

BTA/BTB16 and T16 Series

SNUBBERLESS™, LOGIC LEVEL & STANDARD

16A TRIACs

MAIN FEATURES:

Symbol	Value	Unit
I _{T(RMS)}	16	Α
V _{DRM} /V _{RRM}	600 and 800	V
I _{GT (Q1)}	10 to 50	mA

DESCRIPTION

Available either in through-hole or surface-mount packages, the BTA/BTB16 and T16 triac series is suitable for general purpose AC switching. They can be used as an ON/OFF function in applications such as static relays, heating regulation, induction motor starting circuits... or for phase control operation in light dimmers, motor speed controllers, ...

The snubberless versions (BTA/BTB...W and T16 series) are specially recommended for use on inductive loads, thanks to their high commutation performances. By using an internal ceramic pad, the BTA series provides voltage insulated tab (rated at 2500V RMS) complying with UL standards (File ref.: E81734).

ABSOLUTE MAXIMUM RATINGS

Symbol	Parame		Value	Unit	
I _{T(RMS)}	RMS on-state current (full sine wave)	D2 ² PAK TO-220AB	Tc = 100°C	16	А
		TO-220AB Ins.	Tc = 85°C		
ITSM	Non repetitive surge peak on-state	F = 60 Hz t = 16.7 ms		168	Α
	current (full cycle, Tj initial = 25° C) F = 50 Hz t = 20 r		t = 20 ms	160	
l ² t	I ² t Value for fusing	tp = 10 r	144	A ² s	
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, tr $\leq 100 \text{ ns}$	F = 120 Hz	Tj = 125°C	50	A/µs
V _{DSM} /V _{RSM}	Non repetitive surge peak off-state voltage	tp = 10 ms	Tj = 25°C	V _{DRM} /V _{RRM} + 100	V
I _{GM}	Peak gate current	tp = 20 μs	Tj = 125°C	4	Α
P _{G(AV)}	Average gate power dissipation Tj = 125°C			1	W
T _{stg} T _j	Storage junction temperature range Operating junction temperature range	- 40 to + 150 - 40 to + 125	°C		

October 2001 - Ed: 4 1/7

BTA/BTB16 and T16 Series

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise specified)

■ SNUBBERLESS™ and LOGIC LEVEL (3 Quadrants)

Symbol	Test Conditions	Quadrant		T16	BTA/BTB16		6	Unit
				T1635	sw	CW	BW	
I _{GT} (1)	$V_D = 12 \text{ V}$ $R_L = 33 \Omega$	1 - 11 - 111	MAX.	35	10	35	50	mA
V _{GT}	VD = 12 V	1 - 11 - 111	MAX.		1.3			V
V_{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $Tj = 125^{\circ}\text{C}$ $I - II - III$				0	.2		V
I _H (2)	I _T = 500 mA		MAX.	35	15	35	50	mA
ΙL	I _G = 1.2 I _{GT}		MAX.	50	25	50	70	mA
	II			60	30	60	80	
dV/dt (2)	V _D = 67 % V _{DRM} gate open Tj = 125°C		MIN.	500	40	500	1000	V/µs
(dl/dt)c (2)	(dV/dt)c = 0.1 V/µs Tj = 125°C			-	8.5	-	-	A/ms
	(dV/dt)c = 10 V/μs Tj = 125°C		MIN.	-	3.0	-	-	
	Without snubber Tj = 12	5°C		8.5	-	8.5	14	

■ STANDARD (4 Quadrants)

Symbol	Test Conditions	Quadrant		BTA/BTB16		Unit
				С	В	O
I _{GT} (1)	$V_D = 12 \text{ V}$ $R_L = 33 \Omega$	I - II - III IV	MAX.	25 50	50 100	mA
V _{GT}		ALL	MAX.	1.3		V
V_{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $Tj = 125^{\circ}\text{C}$	ALL	MIN.	0.2		V
I _H (2)	I _T = 500 mA		MAX.	25	50	mA
ΙL	I _G = 1.2 I _{GT}	I - III - IV	MAX.	40	60	mA
		П		80	120	
dV/dt (2)	$V_D = 67 \% V_{DRM}$ gate open Tj = 125°C		MIN.	200	400	V/µs
(dV/dt)c(2)	(dI/dt)c = 7 A/ms Tj = 125°C		MIN.	5	10	V/µs

STATIC CHARACTERISTICS

Symbol	Test Con	Value	Unit		
V _{TM} (2)	$I_{TM} = 22.5 \text{ A}$ tp = 380 µs	Tj = 25°C	MAX.	1.55	V
V _{to} (2)	Threshold voltage	Tj = 125°C	MAX.	0.85	V
R _d (2)	Dynamic resistance	Tj = 125°C	MAX.	25	mΩ
I _{DRM}	$V_{DRM} = V_{RRM}$	Tj = 25°C	MAX.	5	μΑ
I _{RRM}		Tj = 125°C	IVIAA.	2	mA

Note 1: minimum IGT is guaranted at 5% of IGT max.

Note 2: for both polarities of A2 referenced to A1

THERMAL RESISTANCES

Symbol	Parameter				Unit
R _{th(j-c)}	Junction to case (AC)	AC)		1.2	°C/W
	TO-220AB Insulat			2.1	
R _{th(j-a)}	Junction to ambient	S = 1 cm ²	D ² PAK	45	°C/W
			TO-220AB	60	
			TO-220AB Insulated	00	

S: Copper surface under tab

PRODUCT SELECTOR

Part Number	Voltag	Voltage(xxx)		Type	Package
rait Nullibei	600 V	800 V	Sensitivity	Туре	rackage
BTA/BTB16-xxxB	Х	Х	50 mA	Standard	TO-220AB
BTA/BTB16-xxxBW	Х	Х	50 mA	Snubberless	TO-220AB
BTA/BTB16-xxxC	Х	Х	25 mA	Standard	TO-220AB
BTA/BTB16-xxxCW	Х	Х	35 mA	Snubberless	TO-220AB
BTA/BTB16-xxxSW	Х	Х	10 mA	Logic level	TO-220AB
T1635-xxxG	Х	Х	35 mA	Snubberless	D ² PAK

ORDERING INFORMATION

OTHER INFORMATION

Part Number	Marking	Weight	Base quantity	Packing mode
BTA/BTB16-xxxyz	BTA/BTB16xxxyz	2.3 g	250	Bulk
T1635-xxxG	T1635xxxG	1.5 g	50	Tube
T1635-xxxG-TR	T1635xxxG	1.5 g	1000	Tape & reel

Note: xxx = voltage, y = sensitivity, z = type

Fig. 1: Maximum power dissipation versus RMS on-state current (full cycle).

Fig. 2-2: D²PAK RMS on-state current versus ambient temperature (printed circuit board FR4, copper thickness: $35 \mu m$), full cycle.

Fig. 2-1: RMS on-state current versus case temperature (full cycle).

Fig. 3: Relative variation of thermal impedance versus pulse duration.

Fig. 4: On-state characteristics (maximum values)

Fig. 6: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10ms, and corresponding value of l^2t .

Fig. 8: Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values).

Fig. 5: Surge peak on-state current versus number of cycles.

Fig. 7: Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical values).

Fig. 9: Relative variation of critical rate of decrease of main current versus junction temperature.

57

Fig. 10:D²PAK Thermal resistance junction to ambient versus copper surface under tab (printed circuit board FR4, copper thickness: $35 \mu m$).

PACKAGE MECHANICAL DATA

TO-220AB (Plastic)

PACKAGE MECHANICAL DATA

D2PAK (Plastic)

	DIMENSIONS						
REF.	Millimeters			meters Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.30		4.60	0.169		0.181	
A1	2.49		2.69	0.098		0.106	
A2	0.03		0.23	0.001		0.009	
В	0.70		0.93	0.027		0.037	
B2	1.25	1.40		0.048	0.055		
С	0.45		0.60	0.017		0.024	
C2	1.21		1.36	0.047		0.054	
D	8.95		9.35	0.352		0.368	
E	10.00		10.28	0.393		0.405	
G	4.88		5.28	0.192		0.208	
L	15.00		15.85	0.590		0.624	
L2	1.27		1.40	0.050		0.055	
L3	1.40		1.75	0.055		0.069	
R		0.40			0.016		
V2	0°		8°	0°		8°	

FOOTPRINT DIMENSIONS (in millimeters)

D2PAK (Plastic)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia

Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A

http://www.st.com

