0

0

0

0

3 56

4 57

5 57

6 rows × 31 columns

In [40]: | sc = StandardScaler()

dfs.head(5)

5 rows × 31 columns

y = dfs.target

In [41]: X = dfs.drop('target', axis=1)

knn.fit(X_train,y_train)

0.8571428571428571

y_pred1 = knn.predict(X_test)

Out[40]:

In []:

120 236

120 354

140 192

age trestbps

178

163

148

1 -1.915313 -0.092738 0.072199 1.633471 2.122573

2 -1.474158 -0.092738 -0.816773 0.977514 0.310912 **3** 0.180175 -0.663867 -0.198357 1.239897 -0.206705

4 0.290464 -0.663867 2.082050 0.583939 -0.379244

In [42]: knn = KNeighborsClassifier(n_neighbors = 10)

print(accuracy_score(y_test,y_pred1))

8.0

0.6

0.4

dfs[col_to_scale] = sc.fit_transform(dfs[col_to_scale])

col_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']

0 0.952197 0.763956 -0.256334 0.015443 1.087338 1 0 1 0 0

1

1

1

0

1

0

1

1

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

0

1

0 1 0 ...

1 ...

chol thalach oldpeak target sex_0 sex_1 cp_0 cp_1 ... slope_2 ca_0 ca_1 ca_2 ca_3

0

1 ...

0 ...

1 1

1 1 0

0

0

0

0