Procedure	Binary heap (worst-case)	Fibonacci heap (amortized)	array
$\overline{\text{MAKE-HEAP}(\text{empty}) \ \Theta(1)}$		Θ(1)	O(1)
Insert	$\Theta(\lg n)$	$\Theta(1)$	O(1)
M INIMUM	$\Theta(1)$	$\Theta(1)$	O(n)
EXTRACT-MIN	$\Theta(\lg n)$	$O(\lg n)$	O(n)
Union	$\Theta(n)$	$\Theta(1)$	O(n)
DECREASE-KEY	$\Theta(\lg n)$	$\Theta(1)$	O(1)
DELETE	$\Theta(\lg n)$	$O(\lg n)$	O(1)
Build	O(n)	<i>O</i> (n)	O(n)
n array		3	$\stackrel{\wedge}{\Longrightarrow}$
(a, 4) (b	, 7) (c, 9) ((d, x) (e, 8) (f, 2) (g, 3) (h, 6)
Extract-M Decrease-l Delete c		> (d, 3)	

22-1x

Parenthesis structure: (well-formed, nested) (()()()()((()())) yes (two pairs: include or disjoint)

22-9y

- * intervals are not disjoint
 - descendant ancestor relation (nested intervals)

Theorem 22.10

22-11e

22-9 Fig

Strongly Connected components of a directed graph

Connected components of an undirected graph

- A simple DFS is sufficient

(See 21-2 Fig., application of disjoint set)

22-13x


```
Phase 2 (on G^{T})
DFS(G)
    for each vertex u \in V[G] sort by f[u] decreasingly first
2
         do color[u] \leftarrow WHITE
3
             \pi[u] \leftarrow \text{NIL}
4
    time \leftarrow 0
   for each vertex u \in V[G]
6
         do if color[u] = WHITE
7
               then DFS-VISIT(u)
DFS-Visit(u)
    color[u] \leftarrow GRAY
                                \triangleright White vertex u has just been
2
    time \leftarrow time + 1
                                                       discovered.
    d[u] \leftarrow time
3
4
    for each v \in Adj[u]
                                \triangleright Explore edge (u, v).
5
         do if color[v] = WHITE
6
               then \pi[v] \leftarrow u
7
                      DFS-VISIT(v)
8
    color[u] \leftarrow BLACK \triangleright Blacken u; it is finished.
    f[u] \leftarrow time \leftarrow time + 1
                                                                             22-15x
```