CLASE #4: 7 DE FEBRERO DE 2019

Ejercicio 5.20. Sea f una función real acotada definida en un intervalo cerrado y acotado $I \subset \mathbb{R}$. Si $S \subset I$, se denomina al número

$$\omega_f(S) = \sup\{f(x) - f(y) : x, y \in S\}$$

oscilación de f en S. Para un punto en particular $x_0 \in I$, podemos definir la oscilación de f en x_0 como el número

$$\omega_f(x_0) = \lim_{h \to 0^+} \omega_f(I \cap B_h(x_0)).$$

Probar que este límite existe siempre y que $\omega_f(x_0) = 0$ si y solo si f es continua en x_0 .

Solución. En primer lugar, podemos observar que si $\omega_f(S) < +\infty$, entonces $\omega_f(S) \geq 0$. En efecto, si se tiene $f(x) - f(y) \leq 0$ entonces intercambiando los papeles de x e y, $f(y) - f(x) \geq 0$, de forma que $\omega_f(S) \geq 0$ si es finito. Podríamos así considerar definida la oscilación de f en S por la expresión $\omega_f(S) = \sup\{|f(x) - f(y)| : x, y \in S\}$. Consideremos ahora $x_0 \in I$ y veamos que el límite $\omega_f(x_0)$ siempre existe (si f es acotada e I es compacto). En primer lugar, es un número acotado superiormente por $\omega_f(I)$ (pues este último es el supremo en un conjunto mayor, I, que es mayor cualquier supremo sobre conjuntos más pequeños, $I \cap B_h(x_0)$). Dicha cota superior es además finita, dado que la función f es, por hipótesis, acotada en I. Esto es, existe un número real M > 0 tal que $|f(x)| \leq M$ para todo $x \in I$, y por ende $\omega_f(S) = \sup\{f(x) - f(y) : x, y \in S\} \leq M - (-M) = 2M$. Por último, comprobemos que $[0, \infty) \ni h \mapsto \omega_f(I \cap B_h(x_0))$ es una aplicación monótona decreciente, pues sencillamente

$$\omega_f(I \cap B_{h_1}(x_0)) = \sup\{f(x) - f(y) : x, y \in I \cap B_{h_1}(x_0)\}$$

$$\leq \sup\{f(x) - f(y) : x, y \in I \cap B_{h_2}(x_0)\}$$

$$= \omega_f(I \cap B_{h_2}(x_0))$$

para cualesquiera $0 \le h_1 < h_2$, al tomarse el primer supremo en un conjunto menor que el segundo supremo. Así, deducimos que

$$\lim_{h \to 0^+} \omega_f(I \cap B_h(x_0)) = \inf \{ \omega_f(I \cap B_h(x_0)) : h > 0 \} \ge 0,$$

sabemos que dicha expresión se corresponde con un número real no negativo. Veamos ahora que $\omega_f(x_0)=0$ si y solo si f es continua en x_0 . Supongamos en primer lugar que $\omega_f(x_0)=0$, esto es, para todo $\varepsilon>0$ existe $\eta_{\varepsilon}>0$ de manera que si $0< h \leq \eta_{\varepsilon}$ entonces $\omega_f(I\cap B_h(x_0))\leq \varepsilon$. De esta desigualdad se sigue inmediatamente que para todo $\varepsilon>0$ existe $\delta_{\varepsilon}=\eta_{\varepsilon}/2$ de forma que si $0<|h|<\delta_{\varepsilon}$, se tiene

$$|f(x_0+h)-f(x_0)| \leq \sup\{f(a)-f(b): a,b \in I \cap B_{|h|}(x_0)\} = \omega_f(I \cap B_{|h|}(x_0)) \leq \varepsilon$$
 con lo que f es continua en x_0 . Recíprocamente, supongamos que f es continua en $x_0 \in I$ y veamos que $\omega_f(x_0) = 0$ necesariamente. En efecto, fijado $\varepsilon > 0$, sabemos que existe $\delta_{\varepsilon} > 0$ tal que si $|x - x_0| \leq \delta_{\varepsilon}$ entonces

se tiene que $|f(x) - f(x_0)| \le \varepsilon$. Como hemos comentado anteriormente, y empleando la desigualdad triangular e identidades sencillas relacionadas con el supremo:

$$\omega_{f}(I \cap B_{\delta_{\varepsilon}}(x_{0}))
= \sup\{|f(a) - f(b)| : a, b \in I \cap B_{\delta_{\varepsilon}}(x_{0})\}
= \sup\{|f(a) - f(x_{0}) + f(x_{0}) - f(b)| : a, b \in I \cap B_{\delta_{\varepsilon}}(x_{0})\}
\leq \sup\{|f(a) - f(x_{0})| + |f(x_{0}) - f(b)| : a, b \in I \cap B_{\delta_{\varepsilon}}(x_{0})\}
= \sup\{|f(a) - f(x_{0})| : a \in I \cap B_{\delta_{\varepsilon}}(x_{0})\} +
\sup\{|f(x_{0}) - f(b)| : b \in I \cap B_{\delta_{\varepsilon}}(x_{0})\}
= 2 \sup\{|f(a) - f(x_{0})| : a \in I \cap B_{\delta_{\varepsilon}}(x_{0})\}
\leq 2 \varepsilon$$

Ahora bien, dado que

$$\omega_f(x_0) = \inf\{\omega_f(I \cap B_h(x_0)) : h > 0\} \le \omega_f(I \cap B_{\delta_{\varepsilon}}(x_0)) \le 2\varepsilon$$

cualquiera que sea $\varepsilon > 0$, y puesto que $\omega_f(x_0)$ es independiente de ε , necesariamente $\omega_f(x_0) = 0$, como queríamos comprobar.

Ejercicio 5.21. Supóngase que $f: \mathbb{R} \to \mathbb{R}$ es una función continua y

$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0.$$

Demostrar que f está acotada y que alcanza un máximo o un mínimo. Dar un ejemplo para indicar que no necesariamente se tienen por qué alcanzar tanto un máximo como un mínimo.

Solución. Dado que, por hipótesis, para todo $\varepsilon > 0$ existe $M_{\varepsilon} > 0$ de forma que si $|x| > M_{\varepsilon}$, entonces $|f(x)| \leq \varepsilon$, deducimos tomando $\varepsilon = 1$, por ejemplo, que existe $M_1 > 0$ de forma que $|f(x)| \leq 1$ en $\mathbb{R} \setminus [-M_1, M_1]$. Dado que el intervalo $[-M_1, M_1]$ es compacto y f es continua en éste, ésta es acotada, digamos que existe C > 0 tal que $|f(x)| \leq C$ en $[-M_1, M_1]$. Entonces, $|f(x)| \leq \max\{1, C\}$ en \mathbb{R} , como queríamos probar. Demostremos ahora que la función alcanza un máximo o un mínimo en R. Supuesto que $f \neq 0$, caso trivial, sabremos que existe $x_0 \in \mathbb{R}$ tal que $f(x_0) \neq 0$. Supongamos que $f(x_0) > 0$ y consideremos el intervalo $[-M_c, M_c]$, siendo $c=\frac{1}{2}f(x_0)$. En virtud del Teorema de Weierstraß, en dicho intervalo se alcanza un máximo, como mínimo de valor $f(x_0)$, y recordemos que se tiene $|f(x)| \leq f(x_0)$ para cada $x \in \mathbb{R} \setminus [-M_c, M_c]$. No obstante, puede ser que no se alcance un máximo y un mínimo en \mathbb{R} . Para ello, consideremos, por ejemplo, la función $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = 2^{-x^2}$. Se comprueba que dicha función es continua y alcanza un máximo absoluto en x = 0, pero sin embargo no alcanza un mínimo. La función $f:\mathbb{R} \to \mathbb{R}$ dada por $f(x) = -2^{-x^2}$ tiene un mínimo absoluto en x = 0 pero no tiene máximo en \mathbb{R} , como se muestra en la Figura 2. Un ejemplo más sencillo consiste en considerar las funciones $f: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = \pm (1 - |x|)\chi_{[-1,1]}(x)$, que son continuas y satisfacen naturalmente las hipótesis, pero no tienen mínimos/máximos respectivamente, como se muestra en la Figura 3. Esto concluye el ejercicio.

FIGURA 2. Representación gráfica de $x \mapsto 2^{-x^2}$ (izquierda) y de $x \mapsto -2^{-x^2}$ (derecha), las cuales satisfacen las hipótesis del enunciado pero no tienen mínimo/máximo, respectivamente.

FIGURA 3. Representación gráfica de $x \mapsto (1-|x|)\chi_{[-1,1]}(x)$ (izquierda) y de $x \mapsto (|x|-1)\chi_{[-1,1]}(x)$ (derecha), respectivamente.

Como ejercicio adicional puede comprobarse que la tesis sobre la acotación se sigue verificando si los límites cuando $x \to \pm \infty$ de f(x) son números reales arbitrarios posiblemente distintos, esto es,

$$\lim_{x \to -\infty} f(x) = L_{-\infty} \in \mathbb{R}, \quad \lim_{x \to \infty} f(x) = L_{+\infty} \in \mathbb{R}.$$

¿Qué se puede decir de la existencia de máximos o mínimos? Desde luego, si $L_{-\infty} \neq L_{+\infty}$, podemos usar funciones de la forma $x \mapsto A \arctan(x) + B \cot A$ y B expresados en términos de $L_{-\infty}$ y $L_{+\infty}$ (¿cómo?) de forma que no se alcanza ningún máximo ni ningún mínimo.

Ejercicio 5.22.a. Determinar si la función $f:[1,\infty)\to\mathbb{R}$, f(x)=1/x es uniformemente continua.

Solución. Para que f sea uniformemente continua tenemos que encontrar, fijado $\varepsilon > 0$, un número real $\delta_{\varepsilon} > 0$ de forma que si $x, y \in [1, \infty)$ son cualesquiera satisfaciendo $|x - y| \le \delta_{\varepsilon}$, se tenga $|f(x) - f(y)| \le \varepsilon$. Analizando la última desigualdad,

$$|f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right| = \frac{|x - y|}{|xy|} \le \frac{\delta_{\varepsilon}}{1} \stackrel{!}{\le} \varepsilon,$$

donde hemos empleado que $x, y \ge 1$ y por ende $1/xy \le 1$, deducimos que resulta suficiente tomar $\delta_{\varepsilon} = \varepsilon$ para que el enunciado se verifique. Así, f es uniformemente continua en $[1, \infty)$.

Ejercicio 5.22.b. Determinar si la función $f:(0,1)\to\mathbb{R},\ f(x)=1/x$ es uniformemente continua.

Solución. Intuitivamente, el crecimiento en (0,1) de la función en un entorno de 0 es muy fuerte como para que la continuidad sea uniforme. Así, veamos que existe un número real positivo ε de forma que para todo número real positivo δ , existen $x_{\delta}, y_{\delta} \in (0,1)$ de forma que $|x_{\delta} - y_{\delta}| \leq \delta$ pero

 $|f(x_\delta)-f(y_\delta)|\geq \varepsilon.$ Para explotar el crecimiento entorno a 0 consideremos $\varepsilon=1,$ sin pérdida de generalidad, y elijamos $n_\delta\in\mathbb{N}$ lo suficientemente grande como para que $\delta\geq 2^{-(n_\delta+1)}$ y escojamos, por ejemplo $x_\delta=2^{-n_\delta}$ e $y_\delta=2^{-(n_\delta+1)},$ de forma que $|x_\delta-y_\delta|=2^{-(n_\delta+1)}\leq \delta$ y

$$|f(x_{\delta}) - f(y_{\delta})| = \left| \frac{1}{x_{\delta}} - \frac{1}{y_{\delta}} \right| = \frac{|x_{\delta} - y_{\delta}|}{|x_{\delta}y_{\delta}|} \ge 1$$

si y solo si $|x_{\delta} - y_{\delta}| = 2^{-(n_{\delta}+1)} \ge |x_{\delta}y_{\delta}| = 2^{-(2n_{\delta}+1)}$, lo cual es cierto, como queríamos obtener. Concluimos que f no es, en efecto, uniformemente continua en (0,1).

Otra posibilidad consiste en usar los Criterios de No-Continuidad Uniforme estudiados en teoría.