

Machine Learning Course - CS-433

Expectation-Maximization Algorithm

Nov 16, 2017

©Mohammad Emtiyaz Khan 2015

minor changes by Martin Jaggi 2016 minor changes by Martin Jaggi 2017

Last updated: November 16, 2017

Motivation

Computing maximum likelihood for Gaussian mixture model is difficult due to the log outside the sum.

$$\max_{oldsymbol{ heta}} \ \mathcal{L}(oldsymbol{ heta}) := \sum_{n=1}^N \overline{\log}_{k=1}^K \pi_k \, \mathcal{N}(\mathbf{x}_n \, | \, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$

Expectation-Maximization (EM) algorithm provides an elegant and general method to optimize such optimization problems. It uses an iterative two-step procedure where individual steps usually involve problems that are easy to optimize.

EM algorithm: Summary

Start with $\boldsymbol{\theta}^{(1)}$ and iterate:

Expectation step: Compute a lower bound to the cost such that it is tight at the previous $\boldsymbol{\theta}^{(t)}$:

$$\mathcal{L}(\boldsymbol{\theta}) \geq \underline{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})$$
 and

 $\mathcal{L}(\boldsymbol{\theta}) \geq \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})$ and • lower bound to $\boldsymbol{\mathcal{L}}$ for all $\boldsymbol{\theta}$

$$\mathcal{L}(m{ heta}^{(t)}) = \underline{\mathcal{L}}(m{ heta}^{(t)}, m{ heta}^{(t)}).$$
 • coincides with & at $m{ heta} = m{ heta}^{(t)}$

2. Maximization step: Update θ :

$$\boldsymbol{\theta}^{(t+1)} = \arg\max_{\boldsymbol{\theta}} \underline{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}).$$

How to define $\mathcal{L}(\theta, \theta^{(1)})$?

Concavity of log

Given non-negative weights q s.t. $\sum_{k} q_{k} = 1$, the following holds for any $r_{k} > 0$:

$$\log\left(\sum_{k=1}^{K} q_k r_k\right) \ge \sum_{k=1}^{K} q_k \log r_k$$

The expectation step

 $\log \sum_{k=1}^{K} \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\mathbf{p}_k} \geq \sum_{k=1}^{K} \frac{q_{kn}}{q_{kn}} \log \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{q_{kn}}$

with equality when,

$$\mathbf{q_{kn}^{(t)}} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu_k^{(t)}}, \boldsymbol{\Sigma_k^{(t)}})}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu_k^{(t)}}, \boldsymbol{\Sigma_k^{(t)}})}$$

This is not a coincidence.

& (G, G, G) =

$$= \log \sum_{k} \pi_{k} N$$

$$= 2 (\Theta^{(k)})$$

The maximization step

Maximize the lower bound w.r.t. $\boldsymbol{\theta}$.

$$\max_{\boldsymbol{\theta}} \sum_{n=1}^{N} \sum_{k=1}^{K} q_{kn}^{(t)} \left[\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$$
Differentiating w.r.t. $\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k^{(t)}$, we

can get the updates for μ_k and Σ_k .

$$\boldsymbol{\mu}_{k}^{(t+1)} := \frac{\sum_{n} q_{kn}^{(t)} \mathbf{x}_{n}}{\sum_{n} q_{kn}^{(t)}} = \mathbf{0}$$

$$\boldsymbol{\Sigma}_{k}^{(t+1)} := \frac{\sum_{n} q_{kn}^{(t)} \mathbf{x}_{n}}{\sum_{n} q_{kn}^{(t)}} = \mathbf{0}$$

$$\boldsymbol{\Sigma}_{k}^{(t+1)} := \frac{\sum_{n} q_{kn}^{(t)} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t+1)}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t+1)})^{\top}}{\sum_{n} q_{kn}^{(t)}} = \mathbf{0}$$

For π_k , we use the fact that they sum to 1. Therefore, we add a Lagrangian term, differentiate w.r.t. π_k and set to 0, to get the following update:

$$\pi_k^{(t+1)} := \frac{1}{N} \sum_{n=1}^{N} q_{kn}^{(t)}$$

Summary of EM for GMM

Initialize $\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}^{(1)}, \boldsymbol{\pi}^{(1)}$ and iterate between the E and M step, until $\mathcal{L}(\boldsymbol{\theta})$ stabilizes.

1. E-step: Compute assignments $q_{kn}^{(t)}$:

$$q_{kn}^{(t)} := \frac{\pi_k^{(t)} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})}{\sum_{k=1}^K \pi_k^{(t)} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})}$$

2. Compute the marginal likelihood (cost).

 $\mathcal{L}(\boldsymbol{\theta}^{(t)}) = \sum_{k=0}^{N} \log \sum_{k=0}^{K} \pi_k^{(t)} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})$

In the limit when
$$E_k = 6I$$
 and $6 \rightarrow 0$

assignment

(closest center,

3. M-step: Update
$$\boldsymbol{\mu}_k^{(t+1)}, \boldsymbol{\Sigma}_k^{(t+1)}, \pi_k^{(t+1)}$$

$$\mu_{k}^{(t+1)} := \frac{\sum_{n} q_{kn}^{(t)} \mathbf{x}_{n}}{\sum_{n} q_{kn}^{(t)}}$$

$$\Sigma_{k}^{(t+1)} := \frac{\sum_{n} q_{kn}^{(t)} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t+1)}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t+1)})^{\top}}{\sum_{n} q_{kn}^{(t)}}$$

$$\pi_{k}^{(t+1)} := \frac{1}{N} \sum_{n} q_{kn}^{(t)}$$

If we let the covariance be diagonal i.e. $\Sigma_k := \sigma^2 \mathbf{I}$, then EM algorithm is same as K-means as $\sigma^2 \to 0$.

Figure 1: EM algorithm for GMM

Posterior distribution

We now show that $q_{kn}^{(t)}$ is the posterior distribution of the latent variable, i.e. $q_{kn}^{(t)} = p(z_n = k \mid \mathbf{x}_n, \boldsymbol{\theta}^{(t)})$

$$p(\mathbf{x}_n, z_n | \boldsymbol{\theta}) = p(\mathbf{x}_n | z_n, \boldsymbol{\theta}) p(z_n | \boldsymbol{\theta}) = p(z_n | \mathbf{x}_n, \boldsymbol{\theta}) p(\mathbf{x}_n | \boldsymbol{\theta})$$

EM in general

Given a general joint distribution $p(\mathbf{x}_n, z_n | \boldsymbol{\theta})$, the marginal likelihood can be lower bounded similarly:

The EM algorithm can be compactly written as follows:

$$\boldsymbol{\theta}^{(t+1)} := \arg\max_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{p(z_n|\mathbf{x}_n, \boldsymbol{\theta}^{(t)})} [\log p(\mathbf{x}_n, z_n|\boldsymbol{\theta})]$$

Another interpretation is that part of the data is missing, i.e. (\mathbf{x}_n, z_n) is the "complete" data and z_n is missing. The EM algorithm averages over the "unobserved" part of the data.

ToDo

- 1. Identify the joint, likelihood, prior, and marginal distributions respectively. Understand the use of Bayes rule that relates all these distributions together.
- 2. Derive the posterior distribution for GMM.
- 3. Understand the relation between EM and K-means.
- 4. Relate the lower bound to EM for probabilistic models in general.
- 5. Read the Wikipedia page on how to find a good K.
- 6. Read about other mixture models in the KPM book.