Задание 9

Коновалов Андрей, 074

1	2	3	4	5	6	7	8	Σ

Задача 1

Пусть есть $KH\Phi$, у которой в каждом дизъюнкте содержится не более трех литералов. Для начала уберем повторяющиеся литералы, это делается за полиномиальное время. Теперь $KH\Phi$ состоит из дизъюнктов, которые содержат 1, 2 или 3 различных литералов.

Введя новые переменные заменим дизъюнкты, состоящие из 1 литерала следующим образом:

$$(p) \quad \Rightarrow \quad (p \vee q \vee r) \wedge (p \vee q \vee \neg r) \wedge (p \vee \neg q \vee r) \wedge (p \vee \neg q \vee \neg r)$$

а дизъюнкты, состоящие из 2:

$$(p \lor q) \Rightarrow (p \lor q \lor r) \land (p \lor q \lor \neg r)$$

Это делается за полиномиальное время. Получившаяся КНФ будет иметь ровно 3 различных литерала в каждом дизъюнкте.

Задача 2

- (*i*) Протыкающее множество: $\{x_1, x_2\}$.
- (ii) Покольку χ имеет дизъюнкт ($\neg x_3$), то протыкающее множесто должно содержать $\neg x_3$. Протыкающее множество должно содержать хотя бы по одному элементу из $\{x_1, \neg x_1\}, \{x_2, \neg x_2\}$. Протыкающее множество мощности 3 может содержать лишь по одному элементу из каждой пары, но при любой такой комбинации переменных оно не будет пересекать один из первых четырех дизъюнктов χ . Следовательно протыкающее множество должно иметь мощность больше 3.
 - (iii) Дополним ϕ как в задаче 1:

$$\phi = (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$$

Теперь построим граф G_{ϕ} , имеющий $2n + 3m = 2 \cdot 3 + 3 \cdot 2 = 12$.

Вершинное покрытие мощности $k=n+2m=3+2\cdot 2=7$ отмечено на рисунке большими кружками.

Задача 3

(i) Нет, поскольку любые два элемента M имеют хотя бы одну общую координату.