Albert Ludwigs Universität Freiburg

TECHNISCHE FAKULTÄT

PicoC-Compiler

Übersetzung einer Untermenge von C in den Befehlssatz der RETI-CPU

BACHELORARBEIT

 $Abgabedatum: 28^{th}$ April 2022

Author: Jürgen Mattheis

Gutachter:
Prof. Dr. Scholl

Betreung: M.Sc. Seufert

Eine Bachelorarbeit am Lehrstuhl für Betriebssysteme

ERKLÄRUNG
ERRLARONG
Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine anderen
als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die wörtlich oder
sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht
habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht
auszugsweise, bereits für eine andere Prüfung angefertigt wurde.

Inhaltsverzeichnis

1	Mo	tivation	6
	1.1	PicoC und RETI	6
	1.2	Problemstellung	6
2	Ein	führung	7
	2.1	Compiler und Interpreter	7
		2.1.1 T-Diagramme	7
	2.2	Grammatiken	7
	2.3	Grundlagen	7
		2.3.1 Mehrdeutige Grammatiken	8
		2.3.2 Präzidenz und Assoziativität	8
	2.4	Lexikalische Analyse	8
	2.5	Syntaktische Analyse	9
	2.6		10
	2.7	Fehlemeldungen	10
3	Imp	olementierung	11
	3.1	PicoC und RETI	11
	3.2		11
		8	11
	3.3	V	12
			12
	3.4	v v	12
			12
		v C	12
	3.5		12
			12
		· · · · · · · · · · · · · · · · · · ·	12
		0	12
			12
	2.0		12
	3.6	9	12
		3.6.1 Error Handler	12
4	Erg		13
	4.1		13
	4.2	·	13
	4.3		13
	4.4	Erweiterungsideen	13
\mathbf{A}	Apr	pendix	14
			14
		· ·	14
			14
		A.2.2 Showmode	14
		A.2.3 Entwicklertools	14

${f A}{f b}{f b}{f i}{f l}{f d}{f u}{f n}{f g}{f s}{f v}{f e}{f r}{f z}{f e}{f i}{f c}{f h}{f n}{f i}{f s}$	3

Tabellenverzeichnis			
3.1 Präzidenzregeln von PicoC	1		

Definitionen

2.1	Compiler	7
2.2	Interpreter	7
2.3	T-Diagram	7
2.4	Sprache	7
2.5	Chromsky Hierarchie	7
2.6	Grammatik	7
2.7	Reguläre Sprachen	7
2.8	Kontextfreie Sprachen	8
2.9	Ableitungsbaum	8
2.10	Mehrdeutige Grammatik	8
2.11	Assoziativität	8
2.12	Präzidenz	8
2.13	Pattern	8
2.14	Lexeme	8
2.15	Lexer (bzw. Scanner)	9
2.16	Parser	9
2.17	Konkrette Syntax	9
2.18	Derivation Tree	9
2.19	Abstrakte Syntax	9
2.20	Abstrakte Syntax Tree	9
2.21	Transformer	10
		10
		10
3.1	Symboltabelle	12

1 Motivation

- 1.1 PicoC und RETI
- 1.2 Problemstellung

2 Einführung

2.1 Compiler und Interpreter
Definition 2.1: Compiler
Definition 2.2: Interpreter
2.1.1 T-Diagramme
Definition 2.3: T-Diagram
2.2 Grammatiken
2.3 Grundlagen
Definition 2.4: Sprache
Definition 2.5: Chromsky Hierarchie
Definition 2.6: Grammatik
Definition 2.7: Reguläre Sprachen

Definition 2.8: Kontextfreie Sprachen

2.3.1 Mehrdeutige Grammatiken

Definition 2.9: Ableitungsbaum

Definition 2.10: Mehrdeutige Grammatik

2.3.2 Präzidenz und Assoziativität

Definition 2.11: Assoziativität

Definition 2.12: Präzidenz

2.4 Lexikalische Analyse

Die Lexikalische Analyse bildet üblicherweise die erste Ebene innerhalb der Pipe Architektur bei der Implementierung von Compilern. Die Aufgabe der lexikalischen Analyse ist vereinfacht gesagt, in einem Inputstring, z.B. dem Inhalt einer Datei, welche in UTF-8 codiert ist, Folgen endlicher Symbole (auch Wörter genannt) zu finden, die bestimmte Pattern (Definition 2.13) matchen, die durch eine reguläre Grammatik spezifiziert sind.

Definition 2.13: Pattern

Beschreibung aller möglichen Lexeme einer Menge \mathbb{P}_T , die einem bestimmten Token T zugeordnet werden. Die Menge \mathbb{P}_T ist eine möglicherweise unendliche Menge von Wörtern, die sich mit den Regeln einer regulären Grammatik G_{Lex} einer regulären Sprache L_{Lex} beschreiben lassen a , die für die Beschreibung eines Tokens T zuständig sind. b

Diese Folgen endlicher Symoble werden auch Lexeme (Definition 2.14) genannt.

Definition 2.14: Lexeme

Ein Lexeme ist ein Wort aus dem Inputstring, welches das Pattern für eines der Token T einer Sprache L_{Lex} matched.^a

 $[^]a\mathrm{Als}$ Beschreibungswerkzeug können aber auch z.B. reguläre Ausdrücke hergenommen werden.

^bWhat is the difference between a token and a lexeme?

^aWhat is the difference between a token and a lexeme?

Diese Lexeme werden vom Lexer im Inputstring identifziert und Tokens T zugeordnet (Definition 2.15).

Definition 2.15: Lexer (bzw. Scanner)

Ein Lexer ist eine rechtseindeutige Funktion $lex: \sum^* \rightarrow (N \times V)^*$, welche ein Wort aus \sum^* auf ein Token T von einem Token Name N und einem Token Value V abbildet, falls diese Folge von Symbolen sich unter der regulären Grammatik G_{Lex} der regulären Sprache L_{Lex} abbleiten lässt.

 a lecture-notes-2021.

Die

Die vom Lexer identifizierten Token der Sprache werden

Die reguläre Grammatik G_{Lex} , die zur Beschreibung der Token T einer regulären Sprache L_{Lex} verwendet wird, ist üblicherweise regulär, da ein typischer Lexer immer nur ein oder wenige Symbole vorausschaut^a, unabhängig davon, was für Symbole davor aufgetaucht sind. Die übliche Implementierung eines Lexers merkt sich nicht, was für Symbole davor aufgetaucht sind, der Kontext in dem ein Symbol auftaucht ist also nicht wichtig.

aMan nennt das auch einem Lookahead von 1 oder k

2.5 Syntaktische Analyse

 Ein

Der Parser nutzt Token T als Wegweiser, um herauszufinden,

Definition 2.16: Parser

a

Definition 2.17: Konkrette Syntax

Definition 2.18: Derivation Tree

Definition 2.19: Abstrakte Syntax

Definition 2.20: Abstrakte Syntax Tree

^aWhat is the difference between a token and a lexeme?

Kapitel 2. Einführung 2.6. Code Generation

Definition 2.21: Transformer			
Do	efinition 2.22: Visitor		
De	enintion 2.22: Visitor		
0.0			
2.6	Code Generation		
Do	efinition 2.23: Pass		
De	minton 2.20. 1 ass		
0.7			
2.7	Fehlemeldungen		

3 Implementierung

3.1 PicoC und RETI

ASTNode

3.2 Grammatiken

3.2.1 Umstzung von Präzidenz

Die PicoC Sprache hat dieselben Präzidenzregeln implementiert, wie die Sprache C¹. Die Präzidenzregeln von PicoC sind in Tabelle 3.2.1 aufgelistet.

Präzidenz	Operator	Beschreibung	Assoziativität
1	a() a[] a.b	Funktionsaufruf Indexzugriff Attributzugriff	Links, dann rechts \rightarrow
2	−a !a ~a *a &a	Unäres Minus Logisches NOT und Bitweise NOT Dereferenz und Referenz, auch Adresse-von	Rechts, dann links \leftarrow
3	a*b a/b a%b	Multiplikation, Division und Modulo	Links, dann rechts \rightarrow
4	a+b a-b	Addition und Subtraktion	
5	a <b a<="b</td"><td>Kleiner, Kleiner Gleich, Größer, Größer gleich</td><td></td>	Kleiner, Kleiner Gleich, Größer, Größer gleich	
	a>b a>=b		
6	a==b a!=b	Gleichheit und Ungleichheit	
7	a&b	Bitweise UND	
8	a^b	Bitweise XOR (exclusive or)	
9	a b	Bitweise ODER (inclusive or)	
10	a&&b	Logiches UND	
11	a b	Logisches ODER	
12	a=b	Zuweisung	Rechts, dann links \leftarrow
13	a,b	Komma	Links, dann rechts \rightarrow

Tabelle 3.1: Präzidenzregeln von PicoC

 $^{^1}C\ Operator\ Precedence$ - cppreference.com.

- 3.3 Lexikalische Analyse
- 3.3.1 Lark
- 3.4 Syntaktische Analyse
- 3.4.1 Lark
- 3.4.2 Early Algorithmus
- 3.5 Code Generation
- 3.5.1 Passes

PicoC-Shrink Pass

PicoC-Blocks Pass

PicoC-Mon Pass

Definition 3.1: Symboltabelle

RETI-Blocks Pass

RETI-Patch Pass

RETI Pass

- 3.5.2 Umsetzung von Pointern und Arrays
- 3.5.3 Umsetzung von Structs
- 3.5.4 Umsetzung von Funktionen
- 3.5.5 Umsetzung kleinerer Details
- 3.6 Fehlermeldungen
- 3.6.1 Error Handler

4 Ergebnisse und Ausblick

- 4.1 Funktionsumfang
- 4.2 Qualitätskontrolle
- 4.3 Kommentierter Kompiliervorgang
- 4.4 Erweiterungsideen

- A.1 Konkrette und Abstrakte Syntax
- A.2 Bedienungsanleitungen
- A.2.1 PicoC-Compiler
- A.2.2 Showmode
- A.2.3 Entwicklertools

Literatur

Online

- C Operator Precedence cppreference.com. URL: https://en.cppreference.com/w/c/language/operator_precedence (besucht am 27.04.2022).
- lecture-notes-2021. 20. Jan. 2022. URL: https://github.com/Compiler-Construction-Uni-Freiburg/lecture-notes-2021/blob/56300e6649e32f0594bbbd046a2e19351c57dd0c/material/lexical-analysis.pdf (besucht am 28.04.2022).
- What is the difference between a token and a lexeme? NewbeDEV. URL: http://newbedev.com/what-is-the-difference-between-a-token-and-a-lexeme (besucht am 17.06.2022).