

Méthodes de diffusion dans les réseaux

Broadcast

Fermat - Steiner

Problème posé par Fermat

Soient A, B et C trois points d'un plan. Trouver un point P tel que la somme des distances PA, PB et PC soit minimum.

Adaptation du problème dans les graphes

Données:

- Un graphe non orienté G = (V, E)
- V' ⊆ V
- \bullet $K \in \mathbb{N}$

Question : Existe-t-il un arbre T couvrant V' tel que le nombre d'arêtes de T soit inférieur à K.

Complexité

Le problème de Steiner est NP-complet.

S • • • • • • • • • • •

Saison 2021–22 Algorithmique avancée Weisser 50/56

Complexité

Le problème de Steiner est NP-complet.

Complexité

Le problème de Steiner est NP-complet.

Complexité

Le problème de Steiner est NP-complet.

Preuve de l'approximation

Preuve

- $T^* \leq T \leq A$
- On veut montrer que A ≤ 2T*
- Soit C un cycle eulérien obtenu en duplicant les arêtes de T*, C = 2T*
- On parcours les terminaux de C par ordre de première apparition et on construit C' en utilisant des pcc C' ≤ C
- C' correspond à un cycle dans K, notons le C"
- On supprime une arête à C", on obtient un arbre A"
- $A'' < C'' = C' < C = 2T^*$
- Tout arbre couvrant minimum de K a un poids $A^* \leq A''$
- $T^* \le A^* \le A'' \le C'' = C' \le C = 2T^*$

Rapport d'approximation

2-approximation

- L'algorithme est une 2-approximation
- Cet algorithme fonctionne aussi avec des poids sur les arêtes

Autres résultats sur le problème de Steiner

Entre autres

- If existe une 1.55-approximation $(1 + \ln(3)/2)$
- Pour le cas où la pondération est 1 ou 2, il existe une 1.28-approximation