Raport 1

Aleksander Jakóbczyk i Bogdan Banasiak Nr indeksu: 255939 i !!!!!!!!!!!!

title

1 Information and formulas

Stable random variable

There are two parameterizations of a random variable from an alpha stable distribution $S(\alpha, \beta, \gamma, \delta; 0)$ and $S(\alpha, \beta, \gamma, \delta; 1)$. They are uniquely determined by the characteristic function.

Definition 1. A random variable X is stable if and only if $X = {}^d aZ + b$, with $\alpha \in (0,2], \beta \in [-1,1], a \neq 1, b \in \mathbb{R}$ and Z is a random variable with characteristic function

$$\varphi_Z(u) = \exp(iuZ) = \begin{cases} \exp\left(-|u|^{\alpha} (1 - i\beta \tan(\frac{\pi\alpha}{2})(\operatorname{sign} u)\right) & \alpha \neq 1, \\ \exp\left(-|u|^{\alpha} (1 + i\beta \frac{2}{\pi}(\operatorname{sign} u) \ln|u|\right) & \alpha = 1. \end{cases}$$
(1)

Definition 2. Let $X \sim S(\alpha, \beta, \gamma, \delta; 0)$ with $\alpha \in (0, 2], \beta \in [-1, 1], \gamma \geqslant 0, \delta \in \mathbb{R}$ then

$$X = {}^{d} \begin{cases} \gamma (Z - \beta \tan(\frac{\pi \alpha}{2}) + \delta) & \alpha \neq 1, \\ \gamma Z + \delta & \alpha = 1, \end{cases}$$

where $Z = Z(\alpha, \beta)$ is given by 1.

Definition 3. Let $X \sim S(\alpha, \beta, \gamma, \delta; 1)$ with $\alpha \in (0, 2], \beta \in [-1, 1], \gamma \geqslant 0, \delta \in \mathbb{R}$ then

$$X = {}^{d} \begin{cases} \gamma Z + \delta & \alpha \neq 1, \\ \gamma Z + (\delta + \beta \frac{2}{\pi} \ln \gamma) & \alpha = 1, \end{cases}$$

where $Z = Z(\alpha, \beta)$ is given by 1.

Above we defined the general stable law in the 0-parameterization and 1-parameterization. Alternatively, we can swap between the parameterizations using the following theorem;

Theorem 1. Let $Z \sim S(\alpha, \beta, 1, 0; 0)$ with $\alpha \in (0, 2], \beta \in [-1, 1], \gamma \geqslant 0, \delta \in \mathbb{R}$ then

$$\begin{cases} \gamma Z + \delta + \beta \gamma \tan\left(\frac{\pi\alpha}{2}\right) & \alpha \neq 1, \\ \gamma Z + \delta + \beta \frac{2}{\pi} \ln \gamma & \alpha = 1 \end{cases} \sim S(\alpha, \beta, \gamma, \delta; 1),$$

The tail exponent estimation method gives us the information about the index of stability. The tails of stable random variable are asymptotically power laws.

Theorem 2 (Tail approximation). Let $X \sim S(\alpha, \beta, \gamma, \delta; k)$ with $\alpha \in (0, 2), \beta \in (-1, 1], k = 0, 1$ then as $x \to \infty$:

$$1 - F_X(x) \sim \gamma^{\alpha} c_a (1+\beta) x^{-\alpha},$$

$$f_X(x) \sim \alpha \gamma^{\alpha} c_a (1+\beta) x^{-(\alpha+1)}$$

where $c_a = \sin(\frac{\pi\alpha}{2})\Gamma(\alpha)/\pi$ and $f(x) \sim g(x)$ as $x \to a$ means $\lim_{x\to a} h(x)/f(x) = 1$. Using the reflection property, the lower tail properties are similar: for $\beta \in [-1,1)$ as $x \to \infty$:

$$F_X(-x) \sim \gamma^{\alpha} c_a (1-\beta) x^{-\alpha},$$

 $f_X(-x) \sim \alpha \gamma^{\alpha} (1-\beta) c_a x^{-(\alpha+1)}$

Definition 4. Let X_1, \ldots, X_n be i.i.d. random variables with the common cumulative distribution function F(t). Then the empirical distribution function is defined as

$$\hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{X_k \leqslant x\}}$$

2 Compare two estimators of α parameter we introduced in the laboratories

2.1 Based on the ECDF

We will be conducting our simulations on consider one set of parameters $(\alpha, \beta, \gamma, \delta) = (1.5, 0.8, 2, 0)$.