Diagonal Method and Non-Computability

The diagonal method is used to prove the existence of non-computable functions. For any enumeration of computable functions ϕ_0 , ϕ_1 , ϕ_2 , ..., we can construct a function f that differs from each ϕ_i at position i:

```
f(n) = \{
\phi_n(n) + 1 \quad \text{if } \phi_n(n) \downarrow
0 \quad \text{if } \phi_n(n) \uparrow
\}
```

This function f is total but not computable, as it differs from every computable function ϕ_i at position i.

The SMN Theorem (Parametrization Theorem)

For any m,n \geq 1, there exists a total computable function s(m,n): $N^{m+1} \rightarrow N$ such that for all $e \in N$, $\bar{x} \in N^m$, $\bar{y} \in N^n$:

$$\phi_{\mathrm{e}^{m+n}}(\bar{x},\bar{y}) = \phi_{\mathrm{s}}(^{m},^{n})(_{\mathrm{e}},\bar{x})^{n}(\bar{y})$$

Key Applications

1. **Parameter Fixing**: Given a computable function g(x,y), there exists a total computable function s such that:

```
\varphi_s(x)(y) = g(x,y)
```

- 2. Reduction Functions: Often used to create reduction functions by:
 - Finding appropriate g(x,y)
 - Using SMN theorem to obtain s
 - Proving s is the required reduction function

Example Application

To show there exists s: $N^2 \rightarrow N$ such that $W_s(x,y) = \{z : x * z = y\}$:

1. Define helper function:

```
f(x,y,z) = \{
0 if x * z = y
```

```
    otherwise
}
```

- 2. By SMN theorem, get s: $N^2 \rightarrow N$ where:
 - $\phi_s(x,y)(z) = f(x,y,z)$
 - Therefore, $z \in W_s(x,y) \Leftrightarrow x * z = y$

Universal Function

The universal function $\Psi_u \colon N^2 \to N$ is defined as:

$$\Psi_u(e,x) = \phi_e(x)$$

This represents an interpreter that can simulate any computable function given its index. A key application is replacing $\phi_x(y)$ with $\Psi_u(x,y)$ when writing semicharacteristic functions:

- Instead of: $sc_a(x) = (... \phi_x(x))$
- Write: $sc_a(x) = (... \Psi_u(x,x))$