

Predicting electronic screening for fast Koopmans spectral functionals

Edward Linscott¹², Yannick Schubert³, Sandra Luber³, and Nicola Marzari¹²⁴

¹Center for Scientific Computing, Theory and Data, Paul Scherrer Institute, Switzerland ²National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Paul Scherrer Institute, Switzerland ³Department of Chemistry, University of Zurich, Switzerland ⁴Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne, Switzerland

Summary

- Koopmans functionals are a powerful tool for predicting spectral properties of materials (as accurate as state-of-the-art GW)
- However, they rely on electronic screening being captured by "screening parameters"
- We construct a machine-learning model to predict these parameters
- Minimal training data is required

Screening parameters

Insert here a figure of the screening parameters being required (see CECAM talk)

The use-case

Insert here the figure from MARVEL meeting

The model

Descriptors inspired by SOAP descriptors

 $ho_i(m{r})
ightarrow$

Network simply ridge regression!

Accuracy

- Model predicts screening parameters with high accuracy
- Koopmans functionals with predicted parameters are as accurate as GW
- Model is transferable to new materials

Speed-up

Transferability

References

