Welcome to my Presentation

Presentation on Digital Logic Design

Presented By:

Name: Tushar Sarkar

Student ID: 18CSE035

Second Year First Semester

Department of CSE,BSMRSTU,

Gopalganj-8100.

Outline

- Question
- ❖Converting Excess-3 to BCD(8421)
- ❖Converting Table Excess-3 to BCD(8421)
- **⋄**K-Map for A
- **❖**K-Map for B
- **⋄**K-Map for C
- **⋄**K-Map for D
- Minimized Boolean expressions
- Logic Diagram

My Question is 4

Design of a combinational circuit that converts excess-3 code to BCD with a 4-bit adder and external gates.

Converting Excess-3 to BCD(8421)

- *Excess-3 code can be converted back to BCD in the same manner.
- *Let A,B,C & D be the bits representing the binary numbers, where D is the LSB and A is the MSB.
- *Let w, x, y & z be the bits representing the gray code of the binary numbers, where z is the LSB and w is the MSB.
- ❖The truth table for the conversion is given below.
- The X's mark don't care conditions.

Converting Table Excess-3 to BCD(8421)

Excess-3				BCD			
W	X	У	Z	A	В	С	D
0	0	0	0	X	X	X	X
0	0	0	1	X	Χ	X	X
0	0	1	0	X	Χ	X	X
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	0	0	1	1
0	1	1	1	0	1	0	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

K-Map for A

WX YZ	00	01	11	10	
00	X	X	0	X	
01	0	0	0	0	
11	1	X	X	X	WX
10	0	0	1	0	WYZ

K-Map for B

K-Map for C

K-Map for D

WX	00	01	11	10	
00	X	X	0	X	
01	1	0	0	1	Z'
11	1	X	X	X	
10	1	0	0	1	

D = Z'

Minimized Boolean express

✓ Corresponding minimized Boolean expressions for Excess-3 code bits

$$A = WX + WYZ$$

$$B = X'Y' + X'Z' + XYZ$$

$$C = Y'Z + YZ'$$

$$D = Z'$$

Logic Diagram

$$A = WX + WYZ$$
, $B = X'Y' + X'Z' + XYZ$, $C = Y'Z + YZ'$, $D = Z'$

Thank How