BAYES NETWORK

Machine Learning Assignment – 6

Abstract

Perform WEKA related clustering and solves Bayes Network questions

Table of Contents

Part - 1	2
Part 2	c

i. Clustering without PCA

1. K-means with k=2: SSE =12598.193775711037

Clustered Instances

- 0 33 (87%) ALL(T&B)
- 1 5 (13%)(AML)

2. Confusion matrix for KMeans k=2

		PREDI	CTED
	AML ALL-(T&B)		ALL-(T&B)
ACTUAL	AML	4	7
	ALL-(T&B)	1	26

3. K-means with k=3:

SSE= 11186.928018360504

Clustered Instances

- 0 20 (53%)(ALL B-cell)
- 1 3 (8%)(ALL-T-Cell)
- 2 15 (39%)(AML)

4. Confusion matrix for KMeans k=3

			PREDICTED	
		AML	ALL-(T cell)	ALL-(B cell)
	AML	1	3	7
ACTUAL	ALL-(T cell)	3	0	5
	ALL-(B cell)	11	0	8

5. <u>Hierarchical Clustering with K=2:</u>

Clustered Instances

- 0 37 (97%)(ALL-T& B cell)
- 1 1 (3%)(AML)

6. Confusion Matrix for Hierarchical Clustering K=2

		PREDIC	CTED
		AML	ALL-(T&B)
ACTUAL	AML	0	11
	ALL-(T&B)	1	26

7. <u>Hierarchical Clustering with K=3:</u>

Clustered Instances

- 0 36 (95%)(ALL B-cell)
- 1 1 (3%)(ALL T-cell)
- 2 1 (3%)(AML)

8. Confusion matrix for Hierarchical Clustering K=3

			PREDICTED	
		AML	ALL-(T cell)	ALL-(B cell)
	AML	0	0	11
ACTUAL	ALL-(T cell)	0	0	8
	ALL-(B cell)	1	1	17

ii. <u>Clustering after PCA</u>

9. K-means with k=2:

SSE = 56.3089363060435

Clustered Instances

- 0 28 (74%)(ALL T& B cell)
- 1 10 (26%)(AML)

10. Confusion matrix for KMeans k=2

		PREDIC	CTED
		AML	ALL-(T&B)
ACTUAL	AML	4	7
	ALL-(T&B)	6	20

11. K-means with k=3:

SSE= 55.22769565994147

Clustered Instances

- 0 20 (53%)(ALL B CELL)
- 1 7 (18%)(ALL T CELL)
- 2 11 (29%)(AML)

12. Confusion matrix for KMeans k=3

		PREDICTED		
		AML	ALL-(T cell)	ALL-(B cell)
	AML	3	2	6
ACTUAL	ALL-(T cell)	4	1	3
	ALL-(B cell)	4	4	11

13. <u>Hierarchical Clustering with K=2:</u>

Clustered Instances

- 0 37 (97%)(ALL-T& B cell)
- 1 1 (3%)(AML)

14. Confusion Matrix for Hierarchical Clustering K=2

		PREDIC	CTED
		AML ALL-(T&B)	
ACTUAL	AML	0	11
	ALL-(T&B)	1	26

15. <u>Hierarchical Clustering with K=3</u>:

Clustered Instances

- 0 36 (95%)(ALL B-cell)
- 1 1 (3%)(ALL T-cell)
- 2 1 (3%)(AML)

16. Confusion matrix for Hierarchical Clustering K=3

		PREDICTED		
		AML	ALL-(T cell)	ALL-(B cell)
	AML	1	0	10
ACTUAL	ALL-(T cell)	0	0	8
	ALL-(B cell)	0	1	18

iii. <u>Classification</u>

Algorithm	Parameters	%Training accuracy
Random Forest	Max depth, No.of features,	100
	number of trees, seeds	
Boosting	Classifier, number of	5.2632
	iterations, seed	
J48	Confidence factor, min no.of	44.7368
	obj, number of folds, seed,	
	subtree raising	
Bagging	Bag size percent, number of	55.2632
	iterations, classifier, seed	

Algorithm	Parameters	%Test Accuracy
Random Forest	Max depth, No.of features,	5.2632
	number of trees, seeds	
Boosting	Classifier, number of	2.6316
	iterations, seed	
J48	Confidence factor, min no.of	0
	obj, number of folds, seed,	
	subtree raising	
Bagging	Bag size percent, number of	2.6316
	iterations, classifier, seed	

Page 1

$$\begin{cases}
P(A=Q) \cdot P(B=O|A=O) P(C=A|A=O) \\
P(D=A|B=O,C=A)
\end{cases}$$
=\(\left\{0.8 \times 0.4 \times 0.6 \times

Page 2

Page 3

(i) RUB IT

Path from R > B is NOT BLOCKED as
node — (The descards into conditioning node
Thus R & B are not d-separated by T'
Thus R & B are not conditionally independent
given T'

(i) LILT' | T L >T' is BLOCKED.

> Thus L&T' one dseparated by T & LIIT'IT. Hence; LIIT'IT are

Given T

(ii) LIB

$$P(L,B) = P(L=1,B=4)$$

$$= \leq P(L,R,D,T,B,T')$$

$$= \leq P(L) P(RIL) P(DIR) P(B)$$

$$= P(T|R,B) P(T'|T)$$

Page 4

Page 5

Page 6

$$P(0) = 0.6$$

$$P(10) = 0.4$$

$$Computor(c)$$

$$P(10) = 0.5$$

$$P(110) = 0.95$$

$$P(110) = 0.$$

Page 7

Possible sets of modes of A,B,C are:

[A] {B} {C} {A,C} {B,C} {C,A} {A,B,C}

& {Ø}.

[A] > For XILY | A, paths one

X-A-C-B-Y and X-A-B-Y & both both both one blocked at A & B
Thus, {A} D-SEPARATES X&Y

{c} \rightarrow For XIIY | c postho ena X-A-C-B-Y
& X-A-B-Y & both postho one blocked at
& X-A-B-Y & both postho one blocked at
C&B. Thus, {c} D-SEPARATES X&Y

EARS > For XIIY | A,C posths are X-A-C-B-Y & X-A-B-Y & both paths one blocked at @ & A. Thus {A,C3 D-SEPARATES XXY {(A,B,C)} -> For XILY | A,B,C bouths are X-A-C-B-Y& X-A-B-Y & both boths one blocked at A & C. Thus {A,B,C3 al-separates XXY.

Page 9