

IT3160E Introduction to Artificial Intelligence

Chapter 4 – Knowledge and inference Part 2: Propositional logic

Lecturer:

Muriel VISANI

Department of Information Systems
School of Information and Communication Technology - HUST

Content of the course

- Chapter 1: Introduction
- Chapter 2: Intelligent agents
- Chapter 3: Problem Solving
 - Search algorithms, adversarial search
 - Constraint Satisfaction Problems
- Chapter 4: Knowledge and Inference
 - Knowledge representation
 - Propositional logic and first-order logic
- Chapter 5: Uncertain knowledge and reasoning
- Chapter 6: Advanced topics
 - Machine learning
 - Computer Vision

Outline

- Chapter 4 part 1: Knowledge representation
- Chapter 4 part 2: Propositional logic
 - Definitions
 - Syntax in propositional logic
 - Semantic in propositional logic
 - Logic inference
 - Some definitions
 - Inference in propositional logic
 - Introduction
 - Forward chaining Exercise
 - Backward chaining Exercise
 - Discussion
 - Homework

Goal of this Lecture

Goal	Description of the goal or output requirement	Output division/ Level (I/T/U)
M1	Understand basic concepts and techniques of Al	1.2

Propositional logic

Definitions

Recall: Knowledge-based Agents

- Know about the world
 - They maintain a collection of facts (sentences) about the world, their Knowledge Base, expressed in some formal language
- Reason about the world
 - They are able to derive new facts from those in the KB using some inference mechanism
- Act upon the world
 - They map percepts to actions by querying and updating the KB

What is Logic?

- □ A logic is a triplet <L,S,R>
 - L, the language of the logic, is a class of sentences described by a precise syntax, usually a formal grammar
 - S, the logic's semantic, describes the meaning of elements in L
 - R, the logic's inference system, consisting of derivation rules over L
- □ Examples of logics:
 - Propositional, First Order, Higher Order, Temporal, Fuzzy, Modal, Linear, ...

What is a Logic Language?

- □ All languages have a set of **symbols**, meanings and rules
 - o For example, the letter 'A' is part of English, but not part of Chinese
 - For example, English is a Subject-Verb-Object language, while Arabic is Subject-Object-Verb.
 - For example, 'snow' means snow in English, but 'schnee' means snow in German
- □ The **syntax** of a language is the grammar of the language
- The semantics of a language is the meaning of the significant parts
- Propositional Logic (PL) is a **formal language** (not natural language like English)
- It is possible to translate sentences of most natural languages, (English, Vietnamese, French...) into PL

Propositional logic

Syntax in propositional logic

The Syntax of Propositional Logic

- PL is a language that focuses on a small set of expressions defined using symbols:
 - Propositional variables: A, B,..., P, Q,...
 - Logical constants: TRUE, FALSE
 - Propositional connectives and grouping symbols:
 - Propositional connectives:
 - '→' arrow
 - '¬' broken arrow
 - '≡' triple bar
 - '∧' carrot
 - '∨' wedge
 - Grouping Symbols:
 - '(,)' parentheses, and '[,]' brackets

The Syntax of Propositional Logic

Symbols

- Propositional variables: A, B,..., P, Q,...
- Logical constants: TRUE, FALSE
- Propositional connectives and grouping symbols: $('\rightarrow', '\neg', '\equiv', '\wedge', and '\vee')$ and ('(,)', '[,]')

Sentences

- Each propositional variable is a sentence (a.k.a. logical expression)
- Each logical constant is a sentence
- If α and β are sentences, then the following are also sentences: (α) , $\neg \alpha$, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \to \beta$ and $\alpha \equiv \beta$

Formal Language of Propositional Logic

Symbols

- Propositional variables (sentences): A, B,..., P, Q,...
- Logical constants: denoted T, F
- Propositional connectives and grouping symbols: $('\rightarrow', '\neg', '\equiv', '\wedge',$ and (\vee) and (((,)', ([,]))

Formal Grammar

"simple" sentence "composite" sentence

- Sentence : Asentence | Csentence
- Asentence : TRUE | FALSE | A | B|...
- Csentence : (Sentence) | The Sentence | Se Sentence
- Where Connective : $('\rightarrow', '\equiv', '\land', or '\lor')$

Rules for Well-Formed Sentences

- □ Formal grammar (cont'd):
- 1. All propositional letters A....Z are atomic, well-formed sentences
- 2. If P and Q are well formed, then so are the following:

```
I. \neg P
II. (P \equiv Q)
III. (P \land Q)
IV. (P \lor Q)
V. (P \to Q)
```

3. Nothing is a well-formed sentence, unless it derives from (1) or (2)

Examples

Not well-formed

- 1. P¬
- 2. QP
- 3. ∧R
- $4.A \rightarrow$
- 5. ≡∨ R)

Well-formed

1.
$$(P \rightarrow (Q \land R))$$

2.
$$(V \equiv (\neg R \land S))$$

3.
$$(Q \land (R \lor S))$$

$$4.(S \rightarrow (R \rightarrow T))$$

5.
$$(P \rightarrow \neg (R \equiv S))$$

Propositional logic

Semantics in propositional logic

The Semantics of PL

- PL is a language that only focuses on propositional connectives and operators. In English the main propositional connectives are 'and', 'or', 'not', 'if..., then..', and 'if and only if'
 - Translation English to PL:
 - 'and' = '∧'
 - 'or' = '\/'
 - 'not' = '¬'
 - 'if..., then..' = ' \rightarrow '
 - 'if and only if' = '≡'
- □ Since PL is only focused on these terms it only has a semantics for these terms (' \rightarrow ', ' \neg ', ' \equiv ', ' \wedge ', and ' \vee ')

The Semantics of PL

- The semantics for PL is binary and exclusive
 - PL is about facts in the world
 - Examples: It's sunny, John is married
 - There are only two truth-values for these facts:
 - TRUE and FALSE (binary)
 - No statement is both TRUE and FALSE (exclusive)
- Propositional variables stand for basic facts
- □ Sentences are made of
 - Propositional variables (A, B,...)
 - Logical constants (TRUE, FALSE)
 - \circ Propositional connectives (' \rightarrow ', ' \neg ', ' \equiv ', ' \wedge ', and ' \vee ')
 - Possibly, grouping symbols: '(,)' and '[,]'

Semantic of Propositional Logics: Truth-Tables

- In order to define the propositional connectives, one needs to use truth-tables
- A truth-table is a table for visually displaying the distribution of truth and falsity across a compound formula given the basic inputs from the atomic letters (where T= TRUE and F=FALSE)

p	q	
Т	Т	
Т	F	
F	Т	
F	F	

Broken Arrow, Negation

- □ The definition of broken arrow is intended to capture the logical meaning of the word 'not', and the function of negation
- □ The output is the opposite of the input

p	¬ p
Т	F
F	Т

Carrot, Conjunction

- □ The definition of carrot is intended to capture the logical meaning of the word 'and', and the function of conjunction
- □ The output is true only if both inputs are true

p	q	(<i>p</i> ∧ <i>q</i>)
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Wedge, Disjunction

- □ The definition of wedge is intended to capture the logical meaning of the word 'or', and the function of disjunction
- □ The output is true as long at least one input is true

p	q	$(p \lor q)$
Т	Т	T
Т	F	Т
F	Т	Т
F	F	F

Arrow, Material Conditional

- □ The definition of the arrow is intended to capture the logical meaning of the phrase 'if...., then...', and the function of material conditional
- The output is false only when the first input is true, and the second input is false
 - Some definitions (in red)

Interesting result :
$$(p \rightarrow q) \equiv \neg p \lor q$$

Triple Bar, Biconditional

- The definition of triple bar is intended to capture the logical meaning of the phrase 'if and only if', and the function of biconditional
- □ The output is true just in cases the inputs are the same

p	q	$(p \equiv q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Composition of propositional connectives

- Note: More refined logical connectives can be derived from propositional connectives
 - For instance, we can derive the XOR (exclusive OR) connective such as:
 - p XOR q: (¬ p ∧ q) ∨ (p ∧ ¬ q)
 - Exercise: Prove that, using two truth-tables

p	q	(¬p∧q)∨(p∧¬q)
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- The meaning of TRUE is always T, the meaning of FALSE is always F
- □ The meaning of a propositional variable is either T or F
 - Depends on the interpretation
 - assignment of Boolean values to propositional variables
- The meaning of a sentence is either T or F
 - Depends on the interpretation

- Satisfiability
 - A sentence is satisfiable if it is true under some interpretation
 - \circ Ex: P \vee H is satisfiable
 - $P \wedge \neg P$ is **unsatisfiable** (not satisfiable)
- Validity
 - A sentence is valid if it is true in every interpretation
 - \circ Ex: ((P \wedge H) \wedge ¬ A) → P is valid
 - $P \wedge H$ is **not valid**

- Entailment
 - o Given
 - A set of sentences \(\bigcap \)
 - A sentence
 - We write

$$\Gamma$$
 $otin \mathcal{\Psi}$

if and only if every interpretation that makes all sentences in Γ true also makes Ψ true

 $_{\circ}$ We said that $\Gamma_{ ext{entails}}$ Ψ

Difference between entailment and implication

Implication

Implication (→) is a function on statements / sentences P and Q that can be true or false

 $(P \rightarrow Q)$ is true iff $(\neg P \lor Q)$ is true

As a result, $(P \rightarrow Q)$ is false only if P is true, and Q is false (it is true otherwise)

Example:

P: I am writing these words

Q: I am human

In **this course's** interpretation, $P \rightarrow Q$ (not always in Facebook's interpretation \odot)

Entailment (logical consequence)

Entailment (\models) is a relation between sets of statements Γ and a statement ψ

 $(\Gamma \vDash \psi)$ is true iff every interpretation that makes all $\phi \in \Gamma$ true, makes ψ true

As a result, $(\Gamma \vDash \psi)$ is true in the case where it's *impossible* to make all of Γ true and ψ false

Example:

Γ: the president was assassinated

ψ: the president is dead

In **every interpretation**, where all sentences in Γ are true, then ψ is true

Therefore, $(\Gamma \vDash \psi)$

- Satisfiability vs. Validity vs. Entailment
 - A sentence is valid if it is true in every interpretation
 - ψ is valid iff TRUE $|\psi|$ (also written $|\psi|$)
 - A sentence is **unsatisfiable** if there exists **no** interpretation in which it is true
 - ψ is unsatisfiable iff ψ = False
 - $\Gamma \models \psi$ iff $\Gamma \land \neg \psi$ is unsatisfiable

Propositional logic

Logical inference:

Some definitions

Logical Inference

- Logical inference problem:
 - o Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem)
 - o Does KB semantically entail α (KB |= α)?
- In other words: In all interpretations where all sentences in the KB are true, is also α true?
- Proving this is the objective of logical inference
 - O But first, let's give some more definitions!

Positive and negative literals

- □ In mathematical logic, a **literal** is either:
 - o an atomic formula (positive literal), e.g. P
 - o or its negation (negative literal), *e.g.* ¬*P*
- In propositional logic, a literal is a propositional variable P,
 Q, R, ... Z (or its negation)

- □ A **clause** is a disjunction of literals
 - Positives or negative literals connected by
- □ A Horn clause is a clause with at most 1 positive literal:

$$(\neg r_1 \lor \neg r_2 \lor \ldots \lor \neg r_n) \lor h$$
, where $n \in \mathbb{N}$

- Therefore, there are three types of Horn clauses:
 - 1- Strict Horn clauses, that contain 1 positive literal and n ≥ 1 negative literals:

$$(\neg r_1 \lor \neg r_2 \lor \ldots \lor \neg r_n) \lor h$$
, where $n \ge 1$

- Intuitively, they represent if... then rules
- They enable to deduce new facts from existing facts:

$$(r_1 \wedge r_2 \wedge \ldots \wedge r_n) \rightarrow h$$

Exercise

- Using truth table, show that a strict Horn clause with 2 negative litterals
 - $\neg r1 \lor \neg r2 \lor h$
- Is strictly equivalent to
 - $r1 \wedge r2 \rightarrow h$

Exercise

- Using truth table, show that a strict Horn clause with 2 negative litterals
 - $\neg r1 \lor \neg r2 \lor h$
- Is strictly equivalent to
 - $r1 \wedge r2 \rightarrow h$

- □ A **clause** is a disjunction of literals
 - Positives or negative literals connected by
- □ A Horn clause is a clause with at most 1 positive literal
 - Therefore, there are three types of Horn clauses:
 - 1- Strict Horn clauses, that contain 1 positive literal and n ≥ 1 negative literals
 - 2- Positive Horn clauses, that contain 1 positive literal h and n=0 negative literals:
 - They are facts
 - Propositional variables (atomic propositions) that can be either True or False
 Fact ≠ True

Horn clauses

- □ A **clause** is a disjunction of literals
 - Positives or negative literals connected by
- A Horn clause is a clause with at most 1 positive literal
 - Therefore, there are three types of Horn clauses:
 - 1- Strict Horn clauses, that contain 1 positive literal and n ≥ 1 negative literals
 - 2- Positive Horn clauses, that contain 1 positive literal and n = 0 negative literals
 - 3- Negative Horn clauses, that only negative literals

$$(\neg r_1 \lor \neg r_2 \lor \ldots \lor \neg r_n) \lor \neg q$$

- Represent questions to answer, where q is the question
- To prove q, i.e. $\{r_1, r_2, \dots r_n\} \models q$, one can prove that:

$$\{\mathbf{r}_1, \, \mathbf{r}_2, \, \dots \, \mathbf{r}_n, \, \neg \, q\} \models \emptyset$$

Horn form

- In logical programming, composites of Horn clauses are a particular case for which we know effective resolution algorithms
- A KB follows a Horn (normal) form if it is a conjunction of Horn clauses
 - Note: the following Horn form

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

can also be written as (with implications)

$$(B \rightarrow A) \wedge ((A \wedge C) \rightarrow D)$$

Propositional logic

Inference in Propositional Logic: *Introduction*

In propositional logic, inference is based on the modus ponens:

$$rac{p \qquad p
ightarrow q}{q} \qquad \equiv \quad rac{p \qquad (
eg p ee q)}{q}$$

- From p and p -> q, one can deduce q
- Resolution techniques are **complete** for KBs in the Horn form, e.g.

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

Resolution in propositional logic

$$\frac{(p \lor L_1 \lor \dots L_n) \quad (\neg p \lor M_1 \lor \dots \lor M_k)}{(L_1 \lor \dots L_n \lor M_1 \lor \dots \lor M_k)} \bullet \qquad \mathsf{Resolvent} \ \mathsf{of} \ (p \lor L_1 \lor \dots L_n) \ \mathsf{and} \ (\neg p \lor M_1 \lor \dots \lor M_k)$$

Permuting the literals does not change anything

- In "easier" words: the resolution rule for propositional logic
 - In Boolean logic, a formula is in conjunctive normal form (CNF) if it is a **conjunction** of one or more clauses, where a clause is a **disjunction** of literals: it is an AND of ORs.

$$\frac{(a \vee \neg b \vee \neg c) \qquad (b \vee e \vee \neg f)}{???}$$

- Now, we are going to study two resolution techniques for inference in propositional logic:
 - Forward chaining and backward chaining
 - Basically, defines in which order to consider the propositions during inference

Propositional logic

Inference in Propositional Logic:

- Forward chaining is a form of reasoning which start with atomic sentences in the KB...
- □ ... then applies **inference rules** in the forward direction...
- □ ... until the **goal** q (**theorem**) is reached

□ Example:

- Goal: Proving that Q is True, given the following KB:
 - Question: does this KB follow a Horn form?
 - Answer:
 - Prove it!

rules
$$\begin{cases} P \to Q \\ L \land M \to P \\ B \land L \to M \\ A \land P \to L \\ A \land B \to L \end{cases}$$
 facts
$$\begin{cases} A \\ B \end{cases}$$

□ Example:

o Goal: Proving that Q is True, given the following KB:

rules
$$\begin{cases} P \to Q \\ L \wedge M \to P \\ B \wedge L \to M \\ A \wedge P \to L \\ A \wedge B \to L \end{cases}$$
 facts
$$\begin{cases} A \\ B \end{cases}$$

rules
$$\begin{cases} P \to Q \\ L \wedge M \to P \\ B \wedge L \to M \\ A \wedge P \to L \\ A \wedge B \to L \end{cases}$$
 facts
$$\begin{cases} A \\ B \end{cases}$$

Modus ponens:
$$\frac{A \wedge B}{L} - (A \wedge B) \vee L$$

Modus ponens:
$$\frac{B \wedge L}{M} \rightarrow (B \wedge L) \vee M$$

Modus ponens:
$$\underline{\mathsf{L} \wedge \mathsf{M}} \qquad \neg \ (\mathsf{L} \wedge \mathsf{M}) \vee \mathsf{P}$$

Modus ponens:

Remark:

We could prove that Q is True without using all the clauses in the KB

Forward Chaining algorithm

```
function PL-FC-Entails? (KB, q) returns true or false
  local variables: count, a table, indexed by clause, initially the number of premises
                      inferred, a table, indexed by symbol, each entry initially false
                      agenda, a list of symbols, initially the symbols known to be true
   while agenda is not empty do
       p \leftarrow \text{Pop}(agenda)
        unless inferred[p] do
            inferred[p] \leftarrow true
            for each Horn clause c in whose premise p appears do
                 decrement count[c]
                 if count[c] = 0 then do
                      if HEAD[c] = q then return true
                      Push(Head[c], agenda)
   return false
```


Forward Chaining properties

- Computational complexity:
 - Runs in linear time in the number of literals in the Horn formulae
 - I.e. linear complexity in the size of the KB
- Completeness
 - Forward chaining is complete for KBs in the Horn form

□ Use forward chaining to prove theorem E, using the following KB

KB: R1:
$$A \wedge B \rightarrow C$$

R2:
$$C \wedge D \rightarrow E$$

R3:
$$C \wedge F \rightarrow G$$

F1: A

F2: *B*

F3: *D*

Theorem: E

Propositional logic

Inference in Propositional Logic: *Backward chaining*

- □ **Idea** (goal reduction):
 - To prove the fact (theorem) that appears in the conclusion of a rule, ...
 - ... prove the premises of the rule...
 - If the premise is a conjunction, then process the conjunction conjunct by conjunct
 - ... and continue, recursively.

- Example:
 - Goal: Proving that Q is True, given the following KB:

rules facts Inferred facts P

Remark:

We could prove that Q is True without using all the clauses in the KB

Backward Chaining properties

- Computational complexity:
 - Runs in (maximum) linear time in the number of literals in the Horn formulae
 - I.e. linear complexity in the size of the KB
 - But, in practice, it is much less
- Completeness
 - Backward chaining is complete for KBs in the Horn form

 Use backward chaining to prove theorem E, using the following KB

KB: R1:
$$A \wedge B \rightarrow C$$

R2:
$$C \wedge D \rightarrow E$$

R3:
$$C \wedge F \rightarrow G$$

F1: A

F2: *B*

F3: *D*

Theorem: E

Solution

KB: R1:
$$A \wedge B \rightarrow C$$

R2:
$$C \wedge D \rightarrow \widehat{E}$$

R3:
$$C \wedge F \rightarrow G$$

Theorem: E

Propositional logic

Discussion

Forward v.s. backward chaining

- Forward Chaining is data-driven, automatic, does not take into account the goal
 - o *E.g.*, routine decisions
 - Might do a lot of work that is not relevant for the goal
 - Complexity is linear in the size of the KB
- Backward Chaining is goal-driven
 - More appropriate for problem-solving
 - o E.g., where are my keys?
 - Complexity can be much less than linear in the size of the KB

KB agents based on propositional logic

- Propositional Logic allows us to build KB agents that can answer queries about the worl by inferring new facts from the known ones
- Example from the last lecture: MYCIN

Facts: The stain of the organism is gram-positive

The growth conformation of the organism is chains

Rules: (If) The stain of the organism is gram-positive \wedge

The morphology of the organism is coccus ^

The growth conformation of the organism is chains

(Then) \Rightarrow The identity of the organism is streptococcus

Limitations linked to the Horn forms

- □ The Horn form works with propositional symbols:
 - Only non-negated propositional symbols may occur in the rules' premises and in the conclusions
 - Only non-negated propositions can be used as facts

Question:

- How to express sentences such as:
 - If it is not windy, then we will play tennis ??
- Solution 1: create an explicit proposition for Not_Windy
- Solution 2: the negation of the propositional symbol will become true if we fail to prove that the propositional symbol is true (cannot be used in every context)

Propositional logic

Homework

- Use forward chaining to reach the goal C with the following KB, and represent it using a table showing (in lines):
 - Iteration number (starting at 0)
 - The current content of the KB
 - The rule that has just been triggered at this iteration

Rules:		Facts:
R1	$A \rightarrow E$	Н
R2	$B \rightarrow D$	K
R3	$H \rightarrow A \wedge F$	
R4	$E \wedge G \rightarrow C$	
R5	$E \wedge K \rightarrow B$	
R6	$D \land E \land K \rightarrow C$	
R7	$G \land K \land F \rightarrow A$	

□ The following is the rule set of a simple weather forecast expert system:

1	$_{ m IF}$	cyclone	THEN	clouds
2	$_{ m IF}$	anticyclone	THEN	$clear\ sky$
3	$_{ m IF}$	$pressure \ is \ low$	THEN	cyclone
4	$_{ m IF}$	pressure is high	THEN	anticyclone
5	$_{ m IF}$	$arrow \ is \ down$	THEN	pressure is low
6	$_{ m IF}$	$arrow \ is \ up$	THEN	pressure is high

□ Question 1:

 Use forward chaining to reason about the weather if the KB contains:

o Rules:

1	$_{ m IF}$	cyclone	THEN	clouds
2	IF	anticyclone	THEN	$clear\ sky$
3	$_{ m IF}$	$pressure \ is \ low$	THEN	cyclone
4	$_{ m IF}$	pressure is high	THEN	anticy clone
5	$_{ m IF}$	$arrow\ is\ down$	THEN	pressure is low
6	IF	$arrow \ is \ up$	THEN	pressure is high

Fact: arrow is down

□ Question 2:

 Use backward chaining to show that clear sky is True, knowing the following KB

o Rules:

1	IF	cyclone	THEN	clouds
2	IF	anticyclone	THEN	$clear\ sky$
3	$_{ m IF}$	$pressure \ is \ low$	THEN	cyclone
4	$_{ m IF}$	pressure is high	THEN	anticy clone
5	$_{ m IF}$	$arrow \ is \ down$	THEN	pressure is low
6	IF	$arrow \ is \ up$	THEN	pressure is high

Fact: arrow is up

Chapter 4 – part 2

Questions

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attention!

