$12a_{0648} \ (K12a_{0648})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{33} + u^{32} + \dots + b - 1, \ u^{33} - u^{32} + \dots + 2a + u, \ u^{34} - 3u^{33} + \dots + 7u^2 - 2 \rangle \\ I_2^u &= \langle 40u^{23}a + 70u^{23} + \dots + 34a + 57, \ 2u^{23}a + u^{23} + \dots + a^2 + 2, \ u^{24} + u^{23} + \dots + 2u^2 + 1 \rangle \\ I_3^u &= \langle b - 1, \ -2u^3 + 3u^2 + 3a + 3u - 6, \ u^4 - 3u^2 + 3 \rangle \\ I_4^u &= \langle b + 1, \ u^2 + a - u, \ u^4 - u^2 - 1 \rangle \end{split}$$

 $I_1^v = \langle a, \ b-1, \ v+1 \rangle$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 91 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{33} + u^{32} + \dots + b - 1, \ u^{33} - u^{32} + \dots + 2a + u, \ u^{34} - 3u^{33} + \dots + 7u^2 - 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{33} + \frac{1}{2}u^{32} + \dots + 2u^{2} - \frac{1}{2}u \\ u^{33} - u^{32} + \dots + u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{7}{2}u^{33} - \frac{13}{2}u^{32} + \dots + \frac{7}{2}u + 6 \\ u^{33} - 2u^{32} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{9}{2}u^{33} - \frac{13}{2}u^{32} + \dots + \frac{11}{2}u + 7 \\ u^{33} - 2u^{32} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{9}{2}u^{33} - \frac{17}{2}u^{32} + \dots + \frac{11}{2}u + 7 \\ u^{33} - 2u^{32} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{7}{2}u^{33} - \frac{13}{2}u^{32} + \dots + \frac{5}{2}u + 5 \\ u^{33} - 2u^{32} + \dots + 3u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{8} + 3u^{6} - 3u^{4} + 1 \\ -u^{10} + 4u^{8} - 5u^{6} + 3u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} - 4u^{9} + 6u^{7} - 2u^{5} - 3u^{3} + 2u \\ u^{13} - 5u^{11} + 9u^{9} - 4u^{7} - 6u^{5} + 5u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $16u^{33} - 30u^{32} - 176u^{31} + 310u^{30} + 906u^{29} - 1386u^{28} - 2824u^{27} + 3246u^{26} + 5702u^{25} - 3296u^{24} - 7040u^{23} - 2332u^{22} + 3058u^{21} + 10882u^{20} + 6024u^{19} - 10740u^{18} - 12104u^{17} - 2002u^{16} + 6950u^{15} + 11788u^{14} + 4152u^{13} - 6006u^{12} - 7292u^{11} - 3698u^{10} + 1314u^9 + 3622u^8 + 2284u^7 + 444u^6 - 662u^5 - 734u^4 - 368u^3 - 88u^2 + 8u + 12$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{34} + 13u^{33} + \dots + 18u + 1$
c_2, c_6, c_7 c_{12}	$u^{34} - u^{33} + \dots - 2u - 1$
c_3, c_4, c_{10}	$u^{34} + 3u^{33} + \dots + 7u^2 - 2$
c_5, c_8, c_9	$u^{34} - 9u^{33} + \dots - 104u + 14$

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$y^{34} + 27y^{33} + \dots - 46y + 1$
c_2, c_6, c_7 c_{12}	$y^{34} - 13y^{33} + \dots - 18y + 1$
c_3, c_4, c_{10}	$y^{34} - 27y^{33} + \dots - 28y + 4$
c_5,c_8,c_9	$y^{34} + 33y^{33} + \dots - 540y + 196$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.013520 + 0.242521I		
a = 0.355644 + 1.026690I	-0.60916 + 4.94810I	-11.40571 - 6.58430I
b = 0.890943 - 0.630816I		
u = -1.013520 - 0.242521I		
a = 0.355644 - 1.026690I	-0.60916 - 4.94810I	-11.40571 + 6.58430I
b = 0.890943 + 0.630816I		
u = -0.019993 + 0.886536I		
a = -0.99279 - 1.72000I	10.23300 - 0.57498I	-4.93221 + 2.01552I
b = 0.620427 + 0.888173I		
u = -0.019993 - 0.886536I		
a = -0.99279 + 1.72000I	10.23300 + 0.57498I	-4.93221 - 2.01552I
b = 0.620427 - 0.888173I		
u = -0.068695 + 0.879558I		
a = -0.61168 + 2.14998I	6.70898 + 11.31000I	-9.03751 - 7.13336I
b = 1.162480 - 0.677594I		
u = -0.068695 - 0.879558I		
a = -0.61168 - 2.14998I	6.70898 - 11.31000I	-9.03751 + 7.13336I
b = 1.162480 + 0.677594I		
u = 1.207750 + 0.187996I		
a = -0.308967 + 0.091247I	-1.55132 - 1.46622I	-9.64070 + 0.44653I
b = 0.324451 - 0.579872I		
u = 1.207750 - 0.187996I		
a = -0.308967 - 0.091247I	-1.55132 + 1.46622I	-9.64070 - 0.44653I
b = 0.324451 + 0.579872I		
u = -1.211280 + 0.430207I		
a = 0.282844 + 0.666214I	3.19057 - 6.62584I	-12.00000 + 3.79448I
b = -1.145270 - 0.686416I		
u = -1.211280 - 0.430207I		
a = 0.282844 - 0.666214I	3.19057 + 6.62584I	-12.00000 - 3.79448I
b = -1.145270 + 0.686416I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.086828 + 0.686695I		
a = 0.675634 + 0.571144I	2.05021 - 1.49541I	-7.38318 + 3.42302I
b = -0.750792 - 0.491169I		
u = -0.086828 - 0.686695I		
a = 0.675634 - 0.571144I	2.05021 + 1.49541I	-7.38318 - 3.42302I
b = -0.750792 + 0.491169I		
u = -1.31718		
a = -1.28254	-5.52603	-16.4440
b = -0.594449		
u = -1.281510 + 0.305200I		
a = 0.845662 + 0.733598I	-1.94338 + 5.09853I	-12.0000 - 8.2909I
b = 0.682471 - 0.253099I		
u = -1.281510 - 0.305200I		
a = 0.845662 - 0.733598I	-1.94338 - 5.09853I	-12.0000 + 8.2909I
b = 0.682471 + 0.253099I		
u = -1.260670 + 0.425063I		
a = -0.21847 - 1.46519I	6.38980 + 5.26542I	-8.46055 - 5.30635I
b = -0.653525 + 0.878185I		
u = -1.260670 - 0.425063I		
a = -0.21847 + 1.46519I	6.38980 - 5.26542I	-8.46055 + 5.30635I
b = -0.653525 - 0.878185I		
u = -0.007042 + 0.669070I		
a = 0.407696 + 0.768480I	2.05008 - 1.46908I	-6.49670 + 4.60453I
b = -0.636123 - 0.421028I		
u = -0.007042 - 0.669070I		
a = 0.407696 - 0.768480I	2.05008 + 1.46908I	-6.49670 - 4.60453I
b = -0.636123 + 0.421028I		
u = -0.584426 + 0.322111I		
a = 0.0940661 - 0.0123771I	-1.17138 - 4.75212I	-13.33145 + 3.31691I
b = 0.998997 + 0.590488I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.584426 - 0.322111I		
a = 0.0940661 + 0.0123771I	-1.17138 + 4.75212I	-13.33145 - 3.31691I
b = 0.998997 - 0.590488I		
u = -0.331538 + 0.561990I		
a = -0.42743 - 2.05569I	-0.24987 + 8.13095I	-11.3800 - 9.4182I
b = -1.071630 + 0.613723I		
u = -0.331538 - 0.561990I		
a = -0.42743 + 2.05569I	-0.24987 - 8.13095I	-11.3800 + 9.4182I
b = -1.071630 - 0.613723I		
u = 1.312450 + 0.320860I		
a = 0.246500 - 0.701851I	-2.29444 - 2.26511I	-13.59499 - 1.93125I
b = 0.854983 - 0.402484I		
u = 1.312450 - 0.320860I		
a = 0.246500 + 0.701851I	-2.29444 + 2.26511I	-13.59499 + 1.93125I
b = 0.854983 + 0.402484I		
u = 1.292790 + 0.415380I		
a = 1.050280 - 0.475483I	6.14677 - 4.08463I	-8.53251 + 0.I
b = -0.587435 + 0.891176I		
u = 1.292790 - 0.415380I		
a = 1.050280 + 0.475483I	6.14677 + 4.08463I	-8.53251 + 0.I
b = -0.587435 - 0.891176I		
u = 1.365780 + 0.061291I		
a = -1.52752 + 0.49479I	-7.06900 + 3.73055I	-18.8014 - 4.5700I
b = -1.016200 + 0.501862I		
u = 1.365780 - 0.061291I		
a = -1.52752 - 0.49479I	-7.06900 - 3.73055I	-18.8014 + 4.5700I
b = -1.016200 - 0.501862I		
u = 1.356100 + 0.180668I		
a = 1.87588 - 1.22676I	-5.54762 - 10.69250I	-17.2417 + 9.2859I
b = 1.113880 + 0.583314I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.356100 - 0.180668I		
a = 1.87588 + 1.22676I	-5.54762 + 10.69250I	-17.2417 - 9.2859I
b = 1.113880 - 0.583314I		
u = 1.325120 + 0.401209I		
a = -0.95387 + 2.20135I	2.3480 - 15.9016I	-12.0000 + 9.6149I
b = -1.173850 - 0.667200I		
u = 1.325120 - 0.401209I		
a = -0.95387 - 2.20135I	2.3480 + 15.9016I	-12.0000 - 9.6149I
b = -1.173850 + 0.667200I		
u = 0.328225		
a = 0.695567	-0.582542	-16.9630
b = 0.366829		

II.
$$I_2^u = \langle 40u^{23}a + 70u^{23} + \dots + 34a + 57, \ 2u^{23}a + u^{23} + \dots + a^2 + 2, \ u^{24} + u^{23} + \dots + 2u^2 + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -35u^{23}a - 35u^{23} + \dots - 17a - \frac{57}{2}a - 50 \\ -\frac{23}{2}u^{23}a - 21u^{23} + \dots - \frac{57}{2}a - 50 \\ -\frac{23}{2}u^{23}a - 21u^{23} + \dots - \frac{75}{2}a - 68 \\ -\frac{23}{2}u^{23}a - 21u^{23} + \dots - 9a - 18 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{93}{2}u^{23}a - \frac{163}{2}u^{23} + \dots - \frac{75}{2}a - 68 \\ -\frac{23}{2}u^{23}a - 21u^{23} + \dots - 9a - 18 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 35u^{23}a + \frac{121}{2}u^{23} + \dots + \frac{57}{2}a + 51 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{8} + 3u^{6} - 3u^{4} + 1 \\ -u^{10} + 4u^{8} - 5u^{6} + 3u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} - 4u^{9} + 6u^{7} - 2u^{5} - 3u^{3} + 2u \\ u^{13} - 5u^{11} + 9u^{9} - 4u^{7} - 6u^{5} + 5u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= 4u^{21} - 32u^{19} + 4u^{18} + 108u^{17} - 28u^{16} - 180u^{15} + 80u^{14} + 104u^{13} - 104u^{12} + 120u^{11} + 24u^{10} - 216u^9 + 88u^8 + 56u^7 - 76u^6 + 80u^5 - 12u^4 - 36u^3 + 24u^2 - 8u - 10$$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{48} + 25u^{47} + \dots + 1100u + 49$
c_2, c_6, c_7 c_{12}	$u^{48} - u^{47} + \dots + 20u - 7$
c_3, c_4, c_{10}	$(u^{24} - u^{23} + \dots + 2u^2 + 1)^2$
c_5,c_8,c_9	$(u^{24} + 3u^{23} + \dots + 8u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{48} - 5y^{47} + \dots - 196288y + 2401$
c_2, c_6, c_7 c_{12}	$y^{48} - 25y^{47} + \dots - 1100y + 49$
c_3, c_4, c_{10}	$(y^{24} - 19y^{23} + \dots + 4y + 1)^2$
c_5, c_8, c_9	$(y^{24} + 25y^{23} + \dots - 20y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.047552 + 0.882738I		
a = -0.93385 + 1.58747I	8.92830 - 5.35992I	-6.31714 + 3.17670I
b = 0.435071 - 0.953033I		
u = 0.047552 + 0.882738I		
a = -0.77910 - 2.11672I	8.92830 - 5.35992I	-6.31714 + 3.17670I
b = 1.047250 + 0.722390I		
u = 0.047552 - 0.882738I		
a = -0.93385 - 1.58747I	8.92830 + 5.35992I	-6.31714 - 3.17670I
b = 0.435071 + 0.953033I		
u = 0.047552 - 0.882738I		
a = -0.77910 + 2.11672I	8.92830 + 5.35992I	-6.31714 - 3.17670I
b = 1.047250 - 0.722390I		
u = -0.023946 + 0.850260I		
a = 0.854901 + 0.065619I	2.61833 + 2.14805I	-9.50752 - 3.24690I
b = -1.327570 - 0.116085I		
u = -0.023946 + 0.850260I		
a = -1.26227 + 2.30944I	2.61833 + 2.14805I	-9.50752 - 3.24690I
b = 0.859183 - 0.533480I		
u = -0.023946 - 0.850260I		
a = 0.854901 - 0.065619I	2.61833 - 2.14805I	-9.50752 + 3.24690I
b = -1.327570 + 0.116085I		
u = -0.023946 - 0.850260I		
a = -1.26227 - 2.30944I	2.61833 - 2.14805I	-9.50752 + 3.24690I
b = 0.859183 + 0.533480I		
u = 0.832524		
a = 0.131221 + 0.555408I	-0.0807297	-10.4750
b = 0.682430 - 0.630183I		
u = 0.832524		
a = 0.131221 - 0.555408I	-0.0807297	-10.4750
b = 0.682430 + 0.630183I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.20293		
a = -1.73587	-5.82330	-13.8910
b = -1.15462		
u = -1.20293		
a = -1.78357	-5.82330	-13.8910
b = 0.588840		
u = 1.293390 + 0.128068I		
a = -1.91095 + 0.30080I	-7.93370 - 2.66216I	-20.0752 + 4.8307I
b = -1.204290 + 0.245726I		
u = 1.293390 + 0.128068I		
a = 1.66650 - 2.23253I	-7.93370 - 2.66216I	-20.0752 + 4.8307I
b = 1.051290 + 0.371289I		
u = 1.293390 - 0.128068I		
a = -1.91095 - 0.30080I	-7.93370 + 2.66216I	-20.0752 - 4.8307I
b = -1.204290 - 0.245726I		
u = 1.293390 - 0.128068I		
a = 1.66650 + 2.23253I	-7.93370 + 2.66216I	-20.0752 - 4.8307I
b = 1.051290 - 0.371289I		
u = 1.234200 + 0.427679I		
a = 0.533072 - 0.692246I	5.26485 + 0.67393I	-9.45928 + 0.18139I
b = -1.021630 + 0.732505I		
u = 1.234200 + 0.427679I		
a = -0.175482 + 1.183140I	5.26485 + 0.67393I	-9.45928 + 0.18139I
b = -0.464333 - 0.941817I		
u = 1.234200 - 0.427679I		
a = 0.533072 + 0.692246I	5.26485 - 0.67393I	-9.45928 - 0.18139I
b = -1.021630 - 0.732505I		
u = 1.234200 - 0.427679I		
a = -0.175482 - 1.183140I	5.26485 - 0.67393I	-9.45928 - 0.18139I
b = -0.464333 + 0.941817I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.691969		
a = 0.274874 + 0.414868I	-0.0763260	-11.1940
b = 0.670746 - 0.591354I		
u = 0.691969		
a = 0.274874 - 0.414868I	-0.0763260	-11.1940
b = 0.670746 + 0.591354I		
u = -1.30821		
a = -1.11879	-5.51913	-16.7540
b = -0.332716		
u = -1.30821		
a = -1.43447	-5.51913	-16.7540
b = -0.791230		
u = -1.252440 + 0.391136I		
a = 0.449607 + 1.024250I	-1.18429 + 2.30642I	-12.92509 - 0.09891I
b = 1.319610 - 0.087540I		
u = -1.252440 + 0.391136I		
a = 1.03328 + 1.08909I	-1.18429 + 2.30642I	-12.92509 - 0.09891I
b = -0.812135 - 0.524983I		
u = -1.252440 - 0.391136I		
a = 0.449607 - 1.024250I	-1.18429 - 2.30642I	-12.92509 + 0.09891I
b = 1.319610 + 0.087540I		
u = -1.252440 - 0.391136I		
a = 1.03328 - 1.08909I	-1.18429 - 2.30642I	-12.92509 + 0.09891I
b = -0.812135 + 0.524983I		
u = -1.317160 + 0.196052I		
a = -0.353419 + 0.369938I	-3.30467 + 5.67994I	-14.0544 - 5.8984I
b = 0.324849 + 0.740601I		
u = -1.317160 + 0.196052I		
a = 1.52240 + 1.35145I	-3.30467 + 5.67994I	-14.0544 - 5.8984I
b = 1.002150 - 0.525239I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.317160 - 0.196052I		
a = -0.353419 - 0.369938I	-3.30467 - 5.67994I	-14.0544 + 5.8984I
b = 0.324849 - 0.740601I		
u = -1.317160 - 0.196052I		
a = 1.52240 - 1.35145I	-3.30467 - 5.67994I	-14.0544 + 5.8984I
b = 1.002150 + 0.525239I		
u = 1.291330 + 0.388939I		
a = 0.364047 - 0.995039I	-1.47874 - 6.59660I	-13.7438 + 6.1593I
b = 1.331980 - 0.141793I		
u = 1.291330 + 0.388939I		
a = -0.10197 + 2.46547I	-1.47874 - 6.59660I	-13.7438 + 6.1593I
b = -0.898920 - 0.537221I		
u = 1.291330 - 0.388939I		
a = 0.364047 + 0.995039I	-1.47874 + 6.59660I	-13.7438 - 6.1593I
b = 1.331980 + 0.141793I		
u = 1.291330 - 0.388939I		
a = -0.10197 - 2.46547I	-1.47874 + 6.59660I	-13.7438 - 6.1593I
b = -0.898920 + 0.537221I		
u = -1.311950 + 0.407404I		
a = 1.135480 + 0.399929I	4.68376 + 9.98187I	-10.26847 - 5.91019I
b = -0.408439 - 0.956875I		
u = -1.311950 + 0.407404I		
a = -0.71217 - 2.12659I	4.68376 + 9.98187I	-10.26847 - 5.91019I
b = -1.066530 + 0.709104I		
u = -1.311950 - 0.407404I		
a = 1.135480 - 0.399929I	4.68376 - 9.98187I	-10.26847 + 5.91019I
b = -0.408439 + 0.956875I		
u = -1.311950 - 0.407404I		
a = -0.71217 + 2.12659I	4.68376 - 9.98187I	-10.26847 + 5.91019I
b = -1.066530 - 0.709104I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.240904 + 0.566295I		
a = 0.923905 - 0.605650I	1.52510 - 3.00632I	-7.78842 + 5.20782I
b = -0.456331 + 0.723385I		
u = 0.240904 + 0.566295I		
a = -0.07657 + 2.00277I	1.52510 - 3.00632I	-7.78842 + 5.20782I
b = -0.904982 - 0.580179I		
u = 0.240904 - 0.566295I		
a = 0.923905 + 0.605650I	1.52510 + 3.00632I	-7.78842 - 5.20782I
b = -0.456331 - 0.723385I		
u = 0.240904 - 0.566295I		
a = -0.07657 - 2.00277I	1.52510 + 3.00632I	-7.78842 - 5.20782I
b = -0.904982 + 0.580179I		
u = -0.208545 + 0.356460I		
a = 0.503731 + 0.170872I	-3.36920 + 0.91014I	-13.7041 - 7.5969I
b = 1.145940 + 0.154341I		
u = -0.208545 + 0.356460I		
a = 0.44912 - 3.83789I	-3.36920 + 0.91014I	-13.7041 - 7.5969I
b = -0.960477 + 0.265141I		
u = -0.208545 - 0.356460I		
a = 0.503731 - 0.170872I	-3.36920 - 0.91014I	-13.7041 + 7.5969I
b = 1.145940 - 0.154341I		
u = -0.208545 - 0.356460I		
a = 0.44912 + 3.83789I	-3.36920 - 0.91014I	-13.7041 + 7.5969I
b = -0.960477 - 0.265141I		

III.
$$I_3^u = \langle b-1, -2u^3 + 3u^2 + 3a + 3u - 6, u^4 - 3u^2 + 3 \rangle$$

a) Are colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{2}{3}u^{3} - u^{2} - u + 2 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{2}{3}u^{3} + u^{2} + u - 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{2}{3}u^{3} + u^{2} + u - 2 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{2}{3}u^{3} + u^{2} - 2 \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 24$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_{11}	$(u-1)^4$
c_3, c_4, c_{10}	$u^4 - 3u^2 + 3$
c_5,c_8,c_9	$u^4 + 3u^2 + 3$
c_6, c_{12}	$(u+1)^4$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_{10}	$(y^2 - 3y + 3)^2$
c_5, c_8, c_9	$(y^2 + 3y + 3)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.271230 + 0.340625I		
a = 0.303340 - 0.132080I	-3.28987 - 4.05977I	-18.0000 + 3.4641I
b = 1.00000		
u = 1.271230 - 0.340625I		
a = 0.303340 + 0.132080I	-3.28987 + 4.05977I	-18.0000 - 3.4641I
b = 1.00000		
u = -1.271230 + 0.340625I		
a = 0.69666 + 1.59997I	-3.28987 + 4.05977I	-18.0000 - 3.4641I
b = 1.00000		
u = -1.271230 - 0.340625I		
a = 0.69666 - 1.59997I	-3.28987 - 4.05977I	-18.0000 + 3.4641I
b = 1.00000		

IV.
$$I_4^u = \langle b+1, \ u^2+a-u, \ u^4-u^2-1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + u \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + u + 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + u \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + u \\ -1 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -u^{2} \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} + 2u \\ u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} - u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 16$

Crossings	u-Polynomials at each crossing
c_1, c_6, c_{11} c_{12}	$(u-1)^4$
c_{2}, c_{7}	$(u+1)^4$
c_3, c_4, c_{10}	$u^4 - u^2 - 1$
c_5, c_8, c_9	$u^4 + u^2 - 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_{10}	$(y^2-y-1)^2$
c_5, c_8, c_9	$(y^2+y-1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.786151I		
a = 0.618034 + 0.786151I	0.657974	-13.5280
b = -1.00000		
u = -0.786151I		
a = 0.618034 - 0.786151I	0.657974	-13.5280
b = -1.00000		
u = 1.27202		
a = -0.346014	-7.23771	-22.4720
b = -1.00000		
u = -1.27202		
a = -2.89005	-7.23771	-22.4720
b = -1.00000		

V.
$$I_1^v = \langle a, b-1, v+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{12} - \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_{11}	u-1
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	u
c_6, c_{12}	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	y-1
c_3, c_4, c_5 c_8, c_9, c_{10}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$((u-1)^9)(u^{34}+13u^{33}+\cdots+18u+1)(u^{48}+25u^{47}+\cdots+1100u+49)$
c_2, c_7	$((u-1)^5)(u+1)^4(u^{34}-u^{33}+\cdots-2u-1)(u^{48}-u^{47}+\cdots+20u-7)$
c_3, c_4, c_{10}	$u(u^{4} - 3u^{2} + 3)(u^{4} - u^{2} - 1)(u^{24} - u^{23} + \dots + 2u^{2} + 1)^{2}$ $\cdot (u^{34} + 3u^{33} + \dots + 7u^{2} - 2)$
c_5, c_8, c_9	$u(u^{4} + u^{2} - 1)(u^{4} + 3u^{2} + 3)(u^{24} + 3u^{23} + \dots + 8u + 1)^{2}$ $\cdot (u^{34} - 9u^{33} + \dots - 104u + 14)$
c_6, c_{12}	$((u-1)^4)(u+1)^5(u^{34}-u^{33}+\cdots-2u-1)(u^{48}-u^{47}+\cdots+20u-7)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$((y-1)^9)(y^{34} + 27y^{33} + \dots - 46y + 1)$ $\cdot (y^{48} - 5y^{47} + \dots - 196288y + 2401)$
c_2, c_6, c_7 c_{12}	$((y-1)^9)(y^{34}-13y^{33}+\cdots-18y+1)(y^{48}-25y^{47}+\cdots-1100y+49)$
c_3, c_4, c_{10}	$y(y^{2} - 3y + 3)^{2}(y^{2} - y - 1)^{2}(y^{24} - 19y^{23} + \dots + 4y + 1)^{2}$ $\cdot (y^{34} - 27y^{33} + \dots - 28y + 4)$
c_5,c_8,c_9	$y(y^{2} + y - 1)^{2}(y^{2} + 3y + 3)^{2}(y^{24} + 25y^{23} + \dots - 20y + 1)^{2}$ $\cdot (y^{34} + 33y^{33} + \dots - 540y + 196)$