

Authentication

Identification vs. authentication

- Identification is declaratory
 - □"I am Stefano"
- Authentication is the verification of an identity
 - "This is my identity card which proves I'm Stefano"
- It is the foundation for an authorization phase
 - □I am allowed to enter the parking lot
- ☐ It can be *unidirectional* or *bidirectional* (*mutual*)
- ☐ It can happen between humans, computers, or human to computer

The three factors of authentication

- There are several ways to authenticate an entity
 - ☐Based on something it knows
 - ☐ A password, a pin, a secret handshake
 - ■Based on something it has
 - ■A key, a card, a token
 - ☐Based on something it is
 - ☐ Based on his face, on his voice, or on his fingerprints
- □ Humans usually use the third, sometimes the second, seldom the first
- Machines, on the other hand, usually use the first or the second, and rarely the third
- Multifactor authentication is possible
 - Combining two, or three different factors

Something it knows

- Usual example: a password (pin, passphrase...)
 - ☐But also a saved *cryptographic key*
- ☐ How do you prove you know it?
 - □By *sharing* it
 - Unless authentication is mutual, you may be disclosing the secret to an attacker
 - Vulnerable to Man In The Middle and interception
 - □By a challenge-response scheme of some kind
 - Computing a non-reversible function of the secret and a challenge, e.g. an hash
- In any case, this is a weak authentication scheme
 - □ Secrets can be shared, and if stolen the owner does not realize it; they can be snooped (e.g. shoulder surfing)
 - Guessing and/or cracking
- Used everywhere because it's deceivingly simple

Creating strong password schemes

- Correctly design password checking
 - □By using a suitable challenge-response scheme
- Defend against secret loss and sharing
 - Appropriate policies and user education
 - □ Regular change of passwords
- Defend against secret brute forcing and guessing
 - □Limit number of authentication attempts
 - □ Educate users to choose strong passwords (adequate length, not easy to guess such as dictionary words...)
- Defend the process
 - No storage of secrets in clear should be allowed
 - ☐ If a "recovery" scheme is used, its strength must be evaluated
 - □User provisioning (i.e. setup) is often the weak link

Something it has

- Evaluates possession of a token
 - □Examples: a key, an ID card, a passport...
- ☐ In computer security, often the token is:
 - □A smart card (or a USB key)
 - ☐ The device contains a CPU and a non-volatile RAM with space for key storage
 - ☐ The device authenticates itself (and the user) to the host through a challenge/response protocol
 - ☐ The key does not leave the device
 - □A one time password generator
 - ☐ It contains a counter and a private key
 - ☐ It encrypts the counter with the private key and displays a function of the result
 - ☐ The server knows the public key associated with the token, and is able to confirm the correctness of the function
 - ☐ Each password works for a limited time, e.g. 30-60-90 sec

Challenges in token authentication

- Interfacing with the host computer
 - ■Not any host has a smart card reader
- ☐ Tokens can be stolen or lost
 - Usually this calls for combination with a PIN or password
 - Two-factor authentication
- One-way vs. two-way authentication
 - □ As described until now, this scheme is one way, in some applications (e.g. credit card authorization) this scheme should be two-way, to avoid fraud
- □ Time-based tokens
 - Challenges in resynchronization

Something it is

- This is usually associated with biometric systems
 - Fingerprints
 - ☐ Hand geometry
 - ☐ Face geometry
 - Retina
 - ☐ Iris
 - Voice
 - DNA
 - Typing dynamics
- Requires the physical enrollment of user
 - "measurement" of the feature and creation of a template

Issues with biometric systems

- Interfacing with the host computer
 - ☐ If a card reader is a problem, go figure a retinal scanner
- Matching is not deterministic
 - ☐ False rejection, false acceptance trade-off
 - ■Voice recognition and typing dynamics are not usable
- Possibility of observation and duplication
 - □E.g. fake fingerprints
 - ... how do you change your password if duplicated?
- Evolution and loss of characteristics
- Users with disabilities
- Acceptability of measurement
 - ☐ Retina scan is invasive
 - □DNA lengthy
- Privacy sensitivity

Authentication on a network

- Authenticating a user on a network entails the problem of remoteness
 - Transferring a password is almost straightforward
 - Transferring a fingerprint is more complex :)
- Actually, this is tightly coupled with the concepts of cryptography and secure protocols
 - ■So we will recall this later on during the course