Signals

EECS 20
Lecture 5 (January 26, 2001)
Tom Henzinger

Quiz

- 1. \forall set x, $x \subseteq P(x)$ false
- 2. \exists function f, $\{x \in \text{domain}(f) \mid x = f(x)\}$ not well-formed
- 3. $\forall n \in Nats, n = 2 \Rightarrow (n, n+1) \in \{1, 2, 3\}^2$ true
- 4. $\exists f \in [Nats \rightarrow Nats], f(x) = x^2$ free x

- 1 Systems are functions
- 2 Signals are functions

Audio Signals

sound: ContinuousTime → AirPressure

Let Continuous Time = Reals₊ = $\{x \in \text{Reals} \mid x \ge 0\}$. Let AirPressure = Reals₊. normalizedSound: ContinuousTime → NormalizedPressure

Let NormalizedPressure = Reals.

normalizedSound: ContinuousTime \rightarrow NormalizedPressure such that $\forall x \in$ ContinuousTime, normalizedSound(x) = sound(x) - ambientAirPressure.

Let NormalizedPressure = Reals.

sampledSound: DiscreteTime → NormalizedPressure

samplingPeriod (sec) = 1 / samplingFrequency (Hz)

Let DiscreteTime = Nats₀.

sampledSound: DiscreteTime \rightarrow NormalizedPressure such that $\forall x \in$ DiscreteTime, sampledSound(x) = normalizedSound(samplingPeriod $\cdot x$).

Let DiscreteTime = Nats₀.

quantizedSound: DiscreteTime → ComputerInts

Let ComputerInts = $\{x \in Ints \mid -maxint \leq x \leq maxint \}$.

quantizedSound: DiscreteTime \rightarrow ComputerInts such that $\forall x \in$ DiscreteTime, quantizedSound (x) = trunc (\lfloor sampledSound (x) \rfloor , maxint).

Let ComputerInts = $\{x \in Ints \mid -maxint \leq x \leq maxint \}$.

 $\lfloor \ \rfloor$: Reals \to Ints such that $\forall x \in \text{Reals}$, $\lfloor x \rfloor = \max \{ y \in \text{Ints} \mid y \leq x \}$.

trunc: Ints \times ComputerInts \rightarrow ComputerInts such that $\forall x \in$ Ints, $\forall y \in$ ComputerInts,

trunc
$$(x,y) = \begin{cases} x & \text{if } -y \le x \le y \\ y & \text{if } x > y \\ -y & \text{if } x < -y \end{cases}$$

 $\forall x \subseteq \text{Reals}, \ \forall y \in \text{Reals},$ let $\max x = y \Leftrightarrow y \in x \land (\forall z \in x, z \le y).$

$$\forall x \in Ints, \ \forall y \in ComputerInts,$$

$$(-y \le x \le y \implies trunc(x,y) = x) \land$$

$$(x > y \implies trunc(x,y) = y) \land$$

$$(x < -y \implies trunc(x,y) = -y).$$

 $sound: Reals_+ \rightarrow Reals$ analog signal

quantizedSound: Nats₀ \rightarrow Ints digital signal

Video Signals

```
movie: DiscreteTime → Frames
         (typical frequency = 30 Hz)
AnalogFrames = [ DiscreteVerticalSpace ×
                 HorizontalSpace →
                 Intensity ]
DigitalFrames = [DiscreteVerticalSpace ×
                 DiscreteHorizontalSpace →
                 DiscreteIntensity ]
```

Sheet of paper: VerticalSpace = [0, 11]

HorizontalSpace = [0, 8.5]

TV: DiscreteVerticalSpace = { 1, 2, ..., 525 }

LCD: DiscreteVerticalSpace = { 1, 2, ..., 1024 }
DiscreteHorizontalSpace = { 1, 2, ..., 1280 }

DiscreteIntensity = ComputerInts
ColorIntensity = Intensity³

Currying

For all sets
$$A$$
, B , C ,
$$[A \times B \rightarrow C] = [A \rightarrow [B \rightarrow C]].$$

Currying

For all sets
$$A$$
, B , C ,
$$[A \times B \rightarrow C] = [A \rightarrow [B \rightarrow C]].$$

```
[ DiscreteTime \rightarrow [ VSpace \rightarrow [ HSpace \rightarrow Intensity ]]] = [ DiscreteTime \times VSpace \times HSpace \rightarrow Intensity ]
```

movie ∈

More Signals

position: Time \rightarrow Space

Continuous Time = Reals.

Discrete Time = $Nats_0$.

 $DiscTwoSpace = Ints^2$.

ContThreeSpace = $Reals^3$.

More Signals

position: Time \rightarrow Space

Continuous Time = Reals.

Discrete Time = $Nats_0$.

 $DiscTwoSpace = Ints^2$.

ContThreeSpace = $Reals^3$.

velocity: Time → DerivativeSpace

DerivativeSpace = Space.

More Signals

```
position: Time \rightarrow Space
                Continuous Time = Reals.
                Discrete Time = Nats_0.
                DiscTwoSpace = Ints^2.
                ContThreeSpace = Reals^3.
velocity: Time → DerivativeSpace
                 DerivativeSpace = Space.
position Velocity: Time \rightarrow Space \times Derivative Space
  such that \forall x \in \text{Time},
  position Velocity (x) = (position(x), velocity(x)).
```