Lista 3

Contents

Problem 1	· • • • • • • • • • • • • • • • • • • •
Problem 2	
Problem 3	•

Problem 1

Solution.

a. Note that a basis of T_x^*M is $df_1, \ldots, df_k, x_{k+1}, \ldots, x_{2n}$. Then any 2n-form is a multiple of $df_1 \wedge \ldots \wedge df_k \wedge dx_{k+1} \wedge \ldots \wedge d_{2n}$.

. . . (1.

Problem 2 Let M be a symplectic manifold, $\Psi=(\psi^1,\ldots,\psi^k):M\to\mathbb{R}^k$ a smooth map, and c a regular value. Consider a submanifold $N=\Psi^{-1}(c)\hookrightarrow M$.

- a. Show that N is coisotropic if and only if $\{\psi^i, \psi^j\}|_N = 0$ for all $i, j = 1, \dots, k$.
- b. Show that N is symplect if and only if the matrix (c^{ij}) , with $c^{ij} = \{\psi^i, \psi^j\}$, is invertible for all $x \in N$. In this case, verify that we have the following expression for the Poisson bracket $\{\cdot, \cdot\}_N$ on N (known as *Dirac's bracket*):

$$\{f,g\}_{N} = \left(\{\tilde{f},\tilde{g}\} = \sum_{ij} \{\tilde{f},\tilde{g}\}c_{ij}\{\psi^{j},\tilde{g}\}\right)\bigg|_{N}$$

Solution.

a. Since M is symplectic we have a bundle isomorphism

$$\omega^{\flat}: TM \longrightarrow T^*M$$

$$\nu \longmapsto i_{\nu}\omega$$

Then

$$TN^{\omega} = (\omega^{\flat})^{-1}(Ann(TN)).$$

Since M is the level set of a regular value, there are local coordinates of the form $(\psi^1,\ldots,\psi^k,\chi^{k+1},\ldots,\chi^{2n})$. Vectors tangent to N are expressed only in terms of the vectors $\vartheta_{k+1},\ldots,\vartheta_{2n}$ and thus covectors that vanish on TN are those which vanish on $\vartheta_{k+1},\ldots,\vartheta_{2n}$. This means that a basis for Ann(TN) is given by $d\psi^1,\ldots,d\psi^k$

(indeed, the canonical basic covectors for the coordinates ψ^i are the differentials $d\psi^i$ —this can be checked using a change of coordinates matrix). These generators map to their hamiltonian vector fields under $(\omega^\flat)^{-1}$:

$$\left(\omega^{\flat}\right)^{-1}(d\psi^{\mathfrak{i}})=X_{\psi^{\mathfrak{i}}}$$

So TN^ω is generated by the X_{ψ^i} . Notice that any vector $v \in \mathsf{TM}$ is actually in TN iff $\alpha(v) = 0 \ \forall \alpha \in \mathsf{Ann}(\mathsf{TN})$. Then we see that

$$\begin{split} \mathsf{TN}^\omega \subset \mathsf{TM} &\iff X_{\psi^\mathfrak{i}} \in \mathsf{TN} \quad \mathfrak{i} = 1, \dots, k \\ &\iff d\psi^\mathfrak{j}(X_{\psi^\mathfrak{i}})|_N = 0 \quad \mathfrak{i}, \mathfrak{j} = 1, \dots, k \\ &\iff \omega(X_{\psi^\mathfrak{i}}, X_{\psi^\mathfrak{j}})|_N = 0 \quad \mathfrak{i}, \mathfrak{j} = 1, \dots, k \\ &\iff \{\psi^\mathfrak{i}, \psi^\mathfrak{j}\}|_N = 0 \quad \mathfrak{i}, \mathfrak{j} = 1, \dots, k \end{split}$$

b. The matrix (c^{ij}) determines the bundle isomorphism ω^{\sharp} :

Problem 3

Solution. By an analogue argument to Problem 2a we know that Ann(D) is a coisotropic submanifold iff $\{f,g\}=0$ for all $f,g\in I_{Ann(D)}$. Now a vector field X corresponds naturally to an element of the double dual $\xi\in T^*(T^*(M))$ given by $\xi\eta(X)=\eta(X)$ for $\eta\in T^*M$. Notice that if $X\in D$ then $\xi\in Ann(Ann(D))$.