Linear Algebra

Linear Transformation - Combine Vector & Matrix (선형변환, 벡터와 행렬의 만남)

소프트웨어 꼰대 강의

노기섭 교수 (kafa46@cju.ac.kr)

Linear Transformation (Mapping)

Linear Transformation (Mapping)

- Definition
 - · Linear combination (선형 결합)을 보존하는 벡터 사이의 함수
 - 선형 변환(Linear Transformation), 선형 사상(Linear Mapping), 선형 연산자(Linear Operator) 등으로 부르기도 함
- 다음 두 조건을 만족시키면 선형 변환이다.
 - Map $L: V \to W$
 - L(u + v) = L(u) + L(v), where $u, v \in Vector Space$
 - L(kv) = kL(v), where $k \in Field, v \in Vector Space$

Linear Map의 종류는 매우 많습니다. ^^

- L(v) = 0
- L(v) = v
- L(v) = kv
- $L(v) = M_{m \times n} \cdot v$

:

선형 변환의 구분

If $L: V \to W$ is linear map

Monomorphism (단사 사상): $L(u) = L(v) \rightarrow u = v$ 인 L (공역에 대응하는 정의역은 기껏해야 1개(0 또는 1), 일대일 맵)

Epimorphism (전사 사상): L(V) = W 인 L (공역에 해당하는 정의역 원소가 1개 이상, 정의역과 치역이 같음)

Inverse Map (역 사상): $L_2 \circ L_1 = L_1 \circ L_2 = I_V$

Isomorphism (동형 사상): Monomorphism + Epimorphism

만약, 어떤 대수구조가 Isomorphism 이라면, 각 대수구조의 법칙, 정리, 성질, 공식 등 모든 것들을 똑같이 적용할 수 있다.

행렬과 벡터의 만남! - 그 역사적 순간 (1/4)

이미<u>지 출처:</u>

https://namu.wiki/w/%EC%9A%B0%EB%A6%AC%20 %EC%83%9D%EC%95%A0%20%EC%B5%9C%EA%B 3%A0%EC%9D%98%20%EC%88%9C%EA%B0%84 이 슬라이드는 어쩌면 우리 생애 최고의 순간

지금까지 우리가 배운 Matrix는 연립일차방정식 푸는 용도밖에 없다.

게다가 Matrix와 Vector를 따로 배웠다.

뭔가 연결될 것 같다. 뭔가 중요한 의미가 있을 것 같다!

행렬과 벡터의 만남! - 그 역사적 순간 (2/4)

Linear Map
$$L: V \to W$$

$$L(u+v) = L(u) + L(v), where \quad u,v \in V$$

$$L(kv) = kL(v), where \quad k \in F, v \in V$$

행렬과 벡터의 만남! - 그 역사적 순간 (3/4)

선형사상들을 모아서 만든 새로운 집합 $\mathcal{L}(V,W)$

집합의 원소들에게 연산을 부여하자! (대수, Algebra) $(\mathcal{L}(v,w),+,\cdot)$ 연산은 더하기(+)와 스칼라배(scalar multiplication)

$$(L_1 + L_2)(v) = L_1(v) + L_2(v)$$
 $v \times k$ Field $(kL)(v) = kL(v)$

Field F 위에 $m \times n$ 행렬들 집합을 만들자!

그 집합을 이렇게 부르도록 하자! $\mathcal{M}_{m\times n}(F)$

연산도 부여하자! $(\mathcal{M}_{m\times n}(F), +, \cdot)$

$$\mathcal{M}_{m imes n}(F)$$
 $\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ $\begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix}$ $\begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{m1} & \cdots & c_{mn} \end{pmatrix}$ 그외 수많은 행렬들...

행렬과 벡터의 만남! - 그 역사적 순간 (4/4)

2개의 사상을 다시 정의한다.

$$f: \mathcal{L}(V, W) \to \mathcal{M}_{m \times n}(F)$$

$$f(L) = [L]_{B_W}^{B_V} = M$$

$$g: \mathcal{M}_{m \times n}(F) \to \mathcal{L}(V, W)$$

$$g(M) = L_M([L_M(v)]_{B_W} = M \cdot [v]_{B_V})$$

 $L_M(\cdot)$: Matrix M을 이용해 괄호 안을 만족하게 하는 선형 사상

 B_V : ordered basis of V

 B_W : ordered basis of W

$$v \in V, v = k_1 v_1 + k_2 v_2 + \dots + k_n v_n$$
$$[v]_{B_v} = (k_1, k_2, \dots, k_n)^T$$
$$[L]_{B_W}^{B_V} = ([L(v_1)]_{B_W} \dots [L(v_n)]_{B_W})$$

f 와 g 는 동형사상이다!

f 와 g 는 서로 역사상 관계이다!

결론: 선형사상과 Matrix는 같다!

더 이상 복잡한 선형사상 x 그저 행렬만 보면 된다. 벡터의 선형변환(사상)은 행렬만 보면 된다.

> 증명: 겁나게 복잡함 → 생략 ^^ (우리는 그냥 받아들이는 걸로...)

수고하셨습니다 ..^^..