50.007 Machine Learning

Simriti Bundhoo 1006281

Homework 4

1

The parameters associated with the HMM are:

1. **Transition Probability** $(a_{(u,v)})$ which is the chances of moving from one state to another. It is calculated by:

$$a_{(u,v)} = \frac{count(u,v)}{count(u)}$$

2. **Emission Probability** $(b_u(o))$ which is the likelihood of observing a particular piece of data (like a word or symbol) given that the model is in a certain state. It is given by:

$$b_u(o) = \frac{count(u \to o)}{count(u)}$$

$$count(X) = 6$$

$$count(Y) = 6$$

$$count(Z) = 6$$

Transition Probability

$u \setminus v$	X	Y	Z	STOP
START	0.4	0	0.6	0
X	0	0.5	0.33	0.17
Y	0.17	0	0.17	0.66
Z	0.5	0.5	0	0

$$\begin{array}{llll} a_{(START,X)} = \frac{2}{5} = 0.4 & a_{(X,X)} = \frac{0}{6} = 0 & a_{(Y,X)} = \frac{1}{6} = 0.17 & a_{(Z,X)} = \frac{3}{6} = 0.5 \\ a_{(START,Y)} = \frac{0}{5} = 0 & a_{(X,Y)} = \frac{3}{6} = 0.5 & a_{(Y,Y)} = \frac{0}{6} = 0 & a_{(Z,Y)} = \frac{3}{6} = 0.5 \\ a_{(START,Z)} = \frac{3}{5} = 0.6 & a_{(X,Z)} = \frac{2}{6} = 0.33 & a_{(Y,Z)} = \frac{1}{6} = 0.17 & a_{(Z,Z)} = \frac{0}{6} = 0 \\ a_{(START,STOP)} = \frac{0}{5} = 0 & a_{(X,STOP)} = \frac{1}{6} = 0.17 & a_{(Y,STOP)} = \frac{4}{6} = 0.66 & a_{(Z,STOP)} = \frac{0}{6} = 0 \end{array}$$

Emission Probability

$u \setminus o$	a	b	С
X	0.17	0.5	0.33
Y	0.33	0	0.67
Z	0.17	0.33	0.5

$$\begin{array}{lll} b_X(a) = \frac{1}{6} = 0.17 & b_Y(a) = \frac{2}{6} = 0.33 & b_Z(a) = \frac{1}{6} = 0.17 \\ b_X(b) = \frac{3}{6} = 0.5 & b_Y(b) = \frac{0}{6} = 0 & b_Z(b) = \frac{2}{6} = 0.33 \\ b_X(c) = \frac{2}{6} = 0.33 & b_Y(c) = \frac{4}{6} = 0.67 & b_Z(c) = \frac{3}{6} = 0.5 \end{array}$$

Using the parameters obtained, the following observations can be made:

- We cannot move directly from START to STOP. $(a_{(START,STOP)} = 0)$
- We cannot move directly from X to X. $(a_{(X,X)} = 0)$
- We cannot move directly from Y to Y. $(a_{(Y,Y)} = 0)$
- We cannot move directly from Z to Z. $(a_{(Z,Z)} = 0)$
- We cannot move directly from Z to STOP. $(a_{(Z,STOP)}=0)$

The possible paths are depicted in the picture:

We thus have the following three possible paths:

- 1. $Start \rightarrow X \rightarrow Y \rightarrow STOP$
- 2. $Start \rightarrow Z \rightarrow Y \rightarrow STOP$
- 3. $Start \rightarrow Z \rightarrow X \rightarrow STOP$

Using backtracking,

- the second last node in the path can be X or Y. But, the observation sequence is **(b,b)** and $b_Y(b) = 0$. Therefore the second last node should be X.
- If the second last node is X, the second node (from the START) is Z.

We thus have this only possible path: $Start \to Z \to X \to STOP$. The score for this path is:

Last Path =
$$a_{(START,Z)} \times b_{Z}(b) \times a_{(Z,X)} \times b_{X}(b) \times a_{(X,STOP)}$$

= $0.6 \times 0.33 \times 0.5 \times 0.5 \times 0.17$
= 0.00833

Therefore the path that follows that observation sequence is: $Start \rightarrow Z \rightarrow X \rightarrow STOP$

3

To modify the algorithm to incorporate the prior knowledge $y_i \neq V$ for a specific observation x_i , we need to set the transition probabilities from tag V to other tags to be very low, to discourage the sequence from including tag V after observing x_i . Here is how the algorithm can be implemented:

1. Initialise the Viterbi matrix with the emission probabilities for the first observation x_1 and the initial probabilities for the tags.

- 2. For each subsequent observation x_i , calculate the emission probabilities for each tag y_k based on the observation x_i .
- 3. If x_i is known to not have tag V, set the transition probabilities from tag V to other tags to be very low.
- 4. Run the Viterbi algorithm as per usual. The most probable sequence of tags will thus be outputted according to the prior knowledge.

4

Using soft EM, the following can be deduced from the diagram:

- Z is in a state of transition.
- X and Y are emitted from Z.

Therefore,

- $a_{(u,v)} = \frac{count(u,v)}{count(u)}$ where u, v are Z elements.
- $b_v(X_i) = \frac{count(X_i \to o)}{count(X)}$
- $b_v(Y_i) = \frac{count(Y_i \to o)}{count(Y)}$

Using the above, we can compute the forward and the backward probabilities.

Forward Probability:

 α_i : The sum of the scores of all paths from START to node u at j.

The base case: $\alpha_u(1) = 1$

The general case: $\alpha_u(i+1) = \sum_v \alpha_v(i) a_{(u,v)} b_v(X_i) b_v(Y_i)$

Backward Probability:

 βi : The sum of the scores of all paths from node u at j to STOP.

The base case: $\beta u(n) = a_{(u,STOP)}b_u(X_n)b_u(Y_n)$

The general case: $\beta u(i+1) = \sum_{v} \beta v(i+1) a_{(u,v)} b_u(X_i) b_u(Y_i)$

Forward Probability Time Complexity:

The time complexity for computing α for a single state at a single time step is O(T). So, computing the forward scores for each state and each time step, the overall time complexity of the forward algorithm is O($n \times T^2$).

Forward Probability Time Complexity: The overall time complexity of the backward algorithm is similar to the forward algorithm: $O(n \times T^2)$.

3

Overall Time Complexity: $O(n \times T^2)$