Vv285 Recitation Class 4 Practice Questions on Determinant

Yuxiang Chen

June 3, 2022

Outline

- Basic Properties of Determinant
- 2 Calculating Determinant
- 3 Geometric Property of Determinant
- 4 Reference

Judge the Followings

¹Suppose $A \in \operatorname{Mat}(n \times n; \mathbb{C})$ is a matrix with det $A \neq 0$. Judge T or F:

- ightharpoonup det $A \in \mathbb{R}$.
- > A is invertible.
- The row rank of A is n
- $ightharpoonup \ker A = \{0\}$
- For any $y \in \mathbb{C}^n$, $x_0 = A^{-1}y$ is the only solution of Ax = y
- $\rightarrow \det (A^{-1})^T = \det A$
- ightharpoonup det $c \cdot A = c \cdot \det A$, where $c \in \mathbb{R}$

Determinant of Vandermonde Matrix

Prove that the determinant of Vandermonde matrix $V_n \in \operatorname{Mat}(n \times n; \mathbb{R})$, which is defined by $V_1 = 1$ and when $n \leq 2$:

$$V_n = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-2} & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-2} & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \dots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-2} & x_n^{n-1} \end{pmatrix}$$

is det $V_n = \prod_{1 \leq i < j \leq n} (x_j - x_i)$

Linear Transform on Parallelogram

Suppose $P \subseteq \mathbb{R}^2$ is a paralellogram spanned by two vectors $p, q \in \mathbb{R}^2$. Let $L \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map and the denoted the set L(P) as

$$L(P) = \{ y \in \mathbb{R}^2 \colon \exists x \in P, \ y = Lx \}$$

- **1** Prove that L(P) is a parallelogram spanned by L(p) and L(q).
- ② Prove that $S_{L(P)} = (\det L) \cdot S_P$
- **1** Prove that (2)'s result also works in \mathbb{R}^3

Determinant of block matrices

²Calculate the determinant of D_1 and D_2 :

$$D_1 = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \quad D_2 = \begin{pmatrix} G_1 & * & \dots & * & * \\ 0 & G_2 & \dots & * & * \\ 0 & 0 & G_3 & \dots & * \\ 0 & 0 & 0 & \dots & G_n \end{pmatrix}$$

where A, B, C are $m \times m$ matrices and $A_1, ..., A_n$ are $n \times n$ matrices

References I

- VV285 sample exam from Horst Hohberger
- Practice questions from Leyang Zhang

