

Freescale Wireless Connectivity for the Internet of Tomorrow

Alan Collins | Business Development Wireless Applications Engineer

APR.2015

Agenda

- Wireless connectivity technologies to enable IoT
 - 2.4GHz vs Sub-1GHz
 - Multi-protocol landscape: Which one to choose?
- Kinetis W overview
 - KW01x feature set
 - KW2x feature set
- Development Environment
 - Evaluation boards
 - Software stacks
 - Software tools
 - Support
- Summary
- Q & A

IoT Concept

NP

r Products Power The Internet of Things

Microcontrollers | Digital Networking | Auto MCU | Analog and Sensors | RF

we Enable the Key Development Forces

Secure Data

Diverse Data Sources
Optimized Networks
Security, Security

Small, Fast, Energy Efficient

Product Longevity
Balanced Performance/Power
Shrinking Power Envelopes

Easy to Use

Integrated, Compatible, Scalable
Global Partners
Faster Time to Market

50 BILLIONCONNECTED DEVICES by 2020

We are **Enabling** the **Next Growth Wave**

Kinetis MCU Innovations for IoT Market

1 Security

- Driving enhanced protection for customers' IP and the end customers' personal information with standard on-chip cryptographic accelerators and industry-leading security mechanisms
- 2 Enablement
 - Improving customer time to market with rapid and easy Kinetis MCU prototyping and development tools and software (MQX, RTOS, SDK, Kinetis Design Studio IDE), turnkey designs, and strategic ecosystem
- 3 Low Power
 - Leading innovation with an optimized ultra-low-power architecture designed for maximum flexibility with efficient ARM Cortex-M cores, low power boot capabilities, smart peripherals and various power modes

Freescale's Leadership in IoT

- Ecosystem of over 400 partners, from Fortune 50 to specialized IoT providers
- Launch of Software Center and Software Services BU
- Driving technology standards such as Thread
- Largest ARM portfolio from the smallest 32-bit microcontroller, to multicore applications processors and MPU's
 - Continued leadership in Power Architecture in Networking and **Automotive**
- Portfolio to target the 3 primary areas of IoT:
 - Industry, Home and Automotive

From the edge node to the network and the cloud, Freescale accelerates Internet of Things innovations with smart and secure hardware and software solutions.

Wireless Connectivity for the IoT - Complexity

NP

Choosing the Right Wireless Technology

Sub-GHz

- Frequency bands regulated and vary by country
- Exhibits significantly longer range
 - ~ 100m indoor,
 - ~ 500-800m outdoor
 - Better building penetration capability.
 - Mostly proprietary NWK protocols
- · Typically lower data rate
 - 50 100kpbs
- · Reduced power consumption
 - Low interference = easier transmissions + fewer retries
 - Years of battery life
- · Antenna Size
 - 433MHz ~17.3cm

915MHz ~8.2cm

Proprietary standards → Lower deployment and operating costs

2.4GHz

- · Unlicensed Frequency bands available worldwide
- · Range:
 - ~ 30m indoor,
 - ~ 100-300m outdoor
 - Robust NWK protocols (like ZigBee and Thread) enable multi hop mesh networks.
- · High effective data rate
 - Ex: 802.15.4 (250kbps)
- · PWR consumption
 - Less time on-air
 - Years of battery life
 - Quick TX/RX turnaround time
 - Retries and ACKS mechanism
- Smaller Antenna Size
 - 2.4 GHz ~ 3.1cm
- Global standards for the IoT
 - · ZigBee PRO & IP
 - Thread
 - Bluetooth

Freescale Connectivity Positioning

Wearables

Content Sharing Gateways **Border Routers**

<1GHz Industrial Wireless

2.4GHz Low Power Home Sense & Control Networks

2.4GHz protocol stack comparison

Feature	SMAC	802.15.4 MAC	ZigBee® Pro	Thread
Supported Devices	K64F+MCR20, KL46+MCR20, KW2x	K64F+MCR20, KL46+MCR20, KW2x	K64F+MCR20, KL46+MCR20, KW2x	K64F+MCR20, KL46+MCR20, KW2x
Applications				
Cable Replacement	✓	✓	✓	✓
Remote Control	\checkmark	✓	✓	✓
Home Control			✓	✓
Home Automation			✓	✓
Health Care			✓	✓
Building Automation				✓
Smart Energy			✓	
Network Stack	No	No	Yes	Yes
Application Profiles	No	No	Yes	No
Recommended Device Memory	FLASH: 128K SRAM: 16K	FLASH: 128K SRAM: 16K	FLASH: 256K SRAM: 32K	FLASH: 256K SRAM: 32K
Network Topology	Point-to-Point	Peer-to-Peer	Tree	Mesh
	Star	Tree	Mesh	
Typical Data Throughput	50-115Kbps	90-115Kbps	30-70Kbps	50-70Kbps

Sub-1 GHz Protocol Stack Comparison

Feature	SMAC	802.15.4g/e	Thread for <1GHz	Wireless M-Bus	
Supported Devices	KW01	KW01	K64F+KW01, KL46+KW01	KW01	
		Wireless Meter Reading	Application agnostic,	Wireless Meter	
Typical Application	Cable Replacement	Building Control	AllJoyn, IOTivity,	Reading (Europe)	
		Medical	LWM2M, MQTT		
Standard	Proprietary	IEEE 802.15.4	Thread	EN 13757-4:2013	
Network Stack	No	No	Yes	Yes	
Network Profiles	No	No	No	No	
Recommended Device Memory	FLASH: 128K SRAM: 16K	FLASH: 128K SRAM: 16K	FLASH: 256K SRAM: 32K	FLASH: 128K SRAM: 16K	
Network Topology	Point to Point	Peer-to-Peer		Point-to-Point	
	Star	Tree	Mesh	Otan	
		Mesh		Star	
Data Rate	200 Kbps	50-200 Kbps	15-35Kbps	32-100 Kbps	
Protocol Stack Provider	FSL Available	FSL Q2'2015	FSL Q2'2015	3 rd Party	

What is KW Series?

Extension of Kinetis line to include wireless connectivity technologies

More information available in the following link: http://www.freescale.com/wireless

Kinetis Key Pillars by Family

L	Е	K	X	W	M	V
Low Power	5V Robustness	High Performance & Rich Integration	Extreme performance & integration	Integrated RF Connectivity, 2.4 GHz, sub-GHz	Integrated metrology engine	Motor and Power Conversion
48MHz Cortex M0+	Up to 48MHz Cortex M0+	Up to 180MHz Cortex M4	Up to 400MHz Cortex M-next	Up to 120MHz Cortex M4, Cortex M0+	Up to 48MHz Cortex M0+	Up to 200MHz, Cortex M4, Cortex M0+
8KB to 512kB Flash	8KB to 128kB Flash	32KB to 2MB Flash	0KB to 16MB Flash	32KB to 1MB Flash	32KB to 128kB Flash	16KB to 2MB Flash
Up to 128KB RAM	Up to 16KB RAM	Up to 256KB RAM	Up to 512KB RAM	Up to 256KB RAM	Up to 32KB RAM	Up to 256KB RAM
Now!	Now!	Now!	Q4 '15	Now!	Now!	Now!

Leading Performance – Low Power – Scalability – Industrial Grade reliability & temp

Freescale Bundled IDE, RTOS & Middleware – Rapid Prototyping Platform – Broad ARM Ecosystem Support

Kinetis KW01 Wireless MCU (Sub 1-GHz)

Orderable Part

Part Number	Description		
MKW01Z128CHN	• 290-1020 MHz smart radio		
	• 128 KB flash/16 KB RAM		
	• 60 MAPLGA 8 mm x 8 mm		
	Bulk tray		

freescale"

CPU

- 32-bit ARM Cortex M0+ 48MHz Core
- 128KB Flash and 16KB SRAM

Radio Transceiver, Sub 1-GHz

- Supports 290-340MHz, 424-510MHz, and 862-1020MHz frequency bands
- FSK, GFSK, MSK, GMSK and OOK modulations up to 600kbps
- Up to -120dBm RX sensitivity @ 1.2kbps
- -18 to +17dBm TX output power in steps of 1dBm

Ultra Low Power for Battery Operated Devices

- Typical consumption
 - 1.7µA standby
 - <130 µA/MHz CPU system run mode</p>
 - 16 mA RX peak
 - 20 mA TX peak at 0 dBm, 33 mA at +10 dBm

Software

- SMAC (Simple-MAC), user modifiable for proprietary protocols
- 802.15.4g/e with TSCH
- Wireless MBUS

System

- 16-bit ADC, Capacitive Touch Sensing, I2C, UART, SPI, Timers
- Operating Range: 1.8V to 3.6V, -40C to +85C

MKW01x key differentiators

Very low power suitable for battery operated equipment

Cortex M0+ Breakthrough power efficiency

Low-power features such as 100nA with radio configuration retention.

Demonstrates exceptional RF performance with a budget link up to +137dB

High Integration Level

Includes the exclusive ARM Cortex M0+ core with up to 48MHz performance, embedded 128KB Flash and 16KB of RAM supporting wireless communication protocol + application in one chip

Flexibility and Compliancy with Multiple Standards

Full set of peripherals

Offers multiple 16-bit timers, 13-bit port keyboard interrupt and Touch Sensing Interface, 16-bit ADC, SCI, I2C, SPI

Kinetis W Series: KW2x Wireless MCUs

CPU

- Up to 50 MHz Cortex®-M4
- 16-channel-DMA
- Up to 512 KB Flash, 64 KB RAM, and 4k bytes of enhanced EEPROM/FlexRAM. Up to 64K FlexNVM (MKW21D256 only)
- Typical current consume: 250 uA/Mhz run, 1.7uA RTC standby

Radio Transceiver, 2.4GHz

- Highly integrated 2.4 GHz RF transceiver
- 802.15.4 Packet processor
- Supports single ended and diversity antennas
- Dual PAN support
- 110 dBm Link budget
- Programmable output power -30 to +8 dBm
- Sensitivity -102 dBm
- Low Power: TX 15mA @ 0dBm (CPU sleep), RX 15mA (CPU sleep)

Security

- Cryptography Acceleration Unit (CAU)
- · AES encryption (FIPS 140)
- External tamper detect
- 32-bit CRC

System

- SPI (1), UART (2), I²C (2), USB FS OTG (KW22 and KW24)
- 8-channel 16-bit SAR ADC, 6-bit DA
- Real-Time Clock (RTC)
- Up to 24 GPIO, Multiple KBI
- Operating temperature of –40°C to 105°C

Kinetis KW2x Wireless MCU

Device	Flash	RAM	Feature	Package
MKW21D256VHA5	256 KB	32 KB	No USB	8x8 56-pin LGA
MKW22D512VHA5	512 KB	64 KB	USB	8x8 56-pin LGA
MKW24D512VHA5	512 KB	64 KB	USB and Smart Energy 2.0	8x8 56-pin LGA

http://www.freescale.com/KW2x

MKW2x key differentiators

Dedicated Hardware:

Dual PAN ID → Participate in two networks simultaneously Antenna Diversity → Reduce multipath fading

- MCU with powerful core and energy efficiency options Flash / RAM capacity
- High radio link budget 802.15.4 hardware engine
- HW and SW enablement / support

MKW01x evaluation boards

http://www.freescale.com/MRB-KW0x

MKW2x evaluation boards

http://www.freescale.com/twr-kw2x

http://www.freescale.com/usb-kw24d512

MCR20 High Performance 802.15.4 Transceiver

RF Features

- High performance 2.4 GHz IEEE 802.15.4 RF transceiver
- Support for MBAN frequencies (2.36-2.4 GHz)
- · Packet processor for hardware acceleration
- Supports single ended and diversity antenna options
- Dual-PAN support
- -30 to + 8 dBm power output
- Support for external PA/LNA (FEM)
- -102 dBm sensitivity
- Tx 17mA @ 0dBm
- Rx 15mA LPPS mode, 19mA full Rx
- AES Hardware encryption/decryption
- True Random Number Generator
- SPI Interface (memory mapped)
- 6 GPIO

System Features

- -40°C to 105°C
- 1.8 to 3.6 V
- 5x5 32-pin LGA
- Samples Now, Production Summer

Ordering Part Number: MCR20AVHM

Growing Importance of Enablement

Firmware is MCU developers **BIGGEST** pain point

Software Strategy for Connectivity Stacks moving forward

- Port all the software stacks to Kinetis SDK drivers and ecosystem
- Adding support for MQX and FreeRTOS via Kinetis SDK OS Abstraction
- Provide initial support for IAR Embedded Workbench and later add support for Kinetis Design Studio with GCC compiler

Connectivity Software Offering

BeeKit

- Bare metal solution for Kinetis KW2x series
- SMAC
- 802.15.4 2006 PHY-MAC
- ZigBeePRO Stack with
 - Home Automation 1.2
 - Smart Energy 1.1
 - Healthcare Profiles
- Test Tool 12

Kinetis SDK based stacks

- RTOS based solution for Kinetis KW01, KW2x, K64F+MCR20, KL46+MCR20
- SMAC
- 802.15.4 PHY-MAC
- Thread Stack
- BLE Host Stack and BLE Profiles
- ZigBee PRO stack with HA1.2 and ZigBee Light Link profiles

Kinetis Software Development Kit (SDK)

A software framework for application development across all Kinetis MCUs

Hardware abstraction, peripheral drivers, stacks, RTOS's, utilities, and usage examples; delivered in C source

Product Features

- Open source hardware abstraction layer (HAL) provides APIs for all Kinetis hardware resources
- BSD-licensed set of peripheral drivers with easy-touse C-language APIs
- Comprehensive HAL and driver usage examples and sample applications for RTOS and bare-metal
- GUI configurable projects and peripheral drivers using Processor Expert
- CMSIS-CORE compatible startup plus CMSIS-DSP library and examples
- RTOS Abstraction Layer (OSA) with support for Freescale MQX, FreeRTOS, Micrium uC/OS, and bare-metal
- Integrates new Freescale unified USB stack, open source TCP/IP stack (IwIP), open source FAT file system, encryption math/DSP libraries, and more and
- Support for multiple toolchains: GNU GCC, IAR, Keil, Atollic, and Kinetis Design Studio

Kinetis Design Studio

No-cost integrated development environment (IDE) for Kinetis MCUs

Eclipse and GCC-based IDE for C/C++ editing, compiling and debugging

Product Features

- A free of charge and unlimited IDE for Kinetis MCUs
- A basic IDE that offers robust editing, compiling and debugging
- Based on Eclipse, GCC, GDB and other opensource technologies
- Includes Processor Expert (PEx) with Kinetis SDK integration
 - Supports all existing Kinetis devices via PEx and new project wizard
 - All new Kinetis devices will also feature the Kinetis SDK with PEx configurability
- Host operating systems:
 - Windows 7/8 (32 and 64-bit)
 - Linux (Ubuntu, Redhat, Centos)
- Support for SEGGER, P&E and Open SDA/CMSIS-DAP debugger targets
- Support for Eclipse plug-ins including RTOSawareness (i.e. MQX, FreeRTOS)
- CodeWarrior project importer

Scale Bundled MQX RTOS

 Free Scalable, fully-featured and proven RTOS with 32-bit MCUs

- Full-featured and powerful

- BSPs incorporate tightly integrated RTOS, Middleware (USB, TCP/IP stacks), file system, and I/O drivers
- Designed for speed and size efficiency

- Market proven

- Available on Freescale processors for > 15 years
- Used in millions of products including Medical and Heavy Industrial applications

- Simple and scalable

- As small as ~10KB for smallest implementation, or scale up to support sophisticated networking and threading
- Intuitive API & modular architecture enables straightforward fine-tuning of features
- Production source code provided
- Similar to other "pay-for" software OS

Software integration headache

\$95K

of free

Software

- √Stable
- ✓ Upgradable
- √ Easy to maintain

Wireless Connectivity Enablement Overview

Bringing our solutions closer to the customer

Connectivity Software

Development Hardware

- Freedom Board
 - compatible with the overall Kinetis HW
 - easy solution proof of concept.
- USB dongle
 - Small form factor.
 - end nodes demonstration,
 - sniffer for easy of debugging)

Completely Seamless Solution delivered by Freescale

Support options in details

Commercial Support Commercial Products Works with Standard Support PEG, Wireless Charging Prioritized access in queue Miracast (Linux) Managed by senior staff Audio Video Bridge Guaranteed response time Trusted Execution Environment Delivered through private portal Hot fixes and patches available **UI & Applications** immediately Middleware MQX Software MSS Primary Focus Area **OS Kernel Standard Support** Hardware Optional channels; Online, TIC, Freescale FAEs, Distributor FAEs Free of charge Optimized on standard BSPs **Kinetis** Vybrid **Apps Processors** Solutions and reference boards Solutions Standard issue resolution

Best effort response time

priority

- Report bugs for fix in public releases
- Technical support professionals

- Reducing project risk
- Increasing team efficiency
- Securing time to market

Professional Services

- Custom support / HW services development on Client setup
- Direct access to experts
- BSP, drivers/stacks:
 - GFX services
 - Development / Porting / Migration/Integration
 - Customization / Optimization
 - Feature dvpt & Acceleration
 - Testing / Validation
 - Issue analysis, Debug & Fix
- SOW-driven
- Longer term engagment
- Frozen branch services
- Application specific hardening

Center Community Website

- Where to find the IoT Center?
 - Training & Communities:
 - www.freescale.com/support
 - https://community.freescale.com/community/wireless-connectivity

Center Technical Topology

Physical Components

- Edge Devices
- Gateways
- Wireless Connectivity
- Sensors
- Smart Apps

System Capabilities

- Device Management
- Cloud / Infrastructure
- Interworking
- Security
- Analytics / Data

Development Capabilities

- IoT Platforms
- Embedded Tools
- Services

Agenda

- Wireless connectivity technologies to enable IoT
 - 2.4GHz vs Sub-1GHz
 - Multi-protocol landscape: Which one to choose?
- Kinetis W overview
 - KW01x feature set
 - KW2x feature set
- Development Environment
 - Evaluation boards
 - Software stacks
 - Software tools
 - Support
- Summary
- Q & A

FREESCALE TECHNOLOGY FORUM 2015

Secure Embedded Processing Solutions for the Internet of Tomorrow

June 22-25, 2015 | JW Marriott Austin

Register Now!

FTF.freescale.com

Q & A

www.Freescale.com