

Test #2

Monday, November 14 2016

NAME:		
Please w	rite clearly and properly.	
Always ju	stify your answers!	

Problem	Grade
1	
2	
3	
4	
5	
Total	

Problem 1 (\sim 5 points). Consider the function

$$f: \mathbb{C}^* \to \mathbb{C}$$
$$z \mapsto \frac{1}{z} .$$

Writing z in algebraic form as $z = x + iy$, express $f(z)$ in algebraic form in terms of x and y . Then prove that f is holomorphic using the Cauchy-Riemann equations.				

Problem 2 (\sim 4 points). Let n be a positive integer, and consider the polynomial P_n defined

$$P_n(z) = 1 + z + \frac{z^2}{2} + \dots + \frac{z^n}{n!}$$

110 110 100 100 01	P_1 and P_2 .			
		ave a root of multip	plicity > 1.	
ow that for an	y n , P_n cannot ha	1		
ow that for an	y n , P_n cannot ha			
ow that for an	y n , P_n cannot ha			
ow that for an	y n , P_n cannot ha			
ow that for an	y n , P_n cannot ha			
ow that for an	y n , P_n cannot ha			

Problem 5 (~3 points). Do the following series of complex numbers converge? *Explain your answers carefully.*

(1)	$\sum_{k\geqslant 0}\frac{e^{i\pi/k}}{k^2}$	

(2)	$\sum_{k\geqslant 0} \frac{(1+i)^k}{4 e^{i\cos(k^2)}}$

