

CURSO INTERNACIONAL

Secuenciación y Análisis de Datos Genómicos para la Detección Microbiológica de Enfermedades transmitidas por Alimentos y Aguas

El glifosato como co-selector de RAM en bacterias en muestras de agua y sedimentos en Argentina

Argentina

Caracas, Noviembre 2023

Anneris Gomez

Lic. Biotecnología y Biología Molecular Investigadora asistente ANLIS Malbrán CeNDIE-ANLIS Malbrán. Ministerio de Salud

Gente, Ciencia y Tecnología al Servicio de la Salud

Centro Nacional de Diagnóstico e Investigación en Endemo - Epidemias

MISIÓN

Generar investigación y desarrollo en el campo de la salud ambiental, atendiendo a la implementación de proyectos operativos, analíticos, territoriales y transdisciplinarios, relacionados al impacto de las dinámicas de urbanización, las transformaciones en el uso de la tierra y el cambio climático; abordando de manera integral las situaciones de relevancia sanitaria, con un enfoque de derechos que promueva el buen vivir de las personas que habitan nuestro país.

ÁREAS DE INVESTIGACIÓN

- Vectores, ambiente y cambio climático
- Riesgo ambiental y salud
- Información estratégica en salud ambiental
- Salud colectiva, ambiente y sociedad

El glifosato como co-selector de RAM en bacterias en agua y sedimentos en Argentina

CONTEXTO

- → Argentina es un país líder en producción de alimentos, con industrias de gran escala en los sectores de agricultura y ganadería vacuna. Representa un sector estratégico de la economía nacional, que mediante la innovación y el impulso tecnológico contribuye al desarrollo de nuestro país.
- → El modelo de producción agrícola extensiva promovido en la década de 1960 y adoptado en el país en la década de 1990 se basa en tres pilares principales: tecnologías que ahorran mano de obra (por ejemplo, la siembra directa); organismos genéticamente modificados (OGM); y insumos químicos, como fertilizantes y pesticidas (Bernasconi et al., 2021).
- → La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) estima que la producción de alimentos para abastecer al mundo deberá incrementarse aproximadamente un 60 % entre 2005 y 2050. Esta demanda dará lugar a un importante crecimiento del mercado de los agroquímicos a nivel mundial.

PREGUNTAS INICIALES DEL PROYECTO

Glifosato y sus metabolitos

Sus trazas se encuentran comúnmente en alimentos, piensos y el medio ambiente. Esta alta ubicuidad significa que el herbicida puede entrar en contacto con diversos microorganismos, en los que actúa como un agente antimicrobiano, y puede seleccionar resistencia a antibióticos clínicamente importantes.

- → ¿Pueden actuar como agentes de selección de bacterias de importancia clínica resistentes a los antimicrobianos?
- Pueden actuar como agentes de selección en bacterias ambientales aisladas a partir de suelo y agua con mecanismos de resistencia relevantes para la clínica?

Objetivo general

OBJETIVOS PRIMERA ETAPA

Determinar si el glifosato, en concentraciones halladas habitualmente en las matrices ambientales, puede actuar como agente de selección de bacterias resistentes a los antimicrobianos de importancia clínica.

Objetivos específicos

- Determinar la Concentración Inhibitoria Mínima (CIM) a glifosato y a una formulación comercial, de una colección de aislamientos de origen clínico con diferentes mecanismos de RAM, y las concentraciones sub-inhibitorias (CSI) para cada población de especies ensayadas.
- Comparar los valores de CIM y CSI obtenidos con las concentraciones residuales de glifosato detectados en matrices ambientales.
- Ensayo de microcosmos: Determinar el efecto del glifosato sobre una comunidad constituida por una mezcla de bacterias de origen clínico expuestas a glifosato y una formulación comercial

Colección de cepas de origen clínico: Fenotipo y Genotipo conocido

Patógenos multirresistentes prioritarios (OMS)	Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacterales (Escherichia coli, Klebsiella spp., Enterobacter spp.), Enterococcus faecium, Staphylococcus aureus, Salmonella spp enterobacterales (NO), Shigella spp enterobacterales (NO)
Resistencia a antimicrobianos de diversas familias	β-lactámicos (carbapenemes, cefalosporinas, otros), Aminoglucósidos, Fluoroquinolonas, Colistin
Mecanismos de Resistencia involucrados	Mecanismos asociados a transferencia horizontal de genes: β-lactamasas, enzimas modificadoras de aminoglucósidos y quinolonas, enzimas modificadoras del lipopolisacárido mcr.

OBJETIVOS SEGUNDA ETAPA

Objetivos específicos

- Investigar la ocurrencia de bacterias resistentes a glifosato en muestras de efluentes.
- Determinar la Concentración Inhibitoria Mínima (CIM) y las concentraciones sub-inhibitorias (CSI) a glifosato y a una formulación comercial de las bacterias aisladas.
- Realizar la secuenciación de genoma completo de los aislamientos recuperados para evaluar la presencia de mecanismos de resistencia a los antimicrobianos y resistencia/tolerancia al glifosato.
- Medir la concentración de glifosato y AMPA de las muestras.
- Realizar el análisis metagenómico de las muestras mediante shotgun metagenomics

¡MUCHAS GRACIAS!

Lic. Anneris Gómez anneris.gomez89@gmail.com