Devoir 5 IFT2125-A-H19

Student: Qiang Ye (20139927)

Date: 8 février 2019

mailto: samuel.ducharme@umontreal.ca (mailto:samuel.ducharme@umontreal.ca)

Question

1. Vous êtes professeur du cours d'algorithmique et vous trouvez les réponses suivantes dans un examen. Corrigez-les. C'està-dire, trouvez toutes les erreurs et expliquez pourquoi ce sont des erreurs et quelles sont les bonnes réponses.

$$(1) O(2^{n \lg n}) = O(2^{n \log_3 n}) \operatorname{car}$$

$$\lim_{n \to \infty} \frac{2^{n \lg n}}{2^{n \log_3 n}} = \lim_{n \to \infty} \frac{n \lg n}{n \log_3 n} = \lim_{n \to \infty} \frac{\lg n}{\log_3 n} = \frac{1}{\log_3 2}$$

et $\frac{1}{\lg 3}$ est une constante positive. On n'a qu'a utiliser le théoreme sur les limites: si $\lim_{n \to \infty} \frac{f(n)}{e(n)} \in \mathbb{R}^{>0}$, alors $\Theta(f) = \Theta(g)$

Erreurs

• $O(2^{n \lg n}) = O(2^{n \log_3 n})$:

Soit $f(n) = 2^{n \lg n}$, alors, $f(n) \in O(2^{n \lg n})$, mais $f(n) \notin O(2^{n \log_3 n})$. Une preuve détaillée est dans ce qui suit. • $\lim_{n \to \infty} \frac{2^{n \lg n}}{2^{n \log_3 n}} = \lim_{n \to \infty} \frac{n \lg n}{n \log_3 n}$

•
$$\lim_{n\to\infty} \frac{2^{n \lg n}}{2^{n \log_3 n}} = \lim_{n\to\infty} \frac{n \lg n}{n \log_3 n}$$

Il n'y a pas de règle comme celle-ci pour calculer la limite.

Réponse

$$\lim_{n \to \infty} \frac{2^{n \lg n}}{2^{n \log_3 n}}$$

$$= \lim_{n \to \infty} \frac{2^{n \lg n}}{2^{n \lg n \log_3 2}}$$

$$= \lim_{n \to \infty} \left(2^{n \lg n}\right)^{1 - \log_3 2}$$

$$= \lim_{n \to \infty} \left(2^{1 - \log_3 2}\right)^{n \lg n}$$

$$= + \infty \qquad (2^{1 - \log_3 2} > 1)$$

$$\Rightarrow 2^{n \lg n} \in \Omega(2^{n \log_3 n}) \text{ et } 2^{n \lg n} \notin \Theta(2^{n \log_3 n})$$

$$\Rightarrow O(2^{n \lg n}) \supset O(2^{n \log_3 n})$$

(2) On sait que QuickSort fait, dans le pire des cas, $\sum_{i=1}^{n-1}=\frac{n(n-1)}{2}\in\Theta(n^2)$ comparaisons. Puisque $n^2\in\Omega(n\lg n)$, on a que tout algorithme de tri par comparaison doit avoir sa complexité dans $\Omega(n \lg n)$.

Erreurs

• On ne peut pas conclure la limite inférieure de complexité (Ω) de tous les algorithmes de tri par comparaison, simplement en observant un algorithme de tri: QuickSort.

C'est-à-dire, $\exists a \in A \land a \in \Omega(n \lg n)$ ne implique pas que $\forall a \in A, a \in \Omega(n \lg n)$

Réponse

On utilise le modèle d'arbre de décision binaire pour prouver que tous les algorithmes de tri, basés uniquement sur des comparaisons, ont la complexité de $\Omega(n \lg n)$ pour le pire des cas.

Suppose que les éléments à trier soient les nombres (distincts) 1 à n. Il doit y avoir n! feuilles (une pour chacune des n! permutations de n éléments). Arbre de hauteur h a au plus 2^h feuilles. h est les nombres de comparasion pour trier les néléments

Alors,

$$2^h \geq n! \Rightarrow h \geq \log(n!) \Rightarrow h \in \Omega(\log(n!))$$

puisque $\log(n!) \in \Theta(n \lg n)$, On a $\log(n!) \in \Omega(n \lg n)$

Finalement, on a

$$h \in \Omega(n \lg n)$$

C'est-à-dire, on a que tout algorithme de tri par comparaison doit avoir sa complexité dans $\Omega(n \lg n)$.

Question

2. Trouvez la solution exacte de la récurrence suivante pour $n=2^{2^k}, k\in\mathbb{N}$.

$$T(n) = \begin{cases} 1 & n = 2\\ 2T(\sqrt{n}) + \lg n & \text{sinon} \end{cases}$$

Réponse

n n'a aucune chance d'être égal à 2 si $n=2^{2^k}$ et $k\in\mathbb{N}$. La valeur minimale de n devrait être 4. S'il est possible pour n=2. il faut que $k\in\mathbb{Z}^{\geq 0}$.

On a déjà:

$$n = 2^{2^k} \tag{0}$$

Soit

$$S(k) = T(n) \tag{1}$$

On peut dire:

$$S(k) = T(n)$$

$$= T(2^{2^{k}})$$

$$= \begin{cases} 1 & k = 0 \\ 2T(\sqrt{2^{2^{k}}}) + \lg 2^{2^{k}} & \text{sinon} \end{cases}$$

$$= \begin{cases} 1 & k = 0 \\ 2T(2^{2^{k-1}}) + 2^{k} & \text{sinon} \end{cases}$$

$$= \begin{cases} 1 & k = 0 \\ 2S(k-1) + 2^{k} & \text{sinon} \end{cases}$$

le polynôme caractéristique pour S(k) est:

$$q(x) = (x-2)(x-2) = (x-2)^2$$
 (2)

Alors, pour k > 1,

$$S(k) = C_1 2^k + C_2 k 2^k (3)$$

Puisque

•
$$S(0) = 1$$
, on a: $C_1 = 1$
• $S(1) = 2S(0) + 2 = 4$, on a: $C_2 = 1$

Alors,

$$S(k) = 2^k + k2^k \tag{4}$$

Combinant les formulaires (0), (1) et (4), pour n > 2 (k > 1), on a:

$$T(n) = S(k) = \lg n + \lg(\lg n) \times \lg n$$

Lorsque n=2, $\lg n+\lg(\lg n)\times \lg n=1$, On peut dire, pour $n=2^{2^k}$, $k\in\mathbb{Z}^{\geq 0}$,

$$T(n) = \lg n + \lg(\lg n) \times \lg n \tag{5}$$

Verification de T(n) pour $n \ge 2$:

$$T(n) = 2T(\sqrt{n}) + \lg n$$

$$= 2(\lg \sqrt{n} + \lg(\lg \sqrt{n}) \times \lg \sqrt{n}) + \lg n$$

$$= 2(\frac{1}{2}\lg n + \lg(\frac{1}{2}\lg n) \times \frac{1}{2}\lg n) + \lg n$$

$$= \lg n + 2(\lg \frac{1}{2} + \lg(\lg n)) \times \frac{1}{2}\lg n + \lg n$$

$$= \lg n + (-1 + \lg(\lg n)) \times \lg n + \lg n$$

$$= \lg n + \lg(\lg n) \times \lg n$$