Al Assistant for Schizophrenia Diagnosis

Simon Thomas Date: 5/21/25 Period: Yilmaz 1

BACKGROUND

- About 1 in 5 adults in the US live with a mental illness, 57.8 million in 2021 [4]
 - Schizophrenia affects approximately 24 million people worldwide [5]
- Only 1 in 3 diagnosed with Schizophrenia receive specialist mental health care [5]
 - Certain parts of the world have limited mental health services
- Automation of Schizophrenia diagnosis has been studied, not implemented
 - Due to ethical constraints
- However
 - Research has produced Machine learning algorithms that show high accuracy for diagnosis

Issues With Al

- Automating medical diagnosis poses ethical concerns
 - Accuracy:
 - How high of an accuracy is good enough
 - Misdiagnosis
 - False negatives can be detrimental
 - False positives can be stressful
- Loss of Human Oversight
 - Too much dependence on Al
 - Doctors should have a say
- Risk of bias raises questions about generalizability of algorithms [2]
 - Training data fails to take certain demographics into account
 - Different age groups, gender, racial

OTHER SOLUTIONS

Studies	Feature sets	Classifier	Accuracy
Devia et al. (<u>2019</u>)	EEG activity	Linear discriminant analysis	71.00%
Baradits et al. (2020)	Microstate temporal parameters	Machine learning model	82.70%
Siuly et al. (<u>2020</u>)	EMD features	Ensemble bagged tree	89.60%
Akbari et al. (<u>2021</u>)	Phase space dynamic	K-nearest neighbor	94.80%
Kim et al. (<u>2021</u>)	Microstate temporal parameters	Support vector machine	75.60%
Lillo et al. (<u>2022</u>)	Microstate and microstate features	Convolutional neural networks	93.00%
Chen X. et al. (<u>2023</u>)	Linear and non-linear measures	Support vector machine	89.00%
Tian Y. et al. (<u>2023</u>)	Structural Brain MRIs	Convolutional neural network	98.70%

OTHER METHODS OF DIAGNOSIS

Neural Network Classification [9]

 93% accuracy for diagnosis, using microstate analysis - a microstate is the state of the brain at a very short period of time (80-100 ms)

Linear Discriminant Analysis Classification [7]

71% accuracy for diagnosis, based off of brain EEG activity - EEG readings measure
 the electric pulses within our brain

Convolutional Neural Network Classification [11]

98% accuracy for diagnosis, using structural brain MRIs

Why IS Mine BETTER?

- Schizophrenia Diagnosis using Convolutional Neural Network (CNN)
 classifier + Natural Language Processing (NLP)
 - Analysis of brain MRI scans
 - Medical records (data like age, gender, etc.)

Novelty

- Incorporates NLP into schizophrenia diagnosis
 - Schizophrenia shows patterns among different genders and age groups, NLP will take this into account
- "Al Assistant" for diagnosis
 - Tool used by clinicians, not complete automation for diagnosis
 - Identification of subtle patterns which clinicians can take into account

Impact

- Early detection of Onset Schizophrenia
 - Faster diagnosis than human diagnosis
- Higher Confidence in Final Diagnosis
 - Specialists are reassured in their decisions
- Accessibility for Diagnosis
 - Tool can be provided at a cheap price in regions which may have a shortage of healthcare professionals

METHODS: CNN Input Data

Data from COBRE [1]

- fMRI imaging results (processed through CNN)
- 20 Regions of Interest

METHODS: CNN Input Data

Data from COBRE [1]

- 20 Regions of Interest
 - 20x20 correlation matrix

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.8

Correlation of ROI 2 and ROI 20

METHODS: NLP Input Data

Synthetic Data for NLP

Age, Gender, Doctor's Notes, Family History

Positive Example:

 "Patient reports auditory hallucinations and paranoid delusions. Difficulty concentrating and social withdrawal observed. Family History: Father has a history of psychosis."

Negative Example:

 "Patient describes mild mood swings but no psychotic symptoms. Family history: No known family history."

• 200 Unique Entries

- o 100 positive, 100 negative
 - 50-50 Train-Test split
 - 50 positive & 50 negative in both the Training Set and Testing Set

METHODS: General Scheme

- CNN Evaluation + NLP extraction
 - Both output probabilities visible to doctors
 - Improves transparency
 - Neural Network training & fine-tuning of NLP algorithm will yield higher accuracy over time
- Fusion of CNN and NLP through weighted average of probabilities
 - Doctor can evaluate final probability

METHOD: CNN Architecture

CNN:

Trained using large dataset of labelled "schizophrenic" data consisting of patient MRI brain images, analyzes unlabelled data and outputs probability of SCZ

Input = 20x20 Regions of Interest

Output of a neuron = f(input*weight + bias)

METHOD: NLP Architecture

- NLP (BioBERT)
 - Concatenation of structured data (age, gender, etc.) and unstructured data (doctor's notes, symptoms, etc.) to output probability vector
- BioBERT

CNN Demo

NLP Demo

CNN RESULTS

CNN Algorithm for Schizophrenia
 Diagnosis

- Outputs a final probability which can assist doctor in evaluation
- 90.3% accuracy

Accuracy: 0.9032258064516129

Correct HC: 15 Correct SZ: 13 False HC: 1 False SZ: 2

NLP RESULTS

- NLP Algorithm for Schizophrenia Diagnosis
 - Outputs a final probability which can assist doctor in evaluation
 - o 97.91% probability
- Reliable for use in Regions of the world with less healthcare
 - Can be trained easily on more realistic dataset
 - A diagnosis machine with high accuracy is better than no evaluation

Training the model on synthetic data...

[57/57 07:51, Epoch 3/3]

Epoch Training Loss Validation Loss

1 0.675900 0.475052
2 0.322600 0.044813
3 0.074000 0.013892

Evaluating the model on test data:

[19/19 00:27] {'eval_loss': 0.01389189250767231, 'eval_runtime': 28.6163, '

Predicted Probability of Schizophrenia for the new patient: 0.9791

Limitations

- Medical Records like clinician notes are subjective
 - Difficult to obtain medical records
 - Will be used at a hospital setting only
- Synthetic Data
 - Not a true connection between MRI probability and NLP probability
 - Works better using dataset with both MRI and NLP Data for each patient

CONCLUSION AND FUTURE WORK

- Problem Automation of schizophrenia diagnosis can be biased and result in loss of human oversight
 - This project produced a tool for schizophrenia diagnosis based on a diverse data set, and allows for doctor interpretation of probabilities rather than binary output (Positive/Negative)

Future Considerations

- Dataset with both fMRI and Medical records (patient age, gender, etc.)
- Mental Illness train and test cases (not Schizophrenia)

References

Dataset:

[1] https://figshare.com/articles/dataset/COBRE_preprocessed_with_NIAK_0_12_4/1160600

References:

- [2] https://www.cambridge.org/core/journals/psychological-medicine/article/computing-schizophrenia
- [3] https://www.sciencedirect.com/science/article/pii/S0957417422013835
- [4]https://www.nimh.nih.gov/health/statistics/mental-illness
- [5] https://www.who.int/news-room/fact-sheets/detail/schizophrenia
- [6] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024310/#B29
- [7]]https://ieeexplore.ieee.org/document/8701676
- [8] https://www.sciencedirect.com/science/article/pii/S1746809421005140?via%3Dihub
- [9] https://www.sciencedirect.com/science/article/pii/S0957417422013835?via%3Dihub
- [10] https://www.sciencedirect.com/science/article/pii/S092099641730302X?via%3Dihub

THANKS! Q&A