Polyatomic compounds are chemical compounds that contain more than two different elements in their formula (i.e., sulfuric acid = H_2SO_4). Also, polyatomic compounds usually contain at least one **polyatomic ion** (i.e., 2 hydrogen ions (2H ⁺¹) and sulfate (SO_4 ⁻²) = sulfuric acid (H_2SO_4)). In this example, sulfate (SO_4 ⁻²) is the polyatomic ion. Polyatomic compounds may also contain 2 polyatomic ions (i.e., ammonium (NH_4 ⁺¹) and hydroxide (OH ⁻¹) = ammonium hydroxide (NH_4OH)). Remember, the positive ion (cation) or negative ion (anion), or both, contain two or more different elements in their formula. **Writing a formula** for a polyatomic compound follows **exactly the same rules** as we used in Part 1. That is, polyatomic chemical compounds are **neutral**, having a charge of zero (i.e., the combination of charges on the cation(s) and anion(s) must add to zero).

The naming of polyatomic compounds is **similar** to naming binary compounds but some memorization is required initially. Many polyatomic ions are derived from oxygencontaining acids or "**oxy-acids**". The names and formulas of these oxy acids and their derivatives is your starting point for Part 2 of this independent study.

I. OXY ACIDS

An **oxy acid** is a polyatomic compound containing hydrogen, oxygen and an electronegative element (i.e., Cl, N, S, P, etc.). These acids are sometimes referred to as "mother acids" because many other chemical compounds are derived from them. Therefore, the **names and formulas** of related oxy acids and polyatomic ions are derived from them. The top 5 oxy acids are the main oxy acids used in industry. Use the names already given to help fill in the chart below.

oxy acid chemical name	oxy acid chemical formula
phosphoric acid	H ₃ PO ₄
	H ₂ SO ₄
carbonic acid	H ₂ CO ₃
	HNO ₃
chloric acid	HClO₃
	HFO₃
	HBrO ₃
	HIO₃

J. OXY ACIDS DERIVATIVES

An **oxy acid derivative** may be formed during a chemical reaction when oxygen atom(s) are added to or removed from an **oxy acid**. (**Note:** Although you can write the chemical formulas and names of all oxy acid derivatives using the system described below, some may not exist naturally or be able to be synthetically produced.)

NAMING and WRITING FORMULAS for OXY ACID DERIVATIVES:

Information in the box below shows how the name and formula of an oxy acid are changed when adding or removing oxygen atoms from the original **oxy acid** formula.

+ if ONE OXYGEN ATOM IS ADDED , add prefix "per" to the "ic" acid name = per acid (called "per-ic" acid)
+ OXY ACID = sulfuric acid (called "ic" acid, AKA Amother acid@)
+ if ONE OXYGEN ATOM IS REMOVED , remove "ic" and add "ous" to acid name ous acid (called "ous" acid)
+ if TWO OXYGEN ATOMS ARE REMOVED , add prefix "hypo" to "ous" acid name = hypo ous acid (called "hypo-ous" acid)

Complete the following table to show how you would name and write the formulas for the oxy acid derivatives of sulfuric acid (use information from the box above).

change in oxy acid formula	oxy acid name	oxy acid formula
add one oxygen atom(*) ("per-ic" acid)		
no change ("ic" acid)	sulfuric acid	H₂SO₄
remove one oxygen atom(*) ("ous" acid)		
remove two oxygen atoms(*) ("hypo-ous" acid)		

^(*) These are the **derivatives** of the original **oxy acid**. Since the derivatives contain oxygen and are acids (like the original oxy acid), they are also referred to as oxy acids.

OTHER OXY ACID DERIVATIVES

Complete a similar table for each of the other four main oxy acids:

a) H_3PO_4 b) H_2CO_3 c) HNO_3 d) $HCIO_3$

change in oxy acid formula	oxy acid name	oxy acid formula
add one oxygen atom ("per-ic" acid)		
no change ("ic" acid)	phosphoric acid	
remove one oxygen atom ("ous" acid)		
remove two oxygen atoms ("hypo-ous" acid)		

change in oxy acid formula	oxy acid name	oxy acid formula
add one oxygen atom ("per-ic" acid)		
no change ("ic" acid)	carbonic acid	
remove one oxygen atom ("ous" acid)		
remove two oxygen atoms ("hypo-ous" acid)		

change in oxy acid formula	oxy acid name	oxy acid formula
add one oxygen atom ("per-ic" acid)		
no change ("ic" acid)	nitric acid	
remove one oxygen atom ("ous" acid)		
remove two oxygen atoms ("hypo-ous" acid)		

change in oxy acid formula	oxy acid name	oxy acid formula
add one oxygen atom ("per-ic" acid)		
no change ("ic" acid)	chloric acid	
remove one oxygen atom ("ous" acid)		
remove two oxygen atoms ("hypo-ous" acid)		

Worksheet IJ

Complete the following table in order to practice the naming and formula writing for oxy acids and their derivatives.

chemical name	chemical formula	chemical name	chemical formula
sulfurous acid			H ₂ SO ₅
fluoric acid			HFO ₂
hypophosphorous acid			H₃PO₅
percarbonic acid			H ₂ CO ₃
pernitric acid			HNO
bromous acid			HBrO₄
hypoiodous acid			HIO ₃
perfluoric acid			H ₂ SO ₂
phosphoric acid			HCIO
carbonic acid			HNO ₂
nitrous acid			H ₂ CO ₄
hypochlorous acid			H₃PO₄

Oxy acids and their derivatives dissociate (separate from) their positive hydrogen ions (H⁺¹), forming negative polyatomic anions. These negative ions are commonly found combined with **positive metal ions**. This combination of a **metal cation** and a **polyatomic anion** is called a **"salt"**. Some of the names of the polyatomic anions which are derived from the oxy acids are given below. Writing the formula of salts that contain these polyatomic anions follows the same rules you have used in the past (i.e., the chemical compound formed is neutral). The names of the chemical compounds are determined by placing the cation name in front of the polyatomic anion name. Use the examples in the right column as a guide. (**Note:** The "ic" acid always results in the "ate" anion!)

K. POLYATOMIC ANIONS from "ic" acids

"ic" acid name and formula	polyatomic anion chemical formula	polyatomic anion chemical name	example of chemical name and formula for sodium salt
phosphoric acid H ₃ PO ₄	PO ₄ -3	phosphate	sodium phosphate Na₃PO₄
	SO ₄ -2	sulfate	sodium sulfate Na₂SO₄
	CO ₃ -2	carbonate	sodium carbonate Na₂CO₃
	NO ₃ ⁻¹	nitrate	
	CIO ₃ ⁻¹	chlorate	
fluoric acid			
bromic acid			
iodic acid			

L1. POLYATOMIC ANIONS from OXY ACID DERIVATIVES

The following chart shows how you would name the **polyatomic anions** from sulfuric acid and its oxy acid derivatives.

oxy acid	polyatomic anion formula	polyatomic anion name	example of sodium salt
persulfuric acid H₂SO₅	SO ₅ -2	persulfate ("ic" acids always result in "ate" ions)	sodium persulfate Na₂SO₅
sulfuric acid H ₂ SO ₄	SO ₄ -2	sulfate ("ic" acids always result in "ate" ions)	sodium sulfate Na₂SO₄
sulfurous acid H ₂ SO ₃	SO ₃ -2	sulfite ("ous" acids always result in "ite" ions)	sodium sulfite Na₂SO₃
hyposulfurous acid H ₂ SO ₂	SO ₂ -2	hyposulfite ("ous" acids always result in "ite" ions)	sodium hyposulfite Na ₂ SO ₂

Practice Problems:

Note: When writing the chemical formulas for the examples below, if more than one polyatomic ion is required in the chemical formula, **brackets** must be placed around the polyatomic ion.

chemical name	chemical formula	chemical name	chemical formula
potassium persulfate			RaSO₄
aluminum sulfate			B ₂ (SO ₅) ₃
copper(I) sulfite			CuSO ₂
ferrous hyposulfite $F_e^{+2} = SO_3^{-2}$	Fe SO2		Fe ₂ (SO ₃) ₃
nickel(III) persulfate	Ni2 (505)3		NiSO ₂

L2. POLYATOMIC ANIONS from OXY ACID DERIVATIVES

The following chart shows how you would name the polyatomic anions from phosphoric acid and its oxy acid derivatives.

oxy acid	polyatomic anion formula	polyatomic anion name	example of sodium salt
phosphoric acid H₃PO₄	PO ₄ -3	phosphate	

chemical name	chemical formula	chemical name	chemical formula
lithium perphosphate			Cs ₃ PO ₂
calcium phosphate			Mg ₃ (PO ₄) ₂
aluminum phosphite			GaPO₅
lead(II) hypophosphite			Au ₃ PO ₂
mercurous phosphite			Mn ₃ (PO ₃) ₄

L3. POLYATOMIC ANIONS from OXY ACID DERIVATIVES

The following chart shows how you would name the polyatomic anions from carbonic acid and its oxy acid derivatives.

oxy acid	polyatomic anion formula	polyatomic anion name	example of sodium salt
carbonic acid H₂CO₃	CO ₃ -2	carbonate	

chemical name	chemical formula	chemical name	chemical formula
rubidium percarbonate			K₂CO₂
beryllium carbonate			Al ₂ (CO ₄) ₃
boron carbonite			Ag ₂ CO
cobalt(II) hypocarbonite			NiCO ₃
cuprous percarbonate			Sn(CO ₂) ₂

L4. POLYATOMIC ANIONS from OXY ACID DERIVATIVES

The following chart shows how you would name the polyatomic anions from nitric acid and its oxy acid derivatives.

oxy acid	polyatomic anion formula	polyatomic anion name	example of sodium salt
nitric acid HNO₃	NO ₃ ⁻¹	nitrate	

chemical name	chemical formula	chemical name	chemical formula
zinc pernitrate			Sb(NO ₃) ₅
barium nitrate			HgNO ₂
boron nitrite			Fe(NO) ₂
arsenic(V) hyponitrite			Au(NO ₂) ₃
plumbous nitrate			Ca(NO ₄) ₂

L5. POLYATOMIC ANIONS from OXY ACID DERIVATIVES

The following chart shows how you would name the polyatomic anions from chloric acid and its oxy acid derivatives.

oxy acid	polyatomic anion formula	polyatomic anion name	example of sodium salt
chloric acid HClO₃	CIO ₃ -1	chlorate	

chemical name	chemical formula	chemical name	chemical formula
lithium perchlorate			Mg(ClO ₃) ₂
aluminum chlorate			B(ClO ₂) ₃
zinc chlorite			Cu(ClO) ₂
tin(II) hypochlorite			Co(ClO ₄) ₂
nickelous hypochlorite			Sb(ClO ₃) ₅

M. ACID POLYATOMIC ANIONS from OXY ACIDS

Oxy acids and their derivatives with two or more hydrogen ions in their chemical formulas may form **acid polyatomic anions**. The 3 oxy acids that may form acid polyatomic anions are: H_2SO_4 , H_2CO_3 and H_3PO_4 . Acid polyatomic anions are formed when only one hydrogen ion dissociates (separates) from the oxy acid. This leaves a negative polyatomic anion with a hydrogen ion still attached to it. Phosphoric acid (H_3PO_4) has the ability to lose **one or two** hydrogen ions and still remain an acid polyatomic anion. These acid polyatomic anions can form **acid salts** when they combine with **positive metal ions**.

oxy acid formula	acid polyatomic anion (remove 1 or 2 H ⁺¹ ions)	acid anion name	examples (formula and name)
H₂SO₄	HSO₄ ⁻¹	hydrogen sulfate (preferred name) or bisulfate (common name)	NaHSO₄ sodium hydrogen sulfate or sodium bisulfate
H₂CO₃	HCO ₃ ⁻¹	hydrogen carbonate (preferred) or bicarbonate (common)	NaHCO ₃ sodium hydrogen carbonate or sodium bicarbonate
H₃PO₄	H₂PO ₄ ⁻¹	dihydrogen phosphate (preferred) or (no common name)	NaH₂PO₄ sodium dihydrogen phosphate
H₃PO₄	HPO ₄ -2	monohydrogen phosphate (preferred) or biphosphate (common)	Na₂HPO₄ sodium monohydrogen phosphate or sodium biphosphate

N1. ACID ANIONS from H₂SO₄ and its DERIVATIVES

The following chart outlines the formulas and names of acid polyatomic anions derived from sulfuric acid and its derivatives. Study the chart below and identify the system used to write formulas and names for these **acid anions**.

oxy acid formula	acid anion formula (remove 1 H ⁺¹)	acid anion chemical name	examples
H₂SO₅	HSO₅ ⁻¹	hydrogen persulfate	NaHSO₅
112005	11005	or	sodium hydrogen persulfate
		(no common name)	porodinato
		hydrogen sulfate	NaHSO₄
H₂SO₄	HSO₄ ⁻¹	or	sodium hydrogen sulfate or
		bisulfate	sodium bisulfate
H₂SO₃	HSO ₃ ⁻¹	hydrogen sulfite	NaHSO₃
112003	11003	or	sodium hydrogen sulfite or
		bisulfite	sodium bisulfite
H_2SO_2	HSO ₂ ⁻¹	hydrogen hyposulfite	NaHSO ₂
112002	11002	or	sodium hydrogen hyposulfite
		(no common name)	71

N2. ACID ANIONS from H₂CO₃ and its DERIVATIVES

Complete the chart below using the formula writing and naming system demonstrated in N1.

oxy acid formula	acid anion formula (remove 1 H ⁺¹)	acid anion chemical name	examples
		(no common name)	
H₂CO₃	HCO₃ ⁻¹	hydrogen carbonate	NaHCO₃ sodium hydrogen
112003		or	carbonate or
		bicarbonate	sodium bicarbonate
		(no common name)	

N3. ACID ANIONS from H₃PO₄ and its DERIVATIVES

Complete the table below using the formula writing and naming system demonstrated in N1. Since one or two hydrogens can dissociate (separate) from these acids without losing all the hydrogens, a prefix must be used to indicate how many hydrogen ions remain bonded to the acid anion.

oxy acid formula	acid anion formula (remove 1 H ⁺¹)	acid anion chemical name	examples
		(no common name)	
H₃PO₄	H₂PO ₄ ⁻¹	dihydrogen phosphate	NaH₂PO₄ sodium dihydrogen phosphate
		(no common name)	
		(no common name)	
		(no common name)	

N4. ACID ANIONS from H₃PO₄ and DERIVATIVES

Complete the following table using the formula writing and naming system demonstrated in N1, N2 and N3.

oxy acid formula	acid anion formula (remove 2 H ⁺¹)	acid anion chemical name	examples
		(no common name)	
H₃PO₄	HPO₄ ⁻²	monohydrogen phosphate or	Na₂HPO₄ sodium monohydrogen phosphate or
		biphosphate	sodium biphosphate
		(no common name)	

Worksheet MN

chemical name	chemical formula	chemical name	chemical formula
sodium hydrogen sulfate			LiHSO₅
potassium bicarbonate			RbHCO
magnesium dihydrogen phosphite			Ca(H ₂ PO ₂) ₂
aluminum monohydrogen hypophosphite			B ₂ (HPO ₃) ₃
zinc bisulfite			AgHSO ₄
barium hydrogen carbonite			SrHPO ₂
nickel(II) dihydrogen perphosphate			CuHCO₄
cupric hydrogen hypocarbonite			Fe(H ₂ PO ₃) ₂
iron(III) biphosphite			Co(HSO ₂) ₃
mercurous hydrogen persulfate			HgHSO₃
tin(IV) biphosphate			Ca(HCO ₂) ₂
sodium hydrogen carbonate			Mn(HCO ₃) ₄
plumbic dihydrogen hypophosphite			Pb(H ₂ PO ₄) ₄
arsenic(V) monohydrogen perphosphate			Sb ₂ (HPO ₅) ₅
aurous hydrogen carbonite			As(H ₂ PO ₅) ₃

O. MISCELLANEOUS POLYATOMIC IONS

Other polyatomic anions and cations are commonly found in chemical compounds. The following are just two examples of other polyatomic ions. Complete the table using rules you have learned in Part 2 of this independent study.

polyatomic ion name	ammonium	hydroxide	
polyatomic ion symbol	NH ₄ ⁺¹	OH ⁻¹	
example of chemical formula with this ion	(NH4) 2 503	Fe (OH) 2	
chemical name of example above			

MISCELLANEOUS POLYATOMIC IONS - more examples

The following chemical formulas and chemical names contain other common polyatomic ions. Use the "**Oxidation States**" sheet to determine the formula or oxidation state of the ion being used.

chemical name	chemical formula	chemical name	chemical formula
sodium thiocyanate			MgCr ₂ O ₇
calcium permanganate			Pb(CN) ₂
ferrous acetate			AI(OCN) ₃
copper(II) chromate			NH₄SCN
gold(III) dichromate			LiCH₃CO ₂
arsenic cyanate			KMnO₄
potassium cyanide			Pb(CrO ₄) ₂
boron hydroxide			(NH₄)₂CO