Network security

Nicolò Fornari

February 17, 2016

1 Network protocols

Data link layer

It is the lowest logical level, the data link interconnects physical interfaces. Each interface is identified by a MAC address (Media Access Control).

The MAC address is 48 bit long, it is usually represented in Hex notation and it is used to route packets in local networks.

It uniquely identifies a network interface. It is assigned by the producer according to the standard IEEE 802.

Network Layer

IP operates at this level. IP addresses are dynamically assigned by an authority (eg. ISP's DHCP server).

Stateful: communication starts, develops, ends. eg. TCP

Stateless: IP

1.1 ARP

ARP (address resolution protocol) allows systems to associate an ip address to a MAC address. All addresses in the ARP table are added by one of these mechanisms:

- ARP request-reply: who is 192.168.0.16 tell 192.168.0.1 192.168.0.16 is at 00-10-BC-2c-11-56
- Gratuitous ARP 192.168.0.16 is at 00-10-BC-2c-11-56

ARP frame header

→ 32 BITS →					
8	8	8	8		
HARDWARE TYPE		PROTOCOL TYPE			
HARDWARE ADDRESS LENGTH	PROTOCOL ADDRESS LENGTH	OPERATION			
SENDER HARDWARE ADDRESS (OCTETS 0 - 3)					
SENDER HARDWARE ADDRESS (OCTETS 4-5)		SENDER IP ADDRESS (OCTETS 0-1)			
SENDER IP ADDRESS (OCTETS 2-3)		TARGET HARDWARE ADDRESS (OCTETS 0-1)			
TARGET HARDWARE ADDRESS (OCTETS 2-5)					
TARGET IP ADDRESS					

ARP poisoning

The ARP protocol is declarative, it does not need an answer.

Nodes are not authenticated.

Limitations: it works only on LAN

Subnets and CIDR

Subnets are logical divisions of IP addresses. IP bits are partitioned as network, subnet, host. A subnet mask indicates sections of IP addresses meant for network and subnet. Eg. 255.255.255.0 means 24 bits for network and subnet and 8 bits for hosts.

CIDR

Classless Inter Domain Routing, it is a synthetic way to represent subnet masks. Example:

 \bullet Network mask: 255.255.0.0.

 \bullet CIDR representation: 132.132.1.10/16

• Hosts = 2^{16}

Formulas: (everything as binary)

• Network = Ip AND Subnet

• Host = Ip AND Not(Subnet)

1.2 IP

	0	4	8	14	16	19	31
Ī	Version	HLength	DiffServ	ECN		Total Length	
တ္ထ		Identifi	cation		Flags	Fragment Offset	
20 Bytes	Time T	o Live	Protocol		Header Checksum		
8	Source IP Address						
	Destination IP Address						
	Options + Padding (optional)						
	Data						

Some IPs are reserved for private networks:

- $\bullet \ 10.0.0.0 \rightarrow 10.255.255.255$
- $192.168.1.1 \rightarrow 192.168.255.255$
- $\bullet \ 172.16.0.0 \rightarrow 172.16.255.255$

Def A *datagram* is a basic transfer unit associated with a packet-switched network. The delivery, arrival time, and order of arrival need not be guaranteed by the network.

Def MTU maximum transmission unit

IP fragmentation *Identification:* 16 bit, is the unique identifier of the fragmented datagram. Note that all fragments have the same identification number.

Flags: 3 bits

- 0 Reserved, must be zero
- DF Don't fragment

If set to $0 \rightarrow$ there may be fragments

If set to 1 \rightarrow drop datagram if it has to be fragmented

- MF More fragments
 - $0 \to \text{last fragment}$
 - $1 \rightarrow$ there are more fragments

 $O\!f\!f\!set$ 13 bits, offset of this data gram wrt the first fragment with that ID

Fragmentation example

	A		В		С
IP header	data	IP header	data	IP header	data
20 bytes	1480 bytes	20 bytes	1480 bytes	20 bytes	1240 bytes
150	0 bytes	15	00 bytes	12	280 bytes

	Α	В	С
Identification	4452	4452	4452
Flags	DF=0MF=1	DF=0MF=1	DF=0MF=0
Offset	0	1480	2960

Remark 1. DOS with IP fragments You keep sending fragments without sending the first fragment, the router keeps waiting for it until it exhausts its memory.

1.3 ICMP

Internet control message protocol. It relies on IP and is and integral part of it.

Some message types

- 0 Echo Reply
- 3 Destination Unreachable
- Code $0 \to \text{Net unreachable}$
- Code 1 \rightarrow Host unreachable
- Code 2 \rightarrow Protocol unreachable
- Code 3 \rightarrow Port unreachable
- Code 4 \rightarrow Fragmentation needed and DF set
- Code 5 \rightarrow Source route failed
- 4 Source Quench
- 5 Redirect
- 8 Echo
- 11 Time Exceeded Code $0 \rightarrow$ Net unreachable Code $1 \rightarrow$ Host unreachable
- 12 Parameter Problem
- 13 Timestamp
- 14 Timestamp Reply
- 15 Information Request
- 16 Information Reply

1.4 Traceroute

1.5 Denial of service

Def a Denial of Service is a type of attack that aims at congesting or overpowering a system's capacity by generating requests the system will have to answer.

Examples

- Dos with IP fragmentation
- Ping Flooding (the attacker exploit his wider bandwidth)
- $\bullet\,$ Ping of death