OBSERVABILITY FOR LLMS

PHILLIP CARTER

DEFINICIONES IMPORTANTES

OBSERVABILITY

Definición muy confusa

Cuando no se puede hacer debugging

Ahí entra la observabilidad

Ser capaz de determinar que está pasando, sin necesidad de cambiar el sistema o debuggear de forma tradicional. Mediante la recopilación y análisis de datos

DOS FACTORES IMPORTANTES

Herramienta Utilizada

Riqueza de los Datos

56

46

56

56

FINE TUNING

1

Fase de Entrenamiento

2

Fase de Ajuste

3

Fine Tuning

PROMPT ENGINEERING

Los prompts en los modelos de lenguaje son como consultas SQL en bases de datos: ambos son instrucciones diseñadas para obtener respuestas específicas.

PROCESAMIENTO DE PROMPTS TIENE PROBLEMAS

DISTINTOS MODELOS
INTERPRETAN EL MISMO PROMPT
DE DISTINTA MANERA

LLM NO SIEMPRE ENTIENDE INSTRUCCIONES COMO SE ESPERA

REQUIERE OPTIMIZAR LAS INSTRUCCIONES

OBSERVABILIDAD EN EL CONTEXTO DE LOS LLM

Clave en los sistemas con LLM

No se usan pruebas unitarias

Recopilar señales antes y después de la llamada al modelo

SIMILITUDES EN LA OBSERVABILIDAD DE LLMS Y SOFTWARE CONVENCIONAL

No todos los problemas de rendimiento son debido al modelo

Los problemas de rendimiento deben investigarse a fondo

DESAFÍOS EN LA ADOPCIÓN EN ORGANIZACIONES TRADICIONALES

Herramientas tradicionales de QA no funcionan de manera efectiva

Necesitamos capturar datos de usuarios reales

IMPORTANCIA FAST RELEASES

Capacidad de realizar lanzamientos diarios es crucial

Comportamiento usuarios cambia

Identificar problemas

¿CÓMO USAR LA INFORMACIÓN OBTENIDAPARA MEJORAR EL LLM?

IMPORTANCIA DEL SEGUIMIENTO DE ERRORES

- Fallos críticos antes de la llamada al modelo
- Errores corregibles

LÍMITES DE LA OBSERVABILIDAD EN LLMS

Falta de reconocimiento de patrones automáticos

La observabilidad es un proceso iterativo y complejo

No existen mejores prácticas ni estándares

MEJORAS EN LA OBSERVABILIDAD DE LLMS EN LOS PRÓXIMOS AÑOS

INSTRUMENTACIÓN AUTOMÁTICA MEJOR ANÁLISIS DE DATOS DE TEXTO

PREGUNTAS

