Disciplina: CIC 116394 - Organização e Arquitetura de Computadores: Turma A

Professor: Marcus Vinicius Lamar

Laboratório 4
-CPU femtoRISC-V MULTICICLO-

André Dornelas Sanches - 17/0099369 Eduardo de Souza Felix de Almeida - 17/0102254 Yuri Fleury Pereira - 15/0024061

Introdução

O software Deeds (Digital Electronics Education and Design Suite) é uma plataforma educativa que permite a simulação de circuitos lógicos. Por meio dos elementos fornecidos pelo software (portas lógicas, multiplexadores, circuitos aritméticos etc), será implementado um processador multiciclo com suporte as seguintes operações da ISA RV32I: add, sub, and, or, slt, xor, lw, sw, addi, slli, lui, jal, beq e jalr. Existem outras opções de programas para este fim, como o Quartus Prime 18.1 da Intel ,por exemplo, que oferece suporte a linguagem de descrição de Hardware SystemVerilog, porém, optou-se pelo uso do Deeds por ser mais "leve" em relação ao concorrente.

O que difere o multiciclo do uniciclo é que ao invés de uma instrução ser executada em apenas um ciclo de clock, a instrução é dividida em etapas e executada ao decorrer de uma sequência de ciclos de período bem menor do que o período do uniciclo. Dessa forma, o processador consegue executar apenas as etapas necessárias para cada tipo instrução e, assim, evita tempo gasto com etapas desnecessárias. A expectativa, nesse sentido, é de que o tempo de execução diminua. Entretanto, outros fatores podem diminuir ou até anular a vantagem de tempo esperada, sendo elas: o CPI médio do workload, que por definição será maior que o do uniciclo, e o tempo gasto em etapas simples pelo período ser necessariamente maior ou igual ao tempo gasto pela etapa mais lenta.

Objetivos

- Implementar um processador multiciclo compatível com a ISA RISC-V 32I no programa de Simulação Deeds;
- Analisar o desempenho do processador construído;

Procedimentos e Análise de Dados

Com base nos componentes e no caminho de dados desenvolvidos em aula, projetamos um processador multiciclo capaz de executar a ISA RISC-V reduzida proposta no laboratório 4.

1.1) O circuito que implementa o caminho de dados segue abaixo. Não foi preciso fazer nenhuma alteração no caminho de dados apresentado em sala de aula, já que ele já suportava as instruções jal e jalr, e as outras instruções são feitas apenas na ULA.

Entretanto, um novo bloco de controle foi necessário, este, uma máquina de estados. O seguinte diagrama de estados foi feito para descrever o seu funcionamento.

Abaixo segue o circuito implementado para a unidade de controle:

Os sinais da unidade de controle podem ser identificados através da seguinte relação de siglas:

IOD = I or D RME = Read Memory WRG = Register Write OA0 = ALU Src A IRW = Instruction Register Write OB0 = ALU Src B 0 OB1 = ALU Src B 1 AO0 = ALU Op 0 AO1 = ALU Op 1 OPC = PC Src WPC = PC Write PCB = Conditional PC Branch WRM = Memory Write M2R = Mem To Reg RD = RegDist

1.2) Para a representação do estado foi utilizado um display de 7 segmentos com o label "STATE":

1.3) O processador *femto*RISC-V, incluindo uma entrada de clock e um sinal de reset se encontra abaixo:

Analisando a etapa mais lenta implementada na máquina de estados multiciclo, pudemos estimar a frequência máxima utilizável no *femto*RISC-V. Com base nesse valor, executamos a simulação e forma de onda e testamos frequências próximas até que fosse possível determinar a frequência máxima. No nosso caso, essa frequência é 11,11 MHz. Para confirmar o resultado, foi feito outro teste, numa frequência ligeiramente maior, e pudemos verificar que nessa frequência o processador não funcionava da forma esperada. Abaixo se encontram os resultados:

Freq 11,11 MHz:

Freq 12,50 MHz:

■ Deeds-DcS - Simulation Timing Diagram ■ "Clock" Period and Initial Value ×					Deeds-DcS − S	Simulation Timing Diagram Clock* Period and Initial Value
35 B B -	2.0	■ 神野田田 劇	Clock Period: 90.0 nS (11.11 MHz) V		(A) (E) (B)	○ 🙉 🖟 Æ 💯 🚉 🐤 📦 Clock Period: 80.0 nS (12.50 MHz) 🔻 🖠
		15			0 , 35 4 →	些《《〈〉》》注《《《《 题》题 Initial Value: Low _
Traced Signals:		10µS 20µS 30µS	initial Value: Low 3,0,3 10,0,8 11,0,8 12,0,8	13,0	Traced Signals:	10 _p S 20 _p S 30 _p S 40 _p S 50 _{pp} 120
-		-		*	M CL. D	• ;
□ CL (c)		н				
88 RE (c-	*				RE (⊳	
II Ha. (⊳	*	H W			■ Ha (>	
M END	١.	<u> </u>			M END	
18 ⊕ a0	1	(0h (Ah) (Ah)((0h (3h) 13 (0h	(th)(th)(th)(th)(x) (1) (x) (0h		18 ⊕ 90	- (0h) (0h) (0h) (1h) (1h) (1h) (2) (2) (2) (2) (2) (2) (2) (2) (2) (
1B ⊗ a1	ŧ '	(Oh)(Oh)(Oh)(Oh)(Oh))(h)(h)× () (() × () (ch		19 ⊕ a1	- 10 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0
(B) ⊕ a2	<u>+</u> ۱	You You You You You)(ah)(ah)(×))(()(×))(ah		¶ ⊕ a2	(%)(%)(%)(%)(%)(%)X()X()X()X()X()X()X()X()X()X()X()X()X()
18 ⊕ a3	ŧ.,	™ Yoh Xsh Yoh)×)()()×)()6,		1 ⊕ 63	<u>™</u> (6 X0X0X0X0X0X0X0X0X0X0X0X)®
1B ⊗ a4	+ '	(5h)(0h	[X](G)(_)(X](G)		18 ⊕ 64	* ** (8*
18 ⊕ a5	+ '	You You	(x)(0h) (x)(0h		18 ⊛ ან	* ** (0h X) (X) (X) (X) (X) (X) (X) (X) (X) (X)
1 9 ⊛ a6		You You	(x)(ch) (x)(ch		18 ⊛ ⊛	(a) (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
1B ⊗ a7	1	— χα _н	[X][Gh] [X][Gh		18 ⊕ a7	(a) (A
18 ⊛ ы	4	to (Oh)(Ah)(Ch)(Oh)(Ch)(Oh	(3h (×)(0h) (0h)()(0h (Ch		18 ⊕ ы	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
18 ⊕ b1	1	(th) (th) (th) (th) (th)	(x)(0h)(Ch		18 ⊕ b1	(m) (Fa)(m)(m) (Fa)(m)
18 ⊗ b2	1	(0h (3h)(0h (3h)(0h	(X)(0h (Ch		18 ⊕ b2	
1B ⊕ b3	1	tox YOh	(×)(0n		18 ⊕ b3	(a) (X)(a)
1B ⊕ b4		ter Yoh	y×yon you		18 ⊕ b4	(a) (3)(a)
18 € 55	1	⊷ Yoh	(×)(0h (Ch			10h (2)(0h
18 ● 16	ļ,	tor Yoh	γ×χon γch		18 ⊕ 15	. A
18 ⊕ 67	ŀ,	YOU	(c) (on (c)		18 ⊕ 16	T
B 015 0	1	ter Date			18 ⊕ 67	(öh)3(öh

1.4) O vídeo com a execução do TestBench.s pode ser conferido no link abaixo: https://drive.google.com/file/d/16jaAGfcM28ko5HDmuUSv5YISC5iQj7Q0/view?us p=sharing

1.5) A CPI média do programa seria calculada dividindo o valor dos registradores de Cycle pelo de Instret, caso o processador estivesse funcionando como esperado.