Usages of contrastive losses, Introduction and Applications

for sensor data

About me

- PhD on using DeepLearning to detect Human Factors from BioSignals
- Prof. Eduardo Veas and Herbert Danzinger
- Sometimes very Sparse Data!
- Bring fractioned Data Sets together with contrastive loss

Agenda

- History and other Terms for the same
- Fractioned Datasets of Drowsiness
- Unifying Sensor-Recordings for later Supervised Training
 - Demo & Code
- Summary

History and other Terms for the same

- First named that way in Person Identification
 - Siamese Networks
 - Different Loss Term
- Triplet Loss
- Metric Learning
- XNth Loss w. Hinton

Fractioned Datasets of Drowsiness

- We have a unit generating a signal
 - Unit: f.e. a driver of a car
 - Signal: Physiological Signals for modes (alert, normal, drowsy, asleep)
 - We have data from 4
 experiments, but they all used
 slightly different sensors of
 the same type (EEG, ECG,
 GSR)

GSR Signal Sensor 1

Fractioned Datasets of Drowsiness

- Contrastive Loss:
 - Use all Data
 - Transform Data into
 Embedding where differences
 of sensors are mitigated
- Fine-Tune Classifier on that

GSR Signal Sensor 1

Fractioned Datasets of Drowsiness

- Bad news: I can not show you exactly this use case (confidential datasets)
- Good news: I have a "surrogate problem"

GSR Signal Sensor 1

examples/different-sensors-jsimon/problem-description.ipynb

- Generate Signal w. 4 modes
- Generate Noise Sensing the Signal
- Generate Experiments with a variation of signal and own sensor (surrogate to other use case)

