(14)

Question 1

From largest to smallest, the asymptotic size of the given functions are (with lg taken to represent log_2 and lg^{1000} taken to mean $(lg(n))^{1000}$):

Question 2

The answers to this question rely on the discussion of the master method in chapter 4 of the CLRS textbook.

1

- **2.1)** T(n) = 2T(n/3) + 1, so a = 2, b = 3, f(n) = 1). Using the master method, this is case 1: $f(n) = O(n^{\log_3 2 \epsilon})$, so $\mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n}^{\log_3 2})$.
- **2.2)** T(n) = 5T(n/4) + n, so a = 5, b = 4, f(n) = n. Again this is case 1 of the master method: $f(n) = O(n^{\log_4 5 \epsilon})$, so $\mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n}^{\log_5 4})$.
- **2.3)** $T(n) = 8T(n/2) + n^3$, so $a = 8, b = 2, f(n) = n^3$. This is case 2 of the master method: $f(n) = \Theta(n^{\log_2 8})$, so $\mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n}^3 \mathbf{lgn})$
- **2.4)** $T(n) = T(n^{1/2}) + 1$. This recurrence relation cannot be directly translated into the form of the master method, so we use a change of variables m = lgn. S(m) = S(m/2) + 1, so $a_m = 1, b_m = 2, f(m) = 1$. This is case 2 of the master method, because $S(m) = \Theta(m^{\log_2 1}) = \Theta(mlgm)$. Changing back to our original variables, $T(n) = T(2^m) = S(m) = \Theta(mlgm) = \Theta(\lg n \lg \lg n)$

Question 3

Question 4