Quantum cellular Automata

- QCA is devised in analogy to conventional cellular automata (CA) introduced by von Neumann in 50's
 - Dynamical System with Discrete space and Time
 - Simple, Regular and Modular Structure
 - Local Neighborhood
- Physical implementation of "classical" CA by exploiting quantum mechanical phenomena

Quantum cellular Automata

Information Representation

QCA cell

Electrons can tunnel through the path

Polarization decides logic level

Polarization = +1

Information Representation

QCA cell

Electrons can tunnel through the path

Polarization decides logic level

Polarization = +0

Variations of QCA Cell

Variations of QCA Cell

Clocked QCA circuits better utilizes tri-state 6 dot cells

Information flow on Coulombic interaction

Neighboring cells tend to align in the same state

Information flow on Columbic interaction

Neighboring cells tend to align in the same state

Cell 1

Cell 2

Ground state computing

"1"

Ground state computing

- Tunneling path barrier controlling

• Electron Traversing energy barrier dissipates no energy

Thermal hop over barrier dissipates no energy

Tunneling through barrier dissipates no energy

Energy dissipation is determined by energy difference between initial and final state – not the barrier height

Adiabatic switching in QCA keeps system always very close to ground state

Adiabatic switching of a cell

1. Lowering the barrier

2. Removing the previous input

3. Applying the current input

4. Raising the barrier

Adiabatic switching of a cell

- Lowering the barrier
 Electrons are pulled into middle dots
- 2. Removing the previous input Cell is in null state
- 3. Applying the current input inter dot barriers slowly raised
- Raising the barrier
 Barriers high, cell retains its polarity

Realizes with 4-phase Clocking

- Barrier low implies non-polarization
- Barrier high cells are not allowed to change state

- Clocking control information flow
- Needed for both combinational and sequential circuits
- Clocks supplied by CMOS wire/CNTs

Cell-to-cell responses

Polarization P2 of Cell2 is induced by neighbor Cell1 with polarization P1 A slightly polarized input Cell1 may fully polarize Cell 2

Cell-to-cell response is computed by solving two particle Schrodinger equation

Circuit partitioned into Clock Zones. Cell A and E are in same Zone

Wires are the string of QCA cells

Coplanar wire-crossing

Processing-By-Wire (PBW)

QCA Majority Gate

 The basic logic gate in QCA

Maj(A,B,C)=AB+BC+CA

No built-in VDD or ground lines

Not universal. Not favourable for synthesis by existing tools

QCA Majority Gate + QCA inverter = Universal Gate

QCA Inverter is costly

Employed for QCA logic design

Universal gate structures are desirable

AOI Gate: Universal Gate

Cell B has stronger effect on device

- 1. Five input cells
- 2. A & C have inverting effect
- 3. F=DE+(D+E)(A'C'+A'B+BC') =Maj (D, E, Maj (A',B,C'))

This AOI structure is very sensitive to proper separation of input/output wires

Nand Nor Inverter [NNI] Gate

- Universal gate
- More stable than the AOI

QCA Tiles

Molecular implementation of QCA has been proposed

[Lieberman et. al, 2002 & 2003]

Molecular implementation targets modular design

SQUARES (5X5 grid)

[Fountain et.al GLSVLSI, 1999]

Tiles (3X3 grid) [J. Huang et. al, Nanotechnology Conf 2005]

Tiles implementing universal logic gate functions are of interest

New stable AOI gate structure

Coupled Gate

CMVMIN gate structure [Ditti, VDAT, 2008]

C=-1 F1 = (AB)' : NAND; F2 = AB : AND

C=1 F1 = (A+B)': NOR; F2 = A+B: OR

Numbering of dots in the cell goes clockwise starting from the dot on top right.

A polarization P in a cell, which measures the extent to which the electronic charge is distributed among four dots is

$$P = \frac{(\rho 1 + \rho 3) - (\rho 2 + \rho 4)}{\rho 1 + \rho 2 + \rho 3 + \rho 4}$$

Two most likely polarization states of QCA can be P = +1 and P = -1