This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Государственный комитет CCCP по делам изобретений

и открытий

ПИСАНИЕ | (11) 988188 ИЗОБРЕТЕНИЯ

ПАТЕНТУ

(61) Дополнительный к патенту

(22) Заявлено 14. 12.73 (21) 1977924/23-04

(23) Приоритет (32)

(31) (33)

Опубликовано О7.О1.83.Бюллетень № 1

Дата опубликования описания 10.01.83

THE BRITISH LIBRARY

-6 JUN 1983

SCIENCE REFERENCE LIERARY

(51) М. Кл.³ C 07 C 103/30

(53) УДК 547.298.1. .07 (088.8)

(72) Авторы изобретения

Эржебет Грега, Пал Грибовски, Шандор Марошвёлдын, Золган Пинтер, Дьюла Силады, Иштван Сита, Чаба Тарр и Ласло Таши

(71) Заявитель

Иностранное предприятие "Эсакмадьяросаги Ведьимювек" (BHP).

Иностранцы

(54) СПОСОБ ПОЛУЧЕНИЯ N, N -ДИЗАМЕЩЕННЫХ АМИДОВ КАРБОНОВЫХ КИСЛОТ

Изобретение относится к усовершенствованному способу получения N, N - дизамещенных амидов карбоновых кислот, которые находят разнообразное применение, например в производстве химических средств защиты растений, лекарственных препаратов.

Известен способ получения незамещенных или замещенных амидов карбоновых кислот путем взаимодействия соответствующего углеводорода с карбомоилклоридом (он образуется из фосгена и амина)в присутствии клористого алюминия при 50-150°C в среде растворителя или без Hero [1]

Однако в этом способе хорошне выходы целевых амидов до 85 % достигаются только для ароматических углеводородов, а алифатические или циклоалифатические требуют более жестких условий процесса, но выходы целевых амидов не высок не.

Известен также способ получения амидов карбоновых кислот, при котором незамещенные амиды карбоновых кислот полу-

чают либо ацилированием аммиака или пространственно незатрудненного амина сложными эфирами, лактонами или фтализами, либо гидролизом нитрилов [2].

Замещенные амиды карбоновых кислот получают ацилированием первичных или вторичных аминов.

Ацилирование первичных аминов ведут преимущественно кислотами с неразветвленной углеводородной цепью, например. пропусканием паров амина и кислоты над нагретой до 280°С поверхностью силикагеля с отгонкой воды в виде азеотропа [3].

Наиболее близким техническим решением к предложенному является способ получения как незамещенных, так и замещенных амидов ацилированием соответствуюших аминов хлорангидридами различных кислот. Для смягчения экзотермичности реакции процесс целесообразно вести в среде растворителя. Для снижения расхода реагирующего амина в некоторых слу-

Applicants: Mitchell Shirvan et al. Serial No.: 09/932,370 Filed: August 17, 2001 Exhibit 15

чаях используют третичный амин или про- ч чесс ведут в водном растворе основания.

Температура процесса может варьироваться от -10 до 150° С. Выходы амидов высокие (80–90%) [4]

Однако использование хлорангидридов кислот, которые обычно получают из кислот, в целом осложняют осуществление способа.

Цель изобретения - упрощение процес- 10 се.

Поставленная цель достигается тем, что согласно способу получения N, N - дизамещенных амидов карбоновых кислот общей формулы

где R₁ - линейный или разветаленный ал- 20 кил C₂-C₁₈, незамещенный или замещенный галогеном или фенилом, фенил, хлор- или дихлорфенил, нитро— или динитрофенил, триметоксифенил, насыщенный азотсодержащий шестичленный гетероциклический радикал;

R₂ и R₃ — одинаковые или различные — алкил C₁—C₄, фенил или сов-местно представляют собой шестичленный кислород— или азотсодержащий гетероцикли—ческий радикал, ацилированием

аминов общей формулы

где R₂ и R₃ имеют вышеуказанные значения, при 70-150°C в среде растворителя ацилирование ведут не хлорангидридами, а карбоновыми кислотами общей формулы

R₁COOH, где R₁ имеет указанные значения, в присутствии 0,8-2 моль фостена на 1 моль исходного амина.

Использование непосредственно карбоновых кислот с применением фосгена обес-45 печивает лучшие технологические условия процесса производства амидов.

Процесс ведут как периодически, так и непрерывно при 50-150°C в среде растворителя, преимущественно бензола, о-ди- 50 хлорбензола, толуола или ксилола. Выход целевых амидов от 48 до 90%.

В сравнении с известным [1] способом предложенный способ обеспечивает
корошие выходы и 96-98%-ную чистоту
целевых продуктов и может быть испольвован для любых кислот как разветвленных, так и неразветвленных.

Пример 1. В колбу емкостью 500 мл, снабженную мешалкой, термометром, колодильником, трубкой для ввода гава и трубкой для отвода газа, помещают 13 г (0,1 моль) дибутиламина и 25,6 г (О,1 моль) пальмитиновой кислоты и эту смесь растворяют в 200 мл ксилола, нагревают до 130°C и в течение 30 мин пропускают 11 г (0,11 моль) фостена. Избыточное количество фосгена удаляют при нагревании. Далее реакционную смесь охлаждают и два раза промывают (по 100 мл) водой. Отделенную органическую разу сушат над сернокислым натрием, отгоняют растворитель в вакууме. Оставшееся после отгонки окрашенное в желтоватый цвет маслообразное вещество отверждают при охлаждении. Получают 27,5 г белой кристаллической массы (75%) N.N.дибутиламида пальмитиновой кислоты с температурой плавления 37°C.

Вычислено, %: N 3,83. Найдено, %: N 3,77.

Пример 2. В колбу емкостью 350 мл, снабженную указанными в примере 1 приспособлениями, помещают 13.5 г (0,1 моль) N - изопропиланилина, 12,2 г (0,1 моль) бензойной кислоты и 150 мл о-дихлорбензола. В приготовленную смесь при 140° С вводят в течение 30 мин 11 г (0,11 моль) фостена. Избыточное количество фосгена удаляют нагреванием с последующей отгонкой растворителя в вакууме. Полученный после отгонки остаток выливают в 100 мл холодной воды при перемешивании. Выделившийся в осадок крис-. таллический продукт отфильтровывают, промывают два раза водой (по 20 мл) и затем сушат. Получают 19,8 r (78%) N изопропил-N- фениламида бензойной кислоты с температурой плавления 55-56°C.

Вычислено, %: N 5,86. Найдено, %: N 5,98.

Пример 3. В колбу емкостью 1500 мл, снабженную описанными в примере 1 устройствами, помещают 135 г (1 моль) — изопропиланилина, 98 г (1,04 моль) монохлоруксусной кислоты и 500 мл бензола. Приготовленный раствор нагревают до 70-80°С и в течение 2 ч вводят в него 110 г (1,1 моль) фосгена с учетом его равномерной подачи. После завершения введения газа реакционную смесь дополнительно перемешивают в течение 1 ч при 80°С с последующим удалением избыточного количества фосгена путем пропускания в реакционную смесь сухого воздуха. Бензол из реакционной

下のける大学をから、これの一年の一年の大学の大学

смеси отгоняют при атмосферном давлении, после чего полученный остаток выпивают в 800 мл воды. Выделившийся в осадок кристаллический продукт отфильтровывают на пористой стеклянной пластине, два раза промывают, а затем продукт сушат. Получают 172г (81%) N-изопропил – N – фенилхлорацетамида с температурой плавления 71-76°C.

Вычислено, %: Cl 61,74, N 6,61. Найдено, %: Cl 16,58, N 6,77.

Пример 4. В колбу емкостью 1000 мл, которая снабжена описанными в примере 1 приспособлениями, помещают 32,6 г (0,25 моль) (43 мл) дибутилами_15 на, 23,4 г (0,25 моль) монохлоруксусной кислоты и 400 мл ксилола. Реакционную смесь нагревают до температуры, лежащей в интервале между 80 и 100°С, после чего в течение 1 ч в реакционную смесь вводят 30 г (0,3 моль) фостена После завершения подачи газа реакционную смесь дополнительно перемешивают еще в течение 2 ч при указанной температуре с последующим удалением набыточ- 25 ного количества фосгена пропусканием в реакционную смесь сухого воздуха, а затем отгоняют ксилол. Продукт очищают фракционной перегородкой в вакууме. Получают 45 г (87%) N, N - дибутилхлор- 30 ацетамида с T кипения 133°C / 16 мм DT. CT.

Вычислено, %: Cl 17,3,N 7,85. Найдено, %: Cl 17,42,N 6,78.

Пример 5. В колбу емкостью 350 мл, которая снабжена указанными в примере 1 приспособлениями, помещают 13 г (О,1 моль) дибутиламина, 21,1 г (0,1 моль) 3,5-динитробензойной кислоты и 150 мл ксилола. Реакционную смесь40 нагревают до 100-120°C и затем в течение 30 мин вводят в нее 11 г (0,11 моль) фостена. После завершения подачи фосгена реакционную смесь дополнительно перемешивают в течение 30 мин⁴⁵ при указанной температуре. После охдаждения образовавшуюся в качестве побочного продукта соль амина вымывают двукратным встряхиванием со 100 мл воды, после чего отгоняют растворитель. Остаток отверждают при охлаждении. Получают 24 г (74,5%) N.N - дибутиламида 3,5-динитробензойной кислоты с температурой плавления 61-62°C.

Вычислено, %: N 13,O. Найдено, %: N 12,71.

Пример 6. В колбу емкостью 1000 мл. которая снабжена описанными

в примере 1 приспособлениями, помещают 11,0 г (0,05 моль) 3,4, 5 - триметоксибензойной кислоты и 350 мл ксилола. Приготовленную смесь нагревают до 80°C и затем добавляют 5,0 г (0,057 моль) морфолина в 50 мл ксилола. При указенной температуре в реакционную смесь вводят 5,0 г (0,05 моль) фосте на, после че го реакционную смесь дополнительно перемешивают в течение 1 ч. Избыточное копичество фосгена удаляют пропусканием в реакционную смесь сухого воздуха. Окрашенный в светло-желтый цвет раствор упаривают в вакууме до объема 30-40 мл и затем при перемешивании выливают в 50 мл петролейного эфира. Спустя 5-10 мин выделившийся в осадок кристаллический продукт отфильтровывают, дважды промывают его петролейным эфиром и затем сушат. Получают 12,2 г (83%) N -(3, 4, 5-триметоксибензоил) - тетрагидро-1,4-оксазина с температурой плавления. 113°C.

Вычислено, %: N 4,98. Найдено, %: N 4,92.

Пример 7. В колбу емкостью 350 мл, которая снабжена описанными в примере 1 приспособлениями, помещают 17 г (0,1 моль) дифениламина, 9,5 г (О,1 моль) монохлоруксусной кислоты и 150 мл ксилола. Приготовленную реакционную смесь нагревают до 120-130°C, н в реакционную смесь в течение одного часа добавляют 11 г (0,11 моль) фосгена. Избыточное количество фосгена удаляют пропусканием через реакционную смесь сухого воздуха. Ксилол удаляют отгонкой и полученный расплав выливают в 100 мл воды. Образовавшийся кристаллический продукт отфильтровывают, дважды промывают (по 20 мл) водой и затем сущат. Получают 19,3 г (94,7%) N, N - дифенилхлорацетамида с температурой плавления 115-118°C.

Вычислено, %: Cl 14,42, N 5,71. Найдено, %: Cl 14,63%, N 6,68%.

Пример 8. В качестве реактора используют стклянную колонну, снабженную в обогревающей рубашкой и заполненную кольцами Рашига, а также обратным холоцильником. Длина колонны составляет 400 мм, а внутренний диаметр 27 мм.

Насадочная колонна через жидкостной затвор соединена с непрерывно действующим пленочным испарителем, который для конденсации и регенерирования растворителя снабжен обратным и инсходящим холодильнико м. Выходящий спизу пленочно-

го испарителя расплав направляется в стеклянный осадитель емкостью 2000 мл, который снабжен мешалкой и устройством
для непрерывной подачи воды, и из этого
осадителя направляется в непрерывно дей5

ствующую центрифугу.

В предварительно нагретую до 80°С насадочную колонну аппарата вводят в течение 1 ч 105 г (1,1 моль) монохлоруксус- 🦠 ной кислоты, 135 г (1,1 моль) -изопро- 10 пил-анилина в 400 мл бензола, а в нижнюю часть колонны подают 110 г (1,1 моль) фостена. При 120°C в пленочном испарителе бензол отгоняют от реакционной смеси. Из пленочного испарителя расплав направляют в осадительный сосуд, где кристаллический продукт осаждается в воде с температурой от 20 до 25°C. После центрифигурирования, промывки, повторного отделения и сушки получают в час по 170 г (85%) N -изопропил-N-фенилхлорапетамида с температурой плавления 72°C.

Вычислено, %: N 6,61, Cl 16,72. Найдено, %: N 6,41, Cl 16,60.

Пример 9. 15,0 г (0,11 моль) N-изопропиланилина, 25,6 г (0,1 моль) пальмитиновой кислоты и 200 мл ксилола вливают в 500 мл колбу, оборудованную по фримеру 1. При 120-140°С в смесь вводят 20 г (0,2 моль) фостена в течение 30 мин. Затем смесь перегоняют при атмосферном давлении, и остаток вливают в 50 мп, колодной воды. Получают 29 г (75%) N-изопропил-N-фениллальмитамида с температурой плавления 31°С.

Вычислено, %: N 3,75. Найдено, %: N 3,63.

Пример 10. 12.2 г (0,1 моль) бензойной кислоты, 13 г (0,1 моль) N,N-40 дибутиламина и 200 мл толуола смешивают в 500 мл колбе, оборудованной по примеру 1, и затем при температуре от 100 до 105°С в течение примерно 20 мин через смесь пропускают 15 г (0,15 моль) 45 фостена. После перегонки при атмосферном давлении остаток при постоянном размешивании выпивают в 100 мл воды и затем экстрагируют бензолом. После высушивания и фракционной вакуумной перегородки 50 получают 17 г (73%)N,N -дибутилбензомида с точкой кипения 148-150°С/17 мм рт. ст.

Вычислено, %:N 6,O. Найдено, %:N 5,91.

Пример 11.9 г (0,102 моль) морфолина, 12,5 г (0,102 моль) бензой-

ной кислоты и 200 мл хлорбензола смеши-вают в колбе, оборудованной по примеру 1, и затем при 130°С через смесь непрерывно пропускают 20 г (0,2 моль) фостена. После удаления растворителя перегонкой при атмосферном давлении остаток выпивают при непрерывном размешивании в 100 мл воды и затем экстрагируют бензолом. После высушивания и фракционной вакуумной перегонки получают 15 г (79%)N - бензоилморфолина с точкой кишения 170-172°С при 10 мм рт. ст.

Вычислено, %: N 8,5. . Наидено, %: N 8,45.

Пример 12. 19,1 г (О,1 моль) 3,4-дихлорбензойной кислоты, 15 г (О,15 моль) диизобутиламина и 200 мл ксилола смешивают в 500 мл колбе, оборудованной как указано в примере 1, и затем в смесь пропускают 20 г (О,2 моль) фосгена в течение 20 мин при 130°С. После удаления растворителя перегонкой остаток выливают при непрерывном размешивании в 200 мл воды. Осевшие кристаллы отфильтровывают, промывают водой и высушивают. Получают 23 г (76,5%) 3,4- дихлор - N,N - диизобутилбензамида.

Вычислено, %: N 4,68, Cl 23,6. Найдено, %: N 4,62, Cl 23,8.

Пример 13. 15,5 г (0,1 моль) 2-хлорбензойной кислоты, 15 г (0,15 моль) диизобутиламина и 200 мл хлорбензола смешивают в 500 мл колбе, оборудованной как указано в примере 1, и затем в смесь вводят 20 г (0,2 моль) фосгена при 130°С в течение 20 мин. После удаления растворителя перегонкой остаток растворяют петролейном эфире и трижды промывают водой. После промывки петролейный эфир отгоняют в вакууме и получают 21 г (80%) 2- хлор - N,N - диизобутилбензоамида в виде красного мас-

Вычислено, %: N 5,30, Cl 13,35. Найдено, %:N5,26, Cl 13,46.

Пример 14. 19,1 г (0,1 моль) 3,4 - дихлорбензойной кислоты, 15 г (0,11 моль) ди-втор-бутиламина и 200 мл ксилола наливают в 500 мл колбу, оборудованную как указано в примере 1, и затем в эту смесь вводят 20 г (0,2 моль) фосгена при 130°С в течение 30 мин. После удаления растворителя полученное коричневатое масло растворяют в бензоле и трижды промывают водой. После отделения органической фа-

988188

бензол отгоняют в вакууме и получаgr 22 г (73,5%) 3,4- дихлор - N,N втор- бутиламида в виде коричневого иасла.

Вычислено, %:N 4,68, CV 23,6. Найдено, %: N 3,38, Cf 22,82. В таблице показаны соединения, полученные по примеру 1:

∏pH- µep, №	R ₁	R ₂	R ₃	Время реакции, мин	Темп реакции, ⁰ С	Выход, %	Точка кипе- ния, ^о С
-	Этил	Этил	Этил	30	120	75	191
16	н-Пропил	Метил	Метил	160	120	74	. 188
17	н-Про- пил	Этил	Этил	60	130	72	97 (при 16 мм)
18	н-Бутил	Метил	Метил	60	140	,73	141 (при 100 мм)
19	Дихлор- метил	Аллил	Аллил	60	135	90	150 (фи 200 мм)
, 20	3 — Метил— фенил	Этил	Этил	60	140	90	111 (при 1 мм)

ормула изобретения

Способ получения N,N-дизамещенных намидов карбоновых кислот общей формулы

где R_4 — линейный или разветвленный алкил C_2 - C_{18} , незамещенный или замещенный галогеном или фенилом, фенил, хлор- или дихлорфенил, нитро- или динитрофенил, триметоксифенил, насыщенный азотсодержащий шестичленный гетероциклический радикал;

одинековые или различные - алкил С Са, фенил или совместно представляют собой шестичленный кислород- или азотсодержащий гетероциклический радикал,

ацилированием аминов общей формулы: $R_0R_3NH_{\bullet}$

где R₂ и R₃ имеют указанные значения, три 70-150°C в среде растворителя, о т. 50

личающийся тем, что, сцелью упрощения процесса, апилирование ведут карбоновыми кислотами общей формулы

R,COOH,

где R₁ имеет указанные значения, в присутствии 0,8-2 моль фостена на 1 моль исходного амина.

2. Способ по п. 1, отличаю щ и й с.я тем, что в качестве растворителя используют ароматические углеводороды - бензол, о-дихлорбензол, толуол или ксилол.

Источники информации, принятые во внимание при экспертизе

- 1. Губен-Вейль, Методы эксперимента в органической химии. Т. 8, с. 380, 1952.
- 2. Бюлер К., Пирсон Д. Органические синтезы М., "Мир", 31.07.73, ч. <u>П</u>, c. 390-394 ·
 - 3. Там же, стр. 385.
- 4. Там же, стр. 388 (прототип).

Составитель Г. Андион

Корректор У. Пономаренко Техред М.Коштура Редактор С. Патрушева

Подписное Тираж 416 : 3akas 10343/50 .. ВНИИПИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4