Universidad Latina de Costa Rica

BISOF-18 Sistemas Operativos II

Eduardo Domínguez

Análisis de Caso #3

Laboratorio de Contenedores con Docker

Introducción

El presente documento expone un análisis sobre la implementación de un laboratorio práctico utilizando Docker. Este laboratorio busca reforzar los conceptos de sistemas operativos y virtualización ligera mediante el uso de contenedores. La práctica tiene como objetivo principal mostrar cómo los contenedores permiten la ejecución aislada de aplicaciones, la portabilidad entre entornos y la eficiencia en el uso de recursos del sistema.

Desarrollo

Diseño del Laboratorio

El laboratorio se compone de múltiples contenedores creados a partir de imágenes oficiales de Docker. Cada contenedor aísla un servicio o aplicación específica, lo que permite simular un entorno real de despliegue. Los contenedores son gestionados mediante comandos básicos de Docker para su creación, ejecución, monitoreo y eliminación.

Contenedores y Servicios

En el laboratorio se desplegaron contenedores con distintos servicios como servidores web, bases de datos y aplicaciones simples. La independencia de cada contenedor asegura que los fallos en uno no afecten el funcionamiento de los demás, reflejando así la robustez de la arquitectura basada en contenedores.

Seguridad

La seguridad en el laboratorio se garantiza a través del aislamiento proporcionado por Docker. Cada contenedor opera en su propio espacio de usuario y red virtual. Adicionalmente, se recomienda limitar los privilegios de los contenedores, aplicar políticas de firewall y mantener las imágenes actualizadas para reducir vulnerabilidades.

Escalabilidad

El laboratorio es escalable al permitir la creación de múltiples instancias de un mismo servicio en cuestión de segundos. Esto muestra cómo las aplicaciones en contenedores pueden responder a mayores demandas de carga al replicar contenedores y distribuir el tráfico mediante balanceadores de carga externos como HAProxy.

Responsabilidades

El administrador del laboratorio es responsable de instalar Docker, configurar el entorno de red y gestionar el ciclo de vida de los contenedores. Los estudiantes o usuarios deben utilizar los contenedores de acuerdo con las instrucciones, desplegar sus aplicaciones de forma adecuada y asegurar el uso responsable de los recursos.

Riesgos y Mitigación

- Consumo excesivo de recursos por múltiples contenedores simultáneos. Mitigación: monitorear uso de CPU/RAM. - Vulnerabilidades en imágenes descargadas. Mitigación: usar imágenes oficiales y actualizadas. - Problemas de red entre contenedores. Mitigación: configurar redes bridge personalizadas y revisar reglas de firewall. - Pérdida de datos en contenedores volátiles. Mitigación: usar volúmenes persistentes.

Comparación con Entornos Reales

En entornos reales, Docker se utiliza en empresas tecnológicas y de servicios para desplegar microservicios, automatizar pipelines de integración continua (CI/CD) y garantizar portabilidad

entre ambientes de desarrollo, pruebas y producción. Comparado con la virtualización tradicional basada en máquinas virtuales, Docker ofrece un arranque más rápido y menor consumo de recursos, lo que lo hace ideal para despliegues ágiles.

Conclusiones

La implementación del laboratorio con Docker refuerza el aprendizaje de conceptos de sistemas operativos y virtualización ligera. La práctica demuestra cómo los contenedores simplifican el despliegue de aplicaciones, aumentan la eficiencia en el uso de recursos y facilitan la escalabilidad. Asimismo, resalta la importancia de la seguridad y la administración adecuada para garantizar el correcto funcionamiento de los entornos basados en contenedores.