Europäisches Patentamt **European Patent Office** Office européen des brevets

EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Bulletin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int Cl.7: C12Q 1/68, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

(11)

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Designated Extension States: AL LT LV MK RO SI

(30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)

(72) inventors:

· Nakagawa, Satochi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

Mizoguchi, Hiroshi,

 Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Hayashi, Mikiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ochiai, Keiko, c/o Kyowa Hakko Kogyo Co..Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Yokoi, Haruhiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

· Tateishi, Naoko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)

(74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

Novel polynucleotides (54)

Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of

10

20

25

40

45

50

Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by *Corynebacterium glutamicum* is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus *Corynebacterium* is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (*J. Biochem., 65*: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (*Microbiology, 142*: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli*, *Bacillus subtilis*, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clarified hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia coli, Mycobacterium tuberculosis*, yeast, and the like, have been determined (*Science, 277*: 1453-62 (1997); *Nature, 393*: 537-544 (1998); *Nature, 387*: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*,

96: 12833-38 (1999); Science, 284: 1520-23 (1999)).

10

15

25

30

40

45

50

55

SUMMARY OF THE INVENTION

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of Corynebacterium glutamicum ATCC

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Corynebacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are

[0016] From the viewpoint that the determination of the full nucleotide sequence of Corynebacterium glutamicum would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of Corynebacterium glutamicum can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:
 - (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
 - (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
 - (c) detecting any hybridization, and
 - (d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

10

15

20

25

30

35

40

45

50

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

(7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.

(8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

(9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.

- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:
- 2 to 3431. (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (*7), and having an activity which is substantially the same as that of the
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising

10

15

20

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a po ypept de or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information:
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

(ii) at least temporarily storing said information; (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information. (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following: (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) a data storage device for at least temporarily storing the input information; (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and (iv) an output devices that shows a function obtained by the comparator. (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following: (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information; (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501. (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following: (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information; (ii) a data storing device for at least temporarily storing the input information; (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and (iv) an output device that shows a function obtained by the comparator. (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following: (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information; (ii) at least temporarily storing said information; (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.

(31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microor-

10

15

20

25

30

35

40

45

50

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium. (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium. (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes. (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes. (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28). (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30). (37) The recording medium or storage device according to (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW. (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue. (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue. (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue. (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue. (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum. (45) A DNA encoding the polypeptide of any one of (38) to (44). (46) A recombinant DNA comprising the DNA of (45). (47) A transformant comprising the recombinant DNA of (46). (48) A transformant comprising in its chromosome the DNA of (45). (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.

- (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
- (51) A method for producing L-lysine, comprising:
 - culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.
- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform

5

10

15

20

25

30

35

40

45

50

bacterium obtained in (iii).

10

15

20

25

30

35

40

45

50

55

- (53) The method according to (52) wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitam n. a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a corynetom bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission
 - pathway; (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetogiutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

(64) The method according to (63), wherein the compound is L-lysine.

(65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:

(i) preparing

5

10

15

20

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid. a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments:

(v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and

(vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ

ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to 25 a method for examining of a gene at the polypeptide level.

(66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

(67) The method according to (66) wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.

(68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

[0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.

1. Determination of full nucleotide sequence of coryneform bacteria

[0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacte-40 riology, 8: 599 (1974).

[0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum. Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.

[0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806. Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (pnor genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965. Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryneform bacteria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride. 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA. namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 × g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

10

15

30

35

40

50

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning*, *A laboratory Manual*, Second Edition (1989) (hereinafter referred to as "*Molecular Cloning*, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 µl of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

(manufactured by Life Technologies) for *Escherichia coli*. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed *Escherichia coli* is spread on a suitable selection medium containing agar. for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride. pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(3) Production of cosmid library

15

20

25

30

40

45

50

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3Al or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed *Escherichia coli is* spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (*Science*, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino *et al.* (*DNA Research*, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction -

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 μ I of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (MI3REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μ I of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

35

45

50

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used

like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used. [0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonuclectide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an

10

15

20

25

30

40

45

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a proteinprotein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.

[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEO ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as repre-

sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym., 164*: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from Corynebacterium glutamicum ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

15

20

35

40

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in Molecular Cloning, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence informa-

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester

10

20

25

45

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (*Cell Engineering*, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

20

35

40

50

55

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

as amino acids, nucleic acids, vitamins saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be nardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nuclectide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which value at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwl of the B-6 strain.

[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine-productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim. P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

20

25

30

40

45

50

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (Appl. Microbiol. Biotechnol., 32: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain Corynebacterium glutamicum ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

15

20

30

35

40

45

which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (*Nat. Genet.*, 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

[0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

30 (2) Use of polynucleotide array

20

25

40

45

50

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

(a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science*, *280*: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science*, *278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, *96*: 12833-38 (1999); *Science*, *284*: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene

expression amount and the expression profile thereof can be analyzed.

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*. 2nd ed. or the like, mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

[0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

[0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)): a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999)), and the like.

[0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol., 181*: 6425-40 (1999))

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (*Nat. Bioctechnol., 14*: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

[0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

30 [0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

(b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

[0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).

[0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

50

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like, of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

- 9. System based on a computer using the recording medium of the present invention which is readable by a computer
- 20 [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

[0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

[0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

[0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994)). GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)). Glimmer (The Institute of Genomic Research: *Nuc. Acids. Res., 26*: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used. although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.

[0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

[0192] Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the comparator.

25

35

40

45

50

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

- 10. Production of polypeptide using ORF derived from coryneform bacteria
- [0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.
- [0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.
- [0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.
 - [0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.
 - [0198] The recombinant vector is introduced to a host cell suitable for the expression vector.
 - [0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.
 - [0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.
 - [0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.
 - [0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.
 - [0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as trp promoter (P_{tp}), lac promoter, P_L promoter, P_R promoter, P_R promoter, P_R promoter, P_R promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{trp} are linked in series ($P_{tp} \times 2$), tac promoter, lacT7 promoter let promoter and the like, can be used.
 - [0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).
 - [0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.
 - [0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

10

20

30

35

40

mized, in a known manner, depending on the host cells and environmental conditions utilized.

[0207] Examples of the host cell include microorganisms belonging to the genus *Escherichia*, the genus *Serratia*, the genus *Bacillus*, the genus *Brevibacterium*, the genus *Corynebacterium*, the genus *Microbacterium*, the genus *Pseudomonas*, and the like. Specific examples include *Escherichia coli* XL1-Blue, *Escherichia coli* XL2-Blue, *Escherichia coli* JM109, *Escherichia coli* DH1, *Escherichia coli* MC1000. *Escherichia coli* KY3276, *Escherichia coli* W1485, *Escherichia coli* JM109, *Escherichia coli* HB101, *Escherichia coli* No. 49, *Escherichia coli* W3110, *Escherichia coli* NY49, *Escherichia coli* Gl698, *Escherichia coli* TB1. *Serratia ficaria*, *Serratia fonticola*, *Serratia liquefaciens*, *Serratia marcescens*, *Bacillus subtilis*, *Bacillus amyloliquefaciens*, *Corynebacterium ammonia genes*, *Brevibacterium immariophilum* ATCC 14068, *Brevibacterium saccharolyticum* ATCC 14066, *Corynebacterium glutamicum* ATCC 13032, *Corynebacterium glutamicum* ATCC 13869, *Corynebacterium glutamicum* ATCC 14067 (prior genus and species: *Brevibacterium flavum*), *Corynebacterium lactofermentum*, or *Corynebacterium lactofermentum*), *Corynebacterium acetoacidophilum* ATCC 13870, *Corynebacterium thermoaminogenes* FERM 9244, *Microbacterium ammoniaphilum* ATCC 15354, *Pseudomonas putida*, *Pseudomonas* sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA, 69*: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Gene, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF al promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metal-lothionein promoter, a heat shock promoter, SRα promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 456 (1973), and the like.

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors, A Laboratory Manual*, W.H. Freeman and Company, New York (1992), *Bio/Technology, 6*: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

20

25

30

35

45

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

[0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family *Barathra* are infected, and the like.

[0222] Examples of the insect cells include *Spodoptera frugiperda* oocytes Sf9 and Sf21 (*Bacurovirus Expression Vectors, A Laboratory Manual*, W.H. Freeman and Company, New York (1992)), *Trichoplusia ni* oocyte High 5 (manufactured by Invitrogen) and the like.

[0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.

[0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco

mosaic virus vector, and the like.

[0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV). rice actin 1 promoter, and the like.

[0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.

[0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.

[0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

[0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.

[0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.

[0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.

[0232] When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.

[0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

of the transformant efficiently.

[0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbonydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).

[0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.

[0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

[0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.

[0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.

[0239] When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured,

35

an inducer can be added to the medium, if necessary.

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days...

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

50 [0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (*American Journal of Clinical Nutrition*, 63: 639S (1996), *American Journal of Clinical Nutrition*, 63: 627S (1996), *Bio/Technology*, 9: 830 (1991)).

10

15

25

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88). egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α -casein promoter, a $(\beta$ -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15: 45* (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

[0262] The polypeptide of the present invention can be produced by a translation system *in vitro*. There are, for example, two *in vitro* translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA. an *in vitro* transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the *in vitro* translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. *In vitro* translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λPL(con), λPL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like.

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

20

30

35

40

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, Nuc. Acids. Res., 10: 6487 (1982). Proc. Natl. Acad. Sci. USA, 79: 6409 (1982), Gene, 34: 315 (1985), Nuc. Acids. Res., 13: 4431 (1985), Proc. Natl. Acad. Sci. USA, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

20

25

30

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid. methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

[0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

50

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector *et al.*, *Cells/a laboratory manual*, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of *Corynebacterium glutamicum*, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976): Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

15

20

25

30

35

40

45

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate. caprylic acid precipitation (Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combinat on thereof, by methods known to those of ordinary skill in the art.

- (2) Production of monoclonal antibody
- (a) Preparation of antibody-producing cell
- [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell. 10
 - [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the
 - [0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1.200 rpm for 5 minutes, and the resulting supernatant is discarded.
 - [0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.
 - (b) Preparation of myeloma cells

20

30

40

55

[0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (Curr. Topics in Microbiol. Immunol., 81: 1 (1978); Europ. J. Immunol., 6 511 (1976)): SP2/O-Agl4 (SP-2) (Nature, 276: 269 (1978)): P3-X63-Ag8653 (653) (J. Immunol., 123: 1548 (1979)). P3-X63-Ag8 (X63) cell line (Nature, 256: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10-5 mol/l 2-mercaptoethanol, 10 μg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"). 8-azaguanine is further added at 15 μg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2 · 107 or more of the cells are used for the fusion.

- (c) Production of hybridoma
- [0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter. pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10: 1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.
- [0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 108 antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.
- [0301] After the addition. MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10-4 mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.
- [0302] The suspension is poured into a 96 well culture plate at 100 µl/well and cultured at 37°C for 7 to 14 days in
- [0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.
 - [0304] A specific example of the enzyme immunoassay is described below.
 - [0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

- (d) Preparation of monoclonal antibody
- [0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetramethylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10^6 to 20×10^6 cells/animal. The hybridoma causes 10
 - [0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000
- [0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.
 - [0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based
 - [0311] The antibody obtained in the above is within the scope of the antibody of the present invention.
 - [0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982), Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment
 - Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)) [0313] The antibody of the present invention can be used as it is or after being labeled with a label.
- [0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (J. Histochem. Cytochem., 18: 315 (1970); Meth. Enzym., 62: 308 (1979); Immunol., 109: 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.
 - [0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.
 - [0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.
 - 12. Production and use of polypeptide array
 - (1) Production of polypeptide array
- [0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.
 - [0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.
 - [0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.
 - [0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in Biotechniques, 27: 1258-61 (1999); Molecular Medicine Today, 5: 326-7 (1999); Handbook of Experimental Immunology, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); Meth. Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent
 - 4,282,287; U.S. Patent 4,762,881, or the like. [0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polypeptide array

10

15

20

25

30

35

40

45

50

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1):
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria:
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

[0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.

- 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining two

electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, vanous separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

35 Example 1

20

25

40

45

50

55

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science*, 269: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subjected to iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

5

20

40

50

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of Corynebacterium glutamicum ATCC 13032 to give a total volume of 0.4 ml. and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate. 10 mmol/l magnesium acetate. 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 Smal/BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0 04 ml of E. coli ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin. 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library 25

[0345] About 0.1 mg of the genome DNA of Corynebacterium glutamicum ATCC 13032 was partially digested with Sau3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA. 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into Escherichia coli XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

- (4) Determination of nucleotide sequence
- (4-1) Preparation of template

[0347] The full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

- [0352] The double-stranded DNA plasmid as the template was obtained by the following method.
- [0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.
- [0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.
 - [0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.
- 10 [0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.
 - (4-2) Sequencing reaction
 - [0357] To 6 μI of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (*DNA Research*, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μI of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.
- 20 [0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacturer's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.
 - [0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.
 - [0360] The data of about 50.000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.
 - (5) Assembly

- 135 [0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.
 - (6) Determination of nucleotide sequence in gap part
- [0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.
- [0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of *Corynebacterium glutamicum* ATCC 13032 (*Mol. Gen. Genet., 252*: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.
 - [0364] The sequence in the region which was not covered with the contigs was determined by the following method.

 [0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

5

10

15

20

30

35

40

45

55

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database. Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO:

1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

														1		$\neg \tau$			\neg	$\overline{}$	$\neg \tau$		$\neg \top$	
5		ç	rotein DnaA		eta chain	in (recF			(ATP.								A	ane protein		protein, LysR		nesis protein		
10		Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF	protein)	hypothetical protein	DNA topoisomerase (ATP- hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
15		Natched 'ength (aa)	524	7	390		392	174	704	1				422			854	112	329	268		265	155	117
20		Similarity (%)	8 00	3	818		79.9	58 1	88 9					20.7			88.1	9.69	63.5	62.3		57.4	64.5	70.1
		identity (%)	9 00	S	505	3	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
25	e 1	s gene	V 6 CF	Um dhak	Neab stempe	chunch and a	egmatis recF	icolor yreG	oerculosis					serculosis			berculosis rA	berculosis	12 yeiH	hermoluteolus		sulatus ccdA	om1	berculosis
30	Table 1	Homologous gene		Brev:bacterium liavum onam	Nead attentions and attention	ואכסמשכובוומונו פוו	Nycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
35			1:	<u> </u>		\neg		+	1				_			 i		<u> </u>	T		-			
40		db Match		gsp R98523		Sp DP3B MYCSM	SP RECF_MYCSM	SP YREG STRCO	pir:S42198					sp:YV11_MYCTU			sp.GYRA_MYCTU	pir.E70698	SD:YEIH ECOLI			gp:AF156103_2	pir:A49232	pir.F7C664
		ORF (bp)	İ	1572	324	1182	1182	534	2133	996	699	510	441	1071	261	246	2568	342	1035	894	420	870	762	369
45		Terminal (nt)	ī		159/	3473	4766	5299	7486	8795	8798	1001	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073
50		Initial		-	1920	2532	3585	4766	5354	CE87	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251			1 1
		SEO	(a.a)	3502	3503	3504	3505	200	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
55			(DNA)	1	6	~	5	"			6	9	1=	12	13	14	15	16	17	18	19	20-	2/2	22

				نه ا		\neg		T	i	. T		П		T	\top				2	اءِ	e e		۷٥	2		
5		Function	brane protein	onic acid reductas	2,5-diketo-D-giucofiic acio recession	recursor	amity protein		dotoviration	organic nydroperoxide deroxidente enzyme	DNA helicase		a-glucosidase			ABC 3 transport family or integral membrane protein	transport ATP-	Jimselaisea sette	sporter, peripiasin	high affinity ribose transport protein	ribose transport ATP-binding protein	ubunit NF-180	30,000,000	peptidyl-prolyl cis-trans isoniterase	hypothetical membrane protein	
10		Fun		hypothetical memorane process	2,5-diketo-U-giuc	5'-nucleotidase precursor	5'-nicleotidase family protein		Tansposase	organic nydroper enzyme	ATP-dependent DNA helicase		ducan 1.4-alpha-glucosidase	5	lipoprotein	ABC 3 transport fall membrane protein	iron(III) dicitrate transport ATP-	biding protein	sugar ABC transporter, sugar-binding protein	high affinity ribo	ribose transpor	neurofilament subunit NF-180		peptidyl-prolyl	hypothetical m	
15		Matched length	1	321	56	196	07.0	217	15	139	217	1	940	D T	311	266		222	283	312	236	247	;	169	226	
20		Similarity 1		50.8	88.5	56.1		20.7	72.6	6.67	60.8			24. 1	63 7	74.1		70.3	56.5	68.3	76.7	2 3	-	89.9	53.1	ĺ
		identity S		24.9	65.4	27.0		27.0	52.9	51.8	32.7	35.7		26.7	28.9	34.6		39.2	25.8	30.5	2 6	32.2	23.0	79.9	29.2	
25	nued)				ATCC	Africa	360	2	tum ORF1	stris		ans reco	ociaio	VISION I	athiae	nes SF370		fecE	a MSB8	rher) insc	rbsA	S	ae H37RV	yagP	
30	Table 1 (continued)	Homologous gene		Mycobacterium leprae MLCB1788.18	Corynebacterium sp. ATCC	31090	IDIIO paranaerinoi y	Deinococcus radiodularis DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris	phaseoli ohr	Thiobacillus ferrooxidans reco		Saccharomyces cerevisiae S288C YIR019C sta1	Erysipelothrix rhusiopathiae	Streptococcus pyogenes SF370	mtsC	Escherichia coli K12 fecE	Thermotoga maritima MSB8	TM0114	Escherichia coii N. 12 Iuso	Bacillus subtilis 168 rbsA	Petromyzon marinus	Mycobacterium leprae H37RV RV0009 ppiA	Bacillus subtilis 168 yqgP	
35		-			T							THIFE			<u> </u>	T		COLI			8	ACSU		AYCTU	PACS11	2200
40		db Match		gp:MI.CB1788_6	0.000	311.140030	Sp. 5NTD_VIBPA	gp:AE001909_7	2513302C	/c3cc+40	pr1.2413333A	sp.RECG_T		sp:AMYH_YEAST	an FRU52850 1		gp:AF180520_3	sp.FECE_ECOLI	nir 072417	11.21.W.IIIq		SP.RBSA_BACSU			LISUVE GEOVE	50 1 ds
		ORF	(dq)	993		081	528	1236	100		435	1413	438	1278	054	5	849	657	- 5	202	1023	759	816	-i	\dashv	189
45		Terminal	(ut)	21065		21074	22124	23399		23615	24729	24885	26775	26822	79790	50107	29117	30651	2467	316//	32699	33457	33465	34899		35668
50		Initial	(nt)	20073		21253	21597	22164		23779	24295	26297	26338	28099		29117	29962	29995		30697	31677	1	1			34982
		SEO	9 5	7523	3363	3524	3525	3526		3527	3528	3529	3530	3531		3532	3533	25.24	500	3535	3536	3537	200	35.38	3333	3540
55					3	24	25			27_	28	29	30	3	5	32	33		Ť.	35	8	8 6	2 6	R 8	86	40
			-																							

5
10
15
20
25
30
35
40
45
50

		_			,							_								
Function	ferric enterobactin transport system permease protein		ATPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serineAhreonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothetical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein
Matched length (a.a.)	332	-	253	260	95	648	486	492	375	469	155	526					117	490	242	262
Similarity (%)	70.5		81.8	52.7	72.6	68.7	59 1	2'99	9.59	70.8	66.5	38.8					63.3	78.2	57.0	64.1
Identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.6					29.9	46.7	27.3	29.0
Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae viuC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					Trichosporon cutaneum ATCC 46490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschii MJ0441
db Match	sp:FEPG_ECOLI		gp:VCU52150_9	sp:VIUB_VIBVU	sp:YO11_MYCTU	SP.PKNB_MYCLE	gp:AF094711_1	gp:AF241575_1	sp:SP5E_BACSU	pir:H70699	pir.A70700	pir:870700					sp.PH2M_TRICU	sp:GA3D_ECOLI	Sp:YRKH_BACSU	sp:Y441_METJA
ORF (bp)	978	966	777	822	270	1938	1407	1422	1143	1353	462	864	147	720	219	471	954	1470	1467	789
Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46669	48024	48505	49455	49897	50754	99605	54008	51626	55546	55629
Initial (nt)	37221	37242	38202	38978	40458	42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	56417
SEQ NO. (a.a.)	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
SEQ NO (DNA)	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	99	57	58	59	09
	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO (nt) (hp) (hp) (aa)	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial NOTE (a.a.) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) 3541 37221 38198 978 sp:FEPG_ECOLI Escherichia coli K12 fepG 40.4 70.5 332 3542 37242 36247 996 A0.4 70.5 332	SEQ Initial (a.a.) Terminal (nt) CRF (nt) db Match Homologous gene (%) Identity (%) Similarity length (a.a.) Matched (%) 3541 37221 38198 978 sp.FEPG_ECOLI Escherichia coli K12 fepG 40.4 70.5 332 3542 37242 36247 996 R. FepG_ECOLI Escherichia coli K12 fepG 40.4 70.5 332 3543 38202 38978 777 gp. VCU52150_9 Vibrin cholerae viuC 51.8 81.8 253	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial NO. (a.a.) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 3541 37221 38198 978 sp. FEPG_ECOLI Escherichia coli K12 fepG 40.4 70.5 332 3542 37242 36247 996 Eccherichia coli K12 fepG 40.4 70.5 332 3543 38202 38978 777 gp.VCU52150_9 Vibrio cholerae viuC 51.8 81.8 253 3543 38978 377 gp.VCU52150_9 Vibrio cholerae viuC 51.8 81.8 253 3544 38978 377 gp.VUIB_VIBVU Vibrio vulnificus MO6-24 viuB 26.2 52.7 260 3545 40458 40189 270 sp.YO11_MYCTU Mycobacterium leprae pknB 40.0 72.6 95 3546 42513 40576 1938 sp.PKNB_MYCLE Mycobacterium leprae pknB 40.6 68.7 648	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial NO. (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Ma	SEQ Initial (a) (iii) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	SEO (nitial) Terminal (bp) (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (n1) (n1) (n1) (bp) db Match Homologous gene (%) (%)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) at 1 (nt) at 2 (nt) at 3	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%s) NO (n1) (n1) (bp) 4b Match Homologous gene (%s) (%s)	SEQ Initial Initial (Init) (bp) Terminal (ORF (bp) date the monologous gene (cb) Identity (cb) Similarity (cb) Marched (cb) NO. (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init) (Init)	SEQ Initial NO. Terminal ORF (nt) Abatch (bp) Homologous gene Identity (%) Similarity (%) Marched (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Matched (%)

	Function	hypothetical protein		hypothetical protein	hypothetical protein	hypothetical protein	1) possession in the second se		magnesium and cobalt transport	protein	and the change of the control of the change	כשוסווסב כוושוויובו בייניים	required for NMN transport	phosphate starvation-induced	protein-like protein			Mai2+Veitrate complex secondary	transporter	two-component system sensor histidine kınase		transcriptional regulator	D. isomer specific 2-hydroxyacid
	Matched length (a.a.)	74	1	179	62	240	010			390	1	904	241	077	5	-			497	563	 	229	293
	Similarity (%)	74.3		70.4	83.9	. 0.5	7.00			59 5		64.8	53.1	0 00	0.00				68.8	9.09		63.3	73.7
	Identity (%)	40.5	202	36 3	53.2		26.8			29.5		30.0	24.1	1 60	29.1		+	1-	42.3	27.2		33.2	E E P
Table 1 (continued)	Homologous gene		Bacillus subtilis yrkF	Synechacystis sp. PCC6803 str1261	Mycobacterium tuberculosis H37Rv Rv1766		l eishmania major L4768.11	17 (A) 0 TO THE PARTY NAMED TO A TAXABLE PARTY		Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Salangella tynhimurium phuC	Attrophoterium tuberculosis	H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB		rate to the coli K12 criB	Corynebacterium glutamicum
•	db Match		D'YRKF BACSU		pir:G70988	1	gp:LMFL4768_11			pir:F70952		AP 4F179611 12	VF 140 01 110 db	sp:PNUC_SALIT	sp:PHOL_MYCTU				SP.CITM_BACSU				sp.DPIA_ECULI
	ORF:		291	591	174	855	840	711	1653	1119	447	1260	6071	069	1122	132	384	765	1467	1653	0.70	0/6	654
	le l	<u></u>	56386	26680	57651	58941	59930	60662	62321	62390	63594	014.0	6545B	65508	67972	68301	68251	69824	68720	72158		/14/4	72814
	_	<u></u>	56676	57270	57478	SRORZ	59091	59952	69909	63508	64040	•		66197	66851	68170		09069	1			72043	72161
	SEO	(a a.)	3561	3562	3563	3564	3565	3566	3567	3568	34.670	3309	3570	3571	3572	3573	3574	3575	35.76	3577		3578	3579
	SEO	-		5		$\neg \vdash$	65	99	67	68	5	60	70	7.1	72	7.3	74	75	2 2	2		7.8	79

5		Function	hypothetical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase			SIR2 gene family (silent information regulator)	triacyiglycerol lipase	triacylglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit
15	ļ	Matched length (a a)	127	334	43	85		42	84	507	394			279	251	262		171	100	162	570
20		Similarity (%)	76.4	99.7	79.1	63.5		75.0	0.99	59.0	8.66			50.2	59.0	56.1		94.7	100 0	100.0	100.0
		Identity (%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	97.2			26.2	30.7	29.4		9.06	100.0	100.0	100.0
25	Table 1 (continued)	s gene	icolor A3(2)	glutamicum	serculosis	erevisiae		rum Nigg	oniae	iniae varS				erevisiae hst2	acnes	acnes		glutamicum	glutamicum	glutamicum	glutamicum
30	Table 1 (c	Homologous gene	Streptomyces coelicolor A3(2) SCM2.03	Corynebacterium glutamicum bioB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Streptomyces virginiae varS	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
40		db Match	gp:SCM2_3	Sp.BIOB_CORGL b	pir:H70542	sp:YKI4_YEAST			GSP:Y35814 (prf 2512333A S	gp D38505_1 E			sp:HST2_YEAST 8	prf.2316378A F	prf 2316378A F		gp:AB029154_1	gp AB029154_2	gp:CGL251883_2	gp CGL251883_3
		7; D)		 		 			 	1449 prf 2	1245 gp D	306	615	924 sp:H	972 prf.2	900 prf 2	888	513 gp:A	300 gp A	486 gp:C	1710 gp C
45		nal ORF (bp)	.2 429	1005	12 237	339	117	141	12 273		 				 		<u>-</u>		 	 	
		Terminal (nt)	74272	75491	75742	76035	76469	80613	81002	82120	83691	85098	85663	87241	87561	88545	90445	90461	91473	91988	93701
50		Initial (nt)	73844	74490	75506	75697	76353	80753	81274	83568	84935	85403	86277	86318	88532	89444	89558	90973	91174	91503	91992
		SEQ NO		3582	3583	3584	3585	3586	3587	3588	3589	3590	3591	3592	3593	3594	3595	3596	3597	3598	3599
55		SEQ NO.	9.1	82	83	84	85	98	87	98	89	96	91	92	93	94	95	96	97	98	66

hypothetical membrane protein

106

70.8

35.9

Escherichia coli K12 yidH

SP. YIDH_ECOLI

366 315

115943

115578

3621

121

119

pump protein (transport) indole-3-acetyl-Asp hydrolase

513 352

71.4

36.5

Escherichia coli K12 ydaH Enterobacter agglomerans

1614 sp.YDAH_ECOLI 1332 prf 2422424A 699

114083

112470 114147 115262

3617 3618

117

118

114564

:	_							-			1	 -				<u> </u>			1
5 .		Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanimycin resistant protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/P5C dehydrogenase		aryl-alcohol dehydrogenase (NADP+)
15		Matched length (a a)	157 ur	226 UI	205 u	283 u	279 e	-	347 v	1	Ť		481 A		196 a		1297 p		338
20		Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		60.7
		Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2
25	linued)	ene	amicum	amicum	amicum	amicum	acter echA		ciens vlmF			htpG	amn		APE2509	-	um putA		sosporium
30	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		Salmonella typhimurium putA		Phanerochaete chrysosporium aad
35			i ——	2	-		\ <u>\</u>								▼ I				
40		db Match	gp:CGL251883_4	gp CGL251883_	gp.CGL251883_6	gp.CGL251883_7	prf.2318326B	The state of the s	gp:AF148322_1			SP:HTPG_ECOLI	SP. AMN_ECOLI		pir.E72483		sp:PUTA_SALTY		sp. AAD_PHACH
		ORF (hp)	471	678	615	849	777	699	1152	675	2775	1824	1416	579	552	099	3456	114	945
45		Terminal (nt)	94199	94879	95513	96365	96368	98189	97319	100493	98808	101612	104909	105173	105841	106630	110890	111274	112318
50		Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435		105751	106392	107289	1	111161	
		SEQ NO		3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615	3616
55		SEQ.	100	101	102	103	104	105	106	107	108	109	110	Ξ	112	113	=	115	116
							_												

	Identity Similarity Matched Function (%) (aa)		29.5 59.7 258 transcriptional repressor	57.9 78.6 126 methylglyoxalase		70.4 497	30.3 68.3 435 D-arabinitol transporter		64.6 260	45.0 68.1 451 xylulose kinase		100.0 100.0 279 pantoatebeta-alanine ligase	100.0 100.0 271 3-methyl-2-oxobutanoate hydroxymethyltransferase		42.0 67.6 188 DNA-3-methyladenine glycosylase		39.3 69.3 270 esterase		201		21.1 61.2 418 macrolide efflux protein	
Table 1 (continued)	Ide Homologous gene		Agrobacterium tumefaciens 2 accR		Mycobacterium tuberculosis H37Rv Rv1276c	Pseudomonas fluorescens mtlD 4	Klebsiella pneumoniae dalT 3		Escherichia coli K12 gatR	Streptomyces rubiginosus xylB 4		Corynebacterium glutamicum ATCC 13032 panC	Corynebacterium glutamicum ATCC 13032 panB		Arabidopsis thaliana mag		Petroleum degrading bacterium HD-1 hde		Methanosarcina thermophila	Bacillus subtilis W23 xylR	Lactococcus lactis mef214	
******	db Malch		sp:ACCR_AGRTU	pir C70019	sp:YC76_MYCTU	prf 2309180A	prf.2321326A		Sp.GATR_ECOLI			gp:CGPAN_2	gp.CGPAN_1		Sp. 3MG_ARATH		gp.AB029896_1		Sp:CAH METTE	_		
	ORF (bp)	2052	780	390	510	1509	1335	189	837	1419	822	837	813	951	630	654	924	627	558	1143	1272	804
	Terminal (nt)	116548	118810	120410	120413	120951	122507	124030	124966	126350	127992	126353	127 192	128099	129489	130798	130815	132424	132981	132971	ــــــــــــــــــــــــــــــــــــــ	135518
	Initial (nt)	118599		120021		122459			124130				128004	129049		130145	131738	131798		134113		<u> </u>
	SEQ NO.	2622	3623	3624	3625	3626	3627	3628	3629	3630	3631	3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	36.47
	SEQ NO.		$\overline{}$	124		126	127	128	129	130	131	132	133	134	135	136	137	138	130	5 6	141	55

	Function				cellulose synthase	hypothetical membrane protein				chloramphenicol sensitive profein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent helicase		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxorubicin biosynthesis enzyme
[Matched length (aa)				420	593				303	198			361	248	İ		829		188	219	166	217	55	284
	Similarity (%)				51.2	51.8				60.7	59.1			62.3	70.2			643		0.99	60.7	65.1	61.3	727	52 1
	Identity (%)				24.3	25 1	i			34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0
Table 1 (continued)	Homologous gene				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abrB	Escherichia coli K12 yfcA	The second secon		Escherichia coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1J1 nodL	Escherichia coli o373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV
	db Match				pir 139714	sp:+IKR1_YEAST				Sp.RARD_PSEAE	sp YADS_ECOLI			Sp. ABRB_ECOLI	sp:YFCA_ECOLI			sp.HRPB_ECOLI		sp.NODL_RHILV	sp Al.KB_ECOI1	Sp. 3MG1 ECOLI	SP. RHTC ECOLI	sp:YAAA_BACSU	prf. 25 10326B
	ORT (bp)	1941	1539	636	1451	1731	621	1065	756	979	717	333	1659	1137	798	624	405	2388	315	675	069	525	678	291	852
	Terminal (nt)	138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	160013
	Initial (nt)	136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	3659 152410	155613	155853	156821	156848	157614	1		159162
	SEQ NO.	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3650	3659	3660	3661	3662	3663	3664	3665	3666	3667
	SEQ NO.	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	184	1,65	166	167

Table 1 (conlinued)	Terminal ORF db Match (nt)		010	101300		161363 933	1	162965 163603 639		7 10		168595 167837 759 Sp FARR_ECO I Escherichia coli K12 farR 29 8 65 6 238 or fatty acyl-responsive regulator	1012			170933 172444 1512 prf.2204281A Streptomyces coelicolor msdA 61.0 86.1 498 dehydrogenase	33.2 58.2 268	888 SP.IOLE GACO	1728 Spilolu Bacso	954 Sp. MOCC. RHIME RINZOBIAIT HERITAL INDE	Bacillus subtilis Idn of Idno		178285 179658 1374 sp TCMA_STRGA Streptomyces glaucescens tcmA 30.9 61.5 457 tetracenomycin C resistance		179689 180711 1023 Sp. YVAA_BACSU Bacillus subtilis yvaA 31.1 65.5 554 0X100000000000000000000000000000000000	
	-		+							-	_	1				┿	+	-					<u> </u>	+-	-	-
	C (nt)	=		9 160431				-	1	1	3676 1664	3677 16850		3678 1689		3680 1709	!_	3681 1724	3682 1735	3683 1753	3684 1763	3685 1773		3687 1790	+	1
		(DNA) (a a)		169 3669	170 3670		172 3672	173 3673	174 36/4	175 3675	176 36	+		178 36	179 3679	180 36		181 36	182 36	183 36	184 30	185 36	i	187	- i ·	

5	Function		regulatory protein	oxidoreductase	hypothetical protein		cold shock protein			caffeoyl-CoA 3-O-methyltransferase		glucose-resistance amylase regulator regulator			D-xylose proton symporter		transposase (ISCg2)	signal-transducing histidine kinase	glutamine 2-oxoglutarate aminotransferase large subunit	glutamine 2-oxoglutarate aminotransferase small subunit		hypothetical protein	
15	Matched length (a a)	1	\top	:	303	İ	64			134		338			458		401	145	1510	909		496	
20	Similarity (%)			52.5			92.2			58.2		62 1			70.5		100 0	60.7	100 0	93.8		72.8	
	Identity (%)		32.0	24 4	33 7		70.3			306		28.7			36.0		100.0	27.6	6.99	99 4		44.6	
25 (panujucq)	s gene		ılı rebR	234 y4hM			color A3(2)					Yo.			s xylT		jlutamicum	fixL	glutamicum	glutamicum		oerculosis .	
S Table 1 (continued)	Homo'ogous gene		Streptomyces reticuli rebR	Rhizobium sp NGR234 y4hM	Racilius subtitis yfitt		Streptomyces coelicolor A3(2) csp			Stellaria longipes		Bacillus subtilis ccpA			Lactobacillus brevis xylT		Corynebacterium glutarnicum A I CC 13032 tnp	Rhizobium meliloti fixL	Corynebacterium glutamicum gltB	Corynebacterium glutamicum gltD		Mycobacterium tuberculosis H37Rv Rv3698	
35	db Match		gp SRF9798_1	1233 sp V411M RHISN			sp CSP_ARTGO			prf 2113413A		sp.ccPA_BACSU			sp.XYLT_LACBR		gp.AF189147_1	SP. FIXL_RHIME	gp:AB024708_1	gp.AB024708_2		pir.C70793	
	ORF (tp)	384	303	1233	1011	429	201	534	306	414	426	066	402	240	14/3	300	1203	435	4530	1518	240		369
45	Terminal (nl)	181647	181687	184051	185087	185642	186708	187302	187607	188100	188300	188747	190321	190389	190703	192949	194464	194604	199769	201289	201341	201760	205956
50	Intrad (::)	18:264	182679	182819	1840//	185214	186508	186769	187302	18/687			189920	-	192175	193248	193262	195038	195240	199772	201580		205588
	SEQ NO		3691	3692	3653	3654	3692	3696	3697	3698	3699	3700	3701	3702	3703	3704	i	3706		3708	3709		3711
55	SEQ	190	191	192	193	19	195	196	197	198	195	200	201	202	203	204	205	200	207	208	209	210	211

EP 1 108 790 A2

	Function	arabinosyl transferase	alauriusy uminorate	hypothetical membrane protein	acetoacetyl CoA reductase	oxidoreductase				proteophosphogrycan	hypothetical protein		hypothetical protein	rhamnosyl transferase		hypothetical protein	O-antigen export system ATP- binding protein	O-antigen export system permease protein	hypothetical protein	NADPH quinone oxidoreductase
	Matched length (a.a.)	1122	7711	651	223	464				350	124		206	302		214	236	262	416	302
	Similarity (%)	9	/0.6	66.1	56.5	85.1				57.4	83.9		73.8	79.1		55.1	78.4	75.6	63.0	71.5
	Identity (%)	18	39.8	35.0	31.4	0.99				24.3	60.5		43.2	63.6		31.3	47.0	31.3	36.5	41.1
Table 1 (continued)	Homologous gene		Mycobacterium avium embB	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790				Leishmania major ppg1	Mycobacterium tuberculosis H37Rv Rv3789		Mycobacterium tuberculosis	Mycobacterium tuberculosis		Agrobacterium tumefaciens	Yersinia enterocolitica rfbE	Yersinia enterocolitica rfbD	Mycobacterium tubercutosis	Homo sapiens pig3
	db Match		prf.2224383C	pir.D70697	prf. 2504279B	pir. B70697				gp.LMA243459_1	sp.Y0GN_MYCTU		pir: H70666	pir.B70696		gp: AB016260_100	sp.RFBE_YEREN	Sp. RFBD_YEREN	3 pir.F70695	ap AF010309 1
	ORF (bp)	318	3471	1983	759	1464	234	507	453	1002	396	402	633	939	342	597	789	804	1173	954
	Terminal (nt)	206385	203541	207007	209210	209992	211535	212283	212735	213657	214107	214522	215159	215162	216606	216116	217141	217943	220151	220154
	Initial (nt)	206068	┼		209968	211455	211768	211777	212283	212656	213712	214121		216100		216712				
	SEQ	3712	3713	3714	3715	3716	3717	3718	3719	3720	3721	2775	37.22	27.2	37.21	37.25	37.27	3728	3729	
	SEQ NO.		1	7	215	1	217	218	219	200	221	223	223	3 3	1,27	225	7.77	22 A	229	

			T		<u> </u>	۽ ا			sis]	. <u>v</u>	\top				 				:			
5		Function		probable electron fransfer protein	ier protein	of or or or or or or	mclybdopterin glosynulesis protein moeB (sulfurylase)	molybdopterin synthase, large subunit	molybdenum cofactor biosynthesis protein CB	esis protein	molybdopterin co-factor synthesis		hypothetical membrane protein	molybdate-binding periplasmic protein	molybdopterin converting factor	sort protein		hypothetical membrane protein	phate				
10		Ē		probable electro	amino acid carrier protein		mciybdopterin blos moeB (sulfurylase)	molybdopterin subunit	molybdenum o protein CB	co-factor synthesis protein	molybdopterin	protein	hypothetical m	molybdate-bin protein	molybdopterin	matthese transport protein		hypothetical m	histidinol-phosphate aminotransferase				
15		Matched length (a a)		78	475		368	150	158	154		37.7	227	256	96	366	2	121	330				
20		Similarity (%)		51.0	75.8		70.1	753	63.3	84.4		58.6	70.5	0.89	70.8	0	90.00	76.9	65.8				
		identity (%)		35.0	46.7		43.8	44 7	33.5	61.7		34.5	44.1	34.0	37.5		34.3	36.4	37.3			-	
25	ontinued)	s gene		erculosis	_		, PCC 7942	novorans) PCC 7942	novorans		novorans	inovorans	inovorans	berculosis		oralis malK	elicolor A3(2)	ilis hisC				
30	Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv3571	Baciltus subtilis alsT		Synechococcus sp. PCC 7942 moe8	Arthrobacter nicotinovorans	Synechococcus sp PCC 7942	Arthrobacter nicotinovorans	moac	Arthrobacter nicotinovorans rnoeA	Arthrobacter nicotinovorans	Arthrobacter nicotinovorans	Mycobacterium tuberculosis	H37Rv moaD2	Thermococcus litoralis malk	Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hisC				
<i>35</i>		db Match		PIR A70606	sp AI ST_BACSU		gp.SYPCCMOEB_	1	SP:MOCB_SYNP7	orf 2403296C		gp:ANY10817_2	prf.2403296F	nd 2403296E	070046	טויסטיום	prf 2518354A	sp.YPT3_STRCO					
		ORF (bp)	582	297 F	1476			456	471	468	_	1185	723	804		321	912	420	1023	900	3	294	120
45		Terminal (nt)	221131	722207	222210	225244		226312	226760	222218	017/77	227703	228891	220711		230928	230931	231848	232260	0,0,00	234010	234910	235409
50		Initial (nt)	221712	221911	223685	224336	226324	226767	227230	303500	C90/77	228887	229613			230608	231842			:_	233913	235203	235290
		SEO	27.31		3733	27.24	3735	3736	3737	9 0 7	3738	3739	37.40	211	3/41	3742	3743	3744		$\overline{}$	3746	3747	3748
55			(DNA)	$\overline{}$	233	750	23.5	236	237		238	239	240		241	242	243	244	245	3	246	247	248

			_					$\overline{}$					_					_			_			
5		Function	franscript on factor	alcohol dehydrogenase	pulrescine oxidase	magnesium ion transporter		Na/dicarboxylate cotransporter	oxidoreductase	hypothetical protein	nitrogen fixation protein			membrane transport protein	queuine tRNA-ribosyltransferase	hypothetical membrane protein			ABC transporter	glutamyl-tRNA synthetase		Iransposase		
15		Matched length (a a)	252	335	451	444		295	317	160	144			266	400	203			526	316		360		
20		Similarity (%)	57.1	0 99	38 1	68 5		59.6	69.1	73.8	70.1			45.7	68.0	62.1			49.6	63.3		55.0		
		identity (%)	29 4	34 0	215	30 9		33.2	46 1	488	45.1			20.7	41.3	28.1			24.3	34.8		34.2		
25 30	Table 1 (continued)	Homologous gene	Brucella abortus oxyR	Bacillus stearothermophilus USM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		sevis	Mycobacterium tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	ss mobilis	btilis ypdP			Streptomyces glaucescens strW	btilis gltX		Pseudomonas syringae tnpA		
	<u>5</u>	Hor	Brucella at	Bacillus stearol DSM 2334 adh	Micrococcu	Borrelia bu		Xenopus laevis	Mycobacter H37Rv tyrA	Mycobacterium I H37Rv Rv3753c	Bradyrhizo			Mycobacte H37Rv Rv(Zymomonas mobilis	Bacillus subtilis ypdP			Streptomy	Bacillus subtilis gltX		Pseudomo		
35 40		db Match	gp BAU8 286_1	sp AUH2_BACST	SP PUO_MICRU	pri 2305239A		prf 2320140A	pir C70800	pir. B70800	gp RHRNFXP_1			sp:YV34_MYCTU	Sp TGT_ZYMMO	sp.YPDP_BACSU			pir.S65588	sp:SYE_BACSU		gp:PSESTBCBAD_1		
		ORF (bp)	762	1017	80		174		1020	525	417	201	351	2403 8	1263	738	1080	648	1437	879	066	1110	303	138
45		Terminal (nt)	235451	237342	238145	239525	739945	241515	241883	243431	243910	244215	244816	247304	248572	248557	250507	249722	251939	252830	252830	254329	255492	256204
50		Intial (nt)	236212	236326	3751 237345	238176	239772	239986	242902	242910	243494	244015	244466	244902	247310	249294	249428	250369	250503	251952	253819	255438	255794	256067
		SCO No (a a)	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770
55		SEQ NO (DNA)	249	250	251	252		254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270

5	Function	aspartate transaminase		DNA polymerase III holoenzyme tau subunit		hypothetical protein	recombination protein	cobyric acid synthase	UDP-N-acetylmuramyl tripeptide synthetase	DNA polymerase III epsiton chain	hypothetical membrane protein	aspartate kinase alpha chain	1		extracytoplasmic function alternative sigma factor	vegetative catalase			leucine-responsive regulatory protein	branched-chain amino acid transport
15	Matched length (a a)	432		642		101	214	248	444	346	270	421		- Control of the Cont	189	492			143	203
20	Similarity (%)	100.0		53.1		74.3	72.4	61.7	9.09	55.2	100.0	93.8		vomando e	63.5	76.4			72.0	68.0
	Identity (%)	98.6		31.6		41.6	42.5	38.3	31.3	25.7	100.0	99.5			31.2	52.9			37.1	30.5
25 (continued)	Homologous gene	Brevibacterium lactofermentum aspC	40.00	Thermus thermophilus dnaX		is yaaK	is recR	mobilis cobQ	mobilis murC	Mycobacterium tuberculosis H37Rv dnaQ	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum IysC-alpha			Mycobacterium smegmatis sigE	lis katA			Klebsiella pneumoniae Irp	lis 1A1 azIC
Table	Homol	Brevibacteriur aspC		Thermus then		Bacillus subtilis yaaK	Bacillus subtilis recR	Heliobacillus mobilis cobQ	Heliobacilius mobilis murC	Mycobacteriu H37Rv dnaQ	Corynebacter (Brevibacteriu 13032 orfX	Corynebacter lysC-alpha		113	Mycobacteriu	Bacillus subtilis katA			Klebsiella pn	Bacillus subtilis 1A1 azlC
<i>35</i>	db Match	gsp:W69554		gp:AF025391_1		Sp. YAAK_BACSU	SP. RECR_BACSU	prf:2503462B	prf.2503462C	pir:H70794	sp:YLEU_CORGL	sp:AKAB_CORGL			prf.2312309A	SP CATV BACSU		2	sp:LRP_KLEPN	sp AZLC_BACSU
	ORF (bp)	1296 gsp	630	2325 gp	717	309 sp	,	-	1269 prf	1080 pir	gs 798	1263 sp	1053	1434	579 pri		342	291	462 sp	753 sp
45	Terminal (nt)	257894	258529	260875	258596	1	262055	÷	 	264599	268258	270633	269524	273194	273542	275871	276232	275957	276302	277581
50	Initial (nt)	256599	257900	258551	259312	260987	:	. 	264566	265678	269124	269371	270576	271761	274120	274366	275891	276247	276763	276829
	SEQ NO	3771	3772	3773	3774	3775	3776	3777	3778	3779	3780	3781	3782	3783	3784	3785	3786	3787	3788	3789
55	SEQ NO.	177	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289

5	:	Function		atallorea itatory protein	metalion eguate, transferation oump	arsenic oxyanion-riansroccing re-	arsenate reductase				Na+/H+ antiporter or multiple	resistance and princycles	Na+/H+ antiporter	Na+/H+ antiporter or multiple	protein A			transcriptional activator	two-component system sensor	histidine kinase	alkaline phosphatase		phosphoesterase	hypothetical protein	
15	Matched	length (a.a.)		\top	36	341	119					503	119		824			223		521	180		307	149	
00		Similarity (%)			68.9	842	0 89					. 70.4	70.6		64.3			10.4	5	56.8	0.09		54.7	71.8	İ
20		Identity S	1		34.4	522	34.4					32.4	37.0		34.1		-	9	0.85	26.7	28.3		26.1	37.6	
25 (panujuno) 1 e1451		Homologous gene			p. As4 arsR		sp. As4 arsB	xylosus arsC				OF4 mrpD	Surpers muhC	Staphylococcus aureus	, ОҒ4 mıрA			utrophie CH34	Alcaligenes editopilas correctors	Mycobacterium tuberculosis	nute 1 actococcus lactis MG1363 apl		ilic vkuF	ilis vqeY	
30 g	lane	Homolog			Sinorhizobium sp. As4 arsR		Sinorhizobium sp. As4 arsB	Staphylococcus xylosus arsC				Bacillus firmus OF4 mrpD		Staphylococcu	Bacillus firmus OF4 mrpA				Alcaligenes c czcR	Mycobacteriu	I actococcus		Public cuttilis vkuf	Bacillus subtilis yqeY	מכווומ
<i>3</i> 5		db Match			1.	gp:AF1/8/30_1	gp. AF 178758_2	SP. ARSC_STAXY				qp;AF097740_4		prf.2504285D	gp:AF097740_1				sp:CZCR_ALCEU	nrt 2214304B	V	Sp.APL CACCA		pir.B69865	Sp. YQEY BACSU
40		ORI' (bp)	100	25.7		345 gp	1080 96	387 St	318	270	453	1530		381	2886	1485	603	864	999	1467	0,1	603	261	915	153
45		Terminal O	<u> </u>	- 	+	278388	279893	280279	┼╌	280670	280949	281404		282937	283317	287857	287059	287966	289131	777000	289777		291273		293991
		Initial T	<u> </u>	-+	278301	278732	278814	279893	<u> </u>	+-	!- -		556707	283317	286202	286373	287661	288829	289796	,	291243	291815	291833	<u>, </u>	293539
50		<u> </u>			3791 2	3792 2	3793 2			3/93/2			96.75	3799		1086					3805	3806	3807	3808	3809
		1	DNA) (a	290 3	291 3	292 3	 	<u> </u>			207		798 788	299	T	100	200	303	304	5	305	306	307	308	309

	Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein	A Process	long-chain-raty-acidCoA ligase	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein		hydrolase			cAMP receptor protein		ultraviolet N-glycosylase/AP lyase	cytochrome c biogenesis protein
	Matched length (a a)	782	71		50	149	440		534	127	251	254	394	153		272			207		240	211
	Similarity (%)	177	63.4		96.0	89.9	689		59.9	65.4	72.5	52.0	66.5	72.6		72.4			65.7		77.1	58.3
	Identity (%)	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	+-		41.2	_		30.9		57.5	34.6
Table 1 (continued)	Homologous gene	Mycobacterium leprae pon1	Streptomyces coelicolor A3(2) whiB		Streptomyces coelicolor A3(2) SCI 117.10c	Mycobacterium tuberculosis H37Rv Rv3678c	Escherichia coli K12 shiA		Bacillus subtilis IcfA	Streptomyces coelicolor A3(2) SCJ4,28c	Bacillus subtilis fabG	Emorinalia nidulans flug	April thatian add	Alabloopsis tilaitain ala	Rhizobium leguminosarum ilouiv	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
*****	db Match	prf.2209359A	pir:S20912		gp:SCH17_10	pir:G70790	SP. SHIA_ECOLI		sp.LCFA_BACSU	gp:SCJ4_28	sp:FABG_BACSU		Sp. FLUG EMEIN	pri.2512380A	Sp:NODN_RHILV	pir:F70790			prf. 2323349A		Sp.UVEN MICLU	pir.B70790
	ORF (bp)	2385	339	192	153	459	1353	609	1536	525	933	1	947	1194	471	843	1173	705	681	192	780	558
	Terminal (nt)	294004	297402	297622	297783	298250	298332	300695	299726	301512	303099		304074	305263	305758	306700	305195	307504	306782	307727	308734	309302
	Initial (nt)	296388	297064	297431	297631	297792	299684	300087	301261	302036	302167		303133	304070	305288	305858	306367	_		307918		
	SEQ	3810		2812		3814	3815	3816	38.17	3818	2819	3	3820	3821	3822	3823	3824	3875	3826	3827	3828	3829
		(DNA)			313	314	315	·			3.50	6	320	321	322	323	324	325	326	22.	326	329

5
10
15
20
25
30
35
40
45
50

	Function	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical protein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical pròtein				ATP-dependent RNA helicase	cold shock protein		DNA topoisomerase I	
	Matched length (a.a.)	192	396	280	156	287	349	319		262	201	59				764	67		977	
	Similarity (%)	56.3	71.0	52.1	9'22	65.5	60.2	66.5		63.7	64.2	84.8				66.1	1.88		81.6	
	Identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	
Table 1 (continued)	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis 1137Rv Rv3671c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis S155 csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
	db Match	sp:YEAB_ECOLI	pir:H70789	prf:2411250A	pir:F70789	pir S72914	pir.E70788	pir:C44020		pir.C70788	pir:870788	pir:A70788				sp:YPRA_BACSU	sp:CSP_ARTGO		pir:G70563	
	ORF (bp)	699	1191	993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	711
	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
	fnitial (nt)	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318696	318958	318991	321690	322007	322216	322910	325904
	SEQ NO (a.a.)	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	3848
	SEQ NO. (DNA)	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

. 10		Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent formaldehyde dehydrogenase		metallo-beta-lactamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,6-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthetase	UDP-sugar hydrolase	
15		Matched length (a a)	263	423		144	172	314	558	101	362		160	251	415	320	108	230		260	586	
20		Similarity (%)	62.4	52.7		59.0	63.4	65.0	60.2	61.4	86.5		47.5	55.8	56.4	66.3	88.9	66.5		57.3	54.4	
		Identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	66.6		32.5	25.9	26.3	33.8	59.3	33.9		25.8	26.1	
25 G	mininea)	gene	sca E17R20	\ \ \ \ \		licum uu033	durans	2 rluC	rni D1 bgxA	se salB	hanoica		propolis orf5	12 fabG	ifaciens vlmF	acbB	oerculosis	nnaschii JAL-		12 yefJ	urium ushA	
30 Special results of the Property of the Prop	anne l'an	Homologous gene	Stigmatella aurantiaca E17R20 cvaB	Bacillus subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysantherni D1 bgxA	Azosnirillum irakense salB	Amycolatopsis methano ica		Rhodococcus erythropolis orf5	Escherichia coli K12 fabG	Streptomyces viridifaciens vlmF	Actinoplanes sp. a	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Escherichia coli K12 yefJ	Salmonella typhimurium ushA	
40		db Match	sp:CYAB_STIAU	15		gp AE002103_3	gp: AE001882_8	sp:RLUC_ECOLI	Sp. BGLX ERWCH	2 0000000000000000000000000000000000000	Sp.FADH_AMYME		NSCHA SHIV.43	sp:FABG_ECOLI	qp:AF148322 1	prf.2512357B	pir:A70562	sp:YC22_METJA		Sp.YEFJ ECULI	SP USHA_SALTY	
		ORF (bp)	1041	1257	162	444	561	882	1644	_	1104	621	527	699	1230	933	375	759	1029	1035	2082	162
45		Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	20000	334953	335185	200.000	337449	338768	339725	340195	340569	342375	343451	345717	345814
50		Initial (nt)	327735	328283	129748	329933	330973	331552	132010	335313	332965	200366	333000	336781	117530			341327	341347			345975
		SEO	3849	3850	3851	3852	3853	3854	3000	2022	3856	0	2000	3859	386.1	3862	3863	3864	3865	2866	3867	3868
55		SEO NO	349	350	25.1	355	353	354	2,0	CCC	356		328	359	196	5 5	363	364	365	96	367	368

5		Function	luforite description of the	NADr-dependent arconol	glucose-1-phosphale thymidylyltransferase	dTDP-4-keto-L-thamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		Linesthotical membrane oroifein	nypomencal memoral process	metallopeptidase	prolyl endopeptidase		hypothetical meminante profession	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphalase		capsular polysaccharide	DIOSymmesus OB: 3	, sied drivoid objects	Ipopolysaccharde blosymmesis / aminofransferase
15) hodele	Matched length (a.a.)		343	285	192	343	206	325			423	461	708		258	363	453	102		613	S	26	394
20		Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5			68 3	62.5	56.4		46 0	9.92	57.2	68.6		65.7	2.5	0.16	68.3
		Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2			37.4	34.1	28.4		26.0	1,50.7	28.5	39.2		23.0	3	91.0	37.1
25	ntinued)			rculosis	M32 rfbA	ins rmlC	ans XC rmlB	HB8 nox	reus sirA		osombeie	eicolosis	color	sulala		icolor A3(2)	CC 6872	sonii ptk	Sonii ptp		Caro Manual	adas isi spair		uni wlaK
30	Table 1 (continued)	Homologous gene	•	Mycobacterium tuberculosis H37Rv adhC	Saimonella anatum M32 rfbA	Strentococcus mutans rmIC	Streptococcus mutans XC mlB	Thermis aquaticus HB8 nox	Staphylococcus aureus sirA			Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A 19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium	Acinetobacter johnsonii ptk	Acinetohacter johnsonii ptp			Stapnylococcus aureus in cape	Vibrio cholerae	Campylobacter jejuni wlaK
35 –		-			İ	\top	MI		-					1								D&AU	X	
40	ì	db Match		Sp:ADH_MYCTU	Sp. RFBA_SALAN	A C0107 G	Spinorage		sp NOA_11116	pi).201020104		sp:Y17M_MYCTU	gp:SC5F2A_19	prf.2502226A		an SCF43 2	gsp W56155	nrf 2404346B	3404040	pri 2404340A		sp.CAPD_STAAU	PRF.2109288X	
		ORF (bp)	351	1 0	855		1309	_	3/8	2 2	038	1308	1380	2118	573	1 -		1434		-+	984	1812	942	1155
45		Terminal (nt)	346110	346961	348098		348952	350513	3513/0	353637	353/49	354599	355849	357237	159762	260814	362057	365757	303531	365852	366838	368643	367701	369801
50		Initial (nt)	346460	348019	348952		350310	351443	351948	352693	354387	355906	357228	150154	260224	10000	361151	100000	303824	365250	365855	366832	168642	
		SEO	2060					3873	3874	3875	3876	3877	38.78	2070		2000	3881	2002	3883	3884	3885	3886	2007	3888
55			(NAV)	1	1	6	372	373	374	375	376	377	378	0.5		280	287	705	383	384	385	386	700	388

5	Function	pilin glycosylation protein	capsular polysaccharide biosynthesis	lipopolysaccharide biosyrthesis / export protein	UDP-N-acetylglucosamine 1- carboxyvny transferase	UDP-N. acetylenolpyruvoyiglucosamine reductase	sugar transferase	transposase		transposase (Insertion sequence IS31831)		hypothetical protein	acetyltransferase	hypothetical protein B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferase	
15	Matched length (a.a.)	196	380	504	427	273	356	53		70		404	354	65	388			243	221	
20	Similarity (%)	75.0	69.2	8.69	646	68.5	57.3	79.3		943		57.4	60.2	53.0	89.7			0.59	62.0	
	Identity (%)	546	33.4	34.3	31.4	34.8	32 0	60 4		757		28.0	34.5	44.0	63.7			32.1	33.0	
25 - 30 Table 1 (continued)	Homologous gene	Neisseria meningitidis pglB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	Bacıllus subtilis murß	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterum glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas acruginosa PAO1 psbC	Corynebacterium glutamicum	Escherichia coli ugd			Escherichia coli wbnA	Escherichia coli 0157 wbhl I	
40	db Match	gp.AF014804_1	sp.CAPM_STAAU	pir.S67859	Sp MURA_ENTCL	sp.MURB_BACSU	gp VCLPSS_9	prf 2211295A		pii S43613		pir.G70539	gsp [.] W37352	PIR: \$60890	sp:UDG8_ECOLI			gp:AF172324_3	gp. AB000676_13	
	ORF (bp)	612	1161	1491	1314	1005	1035	150	135	327	276	1170	993	231	1161	273	1209	822	645	195
45	Terminal (nt)	370405	371773	373419	374813	375837	376876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	307200	38/463
50	Initial (nt)	369794	370613	371929	373500	374833	375842	377683	378093	378185	378562	379837	380842	381265	381948	383768	385190	386195	386556	387657
	SEQ NO (a.a.)	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903	3904	3905	3906	3907
55	SEQ NO. DNA)	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403		405	_	407

transporter

499

74.6

36.1

Streptomyces fradiae T#2717 urdJ

1647 gp.AF164961_8

402796

401150

3926

426

401253 204

3925 401050

5		Function	dihydrolipoamide dehydrogenase	UTP-glucose-1-phosphate uridylyltransferase	regulatory protein	transcriptional regulator	cytochrome b subunit	succinate dehydrogenase Ilavoprotein	succinate dehydrogenase subunit B						hypothetical protein	hypothetical protein			tetracenomycin C transcription repressor
15	Matched	length (a.a.)	469	295	153	477	230	608	258				-		259	431			197
. 20	:	Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8
		Identity (%)	93.6	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4
30	(collinaco)	Homologous gene	Corynebacterium glutamicum ATCC 13032 lpd	campestris	Pseudomonas aeruginosa PAO1 ortX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10.12c	is sdhA	Paenibacillus macerans sdhB						coelicolor	oli K12 yjiN			glaucescens
35	labic	Homol	Corynebacterium ATCC 13032 lpd	Xanthomonas campestris	Pseudomonas orfX	Mycobacterium t H37Rv Rv0465c	Streptomyces SCM10.12c	Bacillus subtilis sdhA	Paenibacillus					-	Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA 0 tcmR
40	1	db Match	gp.CGLPD_1	pir:JC4985	gp:PAU49666_2	pir.E70828	gp.SCM10_12	pir.A27763	gp.BMSDHCAB_4						gp:SCC78_5	sp:YJIN_ECOLI			sp:TCMR_STRGA
		ORF (bp)	1407	921	498	1422	177	1875	837	336	261	630	96	339	975	1251	420	303	678
45		Terminal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150
50		Initial (nt)	387692	389248	390233	392208	392705	393639	395426	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473
	0.50		3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924
55	0	NO (DNA)	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424

5
10
15
20
25
30
35
40
45
50

5		Function	Iransporter	formyltetrahydrofolate deformylase	deoxyribose-phosphate aldolase			hypothetical protein	hypothetical protein		cation-transporting P-type ATPase B		glucan 1,4-alpha-glucosidase	hemin-binding penplasmic protein	ABC transporter	ABC transporter ATP-binding protein	hypothelical protein	hypothetical protein			
15		Matched Iength (a.a.)	508	286	208			280	92		748		979	348	330	254	366	258			
20		Similarity (%)	746	72.7	740			53.6	85.9		75.3		56.1	83 6	90.3	85.0	56.4	61.6			
		Identity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			
25 . · · 30	Table 1 (continued)	Homologous gene	Streptomyces fradiae T#2717 urdJ	Corynebacterium sp. P-1 purU	Bacillus subtifis deoC			Mycobacterium avium GIR 10 mav346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprac ctpB		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtheriae hmu I	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A 17c			
40		db Match	gp AF164961_8	sp.PURU_CORSP	sp DEOC_BACSU			prf:2413441K	pir A70907		SP.CTPB_MYCLE		sp:AMYH_YEAST	gp:AF109162_1	gp:AF109162_2	gp.AF109162_3	gp.SCC75A_17	gp:SCC75A_17			
		ORF (bp)	1632	912	_	150	897	867	300	909	2265	450	1863	1077	1068	813	957	837	810	813	501
45		Terminal (nt)	404430	404508	406145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	419257
50		Initial (nt)	402799	405419	405480	406310	406417	406550	407708	408546	409975	410476	410683	412557	413643	414714	415643	416603	418354	419253	419757
		SEQ NO (a a)	3927	3928		3930	3931	3932	3933	3934	3935	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945
55	:	SEQ NO (DNA)	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445

5	Function	UDP-N-acetylpyruvoylglucosamıne reductase				long-chain-fatty-acidCoA ligase	transferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
15	Matched length (a a)	356 UD				558 ton	416 tra	246 pho	417 two	231 hwg		921 AB	269 cyt	306 ex	302 hуј	269 pyr	394 me	55 hyp	
20	Similarity N	58.4				68 1	58.7	84.2	748	6 06	_	2.09	6.99	578	57.3	100.0	52.0	94.6	
	Identity (%)	30.1				35.5	33.9	707	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
55 - S - S - S - S - S - S - S - S - S -	ans gene	RDD012 murB				J. J. J. J. J. J. J. J. J. J. J. J. J. J	elicolor	elicolor A3(2)	ovis senX3	ovis BCG		elicolor A3(2)	uberculosis	ruginosa ppx	rberculosis	glutamicum C	us 1 ORF71	sprae	
Table 1	Homologous gene	Escherichia colı RDD012 murB				Bacillus sublihs IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium tovis sen X3	Mycobacterium bovis BCG regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae B2168_C1_172	
35	atch	1									-						-		
40	db Match	gp ECOMURBA_1				sp:LCFA_BACSU	gp SC2G5_6	sp:PMGY_STRCO	prf 2404434A	prf 2404434B		gp SCE25_30	sp:YV21_MYCTU	prf.2512277A	sp:YV23_MYCTU	sp.PROC_CORGL	gp D88733	pir S72921	
	ORF (bp)	1101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	810	1122	198	219
45	Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
50	Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434010	434886	434986	435940	436321
	SEQ NO (a.a.)	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963
55	SEQ NO.	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461.	462	463

5
10
15
20
25
30
35
40
45
50

	Function	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyi-tRNA reductase	hydroxymethylbilane synthase		cat operon transcriptional regulator	shikimate transport protein	3-dehydroshikimate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein	•	periplasmic-iron-binding protein	uroporphyrin-III C-methyltransferase	THE SECOND PROPERTY OF THE PRO
	Matched length (aa)	29		-	. 586	74		455	308		321	417	309	282		363		578	•	347	486	
	Similarity (%)	100 0			77.4	66.2		74.3	75.3		57.6	72.2	57.9	98.6		68.6		55.2		59.9	71.6	
	Identity (%)	89.7			510	40.5		44.4	50.7		. 27.1	35.5	28.2	98.2		34.7		25.1	;	25.1	46.5	
Table 1 (continued)	Homologous gene	Streptomyces coelicolor SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catM	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 polG		Serratia marcescens sfuB		Brachyspira hyodysenteriae bitA	Mycobacterium leprae cysG	
	db Match	gp:SCE68_25			pir.S72914	sp:YV35_MYCTU		sp.HEM1_MYCLE	pir.S72887		sp.CATM_ACICA	sp:SHIA_ECOLI	sp.3SHD_NEUCR	gp:AF124518_2		sp:POTG_ECOLI		sp:SFUB_SERMA		gp.SHU75349_1	pir:S72909	
	ORF (bp)	66	192	618	1065	246	258	1389	906.	372	882	1401	1854	849	273	1050	615	1644	1113	1059	1770	426
	Terminal (nt)	436561	436764	437850	436980	438424	438037	439904	440814	441591	441601	444158	446038	447386	447398	448130	449100	449183	451961	450837	454430	454875
	Initial (nt)	436463	436573	437233	438044	438179	438294	438516	439909	441220	442482	442758	444185	446538	447670	449179	449714	450826	450849	451895	452661	454450
	SEQ NO	3964	3965	3966	3967	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983	3984
	SEQ NO (DNA)	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484

		1			- 1	ı,	∽ I	1	i	- 1										_	
5		Function	ıc acid				r-type ATPase	decarboxylase	1X oxidase	Idehyde 2,1-	mitaso	25000	biogenesis	rane protein	nesis profein		ator		ressor	ane protein	hthoate
10		ra L	delta-ammolevulinic acid	uenyuratase		in the second se	caron-right pointing P-type ATPase B	uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1-	phosphoniverate mutas a	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator		Zivou iranspon repressor	hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
15		Matched length	337			858	i 	364	464	475	161		245	533	338		144	8	Ţ	82 h	301
20		Similarity (%)	83 1			56.5		767	59.9	83.5	52.7	71.2	85.3	76.0	77.8		69.4	72.2	1	78.1	61.5
		Identity (%)	8 09			27.4		55.0	280	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1	; i	39.0	33.6
25	tinued)	êne ene	lor A3(2)			ctoB		or A3(2)		heml.	ршв	ulosis	losis	llosis	losis		losis	zntR		losis	nA
	Table 1 (continued)	Homologous gene	Streptomyces coelicator A3(2) hemB			Mycobacterium leprae ctp8		Streptomyces coelicolor A3(2) hernE	Bacillus subtilis hemY	Mycobacterium leprae heml.	Escherichia co i K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tubercutosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
35		<u> </u>		<u> </u> 	 	1			+			ΣI	ΣÏ	ΣÏ		1	ŽΪ	155		ŞÏ	
40	!	db Match	sp HEMZ_STRCO	: -	:	SP CIPB MYCLE		sp DCUP_STRCO	sp PPOX BACSU	SP.GSA_WYCLE	SP. PWG2 ECOLI	pir A70545	pir:B70545	pir.C70545	pir D70545		pir.G70790	prf:2420312A		pir F70545	SP MENA_ECOL!
	<u>+</u>	ORF (ba)	1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	1011	801	471	357	300	333	894
45		Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465107	465909	467571	468658	470170	470654	470657	471121	471847	471915
50		In tial (nt)		456016	456641	457357	459425		461112	462557	463867	464482	465118	465949	46764B	469370	470184	471013	471420	471515	472808
	-	NO (8 8)	3985	3986	398/	3988	3989	3950	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
55	100	NO (DNA)	485	486	487	488	489	490	191	492	493	494	495	496	497	498	499		501	502	503

							•															
5		Function	glycosyl transferase	maionyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyde dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein	nicotronical profein	nypometical protein	2 mone 4 & dicarboxvlic acid	E-pylone-t, orders			low-affinity inorganic phosphate	transporter		the state contract		peptidase E	pterin-4a-carbinolamine dehydratase	muconate cycloisomerase
15		Matched length (a.a.)	-	421 m	139 h	520 k	303	293		94	\top	è				410		666	i	202	77	335
20	,	Similarity (%)	626	51.5	65.5	76.0	75.6	66.2		64.9	7	54.7				83.2			80/	82.7	68.8	7.97
•		Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9		33.0		28.1				0.09	1		48.5	57.9	37.7	54.0
25	linued)	ene	gB	9	. iii	2	КВСВН	IsR	Culocie	CUIOSIS		B126 fldB			-	rculosis			8	urans	5 phhB	erculosis IC
30 .	Table 1 (continued)	Homologous gene	Bacteroides fragilis wcgB	Bhizohium frifolii matB	Eccherichia coli K12 voiF	Pseudomonas putida	Pseudomonas putida KDGDH	Dacillus subtilis 168 alsR	adulius subrina duba	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. LB126 fldB				Mycobacterium tuberculosis H37Rv pitA	:		Bacillus subtilis menB	Deinococcus radiodurans DR 1070	Aquifex aeolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
40		db Match	ď) -	1	sp.YdJF_ECOLI	- I I I I I I I		\dashv	pir:B70547		gp:SSP277295_9				pir D70547			sp:MENB_BACSU	gp:AE001957_12	nir C70304	pir.D70548
		ORF			_+	411 Sp.			879 sp.	315 pir.	444	750 gp	417	378	261	1275 pir	222	306	957 sp	603 9	300	1 4
45 .		Terminal O	1	Ť	+	-			478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	720507	
50		_	- 	- ;	-+			477995	478970	479303	480154	480201	480624	181001	481391	482668	483587	483942	485062	485384		485001
		SEQ.				- :		4008	4009	4010	4011	<u> </u>		4014	4015		4017	4018				4021
		0.0		504	505		507	508	509	510	511	512	513	514	515	516	517	518	510	52	2 1	522

Second S			-,													
Continued Cont		Function	koglufarate decarboxylase and 2 cinyl-6-hydroxy-2,4-lohexadiene-1-carboxylate	othetical membrane protein	ia-D-mannose-alpha(1- nosphatidyl myo-inositol	rine/D-alanine/glycine	uinone/menaquinone	ynthesis methyltransferase	oreductase	aprenyl diphosphate synthase	otein translocase SecE subunit	criptional antiterminator protein	ibosomal protein L11	ibosomal protein L.1	atory protein	nobulyrate aminotransferase
SEC Initial Terminal ORF 400 Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	15	PR C		dy	alp fo(b)	D-se tran	pign	Sola	oxid d	hept	prep	trans	50S	508	regul	4-ami
S	.5	Matche	909	148	408	447	237		412	316	=======================================	318	145	236	564	443
SEC Initial Terminal ORF db Match Homologous gene A A A A A A A A A	20	Similarity (%)	54.0	64.9	54.2	89.9	66.7		7.92	67.1	100.0	100.0	100 0	100.0	50.2	82.4
SEC Initial Terminal ORF db Match Homologous gene A A A A A A A A A		Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	0 001	0.001	0.00	23.1	30.5
OSEQ Initial Terminal ORF db Match DR (int) (i		(b)		10				1	-	-		1	 	 		-
SEQ Initial Terminal ORF db Match A023 487028 488656 1629 sp. MEND_BACSU A024 488660 489100 441 pir.G70548 A025 489209 490447 1239 pir.H70548 A026 490880 490447 1239 pir.H70548 A027 491966 492855 690 sp.UBIE_ECOLI A028 492915 492855 690 sp.UBIE_ECOLI A028 492915 492845 1272 pir.D70549 A029 493916 492845 1272 pir.D70549 A031 496810 497142 333 gp.AF130462_2 A032 497374 498327 954 gp.AF130462_5 A033 498598 499032 435 gp.AF130462_5 A034 A99162 499925 1512 gp.SC5H4_2 A036 S01577 502920 1344 sp.GABI_MYCTU A036 S01577 502920 1344 sp.GABI_MYCTU A037 A038 S01577 502920 1344 sp.GABI_MYCTU A038 S01577 S02920 1344 sp.GABI_MYCTU A039 S01577 S02920 1344 sp.GABI_MYCTU A039 S01577 S02920 1344 sp.GABI_MYCTU A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030 A030	·	Homologous gene	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis	Bacillus stearothermophilus	Corynebacterium glutamicun VTCC 13032 secE	Sorynebacterium glutamicun NTCC 13032 nusG	Corynebacterium glutamicun TCC 13032 rpIK	orynebacterium glutamicum TCC 13032 rpIA	freptomyces coelicator C5H4.02	ycobacterium tuberculosis 37Rv RV2589 gabT
SEG Initial Terminal ORF SEG Initial Terminal ORF NO				pir.G70548	pir:H70548	sp:CYCA_ECOLI							4	5:		
SEC Initial (nt) NO (nt) NO (nt) NO (nt) NO (nt) A 023 487028 4 4024 488660 4 4025 489209 5 4025 490580 7 4027 491966 7 4027 491966 8 4029 493916 4 4030 494061 4 4031 496810 4 4032 497374 4 4035 501436 4 4036 501577 5 6		0 =	1629	441	1239	1359	069	699		1050	333					4
SEO NO NO NO NO NO A 4024 4 4024 4 4025 5 4025 5 4026 6 4026 7 4027 4 4030 4 4030 4 4034 4 4035 5 4036 5 4036 6 4036 6 4036 7 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 4036 8 5 4036 8 5 4036 8 5 4036 8 5 4036 8 6 4036 8 6 4036 8 6 4036 8 6 4036 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	45	Terminal (nt)	488656	489100	490447	491938	492655	493583	492645	495110	497142	498327	499032	499869		
SEO NO NO NO NO NO NO NO NO NO NO NO NO NO	50						491966	492915	493916	494061	496810	497374	498598	499162	501436	501577
0 0 5 6 4 8 8 5 8 6			4023	4024	4025	4026	4027	4028	4029	4030	4031	4032		4034	4035	
	55	SEQ NO (DNA)	523	524	525	526	527	528	529	530	531	532				

													 -			
Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12.		hypothetical membrane protein	DNA-directed RNA polymerase beta chain	DNA-directed RNA polymerase heta chain	hypothetical protein		DNA-binding protein	hypothetical protein
Matched length (a.a.)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	88 7	52.0		63.8	57.7
Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H3/Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv .N0166c		Streptomyces coelicolor A3(2) SCJ9A. 15c	Mycobacterium tuberculosis H37Rv RV2908C
db Match	sp.GABD_ECOLI	GP.ABCARRA_2	sp:TYRP_ECOLI	sp.CTPG_MYCTU	sp P49_STRLI		sp RL10_STRGR	sp RL7_MYCTU		pir A70962	sp:RPOB_MYCTU	sp:RPOC_MYCTU	GP.AF121004_1		gp:SCJ9A_15	sp.YT08_MYCTU
ORF (bp)	1359	468	1191	1950	1413	603	513	384	138	972	3495	3999	582	180	780	798
Terminal (nt)	504283	503272	505569	507647	509081	969609	510510	510974	510989	512507	516407	520492	518696	520850	521644	521679
Initial (nt)	502925	503739	504379	505698	507669	509094	866609	510591	511126	511536	512913	516494	519277	520671	520865	522476
SEQ NO (a.a.)	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	404B	4049	4050	4051	4052
SEQ NO (DNA)	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (aa)	SEQ Initial NO (nt) Terminal (bp) Ab Malch (a.a.) Homologous gene (%) Identity (%) Similarity length (matched (%)) Matched (%) 40.37 502925 504283 1359 sp.GABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ initial (nt) Terminal (hp) ORF (bp) db Malch Homologous gene (%) Identity (%) Similarity (%) Matched (%) 40.3 (a.a.) (nt) (nt) (hp) (hp)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO (nt) Initial (nt) Terminal (nt) ORF (bp) db Match db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matc	SEQ Initial No. Terminal (nt) (nt) (nt) (nt)	SEQ NO (aa.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (9%) Identity (9%) Similarity (9%) Similarity (9%) Matched (9%) Matched (9%)	SEQ NO NO A036 Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 4037 502925 504283 1359 sp.GABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 4036 503739 503272 468 GP.ABCARRA_2 Azospirillum brasilense carR 37.0 38.0 150 4039 504379 505569 1191 sp.TYRP_ECOLI Escherichia coli K12 0341#7 25.5 49.9 447 4040 50569 507647 1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 615 4041 507669 509081 1413 sp P49_STRLI Streptomyces lividans P49 40.2 66.2 468 4042 509094 509696 603 mod Anale Anale	SEQ NOTE Initial (nt) Terminal (nt) ORF (nt) db Match (pp) Homologous gene (%) Identity (%) Similarity (ng) (ng) Matched (ng) (aa.) (nt) (nt) <td>SEG NO. Initial (m) Terminal (bp) ORF (m) db Malch (pp) Homologous gene (%) Identity (%) Imilarity (m) (m) Matched (m) 40.37 50.2925 504283 1359 sp.GABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 40.38 50.3739 503272 468 GP.ABCARRA_2 Azospirillum brasilense carR 37.0 38.0 150 40.39 504379 505569 1191 sp.TYRP_ECOLI Escherichia coli K12 o341#7 25.5 49.9 447 40.40 505698 507647 1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 615 40.41 507669 509081 1413 sp.P49_STRLI Streptomyces lividans P49 40.2 66.2 468 40.42 509098 510510 513 sp.R10_STRLI Streptomyces griseus N2.3-11 52.9 84.7 170 40.45 511126 510989 138 sp.R17_MYCTU Mycobacterium tuberculosis 72.3 89.2 130</td> <td>SEC NO. Initial (In) Terminal (In) ORF (ID) db Malch (ID) Homologous gene (Ps) Identity (Ps) Smilarity (Ps) Matched (Ps) Matched (</td> <td>SEC (nt) Initial (nt) Terminal (nt) ORF (nt) db Match (nt) Homologous gene (vg) Identity (vg) Similarity (ng) Matched (vg) 4037 502925 504283 1359 sp.GABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 4036 503739 503272 468 GP.ABCARRA_2 Azospirillum brasilense carR 32.0 38.0 150 4036 504379 505569 1141 sp.TYRP_ECOLI Escherichia coli K12 o341#7 25.5 49.9 447 4040 505699 507647 1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 61.5 4041 507699 509081 1413 sp.Pt4_STRLI Streptomyces tividans P49 40.2 66.2 468 4041 507699 509081 1413 sp.Rt.I.O_STRCIR Streptomyces tividans P49 40.2 66.2 468 4044 510599 510510 13.8 Rt.I.O_MYCTU Mycobacterium tuberculosis 75.4 90.4 1180</td> <td>SEC Initial Initial (int) Terminal (int) ORF (int) db Match (ipp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 4037 502925 504283 1359 sp.CABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 4039 503739 503272 468 GP.ABCARRA_2 Azospirilum brasilense carR 37.0 38.0 150 4040 505698 507647 1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 615 4041 507669 509081 1413 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 615 4041 507669 509081 1413 sp.PA9_STRU Streptomyces lividans P49 40.2 66.2 468 4042 509094 509696 603 mycDA9_STRU Streptomyces griscus N2-3-11 52.9 84.7 170 4043 511276 513 sp.RL7_MYCTU Mycobacterium tuberculosis 75.4 90.4 1180 <td< td=""><td>SEC NO Initial (III) Terminal (III) ORF (III) db Match (III) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 4037 502925 504283 1359 sp.GABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 4038 503272 468 GP ABCARRA_2 Azospirilum biasilense carR 37.0 38.0 150 4039 504379 505569 1191 sp.TYRP_ECOLI Escherichia coli K12 0341#/ VyrP 25.5 49.9 447 4040 505698 507647 1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 61.5 4041 507669 509094 505696 60.3 Arti_O_STRGR Streptomyces gireus N2-3-11 52.9 84.7 170 4044 510591 510510 51.3 sp.R.I_O_MYCTU Mycobacterium tuberculosis 75.4 90.4 1180 4046 511536 512507 97.2 pir A70962 Mycobacterium tuberculosis 75.4 90.4 1180</td></td<></td>	SEG NO. Initial (m) Terminal (bp) ORF (m) db Malch (pp) Homologous gene (%) Identity (%) Imilarity (m) (m) Matched (m) 40.37 50.2925 504283 1359 sp.GABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 40.38 50.3739 503272 468 GP.ABCARRA_2 Azospirillum brasilense carR 37.0 38.0 150 40.39 504379 505569 1191 sp.TYRP_ECOLI Escherichia coli K12 o341#7 25.5 49.9 447 40.40 505698 507647 1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 615 40.41 507669 509081 1413 sp.P49_STRLI Streptomyces lividans P49 40.2 66.2 468 40.42 509098 510510 513 sp.R10_STRLI Streptomyces griseus N2.3-11 52.9 84.7 170 40.45 511126 510989 138 sp.R17_MYCTU Mycobacterium tuberculosis 72.3 89.2 130	SEC NO. Initial (In) Terminal (In) ORF (ID) db Malch (ID) Homologous gene (Ps) Identity (Ps) Smilarity (Ps) Matched (Ps) Matched (SEC (nt) Initial (nt) Terminal (nt) ORF (nt) db Match (nt) Homologous gene (vg) Identity (vg) Similarity (ng) Matched (vg) 4037 502925 504283 1359 sp.GABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 4036 503739 503272 468 GP.ABCARRA_2 Azospirillum brasilense carR 32.0 38.0 150 4036 504379 505569 1141 sp.TYRP_ECOLI Escherichia coli K12 o341#7 25.5 49.9 447 4040 505699 507647 1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 61.5 4041 507699 509081 1413 sp.Pt4_STRLI Streptomyces tividans P49 40.2 66.2 468 4041 507699 509081 1413 sp.Rt.I.O_STRCIR Streptomyces tividans P49 40.2 66.2 468 4044 510599 510510 13.8 Rt.I.O_MYCTU Mycobacterium tuberculosis 75.4 90.4 1180	SEC Initial Initial (int) Terminal (int) ORF (int) db Match (ipp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 4037 502925 504283 1359 sp.CABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 4039 503739 503272 468 GP.ABCARRA_2 Azospirilum brasilense carR 37.0 38.0 150 4040 505698 507647 1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 615 4041 507669 509081 1413 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 615 4041 507669 509081 1413 sp.PA9_STRU Streptomyces lividans P49 40.2 66.2 468 4042 509094 509696 603 mycDA9_STRU Streptomyces griscus N2-3-11 52.9 84.7 170 4043 511276 513 sp.RL7_MYCTU Mycobacterium tuberculosis 75.4 90.4 1180 <td< td=""><td>SEC NO Initial (III) Terminal (III) ORF (III) db Match (III) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 4037 502925 504283 1359 sp.GABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 4038 503272 468 GP ABCARRA_2 Azospirilum biasilense carR 37.0 38.0 150 4039 504379 505569 1191 sp.TYRP_ECOLI Escherichia coli K12 0341#/ VyrP 25.5 49.9 447 4040 505698 507647 1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 61.5 4041 507669 509094 505696 60.3 Arti_O_STRGR Streptomyces gireus N2-3-11 52.9 84.7 170 4044 510591 510510 51.3 sp.R.I_O_MYCTU Mycobacterium tuberculosis 75.4 90.4 1180 4046 511536 512507 97.2 pir A70962 Mycobacterium tuberculosis 75.4 90.4 1180</td></td<>	SEC NO Initial (III) Terminal (III) ORF (III) db Match (III) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 4037 502925 504283 1359 sp.GABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 4038 503272 468 GP ABCARRA_2 Azospirilum biasilense carR 37.0 38.0 150 4039 504379 505569 1191 sp.TYRP_ECOLI Escherichia coli K12 0341#/ VyrP 25.5 49.9 447 4040 505698 507647 1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 61.5 4041 507669 509094 505696 60.3 Arti_O_STRGR Streptomyces gireus N2-3-11 52.9 84.7 170 4044 510591 510510 51.3 sp.R.I_O_MYCTU Mycobacterium tuberculosis 75.4 90.4 1180 4046 511536 512507 97.2 pir A70962 Mycobacterium tuberculosis 75.4 90.4 1180

5	Function	30S ribosomal protein S12	30S ribosomal protein S7	factor G						ferric enterobactin transport ATP- binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA:acetate coenzyme A transferase	30S ribosomal protein S10	50Si ribosomal protein L3		5φS' ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	30S ribosomal protein S19	
		30S ribosc	30S riboso	elongation factor			lipoprotein			ferric enterobac binding protein	ferric ente	ferric ente	butyryl-CoA transferase	30S riboso	50S ribosc		50S' ribosc	50S riboso		50S ribosc	30S riboso	
15	Matched Icngth (a.a.)	121	154	709			44			258	329	335	145	101	212		212	96		280	. 92	
20	Similarity (%)	97.5	94.8	88.9			78.0			83.7	77.8	9.08	79.3	0.66	93.6		90.1	9.06		92.9	98.9	
	Identity (%)	90.9	81.8	71.7			56.0			56.2	45.6	48.1	56.6	84.2	66.5		71.2	74.0		80.7	87.0	
25 Table 1 (continued)	lomologous gene	Mycobacterium intracellulare psl.	ı smegmatis	teus fusA			homatis			li K12 fepC	li K12 fepG	li K12 fepD	bacterium olyticum actA	osea ATCC	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rpID	Mycobacterium bovis BCG rpfW		Mycobacterium bovis BCG rplB	tuberculosis s rpsS	
apple Table	Homolo	Mycobacterium rpsL	Mycobacterium LR222 rpsG	Micrococcus luteus fusA			Chiamydia trachomatis			Escherichia coli K12 fepC	Escherichia coli K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium		Mycobacterium	Mycobacterium		Mycobacterium	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
40	db Match	sp:RS12_MYCIT	sp.RS7_MYCSM	sp:EFG_MICLU			GSP:Y37841			sp:FEPC_ECOLI	sp:FEPG_ECOLI	Sp. FEPD_ECOLI	gp:CTACTAGEN_1	sp:RS10_PLARO	sp:RL3_MYCBO		Sp.RL4_MYCBO	sp:RL23_MYCBO		sp:RL2_MYCLE	sp:RS19_MYCTU	
	ORF (bp)	366	465	2115	2160	144	228	153	729	792	1035	1035	516	303	654	687	654	303	327	840	276	285
45	Terminal (nt)	523059	523533	526010	523911	526013	526894	527607	528768	528779	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
50	Initial (nt)	522694	523069	523896	526070	526156	527121	527759	528040	529570	530626	531782	532008	533099	533437	534087	534090	534746	535072	535076	535935	536183
	SEQ NO (a.a)	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062	4063	4064	4065	4066	4067	4068	4069	4070	4071	4072	4073
55	SEQ NO. (DNA)	553	554	555	556	557	558	559	260	561	295	563	564	265	999	267	568	569	570	571	572	573

							 -																	
5		Function	50S ribosomal protein 1 22		oos ilbosoinal protein S3	SUS fibosomal protein L16	ous ribosomal protein L29	30S ribosomal protein S17			50S ribosomal protein L14	50S ribosomal protein (24		50S ribosomal protein L5		2,5-diketo-D-gluconic acid reductase	formate dehydronomona	molybdopterin-guanine dinucleotide	formate dehydrogenase H or alpha			ABC transporter A FD hinding protein	lilanoid Binania	
15	:		508	300		200	u sne	30S ri	_	1	50S rit	50S rib		50S rib		2,5-dik	formate	molybd	formate	chain		ABC tra		
	Matched		109	220	137	2 5	6 6	87			122	105		183		260	298	99	756			624		
20		Similarity (%)	91.7	912	88.2	200	3 8	0.89			95.1	91.4	000	92.3		74.7	59.7	68.1	53.4			52.6		
		(%)	74.3	77.4	69 3	65.7	3 8	03.0			83.6	76.2	13.6	13.0	5	36.3	28.9	37.2	24.3	+		26.9	-	
25	(mined)	ene	ulosis	BCG rpsC	acG roll	acG romc) Carrier	000			losis	losis					dhb	. A3(2)		-		osis	-	
30 - alder Cooring (1997) 1 alder Cooring (19	lane (coll	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rply	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rolP	Mycobacterium bovis BCG rnmC	Mycobacterium boxis BCG reco				Mycobacterium tuberculosis 137Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 relX	Micrococcus luteus rate	Id spain spain	Corvnehacterium sn	de la la la la la la la la la la la la la	Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdfF			Mycobacterium tuberculosis H37Rv Rv1281c onnD		
40		db Match	Sp.RL22_MYCTU	SP.RS3_MYCBO N	Sp.RL16_MYCBO N	SP:RL29 MYCBO N	SP. RS17 MYCBO N	-			Sp:RL14_MYCTU H	Sp.RL24_MYCTU H	Sp.RL5 MICLU M	T	SP.2DKG CORSP	+-	SP: FDHD WOLSU W	gp.SCGD3_29 St	SP.FDHF_ECOLI ES	!		sp:YC81_MYCTU My		
	ORF	(dq)	360	744	414	228	276	294	318	969	366	312	573	1032	807	492	915	336		756	804	1662 s	1146	1074
45	Terminal	(ut)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550699	551854
50		(nt)	536217		537328	537744	537977	538267	538698	539413	539741	540112	540426	541048	542896	543412	544329	544670	546889	547329	548990	550651	551844	552927
	SEO		4074	4075	4076	4077	4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093 (4094	4095
55	SEO	(DNA)	574	575	929	577	578	579	580	581	582	583	584	585	586	587	588	589	290	591 4	592.	593	594 4	595 4

5	Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal protein L6	50S ribosomal protein 1.18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or belaine aldehyde dehydrogenase	Aure a les es de des deux		reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoenolpyruvate synthetase	phosphoenolpyruvate synthetase	cytochrome P450
15	Matched length (a.a.)	405	150	132	179	110	171	55	143		128		125	487	***************************************		409	107	257	50	629	378	422
20	Similarity (%)	50.4	66.7	7.76	87.7	90.9	88.3	76 4	87.4		68.8		52.0	71.5	-		71.6	66.4	70.8	26 0	45.0	2 99	65.2
	Identity (%)	24.7	42.7	75.8	59.2	67.3	67.8	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	38.6	34 8
25 (penui	ene	s AF1398	ans			띰	SE	pmJ	Olo		lor msdA		se carR	hrous			dA2	tus fdxE	cymB	APE0029	Vc1 DSM	Vc1 DSM	polis thcB
S S Table 1 (continued)	Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rplO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Rhodocaccus erythropolis thcB
				İ		5		_					-2						7.				
40	db Match	pir E69424	gp:AE001931_13	pir: S29885	pir.S29886	Sp:RL18_MICLU	sp.RS5_MICLU	sp.Rl.30_ECOLI	Sp. RL15_MICLU		prf:2204281A		GP:ABCARRA_2	prf.2516398E			prf.2411257B	prf.2313248B	gp:PPU24215_	PIR:H72754	pir.JC4175	pir.JC4176	prf 2104333G
	ORF (bp)	1182	468	396	534	402	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	1290
45	Terminal (nt)	55294B	 	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	565680	566799
50	Initial (nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588	558517	558969	529805	560634	561368	562632	562633		<u> </u>	1		566759	568088
	SEO	4006	4097	4098	4099	4100	4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
		505 506	· †	598	\top			1	7	1-	:	909		809	609	610	611	612	$\overline{}$	$\overline{}$	1	616	617

	Function	transcriptional repressor	Adenylate kinase		methionine ammopeptidase		translation initiation factor IF-1	S Glodon James 13	305 ribosomal protein 3.5	30S ribosomal protein S11	30S ribosomal protein S4	and a subunit	KNA polymerase arbita see		50S ribosomal protein L17	pseudouridylate synthase A	membrane protein	nypomenea memora di			hypothelical profein	cell elongation protein	cyclopropane fatty acyl-phospholipid	Symmetric	hypothetical membrane process
	Matched length (a a)	256	100	104	253		22		122	134	.32		131		122	265	-	98)		!	485	505	423		100
	Similanty 7 (%)	- 66.0		0.18	747		86.0	i	910	93 3	93.9		77.8		77.1	61.1		51.2		:	53.8	50.9	56.0		59.0
	identity (%)	28.5	1	48.9	43.1		- 27.0		66 4	813	8.0 B	20	51.1		516	37.0		24.8	-	-	27.4	22.8	30.7	3	28.0
Table 1 (continued)	Homologous gene	Erwinia carotovora	kdgR	Micrococcus luteus adk		Hacillus subtilis 100 map	V 3 1 1 1 1 1 1 1 1 1 1	Bacillus subtilis IIIIA	Thermus thermophilus PB8	Streptomyces coel color A3(2) SC6G4 26 195K	Mycobacterum tuberculosis	H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Escherichia coll N12 'pra	Escherichia coli N IZ (195	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidonsis thaliana CV DIM		Escherichia coli K12 cia	Streptomyces coelicolor A3(2) SCL2.30c
	db Match	1	prf 2512309A	Sp. KAD_MICLU		SP. AMPM_BACSU		pir.F69644	pr.2505353B	Sp.RS11_STRCD	- :	prf 221128/F	SPON BACSU			Sp RL17 ECOLI	sp. TRUA_ECOLI	pir.G70695			pir.A70836	DIAGA MAG		sp.CFA_ECOLI	gp:SCL2_30
	ORF	 -	804	543	612		828	216	306	402		603	1014		95	8	1967	2397	456	33	i -		1545	1353	426
	ja j	(11:)	568272	571316	570756	572267	573176	573622	574181	574588		575217	678361	1	575211	576998	577923	580429	580436	580919	582562		584228	585520	586248
	-	(IIII)	569075	570774	!	571476	572349	573407	573816	570187		574615	00000	5/5330	575366	576410	577057	578033	580891	581221		_	582684	584268	585823
	SEO	(99)	4118			4121	4122	<u> </u>			-71 +	4126		412/	4128	4129	4130	4131	4132	4122	5 5	5	4135	4136	4137
	SEO	. 5	618	-i	1	621	622	1			679	626	3	623	628	629	630	631	617		653	60	635	636	637

Γ		_			T	T	T	1		1		T	T	_		$\overline{}$		T				
	Function	high-alkaline serine proteinase		hypothetical memorane protein	hypothetical membrane protein					hypothetical protein	early secretory antigen rarger con-	50S ribosomal protein L13	30S ribosomal protein S9		phosphoglucosamine mutase		hypothetical protein			hypothetical protein	alanine racemase	hypothetical protein
	Matched length (a.a.)	273		516	1260					103	80	145	181		450		318			259	368	154
	Similarity (%)	58.0		50.6	38.4					6.69	81.3	82 1	72.4		76.4		45.6	1		72.2	68.5	78.6
	Identity (%)	313		24.0	65.0					31.1	36.3	58.6	49.2		48.9		29.3			44.0	41.6	48.7
Table 1 (continued)	Homologous gene	Desition alcoholine	Bacillus alcalopillus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c					Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2)	24.51.5000	Staphylococcus aureus femR315		Synechacystis sp. PCC6803 slr1753			Mycobacterium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Mycobacterium tuberculosis H37Rv Rv3422c
	db Match		sp.ELYA_BACAO	pir:T10930	pir.E70977					pir.C70977	prf:2111376A	sp.RL13_STRCO	Sp. RS9 STRCO		prf:2320260A		pir.S75138	-		pir: S73000	Sp.ALR_MYCTU	sp:Y097_MYCTU
	ORF (bb)		1359 8	1371	3567	822	66.3	3	8	324	288	441	546		1341	303	1509	573	234	855	1083	495
	Terminal	Ť	586399	587645	592862	589590	80000	203030	593761	594258	594580	595379	595927		597449	598194	599702	598778	599932	600022	602053	602574
	Initial	(1111)	587757	589015	589296	590411	00000	290200	592862	593935	594293	594939	505382		596109	597892		599350	599699		600971	602080
	SEQ.		4138	'	4140	141	_	4142	4143	4144	4145	4146	7,47	-	4148	4149	4150	4151	4152	4153	4154	4155
	S S	5	638	629	640	_†_	1	642	643	644	645	646	647	/ 1,0	648	649	020	651	652	653	654	655

ORF	db Match	Table 1 (continued) Homologous gene	Identity (%)	Similarity (%)	Matched length	Function
db Match	1	Homologous gene	(%)	(%)	(a.a.)	
1599 sp.YIDE_ECOL	_	Escherichia coli K12 yidE	28.9	66.2	550	hypothetical membrane protein
1239 gp PSJ00161_1	-	Propionibacterium shermanii pip	51.3	77.6	411	proline iminopeptidase
sp:Y098_MYCTU)TU	Mycobacterium tuberculosis 1137Rv Rv3421c	52.2	75.4	207	hypothetical protein
sp RIMI_ECOLI	_ ا ا	Escherichia coli K12 riml	30.3	59.9	132	ribosomal-protein-alanine N- acetyttransferase
1032 sp GCP_PASHA	 	Pasteurella haemolytica SEROTYPE A1 gcp	46.1	75.2	319	O-sialoglycoprotein endopeptidase
1722 sp Y115_MYCTU	2.	Mycobacterium tuberculosis H37Rv Rv3433c	38.4	59.4	571	hypothetical protein
429						
453						
sp:CH10_MYCTU	T	Mycobacterium tuberculosis H37Rv RV3418C mopB	76.0	94.0	100	heat shock protein groES
1614 sp CH61_MYCLE	빌	Mycobacterium leprae R229_C3_248 groE1	63.3	85.1	537	heat shock protein groEL
255 GP.MSGTCWPA_1	PA_1	Mycobacterium tuberculosis	50.0	56.0	76	hypothetical protein
1158 GP:MSGTCWPA_3	/PA_3	Mycobacterium tuberculosis	34.0	45.0	138	hypothetical protein
297 gp.AF073300_1	-,	Mycobacterium smegmatis whiB3	64.9	88.3	94	regulatory protein
564 sp.Y09F_MYCTU	J.	Mycobacterium tuberculosis H37Rv Rv3414c sigD	55.2	81.6	1/4	RNA polymerase sigma factor
1026						
378 Sp Y09H_MYCLE	CLE	Mycobacterium leprae B1620_F3_131	41.4	8.69	116	hypothetical protein
518 gp:AB003154_1		Corynebacterium ammoniagenes ATCC 6872 guaB	80.8	93.9	504	IMP dehydrogenase
627 PIR.F71456		Durocaccije horikoshii PH0308	39.0	53.0	146	hypothetical protein

r				ī	ī								-	- 1	1			- 1	—т	_
	Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical membrane protein	two-component system sensor ristidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
	Matched length (aa)	381	274	262	517			- <u>i</u>	513	411	218				201	563		275	288	
Ì	Simitarity (%)	86.1	67.5	58.4	92.8				396	48.7	65 1				64.2	64.1		62.9	58.3	
	Identity (%)	70.9	38.0	29.0	81.6				20 5	268	33.5				30.9	37.5		33.8	27.8	
Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium armmoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelico or A3(2) SC6E10 15c	Bacıllus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
	db Match	gp:AB003154_2	Sp. YBIF_ECOLI	prf 1516239A	sp.GUAA_CORAM	-			gp.SCD63_22	gp SC6E10_15	sp.DEGU_BAC\$U				pir B70975	pir.A70975		gp:SC5B8_20	gp.AE001935_7	
	ORF (bp)	1122	921	606	1569	663	441	189	1176	1140	069	324	489	963	825	1590	099	861	861	330
	Terminal (nt)	618094	618093	619994	621572	620264	622157	622457	622460	624939	625674	926000	626070	626577	628551	630140	630151	631809	631824	632690
	Initial (nt)	616973	619013	619086	620004	620926	621717	62229	623635	623800	624985	625677	626558	627539	627727	628551	630810	630949	632684	633079
	SEQ NO.	4174	4175	4176	4177	4178	4179	4180	4181	4102	4183	4184	4185	4186	4187	4188	4189	4190	4191	4192
	SEQ NO.		675	;	119	678	679	989	681	682	683	684	685	989	687	588	689	069	691	692

	Function	hypothetical membrane protein	phytoene desaturase	phytocne synthase	transmcmbrane transport protein	geranylgeranyl pyrophosphate (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein	UNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipoprotein	DNA polymerase III	hypothetical protein
	Matched length (aa)	95	524	288	722	367	188	145	462	497	205	897	223		206		346	268	1101	159
	Similarity (%)	67 4	76.2	712	75.6	638	68 1	62.1	74.2	63.2	53.7	54.9	722		75.2		75 4	67.2	57.5	62.3
	Identity (%)	368	50 4	420	486	32 7	38.3	33.1	48.7	40.0	25.9	24.3	35.4	:	35.9		43.6	28.7	30.2	41.5
Table 1 (continued)	Hamalagous gene	Mycobacterium mar num	Brevibacterium linens ATCC 9175 citl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A 29c	Brevibacterium linens crtE	Brevibacterium linens	Citrobacter freundii olc OS60 blc	Brevibacterium Inens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Helicobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coclicolor A3(2) SCE126.11
:	cb Match	gp MMU92075 3	gp AF139916_3	gp AF139916_2	gp SCF43A_29	gp AF139916_11	gp AF139916_14	Sp. BLC_CITFR	gp AF139916_1	gp AF139916_5	gp AF155804_7	gp SCE25_30	prf 2420410P		prf.2320284D		sp ABC_ECOLI	sp HLPA_HAEIN	prt 2517386A	gp:SCE126_11
	03F (bp)	396	1644	912	2190	1146	585	648	1425	1404	753	2415	717	153	999	846	1080	897	3012	447
	Terminal (nt)	633079	633532	635178	636389	638317	640208	640232	642557	642556	644778	645176	647593	648315	648440	650187	649114	650392	654612	655122
	Iritia (nt)	633474	635.75	636089	638278	639462	639624	640879	641133	643959	644026	647590	648309	648467	649105	649342	650193	651288	651601	654676
	SEQ NO (a a)	4193	4194	4195	4196	4197	4198	4199	1200	4201	4202	4203	4204	4205	4206	4207	4208	4209	4210	4211
	SEQ NO (DNA)	693	. 964	695	969	/69	698	669	700	701	702	/03	704	705	902	707	708	709	710	711

	Function	hypothetical membrane protein		transcriptional repressor	hypothetical protein		transcriptional regulator (Sir2 family)	hypothetical protein	iron-regulated lipoprotein precursor	rRNA methylase	methylenetetrahydrofolate dehydrogenase	hypothetical membrane protein	hypothetical protein		homoserine O-acetyltransferase	O-acelylhomoserine sulfhydrylase	carbon starvation protein		hypothetical protein	
	Matched length (aa)	468		203	264		245	157	357	151	278	80	489		379	429	069		20	
	Similarity (%)	26.0		764	617		718	78.3	62.2	86.1	87.4	76.3	63.2		99.5	76.2	78.4		0.99	
	Identity (%)	26.1		503	34.9		42.5	45.2	31.1	62.9	70.9	31.3	34.0		99.5	49.7	53.9		40.0	
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCE9 01		Mycobacterium tuberculosis H37Rv Rv2788 sırR	Streptomyces coclicolor A3(2) SCG8A.05c		Archaeoglobus fulgidus AF1676	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3366 spoU	Mycobacterium tuberculosis H37Rv Rv3356c foID	Mycobacterium leprae MLCB1779, 16c	Streptomyces caelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	Leptospira meyeri metY	Escherichia coli K12 ustA		Escherichia coli K12 yjiX	
	db Match	gp:SCE9_1		pir.C70884	gp:SCG8A_5		pir.C69459	gp:SC5H1_34	gp:CDU02617_1	pir.E70971	pir.C70970	gp:MLCB1779_8	gp SC66T3_18		gp:AF052652_1	prf.2317335A	sp:CSTA_ECOLI	-	sp:YJ'X_ECOLI	
	ORF (bp)	1413	738	699	798	138	774	492	966	471	852	255	1380	696	1131	1311	2202	609	201	609
	Terminal (nt)	656534	655097	657215	657205	658142	658928	659424	660538	660650	662017	662374	662382	664126	665183	666460	670465	669445	670672	671045
	Initial (nt)	655122	655834	656547	658002	658005	658155	658933	659543	661120	661166	662120	663761	665088	666313	022299	668264	670053	670472	671653
	SEQ NO (a a.)	4212	4213	4214	4215	4216	4217	4218	4219	4220	4221	4222	4223	4224	4225	4226	4227	4228	4229	4230
	SEQ NO (DNA)	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730

5	Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrate synthase		hypothetical prolein		L-malate dehydrogenase	regulatory protein		vibriobactın utilization protein	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chloramphenicol resistance protein	catabolite repression control protein	hypothetical protein	
15	Matched length (aa)	317	281,	380		53		338	226		284	569	339	330	356	395	303	219	
20	Similarity (%)	86.4	76.2	81.3		623		5'29	62.8		54.2	85.1	86.4	88.2	82.3	9.69	58.1	85.8	
	tdentity (%)	71.0	41.6	56.1		34.0		37.6	26.1		25.4	55.4	56.3	63.0	53.1	32.2	30.4	56.2	
Table 1 (confinued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 607 gllA	-	Escherichia coli K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxuR		Vibrio cholerae OGAWA 395 viuB	Corynebacterium diphtheriae irp1D	Corynebacterium diphtheriae irp1C	Corynebacterium diphtheriae irp1B	Corynebacterium diphtheriae irp1	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus influenzae Rd HI 1240	
40	db Match	pir C73539	prf. 1902224A	sp:CISY_MYCSM		Sp:YNEC_ECOLI		Sp.MDH_METFE	prf.2514353L		sp.VIUB_VIBCH	gp:AF176902_3	gp:AF176902_2	gp:AF176902_1	gp:CDU02617_1	prf.2202262A	prf:2222220B	sp:YICS_HAEIN	
	ORF (bp)	954	912	1149	930	192	672	1041	720	702	897	807	1059	966	1050	1272	912	657	195
45	Terminal (nt)	672653	673576	674756	672710	674799	675846	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	688335
50	Initial (nt)	671700	672665	673608	673639	674990	675175	676122	676937	677748	681027	681846	682904	683866	684925	685109	586435	687351	688141
	SEQ NO.	·	4232	4233	4234	4235	4236	4237	4238	4239	4240	4241	4242	4243	4244	4245	4246	4247	4248
55	SEQ NO (DNA)	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748

5	Function		fertichrome ABC transporter	hemin permease	tryptophanyl-tRNA synthetase	hypothetical protein		penicillin-binding protein 6B precursor	hypothetical protein	hypothetical protein			uracil phosphoribosyltransferase	bacterial regulatory protein, lacl family	N-acyl-L-amino acid amidohydrolase or peptidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
15	Matched length (aa)	-	244	346	331	278		301	417	323			209	77	385	561	468	1140	263	127
20	Similarity (%)		738	69.1	79.8	72.3		57.5	70.7	52.6			72.3	66 2	80.5	8 8 8	65.0	100.0	60.1	6.99
	Identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4	 		46.4	41.6	51.4	22.1	31.6	100.0	26.2	30.7
ntinued)	gene		ohtheriae	a hemU	trpS	- 1		ium LT2	rculosis	olor A3(2)			dd	olor A3(2)	rculosis A	ER manB	nii ATCC	tamicum	culosis	olor A3(2)
& Sale 1 (continued)	Homologous gene		Corynebaclerium diphtheriae	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia co'i K12 yhjD	!	Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10 08c			Lactococcus lactis upp	Streptomyces coelicolor A3(2) SC1A2.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces caelicalor A3(2) SCF11.30
40	db Match		22_3		OLI	Sp YHJD_ECOLI		SP DACD_SALTY	pir.F73842	gp.SC6G10_8			sp.UPP_LACLA	gp.SC1A2_11 S	pir H70841	Sp. MANB_MYCPI N	sp:DLDH_HALVO	prf.2415454A s	sp YD24_MYCTU	gp:SCF11_30
	ORF (bp)	975	7.80	1017	1035	1083	903	1137	1227	858	195	351	633	384	1182	1725	1407	3420	870	486
45	Terminal (nt)	9.6889	689317	90/069	692916	694110	695074	695077	696769	698065	699266	698922	699913	700381	703262	700384	704811	708630	709708	710278
50	Initial (nt)	C68689			691882	693028	694172	696213	697995	698922	699072	699272	699281	866669	702081	702108	703405	705211	708839	709793
	SEQ NO (8 a)	4249	4250	4251	4252	4253	4254	4255	4256	4257	4258	4259	4260	4261	4262	4263	4264	4265	4266	4267
55	SEQ NO (DNA)	/49	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767

_						_	 -			-	- -	i	-1					- 1	 i
	Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	detergent sensitivily rescuer or carboxyl transferase	detergent sensitivity rescuer or carboxyl transferase
	Matched length (a.a.)	381	305	521	278	96	383		456			225	352	133	718	192	63	537	543
	Similarity (%)	69.0	59.3	49.5	74.5	47.0	78.9		72.6			100.0	79.8	76.7	63.4	66.2	8.69	100.0	100.0
	Identity (%)	44.6	24.6	24 0	42.5	39.0	54.6		408			100.0	61.1	51.1	. 35.1	31.8	33.3	966	9.66
Table 1 (continued)	Homologous gene	Bacillus subtilis 168 yciC	Bacillus subtilis IS58 trxB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gltA		Mycobacterium tuberculosis H37Rv Rv1129c	and the same of th		Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium glutamicum AJ11060 dtsR1
	db Match	pir.B69760	SP. TRXB BACSU	sp.PRPD_SAL1Y	prf. 1902224A	PIR:E72779	sp.CISY_MYCSM		pir B70539			sp.THTR_CORGL	gp:CJ11168X1_62	gp:MLCB4_16	pir.G70539	Sp.YCEF_ECOLI	prf.2323363CF	gp:AB018531_2	pir.JC4991
	ORF (bp)	1086	924	1494	888	378	1182	375	1323	246	1359	903	1065	414	2148	591	246	1611	1629
	Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
	Initial (nt)	711605	711724	712738	714258	714757	715102	716660	718009	718105	718658	721449	721777	723338	723412	726462	726715	728352	730324
	SEQ NO.	4268	4269	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
	SEQ NO.		1		177	772	773	774	775	776	777	778	779		781	782	783	784	785

	Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5'-phosphoribosyl-5-amino-4- imidasol carboxylase	K+-uptake protein			5-phosphoribosyl-5-amino-4- imidasol carboxylase	hypothetical protein	hypothetical protein		nitrilotriacetate monooxygenase	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical membrane protein		hypothetical protein	hypothetical protein	
-	Matched length (a.a.)	293	165	394	628			147	152	255	667	426	303	256	96	1	175	142	
	Similarity (%)	61.8	58.8	838	73.6			93.2	60.5	207	0.0	73.0	52.5	64.8	68.8		66.3	76.8	
	Identity (%)	28.7	23.0	0.69	41.1			85.7	. 36.2	9	47.B	43.2	23.4	31.3	29.2		28.6	35.9	
Table 1 (continued)	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872 purk	Escherichia coli K12 kup			Corynebacterium ammoniagenes ATCC 6872	Asing common a refine III	Streptomyres coelicolor A3(2)	SCF43A.36	Chelatobacter heintzii ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga maritima MSB8 TM1408		Bacillus subtilis 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
	db Match	sp.BIRA_ECOLI	pir G70979	sp:PURK_CORAM	Sp.KLP_ECOLI			sp PUR6_CORAM	2 02000	gp:APU33038_3	gp.SCF43A_36	Sp. NTAA_CHEHE	oir A69426		pir.A72258		Sp. YW.IB_BACSU		
	ORF		486	1161	1872	615	357	495		453	792	1314	1500	789	369	342	i	420	222
	Terminal	731299	731797	733017	734943	733183	735340	735896		736351	737204	737216	738673	740228	741765	742195	+		742831
	Initial	730436	731312	731857	733072	733797	734984	735402		735899	736413	738529			741397	741854			743052
	SEO NO.	(a.a.)	4287	4288	4289	4290	4291	4292	i	4293	4294	4295	900	4297	4298	4200	1300	4301	4302
	SEQ	-1	787		780	707	20.	792		793	794	795		797	1		667	80 108	802

- 15

5		Function	trehalose/mattose-binding protein	trehalose/maltose-binding protein		trabalose/maltoso-binding protein		ABC transporter ATP-hinding protein	(ABC-type sugar transport protein) or cellobiosc/maltose transport		926				hypothetical protein	hypothetical protein	DNA helicase II	· · · · · · · · · · · · · · · · · · ·				RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
15		Matched length (a.a.)	271	306		744	7		332		4703	20/-			240	720	701					2033	869	873
20		Similarity (%)	75.3	703	2	1.53	92.4		73.9		9	8.8			59.2	62.5	41.1					45.8	53.2	48.6
		Identity (%)	42.4	27.2	5.15	0.00	30.9		57.2			75.1			31.7	30.0	20.7					22.4	24.4	23 1
25	ontinued)	gene	alis malG	11	alls mair		alis malE		uli msiK		durans R1				oerculosis	J99 jhp0462	12 uvrD					licolor	NRC-1 H1130	12 hepA
30	Table 1 (continued)	Homologous gene	Thermococcus litoralis malG		Thermococcus litoralis mair		Thermococcus litoralis male		Streptomyces reticuli msiK		Deinococcus radiodurans R1	DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Escherichia coli K12 uvrD					Streptomyces caelicolor SCH5.13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
35			<u> </u> -	=	F	-	FI	_	<u> </u>	-		0 0			21							0, 0,		
40		db Match	75300000	pri z4uosasa	pri.2406355B		prf.2406355A		prf 2308356A			pir B75633			pir.E70978	pir C71929	sp UVRD_ECOLI					pir.T36671	pir.T08313	sp HEPA_ECOLI
		ORF (bp)		-	1032	408	1272	423	966	360	500	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
45		Terminal		743067	743900	745046	745622	748442	747031	740014	40014	748886	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
50		Initial		743900	744931	745513	746893	748020	748026	24044	748440	753685	757063	757395	758262	760796			762730	762977	768191		774142	
		SEO	(a a)	4303	4304	4305	4306	4307			4309	4310	4311	4312	4313	4244	4315	4316	4317	4318	4319	4320	4321	4322
55		SEO		803	904	805	908	i	1		809	810	R11	612	813	1	212	816	817	818	819	820	821	822

														,				_	
5		on	į	JAc- enol, a-3-L- se	ite				Se	-	ite isomerase			ive protein	The state of the s	cysteine			
10		Function	hypothetical protein	dTDP-Rha:a-D-GICNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase	mannose-1-phosphate guanylyltransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase			pheromone-responsive pratein		S-adenosyl-L-homocysteine hydrolase			thymidylate kinase
15		Matched length (a.a.)	527	289	353	94	139	136	460	327	420			180		476			209
20		Similarity (%)	71.4	9.77	6 99	81.9	74.8	713	66.3	56.3	66.2			57.8		83.0			56.0
		Identity (%)	45.5	56.4	29 8	734	48.9	51.5	38.0	31.2	36.9			35.6		29.0			25.8
25	inued)	ene	ulosis	natis	isiae	natis	ulosis	or A3(2)	o M40	ulosis	JanA			plasmid		. WAA38			IS VC-16
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3267	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae YDL055C MPG1	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis H37Rv Rv3256c	Escherichia coli K12 manA			Enterococcus faecalis pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
35			2 _	2 5		2 5	21	0) 0)		2 4			-	ша					
40		db Match	pir.D70978	gp:AF187550_1	sp:MPG1_YEAST	gp AF164439_1	pir.B70847	gp.SCE34_11	SP MANB_SALMO	pir.B70594	sp:MANA_ECOLI			prf. 1804279K		Sp.SAHH_TRIVA			Sp.KTHY_ARCFU
		ORF (bp)	1554	897	1044	408	456	390	1374	1005	1182	150	360	564	351	1422	708	720	609
45		Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
50		Initial (nt)	778711	779014	780128	781468	782617	782712	783184	784635	785643	786896	787624	787733	788196	788672	789426	789721	790096
		SEQ NO.	4323	4324	4325	4326	4327	4328	4329	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
55		SEQ NO (DNA)	823	824	825	826	827	828	829	830	831	832	833	834	835		837	838	839

	Function	two-component system response	regulator	two-component system sensor	histidine kinase	lipoprolein	rypothetical protein		20S ribosomal protein of chloropiast	preprotein translocase SecA subunit		hypothetical protein	hypothetical protein	5-enoloyruvylshikimate 3-phosphate	synthase	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein		RNA polymerase sigma factor
Matched	length (aa)	224			484	595	213		203	845	- !	170	322		461	180	23	380	1	188
	Similarity (%)	906	3		78.9	656	728		- 616 4-	9 66		788	82.9		0.66	63.9	100.0	42.4	1	87.2
	Identity (%)	737	5		53.1	29.6	38.0		34 5	99 1		47.1	64.6		0.66	38.3	100.0	216		61.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	H37Rv Rv3246c mtrA		Mycobacterium tubercurosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis H37Rv Rv3244c IpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterium flavum (Corynebacterium glutamicum) MJ-233 secA		Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv3228	Corynebacterium glutamicum ASO 19 aroA	Mycobacterium tuberculosis H37Rv Rv3226c	Corynebacterium glutamicum	Mycobacterium tuberculosis	H37Rv Rv0336	Mycobacterium tuberculosis
	db Match		pri 2214304A		prf 2214304B	pır F70592	pır D70592	<u> </u>	sp RR30_SPIOL	gsp.R74093		pir.A70591		pli.r./ussu	gp:AF114233_1	pir D70590	GP-AF114233_1	_	pir:G/0506	ort 2515333D
	ORF (bp)	-	678	684	1497	1704	588	156	603	2535	673	504	1 00	987	1413	480	123		1110	618
	Terminal (nt)		791409	790738	793008	794711	795301	795292	796110	798784	100001	800200		800208	801190	803128			803131	805025
	Initial	())	790732	791421	791512	793008	794714	205447	795448	796250		799697		801194	802602	802649			804240	007700
	SEQ.	(0 0)	4340	4341	4342	4343		1	4346	4347		4348		4350	4351	4352	4253	455	4354	
	SEO S	DNA)	B40 /	841	1	843		\neg	845		!	848	3	850	851	857	953	922	854	

											·		ī		i	Γ-	Γ-	Γ	
5		Function	_	in	in	lependent RNA		in	in	NA helicase		NA helicase		70	ri			ë	
10		Fur	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent DNA helicase		potassium channel	hypothetical protein	DNA helicase II		hypothetical protein	
15		Matched length (a a)	84	129	415	458		291	249	1155		1126		302	230	099		280	
20		Similarity (%)	96.4	65.1	62.2	64.0		69.8	62.9	48.9		65.7		64.2	58.3	58.8		49.3	
		Identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		41.4		26.2	30.4	32.6		26.8	
25	Table 1 (continued)	ıs gene	oerculosis nB1	oerculosis .	oerculosis	niae CG43		oerculosis	oerculosis	oerculosis		oerculosis		nnaschii JAL-	oerculosis	2 uvrD		erculosis	
30	Table 1 (c	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	Mycobacterium tuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus jannaschii JAL- 1 MJ0138.1.	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis 1137Rv Rv3196	
40		db Match	pir.D70596	pir.B70596	pir.E70595	sp.DEAD_KLEPN		pir.H70594	pir:F70594	pir.G70951		pir.G70951		sp:Y13B_METJA	pir.E70951	sp:UVRD_ECOLI E		nir.B70951	
		ORF (bp)	258 pir	420 pir	1200 pir	1272 sp	225	846 pir	759 pir	3048 pir	780	3219 pir	1332	1005 sp	714 pir	2034 sp	591	816 pir	603
45		Terminaf (nt)	805535	806737	806740	807946	809510	810394	811163	814217	811386	817422	814210	818523	819236	821287	822669	821290	823391
50		Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	814204	815541	817519	818523	819254	822079	822105	822789
		SEQ NO. (a a.)	4356	4357	4358	4359	4360	4361	4362	4363	4364	4365	4366	4367	4368	4369	4370	4371	4372
55		SEQ NO. (DNA)	856	857	858	859	860	861	862	863	864	865	998	867	868	969	870	871	872

EP 1 108 790 A2

																					_
10		Function	hypothetical protein	hypothetical protein			hypothelical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hypothetical protein		alpha-lytic proteinase precursor		DNA-directed DNA polymerase	major secreted protein PS1 protein precursor					monophosphatase
15	v.	Matched	(aa) 474	350			1023	463	301	81	201		408		208	363					255
20		Similarity (%)	76.4	74.9	:		73.5	57.7	0.68	53.0	73.6		44.4	:	514	51.5					74.9
		Idenlity (%)	42.8	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	27.0					51.8
25	Table 1 (continued)	Homologous gene	luberculosis	luberculosis		deliceration of the state of th	luberculosis	diodurans	sis laticifer er1	ix K1 APE0247	168 yaaE		Lysobacter enzymogenes ATCC 29487		Neurospora intermedia LaBelle- 1b mitochondrion plasmid	n glutamicum flavum) ATCC					boniger pur3
30	Table 1	Homolog	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er1	Aeropyrum pernix K1 APE0247	Bacillus subtilis 168 yaaE		Lysobacter enzy 29487		Neurospora intermedia I.a 1b mitochondrion plasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				1	Streptomyces alboniger pur3
<i>35</i>		db Match	Dir A70951	pir H70950			pir G70950	gp.AE001938_5	sp.ER1_HEVBR	PIR.F72782	sp:YAAE_BACSU		pir.TRYX84		pir S03722	sp.CSP1_CORGL					prf.2207273H
		ORF	1446	1050	675	522	2955	1359		345	909	363	1062	501	585	1581	429	510	222	309	780
45		Terminal	822680	825239	825242	825996	829570	829627	831971	831578	832570	832795	834633	835388	835837	838897	839353	840139	840210	840437	841517
50		Initial	824125	824190	825916	826517	826616	830985	831021	831922	831971	833157	833572	834888	835253	837312	838925	839630	840431	840745	842296
		SEO NO	(8.8)	4374	4375	4376	4377	4378	4379	4380	4381	4382	4383	4384	4385	4386	4387	4388	4389	4390	4391
<i>55</i>		SEO	(DNA)	874	875	876	877	878	979	980	881	882	863	884	885	886	887	888	889	890	891

	Function	myo-inasitol monophosphatase	peptide chain release factor 2	ciatore goilers of a	cell division ATP-bridging process	nypoureirea process	cell division profein	small protein B (SSKA.Dinding protein.)	hypothetical protein					vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein	precursor	ferrichrome ABC transporter	Tablons And transporter	(pernicase)	ferrichrome ABC transporter (ATP-binding protein)	
	Matched length (a a)	243	359		226	7	301	145	116	!		<u> </u>		212	319	191		325	313		312	250	
	Identity Similarity (%)	593	986	:	91.2	54 0	748	759	733			!		52.9	58.3	71.2		61.5	80.8		76.0	82.0	
T 	Identity (%)	33.7	68.0		70.4	43.0	40.5	43 5	44.0	5				26.8	29.5	36.1		27.7	39.3		35.6	48.4	
Table 1 (continued)	Homologous gene	Streptomyces flavopersicus	Streptomyces coelicolor A3(2)	prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB		Escherichia coli K12 yeao				Vibrio cholerae OGAWA 395	Ctanhylococcus aureus sirA	Mycobacterium leprae	MLCB1243.07	Vibrio anguilfarum 775 fatB	Niov 881 silistica action	Bacillus subtilis 100 year	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP	
	db Match	U70376 9		Sp:RF2_STRCU	pir.E70919	PIR:G72510	pir.D70919	SAMPR FCOLI		Sp.YFAO_ECOUI	:			Sp:VIUB_VIBCH	4,000,100	pr. 2510301A	gp MLCB1243_5	SP.FATB VIBAN	+-	pir B69763	nir C69763		i
	ORF (bp)	819		1104	687	264	006	407	764	351	537	300	405	825		918	588	1014	2	666	040		
	Terminal (nt)	٤	200710	844360	845181	844842	846097	978638	840070	846982	846269	848026	847718	848499	1	849326	850412	067364	832304	853616	954774	274.50	8554/6
	initial	7070	843124	843257	844495	0.45405	845198		84613/	846632	046005	847727	848122	849723	04995	850243	850999	•	851351	852618			854724
	SEQ	<u> </u>	4392	4393	4394	-	4395		4397	4398					4402	4403	4404		4405	4406		4407	4408
	SEG		892	803 4	894		895	-	168	868	1	i	$\overline{}$	1 .	706	903	904		905	906	}	907	806

	Function	hypothetical protein	hypothetica! protein	kynurenine aminotransferase/glutamine transaminase K		DNA repair helicase	hypothetical protein	hypothetical protein		resuscitation-promoting factor	cold shock protein	hypothetical protein	glutamine cyclotransferase			permease	6	rkNA(agenosine-2-0-)- methyltransferase	
	Matched length (a a)	48	8 : 			613	764	57		198	19	159	273			477	,	310	
	Similarity (%)	720	66.0	649		62.3	65.2	62 0		64.7	75.4	58.5	67.8			79.3	· 	51.7	
	Identity (%)	0 99	61.0	33.5		30.7	36 1	44.0		39.4	42.6	28.3	41.8			43.6		27.9	
Table 1 (continued)	Homologous gene	Chlamydia muridarum Nigg TC0129	dia pneumoriae	Rattus novegicus (Rat)		Saccharomyces cerevisiae S288C YIL 143C RAD25	Mycobacterium tuberculosis H37Rv Rv0862c	Mycobacterium tuberculosis H37Rv Rv0863		Micrococcus luteus rpf	Lactococcus factis cspB	Mycobacterium leprae MLCB57 27c	Deinococcus radiodurans DR0112			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus tsnR	
	db Match	PIR #81737	GSP Y35814	pir S66270	:	sp RA25_YEAST	2199 pir F70815	qir G70815		nrf 2420502A	prf.2320271A	gp:MLCB57_11	gp.AE001874_1			6_32625.dg		Sp.TSNR STRAZ	
	ORF (bp)	147	27.1		639	16/1 s	2199	219	873	507	381	525	774	669	138	1473	912	828	876
	Termina' (nt)	860078	22030	862752	862753	863396	865119	867571	00000	508789	869318	869379	869918	870721	871660	873210	872016	874040	874069
	Initial (nt)	- 850224	2000	851544	ופרופת	990598	867317	867353	007100	907799	968938	869903	870691	871419	·		872927	1	874944
	SEO	4409		4410	24412		4414	4415		4410	44 17		4420	4421	4422	4423	4424	4425	4426
	SEO	606		910		913	914	915	-	916	917	919	920	421	1 20	923	924	925	926

EP 1 108 790 A2

	Function	hypothelical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter	•	hypothetical protein	fatty-acid synthase			homoserine O-acelyltransferase			glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase
	Matched length (a.a.)	316	374	236	103	549		243	3026			335			62	.171	261	202	1715	298
	Similarity (%)	55 1	52 9	69 5	9 08	58 1		77.4	83.4			29.7			72.6	62.0	6.88	56.4	68.1	51.0
	Identity (%)	32.6	21.9	36.0	51.5	26.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2
Table 1 (continued)	Homoingnus gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacillus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCI8.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			Leptospira meyeri metX			Deinococcus radiodurans DR2085	Mycobacterium avium folA	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2) SC7C7.16c	Synechococcus elongatus naegeli mutM
-	db Match	sp:YZ11_MYC1U	pir:S71439	sp:ACCD_ECOLI	gp:SCI8_8	pir.JC2382		pir.A70657	pir.S55505			prf.2317335B			gp:AE002044_8	prf:2408256A	sp.TYSY_ECOLI	sp:CYSQ_ECOLI	gp:SC7C7_16	sp:FPG_SYNEN
	ORF (bp)	933	1128	1473	339	1653	816	840	8907	489	186	1047	426	267	237	456	798	756	4560	768
	Terminal (nl)	874951	875985	879642	881985	883647	884541	884549	894578	895191	895593	895596	896719	897689	897727	897979	898434	899253	904602	905382
	Initial (nt)	875883	877112	881114	881647	881995	883726	885388	885672	894703	895408	896642	897144	897423	897963	898434	899231	900006	900043	904615
	SEQ NO (a a)	4427	4428	4429	4430	4431	4432	4433	4434	4435	4436	4437	4438	4439	4440	4441	4442	4443	4444	4445
	SEQ NO. (NNA)	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945

	Function	hypothetical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peptidase	hypothelical protein		5-phosphoribosylglycinamide formyltransferase	5'-phosphoribosyl-5-aminoimidazole- 4-carboxamide formyltransferase	citrate Iyase (subunit)
	Matched length (a a)	128	196	403		557	195		78	763	885	217		236	434		180	525	217
	Similarity (%)	86.7	71.9	67.0		77.0	52.3		85.9	73.1	48.6	71.4		73.3	60.8		86.2	87.8	100.0
	Identity (%)	55.5	38.8	33.8		52.4	24.6		29.0	46.1	21.8	43.8		43.6	31.1		64.6	74.5	100.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicolor A3(2) SC128.06c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
	db Match	pir.F70816	Sp. APL LACLA	pir.T36776		pir.NUEC	pir G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp_SCE25_30	prf.2420410P		pir D70716	sp:YT19_MYCTU		gp AB003159_2	gp. AB003159_3	gp:CGL133719_3
	ORF (bp)	408	009	T _	717	1620	1176	381	309	2289	2223	999	507	711	1425	228	627	1560	819
	Terminal (nt)	905796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921526	922412
	Initial (nt)	905389	906391	907731	908612	909378	910696	910843	911163	911226	915699	916364	916874		917928	918054		919967	921594
	SEO NO.	4446	4447	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
	SEO NO.	946	775	-	070	950	951	952	953	954	955	956	957	958	959	960	961	962	963

SEQ SE NO N (DNA) (a	SEO .									
		fnitsat (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a a)	Function
964 44	 	923061	922396	999	gp CGL133719_2	Corynebacterium glutamicum ATCC 13032 amtR	100.0	100.0	222	repressor of the high-affinity (methyl) ammonium uptake system
965 44	4465 97	923464	923138	327	gp CGL133/19_1	Corynebacterium glutamicum ATCC 13032 yJcC	100 0	100 0	109	hypothelical protein
966 44	4466 93	923661	923981	321	-		i			
967 44	4457 9	924407	924159	249	Sp.RR18_CYAPA	Cyanophora paradoxa ips18	52 2	76.1	- 67	30S ribosomal protein S18
•	!	924727	924425	303	Sp.RS14_ECOLI	Escherichia coli K12 rpsN	540	0 08	100	30S ribosomal protein S14
1	4469 97	924895	924734	162	sp.RL33_ECOLI	Escherichia coli K12 rpmG	55.1	83 7	49	50S ribosomal protein L33
970 44	4470 9	925134	924901	234	pir RSEC28	Escherichia coli K12 rpmB	520	818	77	50S ribosomal protein L28
-	1	926935	925325	1611	pı' B70033	Bacıllus subtilis 168 yvdB	34.4	71.1	529	transporter (sulfate transporter)
T	4472 9	927242	926931	312	pri 2420312A	Staphylococcus aureus zntR	37.5	77.5	80	Zn/Co transport repressor
$\overline{\cdot}$		927474	927737	264	Sp.RL31_HAEDU	Haemophilus ducreyi rpmE	37.2	65.4	78	50S ribosomal protein L31
974 44	4474 9	927752	927922	171	gp.SC51A_14	Streptomyces coelicolor A3(2) SCF51A 14	0.09	78.2	55	50S ribosomal protein L32
975 44	4475 9	927785	927339	447						
976 44	4476 9	928117	928812	969	sp.COPR_PSESM	Pseudomonas syringae copR	48.0	73.6	227	copper-inducible two-component regulator
977 4	4477 9	928884	930248	1365	sp.BAES_ECOLI	Escherichia coli K12 baeS	24.4	60.1	484	two-component system sensor
978 44		930410	931648	1239	pir.S45229	Escherichia coli K12 htrA	33.3	59.9	406	proteinase DO precursor
979 4	4479 9	931706	932290	585	sp.CNX1_ARATH	Arabidopsis thaliana CV cnx1	27.7	54.3	188	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)
980 4	4480 9	932290	932487	198						
981 44	4481 9	932974	932570	405	sp.MSCL_MYCTU	Mycobacterium luberculosis H37Rv Rv0985c mscL	50.4	77.1	131	large-conductance mechanosensitive channel
982 44	4482 9	933710	933060	651	pir À70601	Mycobacterium tuberculosis H37Rv Rv0990	28.6	60.0	210	hypothetical protein
983 4	4483 9	934302	933733	570	pir.JC4389	Homo sapiens MTHFS	25.1	59.7	191	5-formyltetrahydrofolate cyclo-ligase

		$\overline{}$	ië i	$\overline{}$														
	Function	UTP-glucose-1-phosphate uridylyltransferase	molybdopterin biosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane prolein	cyclomaltodextrinase	hypothetical membrane protein	hypothetical protein	methionyl-tRNA synthelase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein	9363663664	Hallspusase
	Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363	3	94
	Similarity (%)	689	62 6	549	54.8	62.4		9.09	59.6	53.6	75.2	78.3	66.7	49.0	53.3	59.0	3	9.69
	Identity (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0	-	33.0
Table 1 (continued)	Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd HI1602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
	db Match	pir.JC4985	prf.2403296B	p:RIMJ_ECOLI	pir:G70601	SP CYNX ECOLI		sp.YG02_HAEIN	sp:Y05C_MYCTU	sp:CDAS_BACSH	pir.E70602	sp Y19J_MYCTU	sp.SYM_METTH	prf. 1306383A	pir.B69206	sp.YXAG_BACSU		gp:AF029727_1
	ORF (bp)		1257	099	1020	1200	1419		714	1167	1560	825	1830	2049	633	1158	531	294
	Terminal	6	936607	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
	Initial	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791		952991	<u> </u>	
	SEO	(3.3)	4485	4486	4487	4488	4480	4490	4491	4492	4493	4494	4495	4406		4498	_	
	<u> </u>	5			987			066	991	992	993	994	995	900	766	998	666	1000

														_								
5		Function	transposase	transposase subunit		D-lactate dehydrogenase	site-specific DNA-methyltransferase		transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl monophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
15		Matched length (a.a.)	139	112	1	565	231		94	139	91	205		263	362	265	315		478	242	159	108
20		Similarity (%)	9.79	88.4		75.6	62.8		59.6	67.6	84.6	66.8		7.07	63.5	65.3	67.0		85.8	67.4	58.5	78.7
		Identity (%)	41.7	73.2		46.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
25	(pan	je Ie		PA			OK8	1			losis	cadD		losis	ilosis	Αę	losis		thraea	3×K	sisoir	or A3(2)
30	Table 1 (continued)	Homologous gene	Escherichia coli K12	Brevibacterium linens tnpA		Escherichia coli dld	Klebsiella pneumoniae OK8 kpnIM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SCF1.02
<i>35</i>		db Match	nir TOECI3	55 1		prf.2014253AE	Z		gp AF029727_1		YCTU	prf.2514367A		pir.C70603	pir:D70603	SP KSGA_ECOLI	pir.F70603		pir:S47441	SP PDXK_ECOLI	Sp.YX05_MYCTU	gp:SCF1_2
		ORF (bp)	47.74		1	-	840 s	219	294 g		357	621	342	831	1071	879	933	642	1833	792	480	321
45		Terminal (nt)	054753	055354	956774	1	957844	959185	960374	960861	961653	962249	961321	963639	964934	965852	966784	965950	099896	969458	969461	970349
50		Initial (nt)	054077	934211	955911	957398	958683	959403	960081	960385	961297	961629	961662	962809	963864	964974	965852	966591	966828	968667		970029
		SEQ	0 3	400	 -		4505	4506		4508	4509	4510	4511	4512	4513	4514		4516		4518		4520
55		SEQ NO.	(NA)	100	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020

_																		_
	Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein
	Matched length (a.a.)	107		276	337				440	100	802	157		121	482		546	404
	Similarity (%)	69.2	88.1	59.1	6.07				56.8	0.07	0 07	75.8		63.6	48.3		68.0	72.8
	identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1 15	Bacillus subtilis 168 yxel+	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87.17c	Haemophilus influenzae Rd Hl0508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus imdD
	db Match	gp:SCF1_2	gp:SCJ1_15	sp:YXEH_BACSU	pir:E70893				sp:CSP1_CORGL	gp:SCF56_6	gp:SCE87_17	sp:MENG_!!AEIN		gp:NMA6Z2491_21	pir:A70539		pir:159305	prf.2405311A
	ORF (bp)	321	096	792	1017	654	777	1212	1386	579	2373	498	999	381	1551	936	1647	1269
	Terminat (nt)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981490	982287	982294	984650	985845	984864	988007
	Initial (nt)	970418	970864	973035	973139	973957	9/4186	976176	976349	978378	980740	980993	981622	982674	983100	984910	986510	986739
	SEQ NO. (a a)	4521	4522	4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537
	SEQ NO (DNA)	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037

5	Function	amide-urea transport protein	amide-urea transport protein	high-affinily branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-1RNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoylglutathione lyase	DNA alkylation repair enzyme	ribóse-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufl protein precursor	nodulation ATP-binding protein I
		amid	amid	high- acid	high- acid	pepti	2-nitr	glyce	polyr antig diagr	pepti	50S	lacto	PNO	ribós pyrol	Pyro		l ljns	npou
15	Matched length	(a.a.) 77	234	253	236	187	361	342	51	174	194	143	208	316	452		905	310
20	Similarity (%)	61.0	0.89	70.0	69.1	706	54.0	72.8	61.0	63 2	65.0	546	62.5	79.1	٠,		61.7	64.8
	Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
30 September 20 Se	s gene	nylotraphus	ylotrophus	uginosa PAO	uginosa PAO	2 pth	0 0895	ofulvus gap	dis	2 pth	erculosis	urium D21	CC 10987		Q		2 sufl	lpou
30 1 aller	Homologous gene	Methylophilus methylotrophus	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufl	Rhizobium sp. N33 nodl
35		≥ 5	ΣĘ			<u> </u>	!		ž	₹.	ΣÏ		a 8a		Ba		Es	효
40	db Match	prf.2406311B	prf:2406311C	sp.BRAF_PSEAE	sp:BRAG_PSEAE	SP:PTH_ECOLI	Sp. 2NPD_WILMR	sp.G3P_ZYMMO	GSP Y75094	SP:PTH_ECOLI	pir:B70622	sp:LGUL_SALTY	prf:2516401BW	sp.KPRS_BACCL	pir:S66080		sp:SUFI_ECOLI	Sp.NODI_RHIS3
	ORF (bo)	882	1077	726	669	612	1023	1065	369	531	909	429	624	975	1455	1227	1533	918
45	Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	1000016	1002864	1003930
50	Initial	988023	988904	989980	990716	992028	992058	993549	994474	995375	996126	996402	997456	998440	606666	1001242	1001332	1003013
	SEQ	(a.a)	4539	4540	4541	4542	4543	4544	4545	4546	4547	4548	4549	4550	4551	4552	4553	4554
55		(DNA)	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054

	Function	hypothetical membrane protein	two-component system sensor	histidine kinase	two component transcript on all regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	garma-gulamyntanspeptiugse precursor					transposase protein fragment	transposase (IS1628 TnpB)			transmissional requisitor (TetR.	family)	transcription/repair-coupling protein	
	Matched length (a a)	272	450	100	202		349	535		573	999	-	!	i.		37	236		-	:	183	1217	
	Similarity (%)	63.2		4.84	67.3		64.5	57.0		74 C	58 G			1		72.0	100.0	•			59.6	65.1	
	Identity (%)	30.2	0 , 0	24.0	36.6		31.5	286		440	32 4				1	64.0	99.6				23.0	36.2	_
Table 1 (continued)	Homologous gene	Strentomyces Lyidans ORF2		Escherichia coli K12 uhpB	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt					Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coli letR	Escherichia coli mfd	
	db Match	NOOSO.	- -	sp:UHPB_ECOLI	prf.2107255A		gp.SCF15_7	pir S65587		pir T14180	sp GGT_ECOL	: :				GPU.AF164956_23	gp AF121000_8				sp.TETC_ECOU	sp MFD_ECOLI	_
	ORF (bp)		183	1257	609	204	1155	1440	153	1/34	1965	249	519	192	606	243	708	462	597	312	651	3627	1224
	Terminal (nt)	0000	1004/83	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015116	1016563	1015450	1015145	1017018	1017274	1018393	1019066	1022716	
	Initial (nt)		1003953	1004829	1006089	1006937		1008522	1008686	1010057	1013761	1014016			1015652	1015692	1015852	1016557		1018082	1018416	1019090	
	SEQ	(a a.)	1555	4556	4557	4558			1950		4563	4564		4566	4567	4568	4569	4570		4572		4574	
			1055	1056	1057				1061	1067	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075

ed Function			multidrug resistance-like ATP- binding protein, ABC-type transport protein	4 ABC transporter	+	8 hypothetical membrane process	hypothetical protein	寸			ingl protein	\top	422 dehydratase(Z-phospho-D-glycerate hydro-lyase)	41 hypothelical protein	191 hypothetical protein		153 hypothetical protein	329 guanosine pentaphosphatase of exopolyphosphatase		314 threonine dehydratase	
Matched length	+-	92	632	574	-	0 368	+	183				5					60	55.0 3	<u> </u> -	647 3	
Similarity (%)		0.69	62.7	81.9		100.0	- :	27		_	-	8	86.0	58.0	2		77		-	+	+
Identity (%)		48.0	31.3	50.2		100.0		33.4				46.5	64.5	68.0	;	31.9	59.5	25.2	1	30.3	
Table 1 (continued) Homologous gene		Neisseria gonorrhoeae	Escherichia coli mdlB	Mycobacterium tuberculosis	H37Rv Rv1273c	Corynebacterium glutamicum ATCC 13032 orf3		Bacillus subtilis vabN			sisch coordination	Mycobacterium tuberculosis H37Rv Rv1022 IpqU	Bacillus subtilis eno	Agreement Pernix K1 APE2459	Actual persons in persons in	H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coli gppA		dobb in a single	Escherichia con toco
the Match		GSP:Y75301	SE:MDLB ECOLI		sp:YC73_MYCTU	sp.YLI3_CORGL		LISONG MOAN	Sp. YABIN BACSO			pir.A70623	sp:ENO_BACSU	110000	PIR: 872477	pir.C70623	pir.D70623	\neg	sp.dr. A_coc.		sp. THD2 ECOLI
ORF	(pb)	228	1968		1731	2382	797	3	582	426	378	786	1275		144	540	546		967	984	930
Terminal	(nt)	1021078	1022899	70770	1024666	1026505	1012181	1032101	1032780	1032760	1033269	1034739	1036223		1036016	1036855	1037445		1038410	1036498	1038721
fritial		1021305			1025396	1028886			1032196	1033185	1033646	1			1036159	1036316	1038900	1_	1037448	1037481	030001
SEQ	NO (a.a.)	1 10		45//	457B	4579		4580	4581	4582	4583	4584			4586	4587		4586	4589	4590	
SEQ 8		$\dot{-}$		1077	1078			1080	1081	1082	1083	1084	1085	2	1086	1087		1088	1089	1090	

Homologous gene (%) (%) (a.a.)		26	Escherichia coli rhaR 24.8 55.8 242 operon	Mycobacterium tuberculosis 57.8 80.1 282 hypothetical protein H37Rv Rv1072		Streptomyces coelicolor A3(2) 30.0 57.1 140 hypothetical protein SCF55.39	Escherichia coli greA 35.0 60.1 143 transcription elongation factor	Mycobacterium tuberculosis 34.3 72.1 140 hypothetical protein H3/Rv Rv1081c	Streptomyces lincolnensis ImbE 31.7 56.3 300 lincomycin-production		Corynebacterium glutamicum 99.2 99.5 367 3-deoxy-D-arabino-heptulosonale-7-aroG		Corynebacterium glutamicum 96.0 97.3 97 hypothetical protein or undecaprenyl CCRC18310	Corynebacterium glutamicum 100.0 100.0 28 hypothetical protein (Brevibacterium flavum)				Escherichia coli coa A 53.9 79.9 308 pantothenate kinase	n MJ-233 99.5 100.0 434
		_											_						
	-	-		57.8		30.0	35.0	34.3	31.7		99.2		96.0	-				53.9	53.9
		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coli greA	Mycobacterium tuberculosis H3/Rv Rv1081c	Streptomyces lincolnensis ImbE		Corynebacterium glutamicum aroG		Corynebacterium glutamicum CCRC18310					Escherichia coli coaA	Escherichia coli coaA Brevibacterium flavum MJ-233 glyA
db Match		pir. B72287	sp RHAR_ECOL1	pir.F70893		gp:SCF55_39	sp GREA_ECOLI	pir:G70894	pir:S44952		sp:AROG_CORGL		sp.YARF_CORGL	SP:YARF_CORGL				sp.COAA_ECOLI	sp.COAA_ECOLI
ORF (bp)	330	189	993	816	387	450	522	483	873	318	1098	633	675	174	519		318	318 936	318 936 1302
 Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043/74	1044477	1046030	1046390	1047707	1046820	1048501	1048529	1049043	0000	1049068	1049068 1049427	1049068 1049427 1051925
Initial (nt)	1039996	1040494	1040925	1042027	1043236	1043747	1044295	1044959	1045158	1046073	:046610	1047452	1047827	1048356	1048525	1	1049385		
SEQ NO (a a)		4594		4596	4597	4598	4599	4600	4601	4602		4604	4605	4606	4607		4608	4608	4608 4609 4610
SEQ S	-	1094		1096	1097	1098	1099		1101	1102		1104	1105	1106	1107	+-	108		

						Table 1 (continued)				
SEQ NO DNA)	SEQ NO (a a.)	Initial (nt)	Terminal (n1)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
-	4613	1054859	1055722	864						
- -	4614	1055032	1054640	393						
1115	4615	1055783	1056319	537	gp.A0.504_1	Alcaligenes faecalis ptcR	30.3	58 8	165	phosphinothricin resistance profin
	4616	1057200	1056322	879	sp:YBGK_ECOLI	Escherichia coli ybgK	30.3	59.0	300	hypothetical protein
1117	4617	1057573	1058628	1056						
	4618		1057200	699	sp.YBGJ_ECOLI	Escherichia colı ybgJ	37.8	57.8'	225	hypothetical prolein
1119	4619	1	1057843	756	SP.LAMB_EMENI	Emericella nidulans lamB	30.8	52 2	276	lactam utilization protein
 -	4620	<u> </u>	1058624	591	Sp.YCSH BACSU	Bacillus subtilis ycsH	40 6	812	165	hypothetical membrane protein
1121	4621	1059218	1059889	672					1	· A P. Marie . A September .
1122	4622	1059360	1059962	603					-	
+	4623		1060792	681	sp.YDHC_BACSU	Bacillus subtilis ydhC	26 0	63.2	204	transcriptional regulator
1124	4624	1060869	1062146	1278					-	
1125	4625		1062211	1419	Sp FUMH_RAT	Rattus norvegicus (Rat) fumH	520	79.4	456	fumarate hydralase precursor
_	4626	1063936	1064424	489		Rhodococcus erythropolis IGTS8 dszD	32.7	65 4	159	NADH-dependent FMN oxydoreductase
1127	4627	1064738	1064478	261						
1128	4628	1065200	1064754	447						
1129	4629	1065867	1065304	564	gp:SCAl410_16	Streptomyces coelicolor A3(2) StAH10.16	55.4	810	184	reductase
1130	4630	1066083	1067570	1488	sp.SOXA_RHOSO	Rhodococcus sp IGTS8 suxA	39.1	67.7	443	dibenzothiophene desulfurization enzyme A
1131	4631	1067570	1068649	1080	sp.SOXC_RHOSO	Rhodococcus sp. IGTS8 soxC	25.8	51.3	372	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)
1132	4632	1068649	1069845	1197	sp.SOXC_RHOSO	Rhodococcus sp. IGTSB soxC	28.9	61.6	391	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)
1133	4633	1069692	1068913	780						
1134	4634	1069808	1069119	690		The second secon				

_																				_
	Function	FMN:12-dependent aliphatic sulfonate monooxygenasc	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exadeoxyrıbonuclease small subunit	exodeoxyribonuclease large subunit	peniciflin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamoyltransferase	hypothetical protein
	Matched length (a a)	397	325	211	227]	82	62	466	311	131		338		552	412	361	75	301	143
	Similarity (%)	73.1	757	56 4	66 1	- :	781	67.7	55 6	78.8	47.0		63.9		614	0.09	98.6	0.08	58.8	66.69
	Identify (%)	45.3	443	27.5	313		36.6	40.3	30 0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2
able 1 (continued)	Fomologous gene	Escherichia coli K12 ssuU	Escherichia coli K12 glpX	Myccbacterium tuberculosis	Bacilius subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia col: K12 MG1655 xseB	Escherichia coli K12 MG1655 xscA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
	db Match	gp ECO237695_3	SP GI PX_ECOLI	76807B,ng	pił H70062		gp SCH24_37	sp EX7S_ECOLI	sp:EX7L_ECOLI	SP.LYTB ECOLI	GSP:Y75421	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sp. PERM_ECOLI		sp:NTPR_RAT	sp.CSP1_CORGL	sp:YYAF_BACSU	sp VAPI_BACNO	sp OTCA_PSEAE	sp:YKKB_BACSU
	ORF (bp)	1176	953	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	501
	Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080786	1080972	1082951	1085462	1086087	1086917	1087044
	In tral	1069959	1072441	1072676	1075241	4639 1075357	1075553	1075909	1077183	1077297	1077734	1079146	1080540	1080965	1082708	1084183	1084380	1085791		1087544
	SEO NO	4635	4636	1.37 4637	4638			4641	4642	4643		4645	4646	4647	4648	4649	4650	4651	4652	4653
	SEQ NO (DNA)	1135	1.36	1.37	1138	1139	1140	1141	1142	1143		1145	1146	1147	1148	1149	1150	1151	1152	1153

5

5
10
15
20
25
30
35
40
45
50

	Function	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyltransferase			transposase (insertion sequence IS31831)	transposase	transposase				oxidoreductase or morpyine-6- dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase			frenolicin gene cluster protein involved in frenolicin biosynthetic
	Matched length (a a)	198	396	1153	259			97	125	48		-		264	108			146
	Similarity (%)	9.09	73.0	52.2	47.1			93.8	94.4	95.8				66.3	63.9			66.4
	Identity (%)	33.8	42.2	23.0	22.8			82.5	79.2	87.5				37.5	33.3			34.9
Table 1 (continued)	Homologous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium factofermentum) ATCC 13869				Pseudomonas putida M10 norA	Acinetobacter calcoaceticus dc4c			Streptomyces roseofulvus frnS
-	db Match	gp:AF013289_1	sp.YIS1_STRCO	sp.YEGE_ECOLI	SP.NODC_RHIME			pir,S43613	pir JC4742	pir.JC4742				sp:MORA_PSEPU	sp:DC4C_ACICA			gp.AF058302_19
	ORF (bp)	630	1206	3042	765	219	333	291	375	144	141	366	498	843	321	663	195	654
	Terminal (nt)	1087664	1088535	1093216	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	1099750	1099015	1099115
	Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052	1095677	1096093	1096331	1096471	1097111	1097229	1097750	1098609	1099088	1099209	4670 1099768
	SEQ NO (a a)	4654	4655	4656	4657	4658	4659	4660	4661	4662	4663	4664	4665	4666	4667	4668	4669	4670
	SEQ NO.	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170

5		Function	biolin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothetical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
15		Matched length (a.a.)	563	-		:			655	329	160	262	248	593	136	111	134	367	436
20		Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	99.8
		Identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
25	Table 1 (continued)	ıs gene	o PCC 7942						berculosis	eroides ATCC	thanolica pgm	berculosis	roscopicus	liae tirC	berculosis	12 MG1655	38 ухаD	eumoniae	glutamicum ictofermentum)
30	Table 1 (Homologous gene	Synechococcus sp accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF1293 BcpA	Streptomyces fradiae ttrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
35			(S) SE]				<u> </u> i				ΣÏ	20.00	i				S F	O E A
40		db Match	gp:SPU59234_3						sp.YT15_MYCTU	sp. BCHI_RHOSH	gp:AMU73808_1	pir.A70577	gp:STMBCPA_1	sp:TLRC_STRFR	sp:Y06C_MYCTU	sp:PHNA_ECOLI	sp:YXAD_BACSU	gp:SPN7367_1	pir.S43613
		ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
45		Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
50		Initial (nt)	1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	1108993	1109792	1111820	1111889	1112957	1113102	1114486
		SEQ NO.	4671	4672	4673	4674	4675	4676	4677	4678	4679	4680	4681	4682	4683	4684	4685	4686	4687
55		SEQ NO.	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187

Table 1 (continued) Continued Contin	-																			
Table 1 (continued) Continued Contin	And the state of t	Function	cysteine desulphurase	nicolinate-nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein		lipoate-protein ligase A	alkylphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4- hydroxybenzoate 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ anliporter ChaA	hypothetical protein	hypothetical membrane protein
Table 1 (continued) SEO Irritial Terminal ORF db Match Homologous gene (%) (nt) (ht)		Matched length (aa)	376	283	361	235	192	214	108	216	148	420	395	191	532	250		339	236	221
SEO Irrital Terminal ORF db Match Homologous gene 100 (nt) (nt) (ht)	:	Simitanty (%)	73.4	689	77.6	6 09	54.7	66 4	74.1	60 7	8.09	64.3	68.6	9 69	47.6	61.6		0.69	57.6	61.1
SEQ Irrital Terminal ORF db Match (nt) (nt) (bp) db Match (nt) (nt) (bp) db Match d688 1116905 1115832 1074 gp RFAJ3152_2 d689 1117744 1116908 837 sp NADC_MYCTU d690 1119727 1119086 642 gp SC5B8_7 d694 1121809 1121808 642 gp SC5B8_7 d694 1121809 1121818 789 gp./A/A/21740_1 d696 1123051 1123461 411 sp PHNB_ECOLI d696 1124826 1123534 1293 sp.PCAK_PSEPU d696 1126020 1124836 1185 sp.PHHY_PSEAE d696 1126020 1124836 113836 1138350 1338 sp.YJJK_ECOLI d700 1127013 1129632 531 d704 1129655 1131428 708 pir C75001 d704 1130721 1131428 708 pir C75001 d705 1131428 708 pir C75001 d705 1131428 708 pir C75001 d706 1131723 1131401 723 sp.YWAF BACSU d706 1132723 1131401 723 sp.YWAF BACSU d706 1131723 d703 d703 d703 d703 d703 d704 d706 d707 d7		Identity (%)	43.9	42.1	49.3	37.0	23 4	36 0	41.7	30.1	29.7	28.8	40.8	36 7	24.8	25.6		33.3	28.4	27.6
SEQ Initial Terminal ORF db Match NO (n1) (n1) (bp) db Match NO (n1) (n1) (bp) db Match 468B 1116905 1115832 1074 gp RFAJ3152_2 4689 1117744 1116908 837 sp NADC_MYCTU 4690 1117744 1116908 642 gp SC5BB_7 4691 1120205 1120804 600 gp AE001961_5 4692 1121408 1121408 342 gp YSC5BB_7 4693 1121609 1121468 342 sp YBDF_ECOLI 4694 1121809 1121818 789 gp:AAA21740_1 4695 1122606 1123461 411 sp PHNB_ECOLI 4696 1123051 1123461 411 sp PHNB_ECOLI 4696 1126020 1124836 1185 sp PHNB_ECOLI 4697 1126020 1124836 1185 sp YJK_ECOLI 4700 1127013 112963	Table 1 (continued)	Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tubercuiosis	Bacillus subtilis nadA	Streptomyces coelicolor SC5B8 07	Deinococcus radiodurans R1 DR1112	Streptornyces coelicolor SC3A7 08	Escherichia coli K12 MG1655 ybdf	Escherichia coli K12 IpIA	Escherichia coli K12 phnB	Pseudomonas putida pcaK	Pseudomonas acruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
SEO (nt) (nt) (nt) (a a) (nt) (nt) (b) (nt) (nt) (d b) (115832 d688 1116905 1115832 d689 1117/44 1116908 d690 1119727 1119086 d690 1121809 1121468 d690 1122606 1121818 d696 1123051 1123534 d696 1123051 1124836 d699 1126020 1124836 d699 1126020 1129932 d700 1127013 1129932 d700 1129102 1129632 d700 1129102 1129635 d700 1129102 1129635 d700 1139129 d701 1128350 1139109 d702 1129102 1139109		db Match			pir E69663	gp SC5B8_7	gp AE001961_5	gp SC3A7_e		gp:///21740_1	sp.PHNB_ECOLI	sp:PCAK_PSEPU	sp:PHHY_PSEAE	pir.A69859	sp:YJJK_ECOLI	pir G69858		sp:CHAA_ECOLI	pir Ć75001	sp.YWAF_BACSU
SEO (nt) (a 3) (nt) (b 0) (nt) (a 4) (nt) (b 0) (nt) (b 0) (nt) (c 1) (nt) (d		ORF (bp)	1074	837	1182	642	009	909	342	789	411	1293	1185	588	1338	753	531	1050	708	723
SEO NO (a a b) NO (b) NO (a b) NO (b) NO (c)		Terminal (nt)	1115832	1116908	1	1119086	1120804	1120833	1121468	1121818	1123461	1123534	1124836	1127009	1128350	1129102	1129632	1130704	1131428	1131401
		Initial (nt)						<u> </u>	1121809			,			1	-	<u></u>			1132123
		SEQ NO	4688	4689	4630	4691	4692	4693	4694	4695	4696	4697	4698	4699	4700	4701	4702		4704	4705
		SEQ NO (DNA)	1188	1189		_	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205

	Function	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membrane protein	biosynthesis protein					chymotrypsin BII	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin (4Fe-4S)
:	Matched length (a.a.)	946	164			318	282					271	111	340	147	221	614	909	315		103
	Similarity (%)	58.7	81.7			72.0	490					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9		91.3
	Identity (%)	35.5	57.3			39.9	34.0					. 28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6
Table 1 (continued)	Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedl.	Streptomyces coeliculor A3(2)			The state of the s		Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv 1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
	db Match	SP UVRA_THETH	sp:TPX_MYCTU			sp:YEDI_FCOI.I	gp:SCF76_2			1		sp.CTR2_PENVA	sp:ARC2_ECOLI	sp:YYAD_BACSU	pir:F70559	pir.F70555	sp:TYPA_ECOLI	pir.F70874	pir.B70875		SP.FER_STRGR
	ORF (bp)	2340	495	216	1776	954	006	366	297	261	387	834	345	1200	537	714	1911	1506	870	438	315
	Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1149267
	Initial (nt)	1134472	1134561	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1140021	1140861	1141245	1141273	1143015	1143739	1144118	1146097	1147592	1148445	1148953
	SEQ NO.	+-		4708	4709	4710	4711	4712	4713	4714	4715	-	4717	4718	4719	4720	4721	4722	4723	4724	4725
	SEO			1208	1209	1210	1211	1212	1213	1214	1215	1218	1217	1218	1219	1220	1221	1222	1223	1224	1225

RNA polymerase sigma factor (sigma-24); heaf shock and oxidative stress

194

57.2

27.3

Escherichia coli rpoE

SP:RPOE_ECOLI

639

1166384

1165746

4741

492

4742 1166576 1167067

1242

glucose-1-phosphate adenylyltransferase

400

61.0

Streptomyces coelicalor A3(2) glgC

1215 sp.GLGC_STRCO

1164916

1163702

4739

methyltransferase

93

62.4

25.8

Streptomyces mycarofaciens MdmC

sp:MDMC_STRMY

639

1164974

4740 1165612

5		Function	aspartate aminotransferase			tetrahydrodipicolinate succinylase or succinylation of piperidine-2,6- dicarboxylate		hypothetical protein	dihydropleroate synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPglucosestarch(bacterial glycogen) glucosyltransferase
			aspartate			tetrahydrodipi succinylation dicarboxylate		hypotheti	dihydropt	hypotheti	hypotheti	antigen TbA for preventio tuberculosis	mycinam	sucrose-6	ADPglucc glycogen)
15		Matched length (a.a.)	397		-	229		211	273	245	66	47	286	524	433
20		Similarity (%)	529			100.0		100.0	69.0	73.1	67.7	91.5	67.8	51.0	51.3
		Identity (%)	25.9			100.0		100.0	29.0	45.7	31.3	72.3	39.2	23.5	24.7
25	Table 1 (continued)	Homologous gene	n YM-2 aat			n glutamicum pD		n glutamicum 2	oelicolor A3(2)	leprae u17561	luberculosis	luberculosis	ı griseorubida	ntosaceus scrB	K12 MG1655
	Table 1	Homolog	Bacillus sp. strain YM-2 aat			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coelicalor A3(2) dhpS	Mycobacterium leprae u17561	Mycobacterium tuberculosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospora griseorubida myrA	Pediococcus pentosaceus scrB	Escherichia coli K12 MG1655 glgA
40		db Match	sp:AAT_BACSP			gp.CGAJ4934_1		pir.S60064	gp.SCP8_4	gp.MLU15180_14	pir.G70609	gsp:W32443	sp:MYRA_MICGR	Sp. SCRB_PEDPE	sp:GLGA_ECOLI
		ORF (bp)	1101	621	1185	891	663	768	831	729	306	165	864	1494	1227
45		Terminal (nt)	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1160728	1160738	1162379
50		Initial (nt)	1149279	1150408	1151186	1153263	1156537	1156902	1157694	1158524	1159267	1159635	1159865	1162231	4738 1163605
		SEQ NO. (a.a.)	4726	4727	4728	4729	4730	4731	4732	4733	4734	4735	4736	4737	4738
55		SEQ NO (DNA)	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238
				_											_

5		Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or multidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenase	para-nitrobenzyl esterase	and the second s			tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
15		Matched length (a.a.)	112	257	154	434	140			1257	1288	240	255	501	-			409	444	
20		Similarity (%)	73.2	72.0	83.8	0.77	87.1			99.8	60.4	72.1	61.2	64.7				61.4	64.2	
		Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
25	lunca)		ulosis		ulosis	ulosis	ulosis			amicum	ninese	culosis						nosod	scens tcmA	
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tcmA	
35		db Match		ECOLI	6							53	ECOLI	SP. PNBA_BACSU				_ECOL!	sp.TCMA_STRGA	
40		M db	pir.C70508	sp.MRP	pir.B70509	pir.C70509	pir.A70952			prf.2306367A	sp:MDR2_CRIGR	pir:H70953	Sp. AROF ECOLI					sp:TCR1_ECOLI		
		ORF (bp)	468	1125	579	1290	516	999	594	3771	3741	717	804	1611	651	876	525	1215	1347	705
45		Terminal (nt)	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	:183603	1184257	1185155	1185218	187039	1188389	1190526
50		Initial (nt)	1167110	1168711		1170610	1170672	1171206	1172462		1180048	1180837	1181675			1 _	1185742	1185825	1187043	1189822
		SEQ NO.	4743	4744	4745	4746	4747	4748			4751	4752	4753			4756	4757		4759	4760
55		SEO NO.	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

		ate-	ase	1	ein	T			T	1				-	1	16	T	
	Function	methyltetrahydropteroyltriglulamate-	-ilomocysteine S-methyltransferase		iniopnene biotransformation protein					ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunit II	cytochrome bd-type menaquinol oxidase subunit l	helicase		mutator mutT protein ((7,8 dihydro-8 exceptanine triphosphatase)(8-0xo-dGTPase)(dGTP	Pyropriosprioriyarolase)	proline-specific nermease
	Matched length (a a)	774		777	7					526	551	333	512	402		86		433
	Similarity (%)	72.2		70.5	2					63.5	58.4	93.0	0.66	55.0		65 6		85.0
	Identity (%)	45.2		55.2	7:00					28.7	29.4	92.0	99.6	26.4		36.9		51.3
Table 1 (continued)	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cyd8	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgaris mut T		Salmonella typhimurium proY
-	db Match	pir.S57636		gsp: Y29930						sp.CYDC_ECOLI	sp:cYDD_ECOLI	gp:AB035086_2	gp://B035086_1	sp.YEJH_ECOLI		sp.MUTT_PROVU		sp:PROY_SALTY
	ORF (bp)	2235	456	1398	324	945	792	1647	192	1554	1533	666	1539	2265	342	393	765	
	Terminal (nt)	1188388	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990	1199543	1201090	1202094	1203916	1206657	1206831	1208138	1208212 1404
	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316	4775 1207223		1277 4777 1209615
	SEQ NO (a.a.)	4761	4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774	4775	4776 1	1777
	SEQ NO. (DNA)	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277

			_			· · · · · · · · · · · · · · · · · · ·	-	!										
-	Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tetR family	pentachlorophenol 4- monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase	* * * * * * * * * * * * * * * * * * *	hypothetica' protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypothetical protein			esterase or lipase		
	Matched length (a a)	643	247	505	354	278		-85	8/8		203	395	915			220		
	Similarity (%)	74.3	47.4	47.7	72.0	59 4		58 4	55.4		56.2	67.3	59.6	İ		64.6		
	Identity (%)	48 1	24.7	24 5	404	306		319	249		29.6	39.2	29.7			37.3		
Table 1 (continued)	Homologous gene	Klebsiella pneumoniae CG43 DFAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308 C2 181	Sphingomonas flava pcpB	Pseudomonas sp B13 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) orf2	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HD-1 hde		
	db Match	sp.DEAD_KLEPN	рі 2323363ВТ	SP.PCPB_FLAS3	SP CLCE_PSESB	SD.CATA_ACICA		pir.A70672	sp.SNF2_YEAST		gp:SCO007731_6	pir:E70755	sp:Y084_MYCTU			gp.AB029896_1		
	ORF (bp)	2196	687	1590	1068	885	471	540	3102	1065		1173	2628	306	318	774	378	786
	Terminal (nt)	1212129	1212429	1214858	1215938	1216836	1216904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340	1228636	1229095	1229935
	Initial (nt)	1209934	1213115	1213269	1214871	1215952	1217374	1217982	1219895	1222905		1223887	1225066	1227587	1227657	1227863	1228718	1229150
	SEQ NO		4779	4780	4781		4783	1284 4784	4785	4786	4787	4788	4789	4790	1791	4792	4793	4794
	SEQ NO.		1279	1280	1281		1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294

5
10
15
20
25
30
35
40
45
50

5		Function	short-chain fatty acids transporter	regulatory protein			fumarate (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:G1P 3'-pyrophosphotransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase gamma chain	nitrate reductase delta chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
15		Matched length (a.a.)	122	166			228	81	605	137	601		-	24			220	175	505	137	83	1271	461
20		Similarity (%)	2.69	56.6			57.9	2'99	706	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	6 2 9
		identity (%)	37.7	24.7			25.0	33.3	38 N	32.9	26.6			95.0			45.0	30.3	9.99	36.0	36.0	46.9	32.8
25	Table 1 (continued)	us gene	elicolor	ıemi recS			(12 MG1655 fnr	faciens merP	(12 MG1655	4	dans tap			glutamicum			arl	arJ	arH	(K1 APE1291	K1 APE1289	arG	(12 narK
30	Table 1 (Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
<i>35</i> <i>40</i>		db Match	sp:ATOE_ECOL!	Sp.PECS_ERWCH			sp.FNR_ECOLI	sp.MERP_SHEPU	SP ATZN_ECOLI	sp:RELA_VIBSS	gsp:R80504			GSP_P61449			sp:NARI_BACSU	sp:NARJ_BACSU	Sp:NARH_BACSU	PIR-D72603	PIR: B72603	sp:NARG_BACSU	Sp:NARK_ECOLI
		ORF (bp)	537 sp	486 sp	222	519	750 sp	234 sp	1875 sp	e30 sp	1581 gs	603	120	108 GS	1260	069	777 sp	732 sp	1593 sp	594 PI	273 PI	3744 sp	1350 sp
45		Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232836	1234881	1235612	1236545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	-247199	1250444	1251817	1248794	1252557
50		Initial (nt)	1229716	1229995	1230610	1231432	1231730	1232603	1233007	1234983	1238125	1242156	1242275	1243621	1245201	1245532	1246496	1247239	1248791	1249851	4813 1251545	1252537	1253906
		SEQ NO. (a.a.)	4795	4796	4797	4798	4799	4800	4801	4802	4803	4804	4805	4806	1807	4808	4809	4810	4811	4812		4814	4815
55		SEQ NO.	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315

5		Function	molybdopterin biosynthesis cnx1
15		Matched length (a.a.)	
20		(dentity Similarity Matched (%) (%) (aa)	
		identity (%)	
25	ontinued)	ene	
30	Table 1 (continued)	Homologous gene	
35		atch	
40		₩ qp	
			
45		Terminal (nt)	
50		Initial (nt)	
		SEQ SEQ NO NO. DNA) (a a.)	
		SEQ NO NA	

						-	-			_								
Function	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor		hypothetical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucleotide synthase	mo.ybdoptein biosynthesis protein	molybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acidCoA ligase	Rho factor				peptide chain release factor 1	protoporphyrinogen oxidase		hypothelical protein	undecaprenyl-phosphate alpha-N-acetylglucosaminyltransferase
Matched length (aa)	157	738		334	472	178	366	354	572	753				363	280		215	322
Similarity (%)	65 0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		86.0	58.4
Identity (%)	32.5	21.1	:	30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
Homologous gene	Arabidopsis thaliana CV cnx1	ns strain IF	****	Mycobacterium tuberculosis 1137Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas pulida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherich a coli K12 rfe
db Match	sp.CNX1_ARATH	sp:PRTS_SERMA	Andrew Andrews Company - From Andrews	sp:Y0D3_MYCTU	sp.Y0D2_MYCTU	gp:PPU242952_2	9 sp.MOEA_ECOLI	sp:CNX2_ARATH	sp:ALKK_PSEOL	sp:RHO_MICLU				sp:RF1_ECOLI	sp:HEMK_ECOLI		sp:YD01_MYCTU	sp:RFE_ECOLI
ORF (bp)	489	1866	684	1008	1401	561	1209	1131	1725	2286	603	969	1023	1074	837	774	648	1146
Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	1262886	1267427	1266267	1265611	1265427	1268503	1269343	1268267	1270043	1271192
Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	1264610	1265142	1265665	1266306	1266449	1267430	1268507	1269040	1269396	4833 1270047
SEO NO.	4816	4817	4618	4619	4820	4821	4822	4823	4824	4825	4826	4827	4628	4829	4830	4831	4832	4833
SEQ NO (DNA)	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333

	Function		hypothetical protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid-	birding protein ATP synthase C	H+-transporting ATP synthase chain	ATP synthase delta	chain	H+-transporting ATP synthase alpha	The second of th	gamma chain	H+-Iransporting ATP synthase beta chain	H+-transporting ATP synthase	epsilon chain	hypothetical protein	hypothetical protein	putative ATP/GTP-binding protein	hypothetical protein		hypothetical protein	thioredoxin
	Matched length (a.a.)		O.	245		7.1	151	į	274	516		320	483		122	132	230	95	134		5	301
	Similarity (%)		0 00	7 93	30.7	85.9	6 99		67.2	88 4		992	100 0		73.0	67.4	85.7	56.0	68.7		79.2	71.4
	Identity (%)	0 86		2 2	24.1	54.9	27.8		343	6 99		463	99.8	-	41.0	38.6	70.0	45.0	35.8		54 5	37.9
Table 1 (continued)	Homologous gene	l leg		atpl	Escherichia coli K12 atpB	Streptomyces lividans atpl	and an appropriate at the state of the state	Streptoni) cos micens	Streptomyces lividans atpD	Ante anabisti sociemeters	Streptotnyces indeals eith	Streptomyces lividans atpC	Corynebacterium glutamicum	AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Strentomyces coelicolor A3(2)	Design contribution	Bacillus subtilis yajo	Mycobacterium (uberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
	db Match	2_1		sp:ATP6_ECOLI	sp.ATPL_STRLI		Sp.AIPF_SIRCI	Sp. ATPD STRLI		Sp ATPA_SIKL	Sp.ATPG STRLI	_	\rightarrow	sp:ATPE_STRU	sp:Y02W_MYCTU	sp.Y036_MYCTU			sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU	
	ORF (bp)	5	480	249	810	240		264	813		1674	975	977	D #	372	471	069	180	285		312	921
•	Terminal (nt)		1271698	1272119	1273149	1273525		1274122	1274943	21.21.21	1276648	1277682	967016	0518/71	1279522	1280240	1280959		1281251	1281262	1282105	1283114
	Initial (nt)		1271213	1271871	1272340	1273286		1273559	1274131	1014/31	1274975	1276708		1277688	1279151	1279770			1	1281714	1281794	1282194
	SEQ	1_	4834	4835 1	4836 1			4838		4028	4840	707		4842	4843	4844	4845	101	4846	4847	4848	4849
			1334 4	1335 6	1336 4			1338		8551	1340			1342	1343	1344	13/5	3	1346	1347	1348	1349

	Function	FMNH2 dependent aliphatic sulfonate monooxygenase	alphatic sulforiates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-alpha-glucan branching enzyme (glycogen branching enzyme)	alpha-amylase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein beta- subunit	electron transfer flavoprotein alpha Subunit for various dehydronenases		nitrogenase cofactor sythesis protein		hypothetical protein
	Matched ength (a a)	366	240	228	311	710	467		211	260	367		244	335		375		397
	Identity Similarity (%)	743	758	728	62 1	727	50 5		87.6	68.5	70.0		64.8	61.8		67.7		55.7
	Identity (%)	503	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		79.5
Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia culi K12 ssuA	Mycobacter um tuherculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meliloti fixA	Rhizobium meliloti fixB	The second state of the second	Azolobacter vinefandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
	db Match	143 gp ECO237695_3	sp SSUC_ECULI	sp SSUB_ECO:	SP SSUA_ECOLI	sp GLGB_ECOLI	sp AMY3_D.CTH		sp FEPC_ECOLI	pir C70860	pır H70859		sp FIXA_RHIME	sp.FIXB_RHIME		Sp NIFS_AZOVI		sp Y4ME_RHISN
	ORF (bo)	1143	758	7.29	957	2193	1494	348	879	804	1056	612	786	951	615	28	312	1146
•	lerminal (nt)	.284466	1265284	.286030	1286999	1287281	1289514	1291373	1292577	1294025	1295206	1294436	1296220	1297203	1297093	1298339	1298342	1299000
-	Initial (nt)	1283324	1284517	4852 1295302	1286043	1289473	1291307	1291026	1291699	1293222	4959 1294151	1295047	1295435	1296253	1296479	4864 1297212	1298653	1366 4866 1300:45
	SEQ NO (9 3)	4850	4851	4852	4853	4854	4855	4856	4857	4858	4959	4860	4861	4862	4863	4864	4865	1966
_	SEQ NO (DNA)	1350	1351	1352	1353	1354		1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

_							 ;	· · · -			-			—т	 ;			
	Function	transcriptional regulator	acetyltransferase				IRNA (5-methylaminomethyl-z- thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical protein	glutamyl-tRNA(Gln) amidotransferase subunit C	glutamyl-tRNA(Gln) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphatefructose 6- phosphate 1-phosphotransrefase
	Matched length (a a)	-					361		332	200		677	220	97	484	263	96	358
:	Similarity (%)		55.3				6.08		0.99	65.8		70.6	70.9	64.0	83.0	54.0	79.2	77.9
Table 1 (continued)	Identity (%)	(%) (%)		34.8			618		33 7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
	Homologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
	db Match	SP:Y4MF_RHISN	sp:YHBS_ECOLI				pir.C70858		pir:870857	sp:TCMA_STRGA		sp.DNLJ_RHOMR	pir.H70856	sp.GATC_STRCO	sp:GATA_MYCTU	UVBIV_BUIV.qs	gp:SCE6_24	sp PFP_AMYME
	ORIF (bp)	225	504	942	1149	396	1095	654	066	1461	735	2040	663	297	1491	849	306	1071
	Terminal (nt)	<u> </u>		1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314470	1316083
	Initial (nt)	1300369	1300552	1301929	1303123	1303299	4872 1303829	1304536	1304932	1307384	1308196	1308330	1311097	1311320	1311625	1313270	1314775	1383 4883 1315013
	SEQ NO	-	4868	4869	4870	4871	4872	4873	4874	4875	9,87	4877	4878	4879	4880	4881	4882	4883
	SEQ		1368	1369	1370		1372	1373	-	1375	1276		1378	1379	1380	1381	1382	1383

5
10
15
20
25
30
35
40
45
50

Table 1 (continued)

,											- 1		 7		 ;	-		
	Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding prolein	high affinity ribose transport protein	hypothetical protein	iron-siderophore binding lipopratein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothetical membrane protein		dihydroxy-acid dehydratase	hypothetical protein
	Matched length (a a)		328	499	329	305	139	200	354	268	485	172	317	234	325		613	105
	Similarity (%)		314	76.2	76.9	77.7	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	9.89
	Identify (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		99.2	33.3
(222	Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coli K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptornyces coelicolor SCF34 13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU 29 ratB	Methanococcus jannaschii MJ1501 f4re	Escherichia coli K12 yqjG	Mycobacterium tuberculosis 1137Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
I	db Match		sp CCPA_BACME	sp.RBSA_ECOU	sp:RBSC_ECOLI	sp:RBSB_ECOLI	sp.RBSD_ECOLI	sp:YIW2_YEAST	gp:SCF34_13	sp.NTCI_RAT	gsp W61467	sp:F4RE_METJA	sp.YaJG_ECOLI	pir.A70672	pir:H70855		gp.AJ012293_1	pir:G70855
	ORF (bp)	630	1107	1572	972	942	369	636	1014	1005	1479	672	1077	774	1056	237	1839	564
	Terminal (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
	Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330967	1331102	1331953	1333424	1335280	1335975
İ	SEQ NC.	4884	4885	4886	4887	4888	4889	4890	4891	4892	4893	4894	4895	4896	4897	4898	4899	4900
	SEQ NO (DNA)	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	.400

_																					
	Function	hypothetical membrane protein	hypothetical protein		nitrate transport ATP-binding potein	mal:ose/maltodextrin transport ATP- binding protein	nitrate transporter protein			actinorhodin polyketide dimerase	coball-zinc-cadimıum resistance protein			hypothetical protein		D-3-phosphoglycerate dehydrogenase	hypothetical serine-rich protein			hypothetical protein	and the second s
	Matched length (a a)	62	99		167	87	324	!		142	304			642		530	105			620	
	Similarity (%)	100 0	55.0		809	78.2	56.8	,		73.2	72.7			53.7		100.0	52.0			63.1	
	Identity (%)	100 0	45 0		50.9	46.0	28.1			39.4	39.1			22.9		8.66	29 0			32.9	
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 yrlV	Sulfolobus solfataricus		Synechococcus sp mtD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA			Streptomyces coelicolor	Ralstonia eutropha czcD			Methanococcus jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7 01			Rhodobacler capsulatus strain SB1003	
	db Match	sp YII.V_CORGL	GP SSU18930_26		SP NRTD_SYNP7	SP MALK_ENTAE	SP NRTA_ANASP		:	SP DIM6_STRCO	sp CZCD_ALCEU			sp Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO			pır T03476	
	ORT (bp)	1473	231	202	498	267	882	447	369	486	954	153	069	1815	1743	1590	327	867	1062	1865	402
	Terminal (rt)	1336095	1338379	1342677	134:960	1342461	1342794	1344464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
	Initial (nl)	1337557	1338639	1342072	1342457	1342727	1343675	1344018	1344440	1344935	1345486	1345487	1346331	1346458	1348334	1350855	1352053	1352585	1355601	1355689	1356452
	SEQ NO (a a)	4901	4902	4933	4664	4935	4906	4937	4938	4939	4910	4911	4912	4913	4914	4915	4916	4917	4918	4919	4920
	SEQ NO (DNA)	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420

										Τ-	<u> </u>	<u> </u>	\neg	Т			\top	1			T	\top	1	T	•	_,	
10			Function	Bellevie	homoprotocatechitiate catabolism hitinctional	isomerase/decarboxylase [includes: 2-hydroxyhepta-2,4-diene-1,7-dioate	carboxymethyl-2-0xn-hex-3-ene-1,7-dioate decen-	decarboxylase)]	methyltransferase of 3-demethylubiquinone-9 3-O-	metnyiiransierase	Socilor Single Symmetry	glutamyl-tRNA synthetase	transcriptional regulator													thiam'n biosynthesis protein	
15		hodos	length (a.a)		2 2	228		0	192 d	_	1	485	67 (1												599	
20		1				202	 i		55.7		70.4	69.7	0.06												-	81.0	
		:	Identity Similarity (%)						23.4		38.0	37.3	77.0	!		-		-			-	-	-		-	65.1	
25	- 1	nued)	906				π					!	lor A3(2)							!						or thic	
30		Table 1 (continued)	Homologous gene				Escherichia coli C hpcE		CLX flow cideral	Escherichia coll N 12	Pacillus subtilis dhbC	Dacing subtilie off X	Bacillus suching graph graph (2)	Streptoniyes com												Dazillus subtilis thiA or thiC	המכוותם פתחוש
35				1	-						110040	5				-	-	+	:	-	1					- 10	CSD
40			db Match				sp:HPCE_ECOLI			sp:UBIG_ECOLI		8 Sp DHHC BA	sp.SYE_BACSU	gp.SCJ33_10			-										sp THIC BACSU
			ORF	· · · · · · · · · · · · · · · · · · ·	654		804			618		1128	~ i	213	516	522	342	621			330	213	183	318	1152	324	
45			-Ba	 -	1358210		1359062			1359669		1360168	1362848	1362926	1363142	1363732	1365256	1364340		1365217	1366137	1367505	1367888	1368395	1369551	1_1	7 1369877
50			-	(nt)	1357557		4922 1358259			1359052		1361295	1361361	1363138	1363657	<u> </u>	1364915	1364960	1365180	1365396	1365808	1367293	1368070	3 1368078	7 1368400		4939 1371637
			SEC	(a a)	4921		4922			4923		4924	4925	4926	4927		4929	4930		4932	4933			3 4936			9 493
55			SEO		1421		1422			1423		1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

				_	-	_		,				<u> </u>									
5		Function			lipoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein	The state of the s	guanosine 3',5-bis(diphosphate) 3'-	acetate repressor protein	3-isopropylmalate dehydratase large subunit	3-isopropylmalate dehydratase small subunit		mutator mutT protein ((7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTP		NAD(P)H-dependent dihydroxyacetone phosphate reductase	D-alanine-D-alanine ligase
15		Matched length (a.a.)			44		767		i 	299	256		178	257	473	195		294		331	374
20		Similar ty (%)			74.0		74.0			52.8	64.8		60.1	60.7	87.5	89.2		71.4		72.2	67.4
		Identity (%)			61.0		44.2			25.4	25.4		29.8	26.1	68.1	67.7		45.9		45.0	40.4
<i>30 35</i>	Table 1 (continued)	Homologous gene		And the state of t	Chlamydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus jannaschii Y441		Escherichia coli K12 spoT	Escherichia coli K12 iclR	Actinoplanes teichomyceticus leu2	Salmonella typhimurium		Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1655
40		db Match			GSP:Y37857		sp.PHS1_RAT			sp:YRKH_BACSU	Sp:Y441_METJA		sp:SPOT_ECOL!	sp.ICI.R_ECOLI	sp:LEU2_ACTTI	sp.LEUD_SALTY		gp:MLCB637_35		sp.GPDA_BACSU	sp.DDI.A_ECOLI
45		I ORF (bp)	348	531	132	936	2427	183	156	1407	750	477	564	705	1443	591	318	954	156	966	1080
		Terminal (nt)	1371979	1373131	1373929	1375491	1373350	1375805	1375933	1376149	1377666	1378466	1379566	1379555	1381882	1382492	1382502	1382845	1384085	1385125	1386232
50		Initial (nt)	1372326	1372601	1373798	1374556	1375776	1375987	1376088	1377555	1378415	1378942	1379003	1380259	1380440	1381902	1382819	1383798	1383930	1384130	1385153
		SEO NO.	4940	4941	4942	4943	4944	4945	4946	4947	4948	4949	4950	4951	4952	4953	4954	4955	4956	4957	4958
55		SEQ NO. (DNA)	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458

												· 							
	Function		thiamin-phosphate kinase	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	lipopolysaccharide core biosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
:	Matched length (a.a.)		335	245	568	693	108	29	167	155		65	252	220	234		322		223
	Similarity (%)		57.6	59.6	56.3	60.0	48.0	67.2	63.5	78.7		74.0	78.6	75.0	29.0		60.3		52.5
İ	Identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		67.0	\$6.4	32.7	27.4		28.6		26.9
Table 1 (continued)	Homologous gene		Escherichia coli K12 thil.	Mus musculus ung	Mycoplasma genitalium (SGC3) MG369	Escherichia coli K12 recG	Noisseria meningilidis	Propionibacterium freudenreichii subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia coli K12 MG1655 kdtB		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens nocM	Escherichia coli K12 MG1655 glnl I		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
	db Match		Sp. THIL ECOLI	Sp UNG MOUSE	sp:Y369_MYCGE	Sp. RECG ECOLI	GSP: Y75303	sp.BCCP_PROFR	SD YHHF ECOLI	sp.KDTB_ECOLI		GSP:Y75358	sp.GLNQ_BACST	sp:NOCM_AGRT5	Sp.GLNH_ECOLI		pir 1169160		sp:VINT_BPL54
	ORF (bp)	978	993	762	1581	2121	324	213	582	480	1080	204	750	843	861	807	978	408	756
	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1400185
	Initial (nt)	1387270	1387332	1388312	1389208	1390796	1391961	1392939	1393154	1393742	1394854	•	1395549	1396410	1397421	1397662	1399534	4975 1400926	4976 1400940
	SEO NO	+-	<u> </u>		•	4963		4965	4966	4967	Agen	4969	4970	4971	4972	4973	4974		4976
	SEO			_		1463		1465	1466		1468	1469	1470	1471	1472	1473	1474	1475	1476

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function						insertion element (IS3 related)		hypothetical protein								; ',		DNA; polymerase I	cephamycin export protein	DNA-binding protein	morphine-6-dehydrogenase	
	Matched length (a.a.)						26		37										896	456	283	284	
	Similarity (%)						2.96		97.0										80.8	67.8	65.4	76.1	
	Identity (%)						88.5		89.0										56.3	33.8	41.3	46.5	
Table 1 (continued)	Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium glutamicum										Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A. 15c	Pseudomonas putida morA	
	db Match						pir:S60890		PIR:S60890										sp:DPO1_MYCTU	sp:CMCT_NOCLA	gp:SCJ9A_15	sp:MORA_PSEPU	
	ORF (bp)	744	432	507	864	219	192	855	111	369	315	321	375	948	306	564	222	291	2715	1422	606	873	159
	Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320		1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
	fnitiat (nt)	1401333	1402272	1402874	1403128	1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	1411011	1411424	1412000	1412351	1412916	1413745	1495 4995 1417883	1417962	1418876	1420036
	SEQ NO. (a.a.)	4977	4978	4979	4980	4981	4982	4983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	1995	4996	4997	4998
	SEQ NO. (DNA)	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498 4998

5	Function	
10	Fur	31.9 58 3 163 hypothetical protein
15	nilarity Matched length (a a)	163
20	Identity Similarity Matched (%) (%) (9a)	583
	Identity (%)	31.9
25 (panuiju	gene	icolor
s Table 1 (continued)	Homologous gene	AFE ECOLI Streptomyces coelicolor
35	tch	i
40	db Match	654 sp YAFE ECOLI
		654
45	Terminal (nt)	1420071
50	Initial (nt)	4999 1420724 1420071
	SEQ NO (a.a.)	4999
		1 -

Function	hypothetical protein	30S ribosomal protein S1		hypothetical protein					inosine-uridine preferring nucleoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criplic asc operon repressor, ranscription regulator		excinuclease ABC subunit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hydrolase
Matched length (a a)	163	451		195					310	517	293	337	-	671	152	121	279		839	150	214
Similarity (%)	583	71.4		93.9	i				810	53.8	9.79	65.6		83.3	59.2	80.2	77.1		47.2	68.0	58.4
Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32.7	30.4
Homologous gene	Streptomyces coelicolor SCH5.13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13869 yacE					Crithidia fasciculata ıunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jarmaschii MJ0531	Escherichia colı K12 yttri	Escherichia coli K12 ytfG		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escherichia coli K12 ycbL
db Match	sp YAFE_ECOLI	sp.RS1_ECOLI		sp:YACE_BRELA					sp:IUNH_CRIFA	sp QACA_STAAU	sp RBSK_ECOLI	sp.ASCG_ECO∟I		2097 sp.UVRB_STRPN	sp:Y531_METJA	SP:YTFH_ECOLI	sp:Y1FG_ECOLI		pir:H70040	gp.SC9H11_26	sp:YCBL_ECOLI
ORF (bp)	654	1458	1476	009	1098	582	246	957	936	1449	921	1038	798	2097	441	381	846	684	2349	912	009
Terminat (nt)	1420071	1422556	1421096	1425878	1427354	1427376	1427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	1436869	1438201	1440026	1438212	1440675	1441793
Initial (nt)	1420724	1421099	1422571	1425279	1426257	5004 1427957	1428049	5006 1428290	1429159	1430642	1431579	1432612	1432750	5012 1434105	1436335	1437249	1437356	1439343	1440560	1441586	5019 1442392
SEQ NO (a.a)	4999	2000	5001	5005	5003	5004	5005	5006	5007	5008	5009	5010	5011	5012	5013	1514 5014	5015	5016	5017	5018	5019
SEQ NO.	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

									_										_	
5		Function	excinuclease ABC subunit A	hypothetical protein 1246 (uvrA region)	hypothetical protein 1246 (uvrA region)		AND THE RESERVE THE PROPERTY OF THE PROPERTY O	translation initiation factor IF-3	50S ribosomal protein L35	50S ribosomal protein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	hypothetical protein	glycerophosphoryl diester phosphodiesterase	fRNA(guanosine-2-0-)- methlytransferase	phenylalanyl-tRNA synthetase alpha chain
15		Matched length (a.a.)	952 e)	100	142 h)			179 tra	90 20	117 50			292 sn	270 sn sy	436 sn	393 sn	74 hy	244 gly	153 tRI	f d
20		Similarity (%)	80.6	27.0	47.0			78.2	76.7	92.7			71.6	70.4	57.6	71.3	56.0	50.0	71.2	
		Identity (%)	56.2	40.0	31.0			52.5	41.7	75.0			33.2	33.3	26.6	44.0	47.0	26.2	34.0	-
25 30	Table 1 (continued)	Homologous gene	Escherichia coli K12 uvrA	Micrococcus luteus	Micrococcus Iuteus			Rhodobacter sphaeroides infC	Mycoplasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coli K12 MG1655 ugpA	Escherichia coli K12 MG1655 upgE	Escherichia coli K12 MG1655 ugpB	Escherichia coli K12 MG1655 ugpC	Aeropyrum pernix K1 APF0042	Bacillus subtilis glpQ	Escherichia coli K12 MG1655 trmH	Bacillus subtilis 168 syfA
40	`-	db Match	sp.UVRA_ECOLI	PIR:JQ0406	PIR:JQ0406			sp.IF3_RHOSH	SP.RL35_MYCFE	sp.RL20_PSESY			sp:UGPA_ECOLI	sp:UGPE_ECOLI	sp.UGPB_ECOLI	sp:UGPC_ECULI	PIR:E72756	sp.GLPQ_BACSU	sp.TRMH_ECOLI	sp.SYFA_BACSU
		ORF (bp)	2847	306	450	717	2124	267	192	381	822	567	903	834	1314	1224	249	717	594	1020
45		Terminal (nt)	1445333	1443810	1444944	1446874	1445323	1448358	1448581	1449025	1449119	1450692	1451820	1452653	1454071	1455338	1454102	1455350	1456948	1458066
50	4	(nt)	1442487	5021 1444115	1445393	1446158	1447446	1447792	1448390	1448645	1449940	1450126	1450918	1451820	1452758	1454115	1454350	1456066	1456355	1457047
		SEO NO. (a.a.)	5020	5021	5022	5023	5024	5025	5026	5027	5028	505	5030	5031	5032		5034	5035	5036	5037
55		SEO NO. (DNA)	1520	1521	.522	1523	1524	.525	1526	1527	1528	1529	1530	1531	.532	.533	1534	1535	1536	1537

5			c	nthetase beta			nsferase		semialdehyde	nsferase	Iransferase	thetase	4	96		 			(tyrosine			
10			Function	phenylalanyl-tRNA synthetase beta chain		esterase	macrolide 3-O-acyltransferase		N-acetylglutamate-5-semialdehyde dehydrogenase	glutamate N-acetyltransferase	acelylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyase				hypothetical protein	tyrosyl-tRNA synthase (tyrosine tRNA ligase)	hypothetical protein		hypothetical protein
15			Matched length (a.a.)	343		363	423		347	388	391	401		478				50	417	149		42
20			Similarity (%)	71.7		55.1	56.3		99.1	2.66	89.2	99.5		0.09				72.0	79.6	64.4		75.0
			Identity (%)	42.6		26.5	30.0		98.3	99.5	0.66	99.5		83.3				48.0	48.4	26.9		71.0
25	,-	Table 1 (continued)	us gene	12 MG1655		bies estA	arofaciens		glutamicum	glutamicum	glutamicum	glutamicum		glutamicum				12 ycaR	٧1	nnaschii		rum Nigg
30		Table 1 (Homologous gene	Escherichia coli K12 MG1655 syfB		Streptomyces scabies estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum ASO19 argC	Corynebacterium glutamıcum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH				Escherichia coli K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum Nigg TC0129
35																						52
40		a de construire de la c	db Match	sp:SYFB_ECOLI		sp ESTA_STRSC	Sp.MDMB_STRMY		gp.AF005242_1	sp ARGJ_CORGL	sp:ARGD_CORGL	sp.ASSY_CORGL		gp:AF048764_1				sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR F81737
			ORF (bp)	2484	177	972	1383	405	1041	1164	1173	1203	1209	1431	1143	1575	612	177	1260	465	390	141
45			Terminal (nt)	1460616	1458196	1462128	1463516	1463934	1465123	1466373	1468548	1471413	1470154	1472907	1474119	1475693	1476294	.1476519	1477809	14/7929	1478503	1483335
50			Initial (nt)	1458133	1458966	5040 1461157	5041 1462134	5042 1463533	5043 1464083	5044 1465210	1467376	1470211	1471362	1471477	1472977	1474119	1475683	1476343	1476550	5054 1478393	1478892	1483475 1483335
		į	SEQ NO (a a)	5038	5039			5042		5044	5045	5046	5047	5048	5049	5050	5051	5052	5053	5054	5055	5056
55			SEQ NO (DNA)	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552		1554	1555	1556

	Function		hypothetical protein	translation initiation factor IF-2	hypothetical protein		hypothetical protein		hypothetical protein	DNA repar protein	hypothetical protein	h,pothetical protein	CTD synthase (UIP-ammonia	ligase)	nypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding	protein	chromosome partitioning protein or ATPase involved in active partitioning of diverse bacterial plasmids	hypothetical protein		thiosulfate sulfurtransferase	hypothetical protein	un it	pseudouridine synthase B
	Matched length	(aa)	84	182	311		760	1	i	574	40¢	313	1	549	157	 000 00	1 3	3	258	251		270	172		677
	Similarity	(%)	66.0	0.70	60 1		808	5	31.6	63 4	73.1	C8 1	-	167	713	71.7	1	28.7	73.6	64.5		67.0	65.7	-	72.5
	-	- %	61.0	36.3	29.6	<u> </u>	3 00	0.00	31.6	314	419	30		25.0	36.3	797		30.5	44.6	28.3		35.6	33.4	3	45.9
Table 1 (continued)	and a single sin	Homogogous gene	Calamydia pneumoniac	Description Principal IF?	Borrella bulguonen in 2	Bacillas sagning year		Bacillus subtilis yqxC	Mycobacterium tuberculosis H37Rv Rv1695	Escherichia coli K12 recN	Nycobacterium tuberculosis	Nycohacterium tuberculosis	H37Rv Rv1698	Escherichia coli K12 pyrG	Capital and the second	Bacillus suo: ilis yav	Staphylococcus anieus vero	Streptomyces fradiae tlrC	Caulobacter crescentus parA	Occillise cribbile vol.	Eachins such a year	tot character at a contract to	Datisca giomerata ist	Bacillus subtilis ypuri	Bacillus subtilis rluB
		db Match		T	ī	Sp. YZGD_BACSU		sp. YOXC_BACSU	sp.YFJB_HAEIN	SPECN ECOLI	pir H70502		pir.A70503	en PYRG ECOU		Sp YOKG BACSU	gp.AF093548_1	Sp:TLRC_STRFR	gp CCU87804_4		Sp YPUG_BACSU			Sp.YPUH BACSU	6 sp.RLUB_BACSU
		2 6		_		984	162	819	873	1770	1191		963	1662	<u>}</u>	657	912	1530	783		765	561	1967	543	75
	-	Terminal	(),,,	1483724	1486027	1487025	1487193	1488056	1489018	10000	1490001		1493109	1406174	1493174	1495861	1496772	1496795	1499645		1500695	1500911	1502576	1503176	1504238
	-			1483996	1484675 1	1486042	!	┷		 -	_!	2004 1430344	1492147		1493513	1495205	1495861	1498324	1498863		1499931	1501471	1501710	1502634	1503483
	-	200		5057 14	5058 1	5059	090	5061			5063	000	2065		9905	2005	5068	5069	5070		5071	5072	5073	5074	5075
		SEC SEC	. 5	1557 5	:558 5	1559 5	÷					1564	1565		1556	1567	1568	1560			1571	1572	1573	1574	1575

	Function	cytidylate kinase	GIP binding protein			methyl:ransferase	ABC transporter	ABC transporter		hypothetical membrane profein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxohepta-2,4-dienoate	preprotein translocase SecA subunit	signal transduction protein	hypothetical protein	hypothetical protein
	Matched length (a a)	220	435		!	232	499	602		257		499			130	210	805	132	234	133
	Similarity (%)	73.6	74 0		i	67.2	60 1	56 3		73.2		61.5			57.7	63.8	61.7	93.2	74.4	63.2
	identity (%)	38 6.	428		i L	36.2	797	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
Table 1 (continued)	Hamologous gene	Bacillus subtilis cmk	Bacilius subtrits yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium stratum M82B tetA	Corynebacterium striatum M82B tetB		Escherichia coli K12 ygiE		Bacillus subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobaclerium tuberculosis H37Rv Rv1828
	db Match	'sb KCY_BACSU	SP YPHC_BACSU	<u> </u>		sp YX42_NYC1U	554 prt 25°3302B	prf 25-3302A		sp YGIE_ECOL!		gp.AB029555_1			sp:YCHJ_ECOLI	pir C69334	sp:SECA_BACSU	gp:AF173844_2	sp:YODF_MYCTU	sp.Y00E_MYCTU
! !	O.K. (50)	69)	1557	665	499	813		1/67	925	789	189	1548	186	420	375	1164	2289	429	756	633
; ; !	Terminal (ii:)	1504945	1506573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	1519458	1520029	1520945	1521589
ļ	In tral (m)	1576 5076 1504256 1504945	1505017	1507327	5079 1507902 1507405	1580 5080 1508729 1507917	1581 5081 1508813		1511667	1512189	1514505	5086 1514527	1515159	1515396	1515782	5090 1516962	5091 1517170	1519601	1593 5093 1520190	1594 5094 1520957 1521589
_	SEO NO (a a)	9/05	5077	5078	5079	2080	5081	5082	5083	5084	5085		5087	5088	5089		5091	5092	5093	5094
	SEQ VO (ONA)	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594

5
10
15
20
25
<i>30</i>
35
40
45
50

	Function	hypothetical protein					hemolysin	hemolysin		DEAD box RNA helicase	ABC transporter ATP-binding protein	6-phosphogluconate dehydrogenase	thioesterase		nodulation ATP. binding protein I	hypothetical membrane protein	transcriptional regulator	phosphonates transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding profein		
	Matched length (a.a.)	178					342	65		374	245	492	121		235	232	277	281	268	250		
	Similarity (%)	84.3					0.69	65.5	:	69.5	66.1	99.2	67.8		68.1	76.3	63.9	63.4	62.3	72.0		!
	Identity (%)	71.4					33.9	31.4		41.2	34 3	0 66	39.7		39.6	43.1	7.92	29.9	27.2	44.8		
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1828					Bacillus subtilis yhdP	Bacillus subtilis yhdT		Thermus thermophilus herA	Mycobacterium tuberculosis H37Rv Rv1348	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1847		Rhizobium sp. N33 nod!	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phnE	Escherichia coli K12 phnE	Escherichia coli K12 phnC		
-	db Match	sp.YODE_MYCTU					sp:YHDP_BACSU	sp:YHDT_BACSU		gp_TTHERAGEN_1	sp YD48_MYCTU	gsp:W27613	pir G70664		sp.NODI_RHIS3	pir E70501	sp.YFHH_ECOLI	sp.PHNE_ECOLI	sp.PHNE_ECOLI	sp PHNC_ECOLI		
	ORF (bp)	573	510	1449	009	930	1062	1380	219	1344	735	1476	462	675	741	741	873	846	804	804	210	1050
	Terminal (nt)	1522343	1522432	1523052	1525973	1524568	1525473	1526534	1528186	1527987	1530220	1530341	1532394	1532996	1533781	1534521	1534529	1535382	1536227	1537030	1538968	1537870
;	Initial (nt)	1521771	1522941	1524500	1525374	1525497	1526534	1527913	1527968	1529330	5104 1529486	1531816	1531933	1532322	1533041	1533781	1535401	1536227	1537030	1537833	1538759	5115 1538919
	SEQ NO.	5095	9609	5097	5098	5099	5100	5101	5102	5103	5104	5105	5106	5107	5108	5109	5110	5111	5112	5113	5114	5115
	SEQ NO.	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615

	Function		phosphomethylpyrimidine kinase		hydoxyethylthiazole Kinase	cyclopropane-fatty-acyl-phospholipid synthase	sugar transporter or 4-methyl-o- phthalate/phthalate permease	purine phosphoribosyltransferase	hypothetical protein	arsenic oxyanion-translocation pump membrane subunit		hypothetical protein	sulfate permeasc	hypothetical protein						hypothetical protein	dolichol phosphate mannose synthase	apolipoprotein N-acyltransferase		secretory upass
	Matched length (a a)		262		249	451	468	156	206	361		222	469	- 26						01-	217	527		392
	Similarity (%)		70.2		77.5	55.0	66.9	59.0	68.5	54.6		83.8	83.6	50.0	3					87.3	71.0	55.6		55.6
	identity (%)		47.3		46.6	286	32.5	36.5	39.8	23.3		62.2	51.8	30.0	0.60					71.8	39.2	25.1		23.7
Table 1 (continued)	Homologous gene		Cid+ continued	Salmonella typnimurioni unio	Salmonella typhimurium LT2 thiM	Mycobacterium tuberculosis H37Rv ufaA1	Burkholderia cepacia Pc701	Thermus flavus AT-62 apt	Escherichia coli K12 yebN	Sinorhizobium sp As4 arsB		Streptomyces coelicolor A3(2)	COURTS OF BOOKER	Pseudoliloilas sp. 173 ciri.	Pseudomonas sp. 149 OKF G					Mycobacterium tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe dpm1	Escherichia coli K12 Int		Candida albicans lip1
	db Match			Sp. TI IID SALTY	SP THIM_SALTY	pir.1-170830	98	2,401262B	-			qp:SCI7 33		gp:PSIKIEICI_0	GP.PSTRTETC1_7					pir.A70945	prf.2317468A	Sp.LNT_FCOLI		gp:AF188894_1
	ORF (bp)	- -	\rightarrow	1584	804	1314	1386	47.4	-:-		483	693			426	615	207	189	750	396	810	1635	741	1224
	Terminal (nt)		\neg	1539820	1542119	1546289	1546307	1001	154/90/	1550398	1550951	1552237		1553972	1553297	1554070	1555067	1554891	1555086	1556771	1557014	1557859		
	Initial (nt)	4	1539664	1541403	1542922	1544976		_:-	_ــ	1549403	7474 1650460	5124 1551545	2 2 2	5126 1552518	1553722	5128 1554684	5129 1554861	5130 1555079	1555835	5132 1556376	1557823	5134 1559493	1560237	
	SEO	(a.a)	5116 1	5117 1						5122	70.7	5124		5126	5127	5128		5130	5131				<u> </u>	
		(DNA)	1616	1617						1622		1624	6701	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636

.

	i	ı	- 1	- 1		1	1	_T	_T	1								
	Function	precorin 2 methyltransterase	precoriin 6Y C5, 15	meinyitransterase	-	oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocase	hypothetical protein	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hypothetical protein
	Matched length (a a)	291	=======================================			244	382		1030	268	85	317	324	467		61	516	159
	Similanty (%)	56.7	60 8			75.4	61.3	1	55.7	62.7	69.4	61.2	64.8	77.3		80.3	74.2	50.0
	Identity (%)	31.3	32.4		!	54.1	36.1		26.5	28.7	44.7	31.9	32.4	53.1		54.1	48.6	42.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H3/Rv cobG	Pseudurionas dentrificans SC510 cobl.			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 tatC	Mycobacterium feprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
	db Match	pir C70764	sp COBL_PSEDE	! ! !		Sp.YY12_MYCTU	gp AF014460_1		sp:MTR4_YEAST	sp TATC_ECOLI	sp:YY34_MYCLE	sp:YY35_MYCTU	sp:YY36_MYCLE	sp:YY37_MYCTU		pir.B70512	pir.C70512	PIR:H72504
	CRF (bb)	774	12/8	366	246	738	1137	639	2787	1002	315	981	972	1425	249	192 р	1542 p	480 F
	Term nal	1562553	1562525	1564237	1564482	1564565	1565302	156/106	1567117	1569932	1571068	1571506	1572492	1573491	1575205	1574945	1575406	1577806
	(nt)	63/ 5137 1561780	1563802	1639 5139 1563872 1564237	1564237	1565302	1566438	1566468	1569903	5145 1570933	5146 1571382	1572486	1573463	1574915	1574957	5151 1575136	1576947	5153 1577327 1577806
	NO (a a)	5137	1638 5138	5139	5140	5141	5142	5143	5144		5146	5147	5148	5149	5150	5151	5152	5153
. (ON ON ON	.637	1638	-639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651		1653 5

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

ନ
\tilde{a}
š
Ξ
Ξ
⊏
ŝ
೭
_
•
<u>•</u>
五
쥰
-

Function	AAA family ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence associated protein	quinolon resistance protein	aspartate ammonia-iyase	ATP phospharbosyltransferase	beta-phosphoglucomutase	5-methyltetrahydrofolate homocysteine methyltransferase	30 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase	arsenate reductase		cysteinyl-tRNA synthetase
Matched length (a a)	545	281	436	269	69	385	526	281	195	1254		366	388	129	123		387
Similarity (%)	78.5	0.67	67.2	71.4	72.5	61.0	8.66	97.5	63.1	62.4		49.5	63.9	64.3	75.6		64.3
Identity (%)	51.6	57.3	38.1	45.4	40.6	21.8	99 B	96.8	30.8	31.6		22.4	33.0	32.6	47.2		35.9
Homologous gene	Rhodococcus erythropolis arc	Mycobacterium leprae pim T	Homo sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 aspA	Corynebacterium glutamicum ASO19 hisG	Thermotoga maritima MSB8 1M1254	Escherichia coli K12 melH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmid pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS
db Match	prf 2422382Q	pir.S72844	gp. AF 005050_1	pir.B70513	sp.VAPI_BACNU	prf:2513299A	sp.ASPA_CORGL	gp:AF050166_1	pir.H72277	sp:METH_ECOLI		sp:AHPF_XANCH	1176 sp.ACR3_YEAST	sp.ARSC_STAAU	pir G70964		sp SYC_ECOLI
ORF (bp)	1581	834	1323	834	264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212
Terminal (nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1585603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	1596249
Initial (nt)	1578531	1579400	1580771	1580807	1581851	1583481	1585490	1586445	1587504	1591235	1591343	1592966	1593337	1594532	1595030	159621	1597460
SEQ NO	5154	5155	5156	5157	5158	5159		5161	5162	5163	5164	5165	5166	5167	5168	5169	51/0
SEQ NO.	1654	1655	1656	1657	1658	1659	1660	1661	1562	1663	1664	1665	1666	1667	1660	1669	1670

_	i				[_		1	Т		i	ij	T	۰ و	<u>.</u>	T		T		\top]
	Function	bacitracin resistance protein	a se for the second sec	Oxidorease	lipoprotein	dihydroorotate dehydrogenase					hip operan ORF I (biotin biosynthetic	enzyme)	Neisserial polypeptides predicted to	he useful antigens for vaccines and diagnostics		ABC transporter			ABC transporter	niromycin N-acetyltransferasc	I AO/Ivsine arginine, and	ornithine)/AO (arginine and ornithine)transport system kinase	methylmalonyl-CoA mutase alpha	Suppose .
	Matched fength (a.a)	255		320	359	334			0	nas		152		198		507) SSC		535	2,0	3	339	741	
	Similarity (%)	69.4		62.6	53.5	67.1				55.3		75.0		33.0		200	08.7		67.1	3	8	72.3	87.5	
	Identity (%)	37.3		33.4	27.0	44.0				34.7		44.1		26.0		9	43.6		36.8		32.4	43.1	72.2	
Table 1 (continued)		Transpire coli K12 hach	Eschericina cui viz pacci	Agrobacterium tumeracieris mocA	Mycobacterium tuberculosis H37Rv lppl.	Agrocybe aegerita ura1				Pseudomonas syringae tnpA		Escherichia coli K12 ybhB		Neisseria meningitidis		M82B	tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis	A3823.5 mutB
	db Match	1	sp.BACA_ECOLI	prf 2214302F	pir.F70577	SO PYRD AGRAE	1			gp:PSESTBCBAD_1		SD YBHB ECOLI		GSP:Y74829			prf.2513302A		prf.2513302B		pir.JU0052	sp:ARGK_ECOLI		11 SP:MUTB_STRCM
	ORF	- 1	879	948	666	1113	2 2	Ē,	807	1110	486	531	5	729	1	603	1797	249	1587	351	609	1089		221.
	Ja .		1597745	1599614	1600677	4001004	1001001	1601931	1603466	1604629	1604830	1805281	1075001	1606689		1608248	1605861	1609335	1607661	1609842	1610844	1611150		1612234
	Initial		1598623	1598667				1602281	1602660	1603520	1605315	1000	1186091	1605061		1607646	5182 1607657	1609087		1610192				1614444
	SEQ	(a.a)	5171 1	5172 1		<u> </u>		5175 1	5176	5177	5178		5179	5180		5181	5182	5183	5184	5185	5186	5187		5188
	EOS			672 5		÷	674	675	979	1677	1678		1679	1680	j	1681	1682	1683	1684	1605	1686	1687		1688

-		eta -	T	_		c	 <u></u>									T -			Ţ					
	Function	methylmalonyl-CoA mutase beta	subunit	hypothetical membrane protein		hypothetical membrane protein	or selections and profession	hypothetical filering and process	hypothetical protein		ferrochelatase		Invasin		aconitate hydratase		transcriptional regulator	GMP synthetase		hypothetical profein	hypothetical protein			hypothetical protein
	Matched length (a.a.)	1		224		370	!	141	261		364		611		050	}	174	235	3	221	98	8	-	446
	Similarity (%)	6 0 3	08.2	70.1		87.0		787	72.8		2 7 2	Si di	56.5		0 40	6.50	816	1 3	6	62.0	6	90.7		86.1
	Identity (%)	1	41.6	39.7		64.1		44.7	51.0		9	30.0	25.5			66.8	54.6		21.3	32.6	1	37.2		61.2
Table 1 (continued)	Homologous gene	Signaturania	Streptomyces clinidinolicity A3823.5 mut/	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis	H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2)		in the free denterichii	subsp. Shermanii hemH	Strontococus faecium		sisonosis	Mycobacteriam tags as a H37Rv ach	Mycobacterium tuberculosis	H3/KV KV KV TV TV	Methanococcus Janinasciiii MJ1575 guaA	Streptomyces coelicolor A3(2)	idoseanci michi	Methanococcus Jaimasciiii MJ1558		Noisseria meningitidis MC58 NMB1652
	db Match		SP MUTA_STRCM		i	\neg	sp:YSU9_MICIO	pir B70711	ap SCC77 24			sp HEMZ_PROFR	0.14.7	Sp P34 LIVII O		pir F70873	nir F.70873		pir F64496	ap:SCD82 4	$\neg \tau$	pir.E64494	3	12 gp: AE002515_9
	ORF	(dq)	1848	723		597	1296	435	843		783	1110	-i -		498	2829	264		756	663	3	6 267	3 393	4 1392
	Terminal	(nt)	1614451	1617300	202	1617994	1618321	1619672	1620167	10701	1621838	1621841			1625428	1629107	_!_	1028201	1630668	1630667	_	1631926	1631353	
	Initial		1616298		0 /00 01	1617398	1619616	1620106	000	6001791	1621056	1622950	02500	1624826	1625925	5199 1626279		5200 1629298	1629913	+	1631329	1631660	1631745	1705 5205 1631933
	SEQ	NO. (a a.)	-		5190	5191	5192 1	5,103		5194	5195	2000		5197	5198	5,199		5200	5201		5202	5203		5205
		NO.			1690 5	1691 5	1697 5		$\overline{}$	1694	1695	-	9691	1697	1698	1600		1700	1701		1702	1703		1705

	Function	antigenic protein	antigenic protein	cation-transporting ATPase P		hypothetical protein					host cell surface-exposed lipoprotein	integrase	ABC transporter ATP-binding protein		sialidase	transposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitrogen fixation protein	
	Matched length (a.a.)	113	152	883		120					107	154	497		387	236	37	88	***************************************	107	149	
	Similarity (%)	0 09	0.69	73.2		58.3			į		73.8	60 4	64 4		72.4	100.0	72.0	43.0		70.1	85.2	
	Identity (%)	54.0	59.0	42.6		35.8					43.0	34.4	32.8		51.9	9.66	64.0	320		32.7	63.8	
Table 1 (continued)	Homologous gene	Neisseria gonorrhoeae ORF24	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sll1614 pma1	***************************************	Streptomyces coelicalor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 yjjK		Micromonospora viridifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum TnpNC	Plasmid NTP16		Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7	
	db Match	GSP: Y38838	GSP:Y38838	sp.ATA1_SYNY3		gp:SC3D11_2					pri:2408488H	prf 2510491A	sp:YJJK_ECOLI		sp:NANH_MICVI	gp:AF121000_8	GPU.AF164956_23	GP:NT1TNIS_5		pir B75015	pir.S72754	
	ORF (bp)	480	456	2676	783	489	1362	357	156	162	375	456	1629	1476	1182	708	243	261	585	423	447	
	Terminal (nt)	1632109	1632682	1636241	1633781	1636244	1638442	1638776	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1646063	1645501	1647133	1647212	1647651	
	Initial (nt)	1632588	1633137	1633566	1634563	1636732	1637081	1639132	1639365	1639656	1639781	1640546	1642674	1644218		1645661	1645821	1645861	1646549	5224 1647634	1648097	
	SEQ NO.	5206			5209	5210	5211	5212	5213	5214	5215	5216	5217	5218	5219	5220	5221	5222	5223		5225	
	SEQ				1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	

5 10		Function	hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding protein	hypothelical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ubiquinol oxidase assembly factor / heme O synthase	transketolase	transaldolase	
15	i	Matched tength (a.a.)	55	411	252	377	493	217	518	317	266	291		418	323	295	675	358	 :
20		Similarity (%)	57.0	84.4	89.3	83.0	73.0	71.4	67.8	77.3	74.8	746		51.0	70.9	66.8	100.0	85.2	
		Identity (%)	480	64.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0	62.0	
25	Table 1 (continued)	l lomologous gene	Aeropyrum pernix K1 APE2025	leprae nifS	oelicolor A3(2)	tuberculosis	sp. PCC6803	oelicolor A3(2)	tuberculosis c	leprae bc2	leprae	tuberculosis ic		Pyrococcus horikoshii PH0450	li K12 qor	Nitrnhacter winogradskyi coxC	ım glutamicum kt	ı loprae al	
30	Table 1	Поторо	Aeropyrum per	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv 1462	Synechocystis sp. PCC6803 sir0074	Streptomyces coelicolor A3(2) SCC22.08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus ho	Escherichia coli K12 qor	Nitrobacter wir	Corynebacterium ATCC 31833 tkt	Mycobacterium leprae MLCL536.39 tal	
40		db Match	PIR:C72506	pir.S72761	gp SCC22_4	pir.A70872	sp:Y074_SYNY3	gp:SCC22_8	pir F70871	pir:S72783	pir:S72778	pir.C70871		pir.C71156	sp:doR_ECOLI	gp:NWCOXABC_3	gp:AB023377_1	sp:TAL_MYCLE	
		ORF (bp)	162	-	756	1176	1443	693	1629	1020	804	666	357	1629	975	696	2100	1080	1164
45		Terminal (nt)	1648709	1648100	1649367	1650249	1651433	1652894	1655671	1656700	1657515	1658675	1659140	1661136	1662552	1662630	1666502	1667752	1666601
50		Initial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	5232 1654043	1655681	1656712	1657677	1659496	1659508	1661578	1663598	1664403	5241 1666673	1667764
		SEO NO.	5226			5229	5230	5231	5232	5233	5734	5235	5236	5237			5240		5242
55			1726			1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742

_																		
- A - A - A - A - A - A - A - A - A - A	Function	glucose-6-phosphate dehydrogenase	oxppcycle protein (glucose 6- phosphate dehydrogenase assembly protein)	6-phosphogluconolactonase	sarcosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate isomerase	probable membrane protein	phosphoglycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothelical protein	hypothetical protein	excinuclease ABC subunit C
	Matched length (a a.)	484	318	258	128	500	205				259	128	405	333	324	309	281	701
	Similarity (%)	100.0	71.7	58.1	57.8	46.6	100.0	-			9.66	51.0	98.5	99.7	87.4	82.5	76.2	61.5
	Identity (%)	8.66	40.6	28.7	35.2	24.6	100 0				99.2	37.0	98.0	99 1	63.9	56.3	52.0	34.4
Table 1 (continued)	Hornologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W sol3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebacterium glutamicum ATCC 13032 soxA				Corynebacterlum glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium fuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechocyslis sp. PCC6803 uvrC
	db Match	gsp:W27612	pir.A70917	sp. SOL3_YEAST	Sp. SAOX BACSN	gp:AF126281_1	gp:CGL007732_5				sp.TPIS_CORGL	SP.YCQ3_YEAST	sp.PGK_CORGL	sp.G3P_CORGL	pir.D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	2088 SP.UVRC_PSEFL
	ORF (bp)	1452	957	705	405	1401	840	174	687	981	777	408	1215	1002	981	1023	927	2088
	Terminal (nt)	1669401	1670375	1671099	1671273	1673123	1673266	1677384	1678070	1680128	1680332	1681670	1681190	1682624	1684117	1685110	1686152	1687103
	Initial (nt)	1667950	1669419	1670395	1671677			1677211	1678756	1679148	1681108	1681263	1682404	1683625	1685097	1686132	1687078	1689190
	SEQ NO	5243	5244	5245	5246		5248	5249	5250	5251	5252	5253	5254	5255	5256	5257	5258	5259
	SEQ	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759

___35 ____

5	1			nazine	y rib aperon	orotein	y rib operon	and 3, 4. 4. phosphate nthesis)	ha chain	nınase	pimerase	1/NOP2	transferase	Se		synthetase	tabolism		1	
10		Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin biosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4- d-hydroxy-2-bulanone 4-phosphate synthase (riboflavin synthesis)	ribวที่สงเก synthase alpha chain	riboflavin-specific deaminase	ribulose-phosphate 3-epimerase	nucleolar protein NOL 1/NOP2 (eukaryotes) family	methionyl-tRNA formyltransferase	polypeptide deformylase	primosomal protein n`	S-adenosylmethionine synthetase	DNA/pantothenate metabolism flavoprotein	hypothetical protein	guanylate kinase	integration host factor
15		Matched length (a a)	150	154	72	217	106	404	211	365	234	448	308	150	725	407	409	81	186	103
20	;	Similarity (%)	68.7	72.1	089	48.0	520	84 7	192	62.7	73 1	60.7	67.9	72.7	463	99.5	80.9	87.7	74.7	90.3
		Identity (%)	32.7	43.5	59.0	26.0	44.0	65 6	474	373	436	30.8	41.6	44.7	22.9	99.3	58.0	70.4	39.8	90.6
- 30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escherichia coli K12	Bacillus subtilis	Bacillus subfilis	Bacillus subtilis	Mycobacterium tuberculosis ribA	Actinobacillus pleuropneumoniae ISU-178 ribE	Escherichia coi K12 r bD	Sacchaiomyces cerevisiae S288C YJL121C rpe1	Escherichia coli K12 sun	Pseudomonas aeruginosa fmt	Bacillus subtilis 168 def	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis 137Rv Rv1390	Saccharomyces cerevisiae guk1	Mycobacterium tuberculosis H37Rv Rv1388 mlHF
<i>35</i>		db Match	SP. YR35_MYCTU My	Sp.RISB_ECOLI Esc	GSP Y83273 Bac	GSP Y83272 Bac	GSP: Y83273 Bac	gp AF001929_1 My	sp RISA_ACTPL Act	Sp.RIBD_ECOLI ES		sp.SUN_ECOLI Esc	Sp.FMT_PSEAE Pse	Sp.DEF_BACSU Back	Sp. PRIA_ECOLI Esc	gsp:R80060 Bre	sp DFP_MYCTU	sp:YD90_MYCTU My	pir:KIBYGU	My pir:B70899 H3
	-	ORF (bp)	673	477	228	714	336	1266	533	984	657	:332	945	507	2064	1221	1260	291	627	318
45		Terminal (nt)	1689201	1689869	1690921	1691421	1691347	1690360	1691639	1692275	1693262	1693967	1695499	1696466	1697084	1699177	1700508	1702032	1702411	1702991
50		Initial (nt)	1689779	1690345	1690654	1690708	1691012		1692271	1693258	1693918	1695298	1696443	1696972	1699147	1700397	1701767	1702322	1703037	1703308
		SEQ NO (a a.)	5260	5261	5262	5263	5264	5265	5266	5267	5268	5269	5270	5271	5272	5273	5274	5275	5276	5277
55		SEQ NO.	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777

						Table 1 (continued)				
SEQ NO.	SEQ NO	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a a)	Function
1778		1704350	1703517	834	sp DCOP_MYCTU	Mycobacterium tuberculosis H37Rv uraA	51.8	73.6	276	orotidine-5'-phosphate decarboxylase
1779	5279	1707697	1704359	3339	pir;SYECCP	Escherichia coli carB	53.1	77.5	1122	carbamoyl-phosphate synthase large chain
1780	5280	1708884	1707706	1179	sp.CARA_PSEAE	Pseudomonas aeruginosa ATCC 15692 carA	45.4	70.1	381	carbamoyl-phosphate synthase small chain
1781	5281	1710357	1709017	1341	sp:PYRC_BACCL	Bacillus caldolyticus DSM 405 pyrC	42.8	67.7	402	dihydroorotase
1782	5282	1711348	1710413	936	sp. PYRB_PSEAE	Pseudomonas aeruginosa A1CC 15692	48.6	79.7	311	asparlate carbamoyltransferase
1783	5283	1711927	1711352	576	Sp. PYRR BACCL	Bacillus caldolyticus DSM 405 pyrR	54.0	80.1	176	phosphoribosyl transferase or pyrimidine operon regulatory protein
1784	5284	1712596	1713759	1164	sp:Y00R_MYCTU	Mycobacterium tuberculosis H37Rv Rv2216	39.7	73.4	297	cell division inhibitor
1785	5285	1713830	1714306	477						
1786	5286	1714299	1714760	462						
1787	5287	1714741	1714950	210					-	
1788	5288	1716062	1715382	681	sp:NUSB_BACSU	Bacillus subtilis nusB	33.6	69.3	137	N utilization substance protein B (regulation of rRNA biosynthesis by transcriptional antitermination)
1789	5289	1716692	1716132	561	Sp.EFP_BRELA	Brevibacterium lactofermentum ATCC 13869 efp	97.9	98.4	187	elongation factor P
1790	5290	1717868	1716780	1089	gp:AF124600_4	Corynebacterium glutamicum AS019 pepQ	99.5	100.0	217	cytoplasmic peptidase
1791	5291	1719032	1717938	1095	gp:AF124600_3	Corynebacterium glutamicum AS019 aroB	98.6	99.7	361	3-dehydroquinale synthase
1792	5532	1719598	1719107	492	gp AF124600_2	Corynebacterium glutamicum AS019 aroK	100.0	100.0	166	shikimate kinase
1793	5293	1721381	1720971	411	sp.LEP3_AERHY	Aeromonas hydrophila tapD	35.2	54.9	142	type IV prepilin-like protein specific Leader peptidase
j	-		-				í			

		_																		
5			٠.	rotein, arsR			ter, rotein	ATP-binding	lenase			Se	1		tase	!	osidase	i.		tor
10			Function	hacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyl-tRNA synthetase	hypothetical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
15	·	1	Matched length (a a)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
20			Similarity (%)	68.7	73.2		50.7	71.7	0.09	70.1	9.69	71.8	84.8		89.2	74.1	53.6	54.0		62.0
			Identity (%)	45.8	35.9		23.6	38.3	20.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
25		(pan		. A3(2)	eriae		λε	U	losis	losís	losis	IS ATCC	losis		spS	losis	iae			A3(2)
30	.•	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hinuU		Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacilius ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
35			; ;	555			23	 -	ŹΪ	ΣÏ	ΣÏ							一		ळ ळ
40			db Match	gp:SC1A2_22	gp. AF 109162_2		pir.A75169	sp.FHUC_BACSU	pir D70660	pir.E70660	pir:F70660	Sp.SYA_THIFE	sp.Y0A9_MYCTU		SP. SYD_MYCLE	sp:Y08Q_MYCTU	Sp.:AMYH_YEAST	sp:YHGE_BACSU		gp:SCE68_13
			ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	185/	648	994
45			Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1726625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
50			Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1/34811	1735056	1738679	1740559	1741219	1741313
			SEO NO (a a)		5295	5296	5207	5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	530B	5309	5310
55			SEQ NO (DNA)	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

	Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydralase		alpha-glycerulphosphale oxidase	hislidyl-IRNA synthetase	hydrolase	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein export membrane protein	
	Matched length (a.a)		371	1	116	462		298	421	211	175	!	128		760	185	49	558	332	
	Similarity (%)		88.1		77.6	714	;	539	722	62 1	61.1	!	100.0		6.99	100.0	98.8	6.09	57.2	
	Identity (%)		72.8		37.1	46.8	!	28 4	43.2	403	35 4		98.4		99.9	99.5	98.0	30 7	25.9	
Table 1 (continued)	Homologous gene		Streptornyces coeticolor A3(2) SCE15, 13c		Pseudomonas aeruginosa PAO1 slfA	Escherichia coli K12 sdaA	-	Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus scrypB		Corynebacterium g'utamicum ATCC 13032 orf4		Corynebacterium glutamicum ATCC 13032 rel	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium tuberculosis H37Rv Rv2585c	Escherichia coli K12 secF	
	db Match		gp.SCE15_13		sp.SLFA_PSFAF	sp SDHL_FCOLI		prf.2423362A	sp SYH_STAAU	gp CJ11168X3_12	prf.2313309A		gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	sp Y08G_MYCTU	sp SECF_ECOLI	
	ORF (bp)	714	1113	126	495	1347	861	1686	1287	639	507	237		342	2280	555	150	1743	1209	630
	Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
	Initial (nt)	1741893		1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964		1752186	1754894	1755479	1755/48	1757228	1758797	5329 1759707
	SEQ NO			5313		5315	5316		5318	5319	5320	5371	5322	5323		5325	5326	5327	5328	
	SEQ			1813		1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

5	Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein
15	Matched length (a.a.)	616	106	331	210	180	250
20	Identity Similarity Matched (%) (%) (aa)	52.0	66.0	81.9	74.3	63.3	78.4
	Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2
55 Table 1 (continued)	Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	618 sp RUVA_MYCLE Mycobacterium leprae ruvA	663 sp.RUVC_ECOLI Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 vebC
<i>35</i>	db Match	1932 prf.2313285A	363 SP YOBD_MYCLE	1080 SP.RUVB_ECOLI	SP RUVA_MYCLE	sp.RUVC_ECOLI	753 sp.YEBC_ECOLI
	ORF (bp)	1932	363	1080	618	663	753
45	Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1763990
50	Initial (nt)	1760734	5331 1761367	1762498	1763134	5334 1763839	135 5335 1764742 1763990
	SEQ NC (a.a.)	5330	5331	5332	5333	5334	5335
	N O E	330	331	332	333	334	35

	_				,		_											
Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or N- acetylglucosaminyl- phosphatidylinositol biosynthetic protein	acyltransferase	CDP-diacylglycerol-glycerol-3- phosphate phosphatidyltransferase	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein			
Matched length (a.a.)	616	106	331	210	180	250	283	111	170	414	295	78	194	647	400			
Similarity (%)	52.0	0.99	81.9	74.3	63.3	78.4	68.6	61.3	61.2	49 3	67.8	78.0	78.4	689	61.8			
Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3			
Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streptomyces coelicalor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C spt14	Streptomyces coelicolor A3(2) SCL2.16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtilis ywbN		and the state of t	
db Match	prf.2313285A	Sp YOBD_MYCLE	sp.RUVB_ECOLI		sp:RUVC_ECOLI	sp.YEBC_ECOLI	sp:TESB_ECOLI	gp:SC10A5_9	pir H70570	3 sp.GPI3_YEAST	gp:SCL2_16	pir:C70571	pir:D70571	sp.SYT2_BACSU	sp:YWBN_BACSU			
ORF (bp)	1932	363	1080	618	663	753	846	474	462	1083	963	657	099	2058	1206	564	546	735
Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1763990	1765015	1756442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	1773893	1774457
Initial (nt)	1760734	1761367	1762498	1763134	1763839	1764742	1765860	1765969	1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	5347 1775191
SEQ NC (a.a.)	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343	5344	5345	5346	5347
SEQ NO (DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847

5	Function	:					puromycin N-acetyltransferase					-						ferric transport ATP-binding protein				!	pantothenate metabolism flavoprotein		
15	Matched length (a a l	:					190		j									202	1				129		
20	Similarity (%)	!					54.2											28.7					66 7		
	Identity (%)						36.3									-		28.7					27.1		
Table 1 (continued)	us gene						latus pac			!								e afuC					ilis dfp		
30 Table 1	Homologous gene						Streptomyces anulatus pac											Actinobacillus pleuropneumoniae afuC					Zymomonas mobilis dfp		
35	db Match						SP PUAC STRLP					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						Sp AFLIC_ACTPL					gp:AF088896_20		
	ORF (bp)	3/8	594	1407	615	399	7	1086	11011	669	2580	1113	1923	483	189	312	429	ls 765	666	159	1107	420	591 g ₈	864	420
45	Terminal (nt)	1777646	1//803/		17/9554	1780507	1781019	1/82790	1784381	1783382	1782894	1785732	1786907	1789562	1789768	1790057	1790461	179743R	1793426	1793496	1794820	1795621	1796181	1797049	1797769
50	Initial (nt)	1///269	5349 1777444	5350 1779508	1780158	1780935	1781585	1781/05	1783281	1784080	1785473	1786844	1788829	1789080	1789580	1789746	1790889	1791842	1792428	1793654	1793714	1795202	1795591	1796186	1797350
	SEO NO		5349	5350	5351	5352	5353	5354	5355	5356	5357	5358	5359	5360	5361	5362	5363	5364	5365	5366	5367	5368	5369	5370	5371
55	SEO	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

	Function																		: : : : :	transposon TN21 resolvase			protein-tyrosine phosphatase		
	Matched length (a.a.)																		1	186			164		
	Similarity (%)																			78.0	 		51.8		
	Identity (%)											·	_		-				; :	51.1			29.3		!
Table 1 (continued)	Homologous gene											and the state of t								Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
	db Match															*				sp:TNP2_ECOL!			sp.PVH1_YEAST		
	ORF (bp)	120	/35	225	894	156	474	753	423	687	429	465	237	681	960	480	681	285	375	612	1005	375	477	726	423
	Terminal (nt)	1797850	1798023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
	Initial (nt)	1797969	1/98/5/	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	1809761	1810541	1811564	1812215	1812881	1812882
	SEQ NO	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391	5392	5393	5394	5395
	SEQ NO DNA)	1872	18/3	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893.	1894	1895

				_		_	· -			1		ι	ī			r	_		ī					
5		Function	scription factor							references and the contract of		tein					lein	ıt (153 related)	t (IS3 related)			DNA-specific		
10		Ē	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (1S3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		prímase
15		Matched length (a.a.)	216		-							545					166	298	101			622		381
20		Similarity (%)	65.7									55.2					75.0	92.6	84.2			50 6		64.3
		Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8
25	ontinued)	gene	color A3(2)				-					ia MSB8					utamicum	utamicum	utamicum			ni recJ		e phi-O1205
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSB8 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf 1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
35												 - -					O	0 0	υē	<u> </u>				S O
40		db Match	gp:SCA32WHIH_6									pir.C72285					PIR:S60891	pir.S60890	pir.S60889			sp:RECJ_ERWCH		pir.T13302
		ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650
45		Terminal (nt)	1814517	1815651	1815128	1816636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
50		Initial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	1836675
		SEQ NO. (a.a)	5396	5397	5398	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
55		SEQ NO. (DNA)	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917

ATP-dependent Clp proteinase ATP-binding subunit

61.0

30.2

Escherichia coli K12 clpA

sp:CLPA_ECOLI

1965

1860727

5440

ATP/GTP binding protein

347

52.

Streptomyces coelicolor SC5C7.14

gp:SC5C7_14

1257

1856788

1855532

1854

1856885 1858763

10	Function				helicase		phage N15 protein gp57										actin binding protein with SH3 domains					
15	Matched length (a.a.)				620		109					,					422					
20	Similarity (%)				44.7		64.2										49.8					
	Identity (%)				22.1		36.7								1		28.7	-				
25 Itinued)	jene				iniae ATCC		ene57										s pombe					þ
ج S Table 1 (continued)	Homologous gene				Mycoplasma pneumoniae ATCC 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					Streetomyces coelicolor
35 – 40	db Match				sp:Y018_MYCPN		pir:T13144										gp:SPAPJ760_2					
	ORF (bp)	3789	447	534	1839	375		366	618	537	528	798	186	372	438	576	1221	852	1395	594	180	
45	Terminal (nt)	1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	
50	Initial (nt)	1838349	1842235	1842804	5421 1843518	1845483	1845872	1846698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049	1851220	1851473	1852479	1854261	1855058	
	SEO NO. (a.a)	5418	5419	5420		5422	5423	5424	5425	5426	5427	5428	5429	5430	5431	5432	5433	5434	5435	5436	5437	1
55	SEQ NO (DNA)	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	

5	Function					ATP-dependent helicase					hypothetical protein	deoxynucleotide monophosphate kinase				7.	type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothelical protein	
15	Matched length (a.a.)					693					224	208					363	358			504	
20	Similarity (%)					45.9					47.8	61.5					99.7	2.66			45.8	
	Identity (%)					21.4					25.9	31.7					99.2	99.7			24.6	
5 Table 1 (continued)	anag sr					ureus SA20					licolor A3(2)	i-C31 gp52					glutamicum A	glutamicum 3			licolar A3(2)	
S Table 1 ((Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52					Corynebacterium glutamicum ATCC 13032 cgltM	Corynebacterium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
<i>35</i>	db Match				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sp.PCRA_STAAU p					gp:SCH17_7	prf:2514444Y					prf.2403350A	pir.A55225			gp:SC1A2_16	
	ORF (bp)	474	156	324	312	2355	558	378	465	264	777	702	225	2166	273	6507	1089	1074	1521	717	1818	186
45	Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50	Initial (nt)	1860752	1861320	1861842	1862088	1862945	1865265	1865842	1866328	1866832	1867098	1867886	1868895	1871092	1871373	1877886	1878312	1879412	1883990	1884936	1885230	1887405
	SEQ NO (a.a.)	5441	5442		5444	5445	5446	5447	5448	5449	5450	5451	5452	5453	5454		5456	5457	5458	5459	5460	5461
55	SEQ NO.	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1955	1957	1958	1959	1960	1961

5	Function	SNF2/Rad54 helicase-related protein	hypothetical protein		hypathetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein									
15	Matched length (a a)	06	163		537		!		724					-		1004									
20	Similarity (%)	70.0	56 4		47.9				52.5							49.1									
	Identity (%)	46.7	33.1		20.7	:			25.3							20.1				-					
ontinued)	eueb si	durans	e phi-gle		pXO2-16				98							nA									
S S Table 1 (continued)	Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coli clpB							Homo sapiens numA									
<i>35</i>	db Match	gp:AE001973_4	pir T13226		gp:AF188935_16				sp.CLPB_ECOLI							pir.S23647						-			
	ORF (bp)	351 91	864 pi	330	1680 g	1200	1293	2493	1785 sı	621	1113	846	981	879	198	2766 p	900	1251	969	714	1008	1659	1488	399	1509
45	Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
50	Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900916	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	1909498	1910508	1912300	1913820	1914371	1916233
	<u>-</u>	5462	5463	5464	5465	5456	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	5478	5479	5480	5481	5482	5483	5484	1985 5485
55	SEO	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985

					-	T	T		\exists		1	1	1		\neg	Т	T	1		T		1	Ţ				_	_
5			Function											submaxillary apomucin			modification methylase				hypothetical protein			hypothetical protein				
15			Matched	(a.a)							-			1408		Ť	0	-			114 hy	-		328 hv		-		
20			Similarity (%)										40.7	43.2	1	9 39	02:0			` -	58.8	+		54.6	+	†	-	
		i	Identity (%)										23.2	7.07		426	2				38.6			27.1		-		
25		linued)	ene																		losis			ije				
30		Table 1 (continued)	Homologous gene										Sus scrofa domestica			Escherichia coli eco 81					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137				
35	_		, , , ,		-							<u>.</u>	107		 		-		-		ΣI					-	$\left \cdot \right $	
40			db Match										pir. T03099			sp:MTE1_ECOLI					pir:H70638			sp:Y137_METJA				
		Ļ	ORF (bp)	360	-	312	645	759	549	930	306	357	4464	579	945	171	375	1821	201	468	381	507	837	942	624	210	534	
45			Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522	1934971	1936849	1937411	1937486	
50			Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019	
		_ _	NC)	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496	5497	5498	5499	5500	5501	5502	5503	5504	5205	5506	2207	5508		
55		0	NO (DNA)	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007		2009	

5	Function				***************************************		***************************************				surface protein				major secreted protein PS1 protein			DNA topoisomerase III					major secreted protein PS1 protein precursor	
15	Matched tength (a a)					 	!			 -	304				270			597					344	
20	Similarity (%)					j -	:		,		44 1				54.4			50.9					54.7	
	Identity (%)				 						230				30 7			23.8					29.7	
25 Table 1 (continued)	us gene										calls esp				glutamicum avum) ATCC			pB Bd					glutamicum avum) ATCC	
·	Homologous gene	;									Enterococus faecalis esp	1			Corynebacterium glutamirum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB		TO THE PARTY WHEN THE PARTY AS A			Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1.	
35	db Malch	i i	AND ST. ST. ST. ST. ST. ST. ST. ST. ST. ST.								prt 2509434A				sp.CSP1_CORGL			OP3_ECOLI					sp.CSP1_CORGL	
40	ORF (bp)	191	534	588	444	53	303	216	300	885		297	81	429		2430	198	2277 sp:TOP3	2085	891	432	44	1887 sp.C.	291
45	Terminal O	1940135 1	1938531 5	1940844 5	1941550 4	1941732 7	1942812 3	1943310 2	1943653 3	1944564 8	1944608 8	1945595 2	1945952 3	1946609 4		1949021 24	1951619 8	1952546 22	1956203 20	1958450 8	1959765 4.	1960371 7	1961114 18	1963139 29
50	Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114	1963000	1963429
	SEQ NO (a a.)	5510	5511	5512	5513		5515	5516	5517	5518	5519	5520	5521	5522	5523	5524	5525	5526	5527	5528	5529	5530	5531	5532
55	SEQ NO (DNA)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032

5		Function				thermonuclease										single stranded DNA-binding prolein								serine protease				
15		Matched length (a.a.)				227										225	 -							249				
20		Similarity (%)				57.7										59.1								52.6				
		Identity (%)				30.4										24.9								25.7				
30 Partition 25	and commercial	Homologous gene				Staphylococcus aureus nuc				-						ila sp. ssb			-			-		Anopheles gambiae AgSP24D				
35		ĭ				Staphyloc				_						Shewanella sp.								Anophele				
40		db Match				sp.NUC_STAAU										prf.2313347B								sp.S24D_ANOGA	-			
		ORF (bp)	1230	1176	357	684	147	564	1452	459	1221	1419	591	396	237	624	579	462	507	588	333	558	570	-	693	366	747	180
45		Terminal (nt)	1963514	1964727	1965911	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1973737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979809	1980885	1981657	1982028	1982817	1981912
50		Initial (nt)	1964743	1965902	1966267	1966301	1967435	1967604	1968264	1969745	1970254	1971672	1973147	1973809	1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	1980965	1981663	19820/1	1982091
		SEQ NO (a a)	5533	5534	5535	5536	5537	5538	5539	5540	5541	5542	5543	5544	5545	5546	5547	5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	5550
55		SEQ NO (DNA)	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2050

	:		 : !									 . :		ated)						S1 protein	
	Function								rase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase		a distance of the second	- Address of the state of the s		major secreted protein PS1 protein precursor	ıntegrase
						i	1	_	integrase	trans	trans	<u>;</u>	trans	esu	trans	-	\downarrow	1		prec	ıntec
	Matched length (a.a.)						-		406	124	117	-	31	43	270					153	223
	Similarity (%)								55.9	94.4	84.6		8.96	88.4	53 7					37.0	56.1
	Identity (%)								29.6	83.9	6.07		80.7	74.4	31.1		-			25.0	28.7
Table 1 (continued)	Homologous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGI 2005 ISaB1	Brevibacterium lactofermentum CGI 2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum ort1	Streptornyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
		-					_		Mycc	Brev CGI	GGI.		Brev CGL	Cory orf1	Streg					Cory (Brev 1796	Myc
	db Match								SP VINT_BPML5	gsp:R23011	gsp:R23011		gsp:R21601	pir.S60889	gp.SCJ11_12					sp:CSP1_CORGL	Sp:VINT_BPML5
	ORF (bp)	363	273	264	234	342	273	303	1149	390	417	207	114	135	828	354	891	432	744	1584	687
	Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985364	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
	Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1988303	1988383	5570 1988483	1988664	1989605	1990667	1990764	1991620	1992538	1994121	1995294
	SEQ NO		5560	5561	5562	5563	5564	5565	5566	5567	5568	5569		5571	5572	5573	5574	5575	5576	5577	5578
	SEQ			2061	2062	-	2064	2065	2066	2067	2068	2069	2070	1 202	2072	2073	2074	2075	2076	2077	2078

10		Function	sodium dependent transporter		riypothetical protein		riboflavin biosynthesis protein	potential membrane protein		methionine sulfoxide reductase	hypothetical protein	hypothetical protein	ribonuclease ()	1-denxy-D-xylulose-5-phosphate	RNA methylransferase		hypothetical protein	deoxyuridine 5'-triphosphate	hynothetical protein	
-	::	Matched length (a.a.)	88	5	36		233	384	! ;	u71	232	201	37:	618	472		268	140	150	
20		Similarity (%)	76.1	210	2		64.4	719	27.0	5	77.2	786	528	78.5	52.3		62.7	82 1	7.07	
		Identity (%)	39.8	48.0			33.5	42.5	413	;	55.2	55.7	25.9	55.3	25.4		38.1	55.0	46.0	
25 - 30 - 45 -	(Confined)	Homologous gene	Helicobacter pylon 26695 HP0214	Bacillus subtilis vxaA			Mycubaclerium tuberculosis H37Rv Rv2671 nbD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii merA		Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd KW20 Hi0390 rnd	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9.09 dut	Mycobacterium tuberculosis	
40		db Match	pir.F64546	sp.YXAA BACSU			pir.C70968	pir:E 70968	gp AF 128264 P	i -	pir H70968	pir:C70528	SP:RND_HAFIN	gp:AB026631_1	pir:E72298		pir:C70530	sp:DUT_STRCO	pir:E70530	
	-	(bp)	306	432	345	336	969	1254	408	426	969	624	1263	1908	1236	282	861	447	549	207
45		Termina (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1999949	1999707	2000521	2002112	2203334	2003402	2005462	2006979	2006777	2007738	2008798	2008876
50	<u>_</u>	(nt)	1996088	1996106		1997168	1997545	1998289	1999542	2000132	2001216	2001489	2002072	2005309	2006697	2006698	2007637	2008184	2008250	2009082
	SEO		5579	5580	5581	5582	5583	5584	5585	5586	5587	5588	5589	5590	5591	5592	5593	5594 2	5595 2	5596 2
55	SEO	(DNA)	2079	2080	2081	2082	2083	2084	2085	2086	7087	2088	2089	2090	2091	2092	2093	2094	2095	2096

,												 :				<u></u> ,		
	Function	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase	- 049799 0498 m Gallina managaran ma	hypothetical protein	ATP-dependent RNA helicase
:	Matched length (aa)	C01	198	248	200	422		578	127	92	523	144	228	7.7	329		305	
	Similarity (%)	81.0	68.2	80.2	98.6	51.4		808	59.1	85.5	61.2	100.0	9.66	64.0	. 66	į	0.62	50.7
	Identity (%)	580	38 4	54.4	08.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1	 	45.3	24.4
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2659c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtil s yrkO		Mycobacterium tuberciilosis H37Rv Rv2917	Mycobacterium Iuberculosis 1137Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5 08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 dtxR	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium Iactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1
	db Match	pır F70530	Sp SUHB_ECOLI	SP PPGK_MYCTU	prt 2204286A	SP YRKO_BACSU		sp Y065_MYCTU	pir H70531	pir G70531	gp SCH5_8	prf 2204286C	pir 140339	GP-AF010134_1	sp GAI.E_BRELA		pir:E70532	sp.MTR4 YEAST
	ORF (bp)	29:	9.8	828	1434	1335	537	1710	636	237	1533	432	684	234	987	1323	957	2550
	Termina' (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	2023945	2023948	2026379	2029043
	Initial	5597 (2009570	2010539	2010555	2011863	2015496	2016121 2015585	2017966	2018119	2018202	2018744	2020293	2022266	2022546	2022959	2025270	2025423	2026494
	SEQ NO (a a)	2597	8533	6633	2600	5601	5602	5603	5604	5605	9099	5607	5608	5609	5610	5611	5612	5613
	SEQ NO (DNA)	2002	2098		2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113

5

diaminopimelate epimerase

569

64.7

33.5

Haemophilus influenzae Rd KW20 HI0750 dapF

831 Sp.DAPF_HAEIN

2132 | 5632 | 2052675 | 2051845

				T			_															
5		-	Function	hydrogen peroxide-inducible genes activator		ATP-dependent helicase	requiatory protein		SOS regulatory profein	galactitol utilization operon repressor	phosphofructokinase (fructose 1-phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uracil permease	ATP/GTP-binding pratein			
. 15			Matched length (a a)	299		1298	145		222	245	320	592	262	345	549	81		407	419	:		1
20			Similarity (%)	65.6		76.2	86.2		71.6	67.8	55.6	64.0	62.6	55.7	9.69	71.6		70.5	90.0	İ		
			Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			
25		ntinued)	gene	~			gerus nrdR			gatR	olor A3(2)	ophilus plsl	glpR	itus fruK	fruA	philus XI		yrP	orf11*	-		
<i>30</i> <i>35</i>		Table 1 (continued)	Homologous gene	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelico SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophilus XI 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			
40	:		db Match	sp OXYR_ECOLI		Sp. HRPA_ECOLI	gp SCAJ4870_3	İ	sp:LEXA_BACSU	SP GATR ECOLI	gp:SCE22_14	sp.PT1_BACST	sp:GLPR_ECOLI	sp.K1PF_RHOCA	sp:PTFB_ECOLI	sp:PTHP_BACST		Sp.PYRP_BACCL E	gp:AF145049_8			
			ORF (bp)	981	1089	3906	420	420	969	777	096	1704	792	066	1836	267	582	1287	1458	785	537	_
45			Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051106	2051842	
50			Initial (nt)	2029177	2031365	2031478	2035880	2036409	2036812	2037815	2038591	2041321	2041728	2042519	2043736	2045762	2047295	2048606	2050107	2050321	2051306	
			NO (a.a.)	5614	5615	5616	5617	5618	5619	5620	5621	5622	5623	5624	5625	5626	5627		5629	5630	5631	
55			SEQ NO (DNA)	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	_

_													_		-	-		_
	Function	tRNA delta-2- isopentenylpyrophosphate transferase	· Company of the state of the s	hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transport ATP-binding protein	hypothetical membrane protein
	Matched length (a a)	300	-	445	-		190	494	242	7.1	225	273	142	67		197	223	228
	Similanty (%)	68.7		75.7			63.7	86.4	9.66	73.0	100.0	9.66	6.99	71.6		61.4	69.5	58.8
	Identity (%)	40.0		48.5			29.0	68.4	9.66	0.99	100.0	99.3	34.5	40.3		33.0	33.2	24.6
Table 1 (continued)	Homologous gene	Escherichia coii K12 miaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicum ATCC 13032 gluA	Neisseria gonorrhoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glutarnicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
	db Match	sp MIAA_ECOLI		pr::B70506			pir.C70506	sp.Y195_MYCLE	sp.GLUA_CORGL	GSP:Y75358	sp.GLUC_CORGL	sp.GLUD_CORGL	SP. RECX_MYCLE	pir A70878		SD:BIOY BACSH	sp.POTG_ECOLI	pir F69742
	ORF (bp)	903	675	1359	1020	1023	699	1566	726	219	684	819	597	234	738	576	669	609
	Terminal (nt)	7052684	2053609	2055761	2054724	ī	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866	2068474
	Iritial (nt)	2053586	2054283	2054403	2055743	2055765	2057788	2059420	2059774	2060414	2061629	2062441	2063894		2066404	 -		2067866
	SEO	(a a) 5633	5634	5635	5636	5637	5638	5639	5640	5641	5642	5643	5644	_ :	5646			5649
		(DNA)	2134		2136			2139	2140	2141	2112	2143	2144	2145	2146	2147	2148	2149

5			5kD protein)	j prolein)	nduced	osphate		ococcal		ein	otein E						hate	S15	
10	Function	hypothetical protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)	- :	tellurite resistance protein	stage III sporulation protein	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	nucleoside hydrolase
	Matched length (a a)	228	269	83	165	160	117	30		358	845	216	645	250			742	89	319
20	Surilanty (%)	78.5	9 68	78.3	68 5	72.5	52.1	70.0		59.8	64.6	61.0	99.4	9.66			85.3	88.8	63.3
	Identity (%)	417	72.5	54.2	41.8	38.8	24.8	0.09		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
Table 1 (continued)	Horrologous gene	Mycobacterium tuberculosis	Mycobacterium Iuberculosis H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X cinA	Streptococcus pyagenes pgsA	Arabidopsis thaliana ATSP: T16118 20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spollIF.	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glutamicum ATCC 13032 orf4	Corynebacterium glutarnicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	Leishmania major
<i>35</i>	לab Match	pir 860176 N	sp 35KD_MYC1U N	N H70878	SP.CINA_STRPN S	pri.2421334D S	pir T10688 A	gp AF071810_1 S			sp.SP3E_BACSU B	gp:SC4G6_14 S	Sp.YOR4_CORGL A	sp YDAP_BRELA (E			pri:2217311A S	pir.F69700 B.	prf 2518365A Le
	ORF (bp)	069	828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948
45	Terminal (nt)	2069392	2068556	2069616	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813	2082105	2082932	2085436	2085879
50	Initial (nt)	2008703	5651 2069383	2069936	2070512	2071121	2071315	2071624	2072066	2072905	2076056	2077024	2079275	2081136	2082115	2082368	2085190	2085702	2086826
	SEQ NO	2650	5651	5652	5653	5654	5655	5656	5657	5658	5659	5660	5661	2995	5663	5664	5665	9999	2667
55	SEQ NO (CNA)	2150	2151	2152	2153	2154	2155	2155	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167

	Function	bifunctional protein (riboflavin kinase and FAD synthelase)	ONA seguidine synthase B	The second of th	hypothetical prolein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	ribosome-binding factor A	translation initiation factor IF-2		hypothetical protein	n-utilization substance protein (transcriptional termination/antitermination factor)		hypothetical protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC- transporter ATP-binding protein
	Matched length (aa)	329		303	47	237	273	433	308	108	1103		83	352		165	534	337	292	552
	Similarity (%)	79.0		61./	73.0	62.5	68.9	78.8	708	70.4	629	20	66 3	710		65 5	609	69 4	69 2	813
	Identity (%)	56.2		32.7	65.0	42.2	46.9	51.0	36.7	32.4	27.7	2/./2	44.6	42.3		34.6	25.3	37.7	38.4	57.6
Table 1 (continued)	Homologous gene	Corynebacterium	ammoniagenes ATCC 5872 IIDF	Bacillus subtilis 168 truB	Corynebacterium arrimoniagenes	Streptomyces coclicolor A3(2) SCSA7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H3/Rv Rv2836c dinF	Mycobacterium tuberculosis	Dacillie subtilie 168 rbfA	Oper Man Control of the Control of t	Stigmatella aurantiaca DW4 InfB	Streptomyces coelicolor A3(2) SC5H4.29	Bacillus subtilis 168 nusA		Mycobacterium tuberculosis H37Rv Rv2842c	Bacillus subtilis 168 dppE	Escherichia coli K12 dppB	Bacillus subtilis spo0KC	Mycobacterium tuberculosis H37Rv Rv3663c dppD
********	db Match	MP CORAM		sp.TRUB_BACSU	PIR PC4007	gp:SC5A7_23	pir:B70885	pir:G70693	pir H70693	ויייסטעט איזטטייי	Sp. KBFA_BACSO	sp:IF2_STIAU	gp:SC5H4_29	sp:NUSA_BACSU		pir.E70588	SO DPPE BACSU	So DPPB ECOLI	orf. 1709239C	pir:H70788
	ORF (bp)			891	228	651	804	1305	986		44/	3012	336	966	1254	534	1602	929	÷	\div
	Terminal (nt)	0.000	50803	2088863	2087954	2089218	2089861	2090751	2092051		2093055	2093712	2096844	2097380	2099815		2101841	<u>. </u>		
	Initial		2087941	2087973	2088181	2089868	2090664	2092055	2093046		2093501	2096723	2097179	2098375	2098562	2098945	0400040			
	SEO		2008	5669		5671	5672	5673	5674		5675	9299	5677	5678		5680		_		5684
			2168	2169		2171	2172	2173	2174		2175	2176	2177	2178	2170	2180	13	2181	2872	2184

	Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinagen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase					methionine aminopeptidase	penicillin binding protein	response regulator (two-component system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
:	Matched length (a.a.)	578	243	37	342	237	488	151	338	466					252	630	216	424	360
	Similarity (%)	84.6	65.0	60.7	9 69	73.8	68.7	62.3	65.7	76.6					75.8	56.5	72.2	56.8	58 1
-	Identity (%)	67.0	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0					47.2	27.3	44.0	29.5	24.4
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicolor A3(2) SC5H1.10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100 gor			the second secon		Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279
	db Match	sp.SYP_MYCTU	gp:SCC30_5	sp BCHD_RHOSH	prf.2503462AA		sp:YPI C_CLOPE	gp.SC5H1_10	pir.A70590	sp.GSHR_BURCE					sp:AMPM_ECOLI		prf.2518330B	prf.2518330A	gp AE001863_70
	ORF (bp)	1764	735	759	1101	750	1422	006	1014	1395	942	474	357	729	789	1866	630	1149	957
	Terminal (nt)	2105801	2108386	2108389	2109155	2110434	2112659	2112717	2116774	2118310	2117015	2119080	2119495	2120356	2120359	2121296	2123219	2123848	2126045
	Initial (nt)	2107564	2107652	2109147	2110255	2111183	2111238	2113616	2115761	2116916	2117956	2118607	2119139	2119628	2121147	2123161		2124996	5702 2125089
	SEQ NO.	5685	5686	5687	5688	5689	2690	5691	5692	5693	5694	5695	9699	5697	5698	5699	5700	5701	
	SEQ NO (DNA)		2186	2187	2188		2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202

.

													•							
	Function	ABC transporter		hypothetical protein (gcpE, protein)		hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphate reductoisomerase				ABC transporter ATP-binding protein	pyruvate formatc-lyase 1 activating enzyme	hypothetical membrane protein	phosphatidate cytidylylfransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2
	Matched length (a a)	225		359		405	147	312				245	356	94	294	185	109		280	254
	Similarity (%)	71.1		/38	Ì	736	43.0	42.0		•		75.1	78.0	74.5	56.5	84.3	43.1		76.8	83.5
-	Identity (%)	37.3	;	44.3		43.0	36.0	22.8	1			37.1	0.99	41.5	33.3	47.0	28.4		49.6	54.7
Table 1 (continued)	Homologous gene	Bacillus subtilis 168 yvrO		Escherichia coli K12 gcpE		Mycobacterium tuberculosis H37Rv Rv2869c	C'ulamydia trachomatis	Escherichia coli K12 dxr				Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH	Annual Carlotte Commission of the Carlotte Commi	Streptomyces coelicolor A3(2) SC2E1.42 tsf	Bacillus subtilis rpsB
	db Match	pif 2420410P		sp.GCPE_CCOU		pir:G70886	GSP:Y37145	sp.DXR_ECOLI				pir:B72334	sp:YS80_MYCTU	pir A70801	sp.CDSA_PSEAE	sp.RRF_BACSU	prf.2510355C		sp.EFTS_STRCO	pir.A69699
	ORF (bp)	069	162	1134	612	1212	645	1176	441	480	1578	855	1098	258	855	555	729	861	825	816
	Terminal (nt)	2126753	2126926	2127350	2129461	2128669	2130950	2129903	2131762	2131247	2133402 2131825	7133406	2134454	2136141	2136235	2137286	2137936	2139854	2139003	2140071
	Initiat (nt)	2126064	2127087	2128483	2128850	2129880	2130306	2131078	2131322	2131726			5714 2135551	2135884	2137089	2137840		2138994	2139827	2221 5721 2140886 2140071
	SEQ NO.	5703	5704	5705	5706	5707	5708	5709	5710	5711	5712		5714	5715	5716	5717	5718	5719	5720	5721
	SEQ NO				•	2207	2208	2209	2210	_	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221

1																		
5	Function	hypathetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII		signal peptidase	Fe-regulated protein	Andread and the state of the st	50S ribosomal protein L19	thiamine phosphate pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyme thiS (thiG1) protein	thiamine biosynthetic enzyme thiG protein	molybdopterin biosynthesis protein
15	p _a	hypath	site-spe	hypoth	Mg(2+)	hypoth	hypoth	ribonuc		signal p	Fe-regu		50S rib	thiamin pyropho	oxidore	thiamine biosy (thiG1) protein	thiamin protein	molybd
	Matched length (a.a.)	120	297	395	504	119	101	190		285	323		111	225	376	62	251	437
20	Similarity (%)	58.0	68.7	66.8	8.27	72.3	96.0	69.5		61.1	59.1		6.88	6.09	64.1	742	76.9	56.8
	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.6		32.3	25.4		70.3	28.4	34.0	37.1	48.2	30.2
inued)	ene	ulosis		ulosis	ulosis	ulosis	ulosis	ae Rd		TK21	aureus sirA		ohilus rpIS	Ē	or A3(2)	iiS	Sig	×F
& Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd HI 1059 rnhB		Streptomyces lividans TK21 sipY	Staphylococcus aureu		Bacillus stearothermophilus rplS	Bacillus subtilis 168 thiC	Streptomyces coelicolor A3(2) SC6E10.01	Escherichia coli K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF
35			Pr		¥,H	M _y	ΣΞ	문도		Strep SipY	Sts		Ba	Ba	S St	ES.	F.S.	5
40	db Match	sp:YS91_MYC1U	prf.2417318A	sp:YX27_MYCTU	sp:YX28_MYCTU	sp:YX29_MYC1U	sp:YT01_MYCTU	sp:RNI-12_HAEIN		prf.2514288H	prf:2510361A		sp:RL19_BACST	sp.THIE_BACSU	gp:SC6E10_1	sp:THIS_ECOLI	sp:THIG_ECOL!	prf.2417383A
	ORF (bp)	504	924	1182	1521	366	303	627	792	786	936	213	339	663	1080	195	780	1134
45	Terminal (nt)	2141760	2141763	2142885	2144066	2145576	2146264	2146566	2148022	2147261	2149166	2149359	2149634	2150997	2152118	2152329	2153113	2154191
50	Initial (nt)	2141257	2142686	2144066	2145586	2145941	2146566	2147192	2147231	2148046	2148231	2149571	2149972	2150335	2151039	2152135	5737 2152334	2153058
	SEQ NO (a a)	5722	5723	5724	5725	5726	5727	5728	5729	5730	5731	5732	5733	5734	5735	5736	5737	5738
55	SEQ NO. (DNA)	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238

			<u> </u>																			
	Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	d:carboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-muconate cycloisomerase				IRNA (guanine-N1). methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	Signal recognition particle protein				cell division protein
	Matched length (a a)	776	334	456	65	350				273	210	172	69	83	196	256	318	559		-		505
	Similarity (%)	78.7	65.3	78.3	80.0	663			:	648	57.6	72.1	2 99	79.5	61.7	69.1	63.8	787				66.1
	Identity (%)	56 6	27.0	45.8	40.0	39 1				34.8	30.5	52.3	29.0	47.0	32.1	26.6	35.5	58.7				37.0
Table 1 (continued)	Homologous gene	Bordetella pertussis TOHAMA I tex	Bacillus subtilis 168 degA	Chlamydophila pneumoniae CWL029 ybhl	Spinacia oleracea chloroplast	Pseudomonas putida pdaB				Escherichia coli K12 tm[)	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshii OT3 mtrA	Bacillus subtilis 168 ffh				Escherichia coli K12 fisY
	db Match	sp TEX_BORPE	pir.A36940	pir.H72105	prf 2108268A	sp.PCAB_PSEPU	-			SP IRMD_ECOLI	gp.SCF81_27	SP RIMM_MYCLE	pir.B71881	pir:C47154	pir.T14151	prf:2512328G	prf.2220349C	sp.SR54_BACSU				sp:FTSY_ECOLI
	ORF (bp)	2274	975	1428	219	1251	66	393	069	819	648	513	348	495	929	867	978	1641	633	417	699	1530
	Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748	2164737	2164815	2166098	2166124	2166990	2167944	2171058	2172131	2172877	2173759
	Initial (nt)	2156733	2157721	2159181	2159237	5743 2160537	2160670	2161503	2162196	2163014	2163098	2164260	5750 2164390	2165309	2165523	2166990	2167865	2169584	2170425	2171715	2172209	2175289
	SEO NO.	5739	5740	5741	5742		5744	5745	5746	5/47	5748	5749	5750	5751	5752	5753	5754	57.55	5756	5757	5758	5759
1	SEQ NO (DNA)	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	\rightarrow	2253	2254	2255	2256	2257	2258	2259
										_												

hypothetical protein

238

76.9 55.6 58.8 62.6

50.0

Mycobacterium tuberculosis H37Rv Rv2927c

sp:Y06G_MYCTU

789

2190540

5775 2191328

2275

transport protein ABC transporter

559 541

28.3 26.6 hypothetical protein

388

35.3

Streptomyces coelicolor A3(2) SC9C7.02

Escherichia coli K12 cydC Streptornyces verticillus

1530 sp.CYDC_ECOLI 1644 prf. 2104260G

2193165

2191522

9776

2276

2194694

2193165

2278 | 5778 | 2196883 | 2198004 | 1122 | gp:SC9C7_2

44

5		Function			glucan 1,4-alpha-glucosidase or glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein
15		Matched length (a.a.)			1144		1206	92		305	257			188	285	221	176
20		Similarity (%)			46.2		72.6	73.9		0.09	73.5			76.6	66.7	76.5	62.5
		Identity (%)			22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8
25	ontinued)	e gene			evisiae a1		erculosis nc	erculosis		2 yfeR	ае			sus gep	2 mutM or	rncS	ercutosis
30	Table 1 (continued)	Homologous gene			Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581,28c			Dichelobacter nodosus gep	Escherichia coli K12 mutM or fpg	Bacillus subtilis 168 rncS	Mycobacterium tubercutosis H37Rv Rv2926c
40		db Match			SP.AMYH_YEAST		sp:Y06B_MYCTU N	sp:ACYP_MYCTU N		sp:YFER_ECOLI E	pir:S72748 N			gp:DNINTREG_3 C	sp:FPG_ECOLI	pir.869693 B	SP.YOGF_MYCTU N
		ORF (bp)	159	702	3393 s	963	3465 s	282 s	1854	858 s	831 р	183	447	615 g	858 sl	741 pi	534 sı
45		Terminal (nt)	2175888	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187692	2188313	2189166	2189906
50		In tial (nt)	2176046	2176402	2179502	2180918	2183092	2183391	2185258	2186208	2186299	2187160	2187679	2188306	2189170	2189906	2190439
		SEQ NO (a.a.)	5760	5761	5762	5763	5764	5765	5766	5767	5768	5769	5770	5771	5772	5773	5774
55		SEQ NO. (DNA)	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274

	Function	hypothetical protein	peptidase	sucrose transport protein			maltodextrin phosphorylase / glycogen phosphorylase	hypothelical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilale synthase component II	hypothetical membrane protein	phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphale phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
:	Matched length (a a)	405	353	133	ļ	-	814	295	264	169	228	68	258	241	245	210	402
	Similarity (%)	43.7	64.3	51.9	į		67.4	66.4	65.5	62.1	58 8	79.8	97.7	94.0	97.6	92.4	54.0
	Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	29.6	29.4	528	97.3	94.0	95.9	86.7	25.6
Table 1 (continued)	Homologous gune	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 FisH	Streptomyces lividans 66 cmIR
	db Match	pir A72322	sp:HIPO_CAMJE	pir S38197			prf 2513410A	Sp.YFIE_BACSU	sp.LGT_STAAU	sp.TRPG_EMENI	pir. H70556	sp. HIS3_RHOSH	sp.HIS6_CORG	prf.2419176B	gp.AF051846_1	gp.AF060558_1	sp.CMLR_STRLI
	ORF (bp)	1284	1263	336	135	276	2550	900	948	801	657	354	774	825	738	633	1266
	Terminal (nt)	2199758	2201070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051	2211882	2212641	2214321
	Initial (nt)	2198475	2199808	2201408	2201584	2201869	2204541	2205493	2208249	5788 2209167	2209888	2210273	2211046	2211875	2212619	2213273	2215586
	SEQ NO (3.3.)	5780	5781	5782	5783	5784	5878	5786	5787	5788	5789	5790	5791	5792	5793	5794	5795
	SEQ NO (DNA)	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295

	Function		imidazoleglycerol-phosphate dehydratase	histidinal-phosphate aminotransferase	histidnol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	te! repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothelical protein
	Matched length (a a)		198	362	439	342		į	211	204	122	258	998	343	329	246	332	103	182	113
	Similarity (%)		81.8	79.3	85.7	54.4			2 65	8 09	75.5	0'9/	55 2	6.09	64.4	68.3	71.1	0.89	9.79	73.5
	Identity (%)		52.5	57.2	63.8	27.2			29.4	29.9	474	200	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
Table 1 (conlinued)	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli p asmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium fuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fluC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 yttH
	db Match		sp HIS7_STRCO	sp:HIS8_STRCO	sp.HISX_MYCSM	gp:SPBC215_13			pri 2321269A	pir RPECR1	pr1.2307203B	pir.E70572	gp:SC2G5_27	prf:2503399A	Sp.GALR_ECOLI	sp:FHUC_BACSU	prf.2423441E	pir:G70046	pir:G70046	sp:YTFH_ECOLI
	ORF (bp)	225	909	1098	1326	1200	651	308	642	561	2508	801	774	1011	966	798	1038	348	594	441
	Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
,	Initial (1t)	2215863	2216474	2217591	2218925	2219159	2221109	2221611	2221828	2221958	2222528	2225149	2226763	2227779	2227906		2230937	2231294	2231932	2232456
	SEQ NO.	5796	5797	5798	5799	2800	5801	5802	5803	5804	5805	5806	5807	5808	5809	5810	5811	5812	5813	5814
ī	SEQ NO.	2296	2297	2298	2299	2300	7301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

Technology Tec			Г	T-	;	·	 -			1	1 _		Υ	Г —	_			,				,	
SEG Initial Terminal CRF db Match Homologous gene (%)		Function	DNA polymerase III epsilon chain		maltooligosyl trehalose syrthase	hypothetical protein					alkanal monooxygenase alpha chain	hypothetical protein		rnaltooligosytrehaluse trehalohydrolase	hypothetical protein	threonine dehydratase			Corynebacterium glutamicum AS019	UNA polymerase III	chloramphenicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein
SEO Initial Terminal CRF db Malch Homologous gene (%)		Matched length (a a)	355	i 	814	322		: 			375	120		568	214	436			415	1183	279	149	198
SEC Initial Terminal CRF db Match Homologous gene			50 1	!	58 E	52 E	!				54.4	79.2		724	72.4	99.3			496	80.5	73.8	55.7	64.7
SEQ (10143) Terminal (TI) CRF (bp) db Match (bp) 5815 22337928 2234763 6C5 CEB_12 5815 2234158 2234763 6C5 CEB_12 587 2234158 2234763 6C5 CEB_12 5819 2234158 2234763 6C5 CEB_12 5819 2234158 2234763 4C5 CEB_12 5819 2233092 2238694 399 CEB_20 CEB_20 5820 2240042 2239698 1056 CEB_20 CEB_20 5821 2240042 2239698 1056 CEB_20 CEB_20 5822 2240568 1056 CEB_20 CEB_20 CEB_20 5824 224215 2241738 378 gp SC7H2_5 SECH2_5 5826 2242359 2242189 1785 pir S65770 SECH2_5 5827 2246366 2246864 1308 sp THD1_CORG SECH2_5 5829 2246366 2246386		tdentity (%)	23 4		420	27 6		!			20.5	583		46 3	36.5	99.3			22.7	53.3	37.6	21.5	22.7
SEO Inttat Terminal CRF db Match NO int) (m) (bp) (bp) S815 2234928 2234763 6C5 S816 2234158 2234763 6C5 S817 2734852 2234763 6C5 S819 2239092 2238694 399 S820 2240042 2239694 199 S821 2240042 2239694 199 S822 2240563 2239508 1056 S823 2242359 2241738 378 9p SC7H2_5 S826 2242359 2241738 378 pir S65770 S826 2243043 2242393 651 sp. YVYE_BACSU S827 2243043 224819 1785 pir S65770 S828 2246171 2244864 1308 sp. THD1_CORGI S829 2246386 2246892 507 S830 2246450 2246395 156 S831 2246396 2247006 1203 pir.S57636 S833 2252017 2252856 840 sp.RARD_ECOLI S833 2253192 2253659 468 sp.HISJ_CAMJE S834 2253192 2253659 468 sp.HISJ_CAMJE	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCI8 12		Arthrobacter sp. 036 trey	Democcccus radiodurans DR 1631	:				Protornabdus fuminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.35		Arthrobacter sp. Q36 treZ	Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 ilvA	and the statement of th		Catharanthus roseus metE	Streptomyces coelicolor A3(2) dnaE	Escherichia coli K12 rarD	Campylobacter jejuni DZ72 hisJ	Archaeoglobus fulgidus AF 2388
SEQ Inttal Terminal NO int) (n1) 5815 7237978 7734070 5816 2234158 2234763 5817 7734857 27377844 5819 2239092 2238694 5820 2240042 2239845 5821 2240042 2239845 5822 2240563 2239845 5822 2240563 2239845 5824 2242115 2244819 5825 2242359 2244819 5826 2243043 2244819 5826 2243043 2244864 5829 2246366 2246892 5830 2246450 2246295 5831 2248208 2246366 5833 2252017 2252856 5833 2252017 2252856 5833 2252017 2252856		db Match	9p SCIB_12		pir S65769	4p AE0020C6_4	•				sp UXA1_PHOLU	gp:SC7H2_5		pir S65770		sp [.] THD1_CORGI.			pir:S57636		sp:RARD_ECOLI	sp:HISJ_CAMJE	pir.D69548
SEQ Intual NO int) (a a) (a b) (a c)		CRF (bp)			2433	1023	399	198	189	1056	1044	378	231	1785	651	1308	507	156	1203	3582	840	468	918
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Terminal (nt)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	2241738	2242129	2244819	2242393	2244864	2246892	2246295	2247006	2248358	2252856	2253659	2254642
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	į	Initial (nt)	2232928		2234852				2240246		2240681	2242115			2243043		2246386	2246450	2248208	2251939	2252017	2253192	2253725
			5815	9.85	28.1	5818	5819	5820	5821		5823	5824	5825	5826	5827	5828	5829	5830	5831	5832	5833	5834	5835
		SEQ NO (DNA)	7315	2316	2317	2318	2319	2320	2321		2323	2324			2327								-

isoleucyl-tRNA synthetase

1066

65.4

38.5

Saccharomyces cerevisiae A364A YBL076C ILS1

3162 sp:SYIC_YEAST

2270988

5852 2274149

2352

216 1095

2274473

hypothetical protein

212

67 0

42.0

Streptomyces coelicolor A3(2) SCF51.05

gp.SCF51_5

627

2270258

2270884

5851

		- [I	- 1	I		$-\bar{1}$	t	1	ļ	- 1	ı	ļ	ļ	- 1	- 1	i	- 1	
5			Function	short chain dehydrogenase or general stress protein	diaminopimelate (DAP) decarboxylase	cysteine synthase		ribosomal large subunit pseudouridine synthase D	lipoprotein signal peptidase		oleandomycin resistance protein		hypothetical protein	L-asparaginase	DNA-damage-inducible protein P	hypothetical membrane protein	transcriptional regulator		
15		1	Matched length (a a)		445 di	314 cy		326 rit	154 lip		550 ol	1	:	一	371	286 h	334 tr	+	
	-			. 5	-	(,)		(,)				\dashv	 						
20			Similarity (%)	80.0	47.6	64.3		61.0	61.7		64.0		57.6	62.0	60.7	61.5	73.1		;
			Identity (%)	48.2	22.9	32.8		36.5	33.8		36.4		36.7	31.2	31.8	31.5	44.3		
25		uned)	aue	aD	osa lysA	СН34		On	cens NCIB		cus oleB		oolis orf17		linP	biF	or A3(2)		Or 43/2)
30 .		Table 1 (continued)	Homologous gene	Bacillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 IspA		Streptomyces antibioticus oleB		Rhodococcus erythropolis orf17	Bacillus Ircheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolor A3(2) SCF51.06		Ctrontomyces coelicolor A3(2)
35			db Match	sp.GS39_BACSU	187 sp.DCDA_PSEAE	sp:CYSM_ALCEU		sp:RLUD_ECOLI	sp:LSPA_PSEFL	-	pir.S67863		prt.2422382P	Sp. ASPG_BACLI	Sp.DINP ECOLI	SD:YBIF ECOLI	gp.SCF51_6		
			Щ (- L		0		34 sp	12		13	$\overline{}$		401 Sp			32	+
			ORF (bp)	876	12	951	579		- 5	1007	7	303	909	975	+=	+	<u>\</u>	+	+
45			Terminal (nt)	2254683	2255738	2258362	2259421	2260002	2260934	22526RG	2264499	2265298	2264509	2266394	2266897	2268388	2269260	2270435	
50			Initial (nt)	2255558	2257024	2259312	2250000		2261467	2261688	2262850		2265108	2265420	5847 2268297	226922		2350 5850 2270304	
			SEO	5836	5837	5838		5840	5841	6643			5845	5846	5847	200	5849	5850	3
55				(DNA) 2336 E				2340	2341	22.42						12.48		2350	355

	Function	hypothetical membrane protein	hypothetical protein (putative YAK 1 protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initiation protein or cell division protein	UDP-N acetylmuramatealanine ligase	UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine pyrophosphoryl-undecaprenol N-acetylglucosamine	cell division protein	UDP-N-acetylmuramoylalanine-D- glutamate ligase			phospho-n-acetylmuramoyl- pentapeptide	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase
	Matched length (a.a.)	82	152	221	246	117	442	222	486	372	490	110			365	494
	Similarity (%)	73.2	99.3	9.66	100.0	51.0	98.6	100.0	93.8	99.5	93.6	99.1			63.8	64.2
	Identity (%)	46.3	99.3	97.7	99.2	39.0	98.6	93.6	99.4	98.9	99.4	99 1			38.6	35.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2146c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfth	Mus musculus P4(21)n	Brevibacterium lactofermentum fts.2	Corynebacterium glutamicum ItsQ	Corynebacterium glutamicum murC	Brevibaclerium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 fts/V	Brevibacterium lactofermentum ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coli K12 murF
	db Match	pir:F70578	gp.Bl.FTSZ_6	sp YFZ1_CORGL	prt:2420425C	GP AB028868_1	Sp.FTSZ_BRELA	gsp.W70502	gp.AB015023_1	gp:BLA242646_3	gp:BLA242646_2	gp:BL/\242646_1			sp.MRAY_ECOLI	sp MURF_ECOLI
	ORF (bp)	285	456	663	738	486	1326	999	1458	1116	1650	468	384	333	1098	1542
	Terminal (nt)	2276353	2276881	2277416	2278122	2279640	2278890	2280470	2281166	2282661	2283782	2285437	2286655	2286831	2286862	2287969
	Initial (nt)	2276637	2277336	2276078	2276859	2279155	2280215	2281135	2282623	2283776	2285431	2285904	2286272	2286499	2287959	2289510
	SEQ NO.		5856	5857		5859		5861	5862	5863	5864	5865	5866	5867	5868	5869
	SEQ		2356	2357		2359		2361	2362	2363	2364	2365	2366	2367		2369

	Function	UDPN-acetylmuramoylalanyl·D- glutamyl-2,6-diaminopimelate-D- a!anyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical prolein	liypothetical membrane protein	hypothetical protein		hypothetical protein	5, 10-methylenetetrahydrofolale reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
	Matched length (a a)	491	57	650		323	143	137		190	303	329	484		125	684		411
	Similarity (%)	676	100 0	58 8		793	88.8	69 3		65.3	9.07	62.0	9.69		68.8	62.4		58.4
-	Identity (%)	37.7	100 0	28.2		55 1	72.0	39.4		36.3	42.6	30.1	35.7		43.2	34.2		30.7
Table 1 (continued)	Homologous gene	Bacil us subhilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium feprae MLCB269 *1c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268 13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268 23
	db Match	sp MURE_BACSU	GSP Y33:17	pir S54872		pir.A70581	gp MLCB268_11	pr.C70935		gp MLCB268_13	SP.METF_STRLI	pir.S32168	gp.MLCB268_16		pir:A70936	gp:AB019394_1		gp:MLCB268_21
	ORF (bp)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470	507	369	2148	651	1236
	Termina: (nt)	2289523	2290973	2291212	2293333	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980	2303040	<u> </u>
	Initial (nt)	5870 2291073	7611622	2293164	2294117	2295127	2295804	2296898	2297653		2299428	2299524	2300706	2302179		2302833	2303690	2304983
	SEO	5870	5871	5872	5873	5874	5875	5876	5877	5878	5879	5880	5881	5882	5883	5884	5885	
	SEO	(DNA)	2371	2372	2373	2374 5874	2375	2376	2377	2378	2379	2380	2381	2382	2383	2384	2385	2386

5		noi	ane protein	heptulosonale-7-		rane protein	tein PS1 protein			rane protein		a ₂	sor (invasion-	sor (invasion-	me c reductase unit	me c reductase (Rieske [eF e-2S] cyoß	ome c reductase
10		Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonale-7- phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor			hypothetical membrane protein	acyltransferase	glycosyl transferase	protein P60 precursor (invasion- associated-protein)	protein P60 precursor (invasion- associated-protein)	ubiquinol-cytochrome c reductase cytochrome b subunit	ubiquinol-cytochrome c reductase iron-sulfur subunit (Rieske (ef e-2S) iron-sulfur protein cyoB	ubiquinol-cylochrome c reductase cytochrome c
	Matched	length (aa)	434	462	166	428	440			249	245	383	296	191	201	203	278
20		Similarity (%)	62 0	87.9	7.77	64 5	57.1		!	100.0	100.0	75.7	8.09	61.3	64.7	57.1	83.1
		Identity (%)	30.4	6.99	58.4	35.1	282			100.0	100.0	50.1	26.4	33.0	34.3	37.9	58.6
25	(3)		sis	iei		sis	CUM	İ		icum	icum	A3(2)			8	crA	osis
30 Special Continues	raple 1 (column	Homologous gene	Mycobacterium tuberculosis H3/Rv Rv2181	Anycolatopsis mediterranei	Mycobacterium leprae MLCB268.21c	Mycobacterium tuberculosis H37Rv Rv2181	Curynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii iap	Listeria grayi iap	Heliobacillus mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
35	-		Myco H37F	Amyo	MYCO	Mycc H37F	Cuty (Brev 1796		_	Cory	ATC	Stre	Liste	Liste	Heli	Stre	
40		db Match	pır G/0936	gp:AF260581_2	gp:MLCB268 20	pir:G70936	sp:CSP1_CORGL			gp.AF096280_3	gp:AF096280_2	gp:SC6G10_5	sp.P60_LISIV	sp:P60_LISGR		gp.AF107888_1	Sp. Y005_MYCTU
		ORF (bp)	1308	1386	504	2418	1449	204	177	1188	735	1143	1047	627		672	885
45		Terminal (nt)	2307621	2307697	2309173	2312252	2313808	2314036	2313916	2314236	2315678	2317633	2318804	2319968	2321472	2323088	2324311
50		Initial (nt)	2306314	2309082	2309676	2309835	2312360	2313833	2314092	2315423	2316412	2318775	2319850				5901 2325195
		SEO			5889	5890	5891	5892	5,893	5894		5896		-			
55			2387		2389	2390	2391	2302	2303	2394	2395	2396	2397	2308	0667	2400	2401

dihydrolipoamide acetyltransferase

691

48.9

Saccharopolyspora erythraea ORF1 Streptomyces seoulensis pdhB

gp:AF047034_2

2025

234:293

prf:2110282A

393

5916 2339140 2338748

2416

lipoyltransferase

210

65.7

36.7

Arabidopsis thaliana

leucyl aminopeptidase

493

62.9

36.3

Pseudomonas putida ATCC 12633 pepA

1500 gp:PPU010261_1

2338734

5915 2337235

2415

hypothetical protein

97

67.0

40.2

5	Function	cytochrome c oxidase subunit III	rafie e elijika eesa adalah dalah ilah da majalik kaminar emparanya eeskala wasanya galamina pergendaran	hypothetical membrane protein	cytochrome c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothetical membrane protein	cobinamide kinase	nicatinate-nucleatide dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase
15	Matched length (a a)	188		1451	317	640	114	246	172	341	305		241	364
20	Similarity (%)	70.7		71.0	53.9	8.66	100.0	60.2	64.0	6.99	49.8		68.5	70.3
	Identity (%)	36.7		38.6	28.7	99.7	100.0	35.0	43.0	37.8	25.3		38.6	40.1
55 Table 1 (continued)	Homologous gene	s vulcanus		n tuberculosis Jc	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 ltsA	Corynebacterium glutamicum KY9611 orf1	ı leprae	Rhodobacter capsulatus cobP	denitrificans	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	BCAT1
	Homole	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter s	Corynebacteriu KY9611 ItsA	Corynebacteric KY9611 orf1	Mycobacterium leprae MLCB22.07	Rhodobacter c	Pseudomonas denitrificans cobU	Pseudomonas		Streptomyces	Mus musculus BCAT1
40	db Match	sp.COX3_SYNVU		sp:Y00A_MYCTU	sp.COX2_RHOSH	gp:AB029550_1	gp:AB029550_2	gp:MLCB22_2	pir:S52220	sp.coBU_PSEDE	sp.COBV_PSEDE		prt 2414335A	sp:/LVE_MYCTU
	ORF (bp)	615 s	153	429 sı	1077 s	1920 gl	342 91	768 gr	522 pi		921 st	237	714 pr	1137 sp
45	Terminal (nt)	2325273	2326121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915
50	Initial (nt)	2325887	2326273	2326900	2327997	2328516	2330927	2331200	2331974	2332512	2333615	2334717	2335741	2337051
	SEQ NO. (a a)	5802	5903	5904	5905	5906	2907	5908	2909	5910	5911	5912	5913	2414 5914
55	SEQ NO. (DNA)	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414

	Function	lipoic acid synthetase	hypothetical membrane protein	hungthetical membrane protein	nypomencar menangan	transposase (ISCg2)		hypothetical membrane protein		mutator mutT domain protein		hypothetical protein		alkanal monooxygenase alpha chain	(bacterial luciferase alpha chain)	(translation initiation inhibitor)		03604100	4-hydroxyphenylacetate pernicase	transmembrane transport protein		transmembrane transport protein			
	Matched length (a.a.)	285	757	000	Sec	401		157		145		128	Ì	000	757	Ξ	-+	1	433	158		118	-	-	
	Similarity (%)	70.9	7.97		6/.8	100.0		63.7		1	2,4,0	65.6		000	8.0	73.0			53.4	72.8		66.1			
	Identily (%)	44.6	45.5	2.5	32.9	100.0	1	414		10	0.15	36.7			25.0	40.5	-	_	21.9	42.4	-	31.4			
Table 1 (continued)	Homologous gene	Pelobacter carbinolicus GRA BD	1 lipA Mycobacterium tuberculosis	H37Rv Rv2219	Escherichia coli K12 yidE	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coelicolor A3(2)	SC5F7.04c			Thermotoga maritima MSB8 TM1010			Vibrio harveyi luxA	Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2)	SCGD3.10c	Streptomyces coelicolor A3(2) SCGD3, 10c			
*** ***********************************	db Match	P DEICA	ļ	sp Y00U_MYCTU	SD YIDE ECOLI		Ī	İ	gp.SC5F7_34			pir.872308			sp:LUXA_VIBHA	pir.A72404			H\$2502345H		gp.sc.db	gp.SCGD3_10			\
	ORF (bp)		5	780	1617		300	3	471	213	975	399	10	900	849	393	243		╅		<u> </u>	444	195	+-	٦
	Terminal		2343347	2344258	2346047	2346289	A097460	2347804	2348078	2350408	2351996	2350912	i	2351310	2352828	2353225	2155398		_	7330043	2357354	2357707	2357290		2358130
	Initial		2342304	2343479	2244424		10000	234/505	2348548	2350620	2351022	2351310	!	2351909	2351980	2352833		20007			2356794	2357264	1267/194	1_	2357726
	SED		5920 2	5921 2		5922		5924	5925	5926	7203			5929	5930	5931	_				5935	5936			5938
	SFO	(ONA)	2420	2421		2422		2424	2425	2426		2428		2429	2430	2431		2432	2433	2434	2435	2436		2437	2438

						· · · · · ·			- 1		· 	,		 ;				\neg
Function		heme oxygenase	glutamate-ammonia-ligase adenylyltransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokinase	virulence-associated protein		bifunctional protein (ribonuclease H and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	insertion element (IS402)
Matched length (a.a.)		214	808	441	392	601	54	374	358		382		249	378	204	156	281	129
Similarity (%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	65.5	56.6
Identity (%)		57.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	49.2	26.0	46.2	40.9	32.6
Homologous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) glnE	Thermotoga maritima MSB8 ginA	Streptomyces coelicolor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sapiens galK1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
db Match		sp:HMUO_CORDI	gp:SCY17736_4		gp:SCE9_39	sp.Y017_MYCTU	gp:SCC75A_11	sp:GAL1_HUMAN	gp.AF174645_1		sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	sp:GPH_ECOLI	sp:PTPA_STRCO	sp Y01G_MYCTU	sp:YI21_BURCE
ORF (bp)	543	645	3135	1338	1104	1827	180	1293	1266	486	1146	729	717	1140	654	471	954	393
Terminal (nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2369083	2369116	2370908	2371412	2373289	2372573	2373323	2375197	2375684	2376720	2376998
Initial (nt)	2358695	2359416	2362748	2364155	2364352	2365587	2367652	2367791	2370381	2370423	2372557	2372561	2373289	2374462	2374544	2375214	2375767	2456 5956 2377390
SEO NO.	5939	5940	5941	5942	5943	5944	5945						5951	5952	5953	5954	5955	5956
SEQ NO. (DNA)	2439	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (ht) (bp)	SEQ Initial (a.a.) Initial (ht) Terminal (ht) ORF (ht) db Match Homologous gene (%) Identity (%) Similarity length (ength (a.a.)) 5939 2358695 2358153 543 543 (a.a.)	SEQ Initial NO. (nt) (nt) (a.a.) Terminal (bp) (bp) db Match (bp) (bp) Homologous gene (ca.a.) Identity (ca.a.) Similarity (ca.a.) Matched (ca.a.) 5939 2358695 2358153 543 Corynebacterium diphtheriae C7 (ca.a.) 57.9 78.0 214 heme oxygens	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (nt) db Match (bp) Matched (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) 5939 2358695 2358153 543 SA3 Corynebacterium diphtheriae C7 57.9 78.0 214 5940 2359416 2359772 645 sp.HMUO_CORDI hmuO hmuO ST.9 78.0 214 5941 2362748 2359614 3135 gp.SCY17736_4 Streptomyces coelicolor A3(2) 43.4 67.0 809	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) 5939 2358095 2358153 543 Corynebacterium diphtheriae C7 57.9 78.0 214 5940 235974 235976 43.4 67.0 809 5941 2362748 2359818 1338 sp.CKV17736_4 Streptomyces coelicolor A3(2) 43.4 67.0 809 5942 2364155 2362818 1338 sp.GLNA_THEMA Thermotoga maritima MSB8 43.5 73.0 441	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Match	SEQ NO. (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Match	SEO Initial NO. (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (h) (b) (mu)	SEO Initial NO. (41) Terminal (bp) QRF (bp) db Match Homologous gene (36) Identity (36) Similarity (36) Matched (3a) NO. (41) (41) (4b) (4b) (4a) (6a)	SEO Initial NO. Initial (nt) (nt) OPF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) (%)	SEO Initial NO. Initial (nt) (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) 803.9 2358695 2358172 645 sp.HMUO_CORDI Corynebacterium diphtheriae C7 57.9 78.0 214 14.0 5940 2359416 2358772 645 sp.HMUO_CORDI Corynebacterium diphtheriae C7 57.9 78.0 214 14.0 5941 2362746 2359614 3135 sp.HMUO_CORDI Thermotoga maritima MSB8 43.5 73.0 441 67.0 809 5942 2362155 1104 gp.SCY17736_4 Streptomyces coelicolor A3(2) 26.8 54.1 392 5943 2364155 2367473 1827 sp.Y017_MYCTU Mycobacterium tuberculosis 33.4 58.2 601 5944 2367557 2367473 180 gp.SCC75A_11 Streptomyces coelicolor A3(2) 38.9 55.6 54 5946 2367791 1269083 1293 1293 53.7	SEO (ntital) (ntital) Infinal (ntital) Terminal (ntital) ORF (ntital) About (ntital) Homologous gene (ntital) Identity (ntital) Infinal (ntital) Matched (na) 5939 2358056 2358153 543 Amatched Corynebacterium dipititheriae C7 57.9 78.0 214 5940 2359416 2358614 3135 gp.SCV17736_A greptomyces coelicolor A3(2) 43.4 67.0 809 5942 2362740 2358614 3138 gp.SCV17736_A glinal mutuon 43.5 73.0 441 5942 2362746 2358618 1338 sp.GLNA_THEMA Thermotoga maritima MSB8 43.5 73.0 441 5943 2362745 236245 1104 gp.SCCE9_39 Steptomyces coelicolor A3(2) 26.8 54.1 392 5944 236565 2367473 180 gp.SCC75A_11 Streptomyces coelicolor A3(2) 38.9 55.6 54 5946 236745 1360 gp.Y017_MYCTU Mycobacterium tuberculosis 27.1 54.5 358	SEO (nt) 1 (nt) a (nt) a (nt) b (nt) b (nt) a (nt) a (nt) b (nt) a (nt) b (nt) a (nt) b (nt) b (nt) a (nt) b (nt) b (nt) a (nt) b (nt	SEG Initial Terminal ORF db Match Homologous gene Identity Similarity length Matched (%) S939 2358953 2358153 543 Corynebacterium diptitheriae C7 57.9 78.0 214 5934 2358916 2358172 645 sp.HMUO_CORDI Corynebacterium diptitheriae C7 57.9 78.0 214 594 235816 2358772 645 sp.HMUO_CORDI Thermotoga maritima MSB8 43.5 73.0 441 594 2362746 2352818 1338 sp.GLNA_THEMA Thermotoga maritima MSB8 43.5 73.0 441 594 2364155 2362455 1104 gp.SCC17A_THEMA Thermotoga maritima MSB8 43.5 73.0 441 594 236455 1104 gp.SCC19A_THEMA Streptomyces coelicolor A3(2) 38.9 56.6 54 594 2367652 2367473 180 gp.SCC75A_L11 SCC94A_11c. SCC75A_11 SCC75A_11 SCC75A_11 SCC75A_11c. SCC75A_11 SCC75A_11<	SED (nitial) (nt) Terminal (nt) (nt) ORF (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp	SEG Initial Terminal ORF db Match Homologous gene Identity Similarity (m) Matched (%) S939 2358695 2358153 543 CONYNEBACTERIUM diphtheriae C7 57.9 78.0 214 S940 2358695 2358163 543 Streptomyces coelicolor A3(2) 43.4 67.0 809 S941 2362746 3136 Sp.SCY 1736_4 Sireptomyces coelicolor A3(2) 43.4 67.0 809 S942 23624155 2362818 1338 Sp.CV 17736_4 Sireptomyces coelicolor A3(2) 26.8 54.1 392 S942 23624155 2362465 1104 gp.SCC 17736_4 Sireptomyces coelicolor A3(2) 26.8 54.1 392 S943 2362415 1827 Sp.Y017_MYCTU Mycobacterium tuberculosis 33.4 58.2 601 S943 2367567 2367473 180 gp.SCC75A_11 Scrptomyces coelicolor A3(2) 38.9 55.6 54 S944 2367652 2367473 180 <	SEG Initial (mt) CMF db Match Homologous gene Identity (%) Similarian (%) Matched (%) Mat	SEO Initial (nt) Terminal (nt) ORF (pp) db Match Homologous gene (76) (76) (76) (76) (76) (76) (76) (76)

	Function		transcriptional regulator		hypothetical protein	and the debudiooenase component	plinate activities	Aur transporter or olutamine	transport ATP-binding protein		nbose transport system permease protein	hynothetical protein		calcium binding protein		lipase or hydrolase	acyl carier protein	N-acetylglucosamine-6-phosphate deacetylase	hypothetical protein	
	Matched length (a a)		135	i	134		: n		761	!	283	286	3 ,	125		352	75	253	289	
	Similarity (%)		57.8	 ! i	77.6		68/		62 8		58 7	67.0		55.2		55.7	80.0	75.5	65.7	
<u> </u>	Identity (%)		30.4		55.2		55.9		33.7		25.4	76.3	707	41.6		29.6	42.7	43.9	33.6	
Table 1 (conlinued)	Homologous gene		Streptomyces coelicolor A3(2) SC8F4.22c		Mycobacterium tuberculosis H37Rv Rv2239c		Streptomyces seoulensis pdhA		Fscherichia coli K12 glnQ		Bacillus subtilis 168 rbsC	Rickettsia prowazekii Madrid E	RP367	Dictyostelium discoideum AX2 cbpA		Streptomyces coelicolor A3(2) SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 nagO	Deinococcus radiodurans DR1192	
٠	db Match		gp:SC8F4_22		Sp:Y01K_MYCTU		gp AF047034_4		sp GLNQ_ECOL		Sp RBSC BACSU		pir;H71693	sp:CBPA_DICDI		gp:SC6G4_24	sp.ACP_MYXXA	sp:NAGD_ECOL!	gp:AEC01968_4	
	ORF (bp)	243		198	429	345	2712	1476	789	963	888		939	310	372	1014	291	825	1032	471
	Terminal (nt)	2377484	2378276	2378489	2378884	2379770	2382744	2380765	2382827	2385426	2383622		2384509	2386580	2385913	1	2387957	2388821	2389869	2390434
	Initial (nt)	2377726	2377899	2378292	2379312	2379426	5962 2380033		2383615	2384464			2385447	2385771	2386284		2387667	2387997		5974 2390904
	SEQ			5959		5961	5962	5963	5964	5065		200	5967	5968	5969		5971	5972		
	SEQ.	2457	_	2459						346	7465	2400	2467	2468	2469	2470	2471	2472	2473	2474

						Table 1 (continued)				
SEQ NO.	0.5	initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a a)	Function
5975		2392008	2391184	825	gp.SC4A7_B	Streptomyces coelicolor A3(2) SC4A7.08	52.4	75.3	271	hypothetical protein
6	5976	2392566	2392075	492						
1 5	5977	2393349	2392579	171						
16	5978	2393425	2393970	546						
. 6	5979	2394437	2393973	465						
1.5	5980	2394594	2394935	342					000	Control of the state of the sta
- 55	5981	2395204	2396763	1560	sp.PPBD_BACSU	Bacillus subtilis 168 phoD	34.2	64.7	530	alkaline phosphatase D precursul
150	5982	2395986	2395273	714						
1 5			2399099	1836	gp:SCI51_1/	Streptomyces coelicolor A3(2) SCIS1 17	44.4	73.1	594	hypothetical protein
1 10	5984	2399158	2399397	240	pir.G70661	Mycobacterium tuberculosis H37Rv Rv2342	41.2	72.1	89	hypothetical protein
160	5985	2400342	2399668	675						
1 10	5986		<u> </u>	1899	prf.2413330B	Mycobacterium smegmatis dnaG	59.1	82.9	633	DNA primase
1 %	5987	2401373	2401834	462	gp:XXU39467_1	Streptomyces aureofaciens BIMK	49.0	67.4	98	ribonuclease Sa
N.	5988	2401838	2402080	243		-				
S	5989	2403165	2402530	636						
2				1869	gp:AF058788_1	Mycobacterium smegmatis mc2155 glmS	59.1	82.2	636	L-glutamine. D-fructose-6-phosphate amidotransferase
ે જે	5991	2404523	2404846	324						
130	5992	2405571	2406822	1152						
50			2404987	1272	prf 2413330A	Mycobacterium smegmatis dgt	54.6	76.3	414	deoxyguanosinetriphosphate triphosphohydrolase
5.	994	2494 5994 2406936	2406262	675	gp:NMA1Z2491_23 5	Neisseria meningitidis NMA0251	30.4	59.7	171	hypothetical protein

;-				_			-i			<u></u>			•			Т		_
1	Function	hypothetical protein	hypothetical protein		glycyl-tRNA synthetase	bacterial regulatory protein, arsK family	ferric uptake regulation protein	hypothetical protein (conserved in C.glutamicum?)	hypothetical membrane protein	undecaprenyl diphosphate synthase	hypothelical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polypeptides predicted to be useful antigens for vaccincs and diagnostics	phosphate starvation inducible protein	hypothetical protein	
	Matched length (a a)	692	138		508	89	132	529	224	233	245	296	432	157	85	344	248	
	Similarity (%)	63.6	54.4		6.69	73.0	70.5	46.7	0.79	71.2	74.3	70.3	82.4	86 0	50.0	84.6	75.4	
	Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	65.0	45.0	61.1	44.0	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB0	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2)	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis H37Rv Rv2367c	Ncisseria meningitidis	Mycobacterium tuberculosis H37Rv Rv2368c phol 1	Streptomyces coelicolor A3(2) SCC77.19c.	
	db Match	pir B70662	gp AE003565_26		pir S58522	pir E70585	Sp FUR ECOLI	pir.A70539	gp:AF162938_1	Sp UPPS MICLU	pir A70586	gp:AF072811_1	+	sp:YN67_MYCTU	GSP.Y75650	Sp. PHOL_MYCTU	gp:SCC77_19	
	ORF (bp)	2037	486	582	1383	369	432	1551	792	729	726	915	1320	588	264	1050	723	942
	Terminal (nt)	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2416371	2417222	2417969	2418990	2420313	2421236	2420900	2421975	2423791
	Initial (nt)	2406993	2410264	2410861	2412338	2412580	2412992		2416089	2417099	2417947	2418883		2420900	2420973	2421949	2422697	2422850
	SEQ NO.		5996	5997			6000		6002	6003	6004	6005	9009	6007	6008	6009	6010	6011
	SEQ NO.		2496	2497	-		2500		2502	2503		2505	2506	2507	2508	2509	2510	2511

	Function	heat shock protein dnaJ	heat-inducible transcriptional	repressor (groEL repressor)	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-acidCoA ligase	4-a pha-glucanotransferase	And transporter Hop-Resistance	protein	Neisserial polypeptides predicted to be useful antigens for vaccines and	olagnosiics	antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose	synthase	hypothetical protein
:	Matched length (a a)	380	;	334	320	134		1	£	738	i 	604	68		107			069	453	203	5	449
!	Similarity (%)	77.4		79.6	64.1	649	-		151	55.4	3	64.4	51.0		53.0		-	68.3	45.7	2	0.40	58.8
[Identity (%)	47.1		48.2	33.1	36.6			48 0	28.3		29 5	44 0	 \	47.0			40.3	24.1	1 6	7.00	32.1
Table 1 (continued)	Homologous gene	Clean application	Streptornyces alous unage	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2)	Clear	Escherich a coll K 12 maid	Lactobacillus brevis plasmid	Neisseria gonorrhoeae		Neisseria meningilidis			Salmonella typhimurium dcp	Anisonteromalus calandrae	Musebacterium tuberculosis	H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
	db Match	İ	prf.2421342B	prf.2421342A	prf 2318256A	sp.AGA1_YEAST			gp.SC6G10_4		Sp. MALQ_ECOL	gp AB005752_1			GSP:Y74829			Sp.DCP SALTY	00.1	gp.Ar.004323_1	pir.G70983	pir.H70983
	ORF	. !	1146	1023	066	519	693	478	1845		2118	1863	255	667	333	180	204	, ,	<u> </u>	21	1794	1089
	Terminal	$\overline{}$	2422700	2423915	2424965	2426699	2426776	7477807	2428184		2432413	2434370	:	2433014	2433875	2434440	2434573			2438049	2439906	2440994
	-	(11)	2423845	2424937			2427468	701007	2420104	7	2430296	24.7.508		6021 2433868	2434207	6023 2434619	3777670			2436871	2438113	6028 2439906
	SEO	(a a)	6012	6013			900		91.09	2	6019		200	6021	6022	6022	200	90024	C709	9209	6027	
	SEO		2512	2513			25.46	23.10	7167	0167	25.10	2 2 2	7777	252!	2522	2532	6267	2524	2525	2526	2527	2528

	Function	isopentenyl-diphosphate Delta- Isomerase			4			beta C-S lyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (isoleucine uptake)	alkanal monooxygenase alpha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein
		isopenteny isomerase						beta C-S aminoeth	branched system c uptake)	alkanaln		malonate	glycolate	transcrip		hypothet		heme-bin (hemin-bi	oligopeptide (permease)	dipeptide transpor permease protein	oligopepti protein
	Matched length (aa)	189						325	426	343		324	483	203		467		546	315	271	372
	Similarity (%)	57.7						100 0	100'0	49.0		60.5	55.1	65.0		57.6		55.5	73.3	74.5	66.4
	Identity (%)	318						99.4	99.8	21.6		25.9	27.7	25.6		22.5		27.5	40 0	43.2	37.4
Table 1 (continued)	Homologous gene	Chlamydomonas reinhardhi ipi 1						Corynebacterium glutamicum ATCC 13032 aecD	Corynebacterium glutaniicum ATCC 13032 brnQ	Vibrio harveyi luxA		Sinorhizobium meliloti mdcF	Escherichia coli K12 glcD	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK		Haemophilus influenzae Rd H10853 hbpA	Bacillus subtilis 168 appB	Escherichia coli K12 dppC	Escherichia coli K12 oppD
	db Malch	prr. T07979		I ·				gp CORCSLYS_1	sp BRNQ_CORGL	SPI UXA_VIBHA		gp:AF155772_2	sp.GLCD_ECOLI	sp:YDFH_ECOLI		sp.YGIK_SALTY		sp:HBPA_HAEIN	sp:APPB_BACSU	sp.DPPC_ECOLI	prf 2306258MR
	ORF (bp)	585	222	438	1755	099	519	975	1278	978	522	927	2844	711	282	1347	423	1509	996	828	1437
	Terminal (nt)	2441005	2441R90	2442792	2441602	2443356	2444033	2445709	2446993	244/998	2450323	2450859	2451794	2455435	2455452	2455720	2457337	2459371	2460336	2461167	2462599
	:nitial (nt)	6029 2441589	6030 2441669 2441R90	2531 6031 2442355 2442792	2443356	6033 2444015	6034 2444551	6035 2444735	2445716	244 / 021	2450844	2451785	2454637	2454725	2455733	2457066	2457759	2457863	2459371	2460340	2548 6048 2461163
	SEQ NO (3 3)	6209	60.10	6031	6032	6033	6034	6035	2536 6036	6037	6038	6039	6040	6041	6042	6043	6044	6045	6046	6047	6048
	SEQ NO (DNA)	5259	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548

										_		_			-						
5						e protein		sporter or rter family	rotein C		orotein x		orter				ooxylate otein	boxylate otein	Jg cursor		
10		Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine biosynthesis protein x	hypothetical protein	glycine betaine transporter	-			large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin l	GTP-binding protein
15		Matched length (a.a.)	106	157	300	466		284	295		133	197	601				448	118	227	46	603
20		Similarity (%)	44.0	28.0	650	646		61.6	51.2		100.0	65.5	71.7				71.9	73.7	59.0	73.0	83.6
25		identity (%)	35.0	29.3	410	39.9		31.3	28.5		100.0	42.6	39.8				346	33.9	28.2	63.0	58.7
35	Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens	Chlamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus detM	Klebsiella pneumoniae detQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
40		db Match	PIR:G72536	pir.D70367	prf.2514301A	gp:SCM2_16		sp:NTCI_HUMAN	gp:AF195243_1		sp:THIX_CORGL	sp:VG66_BPMD	sp.BETP_CORGL				prf:2320266C	gp:AF186091_1	sp.OCTP_RHOCA	PRF: 1806416A	sp.LEPA_BACSU
		ORF (bp)	507	549	903	1425	303	972	846	366	570	588	1890	966	1608	384	1311	480	747	243	1845
45		Terminal (nt)	2461543	2462602	2464143	2465768	2465465	2466038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
50		Initial (nt)	2462049	2463150	2463241	6052 2464344	2465767	2467009	2467077	2470313	2472250	2473480	2473653	2476497	2477644	2479379	2481208	2481692	2482480	6066 2483845	2484392
		SEQ NO. (a a.)	6049	6050	6051		6053	6054	6055	9509	6057	6058	6028	0909	6061	6062	6063	6064	9099		2567 6067
55		SEQ NO. (DNA)	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567
								_					_								

	Function	hypothetical protein	30S ribosornal protein S20	throoming offlix profein		ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for DNA binding and uptake			hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyl phosphate	reduciase or glutamate-5- semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid	***		G I P-binding protein
	Matched length (a.a.)	185	85	1	017	129	313	527	195		-	273	235	117	197			432	304			487
	Similarity (%)	2.69	72.0	6.77	67.1	80.6	74.1	49.7	63.6			66.3	66.4	86.3	85.3			8.66	100.0	-		78.2
	Identity (%)	41.6	70.7	46.2	30.0	61.2	46.0	21.4	30.8			34.8	46.B	55.5	0.89	-		99.1	99.3		1	58.9
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	13/KV KV2403	Escherichia coli K12 rps l	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA			Streptomyces coelicolor A3(2) SCC 123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2)	300 123. 175.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum	ATCC 17965 unkdh	(C)C V I I	Streptomyces coelicolar A3(2) obg
	db Malch	nir H70683	T	sp:RS20_ECOU	_		pir.H70684	Sp.CME3_BACSU				gp:SCC123_7	pir:F70685	pir:G70685	ap:SCC123 17	_		sp:PROA_CORGL		Sp. YPKA_CONGL		1503 gp:D87915_1
	ORF (bp)	909	3	261	699	405	975	1539	S R 2	300	822	822	708	47.1	678	_	1023	1296		216	711	
	Terminal (nl)	2485760	6070047	2485733	2485801	2486477	2485910	2487912	2400677	0108047	2491732	2490290	2491151	2491873			2493215	2494339	!-	2495696	2497513	6084 2499511 2498009
	Initial (nt)	 -	7484001	2485473	2486469	2486881	2487884	2489450		2490154	2490911		2491858			<u> </u>	2494237	2495634		2496607	2496803	2499511
	SEQ		6068	9090			6072			60/4	6075	6076		607B		-	0809	6081	-	6082	6083	
			2568	2560		2571				2574	2575	2576	7577	7578	0107	6/67	2580	2581	-	2582	2583	2584

5	noi		ic acid reductase			ein L27	ein L21	:					ion sequence			hate kinase		:		
10	Function	xanthine permease	2,5-diketo-D-gluconic acid reductase	any management of the second		50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
15	Matched 'ength (a a)	422	276			91	101	886				195	436	117	143	134		65	112	118
20	Similarity (%)	77.3	819	į		926	82.2	566	·			826	100 0	769	67.8	9.68		67.4	64.3	68.6
	Identity (%)	39 1	612			80 3	56.4	30.1	ļ			61.0	99.1	51.3	37.8	70.9		34.B	36.6	33.9
25 (panujt	gene	buX	ATCC			s IFO13189	s IFO13189	rne				olor A3(2)	tamicum	olor A3(2)	olor A3(2)	gmatis ndk		ırans R1	rculosis	rculosis
S Table 1 (continued)	Homologaus gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne				Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
40	db Match	sp PBUX_BACSU				Sp. RL27_STRGR	prt:2304263A	SP RNE_ECOLI				gp:SCF76_8	pir.S43613	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir.H70515	pir.E70863
	ORF (bp)	1887		621	396	264	303	2268	549	573	747	609	1308	3/8	450	408	360	342	465	423
45	Terminal (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
50	initial (nt)	2585 6085 2499783		2502735	2503870	2504247	2504602	2507098	2507115	2507138	2508094	2508922	2510830	2511046	2511427	2512356	2512768	2512803	2513618	2603 6103 2514114
	SEQ NO 8 8	6085	9809	1809	6088	6809	0609	6091	6092	6033	5094	9609	9609	2609	8609	6609	6100	6101	6102	6103
55	SEQ	2585	2586	2587	2588	2589	2590	2591	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603

														·						
	Function	folyl-polyglutamate synthetase				valyl-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- rhonooxygenase reductase	transport protein	majonate transporter	dass-III heat-shock protein or ATP- dependent protease	hypothetical protein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
	Matched length (aa)	451				915	521	508	170	319	207	208	357	338	444	286	430	366	210	251
	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	85.8	73.0	85.7	84.5
`	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolar A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2065 pcaJ	Streptomyces sp. 2065 pcal
	db Match	prf 2410252B				sp.SYV_BACSU	pir A38447	sp.DNAK_BACSU	gp:ECU89166_1	sp.MDH_THEFL.	gp:SC4A10_33	gp:AF065442_1	- -	gp:FSU12290_2	prf.2513416G	gp:KPU95087_7		gp:SCF55_28	gp:AF109386_2	gp.AF109386_1
	ORF (bp)	1374	612	714	663	2700	1575	1452	585	984	777	576	1128	975	1425	930	1278	1086	633	750
	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209	2522251	2523248	2523561	2524915	2525099	2526233	2527135	2529480	2530761	2530891	2532601	2533353
	SEQ NO.	6104	6105	6106	6107	6108	6109	6110	6111	6112	6113	6114	6115	6116	6117	6118	6119	6120	6121	6122
	SEQ NO. (DNA)		2605	2606	•	—		2610		2612	2613	2614		2616	2617	2618	2619	2620	2621	2622

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

																		
Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate cycloisomerase	protocatechuale dioxygenase alpha subunit	protocatechuate dioxygenase bela subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
Matched length (a.a.)	251	406	-	256	825	115		437	214	217	273	26		372		285		437
Similarity (%)	82.5	71.9		76.6	43.0	9.68		63.4	9.07	91.2	48.7	81.5		84.7		88.4		85.6
Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		8.09		72.3		62.2
Homologous gene	Rhodococcus opacus 1CP pcaR	Ralstonia eutropha bktB		Rhodococcus opacus pcal.	Streptomyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcal.		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA		Pseudcmonas putida plasmid pDK1 xyIX
 db Match	prf.2408324F	prf 2411305D		prf:2408324E	gp:SCM1_10	prf.2408324E		prf.2408324D	prf:2408324C	prf.2408324B	pir.G70506	prf.2515333B		SP.CATB_RHOOP		prf:2503218A	-	gp:AF134348_1
ORF (bp)	792	1224	912	753	2061	366	678	1116	612	069	1164	291	771	1119	909	855	141	1470
Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
tnitial (nt)	2533391	2534201	+	2535430	2536196	2538613	2539553		2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544876	2545068	6140 2545315
SEQ NO.	6123	6124	6125	6126	6127	6128	6129	6130	6131	6132	6133	6134	6135	6136		6138	6139	
SEQ NO.			-i-		2627	2628	2629		2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

	ī					 -		i			 -	Т					$\neg \tau$	\neg		
5		Function	toluate 1,2 dioxygenase subunit	toluate 1,2 dioxygenase subunit	1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase	regulator of LuxR family with ATP- hinding site	transmembrane transport protein or 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Clp protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothetical protein	penicillin-binding protein	hypothetical protein		transposase		hypothetical protein	transposase
15		Matched length (aa)	161	342	277	979	435	388	197	198	42	417	160	336	115		142		35	75
20		Similarity (%)	83.2	81.0	614	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50 9	58.3		73.2		82.9	78.7
		Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2	•	57.1	50.7
25	Table 1 (continued)	is gene	ida plasmid	ida plasmid	ida plasmid	hropolis thcG	oaceticus	oaceticus	icolor M145	licolor M145	us ORF154	8 tig	licolor A3(2)	ırans LC411	a1		striatum ORF1		striatum ORF1	striatum ORF1
30	Table 1 (c	Homologous gene	Pseudomonas putida plasmid pDK1 xylY	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 xylL	Rhodococcus erythropolis thcG	Acinctobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptcmyces coelicolor M145 clpP2	Streptomyces coelicolor M145 clpP1	Sulfolobus islandicus ORF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterium striatum ORF1		Corynebacterium striatum ORF 1	Corynebacterium striatum ORF1
35			2 2	م م	9 9	<u>α</u>	4 9	هَ∢	00	S	S	60	SS	i -	: ≥		0		3	읙
40	***************************************	db Match	gp.AF134348_2	gp:AF134348_3	gp:AF134348_4	gp REU95170_1	sp:PCAK_ACICA	sp.BENE_ACICA	gp.AF071885_2	gp.AF071885_1	gp:SIS243537_4		gp:SCD25_17	sp:PBP4_NOCLA	prf.2301342A		prf:2513302C	:		prf.2513302C
		ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
45		Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
50		Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599	2558106	2558609	2559157	2560131	2561115	2561920	2562093	2562115	2562341
		SEQ NO (a a.)	6141	6142	6143	6144	6145	6146	6147	6148	6149	6150	6151	6152	6153	6154	6155	6156	6157	6158
55		SEQ NO.		2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

	$\overline{}$		-т			\neg	$ \tau$	_		$\neg \vdash$	Т	T		T	T			T	Τ.	<u> </u>			\neg
5					e isomerase											ıase	9 44 A 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ransporter		-binding protei	stem	ın peimease	
10		Function			galactose-6-phosphate isomerase	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthase	multidrug resistance transporter		ABC transporter ATP-binding protein	dipeptide transport system permease protein	nickel transport system permease protein	
15		Matched length (a.a.)			140	248	199	890	358		:		104			381	290	392		538	286	316	
20		Similarity (%)	İ		71.4	58.1	80.9	70.5	58.1				81.7			63.8	58.6	47.7		71.6	73.8	62.0	
		Identity (%)			40.0	26.2	56 8	47.5	25.1				61.5			31.2	31.4	25 8		41.3	38.8	33.2	
25 (panei)	(canal)	jene			us NCTC	icus ORF2	culosis	s pepN	3B0852				s ATCC			5 DK1050	s JA3933	nes IIIB		ngatus	фррС	nikB	
os Table 1 (Continued)	ומסור ו לכסו	Homologous gene			Staphylococcus aureus NCTC 8325-4 lacB	Bacillus acidopullulyticus ORF2	Mycobacterium tuberculosis H37Rv Rv2466c	Streptomyces lividans pepN	Borrelia burgdorferi BB0852				Brevibacterium linens ATCC 9175 cttl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 crtB	Listeria monocytogenes lltB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB	
35	Ī		! 			i –	21						-3					3					
40		db Match			sp:LACB_STAAU	Sp:YAMY_BACAD	pir A70866	Sp. AMPN STRLI	pir. B70206				gp:AF139915			sp:CRTJ_MYXXA	sp:CRTB_STRGR	gp:LMAJ9627		gp.SYOATPBP_2	sp.DPPC_BACFI	pir S47696	
		ORF (bp)	390	985	471	969	609	2601	1083	1152	999	156	327	171	378	1206	876	1119	1233	1	882	939	1707
45		Terminal (nt)	2562387	2563847	2563932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232	2578879	2579769	2580711
50		Initial (nt)	2562776	2562963	2564402	2565245	2566231	2566345		2571460	2571510			2572977	2573770	2573864	2574718	2575898	2577213	2578872		2580707	6:79 2582417
		SEQ NO.		6160	6161	6162	6163	6164		6166	6167	-	6169	6170	6171	6172	6173	6174	6175	6176		6178	
55		SEQ	2659	2660	2661	2662	2663	2664	2665	2666	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679

5		Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacetyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromate transport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
15		Matched length (a a)		411	482	218	235	240	94	238	126	39Ę	196	127		55	563	172	700	536
20		Similarity (%)		63.5	47.9	79.4	60.0	55.0	47.0	65.1	77.0	60.4	6.89	61.4		90.09	79.6	62.2	56.7	52.6
		Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.C	28.C
25	ontinuea)	s gene		lutamicum	erculosis	erculosis	um D phbB	icolor actil	sibi	ida GM73	ргае	ruginosa chrA	berculosis	licolor A3(2)	-	K1 APE1182	12 yjjK	berculosis	prae o659	hoB
30	Table 1 (confinued)	Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D phbB	Streptomyces coelicolor actll	Neisser.a meningitidis	Pseudo:monas putida GM73 ttq2A	Mycobacterium leprae	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10.19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yjjK	Mycobacterium tuberculosis 1437Rv Rv2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
<i>35</i>		db Match		Sp:ARGD_CORGL A	pir A70539	sp:YA26_MYCTU	Sp. PLIBB CHRVI	1	75	gp.AF106002_1	gp:MLCB1610_9	1	pir.A70867	gp.SC6D10_19		pir.B72589	Sp.YJJK_ECOLI	pir E70867	Sp. Y05L MYCLE	pir.C69676
		ORF (bp)	1941	4	1584 pi	747 sp		728		792 g	393 g	1128 s	627 p	465 g	621	162	÷	615	2103	19
45		Terminal (nt)	2584504	+	2587763	2588722	2500725	250000	2591137	2591574	2592794	2593965	2593968	2594597	2595188	2595822		+	2508662	
50		Initial (nt)	4		2586180	2587976	0070010		2590697	2592365			2594594	2595061	2595808	2505083				2601461
		SEO	(3 3)		6182	6183		6184	6186	6187			6190	6191	6102					6197
55		SEO	(D17A)	2681	2682	2683		2684	2685	2687	2688	2689	2690	2691	2862	2602	260%	2695	000	2695

5	Function			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacyl reductase	oligoribonuclease
15	Matched length (a.a.)			279	292		462		386		154		207	183		412	255	258	179
20	Similarity (%)			76.3	67.5		63.2		798		72.7		89.4	73.8		64.6	69.4	57.0	78.8
	Identity (%)			39.1	27.4		28.8		59.1		37.7		67.2	48.6		35.0	41.2	40.0	48.0
75 Table 1 (continued)	Homologous gene			Streptococcus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK		Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermotoga maritima MSB8 TM0964	Escherichia colı K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
<i>35</i>							Ther		Strep		Schize dpm1		Rhoc	Synec		Thermot TM0964	Esch	Mycc H37F	Esch
40	db Match			sp.MSMG_STRMU	Sp.MSMF_STRMU		prf.2206392C		prf2308356A		prf.2317468A		prf.2516398E	prf.2513418A		pir.A72312	sp:GIP_ECOLI	pir E70761	SP.ORN_ECOLI
	ORF (bp)	930	639		843	1674	1329	1242	1128	750	684	069	789	762	345	1182	750	798	657
45	Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185	2609512	2612272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2618869	2619538
50	Initial (nt)	2604573	2604583	2605520	2606369	2606444	2607889	2609426	2610639	2611523	2611531	2612462	2613712	2614649	2615451	2617120	2617246	2618072	2618882
	SEQ NO. (a.a.)	6198	6199	6200	6201	6202	6203	6204	6205	6206	6207	6208	6209	6210	6211	6212	6213	6214	6215
55	SEQ NO (DNA)	2698	2699	2700	2701	2702	2703	2704	2705	2706	2707	2708	2709	2710	2711	2712	2713	2714	2715

																				
5	Function	ferric enterochelin esterase	lipaprotein				transposase (IS1207)			Iranscriptional regulator	glutamınase	sporulation-specific degradation regulator protein		uronate isomerase		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comigratory protein	bacterial regulatory protein, tetR family
15	Matched length (a a)	454	398		i		436			131	358	97		335		291	185	75	141	114
20	Similarity (%)	50.9	719				8 66		-	63.4	69 3	72.2		60.9		45.0	74.6	0.08	73.8	61.4
	Identity (%)	26 0	48.5				99.5			32 8	35 2	42.3		29.0		32.0	48.1	42.7	46.8	32.5
25 	Homologous gene	Salmonella enterica iroD	Mycobacterium tuberculosis H37Rv Rv2516c lppS				Corynebacterium glutamicum ATCC 21086			Salmonella typkimurium KP1001 cytR	Rattus norvegicus SPRAGUE. DAWLEY KIDNEY	Bacillus subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennal teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicolor A3(2) SCI11,01c
40	db Match	prf 2409378A	pir:C70870	-			gp.SCU53587_1			gp:AF085235_1	sp GLSK_RAT	pir:A36940		sp:UXAC_ECOLI		prf.1814452C	prf:2324444A	pir:E70870	sp.BCP_ECOLI	gp:SCI11_1
	ORF (bp)	1188	1209	645	150	246	1308	207	639	453	1629	477	555	1554	501	1197	558	273	465	989
45	Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633146	2634064	2634751
50	Initial (nt)	2620728	2622181	2622961	2623770	2623803	2625358	2625600	2626447	2627924	2628121	2628376	2628878	2628926	2630636	2631270	2632543	2633418	2633600	2634116
	SEQ NO.	•	6217	6218	6219	6220	6221	6222	6223	6224	6225	6226	6227	6228	6229	6230	6231	6232	6233	6234
55	SEQ NO (DNA)	2716	2717	2718	2719	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734

hypothetical membrane protein

428

58.2

29.0

Mycobacterium tuberculosis H37Rv SC8A6.09c

sp:Y029_MYCTU

1362

2654875

2656236

6249

transposase (IS1628)

97.2

92.1

Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB

gp.AF121000_8

2656985

2656452

6250

2750

arylsulfatase

250

74.4

46.0

Mycobacterium leprae als

Sp. Y03O_MYCLE

660

2657736

10		Function	phosphopantethiene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
15		Matched Jength (a.a.)	145	473	113		3029	404	230	112	113	202	236			
20		Similarity (%)	75.9	85 6	54.0		83 6	55.2	6'09	67.9	0.69	76.7	81.4	:		
		Identity (%)	56.6	52.4	30.1	ļ	62.3	25.3	40.4	40.2	37.2	55.0	60.2			
25	(lunea)	gene	C 6871 ppt1	tamicum	C6803			olor A3(2)	culosis	culosis	e	rculosis	inosa			
	lable 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PCC6803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph		•	
<i>35</i>	-	db Match	gp:BAY15081_1	gp.AF237667_1	pir.S76537		pir:S2047	gp:SC4A7_14	pir.D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp.Y03Q_MYCTU	sp:RNPH_PSEAE			
		ORF (bp)	405	1425	324	414	8979	1182	615	462	354	618	735	246	693	585
45		Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009	2653326	2654079
50		Initial (nt)	2635151	2636589	2636845	2637653	2647627	2649416	2649550	2650441	2650986	2652037	2652801	2653254	2654018	6248 2654660
		SEO NO.		6236	6237	6238	6239	6240	6241	6242	6243	6244	6245	6246	6247	
55		SEQ NO.	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748

											т									
5		Function	D.glutamate racemase		bacterial regulatory protein, marR family	hypothetical membrane protein		endo-type 6-aminohexanoate oligomer hydrolase	hypothetical protein	hypothelical profein		hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain I	
15	Matched	length (a a)	284	i	147	225		321	200	105	:	428		647	313	222	310	;	575	
20	_	Similarity (%)	99.3		70.8	69.3		58.3	58 5	17.1		80.8		53.3	60.1	52 0	61.0		74.4	
		Identity (%)	99.3		44 2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7	. !	46 8	
30 F 94CF		Homologous gene	Corynebacterium glutamicum ATCC 13869 muri		Streptorryces coelicolor A3(2) SCE22 22	Mycobacterum tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptornyces coelicolor A3(2) SC1B5.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
40		db Match	orf 25 16259A		gp SCE22_22	Sp YO3M_MYCTU		pir.A47039	Sp YO3H_MYCTU	sp.Y03G_MYCTU		sp.Y03F_MYCTU		orf.1816252A	sp:Y0A8_MYCTU	pir.T34684	sp.SERB_ECOLI		pir:D45335	
	;	ORF (bF)	852	636	492	747	891	C96	537	300	624	1338	306	1740	891	/23	1017	1596	1743	306
45		Terrnmal (n:)	2658606	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2612721	2671063	2673255
50		Initial (nt)	2659457 2658606	6254 2659496 2660131	2660638	2661417	2661565	2662376	2662867	2663182	2663437	2664060	2665687	2666115	2668760	2669561	2670573	2671126	2672805	6270 2672950
		SEO NO	6253	6254	5255	6256	6257	6258	6529	6260	6261	6262	6263	6264	6265	6266	2929	6268	6269	6270
55		SFO NO SV SV SV SV SV SV SV SV SV SV SV SV SV	2753	2754	2755	2755	2757		2759	2760	2761	2762	2763	2764		2766	2767	2768		2770

									==	·					:			- ;		_
	Function	ribonucleotide reductase beta-chain	ferritin	sporulation transcription factor	iron dependent repressor or diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleotide reductase alpha- chain		50S ribosomal protein L36	NH3-dependent NAD(+) synthetase			hypothetical protein	hypothetical protein	alcohol dehydrogenase	Bacillus subtilis mmg (for mother cell metabolic genes)	hypothetical protein		phosphoglucomutase
	Matched length (a.a.)	334	159	256	225	124	50	707		41	279			257	96	337	459	284		226
	Similarity (%)	7.99	64.2	60.2	60.4	62.1	0.98	100.0		79.0	78.1			56.4	68.8	52.8	56.0	66.2		90.6
	Identity (%)	99.7	31.5	32.8	27.6	24.2	20.0	6.66		58.0	55.6		:	30.7	41.7	26.1	27.0	33.8		61.7
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 nrdF	Escherichia coli K12 finA	Streptomyces coelicolor A3(2) whiH	Corynebacterium glutamicum ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum ATCC 13032 nrdE		Rickettsia prowazekii	Bacillus subtilis 168 nadE			Synechocystis sp. PCC6803 str1563	Mycobacterium tuberculosis H37Rv Rv3129	Bacillus stearothermophilus DSM 2334 adh	Bacillus subtilis 168 mmgE	Arabidopsis thaliana T6K22.50		Escherichia coli K12 pgm
	db Malch	gp:AF112536_1	SP.FTNA ECOLI	4	pir 140339	sp: IIR2_YEAST	pir.C69281	gp:AF112535_3		SP.RL36 RICPR	sp.NADE_BACSU			pir.S76790	pir G70922	sp:ADH2_BACST	sp.MMGE_BACSU	pir.T05174		SP:PGMU_ECOLI
	ORF (bp)	1002	486		099	438	276	2121	315	141	831	93	498	747	288	1020	1371	834	792	1662
	Terminal (nt)	2673338	2675289	2676240	2676243	2677377	2676918		2680784	2681223	2687376	2681464	2683616	2682379	2683131	2683627	2686289	2687148	2687449	2688389
	Initial (nt)	2674339	2674804	2675491	2676902	2676940	2677193	2679598	2680470				6282 2683119	2683125	2683418	2684646	2684919	2686315		2690050
	SEQ	6271	6222	6273	6274	6275	R276	6277	R278	6270	6280	6281	6282		6284	6285		6287	 -	
		(DNA)	27.77		2774	2775	2776	2777	277R	2770	2780	2781	2787	2783	2784	2785	2785	2787	2788	2789

5
10
15
20
25
30
35
40
45
50

Table 1 (continued)

																	•		
Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	major secreted protein PS1 protein precursor				transposase (IS1676)		proton/sodium-glutamate symport protein		ABC transporter		ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase
Matched length (a a)	84	122	254	496	355				200		438		873		218	84	42		196
Similarity (%)	64.3	61.5	1.67	48.6	49.6				46 6		66.2		0.69		79.8	67.0	75.0		54.1
Identity (%)	41.7	25.4	512	24.2	24 8				246		30.8		33.0		45.4	0.09	71.0		28.1
Homologous gene	Mycobacterium tuberculosis H37Rv Rv3069	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 ycsl	Rhodocaccus erythropolis	Corynebacterium glutamicum (Brevibacterium (lavum) ATCC 17965 csp1				Rhodococcus erythropolis		Bacillus subtilis 168		Streptomyces coeliculor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg TC0129		Streptomyces callinus Tu 1892 ansG
db Match	pir F70650	pir.D71843	sp.YCSI_BACSU	gp.AF126281_1	sp CSP1_CORGL				gp:AF126281_1		sp.GLTT_BACCA		gp:SCE25_30		gp:SAU18641_2	PIR:F81516	PIR:F81737		prf.2509388L
ORF (bp)	288	324	792	1365	1620	354	165	447	1401	768	1338	693	2541	891	708	273	141	678	672
Terminal (nt)	2690437	2690760	2691564	2693053	2694918	2695279	2695718	2695320	2697212	2697383	2698194	2701612	2699926	2703356	2702487	2704586	2704975	2710555	2711308
Initial (nt)	2690150	2690437	2690773	2691689	2693299	2694926	2695554	2695766	2695812	2698150	2699531	2700920	2702466	2702466	2703194	2704314	2704835	2709878	2808 6308 2710637
SEQ NO (a.a.)	6290	6291		6293	6294	6295	6296	6297	6298	6299	6300	6301	6302	6303	6304	6305	9069	6307	6308
SEQ NO (DNA)	2790	2791	2792	2793	2794	2795	2796	2797		2799		2801	2802	2803	2804	2805	2806	2807	2808

				-																	
5		בה					amine 1-		tor			356		ase alpha		ase beta chain		luct		ne A	or
10		Loncaon	methyltransferase	hypothetical protein	hypothetical protein		UDP-N-acetylglucosamine carboxyvinyltransferase	hypothetical protein	transcriptional regulator		cysteine synthase	O-acetylserine synthase	hypothetical protein	succinyl-CoA synthetase alpha chain	hypothetical protein	Succinvi-CoA synthetase beta chain		frenolicin gene E product		succinyl-CoA coenzyme A transferase	transcriptional regulator
15		(aa)	205	84	42		417	190	281		305	172	83	791	75	400		213		501	321
20	Sir	(%)	51.2	0.99	75.0		75.3	84.2	0.69		94.6	79.7	65.1	79.4	43.0	73.0		71.8		8.77	68.5
	Identily	(%)	25.9	61.0	71.0		44.8	66.3	45.9		57.1	61.1	36.1	52.9	42.0	39.8		38.5		47.9	38.6
25 (5	(mined)	2	culosis	ae	Nigg	-	ceticus	culosis	lor A3(2)		ysK	i cysE2	ans R1	Mile Ph I	APE1069	CC		Ivus finE		ıt1 cat1	e ATCC
30 14cL	Millings) i order	500	Mycobacterium tuberculosis H37Rv Rv0089	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Acinetobacter calcoaceticus NCIB 8250 murA	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5,15c		Bacillus subtilis 168 cysK	Azotobacter vinelandii cysE2	Deinococcus radiodurans R1 DR1844	Coxiella burnetii Nine Mile Ph I sucD	Aeropyrum pernix K1 APE1069	Bacıllus subtilis 168 sucC		Streptomyces roseofulvus finE		Clostridium kluyveri cat1 cat1	Azospirillum brasilense ATCC 29145 rtrC
40	db Match		SP.Y089_MYCTU	GSP:Y35814	PIR-F81737		sp.MURA_ACICA	sp.Y02Y_MYCTU	gp:SC2G5_15		Sp.CYSK_BACSU	prt:2417357C	gp:AE002024_10	sp:SUCD_COXBU	PIR:F72706	sp:SUCC_BACSU		gp:AF058302_5		Sp.CAT1_CLOKL	sp:NIR3_AZOBR
	ORF	(dg)	525	273	141	195	1254	570	843	408	924	546	288	882	225	1194	360	735	819	1539	1143
45	Terminal	(nt)	2712374	2713453	2713842	2717993	2718436	2720319	2720385	2721295	2722857	2723609	2723770	2724478	2725843	2725384	2726786	2727399	2728207	2729378	2732518
50	<u> </u>	(nt)	2711850	2713181	2713702	2718187	2719689	2719750	2721227	2721702	2721934	2723064	2724057	2725359	2725619	2726577	2727145	2728133	2729025	2730916	2731376
	SEO		6309	6310	6311	6312	6313	6314	6315	6316	6317	6318	6319	6320	6321	6322	6323	6324	6325	6326	6327
55	SEO	(DNA)	2809	2010	2811	2812	2813	2814	2815	2816	2817	2818	2819	2820	2821	2822	2823	2824	2825	2826	2827

																	
5		Function	Stolens to see and the see	phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferasc		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	S-phosphoribosyl-5-aminoimidazole synthetase	amidophosphoribosyl transferase
15		Matched length (a.a.)		213	255	292	325	369	315		344	225	259	352	58	347	482
20		Similarity (%)		81.7	82.8	82.2	78.5	26.0	0.09		55.2	74.2	56.0	79.0	81.0	94.2	89.0
		Identity (%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
30	Table 1 (continued)	Homologous gene		Mycobacterium tuberculcsis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Itv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purf
40	*	db Match		pir.E.70810	pir.S68595 P	gp:MTPSTA1_1 H	N pir A70584	pir 1170583	gp:SCD84_18 s		SP. BMRU_BACSU B	pir.E70809	gp.AF193846_1	gp AB003158_6 a	pir.B70809	gp:AB003158_5	gp.AB003158_4
		ORF (bp)	807	732	1 268	921	1014	1125	876	/83	1095	687	942	1101	213	1074	1482
45		Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2/39553	2739556	2741356	2741636	2743785	2744222	2744881	2746083
50		Initial (nt)	2732230	2732636	2734351	2735184	2736215	2737538	2738711	2738771			2742577	2742685	2744010	2745954	2747564
		SEO NO.	 -	6329	6330	6331	6332	6333	6334	6335	6336		6338	6339	6340	6341	6342
55		SEQ NO.	_		2830	2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842

5		uo			ine protein		synthetase		synthetase	
10		Function	hypothelical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5'-phosphoribosyl-N- formylglycinamidine synthetase		5'-phosphoribosyl-N- formylglycinamidine synthetase	-
15		Matched length (a.a.)	124	315	217	42	763		223	7
20		Similarity (%)	75.8	94.0	87.1	71.0	89 5		93.3	
		Identity (%)	57.3	75.9	67.7	64.0	9.77		80.3	3
25	(þa		.s	.2	.2		.5		.2	9
30 35	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF 1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL		Corynebacterium ammoniagenes ATCC 6872 purQ	Corynebacterium
40		db Match	pir:H70536	017 gp.AB003158_2	gp:AB003158_1	GP SSU18930_21 4	2286 gp:AB003162_3		gp:AB003162_2	
		ORF (bp)	375	<u> </u>	741	186	2286	720	699	3
45		Terminal (nt)	2747683	2749111	2749162	2752103	2750027	2753121	2752327	1000
50		Initial (nt)	2748057	6344 2748095	6345 2749902	2751918	6347 2752312	2752402	6349 2752995	
		SEQ NO.	6343	6344		6346		6348	6349	
		Ø 0 €	43	4	45	46	47	48	49	1

Function	hypothelical protein	hypothelical protein	hypothelical membrane protein	hypothelical protein	5-phosphoribosyl-N- formylglycinamidine synthetase		5'-phosphoribosyl-N- formylglycinamidinc synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
Matched length (a.a.)	124	315	217	42	763		223	79		158	965		211	414	269
Similarity (%)	75.8	94.0	87.1	71.0	89 5		93.3	93.7		6.77	51.5		68.7	81.6	70.6
Identify (%)	57.3	75.9	67.7	64.0	77.6		80.3	81.0		46.2	28.0		37.4	49.0	41.8
Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF 1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL		Corynebacterium ammoniagenes ATCC 6872 purQ	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
db Match	pir:H70536	gp:AB003158_2	gp:AB003158_1	GP SSU18930_21	gp:AB003162_3		gp.AB003162_2	gp:AB003162_1		prt.2420329A	prf.2216389A		pir C70709	sp.DCTA_SALTY	prf.2408266A
ORF (bp)	375	1017	741	186	2286	720	699	243	522	477	2748	276	687	1338	2118
Terminal (nt)	2747683	2749111	2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402	2752995	2753237	2753298	2753804	2753992	2756851	2757815	2759200	6357 2761649
SEQ NO.	6343	6344	6345	6346	6347	6348	6349	6350	6351	6352	6353	6354	6355	6356	6357
SEQ NO. (DNA)	2843	2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2855	2857

	Function		5-phosphoribosyl-4-N-succinocarboxamide-5-amino imidazole synthelase	adenylosuccino lyase	aspartate aminotransferase	5-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
	Matched length (a.a.)	İ	294	477	395	425	136		243	469	423	224	335	231	249	382
	Similarity (%)		89 1	95.0	62.3	86.4	80.2		56.4	67.6	98.8	99.6	70.5	72.7	69.5	53.9
	Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
Table 1 (continued)	Homologous gene		Corynebacterium ammuniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynetacterium ammoniagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioD	Lactococcus lactis M71plasmid pND306	Thermologa marilima drrA	Streptomyces lividans tipA	Arthrobacter sp DK-38
	db Match		gp:AB003161_3	gp.AB003161_2	sp.AAT_SULSO	gp:AB00316*_1	Sp:YHIT_MYCLE		pir.S62195	sp:DTPT_LACLA	sp.BIOA_CORGL	sp:BIOD_CORGL	gp.AF049873_3	prf:2222216A	SP.TIPA_STRLI	
	ORF (bp)	624	891	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	
	initial (nt)	2762452	2762675	2764931	2766135	2767420	2767580				2770714	2771989	2774098	2774814	2775689	
	SEQ NO.	: - -		6350	6361	6362	6363	6364	6365	9969	5367	6368	6369	6370	6371	6372
	SEQ NO.			2860	2861	2862	2863	2864	2865	2866	7867	2868	2869	2870	2871	2872

. 20

5	Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphale synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affnity zinc uplake system protein
15	Matched length (a.a.)	574	504	92	421		303	232	278	288		140	464	155	487		245	344	353
20	Similarity (%)	758		68.5	78.4		62.1	0.69	52.9	55.6		50.7	64.0	50.3	66.7		57.6	60.2	46.7
	Identity (%)	463	33.3	30.4	456		34.3	37.1	28.4	26.7		28.6	36.0	92.3	38.8	_	27.4	24.7	22.4
30 30 Lable 1 (continued)	Homologous gene	К12 рохВ	aureus plasmid	K12 ycdC	uberculosis		ythropolis SQ1	168 alsR	tubercutosis s lpqC	168 ykrA		cuniculus kidney	tuberculosis	riseus hrdB	myces pombe		K12 otsB	erium ccpA	ılluenzae Rd
35 Lab	Homolog	Escherichia coli K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c lpqC	Bacillus subtilis 168 ykrA		Oryctolagus cur cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Escherichia coli K12 otsB	Bacillus megaterium ccpA	Haemophilus influenzae Rd HI0119 znuA
40	db Match	gp:ECOPOXB8G_1	prf.2212334B	sp.YCDC_ECOLI	pir.D70551		gp:AF096929_2	SP. ALSR_BACSU	pir C70982	pir.C69862		pir. A45264	pir.B70798	pir:S41307	sp:TPS1_SCHPO		SP.OTSB_ECOLI		sp:ZNUA_HAEIN
	ORF (bp)	1737	1482	531	1320	2142	096	705	813	813	459	399	1503	327	1455	513	768		942
45	Terminal (nt)	2776768	2780446	2780969	2782315	2782340	2784656	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327	2794812	2795637		2797806
50	Initial (nt)	2778504	2778965	2780439	2780996	2784481	2785615	2786355		2789399	2789935		2790946	2792531		2794300	_		2796865
	SEO	6373	6374	6375		6377	6378	6329	6380	6381			6384	6385		6387	 -		6390
55	SEQ.	(DNA)	2874	2875	2876	2877	2878	2879	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890

																—т		
	Function	ABC transporter		transposase (ISA0963 5)		3-ketosteroid dehydrogenase		ipopolysaccharide biosynthesis prote n or oxidoreduclase c' dehydrogenase	dehydrogenase or myo inositol 2. dehydrogenase	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase or IRNA/rRNA methyltransferase	cysteinyl-IRNA synthetase	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphate hydrolase or sucrase	glucosamıne-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase
	Matched length (a a)	223	135	303		561		204	128	262	130	212	334	464	668	473	248	368
	Similarity (%)	63.2	87.4	52.5	-	62 0		55 4	5 65	67.5	808	55.7	47.3	688	77.0	56.9	69.4	60 3
	Identity (%)	31.4	0 09	23.4		32.1		34 3	35.2	30.5	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2
Table 1 (continued)	l lomologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kstD1		Thermotoga maritima MSB8 bptA	Bacillus subtilis 168 idh or 10:G	Escherichia coli K12 shiA	Escherichia coli K12 shiA	Streptomyces coe icolor A3(2) SC5A7.19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coli K12 cysS	Lactococcus ladis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD
	db Match	gp:AF121672_2	pir.E7050/	pir A69426		gp. AF096929_2		pir 872359	sp MI2D_BACSU	SHIA FCOIL	sp SHIA FCOL:	gp.SC5A7_19	sp.PT56_YEAST	SP. SYC ECOLI	prf.2511335C	gp.AF205034_4	sp:NAGB_ECOLI	sp:NAGA_VIBFU
	ORF (bp)	069	555	1500	201	1689	747	618	435	85.5	47.5 F. 7.5	654	939	1380	1983	1299	759	1152
	Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676	2006113	200000	2806599	2807426	2808399	2809824	2811960	2813279	2814081
	Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996		2805110		7080007		2808364	2809778		2813258	2814037	2815232
	SEQ	(a.a)	6392	6393	6394	6395	906	6397	6398	100	5654	6401	6402	5403	6404	6405	6406	6407
		(DNA) 2891	2892	2893	_		_	2897	2898		6697	2901	2905	2003	2904	2905	2906	2907

transcription factor

157

91.1

73.3

Mycobacterium tuberculosis H37Rv Rv3583c

pir.H70803

594

2923 | 6423 | 2829749 | 2829156

10		Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothelical protein
15	Matched	length (a a)	298	321	220		439	222	260	342	314	258	193	142		152	235
20	Similarity	(%)	62 1	57.6	68 6		50.3	57.2	51.4	64.3	78.3	78.7	62.7	66.2		86.2	71.5
	Identity	(%)	28.2	28.7	36 4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4
30 F	lance (common	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10 20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c
40		db Match	sp DAPA_ECOLI	sp.GLK_STRCO	prf:2516292A		sp. NANH_MICVI	gp:AF181498_1	gp:RFU64514_1	sp:DPPB_BACFI	sp:OPPD_BACSU	sp:OPPF_LACLA	sp:RHTB_ECOL!	prt.2309303A		pir.C70607	sp:Y18T_MYCTU
	200	(gd)	936	606	969	177	1215	729	1608	951	1068	816	621	483	360	480	768
45	-	(nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379
50		(nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146
	SEO	NO (a a)	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422
55	SEO	NO.	2908	2909	2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922

													1		ī		$\overline{}$	Т		_ 1	!
5	ion		iem response	tem sensor		KadA			hyde		onate	ne glycosylase		phydronenase	enydrogenasc				u.		
10	Function		two-component system response regulator	two-component system sensor		DNA repair profein KadA	hypothelical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate dehydratase beta	AG-specific adenine glycosylase	:	p loibone but o c	L-2.3-Duranegioi oeriyai ogenas				hypothetical protein	virulence factor	virulence factor
15	Matched		223	341		463	345	231	471		210	283		1	862				97	66	72
20	Similarity	(%)	0 0 2	67.7		74.3	73.3	53.3	85.1		66.2	7.07			9.66				69.1	63.0	55 0
	Identity	(%)	43 5	29.3		415	40.3	29 4	59.5		36.7	48.4			99.2				48.5	57.0	54.0
<i>25</i>		ը	losis	eS		۲p	c.K	losis	UCIMB		ardtii ca 1	cus IMRU			rolyticum				ulosis	esou	esou
30 Table 1 (continued)		Homologous general	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtilis 168 yack	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca 1	Streptomyces antibioticus IMRU 3720 mutY			Brevibacterium saccharolyticum	The state of the s			Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
35	-	_	¥£	ES	1	E	Ba	ΣÏ	P. 89	1	0	3.5			8	-	-		ΣI	<u>a</u> 0	120
40		db Match	prf.2214304A	sp.BAES_ECOLI		Sp.RADA ECOLI			gp PPU96338_1		pir: T08204	gp:AF121797_1			gp: AB009078_1				pir.E70552	GSP:Y29188	GSP: Y29193
	190	(dq)	723	1116	582	1392	1098	687	1452	147	621	879	1155	306	774	324	741	312	291	420	213
45	-	(nl)	2830779		2832666	;		1	2836048	2837591	2837956	2839521	2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2846101
50	-	(nt)	2830057		2830CEBC			2835969	2837499		2838576	2838643	2839562	2841063	2841075	2842130	2842493	2843405	2843722	2845139	2845889
	SEO	ON S			90,79		6421 6428		6430	6431		6433	6434		6436	6437	6438	6439		6441	6447
55	SFO		2924			_		0262				2933	2934	-		7	2938	2939	2940	2941	2942

5	:
10	
15	Matched
20	
25	
- 30	Table 1 (continued)
35	İ
40	
45	
50	
	, 0

Г	i		T			1	-		\neg	i	T	<u> </u>	1		ī	-				\neg
	Function	virulence factor	ClpC adenosine triphosphafase / ATP-binding proteinase	inosine monophosphate deliyd:ogenase	transcription factor	phenol 2-monooxygenase					Incomycin resistance protein	hypothelical protein	lysyl-tRNA synthetase	pantoatebeta-alanine ligase			hypothetical membrane protein	2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase	dihydroneopterin aldolase	dihydropteroate synthase
	Matched length (a.a)	55	832	469	316	680				<u> </u>	481	240	511	268			138	158	118	268
	Similarity (%)	75.0	86 2	70.2	62.7	6 09					100 C	55.8	71.2	52.6		-	69.6	0.69	69.5	75.0
	Identity (%)	74.0	58.5	37.1	24.7	33.5					100 0	26.7	41.7	29.9			29.0	42.4	38.1	51.5
(Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtilis 168 mecB	Bacillus cereus ts-4 impdh	Rhodocaccus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum ImiB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folK	Bacillus subtilis 168 folB	Mycobacterium leprae folP
	db Match	GSP:Y29193	sp:MECB_BACSU	gp:AB035643_1	pir.JC6117	sp. PH2M_TRICU					gp. AF237667_1	pir.G70807	gp:AB012100_1	gp:CGPAN_2			gp:MLCB2548_4	sp. HPPK_METEX	Sp:FOLB_BACSU	gp:AB028656_1
	ORF (bp)	321	2775	1431	1011	1785	1716	1941	1/22	162	1443	951	1578	798	693	798	465	477	390	837
	Terminal (nt)	2846506	2844166	2848659	2849779	2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867	2865346	2865731
	Initial (nt)	2846186	2846940	2847229	2848769	2850031	2852017	2853769	2855795	2859044		2860145	2862082	2862929	2863621	2864421	2864848	2865343	2865735	2866567
	SEO NO.	6443	6444	6445	6446	6447	6448	6449	6450	6451	6452	6453	6454	6455	6456	6457	6458	6459	6460	6461
	SEQ NO.		2944	2945	2946		2948	2949	2950	2951		2953	2954	2955	2956	2957		2959	2960	

-												ı		1					
	Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine phusphcribosyltransferase	cell cycle protein MesJ or cytosine deaminase-related protein	D. alanyl-D. alanıne carboxypeplidase	inorganic pyrophosphatase		spermidine synthase	hypothetical membrane protein	hypothetical protein	hypothelical protein	hypothetical protein	PTS system, beta glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	bacterial regulatory protein, marR family
	Matched length (a a)	188		782	165	310	459	159		507	132	144	173	202	89		411	26	135
	Similarity (%)	85.2		0 69 -	83.0	66.8	51.4	736	-	80.7	86.4	63.2	60.1	72.3	59.6		9 69	73.2	59.3
	Identity (%)	9 09	i	56.0	515	410	27.2	49.7		56.0	38.6	36.8	36.4	44.6	30.3		38.0	46.4	26.7
Table 1 (conlinued)	Homulogous gene	Bacillus subtilis 168 mtrA			Salmorella typhimurium GP660 hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac	Escherichia co i K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis H37Rv Rv2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacillus subtilis 168 bg!P		Nocardioides sp. KP7 phdD	Streptomyces coelicolor A3(2) SCH69.09c	Burkholderia pseudomallei ORF
	db Match	Sp GCH1_BACS11			gp AF008931_1	sp vZC5_MYCTU	sp:DAC_ACTSP	sp 'PYR_ECOLI	 	plr 1170886	sp:Y0B1_MYCTU	sp:Y0B2_MYCTU	sp.Y0B3_MYCTU	sp:Y0B4_MYCTU	sp.PTBA_BACSU		gp:AB017795_2	gp.SCH69_9	prf 2516298U
	ORF (50)	588	915	2580	582	891	1233	474	219	1539	399	411	498	609	249	264	1233	288	444
	lerminal (nt)	2866586	2868385	2867169	2869863	2870499	28/1445	2873399	28/3393	2873905	2875434	2875870	2876280	2876777	2877455	2877595	2878478		2880987
	Init.al (n:)	6462 2867173	2963 6463 2867471	2869748	2870444	2871389	2872677	28/2926		2875443	2875832	2876280	2876777	2877385	2877703	2877858	2879710	2879965	2979 6479 2880544
	SEQ	6462	6463	6464	6465	6466	6467	6468		6470	6471	6472	5473	6474	6475	6476	6477		6479
	SEQ	2962	2963	2964 6464	5962	2966 6466	2967	2968			2971	2972	2973	2974	2975	2976	7977	2978	2979

Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase

797

68.3

35.6

Staphylococcus aureus mnhA

3057 prf:2504285B

6499 2910172 2913228

2999

909

6498 2909830 2909231

2998

										_		_							
10	Function	peptide synthase		phenylacetaldehyde dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or groEL protein							hypothetical protein			peptidase	
15	Matched length (a.a.)	1241		488	241	54	31	548							1236			447	
20	Similarity (%)	51.6		2 69	1.61	63 0	80.0	100.0							42.3		_	68.0	
·	Identity (%)	28.4		35.0	57.3	62.0	74.0	99.5							21.7			37.1	
S 57	us gene	eosporus cpsB		(12 padA	juni Cj0604	iberculosis	ıberculosis	avum MJ-233							UCSB			Iberculosis	
30 Lable 1	Homologous gene	Streptomyces roseosporus cpsB		Escherichia coli K12 padA	Campylobacter jejuni Cj0604	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Brevibacterium flavum MJ-233							Homo sapiens MUC5B			Mycobacterium tuberculosis H37Rv Rv2522c	
40	db Match	prf 2413335A				GP:MSGICWPA_1	GP:MSGTCWPA_1	gsp:R94368							prf:2309326A			pir:G70870	
	ORF (bp)	3885	1461	1563	918	162	~	1644	180	1209	963	1986	2454	2799	3591	2775	612	1371	579
45	Terminal (nt)	2884882	2881844	2884935	2886916	2890346	2890553	2888897	2890751	2890930	2892138	2893100	2895072	2897528	2900330	2903964	2906639	2908885	2909788
50	Initial (nt)	2880998	2883304	2886497	2887833	2890185	2890377	2890540	2890930	2892138	2893100	2895085	2897525	2900326	2903920	2906738	2907250	2907515	2909210
	SEQ NO.	6480	6481	6482	6483	6484	6485	6486	6487	6488	6489	6490	6491	6492	6493	6494	6495	6496	6497
55	SEQ NO. (DNA)	2980	2981	2982	2983	2984	2985	2986	2987	2988	2989	2990	2991	2992	2993	2994	2995	2996	2997

10	Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/I I+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein		polypeptide deformylase	hypothetical protein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or exonuclease	cardiolipin synthase
	Matched length (a.a.)	104	523	161	7.7	121	178	334		184	7.1	339			31	513
20	Similarity (%)	81.7	72.1	6.09	66.2	63.6	54.5	61.7		6.09	70.4	54.2			59.9	62.0
25	Identity (%)	44.2	35.2	26.7	32.5	256	24.7	27.0		37.5	47.9	31.3			30.8	27.9
25 Table 1 (continued)	Flomologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacıllus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 xthA	Bacillus firmus OF4 cls
40	db Match	gp AF097740_3	gp AF097740_4	gp AF097740_5	prf.2416476G	prf 2504285H	pir.D70594	sp:YBDK_ECOLI		sp.DEF_BACSU	pir D70631	pir:870631			gp:AF108767_1	gp BFU88888_2
	ORF (bp)	489	1668	441	273	378	594	1128	663	579	252	1005	699	630	789	1500
45	Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920250	2922108	2923617
50	Initial (nt)	2913235	2913749	2915482	2915929	2916205	2917617	2918757	2919481	2919715	2919741	2920286	2920476	2920849	2921320	2922118
	SEQ NO.	6500	6501	6502	6503	6504	6505	9059	6507	6508	6209	6510	6511	6512	6513	6514
55	SEQ NO. (DNA)	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014

5		Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT profein	hypothelical membrane protein	glutamine-binding protein precursor	serine/threonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylglycinamide formyltransferase	
15	Matched	length (aa)		393	382	289		255	309	168	423	270	805		457	156				379	
20		Similarity (%)		67.2	68.9	56 4		8.09	66.3	68.5	70.2	64.8	63.5		8.79	60.3				82.6	
		Identity (%)		316	28.5	38.8		24 3	36.9	47.6	35.0	31.5	41.2		37.2	34.0	-			59.1	
25 30 Table 1 (continued)		Homologous gene		Escherichia coli K12 bcr	Vibrio cholcrae JS1569 nptA	Pseudomonas aureofaciens 30- 84 phzC		Streptomyces coelicclor A3(2) SCE8, 16c	Bacillus lichen:formis ATCC 9945A berA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis 137Rv Rv0412c	Bacillus stearothermophilus NUB36 glnH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		S	Escherichia coli K12 elaA				Bacillus subtilis 168 pur	
35		ĭ ——-		Escherich	Vibrio ch	Pseudon 84 phzC		Streptomy SCEB. 16c	Bacillus lich 9945A berA	Mycobacterium H37Rv Rv0413	Mycobacterium t	Bacillus stea NUB36 glnH	Mycobac H37Rv R		Bos taurus	Escheric				Bacillus	
40		db Match	!	sp 9CR_ECOI1	gp VCAJ10968_1	sp PHZC_PSEAR		gp SCEB_16	sp.BCRA_BACI I	pli C70629	pir:B70629	sp:GLNH_BACST	pir.H70628		sp.ADRO_BOVIN	sp.ELAA_ECOLI				sp:PURT_BACSU	
		ORF (bp)	654	1194	1164	840	633	768	936	501	1386	1032	2253	747	1365	546	1062	1029	399	1194	888
45		Terminal (nt)	2924844	2923954	2926704	2926/0/	2927651	2927551	2928302	2929256	2931336	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	2943012	2945639
50	<u>.</u>	Initial (nt)	2924191	+	2925541	2927546	7978283	2928318	2929237	2929756	2929951	2931340	2932577	2933398	2938403	2939907	2941508	2942500	2943007	2944205	6533 2946526
	100	SEQ NO	6515	6516	6517	6518	6519		6521	6522	6523	6524	6525	6526	6527	6528	6259	6530	6531	6532	6533
55		SEQ NO (DNA)	30.15 05.15	3016	3017	3018	3019	3020	3021	3022	3023	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033

												-		T	1			ī	Ì	į		1 1	- 1	1	
5			related)	- Polotod)	ופושומח	in sensor	lor	:	nthetase				ane protein	te aldolase				syltransferase			g)				
0		Function	insertion element (IS3 related)		insertion element (155 related)	two-component system serisor histidine kinase	transcriptional regulator		adenylosuccinate synthetase		hypothetical protein		hypothetical membrane protein	de acte and control	ructose-dispinashiate discount	hypothetical protein	methyltransferase	a shoenhoribosyltransferase	Ordiale prioripi	hypothetical protein	3-mercaptopyruvate	Sullutiansielase			
15		Matched length (a.a.)	795		68	349	218		10,	421	204		359		344	304	182		1/4	250	294				
20		Similarity (%)	0 00	90.9	84.3	51.3	65.6			95.3	59.3		100.0		100.0	100.0	0,0	7. 6	65.5	0.09	a g	<u> </u>			1
		Identity (%)		g. / /	67.4	22.4	31.7			89 7	34.3		1000		99.7	100.0	9	6.0	39.1	27.6	9 90	73.0		-	1
25	ned)	J.e	micia		micum	olaceus	1000	O S			ulosis		amictim	ORF3	arnicum Ida	amicum ORF1	culosis		E E	culosis					
30	Table 1 (continued)	Homologous gene	minima dutamicum	ynebacterium grwan	Corynebacterium glutamicum	Streptomyces thermoviolaccus	2071 V	Bacillus previs Achao dego		Corynebacterium ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		Corvnebacterium glutamicum	AS019 ATCC 13059 ORF3	Corynebacterium glutamicum AS019 ATCC 13059 fda	Corynebacterium glutamicum	Asolis Aloc 13035 old	H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis	13/KV KV0363C	Homo sapiens mps l			
35			16	er 25	S F	St		-	+	<u>ဒီ ह</u>	ĮŽŸ	-		$\neg \uparrow$	υď	0.4	₹ 3	ΣI	<u> a</u>	2 :	L		1	\dashv	
40		db Match		pir.S60890	DIT S60889	AB016841 1	-	Sp DEGU_BACBR		gp. AB003160_1	pir:G70575			sp. YFDA_CORGL	pir. S09283	on CGFDA 1	1	pir:G70833	dp: AF058713_1	nir B70834	pii. ay acc	sp.THTM_HUMAN			
		ORF		894 p	267 p	1 9	· ·	E	225	30	759	13	704	1167	1032	05.1	56	618	552	52	716	852	720		339
45		lat	(111)	2946698	0047620		7948049		2950431	2950434	2952691		2952972	2952975	2954241	5033300	C300067	2956830	2057495	207.700	2958138	2959520	2960468		2963198
50		Initial	(Ju)	2947591 2	2047006		2949188	2949882	2950207	<u> </u>			2952709	2954141	2955272		6544 2956473	2957447			2959110	2960371	2961187	2963008	2963596
		SEO	(3 a.)	6534 2			6536 2	6537	6538				6541	6542	6543			6545	_		6547	6548	6549	6550	6551
55		SEQ S	- =			3032	3036 6	3037					3041	3042	3043	3	3044	3045	3	3046	3047	3048	3049	3050	3051

_						-			<u>.</u> E	1		· 				$\neg \tau$	$\overline{}$
	Function	virulence factor	virulence factor	virulence factor	sodium/glutamate symport carrier protein	cadmium resistance protein	cation efflux system protein (zinc/cadmium)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-lyase	bacterial regulatory protein, laci family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreductase
	Matched length (a.a.)	59	200	132	489	108	283	476	399		375	184	68	56	361	204	386
	Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	56.2	64.7	60.6
	Identity (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9
Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechocystis sp. PCC6803 slr0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay PAB0462	Rhodococcus rhodochrous IFO3338	Kryptophanaron alfredi symbiont luxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC 1A2, 11	Streptomyces coelicolor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0836c	Mycobacterium tuberculosis H37Rv Rv0385
	db Match	GSP·Y29188	GSP Y29182	GSP, Y29193	pir.S76683	SP. CADF STAAU	pir.H75109	gp:AB010439_1	sp.LUXA_KRYAS		SP. METB_ECOLI	gp:SC1A2_11	gp.SCE20_34	gp:SCE20_34	pir:E70812	pir:D70812	pir D70834
	ORF (bp)	177	762	396	1347	387	858	1170	1041	762	1146	567	240	183	1125	732	1179
	Terminal (nt)	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
	Initial (nt)	2964258	2965076	2965188	2967804	2968403	2968951	2969834	2971017	2972099			2973961	2974200	2974467	2975629	2976596
	SEQ	6552	6553	6554	6555	6556	6557	6558	6559	6560	6561	6562	6563	6564	6565	6566	6567
	SEO NO.		3053	3054	3055	3056		3058	3059	3060	3061	3062	3063	3064	3065	3066	3067

to the second se	Function	N-carbamoyl-D-amino acid amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	5-methylthioadenosine nucleosidase adenosylhomocysteine nucleosidase			chromosome segregation protein			alcohol dehydrogenase
	Matched length (a.a.)	275		289	108	507	135	397	212	618	338	195			1311			334
	Similarity (%)	67.3		55.4	44.0	90.3	70.4	80.1	99.2	93.8	790	900			48.4	-		81.7
	Identity (%)	32.0		28.0	38.0	9.69	47.4	56.7	38.7	8.66	42.6	27.2	:		18.9			20.0
Table 1 (conlinued)	Hamologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirillum brasilense carR	Rhodococcus erythropolis thcA	Streptomyces albus G hspR	Mycobacterium tuberculcsis H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233 dnaK	Streptomyces coelicolor A3(2) SCF6.09	Helicobacter pylori HP0089 mtn			Schizosaccharomyces pombe cut3			Bacillus stearothermophilus DSM 2334 adh
	db Match	ри, В69109		gp:SC4A7_3	GP.ABCARRA_2	nrt 2104333D	qp. SAU43299 2	sp DNAJ_MYCTU	sp:GRPE_STRCO	gsp R94587	gp.SCF6_8	sp.PFS_HELPY			sp.cUT3_SCHPO			sp ADH2_BACST
	ORF (bp)	798	243	· -	330	1518		1	636	1854	1332	633	1200	885	3333	636	1485	1035
	Terminal (nt)	2977847	2978979	2980115	2981216	2080181	2982023	2982495	2983887	2984544	2988164	2988214	2988846			2993286	2993921	2995747
	Initial (nt)	2978644	2978737	6570 2978982	2980887	000000	2982463			2986397	2986833		2990045	•	2993286	2993921		2996781
	SEQ.		65,60	6570	6571	5	6577	6574	6575	6576	6577		6579			6582		
		3068	2060		3071		30/2	3074	3075	3076	3077	3078	3079	30R0	3081	3082	3083	3084

							_								1		т—	-	1	1	1		- 1	i
5		no				ane protein			-	sferase, suburiit	sferase small	phosphosulfate		eductase	in-NADP	پ			ntake protein	dity		/genase		
10		Function				handhatical membrane protein	nypoureucau	hypothelical protein		sulfate adenylyltransferase, suburnt 1	sulfate adenylyltransferase small chain	phosphoadenosine phosphosulfate	reductase	ferredoxinnitrate reductase	ferredoxin/ferredoxin-NADP reductase	huntingtin interactor			ofenodarodalo	and C-P lyase activity	hypothetical protein	ammonia monooxygenase		
15	Matched	length (a.a.)				100	200	252		414	308		717	502	487	144				142	80	161		
20	-	Similarity (%)				7 0 5	9.1	53.2		78.3	70.1		64.2	65.5	61.4	59.7				6.65	66.3	76.4		
		Identity (%)				1	43.5	32.5		47.3	46.1		39.2	34.5	30.8	3.7 B	28.0		1	26.8	50.0	39.1		
25 C	- - 							(3(5)		-,				7942	36					æ	A3(2)	OI ZWS		
30 Section of Continued (Continue	lable I (commun	Homologous gene		The second section of the second section of the second section of the second section s			Bacillus subtilis ytnM	Streptomyces coclicolor A3(2) SC7A8 '0c		Escherichia coli K12 cysN	Escherichia coli K12 cysD		Bacillus subtilis cysH	Synechococcus sp PCC 7942	Saccharomyces cerevisiae	LZUU airii	Homo sapiens nype			Escherichia coli K12 phnB	Streptomyces coelicolor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
35 -			<u> </u>		_	-	<u>B</u>			Ì	<u> </u>				ST	T						-		
40		db Match					pir:F69997	gp.SC7A8_10		SP.CYSN_ECOLI	SP.CYSD ECOLI	-	sp:CYH1_BACSU	SA NIB SYNP7	SP. NO. S. S. S. S. S. S. S. S. S. S. S. S. S.		prf:2420294J			sp.PHNB_ECOL!	gp:SCE68_10	gp.PPAMOA_		
		ORF (bp)	216	207	189	261	927	723	915	66	912		693	1687	1371	_	1083	237	534	414	366	522	321	486
45		Terminal (nt)	2997366	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542		3002453	DONCOOL	3006915		3008376	3008453	3009303	3008749	3009607	3009710	3010979	3010441
50		Initial (nt)	2997151	2997687		2998223	2999454	3000200	3001512	3001539			3003145	- :-	3005545		3007294	3008689	3008770	6600 3009162	3009242	3010231	3010659	3010926
		SEQ NO (a.a)	+	6586	6587	6588	6869		6601			2000	6594		6595	\rightarrow	6597	6588	629		6601		6603	6604
55		SEQ NO.		3086	3087	3088			2000	3092	2002	3033	3094		3095	OEOC	3097	3098	3099	3100	3101	3102	3103	3104

	Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			sucrinyl-diaminopimelale desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP- binding protein		cobalt transport protein	NADPH-flavin oxidoreductase	mosine-undine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	flavohemoprotein
	Matched length (a a)	68	;	337	199	211	416			456			į	114	373		179	231	317	276	179	406
	Similanty (%)	58.0		57.9	648	730	67.8			49.5		:		46 0	50 1		9.79	71.4	593	59.4	78.8	63.8
	Identity (%)	410		26 1	35.7	39 3	30 8		; :	215				330	24 9		30.2	37.2	28 4	31.2	50.3	33.5
Table 1 (continued)	Homologous gene	Agrobacterium vitis ORF23		Alcaligenes eutrophus H16 ORF /	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata iunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp
	db Match	SP YTZ3_AGRVI		sp YGB7_ALCEU	gp HIU68399_3	gp.HIU68399_3	pir A69778		_	sp DAPE_ECOL				GPU DCA297422_	Sp.MALK_ECOLI		gp.AF036485_6	sp.FRP_VIBHA	sp.IUNH_CRIFA	gp SCE20_8	sp. 3MG1_ECOLI	_
	ORF (bp)	285	564	1002	693	714	1209	822	687	1323	1905	774	762	954	1368	642	618	916	903	975	588	1158
	Terminal (nt)	3011273	3011242	3011808	3013106	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3026142
	Initial (nt)	3010989	3011805	3012809	3013798	3014550	3014616	3015469	3016238	3017149	3017316	3017539	3018181	3019076	3020609	3021202	6620 3021825	3022928	3023900	3024379	3025552	3027299
	SEQ NO	6605	9099	2099	8099	6099	6610	6611	6612	6613	6614	6615	6616	6617	0618	6619		6621	6622	6623	6624	
	SEQ NO (DNA)	3105	3106	3107	3108	-	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	3125

5		Function		oxidoreductase		transcription antiterminator or beta- glucoside positive regulatory protein	The state of the s	6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase	1984900000000000000000000000000000000000	transposase (ISCg2)	hypothetical membrane protein		UDP-glucose denydrogenase	deoxycytidine triphosphate dearninase		hypothetical protein	* *	beta-N-Acetylglucosaminidase
15		Matched length (a.a.)		210 0		192		167		99	402		401	399	寸	442	188		229		410
20	-	Similarity (%)	-	63.8		69.3		59.9		78.8	80.9		100.0	70.2		72.2	72.3		59.4		58.1
		Identity (%)		34.8		28.1	-	43.7		43.9	53.7	!	100.0	33.6		40.5	43.6		30.6		28.5
25	Julinaca)	s gene		color A3(2)		2 bglC		orum B6405		orum B6405	gellatus aat		glutamicum	licolor A3(2)		filoti rkpK	12 dcd		licolor A3(2)		rmoviolaceus
30	lable I (commued)	Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagellatus aat		Corynebacterium glutamicum ATCC 13032 tnp	Streptomyces coelicolor A3(2) SCQ11.10c		Sinorhizobium meliloti rkpK	Escherichia coli K12 dcd		Streptornyces coelicolor A3(2) SCC75A.16c		Streptomyces thermoviolaceus nagA
35								 		i	Σ					S					
40		db Match		gp:SCO276673_18		sp.BGLG_ECOL!	:	sp.ABGA_CLOLO		sp:ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf.2422381B	sp:DCD_ECOLI		gp:SCC75A_16		gp:AB008771_1
		ORF (bp)	603	624	156	591	279	360	381	240	1257	300	1203	1257	183	1317	567	237	771	1689	1185
45		Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
50		Initial (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155		3030723			3034181	3034287			3037675		3040681	3041932
		SEQ NO.	6626		8528		6630	6631	6832	6633	6634	6635	9639	6637	6638			6641		6643	
55		SEO		·	312B	3129	3130	3131	2132	3133	3134	3135	3136	3137	3138	3139	3140	3141	3142	3143	3144

											_						('0)			$\overline{}$		1	$\neg \top$	7	
5		Function			hypothetical protein			nighton anathrane	hypothetical free marrellide 3-0-	acyltransferase		handthelical membrane protein			hexosyltransferase	methyl transferase	hornhounding livate Carboxykinase	(OTP)	C4-dicarboxylate transporter	hypothetical protein	hypothetical protein		mebrane transport protein		
15	Matched	length (a.a.)			1416 hv			1	363	408		000	1	-	369	251		601	332	241	207	T	768		
20	-	Similarity (%)	i		707	r	-		47.1	51.0			54.8		79.1	73.3	13.3	78.5	52.7	67.2	0.59	2	72.3		i I
		identify (%)			9 00	0.87			24.8	27.7			31.2		53.4	9 0	0.80	54.7	24.4	35.7	1 0 9	8	42.3		
<i>25</i>	ned)	e e													ulosis	ulosis		s pepck	say	Hgp	ulosis		oulosis AL3		
30	Table 1 (conlinued)	Homologous gene			Missiparterium lentae	MLCB1883.13c			Mycobacterium leprae MLCB1883 05c	Streptomyces sp. acyA	The second of th		Mycobacterium lepi ae MLCB1883.04r		Mycobacterium tuberculosis	H37Rv Rv0225	H37Rv Rv0224c	Neocallimastix frontalis pepck	Pyrococcus abyssi Otsay	Escherichia coli K12 yagH	Mucobacterium tuberculosis	H37Rv Rv0207c	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3		
35	-		-	-			-	- ! !		S					2			T		\top	T				
40		db Match				gp:MLCB1883_7			gp:MLCB1883_4	pir JC4001			gp:MLCB1883_3		120081	pen es ild	pir F70961	SP. PPCK_NEOFR	oir.E75125		sp. rogn_ccoc	pir.E70959	pir.C70839		
		ORF (bp)		1	201	3129 9	621	195	903	1068		708	1422	699	_)?!	771	1830	1011	\neg	/65	705	2316	+	1477
45		Terminal (nt)		\neg	3042703	3045788	3043022	3045990	3048048	3046122		3047197	3049479	3051190		3049456	3051964	3052062			3056631	3057317	3059643	<u> </u>	3058096
50		Initial (nt)		_+	3042503	3042660	3043642		•	2047180	201	3047904	3048058	2050522	3030362	3050592	3051194	3053891			3055867	3056613	3057328		3059517
		SEQ	(a a)	6645 3	6646 3	6647	6648	6649	6650		200	6652	-		9004	6655	9999			90,00	699	0999			6662
55		SEQ	_	3145 E	3146	3147	314R				1315	3152	-	13	3154	3155	3156	3157		3158	3159	3160	3161		3162

10		Function	hypothetical membrane protein	hypothetical membrane protein	propionyl-CoA carboxylase compress B subunit	polyketice synthase	acyl-CoA synthase	hypothetical protein		major secreted protein PS1 protein precursor			antigen 85-C	nielono one Marone Les in the	hypothetical memorare process	nodulation protein	hypothetical protein	hypothetical protein		phosphatidic acid phosphatase	
15	Matched		364 h	108	523	1/47	265	319		657	i		331		299	295	168	656		170	
20		Similarity (%)	6 2 9	69 4	6 92	542	623	67.4		\$ 66			62.5		61.2	515	75.0	74.7		56.5	
		Identity (%)	29 1	34.3	49.7	30.2	33.5	398		98 6			36.3	3	37.5	27.1	51.2	55.6		2 R 2	-
25	lineo)	ene	culosis	culosis	lor A3(2)	eus ervA	BCG	cylosis		itamicum n) ATCC			rculosis	C fb ₂ C	rculosis	odans	erculosis	erculosis		is ATCC	
30	lable 1 (confined)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces coelicolor A3(2)	Strantomyres erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis	ERDMANN RV0129C fb3C	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizobium caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Racillus licheniform	9945A bcrC
<i>35</i>		db Match	pir.A70839	pir.H70633	ap AF113605 1	0	sp. ERY 1 SACEN	-	<u> </u>	sp.CSP1_CORG-				sp:A85C_MYCTU	pir.A70888	sp:NOEC_AZOCA	pir:C70888	pir:D70888			sp.BCRC_BACLI
		ORF (bp)	1083 p	363	15.48		4830		498	1971		5	213	1023	2058	966	504	1968	\neg	10	477
45		Terminal (nt)	3060733	3061095	3061380	2000	3067951	3070214	3071147	3071650	2000		30/385/	3075540	3076715	3078853	3079848	 -	-+-	3083800	3083935
50		Initial (nt)	+-	3060733	700000	<u>-</u> -		3069930	2071644				3074075	3076562	3078772	3079848				3082467	3084411
		SEQ	(a a.)			cooq		6667		6000		6671	6672	6673	6674	6675				8299	6679
55			(DNA)			3165		3167		3170		3171	3172	3173	3174	3175	3176	3177		3178	3179

5		Function		dimellylanding monoxydenase (N-	oxide-forming)		UDA-galaciopyranose murase	hypothetical protein	glycerol kınase	hypothetical protein	acyltransferase	seryl-tRNA synthelase	transcriptional regulator, GntR family or fatty acyl-responsive regulator	hypothelical protein	hypothetical protein		2,3-PDG aependent phosphoglycerate mutase		nicotinamidase of pyrazinamidase	
	Matched	length (a a)		<u> </u>	377		377	629	499	279	261	419	235	356	113		218		460	
20		Similarity (%)	İ		50.4		729	47 8	78.8	70.3	72 0	97.8	61.7	61.2	79.7	•	62.8		50.9	
		(%)			24 4		43.2	29.6	517	41.6	46.7	702	27.7	32.6	46.0		37.2		27.4	
25 2								SIS	а	sis	sis	sis		SIS	sis		ica pgm		Itis pzaA	
30 G	(canulation) i alori	Homologous gene			Sus scrofa fmo1		Escherichia coi K12 glf	Mycobacterium tuberculosis H37Rv Rv3811 csp	Pseudomonas aerug rosa ATCC 15692 glpK	Mycobacterium tuberculosis H37Rv Rv3813c	Mycobacterium tuberculosis H37Rv Rv3816c	Mycobacterium tuberculosis H37Rv	Escherichia coli K12 farR	Mycobacterium tuberculosis H37Rv Rv3835	Mycobacterium tuberculosis H37Rv Rv3836		Amycolatopsis methanolica pgm		Mycobacterium smegmatis pzaA	
35	Ļ	۔ ۔		i				I	i				COLI			1	08_1		٨	
40	!	db Match		 	sp FMO1 PIG		sp GLF ECOLI	pir G70520	sp GLPK_PSEAF	pl A70521	pir 070521	gsp.W26465	sp:FARR_ECOLI	pii.H70652	pir:A70653	: 	gp.AMU73808_1		prf.2501285A	
	<u>}</u>	ORF (52)	77.	2.0	1332	612	1203	2049	1527	834	928	1266	714	1113	342	66	699	630	1143	
45		Terminal (n1)	3084424	3085218	30,87048	3099276	3087101	3090664	3090760	3092342	3093175	3094078	3096287	3097423	3097764	3097780	<u> </u>	3099454	3100698	3101426
50		In tial	3085200	3085/27	3085747	3087665	3088303	3088616	3092286	3093175	3094050	3095343	:	3096311	3097423	3097878		3098825		
		SFO NO (8 8)	6680	6681	 	6683	66.8.4	6685	9899	6687	6688			6691	6692	6693		6695		2699
55		SFO			3182	7187	71BA	3185	3186	3187	3188	3189	3190	3191	3192	3193	3194	3195	3196	3197

								٠,-,													
	Function	transcriptional regulator				hypothelical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconale permease				pyruvate kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase	shikimate transport protein
	Matched length (a a)	380		Ì		107	432		259	456				491	314	526	224	188	221	255	422
	Similarity (%)	57.1				81.3	55.3		54.1	71.9				47.7	99.7	64.8	58.5	9.79	57.0	68.6	74.4
	Identity (%)	31.6				43.9	28.7		29.0	37.3	!			25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Bacillus subtilis glpQ	Bacillus subtilis gntP				Corynebacterium glutamicum AS019 pyk	Brevibacterium flavum lctA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
	db Match	gp:SC6G4_33				pir B26872	sp.AMYH_YEAST		sp.GLPQ_BACSU	SOUTH BACSU	1			sp:KPYK_CORGL	gsp:Y25997	pir:C70893	gp:SC1C2_30	gp. AF030288_1	sp:GLCC_ECOLI	pir.B70885	sp:SHIA_ECOLI
	ORF (bp)	1035	120	552	870	327	1314	918	819	1380	3	642	159	1617	942	1776	636	543	693	786	1299
	Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3100510		3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121	3119582
	Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970	3107769	2100121	_:	3109464	3109845		3113390		3115407	3116079	3116640	3117336	6716 3118284
	SEQ	8699	6699	6700	6701	6702	6703	6704	6705	207.3	9/0	6707	6708	6209	6710	6711	6712	6713	6714	6715	
		3198	3199				3203	3204	3205	0000	3700	3207	3208	3209	32.10	3211	3212	3213	3214	3215	3216

5	Function	L-lactate dehydrogenase or FMN- dependent dehydrogenase		immunity repressor protein			phosphatase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	multidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
15	Matched length (a.a.)	376		55			999		122		210	164	292	384	:			216	447	137	212
20	Similarity (%)	689		80 0			51.3		63 1		69 1	92.7	65.8	49.0				64.8	59.3	65.0	75.5
	Identity (%)	40 4		45.5			29 5		36 9		47.6	82.3	32.5	23.4				33.8	27.3	37.2	50.9
25 (panujuo	s gene	dis IIdA		105 ORF1		-	gans		ia ill1		msrA	pos mn	U	glutamicum				oerculosis	nogenus lanJ	8 yxaD	diphtheriae
&	Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF			Caenorhabditis elegans Y51B11A 1		Arabidopsis thaliana ill1		Escherichia coli B msrA	Corynebacterium pseudodiphtheriticum sod	Bacillus subtilis gitC	Corynebacterium glutarnicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus lanJ	Baciltus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
35		ž			<u> </u> 		-					Οŭ						ΣI	S		0 6
40	db Match	prf 2219306A	u 44 au	Sp.RPC_BPPH1			gp CELY51B11A_		Sp:ILL1_ARATH		sp.PMSR_ECOL!	pir.140858	sp.GLTC_BACSU	gp AF121000_10				pir.G70654	prf 2508244AB	sp.YXAD_BACSU	prf 2518330B
	OR+ (bp)	1215	405	312	138	711	1617	546	402	150	651	900	924	1134	1611	13	1521	633	1491	456	636
45	Terminat (nt)	3120879	3121313	3121909	3121997	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
50	In:tiat (nt)	3119665	3120909	3121598	3122129	3123222	3124172	3124885	3125298	3125343	3126145	3126392	3128417	3128606	3129785	3132920	3133028	3133115	3135268	3135297	3136491
	SEO	6717	6718	6719	6720	6721	6722	6723	6724	6725	6726	6727	6728	6729	6730	6731	6732	6733	6734	6735	6736
55	SEQ		3218	3219	3220	3221	3222	3223	3224	3225		3227	3228	3229	3230	3231	3232	3233	3234	3235	3236

_	,		η-		 -	<u>_</u>			c	- T		· T	T		-			
	Function			two-component system sensor histidine kınase	hypothelical protein	hypothetical protein	stage III sporulation protein	transcriptional repressor	transglycosylase;associated prolein	hypothetical protein	hypothetical protein	RNA pseudoundylate synthase	hypothetical protein	hypothelical protein		bacterial regulatory protein, gntK family or glc operon transcriptional activator	hypothetical protein	hypothetical protein
	Matched length (a a)			408	48	27.1	265	192	87	296	314	334	84	42	1	109	488	267
	Similarity (%)			64.5	79.2	592	536	60.09	71.3	ი9 გ	73.9	51.2	0 99	75.0		56.0	48.2	78.7
	(%)			30 2	458	30.0	26.0	32 3	34.5	41.2	38.5	28.4	61.0	71.0		30.3	26.0	48.3
Table 1 (conlinued)	Homologous gene			Corynebacterium diphtheriae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coeticolor A3(2) SCH69 20c	Bacillus subtilis spottlJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Mycobacterium tuberculosis H37Rv Rv2005c	Escherichia coil K12 MG1655 yhbW	Chlorobium vibrioforme ybc5	Chlamydia pneumoniae	Chlamydia muidarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuherculosis H37Rv Rv2744c
	db Match			prf 2518330A	gp SCH69_22	gp:SCH69_20	sp:SP3J_BACSU	pr.C70948	sp:TAG1 ECOLI	sp.YW12_MYCTU	SP.YHBW_ECOLI	SP YBC5 CHLVI	GSP Y35814	PIR:F81737		sp GLCC_ECOL!	gp SC4G6_31	sp.35KD_MYCTU
	ORF (bp)	639	5.A.A	1311	150	822	1302	623	261	903	6	996	273	141	207	363	1416	873
	Terminal (nt)	313/558	3138471	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496	3145626	3146841	3147230	3151369	3151842	3153828	3153894
	total (nt)	3136920	3137884	3137903	3138630	3139455	3139651		3141969	3143356	3144482	1144661			3151575		3152413	3154766
	SEQ NO	6737	6/38	→	6740	6741	6742	6743	6744	6745	6746	6747	6748	6749	6750	6751	6752	6753
	SEQ NO	3737	3238 6/38	3239	3240	3241	3242		3244	3245	3246	22.47		,	3250	3251	3252	3253

5	
10	
15	
20	
25	ntinued)
30	Table 1 (continued)
35	
40	
45	
50	

Function						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde 3 phosphale dehydrogenase (pseudogene)	Ipoprotein	copper/potassium-fransporting ATPase B or cation transporting ATPase (E1-E2 family)	
Matched length (a a)						217	241				56		62	55	27	46		38	180	717	
Similarity (%)						58.1	55.2		-		92.9		98.4	85.5	84.0	90.0		84.2	59.4	73.4	
Identity (%)	-					32.3	26.1		!		48.2	!	90.3	47.3	81.0	84.0		63.2	32.2	45.8	
Homologous gene				The same of the sa		Streptomyces coelicolor A3(2) SCD35 11c	soybean NO21				Pseudomonas aeruginosa TNP5		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Inp1673	Corynebacterium glutamicum		Pyrococcus woesel gap	Synechocystis sp. PCC6803 sll0788	Archaeoglobus fulgidus AF0152	
db Match						gp:SCD35_11	sp:NO21_SOYBN				sp.TNP5_PSEAE		sp.FER_SACER	gp SCD31_14	GPU-AF164956_8	GPU:AF164956_23		sp:G3P_PYRWO	pir.S77018	pır H69268	
ORF (bp)	153	1452	1068	249	309	711	720	204	378	186	216	483	321	333	11	162	1038	126	099	2217	171
Terminal (nt)	3154969	3155246	3156306	3157223	31574/9	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
Initial (nt)	3154817	3156697	3157373	3157471	6758 3157787	3158124	3159800	3160216	3160688	3160816	3160938	3161219	3161407	3267 6767 3162014	6768 3162694	3162710	3162852	3162983	3163733	3166005	3166437
SEQ NO (a.a.)	6754	6755	6756	6757		6229	6760	6761	6762	6763	6764	6765	3266 6766	1929	6768	6929	6770	6771	6772	6773	3274 6774
SEO NO.		3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

	Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol:disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			The ATBack (70(II).	translocating p-type ATPase	hypothetical protein		transposase	transposase
	Matched length (a.a.)		301		233		930	101	322		78				909	72		73	70
	Similarity (%)		71.4		72.1		47.9	63.4	60.9		66.7				68.5	54.0		73.0	77.0
į	Identity (%)		37.5		43.4		26.7	31.7	31.4		37.2				39.8	45.0		58.0	75.0
Table 1 (continued)	Homologous gene		Escherichia coli K12 baeS		Bacillus subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum IlpA	Mus musculus qor		Synechocystis sp. PCC6803	atzn			Escherichia coli K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
	db Match		sp.BAES_ECOLI		sp.PHOP_BACSU		sp COPA_PSESM	1	sp.gor_MousE		SYNY3				sp:ATZN_ECOLI	PIR:E72491		GPU.AF164956_B	GPU AF164956_8
	ORF (bp)	192		828	756	677		363	918	ļ	23,4	2	315	207	1875	390	309	216	258
	Terminal (nt)	3167169	3166450	3168566	3167646	2160340	3170892	3171616	3171619		3173967	200.710	3174380	3174784		3175254	<u>t</u>	3177089	3291 6791 3177565 3177308
	Initial (nt)	3166978	6776 3167646	6777 3167739	3278 6778 3168401	0390000	6780 3169414	3171254	3172536			31/3024	3174066	3174990	3175027	3175643	3177174	6790 3177304	3177565
	SEO		9//9	6777	6778		6779	6781	6782		6783	0/84	6785	3286 6786	6787	6788		6790	6791
	SEO NO	3275	3276	2277	3278		3280		3282		3283	3284	3285	3286	3287	3288	3280	3290	3291

	Function	transposase (1S1628)	thioredoxin		transmembrane transport protein of 4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6	-	hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
	Matched length (a.a.)	53	100	:	421		208	461	:	154	229	92		480		647	107	137	296	1	7.1	298	433
	Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		683	-	60.1	72.0	65.0	61.8		70.4	63.8	64.0
	Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		415		29.1	41.1	35.1	29.7	-	32.4	30.2	31.2
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 tni2	Andrews	Pseudomonas putida pcaK		Escherichia coli K12 yqil	Escherichia coli K12 chaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF		Bacillus subtilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
	db Match	gp.AF121000_8	SP.THIZ_ECOLI		sp.PCAK_PSFPU		sp.YQJI_ECOLI	SP. DNAB_ECOLI		sp:RL9_ECOLI	Sp. SSB_ECOLI	sp.RS6_ECOLI	the state of the s	gp:AF187306_1		Sp. PBPA_BACSU	Sp:YOHC_MYCTU	pir: B70912	sp:Y0FF_MYCTU		Sp: YHGC BACSU		sp:YBJZ_ECOLI
	ORF (bp)	159	447	264	1344	159	576		516	450	675	285	189	1458	882	2160	357	471	942	495	321	936	1263
	Terminal (nt)	3177525	3178112	3178872	3180392	3180946	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042		3190347	3191319	3191848	3191922	3192266	3193252
	Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126			3183927	-	-		3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	3193201	
	SEQ NO.	6792	6793	6794	6795	96/9	7629	6798	6239	6800	6801	6802	6803	3304 6804	6805	6806	6807	6808	6089	6810	6811	6812	6813
	SEQ NO.	3292	3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	3310	3311	3312	3313

5		Function	ABC transporter ATP-binding protein	haothatical profein	in pointing	hypothetical protein			DNA protection during starvation	protein	formamidopyrimidine-DNA	hynothetical protein			mothylated DNAprotein-cysteine	S-methyltransferase	zinc-binding dehydrogenase of	quinone oxidoreductase (NADPH:quinone reductase) or alginate Iyase		mombrane transport protein		malate oxidoreductase (NAD) (malic enzyme)	aluconokinase or gluconate kinase	things in resistance protein	die order	telcoplanin resistance protein	
15	Matched	length (a.a.)	22.4	122	727	360			1	104	268	100	2			166		231		000	089	392	486	3 5	60	159	
20		Similarity (%)		- GG	42.0	0.06				64 9	55.6	0 00	0.00			63.3		63.6			2.00	99.5	537	3	60.4	159.0	
		Identify S		48.9	18.0	77.8	 			37.7	28.4	1	47.5	-		38.0		33.3			26.4	99.7	1476	C4.3	27.8	27.0	
25 9	Duningan		2 140 1655	2010W 2	ıni Cj0606	erculosis				12 dps	12 mutM or		12 rtcB			mī		Guinea pig) qor		9,000	ubercuiosis ideA	n melassecola n glutamicum)		gntK	ecium vanZ	ecium vanZ	
30	lable 1 (continued)	Homologous gene	171 8-1-1-1	Escherichia coli N12 MC 1000 ybj2	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis	אייייייייייייייייייייייייייייייייייייי			Escherichia coli K12 dps	Escherichia coli K12 mutM or	6	Escherichia coli K12 rtcB			Homo sapiens mamT		Cavia porcellus (Guinea pig) qor			Mycobacterium tubercurosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum)	AICC 1/905 maic	Bacillus subtilis gntK	Enterococcus faecium vanZ	Enterococcus faecium vanZ	
35			-		3	\S ?	2	1	<u> </u>							1 2			<u></u>				-		ī	1	7
40		db Match		sp YBJZ_ECOU	nir E81408	nir E70912				Sp. DPS ECOLI		sp:FPG_ECOU	Sp.RTCB_ECOLI				Sp:McM_Individu	sp. GOR_CAVPO	 		s sp:YDEA_ECOLI	gp.AF234535_1		SPIGNTK BACSU			
		ORF		069	1077.			909	1485	495	3	813	1149	1089	573		474	1011	_	=	1176	1176		1482	+	- -	C7C 1
45		la	(aux)	3194514	2105210	3133213	313000	3198582	3199202	3201260	320120	3202712	3204100	3202979	320472R	25.01.50	3204731	3205222		3206756	3208024	3209454		3209705	- : -		3211904
50		Initial	<u></u>	3195203	_1_		319/412	3199187	↓	-	3201134	3201900	3202952	3204067	2004166	3204132	3205204	3206232		3206646	3206849			2211186	32 102		3212428
		SEO	(e e)	-			6816 3	6817			6819	6820	6821			0873	6824	6825		6826	6827			-			6831
55		SEO					3316	3317			3319	3320			_	3323	3324	3325		3326	3327		3320		3329	3330	3331

5		Function	mercury(II) reductase	D-amino acid dehydrogenase small	subunit			NAD(P)H nitroreductase			leucyl-tRNA synthetase	hypothetical membrane protein	virulence-associated protein		hundhetical protein	higherational neotain	(homoprotocatechuate catabolism bifunctional isomerase/decarboxylase) (2-hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2-oxo-hex-3-ene-1,7 dioate decarboxylase)		bacterial regulatory protein, laci family or pectin degradation		
15	Matched	length (a.a.)	448	777				194			943	104	98		7.4.0	7	298	339	229		454
20	-	Similarity (%)	65.6	773	04.0		1	55.2			68.1	404	814			25.8	50.3	64.3	60.7	1	60.8
		Identity (%)	29.9	1	21.3			25.8		-	47.7	404	7.5 B			31.6	28.5	34.2	25.3		27.5
30 (familiance) 1. odder	(2000)	ous gene	aureus merA		K12 dadA				philles flex			Syl	N12	odosus vapi	ologiac	מפווכסוסו	ii K12 hpcE	Pseudomonas alcaligenes xInE	Pectobacterium chrysanthemi		s putida pcaK
30	lable	Homologous gene	Alabadococias aureus merA	Stapilylococcus	Escherichia coli K12 dadA				Thermus thermophines nox		1	Bacillus subtilis syl	Escherichia coll N 12	Dichelobacter nodosus vapi		Streptomyces coencolor SCC54.19	Escherichia coli K12 hpcE.	Pseudomonas			Pseudomonas putida pcaK
<i>35</i>		db Match	$\neg \vdash$	sp.MERA_SIANU_	sp DADA_ECOLI				sp.NOX_THETH			Sp:SYL_BACSU	Sp YBAN_ECOL!	Sp. VAPI_BACNO		gp:SCC54_19	sp.HPCE_ECOL!	on: AF173167 1		sp.noon_enveri	sp.PCAK_PSEPU
	1	ORF (hn)		1344 sp		1503	330	321	ds 609	924	1452	2856 st	429 sy		,774	723 9	837 \$	1175		28	1356
45		le		3213931 1	3213934 1230	3215257 1	3216886	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718			3226910	3229079
. 50		Initial		3212588	3215163	3216759	3217215	3217777	3217993	3218777	3221044		3222722	3223445	3224601	3224714				7 3227689	8 3227724
		SEO	(a a)	6832	6833	6834	6835	6836	6837				6841			6844	6845		6 6846	7 6847	18 6848
55		SEO	(VNO)	3332	3333	3334	3335	3336	3337	3338	3339	3340	3341	3342	3343	3344	3345	1	3346	3347	3348

	_																
5	a transporter à descent	Function	salicylate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component f		anthranilate synthase component II	anthranitate phosphoribosyltransferase	indole-3-glycerol phosphate synthase (IGPS) and N (5'- phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	tryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
15		Matched length (a.a)	476	507	170	515		208	348	474		417	283	521	152	305	547
20		Similarity (%)	49.4	54.4	99.4	99.8		100.0	99.4	98.3		6.79	96.5	86.8	71.7	63.6	57.2
		Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6	95.4	9.99	30.3	32.5	25.2
25 February 20 90 10 10 10 10 10 10 10 10 10 10 10 10 10	commune	us gene	tida	1.5	glutamicum	ctofermentum		ctofermentum	glutamicum)	ctofermenturn		ctofermentum	ctofermentum	elicolor A3(2)	(12 ptxA	utzeri	elicolor A3(2)
30	ושחובו	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF 1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trpB	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21,17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
35			ا هـ	1	OA		_	# 00			_		i	S S			0, 0,
40		db Match	prf 1706191A	sp EAT2_HUMAN	pir.JC2326 .	sp_TRPE_BRELA		TRPG_BRELA	Sp_TRPD_CORGL	sp TRPC_BRELA		Sp.TRPB_BRELA	Sp.TRPA_BRELA	gp SCJ21_17	sp:PTXA_ECOLI	SP:NOSF_PSEST	gp:SCH10_12
		ORF (bp)	1326	1251	510	1554	171	624	1044	1422	969	1251	840	1539	810	906	1584
45		Terminal (nt)	3230444	i	3233105	3234956	3233250	3235579	3236645	3238062	3236518	3239332	3240171	3240313	3241879	3243759	3245342
50		Initial (nt)	3229119	3232304	3232596	3233403	3233420	3234956	3235602	3236641	3237213	3238082	3239332	3241851	3242688	3242854	3243759
		SEO NO.	6849		6851	6852	6853	6854	6855	6856	6857	6858	6889	6860	6861	6862	6863
55		SEO NO.			3351	3352	3353	+	3355	3356	3357		3359	3360	3361	3362	

							٠					•						
	Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein				i	acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-/tripeptide transpoter		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dioxygenase
	Matched length (a a)	305	336	328	262	102	347	226					238	58	469		188	246
	Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5		1		!	52.9	84.5	71.6		50.5	62 2
	Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		26.1	31.7
Table 1 (continued)	Homologous gene	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfel I	Streptomyces coelicolor A3(2) SC111.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces ccrevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis dtpT		Escherichia coli K12 acrR	Acinetobacter calcoaceticus catA
	db Match	Sp.UCRI_CHLLT	SP NADO_THEBR	SP YFEH ECOLI	gp:SC111_36	pir.A29606	sp:NADO_THEBR	Sp YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU	SP DTPT_LACLA		sp ACRR_ECOLI	sp:CATA_ACICA
	ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	180	1359	171	555	903
	l erminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
	Initial (nt)	3245317	3246931	3247234	3248392	6868 3249534	3249651	6870 3250758	3251618	6872 3251934	3252300	3252636	3252728	3253560	3255182	3255549	3256298	3380 6880 3257373
	SEQ NO (a.a)	+	9899	9989	2989	6868	6989	0289	6871	6872	6873	6874	6875	6876	6877	6878	6879	6880
	SEQ NO (DNA)		3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380

	Function	maleylacetate reductase	sugar transporter or D-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductase	discontinuity frames of profess	graduence sequence	myo inositol 2 dehydrogenase	dehydrogenase or myo-incsitol 2-	Ciosynthesis protein	phosphoesterase				stomatin		DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyrimidine kinase	mercuric ion-binding protein or heavy-metal-associated domain containing protein	ectoine/proline uptake protein
	Watched length (a a)	351	513	280	357		270	332	343		1242				206		1660	141		125	67	297
	dentity Similarity (%)	75.5	58.3	2.09	55.7		58.2	9.65	62.4	;	62.7		-		57.3		80.2	61.0		76.8	70.1	62.3
	Identity (%)	43.0	31.4	25.7	27.2		25 9	26.5	7 82	, 	33 3		!		28.6		58.4	34.8		50.4	46.3	29.9
Table 1 (conlinued)	Homologous gene	Pseudomonas so. P51	Escherichia coli K12 xylE	Salmonella typhimurium iclR	The state and May 1	Eschericina con N. z. yego	Listeria innocua strain 4450	Sinorhizobium meliloti idhA		Streptomyces guiseus sur	Bacillus subtil s yvnB				Caenorhabditis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k		Bacillus subtilis thiD	Bacillus subtils yvgY	Corynebacterium glutamicum proP
	db Match	Capa part	SP. XVLE_ECOLI	SP.ICIR SALTY		sp. YUGJ ECULI	gsp.W61761	SD MI2D BACSU	i (sp.STRI_STRG	pir C70044				Sp.UNC1_CAEEL		gp MBO18605_3	prt:2323363AAM		Sp. THID BACSU		prf.2501295A
	ORF (bp)	+	1524	128		10/7	879	1005	:	1083	4032	645	618	1086	744		4929	507	360	009	243	837
	Terminal ORF	007	325/403	2261080	2001030	3263221	3264115	1265146	} } }	3266266	3271093	32679*3	32686.8	3272477	3274488	3275602	3276671	3281666	3283101			3283473
	Initial (nt)	- 	3258491		2501020	3262145	3263237	2764142		3265184	3267062	3268557				3276570		3282172				3284309
	SEO		6881		2000	6884	6885	9000		6887	BBB	6889	CPRA	6891	6892	6893		6895	6896	6807	6898	3399 6899
		(ONA)	3391		2333	3384			2200	3387	3338				_	3393	3394	3395		7367		3399

	Function	iron(III) dictrate-binding periplasmic protein precursor or iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase	Appropriate Control of the Control o		phosphomethylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	IRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase
į	Matched length (a a)	279	324		:	249		29	102	212	169	47.1	234		858	1201		189	308
	Similarity (%)	9 09	58 0			75.5		70 1	2 59	67.0	56 2	51.8	69 2		543	60.1		6.09	82.5
	Identity (%)	29 4	27.2		i	46.2		418	36.3	32.1	23.7	26.8	436		25 8	35.7		30.2	60 4
Table 1 (continued)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis azID	Bacillus subt lis aziU	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus tnB
	db Match	sp FECB_ECOL!	Sp MRF1_SCHPO	:		sp THID_BACSU		pir.F70041	SP AZLD_BACSU	sp. AZLC_BACSU	sp Yage_Ecoll	sp CCA_ECOLI	pir E70600		pir:F70600	pir G70600		sp.RPSH_PSEAE	sp_TRXB_STRCL
	ORF (96)	957	1122	384	219	798	345	201	345	711	567	•	996	273	2511	3249	723	603	951
	Terminal (n:)	3284399	3285576	3287005	3787079	3287393	3288265 3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292610	3296007	3299404	3298428	3300263	3301371
	totiat (nt)	3400 6900 3285355	3401 6901 3285455	3286622	7287297	3288190			3289315	6908 3290021	6909 3290591	3291942	3292532	3292882	3293497	6914 3296156	3297706	3299661	3417 6917 3300371 3301371
	SEQ NO	0069	6901	6902	3403 6903	3404 6904	3405 6905	9069	6907			6910	6911	6912	6913	6914	6915	6916	6917
	SEO NO (DNA)	3400	3401	3402	3403	3404	3405	3406	3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417

		[:	i	\neg			T		Ī	_	B	[ent	i		ŀ	9				
5			Function		I-type	-L-alanine			in	in	rulation protei	division proteir	brane protein	otein compon	otein L34		-	-decarboxylas	synthase	ain	Jehyde	a)
10			Func		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosornal protein L34			L-aspartale-alpha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
15			Matched length (a a)		119	196			212	367	272	153	313	123	47			136	616	85	344	149
20			Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
			Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
25		inued)	ยมด		narotii thi2				ulosis	ygi2	culosis	gidB	culosis		rprnH			amicum	amicum	lamicum m) ATCC	lamicum	lamicum
30	,-	Table 1 (continued)	Homologous gene		Chlamydomonas reinharotii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glulamicum asd	Corynebacterium glutamicum ASO19 aroD
<i>35</i>			db Match		SO THIS CHURE	BACSU			pir.D70851	sp: YGI2_PSEPU	sp:YGI1_PSEPU	Sp. GIDB ECOLI	pir.A70852	sp:RNPA_BACSU	gp:MAU19185_1			gp:AF116184_1	sp.LEU1_CORGL	sp.YLEU_CORGL	sp.DHAS_CORGL	gp.AF124518_1
			ORF (bp)	1185	2	42	777	1041	618 pi	1152 St		699		399	+	794	222	408	1848 5	255 s	1032 s	447 g
45			Terminal (nt)	3300119	÷		3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
50			Initial (nt)	3301303	3201358	3301755	3302765	3303435	3303616	3304787	3305671	3306532	3307632	3308369		3309028	3309043	147980	268001	269068	270660	446075
			SEO	-i-			6921	6922		6924	6925	6026	6927	6928	6929	6930	6931	6932	6933	6934	6935	6936
55			SEQ NO.			3420	3421	_		3424		3426		3428	3429	3430	3431	3432	3433	3434	3435	3436

5	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)	acyl-CoA carboxylase or biolin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	1lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
15	Matched length (a a)	396 el	440 p	738 (c	591 a	437 c	118 p	595 9	426 h	501	463 8	316	698	524	550
20	Similarity (%)	100.0	100 0	100 0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100 0	100.0
	Identity (%)	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100 0	100 0
Table 1 (continued)	eueb sr	glutamicum	glutamicum avum) MJ233	glutamicum	glutamicum 3C	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum E	glutamicum	glutamicum 359 argS
Table 1 (c	Homologous gene	Corynebacterium ATCC 13059 fuf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutarnicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 fkbA	Corynebacterium glutarnicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
35		i	1		10 a		1							:	!
40	db Match	sp.EFTU_CORGL	sp SECY_CORGI	SP.IDH_CORGL	prf. 2223173A	sp CISY_CORGL	sp FKBP_CORGL	sp BETP_CORGL	sp YLI2_CORGL	sp.LYSI_CORGL	sp:AROP_CORGL	pir.S52753	prf.2106301A	gp:CGPUTP_1	sp.SYR_CORGL
	ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	1650
45	Terminal (nt)	527563	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
50	Initial (nt)	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	1154683	1155676	1155731	1219602	6950 1238274
	SEO	6937	6938	6633	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	
55	SEO		3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

	_							-			ິບ :	•		İ	1	i
5		Function	diaminopimelate (DAP) decarboxylase (meso- diamiropimelate decarboxylase)	homoserine dehydrogenase	kinase	subunit	ler protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylglulamate kinase	ornithine carbamoyltransferase	ressor
10			diaminopimelate (DAP) decarboxylase (meso- diamiropimelate decar	homoserine	homoserine kinase	ion channel subunit	lysine exporter protein	lysine expor	acetohydrox subunit	acetohydrox subunit	acetohydrox	3-isopropyln	PTS system sugar phost (mannose a	acetylglutan	ornithine ca	arginine repressor
15		Matched length (a a)	445	445	309	216	236	290	979	172	338	340	683	294	319	171
20		Sımılarity (%)	0.001	100 0	100.0	100.0	100 0	100.0	100.0	100.0	100.0	100 0	100.0	100.0	100.0	100.0
		identity (%)	100 0	100 0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25 Garage	COMMITTEE	ans gene	glutamicum 359 lysA	glutamicum 059 hom	g'utamicum 059 thrB	ı glutamicum	ı g'utamıcum	glutamicum	n glutamicum	n glutamicum	n glutamicum C	n glutamicum IB	n glutamicum	n glutamicum gB	n glutamicum gF	n glutamicum
30	lanic	Homologous gene	Coryrebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium g'utamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R 127 or 13	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lvsG	Corynebacterium glutamicum	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO 19 argR
35		db Match	sp DCDA_CORGL	SP DHOM_CORGL	CORGL	gsp W37716	CORGL	sp.LYSG_CORGL		8648	8648	sp.LEU3_CORGL	prf.2014259A	sp. ARGB_CORGL	sp.OTCA_CORGL	gp.AF041436_1
40					SP.KHSE_	+	sp:LYSE				4 pir.C48648					
		ORF (bp)		1335	927	627	708	870	1878	516	1014	1020	2049	882	957	513
45		Terminal (1t)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
50		Initial	1239929	1247507	1243855	1327617	1328953	1329015			1340724	1353489	1423217	1466491	1468565	1469528
		SEO	(8 8)	- 6952	6953	6954	5569	6956	6957		6969	0969	6961	6962		3464 6964
55			(CNA)	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

ſ				$\overline{}$		<u> </u>								Ī	i		į	į	ا ج	
5		Function	enase	ATP.	drolase	ecarboxylase	ammonium uptake protein, nigri affinity	protein-export membrane prolein secG	phosphoenolpyruvate carboxylase	thase (5-	enolpyruvylshikimate-3-phosphate phospholyase)	nuclease	sigma factor or RNA polymerase	ctor	ling protein		dhydrodipicolinate synthase	dihydrodipicolinale reductase	Imalate dehydrogenase (acceptor)	
0		Fu	NADH dehydrogenase	-Hosenhorihosyl-ATP-	pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium upte affinity	protein-export n secG	phosphoenolpy	chorismate synthase (5-	enolpyruvylshik phospholyase)	restriction endonuclease	Signia factor or	transcription factor	glutamate-binding protein	recA protein	dhydrodipicoli	dihydrodipicoli	I,-malate dehy	
		Matched length (a.a.)	467		87	362	457	77	919		410	632		331	295	376	301	248	200	
20		Similarity (%)	100.0	2	100 0	100 0	100 0	100 0	100.0		100 0	100.0		000	100.0	100 0	100.0	100.0	100 0	
	+	Identity (%)	000	2	100 0	100 0	100.0	100.0	100.0		100.0	100.0		100.0	100.0	100.0	100.0	100.0	100 0	
25 5	mueu)		tamicum		Iamicum	Itamicum	ıtamicum	ntamicum	utamicum		utamicum	utamicum		utamicum .	lutamicum	lutamicum	Intamicum stofermentum)	jutamicum ctofermentum	glutamicum	
30	Table 1 (continued)	Homologous gene	Correpacterium glutamicum	ATCC 13032 ndh	Corynebacterium glulamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum	Corynehacterium glutamicum	Corynebacterium glutamicum	ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum	ATCC 13032 cglllR	Corynebacterium glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum)	Corynebacterium glutamicum (Brevibacterium lactofermentum)	Corynebacterium glutamicum	K127 mgo
35		db Match	1	gp CGL238250_1	gp:AF086704_1	gp CGL007732_4		1		pri. I suszoi A	gp.AF124600_1	1001	pir.855225	prl.2204286D	sp GLUB_CORGL	sp.RECA_CORGL	sp.DAPA_BRELA	sp:DAPB_CORGL	1 3000000	gp.CGA224940_1
40		ļ 					56 ap.CC			57 pm. 15	30 gp.Al			193 prf.2	885 sp.G	1128 sp:R		744 sp.[1500 gp.
		ORF		1401	261	1086	1 5		- 1 - 3	7	9 1230		5 1896	6	+-	+			-+	\vdash
45		Terminal	/,	1543154	1586465	1674123	1675768	16.7.7049		167/38/	1719669		1882385	2021846	2061504	2063989		2081191	:-	2113864
50		Initial	- - -	1544554	1586725	- B75208	61.997.94	20070	1011213	1680143	1720898		1880490	2020854	2060620			2081934		2115363
		SEO	(a a.)	6965	6966				6060	0269	6971		6972	6973		2075	6976	6977		6978
		SEO S		3465 6	3466 6				3469	3470	3471		3472	3473				7776	5	3478
<i>55</i>		100 2	=,!	نی ا																

5	Function	ise, uridilylyl- e	ory protein P-II	porter	glutamate dehydrogenase (NADP+)			etase	lse	lycine betaine			ıse	mma-synthase	ductase	
10	Fu	uridilylyltransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehyd	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glutaredoxin
15	Matched length (a a)	692	112	438	447	475	323	477	481	615	739	432	369	386	148	77
20	Similarity (%)	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25 Table 1 (continued)	Homologous gene	n glutamicum D	ո glutamicum B	n glutamicum ItP	ո glutamicum ո.A	n glutamicum	glutamicum	n glutamicum A	n glutamicum	n glutamicum iP	n glutamicum eB	n glutamicum eA	n glutamicum B	n glutamicum	n glutamicum II	n glutamicum 3H
Table 1	Homolog	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdtiA	Corynebacterium glutamicum AS019 pyk	Corynebacterium ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thr.C	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
35					<u> </u>											
	db Match	gp:CAJ10319_4	gp:CAJ10319_3	gp CAJ10319_2	pir. S32227	Sp.KPYK_CORGL	gp:AF096280_1	prf.2322244A	sp:THRC_CORGL	prf:2501295B	pir:140715	pir:140713	sp.PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
40	-									1						
	ORF (bp)	2076	336	1314	1341	1425	696	1431	1443	1845	2217	1296	1107	1158	444	231
45	Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
50 _.	Initial (nt)	2171741	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
	SEQ NO	6269	6980	6981	6982	6983	6984	6985	9869	6987	8869	6869	0669	6991	6992	6993
55	SEQ NO.	3479	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493

5		
10		
15		
20		
25		
30		
35		_
40		
45		
50		

	Function	meso-diaminopimelate D- dehydrogenase	porin or cell wall channel forming protein	acetate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux pump or drug proton antiporter	ATP-dependent protease regulatory subunit	prephenate dehydratase	ectoine/proline uptake protein
	Matched length (a.a.)	320	45	397	329	459	852	315	504
	Identity Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
	db Match	960 sp:DDH_CORGL	gp:CGL238703_1	91 sp:ACKA_CORGL	prf.2516394A	77 prf.2309322A	2556 sp:CLPB_CORGL	945 prf.1210266A	12 prf:2501295A
	ORF (bp)	096	135	1191	987	1377	2556	945	1512
	Terminal (nt)	2786756	2887944	2935315	2936508	2962718	2963606	3098578	3272563
	Initial (nt)	2787715	6995 2888078	2936505	6997 2937494	2961342	2966161	7000 3099522	7001 3274074
	SEQ NO (a.a.)	6994	6995	9669	7669	8669	6669	7000	
	SEQ NO (DNA)	3494	3495	3496	3497	3498	3499	3500	3501

Example 2

10

20

25

35

40

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and lysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in lysE, lysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196*: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6*: 1195-1204 (1992)) were each digested with *Pst*1. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters,* 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*l site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, hom and pyc, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BamHI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72.* 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μ g/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μ g/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of lkeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda *et al.* (*Microbiology, 144*: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated *hom* or *pyc* genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride. 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the hom gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated hom gene and pyc gene, respectively.

20

30

35

(3) Lysine production test of HD-1 and No. 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the *hom* gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the *pyc* gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β -alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β -alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

_	
Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the hom gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the hom gene and the mutation, Pro458Ser, in the pyc gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331Ile in the lysC gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

15

30

35

40

55

45 Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala. in *hom*, a mutation. Thr311Ile in *lysC*, a mutation. Pro458Ser, in *pyc* and a mutation, Ala213Thr, in *zwf* were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

- (2) Construction of plasmid for gene replacement having mutated gene
- [0389] The plasmid for gene replacement, pChom59, having the mutated *hom* gene and the plasmid for gene replacement, pCpyc458, having the mutated *pyc* gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated *lysC* and *zwl* were produced as described below.
 - [0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide agenine (A), was added to the 3'-end.
 - [0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwf* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.
 - (3) Introduction of mutation, Thr311IIe, in IysC into one point mutant HD-1
- [0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311IIe, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set. DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.
 - (4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2
 - [0394] The mutation, Pro458Ser, in *pyc* was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated *pyc* gene in addition to the mutated *hom* gene and *lysC* gene.
 - (5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3
- [0395] The mutation, Ala213Thr, in *zwf* was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

25

30

45

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated *zwi* gene in addition to the mutated *hom* gene, *lysC* gene and *pyc* gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

5

10

15

20

25

30

35

50

55

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 I jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	. 3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72. 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

[0405] As the oligo DNA primers used for the PCR,

[0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

[0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

40

45

as the respective primer set.

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 960), manufactured by Perkin Elmer). TaKaRa EX-Taq (manufactured by Takara Shuzo). 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical). 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate. 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5.000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/μl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution. 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies). 3 μl of 0.1 mol/l DTT, 1.5 μl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l I dTTP), 1.5 μI of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μI of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 μl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μ l.

(3) Hybridization

[0433] UltraHyb (110 µl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 µl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

50

10

15

25

30

35

Table 5 (continued)

	Table 5 (continued)				
	SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5	
İ	3433	2239	2694	0.83	
1	281	2370	2595	0.91	
١	3435	2566	2515	1.02	
1	3439	5597	6944	0.81	
	765	6134	4943	1.24	
	3455	1169	1284	0.91	
	1226	1301	1493	0.87	
i	1229	1168	1131	1.03	
	3448	1187	1594	0.74	
	3451	2845	3859	0.74	
	3453	3498	1705	2.05	
	3455	1491	1144	1.30	
	1743	1972	1841	1.07	
	3470	4752	3764	1.26	
	2132	1173	1085	1.08	
	3476	1847	1420	1.30	
	3477	1284	1164	1.10	
	3485	4539	8014	0.57	
	3488	34289	1398	24.52	
	3489	43645	1497	29.16	
	3494	3199	2503	1.28	
	3496	3428	2364	1.45	
	3497	3848	3358	1.15	

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in Corynebacterium glutamicum (Archives of Microbiology, 168: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

5

10

15

20

25

35

45

50

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swiss-prot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

10

20

25

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme. was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleootide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database. Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

45

Proteome analysis of proteins derived from Corynebacterium glutamicum

50 (1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of *Corynebacterium glutamicum* ATCC 13032 (wild type strain), *Corynebacterium glutamicum* FERM BP-7134 (lysine-producing strain) and *Corynebacterium glutamicum* (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)	
ATCC 13032	0	
FERM BP-7134	45	
FERM BP-158	60	

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmol/l Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/I, and an equivalent amount of a lysis buffer (9.5 mol/I urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol. 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/I urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 µg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

- step 1: 1 hour under a gradient mode of 0 to 500V;
- step 2: 1 hour under a gradient mode of 500 to 1,000 V;
- step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
- step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

5

10

20

25

30

35

40

45

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

15

25

45

- [0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis, 9*: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.
 - [0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.
 - (4) In-gel digestion of detected protein spot
 - [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μ l of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μ l of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/ μ l) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μ l of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μ l of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μ l of α -cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
 - (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.
 - [0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.
 - [0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.
 - [0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.
 - [0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.
 - (6) Identification of protein spot
 - **[0465]** From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of *Corynebacterium glutamicum* ATCC 13032 as constructed in Example 1 to identify the protein.
 - [0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.
 - (a) Search and identification of gene encoding high-expression protein
 - [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method. [0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

- 5 [0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).
- [0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.
 - [0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.
- 20 (b) Search and identification of modified protein
 - [0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.
- [0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.
 - [0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - (c) Search and identification of expressed protein effective in lysine production
 - [0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine-productivity.
 - [0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutarnicum* constructed in Example 1.
 - [0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.
- 45 [0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

50 Claims

55

15

30

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium.
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

5

10

20

25

30

35

45

55

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- 2. The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 3. The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynuce-lotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- 7. A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- **8.** A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - 9. A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A method for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in the medium, and recovering the polypeptide from the medium.

- 5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
 - A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
 - 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
 - 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

45

50

- at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 22. A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif_information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
 - 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by-a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

5

10

15

20

25

30

35

45

50

- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target am no acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- **30.** A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information:
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001
- 20 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 32. The method according to any one of claims 24. 26. 28 and 30. wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32. wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
- 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
 - **38.** A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue

5

10

15

25

30

35

50

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 46. A recombinant DNA comprising the DNA of claim 45.

10

20

30

35

40

45

55

- 47. A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 **51.** A method for producing L-lysine, comprising:

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and

recovering the L-lysine from the culture.

- 52. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 50 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 56. The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - **57.** The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 35 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - **61.** The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - **63.** A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments:
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus 15 corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae. Corynebacterium herculis, Corynebacterium lilium, Corynebacterium um melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382) .

242

10

20

25

30

35

40

45

50

Ť

FIG. 4

