AM-112-0... > Quizzes > Lecture 16... > Test Student Account (6) Score for this attempt: **1** out of 1 Dashboard Submitted Feb 29 at 8:35am This attempt took 1 minute. Courses Question 1 \mathbb{Z}_{8} Groups Consider the IVP $\left\{egin{aligned} u_t - x u_x = -3u \ u(x,0) = f(x) \end{aligned}
ight..$ Calendar Let $u^{(1)}(x,t)$ be the solution for $f(x)=rac{1}{1+e^{-x}};$ Inbox $u^{(2)}(x,t)$ be the solution for $f(x)=\cos(x)$; and History Course Which statement below is true? Material Website **(** $u^{(3)}(x,t) = u^{(1)}(x,t) + u^{(2)}(x,t)$ Commons (10) $u^{(3)}(x,t)=3u^{(1)}(x,t)+2u^{(2)}(x,t)$ Help Correct! $u^{(3)}(x,t) = 2u^{(1)}(x,t) + 3u^{(2)}(x,t)$ Resources $u^{(3)}(x,t)=u^{(1)}(x,t)u^{(2)}(x,t)$ **Additional Comments: Question 2**

/ 0 pts 0 **Question 7** Consider the first oder PDE $u_t + x u_x = -3 u^2$ in $D=\{(x,t) | x \in (-L,L), t \geq 0\}$ where L>0. Suppose the value of u is imposed at t = 0 along the x-axis for $x \in (-L, L)$. Which of the following gives a well-posed problem for solving *u* in region *D*? **Select** all that apply. \square condition $u(L,t)=\cos(t),\;t\geq0.$ \square conditions $u(-L,t)=e^{-t}$ and $u(L,t)=\cos(t),\;t\geq 0.$ **Correct!** no additional condition imposed. \square condition $u(-L,t)=\cos(t),\;t\geq0.$ $oxed{}$ condition $u(-L,t)=e^{-t},\;t\geq 0.$ **Additional Comments:** / 0 pts 0 **Question 8** Based on our study, which of the following is true? Select all that apply. Correct! \checkmark The method of characteristics can be applied to solve first order semi-linear PDEs in (x, t).

 $oxed{u}$ conditions $u(-L,t)=e^{-t}$ and $u(L,t)=\cos(t),\;t\geq0.$

no additional condition imposed.

 \square condition $u(-L,t)=\cos(t),\;t\geq0.$

 $oxed{}$ condition $u(-L,t)=e^{-t},\;t\geq 0.$

Additional Comments:

 \Box The method of characteristics can be applied to solve the heat equation in (x, t). **Correct!** The method of characteristics can be applied to solve first order semi-linear PDEs in (x, y, t). **Correct!** \checkmark The method of characteristics can be applied to solve the wave equation in (x, t). The method of characteristics can be applied to solve 1D Sturm-Liouville problems. **Additional Comments:** Fudge Points: You can manually adjust the score by adding positive or negative points to this box. **Update Scores** Final Score: 1 out of 1

Here's the latest quiz results for Test Student. You can modify the points for any question and add more comments, then click "Update Scores" at the bottom of the page.

Quiz Submissions

Correct!