

INSTITUTO FEDERAL FLUMINENSE

Química – 3º Ano – EMI Profa. Maysa Zampa

Semana 2 — Reações e padrões de reatividade — Leis Ponderais

Reações Químicas

- Reação Química: é a transformação real, é o fenômeno.
- Lavoisier (1789): LEI DA
 CONSERVAÇÃO DAS MASSAS
 a massa é conservada em uma reação
 química. A massa total dos produtos =
 massa total dos reagents.
- Equações químicas: descrições ou símbolos de reações químicas.

$$2H_2 + O_2 \rightarrow 2H_2O$$

• Equação química para a formação da água:

$$2H_2 + O_2 \rightarrow 2H_2O$$

Símbolo químico Significado Composição H_2O Uma molécula Dois átomos de H de água: e um átomo de O Duas moléculas $2H_2O$ Quatro átomos de H de água: e dois átomos de O Uma molécula H_2O_2 Dois átomos de H de peróxido de e dois átomos de O hidrogênio:

→ Leis Ponderais: Lei da Conservação da Massa

1) Os seguintes dados referem-se à decomposição da amônia:

Experimento: Amônia Gás nitrogênio Gás hidrogênio

(I)	17 g	X	3 g
(II)	34 g	28 g	Y
(III)	51 g	Z	T

Use as Leis da Conservação das Massas e das Proporções Definidas para prever os **valores**, em gramas, das **variáveis X, Y, Z e T**.

[R: X=14g; Y=6g; Z=42g; T=9g]

2) Quando um palito de fósforos é aceso, sua massa diminui. Esta observação viola a **Lei da Conservação das Massas**? Justifique sua resposta. [R: A massa total da reação se conserva, considerar os produtos gasosos que são formados]

→ Leis Ponderais: Lei das Proporções Definidas

1) Os seguintes dados referem-se à decomposição da água:

Experimento: Água \rightarrow Gás oxigênio + Gás hidrogênio (I) 4,5 g 4,0 g 0,5 g (II) 9 g 8,0 g 1,0g (III) 18 g 16,0g 2,0g Proporção entre produtos: 8 : 1

"a <u>proporção</u> em massa das substâncias que reagem e que são produzidas numa reação é <u>fixa</u>, <u>constante e invariável</u>"

Reações de combinação e decomposição

TABELA 3.1 Reações de combinação e decomposição

Reações de combinação

$$A + B \longrightarrow C$$
 $C(s) + O_2(g) \longrightarrow CO_2(g)$
 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$
 $CaO(s) + H_2O(l) \longrightarrow CaOH_2(s)$

Dois reagentes se combinam para formar um único produto. Muitos elementos reagem com outros dessa maneira para formar compostos.

Reações de decomposição

$$C \longrightarrow A + B$$

 $2KClO_3(s) \longrightarrow 2KCl(s) + 3O_2(g)$
 $PbCO_3(s) \longrightarrow PbO(s) + CO_2(g)$
 $Cu(OH)_2(s) \longrightarrow CuO(s) + H_2O(l)$

Um único reagente quebra-se para formar duas ou mais substâncias. Muitos compostos reagem dessa maneira quando aquecidos.

Reações de combinação e decomposição

 Reações de combinação: têm menos produtos do que reagentes

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$

• Reações de decomposição: têm menos reagentes do que produtos

$$2\text{NaN}_3(s) \to 2\text{Na}(s) + 3\text{N}_2(g)$$

(a reação que ocorre em um airbag)

Reações de combinação e decomposição

Reações de decomposição

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$
 (pirólise)
(Ação do calor)

Combustão ao ar

Queima de uma substância com oxigênio do ar:

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

*Obs: Quando compostos contendo C,H,O reagem em queimas COMPLETAS formam-se sempre CO₂ e H₂O.

Reação de Combustão parcial ou incompleta

Ocorre por quantidade de O_2 insuficiente ou por sopragem da chama mesmo pelo resfriamento.

Nesse caso, aparecem produtos intermediários como monóxido de carbono (CO) e hidrogênio (H₂), pois o combustível foi oxidado de forma incompleta.

*Por ex: a queima incompleta da gasoline forma fuligem (C), indicada pela fumaça preta.

Reações de Troca

Reação de Simples-Troca

Ocorre quando uma substância simples desloca uma substância composta, e desloca desta última uma substância simples.

$$Fe + \text{CuSO}_4 \longrightarrow \text{Cu} \downarrow + \text{FeSO}_4$$

$$Fe + 2\text{HC}\ell \longrightarrow \text{H}_2 + \text{FeC}\ell_2$$

Reação de Dupla-Troca

Ocorre quando substâncias compostas reagem entre si, trocando cations ou ânions, gerando assim novas subtâncias compostas.

$$NaC\ell$$
 + $AgNO_3$ \longrightarrow $AgC\ell_{\downarrow}$ + $NaNO_3$
 FeS + $2HC\ell$ \longrightarrow $FeC\ell_2$ + H_2S

Reações de Troca

Reação de Dupla-Troca

As reações de dupla-troca podem ocorre entre:

- Ácido e sal;
- Base e sal;
- Entre dois sais.

*Mas ocorrem somente quando uma das seguintes condições for respeitada:

- Formação de um produto insolúvel;
- Formação de um produto mais volátil que os reagents;
- Formação de um produto mais fraco ou instável.

Ex: $NaCl_{(aq)} + AgNO_{3(aq)} \rightarrow NaNO_{3(aq)} + AgCl_{(s)}$

- 3) Classifique as seguintes reações como adição, decomposição, simples troca ou dupla troca:
- a) $S + O_2 \rightarrow SO_2$ [adição]
- b) H₂CO₃ → H₂O + CO₂ [decomposição]
- c) Fe + $H_2SO_4 \rightarrow H_2 + FeSO_4$ [simples-troca]
- d) $H_2SO_4 + CaCO_3 \rightarrow CaSO_4 + H_2CO_3$ [dupla-troca]
- e) $2SO_2 + O_2 \rightarrow 2SO_3$ [adição]
- f) $SO_3 + H_2O \rightarrow H_2SO_4$ [adição]
- g) $Cu + 2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$ [simples-troca]
- h) NH₄NO₂ → N₂ + 2H₂O [decomposição]