

Super Resolution with Despisement

Super Resolution using DeepLearning

Super Resolution?

저해상도 이미지, 영상을 고해상도로 변환하는 작업

범죄 예방

영상 화질

의료 이미지

프로젝트 목표

딥러닝을 활용한 Super Resolution 구현

데이터 세트

- Super Resolution dataset from Kaggle
- Total 200 images

CNN based Model

SRCNN (2014)

모델 구조

특징

- Bicubic interpolation을 통해 이미지 사이즈 통일
- 3개의 CNN 레이어 사용

SRCNN (2014)

학습 결과

자체 모델

모델 구조

특징

• 두 번의 Upsampling layer

자체 모델

학습 결과

ESPCN (2016)

모델 구조

[(?, 384, 384, 3)]

 $tf_op_layer_DepthToSpace: TensorFlowOpLayer$

특징

Efficient sub-pixel convolution layer 사용

ESPCN (2016)

학습 결과

GAN based Model

SRGAN (2017)

모델 구조

특징

- 생성자 모델은 고해상도 이미지 생성에 중점.
- 판별자 모델은 생성된 이미지와 실제 고해상도 이미지 구분에 중점

SRGAN (2017)

학습 결과

결과 및 향후 방향

- 모델 작성과 테스트에 시간 필요
 - 짧은 프로젝트 기간에 모든 모델을 직접 작성하고 테스트하는 것이 어려웠음.
- 평가 지표에서의 제한
 - Super resolution에 loss 계산하는 다양한 방법 존재, CNN과 GAN에서 사용한 loss가 달라 통일된 지표 제시 어려움.
- 리소스 측면의 제한
 - GAN 모델 학습에 로컬, colab 무료 리소스 사용에 제한.
- SRGAN 모델 에러 개선 필요
 - SRGAN 학습에 발생했던 에러 해결 필요.
- 최신 모델 테스트
 - ESRGAN 등 이후에 나온 최신 모델 테스트.
- 영상에 super resolution 적용
 - 학습 완료 후 영상 화질 개선에 적용.

감사합니다.