Institute Of Technology, Nirma University

B.Tech. (CSE) Sem VI

2CS601 Theory of Computation

Tutorial 8 (Push Down Automata)

Q-1 Design PDA for the following:

1.
$$L_1 = \{a^m c b^m \mid m \ge 0\}$$

2.
$$L_2 = \{a^m b^m c \mid m \ge 0\}$$

3.
$$L_3 = \{c \text{ am } b^m \mid m \ge = 0\}$$

4.
$$L_4 = \{a^n c b^m \mid n, m \ge 0\}$$

5.
$$L_5 = \{a^n b^m c \mid n, m \ge 0\}$$

6.
$$L_6 = \{ c \text{ an } b^m \mid n, m \ge 0 = 0 \}$$

7.
$$L_7 = \{a^n c b^m \mid n, m \ge 1\}$$

8. L₈ =
$$\{a^n b^m c \mid n, m \ge 1\}$$

9.
$$L_9 = \{ c a^n b^m \mid n, m \ge 1 \}$$

10. More number of a's than b's

11.
$$L = \{a^n b^{2n} \mid n \ge 1\}$$

12. L =
$$\{a^n b^m c \mid n \ge 1\}$$

Q-2 Design PDA for the following CFGs and trance the string 0001101110

1.
$$S \rightarrow OB \mid 1A$$

 $A \rightarrow OS \mid 1AA \mid O$
 $B \rightarrow 1S \mid OBB \mid 1$

Q-3 Give PDA for the following CFG and trace the string 01010101

$$S \rightarrow XSX \mid Y$$

$$X \rightarrow 0 \mid 1$$

$$Z \rightarrow XZX \mid X$$

Q-4 Give a CFG for the following PDA

1.
$$\delta(q_0, a, Z_0) + (q_0, aZ_0)$$

 $\delta(q_0, a, a) + (q_0, aa)$
 $\delta(q_0, c, a) + (q_1, a)$
 $\delta(q_1, a, a) + (q_2, \varepsilon)$
 $\delta(q_2, a, a) + (q_2, \varepsilon)$
 $\delta(q_2, \varepsilon, Z_0) + (q_2, \varepsilon)$

2.
$$\delta(q_0, 1, Z_0) + (q_0, KZ_0)$$

 $\delta(q_0, \varepsilon, Z_0) + (q_0, \varepsilon)$
 $\delta(q_0, 1, K) + (q_0, KK)$
 $\delta(q_0, 0, K) + (q_1, K)$
 $\delta(q_1, 0, K) + (q_1, \varepsilon)$
 $\delta(q_1, 0, Z_0) + (q_0, Z_0)$

3.

Move Number	State	Input	Stack Symbol	Move(s)
1	q ₀	a	Z_0	(q_0, AZ_0)
2	q ₀	b	Z_0	(q_0, BZ_0)
3	q ₀	a	A	(q ₀ , AA)
4	q o	b	A	(q ₀ , BA)
5	q o	a	В	(q ₀ , AB)
6	\mathbf{q}_0	b	В	(q ₀ , BB)
7	q ₀	С	Z_0	(q ₁ , Z ₀)
8	q o	С	A	(q ₁ , A)
9	q o	С	В	(q ₁ , B)
10	q ₁	a	A	$(q_{\scriptscriptstyle 1},\Lambda)$
11	q ₁	b	В	$(q_{\scriptscriptstyle 1},\Lambda)$
12	q ₁	Λ	Z_0	(q_1, Λ)

Q:5 Design a PDA for Odd length and Even length palindrome and trace the strings: aabbaa, abcba and aaabbb.

Q:6 In both cases below, a transition table is given for a PDA with initial state q_0 and Accepting state q_2 . Describe in each case the language that is accepted.

Move Number	State	Input	Stack Symbol	Move(s)
1	qo	a	Z_0	(q_0, XZ_0)
2	q_0	b	Z ₀	(q ₀ , XZ ₀) (q ₀ , XZ ₀)
3	q0	a	X	(qo, XX)
4	q o	ь	X	(q0, XX)
5	q ₀	c	X	(q1, X)
6	q _o	c	Z ₀	(q1, Z0)
7	q ₁	a	X	(q1, Λ)
8	q ₁	b	X	(q_1, Λ)
9	q ₁	Λ	Z ₀	(q2, Z0)