#linear_algebra

THEOREM 15

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ such that

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [\mathbf{x}]_{\mathcal{B}} \tag{4}$$

The columns of $\mathcal{C} \subset \mathcal{B}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$${}_{\mathcal{C}\leftarrow\mathcal{B}}^{P} = \begin{bmatrix} [\mathbf{b}_{1}]_{\mathcal{C}} & [\mathbf{b}_{2}]_{\mathcal{C}} & \cdots & [\mathbf{b}_{n}]_{\mathcal{C}} \end{bmatrix}$$
 (5)

The matrix $_{\mathcal{C}} \stackrel{P}{\leftarrow}_{\mathcal{B}}$ in Theorem 15 is called the **change-of-coordinates matrix from** \mathcal{B} **to** \mathcal{C} . Multiplication by $_{\mathcal{C}} \stackrel{P}{\leftarrow}_{\mathcal{B}}$ converts \mathcal{B} -coordinates into \mathcal{C} -coordinates.² Figure 2 illustrates the change-of-coordinates equation (4).

FIGURE 2 Two coordinate systems for V.

$$({}_{\mathcal{C}} \stackrel{P}{\leftarrow} {}_{\mathcal{B}})^{-1} = {}_{\mathcal{B}} \stackrel{P}{\leftarrow} {}_{\mathcal{C}}$$

EXAMPLE 2 Let $\mathbf{b}_1 = \begin{bmatrix} -9 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

SOLUTION The matrix ${}_{\mathcal{C}} \overset{P}{\leftarrow}_{\mathcal{B}}$ involves the \mathcal{C} -coordinate vectors of \mathbf{b}_1 and \mathbf{b}_2 . Let $[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $[\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Then, by definition,

$$\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{b}_1 \text{ and } \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \mathbf{b}_2$$

To solve both systems simultaneously, augment the coefficient matrix with \mathbf{b}_1 and \mathbf{b}_2 , and row reduce:

$$\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -9 & -5 \\ -4 & -5 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & -5 & -3 \end{bmatrix} \tag{7}$$

Thus

$$\begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$$
 and $\begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$

The desired change-of-coordinates matrix is therefore

$$_{\mathcal{C}}\stackrel{P}{\leftarrow}_{\mathcal{B}} = \begin{bmatrix} \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ -5 & -3 \end{bmatrix}$$

Observe that the matrix ${}_{\mathcal{C}}\stackrel{P}{\leftarrow}_{\mathcal{B}}$ in Example 2 already appeared in (7). This is not surprising because the first column of ${}_{\mathcal{C}}\stackrel{P}{\leftarrow}_{\mathcal{B}}$ results from row reducing $[\mathbf{c}_1 \ \mathbf{c}_2 \ | \mathbf{b}_1]$ to $[I \ | [\mathbf{b}_1]_{\mathcal{C}}]$, and similarly for the second column of ${}_{\mathcal{C}}\stackrel{P}{\leftarrow}_{\mathcal{B}}$. Thus

$$[\mathbf{c}_1 \quad \mathbf{c}_2 \mid \mathbf{b}_1 \quad \mathbf{b}_2] \sim [I \mid_{\mathcal{C} \leftarrow \mathcal{B}}]$$

An analogous procedure works for finding the change-of-coordinates matrix between any two bases in \mathbb{R}^n .

EXAMPLE 3 Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$.

- a. Find the change-of-coordinates matrix from C to B.
- b. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

SOLUTION

a. Notice that $\underset{\mathcal{C} \leftarrow \mathcal{C}}{P}$ is needed rather than $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\leftarrow}$, and compute

$$\begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{c}_1 & \mathbf{c}_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 & | & -7 & -5 \\ -3 & 4 & | & 9 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 5 & 3 \\ 0 & 1 & | & 6 & 4 \end{bmatrix}$$

So

$${}_{\mathcal{B} \leftarrow \mathcal{C}} = \begin{bmatrix} 5 & 3 \\ 6 & 4 \end{bmatrix}$$

b. By part (a) and property (6) above (with \mathcal{B} and \mathcal{C} interchanged),

$${}_{\mathcal{C}} \stackrel{P}{\leftarrow} \mathcal{B} = ({}_{\mathcal{B}} \stackrel{P}{\leftarrow} \mathcal{C})^{-1} = \frac{1}{2} \begin{bmatrix} 4 & -3 \\ -6 & 5 \end{bmatrix} = \begin{bmatrix} 2 & -3/2 \\ -3 & 5/2 \end{bmatrix} \blacksquare$$