Current Topic of **Graph Neural Network**

for cheminformatic and bioinformatics

Jihun Jeung jihun@gm.gist.ac.kr
Life Data Mining Lab, School of Life science, GIST Last Update 2021.12.15

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2

Received: 11 May 2021

Accepted: 12 July 2021

Published online: 15 July 2021

Open access

Check for updates

John Jumper^{1,4, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4}, Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Žídek^{1,4}, Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4}, Andrew J. Ballard^{1,4}, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger^{2,3}, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli¹ & Demis Hassabis^{1,4} ≅}

GNN increase the predicton accuracy in AlphaFold

Outline

- Deep learning
- Graph Neural Network
 - GraphSAGE
 - GG-NN
 - GAT
- Application of GNN
 - Cheminformatics
 - bioinformatics

Deep Learning

Why Graph Neural Network?

- Arbitrary size and complex topological structure (i.e., no spatial locality like grids)
- No fixed node ordering or reference point

Graph Neural Network (GNN)

GraphSAGE: Inductive representation learning

https://arxiv.org/abs/1706.02216

2. Aggregate feature information from neighbors

Predict graph context and label using aggregated information

GraphSAGE: Inductive representation learning

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
   Input: Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices
                    \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions
                    AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}
   Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}
\mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V};
2 for k = 1...K do
          for v \in \mathcal{V} do
3
              \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \text{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\});
        \mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot \text{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right) update
          end
       \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k}/\|\mathbf{h}_{v}^{k}\|_{2}, \forall v \in \mathcal{V}
8 end
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```

Structure diagram of Gate Recurrent Unit (GRU)

Gated Graph Sequence Neural Networks (GG-NN)

The basic recurrence of the propagation model is

initialization
$$\mathbf{h}_{v}^{(1)} = [\mathbf{x}_{v}^{\top}, \mathbf{0}]^{\top}$$
 (1) $\mathbf{r}_{v}^{t} = \sigma \left(\mathbf{W}^{r} \mathbf{a}_{v}^{(t)} + \mathbf{U}^{r} \mathbf{h}_{v}^{(t-1)} \right)$ (4) Reset gate $\mathbf{a}_{v}^{(t)} = \mathbf{A}_{v}^{\top} \left[\mathbf{h}_{1}^{(t-1)\top} \dots \mathbf{h}_{|\mathcal{V}|}^{(t-1)\top} \right]^{\top} + \mathbf{b}$ (2) $\widetilde{\mathbf{h}_{v}^{(t)}} = \tanh \left(\mathbf{W} \mathbf{a}_{v}^{(t)} + \mathbf{U} \left(\mathbf{r}_{v}^{t} \odot \mathbf{h}_{v}^{(t-1)} \right) \right)$ (5) Update gate $\mathbf{z}_{v}^{t} = \sigma \left(\mathbf{W}^{z} \mathbf{a}_{v}^{(t)} + \mathbf{U}^{z} \mathbf{h}_{v}^{(t-1)} \right)$ (3) $\mathbf{h}_{v}^{(t)} = (1 - \mathbf{z}_{v}^{t}) \odot \mathbf{h}_{v}^{(t-1)} + \mathbf{z}_{v}^{t} \odot \widetilde{\mathbf{h}_{v}^{(t)}}$. (6)

 GG-NN adjusts the update rate of node states at each convolution layer

Graph Attention Network (GAT)

aij denotes an attention coefficient, which measures the importance of the j-th node in updating the I-th state

Application of GNN

Cheminformatics

- quantum/molecular property
- antibiotics
- Toxicity

Bioinformatics

- Protein structure prediction
- Protein function prediction
- Kcat prediction

A Message Passing Neural Network predicts quantum properties of an organic molecule

Table 2. Comparison of Previous Approaches (left) with MPNN baselines (middle) and our methods (right)

mu 4.34 4.23 4.49 4.82 3.34 0.70 1.22 - 0.30 0.20 alpha 3.01 2.98 4.33 34.54 1.75 2.27 1.55 - 0.92 0.68 HOMO 2.20 2.20 3.09 2.89 1.54 1.18 1.17 - 0.99 0.74 LUMO 2.76 2.74 4.26 3.10 1.96 1.10 1.08 - 0.87 0.65 gap 3.28 3.41 5.32 3.86 2.49 1.78 1.70 - 1.60 1.23 R2 3.25 0.80 2.83 90.68 1.35 4.73 3.99 - 0.15 0.14 ZPVE 3.31 3.40 4.80 241.58 1.91 9.75 2.52 - 1.27 1.10 U0 1.21 1.43 2.98 85.01 0.58 3.02 0.83 - 0.45 0	Target	BAML	ROR	CM	ECFP4	HDAD	GC	GG-NN	DTNN	enn-s2s	enn-s2s-ens5
HOMO 2.20 2.20 3.09 2.89 1.54 1.18 1.17 - 0.99 0.74 LUMO 2.76 2.74 4.26 3.10 1.96 1.10 1.08 - 0.87 0.65 gap 3.28 3.41 5.32 3.86 2.49 1.78 1.70 - 1.60 1.23 R2 3.25 0.80 2.83 90.68 1.35 4.73 3.99 - 0.15 0.14 ZPVE 3.31 3.40 4.80 241.58 1.91 9.75 2.52 - 1.27 1.10 U0 1.21 1.43 2.98 85.01 0.58 3.02 0.83 - 0.45 0.33 U 1.22 1.44 2.99 85.59 0.59 3.16 0.86 - 0.45 0.34 H 1.22 1.44 2.99 86.21 0.59 3.19 0.81 - 0.39 0.30 G 1.20 1.42 2.97 78.36 0.59 2.95	mu	4.34	4.23	4.49	4.82	3.34	0.70	1.22	-	0.30	0.20
LUMO 2.76 2.74 4.26 3.10 1.96 1.10 1.08 - 0.87 0.65 gap 3.28 3.41 5.32 3.86 2.49 1.78 1.70 - 1.60 1.23 R2 3.25 0.80 2.83 90.68 1.35 4.73 3.99 - 0.15 0.14 ZPVE 3.31 3.40 4.80 241.58 1.91 9.75 2.52 - 1.27 1.10 U0 1.21 1.43 2.98 85.01 0.58 3.02 0.83 - 0.45 0.33 U 1.22 1.44 2.99 85.59 0.59 3.16 0.86 - 0.45 0.34 H 1.22 1.44 2.99 86.21 0.59 3.19 0.81 - 0.39 0.30 G 1.20 1.42 2.97 78.36 0.59 2.95 0.78 .84² 0.44 0.34 Cv 1.64 1.83 2.36 30.29 0.88 1.45	alpha	3.01	2.98	4.33	34.54	1.75	2.27	1.55	-	0.92	0.68
gap 3.28 3.41 5.32 3.86 2.49 1.78 1.70 - 1.60 1.23 R2 3.25 0.80 2.83 90.68 1.35 4.73 3.99 - 0.15 0.14 ZPVE 3.31 3.40 4.80 241.58 1.91 9.75 2.52 - 1.27 1.10 U0 1.21 1.43 2.98 85.01 0.58 3.02 0.83 - 0.45 0.33 U 1.22 1.44 2.99 85.59 0.59 3.16 0.86 - 0.45 0.34 H 1.22 1.44 2.99 86.21 0.59 3.19 0.81 - 0.39 0.30 G 1.20 1.42 2.97 78.36 0.59 2.95 0.78 .84² 0.44 0.34 Cv 1.64 1.83 2.36 30.29 0.88 1.45 1.19 - 0.80 0.62 Omega 0.27 0.35 1.32 1.47 0.34 0.32	HOMO	2.20	2.20	3.09	2.89	1.54	1.18	1.17	-	0.99	0.74
R2 3.25 0.80 2.83 90.68 1.35 4.73 3.99 - 0.15 0.14 ZPVE 3.31 3.40 4.80 241.58 1.91 9.75 2.52 - 1.27 1.10 U0 1.21 1.43 2.98 85.01 0.58 3.02 0.83 - 0.45 0.33 U 1.22 1.44 2.99 85.59 0.59 3.16 0.86 - 0.45 0.34 H 1.22 1.44 2.99 86.21 0.59 3.19 0.81 - 0.39 0.30 G 1.20 1.42 2.97 78.36 0.59 2.95 0.78 .84² 0.44 0.34 Cv 1.64 1.83 2.36 30.29 0.88 1.45 1.19 - 0.80 0.62 Omega 0.27 0.35 1.32 1.47 0.34 0.32 0.53 - 0.19 0.15	LUMO	2.76	2.74	4.26	3.10	1.96	1.10	1.08	-	0.87	0.65
R2 3.25 0.80 2.83 90.68 1.35 4.73 3.99 - 0.15 0.14 ZPVE 3.31 3.40 4.80 241.58 1.91 9.75 2.52 - 1.27 1.10 U0 1.21 1.43 2.98 85.01 0.58 3.02 0.83 - 0.45 0.33 U 1.22 1.44 2.99 85.59 0.59 3.16 0.86 - 0.45 0.34 H 1.22 1.44 2.99 86.21 0.59 3.19 0.81 - 0.39 0.30 G 1.20 1.42 2.97 78.36 0.59 2.95 0.78 .84² 0.44 0.34 Cv 1.64 1.83 2.36 30.29 0.88 1.45 1.19 - 0.80 0.62 Omega 0.27 0.35 1.32 1.47 0.34 0.32 0.53 - 0.19 0.15	gap	3.28	3.41	5.32	3.86	2.49	1.78	1.70	-	1.60	1.23
U0 1.21 1.43 2.98 85.01 0.58 3.02 0.83 - 0.45 0.33 U 1.22 1.44 2.99 85.59 0.59 3.16 0.86 - 0.45 0.34 H 1.22 1.44 2.99 86.21 0.59 3.19 0.81 - 0.39 0.30 G 1.20 1.42 2.97 78.36 0.59 2.95 0.78 .84² 0.44 0.34 Cv 1.64 1.83 2.36 30.29 0.88 1.45 1.19 - 0.80 0.62 Omega 0.27 0.35 1.32 1.47 0.34 0.32 0.53 - 0.19 0.15		3.25	0.80	2.83	90.68	1.35	4.73	3.99	-	0.15	0.14
U 1.22 1.44 2.99 85.59 0.59 3.16 0.86 - 0.45 0.34 H 1.22 1.44 2.99 86.21 0.59 3.19 0.81 - 0.39 0.30 G 1.20 1.42 2.97 78.36 0.59 2.95 0.78 .84² 0.44 0.34 Cv 1.64 1.83 2.36 30.29 0.88 1.45 1.19 - 0.80 0.62 Omega 0.27 0.35 1.32 1.47 0.34 0.32 0.53 - 0.19 0.15	ZPVE	3.31	3.40	4.80	241.58	1.91	9.75	2.52	-	1.27	1.10
H 1.22 1.44 2.99 86.21 0.59 3.19 0.81 - 0.39 0.30 G 1.20 1.42 2.97 78.36 0.59 2.95 0.78 .84 ² 0.44 0.34 Cv 1.64 1.83 2.36 30.29 0.88 1.45 1.19 - 0.80 0.62 Omega 0.27 0.35 1.32 1.47 0.34 0.32 0.53 - 0.19 0.15	U0	1.21	1.43	2.98	85.01	0.58	3.02	0.83	-	0.45	0.33
G 1.20 1.42 2.97 78.36 0.59 2.95 0.78 .84 ² 0.44 0.34 Cv 1.64 1.83 2.36 30.29 0.88 1.45 1.19 - 0.80 0.62 Omega 0.27 0.35 1.32 1.47 0.34 0.32 0.53 - 0.19 0.15	U	1.22	1.44	2.99	85.59	0.59	3.16	0.86	-	0.45	0.34
Cv 1.64 1.83 2.36 30.29 0.88 1.45 1.19 - 0.80 0.62 Omega 0.27 0.35 1.32 1.47 0.34 0.32 0.53 - 0.19 0.15	Н	1.22	1.44	2.99	86.21	0.59	3.19	0.81	-	0.39	0.30
Omega 0.27 0.35 1.32 1.47 0.34 0.32 0.53 - 0.19 0.15	G	1.20	1.42	2.97	78.36	0.59	2.95	0.78	$.84^{2}$	0.44	0.34
	$\mathbf{C}\mathbf{v}$	1.64	1.83	2.36	30.29	0.88	1.45	1.19	-	0.80	0.62
Average 2.17 2.08 3.37 53.97 1.35 2.59 1.36 - 0.68 0.52	Omega	0.27	0.35	1.32	1.47	0.34	0.32	0.53	-	0.19	0.15
	Average	2.17	2.08	3.37	53.97	1.35	2.59	1.36	-	0.68	0.52

Challenge in molecular graph representation

Challenges

Different molecular properties depends on their local chemical environments

Solution

- Add adaptive attention weights depends on their chemical environments
- Adjust the update rate of node states at each convolution layers

Attention mechanism

$$\alpha_{ij} = \frac{e_{ij}}{\sum_{k \in N(i)} e_{ik}} = \frac{\sigma(MLP[H_iW, H_jW])}{\sum_{k \in N(i)} \sigma(MLP[H_iW, H_kW])},$$

the importance rate of each adjacent node

$$\alpha_{ij}^{(l)} = \sigma((H_i^{(l)}W^{(l)})C^{(l)}(H_j^{(l)}W^{(l)})^T),$$

the attention coefficient should be analogous to **the interaction strength** between an atom pair (i, j)

* C (I) is a coupling matrix. Note that the coupling matrix may correspond to the dictionaries containing pairwise interactions in Shang's model.

GNN learns molecular structure-property relationships

GNN learns molecular structure-property relationships

Drug-Target interaction

Table 3. AUROC, Adjusted LogAUC, PRAUC, Sensitivity, Specificity, and Balanced Accuracy of Our Model, Docking, and Other Deep Learning Models^a

	AUROC	adjusted LogAUC	PRAUC	sensitivity	specificity	balanced accuracy
ours	0.968	0.633	0.697	0.826	0.967	0.909
ours w/o attention	0.936	0.577	0.623	0.758	0.970	0.888
docking	0.689	0.153	0.016			
Atomnet ¹⁹	0.855	0.321				
Ragoza et al. ²²	0.868					
Torng et al. ⁴⁰	0.886					
Gonczarek et al.17	0.904					

[&]quot;We note that the division of the training and test sets may be different for each model.

Challenge in molecular graph representation

Challenges

• a poor molecular representation by memorizing the molecular scaffolds in training data **fails to generalize** to new ones.

Solution

- A hybrid representation that combines convolutions and descriptors
- Convolutions centered on bonds (edge), instead of atoms (node)

Edge-based molecular representation learning for chemical property prediction

Edge-based aggregation

$$m_{vw}^{t+1} = \sum_{k \in \{N(v) \setminus w\}} M_t(x_v, x_k, h_{kv}^t)$$

Edge-based update

$$h_{vw}^{t+1} = U_t(h_{vw}^t, m_{vw}^{t+1})$$

Edge-based molecular representation learning results in antibiotic discovery

Application of GNN

Cheminformatics

- quantum/molecular property
- antibiotics
- Toxicity

Bioinformatics

- Protein structure prediction
- Protein function prediction
- Kcat prediction

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2

Received: 11 May 2021

Accepted: 12 July 2021

Published online: 15 July 2021

Open access

Check for updates

John Jumper^{1,4™}, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4}, Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Žídek^{1,4}, Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4}, Andrew J. Ballard^{1,4}, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger^{2,3}, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli¹ & Demis Hassabis¹,4⊠

GNN increase the predicton accuracy in AlphaFold

Structure-based **protein function** prediction

Structure-based Kcat prediction

Conclusion

- Graph Neural Network (GNN) has **arbitrary size** and **complex topological structure** (i.e., no spatial locality like grids).
- GNN can represent **the molecular properties** from its structure without feature engineering.
- A model of GNN is adaptive and task-dependent.
 - Understanding mathematical framework (learning process) of GNN is crucial to design model architecture.