Is aberrant response behaviour an inherent characteristic of students taking classroom maths tests?

In the context of Rasch measurement an <u>aberrant</u> <u>response pattern</u> in a test is one that is improbable, given that the data fit the Rasch model.

Types of individuals whose response patterns do not fit the typical pattern

SLEEPERS get bored and do poorly on the last items (Linacre & Wright, 1994; Molenaar & Hoijtink, 1996)

FUMBLERS get confused with the item format and do poorly in the beginning of the test (Bracey & Rudner, 1992)

PLODDERS take too much time to answer and never get to the later items (Meijer 1996; Wright, 1977)

GUESSERS AND CHEATERS

(Athanasou and Lamprianou, 2002; Rudner, 1983).

People who show *extreme creativity* in interpreting questions (Karabatsos, 2000; Meijer, 1996) or with *poor language skills*.

Possible factors associated with aberrance (as reported in the literature)

Gender
Mismatch between curriculum and test content
Position on the ability/trait scale
Test anxiety
Motivation
Class effect

Panayides (2009)

Attention Deficit Hyperactivity Disorder (ADHD)
Maths self-esteem
Language competency

Smith (1986) and Lamprianou (2005) suggested that an individual with an aberrant response pattern may exhibit such response behaviour in other testing situations too, implying that misfit could be an inherent characteristic of individuals.

The study

Test 1 (Diagnostic)

27 items (1 – 5 marks)
3 multiple - choice items

3 schools 13 teachers 25 classes 635 students **Test 2 (on quadratic equations)**

16 items

12 multiple - choice items (1 mark)
4 multistep items (4 marks)

3 schools

9 teachers

18 classes

445 students

Rasch Analyses

Rasch Partial Credit Model

Infit and outfit mean square statistics

<u>Cut – off values for the mean square statistics</u>

Items: 1.3

Students: 1.3, 1.4, 1.5, 1.6, 1.8, 2.0

RESULTS

Test 1 calibrations

Two misfitting items (outfit > 1.5) and three slightly misfitting (1.3 < outfit < 1.5)

19 students with infit and/or outfit > 2.7 were removed and data calibrated again

2nd calibration: Three items only slightly misfitting

Investigation: Too important NOT REMOVED

Summary of the results of the Rasch analyses

		Estimate of			Separ.	Infit msq	Outfit msq
	N	mean (SD)	Range	Reliab.	Index	mean (SD)	mean (SD)
Students	616	1.03 (1.17)	-2.63 to 3.64	0.87	2.61	1.06 (0.40)	0.97 (0.47)
Items	27	0.0 (1.21)	-2.18 to 1.75	0.99	11.40	1.01 (0.15)	0.97 (0.25)

STANDARDIZED RESIDUAL variance (in Eigenvalue units)

Empirical				Modeled
=	61.7	100.0%		100.0%
=	34.7	56.3%		59.1%
=	27.0	43.7%	100%	40.9%
=	2.0	3.2%	7.4%	
	=	= 61.7 $= 34.7$ $= 27.0$	= 61.7 100.0% = 34.7 56.3% = 27.0 43.7%	= 61.7 100.0% = 34.7 56.3% = 27.0 43.7% 100%

Variance explained by measures : variance explained by 1st factor = 17.4:1

Rules of thumb for the existence of a second dimension

- 1. Eigenvalues < 2: the implied dimension in the data has less than the strength of two items, and so, however powerful it may be diagnostically, it has little strength in the data.
 - Eigenvalue < 3 (in a reasonable length test) then the test is probably unidimensional. (Linacre, 2005)
- 2. The first factor must explain a significant % of the unexplained variance (more than 20%)
- 3. A significant % of the total variance in the data (Linacre, 2005, eigenvalue 2.7, N = 14, 0.2% of total variance)

Invariance plot for Test 1(Item calibrations from male and female groups)

r = 0.975

Correlations of test scores with final exams

School 1: r = 0.795 (N = 287)

School 2: r = 0.704 (N = 37)

School 3: r = 0.701 (N = 281)

All (p < 0.01)

Test 2 calibrations

Only one misfitting item (Item 13, difficulty -1.07, outfit =1.78)

6 high scorers (estimates 1.12 – 3.21) lost one or two marks

Summary of the results of the Rasch analysis for Test 2

		Estimate of			Separ.	Infit msq	Outfit msq
	N	mean (SD)	Range	Reliab.	Index	mean (SD)	mean (SD)
Students	445	0.25 (1.29)	-3.30 to 3.21	0.82	2.13	0.96 (0.67)	1.08 (0.79)
Items	16	0.0 (1.13)	-2.09 to 1.68	0.99	10.32	0.99 (0.08)	1.08 (0.23)

STANDARDIZED RESIDUAL variance (in Eigenvalue units)

		Empirical		Modeled
Total variance in observations	=	46.9	100.0%	100.0%
Variance explained by measures	=	30.9	65.9%	65.3%
Unexplained variance (total)	=	16.0	34.1%	100% 34.7%
Unexpl var explained by 1st factor	=	1.5	3.3%	9.5%

Variance explained by measures : variance explained by 1st factor = 20.6 : 1

Correlations of test scores with final exams

School 1: r = 0.840 (N = 259),

School 2: r = 0.634 (N = 36), (p < 0.01)

School 3: r = 0.751 (N = 141)

Table 4. Results of the analysis of the content validity questionnaire

Statements	Completely	Disagree	Agree	Absolutely
	disagree			agree
The format of the questions is				
appropriate for the students	0	1	3	4
All the questions are clear and				
unambiguous	0	0	2	6
Students who know the answers have				
enough time to finish the test	0	2	4	2
All the important abilities and skills of				
the unit are assessed by the test	0	0	0	8
No irrelevant topics are included in the				
test	0	0	3	5
The test content is representative of the				
unit content as described in the	0	0	0	8
curriculum				

Invariance plot for Test 2 (Item calibrations from male and female groups)

r = 0.979

Percentages of misfitting students for the various cut-off values.

		Test 1			Test 2		
		Outfit	Infit	Total	Outfit	Infit	Total
-	1.3	22.8	23.3	35.0	23.6	21.6	30.8
	1.4	19.2	17.2	27.9	20.0	16.4	27.4
Cut-off values	1.5	15.6	13.9	23.9	17.3	14.2	23,6
	1.6	12.6	11.3	20.0	16.2	12.4	22.0
	1.8	8.5	6.0	12.8	13.3	8.8	17.3
	2.0	6.1	4.6	9.9	11.7	6.7	14.4

% of Misfitting students in Test 2 from:

Cut-off	Fitting students	Misfitting students	-	
	in Test 1	in Test1	Chi-square	p-value
1.3	31.9	28.7	0.514 (0.371)	0.474 (0.542)
1.4	27.4	27.4	0.000 (0.000)	0.999 (1.000)
1.5	23.2	24.8	0.104 (0.036)	0.747 (0.849)
1.6	22.0	22.0	0.000 (0.000)	0.991 (1.000)
1.8	17.2	18.2	0.034 (0.000)	0.854 (1.000)
2.0	14.0	18.2	0.573 (0.281)	0.449 (0.596)

Concluding remarks

- This study reports that misfit is not an inherent characteristic of students taking classroom maths tests.
- This finding, together with Panayides' (2009) findings of no association between a large number of possible factors and misfit in the same setting, lead to the following intuitive conclusion: In classroom maths tests, although misfits do occur, they do not predict misfits in other tests and are not dependent on psychological or demographic characteristics of the testtakers.
- Therefore, high school maths teachers who test their students regularly should be aware that this kind of response behaviour does occur (perhaps leading to invalid estimates of their students' abilities) but should not be too concerned about it since they have many test results for their students and thus many ability estimates.

Investigating the Dimensionality of a primary maths test

(Mis) Understanding the meaning of the equal sign

- 2. Circle the correct answer for the sum 27 + 46

- (a) 63 (b) 613 (c) 73 (d) 713
- 3. Match each operation in the first row with the appropriate answer in the second row, as shown in the example.

4. Complete the equations by filling in the blanks.

(a)
$$17 + 20 = \dots = 38 + 10$$

(c)
$$13 + 51 = 51 + \dots = 28 + 4$$

(e)
$$160 = \dots -30$$
 (f) $38 - 12 = \dots -3$

(g) = 17 (h)
$$5 \times 4 = \dots + 2$$

Total Variance Explained

	Initial Eigenv alues			Extraction Sums of Squared Loadings			Rotation
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	3,690	30,746	30,746	3,690	30,746	30,746	3,575
2	1,534	12,786	43,532	1,534	12,786	43,532	1,776
3	1,081	9,009	52, 541	1,081	9,009	52,541	1,447
4	,985	8,210	60,751				
5	,824	6,867	67,619				
6	,764	6,369	73,988				
7	,680	5,665	79,653				
8	,621	5, 177	84,830				
9	,583	4,858	89,688				
10	,491	4,091	93,779				
11	,446	3,717	97,496				
12	,301	2,504	100,000				

Extraction Method: Principal Component Analysis.

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

Principal Component Analysis

Items	Factor 1	Factor 2	Factor 3
2) 27 + 46 = (Multiple-choice)	,224	,062	,663
3a) $14 - 6 =$ (Matching)	,136	,681	,300
3b) $9 + 7 =$ (Matching)	,100	,208	,810
$3c) 8 \times 7 =$ (Matching)	,074	,694	,165
4a) $17 + 20 = \dots$,240	,685	-,139
4b) = 38 + 10	,503	,375	,333
$4c) 13 + 51 = 51 + \dots$,670	,305	,137
4d) 12 + = 28 + 4	,738	,096	,153
4e) 160 = – 30	,705	,147	,077
4f) $38 - 12 = \dots - 3$,799	,038	,140
4g) = 17	,622	,218	,132
4h) $5 \times 4 = \dots + 2$,815	,032	,132

Component Correlation Matrix

Component	1	2	3
1	1,000	,203	,178
2	,203	1,000	,160
3	,178	,160	1,000

Rasch Measurement

MOST MISFITTING RESPONSE STRINGS

	OUTMNSQ item	student
	1 11	
	352416197820	
	high	
27 + 46 = (Multiple-choice)	9.90 A 0	18 1018
$8 \times 7 =$ (Matching)	9.90 B 0	37 1037
$8 \times 7 =$ (Matching)	9.90 C 0	40 1040
17 + 20 =	9.90 D .0	69 1069
27 + 46 = (Multiple-choice)	9.90 E 0	105 1105
$8 \times 7 = \dots$ (Matching)	9.90 F 0	119 1119
14 - 6 = (Matching)	9.90 G 0	121 1121
$8 \times 7 = \dots $ $14 - 6 = \dots$ (Matching)	9.90 H 00	178 1178
14 - 6 = (Matching)	9.90 I 0	202 1202

item STATISTICS: MISFIT ORDER

 ENTRY NUMBER	RAW SCORE	COUNT	MEASURE	MODEL IN S.E. MNSQ	·		EXACT MA	
6	127	162	02	.24 1.01	.1 2.16	2.4 A .54	87.7 8	5.1 item 4b 0
4	153	162 162	-2.32 2.00	.40 1.08	.4 1.63	1.0 B .31 1.9 C .68	75.9 7	5.1 item 3c 0 8.3 item 4e 0
1 7	151 72	162 162	-2.02 2.45	.37 1.18 .20 1.09	.8 .92 .8 .99	.1 D .35 .1 E .70	76.5 7	4.2 item 2 0 8.5 item 4c 0
3	160 68	162 162	-4.25 2.61	.76 1.03 .20 1.03	.3 .12 .3 .96	-1.6 F .21 1 f .71		8.8 item 3b 0 8.6 item 4d 0
11 2	121 155	162 162	.31 -2.68	.23 1.00 .44 .88	.1 .85 3 .86	4 e .60 .1 d .33		3.5 item 4g 0 6.1 item 3a 0
12 10	55 39	162 162	3.16 3.88	.21 .81 .22 .78	-1.9 .73 -2.2 .60			9.4 item 4h 0 1.3 item 4f 0
5 	157 	162	-3.13	.51 .77	5 .26 +	-1.1 a .33 +	98.1 9	7.0 item 4a 0
MEAN S.D.	111.8 43.4	162.0	.00 2.68	.33 .98 .17 .13	1 .96 .9 .55	·		7.2 8.0

$$3c) 8 \times 7 = \dots$$
 (Matching)

Table of	STANI	DARDIZ	ED R	ESIDUA	L var	iance	(in					
									npirica		Modeled	
otal raw	varia	nce ir	n obse	rvatio	ons	=		29.6	100.0%		100.0%	
Raw var:	iance	explai	ned b	y meas	sures	=		17.6	59.5	ે	58.6%	
Raw va	arianc	e expl	ained	l by pe	ersons	=		7.8	26.2%		25.7%	
Raw Va	arianc	e expl	ained	l by it	cems	=		9.9	33.3%		32.8%	
Raw unex	xplain	ed var	riance	(tota	al)	=		12.0	40.5%	100.0%	41.4%	
Unexp	lned v	ariano	ce in	1st co	ontras	t =		1.6	5.6%	13.7%		
Unexp	lned v	ariano	ce in	2nd co	ontras	t =		1.5	5.2%	12.8%		
Unexp.	lned v	ariano	ce in	3rd co	ontras	t =		1.3	4.4%	10.9%		
Unexp.	lned v	ariano	ce in	4th co	ontras	t =		1.2	3.9%	9.7%		
Unexp	lned v	ariano	ce in	5th co	ontras	t =		1.2	3.9%	9.6%		
	-4 +	•	_	_	-	1		3	4			
COUNT	'	ı	'	'	'	'	'	'	ı	20	42 -	2
.5 +								В	A 1 + 1	30	– 12 = .	– 3
C								c	1	5 \	4 =	+ 2
0 .4 +									+	J /	· 	··· · ∠
N T .3 +	D				l I				 + 1	12	. +:	= 28 + 4
R	D				i							- 20 1 -
A .2 +			_						+			
S T .1 +			E		 				1 +	AII	positive	estimates
1					i				İ			
1 .0 +		F							+ 1	1116	7 most	unneun
L1 +									+		_ 0	0 . 40
0					£				1	•	= 38	8 + 10
A2 +		е							+ 1		_ 4	7
I3 +					 d				+ 1	•	= 1	1
N					İ				I			
G4 +			С				b		+ 2	1	3 + 51 =	: 51 +
5 +			C				a		+ 1	4	60 =	_ 30
-+	+	+	+	+	+	+	+	+	+-	I	00 –	– 30
- 5	-4	-3	-2	-1 item ME	0	1	2	3	4			
				T CEIII ME	ANUKE							

Remove the 9 highly misfitting pupils and do PCA again

Total Variance Explained

		Initial Eigenvalu	ies	Extractio	Rotation		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	3,855	32, 122	32, 122	3,855	32, 122	32, 122	3,630
2	1,524	12,698	44,820	1,524	12,698	44,820	2, 102
3	1,076	8,965	53,784	1,076	8,965	53,784	1,549
4	,953	7,945	61,730				
5	,800	6,669	68,399				
6	,768	6,397	74,796				
7	,661	5,505	80,301				
8	,606	5,053	85, 354				
9	,559	4,658	90,012				
10	,472	3,931	93,944				
11	,419	3,489	97,433				
12	,308	2,567	100,000				

Extraction Method: Principal Component Analysis.

a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

	Factor 1	Factor 2	Factor 3
27 + 46 = (Multiple-choice)	,297	,130	,630
14 - 6 = (Matching)	,219	,682	,368
9 + 7 = (Matching)	,086	,218	,843
$8 \times 7 = \dots$ (Matching)	,162	,701	,228
17 + 20 =	,251	,755	-,128
= 38 + 10	,475	,463	,295
13 + 51 = 51 +	,670	,332	,198
12 + = 28 + 4	,741	,165	,173
160 = – 30	,694	,232	,088
38 – 12 = – 3	,809	,097	,172
= 17	,610	,285	,126
$5 \times 4 = \dots + 2$,816	,118	,167

Component Correlation Matrix

Component	1	2	3	
1	1,000	,277	,206	
2	,277	1,000	,195	
3	,206	,195	1,000	