

Finding Most Popular Indoor Semantic Locations Using Uncertain Mobility Data

[†]Huan Li, [‡]Hua Lu, [†]Lidan Shou, [†]Gang Chen, and [†]Ke Chen [†]College of Computer Science and Technology, Zhejiang University, China *Department of Computer Science, Aalborg University, Denmark

1. Introduction

- Indoor movements are increasingly datafied due to the rapid growth of indoor LBS infrastructures. Proper analysis can reveal insights that are otherwise difficult to obtain.
 - Indoor flow analysis. the number of people passing by particular indoor regions during a past time interval. Application include exhibition planning, location-based advertising, etc.
- The problem of finding the top-k popular indoor semantic locations with the highest flows during a past time interval.
 - The mobility information of an object at a time *t* is captured by a set of *probabilistic samples* in the format of (loc, prob).
 - **I The first challenge** is the difficulty in obtaining *reliable* flow values due to the inherent uncertainty in multiple samples reported at discrete timestamps. The data uncertainty together with complex indoor topology entails an appropriate formulation of indoor flows.
 - I The second challenge comes from the heavy computational workloads on the samples for large numbers of indoor objects.
- A complete set of novel techniques for indoor flow analysis.
 - We formulate the definition of *indoor flows* by taking into account both data uncertainty and indoor topology.
 - We devise data structures to facilitate accessing the data relevant to flow computing, and a data reduction method to significantly reduce the intermediate data to be processed.
 - We design *search algorithms* for finding indoor top-*k* popular locations.

2. Problem Formulation

- Semantic locations (S-locations) refer to regions relevant to applications, e.g., a shop.
- *Positioning locations* (P-locations) refer to points returned by indoor positioning system.
 - I Partitioning P-locations partition space into cells in that objects cannot move from one to another without passing these P-locations. I Presence P-locations only imply the presence of a positioned object.
- If A record (o, X, t) is reported to an $Indoor\ Uncertain\ Positioning\ Table$ non-periodically, meaning o's location at t is described by a sample set X. Each sample e(loc, prob) in X means that o is at a P-location loc with probability prob.
- I *Uncertainty-aware object presence* in a S-location q during time interval $[t_s, t_e]$.
- **I** For each object o's sample sets sequence $(X_1, ..., X_n)$ → Obtain possible paths in the Cartesian product $\phi_i = (loc_1^i, ..., loc_n^i) \rightarrow Compute path probability as <math>pr_i = \prod_{1 \le j \le n} prob_i^j$ where $prob_i^j$ is the probability associated with P-location loc_i^j in X_j .
- If The pass probability that ϕ passes q is 1 minus the probability that none of consecutive P-location pairs in ϕ passes $q \rightarrow o$'s presence in q is $\Phi_{t_s,t_e}(q,o) = \frac{\sum_{\phi_i \in P} (pr_{\phi_i \sim q} \cdot pr_i)}{\nabla - pr_i}$.
- Indoor Flow. Given an S-location q, a set O of indoor moving objects, and a time interval $[t_s, t_e]$, the indoor flow for q is $\Theta_{t_s, t_e, O}(q) = \sum_{o \in O} \Phi_{t_s, t_e}(q, o)$.
- I Top-k Popular Location Query, TkPLQ. Given a set Q of indoor semantic locations, and a time interval $[t_s, t_e]$, an indoor top-k popular location query returns k S-locations in a k-subset $Q_k \subseteq Q$ such that $\forall q \in Q_k, \forall q' \in Q \setminus Q_k, \Theta_{t_s,t_e,O}(q) \ge \Theta_{t_s,t_e,O}(q')$.

A running example

oid , X , t	oid , X , t
o_1 , $\{(p_4, 1.0)\}$, t_1	o_1 , $\{(p_8, 1.0)\}$, t_4
o_2 , { $(p_1, 0.5), (p_2, 0.5)$ }, t_1	o_2 , { $(p_5, 0.3)$, $(p_6, 0.6)$, $(p_8, 0.1)$ }, t_5
o_3 , { $(p_2, 0.6)$, $(p_3, 0.4)$ }, t_2	o_3 , { $(p_2, 0.4)$, $(p_3, 0.6)$ }, t_5
o_1 , $\{(p_9, 1.0)\}$, t_3	o_2 , { $(p_5, 0.2)$, $(p_6, 0.3)$, $(p_8, 0.5)$ }, t_6
o_2 , $\{(p_2, 0.7), (p_4, 0.3)\}$, t_3	o_3 , $\{(p_3, 1.0)\}$, t_8

- An object o_3 has 4 possible paths during $[t_1, t_8]$, i.e., $\phi_1 = (p_2, p_2, p_3)$, $\phi_2 = (p_2, p_3, p_3)$, $\phi_3 = (p_2, p_3, p_3)$ (p_3, p_2, p_3) and $\phi_4 = (p_3, p_3, p_3)$. In particular, ϕ_1 's probability is $0.6 \times 0.4 \times 1.0 = 0.24$.
- The possible path ϕ_1 contains sequential P-location pairs (p_2, p_2) and (p_2, p_3) . For (p_2, p_2) , we find two direct connections, and have $pr_{p_2,p_2 \sim r_6} = pr_{p_2,p_2 \sim r_4} = 1/2$. Likewise, for pair (p_2,p_3) , $pr_{p_2,p_3 \sim r_4}$ = 1 and $pr_{p_2,p_3 \sim r_6} = 0$. The pass probability $pr_{\phi_1 \sim r_6} = 1 - (1 - 1/2) \cdot (1 - 0) = 0.5$.
- The presence $\Phi_{t_1,t_8}(r_6,o_3) = 0.5 \cdot 0.24 = 0.12$, and $\Phi_{t_1,t_8}(r_1,o_3) = 0$.
- S-location r_6 's indoor flow is $\Theta_{t_1,t_8,O}(r_6) = \sum_{1 \le i \le 3} \Phi_{t_1,t_8}(r_6,o_i) = 1+0.85+0.12 = 1.97$, r_1 's is $\Theta_{t_1,t_8,O}(r_1)$ $=\sum_{1\leq i\leq 3}\Phi_{t_1,t_8}(r_1,o_i)=0.5+0+0=0.5$. A T1PLQ during $[t_1,t_8]$ returns room r_6 .

3. Algorithms for TkPLQ

3.1 Data structures and data reduction method.

- To bridge the gap between P-locations and S-locations, we devise an indoor space **location** graph. A cell $c_1 \rightarrow$ rooms r_1 and $r_2 \rightarrow$ partitioning P-locations p_4 and p_9 .
- I We further build an $indoor\ location\ matrix\ M_{IL}$ for quickly searching relevant cells (Slocations) of two sequential P-locations in a path. $M_{IL}[p_4, p_9] = \{c_1, c_6\}$ and $M_{IL}[p_8, p_8] = c_6$.

- For sequence $(X_1, ..., X_n)$, the *maximum* number of possible paths is as large as $\prod_{1 \le i \le n} |X_i|$.
- I For each set X_i , we use an intra-merge operation to combine the samples from the P-locations that are logically equivalent in constructing M_{IL} (e.g., p_6 and p_8).
- I We use an *inter-merge* operation to compress the sequence length $|\mathcal{X}|$ by merging the consecutive sets that contain the identical P-locations.

, 60	St. 15. [50]	<i>,</i> -									
X_1	X_2	X_3	X_4	X_1	X_2	X_3	X_4	X_1	X_2	X_3	
(P ₁) 0.5 (P ₂) 0.5	p ₂ 0.7 p ₄ 0.3 intra-merg	0.3 0.3 0.6 0.6 0.6 0.1	P ₅ 0.2 P ₆ 0.3 P ₈ 0.5	(P ₁) (0.5) (P ₂) (0.5)	(P ₂) (0.7) (P ₄) (0.3)	p_{5} 0.3 p_{6} 0.7 inter-	p_5 0.2 p_6 0.8 merge	(p ₁) 0.5 (p ₂) 0.5	0.7 0.7 0.3	0.25 0.75	
t_1	t_3	t_5	t_6	t_1	t_3	t_5	t_6	t_{I}	t_3	<i>t</i> ₅ - <i>t</i> ₆	

4. Experimental Results

- We compare Naive, Nested-Loop and Best-First to several alternatives.
- SC (simple counting) method picks the sample with the highest probability and adds 1 to all its containing S-locations' flow values.
- \blacksquare SC- ρ differs from SC only in that it picks all the samples whose probability exceeds a threshold ρ .
- MC (Monte Carlo) method executes a certain number of simulations, in each of which all the positioning records are sampled to be certain. As a result, the top-k locations are ranked based on their average flows in all the simulations.

4.1 Performance comparisons using a real-world dataset.

- Efficiency metrics Average running time and Pruning ratio; Effectiveness metrics Recall and Kendall coefficient τ w.r.t the ground truth.
- \blacksquare SC and SC- ρ incur short time costs but yield very poor effectiveness; MC that uses simulations incurs extremely long running time.
- By applying uncertainty-aware flow computing, BF and NL's effectiveness measures are significantly higher; BF achieves a good balance between efficiency and effectiveness.

Methods	nutifiling	Fruillig	Nendali	necali			
MEHIOUS	time (sec.)	ratio (%)	coefficient	(%)			
SC	0.6	-	0.007	62.2			
SC- $ ho$ ($ ho=$ 0.25)	1.1	-	0.382	75.6			
MC, 900 rounds	1.7×10^4	-	0.712	86.7			
BF	4.4	59.4	0.859	93.3			
NL	9.5	19.2	same a	same as above.			
Naive	59.1	19.2	same a	same as above.			

Running Pruning Kendall

Recall

3.2 Flow computing and TkPLQ search.

- Flow computing for individual an S-location reterm fetch and go through all relevant positioning records within $[t_s, t_e]$ that are indexed by an 1DR-tree.
- If The matrix M_{IL} is checked to determine if the current path to be generated is valid, and only the valid ones will be involved in subsequent path generation.
- I Naive algorithm sorts top-k results after blindly computing each query location's flow.
- I Nested-Loop caches each encountered object's presences to avoid re-computation.
- Best-First gives priority to those promising query locations with greater flow overestimates. To quickly locate the relevant object samples, we carry out a join of a query location R-tree and an object COUNT-aggregate R-tree.

4.2 Studies on data uncertainty using a synthetic dataset.

- A larger T (maximum positioning period) makes location updates less frequent, which causes data uncertainty to increase and query result quality to degrade. BF still outperforms the best; its τ keeps above 0.77 in all tests.
 - I When indoor positioning error μ increases, SC and SC- ρ 's τ decrease clearly as they are sensitive to data errors. Still, BF outperforms MC as BF considers valid possible paths thoroughly on uncertain positioning data.

