4 - 5

Control Statements: Overview

Exam 1 – in about two weeks

- in-class, open book
- 5% of the total grade
- practice exams will be on the class website
- covers Chap. 1 6
- some theory, emphasis on coding practice

Last time

- OOP and UML diagrams
- constructors
- garbage collection (GC)
- packages

Objectives

- overview of control statements in Java
- if and if-else statements
- while, do-while, and for loop
- GUI programming: simple graphics drawing

4.1	Introduction
4.2	Algorithms
4.3	Pseudocode
4.4	Control Structures
4.5	if Single-Selection Statement
4.6	ifelse Double-Selection Statement
4.7	while Repetition Statement
4.8	Formulating Algorithms: Counter-Controlled Repetition
4.9	Formulating Algorithms: Sentinel-Controlled Repetition
4.10	Formulating Algorithms: Nested Control Statements
4.11	Compound Assignment Operators
4.12	Increment and Decrement Operators
4.13	Primitive Types
4.14	(Optional) GUI and Graphics Case Study: Creating Simple Drawings
4.15	(Optional) Software Engineering Case Study: Identifying Class Attributes
4.16	Wrap-Up

5.1	Introduction
5.2	Essentials of Counter-Controlled Repetition
5.3	for Repetition Statement
5.4	Examples Using the for Statement
5.5	dowhile Repetition Statement
5.6	switch Multiple-Selection Statement
5.7	break and continue Statements
5.8	Logical Operators
5.9	Structured Programming Summary
5.10	(Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals
5.11	(Optional) Software Engineering Case Study: Identifying Objects' States and Activities
5.12	Wrap-Up

Algorithms and Pseudocode

Algorithms

- The actions to execute
- The order in which these actions execute

Pseudocode

- An informal language similar to English
- Helps programmers develop algorithms
- Should contain input, output and calculation actions

Control Structures

Sequential execution

 Statements are normally executed one after the other in the order in which they are written

Transfer of control

 Specifying the next statement to execute that is not necessarily the next one in order

Control Structures (Cont.)

- Selection Statements
 - if statement
 - Single-selection statement
 - if...else statement
 - Double-selection statement
 - switch statement
 - Multiple-selection statement

Control Structures (Cont.)

- Repetition statements
 - Also known as looping statements
 - Repeatedly performs an action while its loop-continuation condition remains true
 - while statement
 - Performs the actions in its body zero or more times
 - do...while statement
 - Performs the actions in its body one or more times
 - for statement
 - Performs the actions in its body zero or more times

if Single-Selection Statement

if statements

- Execute an action if the specified condition is true
- Can be represented by a decision symbol (diamond) in a UML activity diagram

Fig. 4.2 | if single-selection statement UML activity diagram.

if...else Double-Selection Statement

• if...else statement

 Executes one action if the specified condition is true or a different action if the specified condition is false

Conditional Operator (?:)

- Java's only ternary operator (takes three operands)
- ? : and its three operands form a conditional expression
 - Entire conditional expression evaluates to the second operand if the first operand is true
 - Entire conditional expression evaluates to the third operand if the first operand is false

Fig. 4.3 | if...else double-selection statement UML activity diagram.

if...else Double-Selection Statement

- Nested if...else statements
 - if...else statements can be put inside other if...else statements
- Dangling-else problem
 - elses are always associated with the immediately
 preceding if unless otherwise specified by braces { }
- Blocks
 - Braces { } associate statements into blocks
 - Blocks can replace individual statements as an if body

while Repetition Statement

while statement

- Repeats an action while its loop-continuation condition remains true
- Uses a merge symbol in its UML activity diagram
 - Merges two or more workflows
 - Represented by a diamond (like decision symbols)

Fig. 4.4 | while repetition statement UML activity diagram.

Program: Count digits

do...while Repetition Statement

- do...while statement
 - Similar to while statement
 - Tests loop-continuation after performing body of loop
 - i.e., loop body always executes at least once

for Repetition Statement

Fig. 5.3 | for statement header components.

for Repetition Statement (Cont.)

```
for ( initialization; loopContinuationCondition; increment )
    statement;
can usually be rewritten as:
initialization;
 while ( loopContinuationCondition )
    statement;
    increment;
```

Examples Using the for Statement

- Varying control variable in for statement
 - Vary control variable from 1 to 100 in increments of 1

```
• for ( int i = 1; i <= 100; i++ )
```

- Vary control variable from 100 to 1 in increments of −1
 - for (int i = 100; i >= 1; i--)
- Vary control variable from 7 to 77 in increments of 7
 - for (int i = 7; i <= 77; i += 7)
- Vary control variable from 20 to 2 in decrements of 2
 - for (int i = 20; i >= 2; i -= 2)

Program: Factorial using for loop

Logical Operators

Logical operators

- Allows for forming more complex conditions
- Combines simple conditions

Java logical operators

- && (conditional AND)
- | | (conditional OR)
- & (boolean logical AND)
- (boolean logical inclusive OR)
- − ∧ (boolean logical exclusive OR)
- ! (logical NOT)

Logical Operators (Cont.)

- Boolean Logical Exclusive OR (^)
 - One of its operands is true and the other is false
 - Evaluates to true
 - Both operands are true or both are false
 - Evaluates to false
- Logical Negation (!) Operator
 - Unary operator

Assignment operator		Explanation	Assigns
Assume: int c =	3, d = 5, e =	4, f = 6, g =	12;
+=	c += 7	C = c + 7	10 to C
-=	d -= 4	d = d - 4	1 to d
*=	e *= 5	e = e * 5	20 to e
/=	f /= 3	f = f / 3	2 to f
%=	g %= 9	g = g % 9	3 to g

Fig. 4.14 | Arithmetic compound assignment operators.

Increment and Decrement Operators

Unary increment and decrement operators

- Unary increment operator (++) adds one to its operand
- Unary decrement operator (--) subtracts one from its operand
- Prefix increment (and decrement) operator
 - Changes the value of its operand, then uses the new value of the operand in the expression in which the operation appears
- Postfix increment (and decrement) operator
 - Uses the current value of its operand in the expression in which the operation appears, then changes the value of the operand

Operator	Called	Sample expression	Explanation
++	prefix increment	++a	Increment a by 1, then use the new value of a in the expression in which a resides.
++	postfix increment	a++	Use the current value of a in the expression in which a resides, then increment a by 1.
	prefix decrement	b	Decrement b by 1, then use the new value of b in the expression in which b resides.
	postfix decrement	b	Use the current value of b in the expression in which b resides, then decrement b by 1.

Fig. 4.15 | Increment and decrement operators.

```
// Prefix increment and postfix increment operators.
  public class Increment
      public static void main( String args[] )
         int c;
         // demonstrate postfix increment operator
10
         c = 5; // assign 5 to c
11
         System.out.println( c );
                                  // print 5
12
         System.out.println( c++ ); // print 5 then postincrement
13
         System.out.println( c );  // print 6
14
15
         System.out.println(); // skip a line
16
                                                      Postincrementing the c variable
17
         // demonstrate prefix increment operator
18
         c = 5; // assign 5 to c
19
         System.out.println( c ); // print 5
20
         System.out.println( ++c_); // preincrement then print 6
         System.out.println( c ); // print 6
22
23
      } // end main
24
                                                      Preincrementing the c variable
26 } // end class Increment
```

// Fig. 4.16: Increment.java

Operators						Associativity	Туре
++						right to left	unary postfix
++		+	- (type)		right to left	unary prefix
*	/	%				left to right	Multiplicative
+	-					left to right	Additive
<	<=	>	>=			left to right	Relational
==	!=					left to right	Equality
?:						right to left	Conditional
=	+=	-=	*=	/=	%=	right to left	assignment

Fig. 4.17 | Precedence and associativity of the operators discussed so far.

GUI and Graphics Case Study: Creating Simple Drawings

- Java's coordinate system
 - Defined by x-coordinates and y-coordinates
 - Also known as horizontal and vertical coordinates
 - Are measured along the x-axis and y-axis
 - Coordinate units are measured in pixels
- Graphics class from the java.awt package
 - Provides methods for drawing text and shapes
- JPanel class from the javax. swing package
 - Provides an area on which to draw

Fig. 4.18 | Java coordinate system. Units are measured in pixels.

Creating Simple Drawings (Cont.)

- Inheriting
 - extends keyword
 - The subclass inherits from the superclass
 - The subclass has the data and methods that the superclass has as well as any it defines for itself

Creating Simple Drawings (Cont.)

The JPanel class

- Every JPanel has a paintComponent method
 - paintComponent is called whenever the system needs to display the JPanel
- getWidth and getHeight methods
 - Return the width and height of the JPanel, respectively
- drawLine method
 - Draws a line from the coordinates defined by its first two arguments to the coordinates defined by its second two arguments

Creating Simple Drawings (Cont.)

- JFrame class from the javax. swing package
 - Allows the programmer to create a window
 - setDefaultCloseOperation method
 - Pass JFrame.EXIT_ON_CLOSE as its argument to set the application to terminate when the user closes the window
 - add method
 - Attaches a JPanel to the JFrame
 - setSize method
 - Sets the width (first argument) and height (second argument) of the JFrame

