Chapter 1, Section 4

James Lee

April 23, 2025

1. If f and g are regular functions on open subsets U and V of a variety X, and if f = g on $U \cap V$, show that the function which is f on U and g on V is a regular function on $U \cup V$. Conclude that if f is a rational function on X, then there is a largest open subset U of X on which f is represented by a regular function. We say that f is defined at the points of U.

Proof. Denote the function which is f on U and g on V as F. It suffices to show for all $P \in U \cap V$ that there exists an open neighborhood W of P contained in $U \cap V$ such that F is a rational function on W. Since $U \cap V$ is an open subset of U and V, for all $P \in U \cap V$ there exists open subsets A of U and B of W such that F is rational with $h(Q), h(Q) \neq 0$ for all $Q \in A \cap B$ and F = f = g on $A \cap B$, hence $W = A \cap B \subseteq U \cap V$ is the desired open subset.

If f is a rational function on X, then the set of open subsets of X on which f is represented by regular function is nonempty, and since X is a noetherian space, there is a maximal element in this set. Then, the largest open subset U of X on which f is represented by a regular function is the union of maximal elements in this subset of open subsets.

2. Same problem for rational maps. If φ is a rational map of X to Y, show there is a largest open set on which φ is represented by a morphism. We say the rational map is *defined* at the points of that open set.

Proof. Let φ and ψ be morphisms on open subsets U and V of a variety X to a variety Y, and suppose $\varphi = \psi$ on $U \cap V$. If f is a regular function on Y, then φ^*f and ψ^*f are regular functions on the open subsets U and V which agree on $U \cap V$, so by Exercise 1 the function which is φ^*f on U and ψ^*f on V is a regular function $U \cap V$, i.e. the map that is φ on U and ψ on V is indeed a rational map.

If $\varphi: X \to Y$ is a rational map, then the set of open subsets of X on which φ is represented by morphism function is nonempty, and since X is a noetherian space, there is a maximal element in this set. Then, the largest open subset U of X on which φ is represented by a morphism is the union of maximal elements in this subset of open subsets. \square

- **4.** A variety Y is rational if it is birationally equivalent to \mathbb{P}^n for some n (or, equivalently by (4.5), if K(Y) is a pure transcendental extension of k).
 - (a) Any conic in \mathbb{P}^2 is a rational curve.
 - (b) The cuspidal cubic $y^2 = x^3$ is a rational curve.
 - (c) Let Y be the nodal cubic curve $y^2z=x^2(x+z)$ in \mathbb{P}^2 . Show that the projection φ from the point P=(0,0,1) to the line z=0 induces a birational map from Y to \mathbb{P}^1 . Thus, Y is a rational curve.

Proof.

- (a) A conic in \mathbb{P}^2 can be covered by open affine varieties that are either isomorphic to $y=x^2$ or xy=1. The former is isomorphic to \mathbb{A}^1 , hence it is isomorphic to an open subset of \mathbb{P}^1 , hence it is birationally equivalent to \mathbb{P}^1 . The latter has function field isomorphic to k(x), hence it is birationally equivalent to \mathbb{A}^1 , hence it is also birationally equivalent to \mathbb{P}^1 .
- (b) The cuspidal cubic has coordinate ring $k[t^2, t^3]$, so its function field is k(t), hence it is birationally equivalent to \mathbb{P}^1 .
- (c) The line z=0 in \mathbb{P}^2 corresponds to a hyperplane isomorphic to \mathbb{P}^1 , so the projection $\varphi: \mathbb{P}^2 \{P\} \to \mathbb{P}^1$ is a morphism. In coordinates, φ is defined as $(x_0, x_1, x_2) \mapsto (x_0, x_1)$, so φ induces a morphism from Y P to \mathbb{P}^1 . Thus, $\varphi(Y P)$ is the set of all lines in \mathbb{A}^2 that pass through the origin and a point in the affine nodal curve $y^2 = x^3 + x^2$.

This is an open set in \mathbb{P}^1 isomorphic to \mathbb{A}^1 since it contains all lines in \mathbb{A}^2 besides the one defined by $x = \pm y$. To further elaborate, if $(x,y) \in \mathbb{P}^1$ with $x \neq \pm y$ and $x \neq 0$, say, then write $y = \lambda x$ with $\lambda \neq \pm 1$, so we have

$$\lambda^2 x^2 = x^3 + x^2 \implies x = \lambda^2 - 1.$$

that is there exists a line in \mathbb{A}^2 passing through a point in $y^2 + x^3 + x^2$ with slope y/x. Rephrasing, we have shown that the map $\varphi: Y - P \to \mathbb{P}^1$ is surjective besides at the two points (1,1) and (1,-1). It is also injective since the x_2 -coordinate can be completely determined by the values of (x_0, x_1) , that is if $x_0 \neq 0$, then setting $x_0 = 1$, we have

$$x_1^2 x_2 = 1 + x_2 \implies x_2 = \frac{1}{x_1^2 - 1} \text{ or } x_2 = 0,$$

and $x_1 \neq \pm 1$ since $x_0 \neq \pm x_1$, and $x_2 \neq 0$ since the only point on Y with $x_2 = 0$ is P, and φ is restricted Y - P. Hence, φ is an isomorphism of the open subset Y - P of Y to the open subset $\mathbb{P}^1 - \{(1,1), (1,-1)\}$ in \mathbb{P}^1 , hence Y is birationally equivalent to \mathbb{P}^1 .

5. Show that the quadric surface Q: xy = zw in \mathbb{P}^3 is birational to \mathbb{P}^2 , but not isomorphic to \mathbb{P}^2 .

Proof. Q is the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 , and $\mathbb{P}^1 \times \mathbb{P}^1$ contains a copy of $\mathbb{A}^1 \times \mathbb{A}^1$, so Q contains a copy of \mathbb{A}^2 , hence Q is birational to \mathbb{P}^2 . It is an axiom of projective geometry that any two lines intersect in \mathbb{P}^2 ; however, it was shown in Exercise 2.15 that there exists lines in Q that do not intersect, hence Q and \mathbb{P}^2 cannot be isomorphic. \square

10. Let Y be the cuspidal cubic curve $y^2 = x^3$ in \mathbb{A}^2 . Blow up the point O = (0,0), let E be the exceptional curve, and let \widetilde{Y} be the strict transform of Y. Show that E meets \widetilde{Y} in one point, and that $\widetilde{Y} \cong \mathbb{A}^1$. In this case the morphism $\varphi : \widetilde{Y} \to Y$ is bijective and bicontinuous, but it is not an isomorphism.

Proof. Let t, u be homogenous coordinates for \mathbb{P}^1 . Then X, the blowing-up of \mathbb{A}^2 at O, is defined by the equation xu = ty inside $\mathbb{A}^2 \times \mathbb{P}^1$. We obtain the total inverse image of Y in X by considering the equations $y^2 = x^3$ and xu = ty in $\mathbb{A}^2 \times \mathbb{P}^1$. Now \mathbb{P}^1 is covered by the open sets $t \neq 0$ and $u \neq 0$, which we consider separately. If $t \neq 0$, we can set t = 1, and use u as an affine parameter. Then we have the equations

$$y^2 = x^3, \quad y = xu$$

in \mathbb{A}^3 with coordinates x, y, u. Substituting, we get $x^2u^2-x^3=0$, which factors. Thus, we obtain two irreducible components, one defined by x=0, y=0, u arbitrary, which is E, and the other defined by u=x and y=ux. This is \widetilde{Y} , and \widetilde{Y} meets E at the point u=0. Similarly, if $u\neq 0$, then we can set u=1, and use t as an affine parameter to obtain the equations

$$y^2 = x^3, \quad x = ty$$

in \mathbb{A}^3 with coordinates x, y, t. Substituting, we get $y^2 = t^3y^3$, which factors as well. Besides the exceptional curve, we have the component defined by $1 - t^3y = 0$ and x = ty, which does not meet E. Hence, E meets \widetilde{Y} at only $(1,0) \in E$. This also show \widetilde{Y} is contained in the open set defined by $t \neq 0$, so it is isomorphic to the affine variety in \mathbb{A}^3 defined by u = x and y = ux, which isomorphic to $y = x^2$ in \mathbb{A}^2 , hence $\widetilde{Y} \cong \mathbb{A}^1$.