Labs

Optimization for Machine LearningSpring 2024

Saarland University

CISPA Helmholtz Center for Information Security Sebastian Stich

TAs: Yuan Gao & Xiaowen Jiang https://cms.cispa.saarland/optml24/

Problem Set 4 — Solutions (CD and SGD)

Coordinate descent

Exercise (Efficient Implementation of Coordinate Descent).

Solution:

- a) $\nabla f(\mathbf{x}) = A^{\top}(A\mathbf{x} \mathbf{b})$. Computing the gradient requires two matrix-vector products of complexity $\mathcal{O}(dn)$ and one addition of complexity $\mathcal{O}(n)$. Therefore the time-complexity is $\mathcal{O}(dn)$.
- b) $\nabla_i f(\mathbf{x}) = \mathbf{e}_i \cdot \mathbf{e}_i^\top (A^\top (A\mathbf{x} \mathbf{b}))$. Note that the time-complexity remains $\mathcal{O}(dn)$.
- c) Observe that the property $\mathbf{y}_t = A\mathbf{x}_t$ holds for all $t \geq 0$ and compare with part b). Note that computing $\mathbf{e}_{i_t}^{\top}A^{\top}$ requires only $\mathcal{O}(n)$ time, as it is just required to access the *i*-th column of A. Therefore, updating \mathbf{x}_{t+1} requires one addition of complexity $\mathcal{O}(n)$, one scalar product of complexity $\mathcal{O}(n)$, and one addition of complexity $\mathcal{O}(1)$. Updating \mathbf{y}_{t+1} requires one addition of complexity $\mathcal{O}(n)$.

SGD

Exercise (WGC).

Solution:

- By SGC: $\mathbb{E}\|\nabla f(\mathbf{x}, \xi)\| \le c \|\nabla F(\mathbf{x})\|^2$. By smoothness, we have: $\|\nabla F(\mathbf{x})\|^2 \le 2L[F(\mathbf{x}) F(\mathbf{x}^*)]$
- Note that μ -strong convexity implies PL condition with μ , i.e. $\|\nabla F(\mathbf{x})\| \geq 2\mu [F(\mathbf{x}) F(\mathbf{x}^*)]$. Hence, $\mathbb{E}\|\nabla f(\mathbf{x},\xi)\| \leq 2cL[F(\mathbf{x}) F(\mathbf{x}^*)] \leq \frac{2cL}{\mu}[F(\mathbf{x}) F(\mathbf{x}^*)]$

Practical Implementation

Solutions to the Coordinate Descent exercise