Spark-lean

An interactive PySpark-based Data Cleaning Library

Qintai Liu, Shuaiji Li, Yicheng Pu Center For Data Science, NYU

Introduction

- Scalable
- Interactive
- User-friendly

Main Features:

- Missing Value Detection
- 2. Numeric Features Detection
- String Cleaning
- 4. Test-train Splitting
- 5. Similar Text Matching
- 6. Duplicate Column Detection
- 7. Useless Feature Detection
- 8. Anomaly detection
- 9. Data versioning

Structure

- One-class structure
- Self.data
- Self.out

Missing Value Detection

- Null Value
- Customized Keywords
- Predefined Approach

>>> c.detect_missing_value(keywords=['null'])
column date has 236 null values!
column state has 2552 null values!
column city_or_county has 1274 null values!
column address has 17717 null values!
column n_killed has 7262 null values!
column n_injured has 7262 null values!
column incident_url has 935 null values!
column source_url has 1292 null values!
column incident_url_fields_missing has 369 null values!
column congressional_district has 13125 null values!
column gun stolen has 100965 null values!

Please select an approach:

- 1. Delete all suspicious rows
- 2. Replacing suspicious rows with 0
- 3. Replacing suspicious rows with input
- 4. Only delete rows with null values
- 5. Replacing null values with input
- 6. Replacing null values with 0
- 7. Do nothing

Input(number):1

All deleted!

Numeric features detection

One of the default loading csv method in PySpark:

SQLContext.read.csv() will convert every attribute to 'string' type

Distinguish numerical attributes:

- Pre-processing choice
- Predictive modelling

>>> c.distinguish numerical formats()

```
We think incident id is a numerical type
We think date is not a numerical type
We think state is not a numerical type
We think city or county is not a numerical type
We think address is not a numerical type
We think n killed is a numerical type
We think n injured is a numerical type
We think incident url is not a numerical type
We think source url is not a numerical type
We think incident url fields missing is not a numerical type
We think congressional district is a numerical type
We think gun stolen is not a numerical type
We think qun type is not a numerical type
We think incident characteristics is not a numerical type
We think latitude is not a numerical type
We think location description is not a numerical type
We think longitude is a numerical type
We think n guns_involved is not a numerical type
We think notes is not a numerical type
We think participant age is not a numerical type
```

Useless Feature Detection

- Find the feature whose all values are all the same.
- Check the top ten values.
- If they are same:
 - o Count how many values are equal to the first value of the feature.

Useless Feature Detection

```
Checking column n_injured
Checking column incident_url
Checking column source_url
Checking column incident_url_fields_missing
Column incident_url_fields_missing has the same value for all cells, do you want to drop it?

Press 1 to drop it, press 2 or other to keep it1
```

Useless Feature Detection

```
>>> c.data.select(["incident_url_fields_missing"]).show()
|incident_url_fields_missing|
                       False
                       False
only showing top 20 rows
```

Similar Text Matching

- Character Bi-gram Feature
- Min-Hash

Anomaly Detection

- Standardize
- K-means Clustering
- For each cluster, calculate the mean and std of distance of all points within it to the centroid
- Find outliers by looking at their distance to their centroids (Incluster-distance)

+		t	·	++
cluster_number	n_killed	n_injured	n_killed_cluster	n_injured_cluster
+	t	t	t	++
0	0.0	17.0	0.08677360523916107	1.2190790019066566
0	1.0	9.0	0.08677360523916107	1.2190790019066566
0	0.0	15.0	0.08677360523916107	1.2190790019066566
0	3.0	9.0	0.08677360523916107	1.2190790019066566
0	2.0	8.0	0.08677360523916107	1.2190790019066566
0	2.0	10.0	0.08677360523916107	1.2190790019066566
0	4.0	16.0	0.08677360523916107	1.2190790019066566
1	7.0	0.0	1.1352918101381686	0.01647561347687748
1	8.0	1.0	1.1352918101381686	0.01647561347687748
1	6.0	0.0	1.1352918101381686	0.01647561347687748
1	6.0	2.0	1.1352918101381686	0.01647561347687748
1	11.0	3.0	1.1352918101381686	0.01647561347687748
1	6.0	0.0	1.1352918101381686	0.01647561347687748

Results and Summary

Function	Optimus	Spark-lean
Normalize Feature	×	×
Clean String	×	×
Replace	×	×
Remove	×	×
Distinguish Numeric Format		×
Detect Missing Value	×	×
Anomaly Detection		×
Detect Outliers	×	×
Detect Useless Features		×
Drop Duplicated Column		×
Similar Words Matching		×
Outlier Detection	×	×

Task	Small dataset	Large dataset
Distinguish Numeric Format	4.51s	125s
Detect Missing Value	21.23	617s
Anomaly Detection	20.04s	57m
Detect Outliers	2.23s	53.21s
Detect Useless Features	20.48s	N/A
Drop Duplicated Column	252s	N/A
Similar Words Matching	2s	49.45s

Comparison between Small Dataset(130MB) and Large Dataset(3.5GB)

Comparison between Optimus and Spark-lean

Future Work

- Optimize Computational Performance
- Refine Documentation
- Support Unstructured Data
- GUI

Usage

- Make sure you have PySpark installed on your local machine
- Python 3.4+
- pip install Spark-lean

```
from spark_lean.spark_lean import cleaner
import os

cl = cleaner('/wvxf-dwi5.csv',os.getcwd())
```

Q&A