ASSIGNMENT 2

JONAS TREPIAKAS - HVN548

Exercise 0.1. Given two local rings (R, \mathfrak{m}) and (S, \mathfrak{n}) be local rings. A ring homomorphism $f: R \to S$ is called a local homomorphism if the image of \mathfrak{m} under f is contained in \mathfrak{n} .

- (1) Let $g: A \to B$ be a ring homomorphism between two arbitrary rings and let $\mathfrak{p} \subset B$ and $\mathfrak{q} = g^{-1}(\mathfrak{p}) \subset A$ be prime ideals. Show that g localizes to a ring homomorphism $A_{\mathfrak{q}} \to B_{\mathfrak{p}}$ to be more precise, let $\pi_A \colon A \to A_{\mathfrak{q}}$ and $\pi_B \colon B \to B_{\mathfrak{p}}$ be the natural ring homomorphisms from the rings to their localizations. You need to construct a ring homomorphism $g' \colon A_{\mathfrak{q}} \to B_{\mathfrak{p}}$ such that $\pi_B \circ g = g' \circ \pi_A$. Show that the map g' you construct is a local homomorphism.
- (2) Find a ring homomorphims between local rings which is not a local homomorphism.

Proof. (1) Consider the diagram

$$\begin{array}{ccc} A & \stackrel{g}{\longrightarrow} B \\ \pi_A \downarrow & & \downarrow^{\pi_B} \\ A_{\mathfrak{q}} & \stackrel{-}{\longrightarrow} & B_{\mathfrak{p}} \end{array}$$

Note that by the universal property of localizations, the map g' exists if and only if $\pi_B \circ g((A - \mathfrak{q})) \subset B_{\mathfrak{p}}^{\times} = (R - \mathfrak{p})_{\mathfrak{p}}$. Let $a \in A - \mathfrak{q}$. By assumption, $g(a) \notin \mathfrak{p}$, so $\pi_B(g(a)) = \frac{g(a)}{1} \in (R - \mathfrak{p})_{\mathfrak{p}}$. This gives the existence of g'.

Next we show that g' is a local homomorphism. Note that $A_{\mathfrak{q}}$ and $B_{\mathfrak{p}}$ are local rings with unique maximal ideals $\mathfrak{q}_{\mathfrak{q}}$ and $\mathfrak{p}_{\mathfrak{p}}$, respectively. Thus, to show that g' is a local homomorphism, we must show that $g'(\mathfrak{q}_{\mathfrak{q}}) \subset \mathfrak{p}_{\mathfrak{p}}$. Explicitly,

$$\begin{split} \mathfrak{q}_{\mathfrak{q}} &= \left\{ \frac{a}{b} \in A_{\mathfrak{q}} \colon a \in \mathfrak{q} \right\} \\ \mathfrak{p}_{\mathfrak{p}} &= \left\{ \frac{a}{b} \in B_{\mathfrak{p}} \colon a \in \mathfrak{q} \right\}. \end{split}$$

Let $x \in \mathfrak{q}_{\mathfrak{q}}$, so there exist $a \in \mathfrak{q}$ and $b \in A - \mathfrak{q}$ such that $x = \frac{a}{b}$. Then $\frac{a}{b} = \pi_A(a)\pi_A(b)^{-1}$, so $g'\left(\frac{a}{b}\right) = g' \circ \pi_A(a)\left(g' \circ \pi_A(b)\right)^{-1} = \pi_B \circ g(a)\left(\pi_B \circ g(b)\right)^{-1} = \frac{g(a)}{g(b)}$ where we can invert by g(b) since $g(b) \in B - \mathfrak{p}$ as $b \in A - \mathfrak{q}$ and $\mathfrak{q} = g^{-1}(\mathfrak{p})$. Since $g(b) \in B - \mathfrak{p}$ and $g(\mathfrak{q}) \subset \mathfrak{p}$, so $g(a) \in \mathfrak{p}$, we have $\frac{g(a)}{g(b)} \in \mathfrak{p}_{\mathfrak{p}}$, so $g'(x) \in \mathfrak{p}_{\mathfrak{p}}$, hence $g(\mathfrak{q}_{\mathfrak{q}}) \subset \mathfrak{p}_{\mathfrak{p}}$.

(2) The ring $\mathbb{Z}_{(p)}$ is local and \mathbb{Q} being a field is also local. However, the inclusion $\mathbb{Z}_{(p)} \hookrightarrow \mathbb{Q}$ is not a local homomorphism since $\frac{p}{1}$ is not mapped to 0, for example. \square

1