SPECIAL TOPICS: BIOCATALYSIS

ChBE 8803C/4803B

Fall 2003

LECTURES:

Tuesday/Thursday, 1:30-3:00 pm; ES & T 1105

INSTRUCTOR:

Dr. Andreas Bommarius, IBB 3310, x5-1334,

andreas.bommarius@chbe.gatech.edu, office hours: TuTh 4-5

TEACHING

Tracey Thaler, IBB 3412, x5-3089

ASSISTANT:

tracey.thaler@chbe.gatech.edu; office hours: M,Tu,Th 3-4

WEBSITE:

http://swiki.che.gatech.edu/biocatalysis

COURSE DESCRIPTION: This course for graduate and advanced undergraduate students provides an in-depth coverage of various topics in biocatalysis. Prior knowledge in organic chemistry and/or biochemistry as well as kinetics and/or reactor design is recommended but not required. Goals of this course are the development of an understanding of proteins as catalysts, knowledge of applications of biological catalysis in various industries, and recognition of the potential of biological catalysis for addressing future challenges in

science and engineering.

REQUIRED TEXT:

Biotransformations in Organic Chemistry, Kurt Faber

Springer, 4th edition, 2000, ISBN 3-540-66334-7

TEXTS:

RECOMMENDED Biocatalysis – Fundamentals and Applications, A.S. Bommarius and B.R.

Riebel, Wiley-VCH, 2003 (avail. November), ISBN: 3-527303-448

Structure and Mechanism in Protein Science, Alan Fersht

Freeman, New York, 1999, ISBN 0-7167-3268-8

Mechanisms in Chemistry and Enzymology, William P. Jencks

Dover, New York, 1975, ISBN 0-486-65460-5

Chemical Reaction Engineering

Octave Levenspiel; John Wiley, 3rd edition, 1999

or

Elements of Chemical Reaction Engineering

H. Scott Fogler; Prentice Hall, 1999

COURSE GRADING: Homework 25%

Term paper 25%

Midterm exam 25%

Final exam 25%

SPECIAL TOPICS: BIOCATALYSIS

ChBE 8803C/4803B

Fall 2003, TuTh, 1:30-3 pm

11/20

11/25

HOMEWORK ASSIGNMENTS:

25% of total grade, 25 points per problem set; no late homework accepted except in emergencies

Problem set topic	Hand-out date	due date	
Basics in enzyme catalysis	08/26	09/02	
Enzymes as products and catalysts	09/02	09/09	
Protein folding and enzyme stability	09/09	09/16	
Enzyme reactions and mechanisms	09/16	09/23	
Fermentation and purification	10/21	10/28	
Enzyme models, multiple-enzyme systems	10/28	11/04	
Evolution and improvement of enzyme activity	11/04	11/11	
Enzymes in pharma processes	11/06	11/25	

TERM PAPER:

Critique of a biocatalysis-based original paper agreed upon between student and instructor; requirements: short written paper, corresponding Powerpoint presentation, and oral presentation in class.

Purpose:	- -	critical review of <u>original</u> paper with Biocatalysis creation of excitement within the student's mind honing of oral presentation skills	s topic
Requirements:	i)	paper must contain <u>original</u> experimental data or Minireview, or Perspective allowed (no extraneous	
	ii)	paper must be 4-8 pages long	,
	iii)	paper must not have been presented before or dea	l with thesis topic
Deliverables:	i)	due 11/20: ≤ 3 pages of critique, single-sided, 12	pt font, 1 in margins
	ii)	due 11/20: Powerpoint slides, in "handout, 2 slides per page" format	
	iii)	presentation with overheads of ii) to class, 15 min, incl. Q & A	
Timeline:	sugges	tions for papers due:	10/21
	agreen	nent on papers by	11/02

3-page critique and Powerpoint presentations due:

presentations to class:

FINAL EXAM:

Friday, 12/12, 11:30 - 2:20, ES&T 1105: 25% of total grade; comprehensive; open book, open notes

SPECIAL TOPICS: BIOCATALYSIS

ChBE 8	803 (C/4803	B
--------	-------	--------	---

Fall 2003, TuTh, 1:30-3 pm

Course Outline

1 2	08/19 08/21	i Fire Francisco Vicinity of Calalysis		
3 4	08/26 08/28	Enzymes as products in detergents, textiles, and pulp and paper Enzymes as catalysts in basic, fine, and specialty chemicals, food, and agriculture		
5 6	09/2 09/4	Protein folding, enzyme deactivation Methods to study proteins I: chromatography, kinetics, isotopes, CD, DSC		
7 8	09/9 09/11	Selected examples of enzyme reactions and mechanisms Methods to study proteins II: use of databases		
9 10	09/16 09/18	Activity: advanced enzyme kinetics Selectivity: chemo- & regiospecificity, enantioselectivity (E-value)		
11	09/23 09/25	Stability: enzyme denaturation, aggregation, instability factors Midterm exam		
12	09/30	Generation of a biocatalyst: fermentation		
13	10/2	Isolation, preparation and purification of biocatalysts		
14	10/7	Protein engineering: site-directed mutagenesis, random mutagenesis, recombination		
15	10/9	Medium engineering: enzymology in non-aqueous media		
	10/14	Mid-term recess: no class		
16	10/17	Examples of enzyme improvement through protein engineering		
17	10/21	Artificial enzymes: status and perspectives		
18	10/23	Multiple-enzyme systems: from cofactor regeneration to metabolic engineering		
19	10/28	Creation of novel function in nature: con-/divergent evolution, gene transfer		
20	10/30	Examples of evolution: enzyme superfamilies, α/β-barrel enzymes		
21,22	11/4,6	Enzymes in the synthesis of pharmaceutical intermediates		
23-25	resched	ule Biocatalytic process design: HFCS, aspartame, penicillins		
26-27	11/25 (Presentations of term papers		
	11/27	Thanksgiving: no class		
28 29	12/2 12/4	Unsolved problems and challenges in biocatalysis Review		
	12/12	Final (11:30 a.m. – 2:20 p.m.)		