Programozáselmélet - A megoldás fogalma

Készítette: Borsi Zsolt

1. Programfüggvény

Definíció: A $p(S) \subseteq A \times A$ reláció az $S \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ program programfüggvénye, ha

- 1. $\mathcal{D}_{p(S)} = \{ a \in A \mid S(a) \subseteq \bar{A}^* \}$
- 2. $\forall a \in \mathcal{D}_{p(S)} : p(S)(a) = \{b \in A \mid \exists \alpha \in S(a) : b = \alpha_{|\alpha|}\}$

2. Megoldás

Definíció: Azt mondjuk hogy az S program megoldja az F feladatot (más szavakkal: az S program teljesen helyes az F feladatra nézve), ha

- 1. $\mathcal{D}_F \subseteq \mathcal{D}_{p(S)}$
- 2. $\forall a \in \mathcal{D}_F : p(S)(a) \subseteq F(a)$

3. Parciális helyesség

Definíció (Gyenge programfüggvény): A $\tilde{p}(S) \subseteq A \times (A \cup \{fail\})$ reláció az $S \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ program gyenge programfüggvénye, ha

- 1. $\mathcal{D}_{\tilde{p}(S)} = \{ a \in A \mid S(a) \cap (\bar{A} \cup \{fail\})^* \neq \emptyset \}$
- 2. $\forall a \in \mathcal{D}_{\tilde{p}(S)} : \tilde{p}(S)(a) = \{b \in A \cup \{fail\} \mid \exists \alpha \in S(a) \cap (\bar{A} \cup \{fail\})^* : b = \alpha_{|\alpha|}\}$

Definíció (Parciális helyesség): Azt mondjuk hogy az S program parciálisan helyes az F feladatra nézve, ha

1. $\forall a \in \mathcal{D}_F : \tilde{p}(S)(a) \subseteq F(a)$