Cohomology Rings of Configuration Spaces

Lev Kruglyak

May 2, 2023

In this paper, we prove the following theorem.

Definition 1. Recall that a configuration space of \mathbb{R}^n is defined as:

$$\operatorname{Conf}_k(\mathbb{R}^n) = \{(x_1, \dots, x_k) : x_i \in \mathbb{R}^n, x_i \neq x_j \text{ for } i \neq j\}.$$

Theorem 1. We have the following isomorphism of graded commutative algebras, where $1 \le a < b < c \le k$:

$$H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \cong \left\langle \alpha_{ab} \mid \alpha_{ab}^2, \ \alpha_{ab} + (-1)^{n+1} \alpha_{ba}, \ \alpha_{ab} \alpha_{bc} + \alpha_{bc} \alpha_{ca} + \alpha_{ca} \alpha_{ab} \right\rangle.$$

To prove this theorem, we'll place $\operatorname{Conf}_k(\mathbb{R}^n)$ into a fiber sequence, then apply the Leray-Hisrch theorem.

Theorem 2 (Leray-Hirsch). Let $\pi: E \to B$ be a fiber bundle with fiber F. Suppose that for each t, the abelian group $H^t(F)$ is free of finite rank. Assume that the restriction $H^*(E) \to H^*(F)$ is surjective. Because $H^t(F)$ is a free abelian group for each t, the surjection $H^*(E) \to H^*(F)$ admits a splitting; pick one, say $s: H^*(F) \to H^*(E)$. The projection map renders $H^*(E)$ a module over $H^*(B)$. The $H^*(B)$ -linear extension of s,

$$\overline{s}: H^*(B) \otimes H^*(F) \to H^*(E)$$

is then an isomorphism of $H^*(B)$ -modules.

To apply this, we first need to build a fiber sequence around $\operatorname{Conf}_k(\mathbb{R}^n)$.

Lemma 1. Let $p_k : \operatorname{Conf}_k(\mathbb{R}^n) \to \operatorname{Conf}_{k-1}(\mathbb{R}^n)$ be the map which sends (x_1, \ldots, x_k) to (x_1, \ldots, x_{k-1}) . Then p_k is a fiber bundle, and the fiber at a point (x_1, \ldots, x_{k-1}) is the space $\mathbb{R}^n - \{x_1, \ldots, x_{k-1}\}$.

Proof. We just need to prove the local triviality condition, i.e. given some point (x_1, \ldots, x_{k-1}) , we need an open neighborhood $\mathcal{U} \subset \operatorname{Conf}_{\parallel -\infty}(\mathbb{R}^{\setminus})$, and an isomorphism $\varphi_{\mathcal{U}}$ such that the following diagram commutes:

Let $\epsilon > 0$ be some real value such that $x_j \neq B_{\epsilon}(x_i)$ for $i \neq j$. Then, let $\mathcal{U} = \bigcup_i B_{\epsilon}(x_i)$, which is a subset of $\operatorname{Conf}_{k-1}(\mathbb{R}^n)$. Note that $p_k^{-1}(\mathcal{U})$ is the set:

$$p_k^{-1}(\mathcal{U}) = \{(x_1, \dots, x_k) : ||x_i|| < \epsilon \text{ for } i \le k - 1\}.$$

Now we can set $\varphi_{\mathcal{U}}$ to be the identity homeomorphism. This proves the local triviality condition.

Another condition which must be met to apply the Leray-Hirsch theorem is that $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \to H^*(\mathbb{R}^n - \{x_1, \dots, x_{k-1}\})$ is surjective. To do this, we establish some notation.

Definition 2. Let $1 \le a < b \le k$. The Gauss map $\gamma_{ab} : \operatorname{Conf}_k(\mathbb{R}^n) \to S^{n-1}$ is given by

$$\gamma_{ab}(x_1, \dots, x_k) = \frac{x_b - x_a}{\|x_b - x_a\|}.$$

Letting $\iota_{n-1} \in H^{n-1}(S^{n-1})$ be any choice of generator, set $\alpha_{ab} = \gamma_{ab}^*(\iota_{n-1})$ for some $1 \le a < b \le k$.

Lemma 2. The restriction map $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \to H^*(\mathbb{R}^n - \{x_1, \dots, x_{k-1}\})$ is surjective.

Proof. We prove this by showing that $H^*(\mathbb{R}^n - \{x_1, \dots, x_{k-1}\})$ is generated by α_{ak} . We will construct right inverse maps $\psi_i : S^{n-1} \to \mathbb{R}^n - \{x_1, \dots, x_{k-1}\}$ to γ_{ik} . Since all $\mathbb{R}^n - \{x_1, \dots, x_{k-1}\}$ are homotopic for distinct x_i , we can assume that $x_i = (f(i), 0, \dots, 0)$ for some real function with f(0) = 1. Then let's set $\psi_i(v) = x_i + e^i v$ for any $v \in S^{n-1}$. Clearly

$$\gamma_{ik} \circ \psi_i(v) = \frac{x_i + f(i)v - x_i}{\|x_i + f(i)v - x_i\|} = v.$$

Furthermore, note that $\psi_i: S^{n-1} \to \mathbb{R}^n - \{x_1, \dots, x_{k-1}\}$ give us a homotopy equivalence between $\bigvee_{k=1} S^{n-1}$ and $\mathbb{R}^n - \{x_1, \dots, x_{k-1}\}$. Thus, it follows that $H^*(\mathbb{R}^n - \{x_1, \dots, x_{k-1}\})$ is generated by $\gamma_{ik}^*(\alpha) = \alpha_{ik}$. Thus the map is surjective.

Lemma 3. For some $k \ge 0$, let B_k be the set of classes:

$$B_k = \bigsqcup_{m \ge 0} \left\{ \prod_{i \ge 1}^m \alpha_{a_i b_i} : 1 \le b_1 < \dots < b_m \le k, \alpha_i < b_i \right\}.$$

Then as a \mathbb{Z} -module, $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \cong \mathbb{Z}\langle B_k \rangle$.

Proof. This is proven by induction on k, via repeated applications of the Leray-Hirsch theorem. The base case of k = 1 is trivial, since $\operatorname{Conf}_1(\mathbb{R}^n) = \mathbb{R}^n$. Suppose the claim is true for k - 1. By the Leray-Hirsch theorem we get an isomorphism of \mathbb{Z} -modules:

$$H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \cong H^*(\mathbb{R}^n - \{x_1, \dots, x_{k-1}\}) \otimes H^*(\operatorname{Conf}_{k-1}(\mathbb{R}^n))$$

$$\cong \mathbb{Z}\langle 1, \alpha_{ak} : 1 \leq a \leq k-1 \rangle \otimes \mathbb{Z}\langle B_{k-1} \rangle.$$

This completes the proof, since appending α_{ak} to B_{k-1} gives us B_k .

Having understood the additive structure of $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$, let's now look at the multiplicative structure. We can first prove some basic relations.

Lemma 4.
$$\alpha_{ab} = (-1)^n \alpha_{ba}$$
.

Proof. Observe that we have a commutative diagram, where -1 is the antipodal map.

$$\begin{array}{ccc}
\operatorname{Conf}_{k}(\mathbb{R}^{n}) & & & & H^{*}(\operatorname{Conf}_{k}(\mathbb{R}^{n})) \\
& & & & \gamma_{ab} \downarrow & & \gamma_{ba} \\
S^{n-1} & \longrightarrow & S^{n-1} & & & \mathbb{Z}[x_{n-1}] & \longleftarrow & \mathbb{Z}[x_{n-1}]
\end{array}$$

The second, induced diagram follows because the antipodal map on S^{n-1} has degree $(-1)^n$. Since $\gamma_{ab}^* = (-1)^n \alpha_{ba}^*$, it follows that $\gamma_{ab}^*(\iota_{n-1}) = (-1)^n \alpha_{ba}^*(\iota_{n-1})$ so we get our relation.

Lemma 5. $\alpha_{ab}^2 = 0$.

Proof. This follows because:

$$\alpha_{ab}^2 = \gamma_{ab}^*(\iota_{n-1}) \smile \gamma_{ab}^*(\iota_{n-1})$$
$$= \gamma_{ab}^*(\iota_{n-1} \smile \iota_{n-1})$$
$$= 0.$$

The final equality is zero because $H^*(S^{n-1}) \cong \mathbb{Z}[x_n]/(x_n^2)$.

Notice that there is a right action of the symmetric group Σ_k on $\operatorname{Conf}_k(\mathbb{R}^n)$ given by $(x_1, \ldots, x_k) \cdot \sigma = (x_{\sigma(1)}, \ldots, x_{\sigma(k)})$. This gives us the following relation.

Lemma 6. For any $\sigma \in \Sigma_k$, we have $\sigma^* \alpha_{ab} = \alpha_{\sigma(a)\sigma(b)}$.

Proof. For this case, we get a similar diagram:

$$\begin{array}{ccc}
\operatorname{Conf}_{k}(\mathbb{R}^{n}) & \xrightarrow{\sigma} & \operatorname{Conf}_{k}(\mathbb{R}^{n}) & H^{*}(\operatorname{Conf}_{k}(\mathbb{R}^{n})) & \xrightarrow{\sigma^{*}} & H^{*}(\operatorname{Conf}_{k}(\mathbb{R}^{n})) \\
\gamma_{\sigma(a)\sigma(b)} \downarrow & & & & & & \\
S^{n-1} & & & & & & \\
\mathbb{Z}[x_{n-1}] & & & & & & \\
\end{array}$$

Thus we get the desired relation.

Next we prove the Arnold relation.

Lemma 7. For
$$1 \le a < b < c \le k$$
, we have $\alpha_{ab}\alpha_{bc} + \alpha_{bc}\alpha_{ca} + \alpha_{ca}\alpha_{ab} = 0$.

Proof. Recall that $H^{2n-2}(\operatorname{Conf}_3(\mathbb{R}^n))$ is free, with basis $\{\alpha_{12}\alpha_{23}, \alpha_{23}\alpha_{31}\}$. Applying the relations, we also have a basis $\{\alpha_{12}\alpha_{23}, \alpha_{31}\alpha_{12}\}$. Thus, there must be some linear dependence

$$x \cdot \alpha_{12}\alpha_{23} + y \cdot \alpha_{23}\alpha_{31} + z \cdot \alpha_{31}\alpha_{12} = 0.$$

To solve for these coefficients, we apply the previous lemma. Let $\tau_{12} \in \Sigma_3$ be the transposition switching 1 and 2. Applying it to the linear dependence, and using the commutativity rules gives us:

$$x \cdot \alpha_{21}\alpha_{13} + y \cdot \alpha_{13}\alpha_{32} + z \cdot \alpha_{32}\alpha_{21} = 0$$
$$(-1)^n x \cdot \alpha_{12}\alpha_{13} + (-1)^n y \cdot \alpha_{13}\alpha_{23} + (-1)^{2n} z \cdot \alpha_{12}\alpha_{23} = 0$$

We do a similar thing with τ_{23} , to get another dependence. It is straightforward to check that solving the resulting system of equations gives us x = y = z, so by additive freeness of $H^*(\text{Conf}_3(\mathbb{R}^n))$ we can cancel x and get our desired relation in $H^*(\text{Conf}_3(\mathbb{R}^n))$:

$$\alpha_{ab}\alpha_{bc} + \alpha_{bc}\alpha_{ca} + \alpha_{ca}\alpha_{ab} = 0.$$

Now in the general case k > 3, given some a, b, c, we have a map φ_{abc} : $\operatorname{Conf}_k(\mathbb{R}^n) \to \operatorname{Conf}_3(\mathbb{R}^n)$ which sends (x_1, \ldots, x_k) to (x_a, x_b, x_c) . Notice that φ_{abc} induces an injective map of cohomology rings $H^*(\operatorname{Conf}_3(\mathbb{R}^n)) \to H^*(\operatorname{Conf}_k(\mathbb{R}^n))$. Thus, the Arnold relation lifts to the cases k > 3.

Finally, we can prove the desired theorem: the commutativity relation, the nilpotency relation, and the Arnold relation completely describe the multiplicative structure of $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$. Specifically, the quotient of the free graded commutative algebra on the generators $\{\alpha_{ab}\}_{1\leq a\neq b\leq k}$ by the relations. Given some element of this free graded commutative algebra, using the nilpotency and commutativity relation, we can rewrite such an element in the form $\alpha_{a_1b_1}\cdots\alpha_{a_mb_m}$, where $a_i< b_i$, and $1\leq b_1\leq \cdots b_m\leq k$. We can then repeatedly use the Arnold relation to force $b_1<\cdots< b_m$. Specifically, if $b_\ell=b_{\ell-1}$, we have

$$\alpha_{a_1b_1} \cdots \alpha_{a_{\ell-1}b_{\ell-1}} \alpha_{a_{\ell}b_{\ell}} \cdots \alpha_{a_mb_m}$$

$$= (-1)^* \alpha_{a_1b_1} \cdots \left(\alpha_{a_{\ell}a_{\ell-1}} \alpha_{a_{\ell-1}b_{\ell-1}} + \alpha_{b_{\ell}a_{\ell}} \alpha_{a_{\ell}a_{\ell-1}} \right) \cdots \alpha_{a_mb_m}$$

By repeated induction, we can thus force this element into a linear combination of elements in B_k , the additive spanning basis for $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$.

Recall that the additive basis for $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$ was given by B_k , and consists of elements of the form $\alpha_{a_1b_1} \cdots \alpha_{a_mb_m}$.