Centro de Ciência e Tecnologia Laboratório de Ciências Matemáticas Ciência da Computação

Arquitetura de Computadores Aula 03

2 Organização de sistemas de computadores

```
Seção 2.1.4
Seção 2.1.5
Seção 2.1.6
```

Seção 2.2 Memórias 2.2.1 2.2.2

2.1.4 Princípios de projeto para computadores modernos

Uso de princípios do projeto RISC

- Instruções executadas diretamente por hardware
- Maximizar taxa de execução das instruções
 - Truques para maximizar desempenho: maior MIPS (Milhões de Instruções Por Segundo)
 - Paralelismo indicado
- Instruções fáceis de decodificar
 - Quanto menor número de formato de instrução melhor
- ❖ Só LOAD e STORE referencia a memoria
- Ter mais registradores (no mínimo 32)
 - Acesso frequente a memoria é lento

2.1.5 Paralelismo no nível de instrução

Paralelismo: fazer duas ou mais coisas ao mesmo tempo!

Paralelismo no nível de instrução \Longrightarrow paralelismos é explorado dentro de instruções individuais para obter da máquina mais instruções por segundo.

Paralelismo no nível de processador várias CPUs trabalham juntas no mesmo problema.

2.1.5 Paralelismo no nível de instrução

Busca Antecipada (desde o IBM Stretch 1959)

- Capacidade de buscar instruções na memória antecipadamente
- Eram armazenadas em um conjunto de registradores denominado buffer de busca antecipada
- Divide a execução da instrução em duas partes: busca e execução

2.1.5 Pipelining (paralelismo)

- Uma instrução dividida em varias partes
- □ Cada parte executado, por hardware dedicado, em forma paralela

2.1.5 Pipelining (paralelismo)

Exemplo: ciclo de 2ns

Uma instrução leva 10 ns para percorrer o caminho de dados

Máquina funciona a 100 MIPS

500 MIPS

- Latência: tempo demorada na execução de uma instrução
- Largura de banda do processador: MIPS

2.1.5 Arquitetura superescalares

Pipeline > 1 é melhor (Pentium original, RISC)

- Não devem ter conflito na utilização de recurso (ex. registradores)
- Nenhuma deve depender do resultado da outra

2.1.5 Arquitetura superescalares

Um único pipeline, mas lhe dar várias unidades funcionais

2.1.6 Paralelismo no nível de processador

- Computadores Matriciais: conjunto de processadores efetuando a mesma sequência de instruções em diferentes conjuntos de dados
 - Processador SIMD (Fluxo único de instruções e fluxo múltiplo de dados).
- **Multiprocessadores:** sistema com várias CPUs que compartilham uma memoria comum.
 - Fácil trabalhar com o modelo de programação de uma única memória compartilhada.
 - Fortemente acoplados
- Multicomputadores: Vários computadores interconectados que interagem.
 - Cada um com sua memória privada, mas nenhuma memória em comum
 - Fracamente acoplados

2.1.6 Paralelismo no nível de processador

Computadores Matriciais

2.1.6 Paralelismo no nível de processador

Multiprocessadores

Memória

Parte do computador onde são armazenados programas e dados

2.2 Memória primária

Bit

- Unidade básica de memória
- Pode conter um 0 ou um 1
- Unidade mais simples possível
- Método mais para codificar informações digitais

2.2.1 Memória primária

BCD (Binary Coded Decimal – código decimal codificado em binário)

- 4 bits para armazenar um dígito decimal
- Dão 16 combinações, usadas para os 10 dígitos de 0 a 9

1944

decimal: 0001 1001 0100 0100

16 bits: de 0 a 9999 -> 10.000 combinações

binário: 0000011110011000

65.536 combinações

- Memórias consistem em uma quantidade de células
- Cada célula tem um número, denominado endereço
- Se a memória tiver n células, elas terão endereços de 0 a n-1
- Todas as células de uma memória contém o mesmo número de bits
- Se a célula consistir em k bits, ela pode conter quaisquer das 2^k diferentes combinações de bits.
- Um endereço de *m* bits: número máximo e células endereçáveis é 2^m

Três maneiras de organizar uma memória de 96 bits.

- A célula é a menor unidade endereçável.
- Anos atrás praticamente todos os fabricantes de computadores padronizaram células de 8 bits, que é denominada um byte.
- Bytes são agrupados em palavras.

Palavra de 32 bits (4 bytes/palavra):

 Número de bits por célula para alguns computadores comerciais historicamente interessantes.

Computador	Bits/célula	
Burroughs B1700	1	
IBM PC	8	
DEC PDP-8	12	
IBM 1130	16	
DEC PDP-15	18	
XDS 940	24	
Electrologica X8	27	
XDS Sigma 9	32	
Honeywell 6180	36	
CDC 3600	48	
CDC Cyber	60	

2.2.3 Ordenação de bytes

Endereço	Big endian					
0	0	1	2	3		
4	4	5	6	7		
8	8	9	10	11		
12	12	13	14	15		
Byte Palavra de 32 bits						

2.2.3 Ordenação de bytes

big endian -> bytes 3, ou 7, ou 11... little endian -> bytes 0, ou 4, ou 8...

2.2.3 Ordenação de bytes

- (a) Registro pessoal para uma máquina big endian
- (b) O mesmo registro para uma máquina little endian
- (c) Resultado da transferência de big endian para little endian
- (d) Resultado do deslocamento de bytes (c)