week07-03-eigen

February 25, 2024

1 Math087 - Mathematical Modeling

Tufts University - Department of Math George McNinch george.mcninch@tufts.edu Fall 2020

1.1 Course material (Week 8): Power-iteration & eigenvalues

2 Eigenvalues & power-iteration

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Our goal is to understand the *eventual behavior* of powers of A; i.e. the matrices A^m for $m \to \infty$.

2.1 Example: Diagonal matrices

Let's look at a simple example. Consider the following matrix:

$$A = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{bmatrix}$$

In this case, it is easy to understand the powers of A; indeed, we have

$$A^m = \begin{bmatrix} \lambda_1^m & 0 & 0 & 0 \\ 0 & \lambda_2^m & 0 & 0 \\ 0 & 0 & \lambda_3^m & 0 \\ 0 & 0 & 0 & \lambda_4^m \end{bmatrix}$$

2.2 example, continued

Observe that if $|\lambda| < 1$, then $\lambda^m \to 0$ as $m \to \infty$. So e.g. if $|\lambda_i| < 1$ for i = 1, 2, 3, 4, then

$$A^m \to \mathbf{0}$$
 as $m \to \infty$.

If $\lambda_1 = 1$ and $|\lambda_i| < 1$ for i = 2, 3, 4, then

On the other hand, if $|\lambda_i| > 1$ for some i, then $\lim_{m \to \infty} A^m$ doesn't exist, because $\lambda_i^m \to \pm \infty$ as $m \to \infty$.

Of course, "most" matrices aren't diagonal, or at least not literally.

2.3 Eigenvalues and eigenvectors

Recall that a number $\lambda \in \mathbb{R}$ is an eigenvalue of A if there is a non-zero vector $\mathbf{v} \in \mathbb{R}^n$ for which

$$A\mathbf{v} = \lambda \mathbf{v};$$

v is then called an *eigenvector*.

If A is diagonal – e.g. if

$$A = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{bmatrix} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$$

– it is easy to see that each standard basis vector \mathbf{e}_i is an eigenvector, with corresponding eigenvalue λ_i (the (i, i)-the entry of A).

2.4 Eigenvectors

Now suppose that A is an $n \times n$ matrix, that $\mathbf{v}_1, \dots, \mathbf{v}_n$ are eigenvectors for A, and that $\lambda_1, \dots, \lambda_n$ are the corresponding eigenvalues. Write

$$P = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$$

for the matrix whose columns are the \mathbf{v}_i .

Theorem 0: P is invertible if and only if the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent.

Theorem 1: If the eigenvalues $\lambda_1, \dots, \lambda_n$ are *distinct*, then the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent, and in particular, the matrix P is invertible.

2.5 Diagonalizable matrices

Theorem 2: If the eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent – equivalently, if the matrix P is invertible – then

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda_n \end{bmatrix} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

i.e. $P^{-1}AP$ is the diagonal matrix $n \times n$ matrix whose diagonal entries are $\lambda_1, \dots, \lambda_n$.

Because of **Theorem 2**, one says that the $n \times n$ matrix A is diagonalizable if it has n linearly independent eigenvectors.

Thus if we are willing to replace our matrix by the *conjugate* matrix $P^{-1}AP$, then for A diagonalizable, for some purposes "we may as well suppose that A is diagonal" (though of course that statement is imprecise!).

2.6 Finding eigenvalues

One might wonder "how do I find eigenvalues"? The answer is: the eigenvalues of A are the roots of the *characteristic polynomial* $p_A(t)$ of A, where:

$$p_A(t) = \det(A - t \cdot \mathbf{I_n}).$$

Proposition: The characteristic polynomial $p_A(t)$ of the $n \times n$ matrix A has degree n, and thus A has no more than n distinct eigenvalues.

Remark: The eigenvalues of A are complex numbers which in general may fail to be real numbers, even when A has only real-number coefficients.

2.7 Tools for finding eigenvalues

python and numpy provides tools for finding eigenvalues. Let's look at the following example:

Example: Consider the matrix

$$A = \begin{pmatrix} \frac{1}{10} \end{pmatrix} \cdot \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 3 & 3 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

```
import numpy as np
import numpy.linalg as npl

float_formatter = "{:.2f}".format
    np.set_printoptions(formatter={'float_kind':float_formatter})

A = (1/10)*np.array([[1,1,0,0],[0,2,2,0],[0,3,3,1],[0,0,1,2]])
A
```

```
[1]: array([[0.10, 0.10, 0.00, 0.00], [0.00, 0.20, 0.20, 0.00], [0.00, 0.30, 0.30, 0.10], [0.00, 0.00, 0.10, 0.20]])
```

Let's find the eigenvectors/values of this 4×4 matrix A; we'll use the function eig found in the python module numpy.linalg:

```
[2]: (e_vals,e_vecs) = npl.eig(A)
  [e_vals,e_vecs]
```

```
[2]: [array([0.10, 0.52, -0.02, 0.20]), array([[1.00, -0.12, -0.47, -0.30], [0.00, -0.51, 0.56, -0.30], [0.00, -0.81, -0.62, -0.00], [0.00, -0.25, 0.28, 0.90]])]
```

The function eig returns a "list of np arrays". This first array contains the eigenvalues, and the second contains the a matrix whose *columns* are the eigenvectors.

We've assigned the first component of the list to the variable e_vals and the second to e_vecs.

To get the individual eigenvectors, we need to slice the array e_vecs.

For example, to get the 0-th ("first"!) eigenvector, we can use

```
e_vecs[:,0]
```

Here, the argument: indicates that the full range should be used in the first index dimension, and the argument 0 indicates the the second index dimension of the slice is 0. Thus numpy returns the array whose entries are e_vecs[0,0], e_vecs[1,0], e_vecs[2,0], e_vecs[3,0].

Let's confirm that this is really an eigenvector with the indicated eigenvalue:

```
[3]: v = e_vecs[:,0]
[v,A @ v,e_vals[0]*v, (A @ v - e_vals[0] * v < 1e-7).all()]
```

```
[3]: [array([1.00, 0.00, 0.00, 0.00]),
array([0.10, 0.00, 0.00, 0.00]),
array([0.10, 0.00, 0.00, 0.00]),
True]
```

Let's check *all* of the eigenvalues:

```
return "\n".join([check_i(i) for i in range(len(e_vals))])
```

[5]: print(check(A))

```
lambda
         = 0.1
v
         = [1.00 \ 0.00 \ 0.00 \ 0.00]
         = [0.10 \ 0.00 \ 0.00 \ 0.00]
Αv
lambda*v = [0.10 \ 0.00 \ 0.00 \ 0.00]
match?:
            True
lambda
         = 0.5192582403567257
         = [-0.12 -0.51 -0.81 -0.25]
         = [-0.06 - 0.26 - 0.42 - 0.13]
lambda*v = [-0.06 -0.26 -0.42 -0.13]
match?:
            True
         = -0.019258240356725218
lambda
         = [-0.47 \ 0.56 \ -0.62 \ 0.28]
Αv
         = [0.01 - 0.01 0.01 - 0.01]
lambda*v = [0.01 -0.01 0.01 -0.01]
match?:
            True
         = 0.199999999999998
lambda
         = [-0.30 - 0.30 - 0.00 0.90]
         = [-0.06 - 0.06 - 0.00 0.18]
lambda*v = [-0.06 -0.06 -0.00 0.18]
match?:
            True
```

Let's observe that A has 4 distinct eigenvalues, and is thus diagonalizable. Moreover, every eigenvalue λ of A satisfies $|\lambda| < 1$. Thus, we conclude that $A^m \to \mathbf{0}$ as $m \to \infty$.

And indeed, we confirm that:

2.8 Eigenvalues and power iteration.

Theorem 3: Let A be a diagonalizable $n \times n$, with n linearly independent eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ with corresponding eigenvalues $\lambda_1, \dots, \lambda_n$. As before, write

$$P = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$$
.

- a) Suppose $|\lambda_i| < 1$ for all i. Then $A^m \to \mathbf{0}$ as $m \to \infty$.
- b) Suppose that $\lambda_1=1$, and $|\lambda_i|<1$ for $2\leq i\leq n$. Any vector $\mathbf{v}\in\mathbb{R}^n$ may be written

$$\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{v}_i.$$

If $c_1 \neq 0$, then

$$A^m \mathbf{v} = c_1 \mathbf{v}_1$$
 as $m \to \infty$.

If $c_1 = 0$ then

$$A^m \mathbf{v} = \mathbf{0}$$
 as $m \to \infty$.

2.9 Proof:

For a), note that $P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Which shows that

$$(P^{-1}AP)^m=\operatorname{diag}(\lambda_1,\dots,\lambda_n)^m=\operatorname{diag}(\lambda_1^m,\dots,\lambda_n^m)\to \mathbf{0}\quad\text{as }m\to\infty.$$

Let's now notice that

$$(P^{-1}AP)^2 = (P^{-1}AP)(P^{-1}AP) = P^{-1}AAP = P^{-1}A^2P$$

and more generally

$$(P^{-1}AP)^m = P^{-1}A^mP$$
 for $m > 0$.

We now see that

$$P^{-1}A^mP \to \mathbf{0}$$
 as $m \to \infty$

so that

$$A^m \to P \cdot \mathbf{0} \cdot P^{-1} = \mathbf{0}$$
 as $m \to \infty$

2.10 Proof of b):

Recall that $\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{v}_i$.

For i > 1, a) shows that

$$A^m \mathbf{v}_i \to \mathbf{0}$$
 as $m \to \infty$.

while

$$A^m \mathbf{v}_1 = \mathbf{v}_1$$
 for all m .

The preceding discussion now shows that

$$A^m \mathbf{v} = \sum_{i=1}^n c_i A^m \mathbf{v}_i \mapsto c_1 \mathbf{v}_1$$

and b) follows at once.

2.11 Corollary

Suppose that A is diagonalizable with eigenvalues $\lambda_1, ..., \lambda_n$, that $\lambda_1 = 1$, and that $|\lambda_i| < 1$ for i = 2, ..., n. Let $\mathbf{v_1}$ be a 1-eigenvector for A.

Then

$$A^m \to B$$
 as $m \to \infty$

for a matrix B with the property that each column of B is either $\mathbf{0}$ or some multiple of $\mathbf{v_1}$.

Indeed: the *i*th column of B can be found by computing

$$(\heartsuit) \quad \lim_{m \to \infty} A^m \mathbf{e}_i$$

where \mathbf{e}_i is the *i*th standard basis vector.

We've seen above that (\heartsuit) is either 0 or a multiple of \mathbf{v} , depending on whether or not the coefficient c_1 in the expression

$$\mathbf{e}_i = \sum_{j=1}^n c_j \mathbf{v}_j$$

is zero.

2.12 Examples revisited: population growth & aging

Recall from last week our finite-state machine describing population & aging.

We considered a population of organisms described by:

[30]:

We suppose that $s_7 = 0$, so that the life-span of the organism in question is ≤ 8 time units.

If the population at time t is described by $\mathbf{p}^{(t)} = \begin{bmatrix} p_0 & p_1 & \cdots & p_7 \end{bmatrix}^T$ then the population at time t+1 is given by

$$\mathbf{p}^{(t+1)} = \begin{bmatrix} \sum_{i=0}^7 f_i p_i & s_0 p_0 & \cdots & s_6 p_6 \end{bmatrix}^T = A \mathbf{p}^{(t)}$$

where

$$A = \begin{bmatrix} f_0 & f_1 & f_2 & \cdots & f_6 & f_7 \\ s_0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & s_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & s_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & s_6 & 0 \end{bmatrix}.$$

2.13 parameters

Previously, we considered this model for two different sets of parameters:

```
fA = [.30, .50, .35, .25, .25, .15, .15, .5]
sA = [.30, .60, .55, .50, .30, .15, .05, 0]
and
fB = [.50, .70, .55, .35, .35, .15, .15, .5]
sB = [.40, .70, .55, .50, .35, .15, .05, 0]
```

```
## bv("b",["a","b","c"])
      ## >> np.array([0,1,0])
      ones = np.ones(8)
      def A(f=[],s=[]):
          return np.array([np.array(f)]
                            [x*bv(x,s) \text{ for } x \text{ in } s[:-1]])
      def display(f,s):
          e_val,e_vec = npl.eig(A(f,s))
          s = [f"Eigenvalues lambda of A when",
               f'' f = \{f\}'',
               f'' s = \{s\}'',
               "are as follows:"]
          return "\n".join(s+[f" |lambda| = {np.abs(e):.5f}" for e in e val])
[72]: fA = [.30, .50, .35, .25, .25, .15, .15, .5]
      sA = [.30, .60, .55, .50, .30, .15, .05, 0]
      print(display(fA,sA))
     Eigenvalues lambda of A when
      f = [0.3, 0.5, 0.35, 0.25, 0.25, 0.15, 0.15, 0.5]
      s = [0.3, 0.6, 0.55, 0.5, 0.3, 0.15, 0.05, 0]
     are as follows:
      |lambda| = 0.7665
      |lambda| = 0.3648
      |lambda| = 0.3648
      |lambda| = 0.3483
      |lambda| = 0.3483
      |lambda| = 0.0000
      |lambda| = 0.0000
      |lambda| = 0.0000
[71]: fB = [.50, .70, .55, .35, .35, .15, .15, .5]
      sB = [.40, .70, .55, .50, .35, .15, .05, 0]
      print(display(fB,sB))
     Eigenvalues lambda of A when
      f = [0.5, 0.7, 0.55, 0.35, 0.35, 0.15, 0.15, 0.5]
      s = [0.4, 0.7, 0.55, 0.5, 0.35, 0.15, 0.05, 0]
     are as follows:
      |lambda| = 1.0105
      |lambda| = 0.3650
      |lambda| = 0.3650
      |lambda| = 0.3749
      |lambda| = 0.3749
```

```
|lambda| = 0.1788
|lambda| = 0.1729
|lambda| = 0.1729
```

fC = [0, .2, .49559, 0.4]sC = [.98, .96, .9, 0]

Let's look at one more example, now where the organisms have a max life-span of 4 time units (for simplicity!)

Let's consider

```
[134]: fC = [0.000, .2, .49559, 0.399]
    sC = [.9799, .96, .9, 0]
    print(display(fC,sC))

    e_vals,e_vecs = npl.eig(A(fC,sC))
    print(f"\nIn fact, the largest eigenvalue is lambda = {e_vals[0]}")
    print(f"\n& the corresponding eigenvector is {e_vecs[:,0]}")
```

```
Eigenvalues lambda of A when

f = [0.0, 0.2, 0.49559, 0.399]

s = [0.9799, 0.96, 0.9, 0]

are as follows:

|lambda| = 1.00000

|lambda| = 0.75089

|lambda| = 0.75089

|lambda| = 0.59912
```

In fact, the largest eigenvalue is lambda = (0.9999969131763253+0j)

& the corresponding eigenvector is $[0.5298541 + 0.j \ 0.51920563 + 0.j \ 0.49843895 + 0.j \ 0.44859644 + 0.j]$

2.14 Explainer

In each case, the matrix A has distinct eigenvalues (in case $\mathbb C$ there are two eigenvalues with the same absolute value, but they are complex and distinct from one another!) Thus A is diagonalizable in each case.

For the parameters fA, sA all eigenvalues of A have absolute value < 1. This confirms our previous conclusion that

$$A^m \to \mathbf{0}$$
 as $m \to \infty$

For the parameters fB,sB there is an eigenvalue of A which has about value 1.01 > 1 (actually, this 1.01 is the eigenvalue). Thus A^m has no limiting value as $m \to \infty$.

Finally, the parameters fC,sC yield an eigenvalue of A which is very close to 1.

2.15 fC,sC

In this setting, note that the corresponding 1-eigenvector is

```
w=[0.5298541, 0.51920563, 0.49843895, 0.44859644]
```

Let's normalize the vector **w** by dividing by the sum of its components:

```
[131]: w=np.array([0.5298541, 0.51920563, 0.49843895, 0.44859644])
ww = (1/sum(w,0))*w
ww
```

[131]: array([0.27, 0.26, 0.25, 0.22])

Thus the components of ww sum to 1. They represent probabilities.

We conclude that the expected longterm population distribution in this case is:

Age 0	Age 1	Age 2	Age 3
27 %	26~%	25~%	22~%