

2 Watt Audio Power Amplifier with Selectable Shutdown Logic Level

General Description

The LN4990 is an audio power amplifier primarily designed for demanding applications in mobile phones and other portable communication device applications. It is capable of delivering 1.25 watts of continuous average power to an 8Ω BTL load and 2 watts of continuous average power (LD and MH only) to a 4Ω BTL load with less than 1% distortion (THD+N) from a 5VDC power supply. Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. The LN4990 does not require output coupling capacitors or bootstrap capacitors, and therefore is ideally suited for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.

The LN4990 features a low-power consumption shutdown mode. To facilitate this, Shutdown may be enabled by either logic high or low depending on mode selection. Driving the shutdown mode pin either high or low enables the shutdown pin to be driven in a likewise manner to enable shutdown.

The LN4990 contains advanced pop & click circuitry which eliminates noise which would otherwise occur during turn-on and turn-off transitions. The LN4990 is unity-gain stable and can be configured by external gain-setting resistors.

Key Specifications

- PSRR@fIN=217H, VDD=5V 62dB(TYP)
- Power Output@VDD=5V&1%THD 4Ω
 2W(TYP)
- Power Output@VDD=5V&1%THD 8 Ω 1.25W(TYP)
- Power Output@VDD=3V&1%THD 4Ω 600mW(TYP)
- Power Output@VDD=3V&1%THD 8Ω 425W(TYP)
- Shutdown Current 0.1µA(TYP)

■ Features

- Available in space-saving packages: WSCP、MSOP
- Ultra low current shutdown mode
- Improved pop & click circuitry eliminates noise during
- Turn-on and turn-off transitions
- 2.2 5.5V operation
- No output coupling capacitors, snubber networks or bootstrap capacitors required
- Unity-gain stable
- External gain configuration capability
- User selectable shutdown high or low logic Level

Applications

- Mobile Phones
- PDAs
- Portable electronic devices

■ Package

- WCSP
- MSOP-8

Ordering Information

Ordering Number	Package	Mark
LN4990ITL	WCSP	XYD2
LN4990MM	MSOP-8	XXXX

■ Operating Ratings

Temperature Range

Rev.1.0 —Dec.13, 2012 1 www.natlinear.com

■ Pin Configuration

(Top-View)
Ordering Number: LN4990ITL

Ordering Number: LN4990MM

XY-----Product Lot Number D2-----LN4990ITL

XXXX----- Product Lot Number

■ Function Block Diagram

■ Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	VDD	-0.3—6.0	V
Input Voltage	VIN	-0.3—VDD+0.3	V
Operation Temperature	Topr	-40—85	$^{\circ}$
Storage Temperature	Tstg	-65—150	$^{\circ}$
ESD Susceptibility	-	4000	V

■ Electrical Characteristics

(VDD = 5V, Unless otherwise specified. Limits apply for TA = 25°C.)

Symbol	Parameters	Test Conditions	Min.	Тур.	Max.	Unit	
	Quiescent Power	VIN = 0V, Io = 0A, No Load		3	7	mA	
I _{DD}	Supply Current	VIN = 0V, Io = 0A, 8Ω Load	_	4	10	mA	
I _{SD}	Shutdown Current	$V\overline{\text{shutdown}} = 0V$	_	0.1	2	μA	
V _{SDIH}	Shutdown Voltage Input High	V _{SD MODE} =VDD	_	1.5	_	V	
V _{SDIL}	Shutdown Voltage Input Low	V _{SD MODE} =VDD	_	1.3	_	V	
V _{SDIH}	Shutdown Voltage Input High	V _{SD MODE} =GND	_	1.5	_	V	
V _{SDIL}	Shutdown Voltage Input Low	V _{SD MODE} =GND	_	1.3	_	V	
Vos	Output Ofsett Voltage		_	7	50	mV	
R _{OUT-GND}	Resistor Output to GND		7.0	8.5	9.7	kΩ	
_	Output Power -8Ω	THD = 1% (max); f = 1 kHz	0.9	1.25	_	W	
Po	Output Power -4Ω	THD = 1% (max); f = 1 kHz	_	2	_	W	
Twu	Wake-up time		_	170	220	ms	
T _{SD}	Thermal Shut Down temperature		150	170	190	°C	
THD+N	Total Harmonic Distortion+Noise	Po = 0.5 Wrms; f = 1kHz	_	0.2	_	%	
Denn	Power Supply	$V_{ripple} = 200 \text{mV}_{sine p-p}$ f=217Hz	f=217Hz		60	_	dB
PSRR	Rejection Ratio	$V_{ripple} = 200 \text{mV}_{sine p-p}$ f=1kHz	55	66			
T _{SDT}	Shut Down Time	8Ω Load	_	1.0	_	ms	

(VDD = 3V , Unless otherwise specified. Limits apply for TA = 25°C.)

Symbol	Parameters	Test Conditions	Min.	Тур.	Max.	Unit
	Quiescent Power	VIN = 0V, Io = 0A, No Load	_	2	7	mA
I_{DD}	Supply Current	VIN = 0V, Io = 0A, 8Ω Load	_	3	9	mA
I _{SD}	Shutdown Current	$V\overline{\text{shutdown}} = 0V$	_	0.1	2	μA
V_{SDIH}	Shutdown Voltage Input High	V _{SD MODE} =VDD	_	1.1	_	V
V _{SDIL}	Shutdown Voltage Input Low	V _{SD MODE} =VDD	_	0.9	_	V
V_{SDIH}	Shutdown Voltage Input High	V _{SD MODE} =GND	_	1.3	_	V
V _{SDIL}	Shutdown Voltage Input Low	V _{SD MODE} =GND	_	1.0	_	V
Vos	Output Ofsett Voltage		_	7	50	mV
R _{OUT-GND}	Resistor Output to GND		7.0	8.5	9.7	kΩ
	Output Power -8Ω	THD = 1% (max); f = 1 kHz	_	425	_	mW
Po	Output Power -4Ω	THD = 1% (max); f = 1 kHz	_	600	_	mW
T _{WU}	Wake-up time		_	100	150	ms
T _{SD}	Thermal Shut Down temperature		150	170	190	$^{\circ}$
THD+N	Total Harmonic Distortion+Noise	Po = 0.25 Wrms; f = 1kHz	_	0.1	_	%
DCDD	Power Supply Rejection	$V_{ripple} = 200 \text{mV}_{sine p-p}$ f=217Hz	45	62		dB
PSRR	Ratio	V _{ripple} = 200mV _{sine p-p} f=1kHz	45	68		ив

(VDD = 2.6V, Unless otherwise specified. Limits apply for TA = 25°C.)

Symbol	Parameters	Test Con	Min.	Тур.	Max.	Unit	
I _{DD}	Quiescent Power Supply Current	VIN = 0V, Io = 0A, No Load		_	2.0	_	mA
I _{DD}	Quiescent Power Supply Current	VIN = 0V, Io = 0A, 8Ω Load		_	3.0	_	mA
I _{SD}	Shutdown Current	Vshutdow	$V_{\overline{\text{SHUTDOWN}}} = 0V$		0.1	2	μA
D-	Output Power	THD = 1% (max);	8Ω Load		0.3		W
Po	Output Power	f = 1 kHz	4Ω Load		0.4		VV
THD+N	Total Harmonic Distortion+Noise	Po = 0.15 Wrms; f = 1kHz		_	0.1	_	%
PSRR	Power Supply	$V_{ripple} = 200 \text{mV}_{sine p-p}$ f=217Hz			51		dB
Rejection Ratio		$V_{ripple} = 200 \text{mV}_{sine p-p}$ f=1kHz		_	55	_	UD

■ Typical Performance Characteristics

Power Supply Rejection Ratio (PSRR) @ A_V = 2

 $V_{DD} = 5V$, $V_{ripple} = 200 mvp-p$

 $R_L = 8\Omega, R_{IN} = 10\Omega$

PSRR vs DC Output Voltage $V_{DD} = 5V$, $A_V = 2$

PSRR vs DC Output Voltage $V_{DD} = 3V$, $A_V = 2$

Power Derating Curves (P_{DMAX} = 670mW)

Power Derating - 8 bump μ SMD ($P_{DMAX} = 670$ mW)

■ Package Information

• MSOP-8

Ch I	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0. 820	1. 100	0. 032	0. 043	
A1	0. 020	0. 150	0. 001	0. 006	
A2	0. 750	0. 950	0.030	0. 037	
b	0. 250	0.380	0.010	0. 015	
С	0. 090	0. 230	0.004	0.009	
D	2. 900	3. 100	0.114	0. 122	
е	0.650(BSC)		0.026(BSC)		
Е	2. 900	3. 100	0.114	0. 122	
E1	4. 750	5. 050	0. 187	0. 199	
L	0. 400	0.800	0.016	0. 031	
θ	0°	6°	0°	6°	

WCSP

