# R Tutorial

### August 4, 2019

Contents of this tutorial are partly taken from the course created by Barton Poulson titled as "R Programming Tutorial - Learn the Basics of Statistical Computing". The link to the youtube video is https://www.youtube.com/watch?v=\_V8eKsto3Ug. New contents are added to further improve the coverage of materials.

[3]: library(ggplot2)

[22]: head(iris, n = 10L)

| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
|--------------|-------------|--------------|-------------|---------|
| 5.1          | 3.5         | 1.4          | 0.2         | setosa  |
| 4.9          | 3.0         | 1.4          | 0.2         | setosa  |
| 4.7          | 3.2         | 1.3          | 0.2         | setosa  |
| 4.6          | 3.1         | 1.5          | 0.2         | setosa  |
| 5.0          | 3.6         | 1.4          | 0.2         | setosa  |
| 5.4          | 3.9         | 1.7          | 0.4         | setosa  |
| 4.6          | 3.4         | 1.4          | 0.3         | setosa  |
| 5.0          | 3.4         | 1.5          | 0.2         | setosa  |
| 4.4          | 2.9         | 1.4          | 0.2         | setosa  |
| 4.9          | 3.1         | 1.5          | 0.1         | setosa  |

[23]: ggplot(data=iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species))+ geom\_point(size=3)



# [26]: summary(iris) plot(iris)

versicolor:50

| Sepal.Length  | Sepal.Width   | Petal.Length  | Petal.Width   |
|---------------|---------------|---------------|---------------|
| Min. :4.300   | Min. :2.000   | Min. :1.000   | Min. :0.100   |
| 1st Qu.:5.100 | 1st Qu.:2.800 | 1st Qu.:1.600 | 1st Qu.:0.300 |
| Median :5.800 | Median :3.000 | Median :4.350 | Median :1.300 |
| Mean :5.843   | Mean :3.057   | Mean :3.758   | Mean :1.199   |
| 3rd Qu.:6.400 | 3rd Qu.:3.300 | 3rd Qu.:5.100 | 3rd Qu.:1.800 |
| Max. :7.900   | Max. :4.400   | Max. :6.900   | Max. :2.500   |
| Species       |               |               |               |
| setosa :50    |               |               |               |



### 0.1 Packages

dyplyr - manipulating data frames tydyr - cleaning up information stringr - working with string lubridate - manipulating date information httr - working with website data ggvis - grammar for graphics/ interactive visualization ggplot2 - plotting data shiny - interactive web applications rio - R input output rmarkdown - interactive or rich notebooks

One package to load all the files: pacman

[30]: library(dplyr) plot(iris\$Species)



[31]: plot(iris\$Sepal.Length)



[35]: plot(iris\$Sepal.Length, iris\$Sepal.Width, col=iris\$Species)



[37]: plot(iris\$Species, iris\$Sepal.Length)



```
[44]: plot(iris$Petal.Length, iris$Petal.Width, col="#CC0000", pch=19, □ → main="Correlation Scatterplot", xlab="Feature 1", ylab="Feature 2")
```

# **Correlation Scatterplot**



```
[46]: plot(cos, 0, 2*pi)
plot(exp, 0, 9)
plot(dnorm, 0, 3, col='blue', lwd=5, main='Normal Distribution',

→xlab='z-scores', ylab='density')
```





# **Normal Distribution**



| head(mtcars)            |         |       |      |     |      |       |       |    |    |      |      |
|-------------------------|---------|-------|------|-----|------|-------|-------|----|----|------|------|
|                         | mpg     | cyl   | disp | hp  | drat | wt    | qsec  | vs | am | gear | carb |
| Mazda RX4               | 21.0    | 6     | 160  | 110 | 3.90 | 2.620 | 16.46 | 0  | 1  | 4    | 4    |
| Mazda RX4 Wag           | 21.0    | 6     | 160  | 110 | 3.90 | 2.875 | 17.02 | 0  | 1  | 4    | 4    |
| Datsun 710              | 22.8    | 4     | 108  | 93  | 3.85 | 2.320 | 18.61 | 1  | 1  | 4    | 1    |
| Hornet 4 Drive          | 21.4    | 6     | 258  | 110 | 3.08 | 3.215 | 19.44 | 1  | 0  | 3    | 1    |
| Hornet Sportabout       | 18.7    | 8     | 360  | 175 | 3.15 | 3.440 | 17.02 | 0  | 0  | 3    | 2    |
| Valiant                 | 1       | 6     | 225  | 105 | 2.76 | 3.460 | 20.22 | 1  | 0  | 3    | 1    |
| 2]: plot(mtcars, pch=19 | , col=' | red') | )    |     |      |       |       |    |    |      |      |



```
[60]: hp <- table(mtcars$hp)
barplot(hp, col='red')</pre>
```



```
[70]: hist(mtcars$mpg, col='red')
hist(mtcars$cyl, col='green')
hist(mtcars$disp, col='blue')
hist(mtcars$hp, col='black')
```

# Histogram of mtcars\$mpg



# Histogram of mtcars\$cyl



# Histogram of mtcars\$disp



# Histogram of mtcars\$hp



```
[76]: par(mfrow=c(2, 1))
hist(mtcars$hp [mtcars$vs==0], xlim=c(50, 350), col='red')
hist(mtcars$hp [mtcars$vs==1], xlim=c(50, 350), col='green')
# vs - Engine Shape (0 = V-Shaped, 1 = Straight)
```

# Histogram of mtcars\$hp[mtcars\$vs == 0]



# Histogram of mtcars\$hp[mtcars\$vs == 1]



```
[93]: hist(mtcars$disp, freq=FALSE)
    curve(dnorm(x, mean(mtcars$disp), sd(mtcars$disp)), add=TRUE, col='blue', lwd=5)
    lines(density(mtcars$disp), lwd=5, col='red')
    lines(density(mtcars$disp, adjust=2), lwd=5, col='green')
```

# Histogram of mtcars\$disp



```
[97]: summary(iris$Sepal.Width)
summary(iris)
barplot(summary(iris$Species))
```

Min. 1st Qu. Median Mean 3rd Qu. Max. 2.000 2.800 3.000 3.057 3.300 4.400

| Sepal.Length  | Sepal.Width   | Petal.Length  | Petal.Width   |  |  |
|---------------|---------------|---------------|---------------|--|--|
| Min. :4.300   | Min. :2.000   | Min. :1.000   | Min. :0.100   |  |  |
| 1st Qu.:5.100 | 1st Qu.:2.800 | 1st Qu.:1.600 | 1st Qu.:0.300 |  |  |
| Median :5.800 | Median :3.000 | Median :4.350 | Median :1.300 |  |  |
| Mean :5.843   | Mean :3.057   | Mean :3.758   | Mean :1.199   |  |  |
| 3rd Qu.:6.400 | 3rd Qu.:3.300 | 3rd Qu.:5.100 | 3rd Qu.:1.800 |  |  |

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species setosa :50 versicolor:50 virginica :50



```
[100]: library(psych)
describe(iris$Sepal.Width)
describe(iris)
```

|      | vars    | n          | mea               | an    | sd        | median    | trimmed  | mad      | min   | ma  | x ra | nge | skew      | kι   |
|------|---------|------------|-------------------|-------|-----------|-----------|----------|----------|-------|-----|------|-----|-----------|------|
| X1   | 1       | 150        | $\overline{0.05}$ | 57333 | 0.4358663 | 3 3       | 3.043333 | 0.44478  | 2     | 4.4 | 2.4  | ł   | 0.3126147 | 7 0. |
|      |         |            | vars              | n     | mean      | sd        | median   | trimmed  | mad   |     | min  | max | k range   | ske  |
| Sepa | al.Leng | <b>zth</b> | 1                 | 150   | 5.843333  | 0.8280661 | 5.80     | 5.808333 | 1.037 | 82  | 4.3  | 7.9 | 3.6       | 0.30 |
| Sep  | oal.Wid | lth        | 2                 | 150   | 3.057333  | 0.4358663 | 3.00     | 3.043333 | 0.444 | £78 | 2.0  | 4.4 | 2.4       | 0.31 |
| Peta | al.Leng | ʒth        | 3                 | 150   | 3.758000  | 1.7652982 | 4.35     | 3.760000 | 1.853 | ,25 | 1.0  | 6.9 | 5.9       | -0.2 |
| Pe   | tal.Wid | lth        | 4                 | 150   | 1.199333  | 0.7622377 | 1.30     | 1.184167 | 1.037 | 82  | 0.1  | 2.5 | 2.4       | -0.1 |
|      | Specie  | es*        | 5                 | 150   | 2.000000  | 0.8192319 | 2.00     | 2.000000 | 1.482 | .60 | 1.0  | 3.0 | 2.0       | 0.00 |

```
[102]: mean(iris$Sepal.Length [iris$Species == 'virginica'])
hist(iris$Sepal.Length [iris$Species == 'virginica'])
```

6.588

# Histogram of iris\$Sepal.Length[iris\$Species == "virginica"]



```
[115]: tb1 <- iris[iris$Species == 'setosa', which(names(iris) == "Sepal.Length" | Length | L
```

| Sepal.Length | Sepal.Width |              |             |
|--------------|-------------|--------------|-------------|
| 5.1          | 3.5         | •            |             |
| 4.9          | 3.0         |              |             |
| 4.7          | 3.2         |              |             |
| 4.6          | 3.1         |              |             |
| 5.0          | 3.6         |              |             |
| 5.4          | 3.9         |              |             |
| Petal.Length | Petal.Width |              |             |
| 1.4          | 0.2         |              |             |
| 1.4          | 0.2         |              |             |
| 1.3          | 0.2         |              |             |
| 1.5          | 0.2         |              |             |
| 1.4          | 0.2         |              |             |
| 1.7          | 0.4         |              |             |
| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
| 5.1          | 3.5         | 1.4          | 0.2         |
| 4.9          | 3.0         | 1.4          | 0.2         |
| 4.7          | 3.2         | 1.3          | 0.2         |
| 4.6          | 3.1         | 1.5          | 0.2         |
| 5.0          | 3.6         | 1.4          | 0.2         |
| 5.4          | 3.9         | 1.7          | 0.4         |
|              |             |              |             |

Variable types: numeric, character, logical, complex, & raw Common Structures: Vector, Data Frame, Matrix/Array, List Vector - one or more numbers in a 1D array, must have same data type, R's basic data object (all other data structure are variations of vector object) Matrix - rows and columns, two dimensional, all must have same length and same class, columns are not named and referred to using index numbers Array - identical to a matrix with 3 or more dimensions, Data Frame - can have vectors of different types, all must have the same lengths, analogous to spreadsheet List - most flexible data form, ordered collection of elements, lists can include lists

# 1 Data Types

#### 1.1 Numeric

```
[1]: n1 <- 15
n1
typeof(n1)
n2 <- 2.5
n2
```

```
typeof(n2)

15
'double'
2.5
'double'
```

### 1.2 Character

```
[2]: c1 <- "F"
  c1
  typeof(c1)
  c2 <- "This is an introductory notebook"
  c2
  typeof(c2)

    'F'
    'character'
    'This is an introductory notebook'
    'character'</pre>
```

### 1.3 Logical

```
[3]: 11 <- TRUE
11
typeof(11)
12 <- T
12
typeof(12)

TRUE
'logical'
TRUE
'logical'
```

### 2 Data Structures

### 2.1 Vector

```
[8]: v1 <- c(1, 2, 3, 5)
v1
is.vector(v1)

v2 <- c("one", "two", "three", "five")
v2
is.vector(v2)

v3 <- c(T, F, T, F, F)</pre>
```

```
vЗ
     is.vector(v3)
     v4 <- c(1, "one", F)
     is.vector(v4)
     # one ways of printing a vector
     for (var in 0:3){
         print(v4[var])
     }
     # second ways to print
     for (var in v4){
         print(var)
     }
       1. 1 2. 2 3. 3 4. 5
       TRUE
       1. 'one' 2. 'two' 3. 'three' 4. 'five'
       1. TRUE 2. FALSE 3. TRUE 4. FALSE 5. FALSE
       TRUE
       1. '1' 2. 'one' 3. 'FALSE'
       TRUE
    character(0)
    [1] "1"
    [1] "one"
    [1] "FALSE"
    [1] "1"
    [1] "one"
    [1] "FALSE"
    2.2 Matrix
[15]: n1 \leftarrow matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow=3, byrow=T)
     is.matrix(n1)
     is.vector(n1)
     n1 <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow=3, byrow=F)
     n1
        1 2 3
        4 5 6
        7 8 9
       TRUE
```

```
FALSE
1 4 7
2 5 8
3 6 9
```

### 2.3 Array

You need to specify first rows, then columns followed by the number of tables.

```
[56]: a1 <- array(c(1:24), dim = c(3, 4, 2))
     column.names <- c("COL1","COL2","COL3")</pre>
     row.names <- c("ROW1","ROW2","ROW3")</pre>
     matrix.names <- c("Matrix1", "Matrix2")</pre>
     a1.dimnames <- c(row.names, matrix.names, matrix.names)
     a1[,,1]
     a1[,,2]
    matrix(a1[,,1], nrow=3, byrow=T)
        1 4 7 10
        2 5 8 11
        3 6 9 12
        13 16 19 22
        14 17 20 23
        15 18 21 24
        1 2
             3
                   4
        5 6
               7
                   8
        9 10 11 12
```

### 2.4 Dataframe

#### **2.5** List

Levels: 1. 'FALSE' 2. 'TRUE'

```
for(x in 11){
           for(y in x){
               print(y)
           }
      }
        1. (a) 1 (b) 2 (c) 3 (d) 4
        2. (a) 'one' (b) 'two' (c) 'three' (d) 'four' (e) 'five'
        3. (a) TRUE (b) FALSE (c) FALSE (d) FALSE (e) TRUE (f) TRUE
      [1] 1
      [1] 2
      [1] 3
      [1] 4
      [1] "one"
      [1] "two"
      [1] "three"
      [1] "four"
      [1] "five"
      [1] TRUE
      [1] FALSE
      [1] FALSE
      [1] FALSE
      [1] TRUE
      [1] TRUE
[104]: c1 <- c(1, "two", F)
      typeof(c1[1])
      typeof(c1[2])
      typeof(c1[3])
      c2 <- as.logical(c1)</pre>
      typeof(c2[1])
      typeof(c2[2])
      typeof(c2[3])
      mt <- matrix(1:18, nrow=3)</pre>
      mt
      is.matrix(mt)
      df <- as.data.frame(mt)</pre>
      is.data.frame(mt)
      is.data.frame(df)
         1. '1' 2. 'two' 3. 'FALSE'
```

11

```
'character'
'character'
'character'
'logical'
'logical'
'logical'
1 4 7
         10 13 16
2 5 8
         11 14 17
 3 6 9
         12 15 18
TRUE
V1 | V2 V3 V4 V5 V6
  1 4
         7
             10
                 13 16
  2 | 5
         8
             11
                 14
                     17
  3 | 6
         9
             12
                 15 18
FALSE
TRUE
```

### 2.6 Use of factor

```
[125]: x1 <- 1:3
      y <- 1:9
      df <- cbind.data.frame(x1, y)</pre>
      head(df, n=5L)
      typeof(df$x1)
      str(df)
      x1 \leftarrow as.factor(c(1:3))
      df <- cbind.data.frame(x1, y)</pre>
      # df$x1 \leftarrow factor(df$x1, levels=c("one", "two", "three"))
      typeof(df$x1)
      head(df)
      str(df)
      x2 < -c(1:3)
      df <- cbind.data.frame(x2, y)</pre>
      df$x2 \leftarrow factor(df$x2, levels=c(1, 2, 3))
      typeof(df$x2)
      head(df)
      str(df)
      x3 < -c(1:3)
      df <- cbind.data.frame(x3, y)</pre>
      df$x3 <- factor(df$x3, levels=c(1, 2, 3), labels=c("one", "two", "three"))</pre>
      typeof(df$x3)
      head(df)
      str(df)
```

```
x4 < -c(1:3)
df <- cbind.data.frame(x4, y)</pre>
df$x4 <- ordered(df$x4, levels=c(3, 1, 2), labels=c("three", "one", "two"))</pre>
typeof(df$x4)
head(df)
str(df)
   x1 \mid y
    1 1
    2 2
    3 3
    1 \mid 4
    2 | 5
  'integer'
'data.frame': 9 obs. of 2 variables:
$ x1: int 1 2 3 1 2 3 1 2 3
$ y : int 1 2 3 4 5 6 7 8 9
  'integer'
   x1 | y_
    1
       1
    2 2
    3 3
    1 4
    2 | 5
    3 | 6
'data.frame': 9 obs. of 2 variables:
$ x1: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3
$ y : int 1 2 3 4 5 6 7 8 9
  'integer'
   x2
    1 1
    2 2
    3 3
    1 \mid 4
    2 | 5
    3 | 6
'data.frame': 9 obs. of 2 variables:
$ x2: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3
$ y : int 1 2 3 4 5 6 7 8 9
  'integer'
```

```
x3
     one
          1
          2
     two
          3
    three
          4
     one
     two
          5
   three 6
'data.frame':
                9 obs. of 2 variables:
$ x3: Factor w/ 3 levels "one","two","three": 1 2 3 1 2 3 1 2 3
$ y : int 1 2 3 4 5 6 7 8 9
  'integer'
      x4 \mid y
     one
          1
     two
    three
          3
     one
          4
          5
    two
    three | 6
'data.frame':
                9 obs. of 2 variables:
\ x4: \ Ord.factor \ w/\ 3 \ levels "three"<"one"<...: 2 3 1 2 3 1 2 3 1
$ y : int 1 2 3 4 5 6 7 8 9
```

### 3 Creation of ad hoc data

colon (:) - generate sequence of data seq - sequence generation rep - replicate data c - concatenation of arbitrary data scan - read user data

```
[131]: x1 <- 0:10
x1
x2 <- 10:0
x2
x3 <- seq(10)
x3
x4 <- seq(30, 0, by=-3)
x4
x5 <- c(1, 8, 3, -3, 0)
x5
x6 <- scan()
x6
x7 <- rep(list(T, "one"), 5)
x7
x8 <- rep(list(T, "one"), each=5)
x8</pre>
```

1. 0 2. 1 3. 2 4. 3 5. 4 6. 5 7. 6 8. 7 9. 8 10. 9 11. 10 1. 10 2. 9 3. 8 4. 7 5. 6 6. 5 7. 4 8. 3 9. 2 10. 1 11. 0

```
1. 1 2. 2 3. 3 4. 4 5. 5 6. 6 7. 7 8. 8 9. 9 10. 10
1. 30 2. 27 3. 24 4. 21 5. 18 6. 15 7. 12 8. 9 9. 6 10. 3 11. 0
1. 1 2. 8 3. 3 4. -3 5. 0
1. TRUE
```

- 2. 'one'
- 3. TRUE
- 4. 'one'
- 5. TRUE
- 6. 'one'
- 7. TRUE
- 8. 'one'
- 9. TRUE
- 10. 'one'
- 1. TRUE
- 2. TRUE
- 3. TRUE
- 4. TRUE
- 5. TRUE
- 6. 'one'
- 7. 'one'
- 8. 'one'
- 9. 'one'
- 10. 'one'

# [132]: library(rio)

### Warning message:

```
[134]: data <- import('mbb.csv')
       head(data)
      data <- import('mbb.txt')</pre>
      head(data)
       data <- import('mbb.xlsx')</pre>
       head(data)
```

| Month   | Mozart | Beethoven | Bach |
|---------|--------|-----------|------|
| 2004-01 | 12     | 8         | 15   |
| 2004-02 | 12     | 9         | 15   |
| 2004-03 | 12     | 9         | 14   |
| 2004-04 | 12     | 8         | 14   |
| 2004-05 | 11     | 9         | 13   |
| 2004-06 | 9      | 7         | 12   |
| Month   | Mozart | Beethoven | Bach |
| 2004-01 | 12     | 8         | 15   |
| 2004-02 | 12     | 9         | 15   |
| 2004-03 | 12     | 9         | 14   |
| 2004-04 | 12     | 8         | 14   |
| 2004-05 | 11     | 9         | 13   |
| 2004-06 | 9      | 7         | 12   |
| Month   | Mozart | Beethoven | Bach |
| 2004-01 | 12     | 8         | 15   |
| 2004-02 | 12     | 9         | 15   |
| 2004-03 | 12     | 9         | 14   |
| 2004-04 | 12     | 8         | 14   |
| 2004-05 | 11     | 9         | 13   |
| 2004-06 | 9      | 7         | 12   |

```
[139]: head(data)
    df_data <- as.data.frame(data)
    typeof(df_data)</pre>
```

| Month   | Mozart | Beethoven | Bach |
|---------|--------|-----------|------|
| 2004-01 | 12     | 8         | 15   |
| 2004-02 | 12     | 9         | 15   |
| 2004-03 | 12     | 9         | 14   |
| 2004-04 | 12     | 8         | 14   |
| 2004-05 | 11     | 9         | 13   |
| 2004-06 | 9      | 7         | 12   |
| 'list'  |        |           |      |

# 4 Elementary Data Analysis

# 4.1 Hierchical Modelling

```
[141]: library(datasets)
head(mtcars, n=5L)
cars <- mtcars[, c(1:4, 6:7, 9:11)]
head(cars)</pre>
```

|                   | mpg  | cyl | disp | hp  | drat  | wt    | qsec  | vs   | am  | gear | carb |
|-------------------|------|-----|------|-----|-------|-------|-------|------|-----|------|------|
| Mazda RX4         | 21.0 | 6   | 160  | 110 | 3.90  | 2.620 | 16.46 | 0    | 1   | 4    | 4    |
| Mazda RX4 Wag     | 21.0 | 6   | 160  | 110 | 3.90  | 2.875 | 17.02 | 0    | 1   | 4    | 4    |
| Datsun 710        | 22.8 | 4   | 108  | 93  | 3.85  | 2.320 | 18.61 | 1    | 1   | 4    | 1    |
| Hornet 4 Drive    | 21.4 | 6   | 258  | 110 | 3.08  | 3.215 | 19.44 | 1    | 0   | 3    | 1    |
| Hornet Sportabout | 18.7 | 8   | 360  | 175 | 3.15  | 3.440 | 17.02 | 0    | 0   | 3    | 2    |
|                   | mpg  | cyl | disp | hp  | wt    | qsec  | am    | gear | car | b    |      |
| Mazda RX4         | 21.0 | 6   | 160  | 110 | 2.620 | 16.46 | 1     | 4    | 4   |      |      |
| Mazda RX4 Wag     | 21.0 | 6   | 160  | 110 | 2.875 | 17.02 | 1     | 4    | 4   |      |      |
| Datsun 710        | 22.8 | 4   | 108  | 93  | 2.320 | 18.61 | 1     | 4    | 1   |      |      |
| Hornet 4 Drive    | 21.4 | 6   | 258  | 110 | 3.215 | 19.44 | 0     | 3    | 1   |      |      |
| Hornet Sportabout | 18.7 | 8   | 360  | 175 | 3.440 | 17.02 | 0     | 3    | 2   |      |      |
| Valiant           | 18.1 | 6   | 225  | 105 | 3.460 | 20.22 | 0     | 3    | 1   |      |      |

[145]: library(dplyr)
 hc <- cars %>% dist %>% hclust
 plot(hc)

### **Cluster Dendrogram**



hclust (\*, "complete")

```
[148]: plot(hc)
    rect.hclust(hc, k = 2, border='red')
    rect.hclust(hc, k = 3, border='green')
    rect.hclust(hc, k = 4, border='blue')
    rect.hclust(hc, k = 5, border='yellow')
```

### Cluster Dendrogram



hclust (\*, "complete")

# 5 Dimensionality Reduction

```
[152]: pc <- prcomp(cars, center=T, scale=T)
head(pc)</pre>
```

**\$sdev** 1. 2.33914097350423 2. 1.52993832678814 3. 0.718364551062696 4. 0.464905158685231 5. 0.389034831804177 6. 0.350991075344758 7. 0.317137343413083 8. 0.240698933482934 9. 0.149896234132938

|            |      | PC1        | PC2         | PC3         | PC4        | PC5         | PC6          | PC7        |
|------------|------|------------|-------------|-------------|------------|-------------|--------------|------------|
|            | mpg  | -0.4023287 | 0.02205294  | -0.17272803 | -0.1366169 | 0.31654561  | -0.718609897 | 0.3633216  |
|            | cyl  | 0.4068870  | 0.03589482  | -0.27747610 | 0.1410976  | 0.02066646  | -0.214224005 | 0.2099893  |
|            | disp | 0.4046964  | -0.06479590 | -0.17669890 | -0.5089434 | 0.21525777  | 0.010052074  | 0.2007152  |
| \$rotation | hp   | 0.3699702  | 0.26518848  | -0.01046827 | -0.1273173 | 0.42166543  | -0.254229405 | -0.6741641 |
| protation  | wt   | 0.3850686  | -0.15955242 | 0.33740464  | -0.4469327 | -0.21141143 | 0.002897706  | 0.3392809  |
|            | qsec | -0.2168575 | -0.48343885 | 0.54815205  | -0.2545226 | 0.05466817  | -0.226660704 | -0.2986852 |
|            | am   | -0.2594512 | 0.46039449  | -0.19492256 | -0.5354196 | -0.55331460 | -0.087616182 | -0.2135605 |
|            | gear | -0.2195660 | 0.50608232  | 0.34579810  | -0.1799814 | 0.50533262  | 0.393990378  | 0.2484622  |
|            | carb | 0.2471604  | 0.44322600  | 0.53847588  | 0.3203064  | -0.25696817 | -0.398353829 | 0.1321064  |

\$center mpg 20.090625 cyl 6.1875 disp 230.721875 hp 146.6875 wt 3.21725 qsec 17.84875 am 0.40625 gear 3.6875 carb 2.8125

|     |                     | PC1         | PC2         | PC3         | PC4          | PC5         | PC6         |
|-----|---------------------|-------------|-------------|-------------|--------------|-------------|-------------|
|     | Mazda RX4           | -0.81883768 | 1.45577333  | -0.21204263 | 0.315888300  | -0.84958691 | -0.01150126 |
|     | Mazda RX4 Wag       | -0.78644303 | 1.26268953  | 0.04767210  | 0.119647855  | -0.88755160 | -0.08177799 |
|     | Datsun 710          | -2.49423117 | 0.02762658  | -0.32023017 | -0.401948370 | -0.36518038 | 0.53888511  |
|     | Hornet 4 Drive      | -0.29454234 | -1.92903945 | -0.32211475 | -0.069818183 | 0.20547103  | -0.04600804 |
|     | Hornet Sportabout   | 1.56041411  | -0.80821419 | -1.04219408 | 0.050065675  | 0.38197028  | -0.13573066 |
|     | Valiant             | -0.20722532 | -2.19417266 | 0.14402455  | -0.073226863 | -0.08498911 | 0.26511187  |
|     | Duster 360          | 2.73226603  | 0.29328994  | -0.57716172 | 0.525124977  | 0.19900274  | -0.21386156 |
|     | Merc 240D           | -1.79527743 | -1.27281225 | 1.03388048  | 0.136366170  | 0.39973745  | 0.22142233  |
|     | Merc 230            | -1.89734058 | -1.92598643 | 1.95890184  | -0.259206293 | 0.60577005  | -0.07860918 |
|     | Merc 280            | 0.01565012  | -0.05866208 | 1.06454809  | 0.737712361  | 0.13700873  | 0.10015509  |
|     | Merc 280C           | 0.03629307  | -0.22610850 | 1.28872352  | 0.683986341  | 0.08183421  | 0.19097540  |
|     | Merc 450SE          | 1.82083345  | -0.68439747 | -0.18980574 | 0.295092091  | -0.13790858 | -0.17982680 |
|     | Merc 450SL          | 1.60267678  | -0.67977004 | -0.27149159 | 0.401507010  | -0.01105796 | -0.31351178 |
|     | Merc 450SLC         | 1.71399687  | -0.80382315 | -0.07136381 | 0.369296647  | -0.11991960 | -0.11371190 |
|     | Cadillac Fleetwood  | 3.54393557  | -0.78715158 | 0.61681226  | -0.844299902 | -0.35483328 | 0.14208110  |
| \$x | Lincoln Continental | 3.64660694  | -0.72728678 | 0.64331413  | -0.870281313 | -0.35666482 | 0.12483822  |
|     | Chrysler Imperial   | 3.39264826  | -0.52198151 | 0.39635946  | -0.820419326 | -0.06847485 | -0.39460143 |
|     | Fiat 128            | -3.52803830 | -0.23945546 | -0.32703554 | -0.516783758 | -0.02567396 | -0.61745094 |
|     | Honda Civic         | -3.44178368 | 0.32746057  | -0.42306580 | 0.167700576  | -0.28378711 | -0.45517710 |
|     | Toyota Corolla      | -3.85421097 | -0.29067456 | -0.35299640 | -0.412244409 | 0.12577796  | -0.84883188 |
|     | Toyota Corona       | -1.64164478 | -1.97896631 | 0.10056967  | 0.621710410  | 0.04761048  | 0.14446951  |
|     | Dodge Challenger    | 1.55167305  | -0.86712498 | -0.90521454 | 0.326318496  | -0.03467077 | 0.35437059  |
|     | AMC Javelin         | 1.44035057  | -0.96337487 | -0.77406360 | 0.368187375  | -0.04322194 | 0.33421087  |
|     | Camaro Z28          | 2.92480902  | 0.36716333  | -0.57304474 | 0.526775004  | 0.05762007  | -0.04009785 |
|     | Pontiac Firebird    | 1.81339410  | -0.90145453 | -0.96469148 | -0.314790674 | 0.39111452  | -0.19470872 |
|     | Fiat X1-9           | -3.22172493 | -0.06085364 | -0.44753150 | -0.200178011 | -0.25319420 | 0.06217622  |
|     | Porsche 914-2       | -2.66209565 | 1.53159161  | -0.27507492 | -0.212645194 | 0.31823141  | 0.69486607  |
|     | Lotus Europa        | -3.19041442 | 1.69409211  | -0.52346685 | 0.008155493  | 0.78245261  | 0.05939704  |
|     | Ford Pantera L      | 1.59533098  | 3.09923346  | -0.61246644 | -0.694517979 | 0.68539841  | 0.59731381  |
|     | Ferrari Dino        | -0.24630742 | 3.18027405  | 0.72936287  | 0.507145572  | -0.23921602 | 0.06422736  |
|     | Maserati Bora       | 2.62596044  | 4.40241877  | 0.97303537  | -0.006628448 | 0.27345257  | -0.57263382 |
|     | Volvo 142E          | -1.93672169 | 0.27969720  | 0.18785195  | -0.463691632 | -0.57652141 | 0.40354034  |

[153]: pc2 <- prcomp(~mpg + disp + hp + cyl, data=cars, center=T, scale=T)
head(pc2)
summary(pc2)</pre>

#### \$sdev

[1] 1.8714034 0.4893434 0.4065238 0.3051731

#### \$rotation

```
        PC1
        PC2
        PC3
        PC4

        mpg
        -0.4963126
        -0.41505710
        0.7624369
        -0.009557844

        disp
        0.5060829
        0.31928855
        0.5109886
        0.617110666

        hp
        0.4844917
        -0.84776090
        -0.1441097
        0.160628854

        cyl
        0.5126614
        0.08416586
        0.3698824
        -0.770247652
```

### \$center

mpg disp hp cyl 20.09062 230.72188 146.68750 6.18750

### \$scale

mpg disp hp cyl 6.026948 123.938694 68.562868 1.785922

### \$x

| Ψ1.                 | Dat        | P.00         | P.00         | D.C.4       |
|---------------------|------------|--------------|--------------|-------------|
|                     | PC1        | PC2          | PC3          | PC4         |
| Mazda RX4           | -0.6767382 |              | -0.138261099 |             |
| Mazda RX4 Wag       | -0.6767382 |              | -0.138261099 |             |
| Datsun 710          | -1.7315422 | 0.057999871  | -0.503432795 | 0.20231633  |
| Hornet 4 Drive      | -0.3095112 | 0.424895223  | 0.316386321  | 0.12866096  |
| Hornet Sportabout   | 1.3627600  | 0.164154097  | 0.672960127  | -0.06947829 |
| Valiant             | -0.2078417 | 0.628965554  | -0.226625858 | -0.04213202 |
| Duster 360          | 2.2197422  | -0.398362269 | -0.030790698 | 0.10149522  |
| Merc 240D           | -1.9243334 | 0.430817504  | -0.076310853 | 0.31984579  |
| Merc 230            | -1.5834761 | 0.117769171  | -0.372404944 | 0.37031839  |
| Merc 280            | -0.4056138 | 0.182774161  | -0.361959531 | -0.28750994 |
| Merc 280C           | -0.2903254 | 0.279187791  | -0.539066036 | -0.28528975 |
| Merc 450SE          | 1.2436778  | 0.043809833  | 0.024340777  | -0.47336217 |
| Merc 450SL          | 1.1695638  | -0.018170357 | 0.138194959  | -0.47478944 |
| Merc 450SLC         | 1.3424965  | 0.126450087  | -0.127464799 | -0.47145915 |
| Cadillac Fleetwood  | 2.7155808  | 0.653339795  | 0.021682040  | 0.57163417  |
| Lincoln Continental | 2.7372446  | 0.498778386  | -0.048811553 | 0.53531221  |
| Chrysler Imperial   | 2.4074735  | -0.034343665 | 0.381172211  | 0.46405178  |
| Fiat 128            | -2.8325258 | -0.344756743 | 0.646960724  | -0.02205276 |
| Honda Civic         | -2.7790074 | -0.041645405 | 0.411008765  | -0.06661769 |
| Toyota Corolla      | -2.9941488 | -0.455271315 | 0.807485411  | -0.06461595 |
| Toyota Corona       | -1.5468147 | 0.129239713  | -0.626409027 | 0.27399697  |
| Dodge Challenger    | 1.2781168  | 0.585446574  | 0.147529439  | -0.33209823 |
| AMC Javelin         | 1.2456549  | 0.570040098  | 0.051857250  | -0.40133072 |
| Camaro Z28          | 2.2612578  | -0.355257204 | -0.198524483 | 0.05328946  |
| Pontiac Firebird    | 1.4849188  | 0.232767911  | 0.901129006  | 0.12889521  |
| Fiat X1-9           | -2.4113213 | 0.007237189  | 0.003023901  | -0.01247117 |
| Porsche 914-2       | -1.9589665 | -0.105957663 | -0.043702360 | 0.25379969  |
| Lotus Europa        | -2.2687411 | -0.745915608 | 0.362779678  | 0.17288862  |
| Ford Pantera L      | 2.1937302  | -0.759777960 | 0.081924658  | 0.09881713  |
| Ferrari Dino        | -0.1716195 | -0.552846586 | -0.501181915 | -0.27900647 |
| Maserati Bora       | 2.5571561  | -1.711388877 | -0.374656997 | 0.01746634  |
| Volvo 142E          | -1.4501082 | -0.009931715 | -0.660571220 | 0.30675036  |
|                     |            |              |              |             |

### \$call

prcomp(formula = ~mpg + disp + hp + cyl, data = cars, center = T,
 scale = T)

### Importance of components:

### [154]: plot(pc2)



### [155]: biplot(pc2)



# 6 Regression

[157]: head(USJudgeRatings) ?USJudgeRatings

|                                                                         | CONT | INTG | DMNR | DILG | CFMG | DECI | PREP | FAMI | ORAL | WRIT |
|-------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|
| AARONSON,L.H.                                                           | 5.7  | 7.9  | 7.7  | 7.3  | 7.1  | 7.4  | 7.1  | 7.1  | 7.1  | 7.0  |
| ALEXANDER,J.M.                                                          | 6.8  | 8.9  | 8.8  | 8.5  | 7.8  | 8.1  | 8.0  | 8.0  | 7.8  | 7.9  |
| ARMENTANO,A.J.                                                          | 7.2  | 8.1  | 7.8  | 7.8  | 7.5  | 7.6  | 7.5  | 7.5  | 7.3  | 7.4  |
| BERDON,R.I.                                                             | 6.8  | 8.8  | 8.5  | 8.8  | 8.3  | 8.5  | 8.7  | 8.7  | 8.4  | 8.5  |
| BRACKEN,J.J.                                                            | 7.3  | 6.4  | 4.3  | 6.5  | 6.0  | 6.2  | 5.7  | 5.7  | 5.1  | 5.3  |
| BURNS,E.B.                                                              | 6.2  | 8.8  | 8.7  | 8.5  | 7.9  | 8.0  | 8.1  | 8.0  | 8.0  | 8.0  |
| Format A data frame containing 43 observations on 12 numeric variables. |      |      |      |      |      |      |      |      |      |      |

39

[,1] CONT Number of contacts of lawyer with judge. [,2] INTG Judicial integrity. [,3] DMNR Demeanor. [,4] DILG Diligence. [,5] CFMG Case flow managing. [,6] DECI Prompt decisions. [,7] PREP Preparation for trial. [,8] FAMI Familiarity with law. [,9] ORAL Sound oral rulings. [,10] WRIT Sound written rulings. [,11] PHYS Physical ability. [,12] RTEN Worthy of retention.

```
[160]: df <- USJudgeRatings
    x <- as.matrix(df[-12])
    y <- as.matrix(df[,12])

# linear model function name : lm
    reg_1 <- lm(y ~ x)

reg_1
summary(reg_1)</pre>
```

#### Call:

 $lm(formula = y \sim x)$ 

#### Coefficients:

| xCFMG    | $	imes 	extsf{DILG}$ | xDMNR   | xINTG    | xCONT    | (Intercept) |
|----------|----------------------|---------|----------|----------|-------------|
| -0.19453 | 0.06669              | 0.12540 | 0.36484  | 0.01280  | -2.11943    |
| xPHYS    | xWRIT                | xORAL   | xFAMI    | xPREP    | xDECI       |
| 0.26881  | -0.06806             | 0.54782 | -0.13579 | -0.00196 | 0.27829     |

#### Call:

 $lm(formula = y \sim x)$ 

#### Residuals:

Min 1Q Median 3Q Max -0.22123 -0.06155 -0.01055 0.05045 0.26079

#### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.11943
                       0.51904 -4.083 0.000290 ***
xCONT
                       0.02586
                                0.495 0.624272
            0.01280
xINTG
            0.36484
                       0.12936
                                2.820 0.008291 **
            0.12540
                       0.08971
                                 1.398 0.172102
xDMNR
xDILG
            0.06669
                       0.14303
                                0.466 0.644293
                       0.14779 -1.316 0.197735
xCFMG
           -0.19453
xDECI
            0.27829
                       0.13826
                                 2.013 0.052883 .
xPREP
           -0.00196
                       0.24001 -0.008 0.993536
xFAMI
           -0.13579
                       0.26725 -0.508 0.614972
xORAL
            0.54782
                       0.27725
                                 1.976 0.057121 .
xWRIT
           -0.06806
                       0.31485 -0.216 0.830269
                       0.06213
                                 4.326 0.000146 ***
xPHYS
            0.26881
```

---

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.1174 on 31 degrees of freedom Multiple R-squared: 0.9916, Adjusted R-squared: 0.9886 F-statistic: 332.9 on 11 and 31 DF, p-value: < 2.2e-16

```
[164]: anova(reg_1)
    coef(reg_1)
    confint(reg_1)
    resid(reg_1)
    hist(resid(reg_1))
```

|           | Df | Sum Sq     | Mean Sq   | F value  | Pr(>F)       |
|-----------|----|------------|-----------|----------|--------------|
| Х         | 11 | 50.4823548 | 4.5893050 | 332.8597 | 5.745717e-29 |
| Residuals | 31 | 0.4274127  | 0.0137875 | NA       | NA           |

(Intercept) -2.11942968179327 xCONT 0.0127963773918441 xINTG 0.364840272014892 xDMNR 0.125399137854698 xDILG 0.0666909760662366 xCFMG -0.194527026617029 xDECI 0.278292931605456 xPREP -0.00196011133377008 xFAMI -0.135790972195287 xORAL 0.547817679832884 xWRIT -0.0680615953914752 xPHYS 0.268811919161933

|             | 2.5 %        | 97.5 %      |
|-------------|--------------|-------------|
| (Intercept) | -3.178010347 | -1.06084902 |
| xCONT       | -0.039955335 | 0.06554809  |
| xINTG       | 0.101011150  | 0.62866939  |
| xDMNR       | -0.057571651 | 0.30836993  |
| xDILG       | -0.225031708 | 0.35841366  |
| xCFMG       | -0.495940888 | 0.10688683  |
| xDECI       | -0.003683181 | 0.56026904  |
| xPREP       | -0.491456059 | 0.48753584  |
| xFAMI       | -0.680844080 | 0.40926214  |
| xORAL       | -0.017628284 | 1.11326364  |
| xWRIT       | -0.710196975 | 0.57407378  |
| xPHYS       | 0.142088434  | 0.39553540  |
|             |              |             |

1 0.167428295017044 2 0.159904302772648 3 0.131818800299843 4 -0.0721243487660769 5 *-*0.166351358367794 0.0344455088067175 7 -0.122867277430027 8 -0.035984506502978 -0.0414643392723508 **10** 0.105484916712862 **11** 0.0315661299294979 **12** 0.0279048489769697 -0.0066302843520421 **14** 0.121511625754103 **15** -0.0707169454541466 **16** 0.0963751277156313 0.0966781230774998 **18** 0.0587324089912389 **19** 0.260791430392931 **20** -0.0613783951036348 -0.0105476009574108 **22** -0.0926140135370371 **23** -0.0964022148655106 **24** -0.0479617599866199 0.0279999236295551 **26** -0.063366251055408 -0.014242307647406 **28** -0.191822695590151 0.0253091921664977 **30** -0.0179725261543004 **31** -0.0144131915072458 **32** 0.114510447001218 -0.0617147924758255 **34** -0.0608608819965285 **35** 0.0421019215183924 **36** 0.147460609559765 0.0421784996965396 38 -0.221232591120357 39 -0.0375263259888027 40 -0.000753779929522136 41 -0.00242778449423707 -0.120465634669108 -0.0603603047944356

# Histogram of resid(reg\_1)



### 6.1 Least angle regression (LARS)

## 6.2 Classification and regression training (CARET)

```
[168]: # library(lars)
# library(caret)
pacman::p_load(lars, caret)
```

Installing package into 'C:/Users/HP/Documents/R/win-library/3.6' (as 'lib' is unspecified)
Warning message:
"unable to access index for repository

```
http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.6:
  cannot open URL
package 'lars' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
        {\tt C:\Wsers\HP\AppData\Local\Temp\Rtmp8Y3Hmf\downloaded\_packages}
```

lars installed

```
[169]: library(lars)
      library(caret)
[184]: stepwise <- lars(x, y, type='stepwise')
      forward <- lars(x, y, type='forward.stagewise')</pre>
      lar <- lars(x, y, type='lar')</pre>
      stepwise$R2[6] %>% round(2)
      forward$R2[6] %>% round(2)
      lar$R2[6] %>% round(2)
```

**5:** 0.99

**5:** 0.99

**5:** 0.99