Eine Woche, ein Beispiel 8.6. Kottwitz set

This document is a continuation of [23.08.06]. Reorganized from Luozi Shi (and his partners)'s talk.

Recall that $\widehat{\mathbb{Q}_p^{uv}} = \operatorname{Frac}(\widehat{\mathbb{Z}_p^{uv}})$, $\widehat{\mathbb{Z}_p^{uv}} = W(\operatorname{IF_p})$. Here "^" is completion w.v.t. valuation.

Setting. In this document, F is a NA local field,

Def For G/F conn reductive, the Kottwitz set B(G) is defined as

$$B(G):=H'(W_F,G_{\overline{F}})$$
 $\cong H'(<\sigma>,G_L)$ by $Inf-Res$ seq & $H'(I_F,G_{\overline{F}})=0$
 $\cong G(L)/\sigma$ -twisted $G(L)$ -conj

when G=GLn

== Isoc/~

Rmk By Hilbert 90, H'(F, GLn, F) = fil. In most cases, $H'(\Gamma_F, G_{\overline{F}}) \not\cong H'(W_F, G_{\overline{F}})$

[even though $H'(\Gamma_F, G_F) \cong G(F) \cong H^o(W_F, G_F)$, we take different resolutions.]

 E_g $B(G_m) \cong \mathbb{Z}$

Proof. The map
$$\beta: \mathcal{O}_{L}^{\times} \longrightarrow \mathcal{O}_{L}^{\times} \qquad \times \longmapsto x \cdot \sigma(x)^{-1}$$
is similarity since

is surjective, since

is surjective, since
$$\beta_{1} : \mathcal{K}_{L}^{\times} \longrightarrow \mathcal{K}_{L}^{\times} \qquad \times \longmapsto x^{1-9}$$

$$\beta_{2} : \mathcal{K}_{L} \longrightarrow \mathcal{K}_{L} \qquad \times \longmapsto x - x^{9}$$
are surjective. $(\mathcal{K}_{L} \cong \mathbb{F}_{p})$ is alg closed)

Then the well-defined morphism $\nu: L^{\times}/Im\beta \longrightarrow Z \times \mapsto \nu(x)$ is injective, thus an iso.

Ex. Check that the SES
$$1 \longrightarrow \mathbb{Z}_{2Z} \longrightarrow \mathbb{C}_m \xrightarrow{(\cdot)^*} \mathbb{C}_m \longrightarrow 1$$
induce LES in gp cohomology:

where

$$B(\underline{\mathbb{Z}_{22}}) : \stackrel{\text{def}}{=} H'(W_F, \mathbb{Z}_{22}) \qquad W_F \in \mathbb{Z}_{22} \text{ trivially}$$

$$= Hom(W_F, \mathbb{Z}_{22})$$

$$\cong \int H \triangleleft W_F \text{ closed with index } 2 \int U \text{ fo} \int U \text{$$

This LES gives us to compute number of finite extensions. ep with prime degree. One gets $F^{\times} \xrightarrow{(-)^n} F^{\times} \xrightarrow{S} B(\mathbb{Z}/n\mathbb{Z}) \xrightarrow{\circ} \cdots$

E.g.
$$B(G_m \times G_m) \cong \mathbb{Z} \times \mathbb{Z} = X_*(G_m \times G_m)$$

Proof. $B(G_m \times G_m) \cong G_m(L) \times G_m(L)/_{\nabla-\text{twisted}} G_m(L) \times G_m(L)-\text{conj}$

$$\cong G_m(L)/_{\sim} \times G_m(L)/_{\sim}$$

≃ 7/× 7/2

 $X^*(\widehat{\Upsilon}^{\Gamma_F}) \cong \mathbb{Z}$

Rmk. In general, for a torus
$$T/F$$
, $B(T) \cong X_*(T)_{\Gamma_F} \cong X^*(\widehat{T}^F)$

E.g. For E/F any Galois extension of deg 2, Gal(E/F) = \$1,03.

When
$$T = \operatorname{Res}_{E/F} C_{m,E}$$
, $B(T) \cong \mathbb{Z}$.
 $X_*(T) \cong \mathbb{Z} \times \mathbb{Z}$ $\sigma: \binom{a}{b} \mapsto \binom{b}{a}$
 $X_*(T)_{T_E} \cong \mathbb{Z} \times \mathbb{Z} / \langle \sigma(v) - v \rangle \xrightarrow{+} \mathbb{Z}$

When
$$T = \operatorname{Res}_{E/F}^{\Gamma} G_{m,E}$$
, $B(T) \cong \mathbb{Z}_{2\mathbb{Z}}$
 $X_{*}(T) \cong \mathbb{Z}$ $\sigma : \alpha \longmapsto -\alpha$
 $X_{*}(T)_{\Gamma_{F}} \cong \mathbb{Z}_{2\mathbb{Z}}$
 $\widehat{T} \cong \mathbb{C}^{\times}$ $\sigma : \alpha \longmapsto \alpha^{-1}$
 U U
 $\widehat{T}^{\Gamma_{F}} \cong \mu_{*}(\mathbb{C}^{\times}) \cong \mathbb{Z}_{2\mathbb{Z}}$
 $X^{*}(\widehat{T}^{\Gamma_{F}}) \cong \mathbb{Z}_{2\mathbb{Z}}$

Ex. Check that the SES $1 \longrightarrow \text{Res}_{E/F}^{E} G_{m,E} \longrightarrow \text{Res}_{E/F}^{E} G_{m,E} \longrightarrow G_{m,F} \longrightarrow 1$ induce LES in gp cohomology:

Aside:
$$(Res_{E/F} G_{m,E})(F) = ker [(Res_{E/F} G_{m,E})(F) \xrightarrow{Norm} G_{m}(F)]$$

= $ker [E^{\times} \xrightarrow{Norm} F^{\times}]$
= $\{x \in E^{\times} | x \sigma(x) = 1\}$