Project on

SVM BASED CLASSIFICATION BY USING MOMENT AS FEATURE VALUE

Prepared By

Love Kumar Yadav

CONTENTS

SR NO.	TOPIC	SLIDE NO.
1.	Abstract	1
2.	Introduction	2
3.	Literature Survey	5
4.	Problem Definition	7
5.	Solution Strategy	8
6.	Gantt Chart	10
7.	Block Diagram	11
8.	Algorithm	13
9.	Flow Chart	15
10.	Results	17
11.	Discussions	21
12.	Conclusion	22
13.	References	23

ABSTRACT

Ø Take images for several categories as input.

Ø Extract feature for several image categories by second order moment calculation.

Ø Save this feature matrix for classification.

Ø Classify several image categories by using the concept of support vector machine.

Ø Plot for linear discriminant analysis.

INTRODUCTION

Ø Gray scale Image

It is an image in which the value of each pixel carries only intensity information. Pixel value ranges from 0 to 255.

Ø Feature

Features are extractable measurements summarizing the information content in an image. Feature can refer to two categories of image properties:-

- 1. Global Properties
- 2. Local Properties

INTRODUCTION (contd..)

Ø Moment

Moments are scalar quantities used to characterize a function and to capture its significant features.

Ø Second Order Moment

In image processing, second order moment describes the rate of change in a shape's area. It is invariant to certain class of image degradations:-

- 1. Rotation, translation, scaling
- 2. Affine transform
- 3. Elastic deformations

INTRODUCTION (contd..)

Ø Support Vector Machine (SVM)

The key concept in SVM is *maximizing the margin* i.e. maximizing the distance between the decision boundary and the nearest data points in the sample.

Advantages:-

- Effective in high dimensional spaces.
- Availability of both linear and non-linear SVM.

LITERATURE SURVEY

- Ø [1] Fukunuga, K., Introduction to Statistical Pattern Recognition, 2nd ed., Academic Press, San Diego, CA, 1990.
 - Fukunuga states that computational object classification is such a hard problem is that machines take sensory information very literally.
- Ø [2] Jain A K, Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs, NJ 1989.
 - A. K Jain introduced feature extraction theory and said that features are very application oriented and often found by heuristic methods and interactive data analysis.
- Ø [3] Levine M D, Vision in Man and Machine, McGraw Hill, Inc., New York, 1985.
 - Levine M D reviews number of techniques for feature extraction which can be used in image processing application.

LITERATURE SURVEY (contd..)

- Ø [4] Liang-Chi Chiu, Tian-Sheuan Chang, Fast SIFT Design for Real-TimeVisual Feature Extraction, IEEE Transcations on Image Proseccing, V22 N8, August 2013.
 - Liang-Chi Chiu categorized feature types as follows:
 - § Structural features
 - § Statistical features
 - § Global features

- Ø [5] Schalkoff R J, Digital Image Processing and Computer Vision, J. Wiley, Inc. NewYork, 1989.
 - Schalkoff R J states that, feature extraction is a special form of dimensionality reduction. Feature extraction approach is most convenient method of object classification.

PROBLEM DEFINITON

- Ø The main task of our system is to classify images of different categories.
- Ø The system must be able to group images into same category even if the image suffers from transformations like rotation, translation, illumination variations etc.

Ø The system should plot linear discriminant graph showing a large gap between two classes of images.

SOLUTION STRATEGY

Ø There is no well-developed theory for feature extraction.

Ø Strategy is found by heuristic methods and interactive data analysis.

Ø We tend to extract feature from gray scale image and then with help of extracted feature, we classify images using SVM.

SOLUTION STRATEGY (contd..)

Figure 1: The Feature Extraction Approach

GANTT CHART

PROPOSED METHODLOGY

Block Diagram

Figure 2: Training module of the project

Block Diagram (contd..)

Figure 3: Testing module of the project

Algorithm

Input: {Training data set, testing data set}

Output: {Line separating the two classes of objects}

- Step1. Start
- Step2. Read all image in training data set.
- Step3. Convert all images in training data set in gray scale image.
- Step4. Resize all gray scale images to size (50*50).
- Step5. Plot colour image, gray scale image & histogram in single window.
- Step6. Extract feature for each gray scale image by calculating second order moment.
- Step7. Generate feature matrix for training data set.

Algorithm (contd..)

- Step8. Read all image from testing data set.
- Step9. Convert all images in testing data set to gray scale image.
- Step10. Use SVM to classify two classes of objects.
- Step11. Generate plot with line separating two classes of objects.

Flowchart

RESULTS

Figure 4: Snapshot showing colour image, gray scale image and histogram

è	4 9 0	1 6. ·	Stack:	Base V	No valid plo	ts for: m2(1,1)	•				
<u> </u>											
	1	2	3	4	5	6	7	8	9	10	
1	6.8835	2.3461e+03	3.4290e+04	4.7900e+04	6.5363e+04	1.1911e+05	1.8711e+05	1.9158e+05	2.1454e+05	2.1422e+05	
2	5.6737	535.9211	3.7448e+04	4.6995e+04	6.7983e+04	7.8649e+04	9.6018e+04	1.4972e+05	2.3382e+05	2.2680e+05	
3	7.9112	6.9000	6.6809	7.2743	6.8811	7.3092	7.2960	8.2102	9.2367	8.3535	
4	8.8320	8.5384	9.1480	9.6286	8,6003	7.2720	7.7689	10.1343	9.3183	8.7565	
5	9.1802	9.3360	7.8075	10.2438	8.3889	8.2800	7.4133	9.8574	10.5000	10.9544	
6	8.5778	7.9473	10.8540	9.1200	8.9241	7.5120	8.8800	9.0296	12.6478	663.7458	
7	10.5840	10.2242	8.6748	9.5754	9.8158	9.0646	10.5237	11.9992	903.4015	5.8559e+03	
8	9.0609	10.0560	9.5412	11.0804	9,6960	10.4974	17.5473	819.9871	4.1072e+03	4.4276e+04	
9	9.2475	10.2720	9.6600	12.1200	11.6640	23.8080	992.7402	4.7990e+03	3.7537e+04	9.2459e+04	
10	9,8675	10.4427	10.0250	10.2109	17.3662	1.5872e+03	4.0532e+03	2.8051e+04	6.9614e+04	1.3252e+05	
11	9.1802	10.5882	9.6081	10.6688	2.2406e+03	4.8862e+03	1.9071e+04	6.3873e+04	1.1140e+05	1.6838e+05	
12	8.5535	8.3520	10.9554	1.0832e+03	5.5935e+03	1.5925e+04	4.0064e+04	9.0787e+04	1.4677e+05	2.1969e+05	
13	5.2144	356.4935	2.9999e+04	5.2092e+04	6.6222e+04	7.8497e+04	8.5395e+04	1.0080e+05	1.6559e+05	2.3591e+05	
14	8.6391	9.6237	19,4880	9.1644e+03	1.3073e+04	3.2420e+04	6.7627e+04	1.3345e+05	1.7563e+05	2.6167e+05	
15	6.6292	9.8207	1.0222e+03	1.8449e+04	2.4922e+04	5.2104e+04	9.3685e+04	1.5719e+05	2.0864e+05	2.6598e+05	

Figure 5: Snapshot of feature matrix of training data set

Fig 6: Testing data set considering rotation

Figure 7: Snapshot for classification of car from other objects (considering rotation)

Fig 8: Testing data set considering illumination variation

Figure 9: Snapshot for classification of teddy from other objects (considering illumination variation)

DISCUSSION

- Ø We successfully tested our system for following variations:-
 - Classification of object rotated by various degrees.
 - Classification of object with different illumination variations.

Ø Limitations:-

Our system can classify objects into only two categories.

Example:- "CAR" (category 1) or "NOT CAR" (category 2)

CONCLUSION

- Ø Able to extract features that is invariant to image degradations like rotation, translation and illumination variations.
- Ø Able to classify the colour images from different classes in the testing data set.
- Ø Finally being able to plot linear discriminant graph classifying images into categories.

REFERENCES

- [1] Fukunuga, K., Introduction to Statistical Pattern Recognition, 2nd ed., Academic Press, San Diego, CA, 1990.
- [2] Jain A K, Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs, NJ 1989.
- [3] Levine M D, Vision in Man and Machine, McGraw Hill, Inc., New York, 1985.
- [4] Liang-Chi Chiu, Tian-Sheuan Chang, Fast SIFT Design for Real-TimeVisual Feature Extraction, IEEE Transcations on Image Proseccing, V22 N8, August 2013.
- [5] Schalkoff R J, Digital Image Processing and Computer Vision, J. Wiley, Inc. NewYork, 1989.
- [6] Subhransu Maji, Alexander C. Berg, and Jitendra Malik, Efficient Classification for Additive Kernel SVMs, IEEE Transcations on Pattern Analysis And Machine Intelligence, 2012.
- [7] R. E. Woods R. C. Gonzalez, Digital Image Processing, Prentice Hall, 1992.

THANK YOU