Chapter 1

Problems 1-1 through 1-6 are for student research. No standard solutions are provided.

1-7 From Fig. 1-2, cost of grinding to \pm 0.0005 in is 270%. Cost of turning to \pm 0.003 in is 60%.

Relative cost of grinding vs. turning = 270/60 = 4.5 times Ans.

1-8 $C_A = C_B$,

$$10 + 0.8 P = 60 + 0.8 P - 0.005 P^{2}$$

$$P^2 = 50/0.005$$
 \Rightarrow $P = 100$ parts Ans.

1-9 Max. load = 1.10 P

Min. area = $(0.95)^2 A$

Min. strength = 0.85 S

To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be

$$n_d = \frac{1.10}{0.85(0.95)^2} = 1.43$$
 Ans.

1-10 (a) $X_1 + X_2$:

$$x_1 + x_2 = X_1 + e_1 + X_2 + e_2$$

error $= e = (x_1 + x_2) - (X_1 + X_2)$
 $= e_1 + e_2$ Ans.

(b) $X_1 - X_2$:

$$x_1 - x_2 = X_1 + e_1 - (X_2 + e_2)$$

 $e = (x_1 - x_2) - (X_1 - X_2) = e_1 - e_2$ Ans.

(c) $X_1 X_2$:

$$\begin{split} x_1 x_2 &= \left(X_1 + e_1 \right) \left(X_2 + e_2 \right) \\ e &= x_1 x_2 - X_1 X_2 = X_1 e_2 + X_2 e_1 + e_1 e_2 \\ &\doteq X_1 e_2 + X_2 e_1 = X_1 X_2 \left(\frac{e_1}{X_1} + \frac{e_2}{X_2} \right) \quad Ans. \end{split}$$

(**d**)
$$X_1/X_2$$
:

$$\begin{split} \frac{x_1}{x_2} &= \frac{X_1 + e_1}{X_2 + e_2} = \frac{X_1}{X_2} \left(\frac{1 + e_1/X_1}{1 + e_2/X_2} \right) \\ \left(1 + \frac{e_2}{X_2} \right)^{-1} &\doteq 1 - \frac{e_2}{X_2} \quad \text{then} \quad \left(\frac{1 + e_1/X_1}{1 + e_2/X_2} \right) \\ &\doteq \left(1 + \frac{e_1}{X_1} \right) \left(1 - \frac{e_2}{X_2} \right) \\ &\doteq 1 + \frac{e_1}{X_1} - \frac{e_2}{X_2} \end{split}$$
 Thus, $e = \frac{x_1}{x_2} - \frac{X_1}{X_2} \\ &\doteq \frac{X_1}{X_2} \left(\frac{e_1}{X_1} - \frac{e_2}{X_2} \right) \quad \textit{Ans}.$

1-11 (a)
$$x_1 = \sqrt{7} = 2.6457513111$$

 $X_1 = 2.64$ (3 correct digits)
 $x_2 = \sqrt{8} = 2.8284271247$
 $X_2 = 2.82$ (3 correct digits)
 $x_1 + x_2 = 5.4741784358$
 $e_1 = x_1 - X_1 = 0.0057513111$
 $e_2 = x_2 - X_2 = 0.0084271247$
 $e = e_1 + e_2 = 0.0141784358$
Sum = $x_1 + x_2 = X_1 + X_2 + e$
= $2.64 + 2.82 + 0.0141784358 = 5.4741784358$ Checks
(b) $X_1 = 2.65, X_2 = 2.83$ (3 digit significant numbers)
 $e_1 = x_1 - X_1 = -0.0042486889$
 $e_2 = x_2 - X_2 = -0.0015728753$
 $e = e_1 + e_2 = -0.0058215642$
Sum = $x_1 + x_2 = X_1 + X_2 + e$
= $2.65 + 2.83 - 0.0015728753 = 5.4741784358$ Checks

1-12
$$\sigma = \frac{S}{n_d}$$
 $\Rightarrow \frac{16(1000)}{\pi d^3} = \frac{25(10^3)}{2.5}$ $\Rightarrow d = 0.799 \text{ in } Ans.$

Table A-17: $d = \frac{7}{8}$ in Ans.

Factor of safety:
$$n = \frac{S}{\sigma} = \frac{25(10^3)}{\frac{16(1000)}{\pi(\frac{7}{8})^3}} = 3.29$$
 Ans.

1-13 Eq. (1-5):
$$R = \sum_{i=1}^{n} R_i = 0.98(0.96)0.94 = 0.88$$

Overall reliability = 88 percent Ans.

1-14
$$a = 1.500 \pm 0.001$$
 in $b = 2.000 \pm 0.003$ in $c = 3.000 \pm 0.004$ in $d = 6.520 \pm 0.010$ in $\overline{w} = \overline{d} - \overline{a} - \overline{b} - \overline{c} = 6.520 - 1.5 - 2 - 3 = 0.020$ in $t_w = \sum t_{\text{all}} = 0.001 + 0.003 + 0.004 + 0.010 = 0.018$ $w = 0.020 \pm 0.018$ in $Ans.$

(b) From part (a), $w_{\min} = 0.002$ in. Thus, must add 0.008 in to \overline{d} . Therefore,

$$\overline{d} = 6.520 + 0.008 = 6.528$$
 in Ans.

1-15
$$V = xyz$$
, and $x = a \pm \Delta a$, $y = b \pm \Delta b$, $z = c \pm \Delta c$,

$$\overline{V} = abc$$

$$V = (a \pm \Delta a)(b \pm \Delta b)(c \pm \Delta c)$$
$$= abc \pm bc\Delta a \pm ac\Delta b \pm ab\Delta c \pm a\Delta b\Delta c \pm b\Delta c\Delta a \pm c\Delta a\Delta b \pm \Delta a\Delta b\Delta c$$

The higher order terms in Δ are negligible. Thus,

$$\Delta V \doteq bc\Delta a + ac\Delta b + ab\Delta c$$

and,
$$\frac{\Delta V}{\overline{V}} \doteq \frac{bc\Delta a + ac\Delta b + ab\Delta c}{abc} = \frac{\Delta a}{a} + \frac{\Delta b}{b} + \frac{\Delta c}{c} = \frac{\Delta a}{\overline{a}} + \frac{\Delta b}{\overline{b}} + \frac{\Delta c}{\overline{c}} Ans.$$

For the numerical values given, $\overline{V} = 1.500(1.875)3.000 = 8.4375 \text{ in}^3$

$$\frac{\Delta V}{\overline{V}} = \frac{0.002}{1.500} + \frac{0.003}{1.875} + \frac{0.004}{3.000} = 0.00427 \implies \Delta V = 0.00427 (8.4375) = 0.036 \text{ in}^3$$

$$V = 8.438 \pm 0.036 \text{ in}^3$$
 Ans.

1-16

$$w_{\text{max}} = 0.05 \text{ in}, \quad w_{\text{min}} = 0.004 \text{ in}$$

$$\overline{w} = \frac{0.05 + 0.004}{2} = 0.027 \text{ in}$$

Thus, $\Delta w = 0.05 - 0.027 = 0.023$ in, and then, $w = 0.027 \pm 0.023$ in.

$$\overline{w} = \overline{a} - \overline{b} - \overline{c}$$

$$0.027 = \overline{a} - 0.042 - 1.5$$

$$\bar{a} = 1.569$$
 in

$$t_w = \sum t_{\text{all}} \implies 0.023 = t_a + 0.002 + 0.005 \implies t_a = 0.016 \text{ in}$$

Thus, $a = 1.569 \pm 0.016$ in

Ans.

1-17
$$\overline{D}_o = \overline{D}_i + 2\overline{d} = 3.734 + 2(0.139) = 4.012$$
 in

$$t_{D_0} = \sum t_{\text{all}} = 0.028 + 2(0.004) = 0.036$$
 in

$$D_o = 4.012 \pm 0.036$$
 in

1-18 From O-Rings, Inc. (oringsusa.com), $D_i = 9.19 \pm 0.13$ mm, $d = 2.62 \pm 0.08$ mm

Ans.

$$\overline{D}_o = \overline{D}_i + 2\overline{d} = 9.19 + 2(2.62) = 14.43$$
 mm

$$t_{D_o} = \sum t_{\text{all}} = 0.13 + 2(0.08) = 0.29 \text{ mm}$$

$$D_o = 14.43 \pm 0.29 \text{ mm}$$

Ans.

1-19 From O-Rings, Inc. (oringsusa.com), $D_i = 34.52 \pm 0.30$ mm, $d = 3.53 \pm 0.10$ mm

$$\overline{D}_o = \overline{D}_i + 2\overline{d} = 34.52 + 2(3.53) = 41.58$$
 mm

$$t_{D_o} = \sum t_{\text{all}} = 0.30 + 2(0.10) = 0.50 \text{ mm}$$

$$D_o = 41.58 \pm 0.50 \text{ mm}$$

Ans.

1-20 From O-Rings, Inc. (oringsusa.com), $D_i = 5.237 \pm 0.035$ in, $d = 0.103 \pm 0.003$ in

$$\overline{D}_o = \overline{D}_i + 2\overline{d} = 5.237 + 2(0.103) = 5.443$$
 in

$$t_{D_o} = \sum t_{\text{all}} = 0.035 + 2(0.003) = 0.041$$
 in

$$D_o = 5.443 \pm 0.041$$
 in Ans.

1-21 From O-Rings, Inc. (oringsusa.com), $D_i = 1.100 \pm 0.012$ in, $d = 0.210 \pm 0.005$ in

$$\overline{D}_o = \overline{D}_i + 2\overline{d} = 1.100 + 2(0.210) = 1.520$$
 in

$$t_{D_o} = \sum t_{\text{all}} = 0.012 + 2(0.005) = 0.022$$
 in

$$D_o = 1.520 \pm 0.022$$
 in Ans.

- **1-22** From Table A-2,
 - (a) $\sigma = 150/6.89 = 21.8 \text{ kpsi}$ Ans
 - **(b)** F = 2/4.45 = 0.449 kip = 449 lbf Ans.
 - (c) $M = 150/0.113 = 1330 \text{ lbf} \cdot \text{in} = 1.33 \text{ kip} \cdot \text{in}$ Ans.
 - (**d**) $A = 1500/25.4^2 = 2.33 \text{ in}^2$ Ans
 - (e) $I = 750/2.54^4 = 18.0 \text{ in}^4$ Ans.
 - (**f**) E = 145/6.89 = 21.0 Mpsi Ans.
 - (g) v = 75/1.61 = 46.6 mi/h Ans.
 - **(h)** V = 1000/946 = 1.06 qt Ans.
- **1-23** From Table A-2,
 - (a) l = 5(0.305) = 1.53 m Ans.
 - **(b)** $\sigma = 90(6.89) = 620 \text{ MPa}$ Ans.
 - (c) p = 25(6.89) = 172 kPa Ans.

(**d**)
$$Z = 12(16.4) = 197 \text{ cm}^3$$
 Ans.

(e)
$$w = 0.208(175) = 36.4 \text{ N/m}$$
 Ans.

(**f**)
$$\delta = 0.001 \ 89(25.4) = 0.0480 \ \text{mm}$$
 Ans.

(g)
$$v = 1200(0.0051) = 6.12 \text{ m/s}$$
 Ans.

(**h**)
$$\epsilon = 0.002 \ 15(1) = 0.002 \ 15 \ \text{mm/mm}$$
 Ans.

(i)
$$V = 1830(25.4^3) = 30.0 (10^6) \text{ mm}^3$$
 Ans.

1-24

(a)
$$\sigma = M/Z = 1770/0.934 = 1895 \text{ psi} = 1.90 \text{ kpsi}$$
 Ans.

(b)
$$\sigma = F/A = 9440/23.8 = 397 \text{ psi}$$
 Ans.

(c)
$$y = Fl^3/3EI = 270(31.5)^3/[3(30)10^6(0.154)] = 0.609$$
 in Ans.

(d)
$$\theta = Tl/GJ = 9740(9.85)/[11.3(10^6)(\pi/32)1.00^4] = 8.648(10^{-2}) \text{ rad} = 4.95^\circ$$
 Ans.

1-25

(a)
$$\sigma = F / wt = 1000/[25(5)] = 8 \text{ MPa}$$
 Ans.

(b)
$$I = bh^3/12 = 10(25)^3/12 = 13.0(10^3) \text{ mm}^4$$
 Ans.

(c)
$$I = \pi d^4/64 = \pi (25.4)^4/64 = 20.4(10^3) \text{ mm}^4$$
 Ans.

(d)
$$\tau = 16T/\pi d^3 = 16(25)10^3/[\pi (12.7)^3] = 62.2 \text{ MPa}$$
 Ans.

1-26

(a)
$$\tau = F/A = 2700/[\pi (0.750)^2/4] = 6110 \text{ psi} = 6.11 \text{ kpsi}$$
 Ans.

(b)
$$\sigma = 32Fa/\pi d^3 = 32(180)31.5/[\pi (1.25)^3] = 29570 \text{ psi} = 29.6 \text{ kpsi}$$
 Ans.

(c)
$$Z = \pi (d_o^4 - d_i^4)/(32 d_o) = \pi (1.50^4 - 1.00^4)/[32(1.50)] = 0.266 \text{ in}^3$$
 Ans.

(d)
$$k = (d^4G)/(8D^3N) = 0.0625^4(11.3)10^6/[8(0.760)^3 32] = 1.53 \text{ lbf/in}$$
 Ans.
