Probabilités Agrégation interne, Année 17/18

Résumé du programme 1

- 1. Modélisation d'une expérience aléatoire. Espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.
- 2. Espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. Propriétés de \mathbb{P} , probabilités conditionnelles, indépendance d'événements.
- 3. Variables aléatoires réelles
 - (a) variables aléatoires discrètes. Fonctions génératrices des variables aléatoires à valeurs dans N. Lois usuelles : loi uniforme sur un ensemble fini, loi de Bernoulli, loi binomiale, loi hypergéométrique, loi géométrique, loi de Poisson.
 - (b) variables aléatoires à densité. Lois à connaître : loi uniforme sur un segment, loi exponentielle, loi de Cauchy, lois gammas, lois normales.

Dans les deux cas, notion d'espérance, variance et leurs propriétés. Théorème de transfert.

- 4. Vecteurs aléatoires discrets et à densité. Lois, indépendance, covariance, coefficient de corrélation linéaire. Lois normales.
- 5. Théorèmes limites pour les suites de variables aléatoires indépendantes. Convergence en loi, en probabilité. Inégalité de Bienaime-Tchebychev. Loi faible des grands nombres. Lemme de Borel-Cantelli. Admis: Loi forte des grands nombres, théorème central limite, approximation de la loi binomiale par la loi de Poisson et par la loi normale. Intervalle de confiance.

Il y a 9 leçons de probabilités : 229,230,231,232,241,244,249,258,260. Développements possibles :

- Théorème de Weierstrass avec les polynomes de Bernstein. (Ouvrard p 162, Chafaî p79, Garet p 177)
- Lien entre moments et fonction génératrice. (Ouvrard p 141, Chafaî p54)
- Indicatrice d'Euler. (Ouvrard p 73,Garet p53)
- Problème du collectioneur de coupons (Chafaï p107)
- Ruine du joueur (Chafaï p113)
- lois binomiales négatives, temps de succes (Ouvrard p105, Chafaî p99)
- Méthode de Monte-Carlo, intervalles de confiance.
- Problème du scrutin (Garet p 54)
- Approximation loi binomiale par Poisson, Inégalité de Le Cam (Garet p186, Chafaî p74)

__ :

Bibliographie

Probabilités, Jean-Yves Ouvrard, tome 1.

Probabilités Préparation à l'agrégation interne, Djalil Chafaï et Pierre-André Zitt De l'intégration aux probabilités, Olivier Garet, Aline Kurtzmann

2 Espaces de probabilité

Exercice 2.1 (Tribus). Soit Ω un ensemble.

Soit \mathcal{T} définie par $\mathcal{T} = \{A \subset \Omega / A \text{ est dénombrable ou } \overline{A} \text{ est dénombrable } \}$. Ici dénombrable signifie fini ou dénombrable infini, c'est à dire en bijection avec une partie de \mathbb{N} .

- 1. Montrer que \mathcal{T} est une tribu sur Ω .
- 2. Montrer que \mathcal{T} est la plus petite tribu (au sens de l'inclusion) contenant les singletons.
- 3. Montrer que si Ω est dénombrable, $\mathcal{T} = \mathcal{P}(\Omega)$.
- 4. On suppose Ω non dénombrable. On définit $\mathbb{P}: \mathcal{T} \to \mathbb{R}$ par $\mathbb{P}(A) = \begin{cases} 0 & \text{si } \underline{A} \text{ est dénombrable} \\ 1 & \text{si } \overline{A} \text{ est dénombrable} \end{cases}$ Montrer que \mathbb{P} est une probabilité sur (Ω, \mathcal{T}) .

Exercice 2.2 (Tribu engendrée). Soit Ω un ensemble et (E, \mathcal{E}) un espace probabilisable. Soit X une fonction de Ω dans E. Montrer que $\mathcal{F}_X = \{X^{-1}(A)/A \in \mathcal{E}\}$ est une tribu sur Ω . On dit que c'est la tribu engendrée par X.

Soit \mathcal{F} une tribu sur Ω qui contient \mathcal{F}_X . Soit \mathbb{P} une probabilité sur (Ω, \mathcal{F}) .

On définit $\mathbb{P}_X : \mathcal{E} \to \mathbb{R}$ par $\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B))$. Montrer que \mathbb{P}_X est une probabilité sur (E, \mathcal{E}) . C'est la loi de X.

Exercice 2.3. Soit \mathbb{P} une probabilité sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. Montrer que $\mathbb{P}(\{n\})$ tend vers 0 quand n tend vers $+\infty$.

Exercice 2.4 (Dés). On fait 2 lancers avec trois dés.

Quelle est la probabilité d'avoir les mêmes résultats si

- a) Les dés sont de trois couleurs différentes? (Dans ce cas le résultat d'un lancer est un triplet donnant le résultat de chaque dé)
- b) Les dés sont indiscernables? (Dans ce cas le résultat d'un lancer est l'ensemble des résultats avec leur multiplicité, par exemple deux 1 et un 5)

Exercice 2.5 (Premier problème du chevalier de Méré). Quel est le plus probable : jouant avec un dé, obtenir au moins une fois 6 en 4 coups, ou bien jouant avec deux dés, obtenir au moins une fois un double 6 en 24 coups?

Exercice 2.6 (Second problème du chevalier de Méré). Le chevalier de Méré avait posé à Pascal le problème suivant : deux joueurs jouent à un jeu de hasard en plusieurs parties ; celui qui, le premier, a gagné trois parties emporte la totalité de l'enjeu. Si les joueurs doivent arrêter le jeu alors qu'il ne manque au premier joueur, pour l'emporter, qu'une partie, et au second que deux parties, comment doit-on répartir équitablement l'enjeu?

Exercice 2.7 (Problème des anniversaires). Quelle est la probabilité pour que n personnes prises au hasard aient toutes des jours d'anniversaire différents?

On supposera que tous les jours de naissance sont équiprobables et on ne tiendra pas compte des années bissextiles.

Déterminer la plus petite valeur de n telle que cette probabilité soit inférieure à 50%.

Exercice 2.8 (Formule de Poincaré).

Montrer que si A_1, \ldots, A_n sont n événements d'un même espace probabilisé et si A désigne la réunion de ces n événements, on a :

$$\mathbb{P}(A) = \sum_{k=1}^{n} (-1)^{k+1} s_k, \quad s_k = \sum_{i_1 < i_2 < \dots < i_k} \mathbb{P}(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}).$$

Exercice 2.9 (Balles et paniers). On a r balles et n paniers numérotés de 1 à n.

On répondra aux questions dans les deux cas suivants :

- (a) Les r balles sont discernables (par exemple parce qu'elles sont de couleurs différentes).
- (b) Les r balles sont indiscernables.

Question 1 : Quel est le nombre de répartitions possibles (un panier peut contenir plusieurs balles)?

On suppose qu'on a équiprobabilité.

Question 2 : Quelle est la probabilité p_k qu'un panier donné contienne exactement k balles. Étudier la monotonie de la suite $(p_k)_{0 \le k \le r}$.

Question 3 : On suppose que n et r tendent vers l'infini et que r/n tend vers λ . Montrer que chaque terme p_k admet une limite et calculer celle-ci.

Exercice 2.10 (Problème du scrutin). Lors d'un vote opposant deux candidats A et B, A obtient a voix et B obtient b voix. On suppose que a < b. Quelle est la probabilité pour qu'au cours du dépouillement, B ait toujours été strictement en tête?

On pourra représenter le dépouillement par un chemin du plan constitué de segments horizontaux ou verticaux de longueur 1 joignant l'origine au point de coordonnées (a, b) et compter le nombre de chemins situés au dessus de la diagonale.

3 Probabilités conditionnelles et indépendance

Exercice 3.1 (Indépendance de deux évènements). Soient A et B deux événements d'un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.

Soient \mathcal{A} et \mathcal{B} les tribus engendrées respectivement par A et B, c'est à dire $\mathcal{A} = \{\emptyset, A, A^c, \Omega\}$ et $\mathcal{B} = \{\emptyset, B, B^c, \Omega\}$. Alors A et B sont indépendants si et seulement si pour tout $C \in \mathcal{A}$ et pour tout $D \in \mathcal{B}$, $\mathbb{P}(C \cap D) = \mathbb{P}(C)\mathbb{P}(D)$.

Exercice 3.2 (Indépendance d'une famille d'évènements). Considérons les propriétés suivantes :

- (i) Les événements $(A_i)_{1 \leq i \leq n}$ sont indépendants.
- (ii) Pour toute famille $(B_i)_{1 \le i \le n}$ telle que $B_i \in \{A_i, A_i^c\}$,

$$\mathbb{P}\left(\bigcap_{1\leqslant i\leqslant n}B_i\right)=\prod_{1\leqslant i\leqslant n}\mathbb{P}(B_i).$$

(iii) Pour toute famille $(B_i)_{1 \leq i \leq n}$ telle que $B_i \in \{\emptyset, A_i, A_i^c, \Omega\}$

$$\mathbb{P}\left(\bigcap_{1\leqslant i\leqslant n}B_i\right)=\prod_{1\leqslant i\leqslant n}\mathbb{P}(B_i).$$

Montrer que les propriétés (i), (ii) et (iii) sont équivalentes.

Exercice 3.3 (Lemme de Borel-Cantelli). Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. Soit $(A_n)_{n\geq 0}$ une suite d'évènements.

1. Soit $\omega \in \Omega$. Montrer que ω appartient à une infinité d'ensembles A_n si et seulement si $\omega \in \bigcap_{n\geq 0} \bigcup_{k\geq n} A_k$.

On notera $\limsup A_n = \bigcap_{n\geq 0} \bigcup_{k\geq n} A_k$.

Montrer que ω appartient à tous les ensembles A_n sauf un nombre fini si et seulement si $\omega \in \bigcup_{n \geq 0} \cap_{k \geq n} A_k$.

On notera $\liminf A_n = \bigcup_{n>0} \cap_{k>n} A_k$.

- 2. On suppose que la série $\sum_{n>0} \mathbb{P}(A_n)$ converge. Montrer que $\mathbb{P}(\limsup A_n) = 0$.
- 3. On suppose maintenant les événements $(A_n)_{n\geq 0}$ sont indépendants. On suppose que la série $\sum_{n\geq 0} \mathbb{P}(A_n)$ diverge. Montrer que $\mathbb{P}(\limsup A_n) = 1$.
- 4. Application

Soit (X_n) une suite de variables aléatoires telle pour tout $\epsilon>0,$ la série $\sum_{n\geq 0}\mathbb{P}(|X_n|>0)$

- ϵ) converge. Montrer que la suite (X_n) converge p.s. vers 0.
- 5. On lance 5 dés une infinité de fois. Montrer que p.s. on obtiendra une infinité de fois 5 six.

Exercice 3.4 (Urnes). On dispose de N+1 urnes numérotées de 0 à N. L'urne numéro k contient k boules rouges et N-k boules noires. On tire une des urnes avec équiprobabilité, puis on procède avec cette urne à une série de n tirages avec remise.

- a) Calculer la probabilité d'avoir choisi l'urne numéro 1 sachant qu'on a tiré n boules rouges.
- b) Calculer la probabilité de tirer n boules rouges.
- c) Calculer la probabilité de tirer une boule rouge au tirage n+1 sachant qu'on a déjà tiré n boules rouges.
- d) Déterminer les limites des probabilités précédentes quand $N \to +\infty$.

Exercice 3.5 (Un peu d'arithmétique). Pour tout entier $n \ge 2$ fixé, soit \mathbb{P}_n la probabilité uniforme sur l'ensemble $\{1, 2, \dots, n\}$. Pour tout diviseur m de n désignons par A_m le sous-ensemble de $\{1, 2, \dots, n\}$ formé des multiples de m.

On note $(p_k)_{k>1}$ la suite des nombres premiers.

- 1. Montrer que $\mathbb{P}_n(A_m) = 1/m$.
- 2. Montrer que les A_p où p parcourt l'ensemble des diviseurs premiers de n sont des événements indépendants dans l'espace probabilisé $(\{1, 2, ..., n\}, \mathbb{P}_n)$.
- 3. En déduire que l'ensemble des entiers de $\{1, 2, ..., n\}$ premiers avec n a une probabilité $\prod_{p} \left(1 \frac{1}{p}\right)$ où p parcourt l'ensemble des diviseurs premiers de n et en déduire le cardinal de cet ensemble. Retrouver ainsi une formule d'Euler.

- 4. On considère maintenant l'espace $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$. Soit s > 1.
 - (a) Montrer qu'il existe $\lambda_s \in \mathbb{R}$ tel que $\mathbb{P}_s(n) = \frac{\lambda_s}{n^s}$ définisse une probabilité sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$.
 - (b) Soit pour $m \in \mathbb{N}^*$, $A_m = \{n \in \mathbb{N}^* / m | n\}$. Montrer que $\mathbb{P}_s(A_m) = \frac{1}{m^s}$.
 - (c) Montrer que les A_{p_k} ; $k \geq 1$ sont des événements indépendants dans l'espace probabilisé $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*), \mathbb{P}_s)$.
 - (d) Montrer que $\sum_{n=1}^{+\infty} \frac{1}{n^s} = \frac{1}{\displaystyle\prod_{k=1}^{+\infty} (1 \frac{1}{p_k^s})}.$
 - (e) Existe t-il une probabilité \mathbb{Q} sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ telle que pour tout $m \geq 1$, $\mathbb{Q}(A_m) = \frac{1}{m}$?

On raisonnera par l'absurde et on utilisera le fait que pour tout entier $n \ge 1$, il existe un entier k_n tel que $\{n\} \subset \cap_{k \ge k_n} A_{p_k}^c$.

On pourra aussi proposer une autre preuve utilisant le lemme de Borel-Cantelli.

4 Variables discrètes

Exercice 4.1 (Comment jouer à pile ou face avec une pièce biaisée?). On considère une pièce ayant une probabilité p de tomber sur face.

On lance la pièce deux fois.

Si on obtient FP, on pose X = 1 et si on obtient PF, on pose X = 0.

Dans les deux autres cas, on recommence jusqu'à obtenir FP ou PF et on définit alors X comme précédement.

Déterminer la loi de X.

Exercice 4.2 (Lancer de pièces). On lance une pièce 5 fois.

On appelle X le nombre de faces obtenus.

On appelle Y le nombre de sous-suite maximale de faces dans le 5-uplet de résultat. (Par exemple FFPFP comporte deux sous-suites maximales de faces, FPFPF en comporte 3). On appelle Z la longueur de la plus grande sous-suite maximale de faces.

Donner les lois de X, Y, Z, (X, Y), (X, Z), (Y, Z), (X, Y, Z).

Exercice 4.3. La v.a. X suit la loi B(2n, p). Déterminer la loi de Y = |X - n|.

Exercice 4.4. Une urne renferme des boules blanches et des boules noires en proportions respectives p et 1-p avec $0 . On effectue des tirages avec remise. Soit <math>n \in \mathbb{N}^*$ fixé. On note X_n la variable aléatoire : nombre de tirages nécessaires à l'obtention de la nième boule blanche.

- 1) Quelle est la loi de X_1 ? Calculer G_1 la fonction génératrice de X_1 .
- 2) On pose $Y_1 = X_1$ et $Y_n = X_n X_{n-1}$ pour tout n > 1. Montrer que
- a) pour tout $a \ge 1, b \ge n 1, \mathbb{P}(Y_n = a, X_{n-1} = b) = \mathbb{P}(X_1 = a)\mathbb{P}(X_{n-1} = b).$
- b) En déduire que Y_n a même loi que X_1 et que X_{n-1} est indépendante de Y_n

- 3) En déduire G_n la fonction génératrice de X_n . Que vaut $E[X_n]$?
- 4) Déterminer la loi de X_n . Comparer $\mathbb{P}[X_n = k]$ et $\mathbb{P}[X_n = k+1]$; tracer le diagramme en bâtons de la loi de X_n .

Exercice 4.5 (Loi sans mémoire). Soit T une variable aléatoire à valeurs dans \mathbb{N} telle que pour tout $n \ge 0$ et $k \ge 0$, $\mathbb{P}(T \ge n + k \mid T \ge n) = \mathbb{P}(T \ge k)$. Déterminer la loi de T.

Exercice 4.6 (boules). Une urne contient N boules dont N_1 portent le numéro 1, N_2 portent le numéro 2 et N_3 portent le numéro 3. On fait un tirage de n boules avec remise. Soit X_i le nombre de boules tirées qui portent le numéro i et $X = (X_1, X_2, X_3)$.

- a) Donner la loi de X.
- b) Donner la loi de X_i pour $1 \le i \le 3$.
- c) Donner la loi de (X_1, X_2) .
- d) On note Y_r la variable aléatoire valant 1 si on tire une boule portant le numéro 1 au r-ième tirage et 0 sinon. On note Z_r la variable aléatoire valant 1 si on tire une boule portant le numéro 2 au r-ième tirage et 0 sinon.

Exprimer X_1, X_2, X_3 en fonction des $(Y_r)_{1 \le r \le n}$ et des $(Z_r)_{1 \le r \le n}$. Calculer l'espérance de X_1 , la variance de X_1 et la covariance de (X_1, X_2) .

Traiter les mêmes questions pour un tirage sans remise.

Exercice 4.7 (Loi du maximum observé). Une urne contient N balles numérotées de 1 à N. On effectue n tirages avec remise. Soit X le plus grand nombre tiré lors des n tirages.

- a) Donner la fonction de répartition de X.
- b) Donner la loi de X.
- c) Calculer E[X] et donner un équivalent de E[X] quand $N \to +\infty$

Exercice 4.8 (Clés). Un homme possède n clés et veut ouvrir une porte. Une seule parmi les clés dont il dispose ouvre la porte. Il essaie les clés au hasard. Trouver l'espérance et la variance du nombre d'essais nécessaires si :

- a) Les clés qui ne marchent pas sont remises avec les autres.
- b) Les clés qui ne marchent pas sont mises de coté.

Exercice 4.9 (Poisson(s)). Soient X et Y deux variables aléatoires indépendantes de lois de Poisson de paramètre a et b.

- a) Déterminer la loi de la variable aléatoire S = X + Y.
- b) Déterminer, pour tout couple (n, k) d'entiers naturels, la probabilité conditionnelle $\mathbb{P}(X = k \mid S = n)$.
- c) (Facultatif) Soit $r \ge 1$ un entier et X_k des variables aléatoires indépendantes de lois de Poisson de paramètres respectifs a_k . Donner la loi conditionnelle de $(X_1, ..., X_r)$ sachant $\{X_1 + ... + X_r + X_{r+1} = n\}$, pour tout $n \ge 0$.

Exercice 4.10 (Loi jointe). On effectue une suite infinie de lancers indépendants d'un dé équilibré. On numérote les lancers à partir de 1. On définit X comme le numéro

du premier lancer qui donne 6 et Y comme le nombre de 5 obtenus avant d'obtenir le premier 6.

Déterminer la loi du couple (X, Y).

Déterminer la loi conditionnelle de Y sachant l'événement $\{X = n\}$.

Déterminer la loi de Y.

Exercice 4.11 (Espérance discrète). Soit X une variable aléatoire à valeurs dans \mathbb{N} . Montrer que X admet une espérance si et seulement si la série $\sum_{n=1}^{\infty} \mathbb{P}(X > n)$ converge.

Montrer alors que
$$E(X) = \sum_{n=0}^{+\infty} \mathbb{P}(X > n)$$
.

Exercice 4.12 (Lois géométriques). Soit X et Y deux variables aléatoires indépendantes de lois géométriques de paramètres respectifs a et b. Soit $Z = \min(X, Y)$ et U = |X - Y|.

- a) Déterminer $\mathbb{P}(X \ge n)$ pour tout $n \ge 0$. Déterminer $\mathbb{P}(Z \ge n)$. Préciser la loi de Z.
- b) Calculer $\mathbb{P}(U=0)$. Déterminer la loi de U.
- c) Montrer que Z et U sont indépendantes.

Exercice 4.13 (Jeu de cartes ou problème des dérangements). On considère un jeu de n cartes numérotées de 1 à n. On mélange bien ce jeu.

Rappeler comment modéliser cette expérience.

On suppose qu'on met les cartes en un paquet, la première position étant celle du dessus et la dernière celle du dessous.

On note pour $1 \le k \le n$, X_k la variable aléatoire valant 1 si la carte portant le numéro k est à la $k^{\text{ème}}$ position et 0 sinon.

- 1) Donner la loi de X_k .
- 2) Donner la loi de (X_k, X_j) si $k \neq j$. (On calculera d'abord $\mathbb{P}((X_k, X_j) = (1, 1))$).
- 3) Soit $S_n = X_1 + \cdots + X_n$. Que représente S_n ? Calculer l'espérance et la variance de S_n .
- 4) Calculer $\mathbb{P}(S_n \neq 0)$. (On utilisera la formule de Poincaré avec les événements $\{X_k = 0\}$
- 1}). Calculer la limite précédente quand n tend vers l'infini.
- 5) Donner la loi de S_n . Déterminer la limite quand n tend vers l'infini de $\mathbb{P}(S_n = k)$ (k étant fixé).

Exercice 4.14 (médiane). Soit X une variable aléatoire à valeurs dans \mathbb{R} . Un réel m est une médiane de X si $\mathbb{P}(X \leq m) \geq \frac{1}{2}$ et $\mathbb{P}(X \geq m) \geq \frac{1}{2}$.

Montrer qu'une médiane existe toujours mais qu'on a pas toujours unicité.

Expliquer comment on trouve une médiane sur l'histogramme ou sur le graphe de la fonction de répartition.

En utilisant l'inégalité de Tchebytchev, montrer que si X admet une espérance μ et un écart type σ , $(\mu - m)^2 \leq 2\sigma^2$. (on pourra traiter les cas $m \leq \mu$ et $\mu \leq m$).

Comparer espérance et médiane dans les exemples suivants : loi uniforme sur $\{1, \dots, n\}$, loi binomiale de paramètre (n, p), loi géométrique de paramètre p et loi de poisson de paramètre λ .

Exercice 4.15 (Urne de Pólya). Soient $a \ge 0$, $b \ge 0$ et $c \ge 0$ des entiers avec $a + b \ge 1$. Une urne contient a boules noires et b boules rouges. Si on tire une boule, on remet dans l'urne c+1 boules de la couleur de la boule tirée. (Le cas du tirage avec remise simple est donnée par c=0 et celui du tirage sans remise par c=1).

On note X_i la variable aléatoire valant 1 si on tire une boule noire au tirage numéro i et 0 sinon.

- a) Calculer la probabilité qu'au deuxième tirage, on tire une boule noire.
- b) Calculer la probabilité qu'au troisième tirage, on tire une boule noire.
- c) Les variables X_1 et X_2 sont-elles indépendantes?
- d) Que représente la variable aléatoire $S_i = X_1 + \cdots + X_i$?

Soit $k \in \mathbb{N}$ tel que $\mathbb{P}(S_i = k) > 0$. Calculer $\mathbb{P}(X_{i+1} = 1 | S_i = k)$.

En utilisant la formule des probabilités totales montrer que

$$\mathbb{P}(X_{i+1}=1)=(cE[S_i]+a)/(a+b+ic))$$
 en déduire $\mathbb{P}(X_i=1)$.

e) Soit $(\epsilon_1,\ldots,\epsilon_n)\in\{0,1\}^n$. Notons $s=\epsilon_1+\cdots+\epsilon_n$. Montrer (avec la convention $\prod_{k=0}^{-1}=1)$ que

$$\mathbb{P}(X_1 = \epsilon_1, \dots, X_n = \epsilon_n) = \frac{\prod_{k=0}^{s-1} (a+kc) \prod_{k=0}^{n-1-s} (b+kc)}{\prod_{k=0}^{n-1} (a+b+kc)}.$$

Donner la loi de S_n .

f) On se place dans le cas où a = b = c = 1. Donner la loi de S_n et montrer que $\frac{S_n}{n}$ converge en loi vers une limite à déterminer.

Exercice 4.16 (dés et loi uniforme). On va résoudre le problème suivant : Peut-on truquer deux dés de telle façon que la loi de la somme des points obtenus soit la loi uniforme sur $\{2, 3, \ldots, 12\}$?

- 1. Soit X une variable aléatoire à valeurs dans $\{1, \ldots, 6\}$. On suppose que $\mathbb{P}(X = 6) \neq 0$. Soit G_X sa fonction de répartition. Montrer qu'il existe un polynome H_X ayant au moins une racine réelle tel que
- pour tout $s \in \mathbb{R}$, $G_X(s) = sH_X(s)$. 2. Soit Z une variable aléatoire de loi uniforme sur $\{2, \dots, 12\}$. Montrer qu'il existe
- 2. Soit Z une variable aléatoire de loi uniforme sur $\{2, \ldots, 12\}$. Montrer qu'il existe un polynome K tel que pour tout $s \in \mathbb{R}$, $G_Z(s) = s^2K(z)$. Montrer que K n'a pas de racine réelle.
- 3. Répondre à la question initiale.

Exercice 4.17 (Perte au casino). On considère un jeu au casino qui est tel qu'à chaque partie le joueur a une probabilité p de gagner et une probabilité 1-p de perdre. Son

gain est +1 s'il gagne et de -1 s'il perd. On note pour $n \ge 1$, ϵ_n la variable aléatoire représentant son gain à la n^{ème} partie.

Soit $X_n = \epsilon_1 + \cdots + \epsilon_n$ sa fortune au bout de n parties.

- 1. Donner la loi de X_n . (On pourra poser $Z_k = \frac{\epsilon_k + 1}{2}$ pour se ramener à une loi connue)
- 2. Si sa fortune initiale est i, sa fortune au bout de n parties est donnée par $i + X_n$. On suppose que le joueur s'arrête dès que sa fortune vaut 0 (il est ruiné) ou une somme $N \geq i$. On note $p_N(i)$ la probabilité qu'il atteigne la fortune N. On a donc $p_N(0) = 0$ et $p_N(N) = 1$.
 - (a) Montrer que si $N \geq 2$, $p_N(1) = pp_n(2)$.
 - (b) Donner une relation entre $p_N(i-1), p_N(i)$ et $p_N(i+1)$ si $1 \le i \le N-1$. En déduire la valeur de $p_N(i)$ en fonction de p, i, N.
 - (c) Déterminer la limite de $p_N(i)$ quand N tend vers $+\infty$.

Exercice 4.18 (Problème du collectionneur de coupons). Le problème du collectionneur de coupons est le suivant :

Chaque tablette de chocolat contient (au hasard) une image parmi un ensemble de n images. Combien faut-il acheter de tablettes pour obtenir la collection entière?

On modélise en considérant une suite $(U_k)_{k\geq 1}$ de variables aléatoires indépendantes de loi uniforme sur l'ensemble $\{1,\ldots,n\}$. U_k représente l'image obtenue au kème achat.

On notera T_j la variable aléatoire représentant le nombre de tirages nécessaires pour obtenir j images distinctes. Ainsi $T_1 = 1$ et T_n est la variable qui nous intéresse.

- 1. Donner la loi de T_2 .
- 2. Montrer que $T_3 T_2$ est indépendante de T_2 et suit une loi géométrique dont on déterminera le paramètre.
- 3. Montrer que les variables aléatoires $(T_{k+1} T_k)_{0 \le k \le n-1}$ sont indépendantes, la loi de $T_{k+1} T_k$ est la loi géométrique sur \mathbb{N}^* de paramètre $1 \frac{k}{n}$.
- 4. En déduire l'espérance et la variance de T_n .
- 5. Montrer que $\frac{T_n}{n \ln(n)}$ converge en probabilité vers 1.
- 6. Montrer en utilisant le principe d'inclusion-exclusion que

$$P(T_n \le N) = \sum_{i=0}^{n} (-1)^i \binom{n}{i} (1 - \frac{i}{n})^N$$

7. En déduire que $\frac{T_n}{n} - \ln(n)$ converge en loi vers la variable aléatoire de densité $x \mapsto e^{-e^{-x}}$. Cette loi est appelée loi de Gumbel. Donner sa densité.

Exercice 4.19 (Processus de Galton Watson).

Historique (Wikipedia) A l'origine, ce modèle a été introduit par Bienaymé en 1845 et indépendamment par Galton en 1873 en vue d'étudier la disparition des patronymes de la noblesse.

Supposons que chaque adulte mâle transmette son patronyme à chacun de ses enfants. Supposons également que le nombre d'enfants de chaque homme soit une variable aléatoire entière (et que la distribution de probabilité soit la même pour tous les hommes dans une lignée). Alors, un patronyme dont les porteurs ont un nombre d'enfant strictement inférieur à 1 en moyenne est amené à disparaître. Inversement, si le nombre moyen d'enfants est supérieur à 1, alors la probabilité de survie de ce nom est non nulle et en cas de survie, le nombre de porteurs du patronyme connaît une croissance exponentielle.

Modélisation On va noter Z_n la taille de la population au rang n. On suppose que $Z_0 = 1$. On considère une suite $(X_{k,n})_{k \ge 1, n \ge 0}$ de variables aléatoires à valeurs dans \mathbb{N} indépendantes et de même loi. $X_{k,n}$ représente le nombre de descendants du kème individu de la nème génération. Ainsi le nombre d'individus de la nème génération est

donné par $Z_{n+1} = \sum_{k=1}^{Z_n} X_{k,n}$. On fait la convention que cette somme vaut 0 si $Z_n = 0$.

Soit X une variable aléatoire de même loi que les $(X_{k,n})_{k\geq 1, n\geq 0}$.

On note pour $k \geq 0$, $p_k = \mathbb{P}(X = k)$.

On note g la fonction génératrice de X et g_n la fonction génératrice de Z_n . On a donc $g_1 = g$.

On note ρ la probabilité d'extinction de la population.

- 1. Montrer que $\rho = \mathbb{P}(\bigcup_{n>0} \{Z_n = 0\}) = \lim \mathbb{P}(Z_n = 0) = \mathbb{P}(\lim Z_n = 0).$
- 2. Montrer que si $p_0 = 0$, la suite Z_n est p.s. croissante. Si de plus $p_1 < 1$, alors Z_n tend p.s. vers $+\infty$. (On montrera que pour tout a, n entiers, $\lim_{k \to +\infty} \mathbb{P}(Z_n = Z_{n+1} = \cdots = Z_{n+k} = a) = 0)$.
- 3. Montrer que si $p_0 + p_1 = 1$ et $p_0 > 0$, la suite Z_n tend p.s. vers 0.

A partir de maintenant on suppose que $p_0 > 0$ et $p_0 + p_1 < 1$.

- 4. Montrer que g est strictement croissante sur [0,1] et strictement convexe sur [0,1].
- 5. Montrer que pour tout $n \ge 1$, $g_{n+1} = g_n \circ g = g \circ g_n$.

On suppose que X admet une espérance notée m.

- 6. Montrer que l'espérance de Z_n vaut m^n .
- 7. Montrer que ρ est le plus petit point fixe de g dans [0,1].
- 8. Montrer que si $m \le 1$, $\rho = 1$ et si m > 1, $0 < \rho < 1$.
- 9. On suppose que la loi de X est la suivante :

$$\mathbb{P}(X = 0) = \alpha$$
 et pour $k \ge 1$, $\mathbb{P}(X = k) = (1 - \alpha)p(1 - p)^{k-1}$

où $0 < \alpha < 1$ et 0 .

Calculer l'espérance de X et sa fonction génératrice et la probabilité d'extinction ρ .

Etudier les vitesses de convergence de $\mathbb{P}(Z_n = 0)$ vers ρ .

Exercice 4.20 (Approximation de la loi binomiale par la loi de Poisson). Soient μ_1 et μ_2 deux probabilités sur \mathbb{N} .

On note $d_{VT}(\mu_1, \mu_2) = \sup_{A \subset \mathbb{N}} |\mu_1(A) - \mu_2(A)|$.

- 1. On note $E^+ = \{k \in \mathbb{N}/\mu_1(k) \ge \mu_2(k)\}\$ et $E^- = \mathbb{N} \setminus E^+$. Montrer que $\sum_{k \in \mathbb{N}} |\mu_1(k) - \mu_2(k)| = 2(\mu_1(E^+) - \mu_2(E^+))$.
- 2. Montrer que $d_{VT}(\mu_1, \mu_2) = \frac{1}{2} \sum_{k \in \mathbb{N}} |\mu_1(k) \mu_2(k)|$.
- 3. Montrer que $d_{VT}(\mu_1, \mu_2) = 1 \sum_{k \in \mathbb{N}} \min(\mu_1(k), \mu_2(k))$.
- 4. On suppose que μ_1 est la loi de Bernoulli de paramètre p et μ_2 la loi de Poisson de paramètre p.

Montrer que $d_{VT}(\mu_1, \mu_2) \leq 2p^2$.

5. Soit X_1, X_2, Y_1, Y_2 des variables aléatoires à valeurs dans \mathbb{N} . On notera par abus de notation $d_{VT}(X,Y) = d_{VT}(P_X,P_Y)$ si X,Y sont des variables aléatoires à valeurs dans \mathbb{N} de lois respectives P_X, P_Y . On suppose que X_1 et X_2 (resp. Y_1 et Y_2) sont indépendantes.

$$\begin{aligned} & \text{Montrer que } \mathbb{P}(X_1+X_2=k) = \sum_{(i,j) \in \mathbb{N}^2/i+j=k} \mathbb{P}(X_1=i)\mathbb{P}(X_2=j). \\ & \text{Notons } p_{1,i} = \mathbb{P}(X_1=i), \ p_{2,i} = \mathbb{P}(X_2=i), \ q_{1,i} = \mathbb{P}(Y_1=i), \ q_{2,i} = \mathbb{P}(Y_2=i). \\ & \text{Montrer que } d_{VT}(X_1+X_2,Y_1+Y_2) \leq d_{VT}(X_1,X_2) + d_{VT}(Y_1,Y_2). \end{aligned}$$

- 6. Soient X_1, \ldots, X_n des variables aléatoires indépendantes de loi de Bernoulli de paramètre p. Quelle est la loi de $X_1 + \cdots + X_n$?
- 7. Soient Y_1, \ldots, Y_n des variables aléatoires indépendantes de loi de Poisson de paramètre p. Quelle est la loi de $Y_1 + \cdots + Y_n$?
- 8. Soit μ_1 la loi binomiale de paramètre (n,p) et μ_2 la loi de Poisson de paramètre np.

En utilisant les questions précédentes montrer que $d_{VT}(\mu_1, \mu_2) \leq 2np^2$.

9. Soit X_n une variable aléatoire suivant une loi binomiale de paramètre (n, p_n) . On suppose que np_n tend vers $\lambda > 0$ quand n tend vers $+\infty$. Montrer que X_n converge en loi.

5 Variables aléatoires à densité

Exercice 5.1. Existe t-il $c \in \mathbb{R}$ tel que $f(x) = \begin{cases} cx(1-x) & \text{si } 0 \leq x \leq 1 \\ 0 & \text{sinon} \end{cases}$ soit une densité de probabilité? Même question avec $f(x) = ce^{-x^2+4x}$.

Exercice 5.2. Soit (X,Y) un couple de variables aléatoires réelles à valeurs dans $D = \{(x,y) \in \mathbb{R}^2 / 0 \le x \le y \le 1\}$ admettant une densité donnée par

$$f(x,y) = \frac{1}{y} \mathbf{1}_D((x,y))$$

- 1. Les variables aléatoires X et Y sont-elles indépendantes?
- 2. Soit $U = \frac{X}{V}$ et V = Y. Déterminer la fonction de répartition de (U, V).
- 3. Les variables aléatoires U et V sont-elles indépendantes?

Exercice 5.3 (Loi de Bendford). Soit $E = \{1, 2, \dots, 9\}$. Soit pour $k \in E$, $p_k = log(1 + \frac{1}{k})$ où le log est en base 10.

Montrer que p_1, p_2, \cdots, p_9 définissent une probabilité sur E.

Dessiner son histogramme et sa fonction de répartition.

Relever dans le journal 1000 nombres correspondant aux chiffres de la bourse et calculer la fréquence du premier chiffre de ces nombres. Comparer avec les probabilités précédentes.

On dit qu'une variable aléatoire X à valeurs dans [1, 10] suit la loi de Benford continue si $\log X$ où \log désigne le \log en base 10 suit la loi uniforme sur [0, 1].

Montrer que X admet une densité et déterminer la.

Donner la loi de la partie entière X_1 de X. Donner la loi de (X_1, X_2) où (X_1, X_2) sont les deux premières décimales de X.

Exercice 5.4 (Loi de Benford, suite). Soit x un nombre réel positif.

Montrer qu'il peut s'écrire de façon unique sous la forme $x = y10^n$ où $n \in \mathbb{Z}$ et $1 \le y < 10$. On parle d'écriture scientifique.

Montrer que n est donné par la partie entière de $\log x$ où log désigne le log en base 10 et donc que $\log y$ est la partie fractionaire de $\log x$ c'est-à-dire le nombre moins sa partie entière.

On suppose que Z est une variable aléatoire à valeurs dans \mathbb{R}_{+}^{*} .

Soit $Z = X10^N$ son écriture scientifique.

On dira que la loi de Z est invariante par changement d'échelle si pour tout $\lambda > 0$, si $\lambda Z = X' 10^{n'}$ est l'écriture scientifique de λZ , alors X et X' ont la même loi.

On peut montrer que ceci est réalisé si et seulement si X suit la loi de Benford c'est à dire si $\log X$ suit la loi uniforme sur [0,1[.

On va montrer le sens facile.

Exprimer $\log X'$ en fonction de λ et de $\log X$.

Soit $A \in [0,1]$ et U une variable aléatoire de loi uniforme sur [0,1].

Montrer que la partie fractionnaire de A+U suit la loi uniforme sur [0,1]. (On calculera sa fonction de répartition).

Exercice 5.5 (Loi sans mémoire). On dit qu'une variable aléatoire T à valeurs dans \mathbb{R}_+ est sans mémoire si elle vérifie, pour tous s, t > 0.

$$P(T > t + s) = P(T > t)P(T > s).$$

- 1. Vérifier qu'une variable aléatoire T vérifiant une loi exponentielle de paramètre $\lambda > 0$, c'est-à-dire dont la densité est donnée par $f(t) = \lambda \exp(-\lambda t) \mathbf{1}_{[0,+\infty[}(t)$ est une variable aléatoire sans mémoire.
- 2. Réciproquement, soit T une variable aléatoire à valeurs dans \mathbb{R}_+ sans mémoire et vérifiant P(T>0)>0.

- (a) On suppose qu'il existe t>0 tel que P(T>t)=0. Calculer $P(T>t/2^n)$ en fonction de P(T > t). En déduire que P(T > 0) = 0. Conclusion?
- (b) Soit $\alpha = P(T > 1)$. Démontrer que $P(T > t) = \alpha^t$ pour tout $t \in \mathbb{R}_+$ (démontrer le d'abord pour $t \in \mathbb{N}^*$, puis pour $t \in \mathbb{Q}_+^*$ et enfin pour $t \in \mathbb{R}_+^*$).
- (c) Conclure.

Exercice 5.6 (Inversion fonction de répartition). Soit F une fonction croissante continue à droite de $\mathbb R$ dans]0,1[et telle que $\lim_{x\to -\infty}F(x)=0$ et $\lim_{x\to +\infty}F(x)=1$.

Montrer que pour tout 0 < t < 1, $\{x \in \mathbb{R}/F(x) \ge t\}$ est un intervalle du type $[z, +\infty[$. On définit le pseudo-inverse de F sur]0,1[, noté F^{\leftarrow} par $F^{\leftarrow}(t)=\inf\{x\in\mathbb{R}/F(x)\geq t\}.$ Montrer que cette fonction est bien définie et que pour tout $0 < t < 1, x \in \mathbb{R}, F(x) \ge$ $t \iff x \ge F^{\leftarrow}(t).$

Dans le cas où il existe $-\infty \le a < b \le +\infty$ tel que F soit une bijection de [a,b] sur [0,1[, déterminer F^{\leftarrow} .

Soit U une variable aléatoire de loi uniforme sur]0,1[. Déterminer la loi de $F^{\leftarrow}(U)$. Utiliser ceci pour simuler à partir d'une loi uniforme une loi exponentielle de paramètre $\lambda > 0$.

De même proposer une simulation d'une loi géométrique de paramètre $p \in]0,1[$.

Exercice 5.7 (Une formule pour l'espérance). Soit X une variable aléatoire positive admettant une espérance. On suppose que la loi de X admet une densité f et on note F sa fonction de répartition.

Montrer que si x > 0, $x(1 - F(x)) \le \int_x^{+\infty} t f(t) dt$. En déduire que x(1 - F(x)) tend vers 0 quand x tend vers $+\infty$. Montrer que $E[X] = \int_0^{+\infty} (1 - F(t)) dt$. (Pensez à la formule d'intégration par parties).

Exercice 5.8. Soit X une variable aléatoire de loi uniforme sur [-1,1]. Donner la loi de X^2 , son espérance et sa variance.

Exercice 5.9 (Problème de l'aiguille de Buffon). Une aiguille de longueur l est jetée "au hasard" sur un plan qui est strié par des parallèles (i.e. les rainures du parquet) situées à distance d > l les unes des autres. Soit X la variable aléatoire donnée par la distance du milieu de l'aiguille à la parallèle la plus proche et Θ celle donnée par l'angle orienté entre une strie et l'aiguille.

On traduit l'hypothèse "jeter au hasard" par le fait que le couple (X,Θ) suit la loi uniforme sur $[0, d/2] \times [0, \pi]$. Quelle probabilité a-t-on que l'aiguille coupe une parallèle?

Exercice 5.10 (Rapport de deux exponentielles). Soit (X,Y) un couple de v.a.r. indépendantes suivant respectivement les lois exponentielles de paramètres λ et $\mu > 0$. Déterminer la fonction de répartition puis la densité de la v.a.r. U = Y/X.

Exercice 5.11. Soit f la densité de probabilité d'une v.a.r. Z > 0; on pose

$$g(x,y) = \frac{1}{x+y} f(x+y) \mathbb{1}_{\{x>0,y>0\}}.$$

- 1) Montrer que q est une densité d'un couple (X, Y) de v.a.r. > 0.
- 2) Exprimer E[X], E[Y], V(X), V(Y) et cov(X,Y) à l'aide de E[Z] et de $E[Z^2]$.

Exercice 5.12 (Régression linéaire). Soit X et Y deux variables aléatoires réelles de variances non nulles.

On pose

$$\varrho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}, \quad \overline{X} = X - E[X], \quad \overline{Y} = Y - E[Y].$$

1) Montrer que $|cov(X,Y)| = |E[\overline{X} \ \overline{Y}]| \leqslant \sigma_X \sigma_Y$.

En déduire que $-1 \leqslant \varrho_{X,Y} \leqslant 1$.

2) Montrer que $|\varrho_{X,Y}|=1$ si et seulement sil existe a non nul et b tels que P(Y=aX+b)=1.

On pourra calculer $E[(\overline{Y} + t\overline{X})^2]$.

- 3) Préciser la valeur de $\varrho_{X,Y}$ si X et Y sont indépendantes.
- 4) On cherche la meilleure approximation de Y comme fonction affine de X au sens des moindres carrés, c'est-à-dire que l'on cherche les valeurs de a et b qui minimisent $E[(aX + b Y)^2]$. Notons $\Phi(a, b) = E[(aX + b Y)^2]$

Montrer que $\Phi(a,b) = E[(\overline{Y} - a\overline{X})^2] + (E[Y] - (aE[X] + b))^2$.

En déduire que le couple (a_0, b_0) qui minimise Φ vaut

$$a_0 = \varrho_{X,Y}\sigma_Y/\sigma_X, \qquad b_0 = E[Y] - a_0E[X].$$

On appelle la droite d'équation $y = a_0x + b_0$ la droite de régression linéaire de Y en X. 5) On suppose que (X,Y) suit la loi uniforme sur un ensemble de cardinal n, c'est-à-dire qu'il existe n points (x_i,y_i) dans le plan tels que $P(X=x_i,Y=y_i)=1/n$ pour tout $1 \le i \le n$.

Déterminer la droite de régression linéaire de Y en X dans ce cas.

Exercice 5.13 (Une loi normale dans \mathbb{R}^2). Soit (X,Y) un couple de variables aléatoires à valeurs réelles possédant une densité sur \mathbb{R}^2 donnée par

$$f(x,y) = \frac{1}{2\pi(1-\alpha^2)}e^{-\frac{x^2+y^2-2\alpha xy}{2((1-\alpha^2)}}$$

On suppose que $-1 < \alpha < 1$.

- 1. Donner les lois de X et de Y. Calculer leur espérance et leur variance.
- 2. Calculer la covariance de (X, Y).
- 3. Soit $Z_1 = X + Y$ et $Z_2 = X Y$. Donner l'espérance et la variance de Z_1 et Z_2 . Donner leur covariance.
- 4. Calculer la loi du couple (Z_1, Z_2) . Montrer que Z_1 et Z_2 sont indépendantes et donner leurs lois respectives.

Exercice 5.14 (Une convergence en loi). Soit (U_n) une suite de variables aléatoires indépendantes suivant toutes la loi uniforme sur [0,1]. On note $M_n = \max(U_1,\ldots,U_n)$ et $X_n = n(1-M_n)$.

1. Quelle est la fonction de répartition de X_n ?

2. Étudier la convergence en loi de la suite (X_n) .

Exercice 5.15 (Une propriété des lois exponentielles). Soient $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes. On suppose que X_i est de loi exponentielle de paramètre $\lambda_i > 0$.

- 1. Montrer que $Y = \min\{X_1, \dots, X_n\}$ suit la loi exponentielle de paramètre $\lambda = \lambda_1 + \dots + \lambda_n$.
- 2. Montrer que la probabilité qu'il existe $1 \le i < j \le n$ tel que $X_i = X_j$ est de probabilité nulle.
 - En déduire que p.s. il existe une variable aléatoire I avec $1 \le I \le n$ telle que $Y = X_I$.
- 3. Montrer que $\mathbb{P}(I=i \text{ et } Y \leq t) = \frac{\lambda_i}{\lambda} e^{-\lambda t}$. En déduire que I et Y sont indépendants et donner la loi de I.

Exercice 5.16 (Méthode de Box et Müller).

- 1. Soit X et Y deux vas indépendantes de loi $\mathcal{N}(0,1)$. Déterminer la loi de $X^2 + Y^2$.
- 2. Soit U et V deux variables aléatoires indépendantes de loi uniforme sur [0,1]. Posons $S=-2\ln U$ et $\Theta=2\pi V$. Montrer que S et Θ sont deux variables aléatoires indépendantes de lois respectives la loi exponentielle de paramètre $\frac{1}{2}$ et la loi uniforme sur $[0,2\pi]$.

Montrer que $X = \sqrt{S}\cos\Theta$ et $Y = \sqrt{S}\sin\Theta$ sont indépendantes de loi $\mathcal{N}(0,1)$.

Exercice 5.17. Utiliser l'inégalité de Chebyshev pour trouver un nombre n de jets tel que la probabilité d'obtenir une proportion de piles entre 49% et 51% soit au moins égale à 96%. (On suppose la pièce équilibrée).

Exercice 5.18. On lance une pièce équilibrée et on souhaite obtenir une proportion de « piles » entre 49% et 51% avec une probabilité au moins égale à 96%. Déterminer le nombre de jets nécessaire en utilisant l'approximation par une loi normale. Comparer avec l'exercice précédent.

Exercice 5.19. Soit f la densité d'une loi $\mathcal{N}(0,1)$ et F sa fonction de répartition. Montrer que quand x tend vers $+\infty$, $1 - F(x) \sim \frac{1}{x} f(x)$.

Exercice 5.20. On veut estimer la probabilité p d'obtenir un 6 lorqu'on lance un dé. Pour ceci on lance le dé 12000 fois.

On obtient 1890 fois le 6.

Déterminer un intervalle de confiance de niveau 95%.