Mathematical Methods for Computer Science I

Fall 2017

Series 8 – Hand in before Monday, 20.11.2017 - 12.00

- 1. a) Show that the set of connectives $\{\neg, \rightarrow\}$ is complete (that is, every Boolean function can be expressed by a formula that contains only these connectives).
 - b) The connective \uparrow is defined as $p \uparrow q = \neg (p \land q)$. (Whence its other name NAND.) Show that this single connective suffices to express every Boolean function. In other words, show that the set of connectives $\{\uparrow\}$ is complete.
- 2. Write the formula $(p \to q) \land ((q \lor r) \to p)$ in a disjunctive normal form
 - a) by transforming it with the help of the distributive, de Morgan and other laws of logic;
 - b) by filling in a truth table and reading its rows.
- 3. a) Let $A = (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$. Write a conjunctive normal form for $\neg A$.
 - b) Let A be a propositional formula that contains a subformula F. Let B be the formula obtained from A by replacing F with a formula G. It turned out that B is equivalent to A. Does this imply that G is equivalent to F?
- 4. Which of the following propositional formulas are tautologies? Explain your answer.
 - a) $A = (p \to q) \to ((p \to \neg q) \to \neg p)$
 - b) $B = \neg(p \to q) \lor (\neg p \lor q)$
 - c) $C = (p \lor q \lor r) \land (p \lor q \lor \neg s)$
- 5. The recipe for constructing a formula in DNF for a given boolean function in n variables produces conjunctive clauses of length n. On the other hand, a formula in DNF may contain shorter conjunctive clauses. For example, $p \lor q$ is a formula in DNF with two clauses of length 1 each. (At the same time, this is CNF with a single disjunctive clause of length 2.)
 - a) Transform the formula

$$(\neg p \land \neg q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land r)$$

to a simpler formula in DNF.

b) Transform the formula

$$(\neg p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee r) \wedge (p \vee q \vee r)$$

to a simpler formula in CNF.

c) Give an example of a boolean function φ of n variables such that there is no formula in DNF for φ that contains a conjunctive clause of length less than n. (*Hint:* What if the function changes its value always when you change the value of one of its arguments?)

6.* Define the connectives \cdot and + by the truth table below.

p	q	$p \cdot q$	p+q
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

(These are the multiplication and addition in the field \mathbb{Z}_2 ; note that $p \cdot q = p \wedge q$.) Show that every boolean function has a unique representation as a \mathbb{Z}_2 -polynomial. Here a \mathbb{Z}_2 -polynomial in the variables p_1, \ldots, p_n is a sum of monomials. A monomial is either an expression of the form

$$p_{i_1} \cdot \ldots \cdot p_{i_k}, \quad 1 \le i_1 < \cdots < i_k \le n$$

or a constant 1.