Partition into Hybrid Processor/Accelerator System

Hybrid Design Flow

Partition is based on benefits of acceleration

Hybrid System Cycle Prediction

- Slow to profile a hybrid system
 - Synthesize to FPGA programming bit-stream
 - Simulate the system via ModelSim
- Goal
 - Quick/early prediction of the speed benefits of accelerating a function in HW
- Gain = SW cycle / Hybrid Cycle
 - SW cycle: HW profiler
 - Hybrid cycle: Prediction

Hybrid System Execution Flow

μP 000: addi a0, 0, a0 004: jal 0x100 //call wrapper ... 100: sw a0, 0(v1) //store argument 104: sw a1, 0(v0) //start accelerator

//return

108: jr ra

4 Components:

- SW wrapper
 - fetch instruction
 - store arguments
 - trigger start signal
- FSM in accelerator
- Data loads
- Data stores

s6: store to global memory

Component I - SW Wrapper

Instruction Fetch

- Argument Overhead
 - ~2 cycles to store each argument
 - 2*(# of arguments)*(# of runs)
- SW/HW Transition
 - Constantly 2 cycle to transit b/w HW & SW
 - 2*(# of runs)

Component I - SW Wrapper

- Contribution to Total Tolerance
 - (actual cycle estimated cycle) / actual hybrid cycle
 - Average: 3.01%
 - StdDev: 4.04%
- Note: Total Tolerance =
 (actual hybrid cycle predicted hybrid cycle) / actual hybrid cycle

Error Distribution of SW Wrapper Cycle

Component II – HW Cycle

- ∑ foreach BB (sched. length) * (# of runs)
- Accurate if no mem. access
- Contribution to Total Tolerance
 - Average: 0.02%
 - StdDev: 0.16%
- Note: 1 of 47 tests contributes 1.09% tolerance; all other 46 tests: 0%

Component III – Data Loads

Component III – Data Loads

Contribution to Total Tolerance

Average: 0.97%

• StdDev: 1.73%

Error Distribution of Data Load Cycle

Component IV – Data Stores

- Similar Methodology as Data Loads
 - Generate address trace in the same way as Data Loads
 - Write-through policy of data cache
 - 1.85*(# of stores)
- Contribution to Total Tolerance
 - Average: 5.35%
 - StdDev: 7.86%
 - Most Inaccurate "Key Contributor" to total tolerance

Error Distribution of Data Store Cycle

Final Result – Predicted Hybrid Cycle

- Sum of
 - SW Wrapper Cycle
 - HW Cycle
 - Data Load Cycle
 - Data Store Cycle
- Average: 7.21%
- StdDev: 7.79%

Error Distribution of Predicted Hybrid Cycle

"Key Contributor" to Tolerance

Data Store Cycle

- The only 2 tests that have tolerance greater 20%
- Data Store Cycle = 1.85 * (# of stores)

	Function A	Function B
Hybrid Cycle Tolerance	32.26%	34.39%
Tolerance Contributed by Data Store Cycle	32.32%	31.56%
Estimated # of Stores	4000	18432
Actual # of Stores	4100	18624
Estimated Store Cycles	7400	34099
Actual Store Cycles	22445	110524
Varying Coefficient	5.47	5.93

- Open-Row architecture in the SDRAM on DE-II
 - ~1 cycle to store data in currently open row
 - A lot more cycles to store data in a different row

"Key Contributor" to Tolerance

Data Store Cycle

Most of the tolerances come from data store cycle estimation

THANK YOU!