Beyond-the-standard-model contributions to rare B decays analyzed with variational-Bayes enhanced adaptive importance sampling

Stephan Jahn

March 17, 2015

Bayes' formula:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{P(\mathcal{D}|\mathbf{M})} = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{\int P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})d\boldsymbol{\theta}}$$

Bayes' formula:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{P(\mathcal{D}|\mathbf{M})} = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{\int P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})d\boldsymbol{\theta}}$$

model independent search for new physics (effective theory):

Bayes' formula:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{P(\mathcal{D}|\mathbf{M})} = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{\int P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})d\boldsymbol{\theta}}$$

model independent search for new physics (effective theory):

$$oldsymbol{ heta} = ext{effective couplings } \mathcal{C}_i$$

Bayes' formula:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{P(\mathcal{D}|\mathbf{M})} = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{\int P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})d\boldsymbol{\theta}}$$

model independent search for new physics (effective theory):

 $heta = \frac{\mathcal{C}_i}{\mathcal{C}_i}$ couplings \mathcal{C}_i $\mathcal{D} = \text{detector events}$

Bayes' formula:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{P(\mathcal{D}|\mathbf{M})} = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{\int P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})d\boldsymbol{\theta}}$$

model independent search for new physics (effective theory):

$$egin{aligned} oldsymbol{ heta} &= ext{ iny effective couplings } \mathcal{C}_i \ & \mathcal{D} &= ext{ iny detector events} \ & ext{ iny M} &= ext{ iny EFT, SM, ...} \end{aligned}$$

Goals

Goals

 draw marginal plots of the posterior

Goals

 draw marginal plots of the posterior

• compare models $NP \leftrightarrow SM$

$$\frac{P(\mathrm{NP}|\mathcal{D})}{P(\mathrm{SM}|\mathcal{D})} = \frac{P(\mathcal{D}|\mathrm{NP})}{P(\mathcal{D}|\mathrm{SM})} \cdot \frac{P(\mathrm{NP})}{P(\mathrm{SM})}$$

$$P(\mathbf{M}|\mathcal{D}) = \frac{P(\mathcal{D}|\mathbf{M})P(\mathbf{M})}{P(\mathcal{D})}$$

Goals

 draw marginal plots of the posterior

• compare models $NP \leftrightarrow SM$

$$\frac{P(\mathrm{NP}|\mathcal{D})}{P(\mathrm{SM}|\mathcal{D})} = \frac{P(\mathcal{D}|\mathrm{NP})}{P(\mathcal{D}|\mathrm{SM})} \cdot \frac{P(\mathrm{NP})}{P(\mathrm{SM})}$$

$$P(\mathbf{M}|\mathcal{D}) = \frac{P(\mathcal{D}|\mathbf{M})P(\mathbf{M})}{P(\mathcal{D})}$$

$$\frac{P(\mathrm{NP}|\mathcal{D})}{P(\mathrm{SM}|\mathcal{D})} > 1$$
 new physics \odot

Goals

 draw marginal plots of the posterior

• compare models $NP \leftrightarrow SM$

$$\frac{P(\mathrm{NP}|\mathcal{D})}{P(\mathrm{SM}|\mathcal{D})} = \frac{P(\mathcal{D}|\mathrm{NP})}{P(\mathcal{D}|\mathrm{SM})} \cdot \frac{P(\mathrm{NP})}{P(\mathrm{SM})}$$

$$P(\mathbf{M}|\mathcal{D}) = \frac{P(\mathcal{D}|\mathbf{M})P(\mathbf{M})}{P(\mathcal{D})}$$

$$\frac{P(\text{NP}|\mathcal{D})}{P(\text{SM}|\mathcal{D})} > 1$$
 new physics \odot

$$\frac{P(NP|\mathcal{D})}{P(SM|\mathcal{D})} < 1$$
 confirm SM \odot

Difficulties

Difficulties

curse of dimensionality

Difficulties

- curse of dimensionality
- multimodality

Difficulties

- curse of dimensionality
- multimodality
- degeneracies

Difficulties

- curse of dimensionality
- multimodality
- degeneracies

no standard algorithm so far

Contents

- Overview
- Adaptive importance sampling with the variational-Bayes approach
 - Adaptive importance sampling
 - Variational Bayes (Gaussian mixture model)
- Model-independent search for new physics
 - Motivation
 - Effective theory
 - Methodology
 - Constraints on $\mathcal{C}_{10}^{(\prime)},\mathcal{C}_{S}^{(\prime)},\mathcal{C}_{P}^{(\prime)},\mathcal{C}_{T},$ and \mathcal{C}_{T5}
- 4 Summary

Adaptive importance sampling with the variational-Bayes approach

- Overview
- 2 Adaptive importance sampling with the variational-Bayes approach
 - Adaptive importance sampling
 - Variational Bayes (Gaussian mixture model)
- 3 Model-independent search for new physics
 - Motivation
 - Effective theory
 - Methodology
 - Constraints on $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}
- 4 Summary

$$\int P(x) dx = \int \frac{P(x)}{p(x)} p(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} \frac{P(x_n)}{p(x_n)} \equiv \mu^N \text{ where } x_n \sim p$$

$$\int P(x) dx = \int \frac{P(x)}{p(x)} p(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} \frac{P(x_n)}{p(x_n)} \equiv \mu^N \text{ where } x_n \sim p$$

squared uncertainty (variance):

$$var(\mu^{N}) = \frac{1}{N} \left[\int \frac{P(x)}{p(x)} P(x) dx - \left(\int P(x) dx \right)^{2} \right]$$

$$\int P(x) dx = \int \frac{P(x)}{p(x)} p(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} \frac{P(x_n)}{p(x_n)} \equiv \mu^N \text{ where } x_n \sim p$$

squared uncertainty (variance):

$$var(\mu^N) = \frac{1}{N} \left[\int \frac{P(x)}{p(x)} P(x) dx - \left(\int P(x) dx \right)^2 \right]$$

• minimize the uncertainty $var(\mu^N)$ with respect to p

$$\int P(x) dx = \int \frac{P(x)}{p(x)} p(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} \frac{P(x_n)}{p(x_n)} \equiv \mu^N \text{ where } x_n \sim p$$

squared uncertainty (variance):

$$var(\mu^{N}) = \frac{1}{N} \left[\int \frac{P(x)}{p(x)} P(x) dx - \left(\int P(x) dx \right)^{2} \right]$$

- minimize the uncertainty $var(\mu^N)$ with respect to p
 - it suffices to minimize: $\log \left(\int \frac{P(x)}{p(x)} P(x) dx \right)$

$$\int P(x) dx = \int \frac{P(x)}{p(x)} p(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} \frac{P(x_n)}{p(x_n)} \equiv \mu^{N} \text{ where } x_n \sim p$$
squared uncertainty (variance):

$$var(\mu^N) = \frac{1}{N} \left[\int \frac{P(x)}{p(x)} P(x) dx - \left(\int P(x) dx \right)^2 \right]$$

- minimize the uncertainty $var(\mu^N)$ with respect to p
 - it suffices to minimize: $\log \left(\int \frac{P(x)}{P(x)} P(x) dx \right)$
 - by Jensen's inequality: $\geq \int \log \left(\frac{P(x)}{p(x)} \right) P(x) dx$

$$\int P(x) dx = \int \frac{P(x)}{p(x)} p(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} \frac{P(x_n)}{p(x_n)} \equiv \mu^N \text{ where } x_n \sim p$$

squared uncertainty (variance):

$$var(\mu^{N}) = \frac{1}{N} \left[\int \frac{P(x)}{p(x)} P(x) dx - \left(\int P(x) dx \right)^{2} \right]$$

- minimize the uncertainty $var(\mu^N)$ with respect to p
 - it suffices to minimize: $\log \left(\int \frac{P(x)}{P(x)} P(x) dx \right)$
 - by Jensen's inequality: $\geq \int \log \left(\frac{P(x)}{p(x)}\right) P(x) dx \equiv KL(P||p)$
 - known as the Kullback-Leibler divergence

Note:

Note:

$$0 \le KL(P||p)$$
 and $KL(P||p) = 0 \Leftrightarrow P = p$

Note:

$$0 \le KL(P||p)$$
 and $KL(P||p) = 0 \Leftrightarrow P = p$
 $0 \le var(\mu^N)$ and $var(\mu^N) = 0 \Leftrightarrow P = p$

Note:

$$0 \le KL(P||p)$$
 and $KL(P||p) = 0 \Leftrightarrow P = p$
 $0 \le var(\mu^N)$ and $var(\mu^N) = 0 \Leftrightarrow P = p$

Remember:

$$var(\mu^N) - const = \log\left(\int \frac{P(x)}{p(x)} P(x) dx\right) \ge KL(P\|p)$$

Note:

$$0 \le KL(P||p)$$
 and $KL(P||p) = 0 \Leftrightarrow P = p$
 $0 \le var(\mu^N)$ and $var(\mu^N) = 0 \Leftrightarrow P = p$

Remember:

$$var(\mu^N) - const = \underbrace{\log\left(\int \frac{P(x)}{p(x)} P(x) dx\right)}_{\text{minimization typically infeasible}} \ge KL(P \| p)$$

Note:

$$0 \le KL(P||p)$$
 and $KL(P||p) = 0 \Leftrightarrow P = p$
 $0 \le var(\mu^N)$ and $var(\mu^N) = 0 \Leftrightarrow P = p$

Remember:

$$var(\mu^N) - const = \underbrace{\log\left(\int \frac{P(x)}{p(x)} P(x) dx\right)}_{\text{minimization typically infeasible}} \ge KL(P \| p)$$

minimize KL(P||p) and hope to approach the unique global minimum P = p

Variational Bayes (Gaussian mixture model)

Variational Bayes (Gaussian mixture model)

restrict p to Gaussian mixtures

$$p(x_n|\boldsymbol{\theta}) = \sum_{k=1}^K \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k), \quad \boldsymbol{\theta} = \{\pi_k, \mu_k, \Sigma_k\}$$

$$p(x_n|\boldsymbol{\theta}) = \sum_{k=1}^K \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k), \quad \boldsymbol{\theta} = \{\pi_k, \mu_k, \Sigma_k\}$$

$$z_{nk} = \begin{cases} 1 \text{ if } x_n \text{ from component k} \\ 0 \text{ else} \end{cases}$$

$$p(x_n|\boldsymbol{\theta}) = \sum_{k=1}^K \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k), \quad \boldsymbol{\theta} = \{\pi_k, \mu_k, \Sigma_k\}$$

$$z_{nk} = egin{cases} 1 & ext{if } x_n ext{ from component k} \ 0 & ext{else} \end{cases}$$
 $p(x_n|\mathbf{Z},m{ heta}) = \prod_{k=1}^K \mathcal{N}(x_n|\mu_k,\Sigma_k)^{z_{nk}}$

$$p(x_n|\boldsymbol{\theta}) = \sum_{k=1}^K \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k), \quad \boldsymbol{\theta} = \{\pi_k, \mu_k, \Sigma_k\}$$

$$z_{nk} = egin{cases} 1 & ext{if } x_n ext{ from component k} \ 0 & ext{else} \end{cases}$$
 $p(x_n|\mathbf{Z},m{ heta}) = \prod_{k=1}^K \mathcal{N}(x_n|\mu_k,\Sigma_k)^{z_{nk}}$

$$p(z_{nk} = 1|\theta) = \pi_k = \prod_{k'=1}^K \pi_{k'}^{z_{nk'}}$$

$$p(x_n|\boldsymbol{\theta}) = \sum_{k=1}^K \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k), \quad \boldsymbol{\theta} = \{\pi_k, \mu_k, \Sigma_k\}$$

$$z_{nk} = egin{cases} 1 & ext{if } x_n ext{ from component k} \\ 0 & ext{else} \end{cases}$$
 $p(x_n|\mathbf{Z}, oldsymbol{ heta}) = \prod_{k=1}^K \mathcal{N}(x_n|\mu_k, \Sigma_k)^{z_{nk}}$ $p(x_n|oldsymbol{ heta}) = \sum_{\mathbf{Z}} p(x_n|\mathbf{Z}, oldsymbol{ heta}) p(\mathbf{Z}|oldsymbol{ heta})$ $p(z_{nk} = 1|oldsymbol{ heta}) = \pi_k = \prod_{k=1}^K \pi_{k'}^{z_{nk'}}$

Variational Bayes (Gaussian mixture model)

minimize KL(P||p)

Variational Bayes (Gaussian mixture model)

minimize
$$KL(P||p) \Leftrightarrow \text{maximize } \log p(\mathbf{X}|\theta) \equiv \log \prod_{n=1}^{N} p(x_n|\theta)$$

impose a prior $p(\theta)$ and rewrite with arbitrary probability distribution $q(\mathbf{Z},\theta)$

minimize
$$KL(P||p) \Leftrightarrow \text{maximize } \log p(\mathbf{X}|\theta) \equiv \log \prod_{n=1}^{N} p(x_n|\theta)$$

impose a prior $p(\theta)$ and rewrite with arbitrary probability distribution $q(\mathbf{Z},\theta)$

$$\log p(\mathbf{X}) = \underbrace{\int \mathrm{d}\mathbf{Z} \, \mathrm{d}\theta \, q(\mathbf{Z}, \theta) \log \left[\frac{p(\mathbf{X}, \mathbf{Z}, \theta)}{q(\mathbf{Z}, \theta)} \right]}_{\equiv \mathcal{L}[q]} + \underbrace{\int \mathrm{d}\mathbf{Z} \, \mathrm{d}\theta \, q(\mathbf{Z}, \theta) \log \left[\frac{q(\mathbf{Z}, \theta)}{p(\mathbf{Z}, \theta | \mathbf{X})} \right]}_{\equiv \mathcal{K}L(q \parallel p)}$$

minimize
$$KL(P||p) \Leftrightarrow \text{maximize } \log p(\mathbf{X}|\theta) \equiv \log \prod_{n=1}^{N} p(x_n|\theta)$$

impose a prior $p(\theta)$ and rewrite with arbitrary probability distribution $q(\mathbf{Z}, \theta)$

$$\log p(\mathbf{X}) = \underbrace{\int \mathrm{d}\mathbf{Z} \, \mathrm{d}\theta \, q(\mathbf{Z}, \theta) \log \left[\frac{p(\mathbf{X}, \mathbf{Z}, \theta)}{q(\mathbf{Z}, \theta)} \right]}_{\equiv \mathcal{L}[q]} + \underbrace{\int \mathrm{d}\mathbf{Z} \, \mathrm{d}\theta \, q(\mathbf{Z}, \theta) \log \left[\frac{q(\mathbf{Z}, \theta)}{p(\mathbf{Z}, \theta | \mathbf{X})} \right]}_{\equiv \mathit{KL}(q \parallel p)}$$

assumption
$$q(\mathbf{Z}, \boldsymbol{\theta}) = q(\mathbf{Z})q(\boldsymbol{\theta})$$

 \Rightarrow iterative solution

Variational Bayes (Gaussian mixture model)

further reading:

Christopher M. Bishop, *Pattern Recognition and Machine Learning*, Springer 2006, chapter 10

Adaptive importance sampling with the variational-Bayes approach

https://pypi.python.org/pypi/pypmc

- Overview
- 2 Adaptive importance sampling with the variational-Bayes approach
 - Adaptive importance sampling
 - Variational Bayes (Gaussian mixture model)
- Model-independent search for new physics
 - Motivation
 - Effective theory
 - Methodology
 - Constraints on $\mathcal{C}_{10}^{(\prime)},\mathcal{C}_{S}^{(\prime)},\mathcal{C}_{P}^{(\prime)},\mathcal{C}_{T}$, and \mathcal{C}_{T5}
- 4 Summary

Motivation

The standard model (SM) of particle physics cannot explain:

- dark matter
- neutrino masses
- hierarchy problem
- strong CP problem
- ...

Motivation

The standard model (SM) of particle physics cannot explain:

- dark matter
- neutrino masses
- hierarchy problem
- strong CP problem
- ...

new physics (NP) required

Motivation

The standard model (SM) of particle physics cannot explain:

- dark matter
- neutrino masses
- hierarchy problem
- strong CP problem
- ...

new physics (NP) required exact structure unknown ⇒ model independent analysis

effective Lagrangian for $b \to s\ell^+\ell^-$ (SM):

$$\mathcal{L}_{int} = \frac{4G_F}{\sqrt{2}} \frac{\alpha_e}{4\pi} V_{tb} V_{ts}^* \sum_i C_i \mathcal{O}_i + ... + \text{h.c.}$$

$$\mathcal{O}_9 \ = \begin{bmatrix} \overline{\mathbf{s}} \gamma_\mu P_L & b \end{bmatrix} \begin{bmatrix} \overline{\ell} \gamma^\mu \ell \end{bmatrix} \qquad \qquad \mathcal{O}_{10} = \begin{bmatrix} \overline{\mathbf{s}} \gamma_\mu P_L & b \end{bmatrix} \begin{bmatrix} \overline{\ell} \gamma^\mu \gamma_5 \ell \end{bmatrix}$$

effective Lagrangian for $b \to s\ell^+\ell^-$ (beyond-SM):

$$\mathcal{L}_{int} = \frac{4G_F}{\sqrt{2}} \frac{\alpha_e}{4\pi} V_{tb} V_{ts}^* \sum_i C_i \mathcal{O}_i + \dots + \text{h.c.}$$

$$\mathcal{O}_9^{(\prime)} = \left[\bar{s} \gamma_\mu P_{L(R)} b \right] \left[\bar{\ell} \gamma^\mu \ell \right] \qquad \mathcal{O}_{10}^{(\prime)} = \left[\bar{s} \gamma_\mu P_{L(R)} b \right] \left[\bar{\ell} \gamma^\mu \gamma_5 \ell \right]$$

$$\mathcal{O}_S^{(\prime)} = \left[\bar{s} P_{R(L)} b \right] \left[\bar{\ell} \ell \right] \qquad \mathcal{O}_P^{(\prime)} = \left[\bar{s} P_{R(L)} b \right] \left[\bar{\ell} \gamma_5 \ell \right]$$

$$\mathcal{O}_T = \left[\bar{s} \sigma_{\mu\nu} b \right] \left[\bar{\ell} \sigma^{\mu\nu} \ell \right] \qquad \mathcal{O}_{T5} = \left[\bar{s} \sigma_{\mu\nu} b \right] \left[\bar{\ell} \sigma^{\mu\nu} \gamma_5 \ell \right]$$

ullet B ightarrow K $\mu^+\mu^-$ angular distribution

ullet B o K $\mu^+\mu^-$ angular distribution

$$\frac{1}{\Gamma}\frac{\mathsf{d}\Gamma}{\mathsf{d}\cos\theta} = \frac{3}{4}(1 - \mathbf{\textit{F}_{H}})\sin^{2}\theta + \frac{1}{2}\mathbf{\textit{F}_{H}} + \mathbf{\textit{A}_{FB}}\cos\theta$$

• B ightarrow K $\mu^+\mu^-$ angular distribution

$$\frac{1}{\Gamma} \frac{\mathsf{d}\Gamma}{\mathsf{d}\cos\theta} = \frac{3}{4} (1 - \mathbf{F_H}) \sin^2\!\theta + \frac{1}{2} \mathbf{F_H} + \mathbf{A_{FB}} \cos\theta$$

$$A_{FB} \propto \text{Re} \left[\left(\mathcal{C}_P + \mathcal{C}_P' \right) \mathcal{C}_{T5}^* + \left(\mathcal{C}_S + \mathcal{C}_S' \right) \mathcal{C}_T^* + \mathcal{O}(m_\ell / \sqrt{q^2}) \right] / \Gamma$$

• B ightarrow K $\mu^+\mu^-$ angular distribution

$$\frac{1}{\Gamma}\frac{\mathsf{d}\Gamma}{\mathsf{d}\cos\theta} = \frac{3}{4}(1-\textit{\textbf{F}}_{\textit{\textbf{H}}})\sin^2\!\theta + \frac{1}{2}\textit{\textbf{F}}_{\textit{\textbf{H}}} + \textit{\textbf{A}}_{\textit{\textbf{FB}}}\cos\theta$$

$$\begin{split} A_{FB} \propto & \text{Re} \big[(\mathcal{C}_P + \mathcal{C}_P') \, \mathcal{C}_{T5}^* + (\mathcal{C}_S + \mathcal{C}_S') \, \mathcal{C}_T^* + \mathcal{O}(m_\ell / \sqrt{q^2}) \big] \Big/ \Gamma \\ F_H \propto & \Big[\dots \big(|\mathcal{C}_T|^2 + |\mathcal{C}_{T5}|^2 \big) + \dots \big(|\mathcal{C}_S + \mathcal{C}_S')|^2 + |\mathcal{C}_P + \mathcal{C}_P'|^2 \big) \\ & + \mathcal{O}(m_\ell / \sqrt{q^2}) \Big] \Big/ \Gamma \end{split}$$

• B ightarrow K $\mu^+\mu^-$ angular distribution

$$\frac{1}{\Gamma} \frac{\mathsf{d}\Gamma}{\mathsf{d}\cos\theta} = \frac{3}{4} (1 - \mathbf{F_H}) \sin^2\theta + \frac{1}{2} \mathbf{F_H} + \mathbf{A_{FB}} \cos\theta$$

$$\begin{aligned} \mathsf{A}_{FB} &\propto & \mathsf{Re} \big[(\mathcal{C}_P + \mathcal{C}_P') \, \mathcal{C}_{T5}^* + (\mathcal{C}_S + \mathcal{C}_S') \, \mathcal{C}_T^* + \mathcal{O}(m_\ell / \sqrt{q^2}) \big] \Big/ \Gamma \\ F_H &\propto \Big[\dots \big(|\mathcal{C}_T|^2 + |\mathcal{C}_{T5}|^2 \big) + \dots \big(|\mathcal{C}_S + \mathcal{C}_S')|^2 + |\mathcal{C}_P + \mathcal{C}_P'|^2 \big) \\ &+ \mathcal{O}(m_\ell / \sqrt{q^2}) \Big] \Big/ \Gamma \\ F_H^{\mathrm{SM}} &= \mathcal{O}(m_\ell^2 / q^2) \qquad A_{FB}^{\mathrm{SM}} = 0 \end{aligned}$$

• B ightarrow K $\mu^+\mu^-$ angular distribution

$$\frac{1}{\Gamma}\frac{\mathsf{d}\Gamma}{\mathsf{d}\cos\theta} = \frac{3}{4}(1-\textit{\textbf{F}}_{\textit{\textbf{H}}})\sin^2\!\theta + \frac{1}{2}\textit{\textbf{F}}_{\textit{\textbf{H}}} + \textit{\textbf{A}}_{\textit{\textbf{FB}}}\cos\theta$$

$$\begin{split} A_{FB} \propto & \text{Re} \big[(\mathcal{C}_P + \mathcal{C}_P') \, \mathcal{C}_{T5}^* + (\mathcal{C}_S + \mathcal{C}_S') \, \mathcal{C}_T^* + \mathcal{O}(m_\ell / \sqrt{q^2}) \big] \Big/ \Gamma \\ F_H \propto & \Big[\dots \big(|\mathcal{C}_T|^2 + |\mathcal{C}_{T5}|^2 \big) + \dots \big(|\mathcal{C}_S + \mathcal{C}_S')|^2 + |\mathcal{C}_P + \mathcal{C}_P'|^2 \big) \\ & + \mathcal{O}(m_\ell / \sqrt{q^2}) \Big] \Big/ \Gamma \\ F_H^{\text{SM}} &= \mathcal{O}(m_\ell^2 / q^2) \qquad A_{FB}^{\text{SM}} = 0 \end{split}$$

$$\mathcal{B}(B_s \to \mu^+ \mu^-) \propto |\mathcal{C}_S - \mathcal{C}_S'|^2 + |(\mathcal{C}_P - \mathcal{C}_P') + \frac{2m_\ell}{M_R} (\mathcal{C}_{10} - \mathcal{C}_{10}')|^2$$

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\mathrm{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\mathrm{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

split theory and experiment - observables **O**:

$$P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) = P(\mathcal{D}|\mathbf{O}(\boldsymbol{\theta}, \mathbf{M}))$$

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\text{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

split theory and experiment - observables O:

$$P(\mathcal{D}|\boldsymbol{\theta}, M) = P(\mathcal{D}|\mathbf{O}(\boldsymbol{\theta}, M))$$

theory

experiment

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\text{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

split theory and experiment - observables O:

$$P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) = P(\mathcal{D}|\mathbf{O}(\boldsymbol{\theta}, \mathbf{M}))$$

theory

calculate observables $\mathbf{O}(\boldsymbol{ heta},\mathrm{M})$

experiment

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\text{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

split theory and experiment - observables O:

$$P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) = P(\mathcal{D}|\mathbf{O}(\boldsymbol{\theta}, \mathbf{M}))$$

theory

calculate observables $\mathbf{O}(oldsymbol{ heta},\mathrm{M})$

experiment

measure observables $P(\mathcal{D}|\mathbf{0})$

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\text{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

split theory and experiment - observables O:

$$P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) = P(\mathcal{D}|\mathbf{O}(\boldsymbol{\theta}, \mathbf{M}), \underbrace{\boldsymbol{\theta}, \mathbf{M}}_{\text{assumption}})$$

theory

calculate observables $\mathbf{O}(m{ heta},\mathrm{M})$

experiment

measure observables $P(\mathcal{D}|\mathbf{0}, \boldsymbol{\theta} \mathcal{M})$

Measurements $P(\mathcal{D}|\mathbf{0})$

- $B \to K\mu^+\mu^-$: \mathcal{B}, A_{FB}, F_H
 - LHCb 2014 (arXiv:1403.8044, arXiv:1403.8045)
 - CDF 2012
 (http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-b2smumu_96)
- $B_s \to \mu^+ \mu^-$: \mathcal{B}
 - LHCb+CMS 2014 (arXiv:1411.4413)
- $B \rightarrow K^* \mu^+ \mu^-$: \mathcal{B}
 - LHCb 2013 (arXiv:1304.6325)
 - CMS 2013 (arXiv:1308.3409)
 - CDF 2012

(http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-b2smumu_96)

Parameters θ

scan parameters

 \bullet Wilson coefficients $\mathcal{C}_{10}^{(\prime)},\mathcal{C}_{S}^{(\prime)},\mathcal{C}_{P}^{(\prime)},\mathcal{C}_{T},$ and \mathcal{C}_{T5}

Parameters θ

scan parameters

• Wilson coefficients $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}

nuisance parameters

- CKM matrix (4 parameters)
- charm and bottom quark mass (2 parameters)
- form factors
 - $B \rightarrow K$ (5 parameters)
 - $B \to K^*$ (6 parameters)
- B_s decay constant f_{B_s}
- subleading corrections (11 parameters)

Parameters θ

scan parameters

• Wilson coefficients $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}

nuisance parameters

- CKM matrix (4 parameters)
- charm and bottom quark mass (2 parameters)
- form factors
 - $B \rightarrow K$ (5 parameters)
 - $B \to K^*$ (6 parameters)
- B_s decay constant f_{B_s}
- subleading corrections (11 parameters)

theory calculation $O(\theta, M)$:

open-source implementation: EOS-package
http://project.het.physik.tu-dortmund.de/eos/

Joint fit of $C_{10}^{(\prime)}, C_S^{(\prime)}, C_P^{(\prime)}, C_T$, and C_{T5}

Joint fit of $C_{10}^{(\prime)}, C_S^{(\prime)}, C_P^{(\prime)}, C_T$, and C_{T5}

• first *simultaneous* fit

Joint fit of $C_{10}^{(\prime)}, C_S^{(\prime)}, C_P^{(\prime)}, C_T$, and C_{T5}

- first *simultaneous* fit
- interference $\mathcal{C}_{10}^{(\prime)} \leftrightarrow \mathcal{C}_{S,P}^{(\prime)}$ in $\mathcal{B}(B_{\mathrm{s}} \to \mu^+\mu^-)$

Joint fit of $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}

- first *simultaneous* fit
- interference $\mathcal{C}_{10}^{(\prime)}\leftrightarrow\mathcal{C}_{S,P}^{(\prime)}$ in $\mathcal{B}(B_{s}\to\mu^{+}\mu^{-})$
 - \Rightarrow larger uncertainty than obtained for fixed $\mathcal{C}_{10}^{(\prime)} = \mathcal{C}_{10}^{(\prime)\mathrm{SM}}$

arXiv:1205.5011,

arXiv:1407.7044

Nuisance parameters

Nuisance parameters

Summary

Summary

algorithm to sample and integrate in dim = $\mathcal{O}(40)$

Summary

algorithm to sample and integrate in dim = $\mathcal{O}(40)$

algorithm to sample and integrate in dim = $\mathcal{O}(40)$

- simultaneous fit of $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}
 - ⇒ updated constraints

algorithm to sample and integrate in dim = $\mathcal{O}(40)$

- simultaneous fit of $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}
 - \Rightarrow updated constraints
- no significant deviation from the SM

algorithm to sample and integrate in dim = $\mathcal{O}(40)$

- simultaneous fit of $C_{10}^{(\prime)}, C_S^{(\prime)}, C_P^{(\prime)}, C_T$, and C_{T5} \Rightarrow updated constraints
- no significant deviation from the SM
- need better theoretical control (form factors, QCDF)