Taller Hermite

Diego Barajas Brandonn Cruz

September 2018

1 Problema

Utilizar interpolación de hermite con la menor cantidad de puntos posibles para replicar de manera casi exacta el perfil del siguiente pato.

Figure 1: Pato

2 Formalización

2.1 Entradas

Valores $X = [x_0, x_1, ..., x_n]$ y $Y = [y_0, y_1, ..., y_n]$ tales que para cada pareja de datos x_m y y_m se pueden representar como $f(x_m) = y_m$.

2.2 Salidas

Polinomio P(x) que permitan graficar el perfil del pato como se ve en la figura 2

Figure 2: Dispersión de polinomios

3 Implementación

$$f[x_0, ..., x_n] = \frac{f[x_0, ..., x_{n-1}] - f[x_1, ..., x_n]}{x_0 - x_n}$$
(1)

Para implementar el algoritmo de hermite recurrimos a utilizar la fórmula de Newton generalizada o también conocida como método de diferencias divididas. El algoritmo implementado para el método de diferencias divididas consistes en realizar repetidas sumas y divisiones sobre los valores X y Y como se ve en la ecuacion 1 para encontrar un polinomio de la siguiente manera.

$$P_n(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)(x - x_1) + \dots + A_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$
(2)

Donde

$$A_0 = f[x_0] \tag{3}$$

$$A_1 = f[x_0, x_1] (4)$$

$$A_n = f[x_0, x_1, ..., x_n] (5)$$

4 Resultados

Después de aplicar el algoritmo de hermite se generó la siguiente figura.

Figure 3: Comparacion resultados contra figura real

5 Manual de compilación

Ejecutar el archivo hermite.r.