6/10/2021 HW3

Homework 3

Problem 1

For a 2-link arm, assume

- Upper arm length: $l_1=0.34~\mathrm{m}$
- ullet Forearm length: $l_2=0.46~\mathrm{m}$
- Hand position: x = (0.36, 0.65) in m
- Hand velocity: $\dot{x} = (-3.89, 1.30) \text{ in m/s}$
- Hand acceleration: $\ddot{x} = (-7.79, -26.18)$ in m/s²

a: The Jacobian

Work through the derivaitves by hand to find $J(\theta)$ and $\dot{J}(\theta)$.

b: Inverse kinematics

Use Python (or other program) to calculate numerically the joint angle in degrees, angular velocity in deg/s, and angular acceleration in deg/s²

c: Forward kinematics

Starting with your answers in part (b), calculate the forward kinematics to get hand position, velocity and acceleration. Compare your results to the original values.

Problem 2

a: Simulate dynamics of two joint arm

Following the equations of motion defined in class, simulate the dynamics a two-link arm of 4 sec. Plot the trajectory in the x/y plane and the x and y velocities as functions of time.

Use a time step of $1\ \mathrm{msec}$ and a total simulation time of $4\ \mathrm{sec}.$

Use the following constants for the arm:

Upper arm

- ullet Mass: $m_1=2.1~{
 m kg}$
- ullet Moment of inertia: $I_1=0.025~\mathrm{N~s^2}$
- ullet Length: $l_1=0.3384~\mathrm{m}$
- ullet Center of mass: $r_1=0.1692~\mathrm{m}$

Lower arm

- Mass: $m_2=1.65~\mathrm{kg}$
- Moment of inertia: $I_2=0.075~\mathrm{N~s^2}$
- Length: $l_2 = 0.4554 \text{ m}$
- ullet Center of mass: $r_2=0.2277~\mathrm{m}$
- Gravitational constant: $g = 9.81 \; \mathrm{m/s^2}$
- Shoulder muscle torque: $\tau_s=0$
- Elbow mucle torque: $au_e=0$

And initial conditions:

- $heta_s=180^\circ$
- $\bullet \ \ \theta_e = 1^\circ = \dot{\theta}_s = 0^\circ/s = \dot{\theta}_e = 0^\circ/s$

b: Show energies

6/10/2021 HW3

Plot the total kinetic energy (T), total potential energy (U) and grand total energy (T+U) over the course of the simulation.