

# > Конспект > 2 урок > СТАТИСТИКА

#### > Оглавление

- 1. Нормальное распределение
- 2. Стандартизация
- 3. Правило "двух" и "трех" сигм
- 4. Центральная предельная теорема
- 5. Стандартная ошибка среднего

## > Нормальное распределение

- 1. Унимодально
- 2. Симметрично
- 3. Отклонения подчиняются закону

#### Например:

- В диапазоне от среднего до 1σ (одного стандартного отклонения) будет находиться примерно 34.1% всех наблюдений
- В диапазоне от  $1\sigma$  до  $2\sigma$  примерно 13.6%
- Очень маловероятно встретить наблюдение, которое бы превосходило среднее значение больше чем на 3 стандартных отклонения (3σ)

Также мы можем заметить, что отклонение от среднего равновероятно как в большую, так и в меньшую стороны.



### > Стандартизация

**Стандартизация** (Z-преобразование) – преобразование, которое позволяет любую шкалу перевести в стандартную Z-шкалу (Z-scores), где среднее значение будет равно нулю, а стандартное отклонение – равняться 1 ( $M_z$ = 0,  $D_z$ = 1).Форма распределения при этом не изменится.

Таким образом, если мы из каждого наблюдения в нашей выборке отнимем среднее значение и разделим выражение на стандартное отклонение, то получим Z-шкалу, где новое среднее станет равно нулю, а дисперсия – единице.

$$Z_i = rac{x_i - \overline{X}}{\sigma_x}$$

#### Как посчитать в python

from scipy.stats import zscore
zscore(df.A)

## > Правило "двух" и "трех" сигм

- $M_x \pm \sigma pprox 68\%$  наблюдений находятся в этом интервале
- $M_x \pm 2\sigma pprox 95\%$  наблюдений находятся в этом интервале
- $M_x \pm 3\sigma pprox 100\%$  наблюдений находятся в этом интервале

**Пример:** Среднее значение равняется 150, а стандартное отклонение равно 8. Какой процент наблюдений превосходит значение, равное 154?

Для этого нужно сделать Z-преобразование. Как найти интересующее нас Zзначение? Из 154 нужно вычесть среднее значение по нашей выборке и разделить на стандартное отклонение (8). В результате:

$$\frac{154 - 150}{8} = \frac{4}{8} = 0.5$$

Воспользуемся специальной таблицей, которая предоставит нам ответ. Как читать эту таблицу?

- По вертикали находятся целые и десятичные доли z-значения
- По горизонтали сотые доли
- Нужный процент находится на пересечении этих элементов z-значения. Например, если у нас получилось z-значение, равное 0.93, то нужный процент будет в строчке 0.9 и столбце 0.03 (.17619)
- Так как нормальное распределение симметрично, то знак z-значения не принципиален. Таблица ниже даёт одинаковые результаты как для отрицательных, так и для положительных z-значений.

В нашем случае видим, что в диапазоне превышающем 154 (или 0.5 в z-шкале), находится примерно 30% наших наблюдений. Иными словами, вероятность встретить значение, превосходящее 0.5 в z-шкале, составляет  $\approx$  три десятых.

| Z    | 0      | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| -0   | .50000 | .49601 | .49202 | .48803 | .48405 | .48006 | .47608 | .47210 | .46812 | .46414 |
| -0.1 | .46017 | .45620 | .45224 | .44828 | .44433 | .44034 | .43640 | .43251 | .42858 | .42465 |
| -0.2 | .42074 | .41683 | .41294 | .40905 | .40517 | .40129 | .39743 | .39358 | .38974 | .38591 |
| -0.3 | .38209 | .37828 | .37448 | .37070 | .36693 | .36317 | .35942 | .35569 | .35197 | .34827 |
| -0.4 | .34458 | .34090 | .33724 | .33360 | .32997 | .32636 | .32276 | .31918 | .31561 | .31207 |
| -0.5 | .30854 | .30503 | .30153 | .29806 | .29460 | .29116 | .28774 | .28434 | .28096 | .27760 |
| -0.6 | .27425 | .27093 | .26763 | .26435 | .26109 | .25785 | .25463 | .25143 | .24825 | .24510 |
| -0.7 | .24196 | .23885 | .23576 | .23270 | .22965 | .22663 | .22363 | .22065 | .21770 | .21476 |
| -0.8 | .21186 | .20897 | .20611 | .20327 | .20045 | .19766 | .19489 | .19215 | .18943 | .18673 |
| -0.9 | .18406 | .18141 | .17879 | .17619 | .17361 | .17106 | .16853 | .16602 | .16354 | .16109 |
| -1   | .15866 | .15625 | .15386 | .15151 | .14917 | .14686 | .14457 | .14231 | .14007 | .13786 |
| -1.1 | .13567 | .13350 | .13136 | .12924 | .12714 | .12507 | .12302 | .12100 | .11900 | .11702 |
| -1.2 | .11507 | .11314 | .11123 | .10935 | .10749 | .10565 | .10383 | .10204 | .10027 | .09853 |
| -1.3 | .09680 | .09510 | .09342 | .09176 | .09012 | .08851 | .08692 | .08534 | .08379 | .08226 |
| -1.4 | .08076 | .07927 | .07780 | .07636 | .07493 | .07353 | .07215 | .07078 | .06944 | .06811 |
| -1.5 | .06681 | .06552 | .06426 | .06301 | .06178 | .06057 | .05938 | .05821 | .05705 | .05592 |
| -1.6 | .05480 | .05370 | .05262 | .05155 | .05050 | .04947 | .04846 | .04746 | .04648 | .04551 |
| -1.7 | .04457 | .04363 | .04272 | .04182 | .04093 | .04006 | .03920 | .03836 | .03754 | .03673 |
| -1.8 | .03593 | .03515 | .03438 | .03362 | .03288 | .03216 | .03144 | .03074 | .03005 | .02938 |
| -1.9 | .02872 | .02807 | .02743 | .02680 | .02619 | .02559 | .02500 | .02442 | .02385 | .02330 |
| -2   | .02275 | .02222 | .02169 | .02118 | .02068 | .02018 | .01970 | .01923 | .01876 | .01831 |
| -2.1 | .01786 | .01743 | .01700 | .01659 | .01618 | .01578 | .01539 | .01500 | .01463 | .01426 |
| -2.2 | .01390 | .01355 | .01321 | .01287 | .01255 | .01222 | .01191 | .01160 | .01130 | .01101 |
| -2.3 | .01072 | .01044 | .01017 | .00990 | .00964 | .00939 | .00914 | .00889 | .00866 | .00842 |
| -2.4 | .00820 | .00798 | .00776 | .00755 | .00734 | .00714 | .00695 | .00676 | .00657 | .00639 |
| -2.5 | .00621 | .00604 | .00587 | .00570 | .00554 | .00539 | .00523 | .00508 | .00494 | .00480 |
| -2.6 | .00466 | .00453 | .00440 | .00427 | .00415 | .00402 | .00391 | .00379 | .00368 | .00357 |
| -2.7 | .00347 | .00336 | .00326 | .00317 | .00307 | .00298 | .00289 | .00280 | .00272 | .00264 |
| -2.8 | .00256 | .00248 | .00240 | .00233 | .00226 | .00219 | .00212 | .00205 | .00199 | .00193 |
| -2.9 | .00187 | .00181 | .00175 | .00169 | .00164 | .00159 | .00154 | .00149 | .00144 | .00139 |
| -3   | .00135 | .00131 | .00126 | .00122 | .00118 | .00114 | .00111 | .00107 | .00104 | .00100 |
| -3.1 | .00097 | .00094 | .00090 | .00087 | .00084 | .00082 | .00079 | .00076 | .00074 | .00071 |
| -3.2 | .00069 | .00066 | .00064 | .00062 | .00060 | .00058 | .00056 | .00054 | .00052 | .00050 |
| -3.3 | .00048 | .00047 | .00045 | .00043 | .00042 | .00040 | .00039 | .00038 | .00036 | .00035 |
| -3.4 | .00034 | .00032 | .00031 | .00030 | .00029 | .00028 | .00027 | .00026 | .00025 | .00024 |
| -3.5 | .00023 | .00022 | .00022 | .00021 | .00020 | .00019 | .00019 | .00018 | .00017 | .00017 |
| -3.6 | .00016 | .00015 | .00015 | .00014 | .00014 | .00013 | .00013 | .00012 | .00012 | .00011 |
| -3.7 | .00011 | .00010 | .00010 | .00010 | .00009 | .00009 | .00008 | .00008 | .00008 | .00008 |
| -3.8 | .00007 | .00007 | .00007 | .00006 | .00006 | .00006 | .00006 | .00005 | .00005 | .00005 |
| -3.9 | .00005 | .00005 | .00004 | .00004 | .00004 | .00004 | .00004 | .00004 | .00003 | .00003 |
| -4   | .00003 | .00003 | .00003 | .00003 | .00003 | .00003 | .00002 | .00002 | .00002 | .00002 |

## > Центральная предельная теорема

Предположим, что некоторый признак нормально распределен в генеральной совокупности (ГС), среднее = 0, стандартное отклонение = 15. Если мы будем

многократно извлекать выборки по N наблюдений из генеральной совокупности и внутри каждой выборки рассчитывать среднее значение и стандартное отклонение, то заметим, что распределение признака будет изменяться от выборки к выборке, при этом значения средних также будет варьироваться в положительную или отрицательную сторону.

Далее мы строим распределение выборочных средних значений. Если в каждой выборке оценка среднего не является точной, то как раз среднее всех средних будет очень близко к реальному среднему в генеральной совокупности. Большинство всех средних будет лежать рядом с нулем, а какие-то – отклоняться.



Стандартное отклонение этого распределения называется **стандартной ошибкой среднего**. Она показывает, насколько выборочные средние отклоняются от среднего ГС.

Если мы увеличим объем каждой из выборок, то распределение признака внутри каждой из групп станет больше похоже на распределение в ГС. Оценки также станут более точными, при этом стандартная ошибка тоже уменьшится.

Иными словами: при увеличении числа выборок и их размера уменьшается изменчивость выборочного распределения средних, и средние выборок будут

находиться ближе к реальному среднему ГС (закон больших чисел).

**NB!** Выше мы предположили, что ГС распределена нормально - что далеко не всегда так. Однако при достаточных размерах выборок и повторных их извлечений выборочное распределение средних всё равно будет нормальным! На этом факте базируются многие статистические тесты, о которых речь пойдёт далее.

Поиграться с ЦПТ и посмотреть, как из ненормальной ГС получается нормальное выборочное распределение, можно тут.

## > Стандартная ошибка среднего

**Стандартная ошибка среднего (SE)** показывает, насколько выборочные средние "разбросаны" вокруг среднего генеральной совокупности. SE при увеличении размера выборки будет стремиться к нулю.

$$se=rac{\sigma}{\sqrt{n}}$$

Если выборка репрезентативна и число наблюдений n ≥ 30, то в качестве стандартного отклонения ГС мы можем использовать стандартное отклонение нашей выборки:

$$se=rac{sd_x}{\sqrt{n}}$$

#### Как посчитать:

import pandas as pd
df.A.sem()

from scipy import stats
stats.sem(df.A)