122 — Architecture des ordinateurs et système d'exploitation

J. Razik

Dpt. Informatique — UTLN

2020-2021

Logique Séquencielle

Diagramme d'états

Automate tel que :

- Chaque noeud représente un état du système;
- La valeur de la sortie externe du système est écrite à côté ou dans le noeud;
- Les arcs entre les noeuds sont orientés et possèdent comme étiquette la valeur des entrées du système source de cette transition.

Selon les transitions de sortie d'un état, celui-ci peut être qualifié de :

- **stable**, si pour une entrée de transition entrante, le système reste dans le même état pour la même entrée;
- transitoire, si pour une entrée de transition entrante, le système change aussitôt d'état;
- terminal, s'il ne possède pas de transition de sortie.

Diagramme d'états

Table de transition

Construite à partir du diagramme d'états

- Chaque ligne correspond aux états et ses états destination;
- Chaque colonne correspond à une combinaison possible des entrées;
- La dernière colonne indique la valeur de sortie du système pour l'état considéré;
- Intersection ligne-colonne : état destination à partir de l'état considéré (ligne) et avec la combinaison d'entrée lue (colonne). Si aucune transition spécifiée alors l'état est non spécifié, noté « - ».

État Entrée	00	01	11	10	Sortie
А	Α	В	-	-	0
В	-	В	-	С	0
С	-	В	Α	-	1

Réduction de l'automate

Recherche des états compatibles :

- La sortie des deux états la même (ils émettent la même réponse);
- Les transitions des deux états pour une entrée doivent être « identiques », c'est-à-dire soient :
 - Vers le même état ;
 - Vers l'un ou l'autre des deux états considérés;
 - Une des deux transitions au moins est vers un état indéterminé.

Exemple:

États	0	1	2	3	4	5	Sortie
Α	Α	В	Е	В	F	-	42
В	Α	-	-	В	F	G	42
С	-	В	K	-	F	G	42

Diagramme de phases

Diagramme de compatibilité entre états

Réduction de l'automate

Fusion des états compatibles d'une même phase

États	0	1	2	3	4	5	Sortie
X	Χ	Χ	Е	Χ	F	G	42
С	-	Χ	K	-	F	G	42

Machine de Moore

$$\underline{\underline{y}} = f(\underline{X}, \underline{Y})$$
 $\underline{\underline{Y}} = \underline{\underline{y}}$
 $\underline{\underline{S}} = \underline{g}(\underline{Y})$

Bascule SR — Set-Reset

Bascule SR

États-Entrées / SR	00	01	11	10	Sortie Q
Α	Α	-	-	В	0
В	C	-	-	В	1
С	С	D	-	-	1
D	Α	D	_	-	0

Bascule SR

États / Entrées <i>SR</i>	00	01	11	10	Sortie Q
U	U	U	-	V	0
V	V	U	-	V	1

$$y = S + Y.\overline{R}$$

Bascule SR

Autre réalisation avec que des portes NOR

$$y = NOR(NOR(Y, S), R)$$

Bascule T — Toggle

Rôle : inverser la valeur de sa sortie à chaque fois que l'entrée ${\cal T}$ passe à 1.

Bascule T

Bascule L — Latch

2 entrées : D et G

- Si G vaut 1, alors Q vaut l'entrée D;
- Si G passe à 0, la sortie conserve la dernière valeur de D avant que G ne passe à 0.

Mémorisation de la valeur de D sur le front descendant de G.

Bascule L

États / Entrées <i>GD</i>	00	01	11	10	Sortie Q
0 (A)	0	0	1	0	0
1 (B)	1	1	1	0	1

D'où l'équation avec aléa :

$$y = G.D + Y.\overline{G}$$

et sans aléa :

$$y = G.D + Y.\overline{G} + Y.D$$

Bascule L

Réalisation possible à l'aide d'un muliplexeur

Bascule D — Data

2 entrées : D et k (horloge - clock). Mémorisation de D sur front montant.

Bascule D — Data

Bascule JK

3 entrées et 2 sorties : J, K et H (horloge) avec mémorisation sur front montant.

Mélange entre bascule SR et bascule T.

Н	J	K	Q
0	-	-	Q
1	-	-	Q
↑	0	0	Q
↑	0	1	0
↑	1	0	1
\uparrow	1	1	\overline{Q}

Bascule JK

Réalisation à partir d'une bascule D

Compteur Asynchrone

Compteur asynchrone

Mémoire statique (SRAM)

Fonctionnement:

- Si W=1 et $\underline{A}=n$, alors $Q_n=D$;
- Si W=0 et $\underline{A}=n$, alors $S=Q_n$.

Mémoire statique

