Avaliação de Desempenho, Custo e Eficiência Eenergética de Linguagens de Programação

Discente: Michel Tayares de Oliveira Orientador: Jean Carlos Teixeira de Araújo

Universidade Federal do Agreste de Pernambuco

Maio de 2021

- Motivacao
- Questões de pesquisa
- Trabalhos Realacionados
- 4 Fundamentação teorica
- 6 Materiais.métodos e execução
- 6 Resultados
- Conclusão

- A
- B
- D

Universidade Federal do Agreste de Pernambuco

Avaliação de Desempenho, Custo e Eficiência Eenergética de Linguagens de Programação

- Questões de pesquisa

Questões de pesquisa

- Questão de pesquisa 1. Qual linguagem de programação é mais eficiente energeticamente?
- Questão de pesquisa 2. A linguagem mais rápida, é mais eficiente energeticamente?
- Questão de pesquisa 3. A linguagem que possui menor potência em Watts, foi a mais eficiente?

- Trabalhos Realacionados

Energy Efficiency across Programming Languages: How Do Energy, Time, and Memory Relate?

- A
- B
- D

Avaliação de Desempenho, Custo e Eficiência Eenergética de Linguagens de Programação

Energy Efficiency across Programming Languages: How Do Energy, Time, and Memory Relate?

- A
- B
- D

Avaliação de Desempenho, Custo e Eficiência Eenergética de Linguagens de Programação

- Motivacad
- Questões de pesquisa
- Trabalhos Realacionados
- 4 Fundamentação teorica
 - Avaliação de desempenho de sistemas
 - Green Software
 - Eficiência energética
 - Métricas energéticas
- 5 Materiais, métodos e execução

- 4 Fundamentação teorica Avaliação de desempenho de sistemas

Avaliação de desempenho de sistemas

- A
- B
- D

- 4 Fundamentação teorica

Green Software

Conclusão

Green Software

- A
- B
- D

Universidade Federal do Agreste de Pernambuco

- 4 Fundamentação teorica

 - Eficiência energética

Eficiência energética

- A
- B
- D

Universidade Federal do Agreste de Pernambuco

- 4 Fundamentação teorica

 - Métricas energéticas

- É a unidade de energia no Sistema Internacional de Unidades, utilizada para medir energia mecânica ou térmica
- Na energia mecânica 1 Joule equivale a energia nescessária aplicar forca 1 Newton por 1 metro
- Na energia termica 1 Joule equivale a energia nescessária para aumentar a temperatuda da água a 1 grau

- É a unidade de potencia no Sistema Internacional de Unidades, sendo a potencia media da quantidade de energia em um determinado tempo
- 1 Watt equivale a 1 Joule por segundo, logo, um dispositivo que consome 1 Watt está consummindo um Joule por segundo

$$P = \frac{E}{t} \tag{1}$$

- É uma unidade de potência referente a 1000 Watts
- Utilizada para medir portencia eletrica em aplicações residenciais e comerciais e industriais

Potência em quilowatts (kW) =
$$\frac{\text{Energia em kilojoules (kJ)}}{\text{Tempo em horas (h)}}$$
(2)

• Referente a energia produzida ou consumida no período de 1 hora

Energia total (kWh) = Potência em Quilowatts (kW)
$$\times$$
 Tempo total em horas (h) (3)

Universidade Federal do Agreste de Pernambuco

- Materiais.métodos e execução

 - The Computer Language Benchmark Game

- Materiais.métodos e execução Intel RAPL

The Computer Language Benchmark Game

- Otimizar o gerenciamento energético dos processadores Intel
- Monitoramento de alguns parametros como temperatura, potência e consumo energético
- Foi implementado a nível de hardware a partir da 6ª geração dos processadores Intel
- Segundo Khan at al 2018 [1], a precisão do RAPL é bastante promisora e os valores reportados são precisos suficientemente para prever e modelar sistemas.

Figure 1: Intel RAPL Power Domains. Fonte: Khan at al 2018 [1]

- Model-Specific Registers (MSRs) s\u00e3o registradores que fornecem acesso a diversas características e funcionalidades nos processadores x86
- MSR RAPL POWER UNIT de 32 bits sem sinal (0 a 4,294,967,295)
- O registrador começa a contar a partir da inicialização do computador
- Quando este valor limite é atingido, o valor do registrador é reinicializado para 0 novamente.
- É de grande importância considerar a reinicialização dos registradores para não obter dados incorretos durante os experimentos

- Materiais.métodos e execução
 - Utilitários Linux

The Computer Language Benchmark Game

Power Capping Framework

- Ferramenta integrada ao Kernel Linux
- Permite expor informações de energia via sysfs exportando informações sistemas de arquivos
- O framework cria de forma automática, uma árvore de diretórios com diversos objetos referente a interface de energia utilizada (The Linux Kernel Archives, 2024).

```
/svs/devices/virtual/powercap
L— intel-rapl
     -- enabled
     -- intel-rapl:0
        ├── constraint_0_max_power_uw
        -- constraint 0 name
        -- constraint_0_power_limit_uw
        -- constraint_0_time_window_us
        ├── constraint_1_max_power_uw
        ├── constraint 1 name
        --- constraint_1_power_limit_uw
        -- constraint 1 time window us
        ├── device -> ../../intel-rapl
```

Figure 2: Árvore de Diretórios Power Capping Framework

- Interface entre o usuário e o sistema operacional
- O Shell é uma ferramenta essencial quando o foco é ter mais controle sobre o sistema operacional (RAYMOND, 2003)
- Funciona como um intermediário entre usuário e SO
- Essa interação pode ocorrer de forma iterativa e não iterativa

- É uma linguagem de script voltada para automatização de tarefas em sistemas operacionais, sendo ela interpretada por um interpretador Shell
- Permite realizar diversas tarefas executando apenas um arquivo de script
- O interpretador analisa linha por linha e executa os comandos encontrados de forma sequencial
- Bastante útil ao executar diversos comandos, assim como a possibilidade de realização de tarefas repetitivas e automáticas

- Bash é um shell desenvolvido por Brian Fox no Projeto GNU
- Atualmente é o Shell padrão de diversas distribuições Linux, como Ubuntu, Debian e Manjaro.

GNU Time

- Utilizada para medir tempo e recursos consumidos por uma aplicação durante sua execução
- Utilização é bastante simples, com opções salvar a saída dos resultados em arquivo de texto

/usr/bin/time ./meu_programa > output.txt

- Materiais.métodos e execução

The Computer Language Benchmark Game

- É um projeto de software livre que fornece um repositório com uma variedade de algorítimos simples que podem ser implementados em diversas linguagens de programação
- Um web site que centraliza todos os dados sobre códigos fontes, execução de teste e resultados
- O projeto fornece, além do código fonte, informações sobre compilação e execução dos algorítimos

Benchmarks	Descrição	
fannkuch-redux	Acesso indexado a minúsculas sequências inteiras	
n-body	Dupla precisão para cálculo de N-body	
spectral-norm	Autovalor usando o método da potência	
pidigits	Streaming de aritmética de precisão arbitrária	
regex-redux	Combina DNA e substitui por padrões mágicos	
fasta	Gerar e escrever sequências aleatórias de DNA	
k-nucleotide	Atualiza hashtable e sequências de k-nucleotídeos	
reverse-complement	Complemento reverso de sequências de DNA	
binary-trees	Aloca e desaloca muitas árvores binárias	
mandelbrot	Gera um conjunto de Mandelbrot em arquivo de bitmap portátil	

- Materiais.métodos e execução

The Computer Language Benchmark Game

Linguagens de Programação

Linguagens de Programação

Linguagem	Versão	Compilador Open Source (Ubuntu 22.04)
Ada	10.5.1	GNAT GPL Compiler
С	11.4.0	GCC
C#	7.0.115	Mono
C++	11.4.0	GCC
Chapel	1.29.0	Chapel Compiler
Dart	3.2.6	Dart SDK
Erlang	26.2.2	Erlang OTP
F#	7.0.115	F# Compiler
Fortran	11.4.0	GFortran
Go	1.18.1	Go Compiler
Haskell	8.8.4	GHC Haskell Compiler
Java	19.0.2	OpenJDK
Javascript	18.19.0	V8
Julia	1.9.3	Julia Compiler
Lua	5.3.0	LuaJIT
Ocaml	4.13.1	OCaml Compiler
Perl	5.34.1	Perl Compiler
Php	8.2.15	PHP Compiler
Python	3.10.12	Python Interpreter
Racket	8.2.0	Racket Compiler
Ruby	3.0.2	Ruby Compiler
Rust	1.75.0	Rustc Compiler
Swift	5.9.0	Swift Compiler

- 6 Resultados

Universidade Federal do Agreste de Pernambuco

Frame Title

- A
- B
- (
- D

Avaliação de Desempenho, Custo e Eficiência Eenergética de Linguagens de Programação

- Conclusão

Universidade Federal do Agreste de Pernambuco

Frame Title

- A
- B
- (
- D

Avaliação de Desempenho, Custo e Eficiência Eenergética de Linguagens de Programação

Kashif Nizam Khan et al. "RAPL in Action: Experiences in Using RAPL for Power [1] Measurements". In: ACM Trans. Model. Perform. Eval. Comput. Syst. 3.2 (2018). ISSN: 2376-3639. DOI: 10.1145/3177754. URL:

https://doi.org/10.1145/3177754.

Universidade Federal do Agreste de Pernambuco

Avaliação de Desempenho, Custo e Eficiência Eenergética de Linguagens de Programação