MAT605 Exam

Logic and Foundations with Haskell June 1st, 2023

Full Name:			
Student No.:			

Instructions

- (i) Fill in your info on the lines provided above and on each new page.
- (ii) Clearly mark your answers by crossing the corresponding checkboxes.
- (iii) Each question may have multiple correct answers (except those marked single choice).
- (iv) Points are awarded for each correctly checked / unchecked box.
- (v) If a question seems unclear, you can write a justification for your answers.

Question:	1	2	3	4	5	6	7	8	9
Points:	1	1	1	1	2	2	1	11/2	1
Score:									
Question:	10	11	12	13	14	15	16	17	18
Points:	1	1	1	1	1	1	1	2	1
Score:									
Question:	19	20	21	22	23	24	25	26	27
Points:	2	1	1/2	1	1/2	1	1	1	1
Score:									
Question:	28	29	30	31	32	33	34	35	Total
Points:	1	2	4	11/2	2	2	1	2	46
Score:									

Essential theory questions

Propositional Logic Let ϕ and ψ be formulas of propositional logic.

4. (1 point) Which of the following statements are correct?

 \square ϕ and ψ are logically equivalent if $(\phi \leftrightarrow \psi)$ is a tautology.

1. (1 point) Suppose p₀ = True, p₁ = False and p₂ = False. What is the truth value of the following propositional logic formulas (single choice):

(a) ((¬p₀) ∨ (p₁ → p₂)) A. True B. False
(b) (p₀ ∧ ((¬p₁) ↔ p₂)) A. True B. False

2. (1 point) Write down the parsing tree for (p₀ ∧ (¬p₁)):
3. (1 point) Which of the following statements are correct?

□ A formula is a tautology / logical validity if it is true for some assignment of truth values to atomic propositions.

□ A formula is a tautology / logical validity if it is true for any assignment of truth values to atomic propositions.
□ If φ is a tautology, then (φ → ψ) is a tautology.
□ If φ is a tautology, then (ψ → φ) is a tautology.

 \Box ϕ and ψ are *logically equivalent* if the have the same truth value for any assignment of truth values to atomic propositions.

 \square ϕ and ψ are logically equivalent if whenever ϕ is true, then ψ is true.

 \square ϕ and ψ are logically equivalent if they contain the same atomic propositions.

First Order Logic

, – ,	Which of the following first order logic formulas translate the following state- le allow for restricted quantification.
(a) Ther	e is a smallest natural number n .
	$\square \ \exists n \in \mathbb{N} \ \exists m \in \mathbb{N} : n \le m$
	$\square \ \exists n \in \mathbb{N} \ \forall m \in \mathbb{N} : n \le m$
	$\square \ \forall m \in \mathbb{N} \ \exists n \in \mathbb{N} : n \le m$
	$\square \ \forall m \in \mathbb{N} \ \forall n \in \mathbb{N} : n \le m$
(b) For ϵ	each natural number n there is a natural number m which is bigger than n .
	$\square \ \forall n \ \exists m : (n \in \mathbb{N} \to (m \in \mathbb{N} \land n < m))$
	$\square \ \forall n \in \mathbb{N} \ \exists m \in \mathbb{N} : n < m$
	$\Box \ \forall n \ \exists m : (n \in \mathbb{N} \land (m \in \mathbb{N} \land n < m))$
	$\square \ \forall n \ \exists m : (n \in \mathbb{N} \to (m \in \mathbb{N} \to n < m))$
Informal Pr	oof Theory
6. (2 points)	Which of the following are valid proof rules for statements Φ and Ψ :
	To prove $\Phi \vee \Psi$, it is necessary to prove both Φ and $\neg \Psi$.
	To prove $\Phi \wedge \Psi$, it is necessary to prove both Φ and Ψ .
	To prove $\Phi \to \Psi$, it is sufficient to assume Φ and prove Ψ .
	Given $\neg \Phi$, one can conclude Ψ .
	To prove $\forall x \Phi(x)$, prove $\Phi(x)$ for some x of your choice.
	Given $\neg \Phi$ and Φ , one can conclude Ψ .
	Given $\Phi \leftrightarrow \Psi$ and Ψ , one can conclude Φ
	Given $\exists \Phi(x)$ and any x , one can conclude $\Phi(x)$.
Natural Dec	luction
7. (1 point)	Which of the following statements are correct?
	A derivation is a formal proof of a conclusion ϕ that uses the natural deduction proof rules.
	A derivation of ϕ is a sequence of sequents that proves a formula ϕ .
	A sequent is a formal expression $\Gamma \vdash \phi$ saying that there is a derivation of ϕ from assumptions in Γ .
	A sequent is a formal proof $\Gamma \vdash \phi$ of a conclusion ϕ from assumptions in Γ that uses the natural deduction sequent rules.

- 8. $(1 \frac{1}{2} \text{ points})$ Which of the following are correct natural deduction proofs?
 - $\square \quad \frac{\phi \quad \forall \psi}{(\phi \to \psi)} \quad \square \quad \frac{\phi \quad \psi}{(\phi \land \psi)} \quad \square \quad \frac{\psi}{(\phi \lor \psi)} \quad \square \quad \frac{(\neg \psi)}{\frac{\bot}{\neg (\neg \phi)}} \quad \square \quad \frac{(\phi \lor \psi) \quad (\neg \psi)}{\phi}$
- 9. (1 point) Consider the introduction rule for \leftrightarrow :

$$\frac{\frac{\Gamma}{\vdots}}{(\phi \to \psi)} \quad \frac{\frac{\Delta}{\vdots}}{(\psi \to \phi)}$$
$$\frac{(\phi \leftrightarrow \psi)}{(\phi \leftrightarrow \psi)}$$

Which of the following sequent rules corresponds to the above (single choice)?

- A. If $\Gamma \vdash (\phi \to \psi)$ and $\Delta \vdash (\psi \to \phi)$, then $\Gamma \vdash (\phi \leftrightarrow \psi)$.
- B. If $\Gamma \vdash (\phi \to \psi)$ and $\Delta \vdash (\psi \to \phi)$, then $\Gamma \cup \Delta \vdash (\phi \leftrightarrow \psi)$.
- C. If $\Gamma \cup \Delta \vdash (\phi \leftrightarrow \psi)$, then $\Gamma \vdash (\phi \rightarrow \psi)$ and $\Delta \vdash (\psi \rightarrow \phi)$.
- D. If $\Gamma \vdash (\phi \to \psi)$ and $\Delta \vdash (\psi \to \phi)$, then $\Gamma \vdash (\phi \leftrightarrow \psi)$ or $\Delta \vdash (\phi \leftrightarrow \psi)$

Formal Propositional Logic

- 10. (1 point) Which of the following are formulas of $LP(\sigma)$ for $\sigma := \{p_i : i \in \mathbb{N}\}$?
 - $\square ((p_0 \wedge \bot) \to p_{55}) \quad \square (q_1 \wedge p_1) \quad \square ((\neg p_{2023}) \leftrightarrow (p_1 \vee p_{40})) \quad \square \exists p_0 : (p_0 \wedge p_1)$
- 11. (1 point) What does the unique parsing theorem say (single choice)?
 - A. Any formula ϕ can be expressed as \bot , p, $(\neg \psi)$, or $(\psi \diamondsuit \chi)$, where ψ and χ are formulas, $p \in \sigma$ and propositional symbol, and \diamondsuit is a binary logical connective.
 - B. Every formula ϕ given by a parsing tree is uniquely determined.
 - C. Any formula ϕ has exactly one of the following forms: \bot , p, $(\neg \psi)$, or $(\psi \diamondsuit \chi)$, where ψ and χ are formulas, $p \in \sigma$ and propositional symbol, and \diamondsuit is a binary logical connective.
 - D. Every formula ϕ can be parsed into a parsing tree.
- 12. (1 point) Which of the following statements are correct?
 - \square A σ -structure is a function $\sigma \to \{0,1\}$.
 - \square A σ -structure is a set of propositional symbols that generate all true $\mathsf{LP}(\sigma)$ formulas.
 - \square Any σ -structure A can be extended to a function A^* that assigns each $\mathsf{LP}(\sigma)$ formula a truth value in $\{0,1\}$.
 - \square Any σ -structure A can be extended to a function A^* that assigns each $\mathsf{LP}(\sigma)$ formula the value 1.

13.		Let A be a σ -structure. Which of the following statements are true? If $A^*(\neg \phi) = 1$, then $A^*(\phi) = 0$. If $A^*(\phi \lor \psi) = 1$, then $A^*(\phi) = 1$. If $A^*(\phi \to \psi) = 0$, then $A^*(\phi) = 1$. If $A^*(\phi \to \psi) = 0$, then $A^*(\psi) = 0$.
14.		Which of the following statements are correct? A σ -structure A is a model of ϕ if $A^*(\phi)=1$. $\Gamma \models \phi$ if every model of Γ is a model of ϕ . A σ -structure A is a model of ϕ if $A(p)=1$ for each atomic proposition p occurring in ϕ . $\Gamma \models \phi$ if each formula $\gamma \in \Gamma$ has a model A which is also a model for ϕ .
15.		Which of the following statements are correct? Soundness means that $\Gamma \models \phi$ implies $\Gamma \vdash \phi$. Soundness means that $\Gamma \vdash \phi$ implies $\Gamma \models \phi$. Completeness means that $\Gamma \models \phi$ implies $\Gamma \vdash \phi$. Completeness means that $\Gamma \vdash \phi$ implies $\Gamma \models \phi$.
Set	Theory	
16.		Which of the following are valid set-theoretic identities? $A \setminus B = B \setminus A$ $A \cup (B \cap \emptyset) = A$ $A \cap (B \cup C) = (A \cup B) \cap (A \cup C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
17.	(2 points)	Which of the following are axioms of ZFC? Every nonempty family of sets has an \subseteq -minimal element. Every nonempty family of sets has a choice function. For any set X , there is a set $\bigcup X$. For any set X , there is a set $\bigcap X$. For any set Y and any formula Y and Y are is a set Y and set Y and any formula Y is another class, then Y is a set. For any sets Y , Y and any formula Y is another class, then Y is a set. For any sets Y , Y and any formula Y is a set Y and set Y is a set.

- 18. (1 point) Which of the following are consequences of the regularity axiom? \square There is no infinite sequence of sets $X_0 \subseteq X_1 \subseteq X_2 \subseteq \dots$ \square There is no set X satisfying $X \in X$. \square There is no infinite sequence of sets $X_0 \ni X_1 \ni X_2 \ni \dots$ \square There is no infinite sequence of sets $X_0 \in X_1 \in X_2 \in \dots$ Essential Haskell questions 19. (2 points) Which of the following commands produce the list [0,1,2,3]? \Box [0]:[1,2,3] \Box 0: [1,2,3] □ [0..3] \square [x | x in N, x < 4] \Box [0,1,2] ++ 3 \Box [x | x <- [0..100], x < 4] □ take 4 [0..] \Box [0,1,2] ++ [2,3] 20. (1 point) Which of the following commands return 4? \Box head [x^2 | x <- [2,4,6]] □ (1 :: Int) + (2 :: Integer) □ (+) 1 3 □ 1 (+) 3 21. ($\frac{1}{2}$ point) What is the correct way to define a pair (single choice)? A. pair 1 2 B. [1,2] C. (1,2)D. $\{1,2\}$
- 22. (1 point) What is the type signature of max (single choice)?
 - A. $max :: Eq a \Rightarrow a \Rightarrow a \Rightarrow a$
 - B. max :: Ord a => a -> a -> a
 - $C. max :: Ord a \Rightarrow (a \rightarrow a) \rightarrow a$
 - D. max :: (Ord a, Ord b) => a -> b -> a
- 23. $(\frac{1}{2} \text{ point})$ What typeclass allows you to convert its members to strings (single choice)?
 - A. String B. Print C. Display D. Show

24.	(1 point)	Which of the following are correct signatures for $f x y = x + y$?
		f :: Int -> Integer -> Int
		f :: Num a => a -> a -> a
		f :: (Num a, Num b) => a -> b -> a
		f :: Int -> Int -> Int
25.	(1 point)	Which of the following are correct signatures for $f(x,y) = x + y$?
		f :: Num a => (a -> a) -> a
		f :: Num a => (a,a) -> a
		f :: Num a => a -> a -> a
		f :: Num (a,a) => a -> a
26.	` - /	Which of theses patterns will match every list with at least two elements? xs xs xs xs xs xs xs xs
27.	(1 point)	Which of the following functions are syntactically correct?
		<pre>f x y x = y = True</pre>
		<pre>f x y = x = y = True</pre>
		<pre>f x y x == y = True</pre>
		<pre>f x y = x == y = True</pre>
28.	(1 point)	Which of the following expressions return [1,4,9]?
		map (^2) [1,2,3]
		all (^2) [1,2,3]
		filter ($\x -> x 'in' [1,4,9]$) [110]
		filter (\x -> x 'elem' [1.4.9]) [110]

29.	(2 pc	oints) Which of the following expressions return True?
		\square if False then True else False
		\square if True then True else False
		□ and [True, True]
		□ or []
		\square any (<3) [4,5]
		\square and []
		□ all (<3) [0,1]
		☐ filter (== True) [True, False]
A	dva	nced questions
30.	, –	oints) Prove the following using natural deduction. Indicate what rules you are
		g in each step.
	(a)	$\vdash (\phi \to (\phi \lor \psi))$
	(1.)	
	(p)	$\{(\neg(\phi\to\psi))\}\vdash(\neg\psi)$

31. $(1 \frac{1}{2} \text{ points})$ Consider the following (fictitious) natural deduction rule:

$$\frac{\frac{\Gamma}{\vdots}}{\frac{(\phi \to \psi)}{(\phi \to \chi)}} \frac{\frac{\Delta}{\vdots}}{\frac{(\psi \to \chi)}{(\phi \to \chi)}}$$

Write down the corresponding sequent rule:

_

32. (2 points) Argue from scratch using the ZFC axioms that the symmetric difference $X \triangle Y := (X \setminus Y) \cup (Y \setminus X)$ of two sets X, Y is a set:

1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
I .		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		

- 33. (2 points) Let $R \subseteq X \times X$ be relation on X. Which of the following are true?
 - \square If R is reflexive, then $R \circ R \subseteq R$.
 - \square If R is reflexive, then $R \subseteq R \circ R$.
 - \square If R is transitive, then $R \circ R \subseteq R$.
 - \square If R is transitive, then $R \subseteq R \circ R$.
- 34. (1 point) Which of the following expressions returns 3 (single choice)?
 - A. foldr ($\x acc -> acc$) 0 [1,2,3]
 - B. foldr (\x acc -> x) 0 [1,2,3]
 - C. foldl ($\ac x -> x$) 0 [1,2,3]
 - D. foldl (\acc x -> acc) 0 [1,2,3]