

4.3inch e-Paper 用户手册

概述

4.3inch e-Paper 是微雪电子开发的一款串口电子墨水屏模块。本模块屏蔽了电子墨水屏底层复杂的细节,通过串口就可以完成显示功能,包括几何图形绘制、文字、图片显示。最大限度释放你的创造力。

4.3 inch e-Paper 具有以下特点:

- 内置字库,支持 32、48、64 点阵 GBK 中文字库; 32、48、64 点阵英文字库
- 内置 128MB NandFlash, 字库和图片数据既可以放在外部 TF 卡, 也可通过串口命令保存到内部 NandFlash
- 4阶灰度显示,分辨率高达 800x600
- 可自定义串口波特率,系统上电后默认 115200
- 系统供电电压 3.3V 至 5.5V,逻辑电平兼容
- 低功耗,当供电电压为 5V 时,系统睡眠后电流小于 5mA
- 配套上位机软件,直接使用电脑就可以完成显示

目录

概〕	戱			1
目录	录			2
1.	重要提示	芹 .		4
2.	如何使用	月		5
	2. 1.	位	图文件的生成	5
	2. 2.	上1	立机的使用	5
	2. 2.	. 1.	硬件连接	5
	2. 2.	. 2.	安装上位机软件	5
	2. 2.	. 3.	字库和图片的导入	7
	2. 2.	. 4.	显示测试	9
	2. 3.	Arc	lu i no	11
	2. 3. 1.		硬件连接	11
	2. 3.	. 2.	程序编译下载	11
	2. 4.	XNL	ICLE0-F103RB	11
	2. 4.	. 1.	硬件连接	11
	2. 4.	. 2.	程序编译下载	11
	2. 5. Ope		n103Z	12
	2. 5.	. 1.	硬件连接	12
	2. 5.	. 2.	程序编译下载	12
3.	串口通信	言协议	ζ	13
	3. 1.	基本	本约定	13
	3. 1.	. 1.	串口说明	13

	3. 1. 2.	指令帧格式	13
		传输顺序	
	3. 1. 4.	指令参数约定	13
	3. 1. 5.	颜色定义	13
	3. 2. 指令	〉集	14
	3. 2. 1.	指令速查表	14
	3. 2. 2.	指令详解	16
4	附录		21

1. 重要提示

● 系统上电

系统上电后,会执行一次刷屏操作,将屏幕刷新为白色;如果没有外部 TF 卡,状态指示灯会闪烁 3 次并进入常亮;如果有外部 TF 卡,状态指示灯直接进入常亮。

● 存储

系统上电后默认从内部 NandFlash 读取字库和图片信息。

当使用外部 TF 卡时,必须格式化为 FAT32 文件系统,并且预先存入微雪提供的字库和要显示的 图片文件:

当使用内部 NandFlash 时, 先要将字库和图片文件导入, 具体方法参考下文 2.2 节。

● 状态指示

正常工作时指示灯常亮,将系统设置为睡眠状态时,指示灯灭。此时需要外部单片机向 WAKE_UP 引脚产生一个上升脉冲唤醒系统,唤醒后指示灯常亮。

● 字库

系统内置 32、48、64 点阵的英文字库,在没有 TF 卡或者 NandFlash 的情况下都能正常使用; 32、48、64 点阵的中文字库,需要先将中文字库文件存入 TF 卡或者 NandFlash 中才能使用。

● 图片显示

支持 bmp 和 jpg 格式的图片。

图片的命名必须采用大写英文字符,并且文件名(包括.号)长度不能超过 **10** 个字符,例如: PIC7.BMP、PIC789.BMP 正确,

PIC7890.BMP 错误。

如果无法显示图片,则请尝试用 Windows 系统自带的画图工具打开并重新保存,然后重新解码。

2. 如何使用

2.1. 位图文件的生成

- 1) 确保图片尺寸小于 800x600, 用 windows 系统自带的画图工具打开需要转换的图片。
- 2) 另存为 bmp 格式,保存类型选择 24 位位图。或者另存为 .jpg 格式。如遇.jpg 文件无法正常解码,则使用 Windows 系统自带的画图工具打开并重新保存,然后重新解码。

2.2. 上位机的使用

微雪电子为该模块专门开发一款上位机软件,通过电脑就可以完成屏幕的基本显示,方便用户使用。为确保上位机和模块能正常通信,需要准备一个 USB 转串口模块,这里以 CP2102 USB UART Board(mini)串口模块为例进行说明。关于该模块详细信息请参考附录。

2.2.1. 硬件连接

- 1) 使用跳线帽配置 USB 转串口模块的 VCCIO 电压为 5V
- 2) 连线信息如下表所示:

CP2102 USB UART Board	4.3inch e-Paper
VCCIO	红色
GND	黑色
RXD	白色
TXD	绿色

3) 用 USB 线将串口模块与电脑连接,此时墨水屏上电,指示灯点亮

2.2.2. 安装上位机软件

将软件解压到安装目录,双击"install.bat",弹出如下对话框后,说明软件安装成功。

双击 EPSCOMM.exe 即可打开软件:

查看设备管理器,并设置对应的串口号,打开串口,单击 **握手** 按钮,模块返回 OK,说明通信正常。

2.2.3. 字库和图片的导入

- 1) 准备一张 TF 卡(这里以 8G 为例),将卡格式化为 FAT32 文件系统,分配单元大小选择 4096 字节。将配套资料提供的字库和图片文件复制到卡内,将卡插入显示屏模块中。
- 2) 单击 **载入字库**,模块指示灯闪烁 3 次,开始导入;等待导入结束,指示灯闪烁 3 次,并返回"OK",说明字库导入成功。

3) 单击 **载入图片**,模块指示灯闪烁 3 次,开始导入;等待导入结束,指示灯闪烁 3 次,并返回"OK",说明图片导入成功。

备注:

- [1] 只需单击一次,单击的同时需要观察指示灯,如果闪烁,说明已经开始导入,等待导入结束。
- [2] 出厂时默认已经导入字库文件,所以一般情况无需再重复载入字库,只需载入自定义的图片文件。
- [3] 字库或者图片的导入不受当前存储区设置的影响,无论存储区设置成Nand或者Micro SD卡, 文件导入方向均为 Micro SD 卡到 Nand Flash。

2.2.4. 显示测试

1) 显示文字

在输入框输入: "你好世界 Hello,World!",设置 X1,Y1 坐标均为 100,点击 **显示字符**,再点击 **刷新**,输入的文字就会出现在屏幕上。

2) 显示图片

输入要显示的图片名称,例如"PIC7.BMP",设置 X1, Y1 坐标均为 0, 点击 **显示图片**,再点击 **刷新**,图片就会显示到屏幕上。

3) 显示图形

绘制图形功能需要输入的参数如下表:

	坐标(X1, Y1)	坐标(X2,Y2)	坐标(X3, Y3)	半径 R
画点	•			
画线	•	•		
画矩形	•	•		
填充矩形	•	•		
画圆	•			•
画填充圆	•			•
画三角形	•	•	•	
画填充三角形	•	•	•	

4) 其他设置

- 设置存储区,可以设置字库和图片文件的存储位置,默认为 NandFlash
- 设置显示方向
- 设置绘图颜色,前景色代表文字的颜色,背景色代表文字背景颜色。默认前黑后白
- 设置波特率,主机与模块的通信速率,上电后默认 115200,不建议经常修改。
- 设置英文字号,可以设置英文字体的点阵大小
- 设置中文字号,可以设置中文字体的点阵大小

备注:

- [1] 每个命令执行完成后都会返回相应的结果,一般都返回"OK"
- [2] 每次画点、画线、显示字符、显示图片等等后,都必须点击一次 **刷新** 才能将内容更新到屏幕上。
- [3] 由于图片数据比较大,所以点击**显示图片** 后需要等待一段时间才能返回结果,然后再点击一次 **刷新** 才能将内容更新到屏幕上。

2.3. ARDUINO

2.3.1. 硬件连接

以微雪 Arduino UNO PLUS 开发板为例,关于开发板详细信息请参考附录。具体连线如下表所示:

Arduino UNO PLUS	4.3inch e-Paper
5V	红色
GND	黑色
RX/D0	白色
TX/D1	绿色
D2	黄色
复位引脚, 可选择不接	蓝色

2.3.2. 程序编译下载

打开例程提供的 Arduino 程序,编译并下载。注意:在下载程序的时候应拔掉白色线。

2.4. XNUCLEO-F103RB

2.4.1. 硬件连接

以微雪 XNUCLEO-F103RB 开发板为例,关于开发板详细信息请参考附录。具体连线如下表所示:

XNUCLEO-F103RB	4.3inch e-Paper
5V	红色
GND	黑色
RX/D0	白色
TX/D1	绿色
D2	黄色
复位引脚, 可选择不接	蓝色

2.4.2. 程序编译下载

打开例程提供的 XNUCLEO-F103RB 程序,编译并下载。

注意:

需要将 XNUCLEO-F103RB 开发板上面的 JP4 接口,用跳线帽配置为 A 和 B 相连。

2.5. OPEN103Z

2.5.1. 硬件连接

以微雪 Open103Z 开发板为例,关于开发板详细信息请参考附录。具体连线如下表所示:

Open103Z	4.3inch e-Paper
5V	红色
GND	黑色
PA10	白色
PA9	绿色
PA11	黄色
复位引脚, 可选择不接	蓝色

2.5.2. 程序编译下载

打开例程提供的 Open103Z 程序,编译并下载。

3. 串口通信协议

3.1. 基本约定

3.1.1. 串口说明

该墨水屏模块采用异步、全双工串口(UART)通信,可自定义波特率大小。

3.1.2. 指令帧格式

指令	0xA5	0xXX XX	0xXX	0xXX	0xCC 33 C3 3C	0xXX
含义	帧头	帧长度[1]	指令类	参数或数	帧尾	校验
(说明)	(1字	(2字节)	型	据	(固定4字节)	(1字
	节)		(1字	(0~1024		节)[2]
			节)	字节)		

[1] 帧长度从帧头开始计算,一直到校验。

[2] 校验方法为帧头到帧尾所有字节依次进行异或操作, 最终结果作为校验字节。

3.1.3. 传输顺序

采用网络字节序,高字节在前,低字节在后。例如传输一个参数 0x1234,先发送 0x12,后发送 0x34。

3.1.4. 指令参数约定

● Byte: 8 位, 单字节

● Short: 16 位,双字节

● Dword: 32 位, 四字节

● String: 以 0 结尾的字符串

3.1.5. 颜色定义

本墨水屏显示终端支持 4 阶灰度显示,每个像素点采用 2bits 来表示:

0x00: 黑

0x01: 深灰

0x02: 浅灰

0x03: 白

3.2. 指令集

3.2.1. 指令速查表

功能类别	帧长度	指令	指令参数	说明	
	0x0009	0x00	无	握手指令,模块准备好,返回"OK"	
	0x000D	0x01	Dword: 设置波特率值	设置串口通信波特率	
	0x0009	0x02	无	模块返回当前波特率值, ASCII 码格式	
				返回当前使用的存储区	
	0x0009	0x06	无	0: NandFlash	
				1: MicroSD	
	0x000A	0x07	Byte: 设置存储区	0x00: NandFlash	
	UXUUUA	UXU1	Dyte. 以且行油区	0x01: MicroSD	
	0x0009	0x08	无	系统睡眠	
	0x0009	0x0A	无	立即刷新命令	
系统控制				返回当前的屏幕方向	
				0x00: 正常	
	0x0009	0x0C	无	0x01: 90° 旋转	
				0x02: 180° 旋转	
				0x03: 270° 旋转	
	0x000A	0x0D	Byte: 设置显示方向	0x00: 正常	
				0x01: 90° 旋转	
				0x02: 180° 旋转	
				0x03: 270° 旋转	
	0x0009	0x0E	无	载入字库: 48MB	
	0x0009	0x0F	无	载入图片: 80MB	
	0x000B	0x10	ByteO:前景色	设置绘图颜色	
	ОЛОООВ	ONTO	Bytel:背景色	XE.ABINC	
	0x0009	0x11	无	返回当前绘图颜色	
				读英文字号	
	0x0009	0x1C	无	1: 32 点阵	
显示参数	onooco	ONIC	76	2: 48 点阵	
配置				3: 64 点阵	
				读中文字号	
	0x0009	0x1D	无	1: 32 点阵	
	0x0009),	2: 48 点阵	
				3: 64 点阵	
	0x000A	0x1E	Byte0: 英文字号	设置英文字号	

			<u> </u>	Τ
				0x01: 32 点阵
				0x02: 48 点阵
				0x03: 64 点阵
				设置中文字号
	0x000A	0x1F	ByteO:中文字号	0x01: 32 点阵
	ONOGON	VII.I.	Dy (00). 12,13	0x02: 48 点阵
				0x03: 64 点阵
	0x000D	0x20	Short0: x 坐标	在指定坐标点显示一个像素
	ОХОООД	0.20	Short1: y 坐标	默认前景色
			Short0: x0 坐标	
	0x0011	0x22	Short1: y0 坐标	画直线
	0x0011	UXZZ	Short2: x1 坐标	画 直 线
			Short3: y1 坐标	
			Short0: x0 坐标	
	0x0011	094	Short1: y0 坐标	技大,人作亚豆
	0x0011	0x24	Short2: x1 坐标	填充一个矩形区
			Short3: y1 坐标	
	0x0011	0x25	Short0: x0 坐标	
			Short1: y0 坐标	The AMERICA
			Short2: x1 坐标	画一个矩形
			Short3: y1 坐标	
	0x000F	0x26	Short0: x0 坐标	
			Short1: y0 坐标	画圆
基本绘图			Short2: r 半径	
	0x000F		Short0: x0 坐标	
		0x27	Short1: y0 坐标	填充圆
			Short2: r 半径	
			Short0: x0 坐标	
			Short1: y0 坐标	
	0.0015	0.00	Short2: x1 坐标	=-4 7/
	0x0015	0x28	Short3: y1 坐标	画三角形
			Short4: x2 坐标	
			Short5: y2 坐标	
			Short0: x0 坐标	
			Short1: y0 坐标	
		0.00	Short2: x1 坐标	
	0x0015	0x29	Short3: y1 坐标	填充三角形
			Short4: x2 坐标	
			Short5: y2 坐标	
	0x0009	0x2E	无	用背景色清屏
	0x0009	0x2E		用背景色清屏

文字显示	0x0D + string length	0x30	Short0: x 坐标 Short1: y 坐标 String: 字符串	 支持中英混合显示 字符串最大长度= 1024 - 4
图片显示 (仅支持 位图)	0x0D + string length	0x70	Short0: x0 坐标 Short1: y0 坐标 String: 位图文件名	支持位图文件格式: .BMP、.JPG

备注:

[1] string length 是以 0 结尾的字符串长度, 计算长度的时候包含结尾的 0。

[2] 图片的命名必须采用大写英文字符,并且文件名(包括.号)长度不能超过10个字符。计算长度的时候包含结尾的0。长度不大于11个字符。

3.2.2. 指令详解

● 系统控制

1) 握手指令(0x00)

系统上电后,用户可发送该指令到终端,以判断是否就绪,终端就绪后才能正常接收指令数据。

指令示例: A5 00 09 00 CC 33 C3 3C AC

指令说明: 握手指令

2) 设置波特率(0x01)

系统上电默认波特率为: 115200,可使用该命令设置需要的通信波特率。主机命令发送后,需要等待 100ms,模块才会返回设置结果;可以留给主机时间改变自身的波特率

指令示例: A5 00 0D 01 00 00 25 80 CC 33 C3 3C 0C

指令说明: 0x2580: 设置波特率为9600。波特率需要的参数为4个字节,故需要补齐。

3) 读取当前波特率(0x02)

指令示例: A5 00 09 02 CC 33 C3 3C AE

指令说明:读取系统当前波特率。

4) 返回当前正在使用的存储区(0x06)

指令示例: A5 00 09 06 CC 33 C3 3C AA

指令说明: 返回 0x00,当前的存储区为内部 NandFlash;返回 0x01,当前的存储区为外部 TF卡

5) 设置系统存储区(0x07)

配置系统当前的工作存储区,字库和图片文件既可以存放在外部 TF 卡,也可以导入到内部 NandFlash。

指令示例: A5 00 0A 07 00 CC 33 C3 3C A8

指令说明: 0x00: 设置当前存储区为 NandFlash

6) 系统睡眠(0x08)

使系统进入睡眠模式,降低系统功耗。进入睡眠模式后,状态指示灯熄灭,不再响应任何命令,只能通过外部 WAKE UP 引脚唤醒。

指令示例: A5 00 09 08 CC 33 C3 3C A4

指令说明: 使系统进入睡眠状态

7) 刷新 (0x0A)

将系统显存数据更新到屏幕进行显示。由于主机发送绘图类指令后,系统仅将数据写入内 部显存中,不会立即更新到屏幕;所以每次要显示到屏幕时需要执行一次该指令。

指令示例: A5 00 09 0A CC 33 C3 3C A6

指令说明: 刷新

8) 获取屏幕显示方向(0x0C)

指令示例: A5 00 09 0C CC 33 C3 3C A0

指令说明: 返回 0, 屏幕旋转 0°: 返回 1, 屏幕旋转 90°: 返回 2, 屏幕旋转 180°: 返回

9) 屏幕显示方向(0x0D)

设置屏幕的显示方向,只支持 180°旋转。

指令示例: A5 00 0A 0D 01 CC 33 C3 3C A3

指令说明: 0x01: 旋转 90°显示; 0x02: 旋转 180°显示; 0x03: 旋转 270°显示; 设置屏幕的显示方向,支持 90°、180°和 270° 旋转。屏幕会在旋转之后首次刷新更新旋转后的图像,见刷新命令(0x0A)。

10) 载入字库(0x0E)

将 TF 卡中的字库文件导入到内部 NandFlash 中。字库文件包括:

GBK32.FON/GBK48.FON/GBK64.FON,开始导入和导入结束,指示灯都会闪烁 3 次。

指令示例: A5 00 09 0E CC 33 C3 3C A2

指令说明: 导入字库

字库或者图片的导入不受当前存储区设置的影响,无论存储区设置成 Nand 或者 SD 卡,文件导入方向均为 SD 卡到 Nand Flash。

11) 载入图片(0x0F)

将 TF 卡中的图片文件导入到内部 NandFlash 中,开始导入和导入结束,指示灯都会闪烁 3 次。

指令示例: A5 00 09 0F CC 33 C3 3C A3

指令说明: 导入图片

只导入扩展名为.JPG 或者.BMP 的文件。

字库或者图片的导入不受当前存储区设置的影响,无论存储区设置成 Nand 或者 SD 卡,文件导入方向均为 SD 卡到 Nand Flash。

● 显示参数配置

1) 设置调色板(0x10)

设置系统绘图的前景色和背景色。前景色用于显示基本的绘图和文字,背景色用于清屏。

指令示例: A5 00 0B 10 00 03 CC 33 C3 3C BD

指令说明:

0x00: 前景色为黑色 0x03: 背景色为白色

2) 获取调色板数据(0x11)

指令示例: A5 00 09 11 CC 33 C3 3C BD

指令说明: 例如返回 03, 0: 前景色为黑色, 3: 背景色为白色

3) 读英文字号(0x1C)

指令示例: A5 00 09 1C CC 33 C3 3C B0

指令说明: 返回当前英文字号索引

4) 读中文字号(0x1D)

指令示例: A5 00 09 1D CC 33 C3 3C B1

指令说明: 返回当前中文字号索引

5) 设置英文字号(0x1E)

设置系统英文字体点阵大小,目前支持 32/48/64 点阵。

指令示例: A5 00 0A 1E 01 CC 33 C3 3C B0

指令说明: 0x01: 设置英文字号为 32

6) 设置中文字号(0x1F)

设置系统中文字体点阵大小,目前支持 32/48/64 点阵。

指令示例: A5 00 0A 1F 01 CC 33 C3 3C B1

指令说明: 0x01: 设置中文字号为 32

● 基本绘图

1) 画点 (0x20)

使用前景色在指定坐标位置显示一个像素点。

指令示例: A5 00 0D 20 00 0A 00 0A CC 33 C3 3C 88

指令说明:在(0x0A, 0x0A)处显示一个像素点

2) 画直线(0x22)

使用前景色在指定的两个坐标点之间画一条直线。

指令示例: A5 00 11 22 00 0A 00 0A 00 FF 00 FF CC 33 C3 3C 96

指令说明:在(0x0A, 0x0A)和(0xFF, 0xFF)两个坐标点之间画一条直线。

3) 填充一个矩形区(0x24)

使用前景色填充一个由两个坐标点描述的矩形区域。这两个点是矩形的对角点。

指令示例: A5 00 11 24 00 0A 00 0A 00 FF 00 FF CC 33 C3 3C 90

指令说明:在(0x0A, 0x0A)和(0xFF, 0xFF)两个坐标点之间填充一个矩形区。

4) 画一个矩形 (0x25)

使用前景色显示一个由两个坐标点描述的矩形区域。这两个点是矩形的对角点。

指令示例: A5 00 11 25 00 0A 00 0A 00 FF 00 FF CC 33 C3 3C 91

指令说明:在(0x0A, 0x0A)和(0xFF, 0xFF)两个坐标点之间显示一个矩形区。

5) 画圆 (0x26)

根据指定的圆心坐标和半径大小画圆。

指令示例: A5 00 0F 26 00 FF 00 FF 00 80 CC 33 C3 3C 0C

指令说明: 圆心坐标(0xFF, 0xFF), 半径大小 0x80

6) 填充圆(0x27)

根据指定的圆心坐标和半径大小填充圆。

指令示例: A5 00 0F 27 00 FF 00 FF 00 80 CC 33 C3 3C 0D

指令说明: 圆心坐标(0xFF, 0xFF), 半径大小 0x80

7) 画三角形 (0x28)

根据指定的三点坐标画三角形。

指令示例: A5 00 15 28 00 0A 00 0A 00 20 00 80 00 80 00 FF CC 33 C3 3C 47

指令说明: 坐标(0x0A, 0x0A), (0x20, 0x80), (0x80, 0xFF)

8) 填充三角形(0x29)

根据指定的三点坐标填充三角形。

指令示例: A5 00 15 29 00 0A 00 0A 00 20 00 80 00 80 00 FF CC 33 C3 3C 46

指令说明: 坐标(0x0A, 0x0A), (0x20, 0x80), (0x80, 0xFF)

9) 清屏(0x2E)

用背景色清屏。

指令示例: A5 00 09 2E CC 33 C3 3C 82

指令说明: 清屏

● 文字显示

1) 显示字符串(0x30)

在指定坐标位置显示一个字符串, 支持中英文混合显示。

指令示例: A5 00 17 30 00 0A 00 0A C4 E3 BA C3 57 6F 72 6C 64 00 CC 33 C3 3C 9E

指令说明:

0x0A, 0x0A: 指定坐标

0xC4E3:你

0xBAC3:好

0x57 6F 72 6C 64: World 执行后会在屏幕显示: 你好 World

对于一个字符串,必须是以 0 结尾。所以 C4 E3 BA C3 57 6F 72 6C 64 后面还要加 00。

2) 设置字体大小(0x1F)

支持 32 位、48 位和 64 位点阵。32 位点阵意味着字体高度为 32pixel, 48 和 64 位亦然。

指令示例: A5 00 0A 1F 01 CC 33 C3 3C B1

指令说明: 字号设置为 32。

指令示例: A5 00 0A 1F 02 CC 33 C3 3C B2

指令说明:字号设置为 48。

指令示例: A5 00 0A 1F 03 CC 33 C3 3C B3

指令说明:字号设置为64。

● 串口输入流

1) 通过串口发送文件到 SD 卡 (0x40)

指令示例: A5 00 12 40 50 49 43 37 2E 42 4D 50 00 CC 33 C3 3C EB 指令说明:

50 49 43 37 2E 42 4D 50 是 PIC7.BMP 对应的 ASCII 码。执行该命令之后,系统会要求客户发送文件,之后任何通过串口发送的数据都会保存到 SD 卡。如果数据输入终止超过 1s,该功能自动结束。文件发送结束之后返回异或校验码和收到的输入数据大小(byte),客户根据应答信号确认文件是否正确发送。最后,用户需要发送 y 确认,文件才会保存到 micro SD 卡中。

文件发送之后,如果该文件是图片(.JPG 或者.BMP),那么需要把存储区设置成SD卡(A5 00 0A 07 01 CC 33 C3 3C A9),然后再使用"图片显示"命令才能把该图片显示在屏幕上。串口输入流命令不受当前存储区设置的影响,无论设置成Nand或者MicroSD卡,串口输入的文件均会保存至SD卡。

● 存储区管理

1) 完全擦除 Nand Flash。

指令示例: A5 00 09 50 CC 33 C3 3C FC

指令说明: 执行该命令之后,需要发送 y 确认才会完全擦除 Nand Flash。

● 图片显示

2) 显示位图 (0x70)

要正确执行该指令,必须先确保存储区有对应名称的位图文件。这里的存储区既可以是 TF 卡,也可以是内部 NandFlash。

指令示例: A5 00 16 70 00 00 00 00 50 49 43 37 2E 42 4D 50 00 CC 33 C3 3C DF 指令说明:

图片起始坐标为(0x00, 0x00)

0x50 49 43 37 2E 42 4D 50: 位图文件名 PIC7.BMP

对于一个字符串,必须是以 0 结尾。所以 50 49 43 37 2E 42 4D 50 后面还要加 00。 位图文件名必须用大写英文字符,计算长度的时候包含结尾的 0。长度不大于 11 个字符。 例如 PIC7.BMP、PIC789.BMP 正确,PIC7890.BMP 错误。

4. 固件更新

如需更新固件, 请谨慎操作。

- 1) 把名为 firmware.bin 的固件放入 Micro SD 卡,再把 Micro SD 卡插入到卡槽中。
- 2) 上电之后,如果程序检测到固件存在,系统会自动更新固件,此时指示灯不亮。
- 3) 更新完成之后,串口打印"firmware update success",指示灯点亮。此过程约 10 秒钟。
- 4) 取下 Micro SD 卡,并删除 firmware.bin 文件,否则每次开机都会进行固件更新。

5. 附录

1. CP2102 USB UART Board(micro)

CP2102 是一款单芯片 USB 转 UART 数据转换器,对外供电 3.3V 或 5V,驱动支持的操作系统包括 Windows 10/8/7/Vista/Server2003/xp/2000

关于本模块的详细信息可参考如下链接:

中文: http://www.waveshare.net/shop/CP2102-USB-UART-Board-micro.htm

英文: https://www.waveshare.com/cp2102-usb-uart-board-micro.htm

2. Arduino UNO PLUS

UNO PLUS 是兼容 Arduino UNO R3 的开发板,基于 ATMEGA328P-AU,改进了 UNO R3 的部分缺陷,可以说是 UNO 的改进版。

关于本开发的详细信息可以参考下面链接:

中文: http://www.waveshare.net/shop/UNO-PLUS.htm

英文: http://www.waveshare.com/product/arduino/main-board/avr/uno-plus.htm

3. XNUCLEO-F103RB

兼容 NUCLEO-F103RB,基于 STM32F103RBT6 主控芯片。支持 mbed 开发平台, 还打通了 Arduino 生态圈。

关于本开发板的详细信息可参考下面链接:

中文: http://www.waveshare.net/shop/XNUCLEO-F103RB.htm

英文: http://www.waveshare.com/xnucleo-f103rb.htm

4. Open103Z

Stm32 开发板 Open103Z 是一块以 STM32F103ZET6 为主控的开发板,它带有丰富的扩展接口,支持各类外围模块的接入。

关于本开发板的详细信息可参考下面链接

中文: http://www.waveshare.net/shop/Open103Z.htm

英文: http://www.waveshare.com/open103z-standard.htm