Assessment 2 Context Free Grammars and Turing Machines

Norbert Logiewa $_{\rm nl253}$

December 2017

Context Free Grammars

1. Consider the language

(a) Give a word that is in the language $\{a^ib^kc^m\mid i\geq 0, k\geq 0, m\geq 0, k=i+m\}$ and a word that is not in the language

Answer:

- a word not in the language: aaaaaaaaa a word in the language: aabbbbcc
- (b) Give a context-free grammar for the language above.

Answer:

$$\begin{array}{c} S \rightarrow B \mid aSc \\ B \rightarrow \epsilon \mid bBc \end{array}$$

- (c) Use the CYK algorithm to determine whether **abbaa** is a word of the language of the following grammar. Give the table. State in one sentence whether the word is a word of the language of the grammar and how you obtain this conclusion from the table.

$$S \Rightarrow AX \mid BY \mid SS \mid BA$$

$$X \Rightarrow AS$$

$$Y \Rightarrow BS$$

$$A \Rightarrow a$$

$$B \Rightarrow b$$

Answer:

5	_	_	_	_	_
4	_	_	_	_	_
3	_	Y	_	_	_
2	_	_	S	_	
1	A	В	В	A	A
	a	b	b	a	a

Explanation:

It's not, there is no way to parse it as S doesn't appear in the top row.

(d) Give a parse tree for the word **aaba** with respect to the grammar above (for part c)

Answer:

(e) What is FIRST(SS) with respect to the grammar above (for part c)) **Answer**:

 $FIRST(SS) = \{a, b\}$

2. Consider the following two context-free grammars

 G_2 G_1 $S \Rightarrow DAd$ $A \Rightarrow aS \mid \epsilon$ $B \Rightarrow bD \mid \epsilon$ $D \Rightarrow cB$ $S \Rightarrow SaS \mid SbS \mid c$

(a) Draw two different parse trees for the word cacbc and the grammar G_1 Answer:

(b) Give the LOOKAHEAD set for every rule of grammar G_2

Answer:

rule $R \Rightarrow t$	NULLABLE(R)	FIRST(t)	FOLLOW(R)	LOOKAHEAD(R)
$S \Rightarrow DAd$	false	$\{c\}$	$\{d\}$	$\{c\}$
$A \Rightarrow aS \mid \epsilon$	true	$\{a,\epsilon\}$	$\{d\}$	$\{a,d,\epsilon\}$
$B \Rightarrow bD \mid \epsilon$	true	$\{b,\epsilon\}$	$\{a\}$	$\{a,b,\epsilon\}$
$D \Rightarrow cB$	false	{c}	<i>{a}</i>	$\{c\}$

(c) Is the grammar G_2 LL(1)?

Answer:

No it's not, there are overlapping lookahead sets.

(d) Give the set of nullable non-terminals for the grammar G_2

Answer:

 $\{A,B,D,S\}$

(e) Give the context-free grammar that you obtain from replacing all ϵ -rules in grammar G_2 Answer:

 \mathbf{G}_2 after replacing ϵ rules

$$S\Rightarrow DAd$$
 $S\Rightarrow DAd \mid Dd \mid Ad \mid d$ $A\Rightarrow aS \mid a$ $B\Rightarrow bD \mid \epsilon$ $B\Rightarrow cB$ $D\Rightarrow cB$ $S\Rightarrow DAd \mid Dd \mid Ad \mid d$ $A\Rightarrow aS \mid a$ $A\Rightarrow a$

Turing Machines

Consider the following Turing machine with input alphabet $\{a,\,b\}$ and tape alphabet $\{a,b,_\}$

(a) Give computations for the words **ab** and **bb**. State for each word whether the machine accepts it, rejects it or loops. If the machine loops, then give the first five configurations of the computation.

Answer

input word	computation	outcome
ab	$a/a/R \vdash b/b/R \vdash _/_/R \vdash _/_/R$	reject
bb	$b/b/R \vdash a/a/R \vdash b/b/R \vdash b/b/R \vdash b/b/R$	loop

(b) Draw a Turing machine that decides the language of all words over the alphabet $\{a, b\}$ that have an odd number of as and an odd number of bs.

Answer: