Final Project of DRL

PPO Snake AI Report

Background

An arcade game called Blockade in 1976

Non-Reinforcement Learning Algorithms for Snake Al

A-star

Hamilton circuit

A-star

Problem

 Use Deep Reinforcement Learning Algorithms to play the Snake game

Agent: The snake with AI

Environment: Game world

State: Snake status

Reward: Scores by eat, win or lose

Actions: What to do at next step

Method

• DQN

Method

PPO

Proximal Policy Optimization

On-policy

An improved algorithm for PG(Policy Gradient)

PG

Trajectory $\tau = \{s_1, a_1, s_2, a_2, \cdots, s_T, a_T\}$

$$\begin{aligned} p_{\theta}(\tau) \\ &= p(s_1)p_{\theta}(a_1|s_1)p(s_2|s_1,a_1)p_{\theta}(a_2|s_2)p(s_3|s_2,a_2) \cdots \\ &= p(s_1)\prod_{t=1}^{T} p_{\theta}(a_t|s_t)p(s_{t+1}|s_t,a_t) \end{aligned}$$

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) p_{\theta}(\tau) = E_{\tau \sim p_{\theta}(\tau)}[R(\tau)]$$

 $\nabla \bar{R}_{\theta} = E_{\tau \sim p_{\theta}(\tau)}[R(\tau) \nabla log p_{\theta}(\tau)]$

Policy Gradient

Given policy π_{θ}

$$\tau^{1}: (s_{1}^{1}, a_{1}^{1}) \quad R(\tau^{1})$$
 $(s_{2}^{1}, a_{2}^{1}) \quad R(\tau^{1})$
 \vdots
 $\tau^{2}: (s_{1}^{2}, a_{1}^{2}) \quad R(\tau^{2})$
 $(s_{2}^{2}, a_{2}^{2}) \quad R(\tau^{2})$

only used once

Update Model

$$\theta \leftarrow \theta + \eta \nabla \bar{R}_{\theta}$$

$$\nabla \bar{R}_{\theta} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p_{\theta}(a_t^n | s_t^n)$$

Data Collection

PG to PPO

$$E_{x\sim p}[f(x)] = E_{x\sim q}[f(x)\frac{p(x)}{q(x)}]$$

- Improve training speed
- The sample data can be reused

$$\nabla \bar{R}_{\theta} = E_{\tau \sim p_{\theta}(\tau)} [R(\tau) \nabla log p_{\theta}(\tau)] \longrightarrow \nabla \bar{R}_{\theta} = E_{\underline{\tau \sim p_{\theta'}(\tau)}} \left[\frac{p_{\theta}(\tau)}{p_{\theta'}(\tau)} R(\tau) \nabla log p_{\theta}(\tau) \right]$$

PPO

 The two distributions should not be too distant or it will take a lot of sampling to get approximate results

$$J^{\theta^{k}}(\theta) \approx \sum_{(s_{t}, a_{t})} \frac{p_{\theta}(a_{t}|s_{t})}{p_{\theta^{k}}(a_{t}|s_{t})} A^{\theta^{k}}(s_{t}, a_{t})$$

 Use KL penalty to constrain the distance between the two distributions

$$J_{PPO}^{\theta^{k}}(\theta) = J^{\theta^{k}}(\theta) - \beta KL(\theta, \theta^{k})$$

If
$$KL(\theta, \theta^k) > KL_{max}$$
, increase β
If $KL(\theta, \theta^k) < KL_{min}$, decrease β

Experiments

State Table

State name	Description	Data type
xhead	x coordinate of snake head	int
yhead	y coordinate of snake head	int
snake_coords	Coordinate list of snake body	[{'x':int,'y':int},]
direction	Snake head direction	RIGHT/LEFT/UP/DOWN
xfood	X coordinate of food	int
yfood	Y coordinate of food	int
deltax	(xfood - xhead) / map_width	float
deltay	(yfood - yhead) / map_height	float

Action List

Action	Description	Real value
UP	Snake goes up if direction ≠ down	0
DOWN	Snake goes down if direction ≠ up	1
LEFT	Snake goes left if direction ≠ right	2
RIGHT	Snake goes right if direction ≠ left	3

Environment

PyGame

pip install pygame

import pygame

Params

Param	Value	Range
max_episode	800	Agent training
act_dim	4	Agent network
obs_dim	6	Agent network
net_dim	512	Agent network
batch_size	256	Agent training
soft_update_tau	2e-8	Agent network
target_step	2e12	Environment
gamma	0.99	Environment
reward_scale	1	Environment
std_actor	1.0	Action output
std_critic	0.5	Q-value output
bias	1e-6	Action & Q-value output

Rewards

Round	1	2	3
Reward_eat	+2.0	+2.0	+2.0
Reward_hit	-0.5	-1.0	-1.5
Reward_bit	-0.8	-1.5	-2.0

Keep the reward for eating food constant, and gradually increase the punishment for death:

- 1. Plot the training curves
- 2. Observe the change in average rewards
- 3. Briefly describe the conclusions

Training

Round 1 Round 2 Round 3

Results

Avg	≈19	≈ 2 3	≈28
record	~19		-20

Conclusions

Increasing the penalty for death leads to higher average records

 The training result of the low death penalty strategy has a low reward curve, but it performs well in the demo

 A particularly high reward for eating food can lead to quick success regardless of long-term safety

Future work

The zigzag of snake body looks ugly, try to add punishment into

reward for too many zigzags.

Integrate saved model into C++ framework

https://github.com/george-chou/PPO-Snake-AI

https://github.com/george-chou/Snaqe

