Detection of Gauss-Markov Random Field on Nearest-Neighbor Graph

A. Anandkumar¹ L. Tong¹ A. Swami²

¹School of Electrical and Computer Engineering Cornell University, Ithaca, NY 14853

2007 International Conference on Acoustics, Speech and Signal Processing

Supported by the Army Research Laboratory CTA

²Army Research Laboratory, Adelphi MD 20783

Introduction: Distributed Detection

Setup

- Sensors: transmit local decisions
- Fusion center: Global Decision
- Classical data model: Conditionally IID

Sensor signal field

- Correlated sensor readings
- Large coverage area
- Large number of sensors
- Arbitrary sensor placement

Influence of correlation structure on detection performance

Detection of Correlation

Binary hypothesis testing

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Questions

- How to model correlation?
- Is there an analytically tractable performance metric?
- How does correlation affect performance?
- How does node density affect performance?

New tradeoffs not encountered in IID scenario

Detection of Correlation

Binary hypothesis testing

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Questions

- How to model correlation?
- Is there an analytically tractable performance metric?
- How does correlation affect performance?
- How does node density affect performance?

New tradeoffs not encountered in IID scenario

Detection of Correlation

Binary hypothesis testing

 \mathcal{H}_1 : Correlated data vs. \mathcal{H}_0 : Independent observations

Questions

- How to model correlation?
- Is there an analytically tractable performance metric?
- How does correlation affect performance?
- How does node density affect performance?

New tradeoffs not encountered in IID scenario

- How to model correlation?
 - Gauss-Markov random field
- Is there an analytically tractable performance metric?
 - Closed-form detection error exponent for Neyman Pearson
- How does correlation affect performance?
 - Depends on variance ratio
 - If signal under \mathcal{H}_1 is weak (low variance), correlation helps
 - If signal under \mathcal{H}_1 is strong (high variance), correlation hurts
- How does node density affect performance?
 - More node density more correlation as edge length is reduced

- How to model correlation?
 - Gauss-Markov random field
- Is there an analytically tractable performance metric?
 - Closed-form detection error exponent for Neyman Pearson
- How does correlation affect performance?
 - Depends on variance ratio
 - If signal under \mathcal{H}_1 is weak (low variance), correlation helps
 - If signal under \mathcal{H}_1 is strong (high variance), correlation hurts
- How does node density affect performance?
 - More node density more correlation as edge length is reduced

- How to model correlation?
 - ► Gauss-Markov random field
- Is there an analytically tractable performance metric?
 - Closed-form detection error exponent for Neyman Pearson
- How does correlation affect performance?
 - Depends on variance ratio
 - \star If signal under \mathcal{H}_1 is weak (low variance), correlation helps
 - * If signal under \mathcal{H}_1 is strong (high variance), correlation hurts
- How does node density affect performance?
 - More node density more correlation as edge length is reduced

- How to model correlation?
 - ► Gauss-Markov random field
- Is there an analytically tractable performance metric?
 - Closed-form detection error exponent for Neyman Pearson
- How does correlation affect performance?
 - Depends on variance ratio
 - \star If signal under \mathcal{H}_1 is weak (low variance), correlation helps
 - * If signal under \mathcal{H}_1 is strong (high variance), correlation hurts
- How does node density affect performance?
 - More node density more correlation as edge length is reduced

Previous Results on Detection Error Exponent

I.I.D case

- Closed-form for optimal detector and threshold
- Error exponent Stein's lemma

Correlated case

- Stationary Gaussian process (Donsker & Varadhan, 85)
- General formulas for Neyman-Pearson exponent (Chen, 96)
- Closed-form for Gauss-Markov random process (Sung & etal, 06)

Limitations of the closed form

- Requires causality, valid in 1-D case
- Cannot handle random placement of nodes

Outline

- Introduction
- Gauss-Markov Random Field
- Statistical Inference
- Results on Error Exponent

Outline

- Introduction
- Gauss-Markov Random Field
- Statistical Inference
- 4 Results on Error Exponent

Model for Correlated Data: Graphical Model

Linear graph corresponding to autoregressive process of order 1

Graph of German states and states with common borders are neighbors

Temporal signals

- Conditional independence based on ordering
- Fixed number of neighbors
- Causal (random processes)

Spatial signals

- Conditional independence based on (undirected)
 Dependency Graph
- Variable set of neighbors
- Maybe acausal

Remark

Dependency graph is NOT related to communication capabilities, but to the correlation structure of data!

Markov Random Field

Definition : MRF with Dependency Graph $\mathcal{G}_d(\mathcal{V},\mathcal{E})$

 $\mathbf{Y}(\mathcal{V}) = \{Y_i : i \in \mathcal{V}\}$ is MRF with $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$ if \mathbf{Y} is Gaussian random field, PDF satisfies positivity condition and Markov property

Markov Property

- ullet A, B, C are disjoint
- ullet A, B non-empty
- ullet C separates A,B

$$\mathbf{Y}_A \perp \mathbf{Y}_B | \mathbf{Y}_C$$

Markov Random Field

Definition : MRF with Dependency Graph $\mathcal{G}_d(\mathcal{V},\mathcal{E})$

 $\mathbf{Y}(\mathcal{V}) = \{Y_i : i \in \mathcal{V}\}$ is MRF with $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$ if \mathbf{Y} is Gaussian random field, PDF satisfies positivity condition and Markov property

Markov Property

- ullet A, B, C are disjoint
- ullet A, B non-empty
- ullet C separates A,B

$$\mathbf{Y}_A \perp \mathbf{Y}_B | \mathbf{Y}_C$$

Markov Random Field

Definition : MRF with Dependency Graph $\mathcal{G}_d(\mathcal{V},\mathcal{E})$

 $\mathbf{Y}(\mathcal{V}) = \{Y_i : i \in \mathcal{V}\}$ is MRF with $\mathcal{G}_d(\mathcal{V}, \mathcal{E})$ if \mathbf{Y} is Gaussian random field, PDF satisfies positivity condition and Markov property

Markov Property

- ullet A, B, C are disjoint
- ullet A, B non-empty
- ullet C separates A,B

$$\mathbf{Y}_A \perp \mathbf{Y}_B | \mathbf{Y}_C$$

Likelihood Function of MRF

Hammersley-Clifford Theorem (1971)

For a MRF \mathbf{Y} with dependency graph $\mathcal{G}_d(\mathcal{V}, \mathcal{E}_d)$,

$$\log \mathbb{P}(\mathbf{Y}; \mathcal{G}_d) = Z + \sum_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c), \ Z \stackrel{\Delta}{=} e^{-\int \prod_{\mathbf{Y}} \prod_{c \in \mathcal{C}} \Psi_c(\mathbf{Y}_c)},$$

where ${\mathcal C}$ is the set of all cliques in ${\mathcal G}_d$ and Ψ_C the clique potential

Dependency Graph

Potential Matrix of GMRF

Potential Matrix

- Inverse of covariance matrix of a GMRF
- Non-zero elements of Potential matrix correspond to graph edges

Dependency Graph

× : Non-zero element of Potential Matrix

Form of Log-Likelihood of zero-mean GMRF with potential matrix A

$$-\log P(\mathbf{Y}_n; \mathcal{G}_d, \mathbf{A}) = \frac{1}{2} \left(-n \log 2\pi + \log |\mathbf{A}| + \sum_{(i,j) \in \mathcal{E}_d} A(i,j) Y_i Y_j + \sum_{i \in \mathcal{V}} A(i,i) Y_i^2 \right)$$

Acyclic Dependency Graph

Given Covariance matrix, closed-form expression of likelihood

Outline

- Introduction
- Gauss-Markov Random Field
- Statistical Inference
- 4 Results on Error Exponent

Hypothesis Testing for Independence

 $\mathcal{H}_1:\mathsf{GMRF}$ with dependency graph \mathcal{G}_d

 \mathcal{H}_0 : Independent observations

Model for Dependency Graph \mathcal{G}_d under \mathcal{H}_1

- Dependency graph is a proximity graph (edges between nearby points)
- Simplest proximity graph: nearest-neighbor graph

Definition of Nearest-Neighbor Graph

In NNG, (i,j) is an edge if i is nearest neighbor of j or vice versa

Additional assumptions

- Random placement of nodes (Uniform or Poisson distribution)
- ullet Correlation function q: function of spatial distance

Optimal Detection

Log Likelihood Ratio (LLR) Detector

$$\log \frac{P[\mathbf{Y}_n, \mathcal{V}; \mathcal{H}_1]}{P[\mathbf{Y}_n, \mathcal{V}; \mathcal{H}_0]} \underset{\mathcal{H}_1}{\overset{\mathcal{H}_0}{\leq}} \tau_n$$

Neyman-Pearson Detection

Minimize Miss Probability

$$P_M \stackrel{\Delta}{=} P[\mathsf{Decision} = \mathcal{H}_0 | \mathcal{H}_1]$$

with false alarm constraint

$$P_F = P[\mathsf{Decision} = \mathcal{H}_1 | \mathcal{H}_0] \le \alpha$$

Outline

- Introduction
- Statistical Inference
- 4 Results on Error Exponent

Error Exponent D

Closed-form of error probability not tractable

$$P_M \approx e^{-nD}$$

 $\log P_M \approx -nD$

Sensors Placed in region with constant node density λ

Error Exponent D

Closed-form of error probability not tractable

$$P_M \approx e^{-nD}$$

 $\log P_M \approx -nD$

Sensors Placed in region with constant node density λ

Error Exponent D

Closed-form of error probability not tractable

 $P_M \approx e^{-nD}$

 $\log P_M \approx -nD$

Sensors Placed in region with constant node density λ

Our Methodology

Approaches

- LLR as sum of node and edge functionals of dependency graph
- Error exponent through limit of LLR
- Evaluate limit using Law of Large Numbers for graph functionals
- Error exponent for performance analysis

LLR as sum of node and edge functionals of dependency graph

$$\begin{aligned} & \mathsf{LLR}(\mathbf{Y}_{n}, \mathcal{G}_{d}) = n \log \frac{\sigma_{1}}{\sigma_{0}} + \frac{1}{2} \left[\sum_{i \in \mathcal{V}} \left(\frac{1}{\sigma_{1}^{2}} - \frac{1}{\sigma_{0}^{2}} \right) Y_{i}^{2} \right. \\ & \left. + \sum_{\substack{(i,j) \in \mathcal{E}_{d} \\ i < j}} \left\{ \log[1 - g^{2}(R_{ij})] + \frac{g^{2}(R_{ij})}{1 - g^{2}(R_{ij})} \frac{Y_{i}^{2} + Y_{j}^{2}}{\sigma_{1}^{2}} - \frac{2g(R_{ij})}{1 - g^{2}(R_{ij})} \frac{Y_{i}Y_{j}}{\sigma_{1}^{2}} \right\} \right] \end{aligned}$$

Error exponent through limit of LLR

$$D = \lim_{n \to \infty} \frac{1}{n} \mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d), \quad \mathcal{H}_0$$

LLR is sum of graph functionals of a Marked process

LLR as sum of node and edge functionals of dependency graph

$$\begin{aligned} & \mathsf{LLR}(\mathbf{Y}_{n},\mathcal{G}_{d}) = n \log \frac{\sigma_{1}}{\sigma_{0}} \underbrace{\left\{ \frac{1}{2} \left[\sum_{i \in \mathcal{V}} \left(\frac{1}{\sigma_{1}^{2}} - \frac{1}{\sigma_{0}^{2}} \right) Y_{i}^{2} \right. \right. \\ & + \sum_{\substack{(i,j) \in \mathcal{E}_{d} \\ i < j}} \left\{ \log[1 - g^{2}(R_{ij})] + \frac{g^{2}(R_{ij}) - Y_{i}^{2} + Y_{j}^{2}}{1 - g^{2}(R_{ij})} - \frac{2g(R_{ij})}{1 - g^{2}(R_{ij})} \frac{Y_{i}Y_{j}}{\sigma_{1}^{2}} \right\} \right] \end{aligned}$$

Error exponent through limit of LLR

$$D = \lim_{n \to \infty} \frac{1}{n} \mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d), \quad \mathcal{H}_0$$

LLR is sum of graph functionals of a Marked process

LLR as sum of node and edge functionals of dependency graph

$$\begin{aligned} & \mathsf{LLR}(\mathbf{Y}_{n}, \mathcal{G}_{d}) = n \log \frac{\sigma_{1}}{\sigma_{0}} + \frac{1}{2} \left[\sum_{i \in \mathcal{V}} \left(\frac{1}{\sigma_{1}^{2}} - \frac{1}{\sigma_{0}^{2}} \right) Y_{i}^{2} \right. \\ & \left. + \sum_{\substack{(i,j) \in \mathcal{E}_{d} \\ i < j}} \left\{ \log[1 - g^{2}(R_{ij})] + \frac{g^{2}(R_{ij})}{1 - g^{2}(R_{ij})} \frac{Y_{i}^{2} + Y_{j}^{2}}{\sigma_{1}^{2}} - \frac{2g(R_{ij})}{1 - g^{2}(R_{ij})} \frac{Y_{i}Y_{j}}{\sigma_{1}^{2}} \right\} \right] \end{aligned}$$

Error exponent through limit of LLR

$$D = \lim_{n \to \infty} \frac{1}{n} \mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d), \quad \mathcal{H}_0$$

LLR is sum of graph functionals of a Marked process

LLR as sum of node and edge functionals of dependency graph

$$\begin{split} & \mathsf{LLR}(\mathbf{Y}_n, \mathcal{G}_d) = n \log \frac{\sigma_1}{\sigma_0} + \frac{1}{2} \left[\sum_{i \in \mathcal{V}} \left(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_0^2} \right) Y_i^2 \right. \\ & \left. + \sum_{\substack{(i,j) \in \mathcal{E}_d \\ i < j}} \left\{ \log[1 - g^2(R_{ij})] + \frac{g^2(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i^2 + Y_j^2}{\sigma_1^2} - \frac{2g(R_{ij})}{1 - g^2(R_{ij})} \frac{Y_i Y_j}{\sigma_1^2} \right\} \right] \end{split}$$

Error exponent through limit of LLR

$$D = \lim_{n \to \infty} \frac{1}{n} \mathsf{LLR}(\mathbf{Y}_n; \mathcal{G}_d), \quad \mathcal{H}_0$$

LLR is sum of graph functionals of a Marked process

LLN for graph functionals (Penrose & Yukich, 02)

Pictorial Representation of result

Remarks

LLN states that limit is a localized effect around origin

Result on Error Exponent D

Applying LLN (Penrose & Yukich, 02)

$$\begin{split} D &=& \frac{1}{2} \Big[\mathbb{E} \sum_{\mathbf{X} \in \mathcal{P}_{\lambda}} f(g(R_{\mathbf{0},\mathbf{X}})) + \log K + \frac{1}{K} - 1 \Big], \\ f(x) &\stackrel{\triangle}{=} & \log[1 - x^2] + \frac{2x^2}{K[1 - x^2]}, \qquad K \stackrel{\triangle}{=} \frac{\sigma_1^2}{\sigma_0^2} \end{split}$$

 $lackbox{ } R_{\mathbf{0},\mathbf{X}}$: edge-lengths in a NNG of origin of a homogeneous Poisson process of intensity λ

Closed-form Expression for D

$$D = \frac{1}{2} \left[\mathbb{E}f(g(Z_1)) - \frac{\pi}{2\omega} \mathbb{E}f(g(Z_2)) + \log K + \frac{1}{K} - 1 \right]$$

- Z_1 , Z_2 : Rayleigh distributed with Variances $(2\pi\lambda)^{-1}$, $(2\omega\lambda)^{-1}$
- $\omega \approx 5.06$: area of union of two unit radii circles, with centers unit distant apart

Numerical Analysis

Questions

- How does correlation affect performance?
 - Depends on variance ratio
 - * If signal under \mathcal{H}_1 is weak (low variance), correlation helps
 - * If signal under \mathcal{H}_1 is strong (high variance), correlation hurts
- How does node density affect performance?
 - More node density more correlation as edge length is reduced

Exponential Correlation Function

$$g(r) = Me^{-ar}, \ a > 0, 0 < M < 1$$

Correlation coefficient a, M=0.5, $\lambda=1$

Minimum Energy Routing for Optimal Inference¹

Transmission scheme delivering LLR

Minimum Energy Routing for Inference

Minimize total energy of routing such that LLR is delivered to fusion center

Summary of Results

- Concept of dependency graph based routing
 - Exploit correlation to fuse data
- Proposed 2-approximation algorithm

A.Anandkumar, L.Tong, A. Swami, "Energy Efficient Routing for Statistical Inference of Markov Random Fields," Conference on Information Sciences and Systems, March 2007

Conclusion

Summary

- Derived a closed-form expression for error exponent of detection a GMRF with nearest-neighbor dependency
- Studied effect of correlation and node density on performance

Outlook

- Relax assumptions
- Extend to other dependency models
- Study Performance-Routing Energy tradeoff

Thank You!