DREVAN: Deep Reinforcement Learning-based Vulnerability-Aware Network Adaptations for Resilient Networks

Qisheng Zhang (presenter) ¹ Jin-Hee Cho ²

Terrence J. Moore ³ Frederica Free Nelson ⁴

^{1,2}Department of Computer Science, Virginia Tech

^{3,4}US Army Research Laboratory

IEEE CNS 2021, October 2021

Outline

- Introduction
- Related Work
- Problem Statement
- System Model
 - Network Model
 - Node Model
 - Attack Model
- Proposed Framework
 - Vulnerability Ranking of Edges and Nodes (VREN)
 - Fractal-based Solution Search (FSS)
 - DRL-based Budget Adaptation
- Experimental Setup
- Numerical Results and Analyses
- Conclusions

Motivation

Achieving network security and network resilience by network topology adaptation under software polyculture environment.

Key Contributions

- Proposed a network topology adaptation technique to achieve network resilience in terms of maximizing system security and network connectivity.
- Presented two algorithms to support the DRL agent to efficiently identify an optimal adaptation budget strategy to meet the two system goals.
 - VREN: <u>Vulnerability Ranking algorithm of Edges and Nodes</u>
 - FSS: <u>Fractal-based Solution Search algorithm</u>
- Conducted extensive comparative performance analysis based on six network topology adaptation schemes.
- Found that DRL-based network topology adaptations particularly outperform with regard to minimizing system security vulnerability.

Related Work

Deployment of diversity-based network adaptations

- Metric-based: graph coloring based software allocation/assignment ¹
- Metric-free: software assignment ²; network topology shuffling ³

DRL-based network topology shuffling

- Addition: adding edges to networks 4
- Removal: removing edges from networks ⁵
- Shuffling: redirecting edges in networks ^{6 7}

Limitations

- Lack of study to determine an optimal number of edge adaptations for resilient networks
- Limited topology operations
- Slow convergence for DRL agents to identify optimal solutions

Borbor et al., 2019

² Yang et al., 2016

³ Hong et al., 2016

⁴ Darvariu et al., 2020

⁵ Dai et al., 2018

⁶ Chai et al., 2020

⁷ Zhang et al., 2020

Problem Statement

- Main idea: optimize network security($\mathcal{F}_{\mathcal{C}}$) + resilience($\mathcal{S}_{\mathcal{G}}$)
- Objective function :

$$\arg\max_{b_{A},b_{R}}f(G')-f(G), \ \ s.t. \quad 0 \leq b_{A}+b_{R} \leq B, \tag{1}$$

G : original network

G': adapted network

 b_A : addition budget

 b_R : removal budget

$$f: G \mapsto \mathcal{S}_G(G) - \mathcal{F}_C(G)$$

System Model

- Network Model: A centralized system with one centralized controller
- Node Model
 - Activity indicator(IDS): $na_i = 1(alive)/0(failed)$
 - Compromise indicator: $nc_i = 1(\text{compromised})/0(\text{not compromised})$
 - Software version: $s_i \in [1, N_s]$, N_s : # of available software packages
 - Software vulnerability: $sv_i \in [0,1]$ 8
- Attack Model
 - Epidemic attacks: P_a
 - Perform two attack trials to infect its direct neighbors
 - Learn software versions along attacks
 - State manipulation attacks: P_s
 - Inject fake rewards

The extent of a Common Vulnerabilities Vulnerability Scoring System (CVSS) and Exposures (CVE) based on a Common

Vulnerability Ranking of Edges and Nodes (VREN)

- Precision control by # of attack simulations
- Edge vulnerability level V_E : # of times it is used by attackers to compromise other nodes
- Node vulnerability level V_V : # of times it becomes an attacker (being compromised)
- Ranking system
 - \blacksquare R_E : edge ranking based on V_E in descending order
 - lacksquare R_V : node ranking based on V_V in ascending order
- Adaptation based on budget constraints $[b_R, b_A]$
 - lacksquare b_R : edge removal budget
 - $lackbox{b}_A$: edge addition budget

Fractal-based Solution Search (FSS)

- Self-similar fractals
 - Centroid representation for each division
 - Logarithm complexity: \[\log B \]
 (B: the upper bound of the total adaptation budget)
- Discrete evaluation
 - Nearest integer points: (b_R, b_A)
 (b_R: edge removal budget, b_A: edge addition budget)

Figure 1: Generation of self-similar fractals to reduce solution search space in edge addition and removal budgets, (b_A, b_B) .

Proposed DREVAN Framework

DRL-based Budget Adaptation

- States
 - $s_t = (b_A^t, b_B^t, G_t')$
 - b^t_R: removal budget at time t; b^t_A: addition budget at time t; G'_t: the network at time t
- Actions
 - FSS: $a_t = \{A, B, C, D\}$, where $1 \le t \le \lceil \log_2 B \rceil$
 - LS (Linear Search): $a_t = \{stop, add, remove\},\$ where 1 < t < B
- Rewards
 - $\mathcal{R}(s_t, a_t, s_{t+1}) = f(G'_{t+1}) f(G'_t)$, where $f: G \mapsto \mathcal{S}_G(G) \mathcal{F}_C(G)$ (size of the giant component fraction of compromised nodes).

Figure 2: The overall architecture of the proposed DREVAN: The color of each node refers to a different software package installed in it

Experimental Setup

- Random Graph
 - ER: Erdős-Rényi random graph model
 - Number of nodes N = 200
 - Connection probability p = 0.05
- Attack Types Considered
 - State Manipulation Attacks
 - Probability for a system state to be manipulated by the attacker $P_s = 0.3$
 - Epidemic Attacks
 - Fraction of initial attackers in a network $P_a = 0.3$

Experimental Setup

Table 1: Key Design Parameters, Meanings, and Default Values

Param.	Meaning	Value
na	Attack simulation times	500
n _r	Number of simulation runs	200
ne	Training episodes of DRL-based schemes	1000
N	Total number of nodes in a network	200
k	Upper hop bound for edge addition	3
γ	Intrusion detection probability	0.9
P_{fn}, P_{fp}	False negative or positive probability	0.1, 0.05
×	Degree of software vulnerability	0.5
р	Connection probability between pairs of nodes in an ER	0.05
	network	
1	Number of software packages available	5
Pa	Fraction of initial attackers in a network	0.3
В	Upper bound of the total adaptation budget	500
Ps	Probability of state manipulation attacks	0.3
Dr	Detection rate of state manipulation attacks	0.99

Asymptotic Analysis of the Compared Schemes

Scheme	Complexity	
DQN with DREVAN	$O(n_e \times \lceil \log_2 B \rceil \times T_{train} \times n_a)$	
DQN with FSS	$O(n_e imes \lceil \log_2 B \rceil imes T_{train} imes n_a)$	
DQN with VREN	$O(n_e imes B imes T_{train} imes n_{a})$	
DQN	$O(n_e imes B imes T_{train} imes n_{a})$	
Greedy	$O(\lceil \log_2 B \rceil \times n_a)$	
Random	$O(n_a)$	
Optimal	$O(B^2 \times n_a)$	

 $n_{\rm e}$: the training episode

B: the upper bound of total adaptation budget

 T_{train} : the training time per episode

 n_a : the attack simulation times

Converged Reward with respect to Training Episodes

- DQN with DREVAN performs the best.
- DQN with FSS can only learn a sub-optimal policy.
- DQN with VREN and DQN cannot learn well with LS.

Effect of Varying the Number of Software Packages Available (/) under an ER Network

- (a) Converged reward (\mathcal{CR}) (b) Size of the giant com- (c) Fraction of comproponent (\mathcal{S}_G) mised nodes (\mathcal{F}_C)
 - As *I* increases, \mathcal{F}_C drops and \mathcal{S}_G increases.
 - Overall performance order: Optimal \geq DQN \approx Double DQN \approx Dueling DQN \geq Greedy \geq Random.

Effect of Varying the Upper Bound of the Total Adaptation Budget (B) under an ER Network

- (a) Converged reward (CR) (b) Size of the giant com- (c) Fraction of comproponent (S_G) mised nodes (F_C)
 - Higher B increases CR while decreasing F_C , but it does not necessarily improve S_G .
 - Overall performance order: Optimal \geq DQN with DREVAN \approx Double DQN with DREVAN \approx Dueling DQN with DREVAN \geq Greedy \geq Random.
 - Dueling DQN with DREVAN is more sensitive to B than DQN with DREVAN and Double DQN with DREVAN.

Effect of Varying Probability of State Manipulation Attacks (P_s) under an ER Network

- (a) Converged reward (\mathcal{CR}) (b) Size of the giant com- (c) Fraction of comproponent ($\mathcal{S}_{\mathcal{G}}$) mised nodes ($\mathcal{F}_{\mathcal{C}}$)
 - Higher P_s brings lower CR and S_G while introducing more F_C .
 - The Greedy scheme is more sensitive to P_s than DRL-based schemes.

Effect of Varying Detection Rate of State Manipulation Attacks (D_r) under an ER Network

- (a) Converged reward (\mathcal{CR}) (b) Size of the giant com- (c) Fraction of comproponent (\mathcal{S}_G) mised nodes (\mathcal{F}_C)
 - Higher D_r increases CR and S_G while lowering F_C .
 - **DRL**-based schemes only outperform with higher D_r .
 - Overall DQN with DREVAN performs slightly better than Double DQN with DREVAN and Dueling DQN with DREVAN.

Conclusions

- Proposed a fractal-based environment (FSS) that can significantly reduce the training complexity of our DRL algorithms.
- Proposed a vulnerability-aware ranking algorithm (VREN) to strategically adapt edges for efficient and effective network configurations.
- Proposed a DRL-based framework, DREVAN, to minimize system vulnerability while maintaining comparable or better network connectivity.
- Showed the outperformance of three different types of Deep Q-learning algorithms against the counterpart and baseline schemes.

Any Questions?

Thank you!

Qisheng Zhang at qishengz19@vt.edu

National Capital Region Campus 7054 Haycock Rd., Office 314 Falls Church, VA 22043

