HW-1

Qn 2. Let there be two groups with 2 longitudinal data points for each subject with n subjects in each group. In notation, $X_{i,1}, X_{i,2}$ be the two visits for i-th subject in group 1 and $Y_{j,1}, Y_{j,2}$ be the two visits for j-th subject in group 2. Now, to compare the change over time, we usually look at the differences $\bar{X}_1 - \bar{X}_2$, where $\bar{X}_k = \frac{1}{n} \sum_i X_{i,k}$ and for cross-group difference, it is $\bar{X} - \bar{Y}$, where $\bar{X} = \frac{1}{2n} \sum_{i,k} X_{i,k}$ and $\bar{Y} = \frac{1}{2n} \sum_{i,k} Y_{i,k}$. Now compare the variances of $\bar{X}_1 - \bar{X}_2$ and $\bar{X} - \bar{Y}$ with and without correlation among the repeated measures from the same subject. Based on that, what would be its impact on the inferences if the repeated measures are positively correlated?

Answer 1
$$V(\bar{X}_1 - \bar{X}_2) = V(\bar{X}_1) + V(\bar{X}_2) - 2cov(\bar{X}_1, \bar{X}_2)$$

 $\begin{array}{l} V(\bar{X}-\bar{Y})=V(\frac{\bar{X}_1+\bar{X}_2}{2}-\frac{\bar{Y}_1+\bar{Y}_2}{2})=\frac{1}{4}\{V(\bar{X}_1)+V(\bar{X}_2)+2cov(\bar{X}_1,\bar{X}_2)+V(\bar{Y}_1)+V(\bar{Y}_2)+2cov(\bar{Y}_1,\bar{Y}_2) \ and \ other \ terms \ cov(\bar{X}_\ell,\bar{Y}_k)=0 \ due \ across \ subject \ independence. \end{array}$

A positive correlation among the repeated measures will lead to a positive covariance, $cov(\bar{X}_1, \bar{X}_2) > 0$ which will decrease the first variance, but increase the second one. Hence, having correlated measurements affects different test statistics differently.