

ME 1071: Applied Fluids

Lecture 2 Internal Incompressible Viscous Flow

Spring 2021

- Shear Stress Distribution in Fully Developed Pipe Flow
- Turbulent Velocity Profiles in Fully Developed Pipe Flow
- Energy Considerations in Pipe Flow
- Calculation of Head Loss
 - Major Losses
 - Minor Losses
- > Fluid Systems

- > Shear Stress Distribution in Fully Developed Pipe Flow
- Turbulent Velocity Profiles in Fully Developed Pipe Flow
- Energy Considerations in Pipe Flow
- Calculation of Head Loss
 - Major Losses
 - Minor Losses
- > Fluid Systems

海纳百川 有容乃大

Shear Stress Distribution

Laminar flow in a pipe

- Zero shear stress at centerline
- Largest shear stress at the wall surface

Turbulent flow in a pipe

- No analytical solution
- u' and v' are negatively correlated

$$au = au_{ ext{lam}} + au_{ ext{turb}} = \mu rac{d \overline{u}}{dy} rac{-
ho \overline{u'v'}}{}$$

Reynolds Stress/ Turbulent shear

The Reynolds stress drops to zero close to the wall

$$au_{rx}\!=\!\murac{du}{dr}\!=\!rac{r}{2}\!\left(\!rac{\partial p}{\partial x}\!
ight)$$

- Wall layer: the region very close to the wall, viscous stress is dominant
- Both viscous and Reynolds stress are important in the region between the wall layer and the central portion of the pipe

海納百川 有容乃大

- Shear Stress Distribution in Fully Developed Pipe Flow
- > Turbulent Velocity Profiles in Fully Developed Pipe Flow
- Energy Considerations in Pipe Flow
- Calculation of Head Loss
 - Major Losses
 - Minor Losses
- > Fluid Systems

海納百川 有容乃大

Turbulent Velocity Profiles

Turbulent vs Laminar

- Except for flows of very viscous fluids in small diameter ducts, internal flows generally are turbulent.
- For turbulent flow, no universal relationship between the stress field and the mean velocity field.
- turbulent flow profiles relies on experimental data

Re < 2300 Analytical solution

Re > 10⁴ Relies on experimental data

Turbulent Velocity Profiles

Fully Developed Pipe Flow

Mean turbulent velocity profiles are similar by dimensional analysis

$$au = au_{ ext{lam}} + au_{ ext{turb}} = \mu rac{d\overline{u}}{dy} -
ho \, \overline{u'v'}$$

- Denote $u_* \equiv (\tau_{\rm w}/\rho)^{1/2}$ and \bar{u} as mean velocity, y = R r
- \circ Denote $u^+\!=\!rac{\overline{u}}{u_*},\ y^+\!=\!rac{yu_*}{
 u}$
- The empirical (One-seventh) power-law

$$\frac{\overline{u}}{U} = \left(\frac{y}{R}\right)^{1/7} = \left(1 - \frac{r}{R}\right)^{1/7}$$

Fig. 8.9 Turbulent velocity profile for fully developed flow in a smooth pipe. (Data from Laufer [5].)

納百川 有容乃大

- Shear Stress Distribution in Fully Developed Pipe Flow
- Turbulent Velocity Profiles in Fully Developed Pipe Flow
- Energy Considerations in Pipe Flow
- Calculation of Head Loss
 - Major Losses
 - Minor Losses
- > Fluid Systems

海纳百川 有容乃大

Energy Considerations in Pipe Flow

The Energy Grade Line (EGL)

A measure of the total mechanical energy: pressure, kinetic and potential

$$EGL = rac{p}{
ho g} + rac{V^2}{2g} + z$$

$$\dot{Q} - \dot{W}_{S} - \dot{W}_{shear} - \dot{W}_{other} = rac{\partial}{\partial t} \int_{CV} e
ho \, dV + \int_{CS} (e + pv)
ho \vec{V} \cdot d\vec{A} \qquad \qquad e = u + rac{V^2}{2} + gz$$

$$\dot{Q} = \dot{m}(u_2 - u_1) + \dot{m}\left(\frac{p_2}{\rho} - \frac{p_1}{\rho}\right) + \dot{m}g(z_2 - z_1) + \int_{A_2} \frac{V_2^2}{2} \rho V_2 \cdot dA_2 - \int_{A_1} \frac{V_1^2}{2} \rho V_1 \cdot dA_1$$

$$\alpha = \frac{\int_{A} \frac{V^2}{2} \rho V \cdot dA}{\dot{m} \bar{V}^2}, \text{ kinetic energy coefficient}$$

$$\left(\frac{p_1}{\rho} + \alpha_1 \frac{V_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \alpha_2 \frac{V_2^2}{2} + gz_2\right) = u_2 - u_1 - \frac{\delta Q}{dm} = h_{l_T}$$

$$igg(rac{p_1}{
ho} + lpha_1rac{{V}_1^2}{2} + gz_1igg) - igg(rac{p_2}{
ho} + lpha_2rac{{V}_2^2}{2} + gz_2igg) = u_2 - u_1 - rac{\delta Q}{dm} = h_{l_T}$$

Total head loss was caused by loss of mechanical energy and heat to thermal energy

- Shear Stress Distribution in Fully Developed Pipe Flow
- Turbulent Velocity Profiles in Fully Developed Pipe Flow
- Energy Considerations in Pipe Flow
- Calculation of Head Loss
 - Major Losses
 - Minor Losses
- > Fluid Systems

海纳百川 有容乃大

Major Losses: Friction Factor

 $\text{Total head loss} \, h_{l_{\scriptscriptstyle T}} \left\{ \begin{matrix} h_l \\ \text{area tubes} \end{matrix} \right. \\ \left. h_{l_{\scriptscriptstyle m}} \right. \\ \left. h_{l_{\scriptscriptstyle m}} \right. \\ \text{resulting from entrances, fittings, area changes, and so on} \right. \\ \left. \begin{matrix} h_l \\ \text{order} \\ h_{l_{\scriptscriptstyle m}} \end{matrix} \right. \\ \left. \begin{matrix} h_l \\ \text{order} \\ \text{o$

For fully developed flow through a constant-area pipe

$$\left(rac{p_1}{
ho} + lpha_1rac{{V_1^2}}{2} + gz_1
ight) - \left(rac{p_2}{
ho} + lpha_2rac{{V_2^2}}{2} + gz_2
ight) = u_2 - u_1 - rac{\delta Q}{dm} = h_{l_T}$$
 $ight.$ $ight.$

If the pipe is horizontal

$$rac{p_1-p_2}{
ho}=rac{arDelta p}{
ho}=h_l$$

Major Losses: Friction Factor

Laminar flow (analytical)

$$\frac{p_1 - p_2}{\rho} = \frac{\Delta p}{\rho} = h_l \xrightarrow{Q = \frac{\pi \Delta p D^4}{128\mu L}} h_l = \left(\frac{64}{\text{Re}}\right) \frac{L}{D} \frac{\overline{V}^2}{2}$$

- Turbulent flow (experimental)
 - By dimensional analysis, the pressure drop is known to depend on pipe diameter, D, pipe length, L, pipe roughness, e, average flow velocity, V, fluid density, ρ , and fluid viscosity, μ .

$$\Delta p = \Delta p \left(D, L, e, \overline{V}, \rho, \mu \right)$$

$$\frac{\Delta p}{\rho \overline{V}^2} = \phi_1 \left(\text{Re}, \frac{L}{D}, \frac{e}{D} \right) \xrightarrow{\frac{h_l}{\overline{V}^2/2}} = \frac{L}{D} \phi_2 \left(\text{Re}, \frac{e}{D} \right) \xrightarrow{\text{friction factor } f = \phi_2 \left(\text{Re}, \frac{e}{D} \right)} h_l = f \frac{L}{D} \frac{\overline{V}^2}{2}$$

Moody Chart

friction factor

Laminar flow f = 64/Re

Turbulent flow
$$f = \phi_2 \left(\text{Re}, \frac{e}{D} \right)$$

$$\frac{1}{\sqrt{f}} = -2.0 \log \left(\frac{e/D}{3.7} + \frac{2.51}{Re\sqrt{f}} \right)$$

$$\frac{1}{\sqrt{f}} = -1.8 \log \left(\left(\frac{e/D}{3.7} \right)^{1.11} + \frac{2.51}{Re} \right) \quad (Re > 3000)$$

$$f = \frac{0.316}{Re^{0.25}} \quad (Re \le 10^5) \text{ smooth pipe}$$

Fig. 8.13 Friction factor for fully developed flow in circular pipes. (Data from Moody [8].)

四班百川为洛乃大

Minor Losses

1. Inlets and Exits

- Poor inlet and outlet designs lead to considerable head loss.
- ∘ Sharp corners → *vena contracta*
- Values for K can be found in Table 8.2 for a few common inlet geometries.

Table 8.2Minor Loss Coefficients for Pipe Entrances

Entrance Type		Minor Loss Coefficient, K ^a		
Reentrant	→ 	0.5-1.0 (depending on length of pipe entrance		
Square-edged	→ 	0.5		
Rounded	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} r/D & 0.02 & 0.06 & \geq 0.15 \\ \hline K & 0.3 & 0.2 & 0.04 \\ \end{array}$		

^a Based on $h_{l_m} = K(\overline{V}^2/2)$, where \overline{V} is the mean velocity in the pipe. *Source*: Data from Reference [12].

VENA CONTRACTA

Minor Losses

2. Enlargements and Contractions

- Sudden changes in area lead to head loss based on velocity changes.
- Installing a nozzle or diffuser helps mitigate head loss and values of K for common nozzle area ratios can be seen in Table 8.3
- For diffusers, we will use the pressure recovery coefficient and relate it to the ideal pressure recovery coefficient

$$h_{l_m}\!=\!({C_{{\scriptscriptstyle p}i}}\!-\!{C_{{\scriptscriptstyle p}}})\,rac{ar{V}^2}{2},\;{C_{{\scriptscriptstyle p}}}\!=\!rac{p_2-p_1}{ar{V}_1^2/2},\;{C_{{\scriptscriptstyle p}i}}\!=\!1\!-rac{1}{AR^2}$$

Table 8.3Loss Coefficients (K) for Gradual Contractions: Round and Rectangular Ducts

		Included Angle, θ , Degrees						
	A_2/A_1	10	15-40	50-60	90	120	150	180
	0.50	0.05	0.05	0.06	0.12	0.18	0.24	0.26
Flow A2	0.25	0.05	0.04	0.07	0.17	0.27	0.35	0.41
A_1	0.10	0.05	0.05	0.08	0.19	0.29	0.37	0.43

Note: Coefficients are based on $h_{l_m} = K(\vec{V}_2^2/2)$.

Source: Data from ASHRAE [12].

Minor Losses

3. Pipe Bends

- The head loss in a bend is larger than friction effects in a straight section of equal length.
- The additional loss is primarily the result of secondary flow.
- Values of K for different pipe bend geometries can be seen in Table 8.4

Secondary flow in a pipe bend

Table 8.4 Representative Loss Coefficients for Fittings and Valves

Fitting	Geometry	K	Fitting	Geometry	K
90° elbow	Flanged regular	0.3	Globe valve	Open	10
	Flanged long radius	0.2	Angle valve	Open	5
	Threaded regular	1.5	Gate valve	Open	0.20
	Threaded long radius	0.7		75% open	1.10
	Miter	1.30		50% open	3.6
	Miter with vanes	0.20		25% open	28.8
45° Elbow	Threaded regular	0.4	Ball valve	Open	0.5
	Flanged long radius	0.2		1/3 closed	5.5
Tee, dividing	Threaded	0.9		2/3 closed	200
line flow	Flanged	0.2	Water meter		7
Tee, branching	Threaded	2.0	Coupling		0.08
flow	Flanged	1.0			

Source: Data from References [12] and [34].

Minor Losses

4. Valves and Fittings

Values of K for different types of valves and fittings can be seen in Table 8.4

$$h_{l_m}\!=\!rac{K\overline{V}^2}{2}$$

Table 8.4Representative Loss Coefficients for Fittings and Valves

Fitting	Geometry	K	Fitting	Geometry	K
90° elbow	Flanged regular	0.3	Globe valve	Open	10
	Flanged long radius	0.2	Angle valve	Open	5
	Threaded regular	1.5	Gate valve	Open	0.20
	Threaded long radius	0.7		75% open	1.10
	Miter	1.30		50% open	3.6
	Miter with vanes	0.20		25% open	28.8
45° Elbow	Threaded regular	0.4	Ball valve	Open	0.5
	Flanged long radius	0.2		1/3 closed	5.5
Tee, dividing	Threaded	0.9		2/3 closed	200
line flow	Flanged	0.2	Water meter		7
Tee, branching	Threaded	2.0	Coupling		0.08
flow	Flanged	1.0			

Source: Data from References [12] and [34].

- Shear Stress Distribution in Fully Developed Pipe Flow
- Turbulent Velocity Profiles in Fully Developed Pipe Flow
- Energy Considerations in Pipe Flow
- Calculation of Head Loss
 - Major Losses
 - Minor Losses
- > Fluid Systems

海纳百川 有容乃大

Pumping, Fans and Blowers

 The driving force for maintaining the flow against friction is a pump for liquids or a fan or blower for gases

$$\dot{W}_{pump} = \dot{m} igg[igg(rac{p}{
ho} + rac{ar{V}^2}{2} + gz igg)_{discharge} - igg(rac{p}{
ho} + rac{ar{V}^2}{2} + gz igg)_{suction} igg] = \dot{m} \Delta h_{pump} igg)$$

- Pump efficiency = work done / power input $\eta = \dot{W}_{pump} / \dot{W}_{in}$
- Pumps, Fans and Blowers can be accounted for as a negative loss

$$\left(rac{p_{1}}{
ho}+lpha_{1}rac{{V}_{1}^{2}}{2}+gz_{1}
ight)\!-\!\left(\!rac{p_{2}}{
ho}+lpha_{2}rac{{V}_{2}^{2}}{2}+gz_{2}\!
ight)\!=\!h_{l_{T}}\!-\!arDelta\!h_{pump}$$

It is interesting to note that a pump adds energy to the fluid in the form of a gain in pressure—the everyday, invalid perception is that pumps add kinetic energy to the fluid.

Noncircular Ducts

Hydraulic Diameter

$$D_{\scriptscriptstyle h} = rac{4A}{P}$$

- A is the cross-sectional area
- *P* is the wetted perimeter
- For a Rectangular Duct of width b and height h

$$D_h=rac{4A}{P}=rac{4bh}{2(b+h)}=rac{2bh}{b+h}$$

For a Circular Duct of width b and height h

$$D_h = rac{4A}{P} = rac{4\pi D^2}{4\pi D} = D$$

$$D_h = \frac{4(\pi D^2/4)}{\pi D} = D$$

$$D_h = \frac{4a^2}{4a} = a$$

Rectangular duct:

$$D_h = \frac{4ab}{2(a+b)} = \frac{2ab}{a+b}$$

Pipe Flow Solutions (Single-Path Systems)

- 1. Find Δp for a given L, D and Q (Example 8.5) $Q \to Re \to f \to h_{lr} \to \Delta p$
- 2. Find L for a given Δp , D and Q (Example 8.6) $Q \to Re \to f$, $\Delta p \to h_{l_T} \to L$
- 3. Find Q for a given Δp , L and D (Example 8.7) $\Delta p \to h_{l_T} \to Guess \ f \to \overline{V} \to Re \to f \to if \ equal \to \overline{V} \to Q$
- 4. Find D for a given Δp , L and Q (Example 8.8) $\Delta p \to h_{l_T} \to Guess \ D, Q \to f \to h_{l_T} \to if \ equal \to D$

$$igg(rac{p_1}{
ho} + lpha_1rac{{V}_1^2}{2} + gz_1igg) - igg(rac{p_2}{
ho} + lpha_2rac{{V}_2^2}{2} + gz_2igg) = h_{l_{\scriptscriptstyle T}} - extstyle h_{pump}$$

$$h_{l_{\scriptscriptstyle T}} = \sum h_l + \sum h_{l_{\scriptscriptstyle m}}$$

$$h_l\!=\!frac{L}{D}rac{ar{V}^2}{2}$$

$$h_{l_{\scriptscriptstyle m}}\!=\!rac{K\!ar{V}^2}{2}$$

friction factor

Laminar flow f = 64/Re

Turbulent flow
$$f = \phi_2 \left(\text{Re}, \frac{e}{D} \right)$$

Example 8.5 pipe flow into a reservoir: pressure drop unknown

A 100-m length of smooth horizontal pipe is attached to a large reservoir. A pump is attached to the end of the pipe to pump water into the reservoir at a volume flow rate of 0.01 m³/s. What pressure must the pump produce at the pipe to generate this flow rate? The inside diameter of the smooth pipe is 75 mm.

Find Δp for a given L, D and Q $Q \rightarrow Re \rightarrow f \rightarrow h_{l_T} \rightarrow \Delta p$

$$\left(rac{p_1}{
ho} + lpha_1rac{{V}_1^2}{2} + gz_1
ight) - \left(rac{p_2}{
ho} + lpha_2rac{{V}_2^2}{2} + gz_2
ight) = h_{l_T}$$

$$h_{l_{\scriptscriptstyle T}} = \sum h_{l} + \sum h_{l_{\scriptscriptstyle m}} ~~h_{l} = f rac{L}{D} rac{ar{V}^{2}}{2} ~~h_{l_{\scriptscriptstyle m}} = rac{Kar{V}^{2}}{2}$$

$$\alpha_1 \approx 1.0, K = 1.0, f = 0.0162$$

$$p_{\scriptscriptstyle pump} = \Delta p =
ho igg(gd + frac{L}{D}rac{ar{V}^2}{2} igg) = 153$$
 kPa gage

Problem 8.104

Water flows from a tank with a very short outlet pipe. Estimate the exit flow rate. How could the flow rate be increased?

$$h_{l_T} = \left(\frac{p_1}{\rho} + \frac{\bar{V}_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \frac{\bar{V}_2^2}{2} + gz_2\right)$$

$$h_{l_T} = \left(\frac{\bar{V}_1^2}{2} + gz_1\right) - \left(\frac{\bar{V}_2^2}{2}\right)$$

$$h_{l_T} = h_l + h_{lm} = h_{lm} = \frac{K\bar{V}_2^2}{2}$$

$$\left(\frac{\bar{V}_1^2}{2} + gz_1\right) - \left(\frac{\bar{V}_2^2}{2}\right) = \frac{K\bar{V}_2^2}{2}$$

$$V_1 = V_2 \frac{A_1}{A_2}$$

Problem 8.105

A pool is to be filled that has a 1.5 m diameter and is 0.76 m deep. The pool is located 5.5 m above the water source which travels through a 15 m long, 1.6 cm diameter hose that is very smooth. Neglecting minor losses, how long will it take to fill if the water pressure at the source is 414 kPa?

$$h_{l_T} = \left(\frac{p_1}{\rho} + \frac{\bar{V}_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \frac{\bar{V}_2^2}{2} + gz_2\right)$$

$$h_{l_T} = \left(\frac{p_1}{\rho}\right) - (gz_2)$$

$$h_{l_T} = h_l + h_{lm} = h_l = f \frac{L}{D} \frac{\bar{V}^2}{2}$$

$$\left(\frac{p_1}{\rho}\right) - (gz_2) = f\frac{L}{D}\frac{\overline{V}^2}{2}$$

$$\bar{V} = \sqrt{\frac{2D\left(\frac{p_1}{\rho} - gz_2\right)}{f \text{ L}}} = \sqrt{\frac{2(0.016 \, m)\left(\frac{414000}{1000} - (9.81)(5.5 + .76)\right)}{f(15 \, m)}} = \frac{0.87}{\sqrt{f}}$$

$$Re = \frac{\rho \bar{V}D}{\mu} = \frac{1000\bar{V}(0.016 \, m)}{0.00101} = 15841.6\bar{V}$$

$$\frac{1}{\sqrt{f}} = -2.0 \log\left(\frac{e}{\overline{D}} + \frac{2.51}{Re\sqrt{f}}\right) = -2.0 \log\left(\frac{2.51}{Re\sqrt{f}}\right)$$

Guess *f*=0.015:

$$\bar{V} = \frac{0.87}{\sqrt{0.015}} = 7.10 \frac{m}{s} \rightarrow Re = 15841.6(7.10) = 1.1 \times 10^5 \rightarrow f = 0.0177$$

Problem 8.163

Determine the smallest standard commercial steel pipe that will allow for a static pressure to be greater than -6m H₂O gage.

$$\begin{split} h_{l_T} &= \sum h_l + \sum h_{l_m} = \left(\frac{p_1}{\rho} + \frac{\bar{V}_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \frac{\bar{V}_2^2}{2} + gz_2\right) \\ &\sum h_l + \sum h_{l_m} = -\left(\frac{p_2}{\rho} + \frac{\bar{V}_2^2}{2} + gz_2\right) = \frac{V_2^2}{2} \left[f\frac{L}{D} + K_{ent} + 2K_{elb}\right] \\ &\frac{p_2}{\rho g} = -z_2 - \frac{V_2^2}{2g} \left[1 + f\frac{L}{D} + K_{ent} + 2K_{elb}\right] = -3.5 - \frac{V_2^2}{19.62} \left[3.15 + 8\frac{f}{D}\right] \end{split}$$

$$D = 0.0254 \ m \rightarrow V = 12.83 \frac{m}{s} \rightarrow Re = 2.96 \times 10^5, \frac{e}{D} = .00181 \rightarrow f = .024$$

$$\frac{p_2}{\rho g} = -93.35 \neq -6$$

Problem 8.176

Calculate the minimum pressure needed at the pump outlet for a 38 L/s flow rate and the input power required if the pumping efficiency is 70%.

$$\begin{split} h_{l_T} &= \sum h_l + \sum h_{l_m} = \left(\frac{p_1}{\rho} + \frac{\bar{V}_1^2}{2} + gz_1\right) - \left(\frac{p_3}{\rho} + \frac{\bar{V}_3^2}{2} + gz_3\right) + \Delta h_{pump} \\ \Delta h_{pump} &= gz_3 + \frac{\bar{V}_3^2}{2} + \frac{V^2}{2} \left[f\frac{L}{D} + K_{ent} + K_{90^\circ} + 2K_{45^\circ} + 15 + K_v \right] \end{split}$$

$$Q \to V_3 = 4.84 \frac{m}{s} \to Re = 4.25 \times 10^5, \frac{e}{D} = .000015 \to f$$

 $\Delta h_{pump} = (9.81)(122) + \frac{37^2}{2} + \frac{4.84^2}{2} \left[f \frac{213}{.1} + .75 + .7 + 2(.2) + 15 + .2 \right]$

$$h_{l_T} = \sum h_l + \sum h_{l_m} = \left(\frac{p_1}{\rho} + \frac{\bar{V}_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \frac{\bar{V}_2^2}{2} + gz_2\right) + \Delta h_{pump}$$

$$p_2 = \rho \Delta h_{pump}$$

$$\dot{W}_{p,th} = \dot{m}\Delta h_{pump} = \rho Q \Delta h_{pump}$$

$$\dot{W}_{p} = \frac{\dot{W}_{p,th}}{\eta}$$

This assignment is due by 6pm on March 25th.

- Upload your solution to BB.
- You can either type your solution out using a word editor like Microsoft Word or clearly hand write the information and then copy/scan your solution to a digital file.