ECE408/CS483/CSE408 Spring 2025

Applied Parallel Programming

Lecture 17
Parallel Sparse Methods

Course Reminders

- Lab 6 is due this Friday
- Project Milestone 2 is due 4/11/25
- Take a note of the day/time of midterm 2

Objective

- To learn the key techniques for compacting input data in parallel sparse methods for reduced consumption of memory bandwidth
 - Better utilization of on-chip memory
 - Fewer bytes transferred to on-chip memory
 - Better utilization of global memory
 - Challenge: retaining regularity

Sparse Matrix

- Many real-world systems are sparse in nature
 - Linear systems described as sparse matrices
- Solving sparse linear systems
 - Iterative Conjugate Gradient solvers based on sparse matrix-vector multiplication is a common method
- Solution of PDE systems can be formulated into linear operations expressed as sparse matrix-vector multiplication

Sparse Matrix in Scientific Computing

Science Area	Number of Teams	Codes	Struct Grids	Unstruct Grids	Dense Matrix	Sparse Matrix	N- Body	Monte Carlo	FFT	PIC	Sig I/O
Climate and Weather	3	CESM, GCRM, CM1/WRF, HOMME	Χ	Х		Х		Χ			Х
Plasmas/Magnetosphere	2	H3D(M),VPIC, OSIRIS, Magtail/UPIC	X				Х		Х		X
Stellar Atmospheres and Supernovae	5	PPM, MAESTRO, CASTRO, SEDONA, ChaNGa, MS-FLUKSS	X			X	Х	X		X	X
Cosmology	2	Enzo, pGADGET	X			X	Х				
Combustion/Turbulence	2	PSDNS, DISTUF	X						Χ		
General Relativity	2	Cactus, Harm3D, LazEV	X			X					
Molecular Dynamics	4	AMBER, Gromacs, NAMD, LAMMPS				X	Х		Χ		
Quantum Chemistry	2	SIAL, GAMESS, NWChem			Х	X	Х	X			Χ
Material Science	3	NEMOS, OMEN, GW, QMCPACK			Х	X	Х	X			
Earthquakes/Seismology	2	AWP-ODC, HERCULES, PLSQR, SPECFEM3D	X	X			Х				X
Quantum Chromo Dynamics	1	Chroma, MILC, USQCD	X		Х	X					
Social Networks	1	EPISIMDEMICS									
Evolution	1	Eve									
Engineering/System of Systems	1	GRIPS,Revisit						X			
Computer Science	1			X	Х	X			Χ		Χ

[©] David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign

Sparse Matrix in Analytics and Al

Sparse Matrix-Vector Multiplication (SpMV)

Challenges

- Compared to dense matrix multiplication, SpMV
 - Is irregular/unstructured
 - Has little input data reuse
 - Benefits little from compiler transformation tools
- Key to maximal performance
 - Maximize regularity (by reducing divergence and load imbalance)
 - Maximize DRAM burst utilization (layout arrangement)

A Simple Parallel SpMV

Row 0	3	0	1	0	Thread 0
Row 1	0	0	0	0	Thread 1
Row 2	0	2	4	1	Thread 2
Row 3	1	0	0	1	Thread 3

Each thread processes one row

Compressed Sparse Row (CSR) Format

CSR Representation

```
Row 0 Row 2 Row 3

Nonzero values data[7] { 3, 1, 2, 4, 1, 1, 1 }

Column indices col_index[7] { 0, 2, 1, 2, 3, 0, 3 }

Row Pointers row_ptr[5] { 0, 2, 2, 5, 7 }
```

Dense representation

Row 0	3	0	1	0
Row 1	0	0	0	0
Row 2	0	2	4	1
Row 3	1	0	0	1

CSR Data Layout

CSR Kernel Design

A Parallel SpMV/CSR Kernel (CUDA)

```
1. global void SpMV CSR (int num rows, float *data, int
  *col index, int *row ptr, float *x, float *y)
     int row = blockIdx.x * blockDim.x + threadIdx.x;
3.
     if (row < num rows) {
       float dot = 0;
5.
       int row start = row ptr[row];
6. int row end = row ptr[row+1];
  for (int elem = row start; elem < row end; elem++)
7.
8.
           dot += data[elem] * x[col index[elem]];
9.
       y[row] = dot;
```

CSR Kernel Control Divergence

Threads execute different number of iterations

CSR Kernel Memory Divergence (Uncoalesced Accesses)

- Adjacent threads access non-adjacent memory locations
 - Grey elements are accessed by all threads in iteration 0

Regularizing SpMV with ELL(PACK) Format

- Pad all rows to the same length
 - Inefficient if a few rows are much longer than others
- Transpose (Column Major) for DRAM efficiency
- Both data and col_index padded/transposed

ELL Kernel Design

A parallel SpMV/ELL kernel

```
1. __global__ void SpMV_ELL(int num_rows, float *data,
        int *col_index, int num_elem, float *x, float *y)
{
2.   int row = blockIdx.x * blockDim.x + threadIdx.x;
3.   if (row < num_rows) {
4.     float dot = 0;
5.     for (int i = 0; i < num_elem; i++)
6.         dot += data[row+i*num_rows] * x[col_index[row+i*num_rows]];
7.     y[row] = dot;
    }
}</pre>
```

Memory Coalescing with ELL

Coordinate (COO) format

Explicitly list the column & row indices for every non-zero element

		Row 0		Row 2			Row 3				
Nonzero values	data[7]	{	3,	1,	2,	4,	1,		1,	1	}
Column indices	col_index[7]	{	0,	2,	1,	2,	3,		0,	3	}
Row indices	<pre>row_index[7]</pre>	{	0,	0,	2,	2,	2,		3,	3	}

COO Allows Reordering of Elements

```
      Row 0
      Row 2
      Row 3

      Nonzero values data[7]
      { 3, 1, 2, 4, 1, 1, 1, 1 }

      Column indices col_index[7]
      { 0, 2, 1, 2, 3, 0, 3 }

      Row indices row_index[7]
      { 0, 0, 2, 2, 2, 2, 3, 3 }
```

```
Nonzero values data[7] { 1 1, 2, 4, 3, 1 1 }
Column indices col_index[7] { 0 2, 1, 2, 0, 3, 3 }
Row indices row_index[7] { 3 0, 2, 2, 0, 2, 3 }
```

COO Kernel

```
for (int i = 0; i < num_elem; i++)
y[row_index[i]] += data[i] * x[col_index[i]];</pre>
```

a sequential loop that implements SpMV/COO

COO Kernel Design Accessing Input Matrix and Vector

COO kernel Design Accumulating into Output Vector

Hybrid Format (ELL + COO)

- ELL handles typical entries
- COO handles exceptional entries
 - Implemented with segmented reduction

Reduced Padding with Hybrid Format

CSR Run-time

Block performance is determined by longest row

JDS (Jagged Diagonal Sparse) Kernel Design for Load Balancing

Sort rows into descending order according to number of non-zero. Keep track of the original row numbers so that the output vector can be generated correctly.

Sorting Rows According to Length (Regularization)

CSR to JDS Conversion

Row 0 Row 2 Row 3 Nonzero values data[7] 2, 4, 1, Column indices col index[7] 2, 2, Row Pointers row ptr[5] $\{0,$ Row 2 Row 0 Row 3 3, Nonzero values data[7] Column indices col index[7] 0, JDS Row Pointers jds_row_ptr[5] 7, 7 } $\{0,$ JDS Row Indices jds_row_perm[4] {2,

JDS Summary

```
Nonzero values data[7]
                                      { 2, 4, 1, 3, 1, 1, 1 }
Column indices jds col index[7] \{1, 2, 3, 0, 2, 0, 3\}
JDS row indices jds row perm[4]
                                   \{2, 0, 3, 1\}
                                      \{0, 3, 5, 7, 7\}
  JDS Row Ptrs jds row ptr[5]
                                        3
                          3
                             0
                                 ()
```

A Parallel SpMV/JDS Kernel

```
global void SpMV JDS (int num rows, float *data, int *col index,
            int *jds row ptr, int *jds row perm, float *x, float *y)
    int row = blockIdx.x * blockDim.x + threadIdx.x;
3.
    if (row < num rows) {</pre>
      float dot = 0;
     int row start = jds row_ptr[row];
      int row end = jds row ptr[row+1];
      for (int elem = row start; elem < row end; elem++) {</pre>
7.
8.
       dot += data[elem] * x[col index[elem]];
9.
      y[jds_row_perm[row]] = dot;
                                                 Row 2
                                                            Row 0 Row 3
                                                            3, 1,
                    Nonzero values data[7]
                                                             0, 2,
                                                                     0,
                    Column indices col index[7]
                  JDS Row Pointers jds_row_ptr[5]
                                                            3,
                                                                            7,7 }
                                               \{0,
                   JDS Row Indices jds row perm[4] {2,
```

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ University of Illinois at Urbana-Champaign

JDS vs. CSR - Control Divergence

- Threads still execute different number of iterations in the JDS kernel for-loop
 - However, neighboring threads tend to execute similar number of iterations because of sorting.
 - Better thread utilization, less control divergence

JDS vs. CSR Memory Divergence

Adjacent threads still access non-adjacent memory locations

JDS with Transposition

Transposition for Memory Coalescing

JDS Format with Transposed Layout

Row 0	3	0	1	0	Thread 0
Row 1	0	0	0	0	Thread 1
Row 2	0	2	4	1	Thread 2
Row 3	1	0	0	1	Thread 3

JDS row indices jds_row_perm[4]

 $\{2, 0, 3, 1\}$

JDS column pointers jds_t_col_ptr[4]

 $\{0, 3, 6, 7\}$

JDS with Transposition: Memory Coalescing

JDS with Transposition: Memory Coalescing

JDS with Transposition: Memory Coalescing

A Parallel SpMV/JDS_T Kernel

```
global void SpMV JDS T(int num rows, float *data, int *col index,
            int *jds t col ptr, int *jds row perm, float *x, float *y)
2.
      int row = blockIdx.x * blockDim.x + threadIdx.x;
3.
      if (row < num rows) {</pre>
        float dot = 0;
4.
        unsigned int sec = 0;
5.
        while (jds t col ptr[sec+1] - jds t col ptr[sec] > row) {
           dot += data[jds t col ptr[sec]+row] *
6.
                  x[col_index[jds_t_col_ptr[sec]+row]];
7.
           sec++;
8.
        y[jds row perm[row]] = dot;
                                                 Sec 0
                                                               Sec 1
                                                                         Sec 2
                                               { 2, 3, 1, 4, 1, 1
                   Nonzero values data[7]
                                                            2, 2, 3
                                               \{1, 0, 0, 1\}
                   Column indices col index[7]
                                               {0,
             JDS T Column Pointers jds t col ptr[5]
                                                                    6, 7,7
                  JDS Row Indices jds row perm[4]
```

Lab 8 Variable Names

 $\{3,$ 0 } JDS T Length of Cols matRows[4] Sec 0 Sec 1 Sec 2 Nonzero values matData[7] Column indices matCols[7] 0, {0, 3, JDS_T Column Pointers matColStart[4] 6, JDS Row Indices matRowPerm[4]

Roughly Random...

Roughly Random...

Probably best with ELL.

- Padding will be uniformly distributed
- Sparse representation will be uniform

High variance in rows...

High variance in rows

Probably best with ELL/COO

- Benefit of ELL for most cases
- Outliers are captured with COO

Very sparse...

Very sparse

Probably best with COO

• Not a lot of data, compute is sparse

Roughly triangular...

Roughly triangular...

Probably best with JDS

• Takes advantage of sparsity structure

Banded Matrix...

Probably best with ELL

• Small amount of variance in rows

Other formats

- Diagonal (DIA): for strictly banded/diagonal matrices
- Packet (PKT): create diagonal submatrices by reordering rows/cols
- Dictionary of Keys (DOK): map of (row/col) to data
- Compressed Sparse Column (CSC): when to use over CSR?
- Blocked CSR: useful for block sparse matrices
- Hybrids of these...

Sparse Matrices as Foundation for Advanced Algorithm Techniques

- Graphs are often represented as sparse adjacency matrices
 - Used extensively in social network analytics, natural language processing, etc.
 - Sparse Matrix-Matrix multiplication (SpMM) is a fundamental operator in GNNs, which performs a multiplication between a sparse matrix and a dense matrix.
- Binning techniques often use sparse matrices for data compaction
 - Used extensively in ray tracing, particle-based fluid dynamics methods, and games
- These will be covered in ECE508/CS508

ANY MORE QUESTIONS READ CHAPTER 10

Problem Solving

• Q: Given matrix A, which of the following are correct?

CSR representation:

Data =
$$[1,2,1,1,2,3,4,1,1]$$

Col_idx = $[0,2,3,0,1,2,3,0,3]$
Row_ptr = $[0,1,3,7,9]$

COO representation

Data =
$$[1,2,1,1,2,3,4,1,1]$$

Col_idx = $[0,2,3,0,1,2,3,0,3]$
Row_idx = $[0,1,1,3,3,3,3,7,7]$

A: only CSR

Problem Solving

- Q: Consider the following sparse Matrix:
- For each of the following **data** layouts in memory, $\begin{bmatrix} 0 & 0 & 0 \\ 6 & 5 & 0 \end{bmatrix}$ select the option that best matches all the sparse $\begin{bmatrix} 6 & 5 & 0 \\ 6 & 5 & 0 \end{bmatrix}$ matrix formats that can store the data in memory as depicted.
- A:
 - 1) CSR, COO
 - -2)??
 - 3) JDS, COO
 - 4) COO
 - 5) JDS-Transposed,COO

Layout 1:													
1	4	2	7	9		3	6	ţ	5	8			
Layout 2:													
1	2 7	6	4	0	9	5	0	0	3	8			
Layout 3:													
7	9	3	6	5		8	1	4	1	2			
Layout 4:													
9	7	1	2	4		3	5	8	3	6			
Layout 5:													
7	6	1	2	9		5	4	(3	8			