

LA CASA DE FUERZA LOS GRUPOS ELECTROGENOS

- 1. El suministro auxiliar de energía eléctrica.
- 2. Criterios de selección de un grupo electrógeno.
- 3. Detalles de instalación.

La Casa de Fuerza Abastecimiento de Enérgia

- El suministro de energía eléctrica puede ser obtenido de la red pública o mediante una instalación de abastecimiento propia con un grupo electrógeno (GEN SET).
- La Casa de Fuerza es el edificio donde se encuentra instalado el grupo electrógeno de la planta.

Tipo de Servicio del Grupo Electrógeno

	Características de la red pública			
Modalidad de	No existe servicio de	Existe red de suministro pública		
Servicio	red Pública	En paralelo con la red	Uso en caso de emergencia	
Servicio permanente	Servicio independiente	Servicio interconectado		
Servicio temporal	Servicio independiente	Servicio para pico de carga	Suministro de emergencia	

Tipo de Grupo Electrógeno Tiempo de Transferencia.

Equipo	Tiempo de transferencia no indicado	Con especificación de tiempo de transferencia			
		Interrupción larga 6s < t < 15s	Interrupción breve 0,5s < t < 2s	Sin Interrupción	
Tipo de grupo	Grupo Standard	Grupo Standard	Grupo de disponibilidad rápida	Grupo de disponibilidad inmediata	
Sistema de puesta en marcha	Puesta en marcha manual.	Puesta en marcha automática	Puesta en marcha automática	Puesta en marcha automática	

Selección del Grupo Electrógeno

- La aplicación o uso que tendrá el grupo.
- El Rating o clasificación del servicio del grupo.
- La relación RPM vs. Horas de operación.
- La disponibilidad de combustible.
- Los requerimientos medioambientales.

Selección de grupos electrógenos. Aplicación del grupo.

- La aplicación es como suministro normal o auxiliar. Y que características:
 - Tensión de trabajo
 - Potencia requerida
 - Frecuencia
 - Tipo de cargas y factor de potencia.
 - Horas de operación
 - Costos de mantenimiento y repuestos

Selección de grupos electrógenos Aplicación del grupo.

- Las características de las cargas son importantes:
 - Motores eléctricos de gran potencia, I_A
 - Variadores de velocidad de gran potencia, P_{VSD}
 50%P_G.
 - Cargas pulsantes.
 - Cargas regenerativas, como frenos y gruas.

Selección de grupos electrógenos Clase de servicio

- Los grupos electrógenos en función de la carga a atender y el número de horas de operación se clasifican:
 - Grupos Stand By (respaldo ante falla)
 - Grupos Prime (suministro normal)
 - Grupos de funcionamiento limitado
 - Grupos de de carga base (suministro continuo en paralelo con la red)

Clase de Servicio Grupo Stand By

TINIBRIS CE LE CONTROL LE CONTROL

- El grupo electrógeno es usado como respaldo (back up) de la red pública o de otra fuente primaria de energía.
- Suministrar potencia de manera continua a una carga variable durante todo el periodo de tiempo que dure la falla de la fuente de energía primaria.
- No se permiten sobrecargas para este tipo de generador.
- Tiempo de funcionamiento 400 h al año o menos.

La clase está de acuerdo con ISO 3046/1, BS 5514, AS 2789 y DIN 6271.

Grupo Stand By

Clase standby =
$$\frac{Potencia\ promedio}{Factor\ de\ carga\ (x\ \%)}$$

$$Potencia\ promedio = \frac{(P_{1}xT_{1}) + (P_{2}xT_{2}) + (P_{3}xT_{3}) + \dots + (P_{n}xT_{n})}{T_{1} + T_{2} + T_{3} + \dots + T_{n}}$$

Clase de Servicio Prime o principal

- El grupo electrógeno es la fuente primaria de energía para la aplicación.
- Suministro continuo de potencia de una carga variable por un número ilimitado de horas de operación al año.
- Se permite una sobrecarga del 10% de la capacidad nominal durante una hora de cada doce horas de operación.
- La clasificación está de acuerdo con ISO 8528/1 y la potencia de sobrecarga está de acuerdo con ISO 3046/1, BS 5514, AS 2789 y DIN 6271.

Grupo Prime (principal)

Clase prime =
$$\frac{Potencia\ promedio}{Factor\ de\ carga\ (x\ \%)}$$

Clase de Servicio Tiempo de funcionamiento limitado

- El grupo trabaja un número limitado de horas.
- La energía se suministra continuamente a una carga constante o no variable hasta el 100% del tiempo de funcionamiento limitado durante hasta 700 horas al año.
- No hay capacidad de sobrecarga disponible en esta clase; por lo tanto, el uso por encima de la potencia de funcionamiento limitado está prohibido.

Clase de Servicio Tiempo de funcionamiento limitado

Clase de Servicio Carga base o uso continuo

- El grupo generador no es la fuente primaria de energía de la aplicación o la única.
- Es capaz de suministrar energía de manera continua a una carga constante hasta el 100 % de su potencia por un número ilimitado de horas de operación al año.
- No hay in capacidad de sobrecarga.
- El suministro continuo es de acuerdo con las normas técnicas ISO 8528/1, ISO 3046/1, AS2789, DIN6271 y BS5514.
- Las aplicaciones típicas de carga base incluyen las distribuidoras (concesionarios), carga base, el suministro de energía eléctrica principal, y cogeneración.

Clase de Servicio Carga base o uso continuo

Clase de Servicio

- Ejemplo:
 - Caterpillar 3412 a 1800 RPM.
 - STANDBY 600 KWE@ 1800 RPM
 - PRIME 545 KWE @1800 RPM
 - CONTINUA 425
 KWE @ 1800 RPM

Factor de Carga del Grupo Electrógeno

$$FC = \frac{kW_{MEDIA}}{kW_{GENERADOR}} \times 100$$
Carga o Demanda Miscifia

$$\frac{kW}{k} = \frac{kW_{MEDIA}}{kW_{GENERADOR}} \times 100$$
Carga o Demanda Miscifia

2 4 6 8 10 12 14 16 18 20 22 24 tiempo (horas)

 El factor de carga del grupo es función de la curva de demanda y la capacidad del grupo.

Clase de Servicio

	STANDBY	PRIME	CONTINUO	
Factor de carga	60% o menos	60% - 70%	70% - 100%	
Horas anuales	500 o menos	sin límite sin lími		
Tipo de carga	variable	variable	constante	
Carga máxima Típica	80%	100%	100%	
Tiempo a kW nominales		20% - 100% ciclo	20% - 100% ciclo	

Relación RPM vs Horas de operación

Opción	Descripción	Costo Inicial (U.S.\$)
1	1000 KWe PRIME @ 1800 RPM 10 000 Horas overhaul mayor	150 000.00
2	1000 KWe PRIME @ 1200 RPM 20 000 Horas overhaul mayor	300 000.00
3	1000 KWe PRIME @ 900 RPM 40 000 Horas overhaul mayor	600 000.00

 El número de polos del generador define la velocidad de operación y con ello el desgaste de sus piezas.

Características acústicas del grupo

DESCUBIERTOS

Los ruidos generados por el equipo llegan directamente a su entorno.

CON CABINA DE PROTECCION INTEMPERIE

Los ruidos generados por el equipo llegan directamente a su entorno, incluso pueden llegar amplificados, en este caso la cabina solo protege al equipo de los efectos del intemperie.

Características acústicas del grupo

CON CABINA DE INSONORIZACIÓN Los ruidos generados por el equipo se encuentran aislados y llegan atenuados a su entorno. Un equipo aislado debe considerar en su diseño una reducción en la circulación de aire de ventilación y una perdida de potencia por un silenciador del sistema de escape con mayor reducción de ruidos.

Disponibilidad de combustible.

GRUPOS A DIESEL

- El costo de instalación (U.S.\$/kW) es relativamente más bajo y es clave en el desarrollo del proyecto.
- La potencia máxima en un paquete compacto es mayor con respecto a las otras opciones.
- Se debe considerar el volumen para almacenamientos prolongados.
- Los GE diesel consumen aproximadamente 0.07 gal/hr (0.26 l/hr) de combustible por cada kW generado, lo cual debe ser comprobado con especificaciones del fabricante.

Ejemplo de Tanque de combustible

Referencia 6 - Cummins

Disponibilidad de combustible.

GRUPOS A GAS

- A favor la existencia de regulaciones ambientales que limitan las emisiones.
- Los costos durante el ciclo de vida del producto son más importantes que los costos de instalación (U.S.\$/kW)
- Existencia de una fuente de gas confiable y precio relativamente bueno.
- Se recomienda la instalación de un tanque de GLP como suministro de emergencia ante falla de suministro de GN

Instalación del grupo Electrógeno

Base del Grupo

Cimentación y montaje del GE

Area de la Casa de Fuerza

- Las distancias recomendadas para la instalación de un Grupo electrógeno dependen del
 - El espacio disponible.
 - Los equipos complementarios
 - El sistema de refrigeración y la ventilación requeridos por el grupo

Area de la Casa de Fuerza

Potencia del grupo (kVA)	Dimensiones				
	Longitu d, L (m)	Ancho, B (m)	Altura, H (m)	Ancho de puerta, b (m)	Altura de puerta, h (m)
20 – 60	5,0	4,0	3,0	1,5	2,0
100 – 200	6,0	4,5	3,5	1,5	2,0
250 – 550	7,0	5,0	4,0	2,2	2,0
650 – 1500	10,0	5,0	4,0	2,2	2,0

Sistema de ventilación

 Los ductos de ventilación y escape deben estar protegidos. Se suelen usar ventanas con persianas y sombreros chinos. Así como muros para aislar la instalación.

Sistema de ventilación GE

- Entrada de aire: 3 veces el área de la salida del aire
- Salida de aire: 2 veces el área del radiador.

Referencia 6 - Cummins

Disposición de la ventilación

Referencia 6 - Cummins

Equipo eléctrico del Grupo Electrógeno

- El equipo eléctrico del grupo es función del tipo de aplicación y su complejidad, en general se tiene:
 - 1. Tablero de Control del grupo.
 - 2. Tablero de Transferencia.
 - 3. Tablero de Distribución
 - 4. Tablero de carga de baterías.

Diagrama Unifilar

- Ilustran los componentes principales tales como generador(es), equipo de transferencia de energía, interruptores de protección de sobre corriente y el esquema general de conexión.
- Es importante para comunicar la información durante la planeación, instalación, arranque y/o servicio del sistema.

Cortesía Cummings [6]

Instalación de GENSET genérica

- Agradecimientos
- https://youtu.be/6BuSE8Ot98E

Bibliografía

- Grupos electrógenos, capitulo 6 "Instalaciones auxiliares de abastecimiento de energía Instalaciones eléctricas, Tomo 2 – Gunther Siep.
- 2. Selection and Installation Guide for prime and stand by Power Generators sets.
 - Northern Lights diesel and electric power systems
- Power generator selection Guide for prime and stand by Power Generators sets.
 - Northern Lights diesel and electric power systems
- Gen-set (Generator Set) Installation Manual http://home.att.net/~dexter.a.hansen/genset/insttoc.html
- Guía de aplicación e Instalación Dimensionamiento de los Motores y generadores en Aplicaciones de energía Eléctrica CATERPILLAR
- 6. Generadores enfriados por liquido Manual de aplicación **CUMMINGS**