PHY982: Nuclear Dynamics

Homework 1 Deadline: 26 Mar 2015

Scattering states and Phase shifts

Please read Chapters 3.1 and 4.2 before starting.

Consider a simple two particle description of the halo nucleus ¹¹Be as a single neutron and an inert ¹⁰Be core. The effective nuclear interaction between the neutron and ¹⁰Be is often taken to be a Woods Saxon form:

$$V(R) = \frac{V_0}{1 + \exp(\frac{R - R_{ws}}{a_{ws}})} \tag{1}$$

where the radius is $R_{ws}=1.2A^{1/3}$ fm, A being the mass of the core, and the diffuseness $a_{ws}=0.65$ fm. The depth of the interaction V_0 is fitted to the well known binding energy of this system $S_n=0.5$ MeV, considering that the valence neutron is in a $2s_{1/2}$ orbital. After solving the radial equation with the following constants (hc=197.32705 MeV.fm and $2\mu/\hbar^2=0.0478450$) and taking integer masses, one verifies that the correct depth that reproduces the experimental binding energy is $V_0=-61.1$ MeV. For other states, one usually needs to consider spin-orbit effects, but we will neglect these for now.

In this example, we will consider the scattering states of this system within the Schrödinger formalism.

- 1. Why is the valence neutron in a $2s_{1/2}$ orbital in the ¹¹Be ground state? Considering the shell structure, what excited states would you expect to find? How do your expectations compare to experiment?
- 2. Write down the radial scattering equations for arbitrary relative n^{-10} Be energy and relative angular momentum l. How can you solve these equations? Describe the numerical method (e.g. Runge-Kutta Method) and implement it with scattering boundary conditions.
- 3. Plot the radial behaviour of the scattering wavefunctions $u_l(r)$ for l=0,1,2 at energies 0.1 MeV and 3.0 MeV, out to large enough radius so that one can recover the asymptotic behavior.
- 4. Study the energy dependence of the phase shifts $\delta_l(E)$ for l=0,1,2 for energies from [0.1,4.0] MeV. Make sure you regularize the functions $\delta_l(E)$ to get rid of discontinuities. Present in graphical form and draw conclusions about the continuum structure of 11 Be.
- 5. Did you find any resonances in the system? For which partial waves? What are the corresponding energies and widths?
- 6. Prepare a report with your results and conclusions. It should not exceed 10 pages.