Lineární algebrou za energetické úspory VI: skládání lineárních zobrazení, transformace souřadnic

Lineární prostor lineárních zobrazení Z přednášky 4A víme, že pro libovolné dva lineární prostory L_1, L_2 nad stejným tělesem je množina Lin (L_1, L_2) lineárním prostorem (jde o množinu všech matic správných rozměrů (jakých?) nad tím samým tělesem s operacemi sčítání matic a jejich násobení skalárem). **Příklad 7.1.2** na straně 92 sbírky doc. Velebila pak nabízí hezkou bázi tohoto prostoru (**Příklad 7.3.1** taktéž pak také ilustruje chování tohoto typu prostorů).

1. Ukažte, že množina $B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$) je bází reálného prostoru Lin $(\mathbb{R}, \mathbb{R}^2)$. (Že je lineárně nezávislá, to vidíme i se zavřenýma očima. Důležité je rozmyslet si, že jde opravdu o generující množinu prostoru Lin $(\mathbb{R}, \mathbb{R}^2)$.)

Pokud si člověk rozmyslí předchozí bod, snadno uvidí, že množina $C = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$) je bází prostoru $\operatorname{Lin}\left(\mathbb{R},\mathbb{R}^3\right)$.

2. Definujme lineární zobrazení \mathbf{f} : Lin $(\mathbb{R}, \mathbb{R}^2) \to \text{Lin}(\mathbb{R}, \mathbb{R}^3)$ zadáním na bázi B takto

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Určete matici zobrazení ${\bf f}$ vůči bázím B a C.

$$\begin{bmatrix} [f]_B^C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$$

3. Uvažujme zobrazení ${\bf g}$ mezi reálnými prostory $\mathbb{R}^{\leq 2}\left[x\right]$ a \mathbb{R}^2 :

$$x^2 \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}, x \mapsto \begin{pmatrix} 1 \\ 1 \end{pmatrix}, 1 \mapsto \begin{pmatrix} 0 \\ 0 \end{pmatrix}, 2x^2 + 3x \mapsto \begin{pmatrix} 5 \\ 3 \end{pmatrix}.$$

Zkontrolujte, že takto splňuje podmínku linearity a určete jeho matici vzhledem k bázím $D=(x^2,x,1)$ a $E=(\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}).$ $[[\mathbf{g}]_D^E=\begin{pmatrix}1&1&0\\0&1&0\end{pmatrix}]$

4. Určete jádra, obrazy, defekty a hodnosti zobrazení \mathbf{f} a \mathbf{g} . [ker $\mathbf{f} = \vec{o}$, def $\mathbf{f} = 0$, im $\mathbf{f} = \mathrm{span}(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})$, rank $\mathbf{f} = 2$;

$$\ker \mathbf{g} = \operatorname{span}(1), \operatorname{def} \mathbf{g} = 1, \operatorname{im} \mathbf{g} = \mathbb{R}^2, \operatorname{rank} \mathbf{g} = 2$$

Důležitým faktem (**Poznámka** na str. 13 prezentace k přednášce 5A) je, že všechny prostory stejné dimenze nad daným tělesem (v našem případě \mathbb{R}) jsou izomorfní, tedy z hlediska algebry stejné. Dále tedy budeme matice \mathbf{f} a \mathbf{g} z cvičení 2. a 3. považovat za matice zobrazení $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$, resp. $\mathbf{g}: \mathbb{R}^p \to \mathbb{R}^q$ vzhledem ke kanonickým bázím.

5. Určete čísla n, m, p, q z předchozího odstavce.

$$[n=2, m=3, p=3, q=2]$$

Zobrazení mezi jednotlivými lineárními prostory můžeme samozřejmě skládat (pokud má toto skládání smysl), v představě "krabiček" je tedy můžeme řadit za sebe:

$$\vec{v} \longrightarrow \mathbf{f_1} \quad \overrightarrow{v} \longrightarrow \mathbf{f_2} \quad \mathbf{f_2} \quad \overrightarrow{v}$$

Přičemž je především potřeba, aby \mathbf{f}_1 vedlo do stejného prostoru, ze kterého \mathbf{f}_2 vychází. Dále víme, že skládání zobrazení odpovídá násobení matic: matice jsou ale typicky zadané vůči nějakým bázím, proto je potřeba, aby si "výstupní báze" $z \mathbf{f_1}$ a "vstupní báze" do $\mathbf{f_2}$ odpovídaly. Obrázkově:

$$\vec{v} \xrightarrow{\text{v bázi } M_1} \qquad \boxed{ \begin{array}{c} \text{v bázi } M_2 \\ \text{} \end{array} } \mathbf{f_1} \left(\vec{v} \right) \xrightarrow{\text{v bázi } M_2} \qquad \boxed{ \begin{array}{c} \text{v bázi } M_2 \\ \text{} \end{array} } \mathbf{f_2} \mathbf{f_1} \left(\vec{v} \right) \\ \end{array} }$$

6. V případě zobrazení f a g je možné tato zobrazení složit v obou pořadích a dostat tak dvě různá zobrazení: $\mathbf{fg}: \mathbb{R}^3 \to \mathbb{R}^3 \text{ a } \mathbf{gf}: \mathbb{R}^2 \to \mathbb{R}^2$. Určete matice těchto zobrazení vůči kanonickým bázím.

$$[[\mathbf{fg}]_{K_3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, [\mathbf{gf}]_{K_2} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}]$$

- 7. Určete obraz vektoru (vůči příslušné kanonické bázi), který má vůči kanonické bázi prostoru \mathbb{R}^2 souřadnice $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, při zobrazení
 - (a) **f**

(b) **gf**

(c) gfgf

 $\begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix};$ nebylo potřeba počítat $\end{bmatrix}$

(**Definice** a **Tvrzení** z přednášky 5A) Zobrazení mezi konečnědimensionálními prostory $\mathbb{F}: L_1 \to L_2$ je

- monomorfismus, pokud platí $def(\mathbf{F}) = 0$, což je ekvivalentní $\ker(\mathbf{F}) = \vec{o}$
- epimorfismus, pokud je $Im(F) = L_2$, což je ekvivalentní $\dim(Im(\mathbf{F})) = \dim(L_2)$
- izomorfismus, pokud je monomorfismem a epimorfismem zároveň.
- 8. Určete u každého ze zobrazení f, g, fg, gf, zda se jedná o mono-/epi-/izomorfismus.

[f je pouze mono, g je pouze epi; fg není (bez počítání; proč?) ani jedno; gf není ani jedno (tady je potřeba počítat)]

9. U následujících reálných matic, které uvažujeme jako lineární zobrazení z $\mathbb{R}^{\text{počet sloupců}}$ do $\mathbb{R}^{\text{počet řádků}}$, vždy určete, zda pro nějaké hodnoty na místech vyznačených • může jít o mono-/epi-/izomorfismus. Pokud ano, nějaké odpovídající hodnoty najděte.

Také určete, které z typů zobrazení daná matice rozhodně být nemůže.

(Hodně může pomoci **Tvrzení** z přednášky **5A**, slide **7**.)

(a) $\mathbf{a} = \begin{pmatrix} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{pmatrix}$

 $\begin{pmatrix} 0 & 1 \\ 0 & cokoli \end{pmatrix}$]

[nemůže být mono; může být epi: $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

(d) $\mathbf{d} = \begin{pmatrix} 1 & \bullet \\ 2 & \bullet \end{pmatrix}$ [může být buď izo: $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, nebo ani jedno: $\begin{pmatrix} 1 & t \\ 2 & 2t \end{pmatrix}$]

(b) $\mathbf{b} = \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}$

[nemůže být epi; může být mono: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$] (e) $\mathbf{e} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & \bullet \end{pmatrix}$ [nemůže být mono; může být epi

(c) $\mathbf{c} = \begin{pmatrix} 0 & 1 \\ \bullet & \bullet \end{pmatrix}$ [může být buď izo, nebo ani jedno: $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & ne \ 1 \end{pmatrix}$]

$$\text{(f) } \mathbf{e} = \begin{pmatrix} 1 & 2 \\ 2 & \bullet \\ 3 & 6 \\ 4 & 8 \\ 5 & 10 \end{pmatrix} \quad \text{[nemůže být epi; může být mono:} \qquad \begin{pmatrix} 1 & 2 \\ 2 & ne \ 4 \\ 3 & 6 \\ 4 & 8 \\ 5 & 10 \end{pmatrix}]$$

Matice transformace souřadnic Již víme, že když počítáme s maticí nějakého lineárního zobrazení, je důležité vědět, v jakých bázích daná matice funguje - do "krabičky" lze vkládat jen ve správné bázi:

$$\vec{v} \xrightarrow{\text{v bázi } M_1} [\mathbf{f}]_{M_1}^{M_2} \xrightarrow{\text{v bázi } M_2} \mathbf{f}(\vec{v})$$

Co když ale mám vektor, jehož obraz chci spočítat, zadaný v jiné bázi, případně chci obraz znát v jiné bázi? Nezbývá než souřadnice přepočítat do správné báze (viz předchozí úkol). Podle přednášky 3B, slide 7 je ale výpočet souřadnic lineární zobrazení, tedy musí mít svou matici (matici transformace souřadnic). Tu zkonstruuji běžným způsobem (první sloupec matice je obraz /=souřadnice v nové bázi/ prvního vektoru původní báze atd.).

$$\vec{v} \xrightarrow{\text{v bázi } B} [\mathbf{T}]_{B \mapsto C} \xrightarrow{\text{v bázi } C} \vec{v}$$

- 10. Uvažujme uspořádanou bázi $B = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$) prostoru \mathbb{R}^2 . Určete matici transformace souřadnic z K_2 do B (tj. $T_{K_2 \mapsto B}$). $[T_{K_2 \mapsto B}] = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{pmatrix}$
- 11. Určete pomocí matice z předchozího cvičení $\operatorname{coord}_B(\vec{v})$ pro vektor \vec{v} , který má vůči K_2 souřadnice $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$. $[\operatorname{coord}_B(\vec{v}) = T_{K_2 \mapsto B} \cdot \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ -2 \end{pmatrix}]$

V příkladu 6 jsme našli matici zobrazení **gf** vůči kanonické bázi, tj. funguje takto:

$$\vec{v} \xrightarrow{\text{v bázi } K_2} \left[\text{gf} \right]_{K_2}^{K_2} \xrightarrow{\text{v bázi } K_2} \text{gf} (\vec{v})$$

Co když ale například chceme výsledek znát v bázi B? Stačí jen za krabičku (= zobrazení, matici) přidat krabičku, která přepočítává souřadnice:

$$\overrightarrow{v} \xrightarrow{\text{v bázi } K_2} [\mathbf{gf}]_{K_2}^{K_2} \xrightarrow{\text{v bázi } K_2} \mathbf{gf} (\overrightarrow{v}) \xrightarrow{\text{v bázi } K_2} \mathbf{T}_{K_2 \mapsto B} \xrightarrow{\text{v bázi } B} \mathbf{gf} (\overrightarrow{v})$$

- 12. Určete matice zobrazení **gf** vůči
 - (a) bázím K_2 a B (tedy vkládám v K_2 a výsledek dostávám v B) $[[\mathbf{gf}]_{K_2}^B = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}]$
 - (b) bázi B (tedy vkládám v B a výsledek dostávám v B)

$$[[\mathbf{gf}]_B^B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}]$$

13. Určete vůči bázi B souřadnice obrazu vektoru \vec{v} při zobrazení \mathbf{gf} , má-li vektor \vec{v} v bázi B souřadnice $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. (Porovnejte s příkladem 7.) $[\operatorname{coord}_B(\mathbf{gf}(\vec{v})) = \begin{pmatrix} 0 \\ 3 \end{pmatrix}]$

A jeden důkazeček na konec:

14. Dokažte bez použití pojmů dimenze nebo rank, že lineární zobrazení $\ell: L_1 \to L_2$, kde L_1 je konečné dimenze, je epimorfismus právě tehdy, pokud obrazem generující množiny v L_1 je generující množina v L_2 .