Amrita Vishwa Vidyapeetham B.Tech. Degree CSE (AI) First Semester Computational Engineering and Networking

19AIE101-Elements of Computing Systems-1: Presentation Assignment 1 (Group-wise)

Max marks: 100*

This evaluation aims at the following course coutcome CO1: Explain the concept of Boolean Algebra and Digital Logic

Qn No	Question	Marks
1	Perform the following number system conversions (You can show the results computationally in Excel without using direct conversion formula)	
	a) 153.153 ₁₀ to its octal equivalent $=$	20
	b) 23.12 ₁₆ to its binary equivalent	20
	c) 101100011.101_2 to its decimal equivalent	
	d) BEED ₁₆ to its decimal equivalent	
2	a) Find the 2's complement representation of 17. Justify your answer.	
	b) Illustrate subtraction using 2's complement (Take an example in 8-bit	10
	representation).	
3	Perform BCD Addiction of the following decimals. Also indicate how many BCD	20
	corrections are required in (a) and (b)	
	a) 49 and 57	
4	b) 176 and 824	
4	Illustrate the problem of overflow in binary addition (Take an example in 5-bit	10
5	representation) Find the gray code equivalent of the 4-bit binary numbers. Show the	
5	procedure of conversion. How can we obtain the gray code representation for	10
	(m+1) bits from m-bits.	10
6	Realize AND, NOT and OR and NOR gates using NAND gates. Implement the	
•	logic in HDL and test the chip or gate logic using hardware simulator (Use	30
	interactive simulation during presentation to show the results)	

*50 % weightage of marks for each question is for the quality of presentation and the remaining 50% is for the correctness of the answers (with proper steps/procedures/design) ie., Out of the total 100 marks; Correctness of answers =50 Marks Quality of presentation =50 Marks			
Nicely prepared slides and excellent oral presentation	50		
Slides are good, presentation is not good or vice versa	40		
Slides and presentation are of average quality	30		
Slides and presentation are of below average quality	20		

See the instruction file for more information