P06, 27 nov 2023

Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

1 [60] A tabela abaixo lista os 79 máximos anuais do rio São Francisco na atual localização da UHE de Três Marias para o período 1931–2009 (Cavalcanti, 2014: Estudo comparativo de métodos de estimação de vazões máximas de projeto para grandes bacias hidrográficas. Dissertação de Mestrado, USP São Carlos, Tabela 8.2)

A função distribuição acumulada Gumbel com parâmetros u e α e sua relação com a média μ e o desvio-padrão σ de população são, respectivamente,

$$F(x) = \exp\left[-\exp\left(-\frac{x-u}{\alpha}\right)\right],$$

$$\mu = u + \gamma\alpha, \qquad \gamma = 0.5772,$$

$$\sigma = \frac{\pi}{\sqrt{6}}\alpha.$$

Estime u e α pelo método dos momentos, e a vazão com tempo de recorrência de 10.000 anos. Para cálculos manuais, pode ser útil saber que

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1} \left[\sum_{i=1}^n x_i^2 - n\overline{x}^2 \right].$$

Ano	$Vazão \ (m^3 s^{-1})$						
1931	1530	1951	3202	1971	3418	1991	6040
1932	3027	1952	1421	1972	3091	1992	2917
1933	3245	1953	1851	1973	1976	1993	3477
1934	2447	1954	2771	1974	2193	1994	2006
1935	1365	1955	2551	1975	2190	1995	2990
1936	2908	1956	3734	1976	2281	1996	6762
1937	4205	1957	2573	1977	4194	1997	2575
1938	3766	1958	1956	1978	5744	1998	2850
1939	2647	1959	2383	1979	4344	1999	3341
1940	3223	1960	4318	1980	2425	2000	1850
1941	2847	1961	1952	1981	4710	2001	3896
1942	4064	1962	2787	1982	7245	2002	3039
1943	3580	1963	3976	1983	3821	2003	3485
1944	3649	1964	3479	1984	4586	2004	3218
1945	3962	1965	4236	1985	3663	2005	4275
1946	3065	1966	2884	1986	2537	2006	4156
1947	2759	1967	2776	1987	2889	2007	3303
1948	4205	1968	2515	1988	1561	2008	4181
1949	2285	1969	2925	1989	2790	2009	2241
1950	2893	1970	1309	1990	3827		

SOLUÇÃO DA QUESTÃO:

As estatísticas amostrais são

$$\overline{x} = 3207.06 \,\mathrm{m}^3 \,\mathrm{s}^{-1},$$

 $s_x = 1114.25 \,\mathrm{m}^3 \,\mathrm{s}^{-1}.$

Usando \overline{x} no lugar de μ e s_x no lugar de σ ,

$$\alpha = \frac{\sqrt{6}}{\pi} s_x$$

$$= 868.777 \,\mathrm{m}^3 \,\mathrm{s}^{-1};$$

$$u = \overline{x} - 0.5772 \times 868.777 = 2705.602 \,\mathrm{m}^3 \,\mathrm{s}^{-1}.$$

$$1 - \frac{1}{T} = \exp\left[-\exp\left(-\frac{x_T - u}{\alpha}\right)\right]$$

$$\ln\left(1 - \frac{1}{T}\right) = -\exp\left(-\frac{x_T - u}{\alpha}\right)$$

$$\ln\left[-\ln\left(1 - \frac{1}{T}\right)\right] = -\frac{x_T - u}{\alpha}$$

$$x_T = u - \alpha \ln\left[-\ln\left(1 - \frac{1}{T}\right)\right]$$

$$x_{10000} = 2705.602 - 868.777 \times \ln\left[-\ln\left(1 - \frac{1}{10000}\right)\right]$$

$$= 10707.29 \,\mathrm{m}^3 \,\mathrm{s}^{-1} \,\blacksquare$$

2 [20] Dada a função densidade de probabilidade da exponencial de dois parâmetros,

$$f(x) = \frac{1}{\lambda} \exp\left[-\frac{x - x_0}{\lambda}\right], \quad x \ge x_0,$$

Calcule (resolvendo as integrais)

$$\mu = \int_{x_0}^{\infty} x f(x) dx,$$

$$\sigma^2 = \int_{x_0}^{\infty} (x - \mu)^2 f(x) dx.$$

Observação: você pode usar

$$\int_{\xi=0}^{\infty} \xi e^{-\xi} d\xi = 1,$$

$$\int_{\xi=0}^{\infty} \xi^2 e^{-\xi} d\xi = 2.$$

SOLUÇÃO DA QUESTÃO:

$$\mu = \int_{x_0}^{\infty} x f(x) \, \mathrm{d}x,$$

$$u = x - x_0,$$

$$f(u) = \frac{1}{\lambda} \exp\left[-\frac{u}{\lambda}\right],$$

$$du = dx,$$

$$\mu = \int_{u=0}^{\infty} (u + x_0) f(u) \, \mathrm{d}u$$

$$= \int_{u=0}^{\infty} u \frac{1}{\lambda} \exp\left[-\frac{u}{\lambda}\right] \, \mathrm{d}u + x_0 \int_{u=0}^{\infty} f(u) \, \mathrm{d}u$$

$$= x_0 + \int_{u=0}^{\infty} u \frac{1}{\lambda} \exp\left[-\frac{u}{\lambda}\right] \, \mathrm{d}u$$

$$\xi = \frac{u}{\lambda},$$

$$d\xi = \frac{\mathrm{d}u}{\lambda},$$

$$\mu = x_0 + \lambda \int_{\xi=0}^{\infty} \xi \mathrm{e}^{-\xi} \, \mathrm{d}\xi.$$

A integral pode ser calculada por partes; melhor ainda, pode-se usar o truque de Feynman:

$$I(k) = \int_0^\infty e^{-k\xi} d\xi = \frac{1}{k};$$

$$I'(k) = \int_0^\infty -\xi e^{-k\xi} d\xi = -\frac{1}{k^2}.$$

A integral desejada é -I'(1) = 1, donde

$$\mu = x_0 + \lambda$$
.

A segunda integral é

$$\sigma^{2} = \int_{x=x_{0}}^{\infty} (x - \mu)^{2} f(x) dx$$

$$= \int_{x=x_{0}}^{\infty} (x - x_{0} - \lambda)^{2} f(x) dx$$

$$= \int_{u=0}^{\infty} (u - \lambda)^{2} f(u) du$$

$$= \int_{u=0}^{\infty} (u^{2} - 2u\lambda + \lambda^{2}) f(u) du$$

$$= \int_{u=0}^{\infty} (u^{2} - 2u\lambda + \lambda^{2}) \frac{1}{\lambda} \exp\left[-\frac{u}{\lambda}\right] du$$

$$= \int_{u=0}^{\infty} u^{2} \frac{1}{\lambda} \exp\left[-\frac{u}{\lambda}\right] du - 2\lambda \underbrace{\int_{u=0}^{\infty} \frac{u}{\lambda} \exp\left[-\frac{u}{\lambda}\right] du + \lambda^{2}}_{\lambda} \underbrace{\int_{u=0}^{\infty} \frac{1}{\lambda} \exp\left[-\frac{u}{\lambda}\right] du}_{1}$$

As duas integrais à direita já foram calculadas:

$$\sigma^{2} = \lambda^{2} \int_{u=0}^{\infty} \left(\frac{u}{\lambda}\right)^{2} \exp\left[-\frac{u}{\lambda}\right] \frac{du}{\lambda} - 2\lambda^{2} + \lambda^{2}$$
$$\sigma^{2} = \lambda^{2} \int_{\xi=0}^{\infty} \xi^{2} e^{-\xi} d\xi - \lambda^{2}$$

Continuando o truque de Feynman,

$$I''(k) = \int_{\xi=0}^{\infty} \xi^2 e^{-k\xi} d\xi = \frac{2k}{k^4} = \frac{2}{k^3},$$

$$I''(1) = 2$$

é a integral desejada. Portanto,

$$\sigma^2 = 2\lambda^2 - \lambda^2 = \lambda^2$$

 $\mathbf{2}$ [20] Dada uma amostra (x_1, x_2, \dots, x_n) em ordem **cronológica** de vazões máximas anuais, o que é, e como se obtém, a função distribuição acumulada empírica da vazão máxima anual X?

SOLUÇÃO DA QUESTÃO:

Inicialmente, ordene os dados de tal forma que

$$x_1 \leq x_2 \leq x_3 \leq \ldots \leq x_n$$
.

Em seguida, atribua a probabilidade

$$P\{X \le x_i\} = \widehat{F}(x_i) = \frac{i}{n+1} \blacksquare$$