4. Operadores autoadjuntos

A lo largo de esta sección E denotará un e.p.i. real de dimensión finita, $\operatorname{End}(E) := \mathcal{L}(E, E)$ y $A \in \operatorname{End}(E)$.

Definición 4.1. Decimos que A es autoadjunto si $A = A^*$.

Observación 4.2.

- (I) A es autoadjunto sii $\langle Au, v \rangle = \langle u, Av \rangle$ para todo $u, v \in E$.
- (II) El conjunto de los operadores autoadjuntos forma un subespacio vectorial de $\operatorname{End}(E)$.
- (III) Sea $B \in \text{End}(E)$. AB es autoadjunto sii AB = BA.

Ejemplo 4.3. Sean $A, B \in \text{End}(\mathbb{R}^2)$...

Propiedad 4.4. Sea $P \in \text{End}(E)$ una proyección. Luego, P es autoadjunto sii es una proyección ortogonal sobre su imagen.

Demostración. Ejercicio.

Propiedad 4.5. Las siguientes proposiciones son equivalentes:

- (I) A es autoadjunto.
- (II) La matriz de A respecto a una base ortonormal es simétrica.
- (III) La matriz de A respecto a cualquier base ortonormal es simétrica.

Ejemplo 4.6 (La matriz de una proyeción ortogonal.). ...

Propiedad 4.7. Si el subespacio $F \subset E$ es invariante por A, entonces F^{\perp} es invariante por A^* .

Demostración. Ejercicio.

Propiedad 4.8. Si A es autoadjunto y el subespacio $F \subset E$ es invariante por A, entonces F^{\perp} es invariante por A.

Demostración. Ejercicio.

Ejemplo 4.9. Sea $A \in \text{End}(\mathbb{R}^2)$, $A(x,y) = (x, \alpha x + y)$, con $\alpha \neq 0$.

Propiedad 4.10. Sea A autoadjunto. Si $\lambda_1, \ldots, \lambda_n$ son autovalores dos a dos diferentes de A, entonces los autovectores correspondientes v_1, \ldots, v_n forma un conjunto ortogonal.

Demostración. Ejercicio.

Observación 4.11. Cuando la matriz de A respecto a una base \mathcal{U} es diagonal, se tiene que los vectores de \mathcal{U} son autovectores de A.

Teorema 4.12 (Teorema Espectral). Si A es autoadjunto, entonces existe una base ortonormal de E formada por autovectores de A.

Lema 4.13. Si A es autoadjunto y dim(E) = 2, entonces existe una base ortonormal de E formada por autovectores de A.

Lema 4.14. Si A es autoadjunto, entonces A posee un autovector.

(Prueba del teorema 4.12.) Ejercicio.

Observación 4.15. Vale la recíproca del Teorema Espectral.

Definición 4.16. Diremos que A es semidefinido positivo (definido positivo), y escribiremos $A \geq 0$ (A > 0), si es autoadjunto y A < 00 para todo A < 00 par

Propiedad 4.17. Sea A autoadjunto. Se cumple que

- (I) $A \ge 0$ sii todos sus autovalores son mayores o iguales a 0.
- (II) A > 0 sii todos sus autovalores son mayores que 0.

Demostración. Ejercicio.

Propiedad 4.18. Si $A \ge 0$ y para un cierto $v \in E$ vale $\langle Av, v \rangle = 0$, entonces Av = 0.

Demostración. Ejercicio.

Observación 4.19. Geometricamente, $A \ge 0$ significa que el ángulo entre v y Av es agudo o recto para cualquier $v \in E$. La propiedad de arriba dice que cuando $Av \ne 0$, ese ángulo es agudo.

Propiedad 4.20. $A > 0 \Leftrightarrow A \ge 0, A \text{ es invertible.}$

Demostración. Ejercicio.

Definición 4.21. Diremos que una matriz cuadrada \mathbf{a} es semidefinida positiva (definida positiva), y escribiremos $\mathbf{a} \ge 0$ ($\mathbf{a} > 0$), si su endomorfismo asociado respecto a la base canónica es semidefinido positivo (definido positivo).

Propiedad 4.22. Sea a una matriz simétrica. Se cumple que

(I) $\mathbf{a} \geq 0$ sii todos sus autovalores son mayores o iguales a 0.

(II) $\mathbf{a} > 0$ sii todos sus autovalores son mayores que 0.

Ejemplo 4.23. ...

Definición 4.24. Un operador $X \in \text{End}(E)$ se dice que es una **raíz** de A cuando $X^2 = A$.

Definición 4.25. Sea λ un autovalor de A. Luego,

$$E_{\lambda} := \{ v \in E ; Av = \lambda v \}$$

es llamado de **autoespacio** de A asociado a λ .

Observación 4.26. Sea E_{λ} un autoespacio de A.

- (I) E_{λ} es un subespacio invariante por A.
- (II) El operador A restringido a E_{λ} es la multiplicación por λ .
- (III) Todo vector no nulo de E_{λ} es autovector de A con autovalor λ .

Propiedad 4.27. Si A es autoadjunto y $\{\lambda_1, \ldots, \lambda_k\}$ es el conjunto de autovalores de A, entonces

$$E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$$
.

Propiedad 4.28. Si $A \ge 0$ (A > 0), entonces A posee una única raíz cuadrada semidefinida positiva (definida positiva).

Observación 4.29. ...

Observación 4.30. ...

Teorema 4.31. Sea $A \in \mathcal{L}(E, F)$. Entonces:

- (I) $A^*A, AA^* \ge 0$,
- (II) $\operatorname{rank}(A^*A) = \operatorname{rank}(AA^*) = \operatorname{rank}(A),$
- (III) $A^*A, AA^* > 0 \Leftrightarrow A \text{ es invertible.}$

Corolario 4.32. ...

Observación 4.33. ...

Ejemplo 4.34. Sea $\mathbf{a} = \dots$

Teorema 4.35 (Teorema de los Valores Singulares). ...

Definición 4.36. Los números positivos $\sigma_1, \ldots, \sigma_r$ son llamados de **valores singulares** de $A \in \mathcal{L}(E, F)$ con rank(A) = r.