#### 類神經網路作業 3- SOM 類神經網路

109525009 張祐綸

A. 程式簡介:我實作的是 SOM 網路架構,鄰近函數是選取得勝者周圍的神經元,學習率的更新是使用 Kohonen 的建議。

B. 程式執行說明 我用的程式語言是 Python, 環境是 colab 開發自google, 點進每一個並按下 Shift+Enter 即可執行, 程式必須從上執行到下, 其中, 以下程式碼決定使用的資料:

data = np.loadtxt("2ring.txt",dtype=np.float,delimiter=' ')

#### 參數:

net\_size, times, learning\_rate, input\_data 網路大小,循環次數、學習率、資料輸入

C. 以下依序顯示實驗結果並上訓練結果和測試結果, 左圖是初始化,右圖為訓練後 (net\_size = 7, times=1000, learning\_rate=1)

#### 123.txt



#### 2CS.txt



#### 2Ccircle1.txt





## 2Circle1.txt





## 2Circle2.txt





## 2CloseS.txt





#### 2CloseS2.txt





## 2CloseS3.txt





## 2Hcircle1.txt





## 2cring.txt





#### 4satellite-6.txt





# 5CloseS1.txt





### 8OX.TXT





# C10D.TXT





### C3D.TXT





# IRIS.TXT





## Number.txt





# perceptron1.txt





#### perceptron2.txt



# perceptron3.txt





0.6

0.8

### perceptron4.txt





#### wine.txt





#### Xor.txt



#### E. 實驗結果分析及討論

我觀察到的是可線性分割的資料的拓撲會比較均勻不容易糾纏,資料集的大小 也會影響拓撲的成長,若資料集太少成長有限,資料多的才容易展開。有些拓 撲成長後跟資料集的長相很接近!

#### F. 加分項目

顯示拓蹼時的變化情形(圖形顯示)