Мазур Анастасия Вадимовна, 316

Анализ данных, связанных с баскетбольными игроками **NBA**

Данное задание необходимо было реализовать на собственных данных. Я захотела проанализировать такой датасет, тема которого мне близка и интересна. </br> показательны. Это позволяет самостоятельно выдвигать логичные гипотезы и проверять результаты на правдоподобность.

Устанавливаем необходимые библиотеки Python для дальнейшей работы.

```
In [ ]:
```

```
import pip
pip.main(["install", "scikit-learn"])
pip.main(["install", "scikit-learn"])
pip.main(["install", "scikit-image"])
pip.main(["install", "umap-learn"])
pip.main(["install", "pip.main(["install", "pipymidgets"])
pip.main(["install", "hyperopt"])
pip.main(["install", "ipywidgets"])
pip.main(["install", "keras"])
pip.main(["install", "lightgbm"])
pip.main(["install", "outlier_utils"])
pip.main(["install", "pundas"])
pip.main(["install", "plotly"])
pip.main(["install", "scipy"])
pip.main(["install", "scipy"])
pip.main(["install", "scikit"])
pip.main(["install", "torch"])
pip.main(["install", "torch"])
pip.main(["install", "torchvision"])
pip.main(["install", "tordm"])
pip.main(["install", "umap"])
pip.main(["install", "umap"])
pip.main(["install", "statsmodels"])
import matplotlib
import numpy as np
   import pip
   import matplotlib
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   {\tt import\ warnings}
   import scipy
   from scipy import stats
warnings.simplefilter("ignore")
   sns.set(style="darkgrid")
   %matplotlib inline
my_color = '#6852A3
   warnings.filterwarnings("ignore") # не вывожу предупреждающие сообщения
```

Скачиваем функции, которые могут нам понадобиться для работы на языке R:

```
# Выключаю вывод предупреждающих сообщений warning oldw <- getOption("warn")
options (warn = -1)
install.packages("dplyr")
install.packages("Hmisc")
install.packages("ggplot2")
install.packages("highcharter")
install.packages("Leaflet")
install.packages("RColorBrewer")
install.packages("Plotly")
install.packages("sunburstR")
install.packages("RGL")
install.packages("dygraphs")
install.packages("outliers")
library(outliers)
install.packages("mice")
library(mice)
install.packages("corrplot")
library(corrplot)
install.packages('car')
set.seed(31600) # устанавливаю значение рандома по умолчанию
filter_data = function(data_frame, column, value){
  dplyr::filter(data_frame, !! as.symbol(column) == value)
```

Данные я брала из открытого источника DatasetHub. </br> В разных заданиях датасеты отличаются. Это потому что одни таблицы мне казались более удобными для реализации конкретного задания, потому что имели больше необходимых мне данных, которые я хотела рассмотреть, проанализировать и визуализировать. </br>
- Давайте же ознакомимся с этими таблицами.

NBA_STATS </br> Табличка с характеристиками игроков и их основными игровыми показателями. </br> В таблице 490 записей про действующих на данный момент игроков NBA.

```
nba_stats = pd.read_csv("/Users/mazur/Desktop/PRAK_5sem/nba/players_stats.csv")
nba stats
```

Out[3]:

	Name	Games Played	MIN	PTS	FGM	FGA	FG%	3РМ	ЗРА	3P%	 Age	Birth_Place	Birthdate	Collage	Experience	Height	Pos	Team	Weight	ВМІ
0	AJ Price	26	324	133	51	137	37.2	15	57	26.3	 29.0	us	October 7, 1986	University of Connecticut	5	185.0	PG	РНО	81.45	23.798393
1	Aaron Brooks	82	1885	954	344	817	42.1	121	313	38.7	 30.0	us	January 14, 1985	University of Oregon	6	180.0	PG	СНІ	72.45	22.361111
2	Aaron Gordon	47	797	243	93	208	44.7	13	48	27.1	 20.0	us	September 16, 1995	University of Arizona	R	202.5	PF	ORL	99.00	24.142661
3	Adreian Payne	32	740	213	91	220	41.4	1	9	11.1	 24.0	us	February 19, 1991	Michigan State University	R	205.0	PF	ATL	106.65	25.377751
4	Al Horford	76	2318	1156	519	965	53.8	11	36	30.6	 29.0	do	June 3, 1986	University of Florida	7	205.0	С	ATL	110.25	26.234384
485	Xavier Henry	9	86	20	3	13	23.1	0	0	0.0	 24.0	be	March 15, 1991	University of Kansas	4	195.0	SF	LAL	99.00	26.035503
486	Zach LaVine	77	1902	778	286	677	42.2	57	167	34.1	 20.0	us	March 10, 1995	University of California, Los Angeles	R	192.5	PG	MIN	85.05	22.951594
487	Zach Randolph	71	2304	1143	454	932	48.7	7	20	35.0	 34.0	us	July 16, 1981	Michigan State University	13	202.5	PF	MEM	117.00	28.532236
488	Zaza Pachulia	73	1730	606	240	529	45.4	0	3	0.0	 31.0	ge	February 10, 1984	NaN	11	207.5	С	MIL	121.50	28.218900
489	Zoran Dragic	16	75	28	11	30	36.7	3	14	21.4	 26.0	si	June 22, 1989	NaN	R	192.5	SG	РНО	90.00	24.287401

490 rows × 34 columns

Unnamed:

NBA PLAYERS </br>
Таблица побольше. Здесь уже целых 12305 записей о всех игроках NBA, которые когда либо играли в лиге.

```
In [3]:
```

```
nba_players = pd.read_csv("/Users/mazur/Desktop/PRAK_5sem/nba/all_players.csv")
nba_players
```

draft_round ... player name Dennis Rodman team_abbreviation age player_height player_weight Southeastern Oklahoma State country draft_year pts reb ast net_rating oreb_pct 0.186 dreb pct 0.323 usg pct ts pct 0.479 ast_pct _season 0 0 1 LAC 28.0 215.90 117.933920 Florida USA 1990 2.3 1.5 0.3 12.3 0.078 0.151 0.175 0.430 0.048 1996-97 Schintzius 0.103 0.376 0.148 1996-97 2 2 **Earl Cureton** TOR 39.0 205.74 95.254320 **Detroit Mercy** USA 1979 0.8 1.0 0.4 -2.1 0.105 0.102 3 3 Ed O'Bannon DAL 24.0 203.20 100.697424 UCLA USA 1995 3.7 2.3 0.6 -8.7 0.060 0.149 0.167 0.399 0.077 1996-97 4 Ed Pinckney MIA 34.0 205.74 108.862080 Villanova USA 1985 -11.2 0.109 0.179 0.127 0.611 0.040 1996-97 0.197 0.547 0.116 2021-22 12300 12300 Markieff Morris MIA 32.0 205.74 111.130040 Kansas USA 2011 7.6 2.6 1.4 4.5 0.059 0.089 0.265 0.517 0.448 2021-22 12301 12301 Markelle Fultz ORL 24.0 193.04 94.800728 Washington USA 2017 10.8 2.7 5.5 -5.3 0.010 0.116 0.245 2021-22 12302 BOS 28.0 2014 12.1 3.8 5.9 9.3 0.018 0.540 12302 **Marcus Smart** 193.04 99.790240 Oklahoma State USA 0.093 0.179 12303 12303 Marcus Garrett MIA 23.0 195.58 92.986360 0.072 0.069 2021-22 Undrafted ... 4.0 3.0 0.0 12304 12304 Micah Potter **DET 24.0** 208.28 112,490816 Wisconsin USA Undrafted -56.4 0.095 0.125 0.148 0.505 0.000 2021-22

12305 rows × 22 columns

NBA_SEASONS </br> Совсем большая табличка, 24691 строка с информацией о различных игроках конкретно в каждом игровом сезоне.</br> Позволяет учитывать временной аспект: сравнивать результаты за разные годы, делать прогнозы.

In [4]:

nba_seasons = pd.read_csv("/Users/mazur/Desktop/PRAK_5sem/nba/Seasons_Stats.csv")
nba_seasons

Out[4]:

	Unnamed: 0	Year	Player	Pos	Age	Tm	G	GS	MP	PER	 FT%	ORB	DRB	TRB	AST	STL	BLK	TOV	PF	PTS
0	0	1950.0	Curly Armstrong	G-F	31.0	FTW	63.0	NaN	NaN	NaN	 0.705	NaN	NaN	NaN	176.0	NaN	NaN	NaN	217.0	458.0
1	1	1950.0	Cliff Barker	SG	29.0	INO	49.0	NaN	NaN	NaN	 0.708	NaN	NaN	NaN	109.0	NaN	NaN	NaN	99.0	279.0
2	2	1950.0	Leo Barnhorst	SF	25.0	CHS	67.0	NaN	NaN	NaN	 0.698	NaN	NaN	NaN	140.0	NaN	NaN	NaN	192.0	438.0
3	3	1950.0	Ed Bartels	F	24.0	тот	15.0	NaN	NaN	NaN	 0.559	NaN	NaN	NaN	20.0	NaN	NaN	NaN	29.0	63.0
4	4	1950.0	Ed Bartels	F	24.0	DNN	13.0	NaN	NaN	NaN	 0.548	NaN	NaN	NaN	20.0	NaN	NaN	NaN	27.0	59.0
24686	24686	2017.0	Cody Zeller	PF	24.0	СНО	62.0	58.0	1725.0	16.7	 0.679	135.0	270.0	405.0	99.0	62.0	58.0	65.0	189.0	639.0
24687	24687	2017.0	Tyler Zeller	С	27.0	BOS	51.0	5.0	525.0	13.0	 0.564	43.0	81.0	124.0	42.0	7.0	21.0	20.0	61.0	178.0
24688	24688	2017.0	Stephen Zimmerman	С	20.0	ORL	19.0	0.0	108.0	7.3	 0.600	11.0	24.0	35.0	4.0	2.0	5.0	3.0	17.0	23.0
24689	24689	2017.0	Paul Zipser	SF	22.0	СНІ	44.0	18.0	843.0	6.9	 0.775	15.0	110.0	125.0	36.0	15.0	16.0	40.0	78.0	240.0
24690	24690	2017.0	Ivica Zubac	С	19.0	LAL	38.0	11.0	609.0	17.0	 0.653	41.0	118.0	159.0	30.0	14.0	33.0	30.0	66.0	284.0

24691 rows × 53 columns

In [158]:

```
#Читаем таблицы и удаляем пустые значения

nba_stats <- read.csv(file = "/Users/mazur/Desktop/PRAK_5sem/nba/players_stats.csv", header = TRUE)
nba_stats <- na.omit(nba_stats)

nba_seasons <- read.csv(file = "/Users/mazur/Desktop/PRAK_5sem/nba/Seasons_Stats.csv", header = TRUE)
nba_seasons <- na.omit(nba_seasons)

nba_players <- read.csv(file = "/Users/mazur/Desktop/PRAK_5sem/nba/all_players.csv", header = TRUE)
nba_players <- na.omit(nba_players)
```

1. Аппроксимация распределений данных с помощью ядерных оценок. </h2>

Существует мнение, что баскетбол - игра для высоких людей.</br> Давайте же проанализируем данные и выясним, как распределён рост игроков.

In [5]:

sns.displot(x = 'Height', data = nba stats, color = my color)

Out[5]:

<seaborn.axisgrid.FacetGrid at 0x106630f10>

Как во всех командных играх, в баскетболе у каждого игрока есть своя роль и функции. Это определяется его позицией. </br>

- 1. PG Point Guard (Разыгрывающий защитник)
- 2. SG Shooting Guard (Атакующий защитник)
- 3. SF Small Forward (Лёгкий форвард)
- 4. PF Power Forward (Тяжёлый форвард)
- **5. С Center (**Центровой**)**

Гипотеза: Существует корреляция между ростом игрока и его позицией на площадке. </br>
Выделим подмножества данных на нашей гистограмме.

In [6]:

sns.displot(x = 'Height', hue = 'Pos', data = nba_stats)

Out[6]:

<seaborn.axisgrid.FacetGrid at 0x106275c00>

Ядерная оценка плотности (ЯКеrnel Density Estimation, KDE) — это непараметрический способ оценки плотности случайной величины. Ядерная оценка плотности является задачей сглаживания данных, когда делается заключение о совокупности, основываясь на конечных выборках данных.</br>

Данный метод уже реализован в библиотечной функции displot, необходимо просто включить параметр kde в аргументах функции. Но каков его принцип работы?</br>

- 1. Сначала для каждой точки наблюдений строится график нормального распределения с центром в этой точке.</br>
- 2. Значения каждой нормальной кривой суммируются, а затем полученное значение нормализуется так, чтобы площадь под результирующей кривой стала равна 1.</br>
- 3. Полученный график сглаживается в зависимости от выбора полосы пропускания.</br>

sns.displot(x = 'Height', col = 'Pos', kde = True, data = nba stats, color = my color)

Полоса пропускания ядра является свободным параметром, который оказывает сильное влияние на результат оценки. </br>
Здесь я использую ту пропускную способность, которую предложил matplotlib на основе моих данных, считая такое значение наиболее оптимальным.

```
In [7]:
```

In [8]:

0.005

0.000

170

```
Seaborn.axisgrid.FacetGrid at 0x10c6a0a90>
Pos = PG
Pos = SG
Pos = SG
Pos = SF
Pos = SF<
```

Посмотрим гистограмму с ядерными оценками в R:

180

190

200

Height

210

220

230

```
In []:
# фильтруем таблицу
nba_stats_pg <- filter_data(nba_stats, 'Pos', 'PG')
nba_stats_pg # игроки на позиции Point Guard
data <- nba stats pgSHeigh # будем смотреть распределение роста
```


Вообще, позиция игрока являеется очень хорошей качественной (фактором), потому что позволяет отследить много зависимостей. Поэтому в последующих заданиях будет часто использоваться.

1. Анализ данных с помощью cdplot, dotchart, boxplot, stripchart. </h2>

cdplot:

```
In [22]:

# Распределние по количеству очков у игроков разных позиций

nba_stats factor <- factor(nba_stats pros)

cdplot(factor ~ nba_stats pros, col = c("coral", "yellow", "lightblue", "purple"), data = nba_stats)
```


Для визуализации связи между двумя переменными, одна из которых является количественной, а другая качественной (фактором), можно использовать диаграмму размахов. Если зависимой является качественная переменная, то удобно воспользоваться одной из базовых графических функций **R** - cdplot(), позволяющей совмещать на одном графике плотности вероятности для каждого уровня интересующей исследователя качественной переменной (англ. conditional density plot).

Aналогом этой функции в **Python** служит всё та же функция displot() из библиотеки seaborn, которую мы уже использовали ранее при работе с ядерными оценками. Теперь же добавляем параметр multiple = "fill", чтобы видеть график именно в том виде, который строит cdplot().

Давайте посмотрим на то, игроки каких позиций больше очков приносят команде. Для этого обратимся к таблице NBA SEASONS и рассмотрим игры за 2017 год. </br>
- На графике отражаю распределение по количеству набранных очков игроками с разных позиций.

```
In [9]:
sns.displot(data = nba seasons[nba seasons['Year']==2017], hue = "Pos", multiple = "fill", x = "PTS", kind = "kde")
Out[9]:
```


Примечание: графики на **R** и **Python** рассматривают разные данные, но характер распределения одинаков и подтверждает гипотезу.

dotchart:

Точечный график как представление распределения состоит из группы точек данных, нанесенных на простой масштаб. Точечные диаграммы используются для непрерывных, количественных, одномерных данных. Точечные графики - это один из простейших статистических графиков, который подходит для небольших и средних наборов данных. Они полезны для выделения кластеров и пробелов, а также выбросов. Другое их преимущество - сохранение числовой информации. При работе с большими наборами данных (около 20–30 или более точек данных) связанный стержневой график, прямоугольная диаграмма или гистограмма могут быть более эффективными, так как точечные графики после этого момента могут стать слишком загроможденными. Точечные графики можно отличить от гистограмм тем, что точки не расположены равномерно по горизонтальной оси.

Хотя сюжет кажется простым, его расчет и лежащая в его основе статистическая теория непросты. Алгоритм вычисления точечной диаграммы тесно связан с оценкой плотности ядра. Выбранный размер точек влияет на внешний вид сюжета. Выбор размера точки эквивалентен выбору полосы пропускания для оценки плотности ядра.

В R это реализуется с помощью функции dotchart(), в Python аналогичный график строится при помощи функции scatter().

Итак, нам нужно небольшое количество данных. Рассмотрим игровые показатели команды **Golden State Warriors (GSW)** за игровой сезон **2017** года и отметим на точечном графике количество реализованных двухочковых бросков **(2P)** у различных игроков.

In [10]:

```
gsw_2017 = nba_seasons['Year'] == 2017] [nba_seasons['Tm'] == 'GSW']
import plotly.express as px
fig = px.scatter(gsw_2017, y = "Player", x = "2P", height=600, color = "Pos")
fig.update_yaxes(type='category', tickvals=gsw_2017['Player'].tolist())
fig.show()
```


boxtplot:

Диаграммы размаха («ящик с усами») (Box and Whisker Plot или Box Plot) - это удобный способ визуального представления групп числовых данных через квартили.

Прямые линии, исходящие из ящика, называются «усами» и используются для обозначения степени разброса (дисперсии) за пределами верхнего и нижнего квартилей. Выбросы иногда отображаются в виде отдельных точек, находящихся на одной линии с усами. Диаграммы размаха могут располагаться как горизонтально, так и вертикально.

Диаграммы размаха, как правило, используются в описательной статистике и позволяют быстро исследовать один или более наборов данных в графическом виде. Несмотря на то, что в сравнении с гистограммой или графиком плотности, этот график может показаться примитивным, его преимущество – в экономии пространства, что особенно удобно при сравнении распределений между большим количеством групп или наборов данных.

Виды наблюдений, которые можно сделать на основе ящика с усами:

- Каковы ключевые значения, например: средний показатель, медиана 25го перцентиля и так далее.
- Существуют ли выбросы и каковы их значения.
- Симметричны ли данные.
- Насколько плотно сгруппированы данные.
- Смещены ли данные и, если да, то в каком направлении.

drawing

In [42]:

In [11]:

```
sns.boxplot(data = nba stats, y = "Pos", x = "PTS", palette="Purples r")
```

Out[11]:

<AxesSubplot: xlabel='PTS', ylabel='Pos'>


```
SF 0 500 1000 1500 2000 PTS
```

Из данного графика видно, что медианное значение количества забитых трёхочковых бросков у игроков разыгрывающей позиции (**PG**) заметно больше, чем у других игроков. Размах в целом примерно одинаков. Случаются выбросы.

In [43]:

In [12]:

```
sns.boxplot(data = nba stats, y = "Pos", x = "AST", palette="Purples r")
```

Out[12]:

<AxesSubplot: xlabel='AST', ylabel='Pos'>

На данном графике рассмотрели количество результативных передач (Assists). У разыгрывающих их принципиально больше: больше медианное значение и сам размах в целом шире. Игроки других позиций пасуют сильно меньше.

In [51]:

```
boxplot(BLK ~ Pos,

col = rgb(0.5, 0.2, 0.7, 0.5),

data = nba stats)
```


In [13]:

```
sns.boxplot(data = nba_stats, y = "Pos", x = "BLK", palette="Purples_r")
```

Out[13]:

<AxesSubplot: xlabel='BLK', ylabel='Pos'>

На этом графике рассмотрим действия игроков в защите - блокшот, то есть ситуация, когда игрок блокирует бросок соперника.</br>
- Легко заметить, что центровые игроки выделяются. Блогадаря высокому росту и габаритам, этот приём даётся им лучше всего и они активно его практикуют. </br> Выбросы тоже случаются, но всё же общая картина даёт понять, что центровые игроки занимают лидирующие места по этому показателю.

stripchart:

В языке **R** функция stripchart () отвечает за построение одномерных диаграмм рассеяния. **Диаграмма рассеяния** показывает взаимосвязь между двумя числовыми признаками с помощью точек, показывающих движение этих переменных вместе. </br> В языке Python такую диаграмму мы можем реализовать с помощью функции stripplot().

На данном графике я отразила количество успешных трёхочковых бросков (каждая отдельная точка - сумма по всем игрокам за сезон) с течением времени.</br>

Окунёмся в историю: раньше в баскетболе не практиковались броски с дальних дистанций. Со временем стиль игры менялся и пришла идея ввести трёхочковый бросок в игру. В профессиональный баскетбол трёхочковый бросок проник только в начале 1960-х годов, впервые появившись в 1961 году в правилах Американской баскетбольной лиги. Наконец, в сезоне 1979/80 правило о трёхочковых бросках было принято и в HBA.</br></br>

Именно поэтому на графике до 1979 года совсем нет никаких точек - трёхочковые броски попросту не практиковали или же не трактовали таким образом, потому что данной категории не было в правилах.</br> Затем дальний бросок стал набирать всё большую популярность. На графике мы можем видеть, что тренд растёт.

nba_3pt = pd.read_csv("/Users/mazur/Desktop/PRAK_5sem/nba/3pt.csv") # вспомогательная таблица, где просто записана сумма количества трёхочковых бросков за каждый год

```
fig, ax = plt.subplots(figsize=(24, 8), dpi=80)
sns.stripplot(nba_3pt, y = '3PT', x = "Year", jitter=0.45, size=8, linewidth=0.5, color="#6852A3")
plt.tick_params(axis='x', which='major', labelsize=12, rotation=45)
```

Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.

Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.


```
In [63]:
nba_3pt <- read.csv(file = "/Users/mazur/Desktop/PRAK_5sem/nba/3pt.csv", header = TRUE)</pre>
nba_3pt <- na.omit(nba_3pt)</pre>
```


1. Проверка, являются ли наблюдения выбросами с точки зрения формальных статистических критериев Граббса и Q-теста Диксона. Визуализация результатов.

</h2>

Тест Граббса

In [17]:

Stephen Curry

print(nba_stats.at[433, 'Name'])

```
Тест Граббса используется для определения наличия выбросов в наборе данных.
```

```
In [16]:
import smirnov_grubbs as grubbs
#perform Grubbs' test to see if minimum value is an outlier
grubbs. max_test_indices (nba_stats['3PM'], alpha=.05)
Out[16]:
[433, 281]
```

Здесь мы посмотрели тест Граббса для максимального значения по количеству реализованных трёхочковых бросков. Выбросом оказался игрок Стефен Карри, который действительно является рекордсменом по числу дальних бросков.

1. Инструменты для заполнения пропусков в данных. Сравнение результатов заполнения с истинными значениями.

</h1>

В одном из предыдущих заданий мы убедились в том, что существует тенденция роста дальних бросков. И она практические линейная. </br>
 Поэтому в этом задании я хочу поработать с этими данными. Для этого возьмём последние 37 содержательных строк таблицы.

```
In [18]:

df = nba_3pt.tail(37)
df
```

```
Out[18]:
            3РТ
    Year
31 1981
          1035.0
32 1982 1206.0
33 1983 1091.0
34 1984
          1139.0
35 1985 1692.0
         1886.0
36 1986
37 1987
38 1988 3433.0
39 1989
          4678.0
40 1990
          5050.0
41 1991
          5307.0
42 1992
43 1993
          6836.0
44 1994
         7646.0
45 1995 12809.0
46 1996 15163.0
47 1997 15806.0
48 1998 11706.0
49 1999 6874.0
50 2000 11878.0
51 2001 12087.0
52 2002 13230.0
53 2003 12933.0
54 2004 13789.0
```

55 2005 15643.0
56 2006 15325.0
57 2007 15825.0
58 2008 17504.0

59 2009 18529.060 2010 17336.061 2011 18902.062 2012 13325.0

63 2013 19002.0
64 2014 21004.0
65 2015 22080.0
66 2016 22525.0
67 2017 26140.0

In [19]:

```
print(df['Year'][36], ',', df['3PT'][36])
print(df['Year'][42], ',', df['3PT'][42])
print(df['Year'][51], ',', df['3PT'][51])
print(df['Year'][65], ',', df['3PT'][65])

1986 , 1886.0
1992 , 5736.0
2001 , 12087.0
2015 , 22080.0
```

In [20]:

```
fig, ax = plt.subplots(figsize=(24, 8), dpi=80)
sns.stripplot(df, y = '3PT', x = "Year", jitter=0.45, size=8, linewidth=0.5, color="#6852A3")
plt.tick_params(axis='x', which='major', labelsize=12, rotation=45)
```

Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.

Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.

Удалим некоторые строки.

```
In [21]:
df['3PT'][36] = np.nan
df['3PT'][42] = np.nan
df['3PT'][51] = np.nan
df['3PT'][65] = np.nan
```

In [22]:

```
fig, ax = plt.subplots(figsize=(24, 8), dpi=80)
sns.stripplot(df, y = '3PT', x = "Year", jitter=0.45, size=8, linewidth=0.5, color="#6852A3")
plt.tick_params(axis='x', which='major', labelsize=12, rotation=45)
```

Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.

Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.

В такой ситуации пропуски лучше заполнять средним по соседним двум значениям.

```
In [23]:
df['3PT'][36] = (df['3PT'][35] + df['3PT'][37]) / 2
df['3PT'][42] = (df['3PT'][41] + df['3PT'][43]) / 2
df['3PT'][51] = (df['3PT'][50] + df['3PT'][52]) / 2
df['3PT'][65] = (df['3PT'][64] + df['3PT'][66]) / 2
```

```
In [24]:
```

```
print(df['Year'][36], ',', df['3PT'][36])
print(df['Year'][42], ',', df['3PT'][42])
print(df['Year'][51], ',', df['3PT'][51])
print(df['Year'][65], ',', df['3PT'][65])
```

1992 , 6071.5 2001 , 12554.0

2015 , 21764.5

In [25]:

```
fig, ax = plt.subplots(figsize=(24, 8), dpi=80)
sns.stripplot(df, y = '3PT', x = "Year", jitter=0.45, size=8, linewidth=0.5, color="#6852A3")
plt.tick_params(axis='x', which='major', labelsize=12, rotation=45)
```

Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.

Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plottina.

Рассмотрим какое-нибудь распределение, похожее на нормальное. В первом задании мы работали с распределнием роста игроков на разных позициях. Воспользуемся этими данными.

In [26]:

```
nba_stats_c = nba_stats[nba_stats['Pos']=='C']
nba_stats_c
```

Out[26]:

	Name	Games Played	MIN	PTS	FGM	FGA	FG%	3РМ	3РА	3P%	 Age	Birth_Place	Birthdate	Collage	Experience	Height	Pos	Team	Weight	ВМІ
4	Al Horford	76	2318	1156	519	965	53.8	11	36	30.6	 29.0	do	June 3, 1986	University of Florida	7	205.0	С	ATL	110.25	26.234384
5	Al Jefferson	65	1992	1082	486	1010	48.1	2	5	40.0	 30.0	us	January 4, 1985	NaN	10	205.0	С	CHA	130.05	30.945866
8	Alex Kirk	5	14	4	1	4	25.0	0	0	0.0	 24.0	us	November 14, 1991	University of New Mexico	R	210.0	С	CLE	110.25	25.000000
9	Alex Len	69	1518	432	179	353	50.7	1	3	33.3	 22.0	ua	June 16, 1993	University of Maryland	1	212.5	С	РНО	117.00	25.910035
11	Alexis Ajinca	68	957	443	181	329	55.0	0	0	0.0	 27.0	fr	May 6, 1988	NaN	4	215.0	С	NOH	111.60	24.142780
445	Tiago Splitter	52	1030	428	169	303	55.8	0	0	0.0	 30.0	br	January 1, 1985	NaN	4	207.5	С	SAS	110.25	25.606039
446	Tim Duncan	77	2227	1070	419	819	51.2	2	7	28.6	 39.0	vi	April 25, 1976	Wake Forest University	17	207.5	С	SAS	112.50	26.128611
449	Timofey Mozgov	81	2046	785	314	566	55.5	2	6	33.3	 29.0	ru	July 16, 1986	NaN	4	212.5	С	CLE	123.75	27.404844
471	Tyson Chandler	75	2286	771	293	440	66.6	0	0	0.0	 33.0	us	October 2, 1982	NaN	13	212.5	С	DAL	108.00	23.916955
488	Zaza Pachulia	73	1730	606	240	529	45.4	0	3	0.0	 31.0	ge	February 10, 1984	NaN	11	207.5	С	MIL	121.50	28.218900

72 rows × 34 columns

In [27]:

```
sns.displot(x = 'Height', data = nba stats c, kde = True, color = my color)
```

Out[27]:

<seaborn.axisgrid.FacetGrid at 0x1485e17b0>

In [28]:

```
print(nba_stats_c['Height'][446])
print(nba_stats_c['Height'][11])
print(nba_stats_c['Height'][8])
print(nba_stats_c['Height'][471])
```

207.5 215.0

210.0

212.5

In [29]:

```
nba_stats_c['Height'][446] = np.nan
nba_stats_c['Height'][11] = np.nan
nba_stats_c['Height'][8] = np.nan
nba_stats_c['Height'][471] = np.nan
```

nba_stats_c['Height'].isna().sum()

Out[29]:

4

In [30]:

```
nba_stats_c['Height'][446] = nba_stats_c.mean()['Height']
nba_stats_c['Height'][11] = nba_stats_c.mean()['Height']
nba_stats_c['Height'][8] = nba_stats_c.mean()['Height']
nba_stats_c['Height'][471] = nba_stats_c.mean()['Height']
```

```
print(nba_stats_c.mean()['Height'])
207.75735294117646
In [31]:
sns.displot(x = 'Height', data = nba stats c, kde = True, color = my color)
Out[31]:
<seaborn.axisgrid.FacetGrid at 0x148c8c550>
     20
  Count
      10
        5
       0
                          200
                                      205
                                                   210
                                                                215
                                                                             220
             195
                                              Height
In [32]:
nba_stats_c['Height'][446] = nba_stats_c.median()['Height']
nba_stats_c['Height'][11] = nba_stats_c.median()['Height']
nba_stats_c['Height'][8] = nba_stats_c.median()['Height']
nba_stats_c['Height'][471] = nba_stats_c.median()['Height']
print(nba stats c.median()['Height'])
207.5
In [33]:
sns.displot(x = 'Height', data = nba stats c, kde = True, color = my color)
<seaborn.axisgrid.FacetGrid at 0x148d06c50>
      25
  Count
      10
        5
       0
             195
                          200
                                      205
                                                   210
                                                                215
                                                                             220
                                              Height
Можно сделать вывод о том, что методы заполнения медианными и средними значениями в целом дают довольно близкие результаты.
Проделаем те же действия на R:
In [120]:
nba_stats_c <- filter_data(nba_stats, 'Pos', 'C')
data <- nba_stats_ofHeight</pre>
# Примечание: в данной таблице другая нумерация, так как удалены пробелы. Поэтому удалю другие значения nba_stats_csHeight[68]
nba_stats_csHeight[11]
nba_stats_csHeight[8]
nba_stats_csHeight[45]
#Удаляю
mba_stats_csHeight[68] <- NA
nba_stats_csHeight[11] <- NA
nba_stats_csHeight[8] <- NA
nba_stats_csHeight[45] <- NA
data <- mice(nba_stats_c, seed = 31600)
data1 <- complete(data, action = 3)</pre>
data1<mark>s</mark>Height[68]
data1<mark>s</mark>Height[11]
data1<mark>s</mark>Height[8]
data1<mark>s</mark>Height[45]
207.5
205
210
```

202.5

iter imp variable
1 1 Height*
1 2 Height*
1 3 Height*
1 4 Height*
1 5 Height*
2 1 Height*
2 2 Height*
2 3 Height*

```
4 Height*
          Height*
      1 Height*
2 Height*
      3 Height*
      4 Height*
      5 Height*
      1 Height*
      2 Height*
3 Height*
4 Height*
          Height*
          Height*
         Height*
      3 Height*
4 Height*
      5 Height*
202.5
207.5
195
202.5
```

- 1. Сгенерировать данные из нормального распределения с различными параметрами и провести анализ с помощью
 - графиков эмпирических функций распределений,
 - квантилей,
 - метода огибающих,

data1 = np.random.normal(0, 2, size = 50)

• а также стандартных процедур проверкигипотез о нормальности (критерии Колмогорова-Смирнова, Шапиро-Уилка, Андерсона-Дарлинга, Крамера фон Мизеса, Колмогорова-Смирнова в модификации Лиллиефорса и Шапиро-Франсия).

</h2>

In [34]:

Эмпирические функции распределения:

```
In [35]:
sns.displot(data = data1, kind = "ecdf", color = my color)
Out[35]:
<seaborn.axisgrid.FacetGrid at 0x148d959f0>
```

0.6 uojioded 0.4 0.2 0.2 2

In [36]: sns.displot(data = data2, kind = "ecdf", color = my color) Out[36]: <seaborn.axisgrid.FacetGrid at 0x148f484f0> 1.0 0.8

In [37]:

sns.displot(data = data3, kind = "ecdf", color = my_color)

Out[37]:

<seaborn.axisgrid.FacetGrid at 0x14855d8d0>

In [38]:

sns.displot(data = data4, kind = "ecdf", color = my color)

Out[38]:

<seaborn.axisgrid.FacetGrid at 0x14859eb60>

In [39]:

sns.displot(data = data5, kind = "ecdf", color = my color)

Out[39]:

<seaborn.axisgrid.FacetGrid at 0x10eae9c30>


```
0.2
0.0
-2 -1 0 1 2 3 4
```

Квантили:

```
In [138]:
```

```
qqgraph <- function(x) {
   qqnorm(x)
   qqline(x)
}

qqgraph(data1)
qqgraph(data2)
qqgraph(data3)
qqgraph(data4)
qqgraph(data5)</pre>
```

Normal Q-Q Plot

Normal Q-Q Plot

Normal Q-Q Plot

Normal Q-Q Plot

In [40]:

import statsmodels.api as sm

sm.qqplot(data1)
plt.show()

3 2 Sample Quantiles -3 -4 -5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Theoretical Quantiles

In [41]:

sm.qqplot(data2)
plt.show()

In [42]:

sm.qqplot(data3)
plt.show()

In [43]:

sm.qqplot(data4) plt.show()

20.0

In [44]:

sm.qqplot(data5)
plt.show()

In [140]:

```
#метод огибающей
envelmet <- function(x) {
  z <- (x - mean(x))/sqrt(var(x)) # Стандартизация выборки
  x.qq <- qqnorm(z, plot.it = FALSE)
  x.qq <- lapply(x.qq, sort)
  plot(x.qq, ylim = c(-10, 10))
}
envelmet(data1)
envelmet(data2)
envelmet(data3)
envelmet(data4)
envelmet(data5)
```


Стандартные процедуры проверки гипотез о нормальности:

Критерий Колмогорова-Смирнова:

```
In [45]:
from scipy.stats import kstest
print("1: ", kstest(data1, 'norm'))
print("2: ", kstest(data2, 'norm'))
print("3: ", kstest(data3, 'norm'))
print("4: ", kstest(data4, 'norm'))
print("5: ", kstest(data5, 'norm'))
1: KstestResult(statistic=0.17302015528700088, pvalue=0.08862023026009935)
2: KstestResult(statistic=0.10780405377645952, pvalue=0.5694579297520962)
     KstestResult(statistic=0.38363924471085087, pvalue=0.0)
     KstestResult(statistic=0.9953833056207557, pvalue=0.0)
KstestResult(statistic=0.3796730726580877, pvalue=4.501687765679224e-130)
```

pvalue > 0.05 в data1 и data2, значит это стандартные нормальные распределения.

Критерий Шапиро-Уилка:

```
from scipy.stats import shapiro
print("1: ", shapiro(data1))
print("2: ", shapiro(data2))
print("3: ", shapiro(data3))
print("4: ", shapiro(data4))
print("5: ", shapiro(data5))
1: ShapiroResult(statistic=0.9693067073822021, pvalue=0.21687021851539612)
2: ShapiroResult(statistic=0.9831597805023193, pvalue=0.6905325055122375)
```

3: ShapiroResult(statistic=0.9994065761566162, pvalue=0.10634665191173553) 4: ShapiroResult(statistic=0.9996276497840881, pvalue=0.49080467224121094) 5: ShapiroResult(statistic=0.9991155862808228, pvalue=0.925866961479187)

pvalue > 0.05 везде, значит все данные нормально распределены.

Критерий Андерсона-Дарлинга:

```
from scipy.stats import anderson
print("1: ", anderson(data1))
print("2: ", anderson(data2))
print("3: ", anderson(data3))
print("4: ", anderson(data4))
print("5: ", anderson(data5))
```

```
1: AndersonResult(statistic=0.45582487457956233, critical values=array([0.538, 0.613, 0.736, 0.858, 1.021]), significance_level=array([15. , 10. , 5. , 2.5, 1. ]))
1. AndersonResult(statistic=0.209699666633953874, critical_values=array([0.536, 0.613, 0.736, 0.858, 1.021]), significance_level=array([15., 10., 5., 2.5, 1.]))

3. AndersonResult(statistic=0.7017137805241873, critical_values=array([0.576, 0.655, 0.786, 0.917, 1.091]), significance_level=array([15., 10., 5., 2.5, 1.]))

4. AndersonResult(statistic=0.34319603931544407, critical_values=array([0.576, 0.655, 0.786, 0.917, 1.091]), significance_level=array([15., 10., 5., 2.5, 1.]))

5. AndersonResult(statistic=0.21502316034775504, critical_values=array([0.574, 0.653, 0.784, 0.914, 1.088]), significance_level=array([15., 10., 5., 2.5, 1.]))
```

Критерий Крамера фон Мизеса:

```
print("1: ", cramervonmises(data1, 'norm'))
print("2: ", cramervonmises(data2, 'norm'))
print("3: ", cramervonmises(data3, 'norm'))
print("4: ", cramervonmises(data4, 'norm'))
print("5: ", cramervonmises(data5, 'norm'))

1: CramerVonMisesResult(statistic=0.5344393738123291, pvalue=0.032178627885974476)
2: CramerVonMisesResult(statistic=0.12024205025803454, pvalue=0.49592045443879396)
3: CramerVonMisesResult(statistic=241.85894271810182, pvalue=6.60899142079785e-08)
```

1 и 2 тест - стандартное нормальное распределение.

Критерий Колмогорова-Смирнова в модификации Лиллиефорса и Шапиро-Франсия:

4: CramerVonMisesResult(statistic=1665.9981055716746, pvalue=3.077230835701883e-07) 5: CramerVonMisesResult(statistic=76.35384026161556, pvalue=1.859440013074476e-08)

```
In [49]:
```

```
from statsmodels.stats.diagnostic import lilliefors

print("1: ", lilliefors(data1, 'norm'))
print("2: ", lilliefors(data2, 'norm'))
print("3: ", lilliefors(data3, 'norm'))
print("4: ", lilliefors(data4, 'norm'))
print("5: ", lilliefors(data5, 'norm'))

1: (0.1195650425533808, 0.071004648850802)
2: (0.05226773466072365, 0.9791419972866983)
3: (0.009971684302286288, 0.2699723030821681)
4: (0.10515078781632048, 0.20948015344125884)
5: (0.016825623402029838, 0.7745689597135935)
```

pvalue > 0.05 во всех тестах (на всех данных). Значит все данные распределены нормально.

1. Продемонстрировать пример анализа данных с помощью графиков квантилей, метода огибающих, а также стандартных процедур проверки гипотез о нормальности. Рассмотреть выборки малого и умеренного объемов.

</h2>

Рассмотрим распределение возраста игроков в лиге. Выборка малого объема имеет 422 записи, а выборка умеренного объема - 24616.

```
In [50]:
age_small = nba_stats['Age']
age_small = age_small.dropna()
print(len(age_small))
```

```
In [51]:
```

```
sns.displot(x = 'Age', data = nba_stats, kde = True, color = my_color)
```

Out[51]:

<seaborn.axisgrid.FacetGrid at 0x15ad475b0>


```
In [52]:
```

```
age_big = nba_seasons['Age']
age_big = age_big.dropna()
print(len(age big))
```

24616

In [53]:

Out[53]:

```
sns.displot(x = 'Age', data = nba seasons, kde = True, color = my color)
```

<seaborn.axisgrid.FacetGrid at 0x15adc3c40>

Графики квантилей:

```
In [54]:
```

```
sm.qqplot(age small)
sm.qqplot(age big)
```


Гипотезы о нормальности:

Малая выборка:

```
In [55]:
print(kstest(age_small, 'norm'))
print(shapiro(age_small))
print(anderson(age_small))
print(cramervonmises(age_small, 'norm'))
print(lilliefors(age_small, 'norm'))
```

KstestResult(statistic=1.0, pvalue=0.0)
ShapiroResult(statistic=0.9571580290794373, pvalue=9.831688796424487e-10)
AndersonResult(statistic=5.672400009454407, critical_values=array([0.571, 0.65 , 0.78 , 0.91 , 1.082]), significance_level=array([15. , 10. , 5. , 2.5, 1.])) CramerVonMisesResult(statistic=140.66666666666669, pvalue=0)

p_value < 0.05 по всем критериям. Значит данные не распределены нормально.</br> В критерии Андерсона-Дарлинга полученное значение статистики больше критических значений -> нулевая гипотеза H_0 о нормальном распределении неверна.

Умеренная выборка:

```
In [56]:
print(kstest(age_big, 'norm'))
print(shapiro(age_big))
print(anderson(age_big))
print(cramervonmises(age_big, 'norm'))
print(lilliefors(age big, 'norm'))
```

KstestResult(statistic=1.0, pvalue=0.0) ShapiroResult(statistic=0.9604790806770325, pvalue=0.0) AndersonResult(statistic=314.8563269767292, critical_values=array([0.576, 0.656, 0.787, 0.918, 1.092]), significance_level=array([15. , 10. , 5. , 2.5, 1.])) CramerVonMisesResult(statistic=8205.333333333334, pvalue=0) (0 1147226994720083 0 000999999999998899)

Аналогичная ситуация и с данными умеренной выборки.</br>

- 1. Продемонстрировать применение для проверки различных гипотез и различных доверительных уровней (0.9, 0.95, 0.99) следующих критериев:
- Стьюдента, включая односторонние варианты, когда проверяемая нулевая гипотеза заключается в том, что одно из сравниваемых средних значений больше (или меньше) другого. Реализовать оценку мощности критериев при заданном объеме выборки или определения объема выборки для достижения заданной мощности;
- Уилкоксона-Манна-Уитни (ранговые);
- Фишера, Левене, Бартлетта, Флигнера-Килина (проверка гипотез об однородности дисперсий).

</h2>

```
In [57]:
norm0 \ 4 = np.random.normal(0, 4, size = 100)
norm1 1 = np.random.normal(1, 1, size = 500)
norm0 9 = np.random.normal(0, 9, size = 3000)
from pingouin import ttest
```

Критерий Стьюлента:

```
'greater' ).</br> I ипотеза верна, если p_value > 0.05, и неверна, если p_value < 0.05.
Доверительный уровень 0.9:
In [58]:
ttest(norm0 4, norm0 9, alternative = 'two-sided', confidence = 0.9)
                    dof alternative
                                    p-val
                                                                      CI90% cohen-d BF10 power
                                                         [-0.22673954373463462,
T-test 1.153553 131.761868 two-sided 0.250772
                                                                             0.05837 0.213 0.088523
                                                           1.2668332128886466]
In [59]:
ttest(norm0 4, norm0 9, alternative = 'greater', confidence = 0.9)
Out[59]:
                    dof alternative
                                                        CI90% cohen-d BF10
T-test 1.153553 131.761868 greater 0.125386 [-0.0606159061413285, inf] 0.05837 0.427 0.142137
In [60]:
ttest(norm0_4, norm1_1, alternative = 'two-sided', confidence = 0.9)
Out[60]:
            T
                    dof alternative
                                    p-val
                                                                      CI90% cohen-d BF10
T-test -1.158973 101.07678 two-sided 0.249198 [-1.1891565653372063, 0.21137735768286411] 0.254753 0.23 0.641283
In [61]:
ttest(norm0 4, norm1 1, alternative = 'greater', confidence = 0.9)
Out[61]:
            Т
                                                        CI90% cohen-d BF10
T-test -1.158973 101.07678 greater 0.875401 [-1.0330433400022765, inf] 0.254753 0.46 0.000036
In [62]:
ttest(norm1_1, norm0_9, alternative = 'two-sided', confidence = 0.9)
Out[62]:
           Т
                     dof alternative
                                        p-val
                                                                         CI90% cohen-d
                                                                                           BF10 power
                                                             [0.7288538628215686,
1.2890190139867859] 0.120648 1.827e+06 0.70437
T-test 5.926877 3327.440908 two-sided 3.402862e-09
In [63]:
ttest(norm1_1, norm0_9, alternative = 'greater', confidence = 0.9)
Out[63]:
T-test 5.926877 3327.440908 greater 1.701431e-09 [0.7907336877007091, inf] 0.120648 3.655e+06 0.802979
Доверительный уровень 0.95:
In [64]:
ttest(norm0 4, norm0 9, alternative = 'two-sided', confidence = 0.95)
Out[64]:
           Т
                    dof alternative
                                    p-val
                                             Cl95% cohen-d BF10
T-test 1.153553 131.761868 two-sided 0.250772 [-0.37, 1.41] 0.05837 0.213 0.088523
In [65]:
ttest(norm0_4, norm0_9, alternative = 'greater', confidence = 0.95)
Out[65]:
                    dof alternative
                                    p-val
                                            CI95% cohen-d BF10 power
T-test 1.153553 131.761868 greater 0.125386 [-0.23, inf] 0.05837 0.427 0.142137
In [66]:
ttest(norm0 4, norm1 1, alternative = 'two-sided', confidence = 0.95)
Out[66]:
                    dof alternative
                                    p-val
                                             CI95% cohen-d BF10
T-test -1.158973 101.07678 two-sided 0.249198 [-1.33, 0.35] 0.254753 0.23 0.641283
In [67]:
ttest(norm0_4, norm1_1, alternative = 'greater', confidence = 0.95)
                    dof alternative
                                           CI95% cohen-d BF10 power
                                   p-val
T-test -1.158973 101.07678 greater 0.875401 [-1.19, inf] 0.254753 0.46 0.000036
In [68]:
ttest(norm1 1, norm0 9, alternative = 'greater', confidence = 0.95)
Out[68]:
                                        p-val CI95% cohen-d
           T
                     dof alternative
                                                                 BF10 power
T-test 5.926877 3327.440908 greater 1.701431e-09 [0.73, inf] 0.120648 3.655e+06 0.802979
ttest(norm1 1, norm0 9, alternative = 'greater', confidence = 0.95)
Out[69]:
                                        p-val CI95% cohen-d
                     dof alternative
                                                                 BF10 power
T-test 5.926877 3327.440908 greater 1.701431e-09 [0.73, inf] 0.120648 3.655e+06 0.802979
Доверительный уровень 0.99:
```

In [70]:

Out [701 •

ttest(norm0 4, norm0 9, alternative = 'two-sided', confidence = 0.99)

```
T-test 1.153553 131.761868 two-sided 0.250772 [-0.658246707587614, 1.698340376741626] 0.05837 0.213 0.088523
ttest(norm0 4, norm0 9, alternative = 'greater', confidence = 0.99)
Out[71]:
                         greater 0.125386 [-0.5416301659582378, inf] 0.05837 0.427 0.142137
T-test 1.153553 131.761868
In [72]:
ttest(norm0_4, norm1_1, alternative = 'two-sided', confidence = 0.99)
                   dof alternative
                                                                CI99% cohen-d BF10
                                                      [-1.596340116868773
T-test -1.158973 101.07678 two-sided 0.249198
                                                                      0.254753 0.23 0.641283
                                                      0.6185609092144307]
ttest(norm0 4, norm1 1, alternative = 'greater', confidence = 0.99)
                   dof alternative
                                                   Cl99% cohen-d BF10
                                  p-val
                                                                       power
T-test -1.158973 101.07678
                        greater 0.875401 [-1.486014739280165, inf] 0.254753 0.46 0.000036
ttest(norm1_1, norm0_9, alternative = 'greater', confidence = 0.99)
Out[74]:
                                                        CI99% cohen-d
                                                                         BF10
                         greater 1.701431e-09 [0.6127297255536298, inf] 0.120648 3.655e+06 0.802979
T-test 5.926877 3327.440908
In [75]:
ttest(norm1 1, norm0 9, alternative = 'greater', confidence = 0.99)
Out[75]:
                    dof alternative
                                                        CI99% cohen-d
                                                                         BF10
                         greater 1.701431e-09 [0.6127297255536298, inf] 0.120648 3.655e+06 0.802979
Критерий Уилкоксона-Манна-Уитни:
Из документации к функции mannwhineyu():
       We use the Mann-Whitney U test to assess whether there is a statistically
       significant difference in the diagnosis age of males and females.
       The null hypothesis is that the distribution of male diagnosis ages is
       the same as the distribution of female diagnosis ages. We decide
       that a confidence level of 95% is required to reject the null hypothesis
       in favor of the alternative that the distributions are different.
       Since the number of samples is very small and there are no ties in the
       data, we can compare the observed test statistic against the {\rm ^*exact^*}
       distribution of the test statistic under the null hypothesis.
Доверительный интервал = 0.95
Нулевая гипотеза H_0: распределения двух выборок не равны (параметр alternative = 'two-sided') ИЛИ распределение первой выборки стохастически больше распределения второй выборки (параметр
alternative = 'greater' ).</br> Гипотеза верна, если p_value > 0.05, и неверна, если p_value < 0.05.
pois1 = np.random.poisson(7, 14)
pois3 = np.random.poisson(7, 7)
pois2 = np.random.poisson(14, 7)
In [77]:
from scipy.stats import mannwhitneyu
print(mannwhitneyu(pois1, pois2, alternative='two-sided'))
print(mannwhitneyu(pois1, pois3, alternative='two-sided'))
print(mannwhitneyu(pois3, pois2, alternative='two-sided'))
print(mannwhitneyu(pois1, pois2, alternative='greater'))
print(mannwhitneyu(pois1, pois3, alternative='greater'))
print(mannwhitneyu(pois3, pois2, alternative='greater'))
MannwhitneyuResult(statistic=2.0, pvalue=0.000475543240873116)
MannwhitneyuResult(statistic=31.5, pvalue=0.19801539634338883)
MannwhitneyuResult(statistic=4.0, pvalue=0.010432890182919985)
MannwhitneyuResult(statistic=2.0, pvalue=0.9998210389920275)
MannwhitneyuResult(statistic=31.5, pvalue=0.9135501680826477)
MannwhitneyuResult(statistic=4.0, pvalue=0.9964188082721269)
Критерии Фишера, Левене, Бартлетта, Флигнера-Килина (проверка гипотез об однородности дисперсий):
Нулевая гипотеза H_0: дисперсии двух выборок равны. </br> Гипотеза верна, если p_value > 0.05, и неверна, если p_value < 0.05.
In [78]:
from scipy.stats import levene
from scipy.stats import bartlett
from scipy.stats import fligner
In [79]:
print(levene(norm0 9, norm0 4))
print(levene(norm1 1, norm0 4))
print(levene(norm0 9, norm1 1))
LeveneResult(statistic=49.54173299862284, pvalue=2.381042873378456e-12)
LeveneResult(statistic=455.71393835980666, pvalue=1.3615628355862607e-75)
LeveneResult(statistic=711.5372559850482, pvalue=7.419206253274827e-143)
print(bartlett(norm0_9, norm0_4))
print(bartlett(norm1_1, norm0_4))
print(bartlett(norm0 9, norm1 1))
BartlettResult(statistic=72.7600542885811, pvalue=1.4641044258315983e-17) BartlettResult(statistic=535.5247989644492, pvalue=1.7742323489716589e-118)
BartlettResult(statistic=1704.1738362344904, pvalue=0.0)
In [81]:
```

.

```
print (fligner (normu_9, normu_4))
print (fligner (norm1_1, norm0_4))
print (fligner (norm0_9, norm1_1))
print (fligner (norm0_9, norm1_1))

FlignerResult (statistic=49.20888259882598, pvalue=2.301063714025032e-12)
FlignerResult (statistic=225.9499723843629, pvalue=4.556375970868506e-51)
FlignerResult (statistic=658.9297091561592, pvalue=2.553263189206746e-145)

1. Исследовать корреляционные взаимосвязи вданных с помощью коэффициентов корреляции Пирсона, Спирмена и Кендалла.

</h2> </span>
```

```
Коэффициент корреляции Пирсона:
```

```
In [82]:
from scipy.stats import pearsonr
names = ['Age', 'PTS', 'Height', 'Weight', 'FGM','AST', 'STL', 'BLK']
data = nba_stats[names]
data = data.dropna()
print('Height / BLK:', pearsonr(data['Height'], data['BLK']))
print('Height / AST:',pearsonr(data['Height'], data['AST']))
print('Height / STL:',pearsonr(data['Height'], data['STL']))
Height / BLK: PearsonRResult(statistic=0.4598498367787574, pvalue=1.8048892179395132e-23)
Height / AST: PearsonRResult(statistic=-0.36580665368133997, pvalue=8.292216287886863e-15)
Height / STL: PearsonRResult(statistic=-0.16426314972308145, pvalue=0.0007055152427373476)
Коэффициент корреляции Спирмена:
In [83]:
from scipy.stats import spearmanr
print('Height / BLK:',spearmanr(data['Height'], data['BLK']))
print('Height / AST:',spearmanr(data['Height'], data['AST']))
print('Height / STL:',spearmanr(data['Height'], data['STL']))
Height / BLK: SpearmanrResult(correlation=0.49086355566615714, pvalue=5.663041101407075e-27)
Height / AST: SpearmanrResult(correlation=-0.28101517435422446, pvalue=4.242236021144623e-09)
Height / STL: SpearmanrResult(correlation=-0.13080153488531007, pvalue=0.007132209027723288)
```

Коэффициент корреляции Кендалла:

```
In [84]:

from scipy.stats import kendalltau

print('Height / BLK:', kendalltau(data['Height'], data['BLK']))
print('Height / AST:', kendalltau(data['Height'], data['AST']))
print('Height / STL:', kendalltau(data['Height'], data['STL']))

Height / BLK: KendalltauResult(correlation=0.3590468934834969, pvalue=1.1909574779196414e-25)
Height / AST: KendalltauResult(correlation=-0.19970873222355925, pvalue=3.939647458259811e-09)
Height / STL: KendalltauResult(correlation=-0.0923392307660423, pvalue=0.0066656373362833)
```

- 1. Продемонстрировать использование методов
- хи-квадрат,
- точного теста Фишера,
- теста МакНемара,
- теста Кохрана-Мантеля-Хензеля.

</h2>

хи-квадрат:

```
In [85]:
    from scipy.stats import chisquare

    obs = nba_stats_c('Height')
    exp = [nba_stats_c('Height'].mean()]*nba_stats_c.shape[0]
    print(chisquare(f_obs=obs, f_exp=exp))

    obs = nba_stats_c('Weight')
    exp = [nba_stats_c('Weight'].mean()]*nba_stats_c.shape[0]
    print(chisquare(f_obs=obs, f_exp=exp))

    obs = nba_stats_c('Age'].mean()]*nba_stats_c.shape[0]
    print(chisquare(f_obs=obs, f_exp=exp))

Power_divergenceResult(statistic=48.823249206083904, pvalue=1.0)
    Power_divergenceResult(statistic=45.216488082221744, pvalue=0.9927109810649787)
    Power_divergenceResult(statistic=43.72166998011929, pvalue=0.999538512511413)
```

pvalue > 0.05. Делаем вывод о том, что среди игроков на центровой позиции рост, вес и возраст в среднем примерно одинаков.

Точный тест Фишера:

```
In [86]:

centor pts = nba_stats[nba_stats[*Pos*] == 'C'].PTS.mean()
py_tts = nba_stats[nba_stats[*Pos*] == 'PG'].PTS.mean()
sf_pts = nba_stats[nba_stats[*Pos*] == 'PG*].PTS.mean()

sf_pts = nba_stats[nba_stats[*Pos*] == 'SF*].PTS.mean()

pg_st = nba_stats[nba_stats[*Pos*] == 'G*].PTS.mean()

pg_st = nba_stats[nba_stats[*Pos*] == 'PG*].AST.mean()

sf_st = nba_stats[nba_stats[*Pos*] == 'PG*].AST.mean()

sf_st = nba_stats[nba_stats[*Pos*] == 'SF*].AST.mean()

pg_st = nba_stats[nba_stats[*Pos*] == 'PG*].RST.mean()

sf_st = nba_stats[nba_stats[*Pos*] == 'PG*].RST.mean()

k = [[center_pts, pg_pts], [center_ast, pg_ast]]

print(k)

k1 = [[center_pts, pg_pts], [center_ast, sf_ast]]

print(k2)

k2 = [[pg_pts, sf_pts], [pg_st, sf_st]]

print(k3)

k4 = [[pg_pts, sf_pts], [pg_st], center_st]]

print(k3)

k5 = [[center_pts, sf_pts], [center_st], sf_st]]

print(k5)

[[504.180555555554, 556.75], [71.59722222222223, 225.96428571428572]]

[[504.1805555555554, 556.75], (71.59722222222223, 67.05263157894737]]
```

```
[[556.75, 496.6578947368421], [225.96428571428572, 87.05263157894737]]
[[556.75, 496.6578947368421], [49.642857142857146, 41.473684210526315]]
[[556.75, 504.18055555555554], [49.642857142857146, 31.1527777777778]]
[[504.1805555555554, 496.6578947368421], [31.1527777777778, 41.473684210526315]]
```

тест МакНемара:

```
In [87]:
```

```
from scipy.stats import fisher_exact

print(fisher_exact(k))
print(fisher_exact(k1))
print(fisher_exact(k2))
print(fisher_exact(k3))
print(fisher_exact(k3))
print(fisher_exact(k4))
print(fisher_exact(k5))

(2.872631472286959, 1.494030281289387e-13)
(1.245115856428896, 0.23063081310415287)
(0.43344086021505374, 1.0897700865136263e-09)
(0.9379526003949967, 0.8261395894627419)
```

- 1. Проверить наличие мультиколлинеарности в данных с помощью
- корреляционной матрицы

(0.6979267897635244, 0.13278977384648125) (1.3439125910509886, 0.2720998899943202)

• фактора инфляции дисперсии.

</h2>

Корреляционная матрица:

```
In [88]:
names = ['Age', 'PTS', 'Height', 'Weight', 'AST', 'STL', 'BLK']
data = nba_stats[names]
data = data.dropna() # удаление строк с пропусками
fig = plt.figure()
sns.heatmap(data.corr(), cmap="Purples_r", annot=True)
plt.show()
```


Итак, мы можем видеть, что существуют некоторые зависимости.

- Существует строго негативная корреляция между весом (Height) игрока и количеством его результативных передач (AST). Действительно, высокие игроки скорее чаще получают пасы и завершают атаку, нежели пасуются сами.
- Существует положительная корреляция между весом (Weight), ростом (Height) и блокшотами (BLK). Это соотносится с реальностью, крепкие игроки легко "закрывают" бросок более низких противников.
- Есть небольшая положительная корреляция между возрастом (Age) игрока и его набранными очками (PTS), но она не настолько сильная, как это могло бы ожидаться.

In [197]:

Фактор инфляции дипсперсии:

Фактор инфляции дисперсии — это мера мультиколлинеарности, которая существует в наборе переменных, участвующих в множественных регрессиях.

Как правило, значение **vif** выше **10** указывает на высокую корреляцию с другими независимыми переменными.

```
In [89]:
```

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.tools.tools import add_constant

names = [ 'pts', 'player_height', 'player_weight', 'ast', 'reb', 'gp']
```

```
data = nba_players[names]
data = data.dropna() # удаление строк с пропусками
X = add_constant(data)
ds = pd.Series([variance_inflation_factor(X.values, i)
              for i in range(X.shape[1])],
              index=X.columns)
print(ds)
                1156.930429
                    3.147758
player_height
                    3.692932
player weight
                    3.308923
                    2.574216
ast
                    2.773611
```

Данный метод не указывает на наличие корреляции моих данных, а именно взаимосвязи характеристик игрока и его игровых показателях.

1. Исследовать зависимости в данных с помощью дисперсионного анализа.

F_onewayResult(statistic=47.12073364294072, pvalue=1.537605699741845e-10) F_onewayResult(statistic=87.43430258165738, pvalue=9.70138591158959e-17)

</h2>

dtype: float64

1.495791

```
import scipy.stats as stats
from scipy.stats import f_oneway

c pts = nba_stats[nba_stats['Pos'] == 'C']['PTS']
pg_pts = nba_stats[nba_stats['Pos'] == 'PG']['PTS']

c ast = nba_stats[nba_stats['Pos'] == 'C']['AST']
pg_ast = nba_stats[nba_stats['Pos'] == 'PG']['AST']

c stl = nba_stats[nba_stats['Pos'] == 'C']['STL']
pg_stl = nba_stats[nba_stats['Pos'] == 'PG']['STL']

print(stats.f_oneway(c_pts, pg_pts))
print(stats.f_oneway(c_ast, pg_ast))
print(stats.f_oneway(c_ast, pg_ast))
F onewayResult(statistic=0.5985695617039988, pvalue=0.44031034129506275)
```

Значение pvalue в сравнении количестве результативных передач (AST) и перехватов (STL) < 0.05. Можем сделать вывод о том, что эти показатели для игроков центровой и разыгрывающий не эквивалентны. </br>
Что касается количества очков (PTS), то разницы нет. Значит игроки и на той, и на другой позиции с одинаковым успехом набирают очки в игре.

1. Подогнать регрессионные модели к данным, а также оценить качество подобной аппроксимации

</h2>

Линейная регрессионная модель:

Модель линейной регрессии устанавливает связь между зависимой переменной (у) и по крайней мере одной независимой переменной (х) как:

$$ilde{y} = b_1 \cdot x + b_0$$

В методе **OLS** мы должны выбрать b_1 значения, а также b_0 таким образом, чтобы минимизировать общую сумму квадратов разницы между вычисленными и наблюдаемыми значениями **у. </br>**

$$S = \sum_{i=1}^{n} (y_i \ - \widetilde{y_i})^2 = \ \sum_{i=1}^{n} (y_i - b_1 \cdot a \ - b_0)^2 = \ \sum_{i=1}^{n} (\widetilde{\xi})^2 = min$$

Где, </br> \widetilde{y}_i = прогнозируемое значение для i-го наблюдения </br> y_i = фактическое значение для i-го наблюдения </br> f = ошибка / невязка для f -го наблюдения f -го наблюдения

Будем рабоать со следующими данными:</br> 3PA - (3 Points Attempt) все попытки трёхочкового броска 3PM - (3 Points Made) реализованные трёхочковые броски, попавшие в кольцо

```
In [91]:

x = nba_stats["3PA"]
y = nba_stats["3PM"]

x = sm.add_constant(x)
result = sm.OLS(y, x).fit()
print(result.summary())
```

		OLS F	Regress	sion R	esults		
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	ns:	Least Squ Mon, 21 Nov 03:4	2022 17:31 490 488	Adj. F-st. Prob	uared: R-squared: atistic: (F-statistic): Likelihood:		0.977 0.977 2.097e+04 0.00 -1663.5 3331. 3339.
===========	coef	std err	-====	t	P> t	[0.025	0.975]
	-2.4235 0.3716				0.000	-3.280 0.367	-1.567 0.377
Omnibus: Prob(Omnibus): Skew: Kurtosis:		(3.753 0.000 1.765 7.287	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		2.152 4421.701 0.00 227.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Получили следующую формулу:

$$3PM = 0.3716 \\ \cdot 3PA \\ -2.4235$$

Сравним результаты с реальными. По официальной статистике **NBA** на данный момент процент попадания трёхочковых бросков составляет **34.9** %. </br> Учитывая, что линейную модель выше я строила на данных умеренного размера, это очень хороший и довольно точный результат.

Другие виды регрессий:

- Логистическая регрессия
- Полиномиальная регрессия
- Квантильная регрессия
- Лассо-регрессия / Ридж-регрессия
- Метод главных компонент
- Регрессия наименьших частичных квадратов
- Порядковая регрессия
- Регрессия Пуассона / Отрицательная биноминальная регрессия
- Регрессия Кокса