ASSIGNMENT – 4 Introduction to Algorithms (CS 430)

1. The approach of always splitting the matrix chain at k such that p_k is the smallest among $\{p_i, ..., p_i - 1\}$ does not always yield the optimal matrix-chain multiplication cost.

Pseudo-Code:

```
1. Function MatrixChainOrder(p, i, j)
2.
        if i == j
3.
          return 0
4.
        min cost = \infty
5.
        for k from i to j-1
6.
          if p[k] is the smallest in \{p[i], ..., p[j-1]\}
7.
             cost = MatrixChainOrder(p, i, k) + MatrixChainOrder(p, k+1, j) + p[i-1] * p[k] * p[j]
8.
             if cost < min cost
                 min cost = cost
9.
10.
        return min cost
```

Counter Example:

Consider three matrices A_1 , A_2 , A_3

- A_1 of dimension 10×100
- A_2 of dimension 100×5
- A_3 of dimension 5×50

Matrix Dimensions:

- $p_0 = 10$
- $p_1 = 100$
- $p_2 = 5$
- $p_3 = 50$

According to the algorithm, we should split the chain at k such that p_k is the smallest among $\{p_i, ..., p_i - 1\}$. For $A_1 \times A_2 \times A_3$

- 1. $p_1 = 100$
- 2. $p_2 = 5$

The smallest value is $p_2 = 5$, so we split the chain at k = 2.

Splitting at k = 2

- 1. First compute $(A_2 \times A_3)$ \circ Cost = $100 \times 5 \times 50 = 25000$
- 2. Then multiply the result with A_1
 - \circ Cost = $10 \times 100 \times 50 = 50000$

Total Cost = 25000 + 50000 = 75000

Optimal Solution

To find the optimal solution we check both possible ways of multiplying the matrices.

Splitting at k = 1

- 1. First compute $(A_1 \times A_2)$
 - \circ Cost = $10 \times 100 \times 5 = 5000$
- 2. Then multiply the result with A3
 - \circ Cost = $10 \times 5 \times 50 = 2500$

Total Cost = 5000 + 2500 = 7500

Therefore, the given algorithm splits the matrices in a way that results in a total cost of 75000, while the optimal solution has a cost of 7500. This counterexample demonstrates that the algorithm of always splitting at the smallest p_k does not always yield the optimal solution for matrix-chain multiplication.

2.

a)

If N is an odd number:

When N is odd, it is impossible to find a subset B that satisfies the equation. This is because the sum of all elements is odd (N) and splitting an odd sum into two equal parts is impossible. Therefore, when N is odd, we can say that there is no solution to the problem.

b)

A recursive function b(i, j) that represents the Boolean value whether there is a subset in $\{a1, a2, ..., ai\}$ that add up to j.

- 1. Base Cases:
 - b(0,0) = true
 - b(0,j) = false for j > 0
- 2. Recursive Cases:
 - $b(i,j) = b(i-1,j) \text{ OR } b(i-1,j-ai) \text{ if } j \ge ai$
 - b(i, j) = b(i 1, j) if j < ai

c)

- a. We can use a 2D Boolean array DP[0..k][0..N/2] where DP[i][i] represents b(i,j).
- b. Pseudo-code
 - 1. function subsetSum(a[], k, N):
 - 2. if N is odd:
 - 3. return false
 - 4. target = N / 2
 - 5. DP = boolean array of size [k+1][target+1], initialized to false
 - 6. for i = 0 to k:
 - 7. DP[i][0] = true

```
8. for i = 1 to k:
9. for j = 1 to target:
10. if a[i-1] <= j:</li>
11. DP[i][j] = DP[i-1][j] OR DP[i-1][j-a[i-1]]
12. else:
13. DP[i][j] = DP[i-1][j]
14. return DP[k][target]
```

To find the actual subset, we would need to backtrack through the DP table.

d)

- The time complexity of this dynamic programming algorithm is O(k * N)
 - ➤ k is number of integers
 - ➤ N is sum of integers

This is because we're filling a 2D table of size (k+1) * (N/2+1).

- Space complexity is also O(k * N) due to the DP table.

3.

a)

A recursive function L(i, j) that represents the length of the longest subsequence which is a palindrome in substring ai ... aj.

The recursive function L(i,j) can be defined as follows:

- 1. Base cases:
 - If i > j: return 0 (empty substring)
 - If i == j: return 1 (single character is a palindrome of length 1)
- 2. Recursive cases:
 - If ai == aj: L(i,j) = L(i+1, j-1) + 2
 - If ai != aj: L(i,j) = max(L(i+1, j), L(i, j-1))

Pseudo Code:

- 1. If i > j, we have an empty substring, so the length of the longest palindromic subsequence is 0.
- 2. If i == j, we have a single character, which is a palindrome of length 1.
- 3. If ai == aj (if the characters at both ends match), we include these characters in our palindrome and add 2 to the length of the palindromic subsequence found in the substring ai+1...aj-1.
- 4. If *ai* != *aj* (the characters at the ends don't match), we take the maximum of two options:

- Exclude ai and find the longest palindromic subsequence in $ai+1 \dots aj$
- Exclude aj and find the longest palindromic subsequence in ai ... aj-1

To find the length of the longest palindromic subsequence for the entire string, we would call L(1, n), where n is the length of the string.

b) Pseudo Code to create an algorithm using dynamic programming:

```
1. function LongestPalindromicSubsequence(A):
2.
       n = length(A)
3.
       L = create 2D array of size n x n, initialized with 0
4.
       P = \text{create } 2D \text{ array of size } n \times n, \text{ initialized with null}
5.
       for i = 0 to n-1:
6.
           L[i][i] = 1
7.
       for cl = 2 to n:
8.
           for i = 0 to n-cl:
9.
               j = i + c1 - 1
              if A[i] == A[j] and cl == 2:
10.
11.
                  L[i][j] = 2
12.
                  P[i][j] = 'MATCH'
13.
              elif A[i] == A[j]:
14.
                  L[i][j] = L[i+1][j-1] + 2
15.
                  P[i][j] = 'MATCH'
16.
              elif L[i+1][j] > L[i][j-1]:
17.
                  L[i][j] = L[i+1][j]
18.
                  P[i][j] = 'DOWN'
19.
              else:
20.
                  L[i][j] = L[i][j-1]
21.
                  P[i][j] = 'RIGHT'
22.
        return L, P
23. function ReconstructPalindrome(A, P):
24.
       palindrome = empty string
25.
       i = 0
26.
       i = length(A) - 1
27.
       while i \le j:
          if P[i][j] == 'MATCH':
28.
29.
              palindrome = palindrome + A[i]
30.
              i = i + 1
31.
              i = i - 1
32.
          elif P[i][j] == 'DOWN':
33.
             i = i + 1
34.
          else: // P[i][j] == 'RIGHT'
35.
             j = j - 1
36.
37. return palindrome + reverse(palindrome[:-1]) if i > j else palindrome + reverse(palindrome)
```

- a. We create an *array* L of size $n \times n$, where n is the length of the input string A. L[i][j] represents the length of the longest palindromic subsequence in the substring A[i:j+1].
- b. To reconstruct the actual palindrome, we need to keep track of the decisions made at each step. We create another *array P* of the same size as L. P[i][j] stores:
 - 'MATCH' if A[i] and A[j] match and are included in the palindrome
 - 'DOWN' if we moved to the next character at i
 - 'RIGHT' if we moved to the previous character at j
- c. To find the longest palindromic subsequence, we would call LongestPalindromicSubsequence(A) to get L and P, then call ReconstructPalindrome(A, P) to get the actual palindrome. The length of the longest palindromic subsequence is stored in L[0][n-1].

c) Time complexity of this algorithm is $O(n^2)$.

> n is the length of input string A.

4.

We were given that, in art gallery guarding problem a straight-line L that represents a long hallway in an art gallery, and we are given a set $X = \{x1, x2, ..., xn\}$ of real numbers that specify the positions of paintings in this hallway. Suppose that a single guard can protect all the paintings within distance at most 1 of his positions on both sides.

a)

A greedy algorithm for finding a placement of guards that uses the minimum number of guards to protect all the paintings with positions in X.

Space Complexity: O(n)

```
1. function PlaceGuards(X):
2.
      Sort X in non-decreasing order
3.
      guards = empty list
      n = length of X
4.
5.
      if n == 0:
6.
         return guards
7.
      current guard = X[0] + 1
      guards.append(current guard)
8.
9.
      for i = 1 to n-1:
10.
        if X[i] > current guard + 1:
11.
           current guard = X[i] + 1
12.
           guards.append(current guard)
13.
      return guards
```

Time Complexity: O(n log n)

Example:

Consider, $X = \{1.5, 2.0, 3.0, 4.5, 5.5, 6.0\}$

Using the algorithm:

- 1) Sort X: [1.5, 2.0, 3.0, 4.5, 5.5, 6.0]
- 2) Place the first guard at 1.5 + 1 = 2.5
- 3) Iterate through the paintings:
 - 2.0 and 3.0 is within the distance of 1 from 2.5, so no new guard is placed.
 - 4.5 is not within the distance of 1 from 2.5, so place a new guard at 4.5 + 1 = 5.5.
 - 5.5 and 6.0 are within the distance of 1 from 5.5, so no new guard is placed.

Therefore, the guards should be placed at 2.5 and 5.5 to cover all the paintings with the minimum number of guards.

b)

The algorithm satisfies the greedy choice property.

- 1. Optimal Substructure:
 - An optimal solution for n+1 paintings includes the optimal solution for n paintings if the $(n+1)_{th}$ painting is more than 2 units away from the nth painting.
 - 2. Greedy Choice Property:
 - Placing a guard at xi + 1 is optimal because:
 - o It covers the current painting xi.
 - \circ It maximizes the range covered to the right (up to xi + 2).
 - \circ Any placement to the left of xi + 1 would cover less range without additional benefit.
 - 3. Proof by Contradiction:
 - If a better solution S' exists with fewer guards than our greedy solution S.
 - Show that this leads to a contradiction where S' either misses a painting or could be improved by adopting the greedy choice.

Therefore, the greedy choice of placing each guard at xi + 1 for the next uncovered painting ensures the minimum number of guards are used to cover all paintings.

Conclusion:

The greedy algorithm ensures that the minimum number of guards are used to cover all paintings. It achieves this by always placing guards at the optimal position (xi + 1) to maximize coverage. The proof demonstrates that this approach cannot be improved upon, guaranteeing a minimum number of guards.