

Technische Grundlagen der Informatik Teil 1: Elektrotechnik

Vorlesung

4. Elektrisches Feld und Kondensator

Dr. Solveig Schüßler

Thema

4. Elektrisches Feld und Kondensator

Was wir schon wissen:

- Unterschiedlich geladene K\u00f6rper ziehen sich an \u2214
- zwischen elektrischen Ladungen wirken Kräfte ✓

Fachbereich Elektrotechnik und Informationstechnik

d

 Die Kräfte resultieren aus Kraftfeldern, die aufgrund ihrer <u>Ursache (elektrisch</u> geladene Teilchen) als elektrisches Felder bezeichnet werden

- Größere Ladungen erzeugen größere elektrische Felder
- Kraftfelder mehrerer Teilchen überlagern sich
- Wirkung der Kraft ist für pos. und neg. Ladungen genau entgegengesetzt

Darstellung elektrischer Felder

d

- Darstellung elektrischer Felder erfolgt mit Hilfe von Feldlinien
- Feldlinien verlaufen in Richtung der Kraftwirkung auf eine pos. Probeladung

- Feldlinien beginnen damit stets bei positiver Ladung und enden bei negativer Ladung (+ → -)
- Die Dichte der Feldlinien ist ein Maß für die Stärke des elektrischen Feldes

Einige elektrische Felder:

Feldlinien zwischen 2 parallelen Platten (Plattenkondensator): Das elektrische Feld zwischen den Platten ist homogen, d.h. überall gleich groß und gleich gerichtet.

Quantitatives Maß für das elektrische Feld:

elektrische Feldstärke E

E hat eine Richtung!

Elektrische Feldstärke E entspricht der Kraft, die pro Ladung im Feld(-punkt) wirkt

$$E = \frac{F}{Q}$$

Für ein homogenes Feld gilt:

$$E = \frac{U}{d}$$
 mit $[E] = \frac{V}{m}$

Effekte im Elektrischen Feld

Influenz

 räumliche Verschiebung elektrischer Ladungen durch Einwirkung eines äußeren elektrischen Feldes in einem Metallkörper

Effekte im Elektrischen Feld

Fachbereich Elektrotechnik und Informationstechnik

Influenz

- Im <u>Metall</u> erfolgt Ladungstrennung durch äußeres elektrisches Feld
- die getrennten Ladungen erzeugen im <u>Metall</u> ein Gegenfeld
- im <u>Metall</u> werden so lange Ladungen getrennt bis das äußere elektrische Feld und das Gegenfeld sich gegenseitig gerade aufheben

 Folge: Metall ist im Inneren stets feldfrei (nötige Bedingung im Metall gegeben: "genügend" freie Ladungsträger für den Aufbau des Gegenfeldes)

Influenz

- Beobachtbar auch bei Hohlkörpern oder leitend beschichteten Körpern
- Anwendung: Abschirmung empfindlicher Bauteile durch Metallhülle (Faraday'scher Käfig)

Effekte im Elektrischen Feld

Dielektrische Polarisation

- Ortsgebundene Atome/ Moleküle: Ein äußeres elektrisches Feld verursacht in <u>nicht leitenden Stoffen</u> eine molekulare Ladungstrennung → Polarisation
- Resultierendes elektr. Feld wesentlich geringer als bei Influenz

Folge:

- → Ein äußeres elektrisches Feld wird im Innern von nichtleitenden Stoffen (nur) teilweise kompensiert (also abgeschwächt)
- Nichtleiter wird im elektrischen Feld polarisiert

Dielektrische Polarisation

 Molekulare Ladungstrennung in <u>nicht leitenden Stoffen</u> die das elektrische Feld im Innern (nur) teilweise kompensieren (Feld wird im Inneren abgeschwächt)

Fachbereich Elektrotechnik und Informationstechnik

Kondensatoren

 2 leitende Platten bzw.
 Elektroden, durch einen Isolator getrennt

Isolator: Zwischen den Platten fließt kein Strom!!

http://rn-wissen.de

Kondensatoren

- Bei einer Verbindung beider Platten mit einer Spannungsquelle werden Ladungen (Elektronen) bewegt.
- Die Bewegung der Ladung ist als ein Stromfluss erkennbar.
- Zwischen den geladenen Platten entsteht ein elektrisches Feld E
- Der Betrag der bewegten Ladung entspricht der im Kondensator gespeicherten Ladung.

$$Q = C \cdot U$$

Durch das Anlegen einer Spannung U nimmt der Kondensator eine Ladung Q auf.

C –Kapazität als Proportionalitätskonstante

Kondensatoren

 Kapazität C: Maß für die Fähigkeit, bei Anlegen einer Spannung Ladungen zu speichern

$$C = \frac{Q}{U}$$

- [C] = $\frac{As}{V}$ = 1F (Farad) typisch: pF ... μ F
- Kapazität abhängig von Geometrie und Dielektrikum

Fachbereich Elektrotechnik und Informationstechnik

Plattenkondensator

Für den Plattenkondensator gilt

$$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$$

A - Fläche einer Kondensatorplatte

d – Abstand der Kondensatorplatten

$$\varepsilon_0 = 8,854 \ 10^{-12} \frac{As}{Vm}$$
 (Dielektrizitätskonstante)

ε_r - relative Dielektrizitätskonstante des verwendeten Isolators

Abhängigkeit vom Dielektrikum: Siehe Beispiele

$$\varepsilon = \varepsilon_0 \ \varepsilon_r$$

Material	Luft	Papier	Porzellan	Glim	Al_2O_3	SiO ₂	Ta_2O_5	H ₂ O(dest.)
				mer				
\mathcal{E}_{r}	1	46	57	5	69	4	22	80
·				8				

Abhängigkeit der Kapazität vom Dielektrikum ε_r

$$C = \frac{Q}{U}$$

Abhängigkeit der Kapazität vom Dielektrikum ε_r

$$C = \frac{Q}{U}$$

$$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$$

$$C = \frac{Q}{U}$$

Fachbereich Elektrotechnik und Informationstechnik

Beispiel zu Plattenkondensator

Gegeben ist ein Plattenkondensator mit A=12cm² und d=6mm. Als Dieelektrikum wird Luft mit ε_r =1 verwendet. Der Kondensator liegt an einer Spannungsquelle mir U=12V. (ε_0 = 8,854 10⁻¹² $\frac{As}{Vm}$)

Gesucht ist die Kapazität des Kondensators und die auf ihm vorhandene Ladung!

Weiter: Beispiel zu Plattenkondensator

Nun wird ein Dielektrikum zwischen die Platten eingebracht (ε_r =14). Wie groß ist jetzt die gespeicherte Ladung?

Nun wird die Spannungsquelle getrennt und danach das Dielektrikum wiederentfernt . Welche Ladung liegt nun auf den Kondensatorplatten. Welche Spannung kann zwischen den Platten gemessen werden?

ähnliche Übungsaufgabe: Aufgabe 12

Zusammenhang Strom und Spannung

1. Anlegen einer Gleichspannung an einen ungeladenen Kondensator
(oder Anlegen einer Gleichspannung ungleich der Kondensatorspannung)

Zusammenhang Strom und Spannung

 Konstante Gleichspannung über den Kondensatorplatten (geladener Kondensator, keine Ladungsänderung)

Fachbereich Elektrotechnik und Informationstechnik

Zusammenhang Strom und Spannung

Es gilt allgemein:

$$i = \frac{dq}{dt}$$
 mit $Q = C \cdot U$ (am Kondensator)

$$i(t) = C \cdot \frac{du(t)}{dt}$$

$$u(t) = \frac{1}{C} \int i(t) \, dt$$

→ nach Ende von Lade-/ Entladevorgängen fließt kein Strom im Kondensatorzweig

Laden eines Kondensators und Verwendung als Spannungsquelle

Zusammenfassung:

Bestimmung von i_c(t) bei Angabe eines Verlaufs für die

Spannung u_c(t)

 $i_c(t) = C \cdot \frac{du_c(t)}{dt}$

Vorgehen:

- 1. Einteilen des Verlaufs in "gleichartige Abschnitte" wie auf nächster Folie (Konstante, lineare Fkt, sinusförm. Verlauf)
- 2. Bestimmung der 1. Ableitung der Spannung u_c(t) für jeden Abschnitt (0, Konstante, *sinusförm.Verlauf*)
- Berechnen des Stromes i_c(t) für jeden Abschnitt durch Multiplikation mit der Kapazität C des Kondensators (0, Konstante, sinusförm. Verlauf)

Fachbereich Elektrotechnik und Informationstechnik

An einem Plattenkondensator mit der Kapazität C₁=50nF wurde der folgende zeitliche Verlauf der Spannung gemessen.

Berechnen Sie hierfür den Stromverlauf i(t)!

Kondensatoren und Energie

- Für die Ladungstrennung wird Arbeit aufgewendet (Elektronen bewegen sich).
- Diese Arbeit entspricht der im elektrischen Feld zwischen den Platten gespeicherten Energie.
- Kondensatoren speichern elektrische Energie im elektrischen Feld zwischen den Elektroden (Platten)

$$E_C = W_C = \frac{1}{2} \cdot C \cdot U_C^2$$

Durchschlag

- Das elektrische Feld übt auf die nichtbeweglichen (stationären) Ladungsträger (im Isolator) eine Kraft aus.
- Wird diese Kraft zu groß, kommt es zum Durchschlag, d.h. Elektronenübergang durch den Isolator.
- Der Isolator kann dabei zerstört werden.

Stichworte:

- Lichtbogen
- Funkenschlag
- Blitz

Durchschlagsfestigkeit

- Elektrische Feldstärke, bei der ein Isolierstoff durchschlägt
- Angegeben i.d.R. in kV/mm

Typ. Werte:

Luft: 1 kV/mm

Papier: 10 kV/mm

Porzellan: 20kV/mm

Destilliertes Wasser: 65-70 kV/mm

Parallelschaltung von Kondensatoren

$$Q = C \cdot U$$

Kondensatoren werden parallel geschaltet, um die Kapazität zu erhöhen. (Bsp. Drehkondensator)

$$C_{ges} = C_1 + C_2$$

Fachbereich Elektrotechnik und Informationstechnik

Reihenschaltung von Kondensatoren $Q = C \cdot U$

$$C_1$$
 C_2

$$U = U_1 + U_2$$
 $Q = Q_1 = Q_2$

$$\frac{1}{C_{ges}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Reihenschaltungen von Kondensatoren verringern die Gesamtkapazität. Sie werden verwendet

- um einen gewünschten Kapazitätswert einzustellen
- um der Gefahr eines
 Durchschlags bei großen
 Spannungen zu begegnen
 (U teilt sich über den
 Kondensatoren auf)

Aufgabe 14a)

Aufgaben für zuhause zum Üben: A11, A13 (Reihen- und Parallelschaltung von Kond.) und A14 b **und alte Klausuraufgaben!**

VL 3

Fachbereich Elektrotechnik und Informationstechnik

Aufgabe 3a SoSe2018

Fachbereich Elektrotechnik und Informationstechnik

Aufgabe 3c/d SoSe2018

$$i_c(t) = C \cdot \frac{du_c(t)}{dt}$$

- c) Der Spannungsverlauf u(t) ist in Bild 3 dargestellt. Berechnen Sie für $0\mu s \le t \le 14\mu s$ den Strom i(t) für die gegebene Spannung u(t).
- d) Skizzieren Sie den Verlauf von i(t) im Koordinatensystem auf der n\u00e4chsten Seite. (Denken Sie an die Achsenbeschriftung!)

Erweiterung Regeln zur 1. Ableitung von Funktionen: Sinus-Funktionen

$$i_c(t) = C \cdot \frac{du_c(t)}{dt}$$

 C_{ges} =2nF

$$C_{ges}$$
=2nF

Fachbereich Elektrotechnik und Informationstechnik

Koordinatensystem für Aufgabe 3 d)

Jetzt möglich Aufgabe 16, 17, 18

Nächste Themen

- Magnetfeld und Spulen
- Halbleiter, Dioden, Transistoren

Vielen Dank!