.py file
.tex file
.pdf file
.lean file



## Internal Universes

| $\infty$ _( $\infty$ -Cat)                | $\mathtt{D}(\infty_{-}(\infty\mathtt{-Cat}))$  | $\infty_{-}(\infty$ -Cat)/C                | $D(\infty_{\infty}(\infty-Cat)/C)$     |
|-------------------------------------------|------------------------------------------------|--------------------------------------------|----------------------------------------|
| $\infty$ _( $\infty$ -Grpd)               | $\mathtt{D}(\infty_{-}(\infty\mathtt{-Grpd}))$ | $\infty$ _( $\infty$ -Grpd)/G              | $D(\infty_{-}(\infty-Grpd)/G)$         |
| $\infty$ _( $\infty$ -Grpd <sub>0</sub> ) | $D(\infty_{-}(\infty-Grpd_0))$                 | $\infty_{-}(\infty\text{-Grpd}_{0})/G_{0}$ | $D(\infty_{-}(\infty-Grpd_{0})/G_{0})$ |



#### 1. Introduction

In this repository I would like to consider Kan extensions and homotopy Kan extensions, obtaining a thorough account of Lurie's straightening and unstraightening concepts.

1. Complexes of abelian groups and  $\infty$ -spaces are the same as  $\infty$ -presheaves on E.obj  $\mathbb{N}$ .

2.



#### 2. Unicode

Here is a list of the unicode characters I will use:

| Symbol                           | Unicode     | VSCode shortcut | Use                                          |  |  |
|----------------------------------|-------------|-----------------|----------------------------------------------|--|--|
| Lean's Kernel                    |             |                 |                                              |  |  |
| ×                                | 2A2F        | \times          | Product of types                             |  |  |
| $\rightarrow$                    | 2192        | \rightarrow     | Hom of types                                 |  |  |
| ζ,>                              | 27E8,27E9   | \langle,\rangle | Product term introduction                    |  |  |
| -> sto                           | 21A6        | \mapsto         | Hom term introduction                        |  |  |
| ٨                                | 2227        | \wedge          | Conjunction                                  |  |  |
| V                                | 2228        | vee             | Disjunction                                  |  |  |
| A                                | 2200        | \forall         | Universal quantification                     |  |  |
| 3                                | 2203        | \exists         | Existential quantification                   |  |  |
| _                                | 00AC        | \neg            | Negation                                     |  |  |
| Variables and Constants          |             |                 |                                              |  |  |
| a,b,c,,z                         | 1D52,1D56   |                 | Variables and constants                      |  |  |
| 0,1,2,3,4,5,6,7,8,9              | 1D52,1D56   |                 | Variables and constants                      |  |  |
| -                                | 207B        |                 | Variables and constants                      |  |  |
| 0,1,2,3,4,5,6,7,8,9              | 2080 - 2089 | \0-\9           | Variables and constants                      |  |  |
| A,,Z                             | 1D538       | bbA,,\bbZ       | Variables and constants                      |  |  |
| 0,,ℤ                             | 1D552       | \bba,,\bbz      | Variables and constants                      |  |  |
| $\alpha$ - $\omega$ ,A- $\Omega$ | 03B1-03C9   |                 | Variables and constants                      |  |  |
| Categories and Bicategories      |             |                 |                                              |  |  |
| 1                                | 1D7D9       | \b1             | The identity morphism                        |  |  |
| ?                                | 2218        |                 | Composition                                  |  |  |
|                                  |             |                 | Composition                                  |  |  |
|                                  |             |                 | Composition                                  |  |  |
| Adjunctions                      |             |                 |                                              |  |  |
|                                  | 1BC94       |                 | Right adjoints                               |  |  |
|                                  | 0971        |                 | Left adjoints                                |  |  |
| -                                | 22A3        | \dashv          | The condition that two functors are adjoint  |  |  |
| Monads and Comonads              |             |                 |                                              |  |  |
| ?,¿                              | 003F, 00BF  | ?,\?            | The corresponding (co)monad of an adjunction |  |  |
| !,j                              | 0021, 00A1  | !, \!           | The (co)-Eilenberg-(co)-Moore adjunction     |  |  |
| !,                               | A71D, A71E  |                 | The (co)AdjMon maps                          |  |  |
| Miscellaneous                    |             |                 |                                              |  |  |
| ~                                | 2243        | equiv           | Equivalences                                 |  |  |
| ≅                                | 2245        | cong            | Isomorphisms                                 |  |  |
| 1                                | 22A5        | \bot            | The overobject classifier                    |  |  |
| $\infty$                         | 221E        | \infty          | Infinity categories and infinity groupoids   |  |  |

Of these, the characters  $^{!}$ ,  $^{!}$ , and  $^{!}$  do not have VSCode shortcuts, and so I provide alternatives for them. Possibly they will have to be changed if this work assimilates into a larger project.

It is not possible to copy the from the pdf to the clipboard while preserving the integrity of the code. To see the official Lean 4 file please click the link on the top right of the front page or this.

### Lean 1 import Mathlib.CategoryTheory.Bicategory.Basic import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.DiscreteCategory import Mathlib.Combinatorics.Quiver.Basic ${\tt import\ Mathlib.CategoryTheory.Category.Init}$ import Aesop import Init import Mathlib.CategoryTheory.DiscreteCategory import Mathlib.CategoryTheory.Bicategory.Strict ${\tt import\ Mathlib.CategoryTheory.ConcreteCategory.Bundled}$ import Mathlib.CategoryTheory.Functor.Basic import Init.Core import Mathlib.CategoryTheory.Category.Cat import TheWhiteheadTheorem -- #check -- #









### 3. Contents

| Section                                                                                                                         | Description |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| Unfinished                                                                                                                      |             |  |  |  |  |
| Contents                                                                                                                        |             |  |  |  |  |
| Unicode                                                                                                                         |             |  |  |  |  |
| Introduction                                                                                                                    |             |  |  |  |  |
| PART I: Internal Universes                                                                                                      |             |  |  |  |  |
| Chapter 1: $\infty_{-}(\infty$ -Cat)                                                                                            |             |  |  |  |  |
| $\vec{\chi}$ :                                                                                                                  |             |  |  |  |  |
| $\vec{\chi}$                                                                                                                    |             |  |  |  |  |
| $D(\vec{\chi}.)$                                                                                                                |             |  |  |  |  |
| $D(\vec{\chi}^{\cdot})$                                                                                                         |             |  |  |  |  |
| $D(\infty_{-}(\infty\text{-}Grpd_{-1})$ -)                                                                                      |             |  |  |  |  |
| $D([-^{\circ p}, \infty](\infty - Grpd_{-1})])$                                                                                 |             |  |  |  |  |
| $D(\infty_{-}(\infty \operatorname{Grpd}_{-1})'-) \simeq D([\operatorname{-op}, \infty_{-}(\infty \operatorname{-Grpd}_{-1})])$ |             |  |  |  |  |
| Chapter 2: $\infty_{-}(\infty$ -Grpd)                                                                                           |             |  |  |  |  |
| X.                                                                                                                              |             |  |  |  |  |
| $\frac{x}{\ddot{x}}$                                                                                                            |             |  |  |  |  |
| $D(\vec{\chi}.)$                                                                                                                |             |  |  |  |  |
| $D(\vec{\chi}^{\cdot})$                                                                                                         |             |  |  |  |  |
| $D(\infty_{-}(\infty\text{-Grpd})-)$                                                                                            |             |  |  |  |  |
|                                                                                                                                 |             |  |  |  |  |
|                                                                                                                                 |             |  |  |  |  |
| Chapter 3: $\infty$ ( $\infty$ -Grpd <sub>0</sub> )                                                                             |             |  |  |  |  |
| $\chi$ .                                                                                                                        |             |  |  |  |  |
| χ'                                                                                                                              |             |  |  |  |  |
| $\mathrm{D}(\chi.)$                                                                                                             |             |  |  |  |  |
| $D(\chi^{\cdot})$                                                                                                               |             |  |  |  |  |
| $D(\infty_{-}(\infty-Cat)-)$                                                                                                    |             |  |  |  |  |
| $D([-^{\circ p},\infty_{-}(\infty\text{-Cat})])$                                                                                |             |  |  |  |  |
| $D(\infty (\infty-Cat)) \simeq D([-op,\infty (\infty-Cat)])$                                                                    |             |  |  |  |  |

Implementation Progress

Writing Progress



$$\infty_{-}(\infty\text{-Grpd}_{0})$$



$$\infty$$
\_( $\infty$ -Grpd)



# $\infty$ \_( $\infty$ -Cat)



### 4. Lan $D(\infty\text{-Cat})$



### ETCC Signature 3

ETCC signature 3 says that

1. 
$$D(\infty_{\infty}(\infty-Cat))$$
 classifies  $D(\infty_{\infty}(\infty-Cat))$ :  $\infty_{\infty}(\infty-Cat)$ 

2.

In this repository, I would like to think about the relationship between homotopy colimits, directed homotopy colimits, and homotopy colimits over based connected  $\infty$ -groupoids and one object  $\infty$ -groupoids, pariticularly as it concerns the six "fibrant replace and forget" functors.

I would also like to incorporate two notions of the formal addition of an interval object and directed interval object, as well as six theorems concerning monadicity that are related to it.

the left adjoint to precomposition in the case of the derived completion functors:

1. (completion of an  $\infty$ -category with respect to the directed derived category  $D(\infty$ -Cat))

$$\vec{\chi}: (X:\infty\text{-Cat}) \to (Y:\infty\text{-Cat}) \to \infty$$
-Cat.hom  $X Y \to \text{Adjunction}$   
 $D([-^{op},\infty\text{-Cat}]) D([-^{op},\infty\text{-Cat}])$ 

2. (completion of an  $\infty$ -groupoid with respect to the directed derived category  $D(\infty$ -Grpd))  $\vec{\chi}: [\overset{op}{\longrightarrow}, D(\infty$ -Grpd)]  $\rightleftarrows [-\overset{op}{\longrightarrow}, D(\infty$ -Grpd)]

$$\vec{\chi}: (X: \infty\text{-Grpd}) \to (Y: \infty\text{-Grpd}) \to \infty\text{-Grpd.hom } X Y \to \text{Adjunction}$$
  
 $\text{op}_{\mathcal{D}}[\infty\text{-Grpd}] [\text{-op}_{\mathcal{D}}(\infty\text{-Grpd})]$ 

3. (completion of a based connected  $\infty$ -groupoid with respect to the category of based connected  $\infty$ -groupoids)  $\chi:[-^{op},D(\infty\text{-Grpd}_0)]\rightleftarrows[-^{op},D(\infty\text{-Grpd}_0)]$ :

$$\chi: (X: \infty\text{-}Grpd_0) \to (Y: \infty\text{-}Grpd_0) \to \infty\text{-}Grpd_0.hom\ X\ Y \to Adjunction$$

$$[-^{op}, D(\infty\text{-}Grpd_0)]\ [-^{op}, D(\infty\text{-}Grpd_0)]$$

1. E, e and the various 'up to homotopy' structures (six)

2.

I like to use a notation of upper and lower dots for the left and right adjoint in Lean 4, but it requires specific fonts that not all systems have, and the two different characters do not always display like one another.

#### These three functors produce

- 1. Links back to the category section concerning the category of elements and how it can be used to express pointed Kan extensions.
- 2.  $\chi$  .hom : Functor D( $\infty$ -Cat)  $\rightleftharpoons$  D( $\infty$ -Cat) :  $\chi$
- **3.** *χ*
- 4.

After establishing several interesting features of Lan D( $\infty$ -Cat), F<sup>op</sup> : [C<sup>op</sup>,D( $\infty$ -Cat)]  $\cite{Cat}$  [D( $\infty$ -Grpd), D( $\infty$ -Grpd<sub>0</sub>)]



## 5. Bibliography



### About the Author

Dean Young is a graduate student at New York University, where he studies mathematics.



