Методы оптимизации Лекция 6: Подходы к построению солверов для решения задач оптимизации

Александр Катруца

Факультет инноваций и высоких технологий Физтех-школа прикладной математики и информатики

7 октября 2018 г.

▶ Построение двойственных функций

- Построение двойственных функций
- Связь сопряжённых и двойственных функций

- Построение двойственных функций
- Связь сопряжённых и двойственных функций
- Двойственная задача и её свойства

- Построение двойственных функций
- Связь сопряжённых и двойственных функций
- ▶ Двойственная задача и её свойства
- ▶ Сильная и слабая двойственность

- Построение двойственных функций
- Связь сопряжённых и двойственных функций
- ▶ Двойственная задача и её свойства
- Сильная и слабая двойственность
- ККТ и условие Слейтера

Задача оптимизации

$$\min_{x\in\mathbb{R}^n} f_0(x)$$
 s.t. $f_i(x)\leq 0,\ i=1,\ldots,m$
$$h_j(x)=0,\ j=1,\ldots,p$$

lacktriangle Возможность эффективного решения сильно зависит от свойств f_0, f_i, h_j

Задача оптимизации

$$\min_{x \in \mathbb{R}^n} f_0(x)$$
 s.t. $f_i(x) \leq 0, \ i = 1, \dots, m$ $h_j(x) = 0, \ j = 1, \dots, p$

- Возможность эффективного решения сильно зависит от свойств f_0, f_i, h_j
- Если f_0, f_i, h_j аффинны, то это задача линейного программирования (LP), которая может быть решена крайне быстро

Задача оптимизации

$$\min_{x \in \mathbb{R}^n} f_0(x)$$
 s.t. $f_i(x) \leq 0, \ i = 1, \dots, m$
$$h_j(x) = 0, \ j = 1, \dots, p$$

- Возможность эффективного решения сильно зависит от свойств f_0, f_i, h_j
- Если f_0, f_i, h_j аффинны, то это задача линейного программирования (LP), которая может быть решена крайне быстро
- lacktriangle Простые задачи с нелинейными f_i,h_j могут быть очень сложными для решения

Задача выпуклой оптимизации

$$\min_{x\in\mathbb{R}^n}f_0(x)$$
 s.t. $f_i(x)\leq 0,\ i=1,\ldots,m$ $Ax=b$

 $lacktriangledown f_0, f_i$ выпуклые функции: для всех x,y и $lpha \in [0,1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

▶ Ограничения типа равенств аффинны

Свойства задач выпуклой оптимизации

- Подмножество задач оптимизации: LP частный случай
- ▶ Могут выглядеть очень сложно, однако решаются также эффективно как и задача LP
- ▶ Встречаются гораздо чаще, чем можно было бы подумать
- ▶ Очень много приложений

Общие подходы к использованию выпуклости

- ightharpoonup Надеяться/предполагать/делать вид, что f_i выпуклы
 - Просто для пользователя
 - Теряется часть преимуществ выпуклых задач
- Проверка выпуклости задачи перед решением
 - в общем случае может быть затруднительна
- ▶ Построение выпуклой задачи из элементарных блоков
 - ullet пользователь следует фисированному набору правил при определении f_i
 - выпуклость проверяется автоматически

Как проверить выпуклость?

- ▶ Определение, критерии первого или второго порядка, например $abla^2 f(x) \succeq 0$
- ightharpoonup Исчисление выпуклых функций: построение f, используя
 - набор простых функций, выпуклость которых известна
 - сочетания или преобразования, не меняющие выпуклость

Примеры простых выпуклых функций

- ▶ При x>0: x^p для $p<0,\; p\geq 1$ и x^{-p} для $p\in [0,1]$
- $ightharpoonup e^x$, $-\log x$, $x\log x$
- $ightharpoonup \langle a, x \rangle + b$
- ▶ ||x|| любая норма
- $\max\{x_1,\ldots,x_n\} \text{ u } \log(e^{x_1}+\ldots+e^{x_n})$
- ▶ $\log \det X^{-1}$ для $X \in \mathbb{S}^n_+$

Правила исчисления выпуклых функций

- Умножение на неотрицательную константу: f выпукла и lpha>0, тогда lpha f выпукла
- lacktriangle Сложение: f,g выпуклы, тогда f+g выпукла
- Композиция с аффинной функцией: f выпукла, тогда f(Ax+b) также выпукла
- ightharpoonup Взятие максимума: f_1,\dots,f_m выпуклы, тогда $\max_{i=1,\dots,m} \{f_i(x)\}$ выпукла
- Композиция: если h выпукла и возрастает, f выпукла, тогда g(x) = h(f(x)) выпукла
- И многие другие...

Примеры

- $f(x) = \max_{i} (\langle a_i, x \rangle + b_i)$
- lacktriangledown ℓ_1 регуляризация задачи наименьших квадратов

$$f(x) = \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1, \quad \lambda > 0$$

Логарифмический барьер

$$-\sum_{i=1}^{m} \log(-f_i(x))$$

при $\{x|f_i(x)<0\}$ и выпуклых $f_i(x)$

• Максимальное собственное значение $A \in \mathbb{S}^n$:

$$\lambda_{\max}(A) = \sup_{\|x\|_2 = 1} (x^{\top} A x)$$

Как решать задачу выпуклой оптимизации?

- ▶ Использовать «стандартный» солвер (для LP, QP, SDP...)
 - лёгкий путь
 - задача должна быть в стандартной форме
 - сложность разработки компенсируется количеством пользователей
- Придумать и/или реализовать метод самостоятельно
 - Трудоёмко
 - Может быть эффективнее для конкретной задаче
- Преобразовать задачу к стандартному виду и использовать стандартный солвер
 - Расширяет множество задач, подходящих для решения стандартными солверами
 - Преобразование может быть громоздким для выполнения

Общие методы решения задач выпуклой оптимизации

Субградиентный метод, метод эллипсоидов, проксимальный метод и их вариации

- ▶ В основном разработаны в СССР в 1960-1970-ых годах, подробнее см. заметки Б.Т. Поляка
- ightharpoonup Универсальные методы решения задач выпуклой оптимизации, даже для недифференцируемых f_i
- Метод эллипсоидов эффективен в теории (полиномиален)
- ▶ На практике такие методы могут быть медленными

Методы внутренней точки (ІРМ) для выпуклых задач

- ► Interior-Point Polynomial Algorithms in Convex Programming, Y. Nesterov, A. Nemirovskii, 1994
- Обзор про IPM см. тут
- ightharpoonup Применим для гладких f_i и задач в конической форме (SOCP, SDP)
- Чрезвычайно эффективный метод: необходимо сделать несколько десятков итераций, независимо от размерности задачи
- На каждой итерации надо решить линейную систему такого же размера как исходная задача

А если ІРМ нельзя применить к задаче?

lacktriangle Пример: ℓ_1 регуляризация задачи наименьших квадратов

$$f(x) = \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1, \quad \lambda > 0$$

- ▶ Задача выпукла, но f негладкая!
- Основная идея: изменить задачу так, чтобы IPM можно было применять
- Даже если в новой задаче будет больше переменных и ограничений, она может быть эффективна решена с помощью IPM

Пример

Исходная задача: n переменных, нет ограничений

$$\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \lambda ||x||_{1}, \quad \lambda > 0$$

▶ Введём новую переменную $t \in \mathbb{R}^n$ и новые ограничения $|x_i| \leq t_i$:

$$\min_{(x,t)} \frac{1}{2} ||Ax - b||_2^2 + \lambda \mathbf{1}^\top t$$
s.t. $-t \le x \le t$

- ▶ В новой задаче 2n переменных и 2n ограничений, но она гладкая!
- ▶ Важно: задачи эквивалентны! Решив одну, получем решение другой и наоборот

Преобразование задачи и эффективность решения

- lacktriangle Дана выпуклая задача P_0
- Выполняются последовательные эквивалентные преобразования

$$P_0 \to P_1 \to \ldots \to P_K$$
,

где P_K – задача, которую можно решать IPM

- ightharpoonup Эффективное решение P_K
- lacktriangle Обратное преобразование решения P_K в решение P_0
- $ightharpoonup P_K$ может иметь больше ограничений и/или переменных, но наличие определённой структуры и высокая эффективность IPM компенсируют это

Примеры преобразований задач

- Правила преобразования выпуклых функций порождают преобразования задач
- $\max\{f_1(x), f_2(x)\}$
 - Вводим новую переменную $t = \max\{f_1(x), f_2(x)\}$
 - Добавляем ограничения $f_1(x) \le t, \ f_2(x) \le t$
- $\blacktriangleright h(f(x))$
 - Вводим новую переменную t = f(x)
 - Добавляем ограничение $f(x) \leq t$

От доказательства выпуклости к применимости ІРМ

$$\min_{x \in \mathbb{R}^n} f_0(x)$$

s.t. $f_i(x) \leq 0, \ i = 1, \dots, m$
 $Ax = b$

- ightharpoonup Построение f_i из элементарных функций и правил преобразований даёт доказательство выпуклости
- Аналогичный разбор даёт преобразование задачи к форме, состоящей из элементарных функций и аффинных равенств
- Если элементарные функции подходят для IPM, преобразование автоматически даёт форму задачи, которая может быть решена IPM

Disciplined convex programming (DCP)

- Задаются искомые переменные и фиксированные параметры
- Целевая функция и ограничения строятся из элементарных функций с помощью правил композиций и сочетаний
- Задача выпукла по построению
- Автоматически разбирается на элементы
- Приводится к форме для запуска IPM
- Решается некоторым стандартным пакетом для IPM
- ▶ Восстанавливается решение исходной задачи

История

- ▶ Системы AMPL, GAMS 1970-ые
- ▶ Пакеты для задач SDP/LMI: sdpsol (Wu, Boyd), lmilab (Gahinet, Nemirovsky), lmitool (El Ghaoui) 1990-ые
- yalmip (Löfberg 2000-)
- automated convexity checking (Crusius PhD thesis 2002)
- disciplined convex programming (DCP) (Grant, Boyd, Ye 2004)
- cvx (Grant, Boyd, Ye 2005) для MATLAB
- cvxopt (Dahl, Vandenberghe 2005)
- cvxpy (Diamond, Boyd 2016) для Python

Главное по DCP

Pro:

- Проверка выпуклости и генерация преобразования задачи для IPM
- Построене задачи: элементарные выпуклые функции + правила композиций и преобразований
- ▶ Очень похоже на математическую нотацию

Contra:

▶ He про «plug & play» или «try my code»

 Нельзя записать произвольную задачу и надеяться, что она будет выпукла

Солверы для решения общих задач оптимизации

- ► ipopt
- ► Pyomo
- ► Gurobi

Правила построения выпуклых функций

- Правила построения выпуклых функций
- ▶ Сведение задач к стандартной форме

- Правила построения выпуклых функций
- ▶ Сведение задач к стандартной форме
- Disciplined convex programming

- Правила построения выпуклых функций
- ▶ Сведение задач к стандартной форме
- Disciplined convex programming
- Примеры

- Правила построения выпуклых функций
- ▶ Сведение задач к стандартной форме
- Disciplined convex programming
- Примеры
- Солверы для решения задач оптимизации