Plan du cours

l.	Limites de fonctions	3
	1)Limite en l'infini	3
	L(ian) ite finie et asymptote horizontale	3
	L(ibn) ite infinie	3
	L(ia) ite des fonctions de références	4
	2)Limite en un point	5
	L(ian)ite infinie et asymptote verticale	5
	L(lbn)ite à gauche et à droite	6
	L(iα)ite finie	6
	L(idn)ite des fonctions de références	7
н.	Opération sur les limites	7
	1)Limite d'une somme	7
	2)Limite d'un produit	7
	3)Limite d'un quotient	8
III.	Continuité d'une fonction	9
	1)Notion intuitive de continuité	9
	2)Continuité des fonctions de références	9
	3)Théorème des valeurs intermédiaires	11
	(a) général	11
	(b) des fonctions strictement monotones	

Activité d'introduction 1 : Notion de limites, notion d'asymptote

On donne les représentations des fonctions cube $x \mapsto x^3$, inverse au carré $x \mapsto \frac{1}{x^2}$ et racine carrée $x \mapsto \sqrt{x}$.

- 1) En lisant les courbes, donner les limites suivantes : $\lim_{x \to +\infty} x^3$ et $\lim_{x \to -\infty} x^3$
- 2) (a) Donner les limites suivantes : $\lim_{x \to +\infty} \frac{1}{x^2}$ et $\lim_{x \to -\infty} \frac{1}{x^2}$.
- **(b)** Comment se comporte la courbe en $+\infty$ et en $-\infty$ de $\frac{1}{x^2}$ par rapport à l'axe des abscisses ? On dit alors que l'axe des abscisses est asymptote à la courbe en $+\infty$.
- 3) (a) Donner la limite suivante : $\lim_{x\to 0} \frac{1}{x^2}$
- **(b)** Comment se comporte la courbe en 0 de $\frac{1}{x^2}$ par rapport à l'axe des ordonnées? On dit alors que l'axe des ordonnées est asymptote à la courbe en 0.
- **4)** Donner la limite suivante : $\lim_{x \to +\infty} \sqrt{x}$.

Activité d'introduction 2 : Faire des opérations sur les limites

Soit la fonction f définie sur \mathbb{R} par : $f(x) = x^2 + 2x - 3$.

1) Donner les limites suivantes : $\lim_{x\to +\infty} x^2$ et $\lim_{x\to +\infty} 2x-3$. Pourquoi peut-on affirmer que : $\lim_{x\to +\infty} f(x)=+\infty$.

2) Donner les limites suivantes : $\lim_{x\to -\infty} x^2$ et $\lim_{x\to -\infty} 2x - 3$. Peut-on en déduire la limite de f en $-\infty$? Pourquoi?

3) Vérifier que pour $x \neq 0$, on a : $f(x) = x^2 \left(1 + \frac{2}{x} - \frac{3}{x^2} \right)$. Donner la limite $\lim_{x \to -\infty} 1 + \frac{2}{x} - \frac{3}{x^2}$. Peut-on en déduire la limite de f en $-\infty$? Pourquoi?

I. Limites de fonctions

1) Limite en l'infini

(a) Limite finie et asymptote horizontale

Définition Asymptote horizontale

Soit a un réel.

Dire que f(x) tend vers a quand x tend vers $-\infty$ ou $+\infty$ signifie que f(x) est aussi proche que l'on veut de a, pour x suffisamment grand (ou petit).

On écrit
$$\lim_{x \to -\infty} f(x) = a$$
 ou $\lim_{x \to +\infty} f(x) = a$

On dit que la droite d'équation y=a est asymptote à la courbe en $-\infty$ ou en $+\infty$.

Exemples: Soient $f(x) = 3 + \frac{1}{x}$ définie sur $\mathbb{R} \setminus \{0\}$ et $g(x) = tan^{-1}(x)$ définie sur \mathbb{R} :

(b) Limite infinie

Définition

On dit que la fonction f admet pour limite $+\infty$ en $+\infty$, si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

On écrit alors que $\lim_{x \to +\infty} f(x) = +\infty$

Remarque : On définit de façon analogue :

$$\lim_{x \to +\infty} f(x) = -\infty$$
 ; $\lim_{x \to -\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$

Exemples: Soient $f(x) = -0, 5x^3 + 1, 5$ et $g(x) = -x^5 + 4x$ définies sur \mathbb{R} :

Remarques:

- Une fonction qui tend vers $+\infty$ lorsque x tend vers $+\infty$ n'est pas nécessairement croissante
- Il existe des fonctions qui ne possèdent pas de limite en l'infini. C'est le cas des fonctions sinusoïdales.

(c) Limite des fonctions de références

f(x) =	$\frac{1}{x}$	x^2	<i>x</i> ³	X ⁿ	\sqrt{X}	e ^x	e ^{ax}
$\lim_{x\to -\infty} f(x) =$	0	$+\infty$	$-\infty$	$+\infty$ si n pair $-\infty$ si n impair	$+\infty$	non définie	$0 \text{ si } a > 0$ $-\infty \text{ si } a < 0$
$\lim_{x\to +\infty} f(x) =$	0	$+\infty$	$+\infty$	+∞	$+\infty$	$+\infty$	$+\infty$ si $a > 0$ 0 si $a < 0$

2) Limite en un point

(a) Limite infinie et asymptote verticale

Définition

Soit un réel a qui appartient ou est une borne de lensemble de définition de f. Dire que f(x) tend vers $+\infty$ quand x tend vers a signifie que f(x) prend des valeurs aussi grandes que l'on veut pour x très proche de a.

On écrit
$$\lim_{x \to a} f(x) = +\infty$$

On dit que la droite déquation x = a est asymptote à la courbe.

Remarques:

- De manière analogue, $\lim_{x \to a} f(x) = -\infty$ si f(x) prend des valeurs négatives de plus en plus grandes en valeur absolue quand x est très proche de a.
- Il peut y a voir une limite à droite et à gauche.

Exemples: Soient $g(x) = \frac{2}{(x-4)^2}$ définie sur $\mathbb{R} \setminus \{4\}$ et $f(x) = \frac{1}{x-3}$ définie sur $\mathbb{R} \setminus \{3\}$:

(b) Limite à gauche et à droite

Exemple : Considérons la fonction inverse définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$

La fonction f admet des limites différentes en 0 selon que : x > 0 (soit 0^+) ou x < 0 (soit 0^-).

Déterminons ces 2 limites :

• Si x > 0: (on parle de limite à droite de 0) $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty \text{ ou } \lim_{x \to 0^+} f(x) = +\infty$

• Si x < 0: (on parle de limite à gauche de 0) $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty \text{ ou } \lim_{\substack{x \to 0^{-} \\ x < 0}} f(x) = -\infty$

Remarque : Les limites à gauche et à droite de $\frac{1}{X}$ en 0 ne sont pas égales, on dit donc que la limite de la fonction f en 0 n'existe pas.

(c) Limite finie

Définition

Soit une fonction définie sur un intervalle I. Soient a et ℓ deux réels. On dit que f admet ue limite ℓ lorsque x tend vers a si les valeurs de f(x) sont aussi proches de ℓ que l'on veut quand x est très proche de a.

On écrit : $\lim_{x \to a} f(x) = \ell$

Exemple : Soit la fonction f définie sur $\mathbb R$ par $f(x)=x^3-5$

Quand x prend des valeurs de plus en plus proches de 2, x^3 est très proche de 8, donc f(x) prend des valeurs de plus en plus proches de f(2) = 3.

Donc, $\lim_{x\to 2} f(x) = 3$.

(d) Limite des fonctions de références

f(x) =	$\frac{1}{x}$	$\frac{1}{x^2}$	$\frac{1}{x^n}$	$\frac{1}{\sqrt{\chi}}$
$\lim_{\substack{x \to 0 \\ x > 0}} f(x) =$	$+\infty$	$+\infty$	$+\infty$	$+\infty$
$\lim_{\substack{x \to 0 \\ x < 0}} f(x) =$	$-\infty$	$+\infty$	$+\infty$ si n pair $-\infty$ si n im- pair	non définie

Opération sur les limites П.

f et g désignent deux fonctions, ℓ et ℓ' sont deux réels. α peut désigner $+\infty$, $-\infty$ ou un nombre réel.

1) Limite d'une somme

$\lim_{x \to \alpha} f(x) =$	ℓ	l	ℓ	$+\infty$	$-\infty$	$+\infty$
$ \lim_{x \to \alpha} g(x) = $	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x\to\alpha}[f(x)+g(x)]=$	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I.*

^{*}Forme indéterminée : On ne peut pas prévoir la limite.

Exemples : Déterminer les limites suivantes :

(a)
$$\lim_{x \to +\infty} x + 3 + \frac{1}{x} =$$
?

On a:
$$\lim_{x \to +\infty} x + 3 = +\infty$$
 et $\lim_{x \to +\infty} \frac{1}{x} = 0$
Par somme, $\lim_{x \to +\infty} x + 3 + \frac{1}{x} = +\infty$

Par somme,
$$\lim_{x \to +\infty} x + 3 + \frac{1}{x} = +\infty$$

(b)
$$\lim_{x \to -\infty} x^2 + x - 3 =$$
?
On a : $\lim_{x \to -\infty} x^2 = +\infty$ et $\lim_{x \to -\infty} x - 3 = -\infty$

Donc, $\lim_{x \to -\infty} x^2 + x - 3 = \text{est une forme}$ indéterminée, on ne peut donc rien conclure.

Limite d'un produit

$\lim_{x \to \alpha} f(x) =$	$\ell \neq 0$	l	∞	0
$\lim_{x\to\alpha}g(x)=$	ℓ'	∞	∞	∞
$\lim_{x \to \alpha} [f(x) \times g(x)] =$	$\ell imes \ell'$	∞	∞	F.I.

 ∞ désigne $+\infty$ ou $-\infty$: on applique la règle des signes pour déterminer si le produit est positif ou négatif.

Exemples : Déterminer les limites suivantes :

(a)
$$\lim_{x \to -\infty} (x-3)(5+x^2) = ?$$

On a:
$$\lim_{x \to -\infty} x - 3 = -\infty$$
 et $\lim_{x \to -\infty} x^2 = +\infty$ donc $\lim_{x \to -\infty} 5 + x^2 = +\infty$

Par produit,
$$\lim_{x\to-\infty} (x-3)(5+x^2) = -\infty$$

(b)
$$\lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) \sqrt{x} = ?$$

On a: $\lim_{x \to +\infty} \frac{1}{x} = 0$ donc $\lim_{x \to +\infty} \frac{1}{x} - 1 = -1$ et $\lim_{x \to +\infty} \sqrt{x} = +\infty$

Par produit,
$$\lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) \sqrt{x} = -\infty$$

3) Limite d'un quotient

$\lim_{x\to\alpha}f(x)=$	ℓ	$\ell \neq 0$	ℓ	∞	8	O
$ \lim_{x \to \alpha} g(x) = $	$\ell' \neq 0$	0	∞	ℓ	8	0
$ \lim_{x \to \alpha} \frac{f(x)}{g(x)} = $	$rac{\ell}{\ell'}$	∞	0	∞	F.I.	F.I.

Exemples : Déterminer les limites suivantes :

(a)
$$\lim_{\substack{x \to 3 \\ x < 3}} \frac{1 - 2x}{x - 3} =$$
?

On a:
$$\lim_{\substack{x \to 3 \\ x < 3}} 1 - 2x = -5$$
 et

$$\lim_{\substack{x \to 3 \\ x < 3}} x - 3 = 0^{-}$$

Par quotient,
$$\lim_{\substack{x \to 3 \\ x \to 3}} \frac{1-2x}{x-3} = +\infty$$

(b)
$$\lim_{x \to 0^+} \frac{7 - x}{\sqrt{x}} = ?$$

On a : $\lim_{x \to 0^+} 7 - x = 7$
et $\lim_{x \to 0^+} \sqrt{x} = 0^+$

Par quotient,
$$\lim_{x\to 0^+} \frac{7-x}{\sqrt{x}} = +\infty$$

III. Continuité d'une fonction

La notion de continuité d'une fonction f est très importante, car elle permet, entre autre, de déterminer l'existence de solution(s) pour des équations du type f(x) = k.

1) Notion intuitive de continuité

Définition

On considère une fonction définie sur un intervalle I de \mathbb{R} .

On dit que f est continue sur l si on peut tracer sa courbe représentative sans lever le crayon.

Exemples et contre-exemples :

2) Continuité des fonctions de références

Propriété

Soit f une fonction définie sur un intervalle I. Soit $a \in I$.

f est continue en a si, et seulement si, $\lim_{x\to a} f(x) = f(a)$.

Remarque: jusqu'à présent la flèche oblique dans un tableau de variation traduisait la stricte monotonie d'une fonction, on convient à partir de maintenant qu'elle traduit aussi la continuité de la fonction sur l'intevalle considéré.

Chapitre 1 : Limites de fonctions

3) Théorème des valeurs intermédiaires

Activité d'introduction : On donne le tableau de variations de la fonction f.

Lire dans le tableau de variation de la fonction f le ou les solution(s) des équations suivantes :

- 1) f(x) = 18 sur l'intervalle -1;1[
- f(-1)=-1 et f(1)=19 Donc, 18 est compris entre -1 et 19. L'équation f(x)=18 possède une solution dans l'intervalle]-1;1[.
- **2)** f(x) = 0 sur l'intervalle]-1;1[
- f(-1)=-1 et f(1)=19 Donc, 0 est compris entre -1 et 19. L'équation f(x)=0 possède une solution dans l'intervalle]-1;1[.
- **3)** f(x) = 0 sur l'intervalle [-4;1[

0 est compris entre -1 et 3, entre 3 et -1 et entre -1 et 19. L'équation f(x) = 0 possède une solution dans chacun des intervalles suivants]-4; -3[,]-3; -1[et]-1;1[.

4) f(x) = -3 sur l'intervalle]-4;1[

L'équation f(x) = -3 ne possède pas de solution.

5) f(x) = 3 sur l'intervalle -4;1[

L'équation f(x) = 3 possède 2 solutions : l'une égale à -3, l'autre comprise dans l'intervalle]-1;1[.

Comme nous l'avons dit en introduction, la continuité a une application très importante : la détermination de l'existence de solutions à pour des équations du type f(x) = k.

(a) Cas général

Propriété

Soit f une **fonction continue** sur un intervalle [a; b]. Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet **au moins une solution** sur l'intervalle [a; b].

Exemple:

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 4x^2 + 6$.

Démontrer que l'équation f(x) = 2 admet au moins une solution sur [-1; 4].

- f est continue sur [-1; 4] car une fonction polynôme est continue sur \mathbb{R} .
- f(-1) = 1 et f(4) = 6Donc 2 est compris entre f(-1) et f(4).

D'après le théorème des valeurs intermédiaires, on en déduit que l'équation f(x) = 2 admet au moins une solution sur l'intervalle [-1; 4].

(b) Cas des fonctions strictement monotones

Propriété

Soit f une fonction continue et **strictement monotone** sur un intervalle [a; b]. Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet **une unique solution** sur l'intervalle [a; b].

Exemple:

Soit $f(x) = \sqrt{x} + 2x - 12 \text{ sur } [4; 9].$

Montrer que l'équation f(x) = 0 admet une solution unique sur [4; 9].

- On admet que f est continue sur [4; 9] (car la somme de fonctions continues est continue)
- $f'(x) = \frac{1}{2\sqrt{x}} + 2 > 0$ sur [4; 9] donc f est strictement croissante sur [4; 9].
- f(4) = -6 et f(9) = 9Donc 0 est compris entre f(4) et f(9).

D'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution dans [4; 9].