Theory of Partial Differential Equations Homework-1

Munawar Ali

August 16, 2023

- 1. Prove Hölder's and Minkowski's inequalities for L^p spaces.
- 2. Let Ω be a bounded subset of \mathbb{R}^n , Show that $L^p(\Omega) \subset L^q(\Omega)$, for p > q.
 - Show by example that $L^2(\mathbb{R}) \not\subset L^1(\mathbb{R})$.
- 3. Let Ω be a bounded open set in \mathbb{R}^n , $p > q \ge 1$. Prove that $L^p(\Omega)$ is continuously embedded in $L^q(\Omega)$. By this we mean that $L^p(\Omega) \subset L^q(\Omega)$, and if $u_n \to u$ in $L^p(\Omega)$ then $u_n \to u$ in $L^q(\Omega)$, and is usually denoted as $L^p(\Omega) \hookrightarrow L^q(\Omega)$.
- 4. Consider $f_n(x) = 1 + \sin(nx)$ on (-1,1). Find the following:
 - the pointwise limit in (-1,1),
 - the weak limit in L^1 ,
 - is the convergence in part (b) strong in L^1 ? (d) what is the limit of $||f_n||_{L^1}$ in part (b)?
- 5. Let $\{\phi_k\}$ be a sequence of mollifiers in \mathbb{R}^n and let $f \in L^p(\mathbb{R}^n)$, give a complete proof of the following:
 - $\phi_k * f \longrightarrow f \text{ in } L^p(\mathbb{R}^n).$
 - $\|\phi_k * f\|_{L^p(\mathbb{R}^n)} \le \|f\|_{L^p(\mathbb{R}^n)}$, for any k.
- 6. Let f(x,y) = u(x) + v(y). Prove that the weak derivative $D_x f$ exists if and only if the weak derivative $D_x u$ exists and $D_x f = D_x u$.