

GRAPHS

Algorithms and Data Structures 2 Exercise – 2021W Stefan Grünberger, Martin Schobesberger
Dari Trendafilov, Markus Weninger
Institute of Pervasive Computing
Johannes Kepler University Linz
teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69

Altenberger Straße 69 4040 Linz, Austria jku.at

MOTIVATION

Graphs are one of the most basic data structures. Many problems can be characterized by graphs, such as:

- Electric power grid
 - Nodes: power distributors, transformer stations, etc.
 - Edges: wires
 - No defined direction → undirected graph
 - Cycles are possible
- Material flow in manufacturing companies
 - Nodes: work stations
 - Edges: band-conveyors
 - Raw materials only flow in one direction → directed graph
 - Limited capacity of band-conveyors → weighted graph
 - No cycles
- Social distance in a set of persons
 - Nodes: Humans
 - Edges: Relations

$$G = (V, E)$$

- V... Set of vertices (or nodes)
- E... Set of edges

Example:

$$\circ V = \{a, b, c, d\}$$

$$\circ$$
 E = {(a, b), (b, d), (c, d), (c, b)}

Two vertices are adjacent, if they are connected by an edge.

An edge connecting two vertices is called **incident** (to these vertices).

Degree of a vertex:

Number of vertices that are adjacent to it (which is not necessarily equal to the number of edges)

Path: Sequence of adjacent vertices

- simple: No vertex occurs more than once.
- cyclic: At least one vertex occurs more than once.

Cyclic graph:

Contains cyclic paths (otherwise: acyclic graph)

Directed edge: Connection from a to b.

- Directed graph: Contains only directed edges
- Directed, acyclic graph?

Loop:

Edge (v, v) for vertex v

Component: connected part of a graph

Connectivity

- Two vertices are called connected if there is a path (i.e., a sequence of edges) between them.
- Connected graph: Each pair of vertices in the graph is connected. This means that there is a path between every pair of vertices.
- \circ Complete graph: Each pair of vertices is adjacent to each other (number of edges= n(n-1)/2)
- Strongly connected directed graph is a complete directed graph, i.e., compared to a complete
 undirected graph each edge is replaced by a pair of edges.
- Weakly connected directed graph is a directed graph whose underlying undirected graph is connected, i.e., if replacing all directed edges with undirected edges leads to a connected graph.

Tree: Connected, undirected graph without cycles

Forest: Set of trees

Weighted graph: Contains weighted edges. (a) → (b)

Spanning tree (ST): Subgraph of graph *G*, such that:

- ST is a tree
- ST contains all vertices of G
- By removing a single edge, the ST is no longer connected.

Example:

Graphs can be represented in form of a:

- Edge list
- Adjacency matrix

Edge list

- Principle: 2 data structures (for vertices and edges)
 - Array/List for vertices (add new vertices at the end)

```
class Vertex {
  toString() {...}
}
Vertex vertices[] // in class Graph
```

index	1	2	3	4	5	6	
vertex	1	4	2	5	3	6	

Edge list

- Principle: 2 data structures (for vertices and edges)
 - Array/List for vertices (add new vertices at the end)

```
class Vertex {
  toString() {...}
}
Vertex vertices[] // in class Graph
```

index	1	2	3	4	5	6
vertex	1	4	2	5	3	6

Array/List for edges

```
class Edge {
   Vertex first, second // the edge's vertices
   int weight // edge weight
}
Edge edges[] // in class Graph
```

index	1	2	3	4	5	6
edge	1 2 2	2 3	3 4	3 5	4 5 7	5 6 2

Adjacency matrix

- **Principle**: Graph with *n* vertices is represented by an *n* x *n* matrix
 - Vertices are numbered from 1 to n.
 - Relation of the vertices are entered in the matrix.
 - True is entered in the *i*th row and *j*th column if vertices *i* and *j* are connected by an **unweighted edge**, otherwise false.
 - The adjacency matrix is symmetrical if the graph does not contain any directed edges.
 - For weighted graphs enter the edge weight (1...∞)
 - The main diagonal remains free if the graph contains no loops
 - If there is no edge, e.g., -1 can be entered.

	1	2	3	4	5	6
1	/			2		
2			5	1	4	
3		5			7	2
4	2	1				
5		4	7		//	
6			2			'

TRAVERSAL

Two ways of traversing graphs (i.e. visiting all edges):

- Breadth First Search (BFS)
- Depth First Search (DFS)

DFS/BFS can be used to check:

- Is a graph G connected?
- Number of components in *G*?
- Is G cyclic?

Principle

- Start with any vertex v:
 - Traverse v
 - Traverse (recursively) any unvisited vertex connected to v.

Implementation hint

Usage of an auxiliary array to note which vertices have already been visited.

index	1	2	3	4	5	6
vertex	1	4	2	5	3	6

start vertex 1

mark ,1' / check ,4' (has not been visited yet)

1	2	3	4	5	6
Т	f	f	f	f	f

Auxiliary array for visited vertices

index	1	2	3	4	5	6
vertex	1	4	2	5	3	6

start vertex 1

mark ,4' / check ,1,2'

1	2	3	4	5	6
Т	Т	f	f	f	f

Vertex ,1' already visited, therefore visit ,2' next

index	1	2	3	4	5	6
vertex	1	4	2	5	3	6

start vertex 1

mark ,2' / check ,3,4,5'

1	2	3	4	5	6
Т	Т	Т	f	f	f

index	1	2	3	4	5	6
vertex	1	4	2	5	3	6

start vertex 1

mark ,3' / check ,2,5,6'

1	2	3	4	5	6
Т	Т	Т	f	Т	f

start vertex 1

mark ,5' / check ,2,3' (cycle candidates: 1,2,4 | 3 is no candidate because it was the last one visited)

1	2	3	4	5	6
Т	Т	Т	Т	Т	f

index	1	2	3	4	5	6
vertex	1	4	2	5	3	6

start vertex 1

mark ,5' / check ,2,3' (cycle candidates: 1,2,4)

1	2	3	4	5	6
Т	Т	Т	Т	Т	f

index	1	2	3	4	5	6
vertex	1	4	2	5	3	6

start vertex 1

mark ,5' / check ,2,3' (cycle candidates: 1,2,4)

1	2	3	4	5	6
Т	Т	Т	Т	Т	f

Overlap between the vertex to be checked (adjacent) and cycle candidate (visited but not previous) → cyclic graph!

Vertices ,2,3' already marked, therefore go back in recursion and visit vertex ,6'.

index	1	2	3	4	5	6
vertex	1	4	2	5	3	6

mark ,6' / check ,3' (cycle candidate: 1,2,4,5)

1	2	3	4	5	6
Т	Т	Т	Т	Т	Т

Vertex ,3' already marked, therefore go back in recursion to the start.

mark ,6' / check ,3' (cycle candidate: 1,2,4,5)

1	2	3	4	5	6	Auxiliary array filled completely
Т	Т	Т	Т	Т	Т	→ graph connected!

Is graph G connected (method boolean isConnected())?

Does graph G contain cycles (method boolean isCyclic())?

- Start with vertex v Mark v as traversed
 (Set value in auxiliary array at index of v to true. If value was already true, then there is a cycle → do not traverse this vertex again).
- 2. Determine the set of all vertices **AD(v)** that are adjacent to **v** (Iterate over edge list and determine indices of adjacent vertices).
- 3. For each of these vertices *n* start with 1., where *n* instead of *v* is used. (Can be implemented recursively).
- 4. If the auxiliary array is completely filled at the end, the graph is connected.
- 5. If, during the traversal of a vertex, the value of the auxiliary array at the index of the vertex is already true, there is a cycle in the graph.

 (Cycles can only occur with a minimum of 3 vertices).

What is the number of components in the graph (method int getNumOfComponents())?

Vertex-Array:

index	1	2	3	4	5	6
vertex	1	4	2	5	3	6

 DFS is called once (starting with vertex 1) and return the following array (= 1. component)

index	1	2	3	4	5	6
visited	Т	Т	Т	f	f	f

Then call DFS until all fields are marked (continuing with the next unmarked field, here index 4)

- DFS ends for the 2. time (= 2. component)
- DFS ends for the 3. time (= 3. component)

index	1	2	3	4	5	6
visited	Т	Т	Т	Т	f	f

index	1	2	3	4	5	6
visited	Т	Т	Т	Т	Т	Т

GRAPHS

Algorithms and Data Structures 2 Exercise – 2021W Stefan Grünberger, Martin Schobesberger
Dari Trendafilov, Markus Weninger
Institute of Pervasive Computing
Johannes Kepler University Linz
teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69

Altenberger Straße 69 4040 Linz, Austria jku.at