Introduction to Machine Learning

KU-BIG 학술부

Index

- 1. What is Machine Learning?
- 2. Outline of Machine Learning
- 3. Descriptive Statistic
- 4. Preprocessing

Artificial Intelligence

Any technique which enables computers to mimic human behavior.

Machine Learning

Subset of AI technique which use statistical methods to enable machines to improve with experiences.

Deep Learning

Subset of ML which make the computation of muti-layer neural networks feasible.

"만약 작업 T에 대해 기준 P로 측정한 성능이 경험 E로 인해 향상되었다면, 그 프로그램은 작업 T에 대해 기준 P의 관점에서 경험 E로부터 "배웠다"라고 말할 수 있다." – Tom Mitchell

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.

[The training data set]

Х	Y
{3,6,9}	3
{2,5,7}	2
{2,3,5}	1

[The ML model]

Q. $X = \{4,7,8\}$

A. Y = ????

Supervised Learning Regression Classification **Unsupervised Learning** Clustering Visualization **Dimensionality Reduction** Association Rule

Semi- Supervised Learning

Reinforcement Learning

Supervised Learning

X	у
10	90
9	80
3	50
2	30

Both X(predictor variable) and y(targe variable) are given

ex) KNN / Linear Regression / Logistic Regression / SVM / Decision Tree

Regression

- Output variable is continuous
- Predict y(the target variable) with given X(the predictor variable)
- Ex) temperature, value, price etc.

Classification

- Output Variable is discrete
- Binary Classification [1 or 0]
- Multi-label Classification [a \ b \ c \ d]

Unsupervised Learning

ex) Clustering / Dimensionality Reduction / Visualization

Semi- Supervised Learning

Semi-supervised learning uses a combination of supervised labeled training data with unsupervised methods:

Learning

- 1 Load labeled input training data.
- Model is trained on the data.
- 3 Present unlabeled raw data.
- 4 Algorithm infers classifiers for unlabeled data on its own.
- High-confidence data is added to labeled training data set
- 6 Algorithm progressively adapts and learns.

The Label(pre-determined output value) is partially given

Reinforcement Learning

Reinforcement Learning

- Database of every professional players
- Use Reinforcement Learning method for the training
- Every decision made for the optimal outcome

New generation : AlphaGo [zero]

- No input of human data anymore
- Endless re-generation of the random training data
- Strategies that was never seen before

2. Outline of Machine Learning

3. Descriptive Statistics

(1) Center: Mean, Median, Mode

가장 많이 관측되는 수

$$\mathrm{P}(X \leq m) \geq rac{1}{2} \quad \wedge \quad \mathrm{P}(X \geq m) \geq rac{1}{2}$$

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

3. Descriptive Statistics

(2) Dispersion: Range, Quartile, IQR

3. Descriptive Statistics

(3) Graphics – ex) Boxplot

4. Preprocessing

Outlier & Missing value

- ✓ Outlier 제거
- ✓ 결측치 포함된 행/열 제거
- ✓ 새로운 값으로 대체

Normalization

- ✓ 최대-최소 정규화
- ✓ Z-score 정규화
- ✓ 십진스케일 정규화

Dimensional Reduction

- ✓ PCA(Feature Extraction)
- √ Feature Selection

Imbalanced Data

- ✓ Undersampling
- ✓ Oversampling

