水素原子

シュレーディンガー方程式の解 が軌道の概念となる

水素原子モデル (シュレーディンガー方程式をたてる)

electron
$$\hat{H}(x,y,z) = E(x,y,z)$$

$$\left[-\frac{\hbar^2}{2m} + U(r)\right] \quad (x, y, z) = E \quad (x, y, z)$$

このままでは微分方程式を解くことができない!

水素原子モデル(極座標系に変換する)

$$\hat{H}_{c}$$
 $(x,y,z) = E$ (x,y,z) (1) 極座標に変換 \hat{H}_{p} $(r, ,) = E$ $(r, ,)$ (2) 変数分離

$$(r, ,) = R(r) \quad () \quad ()$$

とおくと(2)は以下の三つの互いに関連した波動方程式(固有値問題)に分解することができる

$$\hat{E}_r R(r) = E R(r) \tag{3}$$

$$\hat{L}^2$$
 () = () (4)

$$\hat{L}_z \quad () = \mu \quad () \qquad (5)$$

(3)(4)(5)は厳密に解くことができる

水素原子モデル(シュレーディンガー方程式の解)

 $\stackrel{\wedge}{H}_{p} (r,) = E (r,)$ 極座標系方程式 波動関数(固有関数)

 $(r, ,) = R(r) \quad () \quad ()$

变数分離型方程式 固有值 量子数 固有関数 $\stackrel{\wedge}{E_r}R(r) = E R(r)$ $R_{n,l}(r)$ n 主量子数 $n = 1, 2, 3, \cdots$ エネルギー $\hat{L}^2 \quad () = \qquad () \qquad \qquad = l(l+1)\hbar^2$ 1 方位量子数 l,m() $l = 0,1,2,\cdots,n-1$ ・ 角運動量の二乗 $|m{L}^2|$ 一つのnに対してn個のI $\mu = m\hbar$ m()m 磁気量子数 $m = -l, \dots, 0, \dots, l$

 $R_{n,l,m}(r, r, r) = R_{n,l}(r) \quad l_{l,m}(r, r) = R_{n,l}(r) \times \frac{Y_{l,m}(r, r)}{r}$

角運動量のz成分 L_z

(1電子)波動関数

動径波動関数 (動径部分)

角波動関数 (角部分)

一つのIに対して 2I+ 1個のm

水素原子モデル(軌道の概念)

(1電子)波動関数 $n,l,m = R_{n,l}(r)$ x $Y_{l,m}(r)$ が電子のふるまいのすべてを表現している。個々の波動関数を電子 (動径部分) (角部分) の**軌道** という。

energy	,	主量子数	方位量子数	ス 磁気量子数	波動関数	(軌道)				軌道名
$-E_0/16$		n = 4	l = 0	m = 0	400					4 _S x1
, and the second			l = 1	m = -1, 0, 1	410	41-1	411			4p x3
			l = 2	m = -2, -1, 0, 1, 2	420	42-1	421	42-2	422	4d x5
			l=3	m = -3, -2, -1, 0, 1, 2, 3		43m				4f x7
$-E_{0}/9$		n = 3	l = 0	m = 0	300					3s x1
0			l = 1	m = -1, 0, 1	310	31-1	311			3p x3
			l=2	m = -2, -1, 0, 1, 2	320	32-1	321	32-2	322	3d x5
$-E_{0}/4$		n = 2	l = 0	m = 0	200					2s x1
			l = 1	m = -1, 0, 1	210	21-1	211			2p x3
$-E_0$		n = 1	l = 0	m = 0	100					1s x1
$E_0 = \frac{me^4Z^2}{8e_0^2h^2}$										

水素原子の軌道の概略

$$_{n,l,m} = R_{n,l}(r) Y_{l,m}(,)$$

$$R_{n,l}(r) = A_{n,l} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{2Zr}{na_0}\right)^{l} \left[\text{Laguerre}_{n,l} \left(\frac{2Zr}{na_0}\right)\right]$$
参考(一般式)
$$x \exp -\left(\frac{Zr}{na_0}\right)$$

動径波動関数

$$_{0}=rac{Zr}{a_{0}}$$
 $a_{0}=0.53 ext{ Å}$ (ボーア半径)

$R_{n,l}(r)$ は動径 (r) のみを変数とする、三次元的には球対称関数

 $|R_{n,l}(r)|^2$ 確率密度関数

 $4 r^{2}|R_{n,l}(r)|^{2}$ 動径分布関数

 $|R_{n,l}(r)|^2 dv = 4 r^2 |R_{n,l}(r)|^2 dr = 1$ (規格化)

式を使わずに軌道(波動関数)の形を調べる(角部分)

$$_{n,l,m}=R_{n,l}(r)$$
 $Y_{l,m}($

$$Y_{l,m}(,) = B_{l,m}$$
 [Legendre_{l,m}()] e^{im} 参考(一般式)

角波動関数 具体的には

角波動関数の形を調べる

s軌道 l=0 m=0 1重縮退

$$Y_{00} = Y_{s0} = \sqrt{\frac{1}{4}}$$

, に全く関係しない球対称関数

L²=0 角運動量は0

p軌道 l=1 $m=0,\pm 1$ 3重縮退 角波動関数の形を調べる

角波動関数の形を調べる

d 軌道 l=2 $m=0,\pm 1,\pm 2$ 5重縮退

1 次独立な 5 つの複素関数 $Y_{20} = Y_{d0} = \sqrt{\frac{5}{16}} \quad (3\cos^2 - 1)$ $Y_{21} = Y_{d1} = \sqrt{\frac{15}{8}} \quad \cos \sin e^{i}$ $Y_{2-1} = Y_{d-1} = \sqrt{\frac{15}{8}} \quad \cos \sin e^{-i}$ $Y_{22} = Y_{d2} = \sqrt{\frac{15}{32}} \quad \sin^2 e^{2i}$ $Y_{2-2} = Y_{d-2} = \sqrt{\frac{15}{32}} \quad \sin^2 e^{-2i}$

変換
$$\frac{3\frac{z^2}{r^2} - 1}{Y_{20} = Y_{dz^2} = \sqrt{\frac{5}{16}}} (3\cos^2 - 1) \frac{z}{r} \frac{x}{r}$$

$$\frac{1}{2} (Y_{21} + Y_{2-1}) = Y_{dxz} = \sqrt{\frac{15}{4}} \cos \sin \cos \frac{z}{r} \frac{y}{r}$$

$$\frac{-i}{2} (Y_{21} - Y_{2-1}) = Y_{dyz} = \sqrt{\frac{15}{16}} \sin^2 \sin \sin \frac{x}{r} \frac{y}{r}$$

$$= \sqrt{\frac{15}{16}} \sin^2 (2\cos \sin)$$

$$\frac{1}{2} (Y_{22} + Y_{2-2}) = Y_{dx^2-y^2} = \sqrt{\frac{15}{16}} \sin^2 \cos 2 \frac{x^2}{r^2} - \frac{y^2}{r^2}$$

$$= \sqrt{\frac{15}{16}} \sin^2 (\cos^2 - \sin^2)$$

角波動関数の形を調べる

d 軌道 l = 2 $m = 0, \pm 1, \pm 2$ 5重縮退

