Chapitre 2 : EQUATIONS DIFFÉRENTIELLES" Module : Mathématiques 2 (ST/L1 2019/2020

Dr. Medjadj Imene

31 mai 2020

Chapitre 1

Équations différentielles

1.1 Définitions

Dans la suite on suppose que I est un intervalle de \mathbb{R}

Définition 1.1.1 On appelle équation différentielle d'ordre n, toute relation F entre x, y et les dérivées de y donnée par

$$F(x, y, y', ..., y^{(n)}) = 0.$$

Toute fonction y(x) verifiant $F(x, y, y', ..., y^{(n)}) = 0$ est appelée solution de l'équation différentielle.

Définition 1.1.2 1. Une équation différentielle d'ordre n est linéaire si elle est de la forme :

$$a_0(x)y + a_1(x)y' + a_2(x)y'' + \dots + a_n(x)y^{(n)} = g(x)$$

où les a_i , pour $i=0,\ldots,n$ et g sont des fonctions réelles continues sur un intervalle $I\subset \mathbb{R}$.

2. Une équation différentielle linéaire d'ordre n est dite homogène, ou sans second membre si la fonction g est nulle :

$$a_0(x)y + a_1(x)y' + a_2(x)y'' + \dots + a_n(x)y^{(n)} = 0.$$

3. Une équation différentielle linéaire est à coefficients constants si

$$a_0y + a_1y' + a_2y'' + \dots + a_ny^{(n)} = g(x)$$

où les a_i , pour $i=0,\ldots,n$ sont des constantes et g est une fonction réelle continue.

Proposition 1.1.3 Si y_1 et y_2 sont solutions de l'équation différentille linéaire homogène :

$$a_0(x)y + a_1(x)y' + a_2(x)y'' + \dots + a_n(x)y^{(n)} = g(x)$$

alors $\forall \lambda, \mu, \lambda y_1 + \mu y_2$ est aussi solution de cette équation.

L'ensemble des solutions d'une équation différentielle linéaire homogène forme un espace vectoriel.

1.2 Equation différentielle du premier Ordre

Définition 1.2.1 Une équation différentille du premier ordre est de la forme :

$$y' = f(x, y)$$

où f est une fonction continue par rapport à x sur un intervalle I de \mathbb{R} .

1.2.1 Equation différentielle à variables séparables

On appelle équation différentielle à variables séparables une équation de la forme :

$$y'f(y) = g(x) \tag{1.1}$$

où f, g sont des fonctions continuent sur I.

Méthode de résolution

Sachant que $y' = \frac{dy}{dx}$, alors

$$\frac{dy}{dx}f(y) = g(x) \quad \Rightarrow f(y)dy = g(x)dx \Rightarrow \int f(y)dy = \int g(x)dx.$$

Exemple 1.2.2 1.
$$y' = e^{-y} \Rightarrow e^y dy = dx \Rightarrow e^y = x + c, c \in \mathbb{R} \Rightarrow y = \ln|x + c|$$
.
2. $(x^2 + 1)dy = 2x(y^2 + 1)dx \Rightarrow \int \frac{dy}{y^2 + 1} = \int \frac{2x}{x^2 + 1} dx$
 $\Rightarrow arctg(y) = \ln(x^2 + 1) + c \Rightarrow y = \tan(\ln(x^2 + 1) + c), c \in \mathbb{R}$.

1.2.2 Equation différentielle Homogène

1. Premier cas : une équation différentielle homogène est une équation de la forme :

$$y' = F(\frac{y}{x}).$$

Méthode de résolution

On pose $t = \frac{y}{x}$ ainsi

$$y = tx \Rightarrow y' = t + xt' \Rightarrow \frac{dy}{dx} = F(\frac{y}{x}) \Rightarrow t + xt' = F(t) \Rightarrow F(t) - t = \frac{dt}{dx}x$$

$$\Rightarrow \frac{dt}{F(t) - t} = \frac{dx}{x}.$$

Il ne reste plus qu'a résoudre l'équation différentielle à variable séparables : $\frac{dt}{F(t)-t} = \frac{dx}{x}$.

$$t = \frac{y}{x} \Rightarrow y = tx \Rightarrow y' = t + t'x$$

on retrouve

$$(t+t'x) = t + \frac{1}{\cos(t)} \Rightarrow x\frac{dt}{dx} = \frac{1}{\cos(t)} \Rightarrow \cos(t)dt = \frac{dx}{x} \Rightarrow \int \cos(t)dt = \int \frac{dx}{x}$$
$$\Rightarrow \sin(t) = \ln|x| + c \Rightarrow t = \arcsin(\ln|x| + c), \ c \in \mathbb{R}$$

enfin $y(x) = x \arcsin(\ln|x| + c)$.

2. xy' = y + x en posant :

$$t = \frac{y}{x} \Rightarrow y = tx \Rightarrow y' = t + t'x$$

on retrouve

$$x(t+t'x) = tx + x \Rightarrow t'x + t = t+1 \Rightarrow t'x = 1 \Rightarrow x\frac{dt}{dx} = 1 \Rightarrow dt = \frac{dx}{x}$$
 ainsi $t = \ln|x| + c, c \in \mathbb{R}$ d'où

$$y(x) = x \ln|x| + cx.$$

2. Second cas : une équation différentielle homogène est une équation de la forme :

$$E_h: y' + a(x)y = 0.$$

Où a est continue sur I.

Méthode de résolution

 (E_h) est une équation à variable séparables en effet :

$$y' = -a(x)y \Rightarrow \frac{dy}{y} = -a(x)dx \Rightarrow \int \frac{dy}{y} = \int -a(x)dx \Rightarrow \ln|y| = \int -a(x)dx + c, c \in \mathbb{R}$$

d'où la solution générale de (E_h) est donnée par

$$y_h = Ke^{-\int a(x)dx}, k = \pm e^c \in \mathbb{R}.$$

Exemple 1.2.4 1.
$$y' - ye^x = 0 \Rightarrow \frac{dy}{dx} = ye^x \Rightarrow \int \frac{dy}{y} = \int e^x dx \Rightarrow \ln|y| = e^x + c, c \in \mathbb{R}, \Rightarrow y = Ke^{e^x}, K = \pm e^c.$$

2.
$$y' - y\cos(x) = 0 \Rightarrow \frac{dy}{dx} = y\cos(x) \Rightarrow \int \frac{dy}{y} = \int \cos(x)dx \Rightarrow \ln|y| = \sin(x) + c, c \in \mathbb{R}, \Rightarrow y = Ke^{\sin(x)}, K = \pm e^{c}.$$

1.2.3 Equation différentielle linéaire

On appelle une équation différentielle linéaire une équation de la forme :

$$E: y' + a(x)y = b(x).$$

Où a, b sont des fonctions continuent sur I.

Méthode de résolution

La solution générale de (E) est donnée par $y_g = y_h + y_p$ avec y_h est la solution de l'équation homogéne (E_h) et y_p et la solutions particulière.

Méthode la variation de la constante :

on $y_h = kf(x)$ où $f(x) = e^{-\int a(x)dx} = F$ la méthode consiste à faire varier la constante k c'est à dire la constante k devient la fonction à trouver k(x) avec $y_p = k(x)F$ on remplaçant dans (E) et donc

$${y'}_p = k'(x)F + F'k(x) \Rightarrow k'(x)F + F'k(x) + a(x)k(x)F = b(x) \Rightarrow k'(x)F = b(x)$$

 $\operatorname{car} F' + a(x)F = 0$ on retrouve

$$y_p = \left(\int \frac{b(x)}{F} dx\right) F$$

Exemple 1.2.5 1. $y'-y=e^x...(E)$ on commence par résoudre l'équation homogène $(E_h): y'-y=0$ on a:

$$\frac{dy}{dx} = y \Rightarrow \int \frac{dy}{y} = \int x dx \Rightarrow \ln|y| = x + c, c \in \mathbb{R}, \Rightarrow y = Ke^x, K = \pm e^c.$$

On cherche ensuite une solution particulière en ulilisant la méthode de la variation de la constante notée M.V.C, on pose $y(x) = k(x)e^x \Rightarrow k'(x)e^x + k(x)e^x$. En remplaçant dans (E) on aura:

$$k'(x)e^x + k(x)e^x - k(x)e^x = e^x \Rightarrow K'(x) = 1 \Rightarrow k(x) = x,$$

alors la solution particulière est donc donnée par $y_p(x) = xe^x$.

Enfin, la solution générale de l'équation avec second membre est donnée par $y(x) = ke^x + xe^x$.

2. y' + 2ty = 2t...(E) on commence par résoudre l'équation homogène $(E_h): y' + 2ty = 0$ on a:

$$\frac{dy}{dt} = -2ty \Rightarrow \int \frac{dy}{y} = -\int 2tdt \Rightarrow \ln|y| = -t^2 + c \Rightarrow y = ke^{-t^2}, k = \pm e^c$$

On cherche ensuite une solution particulière en ulilisant la méthode de la variation de la constante notée M.V.C, on pose

$$y(t) = k(t)e^{-t^2} \Rightarrow y' = k'(t)e^{-t^2} - 2tk(t)e^{-t^2}$$
.

En remplaçant dans (E) on aura:

$$k'(t)e^{-t^2} - 2tk(t)e^{-t^2} + 2tk(t)e^{-t^2} = 2t \Rightarrow k(t) = \int 2te^{t^2}dt = e^{t^2},$$

la solution particulière est donnée par

$$y_p = e^{t^2} e^{-t^2} = 1$$

Enfin, la solution générale de l'équation avec second membre est donnée par

$$y(t) = ke^{-t^2} + 1,$$

 $avec\ y(0) = 0\ ainsi\ k = -1\ alors$

$$y(t) = 1 - e^{-t^2}.$$

1.2.4 Equation de Bernoulli

On appelle une équation de Bernoulli une équation de la forme :

$$E_b: y' + a(x)y = b(x)y^n, n \neq 0$$
et $n \neq 1$.

Méthode de résolution

On divise (E_b) par y^n on aura:

$$y'y^{-n} + a(x)y^{1-n} = b(x),$$

puis on pose $z = y^{1-n} \Rightarrow z' = (1-n)y'y^{-n}$ on obtient une équation différentielle du premier ordre (E) en z sous la forme :

$$\frac{1}{1-n}z' + a(x)z = b(x).$$

Exemple 1.2.6 $y' + 2xy = xy^2$ c'est une différentielle de Bernoulli, on divise (E_b) par y^2 on aura :

$$y'y^{-2} + 2xy^{-1} = x,$$

puis on pose $z=y^{-1} \Rightarrow z'=-y'y^{-2}$ on obtient une équation différentielle du premier ordre (E) en z sous la forme :

$$-z' + 2xz = x...(E).$$

On commence par résoudre l'équation homogène

$$(E_h): -z' + 2zx = 0$$

on a:

$$\frac{dz}{dx} = 2zx \Rightarrow \int \frac{dz}{z} = \int 2xdx \Rightarrow \ln|z| = x^2 + c \Rightarrow z = ke^{x^2}, k = \pm e^c$$

On cherche ensuite une solution particulière en ulilisant la méthode de la variation de la constante notée M.V.C, on pose

$$z(x) = k(x)e^{x^2} \Rightarrow z' = k'(x)e^{x^2} + 2xk(x)e^{x^2}.$$

En remplaçant dans (E) on aura :

$$-k'(x)e^{x^2} - 2xk(x)e^{x^2} + 2xk(x)e^{x^2} = x \Rightarrow k(x) = \int -xe^{-x^2}dx.$$

On calcule $k(x) = \frac{e^{-x^2}}{2}$, alors la solution particulière est donnée par

$$z_p(x) = \frac{e^{-x^2}}{2}e^{x^2} = \frac{1}{2}$$

Ainsi, la solution générale de l'équation avec second membre est donnée par

$$z(x) = ke^{x^2} + \frac{1}{2}.$$

Enfin sachant que $y(x) = (z(x))^{-1}$ la solution de (E_p) est donnée par

$$y(x) = (ke^{x^2} + \frac{1}{2})^{-1}, \quad k \in \mathbb{R}.$$

1.3 Equation différentielle du second ordre

Soit (E) l'équation différentille du second ordre donnée par

$$E: y'' + a(x)y' + b(x)y = f(x)$$

où a, b, f sont des fonctions continues sur I.

- **Définition 1.3.1** 1. On dit que (E) est une équation différentille du second ordre à coefficients contants si elle est de la forme : y'' + ay' + by = f(x), avec $a, b \in \mathbb{R}$, étant des constantes.
 - 2. L'équation homogéne à (E) est (E_h) donnée par y'' + ay' + by = 0.
 - 3. On appelle équation caractéristique associée à (E_h) l'équation définie par :

$$E_r: r^2 + ar + b = 0, r \in \mathbb{C}.$$

1.3.1 Résolution homogène (E_h)

Théorème 1.3.2 Soit y_1, y_2 deux solutions particulières de (E_h) linéairement indépendantes, alors la solution générales de (E_h) est donnée par

$$y = c_1 y_1 + c_2 y_2, \quad c_1, c_2 \in \mathbb{R}.$$

Soit $\Delta = a^2 - 4b$ le discriminant de l'équation caractéristique (E_r)

Théorème 1.3.3 1. Si $\Delta > 0$, alors l'équation (E_r) admet deux solutions r_1, r_2 ainsi la solution de (E_h) est donnée par

$$y_h = c_1 e^{r_1 x} + c_2 e^{r_2 x}, c_1, c_2 \in \mathbb{R}.$$

2. Si $\Delta = 0$, alors l'équation (E_r) admet une solution double $r_1 = r_2 = r$ ainsi la solution de (E_h) est donnée par

$$y_h = c_1 e^{rx} + c_2 x e^{rx}, \ c_1, c_2 \in \mathbb{R}.$$

3. Si $\Delta < 0$, alors l'équation (E_r) admet deux solutions complexes $r_1 = r + i\alpha, r_2 = r - i\alpha, \alpha, r \in \mathbb{R}$ ainsi la solution de (E_h) est donnée par

$$y_h = c_1 e^{rx} \cos(\alpha x) + c_2 e^{rx} \sin(\alpha x), \quad c_1, c_2 \in \mathbb{R}.$$

Exemple 1.3.4 1. y'' + y' - 6y = 0...(E) commençons par déterminer équation caractéristique associée à (E_h) qui définie par

$$E_r: r^2 + r - 6 = 0$$

les solutions de cette équations sont : 2, -3 des solutions simples ainsi la solution de cette équation du second ordre est donnée comme suit

$$y(x) = c_1 e^{2x} + c_2 e^{-3x}, c_1, c_2 \in \mathbb{R}.$$

2. y'' + 2y' + y = 0...(E) l'équation caractéristique associée est

$$r^2 + 2r + 1 = 0$$

admet une solution double r = -1, alors la solution est donnée par

$$y(x) = c_1 e^{-x} + c_2 x e^{-x} = (c_1 + c_2 x) e^{-x}, c_c, c_2 \in \mathbb{R}.$$

3. $y'' + y = 0...(E_h)$ l'équation caractéristique associée est

$$r^2 + 1 = 0$$

admet comme solutions simples $r_1=0+i, r_2=0-i,$ alors la solution est donnée par

$$y(x) = e^{0.x}[c_1 \cos(x) + c_2 \sin(x)] = c_1 \cos(x) + c_2 \sin(x), c_1, c_2 \in \mathbb{R}.$$

4. $y'' + y' + y = 0...(E_h)$ l'équation caractéristique associée est

$$r^2 + r + 1 = 0$$

admet comme solutions simples $r_1=\sqrt{3}i, r_2=-\sqrt{3}i,$ alors la solution est donnée par

$$y(x) = c_1 \cos(\sqrt{3}x) + c_2 \sin(\sqrt{3}x), c_1, c_2 \in \mathbb{R}.$$

1.3.2 Résolution d'une Équations du second ordre à coefficients constants (E): y'' + ay' + by = f(x)

Soit $y_g = y_h + y_p$ la solution générale de (E) est la somme de la solution de l'equation homogème et la solution particulière. La recherche de la solutions particulière est résumée dans le tableau suivant :

f(x)	Racines de l'équation	
$\int (x)$	•	G 1 4: 4: 1: 3
	caractéristique (E_r)	Solution particulière
$P_n(x)$	0 n'est pas une	
	solution de (E_r)	$y_p = \tilde{P}_n(x)$
$P_n(x)$	0 est une solution	
	d'ordre ω (E_r)	$y_p = x^{\omega} \tilde{P}_n(x)$
$P_n(x)e^{\alpha x}$	α n'est pas	
	une solution (E_r)	
		$y_p = \tilde{P}_n(x)e^{\alpha x}$
$P_n(x)e^{\alpha x}$	α est une solution	
	d'ordre ω (E_r)	$y_p = x^{\omega} \tilde{P}_n(x) e^{\alpha x}$
$P_n(x)\cos(\beta x) + Q_m(x)\sin(\beta x)$	$\pm i\beta$ n'est pas	
	une solution (E_r)	$y_p = \tilde{P}_k(x)\cos(\beta x)$
		$+ ilde{Q}_k(x)\sin(eta x)$
$P_n(x)\cos(\beta x) + Q_m(x)\sin(\beta x)$	$\pm i\beta$ est une solution	
	d'ordre ω (E_r)	$y_p = x^{\omega}(\tilde{P}_k(x)\cos(\beta x))$
		$+ ilde{Q}_k(x)\sin(eta x))$
$e^{\alpha x}(P_n(x)\cos(\beta x) + Q_m(x)\sin(\beta x))$	$\alpha \pm i\beta$ n'est pas	
	une solution (E_r)	$y_p = e^{\alpha x} (\tilde{P}_k(x) \cos(\beta x))$
		$+\tilde{Q}_k(x)\sin(eta x)$
$e^{\alpha x}(P_n(x)\cos(\beta x) + Q_m(x)\sin(\beta x))$		
Avec $k \max(n, m)$	$\alpha \pm i\beta$ est une solution	
	d'ordre ω (E_r)	$y_p = x^{\omega} e^{\alpha x} (\tilde{P}_k(x) \cos(\beta x))$
	·	$+ ilde{Q}_k(x)\sin(eta x))$

Avec $P_n(x)$, $\tilde{P}_n(x)$ sont des polynômes de degré n et $Q_m(x)$, $\tilde{Q}_m(x)$ sont polynôme de degré m.

Remarque 1.3.5 Le cas ou le second membre $f(x) = e^{\alpha x}(P_n(x)\cos(\beta x) + Q_m(x)\sin(\beta x))$ résume tous les autres cas, en effet :

Pour r = 0 = 0 + 0i, $\alpha = \beta = 0$, c'est le premier cas ou $f(x) = P_n(x)$.

Pour $r = \alpha + i.0$, un réel $\beta = 0$ c'est le cas ou $f(x) = e^{\alpha x} P_n(x)$.

Pour $r = i\beta$, un imagnaire pure $\alpha = 0$ c'est le cas ou $f(x) = P_k(x)\cos(\beta x) + Q_k(x)\sin(\beta x)$.

Exemple 1.3.6 1. y'' + y' - 6y = 6x...(E) sachant que la solution de

$$(E_h): y'' + y' - 6y = 0$$

est donnée comme suit $y(x) = c_1 e^{2x} + c_2 e^{-3x}$, $c_1, c_2 \in \mathbb{R}$. la solution générale de $(E), y_q = y_h + y_p$.

Nous allons utiliser le tableau précédent dans la partie cours, c'est à dire suivant y_p dépend du second membre de (E), f(x) = 6x, ainsi $y_p = P_1(x)$,

0 est-elle une solution de (E_r) : $r^2 + r - 6 = 0$? la réponse est non, alors y_p est un polynôme du même degré que f(x), de la forme suivante

$$y_p = ax + b$$

pour trouver y_p en fait il faut trouver $a, b \in \mathbb{R}$ tels que y_p vérifie (E). En remplaçant dans (E) on aura :

$$a = -1, b = -1/6, y_p = -x - 1/6$$

ainsi la solution de (E) est :

$$y = c_1 e^{2x} + c_2 e^{-3x} - x - \frac{1}{6}$$

2. $y'' + y' - 6y = e^{2x}...(E)$ sachant que la solutionde $(E_h): y'' + y' - 6y = 0$ est donnée comme suit $y(x) = c_1e^{2x} + c_2e^{-3x}, c_1, c_2 \in \mathbb{R}$. comme le second membre de (E) est $f(x) = e^{2x}$ et 2 **est-elle une solution de** $(E_r): r^2 + r - 6 = 0$? la réponse est **oui**, alors y_p est sous la forme $x^1P_0(x)e^{2x}$, de la forme suivante

$$y_p = axe^{2x}$$

pour trouver y_p en fait il faut trouver $a \in \mathbb{R}$ tels que y_p vérifie (E)

$$y' = ae^{2x} + 2xae^{2x}, y'' = e^{2x}[2a + 2a + 4ax]$$

$$e^{2x}[4a + 4ax] + ae^{2x} + 2xae^{2x} - 6axe^{2x} = e^{2x}$$

ainsi $a = \frac{1}{5}$ la solution

$$y = y_h + y_p = c_1 e^{2x} + c_2 e^{-3x} + \frac{x}{5} e^{2x}.$$

3. $y'' + y = e^x$, la solution est $y_h = c_1 \cos(x) + c_2 \sin(x)$, $c_1, c_2 \in \mathbb{R}$. Suivant le tableau y_p est sous la forme ae^x car 1 n'est pas une solution de (E_r) . Pour trouver a en remplace dans (E), a = 1/2 ainsi

$$y_p = \frac{1}{2}e^x, y_g = c_1\cos(x) + c_2\sin(x) + \frac{1}{2}e^x.$$

4. $y'' + y = \sin(x)$, la solution est $y_h = c_1 \cos(x) + c_2 \sin(x)$, $c_1, c_2 \in \mathbb{R}$. Suivant le tableau y_p est sous la forme $y_p = x(a\sin(x) + b\cos(x))$, car i est une solution simple de (E_r) , pour trouver a, b on remplace dans (E), a = -1/2, b = 0,

$$y_p = -\frac{x}{2}\cos(x), y_g = c_1\cos(x) + c_2\sin(x) - \frac{x}{2}\cos(x).$$

Donner l'expression des solutions particulières :

- 1. $y'' y' 2y = e^{2x}$, les racines de (E_r) : $r^2 r 2 = 0$ sont $r_1 = -1$, $r_2 = 2$ ainsi $y_p = xae^{2x}$
- 2. $y'' 2y' + y = xe^x$, $(E_r): r^2 2r + 1 = 0$ admet la racines double est r = 1, ainsi $y_p = x^2(ax + b)e^x$.
- 3. $y'' + y = x^2 e^x \sin(x)$; $(E_r): r^2 + 1 = 0$ admet les racines $r_1 = i, r_2 = -i$, sachant que $1 \pm i$ n'est pas une racines de (E_r) , alors

$$y_p = e^x[(ax^2 + bx + c)\sin(x) + (dx^2 + ex + f)\cos(x).$$

4. $y'' + 2y' + y = e^x + \sin(x)$; (E_r) : $(r+1)^2 = 0$, admet une racine double r = -1, la solution particulière est donnée par

$$y_p = y_{p1} + y_{p2}$$
, le principe de superposition.

- où y_{p1} est la solution particulière de (E_1) : $y'' + 2y' + y = e^x$, sachant que 1 n'est pas solution de (E_r) $y_{P1} = ae^x$.
- et y_{P2} est la solution de (E_2) : $y'' + 2y' + y = \sin(x)$, sanchant i n'est pas aussi une racine de (E_r) donc $y_{P2} = a\sin(x) + b\cos(x)$.
- 5. $y'' + 4y = x\sin(2x) + xe^{2x}\cos(x)$, la solution de (E_r) : $r^2 + 4 = 0$, est 2i, -2i donc comme précédement $y_p = y_{P1} + y_{P2}$, où y_{p1} est la solution particulière de (E_1) : $y'' + 4y = x\sin(2x)$, sachant que 2i est une solution de (E_r) $y_{P1} = x((ax + b)\cos(2x) + (cx + d)\sin(2x))$.
 - et y_{P2} est la solution de (E_2) : $y'' + 4y = xe^{2x}\cos(x)$, sanchant $2 \pm i$ n'est pas une racine de (E_r) donc $y_{P2} = e^{2x}[(ax + b)\cos(x) + (cx + d)\sin(x))]$.

Dr. I.Medjadj