
,0		
45	1 6 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
50		

Table 119

		¹ H-NMR	δ ppm
5	163	(solvent:DMSO- d_6) 1.25(3H,t,J = 7.6Hz), 1.32(3H,t,J = 3.4-4.0(6H,m), 5.25(2H,s), 6.45(1H,s), 7.49(1H,s), 7.5	
10	164	(solvent:CDCl ₃) 1.22(3H,t,J=7.4Hz), 1.32(3H,t,J=7.4+26(2H,s), 4.27(2H,q,J=7.1Hz), 5.13(2H,s), 6.44(1H, 7.59(1H,d,J=7.6Hz), 7.77(1H,d,J=7.6Hz), 7.90(1H,s)	s), 7.46(1H,s), 7.49(1H,dd,J=7.6,7.6Hz),
	165	(solvent:CDCl ₃) 1.22(3H,t,J=7.4Hz), 1.54(2H,d,J=7.3.80(3H,s), 4.82(1H,q,J=7.0Hz), 5.14(2H,s), 6.44(1H,7.58(1H,q,J=7.6Hz), 7.76(1H,d,J=7.6Hz), 7.88(1H,s)	s), 7.46(1H,s), 7.48(1H,dd,J=7.6,7.6Hz),
15	166	(solvent:CDCl ₃) 1.22(3H,t,J=7.6Hz), 1.26(3H,t,J=7.1Hz), 1.29(3H,t,J=7.1Hz), 2.57(3H,s), 2.64(2H,q,J=7.4Hz), 2.97(1H,dd,J=17.2,4.3Hz), 3.14(1H,dd,J=17.2,4.3Hz), 4.16(2H,q,J=7.1Hz) 4.27(2H,q,J=7.1Hz), 5.04(1H,td,J=4.3,7.9Hz), 5.15(1H,s), 6.45(1H,s), 7.46(1H,s), 7.49(1H,dd,J=7.6,7.6Hz), 7.59(1H,d J=7.6Hz), 7.77(1H,d,J=7.6Hz), 7.90(1H,s)	
20	167	(solvent:CDCl ₃) 1.22(3H,t,J=7.4Hz), 2.57(3H,s), 2.63 4.89(1H,dt,J=7.3,3.6Hz), 5.14(2H,s), 6.44(1H,s), 7.4 7.60(1H,d,J=7.6Hz), 7.80(1H,d,J=7.6Hz), 7.91(1H,s)	7(1H,s), $7.49(1H dd,J = 7.6,7.6Hz)$,

Table 120

5	Ex. No.	Structural formula	
10	168	O N N OO₂Et O OH COO₂Et	
15		ע	
20	169	O OMe O Et O OZ Et	
25 30	1 7 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	·		
35	1 7 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
40			
45	1 7 2	O OH OHOH	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	

113

50

Table 121

\dashv	168	169	170	,-	172
H-NMR	(solvent:CDCl ₃) $0.98(3H,t,J=7.3Hz)$, $1.27(3H,t,J=7.3Hz)$, $1.30(3H,t,J=7.1Hz)$, $1.5-1.7(2H,m)$, $2.58(3H,s)$, $2.76(2H,t,J=7.6Hz)$, $2.98(1H,dd,J=16.8,4.9Hz)$, $3.14(1H,dd,J=16.8,4.9Hz)$, $4.1-4.4(4H,m)$, $5.32(2H,s)$, $6.50(1H,d,J=8.9Hz)$, $7.61(1H,d,J=8.9Hz)$, $7.66(1H,d,J=8.9Hz)$, $7.66(1H,d,J=7.9Hz)$, $7.91(1H,dd,J=7.6,7.9Hz)$, $8.13(1H,d,J=7.6Hz)$	(solvent:CDCl ₃) 1.02(3H,t,J=7.4Hz), 1.27(3H,t,J=7.1Hz), 1.30(3H,t,J=7.1Hz), 1.6-1.7(2H,m), 2.62(3H,t), 2.74(2H,t,J=7.9Hz), 2.97(1H,dd,J=17.0,4.9Hz), 3.13(1H,dd,J=17.0,4.9Hz), 4.1-4.4(4H,m), 5.29(2H,s), 6.74(1H,d,J=8.8Hz), 7.57(1H,d,J=8.8Hz), 7.66(1H,d,J=7.6), 7.91(1H,dd,J=7.6,7.9Hz), 8.14(1H,d,J=7.6Hz)	(solvent:CDCl ₃) 1.02(3H,t,J=7.3Hz), 1.32(3H,t,J=7.3Hz), 1.56(3H,d,J=7.3Hz), 1.6-1.7(2H,m), 2.62(3H,s), 2.75(2H,t,J=7.9Hz), 3.78(3H,s), 4.26(2H,q,J=7.2Hz), 4.79(1H,qd,J=7.8,7.8Hz), 5.29(2H,s), 6.73(1H,d,J=7.6Hz), 7.57(1H,d,J=8.6Hz), 7.64(1H,d,J=7.9Hz), 7.91(1H,dd,J=7.6,7.9Hz), 8.14(1H,d,J=7.8)	(solvent:CDCl ₃) 1.24(3H,t,J=7.2Hz), 11.32(3H,t,J=7.1Hz), 1.56(3H,d,J=1.0Hz), 2.58(3H,s), 2.69(2H,q,J=7.5Hz), 3.88(3H,s), 4.26(2H,q,J=7.2Hz), 4.81(1H,qd,J=7.7,7.7Hz), 5.32(2H,s), 6.51(1H,s), 7.72(1H,s), 7.70(1H,d,J=8.3Hz), 7.93(1H,dd,J=9.7,7.6Hz), 8.15(1H,d,J=7.9Hz)	(solvent:CDCl ₃) 1.24(3H,t,J = 7.5Hz), 1.6-2.2(4H,m), 2.57(3H,s), 2.67(2H,q,J = 7.5Hz), 3.5-5.4(7H,m),
δppm	tz), 1.30(3H,t,J=7.1Hz), 1.5-1.7(2H,m), 2.58(3H,s), H,dd,J=16.8,4.9Hz), 4.1-4.4(4H,m), Hz), 7.61(1H,d,J=8.9Hz), 7.66(1H,d,J=8.9Hz), H,d,J=7.6Hz)	tz), 1.30(3H,t,J=7.1Hz), 1.6-1.7(2H,m), 2.62(3H,t), IH,dd,J=17.0,4.9Hz), 4.1-4.4(4H,m), Hz), 7.57(1H,d,J=8.8Hz), 7.66(1H,d,J=7.9Hz),	42), 1.56(3H,d,J=7.3Hz), 1.6-1.7(2H,m), 2.62(3H,s), 4.79(1H,qd,J=7.8,7.8Hz), 5.29(2H,s), 1=7.9Hz), 7.91(1H,dd,J=7.6,7.9Hz), 8.14(1H,d,J=7.6Hz)	, 1.56(3H,d,J=1.0Hz), 2.58(3H,s), 1(1H,qd,J=7.7,7.7Hz), 5.32(2H,s), 6.51(1H,s), , 8.15(1H,d,J=7.9Hz)	iH,s), 2.67(2H,q,J=7.5Hz), 3.5-5.4(7H,m),

Table 122

٤)	

Ex. No.	Structural formula
173	O N N N O N N O OH
174	O OH OO2 Me
175	H O OH OO2 Me
1 7 6	Et 0 N N OO2Et

Table 123

		¹ H-NMR	δppm
5	173	(solvent:CDCl ₃) 1.25(3H,t,J=7.5Hz), 1.7-2.1(5H,m), 2.57(3H,s), 2.67(2H,q,J=7.5Hz), 3.0-3.3(2H,t) 3.72(3H,s), 3.8-4.0(2H,m), 4.5-4.7(2H,m), 5.24(2H,s), 6.44(1H,s), 7.48(1H,s), 7.53(1H,d,J=7.6Hz), 7.56(1H,d,J=7.6Hz), 7.84(1H,dd,J=7.9,7.9Hz)	
10	174	(solvent:CDCl ₃) 1.25(3H,td,J = 7.6,2.0Hz), 1.5-2.0(4H 3.61(1.5H,s), 3.73(1.5H,s), 2.5-5.0(5H,m), 5.24(2H,s)	
	175	(solvent:CDCl ₃) 1.26(3H,t,J = 7.4Hz), 1.38(2H,d,J = 6.4.5-4.6(1H,m), 5.27(2H,s), 6.48(1H,s), 7.49(1H,s), 7.6.8.15(1H,d,J = 7.6Hz)	
15	176 (solvent:CDCl ₃) 1.22(3H,t,J=6.9Hz), 1.25(3H,t,J=7.1Hz), 1.29(3H,t,J=7.1Hz), 2.57(3H,s), 2.68(2H,q,J=7.4Hz), 2.78(1H,t,J=7.1Hz), 3.44(1H,q,J=7.1Hz), 3.58(1H,q,J=7.1Hz), 3.70(1H,t,J=7.4Hz), 3.79(1H,t,J=7.4Hz), 4.10(1H,q,J=7.1Hz), 4.18(1H,q,J=7.1Hz), 5.23(1H,s), 6.43(1H,s), 7.48(1H,s), 7.5-7.9(3H,m), 2.84(1H,t,J=7.1Hz)		J = 7.1Hz), 3.58(1H,q,J = 7.1Hz), J = 7.1Hz), 4.18(1H,q,J = 7.1Hz), 5.21(1H,s),
20	177	(solvent:CDCl ₃) 1.25(3H,t,J = 7.4Hz), 1.29(3H,d,J = 6.4.4-4.6(1H,m), 4.7-4.9(1H,m), 5.30(2H,s), 6.50(1H,s), 7.93(1H,dd,J = 7.6,7.6Hz), 8.13(1H,d,J = 7.6Hz)	

Table 124

5	Ex. No.	Structural formula
10	1 7 8	OH OO₂Me
15		
20		
25		
30		
35		
40		
4 5		
50		

Table 125

		¹ H-NMR	δppm			
5	178	(solvent:CDCl ₃) 1.23(1.2H,t,J=7.6Hz), 1.26(1.8H,t,J=	(1.2H,t,J = 7.6Hz), 1.26(1.8H,t,J = 7.6Hz), 2.1-2.6(2H,m), 2.59(3H,s), 8(3H,m), 5.3-5.4(3H,m), 6.44(0.6H,s), 6.48(0.4H,s), 7.5-8.1(3H,s)			
10						
15						
. 0						
20						
25						
30						
35						
40						
70						
45						
50						
55						

Table 126

5		¹ H-NMR	δppm
10	179	H — CHCO ₂ H O OH OH	
20	180	H O N N OH	
25 30	181	O OH OH	
35	1 8 2	H O OH OH	
45	183	OHO OH OH	
		<u> </u>	

55

Table 127

		¹ H-NMR	δppm
5	179	(solvent: $CD_3OD/CDCl_3(1/4)$) 1.26(3H,t,J = 7.4Hz), 2.97(1H,dd,J = 17.5,4.8Hz), 3.15(1H,dd,J = 17.5,4.8 6.47(1H,s), 7.53(1H,s), 7.68(1H,d,J = 7.9Hz), 7.95(8Hz), 5.00(1H,t,J=8.9Hz), 5.29(2H,s),
10	180	(solvent:d ₆ -DMSO) 1.18(3H,t,J=7.6Hz), 2.58(3H,55.36(2H,s), 6.57(1H,s), 7.69(1H,s), 7.73(1H,d,J=6.8.10(1H,dd,J=6.3Hz,6.3Hz), 8.88(1H,t,J=5.9Hz),	.3Hz), 8.01(1H,d,J=6.3Hz),
	181	(solvent:d ₆ -DMSO) 1.18(3H,s,J = 7.6Hz), 2.58(3H,s 3.4-3.5(2H,m), 5.35(2H,s), 6.57(1H,s) 7.69(1H,s), 7.7.99(1H,dd,J = 1.0Hz,7.6Hz), 8.07(1H,dd,J = 7.6Hz	7.70(1H,dd,J = 1.0Hz,7.6Hz),
15	182	(solvent:d ₆ -DMSO) 0.91(6H,t,J=6.4Hz), 1.18(3H,t 2.63(1H,q,J=7.6Hz), 4.41(1H,dd,J=5.1Hz,8.9Hz), 7.76(1H,d,J=6.6Hz), 8.01(1H,d,J=6.9Hz), 8.11(1H,d,J=6.9Hz), 8.11(1H,d,J=6.9Hz)	5.42(2H,s), 6.63(1H,s), 7.68(1H,s),
20	183	(solvent:d ₆ -DMSO) 1.19(3H,t,J=7.6Hz), 2.58(3H,s 3.77(1H,dd,J=3.6Hz,10.9Hz), 3.91(1H,dd,J=3.6H 7.69(1H,s), 7.75(1H,d,J=7.6Hz), 8.03(1H,dd,J=1. 8.63(1H,d,J=8.3Hz), 12.55(1H,s)	Iz,10.9Hz), 4.4-4.5(1H,s) 5.39(2H,s) 6.61(1H,s),

Table 128

5	Ex. No.	Structural formula
10	184	H O N H OH O OH SMe
15		
20	1 8 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
30	186	H O OH OH
35	187	
40		
45	188	HO OHO OH
	·	

55

Table 129

		¹ H-NMR	δppm	
5	184	$(solvent: d_6 - DMSO) \ 1.18(3H,t,J=7.6Hz), \ 2.04(3H,s), \ 2.1-2.2(2H,m), \ 2.4-2.5(2H,m), \ 2.58(3H,s), \\ 2.62(2H,q,J=7.6Hz), \ 4.5-4.6(1H,m), \ 5.40(2H,s), \ 6.60(1H,s), \ 7.69(1H,s), \ 7.74(1H,d,J=7.6Hz), \\ 7.99(1H,d,J=6.6Hz), \ 8.09(1H,dd,J=6.6Hz,7.6Hz), \ 8.74(1H,d,J=8.2Hz), \ 12.55(1H,s)$		
10	185	(solvent:d ₆ -DMSO) 1.16(3H,t,J = 7.6Hz), 2.59(3H,s 4.6-4.7(1H,m), 5.34(2H,s), 6.60(1H,s), 7.1-7.3(5H,r 7.97(1H,dd,J = 1.0Hz,7.6Hz), 8.07(1H,dd,J = 7.6Hz	n), 7.68(1H,s), 7.71(1H,d,J=7.6Hz),	
15	186	(solvent:d ₆ -DMSO) 1.17(3H,t,J=7.6Hz), 2.58(3H,s 4.6-4.7(1H,m), 5.36(1H,s), 6.62(2H,d,J=8.5Hz),6.9 7.73(1H,dd,J=1.0Hz,7.6Hz), 7.96(1H,dd,J=1.0Hz 8.52(1H,d,J=8.3Hz), 9.21(1H,br), 12.56(1H,s)	99(2H,d,J = 8.5Hz), 7.69(1H,s),	
20	187	(solvent:d ₆ -DMSO) 1.17(3H,t,J=7.6Hz), 2.58(3H,s 4.7-4.8(1H,m), 5.37(2H,s), 6.60(1H,s), 7.12(1H,s), 7.72(1H,d,J=7.6Hz),7.98(1H,dd,J=0.7Hz,7.6Hz) 8 8.99(1H,d,J=8.3Hz), 12.54(1H,br),	7.69(1H,s),	
	188	(solvent:d ₆ -DMSO) 1.89(3H,t,J = 7.6Hz), 1.43(3H,d 4.4-4.5(1H,m), 5.39(2H,s), 6.59(1H,s), 7.69(1H,s), 8.09(1H,dd,J = 7.6Hz,7.6Hz), 8.67(1H,d,J = 7.9Hz),	7.73(1H,d,J = 7.6Hz), 8.00(1H,d,J = 7.6Hz),	

Table 130

5	Ex. No.	Structural formula
10	189	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15		
20	190	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
25		H O
30	1 9 1	H O N N OH OH OH OH
35	1 9 2	O OH OH
40		
45	1 9 3	H O OHOH
50		

Table 131

		¹ H-NMR	δppm
5	189	(solvent:d ₆ -DMSO) 1.89(3H,t,J = 7.6Hz), 1.43(3H, 4.4-4.5(1H,m), 5.39(2H,s), 6.59(1H,s), 7.69(1H,s), 8.09(1H,dd,J = 7.6Hz,7.6Hz), 8.67(1H,d,J = 7.9Hz)	7.73(1H,d,J = 7.6Hz), 8.00(1H,d,J = 7.6Hz),
10	190	(solvent:d ₆ -DMSO) 1.86(3H,t,J = 7.6Hz), 1.9-2.3(4 4.4-4.5(1H,m), 5.40(2H,s), 6.60(1H,s), 7.69(1H,s), 8.10(1H,dd,J = 7.6Hz,7.6Hz), 8.70(1H,d,J = 8.6Hz	7.73(1H,d,J = 7.6Hz), 8.00(1H,d,J = 7.6Hz),
15	191	(solvent:d ₆ -DMSO) 1.19(3H,t,J = 7.6Hz), 2.58(3H, 4.24(2H,d,J = 5.9Hz), 5.38(2H,s), 6.58(1H,s), 6.96 8.02(1H,d,J = 7.6Hz), 8.10(1H,dd,J = 7.6Hz,7.6Hz) 12.55(1H,s)	(1H,s), $7.70(1H,s)$, $7.75(1H,d,J=7.6Hz)$,
20	192	(solvent:d ₆ -DMSO) 1.17(3H,t,J = 7.6Hz), 2.58(3H, 2.88(1H,dd,J = 6.3Hz,16.2Hz), 4.0-4.2(1H,m), 5.39 7.2-7.7(5H,m), 7.69(1H,s), 7.72(1H,d,J = 7.6Hz), 8.07(1H,dd,J = 7.3Hz,7.6Hz), 9.13(1H,d,J = 8.9Hz)	9(2H,s), 5.4-5.5(1H,m), 6.60(1H,s), 7.98(1H,d,J=7.3Hz),
25	193	(solvent:d ₆ -DMSO) 1.18(3H,t,J = 7.6Hz), 1.7-1.8(2 2.62(2H,q,J = 7.6Hz), 3.3-3.5(2H,m), 5.36(2H,s), 6 7.98(1H,d,J = 7.6Hz), 8.06(1H,dd,J = 7.6Hz,7.6Hz) 12.55(1H,br)	6.57(1H,s), 7.69(1H,s), 7.70(1H,d,J=7.6Hz),

Table 132

5	Ex. No.	Structural formula
10	194	O OH O OH
15		
20	1 9 5	H O OH
25		H
30	196	$0 \longrightarrow 0 \longrightarrow 0$ $0 \longrightarrow 0$
35		H
40	197	$0 \longrightarrow 0 \longrightarrow 0$ $= 0$ $0 \longrightarrow 0$ $0 $
,0		
45	1 9 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
50	<u> </u>	

Table 133

		¹ H-NMR	δppm
5	194	(solvent:DMSO-d ₆) 1.18(3H,t,J=7.6Hz), 1.2-1. 2.58(3H,s), 2.62(2H,q,J=7.6Hz), 5.36(2H,s), 6 7.98(1H,d,J=7.6Hz), 8.06(1H,dd,J=7.6Hz,7.6	.57(1H,s), 7.68(1H,d,J=7.6Hz), 7.69(1H,s),
10	195	(solvent: $CD_3OD/CDCl_3(1/4)$) 1.21(3H,t,J = 7.6H 4.18(2H,d,J = 1.7Hz), 5.16(2H,s), 6.46(1H,s), 7 7.61(1H,d,J = 7.6Hz), 7.81(1H,d,J = 7.6Hz), 7.9	.49(1H,s), 7.50(1H,dd,J=7.6,7.6Hz),
	196	(solvent: $CD_3OD:CDCl_3 = 1:4$) 1.22(3H,t,J = 7.4 2.64(2H,q,J = 7.4Hz), 4.72(1H,td,J = 5.9,7.3Hz) 7.61(1H,d,J = 7.9Hz), 7.80(1H,d,J = 7.6Hz), 7.9	, 5.17(2H,s), 6.46(1H,s), 7.50(1H,dd,J=7.9,7.6Hz),
15	197		6,0.9Hz), 2.65(2H,q,J = 7.6Hz), 5,5.0Hz), 4.99(1H,dt,J = 4.3,8.6Hz), 5.18(2H,s), ,d,J = 8.3Hz), 7.81(1H,d,J = 7.6Hz), 7.92(1H,s),
20	198	(solvent: $CD_3OD:CDCl_3 = 1:4$) 1.22(3H,t,J = 7.4 3.97(1H,dd,J = 11.6,3.5Hz), 4.10(1H,dd,J = 11.7.50(1H,s), 7.51(1H,dd,J = 7.6,7.6Hz), 7,62(1H	2,3.9Hz), 4.67(1H,t,J=3.6Hz), 5.17(1H,s), 6.46(1H,s),

Table 134

5	Ex. No.	Structural formula
10	1 9 9	$ \begin{array}{c c} & H \\ & N \\ & N \\ & OO_2H \end{array} $
15		
20	200	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
25		H H
30	201	$\begin{array}{c c} \hline 0 & N & O_2H \\ \hline 0 & OMe \end{array}$
<i>3</i> 5	202	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
45	2 0 3	O N N O O N N O O O O O O O O O O O O O

55

Table 135

		¹ H-NMR	δppm
5	199	(solvent: $CD_3OD/CDCl_3(1/4)$) 0.99(3H,t,J = 7.3.0-3.3(2H,m), 5.1-5.2(1H,m), 5.27(2H,s) 6.7.64(1H,d,J = 7.9Hz), 7.90(1H,dd,J = 7.9,7.6Hz)	
10	200		3Hz), 1.5-1.7(2H,m), 2.57(3H,s), 2.75(2H,t,J=7.6Hz), 31(2H,s), 6.50(1H,d,J=8.9Hz), 7.60(1H,d,J=8.9Hz), Hz), 8.14(1H,d,J=7.3Hz)
	201	2.74(2H,t,J=7.6Hz), 3.78(3H,s), 4.80(1H,t,J=2.74(2H,t))	3Hz), 1.63(3H,d,J = 7.3Hz), 1.5-1.7(2H,m), 2.62(3H,s), = 7.3Hz), 5.29(2H,s), 6.73(1H,d,J = 8.9Hz), 7.93(1H,dd,J = 7.6,7.6Hz), 8.15(1H,d,J = 7.6Hz)
15	202	(solvent: $CD_3OD/CDCl_3(1/4)$) 1.23(3H,t,J = 7.2.69(2H,q,J = 7.4Hz), 3.87(3H,s), 4.82(1H,q, 7.71(1H,d,J = 7.9Hz), 7.71(1H,s), 7.94(1H,dd	J=7.3,7.3Hz), 5.31(2H,s), 6.49(1H,s),
20	203	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	.6Hz), 1.7-2.2(4H,m), 2.57(3H,s), 2.6-2.8(1H,m), (1H,m), 4.4-4.6(1H,m), 5.25(2H,s), 6.44(1H,s), J = 7.0Hz), 7.85(1H,dd,J = 7.6,7.9Hz)

Table 136

5	Ex. No.	Structural formula
10	204	O OH CO2 H
15		
20	2 0 5	H O OH O OH
25		Et .
30	206	0 OH 002 H
35	207	O OH OH
40		
45	208	OH O OH
50		

Table 137

		¹ H-NMR	δppm	
5	204	04 (solvent:CD ₃ OD/CDCl ₃ (1/4)) 1.25(3H,t,J=7.4Hz), 1.5-2.3(5H,m), 2.57(3H,s), 2.67(2H,q,J=7.4Hz), 2.7-2.9(1H,m), 3.1-4.8(4H,m), 5.25(2H,s), 6.44(1H,s), 7.47(1H,s), 7.5-7.7(2H,m), 7.85(1H,dd,J=7.6,7.9Hz)		
0	205	(solvent: $CD_3OD/CDCl_3(1/4)$) 1.24(3H,t,J=7.6Hz), 1.2.67(2H,q,J=7.4Hz), 2.74(2H,dd,J=5.6,3.0Hz), 4.5-4.7.61(1H,d,J=7.9Hz), 7.89(1H,dd,J=7.6,7.9Hz), 8.14	l.6(1H,m), 5.25(2H,s), 6.51(1H,s), 7.48(1H,s),	
	206	(solvent:CD ₃ OD/CDCl ₃ (1/4)) 1.2-1.3(6H,m), 2.57(1H, 3.4-3.8(4H,m), 5.24(2H,s), 6.4-6.5(1H,m), 7.48(1H,s),		
15	207	(solvent: $CD_3OD/CDCl_3(1/9)$) 1.25(3H,t,J=7.4Hz), 1.2 2.69(2H,q,J=7.4Hz), 4.4-4.6(1H,m), 4.7-4.9(1H,m), 5 7.66(1H,d,J=7.6Hz), 7.93(1H,dd,J=7.6,7.6Hz), 8.13	.30(2H,s), 6.50(1H,s), 7.50(1H,s),	
	208	(solvent: $CD_3OD/CDCl_3(1/9)$) 1.23(1.2H,t,J = 7.6Hz), 2.8-3.0(2H.m), 3.8-4.8(3H,m), 5.3-5.4(3H,m), 6.44(0.6)		
20				

Table 138

5	Ex. No.	Structural formula
10	2 0 9	O OH OH OH
15		
20	2 1 0	H O N OO2H O OH
25 30	2 1 1	H O N N N OO2 CH3
35 40	2 1 2	H OH OH OH OH
45	213	H O OH O OH O OH

55

Table 139

\dolda \left\{ \text{plane} \dolda plane	(1H,m), 2.2-2.4(1H,m), 2.59(3H,s), 2.70(1H,q,J=7.4Hz), 9(1H,s), 7.53(1H,s), 7.69(1H,d,J=7.6Hz),	(2H,q,J=7.6Hz), 3.78(2H,s), 4.02(2H,s), 5.36(2H.s), J=6.6,5.9Hz), 8.09(1H,d,J=6.6Hz),	1,t,J=7.3Hz), 2.59(3H,s), 2.69(2H,q,J=7.5Hz), 6.46(1H,s), 7.52(1H,s), 7.67(1H,d,J=7.9Hz),	8(2H,q,J=7.6Hz), 3.50(1H,m), 3.78(1H,m), 4.74(1H,m), , 6.85(1H,d,J=7.9Hz), 6.91(1H,s), 7.13(1H,t,J=7.9Hz), .08(1H,d,J=7.6Hz), 8.51(1H,m), 9.08(1H,s), 12.61(1H,s)	l(2H,q,J=7.6Hz), 3.85(2H,m), 4.55(1H,m), 5.34(1H,br), 8.05(1H,t,J=7.6Hz), 8.12(1H,d,J=7.6Hz),
H-NMR	(solvent:CDCl ₃ /MeOD(9/1)) 1.26(3H,t,J=7.4Hz), 1.9-2.1(1H,m), 2.2-2.4(1H,m), 2.59(3H,s), 2.70(1 3.6-3.9(1H,m), 4.84(1H,dt,J=4,3,4.6Hz), 5.30(2H,s), 6.49(1H,s), 7.53(1H,s), 7.69(1H,d,J=7.6Hz), 8.11(1H,d,J=7.6Hz)	(solvent:DMSO-d ₆) 1.19(3H,t,J=7.6Hz), 2.57(3H,s), 2.63(2H,q,J=7.6Hz), 3.78(2H,s), 4.02(2H,s), 5.36(2H.s), 6.56(1H,s), 7.67(1H,s), 7.71(1H,d,J=7.3Hz), 8.03(1H,dd,J=6.6,5.9Hz), 8.09(1H,d,J=6.6Hz),	(solvent:CDCl ₃ /MeOD(4/1)) 1.26(3H,t,J=7.6Hz), 1.29(3H,t,J=7.3Hz), 2.59(3H,s), 2.69(2H,q,J=7.5Hz), 3.68(2H,s), 4.05(2H,s), 4.20(2H,q,J=7.3Hz), 5.29(2H,s), 6.46(1H,s), 7.52(1H,s), 7.67(1H,d,J=7.9Hz), 8.11(1H,d,J=7.6Hz)	(solvent:DMSO-d ₆) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.50(1H,m), 3.78(1H,m), 4.74(1H,m), 5.30(2H,s), 5.46(1H,d,J=2.0Hz), 6.49(1H,s), 6.69(1H,m), 6.85(1H,d,J=7.9Hz), 6.91(1H,s), 7.13(1H,t,J=7.9Hz), 7.56(1H,s), 7.67(1H,d,J=7.6Hz), 7.98(1H,t,J=7.6Hz), 8.08(1H,d,J=7.6Hz), 8.51(1H,m), 9.08(1H,s), 12.61(1H,s)	(solvent:DMSO-d ₆) 1.19(3H,t,J=7.6Hz), 2.58(3H,s), 2.64(2H,q,J=7.6Hz), 3.85(2H,m), 4.55(1H,m), 5.34(1H,br), 5.39(2H,s), 6.60(1H,s), 7.68(1H,s), 7.74(1H,d,J=7.6Hz), 8.05(1H,t,J=7.6Hz), 8.12(1H,d,J=7.6Hz), 12.55(1H,s), 12.90(1H,br)
	209	210	211	212	213

Table 140

Structural formula

5	

Ex. No.

10	

Table 141

		¹ H-NMR	δppm	
5	214	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.85(3H,s), 4.11(2H,m), 4.88(1H,m), 5.29(2H,s), 6.52(1H,s), 7.49(1H,s), 7.65(1H,d,J=8.3Hz), 7.91(1H,t,J=8.3Hz), 8.15(1H,d,J=8.3Hz), 8.80(1H,d,J=8.3Hz) 12.69(1H,s)		
10	215	(solvent:DMSO-d ₆) 1.18(3H,t,J = 7.3Hz), 2.51(3H,s 3.79(1H,dd,J = 11.2Hz,3.9Hz), 3.91(1H,dd,J = 11.2Hz,7.70(1H,s), 8.58(1H,d,J = 7.9Hz), 9.05(1H,s), 9.21(1	Hz,3.9Hz), 4.55(1H,m), 5.48(2H,s), 6.68(1H,s),	
	216	(solvent:CDCl ₃) 1.27(3H,t,J = 7.3Hz), 2.59(3H,br), 2 4.06(1H,dd,J = 11.2Hz,3.6Hz), 4.18(1H,dd,J = 11.2Hz, 1.51(1H,s), 8.58(1H,m), 9.00(1H,s), 9.37(1H,s), 12.	Hz,3.6Hz), 4.90(1H,m), 5.34(2H,s), 6.52(1H,s),	
15	217	(solvent:CDCl ₃) 1.27(3H,t,J=7.6Hz), 2.60(3H,s), 2. 3.85-4.10(4H,m), 4.64-4.80(2H,m), 5.33(2H,s), 6.49 8.00(1H,t,J=7.6Hz), 8.10(1H,d,J=7.6Hz)	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
20	218	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 2.57(3H,s), 2. 3.70(s,1.2H), 3.81(s,1.8H), 4.0-4.3(2H,m), 4.37(0.6l 7.48(1H,s), 7.5-7.9(3H,m), 12.63(1H,s)		

Table 142

5	Ex. No.	Structural formula	
10	2 1 9	O OH OH	
15			
20	220	H Me OH OH	
25		H H	
30	221	OHOOH OH	
35	2 2 2	OH OH	
40			
45	223	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
50			

Table 143

		¹ H-NMR	δ ppm	
5	219	$(solvent:CDCl_3) \ 1.00(3H,t,J=7.6Hz), \ 1.24(3H,t,J=7.6Hz), \ 1.81(2H,q,J=7.6Hz), \ 2.58(3H,s), \\ 2.67(2H,q,J=7.6Hz), \ 3.72(2H,m), \ 3.94-4.06(4H,m), \ 5.27(2H,s), \ 6.56(1H,s), \ 7.48(1H,s), \\ 7.63(1H,d,J=7.6Hz), \ 7.93(1H,t,J=7.6Hz), \ 8.15(1H,d,J=7.6Hz), \ 8.52(1H,brs), \ 12.73(1H,s), \\ \end{aligned}$		
10	220	(solvent:CDCl ₃) $1.24(3H,t,J=7.3Hz)$, $1.38(3H,s)$, $2.58(3H,s)$, $2.67(2H,q,J=7.3Hz)$, $3.7-4.1(6H,m)$, $5.27(2H,s)$, $6.56(1H,s)$, $7.48(1H,s)$, $7.64(1H,d,J=7.6Hz)$, $7.92(1H,t,J=7.6Hz)$, $8.14(1H,d,J=7.6Hz)$, $8.49(1H,s)$, $12.73(1H,s)$		
			I,s), 2.65(2H,q,J=7.6Hz), 3.83(8H,s), 5.29(2H,s), 7.93(1H,t,J=7.6Hz), 8.14(1H,d,J=7.9Hz), 9.12(1H,s),	
15	222	(solvent:CDCl ₃) 1.26(3H,t,J=7.6Hz), 2.58(3H,s), 2.67-2.72(2H,m), 3.75-3.82(2H,m), 3.83-3.95(2H,m), 4.14-4.20(1H,m), 4.20-4.26(2H,m), 5.27(2H,s), 6.45(1H,s), 7.50(1H,s), 7.62(1H,d,J=6.9Hz), 7.92(1H,t,J=6.9Hz), 8.13(1H,d,J=6.9Hz), 8.53(1H,d,J=7.9Hz), 12.66(1H,s)		
20	223		3(3H,s), 2.65(2H,q,J=7.6Hz), 3.7-3.9(4H,m), 4.61(1H,m), s), 7.71(1H,dd,J=6.8Hz,2.1Hz), 8.02-8.25(2H,m), 2.54(1H,s),	

Table 144

5	Ex. No.	Structural formula
10	224	H OH OH OH OH OH OH
15		
20	2 2 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
25	2 2 6	H OH OO2 Me
30		Ö ÖH
35		
40		
45		
50	<u> </u>	<u>!</u>

Table 145

		¹ H-NMR	δppm	
5	224	(solvent:DMSO- d_6) 1.21(3H,t,J=7.6Hz), 2.57(3H,s), 2.64(2H,q,J=7.6Hz), 3.54(1H,m), 3.72(1H,m), 4.19(1H,m), 5.34(2H,s), 5.59(1H,br), 6.55(1H,s), 7.63(1H,s), 7.69(1H,dd,J=6.1Hz,2.8Hz), 8.05(2H,r), 8.51(1H,t,J=6.1Hz), 12.55(1H,s), 12.65(1H,br)		
10	225	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 1.26(3H,t,J=7.3Hz), 2.58(3H,s), 2.68(2H,q,J=7.6Hz), 3.10(1H,dd,J=8.9Hz,5.6Hz), 3.80-3.88(1H,m), 4.06(2H,d,J=5.6Hz), 4.20(2H,qJ=7.3Hz), 4.25.4.35(1H,m), 4.70(1H,m), 5.28(2H,s), 6.45(1H,s), 7.15(1H,br), 7.49(1H,s), 7.63(1H,d,J=6.9Hz), 7.92(1H,t,J=6.9Hz), 8.15(1H,d,J=6.9Hz), 8.85(1H,d,J=7.6Hz), 12.66(1H,s)		
15	226	(solvent:CDCl ₃) 1.25(3H,t,J=7.6Hz), 2.58(3H,s), 2.68 3.83(3H,s), 3.88(2H,m), 4.44(1H,m), 5.25(2H,s), 6.47 7.91(1H,t,J=7.6Hz), 8.14(1H,d,J=7.6Hz), 8.36(1H,b)	(1H,s), 7.49(1H,s), 7.63(1H,d,J=7.6Hz),	

Claims

25

30

35

40

50

55

1. A compound represented by the formula:

 $\begin{array}{c|c}
R^4 & 0 - A - B \\
\hline
 & N - R^6 \\
\hline
 & R^5 \\
\hline
 & R^5
\end{array}$

wherein

A is a C₁-C₅ alkylene chain;

B is a phenylene or 6 membered heteroaromatic group which is constituted by carbon atoms and one or two nitrogen atoms, and B may be, optionally substituted with one or two substituents selected from the group, consisting of a C₁-C₅ alkyl group, a C₁-C₅ alkoxy group, a hydroxyl group, a carboxyl group, a nitro group and a halogen atom;

R¹ is a C₁-C₅ alkyl group;

 R^2 is a hydroxyl group or a C_1 - C_5 alkoxy group;

 R^3 and R^4 are each independently a hydrogen atom, a C_1 - C_5 alkyl group, a C_2 - C_5 alkenyl group or a C_2 - C_5 alkynyl group;

 R^5 is a hydrogen atom, a C_1 - C_5 alkyl group or a hydroxy C_1 - C_5 alkyl group;

R⁶ is a group of the formula:

-X-Y-Z-R⁶'

wherein X is a phenylene group or a monocyclic 5~ 6 membered hetero aromatic group, and X is optionally substituted with one or two substituents selected from the group consisting of a C₁-C₅ alkyl group, a hydroxyl group, a carboxyl group, a nitro group and a halogen atom;

Y is a single bond or an oxygen atom;

Z is a single bond or a C₁-C₅ alkylene chain;

provided that when Y is an oxygen atom,

X is a phenylene group and Z is a C₁-C₅ alkylene chain;

R⁶' is a COOR⁷ group,

a CONR8R9 group,

a $CONHCHR^{20}(CH_2)_nCOOR^7$ group,

a CONHCHR²⁰ (CH₂)_nCONR⁸ R⁹ group,

a $CONHCHR^{20}CONHCHR^{22}CO_2R^7$ group or

a sulfamoyl group,

wherein R⁷ is a hydrogen atom, a benzyl group, a C₁-C₅ alkyl group or an C₁-C₅ alkyl group substituted with an aminoheteroaromatic group wherein the heteroaromatic group is a monocyclic 5~6 membered heteroaromatic group;

R⁸ and R⁹ are each independently a hydrogen atom, a C₁-C₅ alkyl group, hydroxy C₁-C₅ alkyl group, a hydroxyethylpyridyl group or a hydroxyethylthiazolyl group, or the group of the formula:

-NR⁸R⁹

5

10

15

20

25

30

35

40

45

50

represents a pyrrolidino, a piperidino or a morpholino group;

 R^{20} is a hydrogen atom, a hydroxyl group, a C_1 - C_5 alkyl group, a phenyl group, a hydroxyphenyl group, a benzyl group, a hydroxyl benzyl group or a substituted C_1 - C_5 alkyl group wherein the substituent is selected from the group consisting of a hydroxyl group, a C_1 - C_5 alkoxy group, a mercapto group, a methylthio group, an amino group, an indolyl group, an imidazolyl group, a carboxyl group, a C_1 - C_5 alkoxycarbonyl group, a carbamoyl group and a guanidino group;

n is 0, 1, 2, 3, 4 or 5; and

R²² is a hydrogen atom, a C₁-C₅ alkyl group or a C₁-C₅ hydroxyalkyl group;

or R⁶ is a CHR²⁰ (CH₂)_nCOOR⁷ group,

a CH₂CHR²⁰COOR⁷ group,

a CHR²⁰ (CH₂)_nCONR⁸ R⁹ group,

a CH₂CHR²⁰CONR⁸R⁹ group,

a CHR²⁰(CH₂)_nOH group,

a CR²⁰ R²²(CH₂)_nOH group,

a CH₂CHR²⁰OH group, or

a CHR²⁰CONHCHR²²CO₂R⁷ group,

wherein R⁷, R⁸, R⁹, R²⁰, R²² and n are as defined above, or the group of the formula:

 $N < R^5$

represents an azetidino group, pyrrolidino group, a piperidino group or a homopiperidino group, which is optionally substituted with one to two substituents selected from the group consisting of a hydroxyl group, a C₁-C₅ hydroxyalkyl group, carboxyl group, C₁-C₅ alkoxycarbonyl group and benzyloxycarbonyl group; or pharmaceutically acceptable salts thereof.

- 2. The compound according to claim 1, wherein R¹ is a methyl group and R² is a hydroxyl group.
- 3. The compound according to claim 1, wherein R³ is a hydrogen atom and A is a methylene group.
- **4.** The compound according to claim 1, wherein R¹ is a methyl group, R² is a hydroxyl group, R³ is a hydrogen atom and A is a methylene group.
- 5. The compound according to claim 4, wherein B is a 2,6-pyridinediyl, a 2,4-pyrimidinediyl or a 2,6-pyridinediyl N-oxide group.
- 6. The compound according to claim 4, wherein R⁶ is a group of the formula:

X-Y-Z-R⁶'

(wherein X, Y, Z and R^6 ' are as defined in claim 1).

7. The compound according to claim 4, wherein R^6 is a group of the formula:

CHR²⁰ (CH₂)_nCOOR⁷

(wherein R²⁰, R⁷ and n are as defined in claim 1).

8. The compound according to claim 4, wherein R⁶ is a group of the formula:

5 $CHR^{20}(CH_2)_nCONR^8R^9$

(wherein R²⁰, R⁸, R⁹ and n are as defined in claim 1).

9. The compound according to claim 4, wherein R⁶ is a group of the formula:

CHR²⁰ CONHCHR²² CO₂ R⁷

(wherein R²⁰, R²², R⁷ and n are as defined in claim 1).

- 15 10. The compound according to claim 4, wherein R4 is an ethyl group.
 - 11. The compound according to claim 5, wherein X is a 2,6-pyridinediyl group.
 - 12. The compound according to claim 10, wherein R⁶' is a group of the formula:

COOR7

(wherein R^7 is as defined in claim 1).

- 25 13. The compound according to claim 13, wherein R⁶' is a carboxyl group.
 - 14. The compound according to claim 10, wherein R⁶ is a group of the formula:

CONHCHR²⁰ (CH₂)_nCOOR⁷

(wherein R²⁰, R⁷ and n are as defined in claim 1).

15. A compound of the formula:

*3*5

40

30

10

20

45

16. A compound of the formula:

50

17. A compound of the formula:

5 O H O CO₂ H

18. A compound of the formula:

15

25

 $\begin{array}{c|c}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$

19. A compound of the formula:

20. A compound of the formula:

21. A process for producing a compound as claimed in claim 1 which comprises:

(a) to produce a compound of the formula:

55

$$\begin{array}{c|c}
R^4 & 0 \\
\hline
 & 0 \\
\hline
 & N-R^1 \\
\hline
 & R^5 \\
\hline
 & R^5
\end{array}$$

reacting a compound of the formula:

5

10

15

20

25

30

$$R^{1}$$
 R^{2}
 R^{3}
 R^{3}

with a compound of the formula:

$$\frac{H}{R^5} \sim N - R^2$$

(b) hydrolyzing a compound of the formula:

$$\begin{array}{c|c}
R^4 & 0 - A - B & 0 \\
N - R^{1 2} & R^5 \\
R^5 & R^5
\end{array}$$

to produce a compound of the formula:

(c) reacting a compound of the formula:

$$\begin{array}{c|c}
R^4 & O-A-B & O \\
N-X-Y-Z-COOH \\
R^5 & R^5
\end{array}$$

with a compound of the formula:

5

10

25

30

45

50

55

$$\begin{array}{c} R^{20} \\ \downarrow \\ H_{2}N-C-R^{14} \\ H \end{array}$$

to produce a compound of the formula:

(d) hydrolyzing a compound of the formula:

to produce a compound of the formula:

(e) oxidizing a compound of the formula:

$$\begin{array}{c|c}
R^4 & 0-A-B & 0 \\
N & N & Y-Z-R^6
\end{array}$$

$$\begin{array}{c|c}
R^3 & R^3
\end{array}$$

to produce a compound of the formula:

$$\begin{array}{c|c}
R^4 & 0 - A - B \\
\hline
 & N \\
 &$$

or

(f) hydrolyzing a compound of the formula.

 $\begin{array}{c|c}
R^4 & O - A - B \\
\hline
 & N \\
 & N \\
\hline
 & N \\
\hline
 & N \\
 & N \\
\hline
 & N \\
 & N \\
\hline
 & N \\
 & N \\$

to produce a compound of the formula:

$$\begin{array}{c|c}
R^4 & O-A-B & 0 & 0 \\
N & N & N & X-Y-Z-R^{16} \\
R^3 & R^3 & R^5 & 0
\end{array}$$

wherein R¹, R², R³, R⁴, R⁵, R⁶', R²⁰, A, B, X, Y and Z are as defined in claim 1, R¹¹ is the same as R⁶', but it does not mean free carboxylic group; R¹² is a group of the formula:

X-Y-Z-COOR⁷', X-Y-Z-CONHCHR²⁰(CH₂)_n COOR⁷', X-Y-Z-CONHCHR²⁰CONHCHR²²CO₂R⁷', CHR²⁰(CH₂)_nCOOR⁷', CH₂CHR²⁰COOR⁷', or

CH₂CHR²⁰COOR⁷', or CHR²⁰CONHCHR²²COOR⁷',

10

15

20

25

5

30

40

35

45

50

wherein X, Y, Z, R²⁰, R²² and n are as defined above, and R⁷ is the same as R⁷ but it does not mean a hydrogen atom,

R¹³ is a group of the formula:

5 X-Y-Z-COOH,

X-Y-Z-CONHCHR²⁰ (CH₂)_n COOH,

X-Y-Z-CONHCHR²⁰ CONHCHR²²CO₂ H,

CHR²⁰ (CH₂)_nCOOH,

CH₂CHR²⁰COOH, or

10 CHR²⁰ CONHCHR²²COOH,

wherein X, Y, Z, R²⁰, R²² and n are as defined above.

R¹⁴ is a group of the formula:

(CH₂)_nCOOR⁷', or

CONHCHR²²COOR⁷',

wherein R7', R22 and n are as defined above.

R¹⁵ is a group of the formula:

20

30

COOR7',

 $CONHCHR^{20}(CH_2)_nCOOR^7$ ', or

CONHCHR²⁰CONHCHR²²CO₂R⁷',

wherein R7', R20, R22 and n are as defined above.

R¹⁶ is a group of the formula:

COOH,

CONHCHR²⁰ (CH₂)_nCOOH, or

CONHCHR²⁰ CONHCHR²² CO₂ H,

wherein R²⁰, R²² and n are as defined above.

R²⁶ is a group of the formula:

(CH₂)_nCOOH, or

CONHCHR²²COOH,

wherein R²² and n are as defined above.

- 40 22. A pharmaceutical composition useful as an antiinflammatory agent or an antiallergic agent, which comprises an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof as an active ingredient and a pharmaceutiacally acceptable carrier or diluent.
- 23. A method of treating inflammatory or allergic states which comprises administering a pharmaceutically effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof to a patient.
 - 24. A compound of claim 1 for use as a medicament as an active therapeutic substance.

50

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention shall be considered, for the purposes of subsequent proceedings, as the European search report

EP 92 10 8916

	DOCUMENTS CONSI	DERED TO BE RELEVA	NT	
Category		ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 5)
Y	US-A-4 672 066 (M.		1-5,22, 24	C 07 D 213/81 C 07 D 277/46 C 07 D 401/06
Y	CHEMICAL ABSTRACTS, 11th September 1989 no. 97094e, Columbu JP-A-01 29 363 (YOS PHARMACEUTICAL INDU 31-01-1989 * Abstract *	, page 729, abstract s, Ohio, US; & HITOMI	1-5,22,	C 07 D 401/12 C 07 D 401/14 C 07 D 417/12 C 07 D 417/14 C 07 D 241/24 C 07 C 233/82 A 61 K 31/44 A 61 K 31/425
X	* CAS RN 122151-73-	9 *	1-5,22, 24	
A	CHEMICAL ABSTRACTS, 15th January 1990, no. 20906j, Columbu JP-A-01 104 052 (YO PHARMACEUTICAL INDU	page 494, abstract s, Ohio, US; & SHITOMI	1-22,24	
	21-04-1989 * Abstract *	· · · · · · · · · · · · · · · · · · ·		TECHNICAL FIELDS SEARCHED (Int. Cl.5)
		-/-		C 07 D C 07 C A 61 K
The Sear the proviout a me Claims s Claims s Claims n Reason f Rema meth prac 52 (4 and	sions of the European Patent Conventioningful search into the state of the a earched completely: learched incompletely: lot searched: for the limitation of the search: lod of treatment of the search:	im 23 is directed of (diagnostic met man/animal body (A h has been carried eged effects of th	to a hod art.	
	Place of search	Date of completion of the search		Examiner
	E HAGUE	01-09-1992		IA P.

EPO FORM 1503 03.82 (P0407)

CATEGORY OF CITED DOCUMENTS

X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document

T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons

document

&: member of the same patent family, corresponding

PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 92 10 8916

]	DOCUMENTS CONSIDERED TO BE RELEV.	CLASSIFICATION OF THE APPLICATION (Int. Cl. 5)	
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
A,D	EP-A-0 276 065 (ELI LILLY AND CO.) * Claims 1-7; examples *	1-20,22 ,24	
A	EP-A-0 174 770 (MERCK FROSST CANADA INC.) * Whole document *	1-22,24	
			TECHNICAL FIELDS SEARCHED (Int. Cl.5)
5			

PUB-NO: EP000516069A1

DOCUMENT-IDENTIFIER: EP 516069 A1

TITLE: Leukotriene B4 antagonist.

PUBN-DATE: December 2, 1992

INVENTOR-INFORMATION:

NAME COUNTRY

NAGATA, HIDEO JP

KAWAKAMI, HAJIME JP

ASSIGNEE-INFORMATION:

NAME COUNTRY

SUMITOMO PHARMA JP

APPL-NO: EP92108916

APPL-DATE: May 27, 1992

PRIORITY-DATA: JP15772591A (May 31, 1991)

INT-CL (IPC): A61K031/425 , A61K031/44 ,

C07C233/82 , C07D213/81 ,

C07D241/24 , C07D277/46 ,

C07D401/06 , C07D401/12 ,

CO7D401/14 , CO7D417/12 ,

C07D417/14

```
EUR-CL (EPC): C07D213/81 , C07D241/24 , C07D277/46 , C07D401/06 , C07D401/12 , C07D401/12 , C07D401/12 , C07D401/14 , C07D401/14 , C07D417/12 , C07D417/12 , C07D417/12 , C07D417/12 , C07D417/14 , C07D
```

US-CL-CURRENT: 546/262 , 546/270.7

ABSTRACT:

Leukotriene B4 antagonists of the formula: wherein each symbol is as defined in the specification, processes for producing them, and pharmaceutical compositions containing them. The compounds of the present invention are very useful as the drugs for the treatment of allergic and inflammatory diseases.