1

<u>UNIT-V</u> FUNCTIONS OF SEVERAL VARIABLES

Partial Differential Co-Efficient

• Let Z be a function in two or more variables, it can be differentiated with respect to each of the variable by assuming that it varies only with that variable and others treated as constants. These differential Co-efficients are Known as Partial differential Co-efficient. They are denoted by $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial u}{\partial t}$ etc..

Examples

• If $u = e^x siny$, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

$$\frac{\partial u}{\partial x} = e^x \sin y$$
$$\frac{\partial u}{\partial y} = e^x \cos y$$

• $u = \sin(x^2+y^2)$ $\frac{\partial u}{\partial x} = 2x \sin(x^2+y^2)$

$$\frac{\partial u}{\partial y} = 2y \sin(x^2 + y^2)$$

Chain Rule For Partial Differentiation

- u = f(x, y) and x = f(s), y = f(s) $\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s}$
 - $\phi = f(u, v, w)$ and u = f(x), v = f(x), w = f(x), $\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial \phi}{\partial v} \frac{\partial v}{\partial x} + \frac{\partial \phi}{\partial w} \frac{\partial w}{\partial x}$

Problems

• If $\phi = f(y - z, z - x, x - y)$, show that $\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial z} = 0$ Given $\phi = f(y - z, z - x, x - y)$

Let
$$u = y - z$$

 $v = z - x$
 $w = x - y$

By chain rule,

$$\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial \phi}{\partial v} \frac{\partial v}{\partial x} + \frac{\partial \phi}{\partial w} \frac{\partial w}{\partial x}$$

$$= \frac{\partial \phi}{\partial u} (0) + \frac{\partial \phi}{\partial v} (-1) + \frac{\partial \phi}{\partial w} (1)$$

$$= \frac{\partial \phi}{\partial w} - \frac{\partial \phi}{\partial v} \qquad (1)$$

Similarly,

$$\frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial u} - \frac{\partial \phi}{\partial w} - \dots (2)$$

$$\frac{\partial \phi}{\partial z} = \frac{\partial \phi}{\partial v} - \frac{\partial \phi}{\partial u} \qquad (3)$$

Adding (1),(2) and (3), we get,

$$\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial z} = 0$$

• If $u = e^x siny$ where $x = st^2$ and $y = s^2t$. Find $\frac{\partial u}{\partial s}$ and $\frac{\partial u}{\partial t}$.

Given that $u = e^x siny$, where $x = st^2$ and $y = s^2t$

By chain rule,

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s}$$

$$= (e^x siny)(t^2) + (e^x cosy)(2st)$$

$$= e^x (t^2 siny + 2stcosy)$$

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t}$$

$$= (e^x \sin y)(2st) + (e^x \cos y)(s^2)$$

$$= e^x (2st \sin y + s^2 \cos y).$$

• If
$$v = (y - z)(z - x)(x - y)$$
, prove that $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial v}{\partial z} = 0$.

$$v = (y - z)(z - x)(x - y)$$

$$= (yz - z^2 - xy + xz)(x - y)$$

$$= xyz - xz^2 - x^2y + x^2z - y^2z + yz^2 + xy^2 - xyz$$

Therefore, from (1), (2) and (3), we get,

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = \frac{x}{y}\frac{\partial u}{\partial p} - \frac{z}{x}\frac{\partial u}{\partial r} + \frac{y}{z}\frac{\partial u}{\partial q} - \frac{x}{y}\frac{\partial u}{\partial p} + \frac{z}{x}\frac{\partial u}{\partial r} - \frac{y}{z}\frac{\partial u}{\partial q}$$
$$= 0 = RHS$$

• If u = f(x, y), where $x = r \cos\theta$, $y = r \sin\theta$, prove that

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial u}{\partial \theta}\right)^2.$$
 (L6)

Given u = f(x, y), $x = rcos\theta$, $y = rsin\theta$

Therefore, from (1) and (2), we get,

$$RHS = \left(\frac{\partial u}{\partial r}\right)^{2} + \frac{1}{r^{2}} \left(\frac{\partial u}{\partial \theta}\right)^{2}$$

$$= \left(\frac{\partial u}{\partial x} \left(\cos\theta\right) + \frac{\partial u}{\partial y} \left(\sin\theta\right)\right)^{2} + \frac{1}{r^{2}} \left(\frac{\partial u}{\partial x} \left(-r\sin\theta\right) + \frac{\partial u}{\partial y} \left(r\cos\theta\right)\right)^{2}$$

$$= \left[\left(\frac{\partial u}{\partial x}\right)^{2} \cos^{2}\theta + 2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} \cos\theta\sin\theta + \sin^{2}\theta \left(\frac{\partial u}{\partial y}\right)^{2}\right] + \frac{1}{r^{2}} \left[r^{2}\sin^{2}\theta \left(\frac{\partial u}{\partial x}\right)^{2} - 2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} r^{2}\cos\theta\sin\theta + r^{2}\cos^{2}\theta \left(\frac{\partial u}{\partial y}\right)^{2}\right]$$

$$= \cos^{2}\theta \left(\frac{\partial u}{\partial x}\right)^{2} + \sin^{2}\theta \left(\frac{\partial u}{\partial y}\right)^{2} + \sin^{2}\theta \left(\frac{\partial u}{\partial x}\right)^{2} + \cos^{2}\theta \left(\frac{\partial u}{\partial y}\right)^{2}$$

$$= \left(\frac{\partial u}{\partial x}\right)^{2} (\cos^{2}\theta + \sin^{2}\theta) + \left(\frac{\partial u}{\partial y}\right)^{2} (\sin^{2}\theta + \cos^{2}\theta) = \left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} = LHS$$

• If u = f(x - y, y - z, z - x), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$

Given
$$u = f(x - y, y - z, z - x)$$

Let
$$u = f(p, q, r)$$
, where $p = x - y$, $q = y - z$, $r = z - x$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial p} \frac{\partial p}{\partial x} + \frac{\partial u}{\partial q} \frac{\partial q}{\partial x} + \frac{\partial u}{\partial r} \frac{\partial r}{\partial x}$$

$$= \frac{\partial u}{\partial p} (1) + \frac{\partial u}{\partial q} (0) + \frac{\partial u}{\partial r} (-1)$$

$$= \frac{\partial u}{\partial p} - \frac{\partial u}{\partial r} - - - - - (1)$$

Therefore, From (1), (2) and (3), we get,

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{\partial u}{\partial p} - \frac{\partial u}{\partial r} + \frac{\partial u}{\partial q} - \frac{\partial u}{\partial p} + \frac{\partial u}{\partial r} - \frac{\partial u}{\partial q} = 0 = RHS$$

• If $u = f(x^2+2yz, y^2+2zx)$, prove that

Therefore, From (1), (2) and (3), we get,

$$(y^{2} - zx) \frac{\partial u}{\partial x} + (x^{2} - yz) \frac{\partial u}{\partial y} + (z^{2} - xy) \frac{\partial u}{\partial z}$$

$$= 2x (y^{2} - zx) \frac{\partial u}{\partial p} + 2z (y^{2} - zx) \frac{\partial u}{\partial q} + 2z(x^{2} - yz) \frac{\partial u}{\partial p}$$

$$+ 2y(x^{2} - yz) \frac{\partial u}{\partial q} + 2y(z^{2} - xy) \frac{\partial u}{\partial p} + 2x(z^{2} - xy) \frac{\partial u}{\partial q}$$

$$= \frac{\partial u}{\partial p} [2xy^{2} - 2zx^{2} + 2zx^{2} - 2yz^{2} + 2yz^{2} - 2xy^{2}]$$

$$+ \frac{\partial u}{\partial q} [2zy^{2} - 2xz^{2} + 2yx^{2} - 2zy^{2} + 2xz^{2} - 2yx^{2}]$$

$$= 0 = \text{RHS}$$

• If
$$u = (x^2+y^2+z^2)^{1/2}$$
 prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{2}{u}$

Given that $u = (x^2+y^2+z^2)^{1/2}$

By chain rule,

$$\frac{\partial u}{\partial x} = \frac{1}{2}(x^2 + y^2 + z^2)^{\frac{1}{2} - 1}(2x)$$
$$= \frac{x}{\sqrt{(x^2 + y^2 + z^2)}}$$

By quotient rule,

Similarly,

$$\frac{\partial^2 u}{\partial y^2} = \frac{x^2 + z^2}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \quad ------(2)$$

$$\frac{\partial^2 u}{\partial z^2} = \frac{x^2 + y^2}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} ------(3)$$

Adding (1)(2) and (3)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{x^2 + z^2 + y^2 + z^2 + x^2 + y^2}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$

$$= \frac{2(x^2 + y^2 + z^2)}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$

$$= \frac{2}{(x^2 + y^2 + z^2)^{\frac{1}{2}}} = \frac{2}{u}$$

• If z = f(u, v) where u = x + y and v = x - y,

show that
$$2\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$$

Given z = f(u, v)

where
$$u = x + y$$
, $v = x - y$

Therefore, From (1) and (2), we get,

RHS =
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} - \frac{\partial z}{\partial y}$$

$$=2\frac{\partial z}{\partial u}=$$
 LHS.

• If z = f(x, y), where x = u + v, y = uv, prove that

$$u\frac{\partial z}{\partial u} + v\frac{\partial z}{\partial v} = x\frac{\partial z}{\partial x} + 2y\frac{\partial z}{\partial y}$$
.(L6)

Therefore, From (1) and (2), we get,

LHS =
$$u \frac{\partial z}{\partial u} + v \frac{\partial z}{\partial v} = u \frac{\partial z}{\partial x} + uv \frac{\partial z}{\partial y} + v \frac{\partial z}{\partial x} + uv \frac{\partial z}{\partial y}$$

= $(u + v) \frac{\partial z}{\partial x} + (uv + uv) \frac{\partial z}{\partial y}$
= $(u + v) \frac{\partial z}{\partial x} + 2uv \frac{\partial z}{\partial y} = x \frac{\partial z}{\partial x} + 2y \frac{\partial z}{\partial y} = \text{RHS}$

• Show that $\frac{x}{u}\frac{\partial u}{\partial x} + \frac{y}{u}\frac{\partial u}{\partial y} = 2\log u$, where $\log u = \frac{(x^3 + y^3)}{(3x + 4y)}$.

Differentiating partially w.r.to x by quotient rule,

$$\frac{1}{u}\frac{\partial u}{\partial x} = \frac{(3x+4y)(3x^2) - (x^3+y^3)(3)}{(3x+4y)^2} = \frac{6x^3+12x^2y-3y^3}{(3x+4y)^2} - -(1)$$

Differentiating partially w.r.to y by quotient rule,

$$\frac{1}{u}\frac{\partial u}{\partial y} = \frac{(3x+4y)(3y^2) - (x^3+y^3)(4)}{(3x+4y)^2} = \frac{8y^3 + 9xy^2 - 4x^3}{(3x+4y)^2} - -(2)$$

Multiplying (1) by x and (2) by y we get,

Adding (4) and (5), we get,

$$\frac{x}{u}\frac{\partial u}{\partial x} + \frac{y}{u}\frac{\partial u}{\partial y} = \frac{6x^4 + 12x^3y - 3xy^3 + 8y^4 + 9xy^3 - 4x^3y}{(3x + 4y)^2}$$

$$= \frac{6x^4 + 8x^3y + 6xy^3 + 8y^4}{(3x + 4y)^2}$$

$$= \frac{6x(x^3 + y^3) + 8y(x^3 + y^3)}{(3x + 4y)^2}$$

$$= \frac{(6x + 8y)(x^3 + y^3)}{(3x + 4y)^2}$$

$$= \frac{2(3x + 4y)(x^3 + y^3)}{(3x + 4y)^2}$$

$$= \frac{2(x^3 + y^3)}{(3x + 4y)}$$

$$\frac{x}{u}\frac{\partial u}{\partial x} + \frac{y}{u}\frac{\partial u}{\partial y} = 2\log u$$

• If z = f(u, v), where $u = x^2 - y^2$ and v = 2xy, prove that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 4(x^2 + y^2) \left[\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2 \right].$$
Given $z = f(u, v)$

Therefore, From (1) and (2), Squaring and addding, we get,

LHS =
$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(2x\frac{\partial z}{\partial u} + 2y\frac{\partial z}{\partial v}\right)^2 + \left(-2y\frac{\partial z}{\partial u} + 2x\frac{\partial z}{\partial v}\right)^2$$

= $4x^2 \left(\frac{\partial z}{\partial u}\right)^2 + 8xy\frac{\partial z}{\partial u}\frac{\partial z}{\partial v} + 4y^2 \left(\frac{\partial z}{\partial v}\right)^2 + 4y^2 \left(\frac{\partial z}{\partial u}\right)^2 - 8xy\frac{\partial z}{\partial u}\frac{\partial z}{\partial v} + 4x^2 \left(\frac{\partial z}{\partial v}\right)^2$
= $\left(\frac{\partial z}{\partial u}\right)^2 \left[4x^2 + 4y^2\right] + \left(\frac{\partial z}{\partial v}\right)^2 \left[4x^2 + 4y^2\right]$
= $\left[4x^2 + 4y^2\right] \left[\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2\right]$
= $4(x^2 + y^2) \left[\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2\right] = \text{RHS}$

Total Differential Coefficient Of A Function

Let Z be a function in two variables x and y. If Z is continuous, then the total differential coefficient of Z is given by $dz = \frac{\partial Z}{\partial x} \ dx + \frac{\partial Z}{\partial y} \ dy$ Examples

• Find the total differential coefficient of the function u = tan (3x - y + 2z).

Given,
$$u = tan (3x - y + 2z)$$
.

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz \qquad (1)$$

$$\frac{\partial u}{\partial x} = 3sec^2(3x - y + 2z)$$

$$\frac{\partial u}{\partial y} = -sec^2(3x - y + 2z)$$

$$\frac{\partial u}{\partial z} = 2sec^2(3x - y + 2z)$$

Substituting in (1)

$$du = 3sec^{2}(3x - y + 2z)dx - sec^{2}(3x - y + 2z)dy + 2sec^{2}(3x - y + 2z)dz$$

$$du = sec^{2}(3x - y + 2z)(3dx - dy + 2dz)$$

• Find $\frac{du}{dt}$, if u = log(x + y + z), where $x = e^{-t}$, y = sint, z = cost

Given,
$$u = log(x + y + z)$$
,

where
$$x = e^{-t}$$
, $y = sint$, $z = cost$

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt}$$
$$= \frac{1}{x+y+z} \left(-e^{-t}\right) + \frac{1}{x+y+z} \left(\cos t\right) + \frac{1}{x+y+z} \left(-\sin t\right)$$

$$= \frac{cost - sint - e^{-t}}{e^{-t} + sint + cost}$$

• Find $\frac{du}{dt}$, if $u = e^{xy}$, where $x = (a^2 - t^2)^{1/2}$, $y = \sin^3 t$

Given,
$$u = e^{xy}$$
, where $x = (a^2 - t^2)^{1/2}$, $y = \sin^3 t$

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt}$$

$$= ye^{xy} \frac{1}{2} (a^2 - t^2)^{\frac{1}{2} - 1} (-2t) + xe^{xy} 3sin^2 tcost$$

$$= e^{xy} \left[\frac{-yt}{\sqrt{a^2 - t^2}} + 3xsin^2 tcost \right]$$

• Find $\frac{du}{dt}$, if $u = x^3y^2 + x^2y^3$ where $x = at^2$, y = 2at.

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt}
= (3x^2y^2 + 2xy^3)(2at) + (2x^3y + 3x^2y^2)(2a)
= (3a^2t^44a^2t^2 + 2at^28a^3t^3)(2at) + (2a^3t^62at + 3a^2t^44a^2t^2)(2a)
= 4a^4t^5(3t + 4)(2at) + 4a^4t^6(t + 3)(2a)
= 8a^5t^6(3t + 4) + 8a^5t^6(t + 3)
= 8a^5t^6(3t + 4 + t + 3)
= 8a^5t^6(4t + 7)$$

- Find $\frac{du}{dt}$, if $\mathbf{u} = \frac{x}{y}$, where $x = e^t$, and $y = \log t$. (L1)

 Given, $u = \frac{x}{y}$, where $x = e^t$, and $y = \log t$. $\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt}$ $= \frac{1}{y} e^t + \left(\frac{-x}{y^2}\right) \frac{1}{t}$ $= \frac{1}{\log t} e^t + \frac{-e^t}{(\log t)^2} \frac{1}{t}$ $= \frac{e^t}{\log t} \left(1 \frac{1}{t \log t}\right)$
- If $u=sin^{-1}(x-y)$, where x=3t and $y=4t^3$. Show that $\frac{du}{dt}=\frac{3}{\sqrt{1-t^2}}$. Given, $u=sin^{-1}(x-y)$

where
$$x = 3t$$
 and $y = 4t^3$

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t}$$

$$= \frac{1}{\sqrt{1 - (x - y)^2}} (3) - \frac{1}{\sqrt{1 - (x - y)^2}} (12t^2) = \frac{3 - 12t^2}{\sqrt{1 - (x - y)^2}}$$

Now
$$1 - (x - y)^2 = 1 - (3t - 4t^3)^2$$

$$= 1 - t^2(3 - 4t^2)^2$$

$$= 1 - t^2(9 - 24t^2 + 16t^4)$$

$$= 1 - 9t^2 + 24t^4 - 16t^6$$

$$= 1 - t^2 - 8t^2 + 8t^4 + 16t^4 - 16t^6$$

$$= (1 - t^2)(1 - 8t^2 + 16t^4)$$

$$= (1 - t^2)(1 - 4t^2)^2$$

$$\frac{du}{dt} = \frac{3(1 - 4t^2)}{\sqrt{(1 - t^2)(1 - 4t^2)^2}} = \frac{3}{\sqrt{1 - t^2}}$$

Implicit Function

A function of the form f(x, y) = 0 is called an implicit function.

$$e.g.1. 6x^3 + 12x^2y - 3y^3 = 0$$

e.g.2.
$$x^3 + y^3 = 3ax^2y$$

For an implicit function f(x, y) = 0,

$$\frac{dy}{dx} = \frac{-\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$$

• Find
$$\frac{dy}{dx}$$
, when $x^3 + y^3 = 3ax^2y$
Let $f(x, y) = x^3 + y^3 - 3ax^2y$.

$$\frac{dy}{dx} = \frac{-\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$$

$$\frac{\partial f}{\partial x} = 3x^2 - 6axy$$

$$\frac{\partial f}{\partial y} = 3y^2 - 3ax^2$$

$$\frac{dy}{dx} = \frac{-(3x^2 - 6axy)}{3y^2 - 3ax^2}$$

$$= -\frac{3x(x - 6ay)}{3(y^2 - ax^2)} = \frac{-x(x - 6ay)}{(y^2 - ax^2)}$$

• Find $\frac{dy}{dx}$, when $x^y + y^x = c$

$$Let u(x, y) = x^y + y^x - c$$

$$\frac{dy}{dx} = \frac{-\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}$$

$$\frac{\partial u}{\partial x} = yx^{y-1} + y^x \log y$$

$$\frac{\partial u}{\partial y} = x^y \log x + xy^{x-1}$$

$$\therefore \frac{dy}{dt} = \frac{-(yx^{y-1} + y^x \log y)}{x^y \log x + xy^{x-1}}$$

Taylor's Theorem For A Function Of Two Variables.

If f(x, y) and all its partial derivatives are finite and continuous at all points, then the Taylor series of f(x, y) about the point (a, b) is given by

$$f(x,y) = f(a,b) + \frac{1}{1!} [(x-a)f_x(a,b) + (y-b)f_y(a,b)]$$

$$+\frac{1}{2!} [(x-a)^2 f_{xx}(a,b) + 2(x-a)(y-b) f_{xy}(a,b) + (y-b)^2 f_{yy}(a,b)] + \cdots$$

• Write the Taylor's series expansion of x^y near the point (1, 1) up to the second degree terms

Taylor's series expansion of x^y near the point (1, 1) is given by

$$x^{y} = f(1,1) + \frac{1}{1!} \left[(x-1) \frac{\partial f(1,1)}{\partial x} + (y-1) \frac{\partial f(1,1)}{\partial y} \right] + \frac{1}{2!} \left[(x-1)^{2} \frac{\partial^{2} f(1,1)}{\partial x^{2}} + 2(x-1)(y-1) \frac{\partial^{2} f(1,1)}{\partial x \partial y} + (y-1)^{2} \frac{\partial^{2} f(1,1)}{\partial y^{2}} \right] + \cdots$$

Function	Value at (1,1)		
$f = x^y$	1		
$f_x = yx^{y-1}$	1		
$f_{y} = x^{y} log x$	0 $[since log1 = 0]$		
$f_{xx = y(y-1)x^{y-2}}$	0		
$f_{xy} = yx^{y-1}logx + x^{y-1}$	1		
$f_{yy} = x^y (log x)^2$	0		

$$x^{y} = 1 + \frac{1}{1!}[(x-1)1 + (y-1)0]$$

$$+ \frac{1}{2!}[(x-1)^{2}(0) + 2(x-1)(y-1) + (y-1)^{2}(0)]$$

$$x^{y} = 1 + \frac{1}{1!}[(x-1)] + \frac{1}{2!}[2(x-1)(y-1)] + \cdots$$

• Write the Taylor series expansion of $e^x \log(1 + y)$ in powers of x and y up to the terms of first degree.

Taylor's series expansion of $e^x \log (1 + y)$ near the point (0, 0) or Maclaurin's expansion is given by

$$e^{x} \log(1+y) = f(0,0) + \frac{1}{1!} \left[(x-0) \frac{\partial f(0,0)}{\partial x} + (y-0) \frac{\partial f(0,0)}{\partial y} \right] + \cdots$$

Function	Value at (0,0)		
$f = e^x \log (1 + y)$	0 [since log1 = 0]		
$f_x = e^x \log\left(1 + y\right)$	0		
$f_y = e^x \frac{1}{1+y}$	1 3		

$$e^{x} \log(1+y) = 0 + \frac{1}{11} [(x)0 + (y)1] + \dots = y$$

• Expand $x^2y+3y-2$ in powers of (x-1) and (y+2) up to the third terms

Taylor's series about the point (a, b) is given by

$$f(x,y) = f(a,b) + \frac{1}{1!} [(x-a)f_x(a,b) + (y-b)f_y(a,b)]$$
$$+ \frac{1}{2!} [(x-a)^2 f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}(a,b) + (y-b)^2 f_{yy}(a,b)] + \cdots$$

Taylor's series about the point (1, -2) is given by

$$x^{2}y + 3y - 2 = f(1, -2) + \frac{1}{1!} \left[(x - 1) \frac{\partial f(1, -2)}{\partial x} + (y + 2) \frac{\partial f(1, -2)}{\partial y} \right] + \frac{1}{2!} \left[(x - 1)^{2} \frac{\partial^{2} f(1, -2)}{\partial x^{2}} + 2(x - 1)(y + 2) \frac{\partial^{2} f(1, -2)}{\partial x \partial y} + (y + 2)^{2} \frac{\partial^{2} f(1, -2)}{\partial y^{2}} \right] + \cdots$$

Function	Value at (1,-2)
$f = x^2y + 3y - 2$	$(1)^2(-2) + 3(-2) - 2 = -2 - 6 - 2 = -10$
$f_x = 2xy$	2(1)(-2) = -4
$f_y = x^2 + 3$	$(1)^2 + 3 = 4$

$f_{xx} = 2y$	2(-2) = -4
$f_{xy} = 2x$	2(1)=2
$f_{yy}=0$	0
$f_{xxx}=0$	0
$f_{xxy}=2$	2
$f_{xyy}=0$	0
$f_{yyy}=0$	0

Using the table values

$$x^{2}y+3y-2 = -10 + \frac{1}{1!}[(x-1)(-4) + (y+2)4] + \frac{1}{2!}[(x-1)^{2}(-4) + 2(x-1)(y+2)2 + (y+2)^{2}0] + \frac{1}{3!}[(x-1)^{3}(0) + 3(x-1)^{2}(y+2)2 + 3(x-1)(y+2)^{2}(0) + (y+2)^{3}0] + \cdots$$

$$= -10 + \frac{1}{1!}[-4(x-1) + 4(y+2)] + \frac{1}{2!}[-4(x-1)^{2} + 4(x-1)(y+2)] + \frac{1}{3!}[6(x-1)^{2}(y+2)] + \cdots$$

$$= -10 - 4[(x-1) - (y+2)] - 2[(x-1)^{2} - (x-1)(y+2)] + [(x-1)^{2}(y+2)] + \cdots$$

• Expand $f(x, y) = x^2y + siny + e^x$ in Taylor's series about the point $(1,\pi).(L2)$

Taylor's series about the point (a, b) is given by

$$f(x,y) = f(a,b) + \frac{1}{1!} [(x-a)f_x(a,b) + (y-b)f_y(a,b)]$$

$$+ \frac{1}{2!} [(x-a)^2 f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}(a,b)]$$

$$+ (y-b)^2 f_{yy}(a,b)] + \cdots$$

Taylor series about the point $(1, \pi)$ is

$$x^{2}y + siny + e^{x} = f(1,\pi) + \frac{1}{1!} \left[(x-1)\frac{\partial f(1,\pi)}{\partial x} + (y-\pi)\frac{\partial f(1,\pi)}{\partial y} \right]$$

$$+ \frac{1}{2!} \left[(x-1)^{2} \frac{\partial^{2} f(1,\pi)}{\partial x^{2}} + 2(x-1)(y-\pi)\frac{\partial^{2} f(1,\pi)}{\partial x \partial y} \right]$$

$$+ (y-\pi)^{2} \frac{\partial^{2} f(1,\pi)}{\partial y^{2}}$$

$$+ \frac{1}{3!} \left[(x-1)^{3} \frac{\partial^{3} f(1,\pi)}{\partial x^{3}} + 3(x-1)^{2} (y-\pi)\frac{\partial^{3} (1,\pi)}{\partial x^{2} \partial y} \right]$$

$$+ 3(x-1)(y-\pi)^{2} \frac{\partial^{3} f(1,\pi)}{\partial x \partial y^{2}} + (y-\pi)^{3} \frac{\partial^{3} f(1,\pi)}{\partial y^{3}} \right] + \cdots$$

Function	Value at $(1,\pi)$
$f = x^2y + \sin y + e^x$	$f = \pi + e$
$f_x = 2xy + e^x$	$f_x = 2\pi + e$
$f_y = x^2 + \cos y$	$f_y = 0$
$f_{xx} = 2y + e^x$	$f_{xx} = 2\pi + e$
$f_{xy} = 2x$	$f_{xy}=2$
$f_{yy} = -siny$	$f_{yy}=0$
$f_{xxx} = e^x$	$f_{xxx} = e$
$f_{xxy} = 2$	$f_{xxy} = 2$
$f_{xyy} = 0$	$f_{xyy} = 0$
$f_{yyy} = -cosy$	$f_{yyy} = 1$

$$x^{2}y + \sin y + e^{x} = \pi + e + \frac{1}{1!}[(x - 1)(2\pi + e) + (y - \pi)(0)]$$
$$+ \frac{1}{2!}[(x - 1)^{2}(2\pi + e) + 2(x - 1)(y - \pi)(2) + (y - \pi)^{2}(0)]$$

$$+\frac{1}{3!}[(x-1)^3e + 3(x-1)^2(y-\pi)(2) + 3(x-1)(y-\pi)^2(0) + (y-\pi)^3(1)] + \cdots$$

$$\therefore x^2y + \sin y + e^x = \pi + e + \frac{1}{1!}[(x-1)(2\pi + e)] + \frac{1}{2!}[(x-1)^2(2\pi + e) + 4(x-1)(y-\pi)] + \frac{1}{3!}[e(x-1)^3 + 6(x-1)^2(y-\pi) + (y-\pi)^3] + \cdots$$

• Write the Taylor's series expansion of $e^x siny$ near the point $(-1, \pi/4)$ up to the third degree terms.

Taylor's series about the point (a, b) is given by

$$f(x,y) = f(a,b) + \frac{1}{1!} [(x-a)f_x(a,b) + (y-b)f_y(a,b)]$$

$$+ \frac{1}{2!} [(x-a)^2 f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}(a,b)]$$

$$+ (y-b)^2 f_{yy}(a,b)] + \cdots$$

Taylor's series about the point $\left(-1, \frac{\pi}{4}\right)$ is given by

$$e^{x}siny = f\left(-1, \frac{\pi}{4}\right) + \frac{1}{1!} \left[(x+1) \frac{\partial f\left(-1, \frac{\pi}{4}\right)}{\partial x} + \left(y - \frac{\pi}{4}\right) \frac{\partial f\left(-1, \frac{\pi}{4}\right)}{\partial y} \right]$$

$$+ \frac{1}{2!} \left[(x+1)^{2} \frac{\partial^{2} f\left(-1, \frac{\pi}{4}\right)}{\partial x^{2}} + 2(x+1) \left(y - \frac{\pi}{4}\right) \frac{\partial^{2} f\left(-1, \frac{\pi}{4}\right)}{\partial x \partial y} + \left(y - \frac{\pi}{4}\right)^{2} \frac{\partial^{2} f\left(-1, \frac{\pi}{4}\right)}{\partial y^{2}} \right] + \frac{1}{3!} \left[(x+1)^{3} \frac{\partial^{3} f\left(-1, \frac{\pi}{4}\right)}{\partial x^{3}} + 3(x+1)^{2} \left(y - \frac{\pi}{4}\right) \frac{\partial^{3} f\left(-1, \frac{\pi}{4}\right)}{\partial x^{2} \partial y} + 3(x+1) \left(y - \frac{\pi}{4}\right)^{2} \frac{\partial^{3} f\left(-1, \frac{\pi}{4}\right)}{\partial x \partial y^{2}} + (y - \frac{\pi}{4})^{3} \frac{\partial^{3} f\left(-1, \frac{\pi}{4}\right)}{\partial y^{3}} \right] + \cdots \dots$$

Function	Value at $\left(-1, \frac{\pi}{4}\right)$
$f = e^x siny$	$f = e^{-1} \sin \frac{\pi}{4} = \frac{1}{e} \left(\frac{1}{\sqrt{2}} \right)$
$f_x = e^x siny$	$f_x = e^{-1} \sin \frac{\pi}{4} = \frac{1}{e} \left(\frac{1}{\sqrt{2}} \right)$
$f_y = e^x cosy$	$f_y = e^{-1} cos \frac{\pi}{4} = \frac{1}{e} \left(\frac{1}{\sqrt{2}}\right)$
$f_{xx} = e^x siny$	$f_{xx} = e^{-1} \sin \frac{\pi}{4} = \frac{1}{e} \left(\frac{1}{\sqrt{2}}\right)$
$f_{xy} = e^x cosy$	$f_{xy} = e^{-1}\cos\frac{\pi}{4} = \frac{1}{e}\left(\frac{1}{\sqrt{2}}\right)$
$f_{yy} = -e^x siny$	$f_{yy} = -e^{-1}\sin\frac{\pi}{4} = -\frac{1}{e}\left(\frac{1}{\sqrt{2}}\right)$
$f_{xxx} = e^x siny$	$f_{xxx} = e^{-1}\cos\frac{\pi}{4} = \frac{1}{e}\left(\frac{1}{\sqrt{2}}\right)$
$f_{xxy} = e^x cosy$	$f_{xxy} = e^{-1}\cos\frac{\pi}{4} = \frac{1}{e}\left(\frac{1}{\sqrt{2}}\right)$
$f_{xyy} = -e^x siny$	$f_{xyy} = -e^{-1}\sin\frac{\pi}{4} = -\frac{1}{e}\left(\frac{1}{\sqrt{2}}\right)$
$f_{yyy} = -e^x cosy$	$f_{yyy} = -e^{-1}\sin\frac{\pi}{4} = -\frac{1}{e}\left(\frac{1}{\sqrt{2}}\right)$

$$\begin{split} e^x siny &= \frac{1}{e} \left(\frac{1}{\sqrt{2}} \right) + \frac{1}{1!} \left[(x+1) \frac{1}{e} \left(\frac{1}{\sqrt{2}} \right) + \left(y - \frac{\pi}{4} \right) \frac{1}{e} \left(\frac{1}{\sqrt{2}} \right) \right] \\ &+ \frac{1}{2!} \left[(x+1)^2 \frac{1}{e} \left(\frac{1}{\sqrt{2}} \right) + 2(x+1) \left(y - \frac{\pi}{4} \right) \frac{1}{e} \left(\frac{1}{\sqrt{2}} \right) + \left(y - \frac{\pi}{4} \right)^2 \left(-\frac{1}{e} \frac{1}{\sqrt{2}} \right) \right] \end{split}$$

$$+ \frac{1}{3!} \left[(x+1)^3 \frac{1}{e} \left(\frac{1}{\sqrt{2}} \right) + 3(x+1)^2 \left(y - \frac{\pi}{4} \right) \frac{1}{e} \left(\frac{1}{\sqrt{2}} \right) \right]$$

$$+ 3(x+1) \left(y - \frac{\pi}{4} \right)^2 \left(-\frac{1}{e} \left(\frac{1}{\sqrt{2}} \right) \right) + \left(y - \frac{\pi}{4} \pi \right)^3 \left(-\frac{1}{e} \frac{1}{\sqrt{2}} \right) \right] + \cdots$$

$$\Rightarrow e^x \sin y = \frac{1}{e} \left(\frac{1}{\sqrt{2}} \right) \left[1 + (x+1) + \left(y - \frac{\pi}{4} \right) + \frac{1}{2!} \left\{ (x+1)^2 + 2(x+1) \left(y - \frac{\pi}{4} \right) - \left(y - \frac{\pi}{4} \right)^2 \right\} + \frac{1}{3!} \left\{ (x+1)^3 + 3(x+1)^2 \left(y - \frac{\pi}{4} \right) - 3(x+1) \left(y - \frac{\pi}{4} \right)^2 - \left(y - \frac{\pi}{4} \right)^3 \right\} + \cdots \right]$$

Maclaurin's Expansion Of f(x, y)

Taylor's series about the point (0,0) is known as Maclaurin's Expansion

Maclaurin's expansion of f(x, y) is given by

$$f(x,y) = f(0,0) + \frac{1}{1!} \left[(x-0) \frac{\partial f(0,0)}{\partial x} + (y-0) \frac{\partial f(0,0)}{\partial y} \right]$$

$$+ \frac{1}{2!} \left[(x-0)^2 \frac{\partial^2 f(0,0)}{\partial x^2} + 2(x-0)(y-0) \frac{\partial^2 f(0,0)}{\partial x \partial y} + (y-0)^2 \frac{\partial^2 f(0,0)}{\partial y^2} \right]$$

$$+ \frac{1}{3!} \left[(x-0)^3 \frac{\partial^3 f(0,0)}{\partial x^3} + 3(x-0)^2 (y-0) \frac{\partial^3 f(0,0)}{\partial x^2 \partial y} \right]$$

$$+ 3(x-0)(y-0)^2 \frac{\partial^3 f(0,0)}{\partial x \partial y^2} + (y-0)^3 \frac{\partial^3 f(0,0)}{\partial y^3}$$

• Write down the Maclaurin's series for sin(x + y).

Maclaurin's expansion of f(x, y) is given by

$$f(x,y) = f(0,0) + \frac{1}{1!} \left[(x-0) \frac{\partial f(0,0)}{\partial x} + (y-0) \frac{\partial f(0,0)}{\partial y} \right]$$
$$+ \frac{1}{2!} \left[(x-0)^2 \frac{\partial^2 f(0,0)}{\partial x^2} + 2(x-0)(y-0) \frac{\partial^2 f(0,0)}{\partial x \partial y} + (y-0)^2 \frac{\partial^2 f(0,0)}{\partial y^2} \right]$$

$$+\frac{1}{3!} \left[(x-0)^3 \frac{\partial^3 f(0,0)}{\partial x^3} + 3(x-0)^2 (y-0) \frac{\partial^3 f(0,0)}{\partial x^2 \partial y} + 3(x-0)(y-0)^2 \frac{\partial^3 f(0,0)}{\partial x \partial y^2} + (y-0)^3 \frac{\partial^3 f(0,0)}{\partial y^3} \right] + \cdots$$

Function	Value at (0,0)
$f = \sin(x + y)$	0
$f_{x} = \cos\left(x + y\right)$	1
$f_y = \cos\left(x + y\right)$	1
$f_{xx} = -\sin(x+y)$	0
$f_{xy} = -\sin(x+y)$	0
$f_{yy} = -\sin(x+y)$	0
$f_{xxx} = -\cos(x+y)$	-1
$f_{xxy} = -\cos(x+y)$	-1
$f_{xyy} = -\cos(x+y)$	-1
$f_{yyy} = -\cos(x+y)$	-1

Substituting the table values,

$$\sin(x+y) = 0 + \frac{1}{1!}[(x-0)1 + (y-0)1] + \frac{1}{2!}[(x-0)^20 + 2(x-0)(y-0)0 + (y-0)^20] + \frac{1}{3!}[(x-0)^3(-1) + 3(x-0)^2(y-0)(-1) + 3(x-0)(y-0)^2(-1) + (y-0)^3(-1)] + \cdots$$

$$\sin(x+y) = (x+y) - \frac{1}{3!}(x+y)^3 + \cdots$$

• Write down the Maclaurin's series for e^{x+y} .

Maclaurin's expansion of e^{x+y} is given by

$$e^{x+y} = f(0,0) + \frac{1}{1!} \left[(x-0) \frac{\partial f(0,0)}{\partial x} + (y-0) \frac{\partial f(0,0)}{\partial y} \right]$$

$$+\frac{1}{2!} \left[(x-0)^2 \frac{\partial^2 f(0,0)}{\partial x^2} + 2(x-0)(y-0) \frac{\partial^2 f(0,0)}{\partial x \partial y} + (y-0)^2 \frac{\partial^2 f(0,0)}{\partial y^2} + \cdots \right]$$
+ \cdots

Function	Value at (0,0)		
$f = e^{x+y}$	1 8		
$f_x = e^{x+y}$	1		
$f_{y}=e^{x+y}$	1		
$f_{xx=e^{x+y}}$	1		
$f_{xy} = e^{x+y}$	1		
$f_{yy} = e^{x+y}$	1		

$$e^{x+y} = 1 + \frac{1}{1!}[(x)1 + (y)1] + \frac{1}{2!}[(x)^21 + 2(x)(y)1 + (y)^21] + \cdots$$

$$\Rightarrow e^{x+y} = 1 + \frac{1}{1!}(x+y) + \frac{1}{2!}(x+y)^2 + \cdots$$

<u>Iacobian.</u>

If u(x, y) and v(x, y) are functions in two variables x and y, then the

Jacobian of u and v w.r.t x and y is given by the determinant $\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$.

<u>Properties Of Jacobian</u>

1.
$$\frac{\partial(u,v)}{\partial(x,y)} \cdot \frac{\partial(x,y)}{\partial(u,v)} = 1$$

2.
$$\frac{\partial(u,v)}{\partial(x,y)} = \frac{\partial(u,v)}{\partial(r,s)} \cdot \frac{\partial(r,s)}{\partial(x,y)}$$

3. If u(x, y) and v(x, y) are functionally independent, then

$$\frac{\partial(u,v)}{\partial(x,y)} = 0$$

• If u = 2xy, $v = x^2 - y^2$, $x = r \cos\theta$ and $y = r \sin\theta$, find $\frac{\partial(u,v)}{\partial(r,\theta)}$.

By the property of jacobian,

$$\frac{\partial(u,v)}{\partial(r,\theta)} = \frac{\partial(u,v)}{\partial(x,y)} \cdot \frac{\partial(x,y)}{\partial(r,\theta)} \quad ------(1)$$

Now,

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}
= \begin{vmatrix} 2y & 2x \\ 2x & -2y \end{vmatrix}
= -4y^2 - 4x^2
= -4(x^2 + y^2)
= -4(r^2\cos^2\theta + r^2\sin^2\theta)
= -4r^2 ------(2)
$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \\ \end{vmatrix}
= \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix}
= (r\cos^2\theta + r\sin^2\theta)
= r -----(3)$$$$

substituting (2) and (3) in (1)

$$\frac{\partial(u,v)}{\partial(r,\theta)} = -4 r^2 (r) = -4r^3$$

• If $x = rcos\theta$, $y = rsin\theta$ and $z = \varphi$. Find $\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)}$.

$$\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \varphi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi} \end{vmatrix}$$

$$= \begin{vmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= \cos\theta(r\cos\theta - 0) + r\sin\theta(\sin\theta - 0) + 0$$

$$= r\cos^2\theta + r\sin^2\theta = r$$

• If x = u(1 + v), y = v(1 + u), find $\frac{\partial(x, y)}{\partial(u, v)}$.

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

$$= \begin{vmatrix} 1+v & u \\ v & 1+u \end{vmatrix} = (1+v)(1+u) - uv$$

$$= 1+u+v+uv-uv$$

$$= 1+u+v$$

• If $x=e^r sec\theta$, $y=e^r tan\theta$ find $\frac{\partial(x,y)}{\partial(r,\theta)}$

Given,
$$x = e^r \sec \theta$$
 $\Rightarrow \frac{\partial x}{\partial r} = e^r \sec \theta$; $\frac{\partial x}{\partial \theta} = e^r \sec \theta \tan \theta$; $y = e^r \tan \theta$ $\Rightarrow \frac{\partial y}{\partial r} = e^r \tan \theta$; $\frac{\partial y}{\partial \theta} = e^r \sec^2 \theta$ $\frac{\partial (x,y)}{\partial (r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix}$

$$=\begin{vmatrix} e^{r} \sec \theta & e^{r} \sec \theta \tan \theta \\ e^{r} \tan \theta & e^{r} \sec^{2} \theta \end{vmatrix} = e^{2r} (\sec^{3} \theta) - e^{2r} (\sec \theta \tan^{2} \theta)$$
$$= e^{2r} \sec \theta (\sec^{2} \theta - \tan^{2} \theta) = e^{2r} \sec \theta$$

• If $u = x^2$, $v = y^2$, prove that $\frac{\partial(x, y)}{\partial(u, v)} \frac{\partial(u, v)}{\partial(x, y)} = 1$.

If
$$u = x^2 \implies x = \sqrt{u}$$
 and $v = y^2 \implies y = \sqrt{v}$

$$\frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{1}{2\sqrt{u}} & 0\\ 0 & \frac{1}{2\sqrt{v}} \end{vmatrix} \begin{vmatrix} 2x & 0\\ 0 & 2y \end{vmatrix}$$
$$= \frac{1}{4\sqrt{uv}} \cdot 4xy = \frac{1}{4\sqrt{x^2y^2}} \cdot 4xy = \frac{1}{4xy} \cdot 4xy = 1$$

• If u = xyz, v + xy + yz + zx, w = x + y + z. Find $\frac{\partial(u,v,w)}{\partial(x,y,w)}$

$$\frac{\partial(u, v, w)}{\partial(x, y, w)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}$$

$$= \begin{vmatrix} yz & xz & xy \\ y+z & x+z & x+y \\ 1 & 1 & 1 \end{vmatrix}$$

$$= 1(x^2z + zxy - x^2y - xyz) - 1(xyz + y^2z - xy^2 - xyz) + 1(xyz + z^2y - xyz - xz^2)$$

$$= x^2(z-y) - y^2(z-x) + z^2(y-x)$$

• If
$$x = uv$$
, $y = \frac{u}{v}$, show that $\frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(x,y)} = 1$

Given,
$$x = uv$$
 -----(1)

$$y = \frac{u}{v} \qquad ----(2)$$

(1) multiplied with (2)

$$xy = uv. \frac{u}{v} = u^2 \qquad -----(3)$$

(1) divided with (2)

$$\frac{x}{y} = \frac{uv}{\frac{u}{v}} = v^2 \qquad -----(4)$$

From
$$(3)&(4)$$

$$\frac{\partial x}{\partial u} = v$$

$$2u\frac{\partial u}{\partial x} = y$$

$$\frac{\partial x}{\partial v} = u$$

$$2u\frac{\partial u}{\partial y} = x$$

$$\frac{\partial y}{\partial u} = \frac{1}{v}$$

$$2v\frac{\partial v}{\partial x} = \frac{1}{y}$$

$$\frac{\partial y}{\partial v} = \frac{-u}{v^2}$$

$$2v\frac{\partial v}{\partial y} = -\frac{x}{v^2}$$

$$\frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} v & u \\ \frac{1}{v} & \frac{-u}{v^2} \end{vmatrix} \begin{vmatrix} \frac{y}{2u} & \frac{x}{2u} \\ \frac{1}{2vy} & \frac{-x}{2vy^2} \end{vmatrix}$$

$$= \left[\left(v \cdot \frac{-u}{v^2} \right) - \left(u \cdot \frac{1}{v} \right) \right] \left[\left(\frac{y}{2u} \cdot \frac{-x}{2vy^2} \right) - \left(\frac{x}{2u} \cdot \frac{1}{2vy} \right) \right]$$

$$= \left[\frac{-u}{v} - \frac{u}{v}\right] \left[-\frac{xy}{4uvy^2} - \frac{x}{4uvy} \right] = \left[\frac{-2u}{v}\right] \left[-\frac{2x}{4uvy} \right]$$

$$= \frac{x}{yv^2} = \frac{x}{y\left(\frac{x}{y}\right)} = 1$$

• If we transform from three dimensional Cartesian co-ordinates (x, y, z) to spherical polar co-ordinates (r, θ, ϕ) . Show that the Jacobian of x, y, z with respect to r, θ, ϕ is $r^2 sin\theta$

Spherical polar co-ordinates are,

$$x = r \sin \theta \cos \varphi$$

$$y = r \sin \theta \sin \varphi$$

$$z = r \cos \theta$$

$$\left| \frac{\partial x}{\partial r} \quad \frac{\partial x}{\partial \theta} \quad \frac{\partial x}{\partial \varphi} \right|$$

$$\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} = \begin{vmatrix} \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \varphi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi} \end{vmatrix}$$

$$= \begin{vmatrix} \sin\theta\cos\varphi & \cos\theta\cos\varphi & -r\sin\theta\sin\varphi \\ \sin\theta\sin\varphi & \cos\theta\sin\varphi & r\sin\theta\cos\varphi \\ \cos\theta & -r\sin\theta & 0 \end{vmatrix}$$

 $= cos\theta[r^2sin\thetacos\thetacos^2\varphi + r^2sin\thetacos\thetasin^2\varphi]$ $+ rsin\theta[rsin^2\thetacos^2\varphi + rsin^2\thetasin^2\varphi]$

 $=cos\theta r^2sin\theta cos\theta [cos^2\varphi + sin^2\varphi] + rsin\theta rsin^2\theta [cos^2\varphi + sin^2\varphi]$

 $= [\cos^2 \varphi + \sin^2 \varphi](r^2 \sin\theta \cos^2 \theta + r^2 \sin\theta \sin^2 \theta)$

 $= r^2 sin\theta (cos^2\theta + sin^2\theta) = r^2 sin\theta$

• If u = x + y + z, uv = y + z, uvw = z, evaluate. $\frac{\partial(x,y,z)}{\partial(u,v,w)}$

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Let u = x + y + z -----(1)

$$uv = y + z \qquad -----(2)$$

$$uvw = z \qquad -----(3)$$

Put (2) in (1) we get,

$$u = x + uv \implies x = u - uv \implies x = u(1 - v)$$

Put (3) in (2) we get,
$$uv = y + uvw \implies y = uv - uvw \implies y = uv(1 - w)$$

From (3) we get, z = uvw.

Stationary Points.

Let f(x, y) be a function in x and y. Then the points at which $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$ are called stationary points. At these points the function takes an extreme value.

Maximum Value, Minimum Value And Extreme Value Of A Function <u>Of Two Variables.</u>

- 4. A function is said to have a maximum value at the point (a, b)if f(a, b) > f(a + h, b + k) for all small values of h and k.
- 5. A function is said to have a minimum value at the point (a, b)

if f(a, b) < f(a + h, b + k) for all small values of h and k.

6. A function is said to have an extreme value at the point (a, b) if it is either maximum or minimum at (a, b).

Define Saddle Point Of A Function f(x, y).

Let f(x, y) be a function in x and y. The point (a, b) is said to be a saddle point ,if the function is neither maximum nor minimum at that point

Working Rule To Find Maximum/ Minimum Value

- Find the stationary points (a,b)
- Find the values $A = \frac{\partial^2 f}{\partial x^2}$, $B = \frac{\partial^2 f}{\partial x \partial y}$, $C = \frac{\partial^2 f}{\partial y^2}$ and $\Delta = AC B^2$ at all the stationary points.
- If $\Delta > 0$ and A or B > 0 at (a,b), Then the function has a minima at (a,b)
- If $\Delta > 0$ and A or B < 0 at (a,b), Then the function has a maxima at (a,b)
- If Δ < 0,Then (a,b) is a saddle point.
- If Δ =0,Then the nothing can be decided.
- Examine the stationary points of the function

$$f(x,y) = x^3 + y^3 - 3x - 12y + 20$$
 and also state their nature.

Given that
$$f(x, y) = x^3 + y^3 - 3x - 12y + 20$$

To find stationary points

$$\frac{\partial f}{\partial x} = 0 \Rightarrow 3x^2 - 3 = 0 \Rightarrow 3(x^2 - 1) = 0$$

$$\Rightarrow x^2 = 1$$

$$\Rightarrow x = \pm 1 - (1)$$

$$\frac{\partial f}{\partial y} = 0 \Rightarrow 3y^2 - 12 = 0 \Rightarrow 3(y^2 - 4) = 0$$

$$\Rightarrow y^2 = 4$$

$$\Rightarrow y = \pm 2 - (2)$$

 \therefore The stationary points are (-1, -2), (-1, 2), (1, -2), and (1, 2)

$$A = \frac{\partial^2 f}{\partial x^2} = 6x$$
$$B = \frac{\partial^2 f}{\partial x \partial y} = 0$$
$$C = \frac{\partial^2 f}{\partial y^2} = 6y$$

Points	$A = \frac{\partial^2 f}{\partial x^2}$	$B = \frac{\partial^2 f}{\partial x \partial y}$	$C = \frac{\partial^2 f}{\partial y^2}$	$\Delta = AC - B^2$	Extremum
(-1, -2)	−6< 0	0	-12<0	72> 0	Maximum
(-1,2)	-6< 0	0	12	-72< 0	Saddle point
(1,-2),	6	0	-12	-72< 0	Saddle point
(1,2)	6> 0	0	12> 0	72> 0	Minimum

The maximum value at (-1, -2) is

$$f(x,y) = (-1)^3 + (-2)^3 - 3(-1) - 12(-2) + 20$$
$$= -1 - 8 + 3 + 24 + 20 = 38$$

The minimum value at (1,2) is

$$f(x,y) = (1)^3 + (2)^3 - 3(1) - 12(2) + 20$$
$$= 1 + 8 - 3 - 24 + 20 = 2$$

• Examine $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ for extreme values To find stationary points :

$$\frac{\partial f}{\partial x} = 0 \implies 3x^2 + 3y^2 - 30x + 72 = 0$$

$$\implies x^2 + y^2 - 10x + 24 = 0 \qquad ------(1)$$

$$\frac{\partial f}{\partial y} = 0 \implies 6xy - 30y = 0$$

$$\implies y(6x - 30) = 0$$

$$\Rightarrow y = 0 \text{ or } 6x - 30 = 0$$

$$\Rightarrow y = 0 \text{ or } x = 5$$
Put $y = 0 \text{ in } (1)$

$$\Rightarrow x^2 - 10x + 24 = 0$$

$$(x - 6) (x - 4) = 0 \Rightarrow x = 4,6$$

 \therefore For y = 0 the points are (4,0) and (6,0).

Let
$$x = 5$$
 in (1), we get, $25 + y^2 - 50 + 24 = 0$

$$\Rightarrow (y^2 - 1) = 0 \Rightarrow y^2 = 1 \Rightarrow y = \pm 1$$

The points are (5,1) (5,-1)

: The stationary points are (4,0), (6,0), (5,1), (5,-1)

$$A = \frac{\partial^2 f}{\partial x^2} = 6x - 30 ; \quad C = \frac{\partial^2 f}{\partial y^2} = 6x - 30$$
$$B = \frac{\partial^2 f}{\partial x \partial y} = 6y$$

$$\Delta = AC - B^2$$

POINTS	$A = \frac{\partial^2 f}{\partial x^2}$	$B = \frac{\partial^2 f}{\partial x \partial y}$	$C = \frac{\partial^2 f}{\partial y^2}$	$\Delta = AC - B^2$	EXTREMUM
(4,0)	-6<0	0	-6<0	36>0	MAXIMA
(6,0)	6>0	0	6>0	36>0	MINIMA
(5,-1)	0	-6<0	0	-36<0	SADDLE POINT
(5,1)	0	6>0	O EXICE	-36<0	SADDLE POINT

• Examine the function $f(x,y) = x^3y^2(12 - x - y)$ for extreme values Given that $f(x,y) = 12x^3y^2 - x^4y^2 - x^3y^3$ To find stationary points

$$\frac{\partial f}{\partial x} = 0 \implies 36x^2y^2 - 4x^3y^2 - 3x^2y^3 = 0 \implies x^2y^2(36 - 4x - 3y) = 0$$

$$\implies x = 0, y = 0 \text{ or } 36 - 4x - 3y = 0$$

$$\implies 4x + 3y = 36 \qquad ------(1)$$

$$\frac{\partial f}{\partial y} = 0 \implies 24x^3y - 2x^4y - 3x^3y^2 = 0 \implies x^3y(24 - 2x - 3y) = 0$$

$$\implies x = 0, y = 0 \text{ or } 24 - 2x - 3y = 0$$

$$\implies 2x + 3y = 24 \qquad ------(2)$$

Solving (1) and (2),

$$(2)x \ 2 \Rightarrow 4x + 6y = 48 \qquad -----(3)$$

$$(1) \Rightarrow 4x + 3y = 36 \qquad ----(4)$$

$$(3) - (4) \qquad \Rightarrow 3y = 12 \Rightarrow y = 4 \quad and \ x = 6$$

$$x = 0 \text{ in } (1) \Rightarrow y = 12 \Rightarrow (0,12)$$

$$y = 0 \text{ in } (1) \Rightarrow x = 9 \Rightarrow (9,0)$$

$$x = 0 in (2) \Rightarrow y = 8 \Rightarrow (0.8)$$

$$y = 0 \text{ in } (2) \Rightarrow x = 12 \Rightarrow (12,0)$$

The stationary points are (0,0), (0,12), (9,0), (0,8), (12,0) and (6,4)

$$A = \frac{\partial^2 f}{\partial x^2} = 72xy^2 - 12x^2y^2 - 6xy^3$$

$$B = \frac{\partial^2 f}{\partial x \partial y} = 72x^2y - 8x^3y - 9x^2y^2$$

$$C = \frac{\partial^2 f}{\partial y^2} = 24x^3 - 2x^4 - 6x^3y$$

Points	$A = \frac{\partial^2 f}{\partial x^2}$	$B = \frac{\partial^2 f}{\partial x \partial y}$	$C = \frac{\partial^2 f}{\partial y^2}$	$\Delta = AC - B^2$	Extremum
(0,0)	0	0	0	0	Nothing
					can be
					decided

(0,12)	0	0	0	0	Nothing
					can be
					decided
(9,0)	0	0	4374	0	Nothing
		donal a	nd Ra	2	can be
	× 90,000	W	1.65	5-2	decided
(8,0)	0	0	0	0	Nothing
53	100			8	can be
2	1	ies.		7	decided
(12,0)	0	0	0	0	Nothing
4		Vo.			can be
				l,	decided
(6,4)	-2304	-1728	-2592	> 0	Maximum

The maximum value at (6,4) is

$$f(x,y)=(6)^3(4)^2(12-6-4)=6912$$

<u>Lagrange's Method For Constrained Maxima And Minima</u>

Let f(x, y, z) be the function whose maximum/ minimum to be found subject to the constraint $\phi(x, y, z) = 0$.

By Lagrange's Method,

- Form the auxiliary function $F=f+\lambda \, \varphi$, where λ is the Lagrangian multiplier.
- Solve for (x, y, z) from the equations $\frac{\partial F}{\partial x} = 0 \ , \ \frac{\partial F}{\partial y} = 0 \ , \ \frac{\partial F}{\partial z} = 0 \ \text{ and } \ \phi(x, y, z) = 0 \text{ to find maximum/}$ minimum value of f(x, y, z)

• Examine the minimum value of $x^2+y^2+z^2$, when $xyz=a^3$.

Let
$$f(x,y,z) = x^2 + y^2 + z^2$$
 and $\varphi(x,y,z) = xyz - a^3$
By Lagrange's method $F = f + \lambda \varphi$

(i.e)
$$F = (x^2 + y^2 + z^2) + \lambda(xyz - a^3)$$

$$\frac{\partial F}{\partial y} = 0 \quad \Rightarrow \quad 2y + \lambda xz = 0$$

$$\Rightarrow \quad \lambda = -\frac{2y}{xz} \qquad (2)$$

$$\frac{\partial F}{\partial z} = 0 \implies 2z + \lambda xy = 0$$

$$\Rightarrow \lambda = -\frac{2z}{xy} \qquad (3)$$

From (1) and (2), we get

From (2) and (3) We get

$$-\frac{2y}{xz} = -\frac{2z}{xy}$$

$$\Rightarrow y^2 = z^2$$

$$\Rightarrow y = z \qquad ------(5)$$

From (4) and (5), we get

$$x = y = z$$

Using this in $xyz = a^3$, we get,

$$x(x)(x) = a^3$$

$$\Rightarrow x^3 = a^3$$

$$\Rightarrow x = a$$

$$\therefore x = y = z = a$$

 \therefore (a, a, a) is a point of minima and $f_{min} = a^2 + a^2 + a^2 = 3a^2$

• The temperature at any point (x, y, z) in space is given by $T = kxyz^2$, where k is a constant. Determine the highest temperature on the surface of the sphere $x^2+y^2+z^2=a^2$

Given Temperature $T = kxyz^2$,

such that $x^2+y^2+z^2=a^2$

$$f(x, y, z) = kxyz^{2}$$

$$\varphi(x, y, z) = x^{2} + y^{2} + z^{2} - a^{2}$$

By Lagrange's Method,

Let $F = f + \lambda \phi$, where λ is Lagrangian Multiplier.

$$\Rightarrow F = kxyz^2 + \lambda(x^2 + y^2 + z^2 - a^2)$$

$$\therefore \frac{\partial F}{\partial x} = 0 \implies kyz^2 + 2\lambda x = 0,$$

$$\Rightarrow \lambda = \frac{-kyz^2}{2x} \quad ------(1)$$

$$\frac{\partial F}{\partial y} = 0 \qquad \Longrightarrow kxz^2 + 2\lambda y = 0,$$

$$\Rightarrow \lambda = \frac{-kxz^2}{2y} \quad -----(2)$$

$$\frac{\partial F}{\partial z} = 0 \implies 2kxyz + 2\lambda z = 0,$$

$$\Rightarrow \lambda = \frac{-2kxyz}{2z} = -kxy \qquad -----(3)$$

From (2) *and* (3), *we get*,

From (4) and (5), we get, $x = y \& z = \sqrt{2}y$

Using this in $x^2 + y^2 + z^2 - a^2 = 0$, we get,

$$y^{2} + y^{2} + (\sqrt{2}y)^{2} - a^{2} = 0,$$

$$\Rightarrow 2y^{2} + 2y^{2} - a^{2} = 0,$$

$$\Rightarrow 4y^{2} - a^{2} = 0$$

$$\Rightarrow 4y^{2} = a^{2}$$

$$\Rightarrow y^{2} = \frac{a^{2}}{4} \Rightarrow y = \frac{a}{2}$$

$$From (4), we get, x = \frac{a}{2}$$

$$From (5), we get, z = \sqrt{2} \frac{a}{2} = \frac{a}{\sqrt{2}}$$

Therefore, the maximum temperature on the given surface is

$$T = k \left(\frac{a}{2}\right) \left(\frac{a}{2}\right) \left(\frac{a}{\sqrt{2}}\right)^2 = k \frac{a^4}{8}$$

• Determine the minimum value of $x^2 + y^2 + z^2$ when x + y + z = 3a.

Let
$$f(x, y, z) = x^2 + y^2 + z^2$$

and $\varphi(x, y, z) = x + y + z - 3a = 0$

By Lagrange's Method,

Let $F = f + \lambda \phi$, where λ is Lagrangian Multiplier.

$$F = (x^2 + y^2 + z^2) + \lambda(x + y + z - 3a)$$

$$\frac{\partial F}{\partial z} = 0 \implies 2z + \lambda = 0,$$

$$\implies \lambda = -2z - - - - - - - - - - - - - - (3)$$

From (1), (2) and (3), we get,

$$-2x = -2y = -2z$$

$$\implies x = y = z$$

Using this in x + y + z - 3a = 0, we get

$$3x - 3a = 0 \implies x = a$$

 $\implies x = a = y = z$

Therefore, Minimum value of $f(x, y, z) = a^2 + a^2 + a^2 = 3a^2$

• Determine the volume of the largest rectangular solid which can be

inscribed in the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Let the volume of the solid be xyz which is maximised in such a way

that it can be inscribed in
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Let
$$f(x, y, z) = xyz$$
 and $\varphi(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1$

By Lagrange's method $F = f + \lambda \varphi$

(i.e)
$$F = xyz + \lambda \left[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 \right]$$

$$\therefore \frac{\partial F}{\partial x} = 0 \implies yz + \frac{2x\lambda}{a^2} = 0$$

$$\frac{\partial F}{\partial y} = 0 \implies xz + \frac{2y\lambda}{b^2} = 0$$

$$\frac{\partial F}{\partial z} = 0 \implies xy + \frac{2z\lambda}{c^2} = 0$$

$$\Rightarrow \lambda = \frac{-yxc^2}{2z} - - - - - - - - - - - - - - - - - - (3)$$

From (1) &(2) we get
$$\frac{-yza^2}{2x} = \frac{-xzb^2}{2y} \implies \frac{ya^2}{x} = \frac{xb^2}{y}$$

$$\Rightarrow y^2a^2 = x^2b^2$$

From (2) &(3) we get
$$\frac{-xzb^2}{2y} = \frac{-yxc^2}{2z} \implies \frac{zb^2}{y} = \frac{yc^2}{z}$$

$$\Rightarrow \frac{y}{h} = \frac{z}{c} \qquad \qquad ------(5)$$

From (4) &(5) we get

The rectangular solid in a cube with dimensions are

$$x = \frac{a}{\sqrt{3}}, \quad y = \frac{b}{\sqrt{3}}, \quad z = \frac{c}{\sqrt{3}}$$

$$\therefore \text{ Volume} = xyz = \frac{a}{\sqrt{3}} \times \frac{b}{\sqrt{3}} \times \frac{c}{\sqrt{3}} = \frac{abc}{3\sqrt{3}}$$

Determine the minimum value of $x^m y^n z^p$ when x + y + z = a.

Let
$$f(x,y,z) = x^m y^n z^p$$
 and $\varphi(x,y,z) = x + y + z - a$
By Lagrange's method $F = f + \lambda \varphi$
(i.e) $F = x^m y^n z^p + \lambda (x + y + z - a)$

$$\therefore \frac{\partial F}{\partial x} = 0 \implies mx^{m-1}y^nz^p + \lambda = 0$$

$$\Rightarrow \lambda = -mx^{m-1}y^nz^p \qquad -----(1)$$

$$z = \frac{p\left(\frac{am}{m+n+p}\right)}{m} = \frac{pa}{m+n+p}$$

 \therefore The minimum value of f(x, y, z)

$$= \left(\frac{am}{m+n+p}\right)^m \left(\frac{na}{m+n+p}\right)^n \left(\frac{pa}{m+n+p}\right)^p$$
$$= a^{m+n+p} \frac{m^m n^n p^p}{(m+n+p)^{m+n+p}}$$

