$$\begin{array}{c|c} & & & & \\ & &$$

wherein

R is a halogen atom, a nitro group, an optionally substituted amino group or it is a group, optionally further substituted, selected from:

- i) straight or branched C₁-C₆ alkyl;
- ii) C₃-C₆ cycloalkyl;
- iii) aryl or arylalkyl with from 1 to 6 carbon atoms within the straight or branched alkyl chain;

R₁ is an optionally further substituted group selected from:

- i) straight or branched C_1 - C_6 ;
- ii) 3 to 6 membered carbocycle or 5 to 7 membered heterocycle ring;
 - iii) aryl or arylcarbonyl;
- iv) arylalkyl with from 1 to 6 carbon atoms within the straight or branched alkyl chain;

 R_2 is hydrogen, a straight or branched C_1 - C_4 alkyl or C_2 - C_4 alkenyl or alkynyl group; or, taken together with the nitrogen atom to which they are bonded,

R₁ and R₂ form a substituted or unsubstituted group selected from:

- i) an optionally benzocondensed or bridged 5 to 7 membered heterocycle; or
 - ii) a 9 to 11 membered spiro-heterocyclic compound; or a pharmaceutically acceptable salt thereof to the patient.
- 6. (Twice Amended) A 2-ureido- 1,3-thiazole derivative of formula (I)

wherein

R is a halogen atom, a nitro group, an optionally substituted amino group or it is a group, optionally further substituted, selected from:

- i) straight or branched C₁-C₆ alkyl;
- ii) C₃-C₆ cycloalkyl;
- iii) aryl or arylalkyl with from 1 to 6 carbon atoms within the straight or branched alkyl chain;

 R_1 is an optionally further substituted group selected from:

- i) straight or branched C₁-C₆ alkyl;
- ii) 3 to 6 membered carbocycle or 5 to 7 membered heterocycle ring;
 - iii) aryl or arylcarbonyl;
- iv) arylalkyl with from 1 to 6 carbon atoms within the straight or branched alkyl chain;

 R_2 is hydrogen, a straight or branched C_1 - C_4 alkyl or C_2 - C_4 alkenyl or alkynyl group; or, taken together with the nitrogen atom to which they are bonded,

R₁ and R₂ form a substituted or unsubstituted group selected from:

- i) an optionally benzocondensed or bridged 5 to 7 membered heterocycle; or
- ii) a 9 to 11 membered spiro-heterocyclic compound; or a pharmaceutically acceptable salt thereof; provided that:
 - a) when R is a chlorine atom and R_2 is hydrogen, then R_1 is not methyl, phenyl or trifluoromethylphenyl; and
 - b) when R is methyl and R_2 is hydrogen, then R_1 is not 4- (5-oxazolyl)phenyl.
- 7. (Twice Amended) A 2-amino-1,3-thiazole derivative of formula (I)

$$R \xrightarrow{N} \underset{R_2}{N} \xrightarrow{N} \underset{R_2}{N}$$
 (I)

wherein

R is a halogen atom, a nitro group, an optionally substituted amino group or it is a group, optionally further substituted, selected from:

- i) straight or branched C₁-C₆ alkyl;
- ii) C_3 - C_6 cycloalkyl;
- iii) aryl or arylalkyl with from 1 to 6 carbon atoms within the straight or branched alkyl chain;

R₁ is an optionally further substituted group selected from:

- i) straight or branched C_1 - C_6 alkyl;
- ii) 3 to 6 membered carbocycle or 5 to 7 membered heterocycle ring;
 - iii) aryl or arylcarbonyl;
- iv) arylalkyl with from 1 to 6 carbon atoms within the straight or branched alkyl chain;

 R_2 is hydrogen, a straight or branched C_1 - C_4 alkyl or C_2 - C_4 alkenyl or alkynyl group; or, taken together with the nitrogen atom to which they are bonded, R_1 and R_2 form a substituted or unsubstituted group selected from:

- i) an optionally benzocondensed or bridged 5 to 7 membered heterocycle; or
- ii) a 9 to 11 membered spiro-heterocyclic compound; or a pharmaceutically acceptable salt thereof, provided that:
 - a) when R is chlorine or bromine and R_2 is hydrogen, then R_1 is not unsubstituted C_1 - C_3 alkyl, phenyl, trifluoromethylphenyl or an optionally substituted phenylcarbonyl;
 - b) when R is methyl and R_2 is hydrogen, then R_1 is not methyl, phenyl or 4-(5-oxazolyl)phenyl;
 - c) when R is nitrophenyl and R_2 is hydrogen, then R_1 is not haloalkyl;
 - d) when R is bromine or chlorine, then R_1 and R_2 are not both methyl groups.
- 8. The derivative according to Claim 7, wherein R is a halogen atom, a straight or branched C_1 - C_4 alkyl group, a phenyl group, a cycloalkyl group; R_2 is hydrogen and R_1 is an optionally substituted group selected from alkyl, aryl or arylakyl.
 - 9. (Amended) A 2-amino-1,3-thiazole derivative of formula (I)

 $\frac{1}{\sqrt{\eta^2}}$

wherein

R is bromine, chlorine, a straight or branched C_1 - C_4 alkyl group, a phenyl group, a cycloalkyl group; R_2 is hydrogen and R_1 is an optionally substituted aryl or an arylalkyl or heterocyclyl-alkyl group having from 1 to 4 carbon atoms within the alkyl chain.

10. (Amended) The derivative according to Claim 7, wherein

R is a halogen atom or is selected from the group consisting of nitro, amino, alkylamino, hydroxyalkylamino, arylamino, C₃-C₆ cycloalkyl, straight or branched C₁-C₆ alkyl optionally substituted by hydroxy, alkylthio, alkoxy, amino, alkylamino, alkoxycarbonylalkylamino, alkylcarbonyl, alkylsulfonyl, alkoxycarbonyl, carboxy, and aryl each optionally substituted by one or more hydroxy, halogen, nitro, alkoxy, aryloxy, alkylthio, arylthio, amino, alkylamino, dialkylamino, N-alkyl-piperazinyl, 4- morpholinyl, arylamino, cyano, alkyl, phenyl, aminosulfonyl, aminocarbonyl, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl or carboxy, or R is an aryl group optionally substituted by one or more hydroxy, halogen, nitro, alkoxy, aryloxy, alkylthio, arylthio, amino, alkylamino, dialkylamino, N-alkyl-piperazinyl, 4-morpholinyl, arylamino, cyano, alkyl, phenyl, aminosulphonyl, aminocarbonyl, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl or carboxy;

 R_1 is a straight or branched C_1 - C_6 alkyl group or an aryl group, each optionally substituted as above reported for R;

R₂ is a hydrogen atom; and pharmaceutically acceptable salts thereof provided that:

- a) when R is chlorine or bromine then R_1 is not unsubstituted C_1 - C_3 alkyl, phenyl, trifluoromethylphenyl or an optionally substituted phenylcarbonyl:
 - b) when R is methyl then R_1 is not methyl, phenyl or 4-(50xazolyl)phenyl;
 - c) when R is nitrophenyl then R_1 is not haloalkyl.
 - 11. (Amended) A 2-amino-1,3-thiazole derivative of formula (I)

$$R \xrightarrow{N} \underset{H}{\overset{O}{\underset{R_2}{\bigvee}}} R_1 \qquad (I)$$

wherein

R is a straight or branched C_1 - C_6 alkyl group and, together with the nitrogen atom to which they are bonded, R_1 and R_2 form a substituted or unsubstituted, optionally benzocondensed or bridged 5 to 7 membered heterocycle, or a 9 to 11 membered spiroheterocycle.

12. (Amended) A 2-amino-1,3-thiazole derivative of formula (I)

$$\begin{array}{c|c} & & & & \\ & &$$

wherein

R is a straight or branched C_1 - C_6 alkyl group; R_2 is a straight or branched C_1 - C_4 alkyl or C_2 - C_4 alkenyl or alkynyl group and R_1 is an aryl or arylalkyl group with from 1 to 4 carbon atoms within the straight or branched alkyl chain.

17. (Twice Amended) A method of treating, arresting, alleviating, or reducing tumor angiogenesis and metastasis inhibition in a patient, comprising

administering a 2-ureido-1,3-thiazole derivative of formula (I)

$$\begin{array}{c|c} & & & & \\ & &$$

wherein

R is a halogen atom, a nitro group, an optionally substituted amino group or it is a group, optionally further substituted, selected from:

i) straight or branched C_1 - C_6 alkyl;

053912 0096 HOUSTON 267298 v2

- ii.) C₃-C₆ cycloalkyl;
- iii) aryl or arylalkyl with from 1 to 6 carbon atoms within the straight or branched alkyl chain;

R₁ is an optionally further substituted group selected from:

- i) straight or branched C₁-C₆
- ii) 3 to 6 membered carbocycle or 5 to 7 membered heterocycle ring;
 - iii) aryl or arylcarbonyl;
- iv) arylalkyl with from 1 to 6 carbon atoms within the straight or branched alkyl chain;

 R_2 is hydrogen, a straight or branched C_1 - C_4 alkyl or C_2 - C_4 alkenyl or alkynyl group; or, taken together with the nitrogen atom to which they are bonded,

R₁ and R₂ form a substituted or unsubstituted group selected from:

- i) an optionally benzocondensed or bridged 5 to 7 membered heterocycle; or
- ii) a 9 to 11 membered spiro-heterocyclic compound; or a pharmaceutically acceptable salt thereof to the patient.
- 21. (Amended) The derivative according to Claim 7, wherein the optionally substituted group of R, R₁, and R₂ of formula (I) is optionally substituted with at least one member selected from the group consisting of halogen, nitro, oxo, carboxy, cyano, alkyl, perfluorinated alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, amino, alkylamino, alkoxycarbonylalkylamino, dialkylamino, arylamino, diarylamino, alkylsulfonylamino, arylureido, carbonylamino groups, formylamino, alkylcarbonylamino, oxygen-substituted oximes, alkoxycarbonylalkoxyimino, alkoxycarbonylamino, oxygen-substituted oximes, alkoxycarbonylakoxyimino, alkoxyimino, hydroxy, alkoxy, aryloxy, alkylcarbonyloxy, arylcarbonyloxy, cycloalkenyloxy, carbonyl, alkylcarbonyl, arylcarbonyl, aryloxycarbonyl, cycloalkyloxycarbonyl, aminocarbonyl, alkylaminocarbonyl, alkylaminocarbonyl, alkylsulphonyl, arylsulphonyl, arylsulphonyloxy, aminosulfonyl, alkylaminosulphonyl, and dialkylaminosulphonyl.

A marked-up version of the amended claims is attached as Attachment A.