Politecnico di Torino - M.Sc in Data Science and Engineering

Al-Driven Feature Detection, Matching, and Efficient Model Deployment for **Space Applications**

Supervisors

Prof. Daniele Jahier Pagliari Dr. Alessio Burrello Dr. Armando La Rocca

Dr. Matteo Stoisa

Candidate Alessandro Ficca (319084)

www.aikospace.com _info@aikospace.com

FOLLOW US ON

Objectives

- → Compare classical algorithms and state-of-art Deep Learning models in Feature Detection and Matching (FDM) for Space applications
- → Apply **Knowledge Distillation** to replace Attention layers in Transformer-based models

AGENDA

- → Feature Detection and Matching for space applications
- → Al approaches for Feature Detection and Matching
- → Comparison: Classical vs Al methods
- → Knowledge Distillation

FDM for space applications

What is Feature Detection and Matching?

FDM is the process of identifying similar **interest points** between two images of the same scene captured under different conditions

Why do we need keypoints?

Keypoints are fundamental for motion estimation

Many applications use local features tracking

- 3D object reconstruction
- Image registration
- Visual Simultaneous Localization and Mapping (V-SLAM)

Why FDM in space?

FDM can be used for Optical Navigation (ON) in space applications

Optical Navigation: Use of on-board cameras to capture visual information of a target and perform relative navigation

ON is relevant in space

- → Enables autonomous navigation
- → Substitutes traditional active navigation sensors
- → Improves navigation precision

Space missions:

- Active Debris Removal
- On-Orbit Servicing
- Rendezvous and Proximity Operations
- Deep Space exploration

Space Datasets

Space-related datasets for Satellite Pose Estimation

(Estimate position and orientation of a satellite target respect to the camera)

- → SPEED 1
- → SPEED+ ²
- → SPEED-UE-Cube ³

TANGO spacecraft

3U CubeSat spacecraft

^[1] Mark Kisantal et al. "Satellite Pose Estimation Challenge: Dataset, Competition Design and Results".

^[2] Tae Ha Park et al. "SPEED+: Next-Generation Dataset for Spacecraft Pose Estimation across Domain Gap".

^[3] Zahra Ahmed et al. "SPEED-UE-Cube: A Machine Learning Dataset for Autonomous, Vision-Based Spacecraft Navigation".

Feature Detection and Matching through AI techniques

Classical FDM Algorithms

- → Classical approaches in FDM: SIFT ⁴, ORB ⁵ and AKAZE ⁶
- → Traditional pipeline: Feature **Detection**, **Description** and **Matching**
- → Algorithmic approach and mathematical operations:
 - Gaussian and non-linear diffusion filtering, local image gradient
 - Search of local extrema
 - Fixed descriptor generation
- → Matching:
 - Descriptors similarity
 - K-Nearest Neighbours with ratio test
- [4] David G. Lowe. "Distinctive Image Features from Scale-Invariant Keypoints
- [5] Ethan Rublee et al. "ORB: An efficient alternative to SIFT or SURF"
- [6] Pablo F. Alcantarilla et al. "Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces"

AI FDM Methods

- → Deep Learning
- → SuperPoint⁷
 - CNN-based
 - Simultaneous feature extraction and description
- → LightGlue ⁸
 - Attention-based Graph Neural Network (keypoints as "nodes")
 - Feature matching only
- → LoFTR ⁹
 - Transformer-based
 - No feature detection
 - directly produces matches from dense grid of the images

Used together

- [7] Daniel DeTone et al. SuperPoint: Self-Supervised Interest Point Detection and Description. 2018
- [8] Philipp Lindenberger et al. LightGlue: Local Feature Matching at Light Speed. 2023
- [9] Jiaming Sun et al. LoFTR: Detector-Free Local Feature Matching with Transformers. 2021

Data Preparation and Evaluation metrics

Homography Estimation

- → Apply a random geometric transformation
 - Mix of rotation, translation, scaling, perspective distortion
- → **Problem:** Estimate the *homography matrix H* between two images

$$\begin{pmatrix} x\prime\\ y\prime\\ 1 \end{pmatrix} = H \cdot \begin{pmatrix} x\\ y\\ 1 \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & h_{13}\\ h_{21} & h_{22} & h_{23}\\ h_{31} & h_{32} & h_{33} \end{pmatrix} \cdot \begin{pmatrix} x\\ y\\ 1 \end{pmatrix}$$

Relative camera pose estimation

- → Pose: Position *t* and orientation *R* of 2° camera respect to 1° camera
- → **Problem:** Estimate the camera pose between two frames

Comparison: Classical vs Al methods

Homography estimation results

- → SPEED Datasets
- → Mean reprojection error: distance in pixels between corners image projected with the GT and estimated Homography
- → **AUC** * at 5 pixel threshold
- → **Precision:** Percentage of correctly predicted matches compared to GT correspondences

^{*} AUC: Area under the cumulative curve of the error up to a specific threshold

LightGlue

LoFTR

Relative pose estimation results

- → SPEED+ Datasets
- → Metric: Angular error (maximum angular deviations [°] between rotation and translation error)

Knowledge Distillation

Knowledge Distillation trains a Deep Learning model under the supervision of a different pre-trained model to effectively transfer knowledge

Student Architecture

- → Teacher model: **LightGlue**
- → Student replaces the Attention layers
- → Enable the deployment on space-grade hardware

Self-Attention

L

2D convolutional layers 10

Cross-Attention

Cross-Graph learning module 11

Overview student architecture

[10] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A ConvNet for the 2020s.[11] Bo Jiang, Pengfei Sun, Jin Tang, and Bin Luo. GLMNet: Graph Learning-Matching Networks for Feature Matching

Training

- → Feature-based Offline Distillation Strategy
- → KD loss: **Mean Square Error**
- → Training dataset: **SPEED**
- → Pre-train:
 - Synthetic homographies *H*
 - ◆ GT supervision from *H* + KD loss
- → Fine-tuning:
 - Image pairs based on camera transformation
 - Pseudo GT (LightGlue predictions) + KD loss

KD results

- → Homography estimation
- → SPEED dataset
- → Gap teacher-student
 - ◆ Precision: -3 %
 - ◆ AUC@5px: -7.1%

KD results

- → Relative camera pose estimation
- → SPEED+ dataset
- → Gap teacher-student: -3.9% (AUC@20°)

LightGlue

Student

Scene reconstruction from images

Scene reconstruction from images

Angular errors (compared to GT pose):

SIFT: 54.6°

LightGlue: 5.9°

Scene reconstruction from images

Angular errors:

SIFT: 54.6° (vs GT)

LightGlue: 5.9° (vs GT)

Student: 1.8° (vs GT)

Relative pose estimation on trajectory

- → **SPEED-UE-Cube** Datasets
- → Trajectory set: sequential frames

LightGlue

Student

Camera trajectory simulation

- → Reconstruction of the trajectory from the images with **LightGlue** and **Student** model and GT trajectory.
- → Position of camera at frame *i* is computed from GT position at frame *i-1* to avoid the accumulation of the error during the trajectory

Conclusions

- → Al methods outperform classical algorithms in FDM
- → Al models are able to specialize from generic visual context to more challenging space scenarios
- → KD is effective to transfer knowledge in this task to a student model with different operations and fully-supervised by the teacher

Next Steps

- → Apply optimization techniques to improve inference performance and dimensions of Student model
- → Test deployment on space-grade hardware
- → Integrate FDM in Optical Navigation systems

Thanks for your attention!

www.aikospace.com _info@aikospace.com

FOLLOW US ON

Appendix

Metrics

Mean reprojection error: distance in pixels between corners image projected with the GT and estimated Homography

reprojection error
$$=\frac{1}{4}\sum_{j=1}^{4} \|\mathbf{c}'_j - \hat{\mathbf{c}}'_j\|$$

→ Angular deviations: Deviations between the GT relative pose and the estimated relative pose

$$\theta_t = \arccos(\frac{t \cdot \hat{t}}{||t|| \cdot ||\hat{t}||}) \qquad \theta_r = \arccos(\frac{trace(R^T \cdot \hat{R}) - 1}{2})$$

Student architecture

- \rightarrow Inputs: $X \in \mathcal{R}^{N \times d}, Y \in \mathcal{R}^{M \times d}$
- → Self module: **2D convolutional layers**
- → Cross module: **Cross-graph learning**

$$C_{xy}^{(k)}(i,j) = \exp\left(\frac{\left(X^{(k)^T}W^{(k)}Y^{(k)}\right)_{ij}}{\delta}\right) \in \mathbb{R}^{m \times n}$$

$$X^{(k+1)} = \left[C_{xy}^{(k)} Y^{(k)} \| X^{(k)} \right] \Theta_{xy}^{(k)}$$
$$Y^{(k+1)} = \left[C_{yx}^{(k)} X^{(k)} \| Y^{(k)} \right] \Theta_{yx}^{(k)}$$

Operation	Kernel Size	Input Channels	Output Channels
Pointwise Convolution	1 × 1	1	32
	Convolution	al Blocks (3x)	
Depthwise Convolution	7×7	32	32
Layer Normalization	-	-	-
Pointwise Convolution	1×1	32	128
ReLU Activation	-	-	-
Pointwise Convolution	1×1	128	32

Computational performance

- → Model parameters and size
- → Average inference time (image pairs/sec)

Model	Parameters (M)	Model Size (MB)
SuperPoint	1.30	4.96
LightGlue	11.85	45.21
Student	11.56	44.12
LoFTR	28.35	108.13
SuperPoint + LightGlue	13.15	50.17
SuperPoint + Student	12.86	49.08

Model	Average Inference Speed (pairs/sec)	
SuperPoint + LightGlue	30.43	
SuperPoint + Student	7.10	
LoFTR	10.23	