Amanda I. Campos – Projeto 2 da disciplina Otimização Natural 2020/1

Problema do Caixeiro Viajante - 29 cidades **1- Código**

Fig. 3

23/01/2021 1

2- Parâmetros

 $J_{\text{\acute{o}timo}} = 9.074148047872841$

Número de	Tamanho da	Número de	Probabilidade de	Probabilidade	E1242	SR GA	SR ME			AECGA	A EC ME	T
execuções	população	gerações	crossover	de mutação	Elitismo			MBF GA	MIBF ME	AES GA	AES ME	Tempo
100	50	1500	0.9	0.001	0.2	0%	2%	11.22623	10.32745	0	0	08:22:16
100	50	1500	0.1	0.001	0.2	1%	1%	11.61428	11.33576	60029	72034.8	08:25:11
100	100	1500	0.1	0.001	0.2	14%	19%	11.03545	11.02371	120029	144034.8	18:25:29
100	100	1500	0.3	0.001	0.2	35%	45%	9.392361	9.229517	120029	144034.8	14:07:19
100	100	1500	0.5	0.001	0.2	15%	36%	10.00139	9.690392	120029	144034.8	10:55:05
100	1000	1000	0.1	0.01	0.2	35%	36%	9.14514	9.13209	800029	960034.8	09:26:17
100	80	1500	0.3	0.001	0.2	18%	32%	9.9914	9.777	96029	115234.8	06:29:29
100	60	1500	0.3	0.001	0.2	11%	19%	10.454	10.2318	72029	86434.8	04:44:25
100	80	1500	0.4	0.001	0.4	9%	29%	10.1697	9.8302	60029	72034.8	02:55:55
100	500	1500	0.3	0.001	0.2	62%	67%	9.182045	9.09013	895565.7	1074678.806	20:55:30

23/01/2021 2

3- Comentários

	SR	MBF	AES	Tempo de execução	
GA	62%	9.1820	895566	20.55.20	
\mathbf{ME}	67%	9.0901	1074679	20:55:30	

Solução aceita com 0.05% de variação da rota ótima

TamanhoPopulação = [500]
num_Geraçãoes = [1500]
taxa_crossover = [0.3]
Mutação_pc = [0.001]
elitism_pc = [0.2]
num_execuções = 100

23/01/2021

4- Conclusões

- Busca local do algoritmo memético resultou em melhoras em todas as execuções;
- Os índices SR, AES e MBF indicaram que o AM é mais adequado para esse problema;
- Foi possível determinar o conjunto de parâmetros que garantem a convergência do algoritmo;
- •O aumento do tamanho da população e do número de gerações resultam em maior convergência porém aumentam o tempo de execução;
- •Sugestão de trabalhos futuros: comparar com outros AEs e implementar um problema com dois caixeiros atacando o mesmo conjunto de cidades.

23/01/2021 4

