Задача 1

Да се докаже, че ⊇ е рефлексивна и транзитивна релация.

рефлексивност

Можем за типова субституция да изберем идентитета ι . Ясно е, че тогава $\alpha \supseteq \alpha$, понеже $\alpha \iota = \alpha$.

транзитивност

Трябва да покажем, че от $\alpha_1 \supseteq \alpha_2 \supseteq \alpha_3$ следва $\alpha_1 \supseteq \alpha_3$. Знаем, че съществуват типови субституции ξ_1 и ξ_2 , за които $\alpha_1\xi_1 = \alpha_2$ и $\alpha_2\xi_2 = \alpha_3$. Трябва да намерим такава субституция ξ , за която $\alpha_1\xi = \alpha_3$. Ще конструираме ξ , която да работи като ξ_2 след ξ_1 , тоест $\alpha\xi = (\alpha\xi_1)\xi_2$. Нека $\tau \in TV$, тогава $\xi(\tau) = (\xi_1(\tau))\xi_2$. Нека да докажем, че ξ има желаните свойства. Ще го направим с индукция по дефиницията на типовете.

Случай 1: $\alpha = \tau$, $\tau \in TV$

Следва по дефиницията на функцията.

Случай 2:
$$\alpha = \beta_1 \implies \beta_2$$

$$((\beta_1 \implies \beta_2)\xi_1)\xi_2 = ((\beta_1\xi_1) \implies (\beta_1\xi_1))\xi_2 = (\beta_1\xi_1)\xi_2 \implies (\beta_1\xi_1)\xi_2. \ \Pio \\ \Pi\Pi \ (\beta_1\xi_1)\xi_2 \implies (\beta_1\xi_1)\xi_2 = \beta_1\xi \implies \beta_2\xi = (\beta_1 \implies \beta_2)\xi.$$

Задача 2

Ако
$$M^{\tau}\in \Lambda^T$$
 и $FV(M^{\tau})=\{x_1^{\sigma_1},x_2^{\sigma_2},...,x_n^{\sigma_n}\}$ да се докаже, че Γ