

Notas de clase: Viernes 05 de Mayo

1 Repaso matemático: Argumentos

Un argumento es una aseveración de que un conjunto dado de proposiciones P_1, P_2, \dots, P_n , que se denominan premisas, conduce (tiene una consecuencia) a otra proposición Q, que se denomina conclusión. Un argumento se denota por

$$P_1, P_2, \ldots, P_n \vdash Q$$

1.1 Definición

Un **argumento** $P_1, P_2, \dots, P_n \vdash Q$ es válido si Q es verdadera siempre que todas las premisas P_1, P_2, \dots, P_n son verdaderas. Un argumento que no es válido se denomina **falacia**.

Las deducciones matemáticas comúnmente llevan el tipo de argumentos

$$[(p \implies q) \land (q \implies r)] \implies (p \implies r)$$

Por ejemplo

 S_1 : Si un hombre es licenciado entonces es infeliz

 S_2 : Si un hombre es infeliz entonces muere joven

S: entonces los licenciados mueren jóvenes

Ejercicios:

1. El siguiente argumento es una falacia

 S_1 : Si 7 es menor que 4 entonces 7 no es un número primo

 S_2 :7 no es menor que 4

S: entonces 7 es un número primo

2. este argumento es una falacia

 S_1 : Si llueve entonces Eric se enfermará

 S_2 :no llovió

S: entonces Eric no estaba enfermo.

3. argumento es válido

 S_1 : Si llueve entonces Eric se enfermará

 S_2 : Eric no estaba enfermo

S: entonces no llovió.

Hipótesis	intervalo para la media μ				
Varianza conocida σ^2	$\mathbb{P}\left(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$				
Hipótesis	intervalo para la media μ				
Varianza desconocida σ^2	$\mathbb{P}\left(\overline{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}\right) = 1 - \alpha$				
Muestra grande, $n \ge 30$	$\mathbb{P}\left(\overline{X} - z_{\alpha/2} \frac{S}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{S}{\sqrt{n}}\right) \approx 1 - \alpha$				

Table 1: Resumen

x	0	1	2	3	4	5	6
H_0 : Dado	0						
H_1 : Moneda							0

Table 2: Tabla de probabilidades

2 Pruebas de hipótesis

Sea H_0 el evento de lanzar un dado y registrar el valor de la cara del dado y sea H_1 el evento de lanzar consecutivamente 5 veces una moneda y registrar la cantidad de veces que sale cruz.

Ahora queremos contestar preguntas del tipo, dado un número en el conjunto $\{0, 1, 2, 3, 4, 5, 6\}$; como podemos determinar de que evento corresponde el número?

Observaciones: Si se obtiene el numero 0 entonces este pertenece claramente al lanzamiento de la moneda, mientras que 6 corresponde al de un dado. Una manera sencilla es responder respecto a que caso sea mas probable.

En general vamos a tener el esquema

 H_0 : (hipótesis nula) vs H_1 : (hipótesis alternativa)

3 Definición:

Una hipótesis estadística o simplemente hipótesis es una afirmación o conjetura acerca de la distribución de una o mas varibles aleatorias. Una hipótesis es simple si especifica por completo la distribución de probabilidad, en caso contrario es llamada hipótesis compuesta.

4 Tipos de errores

- 1. El error de tipo I es cuando se rechaza a H_0 siendo esta verdadera.
- 2. El error de tipo II es cuando no se rechaza a H_0 siendo esta falsa.