

Full-space Gradient vs Subiterations, m = 8248

Full-space Gradient vs Subiterations, m = 32992

Full-space Gradient vs Subiterations, m = 74232

Full-space Gradient vs Subiterations m = 8248

Work Units vs State Variables RS-B, n = 20250000 RS-B, n = 40RS-B, n = 60RS-N, n = 20200000 RS-N, n = 40Work Units to Convergence RS-N, n = 60FS $\tilde{\mathbf{P}}_2$, n=20150000 FS $\tilde{\mathbf{P}}_2$, n=40FS $\tilde{\mathbf{P}}_2$, n = 60100000 50000 0 20000 30000 40000 50000 60000 70000 10000

Number of State Variables *m*

Gradient Norm vs Design Cycles m = 32992→ RS-B, n = 20 10^{-1} - RS-B, n = 40**—** RS-B, n = 60... RS-N, n = 20...**▼**... RS-N, *n* = 40 10^{-3} $\cdot \cdot \cdot$ RS-N, n = 60 $- - FS \tilde{\mathbf{P}}_2$, n = 20**Gradient Norm** -**F**S $\tilde{\mathbf{P}}_2$, n = 40 10^{-5} -**■**· FS $\tilde{\mathbf{P}}_2$, n = 60 10^{-7} 10^{-9} 20 40 60 80 Design Cycles

