Universitatea Politehnica din București 2012 Disciplina: Geometrie și Trigonometrie Varianta A

- 1. Aflați $\cos^2 x$, știind că $\sin x = \frac{\sqrt{3}}{2}$. (5 pct.)
 - a) $\frac{3}{4}$; b) $\frac{1}{3}$; c) 0; d) 1; e) $\frac{1}{4}$; f) $\frac{1}{2}$.

Soluţie. Din formula trigonometrică fundamentală $\cos^2 x + \sin^2 x = 1$, rezultă $\cos^2 x = 1 - \sin^2 x = 1 - \frac{3}{4} = \frac{1}{4}$.

2. Fie vectorii: $\bar{u} = 3\bar{i} - 4\bar{j}$, $\bar{v} = \bar{i} + \bar{j}$, $\bar{w} = 5\bar{i} - 2\bar{j}$. Determinați $a \in \mathbb{R}$ astfel încât $\bar{u} + a\bar{v} = \bar{w}$. (5 pct.) a) 0; b) 1; c) -2; d) 3; e) 2; f) -1.

Soluție. Condiția $\bar{u} + a\bar{v} = \bar{w}$ se rescrie

$$(3\bar{i} - 4\bar{j}) + a(\bar{i} + \bar{j}) = 5\bar{i} - 2\bar{j} \Leftrightarrow (3+a)\bar{i} + (-4+a)\bar{j} = 5\bar{i} - 2\bar{j} \Leftrightarrow \left\{ \begin{array}{l} 3+a=5 \\ -4+a=-2 \end{array} \right. \Leftrightarrow a = 2.$$

- 3. Calculați aria unui triunghi dreptunghic isoscel de ipotenuză egală cu $\sqrt{2}$. (5 pct.)
 - a) 2; b) 1; c) $\frac{1}{2}$; d) $\sqrt{5}$; e) $\sqrt{2}$; f) $\frac{1}{\sqrt{2}}$.

Soluție. Cateta triunghiului este $\ell = \frac{\sqrt{2}}{\sqrt{2}} = 1$, deci aria este $\mathcal{A} = \frac{\ell^2}{2} = \frac{1}{2}$.

- 4. Se dau vectorii: $\bar{u} = 2\bar{i} + 3\bar{j}$ şi $\bar{v} = 3\bar{i} + m\bar{j}$. Calculați valoarea parametrului real m pentru care \bar{u} și \bar{v} sunt perpendiculari. (5 pct.)
 - a) 2; b) 3; c) -2; d) 1; e) -3; f) 0.

Solutie. $\bar{u} \perp \bar{v} \Leftrightarrow \langle \bar{u}, \bar{v} \rangle = 0 \Leftrightarrow 2 \cdot 3 + 3 \cdot m = 0 \Leftrightarrow m = -2.$

- 5. Să se calculeze $E = \frac{\operatorname{tg} 45^{\circ} \cdot \cos 90^{\circ}}{\sin 30^{\circ}}$. (5 pct.)
 - a) $-\frac{1}{2}$; b) 0; c) $\frac{1}{2}$; d) 1; e) -1; f) $\frac{\sqrt{3}}{2}$.

Soluție. Deoarece $\cos 90^{\circ} = 0$, rezultă anularea numărătorului fracției, deci E = 0.

- 6. Calculați a^4 , unde $a = \frac{1+i}{\sqrt{2}}$. (5 pct.)
 - a) 1; b) i; c) 1 4i; d) 1 + 4i; e) -1; f) 4 i.

Soluţie. Obţinem $a^2 = (\frac{1+i}{\sqrt{2}})^2 = \frac{(1+i)^2}{2} = (\frac{2i}{2})^2 = i^2 = -1$. Deci $a^4 = (a^2)^2 = (-1)^2 = 1$.

- 7. Valoarea lui sin 120° este: (5 pct.)
 - a) $\frac{\sqrt{2}}{2}$; b) $\frac{\sqrt{3}}{2}$; c) $-\frac{\sqrt{3}}{2}$; d) $\frac{1}{2}$; e) $-\frac{1}{2}$; f) $-\frac{\sqrt{2}}{2}$.

Soluţie. $\sin 120^{\circ} = \sin(180^{\circ} - 120^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$.

- 8. Soluțiile ecuației $\sin x + \cos^2 x = 1$ din intervalul $\left[0, \frac{\pi}{2}\right]$ sunt: (5 pct.)
 - a) $\left\{\frac{\pi}{4}, \frac{\pi}{2}\right\}$; b) $\left\{\frac{\pi}{3}, \frac{\pi}{2}\right\}$; c) $\left\{0, \frac{\pi}{4}\right\}$; d) $\left\{0, \frac{\pi}{2}\right\}$; e) $\left\{0, \frac{\pi}{6}\right\}$; f) $\left\{0, \frac{\pi}{3}\right\}$.

Soluţie. Folosind formula trigonometrică fundamentală $\cos^2 x + \sin^2 x = 1$, ecuația se rescrie

$$\sin x = \sin^2 x \Leftrightarrow \sin x (1 - \sin x) = 1 \Leftrightarrow \sin x \in \{0, 1\}.$$

Deoarece $x \in [0, \frac{\pi}{2}]$, obţinem $\sin x = 0 \Rightarrow x = 0$ şi $\sin x = 1 \Rightarrow x = \frac{\pi}{2}$. În concluzie, $x \in \{0, \frac{\pi}{2}\}$.

- 9. Dacă $\bar{u} = \bar{i} + \bar{j}$ și $\bar{v} = \bar{i} \bar{j}$, atunci $||\bar{u} + 3\bar{v}||$ este: (5 pct.)
 - a) $\sqrt{5} 1$; b) $2 + \sqrt{5}$; c) $1 + \sqrt{5}$; d) $2\sqrt{5}$; e) 2; f) $\sqrt{5}$.

Soluţie. $\bar{u} + 3\bar{v} = (\bar{i} + \bar{j}) + 3(\bar{i} - \bar{j}) = 4\bar{i} - 2\bar{j}$, deci $||\bar{u} + 3\bar{v}|| = \sqrt{4^2 + (-2)^2} = 2\sqrt{5}$.

10. Aflați tg x știind că $\sin x - 4\cos x = 0$. (5 pct.)

a)
$$-2$$
; b) -1 ; c) -4 ; d) 2; e) 1; f) 4.

Soluţie. Avem $\cos x \neq 0$, deci relaţia dată se rescrie $\sin x - 4\cos x = 0 \Leftrightarrow \frac{\sin x}{\cos x} - 4 = 0 \Leftrightarrow \operatorname{tg} x = 4$.

11. Să se calculeze partea reală a numărului complex $z = i + i^3 + i^5$. (5 pct.)

a) 3; b) 1; c)
$$-1$$
; d) 0; e) -2 ; f) 2.

Soluție. Folosind egalitatea $i^2 = -1$, rezultă $z = i + i^3 + i^5 = i - i + i = i$ și deci Re(z) = 0.

12. Dacă z = 1 + i, atunci valoarea expresiei $E = z \cdot \bar{z}$ este: (5 pct.)

a) 1; b)
$$-i$$
; c) 0; d) -1 ; e) i ; f) 2.

Soluţie. Avem $E = z\bar{z} = (1+i)(1-i) = 1+1=2$.

13. Dreapta care trece prin punctele A(1,3), B(2,4) are ecuatia: (5 pct.)

a)
$$x - y - 1 = 0$$
; b) $x - y = 0$; c) $x - y + 2 = 0$;

d)
$$x + y = 0$$
; e) $x - y - 2 = 0$; f) $x - y + 1 = 0$.

Soluție. Aplicăm formula ecuației dreptei care trece prin două puncte; ecuația dreptei AB este

$$\frac{x-x_A}{x_B-x_A} = \frac{y-y_A}{y_B-y_A} \Leftrightarrow \frac{x-1}{2-1} = \frac{y-3}{4-3} \Leftrightarrow x-y+2 = 0.$$

Altfel. Aplicăm formula ecuației dreptei care trece prin două puncte sub formă de determinant și dezvoltănd determinantul după lina întâi, rezultă:

$$\left| \begin{array}{ccc|c} x & y & 1 \\ x_A & y_A & 1 \\ x_B & y_B & 1 \end{array} \right| = 0 \Leftrightarrow \left| \begin{array}{ccc|c} x & y & 1 \\ 1 & 3 & 1 \\ 2 & 4 & 1 \end{array} \right| = 0 \Leftrightarrow -x + y - 2 = 0 \Leftrightarrow x - y + 2 = 0.$$

Altfel. Ecuația dreptei este de forma ax+by+c=0. Condiția ca A și B să aparțină acestei drepte conduce la sistemul $\begin{cases} a+3b+c=0\\ 2a+4b+c=0 \end{cases}$. Notând c=t, obținem $a=\frac{t}{2}, b=-\frac{t}{2}$. Fixând t=2, rezultă a=1,b=-1, deci ecuația dreptei AB este x-y+2=0.

14. Se consideră triunghiul ABC cu laturile AB = 3, BC = 4, CA = 5. Aflați $\cos A$. (5 pct.)

a)
$$\frac{1}{5}$$
; b) $\frac{2}{5}$; c) $\frac{4}{5}$; d) $\frac{3}{5}$; e) 1; f) 0.

Soluţie. Avem $\cos A = \frac{AB^2 + AC^2 - BC^2}{2AB \cdot AC} = \frac{9 + 25 - 16}{2 \cdot 3 \cdot 5} = \frac{3}{5}$.

15. Calculați distanța de la punctul A(1,1) la dreapta de ecuație x+y-1=0. (5 pct.)

a) 1; b) 2; c)
$$\sqrt{2}$$
; d) $\sqrt{3}$; e) $\frac{1}{\sqrt{2}}$; f) $\frac{1}{\sqrt{3}}$.

Soluţie. Distanţa este $\frac{|1+1-1|}{\sqrt{1^2+1^2}} = \frac{1}{\sqrt{2}}$.

16. Aflați valoarea lui $m \in \mathbb{R}$ pentru care punctul A(m,2) aparține dreptei de ecuație x-y-1=0. (5 pct.)

a) 2; b)
$$-2$$
; c) 1; d) -3 ; e) 3; f) -1 .

Soluție. Înlocuind coordonatele punctului în ecuația dreptei, obținem m-2-1=0, de unde m=3.

17. Ecuațiile tangentelor duse din punctul $A(\sqrt{2},0)$ la cercul de ecuație $x^2 + y^2 = 1$ sunt: (5 pct.)

a)
$$y - x + \sqrt{2} = 0$$
, $y = 0$; b) $y + x - \sqrt{2} = 0$, $y = 0$; c) $y + x - \sqrt{2} = 0$, $x = 0$;

d)
$$y - x + \sqrt{2} = 0$$
, $x = 0$; e) $x = 0$, $y = 0$; f) $y + x - \sqrt{2} = 0$, $y - x + \sqrt{2} = 0$.

Soluție. Ecuația cercului se rescrie $(x-0)^2+(y-0)^2=1^2$, deci cercul are centrul C(0,0) și raza R=1. Ecuațiile dreptelor care trec prin punctul $A(\sqrt{2},0)$ sunt de forma $d: y=m(x-\sqrt{2}) \Leftrightarrow mx-y-m\sqrt{2}=0$, unde $m\in\mathbb{R}$. Dreapta d este tangentă la cerc dacă distanța de la C la dreaptă este R. Această condiție se rescrie

$$\frac{m\cdot 0 - 0 - m\sqrt{2}}{\sqrt{m^2+1}} = 1 \Leftrightarrow -m\sqrt{2} = \sqrt{m^2+1} \Leftrightarrow 2m^2 = m^2+1 \Leftrightarrow m \in \{\pm 1\}.$$

Rezultă că ecuațiile celor două tangente sunt: $y + x - \sqrt{2} = 0$, $y + x + \sqrt{2} = 0$.

18. Determinați aria triunghiului de vârfuri $A(0,1),\,B(1,0),\,C(-1,0).$ (5 pct.)

a) 4; b) 1; c)
$$\frac{3}{2}$$
; d) 2; e) $\frac{1}{2}$; f) $\frac{1}{4}$.

Soluție. Aria triunghiului ABC este dată de formula $\mathcal{A}_{\Delta ABC} = \frac{1}{2}|\Delta|$, unde $\Delta = \begin{vmatrix} x_A & y_A & z_A \\ x_B & y_B & z_B \\ x_C & y_C & z_C \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix} = -2$, deci $\mathcal{A}_{\Delta ABC} = 1$. Altfel. Calculăm lungimile laturilor triunghiului,

$$\begin{cases}
AB = \sqrt{(1-0)^2 + (0-1)^2} = \sqrt{2} \\
AC = \sqrt{(-1-0)^2 + (0-1)^2} = \sqrt{2} \\
BC = \sqrt{(-1-1)^2 + (0-0)^2} = 2,
\end{cases}$$

deci AB=AC și triunghiul este isoscel. Dar $AB^2+AC^2=BC^2$, deci triunghiul este dreptunghic isoscel. Catetele triunghiului au aceeași lungime, $\ell=\sqrt{2}$, deci aria triunghiului este $\mathcal{A}_{\Delta ABC}=\frac{\ell^2}{2}=\frac{2}{2}=1$.