Unit 6

Communication System

INTRODUCTION TO MODULATION: AM, FM, PM

What is Modulation?

Modulation is the process of varying one or more properties of a high-frequency carrier signal in accordance with a low-frequency message (information) signal.

Need for Modulation:

- 1. Efficient Transmission: Low-frequency signals can't travel long distances due to high attenuation.
- 2. Antenna Size: Direct transmission of low-frequency signals requires impractically large antennas.
- 3. Multiplexing: Allows simultaneous transmission of multiple signals.
- 4. Noise Reduction: Modulated signals are less affected by noise than baseband signals.

Types of Modulation

There are three basic types of analog modulation:

1. Amplitude Modulation (AM)

Definition: In AM, the amplitude of the carrier signal varies according to the instantaneous value of the modulating (message) signal, while frequency and phase remain constant.

Mathematical Expression:

Let,

- Carrier wave: $V_c(t) = A_c \sin(2\pi f_c t)$
- Modulating signal: $V_m(t) = A_m \sin(2\pi f_m t)$

Then, the AM wave is:

$$V_{am}(t) = [A_c + A_m \sin(2\pi f_m t)] \times \sin(2\pi f_c t)$$

Modulation Index (μ) :

$$\mu = \frac{A_{\rm m}}{A_C}$$

- \circ μ < 1: Under modulation
- \circ μ = 1: Perfect modulation
- \circ $\mu > 1$: Over modulation (causes distortion)

Advantages of AM:

- Simple to implement and demodulate.
- Low-cost receivers.

Disadvantages:

- o Poor sound quality.
- o More susceptible to noise.
- o Inefficient power usage.

2. Frequency Modulation (FM)

Definition: In FM, the frequency of the carrier wave is varied in proportion to the amplitude of the modulating signal, keeping amplitude and phase constant.

Mathematical Expression:

$$V_{\rm fm}(t) = A_{\rm c} \sin \left[2\pi f_{\rm c} t + \frac{\Delta f}{f_{\rm m}} \sin \left(2\pi f_{\rm m} t \right) \right]$$

Where,

o Δf = Frequency deviation

 \circ $f_m = Maximum modulating frequency$

Modulation Index (β):

$$\beta = \frac{\Delta f}{f_{\rm m}}$$

Advantages:

Better sound quality.

Highly resistant to noise.

Constant amplitude avoids distortion.

Disadvantages:

o Requires larger bandwidth.

Complex circuitry.

3. Phase Modulation (PM)

Definition: In PM, the phase of the carrier wave is varied according to the message signal, keeping amplitude and frequency constant.

Mathematical Expression:

$$V_{pm}(t) = A_c \sin \left[2\pi f_c t + k_p m(t) \right]$$

Where,

 $\circ \quad k_{\text{p}} \text{ is the phase sensitivity of the modulator.} \\$

Characteristics:

- Closely related to FM.
- o Phase change depends on amplitude of the message signal.

Advantages:

- Less sensitive to noise than AM.
- o Used in digital communication (e.g., PSK Phase Shift Keying).

Disadvantages:

- Complex receiver and demodulation circuitry.
- Phase instability may cause errors.

Comparative Table

Parameter	AM	FM	PM
Varying Parameter	Amplitude	Frequency	Phase
Bandwidth	$2 \times f_{\rm m}$	$2(\Delta f + f_{\rm m})$	Depends on modulating signal
Noise Immunity	Poor	Good	Better than AM
Power Efficiency	Low	High	Moderate
Application	AM Radio	FM Radio, TV Audio	Mobile, Digital Systems
Complexity	Simple	Moderate	Complex

Applications of Modulation

Modulation Type	Applications	
AM	AM radio, aviation communication	
FM	FM radio, audio broadcasting, police radios	
PM	Mobile communication, satellite, radar, telemetry	

DEMODULATION

Definition: Demodulation is the process of recovering the original information signal (such as audio, video, or data) from a modulated carrier wave. It is the reverse process of modulation.

Why is Demodulation Necessary?

- To retrieve the actual message signal (such as a voice signal) from a modulated wave sent over long distances.
- Required in all communication receivers (like radios, TVs, mobile phones, etc.).

Types of Demodulation Techniques

AM Demodulation (Amplitude Demodulation):
 Used to extract the message from an AM (Amplitude Modulated) signal.

Envelope Detector (Simple AM Demodulator):

- o Circuit: Diode + RC filter.
- Working: The diode allows only positive half-cycles of AM wave; the RC filter smoothens the signal to follow the envelope.
- Used In: Radios, simple receivers.
- 2. FM Demodulation (Frequency Demodulation):

Used for Frequency Modulated signals.

Common FM Demodulators:

- Slope Detector (simple, low accuracy)
- Phase-Locked Loop (PLL) (high accuracy and widely used)
- Quadrature Detector

Phase-Locked Loop (PLL) Working:

- o Tracks the input FM signal's frequency.
- The difference in phase is used to recreate the original modulating signal.

- 3. PM Demodulation (Phase Demodulation):
 - Similar to FM demodulation, often done using PLLs.
 - Extracts changes in phase to determine the message.

Applications of Demodulation

- Radio and TV receivers
- Satellite communications
- Mobile phones
- Internet data transmission

EduEdge

MULTIPLEXING

Definition: Multiplexing is a technique used to combine multiple signals (analog or digital) into one signal over a shared medium (like a cable or wireless channel), to maximize efficiency of communication systems.

Why is Multiplexing Important?

- Saves bandwidth and cost.
- Efficient use of available communication channels.
- Enables simultaneous data transmission.

Types of Multiplexing

- 1. Time Division Multiplexing (TDM):
 - o Each signal gets a specific time slot in a repeating sequence.
 - Used in: Digital communication, computer networks.
 - TDM Working: If there are 4 signals, each one is sent in 1 out of every 4 time slots, very rapidly (so the receiver reconstructs all signals smoothly).

- 2. Frequency Division Multiplexing (FDM):
 - o Each signal is assigned a different frequency band.
 - Used in: Radio and TV broadcasting, cable TV, telephony.
 - FDM Working: Different audio stations are modulated on different carrier frequencies and sent over the same medium.

- 3. Wavelength Division Multiplexing (WDM):
 - Specific to optical fiber communication.
 - o Each signal is transmitted using different wavelengths (colours) of light.
 - Used in: Fiber-optic communication.
- 4. Code Division Multiplexing (CDM / CDMA):
 - All users use the same bandwidth at the same time, but with unique codes.
 - Used in: Mobile communications (3G networks), GPS.

Applications of Multiplexing

- Mobile networks (CDMA, FDMA)
- Satellite and cable TV
- Optical fiber data transmission (WDM)
- Telecommunication systems
- Internet data transmission (TDM)

IEdge

SUPERHETERODYNE RADIO RECEIVER

A Superheterodyne Receiver is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be processed more conveniently than the original radio carrier frequency.

It is widely used in AM, FM, and TV receivers due to:

- Better selectivity
- Greater sensitivity
- High gain
- Easier tuning

Working Principle

- 1. Antenna: Captures the incoming modulated RF signals.
- 2. RF Amplifier: Amplifies weak signals and selects the desired frequency range.
- 3. Mixer: Combines the amplified signal with a local oscillator signal to produce an Intermediate Frequency (IF) using heterodyning:

$$f_{\rm IF} = |f_{\rm LO} - f_{\rm RF}|$$

- 4. IF Amplifier: Amplifies the IF signal. Since IF is fixed (typically 455 kHz for AM), filters can be optimized.
- 5. Detector/Demodulator: Extracts the audio (original) signal from the modulated carrier.
- 6. Audio Amplifier: Increases the strength of audio signal to drive the loudspeaker.
- 7. Speaker: Converts electrical signal into sound.

Advantages

- · High gain and selectivity
- Constant bandwidth (due to fixed IF)
- Better image frequency rejection

Disadvantages

- Slightly complex
- Expensive compared to simple detectors

TELEVISION

Television is a system for transmitting visual images and sound that are reproduced on screens, mainly used to broadcast programs for entertainment, information, and education.

Basic Elements

- 1. Transmitter Section
 - Camera Tube (e.g., CCD): Converts visual scene into electric signals.
 - Microphone: Captures sound.
 - o Modulation: Video is AM, audio is FM.
 - Combining Circuit: Synchronizes video and audio signals.
 - Transmitting Antenna: Radiates the signal.

2. Receiver Section

- Receiving Antenna: Captures modulated signal.
- Tuner: Selects desired channel frequency.
- Demodulators: Separate video and audio signals.
- o Video Amplifier: Amplifies video for screen display.
- o Audio Amplifier: Drives speaker.
- CRT/LCD/LED: Displays image.

Scanning Process

- Converts 2D image into 1D time-varying signal.
- Done line-by-line, then frame-by-frame.
- Interlaced scanning improves stability.

Colour TV Concepts

- Primary colors: Red, Green, Blue (RGB)
- Color mixing at transmitter and receiver
- Chrominance and Luminance signals are separated

Types of Modulation Used

- AM for video signals
- FM for audio signals

ELEMENTARY CONCEPTS OF OPTICAL COMMUNICATION, SATELLITE COMMUNICATION AND MOBILE COMMUNICATION

Optical Communication

Definition: Transmission of data using light (typically infrared or visible) through optical fibers.

Basic Components

- 1. Transmitter (LED/Laser Diode): Converts electrical signal into light
- 2. Optical Fiber: Transmits light via Total Internal Reflection
- 3. Receiver (Photodiode): Converts light back to electrical signal

Advantages

Applications

- Very high bandwidth
- Immune to EMI
- Low loss, secure transmission

duEdge

- Internet backbone
- Long-distance telephony
- Medical imaging (endoscopy)

Satellite Communication

Definition: Satellite communication uses orbiting satellites to relay and amplify radio signals between source and receiver.

Components

- Uplink: Signal from Earth to satellite
- Downlink: Signal from satellite to Earth
- Transponder: Receives, amplifies, and retransmits signals
- Earth Station: Ground-based sending/receiving unit

Frequency Bands

- C Band: 4–8 GHzKu Band: 12–18 GHz
- Ka Band: 26–40 GHz

Advantages

- Wide area coverage
- Useful in remote areas
- Reliable for global broadcasting

Applications

• TV, internet, GPS, military communication

Mobile Communication

Definition: Mobile communication refers to the wireless transmission of voice and data through a network of base stations and cell towers.

Evolution

- 1G: Analog voice
- 2G: Digital voice (GSM)
- 3G: Mobile internet
- 4G: High-speed data (VoLTE)
- 5G: Ultra-high-speed, low-latency, IoT connectivity

Key Components

- Cell Towers (Base Stations)
- Mobile Switching Center (MSC)
- SIM and Mobile Device
- Network Backbone

Technologies

• CDMA, GSM, LTE, OFDM, MIMO

Applications

- Voice, SMS, Internet
- Video streaming, GPS, Banking

