代码目录说明:

- data

存放原始数据文件,生成的特征文件也在此。

- utils

存放一些常用的代码文件。

Cal mic.py 文件是计算不同模型结果的 mic 值,并可视化为混淆矩阵形式

- feature_engineering

特征工程,包括生成排序特征,离散特征,计数特征和缺失值处理的代码,该目录下含五份代码文件,文件名就是对应生成的特征。

- feature select

特征选择,该目录下有三个文件夹,分别是原始特征,排序特征,离散特征的特征选择的代码。

- M1

模型1的代码,包括4个单模型,每个模型对应一个文件夹。

- M2

模型 2 的代码文件,以及原始特征,排序特征,离散特征经过特征选择后所产生的特征重要性文件。

- M3

模型融合, Ensemble.py 文件是模型加权融合的代码。

- M4

m4.py 是迭代半监督代码

-M5

Gen_samples.py 文件用于生成半监督所用的训练数据和无标签数据。 Label.py 文件用于给无标签数据打标签。 Select.py 文件选择样本添加到训练集。

运行环境要求:

- -- 运行 Python 代码需要: Ubuntu, Python2.7, scikit-learn, pandas, xgboost, minepy, numpy, matplotlib
- -- 运行 R 代码需要: Windows,RStudio,xgboost
- -- 运行 Java 代码需要:Windows,eclipse,jdk1.7,Maven,Xgboost

代码运行步骤:

- 1. 将原始数据解压到 data 目录下
- 2. 数据预处理和特征工程

运行 null.py 对缺失值进行处理,运行 visualize_null.py 对缺失值可视化分析。运行 rank.py 生成排序特征。

运行 discretization.py 生成离散特征。

运行 n discretization.py 生成基于离散特征的计数特征。

注: 生成的文件都在 data 目录下

3. 特征选择

运行 feature_select/rank_feature/use_rank_feature.py,训练多个 xgb 模型并输出每个模型对特征的排序文件,再运行同目录下的 avg_featurescore.py 得到排序特征重要性的最终输出。

对于离散特征和原始特征,其代码在文件夹 feature_select/raw_feature 和 feature select/discret feature 下,同样地运行方法。

4. 模型 M1

运行 svm/svm_use_rank_feature.py, 训练 SVM 模型, 线上 auc 为 0.6938

运行 xgb717.py,训练 xgboost 模型,线上 auc 为 0.717

运行 R 7199.R, 训练 xgboost 模型, 线上 auc 为 0.7199

运行 M1\Java_7218\xgboost4j-demo\src\main\java\edu\cqupt\xdata\model、 \Java_7218.java,训练 xgboost 模型,线上为 0.7218

5. 模型 M2

运行 solution_725.py,训练多个 xgboost 模型,再运行 avg_preds.py 对多份结果取平均,线上 auc 为 0.725 左右

6. 模型 M3

运行 ensemble.py,对模型进行加权融合,线上 auc0.7279 左右。

7.模型 M4

将 unlabel 数据作为 test 数据,运行 M3,得到 M3 对无标签数据的预测值,将该份文件置于 M4 文件夹下。

运行 m4.py,将 socre 低于阈值 a 的样本作为负样本,将 socre 高于阈值 b 的样本作为正样本,添加到训练集,再运行 M3,如果线上得分提高,则保留这部分样本,否则继续改变阈值 ab 重复实验。

最后将保留的样本全部添加到训练集,运行 M3 得到最终结果。

线上 auc0.73 左右。

8.模型 M5

运行 Gen samples.py 生成训练数据和无标签数据(做了特征选择)

运行 label.py 给无标签数据打标签

运行 select.py 选择线下 auc 提升最大的 top5000 无标签样本, 然后从这部分样本中每次随机选择 50 个样本

将这 50 个样本添加到训练集运行 M3,如果线上得分有提升则保留样本,然后再选择 50 个样本添加到训练集,重复上述过程直到样本被选择完。

最终将保留的样本全部添加到训练集,运行 M3 得到最终结果。

线上 auc0.734 左右,因为提交次数限制,我们只添加了部分样本,如果全部添加,线上 auc 还能提升。