Course Code	MTH570				
Course Name	Numerical Solutions Differential Equations				
Credits	4				
Course Offered to	3rd/4th year UG; PG students				
Course Description	This course will be provide an overview of two standard numerical methods for partial differential equations (PDEs). The focus will be on essential theoretical analysis as well parabolic and hyperbolic partial differential equations. This will be followed by a short foray into linear system solvers and finite difference scheme for two-dimensional Poisson's (elliptic) problem. The second part of the course will deal with finite element methods exclusively for elliptic problems. The core ideas in functional analysis, variational formulation, error analysis, and computer implementation will be presented for the one-dimensional problem. This will be followed be a more practical treatment of two-dimensional problems. The last part will consist of an overview of the specialized topics of mixed and adaptive finite element methods as computer implementation. The first part will be on finite difference methods. Key numerical schemes and underlying theory will be provided for one-dimensional				
Pre-requisites					
Pre-requisite (Mandatory)	Pre-requisite (Desirable)	Pre-requisite(other)			
Math I; Math III/Real Analysis I	Numerical Methods (MTH 270); Math IV	Python experience			
*Please insert more rows if required					
Post Conditions*(For suggestions on verbs please refer the second sheet)					
CO1	CO2	CO3	CO4		
Students learn about basics of partial differential equations, some qualitative and quantitative aspects of their analytical and general solutions.	Students can derive and analyze finite difference methods for solving model problems of parabolic and hyperbolic partial differential equations.	code to solve model problems, interpret and visualize their solutions. They also learn to make appropriate choices for numerical linear algebraic	Students understand basics of functional analysis, variational formulation and finite element spaces. They also learn stability analysis in the setting of Hilbert spaces.		
Weekly Lecture Plan					
Week Number	Lecture Topic	COs Met	Assignment/Labs/Tutorial		
Week 1	Introduction to partial differential equations (PDEs) including classification, initial- and boundary-value problems, boundary conditions and common PDEs; Python tutorial.	CO1	HW0		
Week 2	Overview of one-dimensional parabolic PDEs (heat and convection-diffusion equations); introduction to finite differences; explicit and implicit schemes for one-dimensional parabolic equations;	CO1 + CO2	HW1		

Week 3	Consistency, stability and Fourier analysis; maximum principle in parabolic PDEs;	CO2 + CO3			
Week 4	Overview of one-dimensional hyperbolic PDEs (advection equation); finite difference schemes (method of lines discretizations and Lax Wendroff schemes) for one-dimensional hyperbolic PDEs; Courant-Friedrichs-Lewy (CFL) condition	CO1 + CO2	HW2		
Week 5	Lax equivalence theorem; von-Neumann analysis and stability condition	CO2			
Week 6	Order or accuracy or solution; dissipation and dispersion in finite difference schemes for advection	CO2 + CO3	HW3		
Week 7	Overview of two-dimensional elliptic PDEs (Laplacian); Maximum principle for Laplacians; reentrant corner singularities	CO1			
Week 8	interregnum: Direct and iterative methods for linear system solution; finite differences for two-dimensional Poisson's:	CO3	HW4		
Week 9	Sobolev norms and spaces; weak derivatives; variational formulation; finite element method in one-dimensions and error estimates	CO4			
Week 10	Hilbert spaces; Riesz representation theorem; Lax-Milgram theorem	CO4	HW5		
Week 11	iviesning; quadrature; two-dimensional finite element	CO3 + CO4			
Week 12	implementation or two-dimensional linear finite element for Poisson's; Use of FEniCS package for other elements	CO3	HW6		
Week 13	Adaptive and mixed finite elements in any dimension:	CO3			
Please insert more rows if rec					
Weekly Lab Plan					
Week Number	Laboratory Exercise	COs Met	Platform (Hardware/Software)		
*Please insert more rows if red	 nuired				
. idado incore moro romo il roc	Assessm	ont Plan			

Type of Evaluation	% Contribution in Grade			
Assignments	50 (HW 0: 5%; HWs 1-6: each 7.5%)			
Midsem	20			
Endsem	30			
Resource Material				
Туре	Title			
Textbook	Partial Differential Equations with Numerical Methods by Stig Larsson and Vidar Thomée			
Reference 1	Finite Difference Schemes and Partial Differential Equations (Second Edition) by John Strikwerda			
Reference 2	Numerical Solution of Partial Differential Equations (Second Edition) by K. W. Morton and David Meyers			
Reference 3	The Mathematical Theory of Finite Element Methods (Third Edition) by Susanne Brenner and Ridgway Scott			