TCP uses three-way handshake to establish a connection

Cpr E 489 -- D.Q.

TCP uses modified three-way handshake to terminate a connection

Cpr E 489 -- D.Q.

3. TCP Flow Control

Cpr E 489 -- D.Q.

- TCP flow control prevents the sender from overwhelming the receiver with too much data
 - ▶ Receiver advertises the available buffer space (rwnd)

"window" field

- Sender makes sure that the amount of outstanding data (swnd) is less than the receiver-advertised buffer space
 - $swnd \le rwnd$

Cpr E 489 -- D.Q.

4. TCP Error Control

- TCP Error Control
 - ⇒ Special version of Selective Repeat ARQ (SR ARQ)
 - ACKs only
 - No NAKs
 - Retransmit upon
 - Retransmission Timeout (RTO)
 - Reception of the 4th ACK with the same sequence number

5. TCP Retransmission Timeout (RTO)

- Every time TCP sends a segment, it starts a timer and waits for an ACK
- If the timer expires, TCP assumes that the segment was lost and retransmits it
- TCP software must accommodate:
 - differences in the time required to reach various destinations
 - changes in time required to reach a given destination as traffic load varies
- TCP accommodates varying Internet delays by adapting the RTO

Cpr E 489 -- D.Q.

TCP RTO

- Implications of poorly-selected RTO
 - ▶ RTO too small → unnecessary retransmissions
 - ▶ RTO too big → low throughput
- RTO must adapt to RTT
 - Using RTT estimates
 - RTT_EST = $\alpha \times RTT_EST + (1-\alpha) \times RTT_Sample$
 - α is typically 0.875
 - Exponential Weighted Average
 - ightharpoonup RTO = eta imes RTT_EST, where eta is typically 2

Cpr E 489 -- D.Q.

Problem #1: ACK Ambiguity

- ACK Ambiguity: which packet to associate with an ACK in case of retransmission?
 - With the original transmission?
 - With the most recent retransmission?

Problem #1: ACK Ambiguity

Karn's Algorithm

- Update RTT_EST only with valid RTT samples that are associated with non-retransmitted packets
- ➡ However, ignoring RTT of re-transmitted packets could lead to insensitivity to long delay
- ▶ Hence, increase RTO upon each packet retransmission:
 - RTO = $\gamma \times$ RTO, where γ is typically 2
 - Until a valid RTT sample is obtained when RTO is reset using the newlyupdated RTT_EST

Cpr E 489 -- D.Q.

Problem #2: High Variance in RTT

- RTT_EST as computed only gives a good mean
- High Variance in RTT
 - ightharpoonup Packets with RTT larger than RTO = $\beta \times$ RTT_EST must be retransmitted

Problem #2: High Variance in RTT

Jacobson's Algorithm (Modified RTO Computation)

Cpr E 489 -- D.Q.

RTO	D_EST	RTT_EST	D_Sample	RTT_Sample	
40	4	24			0
				valid sampl	e
45	5	25	8	32	3 d 33
90		no updates	reset timer	, , , , , , , , , , , , , , , , , , , ,	18
				invalid	83 84
				invalid	100
49	5.15	26	ъ	3 3	117

Cpr E 489 -- D.Q.