Efficient Learning with Forward-Backward Splitting

John Duchi^{1,2} Yoram Singer²

 1 University of California, Berkeley 2 Google

Neural Information Processing Systems, 2009

Motivating Example

Minimize
$$\frac{1}{2} \boldsymbol{w}^{\top} A \boldsymbol{w} + \boldsymbol{c}^{\top} \boldsymbol{w} + \lambda \| \boldsymbol{w} \|_{1}$$
. True solution: $\boldsymbol{w}^{*} = [-1 \ 0]^{\top}$.

Subgradient

Fobos

Subgradients

▶ Subgradient set of a function *f*

$$\partial f(\boldsymbol{w}_0) = \left\{ \boldsymbol{g} \in \mathbb{R}^n \mid f(\boldsymbol{w}) \geq f(\boldsymbol{w}_0) + \boldsymbol{g}^\top (\boldsymbol{w} - \boldsymbol{w}_0) \right\}$$

What is the problem?

Subgradient set is large at singularities

 Subgradients are non-informative at singularities

Outline

Algorithmic Framework

Convergence and Regret

Derived Algorithms

Experimental Results

Conclusions and Related Work

The Fobos Algorithm

Goal:
$$\min_{\boldsymbol{w}} L(\boldsymbol{w}) + R(\boldsymbol{w}).$$

- Repeat
 - I. Unconstrained (stochastic sub) gradient of loss
 - II. Incorporate regularization
- ➤ Similar to forward-backward splitting (Lions and Mercier 79), composite gradient methods (Wright et al. 09, Nesterov 07), dual averaging with regularization (Xiao 09).

Fobos: Step I

Goal:
$$\min_{\boldsymbol{w}} L(\boldsymbol{w}) + R(\boldsymbol{w})$$

Unconstrained (stochastic sub) gradient of loss

$$\boldsymbol{w}_{t+\frac{1}{2}} = \boldsymbol{w}_t - \eta_t \boldsymbol{g}_t$$
 where $\mathbb{E} \boldsymbol{g}_t \in \partial L(\boldsymbol{w}_t)$

Fobos: Step II

Goal: $\min_{\boldsymbol{w}} L(\boldsymbol{w}) + R(\boldsymbol{w})$

▶ Incorporate regularization

$$\boldsymbol{w}_{t+1} = \operatorname*{argmin}_{\boldsymbol{w}} \left\{ \frac{1}{2} \left\| \boldsymbol{w} - \boldsymbol{w}_{t+\frac{1}{2}} \right\|^2 + \eta_t R(\boldsymbol{w}) \right\}.$$

Forward Looking Property

▶ The optimum w_{t+1} satisfies

$$\mathbf{0} \in \mathbf{w}_{t+1} - \mathbf{w}_t + \eta_t \partial L(\mathbf{w}_t) + \eta_t \partial R(\mathbf{w}_{t+1})$$

▶ Pick $g_t^L \in \partial L(w_t)$ and $g_{t+1}^R \in \partial R(w_{t+1})$

$$m{w}_{t+1} = m{w}_t - \eta_t m{g}_t^L - \eta_t m{g}_{t+1}^R$$

$$\nearrow \qquad \nwarrow$$
 current loss forward regularization

Current subgradient of loss, forward subgradient of regularization

Batch Convergence and Online Regret

▶ Set $\eta_t \propto \frac{1}{\sqrt{T}}$ or $\frac{1}{\sqrt{t}}$ to obtain batch convergence

$$L(\boldsymbol{w}_t) + R(\boldsymbol{w}_t) - (L(\boldsymbol{w}^*) + R(\boldsymbol{w}^*)) = O\left(\frac{1}{\sqrt{T}}\right).$$

Online (average) regret bounds

$$\begin{aligned} \operatorname{Regret}(T) &\triangleq \frac{1}{T} \left[\sum_{t=1}^{T} L_t(\boldsymbol{w}_t) + R(\boldsymbol{w}_t) - \sum_{t=1}^{T} L_t(\boldsymbol{w}^*) + R(\boldsymbol{w}^*) \right] \\ \eta_t &\propto \frac{1}{\sqrt{t}} \quad \Rightarrow \quad \operatorname{Regret}(T) = O\left(\frac{1}{\sqrt{T}}\right) \\ \eta_t &\propto \frac{1}{t} \quad \Rightarrow \quad \operatorname{Regret}(T) = O\left(\frac{\log T}{T}\right) \text{ (strong convexity)} \end{aligned}$$

Derived Algorithms

We show step II for

- ▶ Fobos with ℓ_1 -regularization
- ▶ Fobos with ℓ_2 -regularization
- ▶ Fobos with ℓ_{∞} -regularization
- ▶ FOBOS with mixed norms $(\ell_1/\ell_2 \text{ or } \ell_1/\ell_\infty)$

Fobos with ℓ_1

$$\min \ \frac{1}{2} \left\| \boldsymbol{w} - \boldsymbol{w}_{t + \frac{1}{2}} \right\|^2 + \lambda \left\| \boldsymbol{w} \right\|_1$$

- ► Separable: minimize $\frac{1}{2} \left(w w_{t+\frac{1}{2},j} \right)^2 + \lambda |w|$.
- Coordinate-wise update yields sparsity:

$$w_{t+1,j} = \operatorname{sign}\left(w_{t+\frac{1}{2},j}\right) \max\left\{|w_{t+\frac{1}{2},j}| - \lambda \eta_t, 0\right\}$$

Truncated gradient
(Langford et al. 08)
Iterative shrinkage and
thresholding
(Donoho 95, Daubechies et al. 04)

FOBOS with ℓ_2

▶ When $R(\boldsymbol{w}) = \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$, gradient descent & geometric shrinkage

$$oldsymbol{w}_{t+1} = rac{oldsymbol{w}_{t+rac{1}{2}}}{1+\lambda\eta_t} = rac{oldsymbol{w}_t - \eta_t oldsymbol{g}_t}{1+\lambda\eta_t}$$

▶ When $R(\mathbf{w}) = \lambda \|\mathbf{w}\|_2$, all or nothing update

$$oldsymbol{w}_{t+1} = \left[1 - rac{\lambda \eta_t}{\left\|oldsymbol{w}_{t+rac{1}{2}}
ight\|_2}
ight]_1 oldsymbol{w}_{t+rac{1}{2}}$$

FOBOS with ℓ_{∞}

$$\min \frac{1}{2} \left\| \boldsymbol{w} - \boldsymbol{w}_{t + \frac{1}{2}} \right\|^2 + \lambda \left\| \boldsymbol{w} \right\|_{\infty}$$

Update is thresholding

$$w_{t+1,j} = \text{sign}(w_{t+1,j}) \min \left\{ \left| w_{t+\frac{1}{2},j} \right|, \theta \right\}$$

- ▶ When $\theta = 0$, all zeros
- ▶ Dual problem, $\theta = \max_{j} |w_j \alpha_j|$ and $\boldsymbol{w}_{t+1} = \boldsymbol{w}_{t+\frac{1}{\pi}} \boldsymbol{\alpha}^*$:

$$\max_{\alpha} -\frac{1}{2} \left\| \boldsymbol{\alpha} - \boldsymbol{w}_{t+\frac{1}{2}} \right\|^2 \quad \text{s.t. } \|\boldsymbol{\alpha}\|_1 \leq \lambda.$$

▶ Projection onto the ℓ₁-ball (Duchi et al. 2008).

FOBOS with mixed norms

$$\begin{split} r(W) &= \|W\|_{\ell_1/\ell_q} = \sum_{j=1}^d \|\bar{\boldsymbol{w}}_j\|_q \\ W &= \begin{bmatrix} \bar{\boldsymbol{w}}_1 \\ \bar{\boldsymbol{w}}_2 \\ \vdots \\ \bar{\boldsymbol{w}}_d \end{bmatrix} \quad \Rightarrow \quad \begin{aligned} &\|\bar{\boldsymbol{w}}_1\|_q \\ &\|\bar{\boldsymbol{w}}_2\|_q \\ &\vdots \\ &\|\bar{\boldsymbol{w}}_d\|_q \end{aligned}$$

- ► Separable and solvable using previous methods
- Multitask and multiclass learning
 - $ar{m{w}}_i$ associated with feature j
 - Penalize \(\bar{w}_i \) once

Sparse Gradients

			\boldsymbol{g}		
t = 1		1	3	0]
t=2	[2	0	1	1
t=3	Ī	1	0	5	ĺ
t=4	Ī	1	0	2	Ī
t = 5]	3	0	2	j

High Dimensional Efficiency

- ▶ Input space is sparse but huge
- lacksquare Need to perform lazy updates to $oldsymbol{w}$
- Proposition: The following are equivalent:

$$\mathbf{w}_{t} = \underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w} - \mathbf{w}_{t-1}\|^{2} + \eta_{t}\lambda \|\mathbf{w}\|_{q} \text{ for } t = 1 \text{ to } T$$

$$\mathbf{w}_{T} = \underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w} - \mathbf{w}_{0}\|^{2} + \left(\sum_{t=1}^{T-1} \eta_{t}\lambda\right) \|\mathbf{w}\|_{q}$$

High dimensional update

			$oldsymbol{g}$			
t = 1	[1	3	0		
t=2]	2	0	.5]	Skip
t=3]	1	0	.5]	update
t=4	[.1	0	25]	(lazy
t=5]	5	0	.25]	eval)
t = 6	[2	1	1]	

▶ At t=6, FOBOS update with $\lambda=\sum_{t=0}^{6}\lambda_{t}$

Experimental Results

Sparsity

Sparsity as function of Fobos steps on $\ell_1\text{-regularized logistic}$ regression

Sparse timing experiments

Comparison of ℓ_1 -projection to Fobos lazy update

ℓ_2^2 regularized experiments

Convergence of FOBOS versus Pegasos on ℓ_2^2 regularized problem

MNIST experiments

Comparison of test error rate of FOBOS, Sparsa (Wright et al. 2009), coordinate descent (Tseng 2007).

MNIST experiments

Comparison of test error rate of FOBOS, Sparsa (Wright et al. 2009), coordinate descent (Tseng 2007).

Conclusions

- ► General framework for stochastic gradient with regularization
- Mixed-norm regularization for multiclass/multitask problems
- Lazy updates for efficiency in high dimensions
- ▶ Future: Put structural assumptions of problem in regularizer

Thanks!