

Sistema de riego inteligente con ESP32 y FreeRTOS

Sebastián Aristizabal Castañeda Alejandro Arias Ortiz Luis Mateo Ochoa

¿Qué es un sistema IoT?

IoT = Son las siglas de Internet de las Cosas. Se refiere a la conexión de objetos físicos (como sensores, electrodomésticos, plantas, etc.) a internet para que puedan intercambiar información y automatizar tareas.

Objetivos

Objetivo principal:

Desarrollar un sistema de riego inteligente usando ESP32 y FreeRTOS, automatizar el riego basado en los niveles de humedad del suelo y gestionar múltiples tareas de manera eficiente.

Objetivos específicos:

- Configurar el ESP32 con FreeRTOS para gestionar tareas concurrentes.
- Monitorear la humedad del suelo y activar la bomba de riego cuando sea necesario.
- · Implementar persistencia de datos, guardando el historial de humedad y riego.
- · Evaluar el rendimiento del sistema, midiendo uso de memoria, tiempos de respuesta y eficiencia.
- Realizar pruebas experimentales para validar el funcionamiento y desempeño del sistema.

Marco teórico

Microcontrolador ESP32

Bajo consumo energético y bajo costo.

Conectividad Wi-Fi y Bluetooth.

Ideal para proyectos IoT como el sistema de riego inteligente.

Sistema operativo en tiempo real (RTOS)

FreeRTOS: Un sistema operativo ligero para gestionar tareas concurrentes de forma eficiente.

Permite que el ESP32 realice varias tareas al mismo tiempo de manera predecible.

Conceptos clave

Concurrencia y persistencia

Metodología del proyecto

Fase 2 Fase 3 Fase 1 Fase 4 Fase 5 Guardamos el historial de Instalación de Visual Lectura de humedad del Realizamos pruebas para Elaboramos un informe Studio Code y PlatformIO humedad y acciones del suelo y control de la medir rendimiento y final con las conclusiones para programar el ESP32 sistema para no perder bomba de riego. eficiencia. y posibles mejoras. y usar FreeRTOS. información.

Componentes de Hardware

Diseño de experimentos

Validación de la concurrencia	Validación de la persistencia	Evaluación del uso de recursos
Configurar dos tareas: una para el sensor y otra para la bomba.	Guardar niveles de humedad en la memoria NVS y verificar después del reinicio.	Medir el uso de memoria y energía mientras el sistema funciona.
Métricas : - Tiempos de respuesta - Uso de CPU	Métricas: - Verificación de datos antes y después del reinicio - Tiempos de acceso a memoria	Métricas : - Uso de memoria - Consumo de energía

	FreeRTOS	Arduino
Concurrencia	Tareas concurrentes (leer sensor y controlar bomba al mismo tiempo)	Secuencial, no puede hacer ambas tareas al mismo tiempo
Uso de memoria	Usando FreeRTOS, la memoria se distribuye entre tareas, pero sigue siendo eficiente	Usa memoria de manera sencilla, sin la sobrecarga de un sistema operativo
Control de tareas	Planificación avanzada, tareas que se ejecutan de forma no bloqueante	Secuencial y bloqueante, una tarea debe terminar antes de empezar otra
Complejidad del código	Más complejo, requiere configuración de tareas y mutex	Más simple, fácil de entender para tareas sencillas
Persistencia de datos	Usa NVS para guardar el estado de la bomba	No hay persistencia (sin uso de NVS)
Eficiencia	Mejor eficiencia en sistemas más complejos, más escalable	Bueno para proyectos sencillos, pero no adecuado para tareas concurrentes
Facilidad de prueba	Requiere probar tareas concurrentes y sincronización	Fácil de probar, pero no soporta tareas simultáneas

Conclusiones

Funcionamiento del sistema:

• El sistema de riego inteligente con ESP32 y FreeRTOS es técnicamente viable y puede gestionar tareas concurrentes sin bloqueos, asegurando la persistencia de los datos.

Rendimiento:

 El uso de CPU y memoria es eficiente, permitiendo que el sistema funcione sin comprometer el rendimiento ni consumir excesiva energía.

Mejoras y futuro:

 El sistema puede ampliarse añadiendo más sensores y mejorando la eficiencia energética, con potencial para integrarse con otras soluciones IoT.

GRACIAS

