Customer Segmentation

Code for both Customer and Patient segmentation is at the end.

Looking at the correlation matrix of the bank.csv data, I determined that **age** and **duration** would be good for clustering because they had the lowest absolute value, which means least dependent, so it makes for a good combination for clustering.

	age	balance	day	duration	campaign	pdays	previous
age	1.000000	0.083820	-0.017853	-0.002367	-0.005148	-0.008894	-0.003511
balance	0.083820	1.000000	-0.008677	-0.015950	-0.009976	0.009437	0.026196
day	-0.017853	-0.008677	1.000000	-0.024629	0.160706	-0.094352	-0.059114
duration	-0.002367	-0.015950	-0.024629	1.000000	-0.068382	0.010380	0.018080
campaign	-0.005148	-0.009976	0.160706	-0.068382	1.000000	-0.093137	-0.067833
pdays	-0.008894	0.009437	-0.094352	0.010380	-0.093137	1.000000	0.577562
previous	-0.003511	0.026196	-0.059114	0.018080	-0.067833	0.577562	1.000000

After separating out the columns, the remaining correlation matrix looks like the following:

	age	duration
age	1.000000	-0.002367
duration	-0.002367	1.000000

I used the elbow method to determine the optimal number of clusters. The "elbow" is at 3, which represents the optimal number of clusters.

Final clustering:

In terms of the code, I first created a correlation matrix to determine how much of an effect each variable had on each other, then decided on which columns to use based on that. Then I used the elbow method to determine the optimal number of clusters, and performed clustering from there.

Patient Segmentation

The correlation matrix for all the data in the covid analytics file is too big to show here, but I determined that Age UQ and Platelet Count were the best for clustering.

Age UQ Platelet Count (10^9/L) - LQ

Age UQ	1.000000	-0.728745
Platelet Count (10^9/L) - LQ	-0.728745	1.000000

Once again, I used the elbow method to determine the optimal number of clusters. The elbow here is at 2 clusters.

Final Clustering:

For the code, the main difference that I made on this dataset compared to bank.csv is that I removed empty spaces from the tables. Then I saved the modified dataframe to another file to keep a copy of the original set and also have the new set to work with (although I think making another copy is kind of trivial in the case of this being an assignment). After that, I took the same steps to arrive at the clustering graph.

Why K-fold-cross-validation and Confusion Matrix don't work here

K-fold-cross-validation doesn't work since it's supervised while clustering is unsupervised. Since there aren't training or testing datasets for unsupervised learning, K-fold doesn't create anything.

Confusion Matrix doesn't work for clustering because there isn't a "true" or "false" value in clustering.

CS 483 HW5 Clustering

November 7, 2021

[]: # Customer Segmentation

```
[3]: import pandas as pd
     import numpy as np
     from sklearn import preprocessing
     from sklearn.cluster import KMeans
     from sklearn.model_selection import train_test_split
     import matplotlib.pyplot as plt
 [4]: # read file
     dfAll = pd.read_csv("C:/Users/Khoa/Downloads/WSU/CS 483/HW5/bank/bank.csv", ___
      →sep=';')
     # Correlation matrix
     corr = dfAll.corr()
     corr.style.background_gradient(cmap='coolwarm')
 [4]: <pandas.io.formats.style.Styler at 0x2baab7dab20>
[30]: # Age and balance have high correlation, so use those
     df = pd.read_csv("C:/Users/Khoa/Downloads/WSU/CS 483/HW5/bank/bank.csv", sep=';
      x = df.copy()
     # Correlation matrix
     corr = df.corr()
     corr.style.background_gradient(cmap='coolwarm')
[30]: <pandas.io.formats.style.Styler at 0x2bab9d0aa60>
[31]: # Standardize columns
     x_scaled = preprocessing.scale(x)
     # use elbow method to determine optimal # of clusters
     wcss = []
     for i in range(1,10):
         kmeans = KMeans(i)
```

```
kmeans.fit(x_scaled)
wcss.append(kmeans.inertia_)
```

```
[32]: # visualize elbow method
plt.plot(range(1,10),wcss)
plt.xlabel('Number of clusters')
plt.ylabel('wcss')
plt.show()
# Optimal # of clusters is 3
```



```
[33]: # Clustering
kmeans = KMeans(3)
kmeans.fit(x_scaled)
cluster = x.copy()
cluster['cluster_pred'] = kmeans.fit_predict(x_scaled)
cluster
```

```
[33]:
                  duration
                             cluster_pred
             age
      0
              30
                         79
                                          1
      1
              33
                        220
                                          1
      2
              35
                        185
                                          1
      3
              30
                        199
              59
                        226
      4
```

4F47 F7 4F0	_
4517 57 153	0
4518 57 151	0
4519 28 129	1
4520 44 345	0

[4521 rows x 3 columns]


```
[]:

# Patient Segmentation

[21]: # read file

dfAll = pd.read_csv("C:/Users/Khoa/Downloads/WSU/CS 483/HW5/

→covid_analytics_clinical_data.csv")

# Correlation matrix
```

```
corr = dfAll.corr()
     corr.style.background_gradient(cmap='coolwarm')
[21]: <pandas.io.formats.style.Styler at 0x2ba8a10bd00>
[22]: # use only 'Platelet Count (10^9/L) - LQ' and 'Age UQ' columns.
      # LQ means lower quartile, UQ means upper quartile
     df = pd.read_csv("C:/Users/Khoa/Downloads/WSU/CS 483/HW5/
      usecols=['Platelet Count (10^9/L) - LQ', 'Age UQ'])
     modDF = df.dropna() # Remove empty spaces
     modDF.to_csv('modDF.csv',index=False) # Save modified df
     # Correlation matrix
     corr = df.corr()
     corr.style.background_gradient(cmap='coolwarm')
[22]: <pandas.io.formats.style.Styler at 0x2bab9d33340>
[23]: modDF_scaled = preprocessing.scale(modDF)
     # use elbow method to determine optimal # of clusters
     wcss = []
     for i in range(1,10):
         kmeans = KMeans(i)
         kmeans.fit(modDF_scaled)
         wcss.append(kmeans.inertia_)
[24]: # Visualize elbow method
     plt.plot(range(1,10),wcss)
     plt.xlabel('Number of clusters')
     plt.ylabel('wcss')
     plt.show()
      # Optimal # of clusters is 2
```



```
[25]: # Clustering
      kmeans = KMeans(2)
      kmeans.fit(modDF_scaled)
      cluster = modDF.copy()
      cluster['cluster_pred'] = kmeans.fit_predict(modDF_scaled)
      cluster
[25]:
           Age UQ
                   Platelet Count (10^9/L) - LQ
                                                    cluster_pred
      0
             67.0
                                            155.0
      1
             76.0
                                            107.0
                                                                0
      2
             58.0
                                            168.0
                                                                0
      3
             68.0
                                            158.0
                                                                0
      4
             68.0
                                                                0
                                            155.0
              •••
             65.0
                                                               0
      522
                                            160.0
      523
             71.0
                                            120.5
                                                                0
      525
             72.0
                                            143.0
                                                                0
      526
             73.0
                                            144.0
                                                               0
      527
             70.0
                                            141.0
      [116 rows x 3 columns]
```

[26]: # Visualize clustering

```
plt.xlabel('Platelet Count (10^9/L) - LQ')
plt.ylabel('Age UQ')
plt.show()
```


[]: