Лабораторная работа 6

Терентьев Егор Дмитриевич, НФИбд-03-19

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Условия задачи	7
4	Выполнение лабораторной работы	8
5	Выводы	10
6	Список литературы	11

List of Figures

4.1	код для графика в варианте 35 пункт 1						8
4.2	график в варианте 35 пункт 1						8
4.3	график в варианте 35 пункт 1 приближенный						9
4.4	код для графика в варианте 35 пункт 2						9
4.5	график в варианте 35 пункт 2						9

List of Tables

РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6

дисциплина: Математическое моделирование

Преподователь: Кулябов Дмитрий Сергеевич

Студент: Терентьев Егор Дмитриевич

Группа: НФИбд-03-19

MOCKBA

2022 г.

1 Цель работы

Построение простейшей модель эпидемии.

2 Теоретическое введение

У нас есть некая популяция состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения І* считаем, что все больные изолированы и не заражают здоровых. Когда I(t) > I* тогда инфицирование способны заражать восприимчивых к болезни особей. Таким образом, скорость изменения числа S(t) меняется по следующему закону: производная по $S = -a^*S$, если $I(t) > I^*$ или 0,если I(t)<=I* Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.: производная по I = -a*S - b*I, если I(t)>I* или -b*I,если I(t)<=I* А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни): производная по R = b*I Постоянные пропорциональности a,b - это коэффициенты заболеваемости и выздоровления соответственно.

3 Условия задачи

Вариант 35

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12 300) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=140, А число здоровых людей с иммунитетом к болезни R(0)=54. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)- R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1. если I(0) <= I*
- 2. если I(0) > I*

4 Выполнение лабораторной работы

Построение модели об эпидемии

Чтобы построить график для случая $I(0) \le I^*$, я написал следующий код (Рис 4.1):

```
model Lab6

parameter Real a = 0.01; // коэффициент заболеваемости

parameter Real b = 0.02; //коэффициент выздоровления

parameter Integer N = 12300; // общая численность популяции

parameter Integer IO = 140; // количество инфицированных особей в начальный момент времени

parameter Integer 80 = N - IO - R0; // количество здоровых собей с иммунитетом в начальный момент времени

parameter Integer SO = N - IO - R0; // количество восприимчивых к болеэни особей в начальный момент времени

Real S(start = SO);

Real I(start = IO);

Real R(start = RO);

equation

der(S) = 0;

der(I) = -b * I;

der(R) = b * I;

end Lab6;
```

Figure 4.1: код для графика в варианте 35 пункт 1

и получил следующий график (Рис 4.2 и 4.3):

Figure 4.2: график в варианте 35 пункт 1

Figure 4.3: график в варианте 35 пункт 1 приближенный

Чтобы построить график для случая $I(0) > I^*$, я написал следующий код (Рис 4.4):

```
model Lab6_2

parameter Real a = 0.01; // Коэффициент заболеваемости

parameter Real b = 0.02; // Коэффициент выздоровления

parameter Integer N = 12300; // Общая численность популяции

parameter Integer I0 = 140; // Начальное число заражённых

parameter Integer R0 = 54; // Начальное число имеющих иммунитет

parameter Integer S0 = N - I0 - R0; // Начальное число восприимчивых к болезни

Real S(start = S0);

Real I(start = I0);

Real R(start = R0);

equation

der(S) = -a * S;
der(I) = a * S - b * I;
der(R) = b * I;

end Lab6_2;

end Lab6_2;
```

Figure 4.4: код для графика в варианте 35 пункт 2

и получил следующий график (Рис 4.5):

Figure 4.5: график в варианте 35 пункт 2

5 Выводы

После завершения данной лабораторной работы - я научился выполнять построение модели эпидемии в OpenModelica.

6 Список литературы

Лабораторная работа №5. Задача об эпидемии. - [Электронный ресурс].
 М. URL: Лабораторная работа №6. Задача об эпидемии. (Дата обращения: 18.03.2021).