Problemi di Dinamica (1)

- 1. Un corpo di dimensioni trascurabili e massa m=3.6 kg è fermo nella posizione O. Tramite l'applicazione di una forza tangenziale costante $F_T=6.7$ N esso viene messo in movimento secondo una traiettoria circolare di raggio R=1.5 m lungo la quale non c'è attrito. Il moto avviene in un piano orizzontale. Determinare:
 - a) quanto vale la forza centripeta F_N dopo 3 giri.

Al compimento del terzo giro, quando ripassa per O, il corpo lascia la traiettoria circolare e prosegue il suo moto lungo la retta orizzontale Ox tangente alla circonferenza in O incontrando un attrito costante. Si osserva che il corpo si ferma dopo aver percorso la distanza d=OP=8.4 m. Calcolare:

- b) il coefficiente μ_d di attrito dinamico nel tratto OP.
- 2. I corpi A e B di massa rispettivamente $m_A=10$ kg e $m_B=6$ kg, sono collegati da una fune inestensibile e di massa trascurabile; B è appoggiato ad un piano inclinato di un angolo $\theta=30^\circ$ liscio, mentre A sta un piano orizzontale scabro ($\mu_S=0.25, \mu_d=0.2$). Determinare:
 - a) il minimo valore della massa $m_{\mathcal{C}}$ del corpo C appoggiato sopra A per avere equilibrio statico;
 - b) il valore T della tensione della fune;

Si toglie il corpo C, e il sistema A+B si mette in movimento. Determinare:

- c) l'accelerazione a dei due corpi;
- d) il valore T' della tensione della fune.
- 3. Un corpo di dimensioni trascurabili e massa $m_1=2$ kg giace su un piano orizzontale e sostiene un corpo di massa $m_2=0.5$ kg. Il secondo corpo è collegato ad un muro da un filo inestensibile e di massa trascurabile. Tra tutte le superfici di contatto c'è attrito e i coefficienti di attrito statico (μ_s) e dinamico (μ_d), diversi tra loro, hanno lo stesso valore per tutte le superfici interessate. Si sa che la massima forza orizzontale applicata su m_1 nel verso opposto al muro affinché il sistema rimanga in quiete è pari a $F_{max}=9$ N. Determinare:

- a) il valore μ_s del coefficiente di attrito statico;
- b) la tensione T del filo.

All'istante iniziale $t_0=0$ viene applicata una forza $F'=10~\rm N$ e la tensione del filo è pari a $T'=1~\rm N$. Inoltre, la distanza tra i bordi dei due corpi è pari a $l=0.1~\rm m$. Calcolare:

- c) il valore μ_d del coefficiente di attrito dinamico;
- d) l'istante t' in cui la distanza tra i bordi dei due corpi si annulla.