Assignment 1

Haohu Shen UCID: 30063099 CPSC 359 - Computing Machinery II Feb 6, 2019

Step 1

State the problem in words:

A nine-LED display consists of 9 individual LEDs that could be turned on and off in specific combinations to display particular patterns using the labelling of the LEDs are from A to I and are arranged in a 3x3 matrix. There are totally 16 display patterns mapping to corresponding 16 bit-patterns as below:

- ullet When the display shows that only A,B,C are on, it is mapping to bits 0000
- ullet When the display shows that only D,E,F are on, it is mapping to the bits 0001
- ullet When the display shows that only $G,\,H,\,I$ are on, it is mapping to the bits 0010
- ullet When the display shows that only $A,\,D,\,G$ are on, it is mapping to the bits 0011
- $\bullet~$ When the display shows that only $B,\,E,\,H$ are on, it is mapping to the bits 0100
- ullet When the display shows that only $C,\,F,\,I$ are on, it is mapping to the bits 0101
- When the display shows that only C, E, G are on, it is mapping to the bits 0110
- When the display shows that only A, E, I are on, it is mapping to the bits 0111
- When the display shows that only A, B, C, G, H, I are on, it is mapping to the bits 1000
- When the display shows that only A, D, G, C, F, I are on, it is mapping to the bits 1001
- When the display shows that only B, D, E, F, H are on, it is mapping to the bits 1010
- When the display shows that only A, B, C, E, G, H, I are on, it is mapping to the bits 1011
- When the display shows that only A, C, D, E, F, G, I are on, it is mapping to the bits 1100
- When the display shows that only A, C, E, G, I are on, it is mapping to the bits 1101
- When the display shows that only A, B, C, D, F, G, H, I are on, it is mapping to the bits 1110
- ullet When the display shows that only E are on, it is mapping to the bits 1111

Designs a combinational logic circuit that takes a bit number of length of 4 as an input and generate 9 outputs, that is, from A to I, suppose that 0 means off and 1 means on.

Step 2

Input a 4-bit number(a binary number ranging from 0000 to 1111)

Output 9 LEDs of the display

Step 3

- ullet There are 4 input variables, from left to right of the 4-bit number:
 - $\circ \ W$ indicates the first bit
 - $\circ~~X$ indicates the second bit
 - $\circ \ Y$ indicates the third bit
 - $\circ \ \ Z$ indicates the fourth bit
- There are 9 output variables, each labels one of the 9 LEDs, they are A, B, C, D, E, F, G, H, I.

Step 4

We create the truth table that defines the relationships between inputs and outputs as below:

w	X	Υ	z	A	В	С	D	E	F	G	Н	ı
0	0	0	0	1	1	1	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	1	0	0	0
0	0	1	0	0	0	0	0	0	0	1	1	1
0	0	1	1	1	0	0	1	0	0	1	0	0
0	1	0	0	0	1	0	0	1	0	0	1	0
0	1	0	1	0	0	1	0	0	1	0	0	1
0	1	1	0	0	0	1	0	1	0	1	0	0
0	1	1	1	1	0	0	0	1	0	0	0	1
1	0	0	0	1	1	1	0	0	0	1	1	1
1	0	0	1	1	0	1	1	0	1	1	0	1
1	0	1	0	0	1	0	1	1	1	0	1	0
1	0	1	1	1	1	1	0	1	0	1	1	1
1	1	0	0	1	0	1	1	1	1	1	0	1
1	1	0	1	1	0	1	0	1	0	1	0	1
1	1	1	0	1	1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	0	1	0	0	0	0

Step 5

We obtain the simplified function for each output using the map method.

For output A, according to the truth table, we have

$$A = \sum (0, 3, 7, 8, 9, 11, 12, 13, 14) \\ = W'X'Y'Z' + W'X'YZ + W'XYZ + WX'Y'Z' + WX'Y'Z + WXY'Z' + WXY'Z' + WXY'Z' + WXY'Z' + WXYZ' + WXZ' + WZ' +$$

Thus, after placing the values on the corresponding positions of 4-variable K-Map, we have

	Y'Z'	Y'Z	YZ	YZ'
W'X'	1	0	1	0
W'X	0	0	1	0
WX	1	1	0	1
WX'	1	1	1	0

And we can decompose it into 5 groups below:

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX	1	1		
WX'	1	1		

And its simplified expression is WY^\prime

• Group 2

	Y'Z'	Y'Z	YZ	YZ'
W'X'			1	
W'X				
WX				
WX'			1	

And its simplified expression is $X^{\prime}YZ$

• Group 3

	Y'Z'	Y'Z	YZ	YZ'
W'X'			1	
W'X			1	
WX				
WX'				

And its simplified expression is $W^\prime YZ$

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX	1			1
WX'				

And its simplified expression is WXZ^\prime

• Group 5

	Y'Z'	Y'Z	YZ	YZ'
W'X'	1			
W'X				
WX				
WX'	1			

And its simplified expression is $X^{\prime}Y^{\prime}Z^{\prime}$

• Thus, we combine all simplified expressions from all groups and we have

$$A = WY' + X'YZ + W'YZ + WXZ' + X'Y'Z'$$

For output B, according to the truth table, we have

$$B = \sum (0,4,8,10,11,14) \ = W'X'Y'Z' + W'XY'Z' + WX'Y'Z' + WX'YZ' + WX'YZ + WXYZ'$$

Thus, after placing the values on the correspoding positions of 4-variable K-Map, we have

	Y'Z'	Y'Z	YZ	YZ'
W'X'	1	0	0	0
W'X	1	0	0	0
WX	0	0	0	1
WX'	1	0	1	1

And we can decompose it into 4 groups below:

	Y'Z'	Y'Z	YZ	YZ'
W'X'	1			
W'X				
WX				
WX'	1			

And its simplified expression is $X^{\prime}Y^{\prime}Z^{\prime}$

• Group 2

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX				1
WX'				1

And its simplified expression is WYZ^\prime

• Group 3

	Y'Z'	Y'Z	YZ	YZ'
W'X'	1			
W'X	1			
WX				
WX'				

And its simplified expression is $W^{\prime}Y^{\prime}Z^{\prime}$

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX				
WX'			1	1

And its simplified expression is $WX^{\prime}Y$

• Thus, we combine all simplified expressions from all groups and have

$$B = X'Y'Z' + WYZ' + W'Y'Z' + WX'Y$$

For output ${\cal C}$, according to the truth table, we have

$$C = \sum (0, 5, 6, 8, 9, 11, 12, 13, 14) \\ = W'X'Y'Z' + W'XY'Z + W'XYZ' + WX'Y'Z' + WX'Y'Z + WXY'Z' + WXY'Z' + WXY'Z' + WXY'Z' + WXYZ' + WXZ' + WXZ' + WXZ' + WXZ' + WXZ' + WZ' +$$

Thus, after placing the values on the correspoding positions of 4-variable K-Map, we have

	Y'Z'	Y'Z	YZ	YZ'
W'X'	1	0	0	0
W'X	0	1	0	1
WX	1	1	0	1
WX'	1	1	1	0

And we can decompose it into 5 groups below:

• Group 1

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX	1	1		
WX'	1	1		

And its simplified expression is WY^\prime

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				1
WX				1
WX'				

And its simplified expression is XYZ^\prime

• Group 3

	Y'Z'	Y'Z	YZ	YZ'
W'X'	1			
W'X				
WX				
WX'	1			

And its simplified expression is $X^{\prime}Y^{\prime}Z^{\prime}$

• Group 4

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X		1		
WX		1		
WX'				

And its simplified expression is $XY^{\prime}Z$

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX				
WX'		1	1	

And its simplified expression is $WX^{\prime}Z$

• Thus, we combine all simplified expressions from all groups and have

$$C = WY' + XYZ' + X'Y'Z' + XY'Z + WX'Z$$

For output D, according to the truth table, we have

$$D = \sum (1,3,9,10,12,14) \ = W'X'Y'Z + W'X'YZ + WX'Y'Z + WX'YZ' + WXY'Z' + WXYZ' + WXYZ'$$

Thus, after placing the values on the corresponding positions of 4-variable K-Map, we have

	Y'Z'	Y'Z	YZ	YZ'
W'X'	0	1	1	0
W'X	0	0	0	0
WX	1	0	0	1
WX'	0	1	0	1

And we can decompose it into 4 groups below:

• Group 1

	Y'Z'	Y'Z	YZ	YZ'
W'X'		1	1	
W'X				
WX				
WX'				

And its simplified expression is $W^{\prime}X^{\prime}Z$

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX	1			1
WX'				

And its simplified expression is WXZ^\prime

• Group 3

	Y'Z'	Y'Z	YZ	YZ'
W'X'		1		
W'X				
WX				
WX'		1		

And its simplified expression is $X^{\prime}Y^{\prime}Z$

• Group 4

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX				1
WX'				1

And its simplified expression is WYZ^\prime

• Thus, we combine all simplified expressions from all groups and have

$$D = W'X'Z + WXZ' + X'Y'Z + WYZ'$$

For output E, according to the truth table, we have

 $E = \sum (1, 4, 6, 7, 10, 11, 12, 13, 15) \\ = W'X'Y'Z + W'XY'Z' + W'XYZ' + W'XYZ + WX'YZ' + WXY'Z' + WXY'Z' + WXY'Z' + WXY'Z' + WXYZ' + WXZ' + WZ' + WZ'$

Thus, after placing the values on the corresponding positions of 4-variable K-Map, we have

	Y'Z'	Y'Z	YZ	YZ'
W'X'	0	1	0	0
W'X	1	0	1	1
WX	1	1	1	0
WX'	0	0	1	1

And we can decompose it into 4 groups below:

• Group 1

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X	1			1
WX				
WX'				

And its simplified expression is $W^\prime X Z^\prime$

• Group 2

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X			1	
WX			1	
WX'				

And its simplified expression is XYZ

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX	1	1		
WX'				

And its simplified expression is WXY^\prime

• Group 4

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX				
WX'			1	1

And its simplified expression is $WX^{\prime}Y$

• And the residual bool expressions which cannot be mapped are:

• Thus, we combine all simplified expressions from all groups, with the residual unmapped variables, and we have

$$E = W'XZ' + XYZ + WXY' + WX'Y + W'X'Y'Z$$

For output F, according to the truth table, we have

$$F = \sum (1,5,9,10,12,14) \ = W'X'Y'Z + W'XY'Z + WX'Y'Z + WX'YZ' + WXY'Z' + WXYZ' + WXZ' + WZ' + WZ'$$

Thus, after placing the values on the correspoding positions of 4-variable K-Map, we have

	Y'Z'	Y'Z	YZ	YZ'
W'X'	0	1	0	0
W'X	0	1	0	0
WX	1	0	0	1
WX'	0	1	0	1

And we can decompose it into 4 groups below:

• Group 1

	Y'Z'	Y'Z	YZ	YZ'
W'X'		1		
W'X				
WX				
WX'		1		

And its simplified expression is $X^{\prime}Y^{\prime}Z$

• Group 2

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX	1			1
WX'				

And its simplified expression is WXZ^\prime

	Y'Z'	Y'Z	YZ	YZ'
W'X'		1		
W'X		1		
WX				
WX'				

And its simplified expression is $W^{\prime}Y^{\prime}Z$

• Group 4

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX				1
WX'				1

And its simplified expression is WYZ^\prime

• Thus, we combine all simplified expressions from all groups and we have

$$F = X'Y'Z + WXZ' + W'Y'Z + WYZ'$$

For output G, according to the truth table, we have

$$G = \sum (2,3,6,8,9,11,12,13,14) \ = W'X'YZ' + W'X'YZ' + W'XYZ' + WX'Y'Z' + WX'Y'Z + WXY'Z' + WXY'Z' + WXYZ' + WXZ' + WZ' +$$

Thus, after placing the values on the corresponding positions of 4-variable K-Map, we have

	Y'Z'	Y'Z	YZ	YZ'
W'X'	0	0	1	1
W'X	0	0	0	1
WX	1	1	0	1
WX'	1	1	1	0

And we can decompose it into 4 groups below:

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX	1	1		
WX'	1	1		

And its simplified expression is WY^\prime

• Group 2

	Y'Z'	Y'Z	YZ	YZ'
W'X'			1	1
W'X				
WX				
WX'				

And its simplified expression is $W^{\prime}X^{\prime}Y$

• Group 3

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				1
WX				1
WX'				

And its simplified expression is XYZ^\prime

	Y'Z'	Y'Z	YZ	YZ'
W'X'			1	
W'X				
WX				
WX'			1	

And its simplified expression is $X^{\prime}YZ$

• Thus, we combine all simplified expressions from all groups and we have

$$G = WY' + W'X'Y + XYZ' + X'YZ$$

For output H, according to the truth table, we have

$$H = \sum (2,4,8,10,11,14) \ = W'X'YZ' + W'XY'Z + WX'Y'Z' + WX'YZ' + WX'YZ + WXYZ'$$

Thus, after placing the values on the corresponding positions of 4-variable K-Map, we have

	Y'Z'	Y'Z	YZ	YZ'
W'X'	0	0	0	1
W'X	1	0	0	0
WX	0	0	0	1
WX'	1	0	1	1

And we can decompose it into 4 groups below:

• Group 1

	Y'Z'	Y'Z	YZ	YZ'
W'X'				1
W'X				
WX				
WX'				1

And its simplified expression is $X^\prime Y Z^\prime$

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX				1
WX'				1

And its simplified expression is WYZ^\prime

• Group 3

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX				
WX'	1			1

And its simplified expression is $WX^{\prime}Z^{\prime}$

• Group 4

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX				
WX'			1	1

And its simplified expression is $WX^{\prime}Y$

• And the residual bool expressions which cannot be mapped are:

W'XY'Z'

• Thus, we combine all simplified expressions from all groups, with the residual unmapped variables, and we have

For output I, according to the truth table, we have

$$I = \sum (2, 5, 7, 8, 9, 11, 12, 13, 14) \\ = W'X'YZ' + W'XY'Z + WXY'Z' + WX'Y'Z' + WX'Y'Z + WXY'Z' + WXY'Z' + WXY'Z' + WXYZ' + WXZ' + WXZ' + WXZ' + WXZ' + WXZ' + WXZ' + WZ' +$$

Thus, after placing the values on the corresponding positions of 4-variable K-Map, we have

	Y'Z'	Y'Z	YZ	YZ'
W'X'	0	0	0	1
W'X	0	1	1	0
WX	1	1	0	1
WX'	1	1	1	0

And we can decompose it into 4 groups below:

• Group 1

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX	1	1		
WX'	1	1		

And its simplified expression is WY^\prime

• Group 2

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X		1	1	
WX				
WX'				

And its simplified expression is $W^\prime XZ$

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX	1			1
WX'				

And its simplified expression is WXZ^\prime

• Group 4

	Y'Z'	Y'Z	YZ	YZ'
W'X'				
W'X				
WX				
WX'		1	1	

And its simplified expression is $WX^{\prime}Z$

• And the residual bool expressions which cannot be mapped are:

• Thus, we combine all simplified expressions from all groups, with the residual unmapped variables, and we have

$$I = WY' + W'XZ + WXZ' + WX'Z + W'X'YZ'$$

Step 6

 ${\it NOTE}$ The file ${\it assign1.circ}$ has been uploaded to D2L dropbox. And diagrams for output from A to I are hand-written.