MATH 271: chapter 7 homework

Micah Sherry

November 4, 2024

4. Given an integer a, then $a^2 + 4a + 5$ is odd if and only if a is even.

Proof. First we will show that: if a is even, then $a^2 + 4a + 5$ is odd and we will show this directly. Assuming a is even, then $\exists n \in \mathbb{Z}$ such that a = 2n. So,

$$a^{2} + 4a + 5 = (2n)^{2} + 4(2n) + 5$$
$$= 4n^{2} + 8n + 5$$
$$= 2(2n^{2} + 4n + 2) + 1$$

Since $2(2n^2 + 4n + 2) + 1$ is odd (by definition of odd) the implication holds.

Next we will show that: if $a^2 + 4a + 5$ is odd, then a is even. Consider the contra-positive of this statement: if a is odd, then $a^2 + 4a + 5$ is even. Assuming a is odd, then, $\exists n \in \mathbb{Z}$ such that a = 2n + 1. So,

$$a^{2} + 4a + 5 = (2n + 1)^{2} + 4(2n + 1) + 5$$
$$= 4n^{2} + 4n + 1 + 8n + 4 + 5$$
$$= 4n^{2} + 12n + 10$$
$$= 2(2n^{2} + 6n + 5)$$

Since $2(2n^2 + 6n + 5)$ is even the contra-positive holds and so does the original implication.

Since if a is even, implies $a^2 + 4a + 5$ is odd and if $a^2 + 4a + 5$ is odd, implies a is even. The original statement holds.

6. Suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y = -x

Proof. First we will show that: if $y = x^2$ or y = -x, then $x^3 + x^2y = y^2 + xy$.

case 1:
$$y = -x$$

$$x^{3} + x^{2}y = x^{3} + x^{2}(-x)$$
 (by substitution)
$$= x^{3} - x^{3}$$

$$= 0$$

and

$$y^{2} + xy = (-x)^{2} + x(-x)$$
 (by substitution)
$$= x^{2} - x^{2}$$
$$= 0$$

Therefore $x^3 + x^2y = y^2 + xy$ when y = -x.

case 2:
$$y = x^2$$

Consider $x^4 + x^3$,

$$x^{4} + x^{3} = x^{4} + x^{3}$$

$$= (x^{2})^{2} + (x^{2})x$$
 (by factoring)
$$= y^{2} + yx$$
 (by substitution)

$$x^4 + x^3 = x^4 + x^3$$

= $x^2(x^2) + x^3$ (by factoring)
= $x^2y + x^3$ (by substitution).

Thus, $x^3 + x^2y = y^3 + xy$ when $y = x^2$. since both cases hold so does the original implication.

next consider the implication: if $x^3 + x^2y = y^2 + xy$, then $y = x^2$ or y = -x. Assume for the sake of contradiction that: $x^3 + x^2y = y^2 + xy$ and $y \neq x^2$ and $y \neq -x$. Since,

$$x^{3} + x^{2}y = y^{2} + xy$$

$$x^{2}(x+y) = y(x+y)$$
 (by factoring)
$$\frac{x^{2}(x+y)}{(x+y)} = \frac{y(x+y)}{(x+y)}$$

$$x^{2} = y.$$

Which is a contradiction therefore the original implication holds.

Since, $y = x^2$ or y = -x, implies $x^3 + x^2y = y^2 + xy$ and $x^3 + x^2y = y^2 + xy$, implies $y = x^2$ or y = -x the original statement holds

8. testing