Optical Pumping

Yichao Yu

MIT

April 2, 2013

- Non-equilibrium energy levels population.
- Atom state preparation.
- Laser cooling and trapping.

- Non-equilibrium energy levels population.
- Atom state preparation.
- Laser cooling and trapping.

- Non-equilibrium energy levels population.
- Atom state preparation.
- Laser cooling and trapping.

- Atom energy levels and optical pumping.
- Apparatus and measurement.
- Data and result.

Conclusion.

$$n \propto \mathbf{e}^{-\beta E}$$

- Optical pumping in m_z states. Circular polarization light, $\Delta m = +1$. Spontaneous emission, $\Delta m = 0, \pm 1$.
- Dark state.
- Depolarization using RF signal.

$$\mu B = h f$$

4 / 10

$$n \propto \mathbf{e}^{-\beta E}$$

- Optical pumping in m_z states. Circular polarization light, $\Delta m = +1$. Spontaneous emission, $\Delta m = 0, \pm 1$.
- Dark state.
- Depolarization using RF signal.

$$\mu B = h$$

$$n \propto \mathbf{e}^{-\beta E}$$

- Optical pumping in m_z states. Circular polarization light, $\Delta m = +1$. Spontaneous emission, $\Delta m = 0, \pm 1$.
- Dark state.
- Depolarization using RF signal.

$$\mu B = h f$$

$$n \propto \mathbf{e}^{-\beta E}$$

- Optical pumping in m_z states. Circular polarization light, $\Delta m = +1$. Spontaneous emission, $\Delta m = 0, \pm 1$.
- Dark state.
- Depolarization using RF signal.

$$\mu B = hf$$

4 / 10

- Circular polarization.
- \bullet ⁸⁵Rb and ⁸⁷Rb

0

6 / 10

Conclusion.

0