NOIP2019 模拟赛 day9(B 组)

比赛时间: 2019 年 10 月 5 日 8:00~11:30 负责人: 长乐一中 陈贤

【试题一览】

题目名称	方阵	排名	最长不下降子序	序列 奇袭
存盘文件名	matrix	rank	lis	raid
输入文件名	matrix.in	rank.in	lis.in	raid.in
输出文件名	matrix.out	rank.out	lis.out	raid.out
测试点个数	10	10	10	10
每个测试点分数	10	10	10	10
每个测试点时限	2s	1s	1s	1s
内存限制	256MB	256MB	256MB	256MB
结果比较方式	全文比较	全文比较	全文比较	全文比较

【注意事项】

- 1. 最终评测时开启 O2 优化。
- 2. 请不要大声喧哗和讨论。
- 3. 比赛期间请勿使用搜索引擎,请独立完成代码。

方阵(matrix,1s,256MB)

【问题描述】

小澳最近迷上了考古,他发现秦始皇的兵马俑布局十分有特点,热爱钻研的小澳打算在电脑上还原这个伟大的布局。

他努力钻研,发现秦始皇布置兵马俑是有一定规律的。兵马俑阵总共有 n 行 m 列,秦始皇在布置的时候每次会指定一行或一列,然后指定一个兵种,使得这一行或者这一列上全部放上这一个兵种。如果这一行上以前放过其它的兵种,那么他会拔掉以前的兵种改成现在他命令的兵种。

小澳从秦朝的文献中找到了布置这个方阵的操作顺序,他希望你能告诉他布局完成后整个兵马俑阵是什么样子的。

【输入格式】

输入文件共 q+1 行。

输入文件第 1 行包括三个正整数 n,m,q,分别表示兵马俑阵的行数和列数以及秦始皇总的操作数。

接下来 q 行,每行三个正整数 x,y,z, x 表示操作种类,若 x=1 表示给第 y 行(y≤n)全部 放上 z 这个兵种,若 x=2,则表示给第 y 列(y≤m)全部放上 z 这个兵种,数据保证 z≤ 2^{31} -1。

【输出格式】

n 行,每行 m 个整数,分别用空格隔开。表示最后方阵上每个位置放的兵种,如果某个位置没有被操作过输出 0。

【样例输入1】

- 333
- 113
- 221
- 122

【样例输出1】

- 3 1 3
- 222
- 010

【样例解释1】

0	0	0		3	3	3		3	1	3		3	1	3
0	0	0	→	0	0	0	→	0	1	0	→	2	2	2
0	0	0		0	0	0		0	1	0		0	1	0

【样例输入2】

- 535
- 111
- 131
- 151
- 2 1 1
- 231

【样例输出 2】

111

101

1 1 1

101

111

【数据规模与约定】

对于前 20%的数据, n×m≤25。

对于前 30%的数据, q≤2000。

对于 100%的数据, n,m≤1000, n×m≤10 5 , q≤10 6 。

排名(rank,1s,256MB)

【问题描述】

小明班里一共 N 名同学,小明这次考试考的不错,他知道他考了多少分,以及班级里的同学一共考了多少分,小明还知道这次考试满分为 100,问小明最高可以排第几,最低可以排第几。(相同分数算并列的排名,比如总共 4 个人 7,6,6,5,那么他们的排名分别就是1,2,2,4)

【输入格式】

第一行包括三个整数 N,A,S,分别表示班里同学的人数,小明的分数,以及班里同学的总分。

【输出格式】

包括两个用空格隔开的正整数,分别表示小明在最优情况下的排名,以及在最坏情况下的排名。

【样例输入1】

5 90 450

【样例输出1】

14

【样例解释】

唯一一种最优情况 90 90 90 90 90, 小明排第一; 一种最坏情况 100 95 95 90 70, 小明排第四。

【样例输入2】

10 3 724

【样例输出 2】

9 10

【数据规模与约定】

对于 40%的数据, 1≤N≤10;

对于 100%的数据,1≤N≤10⁵,0≤A≤100,0≤S≤100N。

最长不下降子序列(lis,1s,256MB)

【问题描述】

给你一个正整数 N,请你统计出所有的长度恰好为 n 的 01 序列的最长不下降子序列之和。

【输入格式】

第一行包括一个正整数 N。

【输出格式】

一行包括一个整数表示所统计的答案,由于答案可能会很大,所以我们把答案对 10^9+7 取模。

【样例输入】

3

【样例输出】

20

【样例解释】

长度为3的01序列共有8种:

- 000 的最长不下降子序列为 3;
- 001 的最长不下降子序列为 3;
- 010的最长不下降子序列为2;
- 011 的最长不下降子序列为 3;
- 100 的最长不下降子序列为 2;
- 101 的最长不下降子序列为 2;
- 110 的最长不下降子序列为 2;
- 111 的最长不下降子序列为 3; 合计为 20。

【数据规模与约定】

对于 30%的数据, n≤20;

对于 100%的数据, n≤200。

奇袭(raid,1s,256MB)

【问题描述】

给出一张 $N \times N$ 的网格图,一共有 N 支军队驻扎在一些网格中(不会有两只军队驻扎在一起)。每有一个 $k \times k(1 \le k \le N)$ 的子网格图包含恰好 k 支军队,袭击的难度就会增加 1 点,请你计算出袭击的难度。

【输入格式】

第一行,一个正整数 N,表示网格图的大小以及军队数量。

接下来 N 行,每行两个整数 X_i,Y_i ,表示第 i 支军队的坐标。

保证每一行和每一列都恰有一只军队,即每一个 X_i 和每一个 Y_i 都是不一样的。

【输出格式】

一行,一个整数表示袭击的难度。

【样例输入】

5

11

3 2

24

5 5

43

【样例输出】

10

【样例解释】

显然,分别以(2,2)和(4,4)为左上、右下顶点的一个子网格图中有 3 支军队,这为我们的难度贡献了 1 点。类似的子网格图在原图中能找出 10 个。

【数据规模与约定】

对于前 10%的数据, N≤100;

对于前 40%的数据, N≤5000;

对于 100%的数据, N≤50000。