Midterm Presentations & Boundary Value Problems

Lecture 8, Computational Astrophysics (ASTR660)

Hsiang-Yi Karen Yang, NTHU, 11/03/2022

Time	Name	Title
14:25-14:40	李佳倫	Effects of AGN Quasar Feedback in Galaxy Clusters
14:40-14:55	石郡翰	Using the Mechanism of AIRES to Simulate the Propagation of Cosmic Rays in the universe
14:55-15:10	凌志騰	A gravitational SPH simulation of galaxy collision from scratch
15.20 15.45	走收拾	Three-body problem in the Moon, Earth, and the Sun.
13.30-13.43	江文 11多 州リ	Three-body problem in the Moon, Lattil, and the 3dil.
15:45-16:00	簡嘉成	Improving my magnetohydrodynamic simulation for non-ideal plasma fluid
16:00-16:15	龔一桓	Ram pressure striping of galaxy cluster: Can a subcluster be assumed as gasless
	14:25-14:40 14:40-14:55 14:55-15:10 15:30-15:45 15:45-16:00	14:25-14:40 李佳倫 14:40-14:55 石郡翰 14:55-15:10 凌志騰 15:30-15:45 張修瑜 15:45-16:00 簡嘉成

For next week's presenters, please fill in your titles in the spreadsheet

Evaluation sheet for the midterm presentations

Name of Presenter:

Title of Presentation:

1	Poor			Ex	cellent
CONTENTS OF PROJECT PROPOSAL	1	2	3	4	5
Were the scientific motivations of the project clearly described?	,	,	,	,	,
Was proper background information on the topic given?	,	,	,	,	,
Was the proposed method suitable for the scientific problem to be tackled?	,	,	,	,	,
Was the numerical method chosen for this project clearly explained?	,	,	,	,	,
Was the motivation for choosing the numerical method clearly described?	,	,	,	,	,
Did the presenter provide sufficient justification for the feasibility of the project?	,	,	,	,	,
Did the presenter have a clear understanding of the material presented?	,	,	,	,	,
PRESENTATION SKILLS	1	2	3	4	5
Were the main ideas presented in an orderly and clear manner?	,	,	,	,	,
Did the presentation fill the time allotted?	,	,	,	,	,
Were the visual aids well prepared with clear and understandable figures/text?	,	,	,	,	,
Did the presentation appropriately cite relevant references?	,	,	,	,	,
Did the speaker make good eye contact and maintain the interest of the audience?	,	,	,	,	,
How well did the presenter handle questions from the audience?	,	,	,	,	,

COMMENTS/ENCOURAGEMENTS/CONSTRUCTIVE CRITICISMS/WHAT DO YOU LIKE ABOUT THIS PRESENTATION?

Evaluation forms for today's presentations 11/3/2022

- 1. Li, Jia-Lun
- 2. Shih, Jyun-Han
- 3. Ling, Chih-Teng
- 4. Chang, Siou-Yu
- 5. Chien, Chia-Chen
- 6. Gong, Yi-Huan

Ordinary differential equations -- $y^{(k)}(t) = f(t, y, y', ..., y^{(k-1)})$ summary

$$y^{(k)}(t) = f(t, y, y', \dots, y^{(k-1)})$$

- Ordinary differential equations (ODEs) are differential equations that involve only one independent variable (e.g., time) and can be solved by broken down to a system of 1st-order ODEs
- Errors occur mainly due to *truncation errors*. When solving ODEs, one has to care about
 - accuracy choosing a numerical method with desired accuracy to reduce local errors per step
 - stability choosing a step size that satisfies the stability criterion for the numerical method
 - cost choosing a step size as large as allowed to save computational time
- Stiff ODEs systems in which the step size is severely limited by the stability criterion

Ordinary differential equations -- $y^{(k)}(t) = f(t, y, y', ..., y^{(k-1)})$ summary

$$y^{(k)}(t) = f(t, y, y', \dots, y^{(k-1)})$$

- Algorithms for solving ODEs: Euler's (x), backward Euler's, Taylor series, Runge-Kutta methods (RK2, RK4), leapfrog...
- *Order of accuracy for an ODE algorithm:* to what order of h does the approximation agrees with the exact function
- **Explicit** methods: use info only at t_{k} , easier to compute, smaller stability region (requiring smaller step sizes), inefficient for stiff ODEs
- *Implicit* methods: use info also at t_{k+1} , require solving nonlinear equations to obtain next solution, larger stability region (sometimes unconditionally stable), suitable for solving stiff ODEs
- Symplectic integrators: algorithm for solving Hamiltonian systems, nearly energy conserving, useful for simulating celestial movements

This lecture...

- ► Introduction to boundary value problems (BVPs)
- ► Algorithms for solving BVPs & exercise

Initial value problems vs. boundary value problems

$$y^{(k)}(t) = f(t, y, y', \dots, y^{(k-1)})$$

- ► *Initial value problems (IVPs)* -- when solving *ODEs*, initial values are required to determine a unique solution (last lecture)
- ▶ *k*-th order ODEs require *k* conditions/constraints
- ▶ Boundary value problems (BVPs) specify the boundary conditions (B.C.) at end points a and b as the constraints instead
- **Example:** for a 2nd-order ODE y'' = f(t, y)

IVP	BVP
y(a)	y(a)
y'(a)	y(b)

BVPs - example #1

BVPs - example #2

$$-\frac{h^2}{2m}\frac{d^2\varphi}{dx^2} + V(x)\varphi = E\varphi$$
$$u'' = \lambda f(y, u, u')$$

- BVP -- solving for the wave function φ in an infinite potential well using Schrodinger's equation given V(x) and E
- This becomes an eigenvalue problem when one needs to solve for the eigenvalue λ as well

Algorithms for solving BVPs

Algorithm #1 - shooting method

- ► If y'(a) is unknown, then the problem is reduced to an /VP which we know how to solve
- ▶ Given some initial guess of y'(a), one could solve the ODE and see whether y(b) agrees with β
- \triangleright Vary the values of y'(a) until y(b) matches with β

Boundary conditions (BC):

$$y(a) = \alpha$$
$$y(b) = \beta$$

Algorithm #1 - shooting method

- Instead of varying y'(a) randomly, one could try to find the range of y'(a) that *brackets* the solution, e.g., the orange and green lines in the figure
- Then one can use the *bisection* method to narrow down the search range for y'(a) until y(b) matches with β

Boundary conditions (BC):

$$y(a) = \alpha$$
$$y(b) = \beta$$

Algorithm #2 - finite difference method

- ► Finite difference method converts BVP into system of algebraic equations by *replacing derivatives with finite difference approximations*
- ► Consider the BVP: y'' = f(t, y, y') a < t < b

with BC:
$$y(a) = \alpha$$
, $y(b) = \beta$

- **Step 1:** introduce mesh points between a and b: $t_i = a + ih$
- **Step 2:** replace the derivatives into a system of equations for unknowns y_i :

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} = f(t_i, y_i, \frac{y_{i+1} - y_{i-1}}{2h})$$

Step 3: solve for the unknowns $y_i(t_i)$ to obtain the approximate solution function at the mesh points

Example - finite difference method

Let's solve y'' = 6t

with BC:
$$y(0) = 1$$
, $y(1) = 1$

Replacing derivatives with finite difference approximations:

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} = 6t_i$$

Assume h = 0.5, we have three unknowns to solve between the boundaries: y_0 , y_1 and y_2 . We have one equation and two BCs:

$$\frac{1 - 2y_1 + 1}{(0.5)^2} = 6t_1 = 3$$

Finite difference method

- In practice, much smaller step sizes and many more mesh points would be required to obtain good approximations to the solution function
- In general, for N mesh points, we would have a system of N-2 equations and 2 BCs to solve for $y(t_i)$, where i = 1, 2...N
- ► This system of equations is typically *tridiagonal* (involving only neighboring points) and relatively easy to solve
- **Example** -- using h = 0.2 we have:

$$\begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} y_4 \\ y_3 \\ y_2 \\ y_1 \end{bmatrix} = \begin{bmatrix} 4.8h^2 - 1 \\ 3.6h^2 \\ 2.4h^2 \\ 1.2h^2 - 1 \end{bmatrix}$$

► This is a linear system which we know how to solve for y_i

In-class exercise

Exercise #1 - solve the BVP using the shooting method

Let's solve the BVP for the 2nd-order ODE: y'' = 6t

$$y'' = 6t$$

$$y' = y_2$$
$$y_2' = 6t$$

$$m{y}'(t) = egin{bmatrix} y_2 \\ 6t \end{bmatrix} = m{f}(t, m{y})$$
 (this is the array k(:) defined in the my_func subroutine in the exercises)

- ▶ BC: y(0) = 1, y(1) = 1
- Start from *initial guess* $y_2(0)=1$. Solve this IVP to get the value of y(1)
- Vary y₂(0) until y(1)=1

Exercise #1 - solve the BVP using the shooting method

Connect to CICA and load the Fortran compiler:

module load pgi

Go to your exercise directory on CICA:

cd astr660/exercise

Copy the template Fortran files to the current directory:

cp -r /data/hyang/shared/astro660CompAstro/L8exercise ./

► Enter the directory and see what files are there:

cd L8exercise

ls

Exercise #1 - solve the BVP using the shooting method

- ► Take a look at the files and make sure you understand how they work
- ► Fill in subroutine my_func in shooting1.f90
- ► Copy over the rk2 subroutine developed in the last lecture to solvers.f90
- Compile and run the codes by

make

./shooting1

To get the bonus credit, please submit your code and screen shot of the output to the TAs by end of today (11/3/2022)

Exercise #2 - solve the BVP using the shooting+bisection method

- ► Copy shooting1.f90 to shooting2.f90
- \blacktriangleright Implement a bisection search for the best value of $y_2(0)$
- You could set the search region to be [-1.5, 2.0]
- Modify Makefile to include compilation of shooting2.f90
- Compile and run the codes by

./shooting2

Observe how many iterations are required until the solution is found

References & acknowledgements

- Course materials of Computational Astrophysics from Prof. Kuo-Chuan Pan (NTHU)
- Course materials of Computational Astrophysics from Prof. Hsi-Yu Schive (NTU)
- Course materials of Computational Astrophysics and Cosmology from Prof. Paul Ricker (UIUC)
- "Computational Physics" by Rubin H. Landau, Manuel Jose Paez and Cristian C. Bordeianu
- "Scientific Computing An Introductory Survey" by Michael T. Heath