

#### **MARMARA UNIVERSITY**

# FACULTY OF ENGINEERING COMPUTER SCIENCE & ENGINEERING DEPARTMENT

# IE3081 MODELING AND DISCRETE SIMULATION Project - Phase #2

A. Tunahan Cinsoy - 150117062 Enver Aslan — 150115851 Veysi Öz - 150116005

#### **Highway Booth Simulation**

#### **System Explanation**

In our system, we've tried to implement a Highway Booth Mechanism that simulates various occasions. Our aim is to observe the waiting time of the vehicles based on their decisions between Fast Passing System or Cash Payment System. To build a better model, increase creativity, provide variety, we have defined two various simulations in our system. One of them consists 4 Cash Payment Booth and 4 Fast Passing Booth; for the other one, we've converted all booths into Fast Passing Booth. With the help of these different outputs, we'd be able to see data output much more clearly.

#### **Components of the System**

- 2x Car Source
- 1x Sink
- 4x FPS Delay
- 2x FPS Queue
- 2x FPS Hold
- 4x CPS Delay
- 2x CPS Queue
- 2x CPS Hold
- 2x Highway Delay

#### **Relationships Between Components**

- Sources are connected to both CPS and FPS Queues.
- Each Queue is connected to their own hold components.
- Vehicle that leaves one of the queues redirects to one of the available appropriate booths.
- Vehicle that leaves booth, enters to the highway which will lead it to the sink.

#### **Statistical Values (Input & Output Parameters)**

In our system, we have two major different setups. Each of them consists various time schedules that enable us to monitor the density of the traffic. Totally we have 6 different time distributions as follows:

- Between 12 AM to 6 AM
- Between 6 AM to 10 AM (Rush Hour for left-side of the highway)
- Between 10 AM to 12 PM
- Between 12 PM to 16 PM
- Between 16 PM to 20 PM (Rush Hour for right-side of the highway)
- Between 20 PM to 12 AM

In addition to setups above, we've declared the capacity of the highway as 1000 cars.

- If the number of cars on highway is below 100, vehicles have to wait 1 to 1.5 minutes to enter highway.
- If the number of cars on highway is below 600, vehicles have to wait 1.6 to 2 minutes to enter highway.
- If it is higher than 600, vehicles have to wait 2.1 to 4.5 minutes.

The tables below show our outputs as well as their values.

# Outputs and the Values of Setup 1 (4 CPS, 4 FPS)

|       |                           | Average FPS | Average FPS   | Average CPS | Average CPS   | Average Travel  |
|-------|---------------------------|-------------|---------------|-------------|---------------|-----------------|
| Seeds | <b>Average Time Spend</b> | _           | _             | •           | _             | _               |
|       | In System (Minute)        | Queue Time  | Booth Service | Queue Time  | Booth Service | Time In Highway |
|       |                           | (Second)    | Time (Second) | (Minute)    | Time (Second) | (Min)           |
| 10    | 7,6929                    | 1,6286      | 0,3732        | 167,6081    | 15,7025       | 1,8709          |
| 20    | 7,7271                    | 1,7683      | 0,3764        | 166,7813    | 15,8039       | 1,9682          |
| 30    | 7,7625                    | 1,6051      | 0,3761        | 171,2092    | 15,7272       | 1,8299          |
| 40    | 7,4891                    | 1,4977      | 0,374         | 163,0664    | 15,7275       | 1,8306          |
| 50    | 7,5855                    | 1,6092      | 0,3749        | 166,0443    | 15,727        | 1,8228          |
| 60    | 7,7728                    | 1,7731      | 0,3766        | 171,1416    | 15,7416       | 1,8292          |
| 70    | 7,9946                    | 1,6915      | 0,3761        | 174,5212    | 15,7119       | 1,9496          |
| 80    | 7,7802                    | 1,6719      | 0,3754        | 166,9095    | 15,7443       | 1,9746          |
| 90    | 7,7044                    | 1,5824      | 0,3753        | 169,8861    | 15,7145       | 1,7927          |
| 100   | 7,6683                    | 1,564       | 0,3767        | 165,6616    | 15,7325       | 1,9125          |
| 110   | 7,6573                    | 1,616       | 0,3752        | 163,8824    | 15,7195       | 1,9763          |
| 120   | 7,8553                    | 1,6823      | 0,3758        | 168,4605    | 15,7386       | 1,9564          |
| 130   | 7,4799                    | 1,4681      | 0,3753        | 164,3531    | 15,7059       | 1,7597          |
| 140   | 7,8174                    | 1,5554      | 0,3761        | 168,1251    | 15,7395       | 1,991           |
| 150   | 7,7938                    | 1,4893      | 0,3738        | 171,3497    | 15,7981       | 1,8915          |
| 160   | 7,6607                    | 1,5902      | 0,3758        | 162,7641    | 15,7998       | 1,977           |
| 170   | 7,5637                    | 1,6172      | 0,3746        | 161,995     | 15,782        | 1,9306          |
| 180   | 7,8064                    | 1,4774      | 0,3751        | 173,7244    | 15,7106       | 1,7587          |
| 190   | 7,7035                    | 1,5097      | 0,3739        | 167,6894    | 15,7636       | 1,8901          |
| 200   | 7,8448                    | 1,5912      | 0,3736        | 170,8095    | 15,7448       | 1,9207          |
| 210   | 7,6988                    | 1,6483      | 0,3771        | 168,8707    | 15,7945       | 1,8623          |
| 220   | 7,6729                    | 1,5464      | 0,3748        | 165,6222    | 15,8442       | 1,9507          |
| 230   | 8,0127                    | 1,5738      | 0,3737        | 173,5004    | 15,7002       | 1,9689          |
| 240   | 7,6249                    | 1,6443      | 0,3763        | 169,4869    | 15,7953       | 1,7608          |
| 250   | 8,0998                    | 1,6455      | 0,3754        | 173,9255    | 15,7221       | 2,0727          |

## Without Narrowing CI for 10%

| Standart Deviation       | 0,126642314  | 0,088003661  | 0,001050551  | 3,611693112    | 0,031771127   | 0,075706792  |
|--------------------------|--------------|--------------|--------------|----------------|---------------|--------------|
| Mean                     | 7,71801      | 1,59943      | 0,375195     | 167,799125     | 15,741765     | 1,89165      |
| Confidence Interval      | 0,055503441  | 0,038569305  | 0,000460424  | 1,582894297    | 0,01392431    | 0,033179965  |
| 95% Confidence Intervals | 7,718 ±0,056 | 1,599 ±0,039 | 0,375 ±0     | 167,799 ±1,583 | 15,742 ±0,014 | 1,892 ±0,033 |
| 10% of CI                | 0,049953097  | 0,034712374  | 0,000414382  | 1,424604868    | 0,012531879   | 0,029861968  |
| Prediction Interval      | 0,254348721  | 0,176746759  | 0,00210993   | 7,253732934    | 0,063809206   | 0,1520497    |
| 95% Prediction Intervals | 7,718 ±0,254 | 1,599 ±0,177 | 0,375 ±0,002 | 167,799 ±7,254 | 15,742 ±0,064 | 1,892 ±0,152 |

## With Narrowing CI for 10%

| Standart Deviation       | 0,149670462  | 0,080878454  | 0,001083636  | 3,654076971    | 0,039031503   | 0,083697799  |
|--------------------------|--------------|--------------|--------------|----------------|---------------|--------------|
| Mean                     | 7,738772     | 1,601876     | 0,375248     | 168,295528     | 15,747664     | 1,897936     |
| Confidence Interval      | 0,058670821  | 0,031704354  | 0,000424785  | 1,432398173    | 0,015300349   | 0,032809537  |
| 95% Confidence Intervals | 7,739 ±0,059 | 1,602 ±0,032 | 0,375 ±0     | 168,296 ±1,432 | 15,748 ±0,015 | 1,898 ±0,033 |
| 10% of CI                | 0,052803739  | 0,028533919  | 0,000382307  | 1,289158355    | 0,013770314   | 0,029528584  |
| Prediction Interval      | 0,299163661  | 0,161661121  | 0,002165988  | 7,303826234    | 0,078016779   | 0,167296471  |
| 95% Prediction Intervals | 7,739 ±0,299 | 1,602 ±0,162 | 0,375 ±0,002 | 168,296 ±7,304 | 15,748 ±0,078 | 1,898 ±0,167 |

# Outputs and the Values of Setup 2 (8 FPS)

|       | Average Time Spend | Average FPS | Average FPS   | Average Travel  |
|-------|--------------------|-------------|---------------|-----------------|
| Seeds | In System (Minute) | Queue Time  | Booth Service | Time In Highway |
|       | m system (windte)  | (Second)    | Time (Second) | (Min)           |
| 10    | 2,1838             | 0,7945      | 0,3771        | 2,1631          |
| 20    | 2,0479             | 0,9317      | 0,3781        | 2,0246          |
| 30    | 2,1719             | 0,8003      | 0,3779        | 2,151           |
| 40    | 2,0585             | 0,6794      | 0,3776        | 2,0392          |
| 50    | 1,9355             | 0,7822      | 0,3779        | 1,915           |
| 60    | 2,0618             | 0,7645      | 0,3799        | 2,0414          |
| 70    | 1,9401             | 0,7491      | 0,3763        | 1,92            |
| 80    | 1,9501             | 0,7552      | 0,3756        | 1,9301          |
| 90    | 2,1243             | 0,7661      | 0,3774        | 2,104           |
| 100   | 2,1281             | 0,9345      | 0,3812        | 2,1046          |
| 110   | 2,1258             | 0,7379      | 0,3772        | 2,106           |
| 120   | 1,8913             | 0,6489      | 0,3774        | 1,8728          |
| 130   | 2,0799             | 0,7642      | 0,3791        | 2,0592          |
| 140   | 1,982              | 0,7267      | 0,3771        | 1,9622          |
| 150   | 1,8652             | 0,696       | 0,3745        | 1,8463          |
| 160   | 2,1921             | 0,7325      | 0,3768        | 2,1723          |
| 170   | 2,0092             | 0,8181      | 0,3822        | 1,9872          |
| 180   | 1,9047             | 0,7436      | 0,3781        | 1,8848          |
| 190   | 1,9975             | 0,7297      | 0,3807        | 1,9773          |
| 200   | 1,9246             | 0,6909      | 0,3741        | 1,9058          |
| 210   | 2,1861             | 0,9631      | 0,385         | 2,1615          |
| 220   | 2,1179             | 0,9208      | 0,3761        | 2,095           |
| 230   | 1,9612             | 0,6849      | 0,3746        | 1,9423          |
| 240   | 2,1571             | 0,6818      | 0,3762        | 2,1382          |
| 250   | 1,9693             | 0,7323      | 0,3764        | 1,9494          |

# Without Narrowing CI for 10%

| Standart Deviation       | 0,103302373  | 0,071809712  | 0,002051931  | 0,102756193  |
|--------------------------|--------------|--------------|--------------|--------------|
| Mean                     | 2,028715     | 0,7623       | 0,37781      | 2,008345     |
| Confidence Interval      | 0,045274261  | 0,031471994  | 0,000899298  | 0,045034887  |
| 95% Confidence Intervals | 2,029 ±0,045 | 0,762 ±0,031 | 0,378 ±0,001 | 2,008 ±0,045 |
| 10% of CI                | 0,040746835  | 0,028324795  | 0,000809369  | 0,040531399  |
| Prediction Interval      | 0,207472729  | 0,144222794  | 0,004121103  | 0,20637578   |
| 95% Prediction Intervals | 2,029 ±0,207 | 0,762 ±0,144 | 0,378 ±0,004 | 2,008 ±0,206 |

## With Narrowing CI for 10%

| Standart Deviation       | 0,103599931  | 0,085541131  | 0,002495663  | 0,102852555  |
|--------------------------|--------------|--------------|--------------|--------------|
| Mean                     | 2,038636     | 0,769156     | 0,37778      | 2,018132     |
| Confidence Interval      | 0,040611173  | 0,033532123  | 0,0009783    | 0,040318202  |
| 95% Confidence Intervals | 2,039 ±0,041 | 0,769 ±0,034 | 0,378 ±0,001 | 2,018 ±0,04  |
| 10% of CI                | 0,036550056  | 0,030178911  | 0,00088047   | 0,036286381  |
| Prediction Interval      | 0,207077164  | 0,170980951  | 0,00498837   | 0,205583297  |
| 95% Prediction Intervals | 2,039 ±0,207 | 0,769 ±0,171 | 0,378 ±0,005 | 2,018 ±0,206 |

#### Questions

- 1) Are these two systems (first one and the changed one) statistically different? Please answer your question for the 95% confidence interval.
  - **Answer:** As seen clearly above, the statistical values between our setups are totally different. That shows the importance of the quantity of FPS Booth dramatically affects the traffic density.
- 2) Estimate the additional replications needed to reduce the half-width of the confidence interval by 10% for the differences of the estimated values of the performance parameters.

**Answer:** Based on our experiments, we've declared that we have to specify at least 10 more additional replications to satisfy the constraint.