Ouverts, fermés, intérieur, adhérence

Soit $(\mathbf{E}, \|\cdot\|)$ un espace vectoriel normé.

Ouverts

 $U \in \mathbf{E}$ est ouvert si pour tout $\mathbf{x} \in U$, il existe $r \in \mathbf{R}_+^*$ tel que :

$$B_0(\mathbf{x}, r) \subset U$$
.

Fermés

 $F \in \mathbf{E}$ est dit fermé si son complémentaire est ouvert.

Ouverts:

- $--\emptyset$, **E**, boules ouvertes;
- Intersections *finies* d'ouverts ;
- Unions quelquonques d'ouverts.

Fermés:

- ∅, **E**, boules fermées ;
- Singletons;
- Unions *finies* de fermés ;
- intersections quelquonques de fermés.

Voisinage

 $V \in \mathbf{E}$ est voisinage de $\mathbf{a} \in \mathbb{E}$ si il existe U ouvert tel que : $\mathbf{a} \in U \subset V$.

Topologie relative à $A\subset \mathbb{E}$

- U_A ouverts relativement à $A:U_A=\underbrace{U}_{}\cap A$.
- F_A fermés relativement à $A: F_A = \underbrace{F}_{F_A} \cap A$.
- Le complémentaire dans A d'un ouvert (resp. fermé) relativement à A est un fermé (resp. ouvert) relativement à A.

Intérieur \mathring{A} de $A \subset \mathbf{E}$

incluse dans A.

Adhérence \bar{A} de $A \subset \mathbf{E}$

 $\mathbf{a} \in A$ est intérieur à A, s'il est le centre d'**une** boule B $\mathbf{a} \in \mathbf{E}$ est adhérent à A, si **toute** boule centrée en \mathbf{a} (ou tout voisinage de \mathbf{a}) rencontre A.

 \check{A} est plus grand ouvert inclus dans A; \bar{A} est plus petit fermé contenant A.

Proposition : \bar{A} est l'ensemble des limites des suites convergentes à valeurs dans A .	
--	--

Pour montrer que F est fermé (resp. fermé relatif de A).

« Soit $(\mathbf{x}_n)_{n\in\mathbb{N}}$ une suite à valeurs dans F qui converge vers $\mathbf{a}\in\mathbf{E}$ (resp. vers $\mathbf{a}\in A$). Or......

 $\dots, donc \mathbf{a} \in F.$

Donc F est fermé (resp. relativement fermé). »

Exemple : Dans $\mathscr{C}^0([a,b],\mathbf{R})$ est fermé dans $(\mathscr{B}([a,b],\mathbf{R})\|\cdot\|_{\infty})$.

Caractérisation de la continuité par les ouverts et fermés

Soit f une application d'une partie A de \mathbf{E} dans un e.v.n. \mathbf{G} .

Alors f est continue si et seulement si l'image réciproque d'un ouvert (resp. fermé) de G est un ouvert (resp. fermé) relatif de A.

Pour montrer que U (resp. F) est ouvert (resp. fermé).

« Soit $f: \mathbf{E} \to \mathbf{G}; \mathbf{x} \mapsto \dots$

On a $U = f^{-1}(A)$ (resp. $F = f^{-1}(A)$). Or A est ouvert (resp. fermé) et f est continue, donc U est ouvert, (resp. F est fermé). »

Exemple : Par la continuité du déterminant, $GL_n(\mathbf{R})$ est un ouvert de $\mathcal{M}_n(\mathbf{R})$, $SL_n(\mathbf{R})$ est fermé.