1. Исходные данные для самолета Ил-76

 $m_{\text{пуст}}=86000$ кг, $m_{\text{топл}}=60000$ кг, $m_{\text{поле}}=20000$ кг При интегрировании по формулам (1) $m_{\text{к}}=116000$ кг, $m_{\text{н}}=166000$ кг.

2. Исследование характеристик транспортного самолета при выполнении эшелонирования

2.1. Постановка задачи

В работе исследуется задача минимизации километрового расхода топлива в крейсерском полете на заданную дальность путем оптимизации вертикальной трактории и скоростного режима.

2.2. Расчетные формулы

$$q_{\text{\tiny Y}} = PCe, \ q_{\text{\tiny KM}} = \frac{q_{\text{\tiny Y}}}{3.6V}, \ L_{\text{\tiny KC}} = \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny KM}}}, \ T_{\text{\tiny KC}} = \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny Y}}},$$
 (1)

$$P_{\Pi} = \frac{mg}{K} \tag{2}$$

$$P_{p}(M,H) = P_{p\,11} \frac{p_H}{p_{H-11}} \tag{3}$$

$$P_{\rm p}(M,H) = \bar{P}_0 m g \tilde{P}(H,M) \tag{4}$$

$$q_{\text{\tiny H}} = Ce\frac{mg}{K}, \; q_{\text{\tiny KM}} = \frac{mgCe}{3.6KV}, \; L_{\text{\tiny KC}} = \frac{3.6}{g} \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{KV}{Cem} \, dm, \; T_{\text{\tiny KC}} = \frac{1}{g} \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{K}{Cem} \, dm$$

 C_{ya}, C_{xa} из курсовой работы $\mathfrak{N}_{2}1$ по динамике полета.

3. Полученный результаты

3.1. Результаты расчета при постоянный высоте и оптимальной скорости полета

Таблица 1 — Полученный параметры

$q_{ ext{km cp}}, \; rac{ ext{kr}}{ ext{km}}$	9.0784		
L, M	4000		
$m_{ m coж. ext{топл}}, \ ext{кг}$	36361.23		
$t_{ m non.},$ мин	295		

Рисунок 1 — График зависимости H(L) и V(L)

3.2. Результаты расчета при оптимальном изменении высоты и скорости полета

Таблица 2 — Полученный параметры

$q_{ ext{km cp}}, \; rac{ ext{kr}}{ ext{km}}$	8.51		
L, M	4000		
$m_{ m coж. ext{топл}}, \ ext{к} ext{г}$	34139.74		
$t_{ m пол.},$ мин	392		

Рисунок 2 — График зависимости H(L) и V(L)

3.3. Эшелонированный полет, высота меняется ступенчато с шагом 300 м

Таблица 3 — Полученные параметры

$q_{ ext{km cp}}, \; rac{ ext{kr}}{ ext{km}}$	8.5619		
L, M	4000		
$m_{ m coж. ext{топл}}, \ ext{кг}$	34301.74		
$t_{ m non.},$ мин	368		

Рисунок 3 — График зависимости H(L) и V(L)

m, тонн		$H,{\scriptscriptstyle \mathrm{M}}$							
		9000	9500	10000	10500	11000	11500	12000	12500
125.0	M	0.708	0.75	0.75	0.73	0.723	0.717	0.714	0.731
	q_{km}	8.499	8.142	7.794	7.468	7.244	7.026	7.214	7.683
	V	215.124	226.273	224.649	217.066	213.396	211.565	210.68	215.696
130.0	M	0.75	0.75	0.75	0.735	0.742	0.709	0.735	0.75
	q_{km}	8.775	8.418	8.074	7.744	7.528	7.337	7.57	8.12
	V	227.886	226.273	224.649	218.553	219.004	209.204	216.876	221.302
140.0	M	0.75	0.75	0.75	0.748	0.75	0.733	0.75	-
	q_{km}	9.329	8.983	8.646	8.313	8.111	8.028	8.336	-
	V	227.886	226.273	224.649	222.418	221.365	216.286	221.302	-
150.0	M	0.75	0.75	0.75	0.75	0.75	0.75	0.75	-
	q_{km}	9.899	9.565	9.238	8.907	8.728	8.752	9.232	-
	V	227.886	226.273	224.649	223.013	221.365	221.302	221.302	-
160.0	M	0.754	0.75	0.783	0.75	0.75	0.75	0.75	-
	q_{km}	10.503	10.169	9.849	9.535	9.377	9.543	10.24	-
	V	229.101	226.273	234.533	223.013	221.365	221.302	221.302	-
170.0	M	0.759	0.75	0.784	0.75	0.75	0.75	0.75	-
	q_{km}	11.124	10.795	10.464	10.197	10.059	10.408	11.366	-
	V	230.621	226.273	234.833	223.013	221.365	221.302	221.302	-
180.0	M	0.761	0.75	0.781	0.75	0.75	0.75	-	-
	q_{km}	11.76	11.445	11.099	10.892	10.77	11.348	-	-
	V	231.228	226.273	233.934	223.013	221.365	221.302	-	-
190.0	M	0.761	0.8	0.775	0.75	0.75	0.75	-	-
	q_{km}	12.413	12.104	11.761	11.618	11.651	12.452	-	-
	V	231.228	241.358	232.137	223.013	221.365	221.302	_	-
200.0	M	0.759	0.8	0.765	0.763	0.75	0.75	-	-
	q_{km}	13.086	12.762	12.458	12.37	12.613	13.7	-	-
	V	230.621	241.358	229.142	226.878	221.365	221.302	-	-

Таблица $4-q_{km}\left[\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}\right],V\left[\frac{\mathrm{M}}{\mathrm{c}}\right]$

Рисунок 4 — График изменения q_{km}

Рисунок 5 — График изменения q_{km}

Рисунок 6 — График изменения q_{km}