8.0 CONDUÇÃO DE CALOR EM REGIME PERMANENTE

Fernando Neto fneto@ua.pt

O CONCEITO DE RESISTÊNCIA TÉRMICA

RESISTÊNCIA TÉRMICA: ANALOGIA ENTRE A RESISTÊNCIA ELÉTRICA E A RESISTÊNCIA TÉRMICA

• Resistência elétrica

$$\Delta V = R.I \iff I = \frac{\Delta V}{R}$$

• Resistência térmica

$$\Delta T = R_T.q_x \Leftrightarrow q_x = \frac{\Delta T}{R_T}$$

RESISTÊNCIA TÉRMICA: CONDUÇÃO DE CALOR UNIDIMENSIONAL

$$q_{x} = -k.A. \frac{dT}{dx} = \frac{k.A}{L} (T_{s1} - T_{s2})$$

$$q_{x} = \frac{(T_{s1} - T_{s2})}{\frac{L}{kA}}$$

$$q_{x} = \frac{\Delta T}{R_{T}}$$

Para uma mesma diferença de temperatura:

- o calor transferido diminui com um aumento de L
- o calor transferido aumenta com o aumento de k e A

RESISTÊNCIA TÉRMICA: CONVEÇÃO

$$q = hA(T_S - T_{\infty})$$

$$(T_S - T_{\infty}) = \frac{1}{hA} q$$

$$q = \frac{(T_S - T_{\infty})}{\frac{1}{hA}}$$

RESISTÊNCIA TÉRMICA: CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE + CONVEÇÃO

$$9x = \frac{T_{01}A - T_{51}}{\sqrt{h_{1}.A}}$$

$$= \frac{T_{51} - T_{52}}{\sqrt{u.A}}$$

$$= \frac{T_{52} - T_{012}}{\sqrt{h_{2}.A}}$$

NOTA BREVE SOBRE PROPORCIONALIDADES

$$\Omega = \frac{a}{x} = \frac{b}{y} = \frac{c}{z}$$

$$a = x\Omega$$

$$b = y\Omega$$

$$c = z\Omega$$

$$a + b + c = \Omega(x + y + z)$$

$$\Omega = \frac{a + b + c}{x + y + z}$$

MEIOS COMPOSTOS. O COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR

PAREDE COMPOSTA: O COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR

$$q_{x} = \frac{T_{\infty,1} - T_{\infty,4}}{R_{tot}}$$

$$R_{tot} = \frac{1}{A} \left[\frac{1}{h_1} + \frac{L_A}{k_A} + \frac{L_B}{k_B} + \frac{L_C}{k_C} + \frac{1}{h_4} \right] = \frac{R_{tot}''}{A}$$

Neste caso R_{tot} tem por unidades K.W-1 enquanto R"_{tot} é expresso em m².K-1.W-1

PAREDE COMPOSTA: O COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR, U

$$q_{x} = \frac{T_{\infty,1} - T_{\infty,4}}{R_{tot}}$$

$$R_{tot} = \frac{1}{A} \left[\frac{1}{h_1} + \frac{L_A}{k_A} + \frac{L_B}{k_B} + \frac{L_C}{k_C} + \frac{1}{h_4} \right] = \frac{R_{tot}''}{A}$$

$$q_x = UA\Delta T_{overall}$$

$$R_{tot} = \frac{1}{UA}$$

PAREDE COMPOSTA: RESISTÊNCIAS EM PARALELO

$$\sum R = \frac{L_E}{k_E.A} + \frac{1}{\frac{1}{\frac{L_F}{k_F}.\frac{A}{2}}} + \frac{1}{\frac{L_G}{k_G}.\frac{A}{2}} + \frac{L_H}{k_H.A}$$

RESISTÊNCIA TÉRMICA DE CONTACTO

RESISTÊNCIA TÉRMICA DE CONTATO

• Existe uma resistência térmica de contato entre duas superfícies sólidas, independentemente da forma de contato entre elas

RESISTÊNCIA TÉRMICA DE CONTATO

• A resistência térmica de contato entre duas superfícies sólidas é definida como:

 $R_{t,c}'' = \frac{T_A - T_B}{q_x''}$

- A diminuição da resistência térmica de contato pode ser conseguida:
 - Com melhor acabamento da superfície de contato
 - Com utilização de uma maior pressão de ligação entre as superfícies
 - Utilizando um fluído condutor entre elas

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM SISTEMAS RADIAIS

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS – O CILINDRO

• Um dos problemas mais importantes em sistemas radiais é o da condução de calor na direção do raio: caso das tubagens que transportam fluídos

ernando Neto 21/11/2022 16

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS – QUESTÃO PRELIMINAR

Qual a forma de lei de Fourier para sistemas radiais?

$$q_r = -kA_r \frac{dT}{dr}$$

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS – QUESTÃO PRELIMINAR SOBRE O GRADIENTE DE TEMPERATURA

Consequências...

Como $A_r=2\pi rL$, isto significa que:

$$A_{ri} = 2\pi r_i L \neq A_{r0} = 2\pi r_0 L$$

Como q_r é constante, então:

$$\left. \frac{dT}{dr} \right|_{r=r_i} \neq \left. \frac{dT}{dr} \right|_{r=r_0}$$

O gradiente de temperatura é maior na parede interna do tubo

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS — O CILINDRO

$$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \phi}\left(k\frac{\partial T}{\partial \phi}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \dot{q} = \rho c_p\frac{\partial T}{\partial t}$$

$$\frac{1}{r}\frac{d}{dr}\left(kr\frac{dT}{dr}\right) = 0$$

 Versão simplificada (condução unidimensional na direção radial, regime permanente, ausência de geração de calor)

SOLUÇÃO DA EQUAÇÃO DA CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS — DISTRIBUIÇÃO DE TEMPERATURAS NA PAREDE DE UM CILINDRO

Integrando a equação

$$\frac{1}{r}\frac{d}{dr}\left(kr\frac{dT}{dr}\right) = 0$$

Considerando as condições de fronteira $r=r_1$, $T(r)=T_{g_1}$

$$r=r_1$$
, $T(r)=T_{S1}$

e

$$r=r_2$$
, $T(r)=T_{S2}$

Vem

$$T(r) = \frac{T_{s,1} - T_{s,2}}{\ln(r_1/r_2)} \ln\left(\frac{r}{r_2}\right) + T_{s,2}$$

SOLUÇÃO DA EQUAÇÃO DA CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS – FLUXO DE CALOR ATRAVÉS DA PAREDE DE UM CILINDRO

$$T_{r} = \frac{T_{S1} - T_{S2}}{\ln \frac{r_{1}}{r_{2}}} \cdot \ln \frac{r}{r_{2}} + T_{S2}$$
 (1)

A lei de Fourier relativa à condução de calor através de uma parede cilíndrica é dada por:

$$q_r = -k.A_r \frac{dT}{dr} = -k.2\pi r L \frac{dT}{dr}$$
 (2)

Derivando a equação (1) em ordem a r e substituindo dT/dr em (2), teremos

$$q_r = \frac{2\pi Lk(T_{S1} - T_{S2})}{\ln \frac{r_2}{r_1}}$$

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM SISTEMAS RADIAIS – A ESFERA

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) = 0$$

$$T(r) = T_{s,1} - (T_{s,1} - T_{s,2}) \frac{1 - (r_{1}/r)}{1 - (r_{1}/r_{2})}$$

$$q_r'' = -k \frac{dT}{dr} = \frac{k}{r^2 \left[\left(\frac{1}{r_1} \right) - \left(\frac{1}{r_2} \right) \right]} \left(T_{s,1} - T_{s,2} \right)$$

O COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR EM SISTEMAS RADIAIS

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS – O CILINDRO COMPOSTO

Qual o valor de U?

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS — O CILINDRO COMPOSTO

$$q_r = U.A_1(T_{\infty,1} - T_{\infty,3})$$

Mecanismos de transferência de calor:

- -Convecção na parede interior do tubo
- -Condução radial através da camada azul
- -Condução radial através da camada laranja
- -Convecção na parede exterior do tubo

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS — O CILINDRO COMPOSTO

Mecanismos de transferência de calor:

-Convecção na parede interior do tubo

$$q_r = h_1 A_1 (T_{\infty,1} - T_1) = h_1 2\pi r_1 L (T_{\infty,1} - T_1) = \frac{(T_{\infty,1} - T_1)}{\frac{1}{h_1 2\pi r_1 L}}$$

-Condução radial através da camada azul

$$q_r = \frac{2\pi k_2 L(T_1 - T_2)}{\ln\left(\frac{r_2}{r_1}\right)} = \frac{(T_1 - T_2)}{\ln\left(\frac{r_2}{r_1}\right)} = \frac{1}{2\pi k_2 L}$$

-Condução radial através da camada laranja

$$q_r = \frac{2\pi k_3 L(T_2 - T_3)}{\ln\left(\frac{r_3}{r_2}\right)} = \frac{(T_2 - T_3)}{\ln\left(\frac{r_3}{r_2}\right)} = \frac{1}{2\pi k_3 L}$$

-Convecção na parede exterior do tubo

$$q_r = \frac{(T_3 - T_{\infty,3})}{\frac{1}{h_3 2\pi r_3 L}}$$

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS – O CILINDRO COMPOSTO

$$T_{\infty,3}$$

 h_3

$$q_r = \frac{(T_{\infty,1} - T_1)}{\frac{1}{h_1 2\pi r_1 L}} = \frac{(T_1 - T_2)}{\ln\left(\frac{r_2}{r_1}\right)} = \frac{(T_2 - T_3)}{\ln\left(\frac{r_3}{r_2}\right)} = \frac{(T_3 - T_{\infty,3})}{\frac{1}{h_3 2\pi r_3 L}}$$

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS — O CILINDRO COMPOSTO

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS – O CILINDRO COMPOSTO

$$q_{r} = \frac{(T_{\infty,1} - T_{\infty,3})}{\ln\left(\frac{r_{2}}{r_{1}}\right) + \ln\left(\frac{r_{3}}{r_{2}}\right) + \frac{1}{h_{1}2\pi r_{1}L} + \frac{2\pi k_{2}L}{2\pi k_{2}L} + \frac{1}{2\pi k_{3}L} + \frac{1}{h_{3}2\pi r_{3}L}$$

Multiplicando e dividindo por $A_1 = 2\pi r_1 L$, virá

$$q_r = \frac{A_1(T_{\infty,1} - T_{\infty,3})}{r_1 \ln\left(\frac{r_2}{r_1}\right) + \frac{r_1 \ln\left(\frac{r_3}{r_2}\right)}{k_3} + \frac{r_1}{h_3 r_3}}$$

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS — O CILINDRO COMPOSTO

Comparando...

$$q_{r} = \frac{A_{1}(T_{\infty,1} - T_{\infty,3})}{r_{1} \ln\left(\frac{r_{2}}{r_{1}}\right) + r_{1} \ln\left(\frac{r_{3}}{r_{2}}\right) + r_{1}} \qquad q_{r} = U.A_{1}(T_{\infty,1} - T_{\infty,3})$$

$$U = \frac{1}{\frac{1}{h_1} + \frac{r_1 \ln\left(\frac{r_2}{r_1}\right)}{k_2} + \frac{r_1 \ln\left(\frac{r_3}{r_2}\right)}{k_3} + \frac{r_1}{h_3 r_3}}$$

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE EM SISTEMAS RADIAIS – O CILINDRO COMPOSTO

Se tivéssemos utilizado a área externa, A₃, o significado de U seria o mesmo?

$$q_r = U.A_3(T_{\infty,1} - T_{\infty,3})$$

CONDUÇÃO COM GERAÇÃO DE CALOR

Fernando Neto 21/11/2022 3

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE COM GERAÇÃO DE CALOR

- Conversão de energia elétrica em calor (lei de Joule, $E_g=I^2.R_e$)
- Absorção de neutrões num reator nuclear
- Reações químicas exotérmicas no interior de um material
- Absorção de radiação eletromagnética numa parede
- etc.

Fernando Neto 21/11/2022 3

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE COM GERAÇÃO DE CALOR – A PLACA PLANA

$$\frac{d}{dx}\left(k\frac{dT}{dx}\right) + \dot{q} = 0 \longrightarrow \frac{d^2T}{dx^2} + \frac{\dot{q}}{k} = 0$$

(se a condutibilidade térmica for constante)

Integrando...

$$T(x) = -\left(\frac{\dot{q}}{2k}\right)x^2 + C_1x + C_2$$

Os valores das constantes de integração dependem das condições fronteira selecionadas

CONDUÇÃO DE CALOR UNIDIMENSIONAL EM REGIME PERMANENTE COM GERAÇÃO DE CALOR – O CILINDRO

Exemplo de condições fronteira:

$$\left. \frac{dT}{dr} \right|_{r=0} = 0$$

$$T(r_0) = T_s$$

Distribuição de temperaturas:

$$T_{r} = \frac{q.r_{0}^{2}}{4k} \left(1 - \frac{r^{2}}{r_{0}^{2}} \right) + T_{s}$$

CASO PRÁTICO

Um fio de aço inoxidável com uma condutibilidade ${\bf k}$ de 19 W.m⁻¹.K⁻¹, uma resistividade ${\bf \rho}$ de 70 $\mu\Omega$.cm, um diâmetro ${\bf d}$ de 3 mm e um comprimento, ${\bf L}$, de 1 m é atravessado por uma corrente elétrica com uma intensidade 1 de 200 A.

O fio encontra-se exposto a um escoamento de água a uma temperatura T_{∞} de 25°C, sendo o coeficiente de transferência de calor por convecção, h, de 3000 W.m⁻².K⁻¹.

Calcule qual a temperatura T_s à superfície do mesmo, bem como a temperatura T_c no centro do fio.

Fernando Neto 21/11/2022 3

SOLUÇÃO: ESQUEMA GRÁFICO

SOLUÇÃO: DETERMINAÇÃO DE T_S

Conseque - re determinar à calor dissipado atraves de fio? Se isso for possível, entos:

O calor dissipado através da supulicia externa do fio.

- calor romavido por converção à supulções do fio.

Calor dissipado através da supulções externe = h. A (Ts - Ta)

L

Se lor conhecido, podemos determinar Ts

SOLUÇÃO: DETERMINAÇÃO DE T₀

Se conhecumos
$${}^{2}S$$
, autos a temperatura mo centro do fio
pera dado por
 $T(R) = \frac{4}{4} \frac{10^{2}}{10^{2}} \left(1 - \frac{R^{2}}{Ro^{2}}\right) + T_{5}$
Quando $R = 0$ (centro do fio), vene
 $T(0) = \frac{4}{4} \frac{Ro^{2}}{4} + T_{5}$

RESOLUÇÃO

D'alculo de alors dissipado através de superficio externa de fio.

O abre dissipado através de superficio externa do fio serva igual ao cabre produji do pela parsagem da conente elétrica através do fio.

$$Q = I^{2}R$$

$$R = P \cdot \frac{L}{\Delta + \text{nowners}} = \frac{1}{10 \times 10 \times 0.001} \times \frac{1}{10 \times 0.0015^{2}}$$

$$R = P \cdot \frac{L}{\Delta + \text{nowners}} = \frac{1}{10 \times 10 \times 0.001} \times \frac{1}{10 \times 0.0015^{2}}$$

$$= 0.099 \Omega$$

$$q = 200 \times 0.099 = 3961 W$$

RESOLUÇÃO

RESOLUÇÃO

$$7(0) = 9 R0^{2} + 15$$

$$9 = 9 - 3961 = 3961 = 560,4 \times 10^{6} \text{ W/m}$$

$$17 \times 0,0015 \times 1$$

$$T(0) = \frac{56014 \times 10^{6} \times 0,0015^{2}}{4 \times 19} + 165 = 181,6\%$$

A ESPESSURA CRÍTICA DE ISOLAMENTO

ISOLAMENTO TÉRMICO: EFEITOS CONTRADITÓRIOS DA SUA ADIÇÃO A UMA TUBAGEM

- Aumentando a espessura do isolamento (passando de r_1 para r_2), aumenta a resistência à transmissão de calor por condução mas...
- ...aumenta também a área disponível para a transferência de calor por convecção

$$q_r = \frac{(T_e - T_2)}{\ln\left(\frac{r_2}{r_e}\right)}$$

$$\frac{2\pi k_2 L}{2}$$

$$q_r = \frac{(T_2 - T_{\infty})}{\frac{1}{h2\pi r_2 L}}$$

ESPESSURA CRÍTICA DE ISOLAMENTO

• Quantificando numa única equação o calor transferido por condução e convecção:

$$q(r) = \frac{2\pi L(T_e - T_{\infty})}{\frac{\ln(r/r_e)}{k} + \frac{1}{r.h}}$$

- q varia contraditoriamente com r
- haverá um valor ótimo de r?
- derivando q(r) em ordem a r e igualando a zero, verifica-se que existe um máximo da função q(r)
- este máximo ocorre para r=k/h que é o valor que maximiza q(r)!!!
- este valor é designado por espessura crítica de isolamento

...E O VALOR ÓPTIMO DE ISOLAMENTO?

ALHETAS

MAXIMIZAÇÃO DA TRANSFERÊNCIA DE CALOR POR CONVEÇÃO I

- Interessa amiúde aumentar a transferência de calor por convecção:
 - refrigeração da cabeça de um motor...
 - promover o aquecimento de um fluído que circula numa tubulação...
 - promover o aquecimento ambiente...
 - etc...
- Como?

MAXIMIZAÇÃO DA TRANSFERÊNCIA DE CALOR POR CONVEÇÃO II

$$q = h.A.(T_s - T_\infty)$$

- A maximização da potência calorífica transferida pode ser feita:
 - ... aumentando h
 - (nem sempre é possível)
 - ... diminuindo T_m
 - (nem sempre é possível)
 - $\underline{}$ aumentando T_s
 - (nem sempre é possível)
 - Aumentando A
 - SEMPRE POSSÍVEL

AUMENTO DA ÁREA DA TRANSFERÊNCIA DE CALOR

ALHETAS

 Alheta (ou aleta): superfície (normalmente de elevada condutibilidade térmica) adicionada a um sólido para aumentar a área disponível para a transferência de calor

CARATERÍSTICAS DA TRANSFERÊNCIA DE CALOR EM ALHETAS

- A transferência de calor por convecção numa alheta é feita perpendicularmente à direção da transferência de calor por condução
- a transferência de calor por condução é unidimensional

TRANSFERÊNCIA DE CALOR A PARTIR DE ALHETAS

TRANSMISSÃO DE CALOR A PARTIR DE SUPERFÍCIES ALHETADAS – IDENTIFICAÇÃO DOS FLUXOS DE CALOR (BALANÇO ENERGÉTICO)

Balanço energético

$$q_x = q_{x+dx} + dq_{conv}$$

Qual o valor de cada um dos termos que compõe o balanço energético?

$$q_{x} = -k.A_{c} \frac{dT}{dx}$$

$$q_{x+dx} = -k.A_{c} \frac{dT}{dx} - k \frac{d}{dx} \left(A_{c} \frac{dT}{dx} \right) dx$$

$$dq_{conv} = h.dA_{s} (T - T_{\infty})$$

TRANSMISSÃO DE CALOR A PARTIR DE SUPERFÍCIES ALHETADAS – BALANÇO ENERGÉTICO

• Somando as equações dos fluxos e após algumas combinações, vem:

$$\frac{d^2T}{dx^2} + \left(\frac{1}{A_c} \cdot \frac{dA_c}{dx}\right) \frac{dT}{dx} - \left(\frac{1}{A_c} \cdot \frac{h}{k} \cdot \frac{dA_s}{dx}\right) (T - T_{\infty}) = 0$$

• Equação geral para a transferência de calor unidimensional numa alheta qualquer (em regime permanente)

ALHETAS: SE A SECÇÃO TRANSVERSAL DA ALHETA TIVER UMA ÁREA CONSTANTE, A_C=CTE,...

$$\frac{d^2T}{dx^2} - \left(\frac{P}{A_c} \cdot \frac{h}{k}\right) (T - T_{\infty}) = 0$$

T – temperatura numa dada secção transversal da alheta

x – distância medida ao longo do comprimento da alheta

 T_{∞} - temperatura ambiente

P – perímetro da secção transversal da alheta

h – coeficiente de transferência de calor por convecção

k – condutibilidade térmica do material que compõe a alheta

 A_c – área da secção transversal da alheta (área que se opõe ao fluxo de calor por condução)

ALHETAS: RESOLUÇÃO DA EQUAÇÃO DA CONDUÇÃO DE CALOR PARA O CASO PARTICULAR DE SECÇÃO TRANSVERSAL CONSTANTE A_C=CTE

Definindo a variável $\theta(x)=T(x)-T_{\infty}$, a equação da condução de calor na alheta transforma-se em

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0$$

equação diferencial de 2^a ordem homogénea, com coeficientes constantes, em que $\mathbf{m} = [\mathbf{h}.\mathbf{P}.(\mathbf{k}.\mathbf{A}_c)^{-1}]^{\frac{1}{2}}$ e cuja solução geral é do tipo

$$\theta(x) = C_1 \cdot e^{mx} + C_2 \cdot e^{-mx}$$

As constantes de integração C_1 e C_2 dependem das condições de fronteira

ALHETAS: DETERMINAÇÃO DAS CONSTANTES DE INTEGRAÇÃO C₁ E C₂ NA SOLUÇÃO DA EQUAÇÃO DA CONDUÇÃO DE CALOR PARA UMA ALHETA DE SECÇÃO TRANSVERSAL CONSTANTE A_C=CTE. A 1º CONDIÇÃO DE FRONTEIRA.

$$\theta(x) = C_1 \cdot e^{mx} + C_2 \cdot e^{-mx}$$

As condições de fronteira são determinadas definindo qual a temperatura para x=0 (base da alheta) e quais as condições que ocorrem para x=L (extremidade da alheta)

A 1ª condição de fronteira é fácil de definir. Na base da alheta, a sua temperatura é igual à temperatura da parede, T_b .

Donde, para x=0, vem $T_{(x=0)}=T_b$

Logo,

$$\theta(0)=T_b-T_\infty=C_1.e^{mx}+C_2e^{-mx}$$

 $<=>$
 $T_b-T_\infty=C_1+C_2$

ALHETAS: DETERMINAÇÃO DAS CONSTANTES DE INTEGRAÇÃO C $_1$ E C $_2$ NA SOLUÇÃO DA EQUAÇÃO DA CONDUÇÃO DE CALOR PARA UMA ALHETA DE SECÇÃO TRANSVERSAL CONSTANTE A $_c$ =CTE. A 2 a CONDIÇÃO DE FRONTEIRA.

Para x=L (extremidade da alheta), quatro possibilidades ocorrem para a definição das condições de fronteira:

- 1. Ocorre convecção na extremidade da alheta
- 2. A convecção a partir da extremidade da alheta é negligenciável
- 3. A temperatura na extremidade da alheta encontra-se definida
- 4. A alheta é muito longa

ALHETAS: DETERMINAÇÃO DAS CONSTANTES DE INTEGRAÇÃO C_1 E C_2 NA SOLUÇÃO DA EQUAÇÃO DA CONDUÇÃO DE CALOR PARA UMA ALHETA DE SECÇÃO TRANSVERSAL CONSTANTE A_C =CTE. A $2^{\rm a}$ CONDIÇÃO DE FRONTEIRA.

A que condição de fronteira corresponde cada uma destas situações físicas?

- 1. Ocorre convecção na extremidade da alheta $h.A_c\theta(L) = -k.A_c \frac{d\theta}{dx}\Big|_{x=L}$
- 2. A convecção a partir da extremidade da alheta é negligenciável $\frac{d\theta}{dx}\Big|_{x=L} = 0$
- 3. A temperatura na extremidade da alheta encontra-se definida $\theta(L) = \theta_I$
- 4. A alheta é muito longa $L \to \infty$, $\theta = 0$

ALHETAS: DETERMINAÇÃO DAS CONSTANTES DE INTEGRAÇÃO C₁ E C₂ NA SOLUÇÃO DA EQUAÇÃO DA CONDUÇÃO DE CALOR PARA UMA ALHETA DE SECÇÃO TRANSVERSAL CONSTANTE A_C=CTE. A 2ª CONDIÇÃO DE FRONTEIRA.

1. Ocorre convecção na extremidade da alheta

$$h.\theta(L) = -k.\frac{d\theta}{dx}\Big|_{x=L}$$

$$\frac{\theta}{\theta_b} = \frac{\cosh[m(L-x)] + \frac{h}{m.k} senh[m(L-x)]}{\cosh(mL) + \frac{h}{m.k} senh(mL)}$$

ALHETAS: DETERMINAÇÃO DAS CONSTANTES DE INTEGRAÇÃO C₁ E C₂ NA SOLUÇÃO DA EQUAÇÃO DA CONDUÇÃO DE CALOR PARA UMA ALHETA DE SECÇÃO TRANSVERSAL CONSTANTE A_C=CTE. A 2ª CONDIÇÃO DE FRONTEIRA.

2. A convecção a partir da extremidade da alheta é negligenciável

$$\left. \frac{d\theta}{dx} \right|_{x=L} = 0$$

$$\frac{\theta}{\theta_b} = \frac{\cosh[m(L-x)]}{\cosh(mL)}$$

ALHETAS: DETERMINAÇÃO DAS CONSTANTES DE INTEGRAÇÃO C $_1$ E C $_2$ NA SOLUÇÃO DA EQUAÇÃO DA CONDUÇÃO DE CALOR PARA UMA ALHETA DE SECÇÃO TRANSVERSAL CONSTANTE A $_{\rm C}$ =CTE. A 2 $^{\rm a}$ CONDIÇÃO DE FRONTEIRA.

3. A temperatura na extremidade da alheta encontra-se definida

$$\theta(L) = \theta_L$$

$$\frac{\theta}{\theta_b} = \frac{\frac{\theta_L}{\theta_b} senh(mx) + senh[m(L-x)]}{senh(mL)}$$

ALHETAS: DETERMINAÇÃO DAS CONSTANTES DE INTEGRAÇÃO C₁ E C₂ NA SOLUÇÃO DA EQUAÇÃO DA CONDUÇÃO DE CALOR PARA UMA ALHETA DE SECÇÃO TRANSVERSAL CONSTANTE A_C=CTE. A 2^a CONDIÇÃO DE FRONTEIRA.

4. A alheta é muito longa

$$L \rightarrow \infty, \theta = 0$$

$$\frac{\theta}{\theta_b} = e^{-mx}$$

NOTA SOBRE AS FUNÇÕES HIPERBÓLICAS

$$tenh x = \frac{1}{2} \left(e^{x} - e^{-x} \right)$$

$$tenh x = \frac{1}{2} \left(e^{x} + e^{-x} \right)$$

$$tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{x}}$$

ALHETAS: DETERMINAÇÃO DO FLUXO DE CALOR TRANSFERIDO ATRAVÉS DA ALHETA

Sabendo qual a equação que nos dá T=T(x), a potência calorífica transmitida através da alheta obtêm-se através de (lei de Fourier):

$$q_x = -k.A_c.\frac{dT}{dx}$$

ALHETAS: DETERMINAÇÃO DO FLUXO DE CALOR TRANSFERIDO ATRAVÉS DA ALHETA II

Situação	Equação da potência calorífica dissipada na base da alheta
Ocorre convecção na extremidade da alheta	$q_x = \sqrt{h.P.k.A_c}.\theta_b \frac{\sinh(m.L) + \frac{h}{m.k}\cosh(m.L)}{\cosh(m.L) + \frac{h}{m.k}\sinh(m.L)}$
A convecção a partir da extremidade da alheta é negligenciável	$q_x = \sqrt{h.P.k.A_c}.\theta_b \tanh(m.L)$
A temperatura na extremidade da alheta encontra-se definida	$q_{x} = \sqrt{h.P.k.A_{c}}.\theta_{b} \frac{\cosh(m.L) - \frac{\theta_{L}}{\theta_{b}}}{\sinh(m.L)}$
A alheta é muito longa	$q_x = \sqrt{h.P.k.A_c}.\theta_b$

EFICÁCIA (OU DESEMPENHO) DE UMA ALHETA

EFICÁCIA DE UMA ALHETA

- A presença de uma alheta aumenta a área disponível para transferência de calor mas aumenta também a resistência à dita transferência uma vez que o fenómeno de condução através da alheta impõe mais obstáculos à transferência de calor
- Adicionalmente embora a área disponível para a transferência de calor aumente, a temperatura da superfície a partir da qual ocorre transferência de calor por convecção, diminui.

EFICÁCIA DE UMA ALHETA: QUANDO SE JUSTIFICA A UTILIZAÇÃO DE ALHETAS?

- Como saber se a utilização de uma alheta em particular aumenta ou diminui a transferência de calor?
- **Definição**: a eficácia **de uma alheta**, **E**_f, é a razão entre a transferência de calor que se obtêm na presença de uma alheta, **q**_f, e a que seria obtida se a alheta não estivesse presente, isto é:

$$\varepsilon_f = \frac{q_f}{h.A_c.\theta_b}$$

- Recorde-se que q_f varia de acordo com a 2ª condição fronteira
- Em termos práticos a utilização de uma alheta justifica-se apenas quando $\mathbf{\mathcal{E}_f} > \mathbf{2}$

DESEMPENHO DE UMA ALHETA: EXEMPLO

· Para uma alheta de comprimento infinito, por exemplo, o seu valor é

$$\varepsilon_f = \sqrt{\frac{k.P}{h.A_c}}$$

- O desempenho de uma alheta de comprimento infinito...
 - ... aumenta com a condutibilidade térmica do material que a compõe (alumínio, cobre)
 - ... aumenta com a relação P/A_c: alhetas finas
 - ... justifica a utilização de alhetas particularmente para pequenos valores de h: num permutador gás-líquido as alhetas devem ser posicionadas preferencialmente do lado do gás

RENDIMENTO DE UMA ALHETA

RENDIMENTO DE UMA ALHETA

• Definição: o rendimento de uma alheta é a razão entre o calor dissipado efectivamente pela alheta e o calor que seria dissipado se toda a alheta se encontrasse à temperatura da base:

$$\eta_a = \frac{q_f}{h.A_f.\theta_b}$$

onde A_f é a área total da alheta

A expressão anterior é normalmente utilizada na forma seguinte:

$$q_f = \eta_a . h. A_f. \theta_b$$

• Esta expressão dá-nos o calor dissipado pela alheta em função do seu rendimento, área e temperatura da base

RENDIMENTO DE ALGUNS TIPOS DE ALHETA (INCROPERA & DEWITT)

$$\eta_f = \frac{\tanh mL_c}{mL_c}$$

$$\eta_f = \frac{1}{mL} \frac{I_1(2mL)}{I_0(2mL)}$$

$$\eta_f = \frac{2}{[4(mL)^2 + 1]^{1/2} + 1}$$

$$\begin{split} \eta_f &= \, C_2 \, \frac{K_1(mr_1) I_1(mr_{2c}) \, - \, I_1(mr_1) K_1(mr_{2c})}{I_0(mr_1) K_1(mr_{2c}) \, + \, K_0(mr_1) I_1(mr_{2c})} \\ C_2 &= \frac{(2r_1/m)}{(r_{2c}^2 - \, r_1^2)} \end{split}$$

$$\eta_f = \frac{\tanh mL_c}{mL_c}$$

$$\eta_f = \frac{2}{mL} \frac{I_2(2mL)}{I_1(2mL)}$$

$$\eta_f = \frac{2}{[4/9(mL)^2 + 1]^{1/2} + 1}$$

REPRESENTAÇÃO GRÁFICA DO RENDIMENTO DE ALGUNS TIPOS DE ALHETA EM FUNÇÃO DE PARÂMETROS GEOMÉTRICOS, MATERIAIS E DO ESCOAMENTO (INCROPERA & DEWITT)

RENDIMENTO DE UMA SUPERFÍCIE ALHETADA

Fernando Neto 21/11/2022 76

RENDIMENTO GLOBAL DE UMA SUPERFÍCIE ALHETADA

• O rendimento global de uma superfície alhetada é a razão entre o calor transferido por uma superfície parcialmente coberta por uma matriz alhetada (incluindo portanto, quer a área coberta, quer a área não coberta) e o calor transferido por essa mesma área se toda ela estivesse à temperatura da base

$$\eta_G = \frac{q_t}{q_{MAX}} = \frac{q_t}{h.A_t.\theta_b}$$

A taxa máxima de transferência de calor ocorre quando todas as superfícies (alhetas e base não revestida) se encontram à temperatura da base

DETERMINAÇÃO DO RENDIMENTO GLOBAL DE UMA SUPERFÍCIE ALHETADA

• Sendo A_f a área exterior de uma única alheta e A_b a área da base não coberta por alhetas, então, caso hajam N alhetas, a área total é

$$A_t = N.A_f + A_b$$

 A potência calorífica transferida através quer da área alhetada, quer da área não alhetada será dada por:

$$\begin{aligned} q_t &= N.\eta_a.h.A_f.\theta_b + h.A_b.\theta_b = \\ &= h.\theta_b \Big[N.\eta_a.A_f + (A_t - N.A_f) \Big] = \\ &= h.\theta_b.A_t \Bigg[1 - N.\frac{A_f}{A_t} (1 - \eta_a) \Bigg] \end{aligned}$$

EXPRESSÃO PARA O RENDIMENTO GLOBAL DE UMA SUPERFÍCIE ALHETADA

Rendimento global de uma superfície alhetada

$$\eta_G = \frac{q_t}{q_{t_{MAX}}} = 1 - N \frac{A_f}{A_t} (1 - \eta_a)$$

- Utilidade: basta saber o rendimento de uma alheta para calcular o rendimento de uma superfície alhetada
- Taxa de transferência de calor a partir dessa superfície

$$q_t = \eta_G.h.A_t.\theta_b$$

• Utilidade: permite saber o calor transferido a partir de uma superfície alhetada conhecendo a área total, A_t , a temperatura da base, θ_b e o rendimento da superfície alhetada, η_G

CONDUÇÃO DE CALOR MULTIDIMENSIONAL

CONDUÇÃO DE CALOR MULTIDIMENSIONAL

RESOLUÇÃO DA EQUAÇÃO DA DIFUSÃO MULTIDIMENSIONAL DE CALOR: TRANSFERÊNCIA DE CALOR BIDIMENSIONAL

Objetivos:

- -Determinação da distribuição de temperatura T=T(x,y);
- determinação dos fluxos de calor q"_x e q"_y;

Para o caso da condução bidimensional de calor em regime permanente, sem geração de energia, com condutividade térmica constante, a equação da difusão de calor toma a forma

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

TÉCNICAS DE RESOLUÇÃO DA EQUAÇÃO DA DIFUSÃO MULTIDIMENSIONAL DE CALOR

- Métodos analíticos:
 - Uma solução analítica só pode ser encontrada para um pequeno número de geometrias e de condições de fronteira
 - Obtém-se uma distribuição contínua de temperaturas do tipo T=T(x,y)
- Métodos discretos: conduzem a uma solução aproximada apenas em alguns pontos do domínio
 - Métodos gráficos
 - Métodos numéricos
 - Elementos finitos
 - Diferenças finitas

MÉTODOS NUMÉRICOS: O MÉTODO DAS DIFERENÇAS FINITAS

Utilizado em:

- geometrias complexas para as quais não de dispõe de uma solução analítica
- casos em que as condições de fronteira e/ou as propriedades térmicas variam ao longo do tempo (regime transiente)

Consiste:

 na substituição das equações diferenciais parciais por um conjunto de equações algébricas relativas à temperatura num certo número de pontos, os pontos nodais

MÉTODO DAS DIFERENÇAS FINITAS: DIVISÃO DO DOMÍNIO

I° passo: divisão do domínio em análise num número de pequenas regiões no centro das quais se encontram os pontos nodais (ou nodos)
2° passo: nomear os diferentes nodos

MÉTODO DAS DIFERENÇAS FINITAS: DIVISÃO DO DOMÍNIO - CONSEQUÊNCIAS

- Cada um dos nodos representa a região que o envolve
- A temperatura do nodo representa a temperatura média da região de que ele é o centro
- Quanto maior o número de nodos:
 - Melhor a precisão do cálculo
 - Maior tempo de cálculo é necessário

MÉTODO DAS DIFERENÇAS FINITAS: APROXIMAÇÃO DAS DERIVADAS PARCIAIS (DE 1ª E 2ª ORDEM) POR DIFERENÇAS FINITAS

Processo que requer uma aproximação por diferenças finitas à equação da difusão de calor.

Exemplo: equação da condução bidimensional, em regime estacionário, sem geração de calor

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

MÉTODO DAS DIFERENÇAS FINITAS: APROXIMAÇÃO DAS DERIVADAS PARCIAIS POR DIFERENÇAS FINITAS (EXEMPLO PARA UM NODO INTERIOR)

Direcção horizontal

$$\left. \frac{\partial T}{\partial x} \right|_{m-1/2,n} \approx \frac{T_{m,n} - T_{m-1,n}}{\Delta x}$$

$$\left. \frac{\partial T}{\partial x} \right|_{m+1/2,n} \approx \frac{T_{m+1,n} - T_{m,n}}{\Delta x}$$

$$\frac{\partial^2 T}{\partial x^2} \approx \frac{\frac{\partial T}{\partial x}\bigg|_{m+1/2,n} - \frac{\partial T}{\partial x}\bigg|_{m-1/2,n}}{\Delta x} = \frac{T_{m+1,n} + T_{m-1,n} - 2T_{m,n}}{\Delta x^2}$$

MÉTODO DAS DIFERENÇAS FINITAS: APROXIMAÇÃO DAS DERIVADAS PARCIAIS POR DIFERENÇAS FINITAS (EXEMPLO)

Direcção vertical

$$\frac{\partial T}{\partial y}\bigg|_{m,n-1/2} \approx \frac{T_{m,n} - T_{m,n-1}}{\Delta y}$$

$$\frac{\partial T}{\partial y}\bigg|_{m,n+1/2} \approx \frac{T_{m,n+1} - T_{m,n}}{\Delta y}$$

$$\frac{\partial^2 T}{\partial y^2} \approx \frac{T_{m,n+1} + T_{m,n-1} - 2T_{m,n}}{\Delta y^2}$$

MÉTODO DAS DIFERENÇAS FINITAS: RESULTADO DA APROXIMAÇÃO DAS DERIVADAS PARCIAIS DE 1º E 2º ORDEM POR DIFERENÇAS FINITAS

De acordo com as expressões anteriores, a equação algébrica equivalente à equação diferencial $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$ será

$$\frac{T_{m+1,n} + T_{m-1,n} - 2T_{m,n}}{\Delta x^2} + \frac{T_{m,n+1} + T_{m,n-1} - 2T_{m,n}}{\Delta y^2} = 0$$

para um nodo localizado no interior, e para o caso especial em que $\Delta x = \Delta y$, será

$$T_{m,n+1} + T_{m,n-1} + T_{m+1,n} + T_{m-1,n} - 4.T_{m,n} = 0$$

MÉTODO DAS DIFERENÇAS FINITAS: RESULTADO DA APROXIMAÇÃO DAS DERIVADAS PARCIAIS DE 1º E 2º ORDEM POR DIFERENÇAS FINITAS

No final...

...para **cada nodo** (para o qual foi realizada a aproximação da equação da difusão de calor por diferenças finitas) teremos **uma equação**.

Para os **m** x **n** pontos (totalidade dos pontos que integram o domínio) teremos **m** x **n** equações

O MÉTODO DAS DIFERENÇAS FINITAS - FORMULAÇÃO DE UM BALANÇO ENERGÉTICO

UM MÉTODO MAIS INTUITIVO: FORMULAÇÃO DE UM BALANÇO ENERGÉTICO EXEMPLO PARA UM NODO DE CANTO, SUJEITO A CONVECÇÃO IDENTIFICAÇÃO DAS TROCAS DE CALOR

Para cada nodo é executado um balanço energético:

- O calor que é transportado para o nodo m,n provêm:
 - dos nodos vizinhos m,n+1; m+1,n;
 m,n-1 e m-1,n;
 - 2. Do ambiente o qual se encontra à temperatura T_{∞}

Como quantificar o calor trocado entre nodos?

Exemplo: calor trocado por <u>condução</u> entre **m-I,n** e **m,n**:

o calor trocado por unidade de tempo por condução é dado pela lei de Fourier:

$$q = -kA \frac{dT}{dx}$$

Qual o valor da área A que se opõe à troca de calor?

Qual a aproximação ao valor de dT?

Qual a aproximação ao valor de dx?

Assim, a aproximação por diferenças finitas à lei de Fourier traduz-se em

A=
$$\Delta$$
y. I
dT≈T_{m,n}-T_{m-1,n}
dx≈ Δ x

$$q = -kA \frac{dT}{dx} \approx -k.(\Delta y.1) \frac{T_{m,n} - T_{m-1,n}}{\Delta x}$$

Exemplo: calor trocado por <u>condução</u> entre **m,n**-**l** e **m,n**:

Lei de Fourier:

$$q = -kA\frac{dT}{dy}$$

O valor da área A que se opõe à troca de calor é $(\Delta x/2)$ x I (considerando o valor unitário na direção perpendicular ao plano da figura). A aproximação ao valor de dT é $T_{m,n}$ - $T_{m,n-1}$. A aproximação ao valor de dy é Δy

A aproximação por diferenças finitas à lei de Fourier entre m,n-l e m,n é:

$$q = -kA \frac{dT}{dy} \approx -k \cdot \left(\frac{\Delta x}{2} \cdot 1\right) \frac{T_{m,n} - T_{m,n-1}}{\Delta y}$$

Exemplo: calor trocado por <u>convecção</u> entre o ambiente e **m,n**: Lei de Newton:

$$q = hA(T_{m,n} - T_{\infty})$$

O valor da área A que se opõe à troca de calor é $(\Delta x/2) \times I + (\Delta y/2) \times I$

A aproximação por diferenças finitas à lei de Newton entre **m,n** e o ambiente é:

$$q = hA(T_{\infty} - T_{m,n}) \approx h\left(\frac{\Delta x}{2}.1 + \frac{\Delta y}{2}.1\right)(T_{\infty} - T_{m,n})$$

Quantificando a totalidade do calor trocado entre \mathbf{m} , \mathbf{n} e os nodos vizinhos por condução e entre \mathbf{m} , \mathbf{n} e o ambiente e atendendo a que \mathbf{em} regime permanente, esse somatório é igual a zero, virá, se $\Delta \mathbf{x} = \Delta \mathbf{y}$:

$$\sum q = 0 \Leftrightarrow T_{m-1,n} + T_{m,n+1} + \frac{1}{2} (T_{m+1,n} + T_{m,n-1}) + \left(\frac{h.\,\Delta x}{k}\right) T_{\infty} - \left(3 + \frac{h.\,\Delta x}{k}\right) T_{m,n} = 0$$

MÉTODO DAS DIFERENÇAS FINITAS. 3° PASSO: OBTENÇÃO DO SISTEMA DE EQUAÇÕES ALGÉBRICAS RESULTANTE

Uma vez obtidas as equações na forma de diferenças finitas para todos os nodos que compõem a malha que reveste o domínio, obtêm-se um número N de equações (N = m x n) a N incógnitas

A solução para um sistema deste tipo pode ser obtida:

- I. Por um método de inversão matricial
- 2. Por um método iterativo

O MÉTODO DAS DIFERENÇAS FINITAS –EXEMPLO DE APLICAÇÃO

MÉTODO DAS DIFERENÇAS FINITAS. EXEMPLO.

MÉTODO DAS DIFERENÇAS FINITAS: DIFERENÇA FACE A UMA SOLUÇÃO ANALÍTICA

MÉTODO DAS DIFERENÇAS FINITAS. DIVISÃO DO DOMÍNIO.

MÉTODO DAS DIFERENÇAS FINITAS. FORMULAÇÃO DO BALANÇO ENERGÉTICO

Eur regime purmanente

$$\Xi 9 = 0$$

 $91 + 92 + 93 + 94 = 0$
 $91 = -K \cdot \Delta x \cdot 1 \quad (500 - T_1)$
Se $\Delta x = \Delta y \cdot \text{entai}$
 $91 = -K \quad (T_1 - 500)$
 $92 = \cdots = -K \quad (T_1 - T_2)$
 $93 = -00 = -K \quad (T_1 - T_2)$
 $94 = -K \quad (T_1 - T_2)$

$$K(T_{1}-500)+K(T_{1}-T_{2})+K(T_{3}-T_{4})+U(T_{1}-100)=0$$

$$T_{1}-500+T_{1}-T_{2}+T_{4}-T_{3}+T_{4}-100=0$$

$$Node 1: 4T_{1}-T_{2}-T_{3}=600$$

MÉTODO DAS DIFERENÇAS FINITAS. OBTENÇÃO DAS EQUAÇÕES ALGÉBRICAS

Procedimento identico para os modos 2,3 e q

Node 1:
$$4T_1 - T_2 - T_3 = 600$$

Node 2: $4T_2 - T_1 - T_4 = 600$
Node 3: $4T_3 - T_1 - T_4 = 200$
Node 4: $4T_4 - T_2 - T_3 = 200$
A equações a 4 incognitaes

MÉTODO DAS DIFERENÇAS FINITAS. RESOLUÇÃO DAS EQUAÇÕES RESULTANTES (INVERSÃO MATRICIAL)

Reordunação das equações obtidos
$$4T_{1} - T_{2} - T_{3} = 600$$

$$4T_{2} - T_{1} - T_{4} = 600$$

$$4T_{3} - T_{1} - T_{4} = 200$$

$$4T_{4} - T_{2} - T_{3} = 200$$

Parte I: Reescrever **explicitamente** as equações que nos dão a temperatura em cada nodo, ou seja, em cada equação a temperatura do nodo será dada em função das restantes variáveis:

Recordita des equações

$$T_1 = \frac{7}{2}/4 + \frac{7}{3}/4 + \frac{150}{150}$$
 $T_2 = \frac{7}{4}/4 + \frac{7}{4}/4 + \frac{150}{50}$
 $T_3 = \frac{7}{4}/4 + \frac{7}{4}/4 + \frac{50}{50}$
 $T_4 = \frac{7}{2}/4 + \frac{7}{3}/4 + \frac{50}{50}$

Passo 2: assumir um valor inicial para cada temperatura, \mathbf{T}_{i}^{0} . Quanto melhor for a estimativa inicial, mais rapidamente se convergirá para o resultado final.

Estimativa para as temperaturas iniciais

$$T_1 = T_2 = 300^{\circ}C$$
 $T_3 = T_4 = 200^{\circ}C$

Passo 3: os novos valores de **Ti** são obtidos a partir da estimativa inicial de temperaturas **T**⁰_i

Estimative para as temperatures inicialis
$$T_{4} = T_{2} = 300 \, ^{\circ} C$$

Para a 1° iteração
$$T_{1} = \frac{1}{2} / 4 + \frac{1}{3} / 4 + \frac{1}{50} = \frac{300}{4} + \frac{200}{4} + \frac{150}{50} = \frac{275}{6} \, ^{\circ} C$$

$$T_{2} = \frac{1}{4} / 4 + \frac{1}{4} / 4 + \frac{1}{50} = \frac{275}{4} + \frac{200}{4} + \frac{150}{4} = \frac{268}{45} + \frac{50}{4}$$

$$T_{3} = \frac{1}{4} / 4 + \frac{1}{4} / 4 + \frac{1}{50} = \frac{275}{4} + \frac{200}{4} + \frac{50}{4} = \frac{168}{45} + \frac{50}{4} = \frac{168}{45} + \frac{50}{4} = \frac{159}{45} + \frac{380}{45} = \frac{159}{45} = \frac{159}{45}$$

Passo 4: A equação explícita das temperaturas é reutilizada durante o processo iterativo calculando-se os "novos" valores das temperaturas T_i , a partir dos valores de T_i obtidos na iteração anterior

Passo 5: o processo iterativo é dado como terminado quando todos os valores das temperaturas obtidas numa dada iteração diferirem menos do que uma dada quantidade relativamente aos valores da iteração anterior.

de iteras	goen Ta	72	73	74
0	300	300	200	200
1	245	268,75	168,15	159,38
2	259,38			152,35
3				150,5
4	(250,52)			150,1
5	250,13			7 150,0

Solução final

Satisação de um critério de convegência
Satisação de comorgência to la convagência. Gritário de convergência to la tento de la convergência.
Da iteração 4 para a iteração 5 $T_1: T_i^h - T_i^h - = 250, 13 - 250, 52 = 0,39 < 1$

$$7_2: |250,07-250,26| = 0,19 < 1$$

 $7_3: |150,07-150,26| = 0,19 < 1$
 $7_4: |150,03-150,13| = 0,1 < 1$

O critério de convergência é satisfeito para todos os modos