MATHÉMATIQUES I

Définitions

Si f est une fonction de classe C^{∞} définie sur un ouvert $\Omega \subset \mathbb{R}$ et à valeurs réelles, on notera, pour $p \geq 1$, $f^p = f \circ f ... \circ f$ p fois, fonction définie sur le sousdomaine de Ω défini par $\{x \in \Omega | f(x) \in \Omega, f^2(x) \in \Omega, ..., f^{p-1}(x) \in \Omega\}$. On appelle p-cycle de f un ensemble de p éléments $\{x_0, ..., x_{p-1}\} \subset \Omega$ tel que $f(x_0) = x_1$, ..., $f(x_{p-2}) = x_{p-1}$, $f(x_{p-1}) = x_0$. On appelle multiplicateur du cycle la quantité

$$(f^p)'(x_0) = f'(x_0)f'(x_1)...f'(x_{p-1}).$$

Un point $x \in \Omega$ est dit p-périodique s'il est élément d'un p-cycle ; un point 1-périodique est encore appelé point fixe. Le multiplicateur d'un point périodique x_0 est alors le multiplicateur du cycle le contenant, qui n'est autre que le multiplicateur de x_0 comme point fixe de f^p . Le cycle (ou le point p-périodique) sera dit attractif, super attractif, indifférent ou répulsif suivant que la valeur absolue de son multiplicateur est strictement inférieure à 1, égale à 0, égale à 1 ou strictement supérieure à 1.

On pourra être amené à utiliser un théorème de fonctions implicites dans ${\rm I\!R}^2$. On pourra alors admettre le résultat suivant :

Théorème : Soit Ω un ouvert de \mathbb{R}^2 , $F:\Omega \to \mathbb{R}$ une fonction de classe C^1 , et (x_0, y_0) un point de Ω , tels que

$$F(x_0,y_0) = 0, \frac{\partial F}{\partial y}(x_0,y_0) \neq 0.$$

Alors il existe ε , $\eta > 0$ tels que si on pose $I =]x_0 - \varepsilon$, $x_0 + \varepsilon[$,

 $J = y_0 - \eta, y_0 + \eta[$, l'ouvert $V = I \times J$ est inclus dans Ω et il existe une

fonction $g:]x_0 - \varepsilon, x_0 + \varepsilon[\rightarrow]y_0 - \eta, y_0 + \eta[$ de classe C^1 telle que : $\forall (x,y) \in V, F(x,y) = 0 \Leftrightarrow y = g(x)$.

Le thème général du problème est l'étude globale de la méthode de Newton appliquée aux polynômes.

Filière MP

Partie I - La méthode de Newton pour les polynômes réels

Soit $P: \mathbb{R} \to \mathbb{R}$ une fonction polynomiale non constante et $\Omega = \{x \in \mathbb{R} \mid P'(x) \neq 0\}$. Si $x \in \Omega$, on définit $N_P(x)$ comme étant l'abscisse de l'intersection de la tangente en (x, P(x)) au graphe de P avec l'axe des x.

I.A - Montrer que :

$$\forall x \in \Omega, \, N_P(x) \, = \, x - \frac{P(x)}{P'(x)} \, .$$

I.B -

- I.B.1) Si $x \in \Omega$, calculer $N'_{P}(x)$.
- I.B.2) Soit *a* un nombre réel.

Montrer que si P(a)=0, $P'(a)\neq 0$ alors a est un point fixe super attractif de N_P . Si a est un zéro d'ordre $p\geq 2$ de P montrer que N_P peut se prolonger par continuité en a qui devient un point fixe attractif de N_P de multiplicateur 1-1/p.

Si $x \in \Omega$, on dira que la suite de Newton de x par P est bien définie si l'on peut définir une suite (x_n) telle que $x_0 = x$ et :

$$\forall n \in \mathbb{N}, x_n \in \Omega \text{ et } x_{n+1} = N_P(x_n).$$

Dans ce cas, cette suite (x_n) sera la suite de Newton de x par P.

- **I.C** Montrer que si la suite de Newton de x par P est bien définie et converge vers $a \in \mathbb{R}$ alors P(a) = 0.
- **I.D** Soit réciproquement $a \in \mathbb{R}$ un zéro de P.
- I.D.1) Montrer l'existence de $\varepsilon > 0$ tel que si $|y a| < \varepsilon$ alors la suite de Newton de y par P est bien définie et converge vers a.

On appelle I(a) le plus grand intervalle contenant a et formé de points dont la suite de Newton par P converge vers a.

I.D.2) Montrer que c'est un intervalle ouvert ; on l'appelle le bassin immédiat de a .

I.E -

I.E.1) On suppose que P a au moins deux racines réelles. Soit a^- le plus petit zéro de P; on suppose que ξ , le plus petit zéro de P' vérifie $\xi > a^-$ et que P'' ne s'annule pas sur $]-\infty$, ξ [. Montrer que le bassin immédiat de a^- est égal à $]-\infty$, ξ [.

I.E.2) On suppose que le bassin immédiat du zéro a de P est de la forme $]\alpha, \beta[\ , \alpha, \beta \in \mathbb{R}$.

Montrer successivement que $N_P(]\alpha, \beta[) \subset]\alpha, \beta[$, que $P(\alpha)P'(\alpha)P(\beta)P'(\beta) \neq 0$, et enfin que $N_P(\alpha) = \beta$, $N_P(\beta) = \alpha$. Ce 2 - cycle peut-il être attractif?

- **I.F** Les hypothèses de la question I.E.2 étant toujours vérifiées, montrer que le bassin immédiat de a contient un zéro de P''.
- **I.G** On suppose P de degré $d \ge 2$ possédant d zéros distincts. Montrer que N_P attire tout zéro de P'' vers un zéro de P.

Partie II - Étude algébrique

Soit P un polynôme de $\mathbb{C}[X]$ de degré d (on note $\mathrm{d}^{\circ}(P)=d$). Dans cette partie la dérivation est à prendre au sens de la dérivation formelle des polynômes ou plus généralement des fractions rationnelles et N_P est la fraction rationnelle

$$N_P(X) = X - \frac{P(X)}{P'(X)}.$$

II.A - Montrer que si P a d zéros distincts alors $R = N_P$ vérifie

$$\text{(*)} \begin{cases} R = \frac{Q}{S}, \, Q, \, S \in \mathbb{C}[X], \, PGCD(Q, S) = 1, \, \mathrm{d}^{\circ}(Q) = \, d, \, \mathrm{d}^{\circ}(S) = \, d - 1 \\ \text{et } R \text{ possède } d \text{ points fixes super attractifs} \end{cases}$$

(Un point fixe super attractif de R est un point $z \in \mathbb{C}$ tel que R(z) = z, R'(z) = 0).

- **II.B** Soit réciproquement R une fraction rationnelle vérifiant (*). Montrer qu'il existe $P \in \mathbb{C}[X]$, de degré d, possédant d zéros distincts, tel que $R = N_P$.
- **II.C** Deux fractions rationnelles f,g sont dites semblables s'il existe une similitude T(z)=az+b $(a,b\in\mathbb{C},a\neq0)$ telle que si \mathcal{D} désignent les domaines de définition de f,g (c'est-à-dire le complémentaire dans \mathbb{C} de l'ensemble des pôles) alors $T(\mathcal{D})=\mathcal{D}$ et

$$\forall z \in \mathcal{D}, f(z) = T^{-1} \circ g \circ T(z).$$

Si $a, b \in \mathbb{C}, a \neq 0$ et si T(z) = az + b montrer que $N_{P_0, T}$ est semblable à N_P .

II.D - Déterminer N_P pour $P(X) = X^2$, $P(X) = X^2 - 1$: montrer que si P est un polynôme de degré 2 alors N_P est semblable à $z \mapsto \frac{z}{2}$ ou bien à $z \mapsto \frac{z}{2} + \frac{1}{2z}$.

II.E - Pour $m \in \mathbb{C}$ on définit

$$P_m(z) = z^3 + (m-1)z - m = (z-1)(z^2 + z + m), N_m(z) = N_{P_m}(z)$$

Montrer que si P est un polynôme de degré 3 alors soit N_P est semblable à $z\mapsto \frac{2z}{3}$ soit il existe $m\in\mathbb{C}$ tel que N_P est semblable à N_m .

II.F - Quel est l'intérêt des résultats des deux questions précédentes pour l'étude des suites de Newton par les polynômes de degré ≤ 3 ?

Partie III - Étude analytique du cas cubique réel

Dans cette partie on suppose $m \in \mathbb{R}$, on garde les notations du II.E et on s'intéresse au comportement des suites de Newton des nombres réels par P_m .

III.A -

III.A.1) Montrer que P_m a trois zéros (complexes) distincts si et seulement si $m \neq -2$, $m \neq 1/4$.

III.A.2) On suppose m>1: montrer que la suite de Newton de tout réel x par P_m est définie et converge vers un réel à préciser.

III.B -

III.B.1) Montrer que si m' < 1/4, $m' \neq -2$ alors $P_{m'}$ possède trois zéros réels distincts, soient :

$$1\,,\,a_{m'}=\frac{-1+\sqrt{1-4m'}}{2},\,b_{m'}=\frac{-1-\sqrt{1-4m'}}{2}\,.$$

Si de plus m' < 0, montrer qu'il existe $m \in \]0,1/4[$ tel que $N_{m'}$ soit semblable à N_m .

III.B.2) On supposera désormais dans cette partie que $m \in [0, 1/4[$. P_m possède alors trois zéros réels distincts, soient :

1 ,
$$a_m = \frac{-1 + \sqrt{1 - 4m}}{2}$$
 , $b_m = \frac{-1 - \sqrt{1 - 4m}}{2}$.

III.B.3) On pose $x_0^{\pm} = \pm \sqrt{\frac{1-m}{3}}$ et on désigne par $]\alpha(m)$, $\beta(m)$ [le bassin immédiat de a_m . Montrer que la fonction $x\mapsto |N'_m(x)|$ est strictement décroissante sur $]x_0^-$, a_m [et strictement croissante sur]0, x_0^+ [.

III.B.4) Montrer que la fonction $M_m = N_m \circ N_m$ est définie sur un intervalle

$$]x_1, x_1^+[\subset]x_0, x_0^+[$$
 où $N_m(x_1) = x_0^+, N_m(x_1^+) = x_0^-.$

On désigne par ξ^- , ξ^+ le plus petit et le plus grand zéro de M'_m . Montrer que la fonction M'_m est strictement décroissante sur $]x_1^-$, $\xi^-[$ et strictement croissante sur $]\xi^+$, $x_1^+[$.

- III.B.5) Montrer que l'intervalle $[\xi^-,\xi^+]$ est inclus dans le bassin immédiat de a_m .
- III.B.6) Déduire de III.B.4 et III.B.5 que $\{\alpha(m), \beta(m)\}\$ est le seul 2 cycle de N_m .
- III.B.7) Montrer que $\alpha(0) = -\beta(0)$ et en déduire que $\alpha(0) = -\frac{1}{\sqrt{5}}$.
- III.B.8) On pose $F(m, x) = M_m(x) x$. Si u est un réel, un développement limité à l'ordre 1 de la fonction

$$m \mapsto F(m, -\frac{1}{\sqrt{5}} + um)$$

peut être obtenu grâce à un logiciel de calcul formel. On trouve :

$$\left(35u + \frac{25 - 7\sqrt{5}}{2}\right)m + o(m)$$
.

En déduire, avec toutes les justifications nécessaires, un développement limité à l'ordre 1 de α en 0.

III.C -

- III.C.1) Montrer qu'il existe une et une seule valeur m_0 de $m \in \mathbb{R}$ telle que 0 soit 2-périodique pour N_m . Donner une valeur approchée à 10^{-3} près par défaut de m_0 en indiquant l'algorithme utilisé.
- III.C.2) Montrer qu'il existe $\eta > 0$ tel que si $|m m_0| < \eta$ alors N_m admet un cycle attractif d'ordre 2 qui attire 0.

••• FIN •••