Linear Programming: Introduction

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

See an example of the type of problem solved by linear programming.

Factory

You are running a widget factory and trying to optimize your production procedures to save money.

Machines vs. Workers

Can use combination of machines and workers.

- Have only 100 machines.
- Unlimited workers.
- Each machine requires 2 workers to operate.

Production

- Each machine makes 600 widgets a day.
- Each worker makes 200 widgets a day.

Limited Demand

Total demand for only 100, 000 widgets a day.

Algebra

Let W be the number of workers and M the number of machines.

Constraints:

- W > 0.
- $100 \ge M \ge 0$.
- $W \geq 2M$.

W-2M are unoccupied workers

■ $100,000 \ge 200(W - 2M) + 600M$.

 $M, W \geq 0$

Plane of possible values of M and W which satisfy these constraints

 $M \le 100$

$$M + W < 500$$

When we look at our constraint based on the total demand.

Consider this plot consider

Diagram of possible configurations:

Profits

Profits are determined as follows:

- Each widget earns you \$1.
- Each worker costs you \$100/day.

Total profits (in dollars per day):

$$200(W-2M)+600M-100W = 100W+200M.$$

= 100W + 200M

Profit mapped on graph:

These lines are lines of equal profits

Optimum

Best: M = 100, W = 400 [NB: A corner]

Profit = \$60,000/day.

Proof of Optimality

$$100 \cdot [001 \cdot M + 000 \cdot W \le 100] \quad M < 100$$

$$+0.5 \cdot [200 \cdot M + 200 \cdot W \le 100,000]$$

$$200 \cdot M + 100 \cdot W \le 60,000.$$

Here they are adding 100 times first constraint + 0.5 times second constraint

60K thus is max profit

Summary

Maximized:

$$200M + 100W$$
 Linear function

subject to constraints:

Linear Programming is nothing but
$$0M+1W \geq 0$$
 minimizing/maximing a linear $1M+0W \geq 0$ Linear Inequalities function of variables_ $1M+0W \geq -100$ subject to a bunch of linear inequality $-2M+1W \geq 0$ constraints $-1M-1W \geq -500$