

VICERRECTORADO ACADÉMICO FACULTAD DE INGENIERÍA DEPARTAMENTO: POTENCIA CÓDIGO: 222G01

HC.: 6 (4 TEÓRICAS-2 PRÁCTICAS)

CARÁCTER: OBLIGATORIA

REQUISITO: 201G11

UBICACIÓN: TERCER SEMESTRE VALIDEZ: SEPTIEMBRE 2008

PROGRAMA: FÍSICA II

I.- OBJETIVOS GENERALES:

Desarrollar el espíritu crítico y reflexivo del alumno para que entienda ciertos fenómenos no visibles de manifestación cotidiana. Aplicar las leyes que rigen los fenómenos eléctricos, magnéticos y electromagnéticos. Complementar el área cognitiva con prácticas relacionadas con el electromagnetismo.

II.- CONTENIDO PROGRAMÁTICO: COMPONENTE TEÓRICO

Tema 1.- La electrostática. Carga y materia. El electromagnetismo: esbozo histórico, carga eléctrica. El átomo: estructura atómica, modelo atómico de rutherford, cuantización de la carga. Conductores y aisladores. Ley de Coulomb: conservación de la carga eléctrica, carga estática.

Tema 2.- El campo eléctrico. Intensidad del campo eléctrico. Líneas de fuerza. Cálculo del campo eléctrico. Carga puntual dentro de un campo eléctrico. La ley de gauss. Aplicaciones.

Tema 3.- Potencial eléctrico. Relación entre potencial e intensidad del campo eléctrico. Cálculo de potencial eléctrico. Diferencia de potencia eléctrico. Energía potencial eléctrica. Capacitores y dieléctricos. Capacitancia. Cálculo de capacitancia. El dieléctrico y la ley de gauss. Energía almacenada en un campo eléctrico.

Tema 4.- Corriente. Densidad de Corriente. Resistencia y resistividad. Ley de ohm. Fuerza electromotriz. Redes eléctricas, métodos de kirchhoff.

Tema 5.- El Campo magnético. Definición. Fuerza magnética sobre una carga en movimiento, efecto hall. Fuerza magnética sobre una línea de corriente. La Ley de Ampère. La Ley de Biot-Savart.

Tema 6.- Campos magnéticos variables con el tiempo. Fuerza electromotriz producida por movimiento. La Ley de inducción de Faraday. Ley de Lenz. Fuerza electromotriz sobre un cuadro en rotación.

COMPONENTE PRÁCTICO

Práctica 1.- Resistencia y código de colores.

Práctica 2.- Ley de Ohm.

Práctica 3.- Circuitos en serie y paralelo.

Práctica 4.- Potenciómetro.

Práctica 5.- Leyes de Kirchhoff.

Práctica 6.- Circuitos RC.

III.- MODO DE EVALUACIÓN:

COMPONENTE TEÓRICO: La evaluación se realizará en forma continua distribuida en un mínimo de cuatro (4) evaluaciones parciales (exámenes, trabajos, prácticas en grupo y exposiciones), con un valor máximo de 12,5% cada una.

COMPONENTE PRÁCTICO: Las prácticas serán evaluadas y tendrán un valor del 50 % de la nota definitiva.

IV.- BIBLIOGRAFÍA:

- CHENG, D., <u>Fundamentos de ingeniería electromagnética</u>, Addison-Wesley, 1994.
- GETTYS, <u>Física para ciencias e ingeniería</u>, Tomo II, McGraw-Hill, 2005.
- HAYT, W., <u>Teoría Electromagnética</u>, McGraw-Hill, 2000.
- MOORE, T., <u>Física. Seis ideas fundamentales</u>. Tomo II, McGraw-Hill, 2005.
- SERWAY, R., Física para ciencias e ingeniería. Volumen II, Thompson, 2005.