## $\mathrm{C}(++)/\mathrm{PYTHON}$ Library for Water-Steam Properties using the IAPWS IF97 Standard

Ling Zou, PhD

May 27, 2019

## Abstract

I would like to build a C(++)/Python library for water and steam table following the industrial formulation 1997 (IF97) standard provided by International Association for the Properties of Water and Steam (IAPWS).

Well, why am I doing this? Simply it is fun! I have seen many other such libraries built in C++, Java, and other languages. I like to write application codes with C++. However, with respect to building a library, I like pure C. It will be easier to embed such a library into applications written in other languages. Of course this project is not just for fun. I had and still having a lot of passion in two-phase flow modeling and simulation. This library will serve me well when I explore the two-phase flow world. It will always be my pleasure if you find this library useful.

## 1 List of Functions

Table 1: Region 1 functions list in IF97.h/C

| Function Name          | Function Description                              | Reference        |
|------------------------|---------------------------------------------------|------------------|
| R1_gamma               | Region 1, dimensionless specific Gibbs free en-   | Eqn. (7) of [1]  |
|                        | ergy, $\gamma$                                    |                  |
| R1_gamma_pi            | Region 1, partial derivative, $\gamma_{\pi}$      | Table 4 of [1]   |
| R1_gamma_tau           | Region 1, partial derivative, $\gamma_{\tau}$     | Table 4 of [1]   |
| R1_gamma_pi_pi         | Region 1, partial derivative, $\gamma_{\pi\pi}$   | Table 4 of [1]   |
| R1_gamma_tau_tau       | Region 1, partial derivative, $\gamma_{\tau\tau}$ | Table 4 of [1]   |
| R1_gamma_pi_tau        | Region 1, partial derivative, $\gamma_{\pi\tau}$  | Table 4 of [1]   |
| R1_specific_volume     | Region 1, specific volume, $v$                    | Table 3 of [1]   |
| R1_specific_int_energy | Region 1, specific internal energy, $e$           | Table 3 of [1]   |
| R1_specific_entropy    | Region 1, specific entropy, $s$                   | Table 3 of [1]   |
| R1_specific_enthalpy   | Region 1, specific enthalpy, h                    | Table 3 of [1]   |
| R1_cp                  | Region 1, specific isobaric heat capacity, $c_p$  | Table 3 of [1]   |
| R1_cv                  | Region 1, specific isochoric heat capacity, $c_v$ | Table 3 of [1]   |
| R1_sound_speed         | Region 1, specific of sound, w                    | Table 3 of [1]   |
| R1_T_from_p_h          | Region 1, backward function $T = T(p, h)$         | Eqn. (11) of [1] |
| R1_T_from_p_s          | Region 1, backward function $T = T(p, s)$         | Eqn. (13) of [1] |

Table 2: Region 2 functions implemented in IF97.h/C

| Function Name          | Function Description                                | Reference        |
|------------------------|-----------------------------------------------------|------------------|
| R2_gamma_0             | Region 2, dimensionless specific Gibbs free en-     | Eqn. (16) of [1] |
|                        | ergy, ideal gas part, $\gamma^0$                    |                  |
| R2_gamma_r             | Region 2, dimensionless specific Gibbs free en-     | Eqn. (17) of [1] |
|                        | ergy, residual part, $\gamma^r$                     |                  |
| R2_gamma_0_pi          | Region 2, partial derivative, $\gamma_{\pi}^{0}$    | Table 13 of [1]  |
| R2_gamma_0_tau         | Region 2, partial derivative, $\gamma_{\tau}^{0}$   | Table 13 of [1]  |
| R2_gamma_0_pi_pi       | Region 2, partial derivative, $\gamma_{\pi\pi}^0$   | Table 13 of [1]  |
| R2_gamma_0_tau_tau     | Region 2, partial derivative, $\gamma_{\tau\tau}^0$ | Table 13 of [1]  |
| R2_gamma_0_pi_tau      | Region 2, partial derivative, $\gamma_{\pi\tau}^0$  | Table 13 of [1]  |
| R2_gamma_r_pi          | Region 2, partial derivative, $\gamma_{\pi}^{r}$    | Table 14 of [1]  |
| R2_gamma_r_tau         | Region 2, partial derivative, $\gamma_{\tau}^{r}$   | Table 14 of [1]  |
| R2_gamma_r_pi_pi       | Region 2, partial derivative, $\gamma_{\pi\pi}^r$   | Table 14 of [1]  |
| R2_gamma_r_tau_tau     | Region 2, partial derivative, $\gamma_{\tau\tau}^r$ | Table 14 of [1]  |
| R2_gamma_r_pi_tau      | Region 2, partial derivative, $\gamma_{\pi\tau}^r$  | Table 14 of [1]  |
| R2_specific_volume     | Region 2, specific volume, $v$                      | Table 12 of [1]  |
| R2_specific_int_energy | Region 2, specific internal energy, $e$             | Table 12 of [1]  |
| R2_specific_entropy    | Region 2, specific entropy, $s$                     | Table 12 of [1]  |
| R2_specific_enthalpy   | Region 2, specific enthalpy, h                      | Table 12 of [1]  |
| R2_cp                  | Region 2, specific isobaric heat capacity, $c_p$    | Table 12 of [1]  |
| R2_cv                  | Region 2, specific isochoric heat capacity, $c_v$   | Table 12 of [1]  |
| R2_sound_speed         | Region 2, specific of sound, $w$                    | Table 12 of [1]  |
| B2bc_p_from_h          | Region 2, boundary between 2b and 2c                | Eqn. (20) of [1] |
| B2bc_h_from_p          | Region 2, boundary between 2b and 2c                | Eqn. (21) of [1] |
| R2a_T_from_p_h         | Region 2a, backward function, $T = T(p, h)$         | Eqn. (22) of [1] |
| R2b_T_from_p_h         | Region 2b, backward function, $T = T(p, h)$         | Eqn. (23) of [1] |
| R2c_T_from_p_h         | Region 2c, backward function, $T = T(p, h)$         | Eqn. (24) of [1] |
| R2a_T_from_p_s         | Region 2a, backward function, $T = T(p, s)$         | Eqn. (25) of [1] |
| R2b_T_from_p_s         | Region 2b, backward function, $T = T(p, s)$         | Eqn. (26) of [1] |
| R2c_T_from_p_s         | Region 2c, backward function, $T = T(p, s)$         | Eqn. (27) of [1] |
| B23_p_from_T           | Region 2/3 boundary, p from T                       | Eqn. (5) of [1]  |
| B23_T_from_p           | Region 2/3 boundary, T from p                       | Eqn. (6) of [1]  |

Table 3: Supplementary equation for the metastable-vapor region implemented in IF97.h/C

| Function Name              | Function Description                                               | Reference        |
|----------------------------|--------------------------------------------------------------------|------------------|
| R2Meta_gamma_0             | Metastable-vapor region, dimensionless specific                    | Eqn. (16) of [1] |
|                            | Gibbs free energy, ideal gas part, $\gamma^0$                      |                  |
| R2Meta_gamma_r             | Metastable-vapor region, dimensionless specific                    | Eqn. (19) of [1] |
|                            | Gibbs free energy, residual part, $\gamma^r$                       |                  |
| R2Meta_gamma_0_pi          | Metastable-vapor region, partial derivative, $\gamma_{\pi}^{0}$    | Table 13 of [1]  |
| R2Meta_gamma_0_tau         | Metastable-vapor region, partial derivative, $\gamma_{\tau}^{0}$   | Table 13 of [1]  |
| R2Meta_gamma_0_pi_pi       | Metastable-vapor region, partial derivative, $\gamma_{\pi\pi}^0$   | Table 13 of [1]  |
| R2Meta_gamma_0_tau_tau     | Metastable-vapor region, partial derivative, $\gamma_{\tau\tau}^0$ | Table 13 of [1]  |
| R2Meta_gamma_0_pi_tau      | Metastable-vapor region, partial derivative, $\gamma_{\pi\tau}^0$  | Table 13 of [1]  |
| R2Meta_gamma_r_pi          | Metastable-vapor region, partial derivative, $\gamma_{\pi}^{r}$    | Table 17 of [1]  |
| R2Meta_gamma_r_tau         | Metastable-vapor region, partial derivative, $\gamma_{\tau}^{r}$   | Table 17 of [1]  |
| R2Meta_gamma_r_pi_pi       | Metastable-vapor region, partial derivative, $\gamma_{\pi\pi}^r$   | Table 17 of [1]  |
| R2Meta_gamma_r_tau_tau     | Metastable-vapor region, partial derivative, $\gamma_{\tau\tau}^r$ | Table 17 of [1]  |
| R2Meta_gamma_r_pi_tau      | Metastable-vapor region, partial derivative, $\gamma_{\pi\tau}^r$  | Table 17 of [1]  |
| R2Meta_specific_volume     | Metastable-vapor region, specific volume, $v$                      | Table 12 of [1]  |
| R2Meta_specific_int_energy | Metastable-vapor region, specific internal en-                     | Table 12 of [1]  |
|                            | $\operatorname{ergy}, e$                                           |                  |
| R2Meta_specific_entropy    | Metastable-vapor region, specific entropy, $s$                     | Table 12 of [1]  |
| R2Meta_specific_enthalpy   | Metastable-vapor region, specific enthalpy, $h$                    | Table 12 of [1]  |
| R2Meta_cp                  | Metastable-vapor region, specific isobaric heat                    | Table 12 of [1]  |
|                            | capacity, $c_p$                                                    |                  |
| R2Meta_cv                  | Metastable-vapor region, specific isochoric heat                   | Table 12 of [1]  |
|                            | capacity, $c_v$                                                    |                  |
| R2Meta_sound_speed         | Metastable-vapor region, specific of sound, $w$                    | Table 12 of [1]  |

Table 4: Region 3 function implemented in IF97.h/C

| Function Name          | Function Description                                | Reference        |
|------------------------|-----------------------------------------------------|------------------|
| R3_phi                 | Region 3, dimensionless specific Helmholtz free     | Eqn. (28) of [1] |
|                        | energy, $\phi$                                      |                  |
| R3_phi_delta           | Region 3, partial derivative, $\phi_{\delta}$       | Table 32 of [1]  |
| R3_phi_tau             | Region 3, partial derivative, $\phi_{\tau}$         | Table 32 of [1]  |
| R3_phi_delta_delta     | Region 3, partial derivative, $\phi_{\delta\delta}$ | Table 32 of [1]  |
| R3_phi_tau_tau         | Region 3, partial derivative, $\phi_{\tau\tau}$     | Table 32 of [1]  |
| R3_phi_delta_tau       | Region 3, partial derivative, $\phi_{\delta\tau}$   | Table 32 of [1]  |
| R3_p                   | Region 3, pressure, $p$                             | Table 31 of [1]  |
| R3_specific_int_energy | Region 3, specific internal energy, $e$             | Table 31 of [1]  |
| R3_specific_entropy    | Region 3, specific entropy, $s$                     | Table 31 of [1]  |
| R3_specific_enthalpy   | Region 3, specific enthalpy, $h$                    | Table 31 of [1]  |
| R3_cp                  | Region 3, specific isobaric heat capacity, $c_p$    | Table 31 of [1]  |
| R3_cv                  | Region 3, specific isochoric heat capacity, $c_v$   | Table 31 of [1]  |
| R3_sound_speed         | Region 3, specific of sound, $w$                    | Table 31 of [1]  |

Table 5: Region 4 functions implemented in IF97.h/C

| Function Name | Function Description             | Reference        |
|---------------|----------------------------------|------------------|
| p_sat_from_T  | Region 4, $p_{sat} = p_{sat}(T)$ | Eqn. (30) of [1] |
| T_sat_from_p  | Region 4, $T_{sat} = T_{sat}(p)$ | Eqn. (31) of [1] |

Table 6: Region 5 functions implemented in IF97.h/C

| Function Name          | Function Description                                | Reference        |
|------------------------|-----------------------------------------------------|------------------|
| R5_gamma_0             | Region 5, dimensionless specific Gibbs free en-     | Eqn. (33) of [1] |
|                        | ergy, ideal gas part, $\gamma^0$                    |                  |
| R5_gamma_r             | Region 5, dimensionless specific Gibbs free en-     | Eqn. (34) of [1] |
|                        | ergy, residual part, $\gamma^r$                     |                  |
| R5_gamma_0_pi          | Region 5, partial derivative, $\gamma_{\pi}^{0}$    | Table 40 of [1]  |
| R5_gamma_0_tau         | Region 5, partial derivative, $\gamma_{\tau}^{0}$   | Table 40 of [1]  |
| R5_gamma_0_pi_pi       | Region 5, partial derivative, $\gamma_{\pi\pi}^0$   | Table 40 of [1]  |
| R5_gamma_0_tau_tau     | Region 5, partial derivative, $\gamma_{\tau\tau}^0$ | Table 40 of [1]  |
| R5_gamma_0_pi_tau      | Region 5, partial derivative, $\gamma_{\pi\tau}^0$  | Table 40 of [1]  |
| R5_gamma_r_pi          | Region 5, partial derivative, $\gamma_{\pi}^{r}$    | Table 41 of [1]  |
| R5_gamma_r_tau         | Region 5, partial derivative, $\gamma_{\tau}^{r}$   | Table 41 of [1]  |
| R5_gamma_r_pi_pi       | Region 5, partial derivative, $\gamma_{\pi\pi}^r$   | Table 41 of [1]  |
| R5_gamma_r_tau_tau     | Region 5, partial derivative, $\gamma_{\tau\tau}^r$ | Table 41 of [1]  |
| R5_gamma_r_pi_tau      | Region 5, partial derivative, $\gamma_{\pi\tau}^r$  | Table 41 of [1]  |
| R5_specific_volume     | Region 5, specific volume, $v$                      | Table 39 of [1]  |
| R5_specific_int_energy | Region 5, specific internal energy, $e$             | Table 39 of [1]  |
| R5_specific_entropy    | Region 5, specific entropy, $s$                     | Table 39 of [1]  |
| R5_specific_enthalpy   | Region 5, specific enthalpy, h                      | Table 39 of [1]  |
| R5_cp                  | Region 5, specific isobaric heat capacity, $c_p$    | Table 39 of [1]  |
| R5_cv                  | Region 5, specific isochoric heat capacity, $c_v$   | Table 39 of [1]  |
| R5_sound_speed         | Region 5, specific of sound, $w$                    | Table 39 of [1]  |

Table 7: Helper functions implemented in IF97\_helper.h/C

| Function Name        | Function Description                                                           | Reference       |
|----------------------|--------------------------------------------------------------------------------|-----------------|
| findRegion           | Find region from $(p,T)$                                                       | Figure 1 of [1] |
| genR3_sat_line       | To generate the saturation line properties in                                  | -               |
|                      | the section enclosed in Region 3, i.e., [623.15K,                              |                 |
|                      | $T_{critical}$                                                                 |                 |
| genR4_sat_line       | To generate the saturation line properties in the                              | -               |
|                      | section separating Region 1 and 2, i.e., [273.15K,                             |                 |
|                      | 623.15K]                                                                       |                 |
| R3_rho_from_p_T_ITER | Region 3, $\rho = \rho(p, T)$ , iterative method                               | -               |
| R3_T_x_from_p_h_ITER | Region 3, T and x from $(p, h)$ , iterative method                             | -               |
| R3_T_x_from_p_s_ITER | Region 3, T and x from $(p, s)$ , iterative method                             | -               |
| R3_dp_ddelta         | Region 3, partial derivative, $\frac{\partial p}{\partial \delta}\Big _{\tau}$ | -               |
| R1_drho_dp           | Region 1, partial derivative, $\frac{\partial \rho}{\partial p} _T$            | -               |
| R2_drho_dp           | Region 2, partial derivative, $\frac{\partial \rho}{\partial p}\Big _T$        | -               |
| R5_T_from_p_h_ITER   | Region 5, T from $(p,h)$ , iterative method                                    | -               |
| R5_T_from_p_s_ITER   | Region 5, T from $(p, s)$ , iterative method                                   | _               |

Table 8: Surface tension function implemented in SurfaceTension.h/C

| Function Name  | Function Description                                  | Reference           |
|----------------|-------------------------------------------------------|---------------------|
| surf_tension / | Surface tension by saturation temperature, $\sigma =$ | The equation in [2] |
|                | $\sigma(T)$                                           |                     |

Table 9: Viscosity function implemented in Viscosity.h/C

| Function Name | Function Description                                                               | Reference        |
|---------------|------------------------------------------------------------------------------------|------------------|
| mu0_bar       | Viscosity in the dilute-gas limit, $\bar{\mu}_0(\bar{T})$                          | Eqn. (11) in [3] |
| mu1_bar       | Contribution to viscosity due to finite density, $\bar{\mu}_1(r\bar{h}o,\bar{T})$  | Eqn. (12) in [3] |
| viscosity     | Viscosity without critical enhancement ( $\bar{\mu}_2 = 1$ ), $\mu = \mu(\rho, T)$ | Eqn. (10) in [3] |

Table 10: Thermal conductivity functions implemented in Thermal Conductivity.h/C

| Function Name           | Function Description                                                               | Reference            |
|-------------------------|------------------------------------------------------------------------------------|----------------------|
| labmda0_bar             | Thermal conductivity in the dilute-gas limit,                                      | Eqn. (16) in [4]     |
|                         | $ar{\lambda}_0(ar{T})$                                                             |                      |
| labmda1_bar             | Contribution to thermal conductivity due to fi-                                    | Eqn. $(17)$ in $[4]$ |
|                         | nite density, $\lambda_1(rho, \bar{T})$                                            |                      |
| labmda2_bar             | Critical enhancement, $\lambda_2(rho, T)$                                          | Eqn. (18) in [4]     |
| zeta_R1                 | $\zeta = \left( rac{\partial ar{ ho}}{\partial ar{p}}  ight)_{ar{T}}$ in Region 1 | Eqn. (24) in [4]     |
| zeta_R2                 | $\zeta = \left(rac{\partial ar{ ho}}{\partial ar{p}} ight)_{ar{T}}$ in Region 2   | Eqn. (24) in [4]     |
| zeta_R3                 | $\zeta = \left(rac{\partial ar{ ho}}{\partial ar{p}} ight)_{ar{T}}$ in Region 3   | Eqn. (24) in [4]     |
| zeta_REF                | $\zeta(ar{ ho},ar{T}_R)$                                                           | Eqn. (25) in [4]     |
| correlation_length_TC   | The correlation length, $\xi$                                                      | Eqn. (22) in [4]     |
| Zy                      | Function $Z(y)$                                                                    | Eqn. (21) in [4]     |
| thermal_conductivity    | Thermal conductivity without critical enhance-                                     | Eqn. (15) in [4]     |
| _no_enhancement         | ment $(\bar{\lambda}_2 = 0)$                                                       |                      |
| thermal_conductivity_R1 | Thermal conductivity with critical enhance-                                        | Eqn. $(15)$ in $[4]$ |
|                         | ment, Region 1                                                                     |                      |
| thermal_conductivity_R2 | Thermal conductivity with critical enhance-                                        | Eqn. (15) in [4]     |
|                         | ment, Region 2                                                                     |                      |
| thermal_conductivity_R3 | Thermal conductivity with critical enhance-                                        | Eqn. (15) in [4]     |
|                         | ment, Region 3                                                                     |                      |

## References

- [1] "Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam", IAPWS R7-97, The International Association for the Properties of Water and Steam (IAPWS), August, 2007.
- [2] "Revised Release on Surface Tension of Ordinary Water Substance", IAPWS R1-76, The International Association for the Properties of Water and Steam (IAPWS), June, 2014.
- [3] "Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance", IAPWS R12-08, The International Association for the Properties of Water and Steam (IAPWS), September, 2008.
- [4] "Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance", IAPWS R15-11, The International Association for the Properties of Water and Steam (IAPWS), September, 2011.

