METHODS 11 TEST 2, 2019

(24 marks)

CALCULATOR FREE

Section One: Calculator Free

This section has five (5) questions. Answer all questions. Write your answers in the spaces

Working time for this section is 25 minutes.

(3 marks) ↑ noitesuD

Each graph corresponds to one of the functions. Decide which function goes with which graph. You will have three functions left over. Shown are eight quadratic functions, numbered 1 to 8, and five graphs, lettered ${\rm A}$ to ${\rm E}.$

 $(\xi - x)x = \lambda$

 $(\xi - x)(1 + x) = \chi$

finioq	Specific behaviours	
ن	Identifies two quadratics.	^
	Identifies four quadratics	^

Specific behaviours		Solution
		$x\xi + {}^{2}x = \chi \ h$
Identifies two quadratics.	_	$(\xi + x)(1 - x) = \chi \ \mathcal{A}$
3 3 11		$(\xi - x)(1 + x) = \chi \mathcal{D}$
Identifies four quadratics	_	$9 + xc - ^2x = \sqrt{d}$
Identifies all five.	^	$(2 \cdot 1 - x)(7 \cdot 1 + x) = \sqrt{3}$

 E^{-}

Circle the correct answer for the following questions:

(a) Which represents a relation that is not a function?

(1 mark)

Solution	Specific behaviours
A	✓ Correct answer.

(b) Which graph shows that y is directly proportional to x?

(1 mark)

Solution		Specific behaviours		
	В	✓ Correct answer.		

CALCULATOR ASSUMED

11

METHODS 11 TEST 2, 2019

Question 9

(9 marks)

A window pane is to be made from 12 metres of steel.

The pane is to have a rectangular base and a semi-circular top as shown.

If the base of the pane is 2x metres and the side y metres then:

(a) show that $y = 6 - x - \frac{\pi}{2}x$.

(2 marks)

Solution	Specific behaviours	Point
$12 = 2x + 2y + \frac{1}{2} \times 2\pi x$	✓ Works out equation for perimeter.	?
$12 = 2x + \pi x + 2y$		
$2y = 12 - 2x - \pi x$		
$y = 6 - x - \frac{\pi}{2}x$	✓ Rearranges into required form.	

(b) show that the area enclosed by the pane is given by $A(x) = 12x - 2x^2 - \frac{\pi}{2}x^2$. (3 marks)

Solution	Specific behaviours	Point
$A(x) = 2xy + \frac{1}{2}\pi x^2$	✓ Works out equation for area.	?
$A(x) = 2x \left(6 - x - \frac{\pi}{2}x\right) + \frac{\pi}{2}x^2$	Substitutes in answer from part $y = 6 - x - \frac{\pi}{2}x$.	
$A(x) = 12x - 2x^2 - \pi x^2 + \frac{\pi}{2}x^2$	2 2	
$A(x) = 12x - 2x^2 - \frac{\pi}{2}x^2$	 Expands and shows required formula. 	

(c) calculate the maximum area enclosed by the pane, and the length of the base and side that gives the maximum area. State all answers correct to 1 decimal place. (4 marks)

Solution	Specific behaviours	Point
max TP at (1.68,10.08)	✓ Determines maximum TP.	?
Maximum area is 10.1 m ² Base length is 3.4 m Side length is 1.7 m	✓ States maximum area.✓ States base length.✓ States side length.	

End of Calculator Assumed Section

METHODS 11 TEST 2, 2019

CALCULATOR FREE

(c) George drew a correct diagram that gave the solution to the simultaneous equations $y=2x-\delta$ and y=x+6

(j wark)

✓ Correct answer.	a
Specific behaviours	Solution
	aoitulo2

(1 mark) Which equation represents the relationship between x and y in this table?

ς	Þ	ε	7	I	ď
8	9	Þ	7	0	x

$$I + x = y$$

$$\zeta - x\zeta = \chi$$

$$z - \frac{c}{x} = \lambda$$

$$\mathbf{C} \qquad y = \frac{2}{x} + 1$$

$$\mathbf{C} \qquad y = \frac{2}{x} + 1$$

✓ Correct answer.	Œ
Specific behaviours	Solution

Question 8 (8 marks) METHODS 11 TEST 2, 2019 10 CALCULATOR ASSUMED

(3 marks) (a) Show that the lines y + 2x = 3 and 2y - x = 1 are perpendicular. At what point do they

	Determines point of intersection.		$ (1,1) \begin{cases} \varepsilon = x + \psi \\ 1 = x - \sqrt{2} \end{cases} $
	Shows they are perpendicular.		$\frac{1}{2} \times (-2) = -1 \Rightarrow \text{ perpendicular}$
į.	Rearranges.	^	$5 + x2 = 0$ $\frac{1}{2} + x = 0$
Point	Specific behaviours		Rolution

line connecting the turning point of $y = (x+1)^2 + 3$ with (3, 7). (b) Determine the equation of the line, having an x-intercept of -4, and which is parallel to the

Inioq	Specific behaviours		noituloS
i	Determines turning point of	^	(£,1–) <i>T</i> T
	parabola.		$\varepsilon - L$
			$\frac{(I-)-\varepsilon}{\varepsilon}=m$
	Determines gradient of line	^	$\mathfrak{l}=\mathfrak{w}$
	through turning point and (3, 7).		$o + x = \Lambda$
			3 + 1 - = 0
			/ ≠ = 2
	Determines equation of line.	^	$+x = \lambda$

State your answer in the form ax+by=c , where a, b and c are integers. (3 marks) (c) The line with an angle of inclination to the positive x axis of 135° and y intercept of $-\frac{1}{2}$.

i Noint	Specific benaviours Determines gradient.	^	$notiolog$ $I = {}^{\circ}\xi\xi I \text{ and } = m$
	Determines equation of the line.	^	$\frac{1}{\frac{7}{1}} - x = \alpha$
	Rearranges into required form.	^	$\frac{z}{2} - = \sqrt{x} + x$ $I - = \sqrt{x} + x$

CALCULATOR FREE

METHODS 11 TEST 2, 2019

- (e) For the graph $y = ax^2 + bx + c$, if a and c are both positive, which of the following statements is true. (1 mark)
 - $\widehat{\mathbf{A}}$ The graph will have a minimum turning point, and a positive *y*-intercept.
 - **B** The graph will have a maximum turning point, and a positive *y*-intercept.
 - **C** The graph will have a maximum turning point, and has two positive *x* intercepts.
 - **D** The graph will have a minimum turning point, and a negative *y*-intercept.

Solution	Specific behaviours
A	✓ Correct answer.

Question 3

(2 marks)

The linear function f(x) = 4 - x has range $-2 \le f(x) < 6$.

Determine the domain of the function.

Solution	Specific behaviours
-2 = 4 - x	
x = 6	
6 = 4 - x	✓ Works backwards from range to
x = -2	determine values for domain.
$D_x : \{x : -2 < x \le 6\}$	✓ States domain.

CALCULATOR ASSUMED

۵

METHODS 11 TEST 2, 2019

Question 7

(7 marks)

The mapping below is of the form $f: x \to a \times 2^x + b$ and maps the elements of x to elements of y.

(a) List the elements in the domain of f(x).

(1 mark)

Solution	Specific behaviours
$D_x = \{-2, -1, 0, 1, g\}$	✓ Determines the domain.

(b) List the elements in the range of f(x).

(1 mark)

Solution	Specific behaviours
$R_{y} = \{-1.75, -1.5, -1, 0, 30\}$	✓ Determines the range.

(c) Find a and b.

(3 marks)

Solution	Specific behaviours
$(0,-1) \Rightarrow -1 = a+b (1)$	
$(1,0) \Longrightarrow 0 = 2a + b (2)$	✓ Sets up simultaneous equations.
$(2)-(1) \Rightarrow 1=a$	✓ Correct value for a.
$\Rightarrow b = -2$	✓ Correct value for b.

(d) Find the value of g.

(2 marks)

Solution	Specific behaviours
$f(x) = 2^x - 2$	
$30 = 2^g - 2$	✓ Sets up equation.
$32 = 2^g$	
g = 5	✓ Correct value for <i>g</i> .

METHODS 11 TEST 2, 2019

CALCULATOR FREE

Question 4 (6 marks)

(a) Complete the square for $x^2 - 6x + 10$.

	Correct answer.	^	$I + {}^{2}(\xi - x) =$
خ	Uses completing the square.	^	$01 + 9 - {}^{2}(\xi - x) = 01 + x0 - {}^{2}x$
Jnio9	Specific behaviours		noituloS

(b) Using your result from part (a), sketch the graph $y = x^2 - 6x + 10$, showing all significant features. (3 marks)

	V .	•
	 Correct graph. 	
	✓ y-intercept at (0, 10).	
خ	✓ Turning point at (3, 1).	
Jnio9	Specific behaviours	Solution

(c) Explain how the graph can be used to show the following statement is always true: (1 mark)

"... evilised si flueen a real $0.1 + x_0 - x_0$ of the substituted into $0.1 + x_0 - x_0$ of the result is positive."

Point ?	Specific behaviours Recognises that curve is always	^	Since the curve is always above the
	above x-axis, and hence answer is		x-axis, then $y = x^2 - 6x + 10$ would
	always positive.		always been positive.

METHODS 11 TEST 2, 2019

(31 marks)

CALCULATOR ASSUMED

Section Two: Calculator Assumed

This section has four (4) questions. Answer all questions. Write your answers in the spaces

8

Working time for this section is 30 minutes.

Question 6

An air balloon leaves its base at 12 noon and is moving such that its height, \hbar metres, above sealevel at any time t hours, after 12 noon, is given as

$$0.2 \ge t \ge 0 \text{ rof } (81 - t)(t + t) \frac{\xi}{4} - (1)h$$

(1 mark)

(a) the initial height above sea-level.

Determine:

t=0 $t=12 m$ $t=12 m$	Specific behaviours	Solution
	✓ Correct answer.	t=0 $y(0)=15$ m

(b) the maximum height, correct to one decimal place, to which the balloon rises.

Specific behaviours	uonnios
✓ Correct answer.	W 7.40 = (S.L)Y

(c) the minimum height to which the balloon sinks over the time interval.

orterprets in the context of the	(20, -63).	When $t = 20$, $h = -63$ i.e. min height is 63 m below sea level
s minimum occurs at	v Determine	T
scific behaviours	edS	Solution

The balloon is to manoeuvre over a building of height $30\,\mathrm{metres}$ above sea level.

(d) During what times, correct to two decimal places, will it be able to do this?

I am the rost day.	1:1 p. p. 1:1 resulted
V States times.	81,812,128,1
Writes equation, or indicates on graph solution method.	$(\delta I - t)(I + t)\frac{\varepsilon}{h} - = 0\varepsilon$
Specific behaviours	Solution

CALCULATOR FREE

METHODS 11 TEST 2, 2019

Question 5

(8 marks)

The figure below shows a rectangle ABCD.

The point A lies on the y-axis and the points B and D lie on the x-axis as shown.

Given that the straight line through the points *A* and *B* has equation 5y + 2x = 10

(a) show that the straight line through the points A and D has equation 2y-5x=4. (3 marks)

Solution		Specific behaviours	Point
$AB: y = -\frac{2}{5}x + 2 \Rightarrow m_{\perp} = \frac{5}{2}$	~	Determines perpendicular gradient.	1.1.4 1.1.5
$AD: y = \frac{5}{2}x + 2$	1	Determines equation of AD .	
2y = 5x + 4 $2y - 5x = 4$	~	Rearranges.	

(b) determine the coordinates of the points B and D.

(2 marks)

Solution	T	Specific behaviours	Point
$2x = 10$ $x = 5 \Rightarrow B(5,0)$	~	Determines coordinates of B.	1.1.5 10A
-5x = 4			
$x = -\frac{4}{5} \Rightarrow D\left(-\frac{4}{5}, \phi\right)$	1	Determines coordinates of \mathcal{D} .	

CALCULATOR FREE

7

METHODS 11 TEST 2, 2019

(c) determine the coordinates of the midpoint of the diagonal BD.

(1 mark)

Solution	Specific behaviours	Point
$\frac{-\frac{4}{5}+5}{2} = \frac{21}{10} i.e.\left(\frac{21}{10},0\right)$	✓ Determines coordinates of midpoint.	?

(d) The diagonals of a rectangle bisect. *Use this fact*, along with your results from part (a) and (c), to determine the coordinates of the point *C*. (2 marks

Solution	I	Specific behaviours	Point
$\left(\frac{0+x}{2}, \frac{2+y}{2}\right) = \left(\frac{21}{10}, 0\right) = (2.1,0)$	~	Determines midpoint formula, or 'steps it out'.	?
$C\left(\frac{21}{5},-2\right) = (4.2,-2)$	1	Determines coordinates.	

End of Calculator Free Section