# **Advanced NLP tasks**

#### **Contents**

- 1. Named Entity Recognition (NER)
  - a. Part-of-Speech Tagging (POS)
  - b. Conditional Random Field (CRF)
  - c. Weakly Supervised NER
- 2. Sentiment Analysis
- 3. Natural Language Inference (NLI)
- 4. QuestionAnswering (QA)
  - a. Going further: LM as knowledge graphs
- 5. Exploit LLMs capacities: Chain-of-thoughts & In context learning

# Named Entity Recognition (NER)

#### **NER**

Named entity recognition (NER), aims at identifying real-world entity mentions from texts, and classifying them into predefined types.

#### Gold Dataset

Suxamethonium infusion rate and observed fasciculations.

Suxamethonium chloride (Sch) was administred i.v.

#### **NER**

We wish to predict an output vector  $\mathbf{y}=(y_1,y_1,\ldots,y_L)$ , of random variables, given an observed characteristic vector

$$\mathbf{x} = (x_1, x_2, \ldots, x_L)$$

y takes it value from a list of N possible values.

### Part-of-Speech Tagging (POS)

POS is the process of mapping words in a text with a label corresponding to their grammatical class.

```
("He", "likes", "to", "drink", "tea"), \rightarrow ("PERSONAL PRONOUN", "VERB", "TO", "VERB", "NOUN").
```

## Part-of-Speech Tagging (POS)

There several levels of granularity.: using the tag set for english

("He", "likes", "to", "drink", "tea"),  $\rightarrow$  ("PRP", "VBP", "TO", "VB", "NN").

Knowing that language models are good at generating vector spaces to better represent words:

for each token in a sentence at position l we want to compute a probability p to belong to a class n.

$$p: f(\mathbf{x}, \theta)_l \mapsto ?$$

with  $p \in [0,1]$ 

Using the softmax function?

$$p:f(\mathbf{x}, heta)_l^{\mapsto}rac{e^{f(\mathbf{x}, heta)_l^{(n)}}}{\sum_{n'=1}^N e^{f(\mathbf{x}, heta)_l^{(n')}}}$$

The probability given by the softmax function will not encode non-local dependencies!

We need to take sequential decisions: what if we add transition scores into our softmax?

$$p: f(\mathbf{x}, heta)_l \mapsto rac{e^{f(\mathbf{x}, heta)_l^{(n)} + t(y_l^{(n)}, y_{l-1})}}{\sum_{n'=1}^N e^{f(\mathbf{x}, heta)_l^{(n')} + t(y_l^{(n')}, y_{l-1})}}$$

But this is the probability for one token to belong to a class, we want to compute the probability of a whole sequence of label at once...

$$P(\mathbf{y}|\mathbf{x}) = \prod_{l=2}^{L} p(\mathbf{y}|f(\mathbf{x}, heta)_l)$$

$$=\prod_{l=2}^{L}rac{e^{f(\mathbf{x}, heta)_{l}^{(n)}+t(y_{l}^{(n)},y_{l-1})}}{\sum_{n'=1}^{N}e^{f(\mathbf{x}, heta)_{l}^{(n')}+t(y_{l}^{(n')},y_{l-1})}}$$

$$P(\mathbf{y}|\mathbf{x}) = rac{exp[\sum_{l=2}^{L} \left(f(\mathbf{x}, heta)_{l}^{(n)} + t(y_{l}^{(n)}, y_{l-1})
ight)]}{\sum_{n'=1}^{N} exp[\sum_{l=2}^{L} \left(f(\mathbf{x}, heta)_{l}^{(n')} + t(y_{l}^{(n')}, y_{l-1})
ight)]}$$

$$=rac{exp[\sum_{l=2}^{L}\left(U(\mathbf{x},y_{l}^{(n)})+T(y_{l}^{(n)},y_{l-1})
ight)]}{\sum_{n'=1}^{N}exp[\sum_{l=2}^{L}\left(U(\mathbf{x},y_{l}^{(n')})+T(y_{l}^{(n')},y_{l-1})
ight)]}$$

$$=rac{exp[\sum_{l=2}^L \left(U(\mathbf{x},y_l^{(n)})+T(y_l^{(n)},y_{l-1})
ight)]}{Z(\mathbf{x})}$$

 $Z(\mathbf{x})$  is commonly referred as the partition function. However, its not trivial to compute: we'll end up with a complexity of  $\mathcal{O}(N^L)$ .

Where N is the number of possible labels and L the sequence length.

How do we proceed?



NER Transition Matrix

B

C(B=3) C(B=1) C(B=20)

C(1=7B) C(1=21) C(1=20)

C(0=2B) 
$$\infty$$
 C(0=20)

C= cost function

 $\infty$  = wouldn't happen

Linear-Chain CRF Decoded



Python comments help

Best path: B > 1 > 0 Best score: 1+10+4+3+2+11+10=31

Negative log-likelihood:

$$egin{aligned} \mathcal{L} &= -log(P(\mathbf{y}|\mathbf{x})) \ &= -log(rac{exp[\sum_{l=2}^{L} \left(U(\mathbf{x}, y_l^{(n)}) + T(y_l^{(n)}, y_{l-1})
ight)]}{Z(\mathbf{x})}) \ &= -[log(exp[\sum_{l=2}^{L} \left(U(\mathbf{x}, y_l^{(n)}) + T(y_l^{(n)}, y_{l-1})
ight)]) - log(Z(\mathbf{x}))] \ &= log(Z(\mathbf{x})) - \sum_{l=2}^{L} \left(U(\mathbf{x}, y_l^{(n)}) + T(y_l^{(n)}, y_{l-1})
ight) \end{aligned}$$

There is an effective way to compute  $log(Z(\mathbf{x}))$  with a complexity of  $\mathcal{O}(L)$  using the Log-Sum-Exp trick.

$$\sum_{n'=1}^{N} exp[\sum_{l=2}^{L} \left(U(\mathbf{x}, y_{l}^{(n')}) + T(y_{l}^{(n')}, y_{l-1})
ight)]$$

## **Weakly Supervised NER**

What if we don't have annotated data?

1. Open-domain -> use WIkipedia or any anthology-based database.

# **Questions?**

#### References

[1] He, H. (2023, July 9). Robust Natural Language Understanding.

[2] Singla, S., & Feizi, S. (2021). Causal imagenet: How to discover spurious features in deep learning. arXiv preprint arXiv:2110.04301, 23.

[3] Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C., & Liang, P. S. (2019). Unlabeled data improves adversarial robustness. Advances in neural information processing systems, 32.

- [4] <u>Pretrained Transformers Improve Out-of-Distribution Robustness</u> (Hendrycks et al., ACL 2020)
- [5] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
- [6] Zhao, Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021, July). Calibrate before use: Improving few-shot performance of language models. In International Conference on Machine Learning (pp. 12697-12706). PMLR.