CBЯТОЙ КПК #BlessRNG

Или как не сдохнуть на 4 семе из-за матана

Разработал

Никита Варламов @snitron

Почётный автор

Тимофей Белоусов @іморке

Вы в любой момент можете добавить любую недостающую теорему, затехав её и отправив код (фотографии письменного текста запрещены) в телегу любому из указанных авторов, или создав Pull Request в Git-репозиторий конспекта (click). Ваше авторство также будет указано, с вашего разрешения.

$\frac{ \begin{array}{c} \underline{\text{Ah shit}} \\ \text{Here we go again!} \\ \underline{\text{And again...}} \\ \underline{\text{Oh, fuck.}} \end{array}$

Содержание

1	Пер	Период Палеозойский					
	1.1	Важн	ые определения	4			
		1.1.1	Пространство $L^p(E,\mu)$	4			
		1.1.2	Пространство $L^{\infty}(E,\mu)$	4			
		1.1.3	Существенный супремум	4			
		1.1.4	Гильбертово пространство	4			
		1.1.5	Ортонормированная система, примеры	5			
	1.2	Опред	еления	6			
		1.2.1	Произведение мер	6			
		1.2.2	Сечения множества	6			
		1.2.3	Полная мера, сигма-конечная мера	6			
		1.2.4	Образ меры при отображении	6			
		1.2.5	Взвешенный образ меры	7			
		1.2.6	Плотность одной меры по отношению к другой	7			
		1.2.7	Условие L_{loc}	7			
		1.2.8	Интеграл комплекснозначной функции	7			
		1.2.9	Фундаментальная последовательность, полное пространство	7			
		1.2.10		8			
		1.2.11	Функция распределения	8			
			Ортогональный ряд	8			
			Сходящийся ряд в гильбертовом пространстве	8			
			Ортогональная система (семейство) векторов	8			
			Коэффициенты Фурье	9			
			Ряд Фурье в Гильбертовом пространстве	9			
	1.3		ые теоремы				
		1.3.1	Теорема Лебега о мажорированной сходимости для случая сходимости почти				
				10			
		1.3.2	Теорема Лебега о мажорированной сходимости для случая сходимости по мере				
		1.3.3	Принцип Кавальери				
		1.3.4	Теорема Фубини				
		1.3.5	- ,	15			
		1.3.6		16			
		1.3.7	1	16			
	1.4			17			
		1.4.1		17			
		1.4.2		19			
		1.4.3		21			
		1.4.4		22			
		1.4.5	Формула для бета-функции				
		1.4.6	Объем шара в \mathbb{R}^m				
		1.4.7	Теорема Фату. Следствия				
		1.4.8	Теорема о вычислении интеграла по взвешенному образу меры				
		1.4.9	Критерий плотности				
		-		26			

		1.4.11	Лемма об оценке мер образов малых кубов	27
		1.4.12	Предельный переход по параметру в несобственном интеграле	27
		1.4.13	Предельный переход под знаком интеграла при наличии равномерной схо-	
			димости или L_{loc}	27
		1.4.14	Правило Лейбница дифференцирования интеграла по параметру	28
		1.4.15	Теорема о вложении пространств L^p	28
		1.4.16	Теорема о сходимости в L^p и по мере	29
			Полнота L^p	
		1.4.18	Плотность в L^p множества ступенчатых функций	29
		1.4.19	Лемма Урысона	29
		1.4.20	Плотность в L^p непрерывных финитных функций	30
		1.4.21	Интегрирование по мере Бореля-Стильтьеса, порожденной функцией рас-	
			пределения (с леммой)	30
		1.4.22	Теорема об интегрировании по частям	30
		1.4.23	Лемма о "почти признаке Дирихле"	31
		1.4.24	Следствие о "почти признаке Абеля"	31
		1.4.25	Признак Абеля равномерной сходимости интеграла	31
2	Поп	NA TOTAL	Iconopowayy w	33
2.1 Важные определения				
		ан определения		
	2.2			
	2.2		Кусочно-гладкий путь	
2.3 Важные теоремы				
	2.4	_	мы	
		2.4.1	Теорема о свойствах сходимости в гильбертовом пространстве	
		2.4.2	P	
		2.4.3	Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя	- 36

1 Период Палеозойский

1.1 Важные определения

1.1.1 Пространство $L^{p}(E, \mu)$

$$1 \le p < +\infty, (X, \mathfrak{A}, \mu), E \in \mathfrak{A}$$

Тогда
$$\mathfrak{L}_p(E,\mu)=\{f:$$
 почти всех $E o\mathbb{R}(\mathbb{C}), f-$ измерима. $\int_E|f|^p<+\infty\}$

- 1. $\mathfrak{L}_p(E,\mu)$ линейное пространство
- 2. $f \equiv g$, если f = g почти всюду

 $L_p:=\mathfrak{L}_p/_{\equiv}$ — точки этого пространства

$$[f] = \{g : f \equiv g\} [f_1] + [f_2] = [f_1 + f_2]$$

И введём норму $||[f]|| = \left(\int_{E} |f|^{p}\right)^{\frac{1}{p}}$

1.1.2 Пространство $L^{\infty}(E,\mu)$

$$\mathfrak{L}^\infty(E,\mu)=\{f:$$
 почти всех $E\to\mathbb{R}(\mathbb{C}),$ измерима, ess $\sup|f|<+\infty\}$

 $||f||_{\infty} = \operatorname{ess\,sup} f$

Дописать всё

1.1.3 Существенный супремум

 $\operatorname{ess\,sup} f = \inf\{a : f \leq a \text{ почти всюду }\}$

a— существенная верхняя граница функции f,если при почти всех x $f(x) \leq a$ Ceoùcmea:

- 1. $\operatorname{ess\,sup} f(x) < \sup f(x)$
- 2. при почти всех $x: f(x) \le \operatorname{ess\,sup} f(x)$
- 3. f суммируемая, g измерима: ess sup $|g| < +\infty$

$$\left| \int_{E} fg \right| \le \operatorname{ess\,sup} |g| \cdot \int_{E} |f|$$

1.1.4 Гильбертово пространство

 \mathfrak{H} — линейное пространство, в котором задано скалярное произведение и соответствующая норма. Если \mathfrak{H} — полное, то оно называется гильбертовым.

1.1.5 Ортонормированная система, примеры

 e_k — О. С. , тогда $\frac{e_k}{||e_k||}$ — ортонормированная система. Примеры:

- 1. l^2 $e_k = (0, \dots, 0, 1, 0, \dots)$
- 2. $L^2[0,2\pi]$ $\{1,\cos t,\sin t,\cos 2t,\sin 2t,\cos 3t,\sin 3t,ldots\}$
- 3. $\left(\frac{e^{ikt}}{\sqrt{2\pi}}\right)_{k\in\mathbb{Z}}$

1.2 Определения

1.2.1 Произведение мер

 $(X,\mathfrak{A},\mu),\,(Y,\mathfrak{B},\nu)$ — пространства с мерой.

Также, множества из $\mathcal{A} \times \mathcal{B}$ являются измеримыми прямоугольниками.

 $\mu, \nu - \sigma$ -конечные меры. Тогда стандартное продолжение m_0 (в смысле теоремы о продолжении меры (?)) с полукольца $\mathfrak{A} \times \mathfrak{B}$, определённой на некоторой σ -алгебре $\mathfrak{A} \otimes \mathfrak{B}$, и являющееся σ -конечной полной мерой — обзначается просто m.

И тогда m- и есть произведение мер μ и ν ($\mu \times \nu$).

Замечание:

$$(\mu \times \nu) \times \rho = \mu \times (\nu \times \rho)$$

1.2.2 Сечения множества

X, Y — множества. $C \subset X \times Y$

Тогда:

$$C_x := \{ y \in Y : (x, y) \in C \}$$

$$C^y := \{ x \in X : (x, y) \in C \}$$

— сечения множества C (1 и 2 рода)

Замечания:

$$\left(\bigcup_{\alpha \in A} C_{\alpha}\right)_{x} = \bigcup_{\alpha \in A} \left(C_{\alpha}\right)_{x}$$

$$\left(\bigcap_{\alpha \in A} C_{\alpha}\right)_{x} = \bigcap_{\alpha \in A} \left(C_{\alpha}\right)_{x}$$

$$(C \setminus C')_x = C_x \setminus C'_x$$

1.2.3 Полная мера, сигма-конечная мера

См. конспект прошлого семестра

1.2.4 Образ меры при отображении

Пусть у нас есть $(X,\mathfrak{A},\mu), (Y,\mathfrak{B},)$ — пространства с мерой, $\Phi: X \to Y$.

- 1. $\forall \Phi \quad \Phi^{-1}(\mathfrak{B}) = \sigma$ -алгебра (это предлагается доказать как уражнение)
- 2. Пусть Φ "измеримо" $\left(\Phi^{-1}(\mathfrak{B})\subset\mathfrak{A}\right)$

Для $E\in\mathfrak{B}$ зададим $\nu R:=\mu\left(\Phi^{-1}(E)\right)=\int_{\Phi^{-1}(E)}1d\mu$

 ν — образ меры μ при отображении Φ

NB: ДОПИСАТЬ НА СЕССИИ, ТУТ ЕЩЁ ЕСТЬ ДОКАЗАТЕЛЬСТВО, ЧТО ЭТО МЕРА

1.2.5 Взвешенный образ меры

 $\omega:X\to\mathbb{R}\geq 0$, измерима на X

 $B\in \mathfrak{B}, \tilde{\nu}(B):=\int_{\Phi^{-1}(B)}\omega d\mu$ — тоже мера, это и есть взвешенный образ меры μ при отображении Φ

1.2.6 Плотность одной меры по отношению к другой

$$X = Y, \mathfrak{A} = \mathfrak{B}, \Phi = id$$

 $\nu b = \int_{B} \omega d\mu$ — ещё одна мера в X

Здесь ω называется плотностью меры ν относительно меры μ . И в этом случае:

$$\int_{X} f(x)d\nu(x) = \int f(x) \cdot \omega(x)d\mu(x)$$

1.2.7 Условие L_{loc}

 $f: X imes ilde{Y} o \overline{\mathbb{R}}, Y \subset ilde{Y}, a$ — предельная точка Y в $ilde{Y}.$

f удовлетворяет условию $L_{loc}(a): \exists g: X \to \overline{\mathbb{R}}$ — суммируемая, $\exists U(a): \forall$ почти всех $x \forall y \in U(a)$:

$$|f(x,y)| \le g(x)$$

1.2.8 Интеграл комплекснозначной функции

База базовая: $(X,\mathfrak{A},\mu), f:X\to\mathbb{C}$

$$\int_E f(z)d\mu = \int_E \operatorname{Re}(f(z))d\mu + i \int_E \operatorname{Im}(f(z))d\mu$$

Также измеримость и суммируемость следует из соттветствующих свойств реальной и мнимой частей функций.

1.2.9 Фундаментальная последовательность, полное пространство

 $A \subset X$ — нормированное пространство

A — (всюду) плотное в X

$$\forall x \in X \; \exists \varepsilon > 0 \quad B(x, \varepsilon) \cap A$$
— непусто

1.2.10 Мера Лебега-Стилтьеса, мера Бореля-Стилтьеса

1. $\mathcal{P}^1, g: \mathbb{R} \to \mathbb{R}$, возрастает, непрерывно

$$\mu_q[a,b) := g(b) - g(a)$$

- счётно аддитивная мера
- $2. \, g$ возрастает, не обязательно непрпрывно

$$\mu_g[a,b) = g(b-0) - g(a-0)$$

— мера

Запускаем теорему о продолжении, тогда

 $\exists \mathfrak{A} \supset \mathcal{P}^1 \exists$ продолжение $\mu_g \subset \mathcal{P}$ на \mathfrak{A}

 μ_g — полная мера на $\mathfrak A$ — мера Лебега-Стильтьеса

Если нассмотреть μ_g на борелевском $\mathfrak{B} \to \overline{\mathbb{R}}$ — мера Бореля

1.2.11 Функция распределения

 $(X,\mathfrak{A},\mu),\,h:X\to\overline{\mathbb{R}}$, измерима, вочти всюду конечна

$$\forall t \in \mathbb{R} \quad \mu X(h < t) < +\infty$$

Пусть $H(t) = \mu X(h < t)$ — возрастающая

H(t) — называется функцией распределенния по мере μ

1.2.12 Ортогональный ряд

Ряд $\sum a_k$ — ортогональный, если $\forall k, la_k \perp a_l$

1.2.13 Сходящийся ряд в гильбертовом пространстве

$$\sum a_n, a_n \in \mathfrak{H}$$

$$S_N:=\sum_{1\leq n\leq N}a_n,$$
 если $\exists S\in\mathfrak{H}:S_N\xrightarrow{\mathfrak{H}}S$

Такой ряд называется сходящимся.

1.2.14 Ортогональная система (семейство) векторов

 $e_k \subset \mathcal{H}$ — ортогональная система, если:

- 1. $k \neq j \ e_k \perp e_j$
- $2. \ \forall k \ e_k \neq 0$

1.2.15 Коэффициенты Фурье

$$c_k(x) = \frac{\langle x, e_k \rangle}{||e_k||^2}$$

— коэффициент Фурье вектора x по О. С. e_k

1.2.16 Ряд Фурье в Гильбертовом пространстве

$$c_k \cdot e_k$$

— ряд Фурье ветора x по О. С. e_k

1.3 Важные теоремы

1.3.1 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде

Формулировка:

- (X,\mathfrak{A},μ) пространство с мерой
- $f_n, f: X \to \overline{\mathbb{R}}$ измеримые
- $f_n \to f$ почти всюду
- $\exists g: X \to \overline{\mathbb{R}}$ суммируемая, и $\forall n$ и при почти всех $x \mid f_n(x) \mid \leq g(x)$

Тогда:

$$\int_{Y} |f_n - f| d\mu \underset{n \to \infty}{\longrightarrow} 0$$

И, как очевидное ("уж тем более"):

$$\int_X f_n d\mu \underset{n \to \infty}{\longrightarrow} \int_X f d\mu$$

Дисклеймер:

Развеем все сомнения насчёт корректности условия (вдруг они у вас были):

$$\left| \int f_n - \int f \right| = \left| \int f_n - f \right| \le \int |f_n - f| \text{ (уж тем более)}$$

А также, наши функции из условия на самом деле даже суммируемые, не просто измеримые. Давайте для каждого n соберём точки, на который f_n не сходится к f, сложим (это всё будет множемтво меры 0) и вычтем, а на остатке сделаем предельный переход:

$$|f_n(x)| \le g(x)$$

 $|f(x)| \le g(x) < +\infty$

Доказательство:

Заведём последовательность $h_n := \sup(|f_n - f|, |f_{n+1} - f|, |f_{n+2} - f|, \ldots)$. Она убывает, так как по условию у нас есть сходимость почти везде. Также, можно ограничить её: $0 \ge h_n \ge 2g$ (модули больше нуля и по условию все $|f_n| \ge g$). А ещё это просто определение последовательности из верхнего предела:

$$\lim_{n \to \infty} h_n = \overline{\lim_{n \to \infty}} |f_n - f| = 0$$
 (почти везде)

Теперь берём положительную возврастающую последовательность $2g - h_n$ и запускаем теорему Леви (см. 3 семестр, там как раз нужна возрастающая последовательность):

$$\int_X (2g - h_n) d\mu \xrightarrow[n \to \infty]{} \int_X 2g d\mu$$

Откуда по линейности первого интеграла следует, что $\int_X h_n \xrightarrow[n \to \infty]{} 0$, ну и добиваем:

$$0 \underset{n \to \infty}{\longleftarrow} \int_X h_n \ge \int_X |f_n - f| d\mu$$

ч. т. д.

1.3.2 Теорема Лебега о мажорированной сходимости для случая сходимости по мере

Формулировка (то же самое, что и выше, только сходится по мере теперь):

- (X,\mathfrak{A},μ) пространство с мерой
- $f_n, f: X \to \overline{\mathbb{R}}$ измеримые
- $f_n \Longrightarrow_{\mu} f$
- $\exists g: X \to \overline{\mathbb{R}}$ суммируемая, и $\forall n$ и при почти всех $x \mid f_n(x) \mid \leq g(x)$

Тогда:

$$\int_{X} |f_n - f| d\mu \underset{n \to \infty}{\longrightarrow} 0$$

Доказательство:

Рассмотрим 2 случая.

1.
$$\mu X < +\infty$$

Зафиксируем $\varepsilon > 0$ и сооружаем множества $X_n = X(|f_n - f| \ge \varepsilon)$. Сделовательно, $\mu X_n \xrightarrow[n \to \infty]{} 0$, т.к. есть сходимость по мере. Расписываем:

$$\int_{X} |f_n - f| d\mu = \int_{X_n} |f_n - f| d\mu + \int_{X_n^c} |f_n - f| d\mu \le \underbrace{\int_{X_n} 2g d\mu}_{(1)} + \underbrace{\int_{X_n^c} \varepsilon d\mu}_{(2)}$$

(1) — оценка разности по условию, и ещё при больших n меньше эпсилона по абсолютной непрерывности интеграла. (2) — из условия о сходимости по мере выше оцениваем эпсилоном.

$$\leq \varepsilon + \varepsilon \cdot \mu X_n^c \leq \varepsilon \cdot (1 + \mu X)$$

(оцениваем меру дополнения просто всем пространством)

2.
$$\mu X = \infty$$

Сначала докажем небольшое свойство интеграла по мере:

$$orall arepsilon > 0 \; \exists A \subset X \;$$
измеримое $\mu A < +\infty \quad \int_{X \backslash A} g < arepsilon$

Если по-русски, то существует некоторое множество в исходном, на котором в основном концентрируется интеграл, следовательно, на остальном кусочке интеграл крайне мал. И мы можем предъявить такое для сколь угодно малого ε .

Рассмотрим интеграл как супремум ступенчатых функций:

$$\int_X g = \sup_{0 > q_n > |q|} \int_X g_n d\mu$$

Этот супремум значит, что существует какая-то g_{n_0} , хорошо (ε) оценивающая нашу функцию:

$$\exists g_{n_0}: \int_X g - g_{n_0} < \varepsilon$$

Давайте возьмём за A носитель функции g_{n_0} :

$$A := \operatorname{supp} g_{n_0} = \{x : g_{n_0}(x) \neq 0\}$$

Так как ступенчатая функция есть сумма константы на характеристическую функцию, её интеграл конечен (?). Ну, а на "хвостиках" где она равна нулю нам не особо интересно. Таким образом, $\mu A < +\infty$:

$$\int_{X\backslash A} g d\mu = \int_{X\backslash A} g \underbrace{-g_{n_0}}_{\text{так как вне } A \ g_{n_0} = 0} \leq \int_X g - g_{n_0} < \varepsilon$$

Ну и всё, раз доказали, давайте разобъём на два интеграла:

$$\int_X |f_n - f| d\mu = \underbrace{\int_A |f_n - f| d\mu}_{<\varepsilon \text{ по пункту 1}} - \underbrace{\int_{X \backslash A} |f_n - f| d\mu}_{<2\varepsilon \text{ по доказанному выше}} \leq 3\varepsilon$$

ч. т. д.

1.3.3 Принцип Кавальери

Формулировка:

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечные, полные меры
- $C \in \mathfrak{C}$
- $m = \mu \times \nu, \mathfrak{C} = \mathfrak{A} \otimes \mathfrak{B}$

Тогда:

- 1. при почти всех $x \quad C_x \in \mathfrak{B}$
- 2. $x\mapsto \nu C_X$ измеримо на X (сама функция задана почти везде)
- 3. $mC = \int_X \nu(C_x) d\mu(x)$

Аналогично для сечений C^y

Замечания:

- 1. C измеримо $\Rightarrow \forall x C_x$ измеримое
- 2. $\forall x \forall y : C_x, C^y$ измеримы $\Rightarrow C$ измеримо

Доказательство:

Введём D — это множество тех множеств, которые удовлетворяют принципу Кавальери :) . Давайте докажем, что разные типы множеств содержатся в D. А потом (внезапно) окажется, что это все множества.

1. $G = A \times B$ (измеримые прямоугольники)

Проверяем здесь и далее попунктно:

- 1. Так как это прямоугольники, $C_x = \begin{cases} B, & x \in A \\ \varnothing, & x \notin A \end{cases}$ (очев). Ну, значит, при всех $x: C_x \in \mathfrak{B}$
- 2. Берём в качестве такой функции $\nu(B) \cdot \chi_A(x)$. Она измерима на X.
- 3. Ну давайте поинтегрируем) $\int_X \nu(C_x) d\mu = \int_X \nu(B) \cdot \chi_A(x) d\mu = \nu(B) \cdot \mu(A) = m(A \times B)$
- 2. $E_i \in D, E_i$ дизъюнктны, $E = \bigsqcup_{\mathbf{HB}\mathbf{4C}} E_i$. Тогда $E \in D$
 - 1. $E_x = \bigsqcup (E_i)_x$. Обратите внимание, что все множества справа уже лежат в D, поэтому они "измеримы" (лежат в \mathfrak{B}) при почти всех x. Ну, значит и объединение их тоже.
 - 2. Если вы ещё не поняли, мы в этом пункте фактически хотим предоставить функцию вычисления меры сечения по заданному $x. \nu E_x = \sum \nu E_{i_x}$. Это сумма измеримых неотрицательных функций, определённых на почти всех x (потому что кусочки уже лежат в D).
 - 3. $\int_X \nu(C_x) d\mu = \int_X \sum \nu E_{i_x} d\mu$. Тут напрашивается переставить местами сумму и интегрирование, и это можно сделать по теореме об интегрировании положительных рядов!. $\sum \int_X \nu E_{i_x} d\mu = \sum m E_i = (*)$ (кусочки уже в D, и по счётной аддитивности) (*) = m E
- 3. $E_i \in D, \ E_i \supset E_{i+1} \supset \dots, \ \bigcap E_i = E, \ mE_1 < +\infty$. Тогда $E \in D$
 - 1. $E_x = \bigcap (E_i)_x$. Аналогично предыдущему.
 - 2. По теореме о непрерывности меры сверху (условия подходят): $\lim \nu E_{i_x} = \nu E_x$. Ну и тогда, добавляя оговорку о том, что всё это работает на тех x, на которых определены функции для кусочков, то и наша функция сопоставления измерима.
 - 3. $\int_X \nu(C_x) d\mu = \int_X \lim_{i \to \infty} \nu E_{i_x} d\mu =$. Замечаем, что все наши функции в пределе положительны (меры) и суммируемы (т. к. $0 \le \nu E_{i_x} \le \nu E_1 < +\infty$ по условию, значит суммируемы). Тогда запускаем теорему Лебега о мажорированной сходимости для случая почти везде (в обратку) и выигрываем! = $\lim_{i \to \infty} \int_X \nu E_{i_x} d\mu = \lim_{i \to \infty} m E_i = m E$ (последнее тоже по непрерывности меры сверху).

Сделаем небольшое лирическое отступление в прошлое. Как мы помним, у нас есть теорема о продолжении меры, по которой, в частности, строилась и мера Лебега. По одному из её пунктов, меру предлагалось высчитывать, выбирая всё лучше оценивающее покрытие ячейками, и беря по всем таким покрытиям инфимум: $(\mathcal{P}(\text{п-к.}), \mu_0) \to (\mathfrak{A}(\sigma-\text{алг.}), \mu); \quad \mu A = \inf\{\sum \mu P_k, \ A \subset \bigcup P_k\}$. Также, если мы рассмотрим конкретно меру Лебега, то измеримое про ней множество можно представить (по теореме о регуляризации?) в виде $A \in \mathfrak{A}, \ A = B \setminus C$, где B — "борелевское", а C — "меры 0" (кавычки тут не просто так, ведь мы не задавали никаких топологий и прочего, чтобы их снять. Тут это для общего понимания происходящего). Ну и получается, что если берём за основу "измеримости" вот это определение с инфимумом, то B представляется в виде $\bigcap_i \bigcup_j P_{ij}$ (типа взяли всевозможные покрытия и пересекли, получив тем самым наилучшее, чтоли). И некоторый остаток меры 0. Однако, не стоит его недооценивать, у нас мера по условию принципа — полная, а это значит, что "иерархия" на этих множествах должна соблюдаться (см. определение полной меры из 3 сем.). Рассматриваем всё это далее!

4. mE=0. Тогда $E\in D$

То же самое: $mD=0,\ H=\bigcap_i\bigcup_i P_{ij},\ P_{ij}\in\mathfrak{A}\times\mathfrak{B},\ E\subset H.$ Заметим, что $H\in D$ по пункту 3.

- 1. $0 = mH = \int_X \nu(H_x) d\mu$. Если так случилось, то логично, что $\nu(H_x) = 0$ п. в. x. Ну тогда $\nu(E_x) = 0$ при этих x, так как $E_x \subset H_x$ по полноте меры.
- 2. Доказано предыдущим пунктом, всё 0.
- 3. Как следствие, $\int_{X} \nu(E_{x}) = 0 = mE$

5. $A \in \mathfrak{A} \otimes \mathfrak{B}, mA < +\infty$. Тогда $A \in D$

Пользуясь лирическим отступлением (и "обобщённой регулярностью"): $A=B\backslash C,\ B=\bigcap_i\bigcup_j P_{ij}\in D,\ mC=0\Rightarrow C\in D$

- 1. mA=mB-mC=mB, сечения: $A_x=B_x\setminus C_x$ (измеримы при п. в. x, т. к. составляющие уже в D)
- 2. Из общих соображений, $\nu B_x \nu C_x \ge \nu A_x$. С другой стороны, по монотонности $(A \subset B)$: $\nu A_x \le \nu B_x$. А т. к. $\nu C_x = 0$ при п. в. x, то при тех же $x : \nu A_x = \nu B_x$.
- 3. $\int_X \nu A_x d\mu = \int_X \nu B_x d\mu = (\text{оно уже в }D) = mB = mA$ (из начала).

Ну и всё, осталось обощить всё вышеперечисленное и показать, что всё-таки любое множество лежит в нашем классе D (фактически, остались только множества бесконечной меры).

6.
$$A \in \mathfrak{A} \times \mathfrak{B}$$
 — любое $\in D$

 $\mu A = +\infty$. Запускаем σ -конечность: $X = \bigsqcup X_k, Y = \bigsqcup Y_i$. С другой стороны, $X \times Y = \bigsqcup X_k \times Y_i$. Тогда $A \cap (X_k \times Y_i) \in D$ по пункту 5 (конечная мера), а их дизъюнктное объединение $\bigsqcup A \cap (X_k \times Y_i) \in D$ по пункту 2.

ч. т. д.

Следствия:

1. $C \in \mathfrak{A} \otimes \mathfrak{B}$, $P_1(C) = \{x \in X : C_x \neq 0\}$ (проекция на X) и она измерима на нём, то меру можно считать по ней $mC = \int_{P_1(C)} \nu(C_x) d\mu$. Это очевидно (ну просто проекция удаляет те точки, где сечение и так было равно нулю).

2.
$$f:[a,b] \to \mathbb{R}$$
. Тогда $\int_a^b f(x) = \int_{[a,b]} f d\lambda_1$

Доказательство:

Достаточно рассмотреть неотрицательную функцию, т. к. оба интеграла аддитивны и можно просто разбить. Тогда, $\Pi\Gamma(f,[a,b])=C$ — измеримое множество (очев). А $C_x=[0,f(x)]$ (см. картинку). Причём, если вспомнить 2й сем, то окажется, что той загадочной площадью σ , которую мы использовали в рассуждениях, может быть и λ ! Давайте посмотрим поближе: $\lambda(C_x)=\lambda([0,f(x)])=f(x)$.

$$\int_a^b f(x)dx=\lambda_2(\Pi\Gamma(f,[a,b]))=$$
 (по следствию 1 можем считать просто на проекции) = $\int_{[a,b]}\lambda(C_x)d\lambda_1=\int_{[a,b]}f(x)d\lambda_1$

1.3.4 Теорема Фубини

Формулировка:

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечные меры
- $m = \mu \times \nu$
- $f: X \times Y \to \overline{\mathbb{R}}$, суммируема на $X \times Y$ по мере m

Тогда:

- 1. при почти всех x функция f_x суммируема на Y
- 2. $x\mapsto \varphi(x)=\int_{Y}f_{x}d\nu$ это суммируемая функция на X

3.

$$\int_{X\times Y} f dm = \int_X \varphi(x) d\mu(x) = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x)$$

1.3.5 Теорема о преобразовании меры при диффеоморфизме

Формулировка:

• $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$, диффеоморфизм

Тогда $\forall A \in \mathbb{M}^m, A \subset O$

$$\lambda \Phi(a) = \int_{A} |\det \Phi'(x)| dx$$

Доказательство:

1.3.6 Теорема о гладкой замене переменной в интеграле Лебега

Формулировка:

- $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$, диффеоморфизм
- $\Phi(O) = O'$
- $f:O' \to \mathbb{R} \ge 0$ измерима

Тогда:

$$\int_{O'} f dx = \int_{O} f(\Phi(x)) \cdot |\det \Phi'(x) d\lambda(x)|$$

Доказательство:

1.3.7 Теорема о непрерывности сдвига

 Φ ормулировка:

- $f: \mathbb{R}^m \to \overline{\mathbb{R}}$
- $h \in \mathbb{R}^m$
- $f_h(x) := f(x+h)$
- 1. f равномерно непрерывна в \mathbb{R}^m

Тогда
$$||f_h - f||_{\infty} \xrightarrow[h \to 0]{} 0$$

 $2. \ 1 \le p < +\infty, \ f \in L^p(\mathbb{R}^m)$

Тогда
$$||f_h - f||_p \underset{h \to 0}{\longrightarrow} 0$$

3. $f \in \tilde{C}[0,\tau]$

Тогда
$$||f_h - f||_{\infty} \longrightarrow 0$$

 $4. \ 1 \leq p < +\infty, \ f \in L^p[0,\tau]$

Тогда
$$||f_h - f||_p \longrightarrow 0$$

1.4 Теоремы

1.4.1 Теорема об интегрировании положительных рядов

Формулировка:

- (X,\mathfrak{A},μ) пространство с мерой
- $u_n: X \to \overline{\mathbb{R}}, u_n \geq 0$ (при почти всех x?)
- u_n измеримы на $E \in \mathfrak{A}$

Тогда:

$$\int_{E} \left(\sum_{n=1}^{\infty} u_n(x) \right) d\mu(x) = \sum_{n=1}^{\infty} \left(\int_{E} u_n(x) d\mu(x) \right)$$

Доказательство:

Подгоним под теорему Леви 3 (3 семестр). Пусть $S_N(x) = \sum_{n=1}^N u_n(x)$ — последовательность частичных сумм. Очевидно, что эта последовательность — монотонно неубывающая (так как функции у нас неотрицательные):

$$0 \le S_N \le S_{N+1} \le S_{N+2} \le \dots$$

Тогда, делаем предельный переход (вот тут есть вопрос, почему должен существовать предел, но если подумать: если его не существует, вообще вся эта теорема не имеет смысла (ну бесконечности, чел, смысл их интегрировать)). А так же, измеримость сохраняется, так как у нас исходные функции все были измеримы (ну и по теореме о пределе измеирмых функций):

$$S_N(x) \xrightarrow[N \to \infty]{} S(x)$$

Ну и всё, значи, по теореме Леви можем перейти к предельному преходу интегралов:

$$\int_{E} S_{N}(x) d\mu(x) \xrightarrow[N \to \infty]{} \int_{E} S(x) d\mu(x)$$

Левую часть можно расписать по линейности интеграла (там у нас конечное число членов):

$$\int_{E} S_N(x)d\mu(x) = \sum_{n=1}^{N} \int_{E} u_n(x)d\mu(x)$$

Ну, а раз интграл суммы стремится к интегралу предельной функции, то и сумма интегралов обязана туда стремиться.

$$\sum_{n=1}^{N} \int_{E} u_{n}(x) d\mu(x) \xrightarrow[N \to \infty]{} \sum_{n=1}^{\infty} \int_{E} u_{n}(x) d\mu(x)$$

ч. т. д.

Следствие:

- $u_n: X \to \mathbb{R}$, измеримы на $E \in \mathfrak{A}$
- $\sum \int_E |u_n(x)| d\mu < +\infty$ (конечна)

Тогда $\sum u_n(x)$ — абсолютно сходящийся при почти всех x

Доказательство:

Пусть:

$$S(x) = \int_{n=1}^{\infty} |u_n(x)|$$

Тогда, по предыдущей теореме:

$$\int_{E} S(x)d\mu = \sum_{n=1}^{\infty} \left(\int_{E} |u_{n}(x)| d\mu \right) < +\infty$$

Раз интеграл конечен, значит S(x) — суммируема, а это значит, что S(x) — почти везде конечна. Ну значит и сходится.

ч. т. д.

Пример:

- (x_n) вещественная последовательность
- $\sum a_n$ абсолютно сходящийся числовой ряд

Тогда функциональный ряд $\sum \frac{a_n}{\sqrt{|x-x_n|}}$ — абсолютно сходится при почти всех x (в $\mathbb R$ по мере Лебега)

Доказательство:

Во-первых, можно доказать, что если для $\forall A$ на [-A,A] абсолютно сходится почти везде, то и везде (на \mathbb{R}) почти везде сходится (лол). Счётное количество п. в. \Rightarrow п. в. (чтобы количество отрезков было счётным, надо чтобы A были хотя бы рациональными. Кажется, что это не сильная проблема, так как отрезки включают в себя и все вещественные числа на отрезке тоже).

Попробуем подогнать под предыдущую теорему:

$$\int_{[-A,A]} \frac{|a_n|}{\sqrt{|x-x_n|}} d\lambda = |a_n| \int_{-A}^A \frac{dx}{\sqrt{|x-x_n|}} \le$$

Так, стоп. А как мы перешли к определённому интегралу? Оказывается, что так можно делать, на доказано это будет позже (в курсе).

$$\leq \underset{x:=x-x_n}{\leq} |a_n| \int_{-A-x_n}^{A-x_n} \frac{dx}{\sqrt{|x|}} \leq |a_n| \int_{-A}^{A} \frac{dx}{\sqrt{|x|}} \leq$$

Почему верен последний переход? Посмотрим на картинке:

Ну, по ней очевидно, что мы откусили кусочек поменьше, а добавили побольше. Тогда оценим модуль:

$$\leq 2 \cdot |a_n| \int_0^A \frac{dx}{\sqrt{|x|}} = 4 \cdot \sqrt{A} \cdot |a_n|$$

Всё, абсолютный интеграл ограничен, значит сходится (при почти всех x).

ч. т. д.

1.4.2 Абсолютная непрерывность интеграла

Формулировка:

- (X,\mathfrak{A},μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$ суммируемая

Тогда:

$$\forall arepsilon > 0 \; \exists \delta > 0, \quad \forall E-$$
 измеримое $\mu E < \delta \qquad \left| \int_E f d\mu \right| < arepsilon$

Доказательство:

Для доказательства сего факта нам бы хотелось поисследовать, как на таких множествах ведёт себя функция в зависимости он величиные её значений на соответствующих множествах. Давайте заведём множества X_n :

$$X_n = X(|f| \ge n)$$

Заметим, что $\ldots \supset X_n \supset X_{n+1} \supset \ldots$ Причём:

$$\bigcap X_n = X_\infty = X(|f| = \infty)$$

А также, ведь по условию наша функция f суммируема, значит она почти везде конечна (а там, где не конечна — множество меры 0):

$$\mu\left(\bigcap X_n\right) = 0$$

Теперь заведём вспомогательную меру:

$$\nu(A) = \int_A f d\mu$$

И внезапно заметим, что для неё выполняется теорема об непрерывности меры сверху! ($X_0 = X$, так как там у нас условие модуль больший нуля, и интеграл по нему конечен, так как функция суммируема):

$$\nu(X_0) = \int_{X_0 = X} |f|\mu < +\infty$$

Hy а в пересечении, как мы уже выяснили, у нас множество меры ноль (а на нём интеграл тоже нулевой):

$$\nu\left(\bigcap X_n\right) = 0$$

Таким образом, $\nu(X_n) \underset{n \to \infty}{\longrightarrow} 0$. И это даёт нам право с полной уверенностью сказать, что:

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \quad \int_{X_{n_{\varepsilon}}} |f| d\mu < \frac{\varepsilon}{2}$$

Все приготовления сделаны, давайте оценивать:

$$\forall \varepsilon > 0 \ \delta := \frac{\varepsilon}{2n_\varepsilon} \ \mu E < \delta \qquad \left| \int_{X_{n_\varepsilon}} f d\mu \right| \leq \int_{X_{n_\varepsilon}} |f| d\mu = \int_{E \cap X_{n_\varepsilon}} |f| d\mu + \int_{E \cap X_{n_\varepsilon}^c} |f| d\mu$$

Первое слагаемое оценим $X_{n_{\varepsilon}}$, для которого у нас уже есть готовое утвверждение выше. А второе оценим мерой, умноженной на n_{ε} . Так можно сделать, ведь дополнение $X_{n_{\varepsilon}}$ есть множество точек, на котором функция $< n_{\varepsilon}$

$$\leq \frac{\varepsilon}{2} + n_{\varepsilon} \cdot \underbrace{\mu\left(E \cap X_{n_{\varepsilon}}^{c}\right)} \leq \mu\left(E\right) < \delta \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

ч. т. д.

Следствие:

- $(e_n) \in \mathfrak{A}$ последовательность (?) множеств
- $\mu e_n \xrightarrow[n \to \infty]{} 0$
- f суммируемая на X

Тогда:

$$\int_{e_n} f d\mu \xrightarrow[n \to \infty]{} 0$$

Доказательство:

Очевидно следует из теоремы, ну камон)

1.4.3 Теорема о произведении мер

Формулировка:

- $(X, \mathfrak{A}, \mu), (Y, \mathfrak{B}, \nu)$ пространства с мерой (полукольца (?))
- Зададим $m_0(A \times B) = \mu A \cdot \nu B$

Тогда:

- 1. m_0 мера на $\mathfrak{A} \times \mathfrak{B}$
- 2. $\mu, \nu \sigma$ -конечные меры $\Longrightarrow m_0 \sigma$ -конечная

Доказательство:

1.

Давайте рассмотрим какой-то $P = \bigsqcup P_k$ — измеримые прямоугольники. Чтобы доказать, что это действительно мера на $\mathfrak{A} \times \mathfrak{B}$, необходимо доказать счётную аддитивность: $m_0(P) = \sum_{\gamma} m_0(P_k)$

Верно, что $P = A \times B$, $P_k = A_k \times B_k$ (наше множество есть результат перемножение множеств из каждого пространства). Также из этого следует, что:

$$\chi_P = \sum \chi_{P_k}$$

$$\chi_A(x)\chi_B(y) = \sum \chi_{A_k}(x)\chi_{B_k}(y)$$

Поинтегрируем это по Y!

$$\chi_A(x)\nu(B) = \sum \chi_{A_k}(x)\nu(B_k)$$

A теперь по X!

$$\mu(A)\nu(B) = \sum \mu(A_k)\nu(B_k)$$

Всё проверили, это действительно мера.

2.

По сигма-конечности исходных мер, мы можем расбить исходные простанства на счётное объединение множеств, имеющих конечную меру.

$$X = \bigcup X_k, \ \mu X_k < +\infty$$
$$Y = \bigcup Y_k, \ \nu Y_n < +\infty$$

Ну и тогда мера перемножения двух этих множеств будет просто резуьльтатом перемножения нескольких конечных чисел и их сумма, что, очевидно, конечно:

$$X \times Y = \bigcup_{(i,j)} X_i \times Y_j$$
$$m_0(X \times Y) = \sum_{(i,j)} \mu(X_i) \cdot \nu(Y_j)$$

ч. т. д.

1.4.4 Теорема Тонелли

Формулировка:

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечные меры
- $m = \mu \times \nu$
- $f: X \times Y \to \overline{\mathbb{R}} \geq 0$, измерима относительно $\mathfrak{A} \otimes \mathfrak{B}$

Тогда:

- 1. при почти всех x функция f_x измерима на Y
- 2. $x\mapsto \varphi(x)=\int_Y f_x d\nu$ это измеримая функция на X

3.

$$\int_{X\times Y} f dm = \int_{Y} \varphi(x) d\mu(x) = \int_{Y} \left(\int_{Y} f(x, y) d\nu(y) \right) d\mu(x)$$

Доказательство:

1.4.5 Формула для бета-функции

Формулировка: Бета-функция задаётся следующим образом:

$$B(s,t) = \int_0^1 x^{s-1} (1-x)^{t-1} dx, \quad s, t > 0$$

Тогда:

$$B(s,t) = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}$$

Доказательство:

Рассмотрим:

$$\Gamma(s)\Gamma(t) = \int_0^\infty x^{s-1}e^{-x}dx \cdot \int_0^\infty y^{t-1}e^{-y}dy =$$

Заметим, что второй интеграл есть ничто иное, как константа! Внесём его внутрь:

Заменим y = u - x:

$$= \int_0^\infty \left(\int_x^\infty x^{s-1} (u-x)^{t-1} e^{-u} du \right) dx =$$

А теперь финт ушами! По теореме Тонелли, этот повторный интеграл является двойным интегралом по некоторой области C:

Так давайте просто поменяем пределы интегрирования:

$$= \int_0^\infty \left(\int_0^u x^{s-1} (u-x)^{t-1} e^{-u} dx \right) du =$$

И ещё раз заменим: $x=uv,\ dx=udv$ (u типа как константа, пределы интегрирования тоже поменялись!)

$$= \int_0^\infty \left(\int_0^1 (uv)^{s-1} (u - uv)^{t-1} e^{-u} dv \right) u du = \int_0^\infty \left(\int_0^1 u^{s-1} v^{s-1} u^{t-1} (1 - v)^{t-1} e^{-u} dv \right) u du = \int_0^\infty u^{s+t-1} e^{-u} du \cdot \int_0^1 v^{s-1} (1 - v)^{t-1} dv = \Gamma(s+t) B(s,t)$$

ч. т. д.

1.4.6 Объем шара в \mathbb{R}^m

Формулировка:

$$\bullet \ B(0,R) = \{x \in \mathbb{R}^m : x_1^2 + x_2^2 + \ldots + x_m^2 \leq R^2\}$$

•
$$\alpha_m \lambda_m(B(0,1))$$

Тогда:

$$\mu\left(B(0,R)\right) = \alpha_m R^m$$

Доказательство:

Почему вылез радиус в степени m — это при линейном растяжении шарика B(0,1) просто вылез множитель (по прошлому сему (?)). Поэтому достаточно рассмотреть только этот базированный шар единичного радиуса. Будем же наконец искать его объём, интегрируя!

$$\alpha_m = \int_{-1}^{1} \lambda_{m-1} \left(B(0,1)_{x_1} \right) dx_1 =$$

А почему так? Да очень просто. Дело в том, что сечение шара размерности m есть подпространство размерности m-1, а именно — шар радиуса $\sqrt{1-x_1^2}$.

$$= \int_{-1}^{1} \alpha_{m-1} (1 - x_1^2)^{\frac{m-1}{2}} dx_1 =$$

Делаем замену $x_1^2 = x$, $dx_1 = \frac{dx}{2\sqrt{x}}$:

$$=\frac{\alpha_{m-1}}{2}\int_{-1}^{1}x^{\frac{1}{2}}(1-x)^{\frac{m-1}{2}}dx=\alpha_{m-1}\cdot B\left(\frac{1}{2},\frac{m+1}{2}\right)=\alpha_{m-1}\frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{m}{2}+1\right)}$$

Двойка из знаменателя пропала из-за того, что подинтергальная функция чётна, значит, изначальный интеграл можно разбить на два на промежутках (-1,0) и (0,1) и они будут равны, и равны бета-функции. Ну и всё, двойка сократилась. Гораздо интереснее, что же там будет, если мы будем раскрывать "альфы" до талого. Сразу заметим, что $\alpha_1 = 2$ (ну просто длина промежутка (-1,1)). Посмотрим (пары, эквивалентные "подчёркнутым" сократятся, и так далее со сдвигом на один через один, лол):

$$\alpha_{m} = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{m}{2}+1\right)} \cdot \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{m}{2}\right)}{\Gamma\left(\frac{m-1}{2}+1\right)} \cdot \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{m-1}{2}\right)}{\Gamma\left(\frac{m-2}{2}+1\right)} \cdot \dots \cdot 2 =$$

Вспоминаем "факториальность" гамма-функции $\Gamma(n+1)=n\Gamma(n)$ и формулу из темы про бесконечные произведения $\Gamma(x)\Gamma(1-x)=\frac{\pi}{\sin\pi x}$:

$$=2\frac{\Gamma\left(\frac{1}{2}\right)^{m-1}\Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{m}{2}+1\right)}=2\frac{\Gamma\left(\frac{1}{2}\right)^{m-1}\cdot\frac{1}{2}\cdot\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m}{2}+1\right)}=\frac{\Gamma\left(\frac{1}{2}\right)^{m}}{\Gamma\left(\frac{m}{2}+1\right)}=\frac{\left(\frac{\pi}{\sin\frac{\pi}{2}}\right)^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}+1\right)}=\frac{\pi^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}+1\right)}$$

(можно прогнать ещё для первых размерностей 2, 3)

ч. т. д.

1.4.7 Теорема Фату. Следствия

Формулировка:

- (X,\mathfrak{A},μ) пространство с мерой
- $f_n \ge 0$ измерима
- $f_n \to f$ почти везде
- Если $\exists C > 0 \ \forall n \int_X f_n d\mu \le C$

Тогда:

$$\int_{Y} f d\mu \le C$$

Доказательство:

Следствие:

То же самое, только меняем сходимость почти везде на:

- $f_n, f \ge 0$, измеримы, почти везде конечны
- $f_n \Longrightarrow f$

Следствие:

• $f_n \ge 0$, измеримы

Тогда:

$$\int_X \underline{\lim} f_n \le \underline{\lim} \int_X f_n$$

1.4.8 Теорема о вычислении интеграла по взвешенному образу меры

Формулировка:

- $(X,\mathfrak{A},\mu),(Y,\mathfrak{B},\underline{\hspace{0.1cm}})$ пространства с мерой
- ullet $\omega:X o\overline{\mathbb{R}}\geq 0$ измеримо
- $\Phi: X \to Y$ "измеримое"
- ν взвешенный образ μ (с весом ω)

Тогда для $\forall f: Y \to \overline{\mathbb{R}} \geq 0$ — измеримых:

- 1. $f \circ \Phi$ измеримо (относительно \mathfrak{A})
- 2. $\int_{Y} f d\nu = \int_{X} f(\Phi(x)) \cdot \omega(x) d\mu(x)$

Доказательство:

1.4.9 Критерий плотности

Формулировка:

- (X,\mathfrak{A},μ) пространство с мерой
- ullet u ещё одна мера на ${\mathfrak A}$
- $\omega: X \to \overline{\mathbb{R}} \ge 0$, измеримо

Тогда эквивалентно:

- 1. ω плотность μ отностительно μ
- 2. $\forall A \in \mathfrak{A} \quad \inf_A \omega \cdot \mu A \leq \nu A \leq \sup_A \omega \cdot \mu A$

Доказательство:

1.4.10 Лемма о единственности плотности

Формулировка:

- f, g суммируемы на X
- $\forall A$ измеримое, $\int_A f = \int_A g$

Тогда f = g почти везде

Доказательство:

Cледcтвиe:

Плотность меры определяется однозначно с точностью до изменения на множестве меры 0.

1.4.11 Лемма об оценке мер образов малых кубов

 Φ ормулировка:

- $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- $\Phi \in C^1$
- $a \in O$
- Пусть $c > |\det \Phi'(a)| \neq 0$

Тогда $\exists \delta > 0 \ \forall \ \text{Куб} \ Q \subset B(a, \delta)$

$$\lambda \cdot \Phi(Q) < c \cdot \lambda Q$$

Доказательство:

1.4.12 Предельный переход по параметру в несобственном интеграле

Формулировка:

- $f:\langle a,b\rangle \times Y \to \overline{\mathbb{R}}$
- $Y \subset \tilde{Y}$ метризуемое
- $y_0 \in \tilde{Y}$ предельная точка Y
- 1. при почти всех $x \exists f_0(x) = \lim_{y \to y_0} f(x,y)$
- 2. $\forall t \in (a,b) \ \forall f(x,y_0), f(x,y)$ суммируемые по x на (a,t) и $\int_a^t f(x,y) dx \underset{y \to y_0}{\longrightarrow} \int_a^t f_0(x) dx$
- 3. $J(y)=\int_a^{\rightarrow b}f(x,y)$ равномерно сходящаяся при $y\in Y$

Тогда $\int_a^{\to b} f_0(x) dx$ — существует (как несобственный)

Доказательство:

1.4.13 Предельный переход под знаком интеграла при наличии равномерной сходимости или L_{loc}

Формулировка:

- $f: X \times \tilde{Y} \to \overline{\mathbb{R}}$
- X пространство с мерой, $\mu X < +\overline{\mathbb{R}}$
- ullet $ilde{Y}$ метрезуемое топологическое пространство
- $\bullet \ Y \subset \tilde{Y}$
- $a \in \tilde{Y}$ предельная точка Y

• $\forall y \in Y \quad x \mapsto f(x,y)$ — суммируема на X

• Пусть
$$f(x,y) \underset{y \to a}{\Longrightarrow} \varphi(x)$$

Тогда φ — суммируема на X и

$$\lim_{y \to a} \int_X f(x, y) d\mu(x) = \int_X \varphi(x) d\mu(x)$$

Доказательство:

1.4.14 Правило Лейбница дифференцирования интеграла по параметру

Формулировка:

• Y — промежуток $\subset \mathbb{R}$

• $f: X \times Y \to \mathbb{R}$

• $\forall f(x,y)$ — суммируемая функция от x

• При почти всех $x \ \forall y \exists f_y'(x,y)$

• f_y' — удовлетворяет условию $L_{loc}(y_0)$

Тогда:

• $J(y) = \int_X f(x,y) d\mu(x)$ — дифференцируема в y_0

• $J'(y_0) = \int_X f'_y(x,y)d\mu(x)$

Доказательство:

1.4.15 Теорема о вложении пространств L^p

Формулировка:

•
$$\mu E < +\infty, 1 \le s < r \le +\infty$$

Тогда:

1.
$$L_r(E,\mu) \subset L_s(E,\mu)$$

2.
$$||f||_s \le (\mu E)^{\frac{1}{s} - \frac{1}{r}} \cdot ||f||_r$$

fix

1.4.16 Теорема о сходимости в L^p и по мере

Формулировка:

 $1 \le p < +\infty$ $f_n \in L_p(E, \mu)$:

1.
$$f \in L_p \quad f_n \xrightarrow[L_p]{} f$$
, тогда $f_n \Longrightarrow_{\mu} f$

2.
$$f_n \Longrightarrow_{\mu} f$$
 [либо $f_n \to f$ почти всюду], $|f_n| \le g$ почти всюду, при всех n , где $g \in L^p$. Тогда $f_n \xrightarrow[L_p]{\mu} f$

Доказательство:

1.4.17 Полнота L^p

Формулировка:

$$L^{p}(E,\mu)$$
 — полное $(1 \le p < +\infty)$

Доказательство:

1.4.18 Плотность в L^p множества ступенчатых функций

Формулировка:

•
$$(X, \mathfrak{A}, \mu), 1 \leq p \leq +\infty$$

Тогда множество ступенчатых функций плотно в $L_p(X,\mu)$

Доказательство:

1.4.19 Лемма Урысона

- X нормированное топологическое пространство (например, \mathbb{R}^m)
- $F_0, F_1 \subset X$ замкнутое
- $F_0 \cap F_1 = \emptyset$

Тогда: $f: X \to \mathbb{R}, \quad 0 \le f \le 1$ — непрерывное

$$f|_{F_0} \equiv 0, \, f|_{F_1} \equiv 1$$

1.4.20 Плотность в L^p непрерывных финитных функций

Формулировка:

• $(\mathbb{R}^m, \mathfrak{M}^m, \lambda_m)$

Тогда $C_0(\mathbb{R}^m)$ плотно в $L^p(\mathbb{R}^m, \lambda_m)$

Доказательство:

1.4.21 Интегрирование по мере Бореля–Стильтьеса, порожденной функцией распределения (с леммой)

Формулировка:

- $f: \mathbb{R} \to \overline{\mathbb{R}} \geq 0$, измерима по Борелю
- ullet $h:X o\overline{\mathbb{R}}$, измерима, почти везде конечна
- Н функция распеределения
- \bullet μ_H мера Бореля-Стильетса

Тогда:

$$\int_{X} f(h(x)) d\mu(x) = \int_{\mathbb{R}} f(t) d\mu_{H}(t)$$

Доказательство:

1.4.22 Теорема об интегрировании по частям

Формулировка:

- $g:[a,b]\to\mathbb{R}$, возрастающая
- f абсолютно непрерывная функция (C^1) на [a,b]
- μ_H мера Бореля(Лебега ?)-Стильетса

Тогда:

$$\int_{[a,b)} f(x)dg(x) = fg|_a^b - \int_{[a,c]} f'(x)g(x)dx$$

1.4.23 Лемма о "почти признаке Дирихле"

Формулировка:

• $-\inf < a < b \le +\inf$

• f — "доп." на [a,b) ($\forall A \in (a,b)f$ — суммируема на (a,A))

• g(x) — монотонно стремится к 0 при $x \to b-0$

• Пусть функция $F(t) = \int_a^t f dx$ — ограничена

Тогда:

$$\int_{a}^{b} fg dx$$

— сходится

$$\left| \int_{a}^{b} fg dx \right| \le |g(a)| \cdot \sup_{t \in (a,b)} \left| \int_{t}^{b} fdx \right|$$

Доказательство:

1.4.24 Следствие о "почти признаке Абеля"

Формулировка:

• $\int_a^{\to b} f dx$ — сходится, g — монотонна и ограничена на [a,b)

Тогда: $\int_a^{\to b} f dx$ — сходится, и к тому же:

$$\left| \int_a^{\to b} fg \right| \le 5(???) \cdot \sup_{(a,b)} |g(t)| \cdot \sup_{(a,b)} \left| \int_t^{\to b} f(x) dx \right|$$

Доказательство:

1.4.25 Признак Абеля равномерной сходимости интеграла

Формулировка:

- $f, q : [a, b) \times Y \to \mathbb{R}$
- $\int_a^{\to b} f(x,y) dx$ равномерно сходящийся на Y
- g(x,y) ограничена на $[a,b) \times Y$

Тогда:

$$\int_{a}^{b} f(x,y)g(x,y)dx$$

— равномерно сходящийся на Y.

- 2 Период Мезозойский
- 2.1 Важные определения

2.2 Определения

2.2.1 Кусочно-гладкий путь

 γ — кусочно-гладкий, V — непрерывно, $V = (V_1, V_2, \dots, V_m)$

$$I(V,\gamma) = \int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle dt =$$

$$\int_{a}^{b} V_{1}\left(\gamma(t)\right) \gamma_{1}'(t) + V_{2}\left(\gamma(t)\right) \gamma_{2}'(t) + \ldots + V_{m}\left(\gamma(t)\right) \gamma_{m}'(t) dt =$$

Делаем замену: $x=\gamma(t);\, x_1=\gamma_1(t), x_2=\gamma_2(t);\, dx_m=\gamma_m'(t)dt$

$$\int_{\gamma} V_1 dx_1 + V_2 dx_2 + \ldots + D_m dm$$

2.3 Важные теоремы

2.4 Теоремы

2.4.1 Теорема о свойствах сходимости в гильбертовом пространстве

Формулировка:

- $x_n \to x_0, y_n \to y_0 \quad \langle x_n, y_n \rangle \to \langle x_0, y_0 \rangle$
- $\sum_n x_n$ сходится Тогда $\forall y \in \mathcal{H}$ $\langle \sum x_n, y \rangle = \sum \langle x_n, y \rangle$
- $\sum x_n$ ортогональный ряд Тогда $\sum x_n$ — сходится $\Leftrightarrow \sum ||x_n||^2$ — сходится

Доказательство:

2.4.2 Теорема о коэффициентах разложения по ортогональной системе

 Φ ормулировка:

- ullet e_k ортогональная система в ${\cal H}$
- $x \in \mathcal{H}$
- $x = \sum_{k=1}^{\infty} c_k e_k$

Тогда:

- 1. $e_k ЛН3$
- $2. c_k = \frac{\langle x, e_k \rangle}{||e_k||^2}$
- 3. $c_k e_k$ это проекция на прямую $l_k = t e_k, t \in \mathbb{R}, x = c_k e_k + z$, где $z \perp l_k$

Доказательство:

2.4.3 Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя

Формулировка:

•