Reply to Office Action of February 22, 2010 Page 2 of 7

AMENDMENTS TO THE CLAIMS

1. (Previously Presented) A compound represented by the following formula:

(I)

$$R_7O$$
 R_7O
 R_7O

wherein

of formula I represents a 2'-deoxyribonucleoside or its N-protected derivative, the substituent $-O-(R_1)Si(R_2)-(C_6H_3R_6)-(CH_2)_n-O-P(OR_3)N(R_4)(R_5)$ is attached at the 3' position of the sugar moiety of the nucleoside substituent; each of R₁, R₂, R₄ and R₅ is an alkyl or optionally substituted aryl group, wherein the optionally substituted aryl group has a substituent selected from the group consisting of C₁₋₅ alkyl, nitro, cyano, halo and methoxyl; R₃ is a protecting group; R_6 substituent of the benzene ring $-(C_6H_3R_6)$ - is selected from the group consisting of H, C₁₋₄ alkyl, halo, nitro, cyano and methoxyl; R₇ is H or 4,4'-dimethoxytrityl; and n is an integer of from 1 to 5.

- (Previously Presented) The compound according to Claim 1 wherein R₁ and R₂ are independently a C_{1-5} alkyl.
- 3. (Previously Presented) The compound according to Claim 1 wherein R₁ and R₂ are independently substituted aryl.

4. (Previously Presented) The compound according to any one of Claims 1 to 3 wherein the protecting group R₃ is 2-cyanoethyl, 4-nitrophenylethyl, N-(trifluoroacetyl)aminobutyl, or 4-[Nmethyl-N-(2,2,2-trifluoroacetyl)amino]butyl.

- 5. (Previously Presented) The compound according to Claim 4 wherein the protecting group R_3 is 2-cyanoethyl.
- 6. (Previously Presented) The compound according to Claim 1 wherein each of R₄ and R₅ is independently C_{1-4} alkyl, benzyl, phenyl, or naphthyl.
- 7. (Previously Presented) The compound according to Claim 1 wherein each of R4 and R5 is independently isopropyl.
- 8. (Cancelled)
- 9. (Previously Presented) The compound according to Claim 1 wherein R₆ is selected from the group consisting of C₁₋₄ alkyl, halo, nitro, cyano and methoxy.
- 10. (Previously Presented) A compound having the structure

DMTrO
$$\downarrow$$
 NH \downarrow NH \downarrow

wherein DMTr is 4,4'-dimethoxytrityl.

11. (Previously Presented) A compound having the structure

DMTrO
$$O$$
 N^{+} N N $H_{3}C$ CH_{3} CH_{3} CH_{3}

wherein DMTr is 4,4'-dimethoxytrityl.

12. (Previously Presented) A solid-phase support having a 3'-end nucleoside unit introduced thereon as represented by formula II:

Base

$$R_7O$$
 R_1
 Si
 $C_6H_3R_6$
 $C_6H_3R_6$
 $C_6H_3R_6$
 C_6H_2
 C_6H_3
 C_6H_3
 C_6H_3
 C_6H_3
 C_6H_3
 C_6H_2
 C_6H_3
 C_6H_3

wherein of formula II represents a 2'-deoxyribonucleoside or its Nprotected derivative, the substituent $-O-(R_1)Si(R_2)-(C_6H_3R_6)-(CH_2)_n-O-P(OR_3)XO)-(CH_2)_n$ is attached at the 3' position of the sugar moiety of the nucleoside substituent; each of R₁ and R₂ is an alkyl or optionally substituted aryl group, wherein the optionally substituted aryl group has a substituent selected from the group consisting of C₁₋₄ alkyl, nitro, cyano, halo and methoxyl; R₃ is a protecting group; X is S or O; R₇ is H or 4,4'-dimethoxytrityl; each n is an integer of from 1 to 5; and the solid-phase support has hydroxyl groups on its surface.

Application No.: 10/590,268 Docket No.: 4600-0126PUS1 Page 5 of 7

Reply to Office Action of February 22, 2010

(Previously Presented) The solid-phase support according to Claim 12 having the 3'-end nucleoside units present at a ratio of 20-30 µmol/g.

- 14. (Cancelled)
- 15. (Cancelled)
- 16. (Cancelled)
- 17. (Previously Presented) The solid-phase support of claim 12, wherein the solid-phase support is a highly cross-linked polystyrene (HCP).
- (Cancelled) 18.
- (Cancelled) 19.