- **Definition 1.** $P \leq M$ if M contains P as a submatrix.
- **Definition 2.** $P \leq M$ if M contains P as an interval minor.
- Observation 1. $P \leq M \Rightarrow P \leq M$.
- 4 Observation 2. If P permutation matrix, then $P \leq M \Leftrightarrow P \leq M$.

5 0.1 Characterizations

- **Definition 3.** For $M_1 \in \{0,1\}^{n \times k}$, $M_2 \in \{0,1\}^{n \times l}$ let $M \in \{0,1\}^{n \times k + l}$ be a
- horizontal join of M_1 and M_2 , denoted by $M = M_1 \oplus_h M_2$, if the first k columns
- s of M give M_1 and the last l columns of M give M_2 .
- **Definition 4.** A walk in a matrix M is a sequence of some of its entries, beginning
- in the top left corner and ending in the bottom right one. If an entry at the
- position [i, j] is in the sequence, the next one is either [i + 1, j] or [i, j + 1].
- Definition 5. We call a binary matrix M a walking matrix if there is a walk in
- M such that all the one-entries of M are contained on the walk.

14 0.1.1 Matrices of size 2×2

- **Theorem 3.** Let $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then for all $M \colon P \not\preceq M \Leftrightarrow M$ is a walking matrix.
- Proof. Since P is a permutation matrix, $P \npreceq M \Leftrightarrow P \npreceq M$ and it is easy to see
- 17 $P \not\leq M \Leftrightarrow M$ is a walking matrix.
- **Theorem 4.** Let $P = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, then for all $M: P \not\preceq M \Leftrightarrow M$ looks like the matrix
- in Figure 1, where M' is a walking matrix.

Figure 1: Characterization of a matrix avoiding $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ as an interval minor.

Proof. \Rightarrow If $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M$, then M = M' and we are done. Else there are one-entries at [r,c'] and [r',c], where r' < r and c' < c. If there was a one-entry in regions outside M', the r-th row and the c-th column, then $P \preceq M$, which would be a contradiction. If M' is not a walking matrix, then it contains $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and we again get a contradiction.

 \Leftarrow For contradiction, assume that M described in Figure 1 contains P as an interval minor. It means that there is a partition of the matrix into four quadrants such that there is at least one one-entry in each quadrant besides the bottom right one. If the matrix would be partitioned above the r-th row, then there would be only one column containing one-entries and it would not be possible for both top quadrants to have a one-entry. Similarly, if the matrix would be partitioned to the left of the c-th column, there would be only one row containing one-entries and there would not be oneentry in either top-left or bottom-left quadrant. Therefore, the partitioning lies bellow the r-th row and to the right of the c-th column, but if the quadrants contain one-entries, there is a $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ interval minor in M', which is a contradiction.

Lemma 5. TODO - lemma about existence of an element for which top-right 38 and bottom-left submatrices are empty or symmetrically. I will need some kind of notation before I'm able to state and prove it. Was thinking about something like 40 "an element is ... if the submatrix $M[\langle r, \rangle c]$ is empty".

Theorem 6. Let $P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, then for all $M \colon P \not\preceq M \Leftrightarrow M$ looks like one of the matrices in Figure 2, where $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_1$, $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \not\preceq M_2$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \not\preceq M_3$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \not\preceq M_4$.

Figure 2: Characterization of a matrix avoiding $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ as an interval minor.

Proof.

46

25

26

27

28

29

30

31

32

33

34

35

36

37

39

We proceed by induction by the size of M.

If $M \in \{0,1\}^{2\times 2}$, then it either avoids $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and we are done.

For bigger M, there is, from Lemma 5, "the element". Assume the first case 47 (top-right and bottom-left empty (will change this when I have some notation)). If M_1 is non-empty, then $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \not\preceq M_2$; otherwise, $P \preceq M$. Similarly, $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_1$ if M_2 is non-empty. If one of them is empty, the other is a smaller matrix avoiding P as an interval minor and by induction hypothesis, it can be partitioned. Adding empty rows and columns does not break any condition and we get a partitioning of the whole M.

⁵⁴ \Leftarrow Let us assume M looks like the left matrix in Figure 2, for the other one we would argue symmetrically. For contradiction, assume $P \leq M$. In that case, we can partition M into four quadrants such that there is at least one one-entry in each of them. It does not matter where we partition it, every time we either get $\binom{1}{1} \binom{1}{0} \leq M_1$ or $\binom{0}{1} \binom{1}{1} \leq M_2$, which is a contradiction.

9 **0.1.2** Matrices of size 2×3

71

72

74

75

Theorem 7. Let $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, then for all $M: P \not\preceq M \Leftrightarrow M = M_1 \oplus_h M_2$, where $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \not\preceq M_1$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_2$.

 \Rightarrow Let e = [r, c] be the top-most one-entry of M. If there was $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as an interval minor in the first c-1 columns of M, together with e it would 63 be the whole P; therefore, it is not. If the rest of the columns besides the 64 first c-1 avoid $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ as an interval minor, we are done. Let us assume it 65 is not the case and $e_{0,0}, e_{1,1}$ be any two one-entries forming the forbidden 66 pattern. Similarly, let the first c columns contain $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as an interval minor 67 (else $P \leq M$) and $e_{0,1}, e_{1,0}$ be any two one-entries forming the forbidden 68 pattern. Now if we take $e_{0,0}$, $e_{0,1}$ and a lower of $e_{1,0}$ and $e_{1,1}$ we get forbidden pattern P as an interval minor, which is a contradiction. 70

 \Leftarrow For contradiction let us assume $P \leq M$ and $M = M_1 \oplus_h M_2$. If P is an interval minor of M, let us look where is the one-entry of M, where the bottom one of P can be mapped. If it is in M_1 , then $P \not \leq M$ because $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not \leq M_1$. Similarly, if it is in M_2 , then $P \not \leq M$ because $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \not \leq M_2$.

Lemma 8. Let $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, then for all $M \colon P \not\preceq M \Rightarrow M = M_1 \oplus_h M_2$, where $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \not\preceq M_1$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_2$ or $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \not\preceq M_1$ and $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_2$.

Proof. Let e = [r, c] be the top-most one-entry of M. If there was $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ as an interval minor in the first c-1 columns of M, together with e it would be the whole P; therefore, it is not. Similarly, there is not $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ as an interval minor in the rest of columns besides the first c. Now, in order not to decompose M, the first c columns induce $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as an interval minor, where $e_{0,0}$ and $e_{1,1}$ (non of them equal to e, since e lies in the top-right corner) are any two one-entries forming the pattern, and the rest of columns besides the first c-1 induce $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ as an interval minor and $e_{0,1}, e_{1,0}$ are any two one-entries forming the pattern. In that case $e_{0,0}, e, e_{0,1}$ and a lower one of $e_{1,0}$ and $e_{1,1}$ give us the forbidden pattern P as an interval minor, which is a contradiction; therefore there exists described decomposition of M.

Theorem 9. Let $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, then for all $M: P \not\preceq M \Leftrightarrow M$ looks like the matrix in Figure 3 and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \not\preceq M_1$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M_2$.

Proof. \Rightarrow From Lemma 8 we know $M = M'_1 \oplus_h M'_2$, where $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \not\preceq M'_1$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \not\preceq M'_2$. The other case would be dealt with similarly. As Theorem 4 says, M'_1 can be characterized exactly like the first $c_2 - 1$ columns of M and the rest then form a walking matrix. The only problem with our claim would be if there were two different columns having a one-entry above the

Figure 3: Characterization of a matrix avoiding $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ as an interval minor.

r-th row. In that case those two one-entries together with a one-entry in the r-th row between the columns c_1 and c_2 and a one-entry in the c_1 -th column above the r-th row form P interval minor, which is a contradiction with $P \not \leq M$.

 \Leftarrow The bottom-middle one-entry of P can not be mapped anywhere but to the r-th row, but in that case there are at most two columns having one-entries above it. (will do better hopefully)

0.2 Extremal function

100

101

102

103

Definition 6. $Ex(P, m, n) := \{oc(M) | M \in \{0, 1\}^{m \times n}, P \not\leq M\}$

Definition 7.
$$Ex_{\prec}(P, m, n) := \{oc(M) | M \in \{0, 1\}^{m \times n}, P \not\preceq M\}$$

Observation 10. For all $P: Ex_{\preceq}(P, m, n) \leq Ex(P, m, n)$.

Observation 11. If $P \in \{0,1\}^{k \times l}$ has a one-entry at position [a,b], then

$$Ex(P, m, n) \ge \frac{m \cdot n}{(k-1)n + (l-1)m - (k-1)(l-1)}$$
 $k > m \lor l > m$ otherwise.

Observation 12. The same holds for $Ex_{\preceq}(P, m, n)$.

Definition 8. $P \in \{0,1\}^{k \times l}$ is (strongly) minimalist if

$$Ex(P,m,n) = \begin{array}{ll} m \cdot n & k > m \lor l > m \\ (k-1)n + (l-1)m - (k-1)(l-1) & \text{otherwise.} \end{array}$$

Definition 9. $P \in \{0,1\}^{k \times l}$ is weakly minimalist if

$$Ex_{\leq}(P, m, n) = \begin{cases} m \cdot n & k > m \lor l > m \\ (k-1)n + (l-1)m - (k-1)(l-1) & \text{otherwise.} \end{cases}$$

Observation 13. If P is strongly minimalist, then P is weakly minimalist.

- Fact 14. 1. (1) is strongly minimalist.
- 2. If $P \in \{0,1\}^{k \times l}$ is strongly minimalist and there is a one-entry in the last row in the c-th column, then $P' \in \{0,1\}^{k+1 \times l}$, which is created from P by adding a new row having a one-entry only in the c-th row, is strongly minimalist.
- 3. If P is strongly minimalist, then after changing a one-entry into a zeroentry it is still strongly minimalist.