特性描述

TM1926是十二通道LED固定恒流驱动控制专用电路,内部集成有MCU单线数字接口、数据锁存器、LED 固定恒流驱动,PWM辉度控制等电路。芯片可通过单线数字接口(DIN、DO)级联,外部控制器只需单线 就可控制该芯片和与其级联的后续芯片。TM1926输出端口的PWM辉度可单独通过外部控制器设置。VDD 引脚内部集成5V稳压管,外围器件少。本产品性能优良,质量可靠。

功能特点

- 采用功率CMOS工艺
- OUT输出端口耐压24V
- VDD内置5V稳压管, 串接电阻后电压支持6~24V \triangleright
- 辉度调节电路,256级辉度可调
- 单线串行级联接口
- 振荡方式:内置RC振荡并根据数据线上信号进行时钟同步,在接收完本单元的数据后能自动将 后续数据再生后通过数据输出端发送至下级,信号不随级联变远而出现失真或衰减
- 内置上电复位电路
- 内控模式 (七彩闪烁)
- PWM控制端能够实现256级调节,扫描频率7KHZ
- 能通过一根信号线完成数据的接收与解码
- 当刷新速率为30帧/s时,级联数不小于1024点
- 数据传输速率可达800Kbps
- 任意两点传输距离不少于30米
- 封装形式: SOP16、DIP16

内部结构框图

©Titan Micro Electronics www.titanmec.com V1.0

管脚排列

图 2

管脚功能

端口		T /O	444444
名称	管脚	I/0	功能描述
DIN	16	I	数据输入
DO	2	0	数据输出
OUTB1	15	0	Blue PWM恒流输出
OUTG1	14	0	Green PWM恒流输出
OUTR1	13	0	Red PWM恒流输出
OUTB2	12	0	Blue PWM恒流输出
OUTG2	11	0	Green PWM恒流输出
OUTR2	10	0	Red PWM恒流输出
OUTR3	6	0	Red PWM恒流输出
OUTG3	7	0	Green PWM恒流输出
OUTB3	8	0	Blue PWM恒流输出
OUTR4	3	0	Red PWM恒流输出
OUTG4	4	0	Green PWM恒流输出
OUTB4	5	0	Blue PWM恒流输出
VDD	1	_	逻辑电源
GND	9	_	接系统地

输出及输入等效电路

十二通道 LED 恒流驱动 TM1926

在干燥季节或者干燥使用环境内,容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切 适当的集成电路预防处理措施,如果不正当的操作和焊接,可能会造成 ESD 损坏或者性能下降, 芯片无法正 常工作。

极限参数 (1) (2)

	参数		范围	单位
VDD	逻辑电源电压		-0.4~+7.0	V
Vin	输入端电压范围	DIN	-0.4∼VDD+0.4V	V
Iout	输出端电流(DC)	OUTR, OUTG, OUTB	21	mA
Vout	输出端电压范围	OUTR, OUTG, OUTB	-0.4~+30.0	V
Fosc	DIN 时钟速率	DIN	400~900	KHz
Topr	工作	-40~+85	$^{\circ}$	
Tstg	储石	−55~+150	$^{\circ}$	
ESD	人体	3000	V	
ESD		模式 (MM)	200	V

- (1) 以上表中这些等级,芯片在长时间使用条件下,可能造成器件永久性伤害,降低器件的可靠性, 我们不建议在其它任何条件下,芯片超过这些极限参数工作。
- (2) 所有电压值均相对于系统地测试。

推荐工作条件范围

(在-40℃~	(在-40℃~+85℃下, GND=0V) 除非另有说明			TM1926		
	参数	测试条件	最小值	典型值	最大值	单位
VDD	电源电压		4. 5	5. 0	5. 5	V
V_{DIN}	DIN 输入耐压范围	VDD=5V, DIN 串接 1k 电阻	-0.5		VDD+0. 7	V
V_{DO}	DO 输出耐压范围	VDD=5V,DIN 串接 1K 电阻	-0.5		VDD+0. 7	V
V_{OUT}	OUT 输出耐压范围	OUT=OFF	-0.5		24. 0	V
TA	工作温度范围		-40		+85	$^{\circ}\mathbb{C}$
ТJ	工作结温范围	1	-40		+125	$^{\circ}\!\mathbb{C}$

3 ©Titan Micro Electronics www.titanmec.com V1.0

申气特性

	5.0V 和-40℃~+85℃下, 除非另有说明	-40℃~+85℃下,典型值 VDD=5.0V 和 TM1926 自		TM1926		
	参数	测试条件	最小值	典型值	最大值	
VOH	高电平输出电压	IOH=-6mA: DO	VDD-0.5	VDD	VDD+0.5	V
VOL	低电平输出电压	IOL=10mA: DO			0.4	V
VIH	高电平输入电压	VDD=5. 0V	3. 5		VDD	V
VIL	低电平输入电压	VDD=5. 0V	0		1.35	V
IOH	高电平输出电流	VDD=5. 0V, SD0=5. 0V		1		mA
IOL	低电平输出电流	VDD=5. 0V, SD0=1. 0V		10		mA
Iin	输入电流	DIN 接 VDD 或 GND	-1		1	μА
Icco	逻辑电源电流 (VDD)	OUTR, OUTG, OUTB, DIN, DO=开路	1.2	3. 0	4. 2	mA
Iolc	恒定输出电流范围	OUTR, OUTG, OUTB= 3. 0V	19	20	21	mA
Iolkg	输出漏电流	OUTR, OUTG, OUTB =OFF	0		0.3	μА
Трим	0UT端口占空比周期	0UT接上拉电阻	135	140	145	μs
Δ Iolc0	恒流误差 (通道对通道)	OUTR, OUTG, OUTB =ON, VOUTn =1V			±2.5	%
Δ Iolc1	恒流误差 (芯片对芯片)	OUTR, OUTG, OUTB =ON , VOUTn =1V			±5	%
Δ Iolc2	线性调整	OUTR, OUTG, OUTB =ON , VOUTn =1V		±0.5	±1	%/V
Δ Iolc3	负载调整	OUTR, OUTG, OUTB =ON , VOUTn =1V~3V	X	±1	±3	%/V
IDDdyn	动态电流损耗	OUTR, OUTG, OUTB =OFF DO=开路			3	mA
Rth(j-a)	热阻值		79. 2		190	°C/W
PD	消耗功率	(Ta=25° C)			1.5	W

开关特性

(在 VDD=5. 0V 和-40℃~+85℃下,典型值 VDD=5. 0V 和 TA=+25℃)除非另有说明						
符号	参数	测试条件 最小		典型值	最大值	单位
Fosc	DIN时钟速率	VDD=5. OV	ı	800	ı	KHz
FOUT	OUT PWM 输出频率	OUTR, OUTG, OUTB	6. 5	7	7. 5	KHZ
tPLZ	传输延迟时间	DIN → DOUT			200	ns
tPZL		CL = 15pF, RL = 10K Ω			100	ns
TTHZ	下降时间	CL=300pF. OUTR. OUTG、OUTB			80	μѕ
CI	输入电容				15	рF

时序特性

©Titan Micro Electronics www.titanmec.com

功能说明

本芯片采用单线通讯方式,采用归一码的方式发送信号。芯片在上电复位以后,接受DIN端送来的 数据,接收完24*4bit后,DO端口开始转发DIN端继续发来的数据,为下个级联芯片提供输入数据。在转 发数据之前,DO口一直为高电平。如果DIN输入RESET复位信号,芯片将在复位成功后根据接收到24*4bit 数据输出相对应PWM占空比,且芯片重新等待接受新的数据,在接收完开始的24*4bit数据后,通过DO 口转发数据,芯片在没有接受到RESET信号前,OUTR、OUTG、OUTB管脚原输出保持不变。

芯片采用自动整形转发技术,信号不会失真衰减,使得该芯片的级联个数不受信号传送的限制,仅 受限于刷屏速度的要求。

数据结构

PWM模式命令:

如果在24bit数据包中,则该数据包是PWM设定数据,其结构如下:

以上为设置第 1 组 RGB PWM 的数据格式,设置一片 TM1926 要 4 组同样格式的数据包。

PWM占空比从0-256连续可调,24*4bit数据发送时高位先发,按照RGB的顺序发送数据。每24位可拆 分成3个8位数据来发送,注意字节与字节之间的高电平时间不要超过RESET信号时间,否则芯片会复位, 复位后又重新接收数据,则无法实现数据传输。

通讯速率

符号	参数	测试条件	最小值	典型值	最大值	单位
ТОН	输入0码,低电平时间		150	300	450	ns
T1H	输入1码,低电平时间		600	750	900	ns
TOH'	输出0码,低电平时间	VDD=5V		340		ns
T1H'	输出1码,低电平时间	GND=0V		680	-	ns
T	0码或1码的周期时间			1200		ns
Treset	Reset码, 高电平时间		140	500		μs

注意: 发送 1 码或 0 码的典型周期时间为 1200ns (频率 800K)。

©Titan Micro Electronics www.titanmec.com V1.0

数据传输和转发

其中D1为控制器发送的数据,D2、D3、D4为级联TM1926转发的数据。

芯片级联和数据传输并转发过程:控制器发来数据(D1),当芯片1接收完第一96bit,芯片1还没有转发数据(D2),接着控制器继续发来数据,芯片1再接收第二96bit,由于芯片1已经存有了第一96bit,因此,芯片1通过D0把第二96bit转发出去,芯片2接收芯片1转发来的数据(D2),此时,芯片2还没有转发数据(D3);控制器继续发来数据,芯片1又把接收到的第三96bit转发到芯片2,由于芯片2也已经存有一个96bit,所以,芯片2又把第三96bit转发(D3),芯片3接收到第三96bit,此时如果控制器发送一个RESET高电平信号,所有芯片就会复位并把各自接收到的96bit数据解码后控制四组RGB端口输出,完成一个数据刷新周期。芯片又回到接收准备状态。

内控模式

当芯片电源正常,且检测到DIN没有信号输入,或原来信号正常,之后信号突然丢失600mS后,芯片进入内控模式,进行如下循环闪烁。

内控模式的闪烁规律如下:

	RGB状态				
状态序号	R	G	В		
0	0	0	0		
1	1	0	0		
2	0	1	0		
3	1	1	0		
4	0	0	1		
5	1	0	1		
6	0	1	1		
7	1	1	1		

注: '0' 灯灭, '1' 灯亮。

©Titan Micro Electronics www.titanmec.com

应用信息

1、如何计算数据刷新速率

数据刷新时间是根据一个系统中级联了多少像素点来计算的,一组RGB通常为一个像素(或一段),一个TM1926芯片可以控制四组RGB。

按照正常模式计算:

一BIT传输最高速率为1200ns (频率0.8MHZ),一个像素数据包括红 (8BIT),绿 (8BIT),蓝 (8BIT), 共24BIT位,传输时间为24×1.2uS=28.8uS,如果一个系统中共有2000个像素点,一次刷新全部显示的时间为28.8uS×2000=57.6mS (忽略RESET码时间),即一秒钟刷新率为: $1\div57.6\times1000\approx17.36$ Hz。

ᄓᄓ	下是级联	占数对应	最高数据	刷新率表格	ζ.
~ ^ I		AX 8X 711 11/4	AX 101 4X 1/0		

	正常模式			
像素点	最快一次刷新数据 时间(mS)	最高刷新率(Hz)		
1~500	14.4	69		
1~800	23. 04	44		
1~1000	28.8	35		
1~1500	43. 2	23		
1~1800	51.84	19		
1~2000	57. 6	17		

如果系统对数据刷新率要求不高,则对级联像素点阵数量无要求,只要供电正常,理论上可用TM1926 无限级联。

2、如何使TM1926工作在最佳恒流状态

TM1926输出为固定恒流驱动,输出时根据恒流曲线可知,在恒流20mA电流时,进入恒流区域0UT端电压需为1.2V以上,这时芯片才有恒流效果,但并非此0UT端电压越高越好,电压越高,降在芯片上功耗越大,芯片发热严重,降低整个系统可靠性,因此建议0UT端开启时电压Vout控制在1.2~3V之间较好,常用串联电阻方式进行使用,以下是选用电阻理论计算方式:

系统驱动电压: VDD 单个LED导通压降: Vled

串联LED个数; n 恒流值: Iout 恒流电压: 1.5V 电阻: R

 $R=(VDD-1.5-n\times V1ed)/Iout$

例:系统供电24V,单个LED导通压降:2V,串联LED个数:6个,恒流值20mA,根据上述公式计算可得: $R=(24-1.5-2\times6)/0.02=525\Omega$,只需在0UT引脚上串联525 Ω 左右的电阻。

©Titan Micro Electronics www.titanmec.com

3、使用TM1926如何扩流

TM1926每个OUT端最大只能输出20mA恒流,如果用户需要扩大恒流值驱动,可将其中三个OUT端短接 后使用,每短路一个OUT端,恒流值最大和将增加20mA,三路短接后最高可恒流60mA左右,但是此方法 缺点是需软件同时配合控制,分别写三组寄存器值,优点是可精确得到想要的电流值和恒流电流较大。

4、电源配置

TM1926 可以配置成 6~24V 电压供电,但根据输入电压不同,应配置不同的电源电阻,电阻计算方 法:由于在实际应用中,电源电压会随着负载的增大而降低。所以设置流过 VDD 脚的电流按 10mA 计算, 所以串接 VDD 的电阻 R= (DC-5.5V) /10mA (DC 为电源电压)。

配置电阻典型值列表如下:

电源电压 DC	建议电源接口与 VDD 间连接电阻值
5V	无需接电阻,内部稳压管不起作用
6V	50Ω
9V	350Ω
12V	650Ω
24V	1. 8ΚΩ

5、用程序驱动LED方法

- 5.1 要实现芯片对LED亮度控制,首先确保RGB端口电压,能够使芯片进入恒流工作(具体参考"恒 流曲线")。
- 5.2 芯片上电复位,端口电压达到1.2V,输出通道RGB固定恒流电流为20mA,那么允许流过最大电 流就为20mA。
- 5.3 不停改变PWM的值,就能随心所欲调节LED亮度。设定PWM值为0,输出全高,LED灭。设定PWM 值为FFH,输出最大低电平占空比,LED最亮。

©Titan Micro Electronics www.titanmec.com V1.0

恒流曲线

将 TM1926 应用到 LED 面板设计上时,通道间甚至芯片间的电流差异极小。此源于 TM1926 的优异特性:

- ▶ 另外,当负载端电压发生变化时,其输出电流的稳定性不受影响,如下图 8 所示。
- ▶ TM1926 端口驱动电流为固定恒流值。

封装示意图(SOP16)

Symbol 1	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol Symbol	Min	Max	Min	Max
A	1. 350	1.750	0. 053	0.069
A1	0. 100	0. 250	0.004	0.010
A2	1.350	1. 550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0. 170	0. 250	0.007	0.010
D	9.800	10. 200	0. 386	0. 402
Е	3.800	4. 000	0. 150	0. 157
E1	5.800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0.400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

封装示意图 (DIP16)

Cymb o 1	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	3. 710	4. 310	0. 146	0. 170
A1	0.510		0.020	
A2	3. 200	3. 600	0. 126	0. 142
В	0.380	0. 570	0. 015	0.022
B1	1. 524 (BSC)	0.060	(BSC)
С	0. 204	0. 360	0.008	0.014
D	18.800	19. 200	0. 740	0. 756
Е	6. 200	6.600	0. 244	0. 260
E1	7. 320	7. 920	0. 288	0.312
е	2.540(BSC)	0. 100	(BSC)
L	3.000	3.600	0.118	0. 142
E2	8. 400	9. 000	0. 331	0.354

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)

©Titan Micro Electronics www.titanmec.com