Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_mate-info* Barem de evaluare și de notare

Varianta 4

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$S_3 = \frac{(a_1 + a_3) \cdot 3}{2} = \frac{(2+8) \cdot 3}{2} =$	3 p
	=15	2p
2.	$x_V = 2$	2p
	$y_V = -2$	3p
3.	x = 4 - x	3p
	Rezultă $x = 2$, care verifică ecuația	2p
4.	Numerele de două cifre care au produsul cifrelor egal cu 4 sunt 14, 22 și 41 ⇒ 3 cazuri favorabile Numărul de numere naturale de două cifre este 90 ⇒ 90 de cazuri posibile	2p 1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{30}$	2p
5.	$\overrightarrow{AB} = 3\overrightarrow{i} \text{si} \overrightarrow{AM} = (x_M - 1)\overrightarrow{i} + (y_M - 1)\overrightarrow{j}$ $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} \Rightarrow \begin{cases} x_M = 2\\ y_M = 1 \end{cases}$	2p
	3 $y_M = 1$	3 p
6.	$4\sin\frac{\pi}{12}\cos\frac{\pi}{12} = 2\sin\frac{\pi}{6} =$	3p
	$=2\cdot\frac{1}{2}=1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(-1) = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 2 \end{pmatrix} \Rightarrow \det(A(-1)) = \begin{vmatrix} 2 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 2 \end{vmatrix} =$	2p
	=0+0+0-0-8-8=-16	3 p
b)	$A(0) \cdot A(1) = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} =$	2p
	$= \begin{pmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 &$	3р
c)	$\det(A(m)) = \begin{vmatrix} 2 & 2 & m+1 \\ 2 & m+1 & 2 \\ m+1 & 2 & 2 \end{vmatrix} = -(m+5)(m-1)^2$	3p
	$\det(A(m)) = 0 \Leftrightarrow m = -5 \text{ sau } m = 1$	2p

2.a)	xy-2x-2y+6=x(y-2)-2(y-2)+2=	3 p
	=(x-2)(y-2)+2, pentru orice numere reale x şi y	2 p
b)	$x \circ 2 = (x-2)(2-2) + 2 = 2$, pentru orice număr real x	2p
	$2 \circ x = (2-2)(x-2) + 2 = 2 \Rightarrow x \circ 2 = 2 \circ x = 2$, pentru orice număr real x	3 p
c)	$1 \circ 2 \circ 3 \circ \circ 2012 \circ 2013 = (1 \circ 2) \circ 3 \circ \circ 2012 \circ 2013 =$	3p
	$= 2 \circ (3 \circ \circ 2012 \circ 2013) = 2$	2 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{(x^3 - 1)'(x^2 + 1) - (x^3 - 1)(x^2 + 1)'}{(x^2 + 1)^2} =$	2p
	$= \frac{3x^2(x^2+1)-2x(x^3-1)}{(x^2+1)^2} = \frac{x^4+3x^2+2x}{(x^2+1)^2}, \text{ pentru orice } x \in \mathbb{R}$	3p
b)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0) =$	3p
c)	$\lim_{x \to +\infty} \frac{x+1}{x-1} = 1$	2p 1p
	$\lim_{x \to +\infty} \left(\frac{x+1}{x-1} \right)^{f(x)} = \lim_{x \to +\infty} \left(\left(1 + \frac{2}{x-1} \right)^{\frac{x-1}{2}} \right)^{\frac{2}{x-1}} \frac{x^3 - 1}{x^2 + 1} =$	2p
	$=e^2$	2p
2.a)	$I_1 = \int_0^1 x e^{-x} dx = -x e^{-x} \Big _0^1 + \int_0^1 e^{-x} dx =$	3p
	$= -\frac{1}{e} - e^{-x} \Big _{0}^{1} = \frac{e - 2}{e}$	2 p
b)	$I_{n+1} = \int_{0}^{1} x^{n+1} e^{-x} dx = -x^{n+1} e^{-x} \Big _{0}^{1} + (n+1) \int_{0}^{1} x^{n} e^{-x} dx =$	3р
	$= -\frac{1}{e} + (n+1)I_n$	2p
c)	Pentru orice $n \in \mathbb{N}^*$ şi pentru orice $x \in [0,1]$ avem $0 < e^{-x} \le 1 \Rightarrow 0 \le x^n e^{-x} \le x^n$	2p
	$0 \le \int_{0}^{1} x^{n} e^{-x} dx \le \int_{0}^{1} x^{n} dx \implies 0 \le I_{n} \le \frac{1}{n+1}$	3р