- 8. Verifikácia Boylovho zákona
- 9. Koeficient teplotnej rozpínavosti vzduchu

TEORETICKÝ ÚVOD

Ideálny plyn "ako najjednoduchší termodynamický systém, bol v počiatkoch náuky o teple vďačným objektom skúmania. Už v roku 1660 Robert Boyle pokusmi zistil, že pri zmenách objemu plynu pri stálej teplote je tlak plynu p nepriamo úmerný jeho objemu V, teda

$$pV = const.$$
 (8.1)

Neskôr sa ukázalo, že táto závislosť platí dostatočne presne pre dostatočne nízke tlaky a dosť vysoké teploty (keď je stav plynu vzdialený od fázového prechodu). Hovoríme vtedy o ideálnom plyne. Pri izbovej teplote a atmosferickom tlaku možno väčšinu plynov považovať za ideálne.

Charles (1787), Gay-Lussac (1802) a iní zistili, že všetky plyny sa rozťahujú približne rovnako, aj keď nie rovnomerne, podľa ortuťovej teploty.

Pre Celsiovu plynovú teplotu má závislosť objemu V plynu od teploty t pri konštantnom tlaku p $_{\Omega}$ tvar

$$V = V_0(1 + j t)$$
 $(p = p_0)$ (8.2)

a závislosť tlaku plynu p od jeho teploty t pri konštantnom objeme ${
m V}_{
m O}$ má tvar

$$p = p_0(1 + \gamma t)$$
 $(V = V_0)$ (8.3)

kde γ je koeficient objemovej teplotnej rozťažnosti a γ koeficient teplotnej rozpínavosti plynu. Z podmienok ku vzťahom (8.2) a (8.3) vidieť, že pri teplote t = 0 v obidvoch prípadoch sa daný plyn vyznačuje rovnakým objemom a tlakom. S použitím Boyleovho zákona dostávame rovnicu

$$p_0 V = pV_0$$
 pri teplote t

ktorá po dosadení za V a p z rovníc (8.2) a (8.3) vedie k rovnosti

$$\gamma = \gamma \dot{} \qquad (8.4)$$

Gay-Lussacov zákon hovorí, že pre všetky plyny v oblasti platnosti Boyleovho zákona sú koeficienty γ a γ prakticky rovnaké. Meraním pre dostatočne zriedené plyny bola získaná hodnota

$$\gamma = \gamma' = \frac{1}{273,15} \circ_{\mathbb{C}}$$

8. Overte platnosť Boyleovho zákona pri izbovej teplote s použitím Meldeho trubice.

METÓDA MERANIA

Meldeho trubica je hrubostenná kapilára s rovnakým vnútorným prierezom q vo všetkých miestach kapiláry, na jednom konci zatavená: Sčasti je naplnená ortuťou, ktorá uzatvára plyn pri zatavenom konci. Objem V takto uzavretého plynu je určený polohou ortute v trubici. Jeho tlak p je súčtom atmosferickéhotlaku b a hydrostatického tlaku ortute. Súčin tlaku a objemu plynu v trubici možno potom napísať v tvare

$$pV = [b + (h_1 - h_2)sg] q \ell$$
 (8.5)

kde s je hustota ortute pri danej teplote, g je zrýchlenie voľne padajúceho telesa a význam h $_1$, h $_2$ a $\mathcal L$ je zrejmý z obr. 8.1.

Obr. 8.1 Meldeho trubica

Pretože prierez q je podľa predpokladu po celej dĺžke kapiláry rovnaký, zo vzťahu (8.5) vyplýva, že pri konštantnej teplote platí

$$[b + (h_1 - h_2)sg] \ell = const$$
 (8.6)

OPIS APARATÚRY A POSTUP PRÁCE

a) Prístroje a pomôcky: Meldeho trubica, dĺžkové meradlo, barometer

b) Postup práce:

Pri rôznych polohách trubice, ktoré nastavujeme otáčaním trubice na stojane, odmeriame dĺžku vzduchového stĺpca ℓ a výšky hladín h $_1$ a h $_2$ od vodorovnej základne (obr. 8.1). Pred začiatkom

a na konci merania zistíme atmosferický tlak a pri vyhodnocovaní merania použijeme aritmetický priemer obidvoch tlakov (tab. 8.1). Meranie vyhodnotíme použitím vzťahu (8.6).

Poznámka:

Pri meraní dbáme na to, aby boli dodržané podmienky platnosti Boyleovho zákona, preto po každej zmene polohy trubice počkáme, kým sa teplota plynu v trubici nevyrovná s teplotou okolia.

Tab. 8.1

b =

i	h ₁ (cm)	h ₂ (cm)	ℓ (cm)	h ₁ -h ₂ (cm)	К

9. Určte hodnotu koeficientu teplotnej rozpínavosti vzduchu pri izbovej teplote a atmosferickom tlaku.

METÓDA MERANTA

Teplotný koeficient rozpínavosti vzduchu určíme priamym meraním teplotnej závislosti tlaku vzduchu pri stálom objeme.

Toto umožňuje zariadenie schematicky znázornené na obr. 9.1. V banke B je uzavretý vzduch, ktorý je predmetom nášho merania. Banka B je spojená rúrkou s otvoreným ortuťovým manometrom. Výška hladiny ortute \mathbf{h}_1 v ľavom ramene manometra určuje objem uzavretého vzduchu, preto musí byť počas celého merania stála.

Dosiahneme to tak, že pri zmenách tlaku v banke budeme zmenou výšky zásobníka ortute Z meniť výšku hladiny ortute h_2 v pravom ramene manometra. Tlak vzduchu p v banke je súčtom barometrického tlaku b a hydrostatického tlaku ortuťového stĺpca v manometri (h_2-h_1) sg, t.j.

$$p = b + (h_2 - h_1)sg$$
 (9.1)

Obr. 9.1 Zariadenie na meranie teplotného koeficientu rozpínavosti vzduchu

OPIS APARATÚRY A POSTUP PRÁCE

a) Prístroje a pômocky: zariadenie na meranie rozpínavosti vzduchu (obr. 9.1), vodný kúpeľ, varič, teplomer, barometer

B) Postup práce:

Na začiatku merania určíme barometrický tlak. Zapneme varič a pri rôznych teplotách kúpeľa, v ktorom je ponorená banka B, odmeriame výšku ortuťového stĺpca h_2 . Výšku hladiny h_1 udržujeme konštantnú. Po skončení merania opäť určíme barometrický tlak, podobne ako v úlohe č. 8. Údaje zapíšeme do tab. 9.1. Takto nameraná závislosť tlaku vzduchu p od teploty t pri stálom objeme by mala byť podľa vzťahu (8.3) lineárna. Preto nameranými bodmi $(\mathsf{p}_i^{},\mathsf{t}_i^{})$ preložíme priamku a z jej smernice a priesečníka s osou p určíme hľadaný teplotný koeficient rozpínavosti vzduchu γ .

Poznámka:

Teplomerom meriame teplotu kúpeľa, preto treba pri meraní postupovať tak, aby sa teplota vzduchu v banke stačila vyrovnať s teplotou kúpeľa.

Tab. 9.1

	b =	h ₁ =	
i	t (^o C)	h ₂ (cm)	p (Pa)

OTÁZKY A PROBLÉMY

- 1. Ako možno použiť Meldeho trubicu na meranie atmosferického tlaku?
- 2. Ako treba voliť dĺžky ortuťového a vzduchového stĺpca, aby bolo meranie Meldeho trubicou najpresnejšie?
- 3. Dá sa zariadenie na meranie koeficientu teplotnej rozpínavosti využiť na meranie koeficientu objemovej teplotnej rozťažnosti plynov?
- 4. Ako možno určiť molárny objem plynu v banke B (obr. 9.1)?