Molecular Crystal Global Phase Diagrams: II. Reference Lattices

RICHARD B. $McClurg^{a,b*}$ and J. Brandon $Keith^{a,c,d}$

^aDepartment of Chemical Engineering and Materials Science, University of
Minnesota, Minneapolis, Minnesota 55455, USA, ^bSSCIAn Aptuit Company, West
Lafayette, Indiana 47906 USA, ^cDepartment of Physics and Astronomy, Brigham
Young University, Provo, Utah 84602, USA, and ^dCalifornia Institute of Technology,
Division of Engineering and Applied Science, Mail Code 138-78, Pasadena,
California 91125 USA. E-mail: richard.mcclurg@aptuit.com
(Received 0 XXXXXXXX 0000; accepted 0 XXXXXXXX 0000)

Abstract

In the first part of this series (Keith et al., 2004; Mettes et al., 2004), we developed a method for constructing global phase diagrams (GPDs) for molecular crystals in which crystal structure is presented as a function of intermolecular potential parameters. In that work, a FCC center of mass lattice was arbitrarily adopted as a reference state. In part two of the series, we classify experimental crystal structures composed of tetrahedral point group molecules to determine what fraction of structures are amenable to inclusion in the GPDs and the number of reference lattices necessary to span the observed structures. We find that 60% of crystal structures composed of molecules with Td point group symmetry are amenable and that eight reference lattices are sufficient to span the observed structures. Similar results are expected for other cubic point groups.

1. Introduction

In the first part of this series, a method for constructing a global phase diagram (GPD) for molecular crystals of molecules of a given point group symmetry was developed (Mettes et al., 2004). Conventional phase diagrams present the equilibrium phase behavior of a chemical substance or of a mixture of substances as functions of thermodynamic variables such as temperature, pressure, or composition. Global phase diagrams also present equilibrium phase behavior, but at least one of the independent variables of the diagram is either a parameter in an empirical equation of state or a parameter in an intermolecular potential. The classic example of a GPD of the first type is the classification scheme for high pressure vapor liquid phase equilibria by van Konynenburg (van Konynenburg & Scott, 1980). Their classification was based on the van der Waals equation of state with simple binary mixing rules. Despite the crude equation of state employed, it is still widely used to classify the phase behavior of real binary mixtures. Our GPDs are of the second type. They use an intermolecular potential constructed from a subset of a complete set of intermolecular potential basis functions for molecules sharing a particular point group symmetry. The parameters of the intermolecular potential are axes on GPDs. At the origin of each diagram is a plastic crystal phase that serves as the reference state for construction of the diagram. In the example developed previously, (Keith et al., 2004; Mettes et al., 2004) a diagram was constructed for molecules of T_d point group symmetry and a FCC reference lattice. These choices were motivated in part by the classic analysis of methane phase behavior (James & Keenan, 1959). Two independent variables were arbitrarily chosen in (Keith et al., 2004) and three independent variables were chosen in (Mettes et al., 2004).

Two issues were left unresolved in the previous contribution (Mettes et al., 2004). First, the number and variety of reference lattices needed to summarize experimental

crystal structures was not determined. Although the FCC reference lattice is appropriate for cryogenic methane, it is expected that other reference lattices are required to span the diversity of observed crystal structures. Second, the number of independent variables necessary to span the diversity of intermolecular potentials was not determined. It has been asserted that too many parameters are needed to represent an intermolecular potential to be practical (Briels, 1980). This assertion was based on a particular method for associating a potential with a parameter set. While the method employed was reasonable, it is not the only possibility. It left open the possibility that another association would lead to a more practical parameter set dimensionality. The first issue is addressed in this contribution while the second is addressed in a separate contribution (Keith & McClurg, 2009).

The outline of the balance of the paper is as follows. In Sec. 2 we discuss the derivation of our data set, its chemical and crystallographic characteristics, and classify entries based on structural similarity. In Sec. 3 we deduce reference lattices for each structure. The resulting assignments and their implications for use in constructing Global Phase Diagrams are discussed in Sec. 4.

2. Data set

Since molecular crystal global phase diagrams are constructed for molecules of a given molecular point group symmetry, we have chosen to use the *CSDSymmetry* database as the primary source of crystal structures for this study (Yao *et al.*, 2002). This database summarizes the point groups of molecules that form non-disordered, non-polymeric, non-ionic, coordinate-determined molecular crystals in the CSD. Duplicate structures were removed from the database and hydrogen atoms were not considered when assigning point groups. While the methods introduced in our previous work (Mettes *et al.*, 2004) are applicable to disordered structures, which are sys-

tematically absent from *CSDSymmetry*, it is a convenient source of crystal data for molecules of a particular point group. Our methods are restricted to single component crystals, however. Therefore we worked with the single component crystal subset of the *CSDSymmetry* database. This was accomplished by first querying the CSD for all single component crystals using CONQUEST, the interface to the CSD, and then using CONQUEST to take the intersection of the two data sets.

Continuing the example begun in our prior work (Mettes et al., 2004), we chose to consider crystals composed of molecules with T_d molecular point group symmetry. We have augmented the data from CSDSymmetry with a recently determined structure of the low temperature ordered phase of heavy methane (Neumann et al., 2003). The data set contains 71 crystal structures of 70 different chemical substances. Only carbon tetrachloride (CCl₄) appeared twice in different polymorphs. [CSD structures CARBTC (Piermarini & Braun, 1973) and CARBTC07 (Cohen et al., 1979)]. Names and chemical formulas for all the entries are given in Table 1 in the supplementary material. The chemical structures include 15 hydrocarbons and their substituted derivatives and 56 organometallics. The organometallics contain 30 different metals: Al, As, Bi, Cd, Co, Cs, Cu, Ga, Ge, Hf, In, Mg, Mn, Na, Ni, Np, Pb, Pt, Re, Rh, Ru, Sb, Si, Se, Sn, Tc, Th, Ti, U, and Zn. Eight molecular framework types, also shown in supplementary Table 1, are present in the data set: Cubane (29), Adamantane (17), MX₄ (16), Tetrahedrane (3), and others (6). There are entries from all seven crystal systems in the data set. Twenty crystals are cubic (also called isometric), one is hexagonal, five are trigonal, ten are tetragonal, six are orthorhombic, twenty-two are monoclinic, and seven are triclinic (also called anorthic) as illustrated in Figure 1. This distribution is different than the CSD as a whole (Bauer & Kassner, 1992), but that is not surprising given the larger-than-average number of symmetries in the T_d point group. The data set is sufficient however to test whether molecular crystal global phase diagrams apply to organic and organometallic molecules, a variety of molecular frameworks, and all seven crystal systems.

2.1. Space Group Assignment Corrections

Several researchers have shown that structures with incorrect space group assignments account for at least 3% of the entries in the Cambridge Structural Database (CSD).(Baur & Tillmanns, 1986; Marsh, 1995) Given the size of the test set used in this study, it is to be expected that a few errors must be identified and corrected.

CSD entry JUFWUC (Tesh et al., 1992) appears to have been incorrectly assigned to space group P23 (no. 195) rather than $P\overline{4}3m$ (no. 215). Both space groups are members of the generic cubic extinction symbol P—. Thus they have no systematic extinctions and thus x-ray diffraction peaks occur in all of the same positions for both groups. They belong to different Laue classes however. Space group 195 is in Laue class $m\bar{3}$ while space group 217 is in $m\bar{3}m$. Space group 195 is a subgroup of 215 of order two. The symmetry operation present in 215, but missing in 195 is a face-diagonal mirror plane. The fractional coordinates for the Cs, N, and Si atoms provided by the authors are all consistent with the existence of the "missing mirror plane. The fractional coordinates of the carbon atoms are very nearly consistent with the existence of the mirror plane and are within the indicated error given by the authors. The hydrogen atom positions provided in JUFWUC.cif were calculated and not determined experimentally. Therefore they do not provide independent evidence of the crystal symmetry. Evidently the structure was determined under space group 195, but space group 215 cannot be ruled out based on the authors own estimates of the uncertainties in the fractional coordinates. It is standard practice to accept the higher symmetry space group in this case.

CSD entry HMGETP (Dahl et al., 1976) appears to have been incorrectly assigned

to space group I23 (no. 197) rather than $I\overline{4}3m$ (no. 217). Both space groups are members of the generic body-centered cubic extinction symbol I—. Thus they have the same systematic extinctions and thus x-ray diffraction peaks occur in all of the same positions for both groups. They belong to different Laue groups however. Space group 197 is in Laue class $m\bar{3}$ while space group 217 is in $m\bar{3}m$. Space group 197 is a subgroup of 217 of order two. The symmetry operation present in 217, but missing in 197 is a face-diagonal mirror plane. The fractional coordinates for the Ge and P atoms provided by the authors are all consistent with the existence of the "missing mirror plane. The fractional coordinates of the carbon atoms are very nearly consistent with the existence of the mirror plane. Since no error estimate for the fractional coordinates was provided by the authors, the distance from the given atomic position to the proposed mirror plane was calculated as an indication of the difference between the reported symmetry and the proposed symmetry. Adjusting the carbon atom positions by 0.0049Å along two coordinate directions restores the "missing mirror plane. This is well within the resolution of the structure determination. No hydrogen atom positions were provided in HMGETP.cif. Evidently the structure was determined under space group 197, but space group 217 cannot be ruled out based on a reasonable estimate of the uncertainties in the fractional coordinates. It is standard practice to accept the higher symmetry space group in this case.

It is interesting to note that both of the above structures appear to have been mistakenly assigned to a lower-than-necessary space group due to the omission of a face-diagonal mirror plane. Assignment of the structure to the incorrect space group is due to the incorrect Laue point group assignment. This is a type 2 error in the nomenclature of Baur and Tillmanns (Baur & Tillmanns, 1986). In such cases, the reported structure is very similar to the presumed correct structure. Correcting the error requires only adjusting the reported atomic fractional coordinates and changing

the reported space group.

One entry [CSD structure XUWROW (Sung et al., 2002)] is a very unusual structure containing 70% voids as recorded by the CCDC staff in the corresponding cif file in the CSD. Although low density sphere packings are possible, stability requires that each sphere be surrounded by at least four neighbors that are not in the same hemisphere (Conway & Sloane, 1998). Structure XUWROW has large voids separating layers of molecules parallel to the {001} plane. Molecules at the edges of the layers have all of their neighbors in a single hemisphere and therefore violate a necessary condition for sphere packing stability. Also, the layers are separated by wide voids in the reported structure. Dispersion interactions between the layers would tend to narrow these wide void layers. For these reasons, it seems likely that the reported crystal structure is mechanically unstable. According to the original publication, the crystal was grown as a thin epitaxial crystal under ultra-high vacuum. Apparently the crystal structure is either strongly influenced by the substrate which stabilizes the crystal or the structure was not determined correctly. In either case, it is not an independent stable form we therefore exclude it from further consideration.

3. Classification

Neglecting CSD structure XUWROW and reassigning structures JUFWUC and HMGETP as discussed above, the remaining crystal structures were organized into groups that bear a strong "structural relation" as discussed in the first edition of Volume C of the International Tables for Crystallography (ITC) (Hahn, 1983). For crystals to belong to the same group they must have the same space group symmetry, cell lengths in similar proportions, similar cell angles, and molecular centers at equivalent Wyckoff point(s) with similar structural parameter values where applicable. Crystal structures with alternative origin and/or cell choices were transformed to consistent cell and ori-

gin choices prior to assessing their structural relationship, if any. For monoclinic space groups, cell choice 1 with unique axis b was utilized. For Rhombohedral space groups, the obverse setting of the hexagonal cell was utilized. Origin choice 2 was utilized in cases where more than one origin is provided in the International Tables for Crystallography. For molecules located at Wyckoff points that belong to an equivalent set, preference was given to the label occurring first alphabetically. Thus, Wyckoff point a was selected rather than b in space group $P\bar{4}2_1c$ (no. 114) since both are equivalent. We refer to the members of these structurally related groups as sharing a distinct structure. Note that we do not require that the atomic positions be similar to be classified in the same distinct structure. For example, two structures [CSD structures DILWIE01 (Ebert et al., 1998) and ZEYHIU (Noth & Thomann, 1995)] crystallize in space group $P\bar{3}c1$ (no. 165) with molecular centers at Wyckoff point d. Their cell parameters are also in similar ratios. Therefore, we classify them in the same distinct structure, despite their different chemical structures with different numbers of atoms.

The 70 crystal structures fall into 46 distinct structures. Five structures are cubic (aka isometric), one is hexagonal, four are trigonal, eight are tetragonal, six are orthorhombic, sixteen are monoclinic, and six are triclinic (aka anorthic). These distinct structures are further characterized in the following subsections.

3.1. Sphere Packings

In 42 structures there are four or more neighbors that are equidistant or nearly equidistant. Also, the neighbors are not all in one hemisphere relative to the (arbitrary) reference molecule. Such structures are identified as sphere packings (Conway & Sloane, 1998), and classified by the space group symmetry of the center-of-mass lattice. The center-of-mass lattice is called the reference lattice for brevity and for consistency with our prior work (Keith et al., 2004; Mettes et al., 2004). The structures and their

reference lattices are tabulated in Table 1.

For 15 crystal structures, assignment of the reference lattice is trivial since the unit cell shares the same Bravais symmetry as the reference lattice and the molecules sit at high symmetry locations in the crystal. This is true of the structures in space groups Fd3m (no. 227), $I\bar{4}3m$ (no. 217), and $P\bar{4}3m$ (no. 215) with Diamond Cubic, Body-Centered Cubic, and Simple Cubic reference lattices, respectively.

The body-centered cubic space group $I\bar{4}3m$ (no. 217) with molecules at Wyckoff point a is the most common structure in the data set with 11 different crystal structures. The CSD structure labeled NIWMIP is used as an example of that structure in Figure 2. The vertical axis in the figure is the symmetry density defined as the ratio of the order of the symmetry group to the number of molecules. Along the horizontal axis are insets showing the molecular structure on the left, the reference lattice on the right, and the crystal structure in the middle. The diagram shows symmetry breaking during creation of the crystal. For a symmetry breaking, the ratio of the symmetry density prior to and after the transitions gives the index of the transition. To facilitate visual comparisons of transition indices, the symmetry density is plotted on a logarithmic scale in the figures. Figure 2 conveys that the full molecular symmetry is retained while the BCC reference lattice symmetry is broken in forming the structure in space group 217. The broken symmetry is the inversion which yields an index of two.

The four crystal structures assigned to the HCP reference lattice are all slightly compressed along the c-axis relative to the expectation for ideal close-packing of spheres. This is consistent with the observation for many other HCP structures (Sands, 1993). Of the elements that adopt HCP structures, only helium adopts the ideal unit cell dimension ratio, $c/a = (8/3)^{1/2}$. Cadmium and zinc adopt elongated unit cells with $c/a > (8/3)^{1/2}$. Twenty two other elemental solids adopt slightly compressed HCP

structures with $c/a < (8/3)^{1/2}$. Despite variation in the unit cell dimension ratios, these elements are commonly described as adopting the HCP crystal structure. We utilize the same flexibility in nomenclature when assigning the HCP reference lattices to molecular solids.

For 23 crystal structures, symmetry breaking in passing from the reference lattice to the observed structure leads to dramatic changes in the conventional unit cell size and/or shape. Reference lattice assignment in these cases is not trivial. The CSD structure labeled MEZDIE01 serves to illustrate the process. MEZDIE01 has a triclinic unit cell in space group $P\bar{1}$ (no. 2) with molecular centers at the general Wyckoff point i. The alpha and gamma angles of the unit cell are very close to 90 degrees, so that the unit cell is metrically similar to a monoclinic cell, but the connection to a BCC reference lattice is not immediately evident. The fractional coordinates of the molecular centers-of-mass are very close to one-quarter and three-quarters of the distance along a cell body diagonal. If the molecular centers were at precisely these locations, and molecular orientational ordering is ignored, then the unit cell of the reference lattice can be halved in volume using a matrix transformation. The resulting unit cell has one molecular center per reduced cell. The reduced cell is nearly equi-axed (cell lengths differ from the mean by less than 1%) and nearly rhombohedral (angles differ from the mean by less than 1 degree). The reduced cell belongs to character number 44 (triclinic), but is only slightly distorted from character 5 (BCC). Applying the standard matrix transformation (for character 5) from the reduced cell to the conventional cell yields the reference lattice. The product of the two matrix transformations gives the overall transformation from the reference lattice to the observed crystal structure. Finally, the overall transformation matrix is confirmed using COPL (Stokes et al., 2007). COPL confirms that all of the symmetry elements present in the daughter structure are inherited from the reference lattice, confirms the index of the transformation, and provides the complete order parameter list for the transformation. The matrix unit cell representations and matrix transformations used in determining the reference lattice assignment starting with MEZDIE01 are given in an Appendix. The same information for each of the structures identified with sphere packing reference lattices and their associated COPL outputs are summarized in supplementary material.

Six crystal structures were identified with the diamond reference lattice. Only one of these, ZNOXAC01, retains the cubic unit cell with four nearest neighbors for each molecular center. The other five are significantly distorted. Two are compressed, one is elongated, and two are orthorhombically distorted similar to the γ -Plutonium structure with ten equidistant neighbors (NRL, 2009). These distortions may be due to the low packing density of the ideal diamond cubic lattice relative to the other reference lattices.

3.2. Rod Packings

In 16 crystal structures there are two neighbors that are equidistant or nearly equidistant and the third neighbor is significantly further away than the second. In an additional six crystal structures, there are three or four equidistant or nearly equidistant neighbors, but these neighbors are all in a single hemisphere. For all 16 crystal structures, a synthon based on one-dimensional chains of molecules have been identified. Chains of molecules are classified by their rod symmetries (Hahn, 2002a). Classification of the structures in these cases requires identification of the rod symmetry and the lateral packing motif.

The CSD structure labeled MECKIO is used as an example of a crystal structure composed of rods. Its symmetry breaking plot is illustrated in Figure 4. The inset on the left is an isolated monomer with Td symmetry (G/Z=24/1). Second from the

left is a rod packing with rod group $p\bar{4}m2$ (G/Z=8/1=8). The inset on the far right is a two-dimensional hexagonal packing representing the lateral packing of the rods (G/Z=12/1). Second from the right is the crystal structure with one rod emphasized for clarity (G/Z=4/2). The crystal is viewed end-on to emphasize nearly hexagonal packing of rods. The symmetry density decreases at each stage of building the crystal from its constituents.

All of the crystal structures composed of laterally packed rods are summarized in Table 2. In the subset of crystal structures containing rod packings, five different rod symmetries were identified, pmcm (7/16, 44%), $p\bar{4}m2$ (4/16, 25%), $p\bar{1}$ (4/16, 25%), and pc11 (1/16, 6%). The majority of the rods packed laterally in hexagonal close-packing (9/16, 56%) while a significant fraction adopted a square packing (6/16, 38%), and only one example of a decidedly oblique packing (1/16, 6%) was observed. A total of eight combinations of rod symmetries and lateral packings were observed.

In the CSD structure labeled RIMNAC the rods have $p\bar{4}m2$ symmetry and adopt a nearly hexagonal lateral packing, but there are three independent rotations about the rod axis. These three rotations lead to three independent Wyckoff orbits. This is in contrast to most of the other structures in the data set for which the orientations of the rods are related by symmetry operations of the three-dimensional crystal.

3.3. Planar Packings

In five structures there are three or four neighbors that are equidistant or nearly equidistant and the next neighbor is significantly further away than the second. Also, the neighbors are either coplanar or in one hemisphere relative to the (arbitrary) reference molecule. Such structures are identified as planar packings, and classified by their planar group symmetry (Hahn, 2002a). The structures and their planar group symmetries are tabulated in Table 3.

The CSD structure labeled MZNMOX10 is used as an example of a crystal structure composed of planes of molecules. Its symmetry breaking plot is illustrated in Figure 5. The inset on the left is an isolated monomer with Td symmetry (G/Z=24/1). On the far right is a two-dimensional square packing representing the center-of-mass lattice in the plane (G/Z=8/1). Second from the right is a planar packing with point group S4 (G/Z=4/1). Because the molecules are tipped slightly in the three-dimensional crystal, the plane is not viewed along its normal in the inset, but is viewed along the molecular S4 axis to emphasize the symmetry of the undistorted planar packing. Second from the left is the crystal structure with one plane emphasized for clarity (G/Z=4/4=1). The vertical axis indicates that symmetries are broken at each stage.

3.4. Dimer Packings

In three structures there is one closest neighbor and the next closest neighbor is significantly further away than the first. Such structures are identified as dimer packings, and classified by their dimer point group symmetry. The structures and their planar group symmetries are tabulated in Table 3.

FOJBUB02 and VADRAU are cubic structures in space group $Pa\bar{3}$ (no. 205) with molecules at Wyckoff point c, which has C3 point group symmetry. Their second nearest neighbors are 33% and 25% further than the closest, respectively. Therefore, we consider these dimers as the synthon for the crystal. The dimer centers of mass are at Wyckoff point a, with C3i point group symmetry. The dimer centers of mass form a perfect face centered cubic lattice. The symmetry breaking plot for FOJBUB02 is given in Figure 6. The symmetries of the monomer and the FCC reference lattice are broken in creating the crystal, but the dimer symmetry is retained in the three-dimensional crystal.

LUFYEQ is a tetragonal structure in space group $I4_1/a$ (no. 88) with molecules at

the general Wyckoff point, f. Since the second nearest neighbor is 33% further than the first, there are dimers serving as synthons for the crystal. The dimers reside at Wyckoff point e, with C2 point group symmetry. Each dimer has one neighboring dimer that is closer than any other. Therefore, the dimers pair to produce quadramers at Wyckoff point a, with S4 point group symmetry. The quadramer center of mass lattice is a somewhat compressed diamond cubic structure.

CARBTC is a fourth structure identified as a dimer packing, but this assignment is less apparent from the histogram of neighbor distances. In the structure, each molecule has one nearest neighbor and two additional neighbors that are 6% further. This is insufficient for a sphere packing and the arrangement of molecules is inconsistent with simple planar packings. Therefore, the packing was analyzed using dimers centered at an inversion of space group $P2_1/c$ (no. 14).

3.5. Mixed

Three crystal structures belonging to a common distinct structure do not fit in the above classification system because molecules residing at different Wyckoff positions have different numbers of nearest neighbors. Structures KOXKOX, SENLAY, and RUQMEV are cubic structures in space group $P\bar{4}3n$ (no. 218) with molecules at Wyckoff positions a and c. The structures are tabulated in Table 5. The molecules at Wyckoff position c form rods with rod group $p\bar{4}m2$ running parallel to all three orthogonal coordinate directions. The molecules at Wyckoff position a each have twelve equidistant nearest neighbors in a slightly distorted icosahedral coordination. Although there are other crystal structures with multiple Wyckoff orbits in the data set, these three structures differ because the coordination of nearest neighbors is qualitatively different for the two sets. In the other examples, the neighbor histograms are only subtly different when comparing the various orbits.

4. Discussion and Conclusions

Identification of lower-dimensionality synthons as a means of describing three-dimensional crystals has been discussed previously (Lauher, 2004). The crystal structures identified here as rod packings have been called α -networks and planar packings have been called β -networks in the nomenclature of (Lauher, 2004). The molecules used by Lauher to illustrate sub-periodic networks were polar and their intermolecular interactions had strong hydrogen bonding and/or ionic character. Formation of strongly bound one-dimensional structures is common, but not universal, in such cases. Two types of two-dimensional structures were identified by Lauher. The first is a two-dimensional synthon composed of parallel one-dimensional rods, called α -networks. The second is a fundamentally two-dimensional structure without α -network substructures. In all of his examples, three dimensional crystal structures were composed of one- or two-dimensional networks.

Given the cubic point group symmetry (Td) of the molecules considered here, we expected that the corresponding crystal structures would be composed of molecules having multiple equidistant and isoenergetic interactions with four or more neighbors leading to sphere packings or γ -networks in Lauher's nomenclature. This expectation proved accurate for 60% (42/70) of the structures. Of these, BCC (16/42, 38%) and FCC (12/42, 29%) were the most common reference lattices. HCP and SC reference lattices contributed 10% (4/42) each. Only one structure (2%) adopted the ideal diamond cubic lattice, but five structures (12%) were identified with three grossly distorted diamond cubic structures. Together, these eight reference lattices span the observed diversity of crystal structures based on sphere packings and are illustrated in Figure 7 under the "Sphere Packing" trunk.

Somewhat unexpected was the 40% (32/70) of structures that adopted lower-dimensionality synthons. The next largest subset of the crystal structures were composed of rods.

They comprised 23% (16/70) of the structures. A total of eight combinations of rod symmetries and lateral packings were observed.

Smaller fractions of other structures were assigned. Five cases (5/70, 7%) of planar structures, also called β -networks were observed. Four cases (3/70, 4%) of spherical packings of dimers and one case (1/70, 1%) of a spherical packing of quadramers were assigned. Finally, three isostructural examples (3/70, 4%) of a mixed sphere and rod packing in space group $P\bar{4}3n$ (no. 218) belonged to the data set. Given the small numbers of these structural types, their relative proportions may not be accurately determined in this set of data. Also, the possibility of unobserved structural motifs cannot be excluded. Figure 7 shows lower-dimensional and oligomer sythons under the "Other" trunk, which are further broken down to specialized types of rod packings and so on.

The goals of the research described in this report was to determine the frequency of sphere packings which are readily amenable to inclusion in the global phase diagrams (GPDs) developed previously (Keith et~al., 2004; Mettes et~al., 2004). In the set of crystal structures composed of molecules in the Td point group, 60% are amenable to inclusion in the global phase diagrams using the molecule as the synthon. Eight reference lattices span the diversity of observed center of mass lattices so that a set of at least eight global phase diagrams are required to represent the phase behavior of the sphere packing subset of the data set. Dimer and quadramer packing structures are also suitable for inclusion in GPDs using the point group symmetry of the synthon. These account for another 6% of the crystal structures. Similar proportions are expected for molecular symmetries belonging to other cubic point groups.

A qualitatively different set of phase diagrams are required for the structures that adopt lower-dimensionality synthons (rod and planar packings) or mixed structures. The presence of such structures implies a hierarchy of interaction strengths. We expect that strong interactions lead to the rods while weaker interactions are responsible for lateral packing of the rods into crystals. Such a hierarchy of interaction strengths is expected for molecules belonging to lower molecular point group symmetries. Therefore for non-cubic point group symmetries, it is expected that the proportion of crystal structures classified as sphere packings would be smaller and the proportion of rod and planar packings would be greater than that reported here for tetrahedral molecules.

This work received financial support from the American Chemical Society - Petroleum Research Fund (PRF #41774-AC10), DOE Grant No. DE-FG02-03ER46059, and NSF Grant DMR-0520547. Computational resources maintained by the University of Minnesota Supercomputer Institute were used for portions of this research.

Appendix A Sphere Packings

For 42 of the 70 crystal structures in the data set considered, the center of mass distribution was identified with a sphere packing. For 15 of these, the identification was trivial since the unit cell has the same symmetry as the idealized sphere packing. For the remaining 27 structures, the center of mass distribution is slightly distorted from the idealized sphere packing. The process of identifying the sphere packing is not trivial in these cases because unit cell distortions and/or translation of the centers of mass change the symmetry of the center of mass lattice. To illustrate the process of reference lattice assignment, the CSD structure MEZDIE01 is considered in detail below. Details of the reference lattice assignments for all 42 structures are summarized in a supplementary document available from the journal publisher.

CSD structure MEZDIE01 has a triclinic unit cell with b/a = 1.4627, c/a = 0.9209,

 $\alpha = 90.48 \, \mathrm{deg}, \, \beta = 111.67 \, \mathrm{deg}, \, \mathrm{and} \, \gamma = 89.99 \, \mathrm{deg}.$ The unit parameters can be conveniently represented in matrix form where the matrix columns correspond to the cell vectors and the rows are components of the vectors parallel to orthonormal laboratory frame coordinates,

$$\mathbf{M}_{1} = \begin{bmatrix} 1 & 0.0003 & -0.3401 \\ 0 & 1.4627 & -0.0076 \\ 0 & 0 & 0.8558 \end{bmatrix}. \tag{1}$$

The molecular centers of mass are located at fractional coordinates, x = 0.7606, y=0.2506, and z=0.2418 and at the location related by inversion about the cell body center. Unit cell transformations are facilitated using four dimensional vectors in which the fourth component is unity.

$$\nu_{1} = \begin{bmatrix} 0.7606 \\ 0.2506 \\ 0.2418 \\ 1 \end{bmatrix}$$

$$\nu'_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} - \nu_{1}.$$
(2)

$$\nu_1' = \begin{bmatrix} 1\\1\\1\\2 \end{bmatrix} - \nu_1. \tag{3}$$

Enumeration of the neighboring centers of mass for an arbitrarily chosen reference molecule reveals that there are six neighbors within a shell 3% larger than the nearest neighbor distance and two additional neighbors within a shell 11% larger than the nearest neighbor distance. These neighboring molecular centers are neither coplanar nor are they all in a single hemisphere. Therefore, the molecular centers satisfy the conditions for a (slightly distorted) sphere packing reference lattice.

Recognizing that the molecular center fractional coordinates are nearly one-quarter and three-quarters of the distance along a body diagonal suggests that a matrix transformation with determinant equal to one-half is needed to generate the reduced cell for the reference lattice with one molecule per cell. The following matrix transformation suffices for the current example,

$$\mathbf{T}_{12} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & -1 \end{bmatrix}$$
 (4)

$$|\mathbf{T}_{12}| = 1/2. \tag{5}$$

Such transformations may be generated by inspection of the neighbor coordinates relative to the chosen reference center or by using the LePage software as implemented in the CheckCell program, for example (CCP14, 2004).

The matrix representation of the reduced cell is given by the matrix product of the original matrix representation and the transformation matrix,

$$\mathbf{M}_{1} \cdot \mathbf{T}_{12} = \begin{bmatrix} 0.3301 & 0.3298 & 0.3401 \\ 0.7276 & -0.7352 & 0.0076 \\ 0.4279 & 0.4279 & -0.8558 \end{bmatrix}$$
 (6)

The reduced cell has b/a=1.0066, c/a=1.0161, $\alpha=108.00\deg$, $\beta=107.31\deg$, and $\gamma=107.084\deg$. Construction of the Niggli matrix indicates that this triclinic cell (character 44) is reasonably close to the reduced cell corresponding to the body-centered cubic cell (character 5) (Hahn, 2002b). For the idealized character 5 reduced cell, b/a=c/a=1 and $\alpha=\beta=\gamma=cos^{-1}(-1/3)\approx 109.47\deg$. For the experimental reduced cell, the angles are roughly two degrees smaller than the ideal value which indicates that the primary distortion is rhombohedral. Smaller perturbations lead to slightly unequal unit cell length and angle parameters.

To determine the fractional coordinates of the centers of mass in the transformed coordinates, it is convenient to define an augmented transformation matrix as follows,

$$\mathbf{S}_{12} = \begin{bmatrix} \mathbf{M}_1 \cdot \mathbf{T}_{12} & \mathbf{w}_{12} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$
 (7)

where w_{12} is the origin shift in the original coordinate system. In this case,

$$\mathbf{w}_{12} = \begin{bmatrix} 3/4\\1/4\\1/4 \end{bmatrix}. \tag{8}$$

Then the transformed coordinates are given by

$$\nu_{2} = \mathbf{S}_{12}^{-1} \cdot \nu_{1} = \begin{bmatrix} 0.0112 \\ 0.0100 \\ 0.0188 \\ 1 \end{bmatrix}$$

$$\nu'_{2} = \mathbf{S}_{12}^{-1} \cdot \nu'_{1} = \begin{bmatrix} -0.0112 \\ -1.0100 \\ -1.0188 \\ 1 \end{bmatrix}$$
(10)

$$\nu_2' = \mathbf{S}_{12}^{-1} \cdot \nu_1' = \begin{bmatrix} -0.0112 \\ -1.0100 \\ -1.0188 \\ 1 \end{bmatrix}$$
 (10)

both of which are reasonably close to the origin, modulo integer translations of the unit cell.

Since the reduced cell is close to the character 5 conditions with one molecule close to the origin, the sphere packing is identified with the BCC reference lattice. Applying the tabulated transformation of the reduced cell to the conventional cell, (Hahn, 2002b)

$$\mathbf{T}_{23} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \tag{11}$$

$$|\mathbf{T}_{23}| = 2 \tag{12}$$

yields the matrix representation of the conventional unit cell.

$$\mathbf{M}_{3} = \mathbf{M}_{2} \cdot \mathbf{T}_{23} = \begin{bmatrix} 0.6699 & 0.6702 & 0.6599 \\ -0.7276 & 0.7352 & -0.0076 \\ -0.4279 & -0.4279 & 0.8558 \end{bmatrix}.$$
(13)

As anticipated above, the cell is slightly distorted from an ideal cubic cell, primarily by a rhobohedral distortion (b/a = 1.005, c/a = 1.003, $\alpha = 86.5 \deg$, $\beta = 86.0 \deg$, $\gamma = 85.2 \, \text{deg}$).

Since the center of mass is at the origin in both the reduced cell and the BCC reference lattice, there is no need for another origin shift and the augmented transformation matrix is

$$\mathbf{S}_{23} = \left[\begin{array}{cc} \mathbf{T}_{23} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array} \right]. \tag{14}$$

The overall transformation from the reported crystal structure of MEZDIE01 to the

BCC reference lattice is the matrix product of the stepwise transformations,

$$\mathbf{S} = \mathbf{S}_{12} \cdot \mathbf{S}_{23} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 (15)

$$|\mathbf{S}| = 1 \tag{16}$$

and the transformed coordinates are given by

$$\nu_3 = \mathbf{S}^{-1} \cdot \nu_1 = \begin{bmatrix} 0.0088 \\ 0.0100 \\ 0.0012 \\ 1 \end{bmatrix}$$
 (17)

$$\nu_3'' = \mathbf{S}^{-1} \cdot \left(\nu_1 + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.5088 \\ 0.5100 \\ 0.5012 \\ 1 \end{bmatrix}. \tag{18}$$

The determinant of the overall transformation $|\mathbf{S}|$ is unity so that the volumes of the initial cell and the reference lattice cell are the same in this case. Both contain two molecules, but they are paired differently as reflected in the use of primes in the center of mass coordinates, ν'_1 , ν'_2 , and ν''_3 . Both molecular centers of mass are within 1% of the unit cell dimensions of their idealized locations at the origin and cell body center, respectively. In the idealized BCC lattice, each lattice point has eight equidistant nearest neighbors. The rhombohedral distortion accounts for the two neighbors that are somewhat more distant than the closest six. Other minor distortions lead to small differences in the distances to the closest six neighbors.

COPL can be used to verify that the overall transition is consistent with the symmetries of the reference lattice and the daughter structure (Stokes et al., 2007). In addition, COPL provides a complete list of order parameters for the transition. If a single order parameter with the appropriate size and index appears on the list, then it is identified as the primary order parameter. Otherwise, it is identified as a coupled transformation. For the example of MEZDIE01, there is no single primary order parameter consistent with the size (2) and index (48) of the transformation, so the

transformation is coupled. No attempt to further characterize the required coupling was attempted for coupled transformations. COPL output for each of the structures identified with sphere packing reference lattices are summarized in a supplementary document available from the journal publisher.

Appendix B **Rod Packing**

For 16 of the 70 crystal structures in the data set considered, the center of mass distribution was identified with a rod packing. To illustrate the process of reference lattice assignment, the CSD structure MECKIO is considered in detail below. Details of the assignments for all 16 structures are summarized in a supplementary document available from the journal publisher.

CSD structure MECKIO has a monoclinic unit cell with b/a = 1.6109, c/a =1.1271, and $\beta = 104.95$ deg. The unit parameters can be conveniently represented in matrix form where the matrix columns correspond to the cell vectors and the rows are components of the vectors parallel to orthonormal laboratory frame coordinates,

$$\mathbf{M}_1 = \begin{bmatrix} 1 & 0 & -0.2908 \\ 0 & 1.6109 & 0 \\ 0 & 0 & 1.0889 \end{bmatrix}. \tag{19}$$

The molecular centers of mass are related by a screw axis,

$$\nu_{1} = \begin{bmatrix} 0.2050 \\ 1/4 \\ 0.2193 \\ 1 \end{bmatrix}$$

$$\nu'_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} - \nu_{1}.$$
(20)

$$\boldsymbol{\nu}_1' = \begin{bmatrix} 1\\1\\1\\2 \end{bmatrix} - \boldsymbol{\nu}_1. \tag{21}$$

Enumeration of the neighboring centers of mass for an arbitrarily chosen reference molecule reveals that there are two equidistant nearest neighbors. Two additional IUCr macros version $2.0\beta15$: 2004/05/19

neighbors are within a shell 3% larger than the nearest neighbor distance, but the set of four neighbors are all within a single hemisphere relative to the reference center. Therefore, the set of four neighbors do not indicate a sphere packing.

The nearest neighbors are part of a chain of molecules oriented along the crystallographic a-axis. Therefore, the unit cell is transformed such that the chains are directed along the c-axis, and the other axes are orthogonal. A matrix accomplishing the desired transformation is

$$\mathbf{T}_{12} = \begin{bmatrix} 0 & 0.2050 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 (22)

$$|\mathbf{T}_{12}| = 1. \tag{23}$$

A subsequent rotation about the chain axis orients the chain symmetry elements relative to the a- and b-axes and rescales those axes,

$$\mathbf{T}_{23} = \begin{bmatrix} 0.5814 & 0.5814 & 0 \\ -0.8600 & 0.8600 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (24)

$$|\mathbf{T}_{23}| = 1. \tag{25}$$

The product of the transformation matrices gives the overall transformation matrix,

$$\mathbf{T} = \mathbf{T}_{12} \cdot \mathbf{T}_{23}.\tag{26}$$

To determine the fractional coordinates of the centers of mass in the transformed coordinates, it is convenient to define an augmented transformation matrix as follows:

$$\mathbf{S} = \begin{bmatrix} \mathbf{T} & \mathbf{w} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \tag{27}$$

where w is the origin shift in the original coordinate system,

$$\mathbf{w} = \begin{bmatrix} 0.2050 \\ 1/4 \\ 0.2193 \end{bmatrix} . \tag{28}$$

Transforming the atomic coordinates using S shows that the molecular centers of mass are at Wycoff point a and molecular mirror planes coincide with Wycoff point f of IUCr macros version 2.0 β 15: 2004/05/19

rod group $p\bar{4}2m$. Considering only the x and y coordinates of the rods yields a close approximation to a hexagonal (p6mm planar group) projection. Therefore, MECKIO is characterized as a hexagonal packing of $p\bar{4}2m$ rods.

Appendix C Other Packings

Twelve of the 70 crystal structures in the data set considered were identified as planar packings, dimer packings, or mixed packings. The procedures for characterizing these structures are similar to those illustrated above for sphere and rod packings. Therefore, details are not given here, but may be found in a supplementary document available from the journal publisher.

References

Bauer, W. H. & Kassner, D. (1992). Acta Cryst. B, 48, 356–369.

Baur, W. H. & Tillmanns, E. (1986). Acta Cryst. B42, 95–111.

Briels, W. J. (1980). J. Chem. Phys. 73, 1850–1861.

CCP14, (2004). Checkcell. www.ccp14.ac.uk/tutorial/lmgp/.

Cohen, S., Powers, R. & Rudman, R. (1979). Acta Cryst. B, 35, 1670–1674.

Conway, J. H. & Sloane, N. J. A. (eds.) (1998). Sphere Packing, Lattices and Groups. NY.: Springer-Verlag, 3rd ed.

Dahl, A. R., Norman, A. D., Shenav, H. & Schaeffer, R. (1976). J. Am. Chem. Soc. 97, 6364–6370.

Ebert, K. H., Massa, W., Donath, H. Lorberth, J., Seo, B. S. & Herdtweck, E. (1998). *J. Organomet. Chem.* **559**, 203–207.

Hahn, T. (ed.) (1983). International Tables for Crystallography. Boston: D. Reidel Pub. Co.

Hahn, T. (ed.) (2002a). International Tables for Crystallography, vol. E. Dordrecht: Kluwer Academic Publishers.

Hahn, T. (ed.) (2002b). International Tables for Crystallography, vol. A. Dordrecht: Kluwer Academic Publishers. Sec. 9.2.

James, H. M. & Keenan, T. A. (1959). J. Chem. Phys. 31, 12–41.

Keith, J. B. & McClurg, R. B. (2009). Molecular crystal global phase diagrams III: Sufficient parameter space determination. Submitted.

Keith, J. B., Mettes, J. A. & McClurg, R. B. (2004). Crystal Growth and Design, 4, 1009–1012.

van Konynenburg, P. H. & Scott, R. L. (1980). *Philos. Trans. R. Soc. London, Ser. A*, **298**, 495–540.

Lauher, J. W. (2004). Am. Cryst. Assoc. 39, 31–40.

Marsh, R. E. (1995). Acta Cryst. B51, 897-907.

Mettes, J. A., Keith, J. B. & McClurg, R. B. (2004). Acta Cryst. A, 60, 621–636.

IUCr macros version $2.0\beta15$: 2004/05/19

Neumann, M. A., Press, W., Noldeke, C., Asmussen, B., Prager, M. & Ibberson, R. M. (2003). $J.\ Chem.\ Phys.\ 119,\ 1586-1589.$

Noth, H. & Thomann, M. (1995). Chem. Ber. 128, 923.

NRL, (2009). Crystal lattice structures. cst-www.nrl.navy.mil/lattice.

Piermarini, G. & Braun, A. (1973). J. Chem. Phys. 58, 1974–1982.

Sands, D. E. (1993). Introduction to Crystallography. NY: Dover.

Stokes, H. T., Hatch, D. M. & Campbell, B. J., (2007). Isotropy. stokes.byu.edu/isotropy.html.

Sung, M., Kim, G., Kim, J. & Kim, Y. (2002). Chem. Mater. 14, 826–831.

Tesh, K. F., Jones, B. D., Hanusa, T. P. & Huffman, J. C. (1992). *J. Am. Chem. Soc.* **114**, 6590–6593.

Yao, J. W., Cole, J. C., Pidcock, E., Allen, F. H., Howard, J. A. K. & Motherwell, W. D. S. (2002). Acta Crystallogr. B, 58, 640–646.

Table 1. Sphere Packings								
Parent	S.G.	W.P.	G /Z	CSD Code(s)				
	F.10 (225)		2.4	TNOV A COA				
Diamond	Fd3m (no. 227)	a	24	ZNOXAC01				
Diam Compr.	I41/amd (no. 141)	\mathbf{a}	8	FUZLUH, VAFWAA				
Diam Elong.	I41/a (no. 88)	\mathbf{a}	4	KANGUB01				
Diam - Ortho.	$C_{2}/c \text{ (no. } 15)$	e	2	RASDOE, TFMETH02				
BCC	I-43m (no. 217)	\mathbf{a}	24	DEQPAQ, HMGETP, HMSIPA				
				HXMTAM07, KELREY, MESIAD				
				MPTHOT01, NIWMIP, POSLOY10				
				TMEPTC, YEYQAU				
	R3c (no. 161)	a	3	TCYMET				
	Pbcn (no. 60)	$_{\mathrm{c,d}}$	2/3	YIMWEW				
	P-1 (no. 2)	i	1	MEZDIE01, MEZDOK01				
	P-1 (no. 2)	i,i,i	1/3	OHABEE				
SC	P-43m (no. 215)	a	24	FOHCUA, FUZVOL, JUFWUC				
	I-4c2 (no. 120)	\mathbf{c}	4	YEMRIR				
HCP	P63/m (no. 176)	h	2	CUCZUV				
	P-3c1 (no. 165)	d	3	DILWIE01, ZEYHIU				
	P-3 (no. 147)	d	3	ZIZHIZ				
FCC	P3121 (no. 152)	b	2	MTRETC10				
	I-42m (no. 121)	a	8	ZZZKDW01				
	I41/acd (no. 142)	a	4	KUJSIR				
	P-421c (no. 114)	\mathbf{a}	4	ADAMAN08, GERHOA				
	Cmce (no. 64)	$_{ m d,f}$	1	(MethaneIII)				
	C2/c (no. 15)	e	2	REKYUB				
	C2/m (no. 12)	i	2	MECKOU				
	P21/c (no. 14)	e	1	MECKUA				
	P21/c (no. 14)	e	1	TOHSUE				
	C2/c (no. 15)	f,f,f,f	1/4	CTBROM, CARBTC07				
	, , ,		,	,				

		Table 2. Rod	Packings		
S.G.	Molecule	Rod	Latteral	G /Z	CSD Code(s)
	Wyck. Pt.	Symmetry	Packing		
P42/nmc (no. 137)	a	p-4m2	8	square	FUZTEZ
Pnma (no. 62)	$^{\mathrm{c}}$	pmcm	2	square	GUTCED, JEYSEL,RIMMOP
C_{2}/c (no. 15)	e	p-4m2	2	hexagonal	BOGMEP
C_{2}/c (no. 15)	e	pmcm	2	hexagonal	MSISUL10, TMGEHS10, TMSNHS10
P21/m (no. 11)	e	p-4m2	2	hexagonal	MECKIO
P21/c (no. 14)	e	pc11	2	hexagonal	QUGBOJ
P21/c (no. 14)	e	p-1	1	hexagonal	DOCNIS
P21/c (no. 14)	e	p-1	1	square	TMSIAD
P21/c (no. 14)	$_{\mathrm{e,e}}$	pmcm	1/2	hexagonal	MXSNOX
P2/c (no. 13)	$_{\mathrm{e,f,g}}$	p-4m2	1/2	hexagonal	RIMNAC
P-1 (no. 2)	i	p-1	1	square	BASXOI
P-1 (no. 2)	i	p-1	1	oblique	XAGXAE

S.G.	Molecule Wyck. Pt.	Table 3. Planar Planar Symmetry		kings CSD Code(s)
P212121 (no. 19)	a	p4mm	1	MZNMOX10
P21/c (no. 14)	e	p2gg	1	CAMPOV, VAVYAS
P21/c (no. 14)	$_{\mathrm{e,e}}$	p6mm	1/2	CANFIG, MXSNOX
P-1 (no. 2)	i,i,i,i	p6mm	1/4	CANFOM

Table 4. Dimer Packings									
S.G.	Molecule	Dimer	G /Z	CSD Code(s)					
	Wyck. Pt.	Wyck. Pt.							
Pa-3 (no. 205)	c (3)	a (-3)	3	FOJBUB02, VADRAU	*	Pairs	of		
I41/a (no. 88)	f (1)	e (2)*	1	LUFYEQ					
P21/c (no. 14)	e (1)	a (-1)	1	CARBTC					

dimers form quadramers with S4 point group symmetry centered at Wyckoff point a.

Table 5. Mixed Packings S.G. W.P. $ G /Z$ CSD Code(s)				
P-43n (no. 218)	a,c	3	KOXKOX, SENLAY, RUQMEV	

Fig. 1. Crystal systems for crystals of tetrahedral molecules.

Fig. 2. Symmetry breaking plot for a structure with molecular center of mass lattice coincident with the reference lattice, illustrated using NIWMIP. The figure on the left is an isolated monomer with Td symmetry (G/Z=24/1). The figure on the right is the BCC reference lattice (G/Z=96/2). In the middle is the crystal structure in space group $I\bar{4}3m$ (no. 217) with one molecule at Wyckoff point a emphasized for clarity (G/Z=48/2).

Fig. 3. Symmetry breaking plot for a molecular center of mass lattice not trivially related to the reference lattice, illustrated using MEZDIE01. The figure on the left is an isolated monomer with Td symmetry (G/Z=24/1). The figure on the far right is the BCC reference lattice (G/Z=96/2). Second from the right is the BCC reference lattice in a non-conventional unit cell. The non-conventional unit cell is similar to the crystal structure with one molecule emphasized for clarity (G/Z=2/2).

Fig. 4. Symmetry breaking plot for a rod packing, illustrated using MECKIO. The figure on the left is an isolated monomer with Td symmetry (G/Z=24/1). Second from the left is a rod packing with rod group $p\bar{4}m2$ (G/Z=8/1=8). The figure on the far right is a two-dimensional hexagonal packing representing the lateral packing of the rods (G/Z=12/1). Second from the right is the crystal structure with one rod emphasized for clarity (G/Z=4/2). The crystal is viewed end-on to emphasize nearly hexagonal packing of rods.

Fig. 5. Symmetry breaking plot for a planar packing, illustrated using MZNMOX10. The figure on the left is an isolated monomer with Td symmetry (G/Z=24/1). On the far right is a two-dimensional square packing representing the center-of-mass lattice in the plane (G/Z=8/1). Second from the right is a planar packing with point group S4 (G/Z=4/1). Second from the left is the crystal structure with one plane emphasized for clarity (G/Z=4/4).

Fig. 6. Symmetry breaking plot for a dimer packing, illustrated using FOJBUB02. The figure on the left is an isolated monomer with Td symmetry (G/Z=24/1). Second from the left is a dimer with C3i point group symmetry (G/Z=6/2). On the far right is the FCC reference lattice (G/Z=192/4). Second from the right is the crystal structure in space group 205 with one dimer at Wyckoff point a emphasized for clarity (G/Z=24/8).

Fig. 7. Tree diagram of the distribution of data set among crystal packing synthons, where spheres and other types of packing form the trunk and the translational arrangements of the structures in our data set form the leaves. Note: Asterisks on JUFWUC and HMGETP are due to space group corrections. See Sec. 2.1 for details.

Synopsis

Experimental crystal structures that are amenable for inclusion in Global Phase Diagrams as previously developed are identified.

Supplementary Material

Table 1: Identifiers, chemical formulas, and assigned frameworks of the tetrahedral data set. The adamantane and cubane molecular frameworks are substituted derivatives of these molecules, while MX_4 molecules have a central atom (denoted M) with four identical X groups.

T1 4:0		6
Identifier	formula	framework
ADAMAN08	C10 H16 C4 H12 Se6 Sn4 C24 H48 Cl6 Cu4 N16 O1 C16 H36 N4 Sn4 C4 H24 B4 U1 C4 H24 B4 Th1 C1 Cl4	adamantane
BASXOI	C4 H12 Se6 Sn4	adamantane
BOGMEP	C24 H48 Cl6 Cu4 N16 O1	other
CAMPOV	C16 H36 N4 Sp4	cubane
CANTOV	C4 H04 D4 H1	
CANFIG	C4 H24 B4 U1	MX_4
CANFOM	C4 H24 B4 Th1	MX_4
CARBTC	C1 Cl4	MX_4
CARBTC07	C1 C14	MX_4
CTBROM	C1 Br4	MX_4
CHECKI	C1 B14	
CUCZUV	C20 H36	tetrahedrane
DEQPAQ	C36 H100 B4 N12 Na4	other
DILWIE01	C16 H48 Pt4 S4	cubane
DOCNIS	C8 H12 S6	adamantane
FOHCUA	C12 Ni4 O18 P4	adamantane
FOIRUBOR	C4 N:1 O4	MX ₄
FOJBUB02	C4 NII O4	
FUZLUH	C12 Co4 O12 Sb4	cubane
FUZTEZ	H16 B4 Np1	MX_4
FUZVOL	H16 B4 Hf1	MX_4
GERHOA	C4 H12 CH2 N4 Sb4	cubane
GLITTON	COC 1100	
GUICED	C40 H32	other
HMGETP	C12 H36 Ge6 P4	adamantane
HMSIPA	C12 H36 P4 Si6	adamantane
HXMTAM07	C6 H12 N4	adamantane
JEYSEL	C18 H36 Ni4 O6 P4	tetrahedrane
JUFWUC	C3 124 B4 Thi C1 C14 C1 C1 C14 C1 C1 B74 C20 H36 C36 H100 B4 N12 Na4 C16 H48 Pt4 S4 C8 H12 S6 C12 Ni4 O18 P4 C4 Ni1 O4 C12 Co4 O12 Sb4 H16 B4 Np1 H16 B4 Hf1 C4 H12 C112 N4 Sb4 C26 H32 C12 H36 Ge6 P4 C12 H36 P4 Si6 C6 H12 N4 C18 H36 Ni4 O6 P4 C12 H40 Cs4 N4 Si4	cubane
ICANCUPO1	C12 H40 Cs4 N4 Si4 C10 H12 I4	
KANGUB01	C10 H12 14	adamantane
KELKEI	C12 H36 Cl4 Ti4	cubane
KOXKOX	C16 H36 Ga4 Se4	cubane
KUJSIR	C20 H48 O4 Zp4	cubane
LUFYEQ	C12 H12 Si1	MX_4
MECKIO	C16 H26 C14 I-4 N4	cubane
MECKOU	C12 H12 Si1 C16 H36 Cl4 In4 N4 C16 H36 Br4 In4 N4 C16 H36 I4 In4 N4 C12 H36 As4 Si6	
MECKOU	C16 H36 Br4 In4 N4	cubane
MECKUA	C16 H36 I4 In4 N4	cubane
MESIAD	C12 H36 As4 Si6	adamantane
MEZDIE01	C12 H36 Si1 Sn4	MX_4
MEZDOK01	C12 H36 Ge1 Sp4	MX_4
MEZDOROI	C12 H40 O4 D44	
MFIHOIOI	C12 H40 O4 F14	cubane
MSISUL10	C4 H12 S6 Si4	adamantane
MTRETC10	C16 H12 O12 Re4 S4	cubane
MXSNOX	C4 H12 O8 Sn6	other
MZNMOX10	C8 H24 O4 Zn4	cubane
NIMMID	C12 H26 A14 N4 C6	adamantane
NIWMIF	C12 H30 A14 N4 30	
OHABEE	C16 H36 S14	tetrahedrane
POSLOY10	C12 Cl4 O12 Tc4	cubane
QUGBOJ	C16 O16 Rh6	other
BASDOE	C16 H48 Ga4 N4 Si4	cubane
REKVIIB	C16 H36 G24 S4	cubane
DIMMOD	C16 H40 A14 N4	
DIMINIOF	C10 1140 A14 N4	cubane
RIMNAC	C10 H36 As4 S16 C12 H36 S11 Sn4 C12 H36 Ge1 Sn4 C12 H36 Ge1 Sn4 C12 H36 Ge1 Sn4 C14 H12 S6 Si4 C16 H12 O12 Re4 S4 C4 H12 O8 Sn6 C8 H24 O4 Zn4 C12 H36 Al4 N4 S6 C16 H36 Si4 C12 C14 O12 Tc4 C16 O16 Rh6 C16 H36 Ga4 S4 C16 H36 Ga4 S4 C16 H36 Ga4 S4 C16 H36 Ga4 S4 C16 H40 Al4 N4 C20 H48 Al4 N4 C20 H48 Al4 N4 C16 H36 Cu4 I4 N4 C16 H36 Cu4 I	cubane
RIMNAC RUQMEV SENLAY TCYMET	C12 H36 Cu4 I4 N4	cubane
SENLAY	C16 H36 P4 Si4	cubane
TCYMET	C5 N4	MX_4
TCYMET TFMETH02	C1 F4	MX_4
TMEDTO		
I MET I C	C12 H36 Cl4 Pt4	cubane
TMGEHS10	C4 H12 Ge4 S6	adamantane
TMSIAD	C10 H24 Si4	adamantane
TMSNHS10	C4 H12 S6 Sn4	adamantane
TOHSUE	C16 F12 O12 P4 Ru4	cubane
VADRAU	C4 H12 Pb1	MX ₄
VAFWAA	C12 Bi4 Co4 O12	cubane
VAVYAS	C20 H36 P4	cubane
XAGXAE	P4 S10	adamantane
XUWROW	C20 H48 Mg4 O4	cubane
VEMBIR	O6 P4 S4	adamantane
VEVOAU	C12 O12 Pu4 C-4	
i E i QAU	C12 O12 Ru4 Se4	cubane
YIMWEW	C10 H16 O4	adamantane
ZEYHIU	C20 H48 Cd4 O4	cubane
ZIZHIZ	C12 H4 Mn4 O16	cubane
ZNOX AC01	C12 H18 O13 Zn4	other
ZZZKDW01	C1 14	MX_4
	C20 H36 P4 P4 S10 C20 H48 Mg4 O4 O6 P4 S4 C12 O12 Ru4 Se4 C10 H16 O4 C20 H48 Cd4 O4 C12 H4 Mn4 O16 C12 H18 O13 Zn4 C1 I4	4

(195-230)
Structures
Crystal
(Isometric)
Cubic

Transformation to Conventional Cell 1	Transformation to Conventional Call 1	Transformation to Conventional Cell 1	Transformation to Conventional Cell	
Companiest Com	Capacities Cap	Daughter 215a	Compiter Compiter	See #16 and #17 above.
Reduced Cell Mattir Regressmetton 0.5 0.5 0.6 0.0 0.5 0.5 0.7 0.0 0.5 0.5 0.7 0.0 0.5 0.8 0.0 0.5 0.8 0.0 0.5 0.8 0.0 0.5 0.8 0.0 0.5 0.8 0.0 0.5 0.8 0.0 0.0 0.8 0.0 0.8 0.0 0.0 0.8	Reduced Cel	Reduced Ceal	Reduced Call	0.5 Normatical Niggi Matrix 1
Matrix Representation 1 Transformation to Reduced Cell Matrix Representation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Matrix Representation Transformation to Reduced Cell	Matrix Representation Transformation to Reduced Cell	Amative Representation 1 Transformation to Reduced Cell 1	Marist Representation Marist Representation
227a	217a	215a P. 4-3-m Matrix Rep. 11 FOHCUA C	218a.c P4.3.n 16 KOXKOX Pala.s 17 SENLAY bba aphasa aphasa aphasa aphasa aphasa next neighbors and reighbors next neighbor 25% tenther next neighbor 12% farther	218ad P 4.3.n 18 RUCMEV D4.3.n 18 RUCMEV C4 C4 C4 C4 Cas Aphra Betra Gamma As 12 rearest neighbors For traditions 5% farther distorted lossibledial coordination d 2 rearest neighbors next neighbors d 2 rearest neighbors next neighbors d 2 rearest neighbors pairs of rock in 3 chritogonid directors pairs of rock in 3 chritogonid directors

	Transformation to Conventional Cell 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Transformation to Conventional Cell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Transformation to Conventional Cell 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Z = 8	Daughter 2096 24 8 3 6 CS l'Uniter 2006 24 8 9 9 6 CS l'Uniter 2005 24 8 9 9 6 CS l'Uniter 5FOC 48 1 4 6 6 CS l'Uniter 5FOC 48 1 1 6 CS l'Uniter 5FOC 48 1 6 CS l'Unit	See#19 above.	C C C C C C C C	Daughter (66d C 2 C /2 Ref Lattice HCP 24 2 12 2 2 2 2 2 2 2
Transformation to Reduced Cell 1/2,0,14 0.5 1 1/2,0,14 0.5 1 1/2,0,14 0.5 1 1/2,0,14 0.5 1 1/2,0,14 0.5 1 1/2,0,14 0.5 1 1/2,0,14 0.5 1 1/2,0,14 0.5 1 1/2,0,14 0.5 1/2,0,14	Transformation to Reduced Cell Defe 0.5	Transformation to Reduced Cell 1	Transformation to Reduced Cell 0.0566667 - 0.33333	Transformation to Reduced Cell Matrix Representation
See above, 0,12,14 0 0.5 0.25 1	1/2-x-1/2 to 5/2003 0.2379997 0.2379997 1.377997 0.232093 1.220093 1.220093 1.220093 1.220093 1.220093 1.220093 1.220093 1.220093 1.220093 1.220093 1.220093 1.220093 1.220093 1.220093 1.220093 0.220093 1.220093	Matrix Representation 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trigonal Crystal Structures (143-167) Trigonal Crystal Structures (143-167) 1645 P_3_c_1

Overall Transformation 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Transformation to Conventional Cell	Transformation to Conventional Cell	Transformation to Conventional Cell
Reduced Cell Chandrer 12 (P) Type Control Type Coch True Coch True	See #22 above.	Comparison	Companies	
1 1,596381496 1 1 1,596381496 1 1 1,596381496 1 1 1,596381496 1 1 1,596381496 1 1 1 1,596381496 1 1 1 1 1 1 1 1 1	Transformation to Reduced Cell Main's Representation 0	Transformation to Reduced Cell Main's Representation Co. 2005 Co. 200	Transformation to Reduced Cell	Transformation to Reduced Cell Main's Representation 0.0,333333 0.66667 0.0,000 0.0,
beta= 90 beta= 90 1 1 1 3072783 gamma= 120 gamma= 120 90 120 12 reighbors within 6% of nearest sphere packing next neighbors 49% ather than nearest sphere packing Center of Mass Coordinates Carls 10,2 2,0333333 6666667 01216413 173.24,10.333333 6666667 05216413 173.24,10.333333 6666667 05216413 173.24,10.333333 6666667 05216413 173.24,10.333333 6666667 05216413 1	1654 P3.c.1	16/19 R.3.c Matrix Representation 24 TOMET 16/19 16/20	25 Z/2H2	15.20 P. 31.2.1

Transformation to Conventional Celi -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -		Sod 37a G Z G Z G Z G Z G Z G Z G Z G Z Z	Transformation to Conventional Cell	Transformation to Conventional Cell
Cape Cape		Matrix Representation O70706791 O70706770691 O707067706770691 O70706770691 O70706	zer titree	Company 142a Company Company
Matrix Representation 0.5 0.5 0.5 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	d oube.	Rotation about nod and rescaling: 0.707106781 0.7071	Mattix Pegresentiation 0.5 0	Mathy Representation 0 0 0 0 0 0 0 0 0
0 0.215977	0.7178117 See#27 above. 0.7178117 See#27 above. 90 9170 0.725 1 Ob_conv= 0.72 0.375 1 Ob_conv= 0.72 0.875 1 Ob_conv= 0.72	Transformation to Rod Coordinates 0 0 0 0 0 0 0 0 0	Transformation in Reduced Ceal	Transformation to Reduced Cell 0 0 0 0 0 0 0 0 0
141a 141a_m_d	\(\text{VAPAW}\) \(\tex	a ge 235 0 0 235 0 0 235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Matrix Regressentation	1418

Transformation to Conventional Cell	G /Z Transformation to Conventional Cell		Transformation to Conventional Cell		
C C C C C C C C	C C C C C C C C	See #33 above. Along tetragonal path from FCC to BCC. Closer to FCC than BCC.	Consider Sea C Z		8 8 8
Matrix Representation 0 0 0 0 0 0 0 0 0	Matrix Representation 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Matrix Representation 0.5	Matrix Representation 0.5	Matrix Representation 0.5 0.5 0.6 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3549076 0.228929 0.21768084 0.8549724 0.085448 0.45597218 0.085448 0.4559724 0.085448 0.4559724 0.085448 0.4559724 0.085448 0.4559724 0.085448 0.4559724 0.085448 0.4559724 0.085448 0.455928 0.286924 0.455928 0.286924 0.855928 0.286924 0.857928 0.085928 0.475808 0.457928 0.084728
Transformation to Reduced Coal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Transformation to Reduced Cell 0.5	Transformation to Reduced Cell 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	Transformation to Reduced Cell 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Transformation to Reduced Cell 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.1 Inverse Transformation 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1	
120c 1-4-0.2	114a P -4_21_0 33 ADAMANNB - = 6 8597	34 GERNOA 1440 P -4-21.5 Matrix Representation 0 1 1 1 1 1 1 1 1 1	98.0 1418 14	881	17. a xy, 2 0.0519571 0.0932283 0.3109161 b 172xxy1,10x48029 0.0505747 0.81019161 c 34xxy1,10x4x 0.06576747 0.310571 0.0669161 e 1xxy1,10xx 0.06576747 0.310571 0.0669161 e 1xxy1,10xx 0.0657674 0.310571 0.0669161 f 172xxy1,10x 0.0657629 0.0607674 0.069161 b 172xxy1,10x 0.0640249 0.0607674 0.069161 b 172xxy1,2x 0.0640249 0.0607674 0.1069161 c 14xy1,10xx 0.0640249 0.0607674 0.1069161 d 14xy1,10xx 0.0640249 0.0607677 0.1069161 e 172xxy1,2x 0.0640249 0.0607677 0.1069161 d 14xy1,10xx 0.0640249 0.0607677 0.069916 e 172xxy1,2x 0.0640249 0.0607677 0.069916 g 14xy1,10xx 0.0640249 0.0699169 0.0699169 g 14xy1,10xx 0.0640249 0.0699169 0.0699169 g 14xy1,10xx 0.0640249 0.0699169 0.0699169 g 14xy1,10xx 0.0640249 0.1690229 0.0699169 g 14xy1,10xx 0.0640249 0.1690229 0.0699169 g 14xy1,10xx 0.0640249 0.1690229 0.1690299

Transformation to Conventional Cell 0	Overal Transformation 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Daughter 62c G Z G Z Fod T2b Z Z Z Z Z Z Z Z Z
2 (9/7 8 1 4 4 4 4 4 4 (s/29) (index)	2 G /Z 8 1 4 2 2 4 2 24 2 24 1 6 (size) (index)	1.102104 0 0 0 0 0 0 0 0 0
(G)	(G 2 (G /C) 8 4 2 8 2 4 4 2 48 2 2 4 4 1	Maint Representation 0 1.102/104 0 1.102/104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
98f 98e 14fe (tl) rre rre squal	88f 88e 88a 227a a_conv= a_ideal=	Matric Representation 1.044612449 1.04612449 1.04612449 1.04612449 1.04612449 1.04612449 1.04612449 1.04612449 1.04612449 1.06124249 1.06124249 1.06124249 1.06124249 1.06124249 1.06124249 1.06124249 1.06124249 1.06124249 1.06124249 1.06124249 1.06124249 1.06124249 1.061242649 1.061242449 1.061242649 1.061242649 1.061242649 1.061242649 1.061242649 1.061242649 1.061242649 1.061242699 1.06124249 1.061242699 1.06124699 1.06124249 1.061242699 1.06124249 1.061242699 1.06124249 1.061242699 1.06124249 1.061242699 1.06124249 1.06124299 1.06124299 1.06124299 1.06124299 1.06124299 1.06124299 1.06124299 1.0612622699 1.06124299 1.06124299 1.06124299 1.0612429
Daughter 88 C 2 Driess 98 Ref. Lattice 14 Reduced Cell Orbanacter 7 (tt) Type 17 Type	Daughter C2 Dimers S4 Quadramers Ref. Lattice	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.5 0.5 0.6 0.6 0.044124324 0.044124602 115,9704602 9,447906151 0.045991612 0.04591612 0.04591612 0.04591612 0.04591612 0.04591612 0.04591612		
Alan'x Representation 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6		Rotation about rod and rescaling; 0.957292823 0.04612449 0
Transformation to Reduced Cell 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		Transformation to Rod Coordinates (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.125 0.625 0.375	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0.2 0.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9		101021038 101021038 101021038 101021038 101021038 101021038 101021038 101021038 101021038 101021038 101021038 101021038 1010218 10102138 1010218 10102138 10
x = 0.0619671 y = 0.0932383 z = 0.3109161 diner symmetry diner symmetry Origin Choice Origin Choice Orig	is S4 quadramer sy Mass Coordinate Orgin Choice 2 //8 0.5 //8	Manurix Rep 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x= 0.05(1967) y= 0.0022035 y= 0.0022035 z= 0.3109161 Diner Center of Mass Coordinates e 2.144.7 organ Choice 2 e 2.144.7 organ Choice 0.5 e 0.5 e 0.6 f 0.6	WP Symmetry ensures S4 quadramer sy Quadramer Center of Mass Coordinates at d. 41.418 0 bg 172.34.58 0.5 de 10.34.743 0.5 de 10.34.74	Ucctures (16-74)
O, 2. WP Symm V dimess	ates (a), 4 WP t neighbors Qu further uadramers)	17/9stal Structures (1978) 88 63 63 74 1000 88 63 63 1000 80 63 10
A to 0 dimens: Dimer Coordinates (e), 2. WP Symmetry ensures C2 dimer Stigrity distorted C2v dimens Dimer Center of Mass Co Dimer Center of Mass Co Dimer Center of Mass Co C C C C C C C C C C C C C C C C C C	quads: Quadraner Coordinates (a), 4. WP Symmetry ensures S4 quadramer symmetry 4 equid stant rearest neglibors 2 updramer Cener of Mass Coordinates next neglibor 200% further a 4. 10. 14.18 0 0 255 sphere padding (of quadramers) an 0.144,18 0 0 725 de 10.24,78 0.5 0.25	622 P_n_m_a 37 dUTCED 1147088 b= 1147089 b= 1147089 b= 1147089 b= 1147089 b= 1147089 caphin= 90 gamma= 90 caphin= 1121/m rods caphin= 1122/m rods caphin= 90 gamma= 90 caphin= 1122/m rods caphin= 1122/m rods caphin= 90 gamma= 90

0.75	
0.13644839	
-0.210984241	
-x,-y,3/4	

	See # 37 above. Z = 2	Transformation to Conventional Cell	Daughter 2, 2, 2, 2, 2, 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-x-y,3/4 -0.210894241 0.13644839 0.75 1	Matrix Pepesentation Matrix Pepesentation	10.0026 0.04778009 Reft Lattice of the control of t	Researing and rescaling Researing about plane normal and rescaling 0 0 0 0 0 0 0 0 0
0.1829 0.75 -0.1574 1 0.1771 0.8954 0.1282 1 0.177 0.8954 0.1782 1	Transformation to Rod Coordinates Coordi	Comparison Com	Representation Transformation to Planar Coordinates Coordinates
T P	10,2360 20,2	40 MITHAREII — Renamed Conce Mathematical Ma	19a P_271_212 41 M2NMOX 0

next neighbor 19% farther than nearest rod packing See above. Center of Mas

		Transformation to Conventional Cel. 1		Transformation to Conventional Cell -1 -1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Transformation to Conventional Cell
		Section Sect		15e	12 19 2 19 Z
		Daughter 15e Ref Lattice 70a Reduced Cell Character 27 (mc) The basa 1 ne coeb b True coeb b True 2(p)+4+R NA 3 A+6	See #47 above.	Daughter Ref Lattice Reduced Cell Observed Title Dass a Title Cosb b Title SAHB I 20PH Title SAHB	Daughter 12] Ref Lattice FOC Mandre 14 (mC) Tybes 1 The Chandre 14 (mC) Tybes 2 The Cab b The
		Matrix Representation 0.015266753 0.056547115 0.052773589 0.022773589 0.022773589 0.022773589 0.022773589 0.022773589 0.022773589 0.022773589 0.022773589 0.07284434 0.0279858777 77.1628677 0.01728475897 2.979827028 0.0279855187 0.05 0.025 0	Matrix Pepresentation 6 -0.009714511 0.00971451 0.0097145	Matrix Representation 0.0274/0833 0.22589167 0.04790.1073 0.22589167 0.04790.1073 0.22589167 0.04790.1073 0.04790.1073 0.04790.1073 0.047798035 0.528973228 114.5151994 116.5159414 99 annia alpha beta 10.04194/14 1.228909542 0.052890333 0.0000.02890333 0.0000.02890333 0.0000.02890333 0.0000.02890333 0.00000.02890333 0.00000000000000000000000000000000	Matrix Representation 6 0.3031981778 0.5 0.36440387 0.00440387 0.00440387 0.00440387 0.00440387 0.00440387 0.00440388989 0.00618733886 0.0618733886 0.062675152 0.00618733886 0.0618733888 0.062675152 0.00618733886 0.0618733888 0.062675152 0.00618733886 0.0618733888 0.062675152 0.00618733886 0.061873388 0.00618733886 0.061873388 0.00618733886 0.061873388 0.00618733886 0.061873388 0.00618733886 0.061873388 0.00618733886 0.061873388 0.0061873388 0.0061873388 0.0061873388 0.0061873388 0.0061873388 0.0061873388 0.006187338 0.00618738 0.00618738 0.0
	See #44 above.	Transformation to Reduced Cell -1 -0.5 -0.5 -1 -0.5 -0.5 -1 -0.5 -0.5 -1 -0.5	Transformation to Reduced Cell 0	Transformation to Reduced Cell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Transformation to Reduced Cell 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Center of Mass Coordinates 0 0.8945 0.25 1 0.74/14 0 0.1056 0.25 1 17.2/24/1 0.5 0.3946 0.25 1 17.2/24/3 0.5 0.8945 0.75 1 17.2/24/3 0.5 0.8945 0.75 1 1	Matrix Representation 0.36479 1.1776587 0.00039887 0.0003987 0.00039887 0.00039887 0.00039887 0.00039887 0.00039987 0.00039987 0.00039987 0.00039987 0.00039987 0.000399887 0.00039987 0.00039987 0.00039987 0.00039987 0.00039987 0.00039987 0.00039987 0.00039987 0.000399887 0.00039987 0.000399887 0.000399887 0.000399887 0.00039987 0.00039987 0.00039987 0.00039987 0.00039987 0.00039987 0.00039987 0.00039987 0.00039987 0.000039987 0.00039987 0.00039987 0.00039987 0.00039987 0.0	F F E E E	Matrix Representation Dea 0.8216999 Core 1.08299999 Core 1.082999999 Death 1.082999999999999999999999999999999999999	Matrix Representation 0.048217 0 0.4780411 0 0.4780411 0 0.4780411 0 0.4890218	12 C2m
rod packing See above.	16s C2C 40 TMSNNSIO 207725 9 277725 9 277725 9 277725 9 277725 9 277725 9 277725 9 277725 9 20 20 20 20 20 20 20 20 20 20 20 20 20	15e C2/0 47 RASODE a= 200104 b= 10.1102 bt= 0.60554 c= 19.3224 ct= 0.96654 aphra= 20 abhra= betra= 120.132 bt= 120.152 gamma= 120.132 bt= 120.152 c= 10.9324 ct= 0.96654 dgamma= 120.152 bt= 120.152 c= 10.9324 ct= 0.9654 dgamma= 120.152 bt= 120.152 ct= 10.9324 ct= 120.152 dgamma= 120.152 bt= 120.152 ct= 120.152 bt= 120.152 dgamma= 120.152 bt= 120.152 ct= 120.152 bt= 120.152 dgamma= 120.152 bt=	49 TFMETHOZ 49 TFMETHOZ b 4.0082 b 4.0022 c 8.35962 c 8.35962 c 8.35962 c 90 9.822	166 C2/C 49 REKYNB 2 = 19.8721 2 = 9.49666 bb= 0.4781 2 = 19.7822 3 = 19.7822	12) C2/m 50 MECKOU 16:7928 a 16:7928 b 11:1717 c 18:4079 apha a 19:4079 apha a 19

Order Parameter = Coupled	Daughter 11e	Daughter 14e G Z G Z Pane 2,/c 4 1 1 1 1 1 1 1 1 1		Transformation to Conventional Cell 1 0
0 0724 0 0724 0 0778 1 Z=1 -1 0724 0 0778 1 0778 1 0778 -1 0724 1 0778 1 0778 1 1 0778 -1 0724 0 0778 1 1 0778 1 0 0778 1 0 0778 1 0 0778 1 0 0778 1 0 0778	Out and receiving.	x,y,z 1/2-y,-z -x,-y,-z 1/2+y,z y = z = z		Matrix Representation 0.290239999
0.000 0.7599 1 0.7599 1 0.7599 1	Transformation to Rod Coordinates 0.29084 0.28084 0.28084 0.28084 0.28084 0.28084 0.28084 0.28084 0.28084 0.28084 0.28084 0.28084 0.28084 0.28284 0.288284 0	Transformation to Planar Coordinates Coo	0.08794 0 1.7571756 1.7587216 See #52 above. 90 gamma 0.204451 1 0.7085399 1 0.77814611 1	Transformation to Reduced Cell College C
sphere packing im 0.255 0.556 1.54,1-22 0.255 1.54,1-22 0.256 1.54,1-22 0.7555 0.55 1.754,1-21 0.255 0.55 1.54,1-21 0.2555 0.55 1.55 1.55 1.55 1.55 1.55 1.55 1	Fepreent Represent 1611 1611 1 1611 1 1611 1 1611 1 1611 1 1611 1 1611 1 1611 1 1611 1 1611 1 1 1611 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14e P_210 52 CAMPOV	144	14e

		2 04		
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 G Z 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2	2 O (Z) C	(mdbx) (mdbx) (mdbx)	antional Cell 1 0 0 1 0 0 Det= 4 1
0 0	55 55 55 55 55 55 55 55 55 55 55 55 55	20 P P P P P P P P P P P P P P P P P P P	20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Transformation to Conventional Cell -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Daughter Rod 1 7 2 = 2	Daughter Rod 1 1	Daugher Rod	16)[2] 48 48 (index)
<u> </u>	10.754620026 0 8.18E-17 0 0.154511051 1.020286 8.18E-17 0.154511051 1.020286 9.0002864 9.0002867 0.454486 0.00228678 0.454787 0.00228678 0.934488	3 1.449105 1.449105 9 1.449105 9 1.449105 9 0.0264875 52 0.256875 52 0.745125 15 0.6689	6 1.111184 3 1.01184 8 1.111184 90 gamma gamma 00 0.741771 29 0.6619	Ze + + + + + + + + + + + + + + + + + + +
4	Matur Regresentation 4-45681E-17 0.73140026 0 0.194511061 18 0 0.756822665 0.756822665 19 0 0.000027569 beta pc11 (45) 1 0.004662835 0.0223678 10 0 0.0000323 0.00003142 10 0 0.0000323 0.00003142 10 0 0.000033 0.00003142 10 0 0.000033 0.00003142 10 0 0.000033 0.00003142 10 0 0.000033 0.000033 12 0 0.000033 0.000033 12 0 0.000033 0.000033 12 0 0.000033 0.000033 12	Matrix Representation -0.07181948 1243965853 0 0 1444106 -0.07181948 124396583 0 0 1444106 -0.07181949 1245700429 1446106 -0.081870449 1245700429 1446106 -0.081870449 0.138617082 0.758475 -0.081870449 0.138617082 0.758475 -0.0818712545 0.057303115 0.68899	Matrix Regresentation -0.877216454 1.060125106 -1.060125296 0.97721023 -1.437750899 1.437750299 1.99 -1.437761699 1.437750299 1.99 -1.427761699 1.43776099 1.99 -1.427761699 1.43776099 1.99 -1.427761699 1.43776099 1.99 -1.427761699 1.43776099 1.99 -1.427761699 1.43776099 1.99 -1.42761699 1.43776099 1.99 -1.42761699 1.43776099 1.99 -1.42761699 1.43776099 1.99 -1.42761699 1.43776099 1.4376169 1.99 -1.42761699 1.4376169 1.99 -1.42761699 1.4376169 1.99 -1.42761699 1.4376169 1.99 -1.42761699 1.4376169 1.99 -1.42761699 1.4376169 1.99 -1.42761699 1.4376169 1.99 -1.42761699 1.4376169 1.99 -1.42761699 1.4376169 1.99 -1.42761699 1.4376169 1.99 -1.42761699 1.4376169 1.99 -1.42761699 1.4376169 1.4376169 1.99 -1.42761699 1.4376169	
Daughter 14e Cs Dimers 12a Ref. Lattice 166a Ref. Lattice 166a Character 10 (mC) Days 1 Character 10 (mC) Days 1 Cabb True Ccbb True SA+B N/A SA+B N/A	x,y,z	Matrix Repr 1007/38 (9) (107/38 (9) (107/38 (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	Mannx Repr 0.91/2164 1.060/1259 1.060/1259 0.01/2268 0.01/2268 0.01/2268 0.01/2268 0.01/2268 0.01/2268 0.01/2268	Daughter 14e Ref. Lattice F.CC Reduced Cell Character 20 (mC)
0 0 C C C C C C C C C C C C C C C C C C	000 - 000 -	00-0 	Def= 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
18167 14267 14267 14267 14264 14254	Roution about rod and rescaling: 1276927253 0 0.783126969 0 0 0 0 0 0.783129699 0 0 0 0.783129699 0 0 0 0.783129699 0 0 0 0.783129699 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	od and rescaling: 1.24750697 0 0 0.801442168 0 0.801442168	Rotation about not and rescaling: 0.52146670 0.52146670 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -
0.31748167 0.317448167 0.451044267 0.451044267 0.551044267 0.5510478 0.5510478 0.510	Rotation about rod and recalling: 1,276927283 0 789126969 0 0 789126969 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rotation about rod and rescaling: 0.801442168 0.0014276867 0.00142168 0.00142168 0.00142168	Roution about rod and rescaling 0.52146657 0.46007203 0.05146657 0.46007203 0.0513607 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Matrix Representation -0.27953629 -0.0329 -0.528958025 -0.332 -0.528958035 -0.332
Deta 0.5	0.05 0.75 0.75 0.05 0.05 0.05 0.05 0.05	883 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 0.5 0.25 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	on to Red Coordina 0 1 243414 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	on to Rod Coordina 10038687 00038687 000 000 000 000 000 000 000 0	on to orthogonal aw	Transformation to Reduced Cell -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
10.5 0.5 0.0 0.0 0.0 0.0 0.0 1.1	Transformation of the control of the	Transformatical Control of Contro	Transformation Tran	Transformarion 1.0.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.277 0 1.0203 1.0558 90 gamr 90.0697 0.0697	14491046 0 0 1.5817896 0 1.5817896 0 0 2.5817896 0 0 2.5817896 0 0 2.58178 0 4.281235 0 0.245125 0	Mark Representation Mark Representation 0.0397/6 0.00 0.0397/6 0.00 0.0037/6 0.00 0.0037/6 0.00 0.0037/6 0.00 0.0037/6 0.00 0.0037/6 0.00037/6	sentation -0.440927 0 0.64227 0 0 1.0539161 b 2 1.142.4343 112.703 99
iner synmetry so Coordinates	Matrix Representation 1 0 0.5926905 0 0 0.5926905 1 0 0.5926905 90 104.893 alpha beta 1 0.2224831 0.87074896 7.27224831 0.8292924 7.27224831 0.8292924 7.27224831 0.8292924 7.27224831 0.8292924 7.27224831 0.8292924 7.27224831 0.8292924 7.27224831 0.8292924 7.27224831 0.8292924 7.27224831 0.8292924 7.27224831 0.8292924 7.27224831 0.8292924 7.27224831 0.8292924 7.2724831 0.8292924	x Reprint 2	Matrix Representation of 1 (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Matrix Reprint 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
matry ensures Cs dimet symmetry organization of pages of the control of the contr	98.8.4	1046 32.8 3.28 9.9 9.00	28 4 0.1 o.1 sla	0.664227 11.142443 112.703
Dimer Coordinates (b), 14 MP symmetry ensures Cs dimer symmetry ensures Cs dimer symmetry ensures the properties of continued to the symmetry of the symmetry	14e P_2/10 OUGSOU 1133 hea 0.520 be 95/20 hea 0.520 c= 17.0133 con=1.056 gamma= 104.833 heat= 10 gamma= 90 gamma= 14.69/thors with 2% of nearest hexagonal packing of pc11 rods Center	14e P_27/n DOONIS 84596 D= 12287 bb= 1449 B= 90 alpha= 90 alpha= 90 alpha= 159, alpha= 150, alpha= 150	14e	P_2/n = 16.7235 ba= = 11.1082 ca= = 19.1055 ca= = 90 apha= = 112.703 beta= = 90 gamma=
Dimer Coord 4 nearest ne next neighto next neighto packing of th	146 55 OUGGO 1	146 56 DOONIS 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	57 TMSIAD BE CONTROLLED BE CON	14e P. S8 MECKUA a a b= c c a apha= beta= gamma=

12 neighbors within 14% of nearest next neghbors within 14% of nearest sphere packing Center of Mass Coordinates Center of Mass Coordinates	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Type	True posisbb2 True True pacisa.a2 True NA labisa.a2 True	.1 0 1 -0.25 -0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
6 1	0,0,0	0.001373469 -0.025782469 0.022782313 1 2=1 -1.001373469 -0.9723 4631 -0.022782313 1 0-0.001373469 -1.022782313 0.025783469 1 0-0.98623631 0.022782313 -0.025783469 1 0-0.001373469 -0.025785469 0.022782313	1 Aleng Rhom. Path from FCC to BCC	Order Parameter = Coupled
14e	Transformation to Reduced Cell -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.2 -0.125 -0.5 -0.2 -0.125 -0.5 -0.2 -0.125 -0.5 -0.2 -0.125 -0.5 -0.2 -0.125 -0.5 -0.2 -0.125 -0.5 -0.2 -0.5 -0.	Maint Representation	14e	Transformation to Conventional Cell 1
1466 60 CAVETIC 60 CAV	Transformation to Plantar Coordinates 0.25	recoaling: 1	Regressentiation 122E-17 0.91865776-4 1 122E-17 0.91865776-4 0 0913003 0.91865776-4 0 0913003 0.91865776-4 1 0910091919191919191919191919191919191	Daughter 14ee
Hee P_21/a	Transformation to Rod Coordinates 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rodation about rod and rescaling: 0.606124897 0.02191573 0 0 0 0.0076912620 1 0 0 0.0076912620 0.077691262 0 0 0.007691262 -0.062191573 0 0 0 0.007691262 -0.062191573 0 0 0 0.007691262 -0.062191573 0 0 0 0.007691262 -0.062191573 0 0 0 0.0076912680 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	161646273 0 0 0 0 0 0 0 0 0 0	Daughter 14ee G Z G
13e/g P_2c Matrix Representation 2 13e/g P_2c Matrix Representation 3 18:342 0 0.013824 0 0.013824 4 18:38124 0 0.013824 0 0.0138230 5 18:38124 0 0.0138230 5 18:38124 0 0.0138230 5 18:38124 0 0.0138230 6 18:38124 0 0.0138230 7 18:38124 0 0.0138230 8 18:38124 0 0.0138230 9 18:38124 0 0.0138230 9 18:38124 0 0.0138230 9 18:38124 0 0.0138230 1	Transformation to Rod Coordinates 1 0 0.8243 0 0.481138 0 0 0 0 0.25 0 0 0 0 0.25 Inverse Transformation 0 0.18243 0.03461 0 0 0 0.18243 0.03461	Rotation about rod and rescaling: 1.3545293050056493691	Mathy Representation 1, 3456505058 - 0.058435888 0 3, 85892E-18 - 8.9451E-17 1 3,058435591 - 1.354535835 0 1, 3558 1, 3558 13507 0 90 apha beta gamma p-42m (#37)	Soughter 13elg

2nd setting -42m 0 0 0 1 2	Color Colo	
0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0	Transformation to Reduced Cell Matrix Regressmatton 1.0	See #63 above.
e. 2 meant analyticos of newest continetes as b, Cell Choce 1 4 neglibores within 2% of newest 0, 1,14		15ff

	Daughter 21 (G) Z (G/Z) Rod 2c 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Daughter 21
	Matrix Representation 0.407281 0.484509 0.528079 0.15512 0.42450272 1.046822 0.15512 0.42450272 0.1016914 1.01016386 1.177 666 1.010914 1.01016386 1.177 666 1.010914 1.01016386 1.177 666 1.02472 0.06962873 0.02472 0.26076221 0.3007622 0.0142366 0.230276221 0.3007622 0.0142366 0.230276221 0.3007622 0.0142366 0.230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.0142366 0.0230276221 0.007622 0.	Mairx Representation Alexandron Alexan
	Retation about rod and recepting: 0.385922889	Control about nod and rescaling: Control about nod a
	Transformation to Othrogonal Coordinates 1 0 0 0 1 0	Transformation to Othogonal Coordinates Transformation to Othogonal Coordinates 0 0 0 0 11 0 0 0 0 14 1 0.167728158 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
	Transformation to Red. Coordinates 0.815/268 0.077164 0.05 0.384774 0.077164 0.05 0.084774 0.077164 0.05 0.084774 0.077164 0.05 0.084774 0.084776 0.08627 0.084774 0.084776 0.08 0.084774 0.084776 0.084774 0.084776 0.084774 0.084776 0.084774 0.084776 0.084774 0.084776 0.084774 0.084776 0.084774 0.084776 0.084774 0.084776 0.084774 0.084776 0.084776 0.0847	Transformation to Rod Coordinates 0.00
(2x, (12x) 0.4022 0.5343 0.1234 (12x, (12x) 0.4022 0.4657 0.6234 0.1234 (12x, (12x) 0.4022 0.4657 0.6234 0.623	Matrix Representation Matr	Maa
See above. See thore > 40% of nearest 1.1. 1.1	Triclinic Crystal Structures (1-2) 65 BASON P1 66 BASON P1 67 BASON P1 67 BASON P1 67 BASON P1 67 BASON P1 70 BA	2

0 0 5 0 5 1 1 0 5 0 5 0 5			000- 000- pp	
Overall Transformation -0.5 0 0.5 0.			Transformation to Conventional Cell	Daughter 2
n but dose to 6 (c) R crisb b2 True la b(sa a/2 True la b(sa a/2 True			2 ii C C C C C C C C C	Matrix Representation 1. 1.3.9021462.0. 1. 1. 1.3.9021462.0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Reduced Cell Character 44 (#) Type II bbaa True Coeb D True 2(DreFF) True 5 A48 True			Daghter 2ii Ref.Laffree BCC Reduced Cell Type Left (4/6*) Type Cobb True Cobb True Cobb True SA48 True SA48	Matrix (2.39) (2.39) (2.47) (2
107.9992886 107.314809 107.0838036 alpha beta beta gamma Normalized Nigoli Matrix 1032529194 -0.316057389 -0.302416346 -0.285712962 0.011209412 0.009982353 -1.018798882			Matic Reportering Control (1972) Matic Reportering Control (1972) Matic Reportering Control (1972) Matic Report	Rotation about plane normal and rescaling: Comparison of the co
Inverse Transformation 0 -1 -1 -1 -0.5 -1 -1 -0.5 -1 -	See #67 above.	ean layves.	Transformation to Reactions Co. Transformation to Reactions Co.	Transformation to Planar Coordinates 0.0006965 - 0.030726 - 1 0.25 0 0 0 0 0 0.25 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
gamma= 89.98776 90.4794 111.67244 89.89776 8 neighbors within 3% of nearest next neighbor 11% better gamma next neighbor 11% better gamma center of Mass Coordinates	2 P1 88 MEZOCKOT 1 1461025 0.944575 2 1462028 Da= 1461025 2 1946215 0.000613 0.341044 2 1946215 0.000613 0.000613 2 19460215 0.000613 3 19460215 0.000613 3 19460215 0.000613 4 1461025 0.000613 5 1461025 0.000613 5 1461025 0.000613 6 1461025 0.000613 6 1461025 0.000613 7 1461025 0.000614 8 177308 9000494 9 177308 9000494 9 177308 900044 9 177308 90004	2) P1 Thin Film Crystal w/ Large Voids 8 20802 D= 718737 Thin Film Crystal w/ Large Voids 0 = 28.0315 0 = 28.0315 0 = 28.0315 0 = 28.0315 0 = 28.0315 0 = 28.0315 0 0.041217 0 0.041217 0 0.041217 T= 0.041227 T= 0.41829 Molecules clustered near c=(r+1)2 and large ca lead to urrealistically large gaps between layers.	70 OHABEE P1	CAMPON P1 Matrix Representation CAMPON P1 Matrix Representation CAMPON P1 Matrix Representation CAMPON P1 Matrix Representation CAMPON CAM

Neighbor distances scaled to the nearest neighbor distance Red entries highlight large steps in the histogram

17	2.121	2.039	2.089 2.032 1.801	1.727	1.739	1.697	1.647	1.687	1.787	1.867	1.852	1.850	1.768	1.955	1.777	1.647	1.660 1.644 1.655	1.758	1.853	1.679	1.595	1.850
16	1.966 1.414	1.860	2.089 1.989 1.697	1.688	1.739	1.680	1.647	1.687	1.533	1.661	1.668	1.678	1.551	1.919	1.735	1.624	1.644 1.461 1.629	1.604	1.829	1.488	1.432	1.837
15	1.966	1.860	2.082 1.989 1.697	1.632	1.739	1.680	1.647	1.687	1.533	1.661	1.668	1.678	1.551	1.919	1.541	1.624	1.644 1.461 1.471	1.582	1.706	1.488	1.432	1.837
4	1.966	1.860	2.082 1.689 1.697	1.438	1.422	1.539	1.521	1.324	1.515	1.564	1.549	1.557	1.532	1.496	1.541	1.329	1.245 1.421 1.431	1.566 1.758	1.706	1.464	1.432	1.475
13	1.449	1.377	1.650 1.562 1.697	1.438	1.422	1.539	1.521	1.324	1.515	1.564	1.549	1.557	1.532	1.496	1.531	1.329	1.245 1.421 1.254	1.566	1.539	1.464	1.432	1.468
12	1.449	1.377	1.650 1.562 1.600	1.264	1.422	1.321	1.521	1.324	1.267	1.491	1.499	1.525	1.247	1.470	1.511	1.206	1.174 1.172 1.207	1.524	1.514	1.286	1.421	1.468
7	1.000	1.377	1.597 1.562 1.600	1.245	1.422	1.321	1.521	1.324	1.267	1.491	1.499	1.525	1.224	1.470	1.511	1.206	1.174 1.172 1.182	1.492	1.500	1.286	1.421	1.345
10	1.449	1.377	1.582 1.562 1.600	1.245	1.123	1.218	1.430	1.255	1.267	1.491	1.499	1.525	1.224	1.392	1.509	1.188	1.172 1.172 1.180	1.492	1.500	1.266	1.268	1.345
б	1.449	1.377	1.582 1.482 1.600	1.231	1.123	1.218	1.430	1.255	1.267	1.491	1.499	1.525	1.222	1.392	1.509	1.188	1.172	1.484	1.498	1.258	1.268	1.316
80	1.449	1.377	1.573 1.482 1.600	1.231	1.123	1.218	1.353	1.210	1.151	1.473	1.477	1.513	1.161	1.347	1.316	1.152	1.094 1.038 1.102	1.483	1.498	1.109	1.151	1.300
7	1.329	1.250	1.573 1.270 1.600	1.207	1.123	1.218	1.353	1.210	1.151	1.473	1.477	1.513	1.161	1.347	1.316	1.152	1.094 1.038 1.056	1.483	1.467	1.109	1.151	1.300
9	1.329	1.250	1.568 1.270 1.600	1.207	1.123	1.174	1.203	1.171	1.117	1.463	1.468	1.497	1.125	1.277	1.294	1.122	1.049 1.031	1.473	1.467	1.099	1.132	1.264
2	1.329	1.250	1.563 1.270 1.600	1.114	1.123	1.174	1.203	1.171	1.117	1.463	1.468	1.497	1.125	1.248	1.270	1.122	1.049 1.031 1.041	1.384	1.324	1.099	1.132	1.262
4	1.329	1.250	1.563 1.270 1.000	1.114	1.123	1.106	1.125	1.042	1.105	1.191	1.195	1.213	1.102	1.238	1.147	1.022	1.019 1.019 1.038	1.155	1.149	1.014	1.026	1.262
က	1.329	1.250	1.331 1.126 1.000	1.000	1.123	1.106	1.125	1.042	1.105	1.191	1.195	1.213	1.102	1.238	1.144	1.022	1.019	1.043 1.043	1.112	1.014	1.026	1.035
2	302 1.329 1.000	1.000	1.331	1.060	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.030	1.036	1.010	1.000	1.000	1.003	1.058	1.010	1.000	V 1.035
~	FOJBUB02 1.000 1.000	1.000 1.000	1.000 1.000 1.000	1.000 1.000	FUZTEZ 1.000	GUTCED 1.000	1.000	1.000 1.000	1.000 Moior 1.00	1.000 1.000	1.000 1.000	1.000	1.000	1.000	1.000	1.000 PIMAIA	1.000 1.000 1.000	1.000	1.000	1.000	MZNMOX10	1.000
	205c er c a			о с - 4- - 4-	137a a	62c c	0.50 0	02C	e - 50	Ф 7	6 - 00 70 00	Ф <u>5</u>	- 0 - 7	— Ф <u>с</u>	<u>4</u> <u>5</u>	0 - e	. o ← o ∠	- Ф Ф <u>с</u>	<u>4</u> .– <u>4</u>	— Ф Б	19a	14e e
	monomer	monomer dimer	monomer dimer quatramer	monomer dimer	Rods																Planes	

1.873	1.936 1.893	1.961 1.960 1.854 1.852	1.00 1.00 1.00	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.414	1.414	1.414	1.562	1.481	1.545	1.624	1.461	1.521	1.493	1.493	1.491
1.852	1.893	1.918 1.937 1.824 1.852	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.414	1.414	1.414	1.492	1.481	1.545	1.624	1.461	1.421	1.493	1.493	1.414
1.852	1.893	1.913 1.870 1.823 1.852	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.633	1.414	1.414	1.414	1.492	1.456	1.482	1.624	1.454	1.421	1.493	1.493	1.414
1.539	1.744	1.723 1.814 1.815 1.843	1.633	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.414	1.414	1.414	1.492	1.456	1.482	1.167	1.454	1.421	1.493	1.493	1.414
1.526	1.707	1.721 1.750 1.789 1.817	1.633	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.414	1.414	1.414	1.492	1.456	1.482	1.167	1.454	1.421	1.493	1.493	1.414
1.526	1.707	1.695 1.739 1.781 1.814	1.633	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.414	1.414	1.414	1.140	1.059	1.094	1.167	1.055	1.071	1.493	1.493	1.028
1.392	1.690	1.679 1.721 1.752 1.809	1.633	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.414	1.414	1.414	1.140	1.059	1.094	1.167	1.055	1.071	1.493	1.493	1.028
1.392	1.633	1.676 1.702 1.721 1.780	1.633	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.414	1.414	1.414	1.137	1.059	1.094	1.167	1.055	1.071	1.386	1.383	1.028
1.375	1.633	1.614 1.639 1.712 1.705	1.633	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.155	1.414	1.414	1.414	1.137	1.059	1.094	1.167	1.055	1.071	1.386	1.383	1.028
1.303	1.590	1.604 1.631 1.606 1.629	1.633	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.414	1.414	1.414	1.067	1.059	1.094	1.042	1.055	1.010	1.386	1.383	1.028
1.290	1.521	1.523 1.547 1.523 1.547	1.633	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.414	1.414	1.414	1.067	1.059	1.094	1.042	1.055	1.010	1.386	1.383	1.028
1.290	1.521	1.523 1.547 1.523 1.547	1.633	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.067	1.035	1.091	1.000	1.010	1.010	1.358	1.351	1.028
1.266	1.395	1.363 1.449 1.363 1.449	1.633	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.067	1.035	1.091	1.000	1.010	1.010	1.358	1.351	1.028
1.266	1.275	1.264 1.293 1.333 1.315	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.022	1.035	1.091	1.000	1.010	1.010	1.000	1.000	1.000
1.038	1.055	1.072 1.073 1.056 1.089	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.022	1.000	1.000	1.000	1.000	1.010	1.000	1.000	1.000
1.038	1.044	1.056 1.071 1.054 1.073	1.000		A 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	ار 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000 1.000	1.000
VAVYA 1.000	1.000 1.000	1.000 1.000 1.000	ZNOXAC01	DEQPAQ 1.000	HMSIPA 1.000	1.000 1	1.000	1.000 1	1.000	1.000 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000 1.000	1.000	1.000 7.85	1.000	1.000	1.000 1.	1.000	1.000	1.000 1.	1.000 KUJSIR
14e 6 7	- 0 0 6 - 46 - 66		Sphere Packings 227a a	217a a	217a a	217a a	21/a a 2475	a 2172	0 1 d	21/a a	a 71/a	21/a a 2475	21/a a 7	217a* a	215a a 245	2.15a a 2.15a	215a a 476b	h 4	165d d	p 6	9 19 7 17 7 17 7 17	d 470	1320 b	2 4 4 4 7 4	a 4-12 2 - 4-12 2 - 4-12	12 la a 142a
			Spher																							

1.431	1.458	1.450	1.503	1.495	7	1.478 1.481	1 641	1.641	1.609	1.697	1.750	1.570	1.536	1.439	1.737	1.747	1.675	70 1.1	1.727	1.763 1.670	1.727		1.621	1.619	2.330	1.629	1.632 1.632	203	1.549	1.803 1.549	1.803 1.549
1.414	1.458	1.450	1.503	1.495	20	1.46 <i>z</i> 1.481	1 569	1.569	1.592	1.533	1.477	1.548	1.495	1.439	1.594	1.630	1.652	<u>-</u>	1.591	1.625	1.585		1.621	1.619	2.330	1.623	1.624 1.627	1 803	1.549	1.803 1.549	1.803 1.549
1.414	1.458	1.450	1.503	1.495	27	1.469 1.469	1 569	1.564	1.592	1.533	1.477	1.548	1.495	1.439	1.592	1.606	1.599	2	1.588	1.614	1.486		1.619	1.615	2.000	1.611	1.623	200	1.549	1.803 1.549	1.803 1.549
1.414	1.458	1.377	1.320	1.495	4	1.46 <i>2</i> 1.465	1325	1.288	1.241	1.313	1.411	1.475	1.454	1.398	1.492	1.505	1.599	2	1.500	1.532	1.486		1.227	1.225	2.000	1.212	1.216	1 225	1.549	1.225 1.549	1.225
1.414	1.458	1.377	1.320	1.495	2	1.345	1 325	1.288	1.241	1.313	1.411	1.400	1.454	1.398	1.439	1.411	1.409	2	1.418	1.432	1.464		1.218	1.221	1.853	1.186	1.215	1005	1.549	1.225	1.225
1.006	1.458	1.025	1.063	1.414	000	1.082	1 213	1.243	1.235	1.198	1.159	1.182	1.138	1.024	1.237	1.228	1.231	103:1	1.219	1.241	1.216		1.198	1.197	1.853	1.185	1.215	1 225	1.000	1.225	1.225
1.006	1.458	1.025	1.063	1.414	60	1.082	1 213	1.213	1.235	1.198	1.159	1.182	1.131	1.024	1.220	1.226	1.231	5	1.205	1.224	1.216		1.198	1.197	1.853	1.183	1.189	1 225	1.000	1.225	1.225
1.006	1.414	1.025	1.063	1.414	2	1.042	1 117	1.117	1.124	1.118	1.159	1.146	1.112	1.012	1.220	1.223	1.229	7.	1.203	1.223	1.203		1.175	1.175	1.853	1.169	1.188	1 225	1.000	1.225	1.225
1.006	1.414	1.025	1.063	1.414	2	1.042	1117	1.071	1.124	1.118	1.159	1.146	1.112	1.012	1.213	1.209	1.223		1.203	1.213 1.228	1.199		1.172	1.167	1.843	1.168	1.186	1008	1.000	1.225	1.225
1.006	1.414	1.000	1.000	1.111	2	1.040	1 049	1.071	1.124	1.118	1.131	1.083	1.083	1.012	1.212	1.174	1.206	3	1.197	1.184	1.182		1.108	1.108	1.711	1.094	1.096	1008	1.000	1.225	1.225
1.006	1.414	1.000	1.000	1.111	2	1.040	1 049	1.049	1.124	1.118	1.131	1.083	1.076	1.011	1.198	1.167	1.167	<u>-</u>	1.188	1.179	1.155		1.108	1.108	1.521	1.094	1.096	1 225	1.000	1.225	1.225
1.006	1.062	1.000	1.000	1.111	200	1.034	1041	1.040	1.018	1.059	1.088	1.034	1.009	1.001	1.155	1.166	1.166	2	1.154	1.169	1.154		1.021	1.021	1.413	1.033	1.009	- - α	1.000	1.118	1.118
1.006	1.062	1.000	1.000	1.111	200	1.038	1 041	1.040	1.018	1.059	1.088	1.003	1.009	1.001	1.141	1.150	1.150	<u>-</u>	1.123	1.141	1.124		1.021	1.021	1.114	1.018	1.008	- - α	1.000	1.118	1.118
1.000	1.000	1.000	1.000	1.000	200	1.034	1 010	1.013	1.014	1.018	1.042	1.003	1.000	1.001	1.086	1.119	1.096	200	1.085	1.141	1.085		1.014	1.016	1.074	1.015	1.005	α	1.000	1.118	1.118
1.000	1.000	1.000	1.000	1.000	200	1.034	1 010	1.013	1.014	1.018	1.042	1.003	1.000	1.000	1.062	1.100	1.079	50.	1.062	1.108	1.070		1.010	1.007	1.041	1.007	1.002	τ 2 2	1.000	1.118	1.118
1.000	1.000	1.000	1.000	1.000		1.000	> 000 1		1.000	1.000	1.000	1.003	1.000	1.000	1.005	1.071	1.056			1.085		01	1.010	1.006	1.000	1.006	1.002	×	•	1.000	1.000
1.000	YEMRIR 1.000 1	1.000 1.000	1.000	1.000 1	Methane	1.000	YIMWEW	1.000	1.000	1.000 1.000	1.000	1.000	1.000 1.000	1.000 1	1.000	1.000	1.000	CTBROM	1.000	1.000	1.000	MEZDIE01	1.000 1 MEZDOK01	1.000	1.000 1.000	OHABEE 1.000	1.000	KOXKOX	1.000	1.000	1.000 1.000
o .	120b b	- a - - 2 - 4 - 4	- 00 c	a g	64d,f	o ↓	60c,d	י ס נ	e -	e	e 15e	Z ;	- o -	e 46	<u> </u>	<u>.</u>	- -	15##	.		- 4-	Zi	iō	i i	√ ē	Ī		218ac	2 O C	a 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	218ac a c

```
Order Parameters Calculated Using:
      COPL as found on:
      H.T.Stokes and D.M.Hatch, (2002). ISOTROPY, stokes.byu.edu/isotropy.html.
Sphere Packings:
ZNOXAC01
   Parent: 227 Oh-7, Fd-3m, F4_1/d-32/m, origin choice 2
   Subgroup: 227 Oh-7, Fd-3m, F4_1/d-32/m, origin choice 2
   Lattice vectors:
   1 0 0
   0 1 0
   0 0 1
   origin: 0 0 0
   Irrep Dir Subgroup Size
   GM1+ (a) 227 Fd-3m 1
   GM1+ is the primary OP.
DEQPAQ, et al.
   Parent: 229 Oh-9, Im-3m, I4/m-32/m
   Subgroup: 217 Td-3, I-43m, I-43m
   Lattice vectors:
   1 0 0
   0 1 0
   0 0 1
   origin: 0 0 0
   Irrep Dir Subgroup Size
   GM1+ (a) 229 Im-3m
GM2- (a) 217 I-43m
   GM2- is the primary OP.
FOHCUA, et al.
   Parent: 221 Oh-1, Pm-3m, P4/m-32/m
   Subgroup: 215 Td-1, P-43m, P-43m
   Lattice vectors:
   1 0 0
   0 1 0
   0 0 1
   origin: 0 0 0
   Irrep Dir Subgroup Size
   GM1+ (a) 221 Pm-3m
   GM2- (a) 215 P-43m
   GM2- is the primary OP.
CUCZUV
   Parent: 194 D6h-4, P6_3/mmc, P6_3/m2/c
   Subgroup: 176 C6h-2, P6_3/m, P6_3/m
   Lattice vectors:
   1 -1 0
   1 2 0
   0 0 1
   origin: 0 0 1/2
   Irrep Dir
                Subgroup
                              Size
   GM1+ (a)
                194 P6_3/mmc
   GM2+ (a)
               176 P6_3/m
                                1
         (a,0) 193 P6_3/mcm
   K1
                                3
         (a,0) 176 P6_3/m
                                3
   K4 is the primary OP.
```

```
DILWIE01 & ZEYHIU
   Parent: 194 D6h-4, P6_3/mmc, P6_3/m2/c
   Subgroup: 165 D3d-4, P-3c1, P-32/c1
   Lattice vectors:
   1 0 0
   0 1 0
   0 0 2
   origin: 0 0 0
   Irrep Dir
                Subgroup
                             Size
   GM1+(a)
               194 P6_3/mmc
                               1
   GM3+ (a)
               164 P-3m1
                               1
         (a,a) 165 P-3c1
                               2
   A2
   A2 is the primary OP.
TCYMET
   Parent: 229 Oh-9, Im-3m, I4/m-32/m
   Subgroup: 161 C3v-6, R3c, R3c, hexangonal axes
   Lattice vectors:
   0 1 -1
   -1 0 1
   1 1 1
   origin: 0 0 0
   Irrep Dir
                 Subgroup
                            Size
   GM1+ (a)
                 229 Im-3m
                            1
   GM5+
        (a,a,a) 166 R-3m
                              1
   GM2-
        (a)
                  217 I-43m
                              1
   GM4-
        (a,a,a) 160 R3m
                              1
                  223 Pm-3n
   H2+
         (a)
                              2
         (a,a,a) 167 R-3c
   H4+
                              2
   H1-
         (a)
                  222 Pn-3n
                              2
         (a,a,a) 167 R-3c
   H5-
                              2
   Coupled OP.
ZIZHIZ
   Parent: 194 D6h-4, P6_3/mmc, P6_3/m2/c
   Subgroup: 147 C3i-1, P-3, P-3
   Lattice vectors:
   1 0 0
   0 1 0
   0 0 1
   origin: 0 0 0
   Irrep Dir Subgroup
                           Size
   GM1+
        (a)
             194 P6_3/mmc
                             1
             176 P6_3/m
                             1
   GM2+
        (a)
   GM3+ (a) 164 P-3m1
                             1
   GM4+ (a) 163 P-31c
                             1
   Coupled OP.
MTRETC10
   Parent: 225 Oh-5, Fm-3m, F4/m-32/m
   Subgroup: 152 D3-4, P3_121, P3_121
   Lattice vectors:
   0 - 1/2 - 1/2
   1/2 0 1/2
   -1 -1 1
   origin: -1/6 1/6 -1/2
   Irrep k params Dir
                                                                 Subgroup
                                                                              Size
   GM1+
                                                                 225 Fm-3m
                                                                                1
                     (a)
   GM5 +
                    (a, -a, -a)
                                                                 166 R-3m
                                                                                1
   GM1-
                                                                 209 F432
                                                                                1
                    (a)
   GM5-
                                                                 155 R32
                                                                                1
                    (a,-a,-a)
                                                                                3
   LD3
         2/3
                    (0,0,0,0,0,0,a,0,0,0,0,0,0,-1.732a,0) 152 P3_121
```

FUZLUH & VAFWAA

Parent: 227 Oh-7, Fd-3m, F4_1/d-32/m, origin choice 2

Subgroup: 141 D4h-19, I4_1/amd, I4_1/a2/m2/d, origin choice 2

Lattice vectors: 1/2 -1/2 0

1/2 1/2 0

0 0 1

origin: 1/4 1/4 0

Irrep Dir Subgroup Size GM1+ (a) 227 Fd-3m 1 GM3+ (a,0) 141 I4_1/amd 1

GM3+ is the primary OP.

ZZZKNW01

Parent: 225 Oh-5, Fm-3m, F4/m-32/m Subgroup: 121 D2d-11, I-42m, I-42m

Lattice vectors:

-1/2 0 1/2

1/2 0 1/2 0 1 0

origin: 0 0 0

Irrep Dir Subgroup Size
GM1+ (a) 225 Fm-3m 1
GM3+ (a,-1.732a) 139 I4/mmm 1
GM5- (0,0,a) 121 I-42m 1

 ${\tt GM5-}$ is the primary ${\tt OP.}$

KUJSIR

Parent: 225 Oh-5, Fm-3m, F4/m-32/m

Subgroup: 142 D4h-20, I4_1/acd, I4_1/a2/c2/d, origin choice 2

Lattice vectors:

1 0 0 0 0 -1 0 2 0

origin: 0 1/4 1/4

Irrep Dir Size Subgroup 225 Fm-3m GM1+ (a)1 139 I4/mmm GM3+ (a,-1.732a)1 134 P4_2/nnm 2 X4-(a,0,0) 4 W3 (0,0,a,a,0,0) 142 I4_1/acd

 $\ensuremath{\text{W3}}$ is the primary OP.

YEMRIR

Parent: 221 Oh-1, Pm-3m, P4/m-32/m

Subgroup: 120 D2d-10, I-4c2, I-4c2

Lattice vectors:

1 -1 0 1 1 0 0 0 2

origin: -1/2 -1/2 -1/2

Irrep	Dir	Subgroup	Size
GM1+	(a)	221 Pm-3m	1
GM3+	(a,0)	123 P4/mmm	1
GM2-	(a)	215 P-43m	1
GM3-	(a,0)	111 P-42m	1
R4+	(a,0,0)	140 I4/mcm	2
R5-	(a.0.0)	140 I4/mcm	2

Coupled OP.

```
ADAMAN08 & GERHOA
   Parent: 225 Oh-5, Fm-3m, F4/m-32/m
   Subgroup: 114 D2d-4, P-42_1c, P-42_1c
   Lattice vectors:
   -1/2 0 1/2
   1/2 0 1/2
   0 1 0
   origin: 0 0 0
   Irrep Dir
                      Subgroup
                                    Size
   GM1+ (a)
                      225 Fm-3m
   GM3+
         (a,-1.732a) 139 I4/mmm
                                      1
                  121 1 1
128 P4/mnc
        (0,0,a)
   GM5-
                                      1
   X3+
                                      2
         (a,0,0)
                    137 P4_2/nmc
                                      2
   X2-
         (a,0,0)
   Coupled OP.
KANGUB01
   Parent: 141 D4h-19, I4_1/amd, I4_1/a2/m2/d, origin choice 2
   Subgroup: 88 C4h-6, I4_1/a, I4_1/a, origin choice 2
   Lattice vectors:
   1 0 0
   0 1 0
   0 0 1
   origin: 0 1/2 0
   Irrep Dir Subgroup
                            Size
   GM1+ (a) 141 I4_1/amd
                            1
   GM3+ (a)
              88 I4_1/a
                              1
   GM3+ is the primary OP.
(methane III)
   Parent: 225 Oh-5, Fm-3m, F4/m-32/m
   Subgroup: 64 D2h-18, Cmca, C2/m2/c2_1/a
   Lattice vectors:
   2 0 0
   0 1 1
   0 -1 1
   origin: 1/2 0 0
   Irrep k params Dir
                                                               Size
                                                Subgroup
                                                225 Fm-3m
   GM1+
                   (a)
                                                               1
   GM3+
                   (a,1.732a)
                                                139 I4/mmm
                                                                1
   GM5+
                  (0,a,0)
                                                 71 Immm
                                                                1
   SM2
                  (0,0,0,0,0,0,0,0,0,0,a,0)
                                                 51 Pmma
   L1-
                   (a,0,a,0)
                                                 67 Cmma
   L3-
                   (a, 0.268a, 0, 0, a, 0.268a, 0, 0)
                                                67 Cmma
                                                123 P4/mmm
   X1+
                   (0,0,a)
                                                131 P4_2/mmc
                                                                2
   X4+
                   (0,0,a)
                   (a,0,0,0,0,0)
   W2
                                                139 I4/mmm
                                                                4
                                                140 I4/mcm
   W3
                   (0,a,0,0,0,0)
   Coupled OP.
YIMWEW
   Parent: 229 Oh-9, Im-3m, I4/m-32/m
   Subgroup: 60 D2h-14, Pbcn, P2_1/b2/c2_1/n
   Lattice vectors:
   0 3 0
   -1 0 1
   1 0 1
   origin: -1/2 0 0
                                                            Size
   Irrep k params Dir
                                               Subgroup
            (a)
   GM1 +
                                               229 Im-3m
                                                             1
                   (a,-1.732a)
   GM3 +
                                               139 I4/mmm
                                                              1
```

GM5+

(0,0,a)

69 Fmmm

1

```
DT5
         5/6
                   (a,-a,a,a,0,0,0,0,0,0,0) 64 Cmca
                                              139 I4/mmm
   DT1
         1/3
                   (a,0,0,0,0,0)
                                                            3
   DT3
        1/3
                   (0,a,0,0,0,0)
                                               69 Fmmm
                                                            3
   H4 +
                   (a, -a, 0)
                                               64 Cmca
   H5+
                   (a,a,0)
                                               64 Cmca
   N1-
                   (0,0,a,0,0,0)
                                               68 Ccca
                  (0,0,a,0,0,0)
                                                           2
   N4-
                                               63 Cmcm
   D2
         1/6
                  (0,0,a,0,0,0,0,0,0,0,0,0)
                                             68 Ccca
                                                           6
   D3
         1/6
                  (0,0,0,0,0,0,0,0,0,a,0,0)
                                            63 Cmcm
                                                           6
   Coupled OP.
RASDOE & TFMETH02
   Parent: 70 D2h-24, Fddd, F2/d2/d2/d, origin choice 2
   Subgroup: 15 C2h-6, C2/c, C12/c1, unique axis b, cell choice 1
   Lattice vectors:
   0 -1 0
   -1 0 0
   0 1/2 -1/2
   origin: 1/4 0 1/4
   Irrep Dir Subgroup Size
   GM1+ (a) 70 Fddd
                       1
   GM3+ (a)
             15 C2/c
   GM3+ is the primary OP.
REKYUB
   Parent: 225 Oh-5, Fm-3m, F4/m-32/m
   Subgroup: 15 C2h-6, C2/c, C12/c1, unique axis b, cell choice 1
   Lattice vectors:
   -1/2 1 -1/2
   -1/2 0 1/2
   1 0 1
   origin: -1/4 0 -1/4
   Irrep Dir
                                Subgroup
                                            Size
                                225 Fm-3m
   GM1+ (a)
                                              1
                                139 I4/mmm
   GM3+ (a,-1.732a)
                                              1
   GM4+ (a,0,-a)
                                 12 C2/m
                                              1
   GM5+(a,a,b)
                                 12 C2/m
                                              1
                                167 R-3c
   L1-
         (a,0,0,0)
                                              2
         (a,3.732a,0,0,0,0,0,0)
   L3-
                                15 C2/c
                                              2
   L3- is the primary OP.
```

MECKOU

Parent: 225 Oh-5, Fm-3m, F4/m-32/m Subgroup: 12 C2h-3, C2/m, C12/m1, unique axis b, cell choice 1 Lattice vectors: 1/2 -1/2 -1 1/2 1/2 0 1/2 -1/2 1 origin: -1/4 1/4 0

Irrep	Dir	Sub	group	Size
GM1+	(a)	225	Fm-3m	1
GM3+	(a,0)	139	I4/mmm	1
GM4+	(a,a,0)	12	C2/m	1
GM5+	(a,b,-b)	12	C2/m	1
L2-	(0,0,0,a)	166	R-3m	2
L3-	(0,0,0,0,0,0,a,a)	12	C2/m	2

L3- is the primary OP.

MECKUA

Parent: 225 Oh-5, Fm-3m, F4/m-32/m Subgroup: 14 C2h-5, P2_1/c, P12_1/c1, unique axis b, cell choice 1 Lattice vectors: 1/2 1 -1/2

```
1/2 0 1/2
   1 0 -1
   origin: -1/2 -1/4 1/4
   Irrep Dir
                                  Subgroup
                                                 Size
   GM1+(a)
                                  225 Fm-3m
                                                   1
        (a, -1.732a)
   GM3+
                                  139 I4/mmm
                                                   1
                                  12 C2/m
                                                   1
   GM4+
         (a,0,a)
   GM5+
         (a,-a,b)
                                   12 C2/m
                                                   1
         (0,a,0,0)
   L2+
                                  167 R-3c
                                                   2
   L3+
         (0,0,a,3.732a,0,0,0,0)
                                  15 C2/c
                                                   2
   L1-
         (0,0,a,0)
                                  167 R-3c
   L3-
         (0,0,0,0,a,3.732a,0,0)
                                  15 C2/c
                                                   2
                                  137 P4_2/nmc
   X2-
         (a,0,0)
                                                   2
                                  129 P4/nmm
   X3-
         (a,0,0)
                                                   2
         (a,0,0,0,0,0)
                                  59 Pmmn
   X5-
                                                   2
   Coupled OP.
TOHSUE
   Parent: 225 Oh-5, Fm-3m, F4/m-32/m
   Subgroup: 14 C2h-5, P2_1/c, P12_1/c1, unique axis b, cell choice 1
   Lattice vectors:
   -1/2 0 1/2
   1/2 0 1/2
   origin: 0 - 1/4 - 1/4
   Irrep k params Dir
                                                 Subgroup
                                                               Size
                                                 225 Fm-3m
   GM1+
                    (a)
                                                                 1
                    (a,-1.732a)
                                                 139 I4/mmm
   GM3+
                                                                 1
   GM4+
                                                 12 C2/m
                                                                 1
                    (a,0,a)
   GM5+
                    (a,-a,b)
                                                 12 C2/m
                                                                 1
   DT2
         3/4
                    (a,-a,0,0,0,0)
                                                 138 P4_2/ncm
   DT4
         3/4
                    (a,a,0,0,0,0)
                                                130 P4/ncc
   DT5
         3/4
                    (0,a,-a,0,0,0,0,0,0,0,0,0)
                                                62 Pnma
                                                                 4
   X2-
                                                 137 P4_2/nmc
                                                                 2
                    (a,0,0)
                                                 129 P4/nmm
                    (a,0,0)
                                                                 2
   X3-
   X5-
                    (a,0,0,0,0,0)
                                                 59 Pmmn
                                                                 2
   Coupled OP.
CARBTC07 & CTBROM
   Parent: 225 Oh-5, Fm-3m, F4/m-32/m
   Subgroup: 15 C2h-6, C2/c, C12/c1, unique axis b, cell choice 1
   Lattice vectors:
   -2 -1 -1
   0 1 -1
   2 - 1 - 1
   origin: -1/2 1/2 1/2
   Irrep k params Dir
                                                                             Subgroup
                                                                                           Size
                                                                             225 Fm-3m
   GM1 +
                                                                                             1
                   (a)
   GM3 +
                    (a, 1.732a)
                                                                             139 I4/mmm
                                                                                             1
   GM4+
                   (0,a,-a)
                                                                             12 C2/m
                                                                                             1
   GM5+
                                                                              12 C2/m
                    (a,b,a)
   LD2
         3/4
                    (0,a,0,0,0,-a,0,0)
                                                                             167 R-3c
                    (0,0,a,0.268a,0,0,0,0,0,0.268a,a,0,0,0,0)
   LD3
         3/4
                                                                              15 C2/c
                                                                                             4
                                                                              67 Cmma
   L1-
                    (0,a,0,a)
   L2-
                                                                                             8
                                                                              12 C2/m
                    (a,b,c,-b)
   L3-
                    (a,-3.732a,b,c,d,-3.732d,0.866b+0.500c,0.500b-0.866c)
                                                                             12 C2/m
   X1+
                                                                             123 P4/mmm
                    (a,-a,b)
                                                                             123 P4/mmm
   X2+
                    (a,a,0)
   X3+
                    (a,a,0)
                                                                             134 P4_2/nnm
   X4+
                    (a,-a,b)
                                                                             134 P4_2/nnm
                                                                                             4
   X5+
                    (a,b,-b,a,0,c)
                                                                             12 C2/m
                                                                                             4
   C1
                    (0,0,a,0,0,0,a,0,0,0,0,0,0,a,0,0,0,a,0,0,0,0)
                                                                                             8
         1/2,1/4
                                                                             12 C2/m
   C2
         1/2,1/4
                   (0,0,a,0,0,0,0,-a,b,0,0,0,0,0,-a,0,0,0,0,a,-b,0,0,0)
                                                                             15 C2/c
                                                                                            16
```

C2 is the primary OP.

```
MEZDIE01 & MEZDOK01
Parent: 229 Oh-9
```

Parent: 229 Oh-9, Im-3m, I4/m-32/m Subgroup: 2 Ci-1, P-1, P-1

Lattice vectors: 1/2 1/2 1/2 1/2 1/2

-1/2 1/2 -1/2 origin: -1/4 -1/4 1/4

 Irrep Dir
 Subgroup
 Size

 GM1+ (a)
 229 Im-3m
 1

 GM2+ (a)
 204 Im-3
 1

 GM3+ (a,b)
 71 Immm
 1

 GM4+ (a,b,c)
 2 P-1
 1

 GM5+ (a,b,c)
 2 P-1
 1

 N1- (0,0,a,0,0,0)
 68 Ccca
 2

 N2- (0,0,0,a,0,0)
 63 Cmcm
 2

 N3- (0,0,a,0,0,0)
 67 Cmma
 2

 N4- (0,0,0,a,0,0)
 63 Cmcm
 2

Coupled OP.

OHABEE

Parent: 229 Oh-9, Im-3m, I4/m-32/m

Subgroup: 2 Ci-1, P-1, P-1

Lattice vectors: 1/2 1/2 1/2 1/2 1 -1 0

1 1 -2 origin: -1 -1/2 1

Irrep	k params	Dir	Sub	group	Size
GM1+		(a)	229	Im-3m	1
GM2+		(a)	204	Im-3	1
GM3+		(a,b)	71	Immm	1
GM4+		(a,b,c)	2	P-1	1
GM5+		(a,b,c)	2	P-1	1
LD1	1/3	(a,0,0,0,-1.732a,0,0,0)	164	P-3m1	3
LD2	1/3	(a,0,0,0,0.577a,0,0,0)	147	P-3	3
LD3	1/3	(a,b,0,0,0,0,0,0,0,-0.577a-1.155b,-1.155a-0.577b,0,0,0,0,0,0)	2	P-1	3
N1-		(0,0,0,0,a,0)	68	Ccca	2
N2-		(0,0,0,0,a)	63	Cmcm	2
N3-		(0,0,0,0,a,0)	67	Cmma	2
N4-		(0,0,0,0,a)	63	Cmcm	2
C1	1/6,2/3	(a,0,0,0,0,0,0,0,0,0,0,0,0,0.577a,0,0,0,0,0,0,0,0,0,0,0)	11	P2_1/m	6
C2	1/6,2/3	(a,0,0,0,0,0,0,0,0,0,0,1,732a,0,0,0,0,0,0,0,0,0,0,0)	13	P2/c	6

Coupled OP.

Dimer Packings:

```
FOJBUB & VADRAU
   Parent: 225 Oh-5, Fm-3m, F4/m-32/m
   Subgroup: 205 Th-6, Pa-3, P2_1/a-3
   Lattice vectors:
   1 0 0
   0 1 0
   0 0 1
   origin: 0 0 0
   Irrep Dir
                       Subgroup
                                  Size
   GM1+ (a)
GM2+ (a)
                       225 Fm-3m
202 Fm-3
                                  1
                                    1
        (a,a,a,a,a,a) 205 Pa-3
   X5+
   X5+ is the primary OP.
LUFYEQ
   Parent: 141 D4h-19, I4_1/amd, I4_1/a2/m2/d, origin choice 2
   Subgroup: 88 C4h-6, I4_1/a, I4_1/a, origin choice 2
   Lattice vectors:
   1 0 0
   0 1 0
   0 0 1
   origin: 0 1/2 0
   Irrep Dir Subgroup
                           Size
   GM1+ (a) 141 I4_1/amd 1
   GM3+ (a) 88 I4_1/a
                            1
   GM3+ is the primary OP.
CARBTC
   Parent: 166 D3d-5, R-3m, R-32/m, hexangonal axes
   Subgroup: 14 C2h-5, P2_1/c, P12_1/c1, unique axis b, cell choice 1
   Lattice vectors:
   -2/3 -1/3 -1/3
   0 1 0
   2 1 0
   origin: 0 0 0
   Irrep Dir
                   Subgroup
                               Size
   GM1+ (a)
                   166 R-3m
                                  1
   GM3+ (a,0)
                   12 C2/m
                                  1
                    14 P2 1/c
                                  2
   F2+
        (0,a,0)
   F2+ is the primary OP.
```

Mixed

```
KOXKOX, RUQMEV, & SENLAY
    Parent: 223 Oh-3, Pm-3n, P4_2/m-32/n
    Subgroup: 218 Td-4, P-43n, P-43n
    Lattice vectors:
    1 0 0
    0 1 0
    0 0 1
    origin: 0 0 0

Irrep Dir Subgroup Size
    GM1+ (a) 223 Pm-3n 1
    GM2- (a) 218 P-43n 1
GM2- is the primary OP.
```