برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

ix		ديباچه
1	عا كنّ	1 بنیادی<
1	ينيادى اكائياں	1.1
1	غيرستى	1.2
2	سمتير	1.3
3		1.4
3	1.4.1 كار تىبى محددى نظام	
5	1.4.2 نگلی محددی نظام	
7	سمتيررقبر	1.5
9	ر قبه عمودی تراش	1.6
10	برقی اور مقناطیسی میدان	1.7
10	1.7.1 برقی میدان اور برقی میدان کی شدت	
11	1.7.2 مقناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

11	کی اور حجمی کثافت	1.8	
11	. 1.8. مسطحی کثافت	1	
12	ى كثافت	1.9	
13	ىيى ضرب اور ضرب نقط	1.10	
13	.1.10 صلیبی ضرب	1	
15		2	
18	رق اور جزوی تفرق	1.11 تق	
18	لی تکمل	1.12	
19	لمى تىمل	1.13	
20	ِ طَلِي سَمَتي _ة	1.14	
25		مقناطيسىادوا	2
2525	ر احمت اور آپکچاہٹ	•	2
		· 2.1	2
25	احمت اور نتچکچا بٹ	7 2.1☼ 2.2	2
2526	احمت اور تیکچاہٹ	; 2.1 ; 2.2 ; 2.3	2
252628	احمت اور نتجکچاہٹ	 2.1 2.2 2.3 2.4 2.4 2.4 3.4	2
25262830	احمت اور نتکچا ہٹ افت ِ بر قی رواور بر قی میدان کی شدت قی اد وار ناطیعی دور حصہ اول	 → 2.1 	2
25 26 28 30 32	احمت اور نتجکچا ہٹ	2.1 2.2 2.3 2.4 2.5 2.6	2
25 26 28 30 32 34	احمت اور بتکچا ہٹ افت برتی رواور برتی میدان کی شدت قی ادوار ناطیعی دور حصہ اول افت متناطیعی بہاواور متناطیعی میدان کی شدت ناطیعی دور حصہ دوم	 2.1 2.2 2.3 2.4 2.5 2.6 2.7	2

عـــنوان

55		ٹرانسفار	3
56	ٹرانسفار مر کی اہمیت	3.1	
59	ٹرانسفار مرکے اقسام	3.2	
60	المالى برقى د ياو	3.3	
62	هیجان انگیز برقی رواور قالبی ضیاع	3.4	
65	تبادله برقی د باواور تبادله برقی روکے خصوصیات	3.5	
68	ثانوى جانب بوجه كاابتدائي جانب اثر	3.6	
69	ٹرانسفار مرکی علامت پر نقطوں کامطلب	3.7	
70	ر کاوٹ کاتبادلہ	3.8	
75	ٹرانسفار مر کے وولٹ -ایمپیئر	3.9	
77	﴾ ٹرانسفار مر کے امالہ اور اس کے مساوی دور	3.10	
77	3.10.1 کچھے کی مزاحمت اوراس کی متعاملہ علیحدہ کرنا		
78	3.10.2 رِشَالِلْهِ		
79	3.10.3 ثانوى برقى رواور قالب كے اثرات		
80	3.10.4 څانوی کچھے کی امالی بر تی د باد		
81	3.10.5 ثانوى کچھے کی مزاحمت اور متعاملہ کے اثرات		
81	3.10.6 ركاوك كاابتدائي ياثانوى جانب تبادله		
84	3.10.7 ٹرانسفار مرکے سادہ ترین مساوی دور		
85	﴾ كللے دورمعائنہ اور کسرِ دورمعائنہ	3.11	
86	3.11.1 كطي دور معائنه		
88	3.11.2 كىردورمعائنە		
92	﴾ تنین مرحله ٹرانسفار مر	3.12	
99	ُ ٹرانسفار مریالو کرتے لحہ زیادہ محر کی برتی رو کا گزر	3.13	

vi

يكانى توامائى كا بابمى تبادله	بر قی اور	4
مقناطيسي نظام مين قوت اور قوت مر وڑ	4.1	
تبادله توانائی والاایک کچھے کا نظام	4.2	
توانائي اورېمه توانائي	4.3	
متعدد کچھوں کامتناطبی نظام	4.4	
ثین کے بنیاد ی اصول 125	گھومتے ^م	5
تانونِ فيرادُ ہے	5.1	
معاصر مثین معاصر مثین معاصر مثین	5.2	
محرک برقی دباو	5.3	
کھیے اور سائن نمامقناطیسی دباو	5.4	
5.4.1 برلتي رووالے مثين		
مقناطيسي د باو کی گھومتی موجيں	5.5	
5.5.1 ایک دورکی لپیمی مشین		
5.5.2 تين دور کي کپڻي مشين کا تخليل تجربيه		
5.5.3 تين دورکي کپڻي مشين کاتر سيمي تجربيه		
محرک برقی دباو	5.6	
5.6.1 بدلتي روبر قي جزيئر		
5.6.2 کیک سمتی روبر قی جزیئر		
هموار قطب مشينول مين قوت مرور گري	5.7	
5.7.1 توانائی کے طریقے سے میکانی قوت مروڑ کا حماب		
5.7.2 مقاطييي براد سرم كاني قوية مي وژكاحياب		

vii

6

ن، بر قرار چالو معاصر مثين	يكسال حال
متعدد مر حله معاصر مشین	6.1
معاصر مشين كے اماله	6.2
6.2.1 خوداماله	
6.2.2 مشتر که اماله	
6.2.3 معاصراءاله	
معاصر مشين كامساوى دوريارياضى نمونه	6.3
ىرقى طاقت كى نتقلى	6.4
كيسال حال، بر قرار چالومشين كے خصوصيات	6.5
6.5.1 معاصر جزیئر: برقی یو جھ بالمقابل <i>I</i> _m کے خطوط	
193	
کھلے دوراور کسرِ دور معائنہ	6.6
6.6.1 گھلے دور معائنہ	
6.6.2 کېږ دور معائنه	

207	امالی مشیرز	7
ساكن كىچھوں كى گھومتى مقناطىيى موج	7.1	
مشین کی سر کنے اور گھومتی موجول پر تیمرہ	7.2	
ساكن كچھوں ميں امالى بر تى د باد	7.3	
ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیدا امالی ہرقی دباو	7.4	
گھومتے کچھوں کی گھومتی متناطبی دیاو کی موج	7.5	
گھومتے کچھوں کے مساوی فرضی ساکن کچھے ۔	7.6	
المالي موشر كا مساوى برقى دور	7.7	
مساوی بر قی د ورپر غور	7.8	
المالي موشر كا مساوى تقونن دوريارياضي نمونه	7.9	
چنجرانماامالی موٹر	7.10	
بے پوچھ موٹراور جامد موٹر کے معائنہ	7.11	
7.11.1 بي بي جمه موثر كامعائند		
7.11.2 جامد موثر کامعا نند		
رومشين 241	يك سمتى	8
ميكاني ست كاركي بنيادى كاركر دگى	8.1	
8.1.1 ميكاني ست كاركي تفصيل		
ىك ستى جزير كى برقى دباو	8.2	
قوت مرور الله الله الله الله الله الله الله الل	8.3	
يېر وني بيجان اور خود بيجان يک سمتي جزير پر	8.4	
يک سمتی مشين کی کار کرد گی کے خط	8.5	
8.5.1 حاصل برتی د باو بالتقابل برتی بوجه		
8.5.2 رفتار بالمقابل قوت مرور مرور 8.5.2		
265	ل	فرہنگا

عـــنوان

إب2

مقناطيسى ادوار

2.1 مزاحمت اور ہچکچاہٹ

شکل 2.1 میں ایک سلاخ و کھائی گئ ہے جس مزاحمق المبائی کے رخ

$$(2.1) R = \frac{l}{\sigma A}$$

 μ ررج و گل جہال σ موصلیتے 2 اور A=wh رقبہ عمودی تراش ہے۔ اس سلاخ کی بھیکھا ہے 3 ورج و بل ہے جہال م

شكل 2.1:مزاحمت اور جيكيا ہٹ

resistance¹ conductivity²

ا___2. مقت طبیبی اووار

مقناطبیھے متقل 4 کہلاتا ہے۔

$$\Re = \frac{l}{\mu A}$$

مقناطیسی مستقل μ کو عموماً خلاء کی مقناطیسی مستقل $\mu_0=4\pi\,10^{-7}\,rac{ ext{H}}{ ext{m}}$ مقناطیسی مستقل مستقل المام کا مقناطیسی مستقل مستقل

$$\mu = \mu_r \mu_0$$

جہاں μ_r برومقناطیسی متقل کہلاتا ہے۔ ایکچاہٹ کی اکائی ایمپیر - چکر فی ویبر ہے جس کی وضاحت جلد کی جائے گی۔

 $\mu_r=10\,\mathrm{cm}$ مثال $\mu_r=2000$ مثال المراجع بين معاون

حل:

$$\begin{split} \Re &= \frac{l}{\mu_r \mu_0 A} \\ &= \frac{10 \times 10^{-2}}{2000 \times 4\pi \times 10^{-7} \times 2.5 \times 10^{-2} \times 3 \times 10^{-2}} \\ &= 53\,044\,\mathrm{A} \cdot \mathrm{turns/Wb} \end{split}$$

2.2 کثافت برقی رواور برقی میدان کی شدت

 5 گل 2.2 میں ایک موصل سلاخ کے سروں پر برتی دباو v لاگو کیا گیا ہے۔سلاخ میں برتی روز اوہم کے قانون 5 ہے حاصل ہو گی۔

$$(2.4) i = \frac{v}{R}$$

 $\begin{array}{c} {\rm reluctance^3} \\ {\rm permeability,\ magnetic\ constant^4} \\ {\rm Ohm's\ law^5} \end{array}$

شكل 2.2: كثافت برقى رواور برقى د باوكى شدت

درج بالا مساوات كو مساوات 2.1 كى مدد سے

$$(2.5) i = v\left(\frac{\sigma A}{l}\right)$$

لعيني

$$\frac{i}{A} = \sigma\left(\frac{v}{l}\right)$$

يا

$$(2.7) J = \sigma E$$

کھا جا سکتا ہے جہاں J اور E کی تعریفات درج ذیل ہیں۔

$$(2.8) J = \frac{i}{A}$$

$$(2.9) E = \frac{v}{l}$$

شکل 2.2 میں سمتیہ J کی مطلق قیت J اور سمتیہ E کی مطلق قیت E کی مطلق قیمت و کے مساوات 2.7 کو درج ذیل کھا جا سکتا ہے

$$(2.10) J = \sigma E$$

جو قانون اوہم کی دوسری روپ ہے۔ J اور E دونوں کا رخ $a_{
m y}$ ہے۔

28 باب_2. مقت طبيسي ادوار

شکل 2.2 سے ظاہر ہے کہ برقی روi سلاخ کی رقبہ عمودی تراث A سے گزرتی ہے للذا مساوات 2.8 کے تحت I کا فیضے برقی روI ہو گی۔ ای طرح مساوات 2.9 سے واضح ہے کہ I برقی دباو نی اکائی لمبائی کو ظاہر کرتی ہے للذا I کو برقی میدان کی شدھے کہتے ہیں۔ I کو برقی میدان کی شدھے کہتے ہیں۔ I

بالکل اسی طرح کی مساواتیں مقناطیسی متغیرات کے لئے حصہ 2.5 میں لکھی جائیں گی۔

2.3 رقى ادوار

 $\sigma=5.9\times10^7\,rac{\mathrm{S}}{\mathrm{m}}$ رقی دور میں برقی دباوہ v^8 وجہ سے برقی رو v^8 اللہ پیدا ہوتی ہے۔ تانباکی موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے جو بہت بڑی مقدار ہے۔ موصلیت کی اکائی v^8 ہے۔ تانباکی موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے بنی تارکی مزاحمت v^8 عموماً قابل نظر انداز ہو گی۔ تار میں برقی رو v^8 گرزنے سے تارکے سروں کے نیج برقی دباو کے گھٹاو کی مزاحمت v^8 بیدا ہو گا جس کو v^8 کی بنا نظر انداز کیا جا سکتا ہے۔ یوں تانبے کی تار میں برقی دباو کے گھٹاو کو رد کیا جا سکتا ہے۔ یعنی ہم v^8 کی سکتے ہیں۔

شکل 2.3-الف میں ایک ایسا ہی برقی دور دکھایا گیا ہے جس میں تانبے کی تارکی مزاحمت کو اکٹھے کر کے ایک ہی جگہ _{تار R} دکھایا گیا ہے۔اس دور کے لئے درج ذیل کھھا جا سکتا ہے۔

$$(2.11) v = \Delta v + v_L$$

تار میں برقی گھٹاو Δv نظرانداز کرتے ہوئے

$$(2.12) v = v_L$$

حاصل ہوتا ہے۔اس کا مطلب ہوا کہ تار میں برقی دباو کا گھٹاو قابل نظرانداز ہونے کی صورت میں لا گو برقی دباو کا توں مزاحمت R_L تک پنچتا ہے۔ برقی ادوار حل کرتے ہوئے یہی حقیقت بروئے کار لاتے ہوئے تار میں برقی دباو کے نظرانداز کیا جاتا ہے۔شکل 2.3-الف میں الیا کرنے سے شکل 2.3-ب حاصل ہوتا ہے۔ یہاں ہے سمجھ لینا ضروری ہے کہ برقی تار کو اس غرض سے استعال کیا جاتا ہے کہ لا گو برقی دباو کو مقام استعال تک بغیر گھٹائے پہنچایا جائے۔

2.3. برتی ادوار

شکل 2.4: کم مزاحمتی راه میں برقی رو کی مقدار زیادہ ہو گی۔

عالي 2. مقت طيسي ادوار

شکل 2.5: مقناطیسی دور

شکل 2.4 میں دوسری مثال دی گئی ہے۔ یہاں ہم دیکھتے ہیں کہ برقی رواس راہ زیادہ ہو گی جس کی مزاحمت کم $i_1>i_2$ مورت میں $i_1>i_2$ کی صورت میں جو۔ بول $i_1>i_2$ کی صورت میں جا ہو گا۔

2.4 مقناطیسی دور حصه اول

مقناطیسی ادوار بالکل برقی ادوار کی طرح ہوتے ہیں۔ بس ان میں برقی دباو v کی جگہ مقناطیسی دباور τ ادوار کی طرح کی جگہ مقناطیسی ہماو¹⁵ ϕ اور مزاحمت σ کی جگہ بیکچاہدے σ σ پائے جاتے ہیں۔ یوں بالکل برقی ادوار کی طرح مقناطیسی ادوار بنائے جا سکتے ہیں۔ ایبا ایک مقناطیسی دور شکل 2.5-الف میں دکھایا گیا ہے۔ یہاں بھی کوشش یہی ہے کہ مقناطیسی دباو σ بغیر گھٹائے بیکچاہٹ σ تا بی گھٹائے بیکچاہٹ σ تا بیل نظرانداز ہونے کی صورت میں شکل 2.5-ب حاصل ہو گا جس میں مقناطیسی بباو σ بالکل اوہم کے قانون کی طرح، درج ذیل مساوات سے حاصل ہو گا۔

 $\tau = \phi \Re_a$

current density⁶

electric field intensity⁷

electric voltage⁸

⁹ برقی د بادکی اکائی وولٹ ہے جواٹلی کے الیانڈر ووولٹاکے نام ہے جنہوں نے برقی بیٹری ایجادی۔

electric current¹⁰

¹¹ برتی رو کی اکائی ایمپیئر ہے جو فرانس کے انڈر میر ایمپیئر کے نام ہے جن کا برتی و مقاطیسی میدان میں اہم کر دار ہے۔

copper 12

¹³ مزاحت کی اکائی اوہم ہے جو جر منی کے جارج سائن اوہم کے نام ہے جنہوں نے قانون اوہم دریافت کیا۔

magnetomotive force, mmf¹⁴

 $flux^{15}$

 $[{]m reluctance}^{16}$

2.4. مقت طیسی دور حصیه اول

جہاں \Re_c قابل نظرانداز ہو وہاں، سلسلہ وار مزاحمتوں کی طرح، دو سلسلہ وار جھکچاہٹوں کا مجموعی جھکچاہٹ \Re_s استعال کر کے برتی رو حاصل ہو گی۔

$$\Re_s = \Re_a + \Re_c$$

برتی دور کی طرح، مقناطیسی دباو کو کم پیچاہٹ کی راہ استعال کرتے ہوئے مقام ضرورت تک پہنچایا جاتا ہے۔ مساوات 2.2 کے تحت پیچاہٹ کی قیمت مقناطیسی مستقل μ پر مخصر ہے ۔مقناطیسی مستقل کی اکائی ہمیزی فی میٹر میں اور ہم سوالہ ہمیزی فی میٹر کے برابر ہے اور μ_r کو عموماً μ_r کو عموماً μ_r کی اور ہمین جہاں μ_r ہمین μ_r کو عموماً μ_r کی مستقل μ_r کی اور چند جدید مصنوعی مواد الیمی ہیں جن کی μ_r کی قیمت 2000 اور جو مقناطیسی مساول کیا جاتی ہیں۔ مقناطیسی دباو کو ایک جگہ سے دوسری جگہ منتقل کرنے کے لئے ان ہی مقناطیسی مواد کو استعال کیا جاتا ہے۔

بد قتمتی سے مقناطیسی مواد کے μ کی قیمت اتنی زیادہ نہیں ہوتی ہے کہ ان سے بنی سلاخ کی ہیکچاہٹ ہر موقع پر قابل نظرانداز ہو۔ مساوات 2.2 کے تحت ہیکچاہٹ کم سے کم کرنے کی خاطر رقبہ عمودی تراش کو زیادہ سے زیادہ اور لمبائی کو کم سے کم کرنا ہو گا۔ یول مقناطیسی دباو منتقل کرنے کے لئے باریک تار نہیں بلکہ خاصا زیادہ رقبہ عمودی تراش کا مقناطیسی راستہ درکار ہوتا ہے۔

مقناطیسی مثین، مثلاً موٹر اور ٹرانسفار مر، کا بیشتر حصہ مقناطیسی دباو منتقل کرنے والے ان مقناطیسی مواد پر مشتمل ہوتا ہے۔ایسے مشینوں کے قلب میں عموماً یہی مقناطیسی مادہ پایا جاتا ہے لہذا ایسا مواد مقناطیسی قالب 18 کہلاتا ہے (شکل 2.6)۔

برقی مثینوں میں مستعمل مقناطیسی قالب لوہے کی باریک چادر یا پتری 19 تہہ در تہہ رکھ کر بنائی جاتی ہے۔ مقناطیسی قالب کے بارے میں مزید معلومات حصہ 2.8 میں فراہم کی جائے گی۔

relative permeability, relative magnetic constant¹⁷
magnetic core¹⁸

laminations¹⁹

باب_2,مقت طبيسي ادوار

شکل 2.6: کثافت مقناطیسی بهاواور مقناطیسی میدان کی شدت۔

2.5 كثافت ِمقناطيسى بهاواور مقناطيسى ميدان كى شدت

حصہ 2.2 میں برقی دور کی مثال دی گئے۔ یہاں شکل 2.6 میں دکھائے گئے مقناطیسی دور پر غور کرتے ہیں۔ مقناطیسی قالب کی $\mu_r = \infty$ تصور کرتے ہوئے آگے بڑھتے ہیں۔ یوں قالب کی بچکچاہٹ \Re_c صفر ہو گی۔ حصہ 2.2 میں تانبا کی تارکی طرح یہاں مقناطیسی قالب کو مقناطیسی دباو τ ایک مقام سے دوسری مقام تک منتقل کرنے کے لئے استعال کیا تارکی طرح یہاں مقناطیسی دباو کو خلائی درزکی بچکچاہٹ \Re_c تک پہنچایا گیا ہے۔ یہاں \Re_c کو نظرانداز کرتے ہوئے کل بچکچاہٹ کو خلائی درزکی بچکچاہٹ کے برابر تصور کیا جا سکتا ہے:

$$\Re_a = \frac{l_a}{\mu_0 A_a}$$

خلائی درز کی لمبائی l_a قالب کے رقبہ عمودی تراش کے اضلاع b اور w ہے بہت کم ہونے کی صورت میں، لیخی $l_a \ll w$ اور $w \gg l_a \ll w$ خوری تراش $l_a \ll b$ کو قالب کے رقبہ عمودی تراش $l_a \ll w$ کے برابر تصور کیا جا سکتا ہے:

$$(2.17) A_a = A_c = wb$$

اں کتاب میں جہاں بتلایا نہ گیا ہو وہاں $l_a \ll b$ اور $w \gg l_a \ll b$ کاب میں جہاں بتلایا نہ گیا ہو وہاں

مقناطیسی دباو
$$au$$
 کی تعریف درج ذیل مساوات پیش کرتی ہے۔ $au=Ni$

یوں برقی تار کے چکر ضرب تار میں برقی رو کو مقناطیسی دیاو کہتے ہیں۔ مقناطیسی دیاو کی اکائی ایمپیئر۔ چکر²⁰ ہے۔ حصہ 2.2 کی طرح ہم مساوات 2.15 کو یوں لکھ سکتے ہیں۔

$$\phi_a = \frac{\tau}{\Re_a}$$

مقناطیسی بہاو کی اکائی²¹ ویبر²² اور ہیکجاہٹ کی اکائی ا**یمپی**ئر- **چکر فیر ویبر²³ ہے۔ اس سلسلہ وار دور کے خلائی درز میں** مقناطیسی بہاو ϕ_a اور قالب میں مقناطیسی بہاو ϕ_a ایک دوسرے کے برابر ہوں گے۔درج بالا مساوات کو مساوات 2.2 کی مدد سے

$$\phi_a = \tau \left(\frac{\mu_0 A_a}{l_a} \right)$$

١

$$\frac{\phi_a}{A_a} = \mu_0 \left(\frac{\tau}{l_a}\right)$$

کھ سکتے ہیں جہاں درز کی نشاندہی زیر نوشت میں a ککھ کر کی گئی ہے۔ اس مساوات میں پائیں ہاتھ مقناطیسی بہاو فی اکائی رقبہ کو کثافیے مقناطیبی بہاو B_a اور دائیں ہاتھ مقناطیسی دباو فی اکائی لمبائی کو مقناطیبی مبدال کی شدھے 25 :ا کھا جا سکتا ہے H_{α}

$$(2.21) B_a = \frac{\phi_a}{A_a}$$

$$(2.22) H_a = \frac{\tau}{l_a}$$

کثافت مقناطیسی بہاو کی اکائی ویر فیر مربع میٹر ہے جس کو ٹسلا²⁶ کا نام دیا گیا ہے۔مقناطیسی میدان کی شدت کی اکائی ایمپیز فیر میٹر 27 ہے۔ یوں مساوات 2.20 کو درج ذیل لکھا جا سکتا ہے۔

$$(2.23) B_a = \mu_0 H_a$$

جہاں متن سے واضح ہو کہ مقناطیسی میدان کی بات ہو رہی ہے وہاں مقناطیسی میدان کی شدت کو مختصراً میداذیر شدھے 28 کہا جاتا ہے۔

 $\rm ampere\text{-}turn^{20}$

²² پیاکائی جرمنی کے ولیم اڈور ڈویبر کے نام ہے جن کا ہر تی ومقناطیسی میدان میں اہم کردار رہاہے

ampere-turn per weber²³

magnetic flux density²⁴ magnetic field intensity²⁵

Tesla:26 یہ اکائی سربیا کے نکولاٹسلا کے نام ہے جنہوں نے بدلتی روبر قی طاقت عام کرنے میں اہم کر دارا داکیا۔ ampere per meter²⁷

field intensity²⁸

باب2. مقت طبيسي ادوار

 $B_a=1$ گل 2.6 میں خلائی درز میں مقناطیسی بہاو کا رخ اکائی سمتیہ a_Z کا مخالف ہے لہذا کثافت ِ مقناطیسی بہاو a_Z کی سمتیہ a_Z کی مخالف رخ دباو ڈال رہا ہے لہذا $-B_aa_Z$ مقناطیسی دباو کی شدت $H_a=-H_aa_Z$ جائے گی۔ اس طرح درج بالا مساوات کو درج ذیل سمتی روپ میں لکھا جا سکتا ہے۔

$$(2.24) B_a = \mu_0 H_a$$

خلاء کی جگہ کوئی دوسرا مادہ ہونے کی صورت میں یہ مساوات درج ذیل لکھی جائے گی۔

$$(2.25) B = \mu H$$

مثال 2.2: شکل 2.6 میں خلائی درز میں کثافتِ مقناطیسی بہاو 0.1 ٹسلا درکار ہے۔ قالب کی $\mu_r = \infty$ خلائی درز کی لمبائی 1 ملی میٹر اور قالب کے گرد برقی تار کے چکر 100 ہیں۔ درکار برقی رو i تلاش کریں۔

حل: مساوات 2.13 سے

$$\tau = \phi \Re$$

$$Ni = \phi \left(\frac{l}{\mu_0 A}\right)$$

$$\frac{\phi}{A} = B = \frac{Ni\mu_0}{l}$$

لکھ کر درج ذیل حاصل ہو گا۔

$$0.1 = \frac{100 \times i \times 4\pi 10^{-7}}{0.001}$$
$$i = \frac{0.1 \times 0.001}{100 \times 4\pi 10^{-7}} = 0.79567 \,\text{A}$$

بر تی رو خلائی درز میں $B=0.1\,\mathrm{T}$ کثافت مقناطیسی بہاو پیدا کریے گا۔ $i=0.795\,67\,\mathrm{A}$

2.6 مقناطیسی دور حصه دوم

شکل 2.7 میں ایک سادہ مقناطیسی نظام دکھایا گیا ہے جس میں قالب کے مقناطیسی مستقل کو محدود تصور کرتے ہیں۔مقناطیسی دباو au=0 مقناطیسی قالب میں مقناطیسی بہاو au=0 پیر۔مقناطیسی دباو au=0 مقناطیسی قالب میں مقناطیسی بہاو م

2.6. مقن طيسي دور حصبه دوم

شکل 2.7: ساده مقناطیسی دور به

مقام پر کیساں ہے اور قالب کی اوسط لمبائی 1ء ہے۔ قالب میں مقناطیسی بہاو کا رخ فلیمنگے!دایارے ہاتھ قانور 29 کے دائیں ہاتھ کے قانون سے معلوم کیا جا سکتا ہے۔اس قانون کو دو طریقوں سے بیان کیا جا سکتا ہے۔

- اگرایک کچھے کو دائیں ہاتھ سے یوں کپڑا جائے کہ ہاتھ کی چار انگلیاں کچھے میں برقی رو کے رخ لیٹی ہوں تب انگوٹھا اُس مقناطیسی بہاو کے رخ ہو گا جو اس برقی رو کی وجہ سے وجود میں آیا ہو۔
- اگرایک تارجس میں برقی رو کا گزر ہو کو دائیں ہاتھ سے بول کپڑا جائے کہ انگوٹھا برقی رو کے رخ ہو تب باقی چار انگلیاں اُس مقناطیسی بہاو کے رخ لپٹی ہول گی جو اس برقی رو کی وجہ سے پیدا ہو گا۔

ان دو بیانات میں پہلا بیان کچھے میں مقناطیسی بہاو کا رخ معلوم کرنے کے لئے زیادہ آسان ثابت ہوتا ہے جبکہ سید تھی تار کے گرد مقناطیسی بہاو کا رخ دوسرے بیان سے زیادہ آسانی سے معلوم کیا جا سکتا ہے۔

قالب میں مقناطیسی بہاو گھڑی کے رخ ہے۔ مقناطیسی بہاو ہ کو شکل 2.7 میں ہلکی سیاہی کے تیر دار کلیر سے ظاہر کیا گیا ہے۔ قالب کی بچکھاہٹ

$$\Re_c = \frac{l_c}{\mu_c A_c}$$

لکھتے ہوئے مقناطیسی بہاو

$$\phi_c = \frac{\tau}{\Re_c} = Ni \left(\frac{\mu_c A_c}{l_c} \right)$$

Fleming's right hand rule²⁹

اب 2. مقت طبیمی ادوار

شكل 2.8: خلائى درزاور قالب كے ہيكياہائ

ہو گا۔یوں تمام نا معلوم متغیرات حاصل ہو بچیے۔

مثال 2.3: شکل 2.8 میں ایک مقناطیسی قالب دکھایا گیا ہے جس کی معلومات درج زیل ہیں۔

(2.26)
$$\psi = \begin{cases} h = 20 \,\mathrm{cm} & m = 10 \,\mathrm{cm} \\ n = 8 \,\mathrm{cm} & w = 2 \,\mathrm{cm} \\ l_a = 1 \,\mathrm{mm} & \mu_r = 40 \,000 \end{cases}$$

قالب اور خلائی درز کی ہیکچاہٹیں تلاش کریں۔

عل:

$$b = \frac{m-n}{2} = \frac{0.1-0.08}{2} = 0.01 \,\mathrm{m}$$

$$A_a = A_c = bw = 0.01 \times 0.02 = 0.0002 \,\mathrm{m}^2$$

$$l_c = 2(h+n) - l_a = 2(0.2+0.08) - 0.001 = 0.559 \,\mathrm{m}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 A_c} = \frac{0.559}{40000 \times 4\pi 10^{-7} \times 0.0002} = 55\,598\,\text{A} \cdot \text{t/Wb}$$

$$\Re_a = \frac{l_a}{\mu_0 A_a} = \frac{0.001}{4\pi 10^{-7} \times 0.0002} = 3\,978\,358\,\text{A} \cdot \text{t/Wb}$$

قالب کی لمبائی خلائی درز کی لمبائی سے 559 گنا زیادہ ہونے کے باوجود خلائی درز کی انچکچاہٹ قالب کی انچکچاہٹ سے $\Re_a\gg\Re_c$ ہو گا۔

2.6. مقت طيسي دور حصب دوم

مثال 2.4: شکل 2.9 سے رجوع کریں۔خلائی درز 5 ملی میٹر لمباہے اور گھومتے حصہ پر 1000 چکر ہیں۔خلائی درز میں T کا 0.95 کثافت ِ برقی بہاو حاصل کرنے کی خاطر درکار برقی رو معلوم کریں۔

حل: اس شکل میں گھومتے مشین، مثلاً موٹر، کی ایک سادہ صورت دکھائی گئی ہے۔ ایسی مشینوں کا ہیرونی حصہ ساکن رہتا ہے للذا اس جھے کو مشین کا ساکھنے حصہ 30 کہتے ہیں۔ ساکن جھے کے اندر مشین کا گھومتا حصہ 31 کہتے ہیں۔ اس مثال میں ان دونوں حصوں (قالب) کا $m_r = \infty$ تصور کیا گیا ہے للذا ان کی بچکچاہٹ صفر ہو گی۔ مقاطیسی بہاو کو ہلکی سیابی کی لکیر سے ظاہر کیا گیا ہے۔ مقاطیسی بہاو کی ایک مکمل چکر کے دوران مقاطیسی بہاو دو خلائی درزوں سے گزرتا ہے۔ یہ دو خلائی درز ہر لحاظ سے ایک دوسرے جیسے ہیں للذا ان دونوں خلائی درزوں کی بچکچاہٹ سلسلہ وار ہو سائی درزوں خلائی درزوں کی بچکچاہٹ سلسلہ وار ہیں۔ شکل 2.9 میں مقاطیسی بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درزوں سے گزرتا ہوا دکھایا گیا ہے۔ خلائی درز کی لمبائی A_c میں مقاطیسی بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درزوں سے گزرتا ہوا دکھایا گیا ہے۔ خلائی درز کی لمبائی A_c ، قالب کے رقبہ تراش A_c کی اصلاع سے بہت کم ہے للذا خلائی درز کا عمودی رقبہ تراش میں ایک جابر تصور کیا جائے گا۔

يوں
$$A_a=A_c$$
 ليتے ہوئے ايک خلائی درز کی ہيچاہئ $A_a=A_c$ يوں $\Re_a=rac{l_a}{\mu_0A_a}=rac{l_a}{\mu_0A_c}$ اور دو سلسلہ وار خلائی درزوں کی کل پیچاہٹ درج ذیل ہو گی۔ $\Re_s=\Re_a+\Re_a=rac{2l_a}{\mu_0A_c}$

stator³⁰ rotor³¹ يا___2. مقت طبيسي اووار

خلائی درز میں مقناطیسی بہاہ ϕ_a اور کثافتِ مقناطیسی بہاہ B_a درج ذیل ہوں گے۔

$$\phi_a = \frac{\tau}{\Re_s} = (Ni) \left(\frac{\mu_0 A_c}{2l_a} \right)$$

$$B_a = \frac{\phi_a}{A_a} = \frac{\mu_0 Ni}{2l_a}$$

دی گئی معلومات پر کرتے ہوئے درج ذیل حاصل ہو گا۔

$$0.95 = \frac{4\pi 10^{-7} \times 1000 \times i}{2 \times 0.005}$$
$$i = \frac{0.95 \times 2 \times 0.005}{4\pi 10^{-7} \times 1000} = 7.56 \,\text{A}$$

روایق موٹروں اور جزیٹروں کی خلاء میں تقریباً ایک ٹسلا کثافت برقی بہاو ہوتی ہے۔

2.7 خوداماله، مشتركه اماله اور توانائي

مقناطیسی بہاو کی وقت کے ساتھ تبدیلی برقی دباو کو جنم دیتی ہے۔ للذا شکل 2.10-ا کے قالب میں مقناطیسی بہاو ϕ کی تبدیل کی بنا کچھ میں برقی دباو e پیدا ہو گا جو کچھ کے سروں پر نمودار ہو گا۔ اس طرح پیدا ہونے والی برقی دباو کو امالی برقی دباو کو امالی برقی دباو²² کہتے ہیں۔ قانوبی فیراؤے e کی علامت نہیں لکھی گئی ہے چونکہ ہمیں صرف دباو کی مطلق قیت سے غرض ہے)۔

(2.27)
$$e = N \frac{\partial \phi}{\partial t} = \frac{\partial \lambda}{\partial t}$$

امالی برقی د باو کو منبع برقی د باو تصور کریں۔

امالی برقی دباو کا رخ تعین کرنے کی خاطر کچھے کے سرول کو کسرِ دور³⁵ کریں۔ کچھے میں پیدا برقی رواُس رخ ہو گا جو مقناطیسی بہاو کی تبدیلی کو روکے۔

induced voltage³² Faraday's law³³ المنظل فيران المنافئة الى سائنىدان تقع جنبوں نے محرک برتی د باودریافت کی short circuit³⁵

شکل 2.10: قالب میں مقناطیسی بہاو کی تبدیلی کھیے میں برقی د ہاوپیدا کرتی ہے۔

فرض کریں شکل 2.10-ا میں بہاو ہ گھڑی کی سوئیوں کے گھومنے کے رخ ہے اور بہاو کی مقدار بڑھ رہی ہے۔ بہاو کی تبدیلی کا مخالف بہاو کہ پیدا کرنے کی خاطر کچھے کا بالائی سر مثبت ہو گا۔شکل 2.10-ب میں کچھے کے سروں کے نتی مزاحمت نسب کیا گیا ہے۔ کچھے کو منبع دباو تصور کرتے ہوئے آپ دیکھ سکتے ہیں کہ مزاحمت میں روکا رخ قالب میں گھڑی کے مخالف رخ بہاو کہ پیدا کرے گا۔

قالب میں مقناطیسی بہاو ϕ ، قالب پر لییٹے گئے لیچھ کے تمام چکروں N کے اندر سے گزرتا ہے۔ $N\phi$ کو لیچھ کا ارتباط بہاو λ کہتے ہیں جس کی اکائی ویبر۔ چکر λ 37 ہے۔

$$(2.28) \lambda = N\phi$$

جن مقناطیسی ادوار میں مقناطیسی مستقل μ کو اٹل مقدار تصور کیا جا سکے یا جن میں خلائی درز کی بچکچاہٹ قالب کی بچکچاہٹ سے بہت زیادہ ہو، $\Re_a\gg\Re_c$ ، ان میں کیھے کی امالہ L^{38} کی تعریف درج ذیل مساوات دیتی ہے۔

$$(2.29) L = \frac{\lambda}{i}$$

 $\lambda=N\phi$ امالہ کی اکائی و بیر - چکر فی ایمپیئر ہے جس کو ہینری H^{39} کا نام H^{39} دیا گیا ہے۔ مساوات $\phi=R_c$ میں $\phi=R_c$ ، $\phi=R_c$ اور $\phi=R_c$ بر کرتے ہوئے درج ذیل حاصل ہو گا

(2.30)
$$L = \frac{N\phi}{i} = \frac{NB_cA_c}{i} = \frac{N^2\mu_0A_a}{l_a}$$

flux linkage³⁶ weber-turn³⁷

 $inductance^{38}$

 $\rm Henry^{39}$

40 امر کی سائنسدان جوزف بینری جنبول نے مانکل فیراڈے سے علیحدہ طور پر محرک برقی د باودریافت کی

باب 2. مقت طبيسي اووار

شكل 2.11: اماليه (مثال 2.5)

جہاں قالب کا رقبہ عمودی تراش A_c اور درز کا رقبہ عمودی تراش A_a ایک دوسرے کے برابر لیے گئے ہیں۔

مثال 2.5: شکل 2.11 میں $b = 5 \, \text{cm}, w = 4 \, \text{cm}, l_a = 3 \, \text{mm}$ مثال 2.15: شکل 2.11 میں اور قالب کی $l_c = 30 \, \text{cm}$ اوسط لمبائی $l_c = 30 \, \text{cm}$ کے بیان دو صور توں میں کیھے کی امالہ تلاش کریں۔

- $\mu_r = \infty$ قالب کا $\mu_r = \infty$
- $\mu_r = 500$ قالب کا •

 $\mu_r = \infty$ کی بنا قالب کی پیچاہٹ قابل نظرانداز ہو گی لہذا امالہ درج ذیل ہو گا۔

$$L = \frac{N^2 \mu_0 wb}{l_a}$$

$$= \frac{1000^2 \times 4\pi 10^{-7} \times 0.04 \times 0.05}{0.003}$$

$$= 0.838 \,\text{H}$$

(+) کی صورت میں قالب کی انجیجاہٹ قابل نظر انداز نہیں ہو گی۔خلاء اور قالب کی انجیجاہٹ $\mu_r=500$ دریافت کرتے ہیں۔

$$\Re_a = \frac{l_a}{\mu_0 w b} = \frac{0.003}{4\pi 10^{-7} \times 0.04 \times 0.05} = 1\,193\,507\,\mathrm{A\cdot t/Wb}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 w b} = \frac{0.3}{500 \times 4\pi 10^{-7} \times 0.04 \times 0.05} = 238\,701\,\mathrm{A\cdot t/Wb}$$

یوں بہاو، ارتباط اور امالہ درج ذیل ہوں گے۔

$$\begin{split} \phi &= \frac{Ni}{\Re_a + \Re_c} \\ \lambda &= N\phi = \frac{N^2i}{\Re_a + \Re_c} \\ L &= \frac{\lambda}{i} = \frac{N^2}{\Re_a + \Re_c} = \frac{1000^2}{1\,193\,507 + 238\,701} = 0.698\,\mathrm{H} \end{split}$$

مثال 2.6: شكل 2.12 ميں ايك پيچپار لچھا
41
 و كھايا گيا ہے جس كى جسامت درج ذيل ہے۔ $N=11, r=0.49~\mathrm{m}, l=0.94~\mathrm{m}$

پیچیدار کیجے کے اندر مقناطیسی بہاو ϕ کا بیشتر حصہ محوری رخ ہوتا ہے۔ کیجے کے باریبی بہاو پوری کا نئات سے گزرتے ہوئے واپس کیجے میں داخل ہوتا ہے۔ چونکہ پوری کا نئات کا رقبہ عمودی تراش A لا متنابی ہے لہذا کیجے کے باہر کثافت مقناطیسی بہاو $B=\frac{\phi}{A}$ کی مقدار قابل نظرانداز ہوگی۔ کیچے کے اندر محوری رخ مقناطیسی شدت درج ذمل ہوگی۔ درج ویل ہوگی۔

$$H = \frac{Ni}{l}$$

اس کھیے کی خود امالہ حاصل کریں۔

42 مقت طبیسی اووار

عل:

$$B = \mu_0 H = \frac{\mu_0 Ni}{l}$$

$$\phi = B\pi r^2 = \frac{\mu_0 Ni\pi r^2}{l}$$

$$\lambda = N\phi = \frac{\mu_0 N^2 i\pi r^2}{l}$$

$$L = \frac{\lambda}{i} = \frac{\mu_0 N^2 \pi r^2}{l}$$

اور l کی قیمتیں پر کرتے ہوئے درج ذیل امالہ حاصل ہو گا 42 L

$$L = \frac{4\pi 10^{-7} \times 11^2 \times \pi \times 0.49^2}{0.94} = 122\,\mu\text{H}$$

 i_1 شکل 2.13 میں دو کچھوں کا ایک مقناطیسی دور دکھایا گیا ہے۔ ایک کچھے کے چکر N_1 اور اس میں برقی رو i_2 ہے، دوسرا کچھا چکر کا ہے اور اس میں برقی رو i_2 ہے۔ دونوں کچھوں میں مثبت برقی رو قالب میں ایک جیسے رخ مقناطیسی دباو پیدا کرتے ہیں۔ اگر قالب کا \Re_c قابل نظرانداز ہو تب مقناطیسی بہاو ϕ درج ذیل ہو گا۔

(2.31)
$$\phi = (N_1 i_1 + N_2 i_2) \frac{\mu_0 A_a}{l_a}$$

دونوں کیجھوں کا مجموعی مقناطیسی دیاو، $N_1 i_1 + N_2 i_2$ ، مقناطیسی بہاو ϕ پیدا کرتا ہے۔ اس مقناطیسی بہاو کا پہلے کیجھ

موٹائی
$$=b$$

$$A_a = A_c = bw$$

$$\lambda_1 = N_1 \phi$$

$$\lambda_2 = N_2 \phi$$

$$\phi = \frac{N_1 i_1 + N_2 i_2}{\Re_a + \Re_c}$$

شكل 2.13: دولچھے والا مقناطیسی دور۔

کے ساتھ ارتباط

(2.32)
$$\lambda_1 = N_1 \phi = N_1^2 \frac{\mu_0 A_a}{l_a} i_1 + N_1 N_2 \frac{\mu_0 A_a}{l_a} i_2$$

لعيني

$$(2.33) \lambda_1 = L_{11}i_1 + L_{12}i_2$$

ے جہاں L_{11} اور L_{12} ہے۔

$$(2.34) L_{11} = N_1^2 \frac{\mu_0 A_a}{l_a}$$

$$(2.35) L_{12} = N_1 N_2 \frac{\mu_0 A_a}{l_a}$$

یہلے کچھے کا نودامالہ ⁴³ ہے اور $L_{11}i_1$ اس کچھے کے اپنے برقی رو i_1 سے پیدا مقناطیسی بہاو کے ساتھ ارتباط بہاو $L_{12}i_2$ بیان دونوں کچھوں کا مشترکہ امالہ ⁴⁵ ہے اور $L_{12}i_2$ کچھا- $L_{12}i_2$ ساتھ i_2 سے پیدا بہاو کے ساتھ ارتباط بہاو ہے جسے مشترکہ ارتباط بہاو ⁴⁶ کہتے ہیں ۔ بالکل اسی طرح ہم دوسرے کچھے کے لئے درج زیل لکھ سکتے ہیں

$$\lambda_2 = N_2 \phi = N_2 N_1 \frac{\mu_0 A_a}{l_a} i_1 + N_2^2 \frac{\mu_0 A_a}{l_a} i_2$$
 (2.36)
$$= L_{21} i_1 + L_{22} i_2$$

جہال L_{22} اور L_{21} سے مراد درج ذیل ہے۔

$$(2.37) L_{22} = N_2^2 \frac{\mu_0 A_a}{I}$$

(2.38)
$$L_{21} = L_{12} = N_2 N_1 \frac{\mu_0 A_a}{l_a}$$

جےا۔2 کا خود امالہ اور $L_{21}=L_{12}$ دونوں کچھوں کا مشتر کہ امالہ ہے۔امالہ کا تصور اس وقت کار آمد ہوتا ہے L_{22} جب مقناطیسی مستقل μ کو اٹل تصور کرنا ممکن ہو۔

self inductance⁴³ self flux linkage⁴⁴

mutual inductance⁴⁵

mutual flux linkage⁴⁶

با___2.مقن طیسی ادوار 44

مباوات 2.29 کو مباوات 2.27 میں پر کرتے ہیں۔

(2.39)
$$e = \frac{\partial \lambda}{\partial t} = \frac{\partial (Li)}{\partial t}$$

اگر اماله کی قیمت اٹل ہو، جبیبا کہ ساکن مشینوں میں ہوتا ہے، تب ہمیں اماله کی جانی پیجانی مساوات

$$(2.40) e = L \frac{\partial i}{\partial t}$$

ملتی ہے۔ اگر امالہ بھی تبدیل ہو، جیسا کہ موٹروں اور جزیٹروں میں ہوتا ہے، تب درج ذیل ہو گا۔

$$(2.41) e = L \frac{\partial i}{\partial t} + i \frac{\partial L}{\partial t}$$

توانا في 47 کي اکائی جاوار 48 ہے اور طاقت 50 کی اکائی 51 جاول فی سینڈ ہے جس کو والے 52 W کا نام دیا گیا

اس كتاب ميں توانائي ياكام كو W سے ظاہر كيا جائے گا اگرچه طاقت كى اكائى واٹ W كے لئے بھى يہى علامت استعال ہوتی ہے۔امید کی جاتی ہے کہ متن سے اصل مطلب جاننا ممکن ہو گا۔

وقت $t \geq -1$ ساتھ توانائی W کی تبدیلی کی شرح کو طاقہ n کتے ہیں۔یوں درج ذیل لکھا جا سکتا ہے۔

$$(2.42) p = \frac{\mathrm{d}W}{\mathrm{d}t} = ie = i\frac{\mathrm{d}\lambda}{\mathrm{d}t}$$

متناطیسی دور میں لمحہ t_1 تا t_2 متناطیسی توانائی کی تبدیلی کو تکمل کے ذریعہ حاصل کیا جا سکتا ہے:

(2.43)
$$\Delta W = \int_{t_1}^{t_2} p \, \mathrm{d}t = \int_{\lambda_1}^{\lambda_2} i \, \mathrm{d}\lambda$$

اک کھیے کا مقناطیسی دور، جس میں امالہ کی قبیت اٹل ہو، کے لئے درج ذمل ککھا جا سکتا ہے۔

(2.44)
$$\Delta W = \int_{\lambda_1}^{\lambda_2} i \, \mathrm{d}\lambda = \int_{\lambda_1}^{\lambda_2} \frac{\lambda}{L} \, \mathrm{d}\lambda = \frac{1}{2L} \left(\lambda_2^2 - \lambda_1^2 \right)$$

energy⁴⁷

⁴⁹ جیمس پریسقوٹ حاول انگلتانی سائنسدان جنہوں نے حرارت اور میکانی کام کار شتہ دریافت کیا

⁵¹ سکاٹلدنڈ کے جیمز واٹ جنہوں نے بخارات پر چلنے والے انجن پر کام کیا

2.8. مقت طیسی مادہ کے خواص

شکلB-H:2.14 خطوط یامقناطیسی جال کے دائرے۔

یوں
$$\lambda_1=0$$
 نصور کرتے ہوئے کسی بھی λ پر مقناطیسی توانائی درج ذیل ہو گا۔
$$\Delta W=\frac{\lambda^2}{2L}=\frac{Li^2}{2}$$

2.8 مقناطیسی مادہ کے خواص

قالب کے استعال سے دو فوائد حاصل ہوتے ہیں۔ قالب کے استعال سے کم مقناطیسی دباو، زیادہ مقناطیسی بہاو پیدا کرتا ہے اور مقناطیسی بہاو کو پیند کی راہ پر رہنے کا پابند بنایا جا سکتا ہے۔ یک مرحلہ ٹرانسفار مروں میں قالب کے استعال سے مقناطیسی بہاو کو اس طرح پابند کیا جاتا ہے کہ تمام کچھوں میں کیساں بہاو پایا جاتا ہو۔ موٹروں میں قالب کے استعال سے مقناطیسی بہاو کو یوں پابند کیا جاتا ہے کہ زیادہ سے زیادہ قوت پیدا ہو جبکہ جزیئروں میں زیادہ سے زیادہ تو دباو کو بیا ہو کو بیا ہو کو بیا کہ نے بہاو کو پابند کیا جاتا ہے۔

B-H مقناطیسی مواد کی B اور H کا تعلق ترسیم کی صورت میں پیش کیا جاتا ہے۔ لوہا نما مقناطیسی مادے کی A مقناطیسی مواد کی B اور B کا نقط B ترسیم شکل B۔ ایک لوہا نما مقناطیسی مادہ جس میں مقناطیسی اثر نہیں پایا جاتا ہو کو نقط B سے ظاہر کیا گیا ہے۔ اس نقط پر درج ذیل ہوں گے۔

$$H_a = 0$$

$$B_a = 0$$

46 باب2. مقناطیسی ادوار

اس مادہ کو کچھے میں رکھ کر اس پر مقناطیسی دباو لا گو کیا جا سکتا ہے۔ مقناطیسی میدان کی شدت H لا گو کرنے سے لوہا نما مقناطیسی مادے میں کثافت مقناطیسی بہاو B پیدا ہو گی۔میدانی شدت بڑھانے سے کثافت مقناطیسی بہاو b بھی بڑھے گی۔اس عمل کو نقطہ a سے ابتدا کرتے ہوئے ایک تیردار قوس سے دکھایا گیا ہے۔میدانی شدت کو نقطہ b تک بڑھایا گیا ہے جہاں d اور d ہوں گے۔

نقطہ b تک پہنچنے کے بعد میدانی شدت کم کرتے ہوئے دیکھا گیا ہے کہ واپی قوس ایک مختلف راستہ اختیار کرتا ہے۔ یوں نقطہ b ہو کر نقطہ c ہو کر نقطہ کے میدانی شدت کم کرتے ہوئے صفر کرنے سے لوہا نما مادہ کی کثافتِ مقناطیسی بہاہ کم ہو کر نقطہ c پر آن پہنچنی ہے۔ نقطہ d سے نقطہ d تیر دار قوس اس عمل کو ظاہر کرتا ہے۔ نقطہ c پر بیرونی میدانی شدت صفر ہے لیکن لوہا نما مادے کی کثافتِ مقناطیسی بہاہ صفر نہیں ہے۔ یہ مادہ ایک مقناطیس بن گیا ہے جس کی کثافتِ مقناطیسی بہاہ d کے مقاطیس اس طرح بنایا جاتا ہے۔

نقطہ c سے میدانی شدت منفی رخ بڑھانے سے B کم ہوتے ہوتے آخر کار ایک مرتبہ دوبارہ صفر ہو جائے گی۔اس نقطہ کو d سے ظاہر کیا گیا ہے۔مقاطیسیت ختم کرنے کے لئے درکار میدانی شدت کی مقدار $|H_d|$ کو مقاطیسیت ختم کرنے والی شدت یا مختصراً غاتم شدھے 54 کہتے ہیں۔

منفی رخ میدانی شدت مزید بڑھانے سے نقطہ e حاصل ہو گا۔ اس کے بعد منفی رخ کی میدانی شدت کی مطلق قیت کم کرنے سے نقطہ f حاصل ہو گا جہاں میدانی شدت صفر ہونے کے باوجود کثافتِ مقناطیسی بہاو صفر نہیں ہے۔اس نقطہ پر لوہا نما مادہ اُلٹ رخ مقناطیس بن چکا ہے اور B_f بقایا کثافتِ مقناطیسی بہاو ہے۔اسی طرح اس رخ مقناطیسیت ختم کرنے کی شدت $|H_g|$ ہے۔میدانی شدت بڑھاتے ہوئے نقطہ b کی بجائے جاتا ہے۔

برتی شدت کو متواتر اسی طرح پہلے ایک رخ اور پھر مخالف (دوسری) رخ ایک خاص حد تک پہنچانے سے آخر کار گار کا سے متحنی کا ایک بند دائرہ حاصل ہو گا جے شکل 2.14-ب میں دکھایا گیا ہے۔اس دائرہ پر گھڑی کے مخالف رخ سفر ہو گا۔شکل 2.14-ب کو مقناطیسی چالے کا دائرہ 55 کہتے ہیں۔

مختلف H کے لئے شکل 2.14-ب حاصل کر کے ایک ہی کاغذ پر کھینچنے کے بعد ان تمام کے b نقطے جوڑنے B سے شکل 2.15 میں دکھائی گئ B - H ترسیم حاصل ہو گی۔ ٹرانسفار مروں میں استعال ہونے والی 0.3048 میں موجود مواد جدول 2.1 موٹی B قالبی پتری کی B - H ترسیم شکل 2.15 میں دکھائی گئی ہے۔ اس ترسیم میں موجود مواد جدول 2.1

magnetic flux!residual⁵³ coercivity⁵⁴

hysteresis loop⁵⁵

2.8 مقت طیسی مادہ کے خواص

شکل 5:2.15 نولاد کی 0.3048 ملی میٹر موٹی پتری کی ترسیم۔میدانی شدت کا پیانہ لاگ ہے۔

میں بھی دیا گیا ہے۔ عموماً متناطیسی مسائل حل کرتے ہوئے شکل 2.14 کی جگه شکل 2.15 طرز کی ترسیم استعال کی جاتی ہے۔ وھیان رہے کہ اس ترسیم میں H کا پیانہ لاگے⁵⁶ ہے۔

اوہ نما مقناطیسی مادے پر لاگو مقناطیسی شدت بڑھانے سے کثافتِ مقناطیسی بہاو بڑھنے کی شرح بتدر ج کم ہوتی جاتی ہے حتی کہ آخر کار یہ شرح خلاء کی شرح μ_0 کے برابر ہو جاتی ہے:

$$\frac{\Delta B}{\Delta H} = \mu_0$$

اس اثر کو سیرابیدے 57 کہتے ہیں جو شکل 2.15 میں واضح ہے۔

شکل 2.14 سے واضح ہے کہ H کی کسی بھی قیت پر B کے دو مکنہ قیمتیں ہوں گی۔ بڑھتے مقاطیسی بہاو کی صورت میں ترسیم میں نیچ سے اُوپر جانے والی منحنی B اور H کا تعلق پیش کرے گی جبکہ گھٹے ہوئے مقاطیسی بہاو کی صورت میں اوپر سے نیچ جانے والی منحنی اس تعلق کو پیش کرے گی۔ چونکہ $B/H=\mu$ ہی المذا B کی مقدار تبدیل ہونے سے μ کی قیمت بھی تبدیل ہوگا۔ باوجود اس کے ہم مقاطیسی ادوار میں μ کو ایک مستقل تصور کرتے ہیں۔ ایسا کرنے سے عمواً نتائج پر زیادہ اثر انداز نہیں ہوتا۔

مثال 2.7: شکل 2.15 یا اس کے مساوی جدول 2.1 میں دی گئی مواد استعال کرتے ہوئے شکل 2.6 کی خلاء میں ایک ٹسلا اور دو ٹسلا کثافت متناطیسی بہاو حاصل کرنے کے لئے درکار برقی رو معلوم کریں۔درج ذیل معلومات استعال کریں۔ قالب اور خلاء کا رقبہ عمودی تراش ایک دوسرے جتنا لیں۔

$$b = 5 \text{ cm}, w = 4 \text{ cm}, l_a = 3 \text{ mm}, l_c = 30 \text{ cm}, N = 1000$$

 $[\]begin{array}{c} \log^{56} \\ \mathrm{saturation}^{57} \end{array}$

با___2.مقن طیسی ادوار 48

حل: ایک ٹسلا کے لئے۔ جدول 2.1 کے تحت قالب میں 1 ٹسلا کے لئے قالب کو 11.22 ایمپیئر-چکر فی میٹر قیمت کی شدت H در کار ہو گی۔ بوں 30 سم لمے قالب کو $3.366 = 11.22 \times 0.3$ ایمپیئر چکر درکار ہوں گے۔

خلاء کو درج ذیل ایمییئر - چکر فی میٹر شدت درکار ہے۔

$$H = \frac{B}{\mu_0} = \frac{1}{4\pi 10^{-7}} = 795\,671$$

یوں 3 ملی میٹر خلاء کو 2387 = 2387×0.003 ایمپیئر چکر در کار ہوں گے۔اس طرح کل دایمپیئر - چکر +3.366 2390.366 بين جن سے درج ذيل حاصل کيا حاسکتا ہے۔

$$i = \frac{2390.366}{1000} = 2.39 \,\mathrm{A}$$

حل: دو ٹسلا کے لئے۔

حدول 2.1 کے تحت قالب میں 2 ٹسلا کثافت کے لئے قالب کو 10000 ایمییئر-چکر فی میٹر H درکار ہو گی۔ بول 30 سم قالب کو $3000 = 0.3 \times 1000$ ایمپیئر چکر درکار ہوں گے۔ خلاء کو

$$H = \frac{B}{\mu_0} = \frac{2}{4\pi 10^{-7}} = 1591342$$

ايمبيئر - چکر في ميٹر درکار بين لهذا 3 ملي ميٹر لمبي خلاء کو 4774 = 1591342 × 0.003 ايمبيئر چکر درکار ہوں گے۔ یوں کل ایمپیئر- چکر 7774 = 4774 + 3000 ہیں جن سے درج ذیل حاصل کیا جا سکتا ہے۔

$$i = \frac{7774}{1000} = 7.774 \,\mathrm{A}$$

اس مثال میں مقناطیسی سیر ابت واضح ہے۔

2.9. ہیجبان شدہ کچھ

B	H	B	H	B	H	B	H	B	H	B	H
0.000	0	0.700	9	1.480	30	1.720	200	1.852	1000	1.998	9000
0.040	2	0.835	10	1.540	40	1.752	300	1.900	2000	2.000	10000
0.095	3	1.000	11.22	1.580	50	1.780	400	1.936	3000	2.020	20000
0.160	4	1.100	12.59	1.601	60	1.800	500	1.952	4000	2.040	30000
0.240	5	1.200	14.96	1.626	70	1.810	600	1.968	5000	2.048	40000
0.330	6	1.300	17.78	1.640	80	1.824	700	1.975	6000	2.060	50000
0.440	7	1.340	20	1.655	90	1.835	800	1.980	7000	2.070	60000
0.560	8	1.400	23.77	1.662	100	1.846	900	1.985	8000	2.080	70000

جدول 2.1: مقناطيسي بهاو بالمقابل شدت

2.9 ميجان شده لجها

برلتی رو بجلی میں برقی دباو اور مقناطیسی بہاو عموماً سائن نما ہوتے ہیں جن کا وقت کے ساتھ تعلق sin wt یا cos wt ہو گا۔ اس حصہ میں بدلتی روسے کچھا بیجان کرنا اور اس سے نمودار ہونے والی برقی توانائی کے ضیاع پر تذکرہ کیا جائے گا۔ قالب میں کثافت مقناطیسی بہاو

$$(2.48) B = B_0 \sin \omega t$$

کی صورت میں قالب میں درج ذیل بدلتا مقناطیسی بہاو $\,arphi$ پیدا ہو گا۔

(2.49)
$$\varphi = A_c B = A_c B_0 \sin \omega t = \phi_0 \sin \omega t$$

اس مساوات میں مقناطیسی بہاو کا حیطہ ϕ_0 ، کثافت متناطیسی بہاو کا حیطہ ϕ_0 ، قالب کا رقبہ عمود کی تراش A_c (جو π مقام پر کیسال ہے)، زاویائی تعدد π عدد π اور تعدد π ہے۔

فیراڈے کے قانون (ماوات 2.27) کے تحت یہ مقاطیسی بہاو کچھے میں e(t) امالی برقی دباو 58 پیدا کرے گا

(2.50)
$$e(t) = \frac{\partial \lambda}{\partial t}$$

$$= \omega N \phi_0 \cos \omega t$$

$$= \omega N A_c B_0 \cos \omega t$$

$$= E_0 \cos \omega t$$

induced voltage 58

باب2. مقت طبيسي ادوار

شكل 2.16: ساده مقناطيسي دور (مثال 2.8) ـ

جس کا حیطہ درج ذیل ہو گا۔

$$(2.51) E_0 = \omega N \phi_0 = 2\pi f N A_c B_0$$

ہم بدلتے رو مقداروں کے مربع کی اوسط کے جذر میں دلچیں رکھتے ہیں جو ان مقداروں کی موثر 59 قیت ہوتی ہے۔ جیسا صفحہ 19 پر مساوات 1.42 میں دیکھا گیا، سائن نما موج کی موثر قیت موج کے حیطہ کی $1/\sqrt{2}$ گنا ہو گی لہذا امالی برتی دباو کی موثر قیت E_{rms} درج ذیل ہو گی۔

(2.52)
$$E_{rms} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N A_c B_0}{\sqrt{2}} = 4.44 f N A_c B_0$$

یہ مساوات بہت اہم ہے جس کو ہم بار بار استعال کریں گے۔بدلتے برقی دباو یا بدلتے برقی رو کی قیمت سے مراد ان کی موثر قیمت ہو گی۔پاکستان میں گھر بلو برقی دباو کی موثر قیمت 220 وولٹ ہے۔اس سائن نما برقی دباو کی چوٹی $\sqrt{2} \times 220 = 311$

مثال 2.8: شکل 2.16 میں کچھے کے 27 چکر ہیں۔ قالب کی لمبائی 30 سم جبکہ اس کا رقبہ عمودی تراش 2.8 مثال 2.8: شکل 2.16 میں کچھے کے 27 چکر ہیں۔ قالب کی لمبائی 30 سم جبکہ اس کا رقبہ عمودی تراش 229.253 مربع سم ہے۔ کچھے کو گھر میلو 220 وولٹ موثر برقی دباوید محرک برقی رو معلوم کریں اور اس کا خط کھیجنیں۔

(2.53)
$$v = \sqrt{2} \times 220 \cos(2\pi 50t)$$

مساوات 2.52 کی مدد سے ہم کثافتِ مقناطیسی بہاو کی چوٹی حاصل کرتے ہیں۔

(2.54)
$$B_0 = \frac{220}{4.44 \times 50 \times 27 \times 0.0229253} = 1.601 \,\mathrm{T}$$

root mean square, $\rm rms^{59}$

2.9. بيجبان شده لچھ

ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$	ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$
0.675	1.000	11.22	3.366	0.125	0.000	0.000	0	0.000	0.000
0.757	1.100	12.59	3.777	0.140	0.025	0.040	2	0.600	0.022
0.847	1.200	14.96	4.488	0.166	0.059	0.095	3	0.900	0.033
0.948	1.300	17.78	5.334	0.198	0.100	0.160	4	1.200	0.044
0.992	1.340	20	6.000	0.222	0.150	0.240	5	1.500	0.056
1.064	1.400	23.77	7.131	0.264	0.208	0.330	6	1.800	0.067
1.180	1.480	30	9.000	0.333	0.278	0.440	7	2.100	0.078
1.294	1.540	40	12.000	0.444	0.357	0.560	8	2.400	0.089
1.409	1.580	50	15.000	0.556	0.453	0.700	9	2.700	0.100
1.571	1.601	60	18.000	0.667	0.549	0.835	10	3.000	0.111

جدول2.2: محرک برقی رو

شكل 5:2.17 يترى كے قالب ميں 6.1 أسلاتك بيجان بيداكرنے كے لئے در كار بيجان انگيز برقى رويہ

یوں قالب میں کثافتِ مقناطیسی بہاو کا حیطہ 1.601 ہو گا اور قالب میں کثافتِ مقناطیسی بہاو کی مساوات درج ذیل ہوگی۔

$$(2.55) B = 1.601 \sin \omega t$$

ہم جدول کی مدد سے 0 اور 1.601 ٹسلا کے 3 مختلف قیمتوں پر درکار محرک برقی رو i_{ϕ} معلوم کرنا چاہتے ہیں۔ ہم مختلف B پر جدول 2.1 سے قالب کی H حاصل کریں گے جو ایک میٹر لمبی قالب کے لئے درکار ایمپیئر-چکر ہوں گے۔ اس سے 30 سم لمبی قالب کے لئے درکار ایمپیئر-چکر کر معلوم کر کے برقی رو حاصل کریں گے۔

جدول 2.2 مختلف کثافتِ متناطیسی بہاو کے لئے درکار محرک برقی رو دیتی ہے۔جدول میں ہر B کی قیمت پر ωt مساوات 2.55 کی مدد سے حاصل کی گئی ہے۔ ωt بالمقابل محرک برقی رو کا خط شکل Δt میں دیا گیا ہے۔ ωt

52 باب_2 مقت طبيسي ادوار

شكل 2.18: ہيجان انگيز برقى رو۔

برتی کچھے میں برقی دباو سے ہیجان پیدا کیا جاتا ہے۔ ہیجان شدہ کچھا میں گزرتے برقی رو i_{φ} کی بنا قالب میں مقناطیسی بہاو پیدا ہو گا۔ اس برتی رو i_{φ} کو ہیجارہے انگیز برقیے رو i_{φ} کو ہیجارہے انگیز برقی رو i_{φ} کی بنا قالب میں معناطیسی بہاد پیدا ہو گا۔ اس برتی رو i_{φ} کو ہیجارہے انگیز برقی رو i_{φ}

مثال 2.8 میں بیجان انگیز برتی رو معلوم کی گئی جے شکل 2.17 میں دکھایا گیا۔اسے حاصل کرتے وقت مقناطیسے پالے 61 کو نظر انداز کیا گیا۔شکل 2.18 میں بیجان انگیز برتی رو $_{\phi}i$ دکھائی گئی ہے جو مقناطیسی چال کو مدِ نظر رکھ کر حاصل کی گئی ہے۔ اس کو سمجھنا ضروری ہے۔

شکل 2.18-الف میں مقناطیسی چال کا دائرہ و کھایا گیا ہے۔درج ذیل تعلقات کی بنا مقناطیسی چال کے خط کو $\varphi = i_{\odot}$

(2.56)
$$Hl = Ni$$

$$\varphi = BA_c$$

قالب میں سائن نما مقناطیسی بہاو φ کو شکل 2.18-ب میں دکھایا گیا ہے۔سائن نما مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے۔ لحمہ t_1 پر اس کی قیمت p_1 ہو گی۔ مقناطیسی بہاو p_1 حاصل کرنے کے لئے درکار بیجان انگیز برقی رو p_1 شکل-الف سے حاصل کی جاسکتی ہے۔ اسی بیجان انگیز برقی رو کو شکل-ب میں لمحہ p_1 پر دکھایا گیا ہے۔ p_2

دھیان رہے کہ لحہ t_1 پر مقناطیسی بہاو بڑھ رہا ہے للذا مقناطیسی چال کے خط کا درست حصہ استعال کرنا ضروری ہے۔ شکل 2.18-الف میں arphi - arphi = arphi خط میں گھڑی کی سو یکوں کے مخالف رخ گھومتے ہوئے یوں نیچے سے اوپر

excitation current⁶⁰ hysteresis⁶¹

2.9. بيجبان شده لچھ ا

شکل 2.19: بیچاس ہر ٹزیر 0.3 ملی میٹر موٹی پتری کے لئے در کار موثر وولٹ - امپیئر فی کلو گرام قالب

جاتا ہوا حصہ استعال کیا گیا ہے۔شکل 2.14-ب میں تیر کے نشان مقناطیسی بہاو بڑھنے (ینچے سے اوپر) اور گھنے (اوپر سے ینچے) والے حصوں کی نشاندہی کرتے ہیں۔

لمحہ t_2 پر مقناطیسی بہاو گھٹ رہا ہے۔اس لمحہ پر مقناطیسی بہاو φ_2 ہے اور اسے حاصل کرنے کے لئے درکار بیجان انگیز برقی رو i_2 ہے۔

اسی طرح مختلف کمحات پر درکار ہیجان انگیز برتی رو حاصل کرنے سے شکل 2.18-ب کا i_{arphi} خط ملتا ہے جو غیر سائن نما ہے۔

 $e=N\frac{\mathrm{d}\varphi}{\mathrm{d}t}=N\phi_0\omega\cos\omega t$ کی صورت میں برقی دباو $\varphi=\phi_0\sin\omega t$ ہو گا۔ شکل $\varphi=\phi_0\sin\omega t$ ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کو بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کو بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کو بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ برقی دباو سے مقناطیسی بہاو $\varphi=0$ تاخیر سے $\varphi=0$ میں اس برقی دباو کی جمع دباو کی میں اس برقی دباو کی میں دکھایا گیا ہے۔آپ دکھی میں دباو کی دباو کی میں دباو کی دباو کی میں دباو کی دباو کی میں دباو کی میں دباو کی میں دباو کی دباو کی دباو کی میں دباو کی دباو

 $H_{c,rms}$ کی موثر قیمتوں کی موثر نما ہوں گے جن کی موثر قیمتوں $B=B_0\sin\omega t$ اور i_{φ} نما ہوں کے جن کی موثر قیمتوں اور جن نما ہوں کا تعلق درج ذیل ہو گا۔

$$(2.57) Ni_{\varphi,rms} = l_c H_{c,rms}$$

مساوات 2.52 اور مساوات 2.57 سے درج ذیل حاصل ہو گا

$$(2.58) E_{rms}i_{\varphi,rms} = \sqrt{2}\pi f B_0 H_{c,rms} A_c l_c$$

باب 2. مقت طبيسي ادوار

جہاں $A_c l_c$ قالب کا مجم ہے۔ یوں $A_c l_c$ مجم کے قالب کو B_0 کثافت مقناطیسی بہاو تک بیجان کرنے کے لئے درکار $E_{rms}i_{\varphi,rms}$ مساوات $E_{rms}i_{\varphi,rms}$ مساوات $E_{rms}i_{\varphi,rms}$ مساوات کا لہذا ایک کلو گرام قالب کے لئے مساوات $E_{rms}i_{\varphi,rms}$ کو درج ذیل روپ میں لکھا جا سکتا ہے۔ $E_{rms}i_{\varphi,rms}$

$$(2.59) P_a = \frac{E_{rms}i_{\varphi,rms}}{m_c} = \frac{\sqrt{2}\pi f}{\rho_c} B_0 H_{c,rms}$$

 $H_{c,rms}$ ویکھا جائے تو کسی ایک تعدد f پر g کی قیمت صرف قالب اور اس میں g یعنی چونی گل پر متحصر ہے، چونکہ خور وہ وہ ہے کہ قالب بنانے والے اکائی کمیت کے قالب میں مختلف چونی g پیدا کرنے کے خود g پر منحصر ہے۔ یہی وجہ ہے کہ قالب بنانے والے اکائی کمیت کے قالب میں مختلف جونی g پیدا کرنے کے ایک در کار g بالقابل g بالقابل g بالقابل g ترسیم مہیا کرتے ہیں۔ قالب کی g میں مرکب کے لئے ایک ترسیم شکل 2.19 میں دکھایا گیا ہے۔

باب.2.مقن طیسی ادوار

فر ہنگ

earth, 94 eddy current loss, 62 eddy currents, 62, 126 electric field intensity, 10 electrical rating, 59 electromagnet, 131 electromotive force, 61, 137 emf, 137 enamel, 62 energy, 43 Euler, 21 excitation, 61 excitation current, 50, 60, 61 excitation voltage, 61 excited coil, 61 Faraday's law, 38, 125 field coil, 131, 251 flux, 30 Fourier series, 63, 142 frequency, 130 fundamental, 142 fundamental component, 64 generator ac, 159 ground current, 94 ground wire, 94	ampere-turn, 32 armature coil, 131, 251 axle, 161 carbon bush, 177 cartesian system, 4 charge, 10, 136 circuit breaker, 178 coercivity, 46 coil high voltage, 56 low voltage, 56 primary, 55 secondary, 55 commutator, 164, 241 conductivity, 25 conservative field, 108 core, 55, 126 core loss, 62 core loss component, 64 Coulomb's law, 10 cross product, 13 cross section, 9 current transformation, 66 cylindrical coordinates, 5 delta connected, 92 design, 195 differentiation, 18
ground wire, 94	differentiation, 18
harmonic, 142	dot product, 15
harmonic components, 64	E,I, 62

ئىرىنگ

parallel connected, 253	Henry, 39
permeability, 26	hunting, 178
relative, 26	hysteresis loop, 46
phase current, 94	
phase difference, 23	impedance transformation, 71
phase voltage, 94	in-phase, 69
phasor, 21	induced voltage, 38, 49, 61
pole	inductance, 39
non-salient, 140	
salient, 140	Joule, 43
power, 43	
power factor, 23	lagging, 22
lagging, 23	laminations, 31, 62, 126
leading, 23	leading, 22
power factor angle, 23	leakage inductance, 79
power-angle law, 188	leakage reactance, 79
primary	line current, 94
side, 55	line voltage, 94
	linear circuit, 226
rating, 96, 97	load, 98
rectifier, 164	Lorentz law, 136
relative permeability, 26	Lorenz equation, 102
relay, 101	
reluctance, 25	magnetic constant, 26
residual magnetic flux, 45	magnetic core, 31
resistance, 25	magnetic field
rms, 49, 164	intensity, 11, 33
rotor, 36	magnetic flux
rotor coli, 104	density, 33
rpm, 155	leakage, 78
	magnetizing current, 64
saturation, 47	mmf, 30
scalar, 1	model, 81, 207
self excited, 251	mutual flux linkage, 43
self flux linkage, 42	mutual inductance, 42
self inductance, 42	
separately excited, 251	name plate, 97
side	non-salient poles, 177
secondary, 55	
single phase, 23, 59	Ohm's law, 26
slip, 209	open circuit test, 86
slip rings, 176, 229	orthonormal, 3

ف رہنگ ____

unit vector, 2	star connected, 92
	stator, 36
VA, 75	stator coil, 104, 127
vector, 2	steady state, 175
volt, 137	step down transformer, 58
volt-ampere, 75	step up transformer, 58
voltage, 137	surface density, 11
DC, 164	synchronous, 130
transformation, 66	synchronous inductance, 184
,	synchronous speed, 155, 176
Watt, 43	synchronous speed, 190, 170
Weber, 32	Tesla, 33
winding	theorem
distributed, 140	maximum power transfer, 229
winding factor, 147	Thevenin theorem, 226
,	three phase, 59, 92
	time period, 100, 142
	torque, 165, 209
	- · · · · ·
	pull out, 178
	transformer
	air core, 59
	communication, 59
	ideal, 65
	transient state, 175

كنربنگ 268

پتريال،62	ابتدائی
يورابوجھ،197	جانب،55
نیچیے،80	نج لچھا، 55
ىيى پېش زاويە ، 22	ار تباط بهاو، 39
•	اضافی
تاخير ي زاويه، 22	زاويا کي رفتار، 212
تار کی برقی د باو،94	اکائی سمتیه، 2
تار کی بر تی رو،94	اماله، 39
تانبا،28	امالى بر تى د ياو، 49، 38 ، 61
تبادله	اوېم ميٹر،237
ر کاوٹ، 71	ایک ٰ، تین پتریاں، 62
منختی،97	ایک مرحله، 59
تدریجی تفرق،113	ايتمپيئر-َ ڪِکر،32
تعدد،130	.,,
تعقب،178	136.
تفرق،18	بر قرارچالو،175،100
جزوی،18	ېر تې ېږ، 136، 136
للمل،18	بر تي د باد، 28، 137
تكوني جوڙ،92	تبادله، 66،56
توانائی،43	مخرک،137
تين مر حله ،92،59	يجاني، 185
اد بأ د ا	يك ستى،164
ٹرانسفار مر قب سے 50	ېر تې رو، 28
برقی د باووالا، 59	بھنور نما،126
بوجھ بردار،68 نندگر سال	تبادله،66
خلائی قالب،59	ېيجان انگيز ، 50
د باوبڑھاتا،58 د باو گھٹاتا،58	ېر قى سكت، 59
د باو هنانا، 36 ذرائع ابلاغ، 59	برقی میدان،10
دران ابلان 39. رووالا، 59	شدت،10،28
کامل،65 کامل،65	ې <i>ڭ،</i> 177
ئ ن.دى ئىلا، 33	بناوٹ،86
شناری مطعنڈی تار ،94	بنیادی برزو، 142،64
y 100000	بو چے، 98
ثانوی جانب، 55	بھٹی،114
	بچنورنما :
جاول،43	برقرو،62
97.	فياع،62
يھيلاو،147	بهنور نمابر قی رو،126
جزوطاقت،23 پيشر	بِ بِو جِمِه، 60
پي <i>ڻ،</i> 23	10/01/4
تاخيرى،23	پ <i>ر</i> ی، 31، 126

ف رہنگ

سرك چىلے،176،229	جنزیٹر بدلتی رو، 159 جوڑ تکونی، 92 تالیم نیا 92
سطى تكمل، 181	بدلخارو،159
سطى كثافت،11	جوز گانی ۵۲
سكت،96،96	ستاره نماه 92 ستاره نماه 92
سلسله وار 145	92100
سمت كار، 241	چکر فی منٹ،126
برقياتي،164	پولى - 211 چۇلى، 211
ميكاني،164	
سمتىيە،2	خطى
عمودياکائي، 3	ېر تې دور، 226
سمتی ر فتار ،102	خو دار تباط بهاو، 42
سير ابيت،47	خوداماله، 42
ضرب	داخلي ڀيجان
نقطه،15	ر ساسله وار ، 253 سلسله وار ، 253
ضرب صليبي، 13	متوازی، 253 متوازی، 253
42 ""	مرکب،253
طاقت،43	دور برطی مرکب، 253
طاقت بالمقابل زاويه، 188 طول موج، 18	دور شکن، 178
طول مون، ۱۵	دوری عرصه، 142،100
عار ضی صور ت، 175	دهره 161
عمودی تراش،9	
رقبہ،9	رشا
•	اماله، 79
غيرسمتي،1	متعامله، 79
غير معاصر ،178	رستامتعامليت،217
250 / :	رفتار
فورئير،250 : برنسل دې ده د	اضافی زاویاکی، 212
فوريئرنشلىل،63،142	روغن،62
فیراڈے	رياضي نمونه، 207،81
تانون،38،125	ریلے،101
قالب،126	زاویه جزوطاقت، 23
قالبي ضياع، 62	رادييه اردي العربي . زمين ،94
64.9.7.	ريين. زيني بر تي رو، 94
قانون	رين برن روم. زيني تار، 94
اوېم،26)-t-000-0
كولمب ،10	ساكن حصه،36
لورينز،136	ساكن كيچها،127،104
قدامت پبند میدان، 108	ستاره نماجوژ،92
قريب جڙي مر ٽب، 253	سرك،209

منربنگ

,	
مر حلی فرق،23	قطب
مر کب جزیٹر،253	ا بھر ہے، 140، 177
مزاحمت، 25	بموار،140،177
مساوات لورينز،102	قوت مر وژه ٔ 209،165
مستلب	انتہائی،178
تھونن،226	قوى البكٹر انکس، 241، 207
زیادہ سے زیادہ طاقت کی منتقلی، 228	قوى کچھے، 251
مشتر كه ارتباط اماله ، 43	
مشتر که اماله، 42	كارين بش، 177
معاصر،130	کار گزاری،200
معاصراماله،184	كېيىر،194
معاصر ر فتار ، 176،155	كثافتُ
معائنه	برتي رو، 27
کھلے دور ، 86 مقناطیس	كثافت مقناطيسي بهاو
مقناطيس	بقایه 45
ىرتى،131	کسر دور ، 38
چال کادائرہ،46	
غاتم شدت،46	گرم تار، 94
مقناطیسی بر تی رو، 64	گھومتاحصہ،36
مقناطیسی بہاو،30	گومتالچھا،104
رتا،78	
كثافت،33	ليجها
مقناطيسي چال،52	ابتدائی،55
مقناطيسي د باو، 30	پچياي، 140
مفنا " ی د باو، 30 سمت، 141	يېچىدار، 40
متناطیسی قالب،55،31	ئانى، <u>5</u> 5
مقاندی قانب، ۱۲،۶۶	زياده بر ٿي د باو، 56
مقناطیسی مستقل،166،26	ساكن،104
جزو،31،26 من طیس	ست،133
مقناطیسی میدان شد 11 - 22	قوی، 131
شدت، 33،11	گم بر تی د باو، 56
موژ،49،19 نه ثر قر 1.44	گومتا،104
موثر قیت ،164 موثر قیت ، 1،42	ميداني، 131
موسيقائي جزو، 142،64	
موصلیت،25 میدانی لچھے،251	محد د رینه م
میدای چے، 231	کار تی سی، 4 نگ
42	ىكى . 5
واث،43 وولك،137	م <i>رک بر</i> قی د باو، 61 میر که در 161
وونٹ، 13 وولٹ-ایمپییئر،75	محور، 161 مخلوط عدد، 192
ويبر،32	مرحلي سمتيه، 186،21

> ك سمتى رو مشين، 241 ك مر حله، 23 ك مر حله برقى د باو، 94 كي مر حله برقى د و، 94 يولر مساوات، 21

39، چکر، 39 نگلچاب ، 30،25 بم قدم، 69 بم قدم، 61 چیان، 13 خود، 251 پیچان انگیز برتی دو، 16 برتی دو، 16