Using Cache Memory to Reduce Processor-Memory Traffic

James R. Goodman¹

¹Department of Computer Sciences University of Wisconsin-Madison

ShanghaiTech University, 2013

Outline

Problem Description

Memory Access Speed as Bottleneck of Performance On-chip Memory Unlikely With High Performance CPUs Current Problems in using Cache Memory

Single Board Computer Application

Caches in Single Board Computer Applications
Context Switches

Cache Coherency

Write Policy New Writing Strategy

Simulation

Effect of Write Strategy on Bus Traffic Cold Start vs. Warm Start Cache Size Block Size

CPU and Memory speed mismatch

Example
 Motorola MC68000 10 MHz CPU clock; 5 MB/s Memory access
 rate, half its pins tasked with memory connection.

CPU and Memory speed mismatch

- Example
 - Motorola MC68000 10 MHz CPU clock; 5 MB/s Memory access rate, half its pins tasked with memory connection.
 - 10x transistors = 30x memory bandwidth. Not feasible to increase pin number 30 fold.

 Dedicated on-chip memory with a relatively slower CPU may outperform a more powerful CPU with conventional memory.

- Dedicated on-chip memory with a relatively slower CPU may outperform a more powerful CPU with conventional memory.
- The chip should contain as much memory as the CPU needs.

- Dedicated on-chip memory with a relatively slower CPU may outperform a more powerful CPU with conventional memory.
- The chip should contain as much memory as the CPU needs.
- Microprocessors in 1983 need 0.25 MiB of memory, more than possible amount.

- Dedicated on-chip memory with a relatively slower CPU may outperform a more powerful CPU with conventional memory.
- The chip should contain as much memory as the CPU needs.
- Microprocessors in 1983 need 0.25 MiB of memory, more than possible amount.
- Higher performance CPUs apparently require more memory.

- Dedicated on-chip memory with a relatively slower CPU may outperform a more powerful CPU with conventional memory.
- The chip should contain as much memory as the CPU needs.
- Microprocessors in 1983 need 0.25 MiB of memory, more than possible amount.
- Higher performance CPUs apparently require more memory.
- Which leads to:

- Dedicated on-chip memory with a relatively slower CPU may outperform a more powerful CPU with conventional memory.
- The chip should contain as much memory as the CPU needs.
- Microprocessors in 1983 need 0.25 MiB of memory, more than possible amount.
- Higher performance CPUs apparently require more memory.
- Which leads to: On-chip memory is clearly not feasible in 1983, nor is it today.

Issues With Using Cache Memory

• Use of cache has aggravated bandwidth problem.

Issues With Using Cache Memory

- Use of cache has aggravated bandwidth problem.
- Cache optimization aspects:

●00

- Maximizing Hit Ratio
- Minimizing Data Accessing Time
- Minimizing Miss Penalty
- Minimizing Overhead of Updating Memory, Maintaining Multi-cache Consistency

- Optimization Usually Results in Larger Burst Bandwidth Requirement.
- Example

IBM System/370 model 155

Cache-Memory transfer rate: 100 MB/s

Cache-CPU transfer rate is less than 1/3 of that.

- Optimization Usually Results in Larger Burst Bandwidth Requirement.
- Example

IBM System/370 model 155

Cache-Memory transfer rate: 100 MB/s

Cache-CPU transfer rate is less than 1/3 of that.

 Reason: To exploit spatial locality, thus data fetched in large blocks, resulting in high memory bandwidth bursts.

• To lower the bandwidth from backing store to cache:

00

- Transfer small blocks from backing store to cache,
- Experience long delays while a block is brought from backing store to cache.

- To lower the bandwidth from backing store to cache:
 - Transfer small blocks from backing store to cache,
 - Experience long delays while a block is brought from backing store to cache.
- Explore the effectiveness of exploiting temporal locality, i.e. blocks fetched from backing store are only the size needed by CPU.
- Effective environment: single-board computer running Multibus or Versabus.

Usage of Buses

 Buses, if needed, are designed for generality and simplicity not for high performance.

Usage of Buses

- Buses, if needed, are designed for generality and simplicity not for high performance.
- Example
 Multibus by Intel Corporation

Usage of Buses

- Buses, if needed, are designed for generality and simplicity not for high performance.
- Example
 - Multibus by Intel Corporation
 - Applications are severely limited by bandwidth of Multibus.
 - Try to determine whether a cache memory system can be implemented with Multibus
 - Allocation of memory should be handled by the system instead by the programmer

Caches in Single Board Computers

Proposal

Single-Board Computer

- CPU w/o local memory except for cache
- Backing store provided by Multibus

Caches in Single Board Computers

Proposal

Single-Board Computer

- CPU w/o local memory except for cache
- Backing store provided by Multibus

Question

- Can we build a cache that works with Multibus and supports multiple processors?
- How many processors can we support?

Caches in Single Board Computers Cont.

- Important criterion is maximize use of the bus.
- Optimize system performance by optimizing bus utilization, achieving higher performance by minimizing individual processors' bus requirements.
- Prefer individual processors to remain idle periodically over saturating bus traffic with data that will never be used.

Context Switch

Task switch results in cache being reloaded and CPU speeds reduced to bus speed.

- Effects may be minimized if task switching frequency is reduced.
- Utilize multiple processors for multiple tasks.
- Interrupt handling optimized so program only uses small portion of cache.

Write-Through or Write-Back

New Strategy: Write-Once

Effect of Write Strategy on Bus Traffic

Simulation

Cold Start vs. Warm Start

Cache Size

Block Size

Lowering Overhead of Small Blocks

Effect of Large Address Blocks

000

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.