```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import learning_curve
from sklearn.model_selection import train_test_split
```

#Import data
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv"
data = pd.read_csv(url, sep=';')
data

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.00100	3.00	0.45	8.8	6
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.99400	3.30	0.49	9.5	6
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.99510	3.26	0.44	10.1	6
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	9.9	6
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	9.9	6
4893	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27	0.50	11.2	6
4894	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15	0.46	9.6	5
4895	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99	0.46	9.4	6
4896	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34	0.38	12.8	7
4897	6.0	0.21	0.38	0.8	0.020	22.0	98.0	0.98941	3.26	0.32	11.8	6

```
4898 rows × 12 columns
# Split the dataset into training and testing sets
X = data[['alcohol']].values
y = data['quality'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=0)
# Create a linear regression object and fit the model to the training data
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predict the quality of the wine for the test data
y_pred = regressor.predict(X_test)
# Print the model's parameters
print('Coefficients: ', regressor.coef_)
print('Intercept: ', regressor.intercept_)
# Print the performance metrics
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
print('Mean Squared Error: ', mse)
print('Root Mean Squared Error: ', rmse)
print('R-squared: ', r2)
     Coefficients: [0.31100587]
     Intercept: 2.620696868564683
     Mean Squared Error: 0.730644234019256
     Root Mean Squared Error: 0.8547773008329457
     R-squared: 0.1710201454832173
```

```
https://colab.research.google.com/drive/1MKjijP-4kwpnj9oolbKV3euq88DrvjYL#printMode=true
```

train_sizes, train_scores, test_scores = learning_curve(regressor, X, y, cv=5)

Plot the learning curves

train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)

```
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
plt.plot(train_sizes, train_mean, label='Training score')
plt.plot(train_sizes, test_mean, label='Cross-validation score')
plt.fill_between(train_sizes, train_mean - train_std, train_mean + train_std,alpha=0.1)
plt.fill_between(train_sizes, test_mean - test_std, test_mean + test_std,alpha=0.1)
plt.xlabel('Training set size')
plt.ylabel('Score')
plt.title('Learning curves')
plt.legend()
plt.show()
```



```
train_sizes
```

array([391, 1273, 2154, 3036, 3918])

train_scores

test_scores

X