Table 1: Framework Summary (▼: Oblivious Inference, ▲: Outsourced Inference, □: Outsourced Training, ■: Private Training)

Scene	Framework	Reference	Year	Publication	CCF	Privacy Service	Trunc.& Wrap	Bitwidth	B/QNN	Poly.Approx.	CMP	Num. Method	Offline/Online	HE SIMD	Dyna. Weights	GPU	Optimize Arch.	Commilon	Computer	GC/GMW	OT	SS	HE
Pure-LHE	BatchCrypt	[1]	2020	USENIX	A		•	0	•	0	0	0	•	0	0	0	•		D FMNIST, CIFAR-10, LSTM	0	0	0	Paillier
Pure-HE (LHE)	Hercules	[2]	2022	IEEE TDSC	A		0	0	0	0	0	0	•	•	_	0	•	•	MNIST, FMNIST, CIFAR-10, ImageNet	0	0	•	MCKKS
non-colluding MPC	PVD-FL	[3]	2022	IEEE TIFS	A		0	L	0	0	•	-	•	•	•	0	0	(O MNIST, Thyroid, Breast cancer, German credit	0	0	0	SHE
Server/Client	Cheetah	[4]	2022	USENIX	A	•	•	L	•	•	•	I	•	•	0	0	•	(O ResNet50, DenseNet121	•	•	•	LWE, RLWE, VOLE OT

References

- [1] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, "BatchCrypt: Efficient homomorphic encryption for Cross-Silo federated learning," in *USENIX Annual Technical Conference (USENIX ATC)*, USENIX, 2020.
- [2] G. Xu, X. Han, S. Xu, T. Zhang, and H. Li, "Hercules: Boosting the performance of privacy-preserving federated learning," *IEEE Transactions on Dependable and Secure Computing*, 2022.
- [3] J. Zhao, H. Zhu, F. Wang, R. Lu, and Z. Liu, "PVD-FL: A privacy-preserving and verifiable decentralized federated learning framework," *IEEE Transactions on Information Forensics and Security*, 2022.
- [4] Z. Huang, W. Lu, C. Hong, and J. Ding, "Cheetah: Lean and fast secure Two-Party deep neural network inference," in 31st USENIX Security Symposium (USENIX Security 22), pp. 1161–1178, USENIX, 2022.