Intro to Algebra 2 W1-2

fat

February 23, 2024

Corollary 1. Assume that R is a UFD and F is its field of fractions. Let $f(x) \in R[x]$ be a polynomial s.t. GCD (coefficients of f) = 1. Then f(x) is irreducible in $R[x] \Leftrightarrow f(x)$ is irreducible in F[x].

Proof.

- (\Rightarrow) Gauss lemma.
- (\Leftarrow) (Note that this direction is not trivial. Think of R as \mathbb{Z} and F as \mathbb{Q} . Take f(x) = 2.) Assume that f(x) is irreducible in F[x], but reducible in R[x]. Say f(x) = a(x)b(x) in R[x]. Since f(x) is irreducible in F[x]. We have deg(a(x)) = 0 or deg(b(x)) = 0. Suppose deg(a(x)) = 0, we have a(x) = c for some nonunit $c \in R$. \Rightarrow every coefficient of f(x) is a multiple of c. This contradicts to the assumption that GCD(coefficient of f) = 1. $\Rightarrow f(x)$ is irreducible in R[x].

Theorem 1. Let R be an ID, then R[x] is a UFD $\Leftrightarrow R$ is a UFD.

Proof.

- (\Rightarrow) has been explained.
- (\Leftarrow) We first prove that every nonzero, nonunit polynomial $f(x) \in R[x]$ can be factorized into a product of irreducibles in R[x]. Let F be the field of fractions. Let $f(x) = P_1(x) \dots P_k(x)$ be the factorization of f(x) into irreducibles in F[x]. By Gauss's lemma, $\exists r_1, \dots, r_k \in F^{\times}$ s.t. the polynomials

$$p_i(x) \equiv r_i P_i(x)$$

are in R[x] and $f(x) = p_1(x) \dots p_k(x)$. Let $d_j = GCD$ (coefficients of $p_j(x)$) and $p'_j(x) = \frac{1}{d_j} p_j(x)$. Then GCD (coefficients of $p'_j(x)$) = 1. Now $p'_j(x)$ is a constant multiple of $p_j(x)$, which is irreducible in F[x]. Thus, $p'_j(x)$ is an irreducible polynomial in F[x]. By Corollary 1, $p'_j(x)$ is an irreducible polynomial in R[x]. Let $d = d_1 \dots d_k$ and $d = q_1 \dots q_n$ be the factorization of d into irreducibles in R. Note that q_j are irreducibles in R[x] (since $R[x]^{\times} = R^{\times}$).

$$\Rightarrow f(x) = p_1(x) \dots p_k(x) = (d_1 p'_1(x)) \dots (d_k p'_k(x)) = q_1 \dots q_n p'_1(x) \dots p'_k(x)$$

is a factorization of f(x) into irreducibles in R[x].

Uniqueness of the factorization follows from the uniqueness of factorization in R and F[x].

Corollary 2. If R is a UFD, then $R[x_1, \ldots, x_n]$ is a UFD for any n.

9.4 Irreducibility Criteria

Proposition 1. Let F be a field and $f(x) \in F[x]$. Then f(x) has a factor of degree $1 \Leftrightarrow f(x)$ has a root in F. In fact, for $a \in F$, $(x - a)|f(x) \Leftrightarrow f(a) = 0$.

Proposition 2. A polynomial of degree 2 or 3 is reducible in $F[x] \Leftrightarrow f(x)$ has a root in F.

Proposition 3. Let $f(x) = a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$. If $r/s \in \mathbb{Q}$, (r,s) = 1, is a root of f(x), then $s|a_n, r|a_0$.

Proof.

We have f(x) = (sx - r)g(x) for some $g(x) \in \mathbb{Q}[x]$. By Gauss's lemma, $\exists c, d \in \mathbb{Q}^{\times}$ with cd = 1, s.t. $c(sx - r), dg(x) \in \mathbb{Z}[x]$. Now since (s, r) = 1, c must be an integer. Thus $c, d = \pm 1 \Rightarrow g(x) \in \mathbb{Z}[x]$. Comparing the leading coefficients in f(x) = (sx - r)g(x), we see $s|a_n$. Comparing the constant term, we see that $r|a_0$.

Proposition 4. Let R be an ID, $I \subseteq R$, f a monic polynomial in R[x]. If $f \mod I$ (the image of f under the reduction homomorphism $R[x] \to (R/I)[x]$) cannot be factored into 2 polynomials of smaller degree in (R/I)[x], then f is irreducible in R[x].

Proof.

Assume $f = gh \in R[x]$. W.L.O.G. we may assume g, h are also monic. Consider the reduction modulo I. We have $\bar{f} = \bar{g}\bar{h}$. By assumption, $deg(\bar{g}) = 0$ or $deg(\bar{h}) = 0$. $\Rightarrow g = 1$ or h = 1.

Example 1.

$$f(x) = x^4 + 8x^3 + 12x^2 + 7x + 9 \in \mathbb{Z}[x]$$

From expericence, one could consider the reduction modulo 2. We can check that

$$x^4 + 8x^3 + 12x^2 + 7x + 9 \equiv x^4 + x + 1$$

is irreducible in $(\mathbb{Z}/2\mathbb{Z})[x]$. By Proposition 4, $x^4 + 8x^3 + 12x^2 + 7x + 9$ is irreducible in $\mathbb{Z}[x]$.

Example 2.

$$f(x,y) = x^2 + (3y+1)x + (y^2 - 2y + 1) \in \mathbb{Q}[x,y] (= \mathbb{Q}[y][x])$$

Consider $f \mod (y)$. We have $f(x,y) \equiv x^2 + x + 1$. Note that $\mathbb{Q}[x,y]/(y) \simeq \mathbb{Q}[x]$. Now $x^2 + x + 1$ is irreducible in $\mathbb{Q}[x] \Rightarrow f(x)$ is irreducible in $\mathbb{Q}[x]$.

Proposition 5 (Eisenstein Criterion). Let P be a prime ideal of an ID R. Let $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$. Assume that $a_j \in P$ for $j = 0, \ldots, n-1$ and $a_0 \notin P^2$, then f is irreducible in R[x].

Proof.

Consider the reduction modulo P. We have

$$f(x) \equiv x^n \mod (P) = P[x]$$

Thus if f(x) = g(x)h(x), then

$$g(x)h(x) \equiv x^n \mod P$$

i.e. $\bar{g}\bar{h}=x^n$ in (R/P)[x]). Now P is a prime ideal and R is an ID. Over the ID R/P the only possible factorizations of x^n are $x^nx^k \cdot x^{n-k}$ for some $k, 0 \le k \le n$. Therefore

$$\begin{cases} \bar{g}(x) = x^k \\ \bar{h}(x) = x^{n-k} \end{cases} \text{ for some } k, 1 \le k \le n - k - 1$$

$$\Rightarrow \begin{cases} \bar{g}(x) = x^k + b_k x^{k-1} + \dots + b_0 \\ \bar{h}(x) = x^{n-k} + c^{n-k-1} x^{n-k-1} + \dots + c_0 \end{cases}$$
 for some $b_j, c_j \in P$

 $\Rightarrow a_0 = b_0 c_0 \in P^2$ a contradiction. Therefore f(x) cannot be factorized into a product 2 polynomials of smaller degree. \Rightarrow The onlyl factorization of f(x) in R[x] is of the form f(x) = (a constant $) \times ($ a polynomial). But since f is monic, the constant must be a unit. i.e., if we write f as a product of 2 polynomials, then one of the polynomials is a unit. $\Rightarrow f$ is irreducible in R[x].

Example 3. 1. $x^4 + 8x^3 + 12x^2 + 4x + 2$ is irreducible in $\mathbb{Z}[x]$.

2. Let P be a prime. Let

$$f(x) = \prod_{k=1}^{p-1} (x - e^{2\pi i k/p}) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + 1$$

This is called the pth cyclotonic polynomial.

Claim. f(x) is irreducible in $\mathbb{Z}[x]$.

Proof.

Note that f(x) is irreducible in $\mathbb{Z}[x] \Leftrightarrow g(x) = f(x+1)$ is irreducible in $\mathbb{Z}[x]$. Now

$$g(x) = \frac{(x+1)^p - 1}{(x+1) - 1} = \frac{1}{x}(x^p + \binom{p}{1}x^{p-1} + \dots + \binom{p}{p-1}x + 1 - 1)$$

$$=x^{p-1}+\binom{p}{1}x^{p-2}+\ldots+\binom{p}{p-2}x+\binom{p}{p-1}$$

Now $p|\binom{p}{j}$ for $j=1,\ldots,p-1$. By the Eisenstein criterion, g(x) is irreducible in $\mathbb{Z}[x] \Rightarrow f(x)$ is irreducible in $\mathbb{Z}[x]$.

Remark 1. It's possible that a polynomial in $\mathbb{Z}[x]$ is reducible modulo p for any prime p, but the polynomial is irreducible in $\mathbb{Z}[x]$. For example, let $f(x) = x^4 + 1$. We have

$$x^4 + 1 \equiv (x+1)^4 \mod 2$$

for $p \equiv \mod 8$, then since $(\mathbb{Z}/p\mathbb{Z})$ is cyclic, $\exists a \in \mathbb{Z} \text{ s.t. } a^4 \equiv -1 \mod p. \Rightarrow (x-a)|(x^4+1)$ in $(\mathbb{Z}/p\mathbb{Z})[x]$. Likewise, if $p \equiv 5 \mod 8$, $\exists a \in \mathbb{Z} \text{ s.t. } a^2 \equiv -1 \mod p. \Rightarrow (x^4+1) \equiv (x^2-a)(x^2+a) \mod p$. For $p \equiv 3 \mod 8$, we can show that $\exists a \text{ s.t. } a^2+2 \equiv 0 \mod p$. For $p \equiv 7 \mod 8$, $\exists a \text{ s.t. } a^{12} \equiv 2 \mod p. \Rightarrow x^4+1 \equiv (x^2-ax+1)(x^2+ax+1) \mod p$.