COMP170 Discrete Mathematical Tools for Computer Science

Advanced Induction

Version 2.0: Last updated, May 13, 2007

Discrete Math for Computer Science K. Bogart, C. Stein and R.L. Drysdale Section 4.5, pp. 189-193

Note: We have skipped section 4.4 of the textbook because the material it contains, especially the Master Theorem, will be taught in later classes, e.g., COMP271

More Advanced Induction

• Induction, as we've seen it so far, was about defining a statement p(n), and then proving $p(n-1) \Rightarrow p(n)$ or $(p(1) \land p(2) \land \cdots \land p(n-1)) \Rightarrow p(n)$

- In "practice", in some real induction proofs, p(n) might not be fullly defined *before* we start the proof and will only be fully described *during* the description of the proof
- In some cases it also helps to use a stronger induction hypothesis than the "natural" one.

We will illustrate these concepts with three example proofs:

Example 1 If $T(n) \le 2T(n/2) + cn$ for some constant c, then $T(n) = O(n \log n)$.

Example 2 If $T(n) \le T(n/3) + cn$ for some constant c, then T(n) = O(n).

Examples 1 & 2 will illustrate how to derive the induction statement p(n) while proving p(n)

Example 3 If $T(n) \le 4T(n/2) + cn$ for some constant c, then $T(n) = O(n^2)$.

Example 3 will illustrate what is meant by using a stronger induction hypothesis.

Example 1:

if $T(n) \leq 2T(n/2) + cn$ for some constant c, then $T(n) = O(n \log n)$.

From definition of big O we need to show that

$$\exists n_0, k \text{ such that } \forall n > n_0, T(n) \leq kn \log n$$

As before we will assume that n is a power of 2

A naive induction proof would assume that (*) $T(n) \le kn \log n$ was true for $n = 2^{i-1}$ and then prove that (*) was also true for $n = 2^i$

Our problem is that we do not know what k is so we can't prove (*)

We want to prove that if, for all $n=2^i$,

$$T(n) \leq 2T(n/2) + cn$$
 for some constant c ,

$$\Rightarrow \forall n > n_0, T(n) \leq kn \log n$$
 (*)

Our proof will be by induction, but with a twist.

We will assume that we have a k for which (*) holds in the inductive hypothesis and then continue on to prove the inductive step.

$$(*)$$
 True for $n = 2^{i-1}$ \Rightarrow $(*)$ True for $n = 2^i$

While we are doing this, we will discover sufficient assumptions on k (and n_0) to ensure that k exists.

We want to prove that if, for all $n=2^i$,

$$T(n) \leq 2T(n/2) + cn$$
 for some constant c ,

$$\Rightarrow \exists n_0, \exists k \text{ s.t. } \forall n > n_0, T(n) \leq kn \log n$$

1) $T(n) \le kn \log n$ does not hold for n = 1, because $\log 1 = 0$.

2) Want $T(n) \leq kn \log n$ to be true for n=2. Requiring $k \geq T(2)/2$ guarantees this, since it gives

$$T(2) \le k \cdot 2 \log 2 = k \cdot 2.$$

Assumptions

$$n_0 \ge 1$$

$$k \ge T(2)/2$$

Our inductive hypothesis:

if
$$m = 2^j$$
 with $1 \le j < i$ then

$$T(m) \leq km \log m$$
.

Now suppose $n=2^i$.

By the i.h. $T(n/2) \le k(n/2) \log n/2$, so

$$T(n) \le 2T(n/2) + cn$$

$$\le 2k(n/2)\log(n/2) + cn$$

$$= kn\log(n/2) + cn$$

$$= kn\log n - kn\log 2 + cn$$

$$= kn\log n - kn + cn.$$

In order to guarantee $T(n) \leq kn\log n$ we must have $-kn + cn \leq 0.$ We therefore make the final assumption:

8

- We have just shown that if, for all $n=2^i$, $T(n) \leq 2T(n/2) + cn$ for some constant c,
- and (assumption 1) $n > n_0 = 1$ then
 - (i) If n=2 then $T(n) \le kn \log n$ as long as (assumption 2) $k \ge T(2)/2$
 - (ii) If $T(m) \le km \log m$ for $m=2^j$ with $1 \le j < i$ then $T(n) \le kn \log n$ for $n=2^i$ as long as (assumption 3) $k \ge c$
- We therefore conclude, by the principle of mathematical induction, that as long as all three of our assumptions are satisfied,

 $\forall n > n_0 = 1 \ T(n) \le kn \log n$.

We have therefore **proved** that $T(n) = O(n \log n)$.

Our inductive hypothesis:

if
$$m = 2^j$$
 with $1 \le j < i$ then $T(m) \le km \log m$.

- Note that the inductive hypothesis (and associated inductive step) was not fully defined when we started the proof, since we didn't say what the value of k was.
- It was only while in the middle of the proof that we specified the value of k (by discovering the conditions on k that would allow the inductive step to work)
- After the fact, it is possible to write a more traditional inductive proof, in which the value of k is given, but this can be even more confusing.

A More Traditional Induction Proof

We want to prove that if, for all $n=2^i$, $T(n) \leq 2T(n/2) + cn \text{ for some constant } c,$ $\Rightarrow \forall n>1, \quad T(n) \leq kn\log n$ where $k \geq \max{\{c, T(2)/2\}}$

- (i) Since $\log 2 = 1$, $T(2) = \frac{T(2)}{2} 2 \le k2 \log 2$
- (ii) Let $n = 2^i$. Suppose $T(m) \le km \log m$ for all $m = 2^j$ with $1 \le j < i$.

$$T(n) \le 2T(n/2) + cn$$

$$\le 2k(n/2)\log(n/2) + cn$$

$$= kn\log n - kn\log 2 + cn$$

$$= kn\log n - kn + cn.$$

$$\le kn\log n$$

And we are done!

Two things to note about "Traditional" proof:

- 1) Choice of k seems very arbitrary. Why did we define $k = \max\{c, T(2)/2\}$?
- 2) Implicit choice of $n_0 = 1$ in big O statement also seems arbitrary.

Because the discussion in the first proof explained **why** we were making the choices we did, many people prefer the structure of the first proof to that of the second.

This type of inductive proof – in which conditions on the parameters are developed **during** the proof – is therefore iused quite often in books and articles.

Example 2: We now prove by induction that, for Tdefined on $n = 3^i$, 1 = 0, 1, 2, ...

if $T(n) \leq T(n/3) + cn$ for some constant c, then T(n) = O(n).

From definition of big O we need to show that

$$\exists n_0, k \text{ such that } \forall n > n_0, T(n) \leq kn$$

As before, we will start with k undefined, and then derive assumptions under which the inductive proof will work.

Let $n_0 = 0$. In order for the inequality $T(n) \leq kn$ to hold when n=1 our first assumption must be

$$k \ge T(1)$$

Assume inductively that for
$$m=3^j$$
, $0 \le j < i$, $T(m) \le km$

Then, for $n=3^i$,

$$T(n) \le T(n/3) + cn$$

$$\le k(n/3) + cn$$

$$= kn + (c - 2k/3)n.$$

- So, if $c-2k/3 \le 0$, that is, if we assume $k \ge 3c/2$, we conclude that $T(n) \le kn$
- Thus, if we choose $k \ge \max\{3c/2, T(1)\}$ we prove by mathematical induction that

if $T(n) \leq T(n/3) + cn$ for some constant c, then T(n) = O(n).

The Corresponding "Traditional" Proof

```
We want to prove that if, for all n=3^i, T(n) \leq T(n/3) + cn \text{ for some constant } c, \Rightarrow \forall n>0, \quad T(n) \leq kn where k=\max{\{3c/2,\,T(1)\}}
```

- (i) When n=1, $T(1) \leq kn$ by definition
- (ii) Let $n = 3^i$. Suppose $T(m) \le km$ for all $m = 3^j$ with $0 \le j < i$.

$$T(n) \le T(n/3) + cn$$

$$\le k(n/3) + cn$$

$$= kn + (c - 2k/3)n.$$

$$< kn$$

And we are done!

Example 3: We now prove by induction that, for Tdefined on $n = 2^i$, 1 = 0, 1, 2, ...

if $T(n) \leq 4T(n/2) + cn$ for some constant c, then $T(n) = O(n^2)$.

From definition of big O we need to show that

$$\exists n_0, k \text{ such that } \forall n > n_0, T(n) \leq kn^2$$

As before, we will start with k undefined, and then derive assumptions under which the inductive proof will work.

Let $n_0 = 0$. In order for the inequality $T(n) \leq kn^2$ k > T(1)to hold when n=1 our first assumption must be

Assume inductively that for $m=2^j$, $0 \le j < i$, $T(m) \le km^2$ Then

$$T(n) \le 4T(n/2) + cn$$

 $\le 4(k(n/2)^2) + cn$
 $= 4(\frac{kn^2}{4}) + cn$
 $= kn^2 + cn$.

To proceed, would like to choose a k so that $cn \leq 0$. Problem: Impossible. Both c and n are always positive! What went wrong?

Statement is **too** weak to be proved by induction.

To fix this, let's see if we can prove something that is actually stronger than we were originally trying to prove — namely, $T(n) \leq k_1 n^2 - k_2 n$ for some positive constants k_1 and k_2 .

We get
$$T(n) \le 4T(n/2) + cn$$

 $\le 4(k_1(n/2)^2 - k_2(n/2)) + cn$
 $= 4(k_1n^2/4 - k_2(n/2)) + cn$
 $= k_1n^2 - 2k_2n + cn$
 $= k_1n^2 - k_2n + (c - k_2)n$.

To ensure that last line is $\leq k_1 n^2 - k_2 n$, suffices to have $(c - k_2)n \leq 0$

So assume $k_2 = c$.

Once we choose $k_2=c$, we can then choose k_1 large enough to ensure correctness of base case $T(1) \leq k_1 \cdot 1^2 - k_2 \cdot 1 = k_1 - k_2$. assume $k_1=T(1)+c$

With these 2 assumptions we have proved inductively that $T(n) \le k_1 n^2 - k_2 n$ so $T(n) = O(n^2)$.

Why was it easier to prove stronger statement $T(n) \leq k_1 n^2 - k_2 n$ than to prove weaker statement $T(n) \leq k n^2$?

- Proving something about p(n) uses $p(1) \wedge \ldots \wedge p(n-1)$.
- The stronger that $p(1) \wedge \ldots \wedge p(n-1)$ are, the greater help they provide in proving p(n).
- Our problem was that $p(1), \ldots, p(n-1)$ were **too weak**, and thus we were not able to use them to prove p(n).
- By using **stronger** $p(1), \ldots, p(n-1)$, we were able to prove a **stronger** p(n), one that implied the original p(n) we wanted.
- When we give an induction proof in this way, we are using a stronger inductive hypothesis.