This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

						TGC													С
rg	GAG	ACC	CCT	GTG	TCG	GIT	CCT	GTG	GCT	TTG	GTC	CTA	TCT	GTC	TTA	TGT	TCA	AGC	AGT
Ä						F_													
						J:JA										TGT	CAC	CAG	GAT
5		_	×		_	=								I				R	I
_	_	_				GCA													
I _	D	I	S			<u>ু</u>						_				G	L	Ð	F
						CAI													
:	. P	G		H 	5		L						. D	_	T	L	Α	v	Y
_	_					CCT													
2	Q		L		_		₽		_		v		Q				D	I.	Ε
_						CCA													
i ~	L					Н							S			L	P	Q	T
						AGA													
	G	L	-	_K 	P	_			D					A	_	_	Y	S	T
						CAG													
:		V			S			_	G			_	D TOO			Q	-	L	D
						AAG	TTT	CAA	AGG	CCA	CCA.	رورور	100	CAA	GAA	TCA	161	AGA	رون
' ~	S			_	*		~~~					~ . ~	<i></i>		~~~	~ ~ ~		~ > ~	
						GGG													
						TAG													
						CAT													
						.GAG													
						GGG													
						TGT													
						AGC.													
						AGC.													
						TGC													
						GGT													
						CCG													
						TCT													
						CTC													
						TGG													
						GAG													
						AGC													
						GTA													
						TTG													
						ACC													
						'GAG													
						CCC													
						GTC													
						TAA													
						CAC													
						TAC													
						AGA													
						CAT													
_						GAC													
						ATT													
						GAT													
						CTT													
						CAG													
						GAT													
						GCT													
						TGT													
	AGC										-GAI	-MG	- I	110	166	2 T C C	. 1 MA	CAC) Dance

GGTTG	CAAGGCCCAA	GAAGCCCA	-TCCTGGGAA	GGAAAATGCA	50
TTGGGGAACC	CTGTG-CGGA	TTCTTGTGGC	TTTGGCCCTA	TCTTTTCTAT	100
GTCCAAGCTG	TGCCCATCCA	AAAAGTCCAA	GATGACACCA	AAACCETCAT.	`150
CAAGACAATT	GTCACCAGGA	TCAATGACAT	TTCACACACG	CAGTCAGTCT	200
CCTCCAAACA	GAAAGTCACC	GGTTTGGACT	TCATTCCTGG	GCTCCACCCC	250
ATCCTGACCT	TATCCAAGAT	GGACCAGACA	CTGGCAGTCT	ACCAACAGAT	300
CCTCACCAGT	ATGCCTTCCA	GAAACGTGAT	CCAAATATCC	AACGACCTGG	350
AGAACCTCCG	GGATCTTCTT	CACGTGCTGG	CCTTCTCTAA	GAGCTGCCAC	400
TTGCCCTGGG	CCAGTGGCCT	GGAGACCTTG	GACAGCCTGG	GGGGTGTCCT	450
GGAAGCTTCA	GGCTACTCCA	CAGAGGTGGT	GGCCCTGAGC	AGGCTGCAGG	500
GGTCTCTGCA	GGACATGCTG	TGGCAGCTGG	ACCTCAGCCC	TGGGTGCTGA	550
GGCCTTGAAG	GTCACTCTTC	CTGCAAGGAC	T-ACGTTAAG	GGAAGGAACT	600
CTGGTTTCCA	GGTATCTCCA	GGATTGAAGA	GCATTGCATG	GACACCCCTT .	650
ATCCAGGACT	CTGTCAATTT	CCCTGACTCC	TCTAAGCCAC	TCTTCCAAAG	700
G		•			701

FIG.2

ĬYR ASP LEU PRO GLY LEU HIS PRO ILE LEU THR LEU SER LYS MET THR LEU ALA VAL TYR GLN GLN ILE LEU THR SER MET PRO ASN VAL ILE GLN ILE SER ASN ASP LEU GLU ASN LEU ARG LEU HIS VAL LEU ALA PHE SER LYS SER CYS HIS LEU PRO LEU PRO HIS TRP GLY THR LEU CYS GLY PHE LEU TRP LEU TRP PRO HIS THR GLN SER VAL SER SER LYS GLN LYS VAL THR GLY GLN ASP ILE ASN ASP ALA SER GLY LEU GLU THR LEU ASP SER LEU GLY GLY VAL GLU ALA SER GLY TYR SER THR GLU VAL VAL ALA LEU SER ARG GLN GLY SER LEU GLN ASP MET LEU TRP GLN LEU ASP LEU SER LYS VAL THR LEU ILE LYS THR ILE VAL THR ARG TYR VAL GLN ALA!VAL PRO ILE GLN ILE END PHE Lys ARG Leu PHE GLN GLY CYS MET THR SER ASP SER ASP TRP ASP 16 31 46 9/ 106 121 136 166 151

20	100	150	167		
RINDISHTOS RINDISHTOS	SQNVLQIAND * SRNVIQISND	STEVVALSRL		·	
MCWRPLCRFL WLWSYLSYVQ AVPIQKVQDD TKTLIKTIVT RINDISHTQS * **	VSAKORVTGL DFIPGLHPIL SLSKMDOTLA VYQQVLTSLP SQNVLQIAND * VSSKQKVTGL DFIPGLHPIL TLSKMDQTLA VYQQILTSMP SRNVIQISND	LAFSKSCSLP QTSGLQKPES LDGVLEASLY STEVVALSRL * ** ***- * LAFSKSCHLP WASGLETLDS LGGVLEASGY STEVVALSRL	No. of the No. 1846	,	• •
AVPIQKYQDD AVPIQKYQDD	SLSKMDOTLA - TLSKMDOTLA	LAFSKSCSLP QTSGLQKPES * ** ***- LAFSKSCHLP WASGLETLDS	·	FIG.4	
WLWSYLSYVQ * * WLWPYLFYVQ	DFIPGLHPIL DFIPGLHPIL	LAFSKSCSLP * LAFSKSCHLP	.00 LDVSPEC * WO LDLSPGC		
MCWRPLCRFL * ** * MHWGTLCGFL	VSAKORVTGL * VSSKOKVTGL	LENLRDLLHL LENLRDLLHV	OGSLODJILOO * * OGSLODJILOO		
Mouse Human	Mouse Human	Mouse Human	Mouse Human		

FIG.4

GLN CYS TRP ARG PRO LEU CYS ARG PHE LEU TRP LEU TRP SER TYR ASP ASP SER Asp SLN GLU ASP LEU LEU PRO Pro MET GLU ASN LEU ARG GLY VAL LEU ASP Pro LEU LEU GLN ASN GLY Lys ARG SER THR SER VAL ILE SER SER SER VAL THR CYS LEU GLN LYS SER VAL SER ALA LYS GLN ARG VAL GLY LEU GLN LYS PRO GLU SER LEU ASP ILE LYS THR ILE VAL THR ARG LEU SER LEU ILE LEU GLN GLN LEU ASP TYR GLN GLN VAL LEU LEU GLN ILE ALA ASN ASP LEU LEU LEU ALA PHE SER LYS SER THR GLU VAL VAL ALA ILE GLN ALA VAL PRO PRO ILE PRO GLY LEU HIS SER LEU ALA VAL SER LEU GLN ASP THR LEU TYR VAL SER LEU TYR Hrs THR GLN ASN VAL Lys SER HIS ILE GLN THR Leu Leu THR SER THR SER PHE ALA LEU 9/ 106 16 46 166 91 136 31 61 121 151

FIG. 5

MET HIS TRP GLY THR LEU CYS GLY PHE LEU TRP LEU TRP PRO TYR TYR VAL GLN ALA VAL PRO ILE GLN LYS VAL GLN ASP ASP ASP ASP SER ARG ASN VAL ILE GLN ILE SER ASN ASP LEU GLU ASN LEU ARG ASP LEU LEU HIS VAL LEU ALA PHE SER LYS SER CYS HIS LEU PRO TRP ALA SER GLY LEU GLU THR LEU ASP SER LEU GLY GLY VAL LEU GLU SER GLY TYR SER THR GLU VAL VAL ALA LEU SER ARG LEU GLN THR SER VAL SER SER LYS GLN LYS VAL THR GLY LEU THR LEU ILE LYS THR ILE VAL THR ARG ILE ASN ASP MET GLN THR LEU ALA VAL TYR GLN GLN ILE LEU THR SER MET PRO SER LEU GLN ASP MET LEU TRP GLN LEU ASP LEU SER PRO ILE PRO GLY LEU HIS PRO ILE LEU THR LEU SER LYS HIS THR LYS LEU PHE END PHE ALA GLY 16 46 31 106 61 121 136 151 166

FIG.8

1 2 3 4 5 6 7

FIG.9

	GTGCAAGAAG AAGAAGATCC CAGGGCAGGA AAATGTGCTG GAGACCCCTG CACGTTCTTC TTCTTCTAGG GTCCCGTCCT TTTACACGAC CTCTGGGGAC
21	TGTCGGGTCC NGTGGNTTTG GTCCTATCTG TCTTATGTNC AAGCAGTGCC CCCAGG NCACCNAAAC CAGGATAGAC AGAATACANG TTCGTCAGG
101	TATCCAGAAA GTCCAGGATG ACACCAAAAG CCTCATCAAG ACCATTGTCA ATAGGTCTTT CAGGTCCTAC TGTGGTTTTC GGAGTAGTTC TGGTAACAGT
151	NCAGGATCAC TGANATTTCA CACACG ?
	FIG.10

FIG.10

FIG.11A

white fat
brain
small intestine
stomach
pancreas
lung
testis
heart
spleen
liver

28S —

18S —

FIG.11B

FIG.12A

FIG.12B

2G7 ap2

FIG.13

FIG.14

FIG.15A

BgIII Digests

FIG.15B

FIG.16

17 PROMOTER PRIMER 69348-1

T7 PROMOTER

LAC OPERATOR

BGLII AGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTACA

AATAATITIGITITAACTITAAGAAGGAGATATACCATGGCAGCAGCCATCATCATCATCATCATCAGCAGCGGC MetGLySerSerHISHISHISHISHISSerSerGLy

<u>Leuvalproargglyser</u>hismetLeugluaspproalaalaasnlysalaarglysgluagluleuala NDEI XHOI BAMHI CTGGTGCCGCGCGCAGCATATGCTCGAGGATCCCGCTAACAAGCCCGAAAGGAAGCTGAGTTGGCT THROMBIN

GCTGCCACCGCTGAGCATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTG 17 TERMINATOR **ALAALATHRALAGLUGLNEND**

17 TERMINATOR PRIMER #69337-1

FIG.18A

FIG.18B

FIG.19A

FIG.19B

FIG.20A-1

500 CCTAGGGAAA	490 AAGGAATTGA	480 ATGTAAGAGA	460 470 480 490 500 500 66TTCTTTCA GGAAGAGGCC ATGTAAGAGA AAGGAATTGA CCTAGGGAAA	460
KB)	ENCE (~1.4	GAP OF SEQUENCE (~1.4		
	1 1 1 1 1 1 1	- I	TAAA	TCTTAATTCC TAAA
450	440	430	420	410
GGTTAGNGGT	AGATNCCAGG	NTGGCCCCCT CTGCCTGCTG AGATNCCAGG GGTTAGNGGT	NTGGCCCCCT	GTTGTTTCTT
400	390	380	370	360
ACTCTTTCTG	ACAGGGCTCC	TTTGGATAGC ACAGGGCTCC ACTCTTTCTG	TACTGGAAGC TGAGAAGGAT	CTGGAAGC
350	340	330	320	310
GCCAGGCACC	CCTCCTGAAT	TTATTGAACG	CCAGATAGTC CAAGAACAT TTATTGAACG CCTCCTGAAT GCCAGGCACC	AGATAGTC
300	290	280	270	260

HG.20A -

	550	GCAGGAATCT	009	GANACAAGGG	650	CAGAGAATGA	700	ATTCCTCCCA	750	GTCAGTCTCC	
	540	TGTGGGAAAA	590	CTGGGTGCAG	640	GGAGACAGCC	069	TCTGAGAGCG:	740	CTNCATAGCA	
	530	GAACGGATGG	580	TGGCAGTCAC	630	GAGGGTGGAA	089 	GGCAGAGGGC TCTGA(3 of 1st intron-	730	CCTCTTCCTC	
	520	ATTGGCCTGG GAAGTGGAGG GAACGGATGG TGTGGGAAAA GCAGGAATCT	570	CGGAGACCAG CTTAGAGGCT TGGCAGTCAC CTGGGTGCAG GANACAAGGG	620	CCTGAGCCAA AGTGGTGAGG GAGGGTGGAA GGAGACAGCC CAGAGAATGA	670	CCCTCCATGC CCACGGGAA GGCAGAGGGC TCTGAGAGCG ATTCCTCCCA 3 OF 1ST INTRON	720	CATGCTGAGC ACTTGTTCTC CCTCTTCCTC CTNCATAGCA GTCAGTCTCC	
·	510	ATTGGCCTGG	260	CGGAGACCAG	610	CCTGAGCCAA	099	CCCTCCATGC	710	CATGCTGAGC	HOB 2G F

FIG.20A -3

GCCCTGGGCC AGTGGCCTGG AGACCTTGGA CAGCCTGGGG GGTGTCCTGG
096
AACCTCCGGG ATCTTCTTCA CGTGCTGGCC TTCTCTAAGA
910
TCACCAGTAT GCCTTCCAGA AACGTGATCC AAATATCCAA CGACCTGGAG
098
CCTGACCTTA TCCAAGATGG ACCAGACACT
810
TCCAAACAGA AAGTCACCGG TTTGGACTTC ATTCCTGGGC
092

.

~

FIG.20A -4

1050	GCTGCAGGGG	1100	GGTGCTGAGG STOP	1150	AGGAACTCTG	1200	ACCCCTTATC	1250	TCCAAAGG
1040	CTACTCCACA GAGGTGGTGG CCCTGAGCAG GCTGCAGGGG	1090	TCTCTGCAGG ACATGCTGTG GCAGCTGGAC CTCAGCCCTG GGTGCTGAGG STOP	1140	GCAAGGACTA CGTTAAGGGA AGGAACTCTG	1190	GCTTCCAGGT ATCTCCAGGA TTGAAGAGCA TTGCATGGAC ACCCCTTATC	1240	AAGCCACTCT
1030	GAGGTGGTGG	1080	GCAGCTGGAC	1130	GCAAGGACTA	1180	TTGAAGAGCA	1230	
1020	CTACTCCACA	1070	ACATGCTGTG	1120	CCTTGAAGGT CACTCTTCCT	1170	ATCTCCAGGA HOB 2G R	1220	CAGGACTCTG TCAATTTCCC TGACTCCTCT
1010	AAGCTTCAGG	1060	TCTCTGCAGG	1110	CCTTGAAGGT	1160	GCTTCCAGGT	1210	CAGGACTCTG

FIG.20A -5

FIG.20B

HUMAN OB STRUCTURE 1st exon 1st intr 2nd exon ATG_____/////////______TGA___ start

stop

FIG.20C

FIG.21A

FIG.21B

FIG.21C

90	(FOLLOWING THROMBIN CLEAVAGE)	90
HIS.TAG THROMBIN CLEAVAGE		GLY · SER · PRO ·
α-MF SIG SEQ GLU-ALA HIS.TAG	KEX-2 STE-13 CLEAVAGE CLEAVAGE	

FIG.22B

FIG.23A

FIG.23B

FIG.24A

FIG.24B

recombinant ob (ng) wt 0.01 0.1 0.5 2.0 15.0

19.4 —

FIG.24C

Yeast M-ob
wild type
db/db

FIG.24D

FIG.25B

Yeast H-ob
HP3
HP6
HP6

FIG.25A

ĺ

FIG.26A

Human ob

Peptide	Mass(Da)	
	Expected	Observed
22-167	16,024	$16,024 \pm 3$
22-75	5936.9	5936.6 ± 1
76-89	1562.7	N.D.
90-167	8434.5	8435.6 ± 1
158-167	1131.9	N.D.

FIG.26 B

FIG.27

FIG.28A

FIG.28B

FIG.28C

FIG.28D

FIG.28E

FIG.28F

FIG.30

FIG.31

1 2 3

FIG.32A

FIG.33

FIG.34

FIG. 35A

FIG. 35B