Functional Programming Assignment 1 Theoretical Questions

Brian Mc George MCGRBRI004

13-04-2015

1 How many non-distrinct states can be generated in n moves (Question 2.2)?

The Rubik's cube can be twisted in six directions. For each state, six new (non-distinct) states can be generated. The states generated from n moves can be represented by the following mathematical function:

$$f(n) = 6^n \text{ for all } n \in \mathbb{N}$$
 (1)

2 Investigate processing speed and memory usage for different values of n (Question 3.2)

2.1 Test System

The tests were run on an Intel Core i7 2600 (3.4Ghz) processor running Windows 8.1 x64 using the gambit interpreter (v 4.7.4).

2.2 Effect of *n* On Completion Time

2.2.1 Testing Methodology

Tests were conducted for n up to size 8. The following function was used to test completion time and memory allocation

cubeSolve(rotationString) = (time (solveCube solvedStates (rotate rotationString) '((1 1) (2 1) (3 1) (4 1) (5 3) (6 3) (7 3) (8 3))) 0))

The rotation string used for n=8 was "xyzXYZxy", for n=7 was "xyzXYZx" etc.

The memory allocated would appear to be the memory allocated during the runtime not the total memory used at a particular time. To get faster completion time a non-tail recursive genStates method was used. Two implementations of genStates were written (genStatesTailRecursive & genStates), one was tail recursive (completed slower) and the other was not tail recursive (completed faster). For comparison at a size n=7, solveCube with non-tail recursive genStates completed in 15 seconds with a peak memory usage of 586 MB. The solveCube with tail recursive genStates completed in 240 seconds with a peak memory usage of 273 MB. The non-tail recursive genStates was selected since the assignment brief outlined that it should be able to solve cubes of 7 moves or less. The memory usage only becomes a concern from at least 8 moves.

2.2.2 Results Obtained

Size of n	Memory Allocated (MB)	Completion Time (Seconds)
1	0.07728	< 0.001
2	0.556592	0.002
3	3.48304	0.012
4	21.130368	0.070
5	128.346848	0.448
6	786.701024	2.558
7	4824.05504	15.853
8	29659.645296	95.583

Table 1: Memory usage and completion time for different size of n

The results would indicate an exponential increase in running time and memory usage. The increase in completion time could be as a result of the exponentially increasing search space to find the solution from. The increase in memory usage could be a result of it not being tail recursive as well as the search space, whose size is proportional to n, that needs to be stored.

2.3 Memory Usage During Runtime

2.3.1 Testing Methodology

The cubeSolve function defined above was used with the rotationString for n=7. Process Explorer was used to track the memory usage during program execution.

2.3.2 Results Obtained

Figure 1: Memory Usage Over Time (Non-Tail Recursive genStates)

Figure 2: Memory Usage Over Time (Tail Recursive genStates)

Figure 1 shows a linear increase in memory usage as the program executes. Figure 2 shows a logarithmic increase in memory usage as the program executes. The tail recursive genStates had a peak memory usage of 273 MB where the non-tail recursive genStates had a peak memory usage of 586 MB. It follows that the tail recursive genStates is more memory efficient than the non-tail recursive genStates. The length of the graph indicates that the solveCube using tail recursive genStates is much slower than than using the non-tail recursive genState.

3 Optimise algorithm and calculate reduction in number of states (Question 4)

3.1 Optimised function

Function 1 can be optimised such that from a given state, the new states generated are only those that will not undo the last move.

$$g(n) = \begin{cases} 1 & \text{if } n \in T = \{0\} \\ 6 \times 5^{n-1} & \text{if } n \in \mathbb{N} \setminus T \\ 0 & \text{otherwise} \end{cases}$$
 (2)

3.2 Number of states for n = 10

3.2.1 Sum of consecutive powers formula

The comparison assumes worse case scenario where solveCube has to generate maximum number of states, from n=0 to n=10 (assumes a new state is generated for n=0).

The sum of consecutive powers formula is used to calculate the sum a number x up to the power n:

$$\sum_{i=0}^{n} x^{i} = \frac{x^{i+1} - 1}{x - 1} \tag{3}$$

3.2.2 Six possible moves per rotation

Using function 3, the number of states generated by solveCube for n = 10 can be calculated as follows (where function 1 is substituted for x^i):

$$\sum_{i=0}^{10} 6^{i} = \frac{6^{10+1} - 1}{6 - 1}$$
$$= \frac{6^{11} - 1}{5}$$
$$= 72559411 \text{ states}$$

3.2.3 No undo moves per rotation

Similarly, to calculate the number of states the optimised solveCube will generate for n = 10, substitute function 2 for x^i and adding 1 for the 0 state.

$$1 + \sum_{i=1}^{10} 6 \times 5^{i-1} = 1 + (6 \times \sum_{i=1}^{10} 5^{i-1})$$
$$= 1 + (6 \times \frac{5^{(10-1)+1} - 1}{5 - 1})$$
$$= 1 + (6 \times \frac{5^{10} - 1}{4})$$
$$= 14648437 \text{ states}$$

It follows that the optimised solveCube produces 57910974 (79.81%) fewer states than the unoptimised solveCube for n = 10.

3.3 Results Of Optimisation

Size of n	Memory Allocated (MB)	Memory Reduction (%)	Completion Time (Seconds)	Completion Time Reduction (%)
1	0.077504	-0.29	< 0.001	0
2	0.530832	4.63	0.002	0
3	2.895664	16.86	0.09	25.00
4	14.866848	29.64	0.046	34.29
5	75.620656	41.08	0.251	43.97
6	382.531696	51.38	1.299	49.22
7	1945.344192	59.67	6.336	60.03
8	10000.118816	66.28	31.641	66.90

Table 2: Memory usage and completion time for different size of n

4 Discussion on why the non-tail recursive gen-States was faster

Please note this section is based on opinion and not fact. There are a number of possible reasons why the tail recursive genStates behaved slower than the non-tail recursive implementation:

- 1. The tail recursive implementation was badly written and unoptimised?

 This is a possibility although other students have also gotten similar slow speeds for theirs too.
- 2. Large number of list copies

This would appear to be the most likely culprit that every time we re-call the function to build up the list it is having to make a copy of the list. Since there are a large number of states the number of times it would have to do a copy could be large.

3. Large number of append calls As far as I am aware the append function is O(N), therefore calling it every recursive call could become costly.

The non-tail recursive genStates builds up the lists separately for each axis, as a result the lists it is handles remain smaller and this may give it faster performance at the cost of some additional memory usage.

5 Conclusions

5.1 Brute force infeasible for large n

Both of the methods shown, tail recursive and non tail recursive, suffer the same issue - exponential computational complexity. The memory and time completion for both expand at a rate that makes both algorithms infeasible for n>10. An algorithm with a smaller computational complexity is required to solve for any large number of rotations.

5.2 Major improvement when ignoring undo moves

Ignoring rotations that will undo last move dramatically reduces the number of states that have to be generated at n=10. For n=8 a 66.9% reduction in completion time was obtained. It is a big performance improvement for relatively little work.