Semester Test 1 – Chapter 1

- Each student will get 1 random question from each pool with random order in options.
- *Correct answers are highlighted in yellow.*

Pool A (1 Mark)

Instructions:

You can select one or more answers. Note you must get the complete right combination to get your marks, no partial marks.

Questions:

- 1. The set (-1,1) will **NOT** have a
 - A. Lower Bound
 - B. Maximum
 - C. Infimum
- 2. The set $(-\infty, 2]$ will **NOT** have a
 - A. Lower Bound
 - B. Maximum
 - C. Infimum
- 3. The set $[0, \infty)$ will **NOT** have a
 - A. Lower Bound
 - B. Maximum
 - C. Infimum

- 4. The set $(-\infty, 0)$ will **NOT** have a
 - A. Lower Bound
 - B. Maximum
 - C. Infimum
- 5. The set $(-4, \infty)$ will **NOT** have a
 - A. Lower Bound
 - B. Maximum
 - C. Infimum
- 6. The set [-2,2) will **NOT** have a
 - A. Lower Bound
 - B. Maximum
 - C. Infimum

Pool B (1 Mark)

Instructions:

You can select one or more answers. Note you must get the complete right combination to get your marks, no partial marks.

Questions:

- 1. The set (-1,1) will **NOT** have a
 - A. Upper Bound
 - B. Minimum
 - C. Supremum
- 2. The set $(-\infty, 2]$ will **NOT** have a
 - A. Upper Bound
 - B. Minimum
 - C. Supremum
- 3. The set (0,2) will **NOT** have a
 - A. Upper Bound
 - B. Minimum
 - C. Supremum

- 4. The set $(-\infty, 0)$ will **NOT** have a
 - A. Upper Bound
 - B. Minimum
 - C. Supremum
- 5. The set $[-4, \infty)$ will **NOT** have a
 - A. Upper Bound
 - B. Minimum
 - C. Supremum
- 6. The set $(1, \infty)$ will **NOT** have a
 - A. Upper Bound
 - B. Minimum
 - C. Supremum

Pool C (3 Marks)

Instructions:

You can select one or more answers. Note you must get the complete right combination to get your marks, no partial marks.

Questions:

Which statement(s) is/are **FALSE**?

1.

- A. If a set S has a supremum, then it will have a maximum.
- B. If a set S has a minimum, then it will have an infimum.
- C. For all $a, b \in \mathbb{R} \setminus 0$, ab^{-1} will always be a rational number.
- D. For all $a, b, c \in \mathbb{R} \setminus 0$, $a \div (b + c) = (a \div b) + (a \div c)$.

2.

- A. If a set S has a maximum, then it will have a supremum.
- B. If a set S has a infimum, then it will have a minimum.
- C. For all $a, b \in \mathbb{R} \setminus 0$, ab^{-1} will always be a rational number.
- D. For all $a, b, c \in \mathbb{R} \setminus 0$, $a \div (b + c) = (a \div b) + (a \div c)$.

3.

- A. If a set S has a maximum, then it will have a supremum.
- B. If a set S has a minimum, then it will have an infimum.
- C. For all $a, b \in \mathbb{R}$, ab^{-1} will always be a rational number.
- D. For all $a, b, c \in \mathbb{R} \setminus 0$, $a \div (b + c) = (a \div b) + (a \div c)$.

4.

- A. If a set S has a supremum, then it will have a maximum.
- B. If a set S has a infimum, then it will have a minimum.
- C. For all $a, b \in \mathbb{R} \setminus 0$, ab^{-1} will always be a rational number.
- D. For all $a, b, c \in \mathbb{R}$, $a + (b \times c) \neq (a + b) \times (a + c)$.

5.

- A. If a set S has a maximum, then it will have a supremum.
- B. If a set S has a infimum, then it will have a minimum.
- C. For all $a, b \in \mathbb{R}$, ab^{-1} will always be a rational number.
- D. For all $a, b, c \in \mathbb{R}$, $a + (b \times c) \neq (a + b) \times (a + c)$.

6.

- A. If a set S has a supremum, then it will have a maximum.
- B. If a set S has a minimum, then it will have an infimum.
- C. For all $a, b \in \mathbb{R}$, ab^{-1} will always be a rational number.
- D. For all $a, b, c \in \mathbb{R}$, $a + (b \times c) \neq (a + b) \times (a + c)$.