3. 連続写像

岩井雅崇 2022/10/18

問 $3.1(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ を位相空間とし, $f: X \to Y$ を写像とする. 次の問いに答えよ.

- (a) \mathcal{O}_X が離散位相ならば f は連続である.
- (b) \mathcal{O}_V が密着位相ならば f は連続である.

問 3.2~a < b, c < d となる実数 $a, b, c, d \in \mathbb{R}$ について、次を示せ.

- (a) (a,b) と (c,d) は同相である.
- (b) (a,b) と \mathbb{R} は同相である.
- (c) [a,b] と [c,d] は同相である.
- 問 $3.3 f: \mathbb{R} \to \mathbb{R}$ を次で定める.

$$f(x) = \begin{cases} x & (x \le 0) \\ x+2 & (x>0) \end{cases}$$

 \mathcal{O}_{Euc} を \mathbb{R} における通常の位相 (ユークリッド位相) とし \mathcal{O}_c を補有限位相とする. 次の問い に答えよ.

- (a) f は $(\mathbb{R}, \mathscr{O}_{Euc})$ から $(\mathbb{R}, \mathscr{O}_{Euc})$ への連続写像かどうか判定せよ.
- (b) f は $(\mathbb{R}, \mathcal{O}_{Euc})$ から $(\mathbb{R}, \mathcal{O}_c)$ への連続写像かどうか判定せよ.
- (c) f は $(\mathbb{R}, \mathcal{O}_c)$ から $(\mathbb{R}, \mathcal{O}_{Euc})$ への連続写像かどうか判定せよ.
- (d) f は $(\mathbb{R}, \mathcal{O}_c)$ から $(\mathbb{R}, \mathcal{O}_c)$ への連続写像かどうか判定せよ.

問 3.4 C([0,1]) を [0,1] 上の連続関数全体の集合とする. C([0,1]) 上に距離 d を

$$d(f,g) := \sup_{x \in [0,1]} |f(x) - g(x)|$$

で定める. また ℝ にユークリッド位相を入れる.

- (a) C([0,1],d) は距離空間であることを示せ.
- (b) $F: C([0,1]) \to \mathbb{R}$ を $F(f) := \int_0^1 f(x) dx$ で定める. F は連続であることを示せ.
- (c) $G: C([0,1]) \to \mathbb{R}$ を $G(f) := \int_0^1 f(x)^2 dx$ で定める. G は連続であることを示せ.
- 問 3.5 (X, O) を位相空間とし、 $\mathbb R$ にユークリッド位相を入れる. $f,g:X\to\mathbb R$ を X から $\mathbb R$ への連続写像とするとき, $f+g,f-g,\alpha f,f/g$ は X から $\mathbb R$ への連続写像となることを示せ.ここで $\alpha\in\mathbb R$ であり,f/g は g(x)=0 となる $x\in X$ が存在しないときに定義される.
- 問 3.6 全単射な連続写像 $f: X \to Y$ で f^{-1} が連続ではないものを構成せよ.
- 問 $3.7 \ f: \mathbb{R} \to \mathbb{R}$ を写像とし、 \mathcal{O}_{Euc} をユークリッド位相、 \mathcal{O}_{usc} を上半連続位相 (問 2.4 の位相) とする。 f を $(\mathbb{R}, \mathcal{O}_{usc})$ から $(\mathbb{R}, \mathcal{O}_{Euc})$ への連続写像とするとき,f は定数写像であることを示せ.

- 問 $3.8*f:\mathbb{R}\to\mathbb{R}$ を写像とし、 \mathcal{O}_{Euc} をユークリッド位相、 \mathcal{O}_{usc} を上半連続位相 (問 2.4 の位相) とする. 次は同値であることを示せ.
 - (a) f は $(\mathbb{R}, \mathcal{O}_{Euc})$ から $(\mathbb{R}, \mathcal{O}_{usc})$ への連続写像である.
 - (b) 任意の $a \in \mathbb{R}$ について $\limsup_{x \to a} f(x) = f(a)$ である.
- 問 $3.9*(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ を位相空間とし、A, B を X の部分集合で $X = A \cup B$ となるものとする。 $f: X \to Y$ を (X, \mathcal{O}_X) から (Y, \mathcal{O}_Y) への連続写像とし、 $f_A: A \to Y, f_B: B \to Y$ をそれぞれ f の A, B への制限とする。次の問いに答えよ。
 - (a) A, B が閉集合であり, f_A, f_B がそれぞれ A, B に関して連続であるとき, f も連続であることを示せ. ここで A, B には X の相対位相を入れる.
 - (b) f_A, f_B がそれぞれ A, B に関して連続だが, f は連続ではない例をあげよ.
- 問 $3.10*(X, \mathcal{O})$ を位相空間とする. X の点列 $\{x_n\}_{n=1}^\infty$ が点 $x\in X$ に収束するとは、「任意の x の近傍 V についてある $N\in\mathbb{N}$ があって N< n ならば $x_n\in V$ である」ことで定義をする. 次の問いに答えよ
 - (a) 位相空間 (X, \mathcal{O}) で次を満たすものを構成せよ.
 - i. (X, ∅) は密着位相ではない.
 - ii. ある点 $a \in X$ があって、任意の X の点列 $\{x_n\}_{n=1}^{\infty}$ は a に収束する.
 - (b) $f: X \to Y$ が点 $x \in X$ で連続とする. このとき x に収束する任意の X の点列 $\{x_n\}_{n=1}^{\infty}$ について, $\{f(x_n)\}_{n=1}^{\infty}$ は f(x) に収束する.
 - (c) 上の逆は一般には成り立たない. その例を構成せよ. 1 (つまり点列を用いた連続性の定義は一般には弱いことを意味する.)

 $^{^1}$ 位相空間の間の写像 $f:X \to Y$ と点 $a \in X$ であって,「 $a \in X$ に収束する任意の X の点列 $\{x_n\}_{n=1}^\infty$ について, $\{f(x_n)\}_{n=1}^\infty$ は f(a) に収束する」が「 $f:X \to Y$ が点 $a \in X$ で連続」ではない例を構成してください.