

MDI0001 – Matemática Discreta Contagem Princípios Aditivo e Multiplicativo

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2019

Sumário

Princípio Multiplicativo

Princípio da Aditivo

Combinando os Princípios

Problemas Motivacionais – Princípio Multiplicativo

- 1 Quantas linhas tem uma tabela verdade com *n* proposições?
- 2 Quantos subconjuntos existem a partir de um conjunto finito com *m* elementos?
- 3 Uma criança pode escolher uma entre dois tipos de balas: uma rosa e outra preta, e um entre 3 chicletes: amarelo, verde ou branco. Quantas configurações diferentes de guloseimas podem ser feitas?

Karina G. Roggia 2019 MDI0001 - Contagem 3 / 14

Resolvendo o Problema 3

- Escolha de uma bala seguida por escolha de um chiclete:

Resolvendo o Problema 3

- Escolha de um chiclete seguido por escolha de uma bala:

A sequência da escolha não altera o número de configurações!

Princípio Multiplicativo

Definição

Se existem n_1 resultados possíveis para um primeiro evento e n_2 resultados possíveis para o evento seguinte, então existem $n_1 * n_2$ resultados possíveis para esta sequência de eventos.

Exemplos

- Quantidade de sequências de 4 dígitos existentes
- Quantidade de sequências de 4 dígitos sem repetição existentes
- Número de elementos do produto cartesiano de dois conjuntos finitos

Problema Motivacional – Princípio Aditivo

Escolha de uma sobremesa entre 3 tipos de bolo e 4 tipos de torta.

⇒ Não é uma sequência de dois eventos, mas sim uma escolha entre um deles!

Karina G. Roggia 2019 MDI0001 - Contagem 8 / 14

Princípio da Aditivo

Definição

Se A e B são eventos **disjuntos** com n_1 e n_2 resultados possíveis, respectivamente, então o número total de possibilidades para o evento "A ou B" é $n_1 + n_2$.

Karina G. Roggia 2019 MDI0001 - Contagem 9 / 14

Exemplos

- Comprar um veículo entre 23 automóveis e 14 caminhões
- Se A e B são dois conjuntos finitos disjuntos, o número de elementos de $A \cup B$ é a soma das cardinalidades dos conjuntos $(|A \cup B| = |A| = |B|)$

Cardinalidade de Conjuntos Finitos

Sejam A e B dois conjuntos finitos, então

•
$$|A - B| = |A| - |A \cap B|$$

•
$$|A - B| = |A| - |B|$$
 se $B \subseteq A$

Provando $|A - B| = |A| - |A \cap B|$

Temos que
$$(A - B) \cup (A \cap B) =$$

$$(A \cap \overline{B}) \cup (A \cap B) =$$

$$A \cap (\overline{B} \cup B) =$$

$$A \cap \mathcal{U} = A$$

Como os conjuntos A - B e $A \cap B$ são disjuntos:

$$|(A - B) \cup (A \cap B)| = |A - B| + |A \cap B| = |A|$$

Logo
$$|A - B| = |A| - |A \cap B|.$$

Karina G. Roggia 2019 MDI0001 - Contagem

Provando |A - B| = |A| - |B| se $B \subseteq A$

Temos que, se $B \subseteq A$ então $A \cap B = B$. Pelo resultado anterior...

$$|A - B| = |A| - |A \cap B|$$
$$|A - B| = |A| - |B|$$

Combinando os Princípios

Se uma mulher tem 7 blusas, 5 saias e 9 vestidos, de quantas maneiras diferente ela pode se vestir? (Supondo que tudo combina! :P hehehe)

- Princípio da Adição: a pessoa poderá se vestir com um vestido ou com uma combinação de blusa e saia.
 Nro de outfits = Nro de vestidos + Nro de combinações [blusa e saia]
- Princípio Multiplicativo: eventos em sequência escolha de blusa e escolha de saia
 Nro de combinações = Nro de blusas * Nro de saias
- Resposta: 9 + (7 * 5) = 44