Licenciatura em Engenharia Informática Sistemas Operativos 1- exame – 6 de Junho de 2016 Departamento de Informática - Universidade de Évora

Justifique as suas respostas apresentando os cálculos, quando aplicável.

- 1. Descreva graficamente o modelo de 7 estados.
- 2. Indique a hipótese correta. Um processo transita do estado BLOCKED para o estado WAIT porque...
 - A Terminou o tempo que estava reservado para correr no CPU e por isso o processo é interrompido.
 - B O processo estava em espera e foi escolhido para correr no CPU.
 - C O processo executou uma instrução de I/O e fica à espera de um evento.
 - D Ocorreu um evento enquanto esperava por dados.
- **3.** Assinale quais dos seguintes são dados partilhados entre *threads* dum mesmo processo: *Program counter; Registos temporários do CPU; Variáveis globais; Código; Process ID; Estado; Ficheiros Abertos.*
- **4.** Considere a seguinte tabela com o instante de chegada de cada processo à fila *ready* e com a duração do tempo de serviço no CPU:

processos	T chegada	T serviço
1	0	100
2	10	50
3	20	30
4	30	20

Calcule o tempo médio para terminar um processo (turnaround time) para os algoritmos:

- **4.1** RR round robin, quantum Q=30.
- **4.2** SPN shortest process next

Nota: admita (se necessário) que num instante em que se interrompe um processo (se o algoritmo de escalonamento o impuser), primeiro passa-se o processo do CPU (*RUN*) para a fila de *READY* e só depois se testa se há processos novos para entrar na fila de *ready* (*de NEW para READY*).

5. Considere um sistema com as seguintes matrizes de alocação; matriz dos pedidos; vector dos recursos totais; e vector das disponibilidades:

Request Matrix (Pedidos)				
A	В	С	D	

	A	В	C	D
P1	0	0	1	0
P2	3	0	0	0
Р3	0	2	0	0
P4	1	1	1	4

Aloc Matrix (alocação)

	A	В	C	D
P1	2	1	0	1
P2	0	3	3	3
Р3	2	0	2	2
P4	0	1	2	2

 Rec
 tot

 4
 6

Disp

8

8

Indique se existe deadlock.

- **6.** Considere um sistema de gestão de memória paginado com page table de 3 níveis; com TLB de 5 ns de tempo de acesso e RAM de 80 ns. Com um *Hit Ratio de 98%*, qual o tempo médio de acesso?
- 7. Indique a hipótese incorreta. Um sistema de memória virtual...
- A guarda um processo em RAM e em Disco.
- B permite ter um processo com dimensão superior à memória física RAM.
- C não permite ter um processo com dimensão superior à memória física RAM.
- **D** permite ter um espaço de endereçamento lógico superior ao físico.
- **8.** Num sistema de gestão de memória virtual com paginação, admita que o número de frames reservadas para as páginas é de 4 por processo. Aplique o algoritmo de substituição de páginas ótimo aos seguintes pedidos de um dos processos:
- 2 4 6 1 3 6 5 2 3 5 4 1 6 2 4 3 4 6 4 6
- **9.** Considere um sistema de ficheiros indexado com i-nodes, com: blocos de 1KB; endereços (de i-nodes e blocos) de 4 bytes; e cada entrada num diretório tem 16 Bytes para o nome e 4 para o endereço.
- a) proponha uma estrutura para o i-node de modo que cada diretório comporte pelo menos 20000 ficheiros ou subdiretórios, mas seja também eficiente para diretórios, com apenas 3 ficheiros.
- b) qual a dimensão máxima de um ficheiro no sistema que propôs ?