

Performance Engineering 101

Eric Landrieu Software Engineer Leader, MSE Systems & Software Technology Conference 2011 May 18, 2011

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collections this burden, to Washington Headquuld be aware that notwithstanding and DMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate or prmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 18 MAY 2011	2. DEDODT TYPE			3. DATES COVERED 00-00-2011 to 00-00-2011		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Performance Engineering 101				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Mission Solutions Engineering (MSE),304 W Route 38,Moorestown,NJ,08057				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
13. SUPPLEMENTARY NOTES Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 25	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Objective

- Provide an understanding of why Performance Engineering is needed
- Introduce Performance Engineering concepts (at a high level)
- Help you understand what your Performance Engineering team does (if you have one)
 - If you do not have one, help you understand what one should be doing for you!

Agenda

- Why do Performance Engineering?
- Questions to ask for Performance Engineering tasks
- Performance Engineering at MSE
- Collecting Performance Data
- The Core Four Resources
- Processes
- Virtualization
- Questions

Why do Performance Engineering?

- Understand system behavior
- Find cause of problems
- Requirements
 - Contracts
 - Specifications
 - Internal Processes

- Provide feedback or information to others
- Predictive Engineering (plan for upgrades, changes)
- Risk Management
 - The quicker a problem is addressed, the lower the cost to address it
- Quality Assurance

Questions to ask when doing Performance Engineering

- Who is asking for information?
 - The higher up the information travels, data should contain less detail and be more broad-based

- What information is needed?
- Where (what systems) do we want to analyze?
- When should we analyze?
 - Different needs for short or long timeframes
- How should the information be presented?
 - Graphs/tables/text, html/pdf/hardcopy, etc.
- Why is the information needed?

Why is the information needed?

Troubleshooting

- Immediate data on system/resources where problem(s) occurring
- Narrow down location of problems to better address them quickly

Monitoring

- Realtime data on systems and resources
- Condensed to highlight possible issues
 - Dashboard view of systems/groups
 - Alerts of present or future issues

Testing

- Measure data over period of time on all or subset of system
- Usually put system under defined load
- Understand system operation in specific scenarios

Predictive Engineering

- Data collected over longer period of time (days, weeks, months, etc.)
- Analyze trends over time, find future problems, model expected usage

Performance Engineering at MSE

- MSE has been developing software for Aegis for over 40 years
- Performance Engineering is vital in Open Architecture development
- Performed by dedicated experts in Mission Assurance department
 - Independent of individual development organizations
- Performed throughout development lifecycle
- Performed on all baselines
- Standardized sets of tools for system and internal measurement and analysis

- System and Process data from OS (outside black box)
 - Most modern Operating Systems provide performance data
 - The OS may provide some internal performance data
 - E.g. caching, kernel statistics, data provided to OS by applications
 - OS tools usually provided, but are very raw
 - 3rd Party and Open Source tools available
 - Better manageability
 - Provide intelligence in analyzing the data
 - At MSE, we constantly monitoring for problems or future issues

Slide 7

- Deeper dive into processes (inside the black box)
 - Requires deeper knowledge of architecture
 - Measure timing and resource usage along critical paths in architecture
 - Understand where performance issues are occurring
 - Tools to use depend upon what you are measuring
 - Profilers code-level and system-level
 - Log files containing timing or resource usage data
 - Internal instrumentation of system
 - Examples
 - Time for system to react to user request (with timings for each step)
 - Timing and sequence of messages to a component
 - Memory utilization in a buffer
 - Profile of CPU Usage by internal component
 - At MSE, we use this for a deeper understanding of performance or troubleshooting data that we see from the system level

- Collection Intervals
 - How Often do you measure?
 - Higher sample frequency means:
 - Finer level of detail
 - More likely to capture peaks and valleys
 - More data to analyze
 - More effect on system being measured
 - Balance needs and impact to find best collection interval
 - Different needs may necessitate different data intervals
 - Testing and troubleshooting quick-occurring issues may require very high sample rate
 - Predictive engineering often uses longer intervals over a much longer timeframe

- Types of measurements
 - Instantaneous
 - Snapshot of resource at a point in time
 - Delta
 - Total change in resource over time period
 - Often for measuring total usage (e.g. Total Transactions)
 - Change in resource per unit (time) Rate
 - Measuring against a constraint (e.g. Network bandwidth usage)
 - Time to Complete
 - Often average over a sampling interval
 - Example: Disk response time (time to complete per IO)

Photo sources:

Camera: http://commons.wikimedia.org/wiki/File:Beautycord_camera.jpg

Odometer: http://commons.wikimedia.org/wiki/File:Odometer.jpg

Stopwatch: http://commons.wikimedia.org/wiki/File:Cron%C3%B3grafo_anal%C3%B3gico(REFON-Reynaldo).jpg

Core Four Resources

- The Core Four resources are the primary four that constrain a computer system
 - CPU
 - Memory
 - Disk (storage)
 - Network
- Nearly all performance measurements break down into one or a combination of these
 - Example of combination: Disk swapping activity
 - Caused by a shortage of memory
 - Causes heavy disk activity
 - CPU may have to wait for swapping activity to complete
 - CPU may have to wait for memory to be swapped back from disk

CPU

- Main statistics
 - CPU Utilization (used, idle)
 - CPU Load
 - CPU Ready (queueing and response time)

- CPU Resource Saturation (all CPUs are near capacity)
- CPU Core Saturation (one or more, but not all CPUs, near capacity)
 - Unbalanced load, not making best use of resources
- Confusion in representation
 - Many different units used to represent, what do they all mean?
 - Percentage: % of single CPU, % of total CPU resources
 - CPU Seconds
 - Megahertz (MHz)
 - Jiffies
- Multiple Cores and Hyperthreading

Hyperthreading vs. Multi-core

- Hyperthreading CPU looks to OS like 2 full cores
 - Only 1 core, but two pipelines, can schedule well-balanced (multithreaded) workloads to make more efficient use of the core
- Multicore CPU has more than one actual core on the physical chip
- Multiprocessor systems have two or more physical CPU chips inside
- Systems can have any combination of all three of the above

Memory

- Main statistics
 - Memory Used (% or bytes)
 - Memory Free (% or bytes)
 - Swapped Memory
 - Swapping Activity (rate)
- Main issues
 - Memory Overcommitment
 - OS either refuses to give more, or finds ways to get the memory needed
 - Swapping memory to disk is process of last resort
 - Disk access is orders of magnitude slower than memory access
 - The swapping can make other resources (CPU, disk) appear to be the cause of issues

Disk (storage)

- Main statistics
 - IO rates: reads/second, writes/second
 - Throughput rates: bytes read/second, bytes written/second
 - Latencies: seconds per read, seconds per write
 - Disk space: Used, Free
- Main issues
 - Bus saturation
 - Disk throughput saturation
 - Disk space saturation (running out of space)
 - Caching or buffering inefficiencies
- Types of storage
 - Local (hard disk directly connected to system)
 - SAN
 - NAS
- Disk Caching
- Disk Arrays

Network

- Main statistics
 - Packet rates: Received/second and Transmitted/second
 - Throughput rates: Bytes Received/second and Bytes Transmitted/second
- Main issues
 - Port saturation on network device
 - Buffer saturation (send or receive)
- Always remember protocol overhead

Photo sources:

Network card: http://commons.wikimedia.org/wiki/File:Ne1000.jpg

Matryoshka: http://commons.wikimedia.org/wiki/File:Russian-Matroshka_no_bg.jpg

Network Topology

- Different bandwidths and activity levels at different parts of network
- Switching buffers
- Collisions (non-switching networks)
- NIC Teaming and Bonding
- VLANs
- Need to measure throughout network to get full view of where problems may lie

Resource Contention

- Multiple processes running simultaneously on system
 - Sharing finite resources
 - System tries to give each process all resources it wants
- When more requested than resources available, OS has to dole out resources as appropriate to let processes do their work
 - Higher priority processes usually get higher levels of resources

Processes

- Constrained by the same Core Four as the system
- Often can measure at a basic level from the OS itself.
- To go deeper, tools are needed (e.g. profilers)
- Why
 - Narrow focus to source of issues
 - Validate expected operation of processes
 - Measure internal resources and timings to verify proper operation
- Whereas system is "provider" of resources, processes are "consumers" of resources

Photo source: http://commons.wikimedia.org/wiki/File:StateLibQld_1_115664_Feeding_time_for_the_animals,_Blackall_District,_1908.jpg

Virtualization

- Adds a layer of abstraction (complexity)
- Physical vs. Virtual resources
 - Physical: Hardware and hypervisor are provider, virtual machine is consumer
 - Virtual: Virtual Machine is provider, processes in VM are consumer
- Contention occurs for both physical and virtual resources

Virtualization

- System-level measurements from within virtual machines may be inaccurate, especially CPU usage
 - Assumptions made that are not accurate in virtual world
 - Recommended whitepaper:
 http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
- Storage bandwidth becomes a major factor
 - Virtualization exposes poorly configured storage (SAN)
- Network becomes much more complex
 - Virtual network infrastructure
 - Some may not even connect to physical network
 - Network traffic that does not reach physical network can travel as fast as the host's CPU will allow
- Even if your product does not use virtualization, you may still use it
 - Ideal testing environment

Questions

Acronyms

- CPU Central Processing Unit
- OS Operating System
- SAN Storage Area Network
- NAS Network-Attached Storage
- VM Virtual Machine
- NIC Network Interface Card
- VLAN Virtual Local Area Network
- IO Input / Output

MISSION SOLUTIONS ENGINEERING

ERIC LANDRIEU

Software Engineer Leader

t +1.856.252.2135 | eric.landrieu@missionse.com

304 W Route 38 | Moorestown, NJ 08057 | www.missionse.com