TD - Construction d'une fonction de hachage

Une fonction de hachage h est une fonction de $E \subset \{0,1\}^*$ dans $F \subset \{0,1\}^m$:

$$h: E \subset \{0,1\}^* \longrightarrow F \subset \{0,1\}^m$$

où m est un entier fixé (par exemple m = 128 pour h = MD5).

Une fonction de hachage est dite **résistante aux collisions** si il est difficile (i.e. extrêmement coûteux) de trouver $(x, y) \in E^2$ avec $x \neq y$ tels que: h(x) = h(y).

Cet exercice construit une telle fonction de hachage à partir d'une fonction à sens unique (ici le logarithme discret).

I. Construction d'une fonction de hachage : $\{0,1\}^{2m} \longrightarrow \{0,1\}^m$

Soit p un grand nombre premier tel que $q=\frac{p-1}{2}$ soit aussi premier. On note $\mathbb{F}_p=\mathbb{Z}/p.\mathbb{Z}$ et \mathbb{F}_p^* le groupe multiplicatif $(\{1,2,\ldots,p-1\},\times_{\mathrm{mod}\;p})$. On définit de même \mathbb{F}_q et \mathbb{F}_q^* .

Soient α et β deux éléments **primitifs** (i.e. *générateurs*) de \mathbb{F}_p^* . On suppose que α, β et p sont publics (connus de tout le monde) et on définit h_1 par :

$$h_1: \mathbb{F}_q \times \mathbb{F}_q \to F_p$$

 $(x_1, x_2) \mapsto \alpha^{x_1} . \beta^{x_2} \mod p$

Soit λ l'entier de \mathbb{F}_q^* égal au logarithme discret de β en base α : $\alpha^{\lambda} = \beta \mod p$. Dans toute cette question, on suppose que λ n'est pas connu et extrêmement coûteux à calculer.

Pour montrer que h_1 est résistante aux collisions, on procède comme suit:

- On suppose que l'on connaît une collision pour h_1 , i.e. $\exists (x_1, x_2, x_3, x_4) \in \{0, 1, \dots, q-1\}^4$ tels que $(x_1, x_2) \neq (x_3, x_4)$ et $h_1(x_1, x_2) = h_1(x_3, x_4)$
- \bullet et on montre qu'on peut alors facilement calculer λ . Pour cela, on définit

$$d = \operatorname{pgcd}(x_4 - x_2, p - 1).$$

Nota Bene. On rappelle que p et q sont premiers et que p = 2q + 1.

1. Quels sont les diviseurs de p-1? En déduire $d \in \{1, 2, q, p-1\}$.

```
p-1=2q et q est premier donc ses diviseurs sont \{1,2,q,2q=p-1\}.
Comme d est un diviseur de p-1, on en déduit d\in\{1,2,q,p-1\}.
```

2. Justifier $-(q-1) \le x_4 - x_2 \le q-1$; en déduire que $d \ne q$ et $d \ne p-1$.

```
Comme 0 \le x_2, x_4 \le q-1, on a -(q-1) \le x_4 - x_2 \le q-1.
Or q est premier; on en déduit que (x_4 - x_2) est premier avec q, donc d \ne q.
```

3. Montrer que $\alpha^{(x_1-x_3)} \equiv \beta^{(x_4-x_2)} \mod p$.

Evident:
$$\alpha^{x_1}\beta^{x_2} \equiv \alpha^{x_3}\beta^{x_4} \mod p \iff \alpha^{(x_1-x_3)} \equiv \beta^{(x_4-x_2)} \mod p$$

4. On suppose ici d=1; montrer qu'alors $\lambda=(x_1-x_3).(x_4-x_2)^{-1} \mod (p-1)$.

```
Si d=1, soit u=(x_4-x_2)^{-1} \mod (p-1): u.(x_4-x_2)=1+k.(p-1) Alors \beta^{(x_4-x_2).u} \mod p \equiv \beta^{1+k(p-1)} \mod p \equiv \beta \mod p (d'après le théorème de Fermat).
Remplaçant dans 3., on obtient : \beta=\alpha^{(x_1-x_3).u} \mod p soit \lambda=(x_1-x_3).u \mod p-1, cqfd.
```

- 5. On suppose ici d=2 et on pose $u=(x_4-x_2)^{-1} \mod q$.
- **5.a.** Justifier que $\beta^q = -1 \mod p$; en déduire $\beta^{u.(x_4-x_2)} = \pm \beta \mod p$.
- **5.b.** Montrer qu'on a: $\lambda = u.(x_1 x_3) \mod p 1$ ou bien $\lambda = u.(x_1 x_3) + q \mod p 1$.
- **5.a.** Comme d=2 et p-1=2.q, on a x_4-x_2 premier avec q d'où $u.(x_4-x_2)=1+k.q$. D'où $\beta^{(x_4-x_2).u} \mod p \equiv \beta^{1+kq} \mod p \equiv \beta.(\beta^q)^k \mod p$. Or $q=\frac{p-1}{2}$ et β est un primitif mod p. D'où $\beta^{p-1}=1 \mod p$ et $\beta^q=\beta^{\frac{p-1}{2}}=-1 \mod p$. Finalement $\beta^{(x_4-x_2).u}=(-1)^k.\beta \mod p$, cqfd. **5.b.** Remplaçant dans 3., on obtient: $\beta=\pm\alpha^{(x_1-x_3).u} \mod p$ soit $\beta=\alpha^{(x_1-x_3).u+\delta.q} \mod p$ avec $\delta\in\{0,1\}$. On a donc $\delta=0$, i.e. $\lambda=u.(x_1-x_3) \mod p-1$ ou sinon $\delta=1$, i.e. $\lambda=u.(x_1-x_3)+q$ mod p-1, cqfd.
- **6.** Conclure en donnant un algorithme qui prend en entrée une collision $(x_1, x_2) \neq (x_3, x_4)$ et qui retourne λ .

Majorer le coût de cet algorithme et en déduire que h_1 est résistante aux collisions.

```
D'après les questions précédentes, on a l'algorithme suivant :  \begin{array}{l} \text{AlgoCalculLogBeta(} \ p,\alpha,\beta\text{, };x_1,x_2,x_3,x_4\text{ ) } \{\\ q=(p-1)/2\text{;}\\ d=\operatorname{pgcd}(x_4-x_2,p-1)\text{ ;}\\ \text{if } (d==1)\text{ } \{\\ u=(x_4-x_2)^{-1} \mod (p-1)\text{;}\\ \lambda=(x_1-x_3).u \mod p-1\text{;} \end{array}
```

```
} else {// ici d == 2  u = (x_4 - x_2)^{-1} \mod q; \\ \lambda = (x_1 - x_3).u \mod p - 1; \\ \text{if (ExpoMod(} \alpha, \lambda, p ) == -\beta) \ \lambda = \lambda + q ; \\ \} \\ \text{return } \lambda \ ; \\ }
```

Le coût se ramène à des opérations modulo p-1, p et q. Donc en $O(\log^{1+\epsilon} p)$, ce qui est faible même pour p grand (1024 bits par exemple). Autrement dit, si on connaît une collision pour h_1 , alors on peut facilement calculer le logarithme discret de β , ce qui contredit l'hypothèse que λ est très coûteux à calculer.

Par suite, on en déduit que, sous l'hypothèse que λ est très coûteux à calculer, alors h_1 est résistante aux collisions.

II. Extension à une fonction de hachage : $\{0,1\}^* \longrightarrow \{0,1\}^m$

On suppose donnée une fonction de hachage $h_1: \{0,1\}^{2m} \to \{0,1\}^m$ résistante aux collisions (comme celle de la partie I par exemple):

$$h_1: \{0,1\}^m \times \{0,1\}^m \rightarrow \{0,1\}^m (x_1,x_2) \mapsto h_1(x_1,x_2)$$

A partir de h_1 , on définit de manière récursive $h_i:\{0,1\}^{2^im}\longrightarrow\{0,1\}^m$ par:

$$h_i: \left(\{0,1\}^{2^{i-1}m}\right)^2 \longrightarrow \{0,1\}^m$$

 $(x_1, x_2) \mapsto h_1(h_{i-1}(x_1), h_{i-1}(x_2))$

7. Soient $(x_1, x_2, x_3, x_4) \in \mathbb{F}_q^4$; expliciter $h_2(x_1, x_2, x_3, x_4)$ en fonction de h_1 .

```
On a h_2: (\{0,1\}^m)^4 \to \{0,1\}^m \\ (x_1,x_2,x_3,x_4) \mapsto h_1(h_1(x_1,x_2),h_1(x_3,x_4))
```

8. Montrer que h_2 est résistante aux collisions. Indication: on pourra procéder par l'absurde en montrant que si l'on connaît une collision pour h_2 alors on peut facilement calculer une collision pour h_1 .

Si on a une collision sur h_2 , alors $\exists x \neq y : h_2(x) = h_2(y)$. On a deux cas:

- soit $h_1(x_1, x_2) \neq h_1(y_1, y_2)$ ou $h_1(x_3, x_4) \neq h_1(y_3, y_4)$: alors comme $h_1(x_1, x_2), h_1(x_3, x_4) = h_1(y_1, y_2), h_1(y_3, y_4)$) on a trouvé une collision sur h_1 .
- Sinon, supposons par exemple $(x_1, x_2) \neq (y_1, y_2)$ (on peut s'y ramener par symétrie). Alors comme $h_1(x_1, x_2) = h_1(y_1, y_2)$, on a trouvé une collision sur h_1 .

Comme on suppose que h_1 est résistante aux collisions, on en déduit h_2 résistante aux collisions.

9. Généraliser en justifiant que h_i est résistante aux collisions.

Par récurrence, on montre que si h_i est résistante aux collisions, alors h_{i+1} est aussi résistante aux collisions.

Ceci est vrai pour i = 1. Similairement à la question précédente, on montre que si on trouve une collision pour h_{i+1} , alors on construit aussi une collision pour h_i .

Comme h_1 est résistante aux collisions par hypothèse, alors h_i est résistante aux collisions pour tout $i \geq 2$.

10. Combien d'appels à la fonction h_1 sont effectués lors d'un appel à h_i ? En déduire que le calcul du hachage d'une séquence de n bits a un coût O(n).

Soit C(i) le nombre d'appels à h_1 lors de l'exécution de h_i . On a $C(i)=2.C(i-1)+1=2^i.C(0)+\sum_{k=0}^{i-1}2^k=2^i-1.$

Pour un mot de n bits, on appelle donc n/m fois h_1 , dont le coût est en $O(m^{1+\epsilon})$. Par suite le coût est en $O(n.m^{\epsilon})$ ce que l'on peut assimiler à O(n) puisque m est fixé donc constant.

11. Comment peut-on étendre cette méthode pour construire une fonction de hachage sans collision de $\{0,1\}^* \longrightarrow \{0,1\}^m$?

Si n est la taille du message, soit i tel que $2^i.m = n$, i.e. $i = \lceil log_2 \frac{n}{m} \rceil$. On hache le message avec h_i .

Ce procédé nécessite de connaître la taille du message, donc ne marche pas à la volée. Une autre alternative, plus efficace, est d'utiliser le protocole de Merkle-Damgard comme vu en cours.