

Grammars, cont.

- Symbols to the left of "→" are called nonterminals.
- Symbols not surrounded by "< >" are terminals.
- Each line is a production.

Symbol	Meaning
<>	syntactic classes
\rightarrow	"consists of", "is" (also "::=")
I	"or"

A Grammar can be used to **Produce or Derive Sentences**

- Example: <sentence> ⇒* Old Harry jogs
 - where <sentence> is the start symbol and ⇒* means derivation in zero or more steps.

Example Derivation:

- <sentence> \Rightarrow <subject> subject> <
 - ⇒ <adjective> <noun> <p
 - ⇒ Old <noun> <
 - \Rightarrow Old Harry predicate>
 - ⇒ Old Harry <verb>
 - ⇒ Old Harry jogs

Definition: CFG (Context-free grammar)

 1. <number> → <no> 2. <no> → <no> <digit>

| <digit> • 4. <digit> \rightarrow 0|1|2|3|4|5|6|7|8|9

■ N = { <number>, <no>, <digit> }

• 3.

■ S = <number>

 $G = \langle N, \Sigma, P, S \rangle$

N : Nonterminals.

 Σ : terminal Symbols.

 $\stackrel{-}{P}$: rules, Productions of the form $\qquad \qquad \sum = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $A \rightarrow a$ where $A \in N$ and $a \in (N \cup \Sigma)^*$

S : the Start symbol, a nonterminal, $S \in N$.

(Sometimes V = N $\cup \Sigma$ is used, called the vocabulary.)

/B44, P Fritzson, IDA, LIU, 2011

Notational Conventions

$\alpha,\beta,\gamma\inV^*$	string of terminals and nonterminals
$A, B, C \in N$	nonterminals
$a, b, c \in \Sigma$	terminal symbols
$u, v, w, x, y, z \in \Sigma^*$	string of terminals

Derivations

Derivation

Example Grammar: 1. <number> \rightarrow <no>

- $\alpha \Rightarrow \beta$ (pronounced " α derives β ")
- 2. <no> → <no> <digit>
 3. | <digit>
 4. digit> → 0|1|2|3|4|5|6|7|8|9 • Formally: $\gamma \land \theta \Rightarrow \gamma \land \theta$ if we have $A \rightarrow \delta$
- $\bullet \ \, \text{Example: } < \text{number> } \Rightarrow_{\text{m}} < \text{no>} \Rightarrow_{\text{m}} < \text{no>} < \text{digit>} \Rightarrow_{\text{m}}$ <no $> 2 \Rightarrow_{rm} <$ digit $> 2 \Rightarrow_{rm} 12$
- \bullet <number> \Rightarrow <no> direct derivation.
- <number> \Rightarrow * 12 several derivations (zero or more).
- <number> ⇒⁺ 12 several derivations (one or more).
- Given G = < N, \sum , P, S > the language generated by G can be defined as L(G):

$$L(G) = \{ \hspace{.1cm} w \hspace{.1cm} | \hspace{.1cm} S \hspace{.1cm} \Rightarrow^{\scriptscriptstyle +} \hspace{.1cm} w \hspace{.1cm} \text{and} \hspace{.1cm} w \hspace{.1cm} \in \Sigma^{\star} \hspace{.1cm} \}$$

Sentential form, Sentence

- Sentential form
 - A string α is a sentential form in G if
 - $S \Rightarrow^* \alpha$ and $\alpha \in V^*$ (string of terminals and/or nonterminals)
 - Example: <no> <digit> is a sentential form in G(<number>). <no>8 is another sentential form
- Sentence
 - w is a sentence in G if $S \Rightarrow^+ w$ and $w \in \Sigma^*$.
 - Example: 12 is a sentence in G(<number>).

Left and Right Derivations

- Left derivation
 - ullet \Rightarrow_{lm} means that we replace the *leftmost* nonterminal by some appropriate right side.
- Left sentential form
 - A sentential form which is part of a leftmost derivation.
- Right derivation (canonical derivation)
 - ⇒_{rm} means that we replace the *rightmost* nonterminal by some appropriate right side.
- Right sentential form
 - A sentential form which is part of a rightmost derivation.

Rightmost Derivation, Handle

- Reverse rightmost derivation
- 12 <= $_{\rm m}$ <digit> 2 <= $_{\rm m}$ <no> 2 <= $_{\rm m}$ <no> <digit> <= $_{\rm m}$ <no> <= $_{\rm m}$ <number>
- Handles Consist of two parts: • 1. A production $A \rightarrow \beta$
- 1. <number> \rightarrow <no>
- 2. A position
- $\begin{array}{lll} 2. & <\!\! \text{no}\!\!> \to <\!\! \text{no}\!\!> <\!\! \text{digit}\!\!> \\ 3. & | & <\!\! \text{digit}\!\!> \\ 4. & & \!\! \text{digit}\!\!> \to 0|1|2|3|4|5|6|7|8|9 \end{array}$
- If S $\Rightarrow^*_m \alpha$ A w $\Rightarrow_m \alpha \beta$ w, the production A $\rightarrow \beta$ together with the position after α is a **handle** of $\alpha \beta$ w.
- \blacksquare Example: The handle of $\underline{\mbox{<no>}2}$ is the production $\mbox{<digit>}\rightarrow 2$ and the position after <no> because:
 - <number> \Rightarrow_m <no> \Rightarrow_m <no> <digit> \Rightarrow_m <no> 2 \Rightarrow_m <digit> 2 \Rightarrow_m 12
- Informally: a handle is what we reduce to what and where to get the previous sentential form in a rightmost derivation.

Reduction

■ Reduction of a grammar rule

In reverse right derivation, find a right side in some rule according to the grammar in the given right sentential form and replace it with the corresponding left side, i.e., nonterminal

DD55/B44, P Fritzson, IDA, LIU, 2011

Parse trees (derivation trees)

A parse tree can correspond to several different derivations

Example Grammar:

- 1. <number> \rightarrow <no> 2. <no> → <no> <digit>
 3. | <digit>
- 4. digit> \rightarrow 0|1|2|3|4|5|6|7|8|9

