第三章 多维随机变量及其分布

第一节 二维随机变量

第二节 边缘分布

第三节 条件分布

第四节 随机变量的独立性

第五节 两个随机变量的函数的分布

有些随机现象只用一个随机变量来描述是不够的,需要用几个随机变量来同时描述.

有些随机现象只用一个随机变量来描述是不够的,需要用几个随机变量来同时描述.

实例1 炮弹的弹着点的位置 (X,Y) 就是一个二维随机变量.

有些随机现象只用一个随机变量来描述是不够的,需要用几个随机变量来同时描述.

实例1 炮弹的弹着点的位置 (X,Y) 就是一个二维随机变量.

实例2 考查某一地 区学龄前儿童的发育情况,则儿童的身高 H 和体重 W 就构成二维随机变量 (H, W).

二维随机变量定义

设 E 是一个随机试验,它的样本空间是 $S = \{e\}$,设 X = X(e) 和 Y = Y(e) 是定义在 S 上的随机变量,由它们构成的一个向量(X,Y),叫作二维随机向量或二维随机变量.

二维随机变量的分布函数

(1)分布函数的定义

设(X,Y)是二维随机变量,对于任意实数x,y, 二元函数:

$$F(x,y) = P\{(X \le x) \cap (Y \le y)\} = P\{X \le x, Y \le y\}$$
 称为二维随机变量 (X,Y) 的分布函数,或称为随

机变量X 和Y 的联合分布函数.

分布函数的函数值的几何解释

将二维随机变量 (X,Y) 看成是平面上随机点的坐标,那么,分布函数 F(x,y) 在点(x,y) 处的函数值就是随机点(X,Y) 落在下面左图所示的,以点(x,y) 为顶点而位于该点左下方的无穷矩形域内的概率.

 $P\{x_1 < X \le x_2, y_1 < Y \le y_2\}$

 $=F(x_2, y_2)-F(x_2, y_1)-F(x_1, y_2)+F(x_1, y_1).$

(2) 分布函数的性质

 $1^{\circ} F(x,y)$ 是变量 x 和 y 的不减函数,即对于任意固定的 y, 当 $x_2 > x_1$ 时 $F(x_2,y) \ge F(x_1,y)$,

(2) 分布函数的性质

 $1^{\circ} F(x,y)$ 是变量 x 和 y 的不减函数,即对于任意固定的 y,当 $x_2 > x_1$ 时 $F(x_2,y) \ge F(x_1,y)$, 对于任意固定的x,当y,y,时 $F(x,y,y) \ge F(x,y_1)$.

 $2^{\circ} \ 0 \le F(x,y) \le 1$

对于任意固定的y, $F(-\infty,y) = \lim_{x \to -\infty} F(x,y) = 0$, 对于任意固定的x, $F(x,-\infty) = \lim_{y \to -\infty} F(x,y) = 0$,

 $2^{\circ} \ 0 \le F(x,y) \le 1$

对于任意固定的y, $F(-\infty,y) = \lim_{x \to \infty} F(x,y) = 0$,

对于任意固定的 $x, F(x,-\infty) = \lim_{y\to-\infty} F(x,y) = 0,$

$$F(-\infty,-\infty) = \lim_{x \to -\infty} F(x,y) = 0,$$

$$F(+\infty,+\infty) = \lim_{x\to+\infty} F(x,y) = 1.$$

 $y \rightarrow +\infty$

 $3^{\circ} F(x,y) = F(x+0,y), F(x,y) = F(x,y+0),$ 即 F(x,y) 关于 x 右连续,关于 y 也右连续.

 $3^{\circ} F(x,y) = F(x+0,y), F(x,y) = F(x,y+0),$ 即 F(x,y) 关于 x 右连续,关于 y 也右连续.

 4° 对于任意 $(x_1, y_1), (x_2, y_2), x_1 < x_2, y_1 < y_2,$ 有 $F(x_2, y_2) - F(x_2, y_1) + F(x_1, y_1) - F(x_1, y_2) \ge 0.$

第一节 二维随机变量

- 一、二维随机变量及其分布函数
- 二、二维离散型随机变量
- 三、二维连续型随机变量

二维离散型随机变量

1. 定义

若二维随机变量 (X, Y) 所取的可能值是有限对或无限可列多对,则称 (X, Y) 为二维离散型随机变量.

2. 二维离散型随机变量的分布律

设二维离散型随机变量(X,Y)所有可能取的值为 (x_i,y_j) , $i,j=1,2,\cdots$,记

$$P{X = x_i, Y = y_j} = p_{ij}, i, j = 1, 2, \dots,$$

称此为二维离散型随机变量 (X,Y) 的分布律,或随机变量 X 和 Y 的联合分布律

二维随机变量 (X,Y) 的分布律也可表示为

M

例 有两枚均匀的硬币,设X为抛掷第一枚硬币时正面出现的次数,Y为抛掷第二枚硬币时正面出现的次数,求 (X,Y) 的分布律.

联合分布律的性质

随机变量 X和 Y的联合分布律

$$P{X = x_i, Y = y_j} = p_{ij}, i, j = 1, 2, \dots,$$

其中
$$p_{ij} \ge 0$$
, $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$.

确定联合分布律的方法

- (1) 确定随机变量 (X, Y) 的所有取值数对.
- (2) 计算取每个数值对的概率.

例1 设随机变量 X 在 1,2,3,4 四个整数中等可能地取值,另一个随机变量 Y 在 $1 \sim X$ 中等可能地取一整数值.试求 (X,Y) 的分布律.

例1 设随机变量 X 在 1,2,3,4 四个整数中等可能地取值,另一个随机变量 Y 在 $1 \sim X$ 中等可能地取一整数值.试求 (X,Y) 的分布律.

解 $\{X = i, Y = j\}$ 的取值情况是: i = 1,2,3,4, j取不大于i的正整数. 且由乘法公式得

$$P\{X=i,Y=j\}=P\{Y=j|X=i\}P\{X=i\}=\frac{1}{i}\cdot\frac{1}{4},$$
 $i=1,2,3,4,\ j\leq i.$

,	Y	1	2	3	4
	1	1	1 +	1	1
	-	4		12	16
			1	1	1
	2	0	8	12	16
	3	0	0	$\frac{1}{12}$	1 16
	4	0	0	0	$\frac{1}{16}$

Y	1	2	3	4
1	1_	1	1	1
1	$\overline{\overset{-}{4}}$	8	12	16
_	0	1	1	1
2		- 8	12	16
	0	0	1	1
3			12	16
_				1
4	0	0	0	<u> 16</u>

F(2,1) =

离散型随机变量 (X,Y) 的分布函数归纳为

$$F(x,y) = \sum_{x_i \leq x} \sum_{y_j \leq y} p_{ij},$$

其中和式是对一切满足 $x_i \le x, y_j \le y$ 的i, j求和.

第一节 二维随机变量

- 一、二维随机变量及其分布函数
- 二、二维离散型随机变量
- 三、二维连续型随机变量

二维连续型随机变量

1.定义

对于二维随机变量(X,Y)的分布函数F(x,y), 如果存在非负可积函数f(x,y)使对于任意x,y有 $F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) \, du \, dv,$ 则称(X,Y)是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y)的概率密度,或称为随 机变量X 和Y 的联合概率密度.

2.性质

(1) $f(x,y) \ge 0$.

$$(2) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx \, dy = F(\infty,\infty) = 1.$$

(3) 设 G 是 xoy 平面上的一个区域,点 (X,Y) 落在 G 内的概率为 $P\{(X,Y) \in G\} = \iint_G f(x,y) \, \mathrm{d} x \, \mathrm{d} y$.

(4) 若
$$f(x,y)$$
 在 (x,y) 连续,则有 $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$.

(4) 若
$$f(x,y)$$
 在 (x,y) 连续,则有 $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$.

故当 $\Delta x \Delta y$ 充分小时,有

$$P \{ x < X \le x + \Delta x, y < Y \le y + \Delta y \} \approx f(x, y) \Delta x \Delta y$$

例

设二维随机变量(X,Y)具有概率密度

$$f(x,y) = \begin{cases} Ae^{-(2x+y)}, & x > 0, y > 0, \\ 0, & \text{ \Begin{subarray}{c} \Edge B} \end{cases}$$

求常数A.

Θ_2 设二维随机变量(X,Y)具有概率密度

$$f(x,y) = \begin{cases} 2e^{-(2x+y)}, & x > 0, y > 0, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

(1) 求分布函数F(x,y); (2) 求概率 $P\{Y \le X\}$.

$(1)F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(x,y) dx dy$

$$\mathbf{f}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

$$= \begin{cases} \int_0^y \int_0^x 2e^{-(2x+y)} dx dy, & x > 0, y > 0, \\ 0, & \text{ i.e.} \end{cases}$$

得
$$F(x,y) = \begin{cases} (1-e^{-2x})(1-e^y), & x > 0, y > 0. \\ 0, & \text{其他.} \end{cases}$$

(2)将(X,Y)看作是平面上随机点的坐标,

即有
$$\{Y \le X\} = \{(X,Y) \in G\},$$

$$P{Y \le X} = P{(X,Y) \in G}$$

$$= \iint_G f(x,y) \, \mathrm{d} x \, \mathrm{d} y$$

(2)将(X,Y)看作是平面上随机点的坐标,

即有 $\{Y \le X\} = \{(X,Y) \in G\},$

$$P{Y \le X} = P{(X,Y) \in G}$$

$$= \iint_G f(x,y) dx dy$$

$$= \int_0^{+\infty} \int_y^{+\infty} 2e^{-(2x+y)} dx dy$$

$$=\frac{1}{3}$$
.

推广 n 维随机变量的概念

定义 设 E 是一个随机试验,它的样本空间是 $S = \{e\}$,设 $X_1 = X_1(e)$, $X_2 = X_2(e)$,…, $X_n = X_n(e)$, 是定义在 S 上的随机变量,由它们构成的一个 n 维向量 $(X_1, X_2, ..., X_n)$ 叫做 n 维随机变量.

推广 n 维随机变量的概念

定义 设 E 是一个随机试验,它的样本空间是 $S = \{e\}$,设 $X_1 = X_1(e)$, $X_2 = X_2(e)$,···, $X_n = X_n(e)$, 是定义在 S 上的随机变量,由它们构成的一个 n 维向量 (X_1, X_2, \dots, X_n) 叫做 n 维随机向量或 n 维随机变量.

对于任意n 个实数 x_1, x_2, \dots, x_n, n 元函数 $F(x_1, x_2, \dots, x_n) = P\{X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n\}$ 称为随机变量 (X_1, X_2, \dots, X_n) 的联合分布函数.

小结

第一节 二维随机变量

- 一、二维随机变量及其分布函数
- 二、二维离散型随机变量
- 三、二维连续型随机变量

作业

■ P86 1; 3(1)(4)

第三章 多维随机变量及其分布

第一节 二维随机变量

第二节 边缘分布

第三节 条件分布

第四节 随机变量的独立性

第五节 两个随机变量的函数的分布

问题1:已知(X,Y)的分布,能否确定X,Y的分布?

问题 1:已知 (X,Y)的分布,能否确定 X,Y的分布?

问题 2:已知 (X,Y)的分布,如何确定 X,Y的分布?

第二节 边缘分布

- 一、边缘分布函数
- 二、离散型随机变量的边缘分布律
- 三、连续型随机变量的边缘概率密度

一、边缘分布函数

二维随机变量 (X,Y)作为一个整体,具有分布函数 F(x,y),而 X 和 Y 都是随机变量,也有各自的分布函数,分别记为 $F_X(x)$, $F_Y(y)$,依次称为二维随机变量 (X,Y) 关于 X 和 Y的边缘分布函数.

一、边缘分布函数

二维随机变量 (X,Y)作为一个整体,具有分布函数 F(x,y),而 X 和 Y 都是随机变量,也有各自的分布函数,分别记为 $F_X(x)$, $F_Y(y)$,依次称为二维随机变量 (X,Y) 关于 X 和 Y的边缘分布函数.

$$F_X(x) = P\{X \le x\} = P\{X \le x, Y < +\infty\} = F(x, +\infty)$$

一、边缘分布函数

二维随机变量 (X,Y)作为一个整体,具有分布函数 F(x,y),而 X 和 Y 都是随机变量,也有各自的分布函数,分别记为 $F_X(x)$, $F_Y(y)$,依次称为二维随机变量 (X,Y) 关于 X 和 Y的边缘分布函数.

$$F_{X}(x) = P\{X \le x\} = P\{X \le x, Y < +\infty\} = F(x, +\infty)$$

$$F_{Y}(y) = P\{Y \le y\} = P\{X < +\infty, Y \le y\} = F(+\infty, y)$$

例 已知联合分布律求其边缘分布律.

YX	0	1
0	<u>1</u>	2 9
1	4 9	2 9

例 已知联合分布律求其边缘分布律.

YX	0	1	
0	<u>1</u>	2 9	3 9
1	4 9	2 9	6 9
	5 9	4 9	1

$$P\{X = x_i\} = \sum_{j=1}^{\infty} p_{ij}, i = 1, 2, \dots;$$

$$P{Y = y_j} = \sum_{i=1}^{\infty} p_{ij}, j = 1, 2, \cdots$$

离散型随机变量的边缘分布律

定义 设二维离散型随机变量(X,Y)的联合分布 律为 $P\{X = x_i, Y = y_i\} = p_{ii}, i, j = 1, 2, \cdots$

记
$$p_{i\bullet} = \sum_{j=1}^{\infty} p_{ij} = P\{X = x_i\}, \quad i = 1, 2, \dots,$$

$$p_{\bullet j} = \sum_{i=1}^{\infty} p_{ij} = P\{Y = y_j\}, \quad j = 1, 2, \dots,$$

分别称 $p_{i\bullet}(i=1,2,\cdots)$ 和 $p_{\bullet j}(j=1,2,\cdots)$ 为 (X,Y) 关于 X 和关于 Y 的边缘分布律

М

例2 一整数 N 等可能地在1,2,3,…,10 十个值中取一个值.设 D = D(N) 是能整除 N 的正整数的个数, F = F(N) 是能整除 N 的素数的个数.试写出 D 和 F 的联合分布律,并求边缘分布律.

м

例2 一整数 N 等可能地在1,2,3,…,10 十个值中取一个值.设 D = D(N) 是能整除 N 的正整数的个数, F = F(N) 是能整除 N 的素数的个数.试写出 D 和 F 的联合分布律,并求边缘分布律.

解

N	1	2	3	4	5	6	7	8	9	10
p	0.1	0.1	0.1	0.1 (0.1	0.1 (0.1	0.1	0.1	0.1

M

例2 一整数 N 等可能地在1,2,3,…,10 十个值中取一个值.设 D = D(N) 是能整除 N 的正整数的个数, F = F(N) 是能整除 N 的素数的个数.试写出 D 和 F 的联合分布律,并求边缘分布律.

解

_	N	1	2	3	4	5	6	7	8	9	10
	D	1	2	2	3	2	4	2	4	3	4
	F	0	1	1	1	1	2	1	1	1	2
	p	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

由此得D和F的联合分布律与边缘分布律:

F D	1	2	3	4	$P{F=j}$
0	1 /10	0	0	0	1/10
1	0	4/10	2 /10	1/10	7/10
2	0	0	0	2 /10	2 / 10
$P\{D=i\}$	1/10	4/10	2 / 10	3/10	1

或将边缘分布律表示为

D	1	2	3	4	$oldsymbol{F}$	0	1	2	
$p_{_k}$	1/10	4/10	2/10	3/10	$p_{_k}$	1/10	7/10	2/10	

离散型随机变量的边缘分布律

定义 设二维离散型随机变量(X,Y)的联合分布 律为 $P\{X = x_i, Y = y_i\} = p_{ii}, i, j = 1, 2, \cdots$

记
$$p_{i\bullet} = \sum_{j=1}^{\infty} p_{ij} = P\{X = x_i\}, \quad i = 1, 2, \dots,$$

$$p_{\bullet j} = \sum_{i=1}^{\infty} p_{ij} = P\{Y = y_j\}, \quad j = 1, 2, \dots,$$

分别称 $p_{i\bullet}(i=1,2,\cdots)$ 和 $p_{\bullet j}(j=1,2,\cdots)$ 为 (X,Y) 关于 X 和关于 Y 的边缘分布律

连续型随机变量的边缘概率密度

定义 对于连续型随机变量X,Y), 设它的概率 密度为f(x,y), 由于

$$F_X(x) = F(x, \infty) = \int_{-\infty}^x \left[\int_{-\infty}^\infty f(x, y) \, \mathrm{d} y \right] \, \mathrm{d} x,$$

记
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d} y,$$

称其为随机变量(X,Y)关于X的边缘概率密度.

$$F_Y(y) = F(\infty, y) = \int_{-\infty}^{y} \left[\int_{-\infty}^{+\infty} f(x, y) dx \right] dy,$$

记
$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx$$

称其为随机变量(X,Y)关于Y的边缘概率密度

1

例2 设随机变量 X 和 Y 具有联合概率密度

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其他. \end{cases}$$

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其他. \end{cases}$$

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其他. \end{cases}$$

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其他. \end{cases}$$

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其他. \end{cases}$$

м

(P72) 二维均匀分布

设G是平面上的有界区域,其面积为A.若二维随机变量(X,Y)具有概率密度

$$f(x,y) = \begin{cases} \frac{1}{A}, & (x,y) \in G \\ 0, & \sharp \ \ \ \ \ \end{cases}$$

则称 (X,Y) 在G上服从均匀分布.

二维正态分布

若二维随机变量 (X,Y) 具有概率密度

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2}\right]\right\}$$

$$-2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right\}$$

$$-\infty < x < \infty$$
, $-\infty < y < \infty$,

其中 μ_1 , μ_2 , σ_1 , σ_2 , ρ 均为常数, 且 $\sigma_1 > 0$, $\sigma_2 > 0$,

 $|\rho| < 1$. 则称 (*X,Y*) 服从参数为 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$

的二维正态分布.记作(X,Y) $\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$.

解
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$$

曲于
$$\frac{(y-\mu_2)^2}{\sigma_2^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}$$

$$= \left[\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1}\right]^2 - \rho^2 \frac{(x-\mu_1)^2}{\sigma_1^2},$$

于是
$$f_X(x) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \int_{-\infty}^{+\infty} e^{\frac{-1}{2(1-\rho_0)} \left[\frac{y-\mu_2}{\sigma_2} - \rho\frac{x-\mu_1}{\sigma_1}\right]} dy,$$

$$\Rightarrow t = \frac{1}{\sqrt{1-\rho^2}} \left(\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1} \right),$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, -\infty < x < +\infty.$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}, -\infty < y < +\infty.$$

二维正态分布的两个边缘分布都是一维正态分布, 并且都不依赖于参数 ρ .

联合分布

边缘分布

联合分布

边缘分布

找出一个联合分布律,使其边缘分布律如下:

Y	0	1	$p_{\bullet j} = P\{Y = y_j\}$
0			<u>3</u>
1			<u>6</u> 9
$p_{i\bullet} = P\{X = x_i\}$	<u>5</u>	<u>4</u> 9	1

找出一个联合分布律,使其边缘分布律如下:

Y	0	1	$p_{\bullet j} = P\{Y = y_j\}$
0	$\frac{1}{9}$ $\frac{2}{9}$	$\frac{2}{9}$ $\frac{1}{9}$	<u>3</u>
1	$\frac{4}{9} \frac{3}{9}$	$\frac{2}{9} \frac{3}{9}$	<u>6</u> 9
$= P\{X = x_i\}$	<u>5</u>	4 9	1

 $p_{i\bullet}$

小结

第二节 边缘分布

- 一、边缘分布函数
- 二、离散型随机变量的边缘分布律
- 三、连续型随机变量的边缘概率密度

作业 P86 9

【引例】在许多破案的影片中,通常会有这样的场景:侦查员在犯罪现场发现了犯罪嫌疑人的脚印,都会采样,量一量长度。这有什么作用呢?

【引例】在许多破案的影片中,通常会有这样的场景:侦查员在犯罪现场发现了犯罪嫌疑人的脚印,都会采样,量一量长度。这有什么作用呢?

可以推断身高,体重,行走方式等.

考虑成年男性,从其中随机抽取一个,分别以*X*和 *Y* 表示其身高和足长.则*X*和*Y*都是随机变量,它们都有一定的概率分布.

身高X

第三节 条件分布

现在若限制 $Y=25(\mathbb{E}_{*})$, 在这个条件下去求 X的分布,这就意味着要从所有的男性中将足长为25厘米的那些人都挑出来,然后在挑出的人中求其身高的分布.

容易想象,这个分布与不加条件时的分布会不一样.

м

在第一章中,我们介绍了条件概率的概念.

在事件B发生的条件下事件A发生的条件概率

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

推广到随机变量

设有两个随机变量X,Y,在给定Y取某个或某些值的条件下,求X的概率分布.

第三节 条件分布

- 一、离散型随机变量的条件分布律
- 二、连续型随机变量的条件概率密度

例1 在一汽车工厂中,一辆汽车有两道工序是由机器人完成的.其一是紧固3只螺栓,其二是焊接2处焊点.以 *X* 表示螺栓紧固得不良的数目,以 *Y* 表示焊点焊接得不良的数目.据积累的资料知(*X*,*Y*)具有分布律:

YX	0	1	2	3
0	0.840	0.030	0.020	0.010
1	0.060	0.010	0.008	0.002
2	0.010	0.005	0.004	0.001

(2) 求在 Y = 0 的条件下, X 的条件分布律

YX	0	1	2	<i>X</i> 3
0	0.840	0.030	0.020	0.010
1	0.060	0.010	0.008	0.002
2	0.010	0.005	0.004	0.001

(1) 求在 X = 1 的条件下,Y 的条件分布律;

(2) 求在 Y = 0 的条件下, X 的条件分布律.

YX	0	1	2	3
0	0.840	0.030	0.020	0.010
1	0.060	0.010	0.008	0.002
2	0.010	0.005	0.004	0.001

一、离散型随机变量的条件分布律

定义 设(X,Y)是二维离散型随机变量,对于固定的j,若 $P\{Y=y_i\}>0$,则称

$$P\{X=x_{i}|Y=y_{j}\}=\frac{P\{X=x_{i},Y=y_{j}\}}{P\{Y=y_{j}\}}=\frac{p_{ij}}{p_{\bullet j}}, i=1,2,...$$

为在 $Y = y_i$ 条件下随机变量X的条件分布律.

对于固定的 i, 若 $P\{X = x_i\} > 0$, 则称

$$P\{Y = y_j | X = x_i\} = \frac{P\{X = x_i, Y = y_j\}}{P\{X = x_i\}} = \frac{p_{ij}}{p_{i\bullet}}, j = 1, 2, \cdots$$

为在 $X = x_i$ 条件下随机变量Y的条件分布律.

条件分布是一种概率分布,它具有概率分布的一切性质.正如条件概率是一种概率,具有概率的一切性质一样.

例如:

$$P\{X = x_i | Y = y_j\} \ge 0 \quad i=1,2,...$$

$$\sum_{i=1}^{\infty} P\left\{X = x_i \mid Y = y_j\right\} = 1$$

м

例2 一射手进行射击,击中目标的概率为p(0 ,射击到击中目标两次为止.设以<math>X 表示首次击中目标所进行的射击次数,以Y 表示总共进行的的射击次数.试求 X 和 Y 的联合分布律及条件分布律.

解 由题意知 X 取 m 且 Y 取 n 时,有

$$P{X = m, Y = n} = p \cdot p \cdot (1-p) \cdot (1-p) \cdot (1-p)$$

即得X和Y的联合分布律为

$$P{X = m, Y = n} = p^2q^{n-2},$$

其中q=1-p, $n=2,3,\dots$; $m=1,2,\dots,n-1$.

二维连续型随机变量的条件分布

定义 设二维随机变量(X,Y)的概率密度为 f(x,y),(X,Y)关于Y的边缘概率密度为 $f_Y(y)$.若

对于固定的
$$y, f_Y(y) > 0$$
, 则称 $\frac{f(x,y)}{f_Y(y)}$ 为在 $Y = y$

的条件下 X 的条件概率密度,记为

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

称 $\int_{-\infty}^{x} f_{X|Y}(x|y) dx = \int_{-\infty}^{x} \frac{f(x,y)}{f_Y(y)} dx$ 为在Y = y 的

条件下, X 的条件分布函数,记为

$$P\{X \leq x | Y = y\}$$
 或 $F_{X|Y}(x|y)$,

例3 设G是平面上的有界区域,其面积为A.若二维随机变量(X,Y)具有概率密度

$$f(x,y) = \begin{cases} \frac{1}{A}, & (x,y) \in G, \\ 0, & \text{if } \end{cases}$$

则称(X,Y)在G上服从均匀分布.

设(X,Y)在圆域 $x^2 + y^2 \le 1$ 上服从均匀分布,求条件概率密度 $f_{X|Y}(x|y)$.

٧

y已知

即当-1<y<1时,有

$$f_{X|Y}(x|y) = \begin{cases} \frac{1}{2\sqrt{1-y^2}}, \\ 0, \end{cases}$$

Y取值已知的条件下 X的条件概率密度

$$-\sqrt{1-y^2} \le x \le \sqrt{1-y^2}$$

x取其它值

这里是x的取值范围

М

例4 设数 X 在区间 (0,1) 上随机地取值,当观察到 X = x (0 < x < 1) 时,数 Y 在区间 (x,1) 上随机地取值.求 Y 的概率密度 $f_{y}(y)$.

M

例4 设数 X 在区间(0,1)上随机地取值,当观察到 X = x (0 < x < 1)时,数 Y 在区间(x,1)上随机地取值.求 Y 的概率密度 $f_{y}(y)$.

解 由题意知 X 具有概率密度

$$f_X(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & 其它. \end{cases}$$

对于任意给定的值x(0 < x < 1), 在X = x的条件下, Y的条件概率密度为

$$f_{Y|X}(y|x) = \begin{cases} \frac{1}{1-x}, & 0 < x < y < 1, \\ 0, & 其它. \end{cases}$$

因此X和Y的联合概率密度为

$$f(x,y) = f_{Y|X}(y|x)f_X(x)$$

$$= \begin{cases} \frac{1}{1-x}, & 0 < x < y < 1, \\ 0, & 其它. \end{cases}$$

故得Y的边缘概率密度

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x,y) dx$$

$$= \begin{cases} \int_{0}^{y} \frac{1}{1-x} dx = -\ln(1-y), 0 < y < 1, \\ 0, & 其它. \end{cases}$$

м

[回到引例] 一般认为,身高和足长(X,Y)可以当做一个二维正态变量来处理,即

$$(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho),$$

在 Y=y 条件下,X服从一维正态分布.

由此求得
$$E(X|Y=y)$$
.

小结

第三节 条件分布

一、离散型随机变量的条件分布律

二、连续型随机变量的条件概率密度

作业P87

12; **13** (**1**); **14**

第四节 相互独立的随机变量

м

第四节 相互独立的随机变量

定义

设F(x,y)及 $F_X(x)$, $F_Y(y)$ 分别是二维随机变量 (X,Y)的分布函数及边缘分布函数.若对于所有x,y 有 $P\{X \le x,Y \le y\} = P\{X \le x\}P\{Y \le y\}$, 即 $F(x,y) = F_X(x)F_Y(y)$, 则称随机变量 X 和 Y 是相互独立的.

可以证明如下结论:

(2) 若(*X*,*Y*)是离散型随机变量,则上述独立性定义的条件等价于:

对(X,Y)的所有可能取值 (x_i,y_i) ,有

$$P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i)$$

例判断随机变量X和Y是否相互独立。

Y	0	1	
0	1 6	$\frac{1}{3}$	
1	1 6	$\frac{1}{3}$	

例 判断随机变量X和Y是否相互独立。

YX	0	1
0	1	<u>2</u>
·	9	9
4	4	2
1	9	9

Y	1	2	3
1	0.1	0.1	0.3
2	0.1	α	β

若X与Y相互独立,求 α 与 β 的值.

Y	1	2	3	$p_{\bullet j} = P\{Y = y_j\}$
1	0.1	0.1	0.3	0.5
2	0.1	α	β	$0.1 + \alpha + \beta = 0.5$
$p_{i\bullet} = P\{X = x_i$	} 0.2	$0.1+\alpha$	$0.3 + \beta$	$0.6 + \alpha + \beta = 1$

解 因为X与Y相互独立,所以有

$$p_{ij} = p_{i \bullet} \cdot p_{\bullet j}, \quad (i = 1, 2; j = 1, 2, 3)$$

$$\Rightarrow 0.1 = 0.5(0.1 + \alpha)$$
 $\Rightarrow \alpha = 0.1$,

又
$$\alpha + \beta = 0.4$$
, 得 $\beta = 0.3$

可以证明如下结论:

(1) 若 (X,Y)是连续型随机变量,则上述独立性定义的条件等价于:

对任意的x,y,有

$$f(x,y) = f_X(x) f_Y(y)$$

在平面上几乎处处成立.

这里"在平面上几乎处处成立"的含义是:在平面上除去"面积为0"的集合外,处处成立.

例 § 1例2中的随机变量X和Y,

$$f(x,y) = \begin{cases} 2e^{-(2x+y)}, & x > 0, y > 0, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

判断X和Y是否相互独立.

例 设随机变量 X 和 Y 具有联合概率密度

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其他. \end{cases}$$

判断X和Y是否相互独立.

设 $(X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$, 求证:

X与Y独立的充要条件为 ρ =0.

$$f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}$$

$$\cdot \exp\left\{\frac{-1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]\right\}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x_1 - \mu_1)^2}{2\sigma_1^2}},$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(y - \mu_2)^2}{2\sigma_2^2}},$$

例5 一负责人到达办公室的时间均匀分布在8~12时,他的秘书到达办公室的时间均匀分布在7~9时,设他们两人到达的时间相互独立,求他们到达办公室的时间相差不超过 5分钟的概率.

解 设X和Y分别是负责人和他的秘书 到达办公室的时间。

因为 X,Y 相互独立,故(X,Y)的概率密度为

$$f(x,y) = f_X(x) f_Y(y) = \begin{cases} \frac{1}{8}, & 8 < x < 12, 7 < y < 9, \\ 0, & \text{ 其他.} \end{cases}$$

按题意需要求概率 $P\{|X-Y| \le 1/12\}$. 画出 区域: $|x-y| \le 1/12$,以及长方形[8 < x < 12; 7 < y < 9],它们的公共部分是四边形 BCC'B',记为G(如图 3-8). 显然仅当(X, Y)取值于G内,他们两人到达的时间相差 才不超过1/12 h. 因此,所求的概率为

$$\begin{split} P\Big\{ \mid X-Y \mid \leqslant \frac{1}{12} \Big\} &= \iint_G f(x,y) \, \mathrm{d}x \, \mathrm{d}y \\ &= \frac{1}{8} \times (G \text{ 的面积}). \end{split}$$

而

G 的面积 = 三角形 ABC 的面积 — 三角形 AB'C' 的面积 = $\frac{1}{2} \left(\frac{13}{12}\right)^2 - \frac{1}{2} \left(\frac{11}{12}\right)^2 = \frac{1}{6}$.

于是

$$P\left\{|X-Y| \leqslant \frac{1}{12}\right\} = \frac{1}{48}.$$

即负责人和他的秘书到达办公室的时间相差不超过 5 min 的概率为 1/48.

类似地,可以定义n个随机变量 X_1, X_2, \dots, X_n 的相互独立性. 及随机变量 (X_1, X_2, \dots, X_m) 和 (Y_1, Y_2, \dots, Y_n) 的相互独立性.

定理: 设 (X_1, X_2, \dots, X_m) 和 (Y_1, Y_2, \dots, Y_n) 相互独立,则 $X_i, i = 1, 2, \dots, m$ 和 $Y_j, j = 1, 2, \dots, n$ 相互独立。又若h, g是连续函数,则 $h(X_1, X_2, \dots, X_m)$ 和 $g(Y_1, Y_2, \dots, Y_n)$ 相互独立.

结论: X和Y相互独立,则 f(X)和g(Y)也相互独立.

作业 P88 16

第三章 多维随机变量及其分布

第一节 二维随机变量

第二节 边缘分布

第三节 条件分布

第四节 随机变量的独立性

第五节 两个随机变量的函数的分布

◆同时掷两个色子, 以*X*表示第一个色子出现的点数, 以*Y*表示第二个色子出现的点数, 关注点数之和*Z₁=X+Y* 关注点数之最大值*Z₂=max(X,Y)*

在第二章中,我们讨论了一维 随机变量函数的分布,现在我们进一 步讨论:

当随机变量 X, Y 的联合分布已知时,如何求出它们的函数Z = g(X, Y) 的分布?

一、离散型随机变量函数的分布(教材未涉及)

二、连续型随机变量函数的分布

第五节 两个随机变量的函数的分布

- **○** Z=X+Y的分布
- Z=Y\X及Z=XY的分布
- \bigcirc $M=\max(X,Y)$ 及 $N=\min(X,Y)$ 的分布

例1 设二维随机变量(X,Y)的分布律为

试 求 Z = X + Y的 分 布 律

设二维随机变量(X,Y)的分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}$$
 $i = 1, 2, \dots$ $j = 1, 2, \dots$

若 Z = X + Y

$$P\{Z = z_k\} = \sum_{i} P\{X = x_i, Y = z_k - x_i\}$$

或者
$$P\{Z = z_k\} = \sum_j P\{X = z_k - y_j, Y = y_j\}$$

1. Z=X+Y 的分布

设 (X,Y) 是二维连续型随机变量,具有概率密度为 f(x,y),求 Z=X+Y 的概率密度.

$$f_Z(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy.$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx.$$

当X,Y独立时,

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy,$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx.$$

例1 设两个独立的随机变量 X 与Y 都服从标准正态分布,求 Z=X+Y 的概率密度.

解 由于
$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, -\infty < x < +\infty,$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, -\infty < y < +\infty,$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx,$$

暂时固定

$$f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{x^2}{2}} e^{-\frac{(z-x)^2}{2}} dx$$

$$=\frac{1}{2\pi}e^{-\frac{z^2}{4}}\int_{-\infty}^{+\infty}e^{-\left(x-\frac{z}{2}\right)^2}dx$$

$$\frac{t = x - \frac{z}{2}}{2\pi} \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{+\infty} e^{-t^2} dt = \frac{1}{2\sqrt{\pi}} e^{-\frac{z^2}{4}}.$$

一般,设X,Y相互独立且 $X \sim N(\mu_1,\sigma_1^2),Y \sim N(\mu_2,\sigma_2^2)$.则Z = X + Y仍然服从正态分布,且有 $Z \sim N(\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2)$.

一般,设X,Y相互独立且 $X \sim N(\mu_1,\sigma_1^2),Y \sim$ $N(\mu_2,\sigma_2^2)$.则Z = X + Y仍然服从正态分布,且有 $Z \sim N(\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2)$.

两个相互独立的正态随机变量的线性组合仍然服从正态分布.

一般,设X,Y相互独立且 $X \sim N(\mu_1,\sigma_1^2),Y \sim$ $N(\mu_2,\sigma_2^2)$.则Z = X + Y仍然服从正态分布,且有 $Z \sim N(\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2)$.

有限个相互独立的正态随机变量的线性组合仍然服从正态分布.

例2 若 R_1 和 R_2 独立, 具有共同的概率密度

$$f(x) = \begin{cases} \frac{10 - x}{50}, & 0 \le x \le 10\\ 0, & \cancel{\sharp} \stackrel{\text{re}}{=} \end{cases}$$

求 $R=R_1+R_2$ 的概率密度.

解 由卷积公式

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) dx$$

若 R_1 和 R_2 独立, 具有共同的概率密度

$$f(x) = \begin{cases} \frac{10 - x}{50}, & 0 \le x \le 10\\ 0, & 其它 \end{cases}$$

求 $R=R_1+R_2$ 的概率密度.

解 由卷积公式

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$
为确定积分限,先找出使被积函数不为 0 的区域

$$\begin{cases} 0 \le x \le 10 \\ 0 \le z - x \le 10 \end{cases}$$
 也即
$$\begin{cases} 0 \le x \le 10 & \text{暂时固定} \\ z - 10 \le x \le z \end{cases}$$

解 由(5.4)式,R的概率密度为

$$f_R(z) = \int_{-\infty}^{\infty} f(x) f(z - x) dx.$$

易知仅当

$$0 < x < 10,$$
 $0 < x < 10,$
 $0 < x < 10,$
 $0 < x < 10,$

时上述积分的被积函数不等于零.参考图 3-10,即得

解析
$$f_R(z) = \begin{cases} \int_0^z f(x) f(z-x) dx, & 0 \leqslant z < 10, \\ \int_{z-10}^{10} f(x) f(z-x) dx, & 10 \leqslant z \leqslant 20, \\ 0, & 其他. \end{cases}$$

将 f(x)的表达式代入上式得

$$f_R(z) = \begin{cases} \frac{1}{15\ 000} (600z - 60z^2 + z^3), & 0 \leqslant z < 10, \\ \frac{1}{15\ 000} (20 - z)^3, & 10 \leqslant z < 20, \\ 0, & \sharp \text{ th.} \end{cases}$$

二、Z=Y\X, Z=XY的分布

设(X,Y)的概率密度为f(x,y),则Z=Y|X的密度函数为

$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x| f(x, xz) dx.$$

$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|} f(x, \frac{z}{x}) dx.$$

当X, Y独立时,

$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(xz) dx.$$

$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|} f_X(x) f_Y(\frac{z}{x}) dx.$$

$\Xi \setminus M = \max(X, Y)$ 及 $N = \min(X, Y)$ 的 分 布

何 设二维随机变量(X,Y)的分布律为

Y	– 1	0	1
0	0.1	0.2	0.1
1	0.3	0.1	0.2

м

 $\Xi \setminus M = \max(X,Y)$ 及 $N = \min(X,Y)$ 的 分 布

设X,Y是两个相互独立的随机变量,它们的分布函数分别为 $F_X(x)$ 和 $F_Y(y)$,

$$\Xi \setminus M = \max(X, Y)$$
及 $N = \min(X, Y)$ 的 分 布

设X,Y是两个相互独立的随机变量,它们的分布函数分别为 $F_X(x)$ 和 $F_Y(y)$,

$$F_{\text{max}}(z) = F_{X}(z)F_{Y}(z),$$

$$F_{\text{min}}(z) = 1 - [1 - F_{X}(z)][1 - F_{Y}(z)].$$

设 $X_1,...,X_n$ 是n个相互独立的随机变量,它们的分布函数分别为

$$F_{X_i}(z)$$
 $(i=1,...,n)$

用与二维时完全类似的方法,可得

 $M=\max(X_1,...,X_n)$ 的分布函数为:

$$\boldsymbol{F}_{M}(z) = \boldsymbol{F}_{X_{1}}(z)\boldsymbol{F}_{X_{2}}(z)\cdots\boldsymbol{F}_{X_{n}}(z)$$

 $N=\min(X_1,...,X_n)$ 的分布函数是

$$F_N(z) = 1 - [1 - F_{X_1}(z)][1 - F_{X_2}(z)] \cdots [1 - F_{X_n}(z)]$$

特别地,当 $X_1,...,X_n$ 相互独立且具有相同分布函数F(x)时,有

$$F_{M}(z) = [F(z)]^{n}$$

$$F_{N}(z) = 1 - [1 - F(z)]^{n}$$

需要指出的是,当 $X_1,...,X_n$ 相互独立且具有相同分布函数F(x)时,常称

$$M = \max(X_1,...,X_n), N = \min(X_1,...,X_n)$$

为极值.

由于一些灾害性的自然现象,如地震、洪水等等都是极值,研究极值分布具有重要的意义和实用价值.

×

例5 设系统 L 由两个相互独立的子系统 L_1, L_2 连接而成,连接的方式分别为 (i) 串联, (ii) 并联, (iii) 备用 (当系统 L_1 损坏时, 系统 L_2 开始工作), 如下图所示.设 L_1, L_2 的寿命分别为 X, Y, 已知它们的概率密度分别为

$$f_{X}(x) = \begin{cases} \alpha e^{-\alpha x}, & x > 0, \\ 0, & x \leq 0, \end{cases} \quad f_{Y}(y) = \begin{cases} \beta e^{-\beta y}, & y > 0, \\ 0, & y \leq 0, \end{cases}$$

其中 $\alpha > 0$, $\beta > 0$ 且 $\alpha \neq \beta$. 试分别就以上三种连接方式写出 L的寿命 Z的概率密度. L

作业

■ P87 22; 25

■ P83 例5

第三章 多维随机变量及其分布

第一节 二维随机变量

第二节 边缘分布

第三节 条件分布

第四节 随机变量的独立性

第五节 两个随机变量的函数的分布