Random Coefficients Logit Demand Models Instrumental Variables, GMM, Contraction Mapping, and Structural Estimation

Bertel Schjerning University of Copenhagen March 10, 2025

• There are a lot of possible references for how to do BLP-style estimation.

- There are a lot of possible references for how to do BLP-style estimation.
- Modern guides:
 - 1. Berry and Haile (2021)
 - 2. Conlon and Gortmaker (2020)
 - 3. Conlon and Gortmaker (2023)

- There are a lot of possible references for how to do BLP-style estimation.
- Modern guides:
 - 1. Berry and Haile (2021)
 - 2. Conlon and Gortmaker (2020)
 - 3. Conlon and Gortmaker (2023)
- Foundational guides:
 - 1. Berry, Levinsohn and Pakes (1995)
 - 2. Nevo (2000)
 - 3. Petrin (2002)
 - 4. Berry, Levinsohn and Pakes (2004)

- There are a lot of possible references for how to do BLP-style estimation.
- Modern guides:
 - 1. Berry and Haile (2021)
 - 2. Conlon and Gortmaker (2020)
 - 3. Conlon and Gortmaker (2023)
- Foundational guides:
 - 1. Berry, Levinsohn and Pakes (1995)
 - 2. Nevo (2000)
 - 3. Petrin (2002)
 - 4. Berry, Levinsohn and Pakes (2004)
- None of these are required for the course, but I recommend taking a look afterwards.

Roadmap

The BLP Model

Pure Logit Estimation

Price Endogeneity

Preference Heterogeneity

Mixed Logit Estimation

Differentiation Instruments

- BLP is a full equilibrium model for both demand and supply of discrete goods
 - ightarrow We'll focus on demand side , but recall that prices are endogenous.
 - ightarrow You will see the full model in Micro B with Anders (Bertrand price competition of multi-product producers).

- BLP is a full equilibrium model for both demand and supply of discrete goods
 - ightarrow We'll focus on demand side , but recall that prices are endogenous.
 - ightarrow You will see the full model in Micro B with Anders (Bertrand price competition of multi-product producers).
- Choices are made in markets denoted by $t \in \mathcal{T}$.
 - \rightarrow Time periods, geographic regions, etc.

- BLP is a full equilibrium model for both demand and supply of discrete goods
 - ightarrow We'll focus on demand side , but recall that prices are endogenous.
 - ightarrow You will see the full model in Micro B with Anders (Bertrand price competition of multi-product producers).
- Choices are made in markets denoted by $t \in \mathcal{T}$.
 - \rightarrow Time periods, geographic regions, etc.
- Each market has individuals with types denoted by $i \in \mathcal{I}_t$.
 - ightarrow Different demographics and preferences.

- BLP is a full equilibrium model for both demand and supply of discrete goods
 - ightarrow We'll focus on demand side , but recall that prices are endogenous.
 - ightarrow You will see the full model in Micro B with Anders (Bertrand price competition of multi-product producers).
- Choices are made in markets denoted by $t \in \mathcal{T}$.
 - \rightarrow Time periods, geographic regions, etc.
- Each market has individuals with types denoted by $i \in \mathcal{I}_t$.
 - ightarrow Different demographics and preferences.
- Individuals are faced with choices denoted by $j \in \mathcal{J}_t$.
 - \rightarrow Products, hospitals, candidates, etc.
 - \rightarrow Outside option j=0: no purchase, no treatment, no vote, etc.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - ightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - \rightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.
- Will help to decompose utility into three parts.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - \rightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.
- Will help to decompose utility into three parts.
 - 1. Mean utility δ_{jt} : Average preference across all individuals in the market.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - \rightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.
- Will help to decompose utility into three parts.
 - 1. Mean utility δ_{jt} : Average preference across all individuals in the market.
 - 2. Systematic heterogeneity μ_{ijt} : Different preferences, e.g. due to different demographics.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - \rightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.
- Will help to decompose utility into three parts.
 - 1. Mean utility δ_{jt} : Average preference across all individuals in the market.
 - 2. Systematic heterogeneity μ_{ijt} : Different preferences, e.g. due to different demographics.
 - 3. Idiosyncratic heterogeneity ε_{ijt} : Idiosyncratic preference shocks, assumed i.i.d. across individuals and choices.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - \rightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.
- Will help to decompose utility into three parts.
 - 1. Mean utility δ_{jt} : Average preference across all individuals in the market.
 - 2. Systematic heterogeneity μ_{ijt} : Different preferences, e.g. due to different demographics.
 - 3. Idiosyncratic heterogeneity ε_{ijt} : Idiosyncratic preference shocks, assumed i.i.d. across individuals and choices.
- We will parameterize δ_{jt} and μ_{ijt} and make a convenient assumption about ε_{ijt} .

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

• Assume a convenient distribution for ε_{ijt} : iid type I extreme value.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{ijt} = \mathbb{P}_{\varepsilon_{it}} \Big(u_{ijt} \geq u_{ikt} \text{ for all } k \in \mathcal{J}_t \cup \{0\} \Big)$$

- Assume a convenient distribution for ε_{ijt} : iid type I extreme value.
 - ightarrow "Logit shocks" are convenient because they give multinomial logit choice probabilities s_{ijt} .

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{ijt} = \frac{\exp(\delta_{jt} + \mu_{ijt})}{\sum_{k \in \mathcal{J}_t \cup \{0\}} \exp(\delta_{kt} + \mu_{ikt})}$$

- Assume a convenient distribution for ε_{ijt} : iid type I extreme value.
 - ightarrow "Logit shocks" are convenient because they give multinomial logit choice probabilities $s_{ijt}.$

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{ijt} = \frac{\exp(\delta_{jt} + \mu_{ijt})}{\sum_{k \in \mathcal{J}_t \cup \{0\}} \exp(\delta_{kt} + \mu_{ikt})}$$

- Assume a convenient distribution for ε_{ijt} : iid type I extreme value.
 - ightarrow "Logit shocks" are convenient because they give multinomial logit choice probabilities s_{ijt} .
- Want μ_{iit} to be sufficiently flexible that this convenient assumption matters little.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{ijt} = \frac{\exp(\delta_{jt} + \mu_{ijt})}{\sum_{k \in \mathcal{J}_t \cup \{0\}} \exp(\delta_{kt} + \mu_{ikt})}$$

- Assume a convenient distribution for ε_{ijt} : iid type I extreme value.
 - ightarrow "Logit shocks" are convenient because they give multinomial logit choice probabilities s_{ijt} .
- Want μ_{ijt} to be sufficiently flexible that this convenient assumption matters little.
- Problem: μ_{ijt} and s_{ijt} are typically unobserved. Assume $\mu_{ijt} \sim F(\mu_{ijt}|\Sigma,\Pi)$ and aggregate over μ_{ijt}

$$s_{jt} = E(s_{ijt}) = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{ijt} | \Sigma, \Pi) \quad \text{for all} \quad j \in \mathcal{J}_t$$

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{ijt} = \frac{\exp(\delta_{jt} + \mu_{ijt})}{\sum_{k \in \mathcal{J}_t \cup \{0\}} \exp(\delta_{kt} + \mu_{ikt})}$$

- Assume a convenient distribution for ε_{ijt} : iid type I extreme value.
 - ightarrow "Logit shocks" are convenient because they give multinomial logit choice probabilities s_{ijt} .
- Want μ_{ijt} to be sufficiently flexible that this convenient assumption matters little.
- Problem: μ_{ijt} and s_{ijt} are typically unobserved. Assume $\mu_{ijt} \sim F(\mu_{ijt}|\Sigma,\Pi)$ and aggregate over μ_{ijt}

$$s_{jt} = E(s_{ijt}) = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{I}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{ijt} | \Sigma, \Pi) \quad \text{for all} \quad j \in \mathcal{J}_t$$

• We'll match these to observed quantities \hat{s}_{jt} in our data.

Roadmap

The BLP Mode

Pure Logit Estimation

Price Endogeneity

Preference Heterogeneity

Mixed Logit Estimation

Differentiation Instruments

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt}^{0} + \varepsilon_{ijt}$$

• Start with the simplest case: no heterogenous utility. This is the model we worked with in Econometrics A. We will put μ_{ijt} back soon.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \frac{\exp \delta_{jt}}{\sum_{k \in \mathcal{J}_t \cup \{0\}} \exp \delta_{kt}}$$

- Start with the simplest case: no heterogenous utility. This is the model we worked with in Econometrics A. We will put μ_{ijt} back soon.
- Market shares simplify. No aggregation over individual types.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \frac{\exp \delta_{jt}}{1 + \sum_{k \in \mathcal{J}_t} \exp \delta_{kt}}$$

- Start with the simplest case: no heterogenous utility. This is the model we worked with in Econometrics A. We will put μ_{ijt} back soon.
- Market shares simplify. No aggregation over individual types.
 - \rightarrow The 1 in the denominator is from our level normalization $u_{i0t} = \varepsilon_{i0t}$, i.e. $\delta_{0t} = 0$.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \frac{\exp \delta_{jt}}{1 + \sum_{k \in \mathcal{J}_t} \exp \delta_{kt}} \quad \Longrightarrow \quad \log \frac{s_{jt}}{s_{0t}} = \delta_{jt}$$

- Start with the simplest case: no heterogenous utility. This is the model we worked with in Econometrics A. We will put μ_{ijt} back soon.
- Market shares simplify. No aggregation over individual types.
 - \rightarrow The 1 in the denominator is from our level normalization $u_{i0t} = \varepsilon_{i0t}$, i.e. $\delta_{0t} = 0$.
- We can recover mean utilities from observed market shares (Berry, 1994).
 - ightarrow If we specify a function for δ_{jt} , we'll have a linear regression!

Pure Logit Estimating Equation

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt}$$

- Running example: Grieco et al (2024)?
 - \rightarrow In Grieco et al (2024), products j are combinations of makes and models of cars; markets t are simply time.
 - \rightarrow If we estimate the model, we can change p_{it} and estimate how consumers react.

Pure Logit Estimating Equation

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Running example: Grieco et al (2024)?
 - \rightarrow In Grieco et al (2024), products j are combinations of makes and models of cars; markets t are simply time.
 - \rightarrow If we estimate the model, we can change p_{it} and estimate how consumers react.
- Specify δ_{jt} as a function of price p_{jt} and other product characteristics x_{jt} .
 - ightarrow So p_{jt} is price of a car; x_{jt} includes a constant, a "horse power", "fuel efficiency", make dummies, etc.

Pure Logit Estimating Equation

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Running example: Grieco et al (2024)?
 - ightarrow In Grieco et al (2024), products j are combinations of makes and models of cars; markets t are simply time.
 - \rightarrow If we estimate the model, we can change p_{it} and estimate how consumers react.
- Specify δ_{jt} as a function of price p_{jt} and other product characteristics x_{jt} .
 - ightarrow So p_{jt} is price of a car; x_{jt} includes a constant, a "horse power", "fuel efficiency", make dummies, etc.
- Interpret the regression error ξ_{jt} as unobserved product quality not in our data.
 - ightarrow Unobserved characteristics, advertising, average taste variation, "demand shocks," etc.

Roadmap

The BLP Mode

Pure Logit Estimation

Price Endogeneity

Preference Heterogeneity

Mixed Logit Estimation

Differentiation Instruments

Endogeneity Concerns

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

• In Econometrics A, you ran an OLS regressions of δ_{jt} on p_{jt} and x_{jt} .

Endogeneity Concerns

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- In Econometrics A, you ran an OLS regressions of δ_{jt} on p_{jt} and x_{jt} .
- ullet Typically, we expect price to be strongly correlated with unobserved quality, ξ_{jt}
 - \rightarrow Firms know more than us about demand when setting prices.
 - \to Supply side lead to $\mathbb{C}(p_{jt},\xi_{jt})>0$, so $\hat{\alpha}<0$ is biased towards zero.

Endogeneity Concerns

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- In Econometrics A, you ran an OLS regressions of δ_{jt} on p_{jt} and x_{jt} .
- ullet Typically, we expect price to be strongly correlated with unobserved quality, ξ_{jt}
 - ightarrow Firms know more than us about demand when setting prices.
 - \rightarrow Supply side lead to $\mathbb{C}(p_{jt}, \xi_{jt}) > 0$, so $\hat{\alpha} < 0$ is biased towards zero.
- Potential solutions IV or Fixed Effects

Fixed Effects

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Adding product and market fixed effects to x_{it} can eliminate a lot of bias.
 - \rightarrow E.g. if p_{jt} is correlated with fixed effects ξ_j and/or ξ_t in $\xi_{jt} = \xi_j + \xi_t + \Delta \xi_{jt}$.
 - ightarrow We need multiple observations per product and market to add ξ_j and ξ_t .

Fixed Effects

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Adding product and market fixed effects to x_{it} can eliminate a lot of bias.
 - \rightarrow E.g. if p_{jt} is correlated with fixed effects ξ_j and/or ξ_t in $\xi_{jt} = \xi_j + \xi_t + \Delta \xi_{jt}$.
 - ightarrow We need multiple observations per product and market to add ξ_j and ξ_t .
- Modern grocery scanner datasets have many thousands of products/markets.
 - ightarrow Dummies take too much memory, so we "absorb" them, i.e. de-mean using within transformation.

Fixed Effects

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Adding product and market fixed effects to x_{it} can eliminate a lot of bias.
 - \rightarrow E.g. if p_{it} is correlated with fixed effects ξ_i and/or ξ_t in $\xi_{it} = \xi_i + \xi_t + \Delta \xi_{it}$.
 - ightarrow We need multiple observations per product and market to add ξ_j and ξ_t .
- Modern grocery scanner datasets have many thousands of products/markets.
 - → Dummies take too much memory, so we "absorb" them, i.e. de-mean using within transformation.
- Helpful but insufficient: ξ_{jt} typically varies by product and market, e.g. $\mathbb{C}(p_{jt}, \Delta \xi_{jt}) > 0$.

Instrumental Variables

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- With or without fixed effects, a carefully-chosen IV can be a good solution.
 - \rightarrow Relevance: $\mathbb{C}(p_{jt},z_{jt})\neq 0$. Exclusion: $\mathbb{C}(\xi_{jt},z_{jt})=0$.

Instrumental Variables

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- With or without fixed effects, a carefully-chosen IV can be a good solution.
 - \rightarrow Relevance: $\mathbb{C}(p_{jt}, z_{jt}) \neq 0$. Exclusion: $\mathbb{C}(\xi_{jt}, z_{jt}) = 0$.
- Always run a first-stage regression of p_{jt} on z_{jt} and x_{jt} .
 - \rightarrow Does the sign of the coefficient on z_{jt} make sense?
 - $\,\rightarrow\,$ Is the instrument strong, or should you worry about weak instruments?

Instrumental Variables

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- With or without fixed effects, a carefully-chosen IV can be a good solution.
 - \rightarrow Relevance: $\mathbb{C}(p_{jt}, z_{jt}) \neq 0$. Exclusion: $\mathbb{C}(\xi_{jt}, z_{jt}) = 0$.
- Always run a first-stage regression of p_{jt} on z_{jt} and x_{jt} .
 - \rightarrow Does the sign of the coefficient on z_{jt} make sense?
 - ightarrow Is the instrument strong, or should you worry about weak instruments?
- Many places to look. I'll discuss the most common ones.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.
- Cost-shifters: Measures of input prices, tariffs, etc.
 - ightarrow Consumers should only care about them through their effect on prices.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.
- Cost-shifters: Measures of input prices, tariffs, etc.
- Hausman: Current price of the same product averaged across other locations.
 - ightarrow Need costs to be correlated across locations, but not unobserved quality.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.
- Cost-shifters: Measures of input prices, tariffs, etc.
- Hausman: Current price of the same product averaged across other locations.
- BLP: Average characteristics x_{kt} of competing products $k \neq j$.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.
- Cost-shifters: Measures of input prices, tariffs, etc.
- Hausman: Current price of the same product averaged across other locations.
- BLP: Average characteristics x_{kt} of competing products $k \neq j$.
 - → Characteristics of competing products affect markups.
 - ightarrow We'll come back to these later, since they can also serve a different purpose.
- I recommend starting with just one. A straightforward cost-shifter if you have it.

Empirical Example: Demand for cars (Grieco et al. QJE, 2024)

• Assume $\mu_{ijt} = 0$ and estimate pure logit demand model for cars with OLS and IV:

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- x_{it}: Observed product characteristics
 - → Variables in logs (height, hp, mpg, weight, footprint, number of trims)
 - → Variables in levels (release year, years since design)

Empirical Example: Demand for cars (Grieco et al. QJE, 2024)

• Assume $\mu_{ijt} = 0$ and estimate pure logit demand model for cars with OLS and IV:

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- x_{it} : Observed product characteristics
 - → Variables in logs (height, hp, mpg, weight, footprint, number of trims)
 - → Variables in levels (release year, years since design)
- Regression specifications:
 - ightarrow Baseline: $\delta_{jt}=lpha p_{jt}+{\sf const}+\xi_{jt}$
 - ightarrow Controls: Adding x_{jt} , car type, year, and make fixed effects (dummies)

Empirical Example: Demand for cars (Grieco et al. QJE, 2024)

• Assume $\mu_{ijt} = 0$ and estimate pure logit demand model for cars with OLS and IV:

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- x_{it} : Observed product characteristics
 - → Variables in logs (height, hp, mpg, weight, footprint, number of trims)
 - → Variables in levels (release year, years since design)
- Regression specifications:
 - ightarrow Baseline: $\delta_{jt}=\alpha p_{jt}+{\sf const}+\xi_{jt}$
 - ightarrow Controls: Adding x_{jt} , car type, year, and make fixed effects (dummies)
- Endogeneity problem:
 - \rightarrow Price p_{jt} may be correlated with ξ_{jt} , biasing OLS estimates.
 - \rightarrow Use IV regression with exchange rate instrument (RXR) for price.

Let's Code!

- Jupyter Notebook: 15_blp.ipynb
- Part 1: IV estimation with $\mu_{ijt}=0$ and real exchange rate as instrument for price

Roadmap

The BLP Mode

Pure Logit Estimation

Price Endogeneity

Preference Heterogeneity

Mixed Logit Estimation

Differentiation Instruments

Random utility model for panel data

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

• In each market $t \in \mathcal{T}$, individuals with types $i \in \mathcal{I}_t$ choose a $j \in \mathcal{J}_t \cup \{0\}$.

Random utility model for panel data

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{ijt} | \Sigma, \Pi)$$

- In each market $t \in \mathcal{T}$, individuals with types $i \in \mathcal{I}_t$ choose a $j \in \mathcal{J}_t \cup \{0\}$.
- Extreme value shocks ε_{ijt} give logit market shares (conditional on individual types)
 - → Mixed Logit aggregate market shares

Random utility model for panel data

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{ijt} | \Sigma, \Pi)$$

- In each market $t \in \mathcal{T}$, individuals with types $i \in \mathcal{I}_t$ choose a $j \in \mathcal{J}_t \cup \{0\}$.
- Extreme value shocks ε_{ijt} give logit market shares (conditional on individual types) \rightarrow Mixed Logit aggregate market shares
- Before we set $\mu_{ijt} = 0$ to get a conveniently linear estimating equation:

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

but now, δ_{jt} is implicitly given by s_{jt} as a fixed point on a non-linear equation.

$$u_{ijt} = x'_{jt}\beta + \xi_{jt} + \varepsilon_{ijt}$$

- How to add preference heterogeneity to our pure logit model?
 - ightarrow For simplicity, I'll just let x_{jt} denote all characteristics, including prices p_{jt} .

$$u_{ijt} = x'_{jt}\beta_{it} + \xi_{jt} + \varepsilon_{ijt}$$

- How to add preference heterogeneity to our pure logit model?
 - \rightarrow For simplicity, I'll just let x_{jt} denote all characteristics, including prices p_{jt} .
- Intuitively, we want to replace β with random coefficients β_{it} .
 - \rightarrow Random in that they're drawn from a distribution of consumer types $i \in \mathcal{I}_t$.
 - \rightarrow For $x_{jt} = \text{car}_{jt}$ and $\mathcal{I}_t = \{\text{car-lovers}, \text{bus-lovers}\}$, want $\beta_{it} \gg 0$ for car-lovers.

$$u_{ijt} = x'_{jt} \underbrace{(\beta + \Pi y_{it} + \Sigma \nu_{it})}_{\beta_{it}} + \xi_{jt} + \varepsilon_{ijt}$$

- How to add preference heterogeneity to our pure logit model?
 - \rightarrow For simplicity, I'll just let x_{jt} denote all characteristics, including prices p_{jt} .
- Intuitively, we want to replace β with random coefficients β_{it} .
 - \rightarrow Random in that they're drawn from a distribution of consumer types $i \in \mathcal{I}_t$.
 - ightarrow For $x_{jt}=\operatorname{car}_{jt}$ and $\mathcal{I}_t=\{\operatorname{car-lovers},\operatorname{bus-lovers}\}$, want $\beta_{it}\gg 0$ for car-lovers.
- Most common specification is $\beta_{it} \sim N(\beta + \Pi y_{it}, \Sigma \Sigma')$.
 - ightarrow Π shifts preferences according to "observed" demographics $y_{it}\sim$ census.
 - $ightarrow \ \Sigma$ shifts preferences according to "unobserved" preferences $u_{it} \sim N(0,I)$.
 - ightarrow Σ is the *Cholesky root* of the variance matrix. Usually diagonal with standard deviations.

$$u_{ijt} = \underbrace{x'_{jt}\beta + \xi_{jt}}_{\delta_{jt}} + \underbrace{x'_{jt}(\Sigma\nu_{it} + \Pi y_{it})}_{\mu_{ijt}} + \varepsilon_{ijt}$$

- How to add preference heterogeneity to our pure logit model?
 - ightarrow For simplicity, I'll just let x_{jt} denote all characteristics, including prices p_{jt} .
- Intuitively, we want to replace β with random coefficients β_{it} .
 - \rightarrow Random in that they're drawn from a distribution of consumer types $i \in \mathcal{I}_t$.
 - ightarrow For $x_{jt}=\mathrm{car}_{jt}$ and $\mathcal{I}_t=\{\mathrm{car-lovers},\mathrm{bus-lovers}\}$, want $\beta_{it}\gg 0$ for car-lovers.
- Most common specification is $\beta_{it} \sim N(\beta + \Pi y_{it}, \Sigma \Sigma')$.
 - ightarrow Π shifts preferences according to "observed" demographics $y_{it}\sim$ census.
 - $ightarrow \ \Sigma$ shifts preferences according to "unobserved" preferences $u_{it} \sim N(0,I)$.
 - ightarrow Σ is the *Cholesky root* of the variance matrix. Usually diagonal with standard deviations.

Roadmap

The BLP Mode

Pure Logit Estimation

Price Endogeneity

Preference Heterogeneity

Mixed Logit Estimation

Differentiation Instruments

From Linear Regression to GMM

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = x'_{jt}\beta + \xi_{jt}$$

- For μ_{ijt} it is easy to estimate β by running the above regression.
 - \rightarrow Again, let x_{jt} include price, a constant, any other characteristics.
 - ightarrow Let z_{jt} include our price IV and exogenous characteristics in x_{jt} .

From Linear Regression to GMM

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = x'_{jt}\beta + \xi_{jt}$$

- For μ_{ijt} it is easy to estimate β by running the above regression.
 - \rightarrow Again, let x_{it} include price, a constant, any other characteristics.
 - ightarrow Let z_{jt} include our price IV and exogenous characteristics in x_{jt} .
- Our exclusion restriction implies the moment condition $\mathbb{E}[\xi_{jt} \cdot z_{jt}] = 0$.

From Linear Regression to GMM

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = x'_{jt}\beta + \xi_{jt}$$

- For μ_{ijt} it is easy to estimate β by running the above regression.
 - \rightarrow Again, let x_{jt} include price, a constant, any other characteristics.
 - ightarrow Let z_{jt} include our price IV and exogenous characteristics in x_{jt} .
- Our exclusion restriction implies the moment condition $\mathbb{E}[\xi_{jt} \cdot z_{jt}] = 0$.
- We'd get the exact same $\hat{\beta}$ by optimizing the following GMM objective:

$$\hat{\beta} = \operatorname*{argmin}_{\beta} g(\beta) W g(\beta)' \quad \text{where} \quad g(\beta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} (\delta_{jt} - x'_{jt}\beta) \cdot z_{jt}$$

Aggregate market shares

• With preference heterogeneity, $\delta_{jt} = \log \frac{s_{jt}}{s_{0t}}$ no longer holds.

Aggregate market shares

- With preference heterogeneity, $\delta_{jt} = \log \frac{s_{jt}}{s_{0t}}$ no longer holds.
- Instead, given a guess of (Σ, Π) , we numerically find the δ_{it} 's that solve:

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{ijt} | \Sigma, \Pi) \quad \text{for all} \quad j \in \mathcal{J}_t$$

Aggregate market shares

- With preference heterogeneity, $\delta_{jt} = \log \frac{s_{jt}}{s_{0t}}$ no longer holds.
- Instead, given a guess of (Σ, Π) , we numerically find the δ_{it} 's that solve:

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{ijt} | \Sigma, \Pi) \quad \text{for all} \quad j \in \mathcal{J}_t$$

- This effectively makes $\delta_{jt} = \delta_{jt}(\Sigma, \Pi)$ an implicit function of Σ and Π
- Need to approximate integral (Monte Carlo or Qadrature) and solve for δ_{jt}
- BLP's (1995) big advancement was how to incorporate flexible preference heterogeneity.
 - → Built on simulation estimator advancements (Pakes and Pollard, 1989; McFadden, 1989).

The BI P Contraction

• Given an estimate \hat{s}_{jt} of s_{jt} and a guess of (Σ, Π) we could use Newton's Method to numerically solve the system of equations

$$\hat{s}_{jt} = s_{jt}(\Sigma, \Pi) \equiv \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{I}} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{ijt} | \Sigma, \Pi) \quad \text{for all} \quad j \in \mathcal{J}_t \text{ and } t \in \mathcal{T}$$

The BLP Contraction

• Given an estimate \hat{s}_{jt} of s_{jt} and a guess of (Σ, Π) we could use Newton's Method to numerically solve the system of equations

$$\hat{s}_{jt} = s_{jt}(\Sigma, \Pi) \equiv \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{ijt} | \Sigma, \Pi) \quad \text{for all} \quad j \in \mathcal{J}_t \text{ and } t \in \mathcal{T}$$

• Alternatively we can use the method of successive approximations to solve for the fixed point on the BLP contraction mapping, $\Gamma_{(\Sigma,\Pi)}$:

$$\delta_{jt}^{k+1} = \Gamma_{(\Sigma,\Pi)}(\delta_{jt}^k) = \delta_{jt}^k + \log(\hat{s}_{jt}) - \log(s_{jt}(\Sigma,\Pi)) \quad \text{for all} \quad j \in \mathcal{J}_t \text{ and } t \in \mathcal{T}$$

• Since $\Gamma_{(\Sigma,\Pi)}$ is a contraction, successive approximation will always find the *implicit* function $\delta_{jt}(\Sigma,\Pi)$ as the unique fixed point on the BLP contraction operator $\Gamma_{(\Sigma,\Pi)}$, i.e. where $\delta_{jt} = \Gamma_{(\Sigma,\Pi)}(\delta_{jt})$

Let's Code!

We start with the simple case where $\mu_{ijt}=0$ (closed form for s_{jt} and δ_{jt})

- Jupyter Notebook: 15_blp.ipynb
- Part 2: Solve for δ using the BLP contraction mapping and compare to $\log(\hat{s}_{jt}/\hat{s}_{0t})$
- Part 3: Estimate β using GMM with δ from Contraction Mapping and compare to IV

Approximating the Integral using Monte Carlo

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} dF(\mu_{ijt} | \Sigma, \Pi)$$

1. Draw individual preferences from $F(\mu_{ijt}|\Sigma,\Pi)$:

$$\mu_{ijt}^{(m)} = x'_{jt} (\Sigma \nu_{it}^{(m)} + \Pi y_{it}^{(m)}), \quad m = 1, \dots, M$$

where $\nu_{it}^{(m)} \sim N(0, I)$ and $y_{it}^{(m)}$ comes from census data.

Approximating the Integral using Monte Carlo

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} dF(\mu_{ijt} | \Sigma, \Pi)$$

1. Draw individual preferences from $F(\mu_{ijt}|\Sigma,\Pi)$:

$$\mu_{ijt}^{(m)} = x'_{jt} (\Sigma \nu_{it}^{(m)} + \Pi y_{it}^{(m)}), \quad m = 1, \dots, M$$

where $\nu_{it}^{(m)} \sim N(0,I)$ and $y_{it}^{(m)}$ comes from census data.

2. Approximate the integral with the sample average:

$$s_{jt} \approx \frac{1}{M} \sum_{m=1}^{M} \frac{\exp(\delta_{jt} + \mu_{ijt}^{(m)})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt}^{(m)})}$$

Approximating the Integral using Monte Carlo

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} dF(\mu_{ijt} | \Sigma, \Pi)$$

1. Draw individual preferences from $F(\mu_{ijt}|\Sigma,\Pi)$:

$$\mu_{ijt}^{(m)} = x'_{jt} (\Sigma \nu_{it}^{(m)} + \Pi y_{it}^{(m)}), \quad m = 1, \dots, M$$

where $\nu_{it}^{(m)} \sim N(0, I)$ and $y_{it}^{(m)}$ comes from census data.

2. Approximate the integral with the sample average:

$$s_{jt} \approx \frac{1}{M} \sum_{m=1}^{M} \frac{\exp(\delta_{jt} + \mu_{ijt}^{(m)})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt}^{(m)})}$$

- Better alternatives: Quasi-Monte Carlo (QMC) methods like Sobol or Halton sequences.
 - ightarrow Converge faster than standard random sampling.
 - → Reduce variance of integral approximation.

The BLP Estimator

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} (\delta_{jt}(\Sigma, \Pi) - x'_{jt}\beta) \cdot z_{jt}$$

- BLP estimation consists of two nested loops.
 - 1. In the "outer" loop, we optimize over $\theta = (\beta, \Sigma, \Pi)$.
 - 2. In the "inner" loop, we solve the BLP contraction for $\delta_{jt}(\Sigma,\Pi)$.

The BLP Estimator

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} (\delta_{jt}(\Sigma, \Pi) - x'_{jt}\beta) \cdot z_{jt}$$

- BLP estimation consists of two nested loops.
 - 1. In the "outer" loop, we optimize over $\theta=(\beta,\Sigma,\Pi)$.
 - 2. In the "inner" loop, we solve the BLP contraction for $\delta_{jt}(\Sigma,\Pi)$.
- Actually, since $g(\theta)$ is linear in x_{jt} , we can "concentrate out" β and optimize (Σ, Π) .
 - \to Get $\hat{\beta}$ by running an IV regression of $\delta_{jt}(\Sigma,\Pi)$ on x_{jt} , like in the pure logit exercise.

The BLP Estimator

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} (\delta_{jt}(\Sigma, \Pi) - x'_{jt}\beta) \cdot z_{jt}$$

- BLP estimation consists of two nested loops.
 - 1. In the "outer" loop, we optimize over $\theta = (\beta, \Sigma, \Pi)$.
 - 2. In the "inner" loop, we solve the BLP contraction for $\delta_{it}(\Sigma,\Pi)$.
- Actually, since $g(\theta)$ is linear in x_{jt} , we can "concentrate out" β and optimize (Σ, Π) .
 - \to Get $\hat{\beta}$ by running an IV regression of $\delta_{jt}(\Sigma,\Pi)$ on x_{jt} , like in the pure logit exercise.
- What about the GMM weighting matrix *W*?
 - ightarrow If you're just-identified (dim $z_{jt}=\dim heta$), it doesn't matter. You'll get a zero objective.
 - ightarrow Otherwise, you may want to repeat optimization with optimal the two-step GMM \hat{W} .

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

- Set box constraints $\theta \in [\underline{\theta}, \overline{\theta}]$ to preclude unrealistic and unstable guesses of θ .
 - \rightarrow E.g. huge Σ values can make the inner loop unstable.
 - → Economic intuition and initial estimates will give a sense for reasonable bounds.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

- Set box constraints $\theta \in [\underline{\theta}, \overline{\theta}]$ to preclude unrealistic and unstable guesses of θ .
- Check that 3-5 different starting values $\theta \sim U(\underline{\theta}, \overline{\theta})$ give the same $\hat{\theta}$.
 - ightarrow For 2-step GMM, do this twice, once for each step (6-10 jobs total).
 - $\,$ If you have access to a cluster, each can be a separate job, run in parallel.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

- Set box constraints $\theta \in [\underline{\theta}, \overline{\theta}]$ to preclude unrealistic and unstable guesses of θ .
- Check that 3-5 different starting values $\theta \sim U(\underline{\theta}, \overline{\theta})$ give the same $\hat{\theta}$.
- Prefer using gradient-based algorithms for "smooth" problems like BLP.
 - \rightarrow Avoid derivative-free methods like Nelder-Mead/simplex, which tend to work worse.
 - $\rightarrow~$ I prefer trust-region algorithms, e.g. SciPy's ${\tt trust-constr}$

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

- Set box constraints $\theta \in [\underline{\theta}, \overline{\theta}]$ to preclude unrealistic and unstable guesses of θ .
- Check that 3-5 different starting values $\theta \sim U(\underline{\theta}, \overline{\theta})$ give the same $\hat{\theta}$.
- Prefer using gradient-based algorithms for "smooth" problems like BLP.
- Try to terminate on strict first-order conditions, e.g. $\|gradient\|_{\infty} < 1e-8$.
 - ightarrow Inner loop should be tighter to prevent error "bubbling up."
 - ightarrow Can also check second-order conditions, i.e. Hessian eigenvalues are positive.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

- Set box constraints $\theta \in [\underline{\theta}, \overline{\theta}]$ to preclude unrealistic and unstable guesses of θ .
- Check that 3-5 different starting values $\theta \sim U(\underline{\theta}, \overline{\theta})$ give the same $\hat{\theta}$.
- Prefer using gradient-based algorithms for "smooth" problems like BLP.
- Try to terminate on strict first-order conditions, e.g. $\|gradient\|_{\infty} < 1e-8$.
- Configure your optimizer! Defaults may not work for your setting.

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{ijt})$$

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{ijt})$$

• Individual types *i* are typically an *approximation* to a population distribution.

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, dF(\mu_{ijt})$$

- Individual types i are typically an approximation to a population distribution.
- Sometimes there are only a few types that we can integrate exactly.
 - \rightarrow E.g. high- and low-income types $i \in \{1,2\}$ with known shares w_{1t} and $w_{2t} = 1 w_{1t}$.

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} dF(\mu_{ijt})$$

- Individual types *i* are typically an *approximation* to a population distribution.
- Sometimes there are only a few types that we can integrate exactly.
- But usually we approximate the distribution with Monte Carlo integration.
 - \rightarrow Use a random number generator (RNG) to draw $M \approx 1,000$ of (ν_{it}, y_{it}) 's per market.
 - → Even better than your default RNG are quasi-Monte Carlo sequences.
 - ightarrow I recommend scrambled Sobol sequences. Python: Chaospy.

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} dF(\mu_{ijt})$$

- Individual types i are typically an approximation to a population distribution.
- Sometimes there are only a few types that we can integrate exactly.
- But usually we approximate the distribution with Monte Carlo integration.
- If you just need a few $\nu_{it} \sim N(0, I)$'s, try out Gauss-Hermite quadrature.
 - \rightarrow 10-100× fewer carefully-chosen (w_{it}, ν_{it})'s that do just as well as Monte Carlo.
 - ightarrow Chosen to exactly integrate a polynomial expansion of the integrand.

$$s_{jt} = \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} dF(\mu_{ijt})$$

- Individual types i are typically an approximation to a population distribution.
- Sometimes there are only a few types that we can integrate exactly.
- But usually we approximate the distribution with Monte Carlo integration.
- If you just need a few $\nu_{it} \sim N(0, I)$'s, try out Gauss-Hermite quadrature.
- ullet Keep increasing M until your estimates stabilize across draws/starting values.

• Can see how $Q(\theta) = g(\theta)Wg(\theta)'$ varies with θ .

- Can see how $Q(\theta) = g(\theta)Wg(\theta)'$ varies with θ .
- Here, there's a minimum but also some challenges.

29/34

- Can see how $Q(\theta) = g(\theta)Wg(\theta)'$ varies with θ .
- Here, there's a minimum but also some challenges.
 - \rightarrow Too few draws M makes the objective "choppy."

- Can see how $Q(\theta) = g(\theta)Wg(\theta)'$ varies with θ .
- Here, there's a minimum but also some challenges.
 - \rightarrow Too few draws M makes the objective "choppy."
 - $\,\rightarrow\,$ Poorly-configured optimizers can stop too early.

- Can see how $Q(\theta) = g(\theta)Wg(\theta)'$ varies with θ .
- Here, there's a minimum but also some challenges.
 - \rightarrow Too few draws M makes the objective "choppy."
 - → Poorly-configured optimizers can stop too early.
- Different instruments give different objectives.

- Can see how $Q(\theta) = g(\theta)Wg(\theta)'$ varies with θ .
- Here, there's a minimum but also some challenges.
 - ightarrow Too few draws M makes the objective "choppy."
 - → Poorly-configured optimizers can stop too early.
- Different instruments give different objectives.
 - \rightarrow Even if they're all valid, some may be weaker.
 - \rightarrow Weaker means flatter and harder to optimize.

Roadmap

The BLP Mode

Pure Logit Estimation

Price Endogeneity

Preference Heterogeneity

Mixed Logit Estimation

Differentiation Instruments

- For each new parameter in (Σ, Π) , we need another instrument in z_{it} .
 - → If you have fewer moments than parameters, you're *under-identified*.

- For each new parameter in (Σ, Π) , we need another instrument in z_{it} .
 - → If you have fewer moments than parameters, you're under-identified.
- In general, I recommend starting with one instrument per parameter.
 - \rightarrow Try to choose an instrument that "targets" that parameter.
 - ightarrow For example, a single strong cost-shifter that "targets" lpha on p_{jt} .

- For each new parameter in (Σ, Π) , we need another instrument in z_{it} .
 - → If you have fewer moments than parameters, you're under-identified.
- In general, I recommend starting with one instrument per parameter.
 - ightarrow Try to choose an instrument that "targets" that parameter.
 - ightarrow For example, a single strong cost-shifter that "targets" lpha on p_{jt} .
- This makes your estimation strategy clear, and makes optimization easier.
 - ightarrow Just-identified models typically give $Q(\hat{\theta}) \approx 0$ at the optimum.
 - ightarrow This is regardless of your weighting matrix W, so you typically don't need 2-step GMM.

- For each new parameter in (Σ, Π) , we need another instrument in z_{jt} .
 - → If you have fewer moments than parameters, you're under-identified.
- In general, I recommend starting with one instrument per parameter.
 - ightarrow Try to choose an instrument that "targets" that parameter.
 - ightarrow For example, a single strong cost-shifter that "targets" lpha on p_{jt} .
- This makes your estimation strategy clear, and makes optimization easier.
 - ightarrow Just-identified models typically give $Q(\hat{ heta}) pprox 0$ at the optimum.
 - ightarrow This is regardless of your weighting matrix W, so you typically don't need 2-step GMM.
- Later, adding more can help with weakness and testing exclusion restrictions.

- There's a lot of confusion about what instruments are needed for BLP estimation.
 - \rightarrow Identification of nonlinear models like BLP can be challenging.
 - → See Berry and Haile (2014, 2023) for a more formal, nonparametric framework.

- There's a lot of confusion about what instruments are needed for BLP estimation.
 - → Identification of nonlinear models like BLP can be challenging.
 - → See Berry and Haile (2014, 2023) for a more formal, nonparametric framework.
- Simplest case: 1 characteristic x_{jt} (e.g. price), 1 demographic y_{it} (e.g. income).

$$u_{ijt} = (\beta + \sigma \nu_{it} + \pi y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

- There's a lot of confusion about what instruments are needed for BLP estimation.
 - \rightarrow Identification of nonlinear models like BLP can be challenging.
 - → See Berry and Haile (2014, 2023) for a more formal, nonparametric framework.
- Simplest case: 1 characteristic x_{jt} (e.g. price), 1 demographic y_{it} (e.g. income).

$$u_{ijt} = (\beta + \sigma \nu_{it} + \pi y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

• Salanié and Wolak (2022) approximate the BLP model around $\sigma, \pi \approx 0$:

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \underbrace{\sigma^2 d_{jt}^x + \pi m_t^y x_{jt} + \pi^2 v_t^y d_{jt}^x}_{\text{Defined on the next slide.}} + \xi_{jt}$$

- There's a lot of confusion about what instruments are needed for BLP estimation.
 - \rightarrow Identification of nonlinear models like BLP can be challenging.
 - → See Berry and Haile (2014, 2023) for a more formal, nonparametric framework.
- Simplest case: 1 characteristic x_{jt} (e.g. price), 1 demographic y_{it} (e.g. income).

$$u_{ijt} = (\beta + \sigma \nu_{it} + \pi y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

• Salanié and Wolak (2022) approximate the BLP model around $\sigma, \pi \approx 0$:

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \underbrace{\sigma^2 d_{jt}^x + \pi m_t^y x_{jt} + \pi^2 v_t^y d_{jt}^x}_{\text{Defined on the next slide.}} + \xi_{jt}$$

Let's use our stronger intuition about linear regression to think about instruments!

$$\log \frac{s_{jt}}{s_{0t}} = \beta x_{jt} + \xi_{jt}$$

• If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.

$$\log \frac{s_{jt}}{s_{0t}} = \beta x_{jt} + \xi_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
 - \rightarrow Use the same IV as before to target β : if $x_{jt}=p_{jt}$, a price IV; if exogenous, x_{jt} itself.

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target $\sigma \neq 0$, need a measure of how "differentiated" j is in terms of x_{jt} within t.
 - ightarrow Can't use d^x_{jt} itself because it depends on endogenous market shares s_{kt} .

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target $\sigma \neq 0$, need a measure of how "differentiated" j is in terms of x_{jt} within t.
 - ightarrow Can't use d_{it}^x itself because it depends on endogenous market shares s_{kt} .
 - ightarrow Conventional choice was $\sum_{k \neq j} x_{kt}$, the BLP instruments from day 1.

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target $\sigma \neq 0$, need a measure of how "differentiated" j is in terms of x_{jt} within t.
 - ightarrow Can't use d^x_{it} itself because it depends on endogenous market shares s_{kt} .
 - \rightarrow Conventional choice was $\sum_{k\neq j} x_{kt}$, the BLP instruments from day 1.
 - \rightarrow A stronger choice is $\sum_{k\neq j} (x_{jt} x_{kt})^2$ or similar from Gandhi and Houde (2020).

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target $\sigma \neq 0$, need a measure of how "differentiated" j is in terms of x_{jt} within t.
 - ightarrow Can't use d^x_{it} itself because it depends on endogenous market shares s_{kt} .
 - \rightarrow Conventional choice was $\sum_{k\neq j} x_{kt}$, the BLP instruments from day 1.
 - \rightarrow A stronger choice is $\sum_{k\neq j} (x_{jt} x_{kt})^2$ or similar from Gandhi and Houde (2020).
 - \rightarrow We want cross-market choice set variation, otherwise d^x_{jt} is collinear with x^2_{jt} .

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \pi m_t^y x_{jt} + \pi^2 v_t^y d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target $\sigma \neq 0$, need a measure of how "differentiated" j is in terms of x_{it} within t.
- To target $\pi \neq 0$, we can interact x_{jt} with mean within-market income m_t^y .
 - \rightarrow We want cross-market demographic variation, otherwise $m_t^y x_{jt}$ is collinear with x_{jt} .

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \pi m_t^y x_{jt} + \pi^2 v_t^y d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target $\sigma \neq 0$, need a measure of how "differentiated" j is in terms of x_{it} within t.
- To target $\pi \neq 0$, we can interact x_{it} with mean within-market income m_t^y .
 - \rightarrow We want cross-market demographic variation, otherwise $m_t^y x_{jt}$ is collinear with x_{jt} .
 - ightarrow Can technically identify π from higher-order variation, e.g. in variance v_t^y .

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \pi m_t^y x_{jt} + \pi^2 v_t^y d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target $\sigma \neq 0$, need a measure of how "differentiated" j is in terms of x_{jt} within t.
- To target $\pi \neq 0$, we can interact x_{jt} with mean within-market income m_t^y .
- In your exercise, you'll target (β, σ, π) with $z_{jt} = (x_{jt}, \sum_{k \neq j} (x_{jt} x_{kt})^2, m_t^y x_{jt})$.
 - ightarrow If $x_{jt}=p_{jt}$, can replace x_{jt} with fitted values \hat{p}_{jt} from the price IV's first stage.

- There are many valid instruments that satisfy exclusion restrictions $\mathbb{E}[\xi_{jt} \mid z_{jt}] = 0$.
 - $\rightarrow \text{ E.g. } z_{jt} \text{ itself, } z_{jt}^2, z_{jt}^3 \text{, or any function } f(z_{jt}) \text{ of } z_{jt}.$

- There are many valid instruments that satisfy exclusion restrictions $\mathbb{E}[\xi_{jt} \mid z_{jt}] = 0$.
 - \rightarrow E.g. z_{jt} itself, z_{it}^2 , z_{it}^3 , or any function $f(z_{jt})$ of z_{jt} .
- But adding a ton of instruments will bias your estimator.
 - → "Many weak IVs" problem is well-known for 2SLS (Angrist, Imbens and Krueger, 1999).
 - → Similar for nonlinear GMM (Han and Phillips, 2006; Newey and Windmeijer, 2009).

- There are many valid instruments that satisfy exclusion restrictions $\mathbb{E}[\xi_{it} \mid z_{it}] = 0$.
 - \rightarrow E.g. z_{jt} itself, z_{it}^2 , z_{it}^3 , or any function $f(z_{jt})$ of z_{jt} .
- But adding a ton of instruments will bias your estimator.
 - → "Many weak IVs" problem is well-known for 2SLS (Angrist, Imbens and Krueger, 1999).
 - → Similar for nonlinear GMM (Han and Phillips, 2006; Newey and Windmeijer, 2009).
- Optimal IVs overweight observations with ξ_{jt} very sensitive to θ (Chamberlain, 1987):

$$f^*(z_{jt}) = \mathbb{E}\left[\frac{\partial \xi_{jt}}{\partial \theta'} \Big| z_{jt}\right]$$

- There are many valid instruments that satisfy exclusion restrictions $\mathbb{E}[\xi_{jt} \mid z_{jt}] = 0$.
 - \rightarrow E.g. z_{jt} itself, z_{it}^2 , z_{it}^3 , or any function $f(z_{jt})$ of z_{jt} .
- But adding a ton of instruments will bias your estimator.
 - → "Many weak IVs" problem is well-known for 2SLS (Angrist, Imbens and Krueger, 1999).
 - → Similar for nonlinear GMM (Han and Phillips, 2006; Newey and Windmeijer, 2009).
- Optimal IVs overweight observations with ξ_{jt} very sensitive to θ (Chamberlain, 1987):

$$f^*(z_{jt}) = \mathbb{E}\left[\frac{\partial \xi_{jt}}{\partial \theta'} \Big| z_{jt}\right]$$

- Can be a bit tricky to compute, but with PyBLP it's just one line of code.
 - $\,$ In practice, can update your IVs along with your weighting matrix for a second GMM step.

References I

- **Angrist, Joshua D, Guido W Imbens, and Alan B Krueger**, "Jackknife instrumental variables estimation," *Journal of Applied Econometrics*, 1999, *14* (1), 57–67.
- **Berry, Steven**, "Estimating discrete-choice models of product differentiation," *RAND Journal of Economics*, 1994, pp. 242–262.
- _ , James Levinsohn, and Ariel Pakes, "Automobile prices in market equilibrium," Econometrica, 1995, 63 (4), 841–890.
- __, __, and __, "Differentiated products demand systems from a combination of micro and macro data: The new car market," *Journal of Political Economy*, 2004, 112 (1), 68–105.
- **Berry, Steven T and Philip A Haile**, "Identification in differentiated products markets using market level data," *Econometrica*, 2014, 82 (5), 1749–1797.

References II

- _ **and** _ , "Foundations of demand estimation," in "Handbook of industrial organization," Vol. 4 2021, pp. 1−62.
- _ and _ , "Nonparametric identification of differentiated products demand using micro data," 2023.
- **Chamberlain, Gary**, "Asymptotic efficiency in estimation with conditional moment restrictions," *Journal of Econometrics*, 1987, 34 (3), 305–334.
- **Conlon, Christopher and Jeff Gortmaker**, "Best practices for differentiated products demand estimation with PyBLP," *RAND Journal of Economics*, 2020, *51* (4), 1108–1161.
- and __ , "Incorporating micro data into differentiated products demand estimation with PyBLP," 2023.

References III

- **Gandhi, Amit and Jean-François Houde**, "Measuring substitution patterns in differentiated-products industries," 2020.
- **Han, Chirok and Peter CB Phillips**, "GMM with many moment conditions," *Econometrica*, 2006, 74 (1), 147–192.
- **Hausman, Jerry A**, "Valuation of new goods under perfect and imperfect competition," in "The economics of new goods," University of Chicago Press, 1996, pp. 207–248.
- **McFadden, Daniel**, "A method of simulated moments for estimation of discrete response models without numerical integration," *Econometrica*, 1989, pp. 995–1026.
- **Nevo, Aviv**, "A practitioner's guide to estimation of random-coefficients logit models of demand," *Journal of Economics & Management Strategy*, 2000, 9 (4), 513–548.

References IV

- **Newey, Whitney K and Frank Windmeijer**, "Generalized method of moments with many weak moment conditions," *Econometrica*, 2009, 77 (3), 687–719.
- **Pakes, Ariel and David Pollard**, "Simulation and the asymptotics of optimization estimators," *Econometrica*, 1989, pp. 1027–1057.
- **Petrin, Amil**, "Quantifying the benefits of new products: The case of the minivan," *Journal of Political Economy*, 2002, *110* (4), 705–729.
- **Salanié, Bernard and Frank A Wolak**, "Fast, detail-free, and approximately correct: Estimating mixed demand systems," 2022.