Appl. No. 10/758,138
Docket No. 9162Q
Amdt. dated September 14, 2006
Reply to Office Action mailed on August 17, 2006
Customer No. 27752

AMENDMENTS TO THE SPECIFICATION

Please amend the specification as follows:

Please replace the paragraph beginning on page 15, lines 1 - 12, with the following amended paragraph:

In one preferred embodiment of the present invention the nanoparticles comprise a synthetic hectorite which can be a lithium magnesium silicate. One such suitable lithium magnesium silicate is LAPONITE[[®]], which has the formula:

wherein w = 3 to 6, x = 0 to 3, y = 0 to 4, z = 12 - 2w - x, and the overall negative lattice charge is balanced by counter-ions; and wherein the counter-ions are selected from the group consisting of selected Na⁺, K⁺, NH₄⁺, Cs⁺, Li⁺, Mg⁺⁺, Ca⁺⁺, Ba⁺⁺, N(CH₃)₄⁺ and mixtures thereof. (If the LAPONITE[[®]] is "modified" with a cationic organic compound, then the "counter-ion" could be viewed as being any cationic organic group (R).) Other suitable synthetic hectorites include, but are not limited to isomorphous substitutions of LAPONITE[[®]], such as, LAPONITE B[[TM]], LAPONITE S[[TM]], LAPONITE XLS[[TM]], LAPONITE XLS[[TM]], and LAPONITE RDS[[TM]].

Please replace the paragraph beginning on page 18, lines 15 - 25, with the following amended paragraph:

Hydrophilicity boosting compositions, according to the present invention, are prepared as follows:

Component	% Wt of Component												
	l	2	3	4	5	6	7	8	9	10	11	12	13
Nanoparticle ¹	0.1	0.05	0.05					0.1	1				
Nanoparticle ²	-			0.1	0.05	0.05	0.1						
Nanoparticle ³						•				1	1	4	
Nanoparticle ⁴													1
Surfactant	0.075	0.075		0.075	0.075						0.075	0.075	

Page 2 of 9

Appl. No. 10/758,138

Docket No. 9162Q

Amdt. dated September 14, 2006

Reply to Office Action mailed on A

Reply to Office Action mailed on August 17, 2006

Customer No. 27752

Surfactant ⁶	0.025		0.025				
Water		quantity		nt to 1			

- 1. LAPONITE B[[™]] is sodium magnesium lithium fluorosilicate from Southern Clay Products, Inc.
 - 2. LAPONITE RD[[TM]] is sodium magnesium lithium silicate from Southern Clay Products, Inc.
 - 3. Disperal 14N4-25 is a boehmite alumina nanoparticle available from North American Sasol, Inc
 - 4. ZSM5 is a nanosized zeolite with a particle size from 70 to about 400 nm.
 - 5. Needel NEODOL 91-6
 - 6. Silwet SILWET L-77

Please replace the paragraph beginning on page 19, line 27 – page 20, line 2, with the following amended paragraph:

Liquid Strike-Through Test - The liquid strike-through time is measured using Lister-type strike-through equipment, manufactured by Lenzing AG, Austria. Test procedure is based on standardized EDANA (European Disposables And Nonwovens Association) method 150.3-96, with the test sample placed on an absorbent pad comprised of ten plies of filter paper (Ahlstrom AHLSTROM Grade 632 obtained from Empirical Manufacturing Co., Inc., or equivalent). In a typical experiment, three consecutive 5ml gushes of test liquid (0.9% saline solution) are applied to a nonwoven sample at one minute intervals and the respective strike-through times are recorded without changing the absorbent pad.