IMPORT THE LIBRARIES

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy import stats # This is critical for t-tests and chi-square
```

Load the dataset

```
data = pd.read csv('audit data.csv')
print("First 5 rows of the dataset:")
print(data.head())
First 5 rows of the dataset:
   Year Firm Name
                   Total Audit Engagements
                                             High Risk Cases \
   2020
              PwC
                                                            51
                                        2829
1
  2022 Deloitte
                                        3589
                                                           185
  2020
              PwC
                                        2438
                                                           212
3
  2021
                                                           397
              PwC
                                        2646
  2020
              PwC
                                        2680
                                                           216
                           Fraud Cases Detected Industry Affected \
   Compliance Violations
0
                      123
                                              39
                                                         Healthcare
1
                       30
                                              60
                                                         Healthcare
2
                      124
                                              97
                                                         Healthcare
3
                       55
                                              97
                                                         Healthcare
4
                       99
                                              46
                                                         Healthcare
   Total Revenue Impact AI Used for Auditing
                                                Employee Workload
0
                  114.24
                                            No
                                                                57
1
                  156.98
                                           Yes
                                                                58
2
                                            No
                                                                76
                  131.83
3
                  229.11
                                            No
                                                                60
4
                   48.00
                                            No
                                                                51
   Audit Effectiveness Score Client Satisfaction Score
0
                          5.8
                                                       8.4
1
                          5.3
                                                       6.7
2
                          6.1
                                                       6.2
3
                          5.1
                                                       8.6
4
                          9.1
                                                       6.7
```

Basic Data Exploration

```
print("\nDataset Shape:", data.shape)
Dataset Shape: (100, 12)
print("\nData Info:")
print(data.info())
Data Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 12 columns):
     Column
                                 Non-Null Count
                                                  Dtype
- - -
     -----
 0
                                 100 non-null
                                                  int64
     Year
 1
     Firm Name
                                 100 non-null
                                                  object
 2
     Total_Audit_Engagements
                                 100 non-null
                                                  int64
 3
     High Risk Cases
                                 100 non-null
                                                  int64
 4
     Compliance Violations
                                 100 non-null
                                                  int64
 5
     Fraud Cases Detected
                                 100 non-null
                                                  int64
 6
     Industry Affected
                                 100 non-null
                                                  object
 7
     Total Revenue Impact
                                 100 non-null
                                                  float64
 8
     AI Used for Auditing
                                 100 non-null
                                                  obiect
 9
     Employee Workload
                                 100 non-null
                                                  int64
 10
    Audit Effectiveness Score 100 non-null
                                                  float64
     Client_Satisfaction_Score 100 non-null
11
                                                  float64
dtypes: float64(3), int64(6), object(3)
memory usage: 9.5+ KB
None
print("\nSummary Statistics:")
print(data.describe())
Summary Statistics:
                    Total Audit Engagements
                                              High Risk Cases
              Year
count
        100.000000
                                  100.000000
                                                    100.000000
       2022.320000
                                 2784.520000
                                                    277.730000
mean
                                 1281.863073
                                                    135.735174
std
          1.780251
min
       2020.000000
                                  603.000000
                                                     51.000000
25%
       2021,000000
                                 1768.250000
                                                    162,500000
       2022.000000
                                 2650.000000
                                                    293.000000
50%
75%
       2024.000000
                                 4008.750000
                                                    395.500000
       2025.000000
                                 4946.000000
                                                    500.000000
max
       Compliance Violations Fraud Cases Detected
Total Revenue Impact \
                  100.000000
                                         100.000000
count
```

100.000000	105 40000	E2 70000
mean 272.539000	105.480000	52.700000
std	55.370101	28.311221
139.151401		
min 33.460000	10.000000	5.000000
25%	54.500000	27.000000
155.217500		_,,,,,,,,
50%	114.500000	54.000000
264.450000	140 500000	74 500000
75% 406.090000	149.500000	74.500000
max	200.000000	100.000000
497.060000		
F1	Namiland A	lit Effectiveness Coope
	yee_workload Aud faction Score	<pre>lit_Effectiveness_Score</pre>
count	100.000000	100.000000
100.000000		200100000
mean	60.250000	7.490000
7.339000	11 162040	1 516200
std 1.429127	11.163048	1.516209
min	40.000000	5.000000
5.000000	10100000	2.00000
25%	52.750000	6.100000
6.100000	CO 000000	7 450000
50% 7.350000	60.000000	7.450000
7.350000 75%	68.000000	8.825000
8.525000	00.00000	0.025000
max	80.000000	10.000000
10.000000		
<pre>print("\nMis</pre>	sing Values:")	
	snull(). <mark>sum(</mark>))	
Missing Value	ρς.	
Year	C3.	0
Firm_Name		0
Total_Audit_		Θ
High_Risk_Cases		0
Compliance_Violations Fraud Cases Detected		0
Industry_Affected		0
Total Revenue		0
AI_Used_for_A	 Auditing	0
Employee_Wor	kload	0

```
Audit_Effectiveness_Score 0
Client_Satisfaction_Score 0
dtype: int64
```

Clean the Data

```
data['AI Used for Auditing'] =
data['AI Used for Auditing'].map({'Yes': 1, 'No': 0})
print("\nFirst 5 rows after conversion:")
print(data.head())
First 5 rows after conversion:
   Year Firm Name
                    Total Audit Engagements
                                              High Risk Cases
   2020
               PwC
                                        2829
                                                            51
1
  2022
         Deloitte
                                        3589
                                                           185
2
  2020
              PwC
                                        2438
                                                           212
3
  2021
              PwC
                                        2646
                                                           397
  2020
              PwC
                                        2680
                                                           216
   Compliance Violations
                           Fraud Cases Detected Industry Affected
0
                      123
                                                         Healthcare
                                              39
1
                       30
                                                         Healthcare
                                              60
2
                      124
                                              97
                                                         Healthcare
3
                       55
                                              97
                                                         Healthcare
4
                       99
                                              46
                                                         Healthcare
   Total Revenue Impact
                          AI Used for Auditing
                                                  Employee Workload
0
                  114.24
                                                                 57
                                                                 58
1
                  156.98
                                              1
2
                                              0
                  131.83
                                                                 76
3
                                              0
                  229.11
                                                                 60
4
                  48.00
                                              0
                                                                 51
   Audit_Effectiveness_Score Client_Satisfaction_Score
0
                          5.8
1
                          5.3
                                                       6.7
2
                          6.1
                                                       6.2
3
                          5.1
                                                       8.6
                          9.1
data['Fraud Detection Rate'] = data['Fraud Cases Detected'] /
data['Total Audit Engagements'] # Fraud detection efficiency
data['Fraud Detection Rate']
0
      0.013786
1
      0.016718
2
      0.039787
```

```
3
      0.036659
4
      0.017164
95
      0.016511
96
      0.027843
97
      0.025197
98
      0.007384
99
      0.012967
Name: Fraud Detection Rate, Length: 100, dtype: float64
data['Revenue_Per_Engagement'] = data['Total_Revenue_Impact'] /
data['Total_Audit_Engagements'] # Revenue impact per audit
data['Revenue Per Engagement']
0
      0.040382
1
      0.043739
2
      0.054073
3
      0.086587
4
      0.017910
95
      0.021486
96
      0.085918
97
      0.091612
98
      0.240549
99
      0.052564
Name: Revenue Per Engagement, Length: 100, dtype: float64
```

Implement Statistical Tests

```
# --- Statistical Test 1: AI vs Fraud Detection Rate ---
# Split data into AI and non-AI groups
ai group = data[data['AI Used for Auditing'] == 1]
['Fraud Detection Rate']
no ai group = data[data['AI Used for Auditing'] == 0]
['Fraud Detection Rate']
# Perform t-test
t stat ai, p value ai = stats.ttest ind(ai group, no ai group,
nan policy='omit')
print("\nTest 1: AI vs Fraud Detection Rate")
print(f"T-statistic: {t_stat_ai:.4f}, P-value: {p_value_ai:.4f}")
if p value ai < 0.05:
    print("Result: Significant difference (AI impacts Fraud Detection
Rate)")
else:
    print("Result: No significant difference")
Test 1: AI vs Fraud Detection Rate
```

```
T-statistic: -0.3114, P-value: 0.7561
Result: No significant difference
# Statistical Test 2: Workload vs Audit Effectiveness
median workload = data['Employee Workload'].median()
high workload = data[data['Employee Workload'] > median workload]
['Audit Effectiveness Score']
low workload = data[data['Employee Workload'] <= median workload]</pre>
['Audit Effectiveness Score']
t stat workload, p value workload = stats.ttest ind(high workload,
low workload, nan policy='omit')
print("\nTest 2: Workload vs Audit Effectiveness")
print(f"T-statistic: {t stat workload:.4f}, P-value:
{p value workload:.4f}")
if p value workload < 0.05:
    print("Result: Significant difference (Workload impacts
Effectiveness)")
else:
    print("Result: No significant difference")
Test 2: Workload vs Audit Effectiveness
T-statistic: -0.0843, P-value: 0.9330
Result: No significant difference
# Statistical Test 3: Fraud Cases vs Industry
data['Fraud_Binned'] = pd.qcut(data['Fraud_Cases_Detected'], q=3,
labels=['Low', 'Medium', 'High'])
contingency table = pd.crosstab(data['Industry Affected'],
data['Fraud Binned'])
chi2 stat, p value chi2, dof, expected =
stats.chi2 contingency(contingency table)
print("\nTest 3: Fraud Cases vs Industry")
print(f"Chi2 Statistic: {chi2 stat:.4f}, P-value: {p value chi2:.4f},
Degrees of Freedom: {dof}")
if p value chi2 < 0.05:
    print("Result: Significant relationship (Fraud Cases depend on
Industry)")
else:
    print("Result: No significant relationship")
Test 3: Fraud Cases vs Industry
Chi2 Statistic: 2.5988, P-value: 0.8572, Degrees of Freedom: 6
Result: No significant relationship
```

Fraud_Detection_Rate to compare firms.

```
# Bar plot for Fraud Detection Rate by Firm
plt.figure(figsize=(10, 6))
sns.barplot(x='Firm_Name', y='Fraud_Detection_Rate', data=data,
estimator=np.mean)
plt.title('Average Fraud Detection Rate by Firm')
plt.xlabel('Firm Name')
plt.ylabel('Fraud Detection Rate (Fraud Cases / Engagements)')
plt.show()
```


Does Al Improve Fraud Detection?

```
# Box plot for AI Usage vs Fraud Detection Rate
plt.figure(figsize=(10, 6))
sns.boxplot(x='AI_Used_for_Auditing', y='Fraud_Detection_Rate',
data=data)
plt.title('AI Usage vs Fraud Detection Rate')
plt.xlabel('AI Used (0 = No, 1 = Yes)')
plt.ylabel('Fraud Detection Rate')
plt.show()
```


How Does Workload Affect Effectiveness?

```
# Scatter plot for Workload vs Effectiveness
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Employee_Workload', y='Audit_Effectiveness_Score',
hue='Firm_Name', size='Total_Audit_Engagements', data=data)
plt.title('Employee Workload vs Audit Effectiveness')
plt.xlabel('Employee Workload')
plt.ylabel('Audit Effectiveness Score')
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
```


Total Audit Engagements by Firm

```
# Bar plot for Total Audit Engagements by Firm
plt.figure(figsize=(10, 6))
sns.barplot(x='Firm_Name', y='Total_Audit_Engagements', data=data,
estimator=sum)
plt.title('Total Audit Engagements by Firm')
plt.xlabel('Firm Name')
plt.ylabel('Total Audit Engagements')
plt.show()
```


Industry Trends Over Time

```
# Line plot for Fraud Cases by Industry Over Time
plt.figure(figsize=(12, 6))
sns.lineplot(x='Year', y='Fraud_Cases_Detected',
hue='Industry_Affected', data=data, estimator=sum)
plt.title('Total Fraud Cases Detected by Industry Over Time')
plt.xlabel('Year')
plt.ylabel('Total Fraud Cases Detected')
plt.show()
```


Fraud Cases Detected by Year

```
# Line plot for Fraud Cases Detected by Year
plt.figure(figsize=(10, 6))
sns.lineplot(x='Year', y='Fraud_Cases_Detected', hue='Firm_Name',
data=data)
plt.title('Fraud Cases Detected Over Time by Firm')
plt.xlabel('Year')
plt.ylabel('Fraud Cases Detected')
plt.show()
```


Revenue Impact vs Client Satisfaction

```
# Scatter plot for Revenue Impact vs Client Satisfaction
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Total_Revenue_Impact',
y='Client_Satisfaction_Score', hue='Industry_Affected', data=data)
plt.title('Total Revenue Impact vs Client Satisfaction')
plt.xlabel('Total Revenue Impact (in millions)')
plt.ylabel('Client Satisfaction Score')
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
```


Al Usage vs Audit Effectiveness

Does using AI improve effectiveness? Insight: Compare effectiveness scores with and without AI.

```
# Box plot for AI Usage vs Audit Effectiveness
plt.figure(figsize=(10, 6))
sns.boxplot(x='AI_Used_for_Auditing', y='Audit_Effectiveness_Score',
data=data)
plt.title('AI Usage vs Audit Effectiveness Score')
plt.xlabel('AI Used (0 = No, 1 = Yes)')
plt.ylabel('Audit Effectiveness Score')
plt.show()
```


Revenue Impact by Industry

Which industries have the highest financial impact?

```
# Bar plot for Revenue Impact by Industry
plt.figure(figsize=(10, 6))
sns.barplot(x='Industry_Affected', y='Total_Revenue_Impact',
data=data, estimator=sum)
plt.title('Total Revenue Impact by Industry')
plt.xlabel('Industry')
plt.ylabel('Total Revenue Impact (in millions)')
plt.show()
```



```
# Select only numeric columns for correlation
numeric_data = data.select_dtypes(include=[np.number])
# Correlation matrix with numeric columns only
plt.figure(figsize=(12, 8))
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm',
fmt='.2f')
plt.title('Correlation Heatmap (Numeric Columns Only)')
plt.show()
```


Enhanced Correlation Heatmap

