§11.6—The Absolute Convergence, and the Ratio and Root Tests

Tom Lewis

Spring Semester 2015

Absolute convergence The ratio test The root test

Outline

Absolute convergence

The ratio test

The root test

Theorem (Absolute Convergence Test (ACT))

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

Absolute convergence The ratio test The root test

Problem

Examine the convergence of the following series:

$$1. \sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$

2.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+2}{\sqrt{n^5+8}}$$

Definition

- 1. If the series $\sum |a_n|$ converges, then we say that the series $\sum a_n$ converges absolutely.
- 2. if the series $\sum a_n$ converges but $\sum |a_n|$ diverges, then we say that the series $\sum a_n$ converges conditionally.

The root test Absolute convergence The ratio test

Problem

Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converge absolutely, converge conditionally, or diverge?

Theorem (The Ratio Test (RT))

Let $\{a_n\}$ be a sequence of nonzero real numbers and suppose that

$$\frac{|a_{n+1}|}{|a_n|} \to L$$

- 1. If L < 1, then $\sum a_n$ converges absolutely.
- 2. If L > 1, then $\sum a_n$ diverges.
- 3. If L = 1, then the test is inconclusive; the series may or may not converge.

Absolute convergence

The ratio test

The root test

Problem

Determine the convergence or divergence of the following series:

1.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}$$

$$2. \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Problem

Examine the convergence of each of the following series using the ratio test.

- $1. \sum_{n=1}^{\infty} \frac{1}{n^2}$
- $2. \sum_{n=1}^{\infty} \frac{1}{n}$

Absolute convergence The ratio test The root test

Theorem (The Root Test)

Suppose $|a_n|^{1/n} \to L$.

- 1. If L < 1, then $\sum a_n$ converges absolutely.
- 2. If L > 1, then $\sum a_n$ diverges.
- 3. If L = 1, then the test is inconclusive; the series may or may not converge.

Absolute convergence The ratio test The root test

Problem

Determine whether the series
$$\sum_{n=1}^{\infty} \left(\frac{3n}{5n+6} \right)^n$$
 converges.