ENLACES

♦ CUESTIÓNS

• Xeometría molecular no enlace covalente

- 1. Sabendo que a molécula de H₂O ten xeometría electrónica tetraédrica e molecular angular:
 - a) Predí razoadamente o valor do ángulo de enlace
 - b) Indica que orbitais híbridos empregará o átomo de osíxeno para formar os enlaces na molécula, indicando como se forman os ditos orbitais.

(A.B.A.U. extr. 24)

2. En base á teoría de repulsión dos pares de electróns da capa de valencia xustifica a xeometría electrónica e molecular do H₂Se, e discute razoadamente se ten ou non momento dipolar.

(A.B.A.U. extr. 24)

3. En base ao modelo de repulsión de pares de electróns da capa de valencia (TRPECV), predí razoadamente para a molécula de AlCl₃ a súa xeometría electrónica suxerindo o valor aproximado do ángulo de enlace e indica o tipo de hibridación que empregaría o átomo de aluminio na molécula para formar os enlaces correspondentes.

(A.B.A.U. extr. 23)

- 4. a) Aplicando a teoría de repulsión dos pares de electróns da capa de valencia (TRPECV) deduce razoadamente a xeometría electrónica e molecular da molécula de tricloruro de fósforo, indicando cal sería o valor aproximado do ángulo de enlace.
 - b) Sabendo que a xeometría electrónica na molécula de SiF₄ é tetraédrica, discute razoadamente que tipo de orbitais híbridos empregaría o átomo de silicio para formar os enlaces correspondentes, como se forman os ditos orbitais híbridos e a distribución de electróns nestes.

(A.B.A.U. ord. 23)

 Aplicando a teoría de repulsión dos pares de electróns da capa de valencia (TRPECV) xustifique a xeometría electrónica e molecular das seguintes especies: tetrafluoruro de carbono e tricloruro de arsénico.

(A.B.A.U. extr. 22)

- 6. a) Razoa a xeometría que presentan as moléculas de H₂O e CO₂ segundo a teoría de repulsión de pares electrónicos da capa de valencia (TRPECV) e indica o valor previsible do ángulo de enlace.
 (A.B.A.U. ord. 22, extr. 20)
- 7. Indica se as moléculas CS₂ e NCl₃ teñen ou non momento dipolar.

(A.B.A.U. extr. 21)

8. Razoa que xeometría presenta a molécula de diclorometano (CH₂Cl₂) aplicando a teoría de repulsión dos pares de electróns da capa de valencia (TRPECV) e discute a polaridade da molécula.

(A.B.A.U. ord. 21)

9. Empregando a teoría de repulsión de pares de electróns da capa de valencia (TRPECV) razoa cal será a xeometría e a polaridade das moléculas BeI₂ e CHCl₃.

(A.B.A.U. ord. 24, ord. 20)

- 10. O flúor e o osíxeno reaccionan entre si formando difluoruro de osíxeno (OF2). Indica razoadamente:
 - a) A estrutura de Lewis e o tipo de enlace que existirá na molécula.
 - b) A disposición dos pares electrónicos, a xeometría molecular, o valor previsible do ángulo de enlace e se é polar ou apolar.

(A.B.A.U. extr. 19)

11. Establece a xeometría das moléculas BF₃ e NH₃ mediante a teoría da repulsión de pares de electróns da capa de valencia (TRPEV).

(A.B.A.U. ord. 19)

12. Deduce a hibridación do átomo central na molécula de BeF2.

(A.B.A.U. ord. 19)

13. Razoa se o seguinte enunciado é verdadeiro ou falso: A molécula de metano é tetraédrica e polar.

(A.B.A.U. extr. 18)

14. Tendo en conta que a xeometría electrónica do BeCl₂ é lineal, explica razoadamente que orbitais híbridos empregará o átomo de berilio para formar os enlaces na molécula, indicando como se forman os ditos orbitais híbridos e a distribución de electróns nestes.

(A.B.A.U. ord. 24, ord. 18)

- 15. Tendo en conta a estrutura e o tipo de enlace, xustifica:
 - b) O amoníaco é unha molécula polar.
 - c) O SO₂ é unha molécula angular pero o CO₂ é lineal.

(A.B.A.U. extr. 17)

16. Escribe a estrutura de Lewis e xustifica a xeometría da molécula de BeH₂ mediante a teoría de repulsión dos pares de electróns da capa de valencia.

(A.B.A.U. extr. 17)

17. Deduce a xeometría do CCl₄ aplicando a teoría da repulsión de pares electrónicos da capa de valencia.

(A.B.A.U. ord. 17)

• Forzas intermoleculares, tipos de enlace e propiedades dos compostos

- 1. Indica razoadamente cales das seguintes especies conducen a corrente eléctrica:
 - a) Un fío de Cu.
 - b) Un cristal de LiF.
 - c) Unha disolución acuosa de NaCl.

(A.B.A.U. extr. 24)

2. Discute razoadamente quen ten maior punto de ebulición: o etano ou o etanol.

(A.B.A.U. ord. 24)

- 3. Explica que tipo de enlace químico debe romperse ou que forza de atracción debe vencerse para:
 - a) Fundir cloruro de potasio.
 - b) Fundir diamante.
 - c) Ferver auga.

(A.B.A.U. extr. 23)

4. Razoa se a seguinte afirmación é verdadeira ou falsa:

O cloruro de potasio en estado sólido non conduce a electricidade, pero si é un bo condutor cando está disolto en auga.

(A.B.A.U. ord. 23)

5. As temperaturas de fusión dos halóxenos que se observan experimentalmente son: F_2 –218 °C, Cl_2 –101 °C, Br_2 –7 °C, I_2 114 °C. Xustifique razoadamente estes valores.

(A.B.A.U. extr. 22)

- 6. Dados os elementos A e B con números atómicos 19 e 35, respectivamente:
 - b) Xustifica que tipo de enlace se podería formar entre A e B, que fórmula empírica lle correspondería ao composto resultante e indica algunha propiedade do composto formado.

(A.B.A.U. extr. 22)

7. Xustifica, razoadamente, se é certa a seguinte afirmación:

A auga ten un punto de ebulición anormalmente alto comparado co que presentan os hidruros dos outros elementos do seu grupo, por exemplo o sulfuro de hidróxeno.

(A.B.A.U. ord. 22, extr. 20, ord. 19)

- 8. b) Por que a molécula de auga ten o punto de ebulición máis alto e é máis polar que a de CO₂?

 (A.B.A.U. ord. 22, extr. 20)
- 9. Explica por que a molécula de cloro é covalente mentres que o CsCl é un composto iónico. Indica unha propiedade de cada composto.

(A.B.A.U. extr. 21)

- 10. Explica razoadamente os seguintes feitos:
 - a) O sal común (NaCl) funde a 801 °C mentres que o cloro é un gas a 25 °C.
 - b) O cloruro de sodio sólido non conduce a electricidade e o ferro si.

(A.B.A.U. ord. 21)

11. Os elementos A, B, C e D teñen números atómicos 19, 16, 1 e 9, respectivamente. Razoa que compostos se formarán entre B e C e entre D e A indicando o tipo de enlace.

(A.B.A.U. ord. 20)

12. Razoa por que o valor da enerxía reticular (en valor absoluto) para o fluoruro de sodio é maior que para o cloruro de sodio e cal deles terá maior punto de fusión.

(A.B.A.U. ord. 19)

13. Dados os compostos BaCl₂ e NO₂, noméaos e razoa o tipo de enlace que presenta cada un.

(A.B.A.U. ord. 19)

14. Razoa se o seguinte enunciado é verdadeiro ou falso:

Os metais son bos condutores da corrente eléctrica e da calor.

(A.B.A.U. extr. 18)

15. Os sólidos covalentes teñen puntos de fusión e ebulición elevados?

(A.B.A.U. extr. 18)

16. Dados os compostos HF e HCl xustifica cal presentará un punto de ebulición máis alto.

(A.B.A.U. ord. 18)

17. Tendo en conta a estrutura e o tipo de enlace, xustifica:

O cloruro de sodio ten punto de fusión maior que o bromuro de sodio.

(A.B.A.U. extr. 17)

- 18. Explica razoadamente se as seguintes afirmacións son verdadeiras ou falsas:
 - a) O tetracloruro de carbono é mellor disolvente para o cloruro de potasio que a auga.
 - b) O cloruro de sodio en estado sólido conduce a electricidade.

(A.B.A.U. ord. 17)

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.