CLAIMS

1. A method for etching oxide on a semiconductor substrate,
comprising exposing the oxide on the substrate to hydrofluoric acid vapor and
water vapor in a process chamber held at temperature and pressure
conditions that are controlled to form on the substrate no more than a sub-
monolayer of etch reactants and products produced by the vapor as the oxide
is etched by the vapor.

- 2. The method of claim 1 wherein the semiconductor substrate comprises a silicon wafer and the oxide comprises silicon dioxide.
- 3. The method of claim 1 wherein the temperature and pressure conditions are controlled to etch the oxide on the substrate at a rate of no more than about 100 Å/minute.
- 4. A method for cleaning a contaminant on a semiconductor substrate, comprising exposing the contaminant on the substrate to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than a sub-monolayer of reactants and products produced by the vapor as the contaminant is removed by the vapor.
- 5. A method for removing etch residue from a metal structure on a semiconductor substrate, comprising exposing the residue to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than

- a sub-monolayer of reactants and products produced by the vapor as the residue is removed by the vapor.
 - 6. A method for cleaning a metal contact region of a semiconductor substrate, comprising exposing the metal contact region to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than a sub-monolayer of reactants and products produced by the vapor as the residue is removed by the vapor.
 - 7. A method for etching oxide on a semiconductor substrate, comprising the steps of:

exposing the oxide on the substrate to a stream of frozen particles; and exposing the oxide on the substrate to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than a multilayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.

8. A method for cleaning a contaminant on a semiconductor substrate, comprising the steps of:

exposing the contaminant on the substrate to a stream of frozen particles; and

exposing the contaminant on the substrate to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than a multilayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.

4

1

2

1

2

3

4

5

6

7

8

1

2

3

4

5

l	9. The method of either of claims 7 or 8 wherein the process
2	chamber temperature and pressure conditions are controlled to from on the
3	substrate no more than a saturated monolayer of etch reactants and products
ļ.	produced by the vapor as the oxide is etched by the vapor.
DY	
M	10. The method of either of claims 7 or 8 wherein the process
2' '	chamber temperature and pressure conditions are controlled to from on the

- substrate no more than a sub-monolayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.
- 11. The method of either of claims 7 or 8 wherein the stream of frozen particles comprises a stream of frozen CO₂ particles.
- A method for etching oxide on a semiconductor substrate, 12. comprising the steps of:

producing a positive electrical charge on the oxide; and exposing the oxide on the substrate to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than a saturated monolayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.

A method for etching oxide on a semiconductor substrate, 13. comprising the steps of:

producing a positive electrical charge on the oxide; and exposing the oxide on the substrate to hydrofluoric acid vapor and methanol vapor in a process chamber held at temperature and pressure

6	conditions that are controlled to form on the substrate no more than a
7	saturated monolayer of etch reactants and products produced by the vapor as
8	the oxide is etched by the vapor.

14. A method for etching oxide on a semiconductor substrate, comprising the steps of:

producing a positive electrical charge on the oxide; and exposing the oxide on the substrate to hydrofluoric acid vapor and isopropyl alcohol vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than a saturated monolayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.

- 15. The method of any of claims 12, 13, or 14 wherein the process chamber temperature and pressure conditions are controlled to from on the substrate no more than a sub-monolayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.
- 16. The method of any of claims 12, 13, or 14 wherein the positive electrical charge is produced on the oxide by exposure of the oxide to an electron beam.
- 17. The method of any of claims 12, 13, or 14 wherein the positive electrical charge is produced on the oxide by exposure of the oxide to ultraviolet light through a metallic screen.
- 18. The method of any of claims 12, 13, or 14 wherein the positive electrical charge is produced on the oxide by exposure of the oxide to a

3	plasma environment wherein the substrate is biased by a negative-polarity
4	DC voltage.
1	19. A method for etching oxide on a semiconductor substrate,
2	comprising the steps of:
3	producing a negative electrical charge on the oxide; and
4	exposing the oxide on the substrate to hydrofluoric acid vapor and
5	water vapor in a process chamber held at temperature and pressure
6	conditions that are controlled to form on the substrate no more than a
7	multilayer of etch reactants and products produced by the vapor as the oxide
8	is etched by the vapor.
1	20. The method of claim 19 wherein the negative electrical charge is
2	produced on the oxide by exposure of the oxide to a plasma environment
3	wherein the wherein the substrate is biased by a RF voltage.
1	21. The method of claim 19 wherein the negative electrical charge is
2	produced on the oxide by exposure of the oxide to a plasma environment
3	wherein the substrate is biased by a positive-polarity DC voltage.
1	22. A method for etching oxide on a semiconductor substrate,
2	comprising the steps of:
3	releasing electrical charge from the oxide by exposing the oxide on the
4	substrate to a stream of frozen particles, the substrate temperature
5	remaining uncontrolled during the exposure; and
6	exposing the oxide on the substrate to hydrofluoric acid vapor and
7	water vapor in a process chamber held at temperature and pressure

conditions that are controlled to form on the substrate no more than a

- 9 multilayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.
- 1 23. The method of claim 22 wherein the process chamber 2 temperature and pressure conditions are controlled to from on the substrate 3 no more than a saturated monolayer of etch reactants and products produced 4 by the vapor as the oxide is etched by the vapor.
 - 24. The method of claim 20 wherein the process chamber temperature and pressure conditions are controlled to from on the substrate no more than a sub-monolayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.