Comparing Baseball Player Performance Metrics: NCAA Division 1 vs. Frontier League

Zac Ambrose, Robert Cowan, Nathaniel Ascher, Youssef Gehad

Problem statement

- MLB teams have many different leagues to scout player talent from
- How can professional teams be sure that the players they are acquiring are the best available, regardless of which league they play in?

Research question

How does player performance differ across leagues?

- Could help MLB teams properly select talent based on performance in lower leagues
- We are looking to answer this question with 2023 data from NCAA Division 1 teams and the Frontier League, an independent summer league
- Access provided for data for the 2023 NCAA season by Rice Baseball analytics and 2023 Frontier League season by Nathaniel Ascher

How does player performance differ across leagues?

Text

NCAA

Frontier

- Typically, players in NCAA are regarded as better than those in the Frontier League
- If one league is "better" on average, we'd expect to see improved player performance metrics
- We will focus on pitching metrics, as they are more comparable across leagues

Random forest

- While the NCAA data had an auto pitch type, the Frontier League data did not
- We used a random forest model to predict the pitch type for the Frontier League data using the distribution of NCAA pitch types as the training data
- Features for the model included induced vertical break, horizontal break, release speed, spin rate, spin axis, and pitcher's handedness to predict pitch type
- Resulted in 96.6% accuracy on the test data

Pitch metric definitions

Horizontal Break (HB)

Induced Vertical Break (IVB)

- Changeup
- Curveball
- Cutter
- Fastball
- Sinker
- Slider
- Splitter

Frontier

NCAA

Pitch type by inning

Release speed by inning

Average Pitch Velocity per inning by pitch type

Violin plot

Violin plots of spin rates by pitch type

Exit speeds by pitch type

Box plots of exit speed by pitch type

Dead zones

Avg Exit Speed by Pitch Speed Bin of deadzone fastballs and sinkers

Killer plot: Situational Pitch Type Run Values and Exit Speeds

NCAA

Frontier League

% of total balls in play (NCAA): 100%

% of total balls in play (Frontier League): 100%

NCAA impact of release speed on run values of hits

NCAA - Pitch Speed & Run value								
	Dependent variable:							
	Fastball (1)	Curveball	RunValue Slider (3)	Changeup	Sinker (5)			
RelSpeed		0.006*** (0.0001)		0.005***				
Observations R2 Adjusted R2	52,689 0.279 0.279	19,244 0.289 0.289	28,083 0.274 0.274	35,545 0.284 0.284	33,207 0.297 0.297			
Note:			*p<0.1;	**p<0.05;	***p<0.01			

Frontier impact of release speed on run value of hits

Frontier - Pitch speed & Run value								
	Dependent variable:							
	Fastball	Curveball	RunValue Slider (3)	Changeup	Sinker (5)			
RelSpeed		0.006***		0.005***				
Observations R2 Adjusted R2	7,266 0.285 0.285	2,095 0.309 0.309	3,759 0.277 0.276	3,888 0.302 0.302	3,975 0.298 0.297			
Note:	 _	 _	*p<0.1; *	*p<0.05;	***p<0.01			

Conclusion

- The leagues are very similar in terms of pitch metrics and exit speeds of hits
- Trying to predict outcomes like exit velocities and run values of individual pitches is hard because the data is noisy
- Frontier League relievers/closers seem to throw more fastballs/sinkers and throw harder than Frontier League starters
- Trackman is a more accurate tracking system than Yakkertech
- NCAA hitters are better at hitting fastballs, cutters, and MLB-level deadzone pitches than Frontier League hitters
- In future analyses it would be useful to compare against top-tier leagues like MLB or Japan's NPB