# CONTAINER SHIPMENT UNDERSTANDING AND PREDICTION



Keerthana Nemili



Chethan Manjunath



**Gauri Vaidya** 



**Soham Patil** 



Sesha Sreeja Sadhu



## Agenda

- Business problem and benefits
- Introduction to the data
- Methodology
- Modelling
- Results
- Business impact and recommendation
- Conclusion
- Way forward



## Business problem

- About 90% of shipments are through sea routes
- Geographical bottle necks, port traffic, weather conditions are some of the factors affecting accurate arrival of shipments
- Companies want to know ETAs of their shipments to plan subsequent activities





## Planner's challenge : Whom should I trust?

• Multiple ETAs from multiple carriers. What is the single source of truth that a planner can work with?





### **Business benefits**



## Improved customer satisfaction

Better estimated ETAs can help businesses plan and make end items available to customers on time



### **Improved resource allocation**

Accurate ETAs can help businesses plan their resources more effectively



### **Increased revenue and profits**

When customer satisfaction increases, businesses are more likely to see increased revenue and profits



### **Better cost management**

Accurate ETAs can allow companies to plan resources for last mile shipment from port resulting in better cost management



### **Competitive advantage**

By providing accurate ETAs and improving customer satisfaction, businesses can gain a competitive advantage in their market

)

## Understanding the sea-shipment system



- A port call refers to the arrival of a vessel (ship) at a port
- Various carriers provide their estimated time of arrival (Predicted ETA) for the vessel, although this ETA may change multiple times

## Problem solving methodology





## Pre-modelling steps



## Modelling



Using Linear regression to predict based on the prediction created time



Assigning weights to the predictions based on previous accuracies



Lazy predict to understand which model is best



Linear programming to optimize the error



## Modelling (cont.)

As data at hand was large, the following models were tried using data for only 1 port





## Model Analysis



We started looking at the EDA again to find the underlying reason









## Final Model



## Comparison for 1 port-call

| pred_created  | HSDLAI         |             |          | ZGUDJU         |              |          | Proposed Model |            |          |
|---------------|----------------|-------------|----------|----------------|--------------|----------|----------------|------------|----------|
| on            | ETA            | error       | accuracy | ETA            | error        | accuracy | ETA            | error      | accuracy |
| 04/11/22 0:00 | 21/11/22 17:30 | 5.013194444 |          |                |              |          | 23/11/22 17:46 | 3.00186332 | 0        |
| 05/11/22 0:00 | 21/11/22 17:30 | 5.013194444 | 0        | 24/11/22 12:30 | 2.221527778  | 0        | 27/11/22 2:16  | -0.3524915 | 1        |
| 06/11/22 0:00 | 21/11/22 17:30 | 5.013194444 | 0        | 24/11/22 12:30 | 2.221527778  | 0        | 27/11/22 2:16  | -0.3524915 | 1        |
| 07/11/22 0:00 | 21/11/22 17:30 | 5.013194444 | 0        | 24/11/22 12:30 | 2.221527778  | 0        | 27/11/22 2:16  | -0.3524915 | 1        |
| 08/11/22 0:00 | 21/11/22 17:30 | 5.013194444 | 0        | 24/11/22 12:30 | 2.221527778  | 0        | 27/11/22 2:16  | -0.3524915 | 1        |
| 09/11/22 0:00 | 21/11/22 17:30 | 5.013194444 | 0        | 24/11/22 12:30 | 2.221527778  | 0        | 27/11/22 2:16  | -0.3524915 | 1        |
| 10/11/22 0:00 | 21/11/22 17:30 | 5.013194444 | 0        | 25/11/22 0:30  | 1.721527778  | 0        | 26/11/22 4:58  | 0.53536522 | 1        |
| 11/11/22 0:00 | 24/11/22 13:30 | 2.179861111 | 0        | 25/11/22 0:30  | 1.721527778  | 0        | 25/11/22 8:22  | 1.39326286 | 0        |
| 12/11/22 0:00 | 24/11/22 13:30 | 2.179861111 | 0        | 25/11/22 0:30  | 1.721527778  | 0        | 25/11/22 8:22  | 1.39326286 | 0        |
| 13/11/22 0:00 | 24/11/22 13:30 | 2.179861111 | 0        | 25/11/22 0:30  | 1.721527778  | 0        | 25/11/22 8:22  | 1.39326286 | 0        |
| 14/11/22 0:00 | 24/11/22 13:30 | 2.179861111 | 0        | 25/11/22 0:30  | 1.721527778  | 0        | 25/11/22 8:22  | 1.39326286 | 0        |
| 15/11/22 0:00 | 24/11/22 13:30 | 2.179861111 | 0        | 26/11/22 11:30 | 0.263194444  | 1        | 27/11/22 15:58 | -0.9229681 | 1        |
| 16/11/22 0:00 | 23/11/22 11:30 | 3.263194444 | 0        | 26/11/22 11:30 | 0.263194444  | 1        | 23/11/22 20:11 | 2.9008789  | 0        |
| 17/11/22 0:00 | 26/11/22 6:00  | 0.492361111 | 1        | 26/11/22 11:30 | 0.263194444  | 1        | 26/11/22 14:41 | 0.13004557 | 1        |
| 18/11/22 0:00 | 26/11/22 6:00  | 0.492361111 | 1        | 26/11/22 11:30 | 0.263194444  | 1        | 26/11/22 14:41 | 0.13004557 | 1        |
| 19/11/22 0:00 | 26/11/22 6:00  | 0.492361111 | 1        | 26/11/22 11:30 | 0.263194444  | 1        | 26/11/22 14:41 | 0.13004557 | 1        |
| 20/11/22 0:00 | 26/11/22 6:00  | 0.492361111 | 1        | 26/11/22 11:30 | 0.263194444  | 1        | 26/11/22 14:41 | 0.13004557 | 1        |
| 21/11/22 0:00 | 26/11/22 6:00  | 0.492361111 | 1        | 26/11/22 14:30 | 0.138194444  | 1        | 26/11/22 21:01 | -0.1334904 | 1        |
| 22/11/22 0:00 | 26/11/22 15:19 | 0.104166667 | 1        | 26/11/22 14:30 | 0.138194444  | 1        | 26/11/22 18:53 | -0.0450258 | 1        |
| 23/11/22 0:00 | 26/11/22 15:00 | 0.117361111 | 1        | 26/11/22 14:30 | 0.138194444  | 1        | 26/11/22 17:06 | 0.0297224  | 1        |
| 24/11/22 0:00 | 26/11/22 15:00 | 0.117361111 | 1        | 26/11/22 20:30 | -0.111805556 | 1        | 26/11/22 16:13 | 0.06644414 | 1        |
| Accuracies    | 40.0%          |             |          | 50.0%          |              |          | 71.4%          |            |          |

• The proposed model has significant accuracy improvement over the existing model

## Comparison for 1 port-call



## Performance across different ports



- ➤ The proposed model performs better than or as good as the existing carrier predictions for 72% of the port locations
- ➤ For 28% of the ports model accuracy is poor with average difference of 7.7% and standard deviation of 9.7% from the carrier prediction accuracies
- Avoid using the proposed model for these ports: MYKCH, GNCKY, NZPOE, ITVCE, KYGEC, TNSFA, MXPGO, ESLPA
- ➤ Top 10 ports where accuracy improvement > 15%: BZBZE, FRMTX, GPPTP, LYMRA, ITAOI, TRYAR, USILM, RUNVS, SESTO, SXPHI



## Performance across different time windows



> The proposed model can be utilized the best from time windows t-15 till t-5, which is a critical time for planning activities further down the supply chain

## Business impact & recommendation



Use the prediction model from time windows t-5 to t-15



Average accuracy improvement of up-to 6% achievable in this segment





Customer revenue (Millions)

**GE** Healthcare

\$ 158

\$ (158/30) X 6 Millions saved in 100 days





## Real time implementation steps

# Real-time prediction process

### Data collection

Take all the historic data, keep updating weekly/monthly

### Determination of accuracy and median error

 Feed the data to the R code and get accuracies and median errors for all carrier/window pairs

### Updating main data file

Using VLOOKUP, map these accuracies and errors in the main excel data file

### Prediction of ETA

- Consider the latest prediction out of all the available carrier prediction
- Calculate ETA using below formula:

New Days = (%accuracy \* days) + (1 - %accuracy) \* (days + median error)

New ETA = Pred\_created\_on + New Days

## Next steps



#### **Documentation**

Creation of a Standard Operating Procedure detailing steps to input carrier predictions, weights and error factors to get the vessel arrival prediction



### Code

The excel and R-files shared with ready, fully functional code to generate required parameters



### **Integration with client system**

Using the Data Transfer Tools (DTL) the solution can be deployed making it user-friendly for the client to get the predictions via just one click





## Next steps

%

### **Provide confidence**

Develop a method to provide ETA with % confidence



### **Vessel impact**

Exploring impact of vessel routes and capacity on carrier predictions



### **Additional data**

Sourcing additional real-time data like weather on particular vessel routes





## Conclusion



## Increased operational efficiency

Better ETA
enables efficient
planning, reduction in
idle times and
improved resource
utilization



## Better overall accuracy

Overall improvement by 3% over current carrier predictions



### **Cost impact**

Savings in cost of downstream activities



### Reliability

Client company can provide a single reliable ETA at any given point of time



## THANK YOU



# QUESTIONS?

