INTRODUÇÃO A CONCEITOS DE COMPUTAÇÃO

Sistemas de numeração e conversão de bases

SUMÁRIO

- Sistemas de numeração em computação
- Conversão entre bases
- Codificação Binária Números

Sistemas de numeração em computação

Sistemas de numeração:

- Representação estruturada e dentro de um contexto de uma coleção de números através de numerais.
- Representações para o número 10:
 - + Chinês
 - X Romano
 - Egípcio

Sistemas de numeração em computação

Sistemas numéricos utilizados na Computação:

- → binário (base 2),
- → octal (base 8),
- → decimal (base 10),
- → hexadecimal (base 16).

Base							
10	8	16	2	10	8	16	2
0	0	0	0	8	10	8	1000
1	1	1	1	9	11	9	1001
2	2	2	10	10	12	A	1010
3	3	3	11	11	13	В	1011
4	4	4	100	12	14	C	1100
5	5	5	101	13	15	D	1101
6	6	6	110	14	16	Е	1110
7	7	7	111	15	17	F	1111

Convertendo para decimal:

$$(a_n a_{n-1} \dots a_0, a_{-1} a_{-2} \dots a_{-m})_x =$$
 $= a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots$
 $+ a_0 \cdot x^0 + a_{-1} \cdot x^{-1} + a_{-2} \cdot x^{-2} + \dots + a_{-m} \cdot x^{-m}$

Exemplos:

$$(1011)_b = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

= $1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 11$

$$(230,4)_8 = 2 \cdot 8^2 + 3 \cdot 8^1 + 0 \cdot 8^0 + 4 \cdot 8^{-1}$$

= $2 \cdot 64 + 3 \cdot 8 + 0 \cdot 1 + 4 \cdot \frac{1}{8} = 152, 5$

Convertendo da base decimal para base x:

Parte inteira: divide-se sucessivamente o valor pela base x.

Convertendo da base decimal para base x:

Parte fracionária: multiplicações sucessivas do número fracionário a ser convertido pela base.

$$0.3 \times 2 = 0.6$$
 $0.3_d = 0.010011001..._b$ $0.6 \times 2 = 1.2$ $0.2 \times 2 = 0.4$ $0.4 \times 2 = 0.8$ $0.8 \times 2 = 1.6$ $0.6 \times 2 = 1.2$

Exemplos: (1215,53)_d para base 16

Parte Inteira: $(1215)d = (4BF)_{16}$

Exemplos: $(1215,53)_d$ para base 16 $(1215,52)=(4BF,87A)_{16}$

Parte Fracionária: $(0,53)d = (0,87A)_{16}$

Base decimal: $123 = 1x10^2 + 2x10^1 + 3x10^0$

Representando um valor inteiro na base decimal como um número binário de tamanho N, precisaremos representar:

- → valor 0;
- → 2^{N-1} valores negativos;
- \rightarrow 2^{N-1} 1 valores positivos.

Há duas alternativas para a codificação binária de valores inteiros negativos:

- → notação de excesso;
- → notação de complemento de dois.

O valor do primeiro bit em ambas as notações representar o sinal do número.

Notação de excesso:

- → Bit de sinal igual a 1 para valores positivos
- → Bit de sinal igual a 0 para valores negativos

<u>0</u> 000	-8	<u>1</u> 000	0
0001	-7	1001	1
0010	-6	1010	2
0011	-5	1011	3
0100	-4	1100	4
0101	-3	1101	5
0110	-2	1110	6
0111	-1	1111	7

Notação de Complemento de dois:

- → Bit de sinal igual a 0 para valores positivos
- → Bit de sinal igual a 1 para valores negativos

<u>0</u> 000	0	<u>1</u> 000	-8
0001	1	1001	-7
0010	2	1010	-6
0011	3	1011	-5
0100	4	1100	-4
0101	5	1101	-3
0110	6	1110	-2
0111	7	1111	-1

```
5 = 1x2^{2}+0x2^{1}+1x2^{1}=

<u>0</u>101, <u>0</u>: sinal positivo
```

```
-5
5= 0101
Inverte(0101)= 1010
Soma 1 ao resultado
1010
+ 1
1011
```

0000	0	1000	-8
0001	1	1001	-7
0010	2	1010	-6
0011	3	1011	-5
0100	4	1100	-4
0101	5	3 101	-3
0110	6	1110	-2
0111	7	1111	-1

INTRODUÇÃO A CONCEITOS DE COMPUTAÇÃO

Sistemas de numeração e conversão de bases - Parte I