DOT/FAA/AR-99/20, P2, Vol I

Office of Aviation Research Washington, D.C. 20591

Development of a Supplemental Inspection Document for the Fairchild SA226 and SA227 Aircraft, Part 2, Volume I

October 1999

Technical Report

This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161.

U.S. Department of Transportation Federal Aviation Administration

20000114 060

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitue FAA certification policy. Consult your local FAA aircraft certification office as to its use.

This report is available at the Federal Aviation Administration William J. Hughes Technical Center's Full-Text Technical Reports page: www.tc.faa.gov/its/act141/reportpage.html in Adobe Acrobat portable document format (PDF).

Technical Report Documentation Page				
1. Report No.	2. Government Accession I	No.	3. Recipient's Catalog No.	
DOT/FAA/AR-99/20, P2, Vol I				
4. Title and Subtitle			5. Report Date	
DEVELOPMENT OF A SUPPLEMENTAL INSPECTION DOCUMENT FOR		CUMENT FOR	October 1999	
THE FAIRCHILD SA226 AND SA227 AIRCRAFT, PART 2, V		<u>_</u>	6. Performing Organization	n Code
7. Author(s)			8. Performing Organization	Report No.
W. Dwyer				
9. Performing Organization Name and Address			10. Work Unit No. (TRAIS)	
Fairchild Aircraft		-	11. Contract or Grant No.	
P.O. Box 790490 San Antonio, TX 78216			11. Contract or Grant No.	,
12. Sponsoring Agency Name and Address			40.7	
			13. Type of Report and Per	riod Covered
U.S. Department of Transportation Federal Aviation Administration			Technical Report, l	Part 2, Volume I
Office of Aviation Research			14. Sponsoring Agency Co	
Washington, DC 20591			ACE-100	
15. Supplementary Notes			ACL-100	
The FAA William J. Hughes Technical	Center manager was D	r. Xiaogong Lee.		
16. Abstract				
17. Key Words		18. Distribution Statement		
SA226 and SA227, Crack growth, Damage		This document is as	vailable to the public	through the National
Structural inspection, Metro, Merlin, SID,	NASGRO		ion Service (NTIS),	
19. Security Classif. (of this report)	20. Security Classif. (of	this page)	21. No. of Pages	22. Price
Unclassified	Unclassi	fied	632	

TABLE OF CONTENTS

<u>Volume I</u>

1.	INTRODUCTION	1-1
2.	ANALYSIS METHOD	2-1
	2.1 NASGRO Stress Relationships	2-1
	2.2 Usage and Load Spectra	
	2.3 Determination of Fastener Loads	
	2.4 Additional NASGRO Crack Cases	
	2.5 Initial Flaw Assumptions	
	2.6 Material Properties	
	2.7 Detectable Crack Sizes and Inspection Intervals	
3.	SA226 FULL-SCALE FATIGUE TEST	3-1
4.	WING GROUP	4-1
	4.1 PSE W1 SA226 Main Spar Lower Surface at WS 99	4-1
	4.2 PSE W2 SA226 Main Spar Lower Cap at WS 9.0	4-8
	4.3 PSE W3 SA226 Rear Spar Lower Cap at WS 27.0	4-10
	4.4 PSE W4 SA227 Main Spar Lower Cap at WS 99.0	4-13
	4.5 PSE W5 SA227 Skin Splice at WS 99.51 Lower Surface	
	4.6 PSE W6 SA227 Wing Extension Fitting, Main Spar Lower Surface	
	4.7 PSE W7 SA227 Lower Wing Skin on Forward Side of Main Landing Gear Trunnion at WS 113	
	4.8 PSE W8 SA226 and SA227 Chordwise Skin Splice at WS 173.9 Lower Surface	
	4.9 PSE W9 SA226 and SA227 Skin Splice at WS 27 Lower Surface Outboard of Rib	
	4.10 PSE W10 SA226 and SA227 Skin Splice at WS 27 Lower Surface Inboard of Splice	
	4.11 PSE W11 SA226 Wing Lower Center Section Skin at Landing Light Cutout	
	4.12 PSE W12 SA227 Tip Extension Fitting, Rear Spar Lower Surface	
	4.13 PSE W13 SA227 Tip Extension at End of Outboard Fitting, Rear Spar Lower Surface	
	4.14 PSE W14 SA227 Tip Extension at End of Outboard Fitting, Main Spar Lower Surface	4-31
5.	ENGINE MOUNT AND NACELLE GROUP	
	5.1 PSE EM1 SA227 Upper Engine Mount (27-62114) at the Firewall	5-1
	5.2 PSE N1 SA226 and SA227 Nacelle Upper Longeron at the Firewall	5-3
	5.3 PSE N2 SA226 and SA227 Nacelle Upper Longeron at Wing Rib Attach Angle	
	5.4 PSE N3 SA226 and SA227 Nacelle Upper Longeron Wing Rib Attach Angle	5-6
6.	HORIZONTAL AND VERTICAL STABILIZER GROUP	6-1
	6.1 PSE H1 SA226 and SA227 Horizontal Stabilizer Rib Strap at Rear Spar BL 3.135	6-1
	6.2 PSE H2 SA226 and SA227 Horizontal Stabilizer Pitch Trim Actuator Fitting	6-2
	6.3 PSE V1 SA226 and SA227 Vertical Fin Main Spar Cap Strips Below Pivot Fitting	6-2
7.	CARGO DOOR SURROUND STRUCTURE GROUP	7-1
	7.1 PSE F4 SA226 and SA227 Fuselage Frames at Fwd and Aft Cargo Door Latches	7-1
	7.2 PSE F5 SA226 and SA227 Fuselage Frame at Cargo Door Latch at FS 455.7 and 473.4	7-1
	7.3 PSE F6 SA226 and SA227 Fuselage Frame at Cargo Door Sides	
	7.4 PSE F7 SA226 and SA227 Cargo Door Hinge	
	7.5 PSE F10 SA226 and SA227 Cargo Door Opening Corners	7-5
8.	OTHER FUSELAGE GROUP	8-1
	8.1 PSE F1 SA226 and SA227 T-Stringer at Top Centerline Near FS 330	8-1
	8.2 PSE F2 SA226 and SA227 Wing to Fuselage Forward Attachment Fitting	8-2
	8.3 PSE F3 SA226 and SA227 Wing to Fuselage Aft Attachment Fitting	8-2

	8.4 PSE F8 SA226 and SA227 Corners of Passenger Window Cutouts	8-2
	8.5 PSE F9 SA226 T-Stringer, Bottom Centerline Aft of FS 362	8-3
	8.6 PSE F11 SA226 and SA227 Forward Pressure Bulkhead	8-3
	8.7 PSE F12 SA226 and SA227 Passenger Door Opening Corners	8-4
	8.8 PSE F13 SA226 and SA227 Control Column Roller Bearing	8-5
9.	LANDING GEAR GROUP	9-1
	9.1 PSE LG2 SA226 and SA227 Landing Gear Cylinder (5453001-1,-3) Under 14,000 lbs Landing Wei	
10.	ONSET OF WIDESPREAD FATIGUE DAMAGE (WFD)	10-1
11.	SUMMARY OF RESULTS	11-1
12.	REFERENCES	12-1

APPENDICES

- A—STRESS ANALYSES AND STIFFNESS MODELS
- **B—NASGRO STRESS FACTORS AND CONSTANTS**
- C-NASGRO OUTPUT FILES

Volume II

APPENDICES

- D—NASGRO SCHEDULE FILE
- E—FORTRAN SOURCE CODE FOR MODIFIED CRACK CASES
- F—TESTING AND ANALYSIS FOR DTA OF FAIRCHILD SA226 MAIN WING SPAR LOWER CAP AT WS 99 VOLUME I
- G—TESTING AND ANALYSIS FOR DTA OF FAIRCHILD SA226 MAIN WING LOWER SPAR CAP AT WS 99 VOLUME II APPENDICES

LIST OF FIGURES

2-1 SPECTRUM COMPARISON - SA226 AND SA227	2-2
2-2 PEAK ACCELERATION VS. SINK RATE (15,675 LBS)	2-3
2-3 STRESS REDUCTION IN MODIFIED CRACK CASE	2-5
2-4 COMPARISON OF CRACK GROWTH RATES FOR SEVERAL NASGRO MATERIALS AND	0.5
2024-T422-5 DETERMINATION OF INSPECTION INTERVALS	
	2-8
4-1 ONE-g STRESS DISTRIBUTION, SA226 MAIN SPAR (12,500 lbs MTOW) FROM FINITE ELEMENT ANALYSIS	4-1
4-2 PSE W1 FINITE ELEMENT RESULTS, UNIT LOAD CASE	
4-3 PSE W1 SA226 MAIN SPAR LOWER CAP WS 99	4-3
4-4 INSPECTION LOCATIONS FOR MAIN SPAR LOWER CAP	4-3
4-5 TWO CRACK SCENARIOS FOR SPAR CAP	4-4
4-6 CRACKS GROWING TOWARD EDGE OF SPAR ASSEMBLY	4-5
4-7 CRACKS GROWING TOWARD CENTER OF SPAR	4-6
4-8 DETERMINATION OF EXTENT OF INSPECTION FOR W1	4-7
4-9 PSE W1 GROWTH OF INITIAL EDGE FLAW IN CAP	4-8
4-10 PSE W2 SA226 MAIN SPAR LOWER CAP WS 9.0	4-9
4-11 PSE W3 NASTRAN FINITE ELEMENT MODEL	4-11
4-12 PSE W3 SA226 REAR SPAR LOWER CAP AT WS 27.0	4-12
4-13 GROWTH OF AVERAGE QUALITY FLAW IN W3	4-13
4-14 SA227 MAIN SPAR LOWER CAP ELEMENTS (1-g STRESSES FROM FIGURE 4-15 DATA)	4-14
4-15 SA227 MAIN SPAR STRESS DISTRIBUTION (14,000 lbs MTOW)	4-14
4-16 PSE W4 SA227 MAIN SPAR LOWER CAP PRIMARY GROWTH	4-15
4-17 GROWTH OF SECONDARY FLAW AT WS 99	4-16
4-18 SCHEMATIC OF SPLICE AT WS 99 LOWER SURFACE	4-16
4-19 PSE W5 SA227 SKIN SPLICE AT WS 99 LOWER SURFACE	4-17
4-20 CRACK IN WS 99 SPLICE LINKING ZERO, TWO, AND FOUR HOLES	4-18
4-21 PSE W6 LOAD DISTRBUTION IN STIFFNESS MODEL	4-19
4-22 PSE W6 SA227 WING EXTENSION FITTING MAIN SPAR LOWER SURFACE	4-19
4-23 PSE W7 SA227 LOWER WING SKIN FWD SIDE OF LANDING GEAR TRUNNION AT WS 113	4-21
4-24 PSE W7 CONTINUING DAMAGE IN 0.032 SKIN	4-22
4-25 PSE W8 CHORDWISE SKIN SPLICE AT WS 173.9	4-23
4-26 PSE W10 FINITE ELEMENT MODEL OUTPUT	4-24
4-27 PSE W10 SA226 AND SA227 SKIN SPLICE AT WS 27 INBOARD	4-25
4-28 NASBEM BOUNDARY ELEMENT MODEL FOR PSE W11	4-26
4-29 NASBEM OUTPUT AT FILLET IN PSE W11	4-26

4-30 PSE W11 SA226 WING LOWER CENTER SECTION SKIN AT LANDING LIGHT CUTOUT	4-27
4-31 PSE W12 SA227 TIP EXTENSION FITTING REAR SPAR LOWER SURFACE	4-28
4-32 PSE W13 SA227 TIP EXTENSION AT END OF OUTBOARD FITTING REAR SPAR LOWER SURFACE	4-29
4-33 PSE W14 SA227 TIP EXTENSION AT END OF OUTBOARD FITTING MAIN SPAR LOWER SURFACE	4-31
5-1 ENGINE MOUNT TRUSS	5-2
5-2 ENGINE MOUNT BEFORE AND AFTER SERVICE BULLETIN	5-3
5-3 PSE N1 NACELLE UPPER LONGERON AT FIREWALL	5-4
5-4 FREE BODY DIAGRAM OF LONGERON SECTION (KEELSON WEB NEGLECTED)	5-5
5-5 NASTRAN MODEL OF LONGERON ATTACHMENT TO WING	5-6
5-6 SCHEMATIC OF UPPER NACELLE STRUCTURE	
5-7 PSE N3 NACELLE UPPER LONGERON ATTACH ANGLE	5-8
6-1 SCHEMATIC OF VERTICAL TAIL PIVOT FITTING SPLICE	6-3
7-1 PSE F-5 LOWER LATCH FRAME AT STRINGER CUTOUT	7-2
7-2 CARGO DOOR HINGE FINITE ELEMENT MODEL	7-3
7-3 PSE F7 CARGO DOOR HINGE	7-4
7-4 PSE F10 CARGO DOOR CUTOUT CRACK GROWTH	7-5
8-1 PSE F1 T-STRINGER, TOP CENTERLINE NEAR FS 300	8-2
8-2 FATIGUE TEST DATA – CORNERS OF WINDOW CUTOUTS	8-3
8-3 PSE F11 FORWARD PRESSURE BULKHEAD CHANNEL	8-4
LIST OF TABLES	
2-1 PEAK ACCELERATION VS. SINK RATE	2-3
2-2 DETECTABLE CRACK SIZES	2-8
11-1 SUMMARY OF CRACK GROWTH RESULTS	
11-2 SUMINIAKY OF INSPECTION INTERVALS	11-3

1. INTRODUCTION

This report presents the results of Phase II in the development of a Supplemental Inspection Document (SID) for SA226 and SA227 aircraft. Phase I consisted of establishment of the usage and stress spectra, identification of principal structural elements (PSE's), and review of service histories for these elements. Phase II tasks have included, for each PSE, collection of material properties, establishment of initial flaw size, inspection method, detectable flaw size, crack growth analysis, inspection intervals, and determination of widespread fatigue damage. Phase III will cover final development and publication of the SID and a final project report.

Using the data gathered in Phase I of this study, the principal structural elements of the SA226 and SA227 aircraft have been examined in detail. The principal analysis tool used was the crack growth program, NASGRO (version 2.0) [2]. All of the analysis neglected retardation effects. Each principal structural element was first examined to determine its critical location. The stress spectrum at the critical location was then calculated or determined from measurements, and an appropriate NASGRO crack case was selected. Where the crack growth life was determined to be short and inspection difficult, material testing was performed under a realistic load spectrum to experimentally verify the crack growth analysis method. In other cases, in-service experience or full-scale fatigue test results provided verification.

The original economic life of the airframe was set at 35,000 hours based on previous fatigue testing. A complete airframe was tested for 105,000 hours and then saw cuts were made and limit loads were applied [5]. Many of the PSE's were shown to be fail-safe by this test. A complete fail-safe analysis of the airframe was also performed, per FARs 23.571 and 23.572 [11, 19]. Using these results and operational experience as an empirical basis, the goal of the present study is to extend the economic life to 50,000 hours. As most of the aircraft have been converted to cargo service with lower utilization rates than new aircraft, an additional useful life of over 10 years is not unreasonable to expect.

It is clear from the present study that modifications will have to be made to the aircraft to improve inspectability and lengthen fatigue lives of critical structural elements. Phase III will address these issues.

2. ANALYSIS METHOD

2.1 NASGRO STRESS RELATIONSHIPS

In general, each NASGRO crack case requires a stress factor and an associated constant for each type of stress—tension, bending, bearing, and lateral. In this study, the stress factor usually equals the stress per g. The constant then equals the 1-g stress divided by the stress per g. The user-provided load spectrum gives the change in g load for each frequency of load exceedance. With these inputs, the stress for a given frequency of load exceedance is

S = Stress Factor * (Constant
$$\pm$$
 Spectrum Value)
= σ/g * ($\sigma_{1-g}/\sigma/g \pm \Delta g$)

This relation applies for each type of stress applicable to the crack case.

The relation is slightly different for landing cases where stress is available as a function of sink rate. Here, the stress factor equals the stress just before landing while the constant equals zero. The load spectrum provides normalized landing stress for each given frequency of sink rate exceedance. Therefore, the landing stress for a given frequency of sink rate exceedance is

```
S = Stress Factor * (Constant ± Spectrum Value) = Stress before impact * (0 ± Stress at sink rate/Stress before impact)
```

There are two failure criteria in NASGRO. Calculation stops when there is unstable crack growth or when the flow stress of the material is exceeded. The flow stress is defined as the average of the yield and ultimate stress for the material.

2.2 USAGE AND LOAD SPECTRA

The crack growth analyses in this report are presented in terms of schedules, a term used in NASGRO to represent the repeating portion of a load spectrum. In this report one schedule represents 5.5 hours of flight—one 0.5-hour flight, one 2.0-hour flight, and three 1.0-hour flights. These comprise the usage spectrum developed in Phase I.

The maneuver and gust load spectrums for each of the three flight lengths were determined for the SA226 and SA227 models in reference 1. These spectra are reproduced in Figure 2-1 on a per 35,000-hour basis. Note that the SA226 spectrum, although the most severe, is the same for all three flights. This spectrum was used for each PSE applicable to the SA226 or to both the SA226 and SA227. The SA227 spectra were used only for those PSE's applicable to the SA227 only. In all cases the exceedances of a given positive acceleration level were also assumed to occur for the corresponding negative acceleration level. This is conservative since there are generally fewer exceedances of the negative acceleration levels.

SA226 and SA227 Gust & Manuever Spectra

FIGURE 2-1 SPECTRUM COMPARISON - SA226 AND SA227

For taxi and landing conditions, the exceedance spectra were assumed to be the same for both aircraft models. These spectra, which were presented in reference 1, are not reproduced here. Two additional spectra were developed for this report. For cases where landing stress was not available as a function of sink rate, a spectrum of peak acceleration at landing was developed using data obtained from reference 4. Ground reaction loads were measured for various sink rates at a gross aircraft weight of 15,675 lbs. These measurements led to the graph shown in Figure 2-2. Plotted on the graph are peak acceleration vs. sink rate and the best-fit parabola. The best-fit parabola and the landing spectrum from Phase I are used to construct the spectrum given in Table 2-1 for use in selected PSE analyses.

FIGURE 2-2 PEAK ACCELERATION VS SINK RATE (15,675 LBS)

A spectrum for prop wash effects on the empennage was also developed and is explained in the section on the horizontal and vertical stabilizer group.

All of the load spectra used for NASGRO crack growth analysis are given in Appendix D in volume II of this report.

TABLE 2-1 PEAK ACCELERATION VS. SINK RATE

Exceedances per 10,000 flights	Sink Rate (fps)	Peak Acceleration (g's)
2,750	~0	0.55
4,400	1	0.57
2,200	2	0.62
590	3	0.70
48	4	0.82
12	5	0.98

2.3 DETERMINATION OF FASTENER LOADS

Generally, the distribution of loads in fastened joints was determined by the method outlined in reference 7. Fastened members are treated as axially loaded bar elements joined by fastener elements whose shear stiffness is a function of fastener diameter and material as well as thickness and material of the joined members. A finite element stiffness matrix of the joint is then constructed and solved in Excel. This approach allows rapid what-if analyses for variations in the PSE geometry. In cases where the axial bar approximation appeared unsatisfactory, the joint was modeled in NASTRAN with plate elements to represent fastened members and DOF spring elements to represent fasteners. Stiffness values of the DOF spring elements are determined as above.

During fatigue tests and field strain surveys, stresses were measured for a variety of load and center of gravity (c.g.) conditions. In all cases the analysis was performed using the highest stress measurement at a given location.

2.4 ADDITIONAL NASGRO CRACK CASES

The standard NASGRO crack cases do not account for the additional undamaged area that may be available in a structure to assume load as the cracked member weakens. For example, as a crack propagates in a spar cap, the cap looses stiffness and load is transferred to other elements of the cap assembly. Failure to account for this effect can substantially reduce the life predicted by the analysis. Therefore new crack cases, TC11 and TC12, were developed based on TC03 and TC02. TC11 and TC12 prompt for input of the amount of additional area as well as principal moments of inertia and the centroid of this area. Then as the crack progresses, the remote and local stresses in the cracked member are reduced according to the magnitude of these input values relative to those of the cracked member. The formula for the reduced remote stress is as follows.

$$S_{red} = S * [(W - c) / W] * {(W*t + Area_3) / [(W - c)*t + Area_3]}$$

Here W and t are the width and thickness of the cracked member, c is the crack length, and Area, is the area of the additional undamaged material. The beneficial effect of this correction is small until the crack becomes relatively large. For example, the graph in Figure 2-3 shows how the reduction factor varies with crack length and Area, when W = 3.0 inches and t = 0.125 inch.

The FORTRAN source code for modified crack cases is given in Appendix E of volume II. This code has been checked by Southwest Research for errors. When performing the analysis it was noticed that the crack growth curves obtained with the modified code have the same basic shape but extend the predicted life by 20%-50% over the standard models. These are not unreasonable results, since it is well known that a small variation in stress level or material condition can have a large effect on

crack growth rate. The modified cases were used to analyze only four areas, each in the multielement wing spar caps at stations 9, 27, and 99.

FIGURE 2-3 STRESS REDUCTION IN MODIFIED CRACK CASE

2.5 INITIAL FLAW ASSUMPTIONS

No comprehensive study of initial manufacturing flaws is available for the SA226 and SA227 aircraft. Therefore, the crack growth analyses in this report were performed using the initial flaw assumptions shown on page 4-79 of reference 3. These assumptions, which were based on two separate studies of retired U.S. Air Force airframes, are as follows.

Initial Rogue Flaws:

- Represent gross manufacturing defects and material nonconformities
- Actually present in very few structures
- Applicable to the critical location of each PSE
- Assumed Size:
 0.05- x 0.05-inch corner flaw (material thicker than 0.05 inch)
 0.05-inch through thickness crack (material 0.05 inch thick or less)

Average Quality Flaws:

- Represent typical manufacturing flaws (nicks, scratches, etc.)
- Present in virtually all structure
- Applicable for continuing damage after termination of primary growth
- Assumed Size:
 - 0.005- x 0.005-inch corner flaw (material thicker than 0.005 inch)
 - 0.005-inch through thickness crack (material 0.005 inch thick or less)

Although quality control should eliminate most rogue flaws, a conservative damage tolerance analysis must assume at least one at the most critical location in each PSE. Average quality flaws are by definition numerous in a structure and are assumed to exist where continuing damage is considered after termination of the primary crack. Since material thickness of 0.005 inch is rarely encountered, the average quality flaw is typically a 0.005- x 0.005-inch corner crack. However, in crack growth programs such as NASGRO a 0.005-inch through crack is often simpler to model and gives more conservative results.

2.6 MATERIAL PROPERTIES

The NASGRO 2.0 database [14] contained crack growth properties for most of the PSE materials. There were several exceptions, however.

- The wing spars and stub stringers (PSE's W1, W2, W3, W4, and W7) are built with 2014-T6511 extrusion. For this material, parameters used in the NASGRO da/dN equation were determined by test, as explained in the section on PSE W1 and detailed in Appendices F and G of volume II.
- The engine mount (PSE EM1) is fabricated from 4130N tubing. As this material is not included in the NASGRO database, justification for the use of 160-180 UTS 4340 plate constants in the analysis is provided in the section on PSE EM1.
- Several PSE's in the nacelle and empennage contain 2024-T42. Again, this material is not in the NASGRO database. However, Figure 2-4 shows that for crack growth analysis, the available NASGRO materials can be conservatively used in lieu of 2024-T42. The 2024-T42 crack growth rate equation was determined from tests detailed in reference 18. The lower growth rate can be explained by the relatively thin section that was tested as well as the softer clad finish. These curves are actually close to being within the range of scatter for typical crack growth rate tests.

A complete record of all material properties used for the analysis of each PSE can be found in the output files given in Appendix C.

Comparison of Crack Growth Rates (Paris Equation Fit)

FIGURE 2-4 COMPARISON OF CRACK GROWTH RATES FOR SEVERAL NASGRO MATERIALS AND 2024-T42

2.7 DETECTABLE CRACK SIZES AND INSPECTION INTERVALS

The detectable crack sizes for the standard inspection method are taken from earlier damage tolerance work of other manufacturers. Table 2-2, based on data in reference 20, represents the conservative end of the spectrum for 90% probability of detection curves.

TABLE 2-2 DETECTABLE CRACK SIZES

NDI Method	Detectable Flaw Size (in)
Surface Eddy Current	0.10-0.16
Visual	0.25
Magnetic Particle	0.10
Florescent Penetrant	0.10
Bolt Hole Eddy Current	0.08

Although X-ray inspection is currently recommended in the Airframe Airworthiness Limitations Manual for inspections of the main spar lower cap, X-ray will be ruled out as an inspection method for the SID. This decision is made because of the high dependence on inspector skill and low repeatability.

Once the crack growth curve has been determined and an inspection method chosen, the inspection intervals are set using the following general rules. The initial inspection threshold is typically set as one-half of the crack growth life of the component or assembly. The repeat inspection interval is then set as one-half of the time from the detectable crack size to the critical crack size. These relationships are shown graphically in Figure 2-5.

FIGURE 2-5 DETERMINATION OF INSPECTION INTERVALS

3. SA226 FULL-SCALE FATIGUE TEST

A full-scale fatigue test of an SA226 airframe was performed in 1978-1980 to uncover unexpected problem areas in fatigue, establish a basis for inspection intervals, and confirm the fail-safe character of the design. The spectrum imposed on the airframe was identical to the SA226 spectrum shown in Figure 2-1.

The following overview of the test is reproduced from reference 12. The discussions of inspection intervals therein should not be construed to supersede the present study, which relies on crack growth analysis and assumptions of rogue flaws at critical areas of the airframe.

A full-scale fatigue test was planned for the SA226 series aircraft in 1977 as an exploratory effort to gain confidence in the fatigue behavior, e.g., time to first crack initiation, crack locations, and propagation rates, which determine the inspection intervals. With such a test, as the airframe accumulated large amount of operational hours, Fairchild Swearingen could be much more confident that inspection locations, time to initial inspections, and time between inspections as defined in the then existing documents were conservative. A life limit was not the goal. The SA226 series had been shown fail-safe by analysis.

The fatigue test was a very rationally developed procedure which balanced the airframe as it would have been in flight. Among other things, the tail was fatigue tested in a rational manner. Although the horizontal and vertical tail components were not required to meet FAR 23.572 at the time of certification, the spars and forged fittings are composed of multiple load paths including the horizontal stabilizer pivot bolt which is a bolt within a bolt. The actuator is a dual unit.

It is worth mentioning that cracks in the few expected areas had not occurred after 80% of the third lifetime (i.e., after 98,000 hours). At this point, simulated cracks were placed in the structure by sawing cuts adjacent to rivet holes. None of these cracks grew a noticeable amount during the remaining testing. A simulated crack was added in the rear spar which was not in the original plan for the fatigue test. After testing was completed, the intentional cracks were extended further and limit load was applied, then 91.7% of ultimate load, with no apparent crack growth.

Many of the cracks that did occur were repaired at discovery while others were allowed to grow being in secondary or redundant structure. After the fatigue test, these failed areas were subjected to limit load, then 91.7% of ultimate load without incident. None of the sawed cracks grew.

The locations of the saw cuts were described as follows in reference 13. Although this document was written before completion of the fatigue test, the proposals it contains were actually carried out, as indicated in the final report of the fatigue test results [5].

To substantiate the fail-safe characteristics and establish appropriate inspection intervals on the SA226 aircraft, it is proposed to modify the structure of the fatigue test aircraft when the test reaches 80% of the third lifetime of the fatigue spectrum. The proposed modifications are listed below.

Wing Station 99.5 [PSE W1]

By analysis (reference Swearingen report 2601-R368, page 15) the main spar at wing station 99.5 appears to be the highest-stressed location in the aircraft during normal operation. The last fastener in the titanium strap on the rear side of the main spar on one wing and on the forward side on the opposite wing will be removed and a 0.05" saw slit made through the depth of the hole, perpendicular to the spar. The fastener will be reinstalled and the region x-rayed. The growth of this "crack" will be checked at every 2 1/2% of life or as necessary.

Wing Station 9.28 [PSE W2]

This location is the second highest stress location in the wing. The load spectrum is different here than at wing station 99 due to the much stronger influence of the ground-air-ground cycle loads. A fastener will be removed from the bottom aft side of the main spar on one wing and on the bottom forward side on the other wing. A 0.05" deep slit made through the thickness of the spar similar to the saw slit at WS 99. The fasteners will be reinstalled and growth of the "crack" monitored.

Fuselage "T" Stringer [PSE F1]

The top centerline "T" stringer at approximately fuselage station 360 experiences a transverse stress due to fuselage pressure and an axial load due to fuselage bending loads. At 80% of the third life, a ¼" longitudinal through crack will be introduced at one of the rivet holes and the rivet reinstalled. This crack will be monitored for the rest of the test.

Fuselage Forward Pressure Bulkhead [PSE F11]

The forward pressure bulkhead at fuselage station 69.31 resists the internal pressure by bending of hat section stringers on the aft face and channel section stringers on the forward face. The location with the highest tensile stress appears to be the 27-21063-3 and -4 channels at WL 94.5 and BL 18.5 right and 18.5 left. A saw cut will be introduced at these two locations through about ½ breadth of the outstanding flange on one side and about ¼" long through a wiring harness hole in the web on the opposite side.

Vertical Tail [PSE V1]

A cut will be made in the main spar of the vertical tail at about water line 130. The cut will be made from a rivet hole in a direction away from the web. The cut will be long enough to extend beyond the rivet head when the reinstalled. This spar picks up load from the horizontal tail. This "crack" will be monitored for the rest of the test.

Horizontal Tail [PSE H1]

A cut will be made in the top of the rear spar of the horizontal tail at about BL 20, through the last fastener in the strap that ends at this location. The cut will be made in a direction away from the web and long enough to extend beyond the rivet when it is reinstalled. This crack will be monitored for the rest of the test.

Cargo Door Latch

The forward bottom cargo door click-clack will be removed and 15 cycles of 7.5 psi pressurization applied. The door and door frame will be visually checked for damage every few cycles.

Limit Load Test

At the end of the third life, the structure will be loaded to flight limit load by applying a loading condition of 2.0-g gust, multiplied by a factor of 2.167/2 to raise the loads to limit. This will be followed by a condition at 32 ft/s lateral gust multiplied by 1870/1120 to raise the maximum load to limit gust for the vertical tail. After the limit load is applied, the crack started at fuselage station 360 will be elongated to 5" and the fuselage pressurized to 7 psi.

As indicated in reference 5, no growth was measured at any of the locations where an initial cut was made. However, this fact will not supersede any of the crack growth analyses presented in the remainder of this report. The impact of the fatigue test and other fail-safety analysis on the damage tolerance analysis of the airframe will be discussed as applicable in the sections on each PSE.

4. WING GROUP

4.1 PSE W1 SA226 MAIN SPAR LOWER SURFACE AT WS 99

The SA226 main spar consists of a spar cap and two angles all made from 0.125-inch-thick 2014-T6511 aluminum extrusions. Inboard of wing station 99.5 the spar is reinforced by four titanium straps, which continue inboard to the wing centerline. Additional reinforcement is present inboard of wing station (WS) 27. The abrupt change in wing spar stiffness at the ends of the titanium straps causes a stress increase at this location. The theoretical 1-g stress distribution for the SA226 main spar at 12,500-lbs maximum takeoff weight (MTOW) is shown in Figure 4-1. This distribution was constructed by adjusting the SA227 analytical distribution from reference 6, accounting for differences in moment and wing cross section. The sharp increase in stress at WS 99.5 makes it an obvious location for further study. The actual in-flight stress at this location has been measured and was reported in Table D-11 of reference 1.

SA226 Main Spar Lower Cap, 1-g Stress

FIGURE 4-1 ONE-g STRESS DISTRIBUTION, SA226 MAIN SPAR (12,500 lbs MTOW) FROM FINITE ELEMENT ANALYSIS

To determine the growth rate for a crack at this location it is necessary first to determine the load transfer between the various layers of material that make up the spar cap. This was done with a finite element analysis in Excel. The results of the analysis for a unit load applied to the cap are shown in summary form in Figure 4-2. There it can be seen that the load transfer between layers is greatest between the aluminum and titanium layers at the first fastener inboard of the titanium strap ends. At this point the load

transfer is more than twice that at the second row and five times greater than at the third row. (Note: forces do not sum exactly to zero due to round-off error.)

FIGURE 4-2 PSE W1 FINITE ELEMENT RESULTS, UNIT LOAD CASE

NASGRO crack case CC02 was used to predict the growth of a 0.05- x 0.05-inch corner crack propagating from a hole in the last fastener row to the edge of the part. This analysis was performed for both the cap and angle. CC02 reverts to case TC03 when the corner crack penetrates the thickness; for a more accurate prediction, the modified case, TC11, was also run from this point onward. Then, once the short ligament had completely failed, a 0.005-in through crack was assumed to exist at the opposite side of the hole. The growth of this crack was analyzed using TC02 and the modified case, TC12.

The chart in Figure 4-3 shows that the angle is the critical member due to its larger bearing stress. The life predicted for the angle by the modified analysis is about 9,000 schedules. This is equivalent to 49,500 flight hours. At this point the critical crack length is 0.80 inch. Note that less life is added by the modified analysis for the cap because the cap has a larger portion of the total area in the assembly than the angle has.

FIGURE 4-3 PSE W1 SA226 MAIN SPAR LOWER CAP WS 99

The spar assembly has been shown fail-safe by analysis and tests [refs R190, R715]. For cost reasons it is desired to eddy-current inspect only the edges of the assembly, the vertical legs of the angles, and the exposed protrusion of the cap. (A bolt hole eddy-current inspection would be significantly more expensive and risky to the structure, due to the difficulty in removing the permanent steel fasteners.) However, to justify these inspections it must be shown that they would detect a crack in the angle before the assembly loses limit load capability. The desired inspection locations are shown in Figure 4-4. Note that the surfaces inside the wing are coated with sealant, which must be removed prior to inspection.

FIGURE 4-4 INSPECTION LOCATIONS FOR MAIN SPAR LOWER CAP

Two crack scenarios have been checked to verify that the inspections can detect failure of the first cracked member before a crack in a second member reaches critical size. Both scenarios involve rogue flaws at an outer fastener hole in one of the angles and an average crack in the corresponding fastener hole in the cap. In the first scenario the

Both scenarios involve rogue flaws at an outer fastener hole in one of the angles and an average crack in the corresponding fastener hole in the cap. In the first scenario the cracks are in the short ligament, growing toward the part edge where they can be detected. In the second scenario they are in the long ligament, growing away from the edge and thus cannot be detected until they reach the center of the spar assembly. Figure 4-5 shows the two crack scenarios.

FIGURE 4-5 TWO CRACK SCENARIOS FOR SPAR CAP

Scenario one has been plotted in Figure 4-6. Note that the curve for the rogue flaw in the angle has been taken directly from Figure 4-3. To obtain the curve for the average flaw in the cap, several assumptions have been made. First, when the angle fails at about 9,000 schedules, 50% of its load is transferred to the cap. The other 50% transfers to the opposite angle. Second, the cap now picks up the load from the last row of fasteners in the titanium straps. This sharply increases the bearing stress in the cap. The revised finite element analysis and NASGRO input are given in Appendices A and B, respectively.

Figure 4-6 demonstrates that an inspection program could be devised to detect failure of the angle before failure of the cap. Since the angle life is about 9,000 schedules, the threshold could be set at 4,500 schedules (24,750 hours). A repeat inspection interval of 500 schedules (2,750 hours) would be sufficient to catch impending failure of the angle before the cap had time to fail. The reverse situation—a rogue flaw in the cap and an average flaw in the angle—yields a more generous threshold but the same repeat interval. This is because the cap initially has a lower bearing stress, but after failure of one of the members, the stresses are essentially the same regardless of which member has failed.

PSE W1

Angle Failure With Continued Growth in Cap

FIGURE 4-6 CRACKS GROWING TOWARD EDGE OF SPAR ASSEMBLY

The second scenario – cracks in the long ligament growing away from the part edge – is a less severe damage case from a crack growth standpoint. This is demonstrated by Figure 4-7. Several conservative assumptions were made to obtain these curves. NASGRO does not have a model for a corner flaw growing between adjacent holes. Therefore, the model CC02 was used for the initial growth of the corner crack. This is conservative because CC02 assumes the crack is on the more intensely stressed short ligament. Once the corner crack penetrated the thickness, the model TC05 was used to analyze growth to the adjacent fastener hole. These curves also assume that when the crack in the angle reaches the adjacent hole at approximately 14,000 schedules, the angle fails and dumps half its load to the cap. At that time the bearing stress in the cap also increases dramatically.

PSE W1

Angle Failure With Continued Growth in Cap

FIGURE 4-7 CRACKS GROWING TOWARD CENTER OF SPAR

Now that an idea of the required inspection intervals has been gained, the next step is to determine the spatial extent of the inspections. This is done by observing how the crack growth life increases with distance away from WS 99 (the critical area). At a sufficiently far distance the life is too long to warrant inspection. As shown in Figure 4-1, the stress drops about 15% at WS 112 and 30% at WS 125. In addition the fastener holes in this area are essentially unloaded. These characteristics lead to the results in Figure 4-8. These curves show failure of the short ligament only. Therefore, it is evident that for the 50,000-hour goal the inspections should extend about one foot outboard of WS 99. On the inboard side only a few fastener rows need to be checked because the titanium straps drastically reduce the stress and provide additional fail-safe area.

W1 - Crack at Unloaded Hole in Cap, Outboard of WS 99

FIGURE 4-8 DETERMINATION OF EXTENT OF INSPECTION FOR W1

An initial 0.050-inch flaw through the thickness at the edge of the cap was also analyzed for comparison to damage at a fastener hole. An analysis based on crack case TC02 shows that, for the loading spectrum of these aircraft, an initial edge flaw grows many times slower than an initial flaw at a hole. This result is illustrated by Figure 4-9.

PSE W1 Initial 0.05" Edge Flaw in Cap

FIGURE 4-9 PSE W1 GROWTH OF INITIAL EDGE FLAW IN CAP

To support the analytical predictions in this report, Southwest Research Institute (SWRI) was contracted to build and test representative samples of PSE W1. Their final report is included as Appendices F and G of volume II. A first step in the SWRI study was to experimentally determine crack growth material constants for 2014-T6511 extrusion in the T-L orientation. The constants were found using standard test specimens built from spar cap material supplied by Fairchild. These constants have been inserted into the NASGRO material database and used for crack growth analysis where appropriate.

For a given loading spectrum, geometry, and material, the SWRI experimental results are in good agreement with NASGRO analysis. However, the SWRI tests cannot be used to set the actual life of the PSE since they were performed with somewhat different stress levels and geometry than exist in the real aircraft. Refer to Appendices F and G of volume II for a full discussion of the procedures, results, and limitations of the material tests relating to PSE W1.

4.2 PSE W2 SA226 MAIN SPAR LOWER CAP AT WS 9.0

At this location the upper cap of the main spar is lowered to clear the cabin floor, reducing the overall spar depth. The result is increased bending stresses in the spar caps and potential cracks which are difficult to detect initially.

All of the stiffening straps and angles at this location continue outboard at least several fasteners past WS 9.0, and these members are thin in comparison to the total spar

depth. Therefore bearing loads in the fasteners have been neglected. Stress on the main spar lower cap was recorded at WS 13.4 by gage 2029 (Table D-10 of reference 1) during flight and at WS 31.5 by gage 21 during landing. The 1-g stress at WS 13.4 was about 4.4 ksi and the stress per g was 6.6 ksi. To obtain the stress at WS 9.0, the measured stress is multiplied by the ratio of c/l at WS 9.0 to c/l at WS 13.4. The lesser spar depth at WS 9.0 results in 14% higher maximum stress than at WS 13.4. Appendix A contains details of this calculation.

The growth of a 0.05- x 0.05-inch corner crack in the spar cap, emanating from one of the fastener holes toward the part edge, was analyzed using NASGRO crack cases CC02 and TC11. These models predict that the crack becomes unstable after about 5200 schedules (28,600 hours), at a length of 0.42 inch as shown in Figure 4-10. The shorter life at this location versus WS 99 is due to the larger stress per g and larger diameter fasteners used to secure the assembly. (PSE W2 is also subjected to damaging taxi bumps but these have a small effect on crack growth.) The continued growth of an initial 0.005-inch through crack on the opposite side of the hole was also analyzed, but this crack becomes unstable almost immediately after the primary crack reaches the part edge.

PSE W2 - Cap failure with secondary growth in angle

FIGURE 4-10 PSE W2 SA226 MAIN SPAR LOWER CAP WS 9.0

The same approach to inspection can be taken for WS 9 as for WS 99; that is, to only inspect the edges of the cap elements for total crack-through. Referring to Figure 4-10, the threshold inspection should be set at 2600 schedules (14,300 hours). However, the

repeat inspection can be longer than that for WS 99 because of the additional area in the assembly. Each of the aluminum members accounts for only about 15% of the total area. Therefore, the stress in the remaining members increases modestly upon failure of one member. Figure 4-10 also shows the growth of a 0.005" flaw prior to and after failure of the cap. When the cap fails, the stress in the angle is increased by about 18%.

Later SA226's as well as all SA227's have removable bolts in this area that allow eddy-current inspection of the holes. Also, all aircraft except a few early SA226's have access plates in the outer webs to enable inspection of the center spar web and the top edges of the aluminum angles. For aircraft that do not have removable bolts, the SID will require installation of the access plate per service bulletins 226-57-006, 226-57-007, and 226-57-008.

Complete failure of a spar cap element would be evident by visual or eddy-current inspection of the part edge and the ridge that protrudes from the skin. Other elements at this location – the remaining aluminum sections as well as four titanium straps and two steel angles – would assume the load from the failed member. Fail-safety with the aluminum angle or cap missing was shown by analysis [11] and by test. In the fatigue test a 1.0-inch cut was made through the entire cap assembly (six layers including the skin) at one of the fastener holes. No failure occurred when limit load was applied [5].

4.3 PSE W3 SA226 REAR SPAR LOWER CAP AT WS 27.0

The rear spar of the SA226 aircraft consists of back to back angles reinforced where necessary with titanium and steel straps and steel angles. Inboard of WS 27 the spar web is supplemented by two pressure plates that support fuselage pressurization loads and provide redundant load paths for vertical shear. These pressure plates are attached to the rear spar angles by steel angles that increase the cross-sectional area available to carry bending loads.

Stress concentration naturally arises in the aluminum spar angles where the steel angles end. The worst location is in the aft angle at the last fastener. A stiffness model created in Excel, considering only the horizontal leg of each angle, determined the load in the last fastener to be about 41% of the applied load (Appendix A). A NASTRAN finite element model was also created using plate elements, including both legs of each angle. The NASTRAN model is depicted in Figure 4-11. This model calculated a fastener load of about 19% of the applied load in the aluminum angle.

FIGURE 4-11 PSE W3 NASTRAN FINITE ELEMENT MODEL

The large disparity in results of the two models is explained by the fact that the NASTRAN model considers the true shape of the angles and accounts for local deformation near the fastener holes. The Excel model considers only the gross deformation of the axial bar elements. The fasteners thus see a stiffer structure in the Excel model.

Stresses during flight and taxi conditions were taken from strain gage measurements on the lower skin at WS 33 (Table D-10 of reference 1). Stresses during landing impact were obtained from gage 22 (Table D-8 of reference 1), located on the rear spar lower surface at WS 36. To convert stresses to applied loads in the aluminum angle, the stresses were multiplied by the area of the angle's lower flange.

The growth of a 0.05- x 0.05-inch corner crack at the last fastener hole in the angle was calculated using NASGRO crack cases CC02 (which reverts to TC03) and TC11. Continued growth of a 0.005-inch through crack on the other side of the hole quickly becomes unstable, as predicted by crack case TC02. The total life of the angle, as shown in Figure 4-12, is about 6,000 schedules or 33,000 hours. The critical crack length at this point is 0.44 inch.

FIGURE 4-12 PSE W3 SA226 REAR SPAR LOWER CAP AT WS 27.0

Failure of this spar cap angle does not represent complete failure at this location. There is additional load carrying material including the angle on the forward side of the spar and titanium straps also on the forward side. However, since the angle is relatively easy to inspect, the intervals will be based on visual inspection of the short ligament of the aft angle. The threshold would therefore be 3000 schedules (16,500 hours) while the repeat inspections could be as long as 850 schedules (4,675 hours) apart. The Airframe Airworthiness Limitations Manual currently requires inspections beginning at 29,000 hours and every 2,000 hours thereafter. A repeat interval of 2,000 hours will be used in the SID.

After 96,500 hours of the full-scale fatigue test, a crack was discovered in the lower flange of the aft spar angle at WS 27. The crack had propagated from the second to last fastener hole, completely through the lower flange, and 0.38 inch up the upper flange. This crack was monitored for the remainder of the test and had grown an additional 0.22 inch up the upper flange at 104,000 hours. However, the crack did not result in spar failure at limit load, which demonstrated the fail-safety of the design [5]. Fail-safety was also shown by analysis [11].

Figure 4-13 shows that an average quality flaw in the angle reaches critical size after about 17,500 schedules (96,250 hours). This result closely matches the fatigue test result previously quoted, providing additional confidence in the analysis method.

FIGURE 4-13 GROWTH OF AVERAGE QUALITY FLAW IN W3

4.4 PSE W4 SA227 MAIN SPAR LOWER CAP AT WS 99.0

The SA227 wing is a derivative design of the SA226 wing. The span of the SA227 wing was increased ten feet by adding a 5-foot tip extension to each side. To carry the larger bending loads, the SA227 main spar was strengthened by extending the titanium straps several feet outboard of station 99 (where the straps end on SA226 aircraft). In addition the straps' width and thickness was tapered over the last several inches to avoid large bearing loads at the last fastener in each strap. Figure 4-14 shows the configuration of the straps, along with the stresses in the cap where the straps end. The stress is still a maximum at WS 99 due to the nacelle cutout. However, there are potential hot spots at stations 131, 146, and 192 due to the end of titanium straps there.

FWD side of lower spar cap assy

AFT side of lower spar cap assy

(ref 27-31000 rev AB sht 4)

FIGURE 4-14 SA227 MAIN SPAR LOWER CAP ELEMENTS (1-g STRESSES FROM FIGURE 4-15 DATA)

To determine the necessary frequency and extent of inspections, crack growth analyses have been performed at WS 99, WS 130, and WS 146. (WS 192 did not have to be analyzed because the life at WS 146 was 100,000 hours.) Figure 4-15 shows the 1-g and per g stress distribution in the SA227 main spar for 14,000 lbs MTOW. It was obtained by adjusting the SA227 finite element analysis in reference 6 to fit stress measurements from the SA227 made during the Phase I strain survey [1].

FIGURE 4-15 SA227 MAIN SPAR STRESS DISTRIBUTION (14,000 lbs MTOW)

The stress at landing impact is also known from readings at gage 23 of reference 1. Finite element analyses of the spar cap assembly show that the fastener load is about 2% of the load in the cap at WS 99, 10% of the load in the angle at WS 130, and 20% of the load in the angle at WS 146. The growth of 0.05- x 0.05-inch corner cracks in these members has been analyzed with NASGRO crack cases CC02, TC11, and TC12. Results are displayed in the following chart.

The curves in figure 4-16 are for rouge comer cracks growing from a fastener hole to the edge of the part, followed by the continued growth of a 0.005-inch through crack on the opposite side of the hole. Clearly the cap at station 99 is the critical member. Modified crack cases TC11 and TC12 predict that the life of the cap is about 7,414 schedules (40,777 hours), at which time the critical crack length is about 1.0 inch. The remaining structure in the SA227 cap assembly at WS 99—two aluminum angles and four titanium straps—is more than adequate to carry limit load in the absence of the cap, as shown by previous analysis [11].

To justify inspection of the aluminum members for complete crack through only, the growth of a 0.005-inch secondary flaw at WS 99 has also been analyzed. When the cap fails and the remaining angles assume a portion of the excess load proportional to their percentage of area in the assembly. Once this load transfer takes place, no further load transfer is considered, although the angle loses stiffness due to its crack as well.

FIGURE 4-16 PSE W4 SA227 MAIN SPAR LOWER CAP PRIMARY GROWTH

Figure 4-17 shows that approximately 77,000 hours elapse between the cap and angle failures at WS 99. The inspections of the accessible surfaces of the spar should extend from a few inches inboard of WS 99 to a few inches outboard of WS 130 – a total of about three feet. The inspection threshold may be set at 20,000 hours, with an arbitrary repeat interval set based upon convenience. The repeat interval might be set at 5,000 hours or 5 years.

FIGURE 4-17 GROWTH OF SECONDARY FLAW AT WS 99

4.5 PSE W5 SA227 SKIN SPLICE AT WS 99.51 LOWER SURFACE

The wing lower skin between the spars is spliced at wing station 99, with the thickness increased inboard from 0.032 to 0.063 inch. The splice is achieved by a 0.050-in shim, a 0.063-in angle, and the 0.071-in wing rib. There is in addition an irregular shaped 0.032-in shim, which does not span the splice but serves to even out the load distribution in the outboard skin. The critical locations are the first fasteners in the inboard and outboard skins. Figure 4-18 shows a schematic of the splice.

FIGURE 4-18 SCHEMATIC OF SPLICE AT WS 99 LOWER SURFACE

A finite element model was constructed in Excel for both the inboard and outboard skins. In both cases the members were modeled as 0.8-inch chordwise strips with a spanwise fastener pitch of 0.625 inch. The models indicate that the bearing load is more severe in the inboard skin due to the larger thickness change at this location. Specifically, 39% of the applied load in the inboard skin is transferred to the first fastener while only 24% of the load in the outboard skin is transferred to its first fastener.

The stress at WS 99 is obtained from Table E-11 of reference 1. This table lists corrected stresses at the main spar lower cap, WS 99. When these stresses are multiplied by the respective skin areas, the resulting loads provide the input stresses for NASGRO. NASGRO case TC05 was used to analyze the crack growth for both skins. The shortest life occurs in the 0.063-in inboard skin, where the 0.05-in crack is predicted to reach a neighboring hole at about 11,800 schedules, or 64,900 hours. At this point the crack length is 0.64 inch (the distance between the edges of neighboring holes). Crack growth curves for the skins are shown in Figure 4-19.

FIGURE 4-19 PSE W5 SA227 SKIN SPLICE AT WS 99 LOWER SURFACE

The inspection program for this splice depends on the growth after the crack links the first two holes together. As the crack grows a fuel leak is likely to develop which would be found during an overnight service check or pilot walkaround. Continued growth of a crack in the splice was modeled by considering the linked holes as a center crack in an infinite panel (NASGRO case TC01). Bearing loads from fasteners in the real splice were accounted for by increasing the remote stress in the infinite panel. The crack was allowed to grow until it was long enough to link another pair of holes. At that time the analysis was restarted to include the length of four linked holes. The model assumes an initial 0.05 flaw in one hole, and 0.005 inch secondary flaws on the opposite sides of the linked holes.

Figure 4-20 demonstrates that a crack in the splice reaches 2.0 inches after 13,800 schedules (75,900 hours) and a critical length of 3.5 inches after 14,300 schedules (78,650 hours). Thus the crack is longer than two inches for more than 2,500 hours before it reaches critical size. Since a crack of two inches or more is very likely to cause a fuel leak, the normal maintenance checks can be relied upon to detect fatigue damage to the splice. Should a leak not be evident initially, page 63 of [R771] and page 1.54 of [R190] show that the wing is fail-safe with the skin between adjacent stringers missing (a length of 7.8 inches). At this crack length a leak is virtually certain to occur.

FIGURE 4-20 CRACK IN WS 99 SPLICE LINKING ZERO, TWO, AND FOUR HOLES
4.6 PSE W6 SA227 WING EXTENSION FITTING, MAIN SPAR LOWER SURFACE

The steel fitting on the wing extension is sandwiched on the inboard side between two other steel fittings on the main spar. On the outboard side it is attached to the outboard continuation of the main spar by two straps, two angles, and a doubler. There is a relatively large stress concentration where the first fastener connects the splice plates to the steel extension fitting. Figure 4-21 shows the output of the Excel stiffness model for a unit load applied to the fitting. Shown are internal loads between nodes and fastener loads at the nodes.

FIGURE 4-21 PSE W6 LOAD DISTRBUTION IN STIFFNESS MODEL

For the stiffness model, the worst case is in the 0.071-in-thick 2024-T3 strap at the first (farthest outboard) fastener in the extension fitting. At this location the fastener bearing load and strap internal load are 15% and 12%, respectively, of the load in the fitting. The load in the fitting is found from the product of the stress at Gage 25 (reference 1) and the area of the 1.38-inch-wide spar cap and the two horizontal legs of the spar cap angles. This applied load, for the 1-g condition, is 462 lbs. This results in a total stress of 6 ksi in the strap. At this stress level, the crack growth life as calculated by NASGRO case TC03 and shown in Figure 4-22 is well in excess of 80,000 schedules (440,000 hours).

FIGURE 4-22 PSE W6 SA227 WING EXTENSION FITTING MAIN SPAR LOWER SURFACE

4.7 PSE W7 SA227 LOWER WING SKIN ON FORWARD SIDE OF MAIN LANDING GEAR TRUNNION AT WS 113

At PSE W7, the landing gear trunnion support angle ends abruptly creating a stress concentration in the lower wing skin and stringer. One operator reported a crack at 11,052 hours in the skin and stringer 19 at the last fastener through the trunnion support angle [10]. The crack was discovered because the rivet sheared off, which caused a noticeable fuel leak. Beginning with station number S/N 847, the design detail was changed by increasing the taper of the trunnion angle and adding a spanwise strap to cover the affected skin area.

The load distribution in the original design has been estimated by developing an Excel stiffness model and NASTRAN finite element model for comparison. The NASTRAN model is very similar to the one shown in Figure 4-11 for PSE W3 but was tailored for this PSE. It predicted that the last fastener load is 20% of the applied load in the stringer. The Excel model, which considers only the horizontal leg of the trunnion angle, predicted that the last fastener load is 23% of the applied load in the stringer. The complete analysis is presented in Appendix A.

The applied load in the stringer outboard of the trunnion angle is found by considering the stress in the main spar at WS 113. This is assumed to closely approximate the stress in the skin panels (and stringers) between the spars. From Figure 4-15 it is apparent that at WS 113, the 1-g stress is 7.9 ksi while the stress per g is 7.4 ksi. The applied load is found using these stresses and the area of the stringer flange.

NASGRO crack case TC03 predicts the life of a 0.05-in crack growing in the stringer from the last fastener hole. Figure 4-23 shows that after about 3,100 schedules or 17,050 hours the flow stress of the stringer is exceeded. At this point the critical crack length in the stringer is 0.17 inch.

FIGURE 4-23 PSE W7 SA227 LOWER WING SKIN FWD SIDE OF LANDING GEAR TRUNNION AT WS 113

The stiffened panels on the lower wing have been shown fail-safe in the event of stringer failure (see page 11.0 of [11]). Continuing damage in the skin is considered here, however. Once the stringer fails, its load will be transferred to the skin. If the skin between the remaining stringers is assumed fully effective, then the load in the skin will increase by 25% (based on an area ratio of $A_{\text{stringer}}/A_{\text{skin}}=0.25$). In addition, the trunnion angle will cause a very large stress concentration in the skin. The analysis given in Appendix A shows that the load transfer at the last fastener in the angle is about 44% of the load in the skin. The effect of these loads on the growth of a 0.05-inch flaw in the skin is shown in Figure 4-24. The crack does not reach its critical size of 4.75 inches until more than 220,000 hours have elapsed. By this time a fuel leak would almost certainly be evident.

PSE W7
0.032-in Skin - Continued Growth of 0.055-in Flaw After Stringer Fails

FIGURE 4-24 PSE W7 CONTINUING DAMAGE IN 0.032 SKIN

Schedules

25000

30000

35000

40000

45000

20000

0.00 -

0

5000

10000

15000

4.8 PSE W8 SA226 AND SA227 CHORDWISE SKIN SPLICE AT WS 173.9 LOWER SURFACE

PSE W8 near the rear spar consists of a butt splice of the 0.025-in outboard skin to the 0.032-in inboard skin with a 0.032-in splice plate. Both skins are 2024-T3 sheet. The critical location analyzed was along the outboard row of fasteners through the splice plate and 0.025-in outboard skin. Referring to Figure 4-14, the 1-g stress is 5.8 ksi and stress per g is 6.2 ksi in the main spar at this wing station. Reference 6 indicates that the stress in the rear spar at this wing station is about 15% less. For landing, the stress measured by gage 24 at the rear spar WS 106.2 [1] was taken to account for stresses near the splice at landing impact. The 1-g taxi load was arbitrarily taken as -1000 psi, as significant tension loads are unlikely in this region during taxi roll.

To determine the load transferred to the plate by each fastener in the first row, a simple stiffness model was constructed similar to others in this report. The skin and plate are represented as axially loaded strips having widths equal to the chordwise fastener spacing. Along the strip the 1/8-inch rivets are spaced by 0.73 inch. This model predicted a first fastener load of 48% of the applied load in the skin.

NASGRO crack case TC05 (Figure 4-25) predicted that a 0.05-in through crack in the outboard skin becomes unstable after about 32,000 schedules (176,000 hrs). At this time the crack has grown to a size of 0.47 inch and fuel leakage should be evident.

FIGURE 4-25 PSE W8 CHORDWISE SKIN SPLICE AT WS 173.9

4.9 PSE W9 SA226 AND SA227 SKIN SPLICE AT WS 27 LOWER SURFACE OUTBOARD OF RIB

A sketch of PSE W9 is shown on page 6-22 of reference 1. By inspection it is clear that the critical location in this lap splice is in the belly skin where the wing skin and splice strap terminate. At this location the belly skin is 0.050-in thick and must assume load both from the 0.063-in wing skin as well as the 0.071-in steel splice strap. The wing skin is less critical because it is thicker and must transfer load only to the steel strap at the first fastener. The rib attached to the outboard skin does not participate in the splice.

From the above discussion, the crack growth life of PSE W10 can be used as the minimum life for PSE W9. The analysis of PSE W11 will consider potential cracks at the 0.050- to 0.100-in thickness change of the belly skin.

4.10 PSE W10 SA226 AND SA227 SKIN SPLICE AT WS 27 LOWER SURFACE INBOARD OF SPLICE

Continuing the analysis from PSE W9, a finite element stiffness model was developed to determine the distribution of loads in the splice. The complete model is given in Appendix A but the results for the unit load case are shown here in Figure 4-26. These confirm the discussion given for PSE W9 and show that the highest bearing load is in the inboard fastener.

FIGURE 4-26 PSE W10 FINITE ELEMENT MODEL OUTPUT

A crack was observed in the belly skin at this location after 88,872 hours of the SA226 fatigue test [5]. For comparison, NASGRO crack case TC05, based on 1-g gross stress of 4.6 ksi and stress per g of 6.8 ksi (Table E-12, reference 1), predicts the crack growth shown in Figure 4-27. The 0.05-in through crack has grown to an adjacent hole in the splice after 3,300 schedules (18,150 hrs) of spectrum loading. At that time the crack is about 0.4 inch long.

To calculate continued growth after the first two holes have linked together one can assume the presence of 0.005-inch cracks on the opposite sides of the linked holes. NASGRO case TC01, representing the linked holes as a center crack in an infinite panel, has been used to study this case. Bearing loads from fasteners in the real splice are accounted for by increasing the remote stress in the infinite panel. The analysis is stopped and restarted after the crack reaches a second pair of holes. The figure shows the results of this process. No appreciable life is attained after four holes have been linked together by the crack. The total life at that point is about 23,650 hours.

FIGURE 4-27 PSE W10 SA226 AND SA227 SKIN SPLICE AT WS 27 INBOARD

The results just presented dictate a relatively short inspection threshold of 11,800 hours. The repeat interval may be set at 5,500 hours for an eddy-current inspection capable of detecting a crack that links two holes. During the fatigue test the crack at this location (mentioned above) grew to a length of over 20 inches without causing other failures in the wing. This provides evidence of the fail-safety of the design and substantiates a long repeat inspection interval.

4.11 PSE W11 SA226 WING LOWER CENTER SECTION SKIN AT LANDING LIGHT CUTOUT

PSE W11 continues the analysis of the lap splice at wing station 27 begun for PSE W9 and W10. On SA226 aircraft the splice strap ends several inches forward of the rear spar and therefore the fastener loads are lessened. However, a gross stress concentration exists in the region due to the presence of a large landing light cutout inboard of station 26. (The landing light was moved on SA227 models.) In addition, the belly skin is chemically etched to 0.050-in thickness at the splice causing a local stress concentration at the fillet. Production drawings indicate that the fillet radius is "as etched." For purposes of this analysis the fillet radius is assumed to be 0.020 inch.

During the SA226 full-scale fatigue test, the earliest crack in this region occurred at about 42,000 hrs and propagated chordwise along the thickness change in the belly skin. A similar crack occurred on the opposite side of the airplane much later. Both cracks originated at inboard fastener holes in the splice but grew away from the row of fasteners and stayed at the fillet [5].

Tables for the standard case of an axially loaded plate with symmetrical fillets on either side estimate K_t as 2.0 for this geometry [8]. A second estimate was obtained from the boundary element program NASBEM. The boundary elements in Figure 4-28 were subjected to a unit axial stress plus 20% bending. (Experimental results for PSE W1 given in Appendix E of volume II show that in that case the bending induced by fasteners in the splice was about 18% of the axial stress.) Results of the NASBEM analysis are plotted in Figure 4-29.

FIGURE 4-28 NASBEM BOUNDARY ELEMENT MODEL FOR PSE W11

FIGURE 4-29 NASBEM OUTPUT AT FILLET IN PSE W11

The gross stress at the splice is assumed to be that at WS 27, as calculated in Table E-12 of reference 1 from fatigue test measurements at WS 33. In NASGRO crack case TC01, the panel width has been taken as 5 inches or the distance from the front of the rear spar to the aft end of the splice strap.

The NASGRO analysis based on K_{ι} of 2.0 predicts a life of about 4,000 schedules or 22,000 hours. At this time the crack is 0.89 inch long. Growth predictions based on K_{ι} of 1.5 and 2.0 are shown in Figure 4-30. Although the analysis predicts that the growth rate accelerates rapidly, in practice the growth rate appears to slow substantially when the crack reaches the lower stress region outboard of the landing light cutout. It is interesting to note, however, that a 33% increase in K_{ι} results in a 75% reduction in predicted life. This highlights the importance of variations in load conditions and tolerances from aircraft to aircraft.

PSE W11
Belly Skin at Landing Light Cutout

FIGURE 4-30 PSE W11 SA226 WING LOWER CENTER SECTION SKIN AT LANDING LIGHT CUTOUT

4.12 PSE W12 SA227 TIP EXTENSION FITTING, REAR SPAR LOWER SURFACE

The steel tip extension fitting is attached to the rear spar angle at PSE W12 by three NAS 6203 steel fasteners on aircraft with a gross takeoff weight of 16,000 pounds or less and by four fasteners on aircraft with a gross takeoff weight of more than 16,000 pounds. The steel fitting is stepped to reduce the stress concentration at the first fastener hole in the aluminum spar cap. A stress concentration still exists, however.

To calculate the load on the first fastener a finite element analysis was performed with an Excel spread sheet program using the methods described earlier in this report. The results are given in Appendix A. The stress per g for the important gust case is only 1239 psi maximum. At this low stress level, one can expect a long crack growth life.

The crack growth rate was calculated using NASGRO crack case TC03. The TC03 standard solution is conservative because it does not account for the additional area and moment of inertia in the leg of the angle that is not next to the steel fitting. Initially a through crack of 0.05 inch was assumed emanating from the loaded hole. The predicted life from the initial flaw is in excess of 165,000 hours or 30,000 schedules (see Figure 4-31). At this life the crack growth is almost negligible. This is true for both the three-fastener and the four-fastener fitting.

PSE W12, SA227, Rear Spar Angle
Crack Growth In Aluminum Angle Wing Tip Extension, Inboard
Crack Growth Comparision

FIGURE 4-31 PSE W12 SA227 TIP EXTENSION FITTING REAR SPAR LOWER SURFACE

4.13 PSE W13 SA227 TIP EXTENSION AT END OF OUTBOARD FITTING, REAR SPAR LOWER SURFACE

The steel tip extension fitting is attached to the wing extension rear spar angle at PSE W13 by four steel fasteners. The steel fitting is stepped to reduce the stress concentration at the first fastener hole in the aluminum spar angle. A stress concentration still exists, however. To calculate the load on the first fastener a finite element analysis was done using an Excel spread sheet program by the method described earlier in this report. The results are given in Appendix A. Included are the

internal load and fastener load calculations for gust, landing, and taxi cases. The stress per g for the important gust case for this component is 2580 psi maximum. At this low stress level, one can expect relatively long crack growth life.

The crack growth rate was calculated using the NASGRO crack growth program standard solution for crack growth from an eccentric hole in a finite width plate (TC03). Initially a through crack of 0.05 inch was assumed emanating from the loaded hole in the 2024-T3511 extrusion. The predicted life from the initial flaw is in excess of 35,600 schedules (195,800 hrs). At this time the 0.05-in initial flaw had grown to about 0.28 inch. This behavior is driven largely by the fastener load that exists between the aluminum angle and the more stiff steel fitting. Figure 4-32 shows the crack growth curve for this PSE.

Since the predicted life of this critical area is greater than 50,000 hours with a scatter factor of 2, and there is no adverse service history, no supplemental inspection is warranted. In addition, the wing extension has been shown fail-safe by analysis [11].

FIGURE 4-32 PSE W13 SA227 TIP EXTENSION AT END OF OUTBOARD FITTING REAR SPAR LOWER SURFACE

4.14 PSE W14 SA227 TIP EXTENSION AT END OF OUTBOARD FITTING, MAIN SPAR LOWER SURFACE

The main spar wing tip extensions for SA227 aircraft are attached to the main wing box by steel fittings at the main spar and at the rear spar. The main spar fitting consists of two steel lugs bolted to the main spar by four NAS 1103 steel bolts. The thickness of the fittings is stepped to reduce the stress concentration at the first fastener in the fitting. A finite element model of this configuration was developed using the stresses measured in the flight test program to define the loading. The results of this analysis show that the first fastener between the lug and the aluminum spar is the highest loaded location in the fitting. Because the stress measured in the aluminum cap at this location is on the order of 1 ksi, very slow crack growth is to be expected. Using the computed fastener load and spar cap stress the NASGRO crack growth program was run for the equivalent of 115,500 hours with the assumption of an initial through-the-thickness flaw of 0.05 inch. As expected there was no appreciable crack growth (see Figure 4-33).

PSE W14
SA227 Rear Spar Lower Cap at Extension Fitting

FIGURE 4-33 PSE W14 SA227 TIP EXTENSION AT END OF OUTBOARD FITTING
MAIN SPAR LOWER SURFACE

Schedules

5. ENGINE MOUNT AND NACELLE GROUP

5.1 PSE EM1 SA227 UPPER ENGINE MOUNT (27-62114) AT THE FIREWALL

The engine mount is attached at the firewall with a bolt that passes through a 4130N plate welded to the end of the 4130N engine mount truss tubing. The plate on the end of the tubing is relatively thin—only 0.190 inch thick. On previous designs the washer under the head of the bolt had approximately the same diameter as the bolt head. Because the inside diameter of the tube is 1.35 inches and the head diameter of the bolt is 0.75 inch, bending stress developed in the plate when the bolt was loaded in tension. This bending stress has caused cracking in the plate at the edge of the washer on some aircraft. The stress due to bending can be difficult to calculate accurately and the detail is difficult to inspect. For these reasons, Service Bulletins (SB) (227-71-008 and CC7-71-001) were issued to change the design in the affected region by installing a larger, thicker washer in place of the original NAS143-7C washer. This new washer has an OD just smaller than the ID of the tube, thus reducing bending stress in the plate.

Four crack cases were analyzed: pre- and post-SB configurations for a 0.05-in circumferential through crack in the flange at the washer OD and a 0.05-in circumferential through crack in the weld joint. Given that some pre-SB mounts had failed, the effect of the service bulletin modification on crack growth life was estimated.

The load at the upper engine mount was determined by considering the mount truss as a statically determinate structure subjected to 644-lbs powperplant weight and 1560-lbs maximum continuous thrust. Figure 5-1 depicts this model. The applied loads result in upper mount loads of 1424 lbs at 1 g and 644 lbs per additional g. Ideally, each upper mount carries half of the load, but to allow for unanticipated effects, one mount was assumed to carry the entire load.

Sum moments about lower support: 30 Fx = 15 T + 30 WFx = 0.5 T + W

FIGURE 5-1 ENGINE MOUNT TRUSS

Case 1J, Table 24 in reference 8 was used to estimate stresses in the plate and weld. The model assumes that the washer and weld joint do not rotate. These are reasonable assumptions since the washer is clamped to the plate while at the weld joint several tubes converge. The analysis, given in Appendix A, shows that the critical case is bending in the plate near the washer OD. Increasing the washer OD by 60% (per the SB) decreases the plate stress by 80% and the weld stress by 65%.

NASGRO does not have material constants for 4130N steel. Instead, the constants for 160-180 UTS 4340 plate were modified by inserting yield and ultimate strength values for 4130N tubing from reference 15. This can be justified by noting the relationship between yield strength and fracture toughness of AISI 4000-series steels. Although fracture toughness data on 4130N are sparse in the literature, what does exist is often quoted in terms of $K_{\rm lc}/\sigma_{\rm y}$, acknowledging the relationship between these two parameters.

In the NASGRO database for 4340, K_{lc} and ΔK_0 vary inversely with yield strength, with the largest K_{lc} (135 ksi•in) occurring at a yield strength of 155 ksi. At a yield strength of 175 ksi, the quoted K_{lc} value drops to 110 ksi \sqrt{in} . A similar relationship exists for 4130, as explained on page 108 of reference 16. At yield strengths from 170 to 179 ksi, K_c for

0.063-in sheet varied from 163 ksi√in to 128 ksi√in. Reference 17, table 3.02722 further suggests that for 4130N, K₂ is less sensitive to sheet thickness than to yield strength. Also figure 3.02724 indicates an increase in fracture toughness with decreasing carbon content at the same strength level for 4130 series steels. Based on these results and the fact that 4130N tubing received by Fairchild is typically not heat treated to yield strengths above 100 ksi, the use of the modified 160-180 UTS 4340 data for crack growth is conservative. Residual strength of the cracked part is determined by the inserted yield and ultimate strength values for 4130N.

NASGRO crack case TC01, which treats the plate as a rectangular strip with a width equal to the washer circumference, predicts that the flow stress in the pre-SB plate will be exceeded at 6,610 schedules (36,355 hours). There is no growth in the post-SB plate; therefore, the service bulletin appears to have ameliorated cracking as intended. For the weld, NASGRO crack case TC08 predicts no growth before or after the service bulletin. Figure 5-2 shows crack growth curves for the plate before and after the service bulletin.

PSE EM1 Upper Engine Mount at Firewall

FIGURE 5-2 ENGINE MOUNT BEFORE AND AFTER SERVICE BULLETIN

5.2 PSE N1 SA226 AND SA227 NACELLE UPPER LONGERON AT THE FIREWALL

Each engine mount bolt passes through the firewall and attaches to a steel fitting. The load in the fitting is then transferred to an 0.090-in-thick longeron (cap) via six bolts loaded in shear. These bolts also pass through the 0.032-in-thick aluminum keelson web, which is riveted to the cap. For the purposes of this analysis the beneficial effects

of the firewall and web in reducing the cap load are conservatively ignored. Bending effects due to the dog leg of the cap are also neglected.

To find the load transferred to the cap by the shear bolt farthest aft, a simple stiffness model was constructed in Excel considering the fitting and cap as axially loaded flat strips. (In reality, the cap is an angle while the fitting is a tapered channel.) Both strips are modeled with a width of 1.12 inches but the fitting area is increased to account for the additional area of the channel section. In effect the fitting has twice the area of the cap in addition to having a modulus three times as high. The 0.156-in diameter bolts are spaced every 0.75 inch. With this geometry, the model shows that about 48% of the load applied to the fitting is transferred to the cap by the aft bolt.

The load applied to the fitting by the engine mount truss was determined as it was for PSE EM1. As was done there, the entire upper truss load is assumed to be carried by one fitting.

NASGRO crack case TC03 was selected to analyze the growth of a crack away from the aft bolt hole and upwards in the cap. NASGRO does not have material constants for 2024-T42, so constants for 2024-T3511 were used in lieu of these. A 0.050-inch through crack in the cap grew at a relatively slow rate until the flow stress was exceeded at 29,057 schedules (159,814 hours) as shown in Figure 5-3. At that time the crack length was 0.91 inch.

PSE N1 Nacelle Upper Longeron at Firewall

FIGURE 5-3 PSE N1 NACELLE UPPER LONGERON AT FIREWALL

5.3 PSE N2 SA226 AND SA227 NACELLE UPPER LONGERON AT WING RIB ATTACH ANGLE

The aft end of the longeron is sandwiched between two wing rib attach angles and fastened with five steel fasteners. A free body diagram of the longeron (Figure 5-4) neglecting the keelson web reveals that bearing loads in the fasteners are amplified due to the eccentricity of the applied load.

FIGURE 5-4 FREE BODY DIAGRAM OF LONGERON SECTION (KEELSON WEB NEGLECTED)

The stress in the longeron about 3 inches forward of this location was measured by gage 28 during Phase I. To more accurately estimate the load distribution in the five fasteners, a finite element model was built in NASTRAN and is pictured in Figure 5-5. The model includes one of the two attach angles, the portion of the longeron aft of the strain gage, and a portion of the lower keelson web which is attached at the top to the longeron and at the bottom by the relatively stiff drag brace fitting. A unit load is applied to the longeron cross section in the direction of the engine mount at the front of the nacelle.

FIGURE 5-5 NASTRAN MODEL OF LONGERON ATTACHMENT TO WING

The NASTRAN model predicted that the highest fastener load occurs in the forward fastener. This is due in part to the fact that the forward portion of the attach angle is prevented from rotating downward by the two 0.125-in chordwise straps. This increases the effective bending stiffness of the attach angle at this location and results in higher fastener loads than would occur if the angle were free to flex downward. The NASTRAN model predicts that the load in the forward fastener is 81% of the applied load in the longeron. This fastener load will tend to cause compression, however, as it is directed away from the end of the part. Fastener loads which will cause tension—those in the aft fastener holes—are significantly lower.

The growth of a 0.05-in through crack at the first fastener hole was analyzed using NASGRO crack case TC05 with the conservative assumption that each of the five fastener holes carries 81% of the applied load. The model predicts insignificant growth (only 0.0015 inch) at over 100,000 hours.

5.4 PSE N3 SA226 AND SA227 NACELLE UPPER LONGERON WING RIB ATTACH ANGLE

Upward bending of the aft portion of the wing rib attach angle results from the tendency of the longeron to rotate in response to the upper engine mount loads. The keelson web structure riveted to the longeron inhibits this rotation and thereby decreases the

stress in the angle. The NASTRAN model (Figure 5-5) accounts for the lower keelson web but not for the upper web, which provides additional stiffness to the wing skin through the nacelle skin. A schematic of this arrangement is shown in Figure 5-6. It is clear that upper engine mount loads have an alternate path through the keelson web should the wing rib attach angles fail.

FIGURE 5-6 SCHEMATIC OF UPPER NACELLE STRUCTURE

The NASTRAN finite element analysis assumes that the horizontal leg of the attach angle is clamped along the edges of the seven fasteners which secure it to the wing. The vertical leg is constrained from moving inboard or outboard. With these assumptions, a unit tension load in the longeron produces a bending stress of 75 psi in each angle on the bottom of the horizontal leg at the aft fastener. During a 5 fps landing impact, gage 28 showed a peak stress of 3340 psi in the longeron. Since the longeron has a cross sectional area of 0.217 in², the applied load is 725 lbs and a stress of 54 ksi is developed in the angle. This exceeds the yield strength of 2024-T4. It is quite possible that on the first extremely hard landing the angle experiences local yielding on the bottom surface near the last fastener hole. No problems with this part have been noted in service, however.

In the absence of the keelson web or nacelle skin structure, it appears that the upper attach angles would not have sufficient bending stiffness to arrest powerplant motion in the event of an extremely hard landing. However, for the upper mount loads to fully transfer to the angles, the entire length of the keelson web would have to be failed. Even if this unlikely scenario were to occur, the lower nacelle structure would assume more load, transferring it to the lower wing and away from the attach angles on the upper wing.

The progress of a 0.05-in through crack at the critical location in the angle was analyzed using NASGRO crack case TC02. The crack was assumed to grow forward along the horizontal leg of the attach angle, which is 5.25 inches long. Yielding occurred at the first schedule, but growth proceeded thereafter until the flow stress was exceeded at 23,630 schedules (129,970 hrs). At this point the crack length was 0.49 inch. This behavior is shown in Figure 5-7.

FIGURE 5-7 PSE N3 NACELLE UPPER LONGERON ATTACH ANGLE

6. HORIZONTAL AND VERTICAL STABILIZER GROUP

6.1 PSE H1 SA226 AND SA227 HORIZONTAL STABILIZER RIB STRAP AT REAR SPAR BL 3.135

Transverse cracks in the rib strap, where the strap meets the rear spar, have been observed in service. Subsequently, this design detail was changed. The splice plate external to the skin was extended further outboard and forward to cover the area of the strap prone to cracking. In addition, the rib strap itself was widened and another 0.125-in strap beneath the spar was extended across butt line 0.0 instead of ending there. The spar ends at station 0.0 as before.

For this analysis, the rear spar splice at BL 0.0 is considered to have no bending stiffness about the lateral axis, perpendicular to BL 0.0. Therefore the rip strap must carry the whole component of stabilizer bending moment generated by the 20° rear spar sweep angle. Conversely, the rib strap is assumed to have no bending stiffness about BL 3.135, so the spar splice must carry this entire component.

The gross stress in the rib strap was estimated as follows based on the above assumptions. The stress analysis is provided in Appendix A. Measurements of actual stress in the spar were available near station 15 (page 14 of reference 1). This stress was translated into a moment at BL 15 using the section modulus. Next the moment was extrapolated inboard along the spar to just outboard of BL 3.135. This was done assuming a quadratic moment curve ranging from 0 at the stabilizer tip to a maximum at BL 3.135. The moment in the rib strap just forward of the spar could then be calculated as sin (200) times the spar moment. Finally, the stress in the rib strap just forward of the end of the splice plate was found using the section modulus at this location. The stress in the rib strap was calculated to be about twice the measured stress in the spar at BL 15. For example, during a 2-g pushover the measured stress in the spar was 1554 psi while the calculated stress in the strap was 3039 psi.

To find the load carried by the first fastener in the splice plate, a finite element model was constructed in Excel. For the idealization, the strap was modeled as 1.0 inch wide, while the first plate element was 0.75 inch wide and the second was 1.5 inches. The model predicted that the first fastener carries 25% of the applied load in the strap. With these results, NASGRO model TC03 predicted no appreciable crack growth beyond 0.05 inch after 21,000 schedules (115,500 hours). This was based on load spectra for taxi, flight, and prop wash. The prop wash spectrum accounts for 2 minutes per flight of stress cycling at 5.2 Hz, the torsional natural frequency of the tail section. Stresses were measured at several locations for 110% torque run-up on the ground during Phase I [1]. Stresses at lesser torque values are neglected in the spectrum since the 110% torque stresses are already quite low.

Although the crack growth analysis predicts a long life, the existing inspection in the Airframe Airworthiness Limitations Manual requires repetitive inspections. These inspections consist of penetrant or eddy-current checks of the inboard edges of the

upper and lower straps beginning at 30,000 hours and continuing every 2000 hours thereafter. Inspections are not required for the commuter category aircraft (SA227-CC and -BC) because these models were built with the strengthened configuration described above. The SID will require accomplishment of a new service bulletin to update of all affected aircraft to the strengthened configuration.

6.2 PSE H2 SA226 AND SA227 HORIZONTAL STABILIZER PITCH TRIM ACTUATOR FITTING

The strain survey of the test aircraft during Phase I found the following:

- A 201 lb static load on the horizontal stabilizer above the fitting produced 828 psi at gage 10 (reference 1, Sec 5-4).
- 1 g flight produced 1200 psi at gage 10 (reference 1, Table D-7)
- Stress per g during flight was 1225 psi at gage 10 (reference 1, Table D-7)

From the above measurements it can be inferred that the 1-g load and the load per g on the fitting is about 300 lbs. Since there are four lugs, ideally each lug would carry 75 lbs. However, for the NASGRO analysis it is assumed that each lug carries half the load, so that the load is 150 lbs per lug.

The bending stress at the root of the lug, with the load applied approximately transversely, is 12PLR/[t(2R)³] where P is the load, L is the distance from the lug root to the hole center, R is the lug radius, and t is the lug thickness. Substituting a load of 150 lbs, a radius of 0.56 inch, L of 0.75 inch, and thickness of 0.27 inch in the equation yields a bending stress of about 2,000 psi.

NASGRO crack case TC02 was used to analyze the growth of a 0.05" through crack originating at the root of the lug. The actual lug material is 2024-T4, but since this is not available in NASGRO, the properties for 2024-T351 plate T-L were used instead. Data in MIL-HDBK-5G show that 2024-T351 has similar properties to 2024-T4. Plate T-L form is the worst-case for crack growth.

As expected, the low stress level produced no appreciable crack growth. Even after 21,000 schedules (115,500 hours), the crack had not propagated 0.001 inch.

6.3 PSE V1 SA226 AND SA227 VERTICAL FIN MAIN SPAR CAP STRIPS BELOW PIVOT FITTING

A schematic of PSE V1 is shown in Figure 6-1. A number of stiffening straps end in the vicinity of the pivot fitting, which consists of a 0.190-in channel and 0.190-in angle spliced together. The stresses caused by load transfer between the various members were analyzed using a finite element model built in Excel. There, the straps are considered as axially loaded bars connected by shear springs (fasteners). The spar

webs and the webs of the channel and angle were not included. Although the real PSE has two staggered rows of fasteners, such that there is a fastener every 0.40 inch, the model has a single row of lumped fasteners whose stiffness and spacing have been doubled. Such a simplification greatly reduces the degrees of freedom and complexity of the finite element model.

FIGURE 6-1 SCHEMATIC OF VERTICAL TAIL PIVOT FITTING SPLICE

As predicted by the model, the highest total stress (gross + bearing) occurs at the first fastener of the 0.090-in strap. All of the straps are made from 2024-T3. Since 2014-T6 has less crack toughness, the worst case in the pivot fitting was also considered. The highest stress in the 2014-T6 fitting occurs in the last fastener of the channel. Both of these cases were analyzed using the NASGRO model TC03.

Stresses in service were obtained from measurements at gage 15 [1], which was located on the skin just below the last fastener in the fitting. The 1-g stress was about zero while the stress per g was about 1200 psi. In addition, the maximum stress due to prop wash at 110% torque was found to be about 1200 psi. The finite element model stresses were then scaled to match these measured stresses.

In the NASGRO model, a prop wash load spectrum was added to the existing flight and taxi spectra. The prop wash spectrum consists of 624 cycles per flight, with the stress varying from -2200 to 1200 psi. At 2 minutes of operation at 110% torque, the tail vibration frequency of 5.2 Hz results in 624 cycles. The NASGRO analysis predicts that 0.05-inch through cracks in the strap and the fitting do not grow under fatigue spectrum loading.

7. CARGO DOOR SURROUND STRUCTURE GROUP

7.1 PSE F4 SA226 AND SA227 FUSELAGE FRAMES AT FWD AND AFT CARGO DOOR LATCHES

PSE F4 is located under the floorboards where a lightening hole, tooling hole, bend relief, and stringer cutout are in close proximity to the lower door latch receptacle. These features result in high stress-intensity factor for any crack forming in this area and subsequent rapid crack growth.

Beginning with SN 470, the tooling hole was moved away and the lightening hole was eliminated. In addition, a stiffening channel was installed across the region prone to cracking. These modifications were present on the aircraft used for the Phase I strain survey [1]. Stresses recorded there were compressive at the area just above the stringer cutout. For prior designs, service bulletins 226-53-007 and 227-53-003 provide a remedy by installing a doubler over the affected area. The bulletin has proven effective at preventing further cracks in this area.

7.2 PSE F5 SA226 AND SA227 FUSELAGE FRAME AT CARGO DOOR LATCH AT FS 455.7 AND 473.4

The fuselage frames at the cargo door lower latches are subject to Service Bulletins 226-53-007 and 227-53-003. These bulletins among other changes add doublers to the frames or if cracks are found replace the frames with a new thicker frame, 27-22207. These new frames are factory installed on aircraft SN 457, 470, 479, and up.

This area was strain gauged and the stresses due to pressurization calculated (Appendix D of reference 1). The maximum stress at 7.0-psi cabin pressure was measured at 9730 psi close to the stringer cutout below the latch fitting.

The calculation of the crack growth rate for this location assumes the aircraft is pressurized to the maximum cabin pressure for each flight. The initial flaw can be represented by a 0.05-in through crack at the edge of the stringer cutout. The crack growth rate becomes unstable after 330,000 cycles as depicted in Figure 7-1. The critical crack length is 1.0 inch. Without the reinforcements implemented by service bulletin this structural detail has short life and is unacceptable. Several aircraft in service have displayed cracks at this location after about 20,000 hours. The inspection intervals will reflect the short life, if the service bulletin is not made mandatory.

FIGURE 7-1 PSE F5 LOWER LATCH FRAME AT STRINGER CUTOUT

7.3 PSE F6 SA226 AND SA227 FUSELAGE FRAME AT CARGO DOOR SIDES

The fuselage frames at the sides of the cargo door are loaded in bending due to the redistribution of pressurization loads around the cargo door opening. The configuration for this detail is shown on page 6-43 of reference 1. The bending stresses are exacerbated by the stress concentration caused by a notch at a bend relief in the frame, which disrupts the inner flange. The combination of the notch and a nearby lightning hole causes a short crack growth life at this detail.

Because of reported problems with this detail an Airworthiness Directive (AD) has been issued mandating service bulletins 226-53-007 and 227-53-003 to reconfigure the structure. The new structure is the same as the production configuration on latter aircraft. The aircraft used for the strain survey also had the updated design. Measured stresses on this aircraft, at the location of previous cracking, are shown in Table D-1 of reference 1. One can see that the stresses after the structural modification are in compression.

7.4 PSE F7 SA226 AND SA227 CARGO DOOR HINGE

This is a standard hinge, part number MS20001P-8, made from anodized 2024-T3511 extrusion that is nominally 0.063 inch thick. To find the stress in an individual hinge tab, strain gage readings are available on the 0.032-in cargo door skin, about 4 inches below the hinge. The maximum stress recorded after full pressurization to 7 psi was 7.7 ksi at gage 6 [1]. The hinge itself is twice as thick as the skin but interleafing reduces its effective width by half so that its load carrying area is about the same as the skin's. In addition the 0.030-inch radius at the root of each tab causes a significant stress concentration. The stress concentration factor has been estimated at 3.0 using formulas given in reference 8 and the calculation in Appendix A. The resulting stress at the root of the tab is estimated to be 23 ksi at full pressurization. This simple analysis agrees well with a NASTRAN finite element analysis (FEA) model of a portion of the hinge. The FEA model, which is shown in Figure 7-2, also predicts a stress of about 23 ksi at the root of the first hinge tab.

FIGURE 7-2 CARGO DOOR HINGE FINITE ELEMENT MODEL

Since failure of one tab does not constitute failure of the hinge, primary growth in one tab as well as secondary growth in the remaining tabs have been analyzed. The worst case occurs when the outermost tab contains the rogue flaw and fails first. Since there are 36 tabs, the P/A stress in the remaining tabs will increase by a factor of 36/35 = 1.03. In addition, the eccentricity of the pressure load resultant to the remaining tabs will create a moment, which increases the tension stress in the tabs. However, for the first tab failure the additional stress due to this moment is less than 1% of the P/A stress because the eccentricity is small.

NASGRO crack case CC01 can be used to predict how a corner crack at the root of a hinge tab will propagate when subjected to stress cycles of 0-23 ksi. NASGRO case TC02 can be used to analyze continuing damage in remaining tabs subjected to 0-24 ksi stress cycles. It should be noted that this analysis is quite conservative, as not every flight will actually reach the full 7-psi pressurization altitude.

Figure 7-3 shows the predicted growth rate for a 0.05- x 0.05-inch rogue flaw at the root of a tab as well as secondary growth of initial 0.005 through flaws in adjacent tabs. The second curve represents onset of WFD in the hinge and determines its replacement life.

FIGURE 7-3 PSE F7 CARGO DOOR HINGE

The primary flaw grows to a critical size of 0.125 inch after 13,200 cycles. Routine visual inspections have proven adequate to detect failure of one hinge tab. Secondary cracks become critical at about 75,000 cycles, at which time they are also 0.125 inch long. Eddy-current inspections should be able to detect these cracks 1,000 cycles earlier when they are 0.10 inch long. Therefore, eddy-current inspection of the hinge should begin at 37,500 hours and be repeated every 1,000 cycles. The Airframe Airworthiness Limitations Manual currently specifies a 15,000-hour threshold and 2,000-hour repeat inspection of the cargo door skin around the hinge fasteners. Rather than increase the frequency of inspection to 1,000 cycles, it will probably prove more cost-effective to simply replace the hinge at 37,500 hours.

It should be noted that no hinge failures occurred after application of 150,000 cycles at 7 psi during the fatigue test. Therefore the scatter factor of 1 is warranted for the repeat inspection interval above.

7.5 PSE F10 SA226 AND SA227 CARGO DOOR OPENING CORNERS

PSE F10 is subjected to the fatiguing effects of pressurization. During the SA226 fatigue test several cracks ranging from 0.1 to 3.1 inches long were found emanating from the corner of the door cutout after 74,753 hours had elapsed.

The stress at location F10 was measured during the Phase I strain survey and reported in Table D-3 of reference 1. The highest stress measured in the region was 7.7 ksi. The crack growth analysis for this location was performed assuming a 0.05-in edge crack in the 0.040-in sheet. The resulting life is almost 300,000 cycles with full pressure differential. At this time the crack has grown to 0.26 inch. This is more than an adequate crack growth life. The crack growth prediction is shown in Figure 7-4.

FIGURE 7-4 PSE F10 CARGO DOOR CUTOUT CRACK GROWTH

8. OTHER FUSELAGE GROUP

8.1 PSE F1 SA226 AND SA227 T-STRINGER AT TOP CENTERLINE NEAR FS 330

The main fuselage is assembled from quarter sections. Butt splices at T-stringers join the sections. The loads are highest at the top of the fuselage where the stress due to pressurization is augmented by the stress due to fuselage bending.

The stress analysis assumes a maximum Pr/t hoop stress of 5775 psi. As explained in reference 1, this stress level is conservative. It is applied to the 0.040-in skin and is considered to result in evenly distributed bearing loads along each row of rivets at the stringer. With a separation of 0.75 inch between the #4 fasteners, the bearing load at each rivet is ideally 173 lbs. The stress in the longitudinal (axial) direction was measured by gage 9 during Phase I and found to be about 3550 psi at 1 g and 1300 psi per additional g. The measured axial stress is slightly higher than calculated by Pr/2t due to fuselage bending as explained in reference 1.

Early aircraft had T-stringers made from 2014-T6 extrusions. In latter aircraft the stringer material was changed to 7075-T73 and the stringer thickness was increased from 0.050 inch to 0.063 inch. Crack growth analysis has been performed on both configurations. NASGRO crack case TC05 considers a through crack growing from a rivet hole in the T-stringer toward an adjacent rivet hole and in the 2024-T3 sheet attached at the T-stringer. This model includes the effects of the bi-axial stress state resulting from circumferential and longitudinal loads. The crack growth curves for the three cases are shown in Figure 8-1. As the graph demonstrates, growth rate is slow and there is only insubstantial crack growth in the economic life of the aircraft.

Note that this is the only fuselage PSE where inertia and pressurization loads are considered together. Therefore the pressurization load block in the NASGRO input file had to be applied five times per schedule rather than only once per schedule as for other fuselage PSE's. This is because the NASGRO load schedule consists of five flights (cycles) when inertia loads are considered and only one flight when only pressurization loads are considered.

PSE F1

Flight Schedules (1 Short, 3 Medium, 1 Long)

FIGURE 8-1 PSE F1 T-STRINGER, TOP CENTERLINE NEAR FS 300

8.2 PSE F2 SA226 AND SA227 WING TO FUSELAGE FORWARD ATTACHMENT FITTING

This fitting is made from two forged pieces and provides one of the attachments of the wing to the fuselage. There is also, in addition to the front spar attachments, a series of fasteners loaded in shear connecting the wing spar webs to the fuselage frames. The forged fittings are loaded primarily in compression, since they are located at the upper wing inboard of the gear. Therefore no crack growth analysis was performed.

8.3 PSE F3 SA226 AND SA227 WING TO FUSELAGE AFT ATTACHMENT FITTING

This fitting is made from two forged pieces and provides one of the attachments of the wing to the fuselage. There is also, in addition to the rear spar attachments, a series of fasteners loaded in shear connecting the wing spar webs to the fuselage frames. The forged fittings are loaded primarily in compression, since they are located at the upper wing inboard of the gear. Therefore no crack growth analysis was performed.

8.4 PSE F8 SA226 AND SA227 CORNERS OF PASSENGER WINDOW CUTOUTS

This item was subjected to extensive testing as part of the SA226 fatigue test. At the time the test was run the majority of the window corners developed cracks in the

aluminum surround structure at times equivalent to 72,000 and 90,000 hours [5]. These cracks were allowed to grow without repair for an additional 20,000 hours. The cracks showed a stable growth pattern with decreasing growth rate as they propagated out of the high stress field at the window corners. The cracks were first detected when their length was between 0.4 and 1.2 inches. Figure 8-2 shows the growth history of a few representative cracks which were discovered growing from fastener holes at the corner of window cutouts. As these are naturally occurring cracks that may be detected by simple visual inspections, this data will be used to determine the initial and recurrent inspection intervals for PSE F8.

FIGURE 8-2 FATIGUE TEST DATA – CORNERS OF WINDOW CUTOUTS
8.5 PSE F9 SA226 T-STRINGER, BOTTOM CENTERLINE AFT OF FS 362

The configuration of this PSE F9, at the bottom of the fuselage, is identical to that of PSE F1 at the top. The stresses however are less severe because the bending stress due to in-flight gust loading is of opposite sign. The results from F1 can therefore be used as minimum results for F9.

8.6 PSE F11 SA226 AND SA227 FORWARD PRESSURE BULKHEAD

The bulkhead is stiffened on its forward side by several vertical channels. The longest of these is 27-21063-2; a hat channel 1.0 inch wide and 0.063 inch thick and made from

clad 2024-T3 extrusion. Gage 1 [1] was mounted on the portion of the channel with the highest bending stress due to cabin pressure. At 7.0-psi internal pressure, the stress was 7.7 ksi, while during flight at 0 psi internal pressure the stress ranged from 0.25 ksi to 0.6 ksi.

NASGRO case TC01 was used to analyze the life of this channel with a 0.050-in edge crack. The cracked portion was modeled as a 1.0-inch-wide strip subjected to a cyclic stress of 0 to 8.3 ksi. Figure 8-3 shows that the flow stress of the channel is exceeded only after 372,000 cycles, at which time the crack grown becomes unstable.

Crack Growth in 2024-T3 Channel, W = 1.00 t = 0.063

FIGURE 8-3 PSE F11 FORWARD PRESSURE BULKHEAD CHANNEL

8.7 PSE F12 SA226 AND SA227 PASSENGER DOOR OPENING CORNERS

Cracks were discovered at location PSE F12 after 51,700 hours had elapsed in the SA226 fatigue test [5]. One crack that emanated from the corner of the door cutout had a length of 1.2 inches when discovered. These observations as well as the absence of in-service cracks will be used with an appropriate scatter factor to establish an inspection threshold and repeat inspection interval for the passenger door opening.

8.8 PSE F13 SA226 AND SA227 CONTROL COLUMN ROLLER BEARING

The control column of these aircraft is supported by a roller bearing at each end which is attached to the cockpit sidewall by a 0.25-inch diameter stud. The load on the 4118 steel stud is only a small fraction of its shear strength, but if the nut is not tight, the stud is subjected to bending stresses and rapid fatigue failure. After several failures of this stud in the field, Service Bulletins 226-27-060 and 227-27-041 and AD 97-02-02 were released to check stud tension via the nut torque. However, the stud can be inspected for cracks only by completely removing it. Hence an alternate design has been developed that does not rely on bolt tension to eliminate bending stresses. This design was implemented by Service Bulletins 226-27-061 and 227-27-042. These service bulletins will be made mandatory via the SID.

The function of the stud in supporting control column loads is provided in the new design by pin 27-21169-005. The pin rotates on the inner race of a roller bearing installed in fitting 27-21169-007. The pin has a diameter of 0.500 inch, a fillet radius of 0.020 inch, and is made from 17-4 PH steel. The enlarged diameter of the pin decreases the c/l ratio of the design from 652 in⁻³ to just 82 in⁻³ - a factor of 8 reduction.

To check the resistance of the new design to crack propagation, the bending stress at the fillet radius was calculated based on 25 lbs pilot effort and the control column geometry of page 2.1, reference 9. Reference 8 gives a stress concentration factor of about 2.0 for this pin geometry subjected to a moment. In this case, the moment is the pilot effort (25 lbs) plus the resulting stick pusher load (113 lbs) times half the length of the pin head (0.35/2 = 0.175 inch) or 24 in-lbs. The alternating bending stress is then $2.0 \times (24 \text{ in-lbs}) \times 82 \text{ in}^3$, or about 4,000 psi. At this stress level, an assumed 0.05-inch-deep by 0.11-inch-wide crack will not to grow as predicted by NASGRO crack case SC07 (see output file in Appendix C).

9. LANDING GEAR GROUP

9.1 PSE LG2 SA226 AND SA227 LANDING GEAR CYLINDER (5453001-1,-3) UNDER 14,000 LBS LANDING WEIGHT

Several operators have reported cracks in the cylinder (part number (P/N) 5453001), along the radius where the side strut blends into the drag brace boss. The cracks were found after about 12,500 landings [10] and were the result of spring back loads. Frequent inspection of both part numbers 5453001-1 and 5453001-3 is required per Service Bulletins 226-32-033 and 227-32-022 as well as the Airframe Airworthiness Limitations Manual. These documents specify inspection thresholds of 8,000 hours for the 5453001-1 part and 10,000 hours for the 5453001-3 part. The repeating inspection interval for both parts is 800 hours if no cracks are found and 50 hours if cracks are successfully dressed out. If cracks reappear or cannot be dressed out within limits, the cylinder must be replaced.

Other cracks have occurred in the 2014-T6 yoke forging, which is shrunk fit onto the steel landing gear piston. There is a retaining pin through the assembly that also serves as a method to introduce an air charge into the oleo strut. The hole for the pin causes a stress concentration after assembly. If the interference fit is controlled within tolerance, cracks in the yoke do not arise. Units with excessive interference, however, have been found with cracks prior to installation on any aircraft. This interference has been measured as high as 0.003 inch. At this level, the stress at the hole can reach 45 ksi [1]. This is well above the stress corrosion threshold of 2014-T4 material in the short transverse direction.

Because load fluctuation is not the cause of the cracks, their growth rate is not calculated with the methods in this report. However, inspection Service Bulletins 226-32-065 and 227-23-039 have been issued for ultrasonic inspection of all yokes installed on Ozone main landing gear part numbers OAS5453 through -19 and nose gear part numbers OAS5451 through -17. Units with acceptably small cracks must be reinspected at times varying between 100 and 1000 hours depending on crack length. Examination of cracked units has shown relatively slow growth as the crack gets further from the hole.

10. ONSET OF WIDESPREAD FATIGUE DAMAGE (WFD)

Widespread Fatigue Damage (WFD) in a structure is characterized by the presence of cracks at several, adjacent structural details or structural elements. When such cracks grow in size in density, there comes a point at which the structure can no longer meet its damage tolerance requirement. WFD can occur as Multiple-Site Damage (MSD) or as Multiple-Element Damage (MED).

MSD is characterized by the simultaneous presence of fatigue cracks in the same structural element. Simultaneous cracking at multiple locations occurs when a particular structural feature is replicated many times and exposed to a near-uniform stress at all locations. Examples of such structure in the SA226 and SA227 are the T-stringer and skin at the crown and belly of the fuselage and the cargo door hinge.

MED is characterized by the simultaneous presence of fatigue cracks in similar adjacent structural elements in a multiload path component. Chordwise wing skin splices in the SA226 and SA227 are examples of such structure.

Initially, such cracks may be nonuniform in size and grow independently of one another. They begin to interact with their neighbors as they grow. Interaction can result in a significant increase in crack propagation rate and/or a reduction in residual strength capability. Due to their relatively small sizes, they are difficult to detect and thus pose the risk of sudden coalescent and total structural failure without warning. Damage due to external sources — a failed propeller blade, for instance — superposed on WFD can also be catastrophic.

One assumption made regarding WFD in this report is that the analysis may consider only average quality flaws in the adjacent structural elements. Although a rogue flaw must be assumed when considering the time to critical crack size in a PSE, the probability of rogue flaws occurring at multiple sites or elements in adjacent structure is extremely remote and may be neglected.

On the preceding basis the SA226 full-scale fatigue test provides valuable information about the susceptibility of the SA226 and SA227 aircraft to WFD during the operation life goal of 50,000 hours. Near the conclusion of the 105,000-hour test, a 5-inch longitudinal saw cut was made in the skin and T-stringer at the crown of the fuselage. The application of the 7-psi differential pressure did not cause unstable growth of this cut. In addition, no other areas of the pressure vessel failed catastrophically before completion of the test. Cracks that did grow were clearly visible and were either repaired or monitored further.

Saw cuts were also made in the main wing spar just before completion of the test. Application of limit load caused no catastrophic failures in any of the spar elements or chordwise skin splices.

In addition, it is important to note that the operator survey conducted in Phase I showed that for all three flight profiles (commuter, cargo, and executive) the stress spectrum is less severe than that used for the full-scale fatigue test. Therefore, the time to onset of WFD for the wing, fuselage, and tail structure is determined to be greater than 105,000 hours with a high degree of certainty and greater than 50,000 hours (the goal of this program) with a very high degree of certainty.

11. SUMMARY OF RESULTS

Table 11-1 summarizes the results of crack growth analysis for each PSE. Observed cracks from fatigue testing as well as operator field reports are also listed for comparison to the analytical results. The observed lives represent the time at which the crack was discovered; at which point the structure would generally be repaired so the time to failure is not known.

Table 11-2 summarizes the inspection intervals that follow from the crack growth analyses. Not all PSE's have an inspection program, as some were shown to have long lives or corrective service bulletins. The numbers in italics indicate inspections that are currently specified in the Airframe Airworthiness Limitations Manual.

TABLE 11-1 SUMMARY OF CRACK GROWTH ANALYSIS RESULTS

PSE	DESCRIPTION	OBSERVED	ANALYSIS	CRITICAL	CRACK GROWTH ANALYSIS
		LIFE (hrs)*	LIFE (hrs)	CRACK	METHOD
				LENGTH (in)	
ξ	226 Main spar lower cap @ WS 99.0		38,500	0.52	NASGRO CC02/TC03/TC02
₹	226 Main spar lower cap @ WS 9.0		22,000	0.51	NASGRO CC02/TC03/TC02
<u>ڇ</u>		96,500	15,400	0.28	NASGRO CC02/TC03/TC02
₹	227 Main spar lower cap @ WS 99.0		37,400	0.73	NASGRO CC02/TC03/TC02
N3	227 Skin splice lower surface @ WS 99.51		11,800	0.64	NASGRO TC05
<u>%</u>	227 Main spar lower surface wing tip extension fitting		>440,000	ΑX	NASGRO TC03
\$	227 Lower wing skin on forward side of tanding gear trunnion @ WS 113	11,000	17,000	0.17	NASGRO TC03
8	226/227 Chordwise skin splice lower surface @ WS 173.944		176,000	0.47	NASGRO TC05
§	226/227 Skin splice lower surface outboard of rib @ WS 27.103		17,600	0.34	By Similarity to PSE W10
W10	226/227 Skin splice lower surface Inboard of splice @ WS 27.103	88,872	17,600	0.34	NASGRO TC05
ž	226 Wing skin lower center section at landing light cutout	42,623	22,000	0.89	NASGRO TC01
W12	227 Rear spar lower surface wing tip extension fitting	-	>165,000	N/A	NASGRO TC03
W13	227 Rear spar lower surface at end of outboard extension fitting @ WS 270.12		90,750	0.28	NASGRO TC03
<u>¥</u>	227 Main spar lower surface at end of outboard extension fitting @ WS 271.02		>115,500	∀X	NASGRO TC03
ī.			>385,000	A/A	NASGRO TC05
F2			Infinite	Ψ.X	Compressive Strain
<u> </u>	226/227 Wing-fuselage aft attachment fittings	٠	Infinite	Ϋ́N	Compressive Strain
<u> </u>	226/227 Fuselage frame at fore/aft cargo door latches @ FS 454.5/455.7 and 473.4/474.6	9	Infinite	Y/N	Compressive Strain
<u>स</u>	226/227 Fuselage frame at fore/aft cargo door latches @ FS 455.7/473.4		330,000 cyc	1.00	NASGRO TC02
£	226/227 Fuselage frame at cargo door sides		Infinite	Υ/N	Compressive Strain
12	226/227 Cargo door hinge		13,200 cyc	0.15	NASGRO CC01
82	226/227 Corners of passenger window cutouts	72,000		•	226 Full-Scale Fatigue Test
<u>6</u>	226 T-stringer at bottom centerline aft of FS 362		>385,000	Ϋ́Z	By Similarity to PSE F1
<u>1</u> 20	226/227 Cargo door opening corners	74,753	300,000 cyc	0.26	NASGRO TC02
Ĕ	226/227 Forward pressure bulkhead		372,000 cyc	0.41	NASGRO TC02
F12	226/227 Passenger door opening corners	51,700	•		226 Full-Scale Fatigue Test
E	226/227 Control column roller bearing		Infinite	A/A	NASGRO SC07
Ŧ	226/227 Rib strap at horizontal stabilizer rear spar @ BL 3.135		>115,000	N/A	NASGRO TC03
끛 .			>115,000	Ϋ́Χ	NASGRO TC02
Ξ		٠.	159,000	0.91	NASGRO TC03
Z			>115,500	A/N	NASGRO TC05
<u>2</u>			129,800	0.49	NASGRO TC02
۲ ا	226/227 Vertical fin main spar cap strips at bottom of pivot fitting		Infinite	Α'X	NASGRO TC03
	227 Engine mount at firewall		Infinite	Α'N	NASGRO TC01
[25	226/227 Landing gear cylinder 5453001-1,-3	12,500 cyc	•		Service Reports

Time when crack was discovered, not time to failure. "N/A" = critical length not reached prior to end of run. "Infinite" = rogue flaw did not grow.

TABLE 11-2 SUMMARY OF INSPECTION INTERVALS

PSE	NDI METHOD	MIN NDI SIZE (in)	TIME TO MIN SIZE (hrs)	CRITICAL SIZE (in)	TIME TO CRITICAL (hrs)	FIRST INSP (hrs)	REPEAT INSP (hrs)
W1	E	0.10	24,750	0.80	49,500	24,750	2,750
W2	: E	0.10	13,750	0.43	28,600	14,300	10,000
WЗ	E	0.10	7,700	0.44	33,000	16,500	2,000
W4	E	0.10	27,500	1.00	40,700	20,000	5,000
W5							
W6 W7							
W8							
W9	E	0.15	8,250	2.80	23,600	11,800	5,500
W10	E	0.15	8,250	2.80	23,600	11,800	5,500
W11	E	0.15	16,500	0.89	22,000	11,000	2,500
W12 W13			1		e Nitalia (estada Estada de Compositorio (estado)		
W14 F1							
F2 F3					Caredo estas 141 - Areca		
F4 F5	P or E					17,000 17,000	1,000 1,000
F6	PorE					17,000	1,000
F7	Е	0.10	74,000 cyc	0.13	75,000 cyc	37,500 cyc	1,000 cyc
F8 F9	PorE					23,000	3,000
F10 F11	PorE					23,000	3,000
F12	PorE	estitation that relices to				10,000	2,000
H1	PorE					30,000	2,000
N1 N2		i non i u zod une Zodowe Se					
N3 V1							
EM1 LG2	P or E					4,000	800

NDI Methods: "V" = visual, "P" = penetrant, "E" = eddy current, "X" = x-ray, "M" = magnetic particle Inspection times in *italics* are taken from the Airframe Airworthiness Limitations Manual

12. REFERENCES

- 1. Dwyer, W. "Development of a Supplemental Inspection Document for SA226 and SA227 Aircraft: Interim Report I," Report 2601-R1517 Fairchild Aircraft, May 6, 1997.
- 2. Fatigue Crack Growth Computer Program "NASA/FLAGRO" Version 2.0 User's Manual, NASA-Johnson Space Center, May 1994.
- 3. Anon. "Damage Tolerance Assessment Handbook, Volume II: Airframe Damage Tolerance Evaluation," Report DOT/FAA/CT-93/69.II, Federal Aviation Administration, October 1993.
- 4. Ozone Report OAS 5453DTR004 MLG Drop Test Report for Fairchild Aircraft Corp, dated February 6, 1984.
- 5. Dwyer, W. "SA226 Full-Scale Fatigue Results," Report 2601-R718 Fairchild Aircraft Corporation, October 2, 1980.
- 6. Brown, M. "Metro III Wing Structural Analysis," Report 2601-R653 Fairchild Aircraft Corporation, June 13, 1980.
- 7. Swift, T. "Repairs to Damage Tolerant Aircraft," Report FAA-AIR-90-01, Federal Aviation Administration, March 19, 1990.
- 8. Roark and Young, <u>Formulas for Stress and Strain 5th Ed.</u>, McGraw-Hill, New York, 1975.
- 9. Hemmen, D. "Flight Control Systems Stress Analysis," Report 2601-R204 Swearingen Aviation Corporation, September 15, 1969.
- 10. Hemmen, D. "Service Bulletin & Repair Stress Checks," Report 2601-R571 Fairchild Aircraft, June 14, 1979.
- 11. Westwood, S.G. "Wing-Fuselage Fail Safe Analysis," Report 2601-R771, Fairchild Aircraft, June 15, 1981.
- 12. Simmons, J. "Summary of SA226-TC Fatigue Characteristics as Applied To Other Models," Report 2601-R758, Fairchild Aircraft, March 13, 1981.
- 13. Dwyer, W. "Fatigue Test Airframe Fail Safe Tests," Report 2601-R617, Fairchild Aircraft, October 25, 1979.
- 14. Forman, R.G. "Fatigue Crack Growth Computer Program 'NASA/FLAGRO' Version 2.0," Report JSC-22267A, NASA-JSC, May, 1994.

- 15. Anon. "Metallic Materials and Elements for Aerospace Vehicle Structures," Department of Defense MIL-HDBK-5G, dated November 1, 1994.
- 16. Anon. "Fracture Toughness: Proceedings of the 1971 National Symposium on Fracture Mechanics, Part II," ASTM Special Publication 514, 1971.
- 17. Ho, C.Y. "Aerospace Structural Metals Handbook, Volume 1, 1996 Edition," CINDAS/USAF CRDA Handbooks Operation, 1996.
- 18. Fitzgerald, J.H. "A-37 Crack Growth Analysis and Coupon Testing Final Report: Mechanical Properties Tests," SwRI Project No. 06-6731, USAF Contract No. F41608-79-D-A011-005, April 1983.
- 19. Aeronautics R&D "Wing and Fuselage Fail-Safe Analysis Swearingen Model SA-226T," Report 2601-R190, Fairchild Aircraft, May 23, 1970.
- 20. Anon. "Supplemental Inspection Document Development for the Cessna Model 402," DOT/FAA/AR-98/66, March 1999.

APPENDIX A STRESS ANALYSES AND STIFFNESS MODELS

A-1 PSE W1 Stiffness Models

PSE W1 - MAIN SPAR, LOWER CAP AT WING STATION 99.00 FOR SA226

0.977 angle, 97.7% of applied load

Main Spar Lower Surface

APPLIED LOAD =

A-1 PSE W1 Stiffness Models (Continued)

			Е									

Assuming Pla			511 / 11 / 10 10 10 10 10 10 10 10 10 10 10 10 10	Destructura sensionaria	rento, talvarosaskasvasi	PAPERE SEE SEE SEE SEE SEE SEE	80.70375900 *550.7	ne maganamprahegodesn	vanar - grannsame	istingaget approtected by	Listhingerigues
K K	K11	K22			ac e Rad	L	D	thk-top	thk-bott C	1,(cont) C	2,(cont)
1.5.E+06	1	2	CAP	0.0875	1.0E+07	0.60					
1.1.E+Q6	2	3	CAP	0.0875	1.0E+07	0.79					
1.1.E+06	3	4	CAP	0.0875	1.0E+07	0.81					
1.3.E+06	4	5	CAP	0.0875	1.0E+07	0.69					
1.3.E+06	5	18	CAP	0.0875	1.0E+07	0.69					
1.5.E+06	5a	6	ANGLE	0.0875	1.0E+07	0.60					
1.1.E+06	6	7	ANGLE	0.0875	1.0E+07	0.79					
1.1.E+06	7	8	ANGLE	0.0875	1.0E+07	0.81					
1.3.E+06	8	9	ANGLE	0.0875	1.0E+07	0.69					
1.3.E+06	9	18	ANGLE	0.0875	1.0E+07	0.69		*			
1.4.E+06	10	11	Strap 1	0.06875	1.6E+07	0.79					
1.4.E+06	11	12	Strap 1	0.06875	1.6E+07	0.81					
1.6.E+06	12	13	Strap 1	0.06875	1.6E+07	0.69					
1.6.E+06	13	18	Strap 1	0.06875	1.6E+07	0.69					
1.4.E+06	14	15	Strap 2	0.06875	1.6E+07	0.79					
1.4.E+06	15	16	Strap 2	0.06875	1.6E+07	0.81					
1.6.E+06	16	17	Strap 2	0.06875	1.6E+07	0.69					
1.6.E+06	17	18	Strap 2	0.06875	1.6E+07	0.69					
8.3.E+05	2	6	FSTN		1.0E+07		0.16	0.125	0.125	1.667	0.86 cap+angle
8.3.E+05	3	7	FSTN		1.0E+07		0.16	0.125	0.125	1.667	0.86 cap+angle
8.3.E+05	4	8	FSTN		1.0E+07		0.16	0.125	0.125	1,667	0.86 cap+angle
8.3.E+05	5	9	FSTN		1.0E+07		0.16	0.125	0.125	1.667	0.86 cap+angle
1.1.E+06	6	10	FSTN		1.3E+07		0.16	0.125	0.125	1.667	0.86 angle+strap
1.1.E+06	7	11	FSTN		1.3E+07		0.16	0.125	0.125	1.667	0.86 angle+strap
1.1.E+06	8	12	FSTN		1.3E+07		0.16	0.125	0.125	1.667	0.86 angle+strap
1.1.E+06	9	13	FSTN		1.3E+07		0.16	0.125	0.125	1.667	0.86 angle+strap
1.3.E+06	10	14	FSTN		1.6E+07		0.16	0.125	0.125	1.667	0.86 strap+strap
1.3.E+06	11	15	FSTN		1.6E+07		0.16	0.125	0.125	1.667	0.86 strap+strap
1.3.E+06	12	16	FSTN		1.6E+07		0.16	0.125	0.125	1.667	0.86 strap+strap
1.3.E+06	13	17	FSTN		1.6E+07		0.16	0.125	0.125	1.667	0.86 strap+strap
			**	cap, angle.	strap K = [A*E1/L					

^{**} cap, angle, strap K = [A * E] / L

RESULT

Forces in pounds

^{**} fastener E = the E average of the top material and the bottom material.

^{**} fastener K = [E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])]^2

A-1 PSE W1 Stiffness Models (Continued)

PSE W1 - MAIN SPAR, LOWER CAP AT WING STATION 99.00 FOR SA226 Main Spar Lower Surface

Inboard Outboard STA99 0.69 0.69 LOAD Cap Angle Titanium

14	15	16	17	18
	Thk	1 Row W	Area	Full W/2
Titanium	0.125	0.55	0.06875	1.1
Titanium	0.125	0.55	0.06875	1.1
Angle	0.125	0.7	0.0875	1.4
Cap	0.125	0.7	0.0875	1.4

FASTENER PROPERTY ALUM Titanium STEEL

1.667 5.000 4.000 C1= 0.800 0.820 C2= 0.860

Stresses

Titanium

Taxi 1-g sigma/g Landing -10000 6111 4600 commuter 5497

APPLIED LOAD = 1.000 cap 0.000 angle APPLIED LOAD =

ELEMENT STIFFNESS

Assuming Pla	ne Secti		Plane								
K	K11	K22		Α	E. E.	L	D	thk-top	thk-bott C	21,(cont)	C2,(cont)
1.5.E+06	1	2	CAP	0.0875	1.0E+07	0.60					
1.1.E+06	2	3	CAP	0.0875	1.0E+07	0.79					
1.1.E+06	3	4	CAP	0.0875	1.0E+07	0.81					
1.3.E+06	4	5	CAP	0.0875	1.0E+07	0.69					•
1.3.E+06	5	18	CAP	0.0875	1.0E+07	0.69		•			
1.7.E+01	5a	6	ANGLE	0.000001	1.0E+07	0.60					
1.3.E+01	6	7	ANGLE	0.000001	1.0E+07	0.79					
1.1.E+06	7	8	ANGLE	0.0875	1.0E+07	0.81					
1.3.E+06	8	9	ANGLE	0.0875	1.0E+07	0.69					·
1.3.E+06	9	18	ANGLE	0.0875	1.0E+07	0.69					
1.4.E+06	10	11	Strap 1	0.06875	1.6E+07	0.79					
1.4.E+06	11	12	Strap 1	0.06875	1.6E+07	0.81					
1.6.E+06	12	13	Strap 1	0.06875	1.6E+07	0.69					
1.6.E+06	13	18	Strap 1	0.06875	1.6E+07	0.69					
1.4.E+06	14	15	Strap 2	0.06875	1.6E+07	0.79					
1.4.E+06	15	16	Strap 2	0.06875	1.6E+07	0.81					
1.6.E+06	16	17	Strap 2	0.06875	1.6E+07	0.69					
1.6.E+06	17	18	Strap 2	0.06875	1.6E+07	0.69					
1.0.E-06	2	6	FSTN		1.0E+07		0.1			1.667	
4.1.E+05	3	7	FSTN		1.0E+07		0.1			1.667	
4.1.E+05	4	8	FSTN		1.0E+07		0.1			1.667	
4.1.E+05	5	9	FSTN		1.0E+07		0.1			1.667	
1.0.E-06	6	10	FSTN		1.3E+07		0.1			1.667	
5.4.E+05	7	11	FSTN		1.3E+07		0.1			1.667	J .
5.4.E+05	8	12	FSTN		1.3E+07		0.1			1.667	•
5.4.E+05	9	13	FSTN		1.3E+07		0.1			1.667	9 ,
6.6.E+05	10	14	FSTN		1.6E+07		0.1			1.667	
6.6.E+05	11	15	FSTN		1.6E+07		0.1			1.667	
6.6.E+05	12	16	FSTN		1.6E+07		0.1			1.667	
6.6.E+05	13	17	FSTN		1.6E+07		0.1			1.667	•
5.4.E+05	10	2	FSTN		1.3E+07		0.1	6 0.125	0.125	1.667	0.86 strap+cap

^{**} cap, angle, strap K = [A * E] / L

** fastener E = the E average of the top material and the bottom material.

** fastener K = [E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])]

A-1 PSE W1 Stiffness Models (Continued)

A-2 PSE W2 Main Spar Stress Correction WS 13 to WS 9

Find ratio of c/l at WS 13 and c/l at WS 9 Use ratio to adjust WS 13 (measured) stress for WS 9 (PSE) (Approx. dimensions - for comparison purposes only)

_	WS 13	WS 9
Spar Height, H	10.8	9.8
Width, B	3.5	3.5
Flange, T	0.88	0.88
Web, S	0.38	0.38
Intertia (BH^3-(B-S)(H-2T)^3)/12	175.3376	139.3875
Ratio c/I(9) to c/I(13)		1.14

Main spar equivalent I-beam

A-3 PSE W3 Stiffness Model

PSE W3 - SA226 REAR SPAR LOWER ANGLE WS. 27. Rear Spar Lower Surface Aft Face

APPLIED LOAD

APPLY LOAD =

1

ELEMENT STIFFNESS	

Assuming Plane		s Remain Pla	ne	stransport		·				constant action of the contraction	y constructive representations.
K	K11	K22		A	E.		D	thk-top	thk-bott C	1,(cont) C	2,(cont)
781300	1	2	spar a.	0.15625	1.0E+07	2					
1562500	2	3	spar a.	0.15625	1.0E+07	1					
2083300	3	4	spar a.	0.15625	1.0E+07	0.75					
2083300	4	5	spar a.	0.15625	1.0E+07	0.75					
2083300	5	10	spar a.	0.15625	1.0E+07	0.75					
3562500	6	7	pres-a.	0.11875	3.0E+07	1					
4750000	7	8	pres-a.	0.11875	3.0E+07	0.75					
4750000	8	9	pres-a.	0.11875	3.0E+07	0.75					
4750000	9	10	pres-a.	0.11875	3.0E+07	0.75					
979000	2	6	FSTN		2.0E+07		0.25	0.125	0.125	1.667	0.86
905200	3	7	FSTN		2.0E+07		0.20	0.125	0.125	1.667	0.86
905200	4	8	FSTN		2.0E+07		0.20	0.125	0.125	1.667	0.86
905200	5	9	FSTN		2.0E+07		0.20	0.125	0.125	1.667	0.86

^{**} cap, angle, strap K = [A * E] / L
** fastener E = the E average of the top material and the bottom material.
** fastener K = [E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])] ^2

STIFFNES	YIGTAN 2										
Node 1	Charles and the Control of the	digay Militay in Profes	lode 4 1	Node 5	Vode 6	Vode 7	lote 8 ahol	P shou	Vinde 10	App Load Node	Displacemen
7.8E+05	-7.8E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.0E+00 Node 1	2.21E-06
-7.8E+05	3.3E+06	-1.6E+06	0.0E+00	0.0E+00	-9.8E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00 Node 2	9.28E-07
0.0E+00	-1.6E+06	4.6E+06	-2.1E+06	0.0E+00	0.0E+00	-9.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00 Node 3	5.53E-07
0.0E+00	0.0E+00	-2.1E+06	5.1E+06	-2.1E+06	0.0E+00	0.0E+00	-9.1E+05	0.0E+00	0.0E+00	0.0E+00 Node 4	3.44E-07
0.0E+00	0.0E+00	0.0E+00	-2.1E+06	5.1E+06	0.0E+00	0.0E+00	0.0E+00	-9.1E+05	-2.1E+06	0.0E+00 Node 5	1.66E-07
0.0E+00	-9.8E+05	0.0E+00	0.0E+00	0.0E+00	4.5E+06	-3.6E+06	0.0E+00	0.0E+00	0.0E+00	0.0E+00 Node.6	5.05E-07
0.0E+00	0.0E+00	-9.1E+05	0.0E+00	0.0E+00	-3.6E+06	9.2E+06	-4.8E+06	0.0E+00	0.0E+00	0.0E+00 Node 7	3.89E-07
0.0E+00	0.0E+00	0.0E+00	-9.1E+05	0.0E+00	0.0E+00	-4.8E+06	1.0E+07	-4.8E+06	0.0E+00	0.0E+00 Node 8	2.70E-07
0.0E+00	0.0E+00	0.0E+00	0.0E+00	-9.1E+05	0.0E+00	0.0E+00	-4.8E+06	1.0E+07	-4.8E+06	0.0E+00 Node 9	1.38E-07
0.0E+00	0.0E+00	0.0E+00	0.0E+00	-2.1E+06	0.0E+00	0.0E+00	0.0E+00	-4.8E+06	6.8E+06	0.0E+00 Node 10	0.00E+00
INVERSE I				•					F	App Load	
2.2E-06	9.3E-07	5.5E-07	3.4E-07	1.7E-07	5.1E-07	3.9E-07	2.7E-07	1.4E-07	. 60%	1	
9.3E-07	9.3E-07	5.5E-07	3.4E-07	1.7E-07	5.1E-07	3.9E-07	2.7E-07	1.4E-07		0	
5.5E-07	5.5E-07	6.6E-07	3.9E-07	1.8E-07	3.9E-07	3.4E-07	2.5E-07	1.3E-07	8	0	
3.4E-07	3.4E-07	3.9E-07	4.8E-07	2.2E-07	2.7E-07	2.5E-07	2.1E-07	1.1E-07	#0 87	0	
1.7E-07	1.7E-07	1.8E-07	2.2E-07	3.0E-07	1.4E-07	1.3E-07	1.1E-07	7.8E-08	Ŷ.	0	
5.1E-07	5.1E-07	3.9E-07	2.7E-07	1.4E-07	6.9E-07	4.6E-07	3.0E-07	1.5E-07		0	
3.9E-07	3.9E-07	3.4E-07	2.5E-07	1.3E-07	4.6E-07	4.8E-07	3.1E-07	1.5E-07		0	
2.7E-07	2.7E-07	2.5E-07	2.1E-07	1.1E-07	3.0E-07	3.1E-07	3.3E-07	1.6E-07	l l	0 0	
1.4E-07	1.4E-07	1.3E-07	1.1E-07	7.8E-08	1.5E-07	1.5E-07	1.6E-07	1.8E-07		0	

A-3 PSE W3 Stiffness Model (Continued)

RESULTS

0.37 0.35 Forces in lbs 1.00 0.59 0.44 0.03 -0.03 rear spar angle -alum load in fastener 0.15 0.07 0.41 -0.15 -0.41_ -0.07 load in fastener press-angle-steel **9** 0.63 **10** 0.65 **8** 0.56 0.41

Stiffness	Node#	Node#		Load Between Nodes	anger a september of the					
7.813E+05	1	2	spar a.	1.00	DISPLACE	MENT				
1.563E+06	2	3	spar a.	0.59	2.2E-06	9.3E-07	5.5E-07	3.4E-07	1.7E-07	0.0E+00
2.083E+06	3	4	spar a.	0.44	1_	2_	3_	4	· 5	10
2.083E+06	4	5	spar a.	0.37	1				Activity of	rear spar ang
2.083E+06	5	10	spar a.	0.35		L		100		press-angle-s
3.563E+06	6	7	pres-a.	0.41		6	7	8	9	10
4.750E+06	7	8	pres-a.	0.56		5.1E-07	3.9E-07	2.7E-07	1.4E-07	0.0E+00
4.750E+06	8	9	pres-a.	0.63						
4.750E+06	9	10	pres-a.	0.65						
9.790E+05	2	6	FSTN	0.41						
9.052E+05	3	7	FSTN	0.15						
9.052E+05	4	8	FSTN	0.07						
9.052E+05	5	9	FSTN	0.03						

A-4 PSE W4 SA227 Stiffness Models

PSE W4 - MAIN SPAR, LOWER CAP AT WING STATION 99.00 FOR SA227 Main Spar Lower Surface

APPLY LOAD, TAXI

i. S. a. S	unite purturbaktatus	y to cl Aera Ratio Mate	rial E
APPLY LOAD =	1.00 cap	5.440	
APPLY LOAD =	0.98 angle, 97.7%	5.315	
APPLY LOAD =	1.17 Titanium Strap, bot2	5.190 0.763889	1.6
APPLY LOAD =	1.14 Titanium Strap, bot1	5.065 0.763889	1.6

ELEMENT STIFFNESS

K	K11	K22		A	E	L	D	thk-top	thk-bott C	1,(cont) C	2,(cont)
4.5.E+05	1	2	CAP	0.09	1.0E+07	2.00			**********		
9.0.E+05	2	3	CAP	0.09	1.0E+07	1.00					
7.8.E+05	3	4	CAP	0.09	1.0E+07	1.16					
9.0.E+05	4	5	CAP	0.09	1.0E+07	1.00					
9.0.E+05	5	18	CAP	0.09	1.0E+07	1.00					
4.5.E+05	5a	6	ANGLE	0.09	1.0E+07	2.00					
9.0.E+05	6	7	ANGLE	0.09	1.0E+07	1.00					
7.8.E+05	7	8	ANGLE	0.09	1.0E+07	1.16					
9.0.E+05	8	9	ANGLE	0.09	1.0E+07	1.00					
9.0.E+05	9	18	ANGLE	0.09	1.0E+07	1.00					
5.5.E+05	9a	10	Strap 1	0.06875	1.6E+07	2.00					
1.1.E+06	10	11	Strap 1	0.06875	1.6E+07	1.00					
9.5.E+05	11	12	Strap 1	0.06875	1.6E+07	1.16					
1.1.E+06	12	13	Strap 1	0.06875	1.6E+07	1.00					
1.1.E+06	13	18	Strap 1	0.06875	1.6E+07	1.00					
5.5.E+05	13a	14	Strap 2	0.06875	1.6E+07	2.00					
I.1.E+06	14	15	Strap 2	0.06875	1.6E+07	1.00					
9.5.E+05	15	16	Strap 2	0.06875	1.6E+07	1.16					
1.1.E+06	16	17	Strap 2	0.06875	1.6E+07	1.00					
1.1.E+06	17	18	Strap 2	0.06875	1.6E+07	1.00					
4.5.E+05	2	6	FSTN		1.0E+07		0.200	0.125	0.125	1.667	0.86 cap+angle
1.5.E+05	3	7	FSTN		1.0E+07		0.200	0.125	0.125	1.667	0.86 cap+angle
4.5.E+05	4	8	FSTN		1.0E+07		0.200	0.125	0.125	1.667	0.86 cap+angle
4.5.E+05	5	9	FSTN		1.0E+07		0.200	0.125	0.125	1.667	0.86 cap+angle
5.9.E+05	6	10	FSTN		1.3E+07		0.200	0.125	0.125	1.667	0.86 angle+stra
5.9.E+05	7	11	FSTN		1.3E+07		0.200	0.125	0.125	1.667	0.86 angle+stra
5.9.E+05	8	12	FSTN		1.3E+07		0.200	0.125	0.125	1.667	0.86 angle+stra
5.9.E+05	9	13	FSTN		1.3E+07		0.200	0.125	0.125	1.667	0.86 angle+stra
7.2.E+05	10	14	FSTN		1.6E+07		0.200	0.125	0.125	1.667	0.86 strap+stra
7.2.E+05	11	15	FSTN		1.6E+07		0.200	0.125	0.125	1.667	0.86 strap+stra
7.2.E+05	12	16	FSTN		1.6E+07		0.200	0.125	0.125	1.667	0.86 strap+stra
7.2.E+05	13	17	FSTN		1.6E+07		0.200	0.125	0.125	1.667	0.86 strap+stra

^{**} fastener E = the E average of the top material and the bottom material.

^{**} fastener K = [E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])] ^2

PSE W4 - MAIN SPAR, LOWER CAP OUTBOARD OF WING STATION 99.00 FOR SA227

Main Spar Lower Surface (Tapered Titanium Strap, outboard)

	Maneuver Maneuver					
Sprectrum	taxi	1-g	Stress/g	landing		
AVAC	-10000	7965	7304	4600		

5.000

0.800

ALUM Titanium

4.000

0.820

FASTENER PROPERTY

C1=

C2=

STEEL

1.667

0.860

		Thk	1 Row W	Area	Eff. Area	Full W/2
Bottom 1	Titanium	0.125	0.55	0.06875		1.1
Bottom 2	Titanium	0.125	0:55	0.06875		1.1
Top	Angle	0.125	0.72	0.09		1.44
Тор	Сар	0.125	0.72	0.09		1.44

APPLY LOAD

LY LOAD		
Stress @WS130	-10000	y to cl Area Ratio Material E
APPLY LOAD =	1.00 cap	5.440
APPLY LOAD =	0.98 angle, 97.7%	5.315
APPLY LOAD =	1.17 Titanium Strap, bot2	5.190 0.7638889 1.6
APPLY LOAD =	0.00 Titanium Strap, bot1	5.065 0.7638889 1.6

save keeping formula area for load_titanium strap 0 0

	NT ST		

Assuming Pla					marka amari ing uni senera		es communicate regions, de 1999 (1991)				*** # 114 HTTL - 4 L 44 A
K	K11	K22		Α	E	L.	D	thk-top	thk-bott (C1,(∞nt) C	2,(cont)
4.5.E+05	1	2	CAP	0.0900	1.0E+07	2.00					
9.0.E+05	2	3	CAP	0.0900	1.0E+07	1.00					
7.8.E+05	3	4	CAP	0.0900	1.0E+07	1.16					
9.0.E+05	4	5	CAP	0.0900	1.0E+07	1.00					
9.0.E+05	5	18	CAP	0.0900	1.0E+07	1.00					
4.5.E+05	5a	6	ANGLE	0.0900	1.0E+07	2.00					
9.0.E+05	6	7	ANGLE	0.0900	1.0E+07	1.00					
7.8.E+05	7	8	ANGLE	0.0900	1.0E+07	1.16					
9.0.E+05	8	9	ANGLE	0.0900	1.0E+07	1.00					
9.0.E+05	9	18	ANGLE	0.0900	1.0E+07	1.00					
5.5.E+05	9a	10	Strap 1	0.0688	1.6E+07	2.00					
1.1.E+06	10	11	Strap 1	0.0688	1.6E+07	1.00					
9.5.E+05	11	12	Strap 1	0.0688	1.6E+07	1.16					
1.1.E+06	12	13	Strap 1	0.0688	1.6E+07	1.00					
1.1.E+06	13	18	Strap 1	0.0688	1.6E+07	1.00					thickness
5.5.E+05	14	15	Strap 2	0.0347	1.6E+07	1.00					0.063
6.6.E+05	15	16	Strap 2	0.0481	1.6E+07	1.16					0.088
9.9.E+05	16	17	Strap 2	0.0619	1.6E+07	1.00		,			0.113
1.1.E+06	17	18	Strap 2	0.0688	1.6E+07	1.00					0.125
4.5.E+05	2	6	FSTN		1.0E+07		0.200	0.125	0.125	1.667	0.86 cap+angle
4.5.E+05	3	7	FSTN		1.0E+07		0.200	0.125	0.125	1.667	0.86 cap+angle
4.5.E+05	4	8	FSTN		1.0E+07		0.200	0.125	0.125	1.667	0.86 cap+angle
4.5.E+05	5	9	FSTN		1.0E+07		0.200	0.125	0.125	1.667	0.86 cap+angle
5.9.E+05	6	10	FSTN		1.3E+07		0.200	0.125	0.125	1.667	0.86 angle+strap
5.9.E+05	7	11	FSTN		1.3E+07		0.200	0.125	0.125	1.667	0.86 angle+strap
5.9.E+05	8	12	FSTN		1.3E+07		0.200	0.125	0.125	1.667	0.86 angle+strap
5.9.E+05	9	13	FSTN		1.3E+07		0.200	0.125	0.125	1.667	0.86 angle+strap
7.2.E+05	10	14	FSTN		1.6E+07		0.200	0.125	0.125	1.667	0.86 strap+strap
7.2.E+05	11	15	FSTN		1.6E+07		0.200	0.125	0.125	1.667	0.86 strap+strap
7.2.E+05	12	16	FSTN		1.6E+07		0.200	0.125	0.125	1.667	0.86 strap+strap
7.2.E+05	13	17	FSTN		1.6E+07		0.200	0.125	0.125	1.667	0.86 strap+strap
			**	cap, angle	strap K = [A	*E]/L					

^{**} fastener E = the E average of the top material and the bottom material.

** fastener K = E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])

PSE W4 - MAIN SPAR, LOWER CAP OUTBOARD OF WING STATION 99.00 FOR SA227

Main Spar Lower Surface (Tapered Titanium Strap, outboard)

FASTENER PROPERTY

	SIEEL	ALUM	litanium
C1=	1.667	5.000	4.000
C2=	0.860	0.800	0.820

		idilod to		
Sprectrum exec	taxi -10000	1-g 7965	Stress/g 7304	landing 4600
Scale Factor	0.74655	5946	5453	3434

Maneuver Maneuver

	Thk	1 Row W	Area	Eff. Area	Full W/2
Bottom 2 Titanium	0.125	0.55	0.06875		1.1
Top Angle	0.125	0.72			1.44
Тор Сар	0.125	0.72	0.09		1.44

APPLY LOAD

y to cl Area Ratio Material E
APPLY LOAD = 1.00 cap 5.440

APPLY LOAD = 0.98 angle, 97.7% 5.315 APPLY LOAD = 0.00 Titanium Strap, bot1 5.190 0.7638889 1.6 save keeping formula area for load_titanium strap

ELEMENT STIFFNESS

ne Sect	ions Remair	n Plane						makes no ser ember o	erren arresta e a succ	es manage accent
K11	K22		Α	E	L	D 1	thk-top	thk-bott C	1 (cont) C	2 (cont)
1	2	CAP	0.0900	1.0E+07	2.00					
2	3	CAP	0.0900	1.0E+07	1.00					
3	4	CAP	0.0900	1.0E+07	1.16					
4	5	CAP	0.0900	1.0E+07	1.00					
5	13	CAP	0.0900	1.0E+07	1.00					
5a	6	ANGLE	0.0900	1.0E+07	2.00					
6	7	ANGLE	0.0900	1.0E+07	1.00					
7	8	ANGLE	0.0900	1.0E+07	1.16					
8	9	ANGLE	0.0900	1.0E+07	1.00					
9	13	ANGLE	0.0900	1.0E+07	1.00					
9a	10	Strap	0.0347	1.6E+07						0.063
10	11	Strap	0.0481							0.088
11	12	Strap	0.0619	1.6E+07						0.113
12	13	Strap	0.0688	1.6E+07	1.00					0.125
2	6	FSTN								0.86 cap+angle
3	7	FSTN								0.86 cap+angle
4	8	FSTN								0.86 cap+angle
5	9	FSTN								0.86 cap+angle
6	9a	FSTN								0.86 angle+strap
7	10	FSTN								0.86 angle+strap
8	11	FSTN								0.86 angle+strap
9	12	FSTN				0.200	0.125	0.125	1,667	0.86 angle+strap
	K11 1 2 3 4 5 5a 6 7 8 99a 10 11 12 2 3 4 5 6 7 8 9 8 8 9 8 8 9 8 8 8 8 8 8 8 8 8 8 8	K11 K22 1 2 2 3 3 4 4 5 5 13 5a 6 6 7 7 8 8 9 9 13 9a 10 10 11 11 12 12 13 2 6 3 7 4 8 5 9 6 9a 7 10 8 11	1 2 CAP 2 3 CAP 3 CAP 4 5 CAP 5 13 CAP 5 13 CAP 5 6 ANGLE 6 7 ANGLE 7 8 ANGLE 8 9 13 ANGLE 9 10 Strap 10 11 Strap 11 12 Strap 11 12 Strap 12 13 Strap 2 6 FSTN 3 7 FSTN 4 8 FSTN 5 9 FSTN 6 9a FSTN 7 10 FSTN 8 11 FSTN	K11 K22 A 1 2 CAP 0.0900 2 3 CAP 0.0900 3 4 CAP 0.0900 4 5 CAP 0.0900 5 13 CAP 0.0900 6 7 ANGLE 0.0900 7 8 ANGLE 0.0900 9 13 ANGLE 0.0900 9a 10 Strap 0.0347 10 11 Strap 0.0481 11 12 Strap 0.0619 12 13 Strap 0.0688 2 6 FSTN 3 7 FSTN 4 8 FSTN 5 9 FSTN 7 10 FSTN 7 10 FSTN 8 11 FSTN	K11 K22 A E 1 2 CAP 0.0900 1.0E+07 2 3 CAP 0.0900 1.0E+07 3 4 CAP 0.0900 1.0E+07 4 5 CAP 0.0900 1.0E+07 5 13 CAP 0.0900 1.0E+07 6 7 ANGLE 0.0900 1.0E+07 7 8 ANGLE 0.0900 1.0E+07 8 9 ANGLE 0.0900 1.0E+07 9 13 ANGLE 0.0900 1.0E+07 9a 10 Strap 0.0347 1.6E+07 10 11 Strap 0.0481 1.6E+07 11 12 Strap 0.0688 1.6E+07 12 13 Strap 0.0688 1.6E+07 2 6 FSTN 1.0E+07 3 7 FSTN 1.0E+07 4 8 F	K11 K22 A E L 1 2 CAP 0.0900 1.0E+07 2.00 2 3 CAP 0.0900 1.0E+07 1.00 3 4 CAP 0.0900 1.0E+07 1.16 4 5 CAP 0.0900 1.0E+07 1.00 5 13 CAP 0.0900 1.0E+07 2.00 6 7 ANGLE 0.0900 1.0E+07 1.00 7 8 ANGLE 0.0900 1.0E+07 1.00 9 13 ANGLE 0.0900 1.0E+07 1.00 9a 10 Strap 0.0347 1.6E+07 1.00 10 11 Strap 0.0481 1.6E+07 1.00 12 13 Strap 0.0619 1.6E+07 1.00 12 13 Strap 0.0688 1.6E+07 1.00 2 6 FSTN 1.0E+07	K11 K22 A E L D 1 2 CAP 0.0900 1.0E+07 2.00 2 3 CAP 0.0900 1.0E+07 1.00 3 4 CAP 0.0900 1.0E+07 1.00 5 13 CAP 0.0900 1.0E+07 1.00 5a 6 ANGLE 0.0900 1.0E+07 2.00 6 7 ANGLE 0.0900 1.0E+07 1.00 7 8 ANGLE 0.0900 1.0E+07 1.00 9 13 ANGLE 0.0900 1.0E+07 1.00 9a 10 Strap 0.0347 1.6E+07 1.00 10 11 Strap 0.0481 1.6E+07 1.00 12 13 Strap 0.0619 1.6E+07 1.00 12 13 Strap 0.0688 1.6E+07 1.00 2 6 FSTN 1.0E+07 <td>K11 K22 A E L D thk-top 1 2 CAP 0.0900 1.0E+07 2.00 2.00 2.00 3.0E+07 1.00 3.0E+07 1.00 3.0E+07 1.16 4.0E+07 1.00 3.0E+07 1.00 4.0E+07 1.00 5.0E+07 1.00</td> <td>K11 K22 A E L D thk-top thk-bott C 1 2 CAP 0.0900 1.0E+07 2.00 2 3 CAP 0.0900 1.0E+07 1.00 3 4 CAP 0.0900 1.0E+07 1.00 5 13 CAP 0.0900 1.0E+07 1.00 5a 6 ANGLE 0.0900 1.0E+07 1.00 6 7 ANGLE 0.0900 1.0E+07 1.00 7 8 ANGLE 0.0900 1.0E+07 1.00 9 13 ANGLE 0.0900 1.0E+07 1.00 9a 10 Strap 0.0347 1.6E+07 1.00 10 11 Strap 0.0481 1.6E+07 1.00 12 13 Strap 0.0688 1.6E+07 1.00 12 13 Strap 0.0688 1.6E+07 0.200 0.125</td> <td>K11 K22 A E L D thk-top thk-bott C1 (cont) C 1 2 CAP 0.0900 1.0E+07 2.00 2 3 CAP 0.0900 1.0E+07 1.16 4 5 CAP 0.0900 1.0E+07 1.00 5 13 CAP 0.0900 1.0E+07 1.00 5a 6 ANGLE 0.0900 1.0E+07 1.00 7 8 ANGLE 0.0900 1.0E+07 1.00 8 9 ANGLE 0.0900 1.0E+07 1.00 9a 13 ANGLE 0.0900 1.0E+07 1.00 9a 10 Strap 0.0347 1.6E+07 1.00 10 11 Strap 0.0481 1.6E+07 1.00 12 13 Strap 0.0688 1.6E+07 1.00 12 6 FSTN 1.0E+07 0.200 0.125</td>	K11 K22 A E L D thk-top 1 2 CAP 0.0900 1.0E+07 2.00 2.00 2.00 3.0E+07 1.00 3.0E+07 1.00 3.0E+07 1.16 4.0E+07 1.00 3.0E+07 1.00 4.0E+07 1.00 5.0E+07 1.00	K11 K22 A E L D thk-top thk-bott C 1 2 CAP 0.0900 1.0E+07 2.00 2 3 CAP 0.0900 1.0E+07 1.00 3 4 CAP 0.0900 1.0E+07 1.00 5 13 CAP 0.0900 1.0E+07 1.00 5a 6 ANGLE 0.0900 1.0E+07 1.00 6 7 ANGLE 0.0900 1.0E+07 1.00 7 8 ANGLE 0.0900 1.0E+07 1.00 9 13 ANGLE 0.0900 1.0E+07 1.00 9a 10 Strap 0.0347 1.6E+07 1.00 10 11 Strap 0.0481 1.6E+07 1.00 12 13 Strap 0.0688 1.6E+07 1.00 12 13 Strap 0.0688 1.6E+07 0.200 0.125	K11 K22 A E L D thk-top thk-bott C1 (cont) C 1 2 CAP 0.0900 1.0E+07 2.00 2 3 CAP 0.0900 1.0E+07 1.16 4 5 CAP 0.0900 1.0E+07 1.00 5 13 CAP 0.0900 1.0E+07 1.00 5a 6 ANGLE 0.0900 1.0E+07 1.00 7 8 ANGLE 0.0900 1.0E+07 1.00 8 9 ANGLE 0.0900 1.0E+07 1.00 9a 13 ANGLE 0.0900 1.0E+07 1.00 9a 10 Strap 0.0347 1.6E+07 1.00 10 11 Strap 0.0481 1.6E+07 1.00 12 13 Strap 0.0688 1.6E+07 1.00 12 6 FSTN 1.0E+07 0.200 0.125

^{**} cap, angle, strap K = [A * E] / L

^{**} fastener E = the E average of the top material and the bottom material.

^{**} fastener K = E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])

A-5 PSE W5 Stiffness Models

PSE W-5 - WING SKIN SPLICE AT WS99, SA227 Inboard

Width (into page) = 0.8

APPLIED LOAD

APPLIED LOAD =

1.0

ļ	STEEL	ALUM 1	Titanium 💮
C1=	1.667	5.000	4.000
C2=	0.860	0.800	0.820

FASTENER PROPERTY

	Maneuver							
Spectrum commuter cargo executive	taxi 0	1-g 7523 7449 7965	Stress/g 6898 6830 7304	landing 4600				
Taxi Spectrum Landing Spectr Maneuver = Ta	um = Gage 23,	Table D-8		ion				

ELEMENT STIFFNESS

,						
Assuming Pla	ne Se	ctions Remain	Plane	# 100 M 100 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
K	K11	K22		Α	THK	E
9.1.E+05	1	7	пb	0.0568	0.071	1.0E+07
8.1.E+05	2	3	skin	0.0504	0.063	1.0E+07
8.1.E+05	3	4	skin	0.0504	0.063	1.0E+07
1.4.E+06	5	6	shim+ang	0.0904	0.113	1.0E+07
1.4.E+06	6	7	shim+ang	0.0904	0.113	1.0E+07
1.8.E+05	1	.4	FSTN	rib-skin		1.0E+07
1.9.E+05	3	5	FSTN	skin-shim		1.0E+07
1.9.E+05	4	6	FSTN	skin-shim		1.0E+07

	D	thk-top 1	thk-bott C1	(cont) C2	(cont)
0.63					
0.63					
0.63					
0.63					
0.63					
	0.156	0.071	0.063	5	0.8
	0.156	0.063	0.113	5	8.0
	0.156	0.063	0.113	5	0.8

STIFFNESS MATRIX

O 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·							
Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	App Load	l	Displacement
1,1E+06	0.0E+00	0	-1.8.E+05	0	0	-9.1.E+05	Node 1	0	3.4E-07
0.0E+00	8.1E+05	-8.1E+05		0.0.E+00	0	0	Node 2	1	4.0E-06
	-8.1E+05	1.8E+06	-8.1E+05	-1.9.E+05	0.0.E+00	0	Node 3	0	2.8E-06
-1.8.E+05	0	-8.1E+05	1.2E+06	0.0E+00	-1.9.E+05	0.0.E+00	Node 4	0	2.0E-06
0	0.0.E+00	-1.9.E+05	0.0E+00	1.6E+06	-1.4E+06	0	Node 5	0	7.5E-07
0	0	0.0.E+00	-1.9.E+05	-1.4E+06	3.1E+06	-1.4E+06	Node 6	0	4.8E-07
-9.1.E+05	0	0	0.0.E+00	0 2	-1.4E+06	2.4E+06	Node 7	0	0.0E+00
Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7			
INVERSE	BEATOIN								
		kirik ilikili. Nodo 2		Nodo 5	Nodo 6	Node 7			

	MODE !	Node o	Mode 5	NOUE 4	Mode 2	Node Z	Node 1
Node 1		7.3E-08	1.0E-07	3.9E-07	3.4E-07	3.4E-07	9.8E-07
Node 2		4.8E-07	7.5E-07	2.0E-06	2.8E-06	4.0E-06	3.4E-07
Node 3		4.8E-07	7.5E-07	2.0E-06	2.8E-06	2.8E-06	3.4E-07
Node 4		4.5E-07	6.3E-07	2.4E-06	2.0E-06	2.0E-06	3.9E-07
Node 5		6.3E-07	1.3E-06	6.3E-07	7.5E-07	7.5E-07	1.0E-07
Node 6		6.5E-07	6.3E-07	4.5E-07	4.8E-07	4.8E-07	7.3E-08
Node 7							

^{**} cap, angle, strap K = [A * E] / L

** fastener E = avg of top and bottom material.

** fastener K= E*D/ (C1+C2 * [D/ThkTop+D/ThkBott])]^2

A-5 PSE W5 Stiffness Models (Continued)

RESULTS

PSE W-5 - WING SKIN SPLICE AT WS99, SA227 Outboard

FASTENER PROPERTY

	STEEL	ALUM	Titanium
C1=	1.667	5.000	4.000
C2=	0.860	0.800	0.820
		Manau	n.or

Sprectrum	taxi		1-g	Stress/g	landing
commuter	1	0	7523	6898	4600
cargo			7449	6830	
executive			7965	7304	

APPLY LOAD, LANDING

Assume Splice Width

0.026 width .800, thk = .032

Stress APPLY LOAD = 4600 same as PSE W-3 118 area of outboard skin Taxi Spectrum = compression

Landing Spectrum = Gage 23, Table D-8, no correction Maneuver = Table E-11, Main Spar Data Used

ELEMENT STIFFNESS

Assuming Pla				****	ETTA COLLUMN ASSITTMENT TOWARD		NO DEPOSIT DESCRIPTION DE LA CONTRACTION DE LA C		nerwania wasani wasani	4. 201. 0.1. 0.1. 1. Por NAME \$ \$500 Y *****	TMT-1000 DK 11 TTTT-157-100 000000000	000°C175-017-0-711111111
K	K11	K22		Α	THK	SE L	Ĺ	D	thk-top	thk-bott C1	(cont) C2	(cont)
1.3.E+05	1	2	SKIN 032	0.0256	0.032	1.0E+07	2.00					
4.3.E+05	2	3	SKIN 032	0.0256	0.032	1.0E+07	0.60					
4.3.E+05	3	4	SKIN 032	0.0256	0.032	1.0E+07	0.60					
6.4.E+05	4	9	SKIN 032	0.0256	0.032	1.0E+07	0.40					
4.3.E+05	5	6	shim 032	0.0256	0.032	1.0E+07	0.60	** cap, angle	, strap K =	[A*E]/L		
4.3.E+05	6	7	shim 032	0.0256	0.032	1.0E+07	0.60	** fastener E	= avg of to	p and bottom	material.	
6.4.E+05	7	. 9	shim 032	0.0256	0.032	1.0E+07	0.40	** fastener K	= E*D/ (C1+	+C2 * [D/Thk]	Fop+D/Thkl	Bott])]^:
1.0.E+06	8	9	shim 050	0.0400	0.050	1.0E+07	0.40					
1.1.E+05	2	5	FSTN	Skin + shim (032	1.0E+07		0.130	0.032	0.032	5	0.8
1.1.E+05	3	6	FSTN	Skin + shim (32	1.0E+07		0.130	0.032	0.032	5	0.8
1.2.E+05	4	7	FSTN	Skin + shim (32	1.0E+07		0.162	0.032	0.032	5	8.0
1.4.E+05	7	8	FSTN	Shim +shim		1.0E+07		0.162	0.032	0.050	5	0.8

A-5 PSE W5 Stiffness Models (Continued)

	ALL LICENSES SAME AND A	A SEC. OF A SEC. OF SEC.										
STIFFNE	SS MATE	RIX										
Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9		App Load	Displacemen	t
1.3E+05	-1.3E+05	0	0	0	0	0	0	0	Node 1	118	1.4E-03	
-1.3E+05	6.7E+05	-4.3E+05	0	-1.1.E+05	0	0	0	0	Node 2	0	4.9E-04	
0	-4.3E+05	9.7E+05	-4.3E+05	0	-1.1.E+05	0	. 0	0	Node 3	0	2.8E-04	
o Ô	0	-4.3E+05	1.2E+06	0.0E+00	0	-1.2.E+05	0	-6.4.E+05	Node 4	0	1.1E-04	
0	-1.1.E+05	0	0.0E+00	5.4E+05	-4,3E+05	0	0	0	Node 5	0	2.3E-04	
0	0	-1.1.E+05	0	-4.3E+05	9.7E+05	-4.3E+05	. 0	0	Node 6	0	1.6E-04	
0	0	0	-1.2.E+05	0	-4.3E+05	1.3E+06	-1.4E+05	-6.4.E+05	Node 7	0	6.3E-05	
0	0	0	0	0	0	-1.4E+05	1.1E+06	-1.0E+06	Node 8	0	7.8E-06	
0	0	0	-6.4.E+05	0	0	-6.4.E+05	-1.0E+06	2.3E+06	Node 9	0	0.0E+00	
Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9				
INVERSE	MATRI)	(
Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9				
1.2E-05	4.2E-06	2.4E-06	9.2E-07	2.0E-06	1.4E-06	5.4E-07	6.6E-08		Node 1			
4.2E-06	4.2E-06	2.4E-06	9.2E-07	2.0E-06	1.4E-06	5.4E-07	6.6E-08		Node 2			
2.4E-06	2.4E-06	2.7E-06	1.0E-06	1.4E-06	1.1E-06	4.7E-07	5.7E-08		Node 3			
9.2E-07	9.2E-07	1.0E-06	1.2E-06	5.9E-07	5.0E-07	2.8E-07	3.4E-08		Node 4			
2.0E-06	2.0E-06	1.4E-06	5.9E-07	4.1E-06	2.3E-06	8.2E-07	1.0E-07		Node 5			
1.4E-06	1.4E-06	1.1E-06	5.0E-07	2.3E-06	2.6E-06	8.9E-07	1.1E-07		Node 6			
5.4E-07	5.4E-07	4.7E-07	2.8E-07	8.2E-07	8.9E-07	1.1E-06	1.3E-07		Node 7			
6.6E-08	6.6E-08	5.7E-08	3.4E-08	1.0E-07	1.1E-07	1.3E-07	8.9E-07		Node 8			
									Node 9			
RESULT	MANEU	VER, L	ANDING		erter har bestept Little et little		load = Stiff	ness * (Displ	acement N	lode #1 - D	isplacement I	Node #2)
Forces in p								Stiffness, E	Node #	Node #	Load Betwe	en Nodes
	<==== inb	oard	STA99	out bo	oard ====>			1.3E+05	1	2	SKIN 032	118
		9	4	3	. 2	1		4.3E+05	2	3	SKIN 032	88
2	7-31321 sk	in (0.032)	69	75	88	118	:	4.3E+05	3	4	SKIN 032	75
		tener loads		14		==>>	> load	6.4E+05	4	9	SKIN 032	69
		9	7	6	5	l		4.3E+05	5	6	shim 032	29
27-31	130-73 shi	im (0.032)	41	43	29			4.3E+05	6	7	shim 032	43
		stener loads	8					6.4E+05	7	9	shim 032	41
		9	8					1.0E+06	8	9	shim 050	8
27-3	31130-71 s	him (.050)	8					1.1E+05	2	5	FSTN	29
		. ,						1.1E+05	3	6	FSTN	14
								1.2E+05	4	7	FSTN	6
			•					1.4E+05	7	8	FSTN	8

A-6 PSE W6 Stiffness Model

PSE W6 - SA227 TIP EXTENSION AT END OF OUTBOARD FITTING @ 16,500 lbs Main Spar Lower Surface,

 FASTENER PROPERTY

 TOP
 STEEL
 ALUM Titanium

 FSTNER
 C1=
 1.667
 5.000
 4.000

 FSTNER
 C2=
 0.860
 0.800
 0.820

 BOTTOM
 TOTAL TITALITY
 0.800
 0.820

APPLIED LOAD

APPLIED LOAD =

1.0

ELEMENT	STIFFNE	SS	ump personal for t				
Assuming Plan	See a		ine				
κ	K11	K22		Α	E		D thk-top thk-bott C1,(cont) C2,(cont)
672000	1	2	Top Angle	0.0504	1.0E+07	0.75	
672000	2	3	Top Angle	0.0504	1.0E+07	0.75	
672000	3	4	Top Angle	0.0504	1.0E+07	0.75	
672000	4	5	Top Angle	0.0504	1.0E+07	0.75	
672000	5	6	Top Angle	0.0504	1.0E+07	0.75	
672000	6	7	Top Angle	0.0504	1.0E+07	0.75	
672000	7	32	Top Angle	0.0504	1.0E+07	0.75	
9361300	8	9	Fitting	0.238	3.0E+07	0.75	
9361300	9	10	Fitting	0.238	3.0E+07	0.75	
9361300	10	11	Fitting	0.238	3.0E+07	0.75	
18722700	11	12	Fitting	0.238	3.0E+07	0.375	
9361300	12	13	Fitting	0.119	3.0E+07	0.375	
4680700	13	14	Fitting	0.119	3.0E+07	0.75	
757300	15	16	Top Strap	0.0568	1.0E+07	0.75	
757300	16	17	Top Strap	0.0568	1.0E+07	0.75	
757300	17	18	Top Strap	0.0568	1.0E+07	0.75	
757300	18	32	Top Strap	0.0568	1.0E+07	0.75	
1586700	19	20	Mid Strap	0.119	1.0E+07	0.75	·
1586700	20	32	Mid Strap	0.119	1.0E+07	0.75	
757300	21	22	Bot Strap	0.0568	1.0E+07	0.75	
757300	22	23	Bot Strap	0.0568	1.0E+07	0.75	
757300	23	24	Bot Strap	0.0568	1.0E+07	0.75	
757300	24	32	Bot Strap	0.0568	1.0E+07	0.75	
1205300	25	26	Bot Ang	0.0904	1.0E+07	0.75	
1205300	26	27	Bot Ang	0.0904	1.0E+07	0.75	
1205300	27	28	Bot Ang	0.0904	1.0E+07	0.75	
1205300	28	29	Bot Ang	0:0904	1.0E+07	0.75	
1205300	29	30	Bot Ang	0.0904	1.0E+07	0.75	
1205300	30	31	Bot Ang	0.0904	1.0E+07	0.75	

A-6 PSE W6 Stiffness Model (Continued)

1205300	31	32	Bot Ang	0.0904	1.0E+07	0.75		thk-top 1	hk-bott		
784400	1	9	FSTN		2.0E+07		0.19	0.063	0.28	1.667	0.86
784400	2	10	FSTN		2.0E+07		0.19	0.063	0.28	1.667	0.86
784400	3	11	FSTN		2.0E+07		0.19	0.063	0.28	1.667	0.86
289500	4	15	FSTN		1.0E+07		0.19	0.063	0.071	1.667	0.86
289500	5	16	FSTN		1.0E+07		0.19	0.063	0.071	1.667	0.86
289500	6	17	FSTN		1.0E+07		0.19	0.063	0.071	1.667	0.86
289500	7	18	FSTN		1.0E+07		0.19	0.063	0.071	1.667	0.86
1028000	9	25	FSTN		2.0E+07		0.19	0.28	0.113	1.667	0.86
1028000	10	26	FSTN		2.0E+07		0.19	0.28	0.113	1.667	0.86
1028000	11	27	FSTN		2.0E+07		0.19	0.28	0.113	1.667	0.86
739900	. 13	21	FSTN		2.0E+07		0.19	0.14	0.071	1.667	0.86
739900	14	22	FSTN		2.0E+07		0.19	0.14	0.071	1.667	0.86
739900	15	13	FSTN		2.0E+07		0.19	0.071	0.14	1.667	0.86
739900	16	14	FSTN		2.0E+07		0.19	0.071	0.14	1.667	0.86
370000	17	19	FSTN		1.0E+07		0.19	0.071	0.14	1.667	0.86
370000	18	20	FSTN		1.0E+07		0.19	0.071	0.14	1.667	0.86
370000	19	23	FSTN		1.0E+07		0.19	0.14	0.071	1.667	0.86
370000	20	24	FSTN		1.0E+07		0.19	0.14	0.071	1.667	0.86
350900	21	28	FSTN		1.0E+07		0.19	0.071	0.113	1.667	0.86
350900	22	29	FSTN		1.0E+07		0.19	0.071	0.113	1.667	0.86
350900	23	30	FSTN		1.0E+07		0.19	0.071	0.113	1.667	0.86
350900	24	31	FSTN		1.0E+07		0.19	0.071	0.113	1.667	0.86

32 7		0.17	0.15	to the second of	أممم	0.05
0.16	0.17		0.15	0.14		
0.01		-0.02	-0.01	-0.06	-0.03	-0.05
32 18	17_	16	15			e days
0.17	0.19	0.27	0.12			
0.03		-0.18	-0.12			
32 20	19	14	13	12 11	10	9 8
0.22			0.36	0.61 0.61	0.77	0.87 1.00
-0.03	-0.08	0.18	0.13			
32 24	23_	22	21		4	
0.17	0.19	0.27	0.12			
-0.01		0.03	0.01	0.10	0.06	0.08
32 31	30	29	28	27	26	25

^{**} cap, angle, strap K = [A * E] / L

** fastener E = the E average of the top material and the bottom material.

** fastener K = [E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])] ^2

A-7 PSE W7 Stiffness Model

ELEMENT STIFFNESS

Assuming Plan	e Section					,					
K	K11	K22		À	E E	L	D	thk-top	thk-bott C1	(cont) C2	(cont),
990500	1	2	stringer	0.104	1.0E+07	1.05					
990500	2	3	stringer	0.104	1.0E+07	1.05					
990500	3	4	stringer	0.104	1.0E+07	1.05					
990500	4	, 5	stringer	0.104	1.0E+07	1.05					
990500	5	10	stringer	0.104	1.0E+07	1.05					
1076200	6	7	angle	0.113	1.0E+07	1.05					
1076200	7	8	angle	0.113	1.0E+07	1.05					
1076200	8	9	angle	0.113	1.0E+07	1.05					
1076200	9	10	angle	0.113	1.0E+07	1.05					
195500	2	6	FSTN		1.0E+07		0.16	0.125	0.063	5	8.0
195500	3	7	FSTN		1.0E+07		0.16	0.125	0.063	5	8.0
195500	4	8	FSTN		1.0E+07		0.16	0.125	0.063	5	8.0
195500	5	9	FSTN		1.0E+07		0.16	0.125	0.063	5	8.0

^{**} stringer,angle K = [A * E] / L

STIFFNES	S MATRIX										
Node 1	Node 2	Node 3	Node 4	Node 5	Node 6 I	Node 7 1	Vode 8 1	Node 9	Node 10 Ap	p Load Node [Displacement
9.9E+05	-9.9E+05	0	0	0	.0	0	0	0	0	1 Node 1	3.568E-06
-9.9E+05	2.2E+06	-9.9E+05	0	0	-2.0E+05	0	0	0	0	0 Node 2	2.558E-06
0	-9.9E+05	2.2E+06	-9.9E+05	0	0	-2.0E+05	0	0	0	0 Node 3	1.785E-06
0	0	-9.9E+05	2.2E+06	-9.9E+05	0	0	-2.0E+05	. 0	0	0 Node 4	1.138E-06
0	0	0	-9.9E+05	2.2E+06	0	0	0	-2.0E+05	-9.9E+05	0 Node 5	5.554E-07
0	-2.0E+05	0	0	0	1.3E+06	-1.1E+06	. 0	0	0	0 Node 6	1.362E-06
0	0	-2.0E+05	0	0	-1.1E+06	2.3E+06	-1.1E+06	0	0	0 Node 7	1.145E-06
0	0	0	-2.0E+05	0	0 -	-1.1E+06	2.3E+06	-1.1E+06	0	0 Node 8	8.110E-07
0	0	0	0	-2.0E+05	0	0	-1.1E+06	2.3E+06	-1.1E+06	0 Node 9	4.180E-07
0	0	0	0	-9.9E+05	0	0	0	-1.1E+06	2.1E+06	0 Node 10	0.000E+00

RESULTS

Stiffness	Node #	Node #		Load Between Nodes	400000000000000000000000000000000000000	. I A Quantum manager anga				
9.905E+05	1	2	stringer	1.00	DISPLACE	MENT				
9.905E+05	2	3	stringer	0.77	3.6E-06	2.6E-06	1.8E-06	1.1E-06	5.6E-07	0.0E+00
9.905E+05	3	4	stringer	0.64	1	2	3	4	. 5	10

^{**} fastener K = [E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])] ^2

A-7 PSE W7 Stiffness Model (Continued)

Case for stringer broken at last fastener

see right (27-31058) angle 2024-T3 ext 2014-T6511 0.104 (27-31330-79/80) stringer 0.03 2024-T3 skin

0.800 C2= 0.860 BB 5N Rivets

STEEL

1.667

FASTENER PROPERTIES

C1=

actual angle area btwn fasteners 1st-2nd 0.203 2nd-3rd 0.214 3rd-4th 0.225

ALUM Titanium

4.000

0.820

5.000

0.236

effective area (plate only)

angle 0.113

4th-5th

APPLIED LOAD

APPLIED LOAD =

1.0

ELEMENT STIFFNESS

Assuming Plan	e Sections F	Remain Pla	ne					engemografische Lautegemogr	ch, mournous was times as	garrangang w <u>ara</u>	September 1979
κ	K11	K22		Α	E	j Latin, il	D	thk-top t	hk-bott C1,	(cont) C2	(cont)
285700	1	2	stringer	0.030	1.0E+07	1.05					
285700	2	3	stringer	0.03	1.0E+07	1.05					
285700	3	4	stringer	0.03	1.0E+07	1.05					
285700	4	5	stringer	0.03	1.0E+07	1.05					
285700	5	10	stringer	0.03	1.0E+07	1.05					
1076200	6	7	angle	0.113	1.0E+07	1.05					
1076200	7	8	angle	0.113	1.0E+07	1.05					
1076200	8	9	angle	0.113	1.0E+07	1.05					
1076200	9	10	angle	0.113	1.0E+07	1.05					
157600	2	6	FSTN		1.0E+07		0.16	0.125	0.032	5	0.8
157600	3	7	FSTN		1.0E+07		0.16	0.125	0.032	5	8.0
157600	4	8	FSTN		1.0E+07		0.16	0,125	0.032	5	8.0
157600	5	9	FSTN		1.0E+07		0.16	0.125	0.032	5	0.8
					stringer,angle K						
				** f	astener E = av	erage of the t	top material	E and the bo	ttom material E		

** fastener K = [E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])]

STIFFNESS	and the second second	A Committee of the committee of the	Node 4	Node 5	Node 6	Node 7	Vode 8	Node 9	Vode 10 App Load	Node [Displacemen
2.9E+05	-2.9E+05	0	0	0	0	0	0	0	0	1 Node 1	8.637E-06
-2.9E+05	7.3E+05	-2.9E+05	0	0	-1.6E+05	0	0	0	0	0 Node 2	5.137E-06
0	-2.9E+05	7.3E+05	-2.9E+05	0	0	-1.6E+05	0	0	0	0 Node 3	3.173E-06
ō	0	-2.9E+05	7.3E+05	-2.9E+05	0	0	-1.6E+05	0	0	0 Node 4	1.885E-06
Ō	0	0	-2.9E+05	7.3E+05	0	0	0	-1.6E+05	-2.9E+05	0 Node 5	8.887E-07
Ō	-1.6E+05	0	0	0	1.2E+06	-1.1E+06	0	0	0	0 Node 6	2.353E-06
ō	0	-1.6E+05	0	0	-1.1E+06	2.3E+06	-1.1E+06	0	0	0 Node 7	1.945E-06
Ō	0	0	-1.6E+05	0	0	-1.1E+06	2.3E+06	-1.1E+06	0	0 Node 8	1.358E-06
Ō	Ö	0	0	-1.6E+05	0	0	-1.1E+06	2.3E+06	-1.1E+06	0 Node 9	6.933E-07
0	0	0	0	-2.9E+05	0	0	0	-1.1E+06	1.4E+06	0 Node 10	0.000E+00
RESULTS		alson in the									

A-8 PSE W8 Stiffness Model

PSE W8 - SA226/227 Chordwise skin splice at WS 173.944 lower surface

^{**} fastener E = the E average of the top material and the bottom material.

^{**} fastener K = [E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])] ^2

STIFFNES			Node 4	Node 5	Nodo 6	Node 7	Node 8	Node 9	Node 10	App Load		Displace
Control of the community	-2.74E+05	0	0	0	0.00E+00	Noue / 0	O DOMESTIC	0	0		Node 1	9.18E-06
-2.74E+05	6.51E+05	-2.74E+05	Ö	ō	0.002.00	-1.03E+05	Ö	ō	0		Node 2	9.18E-06
0	-2.74E+05	6.51E+05	-2.74E+05	ō	ŏ	0	-1.03E+05	ō	ő		Node 3	7.30E-06
0	0	-2.74E+05	5.48E+05	0	0	ō	0	0.00E+00	-2.74E+05		Node 4	3.65E-06
0	0	0	0	2.19E+05	-2.19E+05	0	0	0	0	1	Node 5	2.33E-05
0.00E+00	0	0	0	-2.19E+05	4.38E+05	-2.19E+05	0	0	0	(Node 6	1.88E-05
0	-1.03E+05	0	0	0	-2.19E+05	5.42E+05	-2.19E+05	0	0	(Node 7	1.42E-05
0	0	-1.03E+05	0	0	0	-2.19E+05	5.42E+05	-2.19E+05	0	(Node 8	1.20E-05
0	0	0	0.00E+00	0	0	0	-2.19E+05	2.19E+05	0	(Node 9	1.20E-05
0	0	0	-2.74E+05	0	0	0	0	0	2.74E+05	(Node 10	0.00E+00
INVERSE I	MATRIX											
1.4E-05	1.0E-05	7.3E-06	3.6E-06	9.2E-06	9.2E-06	9.2E-06	8.6E-06	8.6E-06				
1.0E-05	1.0E-05	7.3E-06	3.6E-06	9.2E-06	9.2E-06	9.2E-06	8.6E-06	8.6E-06				
7.3E-06	7.3E-06	7.3E-06	3.6E-06	7.3E-06	7.3E-06	7.3E-06	7.3E-06	7.3E-06				
3.6E-06	3.6E-06	3.6E-06	3.6E-06	3.6E-06	3.6E-06	3.6E-06	3.6E-06	3.6E-06				
9.2E-06	9.2E-06	7.3E-06	3.6E-06	2.3E-05	1.9E-05	1.4E-05	1.2E-05	1.2E-05				
9.2E-06	9.2E-06	7.3E-06	3.6E-06	1.9E-05	1.9E-05	1.4E-05	1.2E-05	1.2E-05				
9.2E-06	9.2E-06	7.3E-06	3.6E-06	1.4E-05	1.4E-05	1.4E-05	1.2E-05	1.2E-05				
8.6E-06	8.6E-06	7.3E-06	3.6E-06	1.2E-05	1.2E-05	1.2E-05	1.4E-05	1.4E-05				
8.6E-06	8.6E-06	7.3E-06	3.6E-06	1.2E-05	1.2E-05	1.2E-05	1.4E-05	1.8E-05				
RESULTS						• .						
												LOAD Between
								Stiffness	node#	nodo#		Nodes
				•				2.74E+05	node#	node# 2	TOP	0.00
10	4	3	2	1				2.74E+05	2	3	TOP	0.50
	1.00	1.00	0.52	0.00		load betweer	nodes	2.74E+05	. 3	4	TOP	1.00
F.	0.00	-0.48	-0.52	0.00		load between		2.74E+05	. 3	10	TOP	1.00
ļ	0.00	0.00	0.48	1:00	12:10:20:20:20:20:20:20:20:20	load in laster		2.19E+05	5	6	BOTT	1.00

A-9 PSE W10 Stiffness Model

PSE W-10 - WING SKIN SPLICE AT STA 27, SA226

FASTENER PROPERTY

STEEL ALUM Titanium
C1= 1.667 5.000 4.000
C2= 0.860 0.800 0.820

Maneuver

Sprectrum taxi 1-g Stress/g tanding commuter 4615 4615 6769 3300

APPLY LOAD, LANDING

Assume Splice Width

0.04 thk 0.064* width .625 (rivet spacing)

Stress 3300 same as PSE W-3

APPLY LOAD = 132 area of outboard skin

Taxi spectrum = same as 1-g stress Landing spectrum = apply sa227 gage 21 Maneuver spectrum = Table E-12

ELEMENT STIFFNESS

Assuming Pla	ane Secti	ons Rem	ain Plane	to temporary management				more, sign and a	and the second	Acres de la companya	and the second second	shipping et
K	K11	K22	News 1978	Α	THK	E	i L	ď	thk-top t	hk-bott C1	(cont) C2	(cont)
1.0.E+06	1	2	SKIN 050	0.1000	0.100	1.0E+07	1.00					
5.0.E+05	2	3	SKIN 050	0.0240	0.050	1.0E+07		** cap, angle				
6.4.E+05	4	5	SKIN 064	0.0307	0.064	1.0E+07		** fastener E	_	•		
6.4.E+05	5	6	SKIN 064	0.0474	0.064	1.0E+07	0.74	** fastener K	(= E*D/ (C	1+C2 * [D/I	hkTop+D/1	[hkBott])]^2
6.4.E+05	6	10	SKIN 064	0.1280	0.064	1.0E+07	2.00					
2.1.E+06	7	8	STRAP	0.0341	0.071	3.0E+07	0.48					
2.1.E+06	8	9	STRAP	0.0525	0.071	3.0E+07	0.74					
2.1,E+05	2	4	FSTN	100 Skin + s	strap	1.0E+07		0.192	0.1	0.064	5	8.0
1.8.E+05	3	5	FSTN	050 Skin + 0	064Skin	1.0E+07		0.192	0.05	0.064	5	0.8
3.0.E+05	4	7	FSTN	064 Skin + 5	Strap	1.5E+07		0.192	0.064	0.071	5	0.8
3.0.E+05	5	8	FSTN	064 Skin + 3	Strap	1.5E+07		0.192	0.064	0.071	5	0.8
3.0.E+05	6	9	FSTN	064 Skin + 5	Strap	1.5E+07		0.192	0.064	0.071	5	0.8

STIFFNE	SS MAT	RIX							STIFFNI	ESS MA	TRIX	
Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9	Node 10		App Load	Displacement
1.0E+06	-1.0E+06	0	0	0	0	0	0	0	0	Node 1	132	9.2E-04
-1.0E+06	1.7E+06	-5.0E+05	-2.1E+05	0	0	0	0	0	0	Node 2	0	7.8E-04
0	-5.0E+05	6.8E+05	0.0E+00	-1.8E+05	0	0	0	0	0	Node 3	0	6.7E-04
0	-2.1E+05	0.0E+00	1.2E+06	-6.4E+05	0	-3.0E+05	. 0	0	. 0	Node 4	0	4.4E-04
0	. 0	-1.8E+05	-6.4E+05	1.8E+06	-6.4E+05	0	-3.0E+05	0	0	Node 5	0	3.6E-04
0	0	0	0	-6.4E+05	1.6E+06	0.0E+00	0	-3.0E+05	-6.4E+05	Node 6	0	2.1E-04
0	0	0	-3.0E+05	0	0.0E+00	2.4E+06	-2.1E+06	0	0	Node 7	0	3.5E-04
0	0	. 0	0	-3.0E+05	0	-2.1E+06	4.6E+06	-2.1E+06	0	Node 8	0	3.3E-04
0	0	0	0	0	-3.0E+05	0	-2.1E+06	2.4E+06	0.0E+00	Node 9	0	3.2E-04
0	0	0	0	0	-6.4E+05	0	0	0.0E+00	6.4E+05	Node 10	0	-

RESULT, LANDING

Forces in pounds STA27 1.0E+06 1 5.0E+05 <==== inboard out board ====> 2 6.4E+05 Skin 050/100 6.4E+05 LOAD <<= 132 6.4E+05 2.1E+06 2.1E+06 Skin 064 8 132 2.1E+05 3 1.8E+05 Strap, steel 3.0E+05 4 3.0E+05 5

load = Stiffness * (Dis	splacement	: Node #1 -	- Displacement Node #2)
Stiffness,	Node #	Node #	Load Between Nodes

SKIN 050 132 **SKIN 050** 57 3 **SKIN 064** 49 **SKIN 064** 98 **SKIN 064** 132 10 **STRAP** 27 8 STRAP 34 9 **FSTN** 75 **FSTN** 57 7 **FSTN** 27 8 **FSTN** 7 **FSTN** -34 3.0E+05

A-10 PSE W11 Stress Concentration at Fillet - Roark & NASBEM

Roark 5th Ed., Table 37, Case 5a

```
D
        0.200
h
        0.050
        0.020
r
h/r
        2.500
K1
        2.505
K2
        -0.346
K3
        -1.502
K4
        0.342
        1.999
k
```

```
#title
#line 1: title line 1
#line 2: title line 2
 THICKNESS CHANGE IN SKIN
#units
#line 1: units index
#index=1 for US cust units [inch, ksi], 2 for SI units [mm, MPa]
#points
#line 1: no of points
#line n: pnt id no, coords
 1 -0.5000E-01 -0.5200
 2 0.0000 -0.5200
 3 0.5000E-01 -0.5200
 4 0.5000E-01 -0.1000E-01
 5 0.5000E-01 0.5000
 6 0.2500E-01 0.5000
 7 0.0000
             0.5000
 8 0.0000
             0.2600
 9 0.0000
             0.2000E-01
 10 0.0000
             0.1000E-01
 11 0.0000
              0.0000
 12 -0.2000E-01 0.0000
 13 -0.2000E-01 -0.2000E-01
 14 -0.3500E-01 -0.2000E-01
 15 -0.5000E-01 -0.2000E-01
 16 -0.5000E-01 -0.2700
#segments
#line 1: no of segments
#line n: seg id, type, 1st & mid & 2nd endpt ids, no of elems
 8
 2 0 3 4 5 8
 3 0 5 6 7 2
 4 0 7 8 9 8
 5 0 9 10 11 2
 6 1 11 12 13 2
 7 0 13 14 15 2
 8 0 15 16 1 2
#general boundaries
#line 1: no of boundaries
#line n: bdry id, no of segs, seg ids, no of edge crks, edge crk ids
 1 8 1 2 3 4 5 6 7 8 0
#special hole bdries (same id set as gen bdries)
```

A-10 PSE W11 Stress Concentration at Fillet - Roark & NASBEM (Continued)

```
#line 1: no of hole bdries
#line n: bd id, ctrpt id, rad, pressure, pinload mag&angle, # of edge crks&ids
#zone geometry
#line 1: no of zones
#line n: id, mtl id, # of finite bdries&ids, # of crks&ids, # of pt loads&ids
 1 1 1 1 0 0
#boundary conditions, user-specified
#line 1: no of segments with user-specified BC
#line n (1 line per seg pt 1,2,3): seg id, seg pt, x BC type&value, y type&val
    1 1 0.0000
 1
                     1 0.0000
    2 1 0.0000
                     1 0.0000
 1
    3 1 0.0000
                     1 0.0000
   1 0 0.0000
                     0 0.800
 3 2 0 0.0000
                     0 1.000
 3 3 0 0.0000
                     0 1.200
#pt loads
#line 1: no of pt loads
#line n: pt load id, location pt id, x & y components
#materials
#line 1: number of materials
#line n: matl id no, e, nu
 1 0.1000E+08 0.3000
#2-D problem type
#line 1: type=1(2), 3(4) plane strain(stress) for finite,infinite ext bdry
#line 2 [only if infinite case]: stress sxx,sxy,syy at infinity; fix pt id no
 2
#crack segments
#line 1: no of segments
#line n: id, type, 1st & arc ctr (or 0) & 2nd endpt ids, no of elems, n&t stress
#cracks
#line 1: crack case [1=spec,2=gen'l], no of cracks
#line n: depends on the crack case
```

A-11 PSE W12 Stiffness Models

PSE W12 - SA227 TIP EXTENSION AT END OF INBOARD FITTING

A-11 PSE W12 Stiffness Models (Continued)

RESULT, MANEUVER EXECUTIVE 1-G STRESS CONDITION

				LOAD	
				Between	
Stiffness	node#	node#		Nodes	
4.160E+06	1	2	FITTING	85	
4.160E+06	2	3	FITTING	122	
4.160E+06	3	4	FITTING	122	
4.160E+06	4	5	FITTING	149	
4.437E+06	5	12	FITTING	218	
2.344E+06	6	7	Web Angle	218	
4.688E+06	7	8	Web Angle	133	
4.688E+06	8	9	Web Angle	96	
2.344E+06	9	10	Web Angle	96	
2.344E+06	10	11	Web Angle	69	
6.185E+06	1	7	FSTN	-85	
6.185E+06	2	8	FSTN	-37	
7.087E+06	4	10	FSTN	-26	
7.087E+06	5	11	FSTN	-69	

PSE W12 - SA227 TIP EXTENSION AT END OF INBOARD FITTING

MANEUVER EXECUTIVE 1-G STRESS

Stress@ Gage 26 1073
APPLY LOAD = 252 angle, stress * area
Web Angle 0.2344 Angle Area, taper to .75" high

landing spectrum taxi 1-g stress stress/g 1073 500 commute -2000 805 cargo 834 1111 930 executive 1239

ELEMENT STIFFNESS

Assuming Plan		s Remain Pi	ane	ayaway - Japan <u>m</u>		gggagrayr	~~~ ~ <u></u> ~~~~~~~	gramming on the second		STORES TO		od January Co	2 (cont)
K	K11	K22							D = 1,550	ink-top t	nk-bott	on (com)	s, (contr)
4159500	1	2	FITTING	0.0705	0.094	0.75	3.0E+07	0.5					
8319000	2	3	FITTING	0.141	0.188	0.75	3.0E+07	0.5					
4159500	3	4	FITTING	0.141	0.188	0.75	3.0E+07	1					
4436800	4	10	FITTING	0.1504	0.188	. 0.8	3.0E+07	1					
2344000	5	6	Web Angle	0.2344			1.0E+07	1					
4688000	6	7	Web Angle	0.2344			1.0E+07	0.5					
4688000	7	8	Web Angle	0.2344			1.0E+07	0.5					
2344000	8	9	Web Angle	0.2344			1.0E+07	1	•				
6184600	1	6	FSTN				1.5E+08		0.19	0.1	0.125	1.667	0.86
7086700	3	8	FSTN				1.5E+08		0.19	0.156	0.125	1.667	0.86
7086700	4	9	FSTN				1.5E+08		0.19	0.156	0.125	1.667	0.86
				** ca	on angle stra	n K = [A * !	E1/L						

cap, angle, strap K = [A * E] / L
 fastener E = the E average of the top material and the bottom material.

^{**} fastener K = [E*D/ (C1 + C2 *[D/ThkTop + D/ThkBott])]^2

A-11 PSE W12 Stiffness Models (Continued)

STIFFNES	S MATRIX							•			
Node 1	Node 2	Node 3	Node 4 I	Node 5	Node 6	Node 7	Node 8	Node 9	Node 10	App Load Node D	isplace
1.0E+07	-4.2E+06	0	0	0	-6.2E+06	0	0	0	0	0 Node 1	1.41E-04
-4.2E+06	1.2E+07	-8.3E+06		0	0	0	0	0	0	0 Node 2	1.12E-04
0	-8.3E+06	2.0E+07	-4.2E+06	O	0	0	-7.1E+06	0	0	0 Node 3	9.71E-05
0	0:	-4.2E+06	1.6E+07	0.0E+00	0	0	0	-7.1E+06	-4.4E+06	0 Node 4	5.67E-05
0	0	0 -	0.0E+00	2.3E+06	-2.3E+06	0	0	0	0	252 Node 5	2.67E-04
-6.2E+06	0	0	. 0	-2.3E+06	1.3E+07	-4.7E+06	0	0	0	0 Node 6	1.60E-04
0	0	0	0	0	-4.7E+06	9.4E+06	-4.7E+06	0	0	0 Node 7	1.32E-04
0	0	-7.1E+06	0	0	0:	-4.7E+06	1.4E+07	-2.3E+06	0	0 Node 8	1.04E-04
0	0	0	-7.1E+06	0	0	0	-2.3E+06	9.4E+06	0.0E+00	0 Node 9	6.84E-05
0	0	0	-4.4E+06	0	0	0	0	0.0E+00	4.4E+06	0 Node 10	0.00E+00

RESULT, MANEUVER EXECUTIVE 1-G STRESS CONDITION Forces in lbs

	1_		2	3	4	10
		120	~ Sinti		168	252 Fitting
	-120			-48	-83	
	120			48_	83_	_
	252	131	Control Control	131	83	Web/Angle
5	6		7	0		_

Oute				LOAD Between
Stiffness	node#	node#		Nodes
4.160E+06	1	2	FITTING	120
8.319E+06	2	3	FITTING	120
4.160E+06	3	4	FITTING	168
4.437E+06	4	10	FITTING	252
2.344E+06	5	6	Web Angle	252
4.688E+06	6	7	Web Angle	131
4.688E+06	7	8	Web Angle	131
2.344E+06	8	9	Web Angle	83
6.185E+06	1	6	FSTN	-120
7.087E+06	3	8	FSTN	-48
7.087E+06	4	9	FSTN	-83

A-12 PSE W13 Stiffness Model

PSE W13 - SA227 TIP EXTENSION AT END OF OUTBOARD FITTING @ 16,500 lbs Rear Spar Lower Surface, AFT C.G. (R1517 - Page A-87)

FASTENER PR	ROPERTY					
TOP		STEEL	ALUM Tita	LUM Titanium		
FSTNER	C1=	1.667	5.000	4.000		
FSTNER	C2=	0.860	0.800	0.820		
BOTTOM						

LANDING	
Stress@ Gage 26	500
APPLY LOAD =	53 angle, stress * area

spectrum	taxi	1-g stress	stress/g	landing
commute	-2000	1779	1779	500
cargo		1842	2314	
executive		2054	2580	

ELEMENT STIFFNESS

Assuming Pla	ne Sections	Remain Pla	ne	named a section of the section of the	.,						a grandgam
K	K11	K22	ika talah salit s	Α	E		D t	hk-top	thk-bott C	1,(cont) (.2 (cont)
2079800	1	2	TOP	0.141	3.0E+07	2					
5546000	2	3	TOP	0.141	3.0E+07	0.75					
11092000	3	3a	TOP	0.141	3.0E+07	0.375					
5585300	3a	4	TOP	0.071	3.0E+07	0.375					
2792700	4	5	TOP	0.071	3.0E+07	0.75					
1400000	6	7	BOTT	0.105	1.0E+07	0.75					
2800000	7	7a	BOTT	0.105	1.0E+07	0.375					
2800000	7a	8	BOTT	0.105	1.0E+07	0.375					
1400000	8	9	BOTT	0.105	1.0E+07	0.75					
525000	9	10	BOTT	0.105	1.0E+07	2					
740800	2	6	FSTN		2.0E+07		0.19	0.188	0.063	1.667	0.86
740800	3	7	FSTN		2.0E+07		0.19	0.188	0.063	1.667	0.86
633400	4	8	FSTN		2.0E+07		0.19	0.094	0.063	1.667	0.86
633400	5	9	FSTN		2.0E+07		0.19	0.094	0.063	1.667	0.86
				**	can angle e	tran K = [A * F]	11				

cap, angle, strap K = [A * E] / L

STI	F	F١	ΙE	S	SI	M	۸	TI	રા	X	
											٤
Nod	ο.	3			Jar	30	2			٠,	d

SHIFFNE	SS MAIRI	K.			a server read	er og virge er ver eg en sør er er	you are management	and game and area representations	areas or parenty to a	ye mare garane ag	ورد برصيمهم وورد باعدره	nen regionopelijanemore
Node 1	Node 2	Node 3	Node 3a	Node 4	Node 5	Node 6	Node 7	Node 7a	Node 8	Node 9	Node 10 A	vpp Load
2.08E+06	-2.08E+06	0	0	0	0	0	0	0	0	0	0	52.5
-2.08E+06	8.37E+06	-5.55E+06	0	0	0	-7.41E+05	. 0	0	0	0	0	0
(-5.55E+06	1.74E+07	-1.11E+07	0	0	0	-7.41E+05	0	0	0	0	0
() 0	-1.11E+07	16677300	-5.59E+06	0	0	0	0	0	0	0	0
() 0	0	-5.59E+06	9.01E+06	-2.79E+06	0	0	0	-6.33E+05	0	0	0
(0, (0	0	-2.79E+06	3.43E+06	0	0	0	0	-6.33E+05	0	0
(-7.41E+05	0	0	0	0	2.14E+06	-1.40E+06	0	0	0	0	0
() 0	-7.41E+05	0	0	0	-1.40E+06	4.94E+06	-2.80E+06	0	. 0	0	Ð
() 0	0	0	0	0	0	-2.80E+06	5.60E+06	-2.80E+06	0	0	0
() 0	. 0	0	-6.33E+05	0	0	0	-2.80E+06	4.83E+06	-1.40E+06	0	0
() 0	0	0	0	-6.33E+05	0	. 0	0	-1.40E+06	2.56E+06	-5.25E+05	0
() 0	0	0	0	0	0	0	0	0	-5.25E+05	5.25E+05	0

INVERSE MATRIX

Node 1	Node 2	Node 3	Node 3a	Node 4	Node 5	Node 6	Node 7	Node 7a	Node 8	Node 9
3.477E-06	2.996E-06	2.851E-06	2.794E-06	2.683E-06	2.539E-06	2.738E-06	2.601E-06	2.467E-06	2.332E-06	1.905E-06 Node 1
2.996E-06	2.996E-06	2.851E-06	2.794E-06	2.683E-06	2.539E-06	2.738E-06	2.601E-06	2.467E-06	2.332E-06	1.905E-06 Node 2
2.9E-06	2.9E-06	2.9E-06	2.8E-06	2.7E-06	2.6E-06	2.7E-06	2.6E-06	2.5E-06	2.326E-06	1.905E-06 Node 3
2.8E-06	2.8E-06	2.8E-06	2.8E-06	2.7E-06	2.6E-06	2.6E-06	2.5E-06	2.4E-06	2.317E-06	1.905E-06 Node 3a
2.7E-06	2.7E-06	2.7E-06	2.7E-06	2.8E-06	2.6E-06	2.6E-06	2.5E-06	2.4E-06	2.3E-06	1.905E-06 Node 4
2.5E-06	2.5E-06	2.6E-06	2.6E-06	2.6E-06	2.8E-06	2.4E-06	2.4E-06	2.3E-06	2.227E-06	1.905E-06 Node 5
2.7E-06	2.7E-06	2.7E-06	2.6E-06	2.6E-06	2.4E-06	3.2E-06	2.8E-06	2.6E-06	2.38E-06	1.905E-06 Node 6
2.6E-06	2.6E-06	2.6E-06	2.5E-06	2.5E-06	2.4E-06	2.8E-06	2.9E-06	2.6E-06	2.406E-06	1.905E-06 Node 7
2.5E-06	2.5E-06	2.5E-06	2.4E-06	2.4E-06	2.3E-06	2.6E-06	2.6E-06	2.7E-06	2.439E-06	1.905E-06 Node 7a
2.3E-06	2.3E-06	2.3E-06	2.3E-06	2.3E-06	2.2E-06	2.4E-06	2.4E-06	2.4E-06	2.473E-06	1.905E-06 Node 8
1.9E-06	1.9E-06	1.9E-06	1.9E-06	1.9Ė-06	1.9E-06	1.9E-06	1.9E-06	1.9E-06	1.905E-06	1.905E-06 Node 9

^{**} fastener K = [E *D / (C1 + C2 *[D / ThkTop + D / ThkBott])] *2

A-12 PSE W13 Stiffness Model (Continued)

				LOAD	
				Between	
Stiffness	node#	node#		Nodes	
2.080E+06	1	2	TOP	53	
5.546E+06	2	3	TOP	42	
1.109E+07	3	3a	TOP	33	
5.585E+06	3a	4	TOP	33	
2.793E+06	4	5	TOP	21	
1.400E+06	6	7	BOTT	10	
2.800E+06	7	7a	BOTT	20	
2.800E+06	7a	8	BOTT	20	
1.400E+06	8	9	BOTT	31	
5.250E+05	9	10	BOTT	53	
7.408E+05	2	6	FSTN	10	
7.408E+05	3	7	FSTN	10	
6.334E+05	4	8	FSTN	12	
6.334E+05	5	9	FSTN	21	

A-13 PSE W14 Stiffness Model

PSE W14 - SA227 TIP EXTENSION AT END OF OUTBOARD FITTING

Main Spar Lower Surface, AFT C.G. (R1517 - Page A-87)

FASTENER PROPERTY										
TOP		STEEL	ALUM Ti	tanium						
FSTNER	C1=	1.667	5.000	4.000						
FSTNER	C2=	0.860	0.800	0.820						
воттом										

taxi 1-g stress

compressior ·

805

834

930

stress/g

1073

1111

1239

landing

800

APPLY LOAD, LANDING										
Stress@ Gage 25	800									
APPLY LOAD =	75 ang	angle, stress * area								
	widt	h thi	ckness							
steel fitting	0.1264	0.81	0.156							
steel fitting	0.0810	0.81	0.1							
angle, v.leg	0.0938	0.75	0.125							

ELEMENT STIFFNESS

Assuming Plan	ne Sections	Remain Pla	ne				. ari miyaa.	je je je se	reger to book booker	grange seed a compact operati	7 S
K	K11	K22		Α	Ε	L	- 975	thk-top t	hk-bott C	1,(cont) C	2,(cont)
2096100	1	2	TOP	0.081	3.0E+07	1.14					
2096100	2	3	TOP	0.081	3.0E+07	1.14					
3260500	3	4	TOP	0.126	3.0E+07	1.14					
1858500	4	10	TOP	0.126	3.0E+07	2					
469000	5	6	BOTT	0.094	1.0E+07	2					
822800	6	7	BOTT	0.094	1.0E+07	1.14					
822800	7	8	BOTT	0.094	1.0E+07	1.14					
822800	8	9	BOTT	0.094	1.0E+07	1.14					
7086700	1	6	FSTN		1.5E+08		0.19	0.156	0.125	1.667	0.86
7086700	2	7	FSTN		1.5E+08		0.19	0.156	0.125	1.667	0.86
6184600	3	8	FSTN		1.5E+08		0.19	0.1	0.125	1.667	0.86
6184600	4	9	FSTN		1.5E+08		0.19	0.1	0.125	1.667	0.86

^{**} cap, angle, strap K = [A * E] / L

spectrum

commute

executive

cargo

	TDIV									
STIFFNES		and the first of the contract	grange, georgen,			um kudaluarin eng	ورايع ديناه ويهم ويومسه		N-1-1-10	
Node 1		Node 3				Node 7		Node 9		App Load Node
9.18E+06	-2.10E+06	0	0	0	-7.09E+06	0	0	0	. 0	T #### T 100 1:
-2.10E+06	1.13E+07	-2.10E+06	0	0	0	-7.09E+06	0	0	0	0 Node 2
0	-2.10E+06	1.15E+07	-3.26E+06	0	0	0	-6.18E+06	0	0	1.1.1.1.7.7.7.7
0	0	-3.26E+06	1.13E+07	0	0	0	0	-6.18E+06	-1.86E+06	221 E. Su Ch.
0	0	0	0	4.69E+05	-4.69E+05	0	0	0	0	75 Node 5
-7.09E+06	0	0	0	-4.69E+05	8.38E+06	-8.23E+05	0	0	0	0 Node 6
0	-7.09E+06	0	0	0	-8.23E+05	8.73E+06	-8.23E+05	0	0	0 Node 7
0	0	-6.18E+06	0	0	0	-8.23E+05	7.83E+06	-8.23E+05	0	0 Node 8
0	0	0	-6.18E+06	0	0	0	-8.23E+05	7.01E+06	0	0 Node 9
0	0	0	-1.86E+06	0	0	0	0	0	1.86E+06	0 Node 10
INVERSE	MATRIX								•	
1.5E-06	1.1E-06	7.9E-07	5.4E-07	1.4E-06	1.4E-06	1.1E-06	8.0E-07	5.7E-07		
1.1E-06	1.1E-06	7.9E-07	5.4E-07	1.1E-06	1.1E-06	1.1E-06	8.0E-07	5.7E-07		
7.9E-07	7.9E-07	7.9E-07	5.4E-07	7.9E-07	7.9E-07	7.9E-07	7.7E-07	5.7E-07		
5.4E-07	5.4E-07	5.4E-07	5.4E-07	5.4E-07	5.4E-07	5.4E-07	5.4E-07	5.4E-07		
1.4E-06	1.1E-06		5.4E-07	3.7E-06	1.5E-06	1.1E-06	8.0E-07	5.7E-07		
1.4E-06	1.1E-06		5.4E-07	1.5E-06			8.0E-07	5.7E-07		
1.1E-06	1.1E-06		5.4E-07	1.1E-06				5.7E-07		
8.0E-07	8.0E-07	7.7E-07		8.0E-07	8.0E-07			5.8E-07		
5.7E-07	5.7E-07	5.7E-07		5.7E-07	5.7E-07			6.9E-07		
5.7⊑-07	3.7E-07	3.7 E-07	J.4L-01	3.7 L-01	5.7 L-07	J.7 L-07	5.0L-01	J.UL07		

^{**} fastener E = the E average of the top material and the bottom material.

** fastener K = [E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])] ^2

A-13 PSE W14 Stiffness Model (Continued)

RESULT, LANDING					LOAD Between
	Stiffness	node#	node#		Nodes
Outboard <====STA266 STA260 ===> Inboard	2.10E+06	1	2	TOP	50
10 4 3 2 1	2.10E+06	2	3	TOP	54
75 61 54 50	3.26E+06	3	4	TOP	61
-14 -7 -4 -50 load in fastener	1.86E+06	4	10	TOP	75
14 21 25 75 75 75 75 75	4.69E+05	5	6	BOTT	75
9 8 7 6 5	8.23E+05	6	7	BOTT	25
constraint	8.23E+05	7	8	BOTT	21
	8.23E+05	8	9	BOTT	14
	7.09E+06	1	6	FSTN	-50
	7.09E+06	2	7	FSTN	-4
	6.18E+06	3	8	FSTN	-7
	6.18E+06	4	9	FSTN	-14

A-14 Engine Mount Stress Analysis (Continued)

PSE EM1 Upper Engine Mount at Firewall - Pre S/B

Roark 5th Ed, Case 1J, Table 24
Assumes no rotation in weld joint or in plate at washer OD

```
1.000 (unit line load, lbs)
W=
        0.718 (mean radius of tube)
 a=
        0.718 (radius of appl of W)
Ro=
        0.391 (OD of washer/2)
 b=
        0.444 (applied load per inch)
 w=
         0.125 (plate thickness)
  t=
C5= 0.351895
C6= 0.069786
C8= 0.760711
C9= 0.283638
L5=
             0
             0
L6=
L8=
             1
```

In Plate at Washer OD

L9=

D= 1813.284

Mrb= -0.11599 in-lb per in per lb 6M/t^2= -44.5389 psi per lb

In Weld at Tube

Mra= 0.078 in-lb per in per lb t= 0.205 (thickness of weld)

6M/t^2= 11.08705 psi per lb P/A= 1.286102 psi per lb Total= 12.37316 psi per lb

A-14 Engine Mount Stress Analysis (Continued)

PSE EM1 Upper Engine Mount at Firewall - Post S/B

Roark 5th Ed, Case 1J, Table 24
Assumes no rotation in weld joint or in plate at washer OD

W= 1.000 (unit line load, lbs)
a= 0.718 (mean radius of tube)
Ro= 0.718 (radius of appl of W)
b= 0.625 (OD of washer/2)
w= 0.444 (applied load per inch)
t= 0.125 (plate thickness)

C5= 0.12061
C6= 0.007583
C8= 0.917985

C9= 0.917963 C9= 0.115071 L5= 0 L6= 0 L8= 1 L9= 0 D= 1813.284

In Plate at Washer OD

Mrb= -0.02298 in-lb per in per lb 6M/t^2= -8.82284 psi per lb

In Weld at Tube

Mra= 0.021 in-lb per in per lb t= 0.205 (thickness of weld) 6M/t^2= 2.992139 psi per lb

P/A= 1.286102 psi per lb Total= 4.278241 psi per lb

A-15 PSE N1 Stiffness Model

PSE N1 - SA226/227 Nacelle upper longeron at firewall

 Matt
 Eff Area

 fitting
 4130N Steel
 0.203

 cap
 2024-T42
 0.10125

FASTENER PROPERTIES

STEEL ALUM Titanium

C1= 1.667 5.000 4.000

C2= 0.860 0.800 0.820

APPLIED LOAD

APPLIED LOAD =

1.0

ELEMENT STIFFNESS

Assuming Plane	e Sections	s Remain Pla	ane	rang as a commercial		r company in management during	al carried control of	emanya na ana maka maka atau	v. mysmoors a rem	over a contrate property of the	r zgestavnemannin.
K	K11	K22		Α	E	L		thk-top th	ık-bott C	1,(cont) C	2,(cont)
1346700	1	2	cap	0.101	1.0E+07	0.75					
1346700	2	3	cap	0.101	1.0E+07	0.75					
1346700	3	4	cap	0.101	1.0E+07	0.75					
1346700	4	5	cap	0.101	1.0E+07	0.75					
1346700	5	6	cap	0.101	1.0E+07	0.75					
1346700	6	7	cap	0.101	1.0E+07	0.75					
8120000	8	9	fitting	0.203	3.0E+07	0.75					
8120000	9	10	fitting	0.203	3.0E+07	0.75					
8120000	10	11	fitting	0.203	3.0E+07	0.75					
8120000	11	12	fitting	0.203	3.0E+07	0.75					
8120000	12	13	fitting	0.203	3.0E+07	0.75					
8120000	13	14	fitting	0.203	3.0E+07	0.75					
790400	2	8	FSTN		2.0E+07		0.19	0.125	0.09	1.667	0.86
790400	3	9	FSTN		2.0E+07		0.19	0.125	0.09	1.667	0.86
790400	4	10	FSTN		2.0E+07		0.19	0.125	0.09	1.667	0.86
790400	5	11	FSTN		2.0E+07		0.19	0.125	0.09	1.667	0.86
790400	6	12	FSTN		2.0E+07		0.19	0.125	0.09	1.667	0.86
790400	7	13	FSTN		2.0E+07		0.19	0.125	0.09	1.667	0.86

^{**} stringer,angle K = [A * E] / L

RESULTS

^{**} fastener E = average of the top material E and the bottom material E.

^{**} fastener K = [E * D / (C1 + C2 * [D / ThkTop + D / ThkBott])]^2

A-16 PSE N2 NASTRAN Output for Fasteners

PSE N2 - SA226/227 Nacelle upper longeron wing rib attach angles

node	component	 direction 		
22	1 -0.063	z (up-down)		
222	2 -0.095	z (up-down)		
223	3 -0.132	z (up-down)		
224	4 -0.205	z (up-down)		
22	50.312	z (up-down)		
total	-0.807	cos20=	0.939693	3
226	6 -0.299	y (fwd-aft)		
227	7 -0.242	y (fwd-aft)		
228	3 -0.043	y (fwd-aft)		
229	9 -0.454	y (fwd-aft)		
230	0.744	y (fwd-aft)		•
total	-0.294	sin20=	0.34202	<u>.</u>
	resultant fa	stener forces	listed from	n aft to forward
221-226	0.3055651			
222-227	0.2599788			
223-228	0.1388272			
224-229	0.4981375			
225-230	0.8067713	fwd fastener	s carry mo	ore of load since angle
		is blocked fr	om rotating	g on fwd side
225-230	224-229	223-228	222-227	221-226
	fwd	<=====>	aft	

A-17 PSE H1 Stress Analysis and Stiffness Model

Rib Strap at BL 3.135

Assuming spar cannot carry any moment about z-axis at BL 0.0, $Mx = M \sin(20)$

Horiz Stab Rear Spar Stress, Aft CG, Gage 14 (BL 15 lower position):
0G 1G 2G Per G

	19		I GI V	<u>u</u>
-351	375	1554	117	9 measured values
At gage, c=	2.:	25		
At BL 15, Mom	ent of Iner	tia I =	9.9	(ref 27-43000, 27-43077 2601-R155)
Moments				2001-1(100)

0G 1G 2G Per G -1544 1650 6838 5188

Quadratic Interpolation (assumes linear shear dist along spar):

y=b(x-a)^2 a=86.3 (stab tip) b=(moment@BL15)/(15-86.3)^2

x	а	ь 0G	b 1G	b 2G	M OG	M 1G	M 2G	Per G
0	86.3	-0.304	0.325	1.345	-2262	2417	10018	7601
1	86.3	-0.304	0.325	1.345	-2210	2362	9787	7425
2	86.3	-0.304	0.325	1.345	-2158	2307	9559	7252
3	86.3	-0.304	0.325	1.345	-2107	2252	9333	7081
4	86.3	-0.304	0.325	1.345	-2057	2198	9111	6912
5	86.3	-0.304	0.325	1.345	-2007	2145	8891	6745
6	86.3	-0.304	0.325	1.345	-1958	2093	8673	6580
7	86.3	-0.304	0.325	1.345	-1910	2041	8459	6418
8	86.3	-0.304	0.325	1.345	-1862	1990	8247	6257
9	86.3	-0.304	0.325	1.345	-1815	1939	8037	6098
10	86.3	-0.304	0.325	1.345	-1768	1890	7831	5941
11	86.3	-0.304	0.325	1.345	-1722	1840	7627	5786
12	86.3	-0.304	0.325	1.345	-1677	1792	7426	5634
13	86.3	-0.304	0.325	1.345	-1632	1744	7227	5483
14	86.3	-0.304	0.325	1.345	-1588	1697	7031	5335
15	86.3	-0.304	0.325	1.345	-1544	1650	6838	5188

Н	oriz Stab Re	ar Spar Sp	lice Stra	Stress, Fwd of Splice Plate:
	0G	1G	2G	Per G
	-686	733	3039	2305 calculated values
				Shows stress in strap is about
Αŧ	strap, c=	3.0)	twice measured spar stress
F۷	vd of splice	plate, l=	3.15 r	neglecting effect of trunnion fitting 27-43047
		•	(ref 27-43000, 27-43077, 2601-R155)
			i	
				•
			ľ	
			1	
				Moment In Splice Strap, Fwd of splice plate
			ľ	=Spar moment * SIN(sweep ang)
	M 2G	Per G	- 1	M 0G M 1G M 2G Per G
	10018	7601		
	9787	7425		
	0550	7252		

-720

770

3191

A-17 PSE H1 Stress Analysis and Stiffness Model (Continued)

PSE H1 - SA226/227 Horizontal stabilizer station 3.135 rib strap at rear spar

APPLIED LOAD

APPLIED LOAD =

1.0

ELEMENT STIFFNESS

Commencial States and States S

Assuming Plan	e Section	s Remain Plar	1 e		tgring rating missing was governed	energitalise sellättiskiään.	nger fil fright men en e		and the state of t	-wikizsia-annianassin	v 1111 20090 v 100100 10011
K	K11	K22		A	Orf Page	L	D	thk-top	thk-bott C	1,(cont) C	2,(cont)
1250000	1	2	strap	0.125	1.0E+07	1					
1250000	2	3	strap	0.125	1.0E+07	1					
1250000	3	4	strap	0.125	1.0E+07	1					
9.999E+13	4	5	strap	9999	1.0E+07	0.001					
9.999E+13	5	10	strap	. 9999	1.0E+07	0.001					
940000	6	7	plate	0.094	1.0E+07	1					
1875000	7	8	plate	0.1875	1.0E+07	. 1					
9.999E+13	8	9	plate	9999	1.0E+07	0.001					
9.999E+13	9	10	plate	9999	1.0E+07	0.001					
441900	2	6	FSTN		1.0E+07		0.19	0.125	0.125	1.667	0.86
441900	3	7	FSTN		1.0E+07		0.19	0.125	0.125	1.667	0.86
2.952E+10	4	8	FSTN		1.0E+07		9999.00	9999	9999	1.667	0.86
2.952E+10	5	9	FSTN		1.0E+07		9999.00	9999	9999	1.667	0.86

^{**} stringer,angle K = [A * E] / L

^{**} fastener K = [E *D / (C1 + C2 *[D / ThkTop + D / ThkBott])] ^2

STIFFNES	S MATRIX		umurramentosensensensoriuskobsekuru	rmerrume sesume serviciono	r on all notes with proportion to a con-	torrussulativoyuusi	reseasements of engagemen	ense groverbogrande	rrecent record and a second	section of the Martin Career, as section of Section 1.	
Node 1 1	Node 2	Node 3	Node 4	Node 5 1	Node 6 1	vode 7	Node 8	Node 9	Node 10 A	pp Load Node	Displacement
1.3E+06	-1.3E+06	0	0	0	0	0	0	0	0	1 Node 1	1.880E-06
-1:3E+06	2.9E+06	-1.3E+06	. 0	0 .	-4.4E+05	0	0	0	0	0 Node 2	1.080E-06
0	-1.3E+06	2.9E+06	-1.3E+06	. 0	0	-4.4E+05	0	0	0	0 Node 3	4.899E-07
0	0	-1.3E+06	1.0E+14	-1.0E+14	0	0	-3.0E+10	. 0	. 0	0 Node 4	1.225E-14
0	0	0	-1.0E+14	2.0E+14	0	0	0	-3.0E+10	-1.0E+14	0 Node 5	6.122E-15
0	-4.4E+05	0	0	0	1.4E+06	-9.4E+05	0	0	0	0 Node 6	4.860E-07
0	0.	-4.4E+05	Ō	0	-9.4E+05	3.3E+06	-1.9E+06	0	0	0 Node 7	2.067E-07
0	0	0	-3.0E+10	0	0	-1.9E+06	1.0E+14	-1.0E+14	0	0 Node 8	7.756E-15
0	0	. 0	0.	-3.0E+10	0	0	-1.0E+14	2.0E+14	-1.0E+14	0 Node 9	3.879E-15
0	0	0	0	-1.0E+14	.0	0	0	-1.0E+14	2.0E+14	0 Node 10	0.000E+00

RESULTS

Stiffness	Node #	Node#		Load Between Nodes	actification and the State of Committee of C	cans the returned to a reserva				
1.250E+06	1	2	strap	1.00	DISPLACE	MENT				
1.250E+06	2	3	strap	0.74	1.9E-06	1.1E-06	4.9E-07	1.2E-14	6.1E-15	0.0E+00

^{**} fastener E = average of the top material E and the bottom material E.

A-18 PSE V1 Stiffness Model Results

RESULTS	e e		error:	-13	
TLUCEIO		4.0			

40	8	7	6	5	4	3	2	1	_	
0.125	96.51	107.75	134.51	111.59	104.99	101.01	99.57	100.00	==>LOAD	100
	11.24	26.76	-22.92	-6.60	-3.98	-1.44	0.43			
40	16	15	14_	13	12	11	10	9		
0.125	37.70	26.58		76.98	139.76	134.32	137.27	144.40	==>LOAD	144.4
40	0.12	0.18	1:.				12			
1	18	17	1	1.01	1000	1				
0.063	18.64	13.22		- 1						
40	-5.30	-13.04	54.06	5 6.18	-9.42	1.52	7.56			
1	26	25	24	23	22	21	20	19	<u>-</u>	
0.19	102.27	107.08	119.42	65.57		55.80	93.95	127.07	==>LOAD	127.072
40	-0.49	-0.70	0.21	-9.40	46.38	39.67	40.68			
	33	32	31	30	29	28	27			
0.09	50.31	51.49	54.00	58.37	77.69	51.88	40.68			
40	0.69	1.81	4.58	9.92	20.57	28.46				
L	39	38	37	36	35	34				
0.125	66.04	65.35	63.53	58.96	49.04	28.46				

(bearing stress is not divided by two even though there are two rows of fasteners)

					Load							T-4-1	
					Between	_			Bearing			Total	
	Stiffness	node #	node#		Nodes	Area	Stress	node #	Load .	Area	Bearing Stress	Stress	
	2.333E+06	1	2	Spar	100.00	0.175	571	_		0.0405	22	591	
	2.333E+06	2	3	Spar	99.57	0.175	569	2		0.0195	74	643	
	2.333E+06	3	4	Spar	101.01	0.175	577	3		0.0195			•
	2.333E+06	4	5	Spar	104.99	0.175	600	4	3.98	0.0195	204	781 938	
	1.750E+06	5	6	Spar	111.59	0.175	638	5	6.60	0.0195	338		
	1.750E+06	6	7	Spar	134.51	0.175	769	. 6		0.0195		1813	
	2.333E+06	7	8	Spar	107.75	0.175	616	, . 7		0.0195			*
_	2.333E+06	8	40	Spar	96.51	0.175	552	8		0.0195	576	1128	•
	3.547E+06	9	10	Channel	144.40	0.266	543	10		0.02964	241	757	
	3.547E+06	10	11	Channel	137.27	0.266	516	11		0.02964	100	616	
	3.547E+06	11	12	Channel	134.32	0.266	505	12		0.02964	184	689	
	3.547E+06	12	13	Channel	139.76	0.266	525	: 13		0.02964	2118	2407	
_	2.660E+06	13	14	Channel	76,98	0.266	289	. 14		0.02964	2597		worst case matt and load
	2.333E+06	15	16	.125 Strap	26.58	0.175	152	15		0.0195		1363	
_	2.333E+06	16	40	.125 Strap	37,70	0.175	215	16		0,0195	570	722	
	1.176E+06	17	18	.063 Strap	13.22	0.0882	150	17		0.009828	1345	1345	
_	1.176E+06	18	40	.063 Strap	18.64	0.0882	211	18		0.009828	552	702	-
	3.547E+06	19	20	Angle	127,07	0.266	478	20		0.02964	1117		
	3.547E+06	20	21	Angle	93.95	0.266	353	21		0.02964	1287	1497	
_	3.547E+06	21	22	Angle	55.80	0.266	210	22		0.02964	1883	1883	
	2.660E+06	23	24	.190 Strap	65.57	0,266	247	23		0.02964	2212		
	2.660E+06	24	25	.190 Strap	119.42	0.266	449	:24		0.02964	1817	2063	
	3.547E+06	25	26	.190 Strap	107.08	0.266	403	25		0.02964		819	
	3.547E+06	26	40	,190 Strap	102.27	0.266	384	26		0.02964	162		
	1.680E+06	27	28	.090 Strap	40.68	0.126	323	27		0.01404			worst case load
	1.680E+06	28	29	.090 Strap	51.88	0.126	412	28		0.01404			
	1.680E+06	29	30	.090 Strap	77.69	0.126	617	29		0.01404			
	1.260E+06	30	31	.090 Strap	58.37	0.126	463	30	19.31	0.01404	1376		
	1.260E+06	31	32	.090 Strap	54.00	0.126	429	31	4.37	0.01404			
	1.680E+06	32	33	.090 Strap	51.49	0.126	409	32	2.51	0.01404	179		
_	1.680E+06	33	40	.090 Strap	50.31	0.126	399	33		0.01404			
-	2.333E+06	34	35	.125 Splice	28.46	0.175	163	34	28.46	0.0195		1460	
	2.333E+06	35	36	.125 Splice	49.04	0.175	280	35		0.0195			
	1.750E+06	36	37	.125 Splice	58.96	0.175	337	36	9.92	0.0195	5 509		
	1.750E+06	37	38	.125 Splice	63.53	0.175	363	31	4.58	0.0195	235	572	!
	2.333E+06	38	39	.125 Splice	65.35	0.175	373	38	3 1.81	0.0195	93	456	i
	2.333E+06	39	40	.125 Splice	66.04	0.175	377	39	0.69	0.0195	36	409	<u>)</u>
-	4.688E+05	2	10	FSTN	0.43								
	4.688E+05	3	11	FSTN	-1.44					•			
	4.688E+05	4	12	FSTN	-3.98								
	4.688E+05	5	13	FSTN	-6.60								
	4.688E+05	6	14	FSTN	-22.92								
	4.460E+05	7	15	FSTN	26.76								
	4.460E+05	8	16	FSTN	11.24								
	3.910E+05	15	17	FSTN	0.18								
			• • •										

A-19 PSE F-7 Stress Concentration in Cargo Door Hinge

Roark 5th Ed., Table 37, Case 5a

D 1.000 0.250 h 0.031 8.065 h/r 3.540 **K**1 K2 -0.598 **K**3 0.006 **K**4 -1.949 2.999 k

A-20 PSE F13 Stress Concentration in Control Column Pin

Roark 5th Ed., Table 37, Case 17b

D 0.625 h 0.062 0.020 r h/r 3.100 K1 2.657 K2 -2.900 1.535 **K**3 K4 -0.290 k 2.140

APPENDIX B NASGRO STRESS FACTORS AND CONSTANTS

B-1 PSE W1 SA226 Main Spar Lower Cap at WS 99

		OGRAM -	ANGLE			I	NPUT DAT	TA FOR THE	NASFLA P	ROGRAM - CAI	P	
Angle, area	wxt=	0.0	90 (see FE	EA)		(Cap, area		wxt=	0.090 (s	ee FEA)	
Angle, flange thick	t=	0.1	•	,			Cap, thick		t=	0.125		
Fastener	D=	0.	.16 BB5 riv	ets		!	astener		D=	0.16 B	B5 rivets	*
Fastener	ED=		.31			.1	astener		ED=	0.31		
	TAXI	1-g stre	see et	ress/g	LANDING				TAXI	1-g stress	stress/g	LANDING
stress analytical	-1000	5,49		,111	4,600	,	stress and	alvtical	-1000	5,497	6,111	4,600
load, stress*area	-90		95	550	414		oad, stres	*.	-90	495	550	414
1st Pin Load	-32		73	192	145		st Pin Loa		-22	119	132	99
Between Fasteners	-57		12	346	261		Between F	asteners	-68	376	418	315
Applied Load	-88		185	539	406		Applied Lo		-90	495	550	414
Applied Loud	-											
PSI				5000	4500		PSI		-1000	5497	6111	4600
S0+P/WT	-980		387	5989	4508		\$0+P/WT			4178	4644	3496
S0 = between fstn	-630		4 63	3850	2898		S0 = betwe		-760 -1080	4178 5937	6600	4968
S3 = P/DT	-1575	86	358	9625	7245		S3 = P/DT		-1080	593/	9000	4900
KSI							KSI					
S0+P/WT	-0.98	5	.39	5.99	4.51		S0+P/WT		-1.00	5.50	6.11	4.60
S0 = between fstn	-0.63	3	3.46	3.85	2.90		S0 = betw		-0.76	4.18	4.64	3.50
\$3 = P/DT	-1.58	8	3.66	9.62	7.25		S3 = P/DT	•	-1.08	5.94	6.60	4.97
constant value, s0		c),90				constant v	alue, s0		0.90		
constant value, so).90				constant v			0.90		
cracked element angle, I,h	x-dim	y-dim 0.125	lyy 0.03110	0.00023								
4	1.44			0.00023	•							
	1.44	0.120	0.00110	0.00020		v dint	u diet	Atvet	Ahid	C ^Λ nn hv*cenΔ	Areatyd co	₁ ^2
additional elements	•				area	x dist	y dist	A*xd 0.01172	-	Area*xd_cg^2 0.01023		
angle,I,v & 1/2 web	0.15	1.250	0.00035	0.02441	area 0.1875	0.0625	0.7500	0.01172	A*yd 0.14063 0.14063	Area*xd_cg^2 0.01023 0.00064	Area*yd_cg 0.03899 0.03899	9
angle,I,v & 1/2 web angle, r,v & 1/2 web	0.15 0.15	1.250 1.250	0.00035 0.00035		area 0.1875 0.1875		-		0.14063	0.01023	0.0389	9 9
angle,I,v & 1/2 web	0.15 0.15 1.44 2.903	1.250	0.00035 0.00035 0.03110 0.25484	0.02441 0.02441 0.00023 0.00047	area 0.1875 0.1875 0.1800 0.3629	0.0625 -0.1125 -0.7700 -0.0250	0.7500 0.7500	0.01172 -0.02109	0.14063 0.14063	0.01023 0.00064	0.0389 0.0389 0.0096 0.0461	9 9 4 1
angle, i,v & 1/2 web angle, r,v & 1/2 web angle, r,h	0.15 0.15 1.44	1.250 1.250 0.125	0.00035 0.00035 0.03110	0.02441 0.02441 0.00023 0.00047	area 0.1875 0.1875 0.1800	0.0625 -0.1125 -0.7700 -0.0250	0.7500 0.7500 0.0625 -0.0625	0.01172 -0.02109 -0.13860 -0.00907	0.14063 0.14063 0.01125 -0.02268 0.26982	0.01023 0.00064 0.06456 0.00775	0.0389 0.0389 0.0096 0.0461 0.1337	9 9 4 1
angle, i,v & 1/2 web angle, r,v & 1/2 web angle, r,h	0.15 0.15 1.44 2.903	1.250 1.250 0.125	0.00035 0.00035 0.03110 0.25484	0.02441 0.02441 0.00023 0.00047	area 0.1875 0.1875 0.1800 0.3629	0.0625 -0.1125 -0.7700 -0.0250	0.7500 0.7500 0.0625 -0.0625	0.01172 -0.02109 -0.13860 -0.00907 -0.15705	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171	0.01023 0.00064 0.06456 0.00775 0.08318	0.0389 0.0389 0.0096 0.0461 0.1337	9 9 4 1
angle, i,v & 1/2 web angle, r,v & 1/2 web angle, r,h	0.15 0.15 1.44 2.903	1.250 1.250 0.125	0.00035 0.00035 0.03110 0.25484	0.02441 0.02441 0.00023 0.00047	area 0.1875 0.1875 0.1800 0.3629	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY	0.7500 0.7500 0.0625 -0.0625	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord total ly	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370	0.01023 0.00064 0.06456 0.00775 0.08318 sum (a*d) / sum	0.0389 0.0389 0.0096 0.0461 0.1337	9 9 4 1
angle, I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap	0.15 0.15 1.44 2.903	1.250 1.250 0.125	0.00035 0.00035 0.03110 0.25484	0.02441 0.02441 0.00023 0.00047	area 0.1875 0.1875 0.1800 0.3629	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3	0.7500 0.7500 0.0625 -0.0625	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294	0.01023 0.00064 0.06456 0.00775 0.08318 sum (a*d) / sum	0.0389 0.0389 0.0096 0.0461 0.1337	9 9 4 1
angle, i,v & 1/2 web angle, r,v & 1/2 web angle, r,h	0.15 0.15 1.44 2.903	1.250 1.250 0.125	0.00035 0.00035 0.03110 0.25484	0.02441 0.02441 0.00023 0.00047	area 0.1875 0.1875 0.1800 0.3629	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY	0.7500 0.7500 0.0625 -0.0625	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord total ly	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370	0.01023 0.00064 0.06456 0.00775 0.08318 sum (a*d) / sum	0.0389 0.0389 0.0096 0.0461 0.1337	9 9 4 1
angle, I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap	0.15 0.15 1.44 2.903 TOTAL	1.250 1.250 0.125 0.125 0.125	0.00035 0.00035 0.03110 0.25484 0.28665	0.02441 0.02441 0.00047 0.00047 0.004953	area 0.1875 0.1875 0.1876 0.1800 0.3629 0.917875	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY	0.7500 0.7500 0.0625 -0.0625	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord total ly	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370	0.01023 0.00064 0.06456 0.00775 0.08318 sum (a*d) / sum	0.0389 0.0389 0.0096 0.0461 0.1337	9 9 4 1
angle, I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap	0.15 0.15 1.44 2.903 TOTAL	1.250 1.250 0.125 0.125	0.00035 0.00035 0.03110 0.25484 0.28665	0.02441 0.02441 0.00022 0.00045	area 0.1875 0.1875 0.1876 0.1800 0.3629 0.917875	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY	0.7500 0.7500 0.0625 -0.0625	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord total ly	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370	0.01023 0.00064 0.06456 0.00775 0.08318 sum (a*d) / sum	0.0389 0.0389 0.0096 0.0461 0.1337	9 9 4 1
angle, I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap PSE W1 Additional An	0.15 0.15 1.44 2.903 TOTAL ea - Cap	1.250 1.250 0.125 0.125 v-dim 0.125	0.00035 0.00035 0.03110 0.25484 0.28665	0.02441 0.02441 0.00023 0.00045 0.04953	area 0.1875 0.1875 0.1800 0.3629 0.917875	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY RIX	0.7500 0.7500 0.0625 -0.0625	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord total by total bx	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370 0.183	0.01023 0.00064 0.06456 0.00775 0.008318 sum (a*d) / sum sum (a*d) / sum	0.0389 0.0389 0.0096 0.0461 0.1337 (area) (area)	9 9 4 1 1 4 4 2
angle, I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap PSE W1 Additional An cracked element cap additional elements angle,I,v & 1/2 web	0.15 0.15 1.44 2.903 TOTAL ea - Cap x-dim 2.903	1.250 1.250 0.125 0.125 y-dim 0.125	0.00035 0.00035 0.03110 0.25484 0.28665	0.02441 0.02441 0.00023 0.00047 0.04953	area 0.1875 0.1876 0.1800 0.3629 0.917875	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY RIX x dist 1.5265	0.7500 0.7500 0.0625 -0.0625 y dist 0.8750	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord total ly total lx	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370 0.183	0.01023 0.00064 0.0656 0.00775 0.08318 sum (a*d) / sum sum (a*d) / sum	0.0389 0.0389 0.0096 0.0461 0.1337 (area) (area)	9 9 4 1 1 4 4 6
angle,I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap PSE W1 Additional Ar cracked element cap additional elements angle,I,v & 1/2 web angle, r,v & 1/2 web	0.15 0.15 1.44 2.903 TOTAL ea - Cap x-dim 2.903	1.250 1.250 0.125 0.125 0.125 y-dim 0.125	0.00035 0.00035 0.03110 0.25484 0.28665 hyy 0.25484 0.00035 0.00035	0.02441 0.0022 0.0002 0.00045 0.0495 k 0.0004	area 0.1875 0.1875 0.1800 0.3629 0.917875 x 7	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY RIX x dist 1.5265 1.3765	0.7500 0.7500 0.0625 -0.0625 y dist 0.8750 0.8750	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord total ly total lx A*xd 0.28622 0.25809	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370 0.183 A*yd 0.16406 0.16406	0.01023 0.00064 0.06456 0.00775 0.08318 sum (a*d) / sum sum (a*d) / sum	0.0389 0.0389 0.0096 0.0461 0.1337 (area) (area)	9 9 4 1 1 4 4 6 6
angle,I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap PSE W1 Additional An cracked element cap additional elements angle,I,v & 1/2 web angle, r,v & 1/2 web angle, r,h	0.15 0.15 1.44 2.903 TOTAL ea - Cap x-dim 2.903 0.15 0.15 1.44	1.250 1.250 0.125 0.125 0.125 y-dim 0.125 1.250 1.250 0.125	0.00035 0.00035 0.03110 0.25484 0.28665 hyy 0.25484 0.00035 0.00035	0.02441 0.0023 0.00023 0.00045 0.04953	area 0.1875 0.1875 0.1800 0.3629 0.917875 x 7 area 1 0.1875 1 0.1875 3 0.1800	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY RIX x dist 1.5265 1.3765 0.7200	0.7500 0.7500 0.0625 -0.0625 y dist 0.8750 0.8750 0.1875	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord total ly total lx A*xd 0.28622 0.25809 0.12960	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370 0.183	0.01023 0.00064 0.06456 0.00775 0.08318 sum (a*d) / sum sum (a*d) / sum Area*xd_cg^2 0.00105 0.09632	0.0389 0.0389 0.0096 0.0461 0.1337 (area) (area)	9 9 4 4 1 4 4 1 4 4 1 4 1 4 1 4 1 4 1 4
angle,I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap PSE W1 Additional Ar cracked element cap additional elements angle,I,v & 1/2 web angle, r,v & 1/2 web	0.15 0.15 1.44 2.903 TOTAL ea - Cap x-dim 2.903	1.250 1.250 0.125 0.125 0.125 y-dim 0.125	0.00035 0.00035 0.03110 0.25484 0.28665 hyy 0.25484 0.00035 0.00035	0.02441 0.00022 0.00045 0.00045 0.0004 0.0244 0.0002 0.0002	area 0.1875 0.1875 3 0.1800 7 0.3629 3 0.917875 4 area 1 0.1875 1 0.1875 3 0.1800 3 0.1800	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY RIX x dist 1.5265 1.3765 0.7200 2.1830	0.7500 0.7500 0.0625 -0.0625 y dist 0.8750 0.8750	0.01172 -0.02109 -0.13860 -0.0907 -0.15705 cg x-coord cg y-coord total ly total lx A*xd 0.28622 0.25809 0.12960 0.39294	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370 0.183 A*yd 0.16406 0.16406 0.03375	0.01023 0.00064 0.06456 0.00775 0.08318 sum (a*d) / sum sum (a*d) / sum Area*xd_cg^2 0.00105 0.00105 0.09632 0.09632	0.0389 0.0389 0.0096 0.0461 0.1337 (area) (area)	9 9 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
angle,I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap PSE W1 Additional An cracked element cap additional elements angle,I,v & 1/2 web angle, r,v & 1/2 web	0.15 0.15 1.44 2.903 TOTAL ea - Cap x-dim 2.903 0.15 0.15 1.44 1.44	1.250 1.250 0.125 0.125 0.125 1.250 1.250 0.125 0.125	0.00035 0.0035 0.03110 0.25484 0.28665 lyy 0.25484 0.00035 0.00035 0.03110	0.02441 0.00021 0.00045 0.00045 0.0004 0.0244 0.0024 0.0002	area 0.1875 0.1875 3 0.1800 7 0.3629 3 0.917875 4 area 1 0.1875 1 0.1875 3 0.1800 3 0.1800	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY RIX x dist 1.5265 1.3765 0.7200 2.1830	0.7500 0.7500 0.0625 -0.0625 -0.0625 -0.08750 0.8750 0.1875 0.1875	0.01172 -0.02109 -0.13860 -0.0907 -0.15705 cg x-coord cg y-coord total ly total lx A*xd 0.28622 0.25809 0.12960 0.39294	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370 0.183 A*yd 0.16406 0.16406 0.03375 0.03375	0.01023 0.00064 0.06456 0.00775 0.08318 sum (a*d) / sum sum (a*d) / sum Area*xd_cg^2 0.00105 0.00105 0.09632 0.09632	0.0389 0.0389 0.0096 0.0461 0.1337 (area) (area) Area*yd_c 6 0.0212 0.02212 0.02212 0.02212	9 9 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
angle,I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap PSE W1 Additional An cracked element cap additional elements angle,I,v & 1/2 web angle, r,v & 1/2 web angle, r,h	0.15 0.15 1.44 2.903 TOTAL ea - Cap x-dim 2.903 0.15 0.15 1.44 1.44	1.250 1.250 0.125 0.125 0.125 1.250 1.250 0.125 0.125	0.00035 0.0035 0.03110 0.25484 0.28665 lyy 0.25484 0.00035 0.00035 0.03110	0.02441 0.00021 0.00045 0.00045 0.0004 0.0244 0.0024 0.0002	area 0.1875 0.1875 3 0.1800 7 0.3629 3 0.917875 4 area 1 0.1875 1 0.1875 3 0.1800 3 0.1800	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY RIX x dist 1.5265 1.3765 0.7200 2.1830	0.7500 0.7500 0.0625 -0.0625 -0.0625 -0.08750 0.8750 0.1875 0.1875	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord total by total bx A*xd 0.28622 0.25809 0.12960 0.39294 1.06685	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370 0.183 A*yd 0.16406 0.16406 0.03375 0.03375	0.01023 0.00064 0.06456 0.00775 0.008318 sum (a*d) / sum sum (a*d) / sum sum (a*d) / sum 0.0105 0.00105 0.09632 0.09632	0.0389 0.0389 0.0096 0.0461 0.1337 (area) (area) Area*yd_c 0.0212 0.0221 0.0221 0.0221	9 9 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
angle,I,v & 1/2 web angle, r,v & 1/2 web angle, r,h cap PSE W1 Additional An cracked element cap additional elements angle,I,v & 1/2 web angle, r,v & 1/2 web angle, r,h	0.15 0.15 1.44 2.903 TOTAL ea - Cap x-dim 2.903 0.15 0.15 1.44 1.44	1.250 1.250 0.125 0.125 0.125 1.250 1.250 0.125 0.125	0.00035 0.0035 0.03110 0.25484 0.28665 lyy 0.25484 0.00035 0.00035 0.03110	0.02441 0.00021 0.00045 0.00045 0.0004 0.0244 0.0024 0.0002	area 0.1875 0.1875 3 0.1800 7 0.3629 3 0.917875 4 area 1 0.1875 1 0.1875 3 0.1800 3 0.1800	0.0625 -0.1125 -0.7700 -0.0250 centc11, G3 F3 intc11, RIY RIX x dist 1.5265 1.3765 0.7200 2.1830	0.7500 0.7500 0.0625 -0.0625 -0.0625 -0.08750 0.8750 0.1875 0.1875	0.01172 -0.02109 -0.13860 -0.00907 -0.15705 cg x-coord cg y-coord total ly total lx A*xd 0.28622 0.25809 0.12960 0.39294 1.06685 cg x-coord	0.14063 0.14063 0.01125 -0.02268 0.26982 -0.171 0.294 0.370 0.183 A*yd 0.16406 0.16406 0.03375 0.03375	0.01023 0.00064 0.06456 0.00775 0.08318 sum (a*d) / sum sum (a*d) / sum Area*xd_cg^2 0.00105 0.09632 0.09632 0.19474 sum (a*d) / sum	0.0389 0.0389 0.0096 0.0461 0.1337 (area) (area) Area*yd_c 0.0212 0.0221 0.0221 0.0221	9 9 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

B-1 PSE W1 SA226 Main Spar Lower Cap at WS 99 (Continued)

PSE W1 - MAIN SPAR, LOWER CAP AT WING STATION 99.00 FOR SA226

INPUT DATA FOR THE NASFLA PROGRAM - CAP

Cap, area Cap, thick Fastener Fastener	w x t = t= D= ED=	0.090 (s 0.125 0.16 B 0.31	see FEA) B5 rivets	·	
	TAXI	1-g stress	stress/g	LANDING	
stress analytical	-1000	5,497	6,111	4,600	
stress w/ angle cracked	-1000	8,246	9,167	6,900	
load, stress*area	-90	742	825	621	
1st Pin Load	-37	304	338	255	
Between Fasteners	-53	438	. 487	366	
Applied Load	-90	742	825	621	
PSI					
S0+P/WT	-1000	8246	9167	6900	
S0 = between fstn	-590	4865	5408	4071	
S3 = P/DT	-1845	15213	16912	12731	
KSI					
S0+P/WT	-1.00	8.25	9.17	6.90	
S0 = between fstn	-0.59	4.86	5.41	4.07	
S3 = P/DT	-1.85	15.21	16.91	12.73	
constant value, s0		0.90			
constant value, s3		0.90			

B-2 PSE W2 SA226 Main Spar Lower Cap at WS 9.0

NASFLA PROGRAM INPUT DATA FOR ALUM SPAR CAP

Cap, 2014-T6511 Cap, 2014-T6511 Fastener Dia Edge Dist	t= W= D= B=	=	0.125 3.50 0.20 0.61								
stress, measured c/l ratio adjusted stress	TAXI 6580 1.14 7501	GI 1	stress UST 4,399 .14 015	stres: GUST 6,58 1.14 7501	LA'	NDING 3,300 1.14 3762	_		ust) and 2 gage 20	-	
PSI S0	7501	5	015	7501	;	3762					
KSI S0	7.50	5	.01	7.50		3.76				•	
constant value, s0		0	.67			0.00					
PSE W2 Additional Area- Cap											
cracked element cap	x-dim 3.55	y-dim 0.125	lyy 0.46603	lxx 0.00058							
additional elements Al angle, r,h Al angle, I,h Ti straps, I Ti straps, r St angle, I, h St angle, r, h St straps, r	1.75 1.75 1.25 1.25 1 1 1 1	0.125 0.125 0.250 0.250 0.125 0.125 0.250 0.250	0.05583 0.05583 0.04069 0.04069 0.01042 0.01042 0.02083 0.02083	0.00028 0.00028 0.00163 0.00163 0.00016 0.00016 0.00130 0.00130	Al area 0.2188 0.2188 0.5000 0.5000 0.3750 0.3750 0.7500 0.7500 0.7500	x-dist 0.88 2.68 0.63 2.93 0.75 2.80 1.00 2.55	y-dist 0.19 0.19 0.38 0.38 0.56 0.56 0.75	A*xd 0.19141 0.58516 0.31250 1.46250 0.28125 1.05000 0.75000 1.91250 6.54531	A*yd Are 0.04102 0.04102 0.18750 0.18750 0.21094 0.21094 0.56250 0.56250 2.00391	ea*xd_cg^2	Area*yd_cg^2 0.02771 0.02771 0.01418 0.01418 0.00014 0.00014 0.03200 0.03200 0.14807

 centc11, G3
 cg x-coord
 1.775 sum (a*d) / sum (area)

 F3
 cg y-coord
 0.543 sum (a*d) / sum (area)

 intc11, RIY
 total ly
 3.621

 RIX
 total lx
 0.155

B-3 PSE W3 SA226 Rear Spar Lower Cap at WS 27

NASFLA PROGRAM INPUT DATA FOR ALUM ANGLE

EXCEL STIFFNESS MODEL					-		
Spar Cap Angles	Area =	0.15625	horiz leg po	ortion only			
Spar Cap Angles	Area =			•			
Angle, flange thickness	t=	0.125					
Fastener	D=	0.25	1st fastene	er			
Fastener	ED=	0.61	1st fastene	er			
			GUST				
	TAXI	1-g stress	stress/g	LANDING			
stress, measured	6447	4,396	6,447	2,100			
load, stress*area	1007	687	1007	328			
1st Pin Load	413	282	413	135	41%	appl	load
Between Fasteners	594	405	594	194	59%	appl	load
				•			
PSI							
S0+P/WT	6447	4396	6447	2100			
S0 = between fstn	3804	2593	3804	1239			
S3 = P/DT	13216	9011	13216	4305			
KSI							
S0+P/WT	6.45						
S0 = between fstn	3.80		3.80				
S3 = P/DT	13.22	9.01	13.22	4.31			
constant value, s0		0.68					
1		and the street of the street					
constant value, s3		0.68					

B-3 PSE W3 SA226 Rear Spar Lower Cap at WS 27 (Continued)

NASTRAN PLATE MODEL					
Spar Cap Angle	Area =	0.15625	horiz leg po	rtion only	
Spar Cap Angle	Area =	0.2976	total		
Spar Cap Angle	t=	0.125			
Fastener	D=	0.25	1st fastene	er	
Fastener	ED=	0.61	1st fastene	er	
			GUST		
		1-g stress	•	LANDING	
stress, measured	6447	4,396	6, 4 47	2,100	
load, stress*area	1007	687	1007	328	
1st Pin Load	191	130	191	62	19% appl load
Between Fasteners	816	556	816	266	81% appl load
PSI					
IS0+P/WT	6446	4395	6446	2100	
S0 = between fstn	5222				
S3 = P/DT	6119			1993	
KSI					
S0+P/WT	6.45		6.45		
S0 = between fstn	5.22	3.56	5.22	1.70	
S3 = P/DT	6.12	4.17	6.12	1.99	
constant value, s0		0.68			
constant value, s3		0.68			

PSE W3 Additional Area - Angle

cracked element Al angle, r, h	x-dim 1.25	y-dim 0.125	lyy 0.02035	lxx 0.00020			٠					
additional elements					Al area	x-dist	y-dist	A*xd	A*yd	Area*xd_cg^2	Area*yd_cg^2	
Al angle, I,h	1.25	0.125	0.02035	0.00020	0.1563	-0.68	0.06	-0.10547	0.00977	0.00375	0.01947	
Al angle, r.v	0.125	1.100	0.00018	0.01386	0.1375	0.06	0.68	0.00859	0.09281	0.04667	0.00926	
Al angle, I,v	0.125	1.100	0.00018	0.01386	0.1375	-0.11	0.68	-0.01547	0.09281	0.02285	0.00926	
Ti straps, I	1	0.250	0.02083	0.00130	0.4000	-0.80	0.38	-0.32000	0.15000	0.03133	0.00066	
*** F -1-	TOTAL		0.04154	0.02923	0.83125		nemes garg grass	-0.43234	0.34539	0.10460	0.03864	

 centc11, G3
 cg x-coord
 -0.520 sum (a*d) / sum (area)

 F3
 cg y-coord
 0.416 sum (a*d) / sum (area)

 intc11, RIY
 total ly
 0.146

 RIX
 total lx
 0.068

B-4 PSE W4 SA227 Main Spar Lower Cap at WS 99

PSE W4 - MAIN SPAR, LOWER CAP AT WING STATION 99.00 FOR SA227

INPUT DATA FOR THE NASFLA PROGRAM - CAP WS99

cap, width	w =	3.00
cap, thickness	t=	0.125
Fastener	D=	0.190
Fastener edge dist	ED=	0.31

Ti straps, I

Through Crack in Hole

		1-g stress	stress/g	1-g stress	stress/g	•	stress/g				
		Gust, exec		Gust, cargo				LANDING			
stress analytical	-1000	7965	7304	7449	6830	7523	6898	4600			
KSI											
S0 = between fstn	-1.00	7.97	7.30	7.45	6.83	7.52	6.90	4.60			
**** , . ,		1.51	7.30	7.45	0.03	7.52	6,90	4.60			
constant value, s0		1.09		1.09		1.09					
Constant value, 30		1.00		1.03		1.05					
PSE W4 Additional Area- Cap										y=0	
· oz · · · · · · · · · · · · · · · · · ·										,-0	
cracked element	x-dim	y-dim	lyy	lxx							
cap	3	0.125	0.28125	0.00049					сар		
оср	·	0, 120	0.20120	0.00043			ı		Сар		
additional elements					Al area	x-dist	y-dist	A*xd	A*yd	Area*xd cg^2 A	roptud cata
Al angle, r,h	1.44	0.125	0.03110	0.00023	0.1800	0.72	0.19	0.12960	0.03375		,
											0.01042
Al angle, I,h	1.44	0.125	0.03110	0.00023	0.1800	2.28	0.19	0.41040	0.03375		0.01042
Al angle, r,v	0.125	1.250	0.00020	0.02035	0.1563	1.38	0.88	0.21523	0.13672	0.00234	0.03121
Al angle, I,v	0.125	1.250	0.00020	0.02035	0.1563	1.62	0.88	0.25352	0.13672	0.00234	0.03121
Ti straps, r	1.25	0.250	0.04069	0.00163	0.5000	0.63	0.38	0.31250	0.18750		0.00141
Ti eterne I	4.05	0.050	0.04000	0.00400	0.5000	0.00	0.00	4.40750	0.40750	0.00201	0.00111

0.5000

2.38

1.500 sum (a*d) / sum (area) 0.428 sum (a*d) / sum (area) centc11, G3 cg x-coord cg y-coord total ly F3 intc11, RIY 1.133 RIX total lx 0.130

0.38281

0.00141

0.18750

1.18750

0.14400 0.04441 1.6725 2.50875 0.71594 0.98934 0.08607

INPUT DATA FOR THE NASFLA PROGRAM - ANGLE WS 130

0.250

0.04069

0.00163

1.25

TOTAL

Angle Angle, flange thickness Fastener	w x t = t= D=	0.09 0.125 0.190	width (for or	ne fastener in	row) x thickn	ess		
	TAXI	1-g stress	stress/g	1-g stress	stress/g	1-g stress	stress/g	LANDING
		gust, exec	-	gust, cargo		_		
stress analytical WS130	-1000	6612	6415	6184	5999	6245	6059	3818
load applied to angle	-90	595	577	557	540	562	545	344
cap, 1st Pin Load	-9	60	58	56	54	56	55	34
PSI								
S0 = between fstn	-880	5819	5645	5441	5279	5495	5332	3360
S3 = P/DT	-379	2506	2431	2343	2273	2366	2296	1447
KSI								
S0 = between fstn	-0.88	5.82	5.65	5.44	5.28	5.50	5.33	3.36
S3 = P/DT	-0.38	2.51	2.43		ti veri iv tualitiisiilla tilla	2.37	네네. 15 HE HETE TO THE	1.45
constant value, s0		1.03		1.03		1.03		
constant value, s3		1.03		1.03		1.03		

B-4 PSE W4 SA227 Main Spar Lower Cap at WS 99 (Continued)

INPUT DATA FOR THE NASFLA PROGRAM - ANGLE WS 146

Angle								
Angle, flange thickness	t=	0.125						
Fastener	D=	0.190						
	TAXI	1-g stress	stress/g	1-g stress	stress/g	1-g stress	stress/g	LANDING
		gust, exec	gust, exec	gust, cargo	gust, cargo	gust, comm	gust, comm	
stress analytical WS146	-1000	5831	5831	5453	5453	5507	5507	3367
load applied to angle	-90	525	525	491	491	496	496	303
cap, 1st Pin Load	-18	105	105	98	98	99	99	61
PSI								
S0 = between fstn	-800	4665	4665	4362	4362	4406	4406	2694
S3 = P/DT	-758	4419	4419	4133	4133	4174	4174	2552
KSI								
S0 = between fstn	-0.80	4.66	4.66	4.36	4.36	4.41	4.41	2.69
S3 = P/DT	-0.76	4.42	4.42	4.13	4.13	4.17	4.17	2.55
constant value, s0		1.00		1.00		1.00		
constant value, s3		1.00		1.00		1.00	•	

B-5 PSE W5 SA227 Skin Splice at WS 99 Lower Surface

PSE W-5 - WING SKIN SPLICE AT WS99, SA227 Inboard NASFLA PROGRAM INPUT DATA

Date:

1-Sep-98

Through Crack Case 5 ... (row of fasteners)

skin Area = 0.050 2024-T3 skin .063 t x .800 w

E/D b/d= 0.000 for .063 skin

	•	Maneuver, C	ommuter	Maneuver,	, Cargo	Maneuver, E	xecutive	
	TAXI	1-g stress	stress/g	1-g stress	stress/g	1-g stress	stress/g	LANDING
stress, measured	-	7523	6898	7449	6830	7965	7304	4600
applied load=stress*area		379	348	375	344	401	368	232
axial load	-	231	212	229	210	245	225	141
1st Pin Load	-	148	136	146	134	157	144	90
PSI								
S0 = axial load	0	4589	4208	4544	4166	4859	4455	2806
S3 = P/DT	. 0	15046	13796	14898	13660	15930	14608	9200
KSI								
S0 = between fstn	0.00	4.60	4.20	4.50	4.20	4.90	4.50	2.80
S3 = P/DT	0.00	15.00	13.80	14.90	13.70	15.90	14.60	9.20
constant value, s0		1.10		1.07		1.09		
constant value, s3		1.09		1.09		1.09		

PSE W-5 - WING SKIN SPLICE AT WS99, SA227 Outboard

Date:

17-Sep-97

NASFLA PROGRAM INPUT DATA

19-Sep-97 22-Sep-97 2-Sep-98

Through Crack Case 5 ... (row of fasteners) skin Area = 0.026 skin of .032 x .800 w (avg), 2024-T3

 skin thickness
 t=
 0.032

 Fastener
 D=
 0.130

E/D b/d= 0.289 b=.45, for shim, E/D b/d= 0.000 for .032 skin

				Maneuver,	Cargo	Maneuver, E	xecutive	
	TAXI	1-g stress	stress/g	1-g stress	stress/g	1-g stress	stress/g	LANDING
stress, measured	•	7523	6898	7449	6830	7965	7304	4600
axial load	-	145	133	143	131	153	141	88
1st Pin Load	-	48	44	47	43	51	46	29
PSI								
S0 = axial load	0	5653	5184	5598	5133	5986	5489	3457
S3 = P/DT	0	11506	10550	11392	10446	12182	11171	7035
KSI		•						
S0 = between fstn	0.00	5.70	5.20	5.60	5.10	6.00	5.50	3.50
S3 = P/DT	0.00	11.50	10.50	11.40	10.40	12.20	11.20	7.00
constant value, s0		1.10		1.10		1.09		
constant value, s3		1.10		1.10		1.09		•

B-6 PSE W6 SA227 Wing Extension Fitting Main Spar Lower Surface

PSE W6 - SA227 TIP EXTENSION AT END OF OUTBOARD FITTING @ 16,500 lbs Main Spar Lower Surface,

NASFLA PROGRAM INPUT DATA FOR ALUM STRAP

Lower Spar Area	Area =	0.345	(Two .125 an	gles + .125 C	Cap) * 1.38 v	width at WS 2	260 (ref 27-33	3000)
Strap	W=	8.0						
Strap	t=	0.071						
Fastener	D=	0.19						
Fastener	ED=	0.38						•
		1-g stress	stress/g	1-g stress	stress/g	1-g stress	stress/g	
	TAXI	Gust, com	Gust, com	Gust, car	Gust, car	Gust, exec	Gust, exec	LANDING
stress, measured	(2,000)	1,339	1,785					800
Load=stress*area	-	462	616					276
Between Fasteners	-	55	74					33
Fastener Load	-	69	92		ů.			41
PSI								
S0 = between fstn	0	976	1301					583
S3 = P/DT	0	5137	6848					3069
KSI								
S0 = between fstn	0.00	0.98	1.30					0.58
S3 = P/DT	0.00	5.14	6.85					3.07
constant value, s0		0.75						
constant value, s3		0.75						

B-7 PSE W7 SA227 Lower Wing Skin FWD Side MLG Trunnion at WS 113

PSE W7 - SA227 Lower wing skin on forward side of landing gear trunion at WS 113 NASFLA PROGRAM INPUT DATA FOR STRINGER

Stringer Area	Area =	0.047 horiz plate portion
Stringer Width	Width =	0.750
Stringer thickness	t=	0.063
Fastener Hole Diameter	D=	0.160
Fastener Hole Edge Distance	B=	0.344 1/2 of (width063)

			MANUCLICE	
			MAN/GUST	
	TAXI 1-G	1-g stress	stress/g	LANDING
stress, measured	-4000	7,900	7,400	4,600
load, stress*area	-188	371	348	216
1st rivet load	-43	85	80	50
Between Fasteners	-145	286	268	166
PSI				
S0+P/WT	-4000	7900	7400	4600
S0 = between fstn	-3080	6083	5698	3542
S3 = P/DT	-4290	8472	7936	4933
	-4290	0412	1 930	4933
KSI				
S0+P/WT	-4.00	7.90	7.40	4.60
S0 = between fstn	-3.08	6.08	5.70	3.54
S3 = P/DT	-4.29	8.47	7.94	4.93
constant value, s0	1.00		1.07	0.00
constant value, s3	1.00		1.07	0.00

B-7 PSE W7 SA227 Lower Wing Skin FWD Side MLG Trunnion at WS 113 (Continued)

	NASTRAN			
			MAN/GUST	·
	TAXI 1-G	1-g stress	stress/g	LANDING
stress, measured	-4000	7,900	7,400	4,600
load, stress*area	-188	371	348	216
1st rivet load	-37	73	68	42
Between Fasteners	-151	299	280	174
PSI				
S0+P/WT	-4000	7900	7400	4600
S0 = between fstn	-3216	6352	5950	3698
S3 = P/DT	-3656	7220	6763	4204
KSI				
S0+P/WT	-4.00	7.90	7.40	4.60
S0 = between fstn	-3.22	6.35	5.95	3.70
S3 = P/DT	-3.66	7.22	6.76	4.20
constant value, s0	1.00		1.07	0.00
constant value, s3	1.00		1.07	0.00

B-7 PSE W7 SA227 Lower Wing Skin FWD Side MLG Trunnion at WS 113 (Continued)

NASFLA PROGRAM INPUT DATA FOR SKIN WITH STRINGER BROKEN

Skin Area	Area =	0.024 (under width of stringer)
Skin Width	Width =	0.750
Skin thickness	t=	0.032
Fastener Hole Diameter	D=	0.160

			MAN/GUST	
	TAXI 1-G	1-g stress	stress/g	LANDING
stress, measured	-4000	7,900	7,400	4,600
stress, stringer broken	-4920	9717	9102	5658
load, stress*area	-118	233	218	136
1st rivet load	-52	103	96	60
Between Fasteners	-66	131	122	76
PSI				
S0+P/WT	-4920	9717	9102.	5658
S0 = between fstn	-2755	5442	5097	3168
S3 = P/DT	-10148	20041	18773	11670
KSI				
S0+P/WT	-4.92	9.72	9.10	5.66
S0 = between fstn	-2.76	5.44		3.17
S3 = P/DT	-10.15	20.04	18.77	11.67
constant value, s0	1.00		1.07	0.00
constant value, s3	1.00		1.07	0.00

B-8 PSE W8 SA226 and SA227 Chordwise Skin Splice at WS 173.944

PSE W8 - SA226/227 Chordwise skin splice at WS 173.944 lower surface NASFLA PROGRAM INPUT DATA FOR ALUM SKIN

Skin	Area =	0.015625			
Skin	t=	0.025			
Fastener	D=	0.125			
Fastener	H=	0.625			
		1-g stress	stress/g		
	TAXI	GUST	GUST	LANDING	
stress	-1000	4,930	5,270	2,800	
Stress*Area	-16	7 7	82	44	
Between Fasteners	-8	37	40	21	
1st fastner load	-8	40	43	23	
PSI					
S0 = between fstn	-480	2366	2530	1344	
S3 = P/DT	-2600	12818	13702	7280	
KSI				4	
S0 = between fstn	-0.48	2.37	2.53	1.34	
S3 = P/DT	-2.60	12.82	13.70	7.28	
constant value, s0		0.94			
constant value, s3		0.94			

B-9 PSE W10 SA226 and SA227 Skin Splice at WS 27 Inboard

PSE W-10 - WING SKIN SPLICE AT STA 27, SA226 NASFLA PROGRAM INPUT DATA

skin	Area =	0.03 skin of .050 x .625 w	,
skin thickness	t=	0.05	
Fastener	D=	0.19	
Fastener spacing		0.625	

	Maneuver						
	TAXI	1-g stress	stress/g	LANDING			
stress, measured	4,615	4,615	6,769	3,300			
axial load	80	80	117	57			
1st Pin Load	105	105	154	75			
PSI							
S0 = axial load	2551	2551	3741	1824			
S3 = P/DT	11041	11041	16194	7895			
KSI							
S0 = between fstn	2.55	2.60	3.70	1.80			
S3 = P/DT	11.04	11.00	16.20	7.90			
constant value, s0		0.70					
constant value, s3		0.68					

B-10 PSE W11 SA226 Wing Lower Center Section Skin at Landing Light Cutout

PSE W11 - SA226 Wing lower center section skin at landing light cut out. NASFLA PROGRAM INPUT DATA FOR ALUM SKIN

Belly skin	t= 0.05 at splice						
Belly skin	W=	5 d	list bewteen	rear spar a	nd splice strap		
Belly skin	Area=	0.25 a	0.25 at splice				
stress, measured stress at fillet	TAXI -1000 -2000	1-g stress GUST 4,615 9230	stress/g GUST 6,769 13538	LANDING 2,100 4200	Tables E-12 and D-8 Kt=2.0		
PSI S0	-2000	9230	13538	4200			
KSI S0	-2.00	9.23	13.54	4.20			
constant value, s0		0.68					

B-11 PSE W12 SA227 Tip Extension Fitting Rear Spar Lower Surface

NASFLA PROGRAM INPUT DATA FOR ALUM ANGLE

 Angle, Aera
 Area =
 0.2344

 Angle, flange
 t=
 0.125

 Fastener
 D=
 0.19

i		1-g stress	stress/g	1-g stress	stress/g	1-g stress	stress/g	
	TAXI	Gust, com	Gust, com	Gust, car	Gust, car	Gust, exec	Gust, exec	LANDING
stress, meas	(2,000)	805	1,073	834	1,111	930	1,239	500
1st Pin Load	(285)	74	98	77	102	85	114	46
Between Fast	(183)	115	153	119	159	133	177	71
Apply Load	(468)	189	251	. 196	261	218	291	117
PSI								
S0 = between	-781	491	653	508	678	567	755	303
S3 = P/DT	-12000	3116	4126	3242	4295	3579	4800	1937
KSI								
S0 = between	-0.78	0.49	0.65	0.51	0.68	0.57	0.76	0.30
S3 = P/DT	-12.00	3.12	4.13	3.24	4.29	3.58	4.80	1.94
constant value, s0		0.75		0.75	• 9	0.75		
constant value, s3		0.76		0.76		0.75	•	

NASFLA PROGRAM INPUT DATA FOR ALUM ANGLE

Angle, Aera Area = 0.2344Angle, flange t= 0.125Fastener D= 0.19

		1-g stress	stress/g	1-g stress	stress/g	1-g stress	stress/g	
	TAXI	Gust, com	Gust, com	Gust, car	Gust, car	Gust, exec	Gust, exec	LANDING
stress, meas	(2,000)	805	1,073	834	1,111	930	1,239	500
1st Pin Load	(245)	90	120	93	124	104	139	56
Between Fast	(224)	98	131	102	136	114	152	61
Apply Load	(469)	188	251	195	260	218	291	117
PSI								
S0 = between	-956	418	559	435	580	486	648	260
S3 = P/DT	-10316	3789	5053	3916	5221	4379	5853	2358
KSI								
S0 = between	-0.96	0.42	0.56	0.44	0.58	0.49	0.65	0.26
S3 = P/DT	-10.32	3.79	5.05	3.92	5.22	4.38	5.85	2.36
constant value, s0		0.75		0.76		0.75		
constant value, s3		0.75		0.75		0.75		

B-12 PSE W13 SA227 Tip Extension at End of Outboard Fitting Rear Spar Lower Surface

PSE W13 - SA227 TIP EXTENSION AT END OF OUTBOARD FITTING @ 16,500 lbs Rear Spar Lower Surface, AFT C.G. (R1517 - Page A-87)

NASFLA PROGRAM INPUT DATA FOR ALUM ANGLE

Spar Cap Angles Angle, flange thick Fastener Fastener	Area = t= D= ED=	0.06048 0.063 0.19 0.38		onger leg is (used for stee	el fitting attac	chment	
		1-g stress	stress/g	1-g stress	stress/g	1-g stress	stress/g	
	TAXI	Gust, com	Gust, com	Gust, car	Gust, car	Gust, exec	Gust, exec	LANDING
stress, measured	(2,000)	1,779	1,779	1,842	2,314	2,054	2,580	500
Between Fasteners	-	112	112	116	145	129	162	31
1st Pin Load	-	75	75	78	98	87	109	21
PSI								
S0 = between fstn	0	1852	1852	1918	2397	2133	2679	513
S3 = P/DT	0	6266	6266	6516	8187	7268	9106	1754
KSI								
S0 = between fstn	0.00	1.85	1.85	1.92	2.40	2.13	2.68	0.51
S3 = P/DT	0.00	6.27	6.27	6.52	8.19	7.27	9.11	1.75
constant value, s0		1.00		0.80		0.79	•	
constant value, s3		1.00		0.80		0.80		

B-13 PSE W14 SA227 Tip Extension at End of Outboard Fitting Main Spar Lower Surface

PSE W14 - SA227 TIP EXTENSION AT END OF OUTBOARD FITTING

Main Spar Lower Surface, AFT C.G. (R1517 - Page A-87)

NASFLA PROGRAM INPUT DATA FOR ALUM ANGLE

Spar Cap Angles	Area =	0.09375
Angle, flange thick	t=	0.125
Fastener	D=	0.19
Fastener	ED=	0.38

		1-g stress	stress/g	1-g stress	stress/g	1-g stress	stress/g	
	TAXI	Gust, com	Gust, com	Gust, car	Gust, car	Gust, exec	Gust, exec	LANDING
stress, measured	-	805	1,073	834	1,111	930	1,239	800
Between Fasteners	-	25	33	26	35	29	39	25
1st Pin Load	-	50	67	52	69	58	77	50
PSI:								
S0 = between fstn	0	268	357	278	370	310	413	266
S3 = P/DT	0	2120	2825	2196	2925	2449	3262	2107
KSI								
S0 = between fstn	0.00	0.27	0.36	0.28	0.37	0.31	0.41	0.27
S3 = P/DT	0.00	2.12	2.83	2.20	2.93	2.45	3.26	2.11
constant value, s0		0.75		0.76		0.76		
constant value, s3		0.75		0.75		0.75		

B-14 PSE EM1 Upper Engine Mount at Firewall

PSE EM1 Upper Engine Mount at Firewall - Pre S/B

PLATE

NASGRO TC01

.05 through crack at washer OD

plate t=

0.125

plate W=

2.45 circumference at washer OD

			GUST	
	TAXI	1-G	Per G	LAND
Load (2 mounts)	644	1424	644	644 from fbd of mount truss
Load per mount	644	1424	644	644 assuming one mount carries all load
S0 ksi	28.68	63.42	28.68	28.68
Constant	2.21		2.21	2.21

WELD

NASGRO TC08

Through crack around .05 of weld circumference

weld t=

0.205

C=

0.025 initial crack half-length

			GUST	
	TAXI	1-G	Per G	LAND
Load (2 mounts)	644	1424	644	644 from fbd of mount truss
Load per mount	644	1424	644	644 assuming one mount carries all load
S0 ksi	7.97	17.62	7.97	7.97
Constant	2.21		2.21	2.21

B-15 PSE N1 Upper Longeron at Firewall

PSE N1 - SA226/227 Nacelle upper longeron at firewall

NASFLA PROGRAM INPUT DATA FOR CAP

Cap area	Area =	0.203 effective area at end of steel fitting
Cap thickness	t=	0.090
Fastener dia	D=	0.156 prior to repair for elongated holes
Fastener edge dist	B=	1.125 in upward direction

		ĺ	MAN/GUST		•
	TAXI 1-G	1-g stress	stress/g	LANDING	
applied load, upper truss	644	1,424	644	644	from fbd of mount truss
load per fitting	644	1424	644	644	assuming 1 fitting bears all load
1st rivet load	303	669	303	303	
Between Fasteners	341	755	341	341	
PSI ·					
S0+P/WT	3180	7032	3180	3180	
S0 = between fstn	1686	3727	1686	1686	
S3 = P/DT	21558	47670	21558	21558	
KSI					
S0+P/WT	3.18	7.03	3.18	3.18	
S0 = between fstn	1.69	3.73	1.69	1.69	
S3 = P/DT	21.56	47.67	21.56	21.56	
constant value, s0	2.21		2.21	2.21	
constant value, s3	2.21	•	2.21	2.21	

B-16 PSE N2 Upper Longeron at Wing Rib Attach Angles

PSE N2 - SA226/227 Nacelle upper longeron at wing rib attach angle

NASFLA PROGRAM INPUT DATA FOR CAP

Cap, at gage 28	Area =	0.217
Сар	t=	0.090
Fastener	D=	0.188

		ı	MAN/GUST	
	TAXI	1-g stress	stress/g	LANDING
stress, measured	394	-956	394	174 gage 28
load, stress*area	85	-207	85	38
1st fastener load	69	-168	69	31 from NASTRAN model
PSI S3 = P/DT	4091	-9927	4091	1807
KSI S3 = P/DT	4.09	-9.93	4.09	1.81
constant value, s3	-2.43		-2.43	0.00

B-17 PSE N3 Upper Longeron to Wing Rib Attach Angles

PSE N3 - SA226/227 Nacelle upper longeron wing rib attach angles

Load NASFLA PROGRAM INPUT DATA FOR ANGLE Cap, at gage 28 Area ≈ 0.217 27-31135 angle fastener head MAN/GUST TAXI LANDING 1-g stress stress/g stress, measured gage 28 394 -956 394 load, stress*cap area -104 43 43 19 load is divided by 2 since 2 angles carry load **FEM Stress** 6409 -15552 6409 2831 Stress is 150 times applied load in Nastran model PSI **S**1 6409 -15552 6409 2831 KSI S1 6.41 -15.55 6.41 2.83 constant value, s1 -2.43 -2.43 0.00

B-18 PSE H1 Horizontal Stabilizer Rib Strap at Rear Spar BL 3.1

NASFLA PROGRAM INPUT DATA FOR STRAP

Strap Area	Area =	0.125 horiz plate portion
Strap Width	Width =	1.000
Stap thickness	t=	0.125
Fastener Hole Diameter	D=	0.190
Fastener Hole Edge Distance	B=	0.500

		I	MAN/GUST	
	TAXI	1-g stress	stress/g	Prop Wash
stress, calc	733	733	2,305	1,950
load, stress*area	92	92	288	244
1st rivet load	24	24	75	63
Between Fasteners	68	68	213	180
PSI				
S0+P/WT	733	733	2305	1950
S0 = between fstn	542	542	1706	1443
S3 = P/DT	1003	1003	3154	2668
KSI				
S0+P/WT	0.73	0.73	2.31	1.95
S0 = between fstn	0.54	0.54	1.71	1.44
S3 = P/DT	1.00	1.00	3.15	2.67
constant value, s0	1.00		0.32	0.00
constant value, s3	1.00		0.32	0.00

B-19 PSE V1 Vertical Fin Main Spar Cap Strips Below Pivot Fitting

NASFLA PROGRAM IN	IPUT DATA			
.090 Strap, 1st fstnr	t=	0.09		
Fastener	D=	0.16		
Fastener	Edge Dist=	0.35		
		Table D-7	Table D-8	
	TAXI	1-G	Stress/G	Propwash
stress, gage 15	. 0	0	1164	1170
Correction Factor (=measured/unit load	0 d case)	0	1.51	1.52
PSI				
S0 = between fstn	0	0	0	0
S3 = P/DT	4385	0	4385	4408
KSI				
S0 = between fstn	0.00	0.00	0.00	0.00
S3 = P/DT	4.39	0.00	4.39	4.41
constant value, s0	1		0.00	
constant value, s3	1		. 0.00	0
Schedule				
	1	short		
	3	medium		
L	1	long		

Case B				
NASFLA PROGRAM	INPUT DATA			
Channel, 1st fstnr	t=	0.19		
Fastener	D=	0.16		
Fastener	Edge Dist=	0.35		
		Table D-7	Table D-8	
	TAXI	1-G	Stress/G	Propwash
stress, gage 15	0	0	1164	1170
Correction Factor	0	0	1.51	1.52
(=measured/unit loa	ad case)			
PSI				
S0 = between fstn	0	0	0	0
S3 = P/DT	3931	0	3931	3951
KSI				
S0 = between fstn	0.00	0.00	0.00	0.00
S3 = P/DT	3.93	0.00	3.93	
constant value, s0	1		0.00	. 0
constant value, s3	11		0.00	
Schedule				
	1	short		
	3	medium		
	. 1	long		

B-20 PSE F1 T-Stringer, Top Centerline Near FS 300

Pr/t= 5775 Hoop Stress = P= 7 33 r= 0.04 t= **PRESS GUST** S3= P/Dt 2024-T3 alum skin 1300 S3= 33300 S4= 3550 bearing stress Const= 0 2.73 P= Hoop*H*t 173.25 bearing load Hoop Stress= 5775 0.75 Fastener Spacing H= 0.04 Thickness of skin 0.13 #4 Fastener D= 0.04 Skin thickness t= S3= P/Dt 2014-T6 T-stringer 3550 1300 S3= 26700 bearing stress S4= 2.73 Const= P= Hoop*H*t 173.25 bearing load P= Hoop Stress= 5775 H= 0.75 Fastener Spacing 0.04 Thickness of skin t= 0.13 #4 Fastener D= 0.05 Stringer thickness t= S3= P/Dt 7075-T73 T-stringer S3= 21200 S4= 3550 1300 bearing stress 2.73 Const= 0 P= Hoop*H*t 173.25 bearing load P= Hoop Stress= 5775 0.75 Fastener Spacing H= 0.04 Thickness of skin t= D= 0.13 #4 Fastener 0.063 Stringer thickness t=

APPENDIX C NASGRO OUTPUT FILES

C-1 PSE W1 SA226 Main Spar Lower Cap at WS 99

```
FATIGUE CRACK GROWTH ANALYSIS
             -----Modified by FAI-----
            DATE: 05-OCT-98    TIME: 10:13:40
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W1 SA226 MS, crack in angle WS 99
GEOMETRY
MODEL: CC02-Corner crack from hole in plate (2D)
                   0.1250
Plate Thickness, t =
Plate Width, W = 1.4400
Hole Diameter, D = 0.1600
Hole-Center-to-Edge Dist., B =
                            0.3100
Poisson s ratio = 0.30
FLAW SIZE:
a (init.) = 0.5000E-01
c (init.) = 0.5000E-01
a/c (init.) = 1.000
MATERIAL
MATL 1:
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : : :
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
:----:----:----:----:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
 [Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress SO: -1.0000
Scale Factor for Stress S1: 0.0000
```

C-1 PSE W1 SA226 Main Spar Lower Cap at WS 99 (Continued)

```
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S3:
                              9.6200
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                              3.8400
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S3:
                              9.6200
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                              3.8400
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S3:
                              9.6200
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                              2.9000
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S3:
                              7.2500
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
 Block Number
                              Block Case No.
From
   1
              1
                                      1
   2
              2
                                      2
                                      1
    5
              5
                                      3
    6
                                      5
    7
              7
                                      1
    8
                                      3
   9
              9
                                      5
   10
             10
   11
             11
                                      3
   12
             12
   13
             13
   14
             14
   15
             15
BLOCK CASE NO. 1
 S : M: NUMBER
                             S0
                                                S1
   : A:
           OF
 E : T: FATIGUE
 P : L: CYCLES
                         (t1): (t2)
                                            (t1): (t2)
----:--:---:
               1.90:
  1: 1:
                         0.70:
                                   1.30:
                                             0.70:
                                                       1.30:
               0.09:
  2: 1:
                          0.60:
                                   1.40:
                                             0.60:
                                                       1.40:
               0.01:
  3: 1:
                          0.54:
                                   1.46:
                                             0.54:
                                                       1.46:
 S : M: NUMBER
                            S3
                                       :
                                                S
 T : A:
           OF
 E : T: FATIGUE
 P : L: CYCLES
                         (t1): (t2)
                                            (t1): (t2)
---:--:--:
               1.90:
                         0.70:
  1: 1:
                                   1.30:
                                             0.00:
                                                       0.00:
  2: 1:
               0.09:
                          0.60:
                                    1.40:
                                             0.00:
                                                       0.00:
   3: 1:
               0.01:
                          0.54:
                                   1.46:
                                             0.00:
                                                       0.00:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

C-2

C-1 PSE W1 SA226 Main Spar Lower Cap at WS 99 (Continued)

BLOCK	CAS	E NO. 2					
s:	M:	NUMBER	:	S0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1.	:- 1:	9.57	:	0.60:	1.20:	-0.30:	0.30:
	1:	1.14		0.40:	1.40:	-0.50:	0.50:
	1:	0.57		0.30:	1.50:	-0.60:	0.60:
	1:	0.11		0.10:	1.70:	-0.80:	0.80:
	1:	0.02			1.90:		
	1:	0.01		-0.30:	2.10:		1.20:
	1:	0.00		-0.50:	2.10:	-1.40:	1.40:
				-0.30:	2.50:		1.60:
-	1:	0.00					
	1:	0.00		-0.90:	2.70:		1.80:
10:		0.00		-1.10:	2.90:		2.00:
s:		NUMBER	:	S 3	:	s	:
	A:	OF	:		:		:
E :			:		:		
P :	L:	CYCLES	: -·	(tl):	(t2) :	(£1):	(t2) :
1:	1:	9.57	:	0.60:	1.20:	0.00:	0.00:
2:	1:	1.14	:	0.40:	1.40:	0.00:	0.00:
3:	1:	0.57	:	0.30:	1.50:	0.00:	0.00:
4:	1:	0.11	:	0.10:	1.70:	0.00:	0.00:
5:	1:	0.02	:	-0.10:	1.90:	0.00:	0.00:
6:	1:	0.01	:	-0.30:	2.10:	0.00:	0.00:
7:	1:	0.00	:	-0.50:	2.30:	0.00:	0.00:
8:	1:	0.00	:	-0.70:	2.50:	0.00:	0.00:
9:	1:	0.00	:	-0.90:	2.70:	0.00:	0.00:
10:	1:	0.00	:	-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK CASE NO. 3 S0 S1 S : M: NUMBER T : A: OF : E : T: FATIGUE (t1) : (t2) : (t1) : (t2) P : L: CYCLES ----:--:--:--:--:---:---: 1: 1: 19.14: 0.60: 1.20: -0.30: 2: 1: 2.29: 0.40: 1.40: -0.50: 3-1- 1.14: 0.30: 1.50: -0.60: 0.30: 1.40: 1.50: 1.70: 1.90: 2.10: 2.30: 0.50: 0.60: -0.80: 4: 1: 0.23 : 0.10: 0.80: 0.04 : 0.01 : -1.00: -1.20: 5: 1: -0.10: 1.00: 6: 1: -0.30: 1.20: 0.00: -0.50: 7: 1: -1.40: 1.40: 2.50: 2.70: 2.90· 1.60: 0.00 : -0.70: -1.60: 8: 1: 9: 1: 0.00 : -0.90: -1.80: 1.80: 0.00: 10: 1: -1.10: -2.00: 2.00: S : M: NUMBER : **S**3 S T : A: OF : E : T: FATIGUE : P : L: CYCLES : (t1): (t2): (t1): (t2) ____;__;__;__; 1: 1: 19.14: 0.60: 1.20: 0.00: 0.00: 2.29: 0.40: 0.30: 0.10: 2: 1: 1.40: 0.00: 0.00: 0.00: 1.50: 0.00: 3: 1: 4: 1: 0.23 : 1.70: 0.00: 0.00: 0.00: 0.04: -0.10: 1.90: 5: 1: 0.00: 6: 1: 0.01 : -0.30: 2.10: 0.00: 0.00: 0.00: 0.00: 2.30: 7: 1: -0.50: 0.00: 0.00: -0.70: 8: 1: 2.50: 0.00 : 2.70: 0.00: 0.00: 9: 1: -0.90:

0.00: -1.10:

10: 1:

2.90:

0.00:

0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLOCK	CAS	E NO. 4					
s:	M:	NUMBER	:	S0	:	s1	:
т:	A:	OF	:		:		:
E:	T:	FATIGUE	:		:		:
		CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
1:	-		- : - :	0.60:	1.20:	-0.30:	0.30:
		4.57					0.50:
3:		2.29					0.60:
4:	1:	0.46					0.80:
5:	1:	0.08			1.90:		
6:	1:	0.02	:		2.10:	-1.20:	
7:	1:	0.01	:	-0.50:	2.30:	-1.40:	
8:	1:	0.00	:				
9:	1:	0.00					
10:	1:	0.00					
s:	M:	NUMBER			:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
-	:- 1:		- : -	:-	1 20	:-	:
		38.29 4.57					
	1:	2.29					
	1:	0.46					
	1:					0.00:	
	1:					0.00:	
7:	1:	0.01				0.00:	
8:	1:				2.50:	0.00:	0.00:
9:	1:					0.00:	
10:	1:	0.00			2.90:	0.00:	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLC	OCK	CAS	E NO. 5					
s	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
₽	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
		:-		-:-	:-		:-	
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	Μ:	NUMBER	:	S3	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:-	:-	:-	:
	1:	1:	0.28	:		1.00:	0.00:	0.00:
	2:	1:	0.44	:	0.81:	1.06:	0.00:	0.00:
	3:	1:	0.22	:	0.62:	1.12:	0.00:	0.00:
	4:	1:	0.06	:	0.43:	1.18:	0.00:	0.00:
	5:	1:	0.00	:	0.23:	1.24:	0.00:	0.00:
	6:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	·:	:	:	:
	1:	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
S	:	M:	NUMBER	:	S 3	:	S	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-	-	- : -	:	:	:-	:
	1:	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD						
S : M:	NUMBER	:	so	:	S1	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:	(ksi)	:	(ksi)	:
P : L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:-		:	:	:-	:	:
1: 1:	9.57		2.30:	4.61:	0.00:	0.00:
2: 1:	1.14		1.54:	5.38:	0.00:	0.00:
3: 1:	0.57		1.15:	5. 7 6:	0.00:	0.00:
4: 1:	0.11		0.38:	6.53:	0.00:	0.00:
5: 1:	0.02	:	-0.38:	7.30:	0.00:	
6: 1:	0.01	:	-1.15:	8.06:	0.00:	0.00:
7: 1:	0.00	:	-1.92:	8.83:	0.00:	0.00:
8: 1:	0.00	:	-2.69:	9.60:	0.00:	0.00:
9: 1:	0.00	:	-3.46:	10.37:	0.00:	0.00:
10: 1:	0.00	:	-4.22:	11.14:	0.00:	0.00:
S : M:	NUMBER	:	S3	:	S	•
T : A:	OF	:		:		:
E : T:	FATIGUE	:	(ksi	٠ .	(1	٠.
P : L:				, :	(ksi)	, .
	CYCLES		(t1):			
:		: ·:	(t1) :	(t2) :	(t1):	(t2) :
1: 1:	9.57	: ·:	(t1) : : 5.77:	(t2) : : 11.54:	(t1): ::	(t2) : : 0.00:
1: 1: 2: 1:	9.57 1.14	: ·: :	(t1): :- 5.77: 3.85:	(t2) : : 11.54: 13.47:	(t1): 0.00: 0.00:	(t2) : : 0.00: 0.00:
1: 1: 2: 1: 3: 1:	9.57 1.14 0.57	: -: : :	(t1): : 5.77: 3.85: 2.89:	(t2) : :- 11.54: 13.47: 14.43:	(t1): 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00:
1: 1: 2: 1: 3: 1: 4: 1:	9.57 1.14 0.57 0.11	:	(t1): 5.77: 3.85: 2.89: 0.96:	(t2) : : 11.54: 13.47: 14.43: 16.35:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : : 0.00: 0.00: 0.00: 0.00:
1: 1: 2: 1: 3: 1: 4: 1: 5: 1:	9.57 1.14 0.57	:	(t1): : 5.77: 3.85: 2.89:	(t2): : 11.54: 13.47: 14.43: 16.35: 18.28:	(t1): 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00:
1: 1: 2: 1: 3: 1: 4: 1:	9.57 1.14 0.57 0.11	:	(t1): 5.77: 3.85: 2.89: 0.96: -0.96:	(t2) : : 11.54: 13.47: 14.43: 16.35:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 1: 2: 1: 3: 1: 4: 1: 5: 1:	9.57 1.14 0.57 0.11 0.02	:	(t1): 5.77: 3.85: 2.89: 0.96: -0.96: -2.89:	(t2): : 11.54: 13.47: 14.43: 16.35: 18.28:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1:	9.57 1.14 0.57 0.11 0.02 0.01	:	(t1): 5.77: 3.85: 2.89: 0.96: -0.96: -2.89:	(t2):: 11.54: 13.47: 14.43: 16.35: 18.28: 20.20:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) :: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00	:	(t1): 5.77: 3.85: 2.89: 0.96: -0.96: -2.89: -4.81:	(t2):: 11.54: 13.47: 14.43: 16.35: 18.28: 20.20: 22.13:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) :: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00	:	(t1): 5.77: 3.85: 2.89: 0.96: -0.96: -2.89: -4.81: -6.73:	(t2): 11.54: 13.47: 14.43: 16.35: 18.28: 20.20: 22.13: 24.05:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s	: M:	NUMBER	:	so	:	S1	:
T	: A:	OF	:		:		:
		FATIGUE) :	(ksi	
	: L:	CYCLES					
	: 1:		•	2.30:	•	0.00:	•
2	: 1:	2.29					
3	: 1:		:	1.15:	5.76:	0.00:	0.00:
4	: 1:	0.23	:	0.38:	6.53:	0.00:	0.00:
5	: 1:			-0.38:			
6	: 1:	0.01	:	-1.15:	8.06:	0.00:	0.00:
7	: 1:	0.00	:	-1.92:	8.83:	0.00:	0.00:
8	: 1:	0.00	:	-2.69:	9.60:	0.00:	0.00:
9	: 1:			-3.46:			
10	: 1:	0.00	:	-4.22:	11.14:	0.00:	0.00:
s	: M:	NUMBER	:	s3	:	S	•
${f T}$: A:				:		:
E	: Т:	FATIGUE	:	(ksi) :	(ksi	.) :
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1		19.14	-	-		0.00:	-
	: 1:			3.85:		0.00:	
3	: 1:						
4	: 1:					0.00:	
5	: 1:	0.04	:	-0.96:	18.28:		
6	: 1:			-2.89:		0.00:	0.00:
7	: 1:			-4.81;		0.00:	0.00:
8	: 1:	0.00	:	-6.73:	24.05:	0.00:	0.00:
9	: 1:					0.00:	0.00:
10	: 1:	0.00	:	-10.58:	27.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

1: 1:

FATIGUE SCHEDULE BLOCK STRESS TABLE

38.29 :

______ STD S0 S : M: NUMBER : S1 T : A: OF : E : T: FATIGUE : (ksi) (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 2.30: 4.61: 0.00: 1.54: 5.38: 0.00: 1: 1: 38.29 : 4.57: 2: 1: 0.00: 2.29 : 1.15: 5.76: 0.38: 6.53: 3: 1: 6.53: 0.00: 0.00: 4: 1: 0.46 : 0.00: 0.00: 0.00: 7.30: 5: 1: 0.08 : -0.38: 0.00: 6: 1: 0.02: -1.15: 8.06: 0.00: 0.01: 7: 1: 8.83: 0.00: -1.92: 0.00: 0.00: 8: 1: -2.69: 9.60: 0.00: 0.00: -3.46: 10.37: 9: 1: 0.00: 0.00: 0.00: 10: 1: 0.00 : -4.22: 11.14: 0.00: 0.00: S : M: NUMBER **S**3 T : A: OF E : T: FATIGUE (ksi) (ksi) P : L: CYCLES (t1): (t2): (t1) : (t2) ----:

0.00:

0.00:

5.77: 11.54:

2:	1:	4.57	:	3.85:	13.47:	0.00:	0.00:
3:	1:	2.29	:	2.89:	14.43:	0.00:	0.00:
4:	1:	0.46	:	0.96:	16.35:	0.00:	0.00:
5:	1:	0.08	:	-0.96:	18.28:	0.00:	0.00:
6:	1:	0.02	:	-2.89:	20.20:	0.00:	0.00:
7:	1:	0.01	:	-4.81:	22.13:	0.00:	0.00:
8:	1:	0.00	:	-6.73:	24.05:	0.00:	0.00:
9:	1:	0.00	:	-8.66:	25.97:	0.00:	0.00:
10:	1:	0.00	:	-10.58:	27.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
Ε	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		: -	:	:-	:	:
	1:	1:			2.90:			
	2:	1:	0.44	:	2.35:	3.07:	0.00:	0.00:
	3:	1:	0.22	:	1.80:	3.25:	0.00:	0.00:
	4:	1:	0.06	:	1.25:	3.42:	0.00:	0.00:
	5:	1:	0.00	:	0.67:	3.60:	0.00:	0.00:
	6:	1:	0.00	:	0.12:	3.77:	0.00:	0.00:
s	:	Μ:	NUMBER	:	S3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)) :	(ksi)) :
P	:	L:	CYCLES	:				
	-:	:-		-:-	-	-	:-	•
					7.25:			
		1:	0.44			7.69:	0.00:	
		1:			4.50:			
		1:			3.12:			
	5:	1:	0.00	:	1.67:	8.99:	0.00:	0.00:
	6:	1:	0.00	:	0.29:	9.43:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final F	law Size	K m	ax
	Step	a	c	a-tip	c-tip
200	15	0.053229	0.050622	4.329698	3.103968
400	15	0.056521	0.051348	4.347850	3.192783
600	15	0.059873	0.052181	4.364683	3.276225
800	15	0.063279	0.053121	4.380751	3.354709
1000	15	0.066741	0.054172	4.396494	3.428725
1200	15	0.070256	0.055335	4.412247	3.498799
1400	15	0.073827	0.056610	4.428252	3.565475
1600	15	0.077456	0.058001	4.444673	3.629289
1800	15	0.081144	0.059509	4.461608	3.690766
2000	15	0.084895	0.061136	4.479105	3.750407
2200	15	0.088711	0.062885	4.497176	3.808687

```
2400
                         0.092595
                                      0.064760
                                                  4.515804
                                                               3.866054
   2600
              15
                         0.096550
                                      0.066766
                                                  4.534949
                                                               3.922934
   2800
              15
                         0.100580
                                      0.068910
                                                  4.554553
                                                               3.979725
                                      0.071196
   3000
              15
                         0.104687
                                                  4.574541
                                                               4.036807
   3200
              15
                         0.108873
                                      0.073635
                                                  4.594826
                                                               4.094533
   3400
              15
                         0.113140
                                     0.076234
                                                  4.615301
                                                               4.153240
   3600
              15
                         0.117491
                                      0.079006
                                                  4.635838
                                                               4.213236
   3800
              15
                         0.121927
                                     0.081962
                                                  4.656284
                                                               4.274807
Transition to 1-d solution, TC03:
a = 0.1250 t = 0.1250
at Cycle No.
                     1.14 of Load Step No.
Step description:
of Block No. 8 of Schedule No.
Crack Size: c = 0.840928E-01, a/c = 1.48646
 Schedl
           Block
                           Final Flaw Size
                                                        K max
                  Step
                                 C
                                                        c-tip
   4000
              15
                               0.085385
                                                     4.296394
   4200
              15
                               0.089528
                                                      4.326786
   4400
              15
                               0.093805
                                                      4.361495
   4600
              15
                               0.098238
                                                      4.401221
   4800
              15
                               0.102858
                                                      4.446874
   5000
              15
                               0.107699
                                                      4.499661
   5200
              15
                               0.112808
                                                      4.561234
   5400
              15
                               0.118244
                                                      4.633927
   5600
              15
                               0.124092
                                                      4.721171
   5800
              15
                               0.130468
                                                      4.828290
   6000
              15
                               0.137553
                                                      4.964143
   6200
              15
                               0.145646
                                                      5.145029
   6400
              15
                               0.155307
                                                      5.405872
   6600
              15
                               0.167848
                                                      5.844639
   6800
              15
                               0.188504
                                                      7.005754
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 54.23 \quad K \text{ ref} = 0.000 \quad K \text{ cr} =
at the very beginning of Load Step No.
                                         10
Step description:
              8 of Schedule No.
of Block No.
                                        6888
Crack Size
               c = 0.224301
                 FATIGUE CRACK GROWTH ANALYSIS
                -----Modified by FAI-----
               DATE: 05-OCT-98 TIME: 10:17:32
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W1 SA226 MS, crack in cap WS 99
GEOMETRY
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                        0.1250
Plate Width, W = Hole Diameter, D =
                        3,0000
                       0.1600
Hole-Center-to-Edge Dist., B =
                                  0.3100
Poisson s ratio
FLAW SIZE:
    (init.) = 0.5000E-01
```

(init.) = 0.5000E-01

C

a/c (init.) = 1.000

Block Number

```
MATERIAL
MATL 1:
      1
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            :---::----:---:---:
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
                        -1.0000
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3:
                          6.6000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                          4.6400
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                          4.6400
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S3:
                         6.6000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                           3.5000
Scale Factor for Stress S1:
                           0.0000
Scale Factor for Stress S3:
                          4.9700
Total No. of Blocks in Schedule = 15
   Block Number and Case Correspondences
```

Block Case No.

Fr	om	-	To						
	1	-	1				L		
	2	-	2			2			
	3	-	3			į			
	4	-	4			1			
	5	-	5			3	3		
	6	-	6			Ę	5		
	7	-	7			1	Ł		
	8	-	8			3	3		
	9	-	9			5	5		
	10	-	10			1	L		
	11	-	11			3	}		
	12	-	12			5			
	13	-	13			1			
	14	~	14			4			
	15		15			5	5		
			E NO. 1						
	:		NUMBER	:	S0		:	S1	:
			OF	:			:		:
E	:	T:	FATIGUE	:			:		:
P	:	L:	CYCLES	: (t1) :	(t2)	: ((t1) :	(t2) :
	:	:-		:	:-		:	:	:
	1:	1:	1.90	:	0.70:	1.30):	0.70:	1.30:
	2:	1:	0.09	:	0.60:	1.40):	0.60:	1.40:
	3:	1:	0.01 NUMBER	:	0.54:	1.46	;	0.54:	1.46:
S	:	М:	NUMBER	:	S3		:	S	:
T	:	A:	OF	:			:		:
			FATIGUE				:		:
P		L:							
			1 00						
	2.	1.	1.90 0.09		0.70:	1.30		0.00:	0.00:
	3:	1.	0.09	: :	0.60:	1.40		0.00:	
	٠.	4.	0.01	•	0.34:	1.40		0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

S : M: T : A: E : T:		:	S0 (t1):	: : : (t2) :	S1 (t1):	:
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1: 9: 1: 10: 1: S	: 1.14 : 0.57 : 0.11 : 0.02 : 0.01 : 0.00 : 0.00 : 0.00 : 0.00 : NUMBER : OF		0.30: 0.10: -0.10: -0.30: -0.50: -0.70: -0.90: -1.10: S3	1.40: 1.50: 1.70: 1.90: 2.10: 2.30: 2.50: 2.70: 2.90:	-0.50: -0.60: -0.80: -1.00: -1.20: -1.40: -1.60: -1.80: -2.00:	0.50: 0.60: 0.80: 1.00: 1.20: 1.40: 1.60: 1.80: 2.00:
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1:	0.57 0.11 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	0.40: 0.30: 0.10: -0.10: -0.30:		0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:

8: 1:	0.00 :	-0.70:	2.50:	0.00:	0.00:
9: 1:	0.00 :	-0.90:	2.70:	0.00:	0.00:
10 - 1 -	0.00 :	-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

S : T : E :	M: A: T:	E NO. 3 NUMBER OF FATIGUE CYCLES	:	s0 (t1) :	:	s1 (t1) :	: : : (t2) :
2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1: 1:	2.29 1.14 0.23 0.04 0.01 0.00 0.00	: : : : : : : : : : : : : : : : : : : :	0.30: 0.10: -0.10: -0.30: -0.50: -0.70: -0.90:	1.40: 1.50: 1.70: 1.90: 2.10: 2.30: 2.50: 2.70:	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20: -1.40:	0.50: 0.60: 0.80: 1.00: 1.20: 1.40: 1.60: 1.80:
P :	T: L:	OF FATIGUE CYCLES	:			(t1) :	
1: 2: 3: 4: 5: 6: 7: 8:	1: 1: 1: 1: 1:	0.04 0.01 0.00 0.00	: : : : : : : : : : : : : : : : : : : :	0.40: 0.30: 0.10: -0.10: -0.30: -0.50: -0.70: -0.90:	1.20: 1.40: 1.50: 1.70: 1.90: 2.10: 2.30: 2.50: 2.70:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLOCI	K CAS	E NO. 4					
S	: M:	NUMBER	:	S0	:	S1	:
T	: A:	OF	:		:		:
E	: T:	FATIGUE	:		:		:
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::-		-:-	:-	:-	:-	:
1	: 1:	38.29	:	0.60:	1.20:	-0.30:	0.30:
2	: 1:	4.57	:	0.40:	1.40:	-0.50:	0.50:
3	: 1:	2.29	:	0.30:	1.50:	-0.60:	0.60:
4	: 1:	0.46	:	0.10:	1.70:	-0.80:	0.80:
5	: 1:	0.08	:	-0.10:	1.90:	-1.00:	1.00:
6	: 1:	0.02	:	-0.30:	2.10:	-1.20:	1.20:
7	: 1:	0.01	:	-0.50:	2.30:	-1.40:	1.40:
8	: 1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
9	: 1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10	: 1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
s	: M:	NUMBER	:	S3	:	S	:
${f T}$: A:	OF	:		:		:
E	: T:	FATIGUE	:		:		:
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::-		-:-	:-	:	:-	:
1	: 1:	38.29	:	0.60:	1.20:	0.00:	0.00:
2	: 1:	4.57	:	0.40:	1.40:	0.00:	0.00:

3:	1:	2.29:	0.30:	1.50:	0.00:	0.00:
4:	1:	0.46 :	0.10:	1.70:	0.00:	0.00:
5:	1:	0.08:	-0.10:	1.90:	0.00:	0.00:
6:	1:	0.02:	-0.30:	2.10:	0.00:	0.00:
7:	1:	0.01:	-0.50:	2.30:	0.00:	0.00:
8:	1:	0.00 :	-0.70:	2.50:	0.00:	0.00:
9:	1:	0.00:	-0.90:	2.70:	0.00:	0.00:
10:	1:	0.00:	-1.10:	2.90:	0 - 00 -	0.00+

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BL	CK	CAS	SE NO. 5					
S	:	M:	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
			0.28					
			0.44					1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
			0.00					
S			NUMBER					:
T	:	A:	OF ,	:		:		
E	:	T:	FATIGUE	:		:		
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
			0.28		1 00:			
			0.44					
			0.22					
			0.06					
		1:						
					0.23:			
	0:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD
S: M: NUMBER : S0
T: A: OF :

S	:	М:	NUMBER	:	S0	:	S1	:
T	:	Α:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	
	1:	:· 1:	1.90	-:-	: -0.70:	-1.30:	0.00:	0.00:
		1:	0.09	-		-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
S	:	M:	NUMBER	:	S3	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	1:	: 1:	1.90	-:- :	-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

T : E :	M: A: T: L:	NUMBER OF FATIGUE CYCLES	:	S0 (ksi) (t1) :		(ksi)	
4: 5: 6: 7: 8:	1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00 0.00	: : : : : : : : : : : : : : : : : : : :	2.78: 1.86: 1.39: 0.46: -0.46: -1.39: -2.32: -3.25: -4.18: -5.10:	5.57: 6.50: 6.96: 7.89: 8.82: 9.74: 10.67: 11.60: 12.53: 13.46:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
S : T : E :	M: A: T:	NUMBER OF FATIGUE CYCLES	: : :	-5.10: S3 (ksi) (t1):	:	(ksi)	:
1: 2: 3: 4:	1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00 0.00 0.00	:	3.96: 2.64: 1.98: 0.66: -0.66: -1.98: -3.30: -4.62: -5.94: -7.26:	7.92: 9.24: 9.90: 11.22: 12.54: 13.86: 15.18: 16.50: 17.82: 19.14:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

2: 1:

FATIGUE SCHEDULE BLOCK STRESS TABLE

2.29 :

______ S : M: NUMBER S0 S1 : : ____;__;___;___;
 1: 1:
 19.14:
 2.78:
 5.57:
 0.00:
 0.00:

 2: 1:
 2.29:
 1.86:
 6.50:
 0.00:
 0.00:

 3: 1:
 1.14:
 1.39:
 6.96:
 0.00:
 0.00:

 4: 1:
 0.23:
 0.46:
 7.89:
 0.00:
 0.00:

 5: 1:
 0.04:
 -0.46:
 8.82:
 0.00:
 0.00:
 0.04 : 0.01 : -1.39: 9.74: 0.00 : -2.32: 10.67: 0.00: 9.74: 0.00: 6: 1: 0.00 : 0.00 : 0.00: 7: 1: 0.00: 11.60: -3.25: 0.00: 8: 1: 0.00: 9: 1: -4.18: 12.53: 0.00: 0.00: 13.46: 10: 1: -5.10: 0.00: 0.00: S : M: NUMBER : **S**3 S T : A: OF E : T: FATIGUE : (ksi) : P : L: CYCLES : (t1): (t2) : (ksi) (ksi) (t1) : (t2) ---:--:--:---:---:---: 1: 1: 19.14 : 3.96: 7.92: 0.00: 0.00:

2.64:

9.24:

0.00:

0.00:

3:	1:	1.14:	1.98:	9.90:	0.00:	0.00:
4:	1:	0.23:	0.66:	11.22:	0.00:	0.00:
5:	1:	0.04 :	-0.66:	12.54:	0.00:	0.00:
6:	1:	0.01:	-1.98:	13.86:	0.00:	0.00:
7:	1:	0.00:	-3.30:	15.18:	0.00:	0.00:
8:	1:	0.00:	-4.62:	16.50:	0.00:	0.00:
9:	1:	0.00:	-5.94:	17.82:	0.00:	0.00:
10:	1:	0.00:	-7.26:	19.14:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD		· -		
S : M: NUMBER :	90	:	S1	
T : A: OF :	50	•	01	•
E : T: FATIGUE :	(ksi)	•	(ksi)	:
			(t1):	
:-:-::-	(CI) .			
1: 1: 38.29 :	2.78:			
2: 1: 4.57 :	1.86:	6.50:	0.00:	0.00:
3: 1: 2.29 :	1.39:	6.96:	0.00:	0.00:
4: 1: 0.46 :	0.46:	7.89:	0.00:	0.00:
5: 1: 0.08:	-0.46:	8.82:	0.00:	0.00:
6: 1: 0.02 :	-1.39:	9.74:	0.00:	0.00:
7: 1: 0.01 :	-2.32:	10.67:	0.00:	0.00:
8: 1: 0.00 :	-3.25:	11.60:	0.00:	0.00:
9: 1: 0.00 :	-4.18:	12.53:	0.00:	0.00:
10: 1: 0.00 :	-5.10:	13.46:	0.00:	0.00:
S : M: NUMBER :	S 3	:	s	:
T : A: OF :		:		:
E : T: FATIGUE : P : L: CYCLES :	(ksi)	:	(ksi)	. :
• •	-	-	:	-
			0.00:	
2: 1: 4.57 : 3: 1: 2.29 :			0.00:	
		9.90: 11.22:		
	-0.66:			
	-1.98:	13.86:		
	-3.30: -4.62:	16.50:		
		17.82:		
10: 1: 0.00:	-7.26:	19.14:		0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

	5:	1:	0.00	:	0.81:	4.34:	0.00:	0.00:
	6:	1:	0.00	:	0.14:	4.55:	0.00:	0.00:
S	:	M:	NUMBER	:	\$3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:-	:	:
	1:	1:	0.28	:	4.97:	4.97:	0.00:	0.00:
	2:	1:	0.44	:	4.03:	5.27:	0.00:	0.00:
	3:	1:	0.22	:	3.08:	5.57:	0.00:	0.00:
	4:	1:	0.06	:	2.14:	5.86:	0.00:	0.00:
	5:	1:	0.00	:	1.14:	6.16:	0.00:	0.00:
	6:	1:	0.00	:	0.20:	6.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET -----

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final F	law Size	K ma	ax
	Step	a	С	a-tip	c-tip
222	1.5	0.052092	0.050426	3.928069	2.884224
200	15	0.054215	0.050428	3.940099	2.939992
400	15	0.056365	0.050303	3.951676	2.993588
600	15 ·	0.058544	0.051434	3.962959	3.045121
800	15 15		0.052617	3.974083	3.094720
1000	15	0.060751 0.062985	0.052655	3.985165	3.142524
1200	15		0.053347	3.996302	3.188681
1400	15	0.065247	0.054094	4.007574	3.233344
1600	15	0.067538		4.019042	3.276666
1800	15	0.069857	0.055756	4.019042	3.318804
2000	15	0.072207	0.056673		3.359911
2200	15	0.074587	0.057647	4.042742	
2400	15	0.076999	0.058681	4.055031	3.400139
2600	15	0.079444	0.059775	4.067633	3.439635
2800	15	0.081923	0.060930	4.080553	3.478542
3000	15	0.084438	0.062148	4.093789	3.517001
3200	15	0.086989	0.063431	4.107334	3.555148
3400	15	0.089578	0.064780	4.121178	3.593112
3600	15	0.092207	0.066197	4.135302	3.631023
3800	15	0.094875	0.067686	4.149687	3.669005
4000	15	0.097586	0.069248	4.164307	3.707179
4200	15	0.100338	0.070886	4.179137	3.745662
4400	15	0.103135	0.072605	4.194145	3.784568
4600	15	0.105976	0.074407	4.209296	3.824007
4800	15	0.108863	0.076298	4.224551	3.864085
5000	15	0.111797	0.078282	4.239865	3.904905
5200	15	0.114777	0.080363	4.255185	3.946565
5400	15	0.117805	0.082548	4.270448	3.989154
5600	15	0.120881	0.084843	4.285582	4.032757
5800	15	0.124005	0.087255	4.300501	4.077444
5800	15	0.124005	0.08/255	4.300501	4.0//444

Transition to 1-d solution, TC03:

a = 0.1250 t = 0.1250

0.11 of Load Step No. 4 at Cycle No.

Step description:
of Block No. 2 of Schedule No.

Crack Size: c = 0.880408E-01, a/c = 1.41980

Schedl Block

Final Flaw Size

K max

```
Step
                                 C
                                                      c-tip
   6000
             15
                              0.090855
                                                    4.314172
   6200
             15
                              0.095113
                                                    4.358583
   6400
             15
                              0.099572
                                                    4.408757
   6600
             15
                              0.104268
                                                    4.465906
   6800
             15
                              0.109245
                                                    4.531675
   7000
             15
                              0.114564
                                                    4.608363
   7200
             15
                              0.120309
                                                    4.699327
   7400
             15
                              0.126595
                                                    4.809722
   7600
             15
                              0.133602
                                                    4.948033
   7800
             15
                              0.141621
                                                    5.129629
   8000
             15
                              0.151189
                                                    5.386680
   8200
             15
                              0.163526
                                                    5.805567
   8400
             15
                              0.183012
                                                    6.803264
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 52.47 K \operatorname{ref} = 0.000 K \operatorname{cr} = 51.83
at Cycle No.
                    0.00 of Load Step No. 10
Step description:
of Block No. 14 of Schedule No.
Crack Size
              c = 0.223429
                FATIGUE CRACK GROWTH ANALYSIS
                -----Modified by FAI-----
              DATE: 05-OCT-98 TIME: 10:16:04
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 11, PSE-W1 SA226 MS, crack in angle (Titl
GEOMETRY
MODEL: TC11-Corner crack in plate or bar (2D)
Plate Thickness, t =
                       0.1250
" Width, W = 1.4440
Hole Diameter, D = 0.1600
Hole-Center-to-Edge Dist., B =
                                0.3100
2ND AREA, AREATC11 = 0.9200
2ND M. INERTIA = 0.3700
2ND C.G. = -0.1700
FLAW SIZE:
c (init.) = 0.8400E-01
MATERIAL
_____
MATL 1:
               2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
       : : : : : :
                                                  :
                                                         : :
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
```

```
C : n : p : q : DKo : Rcl :Alpha:Smax/:
                              : : :SIGo :
             :
                  :
                      :
                          :
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC11
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                            9.6200
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                            9.6200
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress SO:
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                            2.9000
Scale Factor for Stress S3:
                            7.2500
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
 Block Number
                            Block Case No.
From - To
                                     1
    1
    3
                                     5
              3
    4
                                     1
    5
                                     3
              5
    6
                                     5
    7
              7
                                     1
    8
              8
                                     3
    9
   10
             10
                                     1
   11
             11
                                     3
                                     5
   12
             12
   13
             13
                                     1
   14
             14
   15
             15
BLOCK CASE NO. 1
 S : M: NUMBER
                            S0
                                              S3
          OF
   : A:
 E : T: FATIGUE
   : L: CYCLES
                        (t1): (t2)
                  :
                                          (t1): (t2)
                        ·----:
 ----:--:----
   1: 1: 1.90 : 0.70: 1.30:
                                           0.70: 1.30:
   2: 1:
               0.09 :
                         0.60:
                                  1.40:
                                           0.60:
                                                    1.40:
```

3: 1: 0.01: 0.54: 1.46: 0.54: 1.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLC	CK	CAS	SE NO. 2					
S	:	M:	NUMBER	:	S0	:	S 3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:-	:-	:
	1:	1:	9.57	:	0.60:	1.20:	0.60:	1.20:
	2:	1:	1.14	:	0.40:	1.40:	0.40:	1.40:
	3:	1:	0.57	:	0.30:	1.50:	0.30:	1.50:
	4:	1:	0.11	:	0.10:	1.70:	0.10:	1.70:
	5:	1:	0.02	:	-0.10:	1.90:	-0.10:	1.90:
	6:	1:	0.01	:	-0.30:	2.10:	-0.30:	2.10:
	7:	1:	0.00	:	-0.50:	2.30:	-0.50:	2.30:
	8:	1:	0.00	:	-0.70:	2.50:	-0.70:	2.50:

2.70:

2.90:

-0.90:

-1.10:

2.70:

2.90:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

0.00 : -0.90:

0.00: -1.10:

BLOCK	CASE

9: 1:

10: 1:

S	:	М:	NUMBER	:	so	· :	s3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:-	:-	:-	:
	1:	1:	19.14	-	0.60:	1.20:	0.60:	1.20:
	2:	1:	2.29	:	0.40:	1.40:	0.40:	1.40:
	3:	1:	1.14	:	0.30:	1.50:	0.30:	1.50:
	4:	1:	0.23	:	0.10:	1.70:	0.10:	1.70:
	5:	1:	0.04	:	-0.10:	1.90:	-0.10:	1.90:
	6:	1:	0.01	:	-0.30:	2.10:	-0.30:	2.10:
	7:	1:	0.00	:	-0.50:	2.30:	-0.50:	2.30:
	8:	1:	0.00	:	-0.70:	2.50:	-0.70:	2.50:
	9:	1:	0.00	:	-0.90:	2.70:	-0.90:	2.70:
1	LO:	1:	0.00	:	-1.10:	2.90:	-1.10:	2.90:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	CK	CAS	SE NO. 4					
S	:	Μ:	NUMBER	:	S0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:-	:	:-	:
:	1:	1:	38.29	:	0.60:	1.20:	0.60:	1.20:
	2:	1:	4.57	:	0.40:	1.40:	0.40:	1.40:
:	3:	1:	2.29	:	0.30:	1.50:	0.30:	1.50:
	4:	1:	0.46	:	0.10:	1.70:	0.10:	1.70:
!	5:	1:	0.08	:	-0.10:	1.90:	-0.10:	1.90:
1	6:	1:	0.02	:	-0.30:	2.10:	-0.30:	2.10:
•	7:	1:	0.01	:	-0.50:	2.30:	-0.50:	2.30:
;	8:	1:	0.00	:	-0.70:	2.50:	-0.70:	2.50:
!	9:	1:	0.00	:	-0.90:	2.70:	-0.90:	2.70:
10	0:	1:	0.00	:	-1.10:	2.90:	-1.10:	2.90:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 5 S : M: NUMBER S0 S3 T : A: OF E : T: FATIGUE P : L: CYCLES : (t1) : (t2) : (t1) : (t2) ----: 1: 1: 0.28 : 1.00: 1.01: 1.00: 1.06: 2: 1: 0.44: 0.81: 1.06: 0.81: 0.62: 0.43: 0.22 : 0.62: 3: 1: 1.12: 1.12: 1.18: 0.06: 1.18: 0.42: 4: 1: 0.00: 0.23: 1.24: 0.23: 1.24: 5: 1: 0.00: 0.04: 1.30: 0.04: 1.30: 6: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 11, PSE-MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

CTD

SID								
S	:	Μ:	NUMBER	:	so	:	S3	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t	.2) :	(t1) :	(t2) :
	-:-	:-		-:-	::	:-	:	:
-	1:	1:	1.90	:	-0.70:	-1.30:	-0.70:	-1.30:
2	2:	1:	0.09	:	-0.60:	-1.40:	-0.60:	-1.40:
3	3:	1:	0.01	:	-0.54:	-1.46:	-0.54:	-1.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER **S**3 : T : A: OF (ksi) E : T: FATIGUE : (ksi) : P : L: CYCLES : (t1): (t2) : (KS1) (t1) : (t2) (ksi)
 1: 1:
 9.57:
 2.30:
 4.61:
 5.77:
 11.54:

 2: 1:
 1.14:
 1.54:
 5.38:
 3.85:
 13.47:

 3: 1:
 0.57:
 1.15:
 5.76:
 2.89:
 14.43:
 14.43: 0.38: 6.53: 0.11 : 0.96: 4: 1: -0.38: 7.30: -0.96: 18.28: 5: 1: 0.02 : 0.01 : -1.15: 0.00 : -1.92: 8.06: -2.89: 20.20: 6: 1: 8.83: -4.81: 7: 1: 22.13: 8: 1: 0.00 : -2.69: 9.60: -6.73: 24.05: 0.00: -3.46: 10.37: -8.66: 25.97: 9: 1: -10.58: 10: 1: 0.00: -4.22: 11.14: 27.90:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S :	: M:	NUMBER	:	S0	:	S3	:
T:	: A:	OF	:		:		:
E :	т:	FATIGUE	:	(ksi)) :	(ksi) :
	: L:		:	(t1) :	(t2) :		(t2) :
	::		-:-	:	-	:-	:
	: 1:			2.30:	4.61:	5.77:	11.54:
2:	: 1:	2.29	:	1.54:	5.38:	3.85:	13.47:
3:	1:	1.14	:	1.15:	5.76:	2.89:	14.43:
4:	: 1:	0.23	:	0.38:	6.53:	0.96:	16.35:
5 :	: 1:	0.04	:	-0.38:	7.30:	-0.96:	18.28:
6:	: 1:	0.01	:	-1.15:	8.06:	-2.89:	20.20:
7:	1:	0.00	:	-1.92:	8.83:	-4.81:	22.13:
8:	1:	0.00	:	-2.69:	9.60:	-6.73:	24.05:
9:	1:	0.00	:	-3.46:	10.37:	-8.66:	25.97:
10:	1:	0.00	:	-4.22:	11.14:	-10.58:	27.90:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

-----STD S: M: NUMBER: T: A: OF: 53 (ksi) E : T: FATIGUE : (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 38.29 : 2.30: 4.61: 5.77: 11.54: 4.57 : 1.54: 5.38: 3.85: 13.47: 2.30: 1.15: 5.76: 2.30: 14.43: 1: 1: 2: 1: 1.15: 5.76: 2.89: 6.53: 0.96: 3: 1: 2.29: 14.43: 0.46 : 4 : 1 : 16.35: 7.30: -0.96: 5: 1: 0.08: -0.38: 0.02: 8.06: -2.89: 6: 1: -1.15: 20.20: 7: 1: 0.01: -4.81: 22.13: -1.92: 8.83: 8: 1: 0.00 : -2.69: 9.60: -6.73: 24.05: 0.00: 9: 1: -3.46: -8.66: 10.37: 25.97: 10: 1: 0.00 : -4.22: 11.14: -10.58: 27.90:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : T : A: OF : : (ksi) : P : L: CYCLES : (t1) : (t2) : (ksi) (t1): (t2) 1: 1: 0.28 : 2.90: 2.93: 7.25: 7.32: 2: 1: 0.44 : 2.35: 3.07: 5.87: 7.69: 0.22 : 3.25: 3: 1: 1.80: 4.50: 8.12: 0.06: 4: 1: 1.25: 3.42: 3.04: 8.55: 5: 1: 0.00: 0.67: 3.60: 1.67: 8.99: 0.12: 6: 1: 0.00 : 3.77: 0.29: 9.43:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

ANALYSIS RESULTS:

c (init.) = 0.8800E-01

Schedl	Block	Fina	l Flaw Size	K max
		Step	С	c-tip
200	15	(0.087272	4.088742
400	15	I	0.090593	4.104193
600	15		0.093970	4.121803
800	15		0.097414	4.141785
1000	15		0.100934	4.164397
1200	15		0.104542	4.189959
1400	15		0.108252	4.218869
1600	15		0.112079	4.251628
1800	15		0.116043	4.288878
2000	15		0.120167	4.331454
2200	15		0.124482	4.380469
2400	15		0.129025	4.437439
2600	15		0.133846	4.504503
2800	15		0.139013	4.584798
3000	15		0.144625	4.683172
3200	15		0.150827	4.807655 4.972908
3400	15		0.157863	5.209977
3600	15 15		0.166183	5.603924
3800 4000	15		0.176817 0.193607	6.590056
K max = at Cycle Step desc of Block	52.19 No. cription: No.	K ref = 0.00 of L	0.000 K oad Step No.	10
		FATIGUE CRACK		
		Modified	-	
,		ATE: 05-OCT-98 : NASA/FLAGRO V		
		: NASA/FLAGRO v omary units [in		
U	.s. cusco	Juary Wires [11.	ches, ksi, k	si sqic(iii/)
PROBLEM '	TITLE			
THROUGH (CRACK CAS	SE 11, PSE-W1 S	A226 MS, cra	ck in cap (Title)
GEOMETRY				
	C11-Corn	er crack in pla	te or bar (2	n)
MODELL. I	CII-COIII	er crack in pre	ice of but (2	5,
" Wi Hole Dia Hole-Cen 2ND AREA 2ND M. I	dth, W meter, D ter-to-E	= 0.1600 dge Dist., B = 11 = 0.7350 0.2580	0.3100	
FLAW SIZ	E:			

```
MATERIAL
_____
MATL 1:
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
               : : : : :
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           : 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC11
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                         6,6000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                         4.6400
Scale Factor for Stress S3:
                         6.6000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                         6.6000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                         3.5000
Scale Factor for Stress S3:
                         4.9700
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From - To
   1
                                 1
   2
            2
   3
            3
                                5
   4
            4
                                1
                                3
   6
                                5
   7
                                1
   8
            8
                                3
   9
            9
```

10

10

12 12 14 15	2 3 4		11 12 13 14 15			3 5 1 4 5		
BLOCI	χ ,	CASE	NO. 1					
S	: 1	M:	NUMBER	:	so	:	s3	:
T	: .	A:	OF	:		:		:
E	: '	T:	FATIGUE	:		:		:
P	: :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	: -	-:		-:-	:-	·:	:-	:
1	:	1:	1.90	:	0.70:	1.30:	0.70:	1.30:
2	:	1:	0.09	:	0.60:	1.40:	0.60:	1.40:
3	:	1:	0.01	:	0.54:	1.46:	0.54:	1.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

			_			

BLC	CK	CAS	E NO. 2						
S		M:	NUMBER	:	:	so	:	s3	:
\mathbf{T}	:	A:	OF	:	:		:		:
E	:	T:	FATIGUE	:	:		:		:
P	:	L:	CYCLES	:	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		:	: -	:-	:	:-	:
	1:	1:	9.5	7 :	:	0.60:	1.20:	0.60:	1.20:
	2:	1:	1.1	4 :	:	0.40:	1.40:	0.40:	1.40:
	3:	1:	0.5	7 :	:	0.30:	1.50:	0.30:	1.50:
	4:	1:	0.1	1 :	:	0.10:	1.70:	0.10:	1.70:
	5:	1:	0.0	2 :	:	-0.10:	1.90:	-0.10:	1.90:
	6:	1:	0.0	1 :	:	-0.30:	2.10:	-0.30:	2.10:
	7:	1:	0.0	0 :	:	-0.50:	2.30:	-0.50:	2.30:
	8:	1:	0.0	0 :	:	-0.70:	2.50:	-0.70:	2.50:
	9:	1:	0.0	0 :	:	-0.90:	2.70:	-0.90:	2.70:
:	LO:	1:	0.0	0 :	:	-1.10:	2.90:	-1.10:	2.90:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 3

S	:	М:	NUMBER	:	S0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-	-	·	-	-		-	:
	1:	1:	19.14	:	0.60:	1.20:	0.60:	1.20:
	2:	1:	2.29	:	0.40:	1.40:	0.40:	1.40:
	3:	1:	1.14	:	0.30:	1.50:	0.30:	1.50:
	4:	1:	0.23	:	0.10:	1.70:	0.10:	1.70:
	5:	1:	0.04	:	-0.10:	1.90:	-0.10:	1.90:
	6:	1:	0.01	:	-0.30:	2.10:	-0.30:	2.10:
	7:	1:	0.00	:	-0.50:	2.30:	-0.50:	2.30:
	8:	1:	0.00	:	-0.70:	2.50:	-0.70:	2.50:
	9:	1:	0.00	:	-0.90:	2.70:	-0.90:	2.70:
1	0:	1:	0.00	:	-1.10:	2.90:	-1.10:	2.90:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLO	CK	CAS	E NO. 4						
S	:	M:	NUMBER	:	S0		:	S 3	:
T	:	A:	OF	:			:		:
E	:	T:	FATIGUE	:			:		:
P	:	L:	CYCLES	:	(t1) :	(t2)	:	(t1) : (t2)	:

	•						
1:	1:	38.29	:	0.60:	1.20:	0.60:	1.20:
2:	1:	4.57	:	0.40:	1.40:	0.40:	1.40:
3:	1:	2.29	:	0.30:	1.50:	0.30:	1.50:
4:	1:	0.46	:	0.10:	1.70:	0.10:	1.70:
5:	1:	0.08	:	-0.10:	1.90:	-0.10:	1.90:
6:	1:	0.02	:	-0.30:	2.10:	-0.30:	2.10:
7:	1:	0.01	:	-0.50:	2.30:	-0.50:	2.30:
8:	1:	0.00	:	-0.70:	2.50:	-0.70:	2.50:
9:	1:	0.00	:	-0.90:	2.70:	-0.90:	2.70:
10:	1:	0.00	:	-1.10:	2.90:	-1.10:	2.90-

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BL	OCK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	S3	:
T	٠ :	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	•	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	: '	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1 30 -

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 :
T : A: OF : :
E : T: FATIGUE : (ksi) :
P : L: CYCLES : (t1) : (t2) :

	•		****	•	1,500	· 4 /	•	(12.0	, 1 .	
-	-		CYCLES	:		(t2)			(t2) :	
:	1: 2:	1: 1:	1.90	:	-0.70: -0.60:	-1. -1.	30: 40:	-0.70: -0.60:	-1.30: -1.40:	
	3:	1:	0.01	:	-0.54:	: -1.	46:	-0.54:	-1.46:	

S3

(kgi)

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

S : M: NUMBER S0 : 53 T : A: OF (ksi) E : T: FATIGUE : P : L: CYCLES : (ksi) (t1): (t2): (t1): (t2): ----:--:---:-----:-----: 1: 1: 9.57 : 2.78: 5.57: 3.96: 7.92: 1.14 : 1.86: 6.50: 2: 1: 2.64: 9.24: 3: 1: 0.57: 1.39: 6.96: 1.98: 9.90: 7.89: 4: 1: 0.11: 0.46: 0.66: 11.22: 5: 1: 0.02: -0.46: 8.82: -0.66: 12.54: 6: 1: 0.01: -1.39: 9.74: -1.98: 13.86:

```
7: 1: 0.00: -2.32: 10.67: -3.30: 15.18: 8: 1: 0.00: -3.25: 11.60: -4.62: 16.50: 9: 1: 0.00: -4.18: 12.53: -5.94: 17.82: 10: 1: 0.00: -5.10: 13.46: -7.26: 19.14:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI	٦.							
S		M:	NUMBER		S0		S3	:
T	-	A:	OF	:	20			:
E		T:	FATIGUE	:	(ksi)	-	(ksi) :
				•	•		(t1):	
P	:	L:	CYCLES	:	(t1) :	(62) :	((1):	(02)
	:	:-		:-	:	:	:-	:
	1:	1:	19.14	:	2.78:	5.57:	3.96:	7.92:
	2:	1:	2.29	:	1.86:	6.50:	2.64:	9.24:
	3:	1:	1.14	:	1.39:	6.96:	1.98:	9.90:
		1:	0.23	:	0.46:	7.89:	0.66:	11.22:
		1:	0.04		-0.46:	8.82:	-0.66:	12.54:
	-	1:	0.01		-1.39:	9.74:	-1.98:	13.86:
		1:	0.00		-2.32:	10.67:	-3.30:	15.18:
		1:	0.00		-3.25:	11.60:	-4.62:	16.50:
		1:	0.00		-4.18:	12.53:		17.82:
		1.	0.00		-5.10:	13.46:	-7.26:	19.14:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	М:	NUMBER	:	S0	:	s3	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		- : -	·:-:	:-	:	:
	1:	1:	38.29	:	2.78:	5.57:	3.96:	7.92:
	2:	1:	4.57	:	1.86:	6.50:	2.64:	9.24:
	3:	1:	2.29	:	1.39:	6.96:	1.98:	9.90:
	4:	1:	0.46	:	0.46:	7.89:	0.66:	11.22:
	5:	1:	0.08	:	-0.46:	8.82:	-0.66:	12.54:
	6:	1:	0.02	:	-1.39:	9.74:	-1.98:	13.86:
	7:	1:	0.01	:	-2.32:	10.67:	-3.30:	15.18:
	8:	1:	0.00	:	-3.25:	11.60:	-4.62:	16.50:
	9:	1:	0.00	:	-4.18:	12.53:	-5.94:	17.82:
	10:	1:	0.00	:	-5.10:	13.46:	-7.26:	19.14:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD													
S	:	Μ:	NUMBER	:	S0	:	S3	:					
T	:	A:	OF	:		:		:					
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:					

						(t1) :	
						-	-
1:	1:	0.28	:	3.50:	3.54:	4.97:	5.02:
2:	1:	0.44	:	2.83:	3.71:	4.03:	5.27:
3:	1:	0.22	:	2.17:	3.92:	3.08:	5.57:
4:	1:	0.06	:	1.50:	4.13:	2.09:	5.86:
5:	1:	0.00	:	0.81:	4.34:	1.14:	6.16:
6:	1:	0.00	:	0.14:	4.55:	0.20:	6.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	(C	c-tip
200	15		0.091784	4.235073
400	15		0.095703	4.271785
600	15		0.099776	4.312894
800	15		0.104029	4.359204
1000	15		0.108492	4.411764
1200	15		0.113205	4.471979
1400	15		0.118217	4.541795
1600	15		0.123597	4.624001
1800	15		0.129440	4.722792
2000	15		0.135888	4.844865
2200	15		0.143163	5.001846
2400	15		0.151651	5.216501
2600	15		0.162150	5.543052
2800	15		0.176885	6.171739

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value:

K max = 53.04 K ref = 0.000 K cr =

at Cycle No. 0.00 of Load Step No.

Step description:

of Block No. 11 of Schedule No. Crack Size c = 0.226371 2993

FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----

DATE: 05-OCT-98 TIME: 10:20:46

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

TC12, PSE-W1 SA226 Main Spar Angle WS99 (Title)

GEOMETRY

MODEL: TC12-Corner crack from hole in plate (2D)

Plate Thickness, t = 0:1250 " Width, W = 1.4400Additional Area, AREA3 = 0.9200

Add Area cg dist in y, F3 = 0.2940Add Area cg dist in x, G3 = -0.1700

Add Area Ix, RIX = 0.1830
Add Area Iy, RIY = 0.3700
Moement , RM = 0.0000

```
FLAW SIZE:
c (init.) = 0.3950
MATERIAL
_____
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8: :
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            : : : : : : : :SIGo :
;____;___;___;___;___;___;___;___;___;___;___;___;___;
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC12
FATIGUE SCHEDULE BLOCK INPUT TABLE
_____
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S2:
                         0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                           0.0000
Scale Factor for Stress S2:
                           0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                           4.9100
Scale Factor for Stress S1:
                         0.0000
Scale Factor for Stress S2:
                           0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                           4.9100
                           0.0000
 Scale Factor for Stress S1:
 Scale Factor for Stress S2:
                           0.0000
 Stress Scaling Factors for Block Case: 5
 Scale Factor for Stress S0:
                           3.7000
 Scale Factor for Stress S1:
                           0.0000
 Scale Factor for Stress S2:
                           0.0000
 Total No. of Blocks in Schedule =
```

Block Case No.

Block Number and Case Correspondences

Block Number

P : L: CYCLES

1: 1:

2: 1:

3: 1:

4: 1:

From -	To	D	TOCK Case	110.	
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11	- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9		1 2 5 1 3 5 1 3 5 1 4 5		
E : T:	NUMBER OF		: : : (t2) :		: : : (t2) :
1: 1: 2: 1: 3: 1: S : M: T : A: E : T: P : L:	0.01 : NUMBER OF : FATIGUE : CYCLES :	: 0.70: : 0.60: : 0.54: : S2 : (t1):	1.30: 1.40: 1.46: : :	-0.30: -0.40: -0.46: S	0.30: 0.40: 0.46: :
1: 1: 2: 1: 3: 1:	1.90 : 0.09 :				
	ental Crack Gr s than KIscc)		for Susta	ined Stress	ses
BLOCK CAS S: M: T: A: E: T:	NUMBER : OF : FATIGUE :		: : : (+2)		: : : : : : : : : : : : : : : : : : : :
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1: 9: 1: 10: 1: S : M: T : A: E : T:	0.11 : 0.02 : 0.01 : 0.00 : 0.00 : 0.00 : 0.00 : 0.00 : FATIGUE :	0.60: 0.40: 0.30: 0.10: -0.10: -0.30: -0.50: -0.70: -0.90: -1.10: S2	1.20: 1.40: 1.50: 1.70: 1.90: 2.10: 2.30: 2.50: 2.70: 2.90:	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20: -1.40: -1.60: -1.80: -2.00:	0.30: 0.50: 0.60: 0.80: 1.00: 1.20: 1.40: 1.60: 1.80: 2.00:
P : I:	CYCLES .	(t1) -	(+2) .	(+1) ·	(+2)

0.30:

0.50:

0.60:

0.80:

(t1): (t2):

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

(t1): (t2)

-----:----

-0.30:

-0.50:

-0.60:

-0.80:

---:-

9.57 :

1.14 :

0.57 :

0.11 :

5: 1:	0.02 :	-1.00:	1.00:	0.00:	0.00:
6: 1:	0.01 :	-1.20:	1.20:	0.00:	0.00:
7: 1:	0.00 :	-1.40:	1.40:	0.00:	0.00:
8: 1:	0.00 :	-1.60:	1.60:	0.00:	0.00:
9: 1:	0.00 :	-1.80:	1.80:	0.00:	0.00:
10 • 1 •	0.00 •	-2.00+	2.00+	0.00+	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLOCK	CAS	E NO. 3					
s:	M:	NUMBER	:	S0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
1.	1:	19 14	:	0.60:	1 20:	-0.30:	0.30:
	1:			0.40:			
	1:	1.14					0.60:
	1:			0.10:			
5:	1:	0.04	:	-0.10:	1.90:	-1.00:	1.00:
6:	1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:
7:	1:	0.00	:	-0.50:	2.30:		
8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
s :	M :	NUMBER	:	S2	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES	:		(t2) :	(t1) :	(t2) :
-	:- 1:	19.14	- : -	-0 30:	0 30.	0.00:	0.00:
	1:	2.29			0.50:		
	1:	1.14					
	1:	0.23			0.80:		
	1:				1.00:		
	1:	0.01					
7:	1:	0.00			1.40:		
	1:	0.00			1.60:		
	1:	0.00			1.80:		
10:		0.00			2.00:	0.00:	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 4 S : M: NUMBER S1 S0 : A: OF : E : T: FATIGUE P : L: CYCLES (t1): (t2) (t1) : (t2) ____;__;__;____;____;____;____;____; 1.20: 38.29 : 0.60: -0.30: 0.30: 1: 1: 4.57 : 2: 1: 0.40: 1.40: -0.50: 0.50: 2.29 : -0.60: 0.30: 1.50: 0.60: 3: 1: 4: 1: 0.46 : 0.10: 1.70: -0.80: 0.80: 0.08: 1.90: -1.00: 5: 1: -0.10: 1.00: 6: 1: 0.02: -0.30: 2.10: -1.20: 1.20: 0.01: 7: 1: -0.50: 2.30: -1.40: 1.40: 8: 1: 2.50: 0.00: -0.70: -1.60: 1.60: 9: 1: 0.00: -0.90: 2.70: -1.80: 1.80: 0.00: 10: 1: -2.00: 2.00: -1.10: 2.90: S : M: NUMBER S2 S : : A: OF E : T: FATIGUE P : L: CYCLES (t1): (t2): (t1): (t2)

:	:		· • -				
1:	1:	38.29	:	-0.30:	0.30:	0.00:	0.00:
2:	1:	4.57	:	-0.50:	0.50:	0.00:	0.00:
3:	1:	2.29	:	-0.60:	0.60:	0.00:	0.00:
4:	1:	0.46	:	-0.80:	0.80:	0.00:	0.00:
5:	1:	0.08	:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.02	:	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.01	:	~1.40:	1.40:	0.00:	0.00:
8:	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
9:	1:	0.00	:	-1.80:	1.80:	0.00:	0.00:
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

S T E	:	M: A: T:	E NO. 5 NUMBER OF FATIGUE	: :		:	S1	:
Р	. :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
T E	2: 3: 4: 5: 6:	1: 1: M: A: T:	0.44 0.22 0.06 0.00	: : : : : : : : : : : : : : : : : : : :	1.00: 0.81: 0.62: 0.43: 0.23: 0.04: \$2	1.06: 1.12: 1.18: 1.24: 1.30:	0.81: 0.62: 0.42: 0.23: 0.04: S	1.06: 1.12: 1.18: 1.24: 1.30:
	2: 3: 4: 5:	1: 1: 1: 1: 1:	0.44 0.22 0.06	: : : :	0.62: 0.43:	1.06: 1.12:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC12, PSE-W1 SA226 Main Spa MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

					_		
STD							
s	: M:	NUMBER	:	S 0	:	S1	:
T	: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::-		-:-	:	:-	:	:
1	: 1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
2	: 1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
3	: 1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
S	: M:	NUMBER	:	S2	:	s	:
${f T}$: A:	OF	:		:		:
E	: T:	FATIGUE	:	· (ksi)	:	(ksi)	
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::-		-:-	:	:	:	:
1	: 1:	1.90	:	0.00:	0.00:	0.00:	0.00:
2	: 1:	0.09	:	0.00:	0.00:	0.00:	0.00:
3	: 1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): \mathtt{NOT} SET

TC12, PSE-W1 SA226 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STI			MANDED		S 0		S1	
S		M:	NUMBER	:	50	:	21	:
	:		OF	:	(1	•	(ksi)	:
			FATIGUE	:	(ksi)			
P	:	i :	CYCLES	:	(t1) :	(62):	(t1):	(L2) :
	1 .	1:	9.57	: -	2.95:	5.89:	0.00:	0.00:
		1:			1.96:			
		1:			1.47:			
		1:	0.11			8.35:		
		1:	0.02			9.33:		
	6:	1:	0.01					
		1:			-2.45:			
		1:			-3.44:			
		1:			-4.42:			
		1:			-5.40:			0.00:
_		M:	NUMBER	:	S2	:	S	:
		A:	OF	:				:
Ē		T:		:	(ksi)		(ksi)	:
_	-		CYCLES		(t1):		(t1) :	(t2) :
	:	:		-:-	:	:-	:	
		1:					0.00:	
	2:	1:			0.00:			
	3:	1:	0.57	:	0.00:	0.00:		
	4:	1:	0.11			0.00:		
	5:	1:	0.02	:	0.00:	0.00:		
	6:	1:	0.01	:		0.00:		
	7:	1:	0.00					
	8:	1:			0.00:			
	9:	1:					0.00:	
	10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

TC12, PSE-W1 SA226 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

			- 	~		
STD						
S : M:	NUMBER	:	so	:	S1	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:	(ksi)	:	(ksi)	:
P : L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:-:		: -	:	:·	0.00:	0.00:
1: 1:	19.14		2.95:	5.89:		
2: 1:	2.29	:	1.96:	6.87:	0.00:	
3: 1:	1.14	:	1.47:	7.37:	0.00:	0.00:
4: 1:	0.23	:	0.49:	8.35:	0.00:	0.00:
5: 1:	0.04	:	-0.49:	9.33:	0.00:	0.00:
6: 1:	0.01	:	-1.47:	10.31:	0.00:	0.00:
7: 1:	0.00	:	-2.45:	11.29:	0.00:	0.00:
8: 1:	0.00	:	-3.44:	12.28:	0.00:	0.00:
9: 1:	0.00	:	-4.42:	13.26:	0.00:	0.00:
10: 1:	0.00	:	-5.40:	14.24:	0.00:	0.00:
S : M:	NUMBER	:	S2	:	S	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:	(ksi)	:	(ksi) :
P : L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :

	:-		٠.	:			
	1:	19.14		0.00:	0.00:	0.00:	0.00:
2:	1:	2.29	:	0.00:	0.00:	0.00:	0.00:
3:	1:	1.14	:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.23	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.04	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W1 SA226 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD	
S: M: NUMBER: SO:	S1 :
T : A: OF : :	:
E : T: FATIGUE : (ksi) : (ksi) :
P : L: CYCLES : (t1) : (t2) : (t1)	: (t2) :
1: 1: 38.29: 2.95: 5.89: 0.0	0: 0.00:
2: 1: 4.57: 1.96: 6.87: 0.0	
3: 1: 2.29: 1.47: 7.37: 0.0	
4: 1: 0.46: 0.49: 8.35: 0.0	0: 0.00:
5: 1: 0.08: -0.49: 9.33: 0.0	0: 0.00:
6: 1: 0.02 : -1.47: 10.31: 0.0	0:00:
7: 1: 0.01 : -2.45: 11.29: 0.0	0: 0.00:
8: 1: 0.00: -3.44: 12.28: 0.0	0:00:
9: 1: 0.00: -4.42: 13.26: 0.0	0: 0.00:
10: 1: 0.00: -5.40: 14.24: 0.0	0: 0.00:
S: M: NUMBER: S2:	s :
T : A: OF : :	:
E : T: FATIGUE : (ksi) : (ksi) :
P : L: CYCLES : (t1) : (t2) : (t1)	
1: 1: 38.29: 0.00: 0.00: 0.0	
2: 1: 4.57: 0.00: 0.00: 0.0	0: 0.00:
3: 1: 2.29: 0.00: 0.00: 0.0	0: 0.00:
4: 1: 0.46: 0.00: 0.00: 0.0	0: 0.00:
5: 1: 0.08: 0.00: 0.00: 0.0	0: 0.00:
6: 1: 0.02: 0.00: 0.00: 0.0	0:00:
7: 1: 0.01: 0.00: 0.00: 0.0	0: 0.00:
8: 1: 0.00: 0.00: 0.00: 0.0	0: 0.00:
9: 1: 0.00: 0.00: 0.00: 0.0	0:00:
10: 1: 0.00: 0.00: 0.00: 0.0	0: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W1 SA226 Main Spa MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2) :	(t1) : (t2)	:
	- : · 1 :	1:	0.28	: -	3.70:	- -:- 3.74:	0.00: 0.	00:

	4: 5:	1: 1: 1:	0.44 0.22 0.06 0.00	:	3.00: 2.29: 1.59: 0.85:	3.92: 4.14: 4.37: 4.59:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
_		1:	0.00	:	0.15:	4.81:	0.00:	0.00:
S	:	М:	NUMBER	:	S2	•	S	•
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)) :
P	-	L:	CYCLES	:	(t1) :	(t2) :		•
	:	:-		-:-	:	:-	:-	:
	1:	1:	0.28	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.44	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.22	:	0.00:	0.00:	0.00:	0.00:
	4:	4 .	0.00		0.00:	0.00:	0.00:	0.00:
	- ·	Τ:	0.06	:	0.00.	0.00.	0.00.	0.00.
		1:	0.00		0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W1 SA226 Main Spa

MODEL: TC12

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
100	15	_	0.406304	6.516847
200	15		0.418675	6.665259
300	15		0.432320	6.831210
400	15		0.447515	7.018959
500	15		0.464636	7.234459
600	15		0.484216	7.486369
700	15		0.507043	7.787943
800	15		0.534365	8.160885
900	15		0.568323	8.644261
1000	15		0.613117	9.319134
1100	15		0.679004	10.400394
1200	15		0.807711	12.902525

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value:

K max = 51.86 K ref = 0.000 K cr = 51.83 at the very beginning of Load Step No. 10

Step description:

of Block No. 11 of Schedule No. 1244

Crack Size c = 0.979875

FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----DATE: 05-OCT-98 TIME: 10:21:01

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE ______

TC12, PSE-W1 SA226 Main Spar Cap WS99 (Title)

GEOMETRY

MODEL: TC12-Corner crack from hole in plate (2D)

Plate Thickness, t = 0.1250 " Width, W 3.0000

```
Additional Area, AREA3 = 0.7350
Add Area cg dist in y, F3 = 0.5380
Add Area cg dist in x, G3 = 1.4520
Add Area Ix, RIX = 0.1360
        Iy, RIY = 0.2580
, RM = 0.0000
Add Area Iy, RIY =
Moement
FLAW SIZE:
c (init.) = 0.3950
MATERIAL.
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC12
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S2: 0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                           0.0000
Scale Factor for Stress S2:
                           0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                           5.3700
Scale Factor for Stress S1:
                           0.0000
Scale Factor for Stress S2:
                           0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                           0.0000
Scale Factor for Stress S2:
```

Stress Scaling Factors for Block Case: 5

4.0500

```
Scale Factor for Stress S0:
                          0.0000
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S2:
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
Block Number
                          Block Case No.
From - To
                                  1
   1
                                  2
   2
            2
   3
            3
                                  5
   4
   5
            - 5
   7
                                  1
                                  5
   9
            9
  10
           10
                                  1
  11
           11
  12
           12
  13
           13
                                  1
  14
           14
BLOCK CASE NO. 1
S : M: NUMBER
                       S0
                                        S1
        OF
 T : A:
E : T: FATIGUE : : : (t1) : (t2) : (t1) : (t2)
-0.30: 0.30:
  1: 1: 1.90: 0.70: 1.30: 2: 1: 0.09: 0.60: 1.40: 3: 1: 0.01: 0.54: 1.46:
                                      -0.40:
                                                0.40
                                     -0.46:
                      S2
                                       S
 S : M: NUMBER :
                              :
   : A:
        OF
 E : T: FATIGUE :
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
----:--:----
                ---:----:-
  1: 1: 1.90: -0.30:
                               0.30: 0.00: 0.00:
0.40: 0.00: 0.00:
  2: 1:
            0.09 :
                      -0.40:
                               0.40:
                                        0.00:
             0.01 :
                      -0.46:
                               0.46:
                                        0.00:
                                                0.00:
  3: 1:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
 S : M: NUMBER
                    S0
                                  :
                                          S1
   : A:
        OF
   : T: FATIGUE
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
1: 1: 9.57: 0.60: 1.20: -0.30: 0.30: 2: 1: 1.14: 0.40: 1.40: -0.50: 0.50: 3: 1: 0.57: 0.30: 1.50: -0.60: 0.60: 4: 1: 0.11: 0.10: 1.70: -0.80: 0.80:
            0.02 :
                             1.90:
   5: 1:
                      -0.10:
                                     -1.00:
            0.01: -0.30:
                                                1.20:
                               2.10:
                                       -1.20:
   6: 1:
             0.00:
                      -0.50:
                               2.30:
                                       -1.40:
                                                 1.40:
   7: 1:
                      -0.70:
                               2.50:
   8: 1:
             0.00:
                                       -1.60:
                                                1.60:
         0.00:
   9:1:
                      -0.90:
                                2.70:
                                       -1.80:
                                                1.80:
                     -1.10:
             0.00:
                               2.90:
                                       -2.00:
                                                2.00:
  10: 1:
                      S2
                                       S
 S : M: NUMBER :
                                :
 T : A: OF
 E : T: FATIGUE :
```

P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		- : -	::-	:	:-	:
1:	1:	9.57	:	-0.30:	0.30:	0.00:	0.00:
2:	1:	1.14	:	-0.50:	0.50:	0.00:	0.00:
3:	1:	0.57	:	-0.60:	0.60:	0.00:	0.00:
4:	1:	0.11	:	-0.80:	0.80:	0.00:	0.00:
5:	1:	0.02	:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.01	:	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.00	:	-1.40:	1.40:	0.00:	0.00:
8:	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
9:	1:	0.00	:	-1.80:	1.80:	0.00:	0.00:
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

BLOCK	CAS	E NO. 3					
s:	M:	NUMBER	:	S 0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES		(t1) :	(t2) :	(t1) :	(t2) :
-	•	~ 	•	~	:	•	:
	1:			0.60:			0.30:
		2.29					0.50:
	1:	1.14	:	0.30:	1.50:	-0.60:	0.60:
	1:	0.23	:	0.10:	1.70:		
	1:	0.04			1.90:		1.00:
6:		0.01			2.10:		1.20:
7:		0.00					1.40:
8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
s:	M:	NUMBER	:	S2	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES				(t1) :	
	1:	 19.14	-	-	•	0.00:	•
2:		2.29			0.50.	0.00:	0.00.
3:		1.14				0.00:	
4:					0.00.	0.00:	0.00.
5:				-1.00:			
6:		0.01				0.00:	
7:					1 40-	0.00:	0.00.
8:		0.00	•	-1.60	1 60.	0.00:	0.00.
9:				-1.80:			
- •							

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLC	CK	CAS	E NO. 4					
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-	20.20	- : -	::-	:-	:-	:
		1:	38.29	:	0.60:	1.20:	-0.30:	0.30:
	2:	1:	4.57	:	0.40:	1.40:	-0.50:	0.50:
	3:	1:	2.29	:	0.30:	1.50:	-0.60:	0.60:
	4:	1:	0.46	:	0.10:	1.70:	-0.80:	0.80:
	5:	1:	0.08	:	-0.10:	1.90:	-1.00:	1.00:
	6:	1:	0.02	:	-0.30:	2.10:	-1.20:	1.20:
	7:	1:	0.01	:	-0.50:	2.30:	-1.40:	1.40:
	8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:

9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
s :	M:	NUMBER	:	S2	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:		-:-	:-	:	:-	:
1:	1:	38.29	:	-0.30:	0.30:	0.00:	0.00:
2:	1:	4.57	:	-0.50:	0.50:	0.00:	0.00:
3:	1:	2.29	:	-0.60:	0.60:	0.00:	0.00:
4:	1:	0.46	:	-0.80:	0.80:	0.00:	0.00:
5:	1:	0.08	:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.02	:	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.01	:	-1.40:	1.40:	0.00:	0.00:
	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
	1:	0.00	:	-1.80:	1.80:	0.00:	0.00:
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	CK	CAS	E NO. 5					
			NUMBER	:	S0	:	S1	:
т	:	A:	OF	:		:		:
			FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-					:-	
					1.00:			
	2:	1:	0.44					
	3:	1:						
		1:			0.43:			
	5:	1:	0.00	:	0.23:	1.24:	0.23:	
	6:	1:	0.00	:	0.04:			1.30:
S	:	M:	NUMBER	:	S2	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE			:		:
P	:	L:	CYCLES				(t1) :	
		:-		•	-	-	:-	
		1:						
		1:			0.81:			
		1:			0.62:			
		1:					0.00:	
	5:	1:			0.23:			
	6:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

TC12, PSE-W1 SA226 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

:	:	·:	:	:	:
1: 1:	1.90 :	0.00:	0.00:	0.00:	0.00:
2: 1:	0.09 :	0.00:	0.00:	0.00:	0.00:
3: 1:	0.01 :	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC12, PSE-W1 SA226 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M:	NUMBER	:	S0	:	S1	:
т:	A:	OF	:		•		
E :	T:	FATIGUE	:	(ksi) :	(ksi) :
P:	L:	CYCLES	:		(t2) :	(t1):	
:	:-		-:-	:	:	:-	:
1:	1:	9.57	:	3.22:	6.44:	0.00:	0.00:
2:	1:	1.14	:	2.15:	7.52:	0.00:	0.00:
3:	1:	0.57	:	1.61:	8.05:	0.00:	0.00:
4:	1:	0.11	:	0.54:	9.13:	0.00:	0.00:
5:	1:	0.02	:	-0.54:	10.20:	0.00:	0.00:
6:	1:	0.01	:	-1.61:	11.28:	0.00:	0.00:
7:	1:	0.00	:	-2.68:	12.35:	0.00:	0.00:
8:	1:	0.00	:	-3.76:	13.43:	0.00:	0.00:
9:	1:	0.00	:	-4.83:	14.50:	0.00:	0.00:
10:		0.00	:	-5.91:	15.57:	0.00:	0.00:
s:		NUMBER	:	S2	:	ន	:
	A:	OF	:		:		:
E :		FATIGUE	:	(ksi)	:	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:- 1:		- : -	::	:	:-	:
	1:	1.14				0.00:	
	1:	0.57		0.00: 0.00:	0.00:	0.00:	0.00:
4:	1:	0.37		0.00:	0.00:	0.00:	0.00:
5:	1:	0.11		0.00:	0.00:	0.00:	0.00:
	1:	0.02		0.00:		0.00:	0.00:
7:		0.01		0.00:	0.00:	0.00: 0.00:	
	1:	0.00		0.00:	0.00:		0.00:
	1:	0.00			0.00:	0.00: 0.00:	0.00:
	1:	0.00			0.00:	0.00:	0.00:
10.		0.00	•	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC12, PSE-W1 SA226 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STI)							
s	:	M:	NUMBER	:	S0	:	s1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
	-:	:-		-:-	·:	:	:-	:
	1:	1:	19.14	:	3.22:	6.44:	0.00:	0.00:
	2:	1:	2.29	:	2.15:	7.52:	0.00:	0.00:
	3:	1:	1.14	:	1.61:	8.05:	0.00:	0.00:
	4:	1:	0.23	:	0.54:	9.13:	0.00:	0.00:
	5:	1:	0.04	:	-0.54:	10.20:	0.00:	0.00:
	6:	1:	0.01	:	-1.61:	11.28:	0.00:	0.00:
	7:	1:	0.00	:	-2.68:	12.35:	0.00:	0.00:
	8:	1:	0.00	:	-3.76:	13.43:	0.00:	0.00:

9:	1:	0.00	:	-4.83:	14.50:	0.00:	0.00:
10:	1:	0.00	:	-5.91:	15.57:	0.00:	0.00:
s :	M:	NUMBER	:	S2	:	s	:
T:	A:	. OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		: -	: - -	:	:	
1:	1:	19.14	:	0.00:	0.00:	0.00:	
2:	1:	2.29	:	0.00:	0.00:	0.00:	0.00:
3:	1:	1.14	:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.23	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.04	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W1 SA226 Main Spa MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD STD
S: M: NUMBER : S0 : S1
T: A: OF : :
E: T: FATIGUE : (ksi) : (ksi)

P : L:	CYCLES	:	(t1):	(t2) :	(t1):	(t2) :
1: 1:	38.29	: -	3.22:	6.44:	0.00:	0.00:
2: 1:	4.57		2.15:	7.52:	0.00:	0.00:
3: 1:	2.29		1.61:	8.05:	0.00:	0.00:
4: 1:	0.46		0.54:	9.13:	0.00:	0.00:
5: 1:	0.08	:	-0.54:	10.20:	0.00:	0.00:
6: 1:	0.02	:	-1.61:	11.28:	0.00:	0.00:
7: 1:	0.01	:	-2.68:	12.35:	0.00:	0.00:
8: 1:	0.00	:	-3.76:	13.43:	0.00:	0.00:
9: 1:	0.00	:	-4.83:	14.50:	0.00:	0.00:
10: 1:	0.00	:	-5.91:	15.57:	0.00:	0.00:
S : M:	NUMBER	:	S2	:	S	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:	(ksi)		(ksi)	
P : L:	CYCLES	:	(t1):	(t2) :	(t1):	(t2) :
1: 1:	38.29	• : -	0.00:	0.00:	0.00:	0.00:
2: 1:	4.57		0.00:	0.00:	0.00:	0.00:
3: 1:	2.29		0.00:	0.00:	0.00:	0.00:
4: 1:	0.46			0.00:	0.00:	0.00:
5: 1:	0.08		0.00:	0.00:	0.00:	0.00:
6: 1:	0.02		0.00:	0.00:	0.00:	0.00:
7: 1:	0.01		0.00:	0.00:	0.00:	0.00:
8: 1:	0.00		0.00:	0.00:	0.00:	0.00:
9: 1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10: 1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W1 SA226 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
Ε	:	T:	FATIGUE	:	(ksi)		(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:	:	:		:
		1:	0.28	:	4.05:	4.09:	0.00:	0.00:
	2:	1:	0.44	:	3.28:	4.29:	0.00:	0.00:
	3:	1:	0.22	:	2.51:	4.54:	0.00:	0.00:
	4:	1:	0.06	:	1.74:	4.78:	0.00:	0.00:
	5:	1:	0.00	:	0.93:	5.02:	0.00:	0.00:
	6:	1:	0.00	:	0.16:	5.26:	0.00:	0.00:
S	:	M:	NUMBER	:	S 2	:	· s	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	
P	:	L:	CYCLES	:	(t1) :		(t1) :	(t2) :
	:	:-		-:-	:	:	:	:
	1:	1:	0.28	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.44	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.22	:	0.00:	0.00:	0.00:	0.00:
		1:		:	0.00:	0.00:	0.00:	0.00:
		1:			0.00:	0.00:	0.00:	0.00:
	-	1:	0.00	•	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W1 SA226 Main Spa

MODEL: TC12

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
100	15		0.407895	6.721813
200	15		0.421819	6.850195
300	15		0.436918	6.988788
400	15		0.453375	7.139245
500	15		0.471413	7.303647
600	15		0.491316	7.484665
700	15		0.513452	7.685799
800	15		0.538304	7.911754
900	15		0.566529	8.169060
1000	15		0.599053	8.467120
1100	15		0.637240	8.820165
1200	15		0.683221	9.251129
1300	15		0.740612	9.800380
1400	15		0.816328	10.548807
1500	15		0.926522	11.697429
1600	15		1.128692	14.037365

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: K max = 51.88 K ref = 0.000 K cr = 51.83 at the very beginning of Load Step No. 10 Step description:

of Block No. 14 of Schedule No. 1650

Crack Size c = 1.38247

> FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----DATE: 05-OCT-98 TIME: 10:21:17

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

```
PROBLEM TITLE
                                     (Title)
TC2, PSE-W1 SA226 Main Spar Angle WS99
GEOMETRY
MODEL: TC02-Single edge through crack.
Plate Thickness, t =
                    0.1250
 " Width, W
              = 1.4400
FLAW SIZE:
c (init.) = 0.3950
MATERIAL
MATL 1:
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: K1e: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : :
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants -----
:---:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
_____
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
                        -1.0000
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                         0.0000
                        0.0000
Scale Factor for Stress S2:
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S2: 0.0000
Scale Factor for Stress S2:
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                          4.9100
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S2:
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
```

0.0000

0.0000

Scale Factor for Stress S1:

Scale Factor for Stress S2:

```
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                          3.7000
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S2:
                          0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
 Block Number
                          Block Case No.
         To
From
   1
             1
                                  1
   2
             3
   4
   5
             5
   6
             6
             7
                                  1
   8
             8
   9
             9
                                  5
  10
            10
  11
            11
                                  3
  12
            12
                                  5
  13
            13
                                  1
  14
            14
                                  4
            15
  15
BLOCK CASE NO. 1
S : M: NUMBER
                         S0 ·
т
         OF
   : A:
E : T: FATIGUE
P : L: CYCLES
                      (t1): (t2): (t1): (t2)
1.90 :
  1: 1:
                                      -0.30:
                      0.70: 1.30:
                                                 0.30:
         0.09 .
0.01 :
  2: 1:
                               1.40:
                      0.60:
                                       -0.40:
                                                 0.40:
  3: 1:
                      0.54:
                               1.46:
                                       -0.46:
S : M: NUMBER
                       S2
                                  :
                                        S
T : A:
        OF
E : T: FATIGUE
                      (t1) : (t2) :
P : L: CYCLES
                :
                                       (t1): (t2)
---:--:--:-----:
  1: 1:
             1.90 :
                     -0.30:
                               0.30:
                                        0.00:
                                                 0.00:
             0.09 :
  2: 1:
                      -0.40:
                               0.40:
                                        0.00:
                                                 0.00:
  3: 1:
             0.01:
                      -0.46:
                               0.46:
                                        0.00:
                                                 0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                         S0
                                           S1
T : A:
          OF
                 :
E : T: FATIGUE
                :
P : L: CYCLES
                      (t1): (t2)
                                     (t1): (t2)
                                 :
---:--:------
                    -----:
           9.57 :
                     0.60: 1.20: -0.30:
  1: 1:
                                                 0.30:
  2: 1:
             1.14:
                                       -0.50:
                      0.40:
                               1.40:
                                                0.50:
                     0.30:
  3: 1:
             0.57 :
                               1.50:
                                       -0.60:
  4: 1:
             0.11 :
                     0.10:
                              1.70:
                                       -0.80:
                                                0.80-
  5: 1:
             0.02 :
                     -0.10:
                              1.90:
                                       -1.00:
                                                1.00:
  6: 1:
             0.01:
                      -0.30:
                               2.10:
                                       -1.20:
                                                1.20:
  7: 1:
             0.00 :
                     -0.50:
                               2.30:
                                       -1.40:
                                                1.40:
  8: 1:
             0.00:
                     -0.70:
                               2.50:
                                       -1.60:
                                                1.60:
  9: 1:
             0.00 :
                      -0.90:
                               2.70:
                                       -1.80:
                                                1.80:
```

10:	1:	0.00	:	-1.10:	2.90:	~2.00:	2.00:
s:	M:	NUMBER	:	S2	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:		(t2) :	(t1) :	
	:-			:-			
1:	1:	9.57	:	-0.30:	0.30:	0.00:	0.00:
2:	1:	1.14	:	-0.50:	0.50:	0.00:	0.00:
3:	1:	0.57	:	-0.60:	0.60:	0.00:	0.00:
4:	1:	0.11	:	-0.80:	0.80:	0.00:	0.00:
5:	1:	0.02	:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.01	:	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.00	:	-1.40:	1.40:	0.00:	0.00:
8:	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
9:	1:	0.00	:	-1.80:	1.80:	0.00:	0.00:
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK	CAS	E NO. 3					
s:	M:	NUMBER	:	S0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
				:-	:-	:-	:
		19.14					
2:	1:	2.29	:	0.40:	1.40:	-0.50:	
3:	1:	1.14					
4:	1:	0.23	:	0.10:	1.70:	-0.80:	0.80:
5:	1:	0.04	:	-0.10:	1.90:	-1.00:	1.00:
6:	1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:
7:	1:	0.00	:	-0.50:	2.30:	-1.40:	1.40:
8:	1:	0.00	:				1.60:
9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:		0.00	:	-1.10:	2.90:	-2.00:	2.00:
s:	M:	NUMBER		S2	:	_	:
T:		OF	:		:		:
E :		FATIGUE	:		:		:
		CYCLES		(t1) :	(t2) :	(t1):	(t2) :
	:-		· : -	- :-	:	:	:
1:	1:	19.14	:	-0.30:	0.30:	0.00:	0.00:
2:	1:	2.29	:	-0.50:	0.50:	0.00:	0.00:
3:	1:	1.14	:	-0.60:	0.60:	0.00:	0.00:
4:	1:	0.23	:	-0.80:	0.80:	0.00:	0.00:
5:	1:	0.04	:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.01	:	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.00			1.40:	0.00:	0.00:
8:	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
	1:	0.00	:	-1.80:		0.00:	
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BL	OCK	CAS	E NO. 4					
S	:	M:	NUMBER	:	S 0	:	S1	:
Т	:	A:	OF	:	•	:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	38.29	:	0.60:	1.20:	-0.30:	0.30:
	2:	1:	4.57	:	0.40:	1.40:	-0.50:	0.50:
	3:	1:	2.29	:	0.30:	1.50:	-0.60:	0.60:
	4:	1:	0.46	:	0.10:	1.70:	-0.80:	0.80:

6: 7: 8: 9: 10:	1: 1: 1: 1: 1: M:	0.08 0.02 0.01 0.00 0.00 0.00	: : : :	-0.10: -0.30: -0.50: -0.70: -0.90: -1.10:	1.90: 2.10: 2.30: 2.50: 2.70: 2.90:	-1.00: -1.20: -1.40: -1.60: -1.80: -2.00:	1.00: 1.20: 1.40: 1.60: 1.80: 2.00:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:-	:-	:
1:	1:	38.29	:	-0.30:	0.30:	0.00:	0.00:
2:	1:	4.57	:	-0.50:	0.50:	0.00:	0.00:
3:	1:	2.29	:	-0.60:	0.60:	0.00:	0.00:
4:	1:	0.46	:	-0.80:	0.80:	0.00:	0.00:
_						0.00.	
5:	1:	0.08	:	-1.00:	1.00:	0.00:	0.00:
	1: 1:	0.08 0.02		-1.00: -1.20:			
6:			:		1.00:	0.00:	0.00:
6: 7:	1:	0.02	:	-1.20:	1.00: 1.20:	0.00:	0.00: 0.00:
6: 7: 8:	1: 1:	0.02 0.01	:	-1.20: -1.40:	1.00: 1.20: 1.40:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than ${\tt KIscc)}\colon {\tt NOT}\ {\tt SET}$

BLO	OCK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S 0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-	:-		-:-	:-	:	:-	:
				:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	M:	NUMBER	:	S2	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
		L:	CYCLES				(t1) :	
	•	-					0.00:	
		1:					0.00:	
							0.00:	
		1:			0.43:			
		1:			0.23:			
		1:					0.00:	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER T : A: OF : · 50 S1 : (ksi) E : T: FATIGUE (ksi) P : L: CYCLES : (t1): (t2): (t1): (t2): ----:--:---:----:----:----: 1: 1: 1.90 : -0.70: -1.30: 0.00: 0.00: -0.60: -1.40: 2: 1: 0.09 : 0.00: 0.00: 3: 1: 0.01: -0.54: -1.46: 0.00: 0.00:

S	:	M:	NUMBER	:	S 2	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		- : -	:	:-	:-	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STD								
S	:	M:	NUMBER	:	S0	:	S1	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		:-	:	:	:	:
		1:	9.57				0.00:	
2	2:	1:					0.00:	
3	3:	1:	0.57	:	1.47:	7.37:	0.00:	0.00:
4	1:	1:	0.11	:			0.00:	
5	5:	1:	0.02	:	-0.49:	9.33:	0.00:	
6	5 :	1:	0.01	:	-1.47:	10.31:	0.00:	0.00:
7	7:	1:	0.00	:	-2.45:	11.29:	0.00:	0.00:
8	3:	1:	0.00	:	-3.44:	12.28:	0.00:	0.00:
9	9:	1:	0.00	:	-4.42:	13.26:	0.00:	0.00:
10	0:	1:	0.00	:	-5.40:	14.24:	0.00:	0.00:
S	:	M:	NUMBER	:	\$2	:	S	:
T			OF	:		:		:
E			FATIGUE	:	(ksi)) :	(ksi)	:
			CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
	-:	:-		: :	:	:	: - -	:
	1:	1:	9.57	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	1.14	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.57	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.11	:	0.00:	0.00:	0.00:	0.00:
1	5:	1:	0.02	:	0.00:	0.00:	0.00:	0.00:
		1:	0.01				0.00:	0.00:
		1:	0.00				0.00:	0.00:
		1:	0.00			0.00:		0.00:
		1:	0.00				0.00:	
		1:	0.00			0.00:		0.00:
_								

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STD								
S	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:	•	:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	::	:-	:	:
	1:	1:	19.14	:	2.95:	5.89:	0.00:	0.00:
	2:	1:	2.29	:	1.96:	6.87:	0.00:	0.00:
	3:	1:	1.14	:	1.47:	7.37:	0.00:	0.00:
	4:	1:	0.23	:	0.49:	8.35:	0.00:	0.00:

5:	1:	0.04	:	-0.49:	9.33:	0.00:	0.00:
6:	1:	0.01	:	-1.47:	10.31:	0.00:	0.00:
7:	1:	0.00	:	-2.45:	11.29:	0.00:	0.00:
8:	1:	0.00	:	-3.44:	12.28:	0.00:	0.00:
9:	1:	0.00	:	-4.42:	13.26:	0.00:	0.00:
10:	1:	0.00	:	-5.40:	14.24:	0.00:	0.00:
s:	M:	NUMBER	:	S2	:	s	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:-	:	:
1:	1:	19.14	:	0.00:	0.00:	0.00:	0.00:
2:	1:	2.29	:	0.00:	0.00:	0.00:	0.00:
3:	1:	1.14	:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.23	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.04	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	М:	NUMBER	:	S 0	:	S1	:
T :	A:	OF	:		:		:
	T:	FATIGUE	:	(ksi) :	(ksi) :
P:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	1:	20 20	-:-	2.05	:	:	:
	1:	38.29		2.95:	5.89:	0.00:	0.00:
		4.57			6.87:	0.00:	
	1:	2.29			7.37:		
	1:				8.35:		
-	1:	0.08					
	1:	0.02					
7:		0.01			11.29:		
8:		0.00			12.28:		
	1:	0.00				0.00:	0.00:
10:		0.00	:	-5.40:	14.24:	0.00:	0.00:
s:		NUMBER	:	S2	:	S	:
т:		OF	:		:		:
E :	\mathbf{T} :	FATIGUE	:	(ksi) :	(ksi)	
P :	L:	CYCLES	:	• • •	(t2) :	(t1) :	(t2) :
1:	1:	38.29	-:-	0.00:	0.00:	0.00:	0.00:
	1:	4.57			0.00:	0.00:	0.00:
3:		2.29			0.00:	0.00:	0.00:
	1:	0.46			0.00:		
	1:			0.00:	0.00:		
	1:	0.02			0.00:		
	1:	0.02					0.00:
8:				0.00:	0.00:	0.00:	
		0.00		0.00:	0.00:		0.00:
	1:	0.00			0.00:		0.00:
10:	Τ:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC2, PSE-W1 SA226 Main Spar

MODEL: TC02

FATIGUE	SCHEDULE	BLOCK	STRESS	TABLE

STI)							
S	:	M:	NUMBER	:	S 0	:	s1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ks	i) :
P	:	L:	CYCLES	:	(t1):	(t2) :	(t1):	(t2) :
	1:	:- 1:	0.28	:	3.70:	3.74:	0.00:	0.00:
	2:	1:	0.44	:	3.00:	3.92	0.00:	0.00:
		1:	0.22	:	2.29:	4.14:	0.00:	0.00:
	4:	1:	0.06	:	1.59:	4.37	0.00:	0.00:
	5:	1:	0.00	:	0.85:	4.59	0.00:	0.00:
	6:	1:	0.00	:	0.15:	4.81:	0.00:	0.00:
S	:	M:	NUMBER	:	S2	:	: S	:
Т	:	A:	OF	:		:	:	:
E	:	T:	FATIGUE	:	(ksi)	: (ks	i) :
P	:	L:	CYCLES	:	(t1) :	(t2)	: (t1) :	(t2) :
	:	:-		:	:-		::	0.00
		1:	0.28		0.00:	0.00		
		1:	0.44		0.00:	0.00		
		1:	0.22		0.00:	0.00		
		1:	0.06		0.00:	0.00		
		1:	0.00	:	0.00:	0.00		
	6:	1:	0.00	:	0.00:	0.00	: 0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
100	15		0.437951	9.422768
200	15		0.524720	11.876780

ADVISORY: Net-section stress > Yield and failure is imminent

(Unless (a) UTS > 2 YS, or

(b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No.

Step description:

of Block No. 14 of Schedule No. 236

Crack Size c = 0.610198

FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 10 Step description: 11 of Schedule No. 241

of Block No.

Crack Size c = 0.632745

> FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----DATE: 05-OCT-98 TIME: 10:21:28

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

```
TC2, PSE-W1 SA226 Main Spar Cap WS99
                                     (Title)
GEOMETRY
MODEL: TC02-Single edge through crack.
Plate Thickness, t =
                    0.1250
  " Width, W
FLAW SIZE:
c (init.) = 0.3950
MATERIAL
MATL 1:
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS : YS : Kle : Klc : Ak : Bk : Thk : Kc : KIscc:
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                        -1.0000
Scale Factor for Stress S1:
                        0.0000
Scale Factor for Stress S2:
                         0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress SO:
                          5.3700
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S2:
                          0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress SO:
                          5.3700
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S2:
                          0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S2:
                          0.0000
```

4.0500

Stress Scaling Factors for Block Case: 5

. Scale Factor for Stress S0:

```
Scale Factor for Stress S1:
                         0.0000
Scale Factor for Stress S2:
                         0.0000
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From - To
   2 -
            2
   3
            3
   4
            4
   5
            5
   6
            6
   7
   8
            8
   9
            9
  10
           10
  11
           11
  12
           12
  13
           13
  14
           14
  15
           15
BLOCK CASE NO. 1
 S : M: NUMBER : S0
                                    S1
                                :
 T : A:
        OF
 E : T: FATIGUE
                     (t1): (t2): (t1): (t2)
 P : L: CYCLES :
1: 1: 1.90 :
2: 1: 0.09 :
3: 1: 0.01 :
                    0.70: 1.30: -0.30: 0.30:
                                              0.40:
                             1.40:
                                      -0.40:
                     0.60:
                    0.54: 1.46:
                                      -0.46:
                                               0.46:
 S : M: NUMBER :
                      S2
                                      S
 T : A: OF
 E : T: FATIGUE :
                    (t1): (t2): (t1): (t2):
                                      (t1) : (t2)
 P : L: CYCLES
---:--:--:--
  1: 1: 1.90: -0.30: 0.30: 2: 1: 0.09: -0.40: 0.40:
                                       0.00: 0.00:
  2: 1:
             0.09:
                                       0.00:
                                               0.00:
           0.05
                            0.46:
                      -0.46:
                                       0.00:
  3: 1:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
 S : M: NUMBER
                : S0 .
                                        S1
 T : A: OF
 E : T: FATIGUE : P : L: CYCLES :
                     (t1): (t2): (t1): (t2)
 ---;--;--;-----;----;-----;-----;
                    0.60: 1.20: -0.30: 0.40: 1.40: -0.50: 0.30: 1.50: -0.60: 0.10: 1.70: -0.80:
   1: 1: 9.57:
                                              0.30:
   2: 1:
             1.14:
                                               0.50:
   3: 1:
            0.57 :
                                      -0.80: 0.80:
   4: 1:
            0.11 :
                             1.90: -1.00:
2.10: -1.20:
             0.02 :
                     -0.10:
                                               1.00:
   5: 1:
                     -0.30:
                                              1.20:
             0.01 :
   6: 1:
   7: 1:
             0.00 :
                      -0.50:
                              2.30: -1.40:
                                               1.40:
                              2.50:
                                     -1.60:
-1.80:
             0.00:
                      -0.70:
                                               1.60:
   8: 1:
  9: 1:
             0.00:
                      -0.90:
                                               1.80:
  10: 1: 0.00:
                              2.90:
                                     -2.00: 2.00:
                      -1.10:
 S : M: NUMBER :
                                          S
                         S2
```

T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	- : ·	:-		-:-	:-	:-	:-	:
3	l:	1:	9.57	:	-0.30:	0.30:	0.00:	0.00:
2	2:	1:	1.14	:	-0.50:	0.50:	0.00:	0.00:
3	3:	1:	0.57	:	-0.60:	0.60:	0.00:	0.00:
4	4:	1:	0.11	:	-0.80:	0.80:	0.00:	0.00:
5	5:	1:	0.02	:	-1.00:	1.00:	0.00:	0.00:
6	5:	1:	0.01	:	-1.20:	1.20:	0.00:	0.00:
7	7:	1:	0.00	:	-1.40:	1.40:	0.00:	0.00:
8	3:	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
9	9:	1:	0.00	:	-1.80:	1.80:	0.00:	0.00:
10):	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLOCK	CAS	SE NO. 3					
s:	Μ:	NUMBER	:	S0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P:	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
1:	1:	19.14	:	0.60:	1.20:	-0.30:	0.30:
2:	1:	2.29	:	0.40:	1.40:	-0.50:	0.50:
3:	1:	1.14	:	0.30:	1.50:	-0.60:	0.60:
4:	1:	0.23	:	0.10:	1.70:	-0.80:	0.80:
5:	1:	0.04	:	-0.10:	1.90:	-1.00:	1.00:
6:	1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:
7:	1:	0.00	:	-0.50:	2.30:	-1.40:	1.40:
	1:	0.00			2.50:	-1.60:	1.60:
9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:		0.00	:	-1.10:	2.90:	-2.00:	2.00:
s :		NUMBER	:	S2	:	S	:
	A:	OF	:		:		:
	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	19.14	:	-	0.30:	0.00:	0.00:
2:	1:	2.29	:	-0.50:	0.50:	0.00:	0.00:
3:	1:	1.14	:	-0.60:	0.60:	0.00:	0.00:
4:	1:	0.23	:	-0.80:	0.80:	0.00:	0.00:
5:	1:	0.04	:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.01	:	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.00	:	-1.40:	1.40:	0.00:	0.00:
8:	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
9:	1:	0.00	:	-1.80:	1.80:	0.00:	0.00:
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

BLO	CK	CAS	E NO. 4					
s	:	M:	NUMBER	:	5 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:-	:-	:-	:
:	1:	1:	38.29	:	0.60:	1.20:	-0.30:	0.30:
:	2:	1:	4.57	:	0.40:	1.40:	-0.50:	0.50:
:	3:	1:	2.29	:	0.30:	1.50:	-0.60:	0.60:
	4:	1:	0.46	:	0.10:	1.70:	-0.80:	0.80:
!	5:	1:	0.08	:	-0.10:	1.90:	-1.00:	1.00:
	6:	1:	0.02	:	-0.30:	2.10:	-1.20:	1.20:

7:	1:	0.01	:	-0.50:	2.30:	-1.40:	1.40:
8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
s:	М:	NUMBER	:	S2	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:-	:-	:
1:	1:	38.29	:	-0.30:	0.30:	0.00:	0.00:
2:	1:	4.57	:	-0.50:	0.50:	0.00:	0.00:
3:	1:	2.29	:	-0.60:	0.60:	0.00:	0.00:
4:	1:	0.46	:	-0.80:	0.80:	0.00:	0.00:
5:	1:	0.08	:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.02	:	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.01	:	-1.40:	1.40:	0.00:	0.00:
8:	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
9:	1:	0.00	:	-1.80:	1.80:	0.00:	0.00:
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
	-:- 1.	:- 1.	0.28	: -	1.00:	1.01:	1.00:	1.01:
	_				0.81:			
	3:		0.22					
	-	1:			0.43:		0.42:	1.18:
	5:				0.23:			1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
s	:	M:	NUMBER	:	S2	:	S	:
Т	:	A:	OF	:		:		:
E			FATIGUE			:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:	:-	:
							0.00:	
		1:					0.00:	
	3:	1:			0.62:			
	4:	1:			0.43:			
	5:	1:	0.00	:	0.23:	1.24:	0.00:	
	6:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S1 : E : T: A: OF : (ksi) : (ksi) : (t1) : (t2) : (t1) : (t2

E : T:	FATIGUE :	(ksi	<u>.</u>)	(ksi) :
P : L:		,,		(t1) :	,,
:-	:-	:-	:	:-	:
1: 1:	1.90 :	0.00:	0.00:	0.00:	0.00:
2: 1:	0.09 :	0.00:	0.00:	0.00:	0.00:
3: 1:	0.01:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

CTP S : M: NUMBER : T : A: OF E : T: FATIGUE : (ksi) : (ksi)
P : L: CYCLES : (t1): (t2) : (t1): (t2) (ksi)
 1: 1:
 9.57:
 3.22:
 6.44:
 0.00:
 0.00:

 2: 1:
 1.14:
 2.15:
 7.52:
 0.00:
 0.00:

 3: 1:
 0.57:
 1.61:
 8.05:
 0.00:
 0.00:

 4: 1:
 0.11:
 0.54:
 9.13:
 0.00:
 0.00:
 8.05: 0.00: 9.13: 0.00: 0.02 : 0.01 : 0.00 : ~0.54: 10.20: 0.00: 5: 1: -1.61: 11.28: -2.68: 12.35: 0.00: 0.00: 6: 1: 0.00: 7: 1: 0.00: 8: 1: 0.00 : -3.76: 13.43: 0.00: 0.00: 9: 1: 10: 1: 0.00 : 0.00 : -4.83: 14.50: -5.91: 15.57: 0.00: 0.00: 0.00: 0.00: S2 S : M: NUMBER : : S T : A: OF E : T: FATIGUE : E : T: FATIGUE : (ksi) : (ksi)
P : L: CYCLES : (t1): (t2) : (t1): (t2) (ksi) 1: 1: 9.57: 0.00: 0.00: 2: 1: 1.14: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 3: 1: 0.57 : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.11 : 4: 1: 0.00: 5: 1: 0.02 : 0.00: 0.00: 0.00: 0.00: 6: 1: 0.01 :

0.00: 0.00: 0.00: 0.00:

0.00: 0.00:

0.00:

0.00:

0.00:

0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

0.00:

0.00:

0.00:

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

7: 1:

8: 1:

9: 1:

10: 1:

FATIGUE SCHEDULE BLOCK STRESS TABLE

0.00:

0.00 :

0.00:

CTP : S : M: NUMBER S1 : OF 19.14: 3.22: 6.44: 0.00: 0.00: 2.29: 2.15: 7.52: 0.00: 0.00: 1: 1: 2: 1: 1.14: 1.61: 8.05: 0.00: 0.23: 0.54: 9.13: 0.00: 0.04: -0.54: 10.20: 0.00: 3: 1: 0.00: 4: 1: 0.00: 0.00: 5: 1: 6: 1: 0.01: -1.61: 11.28: 0.00: 0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

7:	1:	0.00	:	-2.68:	12.35:	0.00:	0.00:
8:	1:	0.00	:	-3.76:	13.43:	0.00:	0.00:
9:	1:	0.00	:	-4.83:	14.50:	0.00:	0.00:
10:	1:	0.00	:	-5.91:	15.57:	0.00:	0.00:
s:	M:	NUMBER	:	S2	:	S	:
T :	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		· : -	:	:	:-	:
1:	1:	19.14	:	0.00:	0.00:	0.00:	0.00:
2:	1:	2.29	:	0.00:	0.00:	0.00:	0.00:
3:	1:	1.14	:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.23	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.04	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M:	NUMBER	:	so	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	
P :	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
1:	:- 1:	38.29	:-	3.22:	6.44:	0.00:	0.00:
	1:	4.57		2.15:	7.52:	0.00:	0.00:
	1:	2.29	:	1.61:	8.05:	0.00:	0.00:
4:	1:	0.46	:	0.54:	9.13:	0.00:	0.00:
5:	1:	0.08	:	-0.54:	10.20:	0.00:	0.00:
6:	1:	0.02	:	-1.61:	11.28:	0.00:	0.00:
7:	1:	0.01	:	-2.68:	12.35:	0.00:	0.00:
8:	1:	0.00	:	-3.76:	13.43:	0.00:	0.00:
9:	1:	0.00	:	-4.83:	14.50:	0.00:	0.00:
10:	1:	0.00	:	-5.91:	15.57:	0.00:	0.00:
s:	M:	NUMBER	:	S2	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
: 1:	:- 1:	38.29	· : - :	0.00:	0.00:	0.00:	0.00:
	1:	4.57			0.00:	0.00:	0.00:
	1:	2.29		0.00:	0.00:	0.00:	0.00:
4:	1:	0.46	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.08	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.02	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:				
E	:	T:	FATIGUE	:	(ksi)		(kei	, :
Þ			CYCLES				(t1) :	
-		:-	CICHES	•				
	•	•		-:-		-	:-	•
		1:			4.05:			0.00:
	2:	1:	0.44	:	3.28:	4.29:	0.00:	0.00:
	3:	1:	0.22	:	2.51:	4.54:	0.00:	0.00:
	4:	1:	0.06	:	1.74:	4.78:	0.00:	
	5.	1:			0.93:			
		1:	0.00			5.26:	0.00:	0.00:
S	:	M:	NUMBER	:	S2	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P		L:					(t1):	
				. . .		(02)	1047 •	(62)
	1.	1:	0.20		0.00	0.00	:-	:
					0.00:		0.00:	0.00:
	2:	1:	0.44	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.22	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.06	:	0.00:	0.00:		
		1:	0.00					
	6:	Τ:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-W1 SA226 Main Spar MODEL: TC02

ANALYSIS RESULTS:

Schedl	m11-		n' 1 m1 m1	
Schear	Block		Final Flaw Size	K max
		Step	С	c-tip
100	15		0.414804	7.506543
200	15		0.437688	7.787127
300	15		0.464649	8.120896
400	15		0.497261	8.530501
500	15		0.538222	9.056281
600	15		0.592774	9.780616
700	15		0.673513	10.915370
800	15		0.828719	13.371923

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: $K \max = 51.84 \quad K \text{ ref} = 0.000 \quad K \text{ cr} = 51.83$ at the very beginning of Load Step No. 10

Step description:

of Block No. 14 of Schedule No.

Crack Size c = 1.03995

> FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----DATE: 17-MAR-99 TIME: 09:33:40

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

CORNER CRACK CASE 2, PSE-W1 SA226 MS, .005 crack in cap WS 99

GEOMETRY

```
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t = 0.1250
Plate Width, W = 3.0000
Hole Diameter, D = 0.1600
Hole-Center-to-Edge Dist., B =
                           0.3100
Poisson s ratio = 0.30
FLAW SIZE:
a (init.) = 0.5000E-02
c (init.) = 0.5000E-02
a/c (init.) = 1.000
MATERIAL
              2014T6511 EXTRUSION T-L
Material Properties:
 :Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
            : 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
 :Matl:----- Crack Growth Eqn Constants -----:
 : No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            : 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
 MODEL: CC02
 FATIGUE SCHEDULE BLOCK INPUT TABLE
 ______
 STD
 [Note: Stress = Input Value * Stress Factor]
 Stress Scaling Factors for Block Case: 1
 Scale Factor for Stress S0: -1.0000
 Scale Factor for Stress S1: 0.0000
 Scale Factor for Stress S3: -1.0000
 Stress Scaling Factors for Block Case: 2
 Scale Factor for Stress S0:
                          4.6400
                         0.0000
 Scale Factor for Stress S1:
 Scale Factor for Stress S3:
                         6.6000
 Stress Scaling Factors for Block Case: 3
 Scale Factor for Stress S0:
                         0.0000
 Scale Factor for Stress S1:
 Scale Factor for Stress S3:
 Stress Scaling Factors for Block Case: 4
 Scale Factor for Stress S0:
 Scale Factor for Stress S1:
                         0.0000
```

6.6000

Scale Factor for Stress S3:

```
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                          3.5000
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S3:
                          4.9700
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                          Block Case No.
         To
From -
   2
            2
                                 2
   3
            3
                                 5
   4
                                 1
   6
            6
   7
                                 1
   8
            8
                                 3
   9
            9
  10
           10
                                 1
  11
           11
  12
           12
  13
           13
  14
           14
                                 4
  15
           15
                                 5
BLOCK CASE NO. 1
S : M: NUMBER
                         S0
                                          S1
T : A:
        OF
                 :
E : T: FATIGUE
P : L: CYCLES
                     (t1): (t2):
                :
                                     (t1): (t2)
1: 1: 1.90 : 0.70: 1.30: 0.70:
                                              1.30:
           0.09 :
  2: 1:
                      0.60:
                               1.40:
                                       0.60:
                                               1.40:
             0.01:
  3: 1:
                      0.54:
                               1.46:
                                       0.54:
                                               1.46:
S : M: NUMBER :
                      S3
                                 :
  : A:
         OF
E : T: FATIGUE
                                 :
P : L: CYCLES
                      (t1): (t2)
                                      (t1): (t2)
                 :
----:--:--:-----:-----:
  1: 1:
             1.90:
                      0.70:
                               1.30:
                                       0.00:
                                               0.00:
             0.09:
  2: 1:
                      0.60:
                               1.40:
                                       0.00:
                                               0.00:
  3: 1:
             0.01:
                      0.54:
                               1.46:
                                       0.00:
                                               0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                         SO
                                          S1
   : A:
         OF
                 :
E : T: FATIGUE
P : L: CYCLES
                    (t1) : (t2)
                :
                                      (t1): (t2)
0.60: 1.20:
0.40: 1.40:
  1: 1:
         9.57 :
                                     -0.30:
  2: 1:
             1.14:
                                      -0.50:
                                               0.50:
                     0.30:
  3: 1:
            0.57 :
                             1.50:
                                      -0.60:
                                               0.60:
  4: 1:
             0.11 :
                     0.10:
                                      -0.80:
                              1.70:
                                               0.80:
  5: 1:
            0.02 :
                     -0.10:
                              1.90:
                                      -1.00:
                                               1.00:
  6: 1:
            0.01 :
                     -0.30:
                               2.10:
                                      -1.20:
                                               1.20:
  7: 1:
             0.00 :
                     -0.50:
                               2.30:
                                      -1.40:
                                               1.40:
  8: 1:
             0.00:
                     -0.70:
                               2.50:
                                      -1.60:
                                               1.60:
  9: 1:
            0.00:
                     -0.90:
                               2.70:
                                      -1.80:
                                               1.80:
 10: 1:
             0.00:
                     -1.10:
                               2.90:
                                      -2.00:
                                               2.00:
```

s:	M:	NUMBER	:	S 3	:	S	:
T:	A:	OF	:		:		:
E :	Т:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	:-	:
1:	1:	9.57	:	0.60:	1.20:	0.00:	0.00:
2:	1:	1.14	:	0.40:	1.40:	0.00:	0.00:
3:	1:	0.57	:	0.30:	1.50:	0.00:	0.00:
4:	1:	0.11	:	0.10:	1.70:	0.00:	0.00:
5:	1:	0.02	:	-0.10:	1.90:	0.00:	0.00:
6:	1:	0.01	:	-0.30:	2.10:	0.00:	0.00:
7:	1:	0.00	:	-0.50:	2.30:	0.00:	0.00:
	1:	0.00	:	-0.70:	2.50:	0.00:	0.00:
	1:	0.00	:	-0.90:	2.70:	0.00:	0.00:
	1:	0.00		-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK	CAS	E NO. 3					
s :	M:	NUMBER	:	S 0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		:-	:	:-	:-	:
1:	1:	19.14		0.60:	1.20:	-0.30:	0.30:
2:	1:	2.29	:	0.40:	1.40:	-0.50:	0.50:
3:	1:	1.14	:	0.30:	1.50:	-0.60:	0.60:
4:	1:	0.23	:	0.10:	1.70:	-0.80:	0.80:
5:	1:	0.04	:	-0.10:	1.90:	-1.00:	1.00:
6:	1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:
7:	1:	0.00	:	-0.50:	2.30:	-1.40:	1.40:
8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
s:	M:	NUMBER	:	S3	:	S	•
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:		-:-	:-	:-	:	0.00:
	1:	19.14		0.60:	1.20:	0.00:	0.00:
	1:	2.29		0.40:	1.40:	0.00:	0.00:
	1:	1.14		0.30:	1.50:	0.00:	
	1:	0.23		0.10:	1.70:	0.00:	0.00:
	1:	0.04		-0.10:	1.90:	0.00:	0.00:
6:		0.01		-0.30:	2.10:	0.00:	0.00:
7 :	1:	0.00		-0.50:	2.30:	0.00:	0.00:
8 :		0.00		-0.70:	2.50:	0.00:	0.00:
9 :	1:	0.00		-0.90:	2.70:	0.00:	0.00:
10:	1:	0.00	:	-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK	CAS	E NO. 4					
s:	М:	NUMBER	:	so	:	S1	:
T :	A:	OF	:		:		:
E :	T:	FATIGUE	:	•	:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:-	:	:
1:	1:	38.29	:	0.60:	1.20:	-0.30:	0.30:
2:	1:	4.57	:	0.40:	1.40:	-0.50:	0.50:
3:	1:	2.29	:	0.30:	1.50:	-0.60:	0.60:
4:	1:	0.46	:	0.10:	1.70:	-0.80:	0.80:
5:	1:	0.08	:	-0.10:	1.90:	-1.00:	1.00:

7: 8: 9:	1: 1: 1:	0.02 0.01 0.00 0.00	: :	-0.30: -0.50: -0.70: -0.90:	2.10: 2.30: 2.50: 2.70:	-1.20: -1.40: -1.60: -1.80:	1.20: 1.40: 1.60: 1.80:
10:		0.00		-1.10:	2.90:	-2.00:	2.00:
s :		NUMBER	:	S 3	:	S	:
	A:	OF	:		:		:
	T:	FATIGUE	:		:		:
P :	$_{\rm L}$:	CYCLES			(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:-	:-	:
1:	1:	38.29	:	0.60:	1.20:	0.00:	0.00:
2:	1:	4.57	:	0.40:	1.40:	0.00:	0.00:
3:	1:	2.29	:	0.30:	1.50:	0.00:	0.00:
4:	1:	0.46	:	0.10:	1.70:	0.00:	0.00:
5:	1:	0.08	:	-0.10:	1.90:	0.00:	0.00:
6:	1:	0.02	:	-0.30:	2.10:	0.00:	0.00:
7:	1:	0.01	:	-0.50:	2.30:	0.00:	0.00:
8:	1:	0.00	:	-0.70:	2.50:	0.00:	0.00:
9:	1:	0.00	:	-0.90:	2.70:	0.00:	0.00:
10:	1:	0.00	:	-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BL	OCK	CAS	SE NO. 5					
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		- : -	:-	:	:-	:
		1:	0.28					
		1:	0.44			1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	M:	NUMBER	:	S 3	:	s	:
т	:	A:	OF	:		:		
E	:	T:	FATIGUE	:		:		
P		L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-	:-		-:-	·:-	:	:-	:
		1:					0.00:	
		1:	0.44			1.06:	0.00:	0.00:
		1:	0.22			1.12:	0.00:	0.00:
	4:	1:	0.06	:	0.43:	1.18:	0.00:	0.00:
		1:	0.00	:	0.23:	1.24:	0.00:	0.00:
	6:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

E	:	T:	CYCLES	:	(ksi) (t1) :	(t2) :	(t1) :	(t2) :
:	1: 2:	1: 1: 1:	1.90 0.09 0.01	:	-0.60:		0.00: 0.00: 0.00:	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STD)							
S	:	M:	NUMBER	:	s 0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
Ē	:	T:	FATIGUE		(ksi)	:	(ksi)	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-			:	:-	:	:
	1:	1:	9.57	:	2.78:	5.57:	0.00:	0.00:
	2:	1:					0.00:	0.00:
	3:	1:	0.57			6.96:		
	4:	1:	0.11	:	0.46:			
	5:	1:	0.02	:		8.82:		
	6:	1:	0.01			9.74:		
	7:	1:	0.00	:	-2.32:	10.67:	0.00:	
	8:	1:	0.00	:	-3.25:	11.60:	0.00:	0.00:
	9:	1:	0.00				0.00:	
1	LO:	1:	0.00	:		13.46:	0.00:	0.00:
S	:	М:	NUMBER	:	s3	:	S	:
		A:	OF			:		:
E	:	T:	FATIGUE	:	(ksi)) :	(ksi)	
P	:	L:	CYCLES	:				
	:	:-		-:-			:	
		1:	9.57	:	3.96:	7.92:	0.00:	0.00:
		1:	1.14	:	2.64:	9.24:	0.00:	0.00:
		1:	0.57	:	1.98:	9.90:	0.00:	
		1:				11.22:	0.00:	0.00:
		1:	0.02				0.00:	
		1:	0.01					
		1:	0.00				0.00:	
		1:	0.00				0.00:	
		1:			-5.94:		0.00:	
	10:	1:	0.00	:	-7.26:	19.14:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD	1										
S	:	M:	NUMBER	:	S0	:	S1	:			
т	:	A:	OF	:		:		:			
E	:	T:	FATIGUE	:	(ksi)) :	(ksi)	:			
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :			
	-:	:-		-:-	:-	:-	:	:			
	1:	1:	19.14	:	2.78:	5.57:	0.00:	0.00:			
	2:	1:	2.29	:	1.86:	6.50:	0.00:	0.00:			
	3:	1:	1.14	:	1.39:	6.96:	0.00:	0.00:			
	4:	1:	0.23	:	0.46:	7.89:	0.00:	0.00:			
	5:	1:	0.04	:	-0.46:	8.82:	0.00:	0.00:			

	6	:	1:	0.01	:	-1.39:	9.74:	0.00:	0.00:
	7	:	1:	0.00	:	-2.32:	10.67:	0.00:	0.00:
	8	:	1:	0.00		-3.25:	11.60:	0.00:	0.00:
			1:	0.00		-4.18:	12.53:	0.00:	
			1:	0.00					0.00:
					:	-5.10:	13.46:	0.00:	0.00:
	S			NUMBER	:	S3	:	S	:
	T	:	Α:	OF	:		:		:
	E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
	P	:	L:	CYCLES	:	(t1) :		(t1) :	
-		: -	:-		:-	·:		:	
	1	:	1:	19.14	:	3.96:	7.92:	0.00:	0.00:
	2	:	1:	2.29	:	2.64:	9.24:	0.00:	0.00:
	3	:	1:	1.14	:	1.98:	9.90:	0.00:	0.00:
	4	:	1:	0.23	:	0.66:	11.22:	0.00:	0.00:
	5	:	1:	0.04	:	-0.66:	12.54:	0.00:	0.00:
	6	:	1:	0.01	:	-1.98:	13.86:	0.00:	0.00:
	7	:	1:	0.00	:	-3.30:	15.18:	0.00:	0.00:
	8	:	1:	0.00	:	-4.62:	16.50:	0.00:	0.00:
	9	:	1:	0.00	:	-5.94:	17.82:	0.00:	0.00:
	10	:	1:	0.00	:	-7.26:	19.14:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M:	NUMBER	:	S0		S1	
т:	A:	OF	:			01	:
E :	T:	FATIGUE	:	(ksi) :	(ksi	, .
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
:	:-		-:-	:	:	:-	
1:	1:	38.29	:	2.78:	5.57:	0.00:	0.00:
2:	1:	4.57	:	1.86:	6.50:	0.00:	0.00:
3:	1:	2.29	:	1.39:	6.96:	0.00:	0.00:
4:	1:	0.46	:	0.46:	7.89:	0.00:	0.00:
5:	1:	0.08	:	-0.46:	8.82:	0.00:	0.00:
6:	1:	0.02	:	-1.39:	9.74:	0.00:	0.00:
7:		0.01	:	-2.32:	10.67:	0.00:	0.00:
8:	1:	0.00	:	-3.25:		0.00:	
9:	1:			-4.18:	12.53:	0.00:	0.00:
10:	1:	0.00	:	-5.10:		0.00:	
s:	Μ:	NUMBER	:	s3	:		:
т:		OF			:		:
E :		FATIGUE		(ksi)	:	(ksi)) :
		CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
•	:-		-:-	:		:	
1:		38.29	:	3.96:	7.92:	0.00:	0.00:
2: 3:	1:	4.57	:	2.64:	9.24:	0.00:	0.00:
3: 4:		2.29	:	1.98:			
5:		0.46	•	0.66:	11.22:	0.00:	
6:				-0.66:			
	1:			-1.98:		0.00:	
	1:	0.01			15.18:	0.00:	
9:		0.00	:	-4.62:	16.50:	0.00:	
10:				-5.94:		0.00:	
10:	т:	0.00	:	7.26:	19.14:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	s S1	:
T	:	A:	OF	:		:	•	:
E	:	T:	FATIGUE	:	(ksi)	. :	: (ksi	i) :
P	-	L:	CYCLES	:	(t1):	(t2)	(t1):	(t2) :
	1:	:- 1:	0.28	:	3.50:	3.54	0.00:	0.00:
	2:		0.44		2.83:	3.71	0.00:	0.00:
		1:	0.22		2.17:	3.92		0.00:
		1:	0.06		1.50:			
		1:	0.00		0.81:			
		1:	0.00		0.14:			
s		M:	NUMBER	:	S3	1.55	: S	
T	-		OF		55			:
_		A:		•	(1 2)			
E	:	Τ:	FATIGUE		(ksi)		: (ks:	
P	:	L:	CYCLES	:	(t1):	(t2)	: (t1):	(t2) :
	: 1:	: - 1:	0.28	:	4.97:	4.97	: 0.00:	0.00:
		1:	0.44		4.03:	5.27	: 0.00:	0.00:
		1:	0.22		3.08:			
		1:	0.06		2.14:	5.86		
		1:	0.00		1.14:	6.16		0.00:
		1:	0.00		0.20:	6.46		
	٠.	•						

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final F	law Size	K ma	ax
	Step	a	c	a-tip	c-tip
0.00	15	0.005010	0.005011	1.655102	1.572091
200	15	0.005018	0.005011	1.657014	1.574721
400	15	0.005037			1.577353
600	15	0.005055	0.005034	1.658953	
800	15	0.005074	0.005046	1.660917	1.579989
1000	15	0.005093	0.005058	1.662906	1.582630
1200	15	0.005112	0.005070	1.664919	1.585275
1400	15	0.005131	0.005082	1.666957	1.587926
1600	1 5	0.005150	0.005095	1.669019	1.590582
1800	15	0.005169	0.005107	1.671104	1.593243
2000	15	0.005189	0.005120	1.673213	1.595911
2200	15	0.005208	0.005133	1.675345	1.598585
2400	15	0.005228	0.005147	1.677500	1.601266
2600	15	0.005248	0.005160	1.679677	1.603953
2800	15	0.005268	0.005174	1.681878	1.606648
3000	15	0.005288	0.005188	1.684102	1.609351
3200	15	0.005309	0.005202	1.686348	1.612061
3400	15	0.005329	0.005216	1.688616	1.614779
3600	15	0.005350	0.005230	1.690908	1.617505
3800	15	0.005371	0.005245	1.693221	1.620240
4000	15	0.005392	0.005260	1.695557	1.622984
4200	15	0.005413	0.005274	1.697915	1.625736
4400	15	0.005434	0.005290	1.700296	1.628497
4600	15	0.005456	0.005305	1.702699	1.631268
4800	15	0.005477	0.005320	1.705125	1.634048
5000	15	0.005499	0.005336	1.707573	1.636838
5200	15	0.005521	0.005352	1.710043	1.639638
5400	15	0.005543	0.005368	1.712536	1.642448
7400	10	0.005545	3.005500	1.,12330	2.012110

5600 5800 6000 6200 6400	15 15 15 15 15	0.005566 0.005588 0.005611 0.005634 0.005657	0.005384 0.005401 0.005418 0.005434 0.005451	1.715051 1.717589 1.720149 1.722732 1.725337	1.645269 1.648099 1.650941 1.653793 1.656657
6600	15	0.005680	0.005469	1.727965	1.659532
6800	15	0.005704	0.005486	1.730616	1.662418
7000	15	0.005727	0.005504	1.733290	1.665316
7200	15	0.005751	0.005522	1.735986	1.668225
7400	15	0.005775	0.005540	1.738706	1.671147
7600	15	0.005800	0.005558	1.741456	1.674147
7800	15	0.005826	0.005576	1.744242	1.677263
8000	15	0.005852	0.005595	1.747059	1.680452
8200	15	0.005879	0.005614	1.749908	1.683701
8400	15	0.005906	0.005633	1.752787	1.687004
8600	15	0.005934	0.005653	1.755698	1.690356
8800	15	0.005962	0.005672	1.758639	1.693755
9000	15	0.005990	0.005692	1.761611	1.697197
9200	15	0.006020	0.005712	1.764614	1.700682
9400	15	0.006049	0.005733	1.767649	1.704208
9600	15	0.006079	0.005753	1.770716	1.707774
9800	15	0.006110	0.005774	1.773814	1.711379
10000	15	0.006140	0.005796	1.776945	1.715022
MODEL: CC02					

ANALYSIS RESULTS (contd.)

Schdl	Block	Final	Flaw Size	K ma	ax
		Step a	С	a-tip	c-tip
10000	4.5	0.006450	0.005015	1 500100	4 540500
10200	15	0.006172	0.005817	1.780108	1.718703
10400	15	0.006203	0.005839	1.783303	1.722421
10600	15	0.006236	0.005861	1.786532	1.726176
10800	15	0.006268	0.005883	1.789794	1.729967
11000	15	0.006301	0.005906	1.793090	1.733794
11200	15	0.006335	0.005929	1.796420	1.737658
11400	15	0.006369	0.005952	1.799783	1.741556
11600	15	0.006404	0.005976	1.803182	1.745491
11800	15	0.006439	0.005999	1.806615	1.749460
12000	15	0.006474	0.006024	1.810084	1.753465
12200	15	0.006510	0.006048	1.813588	1.757505
12400	15	0.006546	0.006073	1.817127	1.761580
12600	15	0.006583	0.006098	1.820703	1.765691
12800	15	0.006621	0.006124	1.824316	1.769836
13000	15	0.006659	0.006150	1.827965	1.774017
13200	15	0.006697	0.006176	1.831656	1.778232
13400	15	0.006736	0.006203	1.835509	1.782438
13600	15	0.006775	0.006232	1.839485	1.786651
13800	15	0.006815	0.006262	1.843558	1.790884
14000	15	0.006856	0.006292	1.847718	1.795140
14200	15	0.006897	0.006323	1.851959	1.799423
14400	15	0.006939	0.006355	1.856277	1.803736
14600	15	0.006982	0.006387	1.860670	1.808079
14800	15	0.007025	0.006420	1.865135	1.812456
15000	15	0.007069	0.006454	1.869672	1.816867
15200	15	0.007113	0.006488	1.874279	1.821313
15400	15	0.007158	0.006523	1.878955	1.825795
15600	15	0.007204	0.006559	1.883701	1.830315
15800	15	0.007250	0.006595	1.888514	1.834873
16000	15	0.007298	0.006632	1.893396	1.839471
16200	15	0.007346	0.006670	1.898346	1.844109
16400	15	0.007394	0.006708	1.903364	1.848787
16600	15	0.007444	0.006748	1.908451	1.853508
16800	15	0.007494	0.006787	1.913605	1.858271
17000	15	0.007545	0.006828	1.918827	1.863078

```
17200
            15
                     0.007597
                               0.006869
                                           1.924118
                                                      1.867928
                    0.007597 0.006869 1.924118
0.007650 0.006911 1.929478
0.007703 0.006954 1.934907
                                                     1.872823
 17400
            15
                                                    1.877764
 17600
           15
                                         1.940405
 17800
                    0.007758
                               0.006997
                                                     1.882751
            15
 18000
            15
                     0.007813
                                0.007041
                                           1.945973
                                                      1.887784
           15
                    0.007869
                               0.007086
                                          1.951611
                                                     1.892865
 18200
                                                     1.897995
 18400
           15
                    0.007927 0.007131 1.957319
 18600
                     0.007985 0.007178 1.963099 1.903173
0.008044 0.007225 1.968950 1.908401
           15
 18800
            15
                    0.008104 0.007273 1.974874 1.913679
 19000
           15
FINAL RESULTS:
Critical Crack Size has NOT been reached.
at Cycle No.
                0.00 of Load Step No.
Step description:
of Block No. 15 of Schedule No. 19000 Crack Sizes: a = 0.810418E-02 , c = 0.727303E-02 , a/c = 1.1142
              FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
             DATE: 17-MAR-99 TIME: 08:04:23
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W1 SA226 MS, cont damage in cap WS99
GEOMETRY
_____
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                     0.1250
Plate Width, W = 3.0000
Hole Diameter, D = 0.1600
Hole-Center-to-Edge Dist., B =
                             0.3100
Poisson s ratio = 0.30
FLAW SIZE:
a (init.) = 0.5990E-02
c (init.) = 0.5694E-02
a/c (init.) = 1.052
MATERIAL.
_____
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : :
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
```

```
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3:
                             -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                               5.4100
Scale Factor for Stress S1:
                               0.0000
Scale Factor for Stress S3:
                               16.910
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                               5.4100
Scale Factor for Stress S1:
                               0.0000
Scale Factor for Stress S3:
                               16.910
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                               0.0000
Scale Factor for Stress S3:
                               16.910
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                               4.0700
Scale Factor for Stress S1:
Scale Factor for Stress S3:
                               12.730
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
Block Number
                              Block Case No.
From
          To
   1
               1
                                       1
   2
                                       2
   3
    4
               4
                                       1
   5
               5
                                       3
                                       5
   7
                                       1
   8
               8
   9
              9
                                       5
  10
              10
   11
              11
                                       3
  12
              12
                                       5
  13
              13
                                       1
  14
              14
                                       4
  15
              15
                                       5
BLOCK CASE NO. 1
S : M: NUMBER
                             S0
                                                 S1
T : A:
           OF
E : T: FATIGUE
P : L: CYCLES
                         (t1): (t2)
                                             (t1): (t2)
----:--:--
  1: 1:
               1.90 :
                          0.70:
                                    1.30:
                                              0.70:
                                                        1.30:
```

	2:	1:	0.09	:	0.60:	1.40:	0.60:	1.40:
	3:	1:	0.01	:	0.54:	1.46:	0.54:	1.46:
S	:	M:	NUMBER	:	s3	:	S	:
т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:-	:-	:-	:
	1:	1:	1.90	:	0.70:	1.30:	0.00:	0.00:
	2:	1:	0.09	:	0.60:	1.40:	0.00:	0.00:
	3 .	1 :	0.01	:	0.54:	1.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

			E NO. 2					
S	:	Μ:	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1):	(t2) :	(t1):	(t2) :
	-:- 1:	:- 1:	9.57	· : - :	0.60:	1.20:	-0.30:	0.30:
		1:	1.14		0.40:	1.40:		0.50:
		1:	0.57	:	0.30:	1.50:	-0.60:	0.60:
	4:	1:	0.11	:	0.10:	1.70:	-0.80:	0.80:
!	5:	1:	0.02	:	-0.10:	1.90:	-1.00:	1.00:
	6:	1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:
	7:	1:	0.00	:	-0.50:	2.30:	-1.40:	1.40:
;	8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
:	9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
1	0:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
S	:	M:	NUMBER	:	S3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:· 1:	:- 1:	9.57	- : - :	0.60:	1.20:	0.00:	0.00:
		1:	1.14		0.40:	1.40:		
		1:	0.57		0.30:	1.50:	0.00:	0.00:
		1:	0.11		0.10:	1.70:	0.00:	0.00:
	5:	1:	0.02	:	-0.10:	1.90:	0.00:	0.00:
	6:	1:	0.01	:	-0.30:	2.10:	0.00:	0.00:
	7:	1:	0.00	:	-0.50:	2.30:	0.00:	0.00:
	8:	1:	0.00	:	-0.70:	2.50:	0.00:	0.00:
	9:	1:	0.00	:	-0.90:	2.70:	0.00:	0.00:
-	_		0.00		4 4 4 4		0 00	0 00

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

0.00: -1.10:

10: 1:

BLOCK CASE NO. 3											
s	:	M:	NUMBER	:	so	:	S1	:			
${f T}$:	A:	OF	:		:		:			
E	:	T:	FATIGUE	:		:		:			
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :			
	-:	:-		-:-	:-	:	:-	:			
	1:	1:	19.14	:	0.60:	1.20:	-0.30:	0.30:			
	2:	1:	2.29	:	0.40:	1.40:	-0.50:	0.50:			
	3:	1:	1.14	:	0.30:	1.50:	-0.60:	0.60:			
	4:	1:	0.23	:	0.10:	1.70:	-0.80:	0.80:			
	5:	1:	0.04	:	-0.10:	1.90:	-1.00:	1.00:			
	6:	1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:			
	7:	1:	0.00	:	-0.50:	2.30:	-1.40:	1.40:			
	8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:			
	9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:			
1	0:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:			

0.00:

2.90:

0.00:

s:	М:	NUMBER	:	S 3	:	S	:
\mathbf{T} :	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:-	:-	:
	1:	19.14	-	0.60:	1.20:	0.00:	0.00:
2:	1:	2.29	:	0.40:	1.40:	0.00:	0.00:
3:	1:	1.14	:	0.30:	1.50:	0.00:	0.00:
4:	1:	0.23	: .	0.10:	1.70:	0.00:	0.00:
5:	1:	0.04	:	-0.10:	1.90:	0.00:	0.00:
6:	1:	0.01	:	-0.30:	2.10:	0.00:	0.00:
7:	1:	0.00	:	-0.50:	2.30:	0.00:	0.00:
8:	1:	0.00	:	-0.70:	2.50:	0.00:	0.00:
9:	1:	0.00	:	-0.90:	2.70:	0.00:	0.00:
10:	1:	0.00	:	-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK	CAS	SE NO. 4					
s:	Μ:	NUMBER	:	S 0	:	S1	:
T:		OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
-	-		-:-	-	-	:-	•
		38.29					0.30:
		4.57					0.50:
	1:			0.30:			
	1:			0.10:			
	1:	0.08			1.90:		1.00:
	1:	0.02			2.10:	-1.20:	1.20:
	1:	0.01	:			-1.40:	
	1:	0.00	:	-0.70:	2.50:	~1.60:	1.60:
9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
s :	M:	NUMBER	:	S3	:	S	:
T:	A:	OF	:		:		:
E :		FATIGUE			:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
			-			:-	
				0.60:			
	1:	4.57					
	1:	2.29					
	1:			0.10:			0.00:
	1:	0.08			1.90:		0.00:
	1:	0.02			2.10:	0.00:	0.00:
	1:	0.01			2.30:	0.00:	0.00:
	1:	0.00	:	-0.70:	2.50:	0.00:	0.00:
9:	1:	0.00	:	-0.90:	2.70:	0.00:	0.00:
10:	1:	0.00	:	-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK	CASI	E NO. 5					
s:	M:	NUMBER	:	S0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	•	:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:-	-:		: -	:	:	:	:
1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:

	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	M:	NUMBER	:	s3	:	S	:
T	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	: -	:-	:-	:
	1:	1:	0.28	:	1.00:	1.00:	0.00:	0.00:
	2:	1:	0.44	:	0.81:	1.06:	0.00:	0.00:
	3:	1:	0.22	:	0.62:	1.12:	0.00:	0.00:
	4:	1:	0.06	:	0.43:	1.18:	0.00:	0.00:
	5:	1:	0.00	:	0.23:	1.24:	0.00:	0.00:
	6:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI S T E P	:	M: A: T: L:	NUMBER OF FATIGUE CYCLES	: : : : :	S0 (ksi) (t1) :	: : : (t2) :	S1 (ksi) (t1) :	
	1 •	1:	1.90	•	-0.70:	-1.30:	0.00:	0.00:
		1:	0.09		-0.60:	-1.40:	0.00:	0.00:
		1:	0.01			-1.46:	0.00:	0.00:
S		M:	NUMBER	:	s3	:	S	:
т		A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:	:	:
	1:	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

_____ S : M: NUMBER : SO ____;_-;_-,_-,_-,----;_-----;-----;-----;-----;-----;-----;

 1: 1:
 9.57:
 3.25:
 6.49:
 0.00:
 0.00:

 2: 1:
 1.14:
 2.16:
 7.57:
 0.00:
 0.00:

 3: 1:
 0.57:
 1.62:
 8.12:
 0.00:
 0.00:

 4: 1:
 0.11:
 0.54:
 9.20:
 0.00:
 0.00:

 5: 1:
 0.02:
 -0.54:
 10.28:
 0.00:
 0.00:

 0.00: 0.02: -1.62: 11.36: 6: 1: 0.01: -1.62: 11.55. -2.70: 12.44: 0.00: -3.79: 13.53: 0.00: -4.87: 14.61: 0.00: -5.69: 0.00: 0.00: 0.00: 7: 1: 0.00: 8: 1: 0.00 : 0.00: 0.00 : 0.00 : 9: 1: 0.00: -5.95: 15.69: 0.00: 0.00: S3 : S : 10: 1: S: M: NUMBER: T: A: OF: : s (ksi) : E : T: FATIGUE : P : L: CYCLES : (t1) : (t2) : (t1) : (t2)

	:					
1:	1:	9.57 :	10.15:	20.29:	0.00:	0.00:
2:	1:	1.14 :	6.76:	23.67:	0.00:	0.00:
3:	1:	0.57 :	5.07:	25.37:	0.00:	0.00:
4:	1:	0.11 :	1.69:	28.75:	0.00:	0.00:
5:	1:	0.02 :	-1.69:	32.13:	0.00:	0.00:
6:	1:	0.01 :	-5.07:	35.51:	0.00:	0.00:
7:	1:	0.00:	-8.45:	38.89:	0.00:	0.00:
8:	1:	0.00 :	-11.84:	42.27:	0.00:	0.00:
9:	1:	0.00:	-15.22:	45.66:	0.00:	0.00:
10:	1:	0.00 :	-18.60:	49.04:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD					~-		
s :	M:	NUMBER	:	so	:	S1	
T:	A:	OF	:		:		
E :	T:	FATIGUE	:	(ksi) :	(ksi	.) :
P :	L:	CYCLES	:	(t1):	(t2) :	(t1):	
1:	1:	19.14	:	3.25:	6.49:	0.00:	0.00:
2:	1:			2.16:		0.00:	
3:	1:	1.14	:	1.62:	8.12:	0.00:	0.00:
	1:	0.23	:	0.54:	9.20:	0.00:	0.00:
5:	1:	0.04	:	-0.54:	10.28:	0.00:	0.00:
	1:	0.01			11.36:	0.00:	0.00:
7:		0.00					
8:		0.00				0.00:	
	1:	0.00				0.00:	
10:		0.00			15.69:		0.00:
s:		NUMBER	:	S3	:	S	:
T :		OF	:				:
		FATIGUE				(ksi	
P :	L:	CYCLES	: - : -	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	19.14	:	10.15:	20.29:	0.00:	0.00:
2:	1:	2.29	:	6.76:	23.67:	0.00:	0.00:
3:	1:	1.14	:	5.07:	25.37:	0.00:	0.00:
4:	1:	0.23	:	1.69:	28.75:	0.00:	0.00:
5:		0.04	:	-1.69:	32.13:	0.00:	0.00:
	1:			-5.07:	35.51:	0.00:	0.00:
	1:			-8.45:	38.89:	0.00:	0.00:
	1:				42.27:	0.00:	0.00:
9:				-15.22:	45.66:	0.00:	0.00:
10:	1:	0.00	:	-18.60:	49.04:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	s1	:
T	:	A:	OF	:		:		:
					(ksi)			:
P	:	r:	CYCLES	:	(t1) : (t2	:	(t1) : (t2)	:
:	1:	1:	38.29	- : - :	3.25:	6.49:	0.00: 0.0	: 00:

2:	1:	4.57	:	2.16:	7.57:	0.00:	0.00:
3:		2.29		1.62:	8.12:	0.00:	0.00:
4:		0.46		0.54:	9.20:	0.00:	0.00:
5:		0.08		-0.54:	10.28:	0.00:	0.00:
					11.36:	0.00:	0.00:
	1:	0.0-	:	-1.62:			
7:	1:	0.01	:	-2.70:	12.44:	0.00:	0.00:
8:	1:	0.00	:	-3.79:	13.53:	0.00:	0.00:
9:	1:	0.00	:	-4.87:	14.61:	0.00:	0.00:
10:	1:	0.00	:	-5.95:	15.69:	0.00:	0.00:
	М:	NUMBER	:	S3	:	S	:
	A:	OF					:
	т:	FATIGUE	:	(ksi)	-	(ksi	٠.
			•			-	
	L:	CYCLES	:	(t1):		(t1):	
			: : -:-			-	
P :	L:		· : -:-			-	(t2) :
P: :	L: :-	CYCLES		(t1) :	(t2) :	(t1):	(t2) :
P: : 1: 2:	L: :- 1:	CYCLES 38.29	:	(t1): : 10.15:	(t2) : : 20.29:	(t1): 0.00:	(t2) : : 0.00:
P: 1: 2: 3:	L: :- 1: 1:	CYCLES 38.29 4.57	:	(t1): : 10.15: 6.76:	(t2) : : 20.29: 23.67:	(t1): :- 0.00: 0.00:	(t2): : 0.00: 0.00:
P: 1: 2: 3: 4:	L: 1: 1: 1:	38.29 4.57 2.29	:	(t1): : 10.15: 6.76: 5.07:	(t2): : 20.29: 23.67: 25.37:	(t1): 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5:	L: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08	: : :	(t1): : 10.15: 6.76: 5.07: 1.69:	(t2): : 20.29: 23.67: 25.37: 28.75:	(t1): 0.00: 0.00: 0.00: 0.00:	(t2) : : 0.00: 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5:	L: 1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02	: : : :	(t1): 	(t2):: 20.29: 23.67: 25.37: 28.75: 32.13:	(t1): : 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5: 6: 7:	L: 1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : :	(t1):	(t2):: 20.29: 23.67: 25.37: 28.75: 32.13: 35.51: 38.89:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) :: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5: 6: 7:	L: 1: 1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : : :	(t1): 10.15: 6.76: 5.07: 1.69: -1.69: -5.07: -8.45: -11.84:	(t2):: 20.29: 23.67: 25.37: 28.75: 32.13: 35.51: 38.89: 42.27:	(t1):	(t2) :: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5: 6: 7:	L: 1: 1: 1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : :	(t1):	(t2):: 20.29: 23.67: 25.37: 28.75: 32.13: 35.51: 38.89:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STD	,							
s	:	M:	NUMBER	:	so	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E		T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	-	L:	CYCLES		(t1):		(t1):	
P	•	ъ:	CICHES	•	(01)	(02)	(01)	
	-:	:-		• • •	4 05		0.00	0.00
	1:	1:	0.28		4.07:	4.11:	0.00:	0.00:
	2:	1:	0.44	:	3.30:	4.31:	0.00:	0.00:
	3:	1:	0.22	:	2.52:	4.56:	0.00:	0.00:
	4 :	1:	0.06	:	1.75:	4.80:	0.00:	0.00:
		1:	0.00		0.94:	5.05:	0.00:	0.00:
		1:	0.00		0.16:	5.29:	0.00:	
_				:		3.49:	0.00. S	0.00.
S		М:	NUMBER	:	53	:	۵	:
T	:	Α:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
				- <u>-</u> -		:	:	:
	1.	1:	0.28		12.73:	12.73:	0.00:	0.00:
			0.44		10.31:	13.49:	0.00:	0.00:
		1:						
	-	1:	0.22		7.89:	14.26:	0.00:	0.00:
	4:	1:	0.06	:	5.47:	15.02:	0.00:	0.00:
	5:	1:	0.00	:	2.93:	15.79:	0.00:	0.00:
	6:	1:	0.00	:	0.51:	16.55:	0.00:	0.00:
	٠.			-				

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

HODEL COOL

ANALYSIS RESULTS:

Schdl	Block	Final I	Flaw Size	K m	ax
	Step	a	С	a-tip	c-tip
200	15	0.006659	0.006230	3.015652	2.875163
400	15	0.007464	0.006872	3.153642	3.000460
600	15	0.008446	0.007648	3.308426	3.136948
800	15	0.009660	0.008591	3.481832	3.285647
1000	15	0.011181	0.009745	3.675493	3.447213
1200	15	0.013109	0.011168	3.890434	3.621662
1400	15	0.015579	0.012929	4.126533	3.808002
1600	15	0.018765	0.015112	4.381808	4.003931
1800	15	0.022881	0.017813	4.651749	4.205785
2000	15	0.028175	0.021132	4.929098	4.409024
2200	15	0.034909	0.025169	5.204511	4.609406
2400	15	0.043320	0.030021	5.468229	4.804590
2600	15	0.053588	0.035783	5.712173	4.995573
2800	15	0.065815	0.042574	5.931448	5.187258
3000	15	0.080017	0.050562	6.124439	5.388088
3200	15	0.096141	0.060016	6.291426	5.609068
3400	15	0.114065	0.071366	6.431765	5.862221

Transition to 1-d solution, TC03: $a = 0.1250 \qquad t = 0.1250 \\ \text{at Cycle No.} \qquad 2.29 \quad \text{of Load Step No.} \qquad 3 \\ \text{Step description:} \\ \text{of Block No.} \qquad 14 \quad \text{of Schedule No.} \qquad 3514 \\ \text{Crack Size:} \quad c = 0.789220E-01 \,, \quad a/c = 1.58386 \\ \end{array}$

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
3600	15		0.086811	6.146306
3800	15		0:106762	6.364160
4000	15		0.131321	6.818620
4200	15		0.172247	8.415349

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: K max = 54.81 K ref = 0.000 K cr = 51.83 at the very beginning of Load Step No. 10 Step description: of Block No. 14 of Schedule No. 4257 Crack Size c = 0.219182

FATIGUE CRACK GROWTH ANALYSIS
-----Modified by FAI----DATE: 17-MAR-99 TIME: 09:27:59

(computed: NASA/FLAGRO Version 2.03, March 1995.)
U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

TC5, PSE-W1 crack in angle on web side of hole WS99

GEOMETRY

MODEL: TC05-Through crack from hole in row of holes.

Plate Thickness, t = 0.1250 Hole Dia., D = 0.1590 Hole-to-Hole Dist., H = 0.6800 Dia./Edge-Dist. Ratio, D/B = 0.0000 (D/B = 0 means B is very large)

FLAW SIZE:

c (init.) = 0.8200E-01

MATERIAL _____ MATL 1: 2014T6511 EXTRUSION T-L Material Properties: :Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc: : 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8: :Matl:----- Crack Growth Eqn Constants ----: ---:----:---:---:---: : 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00: MODEL: TC05 FATIGUE SCHEDULE BLOCK INPUT TABLE ______ STD [Note: Stress = Input Value * Stress Factor] Stress Scaling Factors for Block Case: 1 Scale Factor for Stress S0: -1.0000 Scale Factor for Stress S3: -1.0000 Scale Factor for Stress S4: 0.0000 Stress Scaling Factors for Block Case: 2 Scale Factor for Stress S0: 3.8400 9.6200 Scale Factor for Stress S3: Scale Factor for Stress S4: 0.0000 Stress Scaling Factors for Block Case: 3 3.8400 Scale Factor for Stress S0: Scale Factor for Stress S3: 9.6200 Scale Factor for Stress S4: 0.0000 Scale Factor for Stress S4: Stress Scaling Factors for Block Case: 4 Scale Factor for Stress S0: Scale Factor for Stress S3: 9.6200 Scale Factor for Stress S4: 0.0000 Stress Scaling Factors for Block Case: 5 Scale Factor for Stress S0: 2.9000 Scale Factor for Stress S3: 0.0000 Scale Factor for Stress S4: Total No. of Blocks in Schedule =

Block Number and Case Correspondences

В	loc	k Nu	mber		в1	ock Case	No.			
Fr	om	-	То							
		-	1			1				
	2		2			2				
	3		3	5						
	4	-	4	1						
	5	-	5			3				
	6	-	6			5				
	7	-	7 8			1				
	8	-	8			3				
	9	-	9			5				
	10		10			1				
	11		11			3				
	12	-	12			5				
	13	-	13			1				
	14	-	14			4				
	15	-	15			5				
			E NO. 1							
S	-	M:	NUMBER	:	S 0		: S3	:		
			OF	:		:	•	:		
E	:	T:	FATIGUE	:				:		
Р	:	ь:	CYCLES	:	(tl):	(t2)	: (t1):	(t2) :		
	1.	1.	1.90		0.70.	1 20	0.70	1 20		
	2.	1:	0.09	:	0.70.	1.30	0.60:	1.30:		
	3:	1:	0.01	:	0.54	1 46	0.00:	1.40:		
S	•	M:	NUMBER	:	54		. 0.54.			
Т	:	A:	OF		21			•		
E			FATIGUE	:			•	•		
P			CYCLES	:	(t1) :	(t2)	(±1) •	(t2) ·		
	:-	:-		:	:-	:	::-	:		
	1:	1:	1.90	:	-0.30:	0.30	0.00:	0.00:		
	2:	1:	0.09	:	-0.40:	0.40:	0.00:	0.00		
	3:	1:	0.01	:	-0.46:	0.46	0.00:	0.00:		

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

	CAS M:	E NO. 2 NUMBER	:	so	:	S3	
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		•
P :	L:	CYCLES	: - · -	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	9.57	:	0.60:	1.20:	0.60:	1.20:
2:	1:	1.14	:	0.40:	1.40:	0.40:	1.40:
3:	1:	0.57	:	0.30:	1.50:	0.30:	1.50:
4:	1:	0.11	:	0.10:	1.70:	0.10:	
5:	1:	0.02	:	-0.10:	1.90:	-0.10:	1.90:
6:	1:	0.01	:	-0.30:	2.10:	-0.30:	
7:	1:	0.00	:	-0.50:	2.30:	-0.50:	
8:	1:	0.00	:	-0.70:	2.50:	-0.70:	
9:	1:	0.00	:	-0.90:	2.70:	-0.90:	
10:	1:	0.00	:	-1.10:	2.90:	-1.10:	
s:	Μ:	NUMBER	:	S4	:	s	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	9.57	-:- :	-0.30:	0.30:	0.00:	0.00:
2:	1:	1.14		-0.50:	0.50:	0.00:	
	1:	0.57			0.60:	0.00:	0.00:
	1:	0.11			0.80:	0.00:	0.00:
	1:	0.02			1.00:	0.00:	
6:	1:	0.01		-1.20:	1.20:	0.00:	0.00:

7:	1:	0.00:	-1.40:	1.40:	0.00:	0.00:
8:	1:	0.00:	-1.60:	1.60:	0.00:	0.00:
9:	1:	0.00 :	-1.80:	1.80:	0.00:	0.00:
10.	1.	0.00 :	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

		SE NO. 3					
S	: M:	NUMBER	:	S0	:	S3	:
T	: A:	OF	:		:		:
_		FATIGUE	:		:		:
		CYCLES		(t1) :	(t2) :	(t1) :	(t2) :
				•	•	:-	-
		19.14					
		2.29					
	: 1:					0.30:	
4	: 1:						
5	: 1:	0.04	:	-0.10:			
6	: 1:	0.01	:	-0.30:	2.10:	-0.30:	2.10:
7	': 1:	0.00	:			-0.50:	
8	: 1:	0.00	:	-0.70:	2.50:	-0.70:	2.50:
9	: 1:	0.00	:	-0.90:	2.70:	-0.90:	2.70:
10): 1:	0.00	:	-1.10:	2.90:	-1.10:	2.90:
s	: M:	NUMBER	:	S4	:	S	:
T	: A:	OF	:		:		:
E	: T:	FATIGUE	:		:		:
		CYCLES					
		19.14					
		2.29					
	3: 1:						
	1: 1:	0.23				0.00:	
	5: 1:			-1.00:			
	5: 1:					0.00:	
	7: 1:			-1.40:			
	3: 1:			-1.60:			
	: 1:			-1.80:			
10): 1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLOCK	CAS	E NO. 4					
s:	M:	NUMBER	:	S 0	:	S 3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	•		: -	•	•	:-	•
	1:			0.60:			
	1:	-		0.40:			
3:	1:	2.29	:	0.30:	1.50:	0.30:	1.50:
4:	1:	0.46	:	0.10:	1.70:	0.10:	
5:	1:	0.08	:	-0.10:	1.90:	-0.10:	1.90:
6:	1:	0.02	:	-0.30:	2.10:	-0.30:	2.10:
7:	1:	0.01	:	-0.50:	2.30:	-0.50:	2.30:
8:	1:	0.00	:	-0.70:	2.50:	-0.70:	2.50:
9:	1:	0.00	:	-0.90:	2.70:	-0.90:	2.70:
10:	1:	0.00	:	-1.10:	2.90:	-1.10:	2.90:
s:	Μ:	NUMBER	:	S4	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1):	(t2) :	(t1):	(t2) :
1:	1:	38.29	:	-0.30:	0.30:	0.00:	0.00:

2:	1:	4.57 :	-0.50:	0.50:	0.00:	0.00:
3:	1:	2.29 :	-0.60:	0.60:	0.00:	0.00:
4:	1:	0.46 :	-0.80:	0.80:	0.00:	0.00:
5:	1:	0.08:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.02:	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.01:	-1.40:	1.40:	0.00:	0.00:
8:	1:	0.00:	-1.60:	1.60:	0.00:	0.00:
9:	1:	0.00:	-1.80:	1.80:	0.00:	0.00:
10:	1:	0.00:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

BL(E NO. 5 NUMBER		so		63	
_	-		OF	:	0.6	•	S3	:
			FATIGUE	•				:
			CYCLES		1411	· · · · · · · · · · · · · · · · · · ·	1643	
		:-		•	(LI):		(t1) :	
			0.28	-:-	1 00:	-	1 00:	•
			0.44					
					0.62:			
							0.42:	
		1:						1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	. :	M:	NUMBER	:	S4	:	S	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P			CYCLES				(t1) :	
	-	-	0.28			-	-	•
		1:					0.00:	
					0.62:			
		1:					0.00:	
		1:					0.00:	
		1:						
	0:	Τ:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W1 crack in angle MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	S0	:	s 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:	:-	:
	1:	1:	1.90	:	-0.70:	-1.30:	-0.70:	-1.30:
	2:	1:	0.09	•:	-0.60:	-1.40:	-0.60:	-1.40:
	3:	1:	0.01	:	-0.54:	-1.46:	-0.54:	-1.46:
S	:	M:	NUMBER	:	S4	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
₽	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:-	:	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

C-74

TC5, PSE-W1 crack in angle MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

		-						
STI)							
S	:	M:	NUMBER	:	so	:	S 3	:
	:		OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)		(ksi)	:
P	:	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
	-:-	:-		:	·:		:	
	1:	1:	9.57	:	2.30:	4.61:	5.77:	11.54:
	2:	1:	1.14	:	1.54:	5.38:	3.85:	13.47:
	3:	1:	0.57	:	1.15:	5.76:	2.89:	14.43:
	4:	1:	0.11	:	0.38:	6.53:	0.96:	16.35:
	5:	1:	0.02	:	-0.38:	7.30:	-0.96:	18.28:
	6:				-1.15:	8.06:	-2.89:	20.20:
	7:						-4.81:	
		1:	0.00		-2.69:			
	9:				-3.46:		-8.66:	25.97:
1	10:				-4.22:			
		M:	NUMBER		S4	:	S	:
		Α:	OF	:		:		:
E		T:		:	(ksi)) :	(ksi) :
-			CYCLES				(t1) :	
	:	:-		- : - -	:-		:-	:
	1:	1:	9.57	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	1.14	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.57	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.11	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.02	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
	7:		0.00	:	0.00:	0.00:	0.00:	0.00:
		1:	0.00					0.00:
	9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
:	10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W1 crack in angle

MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

					· -		
STD							
s:	M :	NUMBER	:	so	:	S 3	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
:	:-	19.14	- : -	2 20.	1 61 -	:-:-	11 5/.
	1:			1.54:			
3:	1:	1.14	:	1.15:	5.76:	2.89:	14.43:
4:	1:	0.23	:	0.38:	6.53:	0.96:	16.35:
5:	1:	0.04	:	-0.38:	7.30:	-0.96:	18.28:
6:	1:	0.01	:	-1.15:	8.06:	-2.89:	20.20:
7:	1:	0.00	:	-1.92:	8.83:	-4.81:	22.13:
8:	1:	0.00	:	-2.69:	9.60:	-6.73:	24.05:
9:	1:	0.00	:	-3.46:	10.37:	-8.66:	25.97:
10:	1:	0.00	:	-4.22:	11.14:	-10.58:	27.90:
s :	M:	NUMBER	:	S4	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi	.) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:	:-	:
1:	1:	19.14	:	0.00:	0.00:	0.00:	0.00:

_	4					
2:	1:	2.29 :	0.00:	0.00:	0.00:	0.00:
3:	1:	1.14 :	0.00:	0.00:	0.00:	0.00:
4:	1:	0.23 :	0.00:	0.00:	0.00:	0.00:
5:	1:	0.04 :	0.00:	0.00:	0.00:	0.00:
6:	1:	0.01:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.00:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00 :	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W1 crack in angle

MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M :	NUMBER	:	S0	:	S 3	:
T:	A:	OF	:	*	:		:
E :	T:	FATIGUE	:	(ksi	.) :	(ksi	i.) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1.	:- 1:	38.29	-:-	2.30:	4.61:	:- 5.77:	11.54:
	1:		:	1.54:	5.38:	3.85:	13.47:
3:	1:		:	1.15:	5.76:	2.89:	14.43:
4:			:	0.38:	6.53:	0.96:	16.35:
5:	1:	0.08			7.30:	-0.96:	18.28:
6:	1:	0.02			8.06:	-2.89:	20.20:
7:	1:	0.01	:	-1.92:	8.83:	-4.81:	22.13:
8:	1:	0.00	:	-2.69:	9.60:	-6.73:	24.05:
9:	1:	0.00	:	-3.46:	10.37:	-8.66:	25.97:
10:	1:	0.00	:	-4.22:	11.14:	-10.58:	27.90:
s:	M:	NUMBER	:	S4	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi) :	(ksi	.) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	:-	:
	1:	38.29				0.00:	0.00:
2:		4.57		0.00:	0.00:	0.00:	0.00:
3: 4:	1: 1:	2.29		0.00:	0.00:	0.00:	0.00:
4: 5:	1:	0.46		0.00:	0.00:	0.00:	0.00:
5: 6:	1:	0.08 0.02		0.00:	0.00:	0.00:	0.00:
7:	1:	0.02		0.00: 0.00:	0.00:	0.00:	0.00:
8:		0.01		0.00:	0.00: 0.00:	0.00:	0.00:
9:		0.00		0.00:	0.00:	0.00:	0.00:
10:		0.00		0.00:	0.00:	0.00: 0.00:	0.00:
		0.00	•	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC5, PSE-W1 crack in angle MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

S : M: NUMBER : S0 : T : A: OF E : T: FATIGUE (ksi) (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : ----:--:--:---:----:-----: 1: 1: 0.28 : 0.44 : 2.90: 2.35: 2.93: 7.25: 7.32: 2: 1: 3.07: 5.87: 7.69: 1.80: 3.25: 3: 1: 0.22 : 4.50: 8.12:

4:	1:	0.06	:	1.25:	3.42:	3.04:	8.55:
5:	1:	0.00	:	0.67:	3.60:	1.67:	8.99:
6:	1:	0.00	:	0.12:	3.77:	0.29:	9.43:
:	M:	NUMBER	:	S4	:	S	:
:	A:	OF	:		:		:
:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:	:	:-	:	:
1:	1:	0.28	:	0.00:	0.00:	0.00:	0.00:
2:	1:	0.44	:	0.00:	0.00:	0.00:	0.00:
3:	1:	0.22	:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.06	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	5: 6: : : 1: 2: 3: 4:	: T: : L: ::- 1: 1: 2: 1: 3: 1: 4: 1:	5: 1: 0.00 6: 1: 0.00 : M: NUMBER : A: OF : T: FATIGUE : L: CYCLES 1: 1: 0.28 2: 1: 0.44 3: 1: 0.22 4: 1: 0.06	5: 1: 0.00: 6: 1: 0.00: 6: 1: 0.00: 6: 1: 0.00: 6: 1: 0.00: 6: 1: 0.00: 6: 1: 0.00: 6: 1: 1: 0.28: 6: 1: 0.44: 6: 1: 0.22: 6: 1: 0.06: 6: 1: 0.06: 6: 1: 0.06: 1: 0.06: 1: 0.06: 1: 0.06: 1: 0.06: 1: 0.00: 1: 0.0	5: 1: 0.00: 0.67: 6: 1: 0.00: 0.12: : M: NUMBER : S4 : A: OF : : T: FATIGUE : (ksi) : L: CYCLES : (t1):	5: 1: 0.00: 0.67: 3.60: 6: 1: 0.00: 0.12: 3.77: 3.67:	5: 1: 0.00: 0.67: 3.60: 1.67: 6: 1: 0.00: 0.12: 3.77: 0.29: M: NUMBER : S4 : S : A: OF : : : : : : : : : : : : : : : : : :

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC5, PSE-W1 crack in angle

MODEL: TC05

ANALYSIS RESULTS:

Schedl Block Final Flaw Size Step c-tip C 4.229266 200 15 0.085795 0.089634 400 15 4.240978 600 15 0.093517 4.252673 800 0.097445 4.264351 15 1000 15 0.101418 4.275931 1200 15 0.105435 4.287248 1400 0.109496 15 4.298236 1600 15 0.113601 4.309098 1800 15 0.117749 4.320051 15 2000 0.121942 4.331298 2200 15 0.126181 4.343026 0.130471 2400 1.5 4.355411 2600 15 0.134814 4.368612 2800 15 0.139214 4.382779 3000 15 0.143678 4.398049 3200 15 0.148210 4.414548 3400 15 0.152818 4.432388 3600 15 0.157508 4.451671 3800 4.472484 15 0.162289 4000 15 0.167169 4.494898 4200 15 0.172157 4.518965 4400 15 0.177263 4.544712 4600 15 0.182498 4.572133 4800 15 0.187872 4.601183 5000 15 0.193395 4.631766 5200 15 0.199080 4.663716 5400 15 0.204935 4.696782 5600 15 0.210969 4.730614 4.765028 5800 15 0.217191 6000 15 0.223608 4.800159 6200 15 0.230228 4.836187 6400 15 0.237064 4.873327 6600 15 0.244128 4.911827 6800 15 0.251434 4.951980 7000 15 0.259000 4.994135 7200 15 0.266849 5.038703 7400 0.275005 15 5.086177 7600 15 0.283500 5.137156 7800 0.292371 5.192368

```
8000
            15
                           0.301668
                                              5.252719
   8200
            15
                           0.311447
                                              5.319348
   8400
            15
                           0.321786
                                              5.393739
   8600
            15
                           0.332780
                                              5.477983
   8800
            15
                           0.344562
                                              5.574999
   9000
            15
                           0.357311
                                              5.688929
   9200
            15
                           0.371286
                                              5.825919
   9400
            15
                           0.386875
                                              5.995607
   9600
            15
                           0.404700
                                              6.214272
  9800
            15
                           0.425858
                                              6.514394
  10000
            15
                           0.453301
                                              7.100117
FINAL RESULTS:
All Stress Intensities are below the Fatigue Threshold.
NO growth in Schedule No. 10195
Crack Size c = 0.521007
              FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
             DATE: 17-MAR-99 TIME: 09:42:42
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W1 SA226 MS, cont damage in cap WS99
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                    0.1250
Plate Width, W = 3.0000
Hole Diameter, D = 0.1600
Hole-Center-to-Edge Dist., B =
                            0.3100
Poisson s ratio = 0.30
FLAW SIZE:
a (init.) = 0.6815E-02
c (init.) = 0.6264E-02
a/c (init.) = 1.088
MATERIAL
MATL 1:
       1
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : :
        .--:----:
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
```

MODEL: CC02

```
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                               5.4100
                              0.0000
Scale Factor for Stress S1:
Scale Factor for Stress S3: 16.910
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                              5.4100
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3: 16.910
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3: 16.910
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S3: 12.730
Total No. of Blocks in Schedule = 15
   Block Number and Case Correspondences
 Block Number
                               Block Case No.
From - To
    1
               1
                                        1
     2
                                        2
               3
    3
               5
     5
     6
               6
     7
               8
     8
     9
               9
              10
    10
    11
              11
    12
              12
    13
               13
    14
               14
    15
               15
 BLOCK CASE NO. 1
  S : M: NUMBER :
                                    :
                             S0
                                                 S1
  T : A: OF :
E : T: FATIGUE :
P : L: CYCLES :
                         (t1): (t2): (t1): (t2):
 ---:--:--:---:----:-----:
    1: 1: 1.90: 0.70: 1.30: 0.70: 1.30: 2: 1: 0.09: 0.60: 1.40: 0.60: 1.40: 3: 1: 0.01: 0.54: 1.46: 0.54: 1.46:
```

s	:	M:	NUMBER	:	S3	:	s	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
			CYCLES					
	1:	:- 1: 1:	1.90 0.09	:	0.70:	1.30:	0.00:	0.00:
	3:	1 :	0.01			1 46.		

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK	CAS	E NO. 2					
s :	M:	NUMBER	:	so	:	S1	:
T :	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	9.57	:	0.60:	1.20:	-0.30:	0.30:
2:		1.14		0.40:	1.40:	-0.50:	0.50:
3:	1:	0.57	:	0.30:	1.50:	-0.60:	0.60:
4:	1:	0.11		0.10:	1.70:	-0.80:	0.80:
5:	1:	0.02	:	-0.10:	1.90:	-1.00:	1.00:
6:	1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:
7:	1:	0.00	:	-0.50:	2.30:	-1.40:	1.40:
8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
S:	м.	NUMBER	:	S 3	_	~	
		HOMDEK	•	పు	:	S	
т:	A:	OF	:	పు	:	5	:
T : . E :	A: T:	OF FATIGUE	:	53	:	5	:
T : . E :	A:	OF	:		: : (t2) :	(t1) :	: : : (t2) :
T : . E :	A: T: L:	OF FATIGUE	: : :		:-	(t1) :	:
T : . E : . P : .	A: T: L: -:	OF FATIGUE CYCLES	:	(t1) :	(t2): 	(t1) : :-	0.00:
T: E: P: :	A: T: L: 1:	OF FATIGUE CYCLES 9.57	:	(t1) : :-	1.20:	(t1) :	0.00: 0.00:
T: E: P: :- 1: 2: 3:	A: T: L: 1:	OF FATIGUE CYCLES 9.57 1.14	:	(t1): :- 0.60: 0.40:	1.20: 1.40:	(t1): :- 0.00: 0.00:	0.00: 0.00: 0.00:
T : E : P ::	A: T: L: -: 1: 1:	OF FATIGUE CYCLES 9.57 1.14 0.57	:	(t1): : 0.60: 0.40: 0.30:	1.20: 1.40: 1.50:	(t1): 	0.00: 0.00:
T : E : P ::	A: T: L: 1: 1: 1:	OF FATIGUE CYCLES 9.57 1.14 0.57 0.11	:	(t1): : 0.60: 0.40: 0.30: 0.10:	1.20: 1.40: 1.50: 1.70:	(t1): 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
T: E: P: :- 1: 2: 3: 4: 5: 6: 7:	A: T: L: 1: 1: 1: 1:	OF FATIGUE CYCLES 9.57 1.14 0.57 0.11	: : : : : : : : : : : : : : : : : : : :	(t1): 	1.20: 1.40: 1.50: 1.70: 1.90:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
T : E : P :: 1: 2: 3: 4: 5: 6:	A: T: L: 1: 1: 1: 1:	OF FATIGUE CYCLES 9.57 1.14 0.57 0.11 0.02 0.01	:	(t1): 0.60: 0.40: 0.30: 0.10: -0.10: -0.30:	1.20: 1.40: 1.50: 1.70: 1.90: 2.10:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: :- 1: 2: 3: 4: 5: 6: 7: 8:	A: T: L: 1: 1: 1: 1: 1: 1:	OF FATIGUE CYCLES 9.57 1.14 0.57 0.11 0.02 0.01 0.00	: : : : : : : : : : : : : : : : : : : :	(t1):	1.20: 1.40: 1.50: 1.70: 1.90: 2.10: 2.30:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: :- 1: 2: 3: 4: 5: 6: 7:	A: T: L: 1: 1: 1: 1: 1: 1:	OF FATIGUE CYCLES 9.57 1.14 0.57 0.11 0.02 0.01 0.00		(t1):	1.20: 1.40: 1.50: 1.70: 1.90: 2.10: 2.30: 2.50:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

BLOCI	7 (ASE NO. 3					
	: M			so		S1	
Т	: A		-	20	:	51	:
E	: T	: FATIGUE	:				:
P	: L	: CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:	:	:	:	:	:
1	: 1	: 19.	14 :	0.60:	1.20:	-0.30:	0.30:
2	: 1	: 2.	29 :	0.40:	1.40:	-0.50:	0.50:
3 :	: 1	: 1.	14:	0.30:	1.50:	-0.60:	0.60:
4	: 1	: 0.	23:	0.10:	1.70:	-0.80:	0.80:
5	: 1	: ' 0.	04:	-0.10:	1.90:	-1.00:	1.00:
6	: 1	: 0.	01:	-0.30:	2.10:	-1.20:	1.20:
7 :	: 1	: 0.	00:	-0.50:	2.30:	-1.40:	1.40:
8 :	: 1	: 0.	00:	-0.70:	2.50:	-1.60:	1.60:
9 :	: 1	: 0.	00:	-0.90:	2.70:	-1.80:	1.80:
10:	: 1	: 0.	00:	-1.10:	2.90:	-2.00:	2.00:
S :	M	: NUMBER	:	s3	:	s	. :
Т :	Α	: OF	. :		:		:

E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		· : ·	:-	:-	:-	:
1:	1:	19.14	:	0.60:	1.20:	0.00:	0.00:
2:	1:	2.29	:	0.40:	1.40:	0.00:	0.00:
3:	1:	1.14	:	0.30:	1.50:	0.00:	0.00:
4:	1:	0.23	:	0.10:	1.70:	0.00:	0.00:
5:	1:	0.04	:	-0.10:	1.90:	0.00:	0.00:
6:	1:	0.01	:	-0.30:	2.10:	0.00:	0.00:
7:	1:	0.00	:	-0.50:	2.30:	0.00:	0.00:
8:	1:	0.00	:	-0.70:	2.50:	0.00:	0.00:
9:	1:	0.00	:	-0.90:	2.70:	0.00:	0.00:
10:	1:	0.00	:	-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than ${\tt KIscc}): {\tt NOT} {\tt SET}$

BLOCK	CAS	E NO. 4					
s:	M:	NUMBER	:	S0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-	38.29	:-	0.60-	1 20	:-	0.30:
1:	1.	30.23	:	0.60:	1.20:	-0.30:	0.50:
	1:	4.57	:	0.30:	1.40:	-0.60:	0.60:
	-	0.46					
	1:			-0.10:			
-	1:	0.02			2.10:		
	1:	0.01			2.30:		
		0.00					
	1:	0.00					
	1:	0.00					2.00:
s :		NUMBER			:	S	:
т:		OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES					
-				0.60:			
		4.57					
		2.29					
4 :		0.46					
5:	1:	0.08	:	-0.10:	1.90:	0.00:	0.00:
6 :	1:	0.02				0.00:	
7:	1:	0.01	:	-0.50:	2.30:	0.00:	0.00:
8 :	: 1:	0.00	:	-0.70:	2.50:	0.00:	0.00:
9 :	1:	0.00					
10:	1:	0.00	:	-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLO	CK	CAS	E NO. 5					
s	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	\mathbf{T} :	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
	-:	:-		: -	:-	:-	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	М:	NUMBER	:	S 3	:	s	:

T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
	1:	1:	0.28	- : · :	1.00:	1.00:	0.00:	0.00:
	2:	1:	0.44	:	0.81:	1.06:	0.00:	0.00:
	3:	1:	0.22	:	0.62:	1.12:	0.00:	0.00:
	4:	1:	0.06	:	0.43;	1.18:	0.00:	0.00:
	5:	1:	0.00	:	0.23:	1.24:	0.00:	0.00:
	6:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	Μ:	NUMBER	:	S0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)		(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:-	:	:
1:	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
s:	Μ:	NUMBER	:	S3	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:-		-:-	:	:-	:	:
	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

TAILGOE DENEBODE BLOCK SIRESS TABLE

STD								
S	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	\mathbf{T} :	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:-	:
		1:	9.57		3.25:	6.49:	0.00:	0.00:
		1:	1.14	:	2.16:	7.57:	0.00:	0.00:
		1:	0.57		1.62:	8.12:	0.00:	0.00:
	4:	1:	0.11	:	0.54:	9.20:	0.00:	0.00:
	5:	1:	0.02	:	-0.54:	10.28:	0.00:	0.00:
	6:	1:	0.01	:	-1.62:	11.36:	0.00:	0.00:
	7:	1:	0.00	:	-2.70:	12.44:	0.00:	0.00:
	8:	1:	0.00	:	-3.79:	13.53:	0.00:	0.00:
	9:	1:	0.00	:	-4.87:	14.61:	0.00:	0.00:
1	0:	1:	0.00	:	-5.95:	15.69:	0.00:	0.00:
S	:	M:	NUMBER	:	S 3	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :		(t1):	
	-:	:-		-:-	:	:	:-	:
	1:	1:	9.57	:	10.15:	20.29:	0.00:	0.00:

2:	1:	1.14	:	6.76:	23.67:	0.00:	0.00:
3:	1:	0.57	:	5.07:	25.37:	0.00:	0.00:
4:	1:	0.11	:	1.69:	28.75:	0.00:	0.00:
5:	1:	0.02	:	-1.69:	32.13:	0.00:	0.00:
6:	1:	0.01	:	-5.07:	35.51:	0.00:	0.00:
7:	1:	0.00	:	-8.45:	38.89:	0.00:	0.00:
8:	1:	0.00	:	-11.84:	42.27:	0.00:	0.00:
9:	1:	0.00	:	-15.22:	45.66:	0.00:	0.00:
10:	1:	0.00	:	-18.60:	49.04:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M:	NUMBER	:	so	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	19.14	:	3.25:	6.49:	0.00:	0.00:
2:	1:	2.29	:	2.16:	7.57:	0.00:	0.00:
	1:	1.14	:	1.62:	8.12:	0.00:	0.00:
4:	1:	0.23	:	0.54:	9.20:	0.00:	0.00:
5:	1:	0.04	:	-0.54:	10.28:	0.00:	0.00:
6:	1:	0.01	:	-1.62:	11.36:	0.00:	0.00:
7:	1:	0.00	:	-2.70:	12.44:	0.00:	0.00:
8:	1:	0.00	:	-3.79:	13.53:	0.00:	0.00:
9:	1:	0.00	:	-4.87:	14.61:	0.00:	0.00:
10:	1:	0.00	:	-5.95:	15.69:	0.00:	0.00:
s:	Μ:	NUMBER	:	S3	:	s	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:				:			
1:		19.14					
2:		2.29				0.00:	
		1.14					
4:	1:	0.23					
5:	1:			-1.69:			
6:	1:			-5.07:	-	0.00:	
7:	1:			-8.45:		0.00:	
8:	1:			-11.84:			
9:	1:			-15.22:			
10:	1:	0.00	:	-18.60:	49.04:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STI)							
S	:	M:	NUMBER_	:	· so	:	S1	:
T	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:-	:
	1:	1:	38.29	:	3.25:	6.49:	0.00:	0.00:
	2:	1:	4.57	:	2.16:	7.57:	0.00:	0.00:
	3:	1:	2.29	:	1.62:	8.12:	0.00:	0.00:

4:	1:	0.46	:	0.54:	9.20:	0.00:	0.00:
5:	1:	0.08	:	-0.54:	10.28:	0.00:	0.00:
6:	1:	0.02	:	-1.62:	11.36:	0.00:	0.00:
7:	1:	0.01	:	-2.70:	12.44:	0.00:	0.00:
8:	1:	0.00	:	-3.79:	13.53:	0.00:	0.00:
9:	1:	0.00	:	-4.87:	14.61:	0.00:	0.00:
10:	1:	0.00	:	-5.95:	15.69:	0.00:	0.00:
s :	Μ:	NUMBER	:	S 3	:	S	:
\mathbf{T} :	Α:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	•	(t1) :	(±2) ·	(t1) :	(+2) ·
	٠.	CICLLD	•	(01).	(02,	(/.	(02)
:	:-		• : -	:	:-	:	:
1:	:- 1:	38.29		10.15:	20.29:	0.00:	0.00:
1: 2:	1: 1:			:	:-	:	:
1: 2: 3:	1: 1: 1:	38.29	:	10.15:	20.29:	0.00:	0.00:
1: 2: 3:	1: 1:	38.29 4.57	:	10.15: 6.76:	20.29:	0.00: 0.00:	0.00:
1: 2: 3: 4:	1: 1: 1:	38.29 4.57 2.29	: :	10.15: 6.76: 5.07:	20.29: 23.67: 25.37:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1:	38.29 4.57 2.29 0.46	: : : :	10.15: 6.76: 5.07: 1.69:	20.29: 23.67: 25.37: 28.75:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02	: : : :	10.15: 6.76: 5.07: 1.69: -1.69:	20.29: 23.67: 25.37: 28.75: 32.13:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6:	1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : :	10.15: 6.76: 5.07: 1.69: -1.69: -5.07:	20.29: 23.67: 25.37: 28.75: 32.13: 35.51:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6:	1: 1: 1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : :	10.15: 6.76: 5.07: 1.69: -1.69: -5.07: -8.45:	20.29: 23.67: 25.37: 28.75: 32.13: 35.51: 38.89:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER s_0 S1 : T : A: OF E : T: FATIGUE : (ksi) (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 4.07: 4.11: 0.00: 3.30: 4.31: 0.00: 0.28 : 1: 1: 0.00: 2: 1: 0.44 : 0.00: 2.52: 0.22 : 3: 1: 0.00: 4.56: 0.00: 4: 1: 0.06: 1.75: 4.80: 0.00: 5: 1: 0.00 : 0.94: 5.05: 0.00: 0.00: 0.00: 6: 1: 0.16: 5.29: 0.00: 0.00: S : M: NUMBER S3 T : A: OF (ksi) E : T: FATIGUE (ksi) P : L: CYCLES : (t1): (t2): (t1): (t2): 1: 1: 0.28 : 12.73: 12.73: 0.00: 0.00: 0.44 : 2: 1: 10.31: 13.49: 0.00: 0.00: 3: 1: 0.22: 7.89: 14.26: 0.00: 0.00: 4: 1: 0.06: 5.47: 15.02: 0.00: 0.00: 0.00: 5: 1: 2.93: 15.79: 0.00: 0.00: 6: 1: 0.00: 0.51: 0.00: 16.55: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

ANALYSIS RESULTS:

Schdl Block

Final Flaw Size

K max

		Step	a	С	a-tip	c-tip
200	15		0.007634	0.006938	3.168770	3.030949
400	15		0.008640	0.007748	3.328484	3.166185
600	15		0.009889	0.008729	3.506543	3.314499
800	15		0.011459	0.009927	3.704611	3.476344
1000	15		0.013457	0.011402	3.923669	3.651488
1200	15		0.016021	0.013225	4.163445	3.838648
1400	15		0.019331	0.015484	4.421681	4.035210
1600	15		0.023608	0.018274	4.693507	4.237245
1800	15		0.029105	0.021697	4.971328	4.440098
2000	15		0.036079	0.025853	5.245642	4.639659
2200	15		0.044763	0.030837	5.506836	4.833983
2400	15		0.055326	0.036749	5.747266	5.024629
2600	15		0.067855	0.043709	5.962577	5.217070
2800	15		0.082355	0.051900	6.151572	5.420207
3000	1 5		0.098763	0.061612	6.314614	5.645317
3200	15		0.116945	0.073302	6.450552	5.904355

Transition to 1-d solution, TC03: a = 0.1250 t = 0.1250

0.23 of Load Step No. 4 at Cycle No.

Step description:

of Block No. 8 of Schedule No. 3284 Crack Size: c = 0.789221E-01, a/c = 1.58386

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
3400	15	-	0.089683	6.170652
3600	15		0.110103	6.412594
3800	15		0.135851	6.931619
4000	15		0.185310	9.417865

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value:

 $K \max = 52.78$ K ref = 0.000 K cr = 51.83

at the very beginning of Load Step No. 10

Step description:

of Block No. 8 of Schedule No. 4027

c = 0.218315Crack Size

FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----DATE: 17-MAR-99 TIME: 09:49:45

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

TC5, PSE-W1, continuing crack in cap on web side of hole WS99

GEOMETRY

MODEL: TC05-Through crack from hole in row of holes.

0.1250 Plate Thickness, t = Hole Dia., D 0.1590

Hole-to-Hole Dist., H = Dia./Edge-Dist. Ratio, D/B = 0.0000

(D/B = 0 means B is very large)

FLAW SIZE:

c (init.) = 0.7300E-01

```
MATERIAL
MATL 1:
       1
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : :
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            :---:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC05
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S3: -1.0000
Scale Factor for Stress S4: 0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                         5.4100
Scale Factor for Stress S3:
                         16.910
Scale Factor for Stress S4:
                         0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                         5.4100
Scale Factor for Stress S3:
                         16.910
Scale Factor for Stress S4:
                         0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                         16.910
Scale Factor for Stress S4:
                         0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                         4.0700
Scale Factor for Stress S3:
                         12.730
Scale Factor for Stress S4:
                        0.0000
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From - To
```

	2 3 4 5 6 7 8 9 10 11 12		2 3 4 5 6 7 8 9 10 11 11			2 5 1 3 5 1 3 5 1 3 5		
	13	-	13			1		
	14	-	14			4		
	15	-	15			5		
S T	:	M: A: T:	E NO. 1 NUMBER OF FATIGUE CYCLES		so (t1) :		(t1) :	
	2: 3: :		1.90 0.09 0.01 NUMBER OF FATIGUE CYCLES		0.70: 0.60: 0.54: S4	1.30: 1.40: 1.46: :	0.70: 0.60: 0.54: S	1.30: 1.40: 1.46: :
	2:	1: 1: 1:		:	-0.30: -0.40:	0.30:	0.00: 0.00:	0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

S: M: NUMBER: S0 : S3 T: A: OF : : E: T: FATIGUE: : : P: L: CYCLES: (t1): (t2): (t1): (t2) ::	
E : T: FATIGUE : : (t1) : (t2) : (t1) : (t2) 1: 1: 9.57 : 0.60: 1.20: 0.60: 1.20 2: 1: 1.14 : 0.40: 1.40: 0.40: 1.40 3: 1: 0.57 : 0.30: 1.50: 0.30: 1.50 4: 1: 0.11 : 0.10: 1.70: 0.10: 1.70	:
P: L: CYCLES : (t1): (t2): (t1): (t2) 1: 1: 9.57: 0.60: 1.20: 0.60: 1.20 2: 1: 1.14: 0.40: 1.40: 0.40: 1.40 3: 1: 0.57: 0.30: 1.50: 0.30: 1.50 4: 1: 0.11: 0.10: 1.70: 0.10: 1.70	:
1: 1: 9.57: 0.60: 1.20: 0.60: 1.20: 2: 1: 1.14: 0.40: 1.40: 0.40: 1.40: 3: 1: 0.57: 0.30: 1.50: 0.30: 1.50: 4: 1: 0.11: 0.10: 1.70: 0.10:	:
2: 1: 1.14: 0.40: 1.40: 0.40: 1.4 3: 1: 0.57: 0.30: 1.50: 0.30: 1.5 4: 1: 0.11: 0.10: 1.70: 0.10: 1.7	:
3: 1: 0.57: 0.30: 1.50: 0.30: 1.50 4: 1: 0.11: 0.10: 1.70: 0.10: 1.70	0:
4: 1: 0.11: 0.10: 1.70: 0.10: 1.7	0:
	0:
r. 1. 0.00 . 0.10 . 1.00 . 0.10 . 1.00	0:
5: 1: 0.02: -0.10: 1.90: -0.10: 1.90	0:
6: 1: 0.01: -0.30: 2.10: -0.30: 2.1	0:
7: 1: 0.00: -0.50: 2.30: -0.50: 2.3	0:
8: 1: 0.00: -0.70: 2.50: -0.70: 2.5	0:
9: 1: 0.00: -0.90: 2.70: -0.90: 2.7	0:
10: 1: 0.00: -1.10: 2.90: -1.10: 2.9	0:
S: M: NUMBER: S4: S	:
T : A: OF : :	:
E : T: FATIGUE : :	:
P : L: CYCLES : (t1) : (t2) : (t1) : (t2)	:
1: 1: 9.57: -0.30: 0.30: 0.00: 0.0	-: 0:
2: 1: 1.14: -0.50: 0.50: 0.00: 0.0	
3: 1: 0.57: -0.60: 0.60: 0.00: 0.0	
4: 1: 0.11 : -0.80: 0.80: 0.00: 0.0	
5: 1: 0.02 : -1.00: 1.00: 0.00: 0.0	
6: 1: 0.01 : -1.20: 1.20: 0.00: 0.0	
7: 1: 0.00: -1.40: 1.40: 0.00: 0.0	
8: 1: 0.00: -1.60: 1.60: 0.00: 0.0	
9: 1: 0.00: -1.80: 1.80: 0.00: 0.0	

10: 1: 0.00: -2.00: 2.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

$_{ m BL}$			SE NO. 3					
S		Μ:	NUMBER	:	S0	:	S3	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	1:	1:	19.14	- : - :	0.60:	1.20:	0.60:	1.20:
	2:	1:	2.29	:	0.40:	1.40:	0.40:	1.40:
	3:	1:	1.14	:	0.30:	1.50:	0.30:	1.50:
	4:	1:	0.23	:	0.10:	1.70:	0.10:	1.70:
	5:	1:	0.04	:	-0.10:	1.90:	-0.10:	1.90:
	6:	1:	0.01	:	-0.30:	2.10:	-0.30:	2.10:
	7:	1:	0.00	:	-0.50:	2.30:	-0.50:	2.30:
	8:	1:	0.00	:	-0.70:	2.50:	-0.70:	2.50:
	9:	1:	0.00	:	-0.90:	2.70:	-0.90:	2.70:
	10:	1:	0.00	:	-1.10:	2.90:	-1.10:	2.90:
	:		NUMBER	:	S4	:	S	:
T			OF	:		:		:
	:		FATIGUE	:		:		:
P	: •	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
	1:	1:	19.14	:	-0.30:	0.30:	0.00:	0.00:
	2:	1:	2.29	:	-0.50:	0.50:	0.00:	0.00:
	3:	1:		:	-0.60:	0.60:	0.00:	0.00:
	4:	1:	0.23			0.80:	0.00:	0.00:
		1:	0.04			1.00:		
	6:		0.01			1.20:	0.00:	
		1:	0.00			1.40:	0.00:	0.00:
		1:	0.00			1.60:	0.00:	0.00:
	9:	1:	0.00			1.80:	0.00:	0.00:
•	10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK	CAS	E NO. 4					
s :	M:	NUMBER	:	so	:	s3	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
•	:-		-:-	:-	:	:-	:
	1:			0.60:			
		4.57					
	1:			0.30:		0.30:	
	1:			0.10:			
	1:	0.08					
	1:	0.02			2.10:		2.10:
	1:	0.01	:	-0.50:	2.30:	-0.50:	2.30:
8:	1:	0.00	:	-0.70:	2.50:	-0.70:	2.50:
9:	1:	0.00	:	-0.90:	2.70:	-0.90:	2.70:
10:	1:	0.00	:	-1.10:	2.90:	-1.10:	2.90:
s:	M:	NUMBER	:	S4	:	s	:
т:	A:	OF	:	•	:		:
E :	T:	FATIGUE	:		:		:
	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
-	-	38.29	:	-0.30:	0.30:	0.00:	0.00:
	1:	4.57					
	1:	2.29					
4:		0.46			0.80:		
		0.40	•	-0.00:	0.60:	0.00:	0.00:

5: 1:	0.08:	-1.00:	1.00:	0.00:	0.00:
6: 1:	0.02 :	-1.20:	1.20:	0.00:	0.00:
7: 1:	0.01 :	-1.40:	1.40:	0.00:	0.00:
8: 1:	0.00 :	-1.60:	1.60:	0.00:	0.00:
9: 1:	0.00 :	-1.80:	1.80:	0.00:	0.00:
10: 1:	0.00 :	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLO	OCK	CAS	E NO. 5					
S	:	Μ:	NUMBER	:	S0	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
s	:	Μ:	NUMBER	:	S4	:	s	:
T	:	A:	. OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	1 -	:- 1:	0.28	-: •	1.00:	1.00:	0.00:	0.00:
		1:	0.44			1.00:		
		1:	0.44			1.12:		
		1:	0.22		0.62:	1.12:	0.00:	
		1:	0.00			1.24:		
	6:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC5, PSE-W1, continuing cra

MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	М:	NUMBER	:	S 0	:	s3	:
T	:	A:	OF	:		:		• •
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		• • •	:	:	:-	:
	1:	1:	1.90		-0.70:	-1.30:	-0.70:	-1.30:
	2:	1:	0.09	:	-0.60:	-1.40:	-0.60:	-1.40:
	3:	1:	0.01	:	-0.54:	-1.46:	-0.54:	-1.46:
S	:	Μ:	NUMBER	:	S4	:	S	:
T	:	A:	OF	:		:		:
E	:	Τ:	FATIGUE	:	(ksi)	:	(ksi)) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		• • •	:	:	:	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

TC5, PSE-W1, continuing cra

MODEL: TC05

FAT	IG	UE :	SCHEDULE BLOO	CK	STRESS TAB	LE		
STI)							
S	:	Μ:	NUMBER	:	so	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
			9.57					
	2:	1:	1.14	:	2.16:	7.57:	6.76:	23.67:
	3:	1:	0.57	:	1.62:	8.12:	5.07:	25.37:
	4:	1:	0.11	:	0.54:	9.20:	1.69:	28.75:
			0.02	:	-0.54:	10.28:	-1.69:	32.13:
	6:	1:	0.01	:	-1.62:	11.36:	-5.07:	35.51:
		1:	0.00	:	-2.70:	12.44:	-8.45:	38.89:
	8:	1:	0.00	:	-3.79:	13.53:	-11.84:	42.27:
	9:	1:	0.00	:	-4.87:	14.61:	-15.22:	45.66:
1	.0:	1:	0.00	:	-5.95:	15.69:	-18.60:	49.04:
S	:	M:	NUMBER	:	S4	:	s	:
T	:	A:	OF	:		:		:
Е	:	T:	FATIGUE	:	(ksi) :	(ksi) :
			CYCLES					
			9.57					
			1.14					
		1:	0.57	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.11	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.02	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
			0.00					
	ο.	1.	0 00		0.00	0 00	0.00	0.00

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

TC5, PSE-W1, continuing cra MODEL: TC05

8: 1:

9: 1:

10: 1:

FATIGUE SCHEDULE BLOCK STRESS TABLE

0.00:

0.00:

0.00:

_____ S : M: NUMBER : S0 S3 T : A: OF : : (ksi) : (ksi) P : L: CYCLES : (t1) : (t2) 19.14: 3.25: 6.49: 10.15: 20.29: 2.29: 2.16: 7.57: 6.76: 23.67: 1.14: 1.62: 8.12: 5.07: 25.37: 0.23: 0.54: 9.20: 1.69: 28.75: 0.04: -0.54: 10.28: -1.69: 32.13: 1: 1: 2: 1: 3: 1: 4: 1: 5: 1: -1.62: 11.36: -5.07: -2.70: 12.44: -8.45: -3.79: 13.53: -11.84: 0.01 : 6: 1: 35.51: 7: 1: 0.00: 38.89: 8: 1: 0.00: 42.27: 0.00: 9: 1: -4.87: 14.61: -15.22: 45.66: -5.95: 10: 1: 0.00 : 15.69: -18.60: 49.04: S : M: NUMBER : S4 S T : A: OF (ksi) E : T: FATIGUE E : T: FATIGUE : P : L: CYCLES : (ksi) : (t1) : (t2) : (ksi) (t1) : (t2) 1: 1: 19.14: 0.00: 0.00: 0.00: 2: 1: 2.29 : 0.00: 1.14 : 0.00: 0.00: 0.00: 0.00: 3: 1: 0.00: 0.00: 0.00: 4: 1: 0.23: 0.00: 0.00: 0.00:

5: 1:	0.04 :	0.00:	0.00:	0.00:	0.00:
6: 1:	0.01 :	0.00:	0.00:	0.00:	0.00:
7: 1:	0.00 :	0.00:	0.00:	0.00:	0.00:
8: 1:	0.00 :	0.00:	0.00:	0.00:	0.00:
9: 1:	0.00 :	0.00:	0.00:	0.00:	0.00:
10.1.	0.00 :	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

TC5, PSE-W1, continuing cra

MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI	 >					_		
S		М:	NUMBER	:	S 0	:	S 3	:
	:		OF	:		:		:
_	-		FATIGUE		(ksi)		(ksi)	:
			CYCLES		(t1):			
	• • • • •			· · • -		:-	:	:
	1.	1:	38.29	:	3.25:	6.49:	10.15:	20.29:
			4.57					
		1:	2 29		1.62:	8.12:	5.07:	25.37:
		1:	0.46	:	0.54:	9.20:	1.69:	28.75:
		1:	0.10	:	-0.54:	10.28:	-1.69:	32.13:
		1:			-1.62:			
		1:	0.02	;	-2.70:	12.44:	-8.45:	
		1:	0.00					
		1:			-4.87:			
	10:				-5.95:			
		м:	NUMBER		S4		S	:
	:		OF	:	54	:	_	
_		T:		:	(ksi)		(ksi)	٠ .
_	-		CYCLES		(t1):			
- P	:		CICLES	· ·				
	1:	1:	38.29	:	0.00:	0.00:	0.00:	0.00:
		1:					0.00:	
		1:	2.29			0.00:		
		1:			0.00:			0.00:
		1:	0.08				0.00:	
		1:	0.02				0.00:	
	7:				0.00:			
	8:		0.00				0.00:	
		1:			0.00:			
		1:	0.00				0.00:	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

TC5, PSE-W1, continuing cra MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

				-		
STD						
S : M:	NUMBER	:	so	:	S3	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:	(ksi)	:	(ksi)	:
P : L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
::-		: -	:	:-	:- -	:
1: 1:	0.28	:	4.07:	4.11:	12.73:	12.86:
2: 1:	0.44	:	3.30:	4.31:	10.31:	13.49:
3: 1:	0.22	:	2.52:	4.56:	7.89:	14.26:
4: 1:	0.06	:	1.75:	4.80:	5.35:	15.02:
5: 1:	0.00	:	0.94:	5.05:	2.93:	15.79:
6.1.	0.00	:	0.16:	5.29:	0.51:	16.55:

S	:	M:	NUMBER	:	S4	:	S	:
Т	:	A:	OF	:		:		:
E	:	T:			(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	:	:	:
	1:	1:	0.28	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.44	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.22	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.06	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W1, continuing cra MODEL: TC05

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
200	15		0.097112	6.577837
400	15		0.122532	6.659942
600	15		0.149420	6.769951
800	15		0.178808	6.955539
1000	15		0.212509	7.224002
1200	15		0.252405	7.540444
1400	15		0.301172	7.971287
1600	15		0.367386	8.784622

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or

(b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 10 Step description:

of Block No.

8 of Schedule No.

c = 0.473968Crack Size

FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 10 Step description:

of Block No. 14 of Schedule No. 1777

Crack Size c = 0.512865

> FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----DATE: 01-MAR-99 TIME: 15:52:46 (computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

CORNER CRACK CASE 2, PSE-W1 SA226 MS, crack in cap outbd WS100

GEOMETRY

MODEL: CC02-Corner crack from hole in plate (2D)

Plate Thickness, t = Plate Width, W 3.0000

```
Hole Diameter, D =
                  0.1600
Hole-Center-to-Edge Dist., B =
                             0.3100
Poisson s ratio = 0.30
FLAW SIZE:
a (init.) = 0.5000E-01
c (init.) = 0.5000E-01
a/c (init.) = 1.000
MATERIAL
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : :
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                          -1.0000
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                          6.1100
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S3:
                          0.0000
Stress Scaling Factors for Block Case: 3
 Scale Factor for Stress S0:
                          6.1100
 Scale Factor for Stress S1:
                          0.0000
 Scale Factor for Stress S3:
                          0.0000
 Stress Scaling Factors for Block Case: 4
 Scale Factor for Stress S0:
                           6.1100
 Scale Factor for Stress S1: 0.0000
 Scale Factor for Stress S3:
                          0.0000
 Stress Scaling Factors for Block Case: 5
```

Scale Factor for Stress S0: Scale Factor for Stress S1: 4.6000

0.0000

Scale Factor for Stress S3: 0.0000 Total No. of Blocks in Schedule = Block Number and Case Correspondences Block Number Block Case No. From То 1 2 2 3 3 5 4 4 1 3 6 6 7 1 8 8 3 9 5 10 10 11 11 3 12 12 5 13 13 1 14 14 4 15 15 5 BLOCK CASE NO. 1 S : M: NUMBER T : A: OF S0 S1: E : T: FATIGUE P : L: CYCLES (t1): (t2) (t1): (t2) ----:--:------: -:----: 1.90 : 0.70: 1.30: 1: 1: 0.70: 1.30: 2: 1: 0.09 : 0.60: 1.40: 0.60: 1.40: 0.01: 3: 1: 0.54: 1.46: 0.54: 1.46: S : M: NUMBER s3 S T : A: OF E : T: FATIGUE P : L: CYCLES (t1): (t2) : (t1): (t2): ----:--:------:--:-----: 1.90 : 1: 1: 0.70: 1.30: 0.00: 0.00: 2: 1: 0.09 : 0.60: 1.40: 0.00: 0.00: 3: 1: 0.01: 0.54: 1.46: 0.00: 0.00: Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET DIOCK CACE NO

BLO	CK	CAS	E NO. 2					
s	:	M:	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	A:	OF	:		. :		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:-	:	<u>-</u> :-	:
		1:	9.57	:	0.60:	1.20:	-0.30:	0.30:
	2:	1:	1.14	:	0.40:	1.40:	-0.50:	0.50:
	3:	1:	0.57	:	0.30:	1.50:	-0.60:	0.60:
	4:	1:	0.11	:	0.10:	1.70:	-0.80:	0.80:
	5:	1:	0.02	:	-0.10:	1.90:	-1.00:	1.00:
	6:	1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:
	7:	1:	0.00	:	-0.50:	2.30:	-1.40:	1.40:
	8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
	9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
1	0:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
S	:	M:	NUMBER	:	S3	:	S	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :

1: 1:	.9.57 :	0.60:	1.20:	0.00:	0.00:
2: 1:	1.14 :	0.40:	1.40:	0.00:	0.00:
3: 1:	0.57 :	0.30:	1.50:	0.00:	0.00:
4: 1:	0.11 :	0.10:	1.70:	0.00:	0.00:
5: 1:	0.02 :	-0.10:	1.90:	0.00:	0.00:
6: 1:	0.01 :	-0.30:	2.10:	0.00:	0.00:
7: 1:	0.00 :	-0.50:	2.30:	0.00:	0.00:
8: 1:	0.00 :	-0.70:	2.50:	0.00:	0.00:
9: 1:	0.00:	-0.90:	2.70:	0.00:	0.00:
10: 1:	0.00 :	-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLOCK CA	SE NO. 3					
s : M:	NUMBER	:	so	:	S1	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:		:		:
P : L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:		- : -	:-	:-	:-	:
1: 1:	19.14	:	0.60:	1.20:	-0.30:	0.30:
2: 1:	2.29	:	0.40:	1.40:	-0.50:	0.50:
3: 1:	1.14	:	0.30:	1.50:	-0.60:	0.60:
4: 1:	0.23	:	0.10:	1.70:	-0.80:	0.80:
5: 1:	0.04	:	-0.10:	1.90:	-1.00:	1.00:
6: 1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:
7: 1:	0.00	:	-0.50:	2.30:	-1.40:	1.40:
8: 1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
9: 1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10: 1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
S : M:	NUMBER	:	s3	:	S	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:		:		:
P : L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
::		-:-	:-	:-	:-	:
1: 1:	19.14	:	0.60:	1.20:	0.00:	0.00:
2: 1:	2.29	:	0.40:	1.40:	0.00:	0.00:
3: 1:	1.14	:	0.30:	1.50:	0.00:	0.00:
4: 1:	0.23	:	0.10:	1.70:	0.00:	0.00:
5: 1:	0.04	:	-0.10:	1.90:	0.00:	0.00:
6: 1:	0.01	:	-0.30:	2.10:	0.00:	0.00:
7: 1:	0.00	:	-0.50:	2.30:	0.00:	0.00:
8: 1:	0.00	:	-0.70:	2.50:	0.00:	0.00:
9: 1:	0.00	:	-0.90:		0.00:	0.00:
10: 1:	0.00	:	-1.10:	2.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLOCK CAS	E NO. 4					
S : M:	NUMBER	:	S0	:	S1	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:		:		:
P : L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
::-		: -	:-	:	:-	:
1: 1:	38.29	:	0.60:	1.20:	-0.30:	0.30:
2: 1:	4.57	:	0.40:	1.40:	-0.50:	0.50:
3: 1:	2.29	:	0.30:	1.50:	-0.60:	0.60:
4: 1:	0.46	:	0.10:	1.70:	-0.80:	0.80:
5: 1:	0.08	:	-0.10:	1.90:	-1.00:	1.00:
6: 1:	0.02	:	-0.30:	2.10:	-1.20:	1.20:
7: 1:	0.01	:	-0.50:	2.30:	-1.40:	1.40:
8: 1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
9: 1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:

10:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
s:	М:	NUMBER	:	S3	:	S	:
T :	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		
-	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
-	-		-:-	:-	:-	:-	:
1:	1:	38.29	:	0.60:	1.20:	0.00:	0.00:
2:	1:	4.57	:	0.40:	1.40:	0.00:	0.00:
3:	1:	2.29	:	0.30:	1.50:	0.00:	0.00:
4:	1:	0.46	:	0.10:	1.70:	0.00:	0.00:
5:	1:	0.08	:	-0.10:	1.90:	0.00:	0.00:
6:	1:	0.02	:	-0.30:	2.10:	0.00:	0.00:
7:	1:	0.01	:	-0.50:	2.30:	0.00:	0.00:
8:	1:	0.00	:	-0.70:	2.50:	0.00:	0.00:
9:	1:	0.00	:	-0.90:	2.70:	0.00:	0.00:
10:	1:	0.00	:	-1.10:	2.90:	0.00+	0.00-

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	OCK	CAS	E NO. 5					
			NUMBER	:	S0	:	S1	•
\mathbf{T}	:	A:	OF	:		:		
E	:	T:	FATIGUE	:		:		-
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
							:-	
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
							0.42:	
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	Μ:	NUMBER	:	S 3	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
			CYCLES				(t1) :	
							:-	-
			0.28					
					0.81:			0.00:
		1:				1.12:		0.00:
					0.43:			0.00:
		1:			0.23:	1.24:	0.00:	0.00:
	6:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

c	m		
2	1	$\boldsymbol{\nu}$	

STI)								
S	:	M:	NUMBER	:	S0	:	:	S1	
T	:	A:	OF	:		:	:		:
Ε	:	T:	FATIGUE	:	(ksi)	:	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	:	(t1) :	(t2) :
	:	:-		-:-	:	:		:	:
	1:	1:	1.90	:	-0.70:	-1.30:	:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:		0.00:	0.00:
S	:	Μ:	NUMBER	:	S3	:		S	:
Т	:	A:	OF	:		:			:
E	:	T:	FATIGUE	:	(ksi)	:		(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :		(t1) :	(t2) :

```
-0.70:
                                                  0.00:
            1.90:
                              -1.30:
                                        0.00:
1: 1:
                   -0.60:
                                        0.00:
2: 1:
            0.09:
                             -1.40:
                                                  0.00:
                                                  0.00:
3: 1:
            0.01:
                    -0.54:
                            -1.46:
                                         0.00:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

					-		
STD							
s :	M:	NUMBER	:	S0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	:- 1:	9.57	: -	3.67:	7.33:	0.00:	0.00:
	1:	1.14		2.44:	8.55:	0.00:	
	1:	0.57		1.83:	9.17:		0.00:
4:	1:	0.11		0.61:	10.39:	0.00:	0.00:
5:		0.02			11.61:	0.00:	0.00:
6:		0.01		-1.83:	12.83:	0.00:	0.00:
7:	1:	0.00			14.05:	0.00:	0.00:
	1:	0.00			15.28:	0.00:	0.00:
9:		0.00		-5.50:	16.50:		0.00:
10:		0.00		-6.72:	17.72:	0.00:	0.00:
s :	M:	NUMBER	:	S 3	:	s	:
T:		OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	: - 1:	9.57	• : -	0.00:	0.00:	0.00:	0.00:
	1:	1.14			0.00:	0.00:	0.00:
3:		0.57			0.00:	0.00:	0.00:
	1:	0.11		0.00:	0.00:	0.00:	0.00:
	1:	0.02			0.00:		0.00:
	1:	0.01			0.00:	0.00:	0.00:
	1:	0.00		0.00:	0.00:	0.00:	0.00:
	1:	0.00		0.00:	0.00:	0.00:	0.00:
	1:	0.00		0.00:	0.00:	0.00:	0.00:
	1:	0.00		0.00:	0.00:	0.00:	0.00:
10.		0.00	•	0.00.	0.00.	0.00.	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STI)							
S	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-	·	- : -	:	:-	:	:
	1:	1:	19.14	:	3.67:	7.33:	0.00:	0.00:
	2:	1:	2.29	:	2.44:	8.55:	0.00:	0.00:
	3:	1:	1.14	:	1.83:	9.17:	0.00:	0.00:
	4:	1:	0.23	:	0.61:	10.39:	0.00:	0.00:
	5:	1:	0.04	:	-0.61:	11.61:	0.00:	0.00:
	6:	1:	0.01	:	-1.83:	12.83:	0.00:	0.00:
	7:	1:	0.00	:	-3.05:	14.05:	0.00:	0.00:
	8:	1:	0.00	:	-4.28:	15.28:	0.00:	0.00:
	9.	1 -	0.00	•	-5.50	16.50:	0.00:	0.00:

	1: M: A:	0.00 NUMBER OF	:	-6.72: s3	17.72: :	0.00: S	0.00:
	T:	FATIGUE	:	(ksi)	:	(ksi	
	L:		:	(t1) :	(t2) :	(t1) :	(t2) :
1:	:-	19.14	-	0.00-	0.00	•	:
			-	0.00:	0.00:	0.00:	0.00:
2:	1:	2.29	:	0.00:	0.00:	0.00:	0.00:
3:	1:	1.14	:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.23	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.04	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s :	M:	NUMBER	:	S 0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)		(ksi)	
		CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	1:		- : -	·:	•	0.00:	·:
						0.00:	
		2.29					
	1:			0.61:			
	1:					0.00:	
		0.08				0.00:	
	1:	0.02					
	1:	0.01				0.00:	
	1:	0.00				0.00:	
	1:					0.00:	
10:		0.00			17.72:	0.00:	0.00:
s:		NUMBER		S3	:	S	:
T :			:		:		:
E :		FATIGUE				(ksi)	:
	L:	CYCLES		(t1) :		(t1):	(t2) :
•	1:		-	•	•	0.00:	0.00:
	1:					0.00:	
3:	1:	2.29					
4:	1:			0.00:			
5:	1:	0.08					
6:	1:	0.02	:	0.00:	0.00:	0.00:	
7:	1:			0.00:			
8:	1:			0.00:			
9:	1:				0.00:		
10:	1:	0.00	:	0.00:	0.00:		0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S1

T	:	Α:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		: -	:	:	:	=
	1:	1:	0.28	:	4.60:	4.65:	0.00:	0.00:
	2:	1:	0.44	:	3.73:	4.88:	0.00:	0.00:
	3:	1:	0.22	:	2.85:	5.15:	0.00:	0.00:
	4:	1:	0.06	:	1.98:	5.43:	0.00:	0.00:
	5:	1:	0.00	:	1.06:	5.70:	0.00:	0.00:
	6:	1:	0.00	:	0.18:	5.98:	0.00:	0.00:
S	:	М:	NUMBER	:	s3	:	s	:
т	:	A:	OF	:		:		:
E		T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	-	L:	CYCLES				(t1):	
	:	:-		- : -	:	:	:	:
	1:	1:	0.28	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.44		0.00:	0.00:	0.00:	0.00:
		1:	0.22		0.00:	0.00:	0.00:	0.00:
		1:	0.06		0.00:	0.00:		
		1:	0.00		0.00:	0.00:		0.00:
		1:	0.00		0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final F	law Size	K ma	ax
	Step	a	c	a-tip	c-tip
	<i>a</i> =	0 054454	0.050403	2 (2500	0.046104
200	15 15	0.051451 0.052925	0.050403 0.050842	3.625080 3.636784	2.846104 2.885394
400	15 15				2.885394
600	15 15	0.054420	0.051317	3.648608 3.660599	2.961822
800 1000	15	0.055938	0.051827		2.999071
1200	15 15	0.057479 0.059044	0.052375 0.052961	3.672800 3.685251	3.035757
1400	15	0.059044	0.053585	3.697988	3.071943
1600	15	0.060634	0.054248	3.711043	3.107696
	15	0.062249	0.054248	3.724445	3.143084
1800	15	0.065561	0.055698	3.738218	3.143064
2000			0.056487	3.752385	3.178178
2200	15 15	0.067259 0.068987	0.056487	3.766966	3.247774
2400	15 15				
2600	15 15	0.070746 0.072538	0.058197 0.059122	3.781978 3.797435	3.282427 3.317086
2800	15 15				
3000	15 15	0.074364	0.060095	3.813352	3.351832 3.386746
3200	15	0.076225	0.061119	3.829739	
3400	15	0.078123	0.062195	3.846608	3.421914
3600	15	0.080060	0.063327	3.863969	3.457423
3800	15	0.082038	0.064515	3.881831	3.493362
4000	15	0.084057	0.065763	3.900203	3.529824
4200	15	0.086121	0.067075	3.919094	3.566907
4400	15	0.088231	0.068453	3.938514	3.604711
4600	15	0.090388	0.069901	3.958471	3.643345
4800	15	0.092597	0.071424	3.978971	3.682921
5000	15	0.094857	0.073026	4.000024	3.723557
5200	15	0.097173	0.074712	4.021637	3.765380
5400	15 ·	0.099546	0.076489	4.043816	3.808524
5600	15	0.101978	0.078362	4.066567	3.853130
5800	15	0.104474	0.080339	4.089895	3.899350
6000	15	0.107035	0.082429	4.113799	3.947346
6200	15	0.109664	0.084640	4.138276	3.997289

```
6400
              15
                        0.112364
                                    0.086983
                                                4.163313
                                                            4.049360
   6600
              15
                        0.115139
                                    0.089470 4.188891
                                                            4.103750
   6800
              15
                        0.117992
                                    0.092114
                                              4.214976
                                                            4.160659
   7000
              15
                        0.120925
                                    0.094930
                                                4.241516
                                                            4.220292
   7200
              15
                        0.123941
                                    0.097935
                                                4.268434
                                                            4.282852
Transition to 1-d solution, TC03:
a = 0.1250 t = 0.1250
at Cycle No.
                   2.29 of Load Step No. 3
Step description:
of Block No. 14 of Schedule No.
Crack Size: c = 0.990185E-01, a/c = 1.26240
 Schedl
          Block
                          Final Flaw Size
                                                      K max
                 Step
                                С
                                                      c-tip
   7400
                              0.103140 '
             15
                                                    4.780471
   7600
              15
                              0.110000
                                                    4.908498
   7800
             15
                              0.117751
                                                    5.067268
   8000
             15
                              0.126757
                                                    5.273991
   8200
             15
                              0.137697
                                                    5.565063
   8400
              15
                              0.152143
                                                    6.040450
   8600
              15
                              0.176124
                                                    7.222344
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 51.94 K \text{ ref} = 0.000 K \text{ cr} = 51.83
at the very beginning of Load Step No.
Step description:
of Block No. 5 of Schedule No.
Crack Size c = 0.222215
                FATIGUE CRACK GROWTH ANALYSIS
               -----Modified by FAI-----
              DATE: 25-MAR-99 TIME: 09:39:20
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 11, PSE-W1 SA226 MS, crack in cap WS112 (
MODEL: TC11-Corner crack in plate or bar (2D)
Plate Thickness, t =
" Width, W = 3.0000
Hole Diameter, D = 0.1600
Hole-Center-to-Edge Dist., B =
                                 0.3100
2ND AREA, AREATC11 = 0.7350
2ND M. INERTIA = 0.2580
2ND C.G. = 1.4520
FLAW SIZE:
c (init.) = 0.9900E-01
```

MATERIAL

MATL 1:

2014T6511 EXTRUSION T-L Material Properties: :Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc: : : : : : ;----;-----:----:----:----:----: : 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8: :Matl:----- Crack Growth Eqn Constants ----: : No.: C : n : p : q : DKo : Rcl :Alpha:Smax/: --:----:---:---:---: : 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00: MODEL: TC11 FATIGUE SCHEDULE BLOCK INPUT TABLE [Note: Stress = Input Value * Stress Factor] Stress Scaling Factors for Block Case: 1 Scale Factor for Stress S0: -1.0000 Scale Factor for Stress S3: -1.0000 Stress Scaling Factors for Block Case: 2 Scale Factor for Stress S0: 6.1100 0.0000 Scale Factor for Stress S3: Stress Scaling Factors for Block Case: 3 Scale Factor for Stress S0: 6.1100 Scale Factor for Stress S3: 0.0000 Stress Scaling Factors for Block Case: 4 Scale Factor for Stress S0: 0.0000 Scale Factor for Stress S3: Stress Scaling Factors for Block Case: 5 Scale Factor for Stress S0: Scale Factor for Stress S3: 0.0000 Total No. of Blocks in Schedule = Block Number and Case Correspondences Block Number Block Case No. From - To 1 1 1 2 3 3 5 5 3 6 6 7 7

1

8

9

10

11

12

13

14

8

9

10

11

12

13

14

15	- 15		5		
BLOCK CA	SE NO. 1				
S : M:	NUMBER :	so	:	S 3	:
T : A:	OF :		:		:
E : T:	FATIGUE :		:		:
P : L:	CYCLES :	(t1) :	(t2) :	(t1) :	(t2) :
:	:	:	:-	:-	:
1: 1:	1.90 :	0.70:	1.30:	0.70:	1.30:
2: 1:	0.09 :	0.60:	1.40:	0.60:	1.40:
3: 1:	0.01 :	0.54:	1.46:	0.54:	1.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK	CAS	E NO. 2					
s :	M:	NUMBER	:	so	:	s3	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	·:-	:
1:	1:	9.57	:	0.70:	1.30:	-0.30:	0.30:
2:	1:	1.14	:	0.50:	1.50:	-0.50:	0.50:
3:	1:	0.57	:	0.40:	1.60:	-0.60:	0.60:
4:	1:	0.11	:	0.20:	1.80:	-0.80:	0.80:
5:	1:	0.02	:	0.00:	2.00:	-1.00:	1.00:
6:	1:	0.01	:	-0.20:	2.20:	-1.20:	1.20:
7:	1:	0.00	:	-0.40:	2.40:	-1.40:	1.40:
8:	1:	0.00	:	-0.60:	2.60:	-1.60:	1.60:
9:	1:	0.00	:	-0.80:	2.80:	-1.80:	1.80:
10:	1:	0.00	:	-1.00:	3.00:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOC	K CA	SE NO. 3					
S	: M:	NUMBER	:	so	:	S 3	:
T	: A:	OF	:		:		:
E	: T:	FATIGUE	:		:		:
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::		-:-	:-	:-	:-	:
1	: 1:	19.14	:	0.70:	1.30:	-0.30:	0.30:
2	: 1:	2.29	:	0.50:	1.50:	-0.50:	0.50:
3	: 1:	1.14	:	0.40:	1.60:	-0.60:	0.60:
4	: 1:	0.23	:	0.20:	1.80:	-0.80:	0.80:
5	: 1:	0.04	:	0.00:	2.00:	-1.00:	1.00:
6	: 1:	0.01	:	-0.20:	2.20:	-1.20:	1.20:
7	: 1:	0.00	:	-0.40:	2.40:	-1.40:	1.40:
8	: 1:	0.00	:	-0.60:	2.60:	-1.60:	1.60:
9	: 1:	0.00	:	-0.80:	2.80:	-1.80:	1.80:
10	: 1:	0.00	:	-1.00:	3.00:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLO	CK	CAS	E NO. 4					
s	:	M:	NUMBER	:	S0	:	s3	:
T	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	2:	1: 1: 1:	38.29 4.57 2.29	:	0.70: 0.50: 0.40:	1.30: 1.50: 1.60:	-0.30: -0.50: -0.60:	0.30: 0.50: 0.60:

4:	1:	0.46 :	0.20:	1.80:	-0.80:	0.80:
5:	1:	0.08:	0.00:	2.00:	-1.00:	1.00:
6:	1:	0.02 :	-0.20:	2.20:	-1.20:	1.20:
7:	1:	0.01 :	-0.40:	2.40:	-1.40:	1.40:
8:	1:	0.00 :	-0.60:	2.60:	-1.60:	1.60:
9:	1:	0.00:	-0.80:	2.80:	-1.80:	1.80:
10:	1:	0.00 :	-1.00:	3.00:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLC	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	S 3	:
T	:	A:	OF ·	:		:		:
E	:	\mathbf{T} :	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	: -	:
	1:	1:	0.28	3 :	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	: :	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00) :	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00) :	0.04:	1.30:	0.04:	1.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S	:	M :	NUMBER	:	S0	:	S 3	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:-	:
:	l:	1:	1.90	:	-0.70:	-1.30:	-0.70:	-1.30:
:	2:	1:	0.09	:	-0.60:	-1.40:	-0.60:	-1.40:
	3:	1:	0.01	:	-0.54:	-1.46:	-0.54:	-1.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S: M: NUMBER : S0 : S3 :
T : A: OF : : : : :
E : T: FATIGUE : (ksi) : (ksi) :
P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : 1: 1: 9.57: 4.28: 7.94: 0.00: 0.00: 2: 1: 1.14: 3.06: 9.17: 0.00: 0.00: 3: 1: 0.57: 2.44: 9.78: 0.00: 0.00: 4: 1: 0.11: 1.22: 11.00: 0.00: 0.00: 0.00: 12.22: 0.00: -1.22: 13.44: 0.00: -2.44: 14.66: 0.00: 0.02 : 5: 1: 0.00: 6: 1: 0.01: 0.00: 0.00 : 7: 1: 0.00: 8: 1: 0.00: -3.67: 15.89: 0.00: 0.00: 9: 1: 0.00: -4.89: 17.11: 0.00: 10: 1: 0.00: -6.11: 18.33: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	so	:	s3	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi	.) :	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:	:	:
	1:	1:	19.14	:	4.28:	7.94:	0.00:	0.00:
	2:	1:	2.29	:	3.06:	9.17:	0.00:	0.00:
	3:	1:	1.14	:	2.44:	9.78:	0.00:	0.00:
	4:	1:	0.23	:	1.22:	11.00:	0.00:	0.00:
	5:	1:	0.04	:	0.00:	12.22:	0.00:	0.00:
	6:	1:	0.01	. :	-1.22:	13.44:	0.00:	0.00:
	7:	1:	0.00	:	-2.44:	14.66:	0.00:	0.00:
	8:	1:	0.00	:	-3.67:	15.89:	0.00:	0.00:
	9:	1:	0.00	:	-4.89:	17.11:	0.00:	0.00:
1	0:	1:	0.00	:	-6.11:	18.33:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 11, PSE-MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : **S**0 S3 : T : A: OF E : T: FATIGUE : (ksi) : (ksi)
P : L: CYCLES : (t1): (t2) : (t1): (t2) 38.29: 4.28: 7.94: 0.00: 4.57: 3.06: 9.17: 0.00: 2.29: 2.44: 9.78: 0.00: 0.46: 1.22: 11.00: 0.00: 1: 1: 0.00: 2: 1: 0.00: 3: 1: 0.00: 0.00: 4: 1: 0.00: 0.08: 5: 1: 0.00: 12.22: 0.00: 0.00: -1.22: 13.44: -2.44: 14.66: 6: 1: 0.02: 0.00: 0.00: 0.01 : 7: 1: 0.00: 0.00: 8: 1: 0.00 : -3.67: 15.89: 0.00: 0.00: 9: 1: 0.00: -4.89: 17.11: 0.00: 0.00: 10: 1: 0.00: -6.11: 18.33: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 11, PSE-MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

CONT.

SID								
S	:	M:	NUMBER	:	S0	:	s3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:		:	:-	:	:-	:
:	1:	1:	0.2	8 :	4.60:	4.65:	0.00:	0.00:
:	2:	1:	0.4	4:	3.73:	4.88:	0.00:	0.00:

3: 1:	0.22 :	2.85:	5.15:	0.00:	0.00:
4: 1:	0.06 :	1.98:	5.43:	0.00:	0.00:
5: 1:	0.00 :	1.06:	5.70:	0.00:	0.00:
6 • 1 •	0.00 :	0.18:	5.98:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
200	1 5	_	0.105084	4.702629
400	15		0.111781	4.820059
600	15		0.119282	4.964483
800	15		0.127893	5.150143
1000	15		0.138168	5.405927
1200	15		0.151306	5.805199
1400	15		0.171142	6.651284

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value:

K max = 52.37 K ref = 0.000 K cr = 51.83 at Cycle No. 0.00 of Load Step No. 7

Step description:

of Block No. 14 of Schedule No. Crack Size c = 0.224552

FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----

DATE: 25-MAR-99 TIME: 08:56:06

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

CORNER CRACK CASE 2, PSE-W1 SA226 MS, crack in cap WS112 (Ti

GEOMETRY

MODEL: CC02-Corner crack from hole in plate (2D)

Plate Thickness, t = 0.1250 Plate Width, W = 3.0000 Hole Diameter, D = 0.1600

Hole-Center-to-Edge Dist., B = 0.3100

Poisson s ratio = 0.30

FLAW SIZE:

a (init.) = 0.5000E-01c (init.) = 0.5000E-01 a/c (init.) = 1.000

MATERIAL

```
MATL 1:
       1
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : :
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S3:
                          0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress SO:
                          5.2000
Scale Factor for Stress S1:
Scale Factor for Stress S3:
                         0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                          5.2000
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                          3.9000
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S3:
                          0.0000
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
Block Number .
                          Block Case No.
From - To
   2
   3
      _
            3
                                 5
   4
            4
                                  1
   5
                                  3
   6
            6
                                  5
            7
```

	8	_	8			3		
	9	-	9			5		
	10	-	10			1		
	11	_	11			3		
	12	-	12			5		
	13	-	13			1		
	14	-	14			4		
	15	-	15			5		
			E NO. 1					
			NUMBER	:	S0	:	S1	:
			OF	:		:		:
Е	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES					(t2) :
	:-	:		•	•	:	•	:
			1.90					
	2:	1:	0.09	:	0.60:	1.40:	0.60:	1.40:
	3:	1:	0.01	:	0.54:	1.46:	0.54:	1.46:
S	:	M:	NUMBER	:	S3	:	S	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:	:-	:
	1:	1:	1.90	:	0.70:	1.30:	0.00:	0.00:
	2:	1:	0.09	:	0.60:	1.40:	0.00:	0.00:
	3:	1:	0.01	:	0.54:	1.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK	CAS	E NO. 2					
	M:	NUMBER	:	S0	:	S1	:
т:	A:	OF	:		:		:
E:	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		- : -	:-	:-	:-	:
1:	1:	9.57	:	0.70:	1.30:	-0.30:	0.30:
2:	1:	1.14	:	0.50:	1.50:	-0.50:	0.50:
	1:				1.60:		
	1:	0.11			1.80:		
	1:			0.00:			
	1:	0.01			2.20:		
	1:	0.00			2.40:		
	1:	0.00			2.60:		
	1:	0.00				-1.80:	
	1:	0.00	-		3.00:	-2.00:	2.00:
s :		NUMBER	:	S 3	:	S	:
\mathbf{r} :		OF	:		:		:
E :		FATIGUE			:		:
		CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	1:	9.57	-:-	0 30.	•	0.00:	0.00.
	1:	1.14			0.50:		
	1:	0.57			0.50:		
	1:	0.11			0.80:		
	1:				1.00:		
	1:				1.20:		
	1:	0.00			1.40:		
	1:			•	1.60:		
	1:				1.80:		
	1:				2.00:	0.00:	0.00:
		0.00	•	2.00.	2.00.	0.00.	0.00.

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK	CAS	E NO. 3					
s:	M:	NUMBER	:	S0	:	S1	:
т:	A:	OF	:		:		
E :	T:	FATIGUE	:				
		CYCLES		(t1) :	(t2) :	(t1) :	(t2) :
:	:-		- : -	:-	:	:	:
1:	1:	19.14	:	0.70:	1.30:	-0.30:	0.30:
2:		2.29			1.50:		0.50:
3:		1.14			1.60:	-0.60:	0.60:
4:	1:	0.23	:	0.20:	1.80:		0.80:
5:	1:			0.00:			1.00:
6:	1:	0.01			2.20:		1.20:
7:	1:	0.00	:	-0.40:	2.40:	-1.40:	
8:	1:	0.00	:	-0.60:			
9:	1:	0.00	:	-0.80:	2.80:	-1.80:	
10:	1:	0.00	:	-1.00:	3.00:	-2.00:	2.00:
s:	M:	NUMBER		s3		S	
т:		OF	:		:	J	:
		FATIGUE			•		
		CYCLES		(±1) ·	(+2)	(t1) :	(+2)
			· · _			\C1/ .	(62)
•	1:		:	•	•	0.00:	0.00:
2:	1:	2.29				0.00:	
3:	1:	1.14	:			0.00:	
4:	1:	0.23	:			0.00:	
5:	1:	0.04	:			0.00:	
6:	1:	0.01				0.00:	
7:	1:	0.00	:	-1.40:	1.40:	0.00:	0.00:
8:	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
9:	1:	0.00	:		1.80:		
10:	1:	0.00	:		2.00:		0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

E : T:		s so (t1):	:	S1	:
3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1: 9: 1: 10: 1: S: M: T: A: E: T:	4.57 : 2.29 : 0.46 : 0.08 : 0.02 : 0.01 : 0.00 : 0.	0.40: 0.20: 0.00: -0.20: -0.40: -0.60: -0.80: -1.00:	1.50: 1.60: 1.80: 2.00: 2.20: 2.40: 2.60: 2.80: 3.00:	-0.50: -0.60: -0.80: -1.00: -1.20: -1.40: -1.60: -1.80: -2.00:	0.50: 0.60: 0.80: 1.00: 1.20: 1.40: 1.60: 2.00: :
P : L:	CYCLES :	(t1) :	(t2) :	(t1) : :-	(t2) :
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1: 9: 1: 10: 1:	38.29 : 4.57 : 2.29 : 0.46 : 0.08 : 0.02 : 0.01 : 0.00 : 0.00 :	-0.50: -0.60: -0.80: -1.00: -1.20: -1.40: -1.60: -1.80:	0.30: 0.50: 0.60: 0.80: 1.00: 1.40: 1.60: 1.80: 2.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLC	BLOCK CASE NO. 5								
S	:	M:	NUMBER	:	so	:	S1	:	
T	:	A:	OF	:		:		:	
E	:	T:	FATIGUE	:		:		:	
			CYCLES						
	-	_	0.20						
			0.28						
			0.44						
			0.22						
			0.06						
	5:	1:	0.00						
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:	
S	:	M:	NUMBER	:	S 3	:	S	:	
${f T}$:	A:	OF	:		:		:	
E	:	T:	FATIGUE	:		:		:	
			CYCLES						
	-		0.28	-	-	-	0 00:		
			0.44						
		1:					0.00:		
							0.00:		
		1:			0.23:				
		1:					0.00:		

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

_____ STD 1: 1: 1.90: -0.70: -1.30: 0.00: 0.00: 2: 1: 0.09: -0.60: -1.40: 0.00: 0.00: 3: 1: 0.01: -0.54: -1.46: 0.00: 0.00: S: M: NUMBER: S3 : S : T: A: OF : : ---:--:--:---:---:----: 0.01 : -0.54: -1.46: 0.00: 0.00: 3: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

______ STD S : M: NUMBER : S0 : T : A: OF : E : T: FATIGUE : (ksi) : (ksi)

S1

P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
2: 3: 4:	1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01	: : :	3.64: 2.60: 2.08: 1.04: 0.00: -1.04:	6.76: 7.80: 8.32: 9.36: 10.40: 11.44:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
8: 9: 10: S : T : E :	1: 1: 1: M: A: T: L:	0.00 0.00 0.00 0.00 NUMBER OF FATIGUE CYCLES	:	-2.08: -3.12: -4.16: -5.20: S3 (ksi	12.48: 13.52: 14.56: 15.60:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00 0.00	: : : : : : : : : : : : : : : : : : : :	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	М:	NUMBER	:	S0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
•	:-		-:-	:	:	:	:
	1:	19.14		3.64:	6.76:	0.00:	0.00:
	1:	2.29	:	2.60:	7.80:	0.00:	0.00:
3:	1:	1.14			8.32:		0.00:
4:	1:	0.23	:	1.04:	9.36:	0.00:	0.00:
5:	1:	0.04	:	0.00:	10.40:	0.00:	0.00:
6:	1:	0.01	:	-1.04:	11.44:	0.00:	0.00:
7:	1:	0.00	:	-2.08:	12.48:	0.00:	
8:	1:	0.00	:	-3.12:	13.52:	0.00:	
9:	1:	0.00	:	-4.16:	14.56:		
10:	1:	0.00	:		15.60:		
s:	M:	NUMBER	:	S3	:	S	•
T:	A:	OF	:		•	-	
E :	T:	FATIGUE	:	(ksi)		(ksi)	:
P :	L:	CYCLES	:			(t1):	
:	:-		-:-	:		:	
1:	1:	19.14	:	0.00:	0.00:	0.00:	0.00:
2:	1:	2.29	:	0.00:	0.00:	0.00:	
3:	1:	1.14	:	0.00:	0.00:	0.00:	
4:	1:	0.23	:	0.00:	0.00:		
5:	1:	0.04	:	0.00:	0.00:		0.00:
6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.00	:	0.00:	0.00:		
8:	1:	0.00	:	0.00:	0.00:		0.00:
9:	1:	0.00	:	0.00:	0.00:		0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STD								
s	:	M:	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		:-	:	:·	:	:
1	L:	1:	38.29	:	3.64:	6.76:	0.00:	0.00:
2	2:	1:	4.57	:	2.60:	7.80:	0.00:	0.00:
3	3:	1:	2.29	:	2.08:	8.32:	0.00:	0.00:
4	4:	1:	0.46	:	1.04:	9.36:	0.00:	0.00:
	5 :	1:	0.08	:	0.00:			0.00:
	5:	1:	0.02	:	-1.04:	11.44:	0.00:	0.00:
-	7:	1:	0.01	:	-2.08:	12.48:	0.00:	0.00:
		1:	0.00	:	-3.12:		0.00:	0.00:
		1:			-4.16:			0.00:
		1:			-5.20:			
		M:	NUMBER	:	S3	:	S	:
		A:	OF	:		:		:
Ē			FATIGUE		(ksi)		(ksi)	:
			CYCLES		(t1):		(t1):	
	_ • .	:		- <u>:</u> -	:		:	:
	1:	1:	38.29	:	0.00:	0.00:	0.00:	0.00:
		1:			0.00:			
		1:	2.29					0.00:
		1:			0.00:	0.00:	0.00:	0.00:
		1:	0.08	:	0.00:	0.00:	0.00:	0.00:
		1:	0.02					0.00:
	7:	1:			0.00:			
	8:	1:					0.00:	0.00:
		1:	0.00					
		1:	0.00			0.00:	0.00:	0.00:
	_							

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

2: 1:	0.44 :	0.00:	0.00:	0.00:	0.00:
3: 1:	0.22 :	0.00:	0.00:	0.00:	0.00:
4: 1:	0.06 :	0.00:	0.00:	0.00:	0.00:
5: 1:	0.00 :	0.00:	0.00:	0.00:	0.00:
6: 1:	0.00 :	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

ANALYSIS RESULTS:

Schd1	Block	Final	Flaw Size	K	max
	Step	a	С	a-tip	c-tip
200	15	0.050740	0.050157	3.067881	2.397059
400	1 5 ,	0.051484	0.050321	3.072147	2.414917
600	15	0.052234	0.050492	3.076380	2.432598
800	15	0.052989	0.050670	3.080589	2.450104
1000	15	0.053749	0.050866	3.084956	2.467313
1200	15	0.054514	0.051077	3.089448	2.484268
1400	15	0.055284	0.051300	3.094033	2.501009
1600	15	0.056060	0.051536	3.098702	2.517555
1800	15	0.056842	0.051784	3.103455	2.533921
2000	15	0.057630	0.052043	3.108289	2.550119
2200	15	0.058423	0.052313	3.113209	2.566160
2400	15	0.059223	0.052595	3.118214	2.582055
2600	15	0.060029	0.052888	3.123309	2.597814
2800	1 5	0.060841	0.053193	3.128494	2.613447
3000	15	0.061660	0.053509	3.133774	2.628963
3200	15	0.062485	0.053836	3.139150	2.644373
3400	15	0.063317	0.054175	3.144624	2.659685
3600	15	0.064156	0.054526	3.150199	2.674909
3800	15	0.065003	0.054889	3.155877	2.690056
4000	15	0.065856	0.055263	3.161660	2.705133
4200	15	0.066717	0.055649	3.167550	2.720151
4400	15	0.067586	0.056048	3.173549	2.735120
4600	15	0.068463	0.056459	3.179658	2.750048
4800	15	0.069348	0.056882	3.185880	2.764946
5000	15	0.070241	0.057318	3.192214	2.779824
5200	15	0.071142	0.057767	3.198664	2.794690
5400	15	0.072053	0.058229	3.205229	2.809556
5600	15	0.072972	0.058704	3.211912	2.824430
5800	15	0.073900	0.059192	3.218713	2.839323
6000	15	0.074838	0.059695	3.225633	2.854245
6200	15	0.075785	0.060211	3.232673	2.869207
6400	15	0.076742	0.060742	3.239835	2.884217
6600	15 15	0.077710	0.061287	3.247119	2.899288
6800	15	0.078687	0.061847	3.254526	2.914430
7000	15	0.079675	0.062422	3.262056	2.929652
7200	15	0.080674	0.063012	3.269712	2.944968
7400	15	0.081684	0.063619	3.277493	2.960386
7600	15	0.082706	0.064242	3.285400	2.975919
7800	15	0.083739	0.064881	3.293434	2.991579
8000	15	0.084784	0.065538	3.301596	3.007377
8200	15	0.085841	0.066212	3.309887	3.023325
8400	15 15	0.086911	0.066904	3.318307	3.039436
8600	15	0.087993	0.067614	3.326857	3.055722
8800	15 15	0.089089	0.068344	3.335539	3.072197
9000	15	0.090198	0.069094	3.344353	3.088873
9200	15 15	0.091321	0.069863	3.353299	3.105765
9400	15	0.092458	0.070654	3.362379	3.122887

9600	15	0.093609	0.071466	3.371594	3.140252
9800	15	0.094776	0.072300	3.380945	3.157877
10000	15	0.095957	0.073157	3.390431	3.175777
MODEL: CC02	:				

ANALYSIS RESULTS (contd.)

Schdl	Block	Final F	law Size	K ma	K max		
	Step	a	С	a-tip	c-tip		
10200	15	0.097154	0.074038	3.400055	3.193967		
10400	15	0.098367	0.074944	3.409817	3.212464		
10600	15	0.099596	0.075875	3.419717	3.231286		
10800	15	0.100842	0.076833	3.429757	3.250449		
11000	15	0.102105	0.077819	3.439936	3.269973		
11200	15	0.103385	0.078833	3.450257	3.289876		
11400	1 5	0.104683	0.079877	3.460717	3.310177		
11600	15	0.106000	0.080952	3.471318	3.330898		
11800	15	0.107335	0.082060	3.482060	3.352058		
12000	15	0.108689	0.083201	3.492942	3.373680		
12200	15	0.110064	0.084377	3.503962	3.395786		
12400	15	0.111458	0.085591	3.515120	3.418399		
12600	15	0.112873	0.086843	3.526413	3.441542		
12800	15	0.114308	0.088135	3.537838	3.465241		
13000	15	0.115766	0.089469	3.549393	3.489519		
13200	15	0.117245	0.090848	3.561073	3.514403		
13400	15	0.118747	0.092274	3.572871	3.539918		
13600	15	0.120271	0.093748	3.584780	3,566092		
13800	15	0.121819	0.095274	3.596792	3.592949		
14000	15	0.123391	0.096853	3.608897	3.620517		
14200	15	0.124988	0.098490	3.621081	3.648821		

Transition to 1-d solution, TC03:

a = 0.1250 t = 0.1250 at Cycle No. 19.14 of Load Step No. 1

Step description:

of Block No. 11 of Schedule No. 14202 Crack Size: c = 0.985029E-01, a/c = 1.26900

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
14400	15		0.101755	4.032176
14600	15		0.105211	4.084816
14800	15		0.108873	4.143076
15000	15		0.112774	4.208174
15200	15		0.116958	4.281754
15400	15		0.121483	4.366112
15600	15		0.126427	4.464584
15800	15		0.131901	4.582271
16000	15		0.138076	4.727523
16200	15		0.145228	4.915364
16400	15		0.153867	5.176949
16600	15		0.165140	5.594676
16800	15		0.183064	6.550162

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: K max = 53.09 K ref = 0.000 K cr = 51.83

at the very beginning of Load Step No. 10

Step description:
of Block No. 5 of Schedule No. 16919
Crack Size c = 0.223338

```
FATIGUE CRACK GROWTH ANALYSIS
             -----Modified by FAI-----
            DATE: 25-MAR-99 TIME: 09:35:56
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 11, PSE-W1 SA226 MS, crack in cap WS112 (
GEOMETRY
MODEL: TC11-Corner crack in plate or bar (2D)
Plate Thickness, t =
                   0.1250
" Width, W = Hole Diameter, D =
                   3.0000
                   0.1600
Hole-Center-to-Edge Dist., B =
                            0.3100
2ND AREA, AREATC11 = 0.7350
2ND M. INERTIA = 0.2580
2ND C.G. = 1.4520
FLAW SIZE:
c (init.) = 0.9849E-01
MATERIAL
MATL 1:
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8: :
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           :----:----:----:----:
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC11
FATIGUE SCHEDULE BLOCK INPUT TABLE
-----
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                        -1.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                         5.2000
Scale Factor for Stress S3:
```

```
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                        0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                         5.2000
Scale Factor for Stress S3:
                         0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                         3.9000
Scale Factor for Stress S3:
                        0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From - To
   1
                                5
   3
            3
   4
            4
                                1
   5
   6
   8
            8
   9
            9
           10
  10
  11
           11
  12
           12
  13
           13
                                1
  14
           14
  15
           15
BLOCK CASE NO. 1
 S : M: NUMBER
                        S0
                                         S3
 T : A:
        OF
                 :
 E : T: FATIGUE :
P : L: CYCLES
                :
                    (t1): (t2): (t1): (t2)
1: 1: 1.90: 0.70: 1.30: 0.70: 1.30:
            0.09:
                            1.40:
                   0.60:
                                              1.40:
                                      0.60:
  2: 1:
  3: 1:
             0.01 :
                      0.54:
                              1.46:
                                      0.54:
                                              1.46:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
 S : M: NUMBER
                        S0
                                         S3
 T : A: OF
                 :
 E : T: FATIGUE :
 P : L: CYCLES
                     (t1): (t2): (t1): (t2)
                :
1: 1: 9.57:
                   0.70: 1.30: -0.30: 0.30:
                            1.50:
1.60:
             1.14:
  2: 1:
                      0.50:
                                     -0.50:
                                              0.50:
                    0.40:
  3: 1:
             0.57 :
                                     -0.60:
                                              0.60:
                     0.20:
                             1.80: -0.80:
   4: 1:
            0.11 :
                                              0.80:
             0.02 :
                     0.00:
                             2.00: -1.00:
                                              1.00:
  5: 1:
   6: 1:
             0.01:
                     -0.20:
                              2.20:
                                     -1.20:
                                               1.20:
                             2.40:
  7: 1:
             0.00 :
                     -0.40:
                                     -1.40:
                                              1.40:
  8: 1:
             0.00:
                     -0.60: 2.60: -1.60:
                                              1.60:
                     -0.80: 2.80:
-1.00: 3.00:
             0.00:
                                     -1.80:
                                              1.80:
  9: 1:
  10: 1:
             0.00:
                                     -2.00:
                                               2.00:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCE	CA	SE NO. 3					
S :	M:	NUMBER	:	S0	:	S3	:
Т :	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:		-:	:-	:-	:-	:
1:	1:	19.14	:	0.70:	1.30:	-0.30:	0.30:
2:	1:	2.29	:	0.50:	1.50:	-0.50:	0.50:
3:	1:	1.14	:	0.40:	1.60:	-0.60:	0.60:
4 :	1:	0.23	:	0.20:	1.80:	-0.80:	0.80:
5:	1:	0.04	:	0.00:	2.00:	-1.00:	1.00:
6:	1:	0.01	:	-0.20:	2.20:	-1.20:	1.20:
7:	1:	0.00	:	-0.40:	2.40:	-1.40:	1.40:
8:	1:	0.00	:	-0.60:	2.60:	-1.60:	1.60:
9:	1:	0.00	:	-0.80:	2.80:	-1.80:	1.80:
10:	1:	0.00	:	-1.00:	3.00:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLOCK	CASI	E NO. 4					
s:	Μ:	NUMBER	:	S 0	:	s3	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES	:	(t1) _. :	(t2) :	(t1) :	
:-	-	20.00	-:-	:-	:	:-	:
	1:				1.30:	-0.30:	0.30:
2:	1:	4.57	:	0.50:	1.50:	-0.50:	0.50:
3:	1:	2.29	:	0.40:	1.60:	-0.60:	0.60:
4:	1:	0.46	:	0.20:	1.80:	-0.80:	0.80:
5:	1:	0.08	:	0.00:	2.00:	-1.00:	1.00:
6:	1:	0.02	:	-0.20:	2.20:	-1.20:	1.20:
7:	1:	0.01	:	-0.40:	2.40:	-1.40:	1.40:
8:	1:	0.00	:	-0.60:	2.60:	-1.60:	1.60:
9:	1:	0.00	:	-0.80:	2.80:	-1.80:	1.80:
10:	1:	0.00	:	-1.00:	3.00:	-2.00:	2.00

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

BLOCI	K CA	SE NO. 5					
S	: M:	NUMBER	:	so	:	s3	:
T	: A:	OF	:		:		:
E :	т:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::		-:-	:-	:-	:-	:
1:	: 1:	0.28	:	1.00:	1.01:	1.00:	1.01:
2:	: 1:	0.44	:	0.81:	1.06:	0.81:	1.06:
3 :	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
5 :	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
6 :	1:	0.00	:	0.04:	1.30:	0.04:	1.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	Μ:	NUMBER	:	S0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2)	:	(t1) : (t2)	:
	-:-	:-		-:-	:	:	:	:
	1:	1:	1.90	:	-0.70: -1	.30:	-0.70: -1	.30:
:	2:	1:	0.09	:	-0.60: -1	.40:	-0.60: -1	.40:
	3:	1:	0.01	:	-0.54: -1	.46:	-0.54: -1	.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M:	NUMBER	:	s0	:	s3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:	:	:
1:	1:	9.57	:	3.64:	6.76:	0.00:	0.00:
2:	1:	1.14	:	2.60:	7.80:	0.00:	0.00:
3:	1:	0.57	:	2.08:	8.32:	0.00:	0.00:
4:	1:	0.11	:	1.04:	9.36:	0.00:	0.00:
5:	1:	0.02	:	0.00:	10.40:	0.00:	0.00:
6:	1:	0.01	:	-1.04:	11.44:	0.00:	0.00:
7:	1:	0.00	:	-2.08:	12.48:	0.00:	0.00:
8:	1:	0.00	:	-3.12:	13.52:	0.00:	0.00:
9:	1:	0.00	:	-4.16:	14.56:	0.00:	0.00:
10:	1:	0.00	:	-5.20:	15.60:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
ST)							
S	:	M:	NUMBER	:	S 0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	:-	:	:
	1:	1:	19.14	:	3.64:	6.76:	0.00:	0.00:
	2:	1:	2.29	:	2.60:	7.80:	0.00:	0.00:
	3:	1:	1.14	:	2.08:	8.32:	0.00:	0.00:
	4:	1:	0.23	:	1.04:	9.36:	0.00:	0.00:
	5:	1:	0.04	:	0.00:	10.40:	0.00:	0.00:
	6:	1:	0.01	:	-1.04:	11.44:	0.00:	0.00:
	7:	1:	0.00	:	-2.08:	12.48:	0.00:	0.00:
	8:	1:	0.00	:	-3.12:	13.52:	0.00:	0.00:
	9:	1:	0.00	:	-4.16:	14.56:	0.00:	0.00:
	10:	1:	0.00	:	-5.20:	15.60:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S0 **S**3 : 1: 1: 38.29: 3.64: 6.76: 0.00: 0.00: 2: 1: 4.57: 2.60: 7.80: 0.00: 0.00: 3: 1: 2.29: 2.08: 8.32: 0.00: 0.00: 4: 1: 0.46: 1.04: 9.36: 0.00: 0.00: 5: 1: 0.08: 0.00: 10.40: 0.00: 0.00: 6: 1.00: 0.08: 0.00: 10.40: 0.00: 0.00: 0.00: 6: 1.00: 0.08: 0.00: 10.40: 0.00: 0.00: 0.00: 0.00: 6: 1.00: 0.08: 0.00: 10.40: 0.00 0.08:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	so	:	S 3	:
${f T}$:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi)) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	: -	:-		-:-	:	:-	:	:
1	:	1:	0.28	:	3.90:	3.94:	0.00:	0.00:
2	:	1:	0.44	:	3.16:	4.13:	0.00:	0.00:
3	:	1:	0.22	:	2.42:	4.37:	0.00:	0.00:
4	:	1:	0.06	:	1.68:	4.60:	0.00:	0.00:
5	:	1:	0.00	:	0.90:	4.84:	0.00:	0.00:
6	:	1:	0.00	:	0.16:	5.07:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-MODEL: TC11

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
200	15		0.101455	3.936477
400	15		0.104558	3.979542
600	15		0.107814	4.026573
800	15		0.111246	4.078298
1000	15		0.114880	4.135656
1200	15		0.118748	4.199888
1400	15		0.122895	4.272683
1600	15		0.127376	4.356411
1800	15		0.132272	4.454548
2000	15		0.137694	4.572464
2200	15		0.143815	4.719071
2400	15		0.150924	4.910736
2600	15		0.159560	5.182484
2800	15		0.170999	5.632653
3000	15		0.190392	6.813172

```
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 52.94 K \text{ ref} = 0.000 K \text{ cr} = 51.83
at the very beginning of Load Step No.
Step description:
of Block No. 5 of Schedule No. Crack Size c = 0.224746
              FATIGUE CRACK GROWTH ANALYSIS
             -----Modified by FAI-----
             DATE: 25-MAR-99 TIME: 09:05:28
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W1 SA226 MS, crack in cap WS125 (Ti
GEOMETRY
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                   0.1250
Plate Width, W = 3.0000
Hole Diameter, D = 0.1600
Hole-Center-to-Edge Dist., B =
                             0.3100
Poisson s ratio
              = 0.30
FLAW SIZE:
a (init.) = 0.5000E-01
c (init.) = 0.5000E-01
a/c (init.) = 1.000
MATERIAL
_____
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: K1e: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : :
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
_____
[Note: Stress = Input Value * Stress Factor]
```

```
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                            -1.0000
Scale Factor for Stress S1:
                            0.0000
Scale Factor for Stress S3:
                          -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                            4.3000
Scale Factor for Stress S1:
Scale Factor for Stress S3:
                            0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S1:
Scale Factor for Stress S3:
                            0.0000
Stress Scaling Factors for Block Case:
Scale Factor for Stress S0:
                            4.3000
Scale Factor for Stress S1:
                            0.0000
Scale Factor for Stress S3:
                            0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                            3.2000
Scale Factor for Stress S1:
                            0.0000
Scale Factor for Stress S3:
                            0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                            Block Case No.
From -
   1
                                     1
                                     2
   3
             3
                                     5
                                     1
   5
             5
                                     3
   7
             7
                                     1
   8
             8
                                     3
                                     5
  10
            10
                                    1
  11
            11
                                     3
  12
            12
                                     5
  13
            13
  14
            14
                                     4
  15
            15
                                     5
BLOCK CASE NO. 1
S : M: NUMBER
                           S0
T : A:
          OF
E : T: FATIGUE
Ρ
  : L: CYCLES
                 :
                       (t1): (t2)
                                    :
                                          (t1): (t2)
1.90 : 0.70:
  1: 1:
                                 1.30:
                                           0.70:
                                                    1.30:
  2: 1:
              0.09:
                        0.60:
                                  1.40:
                                           0.60:
                                                    1.40:
  3: 1:
              0.01:
                        0.54:
                                  1.46:
                                           0.54:
                                                    1.46:
S : M: NUMBER
                         S3
                                     •
                                             S
T : A:
         OF
Ε
  : T: FATIGUE
P : L: CYCLES
                  :
                        (t1): (t2)
                                          (t1): (t2)
----:--:-------
              1.90 :
  1: 1:
                        0.70:
                                           0.00:
                                  1.30:
                                                    0.00:
  2: 1:
              0.09:
                        0.60:
                                  1.40:
                                           0.00:
                                                    0.00:
```

3: 1: 0.01: 0.54: 1.46: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK	CAS	SE NO. 2					
	M:	NUMBER	:	S0	:	S1	
		OF	•	20	:	21	
		FATIGUE	:		:		
		CYCLES	:	(t1) :	(±2) ·	(t1) :	(±2) :
:			•	:-	:-		
1:	1:	9.57	:	0.70:	1.30:	-0.30:	0.30:
2:	1:	1.14	:	0.50:	1.50:	-0.50:	0.50:
3:	1:	0.57	:	0.40:	1.60:	-0.60:	0.60:
4:	1:	0.11	:	0.20:	1.80:	-0.80:	0.80:
5:	1:	0.02	:	0.00:	2.00:	-1.00:	1.00:
6:	1:	0.01	:	-0.20:	2.20:	-1.20:	1.20:
7:	1:	0.00	:	-0.40:	2.40:	-1.40:	1.40:
8:	1:	0.00	:	-0.60:	2.60:	-1.60:	1.60:
9:	1:	0.00	:	-0.80:	2.80:	-1.80:	1.80:
10:	1:	0.00	:	-1.00:	3.00:	-2.00:	2.00:
s :	M:	NUMBER	:	S 3	:	S	:
T:	A:	OF	:		:		:
		FATIGUE			:		:
		CYCLES		(t1) :			
-	:		•	:-	•	·:-	-
	1:	9.57				0.00:	
	1:	1.14			0.50:		
	1:	0.57				0.00:	
	1:	0.11			0.80:		
	1:	0.02			1.00:		
	1:	0.01			1.20:		
	1:	0.00			1.40:		
8:		0.00			1.60:		
	1:	0.00				0.00:	
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOC	K CAS	SE NO. 3					
S	: M:	NUMBER	:	S 0	:	S1	:
\mathbf{T}	: A:	OF	:		:		:
E	: T:	FATIGUE	:		:		:
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
<u>_</u>	: 1:	19.14	-:-	0.70:	1.30:	-0.30:	0.30:
	: 1:	2.29		0.50:	1.50:	-0.50:	0.50:
	: 1:	1.14		0.40:	1.60:	-0.60:	0.60:
	: 1:	0.23		0.20:	1.80:	-0.80:	0.80:
	: 1:	0.04		0.00:	2.00:	-1.00:	
	: 1:	0.01		-0.20:	2.20:	-1.20:	1.20:
7	: 1:	0.00	:	-0.40:	2.40:	-1.40:	1.40:
8	: 1:	0.00	:	-0.60:	2.60:	-1.60:	1.60:
9	: 1:	0.00	:	-0.80:	2.80:	-1.80:	1.80:
10	: 1:	0.00	:	-1.00:	3.00:	-2.00:	2.00:
S	: M:	NUMBER	:	. S3	:	s	:
T	: A:	OF	:		:		:
E	: T:	FATIGUE	:		:		:
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1	::- : 1:	19.14	- ; - :	-0.30:	0.30:	0.00:	0.00:
	: 1:	2.29		-0.50:	0.50:	0.00:	0.00:
	: 1:	1.14			0.60:	0.00:	0.00:
	: 1:	0.23		-0.80:	0.80:	0.00:	0.00:

5:	1:	0.04 :	: -	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.01 :	: -	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.00 :	: -	-1.40:	1.40:	0.00:	0.00:
8:	1:	0.00 :	: -	-1.60:	1.60:	0.00:	0.00:
9:	1:	0.00:	: -	-1.80:	1.80:	0.00:	0.00:
10:	1:	0.00 :		-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	CK	CAS	E NO. 4					
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
	1 .	1:	38.29	•	0.70:	1.30:	-0.30:	0.30:
		1:	4.57		0.50:	1.50:	-0.50:	0.50:
		1:	2.29		0.40:	1.60:	-0.60:	0.60:
		1:	0.46		0.20:	1.80:	-0.80:	0.80:
		1:	0.08		0.00:	2.00:	-1.00:	1.00:
	6:	1:	0.02		-0.20:	2.20:	-1.20:	1.20:
	7:	1:	0.01	:	-0.40:	2.40:	-1.40:	1.40:
	8:	1:	0.00	:	-0.60:	2.60:	-1.60:	1.60:
	9:	1:	0.00	:	-0.80:	2.80:	-1.80:	1.80:
1	0:	1:	0.00	:	-1.00:	3.00:	-2.00:	2.00:
S	:	M:	NUMBER	:	s3	:	S	:
T	:	A:	OF	:		:		:
\mathbf{E}		T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:- 1.	:- 1:	38.29	-:-	-0.30:	0.30:	0.00:	0.00:
		1:	4.57		-0.50:	0.50:	0.00:	0.00:
		1:	2.29		-0.60:	0.60:	0.00:	0.00:
	4:	1:	0.46		-0.80:	0.80:	0.00:	0.00:
	5:		0.08		-1.00:	1.00:	0.00:	0.00:
	6:		0.02		-1.20:	1.20:	0.00:	0.00:
		1:	0.01		-1.40:	1.40:	0.00:	0.00:
		1:	0.00		-1.60:	1.60:	0.00:	0.00:
	9:	1:	0.00		-1.80:	1.80:	0.00:	0.00:
	J:		0.00	•	1.00.	1.00.	0.00:	0.00.
1	9: 0:		0.00		-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 5 S : M: NUMBER S0 T : A: OF : E : T: FATIGUE P : L: CYCLES (t1) : (t2) : (t1): (t2) ----:~~;-----::----:----:----:----: 0.28 : 1: 1: 1.00: 1.01: 1.00: 1.01: 0.44 : 2: 1: 0.81: 1.06: 0.81: 1.06: 3: 1: 0.22: 0.62: 1.12: 0.62: 1.12: 4: 1: 0.06 : 0.43: 1.18: 0.42: 1.18: 0.00: 5: 1: 0.23: 1.24: 0.23: 1.24: 0.04: 6: 1: 0.00: 1.30: 0.04: 1.30: S : M: NUMBER S3 S T : A: OF E : T: FATIGUE P : L: CYCLES (t1): (t2) (t1): (t2) ----:--:------:--:---:--0.28 : 1: 1: 1.00: 1.00: 0.00: 0.00: 0.44 : 2: 1: 0.81: 1.06: 0.00: 0.00: 3: 1: 0.62: 0.22 : 1.12: 0.00: 0.00:

```
      4: 1:
      0.06:
      0.43:
      1.18:
      0.00:
      0.00:

      5: 1:
      0.00:
      0.23:
      1.24:
      0.00:
      0.00:

      6: 1:
      0.00:
      0.04:
      1.30:
      0.00:
      0.00:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

1: 1: 9.57: 3.01: 5.59: 0.00: 0.00: 2: 1: 1.14: 2.15: 6.45: 0.00: 0.00: 3: 1: 0.57: 1.72: 6.88: 0.00: 0.00: 4.1: 0.57: 7.74: 0.00: 0
 4: 1:
 0.11:
 0.86:
 7.74:
 0.00:
 0.00:

 5: 1:
 0.02:
 0.00:
 8.60:
 0.00:
 0.00:

 6: 1:
 0.01:
 -0.86:
 9.46:
 0.00:
 0.00:

 7: 1:
 0.00:
 -1.72:
 10.32:
 0.00:
 0.00:

 8: 1:
 0.00:
 -2.58:
 11.18:
 0.00:
 0.00:

 9: 1:
 0.00:
 -3.44:
 12.04:
 0.00:
 0.00:

 10: 1:
 0.00:
 -4.30:
 12.90:
 0.00:
 0.00:
 S : M: NUMBER : **S**3 : S ---:--:--:--1: 1: 9.57 : 2: 1: 1.14 : 3: 1: 0.57 : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.57 : 3: 1: 0.00: 4: 1: 0.11: 0.00: 0.00: 0.00: 0.00: 5: 1: 0.02 : 0.00: 6: 1: 0.01: 0.00: 0.00: 0.00: 0.00: 7: 1: 0.00:

9: 1: 0.00: 0.00: 0.00: 0.00: 0.00: 10: 1: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
S	: M:	NUMBER	:	so	:	S1	:
T	: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi)		(ksi	.) :
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1):	
	::		-:	:	:	:	:
	: 1:			3.01:	5.59:	0.00:	0.00:
2	: 1:	2.29	:	2.15:	6.45:	0.00:	0.00:
3	: 1:	1.14	:	1.72:	6.88:	0.00:	0.00:
4	: 1:	0.23	:	0.86:	7.74:	0.00:	0.00:
5	: 1:	0.04	:	0.00:	8.60:	0.00:	0.00:
6	: 1:	0.01	:	-0.86:	9.46:	0.00:	0.00:
7	: 1:	0.00	:	-1.72:	10.32:	0.00:	0.00:
8	: 1:	0.00	:	-2.58:	11.18:	0.00:	0.00:
9	: 1:	0.00	:	-3.44:	12.04:	0.00:	0.00:
10	: 1:	0.00	:		12.90:	0.00:	0.00:
	: M:	NUMBER	:	s3	:	S	:
	: A:		:		:		:
	: T:			(ksi)	:	(ksi	.) :
P	: L:		:	(t1) :	(t2) :	(t1) :	(t2) :
	::		: -	:	:	:-	:
	: 1:	19.14				0.00:	
	: 1:	2.29			0.00:		
3		1.14			0.00:		0.00:
4					0.00:	0.00:	
5		0.04			0.00:	0.00:	0.00:
6	-	0.01			0.00:	0.00:	0.00:
7		0.00			0.00:	0.00:	0.00:
8				0.00:	0.00:	0.00:	0.00:
9		0.00		0.00:	0.00:	0.00:	0.00:
10	: 1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W1 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER S0 : S1 T : A: OF
E : T: FATIGUE (ksi) : (ksi) : P : L: CYCLES : (t1): (t2): (t1): (t2) ----:--:---:----:----: ----:-----:**--**----38.29 : 5.59: 1: 1: 3.01: 0.00: 0.00: 2.15: 2: 1: 4.57 : 6.45: 0.00: 0.00: 3: 1: 2.29 : 1.72: 6.88: 0.00: 0.00: 4: 1: 0.46 : 0.86: 7.74: 0.00: 0.00: 5: 1: 0.08: 0.00: 8.60: 0.00: 0.00: 0.02: 6: 1: -0.86: 9.46: 0.00: 0.00: 7: 1: 0.01: -1.72: 10.32: 0.00: 0.00: 8: 1: 0.00: -2.58: 11.18: 0.00: 0.00: 9: 1: 0.00: -3.44: 12.04: 0.00: 0.00: 10: 1: 0.00: -4.30: 12.90: 0.00: 0.00:

S	:	Μ:	NUMBER	:	S3	:	S	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:	:-	:
	1:	1:	38.29	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	4.57	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	2.29	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.46	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.08	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.02	:	0.00:	0.00:	0.00:	0.00:
	7:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
	8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)									
S	:	М:	NUMBER	:	S 0	:	S1	:		
\mathbf{T}	:	A:	OF	:		:		:		
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:		
P			CYCLES				(t1) :			
							0.00:			
		1:			2.59:					
							0.00:			
		1:			1.38:					
		1:					0.00:			
	_	1:					0.00:			
c		M:	NUMBER		S3	4.10.	5.00.	0.00.		
		A:	OF	:	55	:	5	•		
E			FATIGUE	:	(ksi)	` :	(ksi)			
P		L:					(t1):			
	. <u>.</u>	 	CICDES	- • -	(CI):	(62) :	(CI):	(62) :		
	1 .	1:	0.28	:	0.00:	0.00:	0.00:	0.00:		
		1:					0.00:			
	4: 5:	1: 1: 1:		:	0.00: 0.00:		0.00: 0.00:	0.00:		

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W1

MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final F	law Size	K max		
	Step	a	С	a-tip	c-tip	
200	15	0.050254	0.050035	2.514672	1.957333	
400	15	0.050509	0.050070	2.515637	1.962630	
600	15	0.050765	0.050107	2.516598	1.967908	
800	15	0.051021	0.050144	2.517553	1.973170	
1000	15	0.051278	0.050182	2.518503	1.978414	

4000					
1200	15	0.051536	0.050221	2.519449	1.983640
1400	15	0.051794	0.050260	2.520390	1.988850
1600	15	0.052053	0.050301	2.521327	1.994042
1800	15	0.052313	0.050342	2.522260	1.999217
2000	15	0.052573	0.050384	2.523189	2.004374
2200	15	0.052834	0.050427	2.524114	
2400	15	0.053095			2.009515
			0.050471	2.525035	2.014638
2600	15	0.053358	0.050515	2.525954	2.019744
2800	15	0.053620	0.050560	2.526869	2.024833
3000	15	0.053884	0.050607	2.527781	2.029906
3200	15	0.054148	0.050653	2.528690	2.034961
3400	15	0.054413	0.050701	2.529596	2.040000
3600	15	0.054678	0.050750	2.530502	2.045021
3800	15	0.054944	0.050802	2.531440	2.050001
4000	15	0.055210	0.050856	2.532398	2.054950
4200	15	0.055478	0.050912	2.533372	2.059873
4400	15	0.055746			
			0.050970	2.534358	2.064771
4600	15	0.056014	0.051030	2.535354	2.069647
4800	15	0.056284	0.051091	2.536361	2.074501
5000	15	0.056554	0.051154	2.537378	2.079334
5200	15	0.056824	0.051218	2.538403	2.084148
5400	15	0.057096	0.051284	2.539438	2.088942
5600	15	0.057368	0.051351	2.540481	2.093717
5800	15	0.057641	0.051420	2.541534	2.098474
6000	15	0.057914	0.051490	2.542594	2.103214
6200	15	0.058189	0.051561	2.543664	2.107936
6400	15	0.058464	0.051634	2.544742	2.112641
6600	15	0.058739	0.051708	2.545828	2.117330
6800	15	0.059016	0.051784	2.546923	2.122003
7000	15	0.059293	0.051861	2.548027	2.126660
7200	15	0.059571	0.051939		
7400	15	0.059850		2.549139	2.131302
			0.052018	2.550260	2.135929
7600	15	0.060130	0.052099	2.551390	2.140542
7800	15	0.060410	0.052182	2.552528	2.145140
8000	15	0.060691	0.052265	2.553676	2.149725
8200	15	0.060973	0.052350	2.554833	2.154296
8400	15	0.061256	0.052437	2.555998	2.158854
8600	15	0.061540	0.052524	2.557173	2.163399
8800	15	0.061824	0.052613	2.558357	2.167932
9000	15	0.062109	0.052704	2.559551	2.172453
9200	15	0.062395	0.052795	2.560754	2.176962
9400	15	0.062682	0.052888	2.561966	2.181460
9600	15	0.062970	0.052982	2.563188	2.185946
9800	15	0.063259	0.053078	2.564420	2.105946
10000	15				
MODEL: CC02	7.2	0.063548	0.053175	2.565661	2.194887
MODEL: CC02					

ANALYSIS RESULTS (contd.)

Schdl Block Final Flaw Size K max Step a-tip c-tip 10200 15 0.063839 0.053274 2.566912 2.199342 10400 15 0.064130 0.053373 2.568174 2.203788 0.053474 10600 15 0.064422 2.569445 2.208224 15 10800 0.064715 0.053577 2.570726 2.212651 11000 15 0.065009 0.053681 2.572017 2.217069 11200 15 0.065303 0.053786 2.573319 2.221478 11400 15 0.065599 0.053892 2.574631 2.225880 11600 15 0.065896 0.054000 2.575954 2.230273 11800 15 0.066193 0.054109 2.577287 2.234659 12000 15 0.066492 0.054220 2.578630 2.239038 12200 15 0.066791 0.054332 2.579984 2.243410 12400 15 0.067091 0.054445 2.247776 2.581349 12600 15 0.067393 0.054560 2.582725 2.252135

	12800	15	0.067695	0.054676	2.584111	2.256489
	13000	15	0.067998	0.054794	2.585509	2.260837
	13200	15	0.068303	0.054913	2.586917	2.265179
	13400	15	0.068608	0.055033	2.588337	2.269517
	13600	15	0.068914	0.055155	2.589767	2.273851
	13800	1 5	0.069222	0.055278	2.591209	2.278180
	14000	15	0.069530	0.055403	2.592662	2.282505
	14200	15	0.069839	0.055529	2.594126	2.286827
	14400	15	0.070150	0.055656	2.595602	2.291145
	14600	15	0.070461	0.055785	2.597089	2.295461
	14800	15	0.070774	0.055916	2.598588	2.299774
	15000	15	0.071087	0.056048	2.600098	2.304084
	15200	15	0.071402	0.056181	2.601619	2.308393
	15400	15	0.071718	0.056316	2.603153	2.312701
	15600	15	0.072035	0.056452	2.604698	2.317007
	15800	15	0.072353	0.056590	2.606254	2.321312
	16000	15	0.072672	0.056729	2.607823	2.325616
	16200	15	0.072992	0.056870	2.609403	2.329921
	16400	15	0.073314	0.057012	2.610995	2.334225
	16600	15	0.073636	0.057156	2.612599	2.338530
	16800	15	0.073960	0.057302	2.614215	2.342836
	17000	15	0.074285	0.057449	2.615843	2.347143
	17200	15	0.074611	0.057597	2.617483	2.351452
	17400	15	0.074938	0.057747	2.619135	2.355762
	17600	15	0.075267	0.057899	2.620800	2.360074
	17800	15	0.075596	0.058052	2.622476	2.364389
	18000	15	0.075927	0.058207	2.624165	2.368707
	18200	15	0.076259	0.058363	2.625866	2.373028
	18400	15	0.076593	0.058521	2.627579	2.377353
	18600	15	0.076928	0.058680	2.629304	2.381681
	18800	15	0.077264	0.058842	2.631042	2.386014
	19000	15	0.077601	0.059004	2.632792	2.390351
	19200	15	0.077939	0.059169	2.634555	2.394694
	19400	15	0.078279	0.059335	2.636330	2.399042
	19600	15	0.078621	0.059503	2.638117	2.403395
	19800	15	0.078963	0.059672	2.639918	2.407755
	20000	15	0.079307	0.059844	2.641730	2.412121
Ŋ	ODEL: CC02					

MODEL: CC02

ANALYSIS RESULTS (contd.)

Schdl	Block	Final F	law Size	K max		
201142	Step	a	c	a-tip	c-tip	
20200	15	0.079652	0.060017	2.643555	2.416493	
20400	15	0.079999	0.060191	2.645393	2.420873	
20600	15	0.080347	0.060367	2.647244	2.425261	
20800	15	0.080696	0.060546	2.649107	2.429656	
21000	15	0.081047	0.060725	2.650983	2.434060	
21200	15	0.081399	0.060907	2.652871	2.438472	
21400	15	0.081753	0.061090	2.654772	2.442893	
21600	15	0.082108	0.061277	2.656705	2.447317	
21800	15	0.082465	0.061471	2.658731	2.451722	
22000	15	0.082823	0.061670	2.660815	2.456123	
22200	15	0.083182	0.061874	2.662946	2.460525	
22400	15	0.083544	0.062082	2.665118	2.464931	
22600	15	0.083907	0.062293	2.667327	2.469344	
22800	15	Ò.084272	0.062508	2.669572	2.473766	
23000	15	0.084638	0.062727	2.671850	2.478197	
23200	15	0.085007	0.062949	2.674160	2.482639	
23400	15	0.085377	0.063174	2.676502	2.487094	
23600	15	0.085749	0.063403	2.678873	2.491562	
23800	15	0.086122	0.063635	2.681273	2.496045	
24000	15	0.086498	0.063870	2.683702	2.500544	
24200	15	0.086876	0.064109	2.686159	2.505059	

24400	1 =	0 007055	0.064051		
24400 24600	15	0.087255	0.064351	2.688642	2.509591
	15	0.087637	0.064596	2.691153	2.514143
24800	15	0.088020	0.064845	2.693691	2.518713
25000	15	0.088406	0.065097	2.696254	2.523304
25200	15	0.088793	0.065352	2.698843	2.527916
25400	15	0.089183	0.065610	2.701457	2.532549
25600	15	0.089575	0.065872	2.704097	2.537206
25800	15	0.089969	0.066137	2.706761	2.541886
26000	15	0.090365	0.066406	2.709451	2.546591
26200	15	0.090763	0.066678	2.712164	2.551321
26400	15	0.091163	0.066953	2.714902	2.556077
26600	15	0.091566	0.067232	2.717664	2.560861
26800	15	0.091971	0.067514	2.720450	2.565672
27000	15	0.092378	0.067800	2.723259	2.570511
27200	15	0.092788	0.068089	2.726093	2.575381
27400	15	0.093199	0.068382	2.728949	2.580280
27600	15	0.093614	0.068678	2.731830	2.585211
27800	15	0.094030	0.068978	2.734733	2.590173
28000	15	0.094449	0.069282	2.737660	2.595169
28200	15	0.094871	0.069590	2.740610	2.600198
28400	15	0.095295	0.069901	2.743582	2.605262
28600	15	0.095721	0.070216	2.746578	2.610361
28800	15	0.096150	0.070534	2.749597	2.615497
29000	15	0.096581	0.070857	2.752638	2.620670
29200	15	0.097016	0.071183	2.755703	2.625881
29400	15	0.097452	0.071514	2.758790	2.631130
29600	15	0.097892	0.071848	2.761899	2.636420
29800	15	0.098334	0.072187	2.765032	2.641751
30000	15	0.098778	0.072529	2.768187	2.647123
MODEL: CC02		0.050.70	0.0,2323	2.700107	2.04/123

ANALYSIS RESULTS (contd.)

Schd1 Block Final Flaw Size K max Step С a-tip c-tip 30200 15 0.099226 0.072876 2.771364 2.652538 30400 15 0.099676 0.073227 2.774564 2.657997 30600 15 0.100129 0.073582 2.777787 2.663500 30800 15 0.100585 0.073942 2.781032 2.669049 31000 15 0.101044 0.074306 2.784300 2.674644 31200 15 0.101505 0.074674 2.787590 2.680287 31400 15 0.101970 0.075047 2.790903 2.685978 31600 15 0.102437 0.075425 2.794238 2,691720 31800 15 0.102908 0.075807 2.797596 2.697511 32000 15 0.103381 0.076194 2.800976 2.703355 32200 15 0.103857 0.076586 2.804378 2.709251 32400 15 0.104337 0.076982 2.807803 2.715201 32600 15 0.104820 0.077384 2.811250 2.721207 32800 15 0.105305 0.077790 2.814720 2.727268 33000 15 0.105794 0.078202 2.818212 2.733386 33200 15 0.106286 0.078619 2.821726 2.739563 33400 15 0.106782 0.079041 2.825263 2.745800 33600 15 0.107280 0.079468 2.828822 2.752097 33800 15 0.107782 0.079901 2.832403 2.758456 34000 15 0.108287 0.080340 2.764878 2.836007 34200 15 0.108796 0.080784 2.839633 2.771365 15 34400 0.109308 0.081234 2.843281 2.777918 34600 15 0.109823 0.081689 2.846951 2.784537 34800 15 0.110342 0.082151 2.850644 2.791225 35000 15 0.110865 0.082618 2.854358 2.797982 35200 15 0.111391 0.083092 2.858095 2.804810 35400 15 0.111920 0.083572 2.861853 2.811711 35600 15 0.112453 0.084059 2.865634 2.818685 35800 15 0.112990 0.084552 2.869436

2.825734

```
36000
          15
                    0.113531
                               0.085051
                                           2.873259
                                                      2.832859
36200
          15
                    0.114075
                               0.085558
                                           2.877105
                                                      2.840063
36400
          15
                   0.114623
                               0.086071
                                          2.880971
                                                      2.847346
                               0.086591
36600
          15
                   0.115175
                                         2.884859
                                                      2.854709
36800
          15
                    0.115730
                               0.087118
                                           2.888768
                                                      2.862155
37000
          15
                    0.116290
                               0.087653
                                           2.892698
                                                      2.869684
37200
          15
                   0.116853
                               0.088195
                                           2.896649
                                                     2.877299
          15
                   0.117421
                               0.088744
                                          2.900620 2.885001
37400
                   0.117992
0.118568
          15
                               0.089302
                                           2.904611
37600
                                                      2.892791
                                                     2.900671
          15
                               0.089867
                                           2.908622
37800
          15
                   0.119147
                               0.090440
                                           2.912653
                                                      2.908642
38000
                   0.119731
                                          2.916703
          15
                                                      2.916707
38200
                               0.091022
38400
          15
                    0.120318
                               0.091612
                                           2.920772
                                                      2.924866
                   0.120910
                               0.092210
38600
          15
                                          2.924860
                                                     2.933122
38800
          15
                   0.121506
                              0.092817
                                          2.928965
                                                     2.941475
                   0.122107
0.122711
39000
                                          2.933089
          15
                               0.093433
                                                      2.949928
39200
          15
                               0.094058
                                           2.937229
                                                      2.958483
                   0.123320
39400
          15
                              0.094693
                                          2.941386
                                                     2.967139
39600
          15
                    0.123934
                               0.095337
                                        2.945558
                                                     2.975901
39800
          15
                    0.124552
                               0.095991
                                        2.949746 2.984768
```

Transition to 1-d solution, TC03: $a = 0.1250 \qquad t = 0.1250 \\ \text{at Cycle No.} \qquad 19.14 \quad \text{of Load Step No.} \qquad 1 \\ \text{Step description:} \\ \text{of Block No.} \qquad 8 \quad \text{of Schedule No.} \qquad 39945 \\ \text{Crack Size:} \quad c = 0.964688E-01 \, , \quad a/c = 1.29576 \\ \end{cases}$

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
40000	15		0.096842	3.250017
40200	15	,	0.098203	3.265866
40400	15		0.099594	3.282332
40600	15		0.101017	3.299460
40800	15		0.102475	3.317303
41000	15		0.103969	3.335916

FINAL RESULTS:

Critical Crack Size has NOT been reached.
at Cycle No. 0.00 of Load Step No. 6
Step description:
of Block No. 15 of Schedule No. 41000
Crack Size c = 0.103969

FATIGUE CRACK GROWTH ANALYSIS
-----Modified by FAI----DATE: 25-MAR-99 TIME: 09:36:14

(computed: NASA/FLAGRO Version 2.03, March 1995.)
U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

THROUGH CRACK CASE 11, PSE-W1 SA226 MS, crack in cap WS112 (

GEOMETRY

MODEL: TC11-Corner crack in plate or bar (2D)

Plate Thickness, t = 0.1250
"Width, W = 3.0000
Hole Diameter, D = 0.1600
Hole-Center-to-Edge Dist., B = 2ND AREA, AREATC11 = 0.7350
2ND M. INERTIA = 0.2580

2ND C.G. = 1.4520

0.3100

```
FLAW SIZE:
c (init.) = 0.9650E-01
MATERIAL
-----
MATL 1:
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : :
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8: :
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           :---:----:---:---:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC11
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                         0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                          4.3000
Scale Factor for Stress S3:
                         0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress SQ:
                         3.2000
Scale Factor for Stress S3:
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From - To
1 -
            1
```

	2	_	2			2		
	3	_	3			5		
	4	_	4			1		
	5	_	5			3		
	6	_	6			5		
	7	_	7			1		
	8	-	8			3		
	9	-	9			5		
1	0	_	10			1		
1		-	11			3		
1	2	-	12			5		
1	3	-	13			1		
1	4	-	14			4		
1	5	-	15			5		
BLOC	K	CAS!	E NO. 1					
S	:	M:	NUMBER	:	so	:	s3	:
т	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1	: -	1:	1.90	- : · :	:- 0.70:	1.30:	0.70:	1.30:
	:	1:	0.09	:	0.60:	1.40:		1.40:
	:	1:	0.01	:	0.54:	1.46:		1.46:

BLC	CK	CAS	E NO. 2					
s	:	M:	NUMBER	:	S0	:	s3	:
Т	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:-	:-	:
	1:	1:	9.57	:	0.70:	1.30:	-0.30:	0.30:
	2:	1:	1.14	:	0.50:	1.50:	-0.50:	0.50:
	3:	1:	0.57	:	0.40:	1.60:	-0.60:	0.60:
	4:	1:	0.11	:	0.20:	1.80:	-0.80:	0.80:
	5:	1:	0.02	:	0.00:	2.00:	-1.00:	1.00:
	6:	1:	0.01	:	-0.20:	2.20:	-1.20:	1.20:
	7:	1:	0.00	:	-0.40:	2.40:	-1.40:	1.40:
	8:	1:	0.00	:	-0.60:	2.60:	-1.60:	1.60:
	9:	1:	0.00	:	-0.80:	2.80:	-1.80:	1.80:
1	10:	1:	0.00	:	-1.00:	3.00:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLO	CK	CAS	E NO. 3					
S	:	M:	NUMBER	:	S 0	:	S3	:
T	:	A:	OF	:		:		:
E	:	\mathbf{T} :	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:-	:-	:
	1:	1:	19.14	:	0.70:	1.30:	-0.30:	0.30:
	2:	1:	2.29	:	0.50:	1.50:	-0.50:	0.50:
	3:	1:	1.14	:	0.40:	1.60:	-0.60:	0.60:
	4:	1:	0.23	:	0.20:	1.80:	-0.80:	0.80:
	5:	1:	0.04	:	0.00:	2.00:	-1.00:	1.00:
	6:	1:	0.01	:	-0.20:	2.20:	-1.20:	1.20:
	7:	1:	0.00	:	-0.40:	2.40:	-1.40:	1.40:
	8:	1:	0.00	:	-0.60:	2.60:	-1.60:	1.60:
	9:	1:	0.00	:	-0.80:	2.80:	-1.80:	1.80:
1	0:	1:	0.00	:	-1.00:	3.00:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

|--|--|

BLOCK	CAS	E NO. 4					
s:	M:	NUMBER	:	S0	:	S 3	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:-	:-	:
1:	1:	38.29	:	0.70:	1.30:	-0.30:	0.30:
2:	1:	4.57	:	0.50:	1.50:	-0.50:	0.50:
3:	1:	2.29	:	0.40:	1.60:	-0.60:	0.60:
4:	1:	0.46	:	0.20:	1.80:	-0.80:	0.80:
5:	1:	0.08	:	0.00:	2.00:	-1.00:	1.00:
6:	1:	0.02	:	-0.20:	2.20:	-1.20:	1.20:
7:	1:	0.01	:	-0.40:	2.40:	-1.40:	1.40:
8:	1:	0.00	:	-0.60:	2.60:	-1.60:	1.60:
9:	1:	0.00	:	-0.80:	2.80:	-1.80:	1.80:
10:	1:	0.00	:	-1.00:	3.00:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

E	BLO	CK	CAS	E NO. 5					
	S	:	M:	NUMBER	:	S0	:	s3	:
	T	:	A:	OF	:		:		:
	E	:	T:	FATIGUE	:		:		:
	P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
-		-:-	:-		-:-	:-	:-	:-	:
		1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
		2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
		3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
		4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
		5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
		6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

CILID

SID								
S	:	Μ:	NUMBER	:	S0	:	S 3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	፡	L:	CYCLES	:	(t1): (t2)	:	(t1) :	(t2) :
	-:	:-		- : -	:	:	:	:
	1:	1:	1.90	:	-0.70: -3	L.30:	-0.70:	-1.30:
	2:	1:	0.09	:	-0.60: -3	L.40:	-0.60:	-1.40:
	3:	1:	0.01	:	-0.54: -1	1.46:	-0.54:	-1.46

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

2.1D								
S	:	Μ:	NUMBER	:	S0	:	s 3	:
T	:	A:	OF	:		:		:

E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		:	:-	:	:	:
	1:	1:	9.57	:	3.01:	5.59:	0.00:	0.00:
:	2:	1:	1.14	:	2.15:	6.45:	0.00:	0.00:
	3:	1:	0.57	:	1.72:	6.88:	0.00:	0.00:
	4:	1:	0.11	:	0.86:	7.74:	0.00:	0.00:
	5:	1:	0.02	:	0.00:	8.60:	0.00:	0.00:
	6:	1:	0.01	:	-0.86:	9.46:	0.00:	0.00:
	7:	1:	0.00	:	-1.72:	10.32:	0.00:	0.00:
	8:	1:	0.00	:	-2.58:	11.18:	0.00:	0.00:
	9:	1:	0.00	:	-3.44:	12.04:	0.00:	0.00:
1	0:	1:	0.00	:	-4.30:	12.90:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

______ S : M: NUMBER : S0 : S3 : A: OF E : T: FATIGUE : (ksi) E : T: FATIGUE : (ksi) : (ksi)
P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
 1: 1:
 19.14:
 3.01:
 5.59:
 0.00:
 0.00:

 2: 1:
 2.29:
 2.15:
 6.45:
 0.00:
 0.00:

 3: 1:
 1.14:
 1.72:
 6.88:
 0.00:
 0.00:

 4: 1:
 0.23:
 0.86:
 7.74:
 0.00:
 0.00:
 0.00: 0.00: 5: 1: 0.04 : 0.00. -0.86: 9.±0. 72: 10.32: 0.00: 8.60: 0.00: 0.00: 0.00: 0.00: 0.01: 9.46: 6: 1: 0.00: 0.00: 7: 1: 0.00 : -2.58: 11.18: 0.00: 0.00: 0.00: 8: 1: 9: 1: 0.00: -3.44: 12.04: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

-4.30:

12.90:

0.00:

0.00:

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

10: 1:

FATIGUE SCHEDULE BLOCK STRESS TABLE

0.00:

STD : S : M: NUMBER S0 s3 T : A: OF : : (ksi) : (ksi)
P : L: CYCLES : (t1) : (t2) : (t1) : (t2) T : A: OF 1: 1: 38.29 : 3.01: 5.59: 0.00: 0.00: 4.57 : 2.15: 6.45: 2.29 : 1.72: 6.88: 2: 1: 0.00: 0.00: 3: 1: 0.00: 0.00: 0.86: 7.74: 4: 1: 0.46 : 0.00: 0.00: 0.00: 5: 1: 0.08 : 0.00: 8.60: 0.00: 0.02 : -0.86: 9.46: 6: 1: 0.00: 0.00: 10.32: 7: 1: 0.01: -1.72: 0.00: 0.00: 0.00: 0.00: -2.58: 11.18: 0.00: 8: 1: 0.00: -3.44: 9: 1: 12.04: 0.00: 0.00: 10: 1: 0.00: -4.30: 12.90: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	s3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:	:	:
	1:	1:	0.28	:	3.20:	3.23:	0.00:	0.00:
	2:	1:	0.44	:	2.59:	3.39:	0.00:	0.00:
	3:	1:	0.22	:	1.98:	3.58:	0.00:	0.00:
	4:	1:	0.06	:	1.38:	3.78:	0.00:	0.00:
	5:	1:	0.00	:	0.74:	3.97:	0.00:	0.00:
	6:	1:	0.00	:	0.13:	4.16:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

ANALYSIS RESULTS:

Schedl	Block	Final Flaw Size	K max
		Step c	c-tip
200	15	0.097723	3.189143
400	15	0.098969	3.202559
600	15	0.100240	3.216442
800	15	0.101536	3.230825
1000	15	0.102858	3.245742
1200	15	0.104209	3.261229
1400	15	0.105590	3.277328
1600	15	0.107002	3.294085
1800	15	0.108448	3.311550
2000	15	0.109929	3.329782
2200	15	0.111447	3.348844
2400	15	0.113006	3.368807
2600	15	0.114608	3.389754
2800	15	0.116255	3.411776
3000	15	0.117952	3.434978
3200	15	0.119701	3.459484
3400	15	0.121509	3.485432
3600	15	0.123378	3.512989
3800	15	0.125316	3.542345
4000	15	0.127328	3.573730
4200	15	0.129423	3.607419
4400	15	0.131608	3.643741
4600	15	0.133895	3.683104
4800	15	0.136296	3.726012
5000	15	0.138827	3.773105
5200	15	0.141507	3.825201
5400	15	0.144359	3.883377
5600	15	. 0.147414	3.949089
5800	15	0.150713	4.024360
6000	15	0.154311	4.112126
6200	15	0.158287	4.216853
6400	15	0.162758	4.345807
6600	15	0.167917	4.511936
6800	15	0.174110	4.741688
7000	15	0.182102	5.103000
7200	15	0.194394	5.885335

```
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 53.62 K \operatorname{ref} = 0.000 K \operatorname{cr} = 51.83
at the very beginning of Load Step No.
                                   10
Step description:
of Block No. 14 of Schedule No. Crack Size c = 0.225983
              FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
             DATE: 07-OCT-98 TIME: 12:39:28
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC2, PSE-W1 SA226 Main Spar Cap WS99
                                     (Title)
GEOMETRY
MODEL: TC02-Single edge through crack.
Plate Thickness, t =
                    0.1250
  " Width, W
                = 3.0000
FLAW STZE:
  (init.) = 0.5000E-01
MATERIAL
MATL 1:
       1
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS : YS : Kle : Klc : Ak : Bk : Thk : Kc : KIscc:
                 :
                    : : :
                                     :
                                              •
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants -----:
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
                          -1.0000
Scale Factor for Stress S0:
                          0.0000
Scale Factor for Stress S1:
```

0.0000

Scale Factor for Stress S2:

```
Stress Scaling Factors for Block Case:
Scale Factor for Stress S0:
                               5.3700
Scale Factor for Stress S1:
                               0.0000
Scale Factor for Stress S2:
                               0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                               0.0000
Scale Factor for Stress S2:
                               0.0000
Stress Scaling Factors for Block Case:
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                               0.0000
Scale Factor for Stress S2:
                               0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                               0.0000
Scale Factor for Stress S2:
                               0.0000
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
 Block Number
                               Block Case No.
From
          To
    1
    2
               2
                                        2
    3
               3
                                        5
                                        1
    5
                                        3
    6
                                        1
    8
               8
                                        3
                                        5
   10
              10
                                        1
   11
              11
                                        3
   12
              12
   13
              13
   14
              14
   15
              15
BLOCK CASE NO. 1
  : M: NUMBER
                                                 S1
 T : A:
           OF
E : T: FATIGUE
 ₽
   : L: CYCLES
                          (t1): (t2)
                                             (t1): (t2)
                                        :
----:--:------
  1: 1:
                1.90:
                          0.70:
                                     1.30:
                                             -0.30:
                                                         0.30:
                0.09:
  2: 1:
                          0.60:
                                    1.40:
                                             -0.40:
                                                         0.40:
  3: 1:
                0.01:
                          0.54:
                                    1.46:
                                              -0.46:
                                                         0.46:
 S : M:
         NUMBER
                             S2
                                        :
                                                 S
   : A:
           OF
   : T:
         FATIGUE
  : L: CYCLES
                          (t1): (t2)
                                              (t1): (t2)
----:--:-----
                                    0.30:
  1: 1:
                1.90:
                          -0.30:
                                              0.00:
                                                         0.00:
  2: 1:
                0.09:
                          -0.40:
                                    0.40:
                                              0.00:
                                                         0.00:
                0.01:
                          -0.46:
                                    0.46:
                                              0.00:
                                                         0.00:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

s:	M:	SE NO. 2 NUMBER OF	:	s0	:	S1	:
		FATIGUE	•		•		•
				/ <u>-</u> 1\ .	(+2)	(±1)	(+2)
P :	ь:	CYCLES	:	(t1):	(62)	(CI):	(62) :
1:	1:	9.57	:	0.60:	1.20:	•	0.30:
2:	1:	1.14					
	1:			0.30:		-0.60:	
	1:			0.10:		-0.80:	
	1:	0.02	:	-0.10:			
6:	1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:
	1:			-0.50:			
8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:	1:			-1.10:		-2.00:	
s:	М:	NUMBER	:	S2	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES					(t2) :
: 1:	:- 1:		•	-0.30:	-	0.00:	0.00:
	1:	1.14			0.50:		
	1:	0.57					
4:	1:	0.11					
5:	1:	0.02	:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.01	:	-1.20:	1.20:		
7:	1:	0.00	:	-1.40:	1.40:	0.00:	
	1:	0.00	:	-1.60:	1.60:		
9:	1:	0.00	:	-1.80:	1.80:	0.00:	0.00:
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK	CAS	E NO. 3					
s:	M:	NUMBER	:	S 0	:	s1	:
т:	A:	OF	:		:		:
E :	\mathbf{T} :	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
1:	:- 1:	19.14	:	0.60:	1.20:	-0.30:	0.30:
2:	1:	2.29	:	0.40:	1.40:	-0.50:	0.50:
3:	1:	1.14	:	0.30:	1.50:	-0.60:	0.60:
4:	1:	0.23	:	0.10:	1.70:	-0.80:	0.80:
5:	1:	0.04	:	-0.10:	1.90:	-1.00:	1.00:
6:	1:	0.01	:	-0.30:	2.10:	-1.20:	1.20:
7:	1:	0.00	:	-0.50:	2.30:	-1.40:	1.40:
8:	1:	0.00	:	-0.70:	2.50:	-1.60:	1.60:
9:	1:	0.00	:	-0.90:	2.70:	-1.80:	1.80:
10:	1:	0.00	:	-1.10:	2.90:	-2.00:	2.00:
s:	M:	NUMBER	:	S2	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	19.14	:	-0.30:	0.30:	0.00:	0.00:
	1:	2.29		-0.50:	0.50:	0.00:	0.00:
3:	1:	1.14	:	-0.60:	0.60:	0.00:	0.00:
4:	1:	0.23	:	-0.80:	0.80:	0.00:	0.00:
5:	1:	0.04	:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.01	:	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.00	:	-1.40:	1.40:	0.00:	0.00:
8:	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
٥.	Τ.	0.00	•	1.00.	1.00.	0.00.	0.00.

9: 1: 0.00: -1.80: 1.80: 0.00: 0.00: 10: 1: 0.00: -2.00: 2.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

DI OO	,	an 200 4					
		SE NO. 4		~ 0			
	: M:	NUMBER	:	S 0	:	S1	:
	: A:		:		:		:
	T:		:	4.4.	:		:
	:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
	1:		:	0.60:	1.20:	-0.30:	0.30:
2:	: 1:			0.40:			
	: 1:				1.50:		0.60:
4 :	: 1:				1.70:		0.80:
5 :	1:	0.08			1.90:		1.00:
	1:	0.02			2.10:		1.20:
	1:	0.01			2.30:		1.40:
8:	1:	0.00			2.50:		1.60:
9 :	1:	0.00			2.70:		1.80:
10:	1:					-2.00:	
S :	: M:	NUMBER			:	S	:
\mathbf{T} :	: A:	OF	:			_	
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:		-:-	:-	:	:-	:
	1:	38.29				0.00:	
	1:	4.57				0.00:	
	1:	2.29				0.00:	
	1:	0.46				0.00:	
5:				-1.00:			
	1:	0.02		-		0.00:	
7:		0.01				0.00:	0.00:
8:		0.00			1.60:	0.00:	0.00:
	1:				1.80:	0.00:	0.00:
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK CASE NO. 5 S : M: NUMBER S1 T : A: OF E : T: FATIGUE : P : L: CYCLES (t1): (t2): (t1) : (t2) : --:--:--:---:

 1: 1:
 0.28:
 1.00:
 1.01:
 1.00:

 2: 1:
 0.44:
 0.81:
 1.06:
 0.81:

 3: 1:
 0.22:
 0.62:
 1.12:
 0.62:

 1.01: 1.06: 1.12: 0.43: 0.06: 4: 1: 1.18: 0.42: 1.18: 5: 1: 0.00: 0.23: 1.24: 0.23: 1.24: 0.00: 0.04: 6: 1: 1.30: 0.04: 1.30: S2 S : M: NUMBER S : A: OF : : E : T: FATIGUE P : L: CYCLES : (t1) : (t2) : (t1): (t2): ---:--:--:--:---: 0.28 : 1.00: 1: 1: 1.00: 0.00: 0.00: 0.44 : 2: 1: 0.81: 1.06: 0.00: 0.00: 0.62: 1.12: 0.00: 3: 1: 0.22 : 0.00: 0.06: 0.43: 0.23: 1.18: 4: 1: 0.00: 0.00: 5: 1: 0.00 : 1.24: 0.00: 0.00: 6: 1: 0.00: 0.04: 1.30: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-W1 SA226 Main Spar

MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		- : -	:	:	:-	:
	1:	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
S	:	M:	NUMBER	:	S2	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:	:-	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

TC2, PSE-W1 SA226 Main Spar

MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S		М:	NUMBER	:	S0	:	S1	:
	:		OF	:		:		:
			FATIGUE					
			CYCLES					
			9.57					
			1.14					
			0.57					
			0.11					
		1:			-0.54:			
	6:	1:	0.01				0.00:	
		1:			-2.68:			
			0.00					
			0.00					
		1:	0.00					
S	:	M:	NUMBER				S	
\mathbf{T}	:	A:	OF	:				
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		- : -	 :	:	:-	:
			9.57					
	2:	1:	1.14	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.57	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.11	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.02	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.01			0.00:		0.00:
	7:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	8:	1:	0.00					
	9:	1:	0.00	:	0.00: 0.00:	0.00:	0.00:	0.00:
1	.0:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

TC2, PSE-W1 SA226 Main Spar

MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s :	M:	NUMBER	:	so	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi) :	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
		19.14					
		2.29					
		1.14					
	1:					0.00:	
	1:	0.04				0.00:	
	1:			-1.61:		0.00:	
	1:					0.00:	
	1:	0.00					
	1:						
S :					15.57:	0.00:	0.00:
ъ: Т:				52	:	S	
			:	(3:		(1	. :
D .	T.	FATIGUE CYCLES	:	(KSI	(+2)	(KS1	/==>
		CICLES					
		19.14					
2:	1:	2.29	:	0.00:	0.00:	0.00:	0.00:
		1.14					
4:	1:	0.23	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.04	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
8:	1:				0.00:	0.00:	0.00:
9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-W1 SA226 Main Spar

MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

					·			
STD								
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi)	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:-	:	:	:
:	1:	1:	38.29	:	3.22:	6.44:	0.00:	0.00:
:	2:	1:	4.57	:	2.15:	7.52:	0.00:	0.00:
	3:	1:	2.29	:	1.61:	8.05:	0.00:	0.00:
	4:	1:	0.46	:	0.54:	9.13:	0.00:	0.00:
!	5:	1:	0.08	:	-0.54:	10.20:	0.00:	0.00:
	6:	1:	0.02	:	1.61:	11.28:	0.00:	0.00:
•	7:	1:	0.01	:	-2.68:	12.35:	0.00:	0.00:
1	8:	1:	0.00	:	-3.76:	13.43:	0.00:	0.00:
9	9:	1:	0.00	:	-4.83:	14.50:	0.00:	0.00:
10	0:	1:	0.00	:	-5.91:	15.57:	0.00:	0.00:
S	:	M:	NUMBER	:	S2	:	s	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :

	•		•		:	:	
1:	1:	38.29	:	0.00:	0.00:	0.00:	0.00:
2:	1:	4.57	:	0.00:	0.00:	0.00:	0.00:
3:	1:	2.29	:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.46	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.08	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.02	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-W1 SA226 Main Spar

MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)		(ksi)) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		: -	:	:	:	:
	1:	1:	0.28					
	2:	1:	0.44	:	3.28:	4.29:	0.00:	0.00:
	3:	1:	0.22	:	2.51:	4.54:	0.00:	0.00:
	4:	1:	0.06	:	1.74:	4.78:	0.00:	0.00:
	5:	1:	0.00	:	0.93:	5.02:	0.00:	0.00:
	6:	1:	0.00	:	0.16:	5.26:	0.00:	0.00:
S	:	M:	NUMBER	:	S2	:	s	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)) :	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :		(t2) :
	:	:-		-:-	:	:	:	:
		1:	0.28			0.00:		
	2:	1:	0.44		0.00:	0.00:		
	3:	1:	0.22	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.06	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-W1 SA226 Main Spar

MODEL: TC02

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
2000	15		0.052070	2.402388
4000	15		0.054381	2.455871
6000	15		0.056977	2.514669
8000	15		0.060151	2.584848
10000	15		0.064067	2.669108
12000	15		0.068862	2.769069
14000	15		0.074799	2.888474
16000	15		0.082289	3.033097
18000	15		0.091992	3.211901
20000	15		0.105030	3.439549

22000	15	0.123485	3.742127
24000	15	0.151762	4.172413
26000	15	0.201422	4.863504
28000	15	0.320735	6.364526

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: K max = 51.96 K ref = 0.000 K cr = 51.83 at the very beginning of Load Step No. 10 Step description: of Block No. 14 of Schedule No. 29380 Crack Size c = 1.04187

C-2 PSE W2 SA226 Main Spar Lower Cap at WS 9.0

```
FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
            DATE: 26-MAR-99 TIME: 08:28:56
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W2 SA226 MS, crack in cap WS 9
GEOMETRY
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                    0.1250
Plate Width, W = 3.5500
Hole Diameter, D = 0.2000
Hole-Center-to-Edge Dist., B =
                             0.6100
Poisson s ratio = 0.30
FLAW SIZE:
a (init.) = 0.5000E-01
c (init.) = 0.5000E-01
a/c (init.) = 1.000
MATERIAL
_____
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: K1e: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : :
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:---- Crack Growth Eqn Constants ----:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
                          7.5000
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S3:
                          0.0000
Stress Scaling Factors for Block Case: 2
```

```
Scale Factor for Stress SO:
                              7.5000
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S3:
                              0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress SO:
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S3:
                              0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                              7.5000
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S3:
                              0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                              3.7600
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S3:
                              0.0000
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
Block Number
                              Block Case No.
From
   1
                                      1
   2
                                      2
    3
              3
                                      5
    4
              4
                                      1
                                      3
    6
              6
                                      5
                                      1
   8
              8
                                      3
   9
   10
             10
                                      1
   11
             11
                                      3
   12
             12
   13
             13
                                      1
   14
             14
   15
             15
                                      5
BLOCK CASE NO. 1
S : M: NUMBER
                             s_0
                                                S1
T : A:
          OF
E : T:
         FATIGUE
P : L: CYCLES
                         (t1): (t2)
                                            (t1): (t2)
----:--:--:-
               1.90:
                         0.37:
                                   0.97:
  1: 1:
                                             0.70:
                                                       1.30:
  2: 1:
               0.09:
                         0.27:
                                   1.07:
                                             0.60:
                                                       1.40:
              0.01:
  3: 1:
                          0.21:
                                   1.13:
                                             0.54:
                                                       1.46:
S : M: NUMBER
                            s3
                                                S
   : A:
          OF
E : T: FATIGUE
P : L: CYCLES
                         (t1): (t2)
                                            (t1): (t2)
1: 1:
               1.90:
                         0.70:
                                   1.30:
                                             0.00:
                                                       0.00:
  2: 1:
               0.09:
                         0.60:
                                             0.00:
                                   1.40:
                                                       0.00:
  3: 1:
               0.01: 0.54:
                                   1.46:
                                             0.00:
                                                       0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
T : A: OF
                           S0
                                                S1
```

E	: T	: FATIGUE	:		:		:
P	: L	: CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:	:-	:-	:-	:-	:
1	: 1	: 9.57	:	0.37:	0.97:	0.70:	1.30:
2	: 1	: 1.14	:	0.17:	1.17:	0.50:	1.50:
3	: 1		:	0.07:	1.27;	0.40:	1.60:
	: 1		:	-0.13:	1.47:	0.20:	1.80:
5	: 1	: 0.02	:	-0.33:	1.67:	0.00:	2.00:
6	: 1	: 0.01	:	-0.53:	1.87:	-0.20:	2.20:
7	: 1	: 0.00	:	-0.73:	2.07:	-0.40:	2.40:
8	: 1	: 0.00	:	-0.93:	2.27:	-0.60:	2.60:
9	: 1	: 0.00	:	-1.13:	2.47:	-0.80:	2.80:
10	: 1	: 0.00	:	~1.33:	2.67:	-1.00:	3.00:
s	: M	: NUMBER	:	s3	:	S	:
T	: A	: OF	:		:		:
	• • • • • • • • • • • • • • • • • • • •		-		•		-
E	: T		:		:		:
		: FATIGUE	:	(t1) :	(t2) :	(t1) :	: (t2) :
P 	: T	: FATIGUE : CYCLES	:	(t1) : :- 0.70:	:	(t1): :- 0.00:	(t2): : 0.00:
P 1	: T : L	: FATIGUE : CYCLES : : 9.57		0.70:	1.30:	:-	:
P 1 2	: T : L :	: FATIGUE : CYCLES : 9.57 : 1.14		0.70: 0.50:	1.30: 1.50:	0.00:	0.00:
P1 2 3	: T : L :	: FATIGUE : CYCLES : 9.57 : 1.14 : 0.57	:	0.70:	1.30:	0.00: 0.00:	0.00:
P 1 2 3 4	: T : L :	: FATIGUE : CYCLES : 9.57 : 1.14 : 0.57 : 0.11	:	0.70: 0.50: 0.40:	1.30: 1.50: 1.60:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
P 1 2 3 4 5 5	: T : L ::	: FATIGUE : CYCLES : 9.57 : 1.14 : 0.57 : 0.11 : 0.02	: :	0.70: 0.50: 0.40: 0.20:	1.30: 1.50: 1.60: 1.80:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
P 1 2 3 4 5 6	: T : L : 1 : 1 : 1 : 1	: FATIGUE : CYCLES : 9.57 : 1.14 : 0.57 : 0.11 : 0.02 : 0.01	: : : : : : : : : : : : : : : : : : : :	0.70: 0.50: 0.40: 0.20: 0.00:	1.30: 1.50: 1.60: 1.80: 2.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
P 1 2 3 4 5 6 7	: T : L :: 1 :: 1 :: 1 :: 1 :: 1 :: 1	: FATIGUE : CYCLES : 9.57 : 1.14 : 0.57 : 0.11 : 0.02 : 0.01	: : : : : : : : : : : : : : : : : : : :	0.70: 0.50: 0.40: 0.20: 0.00:	1.30: 1.50: 1.60: 1.80: 2.00: 2.20:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P 1 2 3 4 5 6 7 8	: T : L : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1	: FATIGUE : CYCLES : 9.57 : 1.14 : 0.57 : 0.11 : 0.02 : 0.01 : 0.00	: : : : : : : : : : : : : : : : : : : :	0.70: 0.50: 0.40: 0.20: 0.00: -0.20: -0.40:	1.30: 1.50: 1.60: 1.80: 2.00: 2.20: 2.40:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK	CASI	E NO. 3					
s:	M:	NUMBER	:	S0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:-			:-	:-	:	:-	:
1:	1:	19.14	:	0.37:	0.97:	0.70:	1.30:
2:	1:	2.29	:	0.17:	1.17:	0.50:	1.50:
3:	1:	1.14	:	0.07:	1.27:	0.40:	1.60:
4:	1:	0.23				0.20:	
5:	1:	0.04	:	-0.33:	1.67:	0.00:	2.00:
6:	1:	0.01	:	-0.53:	1.87:	-0.20:	2.20:
7:	1:	0.00	:	-0.73:	2.07:	-0.40:	2.40:
8:	1:	0.00	:	-0.93:	2.27:	-0.60:	2.60:
9:	1:	0.00	:	-1.13:	2.47:	-0.80:	2.80:
10:	1:	0.00	:	-1.33:	2.67:	-1.00:	3.00:
s :	M:	NUMBER	:	S 3	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :			
-	:-		- : -			:	
		19.14					
		2.29					
	1:	1.14				0.00:	
	1:			0.20:		0.00:	
	1:			0.00:			
	1:			-0.20:			
-	1:	0.00				0.00:	
	1:			-0.60:			
	1:			-0.80:			
10:	1:	0.00	:	-1.00:	3.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

C-145

BLOCK	CA	SE NO. 4					
s:	M:	NUMBER	:	S0	:	S1	:
	A:	OF	:		:		• :
E :	T:	FATIGUE	:		:		:
P :		CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1.	1:	38.29	• : ~	0.37:	0.97:	0.70:	1.30:
	1:	4.57		0.17:	1.17:		1.50:
	1:	2.29		0.07:	1.27:	0.40:	1.60:
	1:	0.46		-0.13:	1.47:		1.80:
	1:	0.08		-0.33:	1.67:		2.00:
	1:	0.02			1.87:		
	1:	0.01		-0.73:	2.07:		2.40:
	1:	0.00		-0.93:	2.27:		2.60:
	1:	0.00		-1.13:	2.47:		
	1:	0.00		-1.33:	2.47.		
	М:	NUMBER	:	-1.55. S3	2.07.	-1.00. S	3.00:
	Α:	OF	:	55	:	S.	•
	T:				:		•
	L:		:	(+1)	(+2)	(41)	(+0)
:	:	CICLES	: ·:-	(t1) :	(02) :	(t1) :	(t2)
1:	1:	38.29	:	0.70:	1.30:	0.00:	0.00:
2:	1:	4.57	:	0.50:	1.50:	0.00:	0.00:
3:	1:	2.29	:	0.40:	1.60:	0.00:	0.00:
4:	1:	0.46	:	0.20:	1.80:	0.00:	0.00:
5:	1:	0.08	:	0.00:	2.00:	0.00:	0.00:
6:	1:	0.02	:	-0.20:	2.20:	0.00:	0.00:
7:	1:	0.01	:	-0.40:	2.40:	0.00:	0.00:
8:	1:	0.00	:	-0.60:	2.60:	0.00:	0.00:
9:	1:	0.00	:	-0.80:	2.80:	0.00:	0.00:
10:	1:	0.00	:	-1.00:	3.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BL	OCK	CAS	E NO. 5					
S	:	M:	NUMBER	:	\$0	:	S1	:
T	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		•		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.12:	0.81:	1.12:
	3:	1:	0.22	:	0.61:	1.23:	0.61:	1.23:
•	4:	1:	0.06	:	0.42:	1.33:	0.42:	1.33:
	5:	1:	0.00	:	0.22:	2.44:	0.22:	2.44:
	6:	1:	0.00	:	0.03:	2.55:	0.03:	2.55:
S	:	M:	NUMBER	:	S 3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:-	:-		-:-	:-	:	:-	;:
		1:	0.28					0.00:
		1:	0.44			1.12:	0.00:	
		1:	0.22			1.23:		
		1:	0.06			1.33:		
		1:	0.00	-		2.44:		
	6:	1:	0.00	:	0.03:	2.55:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	- -: · 1:	:- 1:	1.90	- : - :	2.78:	7.27:	0.00:	0.00:
		1:	0.09	:	2.03:	8.03:	0.00:	0.00:
	3:	1:	0.01	:	1.58:	8.48:	0.00:	0.00:
S	:	Μ:	NUMBER	:	S 3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:	:	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

______ : S1 S : M: NUMBER : A: OF (ksi) E : T: FATIGUE (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 1: 1: 9.57 : 2.78: 7.27: 0.00: 2: 1: 1.14 : 1.28: 8.77: 0.00: 3: 1: 0.57 : 0.53: 9.53: 0.00: 4: 1: 0.11 : -0.98: 11.03: 0.00: 9.53: 0.00: 11.03: 0.00: 0.53: 9.53: -0.98: 11.03: -2.47: 12.52: 0.00: 0.11 : 0.02 : 0.00: 4: 1: 0.00: 5: 1: 0.00: 0.02: 14.03: 6: 1: -3.97: 0.00: 0.00: 0.00 : 0.00 : 7: 1: -5.47: 15.52: 0.00: 0.00: 17.02: 0.00: 8: 1: -6.98: 0.00: 0.00: -8.47: 18.53: 0.00: 0.00: 9:1: 0.00: 0.00: -9.98: 20.02: 0.00: 10: 1: S : M: NUMBER : **S**3 s T : A: OF (ksi) (ksi) E : T: FATIGUE : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : ... (t1) : (t2) : 1: 1: 9.57: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 1.14 : 0.57 : 0.00: 0.00: 0.00: 0.00: 2: 1: 3: 1: 0.00: 0.00: 0.11 : 0.00: 4: 1: 0.00: 0.00: 0.00: 0.02: 0.00: 0.00: 0.00: 5: 1: 6: 1: 0.01: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 7:1: 0.00: 8: 1: 0.00: 0.00: 0.00: 0.00: 9: 1: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 10: 1: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S1

T : A: OF : :
E : T: FATIGUE : (ksi) : (ksi)

P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1.	1:	19.14	-:-	2.78:	7.27:	0.00:	0.00:
	1:	2.29	:	1.28:	8.77:	0.00:	0.00:
	1:	1.14	:	0.53:	9.53:	0.00:	0.00:
			•			0.00:	0.00:
4:		0.20	:	-0.98:	11.03:		
	1:	0.01	:	-2.47:	12.52:	0.00:	0.00:
	1:	0.01	:	-3.97:	14.03:	0.00:	0.00:
7:		0.00	:	-5.47:	15.52:		0.00:
8:	1:	0.00	:	-6.98:	17.02:	0.00:	0.00:
9:	1:	0.00	:	-8.47:	18.53:	0.00:	0.00:
10:		0.00	:	-9.98:	20.02:	0.00:	0.00:
s :	Μ:	NUMBER	:	S 3	:	S	:
т:	A:	OF	:		:		:
	т:	FATIGUE	:	(ksi	.) :	(ks:	i) :
E:		FATIGUE CYCLES	:		(t2):		i) : (t2) :
E : P :	T: L:	CYCLES	: : -:-		(t2) :		
E : P : : 1:	T: L: :-	CYCLES 19.14		(t1): 0.00:	(t2): : 0.00:	(t1): 0.00:	(t2): : 0.00:
E: P: : 1: 2:	T: L: :- 1:	CYCLES 19.14 2.29		(t1): 0.00: 0.00:	(t2) : : 0.00: 0.00:	(t1): 0.00: 0.00:	(t2): : 0.00: 0.00:
E: P: : 1: 2: 3:	T: L: 1: 1:	19.14 2.29 1.14	:	(t1): 	(t2): : 0.00: 0.00: 0.00:	(t1): : 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00:
E: P: : 1: 2: 3: 4:	T: L: 1: 1: 1:	19.14 2.29 1.14 0.23		(t1): 0.00: 0.00: 0.00: 0.00:	(t2): 0.00: 0.00: 0.00: 0.00:	(t1): : 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00:
E: P: 1: 2: 3: 4: 5:	T: L: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04	: : :	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	(t2): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1): : 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00:
E: P: 1: 2: 3: 4: 5:	T: L: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : : : : :	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
E: P: : 1: 2: 3: 4: 5: 6:	T: L: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : : : : : : : : : : : : : : : : : : :	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
E: P: : 1: 2: 3: 4: 5: 6: 7:	T: L: 1: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01 0.00 0.00	: : : : : :	(t1):	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
E: P: : 1: 2: 3: 4: 5: 6:	T: L: 1: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01 0.00 0.00	: : : : : : : : : : : : : : : : : : : :	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD		•		•			
	M:	NUMBER	:	S0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
1:	1:	38.29	-;- :	2.78:	7.27:	0.00:	0.00:
	1:	4.57		1.28:	8.77:	0.00:	0.00:
3:		2.29			9.53:	0.00:	0.00:
4:		0.46			11.03:	0.00:	0.00:
5:	1:	0.08	:	-2.47:	12.52:	0.00:	0.00:
6:	1:	0.02	:	-3.97:	14.03:	0.00:	0.00:
7:	1:	0.01	:	-5.47:	15.52:	0.00:	0.00:
8:	1:	0.00	:	-6.98:	17.02:	0.00:	0.00:
9:	1:	0.00	:			0.00:	0.00:
10:	1:	0.00	:	-9.98:	20.02:	0.00:	0.00:
s:	M:	NUMBER	:	S3	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	38.29	:	0.00:	0.00:	0.00:	0.00:
2:	1:	4.57	:	0.00:	0.00:	0.00:	0.00:
3:	1:	2.29	:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.46	:	. 0.00:	0.00:	0.00:	0.00:
5:	1:	0.08	:	0.00:	0.00:	0.00:	0.00:
6:		0.02			0.00:	0.00:	
7:		0.01			0.00:	0.00:	0.00:
8:				0.00:	0.00:	0.00:	
9:		0.00			0.00:	0.00:	
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S		M:	NUMBER	:	S0	:	\$1	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		:-	:	:	:	:
	1:	1:	0.28	:	3.76:	3.80:	0.00:	0.00:
	2:	1:	0.44	:	3.05:	4.21:	0.00:	0.00:
	3:	1:	0.22	:	2.29:	4.62:	0.00:	0.00:
	4:	1:	0.06	:	1.58:	5.00:	0.00:	0.00:
	5:	1:	0.00	:	0.83:	9.17:	0.00:	0.00:
	6:	1:	0.00	:	0.11:	9.59:	0.00:	0.00:
s	:	M:	NUMBER	:	S 3	:	S	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:	:-	:
	1:	1:	0.28	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.44	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.22	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.06	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final F	law Size	K m	ax
	Step	a	С	a-tip	c-tip
200	15	0.054109	0.051488	6.272930	5.129302
400	15	0.058440	0.053266	6.348376	5.311132
600	15	0.063016	0.055361	6.428926	5.488763
800	15	0.067864	0.057801	6.515588	5.664665
1000	15	0.073019	0.060623	6.609100	5.841599
1200	15	0.078522	0.063874	6.710016	6.022634
1400	15	0.084420	0.067614	6.818773	6.211213
1600	15	0.090765	0.071923	6.935737	6.411288
1800	15	0.097618	0.076909	7.061186	6.627466
2000	15	0.105050	0.082718	7.195213	6.865209
2200	15	0.113136	0.089555	7.337417	7.130981
2400	15	0.121959	0.097703	7.486103	7.432104

Transition to 1-d solution, TC03:

a = 0.1250 t = 0.1250at Cycle No. 9.57. of Load Step No. 1

Step description: of Block No. 2 of Schedule No. 2466

Crack Size: c = 0.100699 , a/c = 1.24132

Schedl	Block	Final Flaw Size	K max
	Step	С	c-tip
2600	15	0.108501	7.421609

```
2800
            15
                           0.120830
                                                7.563978
   3000
            15
                           0.134242
                                               7.726167
   3200
            15
                           0.148987
                                               7.913794
   3400
            15
                           0.165409
                                               8.134862
   3600
            15
                           0.184016
                                               8.401759
   3800
            15
                           0.205599
                                               8.735486
   4000
            15
                           0.231511
                                               9.176208
   4200
            15
                           0.264463
                                               9.816461
   4400
            15
                           0.311665
                                              10.960449
   4600
            15
                           0.429566
                                              17.165632
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 52.72 \quad K \text{ ref} = 0.000 \quad K \text{ cr} =
at the very beginning of Load Step No.
Step description:
of Block No. 11 of Schedule No.
                                 4612
            c = 0.473002
Crack Size
              FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
             DATE: 26-MAR-99 TIME: 09:40:39
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 11, PSE-W2 SA226 MS, crack in cap WS 9 (T
GEOMETRY
MODEL: TC11-Corner crack in plate or bar (2D)
Plate Thickness, t =
                     0.1250
" Width, W = Hole Diameter, D =
                     3,5500
                     0.2000
Hole-Center-to-Edge Dist., B =
                              0.6100
2ND AREA, AREATC11 = 3.7000
2ND M. INERTIA = 3.6000
2ND C.G. = 1.7750
FLAW SIZE:
c (init.) = 0.1033
MATERIAL
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            :---:
```

: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:

```
MODEL: TC11
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                            0.0000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 2
                             7.5000
Scale Factor for Stress SO:
Scale Factor for Stress S3:
                             0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                            7.5000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 4
                            7.5000
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                             0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                             3.7600
Scale Factor for Stress S3:
                             0.0000
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
                             Block Case No.
 Block Number
From
    1
    2
              2
                                     2
    3
              3
              4
                                     5
    6
              6
    7
    8
              8
    9
              9
   10
             10
   11
                                     3
             11
   12
             12
                                     5
             13
                                     1
   13
   14
             14
                                     4
   15
 BLOCK CASE NO. 1
 S : M: NUMBER
                                               s3
 T : A:
          OF
 E : T: FATIGUE P : L: CYCLES
                    :
                        (t1): (t2):
                                           (t1): (t2)
 1.90 : 0.37:
                                  0.97:
                                           -0.30:
                                                  0.30:
   1: 1:
   2: 1:
               0.09:
                         0.27:
                                   1.07:
                                           -0.40:
                                                    0.40:
   3: 1:
               0.01:
                         0.21:
                                   1.13:
                                           -0.46:
                                                     0.46:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLOCK CASE NO. 2

s:	Μ:	NUMBER	:	S0	:	S 3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:-	:-	:
1:	1:	9.57	:	0.37:	0.97:	-0.30:	0.30:
2:	1:	1.14	:	0.17:	1.17:	-0.50:	0.50:
3:	1:	0.57	:	0.07:	1.27:	-0.60:	0.60:
4:	1:	0.11	:	-0.13:	1.47:	-0.80:	0.80:
5:	1:	0.02	:	-0.33:	1.67:	-1.00:	1.00:
6:	1:	0.01	:	-0.53:	1.87:	-1.20:	1.20:
7:	1:	0.00	:	-0.73:	2.07:	-1.40:	1.40:
8:	1:	0.00	:	-0.93:	2.27:	-1.60:	1.60:
9:	1:	0.00	:	-1.13:	2.47:	-1.80:	1.80:
10:	1:	0.00	:	-1.33:	2.67:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	оск	CAS	SE NO. 3					
S	:	M:	NUMBER	:	so	:	S3	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:	:-	:-	·:-	:
	1:	1:	19.14	:	0.37:	0.97:	-0.30:	0.30:
	2:	1:	2.29	:	0.17:	1.17:	-0.50:	0.50:
	3:	1:	1.14	:	0.07:	1.27:	-0.60:	0.60:
	4:	1:	0.23	:	-0.13:	1.47:	-0.80:	0.80:
	5:	1:	0.04	:	-0.33:	1.67:	-1.00:	1.00:
	6:	1:	0.01	:	-0.53:	1.87:	-1.20:	1.20:
	7:	1:	0.00	:	-0.73:	2.07:	-1.40:	1.40:
	8:	1:	0.00	:	-0.93:	2.27:	-1.60:	1.60:
	9:	1:	0.00	:	-1.13:	2.47:	-1.80:	1.80:
3	10:	1:	0.00	:	-1.33:	2.67:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK	CAS.	E NO. 4					
s:	Μ:	NUMBER	:	S0	:	S 3	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	:-	:
1:	1:	38.29	:	0.37:	0.97:	-0.30:	0.30:
2:	1:	4.57	:	0.17:	1.17:	-0.50:	0.50:
3:	1:	2.29	:	0.07:	1.27:	-0.60:	0.60:
4:	1:	0.46	:	-0.13:	1.47:	-0.80:	0.80:
5:	1:	0.08	:	-0.33:	1.67:	-1.00:	1.00:
6:	1:	0.02	:	-0.53:	1.87:	-1.20:	1.20:
7:	1:	0.01	:	-0.73:	2.07:	-1.40:	1.40:
8:	1:	0.00	:	-0.93:	2.27:	-1.60:	1.60:
9:	1:	0.00	:	-1.13:	2.47:	-1.80:	1.80:
10:	1:	0.00	:	-1.33:	2.67:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	S 3	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		:	: -	:-	:-	:
	1:	1:	0.28	B :	1.00:	1.01:	1.00:	1.01:

2: 1:	0.44 :	0.81:	1.12:	0.81:	1.12:
3: 1:	0.22 :	0.61:	1.23:	0.61:	1.23:
4: 1:	0.06:	0.42:	1.33:	0.42:	1.33:
5: 1:	0.00:	0.22:	2.44:	0.22:	2.44:
6: 1:	0.00:	0.03:	2.55:	0.03:	2.55:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	Μ:	NUMBER	:	S 0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		:	:	:-	:	:
	1:	1:	1.90	:	2.78:	7.27:	0.00:	0.00:
	2:	1:	0.09	:	2.03:	8.03:	0.00:	0.00:
	3:	1:	0.01	:	1.58:	8.48:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE ______

S: M: NUMBER: SO : S3 T : A: OF : : (ksi) : (ksi)
P : L: CYCLES : (t1): (t2) : (t1): (t2) 1: 1: 9.57: 2.78: 7.27: 0.00: 0.00: 2: 1: 1.14: 1.28: 8.77: 0.00: 0.00: 3: 1: 0.57: 0.53: 9.53: 0.00: 0.00: 4: 1: 0.11: -0.98: 11.03: 0.00: 0.00: 5: 1: 0.02: -2.47: 12.52: 0.00: 0.00: -3.97: 14.03: 0.00: 0.00: 6: 1: 0.01: 0.00: -5.47: 15.52: 0.00: 0.00: 7: 1: 0.00: -6.98: 17.02: 0.00: 9: 1: .0: 1: 0.00: 0.00: 0.00: -8.47: 18.53: 0.00: 0.00: -9.98: 20.02: 0.00: 0.00: 10: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	s0	:	s3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	. (ksi)	:	(ksi)	:
. P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:	:-	:	:
1	l:	1:	19.14	:	2.78:	7.27:	0.00:	0.00:
2	2:	1:	2.29	:	1.28:	8.77:	0.00:	0.00:
3	3:	1:	1.14	:	0.53:	9.53:	0.00:	0.00:
4	4:	1:	0.23	:	-0.98:	11.03:	0.00:	0.00:
5	5:	1:	0.04	:	-2.47:	12.52:	0.00:	0.00:
(6:	1:	0.01	:	-3.97:	14.03:	0.00:	0.00:

7: 1:	0.00 :	-5.47:	15.52:	0.00:	0.00:
8: 1:	0.00:	-6.98:	17.02:	0.00:	0.00:
9: 1:	0.00:	-8.47:	18.53:	0.00:	0.00:
10: 1:	0.00 :	-9.98:	20.02:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s :	M:	NUMBER	:	so	:	S3	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:-	:	:
1:	1:	38.29	:	2.78:	7.27:	0.00:	0.00:
2:	1:	4.57	:	1.28:	8.77:	0.00:	0.00:
3:	1:	2.29	:	0.53:	9.53:	0.00:	0.00:
4:	1:	0.46	:	-0.98:	11.03:	0.00:	0.00:
5:	1:	0.08	:	-2.47:	12.52:	0.00:	0.00:
6:	1:	0.02	:	-3.97:	14.03:	0.00:	0.00:
7:	1:	0.01	:	-5.47:	15.52:	0.00:	0.00:
8:	1:	0.00	:	-6.98:	17.02:	0.00:	0.00:
9:	1:	0.00	:	-8.47:	18.53:	0.00:	0.00:
10:	1:	0.00	:	-9.98:	20.02:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
	M:	NUMBER	:	so	:	s 3	
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) : (t2) :	(t1) :	(t2) :
:	:-		-:	:	:	:	:
1:	1:	0.28	:	3.76:	3.80:	0.00:	0.00:
2:	1:	0.44	:	3.05:	4.21:	0.00:	0.00:
3:	1:	0.22	:	2.29:	4.62:	0.00:	0.00:
4:	1:	0.06	:	1.58:	5.00:	0.00:	0.00:
5:	1:	0.00	:	0.83:	9.17:	0.00:	0.00:
6:	1:	0.00	:	0.11:	9.59:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
200	15		0.113814	7.267272
400	15		0.124983	7.373118
600	15		0.136886	7.490825
800	15		0.149652	7.622938
1000	15		0.163447	7.772793

```
1200
            15
                            0.178492
                                                 7.945044
                            0.195092
                                                 8.146575
  1400
            15
  1600
            15
                            0.213684
                                                 8.388235
  1800
                            0.234947
            15
                                                8.688562
                                                 9.083050
  2000
                            0.260025
            15
                                                9.653017
  2200
            15
                            0.291176
            15
                           0.334237
                                                10.660162
  2400
  2600
           15
                            0.426895
                                                15.052989
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K max = 51.98 K ref = 0.000 K cr = 51.83
at the very beginning of Load Step No.
                                     10
Step description:
of Block No. 14 of Schedule No.
             c = 0.480728
Crack Size
               FATIGUE CRACK GROWTH ANALYSIS
               -----Modified by FAI-----
             DATE: 26-MAR-99 TIME: 13:13:00
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W2 SA226 MS, cracked angle WS 9
GEOMETRY
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                     0.1250
Plate Width, W = 1.7800
Hole Diameter, D = 0.2000
Hole-Center-to-Edge Dist., B =
                               0.6100
Poisson s ratio = 0.30
FLAW SIZE:
a (init.) = 0.5000E-02
c (init.) = 0.5000E-02
a/c (init.) = 1.000
MATERIAL
MATL 1:
               2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: K1e: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : :
 ; ----; -----; -----; -----; -----; -----; -----; -----; -----; -----
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
 :Matl:----- Crack Growth Eqn Constants ----:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
 FATIGUE SCHEDULE BLOCK INPUT TABLE
```

```
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                             8.8500
Scale Factor for Stress S1:
                             0.0000
Scale Factor for Stress S3:
                             0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                             8.8500
Scale Factor for Stress S1:
                             0.0000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                             0.0000
Scale Factor for Stress S3:
                             0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress SO:
                             8.8500
Scale Factor for Stress S1:
                             0.0000
Scale Factor for Stress S3:
                             0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress SO:
                             4.4500
Scale Factor for Stress S1:
                             0.0000
Scale Factor for Stress S3:
                             0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                             Block Case No.
From - To
   1
              1
   2
                                      2
   3
              3
                                      5
                                      1
   5
                                      3
    6
                                      1
   8
              8
   9
              9
  10
             10
  11
             11
                                     3
  12
             12
  13
             13
  14
             14
  15
             15
BLOCK CASE NO. 1
  : M: NUMBER
                            S0
   : A:
          OF
E : T: FATIGUE
P : L: CYCLES
                       .(t1): (t2):
                                          (t1): (t2)
·---:--
        .-----:
  1: 1:
            1.90 :
                         0.37:
                                  0.97:
                                            0.70:
                                                     1.30:
            0.09 :
0.01 :
  2: 1:
                         0.27:
                                  1.07:
                                            0.60:
                                                     1.40:
  3: 1:
                         0.21:
                                  1.13:
                                            0.54:
                                                     1.46:
S : M:
        NUMBER
                         S3
                                     :
                                              S
T : A:
         OF
E : T: FATIGUE
P : L: CYCLES :
                        (t1): (t2)
                                           (t1) : (t2)
```

::	:	:	:	:	:
1: 1:	1.90 :	0.70:	1.30:	0.00:	0.00:
2: 1:	0.09 :	0.60:	1.40:	0.00:	0.00:
3: 1:	0.01 :	0.54:	1.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): $\ensuremath{\mathtt{NOT}}$ SET

BLOCK	CAS	SE NO. 2					
s:	Μ:	NUMBER	:	so	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:	•	:
P :	L:	CYCLES	:	(t1):	(t2) :	(t1):	(t2) :
1:	:- 1:	9.57	•	0.37:	0.97:	0.70:	1.30:
	1:	1.14		0.17:	1.17:	0.50:	1.50:
3:		0.57		0.07:	1.27:	0.40:	1.60:
4:		0.11			1.47:	0.20:	1.80:
	1:	0.02			1.67:		
	1:	0.01			1.87:		
7:		0.00			2.07:		2.40:
8:		0.00		-0.93:	2.27:		2.60:
9:		0.00			2.47:		2.80:
10:		0.00		-1.33:	2.67:	-1.00:	
s:		NUMBER	:	S3	:	S	:
	Α:	OF	:		:		:
	T:		:		:		:
	L:		:	(t1) :	(t2) :	(t1) :	(t2) :
·:	:		-:-	:	:	:	:
	1:	9.57		0.70:		0.00:	0.00:
2:		1.14			1.50:	0.00:	
3:		0.57			1.60:	0.00:	0.00:
4:		0.11		0.20:	1.80:	0.00:	0.00:
5:		0.02			2.00:	0.00:	0.00:
6:		0.01			2.20:		0.00:
7:		0.00		-0.40:	2.40:		0.00:
8:		0.00			2.60:	0.00:	0.00:
9:		0.00		-0.80:	2.80:	0.00:	0.00:
10:	1:	0.00	:	-1.00:	3.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): $\ensuremath{\mathtt{NOT}}$ SET

BLOCK	CAS	E NO. 3					
s:	M:	NUMBER	:	so	:	S1	:
	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	:-	19.14	-:-	0.37:	0.97:	0.70:	1.30:
	1:	2.29		0.17:	1.17:	0.50:	1.50:
	1:	1.14		0.07:	1.27:	0.40:	1.60:
	1:	0.23		-0.13:	1.47:		1.80:
	1:	0.04		-0.33:	1.67:		2.00:
-	1:	0.01		-0.53:	1.87:		
	1:		:	-0.73:	2.07:		2.40:
	1:		:	-0.93:	2.27:		2.60:
	1:	0.00	-	-1.13:	2.47:		
10:			:	-1.33:	2.67:		
s:		NUMBER	•	S3		S	•
	Α:	OF	:			_	
	T:	FATIGUE	:				
	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	·:	:	:
1:	1:	19.14	:	0.70:	1.30:	0.00:	0.00:
2:	1:	2.29	:	0.50:	1.50:	0.00:	0.00:
3:	1:	1.14	:	0.40:	1.60:	0.00:	0.00:

4:	1:	0.23	:	0.20:	1.80:	0.00:	0.00:
5:	1:	0.04	:	0.00:	2.00:	0.00:	0.00:
6:	1:	0.01	:	-0.20:	2.20:	0.00:	0.00:
7:	1:	0.00	:	-0.40:	2.40:	0.00:	0.00:
8:	1:	0.00	:	-0.60:	2.60:	0.00:	0.00:
9:	1:	0.00	:	-0.80:	2.80:	0.00:	0.00:
10:	1:	0.00	• -	-1.00:	3 00.	0 00.	0 00 •

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK	CAS	E NO. 4					
s:	M:	NUMBER	:	S0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	•	•	:
1:	1:	38.29	:	0.37:	0.97:	0.70:	1.30:
2:	1:	4.57	:	0.17:	1.17:	0.50:	1.50:
3:	1:	2.29	:	0.07:	1.27:	0.40:	1.60:
4:	1:	0.46	:	-0.13:	1.47:	0.20:	1.80:
5:	1:	0.08	:	-0.33:	1.67:	0.00:	2.00:
6:	1:	0.02	:	-0.53:	1.87:	-0.20:	2.20:
7:	1:	0.01	:	-0.73:	2.07:	-0.40:	2.40:
8:	1:	0.00	:	-0.93:	2.27:	-0.60:	2.60:
9:	1:			-1.13:			2.80:
10:	1:	0.00	:	-1.33:	2.67:	-1.00:	3.00:
s:	Μ:	NUMBER	:	s3	:	S	:
т:		OF	:		:		:
E :		FATIGUE			:		:
		CYCLES	:				
		38.29	-:-	•	1 20.	•	•
	1:	4.57			1.50:		0.00:
	1:	2.29					
-	1:	0.46	:	0.40:	1.00:	0.00:	0.00:
	1:			0.00:			
	1:	0.02				0.00:	
7:		0.01			2.40:		0.00:
	1:	0.00				0.00:	
	1:	0.00				0.00:	
	1:	0.00			3.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLO	оск	CAS	E NO. 5					
S	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.12:	0.81:	1.12:
	3:	1:	0.22	:	0.61:	1.23:	0.61:	1.23:
	4:	1:	0.06	:	0.42:	1.33:	0.42:	1.33:
	5:	1:	0.00	:	0.22:	2.44:	0.22:	2.44:
	6:	1:	0.00	:	0.03:	2.55:	0.03:	2.55:
S	:	Μ:	NUMBER	:	. S 3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P			CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-	:-		-:-	:-	:-	:-	:
		1:					0.00:	
		1:	0.44		0.81:	1.12:	0.00:	
		1:	0.22	-		1.23:	0.00:	
	4:	1:	0.06	:	0.42:	1.33:	0.00:	0.00:

5: 1: 0.00: 0.22: 2.44: 0.00: 0.00: 6: 1: 0.00: 0.03: 2.55: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)		•					
S	:	Μ:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
	:	:-		:-	: - -	:	:-	:
	1:	1:	1.90	:	3.27:	8.58:		0.00:
	2:	1:	0.09	:	2.39:	9.47:	0.00:	0.00:
	3:	1:	0.01	:	1.86:	10.00:	0.00:	0.00:
S	:	M:	NUMBER	:	s3	:	S	:
Т	:	A:	OF	:				:
Е	:	T:	FATIGUE	:	(ksi)	:	(ksi	.) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	0.00	0 00:	0.00:
		1:	1.90		0.00:	0.00:		•
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S0 : S1
T : A: OF : :
E : T: FATIGUE : (ksi) : (ksi)
P : L: CYCLES : (t1): (t2) : (t1): (t2) ____;__;__.__;____;____;____;____;____;
 1: 1:
 9.57:
 3.27:
 8.58:
 0.00:
 0.00:

 2: 1:
 1.14:
 1.50:
 10.35:
 0.00:
 0.00:

 3: 1:
 0.57:
 0.62:
 11.24:
 0.00:
 0.00:
 1.50: 10.35: 0.00: 0.00: 0.62: 11.24: 0.00: 0.00: -1.15: 13.01: 0.00: 0.00: 0.11: 4: 1: 0.02 : -2.92 : 14.78 : 0.00 : 0.01 : -4.69 : 16.55 : 0.00 : 0.00 : -6.46 : 18.32 : 0.00 : 0.00: 5: 1: 0.00: 6: 1: 7: 1: 0.00: 0.00: 8: 1: 0.00: 9: 1: 0.00: 10: 1: 0.00: -8.23: 20.09: 0.00: 0.00: -10.00: 21.86: -11.77: 23.63: 0.00: 0.00: 0.00: 0.00: \$3 S : M: NUMBER : S : : T : A: OF E : T: FATIGUE : (ksi) : (ksi)
P : L: CYCLES : (t1): (t2) : (t1): (t2) 9.57: 0.00: 0.00: 0.00: 1.14: 0.00: 0.00: 0.00: 0.57: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 1: 1: 2: 1: 3: 1: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.11: 0.00: 4: 1: 0.00: 5: 1: 0.02: 0.00: 0.00: 0.00: 0.00: 6: 1: 0.01:

 0.00 :
 0.00:
 0.00:
 0.00:
 0.00:

 0.00 :
 0.00:
 0.00:
 0.00:
 0.00:

 0.00 :
 0.00:
 0.00:
 0.00:
 0.00:

 0.00 :
 0.00:
 0.00:
 0.00:
 0.00:

 0.00 :
 0.00:
 0.00:
 0.00:
 0.00:

 7: 1: 8: 1: 9: 1: 10: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							•
s:	M :	NUMBER	:	s0	:	\$1	:
т:	A:	OF	:		:		:
E :	Т:	FATIGUE	:	(ksi) :	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		:-	:	:	:-	:
	1:			3.27:			
	1:	2.29					
	1:					0.00:	
	1:			-1.15:			0.00:
5:	1:	0.04	:	-2.92:	14.78:	0.00:	0.00:
6:	1:	0.01	:	-4.69:	16.55:	0.00:	0.00:
7:	1:	0.00	:	-6.46:	18.32:	0.00:	0.00:
8:	1:			-8.23:		0.00:	0.00:
9:	1:	0.00	:	-10.00:	21.86:	0.00:	0.00:
10:	1:					0.00:	0.00:
s:	M:	NUMBER	:	s3	:	s	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi) :	(ksi) :
P :	L:	CYCLES				(t1) :	(t2) :
•	:-		:-	:-	•	:-	•
	1:	19.14					
	1:					0.00:	
3:		1.14			0.00:		
	1:					0.00:	
5:					0.00:		
6:		0.01			0.00:		
7:	1:			0.00:			
8:	1:				0.00:		
	1:	0.00				0.00:	
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): $\ensuremath{\mathsf{NOT}}$ SET

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
s	:	М:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:	•	•		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1	:-	1:	38.29	-:- :	3.27:	8.58:	0.00:	0.00:
2	:	1:	4.57	:	1.50:	10.35:	0.00:	0.00:
3	:	1:	2.29	:	0.62:	11.24:	0.00:	0.00:
4	:	1:	0.46	:	-1.15:	13.01:	0.00:	0.00:
5	:	1:	0.08	:	-2.92:	14.78:	0.00:	0.00:
6	:	1:	0.02	:	-4.69:	16.55:	0.00:	0.00:
7	:	1:	0.01	:	6.46:	18.32:	0.00:	0.00:
8	:	1:	0.00	:	-8.23:	20.09:	0.00:	0.00:
9	:	1:	0.00	:	-10.00:	21.86:	0.00:	0.00:
10	:	1:	0.00	:	-11.77:	23.63:	0.00:	0.00:
S	:	Μ:	NUMBER	:	\$3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :

1:	1:	38.29 :	0.00:	0.00:	0.00:	0.00:
2:	1:	4.57:	0.00:	0.00:	0.00:	0.00:
3:	1:	2.29:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.46 :	0.00:	0.00:	0.00:	0.00:
5:	1:	0.08:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.02:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.01:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W2 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STE)							
S	:	M:	NUMBER	:	s0	:	S1	:
T	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi) :	(ksi) :
			CYCLES				(t1) :	(t2) :
	•	:-		•	:-		:-	:
	1:	1:			4.45:			
	2:	1:	0.44	:	3.60:	4.98:	0.00:	0.00:
	3:	1:	0.22	:	2.71:	5.47:	0.00:	0.00:
	4:	1:	0.06	:	1.87:	5.92:	0.00:	0.00:
	5:	1:	0.00	:	0.98:	10.86:	0.00:	0.00:
	6:	1:	0.00	:	0.13:	11.35:	0.00:	0.00:
S	:	M:	NUMBER	:	\$3	:	S	:
		A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi) :
P			CYCLES				(t1) :	
	-	:-		•	:-	•	:-	-
			0.28					
	2:	1:	0.44	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.22	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.06	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W2

MODEL: CC02

ANALYSIS RESULTS:

Block Schdl Final Flaw Size K max Step С a-tip c-tip 200 15 0.005072 0.005061 2.800699 2.733908 400 15 0.005146 0.005124 2.818071 2.751992 0.005223 600 15 0.005190 2.835961 2.770468 800 . 15 0.005303 0.005258 2.854383 2.789353 1000 0.005329 15 0.005385 2.873356 2.808664 1200 15 0.005470 0.005403 2.892895 2.828420 1400 15 0.005559 0.005480 2.913021 2.848640 1600 15 0.005650 0.005559 2.933753 2.869342 1800 15 0.005745 0.005642 2.955112 2.890548 2000 15 0.005844 0.005728 2.977120 2.912279 2200 15 0.005946 0.005818 2.999805 2.934576 3.023192 2400 0.006053 0.005911 2.957456

2600	15	0.006163	0.006008	3.047306	2.980940
2800	15	0.006279	0.006109	3.072178	3.005053
3000	15	0.006399	0.006214	3.097840	3.029820
3200	15	0.006524	0.006324	3.124338	3.055266
3400	15	0.006654	0.006439	3.151699	3.081423
3600	15	0.006791	0.006559	3.179959	3.108322
3800	15	0.006933	0.006684	3.209153	3.135999
4000	15	0.007082	0.006815	3.239322	3.164488
4200	15	0.007239	0.006952	3.270510	3.193826
4400	15	0.007402	0.007095	3.302763	3.224052
4600	15	0.007574	0.007246	3.336129	3.255208
4800	15	0.007754	0.007403	3.370659	3.287336
5000	15	0.007943	0.007568	3.406410	3.320483
5200	15	0.008142	0.007742	3.443440	3.354698
5400	15	0.008351	0.007924	3.481812	3.390031
5600	15	0.008572	0.008116	3.521591	3.426535
5800	15	0.008805	0.008318	3.562850	3.464269
6000	15	0.009052	0.008530	3.605662	3.503292
6200	15	0.009317	0.008755	3.650212	3.544617
6400	15	0.009618	0.008993	3.697039	3.591279
6600	15	0.009949	0.009247	3.746252	3.641766
6800	15	0.010311	0.009522	3.798556	3.695491
7000	15	0.010706	0.009839	3.857354	3.751472
7200	15	0.011140	0.010194	3.921492	3.810499
7400	15	0.011617	0.010587	3.990732	3.872996
7600	15	0.012143	0.011020	4.065176	3.939292
7800	15	0.012724	0.011498	4.145059	4.009705
8000	15	0.013368	0.012026	4.230699	4.084562
8200	15	0.014084	0.012610	4.322475	4.164210
8400	15	0.014882	0.013257	4.420821	4.249017
8600	15	0.015776	0.013975	4.526222	4.339378
8800	15	0.016781	0.014775	4.639208	4.435713
9000	15	0.017915	0.015669	4.760352	4.538473
9200	15	0.019198	0.016670	4.890268	4.648139
9400	15	0.020658	0.017795	5.029599	4.765230
9600	15	0.022325	0.019065	5.179013	4.890304
9800	15	0.024238	0.020503	5.339194	5.023978
10000	15	0.026441	. 0.022137	5.510827	5.166942
MODEL CCO:	,				

ANALYSIS RESULTS (contd.)

Schdl	Block	Final F	'law Size	K m	ax
	Step	a	С	a-tip	c-tip
10200	15	0.028990	0.024002	5.694594	5.320002
10200	15	0.028990	0.024002	5.694594	5.320002
10400	15	0.031951	0.026141	5.891161	5.484143
10600	15	0.035405	0.028603	6.101197	5.660643
10800	15	0.039450	0.031454	6.325396	5.851208
11000	15	0.044207	0.034775	6.564558	6.058265
11200	15	0.049820	0.038672	6.819720	6.285405
11400	15	0.056471	0.043288	7.092384	6.538069
11600	15	0.064387	0.048826	7.384928	6.824691
11800	15	0.073861	0.055588	7.701233	7.158731
12000	15	0.085283	0.064056	8.047567	7.562384
12200	15	0.099198	0.075067	8.433694	8.073713
12400	15	0.116401	0.090237	8.872075	8.760538

Transition to 1-d solution, TCO3: $a = 0.1250 \qquad t = 0.1250$ at Cycle No. $1.14 \quad \text{of Load Step No.} \qquad 3$ Step description: of Block No. $5 \quad \text{of Schedule No.} \qquad 12486$

Crack Size: c = 0.987142E-01, a/c = 1.26630

Schedl Block Final Flaw Size K max

	Step	С	c-tip
12600	15	0.112253	8.860408
12800	15	0.139087	9.243139
13000	15	0.171870	9.763985
13200	15	0.214869	10.550093
13400	15	0.280760	12.078710

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or (b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 10 Step description: of Block No. 2 of Schedule No. 13532 Crack Size c = 0.372515

FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 10 Step description: of Block No. 8 of Schedule No. 13542 Crack Size c = 0.387877

C-3 PSE W3 SA226 Rear Spar Lower Cap at WS 27

```
FATIGUE CRACK GROWTH ANALYSIS
               -----Modified by FAI-----
              DATE: 31-MAR-99 TIME: 08:39:28
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
       U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W3 SA226 RS, cracked angle WS 27 (N
GEOMETRY
-----
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                     0.1250
Plate Width, W \cdot = 1.2500
Hole Diameter, D = 0.2500
Hole-Center-to-Edge Dist., B =
                              0.6100
Poisson s ratio = 0.30
FLAW SIZE:
a (init.) = 0.5000E-01
c (init.) = 0.5000E-01
a/c (init.) = 1.000
MATERIAL
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress SO:
                           5.2200
Scale Factor for Stress S1:
                         0.0000
Scale Factor for Stress S3: 6.1200
Stress Scaling Factors for Block Case: 2
```

```
Scale Factor for Stress S0:
                             5.2200
Scale Factor for Stress S1:
                             0.0000
Scale Factor for Stress S3:
                             6.1200
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                             5.2200
Scale Factor for Stress S1:
                             6.1200
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                             5.2200
Scale Factor for Stress S1:
                             0.0000
                            6.1200
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                            0.0000
                            1.9900
Scale Factor for Stress S3:
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
                             Block Case No.
 Block Number
From -
   1
              1
                                     1
                                     2
   2
              2
    3
                                     1
              4
    5
              5
    6
              6
              8
    8
   9
              9
   10
             10
             11
   11
   12
             12
             13
   13
   14
             14
             15
BLOCK CASE NO. 1
 S : M: NUMBER
T : A: OF
                                   . :
 E : T: FATIGUE
 P : L: CYCLES :
                         (t1): (t2):
                                          (t1): (t2)
 ----:--:--:-
   1: 1: 1.90:
                                   0.98:
                                           0.70:
                         0.38:
           0.09:
                         0.28:
                                   1.08:
                                            0.60:
                                                     1.40:
   2: 1:
               0.01:
                         0.22:
                                   1.14:
                                            0.54:
                                                     1.46:
   3: 1:
   : M: NUMBER :
                          S3
                                             S
 T : A: OF
 E : T: FATIGUE
                  :
                         (t1) : (t2) :
 P : L: CYCLES
                   :
                                           (t1): (t2)
 ---:--:--:-
                          0.38:
                                   0.98:
                                            0.00:
                                                     0.00:
   1: 1: 1.90:
               0.09:
                          0.28:
                                   1.08:
                                            0.00:
                                                     0.00:
   2: 1:
               0.01:
                          0.22:
                                   1.14:
                                            0.00:
                                                     0.00:
   3: 1:
Environmental Crack Growth Check for Sustained Stresses
 (Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
 S : M: NUMBER
                            S0
                                               S1
 T : A:
          OF
```

E : T: FATIGUE

C-3 PSE W3 SA226 Rear Spar Lower Cap at WS 27 (Continued)

P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	9.57	:	0.38:	0.98:	0.70:	1.30:
	1:	1.14			1.18:	0.50:	
3:		0.57		0.08:	1.28:	0.40:	
4:	1:	0.11	:		1.48:	0.20:	
5:	1:	0.02	:	-0.32:	1.68:	0.00:	2.00:
6:	1:	0.01	:	-0.52:	1.88:	-0.20:	2.20:
7:	1:	0.00	:	-0.72:	2.08:	-0.40:	2.40:
8:	1:	0.00	:	-0.92:	2.28:	-0.60:	2.60:
9:	1:	0.00	:	-1.12:	2.48:	-0.80:	2.80:
10:		0.00	:	-1.32:	2.68:	-1.00:	3.00:
s:		NUMBER	:	s3	:	S	:
т:	Α:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
E : P :	T: L:	FATIGUE CYCLES	:	(t1) :	: (t2) :	(t1):	: (t2) :
E : P :	T: L:	FATIGUE CYCLES	:-	:-	:	:-	:
E: P: : 1:	T: L: :-	FATIGUE CYCLES 9.57	· : - :	0.38:	0.98:	0.00:	0.00:
E: P: : 1: 2:	T: L: :- 1:	FATIGUE CYCLES 9.57	- : - : :	0.38: 0.18:	0.98:	0.00: 0.00:	0.00:
E: P: : 1: 2: 3:	T: L: :- 1: 1:	FATIGUE CYCLES 	·:- : :	0.38: 0.18: 0.08:	0.98: 1.18: 1.28:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
E: P: : 1: 2: 3: 4:	T: L: :- 1: 1: 1:	FATIGUE CYCLES 9.57 1.14 0.57 0.11	- : - : : :	0.38: 0.18: 0.08: -0.12:	0.98: 1.18: 1.28: 1.48:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
E:P::-:::::::::::::::::::::::::::::::::	T: L: :- 1: 1: 1: 1:	FATIGUE CYCLES 9.57 1.14 0.57 0.11 0.02	·:- :	0.38: 0.18: 0.08: -0.12: -0.32:	0.98: 1.18: 1.28: 1.48: 1.68:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
E: P: : 1: 2: 3: 4: 5:	T: L: :- 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01	:	0.38: 0.18: 0.08: -0.12: -0.32: -0.52:	0.98: 1.18: 1.28: 1.48: 1.68: 1.88:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
E:P::1::2:3::4::5::6:7:	T: L: :- 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00	:	0.38: 0.18: 0.08: -0.12: -0.32: -0.52: -0.72:	0.98: 1.18: 1.28: 1.48: 1.68: 1.88: 2.08:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
E:P::1::2:3::4::5::6:7:8:	T: L: :- 1: 1: 1: 1: 1: 1:	FATIGUE CYCLES 9.57 1.14 0.57 0.11 0.02 0.01 0.00 0.00	: : : : : : : : : : : : : : : : : : : :	0.38: 0.18: 0.08: -0.12: -0.32: -0.52: -0.72: -0.92:	0.98: 1.18: 1.28: 1.48: 1.68: 1.88: 2.08:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
E:P::1::2:3::4::5::6:7:8:	T: L: :- 1: 1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00	:	0.38: 0.18: 0.08: -0.12: -0.32: -0.52: -0.72: -0.92: -1.12:	0.98: 1.18: 1.28: 1.48: 1.68: 1.88: 2.08:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLOCK	CA	SE NO. 3					
s:	M:	NUMBER	:	S0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	1:	10 11	-:-	0.38:		0.70.	1.30:
	1:				1.18:		1.50:
	1:					0.40:	1.60:
	1:	0.23				0.20:	
	1:	0.04				0.00:	
6:		0.01			1.88:		2.20:
7:		0.00			2.08:		2.40:
8:				-0.92:			2.40:
9:						-0.80:	
	1:					-1.00:	
s :		NUMBER	:	S3	2.00:	s	3.00.
T :		OF	:		÷	٥	:
E :			•		•		:
P :				(t1) :	(t2) :	(t1) :	(t2) :
:	:	-	-:-	:-	:	:-	:
1:	1:	19.14	:	0.38:	0.98:	0.00:	0.00:
2:	1:	2.29	:	0.18:	1.18:	0.00:	0.00:
3:	1:	1.14	:	0.08:	1.28:	0.00:	0.00:
4:	1:	0.23	:	-0.12:	1.48:	0.00:	0.00:
5:	1:	0.04	:	-0.32:	1.68:	0.00:	0.00:
	1:					0.00:	0.00:
7:				-0.72:			0.00:
8:		0.00				0.00:	0.00:
	1:			-1.12:		0.00:	0.00:
10:	1:	0.00	:	-1.32:	2.68:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLOCK CASE NO. 4

	M:	NUMBER	:	S0	:	S1	:
	A:	OF	:		:		:
	T:	FATIGUE	:	151	(+0)	/±1\ .	(+2)
P :	L:	CYCLES	:	(£1):	(12)	(t1):	(12)
1:	1:	38.29	:	0.38:	0.98:	0.70:	1.30:
2:		4.57		0.18:	1.18:	0.50:	1.50:
3:		2.29	:	0.08:	1.28:	0.40:	1.60:
4:		0.46		-0.12:	1.48:	0.20:	1.80:
5:	1:	0.08	:	-0.32:	1.68:	0.00:	2.00:
6:	1:	0.02	:	-0.52:	1.88:	-0.20:	2.20:
7:	1:	0.01	:	-0.72:	2.08:	-0.40:	2.40:
8:	1:	0.00	:	-0.92:	2.28:	-0.60:	2.60:
9:	1:	0.00	:	-1.12:	2.48:	-0.80:	2.80:
10:	1:	0.00	:	-1.32:	2.68:	-1.00:	3.00:
s :	M:	NUMBER	:	S 3	:	S	:
	M: A:	NUMBER OF	: :	S 3	:	S	. :
T:			: :	\$3	: :	S	:
T : E :	A:	OF FATIGUE	: : : :		: : : .(t2)	-	: : (t2) :
T : E : P :	A: T: L:	OF FATIGUE CYCLES	:	(t1):	:-	(t1) :	:
T: E: P: :	A: T: L: :-	OF FATIGUE CYCLES 38.29		(t1): 	0.98:	(t1): :- 0.00:	0.00:
T: E: P: : 1: 2:	A: T: L: :- 1:	OF FATIGUE CYCLES 38.29 4.57	:	(t1): 	0.98: 1.18:	(t1) : 	0.00:
T : E : P : : 1: 2: 3:	A: T: L: :- 1: 1:	OF FATIGUE CYCLES 38.29 4.57 2.29	:	(t1): 	0.98: 1.18: 1.28:	(t1): : 0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
T: E: P: : 1: 2: 3: 4:	A: T: L: 1: 1:	OF FATIGUE CYCLES 38.29 4.57 2.29 0.46	::	(t1): 0.38: 0.18: 0.08: -0.12:	0.98: 1.18: 1.28: 1.48:	(t1): 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
T: E: P: : 1: 2: 3: 4: 5:	A: T: L: :- 1: 1: 1:	OF FATIGUE CYCLES 38.29 4.57 2.29 0.46 0.08	: : : : :	(t1): ::- 0.38: 0.18: 0.08: -0.12: -0.32:	0.98: 1.18: 1.28: 1.48: 1.68:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: : 1: 2: 3: 4: 5:	A: T: L: 1: 1: 1: 1:	OF FATIGUE CYCLES 38.29 4.57 2.29 0.46 0.08 0.02	: : : : : : : : : : : : : : : : : : : :	(t1): 0.38: 0.18: 0.08: -0.12: -0.32: -0.52:	0.98: 1.18: 1.28: 1.48: 1.68: 1.88:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T : E : P : 1: 2: 3: 4: 5: 6: 7:	A: T: L: 1: 1: 1: 1:	OF FATIGUE CYCLES 38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	(t1):	0.98: 1.18: 1.28: 1.48: 1.68: 1.88: 2.08:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: 1: 2: 3: 4: 5: 6: 7: 8:	A: T: L: 1: 1: 1: 1: 1:	OF FATIGUE CYCLES 38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	(t1):	0.98: 1.18: 1.28: 1.48: 1.68: 1.88: 2.08: 2.28:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: 1: 2: 3: 4: 5: 6: 7: 8:	A: T: L: 1: 1: 1: 1: 1: 1:	OF FATIGUE CYCLES 38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	(t1):	0.98: 1.18: 1.28: 1.48: 1.68: 1.88: 2.08:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

S T E	:	M: A: T:	E NO. 5 NUMBER OF FATIGUE CYCLES	: : : : : : : : : : : : : : : : : : : :	s0 (t1) :	: : : (t2) :	(t1) :	: : : (t2) :
	-	1:				1.01:		
	2:	1:	0.44	:	0.75:	1.23:	0.75:	1.23:
	3:	1:	0.22	:	0.50:	1.46:	0.50:	1.46:
	4:	1:	0.06	:	0.26:	1.69:	0.26:	1.69:
	5:	1:	0.00	:	0.01:	1.92:	0.01:	1.92:
	6:	1:	0.00	:	-0.24:	2.14:	-0.24:	2.14:
s	:	M:	NUMBER	:	\$3	:	s	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	r:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
	1.	:- 1:	0.28	•	1.00:	1.01:	0.00:	0.00:
						1.23:		
		1:	0.44					
		1:	0.22		0.50:	1.46:		
		1:	0.06		0.26:	1.69:		0.00:
	5:	1:	0.00	:	0.01:	1.92:	0.00:	0.00:
	6:	1:	0.00	:	-0.24:	2.14:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W3 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

S: M: NUMBER : S0 : S1 :

T E P	:	A: T: L:	OF FATIGUE CYCLES	:	(ksi (t1) :	:) : (t2) :	(ksi (t1) :	:) : (t2) :
	:	:		-:	1 00	:	:-	:
	Τ:	1:	1.90	:	1.98:	5.12:	0.00:	0.00:
	2:	1:	0.09	:	1.46:	5.64:	0.00:	0.00:
	3:	1:	0.01	:	1.15:	5.95:	0.00:	0.00:
s	:	M:	NUMBER	:	S3	:	S	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:	:	:-	:-	:
	1:	1:	1.90	:	2.33:	6.00:	0.00:	0.00:
	2:	1:	0.09	:	1.71:	6.61:	0.00:	0.00:
	3:	1:	0.01	:	1.35:	6.98:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W3

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
S	: M:	NUMBER	:	S0	:	S1	:
T	: A:	OF	:		:		:
E	т:	FATIGUE	:	(ksi	.) :	(ksi	.) :
P	. L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::	0.57	-:-	:-	·:	:-	:
	: 1:			1.98:	5.12:	0.00:	0.00:
2:			:		6.16:	0.00:	0.00:
3:	-		:		6.68:	0.00:	0.00:
_	: 1:				7.73:	0.00:	0.00:
5			•	-1.67:	8.77:	0.00:	0.00:
6			:	-2.71:	9.81:	0.00:	0.00:
7 :			:	-3.76:		0.00:	0.00:
8 :			:	-4.80:	11.90:	0.00:	0.00:
9:	: 1:	0.00	:	-5.85:	12.95:	0.00:	0.00:
10:	: 1:	0.00	:	-6.89:	13.99:	0.00:	0.00:
S :	: M:	NUMBER	:	S3	:	S	:
T :	: A:	OF	:		:		:
E :	т:	FATIGUE	:	(ksi	.) :	(ksi	.) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:		-:-	:-	:	:-	:
	1:			2.33:			
	1:				7.22:	0.00:	0.00:
3:		0.57		0.49:	7.83:	0.00:	0.00:
4:		0.11	:	-0.73:	9.06:	0.00:	0.00:
5:		–	:		10.28:	0.00:	0.00:
6:	1:	0.01	:	-3.18:	11.51:	0.00:	0.00:
7:	1:	0.00	:	-4.41:	12.73:	0.00:	0.00:
8:	1:	0.00	:	-5.63:	13.95:	0.00:	0.00:
9:	1:	0.00	:	-6.85:	15.18:	0.00:	0.00:
10:	1:	0.00	:	-8.08:	16.40:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W3 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S	: M:	NUMBER	:	s0	:	S1	:
T	: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi)	:	(ksi)	:
₽	: L:	CYCLES	:	(± 1) : (± 2)		(±1) • (±2)	

:-	:-		· :	:	:-	:	:
1:	1:	19.14	:	1.98:	5.12:	0.00:	0.00:
2:	1:	2.29	:	0.94:	6.16:	0.00:	0.00:
3:		1.14	:	0.42:	6.68:	0.00:	0.00:
4:	1:	0.23	:	-0.63:	7.73:	0.00:	0.00:
5:	1:	0.04	:	-1.67:	8.77:	0.00:	0.00:
6:	1:	0.01	:	-2.71:	9.81:	0.00:	0.00:
7:	1:	0.00	:	-3.76:	10.86:	0.00:	0.00:
8:	1:	0.00	:	-4.80:	11.90:	0.00:	0.00:
9:	1:	0.00	:	-5.85:	12.95:	0.00:	0.00:
10:	1:	0.00	:	-6.89:	13.99:	0.00:	0.00:
s:	M:	NUMBER	:	S3	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi) :	(ksi) :
	T: L:	FATIGUE CYCLES	:	(ksi (t1) :		•) : (t2) :
P:	L: :-	CYCLES	: : -:-	(t1):	(t2) :	(t1):	(t2) :
P: :	L: :- 1:	CYCLES 		(t1): 2.33:	(t2) : :- 6.00:	(t1): 	(t2): : 0.00:
P: : 1: 2:	L: :- 1: 1:	CYCLES 19.14 2.29	:	(t1): :- 2.33: 1.10:	(t2): :- 6.00: 7.22:	(t1): :- 0.00: 0.00:	(t2): : 0.00: 0.00:
P: : 1: 2: 3:	L: 1: 1: 1:	19.14 2.29 1.14	:	(t1): :- 2.33: 1.10: 0.49:	(t2) : :- 6.00: 7.22: 7.83:	(t1): :- 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00:
P: : 1: 2: 3: 4:	L: 1: 1: 1: 1:	19.14 2.29 1.14 0.23	: :	(t1): 2.33: 1.10: 0.49: -0.73:	(t2) : 6.00: 7.22: 7.83: 9.06:	(t1): : 0.00: 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00: 0.00:
P: : 1: 2: 3: 4: 5:	L: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04	: :	(t1): ::- 2.33: 1.10: 0.49: -0.73: -1.96:	(t2)::- 6.00: 7.22: 7.83: 9.06: 10.28:	(t1): : 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : : 0.00: 0.00: 0.00: 0.00: 0.00:
P:: 1: 2: 3: 4: 5:	L: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : : : :	(t1): 2.33: 1.10: 0.49: -0.73: -1.96: -3.18:	(t2):: 6.00: 7.22: 7.83: 9.06: 10.28: 11.51:	(t1): : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P:: 1: 2: 3: 4: 5: 6: 7:	L: 1: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : : : : : : : : : : : : : : : : : : :	(t1): 2.33: 1.10: 0.49: -0.73: -1.96: -3.18: -4.41:	(t2):	(t1): 	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P: : 1: 2: 3: 4: 5: 6: 7:	L: 1: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01 0.00	: : : : : : : : : : : : : : : : : : : :	(t1): 2.33: 1.10: 0.49: -0.73: -1.96: -3.18: -4.41: -5.63:	(t2): 6.00: 7.22: 7.83: 9.06: 10.28: 11.51: 12.73: 13.95:	(t1):	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P:: 1: 2: 3: 4: 5: 6: 7:	L: 1: 1: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : : : : :	(t1): 2.33: 1.10: 0.49: -0.73: -1.96: -3.18: -4.41:	(t2):	(t1): 	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W3

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD						
S : M:	NUMBER	:	so	:	S1	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:	(ksi)	:	(ksi)	:
P : L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
1: 1:	38.29	: -	1.98:	5.12:	0.00:	0.00:
2: 1:	4.57		0.94:	6.16:	0.00:	0.00:
3: 1:	2.29	:	0.42:	6.68:	0.00:	0.00:
4: 1:	0.46	:	-0.63:	7.73:	0.00:	0.00:
5: 1:	0.08	:	-1.67:	8.77:	0.00:	0.00:
6: 1:	0.02	:	-2.71:	9.81:	0.00:	0.00:
7: 1:	0.01	:	-3.76:	10.86:	0.00:	0.00:
8: 1:	0.00	:	-4.80:	11.90:	0.00:	0.00:
9: 1:	0.00	:	-5.85:	12.95:	0.00:	0.00:
10: 1:	0.00	:	-6.89:	13.99:	0.00:	0.00:
S : M:	NUMBER	:	S 3	:	S	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:	(ksi)	:	(ksi	:
P : L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
1: 1:	38.29	-:- :	2.33:	6.00:	0.00:	0.00:
2: 1:	4.57	:	1.10:	7.22:	0.00:	0.00:
3: 1:	2.29	:	0.49:	7.83:	0.00:	0.00:
4: 1:	0.46	:	-0.73:	9.06:	0.00:	0.00:
5: 1:	0.08	:	1.96:	10.28:	0.00:	0.00:
6: 1:	0.02	:	-3.18:	11.51:	0.00:	0.00:
7: 1:	0.01	:	-4.41:	12.73:	0.00:	0.00:
8: 1:	0.00	:	-5.63:	13.95:	0.00:	0.00:
9: 1:	0.00	:	-6.85:	15.18:	0.00:	0.00:
10: 1:	0.00	:	-8.08:	16.40:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W3

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI S T E P	:	M: A: T: L:	NUMBER OF FATIGUE CYCLES	: : : :	S0 (ksi) (t1) :		S1 (ksi (t1) :	:
S T E	2: 3: 4: 5: 6:	1: 1: 1: 1: 1: 1: M: A: T: L:	0.44 0.22 0.06 0.00 0.00 NUMBER OF FATIGUE	: : : : : : : : : : : : : : : : : : : :		2.09: 2.48: 2.87: 3.26: 3.64:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: :
	2: 3: 4: 5:	1: 1: 1: 1: 1: 1:	0.28 0.44 0.22 0.06 0.00	: : :	1.49: 0.99:	2.45: 2.91: 3.36: 3.82:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W3

MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final F	law Size	K max		
	Step	a	С	a-tip	c-tip	
200	15	0.058256	0.052979	4.010170	3.270166	
400	15	0.067463	0.057026	4.116178	3.484762	
600	15	0.077850	0.062354	4.238133	3.698723	
800	15	0.089740	0.069284	4.379787	3.925557	
1000	15	0.103582	0.078362	4.544698	4.183285	
1200	15	0.119998	0.090583	4.736509	4.497848	

Transition to 1-d solution, TC03:

a = 0.1250 t = 0.1250

at Cycle No.

1.14 of Load Step No.

Step description: of Block No.

5 of Schedule No. 1255

Crack Size: c = 0.946588E-01, a/c = 1.32055

Schedl Final Flaw Size Block K max Step c-tip С 0.103752 1400 15 4.099436 1600 15 0.116641 4.139150 1800 0.130101 15 4.186139 2000 15 0.144268 4.242312 2200 15 0.159323 4.309948 2400 15 0.175507 4.392180 0.193165 2600 15 4.493743 2800 15 0.212804 4.622413

0.235248

4.792262

3000

15

```
5.032667
                          0.262001
  3200
           15
  3400
           15
                          0.296423
                                              5.421829
                          0.350306
                                              6.326747
           15
  3600
ADVISORY: Net-section stress > Yield and failure is imminent
(Unless (a) UTS > 2 YS, or
(b) KIC/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.)
at the very beginning of Load Step No. 10
Step description:
of Block No. 14 of Schedule No. Crack Size c = 0.370969
FINAL RESULTS:
Net-section stress exceeds the Flow stress.
(Flow stress = average of yield and ultimate)
at the very beginning of Load Step No. 10
Step description:
of Block No. 2 of Schedule No.
Crack Size c = 0.380291
              FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
             DATE: 31-MAR-99 TIME: 09:21:14
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 11, PSE-W3 SA226 RS, cracked angle WS 27
GEOMETRY
MODEL: TC11-Corner crack in plate or bar (2D)
                   0.1250
Plate Thickness, t =
" Width, W = 1.2500
Hole Diameter, D = 0.2500
Hole-Center-to-Edge Dist., B =
                             0.6100
2ND AREA, AREATC11 = 0.8300
2ND M. INERTIA = 0.1460
2ND C.G. = -0.5200
FLAW SIZE:
c (init.) = 0.9466E-01
MATERIAL
              2014T6511 EXTRUSION T-L
Material Properties:
 :Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
 : 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
 :Matl:----- Crack Growth Eqn Constants -----:
```

```
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC11
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress SO:
Scale Factor for Stress S3:
                              6.1200
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                              5.2200
Scale Factor for Stress S3:
                              6.1200
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                              5.2200
Scale Factor for Stress S3:
                              6.1200
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                              5.2200
Scale Factor for Stress S3:
                              6.1200
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                              1.7000
Scale Factor for Stress S3:
                              1.9900
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
Block Number
                              Block Case No.
From

    To

              1
    2
              2
                                      2
    3
              3
                                      5
                                      1
   5
                                      5
              7
                                      1
   8
              8
   9
              9
                                      5
   10
             10
                                      1
   11
   12
             12
   13
             13
                                      1
   14
             14
   15
             15
BLOCK CASE NO. 1
S : M: NUMBER
                                                S3
   : A:
          OF
E : T:
         FATIGUE
P : L: CYCLES
                   :
                       .(t1): (t2)
                                            (t1): (t2)
1.90 :
  1: 1:
                         0.38:
                                   0.98:
                                             0.38:
                                                      0.98:
               0.09:
  2: 1:
                         0.28:
                                   1.08:
                                             0.28:
                                                       1.08:
               0.01:
                         0.22:
                                   1.14:
                                             0.22:
                                                      1.14:
```

C-172

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

BLO	OCK	CAS	E NO, 2					
s	:	M:	NUMBER	:	S0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	9.57	:	0.38:	0.98:	0.38:	0.98:
	2:	1:	1.14	:	0.18:	1.18:	0.18:	1.18:
	3:	1:	0.57	:	0.08:	1.28:	0.08:	1.28:
	4:	1:	0.11	:	-0.12:	1.48:	-0.12:	1.48:
	5:	1:	0.02	:	-0.32:	1.68:	-0.32:	1.68:
	6:	1:	0.01	:	-0.52:	1.88:	-0.52:	1.88:
	7:	1:	0.00	:	-0.72:	2.08:	-0.72:	2.08:
	8:	1:	0.00	:	-0.92:	2.28:	-0.92:	2.28:
	9:	1:	0.00	:	-1.12:	2.48:	-1.12:	2.48:
	10:	1:	0.00	:	-1.32:	2.68:	-1.32:	2.68:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOC	K C	ASE NO. 3					
S	: M	: NUMBER	:	S0	:	S 3	:
T	: A	: OF	:		:		:
E	: T	: FATIGUE	:		:		:
P	: L	: CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:	-:-	:-	:-	:-	:
1	.: 1	: 19.14	:	0.38:	0.98:	0.38:	0.98:
2	2: 1	: 2.29	:	0.18:	1.18:	0.18:	1.18:
3	3: 1	: 1.14	:	0.08:	1.28:	0.08:	1.28:
4	: 1	: 0.23	:	-0.12:	1.48:	-0.12:	1.48:
. 5	i: 1	: 0.04	:	-0.32:	1.68:	-0.32:	1.68:
6	5: 1	: 0.01	:	-0.52:	1.88:	-0.52:	1.88:
7	7: 1	: 0.00	:	-0.72:	2.08:	-0.72:	2.08:
8	3: 1	: 0.00	:	-0.92:	2.28:	-0.92:	2.28:
9	9: 1	: 0.00	:	-1.12:	2.48:	-1.12:	2.48:
10): 1	: 0.00	:	-1.32:	2.68:	-1.32:	2.68:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLC	CK	CAS	E NO. 4					
S	:	M:	NUMBER	:	so	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	38.29	:	0.38:	0.98:	0.38:	0.98:
	2:	1:	4.57	:	0.18:	1.18:	0.18:	1.18:
	3:	1:	2.29	:	0.08:	1.28:	0.08:	1.28:
	4:	1:	0.46	:	-0.12:	1.48:	-0.12:	1.48:
	5:	1:	0.08	:	-0.32:	1.68:	-0.32:	1.68:
	6:	1:	0.02	:	-0.52:	1.88:	-0.52:	1.88:
	7:	1:	0.01	:	-0.72:	2.08:	-0.72:	2.08:
	8:	1:	0.00	:	-0.92:	2.28:	-0.92:	2.28:
	9:	1:	0.00	:	-1.12:	2.48:	-1.12:	2.48:
	10:	1:	0.00	:	-1.32:	2.68:	-1.32:	2.68:

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

BLO	CK	CAS	E NO. 5						
S	:	Μ:	NUMBER	:	so		:	S 3	:
T	:	A:	OF	:			:		:
E	:	T:	FATIGUE	:			:		:
Þ		т. •	CYCLES	•	(+1) :	(+2)	:	(±1) : (±2)	:

::					
1: 1:	0.28				
2: 1:	0.44 :	0.75	1.23:	0.75	1.23:
3: 1:	0.22 :	0.50:	1.46	0.50	1.46:
4: 1:	0.06 :	0.26	1.69:	0.26	: 1.69:
5: 1:	0.00 :	0.01:	1.92:	0.01	1.92:
6: 1:	0.00 :	-0.24:	2.14:	-0.24	2.14:

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S3 T : A: OF E : T: FATIGUE : (ksi) (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 1.90 : 1.98: 5.12: 0.09 : 1.46: 5.64: 1: 1: 2.33: 6.00: 2: 1: 0.09: 1.71: 6.61: 0.01: 1.15:

5.95:

1.35:

6.98:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : T : A: OF T : A: OF : (ksi) : (ksi)
P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 1: 1: 9.57 : 1.98: 5.12: 2.33: 6.00: 2: 1: 1.14 : 0.94: 6.16: 1.10: 7.22: 3: 1: 0.57 : 0.42: 6.68: 0.49: 7.83: 4: 1: 0.11 : -0.63: 7.73: -0.73: 9.06: -1.67: 8.77: -1.96: 5: 1: 0.02: 10.28: -2.71: 9.81: -3.76: 10.86: 6: 1: 0.01: 9.81: -3.18: 11.51: -4.41: 7: 1: 0.00: -4.80: 11.90: -5.63: 8: 1: 13.95: 0.00: 0.00: 9: 1: -5.85: 12.95: -6.85: 15.18: 10: 1: 0.00: -6.89: 13.99: -8.08: 16.40:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET -----

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER 53 T : A: OF : : (ksi) : : P : L: CYCLES : (t1) : (t2) : T : A: OF (ksi) (t1): (t2)

 1.98:
 5.12:
 2.33:
 6.00:

 0.94:
 6.16:
 1.10:
 7.22:

 0.42:
 6.68:
 0.49:
 7.83:

 19.14: 1: 1: 2: 1: 2.29: 3: 1: 1.14: 4: 1: 0.23 : -0.63: 7.73: -0.73:

5: 1:	0.04 :	-1.67:	8.77:	-1.96:	10.28:
6: 1:	0.01 :	-2.71:	9.81:	-3.18:	11.51:
7: 1:	0.00:	-3.76:	10.86:	-4.41:	12.73:
8: 1:	0.00:	-4.80:	11.90:	-5.63:	13.95:
9: 1:	0.00:	-5.85:	12.95:	-6.85:	15.18:
10: 1:	0.00:	-6.89:	13.99:	-8.08:	16.40:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	Μ:	NUMBER	:	S0	:	S 3	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:-	:-		· : -	·:	:-	:	:
	1:	1:	38.29	:	1.98:	5.12:	2.33:	6.00:
	2:	1:	4.57	:	0.94:	6.16:	1.10:	7.22:
	3:	1:	2.29	:	0.42:	6.68:	0.49:	7.83:
	4:	1:	0.46	:	-0.63:	7.73:	-0.73:	9.06:
	5:	1:	0.08	:	-1.67:	8.77:	-1.96:	10.28:
	6:	1:	0.02	:	-2.71:	9.81:	-3.18:	11.51:
	7:	1:	0.01	:	-3.76:	10.86:	-4.41:	12.73:
	8:	1:	0.00	:	-4.80:	11.90:	-5.63:	13.95:
	9:	1:	0.00	:	-5.85:	12.95:	-6.85:	15.18:
	10:	1:	0.00	:	-6.89:	13.99:	-8.08:	16.40:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	so	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	: -	:	:
	1:	1:	0.28	:	1.70:	1.72:	1.99:	2.01:
	2:	1:	0.44	:	1.27:	2.09:	1.49:	2.45:
	3:	1:	0.22	:	0.85:	2.48:	0.99:	2.91:
	4:	1:	0.06	:	0.44:	2.87:	0.52:	3.36:
	5:	1:	0.00	:	0.02:	3.26:	0.02:	3.82:
	6:	1:	0.00	:	-0.41:	3.64:	-0.48:	4.26:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	C	c-tip
200	15	-	0.103930	3.809243
400	15		0.113181	3.808882
600	15		0.122433	3.810441

```
800
           15
                             0.131706
                                                     3.814111
1000
           15
                             0.141025
                                                     3.820006
1200
           15
                             0.150414
                                                     3.828213
1400
           15
                            0.159898
                                                     3.838823
1600
           15
                            0.169504
                                                     3.851955
1800
           15
                            0.179263
                                                     3.867767
2000
           15
                            0.189206
                                                     3.886476
2200
           15
                            0.199370
                                                     3.908374
2400
           15
                            0.209797
                                                     3.933857
2600
           15
                            0.220535
                                                     3.963454
2800
           15
                            0.231646
                                                     3.997884
3000
           15
                            0.243202
                                                     4.038134
3200
           15
                            0.255299
                                                     4.085589
3400
           15
                            0.268062
                                                     4.142255
3600
           15
                            0.281663
                                                     4.211156
3800
           15
                            0.296351
                                                     4.297111
4000
           15
                            0.312514
                                                     4.408425
4200
           15
                            0.330810
                                                    4.561112
4400
           15
                            0.352542
                                                    4.792123
4600
                            0.381084
                                                     5.221430
4800
           15
                            0.438169
                                                     7.229061
```

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: $K \max = 54.01 \quad K \text{ ref} = 0.000$ K cr =at the very beginning of Load Step No. 10 Step description: of Block No. 8 of Schedule No. 4824 Crack Size c = 0.473689

FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----DATE: 31-MAR-99 TIME: 09:46:45

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

CORNER CRACK CASE 2, PSE-W3 SA226 RS, cracked angle WS 27 (N

GEOMETRY

MODEL: CC02-Corner crack from hole in plate (2D)

Plate Thickness, t = 0.1250 Plate Width, W = Hole Diameter, D = 1,2500 0.2500 Hole-Center-to-Edge Dist., B =

0.6100

Poisson s ratio = 0.30

FLAW SIZE:

(init.) = 0.5000E-02(init.) = 0.5000E-02a/c (init.) = 1.000

MATERIAL

MATL 1:

2014T6511 EXTRUSION T-L

Material Properties:

```
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
               : : : : :
         : 1: 74.0: 65.0: 27.0: 27.0: 1.00: 0.125: 51.8: :
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: 5.2200
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3:
                         6.1200
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                         5.2200
Scale Factor for Stress S1: 0.0000
                        6.1200
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                          5.2200
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3: 6.1200
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3: 6.1200
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress SO:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3:
                          1.9900
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
 Block Number
                         Block Case No.
From - To
   2
             2
   3
             3
    4
             4
    6
   7
             7
   8
             8
   9
             9
   10
            10
   11
            11
   12
            12
   13
            13
   14
            14
                                  4
```

15

15

BLO	OCK	CAS	E NO. 1					
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		- : -	:-	:-	: -	:
	1:	1:	1.90	:	0.38:	0.98:	0.70:	1.30:
	2:	1:	0.09	:	0.28:	1.08:	0.60:	1.40:
	3:	1:	0.01	:	0.22:	1.14:	0.54:	1.46:
S	:	Μ:	NUMBER	:	s3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	1:	:- 1:	1.90	: -	0.38:	0.98:	0.00:	0.00:
	2:	1:	0.09	:	0.28:	1.08:	0.00:	0.00:
	3:	1:	0.01	:	0.22:	1.14:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK	CAS	E NO. 2					
s :	Μ:	NUMBER	:	S 0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	: -	:	:	:
	1:			0.38:		0.70:	
	1:	1.14				0.50:	1.50:
	1:	0.57		i i		0.40:	1.60:
	1:	0.11			1.48:	0.20:	1.80:
	1:	0.02			1.68:	0.00:	2.00:
	1:	0.01			1.88:		2.20:
	1:	0.00			2.08:	-0.40:	2.40:
	1:	0.00			2.28:	-0.60:	2.60:
9:	1:	0.00	:	-1.12:	2.48:	-0.80:	2.80:
10:	1:	0.00	:	-1.32:	2.68:	-1.00:	3.00:
s :	Μ:	NUMBER	:	S 3	:	s	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :		CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:- 1:	0 57	- : -	·:-	:	:-	0.00-
	1:	1.14		0.38: 0.18:	1.18:	0.00:	0.00:
	1:			0.18:	1.28:	0.00:	0.00:
	1:	0.11			1.48:	0.00:	0.00:
	1:	0.02			1.48:		
	1:	0.02			1.88:	0.00:	0.00:
7:		0.00		-0.72:	2.08:	0.00:	0.00:
8:		0.00					0.00:
	1:	0.00			2.28:	0.00:	0.00:
10:		0.00			2.48:	0.00:	0.00:
				-1.32:	2.68:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than ${\tt KISCC})\colon {\tt NOT}$ ${\tt SET}$

BLC	CK	CAS	E NO. 3					•
S	:	M:	NUMBER	:	. so	:	S1	:
T	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:-	: -	:
	1:	1:	19.14	:	0.38:	0.98:	0.70:	1.30:
	2:	1:	2.29	:	0.18:	1.18:	0.50:	1.50:
	3:	1:	1.14	:	0.08:	1.28:	0.40:	1.60:
	4:	1:	0.23	:	-0.12:	1.48:	0.20:	1.80:

5:	1:	0.04 :	-0.32:	1.68:	0.00:	2.00:
6:	1:	0.01 :	-0.52:	1.88:	-0.20:	2.20:
7:	1:	0.00 :	-0.72:	2.08:	-0.40:	2.40:
8:	1:	0.00 :	-0.92:	2.28:	-0.60:	2.60:
9:	1:	0.00 :	-1.12:	2.48:	-0.80:	2.80:
10:	1:	0.00 :	-1.32:	2.68:	-1.00:	3.00:
s:	М:	NUMBER :	: S3	:	S	: '
т:	A:	OF :	:	:		:
E :	T:	FATIGUE :	•	:		:
P :	L:	CYCLES	: (t1):	(t2) :	(t1) :	(t2) :
:	:-		::	:	:	:
1:	1:	19.14	: 0.38:	0.98:	0.00:	0.00:
	1: 1:	19.14 : 2.29 :				
2:			0.18:	1.18:		0.00:
2: 3:	1:	2.29	0.18: 0.08:	1.18: 1.28:	0.00: 0.00:	0.00:
2: 3: 4:	1: 1:	2.29 1.14	0.18: 0.08: -0.12:	1.18: 1.28: 1.48:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
2: 3: 4: 5:	1: 1: 1:	2.29 1.14 0.23	0.18: 0.08: -0.12: -0.32:	1.18: 1.28: 1.48: 1.68:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
2: 3: 4: 5:	1: 1: 1: 1:	2.29 1.14 0.23 0.04	0.18: 0.08: -0.12: -0.32: -0.52:	1.18: 1.28: 1.48: 1.68: 1.88:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
2: 3: 4: 5: 6:	1: 1: 1: 1:	2.29 1.14 0.23 0.04 0.01	: 0.18: 0.08: -0.12: -0.32: -0.52: -0.72:	1.18: 1.28: 1.48: 1.68: 1.88: 2.08:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1:	2.29 1.14 0.23 0.04 0.01 0.00	: 0.18: 0.08: -0.12: -0.32: -0.52: -0.72:	1.18: 1.28: 1.48: 1.68: 1.88: 2.08: 2.28:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK	CAS	SE NO. 4					
s:		NUMBER	:	s0	:	Sl	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES		(t1) :	(t2) :	(t1) :	(t2) :
:	:-		- : -	:-	:	:-	:
1:	1:	38.29	:	0.38:	0.98:	0.70:	1.30:
2:	1:	4.57	:	0.18:	1.18:	0.50:	1.50:
	1:	2.29	:	0.08:	1.28:	0.40:	1.60:
4:	1:	0.46	:	-0.12:	1.48:	0.20:	1.80:
5:	1:	0.08	:	-0.32:	1.68:	0.00:	2.00:
	1:	0.02	:	-0.52:	1.88:	-0.20:	2.20:
7:	1:	0.01	:	-0.72:	2.08:	-0.40:	2.40:
8:	1:	0.00	:	-0.92:	2.28:	-0.60:	2.60:
9:	1:	0.00	:	-1.12:	2.48:	-0.80:	2.80:
10:	1:	0.00	:	-1.32:	2.68:	-1.00:	3.00:
s :	M:	NUMBER	:	S3	:	S	:
T:	A:	OF			:		:
		FATIGUE			:		:
		CYCLES					
:	:		-:-	:-	:	:	:
1;	1:	38.29	:	0.38:	0.98:	0.00:	0.00:
		4.57					
		2.29					
	1:	0.46		-0.12:	1.40:	0.00:	0.00:
	: 1:	0.08					
	: 1:	0.02					
	: 1:	0.01	:	-0.72:	2.08:	0.00:	0.00:
-	: 1:	0.00					
_	: 1:	0.00				0.00:	
10	: 1:	0.00	:	-1.32:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	s0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		:-	:-	:-	:-	:
	1:	1:	0.2	8:	1.00:	1.01:	1.00:	1.01:

	2:	1:	0.44	:	0.75:	1.23:	0.75:	1.23:
	3:	1:	0.22	:	0.50:	1.46:	0.50:	1.46:
	4:	1:	0.06	:	0.26:	1.69:	0.26:	1.69:
	5:	1:	0.00	:	0.01:	1.92:	0.01:	1.92:
	6:	1:	0.00	:	-0.24:	2.14:	-0.24:	2.14:
S	:	M:	NUMBER	:	S 3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
P 	:-	;-		: -:-	:	:-	:	:
P 	:-	L: :- 1:	CYCLES 0.28	: -:- :	(t1): :- 1.00:	(t2) : :- 1.01:	(t1): :- 0.00:	(t2): : 0.00:
P 	1:	;-			:	:-	:	:
P 	1:	1: 1:	0.28	:	1.00:	1.01:	0.00:	0.00:
P 	1: 2:	1: 1: 1:	0.28 0.44	:	1.00: 0.75:	1.01: 1.23:	0.00:	0.00: 0.00:
P 	1: 2: 3:	1: 1: 1: 1:	0.28 0.44 0.22	: :	1.00: 0.75: 0.50:	1.01: 1.23: 1.46:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than ${\tt KIscc)}\colon {\tt NOT}$ ${\tt SET}$

CORNER CRACK CASE 2, PSE-W3

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD 0.00: 1: 1: 1.90 : 1.98: 5.12: 0.00: 2: 1: 0.09 : 1.46: 5.64: 0.00: 3: 1: 0.01 : 1.15: 5.95: 0.00: 0.00: 0.00: : M: NUMBER : s3 s s OF т : A: (ksi) E : T: FATIGUE : (ksi) : (ksi)
P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 1: 1: 1.90 : 2.33: 6.00: 0.00: 0.00: 0.09: 1.71: 6.61: 0.00: 0.00: 2: 1: 0.01: 1.35: 6.98: 0.00: 0.00: 3: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W3

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S0 : S1
T : A: OF : :
E : T: FATIGUE : (ksi) : (ksi)
P : L: CYCLES : (t1) : (t2) : (t1) : (t2) ____;__;___;____;___;___;___;___;___;___;___;___;___;___; 9.57: 1.98: 5.12: 0.00: 0.00: 1.14: 0.94: 6.16: 0.00: 0.00: 0.57: 0.42: 6.68: 0.00: 0.00: 0.11: -0.63: 7.73: 0.00: 1: 1: 2: 1: 3: 1: 4: 1: 0.02: -1.67: 8.77: 0.00: 0.01: -2.71: 9.81: 0.00: 5: 1: 0.00: 6: 1: 0.00: -3.76: 10.86: 7: 1: 0.00: 0.00: 0.00: 0.00: 8: 1: -4.80: 11.90: 0.00: 0.00: 9: 1: 0.00: -5.85: 12.95: 0.00: 0.00: 0.00: 13.99: 10: 1: -6.89: 0.00: 0.00: S3 S : M: NUMBER : : S : T : A: OF

E :	T:	FATIGUE	:	(ksi) :	(ksi) :
P:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:		: -	:-	:	:-	:
1:	1:	9.57	:	2.33:	6.00:	0.00:	0.00:
2:	1:	1.14	:	1.10:	7.22:	0.00:	0.00:
3:	1:	0.57	:	0.49:	7.83:	0.00:	0.00:
4:	1:	0.11	:	-0.73:	9.06:	0.00:	0.00:
5:	1:	0.02	:	-1.96:	10.28:	0.00:	0.00:
6:	1:	0.01	:	-3.18:	11.51:	0.00:	0.00:
7:	1:	0.00	:	-4.41:	12.73:	0.00:	0.00:
8:	1:	0.00	:	-5.63:	13.95:	0.00:	0.00:
9:	1:	0.00	:	-6.85:	15.18:	0.00:	0.00:
10:	1:	0.00	:	-8.08:	16.40:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): $\ensuremath{\mathtt{NOT}}$ SET

CORNER CRACK CASE 2, PSE-W3

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
	Μ:	NUMBER	:	so	:	\$1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-	10 14	· : -	1 00:	:-	::	:
1:		19.14		1.98:	5.12:	0.00:	0.00:
2:		2.29		0.94:	6.16:	0.00:	0.00:
3:		1.14		0.42:	6.68:	0.00:	0.00:
4:		0.23		-0.63:	7.73:	0.00:	0.00:
5:		0.04		-1.67:	8.77:	0.00:	0.00:
6:		0.01		-2.71:	9.81:	0.00:	0.00:
7:			:	-3.76:	10.86:	0.00:	0.00:
8:	1:	0.00	:	-4.80:	11.90:	0.00:	0.00:
9:	1:	0.00	:	-5.85:	12.95:	0.00:	0.00:
10:	1:	0.00	:	-6.89:	13.99:	0.00:	0.00:
s :	: M:	NUMBER	:	s3	:	s	:
T :	A:	OF	:		:		:
E :	т:	FATIGUE	:	(ksi) :	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
: 1 ·	1:	19.14	-:-	2.33:	6.00:	0.00:	0.00:
2:		2.29		1.10:	7.22:	0.00:	0.00:
3:			:	0.49:	7.83:	0.00:	0.00:
4:		0.23	•	-0.73:	9.06:	0.00:	0.00:
5:		0.04			10.28:	0.00:	0.00:
6:		0.01			11.51:	0.00:	0.00:
7:		0.00		-4.41:	12.73:	0.00:	0.00:
8:		0.00		-4.41: -5.63:	13.95:	0.00:	0.00:
9:		0.00		-6.85:	15.18:	0.00:	0.00:
_					16.40:		
10:	: 1:	0.00	:	-8.08:	10.40:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W3

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						_		
STD								
s	:	Μ:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:		-:-	:	:	:	:
	1:	1:	38.29	:	1.98:	5.12:	0.00:	0.00:

2:	1:	4.57	:	0.94:	6.16:	0.00:	0.00:
3:	1:	2.29	:	0.42:	6.68:	0.00:	0.00:
4:	1:	0.46	:	-0.63:	7.73:	0.00:	0.00:
5:	1:	0.08	:	-1.67:	8.77:	0.00:	0.00:
6:	1:	0.02	:	-2.71:	9.81:	0.00:	0.00:
7:	1:	0.01	:	-3.76:	10.86:	0.00:	0.00:
8:	1:	0.00	:	-4.80:	11.90:	0.00:	0.00:
9:	1:	0.00	:	-5.85:	12.95:	0.00:	0.00:
10:	1:	0.00	:	-6.89:	13.99:	0.00:	0.00:
s :	Μ:	NUMBER	:	\$3	:	S	:
T :	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)		(ksi	٠ :
			-	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(, -
	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
P:	L: :-	CYCLES	•	(t1):	(t2) :	(t1):	(t2) :
P:	L: :- 1:	CYCLES 38.29	:	(t1): : 2.33:	(t2): :- 6.00:	(t1): 0.00:	(t2): : 0.00:
P: : 1: 2:	L: :- 1: 1:	CYCLES 38.29 4.57	:	(t1): 2.33: 1.10:	(t2): :- 6.00: 7.22:	(t1): 0.00: 0.00:	(t2): : 0.00: 0.00:
P: : 1: 2: 3:	L: :- 1:	CYCLES 38.29	:	(t1): 2.33: 1.10: 0.49:	(t2): :- 6.00:	(t1): 0.00:	(t2): : 0.00: 0.00: 0.00:
P: 1: 2: 3: 4:	L: 1: 1:	38.29 4.57 2.29	: : : :	(t1): 2.33: 1.10:	(t2): ::- 6.00: 7.22: 7.83:	(t1): 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00:
P: 1: 2: 3: 4: 5:	L: 1: 1: 1:	38.29 4.57 2.29 0.46	:	(t1): 2.33: 1.10: 0.49: -0.73:	(t2): 6.00: 7.22: 7.83: 9.06:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5: 6:	L: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08	: : : : : : : : : : : : : : : : : : : :	(t1): 2.33: 1.10: 0.49: -0.73: -1.96:	(t2):: 6.00: 7.22: 7.83: 9.06: 10.28:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5: 6: 7:	L: :- 1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02		(t1): 2.33: 1.10: 0.49: -0.73: -1.96: -3.18:	(t2):: 6.00: 7.22: 7.83: 9.06: 10.28: 11.51:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5: 6: 7:	L: :- 1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	(t1): 2.33: 1.10: 0.49: -0.73: -1.96: -3.18: -4.41:	(t2):	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W3

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S T E	:	M: A: T: L:	NUMBER OF FATIGUE CYCLES	: : : : : : : : : : : : : : : : : : : :	S0 (ksi) (t1) :		S1 (ksi (t1) :	
	2: 3: 4: 5: 6:	1: 1: 1: 1: 1: 1: M:	0.06	:	1.70: 1.27: 0.85: 0.44: 0.02: -0.41:	1.72: 2.09: 2.48: 2.87: 3.26: 3.64:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
E P	:	T: L:	FATIGUE CYCLES	:	(ksi) (t1) :	(t2) :	(ksi (t1) :	-
	2: 3: 4:	1:	0.28 0.44 0.22 0.06 0.00	:	1.99: 1.49: 0.99: 0.52: 0.02: -0.48:	2.01: 2.45: 2.91: 3.36: 3.82: 4.26:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W3

MODEL: CC02

ANALYSIS RESULTS:

Schdl

Block

Final Flaw Size

K max

	Step	a	С	a-tip	c-tip
200	15	0.005056	0.005046	1.459126	1.425933
400	15	0.005113	0.005093	1.465993	1.433276
600	15	0.005171	0.005143	1.473054	1.440753
800	15	0.005232	0.005193	1.480313	1.448371
1000	15	0.005294	0.005246	1.487772	1.456133
1200	15	0.005358	0.005301	1.495437	1.464047
1400	15	0.005424	0.005357	1.503311	1.472118
1600	15	0.005492	0.005415	1.511399	1.480351
1800	15	0.005562	0.005476	1.519706	1.488752
2000	15	0.005634	0.005538	1.528238	1.497328
2200	15	0.005708	0.005603	1.537000	1.506084
2400	15	0.005785	0.005669	1.545998	1.515027
2600	15	0.005864	0.005739	1.555240	1.524165
2800	15	0.005946	0.005810	1.564731	1.533503
3000	15	0.006030	0.005884	1.574480	1.543050
3200	15	0.006118	0.005961	1.584494	1.552812
3400	15	0.006208	0.006040	1.594781	1.562799
3600	15	0.006302	0.006122	1.605351	1.573017
3800	15	0.006399	0.006208	1.616212	1.583475
4000	15	0.006499	0.006296	1.627375	1.594183
4200	15	0.006603	0.006387	1.638849	1.605150
4400	1 5	0.006711	0.006482	1.650646	1.616393
4600	15	0.006823	0.006581	1.662779	1.627921
4800	15	0.006939	0.006683	1.675259	1.639744
5000	15	0.007060	0.006789	1.688100	1.651870
5200	15	0.007185	0.006899	1.701314	1.664312
5400	15	0.007316	0.007014	1.714925	1.677078
5600	15	0.007452	0.007133	1.728943	1.690183
5800	15	0.007593	0.007258	1.743385	1.703640
6000	15	0.007741	0.007387	1.758266	1.717463
6200	15	0.007895	0.007522	1.773603	1.731667
6400	15	0.008056	0.007662	1.789415	1.746268
6600	15	0.008224	0.007809	1.805721	1.761282
6800	15	0.008399	0.007962	1.822542	1.776725
7000	15	0.008583	0.008121	1.839901	1.792616
7200	15	0.008775	0.008288	1.857819	1.808973
7400	15	0.008977	0.008463	1.876322	1.825815
7600	15	0.009188	0.008645	1.895436	1.843163
7800	15	0.009410	0.008836	1.915187	1.861038
8000	15	0.009644	0.009037	1.935605	1.879463
8200	15	0.009889	0.009247	1.956720 1.978564	1.898462 1.918058
8400	15	0.010147	0.009467	2.001312	1.939504
8600	15 15	0.010432 0.010749	0.009699 0.009945	2.001312	1.963235
8800		0.010749	0.010205	2.050061	1.988650
9000 9200	15 15	0.011095	0.010205	2.076384	2.015536
9400	15	0.011470	0.010485	2.105802	2.043364
9400	15	0.011878	0.011161	2.137749	2.072512
9800	15	0.012321	0.011101	2.172064	2.103180
10000	15	0.012803	0.011982	2.208759	2.135509
MODEL: CC02	10	0.013334	0.011002	2.200,00	2.20000

ANALYSIS RESULTS (contd.)

				•		
Schdl	Block	Final F	law Size	K max		
	Step	a	С	a-tip	c-tip	
10200	15	0.013913	0.012452	2.247913	2.169626	
10400	15	0.014550	0.012965	2.289637	2.205660	
10600	15	0.015250	0.013528	2.334069	2.243742	
10800	15	0.016024	0.014146	2.381370	2.284008	
11000	15	0.016880	0.014824	2.431715	2.326601	
11200	15	0.017831	0.015570	2.485297	2.371670	
11400	15	0.018889	0.016393	2.542325	2.419372	
11600	15	0.020071	0.017303	2.603017	2.469869	

C-3 PSE W3 SA226 Rear Spar Lower Cap at WS 27 (Continued)

11800	15	0.021396	0.018311	2.667604	2.523334
12000	15	0.022885	0.019432	2.736324	2.579948
12200	15	0.024564	0.020680	2.809418	2.639903
12400	15	0.026463	0.022073	2.887132	2.703409
12600	15	0.028620	0.023634	2.969706	2.770697
12800	15	0.031076	0.025388	3.057378	2.842037
13000	15	0.033882	0.027363	3.150383	2.917751
13200	15	0.037098	0.029596	3.248953	2.998253
13400	15	0.040794	0.032130	3.353335	3.084087
13600	15	0.045055	0.035016	3.463805	3.176003
13800	15	0.049981	0.038320	3.580714	3.275066
14000	15	0.055692	0.042125	3.704545	3.382820
14200	15	0.062335	0.046541	3.836010	3.501532
14400	15	0.070092	0.051719	3.976195	3.634599
14600	15	0.079189	0.057875	4.126771	3.787159
14800	15	0.089926	0.065339	4.290267	3.967187
15000	15	0.102704	0.074640	4.470362	4.187401
15200	15	0.118083	0.086701	4.671658	4.468566

Transition to 1-d solution, TC03: $a = 0.1250 \qquad t = 0.1250$ at Cycle No. $1.14 \quad \text{of Load Step No.} \quad 3$ Step description: of Block No. $11 \quad \text{of Schedule No.} \quad 15279$ Crack Size: $c = 0.925373E-01 \; , \quad a/c = 1.35084$

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
15400	15		0.100049	4.088847
15600	15		0.112791	4.126781
15800	15		0.126070	4.171434
16000	15		0.140013	4.224690
16200	15		0.154784	4.288675
16400	15		0.170605	4.366206
16600	15		0.187786	4.461443
16800	15		0.206774	4.581045
17000	15		0.228277	4.736685
17200	15		0.253535	4.951569
17400	15		0.285121	5.282237
17600	15		0.330540	5.937779

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or (b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 10 Step description: of Block No. 14 of Schedule No. 17705 Crack Size c = 0.371020

FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 10 Step description: of Block No. 14 of Schedule No. 17721 Crack Size c = 0.380291

C-4 PSE W4 SA227 Main Spar Lower Cap at WS 99

```
FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
             DATE: 09-APR-99 TIME: 09:34:52
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W4 SA227 MS, crack in cap WS 99
GEOMETRY
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                     0.1250
Plate Width, W = 3.0000
Hole Diameter, D = 0.1990
Hole-Center-to-Edge Dist., B =
                             0.3500
Poisson s ratio
               = 0.32
FLAW SIZE:
  (init.) = 0.5000E-01
c (init.) = 0.5000E-01
a/c (init.) = 1.000
MATERIAL
------
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:---- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            : : : : : : : :SIGo :
  : 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S1:
Scale Factor for Stress S3: 0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                            6.9000
Scale Factor for Stress S1:
                           0.0000
Scale Factor for Stress S3:
                           0.0000
```

```
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                           6.8300
Scale Factor for Stress S1:
                           0.0000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                           7.3000
Scale Factor for Stress S1:
                           0.0000
Scale Factor for Stress S3:
                           0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                           4.6000
Scale Factor for Stress S1:
                           0.0000
Scale Factor for Stress S3:
                           0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                          Block Case No.
From - To
   2
             2
                                  2
   3
             3
                                  5
                                  1
   5
             5
                                  3
   б
                                  5
   7
             7
                                  1
   8
             8
   9
             9
                                  5
  10
            10
                                  1
  11
            11
                                  3
  12
            12
  13
            13
  14
            14
  15
BLOCK CASE NO. 1
S : M: NUMBER
                                           S1
T : A: OF
E : T: FATIGUE
                 :
                  :
P : L: CYCLES
                      (t1): (t2):
                                      (t1) : (t2)
1: 1: 1.90 :
2: 1: 0.09 :
3: 1: 0.01 :
                                      0.70:
                               1.30:
                      0.70:
                                               1.30:
                      0.60:
                               1.40:
                                        0.60:
                                                 1.40:
                       0.54:
                               1.46:
                                        0.54:
                                                 1.46:
S : M: NUMBER :
                       S3
                                        s
  : A:
         OF
E : T: FATIGUE :
P : L: CYCLES :
                      (t1): (t2):
                                        (t1): (t2):
---:--:--:--
                      ----:--:--
                                        ----:
  1: 1:
           1.90 : 0.70:
                              1.30:
                                        0.00: 0.00:
  2: 1:
             0.09:
                       0.60:
                               1.40:
                                        0.00:
                                                 0.00:
             0.01:
                       0.54:
                               1.46:
                                        0.00:
                                                 0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                         S0
                                   :
                                           S1
T : A:
         OF
E : T: FATIGUE :
P : L: CYCLES :
                      (t1): (t2)
                                       (t1): (t2)
----:--:---:--
1: 1: 0.00: 1.08: 1.10: 0.99: 1.01:
```

2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1: 9: 1: 10: 1: S: M: T: A:	15.09 1.52 0.23 0.05 0.01 0.00 0.00 0.00 0.00 NUMBER OF	: : : : : : : : : : : : : : : : : : : :	-0.43: -0.64:	1.74: 1.96: 2.17: 2.39: 2.61: 2.82:	0.35: 0.13: -0.08: -0.30: -0.52: -0.73:	1.65: 1.87: 2.08: 2.30: 2.52: 2.73:
E : T:	FATIGUE	:	/+1\ ·	(+2)	/+1\ ·	(+2)
P : L:	CYCLES				(t1) :	
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1: 9: 1:	0.00 15.09 1.52 0.23 0.05 0.01 0.00 0.00	: : : : : : : : : : : : : : : : : : : :	0.78: 0.57: 0.35: 0.13:	1.22: 1.43: 1.65: 1.87: 2.08: 2.30:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCE	CAS	E NO. 3					
S :	M:	NUMBER	:	so	:	S1	:
T:	: A:	OF	:		:		:
E :	т:	FATIGUE	:		:		:
P :	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	: : -		-:-	:-	:-	:-	:
		0.00					
2:		31.10					
		2.98					
		0.45					
_	: 1:					0.13:	
	: 1:	0.02					
	: 1:	0.01			2.39:		
	: 1:					-0.52:	
_	: 1:	0.00				-0.73:	
		0.00			3.04:		2.95:
		NUMBER	:	S 3	:	S	:
_	: A:	OF			:		:
		FATIGUE			:		:
		CYCLES				(t1) :	
		0.00		0.99:	-	-	•
		31.10					
		2.98					
4	: 1:	0.45	:	0.35:	1.65:	0.00:	0.00:
5	: 1:	0.09	:	0.13:	1.87:	0.00:	0.00:
6	: 1:	0.02				0.00:	
7	: 1:	0.01	:	-0.30:	2.30:	0.00:	0.00:
8	: 1:	0.00	:	-0.52:	2.52:	0.00:	0.00:
_							
9	: 1:	0.00	:			0.00:	
	: 1: : 1:	0.00 0.00				0.00: 0.00:	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLO	CK	CAS	SE NO. 4					
S	:	M:	NUMBER	:	S 0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:

P :	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
1.	1:	0 00	- : -	1.08:	1 10.	0.99:	1.01:
	1:	24.52			1.31:	0.78:	1.22:
	1:	2.73		0.66:	1.52:	0.57:	1.43:
	1:	0.46			1.74:	0.35:	1.43:
	1:		:	0.22:	1.96:	0.13:	1.87:
6:			:	0.01:	2.17:	-0.08:	
	1:	0.01	-		2.39:	-0.30:	2.30:
	1:	0.00		-0.43:	2.61:	-0.52:	2.52:
	1:	0.00			2.82:		
10:		0.00					
s:		NUMBER	:	S3	5.04.	. s	2.,,,.
	A:	OF	:	23	•	. 5	:
E :	T:		:		•		
E : P :		FATIGUE	:	(t1) :	: (t2) :	(±1) ·	(+2)
E : P :			:	(t1) :	: (t2) :	(t1) :	(t2) :
P :		FATIGUE	:	:-	:	:-	:
P: : 1:	L: :-	FATIGUE CYCLES		0.99:	1.01:	0.00:	0.00:
P: : 1: 2:	L: :- 1:	FATIGUE CYCLES 0.00	:	0.99: 0.78:	1.01: 1.22:	0.00: 0.00:	0.00: 0.00:
P: : 1: 2: 3:	L: :- 1: 1:	FATIGUE CYCLES 0.00 24.52	:	0.99: 0.78: 0.57:	1.01: 1.22: 1.43:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
P: : 1: 2: 3: 4:	L: :- 1: 1:	FATIGUE CYCLES 0.00 24.52 2.73 0.46	: :	0.99: 0.78: 0.57: 0.35:	1.01: 1.22: 1.43: 1.65:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
P: : 1: 2: 3: 4: 5:	L: :- 1: 1: 1:	FATIGUE CYCLES 0.00 24.52 2.73	: : : :	0.99: 0.78: 0.57:	1.01: 1.22: 1.43: 1.65: 1.87:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
P: : 1: 2: 3: 4: 5:	L: :- 1: 1: 1: 1:	FATIGUE CYCLES 0.00 24.52 2.73 0.46 0.11	: : : : : : : : : : : : : : : : : : : :	0.99: 0.78: 0.57: 0.35: 0.13:	1.01: 1.22: 1.43: 1.65: 1.87: 2.08:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5: 6:	L: :- 1: 1: 1: 1: 1:	FATIGUE CYCLES 0.00 24.52 2.73 0.46 0.11 0.03	: : : : : : : : : : : : : : : : : : : :	0.99: 0.78: 0.57: 0.35: 0.13: -0.08:	1.01: 1.22: 1.43: 1.65: 1.87: 2.08: 2.30:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5: 6: 7:	L: :- 1: 1: 1: 1: 1: 1:	FATIGUE CYCLES 0.00 24.52 2.73 0.46 0.11 0.03 0.01	: : : : : : : : : : : : : : : : : : : :	0.99: 0.78: 0.57: 0.35: 0.13: -0.08: -0.30:	1.01: 1.22: 1.43: 1.65: 1.87: 2.08:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P: 1: 2: 3: 4: 5: 6: 7:	L: :- 1: 1: 1: 1: 1: 1: 1:	FATIGUE CYCLES 0.00 24.52 2.73 0.46 0.11 0.03 0.01 0.00	: : : : : : : : : : : : : : : : : : : :	0.99: 0.78: 0.57: 0.35: 0.13: -0.08: -0.30:	1.01: 1.22: 1.43: 1.65: 1.87: 2.08: 2.30: 2.52:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

S T E	:	M: A: T:	E NO. 5 NUMBER OF FATIGUE CYCLES	:				
S T E	2: 3: 4: 5: 6:	1: 1: 1: 1: M: A: T:	0.44 0.22 0.06 0.00	: : : : : : :	0.81: 0.62: 0.43: 0.23: 0.04: S3	1.01: 1.06: 1.12: 1.18: 1.24: 1.30: :	0.42: 0.23: 0.04: S	1.01: 1.06: 1.12: 1.18: 1.24: 1.30:
	2: 3: 4:	1: 1:	0.44 0.22 0.06	: :	1.00: 0.81: 0.62: 0.43: 0.23:	1.06: 1.12: 1.18: 1.24:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than ${\tt KIscc})\colon {\tt NOT}$ ${\tt SET}$

CORNER CRACK CASE 2, PSE-W4 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD
S: M: NUMBER: S0

S	: M:	NUMBER	:	so	:	S1	:
\mathbf{T}	: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	: L:	CYCLES	:	(t1) : (t2)	:	(t1) : (t2)	

	• -	• .		٠.				
		1: 1:	1.90 0.09		-0.70: -0.60:	-1.30: -1.40:	0.00: 0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
S	:	M:	NUMBER	:	S3	:	S	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		:	:	:-	:	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

1: 1: 0.00: 2: 1: 15.09: 3: 1: 1.52: 4: 1: 0.23: 7.45: 7.59: 0.00: 0.00: 6.00: 9.04: 0.00: 0.00: 4.55: 10.49: 0.00: 0.00: 3.04: 12.01: 0.00: 1.52: 13.52: 0.00: 0.07: 14.97: 0.00: 0.00: 5: 1: 0.05: 0.00:

 5: 1:
 0.05:
 1.52:
 13.52:
 0.00:

 6: 1:
 0.01:
 0.07:
 14.97:
 0.00:

 7: 1:
 0.00:
 -1.45:
 16.49:
 0.00:

 8: 1:
 0.00:
 -2.97:
 18.01:
 0.00:

 9: 1:
 0.00:
 -4.42:
 19.46:
 0.00:

 10: 1:
 0.00:
 -5.93:
 20.98:
 0.00:

 0.00: 0.00: 0.00: 0.00: 0.00: s S : M: NUMBER : S3 :
 1: 1:
 0.00:
 0.00:
 0.00:
 0.00:
 0.00:

 2: 1:
 15.09:
 0.00:
 0.00:
 0.00:
 0.00:

 3: 1:
 1.52:
 0.00:
 0.00:
 0.00:
 0.00:

 4: 1:
 0.23:
 0.00:
 0.00:
 0.00:
 0.00:

 5: 1:
 0.05:
 0.00:
 0.00:
 0.00:
 0.00:
 0.01 : 0.00: 0.00: 0.00: 0.00 : 0.00: 0.00: 0.00: 0.00 : 0.00: 0.00: 0.00: 0.00 : 0.00: 0.00: 0.00: 0.00: 6: 1: 0.00: 0.00: 7: 1: 8: 1: 9: 1: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

0.00:

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

0.00:

STD

S : M: NUMBER : S0 : S1 ::
T : A: OF : : : : : : : :
E : T: FATIGUE : (ksi) : (ksi) : :
P : L: CYCLES : (t1): (t2) : (t1): (t2) :

1: 1: 0.00 : 7.38: 7.51: 0.00: 0.00:
2: 1: 31.10 : 5.94: 8.95: 0.00: 0.00:

0.00:

0.00:

0.00:

3:	1:	2.98	:	4.51:	10.38:	0.00:	0.00:
4:	1:	0.45	:	3.01:	11.88:	0.00:	0.00:
5:	1:	0.09	:	1.50:	13.39:	0.00:	0.00:
6:	1:	0.02	:	0.07:	14.82:	0.00:	0.00:
7:	1:	0.01	:	-1.43:	16.32:	0.00:	0.00:
	1:	0.00	:	-2.94:	17.83:	0.00:	0.00:
9:	1:	0.00	:	-4.37:	19.26:	0.00:	0.00:
10:	1:	0.00	:	-5.87:	20.76:	0.00:	0.00:
s:	M:	NUMBER	:	s3	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	Τ.	OVOI DO	_	/L1\	(+0) ·		(1.0)
	L:		:	(t1) :		(t1) :	
:	:-		: -:-	:	:-	:	:
1:	:- 1:	0.00		0.00:	0.00:	0.00:	0.00:
1: 2:	1: 1:	0.00 31.10	:	0.00: 0.00:	0.00: 0.00:	0.00: 0.00:	0.00:
1: 2: 3:	1: 1: 1:	0.00 31.10 2.98	:	0.00:	0.00:	0.00:	0.00:
1: 2: 3:	1: 1:	0.00 31.10	:	0.00: 0.00:	0.00: 0.00:	0.00: 0.00:	0.00:
1: 2: 3: 4:	1: 1: 1:	0.00 31.10 2.98	: :	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1:	0.00 31.10 2.98 0.45	: : :	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1: 1:	0.00 31.10 2.98 0.45 0.09	: : : : :	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	0.00 31.10 2.98 0.45 0.09 0.02	: : : : : : : : : : : : : : : : : : : :	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	0.00 31.10 2.98 0.45 0.09 0.02	: : : : : : : : : : : : : : : : : : : :	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s :	M:	NUMBER	:	S 0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi	.) :	(ksi	.) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	0.00	-:-	7.88:	8.03:	0.00:	0.00:
	1:	24.52		6.35:	9.56:	0.00:	0.00:
	1:	2.73			11.10:	0.00:	0.00:
	1:	0.46			12.70:	0.00:	0.00:
5:	1:	0.11			14.31:	0.00:	0.00:
6:	1:	0.03	:		15.84:	0.00:	0.00:
7:	1:	0.01	:	-1.53:	17.45:	0.00:	0.00:
8:	1:	0.00	:	-3.14:	19.05:	0.00:	
9:	1:	0.00	:	-4.67:	20.59:	0.00:	
10:	1:	0.00	:	-6.28:	22.19:	0.00:	
s:	M:.	NUMBER	:	s3	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi) :	(ksi) :
P :	L:	CYCLES	:		(t2) :	(t1) :	(t2) :
1:	1:	0.00	-:-	0.00:	0.00:	0.00:	0.00:
2:	1:	24.52	:		0.00:	0.00:	0.00:
3:	1:	2.73	:		0.00:	0.00:	0.00:
4:	1:	0.46	:	0.00:	0.00:	0.00:	
5:	1:	0.11	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.03	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.01	:	0.00:	0.00:	0.00:	
8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						_		
STI)							
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	1:	:- 1:	0.28	: -	4.60:	4.65:	0.00:	0.00:
		1:	0.44		3.73:	4.88:	0.00:	0.00:
		1:	0.22		2.85:	5.15:		0.00:
	-	1:	0.06		1.98:	5.43:		0.00:
		1:	0.00		1.06:	5.70:		
		1:	0.00		0.18:	5.98:		0.00:
s		M:	NUMBER	:	s3	•	S	•
Т		Α:	OF	•	23	•	٥	:
Ē		T:	FATIGUE		(ksi)	•	(ksi	,
P	-	L:	CYCLES	:		(t2) :		
	.	:-		- : -	:	:		:
	1:	1:	0.28	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.44	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.22	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.06	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final	Flaw Size	K ma	ax
	Step	a	С	a-tip	c-tip
200	15	0.051952	0.050721	3.843478	3.098789
400	15	0.053953	0.051503	3.865834	3.153659
600	15	0.056007	0.052349	3.888652	3.207732
800	15	0.058115	0.053262	3.912027	3.261136
1000	15	0.060279	0.054244	3.936044	3.314012
1200	15	0.062503	0.055299	3.960778	3.366514
1400	15	0.064789	0.056430	3.986294	3.418803
1600	15	0.067142	0.057642	4.012648	3.471053
1800	15	0.069564	0.058937	4.039893	3.523446
2000	15	0.072061	0.060322	4.068073	3.576174
2200	15	0.074635	0.061801	4.097231	3.629442
2400	15	0.077292	0.063379	4.127402	3.683466
2600	15	0.080037	0.065065	4.158620	3.738477
2800	15	0.082875	0.066866	4.190917	3.794722
3000	15	0.085813	0.068789	4.224323	3.852463
3200	15	0.088855	0.070847	4.258870	3.911986
3400	15	0.092009	0.073050	4.294584	3.973601
3600	15	0.095283	0.075411	4.331487	4.037643
3800	15	0.098682	0.077947	4.369596	4.104479
4000	15	0.102216	0.080676	4.408921	4.174511
4200	15	0.105893	0.083620	4.449453	4.248174
4400	15	0.109722	0.086803	4.491161	4.325941
4600	15	0.113712	0.090256	4.533974	4.408319
4800	15	0.117873	0.094013	4.577759	4.495838
5000	15	0.122214	0.098118	4.622290	4.589035

Transition to 1-d solution, TC03: a = 0.1250 t = 0.1250

```
at Cycle No.
                  1.52 of Load Step No.
Step description:
of Block No. 2 of Schedule No. 5125
Crack Size: c = 0.100861 , a/c = 1.23933
 Schedl Block
                      Final Flaw Size
               Step
                       С
                                               c-tip
                          0.103950
  5200
            15
                                             5.176043
  5400
           15
                         0.112751
                                             5.326403
           15
15
  5600
                          0.122798
                                             5.517303
  5800
                          0.134679
                                             5.775406
  6000
           15
                         0.149610
                                             6.164269
  6200
            15
                          0.171080
                                              6.909999
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 54.73 K \operatorname{ref} = 0.000 K \operatorname{cr} = 51.83
at the very beginning of Load Step No. 10
Step description:
of Block No. 14 of Schedule No. 6383
Crack Size
            c = 0.233541
              FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
            DATE: 09-APR-99 TIME: 09:42:38
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 11, PSE-W4 SA227 MS, crack in cap WS 99 (
MODEL: TC11-Corner crack in plate or bar (2D)
Plate Thickness, t =
                    0.1250
" Width, W = 3.0000
Hole Diameter, D = 0.1990
Hole-Center-to-Edge Dist., B =
                            0.3500
2ND AREA, AREATC11 = 1.6700
2ND M. INERTIA = 1.1300
2ND C.G. = 1.5000
FLAW SIZE:
c (init.) = 0.1009
MATERIAL
-----
MATT. 1:
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : : :
        : 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
```

```
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC11
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
                        0.0000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 6.9000
Scale Factor for Stress S3: 0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                          6.8300
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                          7.3000
Scale Factor for Stress S3:
                         0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
Scale Factor for Stress S3: 0.0000
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
 Block Number
                          Block Case No.
From - To
                                  1
   1
             1
   2
                                  2
             4
   4
                                  1
   5
             5
   6
             6
   7
   8
             8
   9
             9
   10
            10
   11
            11
                                  3
   12
            12
   13
            13
                                   1
   14
            14
   15
            15
BLOCK CASE NO. 1
 S : M: NUMBER :
                          S0
                               :
                                           S3
 0.70: 1.30: 0.70: 1.30: 0.60: 1.40: 0.54: 1.46: 0.54: 1.46:
  1: 1: 1.90 :
2: 1: 0.09 :
             0.01:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK CASE NO. 2											
s:	M:	NUMBER	:	S0	:	S 3	:				
т:	A:	OF	:		:		:				
E :	T:	FATIGUE	:		:		:				
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :				
:	:-		-:-	:-	:-	:-	:				
1:	1:	0.00	:	1.08:	1.10:	0.99:	1.01:				
2:	1:	15.09	:	0.87:	1.31:	0.78:	1.22:				
3:	1:	1.52	:	0.66:	1.52:	0.57:	1.43:				
4:	1:	0.23	:	0.44:	1.74:	0.35:	1.65:				
5:	1:	0.05	:	0.22:	1.96:	0.13:	1.87:				
6:	1:	0.01	:	0.01:	2.17:	-0.08:	2.08:				
7:	1:	0.00	:	-0.21:	2.39:	-0.30:	2.30:				
8:	1:	0.00	:	-0.43:	2.61:	-0.52:	2.52:				
9:	1:	0.00	:	-0.64:	2.82:	-0.73:	2.73:				
10:	1:	0.00	:	-0.86:	3.04:	-0.95:	2.95:				

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK CASE NO. 3 S : M: NUMBER T : A: OF E : T: FATIGUE P : L: CYCLES (t1): (t2): (t1): (t2) 1: 1: 0.00: 1.08: 1.10: 0.99: 1.01: 2: 1: 31.10 : 0.87: 1.31: 0.78: 1.22: 2.98: 0.66: 3: 1: 1.52: 0.57: 1.43: 1.74: 4: 1: 0.45 : 0.44: 0.35: 1.65: 5: 1: 0.09: 0.22: 1.96: 0.13: 1.87: 6: 1: 0.02: 0.01: 2.17: -0.08: 2.08: 0.01: 7: 1: -0.21: 2.39: -0.30: 2.30: 8: 1: 0.00: -0.43: 2.61: -0.52: 2.52: 9: 1: 0.00: -0.64: 2.82: -0.73: 2.73: 0.00: 10: 1: -0.86: 3.04: -0.95: 2.95:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOC	K	CAS	E NO. 4					
s	:	M:	NUMBER	:	so	:	S 3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	: -	:-		-:-	:-	:-	:-	:
1	:	1:	0.00	:	1.08:	1.10:	0.99:	1.01:
2	:	1:	24.52	:	0.87:	1.31:	0.78:	1.22:
3	:	1:	2.73	:	0.66:	1.52:	0.57:	1.43:
4	:	1:	0.46	:	0.44:	1.74:	0.35:	1.65:
5	:	1:	0.11	:	0.22:	1.96:	0.13:	1.87:
6	:	1:	0.03	:	0.01:	2.17:	-0.08:	2.08:
7	:	1:	0.01	:	-0.21:	2.39:	-0.30:	2.30:
8	:	1:	0.00	:	-0.43:	2.61:	-0.52:	2.52:
9	:	1:	0.00	:	-0.64:	2.82:	-0.73:	2.73:
10	:	1:	0.00	:	-0.86:	3.04:	-0.95:	2.95:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	so	:	s3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:

P : L:	CYCLES :	(t1) :	(t2) :	(t1) :	(t2) :
:	:	:-	:	:-	:
1: 1:	0.28:	1.00:	1.01:	1.00:	1.01:
2: 1:	0.44 :	0.81:	1.06:	0.81:	1.06:
3: 1:	0.22 :	0.62:	1.12:	0.62:	1.12:
4: 1:	0.06 :	0.43:	1.18:	0.42:	1.18:
5: 1:	0.00 :	0.23:	1.24:	0.23:	1.24:
б: 1:	0.00 :	0.04:	1.30:	0.04:	1.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	so	:	S3	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2)	:	(t1) : (t2)	:
	-:-	:-		-:-	:	:		:
	1:	1:	1.90	:	-0.70: -1	.30:	0.00: 0.	.00:
	2:	1:	0.09	:	-0.60: -1	.40:	0.00: 0.	.00:
	3:	1:	0.01	:	-0.54: -1	.46:	0.00: 0.	.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	S0	:	s3	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	: -		-:-	:	:	: - :	:
	1:	1:	0.00	:	7.45:	7.59:	0.00:	0.00:
	2:	1:	15.09	:	6.00:	9.04:	0.00:	0.00:
	3:	1:	1.52	:	4.55:	10.49:	0.00:	0.00:
	4:	1:	0.23	:	3.04:	12.01:	0.00:	0.00:
	5:	1:	0.05	:	1.52:	13.52:	0.00:	0.00:
	6:	1:	0.01	:	0.07:	14.97:	0.00:	0.00:
	7:	1:	0.00	:	-1.45:	16.49:	0.00:	0.00:
	8:	1:	0.00	:	-2.97:	18.01:	0.00:	0.00:
	9:	1:	0.00	:	-4.42:	19.46:	0.00:	0.00:
:	10:	1:	0.00	:	-5.93:	20.98:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

4:	1:	0.45	:	3.01:	11.88:	0.00:	0.00:
5:	1:	0.09	:	1.50:	13.39:	0.00:	0.00:
6:	1:	0.02	:	0.07:	14.82:	0.00:	0.00:
7:	1:	0.01	:	-1.43:	16.32:	0.00:	0.00:
8:	1:	0.00	:	-2.94:	17.83:	0.00:	0.00:
9:	1:	0.00	:	-4.37:	19.26:	0.00:	0.00:
10:	1:	0.00	:	-5.87:	20.76:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : 0.00 : 24.52 : 2.73
 1: 1:
 0.00 :
 7.88:
 8.03:
 0.00:
 0.00:

 2: 1:
 24.52 :
 6.35:
 9.56:
 0.00:
 0.00:

 3: 1:
 2.73 :
 4.82:
 11.10:
 0.00:
 0.00:

 4: 1:
 0.46 :
 3.21:
 12.70:
 0.00:
 0.00:

 5: 1:
 0.11 :
 1.61:
 14.31:
 0.00:
 0.00:

 6: 1:
 0.03 :
 0.07:
 15.84:
 0.00:
 0.00:

 7: 1:
 0.01 :
 -1.53:
 17.45:
 0.00:
 0.00:
 0.00: 8: 1: -3.14: 19.05: 0.00: 0.00: 9: 1: 0.00: -4.67: 20.59: 0.00: 0.00: 10: 1: 0.00 : -6.28: 22.19: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

amb

M:	NUMBER	:	so	:	s3	:
A:	OF	:		:		:
T:	FATIGUE	:	(ksi)	:	(ksi)	
L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:-		-:-	:	:-	- :	:
1:	0.28	:	4.60:	4.65:	0.00:	0.00:
1:	0.44	:	3.73:	4.88:	0.00:	0.00:
1:	0.22	:	2.85:	5.15:	0.00:	0.00:
1:	0.06	:	1.98:	5.43:	0.00:	0.00:
1:	0.00	:	1.06:	5.70:	0.00:	0.00:
1:	0.00	:	0.18:	5.98:	0.00:	0.00:
	M: A: T: L: :- 1: 1: 1: 1:	A: OF T: FATIGUE L: CYCLES :	A: OF : T: FATIGUE : L: CYCLES :	A: OF : T: FATIGUE : (ksi) L: CYCLES : (t1)::	A: OF : (ksi) : : T: FATIGUE : (ksi) : : L: CYCLES : (t1) : (t2) : 1: 0.28 : 4.60 : 4.65 : 1: 0.44 : 3.73 : 4.88 : 1: 0.22 : 2.85 : 5.15 : 1: 0.06 : 1.98 : 5.43 : 1: 0.00 : 1.06 : 5.70 :	A: OF : (ksi) : (ksi) L: CYCLES : (t1) : (t2) : (t1) :

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
100	15		0.104484	5.036357
200	15		0.108272	5.092384

```
300
                            0.112246
           15
                                                  5.153783
           15
15
15
    400
                           0.116432
                                                  5.221603
                           0.120865
0.125588
   500
                                                  5.297210
   600
                                                  5.382436
   700
           15
                           0.130655
                                                 5.479809
           15
15
15
                         0.136144
0.142163
0.148870
   800
                                                 5.592957
   900
                                                 5.727340
  1000
                                                 5.891716
           15
15
15
  1100
                           0.156521
                                                 6.101384
   1200
                           0.165570
0.176969
                                                 6.386684
  1300
                                                 6.821639
  1400
                           0.193559
                                                 7.683275
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 53.65 K \operatorname{ref} = 0.000 K \operatorname{cr} = 51.83
at the very beginning of Load Step No.
                                    10
Step description:
of Block No. 14 of Schedule No. Crack Size c = 0.235079
                                    1483
               FATIGUE CRACK GROWTH ANALYSIS
               -----Modified by FAI-----
              DATE: 09-APR-99 TIME: 09:44:32
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC12, PSE-W4 SA227 Main Spar Cap WS99
                                       (Title)
GEOMETRY
MODEL: TC12-Corner crack from hole in plate (2D)
 late Thickness, t = 0.1250
" Width, W = 3.0000
Plate Thickness, t =
Additional Area, AREA3 = 1.6700
Add Area cg dist in y, F3 = 0.4280
Add Area cg dist in x, G3 = 1.5000
Add Area Ix, RIX = 0.1300
Add Area Iy, RIY = 1.1130
Moement , RM = 0.0000
FLAW SIZE:
c (init.) = 0.4550
MATERIAL
_____
               2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : :
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
```

```
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC12
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress SO:
Scale Factor for Stress S1:
Scale Factor for Stress S2:
                              0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress SO:
                              6.9000
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S2:
                              0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                              6.8300
Scale Factor for Stress S1:
Scale Factor for Stress S2:
                              0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S2:
                              0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                              4.6000
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S2:
                              0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
 Block Number
                              Block Case No.
From

    To

    2
              2
                                       2
    3
              3
                                       5
    4
                                       1
    5
              5
    6
              6
                                       5
    7
              7
                                       1
                                       3
    9
              9
                                       5
   10
             10
   11
             11
                                       3
   12
             12
                                       5
   13
             13
                                       1
   14
             14
                                       4
  15
             15
BLOCK CASE NO. 1
S : M: NUMBER
                                                51
T : A:
          OF
Ε
   : T: FATIGUE
P : L: CYCLES
                         (t1): (t2)
                                             (t1): (t2)
 ---:--:--:---:----:
             1.90 :
  1: 1:
                         0.70:
                                    1.30:
                                            -0.30: 0.30:
              0.09 :
  2: 1:
                          0.60:
                                    1.40:
                                            -0.40:
```

	3:	1:	0.01	:	0.54:	1.46:	-0.46:	0.46:
S	:	M:	NUMBER	:	S2	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
			CYCLES					•
			1 00			-	-	-
	Τ:	Τ:	1.90	:	-0.30:	0.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.40:	0.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.46:	0.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

		SE NO. 2					
	: M:	NUMBER	:	5 0	:	S1	:
		OF	:		:		:
		FATIGUE			:		:
		CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
			-:-	:-	:-	:-	:
		0.00					0.01:
	: 1:	15.09					
	: 1:	1.52				-0.43:	
	: 1:	0.23					
	: 1:					-0.87:	
6						-1.08:	
7		0.00					
	: 1:	0.00					
9	: 1:	0.00	:	-0.64:	2.82:	-1.73:	1.73:
10	: 1:	0.00	:	-0.86:	3.04:	-1.95:	1.95:
S	: M:	NUMBER	:	S2	:	S	:
${f T}$: A:	OF	:		:		:
E	: T:	FATIGUE	:		:		:
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::		-	:-	:	:-	:
1	: 1:	0.00				0.00:	
2	: 1:	15.09	:	-0.22:	0.22:	0.00:	0.00:
3	: 1:	1.52	:	-0.43:	0.43:	0.00:	0.00:
4	: 1:	0.23	:	-0.65:	0.65:	0.00:	0.00:
5	: 1:	0.05	:	-0.87:	0.87:	0.00:	0.00:
6	: 1:	0.01	:	-1.08:	1.08:	0.00:	0.00:
7	: 1:	0.00	:	-1.30:	1.30:	0.00:	0.00:
8	: 1:	0.00	:	-1.52:	1.52:	0.00:	0.00:
9	: 1:	0.00	:	-1.73:	1.73:	0.00:	0.00:
10	: 1:	0.00	:	-1.95:	1.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK CASE NO. 3 1: 1: 0.00: 1.08: 1.10: -0.01: 0.01: 2: 1: 31.10: 0.87: 1.31: -0.22: 0.22: 3: 1: 2.98: 0.66: 1.52: -0.43: 0.43: 2.98 : 0.45 : 0.44: 1.74: -0.65: 4: 1: 0.65: 5: 1: 0.22: 1.96: -0.87: 0.01: 2.17: -1.08: 0.09 : 0.87: 1.08: 0.02: 6: 1: 0.01: -0.21: 2.39: -1.30: 7: 1: 1.30: -0.43: 2.61: -1.52: -0.64: 2.82: -1.73: -0.86: 3.04: -1.95: 1.52: 8: 1: 0.00: 9: 1: 0.00 : 10: 1: 0.00 : 1.73: 1.95: S : M: NUMBER : S2 : S T : A: OF : E : T: FATIGUE : : :

P :	L:		:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-			:-		:-	:
1:	1:	0.00	:	-0.01:	0.01:	0.00:	0.00:
2:	1:	31.10	:	-0.22:	0.22:	0.00:	0.00:
3:	1:	2.98	:	-0.43:	0.43:	0.00:	0.00:
4:	1:	0.45	:	-0.65:	0.65:	0.00:	0.00:
5:	1:	0.09	:	-0.87:	0.87:	0.00:	0.00:
6:	1:	0.02	:	-1.08:	1.08:	0.00:	0.00:
7:	1:	0.01	:	-1.30:	1.30:	0.00:	0.00:
8:	1:	0.00	:	-1.52:	1.52:	0.00:	0.00:
9:	1:	0.00	:	-1.73:	1.73:	0.00:	0.00:
10:	1:	0.00	:	-1.95:	1.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 4 S : M: NUMBER S0 S1 Т : A: OF : E : T: FATIGUE P : L: CYCLES : (t1): (t2): (t1): (t2) 0.00 : 1: 1: 1.08: 1.10: -0.01: 0.01: 2: 1: 24.52: 0.87: 1.31: -0.22: 0.22: 3: 1: 2.73: 0.66: 1.52: -0.43: 0.43: 0.46 : 0.44: 4: 1: 1.74: -0.65: 0.65: 5: 1: 0.11: 0.22: 1.96: -0.87: 0.87: 6: 1: 0.03: 0.01: 2.17: -1.08: 1.08: 7: 1: 0.01: -0.21: 2.39: -1.30: 8: 1: 0.00: -0.43: 2.61: -1.52: 1.52: 9: 1: 0.00: -0.64: 2.82: -1.73: 1.73: 0.00 : 10: 1: -0.86: 3.04: -1.95: 1.95: S : M: NUMBER S2 : S T : A: OF E : T: FATIGUE P : L: CYCLES (t1): (t2): (t1): (t2) : 1: 1: 0.00 : -0.01: 0.01: 0.00: 0.00: 2: 1: 24.52 : -0.22: 0.22: 0.00: 0.00: 3: 1: 2.73 : -0.43: 0.43: 0.00: 0.00: 4: 1: 0.46 : -0.65: 0.65: 0.00: 0.00: 5: 1: 0.11: -0.87: 0.87: 0.00: 0.00: 0.03: 6: 1: -1.08: 1.08: 0.00: 0.00: 7: 1: 0.01: -1.30: 1.30: 0.00: 0.00: 8: 1: 0.00: -1.52: 1.52: 0.00: 0.00: 9: 1: 0.00: -1.73: 1.73: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

-1.95:

0.00:

10: 1:

BLC	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	s1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	M:	NUMBER	:	S2	:	s	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t.2) :	(t1) ·	(t2) ·

1.95:

0.00:

0.00:

::	:	:	:	:	:
1: 1:	0.28 :	1.00:	1.00:	0.00:	0.00:
2: 1:	0.44 :	0.81:	1.06:	0.00:	0.00:
3: 1:	0.22 :	0.62:	1.12:	0.00:	0.00:
4: 1:	0.06 :	0.43:	1.18:	0.00:	0.00:
5: 1:	0.00:	0.23:	1.24:	0.00:	0.00:
6: 1:	0.00:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W4 SA227 Main Spa MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	S0	:	S1	
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:	:-	:
	1:	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
S	:	M:	NUMBER	:	S2	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)		. (ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	:	:-	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE _____

STD								
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)		(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	-:-		-:-	:	:	:	:
	1:		0.00		7.45:	7.59:	0.00:	0.00:
2	2:	1:	15.09	:	6.00:	9.04:	0.00:	0.00:
3	3:	1:	1.52	:	4.55:	10.49:	0.00:	0.00:
4	4:	1:	0.23	:	3.04:	12.01:	0.00:	0.00:
	5:	1:	0.05	:	1.52:	13.52:	0.00:	0.00:
(6:	1:	0.01	:	0.07:	14.97:	0.00:	0.00:
	7:	1:	0.00	:	-1.45:	16.49:	0.00:	0.00:
1	B:	1:	0.00	:	-2.97:	18.01:	0.00:	0.00:
9	9:	1:	0.00	:	-4.42:	19.46:	0.00:	0.00:
10	0:	1:	0.00	:	-5.93:	20.98:	0.00:	0.00:
s	:	М:	NUMBER	:	S2	:	S	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)) :	(ksi)	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	-:-		-:-	:	:	:	:
	1:		0.00		0.00:	0.00:	0.00:	0.00:
	2:		15.09		0.00:	0.00:	0.00:	0.00:
	3:		1.52		0.00:	0.00:	0.00:	0.00:
	4:		0.23		0.00:	0.00:	0.00:	0.00:
	5:		0.05		0.00:	0.00:	0.00:	0.00:
	6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

7:	1:	0.00:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M:	NUMBER	:	S 0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi) :	(ksi) :
P :	L:	CYCLES	:	(t1) :			
1:	:- 1:	0.00	- : - :	7.38:	:- 7 51.	0.00:	0 00:
		31.10					
		2.98				0.00:	
	1:			3.01:			
	1:					0.00:	
6:					14.82:		
7:	1:	0.01				0.00:	
8:	1:	0.00				0.00:	
9:	1:			-4.37:			
10:	1:			-5.87:		0.00:	
s:	M:	NUMBER	:	52	:	S	:
T:	A:	OF	:		:		
E :	T:	FATIGUE	:	(ksi)) :	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	:- 1:	0.00	- : - :	0.00:	0.00:	0.00:	0.00:
		31.10				0.00:	
3:	1:	2.98	:		0.00:		
4:	1:	0.45	:	0.00:	0.00:	0.00:	
5:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.02	:	0.00:	0.00:	0.00:	0.00:
7:	1:				0.00:	0.00:	0.00:
8:	1:	0.00	:		0.00:	0.00:	0.00:
	1:	0.00	:		0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD ----:--:--:----: 1: 1: 0.00: 7.88: 8.03: 0.00: 0.00: 2: 1: 24.52: 6.35: 9.56: 0.00: 0.00: 3: 1: 2.73: 4.82: 11.10: 0.00: 0.00: 4: 1: 0.46: 3.21: 12.70: 0.00: 0.00: 0.11: 1.61: 14.31: 0.00: 0.07: 15.84: 0.00: 5: 1: 0.00: 6: 1: 0.03: 15.84: 0.00: 0.00: 17.45: 7: 1: 0.01 : -1.53: 0.00: 0.00: 8: 1: 0.00: -3.14: -4.67: 19.05: 0.00: 0.00: 20.59: 0.00: 0.00: 9: 1: 0.00: 0.00: 0.00: -6.28: 10: 1: 22.19: 0.00:

s:	M:	NUMBER	:	S2	:	S	:
T :	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:-	:-:	:
1:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
2:	1:	24.52	:	0.00:	0.00:	0.00:	0.00:
3:	1:	2.73	:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.46	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.11	:	0.00:	0.00:	0.00:	0.00:
6:	1:	0.03	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	S1	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		- : -	:	:	:	:
	1:	1:	0.28	:	4.60:	4.65:	0.00:	0.00:
	2:	1:	0.44	:	3.73:	4.88:	0.00:	0.00:
	3:	1:	0.22	:	2.85:	5.15:	0.00:	0.00:
	4:	1:	0.06	:	1.98:	5.43:	0.00:	0.00:
	5:	1:	0.00	:	1.06:	5.70:	0.00:	0.00:
	6:	1:	0.00	:	0.18:	5.98:	0.00:	0.00:
S	:	M:	NUMBER	:	S2	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:	:	:
		1:					0.00:	
	2:	1:	0.44			0.00:		
		1:	0.22			0.00:		
		1:	0.06				0.00:	
	5:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	· c	c-tip
100	15		0.481743	8.187519
200	15		0.512666	8.483773
300	15		0.549088	8.831584
400	15		0.593067	9.251762
500	15		0.648085	9.780644
600	15		0.720803	10.490454
700	15		0.826875	11.559870
800	15		1.025862	13.724704

```
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 51.86 \quad K \text{ ref} = 0.000
                                   K cr =
at the very beginning of Load Step No.
Step description:
of Block No. 14 of Schedule No. Crack Size c = 1.04741
                                    806
              FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
             DATE: 09-APR-99 TIME: 09:49:21
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W4 SA227 MS, crack in angle WS 130
GEOMETRY
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                     0.1250
Plate Width, W = 1.4400
Hole Diameter, D = 0.1990
Hole-Center-to-Edge Dist., B =
                              0.3500
Poisson s ratio = 0.32
FLAW SIZE:
a (init.) = 0.5000E-01
c (init.) = 0.5000E-01
a/c (init.) = 1.000
MATERIAL
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : : :
       : 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants -----:
:---::----:---:
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
```

```
Scale Factor for Stress S1:
                             0.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                               5.3300
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S1: 0.0000 Scale Factor for Stress S3: 2.3000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3:
                             2.2700
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3: 2.4300
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                              0.0000
Scale Factor for Stress S3:
                               1.4500
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
 Block Number
                               Block Case No.
From - To
    1
    2 -
    5
               5
    7
               7
                                         1
    8
               8
    9
               9
   10
              10
   11
              11
   12
              12
   13
   14
              14
                                         4
   15
               15
BLOCK CASE NO. 1
 S : M: NUMBER : S0 : S1
T : A: OF : :
E : T: FATIGUE :
   1: 1: 1.90: 0.70: 1.30: 0.70: 1.30: 2: 1: 0.09: 0.60: 1.40: 0.60: 1.40: 3: 1: 0.01: 0.54: 1.46: 0.54: 1.46: S3 : S :
 3: 1: 0.01 : S : M: NUMBER :
 T : A: OF
 E : T: FATIGUE : P : L: CYCLES :
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :
   1: 1: 1.90: 0.70: 1.30: 0.00: 0.00: 2: 1: 0.09: 0.60: 1.40: 0.00: 0.00: 3: 1: 0.01: 0.54: 1.46: 0.00: 0.00:
              0.01 :
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

(Milax less than Alsee). Not bel

BLOCI	K CA	SE NO. 2					
S	: M:	NUMBER	:	S0	:	S1	:
T	: A:	OF	:		:		:
E	т:	FATIGUE	:		:		:
		CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
		0.00	•		1 04.		
2.	. 1.	15.09	:	0 01.	1.04:	0.99:	1.01:
	1:		•	0.61:	1.45:	0.78:	1.42:
	: 1:	0.23	•	0.00:	1.40:	0.57:	1.43:
	1:	0.23	•	0.36:	1.00:	0.35:	1.65:
	1:	0.05 0.01					
					2.11:		
	: 1:	0.00				-0.30:	
	: 1:	0.00			2.55:	-0.52:	2.52:
	: 1:	0.00	:	-0.70:	2.76:	-0.73:	2.73:
	: 1:	0.00					2.95:
	M:		:	s3	:	S	:
T :			:		:		:
		FATIGUE			:		:
P :	L:	CYCLES					
;		0.00		1 00:			
2.	1.	15.09	•	0.02:	1.04:	0.00:	0.00:
	1:	1.52	•	0.01:	1.25:	0.00:	0.00:
	1:						
5:		0.23 0.05	:	0.36:	1.08:	0.00:	0.00:
	1:						
	1:	0.01		-0.05: -0.37:		0.00:	
8:				-0.27:			
	1:	0.00	:	-0.49:	2.33:	0.00:	0.00:
	1:	0.00	•	-0.70: -0.92:	2./6:	0.00:	0.00:
10:		0.00	ź	-0.92:	2.98:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK C. S : M		: S(S1	
T : A		. 50		51	•
	: OF : FATIGUE	•	:		:
				4.43	:
P : L	: CYCLES	: (t1)	: (t2) :	(t1):	(t2) :
1: 1		1.02	1.04:	0.99:	1 01:
2: 1	31.10	: 0.81	1.25	0.78	1 22.
3: 1	2.98	: 0.60:	1.46:	0.57:	1 43-
4: 1	0.45	: 0.38:	1.68:	0.35	1.65:
5: 1		: 0.16:			
6: 1			2.11:		
7: 1	0.01		2.33:		
8: 1			2.55:	-0.52:	2.52:
9: 1			2.76:		
10: 1			2.98:	-0.95:	2.95:
S:M					:
T : A	: OF	:		_	
E : T					
	FATIGUE	:			•
			: (t2) :	(t1) :	: (t2) :
P : L	CYCLES	: (t1) :	:	:-	:
P : L	: CYCLES :	: (t1): -:: : 1.02:	1.04:	0.00:	0.00:
P : L	: CYCLES :	: (t1): -:: : 1.02:	1.04:	0.00:	0.00:
P : L : 1: 1	: CYCLES : 0.00 : 31.10	: (t1): :: 1.02: : 0.81:	1.04: 1.25:	0.00:	0.00: 0.00:
P : L : 1: 1 2: 1	: CYCLES : 0.00 : 31.10 : 2.98	: (t1): :: 1.02: : 0.81:	1.04: 1.25: 1.46:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
P : L :- 1: 1 2: 1 3: 1	: CYCLES : 0.00 : 31.10 : 2.98 : 0.45	: (t1): : 1.02: : 0.81: : 0.60:	1.04: 1.25: 1.46: 1.68:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
P : L : 1: 1 2: 1 3: 1 4: 1	: CYCLES : 0.00 : 31.10 : 2.98 : 0.45 : 0.09	: (t1): -:: : 1.02: : 0.81: : 0.60: : 0.38: : 0.16:	1.04: 1.25: 1.46: 1.68: 1.90:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
P : L:- 1: 1 2: 1 3: 1 4: 1 5: 1	CYCLES 0.00 31.10 2.98 0.45 0.09	: (t1): -:: : 1.02: : 0.81: : 0.60: : 0.38: : 0.16: : -0.05:	1.04: 1.25: 1.46: 1.68: 1.90:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P : L:- 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1	: CYCLES : 0.00 : 31.10 : 2.98 : 0.45 : 0.09 : 0.02	: (t1): -:: : 1.02: : 0.81: : 0.60: : 0.38: : 0.16: : -0.05: : -0.27:	1.04: 1.25: 1.46: 1.68: 1.90: 2.11:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P : L:- 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1	CYCLES 0.00 31.10 2.98 0.45 0.09 0.02 0.01	: (t1): -:: : 1.02: : 0.81: : 0.60: : 0.38: : 0.16: : -0.05: : -0.27: : -0.49:	1.04: 1.25: 1.46: 1.68: 1.90: 2.11: 2.33: 2.55:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P : L:- 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1	CYCLES 0.00 31.10 2.98 0.45 0.09 0.02 0.01 0.00	: (t1): -:: : 1.02: : 0.81: : 0.60: : 0.38: : 0.16: : -0.05: : -0.27: : -0.49:	1.04: 1.25: 1.46: 1.68: 1.90: 2.11: 2.33: 2.55: 2.76:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLOC	cĸ	CAS	E NO. 4					
S	:	M:	NUMBER	:	so	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-	0.00	-:-	:-	:	:-	:
2	2:	1:	24.52	:	0.81:	1.25:	0.78:	1.22:
3	3:	1:	2.73	:	0.60:	1.46:	0.57:	1.43:
4	1:	1:	0.46	:	0.38:	1.68:	0.35:	1.65:
5	5:	1:	0.11	:	0.16:	1.90:	0.13:	1.87:
6	5:	1:	0.03	:	-0.05:	2.11:	-0.08:	2.08:
7	7:	1:	0.01	:	-0.27:	2.33:	-0.30:	2.30:
8	3:	1:	0.00	:	-0.49:	2.55:	-0.52:	2.52:
			0.00					
10):	1:	0.00	:	-0.92:	2.98:	-0.95:	2.95:
			NUMBER			:		:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE			:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1	l:	1:	0.00	:	1.02:	1.04:	0.00:	0.00:
2	2:		24.52					
3	3:	1:	2.73	:	0.60:	1.46:	0.00:	0.00:
4	4:	1:	0.46					
5	5:	1:	0.11	:	0.16:	1.90:	0.00:	0.00:
(5:	1:	0.03	:	-0.05:	2.11:	0.00:	0.00:
•	7:	1:	0.01				0.00:	
8	B:	1:	0.00	:	-0.49:	2.55:	0.00:	0.00:
9	9:	1:	0.00	:				
10	0:	1:	0.00	:	-0.92:	2.98:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

S : M: NUMBER : S0 : S1 T : A: OF : : E : T: FATIGUE : : P : L: CYCLES : (t1) : (t2) : (t1) : (t2)	01:
E : T: FATIGUE : : : : : : : : : : : : : : : : : : :	01:
P : L: CYCLES : (t1): (t2): (t1): (t2)	01:
:::::::::	01:
;_;;;;;;	
1: 1: 0.28: 1.00: 1.01: 1.00: 1.0	
2: 1: 0.44: 0.81: 1.06: 0.81: 1.0	06:
3: 1: 0.22: 0.62: 1.12: 0.62: 1.1	12:
4: 1: 0.06: 0.43: 1.18: 0.42: 1.3	18:
5: 1: 0.00: 0.23: 1.24: 0.23: 1.2	24:
6: 1: 0.00: 0.04: 1.30: 0.04: 1.3	30:
S: M: NUMBER : S3 : S	:
T : A: OF : :	:
E : T: FATIGUE : :	:
P : L: CYCLES : (t1) : (t2) : (t1) : (t2)	:
1: 1: 0.28: 1.00: 1.00: 0.00: 0.0	00:
2: 1: 0.44: 0.81: 1.06: 0.00: 0.0	00:
3: 1: 0.22: 0.62: 1.12: 0.00: 0.0	00:
4: 1: 0.06: · 0.43: 1.18: 0.00: 0.0	00:
5: 1: 0.00: 0.23: 1.24: 0.00: 0.0	00:
6: 1: 0.00: 0.04: 1.30: 0.00: 0.0	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

CORNER CRACK CASE 2, PSE-W4 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STI)							
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi)) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	:	:	:
	1:	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
S	:	M:	NUMBER	:	s3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		: -	:	:	:	:
	1:	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD					- -		
S	: M:	NUMBER	:	s 0	:	S1	:
T	: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi)	:	(ksi) :
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	: 1:		•	5.44:			
2	: 1:	15.09	:	4.32:	6.66:	0.00:	0.00:
3	: 1:	1.52	:	3.20:	7.78:	0.00:	0.00:
	: 1:	0.23				0.00:	0.00:
		0.05	:	0.85:	10.13:	0.00:	0.00:
	: 1:	0.01				0.00:	0.00:
	: 1:	0.00				0.00:	0.00:
	: 1:	0.00				0.00:	0.00:
	: 1:	0.00	:	-3.73:	14.71:	0.00:	0.00:
	: 1:	0.00			15.88:	0.00:	0.00:
	: M:	NUMBER	:	S3	:	s	:
			:		:		:
	: T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	: L:	CYCLES		(t1) : :			
1	: 1:	0.00					
2		15.09					
	: 1:	1.52	:	1.38:	3.36:	0.00:	0.00:
4	: 1:	0.23	:	0.87:	3.86:	0.00:	0.00:
5	: 1:			0.37:			
6	: 1:	0.01				0.00:	
7	: 1:	0.00	:	-0.62:	5.36:	0.00:	0.00:
8	: 1:	0.00		-1.13:	5.86:	0.00:	0.00:
9	: 1:	0.00	:	-1.61:	6.35:	0.00:	0.00:
10	: 1:	0.00			6.85:		0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD)							
s	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)) :	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		:-	:	:	:-	:
	1:	1:	0.00	:	5.39:	5.49:	0.00:	0.00:
	2:	1:	31.10	:	4.28:	6.60:	0.00:	0.00:
	3:	1:	2.98	:	3.17:	7.71:	0.00:	0.00:
	4:	1:	0.45	:	2.01:	8.87:	0.00:	0.00:
	5:	1:	0.09	:	0.84:	10.03:	0.00:	0.00:
	6:	1:	0.02	:	-0.26:	11.14:	0.00:	0.00:
	7:	1:	0.01	:	-1.43:	12.30:	0.00:	0.00:
	8:	1:	0.00	:	-2.59:	13.46:	0.00:	0.00:
	9:	1:	0.00	:	-3.70:	14.57:	0.00:	0.00:
1	0:	1:	0.00	:	-4.86:	15.73:	0.00:	0.00:
s	:	М:	NUMBER	:	S 3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:		:-	:-	:	:-	:
		1:	0.00		2.32:	2.36:	0.00:	0.00:
	2:		31.10		1.84:	2.84:	0.00:	0.00:
	3:	1:	2.98	:	1.36:	3.31:	0.00:	0.00:
	4:	1:	0.45	:	0.86:	3.81:	0.00:	0.00:
	5:	1:	0.09	:	0.36:	4.31:	0.00:	0.00:
	6:	1:	0.02		-0.11:	4.79:	0.00:	0.00:
	7:	1:	0.01		-0.61:	5.29:	0.00:	0.00:
	8:	1:	0.00	:	-1.11:	5.79:	0.00:	0.00:
	9:	1:		:	-1.59:	6.27:	0.00:	0.00:
1	.0:	1:	0.00	:	-2.09:	6.76:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
	: M:	NUMBER		S 0		s1	
	. A:	OF	:	D 0	:	51	:
		FATIGUE	:	(ksi	` :	(ksi)	
	. L:	CYCLES	:	(t1):			(t2) :
_	::-	CICLES	· - • -	(CI) .	(02) :	(61):	(62) :
	: 1:	0.00	:	5.76:	5 88-	0 00:	0 00:
	: 1:			4.58:			
	: 1:			3.39:			
	: 1:			2.15:			
	: 1:			0.90:		0.00:	
	: 1:	0.03					
	: 1:	0.01					
	: 1:			-2. 7 7:		0.00:	
	: 1:	0.00					
10	: 1:	0.00		-5.20:	16.84:	0.00:	0.00:
S	: M:	NUMBER	:	S 3	:	S	:
${f T}$: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi) :	(ksi)) :
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::		•	:-		:	•
1	.: 1:	0.00	:	2.48:	2.53:	0.00:	0.00:
2	: 1:	24.52	. :	1.97:	3.04:	0.00:	0.00:
3	: 1:	2.73	:	1.46:	3.55:	0.00:	0.00:
4	: 1:	0.46	:	0.92:	4.08:	0.00:	0.00:
5	: 1:	0.11	:	0.39:	4.62:	0.00:	0.00:
6	: 1:	0.03	:	-0.12:	5.13:	0.00:	0.00:
7	': 1:	0.01	:			0.00:	
8	3: 1:	0.00	:		6.20:	0.00:	0.00:

9: 1: 0.00: -1.70: 6.71: 0.00: 0.00: 10: 1: 0.00: -2.24: 7.24: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	so	:	S1	:
${f T}$:	A:	OF	:		:		:
E	-			:	(ksi)	:	(ksi)) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	- : -	:-		-:	:	:	:	:
		1:			3.36:	3.39:	0.00:	0.00:
		1:		:	2.72:	3.56:	0.00:	0.00:
3	3:	1:	0.22	:	2.08:	3.76:	0.00:	0.00:
4	1:	1:	0.06	:	1.44:	3.96:	0.00:	0.00:
5	5:	1:	0.00	:	0.77:	4.17:	0.00:	0.00:
ϵ	5:	1:	0.00	:	0.13:	4.37:	0.00:	0.00:
S	:	M:	NUMBER	:	<i>s</i> 3	:	S	:
${f T}$			OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1	- : - L :	:- 1:	0.28	• : •	1.45:	1 45.	0.00:	0.00:
		1:			1.17:			
		1:						
		1:				1.71:		
		1:			0.33:			
		1:	0.00		0.06:	1.89:	0.00:	
			0.00	•	0.00.	1.00.	0.00.	0.00.

Environmental Crack Growth Check for Sustained Stresses (Kmax less than ${\tt KIscc)}:\ {\tt NOT}\ {\tt SET}$

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final F	law Size	K m	K max		
	Step	a	С	a-tip	c-tip		
200	15	0.051282	0.050399	3.338267	2.611330		
400	15	0.052582	0.050823	3.349567	2.642877		
600	15	0.053903	0.051271	3.360949	2.673991		
800	15	0.055244	0.051746	3.372442	2.704697		
1000	15	0.056605	0.052246	3.384073	2.735023		
1200	15	0.057987	0.052774	3.395869	2.765000		
1400	15	0.059391	0.053330	3.407853	2.794660		
1600	15	0.060818	0.053913	3.420046	2.824037		
1800	15	0.062267	0.054526	3.432468	2.853169		
2000	15	0.063739	0.055169	3.445139	2.882091		
2200	15	0.065237	0.055842	3.458074	2.910844		
2400	15	0.066759	0.056547	3.471288	2.939468		
2600	15	0.068307	0.057284	3.484796	2.968005		
2800	15	0.069883	0.058055	3.498610	2.996498		
3000	15	0.071486	0.058860	3.512742	3.024992		
3200	15	0.073119	0.059701	3.527203	3.053532		
3400	15	0.074782	0.060578	3.542002	3.082167		
3600	15	0.076476	0.061493	3.557150	3.110947		
3800	15	0.078202	0.062448	3.572654	3.139920		
4000	15	0.079963	0.063443	3.588524	3.169140		

4200	15	0.081758	0.064482	3.604768	3.198660
4400	15	0.083590	0.065564	3.621394	3.228537
4600	15	0.085460	0.066693	3.638409	3.258829
4800	15	0.087369	0.067871	3.655822	3.289597
5000	15	0.089319	0.069100	3.673641	3.320906
5200	15	0.091312	0.070382	3.691873	3.352824
5400	15	0.093349	0.071721	3.710526	3.385421
5600	15	0.095432	0.073119	3.729607	3.418771
5800	15	0.097563	0.074580	3.749125	3.452954
6000	15	0.099744	0.076108	3.769086	3.488054
6200	15	0.101977	0.077708	3.789498	3.524158
6400	15	0.104264	0.079382	3.810365	3.561361
6600	15	0.106607	0.081138	3.831694	3.599762
6800	15	0.109009	0.082981	3.853486	3.639467
7000	15	0.111472	0.084916	3.875741	3.680589
7200	15	0.113999	0.086951	3.898454	3.723246
7400	15	0.116592	0.089095	3.921615	3.767562
7600	15	0.119254	0.091355	3.945208	3.813666
7800	15	0.121987	0.093742	3.969205	3.861693
8000	15	0.124795	0.096267	3.993567	3.911778

Transition to 1-d solution, TC03:

a = 0.1250 t = 0.1250 at Cycle No. 2.98 of I

2.98 of Load Step No.

Step description:

of Block No. 8 of Schedule No. 8015 Crack Size: c = 0.964546E-01, a/c = 1.29595

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
8200	. 15	-	0.100053	4.127921
8400	15		0.104105	4.174693
8600	15		0.108361	4.226322
8800	15		0.112854	4.283804
9000	15		0.117622	4.348450
9200	15		0.122717	4.422044
9400	15		0.128208	4.507092
9600	15		0.134190	4.607275
9800	15		0.140801	4.728305
10000	15		0.148250	4.879719
10200	15		0.156892	5.079184
10400	15		0.167405	5.365103
10600	15		0.181428	5.848697
10800	15		0.206269	7.236367

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or

(b) KIC/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.)

at the very beginning of Load Step No. 10

Step description:

of Block No. 14 of Schedule No. 10853

Crack Size c = 0.223020

FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 10 Step description:

of Block No. 14 of Schedule No. 10863

Crack Size c = 0.230881

FATIGUE CRACK GROWTH ANALYSIS
-----Modified by FAI----DATE: 09-APR-99 TIME: 10:10:05

(computed: NASA/FLAGRO Version 2.03, March 1995.)
U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

```
THROUGH CRACK CASE 11, PSE-W4 SA227 MS, cracked angle WS130
MODEL: TC11-Corner crack in plate or bar (2D)
Plate Thickness, t =
                   0.1250
" Width, W = 1.4440
Hole Diameter, D = 0.1990
Hole-Center-to-Edge Dist., B =
                            0.3500
2ND AREA, AREATC11 = 1.3600
2ND M. INERTIA = 0.3700
2ND C.G. = -0.1700
FLAW SIZE:
c (init.) = 0.9645E-01
MATERIAL
MATL 1:
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : : : :
       : 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           : 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC11
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                         5.3300
Scale Factor for Stress S3:
                         2.3000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S3: 2.2700
Stress Scaling Factors for Block Case: 4
                       5.6500
2.4300
Scale Factor for Stress S0:
Scale Factor for Stress S3:
```

Stress Scaling Factors for Block Case: 5

```
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                      1.4500
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
Block Number
                       Block Case No.
From - To
  1
           1
                              1
   2
           2
                              2
   3
           3
                              5
                              1
   5
           5
   6
           6
                              5
   7
   9
           9
  10
          10
  11
          11
                              3
  12
  13
          13
                              1
  14
          14
  15
          15
BLOCK CASE NO. 1
S : M: NUMBER
                      S0
                                 S3
                              :
T : A: OF
E : T: FATIGUE
              :
P : L: CYCLES
                    (t1): (t2):
                                   (t1) : (t2)
----:--:--:-
                   ----:
  1: 1: 1.90: 0.70: 1.30: 0.70: 1.30:
           0.09 :
  2: 1:
                    0.60:
                            1.40:
                                    0.60:
                                           1.40:
  3: 1:
           0.01:
                    0.54:
                            1.46:
                                    0.54:
                                           1.46:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
               : S0
                               :
                                      S3
T : A: OF
E : T: FATIGUE
P : L: CYCLES
              :
                   (t1): (t2): (t1): (t2)
1: 1: 0.00: 1.02: 1.04: 1.02: 1.04:
          15.09 : 0.81:
1.52 : 0.60:
                         1.25: 0.81:
1.46: 0.60:
  2: 1:
                                         1.25:
1.46:
           1.52 :
  3: 1:
          0.23 :
                   0.38: 1.68: 0.38:
  4: 1:
                                          1.68:
           0.05 :
  5: 1:
                         1.90:
                                 0.16:
                    0.16:
                                          1.90:
  6: 1:
            0.01 :
                   -0.05:
                            2.11:
                                   -0.05:
                                           2.11:
           0.00:
  7: 1:
                   -0.27:
                                  -0.27:
                            2.33:
                                           2.33:
  8: 1:
           0.00:
                   -0.49:
                           2.55:
                                   -0.49:
                                           2.55:
            0.00:
  9: 1:
                   -0.70:
                            2.76:
                                   -0.70:
                                           2 76-
 10: 1:
            0.00:
                   -0.92:
                            2.98:
                                   -0.92:
                                           2.98:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 3
S : M: NUMBER
                      S0
                                      S3
T : A: OF
E : T: FATIGUE
              :
P : L: CYCLES
                   (t1): (t2): (t1): (t2):
1: 1: 0.00 : 1.02:
                           1.04:
                                   1.02: 1.04:
```

2:	1:	31.10	:	0.81:	1.25:	0.81:	1.25:
3:	1:	2.98	:	0.60:	1.46:	0.60:	1.46:
4:	1:	0.45	:	0.38:	1.68:	0.38:	1.68:
5:	1:	0.09	:	0.16:	1.90:	0.16:	1.90:
6:	1:	0.02	:	-0.05:	2.11:	-0.05:	2.11:
7:	1:	0.01	:	-0.27:	2.33:	-0.27:	2.33:
8:	1:	0.00	:	-0.49:	2.55:	-0.49:	2.55:
9:	1:	0.00	:	-0.70:	2.76:	-0.70:	2.76:
10:	1:	0.00	:	-0.92:	2.98:	-0.92:	2.98:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK	CAS	SE NO. 4					
s :	M:	NUMBER	:	S0	:	s3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
Р:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		:	:-	:-	:-	:
1:	1:	0.0	0:	1.02:	1.04:	1.02:	1.04:
2:	1:	24.5	2:	0.81:	1.25:	0.81:	1.25:
3:	1:	2.7	3:	0.60:	1.46:	0.60:	1.46:
4:	1:	0.4	6:	0.38:	1.68:	0.38:	1.68:
5:	1:	0.1	1:	0.16:	1.90:	0.16:	1.90:
6:	1:	0.0	3:	-0.05:	2.11:	-0.05:	2.11:
7:	1:	0.0	1:	-0.27:	2.33:	-0.27:	2.33:
8:	1:	0.00) :	-0.49:	2.55:	-0.49:	2.55:
9:	1:	0.00) :	-0.70:	2.76:	-0.70:	2.76:
10:	1:	0.00) :	-0.92:	2.98:	-0.92:	2.98:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

DI CON	~~~	T. 170 F					
BLOCK	CAS	E NO. 5					
s :	М:	NUMBER	:	so	:	S3	:
T :	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	·:	:-	:-	:
1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 11, PSE-MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	S 3	
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	·(t1) : (t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:	:-	:	:
1	L:	1:	1.90	:	-0.70:	-1.30:	-0.70:	-1.30:
2	2:	1:	0.09	:	-0.60:	-1.40:	-0.60:	-1.40:
3	3:	1:	0.01	:	-0.54:	-1.46:	-0.54	-1.46.

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD : S3 : S : M: NUMBER OF : A: E : T: FATIGUE : (ksi) : (ksi) : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :

 0.00:
 5.44:
 5.54:
 2.35:
 2.39:

 15.09:
 4.32:
 6.66:
 1.86:
 2.88:

 1: 1: 2: 1: 1.52 : 3.20: 7.78: 1.38: 0.23 : 2.03: 8.95: 0.87: 0.05 : 0.85: 10.13: 0.37: 3.36: 3.86: 3: 1: 0.23 : 0.05 : 4: 1: 4.37: 5: 1: 6: 1: 0.01 : -0.27: 11.25: -0.12: 4.85: 0.00 : -1.44: 0.00 : -2.61: 12.42: 13.59: 7: 1: -0.62: 5.36: 8: 1: -1.13: 5.86: 0.00 : -3.73: 14.71: 9: 1: -1.61: 6.35: 0.00 : -4.90: 15.88: -2.12: 6.85: 10: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

S : M: NUMBER S0 S3
 1: 1:
 0.00 :
 5.39:
 5.49:
 2.32:
 2.36:

 2: 1:
 31.10 :
 4.28:
 6.60:
 1.84:
 2.84:

 3: 1:
 2.98 :
 3.17:
 7.71:
 1.36:
 3.31:

 4: 1:
 0.45 :
 2.01:
 8.87:
 0.86:
 3.81:

 5: 1:
 0.09 :
 0.84:
 10.03:
 0.36:
 4.31:
 6: 1: 0.02 : -0.26 : 11.14 :-0.11: 4.79: 0.01 : -1.43: 12.30: -0.61: 0.00 : -2.59: 13.46: -1.11: 7: 1: 5.29: 8: 1: 5.79: 0.00: -3.70: 14.57: -1.59: 6.27: 9: 1: 10: 1: 0.00:

-4.86: 15.73:

-2.09:

6.76:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : T : A: OF : E : T: FATIGUE : E : T: FATIGUE : (ksi) : (ksi) : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : ---:--:--:---:---: 1: 1: 0.00: 5.76: 5.88: 2.48: 2.53: 2: 1: 24.52: 4.58: 7.06: 1.97: 3.04: 3: 1: 2.73: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3: 1: 2.73: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3: 1: 2.73: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 1.97: 3.04: 3.30: 2.05: 4.58: 7.06: 7.06: 2.73 : 3.39: 8.25: 1.46: 2.15: 9.49: 0.92: 0.90: 10.73: 0.39: 3.55: 4.08: 3: 1: 4: 1: 0.46 : 0.39: 5: 1: 0.11 : 4.62: 0.03: -0.28: 11.92: -0.12: 0.01: -1.53: 13.16: -0.66: 0.00: -2.77: 14.41: -1.19: 0.03: 5.13: 6: 1: 7: 1: 8: 1: 6.20:

9: 1: 0.00: -3.96: 15.59: -1.70: 6.71: 10: 1: 0.00 : -5.20: 16.84: -2.24: 7.24:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	so	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:	:-	:-	:
1	L:	1:	0.28	:	3.36:	3.39:	1.45:	1.46:
2	2:	1:	0.44	:	2.72:	3.56:	1.17:	1.54:
3	3:	1:	0.22	:	2.08:	3.76:	0.90:	1.62:
4	ł:	1:	0.06	:	1.44:	3.96:	0.61:	1.71:
5	5:	1:	0.00	:	0.77:	4.17:	0.33:	1.80:
ϵ	5:	1:	0.00	:	0.13:	4.37:	0.06:	1.89:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
200	15		0.099420	3.867860
400	15		0.102468	3.892575
600	15		0.105601	3.919081
800	15		0.108829	3.947611
1000	15		0.112159	3.978441
1200	15		0.115605	4.011907
1400	15		0.119179	4.048415
1600	15		0.122898	4.088470
1800	15		0.126781	4.132707
2000	15		0.130853	4.181943
2200	15		0.135143	4.237247
2400	15		0.139691	4.300065
2600	15		0.144549	4.372401
2800	15		0.149784	4.457159
3000	15		0.155496	4.558742
3200	15		0.161831	4.684290
3400	15		0.169027	4.846456
3600	15		0.177506	5.070848
3800	15		0.188183	5.422146
4000	15		0.203936	6.163338

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: $K \max = 55.20$ K ref = 0.000 K cr = 51.83at the very beginning of Load Step No. Step description:

of Block No. 11 of Schedule No. Crack Size c = 0.243579

> FATIGUE CRACK GROWTH ANALYSIS ------Modified by FAI-----DATE: 09-APR-99 TIME: 10:14:25

```
(computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC12, PSE-W4 SA227 Main Spar Angle WS130
MODEL: TC12-Corner crack from hole in plate (2D)
                  0.1250
Plate Thickness, t =
    Width, W = 1.4400
Additional Area, AREA3 = 1.3600
Add Area cg dist in y, F3 = 0.2940
Add Area cg dist in x, G3 = -0.1700
Add Area Ix, RIX = 0.1830
Add Area Iy, RIY = 0.3700
Moement , RM = 0.0000
        , RM =
FLAW SIZE:
c (init.) = 0.4550
MATERIAL.
MATL 1:
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
      :
             :
                   : : : : :
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC12
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                        -1.0000
Scale Factor for Stress S1:
                        0.0000
Scale Factor for Stress S2:
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                          5.3300
                         0.0000
Scale Factor for Stress S1:
Scale Factor for Stress S2:
Stress Scaling Factors for Block Case: 3
```

```
Scale Factor for Stress S0:
                          5.2800
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S2:
                          2.2700
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                          5.6500
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S2:
                          2,4300
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                         0.0000
Scale Factor for Stress S2:
                         1.4500
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From -
   1
            1
                                 1
   2
            2
                                 2
   3
            3
                                 5
                                 1
   5
            5
   6
            6
            7
                                 1
   8
            8
   9
            9
                                 5
  10
           10
                                 1
  11
           11
  12
           12
  13
           13
  14
           14
                                 4
  15
           15
BLOCK CASE NO. 1
S : M: NUMBER
                        S0
   : A:
         OF
E : T: FATIGUE
P : L: CYCLES
                     (t1): (t2)
                                     (t1) : (t2)
---:--:------
               ---:----:---:
         1.90 : 0.70:
  1: 1:
                                     -0.30:
                              1.30:
          0.09:
  2: 1:
                      0.60:
                              1.40:
                                      -0.40:
                                               0.40:
  3: 1:
                      0.54:
                              1.46:
                                      -0.46:
                                               0.46:
                      S2
S : M: NUMBER
                              :
                                      S
T : A: OF
E : T: FATIGUE
P : L: CYCLES
               :
                     (t1): (t2):
                                     (t1) : (t2)
1: 1:
            1.90 :
                     -0.30:
                             0.30:
                                      0.00:
                                              0.00:
            0.09:
  2: 1:
                     -0.40:
                              0.40:
                                      0.00:
                                               0.00:
  3: 1:
             0.01:
                     -0.46:
                              0.46:
                                      0.00:
                                              0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                        S0
                                 :
                                         S1
T : A:
         OF
                 :
E : T: FATIGUE
P : L: CYCLES
                     (t1): (t2):
                                     (t1): (t2)
0.00: 1.02: 1.04:
  1: 1:
                            1.25:
1 '
                                     -0.01:
                                              0.01:
                     0.81:
            15.09 :
  2: 1:
                                     -0.22:
                                              0.22:
  3: 1:
            1.52 :
                                     -0.43:
                                              0.43:
                             1.68:
            0.23 :
                    0.38:
                                     -0.65:
                                              0.65:
```

5:	1:	0.05	:	0.16:	1.90:	-0.87:	0.87:
6:	1:	0.01	:	-0.05:	2.11:	-1.08:	1.08:
7:	1:	0.00	:	-0.27:	2.33:	-1.30:	1.30:
8:	1:	0.00	:	-0.49:	2.55:	-1.52:	1.52:
9:	1:	0.00	:	-0.70:	2.76:	-1.73:	1.73:
10:	1:	0.00	:	-0.92:	2.98:	-1.95:	1.95:
s:	M:	NUMBER	:	S2	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	: -	:-	:-	:
1:	1:	0.00	:	-0.01:	0.01:	0.00:	0.00:
2:	1:	15.09	:	-0.22:	0.22:	0.00:	0.00:
3:	1:	1.52	:	-0.43:	0.43:	0.00:	0.00:
4:	1:	0.23	:	-0.65:	0.65:	0.00:	0.00:
5:	1:	0.05	:	-0.87:	0.87:	0.00:	0.00:
6:	1:	0.01	:	-1.08:	1.08:	0.00:	0.00:
7:	1:	0.00	:	-1.30:	1.30:	0.00:	0.00:
8:	1:	0.00	:	-1.52:	1.52:	0.00:	0.00:
9:	1:	0.00	:	-1.73:	1.73:	0.00:	0.00:
10:	-	0.00		-1.95:	1.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 3 S : M: NUMBER **S**0 S1 T : A: OF : : E : T: FATIGUE P : L: CYCLES : (t1) : (t2) : (t1) : (t2) ----:--:---:---:----: 1: 1: 0.00 : 2: 1: 31.10 : 1.04: -0.01: 1.02: 0.01: 0.81: 1.25: -0.22: 0.22: 2.98 : 0.45 : 0.09 : 1.46: -0.43: 3: 1: 0.60: 0.38: -0.65: 1.68: 0.65: 4: 1: 5: 1: 0.16: 1.90: -0.87: 0.87: 2.11: 0.02 : -1.08: 6: 1: -0.05: 1.08: 7: 1: 0.01: -0.27: 2.33: -1.30: 1.30: 0.00: -0.49: 2.55: 8: 1: -1.52: 1.52: 9: 1: 0.00 : 10: 1: 0.00 : -0.70: 2.76: -1.73: 1.73: -0.92: 2.98: -1.95: 1.95: S2 S : M: NUMBER : S : ጥ : A: OF E : T: FATIGUE P : L: CYCLES : (t1): (t2): (t1): (t2) ---:--:--:---:---: 1: 1: 0.00: -0.01: 0.01: 0.00: 0.00: 2: 1: 31.10: -0.22: 0.22: 0.00: 0.00: 3: 1: 2.98: -0.43: 0.43: 0.00: 0.00: 4: 1: 0.45: -0.65: 0.65: 0.65: 0.00: 0.00: -0.43: 0.43: 0.00: -0.65: 0.65: 0.00: 4: 1: 0.45 : 0.00: 0.09 : 5: 1: -0.87: 0.87: 0.00: 0.00: -1.08: 6: 1: 0.02 : 1.08: 0.00: 0.00: 0.01: -1.30: 0.00: 7: 1: 1.30: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

-1.52:

-1.73:

-1.95:

0.00:

0.00:

0.00 :

8: 1: 9: 1:

10: 1:

1.52:

1.73:

1.95:

0.00:

0.00:

0.00:

0.00:

0.00:

0.00:

2:	1:	24.52	:	0.81:	1.25:	-0.22:	0.22:
3:	1:	2.73	:	0.60:	1.46:	-0.43:	0.43:
4:	1:	0.46	:	0.38:	1.68:	-0.65:	0.65:
5:	1:	0.11	:	0.16:	1.90:	-0.87:	0.87:
6:	1:	0.03	:	-0.05:	2.11:	-1.08:	1.08:
7:	1:	0.01	:	-0.27:	2.33:	-1.30:	1.30:
8:	1:	0.00	:	-0.49:	2.55:	-1.52:	1.52:
9:	1:	0.00	:	-0.70:	2.76:	-1.73:	1.73:
10:	1:	0.00	:	-0.92:	2.98:	-1.95:	1.95:
s:	Μ:	NUMBER	:	S2	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
P :	L: :-	CYCLES	: -:-	(t1) : :-	(t2) :	(t1) : :	(t2) :
:			: -:- :	:-	:-	:-	:
1:	:-			:-	:-	0.00:	:
1: 2:	:- 1:	0.00	:	-0.01:	0.01:	0.00:	0.00:
1: 2: 3:	1: 1:	0.00 24.52	: :	-0.01: -0.22:	0.01: 0.22:	0.00:	0.00: 0.00:
1: 2: 3: 4:	1: 1: 1:	0.00 24.52 2.73	: :	-0.01: -0.22: -0.43:	0.01: 0.22: 0.43:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1:	0.00 24.52 2.73 0.46	: : :	-0.01: -0.22: -0.43: -0.65:	0.01: 0.22: 0.43: 0.65:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1: 1:	0.00 24.52 2.73 0.46 0.11 0.03	: : :	-0.01: -0.22: -0.43: -0.65: -0.87:	0.01: 0.22: 0.43: 0.65: 0.87:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1: 1:	0.00 24.52 2.73 0.46 0.11 0.03	: : : : : : : : : : : : : : : : : : : :	-0.01: -0.22: -0.43: -0.65: -0.87: -1.08:	0.01: 0.22: 0.43: 0.65: 0.87: 1.08:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1: 1: 1:	0.00 24.52 2.73 0.46 0.11 0.03 0.01	: : : : : : : : : : : : : : : : : : : :	-0.01: -0.22: -0.43: -0.65: -0.87: -1.08: -1.30:	0.01: 0.22: 0.43: 0.65: 0.87: 1.08: 1.30:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

S : T : E :	M: A: T:	E NO. 5 NUMBER OF FATIGUE CYCLES	: : :	s0 (t1) :	: : : (t2) :	s1 (t1):	: : : (t2) :
2: 3: 4: 5:	A: T:	0.44 0.22 0.06 0.00	: : : : : : :	0.81: 0.62: 0.43: 0.23: 0.04: S2	1.06: 1.12: 1.18: 1.24: 1.30:	0.81: 0.62: 0.42: 0.23:	1.06: 1.12: 1.18: 1.24: 1.30:
2: 3: 4: 5:	1: 1: 1: 1: 1:	0.28 0.44 0.22 0.06 0.00	: : :	0.81: 0.62: 0.43:	1.00: 1.06: 1.12: 1.18: 1.24: 1.30:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC12, PSE-W4 SA227 Main Spa MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S1 : E : T: FATIGUE : (ksi) : (ksi) : [

P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : [

1: 1: 1.90 : -0.70: -1.30: 0.00: 0.00: 2: 1: 0.09 : -0.60: -1.40: 0.00: 0.00:

	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
S	:	M:	NUMBER	:	S2	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:-	:	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\hfill \hfill \hf$

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

				-		
M:	NUMBER	:	S0	:	S1	:
A:	OF	:		:		:
T:	FATIGUE	:	(ksi)	:	(ksi)	:
		:	(t1) :	(t2) :	(t1) :	(t2) :
-		:-	: 5 //:	5 5/.	0.00:	0 00:
1:						
1:	0.00	:	-4.90:			
M:	NUMBER	:	S2	:	s	:
A:	OF	:		:		:
T:	FATIGUE	:	(ksi)	:	(ksi) :
L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
		-	•	•	_	•
						0.00:
1:				4.48:	0.00:	0.00:
	A: T: L: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	A: OF T: FATIGUE L: CYCLES 1: 0.00 1: 15.09 1: 1.52 1: 0.05 1: 0.00 1: 0.00 1: 0.00 1: 0.00 M: NUMBER A: OF T: FATIGUE L: CYCLES 1: 0.00 1: 15.09 1: 1.52 1: 0.23 1: 0.05 1: 0.00 1: 0.00 1: 15.09 1: 1.52 1: 0.05 1: 0.05	A: OF : T: FATIGUE : L: CYCLES : 1: 0.00 : 1: 15.09 : 1: 0.05 : 1: 0.00 :	A: OF : (ksi) L: CYCLES : (t1): 1: 0.00 : 5.44: 1: 15.09 : 4.32: 1: 0.23 : 2.03: 1: 0.05 : 0.85: 1: 0.01 : -0.27: 1: 0.00 : -1.44: 1: 0.00 : -2.61: 1: 0.00 : -3.73: 1: 0.00 : -4.90: M: NUMBER : S2 A: OF : T: FATIGUE : (ksi) L: CYCLES : (t1): 1: 0.00 : -0.02: 1: 15.09 : -0.51: 1: 0.23 : -1.49: 1: 0.05 : -2.00: 1: 0.05 : -2.00: 1: 0.01 : -2.48: 1: 0.00 : -2.99: 1: 0.00 : -2.99: 1: 0.00 : -2.99: 1: 0.00 : -2.99: 1: 0.00 : -3.50: 1: 0.00 : -3.50: 1: 0.00 : -3.50:	A: OF : (ksi) : T: FATIGUE : (ksi) : 1: 0.00 : 5.44: 5.54: 1: 15.09 : 4.32: 6.66: 1: 0.23 : 2.03: 8.95: 1: 0.05 : 0.85: 10.13: 1: 0.01 : -0.27: 11.25: 1: 0.00 : -1.44: 12.42: 1: 0.00 : -2.61: 13.59: 1: 0.00 : -3.73: 14.71: 1: 0.00 : -3.73: 14.71: 1: 0.00 : -4.90: 15.88: M: NUMBER : S2 : A: OF : S2 : T: FATIGUE : (ksi) : L: CYCLES : (t1) : (t2) : 1: 0.00 : -0.02: 0.02: 1: 15.09 : -0.51: 0.51: 1: 0.23 : -1.49: 1.49: 1: 0.05 : -2.00: 2.00: 1: 0.01 : -2.48: 2.48: 1: 0.00 : -2.99: 2.99: 1: 0.00 : -2.99: 2.99: 1: 0.00 : -2.99: 2.99: 1: 0.00 : -3.50: 3.50: 1: 0.00 : -3.50: 3.50: 1: 0.00 : -3.50: 3.50:	A: OF : (ksi) : (ksi) : (ksi) L: CYCLES : (t1) : (t2) : (t1) : 1: 0.00 : 5.44: 5.54: 0.00: 1: 15.09 : 4.32: 6.66: 0.00: 1: 0.23 : 2.03: 8.95: 0.00: 1: 0.05 : 0.85: 10.13: 0.00: 1: 0.01 : -0.27: 11.25: 0.00: 1: 0.00 : -1.44: 12.42: 0.00: 1: 0.00 : -2.61: 13.59: 0.00: 1: 0.00 : -2.61: 13.59: 0.00: 1: 0.00 : -3.73: 14.71: 0.00: 1: 0.00 : -4.90: 15.88: 0.00: M: NUMBER : S2 : S A: OF : T: FATIGUE : (ksi) : (ksi) L: CYCLES : (t1) : (t2) : (t1) : 1: 0.00 : -0.02: 0.02: 0.00: 1: 1.50 : -0.51: 0.51: 0.00: 1: 0.23 : -1.49: 1.49: 0.00: 1: 0.05 : -2.00: 2.00: 0.00: 1: 0.01 : -2.48: 2.48: 0.00: 1: 0.00 : -2.99: 2.99: 0.00: 1: 0.00 : -2.99: 2.99: 0.00: 1: 0.00 : -2.99: 2.99: 0.00: 1: 0.00 : -2.99: 2.99: 0.00: 1: 0.00 : -2.99: 2.99: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STD								
S	:	M:	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	A:	OF	:	•	:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:	:	:
	1:	1:	0.00	:	5.39:	5.49:	0.00:	0.00:
	2:	1:	31.10	:	4.28:	6.60:	0.00:	0.00:
	3:	1:	2.98	:	3.17:	7.71:	0.00:	0.00:
	4:	1:	0.45	:	2.01:	8.87:	0.00:	0.00:
	5:	1:	0.09	:	0.84:	10.03:	0.00:	0.00:

6:	1:	0.02	:	-0.26:	11.14:	0.00:	0.00:
7:	1:	0.01	:	-1.43:	12.30:	0.00:	0.00:
8:	1:	0.00	:	-2.59:	13.46:	0.00:	0.00:
9:	1:	0.00	:	-3.70:	14.57:	0.00:	0.00:
10:	1:	0.00	:	-4.86:	15.73:	0.00:	0.00:
s:	M:	NUMBER	:	S2		S	•
т:	A:	OF	:		:	_	:
E :	T:	FATIGUE	:	(ksi)		(ksi)	
	L:	CYCLES				(t1):	
						:-	
1.	1:	0.00	:	-0.02:	•	•	•
	1:	31.10			0.50:	0.00:	•
	1:	2.98		-0.98:	0.30.	0.00:	
	1:	0.45		-1.48:			
					1.48:	0.00:	0.00:
	1:	0.09		-1.97:	1.97:	0.00:	0.00:
	1:	0.02		-2.45:	2.45:	0.00:	0.00:
	1:	0.01		-2.95:	2.95:	0.00:	0.00:
8:	1:	0.00	:	-3.45:	3.45:	0.00:	0.00:
9:	1:	0.00	:	~3.93:	3.93:	0.00:	0.00:
10:	1:	0.00	:	-4.43:	4.43:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M:	NUMBER	:	S 0	:	S1	:
T:	Α:	OF	:		:		
E:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	0.00	- : - :	5.76:	5.88:	0.00:	0.00:
2:	1:	24.52		4.58:	7.06:	0.00:	0.00:
3:	1:	2.73	:	3.39:	8.25:	0.00:	0.00:
4:	1:	0.46			9.49:	0.00:	0.00:
5:	1:	0.11	:	0.90:	10.73:	0.00:	0.00:
6:	1:	0.03	:	-0.28:	11.92:	0.00:	0.00:
7:	1:	0.01	:	~1.53:	13.16:	0.00:	0.00:
8:	1:	0.00	:	-2.77:	14.41:	0.00:	0.00:
9:	1:	0.00	:	-3.96:	15.59:	0.00:	0.00:
10:	1:	0.00	:	-5.20:	16.84:	0.00:	0.00:
s :		NUMBER	:	S2	:	S	:
	A:	OF	:		:		:
	T:	FATIGUE		(ksi)	:	(ksi) :
P :	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
1:	1:	0.00	: -	-0.02:	0.02:	0.00:	0.00:
2:	1:	24.52	:			0.00:	0.00:
3:	1:	2.73	:	-1.04:	1.04:	0.00:	0.00:
4:	1:	0.46	:		1.58:	0.00:	0.00:
5:	1:	0.11	:	-2.11:	2.11:	0.00:	0.00:
6:	1:	0.03	:	-2.62:	2.62:	0.00:	0.00:
7:	1:	0.01	:	-3.16:	3.16:	0.00:	0.00:
8:	1:	0.00	:	-3.69:	3.69:	0.00:	0.00:
9:	1:	0.00	:	-4.20:	4.20:	0.00:	0.00:
10:	1:	0.00	:	-4.74:	4.74:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	S1	:
			OF			:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
			CYCLES					
			0.28					
			0.44					
			0.22					
			0.06					
			0.00					
			0.00				0.00:	0.00:
S	:	M:	NUMBER	:	S2	:	s	:
			OF			:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
			CYCLES					
					1.45:			
			0.44					
					0.90:			
					0.62:			
					0.33:			
	6:	1:	0.00	:	0.06:	1.89:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	c	c-tip
100	15		0.487895	8.562448
200	15		0.529924	9.120512
300	15		0.588075	9.942195
400	15		0.683526	11.445390

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value:

K max = 51.93 K ref = 0.000 K cr = at Cycle No. 0.00 of Load Step No. 10

Step description: ,

of Block No. 14 of Schedule No.

c = 0.832454Crack Size

FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----

DATE: 09-APR-99 TIME: 10:17:15

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

CORNER CRACK CASE 2, PSE-W4 SA227 MS, crack in angle WS 146

GEOMETRY

MODEL: CC02-Corner crack from hole in plate (2D)

Plate Thickness, t =

Plate Width, W = 1.4400Hole Diameter, D = 0.1990

Hole-Center-to-Edge Dist., B = 0.3500

Poisson s ratio = 0.30

```
FLAW SIZE:
   (init.) = 0.5000E-01
c (init.) = 0.5000E-01
a/c (init.) = 1.000
MATERIAL
MATL 1:
             2014T6511 EXTRUSION T-L
Material Properties:
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants ----:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                         4.4100
Scale Factor for Stress S1:
                         0.0000
Scale Factor for Stress S3:
                        4.1700
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                         0.0000
Scale Factor for Stress S3:
                         4.1300
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Scale Factor for Stress S3:
                         4.4200
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                          2,6900
Scale Factor for Stress S1:
                       0.0000
Scale Factor for Stress S3:
                        2.5500
Total No. of Blocks in Schedule = 15
```

	Number and Ca	_			
Block Nu From -		В	lock Case	No.	
1 -	10		1		
2 -	2 3		2		
3 -			5		
4 - 5 -	4		1		
6 -			3 5		
7 -	7		1		
8 -	8		3		
9 -	-		5		
10 -	10		1		
11 - 12 -			3 5		
13 -			1		
14 -			4		
15 -	15		5		
DI OGY GAG	E NO 1				
BLOCK CAS	E NO. I NUMBER :	90	:	s1	
T : A:				21	:
T . M	DAGEOUS				:
P : L:	CYCLES :	(t1) :	(t2) :	(t1) :	(t2) :
:-:-	:	:	:	:	:
1: 1:	1.90 : 0.09 : 0.01 :	0.70:	1.30:	0.70:	1.30:
3 - 1 -	0.09 :	0.60:	1.40:	0.60:	1.40:
S : M:			1.40.	0.54. S	1.40.
T : A:	OF :		:		:
E : T:	FATIGUE :		:		:
P : L:	CYCLES :	(t1) :	(t2) :	(t1) :	(t2) :
1. 1.	1 90 :	0.70:	: 1 30.	0.00:	0.00:
2: 1:	1.90 : 0.09 :	0.70:	1.40:	0.00:	0.00:
3: 1:	0.01 :	0.54:	1.46:	0.00:	0.00:
	,				
	ntal Crack Gr		for Susta	ined Stress	ses
(Kmax les	s than KIscc)	: NOT SET			
BLOCK CAS	E NO. 2				
S : M:	NUMBER :	S0	:	S1	:
	OF :		:		:
Б : T:	FATIGUE :	/+1\ ·	(+2) :	/+1\ ·	: (+2)
:-	CYCLES :	(01):	(CZ) :	(C1):	(62) :
1: 1:	0.00 : 15.09 :	0.99:	1.01:	0.99:	1.01:
2: 1:	15.09 :	0.78:	1.22:	0.78:	1.22:
3: 1:	1.52 :	0.57:	1.43:	0.57:	1.43:
4: 1: 5: 1:	0.23 :		1.65:		1.65:
6: 1:	0.05 : 0.01 :		1.87: 2.08:		1.87: 2.08:
7: 1:	0.00:		2.30:		2.30:
8: 1:	0.00 :		2.52:		2.52:
9: 1:	0.00 :		2.73:		2.73:
10: 1:	0.00 :		2.95:		2.95:
S : M:	NUMBER :		:		:
	OF :		:		:
T : A:	FATTCHE .				:
E : T:	FATIGUE :		(t2) ·	(±1) ·	(t2) ·
	FATIGUE :	(t1):	(t2) :	(t1):	(t2) :
E : T: P : L: :-:- 1: 1:	CYCLES :	(t1): : 0.99:	1.01:	0.00:	
E : T: P : L::-:- 1: 1: 2: 1:	CYCLES : 0.00 : 15.09 :	(t1): : 0.99: 0.78:	1.01: 1.22:	0.00:	0.00: 0.00:
E : T: P : L: :	CYCLES : 0.00 : 15.09 : 1.52 :	(t1): : 0.99: 0.78: 0.57:	1.01: 1.22: 1.43:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
E : T: P : L::-:- 1: 1: 2: 1:	CYCLES : 0.00 : 15.09 :	(t1): : 0.99: 0.78: 0.57: 0.35:	1.01: 1.22:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00:

7: 1:	0.00 :	-0.30:	2.30:	0.00:	0.00:
8: 1:	0.00 :	-0.52:	2.52:	0.00:	0.00:
9: 1:	0.00 :	-0.73:	2.73:	0.00:	0.00:
10: 1:	0.00:	-0.95:	2.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

_	_	_	_	_	_	_	

BLOCK	CAS	SE NO. 3					
s:	M:	NUMBER	:	S 0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1.	:- 1:	0.00	-:-	:- 0.99:	1.01:	0.99:	1.01:
	1:	31.10		0.78:	1.22:	0.78:	1.22:
	1:		:	0.78:	1.43:	0.78:	1.43:
	1:			0.37:	1.65:	0.35:	1.65:
	1:	0.43			1.87:	0.33:	1.87:
	1:	0.03			2.08:		
	1:	0.02				~0.08:	2.08:
7:				-0.30:	2.30:	-0.30:	2.30:
	1:	0.00			2.52:	-0.52:	2.52:
		0.00			2.73:		
10:		0.00			2.95:	-0.95:	2.95:
S :		NUMBER	:	S3	:	S	:
	A:	OF	:		:		:
P:	Т:	FATIGUE	:	/+1\	(+2)	/±11	(+0)
P :	:-	CYCLES	:	(£I):	(t2) :	(CI):	(t2) :
1:	1:	0.00	:	0.99:	1.01:	0.00:	0.00:
2:	1:	31.10	:	0.78:	1.22:	0.00:	0.00:
3:	1:	2.98	:	0.57:	1.43:	0.00:	0.00:
4:	1:	0.45	:	0.35:	1.65:	0.00:	0.00:
5:	1:	0.09	:	0.13:	1.87:	0.00:	0.00:
6:	1:	0.02	:	-0.08:	2.08:	0.00:	0.00:
	1:	0.01			2.30:	0.00:	0.00:
-	1:	0.00	:		2.52:	0.00:	0.00:
9:	1:	0.00	:	-0.73:	2.73:	0.00:	0.00:
10:	1:	0.00	:	-0.95:	2.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK	CAS	E NO. 4					
s:	M:	NUMBER	:	S 0	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES					
					-		-
		0.00					
		24.52					
3:	1:	2.73	:	0.57:	1.43:	0.57:	1.43:
4:	1:	0.46	:	0.35:	1.65:	0.35:	1.65:
5:	1:	0.11	:	0.13:	1.87:	0.13:	1.87:
6:	1:	0.03	:	-0.08:	2.08:	-0.08:	2.08:
7:	1:	0.01	:	-0.30:	2.30:	-0.30:	2.30:
8:	1:	0.00	:	-0.52:	2.52:	-0.52:	2.52:
9:	1:	0.00					
10:	1:	0.00	:	·-0.95:	2.95:	-0.95:	2.95:
s:		NUMBER			:	S	:
т:		OF			•		
		FATIGUE			•		•
		CYCLES		(±1) ·	(+2)	(t1) ·	(±2) ·
		0.00				•	-
		24.52					
		2.73					

4:	1:	0.46 :	0.35:	1.65:	0.00:	0.00:
5:	1:	0.11:	0.13:	1.87:	0.00:	0.00:
6:	1:	0.03:	-0.08:	2.08:	0.00:	0.00:
7:	1:	0.01 :	-0.30:	2.30:	0.00:	0.00:
8:	1:	0.00 :	-0.52:	2.52:	0.00:	0.00:
9:	1:	0.00:	-0.73:	2.73:	0.00:	0.00:
10.	1 •	0.00 :	-0.95:	2.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
Ε	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:-	:-		-:-	:-	:-	·:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	M:	NUMBER	:	S 3	:	S	:
			OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:	:-	:
	1:	1:	0.28	:	1.00:	1.00:	0.00:	0.00:
	2:	1:	0.44	:	0.81:	1.06:	0.00:	0.00:
	3:	1:	0.22	:	0.62:	1.12:	0.00:	0.00:
	4:	1:	0.06	:	0.43:	1.18:	0.00:	0.00:
	5:	1:	0.00	:	0.23:	1.24:	0.00:	0.00:
	6:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W4 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						_		
STI)							
S	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
₽	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:	:
	1:	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
S	:	M:	NUMBER	:	S3	:	s	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	·:	:-		-:-	:	:	:	:
	1:	1:	1.90		-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W4 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s :	Μ:	NUMBER	:	S 0	:	S1	:
т:	A:	OF	:		:		
E :	T:	FATIGUE	:	(ksi)) :	(ksi)	
		CYCLES				(t1) :	(t2) :
:	:		-:-	·::-	:	:	
1:	1:	0.00	:	4.37:	4.45:	0.00:	0.00:
2:	1:	15.09	:	3.44:	5.38:	0.00:	0.00:
3:	1:	1.52	:	2.51:	6.31:	0.00:	0.00:
4:	1:	0.23	:	1.54:	7.28:	0.00:	0.00:
5:	1:	0.05	:	0.57:	8.25:	0.00:	0.00:
6:	1:	0.01			9.17:		
7:	1:	0.00	:			0.00:	
8:	1:	0.00	:	-2.29:	11.11:	0.00:	0.00:
9:	1:	0.00	:	-3.22:	12.04:	0.00:	0.00:
10:	1:					0.00:	
s:	Μ:	NUMBER		S3		S	
T:	A:		:				:
E :	T:	FATIGUE	:	(ksi)		(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(±2) :
:	:-			:			:
1:	1:	0.00	:	4.13:	4.21:	0.00:	0.00:
		15.09	:	3.25:	5.09:	0.00:	0.00:
3:	1:					0.00:	
4:	1:	0.23					
5:	1:			0.54:			
6:	1:			-0.33:			0.00:
7:	1:	0.00	:	-1.25:	9.59:	0.00:	
8:	1:	0.00	:	-2.17:	10.51:	0.00:	0.00:
9:	1:	0.00	:	-3.04:	11.38:	0.00:	0.00:
10:	1:	0.00		-3.96:	12.30:		0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
S	: M:	NUMBER	:	S0	:	S1	:
T	: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi) :	(ksi) :
P	: L:	CYCLES	:			(t1) :	(t2) :
	::-		-:-	:-	:-	:-	:
	: 1:					0.00:	
	: 1:			3.40:			
	: 1:			2.49:			
	: 1:			1.53:			0.00:
	: 1:			0.57:			0.00:
	: 1:				9.07:	0.00:	0.00:
	: 1:	0.01	:	-1.31:	10.03:	0.00:	0.00:
8	: 1:	0.00	:	-2.27:	10.99:	0.00:	0.00:
9	: 1:	0.00	:	-3.18:	11.90:	0.00:	0.00:
10	: 1:	0.00	:	-4.14:	12.86:	0.00:	0.00:
S	: M:	NUMBER	:	S3	:	s	:
	: A:	OF	:		:		:
E	: T:	FATIGUE '	:	(ksi) :	(ksi) :
P	: L:	CYCLES	:	(t1):	(t2) :	(t1):	(t2) :
	::-		-:-	:-	•	:-	:
	: 1:			4.09:			0.00:
	: 1:				5.04:	0.00:	0.00:
	: 1:			2.35:			0.00:
	: 1:	0.45				0.00:	0.00:
	: 1:	0.09	:	0.54:	7.72:	0.00:	0.00:
6	: 1:	0.02	:	-0.33:	8.59:	0.00:	0.00:
7	: 1:	0.01	:	-1.24:	9.50:	0.00+	0 00.

8: 1:	0.00 :	-2.15:	10.41:	0.00:	0.00:
9: 1:	0.00:	-3.01:	11.27:	0.00:	0.00:
10: 1:	0.00:	-3.92:	12.18:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

(Milax less than kisce). Not but

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STI)							
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE		(ksi)		(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		:-	:	:	:	-
	1:	1:	0.00	:	4.61:	4.71:	0.00:	
	2:	1:	24.52	:	3.63:	5.69:	0.00:	
	3:	1:	2.73	:	2.66:	6.66:	0.00:	0.00:
	4:	1:	0.46	:	1.63:	7.69:	0.00:	0.00:
	5:	1:	0.11	:	0.61:	8.71:	0.00:	0.00:
	6:	1:	0.03	:	-0.37:	9.69:	0.00:	0.00:
	7:	1:	0.01	:	-1.40:	10.72:	0.00:	0.00:
	8:	1:	0.00	:	-2.42:	11.74:	0.00:	0.00:
	9:	1:	0.00	:	-3.40:	12.72:	0.00:	0.00:
	10:	1:			-4.43:			0.00:
S	:	M:	NUMBER	:	s3	:	S	:
		A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
			CYCLES					
	:	:-		-:-	:		:	
	1:	1:	0.00	:	4.38:	4.46:	0.00:	0.00:
	2:	1:	24.52	:	3.45:	5.39:	0.00:	0.00:
		1:		:	2.52:	6.32:	0.00:	0.00:
	4:	1:	0.46	:	1.55:	7.29:	0.00:	0.00:
	5:	1:	0.11	:	0.57:	8.27:	0.00:	0.00:
	6:	1:	0.03	:	-0.35:	9.19:	0.00:	0.00:
	7:	1:	0.01	:	-1.33:	10.17:	0.00:	0.00:
	8:	1:	0.00	:	-2.30:	11.14:	0.00:	0.00:
	9:	1:	0.00	:	-3.23:	12.07:	0.00:	0.00:
	10:	1:	0.00	:	-4.20:	13.04:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

1:	1:	0.28	:	2.55:	2.55:	0.00:	0.00:
2:	1:	0.44	:	2.07:	2.70:	0.00:	0.00:
3:	1:	0.22	:	1.58:	2.86:	0.00:	0.00:
4:	1:	0.06	:	1.10:	3.01:	0.00:	0.00:
5:	1:	0.00	:	0.59:	3.16:	0.00:	0.00:
6:	1:	0.00	:	0.10:	3.31:	0.00:	0.00+

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final	Flaw Size	K	max
	Step	a	С	a-tip	c-tip
200	15	0.051058	0.050280	3.118919	2.379013
400	15	0.052128	0.050576	3.126410	2.403087
600	15	0.053210	0.050887	3.133893	2.426804
800	15	0.054303	0.051215	3.141384	2.450175
1000	15	0.055408	0.051559	3.148900	2.473213
1200	15	0.056524	0.051919	3.156454	2.495931
1400	15	0.057653	0.052296	3.164062	2.518342
1600	15	0.058794	0.052691	3.171734	2.540462
1800	15	0.059948	0.053102	3.179485	2.562308
2000	15	0.061114	0.053531	3.187323	2.583894
2200	15	0.062293	0.053978	3.195261	2.605240
2400	15	0.063486	0.054443	3.203306	2.626361
2600	1 5	0.064692	0.054927	3.211468	2.647277
2800	15	0.065912	0.055429	3.219754	2.668006
3000	15	0.067146	0.055950	3.228170	2.688568
3200	15	0.068394	0.056491	3.236723	2.708980
3400	15	0.069658	0.057051	3.245419	2.729264
3600	1 5	0.070936	0.057632	3.254262	2.749438
3800	15	0.072231	0.058232	3.263257	2.769522
4000	15	0.073541	0.058854	3.272407	2.789538
4200	15	0.074868	0.059497	3.281716	2.809506
4400	15	0.076212	0.060162	3.291187	2.829446
4600	15	0.077574	0.060848	3.300822	2.849380
4800	15	0.078953	0.061558	3.310624	2.869328
5000	15	0.080351	0.062291	3.320594	2.889313
5200	15	0.081767	0.063048	3.330734	2.909356
5400	15	0.083203	0.063829	3.341046	2.929479
5600	15	0.084659	0.064636	3.351530	2.949706
5800	15	0.086136	0.065468	3.362188	2.970058
6000	1 5	0.087633	0.066327	3.373021	2.990560
6200	15	0.089153	0.067214	3.384028	3.011235
6400	15	0.090694	0.068129	3.395211	3.032107
6600	15	0.092258	0.069073	3.406569	3.053200
6800	15	0.093846	0.070048	3.418103	3.074542
7000	15	0.095458	0.071055	3.429813	3.096156
7200	15	0.097094	0.072093	3.441698	3.118071
7400	15	0.098756	0.073166	3.453758	3.140312
7600	15	0.100444	0.074274	3.465991	3.162909
7800	15	0.102159	0.075419	3.478396	3.185890
8000	15	0.103901	0.076602	3.490973	3.209284
8200	15	0.105671	0.077825	3.503717	3.233122
8400	15	0.107470	0.079089	3.516628	3.257434
8600	15	0.109299	0.080398	3.529700	3.282254
8800	15	0.111157	0.081751	3.542930	3.307613
9000	15	0.113047	0.083153	3.556311	3.333545
9200	15	0.114969	0.084605	3.569837	3.360084
9400	15	0.116924	0.086110	3.583499	3.387265
9600	15	0.118911	0.087670	3.597285	3.415124

0.120933 0.089289 3.611183 3.443694 9800 3.625176 0.090970 10000 15 0.122990 3.473010 Transition to 1-d solution, TC03: a = 0.1250 t = 0.12502.98 of Load Step No. at Cycle No. Step description: of Block No. 5 of Schedule No. 10193 Crack Size: c = 0.926475E-01, a/c = 1.34920Schedl Block Final Flaw Size K max c-tip Step 10200 15 0.092743 3.588263 15 0.095226 3.608329 10400 0.097770 3.629591 10600 15 15 0.100380 10800 3.652176 11000 15 0.103061 3.676230 11200 15 0.105820 3.701922 11400 15 0.108664 3.729451 11600 15 0.111601 3.759051 11800 15 0.114641 3.790999 12000 15 0.117796 3.825631 15 12200 0.121080 3.863358 15 3.904689 12400 0.124508 15 3.950267 0.128100 12600 12800 15 0.131881 4.000914 13000 15 0.135881 4.057713 13200 15 0.140140 4.122119 13400 15 0.144709 4.196157 13600 15 0.149659 4.282750 15 13800 0.155090 4.386333 15 4.514087 14000 0.161151 0.168083 4.678725 14200 15 14400 15 0.176320 4.905948 14600 15 0.186800 5.260585 0.202494 14800 15 6.005891 ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or (b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 10 Step description: of Block No. 14 of Schedule No. 14941 Crack Size c = 0.232283FINAL RESULTS: Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. Step description: of Block No. 14 of Schedule No. 14947 Crack Size c = 0.240600FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----DATE: 09-APR-99 TIME: 10:29:19 (computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)] PROBLEM TITLE THROUGH CRACK CASE 11, PSE-W4 SA227 MS, cracked angle WS146 GEOMETRY MODEL: TC11-Corner crack in plate or bar (2D)

Plate Thickness, t = 0.1250

```
Width, W
                     1.4440
Hole Diameter, D =
                   0.1990
Hole-Center-to-Edge Dist., B =
                             0.3500
2ND AREA, AREATC11 = 1.1400
2ND M. INERTIA = 0.3700
2ND C.G. = -0.1700
FLAW SIZE:
c (init.) = 0.9260E-01
MATERIAL
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
             : : : : :
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8: :
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC11
FATIGUE SCHEDULE BLOCK INPUT TABLE
-----
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S3: -1.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                          4.3600
Scale Factor for Stress S3: 4.1300
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S3: 4.4200
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                          2.5500
```

Total No. of Blocks in Schedule = 15

Block Num From - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 -	To 1 2 3 4 5 6 7 8 9 10 11 12 13 14	_	ndences .ock Case N 1 2 5 1 3 5 1 3 5 1 4 5	0.				
T : A: E : T: P : L:	NUMBER : OF : FATIGUE : CYCLES :	(t1) :		(t1) :	: : (t2) :			
1: 1: 1.90: 0.70: 1.30: 0.70: 1.30: 2: 1: 0.09: 0.60: 1.40: 0.60: 1.40: 3: 1: 0.01: 0.54: 1.46: 0.54: 1.46: Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET								
S : M: T : A: E : T: P : L:	FATIGUE : CYCLES :	(t1) :	: : : (t2) :	(t1) :				
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1:	15.09 : 1.52 : 0.23 : 0.05 : 0.01 : 0.00 : 0.00 :	0.99: 0.78: 0.57: 0.35: 0.13: -0.08: -0.30: -0.52: -0.73:	1.01: 1.22: 1.43: 1.65: 1.87: 2.08: 2.30: 2.52:	0.99: 0.78: 0.57: 0.35: 0.13: -0.08: -0.30: -0.52: -0.73:	1.01: 1.22: 1.43: 1.65: 1.87: 2.08: 2.30: 2.52: 2.73:			
(Kmax les	ental Crack Gro		for Sustai	ned Stress	es			
T : A: E : T: P : L:	NUMBER : OF : FATIGUE : CYCLES :	(t1) :	: : (t2) :	(t1) :				
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1: 9: 1:	31.10 : 2.98 : 0.45 : 0.09 : 0.02 : 0.01 :	0.99: 0.78: 0.57: 0.35: 0.13: -0.08:	1.01: 1.22: 1.43:	0.99: 0.78: 0.57: 0.35: 0.13: -0.08:	1.01: 1.22: 1.43: 1.65: 1.87: 2.08: 2.30:			

10: 1: 0.00 : -0.95: 2.95: -0.95: 2.95: Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET BLOCK CASE NO. 4 S : M: NUMBER : S0 S3 T : A: OF E : T: FATIGUE : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 1: 1: 0.00: 0.99: 1.01: 0.99: 1.01: 2: 1: 24.52: 0.78: 1.22: 0.78: 1.22: 3: 1: 2.73: 0.57: 1.43: 0.57: 1.43: 0.35: 1.65: 0.35: 1.65: 0.13: 1.87: 0.13: 1.87: -0.08: 2.08: -0.08: 2.08: 0.46 : 4: 1: 5: 1: 0.11 : 6: 1: 0.03 : 7: 1: 0.01 : -0.30: 2.30: -0.30: 2.30: 0.00 : -0.52: 2.52: -0.52: 0.00 : -0.73: 2.73: -0.73: 0.00 : -0.95: 2.95: -0.95: 8: 1: 2.52: 9: 1: 2.73: 10: 1: 2.95: Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET BLOCK CASE NO. 5 S : M: NUMBER S3T : A: OF : : E : T: FATIGUE : : (t1) : (t2) 1: 1: 0.28 : 2: 1: 0.44 : 0.28: 1.00: 1.01: 1.00: 1.01: 0.44: 0.81: 1.06: 0.81: 1.06: 0.22: 0.62: 1.12: 0.62: 1.12: 1.06. 1.12: 3: 1: 4: 1: 0.06: 0.43: 1.18: 0.42: 1.18: 0.00: 1.24: 5: 1: 0.23: 1.24: 0.23: 6: 1: 0.00: 0.04: 1.30: 0.04: 1.30: Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET THROUGH CRACK CASE 11, PSE-MODEL: TC11 FATIGUE SCHEDULE BLOCK STRESS TABLE -----1: 1: 1.90 : -0.70: -1.30: 2: 1: 0.09 : -0.60: -1.40: -0.70: -1.30: -0.60: -1.40: 0.01: -0.54: -1.46: -0.54: Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET _----THROUGH CRACK CASE 11, PSE-MODEL: TC11 FATIGUE SCHEDULE BLOCK STRESS TABLE STD S: M: NUMBER T: A: OF : S0

E:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	·:-	:	:
1:	1:	0.00	:	4.37:	4.45:	4.13:	4.21:
2:	1:	15.09	:	3.44:	5.38:	3.25:	5.09:
3:	1:	1.52	:	2.51:	6.31:	2.38:	5.96:
4:	1:	0.23	:	1.54:	7.28:	1.46:	6.88:
5:	1:	0.05	:	0.57:	8.25:	0.54:	7.80:
6:	1:	0.01	:	-0.35:	9.17:	-0.33:	8.67:
7:	1:	0.00	:	-1.32:	10.14:	-1.25:	9.59:
8:	1:	0.00	:	-2.29:	11.11:	-2.17:	10.51:
9:	1:	0.00	:	-3.22:	12.04:	-3.04:	11.38:
10:	1:	0.00	:	-4.19:	13.01:	-3.96:	12.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): $\ensuremath{\mathsf{NOT}}$ SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

:	M:	NUMBER	:	so	:	s3	:
:	A:	OF	:		:		:
:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
: -	:-		-:-	:	:-	: - -	:
:	1:	0.00	:	4.32:	4.40:	4.09:	4.17:
:	1:	31.10	:	3.40:	5.32:	3.22:	5.04:
:	1:	2.98	:	2.49:	6.23:	2.35:	5.91:
:	1:	0.45	:	1.53:	7.19:	1.45:	6.81:
:	1:	0.09	:	0.57:	8.15:	0.54:	7.72:
:	1:	0.02	:	-0.35:	9.07:	-0.33:	8.59:
' :	1:	0.01	:	-1.31:	10.03:	-1.24:	9.50:
3:	1:	0.00	:	-2.27:	10.99:	-2.15:	10.41:
:	1:	0.00	:	-3.18:	11.90:	-3.01:	11.27:
):	1:	0.00	:	-4.14:	12.86:	-3.92:	12.18:
		: M: : A: : T: : L: : 1: : 1: : 1: : 1: : 1: : 1: : 1	: A: OF : T: FATIGUE : L: CYCLES :: 1: 0.00 : 1: 31.10 : 1: 2.98 : 1: 0.45 : 1: 0.09 : 1: 0.02 : 1: 0.01 : 1: 0.00	: A: OF : : T: FATIGUE : : L: CYCLES : : 1: 0.00 : : 1: 31.10 : : 1: 2.98 : : 1: 0.45 : : 1: 0.09 : : 1: 0.02 : : 1: 0.01 : : 1: 0.00 :	: A: OF : : T: FATIGUE : (ksi) : L: CYCLES : (t1): :	: A: OF : (ksi) : : : T: FATIGUE : (ksi) : : : L: CYCLES : (t1) : (t2) : : 1: 0.00 : 4.32 : 4.40 : : 1: 31.10 : 3.40 : 5.32 : : 1: 2.98 : 2.49 : 6.23 : : 1: 0.45 : 1.53 : 7.19 : : 1: 0.09 : 0.57 : 8.15 : : 1: 0.02 : -0.35 : 9.07 : : 1: 0.01 : -1.31 : 10.03 : : 1: 0.00 : -2.27 : 10.99 : : 1: 0.00 : -3.18 : 11.90 :	: A: OF : (ksi) : (ksi) : (ksi) : (t1) : (t2) : (t3) : (t4) : (t4

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STI)							
S	:	M:	NUMBER	:	so	:	S3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		: -	- :	:-	: - -	·:
	1:	1:	0.00	:	4.61:	4.71:	4.38:	4.46:
	2:	1:	24.52	:	3.63:	5.69:	3.45:	5.39:
	3:	1:	2.73	:	2.66:	6.66:	2.52:	6.32:
	4:	1:	0.46	:	1.63:	7.69:	1.55:	7.29:
	5:	1:	0.11	:	0.61:	8.71:	0.57:	8.27:
	6:	1:	0.03	:	-0.37:	9.69:	-0.35:	9.19:
	7:	1:	0.01	:	-1.40:	10.72:	-1.33:	10.17:
	8:	1:	0.00	:	-2.42:	11.74:	-2.30:	11.14:
	9:	1:	0.00	:	-3.40:	12.72:	-3.23:	12.07:
:	10:	1:	0.00	:	-4.43:	13.75:	-4.20:	13.04:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:	:
	1:	1:	0.28	:	2.69:	2.72:	2.55:	2.58:
	2:	1:	0.44	:	2.18:	2.85:	2.07:	2.70:
	3:	1:	0.22	:	1.67:	3.01:	1.58:	2.86:
	4:	1:	0.06	:	1.16:	3.17:	1.07:	3.01:
	5:	1:	0.00	:	0.62:	3.34:	0.59:	3.16:
	6:	1:	0.00	:	0.11:	3.50:	0.10:	3.31:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 11, PSE-

MODEL: TC11

ANALYSIS RESULTS:

Sched1	Block	Final Flaw Size	K max
		Step c	c-tip
200	15	0.094528	3.396544
400	15	0.096481	3.407428
600	15	0.098462	3.418836
800	15	0.100472	3.430806
1000	15	0.102512	3.443379
1200	15	0.104586	3.456602
1400	15	0.106694	3.470526
1600	15	0.108839	3.485208
1800	15	0.111024	3.500711
2000	15	0.113251	3.517107
2200	15	0.115525	3.534477
2400	15	0.117848	3.552914
2600	15	0.120224	3.572523
2800	15	0.122658	3.593426
3000	15	0.125156	3.615765
3200	15	0.127721	3.639707
3400	15	0.130362	3.665446
3600	15	0.133086	3.693216
3800	15	0.135902	3.723299
4000	15	0.138820	3.756037
4200	15	0.141853	3.791852
4400	15	0.145016	3.831271
4600	15	0.148327	3.874969
4800	15	0.151809	3.923820
5000	15	0.155490	3.978986
5200	15	0.159409	4.042062
5400	15	0.163615	4.115303
5600	15	0.168178	4.202053
5800	15	0.173199	4.307541
6000	15	0.178833	4.440607
6200	15	0.185343	4.617881
6400	15	0.193244	4.876413
6600	15	0.203817	5.328763
6800	15	0.223641	6.856731

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: K max = 54.29 K ref = 0.000 K cr = 51.83 at the very beginning of Load Step No. 8 Step description:

```
14 of Schedule No.
                                    6847
of Block No.
Crack Size
             c = 0.245910
               FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
             DATE: 09-APR-99 TIME: 10:30:13
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC12, PSE-W4 SA227 Main Spar Angle WS146
                                           (Title)
GEOMETRY
MODEL: TC12-Corner crack from hole in plate (2D)
Plate Thickness, t = 0.1250
"Width, W = 1.4400
Additional Area, AREA3 = 1.1400
Add Area cg dist in y, F3 = 0.2940
Add Area cg dist in x, G3 = -0.1700
Add Area Ix, RIX = 0.1830
Add Area Iy, RIY = 0.3700
Moement , RM = 0.0000
FLAW SIZE:
c (init.) = 0.4550
MATERIAL
MATL 1:
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : :
: 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
             ;----;-----;----;----;----;----;-----;
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: TC12
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
                           -1.0000
0.0000
0.0000
Scale Factor for Stress S0:
Scale Factor for Stress S1:
Scale Factor for Stress S2:
Stress Scaling Factors for Block Case: 2
```

```
Scale Factor for Stress S0:
                             5.5100
Scale Factor for Stress S1:
                             0.0000
Scale Factor for Stress S2:
                             0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                             5,4500
Scale Factor for Stress S1:
Scale Factor for Stress S2:
                             0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                             0.0000
Scale Factor for Stress S2:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                             3.3700
Scale Factor for Stress S1:
                             0.0000
Scale Factor for Stress S2:
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
 Block Number
                             Block Case No.
From
                                     1
    2
              3
                                     5
                                     1
    5
    6
                                     5
    7
              7
                                     1
                                     3
   9
              9
                                     5
   10
             10
                                     1
   11
             11
                                     3
   12
             12
   13
             13
                                     1
   14
             14
                                     4
   15
BLOCK CASE NO. 1
 S : M: NUMBER
                                               S1
 T : A:
          OF
 E
  : T: FATIGUE
 P : L: CYCLES
                        (t1): (t2)
                   :
                                          (t1): (t2)
---:--:--:------
              1.90 :
  1: 1:
                        0.70:
                                  1.30: -0.30:
                                                     0.30:
   2: 1:
               0.09:
                         0.60:
                                  1.40:
                                           -0.40:
                                                     0.40:
             0.01 :
                                  1.46:
   3: 1:
                        0.54:
                                           -0.46:
                                                     0.46:
 S : M: NUMBER
                          S2
                                              S
                                                         :
 т
   : A:
           OF
                                      :
 E : T: FATIGUE
P : L: CYCLES
                        (t1) : (t2)
                                           (t1): (t2)
----:--:-----
                  --:--
                       -----:----:
  1: 1:
               1.90 :
                      -0.30:
                                  0.30:
                                            0.00:
  2: 1:
               0.09:
                        -0.40:
                                  0.40:
                                            0.00:
                                                     0.00:
              0.01:
                        -0.46:
                                  0.46:
                                            0.00:
                                                     0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                 . :
                           S0
                                               S1
T : A:
         OF
                                                         :
E : T: FATIGUE
```

P :	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
1:	1:	0.00	•	0.99:	1.01:	-0.01:	0.01:
	1:	15.09		0.78:			
3:		1.52		0.57:	1.43:	-0.43:	
	1:	0.23		0.35:	1.65:	-0.65:	
	1:	0.05		0.13:	1.87:	-0.87:	0.87:
6:	1:	0.01		-0.08:	2.08:	-1.08:	
7:	1:	0.00	:	-0.30:	2.30:		
8:	1:	0.00	:	-0.52:	2.52:	-1.52:	
9:	1:	0.00	:	-0.73:	2.73:	-1.73:	1.73:
10:	1:	0.00	:	-0.95:	2.95:	-1.95:	1.95:
s:	M:	NUMBER	:	S2	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1:	1:	0.00	: -	-0.01:	0.01:	0.00:	0.00:
2:	1:	15.09	:	-0.22:			
3:	1:	1.52	:	-0.43:	0.43:	0.00:	0.00:
4:	1:	0.23	:	-0.65:	0.65:	0.00:	0.00:
5:	_						
_	1:	0.05	:	-0.87:	0.87:	0.00:	0.00:
6:	1: 1:	0.05 0.01		-0.87: -1.08:	0.87: 1.08:	0.00: 0.00:	0.00: 0.00:
			:				
7:	1:	0.01	:	-1.08:	1.08:	0.00:	0.00:
7: 8:	1: 1:	0.01 0.00	: :	-1.08: -1.30:	1.08: 1.30:	0.00: 0.00:	0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLOCK	CAS	E NO. 3					
s:	M:	NUMBER	:	S 0	:	S1	:
T:	A:	OF	:		:		:
E :	\mathbf{T} :	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		: -	:-	:-	<u>:</u> -	:
	1:	0.00		0.99:	1.01:		
	1:	31.10		0.78:	1.22:		0.22:
	1:	2.98		0.57:	1.43:	-0.43:	0.43:
	1:	0.45		0.35:	1.65:	-0.65:	0.65:
	1:	0.09			1.87:	-0.87:	0.87:
	1:	0.02			2.08:		1.08:
	1:	0.01		-0.30:	2.30:	-1.30:	1.30:
		0.00			2.52:		1.52:
9:	1:	0.00	:	-0.73:	2.73:	-1.73:	1.73:
10:	1:	0.00	:	-0.95:	2.95:	-1.95:	1.95:
s:	М:	NUMBER	:	S2	:	S	:
\mathbf{T} :	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	:-	:
	1:	0.00			0.01:		0.00:
	1:	31.10		-0.22:	0.22:	0.00:	0.00:
	1:	2.98		-0.43:	0.43:	0.00:	0.00:
	1:		:	-0.65:	0.65:	0.00:	0.00:
	1:	0.09			0.87:	0.00:	0.00:
	1:	0.02			1.08:	0.00:	0.00:
7:		0.01		-1.30:	1.30:	0.00:	0.00:
8:		0.00			1.52:	0.00:	0.00:
	1:	0.00			1.73:	0.00:	0.00:
10:	1:	0.00	:	-1.95:	1.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLOCK CASE NO. 4

s:	M:	NUMBER	•:	S0	:	S1	:
\mathbf{T} :	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1.	:- 1:	0 00	-:-	0.99:	1.01:	-0.01-	0.01:
	1:	24.52		0.78:	1.22:	-0.22:	
	1:	2.73		0.78:	1.43:	-0.22:	
4:	1:	0.46		0.37:	1.43:		0.43:
	1:	0.11		0.33:	1.87:	-0.65: -0.87:	0.65:
	1:	0.11					0.87:
7:		0.03		-0.08:	2.08:	-1.08:	1.08:
				-0.30:	2.30:	-1.30:	1.30:
8:		0.00		-0.52:	2.52:	-1.52:	1.52:
	1:	0.00		-0.73:	2.73:		
10:		0.00	-	-0.95:	2.95:		1.95:
	М:	NUMBER	:	S2	:	S	:
T:	A:	NUMBER OF	:	S2	:	S	:
T : E :			: :	S2	: :	S	: :
T : E :	A:	OF	: :		: : : (t2) :	s (t1) :	: : : (t2) :
T : E : P :	A: T: L:	OF FATIGUE CYCLES	:	(t1) :	:-	(t1) :	:
T: E: P: :	A: T: L: :-	OF FATIGUE CYCLES 0.00	:	(t1) : :- -0.01:	0.01:	(t1) : 0.00:	0.00:
T: E: P: : 1: 2:	A: T: L: :- 1:	OF FATIGUE CYCLES 0.00 24.52	:	(t1): :- -0.01: -0.22:	0.01: 0.22:	(t1): 	0.00:
T: E: P: : 1: 2: 3:	A: T: L: :- 1: 1:	OF FATIGUE CYCLES 0.00 24.52 2.73	:	(t1): :- -0.01: -0.22: -0.43:	0.01: 0.22: 0.43:	(t1): :- 0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
T: E: P: 1: 2: 3: 4:	A: T: L: :- 1: 1: 1:	OF FATIGUE CYCLES 0.00 24.52 2.73 0.46	:	(t1): :- -0.01: -0.22: -0.43: -0.65:	0.01: 0.22: 0.43: 0.65:	(t1): 	0.00: 0.00: 0.00: 0.00:
T: E: P: : 1: 2: 3:	A: T: L: :- 1: 1:	OF FATIGUE CYCLES 0.00 24.52 2.73	:	(t1): :- -0.01: -0.22: -0.43:	0.01: 0.22: 0.43: 0.65: 0.87:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: 1: 2: 3: 4: 5: 6:	A: T: L: 1: 1: 1:	OF FATIGUE CYCLES 0.00 24.52 2.73 0.46 0.11	: : : : : : : : : : : : : : : : : : : :	(t1): : -0.01: -0.22: -0.43: -0.65: -0.87:	0.01: 0.22: 0.43: 0.65: 0.87: 1.08:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: 1: 2: 3: 4: 5: 6: 7:	A: T: L: 1: 1: 1: 1:	OF FATIGUE CYCLES 0.00 24.52 2.73 0.46 0.11 0.03		(t1):	0.01: 0.22: 0.43: 0.65: 0.87: 1.08: 1.30:	(t1):	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: 1: 2: 3: 4: 5: 6: 7:	A: T: L: 1: 1: 1: 1:	OF FATIGUE CYCLES 0.00 24.52 2.73 0.46 0.11 0.03 0.01 0.00		(t1):	0.01: 0.22: 0.43: 0.65: 0.87: 1.08: 1.30: 1.52:	(t1):	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: 1: 2: 3: 4: 5: 6: 7:	A: T: L: 1: 1: 1: 1: 1:	OF FATIGUE CYCLES 0.00 24.52 2.73 0.46 0.11 0.03 0.01		(t1):	0.01: 0.22: 0.43: 0.65: 0.87: 1.08: 1.30:	(t1):	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLOCK CASE NO. 5

рисс	.11	CAS.	E 110. 3					
S	:	M:	NUMBER	:	S 0	:	S1	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1	: -	1:	0.28	· :	1.00:	1.01:	1.00:	1.01:
		1:	0.44		0.81:	1.06:	0.81:	1.06:
3	:	1:	0.22		0.62:	1.12:	0.62:	1.12:
4	:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
5	:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
6	:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	M:	NUMBER	:	S2	:	S	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	: -	:		:	:-	:-	:-	:
		1:	0.28		1.00:	1.00:		
		1:	0.44		0.81:	1.06:	0.00:	0.00:
		1:	0.22		0.62:	1.12:	0.00:	0.00:
4	:	1:	0.06	:	0.43:	1.18:	0.00:	0.00:
5	:	1:	0.00	:	0.23:	1.24:	0.00:	0.00:
6	:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W4 SA227 Main Spa MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S1

T E P	:	A: T: L:	OF FATIGUE CYCLES	: : :	(ksi) (t1) :		(ksi) (t1) :	: : (t2) :
S T E	2: 3: :	1: 1: 1: M: A: T:	1.90 0.09 0.01 NUMBER OF FATIGUE	:	-0.70: -0.60: -0.54: S2	-1.30: -1.40: -1.46:	0.00: 0.00: 0.00: 5 (ksi)	0.00: 0.00: 0.00:
P	-	L:	CYCLES	:	(t1):		(t1):	
	2:	1: 1: 1:	1.90 0.09 0.01	-	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD					
S : M:	NUMBER :	s0	:	S1	:
т : А:	OF :	:	:		:
E : T:	FATIGUE :	(ks:	i) :	(ksi	.) :
P : L:	CYCLES	: (t1) :	(t2) :	(t1) :	(t2) :
1: 1:	0.00	::: : 5.45:	5.57:	0.00:	0.00:
2: 1:			6.72:	0.00:	0.00:
3: 1:			7.88:	0.00:	0.00:
4: 1:			9.09:	0.00:	0.00:
5: 1:			10.30:	0.00:	0.00:
6: 1:			11.46:	0.00:	0.00:
7: 1:			12.67:	0.00:	0.00:
8: 1			13.89:	0.00:	0.00:
9: 1			15.04:	0.00:	0.00:
10: 1			16.25:	0.00:	0.00:
S:M	NUMBER	: S2	:	s	:
S : M T : A		: S2	:	S	:
	: OF	: S2 : : (ks	: : i) :	S (ksi	: :
T : A	: OF : FATIGUE	: : (ks	: : : : : : : :	(ksi	: : (t2) :
T : A E : T P : L	: OF : FATIGUE : CYCLES	: : (ks : (t1) : ::	(t2) :	(ksi (t1) :	(t2) :
T : A E : T P : L : 1: 1	OF FATIGUE CYCLES O.00	: (ks : (t1): :: : 0.00:	(t2) : : 0.00:	(ksi (t1) : 	(t2) : : 0.00:
T : A E : T P : L :- 1: 1 2: 1	: OF : FATIGUE : CYCLES : 0.00 : 15.09	: (ks : (t1):: :: : 0.00: : 0.00:	(t2) : : 0.00: 0.00:	(ksi (t1): : 0.00: 0.00:	(t2) : : 0.00: 0.00:
T : A E : T P : L:- 1: 1 2: 1 3: 1	OF: FATIGUE: CYCLES: 0.00: 15.09: 1.52	: (ks : (t1): :: : 0.00: : 0.00:	(t2): 0.00: 0.00: 0.00:	(ksi (t1): : 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00:
T : A E : T P : L : 1: 1 2: 1 3: 1 4: 1	OF: FATIGUE: CYCLES: 0.00: 15.09: 1.52: 0.23	: (ks : (t1): :: : 0.00: : 0.00: : 0.00:	(t2): 0.00: 0.00: 0.00: 0.00:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00:	(t2) : : 0.00: 0.00: 0.00: 0.00:
T : A E : T P : L : 1: 1 2: 1 3: 1 4: 1 5: 1	OF: FATIGUE: CYCLES: 0.00: 15.09: 1.52: 0.23: 0.05	: (ks : (t1):: ::: : 0.00: : 0.00: : 0.00: : 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00:
T : A E : T P : L : 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1	OF FATIGUE CYCLES 0.00 15.09 1.52 0.23 0.05	: (ks : (t1): :: : 0.00: : 0.00: : 0.00: : 0.00: : 0.00:	(t2) :: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T : A E : T P : L : 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1	OF FATIGUE CYCLES 0.00 15.09 1.52 0.23 0.05 0.01	: (ks : (t1): :: : 0.00: : 0.00: : 0.00: : 0.00: : 0.00: : 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T : A E : T P : L : 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1	OF FATIGUE CYCLES 0.00 15.09 1.52 0.023 0.05 0.01 0.00	: (ks : (t1): :: : 0.00: : 0.00: : 0.00: : 0.00: : 0.00: : 0.00: : 0.00: : 0.00:	(t2) :	(ksi (t1): : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T : A E : T P : L : 1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1	OF FATIGUE CYCLES 0.00 15.09 1.52 0.23 0.05 0.01 0.00 0.00	: (ks : (t1): :: : 0.00: : 0.00: : 0.00: : 0.00: : 0.00: : 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S1 :
T : A: OF : : : : : : :
E : T: FATIGUE : (ksi) : (ksi) :
P : L: CYCLES : (t1): (t2) : (t1): (t2) :

-:
0: 0.00:
0: 0.00:
0: 0.00:
0: 0.00:
0: 0.00:
0: 0.00:
0: 0.00:
0: 0.00:
0: 0.00:
0: 0.00:
s :
:
ksi) :
:
: ksi) : : (t2) :
ksi) : : (t2) : -:: 0: 0.00:
: ksi) : : (t2) :
ksi) : : (t2) : ::: 0: 0.00:
ksi) : : (t2) : : (0: 0.00: 0: 0.00:
: (t2) : : (t2) : : (0: 0.00: 0.00: 0.00: 0.00:
: (t2) : : (t2) : : 0: 0.00: 0
: (t2) : : (t2) : : 0: 0.00: 0
: (t2) : : (t2) : : (0: 0.00:
ksi) : (t2) : 0: (t2) : 0: 0.00: 0: 0.00: 0: 0.00: 0: 0.00: 0: 0.00: 0: 0.00: 0: 0.00: 0: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W4 SA227 Main Spa MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD						
S : 1	1: NUMBER	:	S0	:	S1	:
T : 2	A: OF	:		:		:
E : 5	: FATIGUE	:	(ksi) :	(ksi) :
P : 1	: CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:-	:	-:-	:-	:	:	:
1: 3			5.77:	5.89:	0.00:	0.00:
2: 3			4.55:	7.11:	0.00:	0.00:
3: 3			3.32:	8.34:	0.00:	0.00:
4: 1			2.04:	9.62:	0.00:	0.00:
5: 1 6: 1			0.76:	10.90:	0.00:	0.00:
			-0.47:	12.13:	0.00:	0.00:
7: 1			-1.75:	13.41:	0.00:	0.00:
8: 1			-3.03:	14.69:	0.00:	0.00:
9: 1			-4.26:	15.92:	0.00:	0.00:
10: 1		:	-5.54:	17.20:	0.00:	0.00:
S : 1		:	S2	:	S	:
T : A		:		:		:
E : 7	: FATIGUE					
P : I		:	(ksi)		(ksi)	
		: :	(ksi)		(ksi) (t1) :	
:	: CYCLES	: : -:-	(t1) :	(t2) :	(t1):	(t2) :
1: 1	: CYCLES		(t1): : 0.00:	(t2) : : 0.00:	(t1): : 0.00:	(t2) : 0.00:
1: 1 2: 1	: CYCLES : 0.00 : 24.52	:	(t1): : 0.00: 0.00:	0.00: 0.00:	(t1): : 0.00: 0.00:	(t2) : 0.00: 0.00:
1: 1 2: 1 3: 1	: CYCLES : 0.00 : 24.52 : 2.73	:	(t1): : 0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	(t1): : 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00:
1: 1 2: 1 3: 1 4: 1	: CYCLES :: : 0.00 : 24.52 : 2.73 : 0.46	:	(t1): : 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	(t1): : 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00:
1: 1 2: 1 3: 1 4: 1 5: 1	: CYCLES :: : 0.00 : 24.52 : 2.73 : 0.46 : 0.11	: : : : :	(t1): : 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1): 	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 1 2: 1 3: 1 4: 1 5: 1	: CYCLES ::: 0.00 : 24.52 : 2.73 : 0.46 : 0.11 : 0.03	: : : : : : : : : : : : : : : : : : : :	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1): 	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 1 2: 1 3: 1 4: 1 5: 1	: CYCLES ::: 0.00 : 24.52 : 2.73 : 0.46 : 0.11 : 0.03 : 0.01	: : : : : : : : : : : : : : : : : : : :	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1):	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1	: CYCLES :	: : : : : : : : : : : : : : : : : : : :	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1):	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1	: CYCLES :	: : : : : : : : : : : : : : : : : : : :	(t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1):	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	S 0	:	S1	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
	:	:-		- : -	:	:	:-	:
	1:	1:	0.28	:	3.37:	3.40:	0.00:	0.00:
	2:	1:	0.44	:	2.73:	3.57:	0.00:	0.00:
	3:	1:	0.22	:	2.09:	3.77:	0.00:	0.00:
	4:	1:	0.06	:	1.45:	3.98:	0.00:	0.00:
	5:	1:	0.00	:	0.78:	4.18:	0.00:	0.00:
	6:	1:	0.00	:	0.13:	4.38:	0.00:	0.00:
S	:	M:	NUMBER	:	S2	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		:-	:	:	:-	:
		1:	0.28	:	0.00:	0.00:	0.00:	0.00:
		1:	0.44	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.22	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.06		0.00:	0.00:		0.00:
	5:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC12, PSE-W4 SA227 Main Spa

MODEL: TC12

ANALYSIS RESULTS:

Sched1	Block		Final Flaw Size	K max
		Step	С	c-tip
100	15		0.469716	6.586328
200	15		0.486206	6.776246
300	15		0.504940	6.996713
400	15		0.526608	7.258325
500	15		0.552278	7.578088
600	15		0.583745	7.985788
700	15		0.624404	8.540782
800	15		0.682073	9.389782
900	15		0.784119	11.110741

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: K max = 52.03 K ref = 0.000 K cr = 51.83 at the very beginning of Load Step No. 10 Step description:

of Block No. 14 of Schedule No. 94

Crack Size c = 0.888050

FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI----DATE: 12-APR-99 TIME: 10:38:24

(computed: NASA/FLAGRO Version 2.03, March 1995.)
U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

```
CORNER CRACK CASE 2, PSE-W4 SA227 MS, .005 crack angle WS99
GEOMETRY
-----
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                     0.1250
Plate Width, W = Hole Diameter, D =
                     1.4400
                    0.1990
Hole-Center-to-Edge Dist., B =
                            0.3500
Poisson s ratio = 0.32
FLAW SIZE:
a (init.) = 0.5000E-02
c (init.) = 0.5000E-02
a/c (init.) = 1.000
MATERIAL
              2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8: :
:Matl:----- Crack Growth Egn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            :---:<del>-----:---:---:---:----:----</del>:-----:
: 1:0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                         0.0000
Scale Factor for Stress S3: 0.0000
Stress Scaling Factors for Block Case: 2
                         6.9000
Scale Factor for Stress S0:
Scale Factor for Stress S1:
Scale Factor for Stress S3:
                         0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                          0.0000
Scale Factor for Stress S3:
                          0.0000
```

Stress Scaling Factors for Block Case: 4

7.3000

Scale Factor for Stress S0:

```
Scale Factor for Stress S1:
                         0.0000
Scale Factor for Stress S3:
                        0.0000
Stress Scaling Factors for Block Case: 5
                        4.6000
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                       0.0000
Scale Factor for Stress S3:
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From - To
   1
            1
                                1
   2
            2
   3
            3
   4
   5
            5
   7
            7
   8
            8
   9
            9
  10
           10
  11
           11
  12
           12
  13
           13
  14
           14
                                4
  15
           15
BLOCK CASE NO. 1
S : M: NUMBER :
T : A: OF :
                       S0
                           : S1
E : T: FATIGUE :
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
1: 1: 1.90: 0.70: 1.30: 0.70: 1.30: 2: 1: 0.09: 0.60: 1.40: 0.60: 1.40: 3: 1: 0.01: 0.54: 1.46: 0.54: 1.46:
                    0.60: 1.40: 0.60: 1.40: 0.54: 1.46: S3 : 6
 S : M: NUMBER :
 T : A: OF
1: 1: 1.90: 0.70: 1.30: 0.00: 0.00:
             0.09:
                     0.60:
                              1.40:
                                      0.00:
                                              0.00:
                                           0.00:
  2: 1:
  3: 1:
             0.01:
                     0.54:
                              1.46:
                                      0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
               :
                                :
 S : M: NUMBER
                       S0
                                        S1
 T : A: OF
 E : T: FATIGUE :
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
----:--:--:-----:----:----:
  1: 1: 0.00: 1.08: 1.10: 0.99: 1.01:
                   0.87: 1.31: 0.78: 1.22: 0.66: 1.52: 0.57: 1.43: 0.44: 1.74: 0.35: 1.65:
           15.09 :
  2: 1:
           1.52 :
   3: 1:
            0.23 :
   4 : 1 :
                     0.22:
0.01:
                                             1.87:
   5: 1:
            0.05 :
                             1.96: 0.13:
                             2.17: -0.08:
2.39: -0.30:
             0.01:
   6: 1:
                                              2.08:
                                             2.30:
  7: 1:
            0.00:
                     -0.21:
                             2.61: -0.52:
           0.00:
                     -0.43:
                                             2.52:
   8: 1:
                             2.82:
                                     -0.73:
             0.00 :
                     -0.64:
                                              2.73:
  9:1:
                                             2.95:
  10: 1:
             0.00:
                     -0.86:
                              3.04:
                                     -0.95:
```

S :	M:	NUMBER	:	<i>S</i> 3	:	S	:
T :	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
Р:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	:-	:
	1:	0.00		0.99:	1.01:	0.00:	0.00:
2:	1:	15.09	:	0.78:	1.22:	0.00:	0.00:
3:	1:	1.52	:	0.57:	1.43:	0.00:	0.00:
4:	1:	0.23	:	0.35:	1.65:	0.00:	0.00:
5:	1:	0.05	:	0.13:	1.87:	0.00:	0.00:
6:	1:	0.01	:	-0.08:	2.08:	0.00:	0.00:
7:	1:	0.00	:	-0.30:	2.30:	0.00:	0.00:
8:	1:	0.00	:	-0.52:	2.52:	0.00:	0.00:
9:	1:	0.00	:	-0.73:	2.73:	0.00:	0.00:
10:	1:	0.00	:	-0.95:	2.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK	CAS	SE NO. 3					
s:	М:	NUMBER	:	S0	:	S1	:
T:	A:	OF	:		:		•
E :	T:	FATIGUE	:		:		•
P :	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
			-:-	:-	:	:-	:
	1:	0.00	:	1.08:	1.10:	0.99:	1.01:
		31.10					
	1:	2.98	:	0.66:	1.52:	0.57:	1.43:
	1:	0.45	:	0.44:	1.74:	0.35:	1.65:
	1:	0.09	:	0.22:	1.96:	0.13:	1.87:
	1:			0.01:			2.08:
	1:	0.01			2.39:		2.30:
	1:	0.00		-0.43:	2.61:	-0.52:	2.52:
9:	1:	0.00	:	-0.64:	2.82:	-0.73:	2.73:
10:	1:	0.00	:	-0.86:	3.04:	-0.95:	2.95:
s :		NUMBER			:	S	:
\mathbf{T} :	A:	OF	:		:		:
E :	\mathbf{T} :	FATIGUE	:		:		:
		CYCLES		(t1) :	(t2) :	(t1) :	(t2) :
-	:- 1:	0.00	•			:-	
		21.10	•	0.99:	1.01:	0.00:	0.00:
		31.10	:	0.78:	1.22:	0.00:	0.00:
	1:	2.98	:	0.57:	1.43:	0.00:	0.00:
		0.45	:	0.35:	1.65:	0.00:	0.00:
	1:			0.13:			
	1:	0.02			2.08:		
	1:	0.01			2.30:		
	1:	0.00			2.52:	0.00:	
	1:			-0.73:	2.73:	0.00:	
10 -	1:	0.00	:	-0.95:	2.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	OCK	CAS	E NO. 4					
S	:	M:	NUMBER	:	S0	:	S1	:
Т	:	A:	OF	:		:		:
E	:	\mathbf{T} :	FATIGUE	:		:		:
₽	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	·:-	:
	1:	1:	0.00	:	1.08:	1.10:	0.99:	1.01:
	2:	1:	24.52	:	0.87:	1.31:	0.78:	1.22:
	3:	1:	2.73	:	0.66:	1.52:	0.57:	1.43:
	4:	1:	0.46	:	0.44:	1.74:	0.35:	1.65:
	5:	1:	0.11	:	0.22:	1.96:	0.13:	1.87:
	6:	1:	0.03	:	0.01:	2.17:	-0.08:	2.08:
	7:	1:	0.01	:	-0.21:	2.39:	-0.30:	2.30:

8:	1:	0.00	:	-0.43:	2.61:	-0.52:	2.52:
9:	1:	0.00	:	-0.64:	2.82:	-0.73:	2.73:
10:	1:	0.00	:	-0.86:	3.04:	-0.95:	2.95:
s:	M:	NUMBER	:	S3	:	s	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:		-:-	:-	:-	:-	:
1:	1:	0.00	:	0.99:	1.01:	0.00:	0.00:
2:	1:	24.52	:	0.78:	1.22:	0.00:	0.00:
3:	1:	2.73	:	0.57:	1.43:	0.00:	0.00:
4:	1:	0.46	:	0.35:	1.65:	0.00:	0.00:
5:	1:	0.11	:	0.13:	1.87:	0.00:	0.00:
6:	1:	0.03	:	-0.08:	2.08:	0.00:	0.00:
7:	1:	0.01	:	-0.30:	2.30:	0.00:	0.00:
8:	1:	0.00	:	-0.52:	2.52:	0.00:	0.00:
9:	1:	0.00	:	-0.73:	2.73:	0.00:	0.00:
10:	1:	0.00	:	-0.95:	2.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 5 so : s1 S : M: NUMBER : T : A: OF E : T: FATIGUE : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : ____;__;__:__:_-: 1: 1: 0.28: 1.00: 1.01: 1.00: 1.01: 2: 1: 0.44: 0.81: 1.06: 0.81: 1.06: 1.12: 3: 1: 0.22 : 0.62: 1.12: 0.62: 0.42: 0.23: 1.24: 0.04: S : M: NUMBER : s T : A: OF E : T: FATIGUE : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : ---::--:--:--::
 1: 1:
 0.28:
 1.00:
 1.00:
 0.00:
 0.00:

 2: 1:
 0.44:
 0.81:
 1.06:
 0.00:
 0.00:

 3: 1:
 0.22:
 0.62:
 1.12:
 0.00:
 0.00:

 4: 1:
 0.06:
 0.43:
 1.18:
 0.00:
 0.00:

 5: 1:
 0.00:
 0.23:
 1.24:
 0.00:
 0.00:
 0.00 : 0.04: 1.30: 0.00: 0.00: 6: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W4 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

1: 1:	1.90 :	0.00:	0.00:	0.00:	0.00:
2: 1:	0.09 :	0.00:	0.00:	0.00:	0.00:
3: 1:	0.01 :	0.00:	0.00:	0.00-	0.00-

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI								
S		М:	NUMBER	:	S 0	:	S1	:
T		A:	OF	:		:		:
E		T:		:	(ksi)	:	(ksi)	:
P		L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
	-	1:	0.00	:	7.45:	7.59:	0.00:	0.00:
	2:	1:	15.09	:	6.00:	9.04:	0.00:	0.00:
	3:	1:	1.52	:	4.55:	10.49:	0.00:	0.00:
	4:	1:	0.23	:	3.04:	12.01:	0.00:	0.00:
	5:	1:	0.05	:	1.52:	13.52:	0.00:	0.00:
	6:	1:	0.01	:	0.07:	14.97:	0.00:	0.00:
	7:	1:	0.00	:	-1.45:	16.49:	0.00:	0.00:
	8:	1:	0.00	:	-2.97:	18.01:	0.00:	0.00:
	9:	1:	0.00	:	-4.42:	19.46:	0.00:	0.00:
1	10:	1:	0.00	:	-5.93:	20.98:	0.00:	0.00:
		Μ:	NUMBER	:	S 3	:	S	:
T	-	A:	OF	:		:		:
		T:		:	(ksi)		(ksi)	
P	:	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2):
	1:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	15.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	1.52	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.23	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.05	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
	7:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
		1:	0.00	:	0.00:	0.00:	0.00:	0.00:
1	.0:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M:	NUMBER	:	so	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
Р:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:	:	:
1:	1:	0.00	:	7.38:	7.51:	0.00:	0.00:
2:	1:	31.10	:	5.94:	8.95:	0.00:	0.00:
3:	1:	2.98	:	4.51:	10.38:	0.00:	0.00:
4:	1:	0.45	:	3.01:	11.88:	0.00:	0.00:
5:	1:	0.09	:	1.50:	13.39:	0.00:	0.00:
6:	1:	0.02	:	0.07:	14.82:	0.00:	0.00:
7:	1:	0.01	:	-1.43:	16.32:	0.00:	0.00:
8:	1:	0.00	:	-2.94:	17.83:	0.00:	0.00:
9:	1:	0.00	:	-4.37:	19.26:	0.00:	0.00:
10:	1:	0.00	:	-5.87:	20.76:	0.00:	0.00:
s:	М:	NUMBER		53		c	

${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:		-:-	:	:-	:-	:
	1:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	31.10	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	2.98	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.45	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.02	:	0.00:	0.00:	0.00:	0.00:
	7:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
	8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
1	.0:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
	M:	NUMBER	:	S 0	:	S 1	:
\mathbf{r} :	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:	:-	:
1:	1:	0.00	:	7.88:	8.03:	0.00:	0.00:
2:	1:	24.52	:	6.35:	9.56:	0.00:	0.00:
3:	1:	2.73	:	4.82:	11.10:	0.00:	0.00:
4:	1:	0.46	:	3.21:	12.70:	0.00:	0.00:
5:	1:	0.11	:	1.61:	14.31:	0.00:	0.00:
6:	1:	0.03	:	0.07:	15.84:	0.00:	0.00:
7:	1:	0.01	:	-1.53:	17.45:	0.00:	0.00:
8:	1:	0.00	:	-3.14:	19.05:	0.00:	0.00:
9:	1:	0.00	:	-4.67:	20.59:	0.00:	0.00:
10:	1:	0.00					
s:	M:	NUMBER	:	s3	:	s	:
т:	Α:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)) :	(ksi) :
P :	L:	CYCLES	:	(t1):			
:	:-		-:-	:-		- :-	
1:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
2:	1:	24.52	:	0.00:	0.00:	0.00:	0.00:
3:	1:	2.73	:	0.00:	0.00:	0.00:	0.00:
4:	1:	0.46	:	0.00:	0.00:	0.00:	0.00:
5:	1:	0.11					
6:	1:	0.03	:	0.00:	0.00:	0.00:	0.00:
7:	1:	0.01	:	0.00:	0.00:		
8:	1:	0.00	:			0.00:	
9:	1:	0.00	:			0.00:	0.00:
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	\mathbf{T} :	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1): (t2)	:	(t1) : (t2)	:
	٠: ٠	:-		:	:	:	:	:

	1:	1:	0.28	:	4.60:	4.65:	0.00:	0.00:
	2:	1:	0.44	:	3.73:	4.88:	0.00:	0.00:
	3:	1:	0.22	:	2.85:	5.15:	0.00:	0.00:
	4:	1:	0.06	:	1.98:	5.43:	0.00:	0.00:
	5:	1:	0.00	:	1.06:	5.70:	0.00:	0.00:
	6:	1:	0.00	:	0.18:	5.98:	0.00:	0.00:
S	:	M:	NUMBER	:	S 3	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)) :
P	:	L:	CYCLES	:		(t2) :	(t1):	
						,	(01)	
	:	:-		:-	::	:	:	:
	1:	:- 1:	0.28	· : - :	0.00:	0.00:	0.00:	0.00:
	1: 2:		0.28 0.44		0.00: 0.00:	:	:	0.00: 0.00:
		1:		:		0.00:	0.00:	
	2:	1: 1:	0.44	:	0.00:	0.00: 0.00:	0.00: 0.00:	0.00:
	2: 3:	1: 1: 1:	0.44 0.22	: : :	0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

ANALYSIS RESULTS:

Schdl Block Final Flaw Size K max Step a-tip c-tip 200 0.005018 0.005014 15 1.465869 1.430230 400 15 0.005036 0.005028 1.467932 1.432577 600 15 0.005054 0.005042 1.470009 1.434938 800 1.472102 15 0.005072 0.005056 1.437313 1000 15 0.005090 0.005071 1.474211 1.439703 1200 15 0.005109 0.005085 1.476334 1.442107 1400 15 0.005127 0.005100 1.478476 1.444525 1600 15 0.005146 0.005115 1.480666 1.446948 1800 15 0.005165 0.005130 1.482892 1.449380 2000 15 0.005184 0.005146 1.485147 1.451824 2200 15 0.005203 0.005162 1.487430 1.454280 2400 15 0.005223 0.005178 1.489739 1.456749 2600 15 0.005242 0.005194 1.492074 1.459231 2800 15 0.005262 0.005210 1.494433 1.461727 3000 15 0.005282 0.005227 1.496817 1.464238 3200 15 0.005303 0.005244 1.499224 1.466762 3400 15 0.005323 0.005261 1.501656 1.469301 3600 15 0.005344 1.471855 0.005279 1.504110 3800 15 0.005364 0.005296 1.506589 1.474425 4000 15 0.005385 0.005314 1.509090 1.477009 4200 15 0.005406 0.005332 1.511615 1.479610 4400 15 0.005428 0.005350 1.514163 1.482226 4600 15 0.005449 0.005369 1.516734 1.484859 4800 15 0.005471 0.005387 1,519329 1.487507 5000 15 0.005493 0.005406 1.521947 1.490172 5200 15 0.005515 0.005425 1.524588 1.492854 5400 15 0.005538 0.005444 1.527253 1.495553 5600 15 .0.005560 0.005464 1.529941 1.498269 5800 15 0.005583 0.005483 1.532653 1.501003 6000 15 0.005606 0.005503 1.535388 1.503754 6200 0.005630 0.005523 1.538148 1.506523 6400 15 0.005653 0.005544 1.540931 1.509309 6600 15 0.005677 0.005564 1.543738 1.512114 6800 15 0.005701 0.005585 1.546570 1.514938 7000 15 0.005725 0.005606 1.549425 1.517780 7200 15 0.005750 0.005627 1.552306 1.520641 7400 15 0.005774 0.005649 1.555211 1.523520

```
FINAL RESULTS:
Critical Crack Size has NOT been reached.
                0.00 of Load Step No.
at Cycle No.
Step description:
of Block No. 15 of Schedule No. 7414
Crack Sizes: a = 0.577605E-02 , c = 0.565044E-02 , a/c = 1.0222
             FATIGUE CRACK GROWTH ANALYSIS
             -----Modified by FAI-----
            DATE: 12-APR-99 TIME: 10:42:58
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CORNER CRACK CASE 2, PSE-W4 SA227 MS, cont .005 crack angle
GEOMETRY
MODEL: CC02-Corner crack from hole in plate (2D)
Plate Thickness, t =
                  0.1250
Plate Width, W = 1.4400
Hole Diameter, D = 0.1990
Hole-Center-to-Edge Dist., B =
                            0.3500
Poisson s ratio = 0.32
FLAW SIZE:
 (init.) = 0.5650E-02
c (init.) = 0.5528E-02
a/c (init.) = 1.022
MATERIAL
             2014T6511 EXTRUSION T-L
Material Properties:
: : : : : :
: 1 : 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:---- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            ;----;-----;-----;----;
: 1 :0.200D-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
MODEL: CC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.0000
Scale Factor for Stress S1: 0.0000
```

```
Scale Factor for Stress S3:
                            0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                            0.0000
Scale Factor for Stress S3:
                            0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                            0.0000
Scale Factor for Stress S3:
                            0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                            9.1300
Scale Factor for Stress S1:
                            0.0000
Scale Factor for Stress S3:
                            0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                            0.0000
Scale Factor for Stress S3:
                            0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                            Block Case No.
From - To
   1
             1
   2
                                    2
   3
             3
                                    5
   4
                                    1
   5
             5
                                    3
   6
             6
                                    5
   7
                                    1
   8
   9
             9
                                    5
  10
            10
                                    1
  11
            11
  12
            12
                                    5
  13
            13
                                    1
  14
            14
  15
BLOCK CASE NO. 1
S : M: NUMBER
                           S0
   : A:
          OF
E : T: FATIGUE
P : L: CYCLES
                       (t1) : (t2)
                                         (t1): (t2)
1: 1: 1.90 :
                      0.70:
                                 1.30:
                                          0.70:
                                                   1.30:
  2: 1:
             0.09 :
                        0.60:
                                 1.40:
                                          0.60:
                                                   1.40:
  3: 1:
             0.01 :
                        0.54:
                                 1.46:
                                          0.54:
                                                   1.46:
  : M: NUMBER :
                        S3
                                            S
                                    :
T : A:
         OF
E : T: FATIGUE
P : L: CYCLES :
                       (t1): (t2):
                                         (t1): (t2):
---:--:-----
  1: 1:
           1.90 :
                        0.70:
                                          0.00:
                                 1.30:
                                                 0.00:
  2: 1:
              0.09:
                        0.60:
                                 1.40:
                                          0.00:
                                                   0.00:
  3: 1:
              0.01:
                        0.54:
                                 1.46:
                                          0.00:
                                                   0.00:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLOC	K	CAS	E NO. 2					
S	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P		L:		:	(t1) :	(t2) :	(t1) :	(t2) :
		:-		• :	:-	:	:	:
		1:					0.99:	
		1:						
		1:	1.52			1.52:		
		1:	0.23					
		1:	0.05					
		1:	0.01					
		1:	0.00	:	-0.21:	2.39:	-0.30:	2.30:
8	:	1:	0.00	:	-0.43:	2.61:	-0.52:	2.52:
9	:	1:	0.00	:	-0.64:	2.82:	-0.73:	2.73:
10	:	1:	0.00	:	-0.86:	3.04:	-0.95:	2.95:
S	:	M:	NUMBER	:	S3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P			CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	•	:-		:	:-	:	:	:
		1:	0.00					
		1:	15.09					
		1:	1.52					
		1:	0.23					
		1:	0.05					
		1:	0.01					
	-	1:	0.00					
		1:	0.00					
		1:	0.00					
10):	1:	0.00	:	-0.95:	2.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

T : A: E : T: P : L:	NUMBER	: :	(t1) :			: : (t2) :
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1: 9: 1: 10: 1: S: M: T: A:	0.00 31.10 2.98 0.45 0.09 0.02 0.01 0.00 0.00 0.00 NUMBER		1.08: 0.87: 0.66: 0.44: 0.22: 0.01: -0.21: -0.43: -0.64:	1.10: 1.31: 1.52: 1.74: 1.96: 2.17: 2.39: 2.61: 2.82:	0.99: 0.78: 0.57: 0.35: 0.13: -0.08: -0.30: -0.52: -0.73: -0.95:	1.01: 1.22: 1.43: 1.65: 1.87: 2.08: 2.30: 2.52: 2.73:
P : L:	CYCLES	:				
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1:	0.09 0.02	: : : : : : : :	0.99: 0.78: 0.57: 0.35: 0.13: -0.08: -0.30: -0.52: -0.73:	1.01: 1.22: 1.43: 1.65: 1.87: 2.08: 2.30: 2.52: 2.73:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

BLOCE	CAS	SE NO. 4					
s :	M:	NUMBER	:	S 0	:	S1	:
т :	A:	OF	:				
E :	T:	FATIGUE	:		:		· ·
P :	L:	CYCLES	:	(t1) :	(t2) :	(±1) :	(t2) :
			-:-	:-	:	:-	:
1:	1:	0.00	:	1.08:	1.10:	0.99:	1.01:
2:	1:	24.52	:		1.31:		1.22:
3:	1:	2.73	:		1.52;		1.43:
4:	1:	0.46	:	0.44:	1.74:	0.35:	1.65:
5:	1:	0.11	:	0.22:	1.96:		1.87:
6:	1:	0.03	:	0.01:	2.17:		
7:	1:	0.01	:		2.39:		
8:	1:	0.00	:		2.61:		
9:	1:	0.00	:	-0.64:	2.82:		
10:	1:	0.00	:				
s :	M:	NUMBER	:	s3	:	S	
т:	A:	OF	:		:	-	
E :	T:	FATIGUE	:			•	
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		- : -	:-	:	:-	:
1:	1:	0.00	:	0.99:	1.01:	0.00:	0.00:
2:	1:	24.52	:	0.78:	1.22:	0.00:	0.00:
	1:	2.73	:	0.57:	1.43:		
	1:	0.46	:	0.35:	1.65:	0.00:	0.00:
	1:	0.11	:	0.13:	1.87:	0.00:	0.00:
	1:	0.03	:	-0.08:	2.08:	0.00:	0.00:
	1:	0.01		-0.30:	2.30:	0.00:	0.00:
	1:	0.00		-0.52:	2.52:	0.00:	0.00:
	1:	0.00		-0.73:	2.73:	0.00:	0.00:
10:	1:	0.00	:	-0.95:	2.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BL	OCK	CAS	E NO. 5					
S	:	M:	NUMBER	:	so		S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	: -	:	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	М:	NUMBER	:	<i>S</i> 3	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	1:	1:	0.28	:	1.00:	1.00:	0.00:	0.00:
	2:	1:	0.44	:	0.81:	1.06:		0.00:
	3:	1:	0.22	:	0.62:	1.12:		
	4:	1:	0.06	:	0.43:	1.18:	0.00:	0.00:
	5:	1:	0.00	:	0.23:	1.24:		0.00:
	6:	1:	0.00	:	0.04:	1.30:		0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W4 MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STI)							
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	:	:	:
	1:	1:	1.90	:	-0.70:	-1.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.60:	-1.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.54:	-1.46:	0.00:	0.00:
S	:	M:	NUMBER	:	S 3	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	:	:	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD					_	•	
s :	M:	NUMBER	:	so	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
Р:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	1:	0.00	• : -	9.32:	9.49:	0.00:	0.00:
	1:	15.09		7.51:	11.31:	0.00:	0.00:
	1:	1.52		5.70:	13.12:	0.00:	0.00:
	1:	0.23		3.80:	15.02:	0.00:	0.00:
	1:	0.05			16.91:	0.00:	0.00:
	1:	0.01	-	0.09:	18.73:	0.00:	0.00:
	1:	0.00			20.63:	0.00:	0.00:
8:		0.00				0.00:	
	1:	0.00					0.00:
	1:	0.00	:	-7.42:		0.00:	
S :	M:	NUMBER	:	S 3	:	S	:
T :	A:	OF	:		:		:
E :	т:	FATIGUE	:	(ksi)	:	(ksi)) :
P :	L:	CYCLES	:	(t1) :	(t2) :		
1 .	::- : 1:	0.00	- : -		0.00.	0.00:	-
	: 1:	15.09		0.00:		0.00:	0.00:
	1:	1.52			0.00:	0.00:	0.00:
	1:	0.23		0.00:	0.00:	0.00:	
	1:	0.05		0.00:	0.00:	0.00:	0.00:
	: 1:	0.01		0.00:	0.00:	0.00:	
-	: 1:	0.00		0.00:	0.00:	0.00:	0.00:
	: 1:	0.00		0.00:	0.00:	0.00:	0.00:
	: 1:	0.00		0.00:	0.00:	0.00:	0.00:
	: 1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

	M:	NUMBER	:	S0	:	S1	:
	A:	OF	:		:		:
	T:	FATIGUE	:	(ksi) :	(ksi	.) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1.	:- 1:	0.00	-:-	9.22:	9.39:	0.00-	0.00.
	1:	31.10		7.43:	11.19:		
	1:	2.98		5.64:			0.00:
	1:	0.45			12.98:		0.00:
	1:			3.76:	14.86:		0.00:
		0.09		1.88:	16.74:		0.00:
	1:	0.02		0.09:	18.53:		0.00:
7:		0.01		-1.79:	20.41:		0.00:
8:		0.00		-3.67:	22.29:		0.00:
	1:	0.00		~5.47:	24.08:		0.00:
10:		0.00	:	-7.34:	25.96:	0.00:	0.00:
	М:	NUMBER	:	S3	:	S	:
	M: A:	NUMBER OF	:	S3	:	S	:
T:			: :	S3 (ksi	: :) :	S (ksi	: : .) :
T : E :	A:	OF	: : :	(ksi	: : (t2) :	_	•
T: E: P:	A: T: L:	OF FATIGUE CYCLES	:	(ksi (t1) :	(t2) :	(ksi (t1) :	(t2) :
T: E: P: : 1:	A: T: L: :-	OF FATIGUE CYCLES	:	(ksi (t1): : 0.00:	(t2) : : 0.00:	(ksi (t1) : : 0.00:	(t2): : 0.00:
T: E: P: : 1: 2:	A: T: L: 1:	OF FATIGUE CYCLES 0.00 31.10	:	(ksi (t1): : 0.00: 0.00:	(t2) : : 0.00: 0.00:	(ksi (t1): 	(t2): : 0.00: 0.00:
T: E: P: : 1: 2: 3:	A: T: L: 1: 1:	OF FATIGUE CYCLES 0.00 31.10 2.98	:	(ksi (t1): : 0.00: 0.00: 0.00:	(t2) : : 0.00: 0.00: 0.00:	(ksi (t1): 	(t2): : 0.00: 0.00: 0.00:
T: E: P: : 1: 2: 3: 4:	A: T: L: 1: 1: 1:	OF FATIGUE CYCLES 0.00 31.10 2.98 0.45	:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00:	(t2): 0.00: 0.00: 0.00: 0.00:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00:	(t2): 0.00: 0.00: 0.00: 0.00:
T: E: P: : 1: 2: 3: 4: 5:	A: T: L: 1: 1: 1:	OF FATIGUE CYCLES 0.00 31.10 2.98 0.45 0.09	:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00:
T: E: P: : 1: 2: 3: 4: 5:	A: T: L: 1: 1: 1: 1:	OF FATIGUE CYCLES 0.00 31.10 2.98 0.45 0.09 0.02		(ksi (t1): : 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: 1: 2: 3: 4: 5: 6: 7:	A: T: L: 1: 1: 1: 1:	OF FATIGUE CYCLES 0.00 31.10 2.98 0.45 0.09 0.02 0.01		(ksi (t1): 	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): 	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00:
T : E : P : 1: 2: 3: 4: 5: 6: 7: 8:	A: T: L: 1: 1: 1: 1: 1:	OF FATIGUE CYCLES 0.00 31.10 2.98 0.45 0.09 0.02 0.01		(ksi (t1): 	(t2) :: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): 	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: 1: 2: 3: 4: 5: 6: 7:	A: T: L: 1: 1: 1: 1: 1: 1:	OF FATIGUE CYCLES 0.00 31.10 2.98 0.45 0.09 0.02 0.01		(ksi (t1): 	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): 	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T: E: P: : 1: 2: 3: 4: 5:	A: T: L: 1: 1: 1:	OF FATIGUE CYCLES 0.00 31.10 2.98 0.45 0.09	:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): : 0.00: 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00:
T : E : P : 1: 2: 3: 4: 5: 6: 7: 8:	A: T: L: 1: 1: 1: 1: 1:	OF FATIGUE CYCLES 0.00 31.10 2.98 0.45 0.09 0.02 0.01		(ksi (t1): 	(t2) :: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi (t1): 	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S0 T : A: OF : E : T: FATIGUE : (ksi) E : T: FATIGUE : (ksi) : (ksi) : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : 0.00: 9.86: 10.04: 0.00: 0.00: 24.52: 7.94: 11.96: 0.00: 0.00: 0.00: 2.73: 6.03: 13.88: 0.00: 0.00: 0.00: 0.46: 4.02: 15.89: 0.00: 0.00: 0.11: 2.01: 17.89: 0.00: 1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 0.03: 0.09: 19.81: 0.00: -1.92: 21.82: 0.00: 6: 1: 0.00: 7: 1: 0.01: -1.92: 0.00: 8: 1: 0.00: -3.93: 23.83: 0.00: 0.00: 0.00 : -5.84: 25.75: 0.00 : -7.85: 27.76: JMBER : S3 : 9: 1: 0.00: 0.00: 0.00: 0.00: 10: 1: S : M: NUMBER : S T : A: OF E : T: FATIGUE : (ksi) : (ksi) : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : (ksi) 0.00: 0.00: 0.00: 0.00: 0.00: 24.52: 0.00: 0.00: 0.00: 0.00: 2.73: 0.00: 0.00: 0.00: 0.00: 1: 1: 2: 1: 3: 1: 4: 1: 0.46: 0.00: 0.00: 0.00: 0.00: 0.00: 0.11 : 0.03 : 0.00: 0.00: 0.00: 5: 1: 0.00: 6: 1: 0.00: 0.00: 7: 1: 0.01 : 0.00: 0.00: 0.00: 0.00: 0.00 : 0.00: 0.00 : 0.00: 8: 1: 0.00: 0.00: 0.00: 9: 1: 0.00 : 0.00: 0.00: 0.00: 0.00:

10: 1: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI	D							
s	:	M:	NUMBER	:	S0	:	S1	:
т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	: 1:	:- 1:	0.28	:	5.75:	5.81:	0.00:	0.00:
	2:	1:	0.44		4.66:	6.10:	0.00:	0.00:
	3:	1:	0.22	:	3.56:	6.44:	0.00:	0.00:
	4:	1:	0.06	:	2.47:	6.78:	0.00:	0.00:
	5:	1:	0.00	:	1.32:	7.13:	0.00:	0.00:
	6:	1:	0.00	:	0.23:	7.48:	0.00:	0.00:
S	:	M:	NUMBER	:	S 3	:	s	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-	0 20	-:	0.00-	0.00-	0.00-	0.00:
T E	5: 6: :: 1: 2: 3: 4: 5:	1: 1: M: A: T:	0.00 0.00 NUMBER OF FATIGUE	:	1.32: 0.23: S3 (ksi	7.13: 7.48: :	0.00: 0.00: S (ksi	0.00

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

CORNER CRACK CASE 2, PSE-W4

MODEL: CC02

ANALYSIS RESULTS:

Schdl	Block	Final F	law Size	K m	ax
	Step	a	c	a-tip	c-tip
200	15	0.005745	0.005614	1.938364	1.900563
400	15	0.005844	0.005703	1.953254	1.914755
600	15	0.005946	0.005795	1.968540	1.929285
800	15	0.006052	0.005890	1.984235	1.944166
1000	15	0.006163	0.005989	2.000356	1.959410
1200	15	0.006277	0.006092	2.016917	1.975032
1400	15	0.006396	0.006198	2.033938	1.991046
1600	15	0.006519	0.006309	2.051434	2.007468
1800	15	0.006648	0.006424	2.069426	2.024313
2000	15	0.006782	0.006543	2.087934	2.041599
2200	1 5	0.006921	0.006668	2.106978	2.059342
2400	15	0.007067	0.006797	2.126582	2.077562
2600	15	0.007219	0.006932	2.146767	2.096278
2800	15	0.007377	0.007072	2.167560	2.115510
3000	15	0.007543	0.007219	2.188987	2.135280
3200	15	0.007716	0.007372	2.211075	2.155610
3400	15	0.007898	0.007532	2.233853	2.176524
3600	15	0.008088	0.007699	2.257353	2.198047
3800	15	0.008287	0.007874	2.281608	2.220206
4000	15	0.008497	0.008057	2.306651	2.243027
4200	15	0.008717	0.008249	2.332519	2.266540

4400	15	0.008948	0.008450	2.359251	2.290775
4600	15	0.009192	0.008661	2.386889	2.315765
4800	15	0.009448	0.008882	2.415474	2.341543
5000	15	0.009719	0.009115	2.445054	2.368144
5200	15	0.010005	0.009361	2.475676	2.395606
5400	15	0.010308	0.009619	2.507392	2.423968
5600	15	0.010628	0.009891	2.540255	2.453272
5800	15	0.010967	0.010179	2.574323	2.483561
6000	15	0.011328	0.010483	2.609656	2.514880
6200	15	0.011711	0.010804	2.646318	2.547278
6400	15	0.012118	0.011145	2.684376	2.580804
6600	15	0.012552	0.011506	2.723901	2.615512
6800	15	0.013016	0.011889	2.764967	2.651455
7000	15	0.013511	0.012296	2.807654	2.688693
7200	15	0.014041	0.012729	2.852042	2.727286
7400	15	0.014609	0.013191	2.898218	2.767297
7600	15	0.015220	0.013683	2.946271	2.808792
7800	15	0.015876	0.014210	2.996296	2.851843
8000	15	0.016582	0.014773	3.048390	2.896522
8200	15	0.017345	0.015376	3.102654	2.942905
8400	15	0.018169	0.016023	3.159192	2.991071
8600	1 5	0.019061	0.016718	3.218113	3.041106
8800	15	0.020029	0.017466	3.279526	3.093097
9000	15	0.021081	0.018272	3.343544	3.147146
9200	15	0.022226	0.019142	3.410282	3.203355
9400	15	0.023475	0.020082	3.479855	3.261832
9600	15	0.024839	0.021101	3.552379	3.322696
9800	1 5	0.026333	0.022206	3.627976	3.386082
10000	15	0.027971	0.023406	3.706768	3.452146
MODEL: CC02					

ANALYSIS RESULTS (contd.)

Schdl	Block	Final	Flaw Size	K m	K max		
	Step	a	C	a-tip	c-tip		
10200	15	0.029770	0.024714	3.788873	3.521066		
10400	15	0.031751	0.026140	3.874414	3.593046		
10600	15	0.033934	0.027699	3.963517	3.668336		
10800	15	0.036347	0.029407	4.056326	3.747239		
11000	15	0.039016	0.031283	4.152995	3.830133		
11200	15	0.041976	0.033349	4.253698	3.917503		
11400	1 5	0.045263	0.035632	4.358649	4.009967		
11600	15	0.048921	0.038164	4.468119	4.108327		
11800	15	0.053001	0.040984	4.582461	4.213638		
12000	15	0.057561	0.044142	4.702151	4.327299		
12200	15	0.062671	0.047700	4.827832	4.451195		
12400	15	0.068415	0.051743	4.960396	4.587899		
12600	15	0.074897	0.056384	5.101080	4.740987		
12800	15	0.082245	0.061781	5.251617	4.915539		
13000	15	0.090625	0.068168	5.414441	5.118961		
13200	15	0.100260	0.075906	5.592935	5.362390		
13400	15	0.111452	0.085584	5.791596	5.663149		
13600	15	0.124625	0.098250	6.015241	6.048763		

Transition to 1-d solution, TC03: a = 0.1250 t = 0.1250 at Cycle No. 2.98 of I

2.98 of Load Step No. 3

Step description:
of Block No. 5 of Schedule No. 13606
Crack Size: c = 0.986379E-01, a/c = 1.26728

Schedl	Block		Final Flaw Size	K max
		Step	c	c-tip
13800	15		0.121893	6.934713
14000	15		0.160766	8.219127

```
ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or
(b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 10
Step description:
of Block No. 14 of Schedule No. 14004
Crack Size c = 0.161950

FINAL RESULTS:
Net-section stress exceeds the Flow stress.
(Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 10
Step description:
of Block No. 14 of Schedule No. 14041
Crack Size c = 0.174923
```

C-5 PSE W5 SA227 Skin Splice at WS 99 Lower Surface

```
FATIGUE CRACK GROWTH ANALYSIS
              ________
             DATE: 09/30/98 TIME: 07:56:18
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC5, PSE-W5 crack in .032 skin, outboard sta99
GEOMETRY
_____
MODEL: TC05-Through crack from hole in row of holes.
Plate Thickness, t =
                    0.0320
                    0.1300
Hole Dia., D
Hole-to-Hole Dist., H =
                           0.8000
Dia./Edge-Dist. Ratio, D/B =
                           0.0000
(D/B = 0 \text{ means B is very large})
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2024-T3
      Clad Plt & Sht; T-L; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1: 65.0: 48.0: 41.0: 29.0: 1.00: 1.00: 0.032: 58.0:
:Matl:----- Crack Growth Eqn Constants -----:
: 1 :0.244E-07:2.601:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
TC5, PSE-W5 crack in .032 skin, outboard sta99
MODEL: TC05
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress SO: 0.00000
Scale Factor for Stress S3: 0.00000
Scale Factor for Stress S4: 0.00000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress SO:
                          5.5000
                         11.200
Scale Factor for Stress S3:
Scale Factor for Stress S4: 0.00000
```

```
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                        5.1000
Scale Factor for Stress S3:
                       10.400
Scale Factor for Stress S4: 0.00000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                        5.2000
Scale Factor for Stress S3:
Scale Factor for Stress S4:
                       0.00000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                       7.0000
Scale Factor for Stress S4:
                       0.00000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                        Block Case No.
From - To
   1
            1
   2
   4
   5
            5
   6
            6
   7
            7
   8
           8
                                3
   9
            9
  10
           10
  11
           11
  12
           12
  13
           13
                                1
  14
           14
  15
           15
BLOCK CASE NO. 1
 S : M: NUMBER
                        50
                                        S3
 T : A:
        OF
                :
 E : T: FATIGUE
 P : L: CYCLES :
                     (t1): (t2): (t1): (t2)
____;__;__;__
  1: 1: 1.90 :
                    0.70: 1.30:
                                     0.70:
  2: 1: 0.09: 3: 1: 0.01:
                     0.60:
                            1.40:
                                     0.60:
                                             1.40:
                    0.54: 1.46:
                                     0.54:
                                            1.46:
 S : M: NUMBER :
                     S4
                                     S
                              :
 т
  : A:
       OF
 E : T: FATIGUE
 P : L: CYCLES :
                    (t1): (t2):
                                     (t1): (t2)
1: 1:
            1.90 :
                    -0.30:
                           0.30:
                                     0.00: 0.00:
            0.09:
                     -0.40:
  2: 1:
                             0.40:
                                     0.00:
                                             0.00:
             0.01:
                     -0.46:
                             0.46:
                                     0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
 S : M: NUMBER
T : A: OF
                 :
 E : T: FATIGUE
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
1: 1:
           0.00 :
                    1.08:
                            1.10:
                                     1.08: 1.10:
```

3: 4: 5: 6: 7:	1: 1: 1: 1: 1:	15.09 1.52 0.23 0.05 0.01 0.00	: : : : :	0.87: 0.66: 0.44: 0.22: 0.01: -0.21:	1.31: 1.52: 1.74: 1.96: 2.17: 2.39:	0.44: 0.22: 0.01: -0.21:	1.74: 1.96: 2.17: 2.39:
	1:	0.00		-0.43: -0.64:	2.61: 2.82:		2.61: 2.82:
10:	1:	0.00	:	-0.86:			
s:		NUMBER	:	S4	:	S	:
	A:	OF	:		:		:
	T:		:		:		:
	L:					(t1) :	
: 1:	:- 1:	0.00	· : -	-0.01:	0.01:	0.00:	0.00:
1: 2:	:-	0.00 15.09	: - : :	-0.01: -0.22:	0.01: 0.22:	0.00: 0.00:	0.00: 0.00:
1: 2: 3:	:- 1: 1:	0.00	: - : : :	-0.01:	0.01: 0.22:	0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4:	1: 1: 1:	0.00 15.09 1.52	:	-0.01: -0.22: -0.43:	0.01: 0.22: 0.43:	0.00: 0.00: 0.00:	0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1:	0.00 15.09 1.52 0.23	:	-0.01: -0.22: -0.43: -0.65:	0.01: 0.22: 0.43: 0.65:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
: 1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	0.00 15.09 1.52 0.23 0.05 0.01	: - : : : : : : : : : : : : : : : : : :	-0.01: -0.22: -0.43: -0.65: -0.87:	0.01: 0.22: 0.43: 0.65: 0.87:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
: 1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1: 1:	0.00 15.09 1.52 0.23 0.05 0.01 0.00	: : : : : : : : : : : : : : : : : : : :	-0.01: -0.22: -0.43: -0.65: -0.87: -1.08: -1.30: -1.52:	0.01: 0.22: 0.43: 0.65: 0.87: 1.08:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
: 1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1: 1: 1:	0.00 15.09 1.52 0.23 0.05 0.01	: : : : : : : : : : : : : : : : : : : :	-0.01: -0.22: -0.43: -0.65: -0.87: -1.08: -1.30:	0.01: 0.22: 0.43: 0.65: 0.87: 1.08:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK CA	SE NO. 3					
S : M:	NUMBER	:	so	:	S3	:
T : A:	OF	:		:		:
E : T:	FATIGUE	:		:		:
P : L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:		-:-	:-	:	:-	·:
1: 1:	0.00	:	1.09:	1.11:	1.09:	1.11:
2: 1:	31.10	:	0.88:	1.32:	0.88:	1.32:
3: 1:	2.98		0.67:	1.53:	0.67:	1.53:
4: 1:	0.45		0.45:	1.75:	0.45:	1.75:
5: 1:			0.23:	1.97:		1.97:
6: 1:	0.02			2.18:		2.18:
7: 1:	0.01			2.40:		2.40:
8: 1:	0.00					2.62:
9: 1:			-0.63:			
10: 1:			-0.85:	3.05:	-0.85:	3.05:
S : M:	NUMBER		S4	:	S	:
T : A:	OF	:		:		:
E : T:		:		:		:
P : L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
1: 1:	0.00	• : -	0.01.	:-	:-	:
2: 1:				0.01:	0.00:	
3: 1:	2.98		-0.43:			
4: 1:	0.45		-0.43:			
5: 1:	0.43		-0.87:			
6: 1:	0.03			0.87:		
7: 1:	0.02		-1.30:	1.08: 1.30:		
8: 1:	0.01		-1.50:			0.00:
9: 1:	0.00					
10: 1:	0.00		-1.73: -1.95:	1.73:		
TO. 1:	0.00	•	-1.30:	1.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	CK	CAS	E NO. 4					
S	:	M:	NUMBER	:	S0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:

P :	L:	CYCLES	:	(t1) :			
1 .	1:	0.00	: -	1.09:		1.09:	
				0.88:			
	1:	2.73		0.67:	1.53:		
	1:	0.46		0.45:	1.75:		
	1:	0.11		0.23:	1.97:		
	1:			0.02:			2.18:
	1:			-0.20:		-0.20:	2.40:
	1:	0.00	:	-0.42:	2.62:	-0.42:	2.62:
9:	1:	0.00	:	-0.63:	2.83:	-0.63:	2.83:
10:	1:	0.00	:	-0.85:	3.05:	-0.85:	3.05:
s:	M:	NUMBER	:	S4	:	S	:
T :	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES					
-	-		-	_	-	-	
	1:	0.00			1.95:		
10: S: T: E:: P: 2: 3: 4: 5: 6:: 7: 8:	1: M: A: T: L: 1: 1: 1: 1: 1: 1:	0.00 NUMBER OF FATIGUE CYCLES 0.00 24.52 2.73 0.46 0.11 0.03 0.01 0.00 0.00	: : : : : : : : : : : : : : : : : : : :	-0.85: S4 (t1): -0.01: -0.22: -0.43: -0.65: -0.87: -1.08: -1.30: -1.52: -1.73:	3.05:	-0.85: S (t1): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	3.05 (t2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	so	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:
S	:	M :	NUMBER	:	S4	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	: 1.	:- 1:	0.28	-:-	1.00:	1.00:	0.00:	0.00:
		1:	0.44			1.06:		
		1:	0.22			1.12:		
		1:	0.06			1.18:	0.00:	
		1:	0.00			1.24:		
	6:	1:	0.00	:	0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

TC5, PSE-W5 crack in .032 skin, outboard sta99 MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	Μ:	NUMBER	:	S0	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2)	:	(t1) : (t2)	:

	:	:-		- : -				
	1: 2:	1:	1.90 0.09		0.00:	0.00:	0.00:	0.00:
	4:	т:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:		0.01	:	0.00:	0.00:	0.00:	0.00:
S	-	Μ:	NUMBER	:	S4	:	S	:
Т	:	A:	OF	:		:		:
Ε	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		: -	:	:-	:	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W5 crack in .032 skin, outboard sta99 MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s :	M:	NUMBER	:	S0	:	<i>s</i> 3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)) :	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
: 1:	1:	0.00	- : .	: 5.94:	6.05:	:- 12.10:	12.32:
	1:	15.09		4.79:	7.21:	9.74:	14.67:
	1:	1.52		3.63:	8.36:	7.39:	17.02:
4:		0.23		2.42:	9.57:	4.93:	19.49:
5:	1:	0.05		1.21:	10.78:	2.46:	21.95:
6:	1:	0.01		0.06:	11.93:	0.11:	24.30:
7:	1:	0.00	:	-1.15:	13.15:	-2.35:	26.77:
8:	1:	0.00	:	-2.36:	14.36:	-4.82:	29.23:
9:	1:	0.00	:	-3.52:	15.51:	-7.17:	31.58:
10:	1:	0.00	:	-4.73:	16.72:	-9.63:	34.05:
s :	M:	NUMBER	:	S4	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	1:	0.00	-:-	0.00:	:	:-	:
	1:	0.00 15.09		0.00: 0.00:		0.00:	
	1:	1.52		0.00:	0.00: 0.00:	0.00:	0.00:
	1:	0.23		0.00:	0.00:	0.00: 0.00:	0.00:
5:		0.05		0.00:	0.00:	0.00:	0.00:
6:		0.01		0.00:	0.00:	0.00:	0.00:
	1:	0.00		0.00:	0.00:	0.00:	
	1:	0.00		0.00:	0.00:	0.00:	0.00:
	1:	0.00		0.00:	0.00:	0.00:	0.00:
10:		0.00		0.00:	0.00	0.00:	0.001

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

TC5, PSE-W5 crack in .032 skin, outboard sta99 MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
s	:	M:	NUMBER	:	S0	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t	:2) :	(t1) :	(t2) :
	:	:-		-:-	::	:-	:	:
	1:	1:	0.00	:	5.56:	5.66:	11.34:	11.54:
	2:	1:	31.10	:	4.49:	6.73:	9.15:	13.73:

3:	1:	2.98	:	3.42:	7.80:	6.97:	15.91:
4:	1:	0.45	:	2.30:	8.92:	4.68:	18.20:
5:	1:	0.09	:	1.17:	10.05:	2.39:	20.49:
6:	1:	0.02	:	0.10:	11.12:	0.21:	22.67:
7:	1:	0.01	:	-1.02:	12.24:	-2.08:	24.96:
8:	1:	0.00	:	-2.14:	13.36:	~4.37:	27.25:
9:	1:	0.00	:	-3.21:	14.43:	-6.55:	29.43:
10:	1:	0.00	:	-4.33:	15.55:	-8.84:	31.72:
s:	M:	NUMBER	:	S4	:	S	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)) :	(ksi)	:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
_							
:	:-		-:-	:	:-	:	:
1:	:- 1:	0.00	· : -	0.00:	0.00:	0.00:	0.00:
	1: 1:		· : - : :	0.00: 0.00:	0.00: 0.00:	0.00: 0.00:	0.00:
2:		31.10					
2: 3:	1:	31.10 2.98	:	0.00:	0.00:	0.00:	0.00:
2: 3:	1: 1: 1:	31.10 2.98	: :	0.00: 0.00:	0.00: 0.00:	0.00: 0.00:	0.00: 0.00:
2: 3: 4:	1: 1: 1:	31.10 2.98 0.45 0.09	:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
2: 3: 4: 5:	1: 1: 1: 1:	31.10 2.98 0.45 0.09 0.02	: : : :	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
2: 3: 4: 5: 6:	1: 1: 1: 1: 1:	31.10 2.98 0.45 0.09 0.02 0.01	: : : : : :	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	31.10 2.98 0.45 0.09 0.02 0.01	: : : : : :	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W5 crack in .032 skin, outboard sta99 MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

S: M: NUMBER: SO S3 ----:--:--:-------:-----:
 1: 1:
 0.00 :
 5.67:
 5.77:
 11.45:
 11.66:

 2: 1:
 24.52 :
 4.58:
 6.86:
 9.24:
 13.86:

 3: 1:
 2.73 :
 3.48:
 7.96:
 7.04:
 16.07:

 4: 1:
 0.46 :
 2.34:
 9.10:
 4.73:
 18.38:

 5: 1:
 0.11 :
 1.20:
 10.24:
 2.42:
 20.69:

 6: 1:
 0.03 :
 0.10:
 11.34:
 0.21:
 22.89:

 7: 1:
 0.01 :
 -1.04:
 12.48:
 -2.10:
 25.20:
 -2.10: 7: 1: 0.01 : -1.04: 12.48: 25.20: 8: 1: 0.00: -2.18: 13.62: -4.41: 27.51: 9: 1: 0.00: -3.28: 14.72: -6.61: 29.71: 10: 1: 0.00: -4.42: 15.86: -8.92: 32.02: 5: M. NIIMBER S : M: NUMBER : S4 T : A: OF : : E : T: FATIGUE : (ksi) (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : ----:--:--:--1: 1: 0.00: 0.00: 0.00: 0.00: 0.00: 2: 1: 24.52: 0.00: 4: 1: 0.46 : 0.00: 0.00: 5: 1: 0.11 : 0.00: 0.00: 0.00: 0.00: 0.03: 0.00: 0.00: 6: 1: 0.00: 0.00: 7: 1: 0.01: 0.00: 0.00: 0.00: 0.00: 0.00 : 0.00: 0.00: 8: 1: 0.00: 0.00: 9: 1: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 10: 1: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W5 crack in .032 skin, outboard sta99 MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

	A: T:	NUMBER OF FATIGUE CYCLES	:	(ksi)		S3 (ksi (t1) :	
2: 3: 4: 5: 6: s	1: 1: 1: 1:	0.44 0.22 0.06 0.00	: : : : :	3.50: 2.83: 2.17: 1.50: 0.81: 0.14: S4	3.71: 3.92: 4.13: 4.34:	5.67: 4.34: 2.94: 1.61:	7.42: 7.84: 8.26: 8.68:
E:	T:	FATIGUE		(ksi)		(ksi)	
P :	:-	CYCLES	: - : -	(t1) : :		(t1) :	
2: 3: 4: 5:	1: 1: 1: 1: 1:	0.44 0.22	: : :	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC5, PSE-W5 crack in .032 skin, outboard sta99 MODEL: TC05

ANALYSIS RESULTS:

Schedl	Block	Final Fla	w Size	K max
		Step c		c-tip
300	15	0.055	217	3.864402
600	15	0.060	506	3.882839
900	15	0.065	868	3.900922
1200	15	0.071	.302	3.918672
1500	15	0.076	811	3.936858
1800	15	0.082	400	3.956461
2100	15	0.088	079	3.977950
2400	15	0.093	859	4.001280
2700	15	0.099	749	4.025861
3000	15	0.105	755	4.050738
3300	15	0.111	879	4.075859
3600	15	0.118	124	4.101455
3900	15	0.124	495	4.127576
4200	15	0.130	995	4.154062
4500	15	0.137	629	4.180553
4800	15	0.144	397	4.207033
5100	15	0.151	302	4.233912
5400	15	0.158	349	4.261596
5700	15	0.165	545	4.290471
6000	15	0.172	901	4.320899
6300	15	0.180	429	4.353220
6600	15	0.188	142	4.387746
6900	15	0.196	056	4.424760
7200	15	0.204	192	4.464508
7500	15	0.212	570	4.507191
7800	15	0.221	212	4.552947
8100	15	0.230	143	4.601832
8400	15	0.239	390	4.653790
8700	15	0.248	978	4.708607

```
9000
                              0.258933
                                                     4.765859
  9300
             15
                              0.269278
                                                    4.824839
   9600
             15
                              0.280032
                                                    4.884843
  9900
             15
                             0.291213
                                                    4.945976
  10200
             15
                             0.302840
                                                    5.008555
  10500
             15
                             0.314937
                                                    5.072977
  10800
             15
                             0.327532
                                                    5.139727
  11100
             15
                             0.340659
                                                    5.209403
             15
  11400
                             0.354358
                                                    5.282742
  11700
             15
                              0.368680
                                                    5.360658
  12000
             15
                             0.383687
                                                    5.444290
  12300
             15
                             0.399458
                                                    5.535074
  12600
             15
                             0.416092
                                                    5.634843
  12900
             15
                             0.433718
                                                    5.745904
             15
  13200
                             0.452500
                                                    5.871263
  13500
             15
                              0.472656
                                                    6.014986
  13800
             15
                              0.494483
                                                    6.182750
  14100
             15
                              0.518397
                                                    6.382791
  14400
             15
                              0.545005
                                                    6.628382
  14700
                              0.575527
                                                    7.004004
ADVISORY: Net-section stress > Yield and failure is imminent
(Unless (a) UTS > 2 YS, or
(b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.)
at the very beginning of Load Step No. 10
Step description:
of Block No. 2 of Schedule No. 14888
Crack Size
              c = 0.598323
  15000
             15
                              0.614991
                                                     7.925954
FINAL RESULTS:
All Stress Intensities are below the Fatigue Threshold.
NO growth in Schedule No. 15222
Crack Size
             c = 0.670005
                FATIGUE CRACK GROWTH ANALYSIS
                ______
              DATE: 09/30/98 TIME: 07:59:29
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC5, PSE-W5 crack in .063 skin, inboard sta99
GEOMETRY
MODEL: TC05-Through crack from hole in row of holes.
                       0.0630
Plate Thickness, t =
                       0.1600
Hole Dia., D =
Hole-to-Hole Dist., H
                               0.8000
Dia./Edge-Dist. Ratio, D/B =
                               0.0000
(D/B = 0 means B is very large)
FLAW SIZE:
   (init.) = 0.5000E-01
MATERIAL
```

MATL 1: 2024-T3

Clad Plt & Sht; T-L; LA & HHA

```
Material Properties:
:Matl: UTS : YS : Kle : K1c : Ak : Bk : Thk : Kc : KIscc:
: No.: : : : : : : :
: 1 : 65.0: 48.0: 41.0: 29.0: 1.00: 1.00: 0.063: 57.9:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            :---::----::---::---::
: 1 :0.244E-07:2.601:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
 TC5, PSE-W5 crack in .063 skin, inboard sta99
MODEL: TC05
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress SO: 0.00000
Scale Factor for Stress S3: 0.00000
Scale Factor for Stress S4: 0.00000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                          4.5000
Scale Factor for Stress S3:
                          14.600
Scale Factor for Stress S4: 0.00000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                          13.700
Scale Factor for Stress S4:
                         0.00000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S3: 13.800
Scale Factor for Stress S4: 0.00000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                         2.8000
Scale Factor for Stress S3:
                        9.2000
Scale Factor for Stress S4: 0.00000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From - To
   1
            1
   2
                                 2
            3
                                 5
   4
            5
   6
            6
   7
            7
                                 1
   8
            8
   9
            9
                                 5
  10
           10
                                 1
  11
           11
  12
           12
                                 5
```

13

13

	14	-	14			4		
	15	_	15			5		
BLO	OCK	CAS	E NO. 1					
S	:	M:	NUMBER	:	so	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	1.90	:	0.70:	1.30:	0.70:	1.30:
	2:	1:	0.09	:	0.60:	1.40:	0.60:	1.40:
	3:	1:	0.01	:	0.54:	1.46:	0.54:	1.46:
S	:	M :	NUMBER	:	S4	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	: -	:-	:-	:
	1:	1:	1.90	:	-0.30:	0.30:	0.00:	0.00:
	2:	1:	0.09	:	-0.40:	0.40:	0.00:	0.00:
	3:	1:	0.01	:	-0.46:	0.46:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCE	CAS	E NO. 2					
s :	M:	NUMBER	:	S0	:	53	:
Т :	: A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
		CYCLES		(t1) :			
		0.00				1.08:	
		15.09					
		1.52					
		0.23					
5 :		0.05					
6 :		0.01					
7 :	1:	0.00					2.39:
8 :	1:	0.00	:	-0.43:	2.61:	-0.43:	2.61:
9:		0.00	:	-0.64:	2.82:	-0.64:	2.82:
10	: 1:	0.00	:	-0.86:	3.04:	-0.86:	3.04:
S	: M:	NUMBER	:	S4	:	S	:
T		OF			:		:
		FATIGUE			:		:
		CYCLES					
		0.00		:- -0.01:	0.01:	0.00:	0.00:
		15.09					
3	: 1:	1.52	:	-0.43:	0.43:	0.00:	0.00:
4	: 1:	0.23	:	-0.65:	0.65:	0.00:	0.00:
		0.05	:				
		0.01	:			0.00:	
	: 1:	0.00				0.00:	
_		0.00				0.00:	
	: 1:			-1.73:			
10	: 1:	0.00	:	-1.95:	1.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLC	CK	CAS	E NO. 3		•			
S	:	M:	NUMBER	:	S0	:	s3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:-	:-	:
	1:	1:	0.00	:	1.06:	1.08:	1.08:	1.10:
	2:	1:	31.10	:	0.85:	1.29:	0.87:	1.31:

3:	1:	2.98	:	0.64:	1.50:	0.66:	1.52:
4:	1:	0.45	:	0.42:	1.72:	0.44:	1.74:
5:	1:	0.09	:	0.20:	1.94:	0.22:	1.96:
6:	1:	0.02	:	-0.01:	2.15:	0.01:	2.17:
7:	1:	0.01	:	-0.23:	2.37:	-0.21:	2.39:
8:	1:	0.00	:	-0.45:	2.59:	-0.43:	2.61:
9:	1:	0.00	:	-0.66:	2.80:	-0.64:	2.82:
10:	1:	0.00	:	-0.88:	3.02:	-0.86:	3.04:
s :	Μ:	NUMBER	:	S4	:	s	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(±1) :	(t2) :	(t1) :	(±2) -
			-	(02)	(02)	(01)	(02)
:	:-		-:-	:-	:	:	:
1:	:- 1:	0.00		-0.01:	0.01:	0.00:	0.00:
1: 2:	1: 1:	0.00 31.10	:	-0.01: -0.22:	0.01: 0.22:	:	:
1: 2: 3:	1: 1: 1:	0.00	:	-0.01:	0.01:	0.00:	0.00:
1: 2: 3:	1: 1:	0.00 31.10	:	-0.01: -0.22:	0.01: 0.22:	0.00: 0.00:	0.00:
1: 2: 3: 4:	1: 1: 1:	0.00 31.10 2.98	: :	-0.01: -0.22: -0.43:	0.01: 0.22: 0.43:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1:	0.00 31.10 2.98 0.45	: : : :	-0.01: -0.22: -0.43: -0.65:	0.01: 0.22: 0.43: 0.65:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1: 1:	0.00 31.10 2.98 0.45 0.09	: : : : :	-0.01: -0.22: -0.43: -0.65: -0.87:	0.01: 0.22: 0.43: 0.65: 0.87:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6:	1: 1: 1: 1: 1:	0.00 31.10 2.98 0.45 0.09	: : : : : : : : : : : : : : : : : : : :	-0.01: -0.22: -0.43: -0.65: -0.87: -1.08:	0.01: 0.22: 0.43: 0.65: 0.87: 1.08:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	0.00 31.10 2.98 0.45 0.09 0.02	: : : : : : : : : : : : : : : : : : : :	-0.01: -0.22: -0.43: -0.65: -0.87: -1.08: -1.30:	0.01: 0.22: 0.43: 0.65: 0.87: 1.08:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK	CAS	SE NO. 4					
s :	M:	NUMBER	:	S0	2	s3	:
T:	A:	OF	:				
E :	T:	FATIGUE	:				
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	:	:
1:	1:	0.00	:	1.09:	1.11:	1.08:	1.10:
2:	1:	24.52	:	0.88:	1.32:	0.87:	1.31:
3:	1:	2.73	:	0.67:	1.53:	0.66:	1.52:
4:	1:	0.46	:	0.45:	1.75:	0.44:	1.74:
5:	1:	0.11	:	0.23:	1.97:	0.22:	1.96:
6:	1:	0.03	:	0.02:	2.18:	0.01:	2.17:
7:	1:	0.01	:	-0.20:	2.40:	-0.21:	2.39:
8:	1:	0.00	:	-0.42:	2.62:	-0.43:	2.61:
	1:	0.00	:	-0.63:	2.83:	-0.64:	2.82:
10:	1:	0.00	:	-0.85:	3.05:	-0.86:	3.04:
		NUMBER		S4	:	S	:
т:		OF			:		:
		FATIGUE			:		:
		CYCLES					
							:
1:	1.	0.00	:	-0.01:	0.01:	0.00:	0.00:
	1:	24.52	:	-0.22:	0.22:	0.00:	0.00:
		2.73	:	-0.43:	0.43:	0.00:	0.00:
4:	1:	0.46	:	-0.65:	0.65:	0.00:	0.00:
		0.11	•	-0.87:	0.8/:	0.00:	
	1: 1:	0.03	:	-1.08:	1.08:	0.00:	
	1:	0.01	:	-1.30:	1.30:	0.00:	0.00:
	1: 1:	0.00	:	-1.52:	1.52:	0.00:	0.00:
9: 10:							
10:	Τ:	0.00	:	-1.95:	1.95:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

	_ •	•	~~~		
1: : 2: : 3: :	1: 0.44	: 0.81:	1.01: 1.06: 1.12:	1.00: 0.81: 0.62:	
4:	1: 0.06		1.18:	0.42:	1.18:
5: 3	1: 0.00	: 0.23:	1.24:	0.23:	1.24:
6:	1: 0.00	: 0.04:	1.30:	0.04:	1.30:
S : 1	M: NUMBER	: S4	:	s	:
\mathbf{T} :	A: OF	:	:		:
E : '	T: FATIGUE	:	:		:
P : 1	L: CYCLES	: (t1) :	(t2) :	(t1) :	(t2) :
1:	-: 1: 0.28	1.00:	1.00:	0.00:	0.00:
2:			1.06:	0.00:	
3:	1: 0.22	: 0.62:	1.12:	0.00:	0.00:
4:	1: 0.06	: 0.43:	1.18:	0.00:	0.00:
5:	1: 0.00	: 0.23:	1.24:	0.00:	0.00:
6:	1: 0.00	: 0.04:	1.30:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC5, PSE-W5 crack in .063 skin, inboard sta99 MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

			 -			-		
STI)							
S	:	M:	NUMBER	:	S 0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi	:
P	:	L:	CYCLES	:		(t2) :	(t1) :	(t2) :
	:	:-		• : •	:	_	:	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:
S	:	M:	NUMBER	:	S4	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		• •	:	:	:-	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

TC5, PSE-W5 crack in .063 skin, inboard sta99 MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S0 : (ksi) : T : A: OF E : T: FATIGUE : (ksi) : (ksi)
P : L: CYCLES : (t1): (t2) : (t1): (t2) ----;--;--:-----:-----;------:-----:-----:-----: 1: 1: 0.00: 4.86: 4.95: 15.77: 16.06: 15.09 : 5.90: 12.70: 6.84: 9.64: 2: 1: 3.92: 19.13: 9.64: 22.19: 1.52 : 2.97: 3: 1: 1.98: 0.99: 0.05: 4: 1: 0.23 : 7.83: 6.42: 25.40: 3.21: 8.82: 9.77: 5: 1: 0.05: 28.62: 6: 1: 0.01 : 0.15: 31.68: 7: 1: 0.00 : -0.94: 10.76: -3.07: 34.89: 0.00: -1.93: 11.75: -6.28: 8: 1: 38.11: 12.69: -9.34: 41.17: 13.68: -12.56: 44.38: 9: 1: 0.00 : -2.88: 0.00: 10: 1: -3.87:

S	: M	: NUMBER	:	S4	:	s	:
T	: A	: OF	:		:		:
E	: T	: FATIGUE	:	(ksi)	:	(ksi)	
P	: L	: CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:	-:-	:	:-	:	:
	: 1			0.00:	0.00:	0.00:	0.00:
2	: 1	: 15.09	:	0.00:	0.00:	0.00:	0.00:
3 :	: 1	: 1.52	:	0.00:	0.00:	0.00:	0.00:
4 :	: 1	: 0.23	:	0.00:	0.00:	0.00:	0.00:
5 :	: 1	: 0.05	:	0.00:	0.00:	0.00:	0.00:
6 :	: 1	: 0.01	:	0.00:	0.00:	0.00:	0.00:
7 :	: 1	: 0.00	:	0.00:	0.00:	0.00:	0.00:
8 :	: 1	: 0.00	:	0.00:	0.00:	0.00:	0.00:
9 :	: 1	: 0.00	:	0.00:	0.00:	0.00:	0.00:
10:	: 1	: 0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W5 crack in .063 skin, inboard sta99 MODEL: TC05 $\,$

FATIGUE SCHEDULE BLOCK STRESS TABLE

ST	D							
S	:	M:	NUMBER	:	S0	:	S 3	:
\mathbf{T}	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi	i) :	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
	:	:		- : -	:-	:	:-	:
		1:			4.45:			15.07:
					3.57:			17.95:
		1:			2.69:			
		1:	0.45	:	1.76:	7.22:	6.03:	23.84:
	5:	1:	0.09	:	0.84:	8.15:	3.01:	26.85:
	6:	1:	0.02	:	-0.04:	9.03:		
	7:	1:	0.01	:	-0.97:	9.95:	-2.88:	32.74:
	8:	1:	0.00	:	-1.89:	10.88:	-5.89:	35.76:
	9:	1:			-2.77:			
:	10:	1:	0.00	:	-3.70:	12.68:		
S	:	M:	NUMBER	:	S4	:	s	:
т	:	A:	OF	:		:		•
E	:	T:	FATIGUE	:	(ksi	.) :	(ksi) :
P	:	L:	CYCLES		(t1):		(t1):	
	:	:		-:-	:-	:	:-	
	1:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	31.10	:	0.00:			
	3:	1:	2.98	:	0.00:	0.00:	0.00:	0.00:
	4:	1:	0.45	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	б:	1:	0.02	:	0.00:	0.00:	0.00:	0.00:
	7:	1:	0.01	:	. 0.00:	0.00:	0.00:	0.00:
	8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
1	LO:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W5 crack in .063 skin, inboard sta99 MODEL: TC05 $^{\circ}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

מידים

STD								
S	:	M:	NUMBER	:	S0	:	s3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1): (t2)	:	$(\pm 1) \div (\pm 2)$	

						:	:
1:	1:	0.00	:	4.58:	4.66:	14.90:	15.18:
2:	1:	24.52	:	3.70:	5.54:	12.01:	18.08:
3:	1:	2.73	:	2.81:	6.43:	9.11:	20.98:
4:	1:	0.46	:	1.89:	7.35:	6.07:	24.01:
5:	1:	0.11	:	0.97:	8.27:	3.04:	27.05:
6:	1:	0.03	:	0.08:	9.16:	0.14:	29.95:
7:	1:	0.01	:	-0.84:	10.08:	-2.90:	32.98:
8:	1:	0.00	:	-1.76:	11.00:	-5.93:	36.02:
9:		0.00	:	-2.65:	11.89:	-8.83:	38.92:
10:	1:	0.00	:	-3.57:	12.81:	-11.87:	41.95:
s:	M:	NUMBER	:	S4	:	S	:
т:	A:	OF	:		:		:
_						/1	١ .
E :	T:	FATIGUE	:	(ksi) :	(ksi	;
E :		FATIGUE CYCLES	:	(KS1 (t1) :		(ksi (t1) :	
_			: : -:-			(t1):	(t2) :
P:			: : -:-	(t1): :- 0.00:	(t2): : 0.00:	(t1): :- 0.00:	(t2) : : 0.00:
P: :	L: :-	CYCLES		(t1):	(t2): : 0.00: 0.00:	(t1): :- 0.00: 0.00:	(t2): : 0.00: 0.00:
P: : 1: 2:	L: :- 1:	CYCLES 0.00	:	(t1): :- 0.00:	(t2): : 0.00: 0.00: 0.00:	(t1): :- 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00:
P: : 1: 2: 3:	L: 1: 1:	0.00 24.52	:	(t1): ::- 0.00: 0.00:	(t2): : 0.00: 0.00:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00: 0.00:
P: : 1: 2: 3: 4:	L: 1: 1: 1:	0.00 24.52 2.73	:	(t1): :- 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00:	(t1): : 0.00: 0.00: 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00: 0.00: 0.00:
P: : 1: 2: 3: 4:	L: 1: 1: 1: 1:	0.00 24.52 2.73 0.46	: :	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : : 0.00: 0.00: 0.00: 0.00:	(t1): 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P: : 1: 2: 3: 4: 5:	L: 1: 1: 1: 1:	0.00 24.52 2.73 0.46 0.11	: : : :	(t1): :- 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : : 0.00: 0.00: 0.00: 0.00: 0.00:	(t1):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P:: 1: 2: 3: 4: 5: 6: 7:	L: 1: 1: 1: 1: 1:	0.00 24.52 2.73 0.46 0.11 0.03	: : : :	(t1): : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) :: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1):	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P:: 1: 2: 3: 4: 5: 6: 7:	L: 1: 1: 1: 1: 1:	0.00 24.52 2.73 0.46 0.11 0.03 0.01	: : : : : :	(t1): 	(t2) :: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t1):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P: : 1: 2: 3: 4: 5:	L: 1: 1: 1: 1:	0.00 24.52 2.73 0.46 0.11	: :	(t1): :- 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : : 0.00: 0.00: 0.00: 0.00: 0.00:	(t1): : 0.00: 0.00: 0.00: 0.00: 0.00:	(t2) : : 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC5, PSE-W5 crack in .063 skin, inboard sta99 MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
s	:	M:	NUMBER	:	S 0	:	S3	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:	· - :	:	:
	1:	1:	0.28	:	2.80:	2.83:	9.20:	9.29:
	2:	1:	0.44	:	2.27:	2.97:	7.45:	9.75:
	3:	1:	0.22	:	1.74:	3.14:	5.70:	10.30:
	4:	1:	0.06	:	1.20:	3.30:	3.86:	10.86:
	5:	1:	0.00	:	0.64:	3.47:	2.12:	11.41:
	б:	1:	0.00	:	0.11:	3.64:	0.37:	11.96:
S	:	M:	NUMBER	:	S4	:	S	:
т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:	:-	:	:	0.00:
		1:	0.28		0.00:	0.00:	0.00:	0.00:
		1:	0.44	:	0.00:	0.00:	0.00:	0.00:
		1:	0.22	:	0.00:	0.00:	0.00:	0.00:
		1:	0.06		0.00:	0.00:	0.00:	0.00:
		1:	0.00		0.00:	0.00:	0.00:	0.00:
	6:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W5 crack in .063 skin, inboard sta99 MODEL: TC05

ANALYSIS RESULTS:

ANALISIS RESULIS:

```
Schedl
             Block
                             Final Flaw Size
                                                           K max
                    Step
                                    С
                                                           c-tip
     300
                15
                                 0.057994
                                                         4.352223
     600
                15
                                 0.066048
                                                         4.363221
     900
                15
                                 0.074150
                                                         4.373101
    1200
               15
                                 0.082308
                                                         4.385755
    1500
               15
                                 0.090545
                                                         4.402176
    1800
               15
                                 0.098882
                                                         4.420303
    2100
               15
                                 0.107322
                                                         4.438143
    2400
               15
                                 0.115867
                                                        4.456345
    2700
               15
                                 0.124522
                                                        4.474919
    3000
               15
                                 0.133287
                                                         4.493045
    3300
               15
                                 0.142162
                                                        4.510911
    3600
               15
                                 0.151150
                                                        4.529738
    3900
               15
                                 0.160260
                                                        4.550580
    4200
               15
                                 0.169512
                                                        4.574312
    4500
               15
                                 0.178926
                                                        4.601648
    4800
               15
                                 0.188533
                                                        4.633148
    5100
               15
                                0.198362
                                                        4.669220
    5400
               15
                                 0.208450
                                                        4.710103
    5700
               15
                                0.218835
                                                        4.755829
    6000
               15
                                 0.229556
                                                        4.806163
    6300
               15
                                0.240650
                                                        4.860507
    6600
               15
                                0.252154
                                                        4.917769
    6900
               15
                                0.264091
                                                        4.976351
    7200
               15
                                0.276480
                                                        5.035798
    7500
               15
                                0.289340
                                                        5.096705
    7800
               15
                                0.302699
                                                        5.159819
    8100
               15
                                0.316589
                                                        5.226053
    8400
               15
                                0.331057
                                                        5.296520
    8700
               15
                                0.346160
                                                        5.372596
    9000
               15
                                0.361974
                                                        5.456002
    9300
               15
                                0.378600
                                                        5.548928
   9600
               15
                                0.396171
                                                        5.654246
   9900
               15
                                0.414866
                                                        5.775938
  10200
               15
                                0.434932
                                                        5.919650
  10500
               15
                                0.456722
                                                        6.093620
  10800
               15
                                0.480760
                                                        6.310526
  11100
               15
                                0.507870
                                                        6.591262
ADVISORY: Net-section stress > Yield and failure is imminent
(Unless (a) UTS > 2 YS, or
(b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.)
at the very beginning of Load Step No. 10
Step description:
of Block No.
                2 of Schedule No.
               c = 0.528113
Crack Size
  11400
              15
                                0.539547
                                                        7.004773
  11700
              15
                                0.581860
                                                        8.101987
FINAL RESULTS:
All Stress Intensities are below the Fatigue Threshold.
NO growth in Schedule No. 11893
               c = 0.640004
                 FATIGUE CRACK GROWTH ANALYSIS
                 -----Modified by FAI-----
               DATE: 27-APR-99 TIME: 08:22:41
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
       U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 1, PSE-W5 crack in .063 skin, 2 holes
GEOMETRY
MODEL: TC01-Through crack in center of plate.
```

```
Plate Thickness, t =
                  0.0630
   Width, W = 24.0000
FLAW SIZE:
c (init.) = 0.4850
MATERIAL
------
MATL 1: 2024-T3
      Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1 : 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.063: 65.9:
:Matl:---- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           : 1:0.829D-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
MODEL: TC01
FATIGUE SCHEDULE BLOCK INPUT TABLE
CTP
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.5000
Scale Factor for Stress S1: 0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                        0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                        6.9600
Scale Factor for Stress S1:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                         4.6400
Scale Factor for Stress S1: 0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
 Block Number
            Block Case No.
From - To
1 -
```

2	_	2			2		
3	-	3			5		
4	_	4			1		
5	_	5			3		
6	_	6			5		
7	-	7			1		
8	-	8			3		
9	-	9			5		
10	-	10			1		
11	-	11			3		
12	-	12			5		
13	-	13			1		
14	-	14			4		
15	-	15			5		
DI OGV	a	T 370 1					
BLOCK				~^			
	м:	NUMBER	:	so	:	S1	:
	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	:-	:
	1:	1.90		0.70:	1.30:	0.70:	1.30:
2:	1:	0.09	:	0.60:	1.40:	0.60:	1.40:
3:	1:	0.01	:	0.54:	1.46:	0.54:	1.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK	CAS	E NO. 2					
s:	M:	NUMBER	:	S0	:	S1	:
T :	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:-	:-	:
1:	1:	0.00	:	1.08:	1.10:	-0.01:	0.01:
2:	1:	15.09	:	0.87:	1.31:	-0.22:	0.22:
3:	1:	1.52	:	0.66:	1.52:	-0.43:	0.43:
4:	1:	0.23	:	0.44:	1.74:	-0.65:	0.65:
5:	1:	0.05	:	0.22:	1.96:	-0.87:	0.87:
6:	1:	0.01	:	0.01:	2.17:	-1.08:	1.08:
7:	1:	0.00	:	-0.21:	2.39:	-1.30:	1.30:
8:	1:	0.00	:	-0.43:	2.61:	-1.52:	1.52:
9:	1:	0.00	:	-0.64:	2.82:	-1.73:	1.73:
10:	1:	0.00	:	-0.86:	3.04:	-1.95:	1.95:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLC	BLOCK CASE NO. 3											
s	:	M:	NUMBER	:	S0	:	S1	:				
T	:	A:	OF	:		:		:				
E	:	T:	FATIGUE	:		:		:				
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :				
	-:-	:-		-:	:-	:-	:-	:				
	1:	1:	0.00	:	1.06:	1.08:	-0.01:	0.01:				
	2:	1:	31.10	:	0.85:	1.29:	-0.22:	0.22:				
	3:	1:	2.98	:	0.64:	1.50:	-0.43:	0.43:				
	4:	1:	0.45	:	0.42:	1.72:	-0.65:	0.65:				
	5:	1:	0.09	:	0.20:	1.94:	-0.87:	0.87:				
	6:	1:	0.02	:	-0.01:	2.15:	-1.08:	1.08:				
	7:	1:	0.01	:	-0.23:	2.37:	-1.30:	1.30:				
	8:	1:	0.00	:	-0.45:	2.59:	~1.52:	1.52:				
	9:	1:	0.00	:	-0.66:	2.80:	-1.73:	1.73:				
1	0:	1:	0.00	:	-0.88:	3.02:	-1.95:	1.95:				

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK CASE NO. 4 S : M: NUMBER : S0 : T : A: OF 1: 1: 0.00: 1.09: 1.11: -0.01: 0.01: 2: 1: 24.52: 0.88: 1.32: -0.22: 0.22: 3: 1: 2.73: 0.67: 1.53: -0.43: 0.43: 4: 1: 0.46: 0.45: 1.75: -0.65: 0.65: 0.11 : 0.23: 1.97: -0.87: 0.87: 0.03 : 0.02: 2.18: -1.08: 1.08: 0.01 : -0.20: 2.40: -1.30: 1.30: 5: 1: 0.03 : 0.02: 2.18: -1.08: 1.08: 0.01 : -0.20: 2.40: -1.30: 1.30: 0.00 : -0.42: 2.62: -1.52: 1.52: 6: 1: 7: 1: 8: 1: 0.00: -0.63: 2.83: -1.73: 1.73: 0.00: -0.85: 3.05: -1.95: 1.95: 9: 1: 10: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	CK	CAS	E NO. 5						
S	:	M:	NUMBER	:	\$ 0	:	S1	:	
Т	:	A:	OF	:		:		:	
E	:	T:	FATIGUE	:		:		:	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :	
:::									
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:	
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:	
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:	
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:	
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:	
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

S : M: NUMBER S0

Ų.	•	1.1 .	MONDER	•	50	•		-
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)) :	(ksi) :
			CYCLES					
	-	1:	1.90		-1.05:			
		1:		:	-0.90:	-2.10:	0.00:	0.00:
	3:	1:	0.01	:	-0.81:	-2.19:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

S : M: NUMBER : S0 T : A: OF : E : T: FATIGUE : (ksi) : (ksi) : P : L: CYCLES : (t1) : (t2) : ____;__;__;____;___;___;___;___;___;___; 1: 1: 0.00 : 8.01: 0.00: 0.00: 8.16:

2:	1:	15.09	:	6.46:	9.72:	0.00:	0.00:
	1:	1.52		4.90:	11.28:	0.00:	0.00:
4:	1:	0.23	:	3.26:	12.91:	0.00:	0.00:
5:	1:	0.05	:	1.63:	14.54:	0.00:	0.00:
6:	1:	0.01	:	0.07:	16.10:	0.00:	0.00:
7:	1:	0.00	:	-1.56:	17.73:	0.00:	0.00:
8:	1:	0.00	:	-3.19:	19.37:	0.00:	0.00:
9:	1:	0.00	:	-4.75:	20.92:	0.00:	0.00:
10:	1:	0.00	:	-6.38:	22.56:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S0 : S1 :
T : A: OF : : : : :
E : T: FATIGUE : (ksi) : (ksi) :
P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : 0.00: 7.36: 7.50: 0.00: 31.10: 5.90: 8.95: 0.00: 2.98: 4.44: 10.41: 0.00: 0.45: 2.91: 11.94: 0.00: 0.09: 1.39: 13.46: 0.00: 1: 1: 0.00: 31.10 : 2: 1: 0.00: 2.98 : 0.45 : 3: 1: 0.00: 4: 1: 0.00: 5: 1: 0.00: 0.02 : 6: 1: 0.00: -0.07: 14.92: 0.00: 7: 1: 0.01: -1.60: 16.45: 0.00: 0.00: 8: 1: 0.00 : -3.12: 17.97: 0.00: 0.00: 0.00: -4.58: 9: 1: 19.43: 0.00: 0.00: 10: 1: 0.00: -6.11: 20.96: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S	: M:	NUMBER	:	so	:	S1	:
T	: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi)) :	(ksi) :
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::-		-:-	:	:-	:	:
1	: 1:	0.00	:	7.59:	7.73:	0.00:	0.00:
2	: 1:	24.52	:	6.12:	9.19:	0.00:	0.00:
3	: 1:	2.73	:	4.66:	10.65:	0.00:	0.00:
4	: 1:	0.46	:	3.13:	12.18:	0.00:	0.00:
5	: 1:	0.11	:	1.60:	13.71:	0.00:	0.00:
6	: 1:	0.03	:	0.14:	15.17:	0.00:	0.00:
7	: 1:	0.01	:	-1.39:	16.70:	0.00:	0.00:
8	: 1:	0.00	:	-2.92:	18.24:	0.00:	0.00:
9	: 1:	0.00	:	-4.38:	19.70:	0.00:	0.00:
10	: 1:	0.00	:	-5.92:	21.23:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S	:	Μ:	NUMBER	:	so	:	S1	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:-	:-	:
	1:	1:	0.28	:	4.64:	4.69:	0.00:	0.00:
	2:	1:	0.44	:	3.76:	4.92:	0.00:	0.00:
	3:	1:	0.22	:	2.88:	5.20:	0.00:	0.00:
	4:	1:	0.06	:	2.00:	5.48:	0.00:	0.00:
	5:	1:	0.00	:	1.07:	5.75:	0.00:	0.00:
	6:	1:	0.00	:	0.19:	6.03:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

ANALYSIS RESULTS:

Schedl	Block	Final Flaw Size	K max
		Step c	c-tip
100	15	0.499022	7.560659
200	15	0.513820	7.672440
300	15	0.529461	7.788882
400	15	0.546016	7.910319
500	15	0.563567	8.037118
600	15	0.582205	8.169688
700	15	0.602034	8.308482
800	15	0.623169	8.454005
900	15	0.645744	8.606827
1000	15	0.669909	8.767586
1100	15	0.695837	8.937006
1200	15	0.723728	9.115908
1300	15	0.753814	9.305232
1400	15	0.786364	9.506058
1500	15	0.821695	9.719640
1600	15	0.860183	9.947435
1700	15	0.902274	10.191160
1800	15	0.948508	10.452854
1900	15	0.999540	10.734959
2000	15	1.056177	11.040442
2100	15	1.119423	11.372949
2200	15	1.190554	11.737040
2300	15	1.271212	12.138516
2400	15	1.363559	12.584927
2500	15	1.470514	13.086360
2600	15	1.596147	13.656747
2700	15	1.746355	14.316156
2800	15	1.930146	15.095139
2900	15	2.162314	16.044002
3000	15	2.470214	17.256753

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: K max = 65.86 K ref = 0.000 K cr = 65.86 at the very beginning of Load Step No. 10

Step description:

of Block No. 2 of Schedule No. 3025

Crack Size c = 2.56243

FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI----DATE: 27-APR-99 TIME: 08:24:04

(computed: NASA/FLAGRO Version 2.03, March 1995.)
U.S. customary units [inches, ksi, ksi sqrt(in)]

```
PROBLEM TITLE
THROUGH CRACK CASE 1, PSE-W5 crack in .063 skin, 4 holes (
GEOMETRY
MODEL: TC01-Through crack in center of plate.
Plate Thickness, t =
                   0.0630
   Width, W = 24.0000
FLAW SIZE:
c (init.) = 1.285
MATERIAL
MATL 1: 2024-T3
      Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1 : 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.063: 65.9: :
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           : 1 :0.829D-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
MODEL: TC01
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.5000
Scale Factor for Stress S1: 0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                          0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                          6.9400
Scale Factor for Stress S1:
                          0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                          0.0000
Stress Scaling Factors for Block Case: 5
```

Scale Factor for Stress S0: 4.6400 Scale Factor for Stress S1: 0.0000

Total No. of Blocks in Schedule = 15

Block Number and Case Correspondences Block Number Block Case No. From - To 1 1 2 2 3 3 5 5 3 6 6 7 7 5 9 9 10 10 3 11 11 12 13 13 14 14 15 15 BLOCK CASE NO. 1 S : M: NUMBER S0 S1 T : A: OF E : T: FATIGUE (t1): (t2) (t1): (t2) P : L: CYCLES : 1: 1: 1.90 : 0.70: 1.30: 0.70: 1.30: 0.09: 0.60: 1.40: 0.60: 1.40: 2: 1: 0.01: 0.54: 1.46: 0.54: 1.46: 3: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 2 S : M: NUMBER S0 S1 OF : A: E : T: FATIGUE (t1): (t2): (t1): (t2) P : L: CYCLES : 1: 1: 0.00: 1.08: 1.10: -0.01: 0.01: 15.09 : 0.87: 1.31: -0.22: 0.22: 2: 1: 0.66: 1.52: -0.43: 3: 1: 1.52: 0.43: 0.23: 0.44: 1.74: -0.65: 0.65: 4: 1: 0.05 : 0.22: 1.96: -0.87: 0.87: 5: 1: 2.17: 6: 1: 0.01: 0.01: -1.08: 1.08: 0.00: -0.21: 2.39: -1.30: 1.30: 7: 1: 0.00: 8: 1: -0.43: 2.61: -1.52: 1.52: 9: 1: 0.00: -0.64: 2.82: -1.73: 1.73: 0.00: -1.95: 10: 1: -0.86: 3.04: 1.95:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLC	CK	CAS	E NO. 3					
S	:	M:	NUMBER	:	. 50	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2):	(t1) :	(t2) :
	:	:-		-:-	:	:	:	:
	1:	1:	0.00	:	1.06:	1.08:	-0.01:	0.01:
	2:	1:	31.10	:	0.85:	1.29:	-0.22:	0.22:
	3:	1:	2.98	:	0.64:	1.50:	-0.43:	0.43:
	4:	1:	0.45	:	0.42:	1.72:	-0.65:	0.65:

5: 1:	0.09 :	0.20:	1.94:	-0.87:	0.87:
6: 1:	0.02 :	-0.01:	2.15:	-1.08:	1.08:
7: 1:	0.01 :	-0.23:	2.37:	-1.30:	1.30:
8: 1:	0.00:	-0.45:	2.59:	-1.52:	1.52:
9: 1:	0.00 :	-0.66:	2.80:	-1.73:	1.73:
10: 1:	0.00 :	-0.88:	3.02:	-1.95:	1.95

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLC	CK	CAS	E NO. 4					
S	:	M:	NUMBER	:	S0	:	S1	
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:	:-	:	:-	:
	1:	1:	0.00	:	1.09:	1.11:	-0.01:	0.01:
	2:	1:	24.52	:	0.88:	1.32:	-0.22:	0.22:
	3:	1:	2.73	:	0.67:	1.53:	-0.43:	0.43:
	4:	1:	0.46	:	0.45:	1.75:	-0.65:	0.65:
	5:	1:	0.11	:	0.23:	1.97:	-0.87:	0.87:
	6:	1:	0.03	:	0.02:	2.18:	-1.08:	1.08:
	7:	1:	0.01	:	-0.20:	2.40:	-1.30:	1.30:
	8:	1:	0.00	:	-0.42:	2.62:	-1.52:	1.52:
	9:	1:	0.00	:	-0.63:	2.83:	-1.73:	1.73:
1	.0:	1:	0.00	:	-0.85:	3.05:	-1.95:	1.95:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLO	CK	CAS	E NO. 5					
s	:	M:	NUMBER	:	S 0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:-	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-	- 	-:-	:	:	:	:
	1:	1:	1.90	:	-1.05:	-1.95:	0.00:	0.00:
	2:	1:	0.09	:	·-0.90:	-2.10:	0.00:	0.00:
	3:	1:	0.01	:	-0.81:	-2.19:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
s	:	M:	NUMBER	:	S0	:	S1	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:	:
	1:	1:	0.00	:	8.01:	8.16:	0.00:	0.00:
	2:	1:	15.09	:	6.46:	9.72:	0.00:	0.00:
	3:	1:	1.52	:	4.90:	11.28:	0.00:	0.00:
	4:	1:	0.23	:	3.26:	12.91:	0.00:	0.00:
	5:	1:	0.05	:	1.63:	14.54:	0.00:	0.00:
	6:	1:	0.01	:	0.07:	16.10:	0.00:	0.00:
	7:	1:	0.00	:	-1.56:	17.73:	0.00:	0.00:
	8:	1:	0.00	:	-3.19:	19.37:	0.00:	0.00:
		1:	0.00	:	-4.75:	20.92:	0.00:	0.00:
1		1:	0.00	:	-6.38:	22.56:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STE)							
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:	:
	1:	1:	0.00	:	7.36:	7.50:	0.00:	0.00:
	2:	1:	31.10	:	5.90:	8.95:	0.00:	0.00:
	3:	1:	2.98	:	4.44:	10.41:	0.00:	0.00:
	4:	1:	0.45	:	2.91:	11.94:	0.00:	0.00:
	5:	1:	0.09	:	1.39:	13.46:	0.00:	0.00:
	6:	1:	0.02	:	-0.07:	14.92:	0.00:	0.00:
	7:	1:	0.01	:	-1.60:	16.45:	0.00:	0.00:
	8:	1:	0.00	:	-3.12:	17.97:	0.00:	0.00:
		1:	0.00	:	-4.58:	19.43:	0.00:	0.00:
:		1:	0.00	:	-6.11:	20.96:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD : S : M: NUMBER S0

 1: 1:
 0.00:
 7.59:
 7.73:
 0.00:
 0.00:

 2: 1:
 24.52:
 6.12:
 9.19:
 0.00:
 0.00:

 3: 1:
 2.73:
 4.66:
 10.65:
 0.00:
 0.00:

 4: 1:
 0.46:
 3.13:
 12.18:
 0.00:
 0.00:

 0.11 : 1.60: 13.71: 0.03 : 0.14: 15.17: 0.01 : -1.39: 16.70: 0.00: 0.00: 0.00: 0.00: 5: 1: 6: 1: 0.00: 7: 1: 0.00 : -2.92: 18.24: 0.00: 0.00 : -4.38: 19.70: 0.00: 0.00 : -5.92: 21.23: 0.00: 8: 1: 0.00: 0.00: 0.00: 9: 1: 10: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	s1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:	:	:
	1:	1:	0.28	:	4.64:	4.69:	0.00:	0.00:
	2:	1:	0.44	:	3.76:	4.92:	0.00:	0.00:
	3:	1:	0.22	:	2.88:	5.20:	0.00:	0.00:
	4:	1:	0.06	:	2.00:	5.48:	0.00:	0.00:
	5:	1:	0.00	:	1.07:	5.75:	0.00:	0.00:
	6:	1:	0.00	:	0.19:	6.03:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
100	15		1.379443	12.660404
200	15		1.489049	13.171710
300	15		1.618122	13.754661
400	15		1.772945	14.430618
500	15		1.963205	15.232448
600	15		2.205055	16.215118
700	15		2.529322	17 484939

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: K max = 65.87 K ref = 0.000 K cr = 65.86at the very beginning of Load Step No. 10 Step description:

of Block No. 2 of Schedule No. Crack Size c = 2.56272

> FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----DATE: 27-APR-99 TIME: 08:56:38

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

THROUGH CRACK CASE 1, PSE-W5 crack in .063 skin, 6 holes

GEOMETRY

MODEL: TC01-Through crack in center of plate.

Plate Thickness, t = 0.0630 " Width, W = 24.0000

FLAW SIZE:

c (init.) = 2.085

```
MATERIAL
MATL 1: 2024-T3
      Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1: 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.063: 65.9:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
;____;___;___;___;___;___;___;___;___;
: 1:0.829D-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
MODEL: TC01
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -1.5000
Scale Factor for Stress S1: 0.0000
Stress Scaling Factors for Block Case: 2
                        7.4200
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.0000
Stress Scaling Factors for Block Case: 5
                        4.6400
Scale Factor for Stress S0:
Scale Factor for Stress S1:
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
 Block Number
                         Block Case No.
 From - To
    1
                                  2
    2
             2
             3
                                  5
             4
                                  1
    5
             5
                                  3
```

7		7	1
8	-	8	3
9	-	9	5
10	-	10	1
11	-	11	3
12	-	12	5
13	-	13	1
14	-	14	4
15	-	15	5

BLO	CK	CAS	SE NO. 1					
S	:	M:	NUMBER	:	so	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		:-	:-	:-	:-	:
	1:	1:	1.90) :	0.70:	1.30:	0.70:	1.30:
	2:	1:	0.09	:	0.60:	1.40:	0.60:	1.40:
	3:	1:	0.01	L :	0.54:	1.46:	0.54:	1.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLC	CK	CAS	E NO. 2					
S	:	M :	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:	:-	:
	1:	1:	0.00	:	1.08:	1.10:	-0.01:	0.01:
	2:	1:	15.09	:	0.87:	1.31:	-0.22:	0.22:
	3:	1:	1.52	:	0.66:	1.52:	-0.43:	0.43:
	4:	1:	0.23	:	0.44:	1.74:	-0.65:	0.65:
	5:	1:	0.05	:	0.22:	1.96:	-0.87:	0.87:
	6:	1:	0.01	:	0.01:	2.17:	-1.08:	1.08:
	7:	1:	0.00	:	-0.21:	2.39:	-1.30:	1.30:
	8:	1:	0.00	:	-0.43:	2.61:	-1.52:	1.52:
	9:	1:	0.00	:	-0.64:	2.82:	-1.73:	1.73:
1	0:	1:	0.00	:	-0.86:	3.04:	-1.95:	1.95:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

BLOCK CASE NO. 3 S : M: NUMBER S0 S1 : T : A: OF : E : T: FATIGUE P : L: CYCLES (t1): (t2) (t1) : (t2) : ----:--:---:-----: 0.00: 1: 1: 1.06: 1.08: -0.01: 0.01: 2: 1: 31.10 : 1.29: 0.85: -0.22: 0.22: 3: 1: 2.98: 0.64: 1.50: -0.43: 0.43: 0.45 : 4: 1: 0.42: 1.72: -0.65: 0.65: 5: 1: 0.09 : 0.20: 1.94: -0.87: 0.02: 6: 1: -0.01: 2.15: -1.08: 1.08: 7: 1: 0.01: -0.23: 2.37: -1.30: 1.30: 8: 1: 0.00: -0.45: 2.59: -1.52: 1.52: 0.00: -0.66: 9: 1: 2.80: -1.73: 1.73:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

-0.88:

0.00:

10: 1:

3.02:

-1.95:

1.95:

	T: L:	FATIGUE CYCLES	:	(t1) :	: (t2) :	(t1) :	: (t2) :
	: -		. : -	:	:-	:-	:
1:	-	0.00	:	1.09:	1.11:	-0.01:	0.01:
2:	1:	24.52	:	0.88:	1.32:	-0.22:	0.22:
3:	1:	2.73	:	0.67:	1.53:	-0.43:	0.43:
4:	1:	0.46	:	0.45:	1.75:	-0.65:	0.65:
5:	1:	0.11	:	0.23:	1.97:	-0.87:	0.87:
6:	1:	0.03	:	0.02:	2.18:	-1.08:	1.08:
7:	1:	0.01	:	-0.20:	2.40:	-1.30:	1.30:
8:	1:	0.00	:	-0.42:	2.62:	-1.52:	1.52:
	1:	0.00		-0.63:	2.83:	-1.73:	1.73:
10:		0.00		-0.85:	3.05:	-1.95:	1.95:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S1 :
T : A: OF : : : : : :
E : T: FATIGUE : (ksi) : (ksi) :
P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :

1: 1: 1.90 : -1.05: -1.95: 0.00: 0.00:
2: 1: 0.09 : -0.90: -2.10: 0.00: 0.00:
3: 1: 0.01 : -0.81: -2.19: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S: M: NUMBER: S0 : S1 :
T: A: OF : : : : : : :
E: T: FATIGUE : (ksi) : (ksi) : :
P: L: CYCLES : (t1) : (t2) : (t1) : (t2) :

1: 1: 0.00 : 8.01: 8.16: 0.00: 0.00:
2: 1: 15.09 : 6.46: 9.72: 0.00: 0.00:
3: 1: 1.52 : 4.90: 11.28: 0.00: 0.00:
4: 1: 0.23 : 3.26: 12.91: 0.00: 0.00:
5: 1: 0.05 : 1.63: 14.54: 0.00: 0.00:
6: 1: 0.01 : 0.07: 16.10: 0.00: 0.00:

7: 1: 8: 1:	0.00:	-1.56:	17.73:	0.00:	0.00:
	0.00:	-3.19:	19.37:	0.00:	0.00:
9: 1:	0.00:	-4.75:	20.92:	0.00:	0.00:
10: 1:	0.00:	-6.38:	22.56:	0.00:	0.00-

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S1 T : A: OF T : A: OF : : (ksi) : (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 1: 1: 0.00: 7.36: 7.50: 0.00: 0.00: 2: 1: 31.10: 5.90: 8.95: 0.00: 0.00: 3: 1: 2.98: 4.44: 10.41: 0.00: 0.00: 4: 1: 0.45: 2.91: 11.94: 0.00: 0.00: 5: 1: 0.09: 1.39: 13.46: 0.00: 0.00: 0.00: -0.07: 14.92: 6: 1: 0.02: 0.00: 0.01: -1.60: 16.45: -3.12: 17.97: 0.00: 7: 1: 0.00: 8: 1: 0.00 : 0.00: -4.58: 19.43: 0.00: 9: 1: 0.00: 0.00: 10: 1: 0.00 : -6.11: 20.96: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S0 T : A: OF : : S1 T : A: E: T: FATIGUE: (ksi): (ksi): (ksi): P: L: CYCLES: (t1): (t2): (t1): (t2): 0.00: 7.59: 7.73: 0.00: 0.00: 24.52: 6.12: 9.19: 0.00: 0.00: 0.00: 0.46: 3.13: 12.18: 0.00: 0.00: 0.11: 1.60: 13.71: 0.00: 0.0 1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 0.03: 0.14: 15.17: 0.00: 6: 1: 0.00: 7: 1: 0.01 : -1.39: 16.70: 0.00: 0.00: 0.00: -2.92: 18.24: 0.00: 0.00: 8: 1: 0.00: -4.38: 19.70: 9: 1: 0.00: 0.00: 10: 1: 0.00: -5.92: 21.23: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S1 :
T : A: OF : : : :
E : T: FATIGUE : (ksi) : (ksi) :
P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :

1: 1:	0.28 :	4.64:	4.69:	0.00:	0.00:
2: 1:	0.44 :	3.76:	4.92:	0.00:	0.00:
3: 1:	0.22 :	2.88:	5.20:	0.00:	0.00:
4: 1:	0.06 :	2.00:	5.48:	0.00:	0.00:
5: 1:	0.00 :	1.07:	5.75:	0.00:	0.00:
6: 1:	0.00 :	0.19:	6.03:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

ANALYSIS RESULTS:

Schedl	Block	Final Flaw Size	K max
	St	ер с	c-tip
100	15	2.365523	16.849254

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value:

 $K \max = 65.89$ K ref = 0.000 K cr = 65.86

10 at the very beginning of Load Step No.

Step description:
of Block No. 2 of Schedule No. 156
Crack Size c = 2.56468

C-6 PSE W6 SA227 Wing Extension Fitting Main Spar Lower Surface

```
FATIGUE CRACK GROWTH ANALYSIS
             DATE: 08/31/98 TIME: 14:08:48
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
PSE-W6, TC03, crack in .071" strap @ 16,500 lbs
                                         (Title)
GEOMETRY
_____
MODEL: TC03-Through crack from hole in plate.
                    0.0710
Plate Thickness, t =
" Width, W = 0.8000
Hole Diameter, D = 0.1900
Hole-Center-to-Edge Dist., B =
                            0.3800
FLAW SIZE:
  (init.) = 0.5000E-01
MATERIAL
MATL 1: 2024-T3
      Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
            · : : : :
        : 1: 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.071: 65.8:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
: 1 :0.829E-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
PSE-W6, TC03, crack in .071" strap @ 16,500 lbs (Title)
MODEL: TC03
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3: 0.00000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress SO:
                         1.3000
Scale Factor for Stress S3:
                          6.8500
```

C-6 PSE W6 SA227 Wing Extension Fitting Main Spar Lower Surface (Continued)

```
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                          6.8500
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress SO:
Scale Factor for Stress S3:
                            6.8500
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                           0.58000
Scale Factor for Stress S3:
                           3.0700
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
 Block Number
                           Block Case No.
   1
    2
                                     1
              4
    6
              6
    7
    8
              8
    9
              9
   10
             10
                                     3
   11
             11
   12
             12
   13
             13
                                     -4
   14
   15
BLOCK CASE NO. 1
                                              s3
 S : M: NUMBER
                           s_0
                                    :
 T : A: OF
E : T: FATIGUE
 P : L: CYCLES
                                           (t1): (t2)
                        (t1): (t2):
                        ----:---:-
 ____:_-:_------
   1: 1: 1.90:
                        0.70:
                                1.30:
                                           0.70:
                                                   1.30:
               0.09:
                         0.60:
                                  1.40:
                                           0.60:
                                                     1.40:
   2: 1:
              0.01:
                         0.54:
                                  1.46:
                                           0.54:
Environmental Crack Growth Check for Sustained Stresses
 (Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
                      . so
 S : M: NUMBER :
                                              s3
                                    :
   : A:
          OF
 E : T: FATIGUE
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
 ----:--:----
```

1: 1: 9.57: 0.45: 1.05: 0.45: 1.14: 0.25: 1.25: 0.25: 1.25: 2: 1: 1.35: 0.15: 0.57 : 0.15: 1.35: -0.05: 3: 1: 4: 1: 0.11: -0.05: 1.55: 1.55: 5: 1: 0.02 : -0.25: 1.75: -0.25: 1.95: 1.95: 6: 1: 0.01: -0.45: -0.45: 7: 1: ' 0.00: -0.65: 2.15: -0.65: -0.85: 2.35: 0.00: -0.85: 2.35: 8: 1: 0.00: -1.05: 2.55: -1.05: 2.55: 9: 1: -1.25: 2.75: 0.00: -1.25: 2.75:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLC	СК	CAS	E NO. 3						
S	:	M:	NUMBER		:	S0	:	S3	:
T	:	A:	OF		:		:		:
E	:	T:	FATIGUE		:		:		:
₽	:	L:	CYCLES		:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-			: -	:-	:-	:-	:
	1:	1:	19.	14	:	0.45:	1.05:	0.45:	1.05:
	2:	1:	2.	29	:	0.25:	1.25:	0.25:	1.25:
	3:	1:	1.	14	:	0.15:	1.35:	0.15:	1.35:
	4:	1:	0.	23	:	~0.05:	1.55:	-0.05:	1.55:
	5:	1:	0.	04	:	-0.25:	1.75:	-0.25:	1.75:
	6:	1:	0.	01	:	-0.45:	1.95:	-0.45:	1.95:
	7:	1:	0.	00	:	-0.65:	2.15:	-0.65:	2.15:
	8:	1:	0.	00	:	-0.85:	2.35:	-0.85:	2.35:
	9:	1:	0.	00	:	-1.05:	2.55:	-1.05:	2.55:
1	0:	1:	0.	00	:	-1.25:	2.75:	-1.25:	2.75:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than ${\tt KIscc)}\colon {\tt NOT}$ ${\tt SET}$

BL	OCK	CAS	SE NO. 4					
S	:	M:	NUMBER	:	S0	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:-	:		-:-	:-	:	:-	:
	1:	1:	38.29	:	0.45:	1.05:	0.45:	1.05:
	2:	1:	4.57	:	0.25:	1.25:	0.25:	1.25:
	3:	1:	2.29	:	0.15:	1.35:	0.15:	1.35:
	4:	1:	0.46	:	-0.05:	1.55:	-0.05:	1.55:
	5:	1:	0.08	:	-0.25:	1.75:	-0.25:	1.75:
	6:	1:	0.02	:	-0.45:	1.95:	-0.45:	1.95:
	7:	1:	0.01	:	-0.65:	2.15:	-0.65:	2.15:
	8:	1:	0.00	:	-0.85:	2.35:	-0.85:	2.35:
	9:	1:	0.00	:	-1.05:	2.55:	-1.05:	2.55:
	10:	1:	0.00	:	-1.25:	2.75:	-1.25:	2.75:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK	CASE	E NO. 5					
s:	M:	NUMBER	:	S0	:	\$3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:-	:		-:-	:-	:-	:-	:
1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
2:	1:	0.44	:	0.80:	1.10:	0.80:	1.10:
3:	1:	0.22	:	0.60:	1.20:	0.60:	1.20:
4:	1:	0.06	:	0.40:	1.30:	0.40:	1.30:
5:	1:	0.00	:	0.20:	1.40:	0.20:	1.40:
6:	1:	0.00	:	0.00:	1.50:	0.00:	1.50:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

PSE-W6, TC03, crack in .071" strap @ 16,500 lbs (Title) MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

				CYCLES					
-			1:	1.90			0.00:		
	2	::	1:	0.09	:	0.00:	0.00:	0.00	0.00:
	3	3:	1:	0.01	:	0.00:	0.00:	0.00	: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

PSE-W6, TC03, crack in .071" strap @ 16,500 lbs (Title)

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	\$3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	• :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:	:
	1:	1:	9.57	:	0.59:	1.37:	3.08:	7.19:
	2:	1:	1.14	:	0.33:	1.63:	1.71:	8.56:
	3:	1:	0.57	:	0.20:	1.76:	1.03:	9.25:
	4:	1:	0.11	:	-0.07:	2.02:	-0.34:	10.62:
	5:	1:	0.02	:	-0.33:	2.27:	-1.71:	11.99:
	6:	1:	0.01	:	-0.58:	2.54:	-3.08:	13.36:
	7:	1:	0.00	:	-0.84:	2.79:	-4.45:	14.73:
	8:	1:	0.00	:	-1.11:	3.06:	-5.82:	16.10:
	9:	1:	0.00	:	-1.37:	3.31:	-7.19:	17.47:
-	10:	1:	0.00	:	-1.63:	3.58:	-8.56:	18.84:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE-W6, TC03, crack in .071" strap @ 16,500 lbs (Title)

FATIGUE SCHEDULE BLOCK STRESS TABLE

							•
)							
:	M:	NUMBER	:	S0	:	S 3	:
:	A:	OF	:		:		:
:	T:	FATIGUE	:	(ksi) :	(ksi) :
:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:-	:-	:
1:	1:	19.14	:	0.59:	1.37:	3.08:	7.19:
2:	1:	2.29	:	0.33:	1.63:	1.71:	8.56:
3:	1:	1.14	:	0.20:	1.76:	1.03:	9.25:
4:	1:	0.23	:	-0.07:	2.02:	-0.34:	10.62:
5:	1:	0.04	:	-0.33:	2.27:	-1.71:	11.99:
6:	1:	0.01	:	-0.58:	2.54:	-3.08:	13.36:
7:	1:	0.00	:	-0.84:	2.79:	-4.45:	14.73:
8:	1:	0.00	:	-1.11:	3.06:	-5.82:	16.10:
9:	1:	0.00	:	-1.37:	3.31:	-7.19:	17.47:
10:	1:	0.00	:	-1.63:	3.58:	-8.56:	18.84:
	::: ::: ::: ::: ::: ::: ::: ::: ::: ::	: M: : A: : T: : L: 	: M: NUMBER : A: OF : T: FATIGUE : L: CYCLES	: M: NUMBER : : A: OF : : T: FATIGUE : : L: CYCLES :	: M: NUMBER : S0 : A: OF : : T: FATIGUE : (ksi : L: CYCLES : (t1):	: M: NUMBER : S0 : : A: OF : : T: FATIGUE : (ksi) : : L: CYCLES : (t1) : (t2) :	<pre>: M: NUMBER : S0 : S3 : A: OF :</pre>

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\bf NOT}$ SET

PSE-W6, TC03, crack in .071" strap @ 16,500 lbs (Title) MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

:	:		: -				
1:	1:	38.29	:	0.59:	1.37:	3.08	7.19:
2:	1:	4.57	:	0.33:	1.63:	1.71:	8.56:
3:	1:	2.29	:	0.20:	1.76:	1.03:	9.25:
4:	1:	0.46	:	-0.07:	2.02:	-0.34	10.62:
5:	1:	0.08	:	-0.33:	2.27:	-1.71:	11.99:
6:	1:	0.02	:	-0.58:	2.54:	-3.08:	13.36:
7:	1:	0.01	:	-0.84:	2.79:	-4.45:	14.73:
8:	1:	0.00	:	-1.11:	3.06:	-5.82:	16.10:
9:	1:	0.00	:	-1.37:	3.31:	-7.19:	17.47:
10:	1:	0.00	:	-1.63:	3.58:	-8.56:	18.84:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE-W6, TC03, crack in .071" strap @ 16,500 lbs (Title) MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER S0 T : A: OF : (ksi) E : T: FATIGUE : P : L: CYCLES : (ksi) (t1) : (t2) : (t1) : (t2) ----:--:--:------:-----: 1: 1: 0.28: 0.58: 0.59: 3.07: 3.10: 0.44: 0.46: 2: 1: 0.64: 2.46: 3.38: 3: 1: 0.22: 0.35: 0.70: 1.84: 3.68: 4: 1: 0.06: 0.23: 0.75: 1.23: 3.99: 0.00: 5: 1: 0.12: 0.81: 0.61: 4.30: 6: 1: 0.00: 0.00: 0.87: 0.00: 4.60:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

PSE-W6, TC03, crack in .071" strap @ 16,500 lbs (Title) MODEL: TC03

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
500	15		0.050282	1.707827
1000	15		0.050564	1.707714
1500	15		0.050846	1.707601
2000	15		0.051128	1.707485
2500	15		0.051408	1.707369
3000	15		0.051689	1.707251
3500	15		0.051969	1.707133
4000	15		0.052249	1.707013
4500	15		0.052529	1.706893
5000	15		0.052808	1.706772
5500	15		0.053087	1.706651
6000	15		0.053365	1.706530
6500	15		0.053644	1.706408
7000	15		0.053921	1.706286
7500	15		. 0.054199	1.706163
8000	15		0.054476	1.706041
8500	15		0.054753	1.705919
9000	15		0.055029	1.705798
9500	15		0.055306	1.705676
10000	15		0.055581	1.705555
10500	15		0.055857	1.705435
11000	15		0.056132	1.705315
11500	15		0.056407	1.705195

12000	15	0.056681	1.705076
12500	15	0.056955	1.704959
13000	15	0.057229	1.704841
13500	15	0.057503	1.704725
14000	15	0.057776	1.704610
14500	15	.0.058049	1.704496
15000	15	0.058321	1.704383
15500	15	0.058594	1.704271
16000	15	0.058866	1.704160
16500	15	0.059137	1.704051
17000	15	0.059409	1.703943
17500	15	0.059680	1.703836
18000	15	0.059951	1.703731
18500	15	0.060221	1.703627
19000	15	0.060491	1.703525
19500	15	0.060761	1.703424
20000	1 5	0.061031	1.703325
20500	15	0.061300	1.703228
21000	15	0.061569	1.703132
21500	15	0.061838	1.703038
22000	15	0.062107	1.702946
22500	15	0.062375	1.702856
23000	15	0.062643	1.702767
23500	15	0.062911	1.702681
24000	15	0.063179	1.702596
24500	15	0.063446	1.702513
25000	15	0.063713	1.702432
PSE-W6,	TC03, crack	in .071" strap @ 16,500 lbs	(Title)
MODEL • M	~0.3		

MODEL: TC03

ANALYSIS RESULTS (contd)

Schedl	Block	Final Flaw Size	K max
		Step c	c-tip
25500	15	0.063980	1.702354
26000	15	0.064246	1.702277
26500	15	0.064513	1.702202
27000	15	0.064779	1.702130
27500	15	0.065045	1.702059
28000	15	0.065310	1.701991
28500	15	0.065576	1.701925
29000	15	0.065841	1.701861
29500	15	0.066106	1.701799
30000	15	0.066371	1.701740
30500	15	0.066635	1.701683
31000	15	0.066900	1.701628
31500	. 15	0.067164	1.701576
32000	15	0.067428	1.701525
32500	15	0.067692	1.701477
33000	15	0.067955	1.701432
33500	15	0.068219	1.701389
34000	15	0.068482	1.701348
34500	15	0.068745	1.701310
35000	15	0.069008	1.701274
35500	15	0.069271	1.701241
36000	15	0.069534	1.701210
36500	15	0.069796	1.701182
37000	15	0.070058	1.701156
37500	15	. 0.070320	1.701132
38000	15	0.070582	1.701111
38500	15	0.070844	1.701093
39000	15	0.071106	1.701077
39500	15	0.071368	1.701064
40000	15	0.071629	1.701054
40500	15	0.071890	1.701046
41000	15	0.072151	1.701041
41500	15	0.072413	1.701038

42000	15		0.0726	574		1.701038
42500	15		0.0729	34		1.701040
43000	15		0.0731	195		1.701046
43500	15		0.0734	156		1.701054
44000	15		0.0737	116		1.701064
44500	15		0.0739	977		1.701078
45000	15		0.0742	237		1.701094
45500	15		0.0744	197		1.701113
46000	15		0.0747	57		1.701134
46500	15		0.0750	18		1.701158
47000	15		0.0752	278		1.701185
47500	15		0.0755	38		1.701215
48000	15		0.0757	97		1.701248
48500	15		0.0760)57		1.701283
49000	15 .		0.0763	317		1.701321
49500	15		0.0765	577		1.701362
50000	15		0.0768	36		1.701406
PSE-W6,	TC03, crack	in .071"	strap @	16,500	lbs	(Title)
MODEL • III	C03		-			

MODEL: TC03

ANALYSIS RESULTS (contd)

Schedl	Block	Final Flaw Size	K max
		Step c	c-tip
50500	15	0.077096	1.701452
51000	15	0.077356	1.701502
51500	15	0.077615	1.701554
52000	15	0.077875	1.701609
52500	15	0.078134	1.701667
53000	15	0.078394	1.701728
53500	15	0.078653	1.701791
54000	15	0.078912	1.701858
54500	15	0.079172	1.701927
55000	15	0.079431	1.702000
55500	15	0.079691	1.702075
56000	15	0.079950	1.702153
56500	15	0.080209	1.702235
57000	15	0.080469	1.702319
57500	15	0.080728	1.702406
58000	15	0.080988	1.702496
58500	15	0.081247	1.702589
59000	15	0.081506	1.702685
59500	15	0.081766	1.702784
60000	15	0.082026	1.702886
60500	15	0.082285	1.702991
61000	15	0.082545	1.703099
61500	15	0.082804	1.703210
62000	15	0.083064	1.703324
62500	15	0.083324	1.703441
63000	15	0.083584	1.703561
63500	15 15	0.083844	1.703684
64000		0.084104	1.703811
64500	15	0.084364	1.703940
65000 65500	15 15	0.084624	1.704073
66000	15 15	0.084884	1.704209
66500	15 15	0.085144	1.704347
67000	15 15	0.085405	1.704489
67500	15 15	0.085665	1.704634
68000	15 15	0.085926	1.704783
68500	15 15	0.086186	1.704934
69000	15	0.086447 0.086708	1.705089
69500	15		1.705247
70000	15	0.086969 0.087230	1.705408
70500	15 15		1.705572
70500	15 15	0.087492	1.705739
71500	15 15	0.087753	1.705910
71500	13	0.088015	1.706084

72000	15	0.088276	1.706261
72500	15	0.088538	1.706442
73000	15	0.088800	1.706626
73500	15	0.089062	1.706813
74000	15	0.089324	1.707003
74500	15	0.089587	1.707197
75000	15	0.089850	1.707394
PSE-W6,	TC03, crack in	n .071" strap @ 16,500 lbs	(Title)
MODEL: TO	C03		

ANALYSIS RESULTS (contd)

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
75500	15		0.090112	1.707595
76000	15		0.090375	1.707799
76500	15		0.090638	1.708006
77000	15		0.090902	1.708217
77500	15		0.091165	1.708431
78000	15		0.091429	1.708648
78500	15		0.091693	1.708869
79000	15		0.091957	1.709094
79500	15		0.092221	1.709322
80000	15		0.092486	1.709553

FINAL RESULTS:

Critical Crack Size has NOT been reached. 0.00 of Load Step No. at Cycle No. Step description:

of Block No. 15 of Schedule No. 80000 Crack Size c = 0.924860E-01

C-7 PSE W7 SA227 Lower Wing Skin FWD Side MLG Trunnion at WS 113

```
FATIGUE CRACK GROWTH ANALYSIS
            DATE: 09/30/98 TIME: 08:17:24
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 3, PSE-W7 hole crack in T-stringer
GEOMETRY
_____
MODEL: TC03-Through crack from hole in plate.
Plate Thickness, t =
                   0.0630
" Width, W = 0.7500
Hole Diameter, D = 0.1600
Hole-Center-to-Edge Dist., B =
                           0.3440
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1:
             2014T6511 EXTRUSION T-L
Material Properties:
:Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : : :
      : 1: 74.0: 65.0: 27.0: 27.0: 1.00: 1.00: 0.063: 53.4:
:Matl:----- Crack Growth Eqn Constants ----:
: 1 :0.200E-08:3.700:0.50:1.00: 2.70: 0.70: 5.84: 1.00:
THROUGH CRACK CASE 3, PSE-W7 hole crack in T-stringer
MODEL: TC03
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -3.2200
Scale Factor for Stress S3: -3.6600
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                         6.7600
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
```

6.7600

Scale Factor for Stress S3:

5.9500

Stress Scaling Factors for Block Case: 4

Scale Factor for Stress S0:

```
Scale Factor for Stress S3:
                           6.7600
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                           4.2000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                           Block Case No.
From
   1
   2
             2
   3
             3
                                    1
   4
             4
   6
             6
   7
   8
             8
   9
                                    1
  10
            10
   11
            11
            12
  12
   13
            13
                                    1
   14
            14
   15
            15
BLOCK CASE NO. 1
 S : M: NUMBER
                           S0
                                             S3
  : A:
         OF
 E : T: FATIGUE
 P : L: CYCLES
                       (t1): (t2)
                                         (t1): (t2)
                                         ----:
                       -----:---------
____:_-:--:----:-
                                          0.70:
              1.90:
                        0.70:
                                 1.30:
                                                   1.30:
   1: 1:
              0.09:
                        0.60:
                                 1.40:
                                          0.60:
                                                   1.40:
   2: 1:
              0.01:
                        0.54:
                                 1.46:
                                          0.54:
                                                   1.46:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
 S : M: NUMBER
                           S0
                                             S3
   : A:
         OF
                   :
 E : T: FATIGUE
 P : L: CYCLES
                                         (t1): (t2)
                       (t1): (t2)
                 :
1: 1:
             0.00: 1.06: 1.08: 1.06: 1.08:
                                1.29:
                       0.85:
0.64:
             15.09 :
                                          0.85:
                                                   1.29:
   2: 1:
   3: 1:
              1.52:
                                 1.50:
                                          0.64:
                                                   1.50:
                       0.42:
              0.23 :
                                 1.72:
                                          0.42:
   4: 1:
              0.05 :
                                          0.20:
                                                   1.94:
   5: 1:
                        0.20:
                                 1.94:
               0.01:
                       -0.01:
                                 2.15:
                                         -0.01:
   6: 1:
   7: 1:
              0.00:
                       -0.23:
                                 2.37:
                                         -0.23:
                                                   2.37:
   8: 1:
               0.00:
                       -0.45:
                                 2.59:
                                         -0.45:
                                                   2.59:
                      .-0.66:
               0.00:
                                 2.80:
                                         -0.66:
                                                   2.80:
   9: 1:
  10: 1:
               0.00:
                        -0.88:
                                 3.02:
                                         -0.88:
                                                   3.02:
Environmental Crack Growth Check for Sustained Stresses
 (Kmax less than KIscc): NOT SET
BLOCK CASE NO. 3
                  :
 S : M: NUMBER
                           S0
                                             S3
```

T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
	1:	1:	0.00	:	1.06:	1.08:	1.06:	1.08:
	2:	1:	31.10	:	0.85:	1.29:	0.85:	1.29:
	3:	1:	2.98	:	0.64:	1.50:	0.64:	1.50:
	4:	1:	0.45	:	0.42:	1.72:	0.42:	1.72:
	5:	1:	0.09	:	0.20:	1.94:	0.20:	1.94:
	6:	1:	0.02	:	-0.01:	2.15:	-0.01:	2.15:
	7:	1:	0.01	:	-0.23:	2.37:	-0.23:	2.37:
	8:	1:	0.00	:	-0.45:	2.59:	-0.45:	2.59:
	9:	1:	0.00	:	-0.66:	2.80:	-0.66:	2.80:
	10:	1:	0.00	:	-0.88:	3.02:	-0.88:	3.02:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	CK	CAS	E NO. 4					
s	:	M:	NUMBER	:	S0	:	S 3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	
					:-			-
1	L:	1:	0.00) :	1.06:	1.08:	1.06:	1.08:
2	2:	1:	24.52	:	0.85:	1.29:	0.85:	1.29:
3	3:	1:	2.73	:	0.64:	1.50:	0.64:	1.50:
4	1:	1:	0.46	:	0.42:	1.72:	0.42:	1.72:
5	5:	1:	0.11	. :	0.20:	1.94:	0.20:	1.94:
ϵ	5:	1:	0.03	:	-0.01:	2.15:	-0.01:	2.15:
7	7:	1:	0.01	. :	-0.23:	2.37:	-0.23:	2.37:
8	3:	1:	0.00	:	-0.45:	2.59:	-0.45:	2.59:
9	:	1:	0.00	:	-0.66:	2.80:	-0.66:	2.80:
10):	1:	0.00		-0.88:	3.02:	-0.88:	3.02:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	S 3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:-	:-	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.22	:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.06	:	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.00	:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.00	:	0.04:	1.30:	0.04:	1.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-W7 hole crack in T-stringer MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

-----STD S : M: NUMBER S0 S3 T : A: OF E : T: FATIGUE E : T: FATIGUE : P : L: CYCLES : (ksi) (ksi) : (t1) : (t2) : (ksi) (t1) : (t2) ----:--:--------:--:---:---1: 1: 1.90: -2.25: -4.19: -2.56: -4.76: 2: 1: 0.09 : -1.93: -4.51: -2.20: -5.12:

3: 1: 0.01: -1.74: -4.70: -1.98: -5.34:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 3, PSE-W7 hole crack in T-stringer MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	Μ:	NUMBER	:	S0	:	S 3	:
T	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:		:-	:	:-	:	:
	1:	1:	0.00	:	6.31:	6.43:	7.17:	7.30:
	2:	1:	15.09	:	5.06:	7.68:	5.75:	8.72:
	3:	1:	1.52	:	3.81:	8.93:	4.33:	10.14:
	4:	1:	0.23	:	2.50:	10.23:	2.84:	11.63:
	5:	1:	0.05	:	1.19:	11.54:	1.35:	13.11:
	6:	1:	0.01	:	-0.06:	12.79:	-0.07:	14.53:
	7:	1:	0.00	:	-1.37:	14.10:	-1.55:	16.02:
	8:	1:	0.00	:	-2.68:	15.41:	-3.04:	17.51:
	9:	1:	0.00	:	-3.93:	16.66:	-4.46:	18.93:
1	0:	1:	0.00	:	-5.24:	17.97:	-5.95:	20.42:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-W7 hole crack in T-stringer MODEL: $\ensuremath{\mathsf{TC03}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S0 : : (ksi) : S : M: NUMBER T : A: OF : E : T: FATIGUE : P : L: CYCLES : OF (ksi) (ksi) : (ksi) : (t1) : (t2) : 1: 1: 0.00: 6.31: 6.43: 7.17: 7.30: 2: 1: 31.10: 5.06: 7.68: 5.75: 8.72: 2: 1:
 3.81:
 8.93:
 4.33:
 10.14:

 2.50:
 10.23:
 2.84:
 11.63:

 1.19:
 11.54:
 1.35:
 13.11:
 2.98 : 3: 1: 0.45 : 4: 1: 1.35: 5: 1: 0.09 : -0.06: 12.79: -0.07: 14.53: 0.02 : 6: 1: -1.37: 14.10: -1.55: 16.02: 7: 1: 8: 1: 0.00: 0.00: -2.68: 15.41: -3.04: 17.51: -3.93: 16.66: -4.46: 18.93: 0.00: -5.24: 17.97: -5.95: 20.42:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-W7 hole crack in T-stringer MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S3 : E : T : A: OF : (ksi) : (ksi) : (t1) : (t2) : (t1) : (t

```
4: 1:
            0.46 :
                      2.50:
                               10.23:
                                         2.84:
                                                 11.63:
5: 1:
            0.11 :
                     1.19:
                              11.54:
                                        1.35:
                                                 13.11:
            0.03:
                     -0.06: 12.79:
-1.37: 14.10:
6: 1:
                                       -0.07:
                                                 14.53:
7: 1:
            0.01:
                                       -1.55:
                                                 16.02:
            0.00: -2.68: 15.41:
8: 1:
                                       -3.04:
                                                 17.51:
9: 1:
            0.00:
                     -3.93: 16.66:
                                        -4.46:
                                                 18.93:
10: 1:
            0.00:
                     -5.24:
                               17.97:
                                        -5.95:
                                                 20.42:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 3, PSE-W7 hole crack in T-stringer MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S :	:	M:	NUMBER	:	S0	:	S 3	:
T :	:	A:	OF	:		:		:
E :	:	T:	FATIGUE	:	(ksi)	:	(ksi	:
P :	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	: -	:-		:-	· :	:	:	:
1:	:	1:	0.28	:	3.70:	3.74:	4.20:	4.24:
2 :	:	1:	0.44	:	3.00:	3.92:	3.40:	4.45:
3 :	:	1:	0.22	:	2.29:	4.14:	2.60:	4.70:
4:	:	1:	0.06	:	1.59:	4.37:	1.76:	4.96:
5 :	:	1:	0.00	:	0.85:	4.59:	0.97:	5.21:
б:	:	1:	0.00	:	0.15:	4.81:	0.17:	5.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 3, PSE-W7 hole crack in $\mathtt{T}\text{-stringer}$ MODEL: $\mathtt{TCO3}$

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
200	15		0.055120	4.357180
400	15		0.060385	4.388155
600	15		0.065809	4.421823
800	15		0.071415	4.459244
1000	15		0.077230	4.501426
1200	15		0.083290	4.549450
1400	15		0.089639	4.604580
1600	15		0.096337	4.668418
1800	15		0.103458	4.743116
2000	15		0.111105	4.831730
2200	15		0.119420	4.938839
2400	15		0.128613	5.071767
2600	15		0.139018	5.243292
2800	15		0.151219	5.478653
3000	15		0.166435	5.838901

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or
(b) KIC/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 10 Step description: of Block No. 2 of Schedule No. 3048 Crack Size c = 0.170731

FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate)

```
at the very beginning of Load Step No.
                                    10
Step description:
of Block No. 5 of Schedule No. Crack Size c = 0.178593
                                    3124
                FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
              DATE: 28-APR-99 TIME: 14:01:57
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 3, PSE-W7 skin after stringer breaks
GEOMETRY
MODEL: TC03-Through crack from hole in plate.
Plate Thickness, t =
                     0.0320
" Width, W = 14.0000
Hole Diameter, D = 0.1600
                             7.0000
Hole-Center-to-Edge Dist., B =
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2024-T3
       Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : : :
: 1: 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.032: 66.0:
 :Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
             :---::----:---::----:
: 1:0.829D-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
MODEL: TC03
FATIGUE SCHEDULE BLOCK INPUT TABLE
 STD
 [Note: Stress = Input Value * Stress Factor]
 Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -5.0000
Scale Factor for Stress S3: -5.0000
 Stress Scaling Factors for Block Case: 2
 Scale Factor for Stress S0:
 Scale Factor for Stress S3:
```

```
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                             5.1000
Scale Factor for Stress S3:
                             18.770
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                             5.1000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                             3.1700
Scale Factor for Stress S3:
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                             Block Case No.
From
   1
              1
                                     1
   2
              2
                                     2
   3
              3
                                     5
   5
                                     3
    6
              б
                                     5
   8
              8
                                     3
   9
              9
  10
             10
                                     1
  11
             11
                                     3
  12
             12
                                     5
  13
             13
                                     1
  14
             14
  15
             15
                                     5
BLOCK CASE NO. 1
S : M: NUMBER
                            S0
                                               S3
т
  : A:
           OF
E : T: FATIGUE
P : L: CYCLES
                        (t1): (t2)
 ---:--:----
                   -:-
                        -----:----:
              1.90 :
  1: 1:
                         0.70:
                                   1.30:
                                            0.70:
                                                     1.30:
  2: 1:
              0.09:
                         0.60:
                                   1.40:
                                            0.60:
                                                     1.40:
              0.01:
  3: 1:
                         0.54:
                                   1.46:
                                            0.54:
                                                     1.46:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                            S0
                                               53
  : A:
т
          OF
E : T: FATIGUE
P : L: CYCLES
                        (t1): (t2)
                                         (t1): (t2)
----:--:---:--
  1: 1:
              0.00:
                       1.06: 1.08:
                                           1.06:
                                                     1.08:
                         0.85:
  2: 1:
              15.09:
                                 1.29:
                                           0.85:
                                                     1.29:
                       0.64:
  3: 1:
              1.52:
                                  1.50:
                                           0.64:
                                                     1.50:
                        0.42:
  4: 1:
              0.23:
                                   1.72:
                                           0.42:
  5: 1:
              0.05 :
                       . 0.20:
                                  1.94:
                                           0.20:
                                                     1.94:
              0.01:
  6: 1:
                        -0.01:
                                  2.15:
                                           -0.01:
                                                     2.15:
  7: 1:
              0.00:
                        -0.23:
                                   2.37:
                                           -0.23:
                                                     2.37:
              0.00:
  8: 1:
                        -0.45:
                                   2.59:
                                           -0.45:
                                                     2.59:
  9: 1:
              0.00:
                        -0.66:
                                   2.80:
                                           -0.66:
                                                     2.80:
              0.00:
                        -0.88:
 10: 1:
                                  3.02:
                                           -0.88:
                                                     3.02:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLC	CK	CAS	E NO. 3					
S	:	M:	NUMBER	:	S0	:	S 3	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	0.00	:	1.06:	1.08:	1.06:	1.08:
	2:	1:	31.10	:	0.85:	1.29:	0.85:	1.29:
	3:	1:	2.98	:	0.64:	1.50:	0.64:	1.50:
	4:	1:	0.45	:	0.42:	1.72:	0.42:	1.72:
	5:	1:	0.09	:	0.20:	1.94:	0.20:	1.94:
	6:	1:	0.02	:	-0.01:	2.15:	-0.01:	2.15:
	7:	1:	0.01	:	-0.23:	2.37:	-0.23:	2.37:
	8:	1:	0.00	:	-0.45:	2.59:	-0.45:	2.59:
	9:	1:	0.00	:	-0.66:	2.80:	-0.66:	2.80:
:	10:	1:	0.00	:	-0.88:	3.02:	-0.88:	3.02:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK	CAS	E NO. 4					
s:	M:	NUMBER	:	S0	:	S 3	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		· : -	:-	:-	:-	:
1:	1:	0.00	:	1.06:	1.08:	1.06:	1.08:
2:	1:	24.52	:	0.85:	1.29:	0.85:	1.29:
3:	1:	2.73	:	0.64:	1.50:	0.64:	1.50:
4:	1:	0.46	:	0.42:	1.72:	0.42:	1.72:
5:	1:	0.11	:	0.20:	1.94:	0.20:	1.94:
	1:	0.03	:	-0.01:	2.15:	-0.01:	2.15:
	1:	0.01	:	-0.23:	2.37:	-0.23:	2.37:
	1:	0.00		-0.45:	2.59:	-0.45:	2.59:
	1:	0.00		-0.66:	2.80:	-0.66:	2.80:
	1:	0.00		-0.88:	3.02:	-0.88:	3.02:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLC	CK	CAS	ENO. 5					
S	:	M:	NUMBER	:	so	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	- : -	:-		:	:-	:	:-	:
	1:	1:	0.2	8:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.4	4 :	0.81:	1.06:	0.81:	1.06:
	3:	1:	0.2	2:	0.62:	1.12:	0.62:	1.12:
	4:	1:	0.0	6 :	0.43:	1.18:	0.42:	1.18:
	5:	1:	0.0	0:	0.23:	1.24:	0.23:	1.24:
	6:	1:	0.0	0:	0.04:	1.30:	0.04:	1.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 3, PSE-W

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S3 :
T : A: OF : : : : :
E : T: FATIGUE : (ksi) : (ksi) :

		CYCLES							
	1:	1.90		-3.50			-3.50:		
2:	1:	0.09	:	-3.00:	-7.0	0:	-3.00:	· -7.	.00:
3:	1:	0.01	:	-2.70:	-7.3	0:	-2.70:	-7	.30:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-W

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD so S : M: NUMBER : OF T : A: : (ksi) E : T: FATIGUE : (ksi) : P : L: CYCLES : (t1): (t2) : (ksi) (t1) : (t2) 0.00: 5.41: 5.51: 19.90: 1: 1: 20.27: 2: 1: 15.09: 3.26: 6.58: 15.95: 24.21: 6.58: 7.65: 12.01: 3: 1: 1.52 : 28.16: 4: 1: 0.23 : 2.14: 8.77: 7.88: 32.28: 5: 1: 0.05: 1.02: 9.89: 3.75: 36.41: 6: 1: 0.01: -0.05: 10.97: -0.19: 40.36: 7: 1: 0.00 : -1.17: 12.09: -4.32: 44.48: 0.00: -2.29: -8.45: 8: 1: 13.21: 48.61: 0.00: -3.37: 14.28: ~12.39: 52.56: 9: 1: 0.00: -4.49: 10: 1: 15.40: -16.52: 56.69:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 3, PSE-W

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER T : A: : (ksi) : OF : E : T: FATIGUE : (ksi) : P : L: CYCLES : (t1) : (t2) : (ksi) (t1) : (t2) 1: 1: 0.00 : 5.41: 5.51: 19.90: 20.27: 2: 1: 31.10 : 4.33: 6.58: 15.95: 24.21: 3: 1: 2.98 : 3.26: 7.65: 12.01: 28.16: 4: 1: 0.45 : 2.14: 8.77: 7.88: 32.28: 5: 1: 0.09 : 1.02: 9.89: 3.75: 36.41: 3.75: 6: 1: 0.02 : -0.05: 10.97: -0.19: 12.09: 44.48: 0.01 : -1.17: 7: 1: -4.32: -8.45: 8: 1: 0.00: -2.29: 13.21: 48.61: -3.37: 14.28: 9: 1: 0.00: -12.39: 52.56: 0.00: -4.49: 15.40: -16.52:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-W

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD
S: M: NUMBER: S0: S3
T: A: OF: :

E : T: FATIGUE : (ksi) : (ksi)
P : L: CYCLES : (t1): (t2) : (t1): (t2)

	:				
1: 1:	0.00 :	5.41:	5.51:	19.90:	20.27:
2: 1:	24.52 :	4.33:	6.58:	15.95:	24.21:
3: 1:	2.73 :	3.26:	7.65:	12.01:	28.16:
4: 1:	0.46 :	2.14:	8.77:	7.88:	32.28:
5: 1:	0.11 :	1.02:	9.89:	3.75:	36.41:
6: 1:	0.03 :	-0.05:	10.97:	-0.19:	40.36:
7: 1:	0.01 :	-1.17:	12.09:	-4.32:	44.48:
8: 1:	0.00 :	-2.29:	13.21:	-8.45:	48.61:
9: 1:	0.00:	-3.37:	14.28:	-12.39:	52.56:
10: 1:	0.00:	-4.49:	15.40:	-16.52:	56.69:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 3, PSE-W

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S	-	M:	NUMBER	:	S0	:	s3	:
\mathbf{T}	:	Α:	OF	:		:		
E	:	T:	FATIGUE	:	(ksi) :	(ks	i) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:-	~ - :	:	:
	1:	1:	0.28	:	3.17:	3.20:	11.67:	11.79:
	2:	1:	0.44	:	2.57:	3.36:	9.45:	12.37:
	3:	1:	0.22	:	1.97:	3.55:	7.24:	13.07:
	4:	1:	0.06	:	1.36:	3.74:	4.90:	13.77:
	5:	1:	0.00	:	0.73:	3.93:	2.68:	14.47:
	6:	1:	0.00	:	0.13:	4.12:	0.47:	15.17:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-W

MODEL: TC03

ANALYSIS RESULTS:

Schedl	Block		Final	Flaw	Size	K m	ax
		Step		С		c-t	ip
200	15		0 .	.05499	93	4.420	128
400	15		0 .	.05983	37	4.387	497
600	15		0.	.06454	48	4.357	748
800	15		0	.0691	41	4.330	842
1000	15		0	.0736	28	4.306	614
1200	15		0	.0780	22	4.284	849
1400	15		0	.0823	35	4.265	323
1600	15		0	.0865	74	4.247	
1800	15		0	.0907	49	4.232	
2000	15		0	.0948	66	4.218	
2200	15		0	.0989	33	4.205	
2400	15		0	.1029	55	4.194	
2600	15		0	.1069	38	4.184	
2800	15		0	.1108	85	4.175	
3000	15		0	.1148	01	4.167	
3200	15		0	.1186	91	4.161	.147
3400	15		0	.1225	56	4.155	203
3600	15		0	.1264	01	4.150	1066
3800	15		0	.1302	29	4.145	678
4000	15		0	.1340	41	4.141	.986
4200	15		0	.1378	41	4.138	3942
4400	15		0	.1416	31	4.136	5505
4600	15		0	.1454	13	4.134	637

4800	15	0.149188	4.133303
5000	15	0.152959	4.132474
5200	15	0.156728	4.132120
5400	15	0.160495	4.132216
5600	15	0.164263	4.132740
5800	15	0.168034	4.133671
6000	15	0.171808	4.134988
6200	15	0.175586	4.136676
6400	15	0.179371	4.138718
6600	15	0.183164	4.141099
6800	15	0.186965	4.143805
7000	15	0.190776	4.146826
7200	15	0.194597	4.150148
7400	15	0.198431	4.153762
7600	15	0.202278	4.157658
7800	15	0.206139	4.161827
8000	15	0.210015	4.166261
8200	15	0.213907	4.170953
8400	15	0.217816	4.175895
8600	15	0.221743	4.181081
8800	15	0.225689	4.186506
9000	15	0.229655	4.192162
9200	15	0.233642	4.198047
9400	15	0.237650	4.204154
9600	15	0.241681	4.210479
9800	15	0.245735	4.217019
10000	15	0.249814	4.223770

MODEL: TC03

ANALYSIS RESULTS (contd)

Schedl Block Final Flaw Size K max Step С c-tip 10200 0.253918 4.230729 4.237891 10400 15 0.258049 10600 15 0.262206 4.245256 10800 15 0.266391 4.252819 15 11000 0.270605 4.260578 11200 15 0.274849 4.268532 11400 15 0.279123 4.276679 11600 15 0.283429 4.285016 0.287767 11800 15 4.293543 12000 15 0.292139 4.302257 12200 15 0.296545 4.311157 0.300986 12400 15 4.320244 12600 15 0.305462 4.329514 12800 15 0.309976 4.338968 13000 15 0.314528 4.348606 13200 15 0.319119 4.358426 15 13400 0.323750 4.368428 13600 15 0.328421 4.378612 15 13800 0.333134 4.388978 14000 15 0.337891 4.399526 15 14200 0.342691 4.410256 14400 15 0.347536 4.421168 14600 15 0.352427 4.432262 14800 15 0.357366 4.443539 15000 15 0.362352 4.455000 0.367388 15200 15 4.466644 15400 15 0.372475 4.478474 15600 15 0.377613 4.490488 15800 15 0.382803 4.502689 16000 15 0.388048 4.515078 16200 15 0.393349 4.527655 16400 0.398705 4.540422 16600 15 0.404120 4.553380

16800	15	0.409594	4.566530
17000	15	0.415128	4.579874
17200	15	0.420724	4.593414
17400	15	0.426383	4.607151
17600	15	0.432107	4.621086
17800	15	0.437897	4.635222
18000	15	0.443755	4.649561
18200	15	0.449682	4.664104
18400	15	0.455680	4.678855
18600	15	0.461750	4.693814
18800	15	0.467894	4.708984
19000	15	0.474114	4.724368
19200	15	0.480411	4.739968
19400	15	0.486788	4.755787
19600	15	0.493245	4.771828
19800	15	0.499786	4.788093
20000	15	0.506412	4.804585

MODEL: TC03

ANALYSIS RESULTS (contd)

Schedl	Block	Final Flaw Size	K max
		Step c	c-tip
20200	15	0.513124	4.821308
20400	15	0.519926	4.838264
20600	15	0.526818	4.855456
20800	15	0.533804	4.872889
21000	15	0.540885	4.890566
21200	15	0.548064	4.908489
21400	15	0.555342	4.926664
21600	15	0.562724	4.945094
21800	15	0.570210	4.963782
22000	15	0.577803	4.982733
22200	15	0.585507	5.001952
22400	15	0.593323	5.021443
22600	15	0.601255	5.041210
22800	15	0.609305	5.061258
23000	15	0.617477	5.081592
23200	15	0.625774	5.102217
23400	15	0.634198	5.123139
23600	15	0.642753	5.144362
23800	15	0.651442	5.165892
24000	15	0.660269	5.187736
24200	15	0.669238	5.209899
24400	15	0.678351	5.232387
24600	15	0.687614	5.255208
24800	15	0.697029	5.278366
25000	15	0.706602	5.301870
25200	15	0.716336	5.325727
25400	15	0.726235	5.349943
25600	15	0.736305	5.374526
25800	15	0.746550	5.399485
26000	15	0.756975	5.424828
26200	15	0.767584	5.450563
26400	15	0.778384	5.476698
26600	15	0.789380	5.503243
26800	15	0.800577	5.530208
27000	15	0.811982	5.557603
27200	15	0.823600	5.585436
27400	15	0.835438	5.613720
27600	15	0.847502	5.642466
27800	15	0.859800	5.671685
28000	15	0.872339	5.701388
28200	15	0.885125	5.731588
28400	15	0.898168	5.762299
28600	15	0.911474	5.793532

28800	15	0.925053	5.825303
29000	15	0.938913	5.857626
29200	15	0.953063	5.890516
29400	15	0.967513	5.923989
29600	15	0.982273	5.958062
29800	15	0.997354	5.992751
30000	15	1.012767	6.028075

MODEL: TC03

ANALYSIS RESULTS (contd)

Final Flaw Size K max С c-tip 1.028522 6.064054 1.044632 6.100706 1.061110 6.138053 1.077969 6.176116 1.095223 6.214918 1.112886 6.254483 1.130973 6.294837 1.149502 6.336005 1.168488 6.378017 1.187950 6.420900 1.207907 6.464687 1.228377 6.509411 1.249384 6.555105 1.270948 6.601806 1.293093 6.649554 1.315843 6.698390 1.339227 6.748357 1.363270 6.799502 1.388004 6.851874 1.413460 6.905528 1.439671 6.960519 1.466674 7.016907 1.494506 7.074759 7.134143 1.523210 1.552828 7.195134 1.583409 7.257814 7.322270 1.615004 1.647666 7.388596 1.681454 7.456897 1.716434 7.527282 1.752673 7.599875 1.790246 7.674810 1.829236 7.752232 1.869731 7.832305 1.911828 7.915207 1.955635 8.001135 2.001269 8.090313 2.048860 8.182986 2.098552 8.279434 2.150505 8.379970 2.204898 8.484954 2.261933 8.594793 2.321837 8.709959 2.384867 8.830999 2.451320 8.958551 2.521535 9.093369 2.595906 9.236353 2.674895 9.388586 2.759049 9.551390 2.849022 9.726406

40000 MODEL: TC03 15

ANALYSIS RESULTS (contd)

Schedl	Block		Final Flaw Size	K max
		Step	c	c-tip
40200	15		2.945609	9.915700
40400	15		3.049789	10.121925
40600	15		3.162796	10.348573
40800	15		3.286214	10.600361
41000	15		3.422138	10.883885
41200	15		3.573440	11.208759
41400	15		3.744235	11.589779
41600	15		3.940789	12.051417
41800	15		4.173502	12.638506
42000	15		4.462080	13.447203
42200	15		4.853850	14.751312

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value:
K max = 65.98 K ref = 0.000 K cr = 65.96
at Cycle No. 0.00 of Load Step No. 10

Step description:
of Block No. 5 of Schedule No. 42382
Crack Size c = 5.46765

C-8 PSE W8 Chordwise Skin Splice at WS 173.944

```
FATIGUE CRACK GROWTH ANALYSIS
               -----
              DATE: 09/18/98 TIME: 08:29:40
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 5, PSE-W8 hole crack in .025 skin
GEOMETRY
MODEL: TC05-Through crack from hole in row of holes.
Plate Thickness, t = 0.0250
Hole Dia., D = 0.1300
Hole-to-Hole Dist., H = 0.6250
Dia./Edge-Dist. Ratio, D/B = 0.0000
(D/B = 0 \text{ means B is very large})
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
-----
MATL 1: 2024-T3
       Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : :
: 1 : 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.025: 66.0:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            :---:---:---:---:
: 1 :0.829E-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
 THROUGH CRACK CASE 5, PSE-W8 hole crack in .025 skin
MODEL: TC05
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -0.48000
Scale Factor for Stress S3: -2.6000
Scale Factor for Stress S4: 0.00000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S3: 13.700 Scale Factor for Stress S4: 0.00000
```

```
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                          2.5300
Scale Factor for Stress S3:
Scale Factor for Stress S4: 0.00000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                           2,5300
                          13.700
Scale Factor for Stress S3:
Scale Factor for Stress S4: 0.00000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                          1.3400
Scale Factor for Stress S3:
                          7.2800
Scale Factor for Stress S4: 0.00000
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
 Block Number
                           Block Case No.
From - To
                                   1
             1
   1
   2
                                   2
             3
   3
                                   1
             5
   5
    6
             6
                                   3
             8
    R
    9
             9
   10
            10
            11
   11
   12
            12
                                   1
   13
            13
   14
            14
            15
   15
BLOCK CASE NO. 1
                         s_0
                              :
                                            S3
 S : M: NUMBER
 T : A: OF
E : T: FATIGUE
                  :
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :
 ---;--;--:---:

      1: 1:
      1.90:
      0.70:
      1.30:
      0.70:
      1.30:

      2: 1:
      0.09:
      0.60:
      1.40:
      0.60:
      1.40:

          0.01: 0.54:
   3: 1:
                               1.46:
                                        0.54:
                                                  1.46:
                       S4
                                          s
 S : M: NUMBER :
                                 :
   : A:
         OF
 E : T: FATIGUE :
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
 1: 1: 1.90: 0.70: 1.30: 0.00: 0.00:
                                                 0.00:
                                       0.00:
                        0.60:
   2: 1:
              0.09 :
                                1.40:
              0.01:
                        0.54:
                                 1.46:
                                         0.00:
                                                  0.00:
   3: 1:
Environmental Crack Growth Check for Sustained Stresses
 (Kmax less than KIscc): NOT SET
 BLOCK CASE NO. 2
 S : M: NUMBER :
                         S0
                                            S3
                                 :
   : A:
         OF
                :
 E : T: FATIGUE
                       (t1): (t2): (t1): (t2):
 P : L: CYCLES :
```

1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1 9: 1 10: 1 S T E F : I	L: 1.14 L: 0.57 L: 0.11 L: 0.02 L: 0.01 L: 0.00 L: 0.00 L: 0.00 L: 0.00 M: NUMBER A: OF T: FATIGUE	: 0.44: : 0.34: : 0.14: : -0.06: : -0.26: : -0.66: : -0.66: : -1.06: : S4:	:	s	:
1: 1 2: 1 3: 1 4: 1 5: 1 6: 1 7: 1 8: 1 9: 1	l: 9.57 l: 1.14 l: 0.57 l: 0.11 l: 0.02 l: 0.01 l: 0.00 l: 0.00	: 0.70: : 0.50: : 0.40: : 0.20: : 0.00: : -0.20: : -0.40: : -0.60: : -0.80:			:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK	CAS	SE NO. 3					
s:	M:	NUMBER	:	so	:	S 3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	:-	:
	1:			0.64:		0.64:	
2:	1:	2.29			1.44:		
	1:	1.14			1.54:		
	1:	0.23			1.74:		
5:	1:	0.04	:	-0.06:	1.94:	-0.06:	1.94:
6:	1:	0.01	:	-0.26:	2.14:	-0.26:	2.14:
7:	1:	0.00	:	-0.46:	2.34:	-0.46:	2.34:
8:	1:	0.00	:	-0.66:	2.54:	-0.66:	2.54:
9:	1:	0.00	:	-0.86:	2.74:	-0.86:	2.74:
10:	1:	0.00	:	-1.06:	2.94:	-1.06:	2.94:
s :	M:	NUMBER	:	S4	:	s	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	:-	:
1:	1:	19.14	:	0.70:	1.30:	0.00:	0.00:
2:	1:	2.29			1.50:	0.00:	0.00:
3:	1:	1.14	:	0.40:	1.60:	0.00:	0.00:
4:	1:	0.23	:	0.20:	1.80:	0.00:	0.00:
5:	1:	0.04	:	0.00:	2.00:	0.00:	0.00:
6:	1:	0.01	:	-0.20:	2.20:	0.00:	0.00:
7:	1:	0.00	:	-0.40:	2.40:	0.00:	0.00:
8:	1:	0.00	:	-0.60:	2.60:	0.00:	0.00:
9:	1:	0.00	:	-0.80:	2.80:	0.00:	0.00:
10:	1:	0.00	:	-1.00:	3.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

BLOCK CASE NO. 4

	M:	NUMBER	:	so	:	S 3	:
	Α:	OF	:		:		:
E :	Т:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:-	:-	:
	1:	38.29		0.64:	1.24:	0.64:	1.24:
2:		4.57		0.44:	1.44:	0.44:	1.44:
3:	1:	2.29		0.34:	1.54:	0.34:	1.54:
4:	1:	0.46	:	0.14:	1.74:	0.14:	1.74:
5:	1:	0.08	:	-0.06:	1.94:	-0.06:	1.94:
6:	1:	0.02	:	-0.26:	2.14:	-0.26:	2.14:
7:	1:	0.01	:	-0.46:	2.34:	-0.46:	2.34:
8:	1:	0.00	:	-0.66:	2.54:	-0.66:	2.54:
9:	1:	0.00	:	-0.86:	2.74:	-0.86:	2.74:
10:	1:	0.00	:	-1.06:	2.94:	-1.06:	2.94:
s:	M:	NUMBER	:	S4	:	s	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:	:-	:
	1:	38.29		0.70:	1.30:	0.00:	0.00:
	1:	4.57		0.50:	1.50:	0.00:	0.00:
3:	1:	2.29		0.40:	1.60:	0.00:	0.00:
4:	1:	0.46		0.20:	1.80:	0.00:	0.00:
5:	1:	0.08	:	0.00:	2.00:	0.00:	0.00:
6:	1:	0.02		-0.20:	2.20:	0.00:	0.00:
7:	1:	0.01		-0.40:	2.40:	0.00:	0.00:
8:	1:	0.00	:	-0.60:	2.60:	0.00:	0.00:
9:	1:	0.00	:	-0.80:	2.80:	0.00:	0.00:
10:	1:	0.00	:	-1.00:	3.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:.	(t1) :	(t2) :	(t1) :	(t2) :
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.79:	1.07:	0.79:	1.07:
	3:	1:	0.22	:	0.59:	1.14:	0.59:	1.14:
	4:	1:	0.06	:	0.38:	1.21:	0.38:	1.21:
	5:	1:	0.00	:	0.17:	1.29:	0.17:	1.29:
	6:	1:	0.00	:	-0.04:	1.36:	-0.04:	1.36:
S	:	M:	NUMBER	:	S4	:	s	:
Т	:	A:	OF	:		:		:
Ε	:	T:	FATIGUE	:		:		:
			CYCLES					
			0.28					
			0.44					
	-	1:			0.59:			
	4:	1:			0.38:			
	5:	1:	0.00	:	0.17:	1.29:	0.00:	0.00:
	6:	1:	0.00	:	-0.04:	1.36:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 5, PSE-W8 hole crack in .025 skin MODEL: $\mbox{TC05}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	so	:	s3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		: -	:-	:-	:-	:
1	:	1:	1.90	:	-0.34:	-0.62:	-1.82:	-3.38:
2	:	1:	0.09	:	-0.29:	-0.67:	-1.56:	-3.64:
3	:	1:	0.01	:	-0.26:	-0.70:	-1.40:	-3.80:
S	:	M:	NUMBER	:	S4	:	S	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		: -	:	:-	:-	:
		1:	1.90		0.00:	0.00:	0.00:	0.00:
2	:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
3	:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 5, PSE-W8 hole crack in .025 skin MODEL: $\ensuremath{\mathsf{TC05}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

					· -		
STD							
s:	M:	NUMBER	:	S0	:	s3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi	.) :
P :		CYCLES	:			(t1) :	
-	1:	9.57	- : - :	1.62:	•	•	•
	1:	1.14	:	1.11:	3.64:	6.03:	
	1:	0.57				4.66:	
4:				0.35:			
5:		0.02					
	1:	0.01	:	-0.66:	5.41:		
	1:	0.00				-6.30:	
8:	1:	0.00	:	-1.67:	6.43:	-9.04:	
	1:	0.00			6.93:		
	1:	0.00	:			-14.52:	
s :		NUMBER	:	S4	:	s	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi	.) :
P :		CYCLES	:	(t1) :	(t2) :	(t1) :	
:	1:	9 57	-:-	0.00:	•	•	~
	1:			0.00:			
	1:			0.00:			0.00:
	1:	0.11					
	1:	0.02			0.00:	0.00:	
	1:					0.00:	
7:		0.00					
8:	-			0.00:			
	1:				0.00:	0.00:	
_	1:	0.00		0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): $\overline{\text{NOT}}$ SET

THROUGH CRACK CASE 5, PSE-W8 hole crack in .025 skin MODEL: $\ensuremath{\mathsf{TC05}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M:	NUMBER :	s 0	:	S3	:
T : A:	OF :		. :		:
E : T:	FATIGUE :	(ksi)		(ksi)	
P : L:	CYCLES :	(t1) :	(t2) :	(t1) :	(t2) :
:-	:	:	:-	:	:
1: 1:	19.14 :	1.62:	3.14:	8.77:	16.99:
2: 1:	2.29 :	1.11:	3.64:	6.03:	19.73:
3: 1:	1.14 :	0.86:	3.90:	4.66:	21.10:
4: 1:	0.23 :	0.35:	4.40:	1.92:	23.84:
5: 1:	0.04 :	-0.15:	4.91:	-0.82:	26.58:
6: 1:	0.01 :	-0.66:	5.41:	-3.56:	29.32:
7: 1:	0.00 :	-1.16:	5.92:	-6.30:	32.06:
8: 1:	0.00 :	-1.67:	6.43:	-9.04:	34.80:
9: 1:	0.00 :	-2.18:	6.93:	-11.78:	37.54:
10: 1:	0.00 :	-2.68:	7.44:	-14.52:	40.28:
				_	
S : M:	NUMBER :	S4	:	S	:
S : M: T : A:	NUMBER :	S4	:	S	:
		S4 (ksi	: :) :	S (ksi)	:
T : A:	OF :			-	
T : A: E : T: P : L:	OF : FATIGUE : CYCLES :	(ksi) (t1):	(t2) :	(ksi) (t1) :	(t2) :
T : A: E : T: P : L: :	OF : FATIGUE : CYCLES :	(ksi (t1): 	(t2) : :- 0.00:	(ksi) (t1): :	(t2) : : 0.00:
T : A: E : T: P : L: :	OF : FATIGUE : CYCLES : 19.14 : 2.29 :	(ksi (t1): 	(t2) : :- 0.00: 0.00:	(ksi) (t1) : 0.00: 0.00:	(t2) : : 0.00: 0.00:
T : A: E : T: P : L: ::- 1: 1: 2: 1: 3: 1:	OF : FATIGUE : CYCLES : 19.14 : 2.29 : 1.14 :	(ksi (t1): 	(t2) : 0.00: 0.00: 0.00:	(ksi) (t1): 0.00: 0.00: 0.00:	(t2) : 0.00: 0.00: 0.00:
T : A: E : T: P : L: :	OF : FATIGUE : CYCLES : 19.14 : 2.29 : 1.14 : 0.23 :	(ksi (t1): : 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	(ksi) (t1): : 0.00: 0.00: 0.00: 0.00:	(t2): : 0.00: 0.00: 0.00: 0.00:
T : A: E : T: P : L:	OF : FATIGUE : CYCLES : 19.14 : 2.29 : 1.14 : 0.23 : 0.04	(ksi (t1): : 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi) (t1): 	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00:
T : A: E : T: P : L:	OF : FATIGUE : CYCLES : 19.14 : 2.29 : 1.14 : 0.23 : 0.04 : 0.01	(ksi (t1): 	(t2) :	(ksi) (t1): 	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T : A: E : T: P : L:	OF FATIGUE CYCLES 19.14 2.29 1.14 0.23 0.04 0.01 0.00	(ksi (t1): 	(t2) :	(ksi) (t1): 	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T : A: E : T: P : L:	OF : FATIGUE : CYCLES : 19.14 : 2.29 : 1.14 : 0.23 : 0.04 : 0.01 : 0.00 : 0.00 : 0.00	(ksi (t1): 	(t2): 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	(ksi) (t1):	(t2):: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
T : A: E : T: P : L:	OF FATIGUE CYCLES 19.14 2.29 1.14 0.23 0.04 0.01 0.00	(ksi (t1): 	(t2) :	(ksi) (t1): 	(t2) : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 5, PSE-W8 hole crack in .025 skin MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
S	: M:	NUMBER	:	so	:	S 3	:
Т	: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi)	:	(ksi)	
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-::-		: -	:	:-	:	:
1	l: 1:	38.29	:	1.62:		8.77:	
2	2: 1:	4.57	:	1.11:	3.64:	6.03:	
3	3: 1:	2.29	:				
4	4: 1:	0.46	:	0.35:	4.40:	1.92:	
5	5: 1:	0.08	:	-0.15:	4.91:	-0.82:	
6	6: 1:	0.02	:	-0.66:	5.41:	-3.56:	
•	7: 1:	0.01	:	-1.16:	5.92:	-6.30:	
8	8: 1:	0.00	:	-1.67:	6.43:	-9.04:	34.80:
9	9: 1:	0.00	:	-2.18:	6.93:	-11.78:	37.54:
10	0: 1:	0.00	:	-2.68:	7.44:	-14.52:	40.28:
s	: M:	NUMBER	:	S4	:	S	:
т	: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi)	:	(ksi) :
P	: L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :
	-::-		-:-	:	•	:-	•
	1: 1:	38.29	:	0.00:	0.00:	0.00:	
	2: 1:	4.57	:	0.00:	0.00:	0.00:	0.00:
	3: 1:	2.29	:	0.00:	0.00:	0.00:	
	4: 1:	0.46	:	0.00:	0.00:	0.00:	0.00:
	5: 1:	0.08	:	0.00:	0.00:	0.00:	0.00:
	6: 1:	0.02	:	0.00:	0.00:	0.00:	0.00:
	7: 1:	0.01	:	0.00:	0.00:	0.00:	0.00:

8: 1:	0.00 :	0.00:	0.00:	0.00:	0.00:
9: 1:	0.00:	0.00:	0.00:	0.00:	0.00:
10: 1:	0.00 :	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

THROUGH CRACK CASE 5, PSE-W8 hole crack in .025 skin MODEL: $\mbox{TC05}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
STI)							
S	:	M:	NUMBER	:	S0	:	S 3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P		L:	CYCLES	:			(t1) :	(t2) :
	•	:- 1:	0.28	- : ·	1.34:	•	7.28:	7.35:
		1:				1.43:		7.79:
		1:	0.22				4.30:	
		1:					2.77:	
		1:	0.00			1.73:		
		1:	0.00					
S	:		NUMBER		S4	:	S	:
Т	:	A:	OF	:		:	_	:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :		(t2) :
	:	:-		-:-	:	:	:	:
		1:	0.28			0.00:	0.00:	0.00:
	2:	1:	0.44	:	0.00:	0.00:	0.00:	0.00:
		1:	0.22			0.00:	0.00:	0.00:
		1:	0.06			0.00:	0.00:	0.00:
		1:	0.00			0.00:	0.00:	0.00:
	6:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 5, PSE-W8 hole crack in .025 skin MODEL: $\ensuremath{\text{TC05}}$

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
1000	15		0.057781	2.604402
2000	15		0.065485	2.602673
3000	15		0.073165	2.604257
4000	15		0.080853	2.606493
5000	15		0.088554	2.609077
6000	15		0.096278	2.612200
7000	15		0.104031	2.615123
8000	15		0.111811	2.618087
9000	15		0.119626	2.622151
10000	15		0.127499	2.628137
11000	15		0.135460	2.636671
12000	15		0.143548	2.648219
13000	15		0.151807	2.663121
14000	15		0.160289	2.681585
15000	15		0.169047	2.703674
16000	15		0.178140	2.729237
17000	15		0.187623	2.757812
18000	15		0.197547	2.788462

19000	15	0.207946	2.819960
20000	15	0.218848	2.852369
21000	15	0.230288	2.886327
22000	15	0.242318	2.922658
23000	15	0.255007	2.962438
24000	15	0.268456	3.007089
25000	15	0.282805	3.058551
26000	15	0.298257	3.119565
27000	15	0.315111	3.194192
28000	15	0.333829	3.288844
29000	15	0.355169	3.414506
30000	15	0.380498	3.592291
31000	15	0.412720	3.880326
32000	15	0.474210	5.620791

FINAL RESULTS:

All Stress Intensities are below the Fatigue Threshold. NO growth in Schedule No. 32096 Crack Size c = 0.495016

C-9 PSE W10 SA226 and SA227 Skin Splice at WS 27 Inboard

```
FATIGUE CRACK GROWTH ANALYSIS
              -----Modified by FAI-----
             DATE: 03-OCT-97 TIME: 08:25:24
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC5, PSE-W10 crack in .050 skin, outboard sta99 sa226
GEOMETRY
MODEL: TC05-Through crack from hole in row of holes.
Plate Thickness, t =
                    0.0500
Hole Dia., D = 0.1900
Hole-to-Hole Dist., H = 0.6250
Dia./Edge-Dist. Ratio, D/B = 0.0000
(D/B = 0 \text{ means B is very large})
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2024-T3
      Clad Plt & Sht; T-L; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
               :
                   : : : : :
: 1 : 65.0: 48.0: 41.0: 29.0: 1.00: 1.00: 0.050: 57.9:
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
: 1 :0.244D-07:2.601:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
MODEL: TC05
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                          2.5500
Scale Factor for Stress S3:
                          11.040
Scale Factor for Stress S4:
                          0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 3.7000
Scale Factor for Stress S3:
                          16.200
Scale Factor for Stress S4:
                          0.0000
```

```
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                            16.200
Scale Factor for Stress S3:
Scale Factor for Stress S4: 0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                            16.200
Scale Factor for Stress S3:
Scale Factor for Stress S4:
                            0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                            1.8000
Scale Factor for Stress S3:
                           7.9000
Scale Factor for Stress S4: 0.0000
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
                             Block Case No.
 Block Number
From - To
              2
   2
              3
              5
    6
              6
   9
              9
   10
             10
   11
             11
             12
   12
   13
             13
             14
   14
             15
   15
BLOCK CASE NO. 1
                          S0
 S : M: NUMBER
 T : A: OF
 E : T: FATIGUE : P : L: CYCLES :
                       (t1): (t2): (t1): (t2):
 1: 1: 1.90 : 0.70: 1.30: 0.70: 1.30: 2: 1: 0.09 : 0.60: 1.40: 0.60: 1.40: 3: 1: 0.01 : 0.46: 1.46: 0.54: 1.46:
                        0.46: 1.46:
S4 :
                                            s
   : M: NUMBER :
 T : A: OF
E : T: FATIGUE
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :
 ----;--:-------:------:-----:
   1: 1: 1.90: -0.30: 0.30: 0.00: 0.00: 2: 1: 0.09: -0.40: 0.40: 0.00: 0.00: 3: 1: 0.01: -0.46: 0.46: 0.00: 0.00:
 Environmental Crack Growth Check for Sustained Stresses
 (Kmax less than KIscc): NOT SET
 BLOCK CASE NO. 2
                  :
 S : M: NUMBER
                                       :
  T : A:
          OF
  E : T: FATIGUE :
  P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :
```

1.00:

0.38:

0.40:

1: 1: 9.57:

2:	1:	1.14	:	0.20:	1.20:	0.18:	1.18:
3:	1:	0.57	:	0.10:	1.30:	0.08:	1.28:
4:	1:	0.11	:	-0.10:	1.50:	-0.12:	1.48:
5:	1:	0.02	:	-0.30:	1.70:	-0.32:	1.68:
6:	1:	0.01	:	-0.50:	1.90:	-0.52:	1.88:
7:	1:	0.00	:	-0.70:	2.10:	-0.72:	2.08:
8:	1:	0.00	:	-0.90:	2.30:	-0.92:	2.28:
9:	1:	0.00	:	-1.10:	2.50:	-1.12:	2.48:
10:	1:	0.00	:	-1.30:	2.70:	-1.32:	2.68:
s:	Μ:	NUMBER	:	S4	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		: -:-	:-	:	:	:
1:	:- 1:	9.57		-0.30:	0.30:	0.00:	0.00:
1: 2:	:- 1: 1:	9.57 1.14	:	-0.30: -0.50:	0.30: 0.50:	0.00:	0.00: 0.00:
1: 2: 3:	1: 1: 1:	9.57 1.14 0.57	:	-0.30: -0.50: -0.60:	0.30: 0.50: 0.60:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4:	1: 1: 1: 1:	9.57 1.14 0.57 0.11	: :	-0.30: -0.50: -0.60: -0.80:	0.30: 0.50: 0.60: 0.80:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02	: : : :	-0.30: -0.50: -0.60: -0.80: -1.00:	0.30: 0.50: 0.60: 0.80: 1.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01	: : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20:	0.30: 0.50: 0.60: 0.80: 1.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6:	1: 1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00	: : : : : : : : : : : : : : : : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20: -1.40:	0.30: 0.50: 0.60: 0.80: 1.00: 1.20: 1.40:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00	: : : : : : : : : : : : : : : : : : : :		0.30: 0.50: 0.60: 0.80: 1.00: 1.20: 1.40: 1.60:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00	: : : : : : : : : : : : : : : : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20: -1.40:	0.30: 0.50: 0.60: 0.80: 1.00: 1.20: 1.40:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLOCK	CAS	SE NO. 3					
s:	M:	NUMBER	:	so	:	S3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		:-	:-	:	:	:
						0.38:	
		2.29					1.18:
		1.14					
4:	1:	0.23	:			-0.12:	
5:	1:	0.04	:	-0.30:	1.70:		
6:	1:	0.01	:		1.90:		
7:	1:	0.00	:	-0.70:	2.10:	-0.72:	2.08:
8:	1:	0.00	:				
9:	1:	0.00	:	-1.10:	2.50:	-1.12:	2.48:
10:	1:	0.00	:	-1.30:	2.70:	-1.32:	2.68:
s:	M:	NUMBER	:	S4	:	S	:
т:	A:	OF	:		:		:
E :		FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		- : -	:-	:	:	:
1:	1:	19.14	:	-0.30:	0.30:	0.00:	0.00:
2:	1:	2.29	:	-0.50:	0.50:	0.00:	0.00:
3:	1:	1.14			0.60:	0.00:	0.00:
4:	1:	0.23	:	-0.80:	0.80:	0.00:	0.00:
5:	1:	0.04	:	-1.00:	1.00:	0.00:	0.00:
6:	1:	0.01	:	-1.20:	1.20:	0.00:	0.00:
7:	1:	0.00	:	-1.40:	1.40:	0.00:	0.00:
8:	1:	0.00	:	-1.60:	1.60:	0.00:	0.00:
9:	1:	0.00	:	-1.80:	1.80:	0.00:	0.00:
10:	1:	0.00	:	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK CASE NO. 4
S: M: NUMBER: S0: S3:

T : A: E : T:	OF : FATIGUE :		:		:
P : L:	CYCLES :	(t1) :	(t2) : 	(t1) :	(t2) :
1: 1:	38.29 :	0.40:	1.00:	0.38:	
2: 1:	4.57 :	0.20:	1.20:	0.18:	1.18:
3: 1:	1.14 :	0.10:	1.30:	0.08:	1.28:
4: 1:	0.46 :	-0.10:	1.50:	-0.12:	1.48:
5: 1:	0.08:	-0.30:	1.70:	-0.32:	1.68:
6: 1:	0.02 :	-0.50:	1.90:	-0.52:	1.88:
7: 1:	0.01 :	-0.70:	2.10:	-0.72:	2.08:
8: 1:	0.00:	-0.90:	2.30:	-0.92:	
9: 1:	0.00 :	-1.10:	2.50:	-1.12:	2.48:
10: 1:	0.00 :	-1.30:	2.70:	-1.32:	2.68:
S : M:	NUMBER :	S4	:	S	:
T : A:	OF :		:		:
E : T:	FATIGUE :		:		:
P : L:	CYCLES :	(t1):	(t2) :	(t1) :	(t2) :
1: 1:	38.29 :	-0.30:	0.30:	0.00:	0.00:
2: 1:	4.57 :	-0.50:	0.50:	0.00:	0.00:
3: 1:	1.14 :	-0.60:	0.60:	0.00:	0.00:
4: 1:	0.46 :	-0.80:	0.80:	0.00:	0.00:
5: 1:	0.08:	-1.00:	1.00:	0.00:	0.00:
6: 1:	0.02 :	-1.20:	1.20:	0.00:	0.00:
7: 1:	0.01 :	-1.40:	1.40:	0.00:	0.00:
8: 1:	0.00 :	-1.60:	1.60:	0.00:	0.00:
9: 1:	0.00 :	-1.80:	1.80:	0.00:	0.00:
10: 1:	0.00 :	-2.00:	2.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	CK	CAS	E NO. 5					
S	:	М:	NUMBER	:	S0	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:	:-	:
	1:	1:	0.28	:	1.00:	1.01:		
	2:	1:	0.44	:	0.81:	1.29:		
	3:	1:	0.22	:	0.62:	1.57:	0.62:	1.57:
	4:	1:	0.06	:	0.43:	1.86:	0.43:	1.86:
	5:	1:	0.00	:	0.24:	2.14:	0.24:	2.14:
	6:	1:	0.00	:	0.05:	2.43:	0.05:	2.43:
S	:	M:	NUMBER	:	S4	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:	:-	:	:-	:
	1:	1:	0.28	:	1.00:	1.01:	0.00:	
	2:	1:	0.44	:	0.81:	1.29:	0.00:	
	3:	1:	0.22	:	0.62:	1.57:	0.00:	
	4:	1:	0.06	:	0.43:	1.86:	0.00:	0.00:
	5:	1:	0.00	:	0.24:	2.14:	0.00:	0.00:
	6:	1:	0.00	:	0.05:	2.43:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC5, PSE-W10 crack in .050 MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

S	:	M:	NUMBER	:	so	:	s3	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:	:-	:
	1:	1:	1.90	:	1.78:	3.31:	7.73:	14.35:
	2:	1:	0.09	:	1.53:	3.57:	6.62:	15.46:
	3:	1:	0.01	:	1.17:	3.72:	5.96:	16.12:
S	:	M:	NUMBER	:	S4	:	S	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:	:-	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC5, PSE-W10 crack in .050

MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
	M:	NUMBER	:	s0		S 3	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi) :		(ksi)	:
P :	L:	CYCLES				(t1) :	
:	:-		-:-	:-	:	:	:
	1:	9.57					
	1:					2.92:	
	1:	0.57					
	1:					-1.94:	
	1:					-5.18:	
	1:	0.01				-8.42:	
7:		0.00	:	-2.59:	7.77:		
8:				-3.33:			
9:	1:					-18.14:	40.18:
10:	1:	0.00		-4.81:	9.99:	-21.38:	43.42:
s:	M:	NUMBER	:	S4	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi) :	(ksi)) :
P :			:	(t1) :		(t1) :	
•	1:		-:-	0.00.	0.00.	0.00:	· · · · · · · · · · · · · · · · · · ·
	1:			0.00:			
	1:					0.00:	
4:		0.11					
	1:					0.00:	
	1:					0.00:	
7:		0.00					
8:						0.00:	
9:		0.00			0.00:		
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than ${\tt KIscc}): {\tt NOT} {\tt SET}$

TC5, PSE-W10 crack in .050

MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S: M: NUMBER: S0: S3

T : A: E : T: P : L:	OF FATIGUE CYCLES		ksi) : (t2)		: ksi) : : (t2) :
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1: 9: 1: 10: 1: S : M: T : A: E : T: P : L:	19.14 2.29 1.14 0.23 0.04 0.01 0.00 0.00 0.00 0.00 NUMBER OF FATIGUE CYCLES	: 0.7 : 0.3 : -0.3 : -1.1 : -1.8 : -2.5 : -3.2 : -4.0 : -4.8	74: 4.637: 4.637: 5.611: 6.635: 7.659: 7.633: 8.607: 9.60		2: 19.12: 0: 20.74: 4: 23.98: 8: 27.22: 2: 30.46: 6: 33.70: 0: 36.94: 4: 40.18:
1: 1: 2: 1: 3: 1: 4: 1: 5: 1: 6: 1: 7: 1: 8: 1: 9: 1:	19.14 2.29 1.14 0.23 0.04 0.01 0.00 0.00 0.00	: 0.4 : 0.5 : 0.5 : 0.6 : 0.6 : 0.6 : 0.6	00: 0. 00: 0. 00: 0. 00: 0. 00: 0. 00: 0. 00: 0. 00: 0. 00: 0.	00: 0.0 00: 0.0 00: 0.0 00: 0.0 00: 0.0 00: 0.0 00: 0.0 00: 0.0	00: 0.00: 00: 0.00: 00: 0.00: 00: 0.00: 00: 0.00: 00: 0.00: 00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W10 crack in .050 MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD **5**3 S : M: NUMBER : S0
 1: 1:
 38.29:
 1.48:
 3.70:
 6.16:
 15.88:

 2: 1:
 4.57:
 0.74:
 4.44:
 2.92:
 19.12:

 3: 1:
 1.14:
 0.37:
 4.81:
 1.30:
 20.74:

 4: 1:
 0.46:
 -0.37:
 5.55:
 -1.94:
 23.98:

 5: 1:
 0.08:
 -1.11:
 6.29:
 -5.18:
 27.22:
 0.02 : 7.03: -8.42: 30.46: -1.85: 6: 1: 33.70: -2.59: 7.77: -11.66: 7: 1: 0.01: 0.00: -3.33: 8.51: -14.90: 36.94: 8: 1: 9: 1: 0.00 : 10: 1: 0.00 : 9.25: -18.14: 40.18: -4.07: -4.81: 9.99: -21.38: 43.42: \$4 s : S : M: NUMBER : OF : A: E : T: FATIGUE : (ksi) (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 38.29 : 0.00: 0.00: 0.00: 4.57 : 0.00: 0.00: 0.00: 1.14 : 0.00: 0.00: 0.00: 0.46 : 0.00: 0.00: 0.00: 0.08 : 0.00: 0.00: 0.00: 0.00: 1: 1: 0.00: 2: 1: 0.00: 0.00: 0.00: 3: 1: 4: 1: 0.00: 0.08: 0.00: 5: 1: 0.00: 0.00: 6: 1: 0.02: 0.00: 0.00: 0.00: 0.00: 0.01 : 0.00: 0.00: 0.00 : 0.00: 0.00: 0.00: 7: 1: 0.00: 8: 1: 0.00: 0.00: 0.00: 0.00: 9: 1: 0.00:

10: 1: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC5, PSE-W10 crack in .050

MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD : S : M: NUMBER S3 T : A: OF E : T: FATIGUE : (ksi) : (ksi) : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : (ksi) ____;__;___;___;___;____; 1: 1: 0.28 : 1.80: 1.82: 7.90: 7.98: 2: 1: 0.44 : 1.46: 2.32: 6.40: 10.19: 3: 1: 0.22 : 1.12: 2.83: 4.90: 12.40: 4: 1: 0.06 : 0.77: 3.35: 3.40: 14.69: 0.43: 3.85: 5: 1: 0.00 : 1.90: 16.91: 0.00 : 0.09: 4.37: 6: 1: 0.40: 19.20: : M: NUMBER : S4 S OF т : A: (ksi) E : T: FATIGUE : (ksi) : (ksi) : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : .---:--:------: 1: 1: 0.28: 0.00: 0.00: 0.00: 0.00: 0.44 : 0.00: 0.00: 0.00: 0.00: 2: 1: 0.00: 0.00: 0.00: 0.22: 3: 1: 0.00: 0.00: 4: 1: 0.06 : 0.00: 0.00: 0.00: 0.00: 0.00: 0.00 : 5: 1: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 6: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than ${\tt KIscc)}:$ ${\tt NOT}$ ${\tt SET}$

TC5, PSE-W10 crack in .050

MODEL: TC05

ANALYSIS RESULTS:

Schedl Block Final Flaw Size K max Step С c-tip 0.056463 7.685195 200 15 0.063035 7.726431 300 15 0.069703 7.761136 400 15 0.076451 7.790536 500 15 0.083271 7.816528 600 15 0.090153 7.838479 700 7.856928 15 0.097087 008 7.875091 15 0.104068 900 15 0.111101 7.895659 1000 15 0.118195 7.920695 1100 15 0.125367 7.951715 15 1200 0.132636 7.989755 15 1300 0.140024 8.035405 15 1400 0.147556 8.088796 1500 15 0.155255 8.149555 1600 15 0.163145 8.216694 1700 15 0.171248 8.288463 1800 15 0.179576 8.362405 1900 15 0.188139 8.438146 2000 15 0.196950 8.517148

2100

15

0.206027

8.601124

```
2200
            15
                            0.215395
                                                 8.692059
            15
                            0.225087
                                                 8.792297
  2300
  2400
            15
                            0.235150
                                                 8,904659
            15
                            0.245641
                                                 9.032628
  2500
   2600
                            0.256638
                                                 9.180621
ADVISORY: Net-section stress > Yield and failure is imminent
(Unless (a) UTS > 2 YS, or
(b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.)
at the very beginning of Load Step No. 10
Step description:
of Block No. 5 of Schedule No. 2683
Crack Size c = 0.266139
2700 15
2800 15
                            0.268245
                                                9.354453
                            0.280603
                                                9.562430
   2900
           15
                            0.293910
                                                9.816767
           15
   3000
                            0.308458
                                                10.135925
   3100
            15
                            0.324695
                                                10.549682
   3200
            15
                            0.343365
                                                11.110394
FINAL RESULTS:
Net-section stress exceeds the Flow stress.
(Flow stress = average of yield and ultimate)
at the very beginning of Load Step No. 10
Step description:
of Block No. 5 of Schedule No.
                                    3264
           c = 0.357014
Crack Size
               FATIGUE CRACK GROWTH ANALYSIS
               -----Modified by FAI-----
              DATE: 30-APR-99 TIME: 10:26:56
       (computed: NASA/FLAGRO Version 2.03, March 1995.)
       U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 1, PSE-W10 .050 skin, 2 linked holes (T
GEOMETRY
MODEL: TC01-Through crack in center of plate.
Plate Thickness, t =
                     0.0500
    Width, W = 24.0000
FLAW SIZE:
c (init.) = 0.4130
MATERIAL
MATL 1: 2024-T3
        Clad Plt & Sht; L-T; LA & HHA
Material Properties:
 :Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
 : No.: : : : : : : : : :
 : 1: 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.050: 65.9:
 :Matl:----- Crack Growth Eqn Constants -----:
 : No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
```

```
:
                      : :
                                  :
                                        :
                                               :SIGo :
: 1:0.829D-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
MODEL: TC01
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                             5.8600
Scale Factor for Stress S1:
                             0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                             8.5600
Scale Factor for Stress S1:
                             0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                             8.5600
Scale Factor for Stress S1:
                             0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                             8.5600
Scale Factor for Stress S1:
                             0.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                             4.1700
Scale Factor for Stress S1:
                             0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                             Block Case No.
From
          To
   1
   2
              2
                                     2
   3
              3
                                     5
   4
                                     1
   5
              5
   6
              6
                                     5
   7
              7
                                     1
   9
              9
                                     5
   10
             10
                                     1
  11
             11
                                     3
   12
             12
                                     5
   13
             13
                                     1
   14
             14
   15
BLOCK CASE NO. 1
 S : M: NUMBER
                                              S1
 T : A:
          OF
  : T: FATIGUE
 Е
                        (t1): (t2):
 P : L: CYCLES
                   :
                                          (t1): (t2)
1.90:
  1: 1:
                         0.70:
                                  1.30:
                                            0.70:
                                                     1.30:
  2: 1:
               0.09 :
                         0.60:
                                  1.40:
                                            0.60:
                                                     1.40:
               0.01:
                         0.54:
                                  1.46:
                                           0.54:
   3: 1:
                                                     1.46:
```

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

BLO	CK	CAS	E NO. 2					
S	:	M:	NUMBER	:	S0	:	S 1	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	•	:-	=
	1:	1:	9.57	:	0.40:	1.00:	-0.30:	0.30:
	2:	1:	1.14	:	0.20:	1.20:	-0.50:	0.50:
	3:	1:	0.57	:	0.10:	1.30:	-0.60:	0.60:
	4:	1:	0.11	:	-0.10:	1.50:	-0.80:	0.80:
	5:	1:	0.02	:	-0.30:	1.70:	-1.00:	1.00:
	6:	1:	0.01	:	-0.50:	1.90:	-1.20:	1.20:
	7:	1:	0.00	:	-0.70:	2.10:	-1.40:	1.40:
	8:	1:	0.00	:	-0.90:	2.30:	-1.60:	1.60:
	9:	1:	0.00	:	-1.10:	2.50:	-1.80:	1.80:
	10.	1.	0.00	•	-1.30:	2.70:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLO	OCK	CAS	SE NO. 3					
S	:	M:	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-	-	-:-	:-	:-	:-	:
	1:	1:	19.14	:	0.40:	1.00:	-0.30:	0.30:
	2:	1:	2.29	:	0.20:	1.20:	-0.50:	0.50:
	3:	1:	1.14	:	0.10:	1.30:	-0.60:	0.60:
	4:	1:	0.23	:	-0.10:	1.50:	-0.80:	0.80:
	5:	1:	0.04	:	-0.30:	1.70:	-1.00:	1.00:
	6:	1:	0.01	:	-0.50:	1.90:	-1.20:	1.20:
	7:	1:	0.00	:	-0.70:	2.10:	-1.40:	1.40:
	8:	1:	0.00	:	-0.90:	2.30:	-1.60:	1.60:
	9:	1:	0.00	:	-1.10:	2.50:	-1.80:	1.80:
	10:	1:	0.00	:	-1.30:	2.70:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLC	OCK	CAS	E NO. 4					
S	:	M:	NUMBER	:	ຣ 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:	:-	:
	1:	1:	38.29	:	0.40:	1.00:	-0.30:	0.30:
	2:	1:	4.57	:	0.20:	1.20:	-0.50:	0.50:
	3:	1:	2.29	:	0.10:	1.30:	-0.60:	0.60:
	4:	1:	0.46	:	-0.10:	1.50:	-0.80:	0.80:
	5:	1:	0.08	:	-0.30:	1.70:	-1.00:	1.00:
	6:	1:	0.02	:	-0.50:	1.90:	-1.20:	1.20:
	7:	1:	0.01	:	-0.70:	2.10:	-1.40:	1.40:
	8:	1:	0.00	:	-0.90:	2.30:	-1.60:	1.60:
	9:	1:	0.00	:	-1.10:	2.50:	-1.80:	1.80:
	10:	1:	0.00	:	-1.30:	2.70:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

\mathbf{E}	:	\mathbf{T} :	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:	:-	:-	:-	:
:	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
:	2:	1:	0.44	:	0.81:	1.12:	0.81:	1.12:
	3:	1:	0.22	:	0.61:	1.23:	0.61:	1.23:
	4:	1:	0.06	:	0.42:	1.33:	0.42:	1.33:
!	5:	1:	0.00	:	0.22:	2.44:	0.22:	2.44:
	6:	1:	0.00	:	0.03:	2.55:	0.03:	2.55:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2) :	(t1) :	(t2) :
	-:	:-		-:-	·:	:-	:	:
	1:	1:	1.90	:	4.10:	7.62:	0.00:	0.00:
	2:	1:	0.09	:	3.52:	8.20:	0.00:	0.00:
	3:	1:	0.01	:	3.16:	8.56:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M:	NUMBER	:	so	:	S1	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:	:	:	:
1:	1:	9.57	:	3.42:	8.56:	0.00:	0.00:
2:	1:	1.14	:	1.71:	10.27:	0.00:	0.00:
3:	1:	0.57	:	0.86:	11.13:	0.00:	0.00:
4:	1:	0.11	:	-0.86:	12.84:	0.00:	0.00:
5:	1:	0.02	:	-2.57:	14.55:	0.00:	0.00:
6:	1:	0.01	:	-4.28:	16.26:	0.00:	0.00:
7:	1:	0.00	:	-5.99:	17.98:	0.00:	0.00:
8:	1:	0.00	:	-7.70:	19.69:	0.00:	0.00:
9:	1:	0.00	:	~9.42:	21.40:	0.00:	0.00:
10:	1:	0.00	:	-11.13:	23.11:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

-----THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD ----:--:-----:----: 1: 1: 19.14: 3.42: 8.56: 0.00: 0.00: 2: 1: 2.29: 1.71: 10.27: 0.00: 0.00:

3:	1:	1.14:	0.86:	11.13:	0.00:	0.00:
4:	1:	0.23:	-0.86:	12.84:	0.00:	0.00:
5:	1:	0.04 :	-2.57:	14.55:	0.00:	0.00:
6:	1:	0.01:	-4.28:	16.26:	0.00:	0.00:
7:	1:	0.00:	-5.99:	17.98:	0.00:	0.00:
8:	1:	0.00:	-7.70:	19.69:	0.00:	0.00:
9:	1:	0.00:	-9.42:	21.40:	0.00:	0.00:
10:	1:	0.00:	-11.13:	23.11:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	s0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	:-	:	:
	1:	1:	38.29	:	3.42:	8.56:	0.00:	0.00:
	2:	1:	4.57	:	1.71:	10.27:	0.00:	0.00:
	3:	1:	2.29	:	0.86:	11.13:	0.00:	0.00:
	4:	1:	0.46	:	-0.86:	12.84:	0.00:	0.00:
	5:	1:	0.08	:	-2.57:	14.55:	0.00:	0.00:
	6:	1:	0.02	:	-4.28:	16.26:	0.00:	0.00:
	7:	1:	0.01	:	-5.99:	17.98:	0.00:	0.00:
	8:	1:	0.00	:	-7.70:	19.69:	0.00:	0.00:
	9:	1:	0.00	:	-9.42:	21.40:	0.00:	0.00:
	10:	1:	0.00	:	-11.13:	23.11:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S		м:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-	. 	-:-	:	: -	:	:
	1:	1:	0.28	:	4.17:	4.21:	0.00:	0.00:
	2:	1:	0.44	:	3.38:	4.67:	0.00:	0.00:
	3:	1:	0.22	:	2.54:	5.13:	0.00:	0.00:
	4:	1:	0.06	:	1.75:	5.55:	0.00:	0.00:
	5:	1:	0.00) :	0.92:	10.17:	0.00:	0.00:
	6:	1:	0.00) :	0.13:	10.63:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

ANALYSIS RESULTS:

Schedl	Block	Final	Flaw Size	K max
	S	Step	c	c-tip
100	15	0 .	.440140	12.514320

```
15
   200
                          0.470786
                                            12.944208
   300
            15
                          0.505643
                                            13.416808
   400
            15
                          0.545620
                                            13.939613
   500
            15
                          0.591907
                                            14.522131
   600
            15
                          0.646093
                                            15,176664
   700
            15
                          0.710356
                                            15.919496
   800
            15
                          0.787762
                                            16.772784
   900
            15
                          0.882785
                                            17.767717
  1000
           15
                          1.002247
                                            18.950157
  1100
           15
                          1.157165
                                            20.391517
  1200
            15
                                            22.212240
                          1.366767
  1300
            15
                          1.668705
                                            24.641266
  1400
                          2.152549
                                            28.213974
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 65.92 \quad K \text{ ref} = 0.000 \quad K \text{ cr} = 65.91
at the very beginning of Load Step No. 10
Step description:
of Block No. 14 of Schedule No.
                               1440
Crack Size
            c = 2.45642
              FATIGUE CRACK GROWTH ANALYSIS
             -----Modified by FAI-----
            DATE: 30-APR-99 TIME: 12:45:16
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 1, PSE-W10 .050 skin, 4 linked holes
GEOMETRY
MODEL: TC01-Through crack in center of plate.
Plate Thickness, t =
                   0.0500
 " Width, W
              = 24.0000
FLAW SIZE:
c (init.) = 1.038
MATERIAL
------
MATL 1: 2024-T3
      Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : :
         : 1 : 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.050: 65.9:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
--:----:---:---:
: 1:0.829D-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
```

MODEL: TC01

FATIGUE SCHEDULE BLOCK INPUT TABLE

```
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                          0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                            8.5600
Scale Factor for Stress S1:
                            0.0000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                             8.5600
Scale Factor for Stress S1:
                            0.0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                             0.0000
Scale Factor for Stress S1:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                            4.1700
Scale Factor for Stress S1:
                            0.0000
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
                            Block Case No.
 Block Number
From - To
                                     1
    2
              2
              3
              4
    4
    5
              5
    6
    7
              7
    8
    q
              9
   10
             10
   11
             11
   12
             12
             13
   13
   14
             14
                                      4
BLOCK CASE NO. 1
 S : M: NUMBER
                            S0
                                    :
                   :
 T : A: OF
E : T: FATIGUE
                   :
                        (t1): (t2): (t1): (t2)
 P : L: CYCLES :
 ----:--:--
                       -----:----:-
   1: 1: 1.90 : 0.70:
                                           0.70:
                                 1.30:
                                                   1.30:
   2: 1:
               0.09:
                         0.60:
                                  1.40:
                                            0.60:
                                                     1.40:
                                            0.54:
                                                     1.46:
               0.01 :
                         0.54:
                                   1.46:
   3: 1:
 Environmental Crack Growth Check for Sustained Stresses
 (Kmax less than KIscc): NOT SET
 BLOCK CASE NO. 2
 S : M: NUMBER :
                            S0
                                       :
  T : A:
          OF
  E : T: FATIGUE
```

P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		•:•	:	:	:	:
1:	1:	9.57	:	0.40:	1.00:	-0.30:	0.30:
2:	1:	1.14	:	0.20:	1.20:	-0.50:	0.50:
3:	1:	0.57	:	0.10:	1.30:	-0.60:	0.60:
4:	1:	0.11	:	-0.10:	1.50:	-0.80:	0.80:
5:	1:	0.02	:	-0.30:	1.70:	-1.00:	1.00:
6:	1:	0.01	:	-0.50:	1.90:	-1.20:	1.20:
7:	1:	0.00	:	-0.70:	2.10:	-1.40:	1.40:
8:	1:	0.00	:	-0.90:	2.30:	-1.60:	1.60:
9:	1:	0.00	:	-1.10:	2.50:	-1.80:	1.80:
10:	1:	0.00	:	-1.30:	2.70:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BL	OCK	CAS	SE NO. 3					
S	:	M:	NUMBER	:	S 0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		:	:-	:-	:-	:
	1:	1:	19.	14 :	0.40:	1.00:	-0.30:	0.30:
	2:	1:	2.	29 :	0.20:	1.20:	-0.50:	0.50:
	3:	1:	1.	14:	0.10:	1.30:	-0.60:	0.60:
	4:	1:	0.	23 :	-0.10:	1.50:	-0.80:	0.80:
	5:	1:	0.	04:	-0.30:	1.70:	-1.00:	1.00:
	6:	1:	0.	01:	-0.50:	1.90:	-1.20:	1.20:
	7:	1:	0.	00:	-0.70:	2.10:	-1.40:	1.40:
	8:	1:	0.	00:	-0.90:	2.30:	-1.60:	1.60:
	9:	1:	0.	00:	-1.10:	2.50:	-1.80:	1.80:
:	10:	1:	0.	00:	-1.30:	2.70:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK CASE NO. 4										
S	S : M: NUMBER		NUMBER	:	S 0	:	S1	:		
T	:	A:	OF	:		:		:		
E	:	T:	FATIGUE	:		:		:		
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :		
	-:	:-		-:-	:-	:	:-	:		
	1:	1:	38.29	:	0.40:	1.00:	-0.30:	0.30:		
	2:	1:	4.57	:	0.20:	1.20:	-0.50:	0.50:		
	3:	1:	2.29	:	0.10:	1.30:	-0.60:	0.60:		
	4:	1:	0.46	:	-0.10:	1.50:	-0.80:	0.80:		
	5:	1:	0.08	:	-0.30:	1.70:	-1.00:	1.00:		
	6:	1:	0.02	:	-0.50:	1.90:	-1.20:	1.20:		
	7:	1:	0.01	:	-0.70:	2.10:	-1.40:	1.40:		
	8:	1:	0.00	:	-0.90:	2.30:	-1.60:	1.60:		
	9:	1:	0.00	:	-1.10:	2.50:	-1.80:	1.80:		
1	10:	1:	0.00	:	-1.30:	2.70:	-2.00:	2.00:		

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

			E NO. 5 NUMBER	:	· s	0		:	s1		:
${f T}$:	A:	OF	:				:			:
E	:	T:	FATIGUE	:				:			:
P	:	L:	CYCLES	:	(t1)	:	(t2)	:	(t1) :	(t2)	:
	٠: -	:-		-:-		:		:	:-		:
1	.:	1:	0.28	:	1.00	:	1.01	. :	1.00:	1.	01:
2	: :	1:	0.44	:	0.81	:	1.12	::	0.81:	1.	12:
3	:	1:	0.22	:	0.61	:	1.23	:	0.61:	1.	23:
4	:	1:	0.06	:	0.42	:	1.33	:	0.42:	1.	33:

5: 1:	0.00 :	0.22:	2.44:	0.22:	2.44:
6. 1.	0.00 :	0.03:	2.55:	0.03:	2.55:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S1 S0 ----:--:--:---:----:-----:-----: 1: 1: 9.57: 3.42: 8.56: 0.00: 0.00: 2: 1: 1.14: 1.71: 10.27: 0.00: 0.00: 3: 1: 0.57: 0.86: 11.13: 0.00: 0.00:

 0.86:
 11.13:
 0.00:
 0.00:

 -0.86:
 12.84:
 0.00:
 0.00:

 -2.57:
 14.55:
 0.00:
 0.00:

 0.11 : 4: 1: 0.00: 5: 1: 0.02: 0.00: 0.01: -4.28: 16.26: 0.00: 6: 1: 0.00 : -5.99: 17.98: 0.00 : -7.70: 19.69: 0.00 : -9.42: 21.40: 0.00: 0.00: 0.00: 7: 1: 8: 1: 21.40: 0.00: 0.00: 9:1: 0.00: 0.00: -11.13: 23.11: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

_____ STD so S : M: NUMBER : : ---: 1: 1: 19.14: 3.42: 8.56: 0.00: 0.00: 0.00: 2.11: 1.12: 2.29: 1.71: 10.27: 0.00: 2: 1: 0.00: 0.00: 0.00: 0.00: 1.14: 0.86: 11.13: 3: 1: 4: 1: 0.23: -0.86: 12.84: 0.23: -0.86: 12.84: 0.04: -2.57: 14.55: 0.00: 5: 1: 0.00: 6: 1: 0.01: -4.28: 16.26: 0.00: 7: 1: 0.00: -5.99: 17.98: 0.00: 0.00: 8: 1: 0.00: -7.70: 19.69: 0.00: 0.00: 9: 1: 0.00: -9.42: 21.40: 0.00: 0.00:

10: 1: 0.00 : -11.13: 23.11: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STL)							
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		. :		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	·:-	:	:
	1:	1:	38.29	:	3.42:	8.56:	0.00:	0.00:
	2:	1:	4.57	:	1.71:	10.27:	0.00:	0.00:
	3:	1:	2.29	:	0.86:	11.13:	0.00:	0.00:
	4:	1:	0.46	:	-0.86:	12.84:	0.00:	0.00:
	5:	1:	0.08	:	-2.57:	14.55:	0.00:	0.00:
	6:	1:	0.02	:	-4.28:	16.26:	0.00:	0.00:
	7:	1:	0.01	:	~5.99:	17.98:	0.00:	0.00:
	8:	1:	0.00	:	-7.70:	19.69:	0.00:	0.00:
	9:	1:	0.00	:	-9.42:	21.40:	0.00:	0.00:
1	0:	1:	0.00	:	-11.13:	23.11:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
\mathbf{E}	:	T: '	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:	:
	1:	1:	0.28	:	4.17:	4.21:	0.00:	0.00:
:	2:	1:	0.44	:	3.38:	4.67:	0.00:	0.00:
:	3:	1:	0.22	:	2.54:	5.13:	0.00:	0.00:
	4:	1:	0.06	:	1.75:	5.55:	0.00:	0.00:
	5:	1:	0.00	:	0.92:	10.17:	0.00:	0.00:
	6:	1:	0.00	:	0.13:	10.63:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W

MODEL: TC01

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	· c	c-tip
100	15		1.204624	20.815551
200	15		1.433152	22.763607
300	15		1.769501	25.412920
400	15		2.332196	29.472280

FINAL RESULTS:

Unstable crack growth, max stress intensity exceeds critical value: $K \max = 65.92$ $K \operatorname{ref} = 0.000$ $K \operatorname{cr} = 65.91$

at Cycle No. 0.00 of Load Step No. 10

Step description:
of Block No. 5 of Schedule No. 415
Crack Size c = 2.45690

```
FATIGUE CRACK GROWTH ANALYSIS
             ---------
            DATE: 09/18/98 TIME: 11:01:02
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - Roark
GEOMETRY
MODEL: TC01-Through crack in center of plate.
Plate Thickness, t =
                   0.0500
 " Width, W
                  5.0000
FLAW SIZE:
c (init.) = 0.2500E-01
MATERIAL
MATL 1: 2024-T3
      Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : :
: 1 : 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.050: 65.9:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           :----:----:----:----:
: 1 :0.829E-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - Roark
MODEL: TC01
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: -2.0000
Scale Factor for Stress S1: 0.00000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.00000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
```

STD

Scale Factor for Stress S1: 0.00000

```
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                         13.540
Scale Factor for Stress S1: 0.00000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                          4.2000
                         0.00000
Scale Factor for Stress S1:
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
Block Number
                          Block Case No.
From - To
                                 1
   2
            2
            3
             4
                                 1
   4
   5
             5
   6
   7
             7
   8
             8
   9
            9
  10
            10
  11
            11
  12
            12
            13
  13
            14
  15
            15
BLOCK CASE NO. 1
 S : M: NUMBER
                : . so
                                          S1
 T : A:
        OF
 E : T: FATIGUE
 P : L: CYCLES
                     (t1): (t2):
                                      (t1) : (t2)
----:--:--
                     -----:----:
                    0.70:
        1.90 :
                               1.30:
                                       0.70:
                                                1.30:
· 1: 1:
             0.09:
                       0.60:
                               1.40:
                                        0.60:
                                                1.40:
   2: 1:
             0.01:
                      0.54:
                               1.46:
                                       0.54:
                                                1.46:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
 S : M: NUMBER
                :
                    S0
                                          S1
                                  :
 T : A:
         OF
                :
 E : T: FATIGUE
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
 9.57 :
1.14 :
                    0.38: 0.98: 0.38: 0.98:
0.18: 1.18: 0.18: 1.18:
   1: 1:
   2: 1:
                              1.28:
             0.57 :
                      0.08:
   3: 1:
                                       0.08:
                                                1.28:
                                               1.48:
                      -0.12:
   4: 1:
             0.11 :
                               1.48:
                                       -0.12:
                      -0.32:
                                      -0.32:
   5: 1:
             0.02:
                              1.68:
                                               1.68:
             0.01:
                                      -0.52:
   6: 1:
                      -0.52:
                               1.88:
                                                1.88:
   7: 1:
              0.00:
                      -0.72:
                               2.08:
                                       -0.72:
                                                2.08:
                    -0.92:
              0.00:
                               2.28:
                                      -0.92:
                                                2.28:
   8: 1:
   9: 1:
              0.00 : .-1.12:
                              2.48:
                                       -1.12:
                                               2.48:
  10: 1:
              0.00: -1.32:
                               2.68:
                                       -1.32:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 3
```

: S1

S : M: NUMBER : S0

T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	1:	1:	19.14	:	0.38:	0.98:	0.38:	0.98:
	2:	1:	2.29	:	0.18:	1.18:	0.18:	1.18:
	3:	1:	1.14	:	0.08:	1.28:	0.08:	1.28:
	4:	1:	0.23	:	-0.12:	1.48:	-0.12:	1.48:
	5:	1:	0.04	:	-0.32:	1.68:	-0.32:	1.68:
	6:	1:	0.01	:	-0.52:	1.88:	-0.52:	1.88:
	7:	1:	0.00	:	-0.72:	2.08:	-0.72:	2.08:
	8:	1:	0.00	:	-0.92:	2.28:	-0.92:	2.28:
	9:	1:	0.00	:	-1.12:	2.48:	-1.12:	2.48:
1	10:	1:	0.00	:	-1.32:	2.68:	-1.32:	2.68:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BL	OCK	CAS	SE NO. 4					
s	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:	:-	:-	:-	:
	1:	1:	38.29	:	0.38:	0.98:	0.38:	0.98:
	2:	1:	4.57	:	0.18:	1.18:	0.18:	1.18:
	3:	1:	2.29	:	0.08:	1.28:	0.08:	1.28:
	4:	1:	0.46	:	-0.12:	1.48:	-0.12:	1.48:
	5:	1:	0.08	:	-0.32:	1.68:	-0.32:	1.68:
	6:	1:	0.02	:	-0.52:	1.88:	-0.52:	1.88:
	7:	1:	0.01	:	-0.72:	2.08:	-0.72:	2.08:
	8:	1:	0.00	:	-0.92:	2.28:	-0.92:	2.28:
	9:	1:	0.00	:	-1.12:	2.48:	-1.12:	2.48:
:	10:	1:	0.00	:	-1.32:	2.68:	-1.32:	2.68:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		:	:-	:-	:-	:
	1:	1:	0.2	8 :	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.4	4:	0.75:	1.23:	0.75:	1.23:
	3:	1:	0.2	2:	0.50:	1.46:	0.50:	1.46:
	4:	1:	0.0	6:	0.26:	1.69:	0.26:	1.69:
	5:	1:	0.0	0:	0.01:	1.92:	0.01:	1.92:
	6:	1:	0.0	0:	-0.24:	2.14:	-0.24:	2.14:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - Roark MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

					•			
STD								
S	:	M:	NUMBER	:	so	:	S1	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		- :	:	:	:	:
1	١:	1:	1.90	:	-1.40:	-2.60:	0.00:	0.00:
2	2:	1:	0.09	:	-1.20:	-2.80:	0.00:	0.00:

0.00:

0.00:

0.01: -1.08: -2.92: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - Roark MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

S : M: NUMBER : S0 ----:--:--:----:-----: 1: 1: 9.57: 5.15: 13.27: 0.00: 0.00: 2: 1: 1.14: 2.44: 15.98: 0.00: 0.00: 3: 1: 0.57: 1.08: 17.33: 0.00: 0.00: 0.00: 0.11 : -1.62: 20.04: 0.00: 4: 1: 0.02: -4.33: 22.75: 0.00: 0.01: -7.04: 25.46: 0.00: 5: 1: 0.00: 0.00: 6: 1: 0.00: -9.75: 28.16: 7: 1: 0.00: 0.00 : -12.46: 30.87: 0.00 : -15.16: 33.58: 0.00 : -17.87: 36.29: 0.00: 0.00: 8: 1: 9: 1: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - Roark MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

10: 1:

S0 : : (ksi) : S : M: NUMBER
 1: 1:
 19.14:
 5.15:
 13.27:
 0.00:

 2: 1:
 2.29:
 2.44:
 15.98:
 0.00:
 0.00: 2.29 : 1.14 : 0.00: 1.08: 17.33: 3: 1: 0.00: 0.23 : -1.62: 20.04: 0.04 : -4.33: 22.75: 0.01 : -7.04: 25.46: 0.00: 4: 1: 0.00: 0.00: 0.00: 5: 1: 0.00: 0.00: 6: 1: 0.00: -9.75: 28.16: 0.00: 0.00: 7: 1: 0.00: -12.46: 30.87: 0.00: 0.00: -15.16: 33.58: 0.00: 0.00: 0.00: 8: 1: 9: 1: 10: 1: 0.00: -17.87: 36.29: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - Roark MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : (ksi) : T : A: OF : E : T: FATIGUE : (ksi) : (ksi) : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :
 1: 1:
 38.29 :
 5.15:
 13.27:
 0.00:
 0.00:

 2: 1:
 4.57 :
 2.44:
 15.98:
 0.00:
 0.00:

 3: 1:
 2.29 :
 1.08:
 17.33:
 0.00:
 0.00:

4:	1:	0.46 :	-1.62:	20.04:	0.00:	0.00:
5:	1:	0.08:	-4.33:	22.75:	0.00:	0.00:
6:	1:	0.02 :	-7.04:	25.46:	0.00:	0.00:
7:	1:	0.01 :	-9.75:	28.16:	0.00:	0.00:
8:	1:	0.00:	-12.46:	30.87:	0.00:	0.00:
9:	1:	0.00:	-15.16:	33.58:	0.00:	0.00:
10:	1:	0.00:	-17.87:	36.29:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - Roark MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	s1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	::	:	:-	:
	1:	1:	0.28	:	4.20:	4.24:	0.00:	0.00:
	2:	1:	0.44	:	3.15:	5.17:	0.00:	0.00:
	3:	1:	0.22	:	2.10:	6.13:	0.00:	0.00:
	4:	1:	0.06	:	1.09:	7.10:	0.00:	0.00:
	5:	1:	0.00	:	0.04:	8.06:	0.00:	0.00:
	6:	1:	0.00	:	-1.01:	8.99:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - Roark MODEL: TC01

ANALYSIS RESULTS:

Block		Final Flaw Size	K max
	Step	c	c-tip
15		0.026285	2.582992
15		0.027728	2.652981
15		0.029358	2.729857
15		0.031210	2.814651
15		0.033328	2.908626
15		0.035769	3.013345
15		0.038610	3.130771
15		0.041948	3.263402
15		0.045919	3.414472
15		0.050707	3.588259
15		0.056579	3.790547
15		0.063923	4.029408
15		0.073336	4.316445
15		0.085775	4.669107
15		0.102882	5.115192
15		0.127708	5.702268
15		0.166638	6.521042
15		0.235693	7.776803
15		0.391306	10.118750
	15 15 15 15 15 15 15 15 15 15 15 15 15 1	Step 15 15 15 15 15 15 15 15 15 15 15 15 15	Step C 15

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or

(b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 10

Step description:

of Block No. 8 of Schedule No. Crack Size c = 0.788815 3950

```
FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K \max = 65.99 K \text{ ref} = 0.0000 K \text{ cr} = 65.91
at the very beginning of Load Step No.
Step description:
of Block No. 8 of Schedule No.
Crack Size c = 0.891819
              FATIGUE CRACK GROWTH ANALYSIS
                   _____
             DATE: 09/18/98 TIME: 11:02:22
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - NASBEM
GEOMETRY
MODEL: TC01-Through crack in center of plate.
Plate Thickness, t =
                    0.0500
               = 5.0000
 " Width, W
FLAW SIZE:
c (init.) = 0.2500E-01
MATERIAL
MATL 1: 2024-T3
       Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : :
        ____;___:__:__:__:__:__:_--::----::----::-----::-----::---
 : 1: 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.050: 65.9:
:Matl:----- Crack Growth Eqn Constants -----
:---::---::---::---::
 : 1 :0.829E-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
 THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - NASBEM
MODEL: TC01
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
 [Note: Stress = Input Value * Stress Factor]
 Stress Scaling Factors for Block Case: 1
 Scale Factor for Stress S0: -1.5000
 Scale Factor for Stress S1: 0.00000
```

Stress Scaling Factors for Block Case: 2

Scale Factor for Stress S0: 10.150 Scale Factor for Stress S1: 0.00000 Stress Scaling Factors for Block Case: 3 Scale Factor for Stress SO: Scale Factor for Stress S1: 0.00000 Stress Scaling Factors for Block Case: 4 Scale Factor for Stress SO: 10.150 Scale Factor for Stress S1: 0.00000 Stress Scaling Factors for Block Case: 5 Scale Factor for Stress S0: 3.1500 Scale Factor for Stress S1: 0.00000 Total No. of Blocks in Schedule = Block Number and Case Correspondences Block Number Block Case No. From 1 1 2 2 3 3 5 4 4 1 6 6 5 7 1 3 9 9 5 10 10 11 3 11 12 12 13 13 1 14 14 4 15 15 BLOCK CASE NO. 1 S0 S1 S : M: NUMBER T : A: OF E : T: FATIGUE P : L: CYCLES (t1): (t2) : (t1): (t2) _____ 0.70: 1: 1: 1.90: 1.30: 0.70: 1.30: 0.09 : 2: 1: 0.60: 1.40: 0.60: 1.40: 0.01: 0.54: 3: 1: 1.46: 0.54: 1.46: Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET BLOCK CASE NO. 2 S : M: NUMBER S1 T : A: OF Ε : T: FATIGUE P : L: CYCLES (t1): (t2) (t1): (t2) ----:--:--:-1: 1: 9.57: 0.38: 0.98: 0.38: 0.98: 2: 1: 1.14: . 0.18: 1.18: 0.18: 1.18: 0.57 : 3: 1: 0.08: 1.28: 0.08: 1.28: 4: 1: 0.11: -0.12: 1.48: -0.12: 1.48: 5: 1: 0.02: -0.32: 1.68: -0.32: 1.68: 6: 1: 0.01: -0.52: 1.88: -0.52: 1.88: 7: 1: 0.00: -0.72: 2.08: -0.72: 2.08: 8: 1: 0.00: -0.92: -0.92: 2.28: 2.28: 9: 1: 0.00 : -1.12: 2.48: -1.12: 2.48: 10: 1: 0.00: -1.32: 2.68: -1.32: 2.68:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	CK	CAS	E NO. 3					
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:-	:	:-	:
	1:	1:	19.14	:	0.38:	0.98:	0.38:	0.98:
	2:	1:	2.29	:	0.18:	1.18:	0.18:	1.18:
	3:	1:	1.14	:	0.08:	1.28:	0.08:	1.28:
	4:	1:	0.23	:	-0.12:	1.48:	-0.12:	1.48:
	5:	1:	0.04	:	-0.32:	1.68:	-0.32:	1.68:
	6:	1:	0.01	:	-0.52:	1.88:	-0.52:	1.88:
	7:	1:	0.00	:	-0.72:	2.08:	-0.72:	2.08:
	8:	1:	0.00	:	-0.92:	2.28:	-0.92:	2.28:
	9:	1:	0.00	:	-1.12:	2.48:	-1.12:	2.48:
1	0:	1:	0.00	:	-1.32:	2.68:	-1.32:	2.68:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLOCK	CAS	E NO. 4					
s:	M:	NUMBER	:	S 0	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		- : -	:-	:-	:-	:
1:	1:	38.29	:	0.38:	0.98:	0.38:	0.98:
2:	1:	4.57	:	0.18:	1.18:	0.18:	1.18:
3:	1:	2.29	:	0.08:	1.28:	0.08:	1.28:
4:	1:	0.46	:	-0.12:	1.48:	-0.12:	1.48:
5:	1:	0.08	:	-0.32:	1.68:	-0.32:	1.68:
6:	1:	0.02	:	-0.52:	1.88:	-0.52:	1.88:
7:	1:	0.01	:	-0.72:	2.08:	-0.72:	2.08:
8:	1:	0.00	:	-0.92:	2.28:	-0.92:	2.28:
9:	1:	0.00	:	-1.12:	2.48:	-1.12:	2.48:
10:	1:	0.00	:	-1.32:	2.68:	-1.32:	2.68:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BL	OCK	CAS	E NO. 5					
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	\mathbf{T} :	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.75:	1.23:	0.75:	1.23:
	3:	1:	0.22	:	0.50:	1.46:	0.50:	1.46:
	4:	1:	0.06	:	0.26:	1.69:	0.26:	1.69:
	5:	1:	0.00	:	0.01:	1.92:	0.01:	1.92:
	6٠	1 .	0.00	•	-0.24:	2.14:	-0.24:	2.14:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - NASBEM MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S	:	М:	NUMBER	:	S0	:	S1	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:		- : -	:	:	: - :	:
	1:	1:	1.90	:	-1.05:	-1.95:	0.00:	0.00:
	2:	1:	0.09	:	-0.90:	-2.10:	0.00:	0.00:
	3:	1:	0.01	:	-0.81:	-2.19:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - NASBEM MODEL: $\ensuremath{\mathsf{TC01}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	Α:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	:·	:	:
	1:	1:	9.57	:	3.86:	9.95:	0.00:	0.00:
	2:	1:	1.14	:	1.83:	11.98:	0.00:	0.00:
	3:	1:	0.57	:	0.81:	12.99:	0.00:	0.00:
	4:	1:	0.11	:	-1.22:	15.02:	0.00:	0.00:
	5:	1:	0.02	:	-3.25:	17.05:	0.00:	0.00:
	6:	1:	0.01	:	~5.28:	19.08:	0.00:	0.00:
	7:	1:	0.00	:	-7.31:	21.11:	0.00:	0.00:
	8:	1:	0.00	:	-9.34:	23.14:	0.00:	0.00:
	9:	1:	0.00	:	-11.37:	25.17:	0.00:	0.00:
1	10:	1:	0.00	:	-13.40:	27.20:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - NASBEM MODEL: $\ensuremath{\mathsf{TC01}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
S	: M:	NUMBER	:	S0	:	S1	:
T	: A:	OF	:		. :		:
E	: T:	FATIGUE	:	(ksi)) :	(ksi) :
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::		-:-	:	:-	:-	:
1	: 1:	19.14	:	3.86:	9.95:	0.00:	0.00:
2	: 1:	2.29	:	1.83:	11.98:	0.00:	0.00:
3	: 1:	1.14	:	0.81:	12.99:	0.00:	0.00:
4	: 1:	0.23	:	-1.22:	15.02:	0.00:	0.00:
5	: 1:	0.04	:	-3.25:	17.05:	0.00:	0.00:
6	: 1:	0.01	:	-5.28:	19.08:	0.00:	0.00:
7	: 1:	0.00	:	-7.31:	21.11:	0.00:	0.00:
8	: 1:	0.00	:	-9.34:	23.14:	0.00:	0.00:
9	: 1:	0.00	:	-11.37:	25.17:	0.00:	0.00:
10	: 1:	0.00	:	-13.40:	27.20:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - NASBEM MODEL: $\ensuremath{\mathsf{TC01}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S: M: NUMBER: S0: S1

Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi)	:
P	:	L:	CYCLES	:		(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-			:
	1:	1:	38.29	:	3.86:	9.95:	0.00:	0.00:
	2:	1:	4.57	:	1.83:	11.98:	0.00:	0.00:
	3:	1:	2.29	:	0.81:	12.99:	0.00:	0.00:
	4:	1:	0.46	:	-1.22:	15.02:	0.00:	0.00:
	5:	1:	0.08	:	-3.25:	17.05:	0.00:	0.00:
	6:	1:	0.02	:	-5.28:	19.08:	0.00:	0.00:
	7:	1:	0.01	:	-7.31:	21.11:	0.00:	0.00:
	8:	1:	0.00	:	-9.34:	23.14:	0.00:	0.00:
	9:	1:	0.00	:	-11.37:	25.17:	0.00:	0.00:
	10.	1 •	0.00	•	-13.40:	27.20:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - NASBEM MODEL: $\ensuremath{\mathsf{TC01}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	Μ:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	: -		-:-	:-	- :-	:	:
	1:	1:	0.28	:	3.15:	3.18:	0.00:	0.00:
	2:	1:	0.44	:	2.36:	3.87:	0.00:	0.00:
	3:	1:	0.22	:	1.57:	4.60:	0.00:	0.00:
	4:	1:	0.06	:	0.82:	5.32:	0.00:	0.00:
	5:	1:	0.00	:	0.03:	6.05:	0.00:	0.00:
	6:	1:	0.00	:	-0.76:	6.74:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - NASBEM MODEL: $\ensuremath{\mathsf{TC01}}$

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
200	15		0.025195	1.896632
400	15		0.025394	1.904097
600	15		0.025596	1.911677
800	15		0.025803	1.919374
1000	15		0.026013	1.927190
1200	15		0.026228	1.935129
1400	15		0.026447	1.943191
1600	15		0.026670	1.951381
1800	15		0.026898	1.959702
2000	15		0.027130	1.968155
2200	15		0.027368	1.976743
2400	15		0.027610	1.985471
2600	15		0.027857	1.994341
2800	15		0.028109	2.003356
3000	15		0.028367	2.012520
3200	15		0.028630	2.021836
3400	15		0.028899	2.031307
3600	15		0.029173	2.040939
3800	15		0.029454	2.050733
4000	15		0.029741	2.060695

4200	15		0.030034				2.070828
4400	15		0.030334				2.081136
4600	15		0.030640				2.091625
4800	15		0.030953				2.102298
5000	15		0.031274				2.113161
5200	15		0.031630				2.125154
5400	15		0.032027				2.138463
5600	15		0.032456				2.152752
5800	15		0.032916				2.167945
6000	15		0.033405				2.184016
6200	15		0.033926				2.200963
6400	15		0.034477				2.218795
6600	15		0.035062				2.237533
6800	15		0.035681				2.257204
7000	15		0.036336				2.277839
7200	15		0.037029				2.299480
7400	15		0.037763				2.322169
7600	15		0.038540				2.345957
7800	15		0.039364				2.370899
8000	15		0.040236				2.397057
8200	15		0.041162				2.424500
8400	1 5		0.042146				2.453303
8600	15		0.043190				2.483549
8800	15		0.044302				2.515331
9000	15		0.045486				2.548750
9200	15		0.046749				2.583919
9400	15		0.048098				2.620961
9600	15		0.049540				2.660016
9800	15		0.051086				2.701236
10000	15		0.052745				2.744794
THROUGH	ሮ ዋልሮዥ ሮልሮቹ 1	DC17_1/11	arack in	holls:	alcin	_	NTA CIDITIM

THROUGH CRACK CASE 1, PSE-W11 crack in belly skin - NASBEM

MODEL: TC01

ANALYSIS RESULTS (contd)

Schedl Block Final Flaw Size K max Step C c-tip 10200 15 0.054529 2.790880 10400 15 0.056452 2.839710 10600 15 0.058528 2.891525 15 10800 0.060775 2.946599 11000 15 0.063215 3.005242 11200 15 0.065870 3.067807 11400 15 0.068768 3.134699 11600 15 0.071943 3.206382 11800 15 0.075433 3.283396 12000 15 0.079284 3.366367 15 12200 0.083552 3.456030 12400 15 0.088305 3.553253 12600 15 0.093625 3.659070 12800 15 0.099614 3.774724 13000 15 0.106401 3.901726 13200 15 0.114147 4.041937 13400 15 0.123060 4.197663 13600 15 0.133413 4.371822 13800 15 0.145568 4.568172 14000 15 0.160020 4.791652 14200 15 0.177459 5.048943 14400 15 0.198881 5.349292 14600 15 0.225783 5.706067 14800 15 0.260516 6.139583 15000 0.307043 15 6.682903 15200 15 0.372651 7.395340 15400 15 0.472749 8.401144 15600 15 0.649027 10.046387 15800 1.123464 14.517017

```
ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or (b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 10 Step description: of Block No. 14 of Schedule No. 15816 Crack Size c = 1.21771

FINAL RESULTS: Unstable crack growth, max stress intensity exceeds critical value: K max = 66.06 K ref = 0.0000 K cr = 65.91 at the very beginning of Load Step No. 10 Step description: of Block No. 2 of Schedule No. 15826 Crack Size c = 1.29207
```

FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----DATE: 03-NOV-97 TIME: 11:43:51 (computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)] PROBLEM TITLE PSE-W12, sa227<16,500 crack in angle 1st fastener GEOMETRY MODEL: TC03-Through crack from hole in plate. Plate Thickness, t = 0.1250 " Width, W = 0.7500Hole Diameter, D = 0.1900Hole-Center-to-Edge Dist., B = 0.3750 FLAW SIZE: c (init.) = 0.5000E-01 MATERIAL. MATL 1: 2014-T6 Plt & sht; L-T Material Properties: :Matl: UTS: YS: K1e: K1c: Ak: Bk: Thk: Kc: KIscc: : No.: : : : : : : : : 1 : 74.0: 65.0: 38.0: 27.0: 1.00: 1.00: 0.125: 51.8: :Matl:----- Crack Growth Eqn Constants ----: : No.: C : n : p : q : DKo : Rcl :Alpha:Smax/: --:----:---:---: : 1 :0.350D-07:2.800:0.50:1.00: 2.70: 0.70: 1.50: 0.30: MODEL: TC03 FATIGUE SCHEDULE BLOCK INPUT TABLE [Note: Stress = Input Value * Stress Factor] Stress Scaling Factors for Block Case: 1 Scale Factor for Stress S0: 0.0000 Scale Factor for Stress S3: 0.0000 Stress Scaling Factors for Block Case: 2 Scale Factor for Stress S0: Scale Factor for Stress S3: 5.0500 Stress Scaling Factors for Block Case: 3 Scale Factor for Stress S0: 0.58000 Scale Factor for Stress S3: 5.2200

```
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress SO: 0.65000
Scale Factor for Stress S3:
                            5.8500
Stress Scaling Factors for Block Case: 5
                           0.26000
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                            2.3600
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
                            Block Case No.
Block Number
From -
                                    1
             1
   1
   2
             2
                                    2
             3
   3
   5
             5
    6
              6
    7
    8
              R
    9
              9
             10
   10
   11
             11
   12
             12
   13
             13
   14
             14
             15
   15
BLOCK CASE NO. 1
 S : M: NUMBER
                                              S3
         OF
 T : A:
                   :
 E : T: FATIGUE
P : L: CYCLES
                   :
                        (t1): (t2):
                                          (t1): (t2)
   --:--:---:-
              1.90:
                         0.70:
                                  1.30:
                                           0.70:
                                                    1.30:
   1: 1:
   2: 1:
               0.09:
                         0.60:
                                  1.40:
                                           0.60:
                                                    1.40:
               0.01 :
                         0.46:
                                  1.46:
                                           0.54:
   3: 1:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
 S : M: NUMBER
 T : A:
          OF
                   :
 E : T: FATIGUE
 P : L: CYCLES
                  : (t1): (t2): (t1): (t2)
 1.05:
              9.57 :
                      0.45:
                                          0.45:
                                                    1.05:
   1: 1:
   2: 1:
              1.14:
                        0.25:
                                  1.25:
                                           0.25:
                                                    1.25:
             0.57 :
   3: 1:
                        0.15:
                                1.35:
                                          0.15:
                        -0.05:
                                 1.55:
                                          -0.05:
                                                    1.55
   4: 1:
              0.11 :
               0.02:
                        -0.25:
                                          -0.25:
   5: 1:
                                  1.75:
                                                    1.95:
                        -0.45:
               0.01:
                                          -0.45:
                                  1.95:
   6: 1:
   7: 1:
               0.00:
                        -0.65:
                                  2.15:
                                          -0.65:
                                                    2.15:
               0.00:
                        -0.85:
                                  2.35:
                                          -0.85:
                                                    2.35:
   8: 1:
                                                    2.55:
   9: 1:
               0.00:
                       -1.05:
                                  2.55:
                                          -1.05:
               0.00 :
                        -1.25:
                                  2.75:
                                          -1.25:
                                                    2.75:
  10: 1:
 Environmental Crack Growth Check for Sustained Stresses
 (Kmax less than KIscc): NOT SET
BLOCK CASE NO. 3
 S : M: NUMBER
                            S0
```

Т	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	1:	1:	19.14	:	0.46:	1.06:	0.45:	1.05:
	2:	1:	2.29	:	0.26:	1.26:	0.25:	1.25:
	3:	1:	1.14	:	0.16:	1.36:	0.15:	1.35:
	4:	1:	0.23	:	-0.04:	1.56:	-0.05:	1.55:
	5:	1:	0.04	:	-0.24:	1.76:	-0.25:	1.75:
	6:	1:	0.01	:	-0.44:	1.96:	-0.45:	1.95:
	7:	1:	0.00	:	-0.64:	2.16:	-0.65:	2.15:
	8:	1:	0.00	:	-0.84:	2.36:	-0.85:	2.35:
	9:	1:	0.00	:	-1.04:	2.56:	-1.05:	2.55:
1	10:	1:	0.00	:	-1.24:	2.76:	-1.25:	2.75:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BL	BLOCK CASE NO. 4									
s	:	M:	NUMBER	:	S 0	:	s3	:		
T	:	A:	OF	:		:		:		
E	:	T:	FATIGUE	:		:		:		
P	:	L:	CYCLES	:	(t1):	(t2) :	(t1) :	(t2) :		
	:	:-		-:-	:-	:	:-	:		
	1:	1:	38.29	:	0.45:	1.05:	0.45:	1.05:		
	2:	1:	4.57	:	0.25:	1.25:	0.25:	1.25:		
	3:	1:	2.29	:	0.15:	1.35:	0.15:	1.35:		
	4:	1:	0.46	:	-0.05:	1.55:	-0.05:	1.55:		
	5:	1:	0.08	:	-0.25:	1.75:	-0.25:	1.75:		
	6:	1:	0.02	:	-0.45:	1.95:	-0.45:	1.95:		
	7:	1:	0.01	:	-0.65:	2.15:	-0.65:	2.15:		
	8:	1:	0.00	:	-0.85:	2.35:	-0.85:	2.35:		
	9:	1:	0.00	:	-1.05:	2.55:	-1.05:	2.55:		
:	10:	1:	0.00	:	-1.25:	2.75:	-1.25:	2.75:		

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BL	OCK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S 0	:	S3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.00:	1.74:	0.00:	1.74:
	3:	1:	0.22	:	-1.00:	2.48:	-1.00:	2.48:
	4:	1:	0.06	:	-2.00:	3.22:	-2.00:	3.22:
	5:	1:	0.00	:	-3.00:	3.96:	-3.00:	3.96:
	6:	1:	0.00	:	-4.00:	4.70:	-4.00:	4.70:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

PSE-W12, sa227<16,500 crack MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

						-		
${\tt STD}$								
S	:	M:	NUMBER	:	S0	:	s3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		:	:	:	:-	:
:	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
2	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:

0.01: 0.00: 0.00: 0.00: 0.00: 3: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE-W12, sa227<16,500 crack

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD)							
S	:	M:	NUMBER	:	S0	:	S3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		- : -	:	:-	:	- :
	1:	1:	9.57	:	0.25:	0.59:	2.27:	5.30:
	2:	1:	1.14	:	0.14:	0.70:	1.26:	6.31:
	3:	1:	0.57	:	0.08:	0.76:	0.76:	6.82:
	4:	1:	0.11	:	-0.03:	0.87:	-0.25:	7.83:
	5:	1:	0.02	:	-0.14:	0.98:	-1.26:	8.84:
	6:	1:	0.01	:	-0.25:	1.09:	-2.27:	9.85:
	7:	1:	0.00	:	-0.36:	1.20:	-3.28:	10.86:
	8:	1:	0.00	:	-0.48:	1.32:	-4.29:	11.87:
	9:	1:	0.00	:	-0.59:	1.43:	-5.30:	12.88:
1	10:	1:	0.00	:	-0.70:	1.54:	-6.31:	13.89:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE-W12, sa227<16,500 crack

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	Μ:	NUMBER	:	S 0	:	S3	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:-	:	:
	1:	1:	19.14	:	0.27:	0.61:	2.35:	5.48:
	2:	1:	2.29	:	0.15:	0.73:	1.30:	6.52:
	3:	1:	1.14	:	0.09:	0.79:	0.78:	7.05:
	4:	1:	0.23	:	-0.02:	0.90:	-0.26:	8.09:
	5:	1:	0.04	:	-0.14:	1.02:	-1.30:	9.13:
	6:	1:	0.01	:	-0.26:	1.14:	-2.35:	10.18:
	7:	1:	0.00	:	-0.37:	1.25:	-3.39:	11.22:
	8:	1:	0.00	:	-0.49:	1.37:	-4.44:	12.27:
	9:	1:	0.00	:	-0.60:	1.48:	-5.48:	13.31:
	10:	1:	0.00	:	-0.72:	1.60:	-6.52:	14.35:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE-W12, sa227<16,500 crack MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

			-					
STD					•			
S	:	M:	NUMBER	:	S0	:	s3	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi)	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	- : ·	:-		-:	: -	:-	:	:
1	1:	1:	38.29	:	0.29:	0.68:	2.63:	6.14:
:	2:	1:	4.57	:	0.16:	0.81:	1.46:	7.31:
	3:	1:	2.29	:	0.10:	0.88:	0.88:	7.90:

4:	1:	0.46:	-0	.03:	1.01:	-0.29:	9.07:
5:	1:	0.08:	-0	.16:	1.14:	-1.46:	10.24:
6:	1:	0.02:	-0	.29:	1.27:	-2.63:	11.41:
7:	1:	0.01:	-0	.42:	1.40:	-3.80:	12.58:
8:	1:	0.00:	-0	.55:	1.53:	-4.97:	13.75:
9:	1:	0.00:	-0	.68:	1.66:	-6.14:	14.92:
10:	1:	0.00:	-0	.81:	1.79:	-7.31:	16.09:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

PSE-W12, sa227<16,500 crack

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	s 0	:	S 3	:
\mathbf{T}	:	A:	OF	:		:		:
Ε	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2) :	(t1) :	(t2) :
	-:	:-		-:-	·:	:	:	:
	1:	1:	0.28	:	0.26:	0.26:	2.36:	2.38:
:	2:	1:	0.44	:	0.00:	0.45:	0.00:	4.11:
	3:	1:	0.22	:	-0.26:	0.64:	-2.36:	5.85:
	4:	1:	0.06	:	-0.52:	0.84:	-4.72:	7.60:
	5:	1:	0.00	:	-0.78:	1.03:	-7.08:	9.35:
1	6:	1:	0.00	:	-1.04:	1.22:	-9.44:	11.09:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

PSE-W12, sa227<16,500 crack

MODEL: TC03

ANALYSIS RESULTS:

Schedl	Block		Final	Flaw	Size	K max
		Step		С		c-tip
500	15		0	.05009	51	3.552443
1000	15		0	.05010)2	3.552321
1500	15		0	.0501	53	3.552200
2000	15		0	.05020)4	3.552078
2500	15		0	.05025	55	3.551957
3000	15		0	.05030)6	3.551835
3500	15		0	.05035	57	3.551714
4000	15		0	.05040	8	3.551592
4500	15		0	.05045	8	3.551470
5000	15		0	.05050)9	3.551349
5500	15		0	.05056	50	3.551227
6000	15		0	.05063	.1	3.551106
6500	15		0	.05066	51	3.550984
7000	15		0	.05073	.2	3.550862
7500	15		0	.05076	53	3.550741
8000	15			.05081		3.550619
8500	15			.05086		3.550498
9000	15		0	.05091	.4	3.550376
9500	15			.05096		3.550255
10000	15			.05101		3.550133
10500	15			.05106	_	3.550012
11000	15			.05111	-	3.549890
11500	15			.05116		3.549769
12000	15			.05121		3.549647
12500	15			.05126	-	3.549526
13000	15			.05131		3.549404
13500	15		0	.05136	i8	3.549283

14000	15	0.051419	3.549161
14500	15	0.051469	3.549040
15000	15	0.051519	3.548919
15500	15	0.051569	3.548798
16000	15	0.051619	3.548676
16500	15	0.051670	3.548555
17000	1 5	0.051720	3.548434
17500	15	0.051770	3.548313
18000	15	0.051820	3.548192
18500	1 5	0.051870	3.548070
19000	15	0.051920	3.547949
19500	15	0.051970	3.547828
20000	15	0.052020	3.547707
20500	15	0.052070	3.547587
21000	15	0.052120	3.547466
21500	15	0.052170	3.547345
22000	15	0.052219	3.547224
22500	15	0.052269	3.547103
23000	15	0.052319	3.546983
23500	15	0.052369	3.546862
24000	15	0.052418	3.546742
24500	15	0.052468	3.546621
25000	15	0.052518	3.546501

MODEL: TC03

ANALYSIS RESULTS (contd)

K max
c-tip
3.546380
3.546260
3.546140
3.546020
3.545899
3.545779
3.545659
3.545539
3.545420
3.545300

FINAL RESULTS:

Critical Crack Size has NOT been reached. at Cycle No. 0.00 of Load Step No.

Step description:

of Block No. 15 of Schedule No. 30000

Crack Size c = 0.530130E-01

FATIGUE CRACK GROWTH ANALYSIS -----Modified by FAI-----

DATE: 03-NOV-97 TIME: 11:45:23

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

PSE-W12, sa227=16,500 crack in angle 1st fastener

GEOMETRY

MODEL: TC03-Through crack from hole in plate.

0.1250 Plate Thickness, t =

" Width, W = 0.7500 Hole Diameter, D = 0.1900

Hole-Center-to-Edge Dist., B = 0.3750

FLAW SIZE:

```
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2014-T6
      Plt & sht; L-T
Material Properties:
:Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : :
      : 1 : 74.0: 65.0: 38.0: 27.0: 1.00: 1.00: 0.125: 51.8: :
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
:---::----:----:----:
: 1 :0.350D-07:2.800:0.50:1.00: 2.70: 0.70: 1.50: 0.30:
MODEL: TC03
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                         0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 0.65000
Scale Factor for Stress S3:
                         4.1300
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0: 0.68000
Scale Factor for Stress S3: 4.2900
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0: 0.76000
Scale Factor for Stress S3:
                       4.8000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0: 0.30000
Scale Factor for Stress S3: 1.9400
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From - To
   1
   2 -
            2
                                 2
            3
                                 5
                                 1
```

5	_	5			3	
6		6			5	
7	-	7			1	
8	_	8			3	
9	_	9			5	
10	-	10			1	
11	-	11			3	
12	_	12			5	
13	_	13			1	
14	-	14			4	
15	-	15			5	
BLOCK	CASE	NO. 1				
s:	M: 1	NUMBER	:	so	:	
т:	A:	OF	:		:	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK CASE NO. 2 so S : M: NUMBER : : : A: OF E : T: FATIGUE : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 1: 1: 9.57: 0.45: 1.05: 0.46: 2: 1: 1.14: 0.25: 1.25: 0.26: 3: 1: 0.57: 0.15: 1.35: 0.16: 4: 1: 0.11: -0.05: 1.55: -0.04: 1.06: 1.26: 1.36: 1.56: 1.75: 0.02 : -0.25: -0.24: 5: 1: 1.95: -0.44: 0.01: -0.45: 1.96: 6: 1: 7: 1: 0.00 : -0.65: 2.15: -0.64: 2.16: 2.35: -0.84: -0.85: 2.36: 8: 1: 0.00: 2.55: 2.56: 9: 1: 0.00: -1.05: -1.04: 0.00: -1.25: 2.75: -1.24: 2.76: 10: 1:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLC	CK	CAS	E NO. 3					
S	:	М:	NUMBER	:	S 0	:	S3	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		:-	:-	: -	:-	:
	1:	1:	19.1	4:	0.45:	1.05:	0.46:	1.06:
	2:	1:	2.2	9:	0.25:	1.25:	0.26:	1.26:
	3:	1:	1.1	4:	0.15:	1.35:	0.16:	1.36:
	4:	1:	0.2	3:	-0.05:	1.55:	-0.04:	1.56:
	5:	1:	0.0	4:	-0.25:	1.75:	-0.24:	1.76:
	6:	1:	0.0	1:	-0.45:	1.95:	-0.44:	1.96:
	7:	1:	0.0	0 :	-0.65:	2.15:	-0.64:	2.16:
	8:	1:	0.0	0:	-0.85:	2.35:	-0.84:	2.36:
	9:	1:	0.0	0:	-1.05:	2.55:	-1.04:	2.56:
1	LO:	1:	0.0	0:	-1.25:	2.75:	-1.24:	2.76:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 4

s:	M:	NUMBER	:	so	:	S3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:-	:-	:-	:-	:
1:	1:	38.29		0.45:	1.05:	0.45:	1.05:
2:	1:	4.57	:	0.25:	1.25:	0.25:	1.25:
3:	1:	2.29	:	0.15:	1.35:	0.15:	1.35:
4:	1:	0.46	:	-0.05:	1.55:	-0.05:	1.55:
5:	1:	0.08	:	-0.25:	1.75:	-0.25:	1.75:
6:	1:	0.02	:	-0.45:	1.95:	-0.45:	1.95:
7:	1:	0.01	:	-0.65:	2.15:	-0.65:	2.15:
8:	1:	0.00	:	-0.85:	2.35:	-0.85:	2.35:
9:	1:	0.00	:	-1.05:	2.55:	-1.05:	2.55:
10:	1:	0.00	:	-1.25:	2.75:	-1.25:	2.75:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

PSE-W12, sa227=16,500 crack MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

------ Schedule block Sikess lable

\mathtt{STD}								
s	:	М:	NUMBER	:	so	:	S3	:
${f T}$:	A:	OF	:		:		:
E	:	\mathbf{T} :	FATIGUE	:	(ksi)	:	(ksi)	:
₽	:	L:	CYCLES	:	(t1) : (t	2) :	(t1) :	(t2) :
	• : •	:-		-:-	:	:-	:	:
1	L:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
2	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
3	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than ${\tt KIscc)}:\ {\tt NOT}\ {\tt SET}$

PSE-W12, sa227=16,500 crack MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD
S : M: NUMBER : S0
T : A: OF :
E : T: FATIGUE : (ksi)

	•	n.	Or	•		•		•
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi	.) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:		:-	:	:-	: -	:
	1:	1:	9.57	:	0.29:	0.68:	1.90:	4.38:
	2:	1:	1.14	٠:	0.16:	0.81:	1.07:	5.20:
	3:	1:	0.57	:	0.10:	0.88:	0.66:	5.62:
	4:	1:	0.11	:	-0.03:	1.01:	-0.17:	6.44:

:

5: 1:	0.02 :	-0.16:	1.14:	-0.99:	7.27:
6: 1:	0.01 :	-0.29:	1.27:	-1.82:	8.09:
7: 1:	0.00 :	-0.42:	1.40:	-2.64:	8.92:
8: 1:	0.00 :	-0.55:	1.53:	-3.47:	9.75:
9: 1:	0.00 :	-0.68:	1.66:	-4.30:	10.57:
10: 1:	0.00 :	-0.81:	1.79:	-5.12:	11.40:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

PSE-W12, sa227=16,500 crack

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S:	М:	NUMBER	:	so	:	s3	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
	L:		:	, ,	(t2) :		(t2) :
_	-	19.14	-	0.31:	=	1.97:	4.55:
	1:						
2:	1:	2.29	:	0.17:	0.85:	1.12:	5.41:
3:	1:	1.14	:	0.10:	0.92:	0.69:	5.83:
4:	1:	0.23	:	-0.03:	1.05:	-0.17:	6.69:
5:	1:	0.04	:	-0.17:	1.19:	-1.03:	7.55:
6:	1:	0.01	:	-0.31:	1.33:	-1.89:	8.41:
7:	1:	0.00	:	-0.44:	1.46:	-2.75:	9.27:
8:	1:	0.00	:	-0.58:	1.60:	-3.60:	10.12:
9:	1:	0.00	:	-0.71:	1.73:	-4.46:	10.98:
10:	1:	0.00	:	-0.85:	1.87:	-5.32:	11.84:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): $\ensuremath{\mathtt{NOT}}$ SET

PSE-W12, sa227=16,500 crack

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

						_		
ST)							
S	:	M:	NUMBER	:	S0	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	
₽	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:-	:	:
	1:	1:	38.29	:	0.34:	0.80:	2.16:	5.04:
	2:	1:	4.57	:	0.19:	0.95:	1.20:	6.00:
	3:	1:	2.29	:	0.11:	1.03:	0.72:	6.48:
	4:	1:	0.46	:	-0.04:	1.18:	-0.24:	7.44:
	5:	1:	0.08	:	-0.19:	1.33:	-1.20:	8.40:
	6:	1:	0.02	:	-0.34:	1.48:	-2.16:	9.36:
	7:	1:	0.01	:	-0.49:	1.63:	-3.12:	10.32:
	8:	1:	0.00	:	-0.65:	1.79:	-4.08:	11.28:
	9:	1:	0.00	:	-0.80:	1.94:	-5.04:	12.24:
	10:	1:	0.00	:	-0.95:	2.09:	-6.00:	13.20:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

PSE-W12, sa227=16,500 crack MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD									
S	:	M:	NUMBER	:	S0	:	s3	:	
${f T}$:	A:	OF	:		:		:	
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:	

			(t2) :		
	:	:	:-	:-	:
1: 1:	0.28 :	0.30:	0.30:	1.94:	1.96:
2: 1:	0.44 :	0.00:	0.52:	0.00:	3.38:
3: 1:	0.22 :	-0.30:	0.74:	-1.94:	4.81:
4: 1:	0.06:	-0.60:	0.97:	-3.88:	6.25:
5: 1:	0.00:	-0.90:	1.19:	-5.82:	7.68:
6: 1:	0.00 :	-1.20:	1.41:	-7.76:	9.12:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

PSE-W12, sa227=16,500 crack

MODEL: TC03

ANALYSIS RESULTS:

Schedl	Block		Flaw Size	K max
		Step	С	c-tip
500	15	0	.050024	3.214849
1000	15	0	.050048	3.214821
1500	15	0	.050073	3.214793
2000	15	0	.050097	3.214766
2500	15	0	.050121	3.214738
3000	15	0	.050145	3.214710
3500	15	0	.050169	3.214682
4000	15	0	.050193	3.214654
4500	15	0	.050218	3.214626
5000	15	0	.050242	3.214599
5500	15	0	.050266	3.214571
6000	15	0	.050290	3.214543
6500	15	0	.050314	3.214515
7000	15	0	.050338	3.214487
7500	15	0	.050363	3.214459
8000	15	0	.050387	3.214431
8500	15	0	.050411	3.214403
9000	15	, 0	.050435	3.214375
9500	15	0	.050459	3.214347
10000	15	0	.050483	3.214319
10500	15	0	.050507	3.214291
11000	15	0	.050531	3.214263
11500	15	0	.050555	3.214234
12000	15	0	.050580	3.214206
12500	15	0	.050604	3.214178
13000	15	0	.050628	3.214150
13500	15	0	.050652	3.214122
14000	15	0	.050676	3.214094
14500	15	0	.050700	3.214066
15000	15	0	.050724	3.214037
15500	15	0	.050748	3.214009
16000	15	0	.050772	3.213981
16500	15	0	.050796	3.213953
17000	15	0	.050820	3.213925
17500	15	0	.050844	3.213896
18000	15	0	.050868	3.213868
18500	15	0	.050892	3.213840
19000	15		.050916	3.213811
19500	15		.050940	3.213783
20000	15		.050964	3.213755
20500	15		.050988	3.213727
21000	15		.051012	3.213698
21500	15		.051036	3.213670
22000	15		.051060	3.213641
22500	15		.051084	3.213613
23000	15		.051108	3.213585
23500	15		.051132	3.213556
-		·	-	

24000	15	0.051156	3.213528
24500	15	0.051180	3.213500
25000	15	0.051204	3.213471

MODEL: TC03

ANALYSIS RESULTS (contd)

K max Schedl Block Final Flaw Size c-tip Step C 0.051228 3.213443 25500 26000 15 0.051252 3.213414 3.213386 0.051276 26500 15 0.051300 27000 15 3.213357 3.213329 0.051324 27500 15 15 0.051348 3.213300 28000 0.051372 3.213272 15 28500 3.213244 15 0.051396 29000 0.051420 3.213215 15 29500 30000 15 0.051444 3.213187

FINAL RESULTS:

Critical Crack Size has NOT been reached. 0.00 of Load Step No. at Cycle No.

Step description:

of Block No. 15 of Schedule No. 30000 Crack Size c = 0.514437E-01

C-12 PSE W13 SA227 Tip Extension at End of Outboard Fitting Rear Spar Lower Surface

```
FATIGUE CRACK GROWTH ANALYSIS
             -----Modified by FAI-----
            DATE: 17-MAR-99 TIME: 14:29:51
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
PSE-W13, TC03, crack in angle, @ 16,500 lbs
GEOMETRY
MODEL: TC03-Through crack from hole in plate.
                   0.0630
Plate Thickness, t =
" Width, W = 0.9300
Hole Diameter, D = 0.1900
Hole-Center-to-Edge Dist., B =
                          0.4300
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
-----
MATL 1: 2024-T3511
     Extr; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : :
: 1 : 77.0: 55.0: 35.0: 25.0: 1.00: 1.00: 0.063: 49.6:
:Matl:----- Crack Growth Eqn Constants -----:
--:----:---:---:---:
: 1 :0.200D-07:2.700:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
MODEL: TC03
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
                         0.0000
Scale Factor for Stress S0:
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                         2.6800
Scale Factor for Stress S3:
                         9.1100
```

C-12 PSE W13 SA227 Tip Extension at End of Outboard Fitting Rear Spar Lower Surface (Continued)

```
Stress Scaling Factors for Block Case: 3
                            2,4000
Scale Factor for Stress S0:
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                          0.51000
Scale Factor for Stress S3:
                           1.7500
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
                            Block Case No.
 Block Number
          To
From -
   1
              2
   2
    4
    5
              5
    7
              8
              9
    9
   10
             10
             11
   11
   12
             12
             13
   13
   14
             14
   15
             15
BLOCK CASE NO. 1
 S : M: NUMBER
 T : A:
          OF
 E : T: FATIGUE :
 P : L: CYCLES :
                      (t1): (t2): (t1): (t2)
 ---:--:--:-
             1.90 : 0.70: 1.30: 0.09 : 0.60: 1.40:
   1: 1: 1.90 :
                                           0.70: 1.30:
   2: 1:
                                           0.60: 1.40:
               0.01:
                         0.54:
                                 1.46:
                                           0.54:
Environmental Crack Growth Check for Sustained Stresses
 (Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
 S : M: NUMBER :
                      so
                                      :
    : A:
          OF
 E : T: FATIGUE :
 P : L: CYCLES : (t1) : (t2) : (t1) : (t2)

    0.78:
    0.80:
    0.79:
    0.81:

    0.57:
    1.01:
    0.58:
    1.02:

    0.36:
    1.22:
    0.37:
    1.23:

    0.14:
    1.44:
    0.15:
    1.45:

   1: 1: 0.00:
   2: 1:
            15.09 :
             1.52 :
                      0.36:
0.14:
   3: 1:
   4: 1:
               0.23:
                                 1.66:
               0.05 :
                       -0.08:
   5: 1:
                                          -0.07:
                                                     1.88:
                        -0.29:
                                 1.87: -0.28:
               0.01 :
   6: 1:
               0.00:
                        -0.51:
                                   2.09:
                                           -0.50:
                                                      2.10:
   7: 1:
                                  2.31:
                                                     2.32:
   8: 1:
               0.00 :
                        -0.73:
                                          -0.72:
                                                    2.53:
   9: 1:
              0.00:
                        -0.94:
                                2.52: -0.93:
               0.00:
                                           -1.15:
                                                     2.75:
                        -1.16:
                                2.74:
  10: 1:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLO	OCK	CAS	SE NO. 3					
S	:	M:	NUMBER	:	so	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
Ρ	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	0.00	:	0.79:	0.81:	0.79:	0.81:
	2:	1:	31.10	:	0.58:	1.02:	0.58:	1.02:
	3:	1:	2.98	:	0.37:	1.23:	0.37:	1.23:
	4:	1:	0.45	:	0.15:	1.45:	0.15:	1.45:
	5:	1:	0.09	:	-0.07:	1.67:	-0.07:	1.67:
	6:	1:	0.02	:	-0.28:	1.88:	-0.28:	1.88:
	7:	1:	0.01	:	-0.50:	2.10:	-0.50:	2.10:
	8:	1:	0.00	:	-0.72:	2.32:	-0.72:	2.32:
	9:	1:	0.00	:	-0.93:	2.53:	-0.93:	2.53:
1	10:	1:	0.00	:	-1.15:	2.75:	-1.15:	2.75:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLO	BLOCK CASE NO. 4										
S	:	M:	NUMBER	:	S 0	:	s3	:			
\mathbf{T}	:	A:	OF	:		:		:			
E	:	T:	FATIGUE	:		:		:			
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :			
	-:	:-		-:-	:-	:	:-	:			
	1:	1:	0.00	:	0.99:	1.01:	0.99:	1.01:			
	2:	1:	24.52	:	0.78:	1.22:	0.78:	1.22:			
	3:	1:	2.73	:	0.57:	1.43:	0.57:	1.43:			
	4:	1:	0.46	:	0.35:	1.65:	0.35:	1.65:			
	5:	1:	0.11	:	0.13:	1.87:	0.13:	1.87:			
	6:	1:	0.03	:	-0.08:	2.08:	-0.08:	2.08:			
	7:	1:	0.01	:	-0.30:	2.30:	-0.30:	2.30:			
	8:	1:	0.00	:	-0.52:	2.52:	-0.52:	2.52:			
	9:	1:	0.00	:	-0.73:	2.73:	-0.73:	2.73:			
1	0:	1:	0.00	:	-0.95:	2.95:	-0.95:	2.95:			

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLO	CK	CAS	E NO. 5					
s	:	M:	NUMBER	:	S 0	:	S3	:
${f T}$:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		- : -	:-	:-	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
:	2:	1:	0.44	:	0.00:	1.74:	0.00:	1.74:
:	3:	1:	0.22	:	-1.00:	2.48:	-1.00:	2.48:
	4:	1:	0.06	:	-2.00:	3.22:	-2.00:	3.22:
	5:	1:	0.00	:	-3.00:	3.96:	-3.00:	3.96:
4	6:	1:	0.00	:	-4.00:	4.70:	-4.00:	4.70:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

PSE-W13, TC03, crack in ang MODEL: TC03

STD								
S	:	M:	NUMBER	:	S0	:	S 3	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:	:	:
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
:	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

PSE-W13, TC03, crack in ang MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

ST	D							
S	:	M:	NUMBER	:	S0	:	S 3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)) :	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		:	:	:-	:	:
	1:	1:	0.0	0:	2.09:	2.14:	7.20:	7.38:
	2:	1:	15.0	9:	1.53:	2.71:	5.28:	9.29:
	3:	1:	1.5	2:	0.96:	3.27:	3.37:	11.21:
	4:	1:	0.2	3 :	0.38:	3.86:	1.37:	13.21:
	5:	1:	0.0	5:	-0.21:	4.45:	-0.64:	15.21:
	6:	1:	0.0	1:	-0.78:	5.01:	-2.55:	17.13:
	7:	1:	0.0	0:	-1.37:	5.60:	-4.55:	19.13:
	8:	1:	0.0	0:	-1.96:	6.19:	-6.56:	21.14:
	9:	1:	0.0	0:	-2.52:	6.75:	-8.47:	23.05:
	10:	1:	0.0	0:	-3.11:	7.34:	-10.48:	25.05:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

PSE-W13, TC03, crack in ang

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S 0	:	s3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:	:	:
	1:	1:	0.00	:	1.90:	1.94:	7.03:	7.21:
	2:	1:	31.10	:	1.39:	2.45:	5.16:	9.08:
	3:	1:	2.98	:	0.89:	2.95:	3.29:	10.95:
	4:	1:	0.45	:	0.36:	3.48:	1.34:	12.91:
	5:	1:	0.09	:	-0.17:	4.01:	-0.62:	14.86:
	6:	1:	0.02	:	-0.67:	4.51:	-2.49:	16.73:
	7:	1:	0.01	:	-1.20:	5.04:	-4.45:	18.69:
	8:	1:	0.00	:	-1.73:	5.57:	-6.41:	20.65:
	9:	1:	0.00	:	-2.23:	6.07:	-8.28:	22.52:
1	0:	1:	0.00	:	-2.76:	6.60:	-10.23:	24.48:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE-W13, TC03, crack in ang

MODEL: TC03

STI)							
S	:	M:	NUMBER	:	S0	:	s3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:		-:-	:	:-	:-	:
	1:	1:	0.00	:	1.83:	1.87:	6.21:	6.33:
	2:	1:	24.52	:	1.44:	2.26:	4.89:	7.65:
	3:	1:	2.73	:	1.05:	2.65:	3.57:	8.97:
	4:	1:	0.46	:	0.65:	3.05:	2.19:	10.35:
	5:	1:	0.11	:	0.24:	3.46:	0.82:	11.72:
	6:	1:	0.03	:	-0.15:	3.85:	-0.50:	13.04:
	7:	1:	0.01	፡	-0.56:	4.25:	-1.88:	14.42:
	8:	1:	0.00	:	-0.96:	4.66:	-3.26:	15.80:
	9:	1:	0.00	:	-1.35:	5.05:	-4.58:	17.12:
1	0:	1:	0.00	:	-1.76:	5.46:	-5.96:	18.50:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

PSE-W13, TC03, crack in ang

MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1):	(t2) :
	-:	:-		-:-	:	:	:-	:
:	1:	1:	0.28	:	0.51:	0.52:	1.75:	1.77:
:	2:	1:	0.44	:	0.00:	0.89:	0.00:	3.04:
:	3:	1:	0.22	:	-0.51:	1.26:	-1.75:	4.34:
	4:	1:	0.06	:	-1.02:	1.64:	-3.50:	5.64:
1	5:	1:	0.00	:	-1.53:	2.02:	-5.25:	6.93:
4	6:	1:	0.00	:	-2.04:	2.40:	-7.00:	8.22:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

PSE-W13, TC03, crack in ang

MODEL: TC03

ANALYSIS RESULTS:

Schedl Block Final Flaw Size K max Step C c-tip 500 0.052148 3.499047 1000 15 0.054286 3.498362 1500 15 0.056412 3.497561 2000 15 0.058528 3.496728 2500 15 0.060633 3.495930 3000 15 0.062728 3.495220 0.064815 3500 15 3.494640 15 4000 0.066894 3.494226 4500 15 0.068965 3.494004 5000 15 0.071030 3.493998 5500 15 0.073090 3.494224 6000 15 0.075145 3.494697 6500 15 0.077198 3.495430 7000 15 0.079248 3.496432 7500 15 0.081297 3.497713

		0.002246	2 400270
8000	15	0.083346	3.499279
8500	15	0.085396	3.501138
9000	15	0.087448	3.503295
9500	15	0.089504	3.505757
10000	15	0.091564	3.508529
10500	15	0.093630	3.511618
11000	15	0.095702	3.515031
11500	15	0.097782	3.518773
12000	15	0.099872	3.522853
12500	15	0.101972	3.527277
13000	15	0.104083	3.532055
13500	15	0.106207	3.537196
14000	15	0.108345	3.542711
14500	15	0.110499	3.548609
15000	15	0.112669	3.554905
15500	15	0.114858	3.561611
16000	15	0.117067	3.568743
16500	15	0.119296	3.576317
17000	15	0.121548	3.584351
17500	15	0.123825	3.592865
18000	15	0.126128	3.601882
18500	15	0.128459	3.611426
19000	15	0.130820	3.621524
19500	15	0.133212	3.632205
20000	15	0.135639	3.643502
20500	15	0.138102	3.655451
21000	15	0.140604	3.668094
21500	15	0.143147	3.681474
22000	15	0.145734	3.695642
22500	15	0.148368	3.710655
23000	15	0.151053	3.726574
23500	15	0.153798	3.743508
24000	15	0.156619	3.761625
24500	15	0.159514	3.780983
25000	15	0.162486	3.801687

MODEL: TC03

ANALYSIS RESULTS (contd)

Schedl	Block		Final Flaw Size	K max
Benedi	DIOCK	Step	· C	c-tip
25500	15	Бсср	0.165540	3.823864
26000	15		0.168682	3.847663
26500	15		0.171919	3.873261
27000	15		0.175258	3.900864
27500	15		0.178710	3.930719
28000	15		0.182284	3.963118
28500	15		0.185994	3.998417
29000	15		0.189853	4.037048
29500	15		0.193880	4.079546
30000	15		0.198094	4.126581
30500	15		0.202522	4.179009
31000	15		0.207195	4.237941
31500	15		0.212152	4.304859
32000	15		0.217444	4.381790
32500	15		0.223138	4.471603
33000	15		0.229326	4.578543
33500	15		0.236140	4.709234
34000	15		0.243784	4.874933
34500	15		0.252591	5.096490
35000	15		0.263183	5.419519

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or

(b) $KIc/YS > 0.5 \ sqrt. in.(2.5 \ sqrt. mm.)$ and bending dominates.) at the very beginning of Load Step No. 10 Step description: of Block No. 2 of Schedule No. 35123 Crack Size c = 0.266172 35500 15 0.277021 5.976884 FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 10 Step description: of Block No. 2 of Schedule No. 35613 Crack Size c = 0.280926

C-13 PSE W14 SA227 Tip Extension at End of Outboard Fitting Main Spar Lower Surface

```
FATIGUE CRACK GROWTH ANALYSIS
             -----modified by FAI-----
            DATE: 25-SEP-97 TIME: 15:21:53
     (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC-3, PSE-W14 crack in angle, Main Spar Lower
GEOMETRY
MODEL: TC03-Through crack from hole in plate.
                   0.1250
Plate Thickness, t =
" Width, W = 0.7500
Hole Diameter, D = 0.1900
                          0.3750
Hole-Center-to-Edge Dist., B =
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2014-T6
     Plt & sht; L-T
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1 : 74.0: 65.0: 38.0: 27.0: 1.00: 1.00: 0.125: 51.8:
:Matl:---- Crack Growth Eqn Constants ----:
: 1 :0.350D-07:2.800:0.50:1.00: 2.70: 0.70: 1.50: 0.30:
TC-3, PSE-W14 crack in angle, Main Spar Lower
MODEL: TC03
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                          0.0000
Scale Factor for Stress S3:
                          0.0000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 0.36000
Scale Factor for Stress S3: 2.8300
```

Stress Scaling Factors for Block Case: 3
Scale Factor for Stress SO: 0.37000

```
Scale Factor for Stress S3: 2.9300
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                         0.41000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                         0.27000
Scale Factor for Stress S3:
                        2.1100
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                          Block Case No.
From - To
          . 1
   1
                                  1
                                  2
   3
            3
                                  5
   5
            5
   6
             6
   7
            7
                                  1
   8
            8
   9
  10
           10
  11
  12
           12
  13
            13
  14
           14
  15
            15
BLOCK CASE NO. 1
S : M: NUMBER
                                          S3
T : A: OF
E : T: FATIGUE
P : L: CYCLES
                      (t1): (t2):
                                      (t1) : (t2)
1: 1: 0.90 : -0.35:
                                       -0.35:
                               2.35:
                                                 2.35:
             0.09:
  2: 1:
                      -0.40:
                               2.40:
                                       -0.40:
                                                 2.40:
             0.01:
                      -0.46:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER :
                         S0
                                          S3
  : A:
         OF
E : T: FATIGUE :
P : L: CYCLES :
                     (t1): (t2): (t1): (t2)
1: 1: 9.57: 0.45: 1.05: 0.45: 1.05: 2: 1: 1.14: 0.25: 1.25: 0.25: 1.25:
                                      0.25:
                                               1.25:
                      0.15:
  3: 1:
             0.57 :
                               1.35:
                                       0.15:
                                               1.35:
            0.11 : -0.05:
0.02 : -0.25:
  4: 1:
                               1.55:
                                      -0.05:
                                                1.55:
                               1.75:
  5: 1:
                                      -0.25:
                                                1.75:
  6: 1:
             0.01:
                      -0.45:
                               1.95:
                                      -0.45:
                                                1.95:
  7: 1:
             0.00:
                      -0.65:
                               2.15:
                                       -0.65:
                                                2.15:
  8: 1:
             0.00:
                     -0.85:
                               2.35:
                                       -0.85:
                                                 2.35:
  9: 1:
             0.00:
                      -1.05:
                               2.55:
                                       -1.05:
                                               2.55:
 10: 1:
             0.00 :
                     -1.25:
                               2.75:
                                                 2.75:
```

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

BI.	יכג	CAS	E NO. 3					
S		M:	NUMBER	:	so	:	s3	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	19.14	:	0.46:	1.06:	0.45:	1.05:
	2:	1:	2.29	:	0.26:	1.26:	0.25:	1.25:
	3:	1:	1.14	:	0.16:	1.36:	0.15:	1.35:
	4:	1:	0.23	:	-0.04:	1.56:	-0.05:	1.55:
	5:	1:	0.04	:	-0.24:	1.76:	-0.25:	1.75:
	6:	1:	0.01	:	-0.44:	1.96:	-0.45:	1.95:
	7:	1:	0.00	:	-0.64:	2.16:	-0.65:	2.15:
	8:	1:	0.00	:	-0.84:	2.36:	-0.85:	2.35:
	9:	1:	0.00	:	-1.04:	2.56:	-1.05:	2.55:
	10:	1:	0.00	:	-1.24:	2.76:	-1.25:	2.75:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOC	K CAS	SE NO. 4					
S	: M:	NUMBER	:	S 0	:	S3	:
${f T}$: A:	OF	:		:		:
E	: T:	FATIGUE	:		:		:
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::-		-:	:-	:-	:-	:
1	: 1:	38.29	:	0.46:	1.06:	0.45:	1.05:
2	: 1:	4.57	:	0.26:	1.26:	0.25:	1.25:
3	: 1:	1.14	:	0.16:	1.36:	0.15:	1.35:
4	: 1:	0.46	:	-0.04:	1.56:	-0.05:	1.55:
5	: 1:	0.08	:	-0.24:	1.76:	-0.25:	1.75:
6	: 1:	0.02	:	-0.44:	1.96:	-0.45:	1.95:
7	: 1:	0.01	:	-0.64:	2.16:	-0.65:	2.15:
8	: 1:	0.00	:	-0.84:	2.36:	-0.85:	2.35:
9	: 1:	0.00	:	-1.04:	2.56:	-1.05:	2.55:
10	: 1:	0.00	:	-1.24:	2.76:	-1.25:	2.75:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S 0	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	: -		-:-	:-	:-	:-	:
	1:	1:	0.28	:	1.00:	1.01:	1.00:	1.01:
	2:	1:	0.44	:	0.80:	1.10:	0.80:	1.10:
	3:	1:	0.22	:	0.60:	1.20:	0.60:	1.20:
	4:	1:	0.06	:	0.40:	1.30:	0.40:	1.30:
	5:	1:	0.00	:	0.20:	1.40:	0.20:	1.40:
	6:	1:	0.00	:	0.00:	1.50:	0.00:	1.50:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

TC-3, PSE-W14 crack in angle, Main Spar Lower MODEL: TC03

S	:	M:	NUMBER	:	S0	:	S	3 :
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ks	si) :
				:	(t1) :	(t2) :	(t1)	: (t2) :
	•	1:	0.90	- : - :	0.00:	0.00:	0.00	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3:	1:	0.01	:	0.00:	0.00:	0.00	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC-3, PSE-W14 crack in angle, Main Spar Lower MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

S : M: NUMBER : S3 T : A: OF 1: 1: 9.57: 0.16: 0.38: 1.27: 2.97: 2: 1: 1.14: 0.09: 0.45: 0.71: 3.54: 3: 1: 0.57: 0.05: 0.49: 0.42: 3.82: 4: 1: 0.11: -0.02: 0.56: -0.14: 4.39: 5: 1: 0.02: -0.09: 0.63: -0.71: 4.95: 0.01: -0.16: 6: 1: 0.70: -1.27: 5.52: 0.00: 7: 1: -0.23: 0.77: -1.84: 6.65: 0.85: -2.41: 0.00: -0.31: 8: 1: 0.00: -0.38: 0.92: 9: 1: -2.97: 7.22: 10: 1: 0.00 : -0.45: 0.99: -3.54: 7.78:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC-3, PSE-W14 crack in angle, Main Spar Lower MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER : S0 : : (ksi) : T : A: OF : : (ksi) : (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 1: 1: 19.14: 0.17: 0.39: 1.32: 3.08: 2: 1: 2.29: 0.10: 0.47: 0.73: 3.66: 3: 1: 1.14: 0.06: 0.50: 0.44: 3.96: 3.96: 0.23 : 4: 1: -0.01: 0.58: -0.15: 4.54: 5: 1: 0.04 : -0.09: 0.65: 0.73: -0.73: 5.13: 0.01: 6: 1: -0.16: -1.32: 5.71: 7: 1: 0.00: -0.24: 0.80: -1.90: 6.30: -0.31: 8: 1: 0.00 : 0.87: -2.49: 6.89: 0.95: 9: 1: 0.00 : -0.38: -3.08: 7.47: 0.00 : -0.46: 1.02: -3.66: 8.06:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC-3, PSE-W14 crack in angle, Main Spar Lower MODEL: TC03

STD							
S	: M:	NUMBER	:	S0	:	s3	:
T	: A:	OF	:		:		:
\mathbf{E}	: T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::		: -	:	:-	:	:
1	: 1:	38.29	:	0.19:	0.43:	1.47:	3.42:
2	: 1:	4.57	:	0.11:	0.52:	0.81:	4.07:
3	: 1:	1.14	:	0.07:	0.56:	0.49:	4.40:
4	: 1:	0.46	:	-0.02:	0.64:	-0.16:	5.05:
5	: 1:	0.08	:	-0.10:	0.72:	-0.81:	5.71:
6	: 1:	0.02	:	-0.18:	0.80:	-1.47:	6.36:
7	: 1:	0.01	:	-0.26:	0.89:	-2.12:	7.01:
8	: 1:	0.00	:	-0.34:	0.97:	-2.77:	7.66:
9	: 1:	0.00	:	-0.43:	1.05:	-3.42:	8.31:
10	: 1:	0.00	:	-0.51:	1.13:	-4.07:	8.96:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC-3, PSE-W14 crack in angle, Main Spar Lower MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD						
s : M	: NUMBER	:	so	:	s3	:
T : A	: OF	:		:		:
E : T	: FATIGUE	:	(ksi)	:	(ksi)	:
P : L	: CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:	:	:	:	:	:
1: 1	: 0.28	:	0.27:	0.27:	2.11:	2.13:
2: 1	: 0.44	:	0.22:	0.30:	1.69:	2.32:
3: 1	: 0.22	:	0.16:	0.32:	1.27:	2.53:
4: 1	: 0.06	:	0.11:	0.35:	0.84:	2.74:
5: 1	: 0.00	:	0.05:	0.38:	0.42:	2.95:
6: 1	: 0.00	:	0.00:	0.41:	0.00:	3.17:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

TC-3, PSE-W14 crack in angle, Main Spar Lower MODEL: TC03

ANALYSIS RESULTS:

Schedl Block Final Flaw Size K max c-tip 1000 15 0.050000 1.054599 1.054599 0.050001 2000 15 0.050001 1.054598 3000 15 0.050002 1.054598 4000 15 15 0.050002 1.054598 5000 1.054598 15 0.050003 6000 7000 15 0.050003 1.054597 0.050004 1.054597 8000 15 1.054597 9000 15 0.050004 1.054597 10000 15 0.050005 0.050005 1.054596 11000 15 12000 15 0.050005 1.054596 0.050006 1.054596 13000 15 1.054596 14000 0.050006 15000 15 0.050007 1.054595 1.054595 16000 15 0.050007

17000	1 5	0.050008	1.054595
18000	15	0.050008	1.054595
19000	15	0.050009	1.054594
20000	15	0.050009	1.054594
21000	15	0.050010	1.054594

FINAL RESULTS:

Critical Crack Size has NOT been reached. at Cycle No. 0.00 of Load Step No. 6 Step description:

of Block No. 15 of Schedule No. 21000 Crack Size c = 0.500096E-01

C-14 PSE EM1 Upper Engine Mount at Firewall

```
FATIGUE CRACK GROWTH ANALYSIS
           DATE: 09/10/98 TIME: 09:52:05
     (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate pre S/B
GEOMETRY
MODEL: TC01-Through crack in center of plate.
Plate Thickness, t =
                 0.1250
   Width, W
              = 2.4500
FLAW SIZE:
c (init.) = 0.2500E-01
MATERIAL
MATL 1:
      1
            4130N
Material Properties:
: 1 : 140.0: 120.0: 190.0: 135.0: 0.75: 0.50: 0.125: 202.4:
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           : : : : : : : :SIGo :
:---:
: 1 :0.170E-08:2.700:0.25:0.25: 6.00: 0.70: 2.50: 0.30:
 THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate pre S/B
MODEL: TC01
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1:
                       28.680
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1: 28.680
```

```
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                           0.00000
Scale Factor for Stress S1:
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                           0.00000
Scale Factor for Stress S1:
                            28,680
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                           0.00000
Scale Factor for Stress S1:
                           28.680
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                           Block Case No.
From
         ΤО
                                    1
   2
                                    2
   4
             4
                                    1
   5
   6
             6
   7
             8
                                    3
   9
  11
            11
                                    3
  12
            12
  13
            13
                                    1
  14
            14
                                    4
  15
            15
BLOCK CASE NO. 1
S : M: NUMBER
                  :
  : A:
          OF
E : T: FATIGUE
P : L: CYCLES
                 :
                       (t1): (t2)
                                         (t1): (t2)
----:--:--:-
              1.90:
                       -0.30:
  1: 1:
                                          1.91:
                                 0.30:
                                                  2.51:
  2: 1:
              0.09:
                       -0.40:
                                 0.40:
                                          1.81:
                                                   2.61:
  3: 1:
              0.01:
                       -0.46:
                                 0.46:
                                          1.75:
                                                   2.67:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                          S0
                                            s1
                  :
   : A:
          OF
E : T: FATIGUE
P : L: CYCLES :
                     (t1): (t2): (t1): (t2)
1: 1:
             9.57 :
                     -0.30:
                               0.30:
                                        1.91:
  2: 1:
              1.14:
                      -0.50:
                               0.50:
                                        1.71:
                                                   2.71:
  3: 1:
              0.57 :
                      -0.60:
                                 0.60:
                                          1.61:
                                                   2.81:
  4: 1:
              0.11 :
                       -0.80:
                                 0.80:
                                          1.41:
                                                   3.01:
                     -1.00:
  5: 1:
              0.02 :
                                 1.00:
                                         1.21:
              0.01:
  6: 1:
                       -1.20:
                                 1.20:
                                          1.01:
                                                   3.41:
  7: 1:
              0.00:
                       -1.40:
                                 1.40:
                                          0.81:
  8: 1:
              0.00:
                       -1.60:
                                 1.60:
                                          0.61:
                                                   3.81:
              0.00:
  9: 1:
                       -1.80:
                                 1.80:
                                          0.41:
                                                   4.01:
 10: 1:
              0.00:
                       -2.00:
                                 2.00:
                                          0.21:
                                                   4.21:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BL	OCK	CAS	E NO. 3					
S	:	M:	NUMBER	:	so	:	S1	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		·-:·	:-	:-	:-	:
	1:	1:	19.14	:	-0.30:	0.30:	1.91:	2.51:
	2:	1:	2.29	:	-0.50:	0.50:	1.71:	2.71:
	3:	1:	1.14	:	-0.60:	0.60:	1.61:	2.81:
	4:	1:	0.23	:	-0.80:	0.80:	1.41:	3.01:
	5:	1:	0.04	:	-1.00:	1.00:	1.21:	3.21:
	6:	1:	0.01	. :	-1.20:	1.20:	1.01:	3.41:
	7:	1:	0.00) :	-1.40:	1.40:	0.81:	3.61:
	8:	1:	0.00) :	-1.60:	1.60:	0.61:	3.81:
	9:	1:	0.00	:	-1.80:	1.80:	0.41:	4.01:
	10:	1:	0.00	: (-2.00:	2.00:	0.21:	4.21:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BL	OCK	CAS	SE NO. 4					
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		:	:-	:-	:-	:
	1:	1:	38.2	9 :	-0.30:	0.30:	1.91:	2.51:
	2:	1:	4.5	7 :	-0.50:	0.50:	1.71:	2.71:
	3:	1:	2.2	9 :	-0.60:	0.60:	1.61:	2.81:
	4:	1:	0.4	б:	-0.80:	0.80:	1.41:	3.01:
	5:	1:	0.0	8 :	-1.00:	1.00:	1.21:	3.21:
	6:	1:	0.0	2:	-1.20:	1.20:	1.01:	3.41:
	7:	1:	0.0	1:	-1.40:	1.40:	0.81:	3.61:
	8:	1:	0.0	0:	-1.60:	1.60:	0.61:	3.81:
	9:	1:	0.0	0:	-1.80:	1.80:	0.41:	4.01:
	10:	1:	0.0	0 :	-2.00:	2.00:	0.21:	4.21:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BL	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	S1	:
Т	:	A:	OF	:		:		:
Е	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	0.28	:	-0.55:	0.55:	1.66:	2.76:
	2:	1:	0.44	:	-0.57:	0.57:	1.64:	2.78:
	3:	1:	0.22	: :	-0.62:	0.62:	1.59:	2.83:
	4:	1:	0.06	:	-0.70:	0.70:	1.51:	2.91:
	5:	1:	0.00) :	-0.82:	0.82:	1.39:	3.03:
	6:	1:	0.00	:	-0.98:	0.98:	1.23:	3.19:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate pre S/B MODEL: $\ensuremath{\mathsf{TC01}}$

STD								
S	:	M:	NUMBER	:	S0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:

F	•	L:	CYCLES	:	(t1) :	(t2) :	(t1)	: (t2) :
	:	:-		-:-	:	:		::
	1:	1:	1.90	:	0.00:	0.00:	54.78	71.99:
	2:	1:	0.09	:	0.00:	0.00:	51.91	74.85:
	3:	1:	0.01	:	0.00:	0.00:	50.19	76.58:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate pre $\ensuremath{\mathrm{S/B}}$ MODEL: $\ensuremath{\mathrm{TC01}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:	:	:	:	:
	1:	1:	9.57	:	0.00:	0.00:	54.78:	71.99:
	2:	1:	1.14	:	0.00:	0.00:	49.04:	77.72:
	3:	1:	0.57	:	0.00:	0.00:	46.17:	80.59:
	4:	1:	0.11	:	0.00:	0.00:	40.44:	86.33:
	5:	1:	0.02	:	0.00:	0.00:	' 34.70:	92.06:
	6:	1:	0.01	:	0.00:	0.00:	28.97:	97.80:
	7:	1:	0.00	:	0.00:	0.00:	23.23:	103.53:
	8:	1:	0.00	:	0.00:	0.00:	17.49:	109.27:
	9:	1:	0.00	:	0.00:	0.00:	11.76:	115.01:
:	LO:	1:	0.00	:	0.00:	0.00:	6.02:	120.74:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate pre $\ensuremath{\mathrm{S/B}}$ MODEL: $\ensuremath{\mathrm{TC01}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	S1	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:	:	:	:	:
	1:	1:	19.14	:	0.00:	0.00:	54.78:	71.99:
	2:	1:	2.29	:	0.00:	0.00:	49.04:	77.72:
	3:	1:	1.14	:	0.00:	0.00:	46.17:	80.59:
	4:	1:	0.23	:	0.00:	0.00:	40.44:	86.33:
	5:	1:	0.04	:	0.00:	0.00:	34.70:	92.06:
	6:	1:	0.01	:	0.00:	0.00:	28.97:	97.80:
	7:	1:	0.00	:	0.00:	0.00:	23.23:	103.53:
	8:	1:	0.00	:	0.00:	0.00:	17.49:	109.27:
	9:	1:	0.00	:	0.00:	0.00:	11.76:	115.01:
1	LO:	1:	0.00	:	0.00:	0.00:	6.02:	120.74:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate pre S/B MODEL: $\ensuremath{\mathsf{TC01}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2)	:	(t1) : (t2)	;

	::				:
1: 1:	38.29 :	0.00:	0.00:	54.78:	71.99:
2: 1:	4.57 :	0.00:	0.00:	49.04:	77.72:
3: 1:	2.29 :	0.00:	0.00:	46.17:	80.59:
4: 1:	0.46 :	0.00:	0.00:	40.44:	86.33:
5: 1:	0.08 :	0.00:	0.00:	34.70:	92.06:
6: 1:	0.02 :	0.00:	0.00:	28.97:	97.80:
7: 1:	0.01 :	0.00:	0.00:	23.23:	103.53:
8: 1:	0.00 :	0.00:	0.00:	17.49:	109.27:
9: 1:	0.00 :	0.00:	0.00:	11.76:	115.01:
10: 1:	0.00 :	0.00:	0.00:	6.02:	120.74:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate pre S/B MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STE)							
S	:	M:	NUMBER	:	s 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:	:-	:
	1:	1:	0.28	:	0.00:	0.00:	47.61:	79.16:
	2:	1:	0.44	:	0.00:	0.00:	47.04:	79.73:
	3:	1:	0.22	:	0.00:	0.00:	45.60:	81.16:
	4:	1:	0.06	:	0.00:	0.00:	43.31:	83.46:
	5:	1:	0.00	:	0.00:	0.00:	39.87:	86.90:
	6:	1:	0.00	:	0.00:	0.00:	35.28:	91.49:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate pre S/B MODEL: ${\tt TC01}$

ANALYSIS RESULTS:

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or (b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 10 Step description: of Block No. 2 of Schedule No. 1 Crack Size c = 0.250003E-01

Sched1	Block		Final Flaw Size	K max
		Step	c	c-tip
200	15		0.025692	12.999676
400	15		0.026417	13.182037
600	15		0.027177	13.370504
800	15		0.027974	13.565314
1000	15		0.028809	13.766722
1200	15		0.029687	13.975001
1400	1 5		0.030607	14.190441
1600	15		0.031575	14.413353
1800	15		0.032592	14.644066
2000	15		0.033662	14.882936
2200	15		0.034788	15.130340
2400	15		0.035975	15.386680
2600	15		0.037225	15.652387
2800	15		0.038544	15.927924
3000	15		0.039936	16.213784

3200	15	0.041407	16.510495
3400	15	0.042963	16.818626
3600	15	0.044609	17.138787
3800	15	0.046352	17.471633
4000	15	0.048201	17.817871
4200	15	0.050162	18.178263
4400	15	0.052246	18.553631
4600	15	0.054462	18.944865
4800	15	0.056821	19.352931
5000	15	0.059336	19.778876
5200	15	0.062019	20.223840
5400	1.5	0.064885	20.689068
5600	15	0.067952	21.175919
5800	15	0.071238	21.685884
6000	15	0.074762	22.220602
6200	15	0.078549	22.781880
6400	15	0.082625	23.371716
6600	15	0.087017	23.992332

FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 10 Step description: of Block No. 8 of Schedule No. Crack Size c = 0.872335E-01

FATIGUE CRACK GROWTH ANALYSIS

DATE: 09/10/98 TIME: 13:45:26

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate post S/B

GEOMETRY

MODEL: TC01-Through crack in center of plate.

Plate Thickness, t = 0.1250 " Width, W = 3.9300

FLAW SIZE:

c (init.) = 0.2500E-01

MATERIAL

MATL 1:

1 4130N

Material Properties:

```
:Matl: UTS : YS : Kle : Klc : Ak : Bk : Thk : Kc : KIscc:
: No.: : : : : : : : : : :
:---:---:--:-:--::---::
: 1: 95.0: 75.0: 190.0: 135.0: 0.75: 0.50: 0.125: 202.4:
:Matl:----- Crack Growth Eqn Constants ----:
```

:

```
: 1 :0.170E-08:2.700:0.25:0.25: 6.00: 0.70: 2.50: 0.30:
THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate post S/B
MODEL: TC01
FATIGUE SCHEDULE BLOCK INPUT TABLE
_____
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1:
                        5.6800
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1:
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1:
                        5.6800
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1: 5.6800
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1: 5.6800
Total No. of Blocks in Schedule = 15
  Block Number and Case Correspondences
                       Block Case No.
 Block Number
From - To
   1
            1
                                 1
   2
   3
            3
   5
            5
   6
            6
   8
            8
   9
  10
           10
   11
           11
  12
           12
  13
            13
  14
            14
  15
            15
BLOCK CASE NO. 1
 S : M: NUMBER :
                         S0
                                         S1.
 1: 1: 1.90 :
                    -0.30: 0.30: 1.91:
                                             2.51:
                     -0.40:
             0.09 :
                                       1.81:
   2: 1:
                              0.40:
                                               2.61:
             0.01:
                      -0.46:
                             0.46:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	CK	CAS	E NO. 2									
s	:	M:	NUMBER	:		S0		:		S1		:
T	:	A:	OF	:				:				:
E	:	T:	FATIGUE	:				:				:
P	:	L:	CYCLES	:	(t1)	:	(t2)	:	(t1)	:	(t2)	:
	-:-	:-		:	 	-:-		:		:-		:
- :	1:	1:	9.5	7 :	-0.3	0:	0.	30:	1.9	91:	2.	51:
2	2:	1:	1.1	4:	-0.5	0:	0.	50:	1.7	71:	2.	71:
3	3:	1:	0.5	7:	-0.6	0:	0.	60:	1.6	51:	2.	81:
4	4:	1:	0.1	1:	-0.8	0:	0.	80:	1.4	11:	3.	01:
į	5:	1:	0.0	2:	-1.0	0:	1.	00:	1.2	21:	3.	21:
•	5:	1:	0.0	1:	-1.2	0:	1.	20:	1.0	1:	3.	41:
7	7:	1:	0.0	0:	-1.4	0:	1.	40:	0.8	31:	3.	61:
8	3:	1:	0.0	0:	-1.6	0:	1.	60:	0.6	51:	3.	81:
9	9:	1:	0.0	0:	-1.8	0:	1.	80:	0.4	11:	4.	01:
10	0:	1:	0.0	0:	-2.0	0:	2.	00:	0.2	21:	4.	21:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BL	OCK	CAS	SE NO. 3					
S	:	M:	NUMBER	:	S0	:	S1	:
Т	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		:	:-	:-	:-	:
	1:	1:	19.1	4:	-0.30:	0.30:	1.91:	2.51:
	2:	1:	2.2	9:	-0.50:	0.50:	1.71:	2.71:
	3:	1:	1.1	4 :	-0.60:	0.60:	1.61:	2.81:
	4:	1:	0.23	3:	-0.80:	0.80:	1.41:	3.01:
	5:	1:	0.0	4:	-1.00:	1.00:	1.21:	3.21:
	6:	1:	0.0	1:	-1.20:	1.20:	1.01:	3.41:
	7:	1:	0.0	0:	-1.40:	1.40:	0.81:	3.61:
	8:	1:	0.0	0:	-1.60:	1.60:	0.61:	3.81:
	9:	1:	0.00	0:	-1.80:	1.80:	0.41:	4.01:
	10:	1:	0.0	0:	-2.00:	2.00:	0.21:	4.21:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BL	оск	CAS	SE NO. 4					
s	:	M:	NUMBER	:	s 0	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		:	:-	:-	:-	:
	1:	1:	38.29	:	-0.30:	0.30:	1.91:	2.51:
	2:	1:	4.5	7 :	-0.50:	0.50:	1.71:	2.71:
	3:	1:	2.29	:	-0.60:	0.60:	1.61:	2.81:
	4:	1:	0.46	5 :	-0.80:	0.80:	1.41:	3.01:
	5:	1:	0.08	3 :	-1.00:	1.00:	1.21:	3.21:
	6:	1:	0.02	2 :	-1.20:	1.20:	1.01:	3.41:
	7:	1:	0.03	L:	-1.40:	1.40:	0.81:	3.61:
	8:	1:	0.00	:	-1.60:	1.60:	0.61:	3.81:
	9:	1:	0.00	:	-1.80:	1.80:	0.41:	4.01:
:	10:	1:	0.00	: (-2.00:	2.00:	0.21:	4.21:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLOCK CASE NO. 5
S: M: NUMBER: S0 : S1 :
T: A: OF : : : : :

P : L:	CYCLES :	(t1) :	(t2) :	(t1) :	(t2) :
:	:-	:-	:	:-	:
1: 1:	0.28 :	-0.55:	0.55:	1.66:	2.76:
2: 1:	0.44 :	-0.57:	0.57:	1.64:	2.78:
3: 1:	0.22 :	-0.62:	0.62:	1.59:	2.83:
4: 1:	0.06 :	-0.70:	0.70:	1.51:	2.91:
5: 1:	0.00:	-0.82:	0.82:	1.39:	3.03:
6.1.	0.00 ±	-0.98:	0.98:	1.23:	3.19:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate post S/B MODEL: TC01

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	Μ:	NUMBER	:	so	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:	:	:	:-	:
	1:	1:	1.90	:	0.00:	0.00:	10.85:	14.26:
	2:	1:	0.09	:	0.00:	0.00:	10.28:	14.82:
	3:	1:	0.01	:	0.00:	0.00:	9.94:	15.17:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate post S/B MODEL: $\ensuremath{\mathsf{TC01}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

ST	D							
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		• : -	·:	:-	:	:
	1:	1:	9.57	:	0.00:	0.00:	10.85:	14.26:
	2:	1:	1.14	:	0.00:	0.00:	9.71:	15.39:
	3:	1:	0.57	:	0.00:	0.00:	9.14:	15.96:
	4:	1:	0.11	:	0.00:	0.00:	8.01:	17.10:
	5:	1:	0.02	:	0.00:	0.00:	6.87:	18.23:
	6:	1:	0.01	:	0.00:	0.00:	5.74:	19.37:
	7:	1:	0.00	:	0.00:	0.00:	4.60:	20.50:
	8:	1:	0.00	:	0.00:	0.00:	3.46:	21.64:
	9:	1:	0.00	:	0.00:	0.00:	2.33:	22.78:
	10:	1:	0.00	:	0.00:	0.00:	1.19:	23.91:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate post S/B MODEL: $\ensuremath{\mathsf{TC01}}$

						-		
STD					•			
S	:	Μ:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:	:	:-	:-	:
:	1:	1:	19.14	:	0.00:	0.00:	10.85:	14.26:
- 2	2:	1:	2.29	:	0.00:	0.00:	9.71:	15.39:
	3:	1:	1.14	:	0.00:	0.00:	9.14:	15.96:

4:	1:	0.23:	0.00:	0.00:	8.01:	17.10:
5:	1:	0.04:	0.00:	0.00:	6.87:	18.23:
6:	1:	0.01:	0.00:	0.00:	5.74:	19.37:
7:	1:	0.00:	0.00:	0.00:	4.60:	20.50:
8:	1:	0.00:	0.00:	0.00:	3.46:	21.64:
9:	1:	0.00:	0.00:	0.00:	2.33:	22.78:
10:	1:	0.00:	0.00:	0.00:	1.19:	23.91:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate post S/B MODEL: ${\tt TC01}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	so	:	S1	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	·:	:	:
	1:	1:	38.29	:	0.00:	0.00:	10.85:	14.26:
	2:	1:	4.57	:	0.00:	0.00:	9.71:	15.39:
	3:	1:	2.29	:	0.00:	0.00:	9.14:	15.96:
	4:	1:	0.46	:	0.00:	0.00:	8.01:	17.10:
	5:	1:	0.08	:	0.00:	0.00:	6.87:	18.23:
	6:	1:	0.02	:	0.00:	0.00:	5.74:	19.37:
	7:	1:	0.01	:	0.00:	0.00:	4.60:	20.50:
	8:	1:	0.00	:	0.00:	0.00:	3.46:	21.64:
	9:	1:	0.00	:	0.00:	0.00:	2.33:	22.78:
1	LO:	1:	0.00	:	0.00:	0.00:	1.19:	23.91:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate post S/B MODEL: ${\tt TC01}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD)							
S	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:	:-	:
	1:	1:	0.28	:	0.00:	0.00:	9.43:	15.68:
	2:	1:	0.44	:	0.00:	0.00:	9.32:	15.79:
	3:	1:	0.22	:	0.00:	0.00:	9.03:	16.07:
	4:	1:	0.06	:	0.00:	0.00:	8.58:	16.53:
	5:	1:	0.00	:	0.00:	0.00:	7.90:	17.21:
	6:	1:	0.00	:	0.00:	0.00:	6.99:	18.12:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 1, PSE-EM1 Crack in mount plate post S/B MODEL: TC01

ANALYSIS RESULTS:

FINAL RESULTS:

No growth in Schedule No. 1

Crack Size c = 0.250000E-01

```
FATIGUE CRACK GROWTH ANALYSIS
             DATE: 09/10/98 TIME: 13:46:03
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 8, PSE-EM1 Crack in weld pre S/B
GEOMETRY
MODEL: TC08-Through crack in cyl. in circumferential directio
Mean Radius of cylinder, R =
                         0.7975
Thickness of cylinder, t = 0.2050
Poisson s Ratio
               = 0.3300
FLAW SIZE:
 (init.) = 0.2500E-01
MATERIAL
      1
              4130N
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : :
: 1 : 140.0: 120.0: 190.0: 135.0: 0.75: 0.50: 0.205: 202.3:
:Matl:----- Crack Growth Eqn Constants ----:
:---:---:---:---:
: 1 :0.170E-08:2.700:0.25:0.25: 6.00: 0.70: 2.50: 0.30:
 THROUGH CRACK CASE 8, PSE-EM1 Crack in weld pre S/B
MODEL: TC08
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                          7.9700
Scale Factor for Stress S1: 0.00000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.00000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                          7.9700
Scale Factor for Stress S1:
                         0.00000
```

Stress Scaling Factors for Block Case: 4

```
Scale Factor for Stress S0:
                              7.9700
Scale Factor for Stress S1:
                             0.00000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                              7.9700
Scale Factor for Stress S1:
                             0.00000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                              Block Case No.
From
          То
   1
                                       1
   2
               2
                                       2
    3
               3
                                       5
    4
                                       1
   5
               5
                                       3
    6
               6
                                       5
   7
               7
                                       1
   8
               8
   9
              9
                                       5
   10
             10
                                       1
   11
             11
                                       3
   12
             12
                                       5
   13
             13
                                       1
             14
   14
                                       4
   15
             15
BLOCK CASE NO. 1
S : M: NUMBER
T
   : A:
           OF
E : T:
         FATIGUE
P : L: CYCLES
                          (t1): (t2)
                                             (t1): (t2)
____;__;__;___;__
                        _______
  1: 1:
               1.90:
                          1.91:
                                    2.51:
                                             -0.30:
                                                        0.30:
               0.09:
                          1.81:
  2: 1:
                                    2.61:
                                             -0.40:
                                                        0.40:
               0.01:
                          1.75:
                                    2.67:
                                             -0.46:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
   : A:
T
           OF
                    :
E : T:
         FATIGUE
P : L: CYCLES
                    :
                         (t1): (t2)
                                             (t1): (t2)
----:--:--:--------:----:
  1: 1:
               9.57:
                          1.91:
                                    2.51:
                                             -0.30:
                                                        0.30:
               1.14 :
  2: 1:
                          1.71:
                                    2.71:
                                             -0.50:
                                                        0.50:
  3: 1:
               0.57 :
                          1.61:
                                    2.81:
                                             -0.60:
                                                        0.60:
  4: 1:
               0.11 :
                          1.41:
                                    3.01:
                                             -0.80:
                                                        0.80:
               0.02:
  5: 1:
                          1.21:
                                    3.21:
                                             -1.00:
                                                        1.00:
  6: 1:
               0.01:
                          1.01:
                                    3.41:
                                             -1.20:
                                                        1.20:
               0.00:
  7: 1:
                          0.81:
                                             -1.40:
                                    3.61:
                                                        1.40:
  8: 1:
               0.00:
                          0.61:
                                    3.81:
                                             -1.60:
                                                        1.60:
               0.00:
  9: 1:
                          0.41:
                                    4.01:
                                             -1.80:
                                                        1.80:
               0.00 :
                          0.21:
  10: 1:
                                    4.21:
                                             -2.00:
                                                        2.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 3
S : M: NUMBER
                             S0
                    :
                                                 S1
Т
   : A:
           OF
                    :
E : T: FATIGUE
```

P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		: -	:	:-	:-	:
	1:	1:	19.14	:	1.91:	2.51:	-0.30:	0.30:
	2:	1:	2.29	:	1.71:	2.71:	-0.50:	0.50:
	3:	1:	1.14	:	1.61:	2.81:	-0.60:	0.60:
	4:	1:	0.23	:	1.41:	3.01:	-0.80:	0.80:
	5:	1:	0.04	:	1.21:	3.21:	-1.00:	1.00:
	6:	1:	0.01	:	1.01:	3.41:	-1.20:	1.20:
	7:	1:	0.00	:	0.81:	3.61:	-1.40:	1.40:
	8:	1:	0.00	:	0.61:	3.81:	-1.60:	1.60:
	9:	1:	0.00	:	0.41:	4.01:	-1.80:	1.80:
1	0:	1:	0.00	:	0.21:	4.21:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

BLO	OCK	CAS	E NO. 4					
S	:	M:	NUMBER	:	so	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:	:-	:	:-	:
	1:	1:	38.29	:	1.91:	2.51:	-0.30:	0.30:
	2:	1:	4.57	:	1.71:	2.71:	-0.50:	0.50:
	3:	1:	2.29	:	1.61:	2.81:	-0.60:	0.60:
	4:	1:	0.46	:	1.41:	3.01:	-0.80:	0.80:
	5:	1:	0.08	:	1.21:	3.21:	-1.00:	1.00:
	6:	1:	0.02	:	1.01:	3.41:	-1.20:	1.20:
	7:	1:	0.01	:	0.81:	3.61:	-1.40:	1.40:
	8:	1:	0.00	:	0.61:	3.81:	-1.60:	1.60:
	9:	1:	0.00	:	0.41:	4.01:	-1.80:	1.80:
:	10:	1:	0.00	:	0.21:	4.21:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLC	OCK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	\mathbf{T} :	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	: -		:	:-	: -	:-	:
	1:	1:	0.2	8 :	1.66:	2.76:	-0.55:	0.55:
	2:	1:	0.4	4:	1.64:	2.78:	-0.57:	0.57:
	3:	1:	0.2	2:	1.59:	2.83:	-0.62:	0.62:
	4:	1:	0.0	6:	1.51:	2.91:	-0.70:	0.70:
	5:	1:	0.0	0:	1.39:	3.03:	-0.82:	0.82:
	6:	1:	0.0	0 :	1.23:	3.19:	-0.98:	0.98:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld pre S/B MODEL: TC08 $\,$

STD											
S	:	M:	NUMBER	:	· so	:	S1	:			
T	:	A:	OF	:		:		:			
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:			
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :			
	-:	:-		-:-	:	:-	:	:			
:	1:	1:	1.90	:	15.22:	20.00:	0.00:	0.00:			
:	2:	1:	0.09	:	14.43:	20.80:	0.00:	0.00:			
:	3:	1:	0.01	:	13.95:	21.28:	0.00:	0.00:			

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld pre S/B MODEL: ${\tt TC08}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

						_		
ST	D							
S	:	M:	NUMBER	:	S0	:	S1	:
Т	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) : (t2	.) :
	:	:		- : -	:	:	:	:
	1:	1:	9.57	:	15.22:	20.00:	0.00:	0.00:
	2:	1:	1.14	:	13.63:	21.60:	0.00:	0.00:
	3:	1:	0.57	:	12.83:	22.40:	0.00:	0.00:
	4:	1:	0.11	:	11.24:	23.99:	0.00:	0.00:
	5:	1:	0.02	:	9.64:	25.58:	0.00:	0.00:
	6:	1:	0.01	:	8.05:	27.18:	0.00:	0.00:
	7:	1:	0.00	:	6.46:	28.77:	0.00:	0.00:
	8:	1:	0.00	:	4.86:	30.37:	0.00:	0.00:
	9:	1:	0.00	:	3.27:	31.96:	0.00:	0.00:
:	10:	1:	0.00	:	1.67:	33.55:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld pre S/B MODEL: TC08

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
s	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:		-:-	:	:	:	·:
	1:	1:	19.14	:	15.22:	20.00:	0.00:	0.00:
	2:	1:	2.29	:	13.63:	21.60:	0.00:	0.00:
	3:	1:	1.14	:	12.83:	22.40:	0.00:	0.00:
	4:	1:	0.23	:	11.24:	23.99:	0.00:	0.00:
	5:	1:	0.04	:	9.64:	25.58:	0.00:	0.00:
	6:	1:	0.01	:	8.05:	27.18:	0.00:	0.00:
	7:	1:	0.00	:	6.46:	28.77:	0.00:	0.00:
	8:	1:	0.00	:	4.86:	30.37:	0.00:	0.00:
	9:	1:	0.00	:	3.27:	31.96:	0.00:	0.00:
-	10:	1:	0.00	:	1.67:	33.55:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld pre S/B MODEL: TC08

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S. M. NUMBER . SO

s	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:	•	:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:	:
	1:	1:	38.29	:	15.22:	20.00:	0.00:	0.00:
	2:	1:	4.57	:	13.63:	21.60:	0.00:	0.00:
	3:	1:	2.29	:	12.83:	22.40:	0.00:	0.00:
	4:	1:	0.46	:	11.24:	23.99:	0.00:	0.00:
	5:	1:	0.08	:	9.64:	25.58:	0.00:	0.00:

6: 1:	0.02 :	8.05:	27.18:	0.00:	0.00:
7: 1:	0.01 :	6.46:	28.77:	0.00:	0.00:
8: 1:	0.00 :	4.86:	30.37:	0.00:	0.00:
9:1:	0.00 :	3.27:	31.96:	0.00:	0.00:
10.1.	0 00 •	1.67.	33.55:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld pre S/B MODEL: $\ensuremath{\mathsf{TC08}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	s 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t	:2)	(t1) : (t2) :
	-:	:		-:-	::	:-	:	:
	1:	1:	0.28	:	13.23:	22.00:	0.00:	0.00:
	2:	1:	0.44	:	13.07:	22.16:	0.00:	0.00:
	3:	1:	0.22	:	12.67:	22.56:	0.00:	0.00:
	4:	1:	0.06	:	12.03:	23.19:	0.00:	0.00:
	5:	1:	0.00	:	11.08:	24.15:	0.00:	0.00:
	6:	1:	0.00	:	9.80:	25.42:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld pre S/B MODEL: TC08

ANALYSIS RESULTS:

Schedl	Block	Fina	l Flaw Size	K max
		Step	С	c-tip
200	15		0.025009	7.130801
400	15		0.025018	7.132059
600	15		0.025026	7.133318
800	15		0.025035	7.134579
1000	15		0.025044	7.135841
1200	15		0.025053	7.137104
1400	15		0.025062	7.138369
1600	15		0.025071	7.139635
1800	15		0.025080	7.140903
2000	15		0.025088	7.142171
2200	15		0.025097	7.143441
2400	15		0.025106	7.144713
2600	15		0.025115	7.145985
2800	15		0.025124	7.147259
3000	15		0.025133	7.148535
3200	15		0.025142	7.149811
3400	15		0.025151	7.151089
3600	15		0.025160	7.152369
3800	15		0.025169	7.153649
4000	15		0.025178	7.154931
4200	15		0.025187	7.156215
4400	15		0.025196	7.157499
4600	15		0.025205	7.158785
4800	15		0.025214	7.160073
5000	15		0.025223	7.161361
5200	15		0.025232	7.162651
5400	15		0.025241	7.163942
5600	15		0.025250	7.165235
5800	15		0.025259	7.166529

6000	15	0.025269	7.167824
6200	15	0.025278	7.169121
6400	15	0.025287	7.170418
6600	15	0.025296	7.171718
6800	15	0.025305	7.173018
7000	15	0.025314	7.174320
7200	15	0.025323	7.175623
7400	15	0.025333	7.176927
7600	15	0.025342	7.178233
7800	15	0.025351	7.179540
8000	15	0.025360	7.180848
8200	15	0.025369	7.182158
8400	15	0.025379	7.183469
8600	15	0.025388	7.184781
8800	15	0.025397	7.186094
9000	15	0.025406	7.187409
9200	15	0.025416	7.188725
9400	15	0.025425	7.190043
9600	15	0.025434	7.191361
9800	15	0.025444	7.192681
10000	15	0.025453	7.194003

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld pre S/B

MODEL: TC08

ANALYSIS RESULTS (contd)

Schedl	Block	Final Flaw Size	K max
benear	BIOCK	Step c	c-tip
10200	15	0.025462	7.195325
10400	15	0.025472	7.196649
10600	15	0.025481	7.197974
10800	15	0.025490	7.199301
11000	15	0.025500	7.200629
11200	15	0.025509	7.201958
11400	15	0.025519	7.203288
11600	15	0.025528	7.204620
11800	15	0.025537	7.205953
12000	15	0.025547	7.207287
12200	15	0.025556	7.208623
12400	15	0.025566	7.209960
12600	15	0.025575	7.211298
12800	15	0.025585	7.212637
13000	15	0.025594	7.213978
13200	15	0.025604	7.215320
13400	15	0.025613	7.216663
13600	15	0.025623	7.218008
13800	15	0.025632	7.219354
14000	15	0.025642	7.220701
14200	15	0.025651	7.222049
14400	15	0.025661	7.223399
14600	15	0.025670	7.224750
14800	15	0.025680	7.226102
15000	15	0.025690	7.227456
15200	15	0.025699	7.228811
15400	15	0.025709	7.230167
15600	15	0.025718	7.231524
15800	15	0.025728	7.232883
16000	15	0.025738	7.234243
16200	15	0.025747	7.235604
16400	15	0.025757	7.236967
16600	15	0.025767	7.238330
16800	15	0.025776	7.239696
17000	15	0.025786	7.241062
17200	15	0.025796	7.242430
17400	15	0.025806	7.243799
17600	1 5	0.025815	7.245169
17800	15	0.025825	7.246540

18000	15	0.025835	7.247913
18200	15	0.025845	7.249287
18400	15	0.025854	7.250662
18600	15	0.025864	7.252039
18800	15	0.025874	7.253417
19000	15	0.025884	7.254796
19200	15	0.025894	7.256176
19400	15	0.025903	7.257558
19600	15	0.025913	7.258941
19800	15	0.025923	7.260325
20000	15	0.025933	7.261711

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld pre S/B

MODEL: TC08

ANALYSIS RESULTS (contd)

Schedl	Block		Final Flaw Size	K max
		Step	c	c-tip
20200	15		0.025943	7.263098
20400	15		0.025953	7.264486
20600	15		0.025963	7.265875
20800	15		0.025973	7.267293
21000	15		0.025983	7.268722

FINAL RESULTS:

Critical Crack Size has NOT been reached.

at Cycle No. 0.00 of Load Step No. 6

Step description:

of Block No. 15 of Schedule No. 21000

Crack Size c = 0.259830E-01

FATIGUE CRACK GROWTH ANALYSIS

DATE: 09/10/98 TIME: 13:48:08

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld post S/B

GEOMETRY

MODEL: TC08-Through crack in cyl. in circumferential directio

Mean Radius of cylinder, R = 0.7975Thickness of cylinder, t = 0.2050Poisson s Ratio = 0.3300

FLAW SIZE:

c (init.) = 0.2500E-01

MATERIAL

MATL 1:

1 41301

Material Properties:

```
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.:
: 1: 95.0: 75.0: 190.0: 135.0: 0.75: 0.50: 0.205: 202.3: :
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
:---:
: 1 :0.170E-08:2.700:0.25:0.25: 6.00: 0.70: 2.50: 0.30:
THROUGH CRACK CASE 8, PSE-EM1 Crack in weld post \ensuremath{\mathrm{S/B}}
MODEL: TC08
FATIGUE SCHEDULE BLOCK INPUT TABLE
-----
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: 2.7600
Scale Factor for Stress S1: 0.00000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
                         2.7600
Scale Factor for Stress S1: 0.00000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.00000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                          2,7600
Scale Factor for Stress S1: 0.00000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                         2.7600
Scale Factor for Stress S1: 0.00000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From - To
   1
            1
   2
            2
                                 2
   3
            3
                                 5
                                 1
   5
                                 3
   6
                                 5
   7
            7
                                 1
   8
   9
            9
                                 5
  10
           10
                                 1
           11
  12
           12
                                 5
  13
           13
                                 1
  14
           14
                                 4
  15
           15
BLOCK CASE NO. 1
S : M: NUMBER
                         S0
T : A: OF E : T: FATIGUE
                 :
                                  :
```

	_	: CYCLES			• •				(t2) :
 : 1:		-	1.90	-			_	-0.30:	0.30:
2:	1	: (0.09	:	1.81:	2.	61:	-0.40:	0.40:
3:	1	•	0.01	:	1.75:	2.	67:	-0.46:	0.46:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

_	_	_	_	_	-

BLO	CK	CAS	E NO. 2					
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:	:-	:	:-	:
	1:	1:	9.57	:	1.91:	2.51:	-0.30:	0.30:
:	2:	1:	1.14	:	1.71:	2.71:	-0.50:	0.50:
	3:	1:	0.57	:	1.61:	2.81:	-0.60:	0.60:
	4:	1:	0.11	:	1.41:	3.01:	-0.80:	0.80:
!	5:	1:	0.02	:	1.21:	3.21:	-1.00:	1.00:
	6:	1:	0.01	:	1.01:	3.41:	-1.20:	1.20:
	7:	1:	0.00	:	0.81:	3.61:	-1.40:	1.40:
	8:	1:	0.00	:	0.61:	3.81:	-1.60:	1.60:
	9:	1:	0.00	:	0.41:	4.01:	-1.80:	1.80:
1	0:	1:	0.00	:	0.21:	4.21:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCE	C	ASE NO. 3					
S	: M	: NUMBER	:	S 0	:	S1	:
T	: A	: OF	:		:		:
E	т:	: FATIGUE	:		:		:
P	: L	: CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:	:	:-	:	:-	:
1	: 1	: 19.1	4:	1.91:	2.51:	-0.30:	0.30:
2	: 1	: 2.2	9 :	1.71:	2.71:	-0.50:	0.50:
3	: 1	: 1.1	4 :	1.61:	2.81:	-0.60:	0.60:
4	: 1	: 0.2	: 8	1.41:	3.01:	-0.80:	0.80:
5	: 1	: 0.0	4 :	1.21:	3.21:	-1.00:	1.00:
6	: 1	: 0.0	1:	1.01:	3.41:	-1.20:	1.20:
7	: 1	.: 0.0	00:	0.81:	3.61:	-1.40:	1.40:
8	: 1	.: 0.0	00:	0.61:	3.81:	-1.60:	1.60:
9	: 1	.: 0.0	00:	0.41:	4.01:	-1.80:	1.80:
10	: 1	.: 0.0	00:	0.21:	4.21:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	CK	ÇAS	E NO. 4					
s	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:-	:	: -	:
	1:	1:	38.29	:	1.91:	2.51:	-0.30:	0.30:
	2:	1:	4.57	:	1.71:	2.71:	-0.50:	0.50:
	3:	1:	2.29	:	1.61:	2.81:	-0.60:	0.60:
	4:	1:	0.46	:	1.41:	3.01:	-0.80:	0.80:
	5:	1:	0.08	:	1.21:	3.21:	-1.00:	1.00:
	6:	1:	0.02	:	1.01:	3.41:	-1.20:	1.20:
	7:	1:	0.01	:	0.81:	3.61:	-1.40:	1.40:
	8:	1:	0.00	:	0.61:	3.81:	-1.60:	1.60:
	9:	1:	0.00	:	0.41:	4.01:	-1.80:	1.80:
1	0:	1:	0.00	:	0.21:	4.21:	-2.00:	2.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	OCK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:-	:-	:
	1:	1:	0.28	:	1.66:	2.76:	-0.55:	0.55:
	2:	1:	0.44	:	1.64:	2.78:	-0.57:	0.57:
	3:	1:	0.22	:	1.59:	2.83:	-0.62:	0.62:
	4:	1:	0.06	:	1.51:	2.91:	-0.70:	0.70:
	5:	1:	0.00	:	1.39:	3.03:	-0.82:	0.82:
	6:	1:	0.00	:	1.23:	3.19:	-0.98:	0.98:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld post S/B MODEL: $\ensuremath{\mathsf{TC08}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	\mathbf{T} :	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2) :	(t1) : (t2)	:
	-:	:-		-:-	:	: -		:
	1:	1:	1.90	:	5.27:	6.93:	0.00: 0	.00:
	2:	1:	0.09	:	5.00:	7.20:	0.00: 0.	.00:
	3:	1:	0.01	:	4.83:	7.37:	0.00: 0.	.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld post S/B MODEL: TC08

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
S	: M:	NUMBER	:	so	:	S1	:
${f T}$: A:	OF	:		:		:
E	: T:	FATIGUE	:	(ksi)	:	(ksi)) :
P	: L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::		-:-	:	:-	:	:
1	: 1:	9.57	:	5.27:	6.93:	0.00:	0.00:
2	: 1:	1.14	:	4.72:	7.48:	0.00:	0.00:
3	: 1:	0.57	:	4.44:	7.76:	0.00:	0.00:
4	: 1:	0.11	:	3.89:	8.31:	0.00:	0.00:
5	: 1:	0.02	:	3.34:	8.86:	0.00:	0.00:
6	: 1:	0.01	:	2.79:	9.41:	0.00:	0.00:
7	: 1:	0.00	:	2.24:	9.96:	0.00:	0.00:
8	: 1:	0.00	:	1.68:	10.52:	0.00:	0.00:
9	: 1:	0.00	:	1.13:	11.07:	0.00:	0.00:
10	: 1:	0.00	:	0.58:	11.62:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld post S/B MODEL: ${\tt TC08}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S	:	M:	NUMBER	:	S 0	:	: S1	:
T	:	A:	OF	:		:	:	:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t	2)	: (t1) :	(t2) :
	:	:-		-:-	:		::	:
	1:	1:	19.14	:	5.27:	6.93	: 0.00:	0.00:
	2:	1:	2.29	:	4.72:	7.48	0.00:	0.00:
	3:	1:	1.14	:	4.44:	7.76	0.00:	0.00:
	4:	1:	0.23	:	3.89:	8.31	0.00:	0.00:
	5:	1:	0.04	:	3.34:	8.86	0.00:	0.00:
	6:	1:	0.01	:	2.79:	9.41	0.00:	0.00:
	7:	1:	0.00	:	2.24:	9.96	0.00:	0.00:
	8:	1:	0.00	:	1.68:	10.52	0.00:	0.00:
	9:	1:	0.00	:	1.13:	11.07	0.00:	0.00:
-	10:	1:	0.00	:	0.58:	11.62	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld post S/B MODEL: $\ensuremath{\text{TC08}}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S	:	M:	NUMBER	:	S0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi) :	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:-	:-	:	:
:	1:	1:	38.29	:	5.27:	6.93:	0.00:	0.00:
:	2:	1:	4.57	:	4.72:	7.48:	0.00:	0.00:
;	3:	1:	2.29	:	4.44:	7.76:	0.00:	0.00:
	4:	1:	0.46	:	3.89:	8.31:	0.00:	0.00:
!	5:	1:	0.08	:	3.34:	8.86:	0.00:	0.00:
	6:	1:	0.02	:	2.79:	9.41:	0.00:	0.00:
•	7:	1:	0.01	:	2.24:	9.96:	0.00:	0.00:
	8:	1:	0.00	:	1.68:	10.52:	0.00:	0.00:
!	9:	1:	0.00	:	1.13:	11.07:	0.00:	0.00:
1	0:	1:	0.00	:	0.58:	11.62:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld post S/B MODEL: ${\tt TC08}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)							
S	:	M:	NUMBER	:	S 0	:	S1	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:	:-	 :
	1:	1:	0.28	:	4.58:	7.62:	0.00:	0.00:
	2:	1:	0.44	:	4.53:	7.67:	0.00:	0.00:
	3:	1:	0.22	:	4.39:	7.81:	0.00:	0.00:
	4:	1:	0.06	:	4.17:	8.03:	0.00:	0.00:
	5:	1:	0.00	:	3.84:	8.36:	0.00:	0.00:
	6:	1:	0.00	:	3.39:	8.80:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 8, PSE-EM1 Crack in weld post S/B MODEL: $\ensuremath{\texttt{TC08}}$

ANALYSIS RESULTS:

FINAL RESULTS:
All Stress Intensities are below the Fatigue Threshold.
NO growth in Schedule No. 1
Crack Size c = 0.250000E-01

C-15 PSE N1 Upper Longeron at Firewall

```
FATIGUE CRACK GROWTH ANALYSIS
            DATE: 09/11/98 TIME: 11:10:20
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 3, PSE-N1 hole crack in cap
GEOMETRY
MODEL: TC03-Through crack from hole in plate.
Plate Thickness, t =
                   0.0900
" Width, W = 2.2500
Hole Diameter, D = 0.1600
Hole-Center-to-Edge Dist., B =
                            1.1250
FLAW SIZE:
  (init.) = 0.5000E-01
MATERIAL
MATL 1: 2024-T3511
      Extr; L-T; LA & HHA
Material Properties:
: 1: 77.0: 55.0: 35.0: 25.0: 1.00: 1.00: 0.090: 49.3:
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
            : 1 :0.200E-07:2.700:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
 THROUGH CRACK CASE 3, PSE-N1 hole crack in cap
MODEL: TC03
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                          1.6900
Scale Factor for Stress S3:
                         21.560
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0:
```

21.560

Scale Factor for Stress S3:

C-15 PSE N1 Upper Longeron at Firewall (Continued)

```
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                             1,6900
Scale Factor for Stress S3:
                             21.560
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                             1.6900
Scale Factor for Stress S3:
                             21.560
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                             1.6900
Scale Factor for Stress S3:
                             21,560
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                             Block Case No.
From -
          TО
   2
              2
                                     2
   3
              3
                                     5
    4
              4
                                     1
   5
    6
              6
                                     5
   7
              7
                                     1
   8
   9
              9
                                     5
  10
             10
  11
             11
                                     3
  12
             12
                                     5
  13
             13
                                     1
  14
             14
                                     4
BLOCK CASE NO. 1
S : M: NUMBER
                            S0
                                               S3
          OF
T : A:
Е
  : T: FATIGUE
P : L: CYCLES
                   :
                        (t1): (t2)
                                           (t1):
                                                   (t2)
----:--:--:--
              1.90:
                                            1.80:
  1: 1:
                         1.80:
                                   2.40:
                                                     2.40:
  2: 1:
              0.09:
                         1.70:
                                   2.50:
                                            1.70:
                                                      2.50:
              0.01:
                         1.64:
                                   2.56:
                                            1.64:
                                                     2.56:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                            S0
Т
   : A:
          OF
                   :
E : T: FATIGUE
P : L: CYCLES
                        (t1): (t2)
                                           (t1): (t2)
9.57:
  1: 1:
                         1.80:
                                   2.40:
                                            1.80:
                                                     2.40:
  2: 1:
              1.14:
                         1.60:
                                   2.60:
                                            1.60:
                                                     2.60:
  3: 1:
              0.57 :
                        1.50:
                                  2.70:
                                            1.50:
                                                     2.70:
  4: 1:
              0.11:
                       1.30:
                                  2.90:
                                            1.30:
                                                     2.90:
  5: 1:
              0.02:
                         1.10:
                                   3.10:
                                            1.10:
                                                     3.10:
  6: 1:
              0.01:
                         0.90:
                                   3.30:
                                            0.90:
                                                     3.30:
  7: 1:
              0.00:
                         0.70:
                                   3.50:
                                            0.70:
                                                     3.50:
  8: 1:
              0.00:
                         0.50:
                                   3.70:
                                            0.50:
                                                     3.70:
  9: 1:
              0.00:
                         0.30:
                                   3.90:
                                            0.30:
                                                     3.90:
  10: 1:
              0.00:
                         0.10:
                                   4.10:
                                            0.10:
                                                     4.10:
```

Environmental Crack Growth Check for Sustained Stresses

C-15 PSE N1 Upper Longeron at Firewall (Continued)

(Kmax less than KIscc): NOT SET

BLO	OCK	CAS	SE NO. 3					
S	:	M:	NUMBER	:	so	:	s3	:
\mathbf{T}	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:-	:	:-	:
	1:	1:	19.14	:	1.80:	2.40:	1.80:	2.40:
	2:	1:	2.29	:	1.60:	2.60:	1.60:	2.60:
	3:	1:	1.14	:	1.50:	2.70:	1.50:	2.70:
	4:	1:	0.23	:	1.30:	2.90:	1.30:	2.90:
	5:	1:	0.04	:	1.10:	3.10:	1.10:	3.10:
	6:	1:	0.01	:	0.90:	3.30:	0.90:	3.30:
	7:	1:	0.00	:	0.70:	3.50:	0.70:	3.50:
	8:	1:	0.00	:	0.50:	3.70:	0.50:	3.70:
	9:	1:	0.00	:	0.30:	3.90:	0.30:	3.90:
	10.	1 .	0.00	:	0.10:	4.10:	0.10:	4.10:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLO	CK	CAS	E NO. 4					
S	:	M:	NUMBER	:	S0	:	s3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-	-	- : -	:-	:-	:-	:
	1:	1:	38.29	:	1.80:	2.40:	1.80:	2.40:
	2:	1:	4.57	:	1.60:	2.60:	1.60:	2.60:
	3:	1:	2.29	:	1.50:	2.70:	1.50:	2.70:
	4:	1:	0.46	:	1.30:	2.90:	1.30:	2.90:
	5:	1:	0.08	:	1.10:	3.10:	1.10:	3.10:
	6:	1:	0.02	:	0.90:	3.30:	0.90:	3.30:
	7:	1:	0.01	:	0.70:	3.50:	0.70:	3.50:
	8:	1:	0.00	:	0.50:	3.70:	0.50:	3.70:
	9:	1:	0.00	:	0.30:	3.90:	0.30:	3.90:
1	10:	1:	0.00	:	0.10:	4.10:	0.10:	4.10:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

BLO	CK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S 0	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		:	:-	:	:-	 :
	1:	1:	0.2	8 :	1.55:	2.65:	1.55:	2.65:
	2:	1:	0.4	4 :	1.53:	2.67:	1.53:	2.67:
	3:	1:	0.2	2:	1.48:	2.72:	1.48:	2.72:
	4:	1:	0.0	6:	1.40:	2.80:	1.40:	2.80:
	5:	1:	0.0	0 :	1.28:	2.92:	1.28:	2.92:
	6:	1:	0.0	0:	1.12:	3.08:	1.12:	3.08:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 3, PSE-N1 hole crack in cap MODEL: TC03

STD												
S	:	M:	NUMBER	:	S 0	:	S3	:				
\mathbf{T}	:	A:	OF	:		:		:				

Ε	:	\mathbf{T} :	FATIGUE	:	(ks	i)	:	(ksi)	:
₽	:	L:	CYCLES	:	(t1) :	(t2)	:	(t1) : (t	:2) :
	:	:-		- : -	:		· : -	::	:
	1:	1:	1.90	:	3.04:	4.06	5:	38.81:	51.74:
	2:	1:	0.09	:	2.87:	4.22	::	36.65:	53.90:
	3:	1:	0.01	:	2.77:	4.33	:	35.36:	55.19:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 3, PSE-N1 hole crack in cap MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

ST	0							
S	:	M:	NUMBER	:	S0	:	S 3	:
т	:	Α:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:-	:	:-	:	:
	1:	1:	9.57	:	3.04:	4.06:	38.81:	51.74:
	2:	1:	1.14	:	2.70:	4.39:	34.50:	56.06:
	3:	1:	0.57	:	2.54:	4.56:	32.34:	58.21:
	4:	1:	0.11	:	2.20:	4.90:	28.03:	62.52:
	5:	1:	0.02	:	1.86:	5.24:	23.72:	66.84:
	6:	1:	0.01	:	1.52:	5.58:	19.40:	71.15:
	7:	1:	0.00	:	1.18:	5.92:	15.09:	75.46:
	8:	1:	0.00	:	0.84:	6.25:	10.78:	79.77:
	9:	1:	0.00	:	0.51:	6.59:	6.47:	84.08:
:	10:	1:	0.00	:	0.17:	6.93:	2.16:	88.40:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT\ SET}$

THROUGH CRACK CASE 3, PSE-N1 hole crack in cap MODEL: TCO3

FATIGUE SCHEDULE BLOCK STRESS TABLE

STI)		•					
S	:	M:	NUMBER	:	S0	:	s3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	· -: ·	:-		-:-	:	:-	:	:
	1:	1:	19.14	:	3.04:	4.06:	38.81:	51.74:
	2:	1:	2.29	:	2.70:	4.39:	34.50:	56.06:
	3:	1:	1.14	:	2.54:	4.56:	32.34:	58.21:
	4:	1:	0.23	:	2.20:	4.90:	28.03:	62.52:
	5:	1:	0.04	:	1.86:	5.24:	23.72:	66.84:
	6:	1:	0.01	:	1.52:	5.58:	19.40:	71.15:
	7:	1:	0.00	:	1.18:	5.92:	15.09:	75.46:
	8:	1:	0.00	:	0.84:	6.25:	10.78:	79.77:
	9:	1:	0.00	:	0.51:	6.59:	6.47:	84.08:
1	.0:	1:	0.00	:	0.17:	6.93:	2.16:	88.40:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 3, PSE-N1 hole crack in cap MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S	:	M:	NUMBER	:	so	:	s3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:

P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	:	:-		-:	:-	:-	:-	:
	1:	1:	38.29	:	3.04:	4.06:	38.81:	51.74:
	2:	1:	4.57	:	2.70:	4.39:	34.50:	56.06:
	3:	1:	2.29	:	2.54:	4.56:	32.34:	58.21:
	4:	1:	0.46	:	2.20:	4.90:	28.03:	62.52:
	5:	1:	0.08	:	1.86:	5.24:	23.72:	66.84:
	6:	1:	0.02	:	1.52:	5.58:	19.40:	71.15:
	7:	1:	0.01	:	1.18:	5.92:	15.09:	75.46:
	8:	1:	0.00	:	0.84:	6.25:	10.78:	79.77:
	9:	1:	0.00	:	0.51:	6.59:	6.47:	84.08:
	10:	1:	0.00	:	0.17:	6.93:	2.16:	88.40:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 3, PSE-N1 hole crack in cap MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STL)							
S	:	M:	NUMBER	:	S0	:	s 3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:	:	:
	1:	1:	0.28	:	2.62:	4.48:	33.42:	57.13:
	2:	1:	0.44	:	2.59:	4.51:	32.99:	57.57:
	3:	1:	0.22	:	2.50:	4.60:	31.91:	58.64:
	4:	1:	0.06	:	2.37:	4.73:	30.18:	60.37:
	5:	1:	0.00	:	2.16:	4.93:	27.60:	62.96:
	6:	1:	0.00	:	1.89:	5.21:	24.15:	66.40:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-N1 hole crack in cap MODEL: $\ensuremath{\mathsf{TC03}}$

ANALYSIS RESULTS:

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
200	15		0.058654	12.411067
400	15		0.066592	12.116725
600	15		0.073967	11.870115
800	15		0.080888	11.660828
1000	15		0.087438	11.480939
1200	15		0.093678	11.324545
1400	15		0.099655	11.187227
1600	1 5		0.105407	11.065636
1800	15		0.110963	10.957187
2000	15		0.116348	10.859859
2200	15		0.121582	10.772047
2400	15		0.126683	10.692457
2600	15		0.131663	10.620034
2800	15		0.136536	10.553910
3000	15		0.141312	10.493361
3200	15		0.146000	10.437778
3400	15		0.150608	10.386647
3600	15		0.155144	10.339525
3800	15		0.159613	10.296035
4000	15		0.164022	10.255850
4200	15		0.168375	10.218682
4400	15		0.172677	10.184284

4600	15	0.176931	10.152435
4800	15	0.181143	10.122940
5000	15	0.185315	10.095629
5200	15	0.189450	10.070347
5400	15	0.193552	10.046958
5600	15	0.197622	10.025338
5800	15	0.201664	10.005376
6000	15	0.205680	9.986974
6200	15	0.209671	9.970041
6400	15	0.213641	9.954495
6600	15	0.217590	9.940262
6800	15	0.221521	9.927274
7000	15	0.225435	9.915469
7200	15	0.229335	9.904790
7400	15	0.233220	9.895188
7600	15	0.237093	9.886612
7800	15	0.240956	9.879022
8000	15	0.244808	9.872376
8200	15	0.248653	9.866638
8400	15	0.252490	9.861773
8600	15	0.256322	9.857753
8800	15	0.260148	9.854546
9000	15	0.263970	9.852128
9200	15	0.267790	9.850473
9400	15	0.271608	9.849561
9600	15	0.275425	9.849369
9800	15	0.279242	9.849879
10000	15	0.283060	9.851074

THROUGH CRACK CASE 3, PSE-N1 hole crack in cap

MODEL: TC03

ANALYSIS RESULTS (contd)

Schedl Block Final Flaw Size K max Step С c-tip 10200 0.286879 9.852938 10400 15 0.290702 9.855457 10600 15 0.294528 9.858616 10800 15 0.298358 9.862404 11000 15 0.302194 9.866810 11200 15 0.306035 9.871824 11400 15 0.309884 9.877437 11600 15 0.313740 9.883642 11800 15 0.317604 9.890430 12000 15 0.321478 9.897796 12200 15 0.325361 9.905736 12400 15 0.329256 9.914243 12600 15 0.333161 9.923315 12800 15 0.337079 9.932949 13000 15 9.943142 0.341010 13200 15 0.344955 9.953894 13400 15 0.348915 9.965203 13600 15 0.352890 9.977070 13800 15 0.356881 9.989496 14000 15 0.360889 10.002481 15 14200 0.364914 10.016029 14400 0.368959 10.030142 14600 15 0.373023 10.044825 14800 15 0.377107 10.060080 15000 15 0.381212 10.075914 15200 15 0.385339 10.092333 15400 15 0.389489 10.109343 15600 15 0.393663 10.126952 15800 15 0.397861 10.145167 16000 15 0.402085 10.164000 16200 15 0.406336 10.183458 16400 15 0.410614 10.203554

16600 15	0.414921	10.224299
16800 15	0.419258	10.245706
17000 15	0.423625	10.267790
17200 15	0.428024	10.290565
17400 15	0.432457	10.314048
17600 15	0.436924	10.338256
17800 15	0.441426	10.363208
18000 · 15	0.445965	10.388924
18200 15	0.450542	10.415426
18400 15	0.455158	10.442738
18600 15	0.459816	10.470883
18800 15	0.464516	10.499889
19000 15	0.469260	10.529785
19200 15	0.474049	10.560601
19400 15	0.478886	10.592370
19600 15	0.483772	10.625128
19800 15	0.488709	10.658913
20000 15	0.493699	10.693766

THROUGH CRACK CASE 3, PSE-N1 hole crack in cap

MODEL: TC03

ANALYSIS RESULTS (contd)

Schedl	Block	Final Flaw		
		Step c	c-tip	
20200	15	0.4987		
20400	15	0.5038		
20600	15	0.5090	09 10.805190	
20800	15	0.5142	33 10.844791	
21000	15	0.5195	10.885718	
21200	15	0.5248	78 10.928036	
21400	15	0.5303	05 10.971814	
21600	15	0.5358	11.017130	
21800	15	0.5413	11.064065	
22000	15	0.5470	37 11.112710	ļ
22200	15	0.5527	177 11.163164	
22400	15	0.5586	11.215535	,
22600	15	0.5645	11.269941	
22800	15	0.5705	11.326513	,
23000	15	0.5766	11.385393	j
23200	15	0.5828	388 11.446742	!
23400	15	0.5892	228 11.510735	i
23600	15	0.5956	11.577568	ţ
23800	15	0.6022	274 11.647460)
24000	15	0.6089	994 11.720657	!
24200	15	0.6158	357 11.79743 4	ļ
24400	15	0.6228	372 11.878103	3
24600	15	0.6300	049 11.963019)
24800	15	0.6374		
25000	15	0.6449		
25200	15	0.6526	577 12.247604	į
25400	15	0.6606	633 12.354215	ŝ
25600	15	0.6688		
25800	15	0.6772	272 12.589318	3
26000	15	0.686	000 12.719702	3
26200	15	0.695		
26400	15	0.704		
26600	15	0.714	180 13.178048	3
26800	15	0.724		
27000	15	0.735	047 13.559834	4
27200	· 15	0.746	281 13.782770	0
27400	15	0.758		
27600	15	0.770	806 14.318949	9
27800	15	0.784	368 14.649117	7
28000	15	0.799	058 15.038642	2
28200	15	0.815	183 15.510456	6
28400	15	0.833	211 16.103210	0

28600 15 0.853926 16.889414 28800 15 0.878830 18.029788

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or

(b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 10

Step description:

of Block No. 11 of Schedule No. 28868

Crack Size c = 0.888713

29000 15 0.911603 20.007811

FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. Step description: 29057

of Block No. 11 of Schedule No.

c = 0.923644Crack Size

```
FATIGUE CRACK GROWTH ANALYSIS
             DATE: 09/11/98 TIME: 12:32:37
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 5, PSE-N2 hole crack in .090 cap
GEOMETRY
MODEL: TC05-Through crack from hole in row of holes.
                    0.0900
Plate Thickness, t =
Hole Dia., D = 0.1900
Hole-to-Hole Dist., H = 1.0000
Dia./Edge-Dist. Ratio, D/B = 0.3750
(D/B = 0 \text{ means } B \text{ is very large})
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2024-T3511
       Extr; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
                 : : : :
: 1: 77.0: 55.0: 35.0: 25.0: 1.00: 1.00: 0.090: 49.3:
:Matl:---- Crack Growth Egn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
:---:--:---:---:
: 1 :0.200E-07:2.700:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
 THROUGH CRACK CASE 5, PSE-N2 hole crack in .090 cap
MODEL: TC05
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
 [Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3:
                           4.0900
Scale Factor for Stress S4: 0.00000
 Stress Scaling Factors for Block Case: 2
 Scale Factor for Stress S0: 0.00000
 Scale Factor for Stress S3:
                           4.0900
 Scale Factor for Stress S4: 0.00000
```

```
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                          0.00000
Scale Factor for Stress S3:
                          4.0900
Scale Factor for Stress S4:
                          0.00000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                          4.0900
Scale Factor for Stress S4:
                          0.00000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                          0.00000
Scale Factor for Stress S3:
                          1.8100
Scale Factor for Stress S4:
                          0.00000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                          Block Case No.
From
         To
   1
             1
                                   1
   2
             2
   3
             3
                                   5
   4
             4
                                   1
   6
             6
                                   1
   8
             8
   9
             9
  10
            10
                                   1
  11
            11
  12
  13
            13
  14
            14
BLOCK CASE NO. 1
S : M: NUMBER
                         S0
                                           S3
         OF
T : A:
E : T: FATIGUE
                  :
P : L: CYCLES
                      (t1): (t2)
                                       (t1): (t2)
1: 1:
             1.90 :
                      -0.30:
                              0.30:
                                       -2.73:
                                                -2.13:
             0.09:
  2: 1:
                      -0.40:
                                0.40:
                                        -2.83:
                                                -2.03:
  3: 1:
            0.01 :
                      -0.46:
                                0.46:
                                        -2.89:
                                                 -1.97:
S : M: NUMBER :
                       S4
                                   :
                                           S
  : A:
         OF
E : T: FATIGUE
                 :
P : L: CYCLES
                      (t1): (t2):
                                       (t1): (t2):
----:--:----
                ---;-----;------;-----;
  1: 1: 1.90: -0.30: 0.30: 0.00:
                                                0.00:
             0.09 :
  2: 1:
                      -0.40:
                                0.40:
                                        0.00:
                                                 0.00:
             0.01 :
                      -0.46:
  3: 1:
                                0.46:
                                        0.00:
                                                 0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                         s_0
                                           s_3
T : A:
         OF
E : T: FATIGUE
P : L: CYCLES
                      (t1): (t2)
                                        (t1): (t2):
----:--:----
           9.57 : -0.30:
  1: 1:
                              0.30:
                                       -2.73: -2.13:
  2: 1:
             1.14:
                      -0.50:
                                0.50:
                                        -2.93:
```

3:	1:	0.57	:	-0.60:	0.60:	-3.03:	-1.83:
4:	1:	0.11	:	-0.80:	0.80:	-3.23:	-1.63:
5:	1:	0.02	:	-1.00:	1.00:	-3.43:	-1.43:
6:	1:	0.01	:	-1.20:	1.20:	-3.63:	-1.23:
7:	1:	0.00	:	-1.40:	1.40:	-3.83:	-1.03:
8:	1:	0.00	:	-1.60:	1.60:	-4.03:	-0.83:
9:	1:	0.00	:	-1.80:	1.80:	-4.23:	-0.63:
10:	1:	0.00	:	-2.00:	2.00:	-4.43:	-0.43:
s:	M:	NUMBER	:	S4	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
					4	4	(-0)
	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		:-	:-	:-	:-	:
1:	1:	9.57		0.70:	1.30:	0.00:	0.00:
1: 2:	1: 1:	9.57 1.14	:	0.70: 0.50:	1.30: 1.50:	0.00:	0.00: 0.00:
1:	1: 1:	9.57 1.14 0.57	:	0.70: 0.50: 0.40:	1.30: 1.50: 1.60:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2:	1: 1: 1:	9.57 1.14	:	0.70: 0.50:	1.30: 1.50:	0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3:	1: 1: 1: 1:	9.57 1.14 0.57	: :	0.70: 0.50: 0.40:	1.30: 1.50: 1.60:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4:	1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11	: : : :	0.70: 0.50: 0.40: 0.20:	1.30: 1.50: 1.60: 1.80:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02	: : : : : : : : : : : : : : : : : : : :	0.70: 0.50: 0.40: 0.20: 0.00:	1.30: 1.50: 1.60: 1.80: 2.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6:	1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	0.70: 0.50: 0.40: 0.20: 0.00:	1.30: 1.50: 1.60: 1.80: 2.00: 2.20:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00	: : : : : : : : : : : : : : : : : : : :	0.70: 0.50: 0.40: 0.20: 0.00: -0.20:	1.30: 1.50: 1.60: 1.80: 2.00: 2.20: 2.40:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

		E NO. 3					
S	: M:	NUMBER	:	\$ 0	:	S 3	:
	: A:	OF	:		:		:
E		FATIGUE	:		:		
-		CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	::- : 1:	19.14	: -	-0.30:	0.30:	-2.73:	-2.13:
		2.29			0.50:		
	: 1: : 1:	1.14			0.60:		
	l: 1:	0.23			0.80:	-3.23:	
	i: 1:	0.23			1.00:	-3.43:	
): 1: 5: 1:	0.01		-1.20:	1.20:	-3.43:	
): 1: /: 1:	0.00		-1.20:	1.40:	-3.83:	
): 1: 3: 1:	0.00				-4.03:	
						-4.23:	
	: 1:	0.00		-1.80: -2.00:		-4.23: -4.43:	
): 1:				2.00:	-4.43: S	-0.43:
	: M:	NUMBER	:	S4	:	۵	•
-	: A:	OF	:		•		•
		FATIGUE		/±13	(+2)	/h1\	(+2)
P	: ь: -::-	CYCLES	: - · -	(t1) :	(62) :	(CI):	(t2) :
	l: 1:	19.14	:	0.70:	1.30:	0.00:	0.00:
	2: 1:				1.50:	0.00:	0.00:
	3: 1:	1.14			1.60:	0.00:	0.00:
	1: 1:	0.23		0.20:	1.80:	0.00:	0.00:
	5: 1:			0.00:	2.00:	0.00:	
	5: 1:	0.01				0.00:	
	7: 1:	0.00			2.40:	0.00:	0.00:
	8: 1:	0.00			2.60:	0.00:	
	9: 1:	0.00			2.80:	0.00:	0.00:
	0: 1:	0.00		-1.00:	3.00:	0.00:	0.00:
		2.00	•				

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

BLO	CK	CAS	E NO. 4						
S	:	M:	NUMBER	:	so		:	s3	:
T	:	A:	OF	:			:		:
E	:	T:	FATIGUE	:			:		:
P	:	L:	CYCLES	:	(t1) :	(t2)	:	(t1) : (t2) :

				- • -				
	1:	1:	38.29	:	-0.30:	0.30:	-2.73:	-2.13:
	2:	1:	4.57	:	-0.50:	0.50:	-2.93:	-1.93:
	3:	1:	2.29	:	-0.60:	0.60:	-3.03:	-1.83:
	4:	1:	0.46	:	-0.80:	0.80:	-3.23:	-1.63:
	5:	1:	0.08	:	-1.00:	1.00:	-3.43:	-1.43:
	6:	1:	0.02	:	-1.20:	1.20:	-3.63:	-1.23:
	7:	1:	0.01	:	-1.40:	1.40:	-3.83:	-1.03:
	8:	1:	0.00	:	-1.60:	1.60:	-4.03:	-0.83:
	9:	1:	0.00	:	-1.80:	1.80:	-4.23:	-0.63:
1	0:	1:	0.00	:	-2.00:	2.00:	-4.43:	-0.43:
S	:	M:	NUMBER	:	S4	:	S	:
Т	:	A:	OF	:		:		:
		_	DAMEGIT					
E	:	\mathbf{T} :	FATIGUE	:		:		:
	:	L:		:		: (t2) :		: (t2) :
P 	: -:-	L:	CYCLES		:-	:	:-	:
P 	: -: 1:	L: : 1:	CYCLES 38.29	:	-0.30:	0.30:	0.00:	0.00:
P 	: -: 1: 2:	L: 1: 1:	CYCLES 38.29 4.57	:	-0.30: -0.50:	0.30: 0.50:	0.00: 0.00:	0.00: 0.00:
P 	1: 2: 3:	L: 1: 1: 1:	CYCLES 38.29 4.57 2.29	:	-0.30: -0.50: -0.60:	0.30: 0.50: 0.60:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
P 	: 1: 2: 3:	L: 1: 1: 1: 1:	38.29 4.57 2.29 0.46	: : : :	-0.30: -0.50: -0.60: -0.80:	0.30: 0.50: 0.60: 0.80:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
P 	: 1: 2: 3: 4:	L: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08	: : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00:	0.30: 0.50: 0.60: 0.80: 1.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
P	1: 2: 3: 4: 5:	L: 1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02	: : : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20:	0.30: 0.50: 0.60: 0.80:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P 	1: 2: 3: 4: 5: 7:	L: 1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20: -1.40:	0.30: 0.50: 0.60: 0.80: 1.00: 1.20:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P 	1: 2: 3: 4: 5: 7:	L: 1: 1: 1: 1: 1:	38.29 4.57 2.29 . 0.46 0.08 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20: -1.40: -1.60:	0.30: 0.50: 0.60: 0.80: 1.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
P 	1: 2: 3: 4: 5: 6: 7:	L: 1: 1: 1: 1: 1:	38.29 4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20: -1.40: -1.60:	0.30: 0.50: 0.60: 0.80: 1.00: 1.20:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	OCK	CAS	E NO. 5					
S	:	M:	NUMBER	:	S 0	:	S3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
			CYCLES					
			0.28					
			0.44					4.64:
							-4.69:	
			0.22					
			0.00				-10.37:	
			0.00					19.20:
			NUMBER	:	S4	:	S	:
Т	:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:		:		:
			CYCLES					
	_	-	0.28			_	-	-
			0.44					
		1:					0.00:	
					-7.53:		0.00:	
		1:			-10.37:		0.00:	
		1:			-13.22:		0.00:	
	ο:	т:	0.00		~13.4Z:	13.7∩:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 5, PSE-N2 hole crack in .090 cap ${\tt MODEL:\ TC05}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S3 :
T : A: OF : : : :
E : T: FATIGUE : (ksi) : (ksi) :
P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :

	1:	1:	1.90	:	0.00:	0.00:	-11.17:	-8.71:
	2:	1:	0.09	:	0.00:	0.00:	-11.57:	-8.30:
	3:	1:	0.01	:	0.00:	0.00:	-11.82:	-8.06:
S	:	M:	NUMBER	:	S4	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
_	-		CYCLES				(t1) :	
	:	:		-:-				
	1:	1:	1.90	:	0.00:	0.00:	0.00:	0.00:
	2:	1:	0.09	:	0.00:	0.00:	0.00:	0.00:
	3.	1:	0.01	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 5, PSE-N2 hole crack in .090 cap MODEL: ${\tt TC05}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD					_		
	M:	NUMBER	:	S 0	:	s3	
	A:	OF	:	50	:	55	
E :		FATIGUE	:	(ksi)	:	(ksi)	
		CYCLES		(t1):			
P :	 	C1CDE3	•	(CI):	(LZ) :		(62) .
1.	1:	9.57	:	0.00:	0.00:	-11.17:	-8.71:
	1:	1.14					
	1:				0.00:		
	1:	0.11					
	1:	0.02			0.00:		
6:	1:	0.01			0.00:		
	1:	0.00					
	1:				0.00:		
	1:			0.00:			
10:		0.00					
				0.00: S4	0.00:	-16.12: S	-1.70:
s:		NUMBER	:	54	•	۵	•
T :		OF	:	(ksi)		(ksi	
	T:	FATIGUE					
P :	ь: :-	CYCLES	:	(t1) :	(62) :	(t1) :	(62) :
1 •	1:	9.57	•	0.00:	0.00:	•	0.00:
	1:				0.00:	0.00:	
	1:	0.57			0.00:	0.00:	
4:		0.11				0.00:	
	1:	0.02				0.00:	
6:		0.01			0.00:		
7:					0.00:		
8:		0.00				0.00:	
9:		0.00			0.00:	0.00:	0.00:
	1:	0.00			0.00:	0.00:	0.00:
10:	Τ:	0.00	•	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 5, PSE-N2 hole crack in .090 cap MODEL: TC05

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S3 :
T : A: OF : : : : : :
E : T: FATIGUE : (ksi) : (ksi) : :
P : L: CYCLES : (t1): (t2) : (t1): (t2) :

1: 1: 19.14 : 0.00: 0.00: -11.17: -8.71:
2: 1: 2.29 : 0.00: 0.00: -11.98: -7.89:
3: 1: 1.14 : 0.00: 0.00: -12.39: -7.48:

4:	1:	0.23	:	0.00:	0.00:	-13.21:	-6.67:
5:	1:	0.04	:	0.00:	0.00:	-14.03:	-5.85:
6:	1:	0.01	:	0.00:	0.00:	-14.85:	-5.03:
7:	1:	0.00	:	0.00:	0.00:	-15.66:	-4.21:
8:	1:	0.00	:	0.00:	0.00:	-16.48:	-3.39:
9:	1:	0.00	:	0.00:	0.00:	-17.30:	-2.58:
10:	1:	0.00	:	0.00:	0.00:	-18.12:	-1.76:
s:	M:	NUMBER	:	S4	:	S	:
T:	A:	OF	:		:	*	:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P :	L:	CYCLES		(t1) :	(+2) ·	(t1) :	(+2) ·
	ш.	CICLES	•	(LI):	(62)	(С1) .	(02)
:	: :- 1:	19.14	· - : - :	0.00:	0.00:	0.00:	:
:	:- 1:			:	:-	:	0.00:
1:	1: 1:	19.14	:	0.00:	0.00:	0.00:	0.00:
1: 2: 3:	1: 1:	19.14 2.29	:	0.00: 0.00:	0.00: 0.00:	0.00: 0.00:	0.00: 0.00:
1: 2: 3: 4:	1: 1: 1:	19.14 2.29 1.14	: : :	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4:	1: 1: 1: 1:	19.14 2.29 1.14 0.23	: : : :	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : : :	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6:	1: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : : : : : : : : : : : : : : : : : : :	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : : : : : : : : : : : : : : : : : : :	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 5, PSE-N2 hole crack in .090 cap ${\tt MODEL:\ TC05}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD						_		
S	:	M:	NUMBER	:	S 0	:	s3	:
\mathbf{T}	:	A:	OF	:		:		:
Ε	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:. 1:	1:	38.29	-:- :	0.00:	0.00:	-11.17:	-8.71:
		1:	4.57					
	3:	1:	2.29	:	0.00:	0.00:		
	4:	1:			0.00:			
	5:	1:	0.08	:	0.00:	0.00:	-14.03:	-5.85:
	6:	1:	0.02	:	0.00:	0.00:	-14.85:	-5.03:
•	7:	1:	0.01	:	0.00:	0.00:	-15.66:	-4.21:
	8:	1:	0.00	:	0.00:	0.00:	-16.48:	-3.39:
	9:	1:	0.00	:	0.00:	0.00:	-17.30:	-2.58:
1	0:	1:	0.00	:	0.00:	0.00:	-18.12:	-1.76:
S	:	M:	NUMBER	:	S4	:	S	:
${f T}$:	A:	OF	:		:		:
\mathbf{E}	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		•	:	•	:	:
		1:			0.00:			0.00:
		1:			0.00:			0.00:
		1:			0.00:			
		1:			0.00:	0.00:	0.00:	0.00:
		1:	0.08			0.00:		0.00:
		1:			0.00:		0.00:	0.00:
		1:	0.01					
		1:				0.00:	0.00:	0.00:
		1:				0.00:		
10	0:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 5, PSE-N2 hole crack in .090 cap ${\tt MODEL:\ TC05}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

						_		
STI								
S	:	Μ:	NUMBER	:	S 0	:	s3	:
\mathbf{T}	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)		(ksi	
P		L:	CYCLES		(t1):		(t1):	
-	•		СТСДДД	•	(01)	(02)	(61)	(02)
	-:	:-		-;	:			:
	1:	1:	0.28	:	0.00:	0.00:	1.81:	1.83:
	2:	1:	0.44	:	0.00:	0.00:	-3.33:	8.40:
•	3:	1:	0.22	:	0.00:	0.00:	-8.49:	14.99:
	4:	1:	0.06	:	0.00:	0.00:	-13.63:	21.58:
		1:	0.00		0.00:	0.00:		
		1:	0.00	:	0.00:	0.00:		34.75:
S	:	М:	NUMBER	:	S4	:	S	:
Т	:	Α:	OF	:		:		:
Ē	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
Р	•	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t.2) :
	• .	_·		· ·				
	1.	1:	0.28	:	0.00:	0.00:	0.00:	0.00:
		1:	0.44		0.00:	0.00:	0.00:	0.00:
	3:	1:	0.22	:	0.00:	0.00:	0.00:	.0.00:
	4:	1:	0.06	:	0.00:	0.00:	0.00:	0.00:
	5:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	6:	1:	0.00		0.00:	0.00:	0.00:	0.00:
	٠.		0.00	•	5.00.	5.00.	5.00.	5.00.

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ ${\tt SET}$

THROUGH CRACK CASE 5, PSE-N2 hole crack in .090 cap MODEL: $\ensuremath{\mathsf{TC05}}$

ANALYSIS RESULTS:

Schedl	Block		Final	Flaw	Size	K max
		Step		C		c-tip
200	15		0.	. 05001	L5	6.651662
400	15		0.	.05003	30	6.651563
600	15		0.	.05004	14	6.651463
800	15		0.	. 05005	59	6.651363
1000	15		0.	.05007	74	6.651264
1200	15		0.	. 05008	39	6.651164
1400	15		0.	.05010)3	6.651064
1600	15		0	.05011	18	6.650963
1800	15		0	.05013	33	6.650863
2000	15		0	.05014	18	6.650762
2200	15		0	.05016	52	6.650662
2400	15		0	.05017	77	6.650561
2600	15		0	.05019	92	6.650460
2800	15		0	.05020	07	6.650359
3000	15		0	.05022	21	6.650258
3200	15		0	.05023	36	6.650157
3400	15		0	.05029	51	6.650055
3600	15		0	.0502	66	6.649954
3800	15		0	.05028	80	6.649852
4000	15		0	.05029	95	6.649750
4200	15		0	.0503	10	6.649648
4400	15		. 0	.05032	25	6.649546
4600	15		0	.0503	39	6.649444
4800	15		0	.0503	54	6.649341
5000	15		0	.0503	69	6.649239
5200	15		0	.0503	83	6.649136
5400	15			.0503		6.649033
5600	15			.0504		6.648930
5800	15			.0504		6.648827
6000	15		0	.0504	42	6.648724

6200	15	0.050457	6.648621
6400	15	0.050472	6.648517
6600	15	0.050486	6.648414
6800	15	0.050501	6.648310
7000	15	0.050516	6.648206
7200	15	0.050530	6.648102
7400	15	0.050545	6.647998
7600	15	0.050560	6.647894
7800	15	0.050574	6.647789
8000	15	0.050589	6.647685
8200	15	0.050604	6.647580
8400	15	0.050619	6.647476
8600	15	0.050633	6.647371
8800	15	0.050648	6.647266
9000	15	0.050663	6.647161
9200	15	0.050677	6.647055
9400	15	0.050692	6.646950
9600	15	0.050706	6.646844
9800	15	0.050721	6.646739
10000	15	0.050736	6.646633

THROUGH CRACK CASE 5, PSE-N2 hole crack in .090 cap

MODEL: TC05

ANALYSIS RESULTS (contd)

Schedl	Block	Final Fl		K max
10000	4.5	Step c		c-tip
10200	15	0.05		6.646527
10400	15	0.05		6.646421
10600	15	0.05		6.646315
10800	15	0.05		6.646209
11000	15 15	0.05		6.646102
11200	15	0.05		6.645996
11400	15 15	0.05		6.645889
11600	15	0.05		6.645782
11800	15	0.05		6.645675
12000	15	0.05		6.645568
12200	15	0.05		6.645461
12400	15	0.05		6.645354
12600	15	0.05		6.645247
12800	15	0.05		6.645139
13000	15	0.05		6.645032
13200	15	0.05		6.644924
13400	15	0.05		6.644816
13600	15	0.05		6.644708
13800	15	0.05		6.644600
14000	15	0.05		6.644492
14200	15	0.05		6.644383
14400	15	0.05		6.644275
14600	15	0.05		6.644166
14800	15	0.05		6.644058
15000	15	0.05		6.643949
15200	15	0.05		6.643840
15400	15	0.05		6.643731
15600	15	0.05		6.643622
15800	15	0.05		6.643512
16000	15	0.05		6.643403
16200	15	0.05		6.643293
16400	15	0.05		6.643184
16600	15	0.05		6.643074
16800	15	0.05		6.642964
17000	15	0.05		6.642854
17200	15	0.05		6.642744
17400	15	0.05		6.642634
17600	15	0.05		6.642523
17800	15	0.05		6.642413
18000	15	0.05	1320	6.642302

18200	15	0.051334	6.642192
18400	15	0.051349	6.642081
18600	15	0.051363	6.641970
18800	15	0.051378	6.641859
19000	15	0.051393	6.641748
19200	15	0.051407	6.641637
19400	15	0.051422	6.641525
19600	15	0.051436	6.641414
19800	15	0.051451	6.641302
20000	15	0.051465	6.641190

THROUGH CRACK CASE 5, PSE-N2 hole crack in .090 cap

MODEL: TC05

ANALYSIS RESULTS (contd)

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
20200	15		0.051480	6.641079
20400	15		0.051494	6.640967
20600	15		0.051509	6.640855
20800	15		0.051523	6.640742
21000	15		0.051538	6.640630

FINAL RESULTS:

Critical Crack Size has NOT been reached. at Cycle No. 0.00 of Load Step No.

Step description:

of Block No. 15 of Schedule No. 21000 Crack Size c = 0.515378E-01

C-17 PSE N3 Upper Longeron at Wing Rib Attach Angle

```
FATIGUE CRACK GROWTH ANALYSIS
            DATE: 09/09/98 TIME: 19:07:17
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC2, PSE-N3 Nacelle upper longeron rib attach angles
GEOMETRY
MODEL: TC02-Single edge through crack.
Plate Thickness, t =
                   0.0630
 " Width, W = 5.2500
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2024-T351
      Plt & Sht; T-L; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
: 1: 68.0: 52.0: 41.0: 29.0: 1.00: 1.00: 0.063: 57.8:
:Matl:----- Crack Growth Eqn Constants ----:
: 1 :0.922E-08:3.353:0.50:1.00: 2.60: 0.70: 1.50: 0.30:
TC2, PSE-N3 Nacelle upper longeron rib attach angles
MODEL: TC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1:
                        6.4100
Scale Factor for Stress S2: 0.00000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1:
                       6.4100
                       0.00000
Scale Factor for Stress S2:
```

```
Stress Scaling Factors for Block Case: 3
      Scale Factor for Stress SO: 0.00000
      Scale Factor for Stress S1:
                              6.4100
      Scale Factor for Stress S2: 0.00000
      Stress Scaling Factors for Block Case: 4
      Scale Factor for Stress S0: 0.00000
      Scale Factor for Stress S1:
                               6.4100
      Scale Factor for Stress S2:
                               0.00000
      Stress Scaling Factors for Block Case: 5
      Scale Factor for Stress S0:
      Scale Factor for Stress S1:
                              2.8300
                              0.00000
      Scale Factor for Stress S2:
      Total No. of Blocks in Schedule =
         Block Number and Case Correspondences
       Block Number
                               Block Case No.
      From - To
         1
                  1
                                       1
          2
          3
          5
                  5
                                       3
                                       1
          7
          8
                  - 8
          9
                   9
         10
                  10
                  11
         11
         12
                  12
                  13
                                       1
         13
         14
                  14
       BLOCK CASE NO. 1
       S : M: NUMBER
       T : A:
              OF
       E : T: FATIGUE
       P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
        1: 1: 1.90: -0.30: 0.30: 2: 1: 0.09: -0.40: 0.40: 3: 1: 0.01: -0.46: 0.46: ... NIMBER : S2 :
       -0.30: 0.30: -2.73: -2.13:
-0.40: 0.40: -2.83: -2.03:
                                            -2.83:
                                            -2.89: -1.97:
                                            s
       S : M: NUMBER :
         : A:
       E : T: FATIGUE :
        P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :
       0.00:
                   0.01 :
                           -0.46: 0.46:
       Environmental Crack Growth Check for Sustained Stresses
       (Kmax less than KIscc): NOT SET
       BLOCK CASE NO. 2
                             S0
        S : M: NUMBER :
                                               S1
          : A:
       E : T: FATIGUE :
        P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
       1: 1: 9.57: -0.30: 0.30: -2.73: -2.13: 2: 1: 1.14: -0.50: 0.50: -2.93: -1.93:
```

3:	1:	0.57	:	-0.60:	0.60:	-3.03:	-1.83:
4:	1:	0.11	:	-0.80:	0.80:	-3.23:	-1.63:
5:	1:	0.02	:	-1.00:	1.00:	-3.43:	-1.43:
6:	1:	0.01	:	-1.20:	1.20:	-3.63:	-1.23:
7:	1:	0.00	:	-1.40:	1.40:	-3.83:	-1.03:
8:	1:	0.00	:	-1.60:	1.60:	-4.03:	-0.83:
9:	1:	0.00	:	-1.80:	1.80:	-4.23:	-0.63:
10:	1:	0.00	:	-2.00:	2.00:	-4.43:	-0.43:
s:	Μ:	NUMBER	:	S2	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
_							
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
P :	L: :-	CYCLES	: -:-	(t1) :	(t2) :	(t1) : :-	(t2) :
:-	L: :- 1:	CYCLES 9.57	: -:- :	:-	(t2) : : 0.30:	(t1) : :- 0.00:	(t2) : : 0.00:
:-	:- 1:			:-	:-	:-	:
1:	1: 1:	9.57	:	-0.30:	0.30:	0.00:	0.00:
: 1: 2:	1: 1: 1:	9.57 1.14	: :	-0.30: -0.50:	0.30: 0.50:	0.00:	0.00:
1: 2: 3:	1: 1: 1: 1:	9.57 1.14 0.57	: : :	-0.30: -0.50: -0.60:	0.30: 0.50: 0.60:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4:	1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11	: : : :	-0.30: -0.50: -0.60: -0.80:	0.30: 0.50: 0.60: 0.80:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
:- 1: 2: 3: 4: 5:	1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02	: : : : : : : : : : : : : : : : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00:	0.30: 0.50: 0.60: 0.80: 1.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6:	1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20:	0.30: 0.50: 0.60: 0.80: 1.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01 0.00	: : : : : : : : : : : : : : : : : : : :	-0.30: -0.50: -0.60: -0.80: -1.00: -1.20: -1.40:	0.30: 0.50: 0.60: 0.80: 1.00: 1.20: 1.40:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 3 S : M: NUMBER S0 T : A: OF E : T: FATIGUE P : L: CYCLES (t1) : (t2) (t1): (t2) ---:--:--------:----19.14 : -0.30: 1: 1: 0.30: -2.73: -2.13: 2: 1: 2.29: -0.50: 0.50: -2.93: -1.93: 1.14: 3: 1: -0.60: 0.60: -3.03: -1.83: 4: 1: 0.23: -0.80: 0.80: -3.23: -1.63: 5: 1: 0.04: -1.00: 1.00: -3.43: -1.43: 6: 1: 0.01: -1.20: 1.20: -3.63: -1.23: 7: 1: 0.00: -1.40: 1.40: -3.83: -1.03: 8: 1: 0.00: -1.60: 1.60: -4.03: -0.83: 9: 1: 0.00 : -1.80: 1.80: -4.23: -0.63: 10: 1: 0.00: -2.00: 2.00: -4.43: -0.43: S : M: NUMBER S2 S Т : A: OF : T: E FATIGUE P : L: CYCLES (t1): (t2) : (t1): (t2) 1: 1: 19.14: -0.30: 0.30: 0.00: 0.00: 2: 1: 2.29: -0.50: 0.50: 0.00: 0.00: 3: 1: 1.14: -0.60: 0.60: 0.00: 0.00: 4: 1: 0.23: -0.80: 0.80: 0.00: 0.00: 5: 1: 0.04 : -1.00: 1.00: 0.00: 0.00: 6: 1: 0.01: -1.20: 1.20: 0.00: 0.00: 7: 1: 0.00 : -1.40: 1.40: 0.00: 0.00: 8: 1: 0.00: -1.60: 1.60: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

-1.80:

-2.00:

0.00:

0.00:

9: 1:

10: 1:

BLO	CK	CAS	SE NO. 4						
S	:	M:	NUMBER	:	so		:	S1	:
${f T}$:	A:	OF	:			:		:
E	:	T:	FATIGUE	:			:		:
P	:	L:	CYCLES	:	(t1) :	(t2)	:	(t1) :	(t2) :

1.80:

2.00:

0.00:

0.00:

0.00:

0.00:

							:
1:	1:	38.29	:	-0.30:	0.30:	-2.73:	-2.13:
2:	1:	4.57	:	-0.50:	0.50:	-2.93:	-1.93:
3:	1:	2.29	:	-0.60:	0.60:	-3.03:	-1.83:
4:	1:	0.46	:	-0.80:	0.80:	-3.23:	-1.63:
5:	1:	0.08	:	-1.00:	1.00:	-3.43:	-1.43:
6:	1:	0.02	:	-1.20:	1.20:	-3.63:	-1.23:
7:	1:	0.01	:	-1.40:	1.40:	-3.83:	-1.03:
8:	1:	0.00	:	-1.60:	1.60:	-4.03:	-0.83:
9:	1:	0.00	:	-1.80:	1.80:	-4.23:	-0.63:
10:	1:	0.00	:	-2.00:	2.00:	-4.43:	-0.43:
s:	M:	NUMBER	:	S2	:	S	:
T:	A:	OF	:		:	•	:
E :	T:	FATIGUE	:		:		:
P:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:					• •	(02)	,,
	•		-:-	:-	:	:-	:
	1:				0.30:	0.00:	0.00:
2:	1:	4.57	:	-0.50:	0.30: 0.50:	0.00: 0.00:	0.00: 0.00:
2: 3:	1: 1:	4.57 2.29	:	-0.50: -0.60:	0.30: 0.50: 0.60:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
2: 3: 4:	1: 1: 1:	4.57 2.29 0.46	::	-0.50: -0.60: -0.80:	0.30: 0.50: 0.60: 0.80:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
2: 3: 4:	1: 1:	4.57 2.29	::	-0.50: -0.60:	0.30: 0.50: 0.60: 0.80: 1.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
2: 3: 4: 5: 6:	1: 1: 1: 1:	4.57 2.29 0.46 0.08 0.02	: : : : : :	-0.50: -0.60: -0.80: -1.00: -1.20:	0.30: 0.50: 0.60: 0.80: 1.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
2: 3: 4: 5: 6:	1: 1: 1: 1: 1:	4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	-0.50: -0.60: -0.80: -1.00: -1.20: -1.40:	0.30: 0.50: 0.60: 0.80: 1.00: 1.20:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
2: 3: 4: 5: 6:	1: 1: 1: 1:	4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	-0.50: -0.60: -0.80: -1.00: -1.20:	0.30: 0.50: 0.60: 0.80: 1.00: 1.20: 1.40:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	4.57 2.29 0.46 0.08 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	-0.50: -0.60: -0.80: -1.00: -1.20: -1.40:	0.30: 0.50: 0.60: 0.80: 1.00: 1.20:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 5 so : S : M: NUMBER S1 T : A: OF E : T: FATIGUE : ----;--;---:---;------; 1: 1: 0.28 : 1.00: 1.01: 1.00: 1.01: 2: 1: 0.44 : -1.84: 4.64: -1.84: 4.64: 3: 1: 0.22 : -4.69: 8.28: -4.69: 8.28: 4: 1: 0.06 : -7.53: 11.92: -7.53: 11.92: 5: 1: 0.00 : -10.37: 15.56: -10.37: 15.56: 6: 1: 0.00 : -13.22: 19.20: -13.22: 19.20: S : M: NUMBER : S2 : S : T : A: OF E : T: FATIGUE : (t1) : (t2) : (t1) : (t2) P : L: CYCLES 1: 1: 0.28: 1.00: 1.01: 0.00: 0.00: 4.64: 8.28: 0.44 : -1.84: 0.00: 0.00: 2: 1: 0.00: 0.22: 3: 1: -4.69: 0.00: 4: 1: 0.06: -7.53: 11.92: 0.00: 0.00: 0.00: -10.37: 0.00: 0.00: 15.56: 5: 1: 6: 1: 0.00: -13.22: 19.20: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-N3 Nacelle upper longeron rib attach angles ($\texttt{MODEL:}\ \texttt{TC02}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S : M: NUMBER : S0 : S1 :
T : A: OF : : : : :
E : T: FATIGUE : (ksi) : (ksi) :
P : L: CYCLES : (t1) : (t2) : (t1) : (t2) :

```
1: 1: 1.90: 0.00: 0.00: -17.50: -13.65: 2: 1: 0.09: 0.00: 0.00: -18.14: -13.01: 3: 1: 0.01: 0.00: 0.00: -18.52: -12.63: S: M: NUMBER: S2: S: T: A: OF: C: CYCLES: (t1): (t2): (t1): (t2):
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-N3 Nacelle upper longeron rib attach angles (MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s:	M:	NUMBER	:	so	:	S1	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)) :	(ksi) :
P :	L:	CYCLES	:	(t1):	(t2) :	(t1):	(t2) :
	:-		- : -	:	:-	:-	:
		9.57	:	0.00:	0.00:	-17.50:	-13.65:
2:	1:	1.14	:	0.00:	0.00:	-18.78:	-12.37:
		0.57	:	0.00:	0.00:	-19.42:	-11.73:
		0.11					-10.45:
	1:			0.00:			-9.17:
	1:	0.01					
7:	1:			0.00:			-6.60:
8:	1:	0.00	:	0.00:	0.00:	-25.83:	-5.32:
9:	1:	0.00	:	0.00:	0.00:	-27.11:	-4.04:
10:	1:	0.00	:	0.00:	0.00:	-28.40:	-2.76:
s :	M:	NUMBER		S2	:	s	:
т:		OF	:		:		:
		FATIGUE		(ksi)	:	(ksi) :
		CYCLES		(t1) :	(t2) :	(t1) :	(t2) :
:	-			:			
		9.57	₹.	0.00:	0.00:	0.00:	0.00:
	1:			0.00:			
	1:	0.57	:	0.00:	0.00:	0.00:	0.00:
	1:			0.00:			
	1:	0.02				0.00:	
	1:			0.00:			
7:	1:			0.00:			
	1:			0.00:			
	1:			0.00:	0.00:	0.00:	
10:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-N3 Nacelle upper longeron rib attach angles (MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

cmp

STD								
S	:	M:	NUMBER	:	so	:	S1	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:	:-		-:-	:	:-	:	:
	1:	1:	19.14	:	0.00:	0.00:	-17.50:	-13.65:
- :	2:	1:	2.29	:	0.00:	0.00:	-18.78:	-12.37:
	3:	1:	1.14	:	0.00:	0.00:	-19.42:	-11.73:

4:	1:	0.23	:	0.00:	0.00:	-20.70:	-10.45:
5:	1:	0.04	:	0.00:	0.00:	-21.99:	-9.17:
6:	1:	0.01	:	0.00:	0.00:	-23.27:	-7.88:
7:	1:	0.00	:	0.00:	0.00:	-24.55:	-6.60:
8:	1:	0.00	:	0.00:	0.00:	-25.83:	-5.32:
9:	1:	0.00	:	0.00:	0.00:	-27.11:	-4.04:
10:	1:	0.00	:	0.00:	0.00:	-28.40:	-2.76:
s:	M:	NUMBER	:	S2	:	s	:
т:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi)	:	(ksi)	:
_	_			4. 4 1	(+3) -	(t1) :	/+2\ ·
P :	L:	CYCLES	:	(t1) :	(62)	(CT):	(62)
P :	ь: :-	CYCLES	: - : -	(tl):	:	:	:
:	L: :- 1:	CYCLES 	: -:- :	(tl): : 0.00:	0.00:	0.00:	0.00:
1:	:-			:	·:	:	:
1: 2:	:- 1:	19.14	:	0.00:	0.00:	0.00:	0.00:
1: 2: 3:	1: 1:	19.14 2.29 1.14	:	0.00: 0.00:	0.00:	0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4:	1: 1: 1:	19.14 2.29 1.14 0.23	:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1:	19.14 2.29 1.14 0.23	: : :	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : :	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6:	1: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : : : : : : : : : : : : : : : : : : :	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	19.14 2.29 1.14 0.23 0.04 0.01	: : : : : : : : : : : : : : : : : : : :	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-N3 Nacelle upper longeron rib attach angles MODEL: TC02

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD								
S		M:	NUMBER	:	S0	:	S1	:
T		A:	OF	:		:		:
Ē		T:	FATIGUE	:	(ksi)	:	(ksi)	:
			CYCLES	:			(t1) :	(t2) :
	-:-	:-		:-	:	:-	:	13 65
	1:		38.29			0.00:		
		1:	4.57			0.00:		
	3:		2.29					
		1:			0.00:			
	5:		0.08					
	6:	1:			0.00:			
	7:	1:	0.01	:		0.00:		
	8:	1:	0.00				-25.83:	
	9:	1:	0.00	:	0.00:			
1	0:	1:	0.00	:	0.00:	0.00:	-28.40:	-2.76:
S	:	M:	NUMBER	:	S2	:	S	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi) :
P			CYCLES	:		(t2) :	(t1) :	(t2) :
	•	:-		-:-	:-	:	:-	:
		1:	38.29			0.00:	0.00:	
		1:	4.57			0.00:		
		1:			0.00:			
		1:			0.00:			
	5:	1:	0.08					
	6:	1:	0.02	:	0.00:	0.00:	0.00:	
	7:	1:	0.01	:	0.00:	0.00:		
	8:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
	9:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:
3	0:	1:	0.00	:	0.00:	0.00:	0.00:	0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-N3 Nacelle upper longeron rib attach angles MODEL: TC02

STD					
S . M.	NUMBER :	90		s1	_
ጥ • አ•	OF .				
E : T:	FATIGUE :	(ksi)	:	(ksi) :
P : L:	CYCLES :	(t1) :	(t2) :	(t1) :	(t2) :
::- 1. 1.	:	0.00.	0.00-	:-	:
2. 1.	0.28 : 0.44 :	0.00:	0.00:	2.83:	2.80:
3: 1:	0.44.	0.00:	0.00:	12 27	13.13:
4: 1:	0.22 :	0.00: 0.00:	0.00:	-13.27:	23.43:
	0.06:	0.00:	0.00:	~21.31:	33.73:
5: 1:	0.00 : 0.00 :	0.00:	0.00:	-29.35:	44.03:
0: 1:	NITMEED .	0.00:	0.00:		
D . M.	NUMBER : OF :	52	:	S	:
I . A.	Or :	(leas)	•	(3	
E : 1:	CYCLEC :	(KS1)	(+2)	(KSI	;
P : 15:	OF : FATIGUE : CYCLES :	: (CI):	([2]):	(tl):	(t2) :
1 : 1 :	0.28 -	0 00-	0 00.	0 00.	0 00+
2: 1:	0.44 :	0.00:	0.00:	0.00:	0.00:
3: 1:	0.22 :	0.00:	0.00:	0.00:	0.00:
4: 1:	0.06 :	0.00:	0.00:	0.00:	0.00:
5: 1:	0.00 :	0.00:	0.00:	0.00:	0.00:
6: 1:	0.44 : 0.22 : 0.06 : 0.00 :	0.00:	0.00:	0.00:	0.00:
TC2, PSE	C-N3 Nacelle u 102	pper 1ongero	n rib att	acn angles	(
NALYSIS	RESULTS:				
(Unless ((b) KIc/Y at the ve Step desc of Block	Net-section: a) UTS > 2 YS S > 0.5 sqrt. bry beginning oription: No. 3 original orig	, or in.(2.5 sqr of Load Step f Schedule N	t. mm.) ai No. 6	nd bending	
(Unless ((b) KIc/Y at the ve Step desc of Block	a) UTS > 2 YS S > 0.5 sqrt. cry beginning oription:	, or in.(2.5 sqr of Load Step f Schedule N	t. mm.) an No. 6	nd bending 1	dominate
(Unless ((b) KIc/Y at the ve Step desc of Block Crack Siz	a) UTS > 2 YS S > 0.5 sqrt. Try beginning oription: No. 3 or e c = 0.9	, or in.(2.5 sqr of Load Step f Schedule N 500003E-01 Final F	t. mm.) an No. 6	nd bending 1	dominate
(Unless ((b) KIc/Y at the ve Step desc f Block Crack Siz Schedl	a) UTS > 2 YS S > 0.5 sqrt. Try beginning oription: No. 3 or e c = 0.5 Block Step	or in.(2.5 sqr of Load Step f Schedule N 500003E-01	t. mm.) an No. 6 o. :	nd bending 1	dominate
(Unless ((b) KIc/Y) at the vestep descorf Block Crack Siz	a) UTS > 2 YS S > 0.5 sqrt. Try beginning oription: No. 3 one c = 0.5 Block Step	or in.(2.5 sqr of Load Step f Schedule N 500003E-01 Final F	t. mm.) an No. 6 o. : law Size c 50181	nd bending	dominates K max c-tip 12.136102
(Unless ((b) KIc/Y) at the vestep descript Block Crack Siz Schedl	a) UTS > 2 YS S > 0.5 sqrt. Try beginning oription: No. 3 or e c = 0.9 Block Step 15 15	, or in.(2.5 sqr of Load Step f Schedule N 500003E-01 Final F 0.0 0.0	t. mm.) as No. 6 o. : law Size c 50181 50364	nd bending	K max c-tip 12.136102 12.158290
(Unless ((b) KIc/Y) at the vestep descript Block Crack Siz Schedl 100 200 300	a) UTS > 2 YS S > 0.5 sqrt. Try beginning oription: No. 3 one c = 0.5 Block Step 15 15 15	, or in.(2.5 sqr of Load Step f Schedule N 500003E-01 Final F 0.0 0.0 0.0	t. mm.) as No. 6 o. : law Size c 50181 50364 50548	nd bending	K max c-tip 12.136102 12.158290 12.180599
(Unless ((b) KIc/Y) at the vestep descorf Block Crack Siz Schedl 100 200 300 400	a) UTS > 2 YS TS > 0.5 sqrt. Try beginning oription: No. 3 one c = 0.5 Block Step 15 15 15 15	, or in.(2.5 sqr of Load Step f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0	t. mm.) as No. 6 1aw Size C 50181 50364 50548 50733	nd bending	K max c-tip 12.136102 12.158290 12.180599 12.203028
(Unless ((b) KIC/Yat the versite of Block Crack Size Schedl 100 200 300 400 500	a) UTS > 2 YS S > 0.5 sqrt. Try beginning oription: No. 3 or e c = 0.9 Block Step 15 15 15 15	, or in.(2.5 sqr of Load Step f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0 0.0 0.0	t. mm.) an No. 6 o	nd bending	K max c-tip 12.136102 12.158290 12.203028 12.203028
(Unless ((b) KIC/Yat the vester described by the veste	a) UTS > 2 YS S > 0.5 sqrt. Try beginning oription: No. 3 or e c = 0.9 Block Step 15 15 15 15 15 15	f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0	t. mm.) an No. 6 o	nd bending	K max c-tip 12.136102 12.158290 12.203028 12.203028 12.225580 12.248255
(Unless ((b) KIC/Y) at the vester described Step de	a) UTS > 2 YS S > 0.5 sqrt. Try beginning of the control of the co	f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	t. mm.) an No. 6 o	nd bending	K max c-tip 12.136102 12.158290 12.180599 12.203028 12.225580 12.248255 12.271054
(Unless ((b) KIC/Y) at the vestee described Step described Schedl 100 200 300 400 500 600 700 800	a) UTS > 2 YS S > 0.5 sqrt. Try beginning of the control of the co	f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	t. mm.) an No. 6 o. : law Size c 50181 50364 50733 50919 51107 51296 51487	nd bending	K max c-tip 12.136102 12.158290 12.180599 12.203028 12.223580 12.225580 12.2248255 12.271054 12.293979
(Unless ((b) KIC/Y) at the version of Block Crack Siz Schedl 100 200 300 400 500 600 700 800 900	a) UTS > 2 YS S > 0.5 sqrt. Ty beginning of the square of	f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	t. mm.) an No. 6 o. : law Size c 50181 50364 50548 50733 50919 51107 51296 51487 51679	nd bending	K max c-tip 12.136102 12.158290 12.158290 12.203028 12.225580 12.225580 12.248255 12.271054 12.293979 12.317030
(Unless ((b) KIC/Y) at the vestee description of Block Crack Siz Schedl 100 200 300 400 500 600 700 800 900 1000	a) UTS > 2 YS S > 0.5 sqrt. Ty beginning of the square of	f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	t. mm.) as No. 6 o	nd bending	K max c-tip 12.136102 12.158290 12.180599 12.225580 12.225580 12.248255 12.271054 12.293979 12.317030 12.340208
(Unless ((b) KIC/Y) at the vestep described Size Schedl 100 200 300 400 500 600 700 800 900 1000 1100	a) UTS > 2 YS S > 0.5 sqrt. Ty beginning oription: No. 3 or e c = 0.5 Block Step 15 15 15 15 15 15 15 15 15 15 15	f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	t. mm.) as No. 6 o. 5 law Size c 50181 50364 50548 50733 50919 51107 51296 51487 51679 51872 52067	nd bending	K max c-tip 12.136102 12.158290 12.180599 12.203028 12.225580 12.248255 12.271054 12.293979 12.317030 12.340208 12.363515
(Unless ((b) KIC/Y) at the version of Block Crack Siz Schedl 100 200 300 400 500 600 700 800 900 1100 1200	a) UTS > 2 YS S > 0.5 sqrt. Ty beginning of the square of	f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	t. mm.) an No. 6 o	nd bending	K max c-tip 12.136102 12.158290 12.203028 12.225580 12.2271054 12.271054 12.293979 12.317030 12.340208 12.363515 12.386953
(Unless ((b) KIC/Y) at the version of the version of Block Crack Siz Schedl 100 200 300 400 500 600 700 800 900 1100 1200 1300	a) UTS > 2 YS S > 0.5 sqrt. Ty beginning oription: No. 3 or e c = 0.9 Block Step 15 15 15 15 15 15 15 15 15 15 15 15 15	f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	t. mm.) an No. 6 o	nd bending	K max c-tip 12.136102 12.158290 12.203028 12.225580 12.248255 12.271054 12.293979 12.317030 12.340208 12.363515 12.386953 12.410521
(Unless ((b) KIC/Y) at the version of Block Crack Siz Schedl 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400	a) UTS > 2 YS S > 0.5 sqrt. Ty beginning oription: No. 3 or e c = 0.9 Block Step 15 15 15 15 15 15 15 15 15 15 15 15 15	f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	t. mm.) an No. 6 o	nd bending	K max c-tip 12.136102 12.158290 12.203028 12.225580 12.248255 12.271054 12.293979 12.317030 12.340208 12.363515 12.363515 12.386953 12.410521
(Unless ((b) KIC/Y) at the version of Block Crack Siz Schedl 100 200 300 400 500 600 700 800 900 1000 1200 1200 1300 1400 1500	a) UTS > 2 YS S > 0.5 sqrt. Ty beginning of the square of	f in.(2.5 sqr of Load Step f Schedule N 500003E-01 Final F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	t. mm.) an No. 6 o	nd bending	K max c-tip 12.136102 12.158290 12.203028 12.225580 12.248255 12.271054 12.393979 12.317030 12.340208 12.363515 12.363515 12.363515 12.410521 12.434221
(Unless ((b) KIC/Y) at the version of Block Crack Siz Schedl 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400	a) UTS > 2 YS S > 0.5 sqrt. Ty beginning oription: No. 3 or e c = 0.9 Block Step 15 15 15 15 15 15 15 15 15 15 15 15 15	f in. (2.5 sqr of Load Step of Load Step of Schedule N 500003E-01 Final F	t. mm.) an No. 6 o	nd bending	K max c-tip 12.136102 12.158290 12.203028 12.225580 12.248255 12.271054 12.293979 12.317030 12.340208 12.363515 12.363515 12.386953 12.410521

12.530366

12.554745

12.579263

12.603922

12.628723

0.053473

0.053680

0.053888

0.054098

0.054310

1800

1900

2000

2100

2200

15

15

15

15

15

2300	15		0.054	1523			12.653667
2400	15		0.054	1738			12.678755
2500	15		0.054	1955			12.703990
2600	15		0.059	5173			12.729372
2700	15		0.05	5393			12.754902
2800	15		0.05	5615			12.780583
2900	15		0.05	5838			12.806415
3000	15		0.05	5063			12.832399
3100	15		0.05	5290			12.858539
3200	15		0.05	5519			12.884833
3300	15		0.05	6750			12.911286
3400	15		0.05	5982			12.937897
3500	15		0.05	7217			12.964668
3600	15		0.05	7453			12.991601
3700	15		0.05	7691			13.018698
3800	15		0.05	7931			13.045959
3900	15		0.05	8173			13.073387
4000	15		0.05	8417			13.100984
4100	15		0.05	8663			13.128750
4200	15		0.05	8911			13.156688
4300	15		0.05	9161			13.184799
4400	15		0.05	9415			13.213229
4500	15		0.05	9673			13.242093
4600	15		0.05	9934			13.271286
4700	15		0.06	0199			13.300781
4800	15		0.06	0467			13.330565
4900	15		0.06	0738			13.360631
5000	15		0.06	1012			13.390974
TC2, PSE-N3	Nacelle	upper	longeron	rib	attach	angles	: (
MODEL: TC02							

ANALYSIS RESULTS (contd)

Schedl	Block	Final	Flaw	Size	K max
*		Step	C		c-tip
5100	15	0	.06128	39	13.421593
5200	15	0	.0615	59	13.452485
5300	15	0	.06185	52	13.483650
5400	15	0	.06213	39	13.515087
5500	15	0	.06242	28	13.546799
5600	15	0	.06272	21	13.578784
5700	15	0	.06303	17	13.611046
5800	15	0	.0633	16	13.643584
5900	15	0	.0636	19	13.676401
6000	15	O	.06392	24	13.709499
6100	15	C	.0642	33	13.742879
6200	15	C	.0645	46	13.776545
6300	15	C	.0648	62	13.810498
6400	15	C	.0651	81	13.844741
6500	15	C	.0655	04	13.879276
6600	15	C	.0658	30	13.914106
6700	15	C	.0661	60	13.949235
6800	15	C	.0664	94	13.984665
6900	15	C	.0668	31	14.020399
7000	15	C	.0671	72	14.056441
7100	15		.0675		14.092793
7200	15	(.0678	65	14.129460
7300	15		.0682		14.166444
7400	15		.0685		14.203749
7500	15		.0689		14.241379
7600	15	(.0692	99	14.279338
7700	15	(.0696	68	14.317629
7800	15		.0700		14.356257
7900	15	(0.0704	18	14.395225
8000	15		.0708		14.434538
8100	15	(.0711	86	14.474200
8200	15	(.0715	76	14.514215

8300	15	0.071971	14.554588
8400	15	0.072370	14.595323
8500	15	0.072774	14.636425
8600	15	0.073183	14.677899
8700	15	0.073597	14.719749
8800	15	0.074016	14.761982
8900	15	0.074439	14.804600
9000	15	0.074868	14.847611
9100	15	0.075302	14.891019
9200	15	0.075741	14.934829
9300	15	0.076186	14.979048
9400	15	0.076636	15.023681
9500	15	0.077091	15.068733
9600	15	0.077552	15.114211
9700	15	0.078019	15.160121
9800	15	0.078492	15.206469
9900	1 5	0.078970	15.253261
10000	15	0.079455	15.300504
man pan	ATT ATT CTE	remarked Telephone and to the first	

TC2, PSE-N3 Nacelle upper longeron rib attach angles

MODEL: TC02

ANALYSIS RESULTS (contd)

Schedl Block Final Flaw Size K max Step c-tip 0.079945 10100 15.348204 10200 15 0.080442 15.396368 10300 15 0.080945 15.445004 10400 15 0.081455 15.494118 10500 0.081972 15.543717 10600 15 0.082495 15.593809 10700 15 0.083025 15.644401 15.695502 10800 15 0.083561 10900 15 0.084105 15.747119 11000 15 0.084657 15.799261 15 11100 0.085215 15.851935 11200 15 0.085781 15.905150 15 11300 0.086355 15.958915 11400 15 0.086937 16.013239 16.068131 11500 15 0.087526 11600 15 0.088124 16.123601 11700 15 0.088730 16.179657 11800 15 0.089344 16.236310 11900 15 0.089968 16.293570 12000 15 0.090599 16.351447 12100 0.091240 16.409952 12200 15 0.091890 16.469095 12300 15 0.092550 16.528888 12400 15 16.589343 0.093219 12500 15 0.093898 16.650470 12600 15 0.094586 16.712281 12700 15 0.095285 16.774790 12800 15 0.095995 16.838009 12900 15 0.096715 16.901950 13000 15 0.097446 16.966627 13100 15 0.098188 17.032054 13200 15 0.098941 17.098245 13300 15 0.099706 17.165213 13400 0.100483 17.232975 13500 15 0.101272 17.301544 13600 15 0.102073 17.370937 13700 15 0.102887 17.441170 13800 15 0.103715 17.512259 13900 15 0.104555 17,584222 14000 15 0.105409 17.657075 14100 15 0.106278 17.730838 14200 15 0.107160 17.805527

14300	15	0.108057	17.881163
14400	15	0.108969	17.957765
14500	15	0.109897	18.035353
14600	15	0.110840	18.113948
14700	15	0.111800	18.193572
14800	15	0.112776	18.274247
14900	15	0.113769	18.355995
15000	15	0.114780	18.438840
man nam s	12 Nago11o	unner lengeren rib attach	angles (

TC2, PSE-N3 Nacelle upper longeron rib attach angles MODEL: TC02

ANALYSIS RESULTS (contd)

Schedl	Block	1	Final Flaw Si:	ze	K max
		Step	С		c-tip
15100	15	_	0.115809		18.522807
15200	15		0.116855		18.607921
15300	15		0.117921		18.694206
15400	15		0.119007		18.781691
15500	15		0.120112		18.870403
15600	15		0.121237		18.960371
15700	. 15		0.122384		19.051623
15800	15		0.123552		19.144191
15900	15		0.124743		19.238106
16000	15		0.125956		19.333400
16100	15		0.127193		19.430109
16200	15		0.128454		19.528266
16300	15		0.129740		19.627908
16400	15		0.131052		19.729072
16500	15		0.132390		19.831799
16600	15		0.133755		19.936127
16700	15		0.135149		20.042100
16800	15		0.136571		20.149761
16900	15		0.138023		20.259155
17000	15		0.139506		20.370330
17100	15		0.141021		20.483333
17200	15		0.142568		20.598217
17300	15		0.144150		20.715034
17400	15		0.145766		20.833840
17500	15		0.147418		20.954692
17600	15		0.149108		21.077649
17700	15		0.150836		21.202775
17800	15		0.152605		21.330135
17900	15		0.154415		21.459796
18000	15		0.156267		21.591831
18100	15		0.158165		21.726312
18200	15		0.160108		21.863319
18300	15		0.162099		22.002932
18400	15		0.164139		22.145238
18500	15		0.166231		22.290325
18600	15		0.168376		22.438287
18700	15		0.170577		22.589223
18800	15		0.172836		22.743236
18900	15		0.175154		22.900435
19000	15		0.177535		23.060934
19100	15		0.179981		23.224855
19200	15		0.182495		23.392324
19300	15		0.185079		23.563476
19400	15 15		0.187738		23.738452 23.917401
19500	15		0.190473		24.100483
19600	15		0.193289 0.196189		24.100483
19700	15		0.196189		24.287865
19800	15 15		0.199177		24.479726
19900	15		0.202257		24.877651
20000		alle umner	longeron rib	attach	
MODEL: T		rie ubbei	rongeron rib	accacii	andres (
MODED: T	CU2				

ANALYSIS RESULTS (contd)

			*	
Sched1	Block		Final Flaw Size	K max
		Step	С	c-tip
20100	15		0.208712	25.084130
20200	15		0.212097	25.295919
20300	15		0.215594	25.513263
20400	15		0.219208	25.736421
20500	15		0.222947	25.965672
20600	15		0.226816	26.201314
20700	15		0.230822	26.443668
20800	15		0.234975	26.693079
20900	15		0.239281	26.949918
21000	15		0.243751	27.214588
21100	15		0.248393	27.487521
21200	15		0.253219	27.769191
21300	15		0.258241	28.060106
21400	15		0.263470	28.360827
21500	15		0.268922	28.671959
21600	15		0.274610	28.994171
21700	15		0.280553	29.328194
21800	15		0.286767	29.674834
21900	15		0.293275	30.034980
22000	15		0.300098	30,409621
22100	15		0.307262	30.799855
22200	15		0.314794	31.206910
22300	15		0.322727	31.632163
22400	15		0.331096	32.077167
22500	15		0.339941	32.543682
22600	15		0.349308	33.033713
22700	15		0.359250	33.549558
22800	15		0.369827	34.093870
22900	15		0.381108	34.669731
23000	15		0.393177	35.280751
23100	15		0.406129	35.931203
23200	15		0.420078	36.626187
23300	15		0.435163	37.371865
23400	15		0.451551	38.175785
23500	15		0.469449	39.047324
23600	15		0.489116	39.998350

FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 6 Step description:

of Block No. 15 of Schedule No. 23631 Crack Size c = 0.495619

```
FATIGUE CRACK GROWTH ANALYSIS
             ______
            DATE: 08/11/98 TIME: 13:10:57
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 3, PSE-H1 hole crack in splice strap
GEOMETRY
MODEL: TC03-Through crack from hole in plate.
                   0.1250
Plate Thickness, t =
" Width, W = 1.0000
Hole Diameter, D = 0.1900
Hole-Center-to-Edge Dist., B =
                          0.5000
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2024-T3
       Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : :
       : 1 : 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.125: 65.5:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           ;----;-----;-----;
: 1 :0.829E-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
 THROUGH CRACK CASE 3, PSE-H1 hole crack in splice strap
MODEL: TC03
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
 [Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
 Scale Factor for Stress S0: 0.54000
 Scale Factor for Stress S3: 1.0000
 Stress Scaling Factors for Block Case: 2
 Scale Factor for Stress S0:
                          1.7100
```

Scale Factor for Stress S3: 3.1500

Stress Scaling Factors for Block Case: 3

```
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                              3.1500
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress SO:
                              1.7100
Scale Factor for Stress S3:
                              3.1500
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress SO:
                              1.4400
Scale Factor for Stress S3:
                              2.6700
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
 Block Number
                              Block Case No.
From
          То
   1
                                      1
    2
    3
              3
                                       5
    4
              4
                                      3
                                      1
    8
              8
    9
   10
             10
                                      1
   11
             11
   12
             12
   13
             13
   14
             14
                                      4
   15
             15
                                      5
BLOCK CASE NO. 1
 S : M: NUMBER
                                                S3
   : A:
          OF
E : T: FATIGUE
P : L: CYCLES
                   :
                         (t1) : (t2)
                                            (t1): (t2)
----:--:--:-
  1: 1:
               1.90:
                          0.70:
                                   1.30:
                                             0.70:
                                                       1.30:
               0.09:
  2: 1:
                          0.60:
                                   1.40:
                                             0.60:
                                                       1.40:
   3: 1:
               0.01:
                          0.54:
                                   1.46:
                                             0.54:
                                                       1.46:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                            S0
                                                s_3
ጥ
  : A:
           OF
E : T: FATIGUE
P : L: CYCLES
                    :
                        (t1) : (t2)
                                      :
                                            (t1): (t2)
---:--:---
                         ----:----:-
               9.57:
  1: 1:
                        0.02:
                                   0.62:
                                           0.02:
  2: 1:
               1.14:
                         -0.18:
                                   0.82:
                                            -0.18:
                                                       0.82:
  3: 1:
               0.57 :
                        -0.28:
                                   0.92:
                                            -0.28:
                                                       0.92:
  4: 1:
               0.11:
                        -0.48:
                                   1.12:
                                            -0.48:
                                                       1.12:
  5: 1:
               0.02:
                       -0.68:
                                   1.32:
                                            -0.68:
                                                       1.32:
  6: 1:
               0.01:
                        -0.88:
                                   1.52:
                                            -0.88:
                                                       1.52:
  7: 1:
               0.00:
                        -1.08:
                                   1.72:
                                            -1.08:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

-1.28:

-1.48:

-1.68:

0.00 :

0.00:

0.00:

8: 1:

9: 1:

10: 1:

1.92:

2.12:

2.32:

-1.28:

-1.48:

-1.68:

1.72:

1.92:

2.12:

BLOC	CK	CAS	E NO. 3					
s	:	M:	NUMBER	:	so	:	s3	:
${f T}$:	A:	OF	:		:		:
E	:	T:	FATIGUE	:		:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
	-:-	:-		-:-	:-	:-	:-	:
1	l:	1:	19.14	:	0.02:	0.62:	0.02:	0.62:
2	2:	1:	2.29	:	-0.18:	0.82:	-0.18:	0.82:
3	3:	1:	1.14	:	-0.28:	0.92:	-0.28:	0.92:
4	1:	1:	0.23	:	-0.48:	1.12:	-0.48:	1.12:
	5:	1:	0.04	:	-0.68:	1.32:	-0.68:	1.32:
6	5:	1:	0.01	:	-0.88:	1.52:	-0.88:	1.52:
-	7:	1:	0.00	:	-1.08:	1.72:	-1.08:	1.72:
8	8:	1:	0.00	:	-1.28:	1.92:	-1.28:	1.92:
9	9:	1:	0.00	:	-1.48:	2.12:	-1.48:	2.12:
10	0:	1:	0.00	:	-1.68:	2.32:	-1.68:	2.32:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	OCK	CAS	E NO. 4									
s	:	M:	NUMBER	:	5	30		:		S3	:	
Т	:	A:	OF	:				:			:	
E	:	T:	FATIGUE	:				:			:	
P	:	L:	CYCLES	:	(t1)	:	(t2)	:	(t1)	:	(t2) :	
	:	:-		:	 	-:-		:-		:-	:	
	1:	1:	38.2	29 :	0.02	2:	0.	62:	0.0)2:	0.62:	
	2:	1:	4.5	57 :	-0.1	3:	0.	82:	-0.3	18:	0.82:	
	3:	1:	2.2	29 :	-0.2	3:	0.	92:	-0.2	28:	0.92:	
	4:	1:	0.4	46 :	-0.4	3:	1.	12:	-0.4	18:	1.12:	
	5:	1:	0.0	08:	-0.6	3:	1.	32:	-0.6	: 86	1.32:	
	6:	1:	0.0	02 :	-0.8	3:	1.	52:	-0.8	38:	1.52:	
	7:	1:	0.0	01 :	-1.0	3:	1.	72:	-1.0	180	1.72:	:
	8:	1:	0.0	00 :	-1.2	3:	1.	92:	-1.2	28:	1.92:	:
	9:	1:	0.0	00 :	-1.4	3:	2.	12:	-1.4	18:	2.12:	:
	10:	1:	0.	00 :	-1.6	3:	2.	32:	-1.	58:	2.32:	:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

BLO	OCK	CAS	SE NO. 5						
S	:	M:	NUMBER	:	S0	:	:	\$3	:
T	:	A:	OF	:		:	:		:
	_		FATIGUE			:	:		:
P	:	L:	CYCLES	:	(t1) :	(t2) :	:	(t1) :	(t2) :
	-								
	1:	1:	624.00	:	-0.30:	1.00:	:	-0.30:	1.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 3, PSE-H1 hole crack in splice strap MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD					•				
S	:	M:	NUMBER	:	so	:	S3	:	
T	:	A:	OF	:		:		:	
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:	
P	:	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :	
	- : -	:-		-:	:	:	:	:	
	1:	1:	1.90	:	0.38:	0.70:	0.70:	1.30:	
	2:	1:	0.09) :	0.32:	0.76:	0.60:	1.40:	
	3:	1:	0.01	. :	0.29:	0.79:	0.54:	1.46:	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-H1 hole crack in splice strap MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD							
s :	M:	NUMBER	:	S 0	:	S3	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:	(ksi) :	(ksi) :
P :	L:	CYCLES	:	(t1) :	(t2) :	(t1) :	(t2) :
:	:-		-:	:-	:-	:	:
1:	1:	9.57	:	0.03:	1.06:	0.06:	1.95:
2:	1:	1.14	:	-0.31:	1.40:	-0.57:	2.58:
3:	1:	0.57	:	-0.48:	1.57:	-0.88:	2.90:
4:	1:	0.11	:	-0.82:	1.92:	-1.51:	3.53:
5:	1:	0.02	:	-1.16:	2.26:	-2.14:	4.16:
6:	1:	0.01	:	-1.50:	2.60:	-2.77:	4.79:
7:	1:	0.00	:	-1.85:	2.94:	-3.40:	5.42:
8:	1:	0.00	:	-2.19:	3.28:	-4.03:	6.05:
9:	1:	0.00	:	-2.53:	3.63:	-4.66:	6.68:
10:	1:	0.00	:	-2.87:	3.97:	-5.29:	7.31:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 3, PSE-H1 hole crack in splice strap MODEL: ${\tt TC03}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

_____ STD S : M: NUMBER S0 s3 1: 1: 19.14: 0.03: 1.06: 0.06: 1.95: 2: 1: 2.29: -0.31: 1.40: -0.57: 2.58: 3: 1: 1.14: -0.48: 1.57: -0.88: 2.90: 1.14: 0.23: 4: 1: -0.82: 1.92: -1.51: 3.53: -1.16: -1.50: 5: 1: 0.04 : 2.26: -2.14: 4.16: 6: 1: 0.01 : -2.77: 2.60: 4.79: 7: 1: 0.00 : -1.85: 2.94: -3.40: 5.42: -2.19: 0.00: 8: 1: 3.28: -4.03: 6.05: 9: 1: 0.00: -2.53: 3.63: -4.66: 6.68: 10: 1: 0.00: -2.87: 3.97: -5.29: 7.31:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): ${\tt NOT}$ SET

THROUGH CRACK CASE 3, PSE-H1 hole crack in splice strap MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

5: 1:	0.08 :	-1.16:	2.26:	-2.14:	4.16:
6: 1:	0.02 :	-1.50:	2.60:	-2.77:	4.79:
7: 1:	0.01 :	-1.85:	2.94:	-3.40:	5.42:
8: 1:	0.00 :	-2.19:	3.28:	-4.03:	6.05:
9: 1:	0.00 :	-2.53:	3.63:	-4.66:	6.68:
10.1.	0.00 :	-2.87:	3.97:	-5.29:	7.31:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

THROUGH CRACK CASE 3, PSE-H1 hole crack in splice strap ${\tt MODEL\colon\ TC03}$

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD)							
S	:	M:	NUMBER	:	so	:	S 3	:
T	:	A:	OF	:		:		:
E	:	T:	FATIGUE	:	(ksi)	:	(ksi)	:
P	:	L:	CYCLES	:	(t1) : (t2) :	(t1) : (t2)	:
	•	-		-	-	-	-0.80: 2	

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-H1 hole crack in splice strap $\ensuremath{\mathtt{MODEL}}\xspace\colon \ensuremath{\mathtt{TC03}}\xspace$

ANALYSIS RESULTS:

Schedl	Block	Final Flaw Size	K max
		Step c	c-tip
200	15	0.050001	1.568822
400	15	0.050003	1.568823
600	15	0.050004	1.568824
800	15	0.050005	1.568825
1000	15	0.050006	1.568826
1200	15	0.050008	1.568827
1400	15	0.050009	1.568828
1600	15	0.050010	1.568829
1800	15	0.050011	1.568829
2000	15	0.050013	1.568830
2200	15	0.050014	1.568831
2400	15	0.050015	1.568832
2600	15	0.050016	1.568833
2800	15	0.050018	1.568834
3000	15	0.050019	1.568835
3200	15	0.050020	1.568836
3400	1 5	0.050021	1.568837
3600	15	0.050023	1.568838
3800	15	0.050024	1.568839
4000	15	0.050025	1.568840
4200	15	0.050026	1.568841
4400	15	0.050028	1.568842
4600	15	0.050029	1.568843
4800	15	0.050030	1.568844
5000	15	0.050032	1.568845
5200	15	0.050033	1.568846
5400	- 15	0.050034	1.568847
5600	15	0.050035	1.568848
5800	15	0.050037	1.568849
6000	15	0.050038	1.568850
6200	15	0.050039	1.568851
6400	15	0.050040	1.568851
6600	15	0.050042	1.568852
5550		3.050012	2.550052

6800	15	0.050043	1.568853
7000	15	0.050044	1.568854
7200	15	0.050045	1.568855
7400	15	0.050047	1.568856
7600	15	0.050048	1.568857
7800	15	0.050049	1.568858
8000	15	0.050050	1.568859
8200	15	0.050052	1.568860
8400	15	0.050053	1.568861
8600	15	0.050054	1.568862
8800	15	0.050055	1.568863
9000	15	0.050057	1.568864
9200	15	0.050058	1.568865
9400	15	0.050059	1.568866
9600	15	0.050060	1.568867
9800	15	0.050062	1.568868
10000	15	0.050063	1.568869

THROUGH CRACK CASE 3, PSE-H1 hole crack in splice strap

MODEL: TC03

ANALYSIS RESULTS (contd)

Schedl	Block	Final	Flaw	Size	K max
		Step	С		c-tip
10200	15	0	.0500	64	1.568870
10400	15	0 .	.0500	66	1.568871
10600	15	0	.05006	67	1.568872
10800	15	0.	.0500	68	1.568873
11000	15	0 .	.05006	69	1.568873
11200	15	0 .	.05007	71	1.568874
11400	15	0 .	.0500	72	1.568875
11600	15	0 .	.05007	73	1.568876
11800	15	0.	.05007	74	1.568877
12000	15	0.	.05001	76	1.568878
12200	15	0.	.05001	77	1.568879
12400	15	0.	.05001	78	1.568880
12600	15	0.	.0500	79	1.568881
12800	15		.05008		1.568882
13000	15	0.	.05008	82	1.568883
13200	15	0.	.05008	83	1.568884
13400	15	0.	.05008	84	1.568885
13600	15	0.	.05008	86	1.568886
13800	15	0.	.05008	87	1.568887
14000	15	0.	.05008	88	1.568888
14200	15	0.	.05008	89	1.568889
14400	15	0.	.05009	91	1.568890
14600	15	0.	.05009	92	1.568891
14800	15	0.	.05009	93	1.568892
15000	15	0.	.05009	95	1.568893
15200	15	0.	.05009	96	1.568893
15400	15	0.	.05009	97	1.568894
15600	15	0.	.05009	98	1.568895
15800	15	0.	.05010	00	1.568896
16000	15	0.	.05010	01	1.568897
16200	15	0.	.05010	02	1.568898
16400	15	0.	.05010	03	1.568899
16600	15	0.	.05010	05	1.568900
16800	15	0.	.05010	06	1.568901
17000	15	. 0.	.05010	07	1.568902
17200	15	0.	.05010	08	1.568903
17400	15	0.	.05011	10	1.568904
17600	15	0.	.05011	11	1.568905
17800	15		.05011		1.568906
18000	15		.05011		1.568907
18200	15		.05011		1.568908
18400	15		.05011		1.568909
18600	15		.05011		1.568910
		· .			

18800	15	0.050118	1.568911
19000	15	0.050120	1.568912
19200	15	0.050121	1.568913
19400	15	0.050122	1.568913
19600	15	0.050124	1.568914
19800	15	0.050125	1.568915
20000	15	0.050126	1.568916

THROUGH CRACK CASE 3, PSE-H1 hole crack in splice strap

MODEL: TC03

ANALYSIS RESULTS (contd)

Schedl	Block		Final Flaw Size	K max
		Step	С	c-tip
20200	15		0.050127	1.568917
20400	15		0.050129	1.568918
20600	15		0.050130	1.568919
20800	15		0.050131	1.568920
21000	15		0.050132	1.568921

FINAL RESULTS:

Critical Crack Size has NOT been reached. at Cycle No. 624.00 of Load Step No. Step description:

of Block No. 15 of Schedule No. 21000 Crack Size c = 0.501323E-01

C-19 PSE H2 Pitch Trim Actuator Fitting

```
FATIGUE CRACK GROWTH ANALYSIS
            DATE: 09/14/98 TIME: 09:12:15
     (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC2, PSE-H2 HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING
GEOMETRY
MODEL: TC02-Single edge through crack.
Plate Thickness, t = 0.2700
 " Width, W = 1.1240
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2024-T351
     Plt & Sht; T-L; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : :
: 1: 68.0: 52.0: 41.0: 29.0: 1.00: 1.00: 0.270: 54.7:
:Matl:----- Crack Growth Eqn Constants ----:
: 1:0.922E-08:3.353:0.50:1.00: 2.60: 0.70: 1.50: 0.30:
TC2, PSE-H2 HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING
MODEL: TC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress SO: 0.00000
                      0.00000
Scale Factor for Stress S1:
Scale Factor for Stress S2:
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1: 0.00000
Scale Factor for Stress S2:
                      2.0000
```

C-19 PSE H2 Pitch Trim Actuator Fitting (Continued)

```
Stress Scaling Factors for Block Case: 3
                         0.00000
Scale Factor for Stress S0:
Scale Factor for Stress S1:
                          0.00000
Scale Factor for Stress S2:
                          2 0000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S1: 0.00000
Scale Factor for Stress S2:
                         2.0000
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                          0.00000
Scale Factor for Stress S1:
                          0.00000
Scale Factor for Stress S2:
                         2.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                          Block Case No.
From -
         To
   1 -
   2
             2
   3
             3
   4
             4
                                   1
   5
   6
             6
   7
             7
                                   1
   8
             8
   9
            9
  10
            10
                                   1
  11
            11
  12
           12
  13
            13
                                   1
  14
            14
                                   4
  15
            15
BLOCK CASE NO. 1
 S : M: NUMBER
                         S0
                                   :
                                           S1
 T : A: OF
E : T: FATIGUE : P : L: CYCLES :
                     :
(t1): (t2): (t1): (t2)
1: 1: 1.90: 0.70: 1.30: 0.70: 1.30: 2: 1: 0.09: 0.60: 1.40: 0.60: 1.40: 3: 1: 0.01: 0.54: 1.46: 0.54: 1.46:
                      0.60: 1.40:
0.54: 1.46:
S2 :
 S : M: NUMBER :
                                         S
----:--:--:--:--:----:
  1: 1: 1.90: 0.70: 1.30: 2: 1: 0.09: 0.60: 1.40:
                                         0.00: 0.00:
              0.09:
   2: 1:
                       0.60:
                                1.40:
                                         0.00:
                                                  0.00:
                              1.46:
   3: 1:
              0.01:
                       0.54:
                                         0.00:
                                                  0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
 S : M: NUMBER :
                                   :
                                            S1

      1: 1:
      9.57 :
      0.70:
      1.30:
      0.70:
      1.30:

      2: 1:
      1.14 :
      0.50:
      1.50:
      0.50:
      1.50:
```

C-19 PSE H2 Pitch Trim Actuator Fitting (Continued)

3:	1:	0.57	:	0.40:	1.60:	0.40:	1.60:
4:	1:	0.11	:	0.20:	1.80:	0.20:	1.80:
5:	1:	0.02	:	0.00:	2.00:	0.00:	2.00:
6:	1:	0.01	:	-0.20:	2.20:	-0.20:	2.20:
7:	1:	0.00	:	-0.40:	2.40:	-0.40:	2.40:
8:	1:	0.00	:	-0.60:	2.60:	-0.60:	2.60:
9:	1:	0.00	:	-0.80:	2.80:	-0.80:	2.80:
10:	1:	0.00	:	-1.00:	3.00:	-1.00:	3.00:
s:	M:	NUMBER	:	S2	:	S	:
T:	A:	OF	:		:		:
E :	T:	FATIGUE	:		:		:
_	_	ATTAT TA		1411	(10)	/±11	(+0)
P :		CYCLES	: - :			(t1):	
:			-:-		:-	:-	:
1:	:-		- : - :	0.70:	:-	0.00:	0.00:
1: 2:	:- 1:	9.57	- : - : :	0.70:	1.30:	0.00:	0.00: 0.00:
1: 2: 3:	1: 1:	9.57 1.14	- : - : :	0.70: 0.50:	1.30: 1.50:	0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4:	1: 1: 1:	9.57 1.14 0.57	:	0.70: 0.50: 0.40:	1.30: 1.50: 1.60:	0.00: 0.00: 0.00:	0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1:	9.57 1.14 0.57 0.11	:	0.70: 0.50: 0.40: 0.20:	1.30: 1.50: 1.60: 1.80:	0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5:	1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02	:	0.70: 0.50: 0.40: 0.20: 0.00:	1.30: 1.50: 1.60: 1.80: 2.00:	0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	0.70: 0.50: 0.40: 0.20: 0.00:	1.30: 1.50: 1.60: 1.80: 2.00: 2.20:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:
1: 2: 3: 4: 5: 6: 7:	1: 1: 1: 1: 1: 1:	9.57 1.14 0.57 0.11 0.02 0.01	: : : : : : : : : : : : : : : : : : : :	0.70: 0.50: 0.40: 0.20: 0.00: -0.20: -0.40:	1.30: 1.50: 1.60: 1.80: 2.00: 2.20: 2.40:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00:	0.00: 0.00: 0.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET $\,$

~~~---

| BLOCK | CAS | E NO. 3 |     |        |        |        |        |
|-------|-----|---------|-----|--------|--------|--------|--------|
| s:    | М:  | NUMBER  | :   | so     | :      | S1     | :      |
| T:    | A:  | OF      | :   |        | :      |        | :      |
| E :   | T:  | FATIGUE | :   |        | :      |        | :      |
| P :   | L:  | CYCLES  | :   | (t1) : | (t2) : | (t1) : | (t2) : |
| -     | :-  |         | : : | :-     | :      | :      | :      |
|       |     |         |     | 0.70:  |        |        |        |
|       |     | 2.29    |     |        |        |        |        |
|       |     | 1.14    |     |        |        |        |        |
|       |     | 0.23    | :   | 0.20:  | 1.80:  | 0.20:  | 1.80:  |
| 5:    | 1:  | 0.04    | :   | 0.00:  | 2.00:  | 0.00:  | 2.00:  |
| 6:    | 1:  | 0.01    | :   | -0.20: | 2.20:  | -0.20: | 2.20:  |
| 7:    | 1:  | 0.00    | :   | ~0.40: | 2.40:  | -0.40: | 2.40:  |
| 8:    | 1:  | 0.00    | :   | -0.60: | 2.60:  | -0.60: | 2.60:  |
| 9:    | 1:  | 0.00    |     |        |        |        |        |
| 10:   | 1:  | 0.00    | :   | -1.00: | 3.00:  | -1.00: | 3.00:  |
| S:    | М:  | NUMBER  |     |        |        | S      | :      |
| т:    | Α:  | OF      | :   |        | •      | -      | •      |
|       |     | FATIGUE |     |        |        |        | •      |
|       |     | CYCLES  |     |        | (±2) • | (±1) • | (+2)   |
|       | :-  |         |     | :-     |        |        |        |
| 1:    | 1:  | 19.14   | :   | 0.70:  | 1.30:  | 0.00:  | 0.00:  |
| 2:    | 1:  | 2.29    | :   | 0.50:  | 1.50:  | 0.00:  | 0.00:  |
| 3:    | 1:  | 1.14    | :   | 0.40:  | 1.60:  | 0.00:  | 0.00:  |
| 4:    | 1:  | 0.23    |     |        |        |        |        |
| 5:    | 1:  |         |     | 0.00:  |        |        |        |
| 6:    | 1:  | 0.01    |     |        |        | 0.00:  |        |
|       | 1:  | 0.00    |     |        |        | 0.00:  |        |
|       | 1:  |         |     | -0.60: |        |        |        |
|       | 1:  | 0.00    |     |        |        |        |        |
| 10:   |     |         |     | -1.00: |        |        | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

| BLO          | CK | CAS | E NO. 4 |   |        |      |   |       |      |   |
|--------------|----|-----|---------|---|--------|------|---|-------|------|---|
| s            | :  | M:  | NUMBER  | : | S0     |      | : | S1    |      | : |
| $\mathbf{T}$ | :  | A:  | OF      | : |        |      | : |       |      | : |
| E            | :  | T:  | FATIGUE | : |        |      | : |       |      | : |
| P            | :  | L:  | CYCLES  | : | (t1) : | (t2) | : | (t1): | (t2) | : |

### C-19 PSE H2 Pitch Trim Actuator Fitting (Continued)

| :                                            | :-                                           |                                                       | · : -                                   | :-                                                                      | :-                                                                   | ·:-                                                         | :                                                           |
|----------------------------------------------|----------------------------------------------|-------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| 1:                                           | 1:                                           | 38.29                                                 | :                                       | 0.70:                                                                   | 1.30:                                                                | 0.70:                                                       | 1.30:                                                       |
| 2:                                           | 1:                                           | 4.57                                                  | :                                       | 0.50:                                                                   | 1.50:                                                                | 0.50:                                                       | 1.50:                                                       |
| 3:                                           | 1:                                           | 2.29                                                  | :                                       | 0.40:                                                                   | 1.60:                                                                | 0.40:                                                       | 1.60:                                                       |
| 4:                                           | 1:                                           | 0.46                                                  | :                                       | 0.20:                                                                   | 1.80:                                                                | 0.20:                                                       | 1.80:                                                       |
| 5:                                           | 1:                                           | 0.08                                                  | :                                       | 0.00:                                                                   | 2.00:                                                                | 0.00:                                                       | 2.00:                                                       |
| 6:                                           | 1:                                           | 0.02                                                  | :                                       | -0.20:                                                                  | 2.20:                                                                | -0.20:                                                      | 2.20:                                                       |
| 7:                                           | 1:                                           | 0.01                                                  | :                                       | -0.40:                                                                  | 2.40:                                                                | -0.40:                                                      | 2.40:                                                       |
| 8:                                           | 1:                                           | 0.00                                                  | :                                       | -0.60:                                                                  | 2.60:                                                                | -0.60:                                                      | 2.60:                                                       |
| 9:                                           | 1:                                           | 0.00                                                  | :                                       | -0.80:                                                                  | 2.80:                                                                | -0.80:                                                      | 2.80:                                                       |
| 10:                                          | 1:                                           | 0.00                                                  | :                                       | -1.00:                                                                  | 3.00:                                                                | -1.00:                                                      | 3.00:                                                       |
| s:                                           | M:                                           | NUMBER                                                | :                                       | S2                                                                      | :                                                                    | S                                                           | :                                                           |
| T:                                           | A:                                           | OF                                                    | :                                       |                                                                         | :                                                                    |                                                             | :                                                           |
|                                              |                                              |                                                       |                                         |                                                                         |                                                                      |                                                             |                                                             |
| E :                                          | Т:                                           | FATIGUE                                               | :                                       |                                                                         | :                                                                    |                                                             | :                                                           |
| P :                                          | L:                                           |                                                       | :                                       |                                                                         |                                                                      | (t1) :                                                      | (t2) :                                                      |
| P:                                           | L:                                           | CYCLES                                                | :<br>:<br>-:-                           | :-                                                                      | :                                                                    | :-                                                          | <b>:</b>                                                    |
| P:<br>:<br>1:                                | L:<br>:-<br>1:                               | CYCLES<br>38.29                                       |                                         | 0.70:                                                                   | 1.30:                                                                | 0.00:                                                       | 0.00:                                                       |
| P:<br>:<br>1:<br>2:                          | L:<br>:-<br>1:<br>1:                         | CYCLES<br>38.29<br>4.57                               | :                                       | 0.70:<br>0.50:                                                          | 1.30:<br>1.50:                                                       | 0.00:<br>0.00:                                              | 0.00:<br>0.00:                                              |
| P:<br>:<br>1:<br>2:<br>3:                    | L:<br>:-<br>1:<br>1:                         | 38.29<br>4.57<br>2.29                                 | :                                       | 0.70:<br>0.50:<br>0.40:                                                 | 1.30:<br>1.50:<br>1.60:                                              | 0.00:<br>0.00:<br>0.00:                                     | 0.00:<br>0.00:<br>0.00:                                     |
| P:<br>:<br>1:<br>2:<br>3:<br>4:              | L:<br>1:<br>1:<br>1:                         | 38.29<br>4.57<br>2.29<br>0.46                         | :<br>:<br>:                             | 0.70:<br>0.50:<br>0.40:<br>0.20:                                        | 1.30:<br>1.50:<br>1.60:<br>1.80:                                     | 0.00:<br>0.00:<br>0.00:<br>0.00:                            | 0.00:<br>0.00:<br>0.00:<br>0.00:                            |
| P:<br>:<br>1:<br>2:<br>3:<br>4:<br>5:        | L:<br>1:<br>1:<br>1:<br>1:                   | 38.29<br>4.57<br>2.29<br>0.46<br>0.08                 | : : :                                   | 0.70:<br>0.50:<br>0.40:<br>0.20:<br>0.00:                               | 1.30:<br>1.50:<br>1.60:<br>1.80:<br>2.00:                            | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:                   | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:                   |
| P:<br>:<br>1:<br>2:<br>3:<br>4:<br>5:        | L:<br>:-<br>1:<br>1:<br>1:<br>1:<br>1:       | 38.29<br>4.57<br>2.29<br>0.46<br>0.08<br>0.02         | : : : : :                               | 0.70:<br>0.50:<br>0.40:<br>0.20:<br>0.00:                               | 1.30:<br>1.50:<br>1.60:<br>1.80:<br>2.00:<br>2.20:                   | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:          | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:          |
| P:<br>:<br>1:<br>2:<br>3:<br>4:<br>5:<br>6:  | L:<br>:-<br>1:<br>1:<br>1:<br>1:<br>1:       | 38.29<br>4.57<br>2.29<br>0.46<br>0.08<br>0.02<br>0.01 | : : : : : : :                           | 0.70:<br>0.50:<br>0.40:<br>0.20:<br>0.00:<br>-0.20:<br>-0.40:           | 1.30:<br>1.50:<br>1.60:<br>1.80:<br>2.00:<br>2.20:<br>2.40:          | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00: | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00: |
| P:<br>1:<br>2:<br>3:<br>4:<br>5:<br>6:<br>7: | L:<br>1:<br>1:<br>1:<br>1:<br>1:<br>1:       | 38.29<br>4.57<br>2.29<br>0.46<br>0.08<br>0.02<br>0.01 | : : : : : : : : : : : : : : : : : : : : | 0.70:<br>0.50:<br>0.40:<br>0.20:<br>0.00:<br>-0.20:<br>-0.40:<br>-0.60: | 1.30:<br>1.50:<br>1.60:<br>1.80:<br>2.00:<br>2.20:<br>2.40:<br>2.60: | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00: | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00: |
| P:<br>:<br>1:<br>2:<br>3:<br>4:<br>5:<br>6:  | L:<br>1:<br>1:<br>1:<br>1:<br>1:<br>1:<br>1: | 38.29<br>4.57<br>2.29<br>0.46<br>0.08<br>0.02<br>0.01 | : : : : : : : : : : : : : : : : : : : : | 0.70:<br>0.50:<br>0.40:<br>0.20:<br>0.00:<br>-0.20:<br>-0.40:           | 1.30:<br>1.50:<br>1.60:<br>1.80:<br>2.00:<br>2.20:<br>2.40:          | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00: | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

BLOCK CASE NO. 5 so : S : M: NUMBER S1 : A: OF E : T: FATIGUE : E : T: FATIGUE : : (t1) : (t2) : (t1) : (t2) 
 1: 1:
 0.28:
 0.45:
 1.55:
 0.45:
 1.55:

 2: 1:
 0.44:
 0.43:
 1.57:
 0.43:
 1.57:

 3: 1:
 0.22:
 0.38:
 1.62:
 0.38:
 1.62:

 4: 1:
 0.06:
 0.30:
 1.70:
 0.30:
 1.70:
 1.70: 4: 1: 5: 1: 0.00: 6: 1: 0.00: 0.18: 1.82: 0.18: 1.82: 0.02: 1.98: 0.02: 1.98: S2 : S : 6: 1: 0.00 : S : M: NUMBER : s T : A: OF E : T: FATIGUE : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 1: 1: 0.28: 0.45: 1.55: 0.00: 0.00: 0.43: 1.57: 1.62: 0.00: 0.44 : 2: 1: 0.00: 0.00: 0.22: 3: 1: 4: 1: 0.06: 0.30: 1.70: 0.00: 0.00: 1.82: 0.00: 0.00: 0.00: 0.18: 5: 1: 6: 1: 0.00 : 0.02: 1.98: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-H2 HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING MODEL:  $\ensuremath{\text{TC02}}$ 

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

|   | 1: | 1: | 1.90    | :   | 0.00:  | 0.00:  | 0.00:  | 0.00:  |
|---|----|----|---------|-----|--------|--------|--------|--------|
|   | 2: | 1: | 0.09    | :   | 0.00:  | 0.00:  | 0.00:  | 0.00:  |
|   | 3: | 1: | 0.01    | :   | 0.00:  | 0.00:  | 0.00:  | 0.00:  |
| s | :  | M: | NUMBER  | :   | S2     | :      | s      | :      |
| T | :  | A: | OF      | :   |        | :      |        | :      |
| E | :  | T: | FATIGUE | :   | (ksi)  | :      | (ksi)  | :      |
| P | :  | L: | CYCLES  | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|   | :  | :  |         | : - | :      | :-     | :-     | :      |
|   | 1: | 1: | 1.90    | :   | 1.40:  | 2.60:  | 0.00:  | 0.00:  |
|   | 2: | 1: | 0.09    | :   | 1.20:  | 2.80:  | 0.00:  | 0.00:  |
|   | 3: | 1: | 0.01    | :   | 1.08:  | 2.92:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT\ SET}$ 

TC2, PSE-H2 HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING MODEL: TC02

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

| STD |    |         |            |        |        |        |        |
|-----|----|---------|------------|--------|--------|--------|--------|
|     | M: | NUMBER  | :          | S0     | :      | S1     |        |
| т:  |    | OF      | :          |        |        | ~-     |        |
| E : | T: | FATIGUE | :          | (ksi   | ) :    | (ksi   | ) :    |
|     |    | CYCLES  |            | (t1):  | (t2) : | (t1) : | (t2) : |
| 1:  | 1: | 9.57    | - : -<br>: | 0.00:  | 0.00:  | 0.00:  | -      |
| 2:  | 1: | 1.14    | :          | 0.00:  | 0.00:  | 0.00:  | 0.00:  |
| 3:  | 1: | 0.57    | :          | 0.00:  | 0.00:  | 0.00:  | 0.00:  |
| 4:  | 1: | 0.11    |            |        |        |        |        |
| 5:  | 1: | 0.02    | :          | 0.00:  | 0.00:  | 0.00:  | 0.00:  |
| 6:  |    | 0.01    |            |        |        | 0.00:  |        |
|     | 1: | 0.00    |            |        |        | 0.00:  |        |
|     | 1: |         |            | 0.00:  |        |        |        |
|     | 1: |         |            | 0.00:  |        |        |        |
|     | 1: | 0.00    | :          | 0.00:  | 0.00:  | 0.00:  | 0.00:  |
| s : |    |         | :          | S2     | :      | S      | :      |
| T:  |    | OF      | :          |        | :      |        | :      |
|     |    | FATIGUE |            |        |        | (ksi   |        |
| P : | L: | CYCLES  | :          | (t1) : |        | (t1):  |        |
| 1:  | 1: | 9.57    | :          | •      | •      | 0.00:  | •      |
| 2:  | 1: | 1.14    | :          | 1.00:  | 3.00:  | 0.00:  | 0.00:  |
| 3:  | 1: | 0.57    | :          | 0.80:  | 3.20:  | 0.00:  | 0.00:  |
| 4:  | 1: | 0.11    | :          | 0.40:  | 3.60:  | 0.00:  | 0.00:  |
| 5:  | 1: | 0.02    | :          | 0.00:  | 4.00:  | 0.00:  | 0.00:  |
| 6:  | 1: | 0.01    | :          | -0.40: | 4.40:  | 0.00:  | 0.00:  |
| 7:  |    | 0.00    |            |        | 4.80:  |        |        |
| 8:  | 1: | 0.00    | :          | -1.20: | 5.20:  | 0.00:  | 0.00:  |
| 9:  | 1: | 0.00    | :          |        | 5.60:  | 0.00:  |        |
| 10: | 1: | 0.00    | :          | -2.00: | 6.00:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT\ SET}$ 

TC2, PSE-H2 HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING MODEL: TC02

### FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

S: M: NUMBER: S0 : S1 :
T: A: OF : : : : : :
E: T: FATIGUE: (ksi) : (ksi) :
P: L: CYCLES: (t1): (t2): (t1): (t2):

1: 1: 19.14: 0.00: 0.00: 0.00: 0.00:
2: 1: 2.29: 0.00: 0.00: 0.00: 0.00:
3: 1: 1.14: 0.00: 0.00: 0.00: 0.00:

| 4: 1:                                     | 0.23                                                 | :                                       | 0.00:                                                | 0.00:                                              | 0.00:                                     | 0.00:                                     |
|-------------------------------------------|------------------------------------------------------|-----------------------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|
| 5: 1:                                     | 0.04                                                 | :                                       | 0.00:                                                | 0.00:                                              | 0.00:                                     | 0.00:                                     |
| 6: 1:                                     | 0.01                                                 | :                                       | 0.00:                                                | 0.00:                                              | 0.00:                                     | 0.00:                                     |
| 7: 1:                                     | 0.00                                                 | :                                       | 0.00:                                                | 0.00:                                              | 0.00:                                     | 0.00:                                     |
| 8: 1:                                     | 0.00                                                 | :                                       | 0.00:                                                | 0.00:                                              | 0.00:                                     | 0.00:                                     |
| 9: 1:                                     | 0.00                                                 | :                                       | 0.00:                                                | 0.00:                                              | 0.00:                                     | 0.00:                                     |
| 10: 1:                                    | 0.00                                                 | :                                       | 0.00:                                                | 0.00:                                              | 0.00:                                     | 0.00:                                     |
| S : M:                                    | NUMBER                                               | :                                       | S2                                                   | :                                                  | S                                         | :                                         |
| T : A:                                    | OF                                                   | :                                       |                                                      | :                                                  |                                           | :                                         |
| E : T:                                    | FATIGUE                                              | :                                       | (ksi)                                                | :                                                  | (ksi)                                     | :                                         |
| P : L:                                    | CYCLES                                               | :                                       | (t1) :                                               | (t2) :                                             | (t1) :                                    | (t2) :                                    |
| ::-                                       |                                                      | - : -                                   | :                                                    | :-                                                 | :                                         | :                                         |
| 1: 1:                                     | 19.14                                                |                                         | 1.40:                                                | 2.60:                                              | 0.00.                                     | 0.00:                                     |
|                                           | 17.14                                                | •                                       | 4.20.                                                | 2.00.                                              | 0.00:                                     | 0.00.                                     |
| 2: 1:                                     | 2.29                                                 |                                         | 1.00:                                                | 3.00:                                              | 0.00:                                     | 0.00:                                     |
| 2: 1:<br>3: 1:                            |                                                      | :                                       |                                                      |                                                    |                                           |                                           |
|                                           | 2.29                                                 | :                                       | 1.00:                                                | 3.00:                                              | 0.00:                                     | 0.00:                                     |
| 3: 1:                                     | 2.29<br>1.14<br>0.23                                 | :                                       | 1.00:<br>0.80:                                       | 3.00:<br>3.20:                                     | 0.00:<br>0.00:                            | 0.00:<br>0.00:                            |
| 3: 1:<br>4: 1:                            | 2.29<br>1.14<br>0.23                                 | : : : :                                 | 1.00:<br>0.80:<br>0.40:                              | 3.00:<br>3.20:<br>3.60:                            | 0.00:<br>0.00:<br>0.00:                   | 0.00:<br>0.00:<br>0.00:                   |
| 3: 1:<br>4: 1:<br>5: 1:                   | 2.29<br>1.14<br>0.23<br>0.04                         | : : : : : :                             | 1.00:<br>0.80:<br>0.40:<br>0.00:                     | 3.00:<br>3.20:<br>3.60:<br>4.00:                   | 0.00:<br>0.00:<br>0.00:<br>0.00:          | 0.00:<br>0.00:<br>0.00:<br>0.00:          |
| 3: 1:<br>4: 1:<br>5: 1:<br>6: 1:          | 2.29<br>1.14<br>0.23<br>0.04<br>0.01                 | : : : : : :                             | 1.00:<br>0.80:<br>0.40:<br>0.00:<br>-0.40:           | 3.00:<br>3.20:<br>3.60:<br>4.00:<br>4.40:          | 0.00:<br>0.00:<br>0.00:<br>0.00:          | 0.00:<br>0.00:<br>0.00:<br>0.00:          |
| 3: 1:<br>4: 1:<br>5: 1:<br>6: 1:<br>7: 1: | 2.29<br>1.14<br>0.23<br>0.04<br>0.01<br>0.00<br>0.00 | : : : : : : : : : : : : : : : : : : : : | 1.00:<br>0.80:<br>0.40:<br>0.00:<br>-0.40:<br>-0.80: | 3.00:<br>3.20:<br>3.60:<br>4.00:<br>4.40:<br>4.80: | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00: | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT\ SET}$ 

TC2, PSE-H2 HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING MODEL:  $\ensuremath{\text{TC02}}$ 

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

| STD   |      |        |        |        |        |       |        |
|-------|------|--------|--------|--------|--------|-------|--------|
| S : 1 | м. М | UMBER  | :      | s0     | :      | S1    |        |
| T : 1 |      | OF     | :      | 50     | •      | 21    | •      |
| E : ' |      | ATIGUE | •      | /kai   | ` :    | (ksi  | ١ .    |
|       |      | YCLES  |        |        |        | (t1): |        |
|       |      |        | :<br>: | ((1):  |        | (CI): |        |
| 1:    |      |        | :      | 0.00:  | •      | 0.00: | •      |
| 2:    |      |        |        |        |        | 0.00: |        |
| 3:    |      | 2.29   |        | 0.00:  |        |       |        |
| 4:    | 1:   |        |        | 0.00:  | 0.00:  | 0.00: | 0.00:  |
| 5:    | 1:   | 0.08   | :      | 0.00:  | 0.00:  | 0.00: | 0.00:  |
| 6:    |      |        |        |        | 0.00:  |       |        |
| 7:    |      |        |        |        |        | 0.00: |        |
| 8:    | 1:   | 0.00   | :      | 0.00:  | 0.00:  | 0.00: |        |
| 9:    | 1:   |        |        |        |        | 0.00: |        |
| 10:   | 1:   | 0.00   | :      | 0.00:  | 0.00:  | 0.00: | 0.00:  |
| S :   | M: N | UMBER  | :      | S2     | :      | s     | :      |
| T :   | A:   | OF     | :      |        | :      |       | :      |
| E :   | T: F | ATIGUE | :      | (ksi   | ) :    | (ksi  | L) :   |
| P :   | L: C | YCLES  | :      | (t1):  | (t2) : | (t1): | (t2) : |
| :-    | •    |        | •      | :-     | -      | :     | -      |
| 1:    |      | 38.29  |        |        |        | 0.00: |        |
| 2:    |      | 4.57   |        |        |        | 0.00: |        |
| 3:    |      |        |        |        | 3.20:  |       |        |
| 4:    |      |        |        |        |        | 0.00: |        |
| 5:    |      | 0.08   |        |        | 4.00:  |       |        |
| 6:    |      | 0.02   |        |        | 4.40:  |       |        |
| 7:    |      |        |        |        | 4.80:  |       |        |
| 8:    |      | 0.00   |        |        |        | 0.00: |        |
| 9:    | 1:   |        |        |        |        | 0.00: | 0.00:  |
| 10:   | 1:   | 0.00   | :      | -2.00: | 6.00:  | 0.00: | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

TC2, PSE-H2 HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING MODEL:  $\ensuremath{\text{TC02}}$ 

FATIGUE SCHEDULE BLOCK STRESS TABLE

| STI | )            |    |         |            |        |       |       |       |
|-----|--------------|----|---------|------------|--------|-------|-------|-------|
| S   | :            | М: | NUMBER  | :          | S0     | :     | S1    | :     |
| T   | :            | A: | OF      | :          |        | :     |       | :     |
| Ε   | :            | T: | FATIGUE | :          | (ksi)  |       | (ksi) |       |
| P   |              | L: |         |            |        |       | (t1): |       |
|     | . <b>.</b> . |    |         | ·<br>- • - |        |       |       |       |
|     | 1 .          | 1. | 0.28    | :          | 0.00-  | 0.00  | 0.00  | 0.00: |
|     |              | 1: |         |            | 0.00:  |       |       |       |
|     | 2:           | 1: | 0.44    | :          | 0.00:  | 0.00: | 0.00: | 0.00: |
|     | 3:           | 1: | 0.22    | :          | 0.00:  | 0.00: | 0.00: | 0.00: |
|     | 4:           | 1: | 0.06    | :          | 0.00:  | 0.00: | 0.00: | 0.00: |
|     |              | 1: | 0.00    |            |        |       |       |       |
|     |              |    |         |            |        |       |       |       |
|     | 6:           | 1: | 0.00    | :          | 0.00:  | 0.00: | 0.00: | 0.00: |
| S   | :            | Μ: | NUMBER  | :          | S2     | :     | S     | :     |
| T   | :            | A: | OF      | :          |        | :     |       | :     |
| E   | <u>.</u>     | T: | FATIGUE | :          | (ksi)  | :     | (ksi) |       |
| P   | -            | L: |         |            | (t1):  |       | (t1): |       |
| r   | •            | ш. | CICDES  | •          | (CI) . | (12)  | ((1)  | (62)  |
|     | :            | :- |         | -:-        | :      | :     | :     | :     |
|     | 1:           | 1: | 0.28    | :          | 0.90:  | 3.10: | 0.00: | 0.00: |
|     | 2:           | 1: | 0.44    | :          | 0.86:  | 3.14: | 0.00: | 0.00: |
|     | 3:           | 1: | 0.22    | :          | 0.76:  | 3.24: | 0.00: | 0.00: |
|     | 4:           | 1: | 0.06    | :          | 0.60:  | 3.40: |       |       |
|     |              | 1: | 0.00    |            | 0.36:  | 3.64: |       |       |
|     |              |    |         |            |        |       |       |       |
|     | 6:           | 1: | 0.00    | :          | 0.04:  | 3.96: | 0.00: | 0.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

TC2, PSE-H2 HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING MODEL: TC02

#### ANALYSIS RESULTS:

\_\_\_\_\_

| Schedl | Block | Final Flaw Size | K max    |
|--------|-------|-----------------|----------|
|        |       | Step c          | c-tip    |
| 100    | 15    | 0.050000        | 1.687937 |
| 200    | 15    | 0.050000        | 1.687937 |
| 300    | 15    | 0.050000        | 1.687937 |
| 400    | 15    | 0.050000        | 1.687937 |
| 500    | 15    | 0.050000        | 1.687937 |
| 600    | 15    | 0.050000        | 1.687937 |
| 700    | 15    | 0.050000        | 1.687937 |
| 800    | 15    | 0.050000        | 1.687937 |
| 900    | 15    | 0.050000        | 1.687938 |
| 1000   | 15    | 0.050000        | 1.687938 |
| 1100   | 15    | 0.050000        | 1.687938 |
| 1200   | 15    | 0.050000        | 1.687938 |
| 1300   | 15    | 0.050000        | 1.687938 |
| 1400   | 15    | 0.050000        | 1.687938 |
| 1500   | 15    | 0.050000        | 1.687938 |
| 1600   | 15    | 0.050000        | 1.687938 |
| 1700   | 15    | 0.050000        | 1.687938 |
| 1800   | 15    | 0.050000        | 1.687938 |
| 1900   | 15    | 0.050000        | 1.687939 |
| 2000   | 15    | 0.050000        | 1.687939 |
| 2100   | 15    | 0.050000        | 1.687939 |
| 2200   | 15    | 0.050000        | 1.687939 |
| 2300   | 15    | 0.050000        | 1.687939 |
| 2400   | 15    | 0.050000        | 1.687939 |
| 2500   | 15    | 0.050000        | 1.687939 |
| 2600   | 15    | 0.050000        | 1.687939 |
| 2700   | 15    | 0.050000        | 1.687939 |
| 2800   | 15    | 0.050000        | 1.687939 |
| 2900   | 15    | 0.050000        | 1.687939 |
| 3000   | 15    | 0.050000        | 1.687940 |
|        |       |                 |          |

| 3 | 3100 | 15 | 0.050000 | 1.687940 |
|---|------|----|----------|----------|
| 3 | 3200 | 15 | 0.050000 | 1.687940 |
| 3 | 300  | 15 | 0.050000 | 1.687940 |
| 3 | 3400 | 15 | 0.050000 | 1.687940 |
| 3 | 3500 | 15 | 0.050000 | 1.687940 |
| 3 | 3600 | 15 | 0.050000 | 1.687940 |
| 3 | 3700 | 15 | 0.050000 | 1.687940 |
| 3 | 3800 | 15 | 0.050000 | 1.687940 |
| 3 | 3900 | 15 | 0.050000 | 1.687940 |
| 4 | 1000 | 15 | 0.050000 | 1.687941 |
| 4 | 1100 | 15 | 0.050000 | 1.687941 |
| 4 | 1200 | 15 | 0.050000 | 1.687941 |
| 4 | 1300 | 15 | 0.050000 | 1.687941 |
| 4 | 1400 | 15 | 0.050000 | 1.687941 |
| 4 | 1500 | 15 | 0.050000 | 1.687941 |
| 4 | 1600 | 15 | 0.050000 | 1.687941 |
| 4 | 1700 | 15 | 0.050000 | 1.687941 |
| 4 | 1800 | 15 | 0.050000 | 1.687941 |
| 4 | 1900 | 15 | 0.050000 | 1.687941 |
|   | 5000 | 15 | 0.050000 | 1.687941 |

 $\mathtt{TC2}\,,\ \mathtt{PSE-H2}$  HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING MODEL:  $\mathtt{TC02}$ 

#### ANALYSIS RESULTS (contd)

\_\_\_\_\_\_

|        | '     | n' 1 n' c'      | 77                   |
|--------|-------|-----------------|----------------------|
| Schedl | Block | Final Flaw Size | K max                |
|        |       | Step c          | c-tip                |
| 5100   | 15    | 0.050000        | 1.687942<br>1.687942 |
| 5200   | 15    | 0.050000        | 1.687942             |
| 5300   | 15    | 0.050000        | 1.687942             |
| 5400   | 15    | 0.050000        |                      |
| 5500   | 15    | 0.050000        | 1.687942             |
| 5600   | 15    | 0.050000        | 1.687942             |
| 5700   | 15    | 0.050000        | 1.687942             |
| 5800   | 15    | 0.050000        | 1.687942             |
| 5900   | 15    | 0.050000        | 1.687942             |
| 6000   | 15    | 0.050000        | 1.687942             |
| 6100   | 15    | 0.050000        | 1.687943             |
| 6200   | 15    | 0.050000        | 1.687943             |
| 6300   | 15    | 0.050000        | 1.687943             |
| 6400   | 15    | 0.050000        | 1.687943             |
| 6500   | 15    | 0.050000        | 1.687943             |
| 6600   | 15    | 0.050000        | 1.687943             |
| 6700   | 15    | 0.050000        | 1.687943             |
| 6800   | 15    | 0.050000        | 1.687943             |
| 6900   | 15    | 0.050000        | 1.687943             |
| 7000   | 15    | 0.050000        | 1.687943             |
| 7100   | 15    | 0.050000        | 1.687943             |
| 7200   | 15    | 0.050000        | 1.687944             |
| 7300   | 15    | 0.050000        | 1.687944             |
| 7400   | 15    | 0.050000        | 1.687944             |
| 7500   | 15    | 0.050000        | 1.687944             |
| 7600   | 15    | 0.050000        | 1.687944             |
| 7700   | 15    | 0.050000        | 1.687944             |
| 7800   | 15    | 0.050000        | 1.687944             |
| 7900   | 15    | 0.050000        | 1.687944             |
| 8000   | 15    | 0.050000        | 1.687944             |
| 8100   | 15    | 0.050000        | 1.687944             |
| 8200   | 15    | . 0.050000      | 1.687945             |
| 8300   | 15    | 0.050001        | 1.687945             |
| 8400   | 15    | 0.050001        | 1.687945             |
| 8500   | 15    | 0.050001        | 1.687945             |
| 8600   | 15    | 0.050001        | 1.687945             |
| 8700   | 15    | 0.050001        | 1.687945             |
| 8800   | 15    | 0.050001        | 1.687945             |
| 8900   | 15    | 0.050001        | 1.687945             |
| 9000   | 15    | 0.050001        | 1.687945             |
|        |       |                 |                      |

| 9100  | 15 . | 0.050001 | 1.687945 |
|-------|------|----------|----------|
| 9200  | 15   | 0.050001 | 1.687945 |
| 9300  | 15   | 0.050001 | 1.687946 |
| 9400  | 15   | 0.050001 | 1.687946 |
| 9500  | 15   | 0.050001 | 1.687946 |
| 9600  | 15   | 0.050001 | 1.687946 |
| 9700  | 15   | 0.050001 | 1.687946 |
| 9800  | 15   | 0.050001 | 1.687946 |
| 9900  | 15   | 0.050001 | 1.687946 |
| 10000 | 15   | 0.050001 | 1.687946 |
|       |      |          |          |

TC2, PSE-H2 HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING MODEL: TC02

ANALYSIS RESULTS (contd)

| Schedl         | Block    | Final Flaw Size | K max    |
|----------------|----------|-----------------|----------|
|                |          | Step c          | c-tip    |
| 10100          | 15       | 0.050001        | 1.687946 |
| 10200          | 15       | 0.050001        | 1.687946 |
| 10300          | 15       | 0.050001        | 1.687947 |
| 10400          | 15       | 0.050001        | 1.687947 |
| 10500          | 15       | 0.050001        | 1.687947 |
| 10600          | 15       | 0.050001        | 1.687947 |
| 10700          | 15       | 0.050001        | 1.687947 |
| 10800          | 15       | 0.050001        | 1.687947 |
| 10900          | 15       | 0.050001        | 1.687947 |
| 11000          | 15       | 0.050001        | 1.687947 |
| 11100          | 15       | 0.050001        | 1.687947 |
| 11200          | 15       | 0.050001        | 1.687947 |
| 11300          | 15       | 0.050001        | 1.687947 |
| 11400          | 15       | 0.050001        | 1.687948 |
| 11500          | 15       | 0.050001        | 1.687948 |
| 11600          | 15       | 0.050001        | 1.687948 |
| 11700          | 15       | 0.050001        | 1.687948 |
| 11800          | 15       | 0.050001        | 1.687948 |
| 11900          | 15       | 0.050001        | 1.687948 |
| 12000          | 15       | 0.050001        | 1.687948 |
| 12100          | 15       | 0.050001        | 1.687948 |
| 12200          | 15       | 0.050001        | 1.687948 |
| 12300          | 15       | 0.050001        | 1.687948 |
| 12400          | 15       | 0.050001        | 1.687949 |
| 12500          | 15       | 0.050001        | 1.687949 |
| 12600          | 15       | 0.050001        | 1.687949 |
| 12700          | 15       | 0.050001        | 1.687949 |
| 12800          | 15       | 0.050001        | 1.687949 |
| 12900          | 15       | 0.050001        | 1.687949 |
| 13000          | 15       | 0.050001        | 1.687949 |
| 13100          | 15       | 0.050001        | 1.687949 |
| 13200          | 15       | 0.050001        | 1.687949 |
| 13300          | 15       | 0.050001        | 1.687949 |
| 13400          | 15       | 0.050001        | 1.687949 |
| 13500          | 15       | 0.050001        | 1.687950 |
| 13600          | 15       | 0.050001        | 1.687950 |
| 13700          | 15       | 0.050001        | 1.687950 |
| 13800          | 15       | 0.050001        | 1.687950 |
| 13900          | 15       | 0.050001        | 1.687950 |
| 14000          | 15       | 0.050001        | 1.687950 |
| 14100          | 15       | 0.050001        | 1.687950 |
| 14200          | 15       | 0.050001        | 1.687950 |
| 14300          | 15<br>15 | 0.050001        | 1.687950 |
| 14400          | 15       | 0.050001        | 1.687950 |
| 14500<br>14600 | 15<br>15 | 0.050001        | 1.687951 |
| 14700          | 15<br>15 | 0.050001        | 1.687951 |
| 14700          | 15<br>15 | 0.050001        | 1.687951 |
| 14900          | 15       | 0.050001        | 1.687951 |
|                |          | 0.050001        | 1.687951 |
| 15000          | 15       | 0.050001        | 1.687951 |

TC2, PSE-H2 HORIZONTAL STAB PITCH TRIM ACTUATOR FITTING MODEL: TC02

ANALYSIS RESULTS (contd)

| Schedl    | Block    |          | Final   | Flaw S   | ize      | K max    |   |
|-----------|----------|----------|---------|----------|----------|----------|---|
|           |          | Step     |         | С        |          | c-tip    |   |
| 15100     | 15       |          |         | .050001  |          | 1.687951 |   |
| 15200     | 15       |          | 0       | .050001  |          | 1.687951 |   |
| 15300     | 15       |          | 0       | .050001  |          | 1.687951 |   |
| 15400     | 15       |          | 0       | .050001  |          | 1.687951 |   |
| 15500     | 15       |          | 0       | .050001  |          | 1.687951 |   |
| 15600     | 15       |          |         | .050001  |          | 1.687952 |   |
| 15700     | 15       |          |         | .050001  |          | 1.687952 |   |
| 15800     | 15       |          |         | .050001  |          | 1.687952 |   |
| 15900     | 15       |          |         | .050001  |          | 1.687952 |   |
| 16000     | 15       |          |         | .050001  |          | 1.687952 |   |
| 16100     | 15       |          |         | .050001  |          | 1.687952 |   |
|           |          |          |         |          |          | 1.687952 |   |
| 16200     | 15       |          |         | .050001  |          |          |   |
| 16300     | 15       |          |         | .050001  |          | 1.687952 |   |
| 16400     | 15       |          |         | .050001  |          | 1.687952 |   |
| 16500     | 15       |          |         | .050001  |          | 1.687952 |   |
| 16600     | 15       |          |         | .050001  |          | 1.687953 |   |
| 16700     | 15       |          |         | .050001  |          | 1.687953 |   |
| 16800     | 15       |          |         | .050001  |          | 1.687953 |   |
| 16900     | 15       |          | 0       | .050001  |          | 1.687953 | ŝ |
| 17000     | 15       |          | , 0     | .050001  |          | 1.687953 | 3 |
| 17100     | 15       |          | 0       | .050001  |          | 1.687953 | 3 |
| 17200     | 15       |          | 0       | .050001  |          | 1.687953 | 3 |
| 17300     | 15       |          | 0       | .050001  |          | 1.687953 | 3 |
| 17400     | 15       |          | 0       | .050001  |          | 1.687953 | 3 |
| 17500     | 15       |          | 0       | .050001  |          | 1.687953 | 3 |
| 17600     | 15       |          | 0       | .050001  |          | 1.687953 | 3 |
| 17700     | 15       |          |         | .050001  |          | 1.687954 |   |
| 17800     | 15       |          |         | .050001  |          | 1.687954 |   |
| 17900     | 15       |          |         | .050001  |          | 1.687954 |   |
| 18000     | 15       |          |         | .050001  |          | 1.687954 |   |
| 18100     | 15       |          |         | .050001  |          | 1.68795  |   |
| 18200     | 15       |          |         | .050001  |          | 1.687954 |   |
| 18300     | 15       |          |         | .050001  |          | 1.687954 |   |
| 18400     | 15       |          |         | .050001  |          | 1.687954 |   |
| 18500     | 15       |          |         | .050001  |          | 1.687954 |   |
|           |          |          |         |          |          |          |   |
| 18600     | 15       |          |         | .050001  |          | 1.687954 |   |
| 18700     | 15       |          |         | .050001  |          | 1.68795  |   |
| 18800     | 15       |          |         | .050001  |          | 1.68795  |   |
| 18900     | 15       |          |         | .050001  |          | 1.68795  |   |
| 19000     | 15       |          |         | 0.050001 |          | 1.68795  |   |
| 19100     | 15       |          |         | .050001  |          | 1.68795  |   |
| 19200     | 15       |          |         | 0.050001 |          | 1.68795  |   |
| 19300     | 15       |          |         | .050001  |          | 1.68795  |   |
| 19400     | 15       |          |         | 0.050001 |          | 1.68795  |   |
| 19500     | 15       |          |         | 0.050001 |          | 1.68795  |   |
| 19600     | 15       |          |         | .050001  |          | 1.68795  |   |
| 19700     | 15       |          | C       | 0.050001 | L        | 1.68795  |   |
| 19800     | 15       |          | C       | .050001  | Ł        | 1.68795  | - |
| 19900     | 15       |          | (       | .050001  | L        | 1.68795  | 6 |
| 20000     | 15       |          | (       | .05000   | L        | 1.68795  | 6 |
| TC2, PSE  | -H2 HORI | ZONTAL S | TAB PIT | CH TRI   | ACTUATOR | FITTING  |   |
| MODEL: TO | :02      |          |         |          |          |          |   |
|           |          |          |         |          |          |          |   |

ANALYSIS RESULTS (contd)

 Schedl
 Block
 Final Flaw Size
 K max

 Step
 c
 c-tip

 20100
 15
 0.050001
 1.687956

| 20200 | 15         | 0.050001 | 1.687956 |
|-------|------------|----------|----------|
| 20300 | 15         | 0.050001 | 1.687956 |
| 20400 | 15         | 0.050001 | 1.687956 |
| 20500 | <b>1</b> 5 | 0.050001 | 1.687956 |
| 20600 | 15         | 0.050001 | 1.687956 |
| 20700 | 15         | 0.050001 | 1.687956 |
| 20800 | 15         | 0.050001 | 1.687957 |
| 20900 | 15         | 0.050001 | 1.687957 |
| 21000 | 15         | 0.050001 | 1.687957 |

### FINAL RESULTS:

Critical Crack Size has NOT been reached. at Cycle No. 0.00 of Load Step No.

Step description:

of Block No. 15 of Schedule No. 21000 Crack Size c = 0.500013E-01

```
FATIGUE CRACK GROWTH ANALYSIS
            DATE: 08/17/98 TIME: 13:30:37
     (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
THROUGH CRACK CASE 3, PSE-V1 Case A .090 strap
GEOMETRY
MODEL: TC03-Through crack from hole in plate.
Plate Thickness, t = 0.0900
" Width, W = 1.4000
Hole Diameter, D = 0.1600
                           0.3500
Hole-Center-to-Edge Dist., B =
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
-----
MATL 1: 2024-T3
      Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : :
        : 1: 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.090: 65.7:
:Matl:----- Crack Growth Eqn Constants ----:
: 1 :0.829E-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
 THROUGH CRACK CASE 3, PSE-V1 Case A .090 strap
MODEL: TC03
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 0.00000
 Scale Factor for Stress S3: 4.3900
```

Stress Scaling Factors for Block Case: 3

```
Scale Factor for Stress SO: 0.00000
Scale Factor for Stress S3:
                           4.3900
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
Scale Factor for Stress S3:
                             4.3900
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0:
                            0.00000
Scale Factor for Stress S3:
                             4.4100
Total No. of Blocks in Schedule =
   Block Number and Case Correspondences
 Block Number
                             Block Case No.
          То
From
    2
              2
    3
              3
                                      5
    4
                                      1
    5
    6
              6
                                      5
              7
    8
                                      3
    9
              9
                                      5
   10
             10
                                      1
   11
             11
                                      3
   12
             12
   13
             13
                                      1
   14
             14
                                      4
             15
BLOCK CASE NO. 1
 S : M: NUMBER
                                                S3
   : A:
           OF
 Е
   : T: FATIGUE
 P : L: CYCLES
                         (t1): (t2)
                   :
                                            (t1): (t2)
----:--:--:-----:----:----:----:----:-
   1: 1:
               1.90 :
                         0.70:
                                   1.30:
                                            0.70:
                                                      1.30:
               0.09:
   2: 1:
                         0.60:
                                   1.40:
                                             0.60:
                                                      1.40:
               0.01:
                         0.54:
                                   1.46:
                                            0.54:
                                                      1.46:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                                       :
                                               s3
T : A: OF E : T: FATIGUE
 P : L: CYCLES
                   :
                        (t1): (t2)
                                      :
                                           (t1): (t2)
9.57:
                        -0.30:
                                  0.30:
  1: 1:
                                           -0.30:
                                                      0.30:
   2: 1:
               1.14:
                        -0.50:
                                   0.50:
                                           -0.50:
                                                      0.50:
              0.57 :
                                           -0.60:
   3: 1:
                        -0.60:
                                  0.60:
                                                      0.60:
               0.11 :
                        -0.80:
   4: 1:
                                  0.80:
                                           -0.80:
                                                      0.80:
   5: 1:
               0.02 :
                       ·-1.00:
```

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

-1.20:

-1.40:

-1.60:

-1.80:

-2.00:

0.01:

0.00:

0.00:

0.00:

0.00:

6: 1:

7: 1:

8: 1:

9:1:

10: 1:

1.00:

1.20:

1.40:

1.60:

1.80:

2.00:

-1.00:

-1.20:

-1.40:

-1.60:

-1.80:

-2.00:

1.00:

1.20:

1.40:

1.60:

1.80:

2.00:

| BLO | оск | CAS        | E NO. 3 |     |        |        |        |        |
|-----|-----|------------|---------|-----|--------|--------|--------|--------|
| S   | :   | M:         | NUMBER  | :   | S0     | :      | S3     | :      |
| T   | :   | A:         | OF      | :   |        | :      |        | :      |
| E   | :   | T:         | FATIGUE | :   |        | :      |        | :      |
| P   | :   | L:         | CYCLES  | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|     | :   | : <b>-</b> |         | -:- | :-     | :-     | :-     | :      |
|     | 1:  | 1:         | 19.14   | :   | -0.30: | 0.30:  | -0.30: | 0.30:  |
|     | 2:  | 1:         | 2.29    | :   | -0.50: | 0.50:  | -0.50: | 0.50:  |
|     | 3:  | 1:         | 1.14    | :   | -0.60: | 0.60:  | -0.60: | 0.60:  |
|     | 4:  | 1:         | 0.23    | :   | -0.80: | 0.80:  | -0.80: | 0.80:  |
|     | 5:  | 1:         | 0.04    | :   | -1.00: | 1.00:  | -1.00: | 1.00:  |
|     | 6:  | 1:         | 0.01    | :   | -1.20: | 1.20:  | -1.20: | 1.20:  |
|     | 7:  | 1:         | 0.00    | :   | -1.40: | 1.40:  | -1.40: | 1.40:  |
|     | 8:  | 1:         | 0.00    | :   | -1.60: | 1.60:  | -1.60: | 1.60:  |
|     | 9:  | 1:         | 0.00    | :   | -1.80: | 1.80:  | -1.80: | 1.80:  |
|     | 10: | 1:         | 0.00    | :   | -2.00: | 2.00:  | -2.00: | 2.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

-----

| BLO     | OCK | CAS | E NO. 4 |     |        |        |            |        |
|---------|-----|-----|---------|-----|--------|--------|------------|--------|
| S       | :   | M:  | NUMBER  | :   | S0     | :      | <b>S</b> 3 | :      |
| ${f T}$ | :   | A:  | OF      | :   |        | :      |            | :      |
| E       | :   | T:  | FATIGUE | :   |        | :      |            | :      |
| P       | :   | L:  | CYCLES  | :   | (t1) : | (t2) : | (t1) :     | (t2) : |
|         | :   | :-  |         | -:- | :-     | :      | :-         | :      |
|         | 1:  | 1:  | 38.29   | :   | -0.30: | 0.30:  | -0.30:     | 0.30:  |
|         | 2:  | 1:  | 4.57    | :   | -0.50: | 0.50:  | -0.50:     | 0.50:  |
|         | 3:  | 1:  | 2.29    | :   | -0.60: | 0.60:  | -0.60:     | 0.60:  |
|         | 4:  | 1:  | 0.46    | :   | -0.80: | 0.80:  | -0.80:     | 0.80:  |
|         | 5:  | 1:  | 0.08    | :   | -1.00: | 1.00:  | -1.00:     | 1.00:  |
|         | 6:  | 1:  | 0.02    | :   | -1.20: | 1.20:  | -1.20:     | 1.20:  |
|         | 7:  | 1:  | 0.01    | :   | -1.40: | 1.40:  | -1.40:     | 1.40:  |
|         | 8:  | 1:  | 0.00    | :   | -1.60: | 1.60:  | -1.60:     | 1.60:  |
|         | 9:  | 1:  | 0.00    | :   | -1.80: | 1.80:  | -1.80:     | 1.80:  |
|         | 10: | 1:  | 0.00    | :   | -2.00: | 2.00:  | -2.00:     | 2.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

-----

|     | 1 . | :-<br>1. | 624.0    | : | -2.20:     | 1.00:  | :-<br>-2.20: | 1.00:  |
|-----|-----|----------|----------|---|------------|--------|--------------|--------|
| P   | :   | L:       | CYCLES   | : | (t1) :     | (t2) : | (t1) :       | (t2) : |
| E   | :   | T:       | FATIGUE  | : |            | :      |              | :      |
| T   | :   | A:       | OF       | : |            | :      |              | :      |
| S   | :   | M:       | NUMBER   | : | <b>S</b> 0 | :      | <b>S</b> 3   | :      |
| BLO | CK  | CAS      | SE NO. 5 |   |            |        |              |        |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

THROUGH CRACK CASE 3, PSE-V1 Case A .090 strap MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

STD STD S : M: NUMBER : S0

| S | 3 : | :   | М:  | NUMBER  | :   | <b>S</b> 0  | :      | <b>S</b> 3 | :      |
|---|-----|-----|-----|---------|-----|-------------|--------|------------|--------|
| 1 | : ۱ | :   | A:  | OF      | :   |             | :      |            | :      |
| E | Ξ : | :   | T:  | FATIGUE | :   | (ksi)       | :      | (ksi)      | :      |
| F | ? : | :   | L:  | CYCLES  | :   | (t1) :      | (t2) : | (t1) :     | (t2) : |
|   | :   | : - | -:- |         | -:- | <b>:-</b> - | :-     | :          | :      |
|   | 1:  | :   | 1:  | 1.90    | :   | 0.00:       | 0.00:  | 3.07:      | 5.71:  |
|   | 2 : | :   | 1:  | 0.09    | :   | 0.00:       | 0.00:  | 2.63:      | 6.15:  |
|   | 3 : | :   | 1:  | 0.01    | :   | 0.00:       | 0.00:  | 2.37:      | 6.41:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

THROUGH CRACK CASE 3, PSE-V1 Case A .090 strap MODEL: TC03

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

| STD |     |    |         |    |        |        |        |        |
|-----|-----|----|---------|----|--------|--------|--------|--------|
| S   | :   | M: | NUMBER  | :  | S0     | :      | s3     | :      |
| T   | :   | A: | OF      | :  |        | :      |        | :      |
| E   | :   | T: | FATIGUE | :  | (ksi)  | :      | (ksi)  | :      |
| P   | :   | L: | CYCLES  | :  | (t1) : | (t2) : | (t1) : | (t2) : |
|     | -:- | :  |         | -: | :      | :-     | :      | :      |
|     | 1:  | 1: | 9.57    | :  | 0.00:  | 0.00:  | -1.32: | 1.32:  |
|     | 2:  | 1: | 1.14    | :  | 0.00:  | 0.00:  | -2.19: | 2.19:  |
|     | 3:  | 1: | 0.57    | :  | 0.00:  | 0.00:  | -2.63: | 2.63:  |
|     | 4:  | 1: | 0.11    | :  | 0.00:  | 0.00:  | -3.51: | 3.51:  |
|     | 5:  | 1: | 0.02    | :  | 0.00:  | 0.00:  | -4.39: | 4.39:  |
|     | 6:  | 1: | 0.01    | :  | 0.00:  | 0.00:  | -5.27: | 5.27:  |
|     | 7:  | 1: | 0.00    | :  | 0.00:  | 0.00:  | -6.15: | 6.15:  |
|     | 8 : | 1: | 0.00    | :  | 0.00:  | 0.00:  | -7.02: | 7.02:  |
|     | 9:  | 1: | 0.00    | :  | 0.00:  | 0.00:  | -7.90: | 7.90:  |
| 1   | 0:  | 1: | 0.00    | :  | 0.00:  | 0.00:  | -8.78: | 8.78:  |
|     |     |    |         |    |        |        |        |        |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

THROUGH CRACK CASE 3, PSE-V1 Case A .090 strap MODEL: TC03

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

\_\_\_\_\_

| STD |    |         |   |        |        |            |        |
|-----|----|---------|---|--------|--------|------------|--------|
| s : | M: | NUMBER  | : | S0     | :      | <b>S</b> 3 | :      |
| T : | A: | OF      | : |        | :      |            | :      |
| E : | T: | FATIGUE | : | (ksi)  | ) :    | (ksi       | ) :    |
| P : | L: | CYCLES  | : | (t1) : | (t2) : | (t1) :     | (t2) : |
| 1:  | 1: | 19.14   | : | 0.00:  | 0.00:  | -1.32:     | 1.32:  |
| 2:  | 1: | 2.29    | : | 0.00:  | 0.00:  | -2.19:     | 2.19:  |
| 3:  | 1: | 1.14    | : | 0.00:  | 0.00:  | -2.63:     | 2.63:  |
| 4:  | 1: | 0.23    | : | 0.00:  | 0.00:  | -3.51:     | 3.51:  |
| 5:  | 1: | 0.04    | : | 0.00:  | 0.00:  | -4.39:     | 4.39:  |
| 6:  | 1: | 0.01    | : | 0.00:  | 0.00:  | -5.27:     | 5.27:  |
| 7:  | 1: | 0.00    | : | 0.00:  | 0.00:  | -6.15:     | 6.15:  |
| 8:  | 1: | 0.00    | : | 0.00:  | 0.00:  | -7.02:     | 7.02:  |
| 9:  | 1: | 0.00    | : | 0.00:  | 0.00:  | -7.90:     | 7.90:  |
| 10: | 1: | 0.00    | : | 0.00:  | 0.00:  | -8.78:     | 8.78:  |
|     |    |         |   |        |        |            |        |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

THROUGH CRACK CASE 3, PSE-V1 Case A .090 strap MODEL: TC03

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

\_\_\_\_\_\_ STD S : M: NUMBER : S0 **S**3 T : A: OF E: T: FATIGUE : (ksi) : (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : 38.29 : 0.00: 0.00: -1.32: 1: 1: 1.32: 4.57: 0.00: 0.00: -2.19: 2.29: 0.00: 0.00: -2.63: 0.46: 0.00: 0.00: -3.51: 4.57 : 2: 1: 2.19: -2.63: 2.63: 3.51: 3: 1: 4: 1: 3.51:

| 5: 1:  | 0.08:  | 0.00: | 0.00: | -4.39: | 4.39: |
|--------|--------|-------|-------|--------|-------|
| 6: 1:  | 0.02 : | 0.00: | 0.00: | -5.27: | 5.27: |
| 7: 1:  | 0.01 : | 0.00: | 0.00: | -6.15: | 6.15: |
| 8: 1:  | 0.00:  | 0.00: | 0.00: | -7.02: | 7.02: |
| 9: 1:  | 0.00 : | 0.00: | 0.00: | -7.90: | 7.90: |
| 10: 1: | 0.00 : | 0.00: | 0.00: | -8.78: | 8.78: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-V1 Case A .090 strap MODEL: TC03

## FATIGUE SCHEDULE BLOCK STRESS TABLE

STD

| S | : | M: | NUMBER  | :     | so     | :      | s3       | :      |
|---|---|----|---------|-------|--------|--------|----------|--------|
| T | : | A: | OF      | :     |        | :      |          | :      |
| Ε | : | T: | FATIGUE | :     | (ksi)  | :      | (ksi)    | :      |
| P | : | L: | CYCLES  | :     | (t1) : | (t2) : | (t1) :   | (t2) : |
|   | : | :  | <b></b> | - : - | :      | :      | <b>:</b> | :      |
|   | _ | -  | 624.00  |       |        |        |          |        |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-V1 Case A .090 strap MODEL: TC03

### ANALYSIS RESULTS:

#### FINAL RESULTS:

All Stress Intensities are below the Fatigue Threshold. NO growth in Schedule No. 1 Crack Size c = 0.500000E-01

#### FATIGUE CRACK GROWTH ANALYSIS \_\_\_\_\_

DATE: 08/17/98 TIME: 13:34:49

(computed: NASA/FLAGRO Version 2.03, March 1995.) U.S. customary units [inches, ksi, ksi sqrt(in)]

### PROBLEM TITLE

THROUGH CRACK CASE 3, PSE-V1 Case B .190 Channel

#### GEOMETRY

MODEL: TC03-Through crack from hole in plate.

Plate Thickness, t = 0.1900 " Width, W = 1.4000 Hole Diameter, D = 0.1600

Hole-Center-to-Edge Dist., B = 0.3500

#### FLAW SIZE:

(init.) = 0.5000E-01

### MATERIAL

```
MATL 1: 2014-T6
      Plt & sht; L-T
Material Properties:
:Matl: UTS: YS: K1e: K1c: Ak: Bk: Thk: Kc: KIscc:
: 1 : 74.0: 65.0: 38.0: 27.0: 1.00: 1.00: 0.190: 49.2:
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           : 1 :0.350E-07:2.800:0.50:1.00: 2.70: 0.70: 1.50: 0.30:
THROUGH CRACK CASE 3, PSE-V1 Case B .190 Channel
MODEL: TC03
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3: 3.9300
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3: 3.9300
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3: 3.9300
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3:
Stress Scaling Factors for Block Case: 5
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3: 3.9500
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From
   1
            1
   3
            3
                                 5
   4
            4
                                 1
                                 3
   6
            6
                                 5
            7
   8
            8
                                 3
   9
            9
                                 5
  10
           10
                                 1
  11
           11
                                 3
  12
           12
  13
           13
                                 1
```

14

14

| 1            | L5  | -   | 15      |     |        | 5      |        |        |
|--------------|-----|-----|---------|-----|--------|--------|--------|--------|
| BLOC         | сĸ  | CAS | E NO. 1 |     |        |        |        |        |
| S            | :   | M:  | NUMBER  | :   | S0     | :      | s3     | :      |
| $\mathbf{T}$ | :   | A:  | OF      | :   |        | :      |        | :      |
| E            | :   | T:  | FATIGUE | :   |        | :      |        | :      |
| P            | :   | L:  | CYCLES  | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|              | -:- | :-  |         | -:- | :-     | :-     | :-     | :      |
| 1            | 1:  | 1:  | 1.90    | :   | 0.70:  | 1.30:  | 0.70:  | 1.30:  |
| 2            | 2:  | 1:  | 0.09    | :   | 0.60:  | 1.40:  | 0.60:  | 1.40:  |
| 3            | 3:  | 1:  | 0.01    | :   | 0.54:  | 1.46:  | 0.54:  | 1.46:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

| BL | OCK | CAS | SE NO. 2 |          |        |        |                |        |
|----|-----|-----|----------|----------|--------|--------|----------------|--------|
| s  | :   | M:  | NUMBER   | :        | S0     | :      | s3             | :      |
| T  | :   | A:  | OF       | :        |        | :      |                | :      |
| E  | :   | T:  | FATIGUE  | :        |        | :      |                | :      |
| P  | :   | L:  | CYCLES   | :        | (t1) : | (t2) : | (t1) :         | (t2) : |
|    | :   | :-  |          | -:       | :-     | :      | : <del>-</del> | :      |
|    | 1:  | 1:  | 9.57     | ' :      | -0.30: | 0.30:  | -0.30:         | 0.30:  |
|    | 2:  | 1:  | 1.14     | :        | -0.50: | 0.50:  | -0.50:         | 0.50:  |
|    | 3:  | 1:  | 0.57     | <i>:</i> | -0.60: | 0.60:  | -0.60:         | 0.60:  |
|    | 4:  | 1:  | 0.11     | :        | -0.80: | 0.80:  | -0.80:         | 0.80:  |
|    | 5:  | 1:  | 0.02     | :        | -1.00: | 1.00:  | -1.00:         | 1.00:  |
|    | 6:  | 1:  | 0.03     | L :      | -1.20: | 1.20:  | -1.20:         | 1.20:  |
|    | 7:  | 1:  | 0.00     | ) :      | -1.40: | 1.40:  | -1.40:         | 1.40:  |
|    | 8:  | 1:  | 0.00     | ) :      | -1.60: | 1.60:  | -1.60:         | 1.60:  |
|    | 9:  | 1:  | 0.00     | ) :      | -1.80: | 1.80:  | -1.80:         | 1.80:  |
|    | 10: | 1:  | 0.00     | :        | -2.00: | 2.00:  | -2.00:         | 2.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

DI CON CACE NO 3

|   |     | CAS | E NO. 3 |     |            |        |        |        |
|---|-----|-----|---------|-----|------------|--------|--------|--------|
| S | :   | M:  | NUMBER  | :   | <b>S</b> 0 | :      | S3     | :      |
| T | :   | A:  | OF      | :   |            | :      | •      | :      |
| E | :   | T:  | FATIGUE | :   |            | :      |        | :      |
| P | :   | L:  | CYCLES  | :   | (t1) :     | (t2) : | (t1) : | (t2) : |
|   | -:- | :-  |         | -:- | :-         | :      | :-     | :      |
|   | 1:  | 1:  | 19.14   | :   | -0.30:     | 0.30:  | -0.30: | 0.30:  |
|   | 2:  | 1:  | 2.29    | :   | -0.50:     | 0.50:  | -0.50: | 0.50:  |
|   | 3:  | 1:  | 1.14    | :   | -0.60:     | 0.60:  | -0.60: | 0.60:  |
|   | 4:  | 1:  | 0.23    | :   | -0.80:     | 0.80:  | -0.80: | 0.80:  |
|   | 5:  | 1:  | 0.04    | :   | -1.00:     | 1.00:  | -1.00: | 1.00:  |
|   | 6:  | 1:  | 0.01    | :   | -1.20:     | 1.20:  | -1.20: | 1.20:  |
|   | 7:  | 1:  | 0.00    | :   | -1.40:     | 1.40:  | -1.40: | 1.40:  |
|   | 8:  | 1:  | 0.00    | :   | -1.60:     | 1.60:  | -1.60: | 1.60:  |
|   | 9:  | 1:  | 0.00    | :   | -1.80:     | 1.80:  | -1.80: | 1.80:  |
| 1 | 0:  | 1:  | 0.00    | :   | -2.00:     | 2.00:  | -2.00: | 2.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

BLOCK CASE NO. 4 : S: M: NUMBER: so s3 T : A: OF : E : T: FATIGUE : P : L: CYCLES : (t1) : (t2) : (t1) : (t2) : 1: 1: 38.29: -0.30: 0.30: -0.30: 0.30: 
 4.57 :
 -0.50:
 0.50:
 -0.50:
 0.50:

 2.29 :
 -0.60:
 0.60:
 -0.60:
 0.60:

 0.46 :
 -0.80:
 0.80:
 -0.80:
 0.80:

 0.08 :
 -1.00:
 1.00:
 -1.00:
 1.00:
 2: 1: 3: 1: 4: 1: 5: 1:

| 6: 1:  | 0.02 : | -1.20: | 1.20: | -1.20: | 1.20: |
|--------|--------|--------|-------|--------|-------|
| 7: 1:  | 0.01 : | -1.40: | 1.40: | -1.40: | 1.40: |
| 8: 1:  | 0.00 : | -1.60: | 1.60: | -1.60: | 1.60: |
| 9: 1:  | 0.00 : | -1.80: | 1.80: | -1.80: | 1.80: |
| 10: 1: | 0.00 : | -2.00: | 2.00: | -2.00: | 2.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

-----

| BLO          | CK | CAS | E NO. 5 |     |            |      |     |        |        |
|--------------|----|-----|---------|-----|------------|------|-----|--------|--------|
| S            | :  | M:  | NUMBER  | :   | <b>S</b> 0 |      | :   | S3     | :      |
| $\mathbf{T}$ | :  | A:  | OF      | :   |            |      | :   |        | :      |
| E            | :  | T:  | FATIGUE | :   |            |      | :   |        | :      |
| P            | :  | L:  | CYCLES  | :   | (t1) :     | (t2) | :   | (t1) : | (t2) : |
|              | -: | :-  |         | :   | :-         |      | -:- | :-     | :      |
|              | 1: | 1:  | 624.0   | 0 : | -2.20:     | 1.00 | ):  | -2.20: | 1.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

THROUGH CRACK CASE 3, PSE-V1 Case B .190 Channel MODEL: TC03

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

| S' | ΤD |     |    |         |     |        |        |             |      |
|----|----|-----|----|---------|-----|--------|--------|-------------|------|
|    | S  | :   | M: | NUMBER  | :   | so     | :      | S3          | :    |
| 5  | Г  | :   | A: | OF      | :   |        | :      |             | :    |
| 1  | E  | :   | T: | FATIGUE | :   | (ksi)  | :      | (ksi)       | :    |
| 1  | P  | :   | L: | CYCLES  | :   | (t1) : | (t2) : | (t1) : (t2) | :    |
|    |    | -:- | :- |         | -:- | :      | :-     |             | :    |
|    | :  | L:  | 1: | 1.90    | :   | 0.00:  | 0.00:  | 2.75: 5     | .11: |
|    | 2  | 2:  | 1: | 0.09    | :   | 0.00:  | 0.00:  | 2.36: 5     | .50: |
|    | 3  | 3:  | 1: | 0.01    | :   | 0.00:  | 0.00:  | 2.12- 5     | 74 . |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

THROUGH CRACK CASE 3, PSE-V1 Case B .190 Channel MODEL: TC03

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

FAITGUE SCHEDULE BLOCK STRESS TABLE

| STD            |    |         |     |        |        |            |        |
|----------------|----|---------|-----|--------|--------|------------|--------|
| s :            | M: | NUMBER  | :   | S0     | :      | <b>S</b> 3 | :      |
| $\mathbf{T}$ : | A: | OF      | :   |        | :      |            | :      |
| E :            | T: | FATIGUE | :   | (ksi)  | :      | (ksi)      | :      |
| P :            | L: | CYCLES  | :   | (t1) : | (t2) : | (t1) :     | (t2) : |
| :              | :- |         | -:- | :      | :-     | :          | :      |
| 1:             | 1: | 9.57    | :   | 0.00:  | 0.00:  | -1.18:     | 1.18:  |
| 2:             | 1: | 1.14    | :   | 0.00:  | 0.00:  | -1.97:     | 1.97:  |
| 3:             | 1: | 0.57    | :   | 0.00:  | 0.00:  | -2.36:     | 2.36:  |
| 4:             | 1: | 0.11    | :   | 0.00:  | 0.00:  | -3.14:     | 3.14:  |
| 5:             | 1: | 0.02    | :   | 0.00:  | 0.00:  | -3.93:     | 3.93:  |
| 6:             | 1: | 0.01    | :   | 0.00:  | 0.00:  | -4.72:     | 4.72:  |
| 7:             | 1: | 0.00    | :   | 0.00:  | 0.00:  | -5.50:     | 5.50:  |
| 8:             | 1: | 0.00    | :   | 0.00:  | 0.00:  | -6.29:     | 6.29:  |
| .9:            | 1: | 0.00    | :   | 0.00:  | 0.00:  | -7.07:     | 7.07:  |
| 10:            | 1: | 0.00    | :   | 0.00:  | 0.00:  | -7.86:     | 7.86:  |
|                |    |         |     |        |        |            |        |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

THROUGH CRACK CASE 3, PSE-V1 Case B .190 Channel MODEL: TC03

FATIGUE SCHEDULE BLOCK STRESS TABLE

| STD |    |         |     |        |        |            |        |
|-----|----|---------|-----|--------|--------|------------|--------|
| s:  | Μ: | NUMBER  | :   | S0     | :      | <b>S</b> 3 | :      |
| T:  | A: | OF      | :   |        | :      |            | :      |
| E : | T: | FATIGUE | :   | (ksi)  | :      | (ksi       | :      |
| P : | L: | CYCLES  | :   | (t1) : | (t2) : | (t1) :     | (t2) : |
| :   | :- |         | -:- | :      | :-     | :-         | :      |
| 1:  | 1: | 19.14   | :   | 0.00:  | 0.00:  | -1.18:     | 1.18:  |
| 2:  | 1: | 2.29    | :   | 0.00:  | 0.00:  | -1.97:     | 1.97:  |
| 3:  | 1: | 1.14    | :   | 0.00:  | 0.00:  | -2.36:     | 2.36:  |
| 4:  | 1: | 0.23    | :   | 0.00:  | 0.00:  | -3.14:     | 3.14:  |
| 5:  | 1: | 0.04    | :   | 0.00:  | 0.00:  | -3.93:     | 3.93:  |
| 6:  | 1: | 0.01    | :   | 0.00:  | 0.00:  | -4.72:     | 4.72:  |
| 7:  | 1: | 0.00    | :   | 0.00:  | 0.00:  | -5.50:     | 5.50:  |
| 8:  | 1: | 0.00    | :   | 0.00:  | 0.00:  | -6.29:     | 6.29:  |
| 9:  | 1: | 0.00    | :   | 0.00:  | 0.00:  | -7.07:     | 7.07:  |
| 10: | 1: | 0.00    | :   | 0.00:  | 0.00:  | -7.86:     | 7.86:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$   ${\tt SET}$ 

THROUGH CRACK CASE 3, PSE-V1 Case B .190 Channel MODEL: TC03

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

| STI          | )   |                |         |     |        |        |        |        |
|--------------|-----|----------------|---------|-----|--------|--------|--------|--------|
| S            | :   | M:             | NUMBER  | :   | s0     | :      | S3     | :      |
| $\mathbf{T}$ | :   | A:             | OF      | :   |        | :      |        | :      |
| E            | :   | $\mathbf{T}$ : | FATIGUE | :   | (ksi   | ) :    | (ksi   | ) :    |
| P            | :   | L:             | CYCLES  | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|              | :   | :-             |         | -:- | :-     | :-     | :-     | :      |
|              | 1:  | 1:             | 38.29   | :   | 0.00:  | 0.00:  | -1.18: | 1.18:  |
|              | 2:  | 1:             | 4.57    | :   | 0.00:  | 0.00:  | -1.97: | 1.97:  |
|              | 3:  | 1:             | 2.29    | :   | 0.00:  | 0.00:  | -2.36: | 2.36:  |
|              | 4:  | 1:             | 0.46    | :   | 0.00:  | 0.00:  | -3.14: | 3.14:  |
|              | 5:  | 1:             | 0.08    | :   | 0.00:  | 0.00:  | -3.93: | 3.93:  |
|              | 6:  | 1:             | 0.02    | :   | 0.00:  | 0.00:  | -4.72: | 4.72:  |
|              | 7:  | 1:             | 0.01    | :   | 0.00:  | 0.00:  | -5.50: | 5.50:  |
|              | 8:  | 1:             | 0.00    | :   | 0.00:  | 0.00:  | -6.29: | 6.29:  |
|              | 9:  | 1:             | 0.00    | :   | 0.00:  | 0.00:  | -7.07: | 7.07:  |
|              | 10: | 1:             | 0.00    | :   | 0.00:  | 0.00:  | -7.86: | 7.86:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT\ SET}$ 

THROUGH CRACK CASE 3, PSE-V1 Case B .190 Channel MODEL: TC03

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

|     |    |    |         |    |             | _     |            |       |
|-----|----|----|---------|----|-------------|-------|------------|-------|
| STD | 1  |    |         |    |             |       |            |       |
| S   | :  | M: | NUMBER  | :  | <b>\$</b> 0 | :     | <b>S</b> 3 | :     |
| T   | :  | A: | OF      | :  |             | :     |            | :     |
| E   | :  | T: | FATIGUE | :  | (ksi        | ) :   | (ksi       | ) :   |
| _   |    |    | CYCLES  |    |             |       |            |       |
|     | -: | :- |         | :  | :           | :-    | ·:-        | :     |
|     | 1: | 1: | 624.0   | 0: | 0.00:       | 0.00: | -8.69:     | 3.95: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

THROUGH CRACK CASE 3, PSE-V1 Case B .190 Channel MODEL: TC03

#### ANALYSIS RESULTS:

-----

#### FINAL RESULTS:

All Stress Intensities are below the Fatigue Threshold.

NO growth in Schedule No. 1 Crack Size c = 0.500000E-01

### C-21 PSE F5 SA226 and SA227 Lower Fuse Frame at Cargo Door Latch

```
FATIGUE CRACK GROWTH ANALYSIS
           DATE: 09/16/98 TIME: 10:10:24
     (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC2, PSE-F5 crack in .071 FRAME BELT, Gage#34 sa226/sa227
GEOMETRY
_____
MODEL: TC02-Single edge through crack.
Plate Thickness, t =
                  0.0710
            = 2.9000
 " Width, W
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
_____
MATL 1: 2024-T3
      Clad Plt & Sht; T-L; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
:---:----:----:----:----:----:
: 1: 65.0: 48.0: 41.0: 29.0: 1.00: 1.00: 0.071: 57.8:
:Matl:----- Crack Growth Eqn Constants ----:
: 1:0.244E-07:2.601:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
TC2, PSE-F5 crack in .071 FRAME BELT, Gage#34 sa226/sa227
MODEL: TC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
______
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
Scale Factor for Stress S1: 0.00000
Scale Factor for Stress S2: 0.00000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
 Block Number
                 Block Case No.
From - To
1 - 1
```

## C-21 PSE F5 SA226 and SA227 Lower Fuse Frame at Cargo Door Latch (Continued)

| SING         | LE : | DIST     | TINCT BLOCK |         |        |        |        |        |
|--------------|------|----------|-------------|---------|--------|--------|--------|--------|
| S            | :    | Μ:       | NUMBER      | :       | S0     | :      | S1     | :      |
| T            | :    | A:       | OF          | :       |        | :      |        | :      |
| E            | :    | T:       | FATIGUE     | :       |        | :      |        | :      |
| P            | :    | L:       | CYCLES      | :       | (t1) : | (t2) : | (t1) : | (t2) : |
|              | :    | :-       |             | -:      | :-     | :      | :-     | :      |
|              | 1:   | 1:       | 1.00        | :       | 0.00:  | 1.00:  | 0.00:  | 1.00:  |
| S            | :    | М:       | NUMBER      | :       | S2     | :      | S      | :      |
| $\mathbf{T}$ | :    | A:       | OF          | :       |        | :      |        | :      |
| E            | :    | T:       | FATIGUE     | :       |        | :      |        | :      |
| P            | :    | L:       | CYCLES      | :       | (t1) : | (t2) : | (t1) : | (t2) : |
|              | 1:   | :-<br>1: | 1.00        | -:<br>: | 0.00:  | 1.00:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

TC2, PSE-F5 crack in .071 FRAME BELT, Gage#34 sa226/sa227 MODEL: TC02

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

| STI | )  |    |         |     |        |        |        |        |
|-----|----|----|---------|-----|--------|--------|--------|--------|
| S   | :  | M: | NUMBER  | :   | so     | :      | S1     | :      |
| Ŧ   | :  | A: | OF      | :   |        | :      |        | :      |
| E   | :  | T: | FATIGUE | :   | (ksi)  | :      | (ksi   | ) :    |
| P   | :  | L: | CYCLES  | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|     | :  | :- |         | -:- | :      | :-     | ·:     | :      |
|     | 1: | 1: | 1.00    | :   | 0.00:  | 9.60:  | 0.00:  | 0.00:  |
| s   | :  | M: | NUMBER  | :   | S2     | :      | s      | :      |
| T   | :  | A: | OF      | :   |        | :      |        | :      |
| E   | :  | T: | FATIGUE | :   | (ksi)  | :      | (ksi)  | ) :    |
| P   | :  | L: | CYCLES  | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|     | 1: | 1: | 1.00    | :   | 0.00:  | 0.00:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT\ SET}$ 

TC2, PSE-F5 crack in .071 FRAME BELT, Gage#34 sa226/sa227 MODEL: TC02

#### ANALYSIS RESULTS:

-----

| Schedl | Block | Final Flaw S. | ize K max |
|--------|-------|---------------|-----------|
|        |       | Step c        | c-tip     |
| 5000   | 1     | 0.050945      | 4.333221  |
| 10000  | 1     | 0.051923      | 4.375170  |
| 15000  | 1     | 0.052934      | 4.418178  |
| 20000  | 1     | 0.053981      | 4.462281  |
| 25000  | 1     | 0.055064      | 4.507519  |
| 30000  | 1     | 0.056187      | 4.553931  |
| 35000  | 1     | 0.057350      | 4.601560  |
| 40000  | 1     | 0.058555      | 4.650450  |
| 45000  | 1     | 0.059805      | 4.700647  |
| 50000  | 1     | 0.061101      | 4.752201  |
| 55000  | 1     | 0.062446      | 4.805165  |
| 60000  | 1     | . 0.063843    | 4.859591  |
| 65000  | 1     | 0.065294      | 4.915539  |
| 70000  | 1     | 0.066801      | 4.973069  |
| 75000  | 1     | 0.068369      | 5.032245  |
| 80000  | 1     | 0.069999      | 5.093137  |
| 85000  | . 1   | 0.071695      | 5.155816  |
| 90000  | 1     | 0.073461      | 5.220360  |
| 95000  | 1     | 0.075301      | 5.286849  |
| 100000 | 1     | 0.077219      | 5.355371  |

### C-21 PSE F5 SA226 and SA227 Lower Fuse Frame at Cargo Door Latch (Continued)

| 105000 | 1 | 0.079220 | 5.426019 |
|--------|---|----------|----------|
| 110000 | 1 | 0.081307 | 5.498890 |
| 115000 | 1 | 0.083487 | 5.574092 |
| 120000 | 1 | 0.085764 | 5.651735 |
| 125000 | 1 | 0.088145 | 5.731942 |
| 130000 | 1 | 0.090637 | 5.814841 |
| 135000 | 1 | 0.093245 | 5.900573 |
| 140000 | 1 | 0.095978 | 5.989287 |
| 145000 | 1 | 0.098844 | 6.081145 |
| 150000 | 1 | 0.101852 | 6.176324 |
| 155000 | 1 | 0.105012 | 6.275012 |
| 160000 | 1 | 0.108333 | 6.377416 |
| 165000 | 1 | 0.111829 | 6.483760 |
| 170000 | 1 | 0.115510 | 6.594292 |
| 175000 | 1 | 0.119392 | 6.709277 |
| 180000 | 1 | 0.123490 | 6.829013 |
| 185000 | 1 | 0.127819 | 6.953825 |
| 190000 | 1 | 0.132401 | 7.084070 |
| 195000 | 1 | 0.137254 | 7.220150 |
| 200000 | 1 | 0.142402 | 7.362507 |
| 205000 | 1 | 0.147871 | 7.511639 |
| 210000 | 1 | 0.153690 | 7.668104 |
| 215000 | 1 | 0.159892 | 7.832534 |
| 220000 | 1 | 0.166514 | 8.005645 |
| 225000 | 1 | 0.173597 | 8.188255 |
| 230000 | 1 | 0.181189 | 8.381304 |
| 235000 | 1 | 0.189346 | 8.585882 |
| 240000 | 1 | 0.198131 | 8.803258 |
| 245000 | 1 | 0.207619 | 9.034924 |
| 250000 | 1 | 0.217897 | 9.282654 |

TC2, PSE-F5 crack in .071 FRAME BELT, Gage#34 sa226/sa227

MODEL: TC02

#### ANALYSIS RESULTS (contd)

| Schedl | Block |      | Final Flaw Size | K max     |
|--------|-------|------|-----------------|-----------|
|        |       | Step | С               | c-tip     |
| 255000 | 1     |      | 0.229067        | 9.548574  |
| 260000 | 1     |      | 0.241253        | 9.835266  |
| 265000 | 1     |      | 0.254604        | 10.145901 |
| 270000 | 1     |      | 0.269303        | 10.484443 |
| 275000 | 1     |      | 0.285575        | 10.855919 |
| 280000 | 1     |      | 0.303710        | 11.266845 |
| 285000 | 1     |      | 0.324076        | 11.725860 |
| 290000 | 1     |      | 0.347166        | 12.244742 |
| 295000 | 1     |      | 0.373649        | 12.840106 |
| 300000 | 1     |      | 0.404473        | 13.536400 |
| 305000 | 1     |      | 0.441051        | 14.371604 |
| 310000 | 1     |      | 0.485626        | 15.409141 |
| 315000 | 1     |      | 0.542102        | 16.766293 |
| 320000 | 1     |      | 0.618312        | 18.696635 |
| 325000 | 1     |      | 0.734438        | 21.924800 |
| 330000 | 1     |      | 0.991525        | 30.851654 |

ADVISORY: Net-section stress > Yield and failure is imminent

(Unless (a) UTS > 2 YS, or (b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 1

Step description:

of Block No. 1 of Schedule No. 331444 Crack Size c = 1.28902

#### FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 1 Step description:

## C-21 PSE F5 SA226 and SA227 Lower Fuse Frame at Cargo Door Latch (Continued)

of Block No. 1 of Schedule No. 331538 Crack Size c = 1.39476

### C-22 PSE F7 SA226 and SA227 Cargo Door Hinge

```
FATIGUE CRACK GROWTH ANALYSIS
             -----Modified by FAI-----
            DATE: 18-DEC-98 TIME: 10:45:14
     (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
CC1, PSE-F7 CARGO DOOR HINGE TAB
GEOMETRY
MODEL: CC01-Corner crack in plate or bar (2D)
                  0.0630
Plate Thickness, t =
Plate Width, W = 0.5000
FLAW SIZE:
a (init.) = 0.5000E-01
c (init.) = 0.5000E-01
a/c (init.) = 1.000
MATERIAL
MATL 1: 2024-T3511
      Extr; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1: 77.0: 55.0: 35.0: 25.0: 1.00: 1.00: 0.063: 49.6:
:Matl:----- Crack Growth Egn Constants ----:
:---:
: 1:0.200D-07:2.700:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
MODEL: CC01
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                         0.0000
Scale Factor for Stress S1:
Scale Factor for Stress S2:
                         0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
 Block Number
                         Block Case No.
From - To
1 -
```

| S       | ING: | LE I | DISTINCT BLOC | CK  |        |        |        |        |
|---------|------|------|---------------|-----|--------|--------|--------|--------|
| S       | :    | M:   | NUMBER        | :   | so     | :      | S1     | :      |
| ${f T}$ | :    | A:   | OF            | :   |        | :      |        | :      |
| E       | :    | T:   | FATIGUE       | :   |        | :      |        | :      |
| P       | :    | L:   | CYCLES        | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|         | :    | :-   |               | -:- | :-     | :-     | :-     | :      |
|         | 1:   | 1:   | 1.00          | :   | 0.00:  | 1.00:  | 0.00:  | 1.00:  |
| S       | :    | M:   | NUMBER        | :   | S2     | :      | S      | :      |
| Т       | :    | A:   | OF            | :   |        | :      |        | :      |
| E       | :    | T:   | FATIGUE       | :   |        | :      |        | :      |
| P       | :    | L:   | CYCLES        | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|         | :    | :-   |               | -:- | :-     | :-     | :-     | :      |
|         | 1:   | 1:   | 1.00          | :   | 0.00:  | 1.00:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

CC1, PSE-F7 CARGO DOOR HING MODEL: CC01

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

STD S : M: NUMBER S0 s1T : A: OF (ksi) E : T: FATIGUE : P : L: CYCLES : (Ksi) : (t1) : (t2) : (ksi) (t1): (t2): ----:--:--1: 1: 1.00 : 0.00: 23.00: 0.00: 0.00: **S2** S : M: NUMBER : : T : A: OF (ksi) E : T: FATIGUE : (ksi) : (ksi) : P : L: CYCLES : (t1): (t2) : (t1): (t2) : 1: 1: 1.00: 0.00: 0.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

CC1, PSE-F7 CARGO DOOR HING MODEL: CC01

#### ANALYSIS RESULTS:

\_\_\_\_\_

| Schdl Block |      | Final F  | law Size | Kr        | K max     |  |  |
|-------------|------|----------|----------|-----------|-----------|--|--|
|             | Step | a        | c        | a-tip     | c-tip     |  |  |
| 500         | 1    | 0.050540 | 0.050633 | 8.191712  | 8.607663  |  |  |
| 1000        | 1    | 0.051101 | 0.051293 | 8.290094  | 8.717442  |  |  |
| 1500        | 1    | 0.051685 | 0.051980 | 8.393507  | 8.833457  |  |  |
| 2000        | 1    | 0.052293 | 0.052698 | 8.502442  | 8.956346  |  |  |
| 2500        | 1    | 0.052927 | 0.053450 | 8.617466  | 9.086844  |  |  |
| 3000        | 1    | 0.053590 | 0.054238 | 8.739233  | 9.225804  |  |  |
| 3500        | 1    | 0.054284 | 0.055067 | 8.868506  | 9.374218  |  |  |
| 4000        | 1    | 0.055013 | 0.055941 | 9.006183  | 9.533254  |  |  |
| 4500        | 1    | 0.055780 | 0.056864 | 9.153327  | 9.704294  |  |  |
| 5000        | 1    | 0.056589 | 0.057844 | 9.311208  | 9.888991  |  |  |
| 5500        | 1    | 0.057445 | 0.058888 | 9.481368  | 10.089338 |  |  |
| 6000        | 1    | 0.058355 | 0.060003 | 9.665688  | 10.307773 |  |  |
| 6500        | 1    | 0.059324 | 0.061202 | 9.866509  | 10.547309 |  |  |
| 7000        | 1    | 0.060363 | 0.062496 | 10.086779 | 10.811732 |  |  |
| 7500        | 1    | 0.061482 | 0.063904 | 10.330284 | 11.105874 |  |  |
| 8000        | 1    | 0.062694 | 0.065445 | 10,601989 | 11.436037 |  |  |

Transition to 1-d solution, TC02: a = 0.6300E-01 t = 0.6300E-01

at Cycle No. 1.00 of Load Step No. 1
Step description:
of Block No. 1 of Schedule No. 8120
Crack Size: c = 0.658394E-01, a/c = 0.956905

| Block | Stop                       | Final Flaw Size                         | K max<br>c-tip                                                                                 |
|-------|----------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|
| 1     | scep                       | -                                       | 13,277097                                                                                      |
| 1     |                            | 0.000207                                | 13.211031                                                                                      |
| 1     |                            | 0.071823                                | 13.740216                                                                                      |
| 1     |                            | 0.075790                                | 14.263913                                                                                      |
| 1     |                            | 0.080292                                | 14.865156                                                                                      |
| 1     |                            | 0.085480                                | 15.568935                                                                                      |
| 1     |                            | 0.091578                                | 16.414153                                                                                      |
| 1     |                            | 0.098946                                | 17.466027                                                                                      |
| 1     |                            | 0.108219                                | 18.846118                                                                                      |
| 1     |                            | 0.120703                                | 20.821797                                                                                      |
|       | 1<br>1<br>1<br>1<br>1<br>1 | Step<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Step C 1 0.068287 1 0.071823 1 0.075790 1 0.080292 1 0.085480 1 0.091578 1 0.098946 1 0.108219 |

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or (b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 1 Step description: of Block No. 1 of Schedule No. 12755

Crack Size c = 0.129197

13000 1 0.139952 24.192382

FINAL RESULTS:

Net-section stress exceeds the Flow stress.
(Flow stress = average of yield and ultimate)
at the very beginning of Load Step No. 1
Step description:
of Block No. 1 of Schedule No. 13224
Crack Size c = 0.153810

Tack Size C = 0.153610

FATIGUE CRACK GROWTH ANALYSIS
-----Modified by FAI----DATE: 23-MAR-99 TIME: 08:40:49

(computed: NASA/FLAGRO Version 2.03, March 1995.)
U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

TC2, PSE-F7 CARGO DOOR HINGE TAB-CONTINUING DAMAGE

GEOMETRY

MODEL: TC02-Single edge through crack.

Plate Thickness, t = 0.0630 " Width, W = 0.5000

FLAW SIZE:

c (init.) = 0.5000E-02

MATERIAL

-----

MATL 1: 2024-T3511

Extr; L-T; LA & HHA

Material Properties:

```
:Matl: UTS: YS: Kle: K1c: Ak: Bk: Thk: Kc: KIscc:
: No.: : : : : : : : :
    : 1 : 77.0: 55.0: 35.0: 25.0: 1.00: 1.00: 0.063: 49.6: :
:Matl:----- Crack Growth Eqn Constants ----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
        : 1 :0.200D-07:2.700:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
MODEL: TC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                  24,000
Scale Factor for Stress S1:
                  0.0000
Scale Factor for Stress S2: 0.0000
Total No. of Blocks in Schedule = 1
 Block Number and Case Correspondences
Block Number
         Block Case No.
From - To
 1 -
SINGLE DISTINCT BLOCK
S : M: NUMBER :
                  S0 : S1 :
T : A: OF :
E : T: FATIGUE :
P : L: CYCLES :
              (t1): (t2):
                          (t1) : (t2)
1: 1: 1.00 :
              0.00: 1.00:
S2 :
                            0.00: 1.00:
S : M: NUMBER :
                            s
T : A:
      OF
E : T: FATIGUE : P : L: CYCLES :
               (t1): (t2): (t1): (t2):
----:--:---
           ---:------:-----:----:----:-
 1: 1: 1.00: 0.00: 1.00:
                           0.00: 0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
TC2, PSE-F7 CARGO DOOR HING
MODEL: TC02
FATIGUE SCHEDULE BLOCK STRESS TABLE
STD
(KS1) . (t1) : (t2) :
```

0.00: 0.00:

1: 1: 1.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

TC2, PSE-F7 CARGO DOOR HING

MODEL: TC02

ANALYSIS RESULTS:

| a 1 11         | D11-  | m/   |                  | a:   | 77                   |
|----------------|-------|------|------------------|------|----------------------|
| Schedl         | Block |      | Flaw             | Size | K max<br>c-tip       |
| E00            | 1     | Step | с<br>.00504      | 4 E  | 3.399873             |
| 500<br>1000    | 1     |      | .00504           |      | 3.415273             |
| 1500           | 1     |      | .00503           |      | 3.430833             |
|                | 1     |      | .0051            |      | 3.446557             |
| 2000<br>2500   | 1     |      | .00523           |      | 3.462447             |
| 3000           | 1     |      | .0052            |      | 3.478506             |
| 3500           | 1     |      | .0052            |      | 3.494737             |
| 4000           | 1     |      | .0053            |      | 3.511142             |
| 4500           | 1     |      | .0054            |      | 3.527725             |
| 5000           | 1     |      | .0054            |      | 3.544488             |
| 5500           | 1     |      | .0055            |      | 3.561434             |
| 6000           | 1     |      | .0055            |      | 3.578567             |
| 6500           | 1     |      | .0056            |      | 3.595889             |
| 7000           | 1     |      | .0056            |      | 3.613405             |
| 7500           | ī     |      | .0057            |      | 3.631116             |
| 8000           | 1     | -    | .0058            |      | 3.649027             |
| 8500           | 1     |      | .0058            |      | 3.667141             |
| 9000           | 1     |      | .0059            |      | 3.685462             |
| 9500           | 1     |      | .0059            |      | 3.703992             |
| 10000          | 1     |      | .0060            |      | 3.722737             |
| 10500          | 1     | d    | .0061            | 02   | 3.741700             |
| 11000          | 1     | 0    | .0061            | 64   | 3.760884             |
| 11500          | 1     | O    | .0062            | 27   | 3.780293             |
| 12000          | 1     | O    | .0062            | 91   | 3.799932             |
| 12500          | 1     | O    | .0063            | 57   | 3.819806             |
| 13000          | 1     | C    | .0064            | 23   | 3.839917             |
| 13500          | 1     | C    | .0064            | 91   | 3.860271             |
| 14000          | 1     | C    | .0065            | 60   | 3.880872             |
| 14500          | 1     | C    | .0066            | 30   | 3.901725             |
| 15000          | 1     | (    | .0067            | 01   | 3.922834             |
| 15500          | 1     | (    | .0067            | 74   | 3.944205             |
| 16000          | 1     |      | .0068            |      | 3.965842             |
| 16500          | 1     |      | .0069            |      | 3.987751             |
| 17000          | 1     |      | .0069            |      | 4.009936             |
| <b>17</b> 500  | 1     |      | .0070            |      | 4.032404             |
| 18000          | 1     |      | .0071            |      | 4.055159             |
| 18500          | 1     |      | 0.0072           |      | 4.078207             |
| 19000          | 1     |      | .0073            |      | 4.101555             |
| 19500          | 1     |      | 0.0074           |      | 4.125208             |
| 20000          | 1     |      | 0.0074           |      | 4.149173             |
| 20500          | 1     |      | 0.0075           |      | 4.173455             |
| 21000          | 1     |      | 0.0076           |      | 4.198062<br>4.223000 |
| 21500<br>22000 | 1     |      | ).0077<br>).0078 |      | 4.223000             |
| 22500          | 1     |      | 0.0078           |      | 4.248276             |
| 23000          | 1     |      | 0.0079           |      | 4.273837             |
| 23500          | 1     |      | 0.0081           |      | 4.326203             |
| 24000          | 1     |      | 0.0082           |      | 4.352904             |
| 24500          | 1     |      | 0.0083           |      | 4.379980             |
| 25000          | 1     |      | 0.0084           |      | 4.407440             |
| 23000          | _     | ,    |                  |      | 1.40,440             |

MODEL: TC02

ANALYSIS RESULTS (contd)

| Schedl | Block  | Final Flaw Size | K max                |
|--------|--------|-----------------|----------------------|
|        |        | Step c          | c-tip                |
| 25500  | 1      | 0.008543        | 4.435293             |
| 26000  | 1      | 0.008651        | 4.463546             |
| 26500  | 1      | 0.008761        | 4.492210             |
| 27000  | 1      | 0.008873        | 4.521292             |
| 27500  | 1      | 0.008987        | 4.550804             |
| 28000  | 1      | 0.009104        | 4.580754             |
| 28500  | 1      | 0.009224        | 4.611154             |
| 29000  | 1      | 0.009346        | 4.642012             |
| 29500  | 1      | 0.009471        | 4.673341             |
| 30000  | 1      | 0.009598        | 4.705152             |
| 30500  | 1      | 0.009728        | 4.737455             |
| 31000  | 1      | 0.009861        | 4.770263             |
| 31500  | 1      | 0.009997        | 4.803589             |
| 32000  | 1      | 0.010137        | 4.837445             |
| 32500  | 1      | 0.010279        | 4.871845             |
| 33000  | 1      | 0.010424        | 4.906802             |
| 33500  | 1      | 0.010424        | 4.942330             |
| 34000  | 1      | 0.010373        | 4.978444             |
| 34500  | 1      | 0.010726        | 5.015160             |
| 35000  | 1      | 0.010882        | 5.052493             |
| 35500  | . 1    | 0.011041        | 5.090459             |
| 36000  | 1      | 0.011205        | 5.129077             |
| 36500  | 1      | 0.011372        | 5.168362             |
| 37000  | 1      | 0.011543        |                      |
| 37500  | 1      | 0.011719        | 5.208334<br>5.249012 |
| 38000  | 1      | 0.012084        | 5.290415             |
| 38500  | . 1    | 0.012084        | 5.332564             |
| 39000  | 1      | 0.012273        | 5.375481             |
| 39500  | 1      | 0.012407        | 5.419188             |
| 40000  | ī      | 0.012870        | 5.463708             |
| 40500  | 1      | 0.013080        | 5.509065             |
| 41000  | 1      | 0.013295        | 5.555285             |
| 41500  | ī      | 0.013516        | 5.602394             |
| 42000  | 1      | 0.013743        | 5.650419             |
| 42500  | 1      | 0.013976        | 5.699390             |
| 43000  | 1      | 0.014216        | 5.749336             |
| 43500  | 1      | 0.014462        | 5.800289             |
| 44000  | ī      | 0.014715        | 5.852282             |
| 44500  | 1      | 0.014976        | 5.905349             |
| 45000  | 1      | 0.015244        | 5.959526             |
| 45500  | 1      | 0.015520        | 6.014852             |
| 46000  | 1      | 0.015804        | 6.071366             |
| 46500  | 1      | 0.016096        | 6.129110             |
| 47000  | 1      | 0.016398        | 6.188128             |
| 47500  | _<br>1 | 0.016709        | 6.248467             |
| 48000  | 1      | 0.017029        | 6.310175             |
| 48500  | 1      | 0.017359        | 6.373303             |
| 49000  | 1      | 0.017700        | 6.437906             |
| 49500  | 1      | 0.018053        | 6.504042             |
| 50000  | 1      | 0.018416        | 6.571771             |
|        | _      |                 | 0.5,1,,1             |

MODEL: TC02

### ANALYSIS RESULTS (contd)

· Final Flaw Size Schedl Block K max Step c-tip 6.641157 6.712269 6.785179 6.859963 1 1 1 1 1 0.018792 51000 0.019180 0.019581 51500 52000 0.019997 52500 0.020427 6.936704 7.015490 7.096412 53000 1 0.020872 53500 1 0.021333

```
7.179570
54000
             1
                              0.021812
54500
             1
                              0.022308
                                                      7.265071
                                                      7.353029
55000
             1
                              0.022823
                              0.023358
                                                      7.443567
55500
                                                      7.536815
56000
             1
                              0.023914
             1
                              0.024492
                                                      7.632917
56500
                                                      7.732026
57000
             1
                              0.025093
                              0.025720
                                                      7.834308
57500
                                                      7.939943
             1
                              0.026373
58000
58500
             1
                              0.027054
                                                      8.049128
                              0.027765
                                                      8.162074
             1
59000
59500
                              0.028508
                                                      8.279017
                                                      8.400212
60000
             1
                              0.029285
60500
             1
                              0.030098
                                                      8.525940
                                                      8.656510
             1
                              0.030951
61000
61500
                              0.031845
                                                      8.792265
                              0.032784
                                                      8.933586
             1
62000
62500
             1
                              0.033772
                                                      9.080897
             1
                              0.034812
                                                      9.234672
63000
                                                      9.395444
63500
             1
                              0.035909
                                                      9.563816
64000
             1
                              0.037068
                                                      9.740469
64500
             1
                              0.038293
                                                      9.926184
65000
             1
                              0.039592
                              0.040972
                                                     10.121855
             1
65500
66000
                              0.042440
                                                     10.328516
                              0.044005
                                                     10.547370
66500
             1
                                                     10.779830
67000
             1
                              0.045679
                                                     11.027565
67500
             1
                              0.047475
                                                     11.292572
68000
             1
                              0.049406
                                                     11.577261
68500
              1
                              0.051491
                              0.053751
                                                     11.884579
             1
69000
69500
              1
                              0.056212
                                                     12.218182
70000
              1
                              0.058906
                                                     12.582674
                                                     12.983960
70500
              1
                              0.061872
                                                     13.429785
71000
              1
                              0.065163
                                                     13.930565
71500
              1
                              0.068846
                              0.073011
                                                      14.500752
72000
              1
                              0.077785
                                                      15,161183
72500
73000
                               0.083354
                                                      15.943405
                                                     16.898350
73500
              1
                              0.090006
                                                      18.115905
74000
                               0.098221
                              0.108918
                                                      19.777198
74500
```

```
ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or
(b) KIC/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 1
Step description:
of Block No. 1 of Schedule No. 74976
Crack Size c = 0.123285
75000 1 0.124228 22.338612
```

#### FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 1 Step description: of Block No. 1 of Schedule No. 75454 Crack Size c = 0.148156

```
FATIGUE CRACK GROWTH ANALYSIS
             ------Modified by FAI------
            DATE: 16-OCT-97 TIME: 08:36:45
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
_____
TC2, PSE-F10 crack in .040 thk cargo Door corner
GEOMETRY
MODEL: TC02-Single edge through crack.
Plate Thickness, t =
                   0.0400
 " Width, W = 0.5000
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2024-T3
      Clad Plt & Sht; T-L; LA & HHA
Material Properties:
:Matl: UTS : YS : Kle : Klc : Ak : Bk : Thk : Kc : KIscc:
: No.: : : : : : : : :
·----
: 1: 65.0: 48.0: 41.0: 29.0: 1.00: 1.00: 0.040: 57.9:
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
: 1 :0.244D-07:2.601:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
MODEL: TC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                        7.7000
Scale Factor for Stress S1:
                        0.0000
Scale Factor for Stress S2: 0.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                        Block Case No.
From - To
1 -
           1
```

| SI           | IGL: | E DI | STINCT BLOCK | ζ.  |        |        |        |        |
|--------------|------|------|--------------|-----|--------|--------|--------|--------|
| S            | :    | M:   | NUMBER       | :   | S0     | :      | S1     | :      |
| т            | :    | A:   | OF           | :   |        | :      |        | :      |
| E            | :    | T:   | FATIGUE      | :   |        | :      |        | :      |
| P            | :    | L:   | CYCLES       | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|              | :    | :-   |              | -:- | :-     | :-     | :-     | :      |
|              | 1:   | 1:   | 1.00         | :   | 0.00:  | 1.00:  | 0.00:  | 1.00:  |
| S            | :    | M:   | NUMBER       | :   | S2     | :      | s      | :      |
| $\mathbf{T}$ | :    | A:   | OF           | :   |        | :      |        | :      |
| E            | :    | T:   | FATIGUE      | :   |        | :      |        | :      |
| P            | :    | L:   | CYCLES       | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|              | :    | :-   |              | -:- | :-     | :-     | :-     | :      |
|              | 1:   | 1:   | 1.00         | :   | 0.00:  | 1.00:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-F10 crack in .040 MODEL: TC02

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

TC2, PSE-F10 crack in .040 MODEL: TC02

#### ANALYSIS RESULTS:

\_\_\_\_\_

| Schedl | Block | Step | Final Flaw Size | K max<br>c-tip |
|--------|-------|------|-----------------|----------------|
| 2000   | 1     | bcep | 0.050198        | 3.657693       |
| 4000   | 1     |      | 0.050198        | 3.666474       |
|        | 1     |      | 0.050601        | 3.675340       |
| 6000   |       |      |                 |                |
| 8000   | 1     |      | 0.050806        | 3.684291       |
| 10000  | 1     |      | 0.051012        | 3.693329       |
| 12000  | 1     |      | 0.051221        | 3.702456       |
| 14000  | 1     |      | 0.051432        | 3.711672       |
| 16000  | 1     |      | 0.051645        | 3.720980       |
| 18000  | 1     |      | 0.051860        | 3.730379       |
| 20000  | 1     |      | 0.052077        | 3.739873       |
| 22000  | 1     |      | 0.052297        | 3.749462       |
| 24000  | 1     |      | 0.052519        | 3.759147       |
| 26000  | 1     |      | 0.052743        | 3.768931       |
| 28000  | 1     |      | 0.052970        | 3.778815       |
| 30000  | 1     |      | 0.053199        | 3.788799       |
| 32000  | 1     |      | 0.053430        | 3.798887       |
| 34000  | 1     |      | 0.053664        | 3.809080       |
| 36000  | 1     |      | 0.053901        | 3.819379       |
| 38000  | 1     |      | 0.054140        | 3.829786       |
| 40000  | 1     |      | 0.054382        | 3.840303       |

| 42000  | 1 | 0.054626 | 3.850932 |
|--------|---|----------|----------|
| 44000  | 1 | 0.054873 | 3.861674 |
| 46000  | 1 | 0.055123 | 3.872532 |
| 48000  | 1 | 0.055375 | 3.883508 |
| 50000  | 1 | 0.055630 | 3.894603 |
| 52000  | 1 | 0.055888 | 3.905820 |
| 54000  | 1 | 0.056149 | 3.917160 |
| 56000  | 1 | 0.056413 | 3.928627 |
| 58000  | 1 | 0.056680 | 3.940222 |
| 60000  | 1 | 0.056950 | 3.951948 |
| 62000  | 1 | 0.057223 | 3.963806 |
| 64000  | 1 | 0.057500 | 3.975800 |
| 66000  | 1 | 0.057779 | 3.987932 |
| 68000  | 1 | 0.058062 | 4.000204 |
| 70000  | 1 | 0.058348 | 4.012620 |
| 72000  | 1 | 0.058638 | 4.025182 |
| 74000  | 1 | 0.058931 | 4.037892 |
| 76000  | 1 | 0.059227 | 4.050754 |
| 78000  | 1 | 0.059527 | 4.063771 |
| 80000  | 1 | 0.059831 | 4.076945 |
| 82000  | 1 | 0.060138 | 4.090281 |
| 84000  | 1 | 0.060449 | 4.103780 |
| 86000  | 1 | 0.060764 | 4.117447 |
| 88000  | 1 | 0.061083 | 4.131285 |
| 90000  | 1 | 0.061406 | 4.145298 |
| 92000  | 1 | 0.061733 | 4.159488 |
| 94000  | 1 | 0.062064 | 4.173861 |
| 96000  | 1 | 0.062399 | 4.188420 |
| 98000  | 1 | 0.062739 | 4.203169 |
| 100000 | 1 | 0.063083 | 4.218112 |
|        |   |          |          |

MODEL: TC02

### ANALYSIS RESULTS (contd)

| Schedl | Block       | Final Flaw Size | K max    |
|--------|-------------|-----------------|----------|
|        |             | Step c          | c-tip    |
| 102000 | 1           | 0.063431        | 4.233253 |
| 104000 | 1           | 0.063784        | 4.248598 |
| 106000 | 1           | 0.064142        | 4.264150 |
| 108000 | 1           | 0.064504        | 4.279914 |
| 110000 | 1           | 0.064872        | 4.295896 |
| 112000 | 1<br>1<br>1 | 0.065244        | 4.312100 |
| 114000 | 1           | 0.065621        | 4.328532 |
| 116000 |             | 0.066004        | 4.345197 |
| 118000 | 1           | 0.066392        | 4.362100 |
| 120000 | . 1         | 0.066785        | 4.379249 |
| 122000 | 1           | 0.067184        | 4.396648 |
| 124000 | 1           | 0.067589        | 4.414304 |
| 126000 | 1           | 0.067999        | 4.432224 |
| 128000 | 1           | 0.068415        | 4.450414 |
| 130000 | 1           | 0.068838        | 4.468881 |
| 132000 | 1           | 0.069266        | 4.487634 |
| 134000 | 1           | 0.069701        | 4.506679 |
| 136000 | 1           | 0.070143        | 4.526024 |
| 138000 | 1           | 0.070591        | 4.545678 |
| 140000 | 1           | 0.071045        | 4.565649 |
| 142000 | 1           | 0.071507        | 4.585946 |
| 144000 | 1           | 0.071976        | 4.606578 |
| 146000 | 1           | 0.072453        | 4.627555 |
| 148000 | 1           | 0.072937        | 4.648888 |
| 150000 | 1           | 0.073429        | 4.670586 |
| 152000 | 1           | 0.073928        | 4.692661 |
| 154000 | 1           | 0.074436        | 4.715124 |
| 156000 | 1           | 0.074952        | 4.737988 |
| 158000 | 1           | 0.075477        | 4.761264 |
| 160000 | 1           | 0.076011        | 4.784966 |
|        |             |                 |          |

| 162000 | 1 | 0.076554 | 4.809108 |
|--------|---|----------|----------|
| 164000 | 1 | 0.077106 | 4.833705 |
| 166000 | 1 | 0.077668 | 4.858770 |
| 168000 | 1 | 0.078240 | 4.884321 |
| 170000 | 1 | 0.078822 | 4.910374 |
| 172000 | 1 | 0.079415 | 4.936946 |
| 174000 | 1 | 0.080018 | 4.964055 |
| 176000 | 1 | 0.080633 | 4.991722 |
| 178000 | 1 | 0.081259 | 5.019967 |
| 180000 | 1 | 0.081897 | 5.048811 |
| 182000 | 1 | 0.082548 | 5.078277 |
| 184000 | 1 | 0.083211 | 5.108388 |
| 186000 | 1 | 0.083887 | 5.139171 |
| 188000 | 1 | 0.084577 | 5.170652 |
| 190000 | 1 | 0.085282 | 5.202859 |
| 192000 | 1 | 0.086000 | 5.235823 |
| 194000 | 1 | 0.086734 | 5.269575 |
| 196000 | 1 | 0.087484 | 5.304150 |
| 198000 | 1 | 0.088250 | 5.339583 |
| 200000 | 1 | 0.089033 | 5.375913 |

MODEL: TC02

ANALYSIS RESULTS (contd)

| Schedl                                         | Block       | Final Flaw Size                                          | K max                |
|------------------------------------------------|-------------|----------------------------------------------------------|----------------------|
|                                                |             | Step c                                                   | c-tip                |
| 202000                                         | 1           | 0.089833                                                 | 5.413181             |
| 204000                                         | 1           | 0.090652                                                 | 5.451430             |
| 206000                                         | 1           | 0.091490                                                 | 5.490707             |
| 208000                                         | 1           | 0.092347                                                 | 5.531063             |
| 210000                                         | 1           | 0.093226                                                 | 5.572551             |
| 212000                                         | 1           | 0.094126                                                 | 5.615227             |
| 214000                                         | 1           | 0.095048                                                 | 5.659155             |
| 216000                                         | 1           | 0.095994                                                 | 5.704401             |
| 218000                                         | 1           | 0.096965                                                 | 5.751036             |
| 220000                                         | 1           | 0.097961                                                 | 5.799138             |
| 222000                                         | 1           | 0.098984                                                 | 5.848791             |
| 224000                                         | 1           | 0.100036                                                 | 5.900086             |
| 226000                                         | 1           | 0.101118                                                 | 5.953122             |
| 228000                                         | 1           | 0.102231                                                 | 6.008007             |
| 230000                                         | 1           | 0.103378                                                 | 6.064859             |
| 232000                                         | 1           | 0.104559                                                 | 6.123806             |
| 234000                                         | 1           | 0.105778                                                 | 6.184989             |
| 236000                                         | 1           | 0.107035                                                 | 6.248564             |
| 238000                                         | 1           | 0.108334                                                 | 6.314702             |
| 240000                                         | 1           | 0.109677                                                 | 6.383594             |
| 242000                                         | 1           | 0.111068                                                 | 6.455448             |
| 244000                                         | 1           | 0.112508                                                 | 6.530501             |
| 246000                                         | 1           | 0.114002                                                 | 6.609013             |
| 248000                                         | 1           | 0.115553                                                 | 6.691279             |
| 250000                                         | 1           | 0.117166                                                 | 6.777630             |
| 252000                                         | 1           | 0.118846                                                 | 6.868442             |
| 254000                                         | 1           | 0.120597                                                 | 6.964140             |
| 256000                                         | 1           | 0.122426                                                 | 7.065213             |
| 258000                                         | 1           | 0.124340                                                 | 7.172221             |
| 260000                                         | 1           | 0.126346                                                 | 7.285814             |
| 262000                                         | 1           | 0.128453                                                 | 7.406747             |
| 264000                                         | 1           | 0.130672                                                 | 7.535909             |
| 266000                                         | 1           | 0.133014                                                 | 7.674349             |
| 268000                                         | 1           | 0.135494                                                 | 7.823321             |
| 270000                                         | 1           | 0.138128                                                 | 7.984339             |
| 272000                                         | 1           | 0.140935                                                 | 8.159249             |
| 274000                                         | 1           | 0.143939                                                 | 8.350334             |
| 276000                                         |             |                                                          | 8.560456             |
| 278000                                         | 1           | 0.150662                                                 | 8.793270             |
| 280000                                         | 1           | 0.154463                                                 | 9.053530             |
| 270000<br>272000<br>274000<br>276000<br>278000 | 1<br>1<br>1 | 0.138128<br>0.140935<br>0.143939<br>0.147169<br>0.150662 | 7.<br>8.<br>8.<br>8. |

| 282000 | 1 | 0.158630 | 9.347568  |
|--------|---|----------|-----------|
| 284000 | 1 | 0.163242 | 9.684058  |
| 286000 | 1 | 0.168403 | 10.075285 |
| 288000 | 1 | 0.174264 | 10.539410 |
| 290000 | 1 | 0.181048 | 11.104772 |
| 292000 | 1 | 0.189104 | 11.818919 |
| 294000 | 1 | 0.199042 | 12.770219 |
| 296000 | 1 | 0.212072 | 14.150698 |
| 298000 | 1 | 0.231250 | 16.510851 |

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or (b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. 1 Step description: of Block No. 1 of Schedule No. 299031 Crack Size c = 0.246566

#### FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. 1 Step description: of Block No. 1 of Schedule No. 299771 Crack Size c = 0.263425

## C-24 PSE F1 T-Stringer, Top Centerline Near FS 330

```
FATIGUE CRACK GROWTH ANALYSIS
            DATE: 09/16/98 TIME: 12:32:21
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
_____
PSE F-1, 2024 SKIN @ BL 0.0
GEOMETRY
MODEL: TC05-Through crack from hole in row of holes.
Plate Thickness, t = 0.0400
Hole Dia., D = 0.1300
Hole-to-Hole Dist., H =
                          0.7500
Dia./Edge-Dist. Ratio, D/B = 0.5000
(D/B = 0 means B is very large)
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
_____
MATL 1: 2024-T3
      Clad Plt & Sht; L-T; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1 : 66.0: 53.0: 46.0: 33.0: 1.00: 1.00: 0.040: 65.9:
:Matl:----- Crack Growth Eqn Constants -----:
: No.: C : n : p : q : DKo : Rcl :Alpha:Smax/:
           :
                : : : : : : :SIGo :
:---:
: 1:0.829E-08:3.284:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
 PSE F-1, 2024 SKIN @ BL 0.0
MODEL: TC05
FATIGUE SCHEDULE BLOCK INPUT TABLE
PRESSURE CYCLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
                        0.00000
Scale Factor for Stress S0:
                        33.300
Scale Factor for Stress S3:
Scale Factor for Stress S4:
                          3.5000
```

### C-24 PSE F1 T-Stringer, Top Centerline Near FS 330 (Continued)

Stress Scaling Factors for Block Case: 2

```
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3: 33.300
Scale Factor for Stress S4:
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                        0.00000
Scale Factor for Stress S3:
                        33.300
Scale Factor for Stress S4:
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3:
                       33.300
Scale Factor for Stress S4:
                         1.3000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                         Block Case No.
From - To
   1
                                1
   6
            6
                                2
   7
            9
                                3
  10
           10
BLOCK CASE NO. 1
S : M: NUMBER
                        S0
                                        s_3
T : A:
        OF
E : T: FATIGUE
P : L: CYCLES :
                    (t1) : (t2)
                                     (t1): (t2)
____; __; _____; ____; ____; _____; ____; ____; _____; ____; ____; ____; ____; ____;
 1: 1: 1.00 :
                   0.00: 1.00:
                                    0.00:
S : M: NUMBER :
                              :
        OF
T : A:
E : T: FATIGUE
P : L: CYCLES
                     (t1): (t2):
                                     (t1): (t2)
0.00:
  1: 1: 1.00 :
                                      0.00:
                            1.00:
                                             0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                       S0
                                        S3
T : A:
        OF
E : T: FATIGUE
P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
9.57: -0.30: 0.30: -0.30: 0.30:
1.14: -0.50: 0.50: -0.50: 0.50:
  1: 1:
  2: 1:
  3: 1:
                   -0.60: 0.60: -0.60:
-0.80: 0.80: -0.80:
            0.57 :
                                             0.80:
            0.11 :
  4: 1:
  5: 1:
            0.02 :
                   -1.00: 1.00: -1.00:
                    -1.20:
            0.01:
  6: 1:
                             1.20: -1.20:
                                              1.20:
  7: 1:
             0.00 :
                    ~1.40:
                              1.40:
                                     -1.40:
                                              1.40:
                   -1.60:
  8: 1:
             0.00:
                              1.60:
                                     -1.60:
                                              1.60:
             0.00:
                   -1.80:
  9:1:
                             1.80:
                                     -1.80:
                                              1.80:
          0.00 :
 10: 1:
                     -2.00:
                              2.00:
                                     -2.00:
                                              2.00:
S : M: NUMBER
                     S4
                                :
T : A:
         OF
E : T: FATIGUE
P : L: CYCLES
                    (t1): (t2):
                                    (t1): (t2):
1: 1: 9.57 : 2.43: 3.03:
                                    0.00: 0.00:
```

## C-24 PSE F1 T-Stringer, Top Centerline Near FS 330 (Continued)

| 2: 1:  | 1.14 : | 2.23: | 3.23: | 0.00: | 0.00: |
|--------|--------|-------|-------|-------|-------|
| 3: 1:  | 0.57 : | 2.13: | 3.33: | 0.00: | 0.00: |
| 4: 1:  | 0.11 : | 1.93: | 3.53: | 0.00: | 0.00: |
| 5: 1:  | 0.02 : | 1.73: | 3.73: | 0.00: | 0.00: |
| 6: 1:  | 0.01 : | 1.53: | 3.93: | 0.00: | 0.00: |
| 7: 1:  | 0.00:  | 1.33: | 4.13: | 0.00: | 0.00: |
| 8: 1:  | 0.00 : | 1.13: | 4.33: | 0.00: | 0.00: |
| 9: 1:  | 0.00 : | 0.93: | 4.53: | 0.00: | 0.00: |
| 10. 1. | 0.00 : | 0.73: | 4.73: | 0.00: | 0.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

| s:  | M:       | E NO. 3<br>NUMBER | :          | s0     | :      | s3     | :      |
|-----|----------|-------------------|------------|--------|--------|--------|--------|
|     | A:       | OF                | :          |        | :      |        | :      |
|     |          | FATIGUE           | :          |        | :      |        | :      |
|     | L:<br>:- | CYCLES            | :          | (t1):  | (t2) : | (t1):  | (t2) : |
| -   | 1:       | 19.14             | :          | -0.30: | 0.30:  | -0.30: | 0.30:  |
| 2:  | 1:       | 2.29              | :          | -0.50: | 0.50:  | -0.50: | 0.50:  |
| 3:  | 1:       | 1.14              | :          | -0.60: | 0.60:  | -0.60: | 0.60:  |
| 4:  | 1:       | 0.23              | :          | -0.80: | 0.80:  | -0.80: | 0.80:  |
| 5:  | 1:       | 0.04              | :          | -1.00: | 1.00:  | -1.00: | 1.00:  |
| 6:  | 1:       | 0.01              | :          | -1.20: | 1.20:  | -1.20: | 1.20:  |
| 7:  | 1:       | 0.00              | :          | -1.40: | 1.40:  | -1.40: |        |
| 8:  | 1:       | 0.00              | :          | -1.60: | 1.60:  | -1.60: | 1.60:  |
| 9:  | 1:       | 0.00              | :          | -1.80: | 1.80:  | -1.80: | 1.80:  |
| 10: | 1:       | 0.00              | :          | -2.00: | 2.00:  | -2.00: | 2.00:  |
| s:  | М:       | NUMBER            | :          | S4     | :      | S      | :      |
| T:  | A:       | OF                | :          |        | :      |        | :      |
| E : | T:       | FATIGUE           | :          |        | :      |        | :      |
| P : |          | CYCLES            | :          | (t1) : | (t2) : | (t1):  | (t2) : |
| -   | 1:       | 19.14             | - : -<br>: | 2.43:  | 3.03:  | 0.00:  | 0.00:  |
|     | 1:       |                   |            |        | 3.23:  |        |        |
| 3:  |          | 1.14              | :          | 2.13:  | 3.33:  | 0.00:  | 0.00:  |
| 4:  |          | 0.23              | :          | 1.93:  | 3.53:  | 0.00:  | 0.00:  |
| 5:  | 1:       | 0.04              | :          | 1.73:  | 3.73:  | 0.00:  | 0.00:  |
| 6:  | 1:       | 0.01              | :          | 1.53:  | 3.93:  | 0.00:  | 0.00:  |
| 7:  | 1:       | 0.00              | :          | 1.33:  | 4.13:  | 0.00:  | 0.00:  |
| 8:  | 1:       | 0.00              | :          | 1.13:  | 4.33:  | 0.00:  | 0.00:  |
| 9:  | 1:       | 0.00              | :          | 0.93:  | 4.53:  | 0.00:  | 0.00:  |
| 10: | 1:       | 0.00              | :          | 0.73:  | 4.73:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT\ SET}$ 

| BLOCK C | CASE NO. 4 |   |        |        |            |        |
|---------|------------|---|--------|--------|------------|--------|
| s:M     | : NUMBER   | : | so     | :      | <b>S</b> 3 | :      |
| T : A   | A: OF      | : |        | :      |            | :      |
| E : 1   | : FATIGUE  | : |        | :      |            | :      |
| P : I   | : CYCLES   | : | (t1) : | (t2) : | (t1) :     | (t2) : |
|         | :          |   |        |        |            |        |
| 1: 1    | L: 38.29   | : | -0.30: | 0.30:  | -0.30:     | 0.30:  |
| 2: 1    | L: 4.57    | : | -0.50: | 0.50:  | -0.50:     | 0.50:  |
| 3: 1    | L: 2.29    | : | -0.60: | 0.60:  | -0.60:     | 0.60:  |
| 4: 3    | L: 0.46    | : | -0.80: | 0.80:  | -0.80:     | 0.80:  |
| 5: 1    | L: 0.08    | : | -1.00: | 1.00:  | -1.00:     | 1.00:  |
| 6: 1    | L: 0.02    | : | -1.20: | 1.20:  | -1.20:     | 1.20:  |
| 7: 1    | l: 0.01    | : | -1.40: | 1.40:  | -1.40:     | 1.40:  |
| 8: 1    | L: 0.00    | : | -1.60: | 1.60:  | -1.60:     | 1.60:  |
| 9: 3    | 1: 0.00    | : | -1.80: | 1.80:  | -1.80:     | 1.80:  |
| 10: 3   | 1: 0.00    | : | -2.00: | 2.00:  | -2.00:     | 2.00:  |
| S : 1   | M: NUMBER  | : | S4     | :      | S          | :      |
| T : 2   | A: OF      | : |        | :      |            | :      |
| E : 5   | r: FATIGUE | : |        | :      |            | :      |

| P  | :            | L: | CYCLES | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|----|--------------|----|--------|-----|--------|--------|--------|--------|
| 1  | - : ·<br>  : | 1: | 38.29  | -:- | 2.43:  | 3.03:  | 0.00:  | 0.00:  |
|    | -            | 1: | 4.57   |     | 2.23:  | 3.23:  | 0.00:  | 0.00:  |
| 3  | 3:           | 1: | 2.29   | :   | 2.13:  | 3.33:  | 0.00:  | 0.00:  |
| 4  | l :          | 1: | 0.46   | :   | 1.93:  | 3.53:  | 0.00:  | 0.00:  |
| 5  | 5:           | 1: | 0.08   | :   | 1.73:  | 3.73:  | 0.00:  | 0.00:  |
| 6  | 5:           | 1: | 0.02   | :   | 1.53:  | 3.93:  | 0.00:  | 0.00:  |
| 7  | <b>'</b> :   | 1: | 0.01   | :   | 1.33:  | 4.13:  | 0.00:  | 0.00:  |
| 8  | 3:           | 1: | 0.00   | :   | 1.13:  | 4.33:  | 0.00:  | 0.00:  |
| 9  | :            | 1: | 0.00   | :   | 0.93:  | 4.53:  | 0.00:  | 0.00:  |
| 10 | ):           | 1: | 0.00   | :   | 0.73:  | 4.73:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE F-1, 2024 SKIN @ BL 0.0

MODEL: TC05

### FATIGUE SCHEDULE BLOCK STRESS TABLE

\_\_\_\_\_\_

| PRE          | SSU       | TRE | CYCLE   |    |        |        |        |        |
|--------------|-----------|-----|---------|----|--------|--------|--------|--------|
| S            | :         | M:  | NUMBER  | :  | so     | :      | s3     | :      |
| Т            | :         | A:  | OF      | :  |        | :      |        | :      |
| E            | :         | T:  | FATIGUE | :  | (ksi)  | ) :    | (ksi   | ) :    |
| P            | :         | L:  | CYCLES  | :  | (t1) : | (t2) : | (t1):  | (t2) : |
|              | -         | -:- |         | -: | :      | :-     | :-     | :      |
|              | 1:        | 1:  | 1.00    | :  | 0.00:  | 0.00:  | 0.00:  | 33.30: |
| S            | :         | М:  | NUMBER  | :  | S4     | :      | s      | :      |
| $\mathbf{T}$ | :         | A:  | OF      | :  |        | :      |        | :      |
| E            | :         | T:  | FATIGUE | :  | (ksi)  | :      | (ksi   | ) :    |
| P            | :         | L:  | CYCLES  | :  | (t1) : | (t2) : | (t1) : | (t2) : |
|              | -:-<br>1: | 1:  | 1.00    | :  | 0.00:  | 3.50:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

PSE F-1, 2024 SKIN @ BL 0.0

MODEL: TC05

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

PRESSURE CYCLE S : M: NUMBER S3 E:T: FATIGUE: (ksi) : (ksi) P : L: CYCLES : (t1) : (t2) : (t1) : (t2) 9.57 : 1: 1: 0.00: 0.00: -9.99: 9.99: 1.14 : 2: 1: 0.00: -16.65: 0.00: 16.65: 0.57 : 3: 1: 0.00: 0.00: -19.98: 19.98: 0.00: -26.64: 0.00: -33.30: 0.00: 0.00: 4: 1: 0.11: 26.64: 5: 1: 0.02: 33.30: 6: 1: 0.01: 0.00: -39.96: 0.00: 39.96: 7: 1: 0.00: 0.00: 0.00: -46.62: 46.62: 0.00: -53.28: 0.00: -59.94: 8: 1: 0.00 : 0.00: 53.28: 0.00: 9: 1: 0.00: 59.94: 10: 1: 0.00: 0.00: 0.00: -66.60: 66.60: S : M: NUMBER : **S4** : S T : A: OF : E : T: FATIGUE : (ksi) (ksi) P : L: CYCLES : (t1) : (t2) : (t1): (t2): 9.57 : 1: 1: 3.16: 3.94: 0.00: 0.00: 2: 1: 1.14: 2.90: 4.20: 0.00: 0.00: 0.57 : 3: 1: 2.77: 4.33: 0.00: 0.00: 0.00: 4: 1: 0.11: 2.51: 4.59: 0.00: 5: 1: 0.02: 2.25: 4.85: 0.00: 0.00:

| 6: 1:  | 0.01 : | 1.99: | 5.11: | 0.00: | 0.00: |
|--------|--------|-------|-------|-------|-------|
| 7: 1:  | 0.00 : | 1.73: | 5.37: | 0.00: | 0.00: |
| 8: 1:  | 0.00 : | 1.47: | 5.63: | 0.00: | 0.00: |
| 9: 1:  | 0.00 : | 1.21: | 5.89: | 0.00: | 0.00: |
| 10: 1: | 0.00 : | 0.95: | 6.15: | 0.00: | 0.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

PSE F-1, 2024 SKIN @ BL 0.0

MODEL: TC05

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

|     |         |     |             |     |             | -      |              |        |
|-----|---------|-----|-------------|-----|-------------|--------|--------------|--------|
| PRE | SS      | JRE | CYCLE       |     |             |        |              |        |
| S   |         | М:  | NUMBER      | :   | S0          | :      | s3           | :      |
|     | :       |     | OF          |     |             |        |              |        |
| Ē   | -       | Т:  |             | :   | (ksi)       | :      | (ksi)        |        |
| _   |         |     | CYCLES      | :   | (t1):       | (t2) : | (t1):        |        |
|     | · - • · |     | CICHES      | • - | (01)        |        |              | (02)   |
|     | 1:      | 1:  | 19.14       | :   | 0.00:       | 0.00:  | -9.99:       | 9.99:  |
|     |         | 1:  | 2.29        |     |             |        |              | 16.65: |
|     |         | 1:  | 1.14        |     |             | 0.00:  |              |        |
|     |         | 1:  | 0.23        |     |             | 0.00:  |              | 26.64: |
|     | 5:      | 1:  | 0.04        |     |             | 0.00:  |              |        |
|     | 6:      | 1:  | 0.01        |     | 0.00:       | 0.00:  |              |        |
|     | 7:      | 1:  | 0.00        |     |             | 0.00:  |              |        |
|     |         | 1:  |             |     |             | 0.00:  |              |        |
|     |         | 1:  | 0.00        |     | 0.00:       | 0.00:  |              |        |
|     |         | 1:  | 0.00        |     | 0.00:       | 0.00:  |              |        |
|     |         |     |             |     | 0.00:<br>S4 | 0.00:  | -66.66:<br>S | 00.00: |
| _   | -       | М:  | NUMBER      | :   | 54          | :      | 5            | •      |
| T   |         | A:  | OF          | :   | (1, - 3.)   | :      | (1           |        |
| E   | -       | Т:  |             | :   | (ksi)       |        | (ksi)        |        |
| Р   | :       | L:  | CYCLES      | :   | (t1) :      | (t2) : | (t1) :       | (t2) : |
|     | :       | :   | <del></del> | :-  | :           | :      | <b></b> :    | :      |
|     |         | 1:  | 19.14       |     | 3.16:       | 3.94:  |              | 0.00:  |
|     |         | 1:  | 2.29        |     |             | 4.20:  |              |        |
|     | 3:      |     | 1.14        |     | 2.77:       | 4.33:  | 0.00:        | 0.00:  |
|     | 4:      | 1:  | 0.23        |     | 2.51:       | 4.59:  |              | 0.00:  |
|     |         | 1:  | 0.04        |     |             | 4.85:  |              |        |
|     | 6:      |     | 0.01        |     | 1.99:       | 5.11:  |              | 0.00:  |
|     | 7:      | 1:  | 0.00        |     |             | 5.37:  | 0.00:        | 0.00:  |
|     | 8:      |     |             |     |             | 5.63:  |              | 0.00:  |
|     | 9:      |     | 0.00        |     | 1.21:       | 5.89:  | 0.00:        | 0.00:  |
| :   | 10:     | 1:  | 0.00        | :   | 0.95:       | 6.15:  | 0.00:        | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

PSE F-1, 2024 SKIN @ BL 0.0

MODEL: TC05

### FATIGUE SCHEDULE BLOCK STRESS TABLE

|     |      |     | - <b></b> |     |        |        |          |        |
|-----|------|-----|-----------|-----|--------|--------|----------|--------|
| PRI | ESSI | JRE | CYCLE     |     |        |        |          |        |
| S   | :    | M:  | NUMBER    | :   | S0     | :      | s3       | :      |
| T   | :    | A:  | OF        | :   |        | :      |          | :      |
| E   | :    | T:  | FATIGUE   | :   | (ksi)  | :      | (ksi)    | :      |
| P   | :    | L:  | CYCLES    | :   | (t1) : | (t2) : | (t1) :   | (t2) : |
|     | :    | :   |           | -:- | :      | :-     | <b>:</b> | :      |
|     | 1:   | 1:  | 38.29     | :   | 0.00:  | 0.00:  | -9.99:   | 9.99:  |
|     | 2:   | 1:  | 4.57      | :   | 0.00:  | 0.00:  | -16.65:  | 16.65: |
|     | 3:   | 1:  | 2.29      | :   | 0.00:  | 0.00:  | -19.98:  | 19.98: |
|     | 4:   | 1:  | 0.46      | :   | 0.00:  | 0.00:  | -26.64:  | 26.64: |
|     | 5:   | 1:  | 0.08      | :   | 0.00:  | 0.00:  | -33.30:  | 33.30: |
|     | 6:   | 1:  | 0.02      | :   | 0.00:  | 0.00:  | -39.96:  | 39.96: |
|     | 7:   | 1:  | 0.01      | :   | 0.00:  | 0.00:  | -46.62:  | 46.62: |
|     | 8:   | 1:  | 0.00      | :   | 0.00:  | 0.00:  | -53.28:  | 53.28: |
|     | 9:   | 1:  | 0.00      | :   | 0.00:  | 0.00:  | -59.94:  | 59.94: |

| 10: 1 | : 0.00    | : | 0.00:  | 0.00:  | -66.60: | 66.60: |
|-------|-----------|---|--------|--------|---------|--------|
| S:M   | : NUMBER  | : | S4     | :      | s       | :      |
| т : А | .: OF     | : |        | :      |         | :      |
| E : T | : FATIGUE | : | (ksi)  | :      | (ksi)   | :      |
| P : L | : CYCLES  | : | (t1) : | (t2) : | (t1) :  | (t2) : |
| :     |           |   | :      | :      | ·:      | :      |
| 1: 1  | : 38.29   | : | 3.16:  | 3.94:  | 0.00:   | 0.00:  |
| 2: 1  | : 4.57    | : | 2.90:  | 4.20:  | 0.00:   | 0.00:  |
| 3: 1  | : 2.29    | : | 2.77:  | 4.33:  | 0.00:   | 0.00:  |
| 4: 1  | : 0.46    | : | 2.51:  | 4.59:  | 0.00:   | 0.00:  |
| 5: 1  | : 0.08    | : | 2.25:  | 4.85:  | 0.00:   | 0.00:  |
| 6: 1  | : 0.02    | : | 1.99:  | 5.11:  | 0.00:   | 0.00:  |
| 7: 1  | : 0.01    | : | 1.73:  | 5.37:  | 0.00:   | 0.00:  |
| 8: 1  | : 0.00    | : | 1.47:  | 5.63:  | 0.00:   | 0.00:  |
| 9: 1  | : 0.00    | : | 1.21:  | 5.89:  | 0.00:   | 0.00:  |
| 10: 1 | : 0.00    | : | 0.95:  | 6.15:  | 0.00:   | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE F-1, 2024 SKIN @ BL 0.0

MODEL: TC05

#### ANALYSIS RESULTS:

| Schedl | Block | Final Flaw Size | K max    |
|--------|-------|-----------------|----------|
|        |       | Step c          | c-tip    |
| 2000   | 6     | 0.052141        | 9.469770 |
| 4000   | 6     | 0.054229        | 9.417244 |
| 6000   | 6     | 0.056271        | 9.365817 |
| 8000   | 6     | 0.058267        | 9.316102 |
| 10000  | 6     | 0.060221        | 9.268527 |
| 12000  | 6     | 0.062134        | 9.223380 |
| 14000  | 6     | 0.064009        | 9.180830 |
| 16000  | 6     | 0.065850        | 9.140933 |
| 18000  | 6     | 0.067658        | 9.103676 |
| 20000  | 6     | 0.069436        | 9.069002 |
| 22000  | 6     | 0.071187        | 9.036820 |
| 24000  | 6     | 0.072913        | 9.007014 |
| 26000  | 6     | 0.074615        | 8.979447 |
| 28000  | 6     | 0.076297        | 8.953968 |
| 30000  | 6     | 0.077959        | 8.930415 |
| 32000  | 6     | 0.079603        | 8.908616 |
| 34000  | 6     | 0.081231        | 8.888389 |
| 36000  | 6     | 0.082843        | 8.869549 |
| 38000  | 6     | 0.084441        | 8.851902 |
| 40000  | 6     | 0.086027        | 8.835250 |
| 42000  | 6     | 0.087599        | 8.819388 |
| 44000  | 6     | 0.089160        | 8.804111 |
| 46000  | 6     | 0.090710        | 8.789204 |
| 48000  | 6     | 0.092248        | 8.774452 |
| 50000  | 6     | 0.093776        | 8.759644 |
| 52000  | 6     | 0.095292        | 8.744696 |
| 54000  | 6     | 0.096796        | 8.729649 |
| 56000  | 6     | 0.098290        | 8.714543 |
| 58000  | 6     | 0.099773        | 8.699416 |
| 60000  | 6     | 0.101244        | 8.684297 |
| 62000  | 6     | 0.102704        | 8.669215 |
| 64000  | 6     | 0.104153        | 8.654193 |
| 66000  | 6     | 0.105591        | 8.639250 |
| 68000  | 6     | 0.107019        | 8.624404 |
| 70000  | 6     | 0.108436        | 8.609668 |
|        |       |                 |          |

FINAL RESULTS:

Critical Crack Size has NOT been reached.

at Cycle No. 0.00 of Load Step No.

```
Step description:
of Block No. 10 of Schedule No. 70000
Crack Size c = 0.108436
              FATIGUE CRACK GROWTH ANALYSIS
              ______
             DATE: 09/16/98 TIME: 12:38:19
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
 _____
PSE F-1, ORIG ALUM STRINGER @ BL 0.0
GEOMETRY
_____
MODEL: TC05-Through crack from hole in row of holes.
Plate Thickness, t = 0.0500
Hole Dia., D = 0.1300

Hole-to-Hole Dist., H = 0.7500

Dia./Edge-Dist. Ratio, D/B = 0.5000
(D/B = 0 \text{ means B is very large})
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 2014-T651
      Plt & Sht; L-T
Material Properties:
:Matl: UTS : YS : Kle : Klc : Ak : Bk : Thk : Kc : KIscc:
: No.: : : : : : :
: 1: 71.0: 64.0: 28.0: 22.0: 1.00: 1.00: 0.050: 43.4:
:Matl:----- Crack Growth Eqn Constants ----:
:---:---:---:---:
: 1 :0.150E-07:2.800:0.50:1.00: 2.70: 0.70: 1.50: 0.30:
 PSE F-1, ORIG ALUM STRINGER @ BL 0.0
MODEL: TC05
FATIGUE SCHEDULE BLOCK INPUT TABLE
 ______
PRESSURE CYCLE
 [Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
                         0.00000
Scale Factor for Stress S0:
                         26.700
3.5000
Scale Factor for Stress S3:
Scale Factor for Stress S4:
Stress Scaling Factors for Block Case: 2
```

Scale Factor for Stress S0: 0.00000

```
Scale Factor for Stress S3:
                         26.700
Scale Factor for Stress S4:
                         1.3000
Stress Scaling Factors for Block Case: 3
Scale Factor for Stress S0:
                        0.00000
Scale Factor for Stress S3:
                         26.700
Scale Factor for Stress S4:
                         1.3000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                        0.00000
Scale Factor for Stress S3:
Scale Factor for Stress S4:
                         1.3000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                        Block Case No.
From - To
                                1
            6
   6
                                2
   7
            9
                                3
  10
           10
                                4
BLOCK CASE NO. 1
S : M: NUMBER
                        S0
                                        S3
T : A:
        OF
E : T: FATIGUE
P : L: CYCLES
                    (t1) : (t2)
                                   (t1): (t2)
                               :
1: 1: 1.00 :
                   0.00:
                             1.00:
                                     0.00:
S : M: NUMBER :
                       S4
                                       S
                               :
T : A:
       OF
E : T: FATIGUE
P : L: CYCLES
                     (t1): (t2)
                                     (t1): (t2)
----:--:----
           1.00:
  1: 1:
                    0.00:
                             1.00:
                                           0.00:
                                     0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                      S0
T : A:
        OF
               :
E : T: FATIGUE
P : L: CYCLES : (t1) : (t2) : (t1) : (t2)
9.57: -0.30: 0.30:
  1: 1:
                                    -0.30:
                                             0.30:
            1.14 :
                    -0.50:
  2: 1:
                             0.50:
                                    -0.50:
                                             0.50:
                    -0.60:
  3: 1:
           0.57 :
                           0.60:
                                   -0.60:
                                            0.60:
                    -0.80:
  4: 1:
            0.11 :
                           0.80:
                                            0.80:
                                    -0.80:
  5: 1:
            0.02 :
                    -1.00:
                             1.00:
                                    -1.00:
                                             1.00:
            0.01:
  6: 1:
                    -1.20:
                            1.20:
                                    -1.20:
                                             1.20:
  7: 1:
          0.00:
                    -1.40:
                            1.40:
                                    -1.40:
  8: 1:
            0.00:
                    -1.60:
                             1.60:
                                    -1.60:
                                             1.60:
          0.00 :
0.00 :
  9: 1:
                    -1.80:
                             1.80:
                                    -1.80:
                                             1.80:
 10: 1:
                    -2.00:
                             2.00:
                                    -2.00:
                                             2.00:
                      S4
S : M: NUMBER
                                       S
                               :
Ţ
  : A:
        OF
E : T: FATIGUE
P : L: CYCLES :
                   (t1): (t2): (t1): (t2)
1: 1:
            9.57 :
                     2.43: 3.03:
                                             0.00:
                                    0.00:
  2: 1:
            1.14 :
                     2.23:
                             3.23:
                                     0.00:
                                             0.00:
                           3.33:
            0.57 :
0.11 :
                     2.13:
  3: 1:
                                     0.00:
                                            0.00:
  4: 1:
                     1.93:
                             3.53:
                                     0.00:
                                             0.00:
            0.02 : 1.73:
  5: 1:
                            3.73:
                                     0.00:
                                             0.00:
```

| 6: 1:  | 0.01 : | 1.53: | 3.93: | 0.00: | 0.00: |
|--------|--------|-------|-------|-------|-------|
| 7: 1:  | 0.00 : | 1.33: | 4.13: | 0.00: | 0.00: |
| 8: 1:  | 0.00 : | 1.13: | 4.33: | 0.00: | 0.00: |
| 9: 1:  | 0.00 : | 0.93: | 4.53: | 0.00: | 0.00: |
| 10. 1. | 0.00   | 0.73: | 4.73: | 0.00: | 0.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

| BLO | CK          | CAS      | E NO. 3 |                   |                |        |        |        |
|-----|-------------|----------|---------|-------------------|----------------|--------|--------|--------|
| S   | :           | M:       | NUMBER  | :                 | so             | :      | S3     | :      |
| T   | :           | A:       | OF      | :                 |                | :      |        | :      |
| E   | :           | T:       | FATIGUE | :                 |                | :      |        | :      |
| P   | :           | L:       | CYCLES  | :                 | (t1) :         | (t2) : | (t1):  | (t2) : |
|     | 1 .         | :-<br>1: | 19.14   | :-                | -0 30:         | 0.30:  | -0.30: | 0.30:  |
|     |             | 1:       | 2.29    |                   | -0.50:         | 0.50:  | -0.50: | 0.50:  |
|     |             | 1:       | 1.14    |                   | -0.60:         | 0.60:  | -0.60: | 0.60:  |
|     |             | 1:       | 0.23    |                   | -0.80:         | 0.80:  | -0.80: | 0.80:  |
|     |             | 1:       | 0.04    |                   |                | 1.00:  | -1.00: |        |
|     |             | 1:       | 0.01    |                   |                | 1.20:  | -1.20: | 1.20:  |
|     | 7:          | 1:       | 0.00    |                   |                | 1.40:  | -1.40: | 1.40:  |
|     | 8:          | 1:       | 0.00    |                   | -1.60:         | 1.60:  | -1.60: | 1.60:  |
|     |             | 1:       | 0.00    |                   | -1.80:         | 1.80:  | -1.80: | 1.80:  |
|     |             | 1:       | 0.00    | :                 | -2.00:         | 2.00:  | -2.00: | 2.00:  |
|     |             | M:       | NUMBER  | :                 | S4             | :      | s      | :      |
| Т   |             | A:       | OF      | :                 |                | :      |        | :      |
| E   | :           | T:       | FATIGUE | :                 |                | :      |        | :      |
| P   | :           | L:       | CYCLES  | :                 | (t1) :         | (t2) : | (t1) : | (t2) : |
|     | - <b>-:</b> | :-<br>1: | 19.14   | - : -<br><u>:</u> | 2. <b>4</b> 3: | 3.03:  | 0.00:  | 0.00:  |
|     |             | 1:       | 2.29    |                   | 2.23:          | 3.23:  | 0.00:  | 0.00:  |
|     |             | 1:       | 1.14    |                   | 2.13:          | 3.33:  | 0.00:  | 0.00:  |
|     | 4:          | 1:       | 0.23    |                   | 1.93:          | 3.53:  | 0.00:  | 0.00:  |
|     |             | 1:       | 0.04    |                   | 1.73:          | 3.73:  | 0.00:  | 0.00:  |
|     |             | 1:       | 0.01    |                   | 1.53:          | 3.93:  | 0.00:  | 0.00:  |
|     | 7:          |          | 0.00    |                   | 1.33:          | 4.13:  | 0.00:  | 0.00:  |
|     | 8:          | 1:       | 0.00    | :                 | 1.13:          | 4.33:  | 0.00:  | 0.00:  |
|     | 9:          | 1:       | 0.00    | :                 | 0.93:          | 4.53:  | 0.00:  | 0.00:  |
| -   | ۱0٠         | 1:       | 0.00    | :                 | 0.73:          | 4.73:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

| BLOC    | сĸ | CAS | E NO. 4 |     |                |         |        |        |
|---------|----|-----|---------|-----|----------------|---------|--------|--------|
| s       |    | M:  | NUMBER  | :   | so             | :       | s3     | :      |
| ${f T}$ | :  | A:  | OF      | :   |                | :       |        | :      |
| E       | :  | T:  | FATIGUE | :   |                | :       |        | :      |
| P       | :  | L:  | CYCLES  | :   | (t1) :         | (t2) :  | (t1) : | (t2) : |
|         | -: | :-  |         | -:- | : <del>-</del> | :       | ·:-    | :      |
| 1       | l: | 1:  | 38.29   | :   | -0.30:         | 0.30:   | -0.30: | 0.30:  |
| 2       | 2: | 1:  | 4.57    | :   | -0.50:         | 0.50:   | -0.50: | 0.50:  |
| 3       | 3: | 1:  | 2.29    | :   | -0.60:         | . 0.60: | -0.60: | 0.60:  |
| 4       | 4: | 1:  | 0.46    | :   | -0.80:         | 0.80:   | -0.80: | 0.80:  |
|         | 5: | 1:  | 0.08    | :   | -1.00:         | 1.00:   | -1.00: | 1.00:  |
| (       | 6: | 1:  | 0.02    | :   | -1.20:         | 1.20:   | -1.20: | 1.20:  |
| •       | 7: | 1:  | 0.01    | :   | -1.40:         | 1.40:   | -1.40: | 1.40:  |
| :       | 8: | 1:  | 0.00    | :   | -1.60:         | 1.60:   | -1.60: | 1.60:  |
| 9       | 9: | 1:  | 0.00    | :   | -1.80:         | 1.80:   | -1.80: | 1.80:  |
| 10      | 0: | 1:  | 0.00    | :   | -2.00:         | 2.00:   | -2.00: | 2.00:  |
| s       | :  | M:  | NUMBER  | :   | S4             | :       | S      | :      |
| ${f T}$ | :  | A:  | OF      | :   |                | :       |        | :      |
| E       | :  | T:  | FATIGUE | :   |                | :       |        | :      |
| P       | :  | L:  | CYCLES  | :   | (t1) :         | (t2) :  | (t1) : | (t2) : |
|         | -: | :-  |         | -:  | :-             | :       | :-     | :      |
|         | 1: | 1:  | 38.29   | :   | 2.43:          | 3.03:   | 0.00:  | 0.00:  |
| :       | 2: | 1:  | 4.57    | :   | 2.23:          | 3.23:   | 0.00:  | 0.00:  |

| 3:  | 1: | 2.29:  | 2.13: | 3.33: | 0.00: | 0.00: |
|-----|----|--------|-------|-------|-------|-------|
| 4:  | 1: | 0.46 : | 1.93: | 3.53: | 0.00: | 0.00: |
| 5:  | 1: | 0.08:  | 1.73: | 3.73: | 0.00: | 0.00: |
| 6:  | 1: | 0.02:  | 1.53: | 3.93: | 0.00: | 0.00: |
| 7:  | 1: | 0.01:  | 1.33: | 4.13: | 0.00: | 0.00: |
| 8:  | 1: | 0.00:  | 1.13: | 4.33: | 0.00: | 0.00: |
| 9:  | 1: | 0.00:  | 0.93: | 4.53: | 0.00: | 0.00: |
| 10: | 1: | 0.00:  | 0.73: | 4.73: | 0.00: | 0.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE F-1, ORIG ALUM STRINGER @ BL 0.0 MODEL: TC05

### FATIGUE SCHEDULE BLOCK STRESS TABLE

| PRE          | ESSI | JRE | CYCLE   |          |        |        |        |        |
|--------------|------|-----|---------|----------|--------|--------|--------|--------|
| S            | :    | M:  | NUMBER  | :        | S0     | :      | s3     | :      |
| T            | :    | A:  | OF      | :        |        | :      |        | :      |
| E            | :    | T:  | FATIGUE | :        | (ksi)  | ) :    | (ksi   | ) :    |
| P            | :    | L:  | CYCLES  | :        | (t1) : | (t2) : | (t1) : | (t2) : |
|              | :    | :-  |         | -:-      | :      | :      | ;-     | :      |
|              | 1:   | 1:  | 1.00    | :        | 0.00:  | 0.00:  | 0.00:  | 26.70: |
| S            | :    | M:  | NUMBER  | :        | S4     | :      | S      | :      |
| $\mathbf{T}$ | :    | A:  | OF      | :        |        | :      |        | :      |
| E            | :    | T:  | FATIGUE | :        | (ksi)  | ) :    | (ksi   | ) :    |
| P            | :    | L:  | CYCLES  | :        | (t1) : | (t2) : | (t1) : | (t2) : |
|              | 1:   | 1:  | 1.00    | -:-<br>: | 0.00:  | 3.50:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT\ SET}$ 

PSE F-1, ORIG ALUM STRINGER @ BL 0.0 MODEL: TC05

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

| PRE          | SS | JRE | CYCLE   |     |        |        |         |        |
|--------------|----|-----|---------|-----|--------|--------|---------|--------|
| s            | :  | M:  | NUMBER  | :   | so     | :      | S3      | :      |
| Т            | :  | A:  | OF      | :   |        | :      |         | :      |
| E            | :  | T:  | FATIGUE |     |        |        | (ksi)   |        |
|              |    |     | CYCLES  | :   |        |        | (t1) :  |        |
|              | -  | -   |         | -:- | :-     |        | :       |        |
|              |    | 1:  |         |     |        |        | -8.01:  |        |
|              |    |     | 1.14    |     |        | 0.00:  |         |        |
|              |    | 1:  | 0.57    |     |        |        |         |        |
|              |    |     | 0.11    |     |        |        |         |        |
|              |    |     | 0.02    |     |        |        |         |        |
|              |    | 1:  | 0.01    |     |        | 0.00:  |         |        |
|              |    | 1:  | 0.00    |     |        | 0.00:  |         |        |
|              |    | 1:  |         |     |        |        | -42.72: |        |
|              | -  | 1:  |         |     |        |        | -48.06: |        |
| 1            | 0: | 1:  | 0.00    | :   | 0.00:  | 0.00:  | -53.40: | 53.40: |
| S            | :  | M:  | NUMBER  | :   | S4     | :      | S       | :      |
| T            | :  | A:  | OF      | :   |        | :      |         | :      |
| $\mathbf{E}$ | :  | T:  | FATIGUE | :   | (ksi   | ) :    | (ksi)   | ) :    |
| P            | :  | L:  | CYCLES  | :   | (t1) : | (t2) : | (t1) :  | (t2) : |
|              |    |     | 9.57    |     |        | -      | 0.00:   | -      |
|              |    |     |         |     |        |        |         |        |
|              |    |     | 1.14    |     |        |        |         |        |
|              |    | 1:  |         |     |        |        | 0.00:   |        |
|              |    | 1:  | 0.11    |     |        |        |         |        |
|              |    | 1:  |         |     | 2.25:  |        |         |        |
|              |    | 1:  | 0.01    |     |        |        | 0.00:   |        |
|              |    | 1:  |         |     | 1.73:  |        |         |        |
|              |    | 1:  | 0.00    |     |        |        |         |        |
|              | 9: | 1:  | 0.00    | :   | 1.21:  | 5.89:  | 0.00:   | 0.00:  |

10: 1: 0.00: 0.95: 6.15: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$   ${\tt SET}$ 

PSE F-1, ORIG ALUM STRINGER @ BL 0.0

MODEL: TC05

### FATIGUE SCHEDULE BLOCK STRESS TABLE

|     |          |     |         |     |        | -      |         |        |
|-----|----------|-----|---------|-----|--------|--------|---------|--------|
| PRE | SS       | JRE | CYCLE   |     |        |        |         |        |
| S   | :        | Μ:  | NUMBER  | :   | so     | :      | S3      | :      |
| Т   | :        | A:  | OF      | :   |        | :      |         | :      |
| E   | :        | T:  | FATIGUE | :   | (ksi)  | :      | (ksi    |        |
| P   | :        | L:  | CYCLES  | :   | (t1) : | (t2) : | (t1) :  | (t2) : |
|     | -:-      | :-  |         | :-  | ·:     | :      | :-      |        |
|     | 1:       | 1:  | 19.14   | :   | 0.00:  | 0.00:  |         |        |
|     | 2:       | 1:  | 2.29    | :   | 0.00:  | 0.00:  |         | 13.35: |
|     | 3:       | 1:  | 1.14    | :   | 0.00:  | 0.00:  |         | 16.02: |
|     | 4:       | 1:  | 0.23    | :   | 0.00:  | 0.00:  | -21.36: | 21.36: |
|     | 5:       | 1:  | 0.04    | :   | 0.00:  | 0.00:  | -26.70: | 26.70: |
|     | 6:       | 1:  | 0.01    | :   | 0.00:  | 0.00:  | -32.04: | 32.04: |
|     | 7:       | 1:  | 0.00    | :   | 0.00:  | 0.00:  | -37.38: | 37.38: |
|     | 8:       | 1:  | 0.00    | :   | 0.00:  | 0.00:  | -42.72: | 42.72: |
|     |          | 1:  | 0.00    | :   | 0.00:  | 0.00:  | -48.06: | 48.06: |
| 1   |          | 1:  |         |     | 0.00:  |        | -53.40: |        |
|     |          | M:  | NUMBER  | :   | S4     | :      | S       | :      |
|     |          |     | OF      | :   |        | :      |         | :      |
|     |          |     | FATIGUE | :   | (ksi)  | :      | (ksi    | ) :    |
|     |          |     | CYCLES  |     | (t1):  |        | (t1):   | (t2) : |
|     | <u>:</u> | :   |         | ٠:. | :      |        | :-      | :      |
|     | 1:       | 1:  | 19.14   | :   | 3.16:  | 3.94:  | 0.00:   | 0.00:  |
|     | 2:       | 1:  |         |     | 2.90:  |        |         |        |
|     |          | 1:  | 1.14    | :   | 2.77:  | 4.33:  | 0.00:   | 0.00:  |
|     | 4:       | 1:  | 0.23    | :   | 2.51:  | 4.59:  | 0.00:   | 0.00:  |
|     | 5:       | 1:  | 0.04    | :   | 2.25:  | 4.85:  | 0.00:   | 0.00:  |
|     |          | 1:  |         |     | 1.99:  |        |         |        |
|     | 7:       | 1:  | 0.00    | :   | 1.73:  | 5.37:  | 0.00:   | 0.00:  |
|     |          | 1:  | 0.00    | :   | 1.47:  | 5.63:  | 0.00:   | 0.00:  |
|     |          | 1:  |         |     | 1.21:  |        |         |        |
| :   |          | 1:  |         |     |        | 6.15:  |         |        |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$   ${\tt SET}$ 

PSE F-1, ORIG ALUM STRINGER @ BL 0.0 MODEL: TC05

### FATIGUE SCHEDULE BLOCK STRESS TABLE

|         |            |     |        | -      |         |        |
|---------|------------|-----|--------|--------|---------|--------|
| PRESSUR | E CYCLE    |     |        |        |         |        |
| s : M   | : NUMBER   | :   | so     | :      | S3      | :      |
| т : А   | : OF       | :   |        | :      |         | :      |
| E : T   | : FATIGUE  | :   | (ksi)  | :      | (ksi)   | :      |
| P : L   | : CYCLES   | :   | (t1) : | (t2) : | (t1) :  | (t2) : |
| :       | :          | -:- | :      | :-     | :       | ·:     |
| 1: 1    | .: 38.29   | :   | 0.00:  | 0.00:  | -8.01:  | 8.01:  |
| 2: 1    | .: 4.57    | :   | 0.00:  | 0.00:  | -13.35: | 13.35: |
| 3: 1    | .: 2.29    | :   | 0.00:  | 0.00:  | -16.02: | 16.02: |
| 4: 1    | .: 0.46    | :   | 0.00:  | 0.00:  | -21.36: | 21.36: |
| 5: 1    | .: 0.08    | :   | 0.00:  | 0.00:  | -26.70: | 26.70: |
| 6: 1    | 0.02       | :   | 0.00:  | 0.00:  | -32.04: | 32.04: |
| 7: 1    | L: 0.01    | :   | 0.00:  | 0.00:  | -37.38: | 37.38: |
| 8: 1    | L: 0.00    | :   | 0.00:  | 0.00:  | -42.72: | 42.72: |
| 9: 1    | L: 0.00    | :   | 0.00:  | 0.00:  | -48.06: | 48.06: |
| 10: 1   | L: 0.00    | :   | 0.00:  | 0.00:  | -53.40: | 53.40: |
| S : N   | 1: NUMBER  | :   | S4     | :      | s       | :      |
| т: А    | A: OF      | :   |        | :      |         | :      |
| E : 7   | r: FATIGUE | :   | (ksi)  |        | (ksi)   | :      |

| P : | $\mathbf{L}$ : | CYCLES | :   | (t1) : | (t2) : | (t1) : | (t2) : |
|-----|----------------|--------|-----|--------|--------|--------|--------|
| :   | :-             |        | -:- | :      | :-     | :      | :      |
| 1:  | 1:             | 38.29  | :   | 3.16:  | 3.94:  | 0.00:  | 0.00:  |
| 2:  | 1:             | 4.57   | :   | 2.90:  | 4.20:  | 0.00:  | 0.00:  |
| 3:  | 1:             | 2.29   | :   | 2.77:  | 4.33:  | 0.00:  | 0.00:  |
| 4:  | 1:             | 0.46   | :   | 2.51:  | 4.59:  | 0.00:  | 0.00:  |
| 5:  | 1:             | 0.08   | :   | 2.25:  | 4.85:  | 0.00:  | 0.00:  |
| 6:  | 1:             | 0.02   | :   | 1.99:  | 5.11:  | 0.00:  | 0.00:  |
| 7:  | 1:             | 0.01   | :   | 1.73:  | 5.37:  | 0.00:  | 0.00:  |
| 8:  | 1:             | 0.00   | :   | 1.47:  | 5.63:  | 0.00:  | 0.00:  |
| 9:  | 1:             | 0.00   | :   | 1.21:  | 5.89:  | 0.00:  | 0.00:  |
| 10: | 1:             | 0.00   | :   | 0.95:  | 6.15:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE F-1, ORIG ALUM STRINGER @ BL 0.0

MODEL: TC05

#### ANALYSIS RESULTS:

| Schedl | Block | Final Flaw Size | K max    |
|--------|-------|-----------------|----------|
|        |       | Step c          | c-tip    |
| 2000   | 6     | 0.051077        | 7.563928 |
| 4000   | 6     | 0.052141        | 7.544158 |
| 6000   | 6     | 0.053194        | 7.524382 |
| 8000   | 6     | 0.054236        | 7.504693 |
| 10000  | 6     | 0.055266        | 7.485174 |
| 12000  | 6     | 0.056284        | 7.465894 |
| 14000  | 6     | 0.057292        | 7.446913 |
| 16000  | 6     | 0.058288        | 7.428281 |
| 18000  | 6     | 0.059274        | 7.410040 |
| 20000  | 6     | 0.060250        | 7.392224 |
| 22000  | 6     | 0.061215        | 7.374863 |
| 24000  | 6     | 0.062171        | 7.357979 |
| 26000  | 6     | 0.063118        | 7.341587 |
| 28000  | 6     | 0.064055        | 7.325698 |
| 30000  | 6     | 0.064984        | 7.310316 |
| 32000  | 6     | 0.065904        | 7.295443 |
| 34000  | 6     | 0.066816        | 7.281077 |
| 36000  | 6     | 0.067721        | 7.267215 |
| 38000  | 6     | 0.068617        | 7.253851 |
| 40000  | 6     | 0.069507        | 7.240979 |
| 42000  | 6     | 0.070389        | 7.228589 |
| 44000  | 6     | 0.071265        | 7.216671 |
| 46000  | 6     | 0.072135        | 7.205212 |
| 48000  | 6     | 0.072998        | 7.194202 |
| 50000  | 6     | 0.073856        | 7.183625 |
| 52000  | 6     | 0.074708        | 7.173468 |
| 54000  | 6     | 0.075555        | 7.163716 |
| 56000  | 6     | 0.076396        | 7.154352 |
| 58000  | 6     | 0.077232        | 7.145361 |
| 60000  | 6     | 0.078064        | 7.136726 |
| 62000  | 6     | 0.078891        | 7.128429 |
| 64000  | 6     | 0.079714        | 7.120453 |
| 66000  | 6     | 0.080533        | 7.112780 |
| 68000  | 6     | 0.081348        | 7.105392 |
| 70000  | 6     | 0.082158        | 7.098269 |
|        |       |                 |          |

FINAL RESULTS:

Critical Crack Size has NOT been reached.

at Cycle No. 0.00 of Load Step No.

Step description:

of Block No. 10 of Schedule No. 70000 Crack Size c = 0.821583E-01

```
FATIGUE CRACK GROWTH ANALYSIS
             DATE: 09/16/98 TIME: 12:48:17
      (computed: NASA/FLAGRO Version 2.03, March 1995.)
      U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
PSE F-1, 7075-T73511 STRINGER @ BL 0.0
GEOMETRY
MODEL: TC05-Through crack from hole in row of holes.
Plate Thickness, t = 0.0630
                   0.1300
Hole Dia., D
               =
Hole-to-Hole Dist., H = 0.7500
Dia./Edge-Dist. Ratio, D/B = 0.5000
(D/B = 0 \text{ means B is very large})
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL
MATL 1: 7075-T73511
      Extr; L-T; LA, DA, HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
: 1: 74.0: 65.0: 46.0: 33.0: 1.00: 1.00: 0.063: 65.7:
:Matl:----- Crack Growth Eqn Constants -----:
:---:----:----:----:----
: 1 :0.347E-07:2.508:0.50:1.00: 2.40: 0.70: 1.90: 0.30:
 PSE F-1, 7075-T73511 STRINGER @ BL 0.0
MODEL: TC05
FATIGUE SCHEDULE BLOCK INPUT TABLE
PRESSURE CYCLE
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress SO: 0.00000
Scale Factor for Stress S3:
                           21.200
Scale Factor for Stress S4:
                           3.5000
Stress Scaling Factors for Block Case: 2
Scale Factor for Stress S0: 0.00000
Scale Factor for Stress S3:
Scale Factor for Stress S4:
                          1.3000
```

Stress Scaling Factors for Block Case: 3

0.00000

Scale Factor for Stress S0:

```
Scale Factor for Stress S3:
                          21.200
Scale Factor for Stress S4:
                          1.3000
Stress Scaling Factors for Block Case: 4
Scale Factor for Stress S0:
                         0.00000
Scale Factor for Stress S3:
                          21,200
Scale Factor for Stress S4:
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
Block Number
                          Block Case No.
From
                                  1
  1
   6
            6
                                  2
   7
            9
                                  3
  10
            10
                                  4
BLOCK CASE NO. 1
S : M: NUMBER
                         S0
                                          S3
                                  :
  : A:
        OF
E : T: FATIGUE
P : L: CYCLES :
                      (t1): (t2)
                                       (t1):(t2)
---:-:--:--:-
                       ----:-
  1: 1: 1.00:
                               1.00:
                                        0.00:
                                                1.00:
                       0.00:
S : M: NUMBER :
                                          s
        OF
T : A:
E : T: FATIGUE
                                       (t1): (t2)
P : L: CYCLES
                      (t1): (t2)
----:--:---
        1.00 :
                       0.00:
                             1.00:
                                       0.00: 0.00:
Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET
BLOCK CASE NO. 2
S : M: NUMBER
                         S0
                                          S3
T : A:
        OF
                 :
E : T: FATIGUE
P : L: CYCLES
                     (t1) : (t2)
                                      (t1): (t2)
                                 :
____;__;__
           9.57: -0.30: 0.30: -0.30: 0.30:
  1: 1:
                    -0.50:
             1.14:
  2: 1:
                              0.50:
                                      -0.50:
                                                0.50:
                             0.60:
             0.57 :
  3: 1:
                     -0.60:
                                      -0.60:
                                                0.60:
                                      -0.80:
                              0.80:
  4: 1:
            0.11 :
                    -0.80:
             0.02:
                              1.00:
                     -1.00:
                                      -1.00:
                                                1.00:
  5: 1:
                               1.20:
             0.01:
                     -1.20:
                                      -1.20:
                                                1.20:
  6: 1:
             0.00:
  7: 1:
                     -1.40:
                               1.40:
                                      -1.40:
                                                1.40:
  8: 1:
             0.00:
                     -1.60:
                               1.60:
                                       -1.60:
                                                1.60:
  9: 1:
             0.00:
                      -1.80:
                               1.80:
                                       -1.80:
                                                1.80:
 10: 1:
             0.00:
                      -2.00:
                               2.00:
                                       -2.00:
                                                2.00:
 S : M: NUMBER :
                      S4
                                :
                                        S
         OF
T : A:
E : T: FATIGUE
P : L: CYCLES
                                       (t1) : (t2)
                      (t1): (t2)
----;--:------:-----:
             9.57 : 2.43:
  1: 1:
                               3.03:
                                       0.00:
                                                0.00:
             1.14:
  2: 1:
                       2.23:
                               3.23:
                                        0.00:
                                                0.00:
             0.57 :
  3: 1:
                       2.13:
                               3.33:
                                        0.00:
  4: 1:
             0.11:
                       1.93:
                               3.53:
                                       0.00:
                                                0.00:
  5: 1:
             0.02 :
                       1.73:
                               3.73:
                                        0.00:
                                                0.00:
  6: 1:
             0.01:
                      1.53:
                               3.93:
                                        0.00:
                                                0.00:
  7: 1:
             0.00:
                      1.33:
                               4.13:
                                        0.00:
                                                0.00:
  8: 1:
             0.00 :
                       1.13:
                               4.33:
                                        0.00:
                                                0.00:
  9: 1:
             0.00:
                      0.93:
                               4.53:
                                        0.00:
                                                0.00:
```

10: 1: 0.00: 0.73: 4.73: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses (Kmax less than  $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$ 

| BLO          | CK  | CAS      | E NO. 3 |       |             |        |            |        |
|--------------|-----|----------|---------|-------|-------------|--------|------------|--------|
| s            | :   | M:       | NUMBER  | :     | S0          | :      | <b>S</b> 3 | :      |
| Т            | :   | A:       | OF      | :     |             | :      |            | :      |
|              |     |          | FATIGUE | :     |             | :      |            | :      |
| P            | :   | L:       | CYCLES  | :     | (t1) :      | (t2) : | (t1) :     | (t2) : |
|              | -:- | :-       |         | - : - | :-          | :-     | :-         | :      |
|              | 1:  | 1:       | 19.14   | :     | -0.30:      | 0.30:  | -0.30:     | 0.30:  |
|              | 2:  | 1:       | 2.29    | :     | -0.50:      | 0.50:  | -0.50:     | 0.50:  |
|              | 3:  |          | 1.14    |       |             | 0.60:  | -0.60:     | 0.60:  |
|              | 4:  | 1:       | 0.23    |       |             |        |            |        |
|              | 5:  | 1:       |         |       | -1.00:      |        |            | 1.00:  |
|              | 6:  | 1:       | 0.01    | :     | -1.20:      | 1.20:  |            |        |
|              | 7:  | 1:       | 0.00    |       |             |        |            |        |
|              | 8:  | 1:       | 0.00    | :     | -1.60:      | 1.60:  | -1.60:     | 1.60:  |
|              | 9:  | 1:       | 0.00    | :     | -1.80:      | 1.80:  | -1.80:     | 1.80:  |
| 1            | 0:  | 1:       | 0.00    | :     | -2.00:      | 2.00:  | -2.00:     | 2.00:  |
| S            | :   | M:       | NUMBER  | :     | S4          | :      | s          | :      |
| $\mathbf{T}$ | :   | A:       | OF      | :     |             | :      |            | :      |
| E            | :   | T:       | FATIGUE | :     |             | :      |            | :      |
|              |     |          | CYCLES  |       | (t1) :      |        |            |        |
|              | -   | :-<br>1: | 10 14   |       | 2.43:       | 2 02.  | :          | 0.00.  |
|              |     |          | 2.29    |       |             |        |            |        |
|              |     | 1:       | 1.14    |       |             | 3.33:  |            |        |
|              | 4:  | 1:       | 0.23    |       |             | 3.53:  |            |        |
|              |     | 1:       |         |       |             | 3.73:  |            |        |
|              |     | 1:       |         |       |             | 3.93:  |            |        |
|              | 7:  | 1:       | 0.00    |       |             | 4.13:  |            |        |
|              |     | 1:       |         |       |             | 4.33:  |            |        |
|              |     | 1:       |         |       |             | 4.53:  |            |        |
|              | -   | 1:       | 0.00    |       |             |        | 0.00:      |        |
| _            |     |          | 0.00    | •     | · · · · · · |        | 0.00.      |        |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

| BLOCK | CAS | E NO. 4 |     |        |        |            |        |
|-------|-----|---------|-----|--------|--------|------------|--------|
| s:    | M:  | NUMBER  | :   | S0     | :      | <b>S</b> 3 | :      |
| T:    | A:  | OF      | :   |        | :      |            | :      |
| E :   | T:  | FATIGUE | :   |        | :      |            | :      |
|       |     | CYCLES  | :   | (t1) : | (t2) : | (t1) :     | (t2) : |
| :     |     |         | :-  | :-     | :      | :-         | :      |
|       |     | 38.29   |     |        | 0.30:  |            |        |
|       |     | 4.57    |     |        |        | -0.50:     |        |
|       | 1:  | 2.29    |     |        | 0.60:  |            |        |
|       | 1:  | 0.46    |     |        | 0.80:  | -0.80:     | 0.80:  |
| 5:    | 1:  | 0.08    | :   | -1.00: | 1.00:  | -1.00:     | 1.00:  |
| 6:    | 1:  | 0.02    | :   | -1.20: | 1.20:  | -1.20:     | 1.20:  |
| 7:    | 1:  | 0.01    | :   | -1.40: | 1.40:  | -1.40:     | 1.40:  |
| 8:    | 1:  | 0.00    | :   | -1.60: | 1.60:  | -1.60:     | 1.60:  |
| 9:    | 1:  | 0.00    | :   | -1.80: | 1.80:  | -1.80:     | 1.80:  |
| 10:   | 1:  | 0.00    |     |        |        | -2.00:     |        |
| s:    | M:  | NUMBER  | :   | S4     |        | S          | :      |
| т:    |     | OF      | :   |        |        | _          |        |
| E :   |     | FATIGUE | :   | •      |        |            |        |
|       |     | CYCLES  |     | (t1) : | (t2) : | (t1) :     | (t2) : |
| :     | :-  |         | -:- | :-     | :      | :-         | ·:     |
|       |     | 38.29   |     |        |        |            |        |
| 2:    | 1:  | 4.57    | :   | 2.23:  | 3.23:  | 0.00:      | 0.00:  |
| 3:    | 1:  | 2.29    | :   | 2.13:  | 3.33:  | 0.00:      | 0.00:  |
| 4:    | 1:  | 0.46    | :   | 1.93:  | 3.53:  | 0.00:      | 0.00:  |
| 5:    | 1:  | 0.08    | :   | 1.73:  | 3.73:  | 0.00:      | 0.00:  |
| 6:    | 1:  | 0.02    | :   | 1.53:  | 3.93:  | 0.00:      | 0.00:  |
|       |     |         |     |        |        |            |        |

| 7: 1:  | 0.01 : | 1.33: | 4.13: | 0.00: | 0.00: |
|--------|--------|-------|-------|-------|-------|
| 8: 1:  | 0.00 : | 1.13: | 4.33: | 0.00: | 0.00: |
| 9: 1:  | 0.00 : | 0.93: | 4.53: | 0.00: | 0.00: |
| 10: 1: | 0.00:  | 0.73: | 4.73: | 0.00: | 0.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than  $\mathtt{KIscc})\colon \mathtt{NOT}\ \mathtt{SET}$ 

PSE F-1, 7075-T73511 STRINGER @ BL 0.0

MODEL: TC05

### FATIGUE SCHEDULE BLOCK STRESS TABLE

PRESSURE CYCLE

S : M: NUMBER : S0 :
T : A: OF : :
E : T: FATIGUE : (ksi) :
P : L: CYCLES : (t1) : (t2) : (t1)

| _ | -  |          | CYCLES  |   | • •   | (t2) : | (t1):  | (t2) : |
|---|----|----------|---------|---|-------|--------|--------|--------|
|   | -  | •        | 1.00    | - |       | 0.00:  | 0.00:  | 21.20: |
| S | :  | M:       | NUMBER  | : | S4    | :      | S      | :      |
| T | :  | A:       | OF      | : |       | :      |        | :      |
| E | :  | T:       | FATIGUE | : | (ksi) | :      | (ksi)  | ) :    |
| P | :  | L:       | CYCLES  | : | (t1): | (t2) : | (t1) : | (t2) : |
|   | 1: | :-<br>1: | 1.00    | : | 0.00: | 3.50:  | 0.00:  | 0.00:  |

(ksi)

Environmental Crack Growth Check for Sustained Stresses

PSE F-1, 7075-T73511 STRINGER @ BL 0.0

MODEL: TC05

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

(Kmax less than KIscc): NOT SET

------

| PRESSU | IRE | CYCLE   |       |       |       |         |        |
|--------|-----|---------|-------|-------|-------|---------|--------|
|        | M:  |         | :     | S0    | :     | s3      | :      |
| т:     |     | OF      | :     |       | :     |         | :      |
|        |     | FATIGUE | :     | (ksi) | ) :   | (ksi    | ) :    |
| P :    | L:  | CYCLES  | :     |       |       | (t1):   |        |
| :-     | -:- |         | - : - | :     | :     | :-      | :      |
| 1:     | 1:  | 9.57    | :     | 0.00: | 0.00: | -6.36:  | 6.36:  |
| 2:     | 1:  | 1.14    | :     | 0.00: | 0.00: | -10.60: | 10.60: |
| 3:     | 1:  | 0.57    |       |       |       |         |        |
| 4:     | 1:  | 0.11    | :     | 0.00: | 0.00: | -16.96: | 16.96: |
| 5:     | 1:  | 0.02    | :     | 0.00: | 0.00: | -21.20: |        |
| 6:     | 1:  |         |       | 0.00: |       |         |        |
| 7:     | 1:  |         |       | 0.00: |       |         | 29.68: |
| 8:     | 1:  |         |       |       |       | -33.92: | 33.92: |
| 9:     | 1:  | 0.00    |       |       |       |         |        |
| 10:    | 1:  | 0.00    | :     | 0.00: | 0.00: | -42.40: | 42.40: |
| s:     | М:  | NUMBER  | :     | S4    | :     | S       | :      |
| т:     |     | OF      |       |       | :     |         | :      |
| E :    |     | FATIGUE |       |       |       | (ksi    |        |
|        |     | CYCLES  | :     |       |       | (t1) :  |        |
| :-     | •   |         | -:-   |       |       | 0.00:   |        |
| 1:     |     |         |       |       |       |         |        |
| 2:     |     |         |       |       |       | 0.00:   |        |
| 3:     |     |         |       |       |       | 0.00:   |        |
| 4:     |     |         |       |       |       | 0.00:   |        |
| 5:     |     | 0.02    |       |       |       | 0.00:   |        |
| 6:     |     | 0.01    |       |       |       | 0.00:   |        |
| 7:     |     |         |       |       |       | 0.00:   |        |
| 8:     |     |         |       |       |       | 0.00:   |        |
|        | 1:  |         |       |       |       | 0.00:   |        |
| 10:    | 1:  | 0.00    | :     | 0.95: | 6.15: | 0.00:   | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE F-1, 7075-T73511 STRINGER @ BL 0.0 MODEL: TC05

#### FATIGUE SCHEDULE BLOCK STRESS TABLE

| PRE | essi | TRE      | CYCLE   |   |        |                |         |        |
|-----|------|----------|---------|---|--------|----------------|---------|--------|
| s   |      | M:       | NUMBER  | : | so     | :              | s3      | :      |
|     | :    |          | OF      | : |        | :              |         | :      |
| E   |      |          | FATIGUE | : | (ksi)  | :              | (ksi    | L) :   |
| P   | :    | L:       | CYCLES  | : | (t1):  | (t2) :         | (t1):   | (t2) : |
|     | :    | :-       |         | : | :      | :              | :-      | ·:     |
|     |      | 1:       |         |   | 0.00:  |                | -6.36:  |        |
|     |      |          | 2.29    |   |        |                |         |        |
|     | -    | 1:       |         |   | 0.00:  |                |         |        |
|     |      | 1:       | 0.23    |   |        |                |         |        |
|     |      | 1:       | 0.04    |   | 0.00:  |                |         | 21.20: |
|     | 6:   |          | 0.01    |   |        |                |         |        |
|     | 7:   | 1:       | 0.00    | : | 0.00:  | 0.00:          |         |        |
|     | 8:   | 1:       | 0.00    | : | 0.00:  | 0.00:          |         | 33.92: |
|     | 9:   | 1:       | 0.00    | : | 0.00:  | 0.00:          | -38.16: | 38.16: |
| :   | 10:  | 1:       | 0.00    | : | 0.00:  | 0.00:          | -42.40: | 42.40: |
| S   | :    | M:       | NUMBER  | : | S4     | :              | S       | :      |
| T   | :    | A:       | OF      | : |        | :              |         | :      |
| E   | :    | T:       | FATIGUE | : | (ksi)  | :              | (ksi    | i) :   |
| P   | :    | L:       | CYCLES  | : | (t1) : |                | (t1) :  |        |
|     | :    | :        | 10 14   | : | 2 16-  |                | 0.00:   | 0.00.  |
|     |      | 1:<br>1: | 2.29    |   |        |                |         |        |
|     | 3:   |          | 1.14    |   | 2.77:  | 4.33:          |         |        |
|     |      |          | 0.23    |   | 2.77:  | 4.59:          |         |        |
|     |      | 1:       |         |   |        |                |         |        |
|     |      | 1:       |         |   |        | 4.85:<br>5.11: |         |        |
|     |      | 1:       |         |   | 1.99:  |                |         |        |
|     |      | 1:       | 0.00    |   | 1.73:  | 5.37:          |         |        |
|     |      | 1:       |         |   | 1.47:  |                |         |        |
|     | _    | 1:       |         |   | 1.21:  | 5.89:          |         |        |
|     | TO:  | 1:       | 0.00    | : | 0.95:  | 6.15:          | 0.00:   | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET

PSE F-1, 7075-T73511 STRINGER @ BL 0.0

MODEL: TC05

### FATIGUE SCHEDULE BLOCK STRESS TABLE

|                                              |                                                | :                                       |                                                                               | :                                                                             | S3                                                                                              | :                                                                                     |
|----------------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| P : L                                        | : CYCLES                                       | :                                       | (t1) :                                                                        | (t2) :                                                                        | (t1) :                                                                                          | (t2) :                                                                                |
| 1: 1<br>2: 1<br>3: 1<br>4: 1<br>5: 1<br>6: 1 | : 0.02<br>: 0.01<br>: 0.00<br>: 0.00<br>: 0.00 | : . : : : : : : : : : : : : : : : : : : | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00: | 0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00:<br>0.00: | -10.60:<br>-12.72:<br>-16.96:<br>-21.20:<br>-25.44:<br>-29.68:<br>-33.92:<br>-38.16:<br>-42.40: | 6.36:<br>10.60:<br>12.72:<br>16.96:<br>21.20:<br>25.44:<br>29.68:<br>33.92:<br>38.16: |
| T : A                                        | .: OF                                          | :                                       |                                                                               | :                                                                             |                                                                                                 | :                                                                                     |
| E : T                                        | : FATIGUE                                      | :                                       | (ksi)                                                                         | (+2)                                                                          | (ksi                                                                                            |                                                                                       |
| r : L                                        | : CYCLES                                       |                                         |                                                                               |                                                                               | (CT):                                                                                           |                                                                                       |
| 1: 1<br>2: 1                                 | : 38.29                                        | :                                       | 3.16:                                                                         | 3.94:                                                                         | 0.00:                                                                                           | 0.00:                                                                                 |

| 3:  | 1: | 2.29 : | 2.77: | 4.33: | 0.00: | 0.00: |
|-----|----|--------|-------|-------|-------|-------|
| 4:  | 1: | 0.46 : | 2.51: | 4.59: | 0.00: | 0.00: |
| 5:  | 1: | 0.08:  | 2.25: | 4.85: | 0.00: | 0.00: |
| 6:  | 1: | 0.02 : | 1.99: | 5.11: | 0.00: | 0.00: |
| 7:  | 1: | 0.01:  | 1.73: | 5.37: | 0.00: | 0.00: |
| 8:  | 1: | 0.00:  | 1.47: | 5.63: | 0.00: | 0.00: |
| 9:  | 1: | 0.00:  | 1.21: | 5.89: | 0.00: | 0.00: |
| 10: | 1: | 0.00:  | 0.95: | 6.15: | 0.00: | 0.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

PSE F-1, 7075-T73511 STRINGER @ BL 0.0

MODEL: TC05

## ANALYSIS RESULTS:

Schedl Block Final Flaw Size K max c-tip Step С 2000 0.051034 5.954231 4000 6 0.052055 5.940656 6000 6 0.053061 5.927069 8000 0.054052 5.913553 10000 0.055024 5.900222 12000 0.055981 5.887067 14000 0.056929 5.874067 16000 0.057866 5.861258 б 18000 0.058795 5.848672 20000 6 0.059714 5.836336 22000 0.060625 5.824272 6 24000 0.061527 5.812499 6 26000 0.062420 5.801032 28000 5.789882 0.063305 30000 6 0.064182 5.779055 32000 6 0.065051 5.768556 34000 6 0.065913 5.758387 36000 0.066768 5.748547 6 38000 0.067616 5.739036 6 40000 0.068457 5.729851 42000 0.069291 5.720989 6 44000 0.070119 5.712444 46000 0.070942 5.704211 48000 6 0.071758 5.696283 50000 0.072569 5.688653 6 52000 0.073375 5.681313 6 54000 0.074176 5.674255 56000 0.074971 5.667470 58000 0.075762 5.660948 60000 6 0.076549 5.654679 62000 0.077331 5.648654 64000 6 0.078108 5.642861 66000 0.078882 5.637290 68000 0.079652 6 5.631930 70000 0.080418 5.626769

#### FINAL RESULTS:

Critical Crack Size has NOT been reached.

at Cycle No.

0.00 of Load Step No. 10

Step description:

of Block No. 10 of Schedule No. 70000

Crack Size c = 0.804184E-01

### C-25 PSE F11 Forward Pressure Bulkhead

S : M: NUMBER

```
FATIGUE CRACK GROWTH ANALYSIS
           DATE: 09/15/98 TIME: 08:50:36
     (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
TC2, PSE-F11 FWD PRESSURE BULKHEAD CHANNEL 27-21063-2
GEOMETRY
MODEL: TC02-Single edge through crack.
Plate Thickness, t =
                  0.0630
              = 1.0000
 " Width, W
FLAW SIZE:
c (init.) = 0.5000E-01
MATERIAL.
MATL 1: 2024-T3
      Clad Plt & Sht; T-L; LA & HHA
Material Properties:
:Matl: UTS: YS: Kle: Klc: Ak: Bk: Thk: Kc: KIscc:
                 : : : : :
      :
              :
: 1: 65.0: 48.0: 41.0: 29.0: 1.00: 1.00: 0.063: 57.9:
:Matl:---- Crack Growth Eqn Constants ----:
: 1:0.244E-07:2.601:0.50:1.00: 2.90: 0.70: 1.50: 0.30:
 TC2, PSE-F11 FWD PRESSURE BULKHEAD CHANNEL 27-21063-2
MODEL: TC02
FATIGUE SCHEDULE BLOCK INPUT TABLE
_____
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
Scale Factor for Stress S0:
                       8.3000
Scale Factor for Stress S1: 0.00000
Scale Factor for Stress S2: 0.00000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences
 Block Number
                        Block Case No.
From - To 1 -
            1
                               1
SINGLE DISTINCT BLOCK
```

S1

S0

## C-25 PSE F11 Forward Pressure Bulkhead (Continued)

| _            | _  |    | OF      | :        |        | :      |        | :      |
|--------------|----|----|---------|----------|--------|--------|--------|--------|
|              | -  |    | FATIGUE | :        |        | :      |        | :      |
| P            | :  | L: | CYCLES  | :        | (tl):  | (t2) : | (tl):  | (t2) : |
|              | •  | -  |         | -        | :-     | :-     | :-     | :      |
|              | 1: | 1: | 1.00    | :        | 0.00:  | 1.00:  | 0.00:  | 1.00:  |
| S            | :  | M: | NUMBER  | :        | S2     | :      | S      | :      |
| $\mathbf{T}$ | :  | A: | OF      | :        |        | :      |        | :      |
| E            | :  | T: | FATIGUE | :        |        | :      |        | :      |
| P            | :  | L: | CYCLES  | :        | (t1) : | (t2) : | (t1) : | (t2) : |
|              | 1: | 1: | 1.00    | ·:-<br>: | 0.00:  | 1.00:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$   ${\tt SET}$ 

TC2, PSE-F11 FWD PRESSURE BULKHEAD CHANNEL 27-21063-2 MODEL: TC02

### FATIGUE SCHEDULE BLOCK STRESS TABLE

|         |    |    |         |    |        | _      |        |        |
|---------|----|----|---------|----|--------|--------|--------|--------|
| STI     | )  |    |         |    |        |        |        |        |
| S       | :  | M: | NUMBER  | :  | S0     | :      | S1     | :      |
| T       | :  | A: | OF      | :  |        | :      |        | :      |
| E       | :  | Τ: | FATIGUE | :  | (ksi)  |        | (ksi   | ) :    |
| P       | :  | L: | CYCLES  | :  | (t1) : | (t2) : | (t1) : | (t2) : |
|         | :  | :  |         | :- | :      | :      | :-     | :      |
|         | 1: | 1: | 1.00    | :  | 0.00:  | 8.30:  | 0.00:  | 0.00:  |
| S       | :  | М: | NUMBER  | :  | S2     | :      | S      | :      |
| ${f T}$ | :  | A: | OF      | :  |        | :      |        | :      |
| E       | :  | T: | FATIGUE | :  | (ksi)  | :      | (ksi   | ) :    |
| P       | :  | L: | CYCLES  | :  | (t1) : | (t2) : | (t1) : | (t2) : |
|         | :  | :  |         | :- | :      | :      | :-     | :      |
|         | 1: | 1: | 1.00    | :  | 0.00:  | 0.00:  | 0.00:  | 0.00:  |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

TC2, PSE-F11 FWD PRESSURE BULKHEAD CHANNEL 27-21063-2 MODEL: TC02

#### ANALYSIS RESULTS:

-----

| Schedl  | Block | Final Flaw Size | K max    |
|---------|-------|-----------------|----------|
| Belledi | DIOCK |                 |          |
|         |       | Step c          | c-tip    |
| 4000    | 1     | 0.050459        | 3.792454 |
| 8000    | 1     | 0.050927        | 3.811160 |
| 12000   | 1     | 0.051405        | 3.830170 |
| 16000   | 1     | 0.051892        | 3.849492 |
| 20000   | 1     | 0.052388        | 3.869131 |
| 24000   | 1     | 0.052895        | 3.889095 |
| 28000   | 1     | 0.053412        | 3.909393 |
| 32000   | 1     | 0.053939        | 3.930031 |
| 36000   | 1     | 0.054477        | 3.951019 |
| 40000   | 1     | 0.055027        | 3.972365 |
| 44000   | 1     | 0.055587        | 3.994077 |
| 48000   | 1     | 0.056160        | 4.016164 |
| 52000   | 1     | 0.056744        | 4.038637 |
| 56000   | 1     | 0.057341        | 4.061505 |
| 60000   | 1     | 0.057951        | 4.084778 |
| 64000   | 1     | 0.058573        | 4.108468 |
| 68000   | 1     | 0.059210        | 4.132585 |
| 72000   | 1     | 0.059860        | 4.157141 |
| 76000   | 1     | 0.060524        | 4.182148 |
| 80000   | 1     | 0.061204        | 4.207618 |
| 84000   | 1     | 0.061898        | 4.233566 |
| 88000   | 1     | 0.062609        | 4.260003 |

## C-25 PSE F11 Forward Pressure Bulkhead (Continued)

| 92000        | 1   | 0.063335                  | 4.286946   |
|--------------|-----|---------------------------|------------|
| 96000        | 1   | 0.064078                  | 4.314409   |
| 100000       | 1   | 0.064838                  | 4.342407   |
| 104000       | 1   | 0.065617                  | 4.370957   |
| 108000       | 1   | 0.066413                  | 4.400077   |
| 112000       | 1   | 0.067229                  | 4.429783   |
| 116000       | 1   | 0.068064                  | 4.460096   |
| 120000       | 1   | 0.068919                  | 4.491034   |
| 124000       | 1   | 0.069796                  | 4.522620   |
| 128000       | 1   | 0.070694                  | 4.554874   |
| 132000       | 1   | 0.071615                  | 4.587819   |
| 136000       | 1   | 0.072559                  | 4.621480   |
| 140000       | 1   | 0.073527                  | 4.655883   |
| 144000       | 1   | 0.074521                  | 4.691055   |
| 148000       | 1   | 0.075540                  | 4.727023   |
| 152000       | 1   | 0.076587                  | 4.763818   |
| 156000       | 1   | 0.077661                  | 4.801473   |
| 160000       | 1   | 0.078765                  | 4.840020   |
| 164000       | 1   | 0.079899                  | 4.879495   |
| 168000       | 1   | 0.081065                  | 4.919937   |
| 172000       | 1   | 0.082263                  | 4.961386   |
| 176000       | 1   | 0.083496                  | 5.003884   |
| 180000       | 1   | 0.084765                  | 5.047478   |
| 184000       | 1   | 0.086071                  | 5.092217   |
| 188000       | 1   | 0.087416                  | 5.138152   |
| 192000       | 1   | 0.088801                  | 5.185340   |
| 196000       | 1   | 0.090229                  | 5.233841   |
| 200000       | 1   | 0.091702                  | 5.283718   |
| TC2, PSE-F11 | FWD | PRESSURE BULKHEAD CHANNEL | 27-21063-2 |

TC2, PSE-F11 FWD PRESSURE BULKHEAD CHANNEL 27-21063-2

MODEL: TC02

### ANALYSIS RESULTS (contd)

Final Flaw Size K max Schedl Block Step С c-tip 0.093221 5.335041 204000 208000 1 0.094790 5.387884 212000 0.096410 5.442328 216000 1 0.098084 5.498459 220000 0.099814 5.556372 224000 1 0.101605 5.616168 228000 1 0.103459 5.677957 232000 1 0.105380 5.741862 236000 1 0.107371 5.808015 240000 1 0.109437 5.876559 5.947654 244000 1 0.111583 248000 0.113812 6.021474 1 6.098215 252000 0.116132 256000 1 0.118547 6.178089 260000 1 0.121064 6.261335 1 264000 0.123690 6.348219 268000 1 0.126434 6.439040 272000 1 0.129303 6.534133 276000 1 0.132309 6.633877 280000 1 0.135462 6.738702 284000 1 0.138775 6.849099 288000 0.142261 6.965632 7.088953 292000 1 0.145937 296000 1 0.149821 7.219819 300000 1 0.153934 7.359114 304000 1 0.158301 7.507886 308000 1 0.162950 7.667380 312000 1 0.167915 7.839095 316000 1 0.173236 8.024852 8.226895 320000 1 0.178962 324000 0.185151 8.448025 328000 1 0.191876 8.691800

## C-25 PSE F11 Forward Pressure Bulkhead (Continued)

| 332000 | 1 | 0.199230 | 8.962820  |
|--------|---|----------|-----------|
| 336000 | 1 | 0.207330 | 9.267169  |
| 340000 | 1 | 0.216331 | 9.613109  |
| 344000 | 1 | 0.226443 | 10.012218 |
| 348000 | 1 | 0.237957 | 10.481384 |
| 352000 | 1 | 0.251305 | 11.046504 |
| 356000 | 1 | 0.267152 | 11.750003 |
| 360000 | 1 | 0.286623 | 12.668068 |
| 364000 | 1 | 0.311858 | 13.957467 |
| 368000 | 1 | 0.347833 | 16.023622 |
| 372000 | 1 | 0.412448 | 20.596933 |

ADVISORY: Net-section stress > Yield and failure is imminent (Unless (a) UTS > 2 YS, or (b) KIc/YS > 0.5 sqrt. in.(2.5 sqrt. mm.) and bending dominates.) at the very beginning of Load Step No. Step description: 1 of Schedule No. 373756 of Block No. Crack Size c = 0.476985

#### FINAL RESULTS:

Net-section stress exceeds the Flow stress. (Flow stress = average of yield and ultimate) at the very beginning of Load Step No. Step description: of Block No. 1 of Schedule No. 374211

Crack Size c = 0.511567

## C-26 PSE F13 Control Column Roller Bearing

```
FATIGUE CRACK GROWTH ANALYSIS
            -----Modified by FAI-----
           DATE: 18-DEC-98 TIME: 09:26:57
     (computed: NASA/FLAGRO Version 2.03, March 1995.)
     U.S. customary units [inches, ksi, ksi sqrt(in)]
PROBLEM TITLE
SC7, PSE-F13 CONTROL COLUMN ROLLER BRNG (NEW DESIGN)
GEOMETRY
MODEL: SC07-Part-circular Surf. crk on cylinder circ. plane
Cylinder Diameter, D = 0.5000
FLAW SIZE:
a (init.) = 0.5000E-01
MATERIAL
MATL 1: xx-xPH Alloys 17-4PH
     H1025; Rnd Bar, C-L
Material Properties:
:Matl: UTS : YS : Kle : Klc : Ak : Bk : Thk : Kc : KIscc:
: 1 : 163.0: 160.0: 70.0: 55.0: :
:Matl:----- Crack Growth Eqn Constants ----:
;----;-----;-----;----;----;----;-----;
: 1 :0.150D-09:3.500:0.25:0.25: 4.00: 0.70: 2.50: 0.30:
MODEL: SC07
FATIGUE SCHEDULE BLOCK INPUT TABLE
STD
[Note: Stress = Input Value * Stress Factor]
Stress Scaling Factors for Block Case: 1
                       0.0000
Scale Factor for Stress S0:
Scale Factor for Stress S1: 4.0000
Total No. of Blocks in Schedule =
  Block Number and Case Correspondences

    Block Case No.

 Block Number
From - To
1 -
SINGLE DISTINCT BLOCK
                        S0
                                        S1
 S : M: NUMBER :
                               :
 T : A: OF :
E : T: FATIGUE :
                 :
                                 :
```

## C-26 PSE F13 Control Column Roller Bearing (Continued)

| P : L: | CYCLES : | (t1) : | (t2) : | (t1) : | (t2) : |
|--------|----------|--------|--------|--------|--------|
| :      | :        | :      | :      | :      | :      |
| 1: 1:  | 1.00 :   | 1.00:  | -1.00: | 1.00:  | -1.00: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc): NOT SET  $\,$ 

SC7, PSE-F13 CONTROL COLUMN MODEL: SC07

### FATIGUE SCHEDULE BLOCK STRESS TABLE

\_\_\_\_\_

STD

| S            | :  | M: | NUMBER  | :   | so     | :      |   | S1           | :  |
|--------------|----|----|---------|-----|--------|--------|---|--------------|----|
| T            | :  | A: | OF      | :   |        | :      |   |              | :  |
| $\mathbf{E}$ | :  | T: | FATIGUE | :   | (ksi)  | :      |   | (ksi)        | :  |
| P            | :  | L: | CYCLES  | :   | (t1) : | (t2) : |   | (t1) : (t2)  | :  |
|              | :  | :  |         | : - | :      | :      | - | <del>-</del> | -: |
|              | 1: | 1: | 1.00    | :   | 0.00:  | 0.00:  |   | 4.00: -4.0   | 0: |

Environmental Crack Growth Check for Sustained Stresses (Kmax less than KIscc):  ${\tt NOT}$  SET

SC7, PSE-F13 CONTROL COLUMN

MODEL: SC07

#### ANALYSIS RESULTS:

\_\_\_\_\_

#### FINAL RESULTS:

All Stress Intensities are below the Fatigue Threshold.

NO growth in Schedule No. 1

Crack Size a = 0.500000E-01

Corresponding semi crack length, c = 0.553286E-01