Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

Name:	KARTIKEY DUBEY
Roll No:	07
Class/Sem:	TE/V
Experiment No.:	8
Title:	Implementation of any one clustering algorithm using
	languages like JAVA/ Python.
Date of	
Performance:	
Date of	
Submission:	
Marks:	
Sign of Faculty:	

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Aim: To Study and Implement K-Means algorithm

Objective:- Understand the working of K-Means algorithm and its implementation using python.

Theory:

In statistics and machine learning, k-means clustering is a method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean.

Input

K:-number of clusters

D:- data set containing n objects

Output

A set of k clusters

Given k, the k-means algorithm is implemented in 5 steps:

Step 1: Arbitrarily choose k objects from D as the initial cluster centers.

Step 2: Find the distance from each object in the dataset with respect to cluster centers

Step 3: Assign each object to the cluster with the nearest seed point based on the mean value of the objects in the cluster.

Step 4: Update the cluster means i.e calculate the mean value of the objects for each cluster.

Step 5: Repeat the procedure, until there is no change in meaning.

Example: $d = \{2,4,10,12,3,20,30,11,25\} k = 2$

1. Randomly assign mean m1=3 and m2=4

Therefore, $k1 = \{2,3\}$ Therefore, $k1 = \{4,10,12,20,30,11,25\}$

2. Randomly assign mean m1=2.5 and m2=

16 Therefore, $k1 = \{2,3,4\}$ Therefore, k1 =

{4,10,12,20,30,11,25}

3. Randomly assign mean m1=3 and m2=18

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Therefore, $k1 = \{2,3,4,10\}$ Therefore, $k1 = \{12,20,30,11,25\}$

4. Randomly assign mean m1=7 and m2=25

Therefore, $k1 = \{2,3,4,10,11,12\}$ Therefore, k1

=

{20,30,25}

5. Randomly assign mean m1=7 and m2=25

Therefore, we stop as we are getting same mean values.

6. Therefore, Final clusters are: $k1 = \{2,3,4,10,11,12\}$ Therefore, $k1 = \{20,30,25\}$

CODE:

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette score, classification report

from sklearn.datasets import load iris

from sklearn.impute import SimpleImputer

Load the Iris dataset (or replace it with your dataset)

iris = load iris()

X = iris.data # Features

y = iris.target # Target labels (optional, if you're doing comparison)

Split the data into training and test sets

X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)

Initialize and train the K-Means model

kmeans model = KMeans(n clusters=len(set(y)), random state=42)

STAVAROTINE III

Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

kmeans model.fit(X train)

```
# Predict the cluster labels on the test set
```

y_pred = kmeans_model.predict(X_test)

Evaluate the model using Silhouette Score (common for clustering)

sil_score = silhouette_score(X_test, y_pred)

print(fSilhouette Score: {sil score}')

Optionally, compare predicted clusters with true labels using a classification report print(f'Classification Report (with original labels):\n{classification report(y test, y pred)}')

Plotting the clusters (optional, useful for visualizing 2D data)

plt.scatter(X test[:, 0], X test[:, 1], c=y pred, cmap='viridis')

plt.title('K-Means Clusters')

plt.show()

OUTPUT:

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureNarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()__check_params_vs_input(X, default_n_init=10) Silhouette Score: 0.579836017465277
Classification Report (with original labels):

	precision	recall	fl-score	support	
0	0.00	0.00	0.00	19	
1	0.00	0.00	0.00	13	
2	0.19	0.23	0.21	13	
accuracy			0.07	45	
macro avg	0.06	0.08	0.07	45	
weighted avg	0.05	0.07	0.06	45	

Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

CONCLUSION:

What types of data preprocessing are necessary before applying the K-Means algorithm?

Before applying the K-Means algorithm, key data preprocessing steps include:

- 1. Scaling: Normalize or standardize features, as K-Means is sensitive to scale.
- 2. Handling Missing Values: Impute or remove missing data, since K-Means does not handle them directly.
- 3. Outlier Treatment: Address outliers as they can distort cluster formation.
- 4. Dimensionality Reduction: Use PCA or similar techniques if the data has many features to improve clustering performance and reduce noise.
- 5. Encoding Categorical Data: Convert categorical variables to numeric using one-hot encoding or label encoding.