Model-based Diffusion

for Trajectory Optimization

Diffusion model as a powerful sampler

• A diffusion model is a generative model capable of generating samples from a given distribution

Diffusion model as a powerful sampler

• Forward: diffusion achieve that by corrupt the distribution with noise to make it smooth and easier to sample from

Diffusion model as a powerful sampler

• Forward: diffusion achieve that by corrupt the distribution with noise to make it smooth and easier to sample from

$$\begin{split} p_{i|i-1}(\;\cdot\;|\;Y^{(i-1)}) &\sim \mathcal{N}(\sqrt{\alpha_i}Y^{(i-1)},\sqrt{1-\alpha_i}I) \\ p_{i|0}(\;\cdot\;|\;Y^{(0)}) &\sim \mathcal{N}(\sqrt{\bar{\alpha}_i}Y^{(0)},\sqrt{1-\bar{\alpha}_i}I), \quad \bar{\alpha}_i = \prod_{k=1}^i \alpha_k \,. \end{split}$$

$$Y_k^{(i-1)} = \frac{1}{\sqrt{\alpha_i}} \left(Y_k^{(i)} + \frac{1 - \alpha_i}{2} \nabla_{Y^{(i)}} \log p_i(Y_k^{(i)}) \right) + \sqrt{1 - \alpha_i} \mathbf{z}_i$$

Diffusion model as a powerful sampler

• Reverse: diffusion model can recover the original distribution iteratively, where the **score function** is the key component

$$\begin{split} p_{i|i-1}(\,\cdot\mid Y^{(i-1)}) &\sim \mathcal{N}(\sqrt{\alpha_i}Y^{(i-1)}, \sqrt{1-\alpha_i}I) \\ \\ p_{i|0}(\,\cdot\mid Y^{(0)}) &\sim \mathcal{N}(\sqrt{\bar{\alpha}_i}Y^{(0)}, \sqrt{1-\bar{\alpha}_i}I), \quad \bar{\alpha}_i = \prod_{k=1}^i \alpha_k \,. \end{split}$$

$$Y_k^{(i-1)} = \frac{1}{\sqrt{\alpha_i}} \left(Y_k^{(i)} + \frac{1 - \alpha_i}{2} \nabla_{Y^{(i)}} \log p_i(Y_k^{(i)}) \right) + \sqrt{1 - \alpha_i} \mathbf{z}_i$$

Diffusion model as a powerful sampler

• Reverse: diffusion model can recover the original distribution iteratively, where the **score function** is the key component

Diffusion model as a powerful sampler

- Advantages
 - Multimodal: It effectively handles multimodal distributions, a challenge often encountered when directly predicting distributions.

Diffusion model as a powerful sampler

- Advantages
 - Multimodal: It effectively handles multimodal distributions, a challenge often encountered when directly predicting distributions.
 - Scalable: This approach scales well with high-dimensional distribution matching problems, making it versatile for various applications.
 - **Stable**: Grounded in solid math and a standard multi-stage diffusion training procedure, the model ensures stability during training.
 - Non-autoregressive: Its capability to predict entire trajectory sequences in a non-autoregressive manne.

Diffusion solving trajectory optimization as a sampling problem

Image Generation

Planning

Diffusion solving trajectory optimization as a sampling problem

• Powerful trajectory generator but highly depends on the training data.

Example: Throwing Ball Over a Wall with Diffusion

• Task: a throwing ball over a wall to maximize the distance

Example: Throwing Ball Over a Wall with Diffusion

• Task: a throwing ball over a wall to maximize the distance

Cost function
$$\begin{array}{c}
0.00 \\
-0.02 \\
-0.04 \\
-0.06 \\
-0.08 \\
0.0 \\
0.5 \\
1.0 \\
1.5
\end{array}$$

$$\min_{u} J(f(x_{\text{init}}, u)) = l(f(x_{\text{init}}, u), u)$$

Example: Throwing Ball Over a Wall with Diffusion

• Diffusion model bypasses the difficulty by transforming the optimization problem into a sampling problem.

$$p_0(Y) \propto \exp(-\frac{J(Y)}{\lambda})$$

$$\min_{u} J(f(x_{\text{init}}, u)) = l(f(x_{\text{init}}, u), u)$$

Example: Throwing Ball Over a Wall with Diffusion

• Forward: smooth the desired distribution and make problem convex

Example: Throwing Ball Over a Wall with Diffusion

• backward: start from the corrupted distribution and recover the original distribution iteratively with reverse SDE

Example: Throwing Ball Over a Wall with Diffusion

• backward: start from the corrupted distribution and recover the original distribution iteratively with reverse SDE

$$\nabla_{Y^{(i)}} \log p_i(Y_k^{(i)})$$

Model-based Diffusion use <u>model</u> information to generate score instead of data

Model-based Diffusion Make Score Function Conditional on Model

• Model information: dynamics and cost can be evaluated at any point.

Model-based Diffusion Make Score Function Conditional on Model

• MBD contribution: Data-free score computation + Faster backward process

Aspect	Model-Based Diffusion (MBD)	Model-Free Diffusion (MFD)
Target distribution	Known, but hard to sample	Unknown, but have data from it
Objective	Sample high-likelihood solution	Generate diverse samples

Limitation of Model-Free Diffusion: not generalizable

• Model-free diffusion: cannot react to new distribution (in TO, could be dynamics/cost changes)

Score Function Computation with Model

• Model-based score computation: $\nabla_{Y^{(i)}} \log p_i(Y_k^{(i)}) \qquad p_i = \int p_{i|0} p_0 dY^{(0)}$ $p_{i|0}(Y^{(i)} \mid Y^{(0)}) \propto \exp(-\frac{1}{2} \frac{\left(Y^{(i)} - \sqrt{\bar{\alpha}_i} Y^{(0)}\right)^{\top} \left(Y^{(i)} - \sqrt{\bar{\alpha}_i} Y^{(0)}\right)}{1 - \bar{\alpha}_i})$

Score Function Computation with Model

• Model-based score computation: $\nabla_{Y^{(i)}} \log p_i(Y_k^{(i)})$ $p_i = \int p_{i|0} p_0 dY^{(0)}$

$$\begin{split} \nabla_{Y^{(i)}} \log p_i(Y^{(i)}) &= \frac{\nabla_{Y^{(i)}} \int p_{i|0}(Y^{(i)} \mid Y^{(0)}) p_0(Y^{(0)}) \, dY^{(0)}}{\int p_{i|0}(Y^{(i)} \mid Y^{(0)}) p_0(Y^{(0)}) \, dY^{(0)}} & \text{Gradient into int} \\ &= \frac{\int \nabla_{Y^{(i)}} p_{i|0}(Y^{(i)} \mid Y^{(0)}) p_0(Y^{(0)}) \, dY^{(0)}}{\int p_{i|0}(Y^{(i)} \mid Y^{(0)}) p_0(Y^{(0)}) \, dY^{(0)}} & \text{Gaussian} \\ &= \frac{\int -\frac{Y^{(i)} - \sqrt{\bar{\alpha}_i} Y^{(0)}}{1 - \bar{\alpha}_i} p_{i|0}(Y^{(i)} \mid Y^{(0)}) p_0(Y^{(0)}) \, dY^{(0)}}{\int p_{i|0}(Y^{(i)} \mid Y^{(0)}) p_0(Y^{(0)}) \, dY^{(0)}} \\ &= -\frac{Y^{(i)}}{1 - \bar{\alpha}_i} + \frac{\sqrt{\bar{\alpha}_i}}{1 - \bar{\alpha}_i} \frac{\int Y^{(0)} p_{i|0}(Y^{(i)} \mid Y^{(0)}) p_0(Y^{(0)}) \, dY^{(0)}}{\int p_{i|0}(Y^{(i)} \mid Y^{(0)}) p_0(Y^{(0)}) \, dY^{(0)}} \end{split}$$

Score Function Computation with Model

• Model-based score computation with Monte Carlo Approximation: $\nabla_{Y^{(i)}} \log p_i(Y_k^{(i)})$

$$\begin{split} \nabla_{Y^{(i)}} \log p_i(Y^{(i)}) &= -\frac{Y^{(i)}}{1 - \bar{\alpha}_i} + \frac{\sqrt{\bar{\alpha}_i}}{1 - \bar{\alpha}_i} \frac{\int Y^{(0)} \phi_i(Y^{(0)}) p_0(Y^{(0)}) \, dY^{(0)}}{\int \phi_i(Y^{(0)}) p_0(Y^{(0)}) \, dY^{(0)}} \\ &\approx -\frac{Y^{(i)}}{1 - \bar{\alpha}_i} + \frac{\sqrt{\bar{\alpha}_i}}{1 - \bar{\alpha}_i} \qquad \frac{\sum_{Y^{(0)} \in \mathcal{Y}^{(i)}} Y^{(0)} p_0(Y^{(0)})}{\sum_{Y^{(0)} \in \mathcal{Y}^{(i)}} p_0(Y^{(0)})} \end{split}$$

Monte Carlo Approximation

$$:= -\frac{Y^{(i)}}{1 - \bar{\alpha}_i} + \frac{\sqrt{\bar{\alpha}_i}}{1 - \bar{\alpha}_i} \bar{Y}^{(0)}(\mathcal{Y}^{(i)})$$

Speed Up Backward Process in MBD

 Backward process: Monte Carlo Score Ascent given the objective of sampling from high density region

Reverse SDE
$$Y^{(i-1)} = \frac{1}{\sqrt{\alpha_i}} \left(Y^i + \frac{1 - \alpha_i}{2} \nabla_{Y^{(i)}} \log p_i(Y^{(i)}) \right) + \sqrt{1 - \alpha_i} \mathbf{z}_i$$

$$Y^{(i-1)} = \frac{1}{\sqrt{\alpha_i}} \left(Y^{(i)} + (1 - \bar{\alpha}_i) \nabla_{Y^{(i)}} \log p_i(Y^{(i)}) \right)$$

Speed Up Backward Process in MBD

• Backward process: larger step size according to the smoothness of the distribution

$$Y^{(i-1)} = \frac{1}{\sqrt{\alpha_i}} \left(Y^i + \frac{1 - \alpha_i}{2} \nabla_{Y^{(i)}} \log p_i(Y^{(i)}) \right) + \sqrt{1 - \alpha_i} \mathbf{z}_i$$

MCSA (ours)

$$Y^{(i-1)} = \frac{1}{\sqrt{\alpha_i}} \left(Y^{(i)} + (1 - \bar{\alpha}_i) \nabla_{Y^{(i)}} \log p_i(Y^{(i)}) \right)$$

Speed Up Backward Process in MBD

• Backward process: no noise term in the update

Reverse SDE

$$Y^{(i-1)} = \frac{1}{\sqrt{\alpha_i}} \left(Y^i + \frac{1 - \alpha_i}{2} \nabla_{Y^{(i)}} \log p_i(Y^{(i)}) \right) + \sqrt{1 - \alpha_i} \mathbf{z}_i$$

MCSA (ours)

$$Y^{(i-1)} = \frac{1}{\sqrt{\alpha_i}} \left(Y^{(i)} + (1 - \bar{\alpha}_i) \nabla_{Y^{(i)}} \log p_i(Y^{(i)}) \right)$$

Speed Up Backward Process in MBD

• Backward process: converge faster while still capturing the multimodality

Model-free v.s. Model-based

Algorithm 1 Model-based Diffusion for Generic Optimization

- 1: Input: $Y^{(N)} \sim \mathcal{N}(\mathbf{0}, I)$
- 2: **for** i = N to 1 **do**
- 3: Sample $\mathcal{Y}^{(i)} \sim \mathcal{N}(\frac{Y^{(i)}}{\sqrt{\bar{\alpha}_{i-1}}}, (\frac{1}{\bar{\alpha}_{i-1}} 1)I)$
- 4: Calculate Eq. (9b) $\bar{Y}^{(0)}(\mathcal{Y}^{(i)}) = \frac{\sum_{Y^{(0)} \in \mathcal{Y}^{(i)}} Y^{(0)} p_0(Y^{(0)})}{\sum_{Y^{(0)} \in \mathcal{Y}^{(i)}} p_0(Y^{(0)})}$
- 5: Estimate the score Eq. (9a): $\nabla_{\underline{Y}^{(i)}} \log p_i(\underline{Y}^{(i)}) \approx -\frac{\underline{Y}^{(i)}}{1-\bar{\alpha}_i} + \frac{\sqrt{\bar{\alpha}_i}}{1-\bar{\alpha}_i} \bar{Y}^{(0)}(\underline{\mathcal{Y}}^{(i)})$
- 6: Monte Carlo score ascent Eq. (6): $Y^{(i-1)} \leftarrow \frac{1}{\sqrt{\alpha_i}} \left(Y^{(i)} + (1 \bar{\alpha}_i) \nabla_{Y^{(i)}} \log p_i(Y^{(i)}) \right)$
- 7: end for

Model-free v.s. Model-based

Aspect	Model-Based Diffusion (MBD)	Model-Free Diffusion (MFD)
Target distribution	Known, but hard to sample	Unknown, but have data from it
Objective	Sample high-likelihood solution	Generate diverse samples
Score Approximation	From model + data (optional)	From data
Backward Process	Monte Carlo Score Ascent	Reverse SDE

Solve Full Trajectory Optimization Problem with MBD

• Extend to full TrajOpt problem: considering constraints

$$\min_{x_{1:T}, u_{1:T}} J(x_{1:T}; u_{1:T}) = l_T(x_T) + \sum_{t=0}^{T-1} l_t(x_t, u_t)$$
s.t. $x_0 = x_{\text{init}}$

$$x_{t+1} = f_t(x_t, u_t), \quad \forall t = 0, 1, ..., T-1,$$

$$g_t(x_t, u_t) \le 0, \quad \forall t = 0, 1, ..., T-1.$$

Solve Full Trajectory Optimization Problem with MBD

• Extend to full TrajOpt problem: considering constraints

$$\min_{\substack{x_{1:T}, u_{1:T} \\ \text{s.t.}}} J(x_{1:T}; u_{1:T}) = l_T(x_T) + \sum_{t=0}^{T-1} l_t(x_t, u_t)$$

$$\text{s.t.} \quad x_0 = x_{\text{init}}$$

$$x_{t+1} = f_t(x_t, u_t), \quad \forall t = 0, 1, \dots, T-1,$$

$$g_t(x_t, u_t) \leq 0, \quad \forall t = 0, 1, \dots, T-1.$$

$$p_g(Y) \propto \prod_{t=1}^{T} \mathbf{1}(g_t(x_t, u_t) \leq 0)$$

$$p_g(Y) \propto \prod_{t=1}^{T} \mathbf{1}(g_t(x_t, u_t) \leq 0)$$

$$p_g(Y) \propto p_g(Y) p_g(Y)$$

Solve Full Trajectory Optimization Problem with MBD

• Sampling only from feasible trajectory space

$$\begin{split} \nabla_{Y_i} \log p_i(Y_i) &= -\frac{Y_i}{1 - \bar{\alpha}_i} + \frac{\sqrt{\bar{\alpha}_i}}{1 - \bar{\alpha}_i} \frac{\int Y_0 \phi_i(Y_0) p_d(Y_0) p_g(Y_0) p_J(Y_0) \, dY_0}{\int \phi_i(Y_0) p_d(Y_0) p_g(Y_0) p_J(Y_0) \, dY_0} \\ &\approx -\frac{Y_i}{1 - \bar{\alpha}_i} + \frac{\sqrt{\bar{\alpha}_i}}{1 - \bar{\alpha}_i} \frac{\sum_{Y_0 \in \mathcal{Y}_d^{(i)}} Y_0 p_J(Y_0) p_g(Y_0)}{\sum_{Y_0 \in \mathcal{Y}_d^{(i)}} p_J(Y_0) p_g(Y_0)} \\ &= -\frac{Y_i}{1 - \bar{\alpha}_i} + \frac{\sqrt{\bar{\alpha}_i}}{1 - \bar{\alpha}_i} \bar{Y}^{(0)}, \end{split}$$
 where
$$\bar{Y}^{(0)} = \frac{\sum_{Y_0 \in \mathcal{Y}_d^{(i)}} Y_0 w(Y_0)}{\sum_{Y_0 \in \mathcal{Y}_d^{(i)}} w(Y_0)}, \quad w(Y_0) = p_J(Y_0) p_g(Y_0) \end{split}$$

Solve Full Trajectory Optimization Problem with MBD

Algorithm 2 Model-based Diffusion for Trajectory Optimization

- 1: Input: $Y^{(N)} \sim \mathcal{N}(\mathbf{0}, I)$
- 2: **for** i = N to 1 **do**
- 3: Sample $\mathcal{Y}^{(i)} \sim \mathcal{N}(\frac{Y^{(i)}}{\sqrt{\bar{\alpha}_{i-1}}}, (\frac{1}{\bar{\alpha}_{i-1}} 1)I)$
- 4: Get dynamically feasible samples: $\mathcal{Y}_d^{(i)} \leftarrow \text{rollout}(\mathcal{Y}^{(i)})$
- 5: Calculate $\bar{Y}^{(0)}$ with Eq. (10d) (model only) or Eq. (13) (model + demonstration)
- 6: Estimate the score Eq. (10c): $\nabla_{Y^{(i)}} \log p_i(Y^{(i)}) \approx -\frac{Y^{(i)}}{1-\bar{\alpha}_i} + \frac{\sqrt{\bar{\alpha}_i}}{1-\bar{\alpha}_i} \bar{Y}^{(0)}$
- 7: Monte Carlo score ascent Eq. (6): $Y^{(i-1)} \leftarrow \frac{1}{\sqrt{\alpha_i}} \left(Y^{(i)} + (1 \bar{\alpha}_i) \nabla_{Y^{(i)}} \log p_i(Y^{(i)}) \right)$
- 8: end for

Augment MBD with Diverse Data

• Data in MBD: regularize solution or guide to high-likelihood solution

$$p_0'(Y^{(0)}) \propto (1 - \eta)p_d(Y^{(0)})p_J(Y^{(0)})p_g(Y^{(0)}) + \eta p_{\text{demo}}(Y^{(0)})p_J(Y_{\text{demo}})p_g(Y_{\text{demo}})$$

Augment MBD with Diverse Data

• Data in MBD: regularize solution or guide to high-likelihood solution

$$p_0'(Y^{(0)}) \propto (1 - \eta)p_d(Y^{(0)})p_J(Y^{(0)})p_g(Y^{(0)}) + \eta p_{\text{demo}}(Y^{(0)})p_J(Y_{\text{demo}})p_g(Y_{\text{demo}})$$

$$\eta = \begin{cases} 1 & p_d(Y^0)p_J(Y^0)p_g(Y^0) < p_{\text{demo}}(Y^0)p_J(Y_{\text{demo}})p_g(Y_{\text{demo}}) \\ 0 & p_d(Y^0)p_J(Y^0)p_g(Y^0) \ge p_{\text{demo}}(Y^0)p_J(Y_{\text{demo}})p_g(Y_{\text{demo}}) \end{cases}.$$

Augment MBD with Diverse Data

• Data in MBD: regularize solution or guide to high-likelihood solution

MBD for Zeroth Order Optimization

• Outperforms other Gaussian Process-based Bayesian Optimization methods by 23%.

MBD for Trajectory Optimization

• Tasks: contact-rich locomotion and manipulation tasks

MBD for Trajectory Optimization

MBD outperforms PPO by 59%*

^{*} MBD only plan one open loop trajectory while PPO learns a feedback policy

MBD for Trajectory Optimization

• MBD only requires 10% computational time

MBD with Diverse Data

• MBD helps regularize humanoid motion and steering to feasible solutions

Takeaway

- Optimization can be **transformed into a sampling problem**, wheregenerative model becomes a powerful tool.
- MBD achieve generalizable trajectory optimization and fast convergence by leveraging **model information**
- MBD can use **diverse quality data** more effectively to generate high-quality trajectories.