Lezione 12 Geometira

Federico De Sisti 2024-03-27

0.1 Operatori Lineari Unitari

Sia V uno spazio vettoriale euclideo

Definizione 1

Un operatore lineare $T: V \to V$ si dice unitario se $\langle T(u), T(v) \rangle = \langle u, v \rangle \ \forall u, v \in V$

Proposizione 1

Sia V spazio vettoriale euclideo n- dimensionale e sia $T:V\to V$ un applicazione, le seguenti sono equivalenti

- 1. T è unitario
- 2. $T \in lineare \ e||T(w)|| = ||v|| \ \forall v \in V$
- 3. $T(O) = O, ||T(v) T(w)|| = ||v w|| \quad \forall v, w \in V$
- 4. T è lineare e manda basi ortonormali in basi ortonormali
- 5. T è lineare ed esiste una base $\{v_1, \ldots, v_n\}$ ortonormale di V tale che $\{T(v_1), \ldots, T(v_n)\}$ è una base ortonormale

Dimostrazione

$$1 \Rightarrow 2$$
. Unitario $\Rightarrow \langle T(v), T(v) \rangle = ||T(v)||^2 = \langle v, v \rangle = ||v||^2$

$$2 \Rightarrow 3 \ T \ lineare \Rightarrow T(O) = O \ ||T(v) - T(w)|| = ||T(v - w)|| = ||v - w||$$

$$3 \Rightarrow 1||T(v)|| = ||T(v) - O|| = ||T(v) - T(O)|| = ||v - O|| = ||v||$$

Esplicitiamo
$$||T(v) - T(w)||^2 = ||v - w||^2$$

$$\langle T(v) - T(w), T(v) - T(w) \rangle = \langle v - w, v - w \rangle$$

$$\Rightarrow \|T(v)\|^{\frac{1}{2}} - 2\langle T(v), T(w) \rangle + \|T(w)\|^{2} = \|v\|^{2} - 2\langle v, w \rangle + \|w\|^{2}$$

Dunque
$$\langle T(v), T(w) \rangle = \langle v, w \rangle$$

Resta da vedere che T è lineare.

Sia $\{e_1, \ldots, e_n\}$ una base ortonormale di V allora $\{T(e_1), \ldots, T(e_n)\}$ è una base ortonormale per quanto dimostrato prima.

$$\langle T(e_i), T(e_i) \rangle = \langle e_i, e_i \rangle = \delta_{ii}.$$

$$v = \sum_{i=1}^{n} x_i e_i \ (\Rightarrow x_i = \langle v, e_i \rangle)$$

$$T(v) = \sum_{i=1}^{n} \langle T(v), T(e_i) \rangle T(e_i) = \sum_{i=1}^{n} \langle v, e_i \rangle T(e_i) = \sum_{i=1}^{n} x_i T(e_j)$$

Dunque
$$T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$
 quindi T è lineare

 $1 \Rightarrow 4\{e_1, \dots, e_n\}$ è una base ortonormale

$$\langle T(e_i), T(e_i) \rangle = \langle e_i, e_i \rangle = \delta_{ii}.$$

 $4 \Rightarrow 5 \ Ovvio$

 $5 \Rightarrow 1$ Sia e_1, \ldots, e_n la base ortonormale dell'enunciato. Considero $u, v \in V$

$$u = \sum_{i=1}^{n} x_i e_i, \quad w = \sum_{i=1}^{n} y_i e_i.$$

$$\langle T(u), T(w) \rangle = \langle T(\sum_{i=1}^{n} x_i e_i, T(\sum_{j=1}^{n} y_i e_i) \rangle =$$

$$= \langle \sum_{i=1}^{n} x_i T(e_i), \sum_{j=1}^{n} y_i T(e_i) \rangle =$$

$$= \sum_{i,j=1}^{n} x_i y_i \langle T(e_i), T(e_j) \rangle$$

$$= \sum_{i=1}^{n} x_i y_i = \langle u, w \rangle$$

Dove abbiamo usato $\langle T(e_i), T(e_j) \rangle = \delta_{ij}$

Proposizione 2

$$\alpha \in V\{0\}$$
 $S_{\alpha} = v - 2\frac{\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$ riflessione rispetto ad α^2

- 1. S_{α} è unitaria 2. $S_{\alpha}^2 = Id$
- 3. Esiste una base B di V tale che $(S_{\alpha})_B = diag(1, \dots, 1, -1)$

Dimostrazione

1.
$$\langle S_{\alpha}(v), S_{\alpha}(w) \rangle = \langle v, w \rangle$$

 $\langle v - 2 \frac{\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha, w - 2 \frac{\langle w, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \rangle =$
 $\langle v, w \rangle - 2 \frac{\langle v, \alpha \rangle \langle \alpha, w \rangle}{\langle \alpha, \alpha \rangle} - 2 \frac{\langle v, \alpha \rangle \langle w, \alpha \rangle}{\langle \alpha, \alpha \rangle} + 4 \frac{\langle v, \alpha \rangle \langle w, \alpha \rangle}{\langle \alpha, \alpha \rangle \langle \alpha, \alpha \rangle} \langle \alpha, \alpha \rangle = \langle v, w \rangle$

$$V = \mathbb{R}\alpha \oplus \alpha^{\perp}.$$

Quindi presa una base $\{w_1, \ldots, w_{n-1}\}\ di\ \alpha^{\perp}$, $B = \{w_1, \dots, w_{n-1}, \alpha\}$ è una base di V e $S_{\alpha}(w_i) = w_i, i = 1, \dots, n-1$

$$S_{\alpha}(\alpha) = -\alpha$$

$$(S_{\alpha})_{B} = \begin{pmatrix} 1 & 0 & \dots \\ 0 & \ddots & 0 \\ \dots & 0 & -1 \end{pmatrix} = M$$

1 Osservazioni sugli operatori unitari

1. Se T è unitario, e $v \in Ker(T)$, allora

$$0 = ||T(v)|| = ||v|| \Rightarrow v = 0.$$

Dunque T è invertibile.

È facile vedere che se T_1, T_2 sono unitarie, lo è anche $T_1T_2^{-1}$, quindi, posto

$$O(V) = \{T \in End(V) | T \ \text{\`e unitario} \}.$$

$$O(V) \leq GL(V)$$
.

e O(V) viene chiamato gruppo ortogonale di V.

2. Se fissiamo in V una base ortonormale B, e $T \in O(V)$, $[T]_B^B$ è ortogonale. Infatti sia $A = [T]_B^B$, $B = \{e_1, \ldots, e_n\}$. Le colonne di A sono le coordinate di $T(e_i)$ rispetto a B, quindi T è unitario se e solo se

$$\langle A^i, A^j \rangle = \delta_{ij}.$$

dove A^i, A^j rappresentano la riga *i*-esima e *j*-esima della matrice A

3. Se $T\in O(V)$ e $\lambda\in\mathbb{R}$ è un autovalore di T, allora $\lambda=\pm 1$ Se λ è autovalore, esiste $v\neq 0$ tale che $T(v)=\lambda v$

$$||v|| = ||T(v)|| = ||\lambda v|| = |\lambda|||v||.$$

Poiché $v \neq 0, ||v|| \neq 0$ quindi $|\lambda| = 1$, cioè $\lambda = \pm 1$

4. Se V è uno spazio euclideo di dimensione n,ogni $T\in O(V)$ è composizione di al più n riflessioni S_n

Dimostrazione

per induzione su n, con base ovvia n = 1.

Supponiamo il teorema valga per ogni spazio euclideo di dimensione n-1 e dimostriamo per uno spazio euclideo di dimensione n. Sia $f \in O(V)$

Primo caso

f ha un punto fisso non nullo

$$v \in V$$
, $v \neq 0$, $f(v) = v$.

$$V=\mathbb{R}v\oplus v^{\perp}.$$

 $W=v^{\perp},\ (W,\langle,\rangle|_{W\times W})$ è euclideo di dimensione n-1 $F|_W:W\to W,$ infatti, se $u\in W$

$$\langle f(u), v \rangle = \langle f(u), f(v) \rangle = \langle u, v \rangle = 0.$$

Per induzione
$$f|_W = S_{\alpha_1} \circ \ldots \circ S_{\alpha_r}, \quad r \leq n-1$$

e quindi $f = S_{\alpha_1} \circ \ldots \circ S_{\alpha_r}, \quad r \leq n-1$
Secondo caso
Sia $v \neq 0$ tale che $f(v) \neq v$. Allora

$$S_{f(v)-v}(f(v)) = v.$$

$$\begin{array}{ll} \textit{Infatti} & S_{f(v)-v}(f(v)) = f(v) - 2 \frac{\langle f(v), f(v) - v \rangle}{\langle f(v) - v, f(v) - v \rangle} (f(v) - v) \\ \textit{Ma} & = f(w) = +2 \frac{\langle f(v), f(v) - v \rangle}{\langle f(v) - v, f(v) - v \rangle} (v - f(v)) \\ \textit{Ora} & \langle f(v), f(v) - v \rangle = ||v||^2 - \langle f(v), v \rangle \\ \langle f(v) - v, f(v) - v \rangle = 2||v||^2 - 2\langle f(v), v \rangle. \\ \textit{Dunque} & (S_{f(v)-v} \circ f) \ \textit{ha un punto fisso. Per il primo caso } S_{f(v)-v} \circ f = S_{\alpha_1} \circ \ldots \circ S_{\alpha_r} \quad r \leq n-1 \\ \textit{Dunque} & S_{f(v)-v} \circ S_{f(v)-v} \circ f = S_{f(v)-v} \circ S_{\alpha_1} \ldots \circ S_{\alpha_r} \\ \Rightarrow f = S_{f(v)-v} \circ S_{\alpha_1} \circ \ldots \circ S_{\alpha_r} \\ \textit{quindi f è composizione di al più n riflessioni} \\ \\ \Box \\ \end{array}$$

2 Spazi affini euclidei

Uno spazio affine euclideo è uno spazio affine (E,V,+) dove V è uno spazio euclideo.

Si può definire una distanza tra punti di E

$$d(P,Q) = ||\overrightarrow{PQ}||.$$

Un riferimento cartesiano per uno spazio affine euclideo è il dato $Oe_1 \dots e_n$ di un punto e di una base ortonormale di V

In particulare se
$$P = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $Q = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ allora

$$d(P,Q) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \qquad \overrightarrow{PQ} = \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix}.$$

Definizione 2

Due sottospazi affini si dicono ortogonali se le loro giaciture sono ortogonali

(cioè se
$$S = P + U$$
, $T = Q + W$, $\langle u, w \rangle = 0 \quad \forall u \in U$, $\forall w \in W$).