Lambda Calculus: An Introduction

Chandreyee Chowdhury

Outline

- Why study lambda calculus?
- Lambda calculus
 - Syntax
 - Evaluation
 - Relationship to programming languages

Lambda Calculus

- A framework developed in 1930s by Alonzo Church to study computations with functions
 - Church wanted a minimal notation to expose only what is essential
- The smallest universal programming language of the world
 - Universal-Any computable function can be expressed and evaluated

Background

- Godel defined the class of general recursive functions as the smallest set of functions
 - all the constant functions, the successor function, and closed under certain operations (such as compositions and recursion)
- A function is computable (in the intuitive sense) if and only if it is general recursive
- Church defined an idealized programming language called the lambda calculus,
 - a function is computable (in the intuitive sense) if and only if it can be written as a lambda term

The Conjecture

- **Church's Thesis**: The effectively computable functions on the positive integers are precisely those functions definable in the pure lambda calculus (and computable by Turing machines).
- The conjecture cannot be proved since the informal notion of "effectively computable function" is not defined precisely.
- But since all methods developed for computing functions have been proved to be no more powerful than the lambda calculus, it captures the idea of computable functions

Why study Λ-calculus

- We will see a number of important concepts in their simplest possible form, which means we can discuss them in full detail
- We will then reuse these notions frequently to build the different code blocks.
- The Λ -calculus is of great historical and foundational significance.
- The independent and nearly simultaneous development of Turing Machines and the Λ -Calculus as universal computational mechanisms led to the Church-Turing Thesis
- The notion of function is the most basic abstraction present in nearly all programming languages.
- If we are to study programming languages, we therefore must strive to understand the notion of function.

Function Creation

$$f(x) = x + 5$$

$$f = \lambda x. x + 5$$

Church introduced the notation

 $\lambda x. E$

to denote a function with formal argument x and with body E

- Functions do not have names
 - names are not essential for the computation
- Functions have a single argument
 - Only one argument functions are discussed

Function Application

$$f(x) = x + 5$$
 $f(10)$

$$f = \lambda x. x + 5 f 10$$

$$(\lambda x. x + 5) 10$$

- The only thing that we can do with a function is to apply it to an argument
- Church used the notation

$$E_1 E_2$$

to denote the application of function E_1 to actual argument E_2 E_1 is called (ope)rator and E_2 is called (ope)rand

• All functions are applied to a single argument

Significance of A-calculus

- λ -calculus is the standard testbed for studying programming language features
 - Because of its minimality
 - Despite its syntactic simplicity the λ -calculus can easily encode:
 - numbers, recursive data types, modules, imperative features, exceptions, etc.
- Certain language features necessitate more substantial extensions to λ -calculus:
 - for distributed & parallel languages: π -calculus
 - for object oriented languages: σ-calculus

The central concept in λ calculus is the "expression". A "name", also called a "variable", is an identifier which, for our purposes, can be any of the letters a, b, c, \ldots An expression is defined recursively as follows:

```
<expression> := <name> | <function> | <application> <function> := \lambda <name> . <expression> <application> := <expression> <expression> <
```

Variables x

Expressions $e := \lambda x. x / e \mid e_1 e_2$

Examples of Lambda Expressions

• The identity function:

$$I =_{def} \lambda x. x$$

• A function that given an argument y discards it and computes the identity function:

$$\lambda y. (\lambda x. x)$$

• A function that given a function **f** invokes it on the identity function

$$\lambda f. f(\lambda x. x)$$

Notational Conventions

- Application associates to the left
 x y z parses as (x y) z
- Abstraction extends to the right as far as possible

```
\lambda x. x \lambda y. x y z parses as \lambda x. (x (\lambda y. ((x y) z)))
```

• And yields the parse tree:

Scope of Variables

- As in all languages with variables, it is important to discuss the notion of scope
 - Recall: the scope of an identifier is the portion of a program where the identifier is accessible
- An abstraction λx . E binds variable x in E
 - x is the newly introduced variable
 - E is the scope of x
 - we say x is bound in λx . E
 - Just like formal function arguments are bound in the function body

Free and Bound Variables

```
\int_0^1 x^2\,dx \sum_{x=1}^{10} \frac{1}{x} \lim_{x\to\infty} e^{-x} int succ(int x) { return x+1; }
```

- A variable is said to be <u>free</u> in E if it is not bound in E
- Free variables are declared outside the term
- We can define the free variables of an expression E recursively as follows:

```
Free(x) = { x}

Free(E_1 E_2) = Free(E_1) \cup Free(E_2)

Free(\lambda x. E) = Free(E) - { x }
```

• Example: Free($\lambda x. x (\lambda y. x y z)$) = { ? }

$$M \equiv (\lambda x. xy)(\lambda y. yz).$$

A lambda expression with no free variables is called closed.

Free and Bound Variables (Cont.)

- Just like in any language with static nested scoping, we have to worry about variable shadowing
 - An occurrence of a variable might refer to different things in different context
- In λ -calculus: λx . x (λx . x) x

Renaming Bound Variables

- Two λ -terms that can be obtained from each other by a renaming of the bound variables are considered identical
- Example: λx . x is identical to λy . y and to λz . z
- Intuition:
 - by changing the name of a formal argument and of all its occurrences in the function body, the behavior of the function does not change
 - in λ -calculus such functions are considered identical

Renaming Bound Variables (Cont.)

- Convention: we will always rename bound variables so that they are all unique
 - e.g., write λ x. x (λ y.y) x instead of λ x. x (λ x.x) x
 - Variable capture or name clash problem would arise!
- This makes it easy to see the scope of bindings
- And also prevents serious confusion!

Substitution

- The substitution of E' for x in E (written [E'/x]E)
 - Step 1. Rename bound variables in E and E' so they are unique (α -reduction)
 - Step 2. Perform the textual substitution of E' for x in E
- This is called β-reduction
- We write $E \to_{\beta} E'$ to say that E' is obtained from E in one β -reduction step
- We write $E \to_{\beta}^* E'$ if there are zero or more steps

- $(\lambda x.x)$
- int f(int x){
 - return x;
- }
- X=>X;
- f(5);
- $(\lambda x.x)(5)$
- $E_{1} = \lambda x.x E_{2} = 5$
- (E₁)(E₂)

Functions with Multiple Arguments

- Consider that we extend the calculus with the add primitive operation
- The λ -term λx . λy . add x y can be used to add two arguments E_1 and E_2 :

```
(\lambda x. \lambda y. add x y) E_1 E_2 \rightarrow_{\beta}

([E_1/x] \lambda y. add x y) E_2 =

(\lambda y. add E_1 y) E_2 \rightarrow_{\beta}

[E_2/y] add E_1 y = add E_1 E_2
```

• The arguments are passed one at a time

 $((\lambda x.((\lambda y.(x\ y))x))(\lambda z.w))$

```
 \begin{array}{l} ((\lambda a.a) \ \lambda b. \ \lambda c.b) \ (x) \ \lambda e.f \\ \\ (\lambda b. \ \lambda c.b) \ (x) \ \lambda e.f \\ \\ (\lambda c.x) \ \lambda e.f \end{array} \\ ((\lambda f.((\lambda g.((f f)g))(\lambda h.(k h))))(\lambda x.(\lambda y.y))) \end{array}
```

- $I = \lambda x \cdot x$
- Var I = x=>x;
- Alert(I("Hi"));
- $fI = (\lambda f. f) (\lambda x. x)$

Encoding Natural Numbers in Lambda Calculus

- What can we do with a natural number?
 - we can iterate a number of times
- A natural number is a function that given an operation **f** and a starting value **s**, applies **f** a number of times to **s**:

```
1 =_{\text{def}} \lambda f. \ \lambda s. \ f \ (s)
2 =_{\text{def}} \lambda f. \ \lambda s. \ f \ (f \ s)
and so on
0 =_{\text{def}} \lambda f. \ \lambda s. \ s
```

anyNumber= $(\lambda n. \lambda f. \lambda x.n(f(x)))$

• anyNumber One

```
((\lambda g. \lambda s.g(s))
```

- = $(\lambda n. \lambda f. \lambda x.n(f(x)))((\lambda g. \lambda s.g(s))$
- = $\lambda f. \lambda x. ((\lambda g. \lambda s.g(s))(f(x)))$
- = $\lambda f. \lambda x. (\lambda g. \lambda s.g(s))(f(x))$
- = $\lambda f. \lambda x. (\lambda s. f(s))((x))$
- = λf . λx . (f(x))

```
function(n){

Return \lambda f. \lambda x.n(f(x));

}
```

anyNumber= $(\lambda n. \lambda f. \lambda x.n(f(x)))$

• λ n. n ((λ f. f+1)(o))

• Number= n=>n(i=>i+1)(o)

- Successor= $(\lambda n. \lambda f. \lambda x. f(n(f(x))))$
- Successor(ONE)
- = $(\lambda n. \lambda f. \lambda x. f(n(f(x))))(\lambda f. \lambda x. f(x))$
- = λf . λx . f(f(x))
- (Successor) (two) = $(\lambda n. \lambda f. \lambda x. f(n(f(x))))(\lambda g. \lambda s. g(g(s)))$

- Successor Two
- = $(\lambda n. \lambda f. \lambda x. f(n(f(x))))(\lambda f. \lambda x. f(f(x)))$

Any Natural Number

anyNumber = λf . λs . f s

- $def \lambda n. \lambda f. \lambda s. n(f(s))$
- $_{\text{def}}$ (($\lambda f. f+1$)(o))
- $\lambda n. \lambda f. n ((f+1)(o))$

• Number= n = >(i = >i+1)(o)

Addition

- 3+2
- Apply successor 3 times on 2
- $nf(x) \rightarrow n$ times f is applied on x
- 3 successor(number)
- Three successor two
- Successor= $\lambda n.\lambda f.\lambda x.f(nfx)$
- One= $\lambda g.\lambda s.g(s)$
- $\lambda m.\lambda n.\lambda f.\lambda x.m(f)(n(f)(x))$ one one