- Assignment 1
 - Question 1
 - Objective
 - Tool / Experimental setup considered
 - Procedure
 - Program
 - Experimentation
 - Conclusion
 - Question 2
 - Objective
 - Tool / Experimental setup considered
 - Procedure
 - Program
 - Experimentation
 - Conclusion
 - Question 3
 - Objective
 - Tool / Experimental setup considered
 - Procedure
 - Program
 - Conclusion

Assignment 1

Question 1

Objective

Find out the sum of the first 30 natural numbers.

Tool / Experimental setup considered

• Used Jubin's 8085 Simulator.

Procedure

The sum of first 30 natural numbers is 435 i.e 0x01D1. Since the value is greater than 256 we need two register pair to store the value.

Program

```
LXI H,0000 ; Load H-L pair with 0000H, it will be used as an accumulator MVI D,1E ; Move immediate data to register, D storing 0x1E = 30 MVI C,01 ; B-C pair storing 00-01

L1: DAD B ; Double ADd INX B ; INcrementeXtended register, increments B-C DCR D ; DeCRement, decrements D JNZ L1 ; Jump Not Zero SHLD 8085 ; Store HLpair using Direct addressing, storing the data in 8085 HLT ; Halt
```

Experimentation

Conclusion

Finally the data stored in HL register pair is 0x01D1 i.e 435 . This is the sum of first 30 natural numbers. Hence the program is working as expected.

Question 2

Objective

From an array of 10-byte size integers (unsigned) find out the maximum and minimum.

Tool / Experimental setup considered

• Used Jubin's 8085 Simulator.

Procedure

Loop through the entire array of integers, and store the maximum and minimum values in the registers.

Program

```
# ORG 4200H
# ARR: DB 9, 1, 8, 4, 8, A, F, 5
# LEN EQU 08
# ORG 0000H
        LXI H, ARR
        MVI B, LEN ; number of elements
        MOV D,M ; storing the min in D
        MOV C,M ; storing the max in C
        DCR B
LOOP:
        INX H
        MOV A, M
        CMP D
        JNC MAX
        MOV D, M
MAX:
        CMP C
        JC AHEAD
        MOV C, A
AHEAD:
        DCR B
        JNZ LOOP
        MOV A, D
```

```
STA 4300
MOV A,C
STA 4400
HLT
```

Experimentation

Register	Value	7	6	5	4	3	2	1	0	4200	09
			_	_	<u> </u>	7	-	-	7	4201	01
Accumulator	0F	0	0	0	0	1	1	1	1	4202	08
Register B	00	0	0	0	0	0	0	0	0	4203	04
Register C	0F	0	0	0	0	1	1	1	1	4204	08
Register D	01	0	0	0	0	0	0	0	1		
Register E	00	0	0	0	0	0	0	0	0	4205	0A
Register H	42	0	1	0	0	0	0	1	0	4206	0F
		-	1	_	-	-	1	1	0	4207	05
Register L	07	0	0	0	0	0	1	1	1	4300	01
Memory(M)	05	0	0	0	0	0	1	0	1	4400	0F
								4400	UF		

Conclusion

After the execution the maximum value is stored in register C and the minimum in register D.

Question 3

Objective

Write a routine that produces a delay. The delay value must be passed to register pair DE.

Tool / Experimental setup considered

• Used Jubin's 8085 Simulator.

Procedure

We can simulate the delay by running a long loop. The loop will be executed for the number of times specified in DE register pair.

Program

```
LXI D, E000H
CALL DELAY
HLT
DELAY: DCX D
MOV A, D
ORA E
JNZ DELAY
RET
```

Conclusion

Will notice the code runs for sometime and the value of DE register pair is decremented. Hence the delay is produced.