SUPPLEMENTAL MATERIAL

An adaptive and fully-automated baseline correction method for Raman spectroscopy based on morphological operations and mollification

Hao Chen^{1,2}, Weiliang Xu^{1,2,*}, and Neil G. R. Broderick^{3,2}

*Corresponding Author: Weiliang Xu, email: p.xu@auckland.ac.nz

¹Department of Mechanical Engineering, the University of Auckland, Auckland 1010, New Zealand

²The Dodd-Walls Centre for Photonic and Quantum Technologies, PO Box 56, Dunedin 9054, New Zealand

³Department of Physics, the University of Auckland, Auckland 1010, New Zealand

The four types of baselines described in the paper are generated using the following equations:

1) linear baseline:

*baseline*₁ =
$$0.5 \times r$$
, $r \in [0, 2000]$

2) sine baseline:

baseline_{sin} =
$$1000 \times \sin(\frac{(r+1000)\pi}{1000})$$
, $r \in [0, 2000]$

3) sigmoidal baseline:

baseline_{sig} =
$$\frac{1000}{1 + e^{-0.03(r-1000)}}$$
, $r \in [0, 2000]$

4) 4th order polynomial baseline:

$$baseline_{p} = 80.5 + 0.001519 \times r + 1.6625 \times 10^{-5} \times r^{2} + 6.39 \times 10^{-9} \times r^{3} - 4.6105 \times 10^{-12} \times r^{4}, \quad r \in [0, 2000]$$

Figure S1 The influence of selected structuring element size on the opening operation

Figure S2 The pure Raman signal generated with Gaussian peaks.