

Program, 2nd day

•	9:00 – 9:30	Introduction to Parallel Computing (Caspar van Leeuwen)
•	9:30 – 10:30 Leeuwen)	Parallel Computing for Deep Learning: ideas, framworks, and hardware bottlenecks (Caspar van
•	10:30 – 11:00	Coffee break
•	11:00 – 11:30 Hekster)	Structure of Deep Learning Frameworks: computational graph, autodiff, and optimizers (Ruben
•	11:30 – 12:30	Hands-on: Profiling TensorFlow with TensorBoard (Ruben Hekster)
•	12:30 – 14:00	Lunch Break
•	14:00 – 15:00	Hands-on: Data Parallelism with Horovod (CIFAR10) (Maxwell Cai)
•	15:00 – 15:30	Coffee break
•	15:30 – 16:15	Introduction to hybrid parallelism (Caspar van Leeuwen)
•	16:15 – 17:00	Open Discussion

Frameworks

Goals:

 Get an overview of various frameworks, as well as their optimization options and distribution strategies

Frameworks

- Caffe
- NVCaffe
- IntelCaffe
- PyTorch
- TensorFlow
- Horovod (DL distribution framework only)

Caffe

- Berkely Vision and Learning Center (BVLC)
- One of the first DL frameworks
- No support for distributed training
- Support for multi-GPU
- Gradient aggregation according to tree reduction strategy

NVCaffe

- Nvidia fork of BVLC Caffe, tuned for Nvidia GPUs.
- Integration with cuDNN, NCCL.
- Support for mixed precision
- Support for multi-node as of v 0.17.1
- Nvidia improved performance on their hardware by factor of 2 within a year

IntelCaffe

- Intel fork of BVLC Caffe, tuned for Intel CPUs.
- Integration with MKL-DNN, Intel MLSL (Machine Learning Scaling Library).
- Intel MLSL supports data & model parallelism
- Intel MLSL uses Intel MPI, thus AllReduce strategy can be changed through I_MPI_ADJUST environment variable*

Example environment variables for dual socket system, with 12 cores/socket:

MLSL_NUM_SERVERS=2 MLSL_SERVER_AFFINITY="0,1,12,13" OMP_NUM_THREADS=6
 KMP_AFFINITY="granularity=fine,compact,1,0"

Launches 2 processes per socket, binds those to the socket, sets 6 threads per process and binds those to cores**

PyTorch

- Probably one of todays most used packages (next to TensorFlow)
- Multi-GPU in one node through torch.multiprocessing
- Parallelism accross nodes with torch.distributed
- Supports cuDNN and MKL-DNN*
- Supports various communication backends: Gloo, MPI, NCCL
- Recommended backend: see https://pytorch.org/docs/stable/distributed.html

^{*}https://software.intel.com/en-us/articles/getting-started-with-intel-optimization-of-pytorch

TensorFlow

- Probably one of todays most used packages (next to PyTorch)
- Multi-GPU in one node through device placement (tf.device)*
- Parallelism accross nodes with tf.distribute
- Support for TPUs
- Supports cuDNN and MKL-DNN
- Supports NCCL allreduce
- Pip install NOT well optimized for CPU. Build from source or install intel-tensorflow (pip install intel-tensorflow)
- Further optimization tips for MKL <u>https://www.tensorflow.org/guide/performance/overview#manual_tuning</u>

^{*}https://www.tensorflow.org/guide/using gpu

TensorFlow performance tips

- User Tfrecords (or other large packed files) to avoid I/O bottlenecks
- Overlap computation and data preparation using tf.data.Dataset.prefetch
- Parallelize data transformation using tf.data.Dataset.map (and set num_parallel_calls > 1)
- If data fits in memory, use *tf.data.Dataset.cache* (if memory allows: cache after preprocessing the data. That way, preprocessing only needs to be done once). Note: if you use *tf.data.Dataset.cache*, there is no use staging your dataset in /dev/shm beforehand.
- Set *tf.config*'s *intra_op_parallelism_threads* to #physical cores. Determines #threads available to multithreaded ops.
- Set tf.config's inter_op_parallelism_threads to #sockets usually works best, but you may
 experiment with higher values (not higher than #physical cores). Determines #threads
 available to non-multithreaded ops.
- https://www.tensorflow.org/guide/performance/datasets
- https://www.tensorflow.org/guide/performance/overview#manual_tuning

MKL performance tips

Tune environment variables:

- KMP_BLOCKTIME: Sets the time, in milliseconds, that a thread should wait, after completing the execution of a parallel region, before sleeping. Recommended setting: 0 (but may depend on network).
- KMP_AFFINITY: Enables the run-time library to bind threads to physical processing units.
 Recommended setting: granularity=fine, verbose, compact, 1,0
- KMP_SETTINGS: Enables (true) or disables (false) the printing of OpenMP* run-time library environment variables during program execution.
- OMP_NUM_THREADS: Specifies the number of threads to use. Recommended setting: #cores (available to the process). Sometimes, leaving 1 or 2 cores for OS and other tasks is even faster (especially in many-core nodes).

https://www.tensorflow.org/guide/performance/overview#manual_tuning https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpuconsiderations-and-recommendations-for-inference

Horovod

Is a distribution framework for deep learning (not a deep learning framework itself). Design goals:

- Minimal code changes to make serial program distributed
- High performance distribution

Horovod

- Support for Keras, MXNet, TensorFlow and PyTorch.
- Supports MPI and NCCL as communication backends
- Requires about 6 lines of code change
- Supports Tensor Fusion to batch small allreduce operations (remember: small allreduce operations hit latency bottleneck)
- Has it's own profiling ability, making it easy to assess communication overhead

