

Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Física

Búsqueda de Supersimetría con producción de Higgs en el detector ATLAS (CERN-LHC)

Trabajo de Tesis Doctoral

Gonzalo E. Orellana

Director
Dr. Hernán P. Wahlberg
Co-Director
Dr. Fernando Monticelli

Índice general

In	troducción	5
1.	Modelo Estándar y Supersimetría	7
	1.1. Modelo estándar de la física de partículas	7
	1.2. Supersimetría	7
2.	LHC y detector ATLAS	9
3.	Reconstrucción e identificación de objectos físicos	11
	3.1. Electrones y fotones	11
	3.1.1. Reconstrucción	12
	3.1.2. Identificación	14
	3.1.3. Aislamiento	17
	3.2. Muones	18
	3.3. Jets	19
	3.3.1. Jets provenientes de quarks b (b -jets)	21
	3.4. Energía transversa faltante	21
4.	Eficiencia del trigger de fotones	23
	4.1. Reconstrucción de fotones en el Trigger	23
	4.2. Nomenclatura y menú del trigger de fotones	25
	4.3. Método del bosón Z decayendo radiativamente	26
	4.4. Factores de escala de las eficiencias	28
5.	Estrategia de búsqueda de SUSY con fotones, jets y MET en el estado final	31
6.	Resultados e interpretación del análisis	33

7. Conclusión	35
Agradecimientos	37
Bibliografía	40

ÍNDICE GENERAL 1

To Do

- Siglas: ATLAS, SM, ID, EM
- Mencionar
 - electrones = positrones
 - leptones: sin tau
 - MET asociado a neutrinos y nueva fisica
- Definiciones
 - qué cosas van con itálica (trigger?)
 - pile up, convención para escribirlo
 - Run 1, 2
 - prompt
 - crack region
 - barrel, endcap
 - z0 y sigmad0
 - prescale y rerun
 - derivation

Citas

- newt: T. Cornelissen et al., Concepts, Design and Implementation of the ATLAS New Tracking (NEWT), ATL-SOFT-PUB-2007-007 (2007), url: http://cds.cern.ch/record/1020106
- Kalman: R. Frühwirth, Application of Kalman filtering to track and vertex fitting, Nucl. Instrum. Meth. A262(1987) 444.
- chi2: T. G. Cornelissen et al., The global chi2 track fitter in ATLAS, J. Phys. Conf. Ser.119(2008) 032013
- gsf: ATLAS Collaboration, Improved electron reconstruction in ATLAS using the Gaussian Sum Filter-based model for bremsstrahlung, ATLAS-CONF-2012-047, 2012, url: https://cds.cern.ce/psi.archive/psi
- Cacciari: M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B659(2008) 119, arXiv:0707.1378 [hep-ph].

- silicon: ATLAS Collaboration, Performance of the ATLAS Silicon Pattern Recognition Algorithm in Data and Simulation at s=7TeV, ATLAS-CONF-2010-072 (2010), url: http://cds.cern.ch/s
- trt: ATLAS Collaboration, Particle Identification Performance of the ATLAS Transition RadiationTracker, ATLAS-CONF-2011-128, 2011, url: https://cds.cern.ch/record/1383793.
- trimming: JHEP 02, 084 (2010), 0912.1342
- btag: ATLAS b-jet identification performance and efficiency measurement with tt-bar events in pp collisions at sqrt(s) 13 TeV, Eur. Phys. J. C 79 (2019) 970, ar-Xiv:1907.05120, FTAG-2018-01
- jeffrey: arXiv:0908.0130

Notas

Dudas

- Fotones convertidos dejan 2 depósitos en el EM o 1? Figura? Al parecer dejan 2 pero están muy juntos al estar boosteados, no es que dejan 2 depósitos bien separados en el detector y esos 2 se unifican en un fotón. De todas formas me gustaría confirmarlo
- En nuestro análisis los taus están como jets? No hay veto?
- Usamos los objetos baseline para calcular MET? Al final NO. MET se calcula por default por la tool con todos los objetos presentes en el evento
- El pt de los muones se mide solo con su traza? o algo de su energia se deposita en el MS y con eso se puede deducir el pt?
- Si al pi0 lo reconstruimos como a un jet, por que en la figura 3.2 hablamos de los 2 depositos de energía que deja su decaimiento a 2 fotones?
- Cuestiones sobre la definicion de objetos prompt:
 No entiendo tu comentario, la identificación son criterios de calidad del objeto que ya se clasificó como electrón o fotón.

ÍNDICE GENERAL 3

En el paper EGAM-2018-01 se utiliza la jerga prompt vs background para motivar la identificación. Aquellos e/y que vienen de decaimientos prompt se depositan en el ECAL y los podemos considerar prompt, aquellos que vienen en otro tipo de decaimiento supongo que estarán contenidos dentro de los jets...

Revisar mejor definicion de prompt

ÍNDICE GENERAL

Introducción

...

6 0 Introducción

Modelo Estándar y Supersimetría

- 1.1. Modelo estándar de la física de partículas
- 1.2. Supersimetría

Capítulo 2 LHC y detector ATLAS

...

Reconstrucción e identificación de objectos físicos

El diseño del detector ATLAS permite la reconstrucción e identificación de prácticamente todas las partículas producidas en la colisión pp. La mayoría de las partículas del SM son inestables por lo que decaen rápidamente en otras partículas estables. Esto reduce considerablemente las posibles partículas que llegan al detector, ya que solo van a ser aquellas que sean estables o con suficiente vida media, siendo estas principalmente: γ , e^{\pm} , μ^{\pm} , ν y algunos hadrones como p, n, piones y kaones. El diseño de los distintos subdetector permite aprovechar las características de cada una de ellas, haciendo que cada una de las partículas anteriores depositen señales distintivas, permitiendo su reconstrucción e identificación. La Figura 3.1 muestra un esquema de las distintas señales producidas por cada una de las partículas en el detector ATLAS. Todos los procesos de reconstrucción descriptos se realizan una vez que el evento cumplió los requisitos del trigger y fue almacenado (offline).

3.1. Electrones y fotones

Los electrones y fotones producidos tanto en la colisión pp como aquellos producto del decaimiento de otras partículas, depositan la mayor parte de su energía en el ECAL. Estos depósitos están restringidos a un número de celdas vecinas cuyo conjunto se denomina cluster, y que tienen estructuras propias de estas partículas. Los depósitos que dejan ambas partículas son similares y con el objetivo de poder distinguirlas se utiliza además información del detector de trazas. Al ser el fotón una partícula neutra no deja traza en el ID, por lo que los clusters que no están asociados a trazas son considerados fotones, mientras que los que los que sí lo están son considerados electrones.

Procesos como la producción de pares $(\gamma \to e^-e^+)$ producto de la interacción de los fotones con el material del detector, pueden dejar trazas o depósitos que no corresponden con la reconstrucción de un fotón. El algoritmo de reconstrucción tiene en cuenta esto y puede reconstruir los vértices de conversión, por lo que los *clusters* asociados a vérti-

Figura 3.1: Esquema de los distintos tipos de señal que pueden dejar las partículas en el detector ATLAS

ces de conversión son considerados fotones. Finalmente, ciertos procesos (ej. $\pi^0 \to \gamma\gamma$) pueden generar depósitos que erróneamente son reconstruidos como fotones o electrones . Para reducir la identificación errónea se aplican entonces una serie de criterios de identificación y aislamiento, basados en las formas de los depósitos de energía, que permiten discriminar estos procesos de los procesos prompt.

Las técnicas de reconstrucción de electrones y fotones se realizan en paralelo y son similares, pudiendo ser descriptas simultáneamente.

3.1.1. Reconstrucción

La reconstrucción de electrones y fotones en el detector ATLAS se realiza utilizando un algoritmo para la reconstrucción de clusters dinámicos de tamaño variable, denominados superclusters [1]. Durante Run 1 el algoritmo reconstruía clusters de tamaño fijo [2–4], que si bien tenían una respuesta lineal energética y un estabilidad frente a pile-up, no permitía reconstruir eficientemente la energía de fotones bremsstrahlung o de electrones/positrones producto de la creación de pares. La implementación de superclusters durante el Run 2, junto con la calibración de la energía descripta en la Referencia [5] permite solucionar esto sin perder la linealidad y estabilidad de los clusters de tamaño fijo.

Topo-clusters

El algoritmo comienza buscando las celdas en el ECAL y el HCAL con una señal¹ cuatro veces mayor al ruido esperado dadas las condiciones de luminosidad y pileup del Run 2. A partir de ellas agrega las celdas vecinas cuya señal sea dos veces mayor al ruido , que a su vez son utilizadas en la siguiente iteración del algoritmo, que se repite hasta que no haya más celdas adyacentes que cumplan este requisito. Finalmente se agregan todas las celdas vecinas a las celdas anteriores, independientemente de la intensidad de señal que tengan, formando lo que se denominan topo-clusters [4,6]. Los topo-clusters que compartan celdas son unificados, mientras que los topo-clusters que tengan dos máximos locales son divididos.

Trazas y vértices de conversión

La reconstrucción de trazas se realiza utilizando un algoritmo de búsqueda de patrones de trazas estándar [7–9] en todo el ID. A su vez, utiliza los depósitos en el ECAL que presenten una forma compatible con la de una lluvia electromagnética para definir regiones de interés. En caso de que el algoritmo anterior falle, se utiliza en estas regiones otro algoritmo de búsqueda de trazas [10], permitiendo reconstruir trazas adicionales. Luego se realiza una serie de ajustes (χ^2 [11], GSF [12]) de las trazas permitiendo obtener correctamente los parámetros que la caracterizan. Finalmente las trazas son asociadas a los topo-clusters extrapolando a la misma desde el perigeo hasta la segunda capa del ECAL. Una traza se considera asociada con un topo-clusters si $|\Delta\eta| < 0.05$ y $-0.10 < q \cdot (\phi_{\rm traza} - \phi_{cluster}) < 0.05$, donde q es la carga de la traza. A su vez, el momento de la traza es escaleado para que coincida con al energía del topo-cluster asociado. Si múltiples trazas son asociadas a un mismo topo-cluster se clasifica a las mismas utilizando criterios de calidad, siendo la mejor clasificada la que se utiliza para reconstruir a los electrones.

Los vértices de conversión son reconstruidos a partir de pares de trazas con cargas de signo opuesto y consistentes con el decaimiento de una partícula sin masa. Adicionalmente se pueden reconstruir vértices de conversión a partir de una sola traza que no haya dejado señal en las capas más internas del ID. En ambos casos se busca que la traza tenga altas probabilidad de ser un electrón en el TRT [13] pero baja en el SCT. Es esperado que las trazas de los vértices de conversión estén muy cerca una de otra, en general compartiendo hits, haciendo que una de las trazas no llegue a reconstruirse. Para ello se utilizan trazas con requisitos de asociación a topo-clusters más relajados que los anteriormente descriptos, y con distintos criterios de ambigüedad ante solapamiento. Finalmente los vértices son asociados a los topo-clusters, y en caso de múltiples vértices asociados a un mismo topo-cluster se prioriza aquellos reconstruidos a partir de dos trazas y cuyo radio sea menor.

¹Para los topo-clusters electromagnéticos la medida de la señal se realiza en la escala electromagnética, que es la escala adecuada para medir los depósitos de energía de las partículas producidas en lluvias electromagnéticas de forma correcta

Superclusters

La reconstrucción de los superclusters para electrones y fotones se realiza de forma independiente y en dos etapas: primero se encuentran los topo-clusters semilla y luego se le adjuntan los topo-clusters satélites producidos generalmente por bremsstrumung o por la división de topo-clusters. El algoritmo comienza ordenando todos los topo-clusters por $E_{\rm T}$ y verifica si pasan los requerimientos para ser un topo-clusters semilla (comenzando por los más energéticos). En el caso de los electrones el requisito es tener $E_{\rm T}$ mayor a 1 GeV y una traza asociada con al menos cuatro hits en el SCT, mientras que el de los fotones es tener $E_{\rm T}$ mayor a 1.5 GeV. Cuando un topo-clusters pasa estos requisitos se busca sus topo-clusters satélites asociados y el mismo no puede ser utilizado como satélite en las siguientes iteraciones. Los topo-clusters satélites son aquellos que se encuentran dentro de una ventana de $\Delta \eta \times \Delta \phi = 0.075 \times 0.125$ alrededor del centro del topo-cluster inicial. Para electrones además se consideran topo-clusters satélites aquellos que se encuentran dentro de una ventana de $\Delta \eta \times \Delta \phi = 0.125 \times 0.3$ cuya traza mejor ajustada coincide con la traza mejor ajustada del topo-cluster inicial. Para fotones convertidos además se consideran topo-clusters satélites aquellos que compartan el vértice de conversión con el topo-cluster inicial.

Para limitar la sensibilidad de los superclusters al pileup, el tamaño de cada topocluster constituyente es restringido a un máximo de 0.075~(0.125) en la dirección de η en la región barrel (endcap). Como el algoritmo se utiliza de forma independiente tanto para electrones como para fotones, puede ocurrir que un mismo supercluster se asocie tanto a un electrón como a un fotón. En ese caso se utilizan una serie de criterios de ambigüedad que permiten determinar si el candidato es un electrón o un fotón. En el caso que aún no pasen los criterios de ambigüedad el candidato es guardado como electrón y fotón simultáneamente, pero marcados como ambiguos y es decisión de cada análisis incluirlos en el mismo .

Finalmente se calibra la energía de los *superclusters*, las trazas son nuevamente ajustadas pero ahora utilizando los *superclusters* anteriores, y la energía es recalibrada teniendo en cuenta este nuevo último ajuste siguiendo el procedimiento descripto en la Referencia [5].

3.1.2. Identificación

Como se mencionó anteriormente, distintos criterios de identificación son utilizados para poder discriminar los objetos prompte de aquellos que no lo son. Para ello se definen una serie de variables basadas en la información del calorímetro y del ID, que mediante distintas técnicas permiten la correcta identificación de los objetos. Finalmente se definen diferentes puntos de trabajo (Working Points, WP) que permiten mejorar la pureza de los objetos seleccionados al costo de tener una menor eficiencia de selección.

La identificación de electrones tiene como principal objetivo discriminar los electrones *prompt* de los fotones convertidos, de jets que depositaron energía en el ECAL y de electrones producidos en el decaimiento de hadrones de sabor pesado. Esta identifica-

Figura 3.2: Depósitos de energía característicos de un fotón aislado (izquierda) y un π^0 (derecha)

ción se basa en un método de likelihood que utiliza algunas de las variables descriptas en la Tabla 3.1, y cuyas PDFs se obtienen de eventos con decaimientos de J/Ψ y Z para electrones de bajo y alto $E_{\rm T}$ respectivamente [14]. Para electrones se definen tres WP, Loose, Medium y Tight, cuyas eficiencias de identificación promedio son 93 %, 88 % y 80 % respectivamente.

La identificación de fotones esta diseñada para seleccionar eficientemente fotones prompt y rechazar los fotones falsos provenientes de jets, principalmente del decaimiento de mesones livianos ($\pi^0 \to \gamma \gamma$). La identificación se basa en una serie de cortes rectangulares sobre las variables presentes en la Tabla 3.1. Las variables que utilizan las primeras capas del ECAL son esenciales para discriminar los decaimientos del π^0 en dos fotones muy colimados, ya que los depósitos de energía de este decaimiento se extienden en más celdas de este capa en comparación con el depósito de un fotón real. En la Figura 3.2 se puede observar la comparación de ambos procesos. Para la identificación de fotones también se definen tres WPs, Loose, Medium y Tight, cada uno inclusivo con respecto al anterior, y en la Tabla 3.1 se muestran las variables empleadas por cada uno de ellos. Los WPs Loose y Medium fueron utilizados por los algoritmos del trigger durante la toma de datos del Run 2 para seleccionar eventos con uno o dos fotones. Como los depósitos de energía varían debido a la geometría del calorímetros, los tres WPs fueron optimizados para diferentes valores de $|\eta|$, y adicionalmente la selección Tight fue optimizada para distintos valores de $E_{\rm T}$. Los depósitos de energía de los fotones convertidos difiere de los no convertidos, debido a la separación angular entre el e^- y el e^+ que se amplifica por el campo magnético, y debido a la interacción de los pares con capas más altas del calorímetro, permitiendo optimizar la selección Tight de forma separada para fotones convertidos de los no convertidos. Esto no fue posible para las selecciones Loose y Medium ya que la información que utilizan no permite saber si un fotón es convertido o no. La optimización fue realizada a bajo $E_{\rm T}$ utilizando simulaciones de decaimientos radiativos del bosón Zjunto con datos con eventos con bosones Z, y a alto $E_{\rm T}$ con simulaciones de producción de fotones inclusiva y jets. La eficiencia de identificación para la selección Tight supera el 80% para fotones con $E_{\rm T} > 20$ GeV [1].

Tabla 3.1: Variables utilizadas en la definición de los WPs de identificación de fotones, Loose (L), Medium (M) y Tight (T).

Categoría	Nombre	Descripción	L	Μ	Τ
Fuga hadrónica	R_{had_1}	Fracción de $E_{\rm T}$ en la primer capa del HCAL con respecto al $E_{\rm T}$ total del cluster (para $ \eta < 0.8 \ {\rm y} \ \eta > 1.37$)		✓	✓
	_			_	_
	$R_{ m had}$	Fracción de $E_{\rm T}$ en el HCAL con respecto al	✓	✓	/
		$E_{\rm T}$ total del <i>cluster</i> (para $0.8 < \eta < 1.37$)			
2^{da} capa del ECAL	$w_{\eta 2}$ [[[va el	Ancho lateral de la lluvia: $\sqrt{\frac{\sum E_i \eta_i^2}{\sum E_i} - (\frac{\sum E_i \eta_i}{\sum E_i})^2}$	✓	✓	✓
	2?]]]	[[[esta bien el cuadrado del primer ter-			
		mino?]]], donde la suma es calculada en una			
		ventana de 3×5 celdas			
	R_{η}	Fracción de la suma de las energías contenida	✓	✓	1
		en un rectángulo de $\eta \times \phi = 3 \times 7$ celdas con			
		respecto a un rectángulo 7×7 celdas, ambos			
	D	centrados en la celda más energética	.,	.,	,
	R_{ϕ}	Fracción de la suma de las energías contenida	X	X	•
		en un rectángulo de $\eta \times \phi = 3 \times 3$ celdas con			
		respecto a un rectángulo 3×7 celdas, ambos			
1 ^{er} capa del ECAL	$E_{\rm ratio}$	centrados en la celda más energética Ratio of the energy difference between the	Х	./	
1 capa del ECAL	Latio	maximum energy deposit and the energy de-	^	V	V
		posit in a secondary maximum in the cluster			
		to the sum of these energies			
	$w_{s ext{ tot}}$	Ancho lateral total de la lluvia:	X	Х	1
	3 100	$\sqrt{\frac{\sum E_i (i - i_{\text{máx}})^2}{\sum E_i}}$, donde la suma se realiza	•	·	
		V ΣE_i sobre todas las celdas contenidas en una			
		ventana de $\Delta \eta \approx 0.0625$ e $i_{\text{máx}}$ es la celda			
		con mayor energía [[[alto de la ventana?]]]			
	211 - 2	Ancho lateral de la lluvia: $\sqrt{\frac{\sum E_i(i-i_{\text{máx}})^2}{\sum E_i}}$, don-	X	Х	./
	w_{s3}	de la suma se realiza sobre todas las celdas	^	^	V
		contenidas en una ventana de tres celdas al-			
		rededor de la celda de mayor energía, $i_{\text{máx}}$			
	$f_{ m side}$	Energy fraction outside core of three central	X	X	1
	Jside	cells, within seven cells [[entender y traducir	,	•	•
		bien]]]			
	ΔE_s	Difference between the energy of the cell as-	X	X	1
	-	sociated with the secondmaximum, and the			
		energy reconstructed in the cell with the sma-			
		llestvalue found between the first and second			
		maxima			
	f_1	Fracción de energía medida en la primer capa	X	X	✓
		del ECAL con respecto a la energía total del			
		cluster electromagnético			

Figura 3.3: Esquema del cono utilizado para el cálculo de la variable de aislamiento calorimétrico

3.1.3. Aislamiento

Criterios de aislamiento se pueden aplicar sobre los fotones y electrones para aumentar aún más calidad de selección de los mismos. A su vez, la presencia de otros objetos cerca del fotón o el electrón puede interferir en la correcta reconstrucción de las variables cinemáticas del mismo, como su energía. El aislamiento de estos objetos se puede cuantizar definiendo variables no solo para los depósitos de energía, sino también para las trazas.

La variable de aislamiento calorimétrico [9] $(E_{\rm T}^{\rm coneX})$ se define entonces como la suma de la energía transversa de todas las celdas contenidas en un cono centrado en el topo-cluster, y cuyo radio ΔR ² (en el plano $\eta - \phi$) es igual a X/100. La contribución energética del objeto a asilar se sustrae ignorando las celdas contenidas en un rectángulo en el centro del cono, y cuyos lados miden $\Delta \eta \times \Delta \phi = 5 \times 7$ como muestra la Figura 3.3. Las filtraciones energéticas del candidato fuera del rectángulo son tenidas en cuenta junto con los efectos de pile-up [15]. Para electrones se utiliza un cono de radio $\Delta R = 0.2$ ($E_{\rm T}^{\rm cone20}$), mientras que para fotones se utiliza uno de $\Delta R = 0.2$ ($E_{\rm T}^{\rm cone20}$) dependiendo del WP.

La segunda variable de aislamiento se obtiene en base a las trazas de los objetos reconstruidos ($p_{\rm T}^{\rm coneXX}$), se define como la suma del momento transverso de todas las trazas contenidas dentro de un cono centrado en la traza del electrón o en la dirección del cluster del fotón convertido. La traza asociada al electrón o al fotón convertido son excluidas de esta suma, al igual que aquellas que no pasen una serie de criterios de calidad mínima. Como los electrones producidos en el decaimiento de partículas pesadas pueden estar en cercanía de otras partículas, la variable de aislamiento de trazas utiliza un cono de radio variable, cuyo tamaño se reduce a alto $p_{\rm T}$. La variable se denomina $p_{\rm T}^{\rm varconeXX}$ donde XX es el radio máximo utilizado, que para el caso de los electrones es $\Delta R_{\rm máx} = 0.2$ ($p_{\rm T}^{\rm varcone20}$). En el caso de los fotones el radio del cono mide $\Delta R = 0.2$ ($p_{\rm T}^{\rm cone20}$).

A partir de estas variables se definen distintos WPs de aislamiento de electrones

 $^{^{2}\}Delta R = \sqrt{\Delta\phi^{2} + \Delta\eta^{2}}$

ObjetoWPAislamiento calorimétricoAislamiento de trazasFotónTight $E_{\rm T}^{\rm cone40} < 0.022 \times E_{\rm T} + 2.45 \ {\rm GeV}$ $p_{\rm T}^{\rm cone20}/E_{\rm T} < 0.05$ TightCaloOnly $E_{\rm T}^{\rm cone40} < 0.022 \times E_{\rm T} + 2.45 \ {\rm GeV}$ $p_{\rm T}^{\rm varcone20}/p_{\rm T} < 0.15$ ElectrónLoose $E_{\rm T}^{\rm cone20}/p_{\rm T} < 0.2$ $p_{\rm T}^{\rm varcone20}/p_{\rm T} < 0.15$

Tabla 3.2: Definición de los WPs de aislamiento para fotones y electrones.

dependiendo de si se desea mantener constante la eficiencia o si se desea aplicar cortes fijos en las variables de aislamiento. Un ejemplo de WP de aislamiento para electrones es el Loose con una eficiencia de selección mayor a 90 % para electrones con $E_{\rm T} > 10$ GeV [1]. En el caso de fotones también se definen distintos WPs que pueden no utilizar todas las variables de aislamiento, como el caso del WP FixedCutTightCaloOnly que solo utiliza un corte en la variable $E_{\rm T}^{\rm cone.}$ Las definiciones de los distintos WPs de interés para esta tesis se listan en la Tabla 3.2.

3.2. Muones

La reconstrucción de muones se realiza de forma independiente en el detector interno y en el espectrómetro de muones. La información de los distintos subdetectores, que incluye a los calorímetros, se combina para formar a los objetos finales utilizados en los análisis [16]. La reconstrucción en el ID se realiza de la misma forma que con cualquier otra partícula cargada [7,17]. La reconstrucción en el MS comienza con una búsqueda de patrones de hits para definir segmentos en cada cámara de muones, que luego son combinados con un ajuste de χ^2 global. Luego se combina la información del ID, MS y los calorímetros, utilizando una serie de algoritmos que definen 4 tipos de muones dependiendo del subdetector que se utilizó en la reconstrucción:

- Muones Combinados (CB): reconstruidos en el ID y el MS de forma independiente, y luego mediante un ajuste se reconstruye una traza combinada.
- Muones Segmentados (ST): trazas del ID que al extrapolarlas al MS tienen asociadas un segmento en el MDT o el CSC. Se definen principalmente para reconstruir aquellos muones de bajo $p_{\rm T}$ o que atraviesan las regiones del MS con baja aceptancia.
- Muones Calorimétricos (CT): trazas del ID que están asociadas a depósitos de energía en el calorímetro compatibles con una partícula mínimamente ionizante. Este tipo de muones son los de menor pureza pero permite detectarlos en regiones donde el MS está parcialmente instrumentado.
- Muones Extrapolados (ME): reconstruidos utilizando solo el MS y requiriendo que hayan dejado traza en la región forward además de una mínima compatibilidad con el punto de interacción. Se definen principalmente para extender la aceptancia a la región $2.5 < |\eta| < 2.7$ donde el ID no llega a cubrir.

3.3 Jets 19

En caso de solapamiento entre los distintos tipos de muones se resuelve teniendo prioridad por los CB, luego por los ST y finalmente por los CT. Para los ME se priorizan aquellos muones con mejor calidad en el ajuste de la traza y mayor cantidad de *hits*.

La identificación de muones se realiza con el objetivo de discriminar muones prompt de aquellos producidos principalmente en el decaimientos de piones y kaones, manteniendo una alta eficiencia y garantizando una medida robusta de su momento. Los muones producidos en el decaimiento de hadrones cargados dejan una traza en el ID con una topología enroscada que genera discrepancias entre el momento reconstruido en el ID y el reconstruido en el MS. La identificación se realiza aplicando una serie de cortes en diferentes variables [16] obtenidas a partir del estudio de simulaciones de producción de pares de quarks top. Se definen cuatro WPS, Loose, Medium, Tight, y High-pT, para satisfacer las necesidades de los distintos análisis. Por ejemplo, la selección Loose está optimizada para reconstruir candidatos del decaimiento del bosón de Higgs, la selección Medium es la selección más genérica para todos los análisis, y la selección High-pT está orientada a búsquedas de resonancias de alta masa del Z' y W'.

Finalmente se definen criterios de aislamiento que permiten distinguir aquellos muones producidos en los de caimientos de los bosones Z, W y Higgs que en general se producen de forma aislada, de aquellos producidos en los decaimientos semi-leptónicos que quedan embebidos en los *jets*. Para ello se definen siete WPS, utilizando las mismas variables de aislamiento calorimétrico y de trazas utilizadas para fotones y electrones $(p_{\rm T}^{\rm varcone30})$ y $E_{\rm T}^{\rm cone20})$.

3.3. Jets

Debido al confinamiento de color los quarks o gluones, que tienen carga de color no nula, estos no pueden existir libres en la naturaleza. Al producirse quarks o gluones en la colisión estos crean nuevas partículas de color para generar partículas de carga de color nula. Este proceso que se denomina hadronización y produce en el detector una cascada de partículas de forma similar a un cono alrededor de la partícula inicial, llamada *jet*. Como los jets están compuestos de un número elevado de partículas que a su vez dejan trazas y deposiciones de energía, es necesario utilizar algoritmos especiales que permitan reagrupar a todas esas señales en su respectivo jet de forma correcta.

La reconstrucción de los jets comienza a partir de los depósitos de energía en el calorímetro generando topo-clusters de la misma forma que para electrones y fotones 3 [4]. Luego, los topo-clusters son combinados mediante un algoritmo denominado $anti\text{-}k_t$ [18] que realiza los siguientes pasos:

• Calcula la 'distancia' de todos los *topo-clusters* entre sí, y de cada *topo-cluster* con el haz:

³En este caso los jets pueden ser calibrados tanto en la escala electromagnética como en la hadrónica (escala LCW), la cual tiene en cuenta las diferencias entre las interacciones electromagnéticas y hadrónicas en el detector ATLAS

Figura 3.4: Esquema de agrupamiento de topo-clusters realizado por el algoritmo anti- k_t

$$d_{ij} = \min(p_{\mathrm{T},i}^{-2}, p_{\mathrm{T},j}^{-2}) \frac{\Delta_{ij}^2}{R^2}$$
(3.1)

$$d_{iB} = p_{\mathrm{T},i}^{-2} \tag{3.2}$$

Donde $\Delta_{ij}^2 = \Delta \phi_{ij}^2 + \Delta \eta_{ij}^2$ y R es un parámetro que asociado al radio del cono del jet a reconstruir, cuyo valor para el actual análisis es de 0.4

- Si el mínimo entre todas las distancias anteriormente calculadas es d_{iB} , se clasifica al $topo-cluster\ i$ como un jet, y se lo descarta de sucesivas iteraciones
- Si el mínimo entre todas las distancias anteriormente calculadas es d_{ij} , los topo-cluster i y j son combinados, se vuelven a calcular todas las distancias con este nuevo topo-cluster y se itera nuevamente

Este algoritmo tiende a unificar las partículas soft con las hard y separar a las partículas hard entre sí, formando conos de radio R que van a resultar útiles para determinar el solapamiento con otros objetos reconstruidos del evento. La Figura 3.4 muestra esquemáticamente como el algoritmo $anti-k_t$ tiende a agrupar los distintos topo-clusters. Jets provenientes de quarks o gluones son llamados en general small-R jets y se utiliza un R=0.4 para su reconstrucción. En cambio, los jets que representan partículas masivas decayendo hadrónicamente son llamados large-R y utilizan un R=1.

A continuación los jets pasan por una serie de correcciones y calibraciones antes de reconstruir el objeto final para los análisis. Primero se remueve la contribución por pile-up, en el caso de los large-R jets afecta principalmente a las distribuciones angulares que son necesarias para la reconstrucción de su masa invariante, y se remueve utilizando una técnica denominada grooming descripta en la Referencia [19]. Para los small-R jets primero se realiza una corrección del origen de su vértice y luego se suprime la contribución por pile-up utilizando métodos que tienen en cuenta la densidad de energía de pile-up [20] junto con variables asociadas a las trazas y al vértice primario [21] . A continuación se calibra la energía del jet utilizando simulaciones de MC . Esto es necesario debido a que gran parte del jet es invisible al detector, por ejemplo cuando el jet se encuentra en las zonas del mismo donde la sensibilidad es baja. . La escala de energía del jet (Jet Energy Scale, JES) [22] calcula un factor de respuesta en bines de

 $|\eta|$ y $p_{\rm T}$ utilizando simulaciones de MC, y que al aplicarlo a los datos permite la corrección en energía de los jets. Para los large-R jets se aplica a su vez una corrección similar en la masa necesaria para la correcta reconstrucción de su masa invariante. Los small-R jets por su parte pasan por una calibración ($Global\ Sequential\ Calibration$, GSC) que mejoran la resolución de energía del jet ($Jet\ Energy\ Resolution$, JER). Finalmente se realiza una corrección $in\ situ$ aplicada exclusivamente a los datos.

3.3.1. Jets provenientes de quarks b (b-jets)

Los decaimientos de los hadrones pesados están gobernados generalmente por el hadrón más pesado en la cascada del decaimiento. Un hadrón b generalmente decae a través de una cascada a un hadrón c, que a su vez decae a un hadrón s, etc. Esto genera la existencia de múltiples vértices secundarios, que junto con la información de las trazas y la elevada vida media de los hadrones b, son utilizados por distintos algoritmos para poder distinguir los hadrones b de hadrones con sabores más livianos (b-tagging). Algunos ejemplos de algoritmos [23] son el MV2 basado en un boosted decision tree y compuesto de clasificadores de bajo nivel, y el DL1 basado en una red neuronal profunda. Para cada algoritmo se definen WPs con distintas eficiencias de selección, que a mayor eficiencia mayor es la probabilidad de identificar otros tipos de jets erróneamente como b-jets. Con el WP de 77% del algoritmo MV2 (DL1) 1 de cada 5 (5) c-jets, 1 de cada 15 (14) τ -jets y 1 de cada 110 (130) jets livianos son identificados erróneamente como b-jets [23].

3.4. Energía transversa faltante

Como se mencionó en [[[definición MET]]], el momento transverso faltante se utiliza como un sustituto para obtener el momento de las partículas que prácticamente no interactúan con el detector, por ejemplo neutrinos o partículas más allá del SM. El momento en la dirección del haz que acarrea cada partón previo a la colisión es desconocido, pero en la dirección transversa al haz se puede considerar que es nulo. Por conservación del momento se puede deducir que luego de la colisión la suma de los momentos en el plano transverso de todas las partículas producidas debería ser nulo, y en caso de no serlo puede ser un indicio de una partícula que escapó la detección. La reconstrucción del momento transverso faltante se basa en esta conservación y se define como menos la suma de los momentos transversos de todas las partículas observadas en el evento. En esta suma se incluyen los electrones, muones, fotones, taus decayendo hadrónicamente y jets reconstruidos con los métodos descriptos en las secciones anteriores. Además se incluye un termino (soft) que tiene en cuenta el momento en la traza de las partículas que dejaron señal en el ID pero que no llegaron a reconstruirse. Quedando la definición del vector momento transverso faltante como [24]:

$$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}} = -\sum_{i} \mathbf{p}_{\mathrm{T}}^{e_{i}} - \sum_{i} \mathbf{p}_{\mathrm{T}}^{\gamma_{i}} - \sum_{i} \mathbf{p}_{\mathrm{T}}^{\tau_{i}} - \sum_{i} \mathbf{p}_{\mathrm{T}}^{j_{i}} - \sum_{i} \mathbf{p}_{\mathrm{T}}^{\mu_{i}} - \sum_{i} \mathbf{p}_{\mathrm{T}}^{\mathrm{Soft}_{i}}$$
(3.3)

En general no se utilizan las componentes de este vector sino que se utiliza su módulo $(E_{\rm T}^{\rm miss})$ y su ángulo $(\phi^{\rm miss})$, y cuando se menciona al momento transverso faltante se está haciendo referencia a su módulo. Cabe aclarar que esta definición introduce un sesgo a tener $E_{\rm T}^{\rm miss}$ no nula en eventos donde no se produjo ninguna partícula no interactuante, debido a la incorrecta o insuficiente reconstrucción de todos los objetos presentes en el evento. Otra variable que se utiliza además es $\Sigma E_{\rm T}$ que se define como la suma del módulo de los momentos de todas las partículas anteriormente consideradas.

Como la reconstrucción se realiza de forma independiente para cada objeto, puede ocurrir que dos objetos distintos compartan algunas celdas calorimétricas. Para evitar el doble conteo, se define el siguiente orden de prioridad: electrones, fotones, taus y jets [25, 26]. Si alguna de estas partículas comparte celdas con otra de una prioridad mayor, la misma se elimina del cálculo de $E_{\rm T}^{\rm miss}$. Los muones son principalmente reconstruidos en el ID y el MS, por lo que el solapamiento con las demás partículas es mínimo y salvo algunos casos particulares ninguno es descartado. Muones no aislados que se solapan con los jets, jets que se solapan mínimamente con otros objetos o jets reconstruidos a partir de un depósito de energía de muones o de pile-up tienen un tratamiento especial descripto en la Referencia [24].

Los objetos que se incluyen en el cálculo de MET dependen de la selección de cada análisis, en el caso del presente análisis la selección base utilizada está descripta en la Sección En el término Soft se incluyen solamente aquellas trazas provenientes del vértice principal que no esten asociadas las partículas anteriormente seleccionadas. Los depósitos de partículas neutras soft no se incluyen en este término ya que en su mayoría son producto del pile-up y su inclusión reduce el desempeño en la reconstrucción de $E_{\rm T}^{\rm miss}$.

Eficiencia del trigger de fotones

En el Capítulo [[[trigger/detector]]] se detalló el funcionamiento del sistema de trigger y su importancia para los distintos análisis que se realizan dentro de la colaboración. La medida de la eficiencia de los triggers es empleada para tener conocimiento del rendimiento de los mismos y además para medir, la aceptancia de cada análisis . En este Capítulo se explica en particular la medida de la eficiencia de los triggers de rotones, que son de especial importancia para esta tesis. El método empleado utiliza una muestra de datos con fotones de alta pureza seleccionados a partir de eventos con bosones Z que decaen radiativamente. Este método se utiliza para la medida de la eficiencia de triggers con fotones de bajo $p_{\rm T}$ debido a la baja estadística de la muestra. Complementariamente se utiliza otro método denominado Bootstrap, que tiene una mayor estadística a costo de una menor pureza, para los triggers con fotones de alto $p_{\rm T}$.

4.1. Reconstrucción de fotones en el Trigger

La reconstrucción de fotones [27] (y de forma similar la de electrones) en el Trigger comienza en el L1 con la construcción de RoIs ilizando sólo la información del calorímetro. A partir de esas RoIs el HLT ejecuta algoritmos de reconstrucción rápida que utilizan adicionalmente información del ID dentro de la RoI, permitiendo una selección e identificación inicial de fotones junto con un temprano rechazo de fondo. En el caso de que el candidato cumpla los requisitos de selección rápidos se ejecuta a continuación los algoritmos de precisión, que utilizan información adicional en regiones del detector fuera de la RoI. Estos algoritmos son similares a los utilizados en la reconstrucción offline con la diferencia de que no reconstruyen superclusters de fotones.

Reconstrucción de fotones en el L1

Los triggers del L1 utiliza la información del calorímetro en la región central $(|\eta| < 2.5)$ para construir las RoIs. Las mismas consisten en trigger towers de 4×4 celdas en η y ϕ de 0.1×0.1 . Un algoritmo sliding-window busca los conjuntos de celdas de 2 × 2 cuya suma de energía transversa de uno de los cuatro posibles pares de celdas vecinas más cercanas $(1 \times 2 \text{ o } 2 \times 1)$ supere cierto umbral de energía, explicitado en el nombre del trigger. Este umbral puede depender de η con una granularidad de 0.1, en general variando entre -2 y 3 GeV con respecto al umbral nominal, y en ese caso se agrega una letra 'V' al final del nombre trigger. A su vez se puede aplicar un rechazo de actividad hadrónica, donde se rechaza al candidato si la suma de energía transversa de las celdas en el calorímetro hadrónico de la ventana de 2×2 es mayor a 1 GeV y supera $E_{\rm T}/23-0.2$. En ese caso se agrega una 'H' al final del nombre del trigger. Finalmente se puede incluir requisitos de aislamiento que rechazan a los candidatos si la suma de la energía transversa en las 12 celdas alrededor de la ventana de 2×2 es mayor a 2 GeV y supera $E_{\rm T}/8-1.8$, agregando una 'I' al nombre del trigger. Por ejemplo, el trigger L1_EM20VHI tiene un umbral de 20 GeV variable en η y utiliza el rechazo hadrónico y la selección de aislamiento. Tanto el rechazo hadrónico como la selección de aislamiento se aplican solamente a triggers con umbral mayor a 50 GeV.

Reconstrucción de fotones en el HLT

La reconstrucción en el HLT comienza aplicando algoritmos de reconstrucción rápida para reconstruir clusters con las celdas de las RoIs obtenidas en el L1. Para acelerar el proceso estos algoritmos solo utilizan la segunda capa del ECAL para encontrar la celda con mayor energía transversa de la RoI (pre-seed). La posición del cluster se obtiene calculando el energy-weighted average cell positions dentro de una ventana de 3×7 ($\Delta \eta \times \Delta \phi = 0.075 \times 0.175$) centrada en la pre-seed. Para calcular la energía acumulada se utiliza una ventana de 3×7 ($\Delta \eta \times \Delta \phi = 0.075 \times 0.175$) en la región barrel y una ventana de 5×5 ($\Delta \eta \times \Delta \phi = 0.125 \times 0.125$) en el endcap. Adicionalmente se realizan correcciones basadas en los algoritmos de reconstrucción que mejoran la resolución de la posición y energía del cluster. En esta etapa se realizan selecciones solamente basadas en la energía transversa del cluster y en los parámetros $R_{\rm had}$, R_{η} y $E_{\rm ratio}$.

Si el candidato pasa los requisitos anteriores se utiliza una región levemente mayor a la RoI para ejecutar los algoritmos de precisión. Estos algoritmos utilizan el mismo algoritmo offline sliding/window [4] para construir el clusters y técnicas multivariable [5] para hacer correcciones en su energía. La identificación online de fotones utiliza las mismas shower shapes que en la reconstrucción offline, definiendo tres working points: loose, medium (solo en el HLT), y tight. Adicionalmente es posible incluir requisitos de aislamiento calorimétrico utilizando topo-clusters, de forma similar a la reconstrucción offline. Para ello se reconstruye la totalidad de los topo-clusters presentes en el evento para calcular la densidad de energía del evento en el HLT, necesaria para sustraer el ruido de la señal en el cono de aislamiento. El cono se construye con un radio de $\Delta R < 0.2 (0.4)$

alrededor del candidato para el working point de aislamiento very-loose (tight), denotado en el nombre del trigger como icalovloose (icalotight). Un fotón en el HLT se considera aislado si la fracción de energía transversa del candidato y de la totalidad de topoclusters es menor a 10% (3%, with anenergy offset of $2.45~{\rm GeV}$). La reconstrucción de los topo-clusters del evento se realiza una sola vez en el evento y es utilizado por todos los triggers, inclusive aquellos con otra signature.

4.2. Nomenclatura y menú del trigger de fotones

La convención de nombres de triggers utilizada en el detector ATLAS es de la forma:

'Nivel de trigger' ltiplicidad del objeto''Tipo de objeto''Umbral de $E_{\mathtt{T}}$ '-'Requisitos adicionales'

El nivel del trigger puede ser L1 o HLT. La multiplicidad representa la cantidad de objetos que pretende seleccionar el trigger con esos mismo requisitos. Los posibles tipos de objetos para los triggers de fotones pueden ser 'EM' en el caso de triggers del L1 y 'g' para el HLT. Para el L1 se pueden agregar los requisitos 'l', 'H' o 'V' descriptas anteriormente. Para el caso de triggers dobles/compuestos se incluyen ambas componentes sucesivamente. Finalmente en los requisitos adicionales se incluye la identificación, y en caso de haber requisito de aislamiento se agrega a continuación. Opcionalmente para los HLT triggers se puede explicitar el trigger del L1 que se utilizó como semilla. Por ejemplo la nomenclatura HLT_2g20_tight_icalovloose_L12EM15VHI representa un trigger del HLT que selecciona eventos con al menos dos fotones con $E_{\rm T}>20~{\rm GeV}$, ambos que pasen los requisitos de identificación tight y de aislamiento icalovloose, y adicionalmente se especifica el seed L1 trigger que requiere de dos L1 EM clusters con un umbral dependiente en η y centrado en 15 GeV, con los requisitos de aislamiento y rechazo hadrónico.

El menú de trigger de fotones se detalla en la Tabla 4.1. El trigger primario de fotones simple sin prescale está diseñado para búsquedas de física nueva más allá del SM con fotones de alto $E_{\rm T}$. Primary diphoton triggers se utiliza principalmente para seleccionar eventos con bosones de Higgs decayendo a fotones. Los diphoton trigger con umbrales bajos e identificación tight son empleados para estudios más allá del SM con resonancias de baja masa ($\sim 60~{\rm GeV}$).

Tipo de trigger	2015	2016	2017-2018	
L1 simple	L1_EM20VH		L1_EM22VHI	
L1 doble	L1_2EM10VH	L1_2EM15VH	L1_2EM15VHI	
Primario de fotones simple	HLT_g120_loose		HLT_g140_loose	
Primario de fotones doble	HLT_g35_loose_g25_loose		HLT_g35_medium_g25_medium	
Loose doble	-		HLT_2g50_loose	
tight doble	HLT_2g20_tight	HLT_2g22_tight	HLT_2g20_tight_icalovloose	

Tabla 4.1: Menú del trigger de fotones utilizados a lo largo de cada año durante el Run 2

4.3. Método del bosón Z decayendo radiativamente

Durante los últimos años, ventos con bosones Z han sido empleados para medidas de calibración y eficiencia, debido a que ya son ampliamente conocidas sus características (principalmente su masa) por parte de varios análisis previos a la construcción del LHC. El decaimiento radiativo del bosón Z ocurre cuando uno de los productos del decaimiento leptónico irradia un fotón $(Z \to l^+ l^- \gamma, l = e, \mu)$. Este decaimiento en particular se utiliza cuando se desea obtener una muestra de fotones con una elevada pureza, debido a que al reconstruir la masa invariante de los tres objetos y requerir que sea similar a la del bosón Z, la posibilidad de que el fotón haya sido erróneamente reconstruido es muy baja. Teniendo en cuenta la alta pureza de fotones de la muestra esta técnica no requiere de métodos de sustracción de fondo. La desventaja de este método es la baja estadística de eventos con estas características, por lo que es utilizado para medir eficiencias de triggers con umbrales menores a 60 GeV.

La eficiencia de un determinado trigger se define como la fracción de eventos que pasaron el mismo con respecto al total de eventos presentes en la muestra:

$$\epsilon = \frac{N_{\text{trig}}}{N_{\text{total}}} \tag{4.1}$$

La eficiencia se calcula en función de distintas variables como por ejemplo p_T y η del objeto, o el $\langle \mu \rangle$ del evento. En el caso de una eficiencia teórico función del p_T la forma de la misma debería ser una función escalón de Heaviside centrada en el valor de corte de p_T del trigger. Los objetos que utiliza el trigger para tomar la decisión son online pero para medir su eficiencia se utilizan objetos offline, esta diferencia hace que la forma de escalón de la eficiencia sea más suavizada en la región de encendido $(turn-on)_1$ No es esperable que la eficiencia dependa de η o $\langle \mu \rangle$, por lo que al expresarla en función de estas variables se espera una curva plana muy cercana a 1. En el caso de triggers compuestos, se calcula la eficiencia de cada componente y la eficiencia total resulta como el producto de ambas.

La medida de la eficiencia de cada trigger utiliza los datos tomados en el año correspondiente al mismo, listados en la Tabla 4.1. En el caso de que el trigger o una de

Figura 4.1: Gráfico de la masa invariante de los leptones en función de la masa invariante de ambos junto con el fotón.

sus componentes se hava configurado con un prescale, el mismo se emplea en modo rerun para la medida de la eficiencia. La muestra de datos se obtiene a partir de eventos que pasaron los triggers primarios de electrones o muones, junto con la derivation EGAM3 (EGAM4) que preselecciona eventos con dos electrones (muones) y un fotón, con requisitos orientados a este tipo de decaimiento . A los eventos se les solicita tener al menos dos leptones de carga opuesta y un foton, todos con $p_{\rm T} > 10$ GeV. El fotón debe estar dentro de la región $|\eta| < 2.37$ y pasar el WP de identificación tight. Las eficiencias se calculan dependiendo del WP de aislamiento del fotón utilizado, por lo que se calcularon las eficiencias para FixedCutTightCaloOnly y FixedCutLoose. Los leptones deben estar dentro de la región $|\eta| < 2.47$, pasar el WP de identificación medium, el de aislamiento loose y tener $|z_0| < 10$ mm y $\sigma(d_0) < 10$. A su vez el evento es rechazado si el ΔR entre el fotón y alguno de los leptones es menor a 0.2. Finalmente se realiza una selección en la masa invariante de los leptones (m_{ll}) y la de los 3 objetos $(m_{ll\gamma})$. En la Figura 4.1 se muestra el gráfico de m_{ll} en función de $m_{ll\gamma}$. En la misma se puede observar que la mayoría de los eventos se encuentra en la región $m_{ll} \sim 91 \text{ GeV}$ y $m_{ll\gamma} > \sim 96$, estos representan eventos en los cuales un bosón Z decayó a un par de leptones, y que adicionalmente en el evento se encontraba un fotón proveniente de otro proceso. En cambio en la región $86 < m_{ll\gamma} < 96$ y $40 < m_{ll} < 83$ la masa invariante de los pares de leptones no alcanza la del bosón Z, pero al combinarlos con el fotón sí lo hace. Al aplicar este último corte se garantiza que un leptón necesariamente hayan irradiado y que el fotón provenga del decaimiento del bosón Z y no de otro proceso. En el caso de tener en el evento más de un fotón o más de dos leptones que cumplan los requisitos, se eligió el trío cuya masa invariante sea la más cercana a la del bosón Z.

La incertidumbre estadística para la eficiencia se obtiene como el intervalo de confianza de un estimador de Bayes con el método de Jeffrey [28]

Figura 4.2: Eficiencias de los triggers de fotones para el año 2018 en función del $p_{\rm T}$ (izquierda), η (centro) y < μ > (derecha).

sistemáticas se obtienen a partir de las variaciones en las eficiencias al modificar algunas de las selecciones. El requisito sobre las masas invariantes se varió de $36 < m_{ll} < 87$ GeV to $44 < m_{ll} < 79$ GeV, y de $82 < m_{ll\gamma} < 100$ GeV to $88 < m_{ll\gamma} < 94$ GeV. Se modificó el requerimiento de identificación de los leptones a tight y medium, y de aislamiento a FCTight.

En la Figura 4.2 se pueden observar los resultados de las eficiencias en función de las distintas variables.

4.4. Factores de escala de las eficiencias

Las simulaciones de Monte Carlo utilizadas en la colaboración son generadas con con con así no logran reproducir perfectamente los efectos de la interacción entre las partículas y el detector. Estos efectos se traducen en eficiencias en general más altas que las respectivas calculadas con datos, ya que. Con el objetivo de corregir las simulaciones y que se asemejen lo más posible a los datos, se calculan los Factores de Escala (SF) ara el caso de la eficiencia del trigger de fotones, los SFs se definen como el cociente entre las eficiencias calculadas en datos y las calculadas con simulaciones:

$$SF(p_{T}, \eta) = \frac{\epsilon^{(\text{datos})}(p_{T}, \eta)}{\epsilon^{(\text{MC})}(p_{T}, \eta)}$$
(4.2)

En la región con $p_{\rm T}$ menor al umbral, donde las eficiencias son prácticamente nulas, y en la región del crack se definen los SFs igual 1 ± 1 . Las eficiencias de las simulaciones utilizan muestras con procesos con producción de electrones o muones junto con un fotón, y se calculan exactamente de la misma forma que en datos. En la Figura 4.3 se observa el SF obtenido para el trigger ${\tt HLT_g25_loose}$ con un WP de aislamiento ${\tt FixedCutTightCaloOnly}$.

Figura 4.3: Factor de escala de la eficiencia del trigger HLT_g25_loose con un WP de aislamiento FixedCutTightCaloOnly =

Estrategia de búsqueda de SUSY con fotones, jets y MET en el estado final

Resultados e interpretación del análisis

...

Conclusión

...

36 7 Conclusión

Agradecimientos

...

38 7 Agradecimientos

Bibliografía

- [1] ATLAS Collaboration. Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data. *JINST*, 14:P12006, 2019.
- [2] ATLAS Collaboration. Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data. Eur. Phys. J. C, 76:666, 2016.
- [3] ATLAS Collaboration. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C, 74:3071, 2014.
- [4] W Lampl, S Laplace, D Lelas, P Loch, H Ma, S Menke, S Rajagopalan, D Rousseau, S Snyder, and G Unal. Calorimeter Clustering Algorithms: Description and Performance. Technical Report ATL-LARG-PUB-2008-002. ATL-COM-LARG-2008-003, CERN, Geneva, Apr 2008.
- [5] ATLAS Collaboration. Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton–proton collision data. JINST, 14:P03017, 2019.
- [6] ATLAS Collaboration. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1. Eur. Phys. J. C, 77:490, 2017.
- [7] newt.
- [8] ATLAS Collaboration. Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016. Eur. Phys. J. C, 79:205, 2019.
- [9] ATLAS Collaboration. Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton–proton collision data at \sqrt{s} = 13 TeV. Eur. Phys. J. C, 79:639, 2019.
- [10] Kalman.
- [11] chi2.
- [12] gsf.

40 BIBLIOGRAFÍA

- [13] trt.
- [14] ATLAS Collaboration. Electron efficiency measurements with the ATLAS detector using 2012 LHC proton–proton collision data. Eur. Phys. J. C, 77:195, 2017.
- [15] Cacciari.
- [16] ATLAS Collaboration. Muon reconstruction performance of the ATLAS detector in proton–proton collision data at $\sqrt{s} = 13 \text{ TeV}$. Eur. Phys. J. C, 76:292, 2016.
- [17] silicon.
- [18] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti- k_t jet clustering algorithm. *JHEP*, 04:063, 2008.
- [19] trimming.
- [20] ATLAS Collaboration. Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at $\sqrt{s} = 13 \text{ TeV}$ with the ATLAS detector. *Phys. Rev. D*, 96:072002, 2017.
- [21] ATLAS Collaboration. Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector. Eur. Phys. J. C, 76:581, 2016.
- [22] ATLAS Collaboration. Jet energy scale and resolution measured in proton–proton collisions at $\sqrt{s} = 13 \text{ TeV}$ with the ATLAS detector. 2020.
- [23] btag.
- [24] ATLAS Collaboration. Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13$ TeV. Eur. Phys. J. C, 78:903, 2018.
- [25] ATLAS Collaboration. Performance of missing transverse momentum reconstruction in proton–proton collisions at $\sqrt{s} = 7 \text{ TeV}$ with ATLAS. Eur. Phys. J. C, 72:1844, 2012.
- [26] ATLAS Collaboration. Performance of algorithms that reconstruct missing transverse momentum in $\sqrt{s} = 8 \text{ TeV}$ proton–proton collisions in the ATLAS detector. Eur. Phys. J. C, 77:241, 2017.
- [27] ATLAS Collaboration. Performance of electron and photon triggers in ATLAS during LHC Run 2. Eur. Phys. J. C, 80:47, 2020.
- [28] jeffrey.