Course 11 – Line Integrals

Tiberiu Trif

Babeș-Bolyai University Cluj-Napoca

May 11, 2021

Let $a, b \in \mathbb{R}$, a < b, and let $f : [a, b] \to \mathbb{R}^n$ be a vector valued function. If $P := (a = x_0 < x_1 < \ldots < x_k = b)$ is an arbitrary partition of [a, b], then the real number, defined by $V(f, P) := \sum_{j=1}^k \|f(x_j) - f(x_{j-1})\|$ is called *the variation of f relative to P*.

2/36

Let $a, b \in \mathbb{R}$, a < b, and let $f : [a, b] \to \mathbb{R}^n$ be a vector valued function. If $P := (a = x_0 < x_1 < \ldots < x_k = b)$ is an arbitrary partition of [a, b], then the real number, defined by $V(f, P) := \sum_{j=1}^k \|f(x_j) - f(x_{j-1})\|$ is called the variation of f relative to P.

Set

$$\bigvee_{a}^{b} (f) := \sup \{ V(f, P) \mid P \text{ is a partition of } [a, b] \}.$$

 $\bigvee_{a=0}^{b} (f)$ is called the total variation of f on [a, b].

Set

$$\bigvee_{a}^{b} (f) := \sup \{ V(f, P) \mid P \text{ is a partition of } [a, b] \}.$$

```
\bigvee_{b}^{b}(f) is called the total variation of f on [a,b]. Obviously, we have \bigvee_{b}^{a}(f)\in
```

Set

$$\bigvee_{a}^{b} (f) := \sup \{ V(f, P) \mid P \text{ is a partition of } [a, b] \}.$$

 $\bigvee_{b}^{b}(f)$ is called the total variation of f on [a,b]. Obviously, we have $\bigvee_{a}^{b}(f) \in [0,\infty]$. If $\bigvee_{a}^{b}(f) < \infty$, then the function f is said to be of bounded variation on [a,b].

3/36

Set

$$\bigvee_{a}^{b} (f) := \sup \{ V(f, P) \mid P \text{ is a partition of } [a, b] \}.$$

 $\bigvee_{b}^{b}(f)$ is called the total variation of f on [a,b]. Obviously, we have $\bigvee_{a}^{b}(f) \in [0,\infty]$. If $\bigvee_{a}^{b}(f) < \infty$, then the function f is said to be of bounded variation on [a,b]. Set

$$BV([a,b],\mathbb{R}^n) := \left\{ f : [a,b] \to \mathbb{R}^n \mid \bigvee_a^b (f) < \infty \right\}.$$

In the special case when n=1, the simplified notation $BV[a,b]:=BV([a,b],\mathbb{R})$ is used.

a) Every monotonic function $f:[a,b]\to\mathbb{R}$ is of bounded variation and $\bigvee_b(f)=|f(b)-f(a)|.$ Indeed, for every partition P of [a,b] we have V(f,P)=|f(b)-f(a)|, hence the preceding assertion holds.

- a) Every monotonic function $f:[a,b]\to\mathbb{R}$ is of bounded variation and $\bigvee_b(f)=|f(b)-f(a)|.$ Indeed, for every partition P of [a,b] we have V(f,P)=|f(b)-f(a)|, hence the preceding assertion holds.
- b) Let $f:[a,b] \to \mathbb{R}^n$ be a Lipschitz function,

- a) Every monotonic function $f:[a,b]\to\mathbb{R}$ is of bounded variation and $\bigvee_b(f)=|f(b)-f(a)|$. Indeed, for every partition P of [a,b] we have V(f,P)=|f(b)-f(a)|, hence the preceding assertion holds.
- b) Let $f:[a,b]\to\mathbb{R}^n$ be a Lipschitz function, and let $\alpha\geq 0$ be such that $\|f(x)-f(x')\|\leq \alpha|x-x'|\quad\text{for all }x,x'\in[a,b].$

- a) Every monotonic function $f:[a,b]\to\mathbb{R}$ is of bounded variation and $\bigvee_b(f)=|f(b)-f(a)|$. Indeed, for every partition P of [a,b] we have V(f,P)=|f(b)-f(a)|, hence the preceding assertion holds.
- b) Let $f:[a,b] o \mathbb{R}^n$ be a Lipschitz function, and let $lpha \geq 0$ be such that

$$\|f(x)-f(x')\|\leq \alpha|x-x'|\quad\text{for all }x,x'\in[a,b].$$

Then for every partition $P := (a = x_0 < x_1 < ... < x_k = b)$ of [a, b] we have

$$V(f, P) = \sum_{j=1}^{k} ||f(x_j) - f(x_{j-1})|| \le \sum_{j=1}^{k} \alpha(x_j - x_{j-1}) =$$

- a) Every monotonic function $f:[a,b]\to\mathbb{R}$ is of bounded variation and $\bigvee_b(f)=|f(b)-f(a)|$. Indeed, for every partition P of [a,b] we have V(f,P)=|f(b)-f(a)|, hence the preceding assertion holds.
- b) Let $f:[a,b] o \mathbb{R}^n$ be a Lipschitz function, and let $lpha \geq 0$ be such that

$$\|f(x)-f(x')\|\leq \alpha|x-x'|\quad\text{for all }x,x'\in[a,b].$$

Then for every partition $P := (a = x_0 < x_1 < ... < x_k = b)$ of [a, b] we have

$$V(f,P) = \sum_{j=1}^{k} ||f(x_j) - f(x_{j-1})|| \le \sum_{j=1}^{k} \alpha(x_j - x_{j-1}) = \alpha(b-a).$$

Consequently, $f \in BV([a, b], \mathbb{R}^n)$ and $\bigvee_{a}^{b} (f) \leq \alpha(b - a)$.

Additivity of the total variation with respect to the interval

Given an arbitrary function $f:[a,b]\to\mathbb{R}^n$, for every point $c\in(a,b)$ one has

$$\bigvee_{a}^{b}(f) = \bigvee_{a}^{c}(f) + \bigvee_{c}^{b}(f).$$

5/36

Additivity of the total variation with respect to the interval

Given an arbitrary function $f:[a,b]\to\mathbb{R}^n$, for every point $c\in(a,b)$ one has

$$\bigvee_{a}^{b}(f) = \bigvee_{a}^{c}(f) + \bigvee_{c}^{b}(f).$$

The total variation formula

If $f:[a,b]\to\mathbb{R}^n$ is a function of class C^1 , then f is of bounded variation on [a,b] and one has

$$\bigvee_{a}^{b}(f) = \int_{a}^{b} \|f'(x)\| dx.$$

Example of a continuous function that is not of bounded variation

The function $f:[0,1] \to \mathbb{R}$, defined by

$$f(x) := \begin{cases} x \cos \frac{\pi}{x} & \text{if } x \in (0, 1] \\ 0 & \text{if } x = 0, \end{cases}$$

is obviously continuous on [0, 1].

Example of a continuous function that is not of bounded variation

The function $f:[0,1] \to \mathbb{R}$, defined by

$$f(x) := \begin{cases} x \cos \frac{\pi}{x} & \text{if } x \in (0, 1] \\ 0 & \text{if } x = 0, \end{cases}$$

is obviously continuous on [0,1]. We prove further that it is not of bounded variation on [0,1].

Example of a continuous function that is not of bounded variation

The function $f:[0,1] \to \mathbb{R}$, defined by

$$f(x) := \begin{cases} x \cos \frac{\pi}{x} & \text{if } x \in (0, 1] \\ 0 & \text{if } x = 0, \end{cases}$$

is obviously continuous on [0,1]. We prove further that it is not of bounded variation on [0,1].

6/36

$$\bigvee_{0}^{1}(f) \geq \bigvee_{1/n}^{1}(f)$$

$$\bigvee_{0}^{1}(f) \geq \bigvee_{1/n}^{1}(f) = \sum_{k=1}^{n-1} \bigvee_{\frac{1}{k+1}}^{\frac{1}{k}}(f) \geq \sum_{k=1}^{n-1} \left| f\left(\frac{1}{k}\right) - f\left(\frac{1}{k+1}\right) \right|$$

7/36

$$\bigvee_{0}^{1}(f) \geq \bigvee_{1/n}^{1}(f) = \sum_{k=1}^{n-1} \bigvee_{\frac{1}{k+1}}^{\frac{1}{k}}(f) \geq \sum_{k=1}^{n-1} \left| f\left(\frac{1}{k}\right) - f\left(\frac{1}{k+1}\right) \right|
= \sum_{k=1}^{n-1} \left| \frac{(-1)^{k}}{k} - \frac{(-1)^{k+1}}{k+1} \right|$$

$$\bigvee_{0}^{1}(f) \geq \bigvee_{1/n}^{1}(f) = \sum_{k=1}^{n-1} \bigvee_{\frac{1}{k+1}}^{\frac{1}{k}}(f) \geq \sum_{k=1}^{n-1} \left| f\left(\frac{1}{k}\right) - f\left(\frac{1}{k+1}\right) \right|
= \sum_{k=1}^{n-1} \left| \frac{(-1)^{k}}{k} - \frac{(-1)^{k+1}}{k+1} \right| = \sum_{k=1}^{n-1} \left(\frac{1}{k} + \frac{1}{k+1} \right)
> 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

$$\bigvee_{0}^{1}(f) \geq \bigvee_{1/n}^{1}(f) = \sum_{k=1}^{n-1} \bigvee_{\frac{1}{k+1}}^{\frac{1}{k}}(f) \geq \sum_{k=1}^{n-1} \left| f\left(\frac{1}{k}\right) - f\left(\frac{1}{k+1}\right) \right|
= \sum_{k=1}^{n-1} \left| \frac{(-1)^k}{k} - \frac{(-1)^{k+1}}{k+1} \right| = \sum_{k=1}^{n-1} \left(\frac{1}{k} + \frac{1}{k+1} \right)
> 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Letting $n \to \infty$, we deduce that $\bigvee_{0}^{1} (f) =$

Tiberiu Trif (UBB)

7/36

$$\bigvee_{0}^{1}(f) \geq \bigvee_{1/n}^{1}(f) = \sum_{k=1}^{n-1} \bigvee_{\frac{1}{k+1}}^{\frac{1}{k}}(f) \geq \sum_{k=1}^{n-1} \left| f\left(\frac{1}{k}\right) - f\left(\frac{1}{k+1}\right) \right|
= \sum_{k=1}^{n-1} \left| \frac{(-1)^k}{k} - \frac{(-1)^{k+1}}{k+1} \right| = \sum_{k=1}^{n-1} \left(\frac{1}{k} + \frac{1}{k+1} \right)
> 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Letting $n \to \infty$, we deduce that $\bigvee_{0}^{r} (f) = \infty$, hence f is not of bounded variation on [0,1].

Tiberiu Trif (UBB)

7/36

- Patrick M. Fitzpatrick: Advanced Calculus. Second Edition, AMS, 2006.
- Robert F. Gunning: *An Introduction to Analysis*, Princeton University Press. 2018.

Let $a, b \in \mathbb{R}$ with a < b, and let $\gamma : [a, b] \to \mathbb{R}^n$ be a vector valued function. One says that γ is a *parameterized path* or a *parameterized curve* în \mathbb{R}^n if γ is continuous on [a, b].

- Patrick M. Fitzpatrick: Advanced Calculus. Second Edition, AMS, 2006.
- Robert F. Gunning: An Introduction to Analysis, Princeton University Press. 2018.

Let $a, b \in \mathbb{R}$ with a < b, and let $\gamma : [a, b] \to \mathbb{R}^n$ be a vector valued function. One says that γ is a *parameterized path* or a *parameterized curve* în \mathbb{R}^n if γ is continuous on [a, b]. The subset of \mathbb{R}^n , defined by

$$I(\gamma) := \{ \gamma(t) \mid t \in [a, b] \},\$$

is called the trace or the image of the parameterized path γ .

- Patrick M. Fitzpatrick: Advanced Calculus. Second Edition, AMS, 2006.
- Robert F. Gunning: *An Introduction to Analysis*, Princeton University Press, 2018.

Let $a, b \in \mathbb{R}$ with a < b, and let $\gamma : [a, b] \to \mathbb{R}^n$ be a vector valued function. One says that γ is a *parameterized path* or a *parameterized curve* în \mathbb{R}^n if γ is continuous on [a, b]. The subset of \mathbb{R}^n , defined by

$$I(\gamma) := \{ \gamma(t) \mid t \in [a, b] \},\$$

is called the trace or the image of the parameterized path γ .

A subset C of \mathbb{R}^n is called a *path in* \mathbb{R}^n if it is the trace of a parameterized path γ in \mathbb{R}^n . In this case one says that γ is a parametrization of C.

- Patrick M. Fitzpatrick: Advanced Calculus. Second Edition, AMS, 2006.
- Robert F. Gunning: *An Introduction to Analysis*, Princeton University Press, 2018.

Let $a, b \in \mathbb{R}$ with a < b, and let $\gamma : [a, b] \to \mathbb{R}^n$ be a vector valued function. One says that γ is a *parameterized path* or a *parameterized curve* în \mathbb{R}^n if γ is continuous on [a, b]. The subset of \mathbb{R}^n , defined by

$$I(\gamma) := \{ \gamma(t) \mid t \in [a, b] \},$$

is called the trace or the image of the parameterized path γ .

A subset C of \mathbb{R}^n is called a *path in* \mathbb{R}^n if it is the trace of a parameterized path γ in \mathbb{R}^n . In this case one says that γ is a parametrization of C. For instance, the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is a path in \mathbb{R}^2 because it is the trace of the parameterized path $\gamma: [0, 2\pi] \to \mathbb{R}^2$, defined by $\gamma(t):=(a\cos t, b\sin t)$.

1° Let r > 0 and let $k \in \mathbb{N}$. Then $\gamma_k : [0, 2\pi] \to \mathbb{R}^2$,

$$\gamma_k(t) := (r \cos kt, r \sin kt), \qquad t \in [0, 2\pi],$$

is a parameterized path in \mathbb{R}^2 . Its trace is $I(\gamma_k)=$

1° Let r > 0 and let $k \in \mathbb{N}$. Then $\gamma_k : [0, 2\pi] \to \mathbb{R}^2$,

$$\gamma_k(t) := (r \cos kt, r \sin kt), \qquad t \in [0, 2\pi],$$

is a parameterized path in \mathbb{R}^2 . Its trace is $I(\gamma_k) = C$, where C is the circle

$$C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = r^2\}.$$

 1° Let r > 0 and let $k \in \mathbb{N}$. Then $\gamma_k : [0, 2\pi] \to \mathbb{R}^2$,

$$\gamma_k(t) := (r \cos kt, r \sin kt), \qquad t \in [0, 2\pi],$$

is a parameterized path in \mathbb{R}^2 . Its trace is $I(\gamma_k)=\mathcal{C}$, where \mathcal{C} is the circle

$$C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = r^2\}.$$

Therefore $I(\gamma_1) = I(\gamma_2)$, although $\gamma_1 \neq \gamma_2$

1° Let r > 0 and let $k \in \mathbb{N}$. Then $\gamma_k : [0, 2\pi] \to \mathbb{R}^2$,

$$\gamma_k(t) := (r \cos kt, r \sin kt), \qquad t \in [0, 2\pi],$$

is a parameterized path in \mathbb{R}^2 . Its trace is $I(\gamma_k) = C$, where C is the circle

$$C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = r^2\}.$$

Therefore $I(\gamma_1) = I(\gamma_2)$, although $\gamma_1 \neq \gamma_2$ (in the case of γ_2 the circle C is traced twice).

 2° Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Then the function $\gamma:[a,b]\to\mathbb{R}^2$, defined by $\gamma(t):=(t,f(t))$ is continuous too, hence it is a parameterized path in \mathbb{R}^2 .

1° Let r > 0 and let $k \in \mathbb{N}$. Then $\gamma_k : [0, 2\pi] \to \mathbb{R}^2$,

$$\gamma_k(t) := (r \cos kt, r \sin kt), \qquad t \in [0, 2\pi],$$

is a parameterized path in \mathbb{R}^2 . Its trace is $I(\gamma_k) = C$, where C is the circle

$$C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = r^2\}.$$

Therefore $I(\gamma_1) = I(\gamma_2)$, although $\gamma_1 \neq \gamma_2$ (in the case of γ_2 the circle C is traced twice).

 2° Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then the function $\gamma:[a,b] \to \mathbb{R}^2$, defined by $\gamma(t):=(t,f(t))$ is continuous too, hence it is a parameterized path in \mathbb{R}^2 . One says that the parameterized path γ is given in explicit form and that y=f(x) is the explicit equation of γ . We have $I(\gamma)=$

1° Let r > 0 and let $k \in \mathbb{N}$. Then $\gamma_k : [0, 2\pi] \to \mathbb{R}^2$,

$$\gamma_k(t) := (r \cos kt, r \sin kt), \qquad t \in [0, 2\pi],$$

is a parameterized path in \mathbb{R}^2 . Its trace is $I(\gamma_k) = C$, where C is the circle

$$C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = r^2\}.$$

Therefore $I(\gamma_1) = I(\gamma_2)$, although $\gamma_1 \neq \gamma_2$ (in the case of γ_2 the circle C is traced twice).

 2° Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then the function $\gamma:[a,b] \to \mathbb{R}^2$, defined by $\gamma(t):=(t,f(t))$ is continuous too, hence it is a parameterized path in \mathbb{R}^2 . One says that the parameterized path γ is given in explicit form and that y=f(x) is the explicit equation of γ . We have $I(\gamma)=G_f$, where G_f is the graph of f.

The first example on the preceding slide shows that the trace of a parameterized path is far from giving an accurate description of that parameterized path. There is a wide variety of parameterized paths with the same trace.

Figure 1: A parameterized path from A to E: it may trace the loop C several times, it may follow the segment from B to D, then return to B, after that continue back to D; then it may stand at D (i.e., it may transform an entire segment of the parameter space into the single point D).

Definition (the arclength of a parameterized path)

Let $\gamma:[a,b] \to \mathbb{R}^n$ be a parameterized path, and let $P:=(a=t_0 < t_1 < \ldots < t_k = b)$ be a partition of [a,b]. The real number, defined by $V(\gamma,P):=\sum_{j=1}^k \|\gamma(t_j)-\gamma(t_{j-1})\|$ is called the variation of γ relative to P.

Definition (the arclength of a parameterized path)

Let $\gamma:[a,b] \to \mathbb{R}^n$ be a parameterized path, and let $P:=(a=t_0 < t_1 < \ldots < t_k = b)$ be a partition of [a,b]. The real number, defined by $V(\gamma,P):=\sum_{j=1}^k \|\gamma(t_j)-\gamma(t_{j-1})\|$ is called the variation of γ relative to P. Set

$$\ell(\gamma) := \bigvee_{a}^{b} (\gamma) = \sup \{ V(f, P) \mid P \text{ is a partition of } [a, b] \}.$$

Definition (the arclength of a parameterized path)

Let $\gamma:[a,b] \to \mathbb{R}^n$ be a parameterized path, and let $P:=(a=t_0 < t_1 < \ldots < t_k = b)$ be a partition of [a,b]. The real number, defined by $V(\gamma,P):=\sum_{j=1}^k \|\gamma(t_j)-\gamma(t_{j-1})\|$ is called the variation of γ relative to P. Set

$$\ell(\gamma) := \bigvee_{a}^{b} (\gamma) = \sup \{ V(f, P) \mid P \text{ is a partition of } [a, b] \}.$$

Then $\ell(\gamma) \in [0, \infty]$ is called the *arclength* (or the *total variation of*) γ .

Definition (the arclength of a parameterized path)

Figure 2: The variation of a parameterized path γ relative to a partition represents to total length of a polygonal line whose vertices lie on the trace of γ .

Tiberiu Trif (UBB) Course 11 – Line Integrals May 11, 2021 12/36

A parameterized path $\gamma:[a,b] \to \mathbb{R}^n$ is called:

a) *closed*, if $\gamma(a) = \gamma(b)$;

A parameterized path $\gamma:[a,b] \to \mathbb{R}^n$ is called:

- a) *closed*, if $\gamma(a) = \gamma(b)$;
- b) *simple*, if the restriction $\gamma|_{(a,b)}$ is injective;

A parameterized path $\gamma:[a,b] \to \mathbb{R}^n$ is called:

- a) *closed*, if $\gamma(a) = \gamma(b)$;
- b) simple, if the restriction $\gamma|_{(a,b)}$ is injective;
- c) *rectifiable*, if $\ell(\gamma) < \infty$;

A parameterized path $\gamma:[a,b]\to\mathbb{R}^n$ is called:

- a) *closed*, if $\gamma(a) = \gamma(b)$;
- b) *simple*, if the restriction $\gamma|_{(a,b)}$ is injective;
- c) *rectifiable*, if $\ell(\gamma) < \infty$;
- d) of class C^1 , if γ is of class C^1 on [a,b], i.e., if γ is differentiable on
- [a, b] and γ' is continuous on [a, b];

A parameterized path $\gamma:[a,b]\to\mathbb{R}^n$ is called:

- a) *closed*, if $\gamma(a) = \gamma(b)$;
- b) simple, if the restriction $\gamma|_{(a,b)}$ is injective;
- c) *rectifiable*, if $\ell(\gamma) < \infty$;
- d) of class C^1 , if γ is of class C^1 on [a, b], i.e., if γ is differentiable on
- [a, b] and γ' is continuous on [a, b];
- e) piecewise C^1 , if there exists a partition
- $P:=(a=a_0< a_1<\ldots< a_k=b)$ of [a,b], such that the restriction $\gamma|_{[a_{i-1},a_i]}$ is of class C^1 for every $j\in\{1,\ldots,k\}$;

A parameterized path $\gamma:[a,b]\to\mathbb{R}^n$ is called:

- a) *closed*, if $\gamma(a) = \gamma(b)$;
- b) *simple*, if the restriction $\gamma|_{(a,b)}$ is injective;
- c) rectifiable, if $\ell(\gamma) < \infty$;
- d) of class C^1 , if γ is of class C^1 on [a, b], i.e., if γ is differentiable on
- [a, b] and γ' is continuous on [a, b];
- e) piecewise C^1 , if there exists a partition
- $P := (a = a_0 < a_1 < \ldots < a_k = b)$ of [a, b], such that the restriction
- $\gamma|_{[a_{i-1},a_i]}$ is of class C^1 for every $j \in \{1,\ldots,k\}$;
- f) smooth, if γ is of class C^1 and $\|\gamma'(t)\| \neq 0$ for all $t \in [a, b]$.

Definition

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be parameterized paths in \mathbb{R}^n . If $\gamma(a)=\rho(c)$ and $\gamma(b)=\rho(d)$ then one says that γ and ρ have the same endpoints.

Definition

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be parameterized paths in \mathbb{R}^n . If $\gamma(a)=\rho(c)$ and $\gamma(b)=\rho(d)$ then one says that γ and ρ have the same endpoints.

If $\gamma(b)=\rho(c)$, then we consider a new function $\gamma\vee\rho:[a,b+d-c]\to\mathbb{R}^n$, defined by

$$(\gamma \lor
ho)(t) := \left\{ egin{array}{ll} \gamma(t) & ext{dacă } t \in [\mathbf{a}, \mathbf{b}] \\
ho(t-\mathbf{b}+\mathbf{c}) & ext{dacă } t \in [\mathbf{b}, \mathbf{b}+\mathbf{d}-\mathbf{c}]. \end{array}
ight.$$

This new function is continuous,

Definition

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be parameterized paths in \mathbb{R}^n . If $\gamma(a)=\rho(c)$ and $\gamma(b)=\rho(d)$ then one says that γ and ρ have the same endpoints.

If $\gamma(b)=\rho(c)$, then we consider a new function $\gamma\vee\rho:[a,b+d-c]\to\mathbb{R}^n$, defined by

$$(\gamma \vee \rho)(t) := \left\{ \begin{array}{ll} \gamma(t) & \text{dacă } t \in [\textbf{a}, \textbf{b}] \\ \rho(t-\textbf{b}+\textbf{c}) & \text{dacă } t \in [\textbf{b}, \textbf{b}+\textbf{d}-\textbf{c}]. \end{array} \right.$$

This new function is continuous, hence it is a parameterized path in \mathbb{R}^n , called the *union* of γ and ρ .

Two parameterized paths $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ are called equivalent if there exists an homeomorphism $\varphi:[a,b]\to[c,d]$ (i.e., φ is bijective and continuous) such that $\gamma=\rho\circ\varphi$.

Two parameterized paths $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ are called equivalent if there exists an homeomorphism $\varphi:[a,b]\to[c,d]$ (i.e., φ is bijective and continuous) such that $\gamma=\rho\circ\varphi$. In this case we write $\gamma\sim\rho$. One says that ρ is a re-parametrization of the path $C=I(\gamma)$.

Two parameterized paths $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ are called equivalent if there exists an homeomorphism $\varphi:[a,b]\to[c,d]$ (i.e., φ is bijective and continuous) such that $\gamma=\rho\circ\varphi$. In this case we write $\gamma\sim\rho$. One says that ρ is a re-parametrization of the path $\mathcal{C}=I(\gamma)$. Being injective and continuous, the function φ is

Two parameterized paths $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ are called equivalent if there exists an homeomorphism $\varphi:[a,b]\to[c,d]$ (i.e., φ is bijective and continuous) such that $\gamma=\rho\circ\varphi$. In this case we write $\gamma\sim\rho$. One says that ρ is a re-parametrization of the path $C=I(\gamma)$. Being injective and continuous, the function φ is strictly monotone on [a,b]. If φ is strictly increasing, then it is said to be an orientation preserving parameter transformation. In this case we write $\gamma\approx\rho$.

Two parameterized paths $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ are called equivalent if there exists an homeomorphism $\varphi:[a,b]\to[c,d]$ (i.e., φ is bijective and continuous) such that $\gamma = \rho \circ \varphi$. In this case we write $\gamma \sim \rho$. One says that ρ is a re-parametrization of the path $C = I(\gamma)$. Being injective and continuous, the function φ is strictly monotone on [a, b]. If φ is strictly increasing, then it is said to be an orientation preserving parameter transformation. In this case we write $\gamma \approx \rho$. Consider, for instance, the upper semicircle of the unit circle in the plane $C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\}$. The parameterized paths $\gamma:[0,\pi]\to\mathbb{R}^2$ and $\rho:[-1,1]\to\mathbb{R}^2$, defined by

$$\gamma(t) := (\cos t, \sin t) \quad \text{and} \quad \rho(x) := \left(x, \sqrt{1-x^2}\,
ight)$$
 , respectively,

have both the set C as their traces.

Two parameterized paths $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ are called equivalent if there exists an homeomorphism $\varphi:[a,b]\to[c,d]$ (i.e., φ is bijective and continuous) such that $\gamma = \rho \circ \varphi$. In this case we write $\gamma \sim \rho$. One says that ρ is a re-parametrization of the path $C = I(\gamma)$. Being injective and continuous, the function φ is strictly monotone on [a, b]. If φ is strictly increasing, then it is said to be an orientation preserving parameter transformation. In this case we write $\gamma \approx \rho$. Consider, for instance, the upper semicircle of the unit circle in the plane $C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\}$. The parameterized paths $\gamma:[0,\pi]\to\mathbb{R}^2$ and $\rho:[-1,1]\to\mathbb{R}^2$, defined by

$$\gamma(t) := (\cos t, \sin t) \quad \text{and} \quad \rho(x) := \left(x, \sqrt{1-x^2}\,
ight)$$
 , respectively,

have both the set ${\it C}$ as their traces. In the case of γ the semicircle ${\it C}$ is traced

Two parameterized paths $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ are called equivalent if there exists an homeomorphism $\varphi:[a,b]\to[c,d]$ (i.e., φ is bijective and continuous) such that $\gamma = \rho \circ \varphi$. In this case we write $\gamma \sim \rho$. One says that ρ is a re-parametrization of the path $C = I(\gamma)$. Being injective and continuous, the function φ is strictly monotone on [a, b]. If φ is strictly increasing, then it is said to be an orientation preserving parameter transformation. In this case we write $\gamma \approx \rho$. Consider, for instance, the upper semicircle of the unit circle in the plane $C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\}$. The parameterized paths $\gamma:[0,\pi]\to\mathbb{R}^2$ and $\rho:[-1,1]\to\mathbb{R}^2$, defined by

$$\gamma(t) := (\cos t, \sin t)$$
 and $\rho(x) := \left(x, \sqrt{1-x^2}\,
ight)$, respectively,

have both the set C as their traces. In the case of γ the semicircle C is traced counterclockwise, while in the case of ρ it is traced clockwise.

Two parameterized paths $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ are called equivalent if there exists an homeomorphism $\varphi:[a,b]\to[c,d]$ (i.e., φ is bijective and continuous) such that $\gamma = \rho \circ \varphi$. In this case we write $\gamma \sim \rho$. One says that ρ is a re-parametrization of the path $C = I(\gamma)$. Being injective and continuous, the function φ is strictly monotone on [a, b]. If φ is strictly increasing, then it is said to be an orientation preserving parameter transformation. In this case we write $\gamma \approx \rho$. Consider, for instance, the upper semicircle of the unit circle in the plane $C := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\}$. The parameterized paths $\gamma:[0,\pi]\to\mathbb{R}^2$ and $\rho:[-1,1]\to\mathbb{R}^2$, defined by

$$\gamma(t) := (\cos t, \sin t)$$
 and $\rho(x) := \left(x, \sqrt{1-x^2}\,
ight)$, respectively,

have both the set C as their traces. In the case of γ the semicircle C is traced counterclockwise, while in the case of ρ it is traced clockwise. We have $\gamma \sim \rho$ via the homeomorphism $\varphi:[0,\pi] \to [-1,1], \ \varphi(t):=\cos t,$ but $\gamma\not\approx\rho$.

Example (the opposite of a parameterized path)

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a parameterized path in \mathbb{R}^n . Then the function $\bar{\gamma}:[a,b]\to\mathbb{R}^n$, defined by $\bar{\gamma}(t):=\gamma(a+b-t)$, is a parameterized path, too. It is called the *opposite of the parameterized path* γ .

Figure 3: The opposite $\sigma = \bar{\gamma}$ of a parameterized path γ .

Obviously, the parameterized paths γ and $\bar{\gamma}$ are equivalent and they have the same trace. However, $\gamma \not\approx \bar{\gamma}$.

16 / 36

We denote by \mathcal{P}^n the set of all parameterized paths in \mathbb{R}^n . It is easy to prove that the binary relations \sim and \approx are both reflexive, symmetric and transitive, hence they are

We denote by \mathcal{P}^n the set of all parameterized paths in \mathbb{R}^n . It is easy to prove that the binary relations \sim and \approx are both reflexive, symmetric and transitive, hence they are equivalence relations on \mathcal{P}^n .

We denote by \mathcal{P}^n the set of all parameterized paths in \mathbb{R}^n . It is easy to prove that the binary relations \sim and \approx are both reflexive, symmetric and transitive, hence they are equivalence relations on \mathcal{P}^n .

An equivalence class in the quotient set \mathcal{P}^n by \sim is called a *curve* in \mathbb{R}^n .

We denote by \mathcal{P}^n the set of all parameterized paths in \mathbb{R}^n . It is easy to prove that the binary relations \sim and \approx are both reflexive, symmetric and transitive, hence they are equivalence relations on \mathcal{P}^n .

An equivalence class in the quotient set \mathcal{P}^n by \sim is called a *curve* in \mathbb{R}^n . An equivalence class in the quotient set \mathcal{P}^n by \approx is called an *oriented curve* in \mathbb{R}^n .

We denote by \mathcal{P}^n the set of all parameterized paths in \mathbb{R}^n . It is easy to prove that the binary relations \sim and \approx are both reflexive, symmetric and transitive, hence they are equivalence relations on \mathcal{P}^n .

An equivalence class in the quotient set \mathcal{P}^n by \sim is called a *curve* in \mathbb{R}^n . An equivalence class in the quotient set \mathcal{P}^n by \approx is called an *oriented curve* in \mathbb{R}^n . If Γ is a curve (respectively an oriented curve), while $\gamma \in \Gamma$, then one says that Γ is the curve (respectively the oriented curve) associated with the parameterized path γ .

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be equivalent parameterized paths in \mathbb{R}^n . Then the following assertions are true:

 1° One has $I(\gamma) = I(\rho)$, i.e., two equivalent parameterized paths have the same trace.

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be equivalent parameterized paths in \mathbb{R}^n . Then the following assertions are true:

- 1° One has $I(\gamma)=I(\rho)$, i.e., two equivalent parameterized paths have the same trace.
- 2° If γ is closed, then ρ is closed, too.

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be equivalent parameterized paths in \mathbb{R}^n . Then the following assertions are true:

- 1° One has $I(\gamma)=I(\rho)$, i.e., two equivalent parameterized paths have the same trace.
- 2° If γ is closed, then ρ is closed, too.
- 3° If γ is simple, then ρ is simple, too.

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be equivalent parameterized paths in \mathbb{R}^n . Then the following assertions are true:

- 1° One has I($\gamma)$ = I(ρ), i.e., two equivalent parameterized paths have the same trace.
- 2° If γ is closed, then ρ is closed, too.
- 3° If γ is simple, then ρ is simple, too.
- 4° If γ is rectifiable, then ρ is rectifiable, too. Moreover, it holds that $\ell(\gamma)=\ell(\rho)$.

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be equivalent parameterized paths in \mathbb{R}^n . Then the following assertions are true:

- 1° One has $I(\gamma)=I(\rho)$, i.e., two equivalent parameterized paths have the same trace.
- 2° If γ is closed, then ρ is closed, too.
- 3° If γ is simple, then ρ is simple, too.
- 4° If γ is rectifiable, then ρ is rectifiable, too. Moreover, it holds that $\ell(\gamma)=\ell(\rho)$.

Definition

A curve Γ in \mathbb{R}^n is called:

a) \emph{closed} , if there exists a closed parameterized path $\gamma \in \Gamma$;

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be equivalent parameterized paths in \mathbb{R}^n . Then the following assertions are true:

- 1° One has I($\gamma)$ = I(ρ), i.e., two equivalent parameterized paths have the same trace.
- 2° If γ is closed, then ρ is closed, too.
- 3° If γ is simple, then ρ is simple, too.
- 4° If γ is rectifiable, then ρ is rectifiable, too. Moreover, it holds that $\ell(\gamma)=\ell(\rho)$.

Definition

A curve Γ in \mathbb{R}^n is called:

- a) *closed*, if there exists a closed parameterized path $\gamma \in \Gamma$;
- b) *simple*, if there exists a simple parameterized path $\gamma \in \Gamma$;

- Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be equivalent parameterized paths in \mathbb{R}^n . Then the following assertions are true:
- 1° One has $I(\gamma)=I(\rho)$, i.e., two equivalent parameterized paths have the same trace.
- 2° If γ is closed, then ρ is closed, too.
- 3° If γ is simple, then ρ is simple, too.
- 4° If γ is rectifiable, then ρ is rectifiable, too. Moreover, it holds that $\ell(\gamma)=\ell(\rho)$.

Definition

A curve Γ in \mathbb{R}^n is called:

- a) *closed*, if there exists a closed parameterized path $\gamma \in \Gamma$;
- b) \emph{simple} , if there exists a simple parameterized path $\gamma \in \Gamma$;
- c) rectifiable, if there exists a rectifiable parameterized path $\gamma \in \Gamma$. In this case $\ell(\gamma)$ is called the arclength of the curve Γ and it is denoted by $\ell(\Gamma)$.

- Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be equivalent parameterized paths in \mathbb{R}^n . Then the following assertions are true:
- 1° One has $I(\gamma)=I(\rho)$, i.e., two equivalent parameterized paths have the same trace.
- 2° If γ is closed, then ρ is closed, too.
- 3° If γ is simple, then ρ is simple, too.
- 4° If γ is rectifiable, then ρ is rectifiable, too. Moreover, it holds that $\ell(\gamma)=\ell(\rho)$.

Definition

A curve Γ in \mathbb{R}^n is called:

- a) *closed*, if there exists a closed parameterized path $\gamma \in \Gamma$;
- b) \emph{simple} , if there exists a simple parameterized path $\gamma \in \Gamma$;
- c) rectifiable, if there exists a rectifiable parameterized path $\gamma \in \Gamma$. In this case $\ell(\gamma)$ is called the arclength of the curve Γ and it is denoted by $\ell(\Gamma)$. The subset of \mathbb{R}^n defined by $I(\Gamma) := I(\gamma)$, where $\gamma \in \Gamma$, is called the trace or the image of the curve Γ .

Theorem

Every piecewise C^1 parameterized path $\gamma:[a,b]\to\mathbb{R}^n$ is rectifiable and its arclength is given by the formula

$$\ell(\gamma) = \int_a^b \|\gamma'(t)\| dt.$$

Definition (the integral of a scalar function along a parameterized path)

Let $\gamma:[a,b] \to \mathbb{R}^n$ be a rectifiable parameterized path in \mathbb{R}^n , and let $s:[a,b] \to \mathbb{R}$, $s(t):=\bigvee^t(\gamma)$ be the *length function of* γ .

Definition (the integral of a scalar function along a parameterized path)

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a rectifiable parameterized path in \mathbb{R}^n , and let $s:[a,b]\to\mathbb{R},\ s(t):=\bigvee_a^t(\gamma)$ be the *length function of* γ . Further, let $f:I(\gamma)\to\mathbb{R}$ be a scalar function of n variables defined on the trace of γ .

Definition (the integral of a scalar function along a parameterized path)

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a rectifiable parameterized path in \mathbb{R}^n , and let $s:[a,b]\to\mathbb{R},\ s(t):=\bigvee_a^t(\gamma)$ be the *length function of* γ . Further, let $f:I(\gamma)\to\mathbb{R}$ be a scalar function of n variables defined on the trace of γ . If the function $f\circ\gamma$ is Riemann-Stieltjes integrable with respect to s on [a,b], then one says that f is integrable with respect to the arclength along γ .

Definition (the integral of a scalar function along a parameterized path)

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a rectifiable parameterized path in \mathbb{R}^n , and let $s:[a,b]\to\mathbb{R},\ s(t):=\bigvee(\gamma)$ be the *length function of* γ . Further, let $f: I(\gamma) \to \mathbb{R}$ be a scalar function of *n* variables defined on the trace of γ . If the function $f \circ \gamma$ is Riemann-Stieltjes integrable with respect to s on [a, b], then one says that f is integrable with respect to the arclength along γ . The real number $\int_{a}^{b} (f \circ \gamma) ds$ is called the integral with respect to the arclength of f along γ or the integral of the first kind of f along γ . It will be denoted by

$$\int_{\gamma} f \, ds$$
 or by $\int_{\gamma} f(x) \, ds$ or by $\int_{\gamma} f(x_1, \dots, x_n) \, ds$.

→ロト→部ト→差ト→差 のQで

Figure 4: The physical meaning of an integral of the first kind along a parameterized path.

Consider a wire whose shape is the trace $I(\gamma)$ of a rectifiable parameterized path $\gamma:[a,b]\to\mathbb{R}^3$. We assume that the wire is not homogeneous, but that its linear density (mass per unit length) f(x) is known at each point $x \in I(\gamma)$. Let $P := (a = t_0 < t_1 < \ldots < t_k = b)$ be a partition of [a, b].

For every $j \in \{1, \ldots, k\}$ we select a point $c_j \in [t_{j-1}, t_j]$ and we consider that the part of the wire between $\gamma(t_{j-1})$ and $\gamma(t_j)$ has the density $f(\gamma(c_j))$. Since the length of this part of the wire is

For every $j \in \{1, \ldots, k\}$ we select a point $c_j \in [t_{j-1}, t_j]$ and we consider that the part of the wire between $\gamma(t_{j-1})$ and $\gamma(t_j)$ has the density $f(\gamma(c_j))$. Since the length of this part of the wire is $s(t_j) - s(t_{j-1})$, its mass can be approximated by

For every $j \in \{1,\ldots,k\}$ we select a point $c_j \in [t_{j-1},t_j]$ and we consider that the part of the wire between $\gamma(t_{j-1})$ and $\gamma(t_j)$ has the density $f(\gamma(c_j))$. Since the length of this part of the wire is $s(t_j) - s(t_{j-1})$, its mass can be approximated by $f(\gamma(c_j))[s(t_j) - s(t_{j-1})]$. Therefore, the mass of the wire is approximated by

$$m \approx \sum_{j=1}^{\kappa} f(\gamma(c_j)) [s(t_j) - s(t_{j-1})] = \sigma(f \circ \gamma, s, P, \xi),$$

where $\xi := (c_1, \ldots, c_k)$.

For every $j \in \{1,\ldots,k\}$ we select a point $c_j \in [t_{j-1},t_j]$ and we consider that the part of the wire between $\gamma(t_{j-1})$ and $\gamma(t_j)$ has the density $f(\gamma(c_j))$. Since the length of this part of the wire is $s(t_j) - s(t_{j-1})$, its mass can be approximated by $f(\gamma(c_j))[s(t_j) - s(t_{j-1})]$. Therefore, the mass of the wire is approximated by

$$m \approx \sum_{j=1}^{k} f(\gamma(c_j)) [s(t_j) - s(t_{j-1})] = \sigma(f \circ \gamma, s, P, \xi),$$

where $\xi := (c_1, \ldots, c_k)$. The exact value of the mass of the wire is

$$m = \int_a^b (f \circ \gamma)(t) \, \mathrm{d}s(t) = \int_{\gamma} f(x, y, z) \, \mathrm{d}s.$$

Theorem (computation of line integrals of the first kind by means of Riemann integrals)

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a C^1 parameterized path, and let $f:I(\gamma)\to\mathbb{R}$ be a continuous function. Then f is integrable with respect to the arclength along γ and one has

$$\int_{\gamma} f \, ds = \int_{a}^{b} f(\gamma(t)) \, \big\| \gamma'(t) \big\| \, dt.$$

Theorem (independence on parametrization of the line integrals of the first kind along a parameterized path)

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be equivalent rectifiable parameterized paths in \mathbb{R}^n . If a function $f:I(\gamma)\to\mathbb{R}$ is integrable with respect to the arclength along γ , then f is integrable with respect to the arclength also along ρ and one has

$$\int_{\gamma} f \, ds = \int_{\rho} f \, ds.$$

Theorem (independence on parametrization of the line integrals of the first kind along a parameterized path)

Let $\gamma:[a,b]\to\mathbb{R}^n$ and $\rho:[c,d]\to\mathbb{R}^n$ be equivalent rectifiable parameterized paths in \mathbb{R}^n . If a function $f:I(\gamma)\to\mathbb{R}$ is integrable with respect to the arclength along γ , then f is integrable with respect to the arclength also along ρ and one has

$$\int_{\gamma} f \, ds = \int_{\rho} f \, ds.$$

In particular, if $f:I(\gamma)\to\mathbb{R}$ is integrable with respect to the arclength along γ , then f is integrable with respect to the arclength also along $\bar{\gamma}$ and one has

$$\int_{\gamma} f \, ds = \int_{\bar{\gamma}} f \, ds.$$

Definition (the integral of a scalar function along a curve)

The preceding theorem enables us to define the integral of a scalar function (the line integral of the first kind) along a curve. Let Γ be a rectifiable curve in \mathbb{R}^n , and let $f:I(\Gamma)\to\mathbb{R}$ be a scalar function. If there exists a parameterized path $\gamma\in\Gamma$ such that f is integrable with respect to the arclength along γ , then one says that f is integrable with respect to the arclength along the curve Γ . The real number, defined by $\int_{\gamma} f\,\mathrm{d}s$ is called the integral with respect to the arclength of f along Γ or the integral of the first kind of f along Γ . It will be denoted by $\int_{\Gamma} f\,\mathrm{d}s$.

Let A be a subset of \mathbb{R}^n . A continuous vector function $F = (F_1, \dots, F_n) : A \to \mathbb{R}^n$ is called a *vector field in A*.

Let A be a subset of \mathbb{R}^n . A continuous vector function $F = (F_1, \dots, F_n) : A \to \mathbb{R}^n$ is called a *vector field in A*.

Examples of vector fields

a) Suppose that A is an open subset of \mathbb{R}^n and that $U:A\to\mathbb{R}$ is a function of class C^1 on A. Then $\nabla U:A\to\mathbb{R}^n$ is a vector field in A.

Let A be a subset of \mathbb{R}^n . A continuous vector function $F = (F_1, \dots, F_n) : A \to \mathbb{R}^n$ is called a *vector field in A*.

Examples of vector fields

a) Suppose that A is an open subset of \mathbb{R}^n and that $U:A\to\mathbb{R}$ is a function of class C^1 on A. Then $\nabla U:A\to\mathbb{R}^n$ is a vector field in A.

Given an open set $A \subseteq \mathbb{R}^n$ and a vector field $F: A \to \mathbb{R}^n$, one says that F is a *conservative vector field* if there exists a scalar function $U: A \to \mathbb{R}$, of class C^1 on A and with the property that $F = \nabla U$. In this case the scalar function U is called a *scalar potential* for F.

Let A be a subset of \mathbb{R}^n . A continuous vector function $F = (F_1, \dots, F_n) : A \to \mathbb{R}^n$ is called a *vector field in A*.

Examples of vector fields

a) Suppose that A is an open subset of \mathbb{R}^n and that $U:A\to\mathbb{R}$ is a function of class C^1 on A. Then $\nabla U:A\to\mathbb{R}^n$ is a vector field in A.

Given an open set $A \subseteq \mathbb{R}^n$ and a vector field $F: A \to \mathbb{R}^n$, one says that F is a *conservative vector field* if there exists a scalar function $U: A \to \mathbb{R}$, of class C^1 on A and with the property that $F = \nabla U$. In this case the scalar function U is called a *scalar potential* for F.

A set $A \subseteq \mathbb{R}^n$ is called *connected* if there do not exist open sets $G, H \subseteq \mathbb{R}^n$ such that $A \subseteq G \cup H$, $A \cap G \neq \emptyset$, $A \cap H \neq \emptyset$, and $A \cap G \cap H = \emptyset$.

Let A be a subset of \mathbb{R}^n . A continuous vector function $F = (F_1, \dots, F_n) : A \to \mathbb{R}^n$ is called a *vector field in A*.

Examples of vector fields

a) Suppose that A is an open subset of \mathbb{R}^n and that $U:A\to\mathbb{R}$ is a function of class C^1 on A. Then $\nabla U:A\to\mathbb{R}^n$ is a vector field in A.

Given an open set $A \subseteq \mathbb{R}^n$ and a vector field $F: A \to \mathbb{R}^n$, one says that F is a *conservative vector field* if there exists a scalar function $U: A \to \mathbb{R}$, of class C^1 on A and with the property that $F = \nabla U$. In this case the scalar function U is called a *scalar potential* for F.

A set $A \subseteq \mathbb{R}^n$ is called *connected* if there do not exist open sets $G, H \subseteq \mathbb{R}^n$ such that $A \subseteq G \cup H$, $A \cap G \neq \emptyset$, $A \cap H \neq \emptyset$, and $A \cap G \cap H = \emptyset$. An open connected subset of \mathbb{R}^n is said to be a *domain* in \mathbb{R}^n .

Let A be a subset of \mathbb{R}^n . A continuous vector function $F = (F_1, \dots, F_n) : A \to \mathbb{R}^n$ is called a *vector field in A*.

Examples of vector fields

a) Suppose that A is an open subset of \mathbb{R}^n and that $U:A\to\mathbb{R}$ is a function of class C^1 on A. Then $\nabla U:A\to\mathbb{R}^n$ is a vector field in A.

Given an open set $A \subseteq \mathbb{R}^n$ and a vector field $F: A \to \mathbb{R}^n$, one says that F is a *conservative vector field* if there exists a scalar function $U: A \to \mathbb{R}$, of class C^1 on A and with the property that $F = \nabla U$. In this case the scalar function U is called a *scalar potential* for F.

A set $A \subseteq \mathbb{R}^n$ is called *connected* if there do not exist open sets $G, H \subseteq \mathbb{R}^n$ such that $A \subseteq G \cup H$, $A \cap G \neq \emptyset$, $A \cap H \neq \emptyset$, and $A \cap G \cap H = \emptyset$. An open connected subset of \mathbb{R}^n is said to be a *domain* in \mathbb{R}^n . It can be proved that if A is a domain in \mathbb{R}^n , F is a conservative vector field in A, while U_1 and U_2 are scalar potentials for F, then the function $U_1 - U_2$ is constant on A.

b) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (x,y) = x \cdot \overrightarrow{i} + y \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 .

b) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (x,y) = x \cdot \overrightarrow{i} + y \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 . It is a conservative vector field because $F = \nabla U$, where the potential $U: \mathbb{R}^2 \to \mathbb{R}$ is defined by

b) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (x,y) = x \cdot \overrightarrow{i} + y \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 . It is a conservative vector field because $F = \nabla U$, where the potential $U: \mathbb{R}^2 \to \mathbb{R}$ is defined by $U(x,y) := \frac{1}{2} (x^2 + y^2)$.

b) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (x,y) = x \cdot \overrightarrow{i} + y \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 . It is a conservative vector field because $F = \nabla U$, where the potential $U: \mathbb{R}^2 \to \mathbb{R}$ is defined by $U(x,y) := \frac{1}{2}(x^2 + y^2)$.

Figure 5: The graph of the vector field $F(x,y) := (x,y) = x \cdot \overrightarrow{i} + y \cdot \overrightarrow{j}$.

c) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (y,x) = y \cdot \overrightarrow{i} + x \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 .

c) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (y,x) = y \cdot \overrightarrow{i} + x \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 . It is a conservative vector field because $F = \nabla U$, where the potential $U: \mathbb{R}^2 \to \mathbb{R}$ is defined by

c) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (y,x) = y \cdot \overrightarrow{i} + x \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 . It is a conservative vector field because $F = \nabla U$, where the potential $U: \mathbb{R}^2 \to \mathbb{R}$ is defined by U(x,y) := xy.

c) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (y,x) = y \cdot \overrightarrow{i} + x \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 . It is a conservative vector field because $F = \nabla U$, where the potential $U: \mathbb{R}^2 \to \mathbb{R}$ is defined by U(x,y) := xy.

Figure 6: The graph of the vector field $F(x,y) := (x,y) = y \cdot \overrightarrow{i} + x \cdot \overrightarrow{j}$.

d) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (y,x) = y \cdot \overrightarrow{i} - x \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 .

Tiberiu Trif (UBB)

d) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (y,x) = y \cdot \overrightarrow{i} - x \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 . This is not a conservative vector field.

d) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) := (y,x) = y \cdot \overrightarrow{i} - x \cdot \overrightarrow{j}$ is a vector field in \mathbb{R}^2 . This is not a conservative vector field.

Figure 7: The graph of the vector field $F(x,y) := (x,y) = y \cdot \overrightarrow{i} - x \cdot \overrightarrow{j}$.

Let $A \subseteq \mathbb{R}^n$ be a nonempty set, let $F := (F_1, \dots, F_n) : A \to \mathbb{R}^n$ be a vector field in A, and let $\gamma := (\gamma_1, \dots, \gamma_n) : [a, b] \to A$ be a parameterized path whose trace is contained in A.

Let $A \subseteq \mathbb{R}^n$ be a nonempty set, let $F := (F_1, \ldots, F_n) : A \to \mathbb{R}^n$ be a vector field in A, and let $\gamma := (\gamma_1, \ldots, \gamma_n) : [a, b] \to A$ be a parameterized path whose trace is contained in A. The vector field F is said to be *integrable along* γ if for every $i \in \{1, \ldots, n\}$ the function $F_i \circ \gamma$ is Riemann-Stieltjes integrable with respect to γ_i on [a, b].

Let $A\subseteq\mathbb{R}^n$ be a nonempty set, let $F:=(F_1,\ldots,F_n):A\to\mathbb{R}^n$ be a vector field in A, and let $\gamma:=(\gamma_1,\ldots,\gamma_n):[a,b]\to A$ be a parameterized path whose trace is contained in A. The vector field F is said to be *integrable along* γ if for every $i\in\{1,\ldots,n\}$ the function $F_i\circ\gamma$ is Riemann-Stieltjes integrable with respect to γ_i on [a,b]. In this case the real number defined by $\sum_{i=1}^n \int_a^b \left(F_i\circ\gamma\right) \mathrm{d}\gamma_i$ is called the *integral* or the

work of the vector field F along γ .

Let $A\subseteq\mathbb{R}^n$ be a nonempty set, let $F:=(F_1,\ldots,F_n):A\to\mathbb{R}^n$ be a vector field in A, and let $\gamma:=(\gamma_1,\ldots,\gamma_n):[a,b]\to A$ be a parameterized path whose trace is contained in A. The vector field F is said to be *integrable along* γ if for every $i\in\{1,\ldots,n\}$ the function $F_i\circ\gamma$ is Riemann-Stieltjes integrable with respect to γ_i on [a,b]. In this case the real number defined by $\sum_{i=1}^n \int_a^b \left(F_i\circ\gamma\right) \mathrm{d}\gamma_i$ is called the *integral* or the

work of the vector field F along γ . It will be denoted by $\int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{r}$ or by

$$\int_{\gamma} F_1(x_1,\ldots,x_n) dx_1 + \cdots + F_n(x_1,\ldots,x_n) dx_n.$$

Theorem

Let A be a nonempty subset of \mathbb{R}^n , let $\gamma:[a,b]\to A$ be a rectifiable parameterized path, and let $F:=(F_1,\ldots,F_n):A\to\mathbb{R}^n$ be a vector field in A. Then F is integrable along γ and it holds $\left|\int_{\gamma}\overrightarrow{F}\cdot d\overrightarrow{r}\right|\leq M\,\ell(\gamma)$, where $M:=\max_{x\in I(\gamma)}\|F(x)\|$.

Theorem

Let A be a nonempty subset of \mathbb{R}^n , let $\gamma:[a,b]\to A$ be a rectifiable parameterized path, and let $F:=(F_1,\ldots,F_n):A\to\mathbb{R}^n$ be a vector field in A. Then F is integrable along γ and it holds $\left|\int_{\gamma}\overrightarrow{F}\cdot d\overrightarrow{r}\right|\leq M\,\ell(\gamma)$, where $M:=\max_{x\in I(\gamma)}\|F(x)\|$.

Theorem (computation of line integrals of vector fields by means of Riemann integrals)

Let A be a nonempty subset of \mathbb{R}^n , let $\gamma:[a,b]\to A$ be a parameterized path of class C^1 , and let $F:=(F_1,\ldots,F_n):A\to\mathbb{R}^n$ be a vector field in A. Then one has

$$\int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{r} = \sum_{i=1}^{n} \int_{a}^{b} (F_{i} \circ \gamma)(t) \gamma'_{i}(t) dt.$$

◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Remark

If $\gamma(t)=(x(t),y(t)),\ t\in[a,b]$ is a parameterized path in \mathbb{R}^2 , then

$$\begin{split} \int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{r} &= \int_{\gamma} F_1(x, y) \, dx + F_2(x, y) \, dy \\ &= \int_{a}^{b} F_1(x(t), y(t)) x'(t) \, dt + \int_{a}^{b} F_2(x(t), y(t)) y'(t) \, dt. \end{split}$$

Remark

If $\gamma(t)=(x(t),y(t)),\ t\in[a,b]$ is a parameterized path in \mathbb{R}^2 , then

$$\int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{\gamma} F_1(x, y) dx + F_2(x, y) dy$$

$$= \int_{a}^{b} F_1(x(t), y(t))x'(t) dt + \int_{a}^{b} F_2(x(t), y(t))y'(t) dt.$$

In the case of a parameterized path $\gamma(t)=(x(t),y(t),z(t)),\ t\in[a,b]$ in \mathbb{R}^3 , we have

$$\int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{\gamma} F_1(x, y, z) dx + F_2(x, y, z) dy + F_3(x, y, z) dz$$

$$= \int_{a}^{b} F_1(x(t), y(t), z(t))x'(t) dt$$

$$+ \int_{a}^{b} F_2(x(t), y(t), z(t))y'(t) dt$$

$$+ \int_{a}^{b} F_3(x(t), y(t), z(t))z'(t) dt.$$

Theorem (additivity of the line integral of a vector field with respect to the path)

Let A be a nonempty subset of \mathbb{R}^n , let $\gamma:[a,b]\to A$ and $\rho:[c,d]\to A$ be parameterized paths such that $\gamma(b)=\rho(c)$, and let $F:=(F_1,\ldots,F_n):A\to\mathbb{R}^n$ be a vector field in A. If F is integrable along $\gamma\vee\rho$, then F is integrable along both γ and ρ and one has

$$\int_{\gamma \vee \rho} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{r} + \int_{\rho} \overrightarrow{F} \cdot d\overrightarrow{r}.$$

Theorem,

Let A be a nonempty subset of \mathbb{R}^n , let $\gamma:[a,b]\to A$ and $\rho:[c,d]\to A$ be equivalent parameterized paths, and let $F:=(F_1,\ldots,F_n):A\to\mathbb{R}^n$ be a vector field in A, such that F is integrable along γ . Then F is integrable along ρ , too and it holds $\int_{\rho}\overrightarrow{F}\cdot d\overrightarrow{r}=\varepsilon_{\gamma,\rho}\int_{\gamma}\overrightarrow{F}\cdot d\overrightarrow{r}$, where

$$arepsilon_{\gamma,
ho}:=\left\{egin{array}{ll} 1 & ext{if } \gammapprox
ho \ -1 & ext{otherwise}. \end{array}
ight.$$

In particular, F is integrable along $\bar{\gamma}$ and $\int_{\bar{\gamma}} \overrightarrow{F} \cdot d\overrightarrow{r} = -\int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{r}$.

Definition (the integral of a vector field along an oriented curve)

The preceding theorem enables us to define the integral (or work) of a vector field along an oriented curve. Let A be a nonempty subset of \mathbb{R}^n , let $F:=(F_1,\ldots,F_n):A\to\mathbb{R}^n$ be a vector field in A, and let Γ be an oriented curve in \mathbb{R}^n with $I(\Gamma)\subseteq A$. If there exists a parameterized path $\gamma\in\Gamma$ such that F is integrable along γ , then one says that F is integrable along the curve Γ . The real number, defined by $\int_{\gamma} f$ is called the integral or the work of the vector field F along the curve Γ and it will be denoted by $\int_{\Gamma} \overrightarrow{F} \cdot d\overrightarrow{\gamma}$ or by

$$\int_{\Gamma} F_1(x_1,\ldots,x_n) dx_1 + \cdots + F_n(x_1,\ldots,x_n) dx_n.$$

Remark (the physical meaning of the integral of a vector field along a parameterized path)

Consider a particle moving in \mathbb{R}^3 under the action of a vector field $F:=(P,Q,R):\mathbb{R}^3\to\mathbb{R}^3$. Suppose that the trajectory of the particle is the trace $I(\gamma)$ of a parameterized path $\gamma:[a,b]\to\mathbb{R}^3$. Then the work W, done by the vector field F in moving the particle is

$$W = \int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{\gamma} P dx + Q dy + R dz.$$

The work represents the amount of energy necessary to move the particle along its trajectory.