Data-Driven Optimal Control: An Inverse Optimization Model and Algorithm

Long, Youyuan

Supervisor: Peyman Mohajerin Esfahani

Daily Supervisors: Tolga Ok

Pedro Zattoni Scroccaro

Contents

- Introduction of Inverse Optimization (IO)
- Kernel Inverse Optimization Machine (KIOM)
- Sequential Selection Optimization (SSO)
- Numerical Experiments
- Conclusion and Future Study

Introduction of Inverse Optimization (IO)

Inverse Optimization

Given a state (input), the expert determines its optimal action (output) by optimizing an unknown cost

Supervised Learning Point of View

Supervised Learning Point of View

Inverse Optimization Summary

• Hypothesis space: $\{F_{\theta} \mid \theta \in \Theta\}$

• Loss function: $\ell(\hat{u}, \mathbf{u}_{\theta}(\hat{s}))$

• Training:
$$\min_{\boldsymbol{\theta} \in \Theta} \ \kappa \mathcal{R}(\boldsymbol{\theta}) + \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{u}_i, \boldsymbol{u}_{\boldsymbol{\theta}}(\hat{s}_i))$$
 $\hat{\mathcal{D}} = \{(\hat{s}_i, \hat{u}_i)\}_{i=1}^{N}$

Quadratic Hypothesis Space

Quadratic cost:
$$F_{\theta}(\hat{s}, u) = u^T \theta_{uu} u + 2\phi(\hat{s})^T \theta_{su} u, \ \theta := (\theta_{uu}, \theta_{su})$$

$$\min_{u \in \mathbb{U}(\hat{s})} F_{\theta}(\hat{s}, u)$$
 Linear constraints: $\mathbb{U}(\hat{s}) = \{u \in \mathbb{R}^n \mid M(\hat{s})u \leq W(\hat{s})\}$

To ensure the **convexity** of the <u>Forward Problem</u> w.r.t u, extra constraints should be imposed on θ :

$$\theta \in \{(\theta_{uu}, \theta_{su}) \mid \theta_{uu} \succeq I\}$$

Suboptimality Loss Function[1]

$$\ell_{\text{sub}}(\hat{s}, \hat{u}) := F_{\theta}(\hat{s}, \hat{u}) - F_{\theta}(\hat{s}, \underline{u}_{\theta}(\hat{s}))$$

$$u_{\theta}(\hat{s}) = \arg\min_{u \in \mathbb{U}(\hat{s})} F_{\theta}(\hat{s}, u)$$

Suboptimality Loss Function[1]

$$\ell_{\text{sub}}(\hat{s}, \hat{u}) := F_{\theta}(\hat{s}, \hat{u}) - F_{\theta}(\hat{s}, \underline{u}_{\theta}(\hat{s}))$$

$$u_{\theta}(\hat{s}) = \arg\min_{\mathbf{u} \in \mathbb{U}(\hat{s})} F_{\theta}(\hat{s}, \mathbf{u})$$

Regularized training

Convex w.r.t θ !

$$\hat{\mathcal{D}} = \{ (\hat{s}_i, \hat{u}_i) \}_{i=1}^N$$

Quadratic cost:

$$F_{\theta}(\hat{s}, \boldsymbol{u}) = \boldsymbol{u}^T \boldsymbol{\theta}_{\boldsymbol{u}\boldsymbol{u}} \boldsymbol{u} + 2\phi(\hat{s})^T \boldsymbol{\theta}_{\boldsymbol{s}\boldsymbol{u}} \boldsymbol{u}, \ \boldsymbol{\theta}_{\boldsymbol{u}\boldsymbol{u}} \succeq I$$

Suboptimality loss:

$$\ell_{\mathrm{sub}}(\hat{s}, \hat{u}) := F_{\theta}(\hat{s}, \hat{u}) - F_{\theta}(\hat{s}, \underline{u}_{\theta}(\hat{s}))$$

$$u_{\boldsymbol{\theta}}(\hat{s}) = \arg\min_{\boldsymbol{u} \in \mathbb{U}(\hat{s})} F_{\boldsymbol{\theta}}(\hat{s}, \boldsymbol{u})$$

Theorem 1 (LMI reformulation[1])

$$\min_{\boldsymbol{\theta}} k \|\boldsymbol{\theta}_{\boldsymbol{u}\boldsymbol{u}}\|_F^2 + k \|\boldsymbol{\theta}_{\boldsymbol{s}\boldsymbol{u}}\|_F^2 + \frac{1}{N} \sum_{i=1}^N \left\{ F_{\boldsymbol{\theta}}(\hat{s}_i, \hat{u}_i) - \min_{\boldsymbol{u} \in \mathbb{U}(\hat{s}_i)} F_{\boldsymbol{\theta}}(\hat{s}_i, \boldsymbol{u}) \right\} \\
\text{s.t. } \boldsymbol{\theta}_{\boldsymbol{u}\boldsymbol{u}} \succeq I$$

$$\theta := (\theta_{uu}, \theta_{su})$$

Equivalent!

$$\min_{\substack{\boldsymbol{\theta}_{uu},\boldsymbol{\theta}_{su},\boldsymbol{\lambda}_{i},\boldsymbol{\gamma}_{i}}} k \|\boldsymbol{\theta}_{uu}\|_{F}^{2} + k \|\boldsymbol{\theta}_{su}\|_{F}^{2} \\
+ \frac{1}{N} \sum_{i=1}^{N} \left(\hat{u}_{i}^{T} \boldsymbol{\theta}_{uu} \hat{u}_{i} + 2\phi(\hat{s}_{i})^{T} \boldsymbol{\theta}_{su} \hat{u}_{i} + \frac{1}{4} \boldsymbol{\gamma}_{i} + W(\hat{s}_{i})^{\top} \boldsymbol{\lambda}_{i} \right) \\
\text{s.t.} \qquad \boldsymbol{\theta}_{uu} \succeq I, \ \boldsymbol{\lambda}_{i} \in \mathbb{R}_{+}^{d}, \ \boldsymbol{\gamma}_{i} \in \mathbb{R}, \quad \forall i \leq N \\
\begin{bmatrix} \boldsymbol{\theta}_{uu} & M(\hat{s}_{i})^{\top} \boldsymbol{\lambda}_{i} + 2\boldsymbol{\theta}_{su}^{T} \phi(\hat{s}_{i}) \\ * & \boldsymbol{\gamma}_{i} \end{bmatrix} \succeq 0, \quad \forall i \leq N \\
\boldsymbol{\gamma}_{i} & \qquad \qquad \boldsymbol{\gamma}_{i} & \qquad \boldsymbol{\gamma}_{i} & \qquad \boldsymbol{\gamma}_{i} & \boldsymbol{\gamma}_$$

Contributions

 Heavy computational burden by highdimensional augmented feature

Challenges of feature engineering

Data size	Memory (RAM)			
5K	16GB			
10K	64GB			
15K	128GB			
20K	256GB			

Table: The relationship between the dataset size and the required memory on the Halfcheetah-expert task.

Kernel Inverse Optimization Machine (KIOM)

---- Solution for heavy computational burden by highdimensional augmented feature and challenges of feature engineering

Theorem 2 (Kernel reformulation)

$$\min_{\substack{\theta_{uu},\theta_{su},\lambda_{i},\gamma_{i}\\\text{s.t.}}} k\|\theta_{uu}\|_{F}^{2} + k\|\theta_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(\hat{u}_{i}^{T}\theta_{uu}\hat{u}_{i} + 2\phi(\hat{s}_{i})^{T}\theta_{su}\hat{u}_{i} + \frac{1}{4}\gamma_{i} + W\left(\hat{s}_{i}\right)^{T}\lambda_{i}\right)$$
s.t.
$$\theta_{uu} \succeq I, \ \lambda_{i} \in \mathbb{R}_{+}^{d}, \ \gamma_{i} \in \mathbb{R}, \quad \forall i \leq N$$

$$\begin{bmatrix} \theta_{uu} & M\left(\hat{s}_{i}\right)^{T}\lambda_{i} + 2\theta_{su}^{T}\phi(\hat{s}_{i}) \\ * & \gamma_{i} \end{bmatrix} \succeq 0, \quad \forall i \leq N$$
[LMI reformulation]

Theorem 2 (Kernel reformulation)

$$\min_{\substack{\theta_{uu}, \theta_{su}, \lambda_{i}, \gamma_{i} \\ \text{s.t.}}} k \|\theta_{uu}\|_{F}^{2} + k \|\theta_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(\hat{u}_{i}^{T} \theta_{uu} \hat{u}_{i} + 2\phi(\hat{s}_{i})^{T} \theta_{su} \hat{u}_{i} + \frac{1}{4}\gamma_{i} + W(\hat{s}_{i})^{\top} \lambda_{i}\right)$$

$$\text{s.t.} \qquad \theta_{uu} \succeq I_{n}, \ \lambda_{i} \in \mathbb{R}_{+}^{d}, \ \gamma_{i} \in \mathbb{R}, \quad \forall i \leq N$$

$$\begin{bmatrix} \theta_{uu} & M(\hat{s}_{i})^{\top} \lambda_{i} + 2\theta_{su}^{T} \phi(\hat{s}_{i}) \\ * & \gamma_{i} \end{bmatrix} \succeq 0, \quad \forall i \leq N$$
Primal

KION

$$heta_{uu} = -rac{\left(\sum\limits_{i=1}^{N}rac{\hat{u}_{i}\hat{u}_{i}^{T}}{N} - \Lambda_{i}
ight) - P}{2k}$$
 s.t. $heta_{su} = -rac{\sum\limits_{i=1}^{N}\phi(\hat{s}_{i})\left(rac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}
ight)}{k}$ Recover

$$\begin{split} \min_{\substack{P,\Lambda_i,\Gamma_i}} & \frac{1}{4k} \left\| \left(\sum_{i=1}^N \frac{\hat{u}_i \hat{u}_i^T}{N} - \Lambda_i \right) - P \right\|_F^2 - \mathrm{Tr}(P) \text{ Dual} \\ & + \frac{1}{k} \sum_{i=1}^N \sum_{j=1}^N \kappa(\hat{s}_i, \hat{s}_j) \left(\frac{\hat{u}_i}{N} - 2\Gamma_i \right)^T \left(\frac{\hat{u}_j}{N} - 2\Gamma_j \right) \\ \text{s.t.} & P \succeq 0, \ \frac{W(\hat{s}_i)}{N} - 2M(\hat{s}_i)\Gamma_i \geq 0, \quad \forall i \leq N \\ & \left[\frac{\Lambda_i}{*} \quad \frac{\Gamma_i}{4N} \right] \succeq 0, \quad \forall i \leq N \\ & \kappa(\hat{s}_i, \hat{s}_j) = \phi(\hat{s}_i)^T \phi(\hat{s}_j) \end{split}$$

Theorem 2 (Kernel reformulation)

$$\begin{aligned} & \text{KIOM} \\ & \theta_{uu} = -\frac{\left(\sum\limits_{i=1}^{N}\frac{\hat{u}_{i}\hat{u}_{i}^{T}}{N} - \Lambda_{i}\right) - P}{2k} \\ & \theta_{su} = -\frac{\sum\limits_{i=1}^{N}\phi(\hat{s}_{i})\left(\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}\right)}{k} \\ & \text{s.t.} \quad \frac{1}{4k}\left\|\left(\sum\limits_{i=1}^{N}\frac{\hat{u}_{i}\hat{u}_{i}^{T}}{N} - \Lambda_{i}\right) - P\right\|_{F}^{2} - \text{Tr}(P) \\ & +\frac{1}{k}\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}\kappa(\hat{s}_{i},\hat{s}_{j})\left(\frac{\hat{u}_{i}}{N} - 2\Gamma_{i}\right)^{T}\left(\frac{\hat{u}_{j}}{N} - 2\Gamma_{j}\right) \\ & \text{s.t.} \quad P \succeq 0, \quad \frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i})\Gamma_{i} \geq 0, \quad \forall i \leq N \\ & \left[\frac{\Lambda_{i}}{k} - \frac{\Gamma_{i}}{4N}\right] \succeq 0, \quad \forall i \leq N \\ & \kappa(\hat{s}_{i},\hat{s}_{j}) = \phi(\hat{s}_{i})^{T}\phi(\hat{s}_{j}) \end{aligned}$$

Forward problem:
$$\min_{\mathbf{u} \in \mathbb{U}(s)} \mathbf{u}^T \theta_{uu} \mathbf{u} + 2\phi(s)^T \theta_{su} \mathbf{u}$$

$$u \in \mathbb{U}(s)$$

$$-\frac{1}{k} \sum_{i=1}^{N} \kappa(s, \hat{s}_i) \left(\frac{\hat{u}_i^T}{N} - 2\Gamma_i^T\right)$$

Does the KIOM model address the first two deficiencies mentioned before?

 Heavy computational burden by high-dimensional augmented feature

Challenges of feature engineering

Variant: A Simpler Version with $\theta_{uu} = I$

$$\theta_{uu} = -\frac{\left(\sum\limits_{i=1}^{N}\frac{\hat{u}_{i}\hat{u}_{i}^{T}}{N} - \Lambda_{i}\right) - P}{2k}$$

$$\theta_{su} = -\frac{\sum\limits_{i=1}^{N}\phi(\hat{s}_{i})\left(\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}\right)}{k}$$

$$\begin{aligned} & \underbrace{KIOM}_{l} \\ & \theta_{uu} = -\frac{\left(\sum\limits_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i}\right) - P}{2k} \\ & \theta_{uu} = -\frac{\sum\limits_{i=1}^{N} \phi(\hat{s}_{i}) \left(\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}\right)}{2k} \\ & \theta_{su} = -\frac{\sum\limits_{i=1}^{N} \phi(\hat{s}_{i}) \left(\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}\right)}{k} \\ & \text{s.t.} \end{aligned} \quad \begin{aligned} & \underset{l}{\text{min}} \quad \frac{1}{4k} \left\| \left(\sum\limits_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i}\right) - P \right\|_{F}^{2} - \text{Tr}(P) \\ & + \frac{1}{k} \sum\limits_{i=1}^{N} \sum\limits_{j=1}^{N} \kappa(\hat{s}_{i}, \hat{s}_{j}) \left(\frac{\hat{u}_{i}}{N} - 2\Gamma_{i}\right)^{T} \left(\frac{\hat{u}_{j}}{N} - 2\Gamma_{j}\right) \\ & \text{s.t.} \end{aligned} \quad \begin{aligned} & P \succeq 0, \quad \frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i})\Gamma_{i} \geq 0, \quad \forall i \leq N \\ & \left[\frac{\Lambda_{i}}{N} - \frac{\Gamma_{i}}{N}\right] \succeq 0, \quad \forall i \leq N \end{aligned}$$

Simple KIOM

$$\min_{\substack{\Lambda_{i},\Gamma_{i} \\ \text{s.t.}}} \frac{\frac{1}{k} \sum_{i=1}^{N} \sum_{j=1}^{N} \kappa(\hat{s}_{i}, \hat{s}_{j}) \left(\frac{\hat{u}_{i}}{N} - 2\Gamma_{i}\right)^{T} \left(\frac{\hat{u}_{j}}{N} - 2\Gamma_{j}\right) + \sum_{i=1}^{N} \text{Tr}(\Lambda_{i})}{\text{s.t.}}$$
s.t.
$$\frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i})\Gamma_{i} \geq 0, \quad \forall i \leq N$$

$$\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \frac{1}{4N} \end{bmatrix} \succeq 0, \quad \forall i \leq N$$

Scalability issues caused by large datasets

Data size	Memory (RAM)		
5K	16GB		
10K	64GB		
15K	128GB		
20K	256GB		

Table: The relationship between the dataset size and the required memory on the Halfcheetah-expert task.

Sequential Selection Optimization (SSO)

---- Solution for Scalability issues caused by large datasets

Coordinate Descent Method

Coupled cost, decoupled constraints

$$\min_{x^1,...x^N} f(x^1,...,x^N)$$

s.t. $x^i \in \mathcal{X}^i, \forall i \leq N$

Coordinate descent method

$$x_{k+1}^{i} = \arg\min_{\xi \in X_{i}} f\left(x_{k+1}^{1}, ..., x_{k+1}^{i-1}, \xi, x_{k}^{i+1}, ..., x_{k}^{N}\right)$$

Why Does the Coordinate Descent (CD) Method Suit?

Simple KIOM problem

$$\min_{\substack{\Lambda_{i}, \Gamma_{i} \\ \text{s.t.}}} \frac{\frac{1}{k} \sum_{i=1}^{N} \sum_{j=1}^{N} \kappa(\hat{s}_{i}, \hat{s}_{j}) \left(\frac{\hat{u}_{i}}{N} - 2\Gamma_{i}\right)^{T} \left(\frac{\hat{u}_{j}}{N} - 2\Gamma_{j}\right) + \sum_{i=1}^{N} \text{Tr}(\Lambda_{i}) \\
\text{s.t.} \frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i})\Gamma_{i} \geq 0, \quad \forall i \leq N \\
\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \frac{1}{4N} \end{bmatrix} \geq 0, \quad \forall i \leq N$$

$$\sum_{i=1}^{N} \text{Tr}(\Lambda_{i}) \\
\text{s.t. } x^{i} \in \mathcal{X}^{i}, \forall i \leq N$$

Definition of coordinate

coordinate
$$i := \{\Lambda_i, \Gamma_i\}$$

Each coordinate is decoupled in constraints!

Two heuristics for SSO

a. Heuristics for choosing which coordinates to optimize

Given the current values of $\{\Lambda_i, \Gamma_i\}_{i=1}^N$, we choose \boldsymbol{p} coordinates that satisfy the condition

$$\frac{W(\hat{s}_i)}{N} - 2M(\hat{s}_i) \Gamma_i > 0$$

and have the largest KKT violators which is defined as

$$\begin{aligned} \mathbf{KKT_violator}(i) &= \left| \mathrm{Tr} \left(\begin{bmatrix} \mathbf{\Lambda_i} & \mathbf{\Gamma_i} \\ * & \frac{1}{4N} \end{bmatrix} \begin{bmatrix} I_n & 2\theta_{su}^\top \phi(\hat{s}_i) \\ * & \|2\theta_{su}^\top \phi(\hat{s}_i)\|_2^2 \end{bmatrix} \right) \right|. \end{aligned}$$

Two heuristics for SSO

b. Warm-up trick for improved initial guess

SSO Algorithm

Algorithm 1 SSO

- 1: Initialize variable: $\{\Lambda_i, \Gamma_i\}_{i=1,...,N} \leftarrow \text{WarmUp}(\{\hat{s}_i, \hat{u}_i\}_{i=1,...N})$
- 2: **for** iteration = 1 to T **do**
- 3: $\{\Lambda_{a_i}, \Gamma_{a_i}\}_{i=1,...,p} \leftarrow \text{HeuristicSelection}(\{\hat{s}_i, \hat{u}_i\}_{i=1,...,N}, \{\Lambda_i, \Gamma_i\}_{i=1,...,N})$
- 4: Update $\{\Lambda_{a_i}, \Gamma_{a_i}\}_{i=1,...,p}$ (Update selected coordinates)
- 5: end for

Numerical Experiments

Numerical Experiments

Experimental environment

2d HalfCheetah
. 4

Task	Action Dim	State Dim	
Hopper	3	11	
Walker2d	6	17	
HalfCheetah	6	17	

Dataset

Solver

Expert dataset

Medium dataset

Open-source

Parallel processing

Performance Evaluation of KIOM

Task	кіом	10	BC(TD3+BC) ^[1]	BC(CQL) ^[2]	Teacher agent
Hopper-expert	109.9(5k)	31.8	111.5	109.0	108.5
Hopper-medium	50.2 (5k)	20.6	30.0	29.0	44.3
Walker2d-expert	108.5(10k)	0.9	56.0	125.7	107.1
Walker2d-medium	74.6 (5k)	0.0	11.4	6.6	62.1
Halfcheetah-expert	84.4(10k)	-1.7	105.2	107.0	88.1
Halfcheetah-medium	39.0 (5k)	-3.1	36.6	36.1	40.7

^[1] Fujimoto S, Gu S S. A minimalist approach to offline reinforcement learning[J]. Advances in neural information processing systems, 2021, 34: 20132-20145.

Performance Evaluation of KIOM

Task	KIOM	10	BC(TD3+BC) ^[1]	BC(CQL) ^[2]	Teacher agent
Hopper-expert	109.9 (5k)	31.8	111.5	109.0	108.5
Hopper-medium	50.2 (5k)	20.6	30.0	29.0	44.3
Walker2d-expert	108.5(10k)	0.9	56.0	125.7	107.1
Walker2d-medium	74.6 (5k)	0.0	11.4	6.6	62.1
Halfcheetah-expert	84.4(10k)	-1.7	105.2	107.0	88.1
Halfcheetah-medium	39.0 (5k)	-3.1	36.6	36.1	40.7

Halfcheetah

31

Ю

Performance Evaluation of SSO

Tools	scs		SSO		
Task	Cost Value	Score	Cost Value	Score	
Hopper-expert	185.219	109.9	185.220	110.2	
Hopper-medium	218.761	50.2	218.761	51.8	
Walker2d-expert	140.121	108.5	140.121	109.2	
Walker2d-medium	151.117	74.6	151.117	74.9	
Halfcheetah-expert	165.041	84.4	165.041	83.8	
Halfcheetah-medium	188.184	39.0	188.184	39.7	

Performance Evaluation of SSO

Task	SCS		SSO	
Task	Cost Value	Score	Cost Value	Score
Hopper-expert	185.219	109.9	185.220	110.2
Hopper-medium	218.761	50.2	218.761	51.8
Walker2d-expert	140.121	108.5	140.121	109.2
Walker2d-medium	151.117	74.6	151.117	74.9
Halfcheetah-expert	165.041	84.4	165.041	83.8
Halfcheetah-medium	188.184	39.0	188.184	39.7

Performance Evaluation of SSO

a. Performance evaluation

Iteration: 0 Iteration: 1

Task	SCS		SSO		
IdSK	Cost Value	Score	Cost Value	Score	
Hopper-expert	185.219	109.9	185.220	110.2	
Hopper-medium	218.761	50.2	218.761	51.8	
Walker2d-expert	140.121	108.5	140.121	109.2	
Walker2d-medium	151.117	74.6	151.117	74.9	
Halfcheetah-expert	165.041	84.4	165.041	83.8	
Halfcheetah-medium	188.184	39.0	188.184	39.7	

Ablation studies of SSO

Conclusion and Future Study

Conclusion and Future Study

Conclusion

Introduction of Inverse Optimization

Quadratic hypothesis space Suboptimality loss

IO Model

Primal

Future study

Establish the convergence analysis for the SSO

Dual

KIOM

Simple

KIOM

Kernel

Method

 $\theta_{uu} = I$

Thank you for your attention

Long, Youyuan

