

# Relatório do Projeto

Neste relatório daremos uma breve explicação sobre a nossa resolução e implementação do projeto em causa.

# Montagem do cenário



Após a divisão nas diferentes sub-redes, a atribuição dos IP's foi feita desta forma.

| Dispositivo | FastEthernet1/0    | Ethernet0/0        |
|-------------|--------------------|--------------------|
| R1          | 193.136.212.193/29 | 193.136.212.129/27 |
| R2          | 193.136.212.161/27 | 193.136.212.194/29 |
| R3          | 10.90.0.1/24       | 193.136.212.195/29 |
| Server      |                    | 10.90.0.2/24       |
| PC1         |                    | 193.136.212.130/27 |
| PC2         |                    | 193.136.212.131/27 |
| PC3         |                    | 193.136.212.162/27 |
| PC4         |                    | 193.136.212.163/27 |

Para a configuração do cenário configurámos cada equipamento com os respetivos ip's e definimos as rotas dos mesmos utilizando as devidas funções. De seguida configurámos o SNAT e o DNAT do router 3.

### Tratamento do ficheiro de texto

Para o ficheiro de dados estar sempre atualizado abrimo-lo no início de cada sessão do servidor lendo e guardando os seus dados numa estrutura adequada e no fim atualizamos o mesmo escrevendo de volta a lista atualizada com os dados de todos os utilizadores. Para partilhar esta lista entre todos os processos criamos uma shared memory.

### Desenvolvimento da CLI para os Administradores - TCP

Começamos por criar os sockets necessários e separar o processo do servidor em dois processos diferentes. Um vai ler mensagens UDP e o outro TCP. O servidor espera por um pedido de ligação TCP e quando a recebe cria um novo processo para estabelecer ligação com o administrador. De seguida é enviada a interface ao administrador com todas as opções. O servidor mantém a ligação até o administrador sair apresentando a interface a cada iteração do while.

## Desenvolvimento dos serviços de messaging para os Clientes - UDP

Do lado do servidor, como dito anteriormente, separamos o processo principal em dois processos, um para UDP e outro para TCP. Com os devidos sockets já criados o processo responsável pelo UDP espera por mensagens dentro de um while e processa-as uma a uma. Quando uma mensagem, que contém a opção, é recebida é escolhida a opção de messaging adequada ou de autenticação. O servidor, de acordo com a escolha, produz a resposta e enviaa ao cliente.

No lado do cliente, começamos por pedir a autenticação do utilizador que é processada pelo servidor, caso seja autorizada disponibiliza um CLI para o utilizador fazer a escolha do serviço de messaging que pretende usar, caso contrário termina. As diferentes opções possuem os devidos testes e envios ao servidor como por exemplo, no caso de Cliente-Servidor envia uma mensagem e o utilizador ao qual pretende enviar essa mensagem e no caso do P2P envia o user e recebe o IP+Porto do user a contactar. Também tem uma opção que termina a aplicação cliente.

### Conclusão

Este projeto permitiu-nos trabalhar nos temas dados nas aulas teóricas, teórico-práticas e laboratoriais, aprofundando assim o nosso conhecimento sobre a matéria lecionada na cadeira.