Diophantine numbers

Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto

April 11, 2016

1 Baire category

For real $\tau, \gamma > 0$, let $\mathcal{D}(\tau, \gamma)$ be the set of those $\xi \in \mathbb{R}$ such that for all $q \in \mathbb{Z}_{\geq 1}$ and $p \in \mathbb{Z}$,

$$\left| \xi - \frac{p}{q} \right| \ge \gamma q^{-\tau}.$$

In other words,

$$\mathcal{D}(\tau,\gamma) = \bigcap_{q \in \mathbb{Z}_{>1}, p \in \mathbb{Z}} \left\{ \xi \in \mathbb{R} : \left| \xi - \frac{p}{q} \right| \ge \gamma q^{-\tau} \right\} = \bigcap_{q \in \mathbb{Z}_{>1}, p \in \mathbb{Z}} \mathcal{D}(\tau,\gamma,q,p).$$

Each set $\mathcal{D}(\tau, \gamma, q, p)$ is closed, so $\mathcal{D}(\tau, \gamma)$ is closed. Let

$$\mathcal{D}(\tau) = \bigcup_{\gamma > 0} \mathcal{D}(\tau, \gamma).$$

Now, if $\gamma_1 \geq \gamma_2$ and $\xi \in \mathcal{D}(\tau, \gamma_1)$, take $q \in \mathbb{Z}_{\geq 1}$ and $p \in \mathbb{Z}$, and then

$$\left|\xi - \frac{p}{q}\right| \ge \gamma_1 q^{-\tau} \ge \gamma_2 q^{-\tau}.$$

Hence

$$\mathcal{D}(\tau, \gamma_1) \subset \mathcal{D}(\tau, \gamma_2), \qquad \gamma_1 \geq \gamma_2,$$

and thus $\mathcal{D}(\tau) = \bigcup_{n \geq 1} \mathcal{D}(\tau, n^{-1})$, which means that $\mathcal{D}(\tau)$ is an F_{σ} set. Let

$$\mathcal{D} = \bigcup_{\tau > 0} \mathcal{D}(\tau) = \bigcup_{\tau > 0} \bigcup_{\gamma > 0} \bigcap_{q \in \mathbb{Z}_{\geq 1}, p \in \mathbb{Z}} \mathcal{D}(\tau, \gamma, q, p),$$

whose elements are called **Diophantine numbers**. If $\tau_1 \leq \tau_2$ and $\xi \in \mathcal{D}(\tau_1)$, then for some $\gamma > 0$, $\xi \in \mathcal{D}(\tau_1, \gamma)$. Take $q \in \mathbb{Z}_{\geq 1}$ and $p \in \mathbb{Z}$. Then

$$\left|\xi - \frac{p}{q}\right| \ge \gamma q^{-\tau_1} \ge \gamma q^{-\tau_2},$$

so $\xi \in \mathcal{D}(\tau_2, \gamma)$, i.e.

$$\mathcal{D}(\tau_1) \subset \mathcal{D}(\tau_2), \qquad \tau_1 \leq \tau_2.$$

Thus $\mathcal{D} = \bigcup_{m \geq 1} \mathcal{D}(m) = \lim_{m \to \infty} \mathcal{D}(m)$, which means that \mathcal{D} is an F_{σ} set. Now.

$$\mathcal{D}^{c} = \bigcap_{m \geq 1} \bigcap_{n \geq 1} \bigcup_{q \in \mathbb{Z}_{>1}, p \in \mathbb{Z}} \mathcal{D}(m, n^{-1}, q, p)^{c},$$

and

$$\mathcal{D}(m, n^{-1}, q, p)^c = \left\{ \xi \in \mathbb{R} : \left| \xi - \frac{p}{q} \right| < n^{-1} q^{-m} \right\}.$$

For $\xi = \frac{p}{q} \in \mathbb{Q}$ with $q \ge 1$, $\xi \in \mathcal{D}(m, n^{-1}, q, p)^c$, so for each $m, n \ge 1$,

$$\mathbb{Q} \subset \bigcup_{q \in \mathbb{Z}_{>1}, p \in \mathbb{Z}} \mathcal{D}(m, n^{-1}, q, p)^{c}.$$

This means that each set $\bigcup_{q \in \mathbb{Z}_{\geq 1}, p \in \mathbb{Z}} \mathcal{D}(m, n^{-1}, q, p)^c$ is dense. It is a union of open sets hence open, so it is an open dense set. Therefore \mathcal{D}^c is a comeager set and \mathcal{D} is a meager set. Because \mathbb{R} is a complete metric space, by the Baire category theorem \mathcal{D}^c is dense.

2 Algebraic numbers

Suppose that $\xi \in \mathbb{R} \setminus \mathbb{Q}$ and that $f(\xi) = 0$ for a nonzero irreducible polynomial $f \in \mathbb{Z}[x]$ of degree d. Let

$$M = \sup\{|f'(x)| : x \in [\xi - 1, \xi + 1]\}, \qquad A = \min(1, M^{-1}),$$

and suppose by contradiction that there are $q \in \mathbb{Z}_{\geq 1}$ and $p \in \mathbb{Z}$ such that

$$\left| \xi - \frac{p}{q} \right| < Aq^{-d}.$$

By the mean-value theorem there is some c between ξ and $\frac{p}{q}$ such that

$$f(\xi) - f(p/q) = f'(c) \left(\xi - \frac{p}{q}\right),$$

and as $f(\xi) = 0$,

$$|f'(c)|\left|\xi-\frac{p}{q}\right|=|f(p/q)|.$$

As f is irreducible, $f(p/q) \neq 0$. But then f(p/q) is a rational number which in lowest terms has denominator $\leq q^d$, therefore $|f(p/q)| \geq q^{-d}$, giving

$$\left|\xi - \frac{p}{q}\right| \ge \frac{1}{|f'(c)|} q^{-d}.$$

Furthermore, $\left|\xi - \frac{p}{q}\right| < A \le 1$ so $\frac{p}{q} \in [\xi - 1, \xi + 1]$, and as c is between ξ and $\frac{p}{q}$ it holds that $c \in [\xi - 1, \xi + 1]$ and thus $|f'(c)| \le M$. Therefore

$$\left|\xi - \frac{p}{q}\right| \ge M^{-1}q^{-d} \ge Aq^{-d},$$

a contradiction. Therefore for all $q \in \mathbb{Z}_{>1}$ and $p \in \mathbb{Z}$,

$$\left|\xi - \frac{p}{q}\right| \ge Aq^{-d}.$$

This means that $\xi \in \mathcal{D}(d, A)$.

Theorem 1 (Liouville approximation theorem). If $\xi \in \mathbb{R} \setminus \mathbb{Q}$ and $f(\xi) = 0$ for a nonzero irreducible polynomial $f \in \mathbb{Z}[x]$ of degree d, then $\xi \in \mathcal{D}(d)$.

We remark for the above theorem that because ξ is irrational, $d \geq 2$. Also, the above theorem shows that the set of real irrational algebraic numbers is contained in \mathcal{D} , which implies that if $\xi \in \mathbb{R} \setminus \mathbb{Q}$ and $\xi \in \mathcal{D}^c$ then ξ is transcendental. Elements of $(\mathbb{R} \setminus \mathbb{Q}) \cap \mathcal{D}^c$ are called **Liouville numbers**. **Roth's theorem** states that the set of real irrational algebraic numbers is contained in

$$\mathcal{D}(2+) = \bigcap_{\tau > 2} \mathcal{D}(\tau).$$

3 Measure theory

Take $\tau > 2$ and $\gamma > 0$.

$$\mathcal{D}(\tau, \gamma)^{c} = \bigcup_{q \in \mathbb{Z}_{>1}} \bigcup_{p \in \mathbb{Z}} \left\{ \xi \in \mathbb{R} : \left| \xi - \frac{p}{q} \right| < \gamma q^{-\tau} \right\}.$$

For $m \in \mathbb{Z}_{>1}$,

$$\mathcal{D}(\tau,\gamma)^c \cap (-m,m) = \bigcup_{q \in \mathbb{Z}_{\geq 1}} \bigcup_{|p| < mq + \gamma q^{-\tau+1}} \left\{ -m < \xi < m : \left| \xi - \frac{p}{q} \right| < \gamma q^{-\tau} \right\}.$$

Hence

$$\begin{split} \lambda(\mathcal{D}(\tau,\gamma)^c \cap (-m,m)) &\leq \sum_{q\geq 1} (2mq + 2\gamma q^{-\tau+1} + 1) \cdot 2\gamma q^{-\tau} \\ &= \sum_{q\geq 1} 4m\gamma q^{-\tau+1} + \sum_{q\geq 1} 4\gamma^2 q^{-2\tau+1} + \sum_{q\geq 1} 2\gamma q^{-\tau} \\ &= 4m\gamma \zeta(\tau-1) + 4\gamma^2 \zeta(2\tau-1) + 2\gamma \zeta(\tau). \end{split}$$

Therefore for each $\gamma > 0$,

$$\lambda(\mathcal{D}(\tau)^c \cap (-m,m)) \le 4m\gamma\zeta(\tau-1) + 4\gamma^2\zeta(2\tau-1) + 2\gamma\zeta(\tau),$$

hence $\lambda(\mathcal{D}(\tau)^c \cap (-m, m)) = 0$. This is true for each $m \in \mathbb{Z}_{\geq 1}$, therefore $\lambda(\mathcal{D}(\tau)^c) = 0$.

4 Exponentials

Let $\xi \in \mathbb{R} \setminus \mathbb{Q}$ and $\lambda = e^{2\pi i \xi}$. For $q \in \mathbb{Z}_{>1}$ and $p_q \in \mathbb{Z}$ closest to $q\xi$,

$$|\lambda^{q} - 1| = |e^{2\pi i q\xi} - e^{2\pi i p_{q}}| \le |2\pi q\xi - 2\pi p_{q}| = 2\pi |q\xi - p_{q}|,$$

and, as $|q\xi - p_q| \le \frac{1}{2}$ and since $|\sin x| \ge \frac{2}{\pi}|x|$ for $|x| \le \frac{\pi}{2}$,

$$\begin{split} |\lambda^{q} - 1| &= |e^{2\pi i(q\xi - p_{q})} - 1| \\ &= |e^{\pi i(q\xi - p_{q})} - e^{-\pi i(q\xi - p_{q})}| \\ &= 2|\sin \pi (q\xi - p_{q})| \\ &\geq 2 \cdot \frac{2}{\pi} |\pi (q\xi - p_{q})| \\ &= 4|q\xi - p_{q}|. \end{split}$$

Thus

$$4|q\xi - p_q| \le |\lambda^q - 1| \le 2\pi |q\xi - p_q|.$$

If $\xi \in \mathcal{D}(\tau, \gamma)$, then, for $q \in \mathbb{Z}_{\geq 1}$,

$$|\lambda^q - 1|^{-1} \le \frac{1}{4|q\xi - p_q|} = \frac{1}{4q} \left| \xi - \frac{p_q}{q} \right|^{-1} \le \frac{1}{4q} \gamma^{-1} q^{\tau} = \frac{\gamma^{-1}}{4} q^{\tau - 1}.$$

Siegel's linearization theorem states that for $\xi \in \mathbb{R} \setminus \mathbb{Q}$, $\lambda = e^{2\pi i \xi}$, if $|\lambda^q - 1|$ is majorized by a power of q, then if f is holomorphic on a neighborhood of 0 and $f'(0) = \lambda$ then f is linearizable at 0.¹ Thus if $\xi \in \mathcal{D}$ and $f'(0) = \lambda = e^{2\pi i \xi}$, then f is linearizable at 0.

¹John Milnor, *Dynamics in One Complex Variable*, third ed., p. 127, Theorem 11.4.