Digitaltechnik Wintersemester 2017/2018 14. Vorlesung

Inhalt

- 1. Einleitung
- 2. Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung

Agenda

- 1. Einleitung
- 2. Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung

Organisatorisches

- ► Ende von Übungen und Testaten in KW 5
- ► Testatsergebnisse (485 Anmeldungen für Studienleistung):

bestandene Testate	1	2	3	4
Anzahl Studierende	105	333	9	1

- ▶ 104 Teilnehmer haben noch Chance auf Klausurzulassung
- davon aber nur 31 für Testat in KW 5 angemeldet
- ⇒ letzte Chance bis 02.02.18 nutzen

Rückblick auf die letzte Vorlesung

- Weitere arithmetische Grundschaltungen
 - Schnelle Additionen
 - kombinatorische und sequentielle Multiplikation
- Ausblick Rechnerorganisation
 - Von-Neumann- und Harvard-Architektur
 - Speicher
 - Arithmetisch-Logische Einheit
 - Steuerwerk

Harris 2013 Kap. 5.2 + 7.3

Wiederholung: Schnelle Übertragsketten Generate und Propagate

Wiederholung: "kleiner als" Vergleich

- ▶ $1010_2 < 0011_2 = 0$ für $u_{2,4}$ bzw. 1 für s_2 Interpretation
- ⇒ unterschiedliche Hardware (Vorzeichenexpansion) für Differenz-Bildung bei signed und unsigned nötig
- ▶ für signed:

-	0	0	1	1
	1	0	1	0

Wiederholung: Rechnerarchitektur Von-Neumann

Wiederholung: Rechnerarchitektur Harvard

Wiederholung: Rechnerarchitektur Harvard Details (Ü13.2)

Wiederholung: Instruktionssatz für Modellprozessor (Ü13.2)

Befehl	kodierte Instruktion	Registeränderung	nächster PC
ADD(r,a,b)	{4'b0000,7'bx,r,a,b}	R[r] = R[x] + R[b]	pc+1
SUB(r,a,b)	{4'b0001,7'bx,r,a,b}	R[r] = R[a] - R[b]	pc+1
AND(r,a,b)	{4'b0010,7'bx,r,a,b}	R[r] = R[a] & R[b]	pc+1
OR(r,a,b)	{4'b0011,7'bx,r,a,b}	$R[r] = R[a] \mid R[b]$	pc+1
<pre>XOR(r,a,b)</pre>	{4'b0100,7'bx,r,a,b}	$R[r] = R[a] ^ R[b]$	pc+1
SHL(r,a,b)	{4'b0101,7'bx,r,a,b}	R[r] = R[a] << R[b]	pc+1
SHR(r,a,b)	{4'b0110,7'bx,r,a,b}	R[r] = R[a] >> R[b]	pc+1
ASHL(r,a,b)	{4'b0111,7'bx,r,a,b}	R[r] = R[a] <<< R[b]	pc+1
ASHR(r,a,b)	{4'b1000,7'bx,r,a,b}	R[r] = R[a] >>> R[b]	pc+1
ARED(r,a,b)	{4'b1001,7'bx,r,a,b}	R[r] = & R[a]	pc+1
ORED(r,a,b)	{4'b1010,7'bx,r,a,b}	R[r] = R[a]	pc+1
MOV(r,a)	{4'b1011,7'bx,r,a,0}	R[r] = R[a]	pc+1
LDI(immediate)	{4'b1100,immediate}	R[0] = immediate	pc+1
<pre>JMP(immediate)</pre>	{4'b1101,immediate}		pc+ immediate
<pre>JN(immediate)</pre>	{4'b1110,immediate}		pc+(n ? immediate : 1)
JZ(immediate)	{4'b1111,immediate}		pc+(z ? immediate : 1)

Ergänzung: Assembler-Programm Beispiel für Minimum von drei Zahlen


```
/*PC*/
2 /* 0*/ LDI(10); // R[0] = 10,
                                            N=0, PC=1
3 /* 1*/ MOV(1,0); // R[1] = R[0] = 10,
                                           N=0, PC=2
4 /* 2*/ LDI(15); // R[0] = 15,
                                           N=0, PC=3
5 /* 3*/ MOV(2,0); // R[2] = R[0] = 15, N=0, PC=4
6 /* 4*/ LDI(-8); // R[0] = -8,
                                      N=1, PC=5
  /* 5*/ MOV(3,0); // R[3] = R[0] = -8, N=1, PC=6
7
  /* 6*/ MOV(4,1); // R[4] = R[1] = 10, N=0, PC=7
10
  /* 7*/ SUB(0,4,2); // R[0] = R[4] - R[2] = -5, N=1, PC=8
11
  /* 8*/ JN(2); //
                                      N = 0, PC = 10
  /* 9*/ MOV(4,2); //{R[4]} = R[2] = 15 N=0, PC=10}
13
14
  /*10*/ SUB(0,4,3); // R[0] = R[4] - R[3] = 18, N=0, PC=11
15
  /*11*/ JN(2): //
                                        N=0. PC=13
16
  /*12*/ MOV (4,3); // R[4] = R[3] = -8 N=0, PC=13
17
18
  /*13*/ JMP(0): // Endlosschleife
```

Ergänzung: Assembler-Programm Simulation der Abarbeitung

Wiederholung: Rechnerarchitektur Harvard Details (Ü13.2)

Überblick der heutigen Vorlesung

- Lehrevaluation der FB 20 Fachschaft
- Field Programmable Gate Arrays
- Abschluss Digitaltechnik

Anwendungs-	
software	

Retriebs-Gerätetreiber systeme

Architektur

Register Mikro-

architektur

Logik

Digitalschaltungen

Analogschaltungen

Rauteile

Physik

Befehle

Programme

Datenpfade Steuerung

Addierer Speicher

UND Gatter Inverter

Verstärker Filter

Transistoren Dioden

Elektronen

Agenda

- 1. Einleitung
- 2. Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung

Lehrevaluation

http://d120.de/feedback-new

- Ziel / Nutzen
 - mittel-/langfristige Verbesserung der Lehre
 - Diskussionsgrundlage f
 ür Kontrollgremien des FB 20
 - wird zum Teil der Bewerbungsunterlagen des Dozenten
 - Bewertungsgrundlage für Vergabe von "Preis für gute Lehre" des FB 20
 - ⇒ kommt Studierenden und Lehrenden zugute
- Ablauf
 - anonymisierte Fragebögen
 - ein oder zwei Freiwillige für Einsammeln und Abgabe bei Fachschaft (D120)
 - jetzt ausfüllen (später/online nicht möglich)

Abschnitt 5: Freie Fragen

- Haben Sie bereits Erfahrungen mit moderneren didaktischen Konzepten (bspw. Flipped Classroom, Peer Instructions/Feedback, oder E-Teaching) gesammelt?
- Wären Sie bereit, für den Einsatz modernerer didaktischer Konzepte den Anteil des Selbststudiums zu erhöhen?

Agenda

- 1. Einleitung
- 2 Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung

Performanz vs. Flexibilität

- Anwendungsspezifische integrierte Schaltungen (ASICs)
 - ▶ führen für eine Anwendung optimierte (parallele) Datenpfade aus
 - Basisgatterschaltungen (bspw. als CMOS) durch optische/chemische Prozesse auf Silikon-Wafer realisiert
 - ⇒ zur Laufzeit nicht an neue Anwendung anpassbar
- Software-Prozessoren
 - führen generische Instruktionen sequentiell aus
 - nur generische (Mikro-)Architektur in Hardware realisiert
 - zur Laufzeit durch Austauschen der Instruktionssequenz an neue Anwendung anpassbar
- ⇒ Field Programmable Gate Arrays (FPGAs) vereinen
 - Flexibilität von Software-Prozessoren ("im Feld programmierbar")
 - mit Performanz von ASICs (optimierte "Basisgatter-Schaltungen")

FPGA Konfigurationsspeicher

- ► FPGAs verwenden feingranulare (bitweise) Konfigurationsspeicher statt wortweise Instruktionsspeicher
- kann mit verschiedenen Speicher-Technologien realisiert werden:
 - volatil (bspw. SRAM): schnell beschreibbar, benötigt aber permanente Spannungsversorgung (statische Leistungsaufnahme)

 nicht-volatil (bspw. Flash): aufwendiger Schreibzugriff, aber Zustand bleibt auch ohne Spannungsversorgung erhalten

Programmierbare Schalter

Programmierbare Leitungskreuzungen Switch Matrix

Programmierbare Logikfelder Programmable Logic Array (PLA)

- realisiert kombinatorische Logik
- zweistufige Logik mit programmierbaren Schaltern in Ein- und Ausgabestufe
- Varianten:
 - Programmable ROM: nur Ausgabefeld programmierbar
 - Programmable Array Logic: nur Eingabefeld programmierbar

Programmierbare Tabellen Lookup Table (LUT)

- realisiert kombinatorische Logik
- 2 bis 6 Eingänge
- häufig auch aufteilbar in kleinere LUTs bspw. zwei LUT mit n – 1 gemeinsam genutzten Eingängen

Programmierbare Logikzelle Logic Cell (LC)

- kann als kombinatorische Logik und/oder Speicher verwendet werden
- häufig auch spezielle Carry In/Out für schnelle Arithmetik

Programmierbare Ein-/Ausgänge Input-/Output Blocks (IOB)

- Ausgabetreiber kann permanent oder zur Laufzeit steuerbar (OEN) deaktiviert werden
- P wird mit physikalischen Pad verbunden
- häufig auch konfigurierbar:
 - Spannungs-Level
 - maximale Stromstärke
 - ► Flanken-Steilheit

Fiel Programmable Gate Array (FPGA)

Funktionsblöcke (FB)

- häufig verwendete Logikbausteine als begrenzte Ressourcen verfügbar
 - Block RAM (BRAM): kleine SRAM Speicher (wenige Kilobit)
 - Digitale Signalverarbeitung (DSP): Multiplizierer, MAC
 - Phase-Locked Loop (PLL): Taktmodifikation
 - Kommunikations-Treiber (USART, USB, Ethernet)
 - kleine Prozessoren
 - · ...

Marktrelevante FPGA Hersteller

- Xilinx
 - Zynq, Virtex, Kintex
 - 7-series, UltraScale+
- Intel (hat Altera aufgekauft)
 - Cyclone, Aria, Stratix
- Microsemi
 - IGLOO, SmartFusion, PolarFire, ProAsic
- Lattice
 - ▶ iCE, Mach

Xilinx Virtex UltraScale Familie

		Device Name	XCVU065	XCVU080	XCVU095	XCVU125	XCVU160	XCVU190	XCVU440
Logic Resources		System Logic Cells (K)	783	975	1,176	1,567	2,027	2,350	5,541
		CLB Flip-Flops	716,160	891,424	1,075,200	1,432,320	1,852,800	2,148,480	5,065,920
		CLB LUTs	358,080	445,712	537,600	716,160	926,400	1,074,240	2,532,960
Memory Resources	Maximum	Distributed RAM (Kb)	4,830	3,980	4,800	9,660	12,690	14,490	28,710
	Block RAM/FIFO w/ECC (36Kb each)		1,260	1,421	1,728	2,520	3,276	3,780	2,520
vieiliory Resources	Block RAM/FIFO (18Kb each)		2,520	2,842	3,456	5,040	6,552	7,560	5,040
		Total Block RAM (Mb)	44.3	50.0	60.8	88.6	115.2	132.9	88.6
	C	MT (1 MMCM, 2 PLLs)	10	16	16	20	28	30	30
Clock Resources		I/O DLL	40	64	64	80	120	120	120
	Tran	sceiver Fractional PLL	5	8	8	10	13	15	0
I/O Resources		Single-Ended HP I/Os	468	780	780	780	650	650	1,404
	Maximum Di	fferential HP I/O Pairs	216	360	360	360	300	300	648
i/O nesources	Maximum	Single-Ended HR I/Os	52	52	52	52	52	52	52
	Maximum Differential HR I/O Pairs		24	24	24	24	24	24	24
Integrated IP		DSP Slices	600	672	768	1,200	1,560	1,800	2,880
		System Monitor	1	1	1	2	3	3	3
		PCIe® Gen1/2/3	2	4	4	4	4	6	6
Resources	SOUTTES	Interlaken	3	6	6	6	8	9	0
	100G Ethernet	3	4	4	6	9	9	3	
	GTH 16.3Gb/s Transceivers	20	32	32	40	52	60	48	
GTY 30.5Gb/s Transceivers		20	32	32	40	52	60	0	
Speed Grades		Commercial	-	-	-	-	-	-	-1
		Extended	-1H -2 -3	-1H -2 -3	-1H -2 -3	-1H -2 -3	-1H -2 -3	-1H -2 -3	-2 -3
_		Industrial	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2
	Package Footprint(1, 2, 3)	Package Dimensions (mm)	HR I/O, HP I/O, GTH 16.3Gb/s, GTY 30.5Gb/s						
	C1517	40x40	52, 468, 20, 20	52, 468, 20, 20	52, 468, 20, 20				
Footprint	D1517	40x40		52, 286, 32, 32	52, 286, 32, 32	52, 286, 40, 32			
Compatible with Kintex® UltraScale	B1760	42.5x42.5		52, 650, 32, 16	52, 650, 32, 16	52, 650, 36, 16			
Devices	A2104	47.5x47.5		52, 780, 28, 24	52, 780, 28, 24	52, 780, 28, 24			
	B2104	47.5x47.5		52, 650, 32, 32	52, 650, 32, 32	52, 650, 40, 36	52, 650, 40, 36	52, 650, 40, 36	
	C2104	47.5x47.5			52, 364, 32, 32	52, 364, 40, 40	52, 364, 52, 52	52, 364, 52, 52	
	B2377	50x50							52, 1248, 36

FPGA Toolflow

Agenda

- 1. Einleitung
- 2. Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung

Aus TUCaN / Modulhandbuch: Lehrinhalte

- Digitaltechnik: digitale Abstraktion und ihre technische Umsetzung,
 Zahlensysteme, Logikgatter, MOSFET Transistoren und CMOS Gatter,
 Leistungsaufnahme
- Kombinatorische Schaltungen: Boole'sche Gleichungen und Algebra,
 Abbildung auf Gatter, mehrstufige Schaltungen, vierwertige Logik (0,1,X,Z),
 Minimierung von Ausdrücken, kombinatorische Grundelemente, Zeitverhalten
- Sequentielle Schaltungen: Latches, Flip-Flops, Entwurf synchroner Schaltungen, endliche Automaten, Zeitverhalten, Parallelität
- Hardware-Beschreibungssprachen: Modellierung kombinatorischer und sequentieller Schaltungen, Strukturbeschreibungen, Modellierung endlicher Automaten, Datentypen, parametrisierte Module, Testrahmen
- Grundelemente digitaler Schaltungen: arithmetische Schaltungen,
 Fest-/Gleitkommadarstellung, sequentielle Grundelemente, Speicherfelder,
 Logikfelder

Aus TUCaN / Modulhandbuch: Qualifikationsziele und Lernergebnisse

- Studierende verstehen nach erfolgreichem Besuch der Veranstaltung die Konzepte und Grundelemente der digitalen Logik sowie ihre technologische Realisierung.
- Sie können diese Kenntnisse selbständig anwenden, um zielgerichtet kombinatorische und sequentielle Schaltungen zu konstruieren und in einer Hardware-Beschreibungssprache zu implementieren.
- Sie k\u00f6nnen digitale Schaltungen bez\u00fcglich funktionaler und nicht-funktionaler Eigenschaften analysieren.

vgl. didaktische Kompetenzhierarchie:
 verstehen → anwenden → analysieren/bewerten → erzeugen

Wie geht es weiter? Vertiefung hardware-naher Themen in

- Rechnerorganisation
 - ⇒ Prozessorarchitekturen, Befehlssätze, Assemblerprogramme, Mikroarchitekturen, Speicherhierarchie, virtuelle Speicher, Leistungsbewertung
- Architekturen und Entwurf von Rechnersystemen
 - ⇒ Technologische Trends der Mikroelektronik, Hardware-Entwurfstechniken (mit Bluespec-Verilog), Architekturen für parallele Ausführung, Heterogene Systems-on-Chip, On-Chip und Off-Chip Kommunikationsstrukturen
- (Fortgeschrittener) Compilerbau
 - ⇒ Hochsprachen-Programme (bspw C, Java) nach Assembler übersetzen, ISA-spezfische Optimierungen (bspw. Registerallokation, Schleifenoptimierung)
- Embedded-Systems Hands-On
 - Praxis-naher Einsatz von Mikroprozessoren / FPGAs in kleinen Projekten

Agenda

- 1. Einleitung
- 2. Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung

Zusammenfassung und Ausblick

- Lehrevaluation der FB 20 Fachschaft
- Field Programmable Gate Arrays
- Abschluss Digitaltechnik

▶ Nächste Vorlesung: Klausurvorbereitung