Calculations:

		-
	Slew Rate Limitations	9
(2)		
	SR= 0.5 1/41 V(2 Sin (2 of f) -, Vo = Sin (2 of f)	
	dvo = 2 mf cos(2 mft)	
	The state of the s	
	27 500000 V dVo. 3 27 fme	
	£= 79577 Hz	
	Zacord at the state of the stat	
13	SR = 0.5 V/us f = 75 kHz, Vo= Amax sin (2x750002)	
3	Ste do s pps F 15 pHe , V6 Himax Siri (c. 15)	
	500000 = 2775000 Amax dv. = 2775000 Amax cos(2775000E)	
	u	
	Amax = 1.061V) avol = 2#75000 Amax	
	atlanx	
	\$30\\$1.00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	122	
	The short standard the	
	and the second s	
	SV TV	
	A Secretary of the second seco	
	M. Stand	
	All the second s	
474	The state of the s	
	which the statement to the statement of	

Circuit Schematics:

Lossy-Integrator:

Pseudo Differentiator:

Non-inverting Amplifier:

Buffer Amplifier:

Simulations:

Lossy Integrator

Bode Plots:

Here we can see that the f_{3-dB} is at 32.9 Hz, and that the low frequency gain is 20.8 dB. The magnitude and phase at 1 kHz is -8.89 dB and 91.9° respectively.

Transient Plots:

The phase difference calculated is 91.5° or 1.6 rads.

The V_{pp} for V_{in} and V_{out} are 1 V and 1.3 V respectively $\underline{\mbox{Pseudo DIfferentiator}}$

Bode Plots:

The f_{3-dB} is at 4.725 kHz and the low frequency gain is 20.8 dB. The magnitude and phase at 1 kHz is 7.04 dB and -101.9° respectively.

Transient Plots:

The magnitudes of V_{in} and V_{out} are 0.0999 V and 0.4466 V respectively. The phase difference between the two waves is about 98.9° or 1.73 rad.

The V_{pp} for V_{in} and V_{out} is 0.2 V and 0.5808 V respectively. <u>Finite GBW Limitations</u>

Bode Plots:

The f_{3-dB} for R2 values 82k, 56k, and 22k are 13.273 kHz, 19.124 kHz, and 48.111 kHz respectively. The low frequency gain for R2 values 82k, 56k, and 22k are 27.23 dB, 35.11 dB, and 38.38 dB respectively.

Slew Rate Limitations

Bode Plots:

The low frequency gain is 0 dB and the $f_{\text{3-dB}}$ is 1.57 MHz.The magnitude at 75 kHz and 150 kHz is 0.0029 dB and 0.012 dB respectively.

Transient Plots:

Fourier Plots:

			Lab5_SR				
1 Fourier analysis for V(vo	ut						
2 DC component:	9.13295e-06						
3 No. Harmonics:	9						
4 THD:	0.939528 %						
5 Grid size:	256						
6 Interpolation Degree:	1						
7							
8 Harmonic	Frequency	Magnitude	Phase	Norm. Mag	Norm. Phase		
9 0	0	9.13295e-06	0	9.14567e-06	0		
10 1	75000	0.998609	-5.3684	1	0		
11 2	150000	0.000235828	-19.427	0.000236157	-14.058		
12 3	225000	0.00913983	-123.91	0.00915256	-118.54		
13 4	300000	9.02378e-05	-60.166	9.03635e-05	-54.798		
14 5	375000	0.00202855	-174.91	0.00203137	-169.54		
15 6	450000	3.27862e-05	-121.8	3.28318e-05	-116.43		
16 7	525000	0.00053193	114.627	0.000532671	119.995		
17 8	600000	1.24114e-05	160.194	1.24287e-05	165.562		
18 9	675000	0.000162323	31.5573	0.000162549	36.9257		
19							

Printing Time: Wednesday, February 28, 2024, 11:40:43 PM

The THD at 1 V, 75 kHz is 0.9395%

1 Fourier analysis for V(vou				Lab5_SR		Printing Time:Wednesday, February 28, 2024, 11:42:47 PM
1 Fourier analysis for V(vou						
	ut					
2 DC component:	0.00118459					
No. Harmonics:	9					
THD:	11.793 %					
Grid size:	256					
Interpolation Degree:	1					
7						
Harmonic	Frequency	Magnitude	Phase	Norm. Mag	Norm. Phase	
0	0	0.00118459	0	0.000857177	0	
1	75000	1.38197	-37.382	1	0	
2	150000	0.00416772	-126.98	0.00301578	-89.597	
2 3	225000	0.151119	68.0055	0.10935	105.387	
4	300000	0.00122769	-3.9273	0.000888362	33,4543	
4 5	375000	0.0529583	173.496	0.0383209	210.877	
6	450000	0.000695514	112.471	0.000503277	149.853	
7	525000	0.0259969	-80.715	0.0188115	-43.333	
7 8	600000	0.000478892	-135.09	0.000346528	-97.703	
8 9	675000	0.0149815	25.4241	0.0108407	62.8057	
9						

The THD at 2 V, 75 kHz is 11.793%

Fourier analysis for V(vout 2.84679e-05						Lab5_SR		Printing Time:Wednesday, February 28, 2024, 11:46:24 PM
DC component: 2.846/9e-05 Image: Component: 2.846/9e-05 Image: Component: 1.326 % Image: Component: Image: Component: </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
No. Hamorics: 9	ı Fo	urier analysis for V(vout						
THD: 11.326 %	2 DC	component:	2.84679e -05					
Grid size: 256 1 1 1 1 1 1 1 1 1	3 No	. Hamonics:	9					
Interpolation Degree: 1 Phase Norm. Mag Norm. Phase	4 TH	ID:	11.326 %					
Interpolation Degree: 1 Phase Norm. Mag Norm. Phase			256					
Harmonic Frequency Magnitude Phase Norm. Mag Norm. Phase 0 0 2.84679e-05 0 4.1402e-05 0 1 150000 0.687597 42.563 1 0 2 300000 0.00104431 -134.44 0.00151878 -91.878 3 450000 0.0729918 52.6309 0.106155 95.1942 4 600000 0.000303939 -20.92 0.00044203 21.6429 5 750000 0.0241447 148.573 0.0351146 191.136 6 900000 0.000164118 86.026 0.000238684 128.589 7 1.05e+06 0.0109508 -114.37 0.0159262 -71.81 8 1.2e+06 0.0001941 -170.31 0.00015429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563			1					
Harmonic Frequency Magnitude Phase Norm. Mag Norm. Phase 0 0 2.84679e-05 0 4.1402e-05 0 1 150000 0.687597 -42.563 1 0 2 300000 0.00194431 -134.44 0.00151878 -91.878 3 450000 0.0729918 52.6309 0.106155 95.1942 4 600000 0.000303939 -20.92 0.00044203 21.6429 5 750000 0.0241447 148.573 0.0351146 191.136 6 900000 0.000164118 86.026 0.000238684 128.889 7 1.05e+06 0.0109508 -114.37 0.0159262 -71.81 8 1.2e+06 0.00017431 -170.31 0.00015429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563	7							
0 0 2.84679e-05 0 4.1402e-05 0 1 150000 0.687597 -42.563 1 0 2 300000 0.00194431 -134.44 0.00151878 -91.878 3 450000 0.0729918 52.6309 0.106155 95.1942 4 600000 0.000393939 -20.92 0.0004203 21.6429 5 750000 0.0241447 148.573 0.0351146 191.136 6 900000 0.000164118 86.026 0.000238684 128.899 7 1.05e+06 0.0109508 -114.37 0.0159262 -71.81 8 1.2e+06 0.0001481 -170.31 0.000152429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563	_	armonic	Frequency	Magnitude	Phase	Norm. Mag	Norm. Phase	
1 150000 0.687597 -42.563 1 0 2 300000 0.00104431 -134.44 0.00151878 -91.878 3 450000 0.0729918 52.6309 0.106155 95.1942 4 600000 0.000303939 -20.92 0.0004203 21.6429 5 750000 0.0241447 148.573 0.0351146 191.136 6 900000 0.00164118 86.025 0.000238684 128.589 7 1.05e+06 0.0109508 -114.37 0.0199262 -71.81 8 1.2e+06 0.0001481 -170.31 0.000152429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563	0							
2 300000 0.00194431 -134.44 0.00151878 -91.878 3 450000 0.0729918 52.6399 0.106155 95.1942 4 600000 0.0003093939 -20.92 0.00042033 21.6429 5 750000 0.0241447 148.573 0.0351146 191.136 6 900000 0.00164118 86.026 0.000238684 128.589 7 1.05e+06 0.0195908 -114.37 0.0199262 -71.81 8 1.2e+06 0.0010481 -170.31 0.000152429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563	_							
3 450000 0.0729918 52.6309 0.106155 95.1942 4 600000 0.000303939 -20.92 0.0004203 21.6429 5 750000 0.0241447 148.573 0.0351146 191.136 6 900000 0.000164118 86.026 0.000238684 128.589 7 1.05e+06 0.0109508 -114.37 0.0199262 -71.81 8 1.2e+06 0.00010481 -170.31 0.000152429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563	1 2							
4 600000 0.000303939 -20.92 0.0004203 21.6429 5 750000 0.0241447 148.573 0.0351146 191.136 6 900000 0.000164118 86.026 0.000238684 128.589 7 1.05e+06 0.0109508 -114.37 0.0199262 -71.81 8 1.2e+06 0.00010481 -170.31 0.000152429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563	_							
5 750000 0.0241447 148,573 0.0351146 191.136 6 900000 0.000164118 86.026 0.000238684 128.589 7 1.05e+06 0.0199508 -114.37 0.0159262 -71.81 8 1.2e+06 0.00010481 -170.31 0.000152429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563	3 4							
6 900000 0.000164118 86.026 0.000238684 128.5899 7 1.05e+06 0.0109508 -114.37 0.0159262 -71.81 8 1.2e+06 0.00010481 -170.31 0.000152429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563								
7 1.05e+06 0.0109508 -114.37 0.0159262 -71.81 8 1.2e+06 0.00010481 -170.31 0.000152429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563								
8 1.2e+06 0.00010481 -170.31 0.000152429 -127.74 9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563	_							
9 1.35e+06 0.00574031 -16.107 0.00834836 26.4563	_							
	_							
			1.35e+06	0.005/4031	-16.107	0.00834836	26,4563	

The THD at 150 kHz is 11.326%