Bureau d'étude industriel Continental

Continental

- Entreprise fondée en 1871 Allemagne
- 210 000 employés de par le monde
- 44 Milliards de CA
- □ 5^{ème} équipementier automobile

Pourquoi le projet?

- □ Chaire industrielle entre Continental et l'ENSEEIHT
- Voitures Hybrides :
 - Besoin de se déplacer
 - Besoin écologique & économique
- □ Sujet liant électrique, l'automatique & informatique industrielle
 - Formateur pour des élèves ingénieurs
 - Publicité pour Continental

Cadre du BEI

- □ Du 14 Novembre au 25 Janvier
- 8 séances encadrées (industriels et professeurs)
- Objectifs
 - ☐ Faire progresser le projet
 - Apprendre (gestion de projet, technique...)
- Contraintes : temps, inexpérience

Organisation générale

- Débriefings en fin de séance
- Réseaux sociaux inter séance
- □ Google drive transmission de fichiers
- ☐ Mails pour la communication avec le client

Les équipes

Embrayage

-Bourgeade Adrien

-Barranco Sofia

-El Ouardi Zakaria

-Zniber Mamoune

Hardware in the Loop

-Porziemsky Vincent

-Folny Clément

-Khammali Nouaman

-Lurot Merwann

-Vinel Julien

Conducteur

-Couprie Alice

-Bolzer Baptiste

-Goeury Matthieu

-Mabboux Jordan

Chef de projet : Bourgeade Adrien

Hardware in the loop

Objectifs

Auto codage du modèle Simulink

Répartition des tâches entre les différents processeurs

Communication à travers les bus CAN

Travail effectué par l'équipe 2017

Auto codage

Maquette à deux PC

Passage à virgule fixe

Description des tâches

- Prise en main de la maquette existante
 - Suivi des tutoriels
 - Vérification du matériel
 - Ajout du 3^{ème} PC
- Test simple en BF
- Respect des contraintes Temps Réel
- Changement du protocole de communication CAN

Description des tâches

☐ Finir l'Auto codage

☐ Implanter le modèle complet

☐ Mise à jours des tutoriels et des livrables

Planification des tâches

Analyse des risques

Risques propres à la gestion du projet et au respect du planning : objectif irréaliste ou délai trop court

☐ Risques humains : Mauvaise communication, mauvaise répartition des tâches

□ Risques techniques : Problèmes liés à la maquette

Contrôle de la vitesse du véhicule

Alice COUPRIE
Jordan MABBOUX
Baptiste BOLZER
Mathieu GOEURY

Objectifs

Suivi profil de vitesse

Modélisation du couple

Commande non linéaire de la vitesse

Ce qui a été fait en 2016

Figure 10 : Evolution temporelle de la commande en couple

Le régulateur ne respectait pas les contraintes sur la commande (pics de couple).

→ Nécessité de connaître la dynamique du couple maximum.

Organigramme des tâches

Analyse des tâches

Analyse du modèle

- → Division en sous-systèmes
- → Chacun étudie un sous-système et crée un modèle simplifié
- → Poser les hypothèses

Mise en commun: modélisation complète (agrégation des sous-modèles)

Régulateur

- → Bibliographie sur les contrôleurs non linéaires
- → Analyse du cahier des charges
- → Définition de la structure
- → Calcul des paramètres

Phase de test

→ Tests sur plusieurs profils de vitesse

Extra: levée d'une hypothèse

Planification des tâches

En résumé:

- Jusqu'au 21/12: modélisation et bibliographie
- Tout le mois de janvier: mise en place du régulateur

Contrôle de l'embrayage du véhicule

- -Pas d'à coups d'accélération ($\delta a < 1 \text{m/s}^2$)
- -temps réponse < 600ms

Adrien BOURGEADE Sofia BARRANCO Zakaria EL OUARDI Mamoune ZNIBER

Objectifs

Réaliser une commande d'embrayage viable

Finir le modèle Moteur Electrique « à l'avant »

Ce qui a été fait

□ Modélisation du véhicule et de sa transmission

Linéarisation du modèle

□ Loi de commande simples pour l'embrayage

Difficultés identifiées

Modèle complexe

Multiple input, Multiple output

☐ Fortes non linéarités

Planning

Conclusion

- ☐ Tâches indépendantes => grande répartition
- ☐ Gros projet à prendre en main
- Beaucoup à apprendre:
 - Management projet
 - Travail en équipe
 - Développement technique
 - □ Etc...