Comparing TF-IDF Embedding & Sentence-BERT Embeddings in Text clustering using K-means ++ algorithm

Final Project - EDS 6346: Data Mining for Engineers

Submitted by: Vikram Koti Mourya Vangara, PSID: 2315018

Gayathri Seelam, PSID: 2297215

Neha Reddy Jakka, PSID: 2296660

Aniketh Bharat, PSID: 2381419

Project Objective

- Compare clustering performance using traditional TF-IDF vs SBERT embeddings
- Use 20 Newsgroups dataset as base
- Apply K-Means++ clustering algorithm to both embeddings
- Evaluate using standard clustering metrics and visualizations

Motivation & Relevance

- Why Clustering Matters in NLP
 - Helps organize unstructured text into meaningful groups without labeled data.
 - Enables topic discovery, document categorization, and information retrieval.
 - Essential for tasks like:
 - ➤ News aggregation
 - Customer feedback analysis
 - ➤ Scientific article grouping

Motivation & Relevance

Importance of Comparing Traditional vs Modern Embeddings

- TF-IDF (Traditional):
 - o Captures term frequency, but ignores word context.
 - o Struggles with semantic similarity.
- Sentence-BERT (Modern):
 - o Embeds whole sentences in semantic space.
 - o Captures contextual meaning using transformer-based models.

Dataset Description: 20 Newsgroups

- Consists of approximately 18,000 newsgroup posts across 20 topics
- Covers diverse areas like sports, politics, science, and technology
- Used for benchmarking text classification and clustering algorithms
- Cleaned by removing headers, footers, and quotes

Class Distribution of the Dataset

Text Preprocessing Steps

- Lowercased all text
- Removed headers, footers, and quotes
- Stripped whitespace and punctuation
- Prepared clean inputs for embedding generation

TF-IDF Embedding

- Traditional approach for text vectorization
- Captures term frequency-inverse document frequency
- Results in high-dimensional sparse vectors
- Used as baseline in this comparison

Sentence-BERT (SBERT)

- Transformer-based LLM for dense semantic embeddings
- Model used: all-MiniLM-L6-v2
- Captures sentence-level meaning beyond word co-occurrence
- Improves semantic understanding in clustering

K-Means++ Clustering

- Improved initialization over standard K-Means
- Minimizes intra-cluster distance
- Used on both TF-IDF and SBERT embeddings

Evaluation Metrics

- Silhouette Score: Cluster separation and cohesion
- Adjusted Rand Index (ARI): Agreement with true labels
- Normalized Mutual Info (NMI): Info shared between labels and clusters

TF-IDF + KMeans++ Results

• Silhouette Score: 0.004977

• ARI: 0.026

• NMI: 0.193

SBERT + KMeans++ Results

• Silhouette Score: 0.059

• ARI: 0.379

• NMI: 0.528

TF-IDF Clusters Visualizatio n - PCA

TF-IDF Clusters Visualizatio n — t-SNE

BERT Clusters Visualizatio n - PCA

BERT Clusters Visualizatio n — t-SNE

Future Work

Exploring Other Embedding Models

- Falcon (TII): Open-source transformer model optimized for inference.
- LLaMA (Meta): Lightweight LLM with strong performance in low-resource scenarios.
- OpenAI Embeddings: Potential for deeper semantic clustering, especially in zero-shot settings.

Future Work

Applying Alternative Clustering Algorithms

- Agglomerative Hierarchical Clustering (AHC)
 - o Builds tree-based clusters to capture nested structure.
- Spectral Clustering
 - Useful for non-convex clusters using graph-based partitioning.
- Fuzzy C-Means
 - Allows soft clustering: a data point can belong to multiple clusters with probabilities.

Conclusion

- SBERT embeddings outperform TF-IDF for clustering
- Modern LLM-based embeddings improve unsupervised NLP tasks
- Dense representations capture deeper semantic relationships

Team Contributions

- Vikram Koti Mourya Vangara, PSID: 2315018 Implemented SBERT embedding, and evaluation metrics for model performance
- Gayathri Seelam, PSID: 2297215 Lead on Preprocessing, responsible for PowerPoint Slides
- Neha Reddy Jakka, PSID: 2296660 Implemented TF-IDF Vectorization and clustering using K-Means++ algorithm for both embeddings
- Aniketh Bharat, PSID: 2381419 -Implemented t-SNE/PCA Visualisations, performance comparison and overall conclusion, responsible for documenting the Jupyter Notebook

