1 Einleitung

I

- 2 Theorie
- 3 Durchführung
- 4 Auswertung

4.1 Fehlerrechnung

EINLEITUNG NICHT VERGESSEN

4.2 Aufbau der Schaltung

Das Signal U_{sig} aus dem Oscillator Output ist in seiner Amplitude variabel, wohingegen das Referenzsignal U_{ref} aus dem Reference Output mit $\hat{U}_{ref} = (6.6 \pm 0.1)$ V eine konstante Amplitude. ?? zeigt das durch den Vorverstärker (mit Gain: 1) verstärkte Signal U_{sig} und ?? zeigt das Referenzsignal U_{ref} .

Die durch die Mischung von U_{sig} und U_{ref} veränderten Signalformen sind im folgenden Abschnitt 4.3 dargestellt.

4.3 Messung ohne Noise-Generator

In den ??-?? sind die am Oszilloskop zu beobachtenden Signale zu sehen, wobei die Phasendifferenz bei ?? $\phi = 0$ ist und zur jeweils nächsten Abbildung um $\pi/6$ erhöht wird.

Durch die Integration des Signals durch den Tiefpass erhält man eine konstante Gleichspannung U_{out} , deren Form am Beispiel für $\phi = 0$ in Abbildung 1 dargestellt.

Die Messwerte für diese Ausgabespannung U_{out} sind zusammen mit der entsprechenden Phase in Tabelle 1 eingetragen.

An der grafischen Darstellung dieser Messwerte in Abbildung 2 ist festzustellen, das die aufgenommene Messwerte nicht dem durch die Theorie prognostiziertem Verlauf von ??, mit der Proportionalität zu $\cos(\phi)$ folgen, sondern Proportional zu $\sin(\phi)$ verlaufen. Daher wird für die weitere Bearbeitung dieser Messwerte anstelle von ?? die Gleichung

$$U_{out} = \frac{2}{\pi} U_0 \sin(\phi) \tag{1}$$

verwendet.

Abbildung 1: Integriertes Ausgabesignal für $\phi = 0$

Phase	Spannung	Spannung
ϕ [°]	$U_{out}\left[\mathbf{V}\right]$	$U_0\left[\mathrm{V}\right]$
0,000	$-0,0005 \pm 0,0003$	-
30,000	$0,0055 \pm 0,0003$	0.0173 ± 0.0008
60,000	$0,0130 \pm 0,0005$	0.0236 ± 0.0009
90,000	$0,0150 \pm 0,0005$	0.0236 ± 0.0008
120,000	$0,0140 \pm 0,0005$	0.0254 ± 0.0009
150,000	$0,0070 \pm 0,0005$	0.022 ± 0.002
180,000	$0,0010 \pm 0,0003$	-
210,000	$-0,0045 \pm 0,0003$	0.0141 ± 0.0008
240,000	-0.0120 ± 0.0005	0.0218 ± 0.0009
270,000	-0.0140 ± 0.0005	0.0220 ± 0.0008
300,000	-0.0130 ± 0.0005	0.0236 ± 0.0009

Tabelle 1: Messwerte der Messung ohne Noise-Generator

Die in Abbildung 2 dargestellte Theoriekurve hat dabei die Form $U(\phi) = U_0 \sin \phi$ mit der Amplitude $U_0 = (0.0135 \pm 0.0008) \text{ V}$, welche mit Hilfe der Python-Bibliothek SciPy [1] bestimmt wurde.

Durch Umstellen von (1) erhält man die ebenfalls in Tabelle 1 eingetragenen Werte für die Amplitude der Signalspannung U_0 nach der Gleichung

$$U_0 = \frac{\pi}{2} \frac{U_{out}}{\sin(\phi)}.$$
 (2)

Der Mittelwert dieser Werte ergibt sich zu

$$\langle U_0 \rangle = (0.022 \pm 0.001) \,\text{V},$$
 (3)

wobei für den angegebene Fehler die Abweichung vom Mittelwert berechnet und keine

Abbildung 2: Verlauf der Messwerte ohne Rauschen mit Ausgleichskurve

Fehlerfortpflanzung verwand wurde, da dieser Fehler klein gegen über der angegebenen Abweichung ist.

4.4 Messung mit Noise-Generator

Die Messwerte der Messung mit zwischengeschaltetem Noise-Generator sind in Tabelle 2 zusammen mit denen aus diesen Werten berechneten Signalspannungsamplituden U_0 eingetragen.

Als Mittelwert der berechneten Signalspannungsamplituden erhält man

$$\langle U_0 \rangle = (-0.092 \pm 0.006) \,\mathrm{V}$$
 (4)

und auch hier ist der angegeben Fehler die Abweichung vom Mittelwert.

In Abbildung 3 sind die Messwerte zusammen mit einer Ausgleichskurve der Form $U(\phi)=U_0\sin\phi$ mit $U_0=(-0.0063\pm0.0003)$ V aufgetragen.

Phase	Spannung	Spannung
φ [°]	$U_{out}\left[\mathbf{V}\right]$	$U_0\left[\mathrm{V} ight]$
0,000	$0,0005 \pm 0,0003$	-
30,000	$-0,0020 \pm 0,0003$	$0,0063 \pm 0,0008$
60,000	$-0,0050 \pm 0,0003$	$0,0091 \pm 0,0005$
90,000	$-0,0060 \pm 0,0003$	$0,0094 \pm 0,0004$
120,000	$-0,0055 \pm 0,0003$	$0,0100 \pm 0,0005$
150,000	$-0,0025 \pm 0,0003$	$0,0079 \pm 0,0008$
180,000	$0,0000 \pm 0,0003$	-
210,000	$0,0020 \pm 0,0003$	$0,0063 \pm 0,0008$
240,000	$0,0060 \pm 0,0003$	0.0109 ± 0.0005
270,000	$0,0070 \pm 0,0003$	0.0110 ± 0.0004
300,000	$0,0065 \pm 0,0003$	$0,0118 \pm 0,0005$

Tabelle 2: Messwerte der Messung mit Noise-Generator

Abbildung 3: Verlauf der Messwerte mit Rauschen mit Ausgleichskurve

4.5 Messung der Intensität einer LED in Abhängigkeit des Abstands

Die Messwerte für den Abstand und der am Lock-In-Verstärker abgelesenen Spannung als Maß der Lichtintensität sind in Tabelle 3 zu finden.

Dabei wurden während der Messungen zwischen $r = (0.226 \pm 0.001) \,\mathrm{m}$ und $r_{max} =$

Abstand	Spannung
r [m]	$U_{out}\left[\mathbf{V}\right]$
$0,026 \pm 0,001$	0.0180 ± 0.0005
0.046 ± 0.001	0.0100 ± 0.0005
$0,066 \pm 0,001$	$0,0060 \pm 0,0005$
0.086 ± 0.001	$0,0040 \pm 0,0005$
0.106 ± 0.001	$0,0025 \pm 0,0003$
0.126 ± 0.001	$0,0020 \pm 0,0003$
0.146 ± 0.001	$0,0015 \pm 0,0003$
0.166 ± 0.001	$0,0010 \pm 0,0003$
0.186 ± 0.001	$0,0008 \pm 0,0003$
$0,206 \pm 0,001$	$0,0005 \pm 0,0003$
$0,226 \pm 0,001$	$0,0003 \pm 0,0003$
$0,401 \pm 0,001$	$0,0000 \pm 0,0003$

Tabelle 3: Messwerte der Intensität im Abstand r

0,401 m noch Veränderungen der Spannung festgestellt, die jedoch kleiner als der Ablesefehler waren und somit nicht bestimmt werden konnten. Bei Abständen $r > r_{max}$ konnten keine Spannungsveränderungen mehr festgestellt werden. Die Messwerte sind in ?? grafisch dargestellt und durch eine Ausgleichskurve ergänzt, die die Form $U = U_0 r^{-2}$ mit $U_0 = (0,13 \pm 0,01) \,\mathrm{V}$ hat. Die Antiproportionalität zu r^2 , ist an zunehmen, da es sich bei der LED um eine Punktquelle von elektromagnetischer Strahlung handelt, für deren Intensität diese Proportionalität gilt.

5 Diskussion

Literatur

[1] SciPy. URL: http://docs.scipy.org/doc/.