Assignment 1 (15%)

Let X denote a continuous stochastic variable with the following cumulative probability function

$$F(x) = \begin{cases} 0 & for \ x \le 0 \\ \frac{3}{4}x^2 - \frac{1}{4}x^3 & for \ 0 < x < 2 \\ 1 & for \ x \ge 2 \end{cases}$$

- a) Compute $P(X \le 0.5)$ og P(X > 1)
- b) Show that the density function f(x) for X is

$$f(x) = \begin{cases} \frac{3}{4}(2x - x^2) & for \quad 0 < x < 2\\ 0 & Otherwise \end{cases}$$

c) Find the expected value and variance of X

Assignment 2 (20%)

Grades for ALI1 and SMP1 in 2014 were as follows:

	SMP1 Grade			
ALI1 Grade	12	10	7	other
12	25	6	17	13
10	17	16	15	6
7	18	4	18	10
Other	10	8	11	20

- a) If a randomly chosen student from the ALI1 course is chosen and turns out to have received a 12 in ALI1, what is the probability that this student also received a 12 in SMP1?
- b) Test whether the grades in ALI1 and SMP1 are independent using a 0,01 level of significance
- c) What is the probability that a person will receive a 12 in SMP1, given that they received less than 7 in ALI?
- d) What is the probability of receiving a 12 in ALI1 or a 12 in SMP?

Assignment 3 (15%)

A computer scientist is investigating the usefulness of two different design languages in improving programming tasks. Twelve expert programmers, familiar with both languages, are asked to code a standard function in both languages, and the time (in minutes) is recorded. The data follows below

- a) Determine the mean, standard deviation and interquartile range for both sets of data
- b) Setup a 95% confidence interval on the mean time in minutes for both sets of data. What do these confidence intervals indicate with regard to one design language being preferable?
- c) Test the hypothesis that the mean time in minutes for coding the standard function of the two languages are equal

	Time		
	Design language	Design language	
Programmer	1	2	
1	17	18	
2	16	14	
3	21	19	
4	14	11	
5	18	23	
6	24	21	
7	16	10	
8	14	13	
9	21	19	
10	23	24	
11	13	15	
12	18	20	

Assignment 4 (20%)

There are currently 368 students enrolled at the ICT programme. 62 of these students are females.

- a) What probability distribution would be appropriate to model female students at the ICT programme?
- b) What is an estimate of the population proportion of female ICT students?
- c) Compute a 95% confidence interval for the estimate found in (b).
- d) In a class with 40 students, what is the probability that the class will consist of at least 25% females?

Assignment 5 (30%)

The Excel file 'TV Viewing.xlsx' provides sample data on the number of hours of TV viewing per week for different adults.

- a) Using the data, develop a simple linear regression model for estimating TV viewing time as a function of age?
- b) Based on the correlation of determination, determine if a significant relationship exists between age and TV viewing time
- c) Is the model developed in a) a good predictor model? Base your answer in the correlation of determination.