

Méthodes :Limite de fonctions, Continuité

Démontrer qu'une fonction f n'admet pas de limite en a

- on peut démontrer que les limites à gauche et à droite sont différentes
- on peut trouver une suite (u_n) qui tend vers a tel que $(f(u_n))$ ne converge pas vers f(a).

Démontrer qu'on ne peut pas prolonger par continuité f en a

• on peut trouver deux suites (u_n) et (v_n) qui tendent vers a telles que $(f(u_n))$ et $(f(v_n))$ admettent des limites différentes

Démontrer qu'une fonction f réalise une bijection de I sur J

Pour démontrer que f réalise une bijection de [a,b[sur [c,d[, on peut successivement

- \bullet vérifier que f est continue
- ullet vérifier que f est strictement croissante ou strictement décroissante
- ullet étudier les limites aux bornes de f, par exemple prouver que $\lim_{x o a} f(x) = c$ et $\lim_{x o b} f(x) = d$.

Démontrer l'existence d'une solution à l'équation f(x)=a

- on peut vérifier que f est continue, trouver x_1 et x_2 tels que $f(x_1) < a$ et $f(x_2) > a$. Le théorème des valeurs intermédiaires implique alors qu'il existe $x_0 \in [x_1, x_2]$ tel que $f(x_0) = a$.
- ullet si de plus f est strictement monotone, alors la solution est unique.