Reduction of state table

- This step is used to reduce the number of states in state table
- Reducing the number of steps in a state table will
 - · Reduce the amount of input gates, and
 - The number of Flip-Flops may also be reduced

Minimization Procedure

- Step #1 : Elimination of redundant states by applying
 - Row matching technique
- Step #2 : Elimination of equivalent states by applying
 - Partitioning method
 - Implication table method

Digital Logic Circuits II

Prof.Dr. Magdy A. Ahmed

4

Reduction of state table

Equivalent States

Two states p and q of a sequential circuit are equivalent \underline{iff} for every single input X, the outputs are the same and the next states are equivalent.

Equivalent Networks

The sequential network N_1 is equivalent to sequential network N_2 if for each state p in N_1 there is a state q in N_2 such that $p \equiv q$, and conversely, for each state s in s there is a state s in s in s in s there is a state s in s in

Digital Logic Circuits II

Prof.Dr. Magdy A. Ahmed

2

Reduction of state table

Example: 2

For the following state table, find the corresponding reduced one.

Step #1 : No Row Matching

P.S.	N.S. $X = 0$ $X = 1$		Output Z
a	e	e	1
b	С	e	1
c	i	h	0
d	h	a	1
e	i	f	0
f	e	g	0
g	h	b	1
h	С	d	0
i	f	b	1

Digital Logic Circuits II

Reduction of state table

Step # 2 : Partitioning method

Reduced state table

	N.S.		
P.S.	X = 0	X = 1	Z
A	С	С	1
В	D	Α	1
C	В	D	0
D	С	В	0

Digital Logic Circuits II

Prof.Dr. Magdy A. Ahmed

P.S.	N.S. $X = 0$ $X = 1$		Output Z
a	e	е	1
b	С	e	1
c	i	h	0
d	h	a	1
e	i	f	0
f	e	g	0
g	h	b	1
h	С	d	0
i	f	b	1

