Отчёт по лабораторной работе №4 Математическое моделирование

Задача о погоне. Вариант №30

Выполнила: Данзанова Саяна Зоригтоевна, НПИбд-01-21

Содержание

Цель работы	5
Задачи	6
Задание	7
Выполнение лабораторной работы	8
Построение математической модели. Решение с помощью программ	8
Julia	8
Результаты работы кода на Julia	11
OpenModelica	17
Результаты работы кода на OpenModelica	20
Анализ полученных результатов. Сравнение языков.	27
Вывод	28
Список литературы. Библиография	29

Список иллюстраций

1	тешение уравнения для колеоания гармонического осциллятора оез за-	
	туханий и без действий внешней силы на языке Julia"	12
2	"Фазовый потрет для колебания гармонического осциллятора без затуха-	
	ний и без действий внешней силы на языке Julia"	13
3	"Решение уравнения для колебания гармонического осциллятора с зату-	
	ханием и без действий внешней силы на языке Julia"	14
4	"Фазовый потрет для колебания гармонического осциллятора с затуханием	
	и без действий внешней силы на языке Julia"	15
5	"Решение уравнения для колебания гармонического осциллятора сс зату-	
	ханием и под действием внешней силы на языке Julia"	16
6	"Фазовый потрет для колебания гармонического осциллятора с затуханием	
	и под действием внешней силы на языке Julia"	17
7	"Решение уравнения для колебания гармонического осциллятора без за-	
	туханий и без действий внешней силы на языке Open Modelica"	21
8	"Фазовый потрет для колебания гармонического осциллятора без затуха-	
	ний и без действий внешней силы на языке Open Modelica"	22
9	"Решение уравнения для колебания гармонического осциллятора с зату-	
	ханием и без действий внешней силы на языке Open Modelica"	23
10	"Фазовый потрет для колебания гармонического осциллятора с затуханием	
	и без действий внешней силы на языке Open Modelica"	24
11	"Решение уравнения для колебания гармонического осциллятора сс зату-	
	ханием и под действием внешней силы на языке Open Modelica"	25
12	"Фазовый потрет для колебания гармонического осциллятора с затуханием	
	и под действием внешней силы на языке Open Modelica"	26

Список таблиц

Цель работы

Изучить понятие гармонического осциллятора, построить фазовый портрет и найти решение уравнения гармонического осциллятора.

Задачи

- 1. Разобраться в понятии гармонического осциллятора
- 2. Ознакомиться с уравнением свободных колебаний гармонического осциллятора
- 3. Построить фазовый портрет гармонического осциллятора и решение уравнения на языках Julia и Open Modelica гармонического осциллятора для следующих случаев:
- Колебания гармонического осциллятора без затуханий и без действий внешней силы
- Колебания гармонического осциллятора с затуханием и без действий внешней силы
- Колебания гармонического осциллятора с затуханием и под действием внешней силы

Задание

Вариант 30:

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев:

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+4.3x=0$;
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x} + \dot{x} + 20x = 0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x} + \dot{x} + 8.8x = 0.7 sin(3t)$

На интервале $t \in [0;61]$ (шаг 0.05) с начальными условиями $x_0 = -0.3, y_0 = 1.3.$

Выполнение лабораторной работы

Построение математической модели. Решение с помощью программ

Julia

```
Код программы для первого случая:

# x'' + 4.3x = 0

using DifferentialEquations

function lorenz!(du, u, p, t)

a = p

du[1] = u[2]

du[2] = -a*u[1]

end

const x = -0.3

const y = 1.3

u0 = [x, y]

p = (4.3)

tspan = (0.0, 61.0)

prob = ODEProblem(lorenz!, u0, tspan, p)
```

```
sol = solve(prob, dtmax = 0.05)
using Plots; gr()
#решение системы уравнений
plot(sol)
savefig("lab4_julia_1.png")
#фазовый портрет
plot(sol, vars=(2,1))
savefig("lab4_julia_1_phase.png")
  Код программы для второго случая:
\# x'' + x' + 20x = 0
using DifferentialEquations
function lorenz!(du, u, p, t)
    a, b = p
    du[1] = u[2]
    du[2] = -a*du[1] - b*u[1]
end
const x = -0.3
const y = 1.3
u0 = [x, y]
p = (sqrt(1), 20)
tspan = (0.0, 61.0)
prob = ODEProblem(lorenz!, u0, tspan, p)
```

```
sol = solve(prob, dtmax = 0.05)
using Plots; gr()
#решение системы уравнений
plot(sol)
savefig("lab4_julia_2.png")
#фазовый портрет
plot(sol, vars=(2,1))
savefig("lab4_julia_2_ph.png")
  Код программы для третьего случая:
\# x'' + 5x' + x = 0.7\sin(3t)
using DifferentialEquations
function lorenz!(du, u, p, t)
    a, b = p
    du[1] = u[2]
    du[2] = -a*du[1] - b*u[1] + 0.7*sin(3*t)
end
const x = -0.3
const y = 1.3
u0 = [x, y]
p = (sqrt(1), 8.8)
tspan = (0.0, 61.0)
prob = ODEProblem(lorenz!, u0, tspan, p)
```

```
sol = solve(prob, dtmax = 0.05)

using Plots; gr()

#решение системы уравнений

plot(sol)

savefig("lab4_julia_3.png")

#фазовый портрет

plot(sol, vars=(2,1))

savefig("lab4_julia_3_phase.png")
```

Результаты работы кода на Julia

Первый случай:

Колебания гармонического осциллятора без затуханий и без действий внешней силы

Рис. 1: "Решение уравнения для колебания гармонического осциллятора без затуханий и без действий внешней силы на языке Julia"

Рис. 2: "Фазовый потрет для колебания гармонического осциллятора без затуханий и без действий внешней силы на языке Julia"

Второй случай:

Колебания гармонического осциллятора с затуханием и без действий внешней силы

Рис. 3: "Решение уравнения для колебания гармонического осциллятора с затуханием и без действий внешней силы на языке Julia"

Рис. 4: "Фазовый потрет для колебания гармонического осциллятора с затуханием и без действий внешней силы на языке Julia"

Третий случай:

Колебания гармонического осциллятора с затуханием и под действием внешней силы

Рис. 5: "Решение уравнения для колебания гармонического осциллятора сс затуханием и под действием внешней силы на языке Julia"

Рис. 6: "Фазовый потрет для колебания гармонического осциллятора с затуханием и под действием внешней силы на языке Julia"

OpenModelica

Код программы для первого случая:

```
//case1: x''+ 4.3x = 0
model lab4_1
//x'' + g* x' + w^2* x = f(t)
//w - частота
//g - затухание
parameter Real w = sqrt(4.30);
parameter Real g =0;
```

```
parameter Real x0 = -0.3;
parameter Real y0 = 1.3;
Real x(start=x0);
Real y(start=y0);
// f(t)
function f
input Real t ;
output Real res;
algorithm
res := 0;
end f;
equation
der(x) = y;
der(y) = -w*w*x - g*y + f(time);
end lab4_1;
 Код программы для второго случая:
//case2: x'' + x' + 20x = 0
model lab4_2
parameter Real w = sqrt(20.00);
parameter Real g = 1;
parameter Real x0 = -0.3;
parameter Real y0 = 1.3;
```

```
Real x(start=x0);
Real y(start=y0);
// f(t)
function f
input Real t ;
output Real res;
algorithm
res := 0;
end f;
equation
der(x) = y;
der(y) = -w^*w^*x - g^*y + f(time);
end lab4_2;
  Код программы для третьего случая:
//case3: x'' + x' + 8.8x = 0.7sin(3t)
model lab4_3
parameter Real w = sqrt(8.80);
parameter Real g = 1;
parameter Real x0 = -0.3;
parameter Real y0 = 1.3;
Real x(start=x0);
Real y(start=y0);
```

```
// f(t)
function f
input Real t;
output Real res;
algorithm
res := 0.7*sin(3*t); // 3 случай
end f;

equation
der(x) = y;
der(y) = -w*w*x - g*y - f(time);
end lab4_3
```

Результаты работы кода на OpenModelica

Первый случай:

Колебания гармонического осциллятора без затуханий и без действий внешней силы

Рис. 7: "Решение уравнения для колебания гармонического осциллятора без затуханий и без действий внешней силы на языке Open Modelica"

Рис. 8: "Фазовый потрет для колебания гармонического осциллятора без затуханий и без действий внешней силы на языке Open Modelica"

Второй случай:

Колебания гармонического осциллятора с затуханием и без действий внешней силы

Рис. 9: "Решение уравнения для колебания гармонического осциллятора с затуханием и без действий внешней силы на языке Open Modelica"

Рис. 10: "Фазовый потрет для колебания гармонического осциллятора с затуханием и без действий внешней силы на языке Open Modelica"

Третий случай:

Колебания гармонического осциллятора с затуханием и под действием внешней силы

Рис. 11: "Решение уравнения для колебания гармонического осциллятора сс затуханием и под действием внешней силы на языке Open Modelica"

Рис. 12: "Фазовый потрет для колебания гармонического осциллятора с затуханием и под действием внешней силы на языке Open Modelica"

Анализ полученных результатов. Сравнение языков.

В итоге проделанной работы мы построили по три модели (включающих в себя два графика) на языках Julia и OpenModelica. Построение моделей колебания на языке OpenModelica занимает меньше строк, чем аналогичное построение на Julia.

Вывод

В ходе выполнения лабораторной работы были построены решения уравнения гармонического осциллятора и фазовые портреты гармонических колебаний без затухания, с затуханием и при действии внешней силы на языках Julia и Open Modelica.

Список литературы. Библиография

- [1] Документация по Julia: https://docs.julialang.org/en/v1/
- [2] Документация по OpenModelica: https://openmodelica.org/
- [3] Решение дифференциальных уравнений: https://www.wolframalpha.com/
- [4] Бутиков И. Е. Собственные колебания линейного осциллятора. 2011.