Ideal Abstractions for Well-Structured Transition Systems

Damien Zufferey, Thomas Wies, Thomas A. Henzinger VMCAI'12

Presented by Jatin Arora Shaan Vaidya

CS 735 FM-CAS '18

Outline

- Motivation
- 2 Preliminaries
- 3 Mathematical Foundations of Abstract Interpretation
- 4 Ideal Abstraction
- Ideal KM Algorithm
- 6 Acceleration vs Widening

- Consider a WSTS $T = (S, S_0, \rightarrow, \leq)$
- $Cover(T) = \downarrow Post^*(\downarrow S_0)$

The covering set problem is not decidable in general

• Backward coverability algorithm - not feasible in practice

- Backward coverability algorithm not feasible in practice
- Look for forward coverability algorithms e.g. Karp-Miller

- Backward coverability algorithm not feasible in practice
- Look for forward coverability algorithms e.g. Karp-Miller
- Forward algorithms usually compute the covering set
- More useful characterises a good approximation of the reachability set

- Backward coverability algorithm not feasible in practice
- Look for forward coverability algorithms e.g. Karp-Miller
- Forward algorithms usually compute the covering set
- More useful characterises a good approximation of the reachability set
- When is this decidable?

Preliminaries

- Upward Closure $\uparrow Y$ of a set $Y \subseteq X$ is $\uparrow Y = \{x \in X | \exists y \in Y.y \le x\}$
- Downward Closure $\downarrow Y$ of a set $Y \subseteq X$ is $\downarrow Y = \{x \in X | \exists y \in Y.y \ge x\}$
- An upper bound $x \in X$ of a set $Y \subseteq X$ is such that $\forall y \in Y$. $y \le x$
- The notion of lower bound is defined dually.
- A nonempty set $D \subseteq X$ is called directed if $\forall x, y \in D$, $\exists c \text{ st } c \in D$ and $x \leq c$ and $y \leq c$
- A set $I \subseteq X$ is an ideal of X if I is downward-closed and directed
- Idl(X) denotes the set of all ideals of X also referred to as the *ideal* completion of X

Definitions

 A poset L(≤) is called a lattice if every two elements have a unique lub and glb

$$\mathcal{L} = (L, \leq, \top, \bot, \sqcup, \sqcap)$$

where \sqcup , \sqcap denote the *lub* and *glb* operators \top and \bot denote the greatest and least elements

- Complete lattice all its subsets have a lub and a glb
- A monotone function $f: L \to L$ on a complete lattice L is called *continuous* if for every directed subset D of L, $\sqcup f(D) = f(\sqcup D)$

Kleene's fixed point theorem

Theorem : Given an increasing and continuous function over a complete lattice, $f:L\to L$, its least fixed point $lfp^{\leq}(f)\in L$ exists and is given by $\sqcup\{f^i(\bot)\mid i\in\mathbb{N}\}$

Proof:

- Observe that $f^0(\bot) = \bot \le f^1(\bot)$ and since f is increasing, $\{f^i(\bot)\}$ is a non decreasing sequence
- Therefore $\mathbb{M} = \{\bot, f^0(\bot), f^1(\bot)), \ldots\}$ is a directed subset of L
- Let $m = \sqcup(\mathbb{M})$ and since f is continuous, we have

$$f(\sqcup(\mathbb{M})) = f(m) = \sqcup(f(\mathbb{M}))$$

- Also observe, $f(\mathbb{M}) = \mathbb{M} \setminus \{\bot\}$. But $\sqcup (\mathbb{M}) = \sqcup (\mathbb{M} \setminus \{\bot\})$, therefore, f(m) = m i.e m is a fixed point.
- For any fixed point I, $f^0(\bot) = \bot \le I$ which means $\forall i \ f^i(\bot) \le I$ and therefore $m \le I$

• Any operator op in the concrete domain can be lifted to the abstract domain as $op_A = \alpha \circ op \circ \gamma$

- Concrete Lattice $C = (\mathcal{P}(S), \subseteq, \cup, \cap, S, \emptyset)$
- Abstract Lattice $\mathcal{A} = (A, \leq, \sqcup, \sqcap, \top, \bot)$
- Abstraction function $\alpha: \mathcal{P}(S) \to A$
- Concretization function $\gamma: A \to \mathcal{P}(S)$
- ullet α and γ form a **Galois Connection** iff
 - (i) $S_1 \subseteq \gamma(\alpha(S_1))$ for all $S_1 \subseteq S$
 - (ii) $\alpha(\gamma(x)) \le x$ for all $x \in A$
- Equivalently, $\forall S_1 \subseteq S, x \in A, \alpha(S_1) \le x \Leftrightarrow S_1 \subseteq \gamma(x)$ (Prove!)
- If γ is also injective then (α, γ) is called Galois insertion

• First, let's fix the WSTS under consideration as

$$T=(S,S_0,\rightarrow,\leq)$$

First, let's fix the WSTS under consideration as

$$T = (S, S_0, \rightarrow, \leq)$$

ullet The *concrete* domain ${\mathcal D}$ for our analysis would be the powerset over the states S

$$\mathcal{D} \stackrel{\text{def}}{=} \mathcal{P}(S)(\subseteq, \phi, S, \cup, \cap)$$

First, let's fix the WSTS under consideration as

$$T = (S, S_0, \rightarrow, \leq)$$

ullet The concrete domain ${\mathcal D}$ for our analysis would be the powerset over the states ${\mathcal S}$

$$\mathcal{D} \stackrel{\mathsf{def}}{=} \mathcal{P}(S)(\subseteq, \phi, S, \cup, \cap)$$

• An abstract domain could be $\mathcal{D}_{\uparrow} \stackrel{def}{=} \{ \uparrow X : X \subseteq S \} (\sqsubseteq, \phi, S, \sqcup, \sqcap)$

First, let's fix the WSTS under consideration as

$$T = (S, S_0, \rightarrow, \leq)$$

ullet The concrete domain ${\mathcal D}$ for our analysis would be the powerset over the states ${\mathcal S}$

$$\mathcal{D} \stackrel{\mathsf{def}}{=} \mathcal{P}(S)(\subseteq, \phi, S, \cup, \cap)$$

- An abstract domain could be $\mathcal{D}_{\uparrow} \stackrel{def}{=} \{ \uparrow X : X \subseteq S \} (\sqsubseteq, \phi, S, \sqcup, \sqcap)$
- We have already seen this in action!

• For forward coverability, $\mathcal{D}_{\downarrow} \stackrel{def}{=} \{\downarrow X : X \subseteq S\}(\sqsubseteq, \phi, S, \sqcup, \sqcap)$

- ullet For forward coverability, $\mathcal{D}_{\downarrow}\stackrel{def}{=}\{\downarrow X: X\subseteq S\}(\sqsubseteq,\phi,S,\sqcup,\sqcap)$
- ullet \mathcal{D}_{\downarrow} is a complete lattice (Verify!)

- ullet For forward coverability, $\mathcal{D}_{\downarrow}\stackrel{def}{=}\{\downarrow X: X\subseteq S\}(\sqsubseteq,\phi,S,\sqcup,\sqcap)$
- ullet \mathcal{D}_{\downarrow} is a complete lattice (Verify!)
- $\alpha_{\downarrow}(X) \stackrel{\text{def}}{=} \downarrow X$, $\gamma_{\downarrow}(Y) \stackrel{\text{def}}{=} Y$

- ullet For forward coverability, $\mathcal{D}_{\downarrow}\stackrel{def}{=}\{\downarrow X:X\subseteq S\}(\sqsubseteq,\phi,S,\sqcup,\sqcap)$
- ullet \mathcal{D}_{\downarrow} is a complete lattice (Verify!)
- $\alpha_{\downarrow}(X) \stackrel{\text{def}}{=} \downarrow X$, $\gamma_{\downarrow}(Y) \stackrel{\text{def}}{=} Y$
- $(\alpha_{\downarrow}, \gamma_{\downarrow})$ forms a Galois insertion (Verify!)

- ullet For forward coverability, $\mathcal{D}_{\downarrow}\stackrel{def}{=}\{\downarrow X:X\subseteq S\}(\sqsubseteq,\phi,S,\sqcup,\sqcap)$
- \mathcal{D}_{\downarrow} is a complete lattice (Verify!)
- $\alpha_{\downarrow}(X) \stackrel{\text{def}}{=} \downarrow X$, $\gamma_{\downarrow}(Y) \stackrel{\text{def}}{=} Y$
- $(\alpha_{\downarrow}, \gamma_{\downarrow})$ forms a Galois insertion (Verify!)
- $\bullet \ \textit{post}_{\downarrow} \stackrel{\textit{def}}{=} \alpha_{\downarrow} \circ \textit{post} \circ \gamma_{\downarrow}$

• $\mathcal{P}_{fin}(IdI(S)) = \text{the finite sets of ideals of } S(\leq)$

- $\mathcal{P}_{\mathit{fin}}(\mathit{IdI}(S)) = \mathsf{the}\ \mathsf{finite}\ \mathsf{sets}\ \mathsf{of}\ \mathsf{ideals}\ \mathsf{of}\ S(\leq)$
- $L_1 \sqsubseteq L_2 \stackrel{def}{\Longleftrightarrow} \forall I_1 \in L_1. \exists I_2 \in L_2. I_1 \subseteq I_2$

- $\mathcal{P}_{fin}(IdI(S)) = \text{the finite sets of ideals of } S(\leq)$
- $L_1 \sqsubseteq L_2 \stackrel{def}{\Longleftrightarrow} \forall I_1 \in L_1. \exists I_2 \in L_2. I_1 \subseteq I_2$
- Using $\mathcal{P}_{\mathit{fin}}(\mathit{IdI}(S))$, we intend to represent elements of \mathcal{D}_{\downarrow} (Recall: Erdös Tarski Theorem)

- $\mathcal{P}_{fin}(IdI(S)) = \text{the finite sets of ideals of } S(\leq)$
- $L_1 \sqsubseteq L_2 \stackrel{def}{\Longleftrightarrow} \forall I_1 \in L_1. \exists I_2 \in L_2. I_1 \subseteq I_2$
- Using $\mathcal{P}_{fin}(IdI(S))$, we intend to represent elements of \mathcal{D}_{\downarrow} (Recall: Erdös Tarski Theorem)
- But

 is a quasi order but not a partial order (Verify!)

- $\mathcal{P}_{fin}(IdI(S)) = \text{the finite sets of ideals of } S(\leq)$
- $L_1 \sqsubseteq L_2 \stackrel{def}{\Longleftrightarrow} \forall I_1 \in L_1. \exists I_2 \in L_2. I_1 \subseteq I_2$
- Using $\mathcal{P}_{fin}(IdI(S))$, we intend to represent elements of \mathcal{D}_{\downarrow} (Recall: Erdös Tarski Theorem)
- But

 is a quasi order but not a partial order (Verify!)
- Consider the quotient \mathcal{D}_{IdI} of $\mathcal{P}_{fin}(IdI(S))$ wrt the equivalence relation $\sqsubseteq \cap \sqsubseteq^{-1}$

• Consider the quotient \mathcal{D}_{IdI} of $\mathcal{P}_{fin}(IdI(S))$ wrt the equivalence relation $\Box \cap \Box^{-1}$

- Consider the quotient \mathcal{D}_{IdI} of $\mathcal{P}_{fin}(IdI(S))$ wrt the equivalence relation $\sqsubseteq \cap \sqsubseteq^{-1}$
- Identify each element in $\mathcal{D}_{\textit{IdI}}$ with the set of maximal ideals this set is unique

- Consider the quotient \mathcal{D}_{IdI} of $\mathcal{P}_{fin}(IdI(S))$ wrt the equivalence relation $\sqsubseteq \cap \sqsubseteq^{-1}$
- Identify each element in $\mathcal{D}_{\textit{IdI}}$ with the set of maximal ideals this set is unique
- ullet Let $\mathit{IdealDecomp}: \mathcal{D}_{\downarrow} \longrightarrow \mathcal{D}_{\mathit{IdI}}$

- Consider the quotient \mathcal{D}_{IdI} of $\mathcal{P}_{fin}(IdI(S))$ wrt the equivalence relation $\sqsubseteq \cap \sqsubseteq^{-1}$
- Identify each element in $\mathcal{D}_{\textit{IdI}}$ with the set of maximal ideals this set is unique
- Let $IdealDecomp: \mathcal{D}_{\downarrow} \longrightarrow \mathcal{D}_{IdI}$
- $\mathcal{D}_{\mathit{IdI}}(\sqsubseteq,\phi,\top,\sqcup,\sqcap)$ is a complete lattice
- Let $\alpha = IdealDecomp \circ \alpha_{\downarrow}$ and $\gamma(L) = \bigcup_{I \in L} I$

- Consider the quotient \mathcal{D}_{IdI} of $\mathcal{P}_{fin}(IdI(S))$ wrt the equivalence relation $\sqsubseteq \cap \sqsubseteq^{-1}$
- Identify each element in $\mathcal{D}_{\textit{IdI}}$ with the set of maximal ideals this set is unique
- Let $IdealDecomp: \mathcal{D}_{\downarrow} \longrightarrow \mathcal{D}_{IdI}$
- $\mathcal{D}_{IdI}(\sqsubseteq, \phi, \top, \sqcup, \sqcap)$ is a complete lattice
- Let $\alpha = IdealDecomp \circ \alpha_{\downarrow}$ and $\gamma(L) = \bigcup_{I \in L} I$
- (α, γ) form a Galois Insertion between the concrete domain $\mathcal{P}(\mathcal{S})$ and the abstract domain \mathcal{D}_{IdI}
- $post_{IdI} = \alpha \circ post \circ \gamma$

•
$$F_{IdI}(L) = \alpha(S_0) \sqcup post_{IdI}(L)$$

- $F_{IdI}(L) = \alpha(S_0) \sqcup post_{IdI}(L)$
- The Ifp of the sequence $\{F^i_{ldl}(\bot)\}$ is exactly the ideal decomposition of the cover set

- $F_{IdI}(L) = \alpha(S_0) \sqcup post_{IdI}(L)$
- The Ifp of the sequence $\{F^i_{ldl}(\bot)\}$ is exactly the ideal decomposition of the cover set
- Effectivity Conditions for checking for Ifp:
 - \bullet F_{IdI} must be computable
 - $I_1 \sqsubseteq I_2$ must be decidable $(F_{IdI}(I) \sqsubseteq I)$
- Height of D_{IdI} : Not necessarily finite \Rightarrow

- $F_{IdI}(L) = \alpha(S_0) \sqcup post_{IdI}(L)$
- The Ifp of the sequence $\{F^i_{IdI}(\bot)\}$ is exactly the ideal decomposition of the cover set
- Effectivity Conditions for checking for Ifp:
 - \bullet F_{IdI} must be computable
 - $I_1 \sqsubseteq I_2$ must be decidable $(F_{IdI}(I) \sqsubseteq I)$
- Height of D_{IdI} : Not necessarily finite \Rightarrow
- Stabilization of $\{F^i_{ldl}(\perp)\}$ is still not guaranteed

Solution: Widening

- Let $\nabla : \mathcal{P}(X) \rightharpoonup X$ be a partial function with the following conditions:
 - Covering : For all $Y \subseteq X$, if $\nabla(Y)$ is defined then for all $y \in Y, y \subseteq \nabla(Y)$
 - Termination : For every ascending chain $\{x_i\}_{i\in\mathbb{N}}$ in $X(\subseteq)$, the sequence $y_0=x_0,y_i=\nabla(\{x_0,\ldots,x_i\})$, is well-defined and an ascending stabilizing chain

• We will construct the widening operator ∇ for abstract domain \mathcal{D}_{IdI} using the widening operator ∇_S for IdI(S)

- We will construct the widening operator ∇ for abstract domain \mathcal{D}_{IdI} using the widening operator ∇_S for IdI(S)
- ∇_S is domain-specific for each class of WSTS

- We will construct the widening operator ∇ for abstract domain \mathcal{D}_{IdI} using the widening operator ∇_S for IdI(S)
- \bullet ∇_S is domain-specific for each class of WSTS
- Lifting the widening operator from a base domain to its powerset domain is not easy to do in general

- We will construct the widening operator ∇ for abstract domain \mathcal{D}_{IdI} using the widening operator ∇_S for IdI(S)
- ∇_S is domain-specific for each class of WSTS
- Lifting the widening operator from a base domain to its powerset domain is not easy to do in general
- Assume $S(\leq)$ is a bqo (not just a wqo)

- We will construct the widening operator ∇ for abstract domain \mathcal{D}_{IdI} using the widening operator ∇_S for IdI(S)
- ullet $abla_S$ is domain-specific for each class of WSTS
- Lifting the widening operator from a base domain to its powerset domain is not easy to do in general
- Assume $S(\leq)$ is a bqo (not just a wqo)
- Advantage: Now, IdI(S) and $\mathcal{P}(S)$ are boos

• Given ∇_S is a monotonic widening operator over IdI(S) and $S(\leq)$ is a bqo

- Given ∇_S is a monotonic widening operator over IdI(S) and $S(\leq)$ is a bqo
- For a finite ascending chain $C = \{L_i\} \subseteq \mathcal{D}_{IdI}$ define $\nabla: \mathcal{P}(\mathcal{D}_{IdI}) \rightharpoonup \mathcal{D}_{IdI}$: $\nabla(\{L_0\}) = L_0$

$$\nabla(\{L_0,\ldots,L_k\})=$$

$$\nabla(\{L_0,\ldots,L_k\})=$$

$$\nabla(\{L_0,\ldots,L_{k-1}\})\sqcup\{\nabla_S(\mathcal{I})\mid\mathcal{I}\text{ is a maximal ascending chain in }\nabla(\{L_0,\ldots,L_{k-1}\})\sqcup\{\nabla_S(\mathcal{I})\mid\mathcal{I}\text{ is a maximal ascending chain }\nabla(\{L_0,\ldots,L_{k-1}\})\sqcup\{\nabla_S(\mathcal{I})\mid\mathcal{I}\text{ is a maximal ascending }\nabla(\{L_0,\ldots,L_{k-1}\}\})\sqcup\{\nabla_S(\mathcal{I})\mid\mathcal{I}\text{ is a maximal ascending }\nabla(\{L_0,\ldots,L_{k-1}\})\sqcup\{\nabla_S(\mathcal{I})\mid\mathcal{I}\text{ is a maximal ascending }\nabla(\{L_0,\ldots,L_{k-1}\}\})\sqcup\{\nabla_S(\mathcal{I})\mid\mathcal{I}\text{ is a maximal ascending }\nabla(\{L_0,\ldots,L_{k-1}\})\sqcup\{\nabla_S(\mathcal{I})\mid\mathcal{I}\text{ is a maximal ascending }\nabla(\{L_0,\ldots,L_{k-1}\}\})\sqcup\{\nabla_S(\mathcal{I},\ldots,L_{k-1}\}\}\sqcup\{\nabla_S(\mathcal{I})\mid\mathcal{I}\text{ is a maximal ascending }\nabla(\{L_0,\ldots,L_{k-1}\}\})\sqcup\{\nabla_S(\mathcal{I},\ldots,L_{k-1}\}\}\sqcup\{\nabla_S(\mathcal{I},\ldots,L_{k-1}\}\}\sqcup\{\nabla_S(\mathcal{I},\ldots,L_{k$$

$$\nabla(\{L_0,\ldots,L_{k-1}\})\sqcup L_k\}$$

Widening: Proof

① ∇ is a widening operator for the domain \mathcal{D}_{IdI}

Widening: Proof

- lacktriangledown is a widening operator for the domain \mathcal{D}_{IdI}
- Covering Property: Easy to Verify
- Termination Condition
 - Assume there is an ascending chain L_i for which $W_0 = \{L_0\}, W_{i+1} = \nabla(L_0, \dots L_{i+1})$ is not stabilising
 - Consider $I_i \in W_i$, st $I_i \not\subset I$ for all $I \in W_{i-1}$
 - $\{I_i\}$ has an ascending subsequence in $IdI(S)(\subseteq)$ (bqo!)
 - Consider the sequence $J_0 = I_{i_0}$ and $J_{k+1} = \nabla_S(\{I_{i_0}, \dots I_{i_k}\})$.
 - $\{J_i\}$ stabilises, say $J_j = J_{j+1}$ where j is the index where it does
 - $\bullet \ \textit{I}_{\textit{i}_{j+1}} \subseteq \textit{J}_{\textit{j}+1} = \textit{J}_{\textit{j}} \subseteq \textit{I} \ \text{st} \ \textit{I} \in \textit{W}_{\textit{i}_{\textit{j}}}$

• The stabilisation of the sequence $\{y_i\}_{i\in\mathbb{N}}$ defined earlier is not easy to verify in practice

- The stabilisation of the sequence $\{y_i\}_{i\in\mathbb{N}}$ defined earlier is not easy to verify in practice
- This is because it is possible that in the sequence, $y_i = y_{i+1}$ but the sequence has not stabilised yet

- The stabilisation of the sequence $\{y_i\}_{i\in\mathbb{N}}$ defined earlier is not easy to verify in practice
- This is because it is possible that in the sequence, $y_i = y_{i+1}$ but the sequence has not stabilised yet
- We therefore define our analysis in terms of the widening sequence $\{W_i\}_{i\in\mathbb{N}}$ as follows:

$$W_0 = \phi$$

$$W_{i+1} = \nabla(\{W_0, \dots, W_i, F_{IdI}(W_i) \sqcup W_i\})$$

- The stabilisation of the sequence $\{y_i\}_{i\in\mathbb{N}}$ defined earlier is not easy to verify in practice
- This is because it is possible that in the sequence, $y_i = y_{i+1}$ but the sequence has not stabilised yet
- We therefore define our analysis in terms of the widening sequence $\{W_i\}_{i\in\mathbb{N}}$ as follows:

$$W_0 = \phi$$

$$W_{i+1} = \nabla(\{W_0, \dots, W_i, F_{IdI}(W_i) \sqcup W_i\})$$

• Here, $W_i = W_{i+1}$ would also imply that $W_{i+2} = \nabla(\{W_0, \dots, W_i, F_{IdI}(W_i) \sqcup W_i\}) = W_i$ and similarly for further iterates

Cover(T)

$$Cover(T) \subseteq \bigcup_{i \in \mathbb{N}} \{W_i\}$$

• The covering property of the widening operator means that $W_i \supseteq F^i_{ldl}(\bot)$ at each step of the sequence

Completion of a WSTS

• Let $S = (X, \xrightarrow{\Sigma}, \leq)$ be a labeled WSTS. The completion of S is the labeled transition system $\widehat{S} = (IdI(X), \xrightarrow{\Sigma}, \subseteq)$ such that $I \xrightarrow{a} J$ if, and only if,

 $J \in IdealDecomp(\downarrow Post_{\mathcal{S}}(I, a))$

Levels

An infinite sequence of ideals $I_0, I_1 \cdots \in IdI(X)$ is an acceleration candidate if $I_0 \subset I_1 \subset \ldots$ is strictly increasing.

Definition

The n^{th} level of Ideals(X) is inductively defined as

$$Acc_0(X) = Ideals(X)$$

$$Acc_n(X) = \{\bigcup_{i \in \mathbb{N}} I_i : I_0, I_1, \dots \in Acc_{n-1}(X)\}$$

where I_0, I_1, \ldots is an acceleration candidate in $Acc_{n-1}(X)$ Note that $Acc_n(X) \subseteq Acc_{n-1}(X)$. We say that Idl(X) has finitely many levels if there exists n such that $Acc_n(X) = \emptyset$.

$$\begin{aligned} \mathsf{Ideals}(\mathbb{N}^d) &= (\mathbb{N} \cup \{\omega\})^d \\ \mathit{Acc}_n(\mathbb{N}^d) &= \{I \in \mathbb{N}^d_\omega : I \text{ has at least } n \text{ occurrences of } \omega\} \end{aligned}$$

Acceleration in WSTS

Let $\mathcal{S}=(X,\stackrel{\Sigma}{\to},\leq)$ be a WSTS st $\widehat{\mathcal{S}}$ is deterministic. Let $w\in\Sigma^+$ and $I\in\operatorname{Ideals}(X)$ The acceleration of I under w is defined as

$$w^{\infty}(I) \stackrel{\text{def}}{=} \begin{cases} \bigcup_{k \in \mathbb{N}} w^{k}(I) \text{ if } I \subset w(I) \\ I & \text{otherwise} \end{cases}$$

Note that $w^{\infty}(I)$ is also an ideal

Let $\mathcal{S}=(X,\stackrel{\Sigma}{\rightarrow},\leq)$ be a WSTS such that \mathcal{S} has strong monotonicity, and $\widehat{\mathcal{S}}$ is deterministic and has strict strong monotonicity. For every $I\in \mathrm{Ideal}(X)$ and $w\in \Sigma^+$,

- if $Post_{\widehat{S}}(I, w) \neq \phi$ and $I \in Acc_n(X)$ for some $n \in \mathbb{N}$, then $w(I) \in Acc_n(X)$
- ② if $I \subset w(I)$ and $I \in Acc_n(X)$ for some $n \in \mathbb{N}$, then $w^{\infty}(I) \in Acc_{n+1}(X)$

The Ideal Karp Miller Algorithm

Algorithm 4.1: Ideal Karp-Miller algorithm.

```
1 initialize a tree \mathcal{T} with root r:\langle I_0,0\rangle
2 while \mathcal{T} contains an unmarked node c:\langle I,n\rangle do
3 if c has an ancestor c':\langle I',n'\rangle s.t. I'=I then mark c
4 else
5 if c has an ancestor c':\langle I',n'\rangle s.t. I'\subset I
6 and n'=n/* no acceleration occurred between c' and c */ then
7 w\leftarrow sequence of labels from c' to c
8 replace c:\langle I,n\rangle by c:\langle w^\infty(I),n+1\rangle
9 for a\in\Sigma do
10 if a(I) is defined then
11 add arc labeled by a from c to a new child d:\langle a(I),n\rangle
12 mark c
13 return \mathcal{T}
```

Conditions for termination

- ullet ${\cal S}$ has strong monotonicity
- ullet $\widehat{\mathcal{S}}$ is deterministic and has strict strong monotonicity
- Ideals(X) has finitely many levels

Acceleration vs Widening

Summary

- We know that computing the cover set is undecidable in general because it decides boundedness
- We looked at a class of WSTS where we can compute the cover set using the notion of acceleration and levels
- We also looked at another work around that gives good approximations to cover set in practice with mild constraints on WSTS