

PRAM Model

K Hari Babu (Slides adapted from Prof. Shan's)
Department of Computer Science & Information Systems

RAM Model

Why Machine Models?

- What is a machine model?
 - An abstraction that describes the operation of a machine
 - Associates a value (cost) with each machine operation
- Why do we need models?
 - Makes it easier to analyze and develop algorithms
 - Hides the machine implementation details so that general results that apply to a broad class of machines are obtainable
 - Analyzes the achievable complexity (time, space, etc.) bounds
 - Analyzes maximum parallelism
 - Conversely, models are directly related to algorithms.

RAM (Random Access Machine) Model

- Memory consists of infinite array (memory cells).
- Instructions executed sequentially, one at a time
- All instructions take unit time:
 - Load/store
 - Arithmetic
 - Logic
- Running time of an algorithm: the number of instructions executed
- Memory requirement: the number of memory cells used in the algorithm

RAM (Random Access Machine) Model

- The RAM model is the base of algorithm analysis for sequential algorithms although it is not perfect:
 - Memory is not infinite
 - Not all memory accesses take the same time
 - Not all arithmetic operations take the same time
 - Instruction pipelining is not taken into consideration
- The RAM model (with asymptotic analysis) often gives relatively realistic results

PRAM (Parallel RAM)

- An unbounded collection of processors
- Each process has an infinite number of registers
- An unbounded collection of shared memory cells
- All processors can access all memory cells in unit time (when there is no memory conflict)
- All processors execute PRAM instructions synchronously (some processors may be idle)
- Each PRAM instruction executes in a 3-phase cycle:
 - Read from a share memory cell (if needed)
 - Computation
 - Write to a share memory cell (if needed)
- PRAM is an abstract machine model
 - multiple execution units, single control and clock, local (private) memory units, and global (shared) memory.

PRAM (Parallel RAM)

- The only way processors exchange data is through the shared memory.
- Individual processor
 - Time: number of instructions executed
 - Space: number of memory cells accessed
- Parallel time complexity:
 - the number of synchronous steps in the algorithm
 - Time taken by the longest running process
- Space complexity:
 - the number of shared memory cells
- Parallelism:
 - the number of processors used

PRAM Model - variants

- Shared Memory Model:
 - Can processes running in different processors –access locations in global shared memory concurrently?
 - olf yes, is concurrent access allowed for *read* as well as for *write* operations?
 - olf yes, how are concurrent writes governed?
- Variants of PRAM are defined on the basis of answers to these questions.

PRAM Model - variants

- Variants based on concurrent operations:
- Exclusive Read Exclusive Write (EREW)
 - Shared memory locations cannot be read / written concurrently.
- Concurrent Read Exclusive Write (CREW)
 - Shared memory locations can be read but not written concurrently.
- Concurrent Read Concurrent Write (CRCW)
 - Shared memory locations can be read / written concurrently.

PRAM variants: Interpretation at software level

EREW model

- Contract between the processor and the program:
 - oprocessor does not support concurrent memory operations (read or write);
 - oprogram must devise its own mechanism for ensuring memory is accessed serially.

CREW model

- Contract between the processor and the program:
 - oprocessor supports concurrent reads;
 - oprogram must devise its own mechanism for concurrent writes to get processed serially.

PRAM Model: CRCW - variants

- Variants of CRCW based on handling of write conflicts:
 - Shared memory locations can be read / written concurrently:
 - Common: All concurrent writes must write the same value
 - Arbitrary: Concurrent writes may write different values but which of those values gets stored is arbitrary.
 - Priority: Concurrent writes may write different values and the value that gets written stored is decided by priority
 opriority is the id of the writer i.e. the processor

Relative Strengths of Models

- Model A is <u>computationally stronger</u> than model B if and only if any algorithm written in B will run unchanged in A. We can prove,
 - EREW <= CREW <= CRCW (common) <= CRCW (arbitrary) <= CRCW (Priority)
 - Weakest model Strongest Model
 - Most realisticLeast Realistic
 - oCREW PRAM can execute any EREW PRAM algorithm in the same amount of time. Concurrent read facility is not used.
 - oCRCW PRAM can execute any EREW PRAM algorithm
 - •Priority PRAM model is the strongest
 - An algorithm to solve a problem on the EREW PRAM model can have higher time complexity than an algorithm on Priority model

Priority PRAM vs EREW PRAM

- A p-processor EREW PRAM can sort a p-element array stored in global memory in Θ(log p) time
- Theorem: A p-processor Priority PRAM can be simulated by a p-processor EREW PRAM with the time complexity increased by a factor of Θ(log p)
 - Handling of concurrent write in Priority PRAM

Priority PRAM vs EREW PRAM

- A p-processor EREW PRAM can sort a p-element array stored in global memory in Θ(log p) time
- Theorem: A p-processor Priority PRAM can be simulated by a p-processor EREW PRAM with the time complexity increased by a factor of Θ(log p)
 - Proof:
 - All write operations at a time by the Priority PRAM are stored in an array T of pairs (M[j], Pi).
 - Sort T in lexicographic order
 Θ(log p) time. (parallel sorting with p processors)
 - Find the highest priority processor writing into a specific location
 ⊙Θ(1) time

PRAM: Algorithmic Model

- Time Complexity vs. Cost
 - Cost = Time Complexity * #processors
- Since a PRAM algorithm begins only with a single processor active, PRAM algorithms have two phases
- 2-phase model:
 - Activation Phase and Computation Phase
 - In the first phase sufficient number of processors are activated (spawned)
 - In the second phase these activated processors perform the computation in parallel

Activation Phase

- Exactly ceil(logp) processor steps are necessary and sufficient to change from 1 active processor to p active processors
 - Because the number of active processors can double by executing a single instruction

All logarithms are base 2 unless stated

Computation Phase

 After the necessary processes are spawned, each processor executes same segment of code in parallel

- This is essentially similar to programming on SIMD architectures:
 - also referred to as the SPMD model

PRAM: Algorithmic Model - Computation

- If all processors execute the same set of statements, how do you obtain variations?
 - e.g. different data to be processed in each processor
 - e.g. different choices to be made in each processor
- Use the processor id (rank) for data access or control:

PRAM Algorithms – Example 1

- Algorithm for <u>Adding Two Matrices [Mat-Add]</u>:
 - How many processors?
 - Consider the two algorithms below.
- Algorithm 1 [for Mat-Add]:
 // Input: Matrices A and B of size m*n
 for all Pi,j in i = 1 to m, j = 1 to n
 {C[i,j] = A[i,j] + B[i,j] }

m*n processors, O(1) time, Cost = O(m*n)

Algorithm 2 [for Mat-Add]:

```
for all Pi in i = 1 to m {
    for j = 1 to n { C[i,j] = A[i,j] + B[i,j] }}
```

m processors, O(n) time, Cost = O(m*n)

PRAM Algorithms – Example 2

- Algorithm for Vector Product [Vec-Pro]:
 - How many processors?
- Algorithm [for Vec-Pro]:
 - // Input: Vectors A and B of size n

```
for all Pi in i = 1 to n
C[i] = A[i] * B[i]
```

- // Compute sum C[i] for all i
- // How do you do this in parallel ?

PRAM Algorithms – Example 3

- Recall the second phase of the algorithm for Vector Product:
 - A list (i.e. an array) of values has to summed up in one value
- How many parallel tasks are possible?
 - In the first step given n values to be added :
 - on/2 additions can be performed in parallel
 - oresulting in n/2 values to be added
 - owhich in turn is the same as the original problem

j=0

J = 1

j=2

- SUM (EREW PRAM)
 - Precondition: List A[0..n-1] in global memory
 - Postcondition: sum A[0] in global memory
 - Global variables, A, n, and j
- Parallel reductions
 - Parallel summation is an example of divide and conquer as well as parallel reduction
 - Parallel reduction can be represented by a binary tree
 At a time two values are added
 - A group of n values can be added in CEIL(log n) steps

```
for all Pi where 0 <= i <= FLOOR(n/2)-1 {
   for j = 0 to CEIL(log(n))-1 {
      ...
}}</pre>
```


1=0

J = 1

j= 2

- How many processes are required?
 - n elements
 - Sum up two values at a timeNo of processors=FLOOR(n)
- How do we identify elements per process and per step?
 - What should be the relationship between i (rank) and j?
 - \circ A[2i]=A[2i] + A[2i + 2^j]
 - o2[^]j is the distance between self and (processor holding) other data

- Are all processors participating in each step?
 - No
 - How do we decide which process should participate?
 - i module 2^j ==0
 oj=0, {0,0}
 oj=1, {0,1}
 oj=2,{0,1}

1=0

J' = 1

j = 2

- Notice that P1 is accessing A[6] which is invalid
 - Boundary condition is2i+2ⁿj < n

```
spawn(P0, P1, ... Pk) where k=FLOOR(n/2)-1
for all Pi where 0 <= i <= FLOOR(n/2)-1 {
    for j = 0 to CEIL(log(n))-1 {
        if (i mod 2^j = 0) /* incomplete */ then
            A[2*i] = A[2*i] + A[2*i + 2^j]
    }
}</pre>
```

```
int A[]=\{3,4,5,6,7\};
//we are using FLOOR(n/2) processes
//NO of processes=5/2=2; i=0,1
//P0.P1
                 P<sub>0</sub>
                                            P1
                                                     A[2]=A[2]+A[2+2^0]
j=0
                 A[0]=a[0]+A[0+2^0]
                 A[0]=A[0]+A[1]
                                                     A[2]=A[2]+A[3]
                 A[0]=a[0]+A[0+2^1]
j=1
                                                     A[2]=A[2]+A[2+2^1]
                 A[0]=A[0]+A[2]
                                                     A[2]=A[2]+A[4]
j=2
                 A[0]=a[0]+A[0+2^2]
                                                     A[2]=A[2]+A[2+2^2]
                 A[0]=A[0]+A[4]
                                                     A[2]=A[2]+A[6]
```


- Are there any concurrent accesses (R/W) in this algorithm?
 - EREW

```
begin
spawn (P0, P1, ... Pk) where k=FLOOR(n/2)-1
for all Pi where 0 <= i <= FLOOR(n/2)-1 {
    for j = 0 to CEIL(log(n))-1 {
        if (i mod 2^j = 0) and (2*i + 2^j < n) then
            A[2*i] = A[2*i] + A[2*i + 2^j]
    }}
end</pre>
```

```
int A[]=\{3,4,5,6,7\};
//we are using FLOOR(n/2) processes
//NO of processes=5/2=2; i=0,1
//P0.P1
                  P<sub>0</sub>
                                             P1
j=0
                  A[0]=a[0]+A[0+2^0]
                                                      A[2]=A[2]+A[2+2^0]
                                                      A[2]=A[2]+A[3]
                  A[0]=A[0]+A[1]
                  A[0]=a[0]+A[0+2^1]
j=1
                  A[0]=A[0]+A[2]
j=2
                  A[0]=a[0]+A[0+2^2]
                  A[0]=A[0]+A[4]
```


- What is the time complexity?
 - Spawn routine takes CEIL(log (FLOOR(n/2)) steps
 - For loop executes
 CEIL(log n) steps
 Each iteration has constant time complexity
 - Overall time complexity is
 Θ(log n)
 Given FLOOR(n/2)
 processors

Algorithm Design – Speedup and Efficiency

- Speedup:
 - \blacksquare S = T_{seq} / T_{par} (generic)
 - S(p) = T(n,1) / T(n,p)oldeal speedup should be p.
- Example: Speedup of Summation by Reduction:
 - S(n/2) = (n/2) / log(n)
 This is less than ideal speedup!
- Efficiency (definition):
 - E(n,p) = S(p)/poldeal efficiency is 1.
- For our example:
 - E(n,n/2) = (n/2) / log(n)*(n/2) = 1/log(n)

Algorithm Design: Prefix Sum Example

- Given a set of n values a1, a2, a3, an, and an associative operator
 the prefix sums problem is to compute n quantities:
 - a₁
 - $\bullet a_1 \oplus a_2$
 - •
 - \bullet $a_1 \oplus a_2 \oplus a_3 \oplus \dots \oplus a_n$
 - Operator
- Prefix sums are also called parallel prefixes or scans
 - Have many applications for instance packing elements

- (a) Array A contains both upper and lower-case letters
- (b) Array T contains a 1 for upper, 0 for lower-case
- (c) Array T after prefix-sums
- (d) For each element of A containing upper-case letter, the corresponding element of T is the element's index in the packet array

Algorithm Design: Prefix Sum Example

- PREFIX_SUM (EREW PRAM)
 - Precondition: List A[0..n-1] in global memory
 - Postcondition: Each element A[i] contains its prefix sum
 - Global variables, A, n, and j
- Does it have concurrent accesses?
 - Yes but only reads
- What is the time complexity?
 - $\Theta(\log n)$ given n-1 processors

```
begin
spawn (P0, P1, ... Pk) where k=n-1
for all Pi where 0 <= i <= n-1 {
    for j = 0 to CEIL(log(n))-1 {
        if (i - 2^j >= 0) then
            A[i] = A[i] + A[i - 2^j]
    }}
end
```

Algorithm Design – Prefix Sum Example

- Speedup:
 - \blacksquare S = T_{seq} / T_{par} (generic)
 - S(p) = T(n,1) / T(n,p)oldeal speedup should be p.
- Example: Speedup of prefix Summation by Reduction:
 - S(n/2) = (n-1) / log(n)This is less than ideal speedup!
- Efficiency (definition):
 - E(n,p) = S(p)/poldeal efficiency is 1.
- For our prefix sum Example :
 - E(n,n-1) = (n-1) / log(n)*(n-1) = 1 / log(n)

Parallel Reduction - Template

- Template REDUCE
- Precondition: Inputs, G, in global memory
- Postcondition: Result in G[f(0)]
- Global variables: n and j, apart from G
- begin

```
spawn (P0, P1, ... Pk) where k=floor(n/2)-1
for all Pi where 0 <= i <= floor(n/2)-1 {
    for j = 0 to ceil(log(n))-1 {
        if (i mod 2<sup>j</sup> = 0) and (g(i) < n) then
            G[f(i)] = G[f(i)] BOP G[g(i)]
    }
    end    index of own</pre>
```

data

BOP is any binary operation

index of other data

Parallel Reduction - Template

- Reduction provides a template for
 - parallel execution ofoany associative binary operation
 - extended over a list of values
- Example Instances:
 - Maximum of n valuesBOP is max
 - Sum of n matricesBOP is matrix addition
 - MergeSortOBOP is merging two sorted lists

References

• Chapter 2 from M.J. Quinn, *Parallel Computing : Theory & Practice*, McGraw Hill Inc. 2nd Edition 2002

Thank You