

Levels of Music Processing

Levels of Music Processing

Some Questions

- Can the syntactic and semantic levels of music be connected?
- Can the meaning of music be predicted from musical structure using computational models?
- Can music similarity be modelled?

Music Information Retrieval (MIR)

- emerged in late 1990s
- multidisciplinary
 - computer science, psychology, cognitive science, musicology, digital library, information science, law, commerce, sociology,...

Why MIR? Practical motivation

- Increasing amount of music being produced
- Need for systems for organization, search, retrieval, classification, recommendation, browsing, dealing with copyright issues, ...

Why MIR? Musicological motivation

- Traditional music analysis
 - based on personal observation/intuition/ speculation
 - theories non-formalized
 - no testing, non-falsifiable theories
 - small corpora

- Computational music analysis
 - empirically-based
 - formalized theories
 - testable, falsifiable
 - large corpora

Applications of MIR

- Content-based music search (query by example, similarity, mood)
- Music recommendation
- Music browsing
- Automatic playlist generation
- Automatic music transcription
- Automatic accompaniment
- Music summarization (watermarking, fingerprinting)
- Music generation
- what else????

Theory/Function-driven Organisation and Retrieval for Well-Being

Theory/Function-driven Organisation and Retrieval for Well-Being

can you organise music into these categories?

MIR Community

Conferences

- International Conference on Music Information Retrieval (ISMIR): 1999-(annual)
 - all papers online: http://www.ismir.net/proceedings/
- CogMIR (2011-)
- International Computer Music Conference
- CMMR

Journals

- Computer Music Journal
- Journal of New Music Research
- Transactions of ISMIR
- IEEE Transactions on Audio, Speech, and Language Processing
- IEEE Transactions on Knowledge and Data Engineering

Contests

MIREX (Music Information Retrieval Evaluation eXchange)

Levels of Music Processing

- Audio signal represents the air pressure variations that constitute sound
 - e.g. microphone output
- Digital audio signal is a sampled representation of analog audio signal

Representations of sound signals

- Two ways to represent a sound signal
 - time domain: signal waveform
 - frequency domain: spectrum
- Any given signal can be described in either of these domains

Time domain representation

- Sound signal: variation of sound amplitude as a function of time
 - pressure, voltage
- What does it tell about the sound?
 - temporal features: attack time, amplitude envelope
 - periodicity

Time domain representation

Waveforms of Four synthetic sounds

Time domain representation

- Sounds with different time domain representations may sound similar
- Representation in time domain is not always perceptually relevant
- More relevant representation is obtained in frequency domain

Frequency domain representation

- Representation of a waveform as amplitudes/phases of the individual frequency components vs. frequency
- Transformation between time and frequency domains:
 - Fourier transform
 - Wavelet transform

Fourier analysis

- Jean Baptiste Joseph Fourier (1768-1830)
- any continuous and periodic function can be represented as the sum of sine and cosine waves oscillating at different frequencies
- Each sine wave is characterized by
 - frequency
 - amplitude
 - phase

Fourier Transform (FT)

Fourier Transform (FT)

Fourier Transform (FT)

Used for continuous (analog) signals

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{i2\pi\omega t}dt$$

$$A(\omega) = |X(\omega)| \quad \text{amplitude spectrum}$$

$$\phi(\omega) = \angle X(\omega) \quad \text{phase spectrum}$$

continuous spectrum

Discrete Fourier Transform (DFT)

Used for time-discrete (sampled) signals

$$X(\omega_m) = \sum_{k=-\infty}^{\infty} x(t_k) e^{i2\pi\omega_m t_k}$$

$$A(\omega_m) = |X(\omega_m)| \quad \text{amplitude spectrum}$$

$$\phi(\omega_m) = \angle X(\omega_m) \quad \text{phase spectrum}$$

- Discrete spectrum (frequency bins)
- Usually only amplitude spectrum is considered

DFT and FFT

- Fast Fourier Transform (FFT) efficient algorithm for computing DFT
 - (Cooley & Tukey, 1965)
- Computational complexity
 - DFT: O(N²)
 - FFT: O(NlogN)

FFT

How does a sine wave sound?

150 Hz

Sine wave + **Odd** Harmonics

150 Hz + 450 Hz

[1 3 5 7 9 11]

Sine wave + **Odd** Harmonics

Sine wave + **Even** Harmonics

spectrum?

example 1

harmonic sound

example 2

non-harmonic sound

example 3

noisy sound

Sampling, Aliasing, Nyquist Theorem

Sampling

Sampling Theorem

- a fundamental bridge between continuous-time signals (often called "analog signals") and discrete-time signals
- establishes a sufficient condition for a sample rate that permits a discrete sequence of samples to capture all the information from a continuous-time signal of finite bandwidth
- Nyquist-Shannon Sampling Theorem
- for a given sample rate fs, perfect reconstruction is possible for a bandlimit B < fs/2.
- Nyquist frequency = f_s/2

Sampling Theorem

Sampling Rate

Sampling Rate

Nyquist Rate

Nyquist vs frequency

 min. sampling rate to prevent aliasing max. frequency that will not alias given a sampling rate

- Why are audio files sampled at 44.1 KHz?
- What is the Nyquist rate and Nyquist frequency for such audio files?

$$f' = |f - SR|$$

Example:

- ▶ SR = 20,000 Hz
- ▶ Nyquist Frequency = 10,000 ⊢∠
- f = 12,000 Hz --> f' = 8,000 Hz
- f = 18,000 Hz --> f' = 2,000 Hz
- f = 20,000 Hz --> f' = 0 Hz

Nyquist rate = 44100 Hz

Nyquist frequency = 22050 Hz

FFT for music?

FFT & STFT

- For long sound signals Fourier transform is not meaningful, because it does not display temporal evolution
- Solution: short-time Fourier transform (STFT)

STFT

- Long sound signal is divided into **short** segments
- Segments overlap (Hop factor/size)
- Segments are windowed
- FFT is computed for each segment

Spectrogram

A visual display of STFT

STFT

- For a given sample rate (f_s), the corresponding frequency range of the representation is split into a number of bins
- the frequency resolution (FR) is the frequency band of a bin
- the more bins, the more slices of frequency range we get, and the more precise these slices are

Temporal vs Frequency resolution

How short a window?

- STFT can have either a good temporal resolution or a good frequency resolution
- Short window -> high temporal resolution
- Long window -> high frequency resolution

Uncertainty principle

Uncertainty principle

Uncertainty principle

Temporal vs. Frequency Resolution

- $f_s = 44100 \text{ Hz}$ Nyquist rate
- f_{max} = 22050 Hz **Nyquist frequency**
- desired freq resolution (FR) = 10 Hz
- With a 1024 window size, we get
 - FR = 44100/1024 = 43.066
 - The spectrum is equally split into bins of 43.066 Hz width
- With a 4096 window size, we get
 - FR = 44100/4096 = **10,76**
 - this is more precise

temporal window (in ms) used?

4096/44100 = ~93ms

Temporal vs Frequency resolution

 $f_s = 44100 \text{ Hz}$

512 pt = spectrum until f_{max} divided into 512 bins

or f_s divided into 1024 bins

each bin = $_$ __ Hz?

temporal window (in ms) used? $1 \sec = 44100 \text{ samples}$

1024 pt = spectrum until f_{max} divided into 1024 bins freq resolution? temporal window (in ms) used?

> freq resolution = 21.53 Hz temporal window = 46 ms

- to generally taper the short-term signal at its ends to avoid unnatural discontinuities
- any window effects the spectral estimate computed on it
- the window is selected to trade off the width of its main lobe and attenuation of its side lobes

Recap: Computing the STFT

- Divide signal into frames
 - frame length e.g. 128 ...1024 samples
 - hop size e.g. 16 ... 512
- Window each frame
 - e.g. with Hamming window
- Compute the FFT for each frame

https://1drv.ms/u/s!AtoLT6JDyxo-iVyRF4V6bqWwjcSa?e=tBIXeX

