N	Formule	Description / Preuve
1	$\Delta = h(v^r) - h(v)$	Variation de la hauteur avant et après rotation
2	$\Delta = \begin{cases} -1 & si \ h(B) > \max(h(D), h(C)) \\ 1 & si \ h(D) > \max(h(B), h(C)) \\ 0 & sinon \end{cases}$	Prouvé dans exercice 1, question 3, série 9 (slide 26 série 9)
3	$h(v^{r}) = \begin{cases} h(v) + \Delta \ si \ (h(x) > h(j)) \ ou \ (h(x) = h(j) \ et \ \Delta = 1) \\ h(v) \ sinon \end{cases}$	Hauteur d'un noed v après rotation en fonction de sa hauteur avant rotation et de sa variation Prouvé dans exercice 1, question 4, série 9 (slide 29
		série 9)
4	$\forall n, H(Gauche(n)) - H(Droit(n)) \leq 1$	Condition d'un AVL de racine n
5	$eq_x = H\left(A_g(x)\right) - H(A_d(x))$	Equilibre d'un noued x dans un AVL
6	Rotation droite $eq_x^r = eq_x - 1 - max(0, eq_y)$ $eq_y^r = \begin{cases} eq_y - 1 \text{ si } eq_x^r \ge 0\\ eq_x - 2 + min(0, eq_y) \text{ sinon} \end{cases}$	Prouvé dans exercice 1, question 1, série 10 (slide 21 série 10)
7	Rotation gauche $eq_x^r = eq_x + 1 - min(0, eq_y)$ $eq_y^r = \begin{cases} eq_y + 1 \text{ si } eq_x^r \leq 0 \\ eq_x + 2 + max(0, eq_y) \text{ sinon} \end{cases}$	Même preuve que rotation droite x est l'ancienne racine y la nouvelle racine
8	$\Delta = \begin{cases} -1 & \iff eq_y^r \geqslant 0 \\ 1 & \iff eq_x \leqslant 0 \\ 0 & \text{sinon} \end{cases}$	Cas d'une rotation droite Prouvé dans exercice 1, question 2, série 10 (slides 24, 25, 26 série 10)

9	$\Delta = \begin{cases} 1 & \iff eq_x \geqslant 0 \\ -1 & \iff eq_y^r \leqslant 0 \\ 0 & \text{sinon} \end{cases}$	Cas d'une rotation gauche
10	$\Delta = h(i^r) - h(i) \text{ et } \Delta' = h(v^r) - h(v)$ $\Delta' = h(v^r) - h(v) = \Delta \iff$ $\begin{cases} eq_v > 0 \text{ ou } (eq_v = 0 \text{ et } \Delta = 1) & lorsque \text{ i fils gauche} \\ eq_v < 0 \text{ ou } (eq_v = 0 \text{ et } \Delta = 1) & lorsque \text{ i fils droit} \end{cases}$ $\Delta' = 0 \text{ sinon}$	v est la racine i fils de v Variation de la hauteur en fonction de l'equilibre Prouvé dans exercice 1, question 4, série 10 (slide 34 série 10)
11	$eq_v^r = eq_v + \Delta$ $eq_v^r = eq_v - \Delta$ Sachant que $\Delta = h(i^r) - h(i)$	1 er cas, i est fils gauche 2 ème cas, i est fils droit Prouvé dans exercice 1, question 4, série 10 (slide 35 série 10)