Способы представления оптимизационных задач

Яцулевич Владимир Владимирович

1. КОНВЕЕР ПОДГОТОВКИ ДАННЫХ

Теперь подберёмся чуть ближе к задаче квантового отжига. Квантовый симулятор представляет из себя регистр кубитов с определёнными связями. То есть математически архитектуру квантового вычислителя можно описать с помощью неориентированного графа, где кубиты — это вершины графа, а связи между кубитами — это рёбра между вершинами. То есть теперь с одной стороны мы имеем граф, а с другой стороны мы имеем оптимизационную задачу в форме QUBO. Соответственно, мы можем свести модель QUBO к графовой форме.

Пусть даны бинарные переменные x_1, \ldots, x_n и коэффициенты $c_{ij} \in \mathbb{R}$. Тогда задача QUBO имеет вид

$$\operatorname{argmin} \sum_{i \leqslant j} c_{ij} x_i x_j. \tag{1}$$

Модель QUBO может быть напрямую конвертирована в граф P с вершинами $V(P) = \{x_1, \ldots, x_n\}$ и рёбрами $E(P) = \{(x_i, x_j) | i \neq j, c_{ij} \neq 0\}$, где c_{ii} — вес вершин, а c_{ij} — вес рёбер при $i \neq j$.

В результате мы получаем некоторый граф. Но основная проблема на данном этапе заключается в том, что полученный граф и граф архитектуры квантового симулятора отличаются. Поэтому следующим этапом будет сведение математического графа к физическому. Конвеер подготовки данных представлен на рисунке ниже.

Рис. 1. Конвеер подготовки данных

2. МИНИМАЛЬНОЕ ВЛОЖЕНИЕ

Пусть дано два графа P и H, минимальным вложением графа P в граф H называется функция $\varphi:V(P)\to \mathcal{P}(V(H))$, которая каждой вершине графа P ставит в соответствие множество вершин из V(H), которое удовлетворяет следующим свойствам:

- 1. Множества вершин не пересекаются: $\varphi(u) \cap \varphi(v) = \emptyset$ для любых двух различных вершин $u, v \in V(P)$.
- 2. Множества вершин индуцируют связанные подграфы: $H[\varphi(u)]$ связный для всех вершин $u \in V(P)$.
- 3. Связь вершин сохраняется: $(u,v) \in E(P) \to (u',v') \in E(H)$ для некоторых вершин $u' \in \varphi(u)$ и $v' \in \varphi(v)$.

Стоит отметить, что в общем виде задача вычислительно сложная. Но нам не нужно создавать алгоритм минимального вложения в произвольный граф. Мы будем оттал-киваться от архитектуры квантового симулятора. У одного из квантового компьютера компании D-Wave архитектура имеет вид

Рис. 2. Архитектура квантового компьютера D-Wave

Пусть дан полный граф K_n . Основная концепция заключается в том, чтобы каждой вершине полного графа K_n поставить в соответствие цепочку из n-1 вершины. Пример для полного графа K_8 представлен на рисунке ниже.

Текущее и приоритетное направление архитектуры квантовых симуляторов компании D-Wave основаны на так называемых Химерных графах.

Химерный граф $\mathcal{C}_{L,M,N}$ представляет из себя решётку $M \times N$ полных двудольных графов $K_{L,L}$. К примеру, квантовый симулятор D-Wave 2000Q основан на графе $\mathcal{C}_{4,16,16}$. Местоположение кубита в таком графе определяется четвёркой (l_r, l_c, l_p, l_h) , где $1 \leqslant l_r \leqslant M$ идентифицирует строку, $1 \leqslant l_c \leqslant N$ идентифицирует столбец, $l_p \in \{1,2\}$ описывает

Рис. 3. Вложение графа K_8

Рис. 4. Пример Химерного графа $C_{3,3,4}$

долю графа и $1 \leqslant l_h \leqslant L$ определяет высоту в двудольном графе.

Детально рассмотрим идею, предложенную в статье [1]. Главная концепция заключается в введении промежуточного графа, который мы назовём *виртуальным слоем*. Тогда процесс поиска минимального вложения можно будет разделить на две части:

1. Определим начальное вложение. Начнём с виртуального слоя, который описывает физические кубиты. И определим вид отображений.

2. Итеративная настройка вложения. После инициализации начального вложение, произведём оценку и определим новый вид виртуального слоя и новый вид отображений.

Пусть задан граф задачи P и граф архитектуры H, \mathcal{T} — шаблон виртуального слоя. Отображение $\varphi: V(P) \to \mathcal{P}(V(\mathcal{T}))$ — вложение исходной задачи в виртуальный слой, $\psi: V(\mathcal{T}) \to \mathcal{P}(V(H))$ — вложение виртуального слоя в физический граф.

Рис. 5. Алгоритм поиска минимального вложения

Семейство виртуальных шаблонов \mathcal{F} — это множество виртуальных графов, определённых вместе с семейством функций Ψ , таких что для любых $L, M, N \in \mathbb{Z}^+$ существует функция $\psi \in \Psi$ и $\mathcal{T} \in \mathcal{F}$, такие что функция ψ вкладывает граф \mathcal{T} в Химерный граф $\mathcal{C}_{L,M,N}$.

Нахождения функции виртуального вложения $\varphi:V(P)\to \mathcal{P}(V(\mathcal{T}))$ достаточно для определения начального вложения $\chi:V(P)\to \mathcal{P}(V(H)),$ которое может быть построено следующим образом

$$\chi(u) = \bigcup_{x \in \varphi(u)} \psi(x). \tag{2}$$

Этап вложения принимает на вход граф P некоторой задачи и виртуальный слой \mathcal{T} , и выдаёт на выходе виртуальное вложение $\varphi:V(P)\to \mathcal{P}(V(\mathcal{T}))$

Этап редукции принимает на вход граф P некоторой задачи, виртуальный слой \mathcal{T} и виртуальное отображение φ . На выходе алгоритм выдаёт новый виртуальный слой \mathcal{T}' и новое виртуальное отображение φ' (которое может совпадать с отображением φ)

Физический граф $C_{L,M,N}$ описывает виртуальный двудольный граф $\mathcal{T} = K_{LM,LN}$ с долями $L(\mathcal{T}) = \{v_1, \dots, v_{LM}\}$ и $R(\mathcal{T}) = \{h_1, \dots, h_{LN}\}$. Функция минимального вложения определяется следующим образом

$$\psi(v_i) = \{ (j, \lceil i/L \rceil, 1, i \mod L) | 1 \leqslant j \leqslant M \},$$

$$\psi(h_i) = \{ (\lceil i/L \rceil, j, 2, i \mod L) | 1 \leqslant j \leqslant N \}.$$
(3)

Шаг 1. Пусть дан граф P некоторой задачи с множеством вершин $V(P) = \{u_1, \ldots, u_n\}$, где $n \leq \min(LM, LN)$ и двудольный виртуальный слой \mathcal{T} с долями $L(\mathcal{T}) = \{v_1, \ldots, v_{LM}\}$ и $R(\mathcal{T}) = \{h_1, \ldots, h_{LN}\}$. Возьмём в качестве начального отображения $\varphi(u_i) = \{v_i, h_i\}$ для $1 \leq i \leq n$.

Шаг 2. Пусть задан стандартный ввод P, \mathcal{T} и φ . Для каждого виртуального кубита $v_i \in L(\mathcal{T})$ определим множество соседей $I_{v_i} = \{j | (v_i, h_j) \in E(\mathcal{T})\}$. Определим для каждой вершины левой доли метрику

$$score(v_i) = 1 + \left\lfloor \frac{\max(I_{v_i})}{L} \right\rfloor - \left\lfloor \frac{\min(I_{v_i})}{L} \right\rfloor$$
 (4)

Для вершин правой доли метрика определяется аналогично. Тогда метрика кубита для отображения φ и виртуального слоя $\mathcal T$ определяется как

$$\sum_{v_i \in L(\mathcal{T})} \operatorname{score}(v_i) + \sum_{h_i \in R(\mathcal{T})} \operatorname{score}(h_i).$$
 (5)

Шаг 3. Пусть задан стандартный ввод P, \mathcal{T} и φ . Пусть S — множество вершин задачи, сопоставленных по крайней мере одному виртуальному кубиту на каждой доле, \mathcal{E} — это множество вершин E виртуального слоя, таких что для любых вершин $u, v \in S$ существует ровно одно ребро $(u', v') \in E$ с $u' \in \varphi(u)$ и $v' \in \varphi(v)$. Тогда на этом шаге нужно вычислить величину

$$\operatorname{argmin}_{E \in \mathcal{E}} \operatorname{Qubit-Scoring}(E). \tag{6}$$

Шаг 4. Пусть задан стандартный ввод P, \mathcal{T} и φ . Пусть S — множество вершин задачи, сопоставленных по крайней мере одному виртуальному кубиту на каждой доле.

$$E = \{(v_i, h_j) | i \leqslant j, v_i \in \varphi(x), h_j \in \varphi(y), x, y \in V(P), y \in N(x)\},$$
(7)

где N(u) — кол-во вершин, смежных с вершиной u.

Шаг 5. Пусть задан стандартный ввод P, \mathcal{T} и φ , E — множество вершин, полученных на предыудщем шаге. Результатом работы данного шага будет новое виртуальное окружение \mathcal{T}' с вершинами $V(\mathcal{T})$ и рёбрами $E(\mathcal{T}) - E$.

Шаг 6. Пусть задан стандартный ввод P, \mathcal{T} , φ и параметр k. Тогда новое отображение можно вычислить следующим образом.

- 1. Пусть $\varphi' = \varphi$.
- 2. Начиная с φ' посчитаем все $C_n^k k!$ способов переобозначить ровно k вершин в каждой части. И для каждого случая посчитаем матрику качества для каждого кубита.
- 3. Выберем тот результат, который даёт наименьшее значение метрики.
- 4. Повторять эти шаги до получения меньшего результата.

^[1] T. D. Goodrich, B. D. Sullivan, and T. S. Humble, Optimizing adiabatic quantum program compilation using a graph-theoretic framework, Quantum Information Processing 17, 1 (2018).

^[2] V. Choi, Minor-embedding in adiabatic quantum computation: I. the parameter setting problem, Quantum Information Processing 7, 193 (2008).