

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N. 3, 2021 Электронный журнал,

Электронный журнал, рег. Эл. N ФС77-39410 от 15.04.2010 ISSN 1817-2172

http://diffjournal.spbu.ru/e-mail:jodiff@mail.ru

Моделирование динамических систем

Потоки на графах и инвариантные меры динамических систем

Г.С. Осипенко
Филиал МГУ в Севастополе.
george.osipenko@mail.ru

Аннотация. Рассматривается дискретная динамическая система, порожденная гомеоморфизмом f компактного многообразия. Если $\{M(i)\}$ есть конечное покрытие многообразия замкнутыми ячейками, то символический образ есть ориентированный граф G с вершинами соответствующими ячейкам, а вершины i и j связаны дугой $i \to j$, если образ f(M(i)) пересекает M(j). Периодический путь ω на G порождает псевдотраекторию η и меру μ сосредоточенную на ней. Пусть имеется последовательность подразбиений с диаметрами сходящимися к нулю и последовательность символических образов G_t . Если последовательность периодических путей $\{\omega_t \subset G_t\}$ согласована, то соответствующая последовательность периодических псевдотраекторий сходится к рекуррентной траектории T, последовательность мер μ_t сходится к эргодической мере и замыкание рекуррентной траектории T является минимальным строго эргодическим множеством.

Ключевые слова: символический образ, поток на графе, псевдотраектория, слабая сходимость мер, эргодичность.

1 Введение

Пусть $f: M \to M$ гомеоморфизм компактного риманова многообразия M, который порождает дискретную динамическую систему

$$x_{n+1} = f(x_n) \tag{1}$$

и $\rho(x,y)$ — расстояние на M. Напомним, что бесконечная в обе стороны последовательность точек $T=\{x(n),\ n\in\mathbb{Z}\}$ называется траекторией системы, если f(x(n))=x(n+1). Бесконечная в обе стороны последовательность точек $\{x(n),\ n\in\mathbb{Z}\}$ называется ε -траекторией или псевдотраекторией, если расстояние $\rho(f(x(n)),x(n+1))<\varepsilon$ для любого n. Если при этом последовательность $\{x(n)\}$ является периодической, то она называется периодической ε -траекторией, а точки x(n) называются ε -периодическими. Точная траектория системы редко известна на практике, в действительности, мы работаем с ε -траекториями для достаточно малых положительных ε . Все компьютерные вычисления производятся с точностью $\varepsilon > 10^{-19}$ и, учитывая большое число вычислений, ε может принимать существенное значение, что оказывает влияние на качественный результат.

Точка x называется цепно-рекуррентной, если x является ε -периодической для любого $\varepsilon>0$. Цепно-рекуррентное множество состоит из всех цепно-рекуррентных точек и обозначается через CR. Цепно-рекуррентное множество CR является инвариантным, замкнутым и содержит все типы возвратных траекторий: периодические, почти-периодические, неблуждающие, гомоклинические и т.д. Если цепно-рекуррентная точка не является периодической и $\dim M>1$, то существует сколь угодно малое возмущение f в C^0 -топологии, для которого данная точка является периодической (см. [1]). Можно сказать, что цепно-рекуррентные точки порождают периодические траектории при C^0 -возмущениях. Следовательно, при компьютерных вычислениях цепно-рекуррентные точки будут выглядеть как периодические.

Две цепно-рекуррентные точки назовем эквивалентными, если их можно соединить периодической ε -траекторией для любого $\varepsilon > 0$. Цепно-рекуррентное множество разбивается на классы эквивалентности $\{\Omega_i\}$, которые мы будем называть компонентами цепно-рекуррентного множества.

Траектория K называется рекуррентной (по Биркгофу), если для каждого $\varepsilon > 0$ найдется такое целое p > 0, что ε – окрестность любого отрезка этой траектории длины p содержит всю траекторию K (см. [2]).

В основе дальнейшего изложения лежит понятие символического образа

динамической системы [3, 4], которое соединило в себе символическую динамику [5, 6, 7] и численные методы [8].

Пусть $C = \{M(1), ..., M(n)\}$ есть конечное покрытие многообразия M замкнутыми подмножествами, множество M(i) будем называть ячейкой индекса i. Мы будем рассматривать покрытия C такие, что ячейки M(i) являются многогранниками, которые пересекаются по граничным дискам. Такие покрытия всегда существуют, что следует из теоремы о триангуляции компактного многообразия [9]. Пусть d = diam(C) есть наибольший из диаметров ячеек покрытия C. Число d назовем диаметром покрытия C.

Определение 1 [3] Символический образ динамической системы (1) для покрытия C есть ориентированный граф G с вершинами $\{i\}$ соответствующими ячейкам $\{M(i)\}$. Вершины i и j связаны ориентированным ребром $(\partial y z o u)$ $i \to j$ тогда и только тогда, когда

$$f(M(i)) \bigcap M(j) \neq \emptyset.$$

Символический образ G можно рассматривать как многозначное отображение $G:V\to V$ между вершинами, где образ G(i) есть набор вершин j, которые являются концами дуг $i\to j$:

$$G(i) = \{j: i \to j\}.$$

Бесконечная в обе стороны последовательность $\sigma = \{i(k), k \in \mathbb{Z}\}$ вершин графа G называется путем (или допустимым путем), если для каждого k граф G содержит дугу $i(k) \to i(k+1)$. Обозначим P множество путей на G. Существует естественное многозначное отображение $h: M \to V$ из множества M на множество вершин V символического образа, которое точке x сопоставляет набор вершин i таких, что $x \in M(i)$:

$$h(x) = \{i: x \in M(i)\}.$$

Из определения символического образа следует коммутативность диаграммы

$$\begin{array}{ccc}
M & \xrightarrow{f} & M \\
\downarrow h & \downarrow h \\
V & \xrightarrow{G} & V
\end{array} \tag{2}$$

в том слысле, что

$$h(f(x)) \subset G(h(x)). \tag{3}$$

Мы не можем гарантировать равенство h(f(x)) = G(h(x)). Однако, включение (3) достаточно для того, чтобы отображение h трансформировало траектории системы в допустимые пути символического образа:

$$h(T) = \{i(n): f^n(x) \in M(i(n))\} = \sigma.$$

В этом случае будем говорить, что путь σ есть след траектории T на символическом образе G. След σ можно рассматривать как кодировку траектории T.

Теорема 1 /4/

- 1. Пусть последовательность $\{z_k\}$ есть допустимый путь на символическом образе G, тогда существует последовательность точек $\{x_k\}$, $x_k \in M(z_k)$, которая является ε -траекторией f для любого $\varepsilon > d$. В частности, если последовательность $\{z_1, z_2, ..., z_p = z_0\}$ является p-периодической, то ε -траектория $\{x_1, x_2, ..., x_p = x_0\}$ является p-периодической.
- 2. Пусть последовательность $\{z_k\}$ есть допустимый путь на символическом образе G и $x_k \in M(z_k)$, тогда $\{x_k\}$ является ε -траекторией f для любого $\varepsilon > d + \eta(d)$, где $\eta(\cdot)$ есть модуль непрерывности отображения f.
- 3. Существует r>0, такое, что, если последовательность точек $\{x_k\}$ является ε -траекторией f, $\varepsilon< r$ и $x_k\in M(z_k)$, тогда последовательность $\{z_k\}$ является допустимым путем на символическом образе G. В частности, если ε -траектория $\{x_1,x_2,...,x_p=x_0\}$ является p-периодической, то $\{z_1,z_2,...,z_p=z_0\}$ является p-периодическим путем на G.

Согласно утверждениям 1 and 2, путь $\omega = \{z_k\}$ на G порождает псевдотраекторию $\zeta(\omega) = \{x_k \in M(z_k)\}$, которую мы назовем следом пути ω . Согласно утверждению 3, ε -траектория $\zeta = \{x_k\}$ порождает путь $\omega(\zeta) = \{z_k : x_k \in M(z_k)\}$, который мы назовем следом псевдотраектории ζ .

Процесс подразбиения. Мы будем применять процесс подразбиения покрытий и строить последовательность символических образов. Рассмотрим главный шаг процесса подразбиения. Пусть $C = \{M(i)\}$ - покрытие и G - символический образ для C. Предположим, что новое покрытие NC является подразбиением покрытия C. Это означает, что каждая ячейка M(i)

подразбивается на ячейки m(i,k), k = 1, 2, ..., т.е.

$$\bigcup_{k} m(i,k) = M(i).$$

Обозначим NG новый символический образ для покрытия $NC = \{m(i,k)\}$. Вершины NG обозначаются как (i,k). Такое построение задает однозначное отображение s из NG на G, которое переводит вершины (i,k) на вершину i, т.е. s(i,k)=i. Не пустое пересечения образа f(m(i,k)) и m(j,l):

$$f(m(i,k)) \cap m(j,l) \neq \emptyset$$

для малых ячеек гарантирует аналогичное пересечение для больших ячеек f(M(i)) и M(j):

$$f(M(i)) \cap M(j) \neq \emptyset$$
,

поэтому дуга $(i,k) \to (j,l)$ преобразуется отображением s в дугу $i \to j$. Следовательно, s отображает ориентированный граф NG на ориентированный граф G, при этом s переводит допустимый путь в допустимый путь и периодический путь в периодический путь.

Рассмотрим последовательность покрытий $\{C_t, t \in N\}$ многообразия M ячейками, которые получены последовательными подразбиениями, т.е., ячейки покрытия C_{t+1} получены подразбиением ячеек покрытия C_t . Пусть d_t , диаметр покрытия C_t , сходится к нулю при $t \to \infty$. Рассмотрим $\{G_t\}$ последовательность символических образов отображения $f: M \to M$ относительно покрытий C_t . Мы получили последовательность отображений вида

$$G_1 \stackrel{s_1}{\leftarrow} G_2 \stackrel{s_2}{\leftarrow} G_3 \stackrel{s_3}{\leftarrow} \dots \tag{4}$$

В дальнейшем мы будем опускать индекс t отображения s_t , если это не приводит к недоразумениям. Каждое s является отображением ориентированных графов и оно отображает допустимый путь на допустимый путь. В соответствии с определением подразбиения, если s(i)=j, то ячейка M(i) входит в подразбиение ячейки M(j): $M(i)\subset M(j)$. Если фиксировать путь ω_t на каждом символическом образе G_t тогда мы получаем последовательность путей $\{\omega_t\in P_t\}$, элементы которой никак не связаны между собой. Однако, согласно теореме 1, любая траектория $T=\{x_k=f^k(x_0),\ k\in\mathbb{Z}\}$ задает допустимый путь $\omega_t=\{z_k^t:\ x_k\in M(z_k^t)\}$ на каждом G_t и эти пути можно выбрать так, что они будут связаны между собой посредством отображений s:

$$\omega_t = s(\omega_{t+1}). \tag{5}$$

Последовательность допустимых путей $\{\omega_t \in P_t\}$ называется согласованной, если для каждого t выполнено равенство (5).

Теорема 2 [10] Пусть $\{C_t\}$ есть последовательность замкнутых покрытий, каждое из которых получено подразбиением предыдущего покрытия, их диаметры d_t сходятся к нулю, на каждом G_t задан путь $\omega_t = \{i_k^t, k \in \mathbb{Z}\}$ и последовательность путей $\{\omega_t\}$ согласована, тогда верны следующие утверждения.

- 1. Существует единственная траектория $T = \{x_k : x_{k+1} = f(x_k), k \in \mathbb{Z}\}$, для которой $x_k \in M(i_k^t)$ для любого t.
- 2. Псевдотраектория $T(t) = \{x_k^t \in M(i_k^t), k \in \mathbb{Z}\}$ сходится к траектории T равномерно при $t \to \infty$ и $\sup_k \rho(x_k^t, x_k) \le d_t$.
- 3. Если каждый путь ω_t является периодическим, то отслеженная траектория T является рекуррентной.

2 Потоки на графе

Определение 2 Пусть G является ориентированным графом. Вероятностное распределение $\{m_{ij}, m_{ij} \geq 0\}$ на дугах $\{i \rightarrow j\}$ называется потоком на G, если для каждой вершины $i \in G$

$$\sum_{k} m_{ki} = \sum_{j} m_{ij}.$$

Последнее равенство можно трактовать как закон Кирхгоффа: входящий поток равен исходящему. Поток m порождает меру вершины i:

$$m_i = \sum_j m_{ij} = \sum_k m_{ki}.$$

Любая инвариантная мера порождает поток следующим образом. Пусть G - символический образ отображения f относительно покрытия C и μ_{inv} - инвариантная мера для f. Предположим, что ячейки являются многогранниками, которые пересекаются по граничным дискам. Рассмотрим измеримое разбиение $C^* = \{M^*(i)\}$ многообразия M, которое получается из C приписыванием каждого граничного диска только к одному из соседних ячеек. Определим поток $\{m_{ij}\}$ на G такой, что

$$m_{ij} = \mu_{inv}(f(M^*(i)) \cap M^*(j)) = \mu_{inv}(M^*(i) \cap f^{-1}(M^*(j)),$$
 (6)

(детали см. в [11]). Множество всех f-инвариантных мер $\mathcal{M}(f)$ образует выпуклый компакт в слабой топологии [12]. Сходимость $\mu_n \to \mu$ в этой топологии означает, что

$$\int \phi \ d\mu_n \to \int \phi \ d\mu$$

для любой непрерывной функции ϕ . Крайними точками выпуклого множества $\mathcal{M}(f)$ являются эргодические меры [12].

Рассмотрим пространство $\mathcal{M}(G)$ } всех потоков на G. Пусть $m^1 = \{m^1_{ij}\}$ и $m^2 = \{m^2_{ij}\}$ два потока, числа α и $\beta \geq 0$, $\alpha + \beta = 1$. Тогда, как нетрудно проверить, что распределение $m = \alpha m^1 + \beta m^2 = \{\alpha m^1_{ij} + \beta m^2_{ij}\}$ также является потоком. Таким образом, пространство потоков $\mathcal{M}(G)$ } является выпуклым множеством. Периодический путь $\omega = (i_0 \to i_1 \to i_2 \to \cdots \to i_k = i_0)$ является простым или циклом, если все вершины $\{i_t, t = 1, 2, \ldots, k\}$ различны. Простой путь ω порождает поток $m(\omega)$, сосредоточенный на ω такой, что $m_{ij} = 1/k$ для всех дуг периодического пути ω и $m_{ij} = 0$ для всех остальных дуг. Построенный поток будем называть простым потоком. Так как число вершин конечно, то число циклов и простых потоков тоже конечно.

Теорема 3 [11] Любой поток $m \in \mathcal{M}(G)$ раскладывается в сумму простых потоков:

$$m = \sum_{k} \alpha_k m(\omega_k),$$

где $\alpha_k \geq 0$, $\sum_k \alpha_k = 1$ и $\{\omega_k\}$ есть полный набор циклов на G.

Множество потоков $\mathcal{M}(G)$ является выпуклым многогранником, у которого простые потоки являются крайними точками.

Пусть $\{m_{ij}\}$ - поток на символическом образе G. Определим меру μ_k зии M на многообра следующим образом: мера измеримого множества A задается формулой

$$\mu_k(A) = \sum_i m_i^k \frac{v(A \cap M(i))}{v(M(i))},\tag{7}$$

где M(i) являются ячейками покрытия C, v есть лебегова мера на M. Предполагается, что $v(M(i)) \neq 0$ для каждой ячейки. Так как мера Лебега граничных дисков равна нулю, то мера ячейки

$$\mu_k(M(i)) = \mu_k(M^*(i)) = m_i.$$

Так построенная мера не является инвариантной для f, но эта мера сходится к мере μ_{inv} инвариантной для f, если диаметр покрытия сходится к нулю, см. [11]. Более того, верна следующая теорема.

Теорема 4 [11] Для любой окрестности (в слабой топологии) U множества инвариантных мер $\mathcal{M}(f)$ существует положительное число d_0 такое, что для любого покрытия C с диаметром $d < d_0$ и любого потока m на символическом образе G, построенном по C, мера μ_k (построенная по (7)) лежит в окрестности U.

Эта теорема позволяет рассматривать любой поток m на символическом образе G как аппроксимацию для некоторой инвариантной меры μ_{inv} , а множество всех потоков $\mathcal{M}(G)$ как аппроксимацию множества всех инвариантных мер $\mathcal{M}(f)$.

Утверждение 1 [11] Пусть Q и G — ориентированные графы, $s: Q \to G$ является отображением ориентированных графов и существует поток m на Q. Тогда индуцируется поток $m^* = s^*m$ на G такой, что мера дуги $i \to j \in G$ вычисляется как

$$m_{ij}^* = \sum_{s(p \to q) = i \to j} m_{pq},$$

где сумма берется по всем дугам $p \to q$, которые отображаются на $i \to j$. Если дуга $i \to j$ не имеет прообразов, то $m_{ij}^* = 0$.

3 Сходимость к инвариантной мере

Рассмотрим последовательность покрытий $\{C_k, k \in \mathbb{N}\}$ многообразия M ячейками, которые получены последовательными подразбиениями. Ячейками покрытия C являются многогранники, которые пересекаются по граничным дискам и разбиение C^* получается из C приписыванием общих граничных дисков к одному из соседних ячеек. Таким образом, мы получаем последовательность измеримых разбиений $C_k^* = \{M_k^*(i)\}$, где каждое C_{k+1}^* есть подразбиение C_k^* . Это означает, что ячейка $M_k^*(i)$ разбиения C_k^* есть объединение ячеек $M_{k+1}^*(j)$ для j: s(j) = i или $j \in J = s^{-1}(i)$. Ячейки $M_{k+1}^*(j)$ не пересекаются, поэтому можно говорить, что $M_k^*(i)$ есть сумма непересекающих множеств $M_{k+1}^*(j)$, где $j \in J$.

Пусть G_k — последовательность символических образов и диаметр покрытия C_k сходится к нулю при $k \to \infty$. Из утверждения 1 следует, что последовательность (4) порождает последовательность отображений в пространствах потоков

$$\mathcal{M}(G_1) \stackrel{s^*}{\longleftarrow} \mathcal{M}(G_2) \stackrel{s^*}{\longleftarrow} \mathcal{M}(G_3) \stackrel{s^*}{\longleftarrow} \dots$$
 (8)

Если некоторая инвариантная мера задает поток m^k на каждом G_k согласно формуле (6), то эти потоки согласованы: $m^k = s^*(m^{k+1})$, детали см. в работе [11].

Рассмотрим согласованную последовательность m^k потоков на символических образах G_k . Используя меру Лебега, построим меру μ_k для каждого k согласно формуле (7). В результате получена последовательность мер $\{\mu_k\}$ на многообразии M. В работе [11] показано, что последовательность мер $\{\mu_k\}$ сходится к инвариантной мере μ_{inv} в слабой топологии. Покажем, что инвариантную меру μ_{inv} можно вычислить непосредственно через потоки $\{m^k\}$, не используя слабую топологию.

Рассмотрим множество $A \subset M$ измеримое по Борелю и построим множество вершин символического образа G_k вида

$$I_k(A) = \{i: A \cap M_k^*(i) \neq \emptyset\}$$

Определим меру μ_k^* , полагая

$$\mu_k^*(A) = \sum_{i \in I_k(A)} m_i^k$$

Теорема 5 Для любого борелевского множества А существует

$$\lim_{k \to \infty} \mu_k^*(A) = \mu_{inv}(A). \tag{9}$$

Доказательство. По построению, значение меры μ_k на ячейке $M_k^*(i)$ совпадает с мерой вершины i потока m^k . Описанное наблюдение и утверждение 1 порождают следующие равенства

$$M_k^*(i) = \bigcup_{j \in J} M_{k+1}^*(j), \quad m_i^k = \sum_{j \in J} m_j^{k+1},$$
 (10)

где $J=s^{-1}(i)$. Равенства (10) задают связь между k-м разбиением и k+1-м разбиением. Последовательно получаем равенство для любого t>k:

$$m_i^k = \mu_k(M_k^*(i)) = \sum \{m_j^t : j \in s_t^{-1}(i)\} = \mu_t(M_k^*(i)).$$

Переходя к пределу при $t\to\infty$ получаем, что значение меры μ_k и значение предельной (инвариантной) меры μ_{inv} на ячейке $M_k^*(i)$ совпадают. Таким образом, для инвариантной меры μ_{inv} выполнено равенство

$$\mu_{inv}(M_k^*(i)) = m_i^k \tag{11}$$

для любых i и k. Это равенство позволяет определить инвариантную меру любой ячейки всех разбиений C_k^* .

Согласно работе [11], меры μ_k , построенные по формуле (7) сходятся в слабой топологии к инвариантной мере μ_{inv} . Рассмотрим множество A измеримое по Борелю и построим покрытие множества A ячейками покрытия C_k вида

$$P_k = \{ \bigcup M_k^*(i), \ i \in I_k(A) \}.$$

Покажем, что

$$P_k(A) \supset P_{k+1}(A)$$

т. е. последовательность $P_k(A)$ является убывающей. Обозначим $I_k=\{i:M_k^*(i)\cap A\neq\emptyset\}$. Равенство s(j)=i означает, что ячейка $M_{k+1}^*(j)$ входит в разбиение ячейки $M_k^*(i)$. Если $M_{k+1}^*(j)\cap A\neq\emptyset$ и s(j)=i, то $M_k^*(i)\cap A\supset M_{k+1}^*(j)\cap A\neq\emptyset$. Следовательно, $s(I_{k+1})\subset I_k$ и

$$P_{k+1} = \{ \bigcup M_{k+1}^*(j), \ j \in I_{k+1} \} \subset \{ \bigcup M_k^*(i), \ i \in I_k \} = P_k.$$

Из убывания последовательности $P_k(A)$ следует, что существует предел множеств

$$\lim_{k \to \infty} P_k(A) = \bigcap_k P_k(A)$$

и предел мер

$$\lim_{k \to \infty} \mu_k^*(P_k(A)) = \lim_{k \to \infty} \sum_{i \in I_k(A)} m_i^k.$$

Покажем, что равенство (9) выполнено для любого замкнутого множества A. Ясно, что имеет место включение $A \subset \bigcap_k P_k(A)$. Покажем обратное включение от противного. Действительно, пусть найдется точка $x \in \bigcap_k P_k(A)$, которая не лежит в A. Так как A — замкнутое множество, то расстояние $\rho(x,A)=r>0$. Это означает, что ячейка $M_k^*(i)$, содержащая точку x, диаметром $d_k < r$ не может пересекать A. Следовательно, точка x не лежит в пересечении $\bigcap_k P_k(A)$. Полученное противоречие приводит к равенству

$$\bigcap_{k} P_k(A) = A.$$

Так как ячейки $M_k^*(i)$ не пересекаются при фиксированном k, получаем равенства

$$\mu_{inv}(A) = \lim_{k \to \infty} \mu_{inv}(P_k(A)) = \lim_{k \to \infty} \sum_{i \in I_k} \mu_{inv}(M_k^*(i)) = \lim_{k \to \infty} \sum_{i \in I_k} m_i^k = \mu^*(A),$$

где $I_k = \{i: M_k^*(i) \cap A \neq \emptyset\}$. Пределы, описанные выше, существуют по свойству монотонности и аддитивности меры.

Таким образом, мы даказали равенство (9) для замкнутых множеств. Мера открытого множества B вычисляется через меру замкнутого множества $M \setminus B$: $\mu(B) = 1 - \mu(M \setminus B)$ и, тогда, равенство (9) выполнено для всех открытых множеств. Следовательно, данное равенство верно для всех борелевских множеств (см. [13], стр. 456-462.) Теорема доказана.

4 Аппроксимация δ -мерами

Пусть на символическом образе G есть поток $m = \{m_{ij}\}$. Используя поток m и меру Лебега, можно построить приближение к инвариантной мере по формуле (7). Возникает вопрос: насколько важно использовать меру Лебега при построении аппроксимации инвариантной меры. Построим аппроксимацию, которая сосредоточена в конечном наборе точек. Пусть $\delta(x)$ есть мера (функция) Дирака сосредоточенная в точке x, т.е.

$$\int_{M} \phi d\delta(x) = \phi(x).$$

В каждой ячейке M(i) выберем точку x_i и определим меру

$$\mu^* = \sum_i m_i \delta(x_i), \tag{12}$$

которую будем называть дискретной мерой сосредоточенной в точках $\{x_i\}$. В этом случае, μ^* -меры ячеек $M^*(i)$ и M(i) совпадают с m_i — мерой потока вершины i.

Теорема 6 Рассмотрим последовательность символических образов G_k для покрытий с диаметрами $d_k \to 0$ и последовательность потоков m_k на G_k . Пусть на многообразии M имеется две последовательности мер: мера μ_k построена по формуле (7) и мера μ_k^* построена по формуле (12) для каждого k. Тогда, если меры μ_k сходятся в слабой топологии κ μ , то меры μ_k^* также сходятся в слабой топологии κ μ .

 \mathcal{A} оказательство. Для любой непрерывной функции $\varphi: M \to \mathbb{R}$ и дискретной меры μ_k^* выполнено

$$\int_{M} \phi d\mu_k^* = \sum_{i} \phi(x_i) m_i^k, \quad x_i \in M_k(i).$$

Для меры μ_t найдем

$$\int_{M} \varphi d\mu_{k} = \sum_{i} \int_{M_{k}^{*}(i)} \varphi d\mu_{k} = \sum_{i} \varphi(x_{i}^{*}) m_{i}^{k},$$

где каждая точка x_i^* определяется по теореме о среднем и лежит в ячейке $M_k(i)$. Тогда,

$$\left| \int_{M} \varphi d\mu_{k} - \int_{M} \varphi d\mu_{k}^{*} \right| \leq \sum_{i} |\varphi(x_{i}^{*}) - \phi(x_{i})| m_{i}^{k} \leq \eta(d_{k}),$$

где $\eta(\cdot)$ — модуль непрерывности функции φ и диаметр разбиения $d_k \to 0$. Если последовательность μ_k сходится в слабой топологии к μ , то, из доказанного, следует, что последовательность μ_k^* также сходится в слабой топологии к μ . Теорема доказана.

 \odot

Это означает, что все предыдущие теоремы об аппроксимации инвариантных мер в слабой топологии остаются верными для мер построенных по формуле (12). Например, верна следующая теорема.

Теорема 7 Для любой окрестности (в слабой топологии) U множества инвариантных мер $\mathcal{M}(f)$ найдется положительное число d_0 такое, что для всякого разбиения C с максимальным диаметром $d < d_0$ и любого потока m на символическом образе G, построенного для разбиения C, дискретная мера μ^* , построенная согласно (12) по m, лежит в окрестности U.

5 Аппроксимация эргодических мер

В статье [14] изучается сходимость в среднем последовательности периодических псевдотраекторий. Напомнит, что последовательность $\eta_n = \{x_n(k), k \in \mathbb{Z}\}$ периодических ε_n -траекторий сходится в среднем при $\varepsilon_n \to 0$, если для любой непрерывной функции $\varphi \colon M \to \mathbb{R}$ средние значения на периоде

$$\overline{\varphi}(\eta_n) = \frac{1}{p_n} \sum_{k=1}^{p_n} \varphi(x_n(k))$$

сходятся при $n \to \infty$, где p_n — период псевдотраектории η_n .

Теорема 8 [14] Пусть последовательность η_n периодических ε_n -траекторий сходится в среднем при $\varepsilon_n \to 0$, тогда существует инвариантная мера

 μ такая, что для любой непрерывной функции φ имеет место равенство

$$\lim_{n\to\infty} \overline{\varphi}(\eta_n) = \int_M \varphi d\mu.$$

Рассмотрим последовательность $\{C_t = \{M_t(i)\}, t \in \mathbb{N}\}$ подразбиений исходного покрытия C_0 , диаметр d_t которых сходится к нулю. Пусть $\{G_t\}$ — соответствующая последовательность символических образов, на которых действует отображение $s: G_{t+1} \to G_t$ ориентированных графов.

Теорема 9 Пусть на каждом G_t задан периодический путь $\omega_t = \{i_t(1), i_t(2), \ldots, i_t(p_t) = i_t(0)\}$ периода p_t и последовательность путей $\{\omega_t\}$ согласована, т.е. $\omega_t = s(\omega_{t+1})$. Тогда верны следующие утверждения.

- 1. Существует рекуррентная траектория $T = \{x_k : x_{k+1} = f(x_k), k \in \mathbb{Z}\}$, для которой $x_k \in M(i_t(k))$ для любого t.
- 2. Последовательность периодических псевдотраекторий

$$T_t = \{x_t(k) \in M(i_t(k)), \ k \in \mathbb{Z}\}\$$

(которые являются следами путей ω_t) сходится к траектории T равномерно так, что $\sup_k \rho(x_t(k), x_k) \leq d_t$.

- 3. Последовательность замкнутых множеств $P_t(\omega_t) = \bigcup_k M_t(i_t(k))$ является убывающей: $P_{t+1} \subset P_t$ и $\lim_{t\to\infty} P_t = \bigcap_t P_t$ совпадает с замыканием траектории T.
- 4. Последовательность периодических псевдотраекторий T_t сходится в среднем и существует инвариантная мера μ такая, что для любой непрерывной функции φ средние на периоде $\overline{\varphi}(\omega_t)$ сходятся к $\int_M \varphi d\mu$ при $t \to \infty$.
- 5. Замыкание траектории T является минимальным строго эргодическим множеством меры μ и носитель этой меры

$$supp \mu = \lim_{t \to \infty} \bigcup_{k} M_t(i_t(k)).$$

6. Если $\{x_t(n) \in M_t(i_t(n)), 1 \le n \le p_t\}$ есть след периодического пути ω_t , тогда дискретная мера

$$\mu_t^* = \frac{1}{p_t} \sum_{1 \le n \le p_t} \delta(x_t(n))$$

сходится к эргодической мере μ при $t \to \infty$ в слабой топологии, где $\delta(x)$ является δ -функцией (мера) Дирака.

Доказательство. В условиях теоремы мы имеем последовательность подразбиений $\{C_t = \{M_t(i)\}\}$, последовательность символических образов $\{G_t\}$, связанных отображением $s: G_{t+1} \to G_t$; последовательность пространств потоков $\{\mathcal{M}(G_t)\}$, связанных отображением $s^*: \mathcal{M}(G_{t+1}) \to \mathcal{M}(G_t)$. Каждый периодический путь $\omega_t = \{i_t(1), i_t(2), \dots, i_t(p_t) = i_t(0)\}$ периода p_t лежит на символическом образе G_t . Утверждения 1 и 2 (данной теоремы) являются следствием теоремы 2, поэтому мы кратко напомним доказательства этих утверждений.

Доказательство утверждение 1. Фиксируем k и рассмотрим последовательность ячеек $\{M(i_t(k)),\ t=1,2,...\}$ из последовательности подразбиений $\{C_t\}$ Из согласованности периодических путей $\{\omega_t\}$ следует, что $s(i_{t+1}(k))=i_t(k)$. Это означает, что ячейка $M(i_{t+1}(k))$ входит в подразбиение ячейки $M(i_t(k))$. В таком случае имеют место включения

$$M(i_1(k)) \supset M(i_2(k)) \supset \ldots \supset M(i_t(k)) \supset M(i_{t+1}(k)) \supset \ldots$$
 (13)

Так как ячейки замкнуты и их диаметры стремятся к нулю вместе с d_t , то существует единственная точка

$$x_k = \lim_{t \to \infty} M(i_k^t) = \bigcap_t M(i_k^t).$$

Аналогично, последовательность замкнутых множеств $\{f(M(i_k^t))\cap M(i_{k+1}^t)\}$ имеет предельную точку

$$\lim_{t \to \infty} f(M(i_k^t)) \cap M(i_{k+1}^t) = x_{k+1},$$

при этом $f(x_k) = x_{k+1}$. Детали см. в [10].

Для доказательства рекуррентности построенной траектории, заметим, что для каждого t вся траектория $T=\{x_k\}$ лежит в объединении ячеек периодического пути $\omega_t=\{i_t(1),i_t(2),\ldots,i_t(p_t)=i_t(0)\}$:

$$T \subset P_t(\omega_t) = \bigcup_k M_t(i_t(k)).$$

Фиксируем $\varepsilon > 0$ и найдем t такое, что $d_t < \varepsilon$. Для этого t определим период p_t пути ω_t . Тогда вся траектория $T = \{x_k\}$ лежит в $P_t(\omega_t) = \bigcup_k M_t(i_t(k))$. Так как точка x_k траектории T лежит в $M_t(i_t(k))$, то шар B(r,x) радиуса

 $r = d_t$ с центром в точке $x = x_k$ содержит ячейку $M_t(i_t(k))$. Следовательно, объединение шаров

$$H = \bigcup_{k} B(d_t, x_k) \supset P_t(\omega_t)$$

содержит траекторию T. Возьмем любой отрезок $\{x_k, k=k_0, k_0+1, \ldots, k_0+p_t-1\}$ длины p_t траектории T. Так как путь ω_t имеет период p_t , то описанный отрезок лежит в $P_t(\omega_t)$. Таким образом, ε -окрестность любого отрезка траектории T длины p_t содержит всю траекторию T, т.е. T является рекуррентной траекторией.

Доказательство утверждение 2. Пусть $\omega_t = \{i_t(k), 1 \leq k \leq p_t\}$ — согласованная последовательность периодических путей на $\{G_t\}$. Фиксируя t, определим псевдотраекторию $T_t = \{x_t(k) \in M(i_t(k)), 1 \leq k \leq p_t\}$. Согласно построению, точка $x_t(k)$ псевдотраектории T_t и точка x_k траектории T лежат в одной ячейке $M_t(i_t(k))$ для каждых k и t. Тогда расстояние между этими точками не превосходит диаметра ячейки и, следовательно, диаметра d_t покрытия C_t . Согласно теореме 1, T_t является периодической ε -траекторией для любого $\varepsilon > d_t + \eta(d_t)$, где $\eta(\cdot)$ — модуль непрерывности отображения f. Так как последовательность периодических путей согласована, то последовательность псевдотраекторий $\{T_t\}$ сходится равномерно к рекуррентной траектории $T = \{x(k), k \in \mathbb{Z}\}$, при этом расстояние $\rho(x(k), x_t(k)) < d_t$.

Доказательство утверждения 3. Из согласованности путей $\omega_t = s(\omega_{t+1})$ следует, что $i_t(k) = s(i_{t+1}(k))$ для каждого k. Это означает, что ячейка $M_{t+1}(i_{t+1}(k))$ входит в подразбиение ячейки $M_t(i_t(k))$ и

$$M_{t+1}(i_{t+1}(k)) \subset M_t(i_t(k)).$$

Тогда, объединяя эти включения по k, получаем

$$P_{t+1} = \bigcup_{k} M_{t+1}(i_{t+1}(k)) \subset \bigcup_{k} M_{t}(i_{t}(k)) = P_{t}.$$

Каждое замкнутое множество P_t содержит траекторию T и ее замыкание \overline{T} , следовательно, $\overline{T} \subset \bigcap_t P_t$. Обратное включение покажем от противного. Пусть существует точка $x \in \bigcap_t P_t$, которая не лежит в замыкании \overline{T} . Тогда расстояние $\rho(x,\overline{T})=r>0$. Из включения $x \in \bigcap_t P_t$ следует, что $x \in P_t$ для любого t. Каждое P_t есть объединение конечного числа ячеек $M_t(i_t(k))$. Тогда найдется ячейка $M_t(i_t(k))$ содержащая точку x. Однако, ячейка $M_t(i_t(k))$ содержит точку $x_k \in T$ и, следовательно, расстояние $\rho(x,\overline{T}) \leq d_t$. Если $d_t < r$, то мы получаем противоречие с предположением $\rho(x,\overline{T}) = r$. Поэтому необходимо $\overline{T} \supset \bigcap_t P_t$. Таким образом, $\overline{T} = \bigcap_t P_t$.

Доказательство утверждения 4. В работе [11] показано, что, если на символическом образе G имеется периодический путь ω периода N, то на G имеется поток m такой, что $m_{ij} = k_{ij}/N$, где k_{ij} есть число проходов пути ω через дугу $i \to j$. Описанный поток называется потоком $m(\omega)$, порожденным периодическим путем ω . Таким образом, согласованная последовательность $\omega_t = \{i_t(k), k \in \mathbb{Z}\}$ периодических путей порождает согласованную последовательность периодических потоков $m(\omega_t)$. Каждый поток $m(\omega_t)$ порождает меру μ_t^* согласно формуле (7). В статье [11] показано, что для согласованной последовательности потоков $m(\omega_t)$ последовательность мер μ_t^* сходится к инвариантной мере μ в слабой топологии. В предыдущей секции показано, если меру μ_t строить согласно формуле (12), то последовательность мер μ_t также сходится к инвариантной мере μ в слабой топологии. При построении меры $\mu_t(\omega)$ согласно формуле (12), точка $x_t(i)$ лежит в ячейке $M_t(i)$ и зависит только от номера i. В этом случае мера μ_t имеет вид

$$\mu_t = \sum_i m_t(i)\delta(x_t(i)), \quad m_t(i) = \sum_j m_t(ij) = \sum_j \frac{k_t(ij)}{p_t} = \frac{k_t(i)}{p_t},$$

где p_t — период пути ω_t , $k_t(ij)$ — число проходов пути ω_t через дугу $i \to j$, $k_t(i)$ — число проходов пути ω_t через вершину i. Для любой непрерывной функции φ

$$\int \varphi d\mu_t = \sum_i m_t(i)\varphi(x_t(i)) = \sum_i \frac{k_t(i)}{p_t}\varphi(x_t(i)). \tag{14}$$

Согласно теоремы 1, периодическая последовательность

$$T_t = \{x_t(k) \in M_t(i_t(k)), \ 0 \le k \le p_t, \ x_t(0) = x_t(p_t)\}$$

является следом периодического пути ω_t . В этом случае точка $x_t(k)$ зависит от k. Иначе говоря, возможно, что вершины $i_t(k_1)$, $i_t(k_2)$ совпадают, но $x_t(k_1) \neq x_t(k_2)$. В этом случае точки $x_t(k_1)$ и $x_t(k_2)$ лежат в одной ячейке, т.е. расстояние $\rho(x_t(k_1), x_t(k_2)) < d_t$. Наше цель показать, что для любой непрерывной функции среднее значение

$$\overline{\varphi}(T_t) = \frac{1}{p_t} \sum_{1 \le k \le p_t} \varphi(x_t(k)). \tag{15}$$

сходится при $t \to \infty$. Число проходов $k_t(i)$ пути ω_t через вершину i совпадает с числом проходив псевдотраектории T_t через ячейку $M_t(i)$. Отсюда следует,

что $k_t(i) \neq 0$ в (14) только для вершин периодического пути $\omega_t = \{i_t(k), \ 1 \leq k \leq p_t\}$. При этом $\sum_i k_t(i) = p_t$. Подставляя в (14)

$$k_t(i)\varphi(x_t(i)) = \sum_{i_t(k)=i} \varphi(x_t(i_t(k))),$$

получаем

$$\int \varphi d\mu_t = \frac{1}{p_t} \sum_{1 \le k \le p_t} \varphi(x_t(i_t(k))).$$

Покажем, что среднее значение $\overline{\varphi}(T_t)$ функции φ на периодической псевдотраектории T_t и интеграл $\int \varphi d\mu_t$ имеют общий предел при $t \to \infty$.

Согласно построению, точки $x_t(k)$ и $x_t(i_t(k))$ лежат в одной ячейке $M_t(i_t(k))$, следовательно, расстояние $\rho(x_t(k),x_t(i_t(k))) < d_t$. Тогда

$$\left| \int \varphi d\mu_t - \overline{\varphi}(T_t) \right| \le \frac{1}{p_t} \sum_{1 \le k \le p_t} |\varphi(x_t(i_t(k))) - \varphi(x_t(k))| \le \eta(d_t) \to 0$$

где $\eta(\cdot)$ — модуль непрерывности функции φ и диаметр разбиения $d_t \to 0$ при $t \to \infty$. Это означает, что среднее значение $\overline{\varphi}(T_t)$ и интеграл $\int \varphi d\mu_t$ сходятся к общему пределу. Так как последовательность мер μ_t сходится к инвариантной мере μ в слабой топологии, то

$$\lim_{t \to \infty} \overline{\varphi}(T_t) = \lim_{t \to \infty} \int \varphi d\mu_t = \int \varphi d\mu,$$

т.е. последовательность периодических псевдотраекторий T_t сходится в среднем.

Доказательство утверждения 5. Следующая теорема доказана в статье [14].

Теорема 10 Если последовательность периодических ε_t -траекторией сходится в среднем при $\varepsilon_t \to 0$ и сходится равномерно к траектории T, то замыкание траектории T является минимальным строго эргодическим множеством.

Согласно утверждению 4, последовательность T_t периодических псевдотраекторий сходится в среднем. Согласно утверждению 2, последовательность T_t сходится равномерно к траектории T. По теореме 10 замыкание траектории T является минимальным строго эргодическим множеством и, следовательно, инвариантная мера μ является эргодической. Замыкание траектории T

является носителем этой меры. Согласно утверждению 3, носитель

$$supp \mu = \lim_{t \to \infty} P_t = \bigcap_t (\bigcup_k M_t(i_t(k))).$$

Доказательство утверждения 6. Пусть $\{x_t(n) \in M_t(i_t(n)), 1 \leq n \leq p_t\}$ есть след периодического пути ω_t и пусть дискретная мера μ_t^* имеет вид

$$\mu_t^* = \frac{1}{p_t} \sum_{1 < n < p_t} \delta(x_t(n)).$$

Тогда

$$\int \varphi d\mu_t^* = \frac{1}{p_t} \sum_{1 \le n \le p_t} \varphi(x_t(n)) = \overline{\varphi}(\omega_t).$$

Согласно доказательству утверждения 4, средние значения $\overline{\varphi}(\omega_t)$ сходится к интегралу $\int \varphi d\mu$ при $t \to \infty$. Отсюда следует, что дискретная мера μ_t^* сходится к эргодической мере μ в слабой топологии. Теорема доказана.

•

Следствие 1 Утверждение 6 доказанной теоремы позволяет построить численную аппроксимацию эргодической меры µ.

Благодарности Работа выполнена при поддержке Российского фонда фундаментальных исследований (РФФИ, грант А № 19-01-00388).

Список литературы

- [1] M.Shub. Stabilite globale de systems denamiques.// Asterisque v. 56, 1978, 1-21.
- [2] G. D. Birkhoff. Proof of recurrence theorem for strongly transitive systems. Proof of the ergodic theorem.// Proc. Nat. Acad. Sci. v. 17, 1931.
- [3] Г. С. Осипенко. О символическом образе динамической системы.// Краевые задачи, Пермь, 1983, 101-105.
- [4] George Osipenko. Dynamical systems, Graphs, and Algorithms. Lectures Notes in Mathematics, v. 1889, Springer, Berlin, 2007.
- [5] В.М. Алексеев. Символическая динамика. Одиннадцатая математическая школа, изд. института математики АН УССР, Киев, 1976.

- [6] Lind Douglas, Marcus Brian. An introduction to symbolic dynamics and coding. Cambridge University Press, 1995.
- [7] C.Robinson. Dynamical Systems: Stability, Symbolic Dynamics and Chaos, 1995.
- [8] C. S. Hsu. Cell-to-Cell Mapping, Springer-Verlag, N.Y. 1987.
- [9] В. В. Прасолов. Элементы комбинаторной и дифференциальной топологии, МЦНМО Москва, 2004.
- [10] Г. С. Осипенко. Кодировка траекторий и инвариантных мер.// Математический сборник. v. 211:7, 2020, 151-176.
- [11] George Osipenko. Symbolic images and invariant measures of dynamical systems. // Ergodic Theory and Dynamical Systems. v. 30, 2010, 1217 1237.
- [12] А. Б. Каток, Б. Хасселблат. Введение в современную теорию динамических систем. Факториал, Москва, 1999.
- [13] В.В. Немыцкий и В.В. Степанов. Качественная теория дифференциальных уравнений. Москва-Ленинград, 1949.
- [14] Г. С. Осипенко. Сходимость в среднем периодических псевдотраекторий и инвариантные меры динамических систем.// Математические заметки. т. 108:6, 2020, 882–898.

Graph flows and invariant measures of dynamical systems

G. S. Osipenko

Branch of Moscow State University in Sevastopol. george.osipenko@mail.ru

Abstract. We consider a discrete dynamical system generated by a homeomorphism f of a compact manifold. If $\{M(i)\}$ is a finite cover of the manifold by closed cells, then there is a symbolic image G- directed graph with vertices corresponding to cells, and vertices i and j are connected by an arc $i \to j$ if the image f(M(i)) intersects M(j). A periodic path ω on G generates a pseudotrajectory η and a measure μ concentrated on it. Let a sequence of subdivisions with diameters converging to zero and a sequence of symbolic images G_t be given. If the sequence of periodic paths $\{\omega_t \subset G_t\}$ is consistent, then the corresponding sequence of periodic pseudotrajectories converges to a recurrent trajectory T, the sequence of measures μ_t converges to an ergodic measure and the closure of T is a minimal strictly ergodic set.

Keywords: symbolic image, flow on a graph, pseudotrajectory, weak convergence of measures, ergodicity.

Acknowledments

The work was supported by RFBR (grant A \mathbb{N} 19-01-00388).