总分:96

1. 分析下图所示逻辑电路,列出真值表,说明其逻辑功能。

 $\widehat{\mathbf{M}}: \quad F_1 = \left(\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{AC}\right) \\
= \left(\overline{A} + B + \overline{C}\right) \left(\overline{A} + \overline{B} + C\right) \left(\overline{A} + \overline{B} + \overline{C}\right) \left(\overline{A} + C\right) \\
= \prod \left(M_5, M_6, M_3, M_0, M_2\right) \\
= \sum \left(m_1, m_4, m_1\right)$

功能:在只有A或只有C或ABC信号都有时额出!

2. 用红、黄、绿三个指示灯表示三台设备的工作情况:绿灯亮表示全部正常;红灯 亮表示有一台不正常;黄灯亮表示有两台不正常;红、黄灯全亮表示三台都不正常。列出控制电路真值表,并列出函数表达式。

解:用A、B、C分别表示三台设备正常工作,用Fi、Fi、Fi分别表示经灯、红灯、黄灯亮、

$$\begin{bmatrix}
F_3 = AB\overline{C} + A\overline{B}C + \overline{A}BC \\
F_3 = A\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C
\end{bmatrix}$$

A	B	C	Fi	F	F3	
Q	D	0	0	D	0	\supset
0	D	1	D	D	1	
D	J	0	0	0		
0	1	1	O	1	0	
)	0	0	0	0	1	
	0		D		D	
J		0	D		0	
J		1	[0	0	

批注[宝贝1]: 出错,扣-2

批注[宝贝2]: 这个,不符合红、黄灯 全亮表示三台都不正常 三台设备分别为 A、B、C: "1"表示有故障,"0"表示无故障;红、黄、绿灯分别为 Y1、Y2、Y3:"1"表示灯亮;"0"表示灯灭。据题意列出真值表如下:

A	В	C	$\mathbf{Y}_1 \ \mathbf{Y}_2 \ \mathbf{Y}_3$
0	0	0	0 0 1
0	0	1	1 0 0
0	1	0	1 0 0
0	1	1	0 1 0
1	0	0	1 0 0
1	0	1	0 1 0
1	1	0	0 1 0
1	1	1	1 1 0

 $Y1 = A \oplus B \oplus C$

 $Y2 = BC + A(B \oplus C)$

于是得: $Y3 = \overline{A}\overline{B}\overline{C} = \overline{A+B+C}$

3. 用四片 4:16 线译码器和多线与非门将 8421BCD 码转换成余三码,写出表达式 8441 BCD 《 条 三 码

8411 000			米二 松				
Da	D ₂	D,	D.	Cà	C2	Cı	Co
0	0	0	0	D	0	- 1	T
0	0	0	1	0	1	0	0
0	O	1	0	0	-1	0	- 1
0	0	I.	1	0	-1	J	0
0	1	0	0	0	1	1	1
D	1	0	1	1	0	D	0
D	t	1	0	1	0	0	١
V	1	1	1	1	0	1	0
	0	0	0	1	D	1	1
-1	0	D		1	1	0	0

 $C_b = \bar{P}_b D_a \bar{D}_1 D_0 + \bar{Q} \Delta D_1 \bar{D}_0 + \bar{D}_3 \bar{D}_4 D_0 + D_3 \bar{D}_4 \bar{D}_1 \bar{D}_0 + D_5 \bar{D}_4 \bar{D}_1 D_0 = \bar{Z}[m_x, m_b, m_1, m_8, m_9)$

 $C_2 = \overline{P_3} \overline{D_2} \overline{D_1} \overline{D_0} + \overline{P_3} \overline{D_2} \overline{D_0} + \overline{D_3} \overline{D_1} \overline{D_0} + \overline{D_3} \overline{D_2} \overline{D_1} \overline{D_0} + \overline{D_3} \overline{D_2} \overline{D_1} \overline{D_0} = \overline{\sum} [m_1, m_2, m_3, m_{1/2}, m_{1/2},$

 $C_1 = \vec{D}_3 \vec{D}_1 \vec{D}_0 + \vec{P}_3 \vec{D}_2 \vec{D}_1 \vec{D}_0 + \vec{D}_3 \vec{D}_2 \vec{D}_1 \vec{D}_0 + \vec{D}_3 \vec{D}_2 \vec{D}_1 \vec{D}_0 + \vec{D}_3 \vec{D}_2 \vec{D}_1 \vec{D}_0 = \boldsymbol{\Xi}(m_0, m_3, m_4, m_7, m_8)$

 $C_0 = \overline{D_3}\overline{D_2}\overline{D_1}\overline{D_0} + \overline{D_2}\overline{D_1}\overline{D_0} + \overline{D_3}\overline{D_2}\overline{D_0} + \overline{D_3}\overline{D_0}\overline{D_0} + \overline{D_3}\overline{D_1}\overline{D_0} + \overline{D_3}\overline{D_1}\overline{D_0} = \sum (m_0, m_2, m_4, m_4, m_5, m_8)$

4. 己知 JK 信号如图,请画出负边沿 JK 触发器的输出波形(设触发器的初态为 0)

5. 分析下图所示同步计数电路,写出驱动方程,状态方程,和状态转移图,并说明功能,可不可以自启动?

6.在下图 a, FF1 和 FF2 均为负边沿型触发器, 试根据图 b 所示 CLK 和 X 信号波形, 画出 Q1、Q2 的波形(设 FF1、FF2 的初始状态均为 0)

7. 若某存储器的容量为1M×4 位,则该存储器的地址线、数据线各有多少条?,另某计算机的内存储器有32位地址线、32位并行数据输入、输出线,求该计算机内存的最大容量是多少?

解: 1M×4 = 1024×1024×4 = 20×4 地址线20条, 表据线4条 最大容量为2³²×32 = 2³位

 2^8 8. 试用用 $256K \times 4$ 芯片实现 $1M \times 8$ 的RAM,请画出示意图,芯片及连线包括地址线A,使能端CE,1/0,数据线,译码器 1/0 1/0 1/0

批注[宝贝3]: 1M 的地址线依然还是 20 条才对 256k 应是 18 条,由于是 4 位变为 8 位所以需要 8 个这样的芯片才对,这就要进行地址线扩展,同时要进行数据位的扩展,扣分-2