

ROTEIRO

- Problema da ABB
- Arvores balanceadas
- Definição das árvores AVL
- Como balancear (rotações)

Problema da Arvore Binária de Busca

 A eficiência de uma árvore binária como estrutura de busca depende da disposição de seus elementos.

 Qual o pior caso, para se encontrar R? Determine o numero de comparações:

Problema da Árvore Binária de Busca

- Quando a árvore degenera para uma lista encadeada é sempre o pior caso.
- Entretanto, o desempenho da busca já é prejudicado pelo desbalanceamento que se vê antes disso ocorrer também.

COMPLEXIDADE DAS OPERAÇÕES EM ABB

Tempo médio de uma busca, inserção ou remoção:
O(log n)

Já no pior caso: O(n)

Solução: Manter a árvore balanceada

ARVORE BINÁRIA BALANCEADA

- o Diz-se que uma árvore binária é balanceada:
- Se para cada nó a diferença de altura entre o ramo a esquerda(hl) e a direita(hr) for de no máximo 1:
- |hl-hr|<=1</p>
- o hl-hr é conhecido como fator de balanceamento

EXERCÍCIO 1

 Calcular o fator de balanceamento para cada nó da árvore:

EXERCÍCIO2

 Calcular o fator de balanceamento para cada nó da árvore:

Considerações

- o Árvore do exercício 1 está balanceada
- o Árvore do exercício 2 está desbalanceada

ÁRVORES AVL

 Árvores de altura balanceada ou de altura equilibrada,introduzidas em 1962 por dois matemáticos russos, G. M. Adel'son-Vel'skii e E. M. Landis.

 Propõe fazer o balanceamento da árvore a cada inserção ou remoção que promover o desbalanceamento

ÁRVORES AVL

- Uma árvore binária vazia é balanceada AVL.
- Uma árvore não-vazia, T = {r, Tl, Tr}, é balanceada AVL se tanto Tl quanto Tr forem balanceadas AVL e |Hl – Hr| <= 1, onde Hl é a altura de Tl e Hr é a altura de Tr.

ÁRVORES AVL

 Idéia básica: cada nó mantém uma informação adicional, chamada fator de balanceamento, que indica a diferença de altura entre as subárvores esquerda e direita.

- < 0 se a subárvore da esquerda for maior
 - 0 se forem do mesmo tamanho
- > 0 se a subárvore da direita for maior

Rotações

 Nas operações de inserção e remoção de elementos, o balanceamento da árvore resultante é ajustado através da operação de rotação, que preserva a ordenação da árvore.

Rotações

- Para o rebalanceamento da árvore é necessário calcular o Fator de Balanceamento para verificar qual rotação deve ser efetuada afim de rebalanceála.
 - Se fator de balanceamento é positivo, as rotações são feitas à direita.
 - Se fator de balanceamento é negativo, as rotações são feitas à esquerda.

PROPRIEDADES DA ROTAÇÃO

- A rotação não destrói a propriedade de ordenação dos dados;
- Depois da rotação, os nós rotacionados ficam com fator de balanço zero;
- Depois da rotação, a árvore continua com a mesma altura que tinha anteriormente (antes da inserção que desbalanceou a árvore)

TIPOS DE SITUAÇÕES E ROTAÇÕES

- Situação 1: Nó desbalanceado com um fator de balanço positivo e subárvore da esquerda com fator positivo
 - Rotação à direita simples
 - as duas primeiras arestas no caminho da inserção vão para a direita

EXEMPLO DE SITUAÇÃO 1

Subárvore balanceada

Subárvore desbalanceada após inserção

Altura de B_L aumenta para h+1

Exemplo de Rotação à direita simples

 B_R

Altura de B_L aumenta para *h*+1

Depois da inserção

Depois do rebalanceamento

TIPOS DE SITUAÇÕES E ROTAÇÕES

- Situação 2: Nó desbalanceado com um fator de balanço negativo e subárvore da direita com fator negativo
 - Rotação à esquerda simples
 - as duas primeiras arestas no caminho da inserção vão para a esquerda

EXEMPLO DE SITUAÇÃO 2

Subárvore balanceada

Subárvore desbalanceada após inserç<mark>ão</mark>

Altura de B_R aumenta para h+1

EXEMPLO DE ROTAÇÃO À ESQUERDA SIMPLES

Subárvore desbalanceada após inserção

Altura de B_R aumenta para *h*+1

Arvore original balanceada

Depois da inserção

Depois da inserção

Depois do rebalanceamento

TIPOS DE SITUAÇÕES E ROTAÇÕES

- Situação 3: Nó desbalanceado com um fator de balanço positivo e subárvore da esquerda com fator negativo
 - Necessário realizar duas rotações (Esquerda-Direita):
 - Primeiro: No nó negativo, aplicar a rotacionar à esquerda simples.
 - Segundo: No nó positivo, aplicar a rotação à direita simples

EXEMPLO DE SITUAÇÃO 3

Subárvore balanceada

Subárvore desbalanceada após inserção

Exemplo de Rotação Esquerda-Direita

Subárvore desbalanceada após inserção

Primeira rotação à esquerda

Segunda rotação à direita

Arvore original balanceada

Depois da inserção

Primeiro Rotação Esquerda em Agosto

Depois da inserção

TIPOS DE SITUAÇÕES E ROTAÇÕES

- Situação 4: Nó desbalanceado com um fator de balanço negativo e subárvore da direita com fator positivo
 - Necessário realizar duas rotações (Direita-Esquerda):
 - Primeiro: No nó positivo, aplicar o rotacionar à direita simples.
 - Segundo: No nó negativo, aplicar a rotação à esquerda simples

EXEMPLO DE SITUAÇÃO 4

Subárvore balanceada

Subárvore desbalanceada após inserção

EXEMPLO DE ROTAÇÃO (DIREITA-ESQUERDA)

Subárvore desbalanceada após inserção

Subárvore rebalanceada

Arvore original

Depois da inserção

A IMPORTÂNCIA DA ÁRVORE BALANCEADA

 O custo da maioria das operações depende diretamente da altura da árvore, por isso o desejo de se ter a menor altura possível

Altura	Nós em um nível	Total de nós
1	1	1
2	2	3
3	4	7
4	8	15
11	1024	2047
14	8192	16383
h	2^{h-1}	$2^{h}-1$

h é o número máximo de testes a serem feitos

EXERCÍCIO 3

