346532,	Daniel Boschmann
348776,	Anton Beliankou
356092.	Daniel Schleiz

2	3	4	5	\sum
/7	/5	/8	/6	/26

Gruppe **G**

Aufgabe 2 (Punkte: /7)

(a)

Es existieren die Redukte $(\mathbb{N}, +, \cdot, <), (\mathbb{N}, \cdot, <), (\mathbb{N}, +, <), (\mathbb{N}, +, \cdot), (\mathbb{N}, <), (\mathbb{N}, +), (\mathbb{N}, \cdot)$ und (\mathbb{N}) .

(b)

Für $n\subseteq\mathbb{N}$ und $n\neq\emptyset$ ist $\mathfrak{N}_n=(n,\leq)$ eine Substruktur von \mathfrak{N}_1 , da sich jede Teilmenge der natürlichen Zahlen auf die selbe Weise ordnen lässt. Dies sind alle möglichen Substrukturen. Sei $n\subseteq\mathbb{N},\,n\neq\emptyset$ und sei $N_n=\{2^i\cdot m\mid m\in n,i\in\mathbb{N}\}$ sowie $N_k=\{\mathbb{N}\backslash Q\mid Q=\{0,..,k\},\ k\in\mathbb{N}\}$ die Teilmengen von \mathbb{N} ohne Anfangselemente 0 bis k. Ferner sei $N_{nk}:=N_2\cup N_k$. Dann ist $\mathfrak{N}_{N_n}=(N_n,f)$ eine Substruktur von \mathfrak{N}_2 , da man alle Elemente in n um die Vielfachen mit allen Zweierpotenzen erweitern muss, da die Substruktur sonst nicht $\{f\}$ -abgeschlossen wäre. Ebenfalls ist $\mathfrak{N}_{N_{nk}}=(N_n,f)$ eine Substruktur, da man ab einem gewissen k auch alle Elemente der natürlichen Zahlen nehmen kann, die größer als k sind. Für beliebige $k\in\mathbb{N}$ und $n\subseteq\mathbb{N},\,n\neq\emptyset$ sind dies alle möglichen Substrukturen.

(c)
(Z/3Z,+) besitzt die Substrukturen {0} und {0,1,2}, da {0,1} mit der Addition modulo 3 nicht abgeschlossen ist (1+1=2 liegt nicht in der Menge).
(Z/4Z,+) besitzt die Substrukturen {0} und {0,1,2,3} und {0,2}. ({0,1} nicht abgeschlossen wie vorher begründet, {0,1,2} ebenfalls nicht, da 1 + 2 = 3, {0,1,3} nicht da 1 + 1 = 2, {0,2} und {0,3} analog auch nicht.)

Aufgabe 3 (Punkte: /5)

(a)

Die Aussage des Satzes ist, dass ein Knoten x existiert, welcher nicht inzident zu einer Kante ist. Die Aussage trifft nur auf \mathcal{G}_2 , der Knoten oben links ist isoliert.

(b)
Die Aussage des Satzes ist, dass ein Knoten x existiert, welcher über eine Kante mit zwei anderen, verschiedenen, Knoten y, z verbunden ist. Dies trifft auf die Graphen \mathcal{G}_1 (x ist Knoten oben links) und \mathcal{G}_4 (x ist z B. der Knoten unten rechts) zu. Der Satz gilt für die restlichen Graphen nicht, da

verschiedenen, Knoten y, z verbunden ist. Dies trifft auf die Graphen \mathcal{G}_1 (x ist Knoten oben links) und \mathcal{G}_4 (x ist z.B. der Knoten unten rechts) zu. Der Satz gilt für die restlichen Graphen nicht, da dessen Knoten höchstens Grad 1 haben und somit nicht zu mind. zwei anderen adjazent sind.

(c) Die Aussage des Satzes ist, dass im Graphen zwei verschiedene Knoten stets durch eine Kante verbunden sein sollen. (Das " $\exists z(...)$ " ist redundant, da innerhalb der Klammern Exy nochmal in einer Konjunktion auftritt.) Dies trifft nur auf den Graphen \mathcal{G}_3 , da in allen anderen graphen Knoten existieren, welche nicht adjazent zueinander sind.

Aufgabe 4 (Punkte: /8)

(a)

$$\varphi_a(a,b) \coloneqq \exists x(a \cdot x = b)$$

(b)

$$\varphi_b(a) := \neg \exists x \neg \exists y (x \neq 1 \land y \neq 1 \land x \cdot y = a) \land a \neq 1$$

(c)

$$\varphi_c(a,b) := \neg \exists n \neg \exists c \neg \exists d (n \cdot c = a \land n \cdot d = b)$$

(d)

$$\varphi_d(a) := (a = 1) \lor \forall x (\varphi_a(x, a) \land \varphi_b(x) \to 1 + 1 = x)$$

(e)

$$\varphi_e(a,b) := \forall x (\varphi_d(x) \to \forall y \forall z (((x+z \neq b) \to (x+y \neq a)) \land ((x+y \neq a) \to (x+z \neq b)))$$

Aufgabe 5 (Punkte: /6)

(a)

Betrachte für den Induktionsanfang einen Term t, welcher nur aus einer Variable x besteht. Dann gilt

$$[t]^{(\mathfrak{A},\beta)} = [x]^{(\mathfrak{A},\beta)} = \beta(x) = [x]^{(\mathfrak{B},\beta)} = [t]^{(\mathfrak{B},\beta)}.$$

Seien nun für den Induktionsschritt $t_1, ..., t_n$ Terme für die Aussage gilt und sei f ein n-stelliges Funktionssymbol aus $\mathfrak A$ bzw. $\mathfrak B$. (Gleiche Signatur, da $\mathfrak A$ eine Substruktur.) Dann gilt

(b)

Sei $\mathfrak A$ eine Substruktur von $\mathfrak B$ und seien $a_1,...,a_k$ aus dem Universum von $\mathfrak A$. Zeige die Aussage induktiv über den Aufbau von FO Formeln.

Induktions anfang: Seien Terme t_i mit höchstens den Variablen $a_1,...,a_k$ aus dem Universum von \mathfrak{A} .

- Sei $\varphi = (t_1 = t_2)$. Dann gilt $\mathfrak{A} \models \varphi \Leftrightarrow \llbracket t_1 \rrbracket^{\mathfrak{A}} = \llbracket t_2 \rrbracket^{\mathfrak{A}} \stackrel{(a)}{\Leftrightarrow} \llbracket t_1 \rrbracket^{\mathfrak{B}} = \llbracket t_2 \rrbracket^{\mathfrak{B}} \Leftrightarrow \mathfrak{B} \models \varphi$.
- Sei $\varphi = (Pt_1...t_n)$, wobei P ein m-stelliges Relationssymbol aus \mathfrak{A} (und somit aus \mathfrak{B} , da eine Substruktur die selbe Signatur hat.)

Dann gilt
$$\mathfrak{A} \models \varphi \Leftrightarrow (\llbracket t_1 \rrbracket^{\mathfrak{A}}, ..., \llbracket t_n \rrbracket^{\mathfrak{A}}) \in P^{\mathfrak{A}} \stackrel{Def}{\Leftrightarrow} (\llbracket t_1 \rrbracket^{\mathfrak{A}}, ..., \llbracket t_n \rrbracket^{\mathfrak{A}}) \in P^{\mathfrak{B}} \cap A^m \stackrel{(*)}{\Leftrightarrow} (\llbracket t_1 \rrbracket^{\mathfrak{A}}, ..., \llbracket t_n \rrbracket^{\mathfrak{A}}) \in P^{\mathfrak{B}} \stackrel{(a)}{\Leftrightarrow} (\llbracket t_1 \rrbracket^{\mathfrak{B}}, ..., \llbracket t_n \rrbracket^{\mathfrak{B}}) \in P^{\mathfrak{B}} \Leftrightarrow \mathfrak{B} \models \varphi [(*) \text{ Da } a_1, ..., a_k \text{ aus dem Universum von } \mathfrak{A}].$$

Induktionsschritt: Die Behauptung gelte für Formeln ψ, φ , dessen Terme höchstens Variablen $a_1, ..., a_k$ aus dem Universum von $\mathfrak A$ enthalten.

- $\mathfrak{A} \models \neg \varphi \Leftrightarrow \mathfrak{A} \not\models \varphi \stackrel{IV}{\Leftrightarrow} \mathfrak{B} \not\models \varphi \Leftrightarrow \mathfrak{B} \models \neg \varphi$
- $\mathfrak{A} \models (\varphi \lor \psi) \Leftrightarrow \mathfrak{A} \models \varphi \lor \mathfrak{A} \models \psi \stackrel{IV}{\Leftrightarrow} \mathfrak{B} \models \varphi \lor \mathfrak{B} \models \psi \Leftrightarrow \mathfrak{B} \models (\varphi \lor \psi)$

MATHEMATISCHE LOGIK
Übung 5
346532, Daniel Boschmann
348776, Anton Beliankou
21. Mai 2017
356092, Daniel Schleiz

- $\bullet \ \mathfrak{A} \models (\varphi \wedge \psi) \Leftrightarrow \mathfrak{A} \models \varphi \wedge \mathfrak{A} \models \psi \overset{IV}{\Leftrightarrow} \mathfrak{B} \models \varphi \wedge \mathfrak{B} \models \psi \Leftrightarrow \mathfrak{B} \models (\varphi \wedge \psi)$
- $\mathfrak{A} \models (\varphi \rightarrow \psi) \Leftrightarrow \mathfrak{A} \not\models \varphi \lor \mathfrak{A} \models \psi \stackrel{IV}{\Leftrightarrow} \mathfrak{B} \not\models \varphi \lor \mathfrak{B} \models (\varphi \rightarrow \psi)$

Somit ist die Aussage für beliebige quantorenfreie FO-Formeln gezeigt. Es folgt insbesondere, da die Substruktur $\mathfrak A$ beliebig gewählt war, dass jede Substruktur von $\mathfrak B$ die gleichen quantorenfreien Sätze erfüllt, da dies gerade die Rückrichtung der gezeigten Aussage ist.