Bayesian State Space Models

Introduction

- State space methods are used for a wide variety of time series problems
- They are important in and of themselves in economics (e.g. trend-cycle decompositions, structural time series models, dealing with missing observations, etc.)
- They can be used to deal with unit root issues and ARMA
- Also time-varying parameter (TVP) models can be used to deal with parameter change/structural breaks/regime change
- Dynamic factor models are state space models
- Stochastic volatility are state space models
- Advantage of state space models: well-developed set of MCMC algorithms for doing Bayesian inference

() State Space Models 2 / 77

The Local Level Model

- Explain basic ideas in simplest state space model: the local level model
- For t = 1, ..., T have

$$y_t = \alpha_t + \varepsilon_t$$

- ε_t is i.i.d. $N(0, h^{-1})$.
- α_t which is not observed (called a *state*) and follows random walk for t = 1, ..., T 1:

$$\alpha_{t+1} = \alpha_t + u_t$$

- u_t is i.i.d. N(0, Q)
- ε_t and u_s are independent of one another for all s and t.
- First equation: measurement (observation) equation, second state equation
- α_1 is initial condition.

() State Space Models 3 / 77

Relationship to Other Models

Can write

$$\Delta y_t = \varepsilon_t - \varepsilon_{t-1} + u_{t-1}$$

- Δy_t is stationary (I(0)) whereas y_t has unit root (I(1))
- Can write

$$\alpha_t = \alpha_1 + \sum_{j=1}^{t-1} u_j$$

- this is a trend (stochastic trend)
- local level model decomposes y_t , into a trend component, α_t , and an error or irregular component, ε_t .
- Test of whether Q = 0 is one way of testing for a unit root.
- These results illustrate how all usual univariate time series things:
 ARIMA modelling, unit root testing, etc. can be done in state space framework

() State Space Models 4 / 7

Relationship to Other Models

- α_t is the mean (or level) of y_t .
- Mean is varying over time, hence terminology local level model
- Measurement equation can be interpreted as simple example of regression model involving only an intercept.
- But the intercept varies over time: time varying parameter model
- Extensions of local level model used to investigate parameter change in various contexts.

State Space Models 5 / 77

The Likelihood Function of the Local Level Model

• Define $y=(y_1,...,y_T)'$ and $\varepsilon=(\varepsilon_1,...,\varepsilon_T)'$ then local level model:

$$y = I_T \alpha + \varepsilon$$

- This is a regression model with explanatory variables I_T and coefficients $\alpha = (\alpha_1, ..., \alpha_T)'$
- Likelihood function has standard form for the Normal linear regression model
- Note relation to Fat Data: T observations and T explanatory variables
- Here hierarchical prior is provided by state equation

State Space Models 6 / 77

Prior for Local Level Model

State equation gives us:

$$\alpha_{t+1} | \alpha_t, Q \sim N(\alpha_t, q)$$

Or

$$p(\alpha|Q) = \prod_{t=1}^{T} p(\alpha_{t+1}|\alpha_t, Q)$$

- ullet This is a hierarchical prior: since it depends on Q which, in turn, requires its own prior.
- The fact that is it a Normal prior means can use standard results for Normal linear regression model

() State Space Models 7 / 77

Posterior for Local Level Model

- I will not repeat exact formula here
- See Topic 1 slides or page 187 of my textbook for natural conjugate case
- But the formulae will depend on parameters Q and h
- Textbook discusses (pages 188-190) discusses one estimation method, see below for MCMC method
- An issue arises: α is $T \times 1$ which can be very large (dimension of states even larger in general state space models)
- Remember: if regression had k explanatory variables, posterior involved manipulations (inverting, etc.) $k \times k$ matrices
- If k = T or more, this rapidly gets demanding (or impossible)
- For state space models, special methods based on Kalman filtering used to avoid such manipulations
- Will discuss below, but remember that state space models basically just regression models with a particular hierarchical prior

() State Space Models 8 / 7

Filtering versus Smoothing in the Local Level Model

- Notation: superscripts for all observations up to a specific time
- E.g. $y^T = (y_1, ..., y_T)'$ is all observations in the sample
- $\alpha^t = (\alpha_1, ..., \alpha_t)'$ is all states up to the current period (t)
- Filtering = using y^t
- $E(\alpha_t|y^t)$ is the filtered estimate of the state
- $E(y_{t+1}|y^t)$ is estimate of y_{t+1} (unknown at time t)
- Used for real time forecasting
- Smoothing = using y^T
- $E\left(\alpha_t|y^T\right)$ is smoothed estimate of state
- E.g. estimate of trend inflation using the full sample of data

() State Space Models 9 / 77

The Kalman Filter

- I will not derive or state exact formulae, just the main ideas
- Good reference: Durbin and Koopman, Time Series Analysis by State Space Methods
- ullet Formulae below depend on Q and h, for now assume known
- Can prove

$$\alpha_{t}|y^{t-1} \sim N\left(a_{t|t-1}, P_{t|t-1}\right)$$
 $\alpha_{t}|y^{t} \sim N\left(a_{t|t}, P_{t|t}\right)$

- ullet Kalman filter involves simple formulae linking $a_{t|t-1}$, $P_{t|t-1}$, $a_{t|t}$, $P_{t|t}$
- Also formula for predictive density $p\left(y_{t+1}|y^t\right)$ which can be used for real time forecasting
- Formula for likelihood function (used for maximum likelihood estimation)

State Space Models 10 / 77

Kalman Filter Recursions

- ullet Start with initial condition, $a_{1|1}, P_{1|1}$ (Bayesians assume prior)
- ullet Calculate $a_{2|1}$, $P_{2|1}$ using Kalman filtering formulae
- Calculate $a_{2|2}$, $P_{2|2}$
- ...
- Calculate $a_{t|t-1}$, $P_{t|t-1}$
- \bullet Calculate $a_{t|t}$, $P_{t|t}$
- etc.

State Space Models 11 / 77

Kalman Filter Recursions

- Each calculation on previous slide only depended on the last one
- New observation added, only need to update using this
- Simplifies computation: no need for manipulations involving $T \times T$ matrices
- At every point in time get filtered estimate of state, predictive density, etc.
- Run the Kalman filter from t = 1, ..., T

State Space Models 12 / 77

State Smoothing

- Smoothing uses full sample, y^T
- Suitable for estimation (e.g. estimating trend inflation)
- Standard recursive formulae exist with same "update one observation at a time"
- Can prove

$$\alpha_t | y^T \sim N\left(a_{t|T}, P_{t|T}\right)$$

- First run Kalman filter from t = 1, ..., T
- Then state smoother from t = T, ..., 1
- \bullet Set of simple recursive formulae for $a_{t\mid \mathcal{T}}$ and $P_{t\mid \mathcal{T}}$

State Space Models 13 / 77

Summary of Estimation in Local Level Model

- Local level model has parameters α^T , Q and h
- Kalman filter and state smoother provides formula for $p\left(\alpha^T | y^T, Q, h\right)$ and $p\left(\alpha^T | y^t, Q, h\right)$
- And $p(y^{t+1}|y^t, Q, h)$ for forecasting
- Bayesian can complete the Gibbs sampler with $p\left(Q|y^T,h,\alpha^T\right)$ and $p\left(h|y^T,Q,\alpha^T\right)$
- Exact forms depend on prior, but simple based on Normal linear regression model

State Space Models 14 / 77

The Normal Linear State Space Model

- General version of Normal linear state space model:
- Measurement equation:

$$y_t = W_t \delta + Z_t \beta_t + \varepsilon_t$$

State equation:

$$\beta_{t+1} = T_t \beta_t + u_t$$

- y_t and ε_t defined as for regression model
- Illustrate as though for a regression or AR model, but much more general
- ullet General theory has y_t being M imes 1 vector
- Usual for macroeconomics: VARs have M variables, DSGE models involve M variables
- But my applications will be for single equation: M=1

() State Space Models 15 / 77

The Normal Linear State Space Model

- W_t is known $M \times p_0$ matrix (e.g. lagged dependent variables or explanatory variables with constant coefficients)
- Z_t is known $M \times K$ matrix (e.g. lagged dependent variables or explanatory variables with time varying coefficients)
- β_t is $k \times 1$ vector of states (e.g. regression or AR coefficients)
- ε_t ind $N(0, \Sigma_t)$
- u_t ind $N(0, Q_t)$.
- ε_t and u_s are independent for all s and t.
- T_t is a $k \times k$ matrix (usually fixed, but sometimes not).

State Space Models 16 / 77

- Key idea: for given values for δ , T_t , Σ_t and Q_t (called "system matrices") posterior simulators for β_t for t=1,...,T exist.
- E.g. Carter and Kohn (1994, Btka), Fruhwirth-Schnatter (1994, JTSA), DeJong and Shephard (1995, Btka) and Durbin and Koopman (2002, Btka).
- I will not present details of these (standard) algorithms
- I have outlined general form for the local level model above
- Recently other algorithms have been proposed in several papers by Joshua Chan (University of Technology Sydney) and Bill McCausland (University of Montreal)
- ullet These do not use Kalman filter, but exploit special band structure of large $\mathcal{T} \times \mathcal{T}$ matrices to invert key matrices directly

- Notation: $\beta^t = (\beta_1', ..., \beta_t')'$ stacks all the states up to time t (and similar superscript t convention for other things)
- Gibbs sampler: $p\left(\beta^T | y^T, \delta, T^T, \Sigma^T, Q^T\right)$ drawn use such an algorithm
- $p\left(\delta|y^T, \beta^T, T^T, \Sigma^T, Q^T\right)$, $p\left(T^T|y^T, \beta^T, \delta, \Sigma^T, Q^T\right)$, $p\left(\Sigma^T|y^T, \beta^T, \delta, T^T, Q^T\right)$ and $p\left(Q^T|y^T, \beta^T, \delta, T^T, \Sigma^T\right)$ depend on precise form of model (typically simple since, conditional on β^T have a Normal linear model)
- Typically restricted versions of this general model used
- ullet TVP-VAR of Primiceri (2005, ReStud) has $\delta=$ 0, $T_t=I$ and $Q_t=Q$
- Computer tutorial 4 considers a time-varying parameter AR model
- Z_t contains lags of dependent variable, $\delta=0$, $T_t=I$ and Q_t is a diagonal matrix

() State Space Models 18 / 77

Example of an MCMC Algorithm

- Special case $\delta=0$, $T_t=I$, $\Sigma_t=h$ and $Q_t=Q$
- Homoskedastic TVP-VAR of Cogley and Sargent (2001, NBER)
- Need prior for all parameters
- But state equation implies hierarchical prior for β^T :

$$\beta_{t+1}|\beta_t, Q \sim N(\beta_t, Q)$$

• Formally:

$$p\left(eta^T|Q
ight) = \prod_{t=1}^T p\left(eta_t|eta_{t-1},Q
ight)$$

 Hierarchical: since it depends on Q which, in turn, requires its own prior.

() State Space Models 19 / 77

- Note β_0 enters prior for β_1 .
- Need prior for β_0
- Standard treatments exist.
- E.g. assume $\beta_0 = 0$, then:

$$\beta_1|Q\sim N(0,Q)$$

- Or Carter and Kohn (1994) simply assume β_0 has some prior that researcher chooses
- h is error precision in measurement equation, just use Gamma prior for it as in Normal linear regression model

ullet Common to use Wishart prior for Q^{-1}

$$Q^{-1} \sim W\left(\underline{Q}^{-1}, \underline{
u}_Q
ight)$$

Digression

- ullet Remember regression models had parameters eta and σ^2
- There proved convenient to work with $h=rac{1}{\sigma^2}$
- ullet With Q proves convenient to work with Q^{-1}
- In regression h typically had Gamma distribution
- With state equations (more than one equation) Q^{-1} will typically have Wishart distribution
- Wishart is matrix generalization of Gamma
- Details see appendix to textbook.
- If Σ^{-1} is W(C, c) then "Mean" is cC and c is degrees of freedom.
- Note: easy to take random draws from Wishart.

() State Space Models 22 / 77

- Want MCMC algorithm which sequentially draws from $p\left(h^{-1}|y^T,\beta^T,Q\right)$, $p\left(Q^{-1}|y^T,h,\beta^T\right)$ and $p\left(\beta^T|y^T,h,Q\right)$.
- For $p\left(\beta^T|y^T, h, Q\right)$ use standard algorithm for state space models (e.g. Carter and Kohn, 1994)
- Can derive $p\left(h|y^T, \beta^T, Q\right)$ using Normal linear regression model results
- That is, conditional on β^T , measurement equation is just a regression with known coefficients.

- $p\left(Q^{-1}|y^T,h,\beta^T\right)$ use multiple equation extension of Normal linear regression model
- Conditional on β^T , state equation is also like a series of regression equations
- This leads to:

$$Q^{-1}|y^T, \beta^T \sim W(\overline{Q}^{-1}, \overline{\nu}_Q)$$

where

$$\overline{\nu}_Q = T + \underline{\nu}_Q$$

•

$$\overline{Q} = \underline{Q} + \sum_{t=1}^{T} (\beta_{t+1} - \beta_t) (\beta_{t+1} - \beta_t)'$$
.

DSGE Models as State Space Models

- If time permits, I will discuss DSGE (if not, skip to stochastic volatility)
- DSGE = Dynamic, stochastic general equilibrium models popular in modern macroeconomics and commonly used in policy circles (e.g. central banks).
- I will not explain the macro theory, other than to note they are:
- Derived from microeconomic principles (based on agents and firms decision problems), dynamic (studying how economy evolves over time) and general equilibrium.
- Solution (using linear approximation methods) is a linear state space model
- Note: recent work with second order approximations yields nonlinear state space model
- Survey: An and Schorfheide (2007, Econometric Reviews)
- Computer code: http://www.dynare.org/ or some authors post code (e.g. code for Del Negro and Schorfheide 2008, JME on web)

() State Space Models 25 / 1

Estimation Strategy for DSGE

Most linearized DSGE models written as:

$$\Gamma_{0}\left(\theta\right)z_{t}=\Gamma_{1}\left(\theta\right)E_{t}\left(z_{t+1}\right)+\Gamma_{2}\left(\theta\right)z_{t-1}+\Gamma_{3}\left(\theta\right)u_{t}$$

- z_t is vector containing both observed variables (e.g. output growth, inflation, interest rates) and unobserved variables (e.g. technology shocks, monetary policy shocks).
- Note, theory usually written in terms of z_t as deviation of variable from steady state (an issue I will ignore here to keep exposition simple)
- θ are structural parameters (e.g. parameters for steady states, tastes, technology, policy, etc.).
- u_t are structural shocks (N(0, I)).
- ullet $\Gamma_{i}\left(heta
 ight)$ are often highly nonlinear functions of heta

() State Space Models 26 / 77

Solving the DSGE Model

- Methods exist to solve linear rational expectations models such as the DSGE
- If unique equilibrium exists can be written as:

$$z_{t} = A(\theta) z_{t-1} + B(\theta) u_{t}$$

- Looks like a VAR, but....
- \bullet Some elements of z_t typically unobserved
- ullet and highly nonlinear restrictions involved in $A\left(heta
 ight)$ and $B\left(heta
 ight)$

State Space Models 27 / 77

Write DSGE Model as State Space Model

- Let y_t be elements of z_t which are observed.
- Measurement equation:

$$y_t = Cz_t$$

where C is matrix which picks out observed elements of z_t

- ullet Equation on previous slide is state equation in states z_t
- Thus we have state space model
- Special case since measurement equation has no errors (although measurement errors often added) and state equation has some states which are observed.
- But state space algorithms described earlier in this lecture still work
- Remember, before I said: "for given values for system matrices, posterior simulators for the states exist"
- ullet If heta were known, DSGE model provides system matrices in Normal linear state space model

() State Space Models 28 / 77

Estimating the Structural Parameters

- If $A(\theta)$ and $B(\theta)$ involved simple linear restrictions, then linear methods similar to regressions could be used to carry out inference on θ .
- Unfortunately, restrictions in $A\left(\theta\right)$ and $B\left(\theta\right)$ are typically nonlinear and complicated
- ullet Parameters in heta are structural so we are likely to have prior information about them
- Example from Del Negro and Schorfheide (2008, JME):
- "Household-level data on wages and hours worked could be used to form a prior for a labor supply elasticity"
- "Product level data on price changes could be the basis for a price-stickiness prior"

() State Space Models 29 / 77

Estimating the Structural Parameters (cont.)

- Prior for structural parameters, $p(\theta)$, can be formed from other sources of information (e.g. micro studies, economic theory, etc.)
- Here: prior times likelihood is a mess
- Thus, no analytical posterior for θ , no Gibbs sampler, etc...
- Solution: Metropolis-Hastings algorithm (see my textbook chapter 5, section 5)

State Space Models 30 / 77

- Popular (e.g. DYNARE) to use random walk Metropolis-Hastings with DSGE models.
- Note acceptance probability depends only on posterior = prior times likelihood
- DSGE Prior chosen as discussed above
- Algorithms for Normal linear state space models evaluate likelihood function

Nonlinear State Space Models

- Normal linear state space model useful for empirical macroeconomists
- E.g. trend-cycle decompositions, TVP-VARs, linearized DSGE models, dynamic factor models, etc.
- Some models have y_t being a nonlinear function of the states (e.g. DSGE models which have not been linearized)
- Increasing number of Bayesian tools for nonlinear state space models (e.g. the particle filter)
- Here we will focus on stochastic volatility

Stochastic Volatility

- Popular in finance, but increasingly macroeconomists realize importance of allowing for time-varying volatility
- Note: multivariate stochastic volatility in VARs is very popular (also nonlinear state space model, simple extension of univariate case)
- Stochastic volatility model:

$$y_t = \exp\left(\frac{h_t}{2}\right) \varepsilon_t$$

$$h_{t+1} = \mu + \phi \left(h_t - \mu \right) + \eta_t$$

- ε_t is i.i.d. $N\left(0,1\right)$ and η_t is i.i.d. $N\left(0,\sigma_\eta^2\right)$. ε_t and η_s are independent.
- This is state space model with states being h_t , but measurement equation is not a linear function of h_t

State Space Models 33 / 77

- h_t is log of the variance of y_t (log volatility)
- Since variances must be positive, common to work with log-variances
- Note μ is the unconditional mean of h_t .
- Initial conditions: if $|\phi| < 1$ (stationary) then:

$$h_0 \sim N\left(\mu, \frac{\sigma_\eta^2}{1-\phi^2}\right)$$

- if $\phi=1$, μ drops out of the model and However, when $\phi=1$, need a prior such as $h_0\sim N\left(\underline{h},\underline{V}_h\right)$
- e.g. Primiceri (2005) chooses \underline{V}_h using training sample

MCMC Algorithm for Stochastic Volatility Model

- MCMC algorithm involves sequentially drawing from $p\left(h^T|y^T, \mu, \phi, \sigma_\eta^2\right)$, $p\left(\phi|y^T, \mu, \sigma_\eta^2, h^T\right)$, $p\left(\mu|y^T, \phi, \sigma_\eta^2, h^T\right)$ and $p\left(\sigma_\eta^2|y^T, \mu, \phi, h^T\right)$
- Last three standard forms based on results from Normal linear regression model and will not present here.
- Several algorithms exist for $p\left(h^T|y^T, \mu, \phi, \sigma_{\eta}^2\right)$
- Here we describe a popular one from Kim, Shephard and Chib (1998, ReStud)
- For complete details, see their paper. Here we outline ideas.

State Space Models 35 / 77

Square and log the measurement equation:

$$y_t^* = h_t + \varepsilon_t^*$$

- ullet where $y_t^*=\ln\left(y_t^2
 ight)$ and $arepsilon_t^*=\ln\left(arepsilon_t^2
 ight).$
- Now the measurement equation is linear so maybe we can use algorithm for Normal linear state space model?
- ullet No, since error is no longer Normal (i.e. $arepsilon_t^* = \ln\left(arepsilon_t^2
 ight)$)
- Idea: use mixture of different Normal distributions to approximate distribution of ε_t^* .

 Mixtures of Normal distributions are very flexible and have been used widely in many fields to approximate unknown or inconvenient distributions.

$$p\left(\varepsilon_{t}^{*}\right) pprox \sum_{i=1}^{7} q_{i} f_{N}\left(\varepsilon_{t}^{*} | m_{i}, v_{i}^{2}\right)$$

• where $f_N\left(\varepsilon_t^*|m_i,v_i^2\right)$ is the p.d.f. of a $N\left(m_i,v_i^2\right)$

•

- ullet since $arepsilon_t$ is $N\left(0,1
 ight)$, $arepsilon_t^*$ involves no unknown parameters
- Thus, q_i , m_i , v_i^2 for i = 1, ..., 7 are not parameters, but numbers (see Table 4 of Kim, Shephard and Chib, 1998).

- Mixture of Normals can also be written in terms of component indicator variables, $s_t \in \{1, 2, ..., 7\}$
 - $\varepsilon_t^* | s_t = i \sim N(m_i, v_i^2)$ $\Pr(s_t = i) = q_i$
- MCMC algorithm does not draw from $p\left(h^T|y^T, \mu, \phi, \sigma_\eta^2\right)$, but from $p\left(h^T|y^T, \mu, \phi, \sigma_\eta^2, s^T\right)$.
- But, conditional on s^T , knows which of the Normals ε_t^* comes from.
- Result is a Normal linear state space model and familiar algorithm can be used.
- Finally, need $p\left(s^T|y^T, \mu, \phi, \sigma_{\eta}^2, h^T\right)$ but this has simple form (see Kim, Shephard and Chib , 1998)

State Space Models 38 / 77

Summary and Other Directions

- This completes discussion of general ideas underlying state space models and few key models
- Computer tutorial 4 considers time-varying parameter AR model
- Suitable for modelling parameter change (structural breaks/regime change, etc.)
- Computer tutorial 5 considers the popular unobserved components stochastic volatility model
- State space methods growing in popularity in many other contexts
- SSVS and Lasso methods used with state space models
- Frühwirth-Schnatter and Wagner (2010). "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics.
- Dynamic mixture models used to model structural breaks, outliers, nonlinearities, etc.
- Giordani, Kohn and van Dijk (2007, JoE).

() State Space Models 39 / 77

A Macroeconomic Application: Inflation Forecasting using Dynamic Model Averaging

- I will end this course with application which involves time series regression, state space models, model averaging and forecasting as way of summarizing major themes of this course
- Based on the paper: Koop and Korobilis (2012, International Economic Review)
- Macroeconomists typically have many time series variables
- But even with all this information forecasting of macroeconomic variables like inflation, GDP growth, etc. can be very hard
- Sometimes hard to beat very simple forecasting procedures (e.g. random walk)
- Imagine a regression of inflation on many predictors
- Such a regression might fit well in practice, but forecast poorly

() State Space Models 40 / 77

- Why? There are many reasons, but three stand out:
- Regressions with many predictors can over-fit (over-parameterization problems)
- Marginal effects of predictors change over time (parameter change/structural breaks)
- The relevant forecasting model may change (model change)
- We use an approach called Dynamic Model Averaging (DMA) in an attempt to address these problems

The Generalized Phillips Curve

- Phillips curve: inflation depends on unemployment rate
- Generalized Phillips curve: Inflation dependent on lagged inflation, unemployment and other predictors
- Many papers use generalized Phillips curve models for inflation forecasting
- Regression-based methods based on:

$$y_t = \phi + x'_{t-1}\beta + \sum_{j=1}^p \gamma_j y_{t-j} + \varepsilon_t$$

- y_t is inflation and x_{t-1} are lags of other predictors
- To make things concrete, following is our list of predictors (other papers use similar)

() State Space Models 42 / 77

- UNEMP: unemployment rate.
- CONS: the percentage change in real personal consumption expenditures.
- INV: the percentage change in private residential fixed investment.
- GDP: the percentage change in real GDP.
- HSTARTS: the log of housing starts (total new privately owned housing units).
- EMPLOY: the percentage change in employment (All Employees: Total Private Industries, seasonally adjusted).
- PMI: the change in the Institute of Supply Management (Manufacturing): Purchasing Manager's Composite Index.

- TBILL: three month Treasury bill (secondary market) rate.
- SPREAD: the spread between the 10 year and 3 month Treasury bill rates.
- DJIA: the percentage change in the Dow Jones Industrial Average.
- MONEY: the percentage change in the money supply (M1).
- INFEXP: University of Michigan measure of inflation expectations.
- COMPRICE: the change in the commodities price index (NAPM commodities price index).
- VENDOR: the change in the NAPM vendor deliveries index.

Forecasting With Generalized Phillips Curve

Write more compactly as:

$$y_t = z_t \theta + \varepsilon_t$$

- z_t contains all predictors, lagged inflation, an intercept
- Note $z_t =$ information available for forecasting y_t
- When forecasting h periods ahead will contain variables dated t hor earlier

State Space Models 45 / 77

- Consider forecasting $y_{\tau+1}$.
- Recursive forecasting methods: $\widehat{\theta} = \text{estimate using data through } \tau$.
- So $\widehat{\theta}$ will change (a bit) with τ , but can change too slowly
- Rolling forecasts use: $\widehat{\theta}$ an estimate using data from $\tau \tau_0$ through τ .
- Better at capturing parameter change, but need to choose τ_0
- Recursive and rolling forecasts might be imperfect solutions
- Why not use a model which formally models the parameter change as well?

Time Varying Parameter (TVP) Models

TVP models gaining popularity in empirical macroeconomics

$$y_t = z_t \theta_t + \varepsilon_t$$

$$\theta_t = \theta_{t-1} + \eta_t$$

- $\varepsilon_t \stackrel{ind}{\sim} N(0, H_t)$
- $\eta_t \stackrel{ind}{\sim} N(0, Q_t)$
- State space methods described above can be used to estimate them

State Space Models 47 / 77

- Why not use TVP model to forecast inflation?
- Advantage: models parameter change in a formal manner
- Disadvantage: same predictors used at all points in time.
- If number of predictors large, over-fit, over-parameterization problems
- In our empirical work, we show very poor forecast performance

Dynamic Model Averaging (DMA)

- Define K models which have $z_t^{(k)}$ for k = 1, ..., K, as predictors
- $z_t^{(k)}$ is subset of z_t .
- Set of models:

$$y_t = z_t^{(k)} \theta_t^{(k)} + \varepsilon_t^{(k)}$$

 $\theta_{t+1}^{(k)} = \theta_t^{(k)} + \eta_t^{(k)}$

- $\varepsilon_t^{(k)}$ is $N\left(0, H_t^{(k)}\right)$
- $\eta_t^{(k)}$ is $N\left(0, Q_t^{(k)}\right)$
- Let $L_t \in \{1, 2, ..., K\}$ denote which model applies at t

State Space Models 49 / 77

- Why not just forecast using BMA over these TVP models at every point in time?
- Different weights in averaging at every point in time.
- Or why not just select a single TVP forecasting model at every point in time?
- Different forecasting models selected at each point in time.
- If K is large (e.g. $K = 2^m$), this is computationally infeasible.
- With cross-sectional BMA have to work with model space $K=2^m$ which is computationally burdensome
- In present time series context, forecasting through time τ involves $2^{m\tau}$ models.
- Also, Bayesian inference in TVP model requires MCMC (unlike cross-sectional regression). Computationally burdensome.
- Even clever algorithms like MC-cubed are not good enough to handle this.

() State Space Models 50 / 77

- Another strategy has been used to deal with similar problems in different contexts (e.g. multiple structural breaks): Markov switching
- Markov transition matrix, P,
- Elements $p_{ij} = \Pr(L_t = i | L_{t-1} = j)$ for i, j = 1, ..., K.
- "If j is the forecasting model at t-1, we switch to forecasting model i at time t with probability p_{ij} "
- Bayesian inference is theoretically straightforward, but computationally infeasible
- P is $K \times K$: an enormous matrix.
- Even if computation were possible, imprecise estimation of so many parameters

Solution: DMA

- Adopt approach used by Raftery et al (2010 Technometrics) in an engineering application
- Involves two approximations
- First approximation means we do not need MCMC in each TVP model (only need run a standard Kalman filtering and smoothing)
- ullet See paper for details. Idea: replace $Q_t^{(k)}$ and $H_t^{(k)}$ by estimates

State Space Models 52 / 77

• Sketch of some Kalman filtering ideas (where y^{t-1} are observations through t-1)

$$\theta_{t-1}|y^{t-1} \sim N\left(\widehat{\theta}_{t-1}, \Sigma_{t-1|t-1}\right)$$

- ullet Textbook formula for $\widehat{ heta}_{t-1}$ and $\Sigma_{t-1|t-1}$
- Then update

$$\theta_t | y^{t-1} \sim N\left(\widehat{\theta}_{t-1}, \Sigma_{t|t-1}\right)$$

•

$$\Sigma_{t|t-1} = \Sigma_{t-1|t-1} + Q_t$$

• Get rid of Q_t by approximating:

$$\Sigma_{t|t-1} = rac{1}{\lambda} \Sigma_{t-1|t-1}$$

• $0 < \lambda \le 1$ is forgetting factor

- Forgetting factors like this have long been used in state space literature
- Implies that observations j periods in the past have weight λ^j .
- Or effective window size of $\frac{1}{1-\lambda}$.
- Choose value of λ near one
- $\lambda = 0.99$: observations five years ago $\approx 80\%$ as much weight as last period's observation.
- $\lambda=0.95$: observations five years ago $\approx 35\%$ as much weight as last period's observations.
- We focus on $\lambda \in [0.95, 1.00]$.
- ullet If $\lambda=1$ no time variation in parameters (standard recursive forecasting)

Back to Model Averaging/Selection

- Goal for forecasting at time t given data available at time t-1 is $\pi_{t|t-1,k} \equiv \Pr\left(L_t = k|y^{t-1}\right)$
- ullet Can average across k=1,..,K forecasts using $\pi_{t|t-1,k}$ as weights (DMA)
- E.g. point forecasts $(\widehat{\theta}_{t-1}^{(k)})$ from Kalman filter in model k:

$$E(y_t|y^{t-1}) = \sum_{k=1}^{K} \pi_{t|t-1,k} z_t^{(k)} \widehat{\theta}_{t-1}^{(k)}$$

- Can forecast with model j at time t if $\pi_{t|t-1,j}$ is highest (Dynamic model selection: DMS)
- Raftery et al (2010) propose another forgetting factor to approximate $\pi_{t|t-1,k}$

() State Space Models 55 / 77

- Complete details in Raftery et al's paper.
- Basic idea is that can use similar state space updating formulae for models as is done with states
- Then use similar forgetting factor to get approximation

$$\pi_{t|t-1,k} = \frac{\pi_{t-1|t-1,k}^{\alpha}}{\sum_{l=1}^{K} \pi_{t-1|t-1,l}^{\alpha}}$$

- ullet 0 < $lpha \le 1$ is forgetting factor with similar interpretation to λ
- ullet Focus on $lpha \in [0.95, 1.00]$

56 / 77

- ullet Interpretation of forgetting factor lpha
- Easy to show:

$$\pi_{t|t-1,k} = \prod_{i=1}^{t-1} \left[p_k \left(y_{t-i} | y^{t-i-1} \right) \right]^{\alpha^i}$$

- $p_k(y_t|y^{t-1})$ is predictive density for model k evaluated at y_t (measure of forecast performance of model k)
- Model k will receive more weight at time t if it has forecast well in the recent past
- ullet Interpretation of "recent past" is controlled by the forgetting factor, lpha
- $\alpha=0.99$: forecast performance five years ago receives 80% as much weight as forecast performance last period
- $\alpha = 0.95$: forecast performance five years ago receives only about 35% as much weight.
- $\alpha=1$: can show $\pi_{t|t-1,k}$ is proportional to the marginal likelihood using data through time t-1 (standard BMA)

() State Space Models 57 / 77

Summary So Far

- We want to do DMA or DMS
- These use TVP models which allow marginal effects to change over time
- These allow for forecasting model to switch over time
- So can switch from one parsimonious forecasting model to another (avoid over-parametization)
- But a full formal Bayesian analysis is computationally infeasible
- Sensible approximations make it computationally feasible.
- State space updating formula must be run K times, instead of (roughly speaking) K^T MCMC algorithms

State Space Models 58 / 77

Forecasting US Inflation

- Data from 1960Q1 through 2008Q4
- ullet Real time data (forecasting at time au using data as known at time au)
- Two measure of inflation based on PCE deflator (core inflation) and GDP deflator
- 14 predictors listed previously (all variables transformed to be approximately stationary)
- All models include an intercept and two lags of the dependent variable
- 3 forecast horizons: h = 1,4,8

State Space Models 59 / 77

Is DMA Parsimonious?

- Even though 14 potential predictors, most probability is attached to very parsimonious models with only a few predictors.
- $Size_k = number of predictors in model k$
- (Size_k does not include the intercept plus two lags of the dependent variable)
- Figure 1 plots

$$E\left(\textit{Size}_{t}\right) = \sum_{k=1}^{K} \pi_{t|t-1,k} \textit{Size}_{k}$$

Figure 1: Expected Number of Predictors

Which Variables are Good Predictors for Inflation?

• Posterior inclusion probabilities for j^{th} predictor =

$$\sum_{k \in J} \pi_{t|t-1,k}$$

- where $k \in J$ indicates models which include j^{th} predictor
- See Figure 2, 3 and 4 for 2 measures of inflation and 3 forecast horizons
- Any predictor where the inclusion probability is never above 0.5 is excluded from the appropriate figure.
- Lots of evidence of predictor change in all cases.
- DMA/DMS will pick this up automatically

State Space Models 62 / 77

Figure 2: Posterior Probability of Inclusion of Predictors, h=1. GDP deflator inflation top, PCE deflator inflation bottom

Figure 3: Posterior Probability of Inclusion of Predictors, h = 4. GDP deflator inflation top, PCE deflator inflation bottom

Figure 4: Posterior Probability of Inclusion of Predictors, h = 8. GDP deflator inflation top, PCE deflator inflation bottom

Forecast Performance

- recursive forecasting exercise
- forecast evaluation begins in 1970Q1
- Measures of forecast performance using point forecasts
- Mean squared forecast error (MSFE) and mean absolute forecast error (MAFE).
- Forecast metric involving entire predictive distribution: the sum of log predictive likelihoods.
- Predictive likelihood = Predictive density for y_t (given data through time t-1) evaluated at the actual outcome.

State Space Models 66 / 77

Forecasting Methods

- DMA with $\alpha = \lambda = 0.99$.
- DMS with $\alpha = \lambda = 0.99$.
- DMA with $\alpha = \lambda = 0.95$.
- DMS with $\alpha = \lambda = 0.95$.
- DMA, with constant coefficients ($\lambda = 1$, $\alpha = 0.99$)
- ullet BMA as a special case of DMA (i.e. we set $\lambda=lpha=1$).
- TVP-AR(2)-X: Traditional TVP model .
- TVP-AR(2) model (as preceding but excluding predictors)

State Space Models 67 / 77

- Traditional g-prior BMA
- UC-SV: Unobserved components with stochastic volatility model of Stock and Watson (2007).
- Recursive OLS using AR(p)
- As preceding, but adding the predictors.
- Rolling OLS using AR(p) (window of 40 quarters)
- As preceding, but adding the predictors
- Random walk
- Note: in recursive and rolling OLS forecasts p selected at each point in time using BIC

Discussion of Log Predictive Likelihoods

- Preferred method of Bayesian forecast comparison
- Some variant of DMA or DMS always forecast best.
- DMS with $\alpha = \lambda = 0.95$ good for both measures of inflation at all horizons.
- Conventional BMA forecasts poorly.
- TVP-AR(2) and UC-SV have substantially lower predictive likelihoods than the DMA or DMS approaches.
- Of the non-DMA approaches, UC-SV approach of Stock and Watson (2007) consistently is the best performer.
- TVP model with all predictors tends to forecast poorly
- Shrinkage provided by DMA or DMS is of great value in forecasting.
- DMS tends to forecast a bit better than DMA

() State Space Models 69 / 77

Discussion of MSFE and MAFE

- Patterns noted with predictive likelihoods mainly still hold (although DMA does better relative to DMS)
- Simple forecasting methods (AR(2) or random walk model) are inferior to DMA and DMS
- Rolling OLS using all predictors forecast bests among OLS-based methods.
- DMS and DMA with $\alpha=\lambda=0.95$ always lead to lower MSFEs and MAFEs than rolling OLS with all the predictors.
- In some cases rolling OLS with all predictors leads to lower MSFEs and MAFEs than other implementations of DMA or DMS.
- In general: DMA and DMS look to be safe options. Usually they do best, but where not they do not go too far wrong
- Unlike other methods which might perform well in some cases, but very poorly in others

() State Space Models 70 / 77

Forecast results: GDP deflator inflation, h=1

	MAFE	MSFE	log(PL)
DMA ($\alpha = \lambda = 0.99$)	0.248	0.306	-0.292
DMS ($lpha=\lambda=0.99$)	0.256	0.318	-0.277
DMA ($lpha=\lambda=0.95$)	0.248	0.310	-0.378
DMS ($lpha=\lambda=0.95$)	0.235	0.297	-0.237
DMA ($\lambda=1$, $lpha=0.99$)	0.249	0.306	-0.300
BMA (DMA with $lpha=\lambda=1$)	0.256	0.316	-0.320
TVP-AR(2) ($\lambda=0.99$)	0.260	0.327	-0.344
TVP-AR(2)-X ($\lambda=0.99$)	0.309	0.424	-0.423
BMA-MCMC $(g=rac{1}{T})$	0.234	0.303	-0.369
UC-SV $(\gamma=0.2)$	0.256	0.332	-0.320
Recursive OLS - AR(BIC)	0.251	0.326	-
Recursive OLS - All Preds	0.265	0.334	-
Rolling OLS - AR(2)	0.251	0.325	-
Rolling OLS - All Preds	0.252	0.327	-
Random Walk	0.262	0.349	-

() State Space Models 71 / 7

Forecast results: GDP deflator inflation, h=4

	MAFE	MSFE	log(PL)
DMA ($\alpha = \lambda = 0.99$)	0.269	0.349	-0.421
DMS ($lpha=\lambda=0.99$)	0.277	0.361	-0.406
DMA ($lpha=\lambda=0.95$)	0.255	0.334	-0.455
DMS ($lpha=\lambda=0.95$)	0.249	0.316	-0.307
DMA ($\lambda=1$, $lpha=0.99$)	0.277	0.355	-0.445
BMA (DMA with $lpha=\lambda=1$)	0.282	0.363	-0.463
TVP-AR(2) ($\lambda=0.99$)	0.320	0.401	-0.480
TVP-AR(2)-X ($\lambda=0.99$)	0.336	0.453	-0.508
BMA-MCMC $(g=rac{1}{T})$	0.285	0.364	-0.503
UC-SV $(\gamma=0.2)$	0.311	0.396	-0.473
Recursive OLS - AR(BIC)	0.344	0.433	-
Recursive OLS - All Preds	0.302	0.376	-
Rolling OLS - AR(2)	0.328	0.425	-
Rolling OLS - All Preds	0.273	0.349	-
Random Walk	0.333	0.435	-

State Space Models 72 / 77

Forecast results: GDP deflator inflation, h=8

	MAFE	MSFE	log(PL)
DMA ($\alpha = \lambda = 0.99$)	0.333	0.413	-0.583
DMS ($lpha=\lambda=0.99$)	0.338	0.423	-0.578
DMA ($lpha=\lambda=0.95$)	0.293	0.379	-0.570
DMS ($lpha=\lambda=0.95$)	0.295	0.385	-0.424
DMA ($\lambda=1$, $lpha=0.99$)	0.346	0.423	-0.626
BMA (DMA with $lpha=\lambda=1$)	0.364	0.449	-0.690
TVP-AR(2) ($\lambda=0.99$)	0.398	0.502	-0.662
TVP-AR(2)-X ($\lambda=0.99$)	0.410	0.532	-0.701
BMA-MCMC $(g=rac{1}{T})$	0.319	0.401	-0.667
UC-SV $(\gamma=0.2)$	0.350	0.465	-0.613
Recursive OLS - AR(BIC)	0.436	0.516	-
Recursive OLS - All Preds	0.369	0.441	-
Rolling OLS - AR(2)	0.380	0.464	-
Rolling OLS - All Preds	0.325	0.398	-
Random Walk	0.428	0.598	-

State Space Models 73 / 77

Forecast results: core inflation, h=1

	MAFE	MSFE	log(PL)
DMA ($\alpha = \lambda = 0.99$)	0.253	0.322	-0.451
DMS ($\alpha = \lambda = 0.99$)	0.259	0.326	-0.430
DMA ($lpha=\lambda=0.95$)	0.267	0.334	-0.519
DMS ($lpha=\lambda=0.95$)	0.236	0.295	-0.348
DMA ($\lambda=1$, $lpha=0.99$)	0.250	0.317	-0.444
BMA (DMA with $lpha=\lambda=1$)	0.259	0.331	-0.464
TVP-AR(2) $(\lambda=0.99)$	0.280	0.361	-0.488
TVP-AR(2)-X $(\lambda=0.99)$	0.347	0.492	-0.645
BMA-MCMC $(g=rac{1}{T})$	0.269	0.352	-0.489
UC-SV $(\gamma=0.2)$	0.269	0.341	-0.474
Recursive OLS - AR(BIC)	0.310	0.439	-
Recursive OLS - All Preds	0.303	0.421	-
Rolling OLS - AR(2)	0.316	0.430	-
Rolling OLS - All Preds	0.289	0.414	-
Random Walk	0.294	0.414	-

State Space Models 74 / 77

Forecast results: core inflation, h = 4

	MAFE	MSFE	log(PL)
DMA ($\alpha = \lambda = 0.99$)	0.311	0.406	-0.622
DMS ($lpha=\lambda=0.99$)	0.330	0.431	-0.631
DMA ($lpha=\lambda=0.95$)	0.290	0.382	-0.652
DMS ($\alpha = \lambda = 0.95$)	0.288	0.353	-0.499
DMA ($\lambda=1$, $lpha=0.99$)	0.315	0.412	-0.636
BMA (DMA with $\alpha = \lambda = 1$)	0.325	0.429	-0.668
TVP-AR(2) $(\lambda=0.99)$	0.355	0.459	-0.668
TVP-AR(2)-X $(\lambda=0.99)$	0.378	0.556	-0.764
BMA-MCMC $(g=rac{1}{T})$	0.307	0.414	-0.633
UC-SV $(\gamma=0.2)$	0.340	0.443	-0.651
Recursive OLS - AR(BIC)	0.390	0.513	-
Recursive OLS - All Preds	0.325	0.442	-
Rolling OLS - AR(2)	0.378	0.510	-
Rolling OLS - All Preds	0.313	0.422	-
Random Walk	0.407	0.551	-

State Space Models 75 / 77

n = 0			
	h=8		
MAFE	MSFE	log(PL)	
0.357	0.448	-0.699	
0.369	0.469	-0.699	
0.317	0.403	-0.673	
0.293	0.371	-0.518	
0.366	0.458	-0.733	
0.397	0.490	-0.779	
0.450	0.573	-0.837	
0.432	0.574	-0.841	
0.357	0.454	-0.788	
0.406	0.528	-0.774	
0.463	0.574	-	
0.378	0.481	-	
0.428	0.540	-	
0.338	0.436	-	
0.531	0.698	-	
	MAFE 0.357 0.369 0.317 0.293 0.366 0.397 0.450 0.432 0.357 0.406 0.463 0.378 0.428 0.338	h=8 MAFE MSFE 0.357 0.448 0.369 0.469 0.317 0.403 0.293 0.371 0.366 0.458 0.397 0.490 0.450 0.573 0.432 0.574 0.357 0.454 0.406 0.528 0.463 0.574 0.378 0.481 0.428 0.540 0.338 0.436	

Conclusions for DMA Application

- When forecasting in the presence of change/breaks/turbulence want an approach which:
- Allows for forecasting model to change over time
- Allows for marginal effects of predictors to change over time
- Automatically does the shrinkage necessary to reduce risk of overparameterization/over-fitting
- In theory, DMA and DMS should satisfy these criteria
- In practice, we find DMA and DMS to forecast well in an exercise involving US inflation.

) State Space Models 77 / 77