ITC09 Fundamental Data Analysis in Lunar and Planetary Explorations 演習課題4

- ・Dynamic Frameで太陽-地球固定座標系を定義せよ
 - sun_earth_fixed.tfの空欄を埋めて完成させること
- ・課題2で作成したcruise.cを改造し、はやぶさの打ち上げからイトカワ到着までの軌道情報を上記の太陽-地球固定座標系で計算せよ
- ・結果をgnuplotで図示せよ

<cruise.cからの変更点>

spkpos c()関数でカーネルからのデータを読み込む際の座標系指定を書き換えた

```
...
//Convert et to UTC time string
et2utc_c ( et, "ISOC", 0, STRLEN, utc );
printf("%s\t",utc);

spkpos_c ( "MUSES-C", et, "SUN_EARTH_FIXED", "NONE", "SUN", hayabusa_pos_J2k, &lt_hayabusa);
spkpos_c ( "ITOKAWA", et, "SUN_EARTH_FIXED", "NONE", "SUN", itokawa_pos_J2k, &lt_itokawa);
spkpos_c ( "EARTH", et, "SUN_EARTH_FIXED", "NONE", "SUN", earth_pos_J2k, &lt_earth);

printf ( "%9.4f\t%9.4f\t%9.4f\t%9.4f\t%9.4f\t%9.4f\t%9.4f\t%9.4f\t%9.4f\t%9.4f\t%9.4f\t%9.4f\t%9.4f\t%9.4f\t\formaller,
hayabusa_pos_J2k[0], hayabusa_pos_J2k[1], hayabusa_pos_J2k[2],
itokawa_pos_J2k[0], earth_pos_J2k[1], earth_pos_J2k[2],
lt_hayabusa);
...
...
```

<得られた出力>

左から順にHayabusaの位置(X, Y, Z), Itokawaの位置(X, Y, Z), 地球の位置(X, Y, Z), 地球-はやぶさ間の距離

hayabusa_pos_X Y	Z itokawa	_pos_X Y	Z earth	_pos_X Y	Z hay	abusa_distance				
1003-05-09T00:00:00	151004169.6004	0.0406	0.0249	-188014589.0069	-136120969.	4672 5993808.362	8 151004169.6008	0.0000	0.0000	503.695
003-05-09T01:00:00	151020525.4322	1193.7122	5041.7235	-187977678.5951	-136201649.	6025 5993117.248	2 151005596.9580	-0.0000	0.0000	503.750
003-05-09T02:00:00	151036954.2831	2408.0155	10083.4590	-187940724.0599	-136282323.	4218 5992425.518	2 151007023.5511	0.0000	0.0000	503.805
003-05-09T03:00:00	151053456.1288	3643.0534		-187903725.4021	-136362990.	3953 5991733.169	8 151008449.3825	0.0000	0.0000	503.860
003-05-09T04:00:00	151070030.9449	4898.9286	20167.0411	-187866682.6226	-136443651.	9933 5991040.199	7 151009874.4546	0.0000	0.0000	503.915
003-05-09T05:00:00	151086678.7068	6175.7440	25208.8880	-187829595.7221	-136524306.	5860 5990346.604	9 151011298.7698	0.0000	0.0000	503.970
1003-05-09T06:00:00	151103399.3899	7473.6024	30250.7723	-187792464.7016	-136604954.	9438 5989652.382	0 151012722.3306	0.0000	0.0000	504.026
003-05-09T07:00:00	151120192.9693	8792.6066	35292.6942	-187755289.5619	-136685596.	7370 5988957.527	7 151014145.1395	0.0000	0.0000	504.082
003-05-09T08:00:00	151137059.4204	10132.8594	40334.6536	-187718070.3039	-136766232.	9360 5988262.038	6 151015567.1990	-0.0000	0.0000	504.139
003-05-09T09:00:00	151153998.7180	11494.4637	45376.6509	-187680806.9284	-136846860.	3112 5987565.911	4 151016988.5115	-0.0000	0.0000	504.195
003-05-09T10:00:00	151171010.8371	12877.5222	50418.6861	-187643499.4362	-136927483.	9331 5986869.142	5 151018409.0796	0.0000	-0.0000	504.252
003-05-09T11:00:00	151188095.7526		55460.7592	-187606147.8282	-137008098.	5722 5986171.728	5 151019828.9058	-0.0000	0.0000	504.309
003-05-09T12:00:00	151205253.4391	15708.4132	60502.8704	-187568752.1052	-137088707.	5989 5985473.665	8 151021247.9927	0.0000	0.0000	504.366
003-05-09T13:00:00	151222483.8712	17156.4513	65545.0199	-187531312.2680	-137169310.	0839 5984774.950	8 151022666.3427	-0.0000	0.0000	504.424
003-05-09T14:00:00	151239787.0234	18626.3547	70587.2077	-187493828.3175	-137249905.	7977 5984075.579	9 151024083.9585	-0.0000	0.0000	504.481
003-05-09T15:00:00	151257162.8701	20118.2264	75629.4339	-187456300.2544	-137330494.	8111 5983375.549	3 151025500.8427	-0.0000	0.0000	504.539
003-05-09T16:00:00	151274611.3857	21632.1690	80671.6986	-187418728.0797	-137411077.	9946 5982674.855	2 151026916.9978	0.0000	0.0000	504.597
003-05-09T17:00:00	151292132.5442	23168.2855	85714.0019	-187381111.7940	-137491652.	5191 5981973.493	9 151028332.4265	-0.0000	-0.0000	504.656
003-05-09T18:00:00	151309726.3197	24726.6785	90756.3439	-187343451.3982	-137572221.	3552 5981271.461	4 151029747.1314	0.0000	-0.0000	504.715
003-05-09T19:00:00	151327392.6863	26307.4508	95798.7247	-187305746.8931	-137652783.	2738 5980568.753	9 151031161.1151	0.0000	0.0000	504.774
003-05-09T20:00:00	151345131.6177	27910.7052	100841.1444	-187267998.2794	-137733338.	3457 5979865.367	4 151032574.3803	0.0000	0.0000	504.833
003-05-09T21:00:00	151362943.0877	29536.5446	105883.6030	-187230205.5580	-137813886.	5418 5979161.297	8 151033986.9297	0.0000	0.0000	504.892
2003-05-09T22:00:00	151380827.0699	31185.0715	110926.1007	-187192368.7296	-137894427.	3330 5978456.541	1 151035398.7659	0.0000	0.0000	504.952

<gnuplotによるプロット>

gnuplot> splot "cruise_sef.txt" u 2:3:4, "cruise_sef.txt" u 5:6:7, "cruise_sef.txt" u 8:9:10
gnuplot> plot "cruise_sef.txt" u 2:3, "cruise_sef.txt" u 5:6, "cruise_sef.txt" u 8:9
gnuplot>

"cruise_sef.txt" u 2:3:4 + cruise_sef.txt" u 5:6:7 × ruise_sef.txt" u 8:9:10 **

紫(u 2:3:4 - Hayabusaの軌道)

緑(u 5:6:7 - Itokawaの軌道)

青(u 8:9:10 - 地球の軌道)

- plotによる二次元プロット(Z軸を無視)

紫(u 2:3 - Hayabusaの軌道)

緑(u 5:6 - Itokawaの軌道)

青(u 8:9 - 地球の軌道)

<sun earth fixed.tfの内容>

KPL/FK

HAYABUSA Spacecraft Frames Definition Kernel

This frame kernel contains a set of frame definitions for the Hayabusa spacecraft.

Version and Date

Version 1.0 -- Apr. 22, 2012 -- Naru Hirata, Univ. of Aizu

\begindata

```
FRAME SUN EARTH FIXED = -130999
FRAME_-130999_NAME = 'SUN_EARTH_FIXED'
FRAME_-130999_CLASS = 5
FRAME_-130999_CLASS_ID = -130999
FRAME_-130999_CENTER = 10
FRAME_-130999_RELATIVE = 'J2000'
FRAME_-130999_DEF_STYLE = 'PARAMETERIZED'
FRAME -130999 FAMILY = 'TWO-VECTOR'
FRAME -130999 PRI AXIS = 'X'
FRAME_-130999_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME -130999 PRI OBSERVER = 'SUN'
FRAME_-130999_PRI_TARGET = 'EARTH'
FRAME_-130999_PRI_ABCORR = 'NONE'
                          = 'Y'
FRAME_-130999_SEC_AXIS
FRAME -130999 SEC VECTOR DEF = 'OBSERVER TARGET VELOCITY'
FRAME -130999 SEC OBSERVER = 'SUN'
FRAME_-130999_SEC_TARGET = 'EARTH'
FRAME -130999 SEC ABCORR = 'NONE'
FRAME -130999 SEC FRAME = 'J2000'
```

\begintext