資料探勘與機械學習理論報告

績優選股策略分析

國立高雄第一科技大學

財金學院金融系

指導老師:李宜熹 教授

學 生:趙仁德 曾子瑋 蔡雍盛

日 期:106年6月23日

大綱

- 壹、研究動機
- 貳、研究架構
- 參、分析過程與結果

壹、研究動機

- 股票市場詭譎多變難預測,投資人對於各 財務訊息與技術指標運用,有賴良好的預 測模式。
- ■本研究結合財務與技術指標,使用監督式 分類分析演算法來建構預測模式,分析表 現優於大盤與劣於大盤的特徵,做為選股 趨吉避凶之依據。

貳、研究架構

財務指標

股票報酬

技術指標

財務指標

指標類別	指標名稱	指標代碼
	ROE—綜合損益	A1
獲利能力指標	營業利潤率	A2
授利能力指标	貝裡比率	A3
	營業資產報酬率	A4
	研究發展費用率	B1
成本費用率指標	現金流量比率	B2
	有息負債利率	B3
毎股比率指標 一	每股淨值	C1
学校儿学 相保	常續性EPS	C2
成長率指標 成長率指標	營收成長率	D1
以文学相保	總資產報酬成長率	D2
置 償債能力指標	速動比率	E1
1919年月1日保	淨值/資產	E2
經營能力指標	總資產周轉天數	F1
	P/E	G1
扣料便牧牛畑	P/B	G2
相對價格指標	PSR	G3
	Tobins Q	G4

技術指標

常用技術指標	實質意義	備註
1. 均線(MA)	投資人的平均成本	5MA · 10MA · 20MA
2. KD 指標	看出股價相對走勢	K>D・黃金交叉 →買進 K <d・死亡交叉 td="" →賣出<=""></d・死亡交叉>
3. RSI 指標	看出股價相對強弱	短週期>長週期→買進 短週期<長週期→賣出
4. MACD 指標	股價中長期波段走勢	快線 突破 慢線 →買進 快線 跌破 慢線 →賣出
5. 乖離率(BIAS)	投資人的平均報酬率	只能看短期波段訊號

參、分析過程與結果

- (一) 資料收集
- (二)分析方法
- (三)研究結果

資料收集

研究對象	研究期間	取得來源					
財務指標		台灣經濟新報資料庫(TEJ)					
股票價格	2015/4/3~ 2016/4/4 季資料	YAHOO FINANCE網站					
技術指標	す を作り	自行計算					

資料來源:2016財管盃財務專題競賽 楊思達收集(只含財務指標)

原始資料

id ‡			A3 [‡]					C1 [‡]												winno [‡]	***************************************	mark [‡]
3094	6.22	17.12	133.45	5.01	25.32	159.08	0.00	14.99	0.89	2.04	-0.09	1680.18	93.38	0.25	25.64	1.81	6.86	1.69	563	113	0.4593496	Bad
1338	10.96	11.16	187.68	11.30	2.46	49.67	3.20	77.15	9.19	-1.61	1.84	206.65	70.98	0.92	9.89	1.54	1.21	1.16	48	121	0.4918699	Bad
5234	13.86	8.99	152.89	9.47	9.33	37.81	1.77	20.96	2.90	1.42	-0.82	117.73	60.79	1.04	9.25	1.47	0.85	0.97	699	115	0.4674797	Bad
2328	-2.29	1.69	125.82	1.99	0.86	-3.66	1.46	19.33	0.65	10.20	0.70	158.80	60.27	0.99	8.66	0.69	0.36	0.46	271	106	0.4308943	Bad
1227	20.00	12.88	169.15	19.76	0.40	41.49	1.54	16.91	3.45	17.04	3.71	143.42	65.78	1.32	19.22	4.89	2.55	3.26	19	113	0.4593496	Bad
2027	1.31	0.47	104.46	0.55	0.00	12.07	2.26	14.69	-0.93	-0.26	-4.75	45.82	32.78	1.09	NA	1.00	0.22	0.85	221	118	0.4796748	Bad
1604	4.54	2.10	109.80	2.57	NA	9.94	1.60	14.98	1.07	-5.47	-1.25	91.72	61.95	0.80	10.45	0.85	0.64	0.62	141	121	0.4918699	Bad
2355	12.18	9.11	262.55	9.60	0.87	30.93	1.33	38.47	4.96	6.29	0.91	126.84	64.55	0.93	8.21	1.38	0.93	0.95	289	117	0.4756098	Bad
5871	18.02	24.11	166.48	4.42	NA	3.93	0.00	33.26	5.95	6.59	0.14	110.61	14.96	0.15	6.79	1.71	1.76	0.96	725	121	0.4918699	Bad
2436	-0.66	0.70	103.07	0.69	12.34	10.17	0.70	12.56	0.39	-5.22	-2.46	550.68	82.76	0.52	41.64	1.66	2.60	1.42	348	104	0.4227642	Bad
2880	10.04	NA	NA	NA	NA	NA	NA	15.45	1.42	0.70	0.04	NA	6.51	NA	9.33	0.99	3.21	0.10	482	112	0.4552846	Bad
1326	5.59	5.88	235.12	6.97	0.00	81.80	1.78	48.41	4.55	-17.96	3.21	199.88	64.93	0.63	12.40	1.53	1.32	1.10	46	130	0.5284553	Good
3231	5.56	0.38	108.84	0.87	2.15	7.88	2.20	28.45	0.76	5.22	-0.89	79.14	23.84	2.11	16.60	0.69	0.08	0.48	571	110	0.4471545	Bad
2373	12.93	5.36	116.90	6.87	NA	27.60	1.13	23.65	3.69	21.53	0.81	53.61	55.89	0.91	11.82	2.36	1.28	1.35	304	123	0.5000000	Good
1722	5.18	13.41	253.27	5.95	0.38	876.82	1.71	54.05	3.08	-0.13	-0.85	708.77	65.80	0.23	13.58	0.80	2.41	0.52	170	127	0.5162602	Good
6116	-7.33	-14.02	0.31	-7.12	4.56	29.42	2.37	10.09	-0.84	-27.43	-5.81	105.08	82.87	0.40	NA	0.39	0.73	0.38	733	105	0.4268293	Bad
6184	5.41	18.03	168.21	5.99	0.00	18.95	2.00	31.79	2.14	78.79	0.76	92.25	58.50	0.20	21.89	1.73	4.31	1.04	755	127	0.5162602	Good
6192	14.30	13.53	193.50	13.46	1.18	39.66	2.09	35.51	4.86	-9.90	-0.93	212.90	63.44	0.82	6.99	1.22	0.97	0.80	758	109	0.4430894	Bad
1521	24.55	7.72	182.51	14.31	2.78	30.63	2.30	23.45	5.90	15.50	3.12	86.51	48.89	1.62	12.86	3.83	1.20	1.87	112	110	0.4471545	Bad
4720	8.28	4.69	127.06	7.40	1.76	34.31	1.64	13.32	1.28	6.12	0.94	141.46	58.17	1.33	9.31	1.22	0.54	0.79	664	124	0.5040650	Good
4904	15.72	15.82	166.59	20.16	0.00	97.09	1.00	22.07	3.81	3.31	0.59	116.53	53.08	0.75	14.82	3.06	2.26	1.91	672	125	0.5081301	Good
8210	17.65	13.36	185.04	13.79	3.65	28.68	2.55	22.62	4.22	-0.75	-0.77	151.26	58.53	0.96	7.81	1.92	1.17	1.19	829	113	0.4593496	Bad
2489	13.96	-4.54	65.51	-7.55	3.38	16.74	2.34	17.90	-0.74	15.92	4.36	234.53	67.69	0.98	NA	0.91	0.64	0.60	391	129	0.5243902	Good
4934	6.16	3.65	183.41	4.68	1.04	34.52	3.68	16.86	0.98	19.40	2.76	112.97	66.76	1.03	22.25	1.29	0.88	0.98	680	123	0.5000000	Good
2852	2.33	5.00	122.50	NA	NA	NA	NA	16.29	0.65	3.06	-1.62	NA	34.87	0.37	13.76	0.71	0.69	0.25	478	125	0.5081301	Good

R Code 預測正確率75.6%

```
> #顯示訓練資料的正確率
> mark.traindata = iris$mark[-test.index]
> train.predict=factor(predict(iris.tree, iris.traindata,type='class'), le
vels=levels(mark.traindata))
>
> table.traindata =table(mark.traindata,train.predict)
> table.traindata
              train.predict
mark.traindata Bad Good
          Bad 408
          Good 61
                       8
> correct.traindata=sum(diag(table.traindata))/sum(table.traindata)*100
> correct.traindata
 Γ11 87.21174
> #顯示測試資料的正確率
> mark.testdata = iris$mark[test.index]
> test.predict=factor(predict(iris.tree, iris.testdata,
                               type='class'), levels=levels(mark.testdata))
> table.testdata =table(mark.testdata,test.predict)
> table.testdata
             test.predict
mark.testdata Bad Good
          Bad 154
                     4
          Good 46
> correct.testdata=sum(diag(table.testdata))/sum(table.testdata)*100
> correct.testdata
 [1] 75.60976
```


R Code 產生之決策樹

分析方法

- 1.類神經網路 (Neural Networks)
- 2. 邏輯斯迴歸 (Logistic regression)
- 3. 支持向量機器 (Support Vector Machine)
- 4. 決策樹 (Decision Trees)
- 5. 隨機森林 (Random Forest)
- 6.最近鄰居 (K-Nearest Neighbors)

分析過程與結果

- 0.Prepare data for classification
- 1.PPN:Training a perceptron
- 2.LR:Logistic Regression Model
- 3.SVM:Support Vector Machines
- 4.TREE:Decision tree learning
 - Building a decision tree
 - Visualize a decision tree
- 5.FOREST:Random forests
 - Assessing feature importances with Random Forests
- 6.KNN:K nearest neighbors
 - Sequential feature selection algorithms:SBS
- 7.Model Evaluation and Hyperparameter Turning
 - Streamlining workflows with pipelines:P163
 - Using k fold cross validation to assess model performance:P170
 - Diagnosing bias and variance problems with learning curves:P171
 - Bagging:building an ensemble of classifiers from bootstrap samples
- 8.Pickle classification models
 - Pickle dump the classifiers
 - Pickle load the classifiers

O.Prepare data for classification

```
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast node interactivity = "all"
from sklearn import datasets
import numpy as np
#iris = datasets.load iris()
#X = iris.data[:, [2, 3]]
#y = iris.target
### Step 1: Read data for stock forcasting ###
import pandas as pd
mydata = pd.read excel('D:/ipython/mystock.xls', head = 1)
mydata.columns = ['A1','A2','A3','A4','B1','B2','B3','C1','C2','D1','D2','E1','E2','F1','G1','G2','G3','G4','mark']
#mydata
mydata.shape
y index = mydata.shape[1] - 1
y index
#mydata.values
#X=mydata.values[:, [0,1,2,3,4,5,6,7,8,9,10,11,12]]
X=mydata.iloc[:, 0:y index].values
y=mydata.iloc[:, y index].values
#=mydata.values[:, [y index]]
```

X and Y

```
array([[ -0.37, 10.33, 299.28, ..., 0.93, 1.08, 0.7],
      [0.68, 6.09, 233.83, \ldots, 0.68, 1.39, 0.69],
      [-29.74, 14.47, -23.23, \ldots, 0.6, 2.61, 0.67],
      [ 18.71, 20.48, 331.4, ..., 0.76, 0.71, 0.82],
      [-5.67, -5.4, -12.57, \ldots, 0.58, 0.56, 0.71],
      [7.16, 8.57, 311.59, \ldots, 0.79, 0.61, 0.74]])
array(['Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad',
      'Bad', 'Bad', 'Good', 'Bad', 'Good', 'Bad', 'Good', 'Bad', 'Good',
      'Bad', 'Good', 'Good', 'Bad', 'Good', 'Bad', 'Good', 'Good', 'Good',
      'Bad', 'Bad', 'Bad', 'Bad', 'Good', 'Bad', 'Bad', 'Bad', 'Bad',
      'Bad', 'Bad', 'Good', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad',
      'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad',
      'Bad', 'Good', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad',
      'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Bad', 'Good',
      'Bad', 'Good', 'Bad', 'Good', 'Bad', 'Bad', 'Bad', 'Bad', 'Good',
      'Bad', 'Bad', 'Bad', 'Bad', 'Good', 'Bad', 'Bad', 'Bad',
```

Splitting data into 70% training and 30% test data

```
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast node interactivity = "all"
if Version(sklearn version) < '0.18':</pre>
   from sklearn.cross validation import train test split
else:
   from sklearn.model selection import train test split
### Step 2: Splitting data into 70% training and 30% test data ###
X train, X test, y train, y test = train test split(
  X, y, test_size=0.3, random state=0)
```

Standardizing the features

StandardScaler(copy=True, with_mean=True, with_std=True)

1.Perceptron test accuracy: 0.615

```
from sklearn.linear model import Perceptron
ppn = Perceptron(n iter=40, eta0=0.1, random state=0)
ppn.fit(X train std, y train)
y train.shape
y pred train = ppn.predict(X train std)
print('Misclassified samples: %d' % (y train != y pred train).sum())
y test.shape
y pred test = ppn.predict(X test std)
print('Misclassified samples: %d' % (y test != y pred test).sum())
print('======')
print('Training accuracy:', ppn.score(X train, y pred train))
print('Test accuracy:', ppn.score(X test, y pred test))
Perceptron(alpha=0.0001, class weight=None, eta0=0.1, fit intercept=True,
      n iter=40, n jobs=1, penalty=None, random state=0, shuffle=True,
     verbose=0, warm start=False)
(477,)
Misclassified samples: 149
(205,)
Misclassified samples: 72
Training accuracy: 0.626834381551
Test accuracy: 0.614634146341 <
```

2. Logistic regression accuracy: 0.8

```
from sklearn.linear model import LogisticRegression
lr = LogisticRegression(C=1000.0, random state=0)
lr.fit(X train std, y train)
print('Training accuracy:', lr.score(X train std, y train))
print('Test accuracy:', lr.score(X test std, y test))
LogisticRegression(C=1000.0, class weight=None, dual=False,
          fit intercept=True, intercept_scaling=1, max_iter=100,
          multi class='ovr', n jobs=1, penalty='l2', random state=0,
          solver='liblinear', tol=0.0001, verbose=0, warm start=False)
Training accuracy: 0.842767295597
```

Test accuracy: 0.8

-

3.SVM test accuracy: 0.72

```
from sklearn.svm import SVC
svm = SVC(kernel='linear', C=1.0, random state=0)
svm.fit(X_train_std, y_train)
print('Training accuracy:', svm.score(X train std, y train))
print('Test accuracy:', svm.score(X test, y test))
SVC(C=1.0, cache size=200, class weight=None, coef0=0.0,
 decision function shape=None, degree=3, gamma='auto', kernel='linear',
 max iter=-1, probability=False, random state=0, shrinking=True,
 tol=0.001, verbose=False)
Training accuracy: 0.840670859539
Test accuracy: 0.721951219512 ←
```


4. Decision Tree test accuracy: 0.8

```
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(criterion='entropy', max depth=3, random state=0)
tree.fit(X train, y train)
print('Training accuracy:', tree.score(X_train, y_train))
print('Test accuracy:', tree.score(X test, y test))
DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=3,
            max features=None, max leaf nodes=None,
            min impurity split=1e-07, min samples leaf=1,
            min_samples_split=2, min_weight_fraction_leaf=0.0,
            presort=False, random state=0, splitter='best')
Training accuracy: 0.85534591195
Test accuracy: 0.8
```

Decision Tree

5.Random forests test accuracy: 0.809

```
from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier(criterion='entropy',
                                n estimators=10,
                                random state=1,
                                n jobs=2)
forest.fit(X train, y train)
print('Training accuracy:', forest.score(X_train_std, y_train))
print('Test accuracy:', forest.score(X test std, y test))
RandomForestClassifier(bootstrap=True, class weight=None, criterion='entropy',
            max depth=None, max features='auto', max leaf nodes=None,
            min impurity split=1e-07, min samples leaf=1,
            min samples split=2, min weight fraction leaf=0.0,
            n estimators=10, n jobs=2, oob score=False, random state=1,
            verbose=0, warm start=False)
Training accuracy: 0.830188679245
Test accuracy: 0.809756097561 <
```

Feature Importances with Random Forests

6.KNN test accuracy: 0.795

```
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast node interactivity = "all"
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n neighbors=2, p=2, metric='minkowski')
knn.fit(X train_std, y_train)
print('Training accuracy:', knn.score(X_train_std, y_train))
print('Test accuracy:', knn.score(X_test_std, y_test))
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=2, p=2,
           weights='uniform')
Training accuracy: 0.884696016771
Test accuracy: 0.79512195122 <
```

KNN: feature selection

Test accuracy: $0.795 \rightarrow 0.8$

```
knn = KNeighborsClassifier(n neighbors=2, p=2, metric='minkowski')
knn.fit(X train std, y train)
print('Training accuracy:', knn.score(X train std, y train))
print('Test accuracy:', knn.score(X_test_std, y_test))
KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
           metric params=None, n jobs=1, n neighbors=2, p=2,
           weights='uniform')
Training accuracy: 0.884696016771
Test accuracy: 0.79512195122 ←
 knn.fit(X_train_std[:, k9], y_train)
 print('Training accuracy:', knn.score(X train std[:, k9], y train))
 print('Test accuracy:', knn.score(X test std[:, k9], y test))
 KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
            metric params=None, n jobs=1, n neighbors=2, p=2,
            weights='uniform')
 Training accuracy: 0.884696016771
 Test accuracy: 0.8
```


7. Model Evaluation

- Streamlining workflows with pipelines:P163
- Using k fold cross validation to assess model performance:P170
- Diagnosing bias and variance problems with learning curves:P171
- Bagging: building an ensemble of classifiers from bootstrap samples

7.1 Streamlining workflows with pipelines

```
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.tree import DecisionTreeClassifier
from sklearn.pipeline import Pipeline
pipe tree = Pipeline([('scl', StandardScaler()),
                    ('clf', DecisionTreeClassifier(criterion='entropy', max depth=3, random state=0))])
pipe tree.fit(X train, y train)
print('Training Accuracy: %.3f' % pipe tree.score(X train, y train))
print('Test accuracy:%.3f' % pipe tree.score(X test, y test))
Pipeline(steps=[('scl', StandardScaler(copy=True, with mean=True, with std=True)), ('clf', DecisionTreeClassifier(class weight=
None, criterion='entropy', max depth=3,
           max features=None, max leaf nodes=None,
            min impurity split=1e-07, min samples leaf=1,
            min_samples_split=2, min_weight_fraction_leaf=0.0,
            presort=False, random state=0, splitter='best'))])
Training Accuracy: 0.855
Test accuracy:0.800
```

7.2 Using 10 fold cross validation

```
if Version(sklearn version) < '0.18':</pre>
    from sklearn.cross validation import cross val score
else:
    from sklearn.model_selection import cross val score
scores = cross val score(estimator=pipe tree,
                         X=X_train,
                         y=y_train,
                         cv=10,
                         n_jobs=1)
print('CV accuracy scores: %s' % scores)
print('CV accuracy: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))
CV accuracy scores: [ 0.83333333  0.8125
                                              0.83333333   0.83333333   0.83333333   0.83333333
  0.83333333  0.85106383  0.85106383  0.85106383
CV accuracy: 0.837 +/- 0.011 <
```

7.3 Under/Over/Good fit?

Diagnosing bias and variance problems with learning curves

7.4 Bagging: Building an ensemble of classifiers from bootstrap samples

```
from sklearn.metrics import accuracy score
tree2 = tree2.fit(X train, y train)
v train pred = tree2.predict(X train)
y_test_pred = tree2.predict(X test)
tree2 train = accuracy score(y train, y train pred)
tree2 test = accuracy score(y test, y test pred)
print('Decision tree2 train/test accuracies %.3f/%.3f'
      % (tree2 train, tree2 test))
bag = bag.fit(X train, y train)
y train pred = bag.predict(X train)
y test pred = bag.predict(X test)
bag train = accuracy score(y train, y train pred)
bag test = accuracy score(y test, y test pred)
print('Bagging train/test accuracies %.3f/%.3f'
      % (bag train, bag test))
```

Decision tree2 train/test accuracies 1.000/0.751
Bagging train/test accuracies 1.000/0.805

8. Pickle classification models

Pickle dump the classifiers

```
import pickle
import os
import re
dest = os.path.join('classifier', 'pkl objects')
if not os.path.exists(dest):
   os.makedirs(dest)
pickle.dump(ppn, open(os.path.join(dest, 'ppn.pkl'), 'wb'), protocol=4)
pickle.dump(lr, open(os.path.join(dest, 'lr.pkl'), 'wb'), protocol=4)
pickle.dump(svm, open(os.path.join(dest, 'svm.pkl'), 'wb'), protocol=4)
pickle.dump(tree, open(os.path.join(dest, 'tree.pkl'), 'wb'), protocol=4)
pickle.dump(forest, open(os.path.join(dest, 'forest.pkl'), 'wb'), protocol=4)
pickle.dump(knn, open(os.path.join(dest, 'knn.pkl'), 'wb'), protocol=4)
```

Pickle load in the app.py

```
app = Flask( name )
##### Pickle load for Prediction
cur dir = os.path.dirname( file )
ppn = pickle.load(open(os.path.join(cur dir,
                 'pkl objects',
                 'ppn.pkl'), 'rb'))
lr = pickle.load(open(os.path.join(cur_dir,
                 'pkl objects',
                 'lr.pkl'), 'rb'))
svm = pickle.load(open(os.path.join(cur dir,
                 'pkl objects',
                 'svm.pkl'), 'rb'))
tree = pickle.load(open(os.path.join(cur dir,
                 'pkl objects',
                 'tree.pkl'), 'rb'))
forest = pickle.load(open(os.path.join(cur dir,
                 'pkl objects',
                'forest.pkl'), 'rb'))
knn = pickle.load(open(os.path.join(cur dir,
                 'pkl objects',
                 'knn.pkl'), 'rb'))
```


http://renderchao.pythonanywhere.com

■輸入的參數:

A1:ROE-綜合損益: 38.26

A2:營業利潤率: 1.0

A3: 貝裡比率: 1.0

A4:營業資產報酬率: 1.0

B1:研究發展費用率: 1.0

B2:現金流量比率: 1.0

B3:有息負債利率: 1.0

C1:每股淨值: 1.0

C2:常續性EPS: 1.0

D1:營收成長率: 1.0

D2:總資產報酬成長率: 1.0

E1:速動比率: 91.65

E2:淨值/資產: 1.0

F1:總資產周轉天數: 1.0

G1:P/E: 1.0 G2:P/B: 1.0

G3:PSR: 1.0

G4:Tobins Q: 1.0

股價勝大盤?

1.PPN: Bad

2.LR: Bad

3.SVM: Bad

4.TREE: Bad

5.FOREST: Bad

6.KNN: Under construction

輸入的參數:

A1:ROE—綜合損益: 38.27

A2:營業利潤率: 1.0

A3: 貝裡比率: 1.0

A4:營業資產報酬率: 1.0

B1:研究發展費用率: 1.0

B2:現金流量比率: 1.0

B3:有息負債利率: 1.0

C1:每股淨值: 1.0

C2:常續性EPS: 1.0

D1:營收成長率: 1.0

D2:總資產報酬成長率: 1.0

E1:速動比率: 91.65

E2:淨值/資產: 1.0

F1:總資產周轉天數: 1.0

G1:P/E: 1.0

G2:P/B: 1.0

G3:PSR: 1.0

G4:Tobins Q: 1.0

股價勝大盤?

1.PPN: Bad

2.LR: Bad

3.SVM: Bad

4.TREE: Good

5.FOREST: Bad

6.KNN: Under construction

決策樹分析結果

- ➤ 若指標 D2 > -0.865, E1 > 91.61, A1 > 38.26 時, 預測該股優於大盤 (3家)
- ➤ 若指標 D2 <= -0.865, 0.575 < G4 <= 1.565 時,預測該股劣於大盤 (122家)

D2:總資產報酬成長率 **E1:**速動比率 **A1:** ROE—綜合損益 **G4:** Tobins Q 37

財務指標

指標類別	指標名稱	指標代碼
	ROE—綜合損益	A1
獲利能力指標 獲利能力指標	營業利潤率	A2
授利能力拍标	貝裡比率	A3
	營業資產報酬率	A4
	研究發展費用率	B1
成本費用率指標	現金流量比率	B2
	有息負債利率	B3
	每股淨值	C1
学校心学 相保	常續性EPS	C2
· · · · · · · · · · · · · · · · · · ·	營收成長率	D1
成長率指標	總資產報酬成長率	D2
置 償債能力指標	速動比率	E1
慢限能力指标	淨值/資產	E2
經營能力指標	總資產周轉天數	F1
	P/E	G1
相對價格指標	P/B	G2
旧到俱恰相保	PSR	G3
	Tobins Q	G4

Q&A

感謝聆聽

歡迎提問與討論