Práctica 1

Análisis Empírico e Híbrido de Eficiencia de Algoritmos

Índice

- 1. Introducción
- 2. Complejidad O(n²)
 - Burbuja
 - Inserción
 - Selección
- 3. Complejidad O(nlog(n))
 - Heapsort
 - Mergesort
 - Quicksort
- 4. Floyd
- 5. Hanoi
- 6. Comparativa
- 7. Ajuste erróneo
- 8. Optimización

1. Introducción

- El objetivo de esta práctica es analizar la eficiencia de los algoritmos proporcionados de manera empírica e híbrida
- Para ello, los hemos ejecutado diferentes números de parámetros y los hemos comparado.
- Se ha empleado la librería Mtime de Windows destinada a la medición precisa de tiempos.
- Se ha automatizado la creación de scripts de GNUplot.

2. Complejidad o(n²)

El ajuste se realiza con T(n) = a*n² + b*n + c

Vamos a ver los siguientes algoritmos:

- Burbuja
- •Inserción
- Selección

2.1. Burbuja

2.2 Inserción

2.3. Selección

3. Complejidad O(nlog(n))

El ajuste se realiza con T(n) = a*n * log (n) + b

Vamos a ver los siguientes algoritmos:

- Heapsort
- Mergesort
- •Quicksort

3.1. Heapsort

3.2. Mergesort

3.3. Quicksort

4. Floyd

El ajuste se realiza con $T(n) = a*n^3 + b*n^2 + c*n + d$

5. Hanoi

El ajuste se realiza con T(n) = a * 2ⁿ

6. Comparativa

6. Comparativa

7. Ajuste erróneo

8. Optimización

8. Optimización

8. Optimización

