Thursday, January 25, 2024 11:28 AM

Quiz: AUBUC criterion 3

AUB is regular if A and B regular?

A is regular > ~A regular? (~ANEB) regular, ~ (-ANEB)

DFA for union:

 $M_3 = (Q_1 \times Q_2, \Sigma_2, S_3, (S_1, S_2),$ $F_1 \times Q_2 Q_1 \times F_2)$ $\text{That about AB? AB = } \{xy: x \in A, y \in B\}$

Product Construction for ANB

 $M_1 = (Q_1, \Sigma, S_1, S_1, F_1)$ $M_2 = (Q_2, \Sigma, S_2, S_2, F_2)$

 $M_3 = (Q_1 \times Q_2, Z_1, S_3, (S_1, S_2), F_1 \times F_2)$

where $\forall p \in Q_1$ $\forall g \in Q_2$ $\forall c \in \Sigma$

83((p,4),c)=(8,(p,c), 82(4,c))

 $L(M_3) = L(M_1) \cap L(M_2) ? [$

Observation: $\hat{S}_{3}((p,q),x) = (\hat{S}_{1}(p,x), \hat{S}_{2}(q,x))$ $\forall x \in \mathcal{Z}^{*}$ $\hat{S}_{2}(q,x)$ $\forall p \in Q_{1}$ (use induction to prove it)

Rest of the proof:

^ / \ \ F v F -

Rest of the proof: $X \in L(M_3) \iff \hat{S}_3((s_1,s_2),x) \in F_1 \times F_2$ $\iff (\hat{S}_1(s_1,x),\hat{S}_2(s_2,x)) \in F_1 \times F_2$ $\iff (\hat{S}_1(s_1,x)) \in F_1$ and $\hat{S}_2(s_2,x) \in F_2$ $\iff X \in L(M_1) \cap L(M_2)$

Example:

 $A = \left\{ \begin{array}{ll} x \in \left\{ q, b \right\}^{*} \middle| 1 \times 1 \right\} 5 \quad \text{and} \\ \text{the 5th symbol from left is an a} \right\} \\ B = \left\{ \begin{array}{ll} x \in \left\{ a, b \right\}^{*} \middle| 1 \times 1 \right\} 5 \quad \text{and} \\ \text{the 5th symbol from right is an a} \right\} \\ \text{the 5th symbol from right is an a} \right\}$

bbaabaa & A

a,b

a,b

a,b

a,b

a,b

a,b

a,b

b

a,b

For B: we need to keep track of the last 5 symbols ... for which we would need 32 = 32 states

Non deterministic Finite Automaton (NFA)

we want to make DFAs stronger so we relax DFAs in mulliple ways:

* Multiple start states:

* Allow a set of next states:

In each state, given an input symbol,

the next state is chosen from a set

of possible states (0,1,2, or more)

* There could be more than one

"computational path" (ways of processing)

the same string.

* NFA accepts a string if

at least one computational path ends up

in an accept state.

NFA for B: a_1b a_2b a_3b $a_$