IISER Kolkata Notes

Cancellation Properties on Natural Numbers

Debayan Sarkar, 22MS002

January 7, 2023

Cancellation property for Addition

Proposition 1: $1+b=1+a \Rightarrow b=a \ \forall a,b \in \mathbb{N}$

Proof: Every $n \in \mathbb{N}$ has a unique successor in \mathbb{N} . Hence, every successor must also have a unique predecessor. So, if the successors are equal, the predecessors must also be equal.

Claim: We claim that,

$$n+a=n+b \Rightarrow a=b \ \forall n,a,b \in \mathbb{N}$$

Proof: We prove this using the principle of mathematical induction on n.

Base Step: For n = 1, the statement becomes

$$1 + a = 1 + b \Rightarrow a = b$$

which is true from Proposition 1. So, this statement holds for n=1

Induction Step: Let's say that this holds for n = k where $k \in \mathbb{N}$. We wish to prove, that this holds for n = k + 1.

Let's assume that (k+1) + a = (k+1) + b

$$(k+1)+a=k+(1+a)$$
 (Associativity of addition on $\mathbb N$)
= $k+(a+1)$ (Commutativity of addition on $\mathbb N$)
= $(k+a)+1$ (Associativity of addition on $\mathbb N$)

$$\therefore (k+1) + a = (k+a) + 1 \tag{2}$$

Similarly,

$$(k+1)+b=k+(1+b)$$
 (Associativity of addition on $\mathbb N$)
= $k+(b+1)$ (Commutativity of addition on $\mathbb N$)
= $(k+b)+1$ (Associativity of addition on $\mathbb N$)

$$\therefore (k+1) + b = (k+b) + 1 \tag{1}$$

Substituting the values from (1) and (2) in our assumption we get,

$$(k+a)+1=(k+b)+1$$

 $\Rightarrow k+a=k+b$ (From Proposition 1 as $(k+a), (k+b) \in \mathbb{N}$)
 $\Rightarrow a=b$ (Because the statement holds for $n=k$)

Hence,

$$(k+1) + a = (k+1) + b \Rightarrow a = b$$

The statement holds true for n = k + 1 whenever it holds true for n = k. By invoking the principle of mathematical induction we can say, that it holds true for every $n \in \mathbb{N}$. This proves our claim

Cancellation property for Multiplication

Claim: We claim that

$$n \cdot a = n \cdot b \Rightarrow a = b \ \forall a, b, n \in \mathbb{N}$$

Proof: We will prove this by contradiction. Let $n, a, b \in \mathbb{N}$ such that $n \cdot a = n \cdot b$ and $a \neq b$ Then, there are two possible cases:

Case 1: a = b + k where $k \in \mathbb{N}$ Multiplying n on both sides we get,

$$\begin{array}{l} n \cdot a = n \cdot (b+k) \\ \Rightarrow n \cdot a = n \cdot b + n \cdot k \\ \Rightarrow n \cdot a \neq n \cdot b \end{array} \tag{Distributive Property}$$

which contradicts our assumption.

Case 2: b = a + k where $k \in \mathbb{N}$ Multiplying n on both sides we get,

$$\begin{array}{l} n\cdot b=n\cdot (a+k)\\ \Rightarrow n\cdot b=n\cdot a+n\cdot k\\ \Rightarrow n\cdot b\neq n\cdot a \end{array} \tag{Distributive Property}$$

which also contradicts our assumption.

Hence our assumption must be wrong, and a = b. This proves our claim.