Прогнозирование временных рядов

Воронцов Константин Вячеславович vokov@forecsys.ru http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

Видеолекции: http://shad.yandex.ru/lectures

МФТИ • 18 октября 2019

Содержание

- Задачи прогнозирования
 - Понятие временного ряда
 - Примеры прикладных задач
 - Обзор методов прогнозирования
- 💿 Адаптивные методы краткосрочного прогнозирования
 - Экспоненциальное скользящее среднее
 - Модели с трендом и сезонностью
 - Анализ адекватности адаптивных моделей
- 3 Адаптивная селекция и композиция
 - Адаптивная селекция
 - Адаптивная композиция
 - Эксперименты с адаптивными композициями

Адаптивная селекция и композиция

Временной ряд

$$y_0,y_1,\ldots,y_t,\ldots$$
 — временной ряд, $y_i\in\mathbb{R}$ $\hat{y}_{t+d}(w)=f_{t,d}(y_1,\ldots,y_t;w)$ — модель временного ряда, где $d=1,\ldots,D,\ D$ — горизонт прогнозирования, w — вектор параметров модели

Метод наименьших квадратов:

$$Q_t(w) = \sum_{i=t_0}^t (\hat{y}_i(w) - y_i)^2 \rightarrow \min_{w}$$

Проблемы:

- рядов может быть очень много
- поведение рядов может описываться разными моделями
- ullet модель должна быстро перестроиться для момента t+1
- функция потерь может быть неквадратичной

Эконометрика — основной источник задач прогнозирования

Примеры эконометрических временных рядов:

- рыночные цены
- объёмы продаж в торговых сетях
- объёмы потребления и цены электроэнергии
- объёмы грузовых и пассажирских перевозок
- дорожный трафик (прогнозирование пробок)

Основные явления в эконометрических временных рядах:

- тренды
- сезонности
- разладки (смены модели ряда)

Марно Вербик. Путеводитель по современной эконометрике, 2008.

Пример. Задача прогнозирования объёмов продаж

Ежедневные объёмы продаж товара

Особенности задачи: огромное число рядов, продажи зависят от типа товара, тренды, сезонность, пропуски, праздники, промоакции, скачки, плохо работают сложные модели

Пример. Задача прогнозирования цен электроэнергии

Почасовые цены электроэнергии на бирже NordPool, 2000г.

Особенности задачи: три вложенные сезонности, скачки

Адаптивная селекция и композиция

В роли признаков — п предыдущих наблюдений ряда:

$$\hat{y}_{t+1}(w) = \sum_{i=1}^n w_j y_{t-j+1}, \quad w \in \mathbb{R}^n$$

В роли объектов $\ell=t-n+1$ моментов в истории ряда:

$$F_{\ell \times n} = \begin{pmatrix} y_{t-1} & y_{t-2} & y_{t-3} & \cdots & y_{t-n} \\ y_{t-2} & y_{t-3} & y_{t-4} & \cdots & y_{t-n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ y_n & y_{n-1} & y_{n-2} & \cdots & y_1 \\ y_{n-1} & y_{n-2} & y_{n-3} & \cdots & y_0 \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_t \\ y_{t-1} \\ \vdots \\ y_{n+1} \\ y_n \end{pmatrix}$$

Функционал квадрата ошибки:

$$Q_t(w, X^{\ell}) = \sum_{i=0}^{t} (\hat{y}_i(w) - y_i)^2 = \|Fw - y\|^2 \to \min_{w}$$

Беглый обзор методов прогнозирования

- Модели авторегрессии и скользящего среднего ARMA, ARIMA, GARCH,...
- Адаптивные методы краткосрочного прогнозирования
- Адаптивная авторегрессия
- Адаптивная селекция моделей
- Адаптивная композиция моделей
- Нейросетевые модели
- Гусеница [Голяндина, 2003]
- Прогнозирование плотности распределения (density forecast)
- Квантильная регрессия

Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. Финансы и статистика, 2003.

Экспоненциальное скользящее среднее (ЭСС)

Простейшая регрессионная модель — константа $\hat{y}_{t+1} = c$, наблюдения учитываются с весами, убывающими в прошлое:

$$\sum_{i=0}^{t} \beta^{t-i} (y_i - c)^2 \to \min_{c}, \quad \beta \in (0,1)$$

Аналитическое решение — формула Надарая-Ватсона:

$$c \equiv \hat{y}_{t+1} = \frac{\sum_{i=0}^{t} \beta^{i} y_{t-i}}{\sum_{i=0}^{t} \beta^{i}}$$

Запишем аналогично \hat{y}_t , оценим $\sum\limits_{i=0}^t eta^i pprox \sum\limits_{i=0}^\infty eta^i = rac{1}{1-eta}$,

получим $\hat{y}_{t+1} = \hat{y}_t eta + (1-eta) y_t$, заменим lpha = 1-eta:

$$\hat{y}_{t+1} = \hat{y}_t + \alpha(y_t - \hat{y}_t) = \alpha y_t + (1 - \alpha)\hat{y}_t,$$

 $lpha \in (0,1)$ называется параметром сглаживания.

Рекуррентная формула для среднего арифметического

Экспоненциальное скользящее среднее (ЭСС):

$$\hat{y}_{t+1} = \hat{y}_t + \frac{\alpha}{\alpha} (y_t - \hat{y}_t)$$

Среднее арифметическое:

$$\hat{y}_{t+1} = \frac{1}{t+1} \sum_{i=0}^{t} y_i = \hat{y}_t + \frac{1}{t+1} (y_t - \hat{y}_t)$$

При $\alpha_t = \frac{1}{t+1}$ имеем среднее арифметическое При $\alpha_t = {\rm const}$ имеем экспоненциальное скользящее среднее

Условие сходимости к среднему (для стационарных задач):

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \qquad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

ЭСС подходит также и для нестационарных задач

Подбор параметра сглаживания

Чем больше lpha, тем больше вес последних точек, при lpha o 1 тривиальный прогноз $\hat{y}_{t+1} = y_t$.

Чем меньше lpha, тем сильнее сглаживание, при lpha o 0 тривиальный прогноз $\hat{y}_{t+1}=ar{y}$.

Оптимальное α^* находим по скользящему контролю:

$$Q(\alpha) = \sum_{t=T_0}^{T_1} (\hat{y}_t(\alpha) - y_t)^2 \to \min_{\alpha}$$

Эмпирические правила:

если $\alpha^*\in(0,0.3)$, то ряд стационарен, ЭСС работает; если $\alpha^*\in(0.3,1)$, то ряд нестационарен, нужна модель тренда.

Модели с трендом и сезонностью

Пример. Сочетания тренда и сезонности (модельные данные)

- Ряд 1 сезонность без тренда
- Ряд 2 линейный тренд, аддитивная сезонность
- Ряд 3 линейный тренд, мультипликативная сезонность
- Ряд 4 экспоненциальный тренд, мультипликативная сезонность

Модель Хольта

Линейный тренд без сезонных эффектов:

$$\hat{y}_{t+d} = a_t + b_t d,$$

где a_t , b_t — адаптивные коэффициенты линейного тренда

Рекуррентная формула:

$$a_t = \alpha_1 y_t + (1 - \alpha_1)(a_{t-1} + b_{t-1});$$

$$b_t = \alpha_2(a_t - a_{t-1}) + (1 - \alpha_2)b_{t-1};$$

где α_1, α_2 — параметры сглаживания.

Частный случай — модель линейного роста Брауна:

$$\alpha_1 = 1 - \beta^2$$
, $\alpha_2 = 1$.

Модель Тейла-Вейджа

Линейный тренд с аддитивной сезонностью периода s:

$$\hat{y}_{t+d} = (a_t + b_t d) + \theta_{t+(d \bmod s)-s}.$$

 $a_t + b_t d$ — тренд, очищенный от сезонных колебаний, $\theta_0, \dots, \theta_{s-1}$ — сезонный профиль периода s, без тренда.

Рекуррентная формула:

$$a_{t} = \alpha_{1}(y_{t} - \theta_{t-s}) + (1 - \alpha_{1})(a_{t-1} + b_{t-1});$$

$$b_{t} = \alpha_{2}(a_{t} - a_{t-1}) + (1 - \alpha_{2})b_{t-1};$$

$$\theta_{t} = \alpha_{3}(y_{t} - a_{t}) + (1 - \alpha_{3})\theta_{t-s};$$

где $\alpha_1, \alpha_2, \alpha_3$ — параметры сглаживания.

Модель Уинтерса

Мультипликативная сезонность периода s:

$$\hat{y}_{t+d} = a_t \cdot \theta_{t+(d \bmod s)-s},$$

 $heta_0,\dots, heta_{s-1}$ — сезонный профиль периода s.

Рекуррентная формула:

$$a_t = \alpha_1(y_t/\theta_{t-s}) + (1 - \alpha_1)a_{t-1};$$

 $\theta_t = \alpha_2(y_t/a_t) + (1 - \alpha_2)\theta_{t-s};$

где α_1, α_2 — параметры сглаживания.

Модель Уинтерса с линейным трендом

Мультипликативная сезонность периода s с линейным трендом:

$$\hat{y}_{t+d} = (a_t + b_t d) \cdot \theta_{t+(d \bmod s)-s},$$

 $a_t+b_t d$ — тренд, очищенный от сезонных колебаний, $heta_0,\dots, heta_{s-1}$ — сезонный профиль периода s.

Рекуррентная формула:

$$a_{t} = \alpha_{1}(y_{t}/\theta_{t-s}) + (1 - \alpha_{1})(a_{t-1} + b_{t-1});$$

$$b_{t} = \alpha_{2}(a_{t} - a_{t-1}) + (1 - \alpha_{2})b_{t-1};$$

$$\theta_{t} = \alpha_{3}(y_{t}/a_{t}) + (1 - \alpha_{3})\theta_{t-s};$$

где $\alpha_1, \alpha_2, \alpha_3$ — параметры сглаживания.

Модель Уинтерса с экспоненциальным трендом

Мультипликативная сезонность с экспоненциальным трендом:

$$\hat{y}_{t+d} = a_t(r_t)^d \cdot \theta_{t+(d \bmod s)-s},$$

 $a_t(r_t)^d$ — экспоненциальный тренд, очищенный от сезонности, $\theta_0,\dots,\theta_{s-1}$ — сезонный профиль периода s.

Рекуррентная формула:

$$a_{t} = \alpha_{1}(y_{t}/\theta_{t-s}) + (1 - \alpha_{1})a_{t-1}r_{t-1};$$

$$r_{t} = \alpha_{2}(a_{t}/a_{t-1}) + (1 - \alpha_{2})r_{t-1};$$

$$\theta_{t} = \alpha_{3}(y_{t}/a_{t}) + (1 - \alpha_{3})\theta_{t-s};$$

где $\alpha_1, \alpha_2, \alpha_3$ — параметры сглаживания.

Адаптивная авторегрессионная модель

Линейная модель авторегрессии (линейный фильтр):

$$\hat{y}_{t+1}(w) = \sum_{j=1}^{n} w_j y_{t-j+1}, \quad w \in \mathbb{R}^n$$

 $arepsilon_t = y_t - \hat{y}_t$ — ошибка прогноза \hat{y}_t , сделанного на шаге t-1

Метод наименьших квадратов: $\varepsilon_t^2 o \min_w$

Один шаг градиентного спуска в каждый момент t:

$$w_j := w_j + h_t \varepsilon_t y_{t-j+1}.$$

Градиентный шаг в методе скорейшего спуска:

$$h_t = \frac{\alpha}{\sum_{j=1}^n y_{t-j+1}^2},$$

где α — аналог параметра сглаживания.

Следящий контрольный сигнал

 $arepsilon_t = y_t - \hat{y}_t$ — ошибка прогноза \hat{y}_t , сделанного на шаге t-1 Следящий контрольный сигнал (tracking signal [Trigg, 1964])

$$\mathcal{K}_t = rac{\hat{arepsilon}_t}{ ilde{arepsilon}_t} \qquad rac{\hat{arepsilon}_t = \gamma arepsilon_t + (1-\gamma) \hat{arepsilon}_{t-1} \ \ -\ \exists \mathsf{CC} \ \mathsf{модуля} \ \mathsf{oшибки}}{ ilde{arepsilon}_t = \gamma |arepsilon_t| + (1-\gamma) ilde{arepsilon}_{t-1} \ \ \ -\ \exists \mathsf{CC} \ \mathsf{модуля} \ \mathsf{oшибки}}$$

Рекомендация: $\gamma = 0.05 \dots 0.1$

Статистический тест адекватности (при $\gamma\leqslant 0.1,\ t\to\infty$): гипотеза H_0 : Е $\varepsilon_t=0,\ E\varepsilon_t\varepsilon_{t+d}=0$ принимается на уровне значимости α , если

$$|K_t| \leqslant 1.2\Phi_{1-\alpha/2}\sqrt{\gamma/(2-\gamma)},$$

 $\Phi_{1-lpha/2}$ — квантиль нормального распределения, $\Phi_{1-lpha/2}=\Phi_{0.975}=1.96$ при lpha=0.05

Модель Тригга-Лича [Trigg, Leach, 1967]

Проблема: адаптивные модели плохо приспосабливаются к резким структурным изменениям

Решение: $\alpha = |K_t|$

Недостатки:

- 1) плохо реагирует на одиночные выбросы;
- 2) требует подбора γ , при рекомендации $\gamma=0.05\dots0.1$.

Идея адаптивной селекции моделей

Пример: Динамика ЭСС ошибок прогнозов $|\varepsilon_t|$ для 6 моделей (по реальным данным объёмов продаж в супермаркете):

Идея: кажется, можно успевать включать наиболее удачные модели и отключать менее удачные...

Адаптивная селективная модель

Пусть имеется k моделей прогнозирования, $\hat{y}_{j,t+d}$ — прогноз j-й модели на момент t+d, $arepsilon_{jt}=y_t-\hat{y}_{jt}$ — ошибка прогноза j-й модели в момент t, $ilde{arepsilon}_{jt}=\gamma|arepsilon_{jt}|+(1-\gamma) ilde{arepsilon}_{j,t-1}$ — ЭСС модуля ошибки.

Лучшая модель в момент времени t:

$$j_t^* = \arg\min_{j=1,\dots,k} \tilde{\varepsilon}_{jt}$$

Адаптивная селективная модель — прогноз по лучшей модели:

$$\hat{y}_{t+d} := \hat{y}_{j_t^*,t+d}$$

Требуется подбор γ , рекомендация: $\gamma=0.01\dots0.1$.

Адаптивная композиция моделей

Пусть имеется k моделей прогнозирования, $\hat{y}_{j,t+d}$ — прогноз j-й модели на момент t+d, $arepsilon_{jt}=y_t-\hat{y}_{jt}$ — ошибка прогноза j-й модели в момент t, $ilde{arepsilon}_{jt}=\gamma|arepsilon_{jt}|+(1-\gamma) ilde{arepsilon}_{j,t-1}$ — ЭСС модуля ошибки.

Линейная (выпуклая) комбинация моделей:

$$\hat{y}_{t+d} = \sum_{j=1}^{k} w_{jt} \hat{y}_{j,t+d}, \qquad \sum_{j=1}^{k} w_{jt} = 1, \ \ \forall t.$$

Адаптивный подбор весов [Лукашин, 2003]:

$$w_{jt} = \frac{(\tilde{\varepsilon}_{jt})^{-1}}{\sum_{s=1}^{k} (\tilde{\varepsilon}_{st})^{-1}}.$$

Требуется подбор γ , рекомендация: $\gamma = 0.01 \dots 0.1$.

ЛАВР — Локальная адаптация весов с регуляризацией

 Ha каждом шаге t веса определяются по MHK и сглаживаются:

$$\begin{cases} \sum_{i=0}^{t} \beta^{t-i} \left(\sum_{j=1}^{k} w_j \hat{y}_{j,i} - y_i \right)^2 + \lambda \sum_{j=1}^{k} \left(w_j - w_{j,t-1} \right)^2 \to \min_{w_1, \dots, w_k} \\ \sum_{j=1}^{k} w_j = 1. \end{cases}$$

 $eta \in (0,1)$ — коэффициент «забывания» предыстории, λ — коэффициент регуляризации.

Дополнительные варианты:

- ullet eta
 ightarrow 0 локальная адаптация весов с регуляризацией (оставляем в функционале только одно слагаемое, i=t)
- $w_i \geqslant 0$ монотонный корректор

Воронцов К. В., Егорова Е. В. Динамически адаптируемые композиции алгоритмов прогнозирования // Искусственный Интеллект, 2006.

Задача прогнозирования временных рядов продаж

Средняя ошибка прогнозов на скользящем контроле (T=620)

- ullet ЛАВР-М лучший результат, причём можно брать $\lambda o 0$
- Ограничение монотонности сильный регуляризатор

Фрагменты динамики весов w_{jt} базовых моделей

Без ограничения монотонности:

С ограничением монотонности:

Сравнение моделей

Средняя ошибка прогнозов на скользящем контроле (T=620)

базовый-1	0.7142
базовый-2	0.7294
базовый-3	0.7534
базовый-4	0.7624
базовый-5	0.7624
базовый-6	0.7664
базовый-7	0.7793
базовый-8	0.7793
	-

ЛАВР+Монот	0.5899
селекция $+$ сглаживание, $\gamma_{ extsf{opt}}$	0.5956
МНК $+$ Монот, $eta=$ 0.7	0.6314
ЛАВР без Монот	0.6591
МНК без Монот, $eta{=}0.7$	0.6834
МНК по всем данным	0.7142
среднее	0.7294
селекция без сглаживания	0.9107

- Базовые модели, их усреднение, неадаптивный МНК по всем данным — работают плохо
- ullet Адаптивная селекция работает хорошо, если подобрать γ
- \bullet $\gamma_{
 m opt} = 0.2 \dots 0.3$ усреднение по $3 \dots 5$ дням

Резюме

- Адаптивные методы используют, когда рядов много и прогнозировать их надо быстро
- Простые адаптивные методы усиливаются адаптивной селекцией и композицией моделей
- Простые особенности рядов (тренды, сезонности, пропуски) моделируются в базовых алгоритмах
- Требование монотонности для адаптивной композиции мощный регуляризатор
- Более сложные зависимости моделируются адаптивными авторегрессионными моделями