Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model.
 Usually, the given data set is divided into training and test
 sets, with training set used to build the model and test set
 used to validate it.

Classification Task

Tid	Attrib1	Attrib2	Attrib3	Class	
1	Yes	Large	125K		
2	No	Medium	100K	No	
3	No	Small	70K	No	
4	Yes	Medium	120K	No	
5	No	Large	95K	Yes	
6	No	Medium	60K	No	
7	Yes	Large	220K	No	
8	No	Small	85K	Yes	
9	No	Medium	75K	No	
10	No	Small	90K	Yes	

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	7
14	No	Small	95K	7
15	No	Large	67K	7

Examples of Classification Task

 Classifying credit card transactions as legitimate or fraudulent

 Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil

 Categorizing news stories as finance, weather, entertainment, sports, etc

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

Training Examples

Day	Outlook	Temp	Humidity	Wind	Tennis?
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Trees

- Decision tree to represent learned target functions
 - Each internal node <u>tests</u> an attribute
 - Each branch corresponds to <u>attribute value</u>
 - Each leaf node assigns a classification

 Can be represented by logical formulas

Representation in decision trees

Example of representing rule in DT's:
if outlook = sunny AND humidity = normal
OR
if outlook = overcast
OR
if outlook = rain AND wind = weak
then playtennis

Decision Trees

Decision Tree Construction

- Find the best structure
- Given a training data set

Top-Down Construction

- Start with empty tree
- Main loop:
 - 1. Split the "best" decision attribute (A) for next node
 - 2. Assign A as decision attribute for node
 - 3. For each value of A, create new descendant of node
 - 4. Sort training examples to leaf nodes
 - If training examples perfectly classified, STOP, Else iterate over new leaf nodes
- Grow tree just deep enough for perfect classification
 - If possible (or can approximate at chosen depth)
- Which attribute is best?

Choosing Best Attribute?

- Consider 64 examples, 29⁺ and 35⁻
- Which one is better?

Entropy

- A measure for
 - uncertainty
 - purity
 - information content
- Information theory: optimal length code assigns (- log₂p) bits to message having probability p
- S is a sample of training examples
 - $-p_+$ is the proportion of positive examples in S
 - p_{-} is the proportion of negative examples in S
- Entropy of S: average optimal number of bits to encode information about certainty/uncertainty about S

$$Entropy(S) = p_{+}(-\log_2 p_{+}) + p_{-}(-\log_2 p_{-}) = -p_{+}\log_2 p_{+} - p_{-}\log_2 p_{-}$$

Can be generalized to more than two values