

Part IV Regulation of gene expression

An overview of gene expression regulation

- 1. Types of gene expression
 - 根据生物对内外环境刺激的反应,将基因的表达方式分为:

组成型(constitutive)表达

适应型(adaptive)或调节型(regulated)表达

2. Types of gene expression regulation

2.1 Positive regulation (正调控)

Activate / promote (激活/促进) gene expression

2.2 Negative regulation (负调控)

Inhibit (抑制) gene expression

3. Levels of gene expression regulation

3.1 Regulation at levels of DNA and chromosome (DNA和染色体水平调控)
DNA修饰、基因重排、基因扩增、染色质结构变化等。(真核)

▲ 3.2 Transcriptional regulation (转录调控)

顺式作用元件 **人** 反式作用因子 正调控或负调控基因的表达

(1) Cis-acting elements (顺式作用元件)

Cis-acting elements are regions of noncoding DNA which regulate transcription of the genes in the same DNA molecule. e.g. promoter, enhancer, silencer, attenuator, insulator...

能调控同一DNA分子上基因转录的非编码DNA序列称为顺式作用元件。e.g.启动子、增强子、沉默子、弱化子、绝缘子.....

(2) Trans-acting factors (反式作用因子)

Trans-acting factors are proteins that bind to the cis-acting elements to control gene transcription. e.g. transcription factor, repressor, activator...

与顺式作用元件结合,调控基因转录的蛋白质。如转录因子、阻遏蛋白、激活蛋白……

cis-acting - A site that affects the activity only of sequences on its own molecule of DNA.

trans-acting — A product that can function on any of its target DNA. This implies that it is a diffusible (扩散的) protein or RNA.

- 3.3 Regulation of RNA processing (RNA加工 调控)
- 3.4 Translational regulation (翻译调控)

对mRNA稳定性的调控,某些反义RNA、 siRNA、miRNA对翻译水平的调控等。

3.5 Post-translational regulation (翻译后调控)

蛋白质的剪切、修饰与转运等。

转录后调控 (post-transcriptional regulation)

Chapter 9 Regulation of transcription in prokaryotes

1. Operon (操纵子): an overview

In 1961, Francois Jacob and Jacques Monod proposed the operon model of gene regulation in bacteria.

Nobel Prize in Physiology or Medicine (1965)

François Jacob

Jacques Monod, 1910-1976

The operon is a DNA unit of transcriptional regulation, which typically includes: promoter, operator sequence and functionally related structural genes.

操纵子是由启动子、操纵基因和一群功能相 关的结构基因所组成的转录调控功能单位。是原 核生物基因表达调控的主要方式。

Structural gene

A structural gene codes for any RNA or protein product other than a regulator.

结构基因编码除调节物之外的任何 蛋白或RNA。

Regulator gene

A regulator gene codes for a product (typically protein) that controls the expression of other genes (usually at the level of transcription).

调<mark>节基因</mark>的产物调控其他基因的表达 (通常是转录)。

调节基因的产物通常是变构蛋白,是一个寡聚体,根据调节作用分为阻遏蛋白和激活蛋白。

Operator

An operator is a segment of DNA to which a regulator gene product binds to regulate structural genes expression.

操纵基因是一段可以通过与调节基因产物结合,调控结构基因表达的DNA序列。

2. The lactose operon

E. coli can use lactose as a source of carbon. The enzymes required for the use of lactose as a carbon source are only synthesized when lactose is available as the sole carbon source.

2.1 The structure of the lactose operon

β-galactosidase: for lactose hydrolysis

Permease: transport lactose across the cell wall

Transacetylase: ?

2.2 Negative regulation by repressor protein

2.2.1 OFF (lactose abscent)

Come on, let me through.

No way!

- (1) Blocks access of RNA Pol to the adjacent promoter
- (2) Inhibits processive transcription

Pol

Tetramer binds to operator and blocks transcription

异/别乳糖才是乳糖操纵子真正的诱导物

Native (天然) inducer Inducer of lac operon

Lack of inducer: the lac repressor block all but a very low level of transcription of *lacZYA*.

异丙基硫代 半乳糖苷

No IPTG, little expression of X gene With IPTG, efficient expression of X gene.

安慰性诱导物(gratuitous repression):与转录调控中天然诱导物相似的一类人工合成的高效诱导物,但不是该诱导酶的底物。

repressor与operator特异结合

- inducer (allolactose)与repressor特异结合

The operon on

作用于O位点上的repressor → 变构 → 脱离O位

作用于游离的repressor

→ 变构 → 失去结合于O位的能力

2.3 Positive regulation by cAMP receptor protein (CRP)

cAMP receptor protein (CRP) or catabolite activator protein (代谢物激活蛋白, CAP)

2.3.1 Glucose absent

- The role of cAMP is to change the conformation of CRP to increase its affinity for the activator-binding site (激活因子结合位点).
- The CRP-cAMP complex helps RNA polymerase bind to the promoter.

- ➤ Binding of CRP-cAMP to its DNA target bends the DNA about 90°, which is believed to enhancing RNA pol binding to the promoter.
- CRP-cAMP interacts with the C-terminal domain of the α subunit (αCTD) of RNA polymerase to activate it.

- The P_{lac} promoter is not a strong promoter.
- P_{lac} and related promoters do not have strong –35 sequences and some even have weak –10 consensus sequences.

Consensus sequences of σ^{70} promoters

Lac promoter sequence

2.3.2 Glucose present

Catabolite repression (分解代谢产物阻遏)

Catabolite of glucose can inhibit the activity of adenylate cyclase (腺苷酸环化酶) and activate phosphodiesterase (磷酸二酯酶), thereby reducing the concentration of cAMP.

The *lac* operon transcription-control region.

- •阻遏蛋白负调控与CRP正调控两种机制协调合作
- lac操纵子强的诱导作用既需要乳糖存在又需缺乏 葡萄糖。

3. The tryptophan (Trp) Operon

3.1 The structure of the Trp operon

合成色氨酸有关的酶(5个)

structural gene

The tryptophan (*Trp*) operon of *E. coli* is one of the most extensively studied operons in amino acids synthesis.

3.2.2 OFF (Trp present)

3.3 Negative regulation of the *Trp* operon by attenuator

3.3.1 Attenuator (弱化子/衰减子)

A DNA sequence located at the end of the leader sequence can significantly weaken or even terminate transcription. 位于结构基因上游前导区末端,可以明显弱化甚至终止转录的一段DNA序列。

3.3.3 Leader peptide (前导肽)

- The leader RNA contains an efficient ribosome binding site (RBS) and encodes a 14-amino-acid leader peptide.
- Codons 10 and 11 of this peptide encode Trp. Trp is a rare amino acid (1%).
- The availability of trp will affect the translation/ribosome position, which in turn to regulate transcription termination.

Met Lys Ala IIe Phe Val Leu Lys Gly Trp Trp Arg Thr Ser Stop pppA---AUGAAAGCAAUUUUCGUACUGAAAGGUUGGUGGCGCACUUCCUGA

3.3.4 Attenuation (弱化/衰减作用)

(1) Trp absent

Ribosome pause at Trp codons \rightarrow 2:3 hairpin (anti-terminator) forms \rightarrow transcription

Ribosome movement \rightarrow disrupts 2:3 pairing \rightarrow 3:4 hairpin forms \rightarrow termination

3.3.5 Importance of attenuation

- A typical negative feed-back regulation
- Give rise to a 10-fold repression of the trp operon. Faster and more subtle (细微的) regulation of trp metabolism in bacteria.
- Attenuation occurs in at least six operons that encode enzymes concerned with amino acid biosynthesis.
- The his operon has no repressor-operator regulation, and attenuation forms the only mechanism of feedback control.

3.3.6 Conditions for attenuation

 A coupling of transcription and translation, where the latter affects the former.
 转录与翻译偶联

(Attenuation would not work in eukaryotes.)

• Transcription and translation occurring at about the same rate.

转录与翻译速度大致相同。

乳糖操纵子和色氨酸操纵子的调控比较

CAP site Promoter Operator lacZ lacY lacA

Regulation of the lac Operon:

- > lac repressor 负调控
- ➤ CRP 正调控

诱导型操纵子 (分解代谢)

Promoter Operator Leader-attenuator trpE trpD trpC trpB trpA

Regulation of the Trp operon:

- > Trp repressor 负调控
- ➤ Attenuator 负调控

阻遏型操纵子 (合成代谢)

4. Transcriptional regulation by alternative σ factors

4.1 σ factor is a bifunctional protein

• Recognize specific promoter sequence (-35) in DNA

Bind to core RNA Pol for transcription initiation

 σ^{70} factors is the most common σ factor in E. coli under the normal growth condition.

Many bacteria produce alternative sets of σ factors to meet the regulation requirements of transcription under normal and extreme growth condition.

E. coli: Heat shock

Sporulation in bacillus subtilis

bacteriophage σ factors

4.2 Heatshock (热休克)

From 37°C to 42°C

Transiently expression of the 17 heat shock proteins

Increase in temperature is more extremely (50°C)

Heat shock proteins are the only proteins made in *E. coli* to maintain its viability

• HSPs are expressed through transcription by RNA polymerase using an alternative σ factor σ^{32} coded by rpoH gene. σ^{32} has its own specific promoter consensus sequences.

| Responsive Promoter | -35 | -10 | | Standard σ⁷⁰ | ----TTGACA-----16-18------TATAAT------ | Heat shock σ³² | ----TTGAA-----13-15---CCCCATT---------

4.3 Sporulation (孢子形成)

- Under non-optimal environmental conditions
 Bacillus subtilis (枯草芽孢杆菌) cells form
 spores (孢子).
- When B. subtilis sporulates, a whole new set of sporulation-specific genes is turned on, and many, but not all, vegetative (营养生长的) genes are turned off.

- Sporulation is accomplished by several new σ factors that displace the vegetative σ factor from the core RNA Pol.
- σ^F , σ^E , σ^H , σ^C , σ^K
- The sporulation-specific σ factors recognize quite different sequences.

4.4 Bacteriophage σ factor switching

Phage SPO1 in B. subtilis (枯草芽孢杆菌); Phage T4 in E. coli

(b) Middle transcription; specificity factor: (a) Early transcription; specificity factor: gp28 (1 host σ (Middle genes Early genes 因和宿主基因 Middle transcripts Early transcripts 因由宿主转录 σ^{28} Middle proteins, including Early proteins, including gp28 (

(c) Late transcription; specificity factor: gp33 () + gp34 ()

Bacteriophage SPO1 expresses a 'cascade' (级联的) of σ factors in sequence to allow its own genes to be transcribed at specific stages during virus infection.

Summary

- 1. Definition, types and regulatory levels of gene expression
- 2. Concepts of cis-acting elements, tran-acting factors, operon, operator and regulator gene
- 3. Regulatory mechanisms of the *lac* operon and *trp* operon

