XDG - eXtensible Dependency Grammar

Ralph Debusmann

rade@ps.uni-sb.de

Programming Systems Lab

Universität des Saarlandes

Overview

- 1. Introduction
- 2. Introducing XDG
- 3. First instance: TDG
- 4 Second instance: TDGS
- 5. Syntax-semantics interface to CLLS
- 6. Conclusion

Overview

- 1. Introduction
- 2. Introducing XDG
- 3. First instance: TDG
- 4 Second instance: TDGS
- 5. Syntax-semantics interface to CLLS
- 6. Conclusion

Introduction

- idea: parse natural language utterances and construct its corresponding semantic representation
- i.e. our goal is a function f from a string of words W* to a set of semantic representations S:

$$f: W^* \rightarrow 2^S$$

we specify f using a grammar formalism

Existing grammar formalisms

- most popular: formalisms based on context-free grammar, e.g.
 - LFG (Bresnan/Kaplan 82)
 - GB (Chomsky 86)
 - TAG (Joshi 87)
 - HPSG (Pollard/Sag 94)
- less popular: formalisms based on dependency grammar, e.g.:
 - FGD (Sgall 86)*
 - MTT (Melcuk 88)*
 - WG (Hudson 90)*
 - TDG (Duchier/Debusmann 01)*
- why? no syntax-semantics interface

Towards a syntax-semantics interface for TDG

- two steps towards a syntax-semantics interface for TDG:
 - generalize TDG to a meta grammar formalism: XDG (eXtensible Dependency Grammar)
 - 2. instantiate XDG to obtain a grammar formalism with a syntax-semantics interface (TDGS)

Overview

- 1. Introduction
- 2. Introducing XDG
- 3. First instance: TDG
- 4 Second instance: TDGS
- 5. Syntax-semantics interface to CLLS
- 6 Conclusion

• the input string of an XDG analysis $w_1 \dots w_n$ consists of words w from the set of words W

• the words w_1, \dots, w_n correspond one-to-one to nodes $v_1 \dots v_n$ in node set V

• these nodes $v_1 \dots v_n$ are shared across the m dimensions $D = \{d_1, \dots, d_m\}$

- these nodes $v_1 \dots v_n$ are shared across the m dimensions $D = \{d_1, \dots, d_m\}$
- a dimension $d \in D$ corresponds to a directed labeled graph (V, E_d) , where $E_d = V \times V \times \mathcal{L}_d$. \mathcal{L}_d is the set of edge labels on dimension d.

• each dimension d is subject to a set P_d of *principles*

- each dimension d is subject to a set P_d of *principles*
- ullet the principles are drawn from a shared *principles pool* P

- each dimension d is subject to a set P_d of *principles*
- the principles are drawn from a shared principles pool P
- we partition P into the set of intra-dimensional principles P' (apply only within one dimension) and the set of inter-dimensional principles P'' (apply across several dimensions):

- each dimension d is subject to a set P_d of *principles*
- the principles are drawn from a shared principles pool P
- we partition P into the set of intra-dimensional principles P' (apply only within one dimension) and the set of inter-dimensional principles P'' (apply across several dimensions):

• here is the principles pool for this talk. The principles are parametrized e.g. by the dimension on which they apply and functions with domain V, called *features*:

dag(d:D)

• here is the principles pool for this talk. The principles are parametrized e.g. by the dimension on which they apply and functions with domain V, called *features*:

dag(d:D)

tree(d:D)

```
\deg(d:D)

\operatorname{tree}(d:D)

\operatorname{out}(d:D,\operatorname{out_d}:V\to 2^{\mathcal{L}'_d})
```

```
\deg(d:D)
\operatorname{tree}(d:D)
\operatorname{out}(d:D,\operatorname{out_d}:V\to 2^{\mathcal{L}_d'})
\operatorname{in}(d:D,\operatorname{in_d}:V\to 2^{\mathcal{L}_d'})
```

```
\begin{aligned} &\deg(d:D) \\ &\operatorname{tree}(d:D) \\ &\operatorname{out}(d:D,\operatorname{out_d}:V\to 2^{\mathcal{L}_d'}) \\ &\operatorname{in}(d:D,\operatorname{in_d}:V\to 2^{\mathcal{L}_d'}) \\ &\operatorname{order}(d:D,N_d,\operatorname{on_d}:V\to N_d,\prec_d) \end{aligned}
```

```
dag(d:D)
tree(d:D)
out(d:D,out_d:V\to 2^{\mathcal{L}'_d})
in(d:D,in_d:V\to 2^{\mathcal{L}'_d})
order(d:D,N_d,on_d:V\to N_d,\prec_d)
climbing(d_1:D,d_2:D)
```

```
dag(d:D)
tree(d:D)
out(d:D,out_d:V\to 2^{\mathcal{L}'_d})
in(d:D,in_d:V\to 2^{\mathcal{L}'_d})
order(d:D,N_d,on_d:V\to N_d,\prec_d)
climbing(d_1:D,d_2:D)
linking(d_1:D,d_2:D,link_{d_1}:V\to (\mathcal{L}_{d_1}\to 2^{\mathcal{L}_{d_2}}))
```

Dag principle

dag(d:D): Each analysis on dimension d is a directed acyclic graph.

Tree principle

tree(d:D): Each analysis on dimension d is a tree.

Out principle

 $\operatorname{out}(d:D,\operatorname{out_d}:V\to 2^{\mathcal{L}_d'})$: The outgoing edges of a node on dimension d must satisfy in label and number the stipulation of the corresponding out_d feature.

Out principle

 $\operatorname{out}(d:D,\operatorname{out_d}:V\to 2^{\mathcal{L}_d'})$: The outgoing edges of a node on dimension d must satisfy in label and number the stipulation of the corresponding out_d feature.

• here, \mathcal{L}_d' is the set of label patterns ℓ' , defined by the following abstract syntax:

$$\ell' ::= \ell \mid \ell? \mid \ell* \qquad \ell \in \mathcal{L}_d$$

Out principle

 $\operatorname{out}(d:D,\operatorname{out_d}:V\to 2^{\mathcal{L}'_d})$: The outgoing edges of a node on dimension d must satisfy in label and number the stipulation of the corresponding out_d feature.

• here, \mathcal{L}'_d is the set of label patterns ℓ' , defined by the following abstract syntax:

$$\ell' ::= \ell \mid \ell? \mid \ell* \qquad \ell \in \mathcal{L}_d$$

• ℓ : precisely one outgoing edge, ℓ ?: zero or one, ℓ *: zero or more

In principle

 $\operatorname{in}(d:D,\operatorname{in_d}:V\to 2^{\mathcal{L}_d'})$: The incoming edges of a node on dimension d must satisfy in label and number the stipulation of the corresponding in_d feature.

In principle

 $\operatorname{in}(d:D,\operatorname{in_d}:V\to 2^{\mathcal{L}_d'})$: The incoming edges of a node on dimension d must satisfy in label and number the stipulation of the corresponding in_d feature.

symmetrical to the out principle

Order principle

 $\operatorname{order}(d:D,N_d,\operatorname{on_d}:V\to N_d,\prec_d)$: The daughters of a node on dimension d must be ordered according to their edge label and the total order stipulated in \prec_d . The node itself is assigned a node label by the $\operatorname{on_d}$ feature, by which it is positioned with respect to its daughters.

consider:

consider:

• assuming $\prec_d = \ell_1 \prec \ell_2 \prec \ell_3 \prec \ell_4$, the analysis is well-formed, since:

• we still have to position w_3 with respect to its daughters

- we still have to position w_3 with respect to its daughters
- assume $\operatorname{on}_d(v_3) = \mathbf{n}$:

- we still have to position w_3 with respect to its daughters
- assume $\operatorname{on}_d(v_3) = \mathbf{n}$:

• assuming $\prec_d = \ell_1 \prec \ell_2 \prec n \prec \ell_3 \prec \ell_4$, the analysis is well-formed, since:

Climbing principle

 $\operatorname{climbing}(d_1:D,d_2:D)$: A node on dimension d_1 may climb up and land higher up on dimension d_2 .

Linking principle

 $\operatorname{linking}(d_1:D,d_2:D,\operatorname{link}_{d_1}:V\to (\mathcal{L}_{d_1}\to 2^{\mathcal{L}_{d_2}}))$: An edge $v_1-\ell_1\to_{d_1}v_2$ on dimension d_1 is licensed only if v_2 has incoming edge label $\ell_2\in\operatorname{link}_{d_1}(v_1)(\ell_1)$ on dimension d_2 .

• features $f:V\to X$ are defined by means of the *lexicon*

- features $f: V \to X$ are defined by means of the *lexicon*
- the lexicon is a function I : $W \to 2^E$ mapping words to sets of lexical entries

- features $f: V \to X$ are defined by means of the *lexicon*
- the lexicon is a function I : $W \to 2^E$ mapping words to sets of lexical entries
- in an analysis, only one lexical entry is assigned to each node by selection function $s: 2^E \to E$

- features $f: V \to X$ are defined by means of the *lexicon*
- the lexicon is a function I : $W \to 2^E$ mapping words to sets of lexical entries
- in an analysis, only one lexical entry is assigned to each node by selection function $s: 2^E \to E$
- lexical entries are records describing functions $f': E \to X$

- features $f: V \to X$ are defined by means of the *lexicon*
- the lexicon is a function I : $W \to 2^E$ mapping words to sets of lexical entries
- in an analysis, only one lexical entry is assigned to each node by selection function $s: 2^E \to E$
- lexical entries are records describing functions $f': E \to X$
- f can now be defined as follows:

where word w corresponds to node v.

• the input string $w_1 \dots w_n$ consists of words $w \in W$

• these words correspond one-to-one to nodes $v_1 \dots v_n$ in node set V

• each word w_i in the input string is assigned a set of lexical entries $\{e_1,\ldots,e_{k_i}\}$

each analysis selects for each node one of these lexical entries

• the node set V is shared across the m dimensions $D = \{d_1, \ldots, d_m\}$

Overview

- 1. Introduction
- 2. Introducing XDG
- 3. First instance: TDG
- 4. Second instance: TDGS
- 5. Syntax-semantics interface to CLLS
- 6. Conclusion

TDG grammar

 now we can instantiate XDG to obtain a TDG grammar (Duchier/Debusmann 01):

TDG grammar

 now we can instantiate XDG to obtain a TDG grammar (Duchier/Debusmann 01):

```
\begin{split} D &= \{\mathsf{ID}, \mathsf{LP}\} \\ \\ P_{\mathsf{ID}} &= \{\mathsf{tree}(\mathsf{ID}), \mathsf{out}(\mathsf{ID}, \mathsf{out}_{\mathsf{ID}}), \mathsf{in}(\mathsf{ID}, \mathsf{in}_{\mathsf{ID}})\} \\ \mathcal{L}_{\mathsf{ID}} &= \{\mathsf{subj}, \mathsf{obj}, \mathsf{vinf}\} \\ \\ P_{\mathsf{LP}} &= \{\mathsf{tree}(\mathsf{LP}), \mathsf{out}(\mathsf{LP}, \mathsf{out}_{\mathsf{LP}}), \mathsf{in}(\mathsf{LP}, \mathsf{in}_{\mathsf{LP}}), \\ &\quad \mathsf{order}(\mathsf{LP}, N_{\mathsf{LP}}, \mathsf{on}_{\mathsf{LP}}, \prec_{\mathsf{LP}}), \mathsf{climbing}(\mathsf{ID}, \mathsf{LP})\} \\ \mathcal{L}_{\mathsf{LP}} &= \{\mathsf{mf}, \mathsf{vcf}\} \\ \\ N_{\mathsf{LP}} &= \{\mathsf{n}, \mathsf{v}\} \\ \\ \prec_{\mathsf{LP}} &= \mathsf{n} \prec \mathsf{mf} \prec \mathsf{vcf} \prec \mathsf{v} \end{split}
```

intra-dimensional principles		
dimensions	ID	LP
inter-dimensional principles		

consists of two dimensions: ID and LP

- consists of two dimensions: ID and LP
- the models on both dimensions must be trees (ID tree, LP tree)

- consists of two dimensions: ID and LP
- the models on both dimensions must be trees (ID tree, LP tree)
- the ID tree is unordered, the LP tree is ordered by the order principle

- consists of two dimensions: ID and LP
- the models on both dimensions must be trees (ID tree, LP tree)
- the ID tree is unordered, the LP tree is ordered by the order principle
- the LP tree is a flattening of the ID tree by virtue of the climbing principle

Example

Example

Example

Lexical entry signature

• includes all features required by the TDG principles:

Lexical entry signature

includes all features required by the TDG principles:

$$\begin{bmatrix} \text{ID} & : & \begin{bmatrix} \text{in} & : & 2^{\mathcal{L}'_{\mathsf{ID}}} \\ \text{out} & : & 2^{\mathcal{L}'_{\mathsf{ID}}} \end{bmatrix} \\ \text{ID} & : & \begin{bmatrix} \text{in} & : & 2^{\mathcal{L}'_{\mathsf{ID}}} \\ \text{on} & : & 2^{\mathcal{L}'_{\mathsf{LP}}} \end{bmatrix} \end{bmatrix}$$

Example lexicon: nouns

Example lexicon: nouns

Example lexicon: verbs

```
   \begin{bmatrix} \text{ID} & : & \text{in} & : & \{\text{vinf?}\} \\ \text{out} & : & \{\text{obj}\} \end{bmatrix} \\ \text{ID} & : & \begin{bmatrix} \text{in} & : & \{\text{vcf?}\} \\ \text{on} & : & \text{v} \\ \text{out} & : & \emptyset \end{bmatrix}
```

Example lexicon: verbs

```
   \begin{bmatrix} \mathsf{ID} & : & \mathsf{in} & : & \mathsf{\{vinf?\}} \\ \mathsf{out} & : & \mathsf{\{obj\}} \end{bmatrix} \\ \mathsf{LP} & : & \mathsf{on} & : & \mathsf{v} \\ \mathsf{out} & : & \emptyset \end{bmatrix}
```

```
scheint \mapsto \begin{bmatrix} & \text{in} & : & \emptyset & \\ & \text{out} & : & \{\text{subj}, \text{vinf}\} & \end{bmatrix} \\ & \begin{bmatrix} & \text{in} & : & \emptyset \\ & & \text{on} & : & \emptyset \\ & & \text{out} & : & \{\text{mf*}, \text{vcf?}\} & \end{bmatrix}
```

Overview

- 1. Introduction
- 2. Introducing XDG
- 3. First instance: TDG
- 4. Second instance: TDGS
- 5. Syntax-semantics interface to CLLS
- 6. Conclusion

TDGS grammar

 next, we prepare the construction of a semantics. Therefore, we instantiate XDG to obtain TDGS (TDG with Semantics):

TDGS grammar

 next, we prepare the construction of a semantics. Therefore, we instantiate XDG to obtain TDGS (TDG with Semantics):

```
\begin{split} D &= \{ \mathsf{ID}, \mathsf{LP}, \mathsf{TH} \} \\ \\ P_{\mathsf{ID}} &= \{ \mathsf{tree}(\mathsf{ID}), \mathsf{out}(\mathsf{ID}, \mathsf{out}_{\mathsf{ID}}), \mathsf{in}(\mathsf{ID}, \mathsf{in}_{\mathsf{ID}}) \} \\ \mathcal{L}_{\mathsf{ID}} &= \{ \mathsf{subj}, \mathsf{obj}, \mathsf{vinf} \} \\ \\ P_{\mathsf{LP}} &= \{ \mathsf{tree}(\mathsf{LP}), \mathsf{out}(\mathsf{LP}, \mathsf{out}_{\mathsf{LP}}), \mathsf{in}(\mathsf{LP}, \mathsf{in}_{\mathsf{LP}}), \\ &\quad \mathsf{order}(\mathsf{LP}, N_{\mathsf{LP}}, \mathsf{on}_{\mathsf{LP}}, \prec_{\mathsf{LP}}), \mathsf{climbing}(\mathsf{ID}, \mathsf{LP}) \} \\ \mathcal{L}_{\mathsf{LP}} &= \{ \mathsf{mf}, \mathsf{vcf} \} \\ \\ N_{\mathsf{LP}} &= \{ \mathsf{n}, \mathsf{v} \} \\ \\ \prec_{\mathsf{LP}} &= \mathsf{n} \prec \mathsf{mf} \prec \mathsf{vcf} \prec \mathsf{v} \end{split}
```

TDGS grammar

 next, we prepare the construction of a semantics. Therefore, we instantiate XDG to obtain TDGS (TDG with Semantics):

```
\begin{array}{lcl} D & = & \{ \mathsf{ID}, \mathsf{LP}, \mathsf{TH} \} \\ \\ P_{\mathsf{TH}} & = & \{ \mathsf{dag}(\mathsf{TH}), \mathsf{out}(\mathsf{TH}, \mathsf{out}_{\mathsf{TH}}), \mathsf{in}(\mathsf{TH}, \mathsf{in}_{\mathsf{TH}}), \\ \\ & & \mathsf{climbing}(\mathsf{TH}, \mathsf{ID}), \mathsf{linking}(\mathsf{TH}, \mathsf{ID}, \mathsf{link}_{\mathsf{TH}} \} \\ \\ \mathcal{L}_{\mathsf{TH}} & = & \{ \mathsf{act}, \mathsf{pat}, \mathsf{prop} \} \end{array}
```


• consists of an ID tree, an LP tree and a TH dag

- consists of an ID tree, an LP tree and a TH dag
- ID and LP tree as in TDG

- consists of an ID tree, an LP tree and a TH dag
- ID and LP tree as in TDG
- the TH dag is a directed acyclic graph reflecting semantic argument structure, rather than syntactic argument structure

- consists of an ID tree, an LP tree and a TH dag
- ID and LP tree as in TDG
- the TH dag is a directed acyclic graph reflecting semantic argument structure, rather than syntactic argument structure
- the LP tree is a flattening of the ID tree by virtue of the climbing principle

- consists of an ID tree, an LP tree and a TH dag
- ID and LP tree as in TDG
- the TH dag is a directed acyclic graph reflecting semantic argument structure, rather than syntactic argument structure
- the LP tree is a flattening of the ID tree by virtue of the climbing principle
- the ID tree is a flattening of the TH dag, again by virtue of the climbing principle

Lexical entry signature

```
\begin{bmatrix} \text{ID} & : & \begin{bmatrix} \text{in} & : & 2^{\mathcal{L}'_{\mathsf{ID}}} \\ \text{out} & : & 2^{\mathcal{L}'_{\mathsf{ID}}} \end{bmatrix} \\ \text{in} & : & 2^{\mathcal{L}'_{\mathsf{ID}}} \end{bmatrix} \\ \text{LP} & : & \text{on} & : & N_{\mathsf{LP}} \\ \text{out} & : & 2^{\mathcal{L}'_{\mathsf{LP}}} \end{bmatrix} \\ \text{out} & : & 2^{\mathcal{L}'_{\mathsf{TH}}} \\ \text{TH} & : & \begin{bmatrix} \text{in} & : & 2^{\mathcal{L}'_{\mathsf{TH}}} \\ \text{out} & : & 2^{\mathcal{L}'_{\mathsf{TH}}} \end{bmatrix} \\ \text{link} & : & \mathcal{L}_{\mathsf{TH}} \to 2^{\mathcal{L}_{\mathsf{ID}}} \end{bmatrix} \end{bmatrix}
```

Example lexicon: nouns

Example lexicon: nouns

Example lexicon: verbs

```
 \begin{bmatrix} \text{ In } : & \{\text{prop?}\} \\ \text{ Out } : & \{\text{act, pat}\} \\ \text{ link } : & \{\text{act} \mapsto \{\text{subj}\}, \text{pat} \mapsto \{\text{obj}\}\} \end{bmatrix} \end{bmatrix}
```

Example lexicon: verbs

Overview

- 1. Introduction
- 2. Introducing XDG
- 3. First instance: TDG
- 4 Second instance: TDGS
- 5. Syntax-semantics interface to CLLS
- 6. Conclusion

Syntax-semantics interface to CLLS

 now, we can make use of the information contained in the TDGS analyses for creating the interface to CLLS

Syntax-semantics interface to CLLS

- now, we can make use of the information contained in the TDGS analyses for creating the interface to CLLS
- we construct underspecified semantics in the Constraint Language for Lambda Structures (CLLS, Egg et al 01)

CLLS

• CLLS: constraint language talking about *lambda structures*

CLLS

- CLLS: constraint language talking about *lambda structures*
- ullet a lambda structure represents a higher-order λ -term in a graph

Example: weak reading

• weak reading of "Jeder Mann liebt eine Frau": λ -term:

Example: weak reading

• weak reading of "Jeder Mann liebt eine Frau": λ -term:

```
(\text{every man})(\lambda x.\\ (\text{a woman})(\lambda y.\\ (\text{love }y)\ x))
```

Example: weak reading

• weak reading of "Jeder Mann liebt eine Frau": λ -term:

$$(\text{every man})(\lambda x.\\ (\text{a woman})(\lambda y.\\ (\text{love }y)\ x))$$

CLLS lambda structure:

Example: strong reading

• strong reading of "Jeder Mann liebt eine Frau": λ -term:

Example: strong reading

• strong reading of "Jeder Mann liebt eine Frau": λ -term:

```
\begin{array}{c} (\mathsf{a} \ \mathsf{woman})(\lambda y. \\ (\mathsf{every} \ \mathsf{man})(\lambda x. \\ (\mathsf{love} \ y) \ x)) \end{array}
```

Example: strong reading

• strong reading of "Jeder Mann liebt eine Frau": λ -term:

$$(\mathsf{a} \ \mathsf{woman})(\lambda y. \\ (\mathsf{every} \ \mathsf{man})(\lambda x. \\ (\mathsf{love} \ y) \ x))$$

CLLS lambda structure:

Underspecifi cation

• encodes the weak and strong readings in one CLLS constraint:

Syntax-semantics interface: nouns

• in the lexicon, assign CLLS fragments to words, e.g.:

Syntax-semantics interface: nouns

• identify position of root:

Syntax-semantics interface: nouns

identify position of scope:

Syntax-semantics interface: nouns

identify position of the lambda binder:

Syntax-semantics interface: nouns

establish mapping from TH edge labels to lambda binders:

Syntax-semantics interface: verbs

also identify root node:

Syntax-semantics interface: verbs

• identify variable positions:

Syntax-semantics interface: verbs

 and establish a mapping from TH edge labels to variable positions:

Meaning assembly

• finally, use the information contained in the TH dag to get the CLLS constraints:

Meaning assembly

• finally, use the information contained in the TH dag to get the CLLS constraints:

$$v-\ell
ightarrow_{\mathsf{TH}} v' \; \Rightarrow \; v.\mathsf{var}.\ell \qquad v'.\mathsf{lam}.\ell \quad \wedge \\ v'.\mathsf{s} \qquad v.\mathsf{root}$$

liebt-act $\rightarrow_{\mathsf{TH}} Jeder\ Mann \Rightarrow$

$$liebt.$$
var.act $Jeder\ Mann.$ lam.act \land $Jeder\ Mann.$ s $liebt.$ root

$$liebt$$
-pat $\rightarrow_{\mathsf{TH}} eine \ Frau \Rightarrow$

$$liebt.$$
var.pat $eine\ Frau.$ lam.pat \land $eine\ Frau.$ s $liebt.$ root

Overview

- 1. Introduction
- 2. Introducing XDG
- 3. First instance: TDG
- 4. Second instance: TDGS
- 5. Syntax-semantics interface to CLLS
- 6. Conclusion

introduced eXtensible Dependency Grammar (XDG) meta grammar formalism

- introduced eXtensible Dependency Grammar (XDG) meta grammar formalism
- XDG is a generalization of Topological Dependency Grammar (TDG)

- introduced eXtensible Dependency Grammar (XDG) meta grammar formalism
- XDG is a generalization of Topological Dependency Grammar (TDG)
- XDG can be instantiated to yield particular grammar formalisms, e.g. TDG, and TDGS

- introduced eXtensible Dependency Grammar (XDG) meta grammar formalism
- XDG is a generalization of Topological Dependency Grammar (TDG)
- XDG can be instantiated to yield particular grammar formalisms, e.g. TDG, and TDGS
- TDGS includes a TH dimension to reflect semantic argument structure

- introduced eXtensible Dependency Grammar (XDG) meta grammar formalism
- XDG is a generalization of Topological Dependency Grammar (TDG)
- XDG can be instantiated to yield particular grammar formalisms, e.g. TDG, and TDGS
- TDGS includes a TH dimension to reflect semantic argument structure
- the TH information can be used by a syntax-semantics interface to construct underspecified CLLS semantics

- introduced eXtensible Dependency Grammar (XDG) meta grammar formalism
- XDG is a generalization of Topological Dependency Grammar (TDG)
- XDG can be instantiated to yield particular grammar formalisms, e.g. TDG, and TDGS
- TDGS includes a TH dimension to reflect semantic argument structure
- the TH information can be used by a syntax-semantics interface to construct underspecified CLLS semantics