

번개 발표

그래프신경망을 활용한 이상 징후 탐지 연구

GNN model-based Anomaly Detection using Disaster Knowledge Graph

Seonhyeong Kim, Ph. D. Candidate Professor: Young-Woo Kwon

School of Computer Science and Engineering, Kyungpook National University, Korea

Background & Problem

- The frequency of disaster occurrences is increasing, resulting in more *property losses and casualties*.
- Understanding and analyzing the relationship between structured and unstructured data related to disasters
 with different sources and formats is essential.

Purpose

- Generate time-series disaster knowledge graphs to understand the flow of disasters and detect anomalies.
- Understand the disaster patterns for searching similar disasters through graph machine learning.

System Overview

- Generate knowledge graph with the relationship between data based on location and time of the generation.
- Perform risk calculation and pattern analysis with graphs stored in in-memory database.
- Apply Graph Neural Network(GNN) models with graphs.
- Establish a strategy to detect and respond to disasters.

Fig. System Analysis Process

Graph Convolutional Network, GCN

- The *degree centrality* and *attribute values* of each graph node and edge can be expressed in the form of a vector through vector embedding.
- Outputs probability distributions for input graphs and *determines final classification*.

SAmple and aggreGatE, GraphSAGE

- It leverages aggregating information from *local and global neighborhoods*, enabling effective representation learning for graph classification.
- Performs multiple iterations of the update rule to refine node representations.

Graph ATtention network, GAT

- It allows each node to weigh the importance of its neighbors during information propagation.
- Train the model with weights between nodes.

Dataset

- Select 50 earthquakes to generate disaster knowledge graphs (Ten-year period from 2013 to 2023, Scale ≥ 3.0, Magnitude > 1.0)
- Generate **120 graphs for each earthquake** at 1-minute intervals for an hour before and after.
- Set label to dataset.
 - 'non_eq': graphs created prior to the earthquake.
 - 'eq': graphs correspond to when the earthquake occurred with fore/after shock.
 - 'after_eq': graphs up to 10 minutes after the earthquake.

Tab. Graph Dataset

M.	Scale	Number of							
		Disaster	Graphs	Nodes	Edges	'eq'	'non_eq'		
>1	≥ 3	40	4800	524841	524840	1025	3775		

Results

• Model Performance results (75% train dataset, 20% test dataset, 5% validation dataset.)

Model	TP	FP	TN	FN	Acc.	Pre.	Recall	F1-score
GCN	70	8	747	135	85.10	87.22	66.54	70.37
GSG	80	33	722	125	83.54	78.02	67.33	70.23
GAT	67	14	740	138	84.06	82.99	65.35	68.66
K-means	69	17	738	136	84.06	82.34	65.70	69.02

Disaster Detection Results

Model	1-min	2-min	3-min	Over 4-min	Non-detected
GCN	30%	50%	0%	10%	10%
GSG	40%	40%	10%	10%	0%
GAT	30%	20%	0%	40%	10%
K-means	30%	50%	0%	20%	0%

Contribution to ERC

- Anomaly Detection & Pattern Analysis
 - Create knowledge graphs *using system monitoring data* in time-series.
 - Analyze the patterns of monitoring data to *detect anomaly* in system.

Future Work

- Pattern Analysis & Classify Similar Disaster
 - Analyze disaster patterns to detect and *classify similar disasters*.
 - Search disasters similar to past disasters and establish *recovery strategies*.

Thank you

Q & A

