实验三三相异步电动机的实验

实验(1): 三相异步电机起动、改变电机转向

2. 三相异步电动机直接起动的接线和直接起动试验

观察电动机起动瞬间最大的电流值,重复启动过程5次,取测得的电流数值的最大值

$$I_{\rm st} = 1.12 \text{ A}.$$

3. 三相异步电动机 $Y-\Delta$ 起动的接线和 $Y-\Delta$ 起动试验

观察电动机起动瞬间最大的电流值,重复启动过程5次,取测得的电流数值的最大值

$$I_{\rm st} = 0.56 \text{ A}.$$

将 Y 连接的启动电流与直接起动方法的电流作定性比较: Y 连接的启动电流是 Δ 连接的启动电流的 $\frac{1}{3}$.

4. 三相异步电动机降压调速的接线及降压调速试验

从 $U_{\rm BC}$ 线电压 = U_N = 220 V 开始逐次减小降低交流输出电压,直至电动机 M 的转速 n 降低至 $0\frac{r}{\min}$ (注意,当电动机转速开始明显降低时,调压器要缓缓调节),在这一过程中测取电动机 M 的输入电压 U_1 (用 V 表读数)、输出转速 n. 共取数据 6-8 组.

U_1 (V)	220	100	70	60	50	48	47	46	40
n (r/min)	-1495	-1484	-1463	-1442	-1374	-1342	-1278	-185	-55

表 1 降压调速试验

5. 改变三相异步电动机的转向

序号	操作内容	三相绕组顺序	转向情况	
1	接线未作改变	ABC	逆(负)	
2	任意两相绕组的接线对调	BAC	顺(正)	

表 2 改变转向

思考与练习

1. 比较异步电动机不同起动方法的优缺点.

星一**角起动** 可以有效降低启动电流,但启动转矩只有全电压启动的 1/3,不适合大负载启动·

串自耦变压器起动 适合于大负载启动的场合,启动电流可控,对电网冲击较小,但结构较为复杂,成本高;

定子串电阻或电抗起动 结构简单, 但不适合大负载启动.

2. 本次实验使用的三相异步电动机的极对数是多少?

2.

实验(2): 三相异步电动机的开环调速实验

	参考给定 U_n^* (V)	转速 n (r/	定子电压	定子频率	压频比
		min)	U_1 (V)	f_1 (Hz)	U_1/f_1
4	-710	135	177	29	6.10
5	-940	177	218	32	6.81
6	-1160	218	257	38	6.76
7	7 -1380 8 -1580		299	45	6.64
8			299	52	5.75

表 3 三相正弦波脉宽控制器(SPWM)的特性测试数据

U_{n2}^*	8 V						4 V				
$T_e(N \cdot$	0	TG1	TG2	TG3	TGm	0	TG1	TG2	TG3	TGm	
m	0	0.8	1	1.2	1.48	0	0.4	0.6	0.8	1.1	
T_e^*	0	0.54	0.68	0.81	1	0	0.36	0.55	0.73	1	
n (r/ min)	n_0 (S0)	n_1 (S1)	n_2 (S2)	n ₃ (S3)	$n_{ m m} \ (S_{ m m})$	$n_{0'} \atop (S_{0'})$	$n_{1'} \ (S_{1'})$	$n_{2'} \atop (S_{2'})$	$n_{3'} \atop (S_{3'})$	$n_{ m m'} \ (S'_{ m m})$	
	-1600	-1500	-1460	-1400	-1160	-750	-710	-680	-640	-500	
S	0	0.06	0.09	0.13	0.28	0	0.05	0.09	0.15	0.33	

表 4 恒压频比($\frac{U_1}{\omega_1}$)控制下异步电动机开环机械特性实验数据

其中,转矩比 $T_e^* = \frac{T_e}{T_{\rm Gm}}, S = \frac{n_0 - n}{n_0}$.

按表 4 数据分别在图 1 中绘制恒压频比($\frac{U_1}{\omega_1}$)控制下异步电动机的开环机械特性 $S=f\left(T_e^*\right)$ (共 2 条曲线).

图 1 恒压频比($\frac{U_1}{\omega_1}$)控制下异步电动机的开环机械特性

思考题

1. 何为恒压频比($\frac{U_1}{\omega_1}$)控制?其引入的目的是什么?

恒压频比控制方法是通过调整电机的电压和频率,实现对电机输出功率的恒定控制的方法. 其基本原理是通过测量电机的输入电压和电流,计算出电机的功率因数,然后根据功率因数调整电机的电压和频率,使得电机的输出功率保持恒定.目的是可以使电机在最佳条件下运行,从而提高电机的运行效率,降低能耗.

2. DM02 模块在异步电动机变频调速系统中的作用是什么?

DM02 接收来自控制电路的低功率控制信号 U_c ,将其放大并隔离,以驱动功率管 (OUT1 ~ OUT6) 的开通与关断,驱动三相交流感应电机.

3. 分析图 1 中开环机械特性, 说明特点.

对于同一转矩 T, $S\omega$ 基本不变, 因而 Δn 基本不变.