

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информа	атика и системы управления	
КАФЕДРА	Системы обр	работки информации и управле	ния
РАСЧЕТ	коп-он	СНИТЕЛЬНАЯ	ЗАПИСКА
К НАУЧ	НО-ИССЛ	<i>ЕДОВАТЕЛЬСКО</i>	ОЙ РАБОТЕ
	_	НА ТЕМУ:	
	_	итма XGBoost дл	я предсказа-
ния завери	<u>иения курсі</u>	<u>а обучающимся</u>	
СтудентИУ5-3 (Групп		(Подпись, дата)	Д.А.Макаров (И.О.Фамилия)
Руководитель		(Подпись, дата)	Ю.Е.Гапанюк (И.О.Фамилия)

Оглавление

Введение	3
Исследование датасета	
Подготовка данных для машинного обучения	15
Библиотека XGBoost	18
Список гиперпараметров XGBoost	19
Визуализация деревьев XGBoost	21
Вывод	23
Список использованных источников	24

Введение

В настоящее время большой популярностью пользуются различные онлайнкурсы. Однако, распространена ситуация, когда пользователь бросает прохождение курса и не получает сертификат. В данной курсовой работе будет использован датасет, основанный на реальных данных одной из платформ онлайн курсов. Будет произведена очистка данных и их визуализация, а также анализ. С использованием библиотеки XGBoost будет произведена попытка создания модели, которая будет предсказывать, завершит ли пользователь более 50% курса или нет.

Исследование датасета

Импорт библиотек:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

Будет использована библиотека XGBoost для прогнозирования студентов, которые прошли более 50% курса

Импорт данных из csv файла:

```
df_course= pd.read_csv('/Users/denis/Downloads/3.csv')
df_course.head()
```

	Launch Date	Course title	Teachers	Course subject	Participants	50% course content accessed (audited)	Certified	% Audited	% Certified	Certified of > 50% course content accessed	% Played video	% Posted in forum	% Grade higher than 0	course	Median hours for certification	Median age	% Male	% Female	% Bachelor's degree or higher
0	11/17/2018	Java Developer. Professional	Стрекалов Павел	OOP, Backend	36105	5431	3003	15.04	8.32	54.98	83.20	8.17	28.97	418.94	64.45	26.0	88.28	11.72	60.68
1	12/25/2019	Разработчик Android (deprecated)	Стрекалов Павел	Mobile	62709	8949	5783	14.27	9.22	64.05	89.14	14.38	39.50	884.04	78.53	28.0	83.50	16.50	63.04
2	6/25/2019	Python Developer. Professional	Чибриков Виталий	OOP, Backend	16663	2855	2082	17.13	12.49	72.85	87.49	14.42	34.89	227.55	61.28	27.0	70.32	29.68	58.76
3	3/27/2020	Разработчик Ruby	Чибриков Виталий	OOP, Backend	129400	12888	1439	9.96	1.11	11.11	0.00	0.00	1.11	220.90	0.00	28.0	80.02	19.98	58.78
4	10/18/2019	C++ Developer. Professional	Петрелевич Сергей	OOP, Backend	52521	10729	5058	20.44	9.64	47.12	77.45	15.98	32.52	804.41	76.10	32.0	56.78	43.22	88.33

Рисунок 1. Содержимое датасета

Просмотр типов данных. Данные представлены типами object, int, float df_course.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 19 columns):
    Column
                                                  Non-Null Count Dtype
    -----
                                                  -----
                                                                 ----
---
    Launch Date
                                                                  object
0
                                                  205 non-null
    Course title
                                                                  object
1
                                                  205 non-null
 2
    Teachers
                                                  205 non-null
                                                                  object
 3
    Course subject
                                                  205 non-null
                                                                  object
    Participants
                                                  205 non-null
                                                                  int64
 5
    50% course content accessed (audited)
                                                  205 non-null
                                                                  int64
    Certified
                                                  205 non-null
                                                                  int64
 6
7
    % Audited
                                                  205 non-null
                                                                 float64
    % Certified
                                                  205 non-null
                                                                 float64
    % Certified of > 50% course content accessed 205 non-null
                                                                 float64
10 % Played video
                                                  205 non-null
                                                                  float64
11 % Posted in forum
                                                  205 non-null
                                                                  float64
12 % Grade higher than 0
                                                  205 non-null
                                                                  float64
13 Total course hours
                                                                 float64
                                                  205 non-null
 14 Median hours for certification
                                                  205 non-null
                                                                 float64
15 Median age
                                                  205 non-null
                                                                  float64
16 % Male
                                                  205 non-null
                                                                  float64
17 % Female
                                                  205 non-null
                                                                  float64
18 % Bachelor's degree or higher
                                                  205 non-null
                                                                  float64
dtypes: float64(12), int64(3), object(4)
memory usage: 30.6+ KB
```

Рисунок 2. Типы данных

Список категорий курсов и количество курсов в каждой категории:

```
df_course['Course subject'].value_counts()
OOP, Backend
                50
               43
Management
Test
           20
Administration 19
Security
            16
ML
            15
Mobile
           11
DB
           11
DevOps
              7
Frontend
             6
Math
            5
```

Design 2

Name: Course subject, dtype: int64

Список преподавателей и количество курсов, на которых он преподает:

```
df_course['Teachers'].value_counts()
```

Волосатов Евгений 4

Темирханова Эльвира 3

Петрелевич Сергей 3

Дроздецкий Владимир 3

Цыкунов Алексей 3

..

Гуторов Владимир

Левчук Мартин 1

Курочкин Игорь 1

Пулявин Артем 1

Швец Олег 1

Просмотр значений NULL в данных, установленных с помощью тепловой карты:

```
plt.figure(figsize=(15,10))
sns.heatmap(df_course.isnull(),cmap="YlGnBu")
```

1

Рисунок 3. Поиск пустых значений

Мы убедились, что пустых ячеек нет.

Визуализация данных

Представим названия курсов в виде облака слов, где более часто используемые слова имеют больший размер, чем другие.

from wordcloud import WordCloud, STOPWORDS

wordcloud = WordCloud(

Рисунок 4. Облако слов (курсы)

Отобразим категории курсов в виде облака слов.

```
).generate(" ".join(df_course['Course sub-
ject']))

plt.imshow(wordcloud)
plt.axis('off')
plt.show()

Test
Security Mobile
DevOps
Administration
OOP Backend
Management

DR

Design
Frontend

DR
```

Рисунок 5. Облако слов(категории)

Судя по облакам слов, в названии курса чаще всего встречается слово «разработчик», а самой популярной категорией является бэкенд разработка и объектно-ориентированное программирование.

Построим матрицу корреляций между различными признаками:

```
df_course=df_course.drop(['% Certified','Course title','% Grade higher
than 0'],axis=1)
df_course
figure= plt.figure(figsize=(10,10))
sns.heatmap(df_course.corr(), annot=True,cmap="YlGnBu")
```


Рисунок 6. Матрица корреляций

Как видно из матрицы, сильной корреляции между признаками нет, будем продолжать исследование дальше.

Построим диаграммы размаха («ящик с усами») для признаков Course subject, Certified of > 50% course content accessed и Participants, Course subject:

```
figure= plt.figure(figsize=(20,10))
sns.boxenplot(x='Course subject',y='% Certified of > 50% course content accessed,data=df_course,palette="Blues")
```


Рисунок 7. Ящик с усами

figure= plt.figure(figsize=(20,10))
sns.boxenplot('Participants','Course subject',data=df_course)

Рисунок 8. Ящик с усами

Данные графики в удобной форме показывают медиану (или, если нужно, среднее), нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы. Расстояния между различными частями ящика позволяют определить степень разброса (дисперсии) и асимметрии данных и выявить выбросы.

График типа pairplot показывает отношения между всеми парами переменных.

df_pairplot_cols=df_course[['Course subject','50% course content accessed (audited)','% Certified of > 50% course content accessed','%
Female','% Male','Median age']]
plt.figure(figsize=(20,20))
sns.pairplot(df pairplot cols,hue='Course subject',palette='rainbow')

Рисунок 9. PairPlot

Построим kdeplot для Median hours for certification и % Certified of > 50% course content accessed.

График оценки плотности ядра (KDE) - это метод визуализации распределения наблюдений в наборе данных, аналогичный гистограмме. KDE представляет данные с помощью непрерывной кривой плотности вероятности в одном или нескольких измерениях.

По сравнению с гистограммой KDE может создавать график, который менее загроможден и более понятен, особенно при рисовании нескольких распределений. Но он может внести искажения, если основное распределение ограничено или негладко. Как и в случае гистограммы, качество представления также зависит от выбора хороших параметров сглаживания.

```
x= df_course['Median hours for certification']
y= df_course['% Certified of > 50% course content accessed']
cmap = sns.cubehelix_palette(light=1, as_cmap=True)
plt.figure(figsize=(10,10))
sns.kdeplot(x, y, cmap=cmap, shade=True);
```


Рисунок 10. KDE

Построим kdeplot для Median age и % Certified of > 50% course content accessed.

По графику видно, что среднее время для получения сертификата у пользователей, прошедших более половины курс, составляет 25 часов.

```
x= df_course['Median age']
y= df_course['% Certified of > 50% course content accessed']
plt.figure(figsize=(10,10))
sns.kdeplot(x, y, shade=True);
```


Рисунок 11. KDE

По графику видно, что средний возраст пользователей, прошедших более половины курс, составляет около 27 лет.

Подготовка данных для машинного обучения

Произведем удаление ненужных столбцов (Certified','50% course content accessed (audited)','Teachers','Launch Date','% Played video')

df_course.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 16 columns):
    Column
                                                Non-Null Count Dtype
--- -----
                                                -----
                                                               ----
0
    Launch Date
                                                205 non-null
                                                               object
 1
    Teachers
                                                205 non-null
                                                               object
 2 Course subject
                                                205 non-null
                                                               object
 3
   Participants
                                                205 non-null
                                                               int64
 4 50% course content accessed (audited)
                                                205 non-null
                                                               int64
 5 Certified
                                                205 non-null
                                                               int64
 6
   % Audited
                                                205 non-null
                                                               float64
 7
   % Certified of > 50% course content accessed 205 non-null
                                                               float64
   % Played video
                                                205 non-null
                                                               float64
    % Posted in forum
 9
                                                205 non-null
                                                              float64
10 Total course hours
                                                205 non-null
                                                               float64
 11 Median hours for certification
                                                205 non-null
                                                               float64
12 Median age
                                                               float64
                                                205 non-null
13 % Male
                                                205 non-null
                                                              float64
14 % Female
                                                205 non-null
                                                               float64
15 % Bachelor's degree or higher
                                                205 non-null
                                                              float64
dtypes: float64(10), int64(3), object(3)
memory usage: 25.8+ KB
```

Рисунок 12. Содержимое датасета

```
df_XGB = df_course.drop(['Certified','50% course content accessed (au-
dited)','Teachers','Launch Date','% Played video'],axis=1)
df_XGB.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 11 columns):
    Column
                                               Non-Null Count Dtype
--- -----
                                                -----
   Course subject
                                               205 non-null
                                                              object
1 Participants
                                                              int64
                                               205 non-null
 2 % Audited
                                               205 non-null
                                                             float64
 3 % Certified of > 50% course content accessed 205 non-null
                                                             float64
4 % Posted in forum
                                               205 non-null
                                                             float64
    Total course hours
                                               205 non-null
                                                             float64
 6 Median hours for certification
                                               205 non-null
                                                              float64
                                               205 non-null
7
    Median age
                                                              float64
   % Male
                                               205 non-null
                                                              float64
    % Female
                                               205 non-null
                                                              float64
10 % Bachelor's degree or higher
                                               205 non-null
                                                              float64
dtypes: float64(9), int64(1), object(1)
memory usage: 17.7+ KB
```

Рисунок 13. Содержимое датасета после удаления

Произведем преобразование категориальных переменных в серии нулей и единиц, что значительно упрощает их количественное определение и сравнение.

```
CourseSubject = pd.get_dummies(df_XGB['Course sub-
ject'],drop_first=True)

df_XGB.drop(['Course subject'],axis=1,inplace=True)

df_XGB = pd.concat([df_XGB,CourseSubject],axis=1)

df_XGB
```

	Participants	% Audited	% Certified of > 50% course content accessed	% Posted in forum	Total course hours	Median hours for certification	Median age	% Male	% Female	% Bachelor's degree or higher	 Design	Dev0ps	Frontend	ML	Management	Math	Mobile	OOP, Backend	Security	Test
0	36105	15.04	54.98	8.17	418.94	64.45	26.0	88.28	11.72	60.68	 0	0	0	0	0	0	0	1	0	0
1	62709	14.27	64.05	14.38	884.04	78.53	28.0	83.50	16.50	63.04	 0	0	0	0	0	0	1	0	0	0
2	16663	17.13	72.85	14.42	227.55	61.28	27.0	70.32	29.68	58.76	 0	0	0	0	0	0	0	1	0	0
3	129400	9.96	11.11	0.00	220.90	0.00	28.0	80.02	19.98	58.78	 0	0	0	0	0	0	0	1	0	0
4	52521	20.44	47.12	15.98	804.41	76.10	32.0	56.78	43.22	88.33	 0	0	0	0	0	0	0	1	0	0
200	2860	32.17	36.20	6.78	47.23	77.55	29.0	59.10	40.90	76.33	 0	0	0	0	1	0	0	0	0	0
201	948	25.95	26.42	8.44	4.94	20.87	27.0	66.45	33.55	73.56	 0	0	0	0	0	0	0	1	0	0
202	1381	18.61	46.30	9.12	3.66	8.38	26.0	60.80	39.20	68.16	 0	0	0	0	1	0	0	0	0	0
203	385	51.69	33.67	18.70	2.03	12.05	31.0	60.84	39.16	79.67	 0	0	0	0	0	0	0	0	0	0
204	422	46.21	28.72	14.22	2.02	12.21	30.0	62.09	37.91	79.69	 0	0	0	0	1	0	0	0	0	0
205 ro	ws × 21 columns																			

Рисунок 14. Содержимое датасета

Проверка на нулевые значения:

Рисунок 15. Проверка на пустые значения

Убедились, что пустых ячеек нет.

Библиотека XGBoost

XGBoost - это оптимизированная распределенная библиотека повышения градиента, разработанная для обеспечения высокой эффективности, гибкости и портативности. Он реализует алгоритмы машинного обучения в рамках

платформы Gradient Boosting. XGBoost обеспечивает усиление параллельного дерева (также известное как GBDT, GBM), которое позволяет быстро и точно решить многие проблемы data science. Один и тот же код работает в основной распределенной среде (Hadoop, SGE, MPI) и может решать проблемы, выходящие за рамки множества примеров.

В основе XGBооst лежит алгоритм градиентного бустинга деревьев решений. Градиентный бустинг — это техника машинного обучения для задач классификации и регрессии, которая строит модель предсказания в форме ансамбля слабых предсказывающих моделей, обычно деревьев решений. Обучение ансамбля проводится последовательно в отличие, например от бэггинга. На каждой итерации вычисляются отклонения предсказаний уже обученного ансамбля на обучающей выборке. Следующая модель, которая будет добавлена в ансамбль будет предсказывать эти отклонения. Таким образом, добавив предсказания нового дерева к предсказаниям обученного ансамбля мы можем уменьшить среднее отклонение модели, которое является целью оптимизационной задачи.

Разделим данные на обучающую и тестовую выборки:

```
from sklearn.model_selection import train_test_split
x= df_XGB
y=df_XGB['% Certified of > 50% course content accessed']
x_train, x_test, y_train, y_test = train_test_split(x,y,
test_size=0.4, random_state=109)
import xgboost as xgb
train= xgb.DMatrix(x_train,label=y_train)
test = xgb.DMatrix(x_test, label= y_test)
```

Список гиперпараметров XGBoost

learning_rate: уменьшение размера шага, используемое для предотвращения переобучения. Диапазон [0,1]

max_depth: определяет, насколько глубоко каждое дерево может расти во время любого раунда повышения.

subsample: процент использованных образцов на дерево. Низкое значение может привести к неполному оснащению.

colsample_bytree: процент функций, используемых в дереве. Высокое значение может привести к переобучению.

n_estimators: количество деревьев, которые вы хотите построить.

objective: определяет функцию потерь, которая будет использоваться, например, линейная для задач регрессии, логистическая для задач классификации с единственным решением, двоичная для задач классификации с вероятностью.

XGBoost также поддерживает параметры регуляризации, чтобы наказывать модели по мере их усложнения и сводить их к простым (экономным) моделям

gamma: контролирует, будет ли данный узел разделен на основе ожидаемого сокращения потерь после разделения. Чем выше значение, тем меньше расщеплений.

alpha: L1 регуляризация весов листьев. Большое значение ведет к большей регуляризации.

lambda: L2 регуляризация весов листьев и более плавная, чем регуляризация L1.

Зададим параметры для модели:

Вычислим ошибку прогноза:

```
from sklearn.metrics import mean_squared_error
rmse = np.sqrt(mean_squared_error(y_test, preds))
print("RMSE: %f" % (rmse))
```

RMSE: 6.109611

Ошибка составила 6%

Визуализация деревьев XGBoost

import matplotlib.pyplot as plt

```
xgb.plot_tree(xg_reg,num_trees=0)
plt.rcParams['figure.figsize'] = [20, 15]
plt.show()
```


Рисунок 16. Деревья

Построим график важности признаков на основе подобранных деревьев.

```
xgb.plot_importance(xg_reg)
plt.rcParams['figure.figsize'] = [15,15]
plt.show()
```


Рисунок 17. Важность признаков

По графику видно, что наибольшей важностью обладает признак «% Certified of > 50% course content accessed»

Вывод

В данной курсовой работе была произведена очистка, визуализация, а также анализ данных от одной из платформ онлайн-курсов. С использованием библиотеки XGBoost была произведена попытка создания модели, которая предсказывает, завершит ли пользователь более 50% курса или нет. Точность прогноза модели составила около 94%.

Список использованных источников

- Friedman J. Greedy Function Approximation: A Gradient Boosting Machine. IMS 1999 Reitz Lecture.
- 2. Nonita Sharma, XGBoost. The Extreme Gradient Boosting for Mining Applications. 2018 GRIN Verlag
- xgboost documentation. Режим доступа:
 https://xgboost.readthedocs.io/en/latest/ Дата обращения: 28.11.2020
- 4. seaborn documentation. Режим доступа: https://seaborn.pydata.org/docs/ Дата обращения: 28.11.2020
- pandas documentatio.n Режим доступа: https://pandas.pydata.org/docs/ Дата обращения: 28.11.2020
- 6. Введение в pandas: анализ данных на Python. Режим доступа: https://khashtamov.com/ru/pandas-introduction/ Дата обращения: 28.11.2020