

Machine Learning

Logistic Regression

Classification

Classification

Email: Spam / Not Spam?

Online Transactions: Fraudulent (Yes / No)?

Tumor: Malignant / Benign?

$$y \in \{0, 1\}$$

0: "Negative Class" (e.g., benign tumor)

1: "Positive Class" (e.g., malignant tumor)

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If $h_{\theta}(x) < 0.5$, predict "y = 0"

Classification:
$$y = 0$$
 or 1

$$h_{\theta}(x)$$
 can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Machine Learning

Logistic Regression

Hypothesis Representation

Logistic Regression Model

Want $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = \theta^T x$$

Sigmoid function Logistic function

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

Tell patient that 70% chance of tumor being malignant

"probability that y = 1, given x, parameterized by
$$\theta$$
"
$$P(y=0|x;\theta)+P(y=1|x;\theta)=1$$

$$P(y=0|x;\theta)=1-P(y=1|x;\theta)$$

Machine Learning

Logistic Regression

Decision boundary

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$

predict "y = 0" if $h_{\theta}(x) < 0.5$

Decision Boundary

Parameter $\underline{\theta}$ ($\underline{\theta}_0$, $\underline{\theta}_1$, $\underline{\theta}_2$) defines the decision boundary not the training set. Training set may be used to find the Parameter θ

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Non-linear decision boundaries

Machine Learning

Logistic Regression

Cost function

Training set:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$$

m examples
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
 $x_0 = 1, y \in \{0, 1\}$

$$x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

Cost function

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Non-Linear **Function**

Andrew Ng

$$\begin{array}{c} \operatorname{Cost}(h_{\theta}(x^{(i)}),y^{(i)}) = \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2} \\ & \stackrel{\text{"non-convex"}}{\longrightarrow} J(\theta) \\ & \stackrel{\text{We want } J(\theta) \text{ to behave like this}}{\longrightarrow} \\ & \theta \end{array}$$

Logistic regression cost function

 $Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$

large cost.

If
$$y = 1$$

$$h_{0}(x)$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y=1|x;\theta)=0$), but y=1, we'll penalize learning algorithm by a very

Different

Cost Function

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

In logistic regression, the cost function for our hypothesis outputting (predicting) $h_{\theta}(x)$ on a training example that has label $y \in \{0,1\}$ is:

$$\mathrm{cost}(h_{\theta}(x),y) = \begin{cases} -\log h_{\theta}(x) & \text{if } y = 1 \\ -\log(1-h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Which of the following are true? Check all that apply.

If $h_{\theta}(x) = y$, then $\mathrm{cost}(h_{\theta}(x), y) = 0$ (for y = 0 and y = 1).

Well done!

If y=0, then $\mathrm{cost}(h_{\theta}(x),y) o \infty$ as $h_{\theta}(x) o 1$.

Well done!

 \equiv If y=0, then $\mathrm{cost}(h_{\theta}(x),y)
ightarrow \infty$ as $h_{\theta}(x)
ightarrow 0$.

Well done!

 $^{ ext{\tiny M}}$ Regardless of whether y=0 or y=1, if $h_{ heta}(x)=0.5$, then $\cot(h_{ heta}(x),y)>0$.

Well done!

Machine Learning

Logistic Regression

Simplified cost function and gradient descent

Logistic regression cost function

Note: y = 0 or 1 always

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Logistic regression cost function

 $x^{(i)}$ = input (features) of i^{th} training example.

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$

To fit parameters θ :

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

}

(simultaneously update all θ_j)

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

```
Repeat \{ \theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \} (simultaneously update all \theta_j)
```

Algorithm looks identical to linear regression!

Machine Learning

Logistic Regression

Advanced optimization

Optimization algorithm

Cost function $J(\theta)$. Want $\min_{\theta} J(\theta)$.

Given θ , we have code that can compute

- $J(\theta)$
- $-\frac{\partial}{\partial \theta_i}J(\theta)$ (for $j=0,1,\ldots,n$)

Gradient descent:

Repeat $\{$ $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$ $\}$

Optimization algorithm

Given θ , we have code that can compute

-
$$J(\theta)$$

$$-\frac{\partial}{\partial \theta_j}J(\theta)$$
 (for $j=0,1,\ldots,n$)

Optimization algorithms:

- Gradient descent
- Conjugate gradient
- BFGS
- L-BFGS

Advantages:

- No need to manually pick α
- Often faster than gradient descent.

Disadvantages:

- More complex

Example:

$$\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2$$

$$\frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$$

$$\frac{\partial}{\partial \theta_2} J(\theta) = 2(\theta_2 - 5)$$

$$\begin{aligned} \text{theta} &= \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \\ \text{function [jVal, gradient]} &= \text{costFunction(theta)} \\ \text{jVal} &= [\text{code to compute } J(\theta)]; \\ \text{gradient(1)} &= [\text{code to compute } \frac{\partial}{\partial \theta_0} J(\theta)]; \\ \text{gradient(2)} &= [\text{code to compute } \frac{\partial}{\partial \theta_1} J(\theta)]; \\ \vdots \\ \text{gradient(n+1)} &= [\text{code to compute } \frac{\partial}{\partial \theta_n} J(\theta)]; \end{aligned}$$

Machine Learning

Logistic Regression

Multi-class classification: One-vs-all

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.

On a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$