Can Conventional Measures Identify Geographically Varying Mixed Regression Relationships? A Simulation-based Analysis of Locally Weighted Regression

Aaron Swoboda

Carleton College

aswoboda@carleton.edu

$$Y = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \epsilon$$

$$Y = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \epsilon$$

Locally Weighted Regression (LWR) to the Rescue?

OLS

$$\hat{\beta} = (X'X)^{-1}(X'Y)$$

LWR

 $\hat{\beta}(location_i) = (X'W(location_i)X)^{-1}(X'W(location_i)Y)$

OLS

$$\hat{\beta} = (X'X)^{-1}(X'Y)$$

LWR

$$\hat{\beta}(location_i) = (X'W(location_i)X)^{-1}(X'W(location_i)Y)$$

$$w_{jj} = \left| 1 - \left(\frac{d_{ij}}{d_{ik}} \right)^2 \right|^2$$
 if $d_{ij} < d_{ik}$, otherwise = 0,

$$\hat{\beta}(location_i) = (X'W(location_i)X)^{-1}(X'W(location_i)Y)$$

$$w_{jj} = \left[1 - \left(\frac{d_{ij}}{d_{ik}}\right)^2\right]^2 \text{ if } d_{ij} < d_{ik}, \text{ otherwise} = 0,$$

Distance from observation i

Bandwidths are commonly selected with...

Leave One Out Cross Validation
Akaike Information Criterion
Generalized Cross Validation
Standardized Cross Validation

$LOOCV = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (y - \hat{y}_{\neq i})^2},$

$$SCV_i(k) = \frac{(y_i - \hat{y}_{\neq i}(k))^2}{\sum_k (y_i - \hat{y}_{\neq i})^2}$$

$$SCV(k) = \sum_{i} SCV_{i}(k)$$

S Farber and A Páez. A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations. *Journal of Geographical Systems*, 9(4):371–396, 2007.

$$GCV = n * \sum_{i=1}^{n} \frac{(y_i - \hat{y}_i)^2}{(n - v_1)^2},$$

 v_1 = "effective number of parameters"

$$GCV = n * \sum_{i=1}^{n} \frac{(y_i - \hat{y}_i)^2}{(n - v_1)^2},$$

v_1 = "effective number of parameters"

 $v_1 = \operatorname{tr}(\mathbf{S})$, where the matrix **S** is the "hat matrix" which maps y onto \hat{y} ,

$$\hat{y} = \mathbf{S}y$$
,

and each row of S, r_i is given by:

$$r_i = X_i (X'W_i X)^{-1} X'W_i.$$

$$AIC = 2 * n * ln(\hat{\sigma}) + n * ln(2 * \pi) + n * \frac{n + v_1}{n - 2 - v_1}$$

"Global" OLS GGG

"Local"Regression

LLL

"Global" OLS

GGG

LGG

GLG

GGL

LLG

LGL

GLL

LLL

Mixed Models

"Local"Regression

The Researcher's Problem

Choose a bandwidth and a model

The Researcher's Problem

Choose a bandwidth and a model

Can we do both with conventional metrics?

Experiment Data Generation Process

$$Y_i = \beta_0(East_i, North_i) + \beta_1(East_i, North_i) * X_{1i} + \beta_2(East_i, North_i) * X_{2i} + \epsilon_i$$

$$n \in \{50, 100, 200, 400, 800\}$$
 $X_1 \sim u[0, 1]$ $\sigma^2 \in \{0.25, .5, 1, 2, 3\}$ $X_2 \sim u[0, 1]$

 $East \sim u[0,1]$

 $North \sim u[0,1]$

Coefficient Spatial Variation

With Our Data...

 $[Y, X_1, X_2, East, North]$

Estimate all models

GGG LGG GLG GGLLLG LGL GLL

7 bandwidths each

50 combinations total

Calculate the values of the four metrics (LOOCV, GCV, SCV, AIC)

Is the model with the optimized metric value the correct model?

Start Simple... True Model: GGG

		Metri	\mathbf{c}		
,	LOOCV	GCV	SCV	AIC	
GGG	72	0	8	0	3/3 Correct
LGG	7	28	29	28	
GLG	8	36	22	37	2/3 Correct
GGL	8	33	22	34	
LLG	1	1	5	0	
LGL	2	1	5	1	1/3 Correct
GLL	1	1	8	0	
LLL	0	0	1	0	0/3 Correct
	100	100	100	100	

metric: LOOCV

smallest — bandwidth size — biggest

		DILLOIL	ODC	0011	1111401	L DILLO		88000
	GGG							72
	LGG	1		1	2	1	2	
ed	GLG		1	1	2	2	2	1
select	GLG GGL LLG LGL		1	1	2	2	2	1
odel g	LLG					1		
m	LGL						1	
	GLL							
	LLL							

		Coef	ficient	RMSE
		$\widehat{eta_0}$	$\widehat{eta_1}$	$\widehat{eta_2}$
	GGG	6	6	7
þ	LGG	3	23	24
cte	GLG	22	4	24
èele	GGL	23	23	3
Model Selected	LLG	5	3	33
ode	LGL	5	36	2
\mathbf{M}	GLL	32	4	4
	LLL	4	2	3
	,	100	100	100

Most accurate coefficient estimates:

- Tend not to be the correct model
- Allow other coefficients to vary

true model: GGG

model selection metric

		LOOCV	GCV	SCV	AIC	В0	B1	B2
	GGG	72		8		6	6	7
	LGG	7	28	29	28	3	23	24
4pd	GLG	8	36	22	37	22	4	24
selected	GGL	8	33	22	34	23	23	3
		1	1	5		5	3	33
model	LGL	2	1	5	1	5	36	2
	$_{ m GLL}$	1	1	8		32	4	4
	LLL			1		4	2	3

true model: LGG

model selection metric

		LOOCV	GCV	SCV	AIC	B0	B1	B2
	GGG	4		1			4	4
	LGG	87	90	82	89	94	32	33
7	GLG	3	4	6	5	1	3	24
model selected	GGL	3	4	6	5	1	24	4
وامام	LLG	1	1	2		1	1	33
£	LGL	1		2		1	34	1
	GLL			1		1	1	1
	LLL						1	1

true model: GGG model selection metric

		LOOCV	GCV	SCV	AIC	B0	B1	B2
	GGG	72		8		6	6	7
	LGG	7	28	29	28	3	23	24
ted.	GLG	8	36	22	37	22	4	24
selected	GGL	8	33	22	34	23	23	3
٥	LLG	1	1	5		5	3	33
model	LGL	2	1	5	1	5	36	2
	GLL	1	1	8		32	4	4
	LLL			1		4	2	3

true model: LGG

model selection metric

			11.	roact po		ii iiicui	IC.	
		LOOCV	GCV	SCV	AIC	B0	B1	B2
	GGG	4		1			4	4
	LGG	87	90	82	89	94	32	33
selected	GLG	3	4	6	5	1	3	24
مامر	GGL	3	4	6	5	1	24	4
ام	LLG	1	1	2		1	1	33
model	LGL	1		2		1	34	1
	GLL			1		1	1	1
	LLL						1	1

true model: GLG model selection metric

LOOCV GCV SCV AIC B0B1B2GGG 2 LGG 2 model selected LICG $\mathbf{2}$

GLL

LLL

true model: LLG

			\mathbf{m}	iodel se	electioi	n metr	ıc	
		LOOCV	GCV	SCV	AIC	B0	B1	B2
	GGG	3		1				5
_	LGG	70	73	63	75	72	7	31
ited	GLG	6	6	11	8	1	32	25
selected	GGL	3	3	5	4	1	5	1
		17	17	15	13	21	14	35
model	LGL	1		2		1	9	1
	GLL	1		4		2	21	2
	LLL					1	11	1

true model: GGL

		11.	iodei se	erectio	n metr	ıc	
	LOOCV	GCV	SCV	AIC	B0	B1	B2
GGG	11		2		12	11	
LGG	6	9	12	9	1	25	2
g GLG	5	8	5	8	24	1	2
GLG GGL	69	80	50	81	26	26	70
	1		2		1	2	3
E LGL	4	2	11	1	3	32	5
GLL	4	2	16	1	31	2	12
LLL	1		2		3	1	5

true model: LGL

			m	$\operatorname{odel} \mathbf{s}$	election	n metr	ic	
		LOOCV	GCV	SCV	AIC	B0	B1	B2
G	GG	3		1			5	
I	LGG	71	73	65	75	73	31	8
ited	GLG	3	3	5	4	1	1	5
selected	GGL	6	6	10	8	1	26	34
1	LLG	1		1		1	1	8
mode]	LGL	17	17	15	13	20	34	13
	GLL	1		3		2	1	20
	$_{ m LLL}$					1	1	11

true model: GLL

			III	loaer se	erectio.	n meur	IC	
		LOOCV	GCV	SCV	AIC	B0	B1	B2
	GGG	6		1		11	1	1
	LGG	6	9	10	9		2	2
ited	GLG	13	18	10	20	25	13	2
selected	GGL	13	18	10	20	26	2	13
	LLG	3	2	4	1	1	10	4
model	LGL	3	2	5	1	1	4	11
Ţ	GLL	53	51	52	49	33	57	58
	LLL	3	1	8		3	10	10

true model: LLL

			\mathbf{m}	ioaei se	electioi	n metr	ıc	
		LOOCV	GCV	SCV	AIC	B0	B1	B2
	GGG	2				1	1	
	LGG	63	65	55	69	61	8	8
40	GLG	5	5	7	7	2	16	6
selected	GGL	4	5	7	6	2	5	17
ام	LLG	8	8	8	5	11	14	10
model	LGL	8	8	8	6	11	9	14
	GLL	1	1	8		2	31	30
	LLL	9	9	6	6	12	15	15

LOOCV is pretty good!

LOOCV is pretty good!

Most accurate coefficient estimates are not necessarily from correct models.

LOOCV is pretty good!

Most accurate coefficient estimates are not necessarily from correct models.

Are larger variances in some coefficients driving the results?

LOOCV is pretty good!

Most accurate coefficient estimates are not necessarily from correct models.

Are larger variances in some coefficients driving the results?

Are coefficient estimates equally accurate across metrics?

LOOCV is pretty good!

Most accurate coefficient estimates are not necessarily from correct models.

Are larger variances in some coefficients driving the results?

Are coefficient estimates equally accurate across metrics?

What happens, ceteris paribus, with greater error variance?