集合論 (第6回)

6. 合成写像と逆写像

今回は合成写像と逆写像の定義や性質について解説する. 下記の文献も参考のこと.

- 「集合と位相」(内田伏一 著) の p.17, p.24-p.25.
- 「集合 · 位相入門」(松坂和夫 著) の p.34-p.36.

定義 6-1 (合成写像)

$$(g \circ f)(x) = g(f(x)) \quad (x \in X).$$

この写像を f と g の**合成写像**と言う.

写像 $f: \mathbb{R} \to \mathbb{R}$ $(x \mapsto x+1)$ と $g: \mathbb{R} \to \mathbb{R}$ $(x \mapsto x^2)$ を考える. このとき、

$$(g \circ f)(x) = g(f(x)) = g(x+1) = (x+1)^2 = x^2 + 2x + 1,$$

 $(f \circ g)(x) = f(g(x)) = f(x^2) = x^2 + 1.$

問題 6-1 $I = (0, \infty)$ とし, I から I への写像を次で定義する.

$$f:I\to I\ \left(x\mapsto x+1\right),\quad g:I\to I\ \left(x\mapsto \frac{1}{x}\right),\quad h:I\to I\ \left(x\mapsto \frac{x}{x+1}\right),$$

このとき, $g \circ f$, $h \circ (g \circ f)$, $(h \circ g) \circ f$ をそれぞれ計算せよ.

copyright © 大学数学の授業ノート

定理 6-1 (結合法則)

写像 $f: X \to Y, g: Y \to Z, h: Z \to W$ に対して、次が成り立つ.

$$(h \circ g) \circ f = h \circ (g \circ f).$$
 (eq1)

従って f,g,h の合成は、どちらを先に合成しても結果は同じなので $h \circ g \circ f$ とも表す.

(証明)

 $x \in X \$ とする.

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x))),$$

 $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x))).$

従って $(h \circ g) \circ f = h \circ (g \circ f)$.

問題 6-2 $X = \{1, 2, 3\}$ に対して、写像 $f: X \to X$ を次で定める.

$$f(1) = 3$$
, $f(2) = 1$, $f(3) = 2$.

自然数n に対して

とするとき, X の元の f^n による行き先を求めよ.

定理 6-2

写像 $f: X \to Y, g: Y \to Z$ を考える.

- (1) f,g が単射のとき, $g \circ f$ も単射であることを示せ.
- (2) f,g が全射のとき, $g \circ f$ も全射であることを示せ.
- (3) $g \circ f$ が単射のとき, f も単射であることを示せ.
- (4) $g \circ f$ が全射のとき, g も全射であることを示せ.

(解答)

- (1), (4) のみ証明し, (2), (3) は問題とする.
- (1) $x,y \in X$ とし, $(g \circ f)(x) = (g \circ f)(y)$ と仮定する. g(f(x)) = g(f(y)) であり, g が単射だから f(x) = f(y). また f も単射より x = y. よって $g \circ f$ は単射である.
- (4) $z \in Z$ とする. $g \circ f$ は全射より g(f(x)) = z となる $x \in X$ がある. y = f(x) と置くと g(y) = z. 従って g は全射.

問題 6-3 定理 6-2 の (2), (3) を示せ.

定義 6-2 (逆写像)

全単射 $f:X\to Y$ を考える。すべての $y\in Y$ に対して,f(x)=y を満たす $x\in X$ がただ一つだけ存在する。そこで, $y\in Y$ に対して,f(x)=y となる $x\in X$ を対応させる写像 $f^{-1}:Y\to X$ を f の**逆写像**という.定義より

$$f^{-1} \circ f = \mathrm{Id}_X, \quad f \circ f^{-1} = \mathrm{Id}_Y$$

が成り立つ.

集合 $X = \{0,1,2\}$ と $Y = \{a,b,c\}$ に対して、写像 $f: X \to Y$ を次で定義する.

$$f(0) = c$$
, $f(1) = a$, $f(2) = b$.

このとき, 逆写像 $f^{-1}: Y \to X$ は次のようになる.

$$f^{-1}(a) = 1$$
, $f^{-1}(b) = 2$, $f^{-1}(c) = 0$.

もう一つ例を挙げる. $f: \mathbb{R} \to \mathbb{R} (x \mapsto 2x + 3)$ に対して,

$$y = f(x) = 2x + 3 \iff x = \frac{y - 3}{2}.$$

よって $f^{-1}(y) = \frac{y-3}{2}$.

問題 6-4

- (1) $f: \mathbb{R} \to \mathbb{R}$ $(x \mapsto -2x+1)$ に対して, f^{-1} を求めよ.
- (2) $f: (-\infty,0) \to (0,\infty)$ $(x \to x^2 2x)$ に対して、 f^{-1} を求めよ.

定理 6-3

写像 $f: X \to Y$ と $g: Y \to X$ を考える. $g \circ f = \mathrm{Id}_X$, $f \circ g = \mathrm{Id}_Y$ のとき, f は全単射であり, $g = f^{-1}$ である.

(証明)

 $g \circ f = \mathrm{Id}_X$ は単射より、定理 6-2 (3) から f も単射. $f \circ g = \mathrm{Id}_Y$ は全射より、定理 6-2 (4) から f も全射. 従って f は全単射.

$$g = g \circ \mathrm{Id}_Y = g \circ (f \circ f^{-1}) = (g \circ f) \circ f^{-1} = \mathrm{Id}_X \circ f^{-1} = f^{-1}.$$

問題 6-5 写像 $f:X\to Y$ と $g:Y\to X$ を考える. $g\circ f=\mathrm{Id}_X$ であるが, f が全単射ではない例 を見つけよ.

例題 6-1

写像 $f: \mathbb{R}^2 \to \mathbb{R}^2 \ ((x,y) \mapsto (x+y,x-y))$ と $g: \mathbb{R}^2 \to \mathbb{R}^2 \ \left((u,v) \mapsto \left(\frac{u+v}{2},\frac{u-v}{2}\right)\right)$ を考える. このとき, $g=f^{-1}$ を示せ.

(解答)

定理 6-3 より, $g \circ f = \operatorname{Id}_{\mathbb{R}^2}$ および $f \circ g = \operatorname{Id}_{\mathbb{R}^2}$ を確認すればよい. 実際,

$$(g \circ f)(x,y) = g(x+y,x-y) = \left(\frac{(x+y)+(x-y)}{2}, \frac{(x+y)-(x-y)}{2}\right) = (x,y),$$

$$(f \circ g)(u,v) = f\left(\frac{u+v}{2}, \frac{u-v}{2}\right) = \left(\frac{u+v}{2} + \frac{u-v}{2}, \frac{u+v}{2} - \frac{u-v}{2}\right) = (u,v).$$

よって $g \circ f = \mathrm{Id}_{\mathbb{R}^2}$, $f \circ g = \mathrm{Id}_{\mathbb{R}^2}$ が成り立つ.

問題 6-6 集合 $H = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, \ x > 0\}$ と写像

$$f: \mathbb{R} \to H \quad \left(t \mapsto \left(\frac{1}{\sqrt{t^2 + 1}}, \frac{t}{\sqrt{t^2 + 1}}\right)\right), \quad g: H \to \mathbb{R}\left((x, y) \mapsto \frac{y}{x}\right)$$

を考える. このとき, $g = f^{-1}$ を示せ.

4