

7Ybhf]Zi [Yi gY XY ``UVcfUhc]fY

On s'intéresse à une centrifugeuse de laboratoire présentée ci-dessous, composée d'un bâti S_0 , d'un bras S_1 et d'une éprouvette S_2 contenant deux liquides de masses volumiques différentes. Sous l'effet centrifuge dû à la rotation du bras S_1 l'éprouvette S_2 s'incline pour se mettre pratiquement dans l'axe du bras. De fait, le liquide dont la masse volumique est la plus grande est rejeté au fond de l'éprouvette. Paramétrage du système :

- R (O, x, y, z) est un repère lié à S_0 .
- S_1 est en liaison pivot d'axe (O, \mathbf{x}) avec S_0 . Le repère $R_1(O, \mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1)$ est un repère lié à S_1 , on note $\alpha = (\mathbf{y}, \mathbf{y}_1)$ l'angle mesuré autour de \mathbf{x} .
- S_2 est en liaison pivot d'axe (A, \mathbf{z}_1) avec S_1 . Le repère $R_2(A, \mathbf{x}_2, \mathbf{y}_2, \mathbf{z}_2)$ est un repère lié à S_2 , on note $\beta = (\mathbf{x}, \mathbf{x}_2)$ l'angle mesuré autour de \mathbf{z}_1 .
- On donne $OA = ay_1$ et $AG = bx_2$, où a et b sont des constantes positives exprimées en mètres.

- 1) Calculer la vitesse de S_1 dans son mouvement par rapport à S_0 en O et en A.
- 2) Calculer la vitesse de S_2 dans son mouvement par rapport à S_0 en A et en G, puis dans son mouvement par rapport à S_1 en A et en G.