Basic definitions

Basic definitions
 Sets and functions
 Binary operations

Definition of a group Dihedral groups Permutation groups Monoids

Sets and functions

Definition 1

- 1. A set is a well-defined collection of objects called elements. We write $s \in S$ to mean the element s is in the set S.
- 2. Given any collection of sets S_1, \ldots, S_n we can form a **direct product** $S_1 \times \cdots \times S_n = \{(s_1, \ldots, s_n) \mid s_i \in S_i \text{ for each} i = 1, \ldots, n\},$ also a set. The elements (s_1, \ldots, s_n) are called *n*-**tuples**.

In part 1. of Definition 1, well-defined is meant in the sense that one cannot give the same name to two different elements. There is a more typical use of the term which we will make explicit shortly.

The following are examples of sets.

- 1. $\mathbb{N} = \{1, 2, 3, \dots\} = \text{the natural numbers.}$ Also denoted \mathbb{Z}^+ or $\mathbb{Z}_{>0}$.
- 2. $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\} =$ the **integers**.
- 3. $\mathbb{Q} = \{ \frac{m}{n} \mid m, n \in \mathbb{Z} \text{ and } n \neq 0 \} = \text{the rational numbers.}$
- 4. \mathbb{R} = the real numbers.
- 5. \mathbb{C} = the complex numbers.
- 6. $\mathsf{Mat}_R(n,n) = \mathsf{the} \ \mathsf{set} \ \mathsf{of} \ n \times n \ \mathsf{matrices} \ \mathsf{with} \ \mathsf{entries} \ \mathsf{in} \ R = \mathbb{Z}, \ \mathbb{Q}, \ \mathbb{R}, \ \mathbb{C}. \ \mathsf{etc}.$
- 7. $R^{\times} := R \setminus \{0\} = \text{the multiplicative group of } R$, where $R = \mathbb{Q}$, \mathbb{R} , \mathbb{C} .

Definition 2

1. A function (or map) φ is a rule

$$\varphi: \mathcal{S} \to \mathcal{T}$$

which assigns each element s in the set S to an element $\varphi(s)$, called its image, in the set T.

- 2. Given a function $\varphi: S \to T$, S is called the **domain** (or **source**) of φ and T is called the **codomain** (or **target**) of φ .
- 3. The **image** of a function $\varphi: S \to T$ is the set of elements $t \in T$ such that there exists $s \in S$ satisfying $\varphi(s) = t$. We use the notation $\varphi(S)$ or image (φ) .
- 4. The set of functions from one set S to another T is called a function space, denoted T^S .

In order to be **well-defined** as a function, $\varphi: S \to T$ cannot map the same element $s \in S$ to more than one distinct element in T.

However, we may have $\varphi(s_1) = \varphi(s_2)$ with $s_1 \neq s_2$.

We also do not require every element $t \in T$ to have a **preimage** in S, meaning, there need not exist any $s \in S$ such that $t = \varphi(s)$.

Example 2

Define $\varphi: \mathbb{Q} \to \mathbb{Z}$ by $\varphi(\frac{m}{n}) = n$. Why isn't φ well-defined?

As one might expect, we have terms to describe such situations where no two elements in S have the same image and/or every element in T has a preimage.

Definition 3

Suppose $\varphi: S \to T$ is a map between sets.

- (a) φ is one-to-one (or injective) means for all $s_1, s_2 \in S$, if $\varphi(s_1) = \varphi(s_2)$ then $s_1 = s_2$.
- (b) φ is **onto** (or **surjective**) means for all $t \in T$, there exists $s \in S$ such that $t = \varphi(s)$.
- (c) φ is **bijective** means it is both injective and surjective.

The phrasing of Definition 3 suggests an approach to proving injectivity and surjectivity.

The exponential function $f(x) = e^x$, or,

$$f:\mathbb{R} \to \mathbb{R}$$

$$x \mapsto e^x$$
,

is injective. To prove, suppose f(x) = f(y) for $x, y \in \mathbb{R}$. Then

$$e^x = e^y$$
 implies

$$ln(e^x) = ln(e^y)$$
 implies

$$x = y$$
.

Thus x and y had to be the same element.

On the other hand, the map f in Example 3 is not surjective.

Question

How would you prove f in Example 3 is not surjective? How would you change the codomain to make f surjective?

The projection map

$$\pi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
$$(a,b) \mapsto a$$

is surjective; to see why, choose any element $x \in \mathbb{Z}$. Then x has a preimage since, for example, $\pi(x,x) = x$.

Question

Is the projection map π in Example 4 injective? Answer with proof.

Exercise 1 (cf. Problem 38)

Which of the following are functions? Of those, which are injective and which are surjective?

- (a) $\varphi_1: \mathbb{Z} \to \mathbb{Z}$, where $\varphi_1(n) = n^2$;
- (b) $\varphi_2: \mathbb{Z} \to \mathbb{Q}$, where $\varphi_2(n) = \frac{2}{5n+1}$;
- (c) $\varphi_3: \mathbb{Z} \times \mathbb{N} \to \mathbb{Z}$, where $\varphi_3(n, m) = n^m$;
- (d) $\varphi_4: \mathbb{Z} \to \{-1,1\}$, where $\varphi_4(n) = \sin(\frac{\pi}{2}n)$.

Binary operations

Definition 4

A map of the form $\star : S \times S \rightarrow S$ is called a binary operation.

Authors often write $s_1 \star s_2 = \star(s_1, s_2)$ or, as a further shorthand when the context is clear, $s_1 s_2 = \star(s_1, s_2)$. The latter is called **mutliplicative notation**.

In defining the operation \star on S, authors may use the "maps to" symbol

$$\star:(s_1,s_2)\mapsto\star(s_1,s_2)$$

or the "definition" symbol

$$s_1 \star s_2 := \star (s_1, s_2).$$

(a) Multiplication is a binary operation on \mathbb{R} :

$$\star: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(r_1, r_2) \mapsto r_1 r_2$$

Why? Because multiplying two elements in $\mathbb R$ results in another element in $\mathbb R$.

(b) Similarly, adding two elements in \mathbb{R} results in another element in \mathbb{R} :

$$\bullet: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(r_1, r_2) \mapsto r_1 + r_2$$

(Here we use the symbol \bullet to distinguish the operation from the \star in part (a).)

Binary operations are ubiquitous!

Example 6

Addition and multiplication are each binary on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{C} , $\mathsf{Mat}_{\mathbb{R}}(n,n)$, and more.

Example 7

Division is binary on each of \mathbb{Q}^{\times} , \mathbb{R}^{\times} , and \mathbb{C}^{\times} .

Question

Why isn't division binary on \mathbb{Z}^{\times} ?

Exercise 2 (cf. Problem 39)

Which of the following are binary operations?

- (a) On \mathbb{N} , $n \star m := n$;
- (b) On \mathbb{N} , $n \ominus m := n m$;
- (c) On \mathbb{Z} , $n \ominus m := n m$;
- (d) On \mathbb{Z} , $n \odot m := 2^{n+m}$;
- (e) On \mathbb{Q} , $n \diamond m := n^m$;
- (f) On S^S , composition i.e., the operation $f \circ g$ where $f, g \in S^S$;
- (g) On S^T , composition.

Definition of a group

Definition 5

A group (G, \star) is a set G with a binary operation \star , satisfying the following properties:

- \star is associative, meaning for any elements $g_1, g_2, g_3 \in G$, $(g_1 \star g_2) \star g_3 = g_1 \star (g_2 \star g_3)$.
- G contains an element e called the identity of G, satisfying $g \star e = g$ and $e \star g = g$ for all $g \in G$.
- every element $g \in G$ has an **inverse** $h \in G$, satisfying $g \star h = e$ and $h \star g = e$. Depending on the context we denote the inverse of g by either g^{-1} or -g.

The three items listed in Definition 5, along with the existence of \star , are called the **group axioms**.

In this example, the objects we work with are very abstract, but it does not stop us from using the definitions to deduce things!

Example 8

Suppose $(G_1, \star_1), \ldots, (G_n, \star_n)$ are groups. Then their direct product $G := G_1 \times \cdots \times G_n$ is a group under the operation

$$\star: G \times G \to G$$

$$((g_1, \ldots, g_n), (h_1, \ldots, h_n)) \mapsto (g_1 \star_1 h_1, \cdots, g_n \star_n h_n).$$

We say \star is defined **component-wise**.

To prove G is a group we verify the group axioms:

Existence of a binary operation?
 Yes. The operation * is defined component-wise and each of the respective components' operations is binary.

Associativity?

Yes. Again, it follows from associativity on each of the components; take $f = (f_1, \ldots, f_n)$, $g = (g_1, \ldots, g_n)$, and $h = (h_1, \ldots, h_n)$ in G:

$$(f \star g) \star h = (f_1 \star_1 g_1, \dots, f_n \star_n g_n) \star h$$

$$= ((f_1 \star_1 g_1) \star_1 h_1, \dots, (f_n \star_n g_n) \star_n h_n)$$

$$= (f_1 \star_1 (g_1 \star_1 h_1), \dots, f_n \star_n (g_n \star_n h_n))$$

$$= f \star (g_1 \star_1 h_1, \dots, g_n \star_n h_n)$$

$$= f \star (g \star h)$$

• Existence of an identity element?

Yes. Let $e = (e_1, ..., e_n)$, where e_i is the identity element in G_i , for i = 1, ..., n. For $g = (g_1, ..., g_n) \in G$,

$$g \star e = (g_1 \star_1 e_1, \dots, g_n \star_n e_n) = (g_1, \dots, g_n) = g$$

= $(e_1 \star_1 g_1, \dots, e_n \star_n g_n) = (g_1, \dots, g_n) = g$
= $e \star g$.

• Existence of inverse elements?

Yes. Suppose $g = (g_1, \dots, g_n) \in G$. Then we must have $g^{-1} = (g_1^{-1}, \dots, g_n^{-1})$:

$$g \star g^{-1} = (g_1 \star_1 g_1^{-1}, \dots, g_n \star_n g_n^{-1})$$

= $(e_1, \dots, e_n) = e$
= $(g_1^{-1} \star_1 g_1, \dots, g_n^{-1} \star_n g_n)$

If $G_1 = \cdots = G_n$ are the same group H, then we may write

$$H^n := \underbrace{H \times \cdots \times H}_{n \text{ times}}.$$

A group operation doesn't have to be commutative! If it is though, we say G is abelian.

Exercise 3 (cf. Problem 41)

Which of the following pairs are groups? Which, among the groups, are abelian?

- (a) (\mathbb{Q}^+,\cdot) , where \mathbb{Q}^+ denotes the set of all positive rational numbers
- (b) $(\mathbb{Z}, -)$
- (c) (\mathbb{R}^+,\div) , where \mathbb{R}^+ denotes the set of all positive real numbers
- (d) $(\mathbb{Z}_{12}, \oplus_{12})$, where $\mathbb{Z}_{12} = \{0, 1, 2, \dots, 11\}$ and \oplus_{12} refers to **modular** arithmetic:
 - $n \oplus_{12} m =$ the remainder of n + m when divided by 12
- (e) (GL(2, \mathbb{R}),·), the set of invertible 2 × 2 matrices with entries in \mathbb{R} , under matrix multiplication

Exercise 4 (cf. Problem 42)

Let Γ denote the graph in Figure 1.1.

(a) Show the set $S(\Gamma)$ of recurrent sandpiles under stable addition form a group.

Figure 1.1: Directed graph with a self-loop.

(b) Show the set $\mathcal{M}(\Gamma)$ of **stable sandpiles** is not a group.

Dihedral groups

One special class of groups are the **dihedral groups**. Denoted D_n , their elements correspond to symmetries of a regular n-gon.

 $D_4 = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$, the dihedral group of order 4, is the set of symmetries on a square:

```
e = identity; do nothing
```

r = rotate 90 degrees clockwise

 r^2 = rotate 180 degrees

 r^3 = rotate 90 degree counter-clockwise

s = reflect across the vertical axis

rs = reflect across the diagonal with negative slope

 r^2s = reflect across the horizontal axis

 $r^3s = \text{reflect across the diagonal with positive slope}$

We illustrate the (right) action of each element in D_4 on a portrait of Niels Henrik Abel[†]:

Question

Why is the action of D_4 qualified as a *right* action?

[†]Image by Johan Gørbitz - Originally uploaded to English wikipedia by en:User:Pladask, http://goo.gl/DkGu1P, Public Domain, https://goo.gl/ugIjzo.

Exercise 5 (cf. Problem 40)

(a) Complete the **multiplication table** for D_4 .

		r	r^2	r^3	S	rs	r^2s	r^3s
e r r ²	e							
r	r	r^2	r^3	e	rs	r^2s	r^3s	S
r^2								
r^3								
S								
s rs r ² s r ³ s								
r^2s								
r^3s								

- (b) For each element in D_4 , write down its inverse.
- (c) Prove D_4 is not abelian.

Permutation groups

Another special class of groups are the **permutation groups**.

Definition 6

A **permutation** of a set S is a bijection $\sigma: S \to S$.

Exercise 6

(**Prove:**) Given a fixed set S with finitely many elements, the set of permutations on S forms a group under composition.

Definition 7

The group of permutations of the set $\{1, 2, ..., n\}$ is called the symmetric group of order n, and is denoted S_n .

Exercise 7

For which values of n is the permutation group S_n abelian?

One way to denote elements in S_n is using matrices. For example, the matrix

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 4 & 2 \end{pmatrix} \in S_5$$

represents the permutation

$$\begin{split} \sigma: \{1,2,3,4,5\} &\to \{1,2,3,4,5\} \\ 1 &\mapsto 3 \\ 2 &\mapsto 1 \\ 3 &\mapsto 5 \\ 4 &\mapsto 4 \\ 5 &\mapsto 2. \end{split}$$

Monoids

In Exercise 3 some of the set/operation pairs listed were not groups, but satisfied most of the required axioms. In fact, there is a more general notion of such a pair.

Definition 8

A monoid $M = (M, \star)$ is a set M, for which the following properties hold:

- ★ is a binary operation on M
- * is associative
- M contains an identity element with respect to *

A monoid is **commutative** means $a \star b = b \star a$ for all $g, h \in M$.

Some authors refer to monoids as **semigroups**, and the difference is the presence of the identity element – there is no convention on which term refers to which situation, so most authors specify or else use the terms *monoid* and *semigroup* interchangeably.

Question

All groups are monoids. What is the missing axiom that makes a monoid, in general, not a group?

Example 11

Given a directed graph Γ with a global sink, the set $\mathcal{M}(\Gamma)$ of all stable sandpiles forms a monoid, known as the **sandpile monoid of** Γ . (See Exercise 4.)

 $\mathbb Q$ is a group under addition, but not multiplication – the element 0 has no inverse. However, $\mathbb Q$ is a monoid under multiplication. For this reason, when we refer to $\mathbb Q$ as a group, its implied operation is always addition.

On the other hand, \mathbb{Q}^{\times} is a group under multiplication (hence, the name).

Question

Is \mathbb{Q}^{\times} a group under addition?

Exercise 8

Prove the statements in Example 12:

- (a) \mathbb{Q} is a group under addition, but not multiplication.
- (b) Q is monoid under multiplication.
- (c) \mathbb{Q}^{\times} is a group (implied operation is multiplication).