1.5/2 Exercise 4.1

(a)
$$\begin{array}{c|c} w \in L & w \notin L \\ \hline 0011 & 0 \\ \hline 1001 & 10 \checkmark \\ \end{array}$$

(b)
$$\begin{array}{c|c} w \in L & w \notin L \\ \hline 110 & 111 \\ \hline 001 & 0 \end{array}$$

(c)
$$\begin{array}{c|c} w \in L & w \notin L \\ \hline 0001 & 1 \\ \hline 0011 & 10 \\ \hline \end{array}$$

$$(d) \begin{array}{c|c} w \in L & w \notin L \\ \hline \emptyset & 1 \\ 0 & 10 \end{array}$$

empty set is not a word epsilon is the empty word. here only 0 and 01 are in the language

1.5/1.5 Exercise 4.2

The language L is defined by the regular expression: $(b^*ab^*ab^*)^*|b^*$

1/2.5 Exercise 4.3

Figure 1: NFA for the regular expression $\gamma = (a|ab)^*b$

Exercise 4.4 3/4

(a) Proof. The language $L = \{ a^n b^m c^{n+m} \mid n, m \in \mathbb{N}_0 \}$ is not regular.

Assume L is regular. Then let p be a pumping number for L.

The word $x = a^p b^{2p} c^{p+2p}$ is in L and has length $\geq p \sqrt{}$

Let x = uvw be a split with the properties of the pumping lemma.

Then the word $x' = uv^2w$ is also in L. Since $|uv| \leq p$, uv consists only of symbols a and $x' = a^{p+|v|}b^{2p}c^{p+2p}$

Since $|v| \ge 1$ it follows that $(p+|v|) + 2p \ne p + 2p$ and thus $x' \notin L$

Example:

$$u = a^i \qquad v = a^j$$

$$v = a^j$$

$$w = a^{n-i-j}b^mc^{n+m}$$

$$v = v^2 \to v^2 = a^{2j}$$

The word is then: x = uvvw $uvvw = a^{i}a^{2j}a^{n-i-j}b^{m}c^{n+m} = a^{j+n}b^{m}c^{n+m}$

$$n=2$$
 $m=3$ $j=4$ \rightarrow

x = aaaaaabbbccccc

add a conclusion sentence like "this contradicts the pumping lemma and hence L1 not regular"

what about b)?:(0/1