

**PCT**WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau

## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                       |    |                                                                                                                                  |
|-----------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 6 :<br><br><b>C12N 15/00</b> | A2 | (11) International Publication Number: <b>WO 99/03986</b><br><br>(43) International Publication Date: 28 January 1999 (28.01.99) |
|-----------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------|

(21) International Application Number: PCT/US98/14911

(22) International Filing Date: 17 July 1998 (17.07.98)

(30) Priority Data:  
08/896,323 17 July 1997 (17.07.97) US

(71) Applicant: KOSAN BIOSCIENCES, INC. [US/US]; 1450 Rollins Road, Burlingame, CA 94010 (US).

(72) Inventors: KHOSLA, Chaitan; 132 Peter Courts Circle, Stamford, CT 94305 (US). PIEPER, Rembert; 957 Menlo Avenue, Menlo Park, CA 94025 (US). LUO, Guanglin; Apartment #3, 80 Preston Street, Providence, RI 02906 (US). CANE, David, E.; 35 Laural Avenue, Providence, RI 02906 (US).

(74) Agents: MURASHIGE, Kate, H. et al.; Morrison &amp; Foerster LLP, 2000 Pennsylvania Avenue, N.W., Washington, DC 20006-1888 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, CA, CN, CU, CZ, EE, FI, GE, HU, IL, IS, JP, KG, KP, KR, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, UZ, VN, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

## Published

*Without international search report and to be republished upon receipt of that report.*

(54) Title: METHOD TO PRODUCE NOVEL POLYKETIDES

## (57) Abstract

Modified PKS gene clusters which produce novel polyketides in an efficient system in a host cell or in a cell free extract are described. The novel polyketides result from the incorporation of diketides of formula (1) or (2), wherein A is a moiety that activates the diketide, and at least one of R<sup>1</sup> and R<sup>2</sup> is a substituent other than that natively occurring in the diketide normally processed by the modified PKS cluster. The polyketides may also be glycosylated to provide antibiotics.



***FOR THE PURPOSES OF INFORMATION ONLY***

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                       |    |                                           |    |                          |
|----|--------------------------|----|---------------------------------------|----|-------------------------------------------|----|--------------------------|
| AL | Albania                  | ES | Spain                                 | LS | Lesotho                                   | SI | Slovenia                 |
| AM | Armenia                  | FI | Finland                               | LT | Lithuania                                 | SK | Slovakia                 |
| AT | Austria                  | FR | France                                | LU | Luxembourg                                | SN | Senegal                  |
| AU | Australia                | GA | Gabon                                 | LV | Latvia                                    | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom                        | MC | Monaco                                    | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia                               | MD | Republic of Moldova                       | TG | Togo                     |
| BB | Barbados                 | GH | Ghana                                 | MG | Madagascar                                | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea                                | MK | The former Yugoslav Republic of Macedonia | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece                                | ML | Mali                                      | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary                               | MN | Mongolia                                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland                               | MR | Mauritania                                | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel                                | MW | Malawi                                    | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland                               | MX | Mexico                                    | US | United States of America |
| CA | Canada                   | IT | Italy                                 | NE | Niger                                     | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan                                 | NL | Netherlands                               | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya                                 | NO | Norway                                    | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan                            | NZ | New Zealand                               | ZW | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's Republic of Korea | PL | Poland                                    |    |                          |
| CM | Cameroon                 | KR | Republic of Korea                     | PT | Portugal                                  |    |                          |
| CN | China                    | KZ | Kazakhstan                            | RO | Romania                                   |    |                          |
| CU | Cuba                     | LC | Saint Lucia                           | RU | Russian Federation                        |    |                          |
| CZ | Czech Republic           | LI | Liechtenstein                         | SD | Sudan                                     |    |                          |
| DE | Germany                  | LK | Sri Lanka                             | SE | Sweden                                    |    |                          |
| DK | Denmark                  | LR | Liberia                               | SG | Singapore                                 |    |                          |
| EE | Estonia                  |    |                                       |    |                                           |    |                          |

## METHOD TO PRODUCE NOVEL POLYKETIDES

### Statement of Rights to Inventions Made under Federally Sponsored Research

This invention was made with U.S. government support from the National Institutes of Health (GM22172 and CA66736-01). The government has certain rights in this invention.

### Technical Field

The invention relates to methods to synthesize polyketides which are novel using modified modular polyketides synthases (PKS) which cannot utilize a natural first module starter unit.

### Background Art

Modular polyketide syntheses are typified by the organization of deoxyerythronolide B synthase (DEBS) which produces  $\beta$ -deoxyerythronolide B (6-dEB) the parent macrolactone of the broad spectrum antibiotic erythromycin. DEBS consists of three large polypeptides each containing about 10 distinctive active sites. Fig. 1 shows, diagrammatically, the nature of the three DEBS modules encoded by the three genes *eryA1*, *eryAII* and *eryAIII*.

Various strategies have been suggested for genetic manipulation of PKS to produce novel polyketides. New polyketides have been generated through module deletion (Kao, C.M. et al., *J. Am. Chem. Soc.* (1995) 117:9105-9106; Kao, C.M. et al., *J. Am. Chem. Soc.* (1996) 118:9184-9185). Also reported to provide novel polyketides are loss of function mutagenesis within reductive domains (Donadio, S. et al., *Science* (1991) 252:675-679; Donadio, S. et al., *Proc. Natl. Acad. Sci. USA* (1993) 90:7119-7123; Bedford, D. et al., *Chem. Biol.* (1996) 3:827-831) and replacement of acyl transferase domains to alter starter or extender unit specificity (Oliynyk, M et al., *Chem. Biol.* (1996) 3:833-839; Kuhstoss, S. et al., *Gene* (1996) 183:231-236), as well as gain of function mutagenesis to introduce new catalytic activities within existing modules (McDaniel, R. et al., *J. Am. Chem. Soc.* (1997) in press). In some of these reports, downstream enzymes in the polyketide pathway have been shown to process

-2-

non-natural intermediates. However, these methods for providing novel polyketides suffer from the disadvantages of requiring investment in cloning and DNA sequencing, the systems used being limited to producer organisms for which gene replacement techniques have been developed, primer and extender units that can only 5 be derived from metabolically accessible CoA thioesters, and the fact that only limited auxiliary catalytic functions can be employed.

The DEBS system in particular has been shown to accept non-natural primer units such as acetyl and butyryl-CoA (Wiesmann, K.E.H. et al, *Chem. Biol.* (1995) 2:583-589; Pieper, R. et al, *J. Am. Chem. Soc.* (1995) 117:11373-11374) as well as N-10 acetylcysteamine (NAC) thioesters of their corresponding diketides (Pieper, R. et al., *Nature* (1995) 378:263-266). However, it has become clear that even though such unnatural substrates can be utilized, competition from the natural starter unit has drastically lowered yield. Even if starter units are not supplied artificially, they can be inherently generated from decarboxylation of the methylmalonyl extender units 15 employed by the DEBS system (Pieper, R. et al., *Biochemistry* (1996) 35:2054-2060; Pieper, R. et al., *Biochemistry* (1997) 36:1846-1851).

Accordingly, it would be advantageous to provide a mutant form of the modular polyketide synthesis system which cannot employ the natural starter unit. Such systems can be induced to make novel polyketides by supplying, instead, a 20 suitable diketide as an NAC thioester or other suitable thioester. Mutations have been made in the past to eliminate the competition from natural materials (Daum, S.J. et al., *Ann. Rev. Microbiol.* (1979) 33:241-265). Novel avermectin derivatives have been synthesized using a randomly generated mutant strain of the avermectin producing organism (Dutton, C.J. et al., *Tetrahedron Letters* (1994) 35:327-330; Dutton, C.J. et 25 al., *J. Antibiot.* (1991) 44:357-365). This strategy is, however, not generally applicable due to inefficiencies in both mutagenesis and incorporation of the substrates.

Thus, there is a need for a more efficient system to prepare novel polyketides by inhibiting competitive production of the natural product.

30

Disclosure of the Invention

-3-

The invention is directed to methods to prepare novel polyketides using modified modular polyketide synthase systems wherein directed modification incapacitates the system from using its natural starting material. Novel polyketides can then be synthesized by overriding the starter module and supplying a variety of 5 suitable diketide substrates.

Thus, in one aspect, the invention is directed to a method to prepare a novel polyketide which method comprises providing a thioester diketide substrate to a modular PKS comprising at least two modules under conditions wherein said substrate is converted by said modular PKS to a product polyketide, wherein said PKS 10 has been modified to prevent its utilization of the native starter unit. In other aspects, the invention is directed to the modified modular PKS which is disarmed with respect to utilization of the native starter substrate supplying the initial two carbon unit, and to suitable cells modified to contain this disarmed PKS. The invention is further directed to recombinant materials for production of the modified PKS and to the novel 15 polyketides produced by this system.

#### Brief Description of the Drawings

Figure 1 shows a schematic representation of the DEBS modular PKS.

Figures 2A-2C show the products of a modified DEBS construct wherein the 20 ketosynthase (KS) in module 1 is disarmed.

Figure 3 shows the processing of 6-dEB derivatives to erythromycin-D derivatives.

#### Modes of Carrying Out the Invention

25 The invention provides modular PKS systems which are disarmed with respect to loading the native starting material and their corresponding genes. In a particularly preferred embodiment, the ketosynthase (KS) of module 1 is inactivated so as to prevent competition from the native starter unit. Other approaches to similarly disarming the PKS involve inactivating the acyl transferase (AT) or acyl carrier 30 protein (ACP) functions of module 1.

The PKS of the invention must contain at least two modules but may contain additional modules and, indeed may, represent complete synthase systems. While the DEBS PKS system is used to illustrate the invention, any modular PKS can be used, such as the modular PKS resulting in the production of avermectin, rapamycin and the like. Suitable mutations can be introduced by known site specific mutagenesis techniques.

Other micro-organisms such as yeast and bacteria may also be used. When host cells, such as bacteria, yeast, or even mammalian or insect cells, which normally do not produce polyketides are employed, it may be necessary to modify the hosts so as to provide posttranslational processing of the PKS enzymes. Specifically, in order to be functional, the ACP activities must be phosphopantetheinylated. This conversion of an apo-ACP to its activated form is accomplished by enzymes collectively referred to as holo-ACP synthases or PTTases. Forms of these enzymes which function in the fatty acid synthase pathways do not appear to be effective in providing holo-ACP functionalities in the PKS clusters. Thus, importation of a suitable synthase in a recombinant system when the polyketide synthesis is performed in whole cells other than, for example, streptomyces should be employed. If the synthesis is conducted in a cell-free system, the PKS enzymes utilized must have been synthesized under conditions where the holo-ACP synthase is present.

The novel polyketides may thus be synthesized in a suitable hosts, such as a Streptomyces host, especially a Streptomyces host modified so as to delete its own PKS, or other cells modified to produce a suitable PTTase if needed. The polyketides may also be synthesized using a cell-free system by producing the relevant PKS proteins recombinantly and effecting their secretion or lysing the cells containing them. A typical cell-free system would include the appropriate functional PKS, NADPH and an appropriate buffer and substrates required for the catalytic synthesis of polyketides. To produce the novel polyketides thioesters of the extender units are employed along with the thioester of a diketide.

The novel polyketides produced as a result of the modified PKS clusters will differ in the substituents that correspond to the residue of the starter unit in the finished polyketide. And, since the diketide intermediate is being supplied to the

-5-

modified PKS cluster, the nature of the extender unit incorporated immediately adjacent the starter unit may also be varied. Thus, the diketides used to make the novel polyketides of the invention are of the general formulas



or



5       wherein A is a moiety that activates the diketide, typically a sulphydryl such as the N-acetyl cysteamine thioester illustrated below, and at least one of R<sup>1</sup> and R<sup>2</sup> is a substituent other than that natively occurring in the diketide normally processed by the modified PKS cluster. In general, R<sup>1</sup> is a substituted or unsubstituted, saturated or unsaturated hydrocarbyl moiety (1-15C), said hydrocarbyl optionally containing one  
 10      or two heteroatoms especially N, O or S and R<sup>2</sup> is a substituted or unsubstituted saturated or unsaturated hydrocarbyl moiety (1-4C) or is OR, SR, or NHR, wherein R is substituted or unsubstituted, saturated or unsaturated hydrocarbyl of 1-4C.  
 However, both R<sup>1</sup> and R<sup>2</sup> cannot be methyl and if R<sup>2</sup> is methyl, R<sup>1</sup> cannot be ethyl.

Typical substituents include halo, OR<sup>3</sup>, SR<sup>3</sup>, NR<sub>2</sub>, -OOCR<sup>3</sup>, -NHOOCR<sup>3</sup>, R<sup>3</sup>CO-,  
 15      R<sup>3</sup>COO- and R<sup>3</sup>CONH- wherein each R<sup>3</sup> is independently H or lower alkyl (4-4C).

The invention is also directed to polyketides which result from incorporating the diketides of formulas (1) or (2) and to glycosylated forms thereof.

20      The following examples are intended to illustrate but not to limit the invention.

#### Preparation A

##### Starting Materials

Streptomyces coelicolor CH999, which has been engineered to remove the  
 25      native PKS gene cluster is constructed as described in WO 95/08548. pRMS5, a shuttle plasmid used for expressing PKS genes in CH999 was also described in that

-6-

application. Plasmid pCK7 which contains the entire DEBS modular system was described in the foregoing application as well.

Example 1

5

Preparation of DEBS 1+ 2+TE

A modified DEBS PKS system containing only modules 1 and 2 and thioesterase (TE) activity, designated DEBS 1+2+TE, was subjected to site directed mutagenesis to inactivate module 1 KS by replacing the active site cysteine residue in the signature sequence cys-ser-ser-ser-leu by alanine. The resulting expression 10 plasmid, designated pKAO179, encodes a 2-module PKS which is inactive under the standard reaction conditions for synthesis of the native product, *i.e.*, propionyl-CoA, methylmalonyl-CoA, and NADPH. The details of this construction are set forth in Kao, C.M. *et al*, Biochemistry (1996) 35:12363-12368. When provided with the diketide thioester (2S, 3R)-2-methyl-3-hydroxy-pentanoyl-N-acetylcysteamine 15 thioester, and with methylmalonyl-CoA, and NADPH, the triketide product set forth below is obtained.

The triketide product is produced under these conditions when the PKS is incubated in a cell-free system or can be duplicated *in vivo* by providing the appropriate diketide thioester analogs to actively growing cultures of CH99 containing 20 the modified expression plasmid:

A culture of *S. coelicolor* CH999/pKAO179 is established by inoculation of 200 mL of SMM medium (5% PEG-800, 0.06% MgSO<sub>4</sub>, 0.2% (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 25 mM TES, pH 7.02, 25 mM KH<sub>2</sub>PO<sub>4</sub>, 1.6% glucose, 0.5% casamino acids, trace elements) with spores. The culture is incubated at 30°C with shaking at 325 rpm. A solution of 25 (2S, 3R)-2-methyl-3-hydroxypentanoyl N-acetylcysteamine thioester (100 mg) and 4-pentynoic (15 mg) in 1 mL of methylsulfoxide is added to the culture in three parts: after 50 hours (400 mL); after 62 hours (300 mL); and after 86 hours (300 mL). After a total of 144 hours, the culture is centrifuged to remove mycelia. The fermentation broth is saturated with NaCl and extracted with ethyl acetate (5 x 100 mL). The 30 combined organic extract is dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. Silica gel

-7-

chromatography yields (2R, 3S, 4S, 5R)-2,4-dimethyl-3, 5-dihydroxy-n-heptanoic acid  $\delta$ -lactone.

Example 2

5

Preparation of Polyketides from the DEBS Cluster

The active site mutated module 1 KS domain of the *eryAI* (DEBS 1 gene) is provided on plasmid pCK7, which contains the *eryAI*, *eryAII* (DEBS 2) and *eryAIII* (DEBS 3 genes) under control of the *actI* promoter. Expression from this plasmid pJRK2 results in a suitably modified full length PKS system. (Kao, C.M *et al.*, 10 *Science* (1994) 265:409-512. pJRK2 was transformed into CH999 and grown on R2YE medium. No detectable 6 DEB-like products were produced.

In more detail, lawns of CH999/pJRK2 were grown at 30°C on R2YE agar plates containing 0.3 mg/ml sodium propionate. After three days, each agar plate was overlayed with 1.5 mL of a 20 mM substrate solution in 9:1 water:DMSO. After an 15 additional 4 days, the agar media (300 mL) were homogenized and extracted three times with ethyl acetate. The solvent was dried over magnesium sulfate and concentrated. Concentrated extracts were purified by silica gel chromatography (gradient of ethyl acetate in hexanes) to afford products.

However, when substrate 2, prepared by the method of Cane *et al.*, *J. Am. 20 Chem. Soc.* (1993) 115:522-526; Cane, D.E. *et al.*, *J. Antibiot.* (1995) 48:647-651, shown in Figure 2 (the NAC thioester of the native diketide) was added to the system, the normal product, 6 dEB was produced in large quantities. Administration of 100 mg substrate 2 to small scale cultures (300 ml grown on petri plates as described above, resulted in production of 30 mg 6 dEB, 18% yield.

25

Example 3

Production of Novel Polyketides

Diketides with the structures shown in Figure 2A as formulas 3, 4, and 5 were then administered to growing cultures of CH999/pJRK2 under the conditions of 30 Example 2. Substrates 3 and 4 were prepared as described for Substrate 2 but substituting valeraldehyde and phenylacetaldehyde, respectively for propionaldehyde

in the aldol reactions. The preparation of Substrate 5 was described by Yue, S. *et al.*, *J. Am. Chem. Soc.* (1987) 109:1253-1255. Substrates 3 and 4 provided 55 mg/L of product 6 and 22 mg/L of product 7, respectively. Substrate 5 resulted in the production of 25 mg/L of the 16 member lactone 8, an unexpected product.

5

Example 4

Additional Novel Polyketides

Diketides with the structures shown in Figures 2B and 2C as compounds 9-18 were administered to growing cultures of CH999/pJMJ2 under the conditions of  
10 Example 2. The products were those set forth in Figures 2B and 2C as compounds 19-28.

Example 5

Steric Requirements

15 Using the same system set forth in Example 2, but substituting for compound 2 the three diasteriomic forms of the structure of formula 2 shown in Figure 2A, synthesis of a polyketide in each case was not detected. Similarly, substituting for compound 12 its enantiomer at the 2-position, no synthesis of polyketide was detected.

20

Example 6

Processing of the Polyketide Products

The successful processing of unnatural intermediates by the "downstream" modules of DEBS prompted an experiment to determine whether the post-PKS enzymes in the erythromycin biosynthetic pathway might also accept unnatural substrates. In the natural producer organism, *Saccharopolyspora erythrea*, 6dEB undergoes several enzyme-catalyzed transformations. Oxidation at C6 and glycosylations at C3 and C5 afford erythromycin D (formula 9 in Figure 3) and subsequent transformations afford erythromycins A, B, and C. *S. erythrea* mutant  
25 (A34) (Weber, J.M. *et al.*, *J. Bactiol.* (1985) 164:425-433) is unable to synthesize 6dEB. This strain produces no erythromycin when grown on R2YE plates (as judged  
30

-9-

by the ability of extracts to inhibit growth of the erythromycin-sensitive bacterium *Bacillus cereus*). However, when 6dEB (which has no antibacterial activity) is added to the culture medium, extracts exhibited potent antibacterial activity.

Samples of 6dEB derivatives 6 and 7 were assayed for conversion by this  
5 strain. Partially purified extracts demonstrated inhibition of *B. cereus* growth, and mass spectrometry was used to identify the major components of the extracts as formula 10 in Figure 3 (from 6) and formula 11 (from 7).

In more detail, purified 6 and 7 (5 mg dissolved in 7.5 mL 50% aqueous ethanol) were layered onto R2YE plates (200 mL media/experiment) and allowed to  
10 dry. *S. erythrea A34* was then applied so as to give lawns. After 7 days of growth, the media were homogenized and extracted three times with 98.5:1.5 ethyl acetate:triethylamine. Pooled extracts from each experiment were dried over magnesium sulfate and concentrated. Extracts were partially purified by silica gel chromatography (gradient of methanol and triethylamine in chloroform). The  
15 partially purified extracts were examined by TLC and mass spectrometry. For antibacterial activity analysis, filter discs were soaked in 400 µM ethanolic solutions of erythromycin D, 10 and 11, as well as a concentrated extract from *S. erythrea A34* which had been grown without addition of any 6-dEB analogs. Disks were dried and laid over freshly-plated lawns of *Bacillus cereus*. After incubation for 12h at 37°C,  
20 inhibition of bacterial growth was evident for all compounds but not for the control extract.

-10-

Claims

1. A modified functional modular polyketide synthase (PKS) comprising at least two modules, wherein said PKS has been modified to prevent its utilization of  
5 the native starter unit for said modular PKS, wherein the ketosynthase (KS) catalytic domain of module 1 has been inactivated.
  
2. The modified PKS of claim 1 which is a complete PKS.
  
- 10 3. A PKS gene cluster which encodes a modified PKS wherein said modified PKS has been modified to prevent its utilization of the native starter unit for said modular PKS, wherein the ketosynthase (KS) catalytic domain of module 1 has been inactivated.
  
- 15 4. The gene cluster of claim 3 which encodes a complete PKS.
  
5. A recombinant host cell modified to contain the gene cluster of claim 3 which further optionally includes a recombinant expression system for the production of a holo-ACP synthase effective to phosphopantetheinylate the ACP regions of the  
20 PKS produced.
  
6. A method to prepare a polyketide, which method comprises providing a thioester diketide substrate for the modified PKS of claim 1.
  
- 25 7. The method of claim 6 which is conducted in a host cell.
  
8. The method of claim 6 which is conducted in a cell free system.
  
9. A method to prepare an antibiotic which method comprises treating the  
30 polyketide product of the method of claim 6 with an enzyme that effects polyketide glycosylation.

-11-

10. A novel polyketide which has the structure shown as formula 6-8 in Figure 2A or formulas 19-28 of Figures 2B and 2C.

5 11. A novel antibiotic which is the glycosylated form of the polyketide of claim 10.

12. A novel polyketide which is obtainable by the method of claim 6 from the diketide of the formulas

10



or



wherein A is a moiety that activates the diketide;

at least one of R<sup>1</sup> and R<sup>2</sup> is a substituent other than that natively occurring in the diketide normally processed by the modified PKS cluster; and wherein

15 R<sup>1</sup> is a substituted or unsubstituted, saturated or unsaturated hydrocarbyl moiety (1-15C), said hydrocarbyl optionally containing one or two heteroatoms and R<sup>2</sup> is a substituted or unsubstituted, saturated or unsaturated hydrocarbyl moiety (1-4C) or is OR, SR, or NHR, wherein R is substituted or unsubstituted, saturated or unsaturated hydrocarbyl of 1-4C with the proviso that both R<sup>1</sup> and R<sup>2</sup> cannot be  
20 methyl and if R<sup>2</sup> is methyl, R<sup>1</sup> cannot be ethyl.

13. A novel antibiotic which is the glycosylated form of the novel polyketide of claim 12.

**FIG. I****SUBSTITUTE SHEET (RULE 26)**

2 / 5



FIG. 2A

3 / 5



FIG. 2B

SUBSTITUTE SHEET (RULE 26)

4 / 5



FIG. 2C  
SUBSTITUTE SHEET (RULE 26)

5 / 5



FIG. 3

**SUBSTITUTE SHEET (RULE 26)**