Uncertainty Quantification and Model Selection in Neural Networks Using Adaptive Annealed SMC

Samir Arora

June 25th, 2025

Agenda

- Neural Network Models
- Problems
- A Bayesian Solution
- Adaptive Annealed SMC Algorithm
- Experiments

• Goal: Represent an arbitrary function:

$$\mathbf{y} = \Phi(\mathbf{x}).$$

- The simplest neural network architecture is feedforward networks (FFN).
- The FFN is divided into a sequence of n layers: $\{I_1, I_2, I_3, \dots, I_n\}$.
- Each layer performs two steps:
 - Linear transformation:

$$\mathbf{a}_i = \mathbf{W}_i \mathbf{I}_{i-1} + \mathbf{b}_i$$

where \mathbf{W}_i and \mathbf{b}_i are weight matrix and bias vector of layer i.

Non-linear operation:

$$\mathbf{I}_i = s_i(\mathbf{a}_i),$$

where s_i is some non-linear operation of layer i.

 Neural networks can be expressed as the following sequence of operations:

$$\mathbf{I}_0 = \mathbf{x},$$

 $\mathbf{I}_i = s_i(\mathbf{W}_i \mathbf{I}_{i-1} + \mathbf{b}_i), \quad \forall i \in [1, n],$
 $\mathbf{y} = \mathbf{I}_n.$

• Thus, $\theta = (\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, \mathbf{W}_3, \mathbf{b}_3, \cdots, \mathbf{W}_n, \mathbf{b}_n)$ is a vector of parameters in this model.

- The standard approach to fit a neural network:
 - ① Define a loss function $\mathcal{L}(\theta|\mathcal{D})$ often its a function of the log-likelihood function defined over the training set, where \mathcal{D} is the training data.
 - **Q** Get a point estimate $\hat{\theta}$ by finding the value that minimize the loss function.

$$\hat{m{ heta}} = rg\min_{m{ heta}} \mathcal{L}(m{ heta}|\mathcal{D})$$

• This is done using forward and backward propagation algorithm.

Problems

- What is the uncertainty associated with predictions?
- 2 Too many hyperparameters to decide:
 - number of hidden layers
 - number of hidden units in layer i.
 - type of non-linear operation in layer i.
 - and many more depending on the type of the neural network.

For the first problem:

• Compute the posterior distribution $p(\theta|\mathcal{D})$ over the model parameters $\theta = (W_1, b_1, W_2, b_2, W_3, b_3, \cdots, W_n, b_n).$

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}_{y}|\mathcal{D}_{x},\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\mathcal{D}_{y}|\mathcal{D}_{x},\boldsymbol{\theta'})p(\boldsymbol{\theta'})d\boldsymbol{\theta'}},$$

where \mathcal{D} is the training set, \mathcal{D}_x denotes the training inputs, and \mathcal{D}_v is the training labels.

Bayesian Way

Algorithm 1 Inference procedure for Bayesian Neural Networks

1: Define posterior:

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}_{y}|\mathcal{D}_{x},\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\mathcal{D}_{y}|\mathcal{D}_{x},\boldsymbol{\theta'})p(\boldsymbol{\theta'})\,d\boldsymbol{\theta'}}$$

- 2: **for** i = 0 to *N* **do**
- 3: Sample $\theta_i \sim p(\theta|\mathcal{D})$
- 4: Compute $\mathbf{y}_i = \Phi_{\boldsymbol{\theta}_i}(\mathbf{x})$
- 5: end for
- 6: **return** $Y = \{ y_i \mid i \in [0, N] \}$ and $\Theta = \{ \theta_i \mid i \in [0, N] \}$.

Based on $Y = \{ \mathbf{y}_i \mid i \in [0, N] \}$ and $\mathbf{\Theta} = \{ \mathbf{\theta}_i \mid i \in [0, N] \}$,

Get predictions using model averaging as:

$$\hat{\mathbf{y}} = \frac{1}{|\mathbf{\Theta}|} \sum_{\mathbf{\theta}_i \in \mathbf{\Theta}} \Phi_{\mathbf{\theta}_i}(\mathbf{x}_i).$$

Quantify uncertainty by computing the covariance matrix as:

$$oldsymbol{\Sigma}_{\mathbf{y}|\mathbf{x},\mathcal{D}} = rac{1}{|\mathbf{\Theta}|-1} \sum_{oldsymbol{ heta}_i \in \mathbf{\Theta}} (\Phi_{oldsymbol{ heta}_i}(\mathbf{x}) - \hat{\mathbf{y}}) (\Phi_{oldsymbol{ heta}_i}(\mathbf{x}) - \hat{\mathbf{y}})^T.$$

For the model selection problem,

- Start by defining a denumerable collection of models $\{M_k\}_{k\in\mathcal{K}}$ with model M_k having parameter space Θ_k .
- Perform Bayesian inference by specifying a prior distribution over the collection of models, $\pi(M_k)$, a prior distribution for the parameters of each model, $\pi(\theta_k|M_k)$, and the (model-specific) likelihood $p(\mathbf{y}|\theta_k,M_k)$ as follows:

$$\pi(M_k|\mathbf{y}) = \frac{p(\mathbf{y}|M_k)\pi(M_k)}{p(\mathbf{y})},\tag{1}$$

where $p(\mathbf{y}|M_k) = \int_{\theta_k} p(\mathbf{y}|\theta_k, M_k) \pi(\theta_k|M_k) d\theta_k$ is called the **evidence** for model M_k .

• Typically, evidence is used in deciding which model is better. Higher the evidence, better the model.

- How to compute the posterior: $p(\theta|\mathcal{D})$?
- An intractable problem.
- We will approximate it by drawing samples from it using Adaptive Annealed Sequential Monte Carlo method.

Annealed SMC algorithm

- Idea: Assuming $\pi(\theta)$ as prior and $\pi_T(\theta)$ as the target, create a sequence of distributions, given by $\pi(\theta)$ up to $\pi_T(\theta)$, which we hope will assist in sampling from $\pi_T(\theta)$ and which satisfy $\pi_t(\theta) \neq 0$ wherever $\pi_{t-1}(\theta) \neq 0$.
- Annealing sequence of distribution:

$$\pi_t(\boldsymbol{\theta}) \propto \pi(\boldsymbol{\theta}|M_k) p(\boldsymbol{y}|\boldsymbol{\theta}, M_k)^{\lambda_t},$$
 (2)

where $0 = \lambda_0 < \cdots < \lambda_t < \cdots < \lambda_T = 1$.

Algorithm 2 Adaptive Annealed SMC

- 1: **Input:** Number of particles N, sequence of distributions $\pi_t(\theta)$, and rules for constructing HMC kernel \mathcal{K}_{t}^{h} .
- 2: **Output:** Weighted particle set $\{(\theta_t^{(i)}, w_t^{(i)})\}_{i=1}^N$, evidence estimate Z
- 3: Initialize $t \leftarrow 1$, $\lambda_0 \leftarrow 0$, evidence $E_0 = 1$, sample $\theta_0^{(i)} \sim \pi_0$, weight $W_0^{(i)} = 1/N \ \forall i \in 1 : N$
- 4: while $\lambda_{t-1} < 1$ do
- Tune HMC kernel parameters h using Algorithm 4. 5:
- Move particles $\theta_t^{(i)} \sim \mathcal{K}_t^h(\theta_{t-1}^{(i)})$ using Algorithm 3. 6:
- Choose next exponent $\lambda_t \in (\lambda_{t-1}, 1]$ using Algorithm 5. 7:
- Update Weight $W_t^{(i)} \propto W_{\star}^{(i)} p(\mathbf{y}|\boldsymbol{\theta}_{\star}^{(i)}, M_{\iota})^{\lambda_t \lambda_{t-1}}$. 8.
- Resample particles if necessary. 9:
- Update Evidence $E_t = E_{t-1} \sum_{i=1}^{N} W_{t-1}^{(i)} p(\mathbf{y} | \boldsymbol{\theta}_{t-1}^{(i)}, M_k)^{\lambda_t \lambda_{t-1}}$ 10:
- $t \leftarrow t + 1$. 11:

Algorithm 3 Hamiltonian Monte Carlo (HMC)

Input: Gradient function $\nabla_{\theta} \pi_{t+1}(\cdot)$, initial state θ_t , step size ϵ , number of leapfrog steps L

Output: Next state θ_{t+1}

3: Sample momentum $\mathbf{p}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{M}_t)$ Perform leapfrog integration:

$$(\hat{oldsymbol{
ho}}_{t+1},\hat{oldsymbol{ heta}}_{t+1}) \leftarrow \hat{\Phi}_{\epsilon,L}(oldsymbol{
ho}_t,oldsymbol{ heta}_t)$$

Sample
$$u \sim \mathcal{U}[0,1]$$

6: if
$$\log u < H(\pmb{p}_t, \pmb{\theta}_t) - H(\hat{\pmb{p}}_{t+1}, \hat{\pmb{\theta}}_{t+1})$$
 then $\pmb{\theta}_{t+1} \leftarrow \hat{\pmb{\theta}}_{t+1}$

else

9:
$$heta_{t+1} \leftarrow heta_t$$
 end if

- Tuning HMC kernel \implies Finding suitable step size ϵ and number of leap frog steps L.
- Idea: Use information from the previous iteration see how previously used ϵ and L performed.
- Rao-Blackwellized estimator of Estimated Squared Jumping Distance (ESJD):

$$\begin{split} \tilde{\Lambda}(\tilde{\theta}_{t-1}^{(i)}, \hat{\theta}_{t}^{(i)}) &= \frac{\|\tilde{\theta}_{t-1}^{(i)} - \hat{\theta}_{t}^{(i)}\|_{M_{t}}^{2}}{L} \\ &\times \min\left(1, \exp\left[H(\boldsymbol{p}_{t-1}^{(i)}, \boldsymbol{\theta}_{t-1}^{(i)}) - H(\hat{\boldsymbol{p}}_{t}^{(i)}, \hat{\boldsymbol{\theta}}_{t}^{(i)})\right]\right) \end{split}$$

where $\hat{\theta}_t^{(i)}$ is the proposed position, i.e., based on Hamiltonian flow $\hat{\Phi}_{\epsilon,L}(\boldsymbol{p}_{t-1}^{(i)}, \tilde{\theta}_{t-1}^{(i)})$, $\tilde{\theta}_{t-1}$ is the particle after any resampling step, $||x-y||_M^2 = (x-y)^T M^{-1}(x-y)$, and $M_t = diag(\hat{Var}_{\pi_t}[\theta_t])^{-1}$.

Algorithm 4 Tuning of HMC

1: **Input:** Previous parameters $h_{t-1}^{(i)} = (\epsilon_{t-1}^{(i)}, L_{t-1}^{(i)})$, Rao-Blackwellized estimator of ESJD $\tilde{\Lambda}(\tilde{\theta}_{t-2}^{(i)}, \hat{\theta}_{t-2}^{(i)})$, and perturbation kernel:

$$R(h_t^{(i)}; h_{t-1}^{(i)}) = \mathcal{TN}(\epsilon; \epsilon_{t-1}^{(i)}, 0.015^2)$$

$$\otimes \left\{ \frac{1}{3} \mathbb{1}_{L=L_{t-1}^{(i)}-1} + \frac{1}{3} \mathbb{1}_{L=L_{t-1}^{(i)}} + \frac{1}{3} \mathbb{1}_{L=L_{t-1}^{(i)}+1} \right\}$$

- 2: **Output:** Sample of $h_t^{(i)} = (\epsilon_t^{(i)}, L_t^{(i)})$, for $i \in \{1, \dots, N\}$
- 3: **for** i = 1 to N **do**
- 4: Sample $h_t^{(i)} \sim \chi_t(h) \propto \sum_{j=1}^N \tilde{\Lambda}(\tilde{\theta}_{t-2}^{(j)}, \hat{\theta}_{t-1}^{(j)}) \cdot R(h; h_{t-1}^{(j)})$
- 5: end for

Algorithm 5 Choice of the next exponent based on the effective sample size.

- 1: **Input:** Target value α , likelihood $I(\mathcal{D}_y|\mathcal{D}_x, \boldsymbol{\theta}_t^{(i)})$ for the N particles, and current exponent λ_{t-1} .
- 2: **Result:** Next exponent λ_t .
- 3: Define $\beta^{(i)}(\lambda) = I(\mathcal{D}_y | \mathcal{D}_x, \boldsymbol{\theta}_t^{(i)})^{\lambda \lambda_{t-1}}$
- 4: and compute:

$$ESS(\lambda) = \frac{\left(\sum_{i=1}^{N} \beta^{(i)}(\lambda)\right)^{2}}{\sum_{i=1}^{N} \left(\beta^{(i)}(\lambda)\right)^{2}}$$

- 5: if $ESS(1) \ge \alpha N$ then
- 6: Set $\lambda_t = 1$

 $\lambda_t \leftarrow \lambda$.

Samir Arora

- 7: **else**
- 8: Solve $ESS(\lambda) = \alpha N$ for $\lambda \in (\lambda_{t-1}, 1]$ using bisection
- 9:

- A naive example Model Selection and accuracy via model averaging.
- The iris dataset.
- Four predictors Sepal.Length, Sepal.Width, Petal.Length, and Petal.Width => input layer has four units.
- Number of hidden layers ?, Number of activation units in each hidden layer - ?, activation function - ?

- Suppose I am considering this set of models to choose from: {[hidden layers = (1), relu], [hidden layers = (2), relu], [hidden layers = (3), relu], [hidden layers = (4), relu], [hidden layers = (5), relu], [hidden layers = (1, 1), relu], [hidden layers = (2, 2), relu], [hidden layers = (3, 3), relu], [hidden layers = (4, 4), relu], [hidden layers = (2, 2), sigmoid]}.
- Number of particles = 20 and π_0 = Multivariate Logistic Distribution with location = 0.
- $\epsilon_0^{(i)} \sim \mathcal{U}(0, 0.1)$ and $L_0^{(i)}$ is chosen randomly from $\{1, 2, \cdots, 50\}$.
- Train-Test Split = 80:20.

Model	No. of parameters	log evidence estimate
hidden layers $= (1)$, relu	11	-3121.444
hidden layers $=$ (2), relu	19	-3937.799
hidden layers $=$ (3), relu	27	-2571.448
hidden layers $=$ (4), relu	35	-1832.163
hidden layers $=$ (5), relu	43	-1479.915
hidden layers $= (1, 1)$, relu	13	-1196.42
hidden layers $= (2, 2)$, relu	25	-582.9204
hidden layers $=$ (3, 3), relu	39	-589.8898
hidden layers = $(4, 4)$, relu	55	-1214.106
hidden layers $= (2, 2)$, sig-	25	-1102.685
moid		

Table: Results

Using BMA in our example, model with hidden layers = (2, 2) and relu non-linearity gives an accuracy of 86.67%.

- Simulation Study
- Coverage probability of HPD intervals based on this approximation of posterior distribution.
- True Model:

- N = 400
- $\pi_0 = N(0,1)$
- $\epsilon_0^{(i)} \sim \mathcal{U}(0, 0.1)$ and $L_0^{(i)}$ is chosen randomly from $\{1, 2, \cdots, 50\}$.
- All HPD intervals are 95% HPD intervals.
- Total iterations taken were always between 20-25.
- Note: This experiment was performed only 20 times.

• HPD intervals for selected parameters:

Param	True Value	Lower HPD	Upper HPD	Covered
39	0.32	-1.935272	0.680883	Yes
40	0.12	-1.719444	0.315818	Yes
41	0.05	-1.840880	0.986922	Yes
42	0.02	-2.517226	-0.075168	No
55	0.01	-0.811074	1.199212	Yes
56	0.10	-0.912664	0.538444	Yes
57	0.20	-0.738993	0.665472	Yes
58	0.40	-0.884004	0.584135	Yes

- In 18/20 runs, HPD intervals for all parameters included the true values.
- Even when not all were covered, about 95% of parameters were.
- Note: Very limited experiments on a small network so far.

Thank you!