IE 525 - Numerical Methods in Finance Monte Carlo simulation - Efficiency

Liming Feng

Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign

©Liming Feng. Do not distribute without permission of the author

Constructing more efficient estimators

ullet We estimate $\mu=\mathbb{E}[X]$ by

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

for some i.i.d. $\{X_i, i \geq 1\}$. Generally, X_i 's do not need to have the same distribution as X

- We only need that \bar{X}_n converges to μ
- May construct $\{X_i, i \ge 1\}$ specifically to improve **efficiency**

European call

Use Monte Carlo simulation to compute

$$c = \mathbb{E}[e^{-rT}(S_T - K)^+]$$
 $S_T = S_0 \exp\left((r - q - \frac{1}{2}\sigma^2)T + \sigma B_T\right)$

• Direct approach: let $c_i = e^{-rT}(S_i - K)^+$, where

$$S_i = S_0 \exp\left(\left(r - q - \frac{1}{2}\sigma^2\right)T + \sigma\sqrt{T}Z_i\right)$$

for i.i.d. Z_i 's. Here c_i 's are i.i.d. replicates of $e^{-rT}(S_T - K)^+$ and are unbiased with $\mathbb{E}[c_i] = c$

Antithetic variates

variance reduction technique: to have smaller CI

one use zi and one use negative zi

• Antithetic approach: let

$$c_i^* = \frac{1}{2}e^{-rT}\left((S_{i+} - K)^+ + (S_{i-} - K)^+\right)$$
, where time is less than double, only one zi generate $S_{i\pm} = S_0 \exp\left((r - q - \frac{1}{2}\sigma^2)T \pm \sigma\sqrt{T}Z_i\right)$

• c_i^* 's are i.i.d. and unbiased with $c = \mathbb{E}[c_i^*]$ but do not have the same distribution as $e^{-rT}(S_T - K)^+$

difference variance compared to si, covariance is negative, < sigma^2

How to compare

- Want to estimate $\mu = \mathbb{E}[X]$
- Suppose $\{X_i, i \geq 1\}$ are i.i.d. such that $\mathbb{E}[X_i] = \mu$. Then $\bar{X}_n \to \mu$ is strongly consistent with

central limit theorem

$$\sqrt{n}(\bar{X}_n - \mu) \Rightarrow N(0, \sigma^2)$$

precision: tightness of CI, sd_error

Here $\sigma^2 = \text{var}(X_i)$ is not necessarily equal to var(X)

- We want σ^2 to be smaller so that the confidence interval $\bar{X}_n \pm z_{\alpha/2} \sigma/\sqrt{n}$ is tighter
- Is σ^2 the only thing that matters when comparing different approaches?

The case of deterministic au

- How to compare
 - Approach 1: X_i 's have smaller σ^2 but are slower to compute
 - Approach 2: X_i 's have larger σ^2 but are faster to compute
- For fair comparison, must take computational time into account
- Suppose generating X_i takes τ units of time
- Let s be our computational budget

s: total time to generate, tao, generate one,n(s)=N

• The number of replicates we can generate is $n(s) = \lfloor s/\tau \rfloor$, the integer part of s/τ :

$$\bar{X}_{n(s)} = \frac{1}{n(s)} \sum_{i=1}^{n(s)} X_i$$

• As $s \to +\infty$,

$$\sqrt{n(s)}(\bar{X}_{n(s)}-\mu) \Rightarrow N(0,\sigma^2)$$

where $\sigma^2 = \text{var}(X_i)$.

s / n(s) -> tao, when n(s) is large, s / n(s) go to approxi tao

Comparing $\sigma^2 \tau$

• Note that $n(s)/s \to 1/\tau$, $sqrt(s/tao)(x-u) = N(0, sigma^2)$

$$\sqrt{s}(\bar{X}_{n(s)} - \mu) \Rightarrow N(0, \sigma^2 \tau)$$

- In terms of computational budget s, $\bar{X}_{n(s)}$ converges to μ at rate $1/\sqrt{s}$
- When comparing approaches with different $\sigma^2 = \text{var}(X_i)$ and τ , select the one with smaller $\sigma^2 \tau$

Direct vs antithetic for European call

Method	Direct	Antithetic
Replicates	Ci	c _i *
Estimators	$\frac{1}{n}\sum_{i=1}^n c_i$	$\frac{1}{n}\sum_{i=1}^{n}c_{i}^{*}$
Time for each replicate	au	< 2 au
Variance	$\sigma^2 := var(c_i)$	$<rac{1}{2}\sigma^2$
	$\sigma^2 au$	$<\sigma^2 au$ and more efficient

Antithetic variance

• Denote $\sigma^2 = \text{var}(c_i) = \text{var}(e^{-rT}(S_i - K)^+)$.

$$\begin{aligned} \text{var}(c_i^*) &= \frac{1}{4} \Big[\text{var} \left(e^{-rT} (S_{i+} - K)^+ \right) + \text{var} \left(e^{-rT} (S_{i-} - K)^+ \right) \\ &+ 2 \text{cov} \left(e^{-rT} (S_{i+} - K)^+, e^{-rT} (S_{i-} - K)^+ \right) \Big] \\ &< \frac{1}{4} (\sigma^2 + \sigma^2) = \frac{1}{2} \sigma^2 \end{aligned}$$

S+ increase, S- decrease, negative cor

Barrier option

- ullet The above doesn't apply if au itself is random
- Consider a discrete up-and-out call option with maturity T, strike price K, and upper barrier U
- The call option is knocked out if the asset price exceeds U at any time in $\{\Delta, 2\Delta, \cdots, m\Delta\}$, $\Delta = T/m$

$$V = \mathbb{E}\Big[e^{-rT}(S_T - K)^+ \mathbf{1}_{\{S_{j\Delta} < U, 1 \le j \le m\}}\Big]$$

Simulate a barrier option payoff

• Starting from S_0 , using

$$S_{j\Delta} = S_{(j-1)\Delta} \exp\left((r-q-rac{1}{2}\sigma^2)\Delta + \sigma(B_{j\Delta}-B_{(j-1)\Delta})
ight),$$

generate $S_{\Delta}, S_{2\Delta}, \cdots$

- If $S_{j\Delta} < U, \forall 1 \leq j \leq m$, return discounted payoff $e^{-rT}(S_{m\Delta} K)^+$
- If for some $1 \leq j \leq m$, $S_{j\Delta} \geq U$, stop and return discounted payoff 0. No need to generate $S_{(j+1)\Delta}, \cdots, S_{m\Delta}$
- ullet The time au for generating each payoff is random

The case of random au

- Want to estimate $\mu = \mathbb{E}[X]$
- Suppose $\{(X_i, \tau_i), i \geq 1\}$ are i.i.d. with $\mathbb{E}[X_i] = \mu$. τ_i is the random time needed to generate X_i
- Let s be our computational budget,

$$N(s) = \sup\{n \ge 0, \sum_{i=1}^n \tau_i \le s\}$$

is the number of replicates we can generate

It can be shown that

$$\frac{N(s)\mathbb{E}[\tau]}{s} \to 1, a.s.$$

Comparing $\sigma^2 \mathbb{E}[\tau]$

• Estimate μ by $\bar{X}_{N(s)} = \frac{1}{N(s)} \sum_{i=1}^{N(s)} X_i$

$$\sqrt{N(s)}(\bar{X}_{N(s)}-\mu) \Rightarrow N(0,\sigma^2)$$

• Using $N(s)\mathbb{E}[\tau]/s \to 1$,

std error

$$\sqrt{s}(\bar{X}_{N(s)} - \mu) \Rightarrow N(0, \sigma^2 \mathbb{E}[\tau])$$

• When comparing approaches with different $\sigma = \text{var}(X_i)$ and random time τ_i , select the one with smaller $\sigma^2 \mathbb{E}[\tau]$

Local volatility

- When there is bias $(\mathbb{E}[X_i] \neq \mu)$, how to allocate computational budget?
- Consider a European call in a local volatility model

$$dS_t = rS_t dt + \sigma(S_t) S_t dB_t$$

More generally, σ could be a function of t and S_t

• The distribution of S_T is generally unknown

Euler discretization

delta 是时间

• Let $\delta = T/m$. Euler discretization of the SDE:

$$\tilde{S}_{(j+1)\delta} = \tilde{S}_{j\delta} + r\tilde{S}_{j\delta}\delta + \sigma(\tilde{S}_{j\delta})\tilde{S}_{j\delta}(B_{(j+1)\delta} - B_{j\delta}).$$

Start from S_0 , replacing $B_{(j+1)\delta} - B_{j\delta}$ by $\sqrt{\delta}Z_j$, one obtains $\tilde{S}_{m\delta}$, and hence discounted option payoff $e^{-rT}(\tilde{S}_{m\delta} - K)^+$

- Denote such generated discounted payoffs by c_i, \dots, c_n .
- For fixed m,

$$\frac{1}{n}\sum_{i=1}^{n}c_{i} \to \mathbb{E}[e^{-rT}(S_{T}-K)^{+}]$$

Euler discretization bias

- \bullet The distribution of $\tilde{S}_{m\delta}$ obtained this way only approximates that of S_T
- The above discretization scheme introduces bias

$$\mathbb{E}[c_i] \neq \mathbb{E}[e^{-rT}(S_T - K)^+]$$

ullet The approximation gets better as $\delta o 0$; the bias gets smaller

Mean square error

- Decreasing δ reduces bias, increases time for generating each option payoff, reduces the number of replicates (for given budget) and increases the variance of $\frac{1}{n}\sum_{i=1}^{n}c_{i}$
- Want to balance variance and bias
- Recall the mean square error of an estimator $\hat{\theta}$ for a unknown parameter θ

$$MSE(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2] = (bias(\hat{\theta}))^2 + var(\hat{\theta})$$

where $bias(\hat{ heta}) = \mathbb{E}[\hat{ heta}] - heta$

Assumptions

- Want to estimate $\mu = \mathbb{E}[X]$
- Suppose $X_{i,\delta}$, $i \geq 1$ are i.i.d. with $\mathbb{E}[X_{i,\delta}] = \mu_{\delta}$
- ullet Assume that the bias converges to zero at rate eta

$$\mu_{\delta} - \mu = b\delta^{\beta} + o(\delta^{\beta}), \quad b, \beta > 0$$

- ullet Let au_δ be the computational time for generating one replicate
- Assume that

$$\tau_{\delta} = c\delta^{-\eta} + o(\delta^{-\eta})$$

for $c, \eta >$ 0. E.g., for Euler discretization of the local volatility model, $\eta = 1$

Controlling $\delta(s)$

• For a computational budget s, let

$$\delta(s) = as^{-\gamma} + o(s^{-\gamma})$$

for $a, \gamma > 0$ (to be determined)

- $\delta(s)$ (and hence bias) decreases as budget increases
- Number of replicates that can be generated

$$n(s) = \left\lfloor \frac{s}{\tau_{\delta}(s)} \right\rfloor = O(s^{1-\gamma\eta})$$

We require $\gamma \eta < 1$ so that 1/n(s) (and hence variance) decreases as s increases

Squared bias

 \bullet We estimate μ by

$$\bar{X}_{n(s)} = \frac{1}{n(s)} \sum_{i=1}^{n(s)} X_{i,\delta(s)}$$

• The squared bias of $\bar{X}_{n(s)}$ is

$$(\mu_{\delta(s)}-\mu)^2=b^2a^{2\beta}s^{-2\beta\gamma}+o(s^{-2\beta\gamma})$$

Variance

• The variance of $\bar{X}_{n(s)}$ is

$$\operatorname{var}(\bar{X}_{n(s)}) = \frac{\sigma_{\delta(s)}^2}{n(s)}$$

where $\sigma_{\delta(s)}^2 = \text{var}(X_{i,\delta(s)})$

• Let σ^2 be the limit of σ^2_{δ} as $\delta \to 0$. In local volatility example, $\sigma^2 = \text{var}(e^{-rT}(S_T - K)^+), \ \sigma^2_{\delta} = \text{var}(e^{-rT}(\tilde{S}_{m\delta} - K)^+)$

$$\operatorname{var}(\bar{X}_{n(s)}) = \frac{\sigma^2 \tau_{\delta(s)}}{s} + o(\tau_{\delta(s)}/s) = \sigma^2 c a^{-\eta} s^{\gamma \eta - 1} + o(s^{\gamma \eta - 1})$$

Root mean square error

• To balance squared bias and variance, make $s^{\gamma \eta - 1} = s^{-2\beta \gamma}$:

$$\gamma = \frac{1}{2\beta + \eta}$$

The resulting MSE is

$$MSE(\bar{X}_{n(s)}) = (b^2 a^{2\beta} + \sigma^2 c a^{-\eta}) s^{-2\beta/(2\beta+\eta)} + o(s^{-2\beta/(2\beta+\eta)})$$

a can be determined by minimizing the coefficient

The root mean square error (RMSE) is of the order

$$RMSE(\bar{X}_{n(s)}) = O(s^{-\beta/(2\beta+\eta)})$$

Some observations

- When η is fixed, larger β (schemes with larger convergence rate of the bias) is preferred
- $O(s^{-1/2})$ is the best one can achieve (the unbiased case; or $\eta=0$)
- ullet Slower convergence expected for finite eta and positive η