# Popular Computing





#### Change of Base

In previous "trip" Problems (The Pi Dragon, The Road to e, The Web of Fibonacci), the computing part of the problem consisted of the moves to be made on the coordinate grid.

In this problem, the moves themselves are simple, and are completely defined by Table A. To insure clarity, Table B shows the result of the transformations of Table A all applied to the point (-9, -9).

| Transformation number | Replace X by: | Replace<br>Y by: |                            |
|-----------------------|---------------|------------------|----------------------------|
| 1                     | 2X + 3        | 2Y ~ 5           |                            |
| 2                     | -X - 1        | [31/2]           | denote<br>r in."           |
| 3                     | 2X            | X - 5            | der<br>er 1                |
| 4                     | [X/2]         | [Y/3]            | brackets de<br>sst integer |
| 5                     | 3X + 1        | Y + 3            | ack<br>in                  |
| 6                     | [3X/2]        | -Y - 2           | Square bra<br>"greatest    |
| 7                     | x - 3         | Y + 2            | uar                        |
| 8                     | -[X/2]        | [-Y/2]           | S = 8                      |

| Transformation number | х                                           | Y                                        |
|-----------------------|---------------------------------------------|------------------------------------------|
|                       | <b>-</b> 9                                  | <b>-</b> 9                               |
| 12345678              | -15<br>8<br>-18<br>-25<br>-26<br>-14<br>-12 | -23<br>-14<br>-11<br>-3<br>-6<br>7<br>-7 |

POPULAR COMPUTING is published monthly at Box 272, Calabasas, California 91302. Subscription rate in the United States is \$15 per year, or \$12 if remittance accompanies the order. For all foreign subscriptions, add \$5 per year. Multiple subscriptions to the same address, add \$5 each; thus, 3 copies per month is \$25 per year, U.S. delivery. Back issues \$1.50 each. Subscriptions may begin with any issue. Subscriptions for qualified undergraduate students half price. Copyright 1974 by POPULAR COMPUTING.

Publisher: Fred Gruenberger Editor: Audrey Gruenberger Associate editor: David Babcock Contributing editors: Richard Andree Paul Armer Advertising manager: Ken W. Sims Art director: John G. Scott

Daniel D. McCracken William C. McGee Table C (page 4) is a table of factorials, in base 9 notation. The circled numbers are the low order, non-zero digits. The sequence of those digits dictates the moves for this trip. That is, we are to apply transformations 1, 2, 6, 6, 3, and so on, to X and Y coordinates, starting at the origin. Thus we have:

| Transformation number | х          | У          |       |
|-----------------------|------------|------------|-------|
|                       | 0          | 0          | START |
| i                     | 3          | <b>-</b> 5 |       |
| 2                     | -4         | <b>-</b> 8 |       |
| 6                     | <b>-</b> 6 | 6          |       |
| 6                     | <b>-</b> 9 | <b>-</b> 8 |       |
| 3                     | -18        | -10        |       |
| 8                     | 9          | 5          |       |
| 2                     | -10        | 7          |       |
| 7                     | -13        | 9          |       |
| 7                     | -16        | 11         |       |

The first ten moves of the trip are shown graphically on the cover. The Problem is this: Where is the 200th point?

The real problem, then, is the calculation of the low order non-zero digits of the factorials in base 9. Table C shows the first 20 of these. Table D shows the digits from 101 through 200. The digits from 21 through 100 are to be calculated, and all 200 digits used to dictate the transformations for the trip.

D Low order non-zero digits of the factorials, base 9; digits for positions for 101! through 200!

43367 45663 47833 66637 15336 33685 76632 24336 74588 73361 72775 66325 48873 36172 22433 67451 12663 82733 68576 63336

| 1  | 1                   |
|----|---------------------|
| 2  | 2                   |
| 3  | <u></u>             |
| 4  | 26                  |
| 5  | 1 4(3)              |
| 6  | 8(8)0               |
| 7  | 6 8(2)0             |
| 8  | 6 1 2(7)0           |
| 10 | 6 1 2(7)0 0         |
| 11 | 6740(7)00           |
| 12 | 8 3 0 8 8 (5) 0 0   |
| 13 | 1211283(6)00        |
| 14 | 17058212600         |
| 15 | 270017301(3)00      |
| 16 | 456030202(2)000     |
| 17 | 82065335385000      |
| 18 | 164834137241(4)000  |
| 20 | 340768275482(8)0000 |
|    | fig. C              |
|    | · 'y' ·             |

|       |          |          |               | Bac    | k is          | sues          | are           | stil          | av            | ailab         | le            |                            |                      |
|-------|----------|----------|---------------|--------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------------------|----------------------|
|       |          |          |               | MAY    |               |               |               |               |               |               |               |                            |                      |
| 10 22 | 11<br>23 | 12<br>24 | 1<br>13<br>25 | 14) 26 | 3<br>15<br>27 | 4<br>16<br>28 | 5<br>17<br>29 | 6<br>18<br>30 | 7<br>19<br>31 | 8<br>20<br>32 | 9<br>21<br>33 | Vol. 1<br>Vol. 2<br>Vol. 3 | 1973<br>1974<br>1975 |

### A Merging Problem

Given four blocks of storage as follows:

Ten words addressed at A through A+9. Ten words addressed at B through B+9. Ten words addressed at C through C+9. Thirty words addressed at D through D+29.

Blocks A, B, and C contain numbers which are in ascending order within each block; there are no duplicates among these 30 numbers. We want to merge the 30 numbers into block D. (It would be feasible to simply move all 30 numbers into block D and then sort block D, but this would be inefficient.)

This is to be a subroutine. The main routine has already verified that blocks A, B, and C are as stated, so the subroutine need not edit the data.

- A) Draw a flowchart of the logic involved.
- B) Outline a procedure to test a debugged program that follows the logic of that flowchart.

There is shown below a set of sample data, to insure that the situation is clear, but of course the logic must apply to any data that fits the given conditions.

| 13 | 14  | 15  | 28  | 35  | 57          | 128 | 350 | 600 | 1000 |
|----|-----|-----|-----|-----|-------------|-----|-----|-----|------|
| A  | A+1 | A+2 | A+3 | A+4 | <b>A</b> +5 | A+6 | A+7 | A+8 | A+9  |
|    |     |     | -1  |     |             |     |     |     |      |
| 1  | 16  | 50  | 51  | 52  | 300         | 400 | 500 | 991 | 999  |
| В  | B+1 | B+2 | B+3 | B+4 | B+5         | B+6 | B+7 | B+8 | B+9  |
|    |     |     |     |     |             |     |     |     |      |
| 10 | 12  | 20  | 40  | 60  | 80          | 81  | 82  | 83  | 1001 |
| C  | C+1 | C+2 | C+3 | C+4 | C+5         | C+6 | C+7 | C+8 | C+9  |

### Roots to Order-

In the study of numerical methods, it is expedient to have equations at hand for which various algorithms for finding roots may be applied. What is wanted are polynomials of not too high degree, with integral coefficients that are fairly small, and having irrational roots. For pedagogical reasons, the roots should be easy to predict by the instructor.

Consider the possibilities:

- 1. Use quadratics; the roots can be checked by formula. The roots can also be found by formula, and a student may properly wonder what we're doing. The degree is too small.
- 2. Fabricate an equation by building up linear factors, such as:

$$(x-3)(x+7/2)(x-5)=0.$$

Such an equation will either have rational roots, or, if it has irrational roots, then its coefficients will also be irrational.

3. Combine the first two methods, as in:

$$(x^2 + 4x - 7)(x - 3) = 0$$

where the left factor has zeros at (-2  $\pm \sqrt{11}$ ). But the third root, again, is rational, which spoils the problem.

4. Use stock equations for which the roots have been calculated, such as Wallis' equation:

$$x^3 - 2x - 5 = 0$$

for which the real root is known to some 2000 digits.

5. Make up an equation with known rational roots and then translate it vertically so that the roots become irrational. For example, the equation:

$$x^3 - 5x^2 - 29x + 105 = 0$$

has roots at 3, -5, and 7. Thus, the equation

$$x^3 - 5x^2 - 29x + 104 = 0$$

has roots that are near 3, -5, and 7 and are irrational. (The smallest root is 2.9689.)

6. Work the problem backwards. Cardan's formulas solve the cubic analytically, so we can work from the inside out. The critical part of the formulas calls for the value of:

$$R = \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$$

so we can pick values of p and q to make that term rational. For example, if q is 6 and p is 9, the radical has the value 6. Then, for

$$A = (-q/2) + R$$

$$B = (-q/2) - R$$

a root of the cubic  $x^3 + px + q = 0$  is:

For the example given, we have:

which can be readily calculated from a table of cube roots:

for the equation  $x^3 + 9x + 6 = 0$ .

The equation can be translated by replacing x by x + k. For example, if x-3 replaces x, we have:

$$x^3 - 9x^2 + 36x - 48 = 0$$

for which the roots are 3 greater than the original, or

$$x = 2.362165747255504$$
.

### Gauss's Lattice Problem

PROBLEM 48

This problem is expounded in a booklet, "Lattice Points in a Circle; Experiments and Conjecture," by M. E. Rose, Computing and Mathematics Curriculum Project, University of Denver, Department of Mathematics, Denver, Colorado 80210.

The problem is this: how many points of a lattice are in or on a circle of radius R centered at the origin? The Figures show the cases for  $R=1,\,2,\,3,\,$  and  $4,\,$  for which the count of points in or on each circle is 5, 13, 29, and 49 respectively. It was a conjecture of Gauss' that it is not possible to write a formula for the number of points, Q, as a function of R. For a given R, the number Q can be counted by finding all values of X and Y that satisfy

$$x^2 + y^2 \le R^2 \tag{1}$$

Clearly, a direct evaluation of (1) would be inefficient, since it does not capitalize on the symmetry of the problem. Nevertheless, the flowchart (2) shows a straightforward approach to the problem.

Much greater computational efficiencies can be obtained by observing (as Rose's paper does) that the decision involved in (1) is trivial for most of the points within the circle. The points for which computation is needed are those lying close to the circle. By using this idea and other shortcuts, Richard Sandin calculated (1/14/72) the results shown in the following table:

| R                                                                                                 | Q                                                                                                                                           |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 10<br>20<br>30<br>40<br>50<br>100<br>200<br>300<br>400<br>500<br>600<br>700<br>800<br>900<br>1000 | 317<br>1257<br>2821<br>5025<br>7845<br>31417<br>125629<br>282697<br>502625<br>785349<br>1130913<br>1539297<br>2010573<br>2544569<br>3141549 |  |  |



A possible solution to the lattice problem of Gauss.

### Formulas

The sum of the consecutive integers from 1 to K is given by:

$$\frac{K(K+1)}{2}$$

and for the consecutive integers from L to K by:

$$(1/2)(K^2 + K - L^2 - L).$$

The sum of the squares of the consecutive integers from 1 to K is given by:

$$(1/6)(K)(K + 1)(2K + 1).$$

The sum of the cubes of the consecutive integers from 1 to k is given by:

$$(1/4)(K^2)(K+1)^2$$
.

The sum of the 4th powers of the consecutive integers from 1 to K is given by:

$$(1/30)(6K^5 + 15K^4 + 10K^3 - K).$$

The sum of the 5th powers of the consecutive integers from 1 to K is given by:

$$(1/12)(2K^6 + 6K^5 + 5K^4 - K^2)$$

The sum of the 6th powers of the consecutive integers from 1 to K is given by:

$$(1/42)(6K^7 + 21K^6 + 21K^5 - 7K^3 + K).$$

For the series

$$1.3 + 2.4 + 3.5 + 4.6 + 5.7 + ... + K(K + 2)$$

the sum is given by:

$$(1/6)(2K^3 + 9K^2 + 7K).$$

CANDY **EVERY** MISTY HEAVY GREAT EDICT NIGHT FAULT JAUNT PRINT EVENT TNPUT ITEMS DROSS SUGAR RADAR LIVER OTTER RULER BAKER ADDER QUEEN CREAM LOYAL FINAL STEEL STALL BREAK DRINK ROUGH YOUNG WRONG BRING DUNCE PRIDE KNIFE UNCLE GRIME DRONE

WHOSE

FALSE

WRITE

ELITE

ABOVE

MOVED

TRIED

GRAND

BROOD

UMBRA

ZEBRA

### A Way to Sort

The 50 words on the left are in alphabetic order. The ordering is not the customary one: the major sort is on the last letter, in descending order; the intermediate sort is on the second last letter, in ascending order; the minor sort is on the third last letter, in descending order.

- (A) Write a program to accept any number of 5-letter words and output them with the same sorting scheme.
- (B) The same scheme has been applied to the 25 words on the right. Modify your program from (A) to accept any number of words of any length greater than two letters and output them resorted the same way.

SATISFY CAT BROUGHT ADAMANT OUTPUT ICICLES DELIVER CLOISTER WONDER TOBACCO STUDIO FORTRAN DECISION NATION ALGORITHM MUSEUM PRINCIPAL ASTONISH STRING SHERIFF TTDE STORAGE STRIVE TOLD BASIC

Sequences of Triangles

Starting with an equilateral triangle with unit area, a sequence of equilateral triangles is formed in which the area of one is the altitude of the previous one. The problem was to find the altitude of the 100th such triangle.

Several readers pointed out that the sequence converges, so that

$$A_{n+1} = \sqrt[4]{3} \sqrt{A_n}$$

from which it can be deduced that

$$A_{\infty} = \sqrt{3}$$
.

But that wasn't the problem; the problem was to find  ${\rm A}_{100}$ . Associate Editor David Babcock calculated:

 $A_{100} = 1.7320508075688772935274463415051218$ 

which agrees with the square root of 3 (see PC3-6) to 31 significant digits.

## ? FRUSTRATED

TRYING TO FIND GOOD COMPUTER LITERATURE...

. . . AND THE TIME TO READ IT?

Hire full-time research for just \$4.25 a month! Here's what you get:

- 1. a staff of computer pros continuously monitoring the computer literature
- 2. a technical library source of 59 computer publications and 123 trade/management publications
- 3. news of conferences, meetings, seminars
- 4. reviews of new books
- original reports about problems faced and solved, but not yet reported in the literature

...presented in report form each month. Write for information about DATA PROCESSING DIGEST. Or send \$4.25 for our current issue and apply to your continuing subscription (12 issues, \$51).

Data Processing Digest, Inc. %6920 LA TIJERA BOULEVARD, LOS ANGELES, CALIFORNIA 80045 / PHONE (213) 176-4334



| Name    |       |     |
|---------|-------|-----|
| Dept    |       |     |
| Company |       |     |
| Address |       |     |
| City    | State | Zip |

PC



# Maze Game

Given the numbers from 1 to 100. Starting at 1, a move is made to another number according to these rules:

From number X (1)  $x^2$ proceed to (2)  $2^X$ the number (3)  $x^3$ given by: (4)  $3^X$ (5)  $|x^2 - x^3|$ 

[all arithmetic is modulo 100, and rule (5) operates on the results of modulo 100 arithmetic for the squares and cubes]

One of the five rules will usually select a new number; that is, one not previously chosen. If not, then the lowest number still available is selected. When the number 100 is reached, the game is over. Normally, all 100 numbers will be selected in each game.

Consider the selection of the numbers as a journey on the pattern shown here:

| 73  | 74 | 75 | 78 | 17 | 78 | 79 | 80 | 31 | 82 |
|-----|----|----|----|----|----|----|----|----|----|
| 72  | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 83 |
| 71  | 42 | 21 | 22 | 23 | 24 | 25 | 26 | 51 | 84 |
| 70  | 41 | 20 | 7  | 8  | 9  | 10 | 27 | 52 | 85 |
| 69  | 40 | 19 | 60 | 1  | 2  | 11 | 28 | 53 | 86 |
| 68  | 39 | 18 | ń  | 4  | 3  | 12 | 29 | 54 | 87 |
| 67  | 38 | 17 | 16 | 15 | 14 | 13 | 30 | 55 | 88 |
| 66  | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 56 | 89 |
| 65  | 64 | 63 | 62 | 61 | 60 | 59 | 58 | 57 | 90 |
| 100 | 99 | 98 | 97 | 96 | 95 | 94 | 93 | 92 | 91 |

the distance traveled can be calculated. For convenience, the square of the distance is used. Thus, the  $D^2$  distance from cell 1 to cell 84 is  $5^2 + 2^2 = 29$ . The journey

begins at 00, so the first leg, to cell 1, has a  $\mathbb{D}^2$  distance of 50 to start.

The Problem is, what ordering (following the move rules) will produce (A) the longest journey, or (B) the shortest journey? Present records are 2711 for A and 1803 for B. The shortest known journey begins as follows:

| 1           | arbitrary                                      |
|-------------|------------------------------------------------|
| 1<br>2<br>8 | arbitrary<br>only possible move<br>X3<br>X3    |
|             | χ                                              |
| 12          | Χ2                                             |
| 96          | SX .                                           |
| 20          | $ x^3 - x^2 $                                  |
|             | Y X                                            |
| 76          | '2 <sup>X</sup>                                |
| 36          | 2X                                             |
| 36<br>40    | difference between nowers                      |
| 3           | by rule (6)by default                          |
| 2           | by rase (O) and deladic                        |
| 27<br>54    | X.                                             |
| 54          | difference                                     |
| 64          | $\chi_2^{\circ}$                               |
| 44          | χ3                                             |
| 16          | οX                                             |
|             | X                                              |
| 21          | J.,                                            |
| 52          | difference<br>X3<br>X3<br>2X<br>2X<br>3X<br>2X |
| -           |                                                |

#### - Solution -

Problem 37 (PC12-1), the Sine Excursion trip, called for a 600-leg journey in which the lengths of each leg were given by the decimal expansion of sine 1, and the turns were uniformly one radian clockwise.

Thomas R. Parkin, Control Data Corporation, furnishes these results:

X = 32.9678624079Y = -70.4643240552

### N-Series

| Log 14               | 1.1461280356782380259259551533171292202517622777860<br>7394781406241484536162917650367555303877996567475                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Ln 14                | 2.6390573296152586145225848649013562977125848639421<br>1644258007015943097348472176398339352182558429021                    |
| <b>√</b> 14          | 3.7416573867739413855837487323165493017560198077787<br>2694630374546732003515630693902797680989519437958                    |
| <b>∛</b> 14          | 2.4101422641752299861283696676032728953545812899808<br>6765416413971041329172692259383382261151622681347                    |
| <b>∜</b> 14          | 1.6952182030724354815493435846077671152943805646840<br>9159309961635805458323609080817744158900325371200                    |
| <b>∛</b> 14          | 1.4579162495762835306913112711226069343069267644713<br>5425221119466449337925197185565657078460176015252                    |
| <b>V</b> 14          | 1.3020054543174677044972493030774256303230288915111<br>9353976271848273757377570985099148867873589479168                    |
| 100/14               | 1.0267418881337292354684536395104159442321062634164<br>5761923285260174114929108109109452348441436523084                    |
| e <sup>14</sup>      | 1202604.2841647767777492367707678594494124865433761 0224031329063319746294708334267090364192964                             |
| $\pi^{14}$           | 9122171.1817543531702043751107628162745027008832977 6225299376838730974276362377795198630083460                             |
| tan <sup>-1</sup> 14 | 1.4994888620096062927989507017866583810752847684575<br>1083167427983202436565297817683027845302688071088                    |
| 14 <sup>100</sup>    | 410018608884993288052964165246709725458010675237920<br>273221971263567489261466026483061479032219018658198<br>1413953765376 |
|                      |                                                                                                                             |