

Adamatzky, A. (2012)

Efficient transport networks

- Mold detects food at a distance
- Mold projects itself in a fanlike configuration
 - Food is connected in the most efficient way possible
- Mold avoids areas it's already explored

Aims

Develop a mold inspired ABM to optimise transport real-world networks

Compare the generated network to an actual traffic network and physarum

The ABM should adapt to population density and topography

Previous research: dynamic foraging algorithms

Dorigo, M., & Gambardella, L.(1997). Nakagaki, T., Yamada, H., & Tóth, Á.(2000) Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D., & Fricker, M. et al. (2010).

Existing Slime Mold ABMs & Applications

Houbraken et al. (2012)
Development of
fault-tolerant networks to
connect population
centres

Jones (2010)
Studies of pattern
formation and
approximations of
transport networks

Liu et al. (2015)

Path finding and maze solving using a multi-agent system

Limitations of existing models

Limitation: The topographical features of geographies are ignored.

Outcome: Mold generated networks fail to penalise growth in highly elevated areas

Limitation: Distribution of population and city sizes are ignored

Outcome: Network attention isn't varied to support major cities and will favour clusters of towns

Our Hypothesis

"Simulated slime mold traffic networks generate more optimal solutions if population density and topography are considered than networks that are generated without considerations for population density and topography."

Our Tests

- 1. Include variation in population density and topography
- 2. Include variation in population density and <u>not</u> topography
- 3. Include variation in topography and <u>not</u> population density
- 4. <u>Neither</u> variation in population density <u>nor</u> topography are included

Model Candidates

Island of Hokkaido (Japan)

Island of O'ahu (Hawaii)

Model Candidate Justification

- 1. Self contained areas
- 2. Size of the area not too large given a limited canvas resolution
- 3. Numerous population centers
- 4. Variance in the population numbers
- 5. High variance in elevation

Slime Mold as an ABM

Micro Level

A large number of agents representing protoplasmic particles

Protoplasmic flows transport signalling | molecules which stimulate further flows

Tubular pressure leads to expansion of plasmodium, i.e. network growth

Macro Level

Connected network of agents following dominant paths to connect to nodes

Properties of our slime mold inspired ABM

				E CONTRACTOR OF THE PROPERTY O						
		Agent			Pa	atch		Ac	dditional	
	Properties			Properties				Hyperparameters		
	Position	Heading	Sensor Distance	Position	Signal Value	Elevation	Node Weight	Agent density	Diffus. Rate	Evap. Multiplier
Symbol	(x,y)	h	d	(x,y)	S	sΔ	n	р	δ	η
Hyperparam.	no	no	yes	no	no	no	yes	yes	yes	yes
Typical values	-	-	5	-	-	-	[0, 129.1]	100%	5%	95%

Model dynamics

- 1. Agent compares the quality of the patches a sensor-distance to the left, ahead, and to the right
- 2. The agent and nodes increment the signal value at their current patch
- 3. Agent turns towards the patch with the highest signal value and moves one step forward

- 4. The signal values are diffused and reduced according to the evaporation rate
- 5. Repeat from step 1.

Model Demonstration in NetLogo

Parameter Selection

Selected Parameters

Evaporation Multiplier (η)

Map (no population, no elevation)

Oʻahu (Hawaii)

Map (population, no elevation)

Oʻahu (Hawaii)

Map (elevation, no population)

Oʻahu (Hawaii)

Map (population and elevation)

Oʻahu (Hawaii)

Generated networks (Hokkaido)

No population/elevation

Population elevation

Generated networks (O'ahu/Hawaii)

No population/elevation

Population elevation

Network comparison

Model evaluation

Slime-map similarity measure:

$$\gamma = \frac{|S \circ M|}{|S \circ (J - M)|}$$

 $S \circ M = \begin{bmatrix} 0 & 0 & 0 & 9 \\ 0 & 0 & 12 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

0

	0	0	1	0	
Λ1_	0	0	1	0	
<i>M</i> =	1	1	1	0	
	0	0	0	1	

0

0

- J denotes the matrix of ones
- M denotes the actual map of the traffic network
- S denotes the generated map

Preliminary results (slime-map similarity)

- The model performed best under the influence of both elevation and population density
- It performed worst when neither factor was considered
- Elevation reduces the variance slightly

Hypothesis test

Slime-map similarity (highest to lowest) for both maps:

- 1. Elevation and population are considered
- 2. Elevation is considered but population is not
- 3. Elevation is not considered but population is
- 4. Elevation and population are not considered

The hypothesis cannot be rejected

- → The model may generate more optimal solutions if elevation and population are considered
- → Elevation may appears to have a greater impact on network optimality than population density

Model evaluation

How does Shannon entropy ("randomness") of the network change over time?

$$H(X) = -\sum_{S_X} p_X(x) \log p_X(x)$$

How does the mutual information (model-free correlation between mold and actual map, mold and elevation, mold and population) change over time?

$$I(X;Y) = \sum_{S_Y} \sum_{S_X} p_{(X,Y)}(x,y) \log \left(\frac{p_{(X,Y)}(x,y)}{p_X(x) p_Y(y)} \right)$$

Preliminary results (entropy)

- Randomness of the network decreases over time
- Under the influence of elevation, the network appears more random

Preliminary results (I[Slime, Map])

- I(Slime, Map) is highest if elevation and population is considered and lowest if not
- Mutual information decreases in Hawaii and increases in Hokkaido

Preliminary results (I[Slime, Cities])

Lowest correlation between slime and cities if population and elevation are not considered

Preliminary results (I[Slime, Elevation])

- Higher correlation between slime and elevation if elevation is considered

Challenges in using actual slime mold compared to ABM

- → Requires tailored environment
- → Inconsistent network formation
- → Time consuming to grow and conduct experiments
- → Difficult to adjust node and deterrent strength
- → Difficult to quantify solution

Results Summary

Further Model Developments

Introduce memory for agents to allow the model to 'remember' where it has travelled already and improve efficiency at which a solution is discovered

Improve model tuning using evolutionary algorithms to select optimal parameters

Implement controls to reduce the influence that large cities have on the behaviour of agents

References

- Adamatzky, A. (2012). Slime Mold Solves Maze in One Pass, Assisted by Gradient of Chemo-Attractants. *IEEE Transactions On Nanobioscience*, *11*(2), 131-134. https://doi.org/10.1109/tnb.2011.2181978
- Alim, K., Andrew, N., Pringle, A., & Brenner, M. (2017). Mechanism of signal propagation in physarum polycephalum. *Proceedings Of The National Academy Of Sciences*, 114(20), 5136-5141. https://doi.org/10.1073/pnas.1618114114
- Bland, E. (2008). Plasmobot computer runs on slime mold. NBC News. Retrieved 7 November 2020, from https://www.nbcnews.com/id/wbna32736017.
- Dorigo, M., & Gambardella, L. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. *IEEE Transactions On Evolutionary Computation*, *1*(1), 53-66. https://doi.org/10.1109/4235.585892
- Fricker, M. (2020). Slime mold networks. Mark Fricker: Research. Retrieved 7 November 2020, from https://markfricker.org/77-2/projects/fungal-networks/.
- Houbraken, M., Demeyer, S., Staessens, D., Audenaert, P., Colle, D., & Pickavet, M. (2012). Fault tolerant network design inspired by Physarum polycephalum. *Natural Computing*, 12(2), 277-289. https://doi.org/10.1007/s11047-012-9344-7
- Jones, J. (2010). Characteristics of Pattern Formation and Evolution in Approximations of Physarum Transport Networks. *Artificial Life*, 16(2), 127-153. https://doi.org/10.1162/artl.2010.16.2.16202
- Liu, Y., Gao, C., Zhang, Z., Wu, Y., Liang, M., Tao, L., & Lu, Y. (2015). A new multi-agent system to simulate the foraging behaviors of Physarum. *Natural Computing*, 16(1), 15-29. https://doi.org/10.1007/s11047-015-9530-5
- Nakagaki, T., Yamada, H., & Tóth, Á. (2000). Maze-solving by an amoeboid organism. Nature, 407(6803), 470-470. https://doi.org/10.1038/35035159
- Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D., & Fricker, M. et al. (2010). Rules for Biologically Inspired Adaptive Network Design. *Science*, 327(5964), 439-442. https://doi.org/10.1126/science.1177894