Objetivos: Determinar a aceleração gravítica.

Dados obtidos:

$\Delta y $ $10^{-2} m$	t ₁	t ₂	t ₃	t ₄	t 5	\bar{t}	$\frac{\Delta y}{\bar{t}}$	
10,0	0,089	0,090	0,090	0,090	0,090	0,0898	1,1136	
20,0	0,143	0,143	0,143	0,143	0,143	0,143	1,3986	Pequena
30,0	0,182	0,182	0,182	0,182	0,182	0,182	1,6483	
40,0	0,223	0,222	0,223	0,223	0,222	0,2226	1,7969	
50,0	0,252	0,252	0,253	0,252	0,253	0,2524	1,9810	
60,0	0,278	0,278	0,279	0,278	0,279	0,2784	2,1551	
10,0	0,091	0,092	0,092	0,092	0,091	0,0916	1,0917	
20,0	0,144	0,144	0,144	0,145	0,144	0,1442	1,3870	
30,0	0,188	0,188	0,187	0,187	0,186	0,1868	1,6060	Grande
40,0	0,223	0,224	0,224	0,224	0,225	0,224	1,7857	
50,0	0,254	0,254	0,254	0,254	0,254	0,254	1,9685	
60,0	0,281	0,281	0,282	0,282	0,282	0,2816	2,1307	

$$\frac{1}{2}g = m$$

$$a = g \iff a = 2 * m$$

$$\frac{\Delta y}{t} = V_A + \frac{1}{2}gt$$

$$y = mx + b \qquad y \implies \frac{\Delta y}{\bar{t}} \qquad x \implies \bar{t}$$

$$\frac{\Delta y}{\bar{t}} = m\bar{t} + b$$

$$\frac{\Delta y}{\bar{t}} = V_A + \frac{1}{2}g\bar{t} \iff \frac{1}{2}g = 9,8 * \frac{1}{2} = 4,9$$

$$\iff \frac{\Delta y}{\bar{t}} = V_A + 4,9\bar{t} \implies m \text{ (declive)}$$

$$\frac{\Delta y}{\bar{t}} = 4.9 \; \bar{t} + \mathsf{V}_{\mathsf{A}}$$

Dados tratados:

• Bola pequena:

$$m = \frac{1,3986 - 1,1136}{0,143 - 0,0898} = \frac{0,285}{0,0532} = 5,3571$$

$$y = 5,3571x + b$$

$$1,3986 - 5,3571 * 0,143 = b <=> b \approx 0,6325$$

$$y = 5,3571x + 0,6325$$

$$\frac{\Delta y}{\bar{t}} = 5,3571 \, \bar{t} + 0,6325$$
m (declive)

$$V_A = 0.6325 \text{ m/s}$$

$$a = 5,3571 * 2 = 10,7142 m/s^2$$

• Bola grande:

$$m = \frac{1,9685 - 1,7857}{0,254 - 0,224} = \frac{0,1828}{0,03} = 6,093$$

$$y = 6,093x + b$$

$$1,9685 - 6,093 * 0,254 = b <=> b \approx 0,4209$$

$$y = 6,093x + 0,4209$$

$$\frac{\Delta y}{\bar{t}} = 6,093 \; \bar{t} + 0,4209$$
m (declive)

$$V_A = 0.4209 \text{ m/s}$$

$$a = 6,093 * 2 = 12,186 \text{ m/}s^2$$

Conclusão:

Após termos efetuado o tratamento dos dados, concluímos que a aceleração gravítica das duas bolas (pequena e grande) é ligeiramente diferente. Esta indiferença deve-se ao facto de terem tamanhos diferentes, logo irão ter superfícies de contactos diferentes. O que faz com que a bola maior ganhe uma maior aceleração gravítica.

O valor do declive obtido é aproximadamente o esperado visto que $(m = \frac{1}{2}g)$ e o valor tabelado de g é de aproximadamente de 9.8, ou seja, o m que seria esperado de obter seria 4.9 e o valor experimental de m é aproximadamente igual.