Package 'baseline'

November 18, 2023

```
Version 1.3-5
Date 2023-11-18
Maintainer Kristian Hovde Liland <a href="mailto:kristian.liland@nmbu.no">kristian.liland@nmbu.no</a>
Description Collection of baseline correction algorithms, along with a framework and a Tcl/Tk en-
     abled GUI for optimising baseline algorithm parameters. Typical use of the package is for re-
     moving background effects from spectra originating from various types of spec-
     troscopy and spectrometry, possibly optimizing this with regard to regression or classification re-
     sults. Correction methods include polynomial fitting, weighted local smoothers and many more.
License GPL-2
Depends R (>= 3.5.0)
Imports graphics, SparseM, grDevices, stats, methods, limSolve
Suggests gWidgets2, gWidgets2tcltk, IDPmisc, lattice, pls, MASS
LazyLoad true
LazyData true
URL https://github.com/khliland/baseline/
BugReports https://github.com/khliland/baseline/issues/
ZipData true
NeedsCompilation no
Author Kristian Hovde Liland [aut, cre]
       (<https://orcid.org/0000-0001-6468-9423>),
     Bjørn-Helge Mevik [aut],
     Roberto Canteri [ctb]
Repository CRAN
Date/Publication 2023-11-18 11:40:07 UTC
```

Encoding UTF-8 **Type** Package

Title Baseline Correction of Spectra

45

Index

R topics documented:

baseline-package	3
algorithm	4
baseline	5
baseline-class	6
baseline.als	7
baseline.fillPeaks	8
baseline.irls	9
baseline.lowpass	10
baseline.medianWindow	11
baseline.modpolyfit	12
baseline.peakDetection	13
	14
	16
	17
	19
	21
	22
	23
8	23
6	24
	25
	26
	27
1	28
	29
	30
	31
	32
	32
1	33
	34
	35
	35
	36
	37
	38
	39
	10
1	10
66	11
	12
XPSdata	13

baseline-package 3

baseline-package

Baseline correction

Description

A common framework with implementations of several baseline correction methods

Details

Use function baseline for baseline correction. This function takes matrices of spectra, a method name and parameters needed for the specific method. See helpfiles for details.

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

Maintainer: Kristian Hovde Liland kristian.liland@nmbu.no

References

Andreas F. Ruckstuhl, Matthew P. Jacobson, Robert W. Field, James A. Dodd: Baseline subtraction using robust local regression estimation; CHAD A. LIEBER and ANITA MAHADEVAN-JANSEN: Automated Method for Subtraction of Fluorescence from Biological Raman Spectra; Mark S. Friedrichs: A model-free algorithm for the removal of baseline artifacts; AHMET K. ATAKAN, W. E. BLASS, and D. E. JENNINGS: Elimination of Baseline Variations from a Recorded Spectrum by Ultra-low Frequency Filtering; M.A. Kneen, H.J. Annegarn: Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds; K.H. Liland, B.-H. Mevik, E.-O. Rukke, T. Almøy, M. Skaugen and T. Isaksson (2009) Quantitative whole spectrum analysis with MALDI-TOF MS, Part I: Measurement optimisation. *Chemometrics and Intelligent Laboratory Systems*, **96**(2), 210–218.

```
# Load data
data(milk)
# The baseline() function is an S4 wrapper for all the different
# baseline correction methods. The default correction method
# is IRLS. Data must be organized as row vectors in a matrix
# or data.frame.
bc.irls <- baseline(milk$spectra[1,, drop=FALSE])</pre>
## Not run:
 # Computationally heavy
plot(bc.irls)
## End(Not run)
# Available extractors are:
# getBaseline(bc.irls)
# getSpectra(bc.irls)
# getCorrected(bc.irls)
# getCall(bc.irls)
```

4 algorithm

```
# Correction methods and parameters can be specified through the wrapper.
bc.fillPeaks <- baseline(milk$spectra[1,, drop=FALSE], lambda=6,
hwi=50, it=10, int=2000, method='fillPeaks')
## Not run:
    # Computationally heavy
plot(bc.fillPeaks)

## End(Not run)

# If a suitable gWidgets2 implementation is installed, a
# graphical user interface is available for interactive
# parameter adaption.
## Not run:
    # Dependent on external software
    baselineGUI(milk$spectra)</pre>

## End(Not run)
```

algorithm

Extraction methods for "baselineAlgTest" objects

Description

Extraction methods specifically for objects of class baselineAlgTest

Usage

```
algorithm(object)
extraArgs(object)
```

Arguments

object

Object of class baselineAlgTest

Value

The corresponding slot

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

baselineAlgTest

baseline 5

Description

Common framework for baseline correction

Usage

```
baseline(spectra, method = "irls", ...)
```

Arguments

spectra Matrix with spectra in rows method Baseline correction method

... Additional parameters, sent to the method

Details

Estimates baselines for the spectra, using the algorithm named in method.

Value

An object of class baseline.

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

References

Kristian Hovde Liland, Trygve Almøy, Bjørn-Helge Mevik (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

See Also

The functions implementing the baseline algorithms: baseline.als, baseline.fillPeaks, baseline.irls, baseline.lowpass, baseline.medianWindow, baseline.modpolyfit, baseline.peakDetection, baseline.rfbaseline, baseline.rollingBall, baseline.shirley, baseline.TAP

```
# Load data
data(milk)
# The baseline() function is an S4 wrapper for all the different
# baseline correction methods. The default correction method
# is IRLS. Data must be organized as row vectors in a matrix
# or data.frame.
```

6 baseline-class

```
bc.irls <- baseline(milk$spectra[1,, drop=FALSE])</pre>
## Not run:
 # Computationally heavy
plot(bc.irls)
## End(Not run)
# Available extractors are:
# getBaseline(bc.irls)
# getSpectra(bc.irls)
# getCorrected(bc.irls)
# getCall(bc.irls)
# Correction methods and parameters can be specified through the wrapper.
bc.fillPeaks <- baseline(milk$spectra[1,, drop=FALSE], lambda=6,</pre>
hwi=50, it=10, int=2000, method='fillPeaks')
## Not run:
 # Computationally heavy
plot(bc.fillPeaks)
## End(Not run)
# If a suitable gWidgets2 implementation is installed, a
# graphical user interface is available for interactive
# parameter adaption.
## Not run:
 # Dependent on external software
 baselineGUI(milk$spectra)
## End(Not run)
```

baseline-class

Class "baseline"

Description

Stores the result of estimating baselines for one or more spectra.

Objects from the Class

The normal way to create objects is with the function baseline. Several baseline algorithms are available. See baseline for details. There is a plot method for the class; see plot, baseline-method.

Slots

baseline: A matrix with the estimated baselines corrected: A matrix with the corrected spectra spectra: A matrix with the original spectra call: The call to baseline

baseline.als 7

Methods

```
getBaseline signature(object = "baseline"): Extract the estimated baselines
getCall signature(object = "baseline"): Extract the call to baseline used to create the object
getCorrected signature(object = "baseline"): Extract the corrected spectra
getSpectra signature(object = "baseline"): Extract the original spectra
```

Warning

In a future versoion, one of the slots might be removed from the class definition and calculated on the fly instead, in order to save space. Therefore, *do* use the extractor functions (getSpectra, getBaseline and getCorrected) instead of accessing the slots directly.

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

```
baseline, getBaseline, getSpectra, getCorrected, getCall
```

Examples

```
showClass("baseline")
```

baseline.als

Asymmetric Least Squares

Description

Baseline correction by 2nd derivative constrained weighted regression. Original algorithm proposed by Paul H. C. Eilers and Hans F.M. Boelens

Usage

```
baseline.als(spectra, lambda = 6, p = 0.05, maxit = 20)
```

Arguments

spectra	Matrix with spectra in rows		
lambda	2nd derivative constraint		
р	Weighting of positive residuals		
maxit	Maximum number of iterations		

Details

Iterative algorithm applying 2nd derivative constraints. Weights from previous iteration is p for positive residuals and 1-p for negative residuals.

8 baseline.fillPeaks

Value

baseline Matrix of baselines corresponding to spectra spectra

corrected Matrix of baseline corrected spectra wgts Matrix of final regression weights

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

References

Paul H. C. Eilers and Hans F.M. Boelens: Baseline Correction with Asymmetric Least Squares Smoothing

Examples

```
data(milk)
bc.als <- baseline(milk$spectra[1,, drop=FALSE], lambda=10, method='als')
## Not run:
plot(bc.als)
## End(Not run)</pre>
```

baseline.fillPeaks Fill peaks

Description

An iterative algorithm using suppression of baseline by means in local windows

Usage

```
baseline.fillPeaks(spectra, lambda, hwi, it, int)
```

Arguments

spectra Matrix with spectra in rows

1ambda 2nd derivative penalty for primary smoothing

hwi Half width of local windows

it Number of iterations in suppression loopint Number of buckets to divide spectra into

Details

In local windows of buckets the minimum of the mean and the previous iteration is chosen as the new baseline

baseline.irls 9

Value

baseline Matrix of baselines corresponding to spectra spectra

corrected Matrix of baseline corrected spectra

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

References

Kristian Hovde Liland, 4S Peak Filling - baseline estimation by iterative mean suppression, MethodsX 2015

Examples

```
data(milk)
bc.fillPeaks <- baseline(milk$spectra[1,, drop=FALSE], lambda=6,
hwi=50, it=10, int=2000, method='fillPeaks')
## Not run:
plot(bc.fillPeaks)
## End(Not run)</pre>
```

baseline.irls

Iterative Restricted Least Squares

Description

An algorithm with primary smoothing and repeated baseline suppressions and regressions with 2nd derivative constraint

Usage

```
baseline.irls(spectra, lambda1 = 5, lambda2 = 9, maxit = 200, wi = 0.05)
```

Arguments

spectra	Matrix with spectra in rows
lambda1	2nd derivative constraint for primary smoothing
lambda2	2nd derivative constraint for secondary smoothing
maxit	Maximum number of iterations
wi	Weighting of positive residuals

Value

baseline	Matrix of baselines corresponding to spectra spectra
corrected	Matrix of baseline corrected spectra
smoothed	Matrix of primary smoothed spectra

10 baseline.lowpass

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

Examples

```
data(milk)
bc.irls <- baseline(milk$spectra[1,, drop=FALSE], method='irls')
## Not run:
plot(bc.irls)
## End(Not run)</pre>
```

baseline.lowpass

Low-pass FFT filter

Description

An algorithm for removing baselines based on Fast Fourier Transform filtering

Usage

```
baseline.lowpass(spectra, steep = 2, half = 5)
```

Arguments

spectra Matrix with spectra in rows
steep Steepness of filter curve
half Half-way point of filter curve

Details

Since the scale of the spectra will be different after filtering, baselines will not be returned by the algorithm

Value

baseline Matrix of baselines corresponding to spectra spectra

corrected Matrix of baseline corrected spectra

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

References

AHMET K. ATAKAN, W. E. BLASS, and D. E. JENNINGS: Elimination of Baseline Variations from a Recorded Spectrum by Ultra-low Frequency Filtering

baseline.medianWindow 11

Examples

```
data(milk)
bc.lowpass <- baseline(milk$spectra[1,, drop=FALSE], method='lowpass')
## Not run:
plot(bc.lowpass)
## End(Not run)</pre>
```

baseline.medianWindow Median window

Description

An implementation and extention of Mark S. Friedrichs' model-free algorithm

Usage

```
baseline.medianWindow(spectra, hwm, hws, end)
```

Arguments

spectra Matrix with spectra in rows

hwm Window half width for local medians

hws Window half width for local smoothing (optional) end Original endpoint handling (optional boolean)

Details

An algorithm finding medians in local windows and smoothing with gaussian weighting

Value

baseline Matrix of baselines corresponding to spectra spectra

corrected Matrix of baseline corrected spectra

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

References

Mark S. Friedrichs: A model-free algorithm for the removal of baseline artifacts

12 baseline.modpolyfit

Examples

```
data(milk)
bc.medianWindow <- baseline(milk$spectra[1,, drop=FALSE], hwm=300,
method='medianWindow')
## Not run:
plot(bc.medianWindow)
## End(Not run)</pre>
```

baseline.modpolyfit

Modified polynomial fitting

Description

An implementation of CHAD A. LIEBER and ANITA MAHADEVAN-JANSENs algorithm for polynomial fiting

Usage

```
baseline.modpolyfit(spectra, t, degree = 4, tol = 0.001, rep = 100)
```

Arguments

spectra Matrix with spectra in rows

t Optional vector of spectrum abcissa

degree Degree of polynomial

tol Tolerance of difference between iterations

rep Maximum number of iterations

Details

Polynomial fitting with baseline suppression relative to original spectrum

Value

baseline Matrix of baselines corresponding to spectra spectra

corrected Matrix of baseline corrected spectra

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

References

CHAD A. LIEBER and ANITA MAHADEVAN-JANSEN: Automated Method for Subtraction of Fluorescence from Biological Raman Spectra

baseline.peakDetection 13

Examples

```
data(milk)
bc.modpolyfit <- baseline(milk$spectra[1,, drop=FALSE], method='modpolyfit', deg=6)
## Not run:
plot(bc.modpolyfit)
## End(Not run)</pre>
```

baseline.peakDetection

Simultaneous Peak Detection and Baseline Correction

Description

A translation from Kevin R. Coombes et al.'s MATLAB code for detecting peaks and removing baselines

Usage

```
baseline.peakDetection(spectra, left, right, lwin, rwin, snminimum,
mono=0, multiplier=5, left.right, lwin.rwin)
```

Arguments

spectra	Matrix with spectra in rows
left	Smallest window size for peak widths
right	Largest window size for peak widths
lwin	Smallest window size for minimums and medians in peak removed spectra
rwin	Largest window size for minimums and medians in peak removed spectra
snminimum	Minimum signal to noise ratio for accepting peaks
mono	Monotonically decreasing baseline if mono>0
multiplier	Internal window size multiplier
left.right	Sets eflt and right to value of left.right
lwin.rwin	Sets lwin and rwin to value of lwin.rwin

Details

Peak detection is done in several steps sorting out real peaks through different criteria. Peaks are removed from spectra and minimums and medians are used to smooth the remaining parts of the spectra. If snminimum is omitted, y3, midspec, y and y2 are not returned (faster)

14 baseline.rfbaseline

Value

baseline Matrix of baselines corresponding to spectra spectra

corrected Matrix of baseline corrected spectra

peaks Final list of selected peaks

sn List signal to noise ratios for peaks

y3 List of peaks prior to singal to noise selection

midspec Mid-way baseline estimation

y First estimate of peaksy2 Second estimate of peaks

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

References

KEVIN R. COOMBES et al.: Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization.

Examples

```
data(milk)
bc.peakDetection <- baseline(milk$spectra[1,, drop=FALSE], method='peakDetection',
left=300, right=300, lwin=50, rwin=50)
## Not run:
plot(bc.peakDetection)
## End(Not run)</pre>
```

baseline.rfbaseline

Robust Baseline Estimation

Description

Wrapper for Andreas F. Ruckstuhl, Matthew P. Jacobson, Robert W. Field, James A. Dodd's algorithm based on LOWESS and weighted regression

Usage

```
baseline.rfbaseline(spectra, span = 2/3, NoXP = NULL, maxit = c(2, 2),
b = 3.5, weight = NULL, Scale = function(r) median(abs(r))/0.6745,
delta = NULL, SORT = FALSE, DOT = FALSE, init = NULL)
```

baseline.rfbaseline 15

Arguments

spectra	Matrix with spectra in rows
span	Amount of smoothing (by fraction of points)
NoXP	Amount of smoothing (by number of points)
maxit	Maximum number of iterations in robust fit
b	Tuning constant in the biweight function
weight	Optional weights to be given to individual observations
Scale	S function specifying how to calculate the scale of the residuals
delta	Nonnegative parameter which may be used to save computation. (See rfbaseline
SORT	Boolean variable indicating whether x data must be sorted.
DOT	Disregard outliers totally (boolean)
init	Values of initial fit

Details

Most of the code is the original code as given by the authors. The ability to sort by X-values has been removed and ability to handle multiple spectra has been added

Value

baseline Matrix of baselines corresponding to spectra spectra corrected Matrix of baseline corrected spectra

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

References

Andreas F. Ruckstuhl, Matthew P. Jacobson, Robert W. Field, James A. Dodd: Baseline subtraction using robust local regression estimation

```
data(milk)
bc.rbe <- baseline(milk$spectra[1,, drop=FALSE], method='rfbaseline',
    span=NULL, NoXP=1000)
## Not run:
plot(bc.rbe)
## End(Not run)</pre>
```

16 baseline.rollingBall

baseline.rollingBall Rolling ball

Description

Ideas from Rolling Ball algorithm for X-ray spectra by M.A.Kneen and H.J. Annegarn. Variable window width has been left out

Usage

```
baseline.rollingBall(spectra, wm, ws)
```

Arguments

spectra Matrix with spectra in rows

wm Width of local window for minimization/maximization

ws Width of local window for smoothing

Value

baseline Matrix of baselines corresponding to spectra spectra

corrected Matrix of baseline corrected spectra

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

References

M.A. Kneen, H.J. Annegarn: Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds

```
data(milk)
bc.rollingBall <- baseline(milk$spectra[1,, drop=FALSE], wm=200, ws=200,
method='rollingBall')
## Not run:
plot(bc.rollingBall)
## End(Not run)</pre>
```

baseline.shirley 17

baseline.shirley Shirley Background Estimation

Description

Shirley Background correction for X-ray Photoelectron Spectroscopy.

Usage

```
baseline.shirley(spectra, t = NULL, limits = NULL, maxit = 50, err = 1e-6)
```

Arguments

spectra matrix with only 1 y-coordinates by rows (i.e.: y = spectra[1,])

t Optional vector of spectrum abscissa

limits list with the y coordinates between calculation of background. Ususally these

are the extreme point of the data range.

maxit max number of iteration

err Tolerance of difference between iterations

Details

The shape of the spectrum background or baseline is affected by inelastic energy loss processes, secondary electrons and nearby peaks. A reasonable approximation is essential for a qualitative and quantitative analysis of XPS data especially if several components interfere in one spectrum. The choice of an adequate background model is determined by the physical and chemical conditions of the measurements and the significance of the background to the information to be obtained. The subtraction of the baseline before entering the fit iterations or the calculation of the peak area can be an acceptable approximation for simple analytical problems. In order to obtain chemical and physical parameters in detail, however, it is absolutely necessary to include the background function in the iterative peak fit procedure. The primary function F(E) results from the experimentally obtained function M(E) and the background function U(E) as

$$F(E) = M(E) - U(E)$$

The kinetic energy E of the spectra can be described as

$$E = SE + SW * (i - 1)$$

SE means the start energy in eV, SW is the step width in eV and i the channel number. i can assume values between 1 and N with N as the number of data points.

In case of baseline calculation before initiating the fit procedure, the background is set to the averaged experimental function M(E) in a sector around the chosen start and end channels. With i_1 as left channel (E_1 : low energy side) and i_2 as right channel (E_2 : high energy side) the simulation of the baseline is obtained as

18 baseline.shirley

$$U(E_1) = M(E_1)$$

and

$$U(E_2) = M(E_2)$$

If ZAP is the number of points used for averaging (can be set in the preferences), the intensity of the averaged measuring function at the low energy side is calculated by

$$M(i_1) = \frac{\sum_{i=0}^{ZAP-1} M(i_1+i)}{ZAP}$$

and at the high energy side by

$$M(i_2) = \frac{\sum_{i=0}^{ZAP-1} M(i_2+i)}{ZAP}$$

In many cases the Shirley model turned out to be a successful approximation for the inelastic background of core level peaks of buried species, which suffered significantly from inelastic losses of the emitted photoelectrons. The calculation of the baseline is an iterative procedure. The number of iteration cycles should be chosen high enough so that the shape of the obtained background function does not change anymore. The analytical expression for the Shirley background is

$$U(E) = \int_{E}^{\infty} F(E')dE' + c$$

The algorithm of Proctor and Sherwood ([1] A. Proctor, P.M.A. Sherwood, Anal. Chem. 54 (1982) 13) is based on the assumption that for every point of the spectrum the background intensity generated by a photoelectron line is proportional to the number of all photoelectrons with higher kinetic energy. The intensity of the background U(i) in channel i is given by

$$U(i) = \frac{(a-b)Q(i)}{P(i) + Q(i)} + b$$

where a and b are the measured intensities in channel i_1 and i_2 , respectively, and P(i) and Q(i) represent the effective peak areas to lower and higher kinetic energies relative to the channel under consideration. An iterative procedure is necessary because P, Q, and U(i) are unknown. In first approximation U(i) = b is used.

The function baseline.shirley implements the shirley baseline. It is an iterative algorithm. The iteration stops when the deviation between two consequent iteration is lower than err or when the max number of iterations maxit is reached.

Value

The baseline function return an object of class baseline.

References

A. Proctor, P.M.A. Sherwood, Anal. Chem. 54 (1982) 13.

baseline.TAP

See Also

baseline

Examples

```
data("01s")
Data <- 01s

## The same example with C1s data
# data("C1s")
# Data <- C1s

Y <- Data[2,, drop = FALSE]
X <- Data[1,]

corrected <- baseline(Y, method = "shirley", t = X)
plot(corrected, rev.x = TRUE, labels = X)

## Not run:
# Dependent on external software
baselineGUI(Y, labels=X, method="shirley")
## End(Not run)</pre>
```

baseline.TAP

TAP

Description

An implementation of Roman Svoboda and Jirí Málek's algorithm for baseline identification in kinetic anlaysis of derivative kinetic data.

Usage

```
baseline.TAP(spectra, t, interval = 15, tol = 0.001)
```

Arguments

spectra	Matrix with spectra in rows
t	Optional vector of spectrum abcissa
interval	Distance from spectrum end to starting points for the TAP (default = 15)
tol	Tolerance of difference between iterations (default = 0.001)

20 baseline.TAP

Details

(i) A first approximation of the baseline equation is selected as the straight line between start and end of the curve. (ii) Based on the first approximation of the baseline equation, the phase change progress parameter is calculated. (iii) An updated equation of the baseline is calculated and the phase change progress parameter equation from step (ii). (iv) The baseline equation from step (iii) is compared (point by point) with the one from the previous iteration. If the convergence criterion is met (the difference between every baseline value corresponding to two successive iterations was less than 0.1%) the procedure is stopped and the final baseline equation is selected. If the convergence criterion is not fulfilled then a new iteration is carried out from step (ii) until convergence was achieved.

Value

baseline Matrix of baselines corresponding to spectra spectra

corrected Matrix of baseline corrected spectra

Author(s)

Kristian Hovde Liland

References

Roman Svoboda and Jirí Málek: Importance of proper baseline identification for the subsequent kinetic analysis of derivative kinetic data, Journal of Thermal Analysis and Calorimetry.

```
# My T
myT <- 40:170
# My artifical curve
myAlpha <- c(seq(0.01, 0.02, length.out=40),
             dnorm(seq(-3,3,length.out=51))/2+(0:50)/2000+0.02)
myAlpha <- c(myAlpha,
             seq(myAlpha[90]-0.001, 0.01, length.out=40))
myAlpha <- myAlpha - min(myAlpha)</pre>
myAlpha <- cumsum(dadt <- myAlpha/sum(myAlpha))</pre>
# Discrete derivative
mydAlpha <- c(0,diff(myAlpha)); mydAlpha <- matrix(mydAlpha, ncol=length(mydAlpha))</pre>
rm(myAlpha) # Throw away myAlpha
# Compute baseline from T and derivative
B <- baseline(mydAlpha, t=myT, method="TAP")</pre>
# Plot
plot(B, xlab = "T", ylab = "da/dT")
```

baselineAlg-class 21

baselineAlg-class Class "baselineAlg"

Description

A class that describes a baseline correction algorithm. The idea is that it contains all information needed to use an algorithm with the optimisation framework and the graphical user interface (but see Notes below).

Objects from the Class

Objects can be created by calls of the form new("baselineAlg", ...).

Slots

name: Short-name of the algorithm. This must match the name of the object in the baselineAlgorithms list of algorithms, and is used throughout the code to identify the algorithm. It should thus start with a letter and contain only letters, digits, underscores ("_") or dots (".").

description: Description of the algorithm, typically the full name. This will be used in the code to describe the algorith, so it should not be too long, and not contain newline characters.

funcName: The name of the function used to estimate the baseline. The function must take an argument spectra, and return a list with the estimated baselines (baseline) original spectra (spectra) and the corrected spectra (corrected). It can also take other arguments (typically parameters) and return additional components in the list.

param: A data frame with information about the parameters of the algorithm. It should contain the following coloumns: name - the name of the parameter; integer - TRUE if the parameter only takes integer values, otherwise FALSE; min - the lower limit of allowed values; incl.min - TRUE if the lower limit is an allowed value, otherwise FALSE; default - the default value; max - the upper limit of allowed values; incl.max - TRUE if the upper limit is an allowed value, otherwise FALSE

Methods

```
description signature(object = "baselineAlg"): Extract the description slot
funcName signature(object = "baselineAlg"): Extract the funcName slot
name signature(object = "baselineAlg"): Extract the name slot
param signature(object = "baselineAlg"): Extract the param slot
```

Note

The goal is that the optimisation framework and the GUI code should get all information about available baseline algorithms through a list of baselineAlg objects. This will make it relatively simple to add new baseline algorithms.

Currenly, there is information about the algorithms spread around in the code. We plan to move that information into the baselineAlg objects, and expand the class accordingly.

22 baselineAlgorithms

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

Examples

```
showClass("baselineAlg")
```

baselineAlgorithms

List of available baseline algorithms

Description

A list with descriptions of all baseline algorithms available through the optimisaiont framework and graphical user interface. The elements of the list are baselineAlg objects. The list is used by the code to extract names and information about the baseline algorithms.

Details

The list is not meant for usage by end-users, but is extendable and customizable, allowing for extra algorithms or removal of algoritms.

The names of the list must match the name slot of the elements.

```
## Get a list of all algorithms:
names(baselineAlgorithms)
## Show the descriptions
sapply(baselineAlgorithms, description)
## Add new algorithm
baseline.my.alg <- function(spectra, kappa=1, gamma=1){</pre>
   baseline <- spectra-kappa+gamma
   corrected <- spectra-baseline</pre>
   list(baseline=baseline,corrected=corrected)
}
baselineAlgorithms$my.alg = new("baselineAlg",
     name = "my.alg",
     description = "A new baseline correction algorithm",
     funcName = "baseline.my.alg",
     param = data.frame(
        name = c("kappa", "gamma"), # maxit
        integer = c(FALSE, FALSE),
        min = c(0, 0),
        incl.min = c(TRUE, TRUE),
        default = c(1, 1),
        max = c(Inf, 1),
        incl.max = c(FALSE, TRUE)
    ))
```

baselineAlgorithmsGUI List of available baseline algorithms for GUI function

Description

A list with data.frames containing parameters, minimum and maximum values for GUIs, step lengths for sliders, default values and currently selected values, plus a short description of each parameter. The list is used by the GUIs, and is user customizable.

Details

The list is not meant for usage by end-users, but is extendable and customizable, allowing for extra algorithms, removal of algoritms or changing of parameter sets.

Examples

```
## Get a list of all algorithms:
names(baselineAlgorithmsGUI)
## Add new algorithm:
baselineAlgorithmsGUI$my.alg <- as.data.frame(matrix(c(0,20,1,1, 0,20,1,1), 2,4, byrow=TRUE))
dimnames(baselineAlgorithmsGUI$my.alg) <- list(par=c("kappa", "gamma"),
val=c("min","max","step","default"))
baselineAlgorithmsGUI$my.alg$current <- c(1,1)
baselineAlgorithmsGUI$my.alg$name <- c("Subtractive constand", "Additive constant")</pre>
```

baselineAlgResult-class

Class "baselineAlgResult"

Description

A class describing the result of a baseline algorithm test

Objects from the Class

Objects are typically created by running runTest on a baselineAlgTest object.

Slots

param: A named list with the parameter values that were tested. This includes both the predictor parameters and the baseline algorithm parameters. All combinations of values are tested.

qualMeas: A matrix of quality measure values for the different combinations of parameter values. Each row corresponds to one prediction parameter value, and each coloumn to one combination of baseline parameters.

qualMeas.ind.min: The index in qualMeas of the minimum quality measure value

24 baselineAlgTest-class

minQualMeas: The minimum quality measure value

param.ind.min: A vector of indices into the elemets of param of the parameter values corresponding to the minimum quality measure value

param.min: A list of the parameter values corresponding to the minimum quality measure value qualMeasName: The name of the quality measure

Methods

```
minQualMeas signature(object = "baselineAlgResult"): Extract the minQualMeas slot
param signature(object = "baselineAlgResult"): Extract the param slot
param.ind.min signature(object = "baselineAlgResult"): Extract the param.ind.min slot
param.min signature(object = "baselineAlgResult"): Extract the param.min slot
qualMeas signature(object = "baselineAlgResult"): Extract the qualMeas slot
qualMeas.ind.min signature(object = "baselineAlgResult"): Extract the qualMeas.ind.min
```

qualMeasName signature(object = "baselineAlgResult"): Extract the qualMeasName slot

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

Class baselineAlgTest, function runTest.

Examples

```
showClass("baselineAlgResult")
```

baselineAlgTest-class Class "baselineAlgTest"

Description

A class that describes a baseline algorithm test. The test is performed with the function runTest.

Objects from the Class

Objects can be created by calls of the form new("baselineAlgTest", ...).

Slots

algorithm: A "baselineAlg" object. The baseline algorithm to test.

param: A named list with parameter values to test. All combinations of parameters are tested.

extraArgs: A named list of extra parameters to the baseline algorithm. These will be held fixed during the testing.

baselineEnv 25

Methods

```
algorithm signature(object = "baselineAlgTest"): Extract the algorithm slot
extraArgs signature(object = "baselineAlgTest"): Extract the extraArgs slot ...
funcName signature(object = "baselineAlgTest"): Extract the funcName slot ...
param signature(object = "baselineAlgTest"): Extract the param slot
runTest signature(object = "baselineAlgTest"): Run the test.
```

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

Classes baselineAlg, baselineAlgResult. Function runTest.

Examples

```
showClass("baselineAlgTest")
```

baselineEnv

Baseline environment

Description

Methods to access the baseline environment.

Usage

```
baselineEnv()
getBaselineEnv(x, mode="any")
putBaselineEnv(x, value)
```

Arguments

x Name of object to put/get.mode Mode of object to get.value Object to put.

Value

getBaseline retrieves an object.

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

26 baselineGUI

See Also

The functions implementing the baseline algorithms: baseline.als, baseline.fillPeaks, baseline.irls, baseline.lowpass, baseline.medianWindow, baseline.modpolyfit, baseline.peakDetection, baseline.rfbaseline, baseline.rollingBall

Examples

```
putBaselineEnv('fish', '<==x-<')
getBaselineEnv('fish')</pre>
```

baselineGUI

Interactive plotting tool

Description

An interactive plotting tool for dynamic visualization of baselines and their effect using the gWidgets2 package with GTK+ or Tcl/Tk.

Usage

```
baselineGUI(spectra, method='irls', labels, rev.x = FALSE)
```

Arguments

spectra Matrix with spectra in rows

method Baseline correction method (optional)

labels Labels for X-axis (optional)

rev.x Reverse X-axis (optional, default=FALSE)

Details

Creates and updates a list containing current baseline and spectrum (baseline.result). Make sure a gWidget2 implementation is available, e.g gWidgets2RGtk2 or gWidgets2tcltk and a corresponding backend like GTK+ or Tcl/Tk. The GUI was developed using GTK which is an external dependency in Windows ans OS X.

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

```
data(milk)
## Not run:
# Dependent on external software
baselineGUI(milk$spectra)
## End(Not run)
```

custom.baseline 27

Description

This function rescales spectrum abscissa by use of breaks and gaps before baseline correction. The effect is that the chosen baseline correction algorithm and paramters will have varying effects along the spectra, effectively giving local control of the amount of rigidity/flexibility of the estimated baseline.

Usage

```
custom.baseline(spectra, breaks, gaps, trans.win = NULL, just.plot = FALSE, method, ...)
```

Arguments

spectra	Matrix with spectra in rows.
breaks	Vector of locations of break points between sections of varying baseline flexibility (given as abscissa numbers).
gaps	Vector giving the abscissa spacing between each instance of breaks (and endpoints if not specified in breaks).
trans.win	Optional width of transition window around break points used for smoothing rough breaks by LOWESS (default = NULL).
just.plot	Plot the rescaled spectra instead of applying the customized baseline correction if just.plot=TRUE (default = FALSE).
method	Baseline correction method to use (class character).
	Additional named arguments to be passed to the baseline correction method.

Details

This is an implementation of the customized baseline correction suggested by Liland et al. 2011 for local changes in baseline flexibility.

Value

baseline Estimated custom baselines.

corrected Spectra corrected by custom baselines.

spectra.scaled

Re-scaled spectra.

baseline.scaled

Estimated baselines of re-scaled spectra.

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

28 doOptim

References

Kristian Hovde Liland et al.: Customized baseline correction

Examples

```
data(milk)
spectrum1 <- milk$spectra[1,1:10000,drop=FALSE]
ordinary <- baseline(spectrum1, method="als", lambda=6, p=0.01)
customized <- custom.baseline(spectrum1, 2900, c(1,20), trans.win=100,
just.plot=FALSE, method="als", lambda=6, p=0.01)
## Not run:
plot(1:10000,spectrum1, type='l')
lines(1:10000,getBaseline(ordinary), lty=2, col=2, lwd=2)
lines(1:10000,customized$baseline, lty=3, col=3, lwd=2)
## End(Not run)</pre>
```

doOptim

Optimise several baseline algorithms on a data set

Description

Tests several baseline algorithms with one predictor for a given data set. The baseline algorithms are represented as a list of baselineAlgTest objects, and the predictor as a predictionTest object.

Usage

Arguments

baselineTests	a list of ${\tt baselineAlgTest}$ objects. The baseline algorithms and parameter values to test
Χ	A matrix. The spectra to use in the test
У	A vector or matrix. The response(s) to use in the test
predictionTest	A predictionTest object. The predictor and parameter values to use in the test
postproc	A function, used to postprocess the baseline corrected spectra prior to prediction testing. The function should take a matrix of spectra as its only argument, and return a matrix of postprocessed spectra
tmpfile	The basename of the files used to store intermediate calculations for checkpointing. Defaults to "tmp.baseline"
verbose	Logical, specifying whether the test should print out progress information. Default is FALSE
cleanTmp	Logical, specifying whether the intermediate files should be deleted when the optimisation has finished. Default is FALSE

funcName 29

Details

The function loops through the baseline algorithm tests in baselineTests, testing each of them with the given data and prediction test, and collects the results. The results of each baseline algorithm test is saved in a temporary file so that if the optimisation is interrupted, it can be re-run and will use the pre-calculated results. If cleanTmp is TRUE, the temporary files are deleted when the whole optimisation has finished.

Value

A list with components

results A list with the baselineAlgResult objects for each baseline test

minQualMeas The minimum quality measure value

baselineAlg.min

The name of the baseline algorithm giving the minimum quality measure value

param.min A list with the parameter values corresponding to the minimum quality measure

value

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

 $base {\tt lineAlgTest,} prediction {\tt Test}$

funcName

Extract the "funcName" slot.

Description

Extract the funcName slot from an object of class baselineAlg or baselineAlgTest

Usage

funcName(object)

Arguments

object

An object of class baselineAlg or baselineAlgTest

Value

The funcName slot of the object.

30 getBaseline

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

baselineAlg, baselineAlgTest

getBaseline

Functions to extract the components of a "baseline" object

Description

The functions extract the baseline, spectra, corrected or call slot of a baseline object; usually the result of a call to baseline.

Usage

```
getBaseline(object)
getSpectra(object)
getCorrected(object)
getCall(object)
```

Arguments

object

A baseline object

Value

getCall returns the baseline call used to create the object. The other functions return a matrix with the original spectra, estimated baselines or corrected spectra.

Warning

In a future versoion, one of the slots might be removed from the class definition and calculated on the fly instead, in order to save space. Therefore, *do* use the extractor functions (getSpectra, getBaseline and getCorrected) instead of accessing the slots directly.

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

The function baseline, the class baseline

ind.min 31

Examples

```
data(milk)
bl <- baseline(milk$spectra[1:2,])
baseline <- getBaseline(bl)
spectra <- getSpectra(bl)
corrected <- getCorrected(bl)
call <- getCall(bl)</pre>
```

ind.min

Extraction methods specific for "predictionResult" objects

Description

Extract information from objects of class predictionResult.

Usage

```
ind.min(object)
paramName(object)
```

Arguments

object

Object of class predictionResult

Value

The corresponding slot of the object.

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

```
predictionResult
```

name

milk

MALDI-TOF mass spectra

Description

Matrix of 45 spectra of 21451 m/z values from MALDI-TOF on mixed milk samples.

Usage

```
data(milk)
```

Format

A data frame with 45 observations on the following 2 variables.

```
cow a numeric vector spectra a matrix with 21451 columns
```

Details

cow is the concentration of cow milk in mixed samples of cow, goat, and ewe milk.

References

Kristian Hovde Liland, Bjørn-Helge Mevik, Elling-Olav Rukke, Trygve Almøy, Morten Skaugen and Tomas Isaksson (2009) Quantitative whole spectrum analysis with MALDI-TOF MS, Part I: Measurement optimisation. *Chemometrics and Intelligent Laboratory Systems*, **96**(2), 210–218.

Examples

```
data(milk)
## Not run:
plot(milk$spectra[1,], type = "1")
## End(Not run)
```

name

Extraction methods for "baselineAlg" objects

Description

Extraction methods specifically for objects of class baselineAlg

Usage

```
name(object)
description(object)
```

optimWizard 33

Arguments

object Object of class baselineAlg

Value

The methods return the corresponding slot of the object.

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

baselineAlg, funcName.

optimWizard

Visual tool for setting up optimization

Description

Set up optimization through a graphical user interface. Optionally collecting values directly from 'baselineGUI'. Retrieve optimisation parameters and results with getOptim and getOptimRes, respectively.

Usage

```
optimWizard(X, y, postproc, predictionTest, cvsegments)
getOptim()
getOptimRes()
```

Arguments

X Matrix with spectra in rows

y Response vector or matrix in analysis

postproc Custum function for post processing of spectra (optional)

predictionTest Custom prediction object (optional)
cvsegments Cross-validation segments (optional)

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

34 overall.min

Examples

```
## Not run:
# Computationally intensive
data(milk)
X <- milk$spectra[,-1]
y <- milk$spectra[,1]
optimWizard(X,y)

# Retrieve optimisation
myResults <- getOptimRes()

# After optimisation is complete
plotOptim(myResults)

## End(Not run)</pre>
```

overall.min

Extract the minimum from a baseline optimisation

Description

Takes the result of an optimisation (a call to doOptim) and extracts the minimum quality measure value along with the parameters giving rise to the value.

Usage

```
overall.min(results)
```

Arguments

results Result of call to doOptim

Value

A list with components

qualMeas The minimum quality measure value

algorithm The name of the baseline algorithm corresponding to the minimum

param A list with the parameter values corresponding to the minimum quality measure

value

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

doOptim

param 35

param

Extract the "param" slot

Description

Extracts the param slot of the object.

Usage

```
param(object)
```

Arguments

object

An object of class baselineAlg, baselineAlgTest, baselineAlgResult or predictionResult.

Value

The param slot of the object. Usually a data frame, list or numeric.

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

Classes baselineAlg, baselineAlgTest, baselineAlgResult, predictionResult

param.ind.min

Extraction methods for "baselineAlgResult" objects

Description

Extraction methods that are specific for objects of class baselineAlgResult

Usage

```
param.ind.min(object)
qualMeas.ind.min(object)
```

Arguments

object

Object of class baselineAlgResult

Value

The corresponding slot

36 plotBaseline

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

 $Class\ baseline AlgResult$

_		_			
nl	∩t	· R -	000	ιli	ne
$ D_{1}$. U L	.uc	135	: 1	. I I C

Plot method for "baseline" objects

Description

Plot the original spectrum, the estimated baseline, and the corrected spectrum. Optionally zoom and pan plot, either with arguments or interactively.

Usage

```
## S4 method for signature 'baseline'
plot(x, y, specNo = 1, grid = FALSE, labels = 1:n, rev.x = FALSE,
    zoom = NULL, ...)
plotBaseline(x, y, specNo = 1, grid = FALSE, labels = 1:n, rev.x = FALSE,
    zoom = list(xz = 1, yz = 1, xc = 0, yc = 0), ...)
```

Arguments

X	The baseline object to be plotted
У	Unused. Ignored with a warning
specNo	The row number of the spectrum and baseline to plot. Defaults to 1
grid	Logical. Whether to show a grid or not. Defaults to FALSE
labels	Vector. Labels for the x tick marks. Defaults to 1:n
rev.x	Logical. Whether the spectrum should be reversed. Defaults to FALSE
zoom	Either TRUE (only for the plot method), which turns on the interactive zoom controls, or a list with components xz, xc, yz and yc, which specifies the desired zoom and pan. Defaults to no zoom or pan
	Other arguments. Currently ignored

Details

The normal way to plot baseline objects is to use the plot method. The plotBaseline function is the underlying work-horse function, and is not meant for interactive use.

Note

Because the argument list of any plot method must start with x, y, and the plot method for the baseline class does not use the y argument, all arguments except x must be named explicitly. Positional matching will not work.

plotOptim 37

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

See Also

```
baseline, baseline, baselineGUI
```

Examples

```
data(milk)
bl <- baseline(milk$spectra[1,, drop=FALSE])
## Not run:
    # Computationally intensive
    plot(bl)
    plot(bl, zoom = TRUE)
## End(Not run)</pre>
```

plotOptim

Plotting tool for result objects from optimization

Description

A graphical user interface for plotting optimisation results, either one algorithm at the time or comparing algorithms.

Usage

```
plotOptim(results)
```

Arguments

results

Result list from optimization

Details

plotOptim creates a user interface based on the supplied results. Curve and level plots from single algorithms or comparison of algorithms is avilable.

For single algorithms subsets, levels corresponding to local or global minima, and averages can be extracted for plotting. For comparison of algorithms levels corresponding to local or global minima can be used, or levels corresponding to the minimum when averaging over selected values of the regression parameter, e.g. selected components in PLSR.

Author(s)

Kristian Hovde Liland and Bjørn-Helge Mevik

38 PLSRTest-class

PLSRTest-class

Class "PLSRTest"

Description

A class describing a PLSR prediction test. To run the test, the "pls" package must be installed.

Objects from the Class

```
Objects can be created by calls of the form new("PLSRTest", ...).
```

Slots

```
ncomp: Integer vector. The number of PLSR components to test cvsegments: A list of the segments to use in the cross-validation
```

Extends

Class predictionTest, directly.

Methods

```
runTest signature(object = "PLSRTest"): Run the test
```

Author(s)

Bjørn-Helge Mevik and Krisitan Hovde Liland

See Also

The base class predictionTest. The runTest function. The plsr function from the "pls" package.

```
showClass("PLSRTest")
```

predictionResult-class 39

```
predictionResult-class
```

Class "predictionResult"

Description

A class containing the result of running a predictionTest.

Objects from the Class

The normal way to create objects is by calling the method runTest for any object of subclass of predictionTest.

Slots

```
param: Numeric vector. The regression parameter values tested.

qualMeas: Numeric vector. The quality measure values for each of the values of the param slot ind.min: The index (into qualMeas) of the minimum quality measure value minQualMeas: The minimum quality measure value param.min: The value of the parameter value corresponding to the minimum quality measure value qualMeasName: The name of the quality measure paramName: The name of the regression parameter
```

Methods

```
ind.min signature(object = "predictionResult"): Extract the ind.min slot
minQualMeas signature(object = "predictionResult"): Extract the minQualMeas slot
param signature(object = "predictionResult"): Extract the param slot
param.min signature(object = "predictionResult"): Extract the param.min slot
paramName signature(object = "predictionResult"): Extract the paramName slot
qualMeas signature(object = "predictionResult"): Extract the qualMeas slot
qualMeasName signature(object = "predictionResult"): Extract the qualMeasName slot
```

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

Function runTest, class predictionTest, subclasses PLSRTest and ridgeRegressionTest

```
showClass("predictionResult")
```

40 qualMeas

```
predictionTest-class Class "predictionTest"
```

Description

A virtual class for all predictor test subclasses. Currently subclasses PLSRTest and ridgeRegressionTest are defined.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "predictionTest" in the signature.

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

Subclasses PLSRTest and ridgeRegressionTest.

Description

Extract slots from objects of class predictionResult or baselineAlgResult.

Usage

```
qualMeas(object, ...)
## S4 method for signature 'predictionResult'
qualMeas(object, ...)
## S4 method for signature 'baselineAlgResult'
qualMeas(object, ..., MIN, AVG,
    DEFAULT = c("all", "cond.min", "overall.min", "avg"))
minQualMeas(object)
param.min(object)
qualMeasName(object)
```

Arguments

object	An object of class predictionResult or baselineAlgResult
MIN	List or vector of parameter names to take the minimum over. Not used if DEFAULT is "cond.min". See Details
AVG	List or vector of parameter names to take the average over. Not used if DEFAULT is "avg". See Details
DEFAULT	Character string. The default way to calculate the minimum (or average) for all parameters. See Details
• • •	Other arguments. Selection of subsets of parameter levels. See Details

Details

The arguments to the baselineAlgResult method are interpreted in the following way:

Subsets of parameters levels can be selected by supplying their names and specifying the level indices as vectors. Substituting a vector with "all" will return all levels of the corresponding parameter, and substituting it with "overall" will return the level corresponding to the overall minimum. Minimum and average values for selected parameters can be chosen using MIN and AVG, respectively, together with a vector of parameter names.

DEFAULT specifies the action for each remaining parameters: If "all" (default): returns all levels. If "cond.min": take minimum for each remaining parameter (MIN is not used). If "overall.min": set any remaining parameters to their value corresponding to the overall min. If "avg": take average for each remaining parameter (AVG is not used).

Value

The qualMeas method for baselineAlgResult objects returns the subsets or minimum values of the qualMeas slot of the object as specified above. All other methods simply return the corresponding slot.

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

Function runTest, classes baselineAlgResult and predictionResult

 $\verb|ridgeRegressionTest-class|\\$

Class "ridgeRegressionTest"

Description

A class describing a ridge regression test.

42 runTest

Objects from the Class

```
Objects can be created by calls of the form new("ridgeRegressionTest", ...).
```

Slots

lambda: Numeric vector. The smoothing parameter values to test

Extends

```
Class predictionTest, directly.
```

Methods

```
runTest signature(object = "ridgeRegressionTest"): Run the test
```

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

The base class predictionTest. The runTest function.

Examples

```
showClass("ridgeRegressionTest")
```

runTest

Run a predictionTest or baselineAlgTest

Description

Runs the test defined in a predictionTest or baselineAlgTest object

Usage

```
runTest(object, X, y, ...)
## S4 method for signature 'PLSRTest'
runTest(object, X, y)
## S4 method for signature 'ridgeRegressionTest'
runTest(object, X, y)
## S4 method for signature 'baselineAlgTest'
runTest(object, X, y, predictionTest, postproc, verbose = FALSE)
```

XPSdata 43

Arguments

object	An object of class baselineAlgTest or subclass of predictionTest (currently PLSRTest or ridgeRegressionTest). The object specify the test to be run
Χ	A matrix. The spectra to use in the test
у	A vector or matrix. The response(s) to use in the test
predictionTest	A $\operatorname{predictionTest}$ object, describing the prediction test to use for this baseline algorithm test
postproc	A function, used to postprocess the baseline corrected spectra prior to prediction testing. The function should take a matrix of spectra as its only argument, and return a matrix of postprocessed spectra
verbose	Logical, specifying whether the test should print out progress information. Default is ${\sf FALSE}$
	Other arguments. Currently only used by the baselineAlgTest method.

Value

runTest returns an object of class predictionResult or baselineAlgResult.

Methods

Author(s)

Bjørn-Helge Mevik and Kristian Hovde Liland

See Also

baselineAlgTest, predictionTest, PLSRTest, ridgeRegressionTest

XPSdata	XPS core line data	

Description

Matrix of x,y values from X-Ray Photoelectron Spectroscopy on test sample. The data are about the Carbon and Oxygen element for 1s shell.

XPSdata XPSdata

Usage

```
data(C1s)
data(O1s)
```

Format

See Also

baseline.shirley

```
data(C1s)
data(O1s)
plot(C1s[1,], C1s[2,], type = "1")
plot(O1s[1,], O1s[2,], type = "1")
```

Index

* baseline	ridgeRegressionTest-class,41
algorithm, 4	* datasets
baseline, 5	milk, 32
baseline-package, 3	XPSdata, 43
baseline.als, 7	* environment
baseline.fillPeaks,8	baselineEnv, 25
baseline.irls,9	* methods
baseline.lowpass, 10	ind.min, 31
baseline.medianWindow, 11	param, 35
baseline.modpolyfit, 12	qualMeas, 40
baseline.peakDetection, 13	runTest, 42
baseline.rfbaseline, 14	* plot
baseline.rollingBall, 16	plotBaseline, 36
baseline.TAP, 19	* spectra
baselineAlgorithms, 22	algorithm, 4
baselineAlgorithmsGUI, 23	baseline, 5
baselineEnv, 25	baseline-package, 3
baselineGUI, 26	baseline.als, 7
custom.baseline, 27	baseline.fillPeaks,8
doOptim, 28	baseline.irls,9
funcName, 29	baseline.lowpass, 10
getBaseline, 30	baseline.medianWindow, 11
name, 32	baseline.modpolyfit, 12
optimWizard, 33	baseline.peakDetection, 13
overall.min, 34	baseline.rfbaseline, 14
param, 35	baseline.rollingBall, 16
param.ind.min,35	baseline.TAP, 19
plotBaseline, 36	baselineGUI, 26
plotOptim, 37	custom.baseline, 27
qualMeas, 40	doOptim, 28
runTest, 42	funcName, 29
* classes	getBaseline, 30
baseline-class, 6	name, 32
baselineAlg-class, 21	optimWizard, 33
baselineAlgResult-class, 23	overall.min, 34
baselineAlgTest-class, 24	param, 35
PLSRTest-class, 38	param.ind.min,35
predictionResult-class, 39	plotOptim, 37
predictionTest-class, 40	qualMeas, 40

46 INDEX

runTest,42	<pre>funcName,baselineAlg-method(funcName),</pre>
algorithm, 4	<pre>funcName,baselineAlgTest-method</pre>
algorithm,baselineAlgTest-method	(funcName), 29
(algorithm), 4	funcName-methods (funcName), 29
algorithm-methods (algorithm), 4	
als (baseline.als), 7	getBaseline, $7,30$
	getBaseline,baseline-method
baseline, 5, 5, 6, 7, 19, 30, 37	(baseline-class), 6
baseline-class, 6	getBaselineEnv (baselineEnv), 25
baseline-package, 3	getCall, 7
baseline.als, <i>5</i> , <i>7</i> , <i>26</i>	getCall (getBaseline), 30
baseline.fillPeaks, 5, 8, 26	<pre>getCall,baseline-method</pre>
baseline.irls, <i>5</i> , 9, <i>26</i>	(baseline-class), 6
baseline.lowpass, 5 , 10 , 26	getCorrected, 7
baseline.medianWindow, 5, 11, 26	<pre>getCorrected (getBaseline), 30</pre>
baseline.modpolyfit, 5, 12, 26	<pre>getCorrected,baseline-method</pre>
baseline.peakDetection, 5, 13, 26	(baseline-class), 6
baseline.rfbaseline, 5, 14, 26	<pre>getOptim(optimWizard), 33</pre>
baseline.rollingBall, 5, 16, 26	<pre>getOptimRes (optimWizard), 33</pre>
baseline.shirley, 5, 17, 44	getSpectra, 7
baseline.TAP, 5, 19	<pre>getSpectra (getBaseline), 30</pre>
baselineAlg, 22, 25, 29, 30, 32, 33, 35	getSpectra,baseline-method
baselineAlg-class, 21	(baseline-class), 6
baselineAlgorithms, 22	
baselineAlgorithmsGUI, 23	ind.min, 31
baselineAlgResult, 25, 35, 36, 40, 41, 43	ind.min,predictionResult-method
baselineAlgResult-class, 23	(ind.min), 31
baselineAlgTest, 4, 23, 24, 28-30, 35, 42, 43	ind.min-methods (ind.min), 31
baselineAlgTest-class, 24	irls (baseline.irls), 9
baselineEnv, 25	lowpass (baseline.lowpass), 10
baselineGUI, 26, 37	Towpass (baseline:Towpass), To
	<pre>medianWindow(baseline.medianWindow), 11</pre>
C1s (XPSdata), 43	milk, 32
custom.baseline, 27	minQualMeas (qualMeas), 40
	minQualMeas,baselineAlgResult-method
description (name), 32	(qualMeas), 40
description, baselineAlg-method (name),	minQualMeas,predictionResult-method
32	(qualMeas), 40
description-methods (name), 32	minQualMeas-methods (qualMeas), 40
doOptim, 28, 34	modpolyfit (baseline.modpolyfit), 12
	mvrValstats (doOptim), 28
extraArgs (algorithm), 4	, , , , , , , , , , , , , , , , , , , ,
extraArgs,baselineAlgTest-method	name, 32
(algorithm), 4	name, baselineAlg-method(name), 32
extraArgs-methods (algorithm), 4	name-methods (name), 32
fillPeaks (baseline.fillPeaks), 8	01s (XPSdata), 43
funcName, 29, 33	optimWizard, 33

INDEX 47

overall.min, 34	<pre>qualMeas.ind.min-methods</pre>
param, 35 param,baselineAlg-method (param), 35 param,baselineAlgResult-method (param), 35 param,baselineAlgTest-method (param), 35 param,predictionResult-method (param),	qualMeasName (qualMeas), 40 qualMeasName, baselineAlgResult-method (qualMeas), 40 qualMeasName, predictionResult-method (qualMeas), 40 qualMeasName-methods (qualMeas), 40
param-methods (param), 35 param.ind.min, 35 param.ind.min, baselineAlgResult-method	rfbaseline (baseline.rfbaseline), 14 ridgeRegressionTest, 39, 40, 43 ridgeRegressionTest-class, 41 rollingBall (baseline.rollingBall), 16 runTest, 38, 39, 41, 42, 42 runTest, baselineAlgTest-method
param.min-methods (qualMeas), 40 paramName (ind.min), 31 paramName, predictionResult-method	shirley (baseline.shirley), 17
(ind.min), 31 paramName-methods (ind.min), 31 peakDetection (baseline.peakDetection), 13	TAP (baseline.TAP), 19 XPSdata, 43
plot,baseline-method (plotBaseline), 36 plotBaseline, 36 plotOptim, 37 plsr, 38 PLSRTest, 39, 40, 43 PLSRTest-class, 38 predictionResult, 31, 35, 40, 41, 43 predictionResult-class, 39 predictionTest, 28, 29, 38, 39, 42, 43 predictionTest-class, 40 putBaselineEnv (baselineEnv), 25	
qualMeas, 40 qualMeas, baselineAlgResult-method	