Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{2}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определённых интегралов.»

Вариант 8 / метод хорд/ формула прямоугольников

Выполнил: студент 106 группы Синюков М. В.

> Преподаватель: Корухова Л. С. Манушин Д. В Соловьев М. А.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	4
Структура программы и спецификация функций	6
Сборка программы (Маке-файл)	8
Отладка программы, тестирование функций	9
Программа на Си и на Ассемблере	11
Анализ допущенных ошибок	12
Список цитируемой литературы	13

Постановка задачи

С точностью $\varepsilon=0.001$ вычислить площадь плоской фигуры, ограниченной 3 кривыми, уравнения которых $y=e^x+2$, y=-2*x+8, y=-5/x находятся в файле "func.s"в виде ассемблерного листинга. Необходимо разработать программу, реализующую функции приближенного вычисления корней, интегральных сумм и площади на пересечении графиков функций F1, F2, F3. Необходимо обеспечить точность ε_1 вычисления абсциссы точек пересечения кривых, используя метод приближенного решения уравнения F(x)=0 методом хорд (секущих). Отрезки для поиска пересечения вычисляются вручную, аналитически, до момента компиляции программы . Требуется представить площадь заданной фигуры как алгебраическую сумму определённых интегралов и вычислить эти интегралы с некоторой точностью ε_2 по квадратурной формуле прямоугольников.

Математическое обоснование

Метод касательных [2] На каждой итерации $x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$. [1.1]

Метод хорд. [3] Итерационная формула для метода хорд получается при подстановке в [1.1] метода касательных выражения для приближенного вычисления производной функции в точке:

ления производной функции в точке: $x^{k+1} = \frac{a*f(b)-b*f(a)}{F(b)-F(a)},$ где в зависимости от знака произведения первой и второй производных на отрезке, выбирается $a=x^k$ (случай положительной производной) или $b=x^k$ (случай отрицательной производной)

Оценка точности Как видно из графика и свойств функций, функции ограничены значением 10.

 A_i -вычисленный интеграл для функции F_i .

 S_i –Истинное значение интеграла для функции F_i . Пределы истинных интервалов обозначим a_i

 V_i –Истинное значение для интеграла функции F_i на вычисленных интервалах. Пределы вычисленных интервалов обозначим b_i

Погрешность вычисления площади интеграла: $\varepsilon = |A_1 + A_2 + A_3 - S_1 - S_2 - S_3| \le |A_1| + A_2 + A_3 - S_1 - S_2 - S_3| \le \sum_{i=1}^3 |A_i - S_i| \le \sum_{i=1}^3 |A_i - V_i| + \sum_{i=1}^3 |V_i - S_i| \le \sum_{i=1}^2 \int_{a_i}^{b_i} F_1$

+
$$\sum_{i=1,3}^{5} \int_{a_i}^{b_i} F_2 + \sum_{i=2}^{3} \int_{a_i}^{b_i} F_3 + 3 * \varepsilon_2 \le 6 * \varepsilon_1 * max_{i \in 1,2,3} (max_{x \in [a_1,a_3]}(|F_i(x))|) + 3 * \varepsilon_2 \le 60^* \varepsilon_2 + 3 * \varepsilon_1$$

Следовательно $\varepsilon_1{=}0.00001$ и $\varepsilon_2{=}0.00001$ будет достаточно , чтобы гарантировать точность вычислений 0.001

Набором кривых для вычисления площади являются кривые 8-го вариант:

$$F1(x) = e^x + 2$$

$$F2(x)=2x-8$$

$$F3(x) = -5/x$$

Рис. 1: Плоская фигура, ограниченная графиками уравнений 1-го набора

Результаты экспериментов

В данном разделе отображены результаты проведённых вычислений: координаты точек пересечения и площадь полученных фигур.

Кривые	x
$y=e^x+2$ и $y=-5/x$	-2.3905367039
$y=e^x +2$ и $y = -2*x +8$	1.2517579314
y = -2 * x + 8 и $y = -5/x$	-0.5495097

Таблица 1: Координаты точек пересечения кривых 1-го набора

Аналитическое обоснование выбора интервалов отыскания корней: Производные функций:

F1' = e^x

F2' = -2

F3' = $5/x^2$

Производные функций F1 и F3 на всей числовой прямой положительны.

В то время как производная F2 отрицательна на всей числовой прямой.

Тогда F1'-F2' знакопостоянна, следовательно функция монотонна и меняет знак только в одной точке так как знак функции на концах интервала (-3, 4) различен:

$$(F1(-3) - F2(-3)) * ((F1(4) - F2(4))) < 0$$

Все требования для работы функции отыскания корня на интервале (-3,4) соблюдены.

F3'-F2' также знакопостоянна, тогда F1-F2 монотонна и имеет только одну точку смены знака так как

$$(F3(-1) - F2(-1)) * ((F3(-0.3) - F2(-0.3))) < 0$$

Все требования для работы функции отыскания корня на интервале (-1,0.3) соблюдены.

Рассмотрим F1'-F3'= e^x-5/x^2 . Из графика e^x-5/x^2 видно ,что на промежутке (-3 -1) функция F1-F3 монотонна, имеет один корень на интервале так как (F1(-3)-F3(-3))*((F1(-1)-F3(-1)))<0

Требования для работы функции отыскания корня на интервале (-3 -1) соблюдены.

Рис. 2: График $e^x - 5/x^2$

Вычисленная площадь фигуры на пересечении графиков функций F1,F2,F3: 9.806974

Аналитическое обоснование вычисления площади:

$$S = -\int_{-2.3905367039}^{1.2517579314} (e^x + 2)dx + \int_{-0.5495097}^{1.2517579314} (-2 * x + 8)dx + \int_{-2.3905367039}^{-0.5495097} -5/xdx =$$

$$= -(e^x + 2 * x)\Big|_{-2.3905367039}^{1.2517579314} + \left(-x^2 + 8 * x\right)\Big|_{-0.5495097}^{1.2517579314} + \left(-5 * ln(x)\right)\Big|_{-2.3905367039}^{-0.5495097} \approx 9.80694$$

Результат соответствует аналитическому решению с точностью $\varepsilon=0.01$

Структура программы и спецификация функций

main.c

- double TESTF_const(double x) Функция для тестирования работы функций корня и интеграла: y=1
- double TESTF_linear(double x) Функция для тестирования работы функций корня и интеграла: y=x
- double TESTF_parabola(double x) Функция для тестирования работы функций корня и интеграла: y=x**2
- void help() Вывод help
- void test()
 Произведение тестирования для функций корня и интеграла с возможностью выбора метода вычисления корнея
- double area()
 Вычисление площади фигуры, ограниченной функциями из func.s на интервале (a,b), метод вычисления корня задаётся последним параметром
- int main(int argc, char **argv)
 Вызов функций на основе переданных аргументов

root.c

- double rightderiv(double x, double (*F)(double) Правая производная фунции в точке
- double deriv(double x, double (*F)(double)) Приближенно вычисленная производная F в точке x
- double derivsecond(double x, double (*F)(double)) Приближенно вычисленная вторая производная F в точке x
- double root(double (*f)(double), double (*g)(double), double a, double b, double eps) Вычисление корня f(x)=g(x) на отрезке (a,b) с точностью eps методом хорд

integral.c

• integral(double (*f)(double), double a, double b, double eps)
Вычисление интеграла функции f на отрезке (a,b) с точностью eps

Сборка программы (Маке-файл)

Текст Make-файла:

```
COMPILER=gcc
OPT=-02 -std=gnu99 -m32 -lm
.PHONY: all clean help test
all: main
clean:
rm -rf main.o integral.o root.o main
rm -rf func.o generator.o
func.o: generator.c
$(COMPILER) generator.c -c -o generator.o $(OPT)
nasm -DUNIX -Werror -f elf -o func.o func.s
integral.o: integral.c
$(COMPILER) integral.c -c -o integral.o $(OPT)
root.o: root.c
$(COMPILER) root.c -c -o root.o $(OPT)
main.o: main.c
$(COMPILER) main.c -c -o main.o $(OPT)
main: main.o integral.o root.o func.o
$(COMPILER) -o main main.o integral.o root.o func.o $(OPT)
help: main
./main -help
test: main
./main -test -axis -iter
area: main
./main -area
```

Отладка программы, тестирование функций

Кривые	Метод хорд	Метод касательных	Истинное значение	f'
$y=x^2$ и $y=x$	0.999992	1	1	2х и 1
$y = x^3$ и $y = 0$	0.00008	0.00002	0	3х и 0
y = -5/x и $y = -2 * x + 8$	4.549509	4.545455	4.54950975	$\int 5/x^2$ и -2

Таблица 2: Тестирование функций для вычисления точек пересечения кривых

Аналитическое обоснование:

1)
$$x = x^{2}$$

$$x * (x - 1) = 0$$

$$x = 1$$
2)
$$x^{3} = 0$$

$$x = 0$$
3)
$$-5/x = -2x + 8$$

$$-2x^{2} + 8x + 5 = 0$$

$$-2x^{2} + 8x + 5 = 0$$

$$x \approx 4.54950975$$

Кривая	Отрезок	Интеграл	Истинное значение
sin x / x	(-1 1)	1.892166	1.892166
$(sinx)^2$	$(-\pi,\pi)$	3.141592	π
$\sin(x)$	(-4,4)	0.000000	0
$f(\mathbf{x}) = x^2$	(-5,1)	42.000220	42
f(x) = 1	(0,25)	25.0000	25
(x) = x	(0,5)	12.499981	12.5

Таблица 3: Тестирование функции интеграла

Аналитическое обоснование[3]:

1)

$$\int_{-\pi}^{\pi} (sinx)^2 dx = \int_{-\pi}^{\pi} (1/2 - 1/2 * cos2x) dx = \left(\frac{x - sin(2x)/2}{2}\right) \Big|_{-\pi}^{\pi} = \pi.$$

2) $\int_{-4}^{4} (sinx) dx = [\text{осевая симметрия sin относительно 0}] = 0 3)$

$$\int_{-5}^{1} x^2 dx = \left(\frac{x^3}{3}\right)\Big|_{-5}^{1} = 5^3/3 + 1/3 = 42.$$

4)
$$\int_0^{25} 1 dx = (x) \Big|_0^{25} = 25.$$

5)
$$\int_0^5 x dx = \left(x^2/2\right)\Big|_0^5 = 12.5.$$

Программа на Си и на Ассемблере

Исходные тексты программы имеются в архиве, приложенном к отчёту

Анализ допущенных ошибок

1. Была допущена ошибка с переопределением функций F1-F3. Исправлено изменением

extern F1 на global F1 extern F2 на global F2 extern F3 на global F3 в модуле func.s

- 2. Отсутствовали комментарии к функциям модуля func.s. Комментарии добавлены к каждой функции
- 3. Ошибка в переносе результатов вычислений в таблицы. В таблицу 1 был ошибочно занесён правый корень уравнения -5/x = -2x + 8

Список литературы

- [1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 Москва: Наука, 1985.
- [2] Самарский А. А., Гулин А. В. Численные Методы. Учеб. пособие для вузов. — М.:Наука, 1989.
- [3] Костомаров Д.П., Фаворский А.П. Вводные лекции по численным методам: Учеб. пособие. М.: Логос, 2004