Quantum Assisted Secure Multiparty Computation

Manuel Batalha dos Santos

Thesis defence 18 September 2024

Motivation and outcomes

Motivation and outcomes

Quantum and classical oblivious transfer

Motivation and outcomes

• Quantum and classical oblivious transfer

Private phylogenetic trees

Motivation and outcomes

• Quantum and classical oblivious transfer

Private phylogenetic trees

• Quantum oblivious linear evaluation

SMC

SMC

Primitive

SMC

Primitive Oblivious Transfer

SMC

Primitive Oblivious Transfer

Oblivious Linear Evaluation

Outcomes

Outcomes

Outcomes

Oblivious Transfer

Comparable structure?
Corresponding phases with same technology?
Any practical insight?

Corresponding phases with same technology?

Any practical insight?

Any practical insight?

If

Primitive (SPM.21) Classic Quantum Classic (NPOY) (SPM.22) SimpleOT (SPM.22) SimpleO

Classic

Base OT

OT Extension

Quantum [BBCS'91]

Classic

Base OT

OT Extension

Quantum [BBCS'91]

Issue: PK operations

Primitive Districtions Secure auctions Secure voting Secure vo

Classic

Base OT

OT Extension

Quantum [BBCS'91]

Issue: PK operations

Classic

Base OT OT Extension

OT/s

[NP'01] 56 [ALSZ'13] 2.68 s
SimpleOT 1 375 < [KOS'15] 3.35 s
NTRU-OT 728
Kyber-OT 41

Quantum [BBCS'91]

Classic Quantum
Base OT OT Extension [BBCS'91]

OT/s

[NP'01] 56
SimpleOT 1375 < [ALSZ'13] 2.68 s
NTRU-OT 728
Kyber-OT 41

Online phase for *m* OTs

		Computation	Communication	
	[ALSZ'13]	$O^{ALSZ} - O^{BBCS} > m \log m$	$C^{ALSZ} - C^{BBCS} = 0$	
 				BBCS
1	[KOS'15]	$O^{KOS} - O^{BBCS} > m \log m + 5ml$	CKOS - CBBCS ≥ 0	

Shows the evolutionary relationship between **DNA** sequences in a tree.

Primitive | SPM21 | Classic | Classi

Results summary

• Tailored SMC protocol for phylogenetic trees algorithms

Primitive | Classic | Clas

Results summary

- Tailored SMC protocol for phylogenetic trees algorithms
- Classical implementation
 - CBMC-GC: circuit generation
 - MPC-Benchmark: yao protocol based on Libscapi
 - PHYLIP: phylogeny analysis

Results summary

- Tailored SMC protocol for phylogenetic trees algorithms
- Classical implementation
 - CBMC-GC: circuit generation
 - MPC-Benchmark: yao protocol based on Libscapi
 - PHYLIP: phylogeny analysis
- Integrate BBCS based protocol into Libscapi

Results summary

- Tailored SMC protocol for phylogenetic trees algorithms
- Classical implementation
 - CBMC-GC: circuit generation
 - MPC-Benchmark: yao protocol based on Libscapi
 - PHYLIP: phylogeny analysis
- Integrate BBCS based protocol into Libscapi
- Benchmark classical and quantum approaches

Distance based: trees depend on the matrix distance of genes

Character based: search for the tree that optimizes the evolution the most

Computation: simple

Algorithms:

- UPGMA
- NJ
- FM

Computation: complex

Algorithms:

- Maximum Parsimony
- Maximum Likelihood

Distance based: trees depend on the matrix distance of genes

Character based: search for the tree that optimizes the evolution the most

Computation: simple

Algorithms:

- UPGMA
- NJ
- FM

Computation: complex

Algorithms:

- Maximum Parsimony
- Maximum Likelihood

Algorithms:

- UPGMA
- NJ
- FM

Distances:

- JC
- K2P
- F84
- LogDet

Part 1: Compute the distance matrix

Part 1: Compute the distance matrix

Part 2: Iteratively group the genes through some specific method

Part 1: Compute the distance matrix

SMC for distances

Part 2: Iteratively group the genes through some specific method

Part 1: Compute the distance matrix

SMC for distances

Part 2: Iteratively group the genes through some specific method

No interaction

[BBCS'91]

Offline phase

Online phase

Performance evaluation

Setup:

- **3 parties:** VMs running Ubuntu 16.04.3
- 30 SARS-CoV-2 genome sequences* with 32 000 length

Boolean circuit:

- ~3 minutes (CBMC-GC)
- ~2.2 million gates
- 128 000 input wires

Performance evaluation

Setup:

- **3 parties:** VMs running Ubuntu 16.04.3
- 30 SARS-CoV-2 genome sequences* with 32 000 length

Performance evaluation

Setup:

- **3 parties:** VMs running Ubuntu 16.04.3
- 30 SARS-CoV-2 genome sequences* with 32 000 length

Private phylogenetic trees

Results summary

- Oblivious Linear Evaluation (OLE)
- Vector OLE

Results summary

- Oblivious Linear Evaluation (OLE)
- Vector OLE

Primitive | Classic | Clas

Results summary

- Oblivious Linear Evaluation (OLE)
- Vector OLE

Results summary

- Oblivious Linear Evaluation (OLE)
- Vector OLE

Alice

OLE

$$f(x) = ax + b$$

Bob

Primitive | SPM22| Classic | Quantum | | Quantum

Results summary

- Oblivious Linear Evaluation (OLE)
- Vector OLE

Alice

b

$$\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x} + \mathbf{b}$$

Bob

In an Hilbert space of dimension d

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e^x_r\rangle\}_{r\in\mathbb{Z}_d}$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e^x_r\rangle\}_{r\in\mathbb{Z}_d}$

$$\mathcal{B}_{1} = \{ |\phi_{1}\rangle, \dots, |\phi_{d}\rangle \}$$

$$\mathcal{B}_{0} = \{ |\psi_{1}\rangle, \dots, |\psi_{d}\rangle \}$$

$$|\langle \psi_{i} | \phi_{j}\rangle | = \frac{1}{\sqrt{d}}$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e^x_r\rangle\}_{r\in\mathbb{Z}_d}$

Definition: $\mathcal{B}_1 = \{|\phi_1\rangle, \dots, |\phi_d\rangle\}$ $\mathcal{B}_0 = \{|\psi_1\rangle, \dots, |\psi_d\rangle\}$ $|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e^x_r\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, ${\cal V}_a^b$

$$\mathcal{B}_{1} = \{ |\phi_{1}\rangle, \dots, |\phi_{d}\rangle \}$$

$$\mathcal{B}_{0} = \{ |\psi_{1}\rangle, \dots, |\psi_{d}\rangle \}$$

$$|\langle \psi_{i} | \phi_{j}\rangle | = \frac{1}{\sqrt{d}}$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e^x_r\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

Definition:

$$\mathcal{B}_{1} = \{ |\phi_{1}\rangle, \dots, |\phi_{d}\rangle \}$$

$$\mathcal{B}_{0} = \{ |\psi_{1}\rangle, \dots, |\psi_{d}\rangle \}$$

$$|\langle \psi_{i} | \phi_{j}\rangle | = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs

$$\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{a-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, ${\cal V}_a^b$

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Alice, (a,b) Bob, x

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Alice, (a,b)

Bob, x

 $|e_r^x\rangle$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, ${\cal V}_a^b$

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Alice, (a,b) Bob, x $|e_r^x\rangle \longleftarrow |e_r^x\rangle$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Alice,
$$(a,b)$$
 Bob, x $|e_r^x\rangle$ $V_a^b\,|e_r^x\rangle$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Alice,
$$(a,b)$$
 Bob, x $|e_r^x\rangle$ $|e_{ax-b+r}^x\rangle$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, ${\cal V}_a^b$

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Definition:

$$\mathcal{B}_{1} = \{ |\phi_{1}\rangle, \dots, |\phi_{d}\rangle \}$$

$$\mathcal{B}_{0} = \{ |\psi_{1}\rangle, \dots, |\psi_{d}\rangle \}$$

$$|\langle \psi_{i} | \phi_{j}\rangle | = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, ${\cal V}_a^b$

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

Primitive (BBCS91) Oblivious (SimpleOT Transfer (NAV22) SimpleOT Trans

Alice, (a,b) Bob, x

Alice, (a,b)	Bob, x
$i\in[m]$	
	$\left e_{r_{i}}^{x_{i}^{0}} ight angle$
1 1	' '
	1
1	

Quantum OLE | Protocol

Alice, (a,b)	$i \in [m]$	Bob, x
$\left e_{r_{i}}^{x_{i}^{0}} ight angle$	←	$\left e_{r_{i}}^{x_{i}^{0}} ight angle$
$\left e^{x_i^0}_{a_i^0 x_i^0 - b_i^0 + r_i} \right\rangle$		
$T \subset [m]$	Commit-and-open phase	$ exttt{commit}(i, x_i^0, r_i)_{i \in [m]} \ exttt{open}(i, x_i^0, r_i)_{i \in T}$
$\left e_{a_i^0x_i^0-b_i^0+r_i}^{x_i^0}\right\rangle$		$\left e_{a_i^0x_i^0-b_i^0+r_i}^{x_i^0}\right\rangle$

Security:

$$H_{\min}(\mathbf{F}_0|B')_{\sigma_{\mathbf{F}_0B'}} \ge \frac{n\log d}{2}(1 - h_d(\zeta))$$

Quantum OLE | Protocol

Security: $H_{\min}(\mathbf{F}_0|B')_{\sigma_{\mathbf{F}_0B'}} \geq \frac{n\log d}{2}(1-h_d(\zeta))$

Quantum OLE | Protocol

Security:

$$H_{\min}(\mathbf{F}_0|B')_{\sigma_{\mathbf{F}_0B'}} \ge \frac{n\log d}{2}(1 - h_d(\zeta))$$

Real Ideal

Real Ideal

Ideal

E

Ideal

Ideal

Ideal

Real

E ≈

Ideal

A No Transcript

FOLE

B

E ≈

Ideal

Ideal

Ideal

Ideal Alice

Indistinguishability: Transcript Inputs & Outputs **Extractability:** Fole Inputs & Outputs

Ideal Alice

Indistinguishability: Transcript Fake commitments Inputs & Outputs **Extractability:** $\mathsf{F}_{\mathsf{OLE}}$ Inputs & Outputs

Ideal Alice

Ε Indistinguishability: Transcript Fake commitments Inputs & Outputs **Extractability:** $= (\mathbb{1} \otimes V_a^b) |B_{0,0}\rangle$ $\mathsf{F}_{\mathsf{OLE}}$ Inputs & Outputs

Ideal Bob

Indistinguishability: Transcript Inputs & Outputs **Extractability:** $\mathsf{F}_{\mathsf{OLE}}$ Inputs & Outputs

Ideal Bob

В

Indistinguishability:

$$H_{\min}(\mathbf{F}_{\boldsymbol{a}} \mid \mathbf{Y}E) \ge \frac{n \log d}{2} (1 - h_d(\zeta))$$

Extractability:

Ideal Bob

Ε Indistinguishability: Transcript $H_{\min}(\mathbf{F}_{\boldsymbol{a}} \mid \mathbf{Y}E) \ge \frac{n \log d}{2} (1 - h_d(\zeta))$ Inputs & Privacy
Amplification a Outputs **Extractability:** $\mathsf{F}_{\mathsf{OLE}}$ Inputs & Outputs

Ideal Bob

Ε Indistinguishability: Transcript $H_{\min}(\mathbf{F}_{\boldsymbol{a}} \mid \mathbf{Y}E) \ge \frac{n \log d}{2} (1 - h_d(\zeta))$ Inputs & Privacy
Amplification a Outputs **Extractability:** Com. functionality $\mathsf{F}_{\mathsf{OLE}}$ Inputs & Outputs

Thank you

I acknowledge Fundação para a Ciência e a Tecnologia (FCT, Portugal) for its support through the PhD grant SFRH/BD/ 144806/2019 in the context of the Doctoral Program in the Information Security (IS).