Is The Given Year a Leap Year?

DrNakiz::HandySnippets

April 17, 2021

1 Logic

A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by $400.^1$ Let p(x) be "x is evenly divisible by 4.", q(x) be "x is evenly divisible by 400.", and r(x) be "x is evenly divisible by 400.".

So a year is a leap year if and only if $p(year) \land (\neg r(year) \rightarrow \neg q(year))$. This evaluates to $p(year) \land (r(year) \lor \neg q(year))$. By applying the distributive law for propositions we obtain $(p(year) \land r(year)) \lor (p(year) \land \neg q(year))$.

Although it is obvious, but here we show $p(x) \land r(x) \leftrightarrow r(x)$ is a tautology, or in other words, $p(x) \land r(x)$ is equivalent to r(x). We rewrite $p(x) \land r(x) \leftrightarrow r(x)$ as $(p(x) \land r(x) \to r(x)) \land (r(x) \to p(x) \land r(x))$. $p(x) \land r(x) \to r(x)$ is a tautology, so by identity law the statement will be equivalent to $r(x) \to p(x) \land r(x)$. $p(x) \land r(x) \to p(x)$ is also a tautology, and so by identity law, $r(x) \to p(x) \land r(x)$ is equivalent to $(r(x) \to p(x) \land r(x)) \land (p(x) \land r(x) \to p(x))$, and by applying the transitive law, the statement evaluates to $r(x) \to p(x)$ which is a tautology, beacause if a number is evenly divisible by 400, it is also evenly divisible by 4. So we conclude that $p(x) \land r(x)$ is equivalent to r(x). Therefore a year is a leap year if and only if $r(year) \lor (p(year) \land \neg q(year))$.

¹https://projecteuler.net/problem=19