95.13 METODOS MATEMATICOS Y NUMERICOS

FACULTAD DE INGENIERIA

GUIA 1 - ERRORES

Problema 1

Exprese correctamente el siguiente resultado e indique la cantidad de dígitos significativos que tiene: a = 1,58976413794 y su cota de error absoluto $\Delta a = 0,3$ x 10^{-5}

Problema 2

Dado un círculo de diámetro D. Se toman varias mediciones con calibre $D_1, D_2, \dots D_n$, obteniéndose un diámetro muestral D_m y una incertidumbre ΔD (error absoluto).

- a) Dar la expresión del error absoluto asociado al área del círculo. ¿Es simétrico el intervalo obtenido?
- b) Dar la expresión del error absoluto asociado al área del círculo aplicando la teoría lineal de errores. Compararla con el ítem a). Indique ventajas y desventajas de cada caso.
- c) Agregar la incertidumbre que se cometería al aproximar π por 3.14 a la expresión de b)

Problema 3

Mediante la teoría lineal de errores, demostrar que:

- a) En una suma o resta de dos variables, los errores absolutos se suman
- b) En un producto o división de dos variables, los errores relativos se suman.

Problema 4

Calcular las siguientes expresiones, incluyendo sus cotas de error absoluto, donde x = 2,00, y = 3,00 y z = 4,00 (estos valores están correctamente redondeados):

a)
$$3 x + y - z$$

b) x sen
$$(y / 40)$$

Problema 5

Calcular la siguiente expresión, incluyendo su cota de error absoluto: $w = x y^2 / z$ donde:

$$x = 2.0 \pm 0.1$$
 $y = 3.0 \pm 0.2$ $z = 1.0 \pm 0.1$

Indicar qué variable tiene mayor incidencia en el error en w

Problema 6

Se tienen las siguientes expresiones algebraicamente equivalentes:

i)
$$f = (2\frac{1}{2} - 1)^6$$

ii)
$$f = 1/(2\frac{1}{2} + 1)^6$$

iii)
$$f = (3 - 2*2\frac{1}{2})^3$$

iv)
$$f = 1/(3 + 2*2\frac{1}{2})^3$$

v)
$$f = (99 - 70*2\frac{1}{2})$$

vi)
$$f = 1/(99 + 70*2\frac{1}{2})$$

- a) Demostrar que, efectivamente, son algebraicamente equivalentes.
- b) Utilizando el valor aproximado 1,4 para la raíz cuadrada de 2, indicar qué alternativa proporciona el mejor resultado.

Problema 7

Se dispone de un algoritmo para computar la siguiente integral: $I(a,b) = \int_0^1 e^{\frac{-bx}{(a+x^2)}} dx$ Utilizando dicho algoritmo se obtuvo la siguiente tabla de resultados de I. Luego se midieron las cantidades físicas z e y, obteniéndose: $z = 0,400 \pm 0,003$ e $y = 0,340 \pm 0,005$. Estimar el error en I(z,y) y expresar el resultado final.

а	b	1
0,39	0,34	1,425032
0,40	0,32	1,408845
0,40	0,34	1,398464
0,40	0,36	1,388198
0,41	0,34	1,372950

Problema 8

La tensión de rotura a compresión de una probeta de hormigón se determina con la expresión $f=4F/\pi D^2$, siendo F la fuerza que aplica la máquina y D el diámetro de la probeta. La máquina informa una fuerza a la rotura de 0.715MN y tiene un error absoluto máximo de 0.003MN, se determinó D=0.15m con un error relativo porcentual del 2.5% y se considera $\pi=3.1416\pm0.00005$

- a) Calcular la tensión de rotura con su error absoluto. Expresar $f = f \pm \Delta f$ con sus unidades correspondientes.
- b) Calcular el error relativo porcentual de la tensión de rotura.