

CNN模型訓練與評估

> https://www.kaggle.com/c/plant-pathology-2020-fgvc7

>說明

影響農作物的許多疾病的誤診, 會造成化學藥品的濫用, 甚至導致耐藥菌病原體的出現。

當前由人來判定疾病既耗時又昂貴,儘管基於**電腦視覺的模型**有 望提高效率,但是由於受感染組織的**年龄、遺傳變異**和樹木內的 光照條件等,導致疾病檢測的準確率差異很大。

- **>目標:**"植物病理學挑戰"的目標是使用訓練數據集的圖像來訓練模型,達到下列目標。
 - ✓ 將測試數據集中的圖像準確分類為不同的患病或健康葉片類別
 - ✓ 有時單葉不止一種疾病,要能準確區分多種疾病
 - ✓ 處理少見的類別和新症狀
 - ✓ 解決深度感知問題,例如葉子的角度光線、陰影和生理年龄
 - ✓ 導入專家知識,協助搜索相關特徵

Icon made by Pixelmeetup from www.flaticon.com

> 數據來源

- 由Zach Guillian所收集
- 數據集為蘋果葉,有健康的葉子、感染了蘋果鏽 (apple rust)的葉子、患有蘋果黑星病(apple scab) 的葉子和感染多重疾病的葉子。

>資料檔

train.csv

	Α	В	С	D	Е	F
1	image_id	healthy	multiple_d	rust	scab	
	Train_0	0	0	0	1	
3	Train_1	0	1	0	0	

test.csv

	Α	В
1	image_id	
2	Test_0	
3	Test_1	

sample_submission.csv

	Α	В	С	D	Е	F
1	image_id	healthy	multiple_c	rust	scab	
2	Test_0	0.25	0.25	0.25	0.25	
3	Test_1	0.25	0.25	0.25	0.25	

>葉子照片數量

• healthy: 516

• rust: 622

• scab: 592

multiple_diseases: 91

- > 資料問題分析
 - 照片大小: 2048 X 1365
 - 照片數量少,且多重疾病者不平均
 - 照片光線、背景物(樹枝、水果、手)等的干擾

• 病徵色澤明顯

CNN模型建置流程

1. 資料前處理

2. 決定模型架構與參數

3. 模型編譯和訓練

4. 模型評估

5. 調整超參數

7. 進行預測

6. 重複步驟2~5 直到模型效率無法再改進

資料前處理

- > 影像資料擴增 (Data augmentation)
 - 旋轉 (rotation)
 - 位移 (shift)
 - 放大縮小 (zoom)
 - 亮度 (brightness)

> 使用套件

```
from numpy import expand_dims
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import ImageDataGenerator
```


機器學習實務

>旋轉

```
# rotation augmentation
data = img_to_array(img)
# expand dimension to one sample
samples = expand dims(data, 0)
# create image data augmentation generator
datagen = ImageDataGenerator(rotation range=80)
# prepare iterator
it = datagen.flow(samples, batch_size=1)
# generate samples
for i in range(2):
    # generate batch of images
    batch = it.next()
   # convert to unsigned integers for viewing
    image = batch[0].astype('uint8')
```


>旋轉

>位移

```
# horizontal shift augmentation
data = img_to_array(img)
# expand dimension to one sample
samples = expand dims(data, 0)
# create image data augmentation generator
datagen = ImageDataGenerator(width_shift_range=[-200,200])
# prepare iterator
it = datagen.flow(samples, batch_size=1)
# generate samples
for i in range(2):
    # generate batch of images
    batch = it.next()
    # convert to unsigned integers for viewing
    image = batch[0].astype('uint8')
```


>位移

> 放大縮小

```
# zoom augmentation
data = img_to_array(img)
# expand dimension to one sample
samples = expand_dims(data, 0)
# create image data augmentation generator
datagen = ImageDataGenerator(zoom_range=[0.5,1.0])
# prepare iterator
it = datagen.flow(samples, batch_size=1)
# generate samples
for i in range(2):
    # generate batch of images
    batch = it.next()
    # convert to unsigned integers for viewing
    image = batch[0].astype('uint8')
```


> 放大縮小

> 亮度

```
# brightness augmentation
data = img_to_array(img)
# expand dimension to one sample
samples = expand_dims(data, 0)
# create image data augmentation generator
datagen = ImageDataGenerator(brightness_range=[0.2,1.0])
# prepare iterator
it = datagen.flow(samples, batch_size=1)
# generate samples
for i in range(2):
    # generate batch of images
    batch = it.next()
    # convert to unsigned integers for viewing
    image = batch[0].astype('uint8')
```


> 亮度

模型架構

>種類

- 1. 自訂模型(單一模型,四種類別)+圖片不擴增
- 2. 自訂模型(單一模型,四種類別)+**圖片擴增 + class_weight**
- 3. 自訂模型(三模型:是否healthy?是否有rust?是否有scab)+ 圖片不擴增 + class_weight
- 4. 自訂模型 (三模型:是否healthy?是否有rust?是否有scab) + **圖片擴增** + class_weight

>自訂模型(單一模型,四種類別)+**圖片不擴增**

Layer (type)	Output	Shape	! 		Param #
conv2d_1 (Conv2D)	(None,	64, 6	4,	64)	1792
conv2d_2 (Conv2D)	(None,	64, 6	4,	64)	36928
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None,	32, 3	2,	64)	0
dropout_1 (Dropout)	(None,	32, 3	2,	64)	0
conv2d_3 (Conv2D)	(None,	32, 3	2,	128)	73856
conv2d_4 (Conv2D)	(None,	32, 3	2,	128)	147584
max_pooling2d_2 (MaxPooling2	(None,	16, 1	6,	128)	0

>自訂模型(單一模型,四種類別)+**圖片不擴增**

dropout_2 (Dropout)	(None,	16, 16, 128)	0
conv2d_5 (Conv2D)	(None,	16, 16, 256)	295168
conv2d_6 (Conv2D)	(None,	16, 16, 256)	590080
<pre>max_pooling2d_3 (MaxPooling2</pre>	(None,	8, 8, 256)	0
dropout_3 (Dropout)	(None,	8, 8, 256)	0
flatten_1 (Flatten)	(None,	16384)	0

>自訂模型(單一模型,四種類別)+**圖片不擴增**

dense_1 (Dense)	(None, 128)	2097280
dropout_4 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 64)	8256
dropout_5 (Dropout)	(None, 64)	0
dense_3 (Dense)	(None, 32)	2080
dropout_6 (Dropout)	(None, 32)	0
dense_4 (Dense)	(None, 4)	132

- >自訂模型(單一模型,四種類別)+**圖片不擴增**
- >訓練結果

- >自訂模型(單一模型,四種類別)+**圖片擴增**+ class_weight
- >計算class_weight

```
from sklearn.utils import class_weight
class_weights =
class_weight.compute_class_weight('balanced',np.unique(y),y)
```

>訓練結果

- >自訂模型(三模型:是否healthy?是否有rust?是否有scab)+**圖片不擴增**+class_weight
- >訓練結果

healthy

rust

scab

- >自訂模型(三模型:是否healthy?是否有rust?是否有scab)+**圖片擴增**+class_weight
- >訓練結果

healthy

rust

scab

進行預測

> 將預測結果上傳Kaggle平台

機器學習實務

>訓練資料少

- Data augmentation
 - ✓影像處理(旋轉、位移、亮度等),效果有限
 - ✓生成對抗網路(GAN)
- Segmentation (U-net, R-CNN等)

>資料不平均

- 使用類別權重 (class weight)
- 擴增或減少資料