Ensemble Methods: Bagging

Ансамблевое обучение (Ensemble Learning)

Ансамблевые методы создают сильную модель, комбинируя прогнозы нескольких слабых моделей (также называемых слабыми обучающимися или базовыми оценками), построенных с заданным набором данных и заданным алгоритмом обучения.

Будем рассматривать модели ансамбля Bagging и Boosting.

Bagging (Bootstrap Aggregating)

Bagging (Bootstrap Aggregating) method:

• Произвольно возьмите N образцов фиксированного размера из обучающего набора (с заменой) - метод **bootstrap**

```
Example: given data [1, 2, 3, 4, 5, 6, 7, 8, 9], образцы размера 6: [1, 1, 2, 4, 9, 9]; [2, 4, 5, 5, 7, 7]; [1, 1, 1, 1, 1, 1]; [1, 2, 4, 5, 7, 9]
```

- Создавайте независимые оценщики (модели) одного типа для каждого подмножества
- Результат работы ансамбля: голосование по большинству (или взвешенное) или усреднение прогнозов всех оценщиков (для задачи регрессии).

Bagging trees: Random Forest

Random Forest: Bagging Decision Trees

- Создайте случайные подмножества (с заменой) из исходного набора данных
- Постройте дерево решений для каждого начального подмножества
- Объедините прогнозы из каждого дерева для окончательного прогноза

Random Forest in sklearn

RandomForestClassifier: sklearn Random Forest classifier (есть версия для Regressor) - .fit(), .predict()

```
RandomForestClassifier(n_estimators=100,

max_samples=None, max_features='auto',

criterion='gini', max_depth=None, min_samples_split=2,

min_samples_leaf=1, class_weight=None)
```

Полный список параметров гораздо больше.

Bagging in sklearn

BaggingClassifier: sklearn общий интерфейс для bagging который может быть предоставлен любымbase_estimator - .fit(), .predict()

BaggingClassifier(base_estimator=None, n_estimators=10, max_samples=1.0, bootstrap=True)

Полный список параметров гораздо больше.

Hyperparameter Tuning

Настройка гиперпараметров (Hyperparameter Tuning)

• Hyperparameters это параметры алгоритмов машинного обучения, которые влияют на структуру алгоритмов и производительность (качество) моделей.

Примеры hyperparameters:

- K Nearest Neighbors: n_neighbors, metric
- Decision trees: max_depth, min_samples_leaf, class_weight, criterion
- Random Forest: n_estimators, max_samples
- Ensemble Bagging: base_estimator, n_estimators
- Hyperparameter tuning (настройка гиперпараметров) ищет лучшую комбинацию гиперпараметров (комбинацию, которая максимизирует качество модели).

Grid Search in sklearn

GridSearchCV: sklearn базовый метод hyperparameter tuning, находит оптимальное сочетание гиперпараметров путем перебора в течение определенных значений параметров -

.fit(), .predict()

GridSearchCV(estimator, param_grid, scoring=None)

Example: Hyperparameters for a Decision Tree:

Total hyperparameters combinations $5 \times 5 = 25$

[5, 15], [5, 20], [5, 25], [10, 15], ...

Randomized Search in sklearn

RandomizedSearchCV: рандомизированный поиск по гиперпараметрам

- Выбирает фиксированное количество (заданное параметром n_iter) случайных комбинаций значений гиперпараметров и пробует только их.
- Возможна выборка из распределений (используется выборка с заменой), если в качестве распределения задан хотя бы один параметр.

RandomizedSearchCV(estimator, $param_distributions$, $n_iter=10$, scoring=None)

Example: Hyperparameters for a Decision Tree:

Hyperparameter 1

Байесовский поиск (Bayesian Search)

- Метод байесовского поиска (Bayesian Search) отслеживает предыдущие оценки гиперпараметров и строит вероятностную модель.
- Он пытается сбалансировать исследование (неопределенный набор гиперпараметров) и реализацию (гиперпараметры с хорошей вероятностью должны быть оптимальными).
- Предпочитает точки рядом с теми, которые хорошо сработали.

Data Preprocessing with Pipeline (sklean)

Transformers in sklearn

- SimpleImputer, StandardScaler, MinMaxScaler, LabelEncoder, OrdinalEncoder, OneHotEncoder, и CountVectorizer принадлежат к классу transformers sklearn, у всех есть:
 - .fit() method: изучает преобразование из обучающего набора данных
 - .transform() method: применяет преобразование к любому набору данных (training, validation, test) для предварительной обработки

К обучающему набору также можно применить .fit_transform()

ColumnTransformer in sklearn

ColumnTransformer: применяет преобразователи к столбцам массива или pandas DataFrame – .fit(), .transform()

- Позволяет отдельно преобразовывать разные столбцы или подмножества входных столбцов (числовые, категориальные, текстовые).
- Функции, генерируемые каждым преобразователем, будут объединены, чтобы сформировать единое пространство функций.
- Это полезно для смешанных наборов табличных данных, чтобы объединить несколько механизмов извлечения признаков или преобразований в один преобразователь.

ColumnTransformer and Pipeline

```
numerical_processing = Pipeline([
  ('num_imputer', SimpleImputer(strategy='mean')),
  ('num_scaler', MinMaxScaler())])
categorical_processing = Pipeline([
  ('cat_imputer', Imputer(strategy='constant', fill_value='missing')),
  ('cat_encoder', OneHotEncoder(handle_unknown='ignore'))])
processor = ColumnTransformer(transformers =[
  ('num_processing', numerical_processing, ('feature1', 'feature3')),
  ('cat_processing', categorical_processing, ('feature0', 'feature2'))])
pipeline = Pipeline([('data_processing', processor),
                      ('estimator', KNeighborsClassifier())])
pipeline.fit(X_train, y_train)
predictions = pipeline.predict(X_test)
```

