The Multi-Armed Bandit for App Store Optimization

Introduction

100% of users pass through the App Store essentially making it your new "homepage" and impacting your business success.

Introduction

Goal

App Installation Flow

StoreMaven

The Challenge

Minimize the cost per insight without compromising accuracy

Today's Talk

1	Why not Proportion Testing?
2	Multi-Armed Bandit – consideration & rejectio
3	Cracking our business challenge with StoreIQ
4	Q & A

Proportion Testing – Why not?

High cost per experiment: collecting large number of samples to achieve statistical validity in classical A/B test

Multiple Hypotheses problem: test that H_0 : $P_i = P_j$, $i \neq j$ when there are more than 2 variations, significance is 'harder' to reach

Accuracy issue: assumes all observations are IID (Independent Identical Distribution)

Robust experimental design is barely achievable pre-test though crucial for valid frequentist setting in the dynamic ASO ecosystem

How?

Multi-Armed Bandit

Exploitation vs Exploration dilemma

Bandits try to balance the trade-off to maximize total rewards

$$R_{T} = \Sigma_{t=1}^{T} (P^{*} - PA_{(t)})$$

$$\$2/5 = \$0.40 \quad \$1/3 = \$0.33 \quad \$3/5 = \$0.60 \quad \$2/4 = \$0.50$$

Multi-Armed Bandit – Why Not?

Experiments are conducted in our 'sandbox' testing environment, no real-time optimizations are done (our regret is defined differently)

Doesn't necessarily reduce the cost of testing. Usually it is not a testing model it is an optimization method

Many ways to determine a definitive winner and conclude the experiment

Backed by

4 years of Mobile App Stores user engagement events

More than 3 billion data points

Hundreds of millions of unique mobile users examined

20+ GEOs around the world

Bayesian approach

We use prior knowledge when calculating statistics

Bayes provides starting point from which we update our knowledge

UBER

An Experiment

Each experiment starts with a warm-up period in which the algorithm gathers initial information on the competing variations

Defining warm-up thresholds:

T; days of traffic (to control for the time of day)

• ; minimum observations per variation (users who started a session within the page)

C; minimum conversions per variation (user who clicked through / installed)

Prior knowledge is comprised of:

Learning the daily volatility of the traffic per variation

Learning weights per traffic sources & app categories

Learning 'high quality' user behaviour using app's experiments history

StoreIQ uses beta distribution to model its belief regarding competing variant conversion rates

The beta distribution is a suitable model for the random behavior of percentages and proportions.

The beta distribution is the conjugate prior probability distribution for the Bernoulli distribution

IF $CVR \sim Beta(\alpha, \beta)$ THEN $CVR \in [0, 1]$

Round 1:

$$x \sim Bernoulli(\theta)$$
 IID $x \in \{0, 1\}$

$$X$$
 – vector of x

$$f_{\theta} = ?$$

 $\theta = ?$

In round 1, our prior is a derivation of the Beta distribution and is not dependent on the posterior a,b

$$f_{\theta|X} \propto L(X|\theta) \cdot prior = \theta^{\Sigma x} \cdot (1-\theta)^{N-\Sigma x} \cdot prior$$

$$Beta(\Sigma x + 1, N - \Sigma x + 1)$$

Round 2:

$$y \sim Bernoulli(\theta)$$
 IID $y \in \{0,1\}$
$$X - vector \ of \ y$$

$$f_{\theta} = ?$$

$$\theta = ?$$

$$f_{\theta|X} \propto L(X|\theta) \cdot prior = \theta^{\sum x + \sum y} \cdot (1-\theta)^{M+N-\sum x - \sum y} \cdot prior$$

$$Reta(\sum x + \sum y + 1, M + N - \sum x + \sum y - + 1)$$

Spotx.tv ©

Backend Peek

Winning Probabilities

Iteration	Variation 1	Variation 2	Variation 3	Variation 4
1	0.251654	0.201544	0.4481	0.1043
2	0.355897	0.353784	0.156574	0.13
3	0.484654	0.5464651	0.564546	0.234
N	0.3684615	0.2654684	0.68474	0.1593
Winning Probabilities	0.122	0.0005	0.8745 (Leader!)	0.003

Cost Per Insight

Market Size

Confidence

StorelQ

Iteration	Variation 1	Variation 2	Variation 3 - Current Leader	Lift function of iteration - Winner from Leader	Lift below threshold
1	0.251654	0.201544	0.5481	0	1
2	0.355897	0.354884	0.33566	0.06029	0
3	0.484654	0.5464651	0.564546	0	1
N	0.4684615	0.2654684	0.68474	0	1
Confidence	-	-	-	-	0.95

Low confidence

High confidence

A

В

C - Winner!

)

StoreIQ Booster - Bagging Trees (RF)

Train Dataset = user behavior from app's experiment history + user activity from a live experiments interval 0 to t-1

C1 = Compute the correlation between predicted and empirical CVR per variation

C2 = Compute the correlation between the per store CVR of the explorers and non-explorers

C3 = Compute the accuracy of the current model on Test Dataset (users from interval t in a live experiment)

Boost = baseline + (# of boosts given so far $^*\mathcal{E}$)

Result = a model that predicts for a given user whether he will Install or not

If (C3 >= accuracyThreshold and C1*C2 >= correlationThreshold):

observationsToAdd_i = round(w_i*C3*C2*C1*boost*N) conversionsToAdd_i = round(cvr_i * observationsToAdd_i)

StorelQ - Boosting

Thank You!