

Institut Mines-Telecom

Video coding principles

F. Dufaux, M. Cagnazzo

Σ 207

Plan

La prédiction temporelle

La structure du GOP (Group of Pictures)

Le codeur hybride

La norme MPEG-1

La structure du GOP (Group of Pictures)

Le codeur hybride

La norme MPEG-1

La prédiction temporelle

La structure du GOP (Group of Pictures)

Le codeur hybride

La norme MPFG-1

La structure du GOP (Group of Pictures)

Le codeur hybride

La norme MPEG-1

Principes de la compression vidéo

- Redondance spatiale
 - Les régions dont les images se composent sont homogènes
- Redondance temporelle
 - Les images dont une séquence se compose sont similaires les unes aux autres
- Un codeur performante doit éliminer les deux types de redondance

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

Principes de la compression vidéo

Redondance spatiale

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

Principes de la compression vidéo

Redondance temporelle

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

Principes de la compression vidéo

La structure du GOP (Group of Pictures)

Le codeur hybride

La norme MPEG-1

Compression spatiale et temporelle

- Les principes de la compression spatiale sont ceux de la compression d'image fixe
 - ► Transformée, quantification, codage sans pertes
 - La prédiction spatiale s'ajoute à cela
 - Comme l'on verra, ces techniques s'appliquent aussi bien à des images (Images "Intra") qu'à des erreurs de prédiction temporelle
- La compression spatiale est ce qui caracterise la compression vidéo
 - Même si des méthodes par transformée temporelle existent, l'approche la plus populaire et performant est basée sur la prédiction temporelle
 - On parle de codeur hybride (transformée pour la compression spatiale, prédiction pour la compression temporelle)

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo :DPCM

- Les images successives se ressemblent beaucoup
- ▶ Prédiction : $\widehat{f}_{n,m,k} = \widetilde{f}_{n,m,k-1}$

Erreur

Conditional replenishment

- Faire la prédiction seulement si c'est utile
- Prédiction :

$$\widehat{f}_{n,m,k} = \begin{cases} f_{n,m,k-1} & \text{si } |f_{n,m,k} - f_{n,m,k-1}| < \gamma \\ 0 & \text{sinon} \end{cases}$$

Problème:

- side information : un bit par pixel
- on préfère considérer des blocs de pixel

Conditional replenishment

Mesure de ressemblance des blocs :

$$d(B_1, B_2) = \sum_{\mathbf{p}} |B_1(\mathbf{p}) - B_2(\mathbf{p})|^k$$

Si
$$d(B_k^{(\mathbf{p})}, B_h^{(\mathbf{p})}) < \gamma$$

- refine : on transmet l'erreur de prédiction
- skip: on ne transmet aucun bit

Si
$$d(B_k^{(\mathbf{p})}, B_h^{(\mathbf{p})}) \ge \gamma$$

▶ new: on transmet le bloc de pixels

Choix de γ ? Choix de la taille des blocs ?

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

Estimation du mouvement

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

Estimation du mouvement

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

Estimation du mouvement

On compare $B_k^{(\mathbf{p})}$ et $B_h^{(\mathbf{p}+\mathbf{v})}$

Estimation du mouvement

La norme MPEG-1

Test MF :

$$d(\mathbf{v}) = d(B_k^{(\mathbf{p})}, B_h^{(\mathbf{p}+\mathbf{v})})$$

Vecteur estimé :

$$\mathbf{v}^* = \arg\min_{\mathbf{v}} d(\mathbf{v})$$

Info transmise :

$$B_k^{(\mathbf{p})} - B_h^{(\mathbf{p}+\mathbf{v})}$$

Au décodage on reconstruit la prédiction de $B_k^{(\mathbf{p})}$ à l'aide des vecteurs de mouvement et de l'image de référence : c'est la compensation du mouvement

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

Estimation du mouvement

Fonctions de coût

Plusieurs choix sont possibles pour la fonction $d(\cdot, \cdot)$:

SAD (Sum of Absolute Differences)

$$d(B_1, B_2) = \sum_{n,m} |B_1(n,m) - B_2(n,m)|$$

SSD (Sum of Squared Differences)

$$d(B_1, B_2) = \sum_{n,m} [B_1(n, m) - B_2(n, m)]^2$$

ZN-SSD (Zero-mean Normalized SSD)

Institut Mines-Telecom

$$d(B_1, B_2) = \frac{\sum_{n,m} \left[\overline{B}_1(n, m) - \overline{B}_2(n, m)\right]^2}{\sum_{n,m} \overline{B}_1^2(n, m) \sum_{n,m} \overline{B}_2^2(n, m)}$$

La prédiction dans le codage vidéo

Régularisation de l'estimation du mouvement

Institut Mines-Telecom

- Dans les régions homogènes l'EM peut donner des résultats chaotiques
- On ajoute une terme de régularisation

$$J(\mathbf{v}) = d(\mathbf{v}) + \lambda r(\mathbf{v})$$

Vecteur estimé :

$$\mathbf{v}^* = \arg\min_{\mathbf{v}} J(\mathbf{v})$$

- λ gère le compromis entre fidélité et régularité
- r(v): coût de codage ; régularité géométrique ...

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Exemple d'estimation de mouvement

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Exemple d'estimation de mouvement

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF non régularisé

MVF régularisé

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF non régularisé

MVF régularisé

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF régularisé, image compensée

MVF régularisé, erreur de compensation

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF régularisé, image compensée

MVF régularisé, erreur de compensation

30.05.16

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF non régularisé

MVF régularisé

30.05.16

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF non régularisé

MVF régularisé

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

30.05.16

21/54

MVF régularisé, image compensée

MVF régularisé, erreur de compensation

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF régularisé, image compensée

MVF régularisé, erreur de compensation

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

Institut Mines-Telecom

MVF non régularisé

MVF régularisé

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF non régularisé

MVF régularisé

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF régularisé, image compensée

MVF régularisé, erreur de compensation

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF régularisé, image compensée

MVF régularisé, erreur de compensation

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Exemple d'estimation de mouvement

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Exemple d'estimation de mouvement

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF non régularisé

MVF régularisé

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF non régularisé

MVF régularisé

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF régularisé, image compensée

MVF régularisé, erreur de compensation

La prédiction temporelle

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

La prédiction dans le codage vidéo

Vecteurs estimés

MVF régularisé, image compensée

MVF régularisé, erreur de compensation

La prédiction temporelle

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

Estimation du mouvement

Stratégie de recherche : compromis complexité/efficacité

Soit *n* le coté de la fenêtre de recherche

- ▶ Méthode *full search* : Toutes les *n*² position sont contrôlées
- Méthode cross search: On contrôle d'abord le déplacement horizontal, en suite le vertical; 2n positions sont contrôlées
- ▶ Méthode *log search* : On contrôle 8 position à distance $2^m 1$; on choisi la direction et on continue avec un pas de $2^{m-1} 1$ pixels ≈ $8 \log_2 n$ positions sont contrôlées
- Méthode diamond search: On contrôle 4 directions, mais on réduit le pas seulement quand on a choisi le centre; cette méthode est très populaire

La prédiction temporelle

La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

Estimation du mouvement

Bilan

- Méthode très efficace de prédiction temporelle
- Utilisée dans la plus part des codeurs vidéo
- Compromis : précision coût de codage complexité
- Degrés de liberté:
 - Fonction de coût (SAD, SSD, régularisation, . . .)
 - Modèle de mouvement (forme et taille des blocs, fenêtre de recherche, ...)
 - Stratégie de recherche (Full-search, Log, Diamond, ...)

La prédiction temporelle

La structure du GOP (Group of Pictures)

Le codeur hybride

La norme MPEG-1

Plan

La prédiction temporelle

La structure du GOP (Group of Pictures)

Le codeur hybride

La norme MPEG-1

Types d'images

- Trames I (Intra coded)
- Trames P (Prédictive)
- Trames B (Bi-directionnelles)

Trames I et P: Anchor Frames

Group of Pictures

- Trames organisées en GOP
- Première image : Intra
- Structure :
 - intervalle entre I
 - intervalle entre AF

Trames I

- Codée indépendamment des autres
- Codage JPEG
- Faible complexité, faible taux de codage
- Utilisé pour :
 - Fast forwards
 - Random access
 - Robustesse aux erreurs

Trames P

- Prédite de l'AF précédente
- Complexité élevée (ME)
- ► Taux de compression élevé

Institut Mines-Telecom

Trames B

- Prédite des AFs précédente et successive
- Complexité très élevée (double ME)
- Taux de compression élevé

Ordre de codage des trames

 $I \rightarrow AF \rightarrow Trames B \rightarrow AF \rightarrow Trames B \dots$ Retard?

Plan

Le codeur hybride

Le codage hybride

- Codage par macroblocs
- Modes de codage

Intra: Pas de prédiction temporelle, codage par

transformée

Inter: ME/MC pour la prédiction temporelle, codage

par transformée

Direct: Vecteur de mouvement déduit des voisins ;

copie du bloc de référence

Lossless: Codage sans pertes

Exemple de performances des modes

Choix du mode de codage

▶ Objectif : minimiser D pour un R donné :

$$D = \sum_{k=1}^{K} D_k(i_k, Q)$$
 $R = \sum_{k=1}^{K} R_k(i_k, Q)$

- Le pas de quantification Q est donné
- L'ensemble des modes $\mathbf{i} = \{i_k\}_{k=1}^K$ doit être choisi en sort que on puisse minimiser :

$$J(\mathbf{i}, Q, \lambda) = \sum_{k=1}^{K} D_k(i_k, Q) + \lambda \sum_{k=1}^{K} R_k(i_k, Q)$$

Choix du mode de codage

- La minimisation conjointe sur i est trop complexe
- On préfère une minimisation sous-optimale
- ▶ Pour chaque MB k, on choisi le mode en sorte de minimiser:

$$J_k(i_k, Q, \lambda) = D_k(i_k, Q) + \lambda R_k(i_k, Q)$$

- On minimise séparément chaque terme de la somme J
- Le mode choisi dépend donc de Q et λ

Institut Mines-Telecom

Choix du mode de codage

- Le pas de quantification Q est considéré comme un input
- ▶ Pour chaque Q (débit) il existe une valeur optimale de λ , déterminée empiriquement
 - ▶ MPEG-2 : $\lambda = aQ^2 + b$
 - H 264 · $\lambda = c2^{dQ+e}$
- Avec le λ donné, minimiser J_k revient à trouver une droite sur le plan RD

42/54

30.05.16

Exemple de performances des modes

Institut Mines-Telecom

Schéma asymétrique!

La prédiction temporelle La structure du GOP (Group of Pictures) Le codeur hybride La norme MPEG-1

Plan

La prédiction temporelle

La structure du GOP (Group of Pictures)

Le codeur hybride

La norme MPEG-1

Institut Mines-Telecom

Les standards vidéo : chronologie

Les standards vidéo

Groupes de standardisation

Organismes de standardisation :

- **ISO** International Standardization Organization
- IEC International Electrotechnical Commission
- ITU International Telecommunication Union

Groupes de travaille

- ▶ MPEG (1988) : ISO/IEC Moving Picture Expert Group
- VCEG (1997): ITU Video Coding Expert Group
- ▶ Joint Video Team: H.264 et MPEG-4/Part 10 (JVT); extension scalable de H.264 (SVC); standards récents

Scope des standards

- Le standard ne définit que la syntaxe du train binaire et les outils de décodage
- But : intéroperabilité, concurrence
- ► Pédagogie : description de l'encodage

Le standard MPEG-1

- ▶ Développé en 1988-1992
- Parties du standard
 - Systèmes
 - 2. Video
 - 3. Audio
 - 4. Conformance test
 - Software simulation

Le standard MPEG-1

Partie 2 (Vidéo)

- Codeur hybride avec ME/MC
- Entrée : max 720 × 576 pixel @ 30 fps
- Débit < 1.86 Mbps (qualité VHS)
- Applications asymétriques, VoD, vidéo CD, jeux vidéo

Nouveautés techniques

- Types d'images
- ME/MC à précision sous-pixelique

30.05.16

Standard MPEG-1

ME/MC à précision sous-pixelique

- Le mouvement ne corresponde pas à la grille des pixels
- Interpolation pour améliorer la précision
- Ultérieure augmentation de la complexité
- Très bonnes performances de codage

Standard MPEG-1

ME/MC à précision sous-pixelique

Standard MPEG-1

Résumé

Codeur hybride classique (H.261), plus :

- Trames B et D
- 2. Vecteurs à précision sous-pixelique
- Gamme de résolution étendue
- 4. Groupe d'images avec structure flexible

