CPR Guide Glove

Team 14: Brandon Dai, Holly Grezdo, Chelsea Lang, Joey Soliman, Ramzi Tweini

1 in 7 people die of sudden cardiac arrest

Within 10 minutes of cardiac arrest, brain damage is likely to occur

Only 30% of Americans are confident in their abilities to perform CPR

TAM:

First Response \$410 M

SAM:

CPR Assist Devices \$120 M

Target Customers:

Corporations Entertainment Large Events First Aid Kit Companies

Medical Supply Companies

Additional use in training

Products on the Market

- Expensive
- Inefficient design
- Ineffective guidance

- Inconvenient
- Difficult to Use

Device: CPR Guide Glove

CPR Guide Glove

Inside of the Components Box

Outside of the Components Box

Primary Functions

Using audio and visual cues, the CPR Guide Glove aims to address the three metrics of high-quality CPR:

- 1) Hand Placement
- 2) Compression Depth
- 3) Compression Pace

Hand Placement

- From the view of the user, the vertical line is aligned with the nipple line of the patient
- 2) The horizontal line is aligned with the sternum
- 3) The end of the extension tool will be placed at the patient's sternal notch

Compression Rate

- AHA Guidelines: 100 to 120 beats per minute
 - CPR Guide Glove's buzzer/metronome:120 bpm
- Frequency of the tone: 2 Hz
- Each beep represents one single chest compression

Compression Depth

- MPU-9250 Accelerometer
 - High sampling rate
- Arduino Nano processes the data
 - FFT between each integration
 - Blackman window w/ low pass filter
 - Double integration
- Device provides feedback through LED
 - Green = adequate compression depth
 - Red = inadequate compression depth

MPU-9250 Accelerometer

Different height and weight settings

0: Off

I: Average Patient (2 - 2.4 inches)

II: Obese Patient (2.2 - 2.6 inches)

KCD3-103 Rocker Switch

Testing

- **Test 1**: Compare the measured distance from correct position for CPR to subject's actual position for CPR between control and experimental group
 - Control Group (n = 50): Users without the CPR Guide Glove
 - Experimental Group (n = 50): Users with the CPR Guide Glove
- **Test 2:** Compare time to achieve 5 good compressions in a row between control and experimental group, gather data regarding user-friendliness
 - Control Group (n = 50): Users without the CPR Guide Glove
 - Experimental Group (n = 50): Users with the CPR Guide Glove
- **Test 3:** Determine the accuracy of the depth-feedback mechanism by comparing the actual displacement with the desired displacement
 - Control Group (n = 20): Known distance
 - Experimental Group (n = 20): Calculated distance

Null hypothesis (H_0): $\mu_{control} - \mu_{experimental} \le 0$

Alternative hypothesis (H_A): $\mu_{control}$ - $\mu_{experimental} > 0$

	Mean (cm)	Variance (cm)	
Control	2.0446	2.3769641	
Experimental	1.2920	0.7450816	

Results: Test 1

- **Fligner-Killeen test**: test for homoscedasticity (equal population variances)
 - H_0 : $\sigma^2_{\text{experimental}} = \sigma^2_{\text{control}}$ H_A : $\sigma^2_{\text{experimental}} \neq \sigma^2_{\text{control}}$
- Because p-value < .05, we reject the null hypothesis and proceed with Welch's t-test (performed when homoscedasticity is violated).

Welch's t-test:

- t(76.971) = 3.0118, p = .001756
- Because p-value < .05, we reject the null and conclude that the average distances for the control group are greater than the average distances of the experimental group.

Fligner-Killeen test of homogeneity of variances

data: Value.in.cm by Group Fligner-Killeen:med chi-squared = 9.8682, df = 1, p-value = 0.001682

data: Value.in.cm by Group t = 3.0118, df = 76.971, p-value = 0.001756 alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: 0.3365737 Inf sample estimates: mean in group Control 2.0446 mean in group Experimental

1.2920

Testing

- **Test 1**: Compare the measured distance from correct position for CPR to subject's actual position for CPR between control and experimental group
 - Control Group (n = 50): Users without the CPR Guide Glove
 - Experimental Group (n = 50): Users with the CPR Guide Glove
- **Test 2:** Compare time to achieve 5 good compressions in a row between control and experimental group, gather data regarding user-friendliness
 - Control Group (n = 50): Users without the CPR Guide Glove
 - Experimental Group (n = 50): Users with the CPR Guide Glove
- **Test 3:** Determine the accuracy of the depth-feedback mechanism by comparing the actual displacement with the desired displacement
 - Control Group (n = 20): Known distance
 - Experimental Group (n = 20): Calculated distance

NUMERICAL DATA

- Average time for control group < average time for experimental group
- Significant difference in time between experimental and control

SURVEY DATA

- More confidence in ability to perform CPR with glove
- Higher likelihood to perform CPR on a stranger with glove

Testing

- **Test 1**: Compare the measured distance from correct position for CPR to subject's actual position for CPR between control and experimental group
 - Control Group (n = 50): Users without the CPR Guide Glove
 - Experimental Group (n = 50): Users with the CPR Guide Glove
- **Test 2:** Compare time to achieve 5 good compressions in a row between control and experimental group, gather data regarding user-friendliness
 - Control Group (n = 50): Users without the CPR Guide Glove
 - Experimental Group (n = 50): Users with the CPR Guide Glove
- Test 3: Determine the accuracy of the depth-feedback mechanism by comparing the actual displacement with the desired displacement
 - Control Group (n = 25): Known distance
 - Experimental Group (n = 25): Calculated distance

Results: Test 3

Results: Test 3

Levene's test:

Null hypothesis (H₀): $\sigma^2_{\text{control}} - \sigma^2_{\text{experimental}} = 0$

Alternative hypothesis (H_A): $\sigma^2_{control} - \sigma^2_{experimental} \neq 0$

- 2.54 cm Group: p = 0.019797
- 5.08 cm Group: *p*= 0.021988
- 7.62 cm Group: p = 0.036392
- 10.16 cm Group: p = 0.009255
- 12.7 cm Group: p = 0.004032

Welch's t-test:

Null hypothesis (H_0): $\mu_{control}$ - $\mu_{experimental}$ = 0

Alternative hypothesis (H_A): $\mu_{control} - \mu_{experimental} \neq 0$

- 2.54 cm Group: *t* = -0.05493, *p* = 0.958319
- 5.08 cm Group: *t* = 1.278362, *p*= 0.270259
- 7.62 cm Group: t = 0.39727, p = 0.711454
- 10.16 cm Group: t = 1.393418, p = 0.235929
- 12.7 cm Group: *t* = 0.453433, *p* = 0.673747

Future Work: Pulse Check

Electrocardiogram (EKG):

- Retractable leads to attach to the patient
- Detect electrical signals of the heart
- CPR is unnecessary if heart is beating

Overall, the CPR Guide Glove improves on existing technology through:

Acknowledgements

Dr. Christopoulos Faculty Advisor

Dr. McKee BIEN175 Faculty

Dr. Vullev BIEN175 Faculty

Dr. Park BIEN175 Faculty

Dr. Nam BIEN175 Faculty

TAs: Sid Modha, Troy Alva, Kaiqing Chen

E References

[1] (n.d.). Retrieved from

https://ahainstructornetwork.americanheart.org/AHAECC/CPRAndECC/AboutCPRECC/CPRFactsAndStats/UCM_475748_CPR-Facts-and-Stats.jsp

[2] WEINBERGER LM, GIBBON MH, GIBBON JH. TEMPORARY ARREST OF THE CIRCULATION TO THE CENTRAL NERVOUS SYSTEM: I. PHYSIOLOGIC EFFECTS. Arch NeurPsych. 1940;43(4):615-634. doi:10.1001/archneurpsyc.1940.02280040002001

Retrieved from https://www.verywellhealth.com/brain-activity-after-cardiac-arrest-1298429

[3] Mell, H., Mumma, S., Hiestand, B., Carr, B., Holland, T., Stopyra, J. (2017, July 19). Emergency medical response times in rural, suburban and urban areas [Editorial]. JAMA Surgery DOI: 10.1001/jamasurg. 2017.2230. Retrieved from https://medicalnewsbulletin.com/response-time-emergency-medical-services/

[4] Abella, B. S. (2005). Quality of Cardiopulmonary Resuscitation During In-Hospital Cardiac Arrest. Jama, 293(3), 305. doi: 10.1001/jama.293.3.305

[5] HIGHLIGHTS - American Heart Association. (n.d.). Retrieved from https://eccquidelines.heart.org/wp-content/uploads/2015/10/2015-AHA-Guidelines-Highlights-English.pdf

[6] Swor, R., Khan, I., Domeier, R., Honeycutt, L., Chu, K., & Compton, S. (2006). CPR Training and CPR Performance: Do CPR-trained Bystanders Perform CPR? Academic Emergency Medicine, 13(6), 596–601. doi: 10.1197/j.aem.2005.12.021

[7] Jeff. (2019, September 2). CPR RsQ Assist® device improves life-saving efforts during cardiac emergencies. Retrieved from https://www.jems.com/2015/01/29/cpr-rsq-assist-device-improves-life-saving-efforts-during-cardiac-emergencies/

[9] Cox, A. W. (2012, January 20). Blunt Force Traumatic Injuries of the Chest. Retrieved from https://forensicmd.files.wordpress.com/2012/01/blunt-force-traumatic-injuries-of-the-chest.pdf

[10] Secombe, P., Sutherland, R., & Dhnson, R. (2017). Body mass index and thoracic subcutaneous adipose tissue depth: Possible implications for adequacy of chest compressions. BMC Research Notes, 10(1). doi:10.1186/s13104-017-2918-9

[11] CPR - adult - series-Chest compressions: MedlinePlus Medical Encyclopedia. (n.d.). Retrieved from https://medlineplus.gov/ency/presentations/100219_2.htm

Thank You!

Appendix

Background: Statistics

- Heart complications are the leading cause of death in the United States
- 73% of cardiac arrest cases occur outside of the hospitals
- Cardiac arrest is one of the leading causes of heart-associated deaths with approximately 475,000 deaths in the United States each year
- The average survival rate is 10.6% and survival with good neurologic function is 8.3%
- Nearly one in three victims survives when the arrest is witnessed by a bystander

Competitors

	CPR Guide Glove	CPR RsQ Assist	TrueCPR	Mechanical CPR devices
Cost	\$300	\$87.65	\$1990.90	> \$10,000
Customer	Bystander	Bystander	First responders	First responders
Hand Placement	✓	×	×	×
Compression Depth	✓	✓	✓	×
Compression Rate	✓	✓	1	1
Size Adjustment	✓	×	×	✓
Requires User Action	✓	✓	✓	×
Drawbacks	Impacted by user error	Does not assist with hand placement and does not have size adjustment	Expensive, does not adjust to different sizes, inconvenient design	Expensive

Mechanical CPR Device

Design Iterations: Sketches

Nyquist-Shannon Theorem & Gibbs Phenomenon

- The Gibbs Phenomenon is commonly referred to as a "ringing signal" which is due to the use of sinc filters.
- The Nyquist Theorem states that a minimum of 2 times the maximum signal frequency is needed to reconstruct a signal.

Windowed FIR Filter

 Applying a window to a sinc filter helps to counter the effects of the Gibbs Phenomenon (indicated by the black line)

Statistical Analysis: Equations

Welch's t-test

Degrees of Freedom

$$\nu = \frac{\left(\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}\right)^2}{\left(\frac{S_X^2}{n_X}\right)^2 + \left(\frac{S_Y^2}{n_Y}\right)^2} + \frac{\left(\frac{S_Y^2}{n_Y}\right)^2}{n_Y - 1}$$

Test Statistic

$$t^* = \frac{(\bar{X} - \bar{Y}) - D_0}{\sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}}$$

Battery

- Rechargeable and replaceable 9V battery
- Battery will be in a convenient spot for easy replacement

