$\begin{array}{c} {\rm Math~296~(the~Linear~Algebra} \\ {\rm ~parts}^1) \end{array}$

Atharva Gawde

February 23, 2024

¹I didn't lock in before this.

Contents

1	Vector Spaces			
	1.1	Recall from last class:	2	
	1.2	Ring Homomorphism	2	
	1.3	Characteristic	3	
	1.4	Polynomials	S	
	Algebraic Numbers			
	0.1	Algebraic Numbers	- 4	

Lecture 1

Vector Spaces

1.1 Recall from last class:

Example. We showed that $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is prime.

Proof. We have two cases

- (i) If n is primes we use Bezout's lemma to find inverses.
- (ii) If n is composite, we get zero-divisors.

Ring Homomorphism

Lemma 1. Let F be a field. Then there exists a unique $\varphi \colon \mathbb{Z} \to F$ such

- (i) $\varphi(1) = 1_F$ (ii) $\varphi(n+m) = \varphi(n) +_F \varphi(m)$ (iii) $\varphi(n \cdot m) = \varphi(n) \cdot_F \varphi(m)$

Proof. We can construct φ from these properties...

Note. A function $\varphi \colon \mathbb{Z} \to \mathbb{F}$ (or from any ring) that satisfies (i), (ii), and (iii) is called a ring homomorphism.

Lemma 2. Let F be a field, Let $\varphi \colon \mathbb{Z} \to F$ be the ring homomorphism we just defined. Then either

- (i) $\ker(\varphi) = \{0\}$ if and only if φ is injective, or
- (ii) $\ker(\varphi) = p\mathbb{Z}$ for some prime p. **Proof.** If φ is injective...

1.3 Characteristic

Definition 1. Let F be field. Let $\varphi \colon \mathbb{Z} \to F$ be the unique ring homomorphism. If φ is injective, then we say that F has characteristic 0. If φ is not injective, then we say F has characteristic p, where $\ker(\varphi) = p\mathbb{Z}$.

Example. $\operatorname{char}(\mathbb{C}) = 0$

Example. $\operatorname{char}(\mathbb{R}) = 0$

Example. $\operatorname{char}(\mathbb{Z}/67\mathbb{Z}) = 67$

Lemma 3. Suppose F is a finite field, then $\varphi \colon \mathbb{Z} \to F$ can not be injective, so F has prime characteristic.

Lemma 4. If F has characteristic p, then $\underbrace{1_F + \dots + 1_F}_{p \text{ times}} = 0$ and if $\underbrace{1_F + \dots + 1_F}_{p \text{ times}} = 0$ then $p \mid n$.

1.4 Polynomials

Definition 2. A polynomial over a finite field F is a formal expression of the form $a_n x^n + \cdots + a_1 x + a_0$ where $n \in \mathbb{N} \cup \{0\}$ and $a_i \in F$ for all $0 \le i \le n$, and x is a formal variable.

Note. This is not a function like in 295.

Definition 3. The 0 polynomial is called the trivial polynomial.

Definition 4. A nontrivial polynomial can be written as $b(x) = b_0 + b_1 x + \cdots + b_\ell x^\ell$ with $b_\ell \neq 0$, we say b has degree ℓ .

Lecture 5

Algebraic Numbers

5.1 Algebraic Numbers

Definition 5. Fix $\alpha \in \mathbb{C}$. Define $\mathbb{Q}[\alpha] = \operatorname{span}(\alpha^i \mid i \in \mathbb{N} \cup \{0\})$ monomial powers of α . This is vector space over \mathbb{Q} .

Definition 6. The element $\alpha \in \mathbb{C}$ is algebraic provided that there exists a nonzero polynomial $p \in \mathbb{Z}[x]$ such that $p(\alpha) = 0$.

Example. $\alpha = \sqrt{2}$ is algebraic with $p(x) = x^2 - 2$.

Example. $i \in \mathbb{C}$ is algebraic with $p(x) = x^2 + 1$.

Example. $\pi \in \mathbb{C}$ is not algebraic.

Definition 7. If $\alpha \in \mathbb{C}$ is not algebraic, then α is called transcendental.

Example. $\pi \in \mathbb{C}$ is transcendental.

Lemma 5. Let $\alpha \in \mathbb{C}$. Then $\mathbb{Q}[\alpha]$ is finitely generated over \mathbb{Q} if and only if α is algebraic.

Proof. Suppose $\mathbb{Q}[\alpha]$ is finitely generated. Then there exists scalars $\overline{v_1}, \overline{v_2}, \ldots, \overline{v_m} \in \mathbb{Q}[\alpha]$ such that $\mathbb{Q}[x] = \operatorname{span}(\overline{v_1}, \overline{v_2}, \ldots, \overline{v_m})$. For each $1 \leq i \leq m$ we know $\overline{v_i} \in \mathbb{Q}[\alpha]$ so we can write

$$\overline{v_i} = q_{i_0} + q_{i_1}\alpha^1 + \dots + q_{i_{n_1}}\alpha^{n_i}$$

where we can assume $q_{i_{n_i}} \neq 0$. To avoid this hellish notation let's replace

this with

$$\overline{v_1} = \text{mess}_1 \quad \text{deg } n_1
\overline{v_2} = \text{mess}_2 \quad \text{deg } n_2
\vdots
\overline{v_m} = \text{mess}_m \quad \text{deg } n_m.$$

Let $M=\max\{n_1,\ldots,n_m\}$. Since $\alpha^{M+1}\in\mathbb{Q}[\alpha]$ there exist scalars $d_1,\ldots,d_m\in\mathbb{Q}$ such that $\alpha^{M+1}=d_1\overline{v_1}+\cdots+d_m\overline{v_m}$. Then $\alpha^{M+1}=d_1(\text{mess}_1)+\cdots+d_m(\text{mess}_m)=r_0+r_1\alpha^1+\cdots+r_M\alpha^M$ with $r_i\in\mathbb{Q}$ by expanding all messes and collecting like terms in powers of α . Define $p(x)=x^{M+1}-(r_0+r_1x^1+\cdots+r_Mx^M)$. We can clear the denominators to get a nonzero polynomial $\widetilde{p}(x)\in\mathbb{Z}[x]$ such that $\widetilde{p}(\alpha)=0$, so α is algebraic.

Note. This is only one direction of this proof, we will prove the other direction next time.

Recall from last time:

Lemma 6. Let $\alpha \in \mathbb{C}$. Then the vector space $\mathbb{Q}[\alpha] := \operatorname{span}_{\mathbb{Q}}(1, \alpha, \alpha^2, \dots)$ is finitely generated over \mathbb{Q} if and only if $\alpha \in \overline{\mathbb{Q}}$

Proof. Last time we showed the forward direction. We assumed $\mathbb{Q}[\alpha]$ is finitely generated and we found a nonzero polynomial $\widetilde{p} \in \mathbb{Z}[x]$ such that $\widetilde{p}(\alpha) = 0$. We took a generating family $(\overline{v_1}, \ldots, \overline{v_m})$, and for all $1 \leq i \leq m$, there exist scalars in \mathbb{Q} such that $\overline{v_i} = \underbrace{q_{i_0} + q_{i_1}\alpha^1 + \cdots + q_{i_{n_1}}\alpha^{n_i}}$. Let

 $M = \max\{n_1, n_2, \dots, n_m\}$. Consider $\alpha^{M+1} \in \mathbb{Q}[\alpha]$. There exist scalars $d_1, \dots, d_m \in \mathbb{Q}$ such that

$$\alpha^{M+1} = \alpha^{M+1} = d_1 \overline{v_1} + \dots + d_m \overline{v_m}$$

$$= d_1(\text{mess}_1) + \dots + d_m(\text{mess}_m)$$

$$= r_0 + r_1 \alpha^1 + \dots + r_M \alpha^M$$

So $0 = -\alpha^{M+1} + r_0 + r_1\alpha^1 + \dots + r_M\alpha^M$. So defined $p(x) = -x^{M+1} + r_0 + r_1x^1 + \dots + r_Mx^M$ and we multiplied out the denominators to get $\widetilde{p} \in \mathbb{Z}[x]$.

Now we need to prove the other direction, assume $\alpha \in \overline{\mathbb{Q}}$. We will begin with a motivating example.

Example. Suppose α is a root of $x^5 - 67x^2 + 3 = 0$, how does this give us a generating family for $\mathbb{Q}[x]$?

Let's continue with the proof. Since $\alpha \in \overline{\mathbb{Q}}$ there exist a nonzero $p \in \mathbb{Z}[x]$ such that $p(\alpha) = 0$. We can write $p(\alpha) = a_0 + a_1 \alpha^1 + \cdots + a_N \alpha^N$ with $a_i \in \mathbb{Z}$ and $a_N \neq 0$. So

$$\alpha^{N} = -\frac{a_0}{a_N} - \frac{a_1}{a_N} \alpha^1 - \dots - \frac{a_{N-1}}{a_N} \alpha^{N-1}$$
 (*)

We claim $\underbrace{\mathbb{Q}[x]}_{\text{LHS}} = \underbrace{\text{span}(1, \alpha, \dots, \alpha^{N-1})}_{\text{RHS}}$. We will show this by two-way containment. We have LHS \supseteq RHS immediately from definitions. To

containment. We have LHS \supseteq RHS immediately from definitions. To show LHS \subseteq RHS, fix $\overline{v} \in$ LHS so $\overline{v} = \sum_{i \in \mathbb{N} \cup \{0\}} b_i \alpha^i$ with $b_i \in \mathbb{Q}$ and all but finitely many are zero.

Define the degree of \overline{v} to be $\max\{i \in \mathbb{N} \cup \{0\} \mid b_i \neq 0\}$, that is the greatest nonzero power. Note this is empty if $\overline{v} = \overline{0}_V$. In this case $\overline{v} \in \text{RHS}$ so we are done. Assume $\overline{v} \neq \overline{0}_V$ so a maximum exists.

We start with a nice case, if $\deg(\overline{v}) < N$, we are done. Now let's tackle a harder case. For $\deg(\overline{v}) \geq N$ set $j = \deg(\overline{v}) - (N-1)$. Note j = 1 when $\deg(\overline{v}) = N$. We will induct on j. So for our base case j = 1, we have $\deg(\overline{v}) = N$. We want to show $\overline{v} \in \text{RHS}$. By (*), we may replace α^N in \overline{v} with the combination in (*). Then \overline{v} is a linear combination of vectors in $(1, \alpha, \alpha^2, \ldots, \alpha^{N-1})$ so we win!

Now we have our strong inductive hypothesis: Suppose that if $1 \le j < n$, then $\overline{v} \in \text{RHS}$. We will prove that if j = n, then $\overline{v} \in \text{RHS}$. Assume j = n, so $\deg(\overline{v}) - (N - 1) = n$, or alternatively, $\deg(\overline{v}) = n + (N - 1)$. So we can write \overline{v} as

$$\overline{v} = b_{N-1+n} \alpha^{N-1+n} + \overline{v}'$$
$$= b_{N-1+n} \cdot \alpha^{n-1} \cdot \alpha^N + \overline{v}'$$

with $b_{N-1+n} \in \mathbb{Q} \setminus \{0\}$ and $\deg(\overline{v}') < N-1+n$. Now we can replace α^N with (*) so

$$\overline{v} = b_{N-1+n} \left[-\frac{a_0}{a_N} - \frac{a_1}{a_N} \alpha^1 - \dots - \frac{a_{N-1}}{a_N} \alpha^{N-1} \right] + \overline{v}'$$

and by our inductive hypothesis $\overline{v} \in RHS$.