## Chapter 11

# Simple Linear Regression and Correlation

## The Simple Linear Regression (SLR) Model

the estimated or **fitted regression** line is given by

$$\hat{y} = b_0 + b_1 x,$$

### The Method of Least Squares

Estimating the Given the sample  $\{(x_i, y_i); i = 1, 2, ..., n\}$ , the least squares estimates  $b_0$  and  $b_1$  Regression of the regression coefficients  $\beta_0$  and  $\beta_1$  are computed from the formulas Coefficients

$$b_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \text{ and }$$

$$b_{0} = \frac{\sum_{i=1}^{n} y_{i} - b_{1} \sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \bar{y} - b_{1}\bar{x}.$$

## 11.12 Correlation

## Pearson product-moment correlation coefficient

Correlation The measure  $\rho$  of linear association between two variables X and Y is estimated Coefficient by the sample correlation coefficient r, where

$$r = b_1 \sqrt{\frac{S_{xx}}{S_{yy}}} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}.$$

| Quantity | Defining formula                   | Computing formula                       |
|----------|------------------------------------|-----------------------------------------|
| $S_{xx}$ | $\Sigma (x_i - \bar{x})^2$         | $\Sigma x_i^2 - (\Sigma x_i)^2/n$       |
| $S_{xy}$ | $\Sigma(x_i-\bar{x})(y_i-\bar{y})$ | $\sum x_i y_i - (\sum x_i)(\sum y_i)/n$ |
| $S_{yy}$ | $\Sigma (y_i - \bar{y})^2$         | $\Sigma y_i^2 - (\Sigma y_i)^2/n$       |

$$r = \frac{\sum x_i y_i - (\sum x_i)(\sum y_i)/n}{\sqrt{\left[\sum x_i^2 - (\sum x_i)^2/n\right]\left[\sum y_i^2 - (\sum y_i)^2/n\right]}}$$

#### Formula for the t Test for the Correlation Coefficient

$$t = r\sqrt{\frac{n-2}{1-r^2}}$$

with degrees of freedom equal to n-2.

## Linear regression and correlation are two commonly used methods

- for examining the relationship between quantitative variables and
- for making predictions regression equation,
- the equation of the line that best fits a set of data points.

## Coefficient of determination,

- a descriptive measure of the utility of the regression equation for making predictions linear correlation coefficient,
- it provides a descriptive measure of the strength of the linear relationship between two quantitative variables.

Show that

$$S_{xx} = \Sigma (x_i - \bar{x})^2 = \Sigma x_i^2 - (\Sigma x_i)^2/n$$

$$S_{xy} = \Sigma(x_i - \bar{x})(y_i - \bar{y}) = \Sigma x_i y_i - (\Sigma x_i)(\Sigma y_i)/n$$

#### Various degrees of linear correlation



\_\_\_\_\_\_,



(a) Perfect positive linear correlation r=1

b) Strong positive linear correlation r = 0.9

(c) Weak positive linear correlation r = 0.4







(d) Perfect negative linear correlation r = -1

(e) Strong negative linear correlation r = -0.9

(f) Weak negative linear correlation r = -0.4



(g) No linear correlation (linearly uncorrelated) r = 0

## Car Rental Companies Example:



Construct a scatter plot for the data shown for car rental companies in the United States for a recent year.

| Company | Cars (in ten thousands) | Revenue (in billions) |
|---------|-------------------------|-----------------------|
| A       | 63.0                    | \$7.0                 |
| В       | 29.0                    | 3.9                   |
| C       | 20.8                    | 2.1                   |
| D       | 19.1                    | 2.8                   |
| E       | 13.4                    | 1.4                   |
| F       | 8.5                     | 1.5                   |



Compute the correlation coefficient

Test the significance of the correlation coefficient Use  $\alpha = 0.05$ 

Find the equation of the regression line



| Cars <i>x</i> (in 10,000      |                              |                                 | $x^2$                             | $y^2$                |
|-------------------------------|------------------------------|---------------------------------|-----------------------------------|----------------------|
| 63.0                          | 7.0                          | 441.00                          | 3969.00                           | 49.00                |
| 29.0                          | 3.9                          | 113.10                          | 841.00                            | 15.21                |
| 20.8                          | 2.1                          | 43.68                           | 432.64                            | 4.41                 |
| 19.1                          | 2.8                          | 53.48                           | 364.81                            | 7.84                 |
| 13.4                          | 1.4                          | 18.76                           | 179.56                            | 1.96                 |
| 8.5                           | 1.5                          | 12.75                           | 72.25                             | 2.25                 |
| $\Sigma x = \overline{153.8}$ | $\Sigma y = \overline{18.7}$ | $\Sigma xy = \overline{682.77}$ | $\Sigma x^2 = \overline{5859.26}$ | $\Sigma y^2 = 80.67$ |

Assis.Prof: Jamilusmani

Substitute in the formula and solve for r.

$$r = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{[n(\Sigma x^2) - (\Sigma x)^2][n(\Sigma y^2) - (\Sigma y)^2]}}$$

$$= \frac{(6)(682.77) - (153.8)(18.7)}{\sqrt{[(6)(5859.26) - (153.8)^2][(6)(80.67) - (18.7)^2]}} = 0.982$$

The correlation coefficient suggests a strong relationship between the number of cars a rental agency has and its annual revenue.



$$a = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma xy)}{n(\Sigma x^2) - (\Sigma x)^2}$$

$$a = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma xy)}{n(\Sigma x^2) - (\Sigma x)^2} = \frac{(18.7)(5859.26) - (153.8)(682.77)}{(6)(5859.26) - (153.8)^2} = 0.396$$

$$b = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$$

$$b = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2} = \frac{6(682.77) - (153.8)(18.7)}{(6)(5859.26) - (153.8)^2} = 0.106$$

$$y' = 0.396 + 0.106x$$

Test the significance of the correlation coefficient Use  $\alpha = 0.05$  and r = 0.982.

#### Solution

Step 1 State the hypotheses.

$$H_0: \rho = 0$$
 and  $H_1: \rho \neq 0$ 

Step 2 Find the critical values.

. Since  $\alpha = 0.05$  and there are 6 - 2 = 4 degrees of



Step 3 Compute the test value.

$$t = r\sqrt{\frac{n-2}{1-r^2}} = 0.982\sqrt{\frac{6-2}{1-(0.982)^2}} = 10.4$$

Step 4 Make the decision.

Reject the null hypothesis, since the test value falls in the critical region,



Step 5 Summarize the results.

There is a significant relationship between the number of cars a rental agency owns and its annual income.

#### Formula for the t Test for the Correlation Coefficient

$$t = r\sqrt{\frac{n-2}{1-r^2}}$$

with degrees of freedom equal to n-2.

Example 11.1: 
$$\sum_{i=1}^{33} x_i = 1104, \ \sum_{i=1}^{33} y_i = 1124, \ \sum_{i=1}^{33} x_i y_i = 41,355, \ \sum_{i=1}^{33} x_i^2 = 41,086$$

the estimated regression line is given by

$$\hat{y} = 3.8296 + 0.9036x.$$

## Home Activity

11.14 A professor in the School of Business in a university polled a dozen colleagues about the number of professional meetings they attended in the past five years (x) and the number of papers they submitted to referred journals (y) during the same period. The summary data are given as follows:

$$n = 12, \quad \bar{x} = 4, \quad \bar{y} = 12,$$
  
$$\sum_{i=1}^{n} x_i^2 = 232, \quad \sum_{i=1}^{n} x_i y_i = 318.$$

Fit a simple linear regression model between x and y by finding out the estimates of intercept and slope. Com-

#### formula

$$y = a + bx$$

$$\sum y = na + b \sum x$$

$$\sum xy = a \sum x + b \sum x^{2}$$

$$\hat{y} = 37.8 - 6.45x.$$

**11.2** The grades of a class of 9 students on a midterm report (x) and on the final examination (y) are as follows:

- (a) Estimate the linear regression line.
- (b) Estimate the final examination grade of a student who received a grade of 85 on the midterm report.

#### **Solution:**

(a) 
$$\sum_{i} x_{i} = 707$$
,  $\sum_{i} y_{i} = 658$ ,  $\sum_{i} x_{i}^{2} = 57,557$ ,  $\sum_{i} x_{i} y_{i} = 53,258$ ,  $n = 9$ .  

$$b = \frac{(9)(53,258) - (707)(658)}{(9)(57,557) - (707)^{2}} = 0.7771,$$

$$a = \frac{658 - (0.7771)(707)}{9} = 12.0623.$$

Hence  $\hat{y} = 12.0623 + 0.7771x$ .

(b) For 
$$x = 85$$
,  $\hat{y} = 12.0623 + (0.7771)(85) = 78$ .

$$b = \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

$$a = \frac{\sum_{i=1}^{n} y_i - b_1 \sum_{i=1}^{n} x_i}{n}$$

## **Solution:**

11.13 A study of the amount of rainfall and the quantity of air pollution removed produced the following

(a)  $\sum_{i} x_i = 45$ ,  $\sum_{i} y_i = 1094$ ,  $\sum_{i} x_i^2 = 244.26$ ,  $\sum_{i} x_i y_i = 5348.2$ , n = 9.

data:

| Daily Rainfall,    | Particulate Removed, |
|--------------------|----------------------|
| $x~(0.01~{ m cm})$ | $y~(\mu { m g/m}^3)$ |
| 4.3                | 126                  |
| 4.5                | 121                  |
| 5.9                | 116                  |
| 5.6                | 118                  |
| 6.1                | 114                  |
| 5.2                | 118                  |
| 3.8                | 132                  |
| 2.1                | 141                  |
| 7.5                | 108                  |

- (a) Find the equation of the regression line to predict the particulate removed from the amount of daily rainfall.
- (b) Estimate the amount of particulate removed when the daily rainfall is x = 4.8 units.

$$b = \frac{(9)(5348.2) - (45)(1094)}{(9)(244.26) - (45)^2} = -6.3240,$$

$$a = \frac{1094 - (-6.3240)(45)}{9} = 153.1755.$$

Hence  $\hat{y} = 153.1755 - 6.3240x$ .

(b) For 
$$x = 4.8$$
,  $\hat{y} = 153.1755 - (6.3240)(4.8) = 123$ .

- 11.1 A study was conducted at Virginia Tech to determine if certain static arm-strength measures have an influence on the "dynamic lift" characteristics of an individual. Twenty-five individuals were subjected to strength tests and then were asked to perform a weight-lifting test in which weight was dynamically lifted overhead. The data are given here.
- (a) Estimate  $\beta_0$  and  $\beta_1$  for the linear regression curve  $\mu_{Y|x} = \beta_0 + \beta_1 x$ .
- (b) Find a point estimate of  $\mu_{Y|30}$ .

#### **Solution:**

(a) 
$$\sum_{i} x_{i} = 778.7$$
,  $\sum_{i} y_{i} = 2050.0$ ,  $\sum_{i} x_{i}^{2} = 26,591.63$ ,  $\sum_{i} x_{i} y_{i} = 65,164.04$ ,  $n = 25$ .
$$b = \frac{(25)(65,164.04) - (778.7)(2050.0)}{(25)(26,591.63) - (778.7)^{2}} = 0.5609$$
, 
$$a = \frac{2050 - (0.5609)(778.7)}{25} = 64.53$$
.
$$\hat{y} = 64.53 + 0.5609x$$

| (b) Using | the | equation | $\hat{y}$ : | =   | 64.53  | + | 0.5609x | with        | x    | =     | 30, |
|-----------|-----|----------|-------------|-----|--------|---|---------|-------------|------|-------|-----|
|           |     |          | =           | = 8 | 31.40. |   | Ass     | is.Prof: Ja | milu | ısmaı | ni  |

|            | $\mathbf{Arm}$ | Dynamic   |
|------------|----------------|-----------|
| Individual | Strength, $x$  | Lift, $y$ |
| 1          | 17.3           | 71.7      |
| 2          | 19.3           | 48.3      |
| 3          | 19.5           | 88.3      |
| 4          | 19.7           | 75.0      |
| 5          | 22.9           | 91.7      |
| 6          | 23.1           | 100.0     |
| 7          | 26.4           | 73.3      |
| 8          | 26.8           | 65.0      |
| 9          | 27.6           | 75.0      |
| 10         | 28.1           | 88.3      |
| 11         | 28.2           | 68.3      |
| 12         | 28.7           | 96.7      |
| 13         | 29.0           | 76.7      |
| 14         | 29.6           | 78.3      |
| 15         | 29.9           | 60.0      |
| 16         | 29.9           | 71.7      |
| 17         | 30.3           | 85.0      |
| 18         | 31.3           | 85.0      |
| 19         | 36.0           | 88.3      |
| 20         | 39.5           | 100.0     |
| 21         | 40.4           | 100.0     |
| 22         | 44.3           | 100.0     |
| 23         | 44.6           | 91.7      |
| 24         | 50.4           | 100.0     |
| 25         | 55.9           | 71.7      |
|            |                |           |

- **11.44** With reference to Exercise 11.1 on page 398, assume that x and y are random variables with a bivariate normal distribution.
- (a) Calculate r.
- (b) Test the hypothesis that  $\rho = 0$  against the alternative that  $\rho \neq 0$  at the 0.05 level of significance.

## **Solution:**

(a)

data of Exercise 11.1 we can calculate

$$S_{xx} = 26,591.63 - (778.7)^2/25 = 2336.6824,$$
  
 $S_{yy} = 172,891.46 - (2050)^2/25 = 4791.46,$   
 $S_{xy} = 65,164.04 - (778.7)(2050)/25 = 1310.64.$ 

$$r = b_1 \sqrt{\frac{S_{xx}}{S_{yy}}} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}.$$

$$r = \frac{1310.64}{\sqrt{(2236.6824)(4791.46)}} = 0.392.$$

$$t=rac{r\sqrt{n-2}}{\sqrt{1-r^2}}, \;\; extsf{V=n-2 degree of freedom}$$

| Quantity | Computing formula                       |          |
|----------|-----------------------------------------|----------|
| $S_{xx}$ | $\Sigma x_i^2 - (\Sigma x_i)^2/n$       | formulas |
| $S_{xy}$ | $\sum x_i y_i - (\sum x_i)(\sum y_i)/n$ |          |
| $S_{yy}$ | $\Sigma y_i^2 - (\Sigma y_i)^2/n$       |          |

(b) The hypotheses are

$$H_0: \rho = 0,$$

$$H_1: \rho \neq 0.$$

$$\alpha = 0.05$$
.

Critical regions: 
$$t < -2.069$$
 or  $t > 2.069$ .  
Computations:  $t = \frac{0.392\sqrt{23}}{\sqrt{1-0.392^2}} = 2.04$ .  
Decision: Fail to reject  $H_0$  at level 0.05.



|                |       |       |       | $\alpha$ |       |       |        |
|----------------|-------|-------|-------|----------|-------|-------|--------|
| $oldsymbol{v}$ | 0.40  | 0.30  | 0.20  | 0.15     | 0.10  | 0.05  | 0.025  |
| 1              | 0.325 | 0.727 | 1.376 | 1.963    | 3.078 | 6.314 | 12.706 |
| 2              | 0.289 | 0.617 | 1.061 | 1.386    | 1.886 | 2.920 | 4.303  |
| 3              | 0.277 | 0.584 | 0.978 | 1.250    | 1.638 | 2.353 | 3.182  |
| 4              | 0.271 | 0.569 | 0.941 | 1.190    | 1.533 | 2.132 | 2.776  |
| 5              | 0.267 | 0.559 | 0.920 | 1.156    | 1.476 | 2.015 | 2.571  |
| 6              | 0.265 | 0.553 | 0.906 | 1.134    | 1.440 | 1.943 | 2.447  |
| 7              | 0.263 | 0.549 | 0.896 | 1.119    | 1.415 | 1.895 | 2.365  |
| 8              | 0.262 | 0.546 | 0.889 | 1.108    | 1.397 | 1.860 | 2.306  |
| 9              | 0.261 | 0.543 | 0.883 | 1.100    | 1.383 | 1.833 | 2.262  |
| 10             | 0.260 | 0.542 | 0.879 | 1.093    | 1.372 | 1.812 | 2.228  |
| 11             | 0.260 | 0.540 | 0.876 | 1.088    | 1.363 | 1.796 | 2.201  |
| 12             | 0.259 | 0.539 | 0.873 | 1.083    | 1.356 | 1.782 | 2.179  |
| 13             | 0.259 | 0.538 | 0.870 | 1.079    | 1.350 | 1.771 | 2.160  |
| 14             | 0.258 | 0.537 | 0.868 | 1.076    | 1.345 | 1.761 | 2.145  |
| 15             | 0.258 | 0.536 | 0.866 | 1.074    | 1.341 | 1.753 | 2.131  |
| 16             | 0.258 | 0.535 | 0.865 | 1.071    | 1.337 | 1.746 | 2.120  |
| 17             | 0.257 | 0.534 | 0.863 | 1.069    | 1.333 | 1.740 | 2.110  |
| 18             | 0.257 | 0.534 | 0.862 | 1.067    | 1.330 | 1.734 | 2.101  |
| 19             | 0.257 | 0.533 | 0.861 | 1.066    | 1.328 | 1.729 | 2.093  |
| 20             | 0.257 | 0.533 | 0.860 | 1.064    | 1.325 | 1.725 | 2.086  |
| 21             | 0.257 | 0.532 | 0.859 | 1.063    | 1.323 | 1.721 | 2.080  |
| 22             | 0.256 | 0.532 | 0.858 | 1.061    | 1.321 | 1.717 | 2.074  |
| 23             | 0.256 | 0.532 | 0.858 | 1.060    | 1.319 | 1.714 | 2.069  |
| 24             | 0.256 | 0.531 | 0.857 | 1.059    | 1.318 | 1.711 | 2.064  |
| 25             | 0.256 | 0.531 | 0.856 | 1.058    | 1.316 | 1.708 | 2.060  |
| 26             | 0.256 | 0.531 | 0.856 | 1.058    | 1.315 | 1.706 | 2.056  |
| 27             | 0.256 | 0.531 | 0.855 | 1.057    | 1.314 | 1.703 | 2.052  |
| 28             | 0.256 | 0.530 | 0.855 | 1.056    | 1.313 | 1.701 | 2.048  |
| 29             | 0.256 | 0.530 | 0.854 | 1.055    | 1.311 | 1.699 | 2.045  |
| 30             | 0.256 | 0.530 | 0.854 | 1.055    | 1.310 | 1.697 | 2.042  |
| 40             | 0.255 | 0.529 | 0.851 | 1.050    | 1.303 | 1.684 | 2.021  |
| 60             | 0.254 | 0.527 | 0.848 | 1.045    | 1.296 | 1.671 | 2.000  |
| 120            | 0.254 | 0.526 | 0.845 | 1.041    | 1.289 | 1.658 | 1.980  |
| $\infty$       | 0.253 | 0.524 | 0.842 | 1.036    | 1.282 | 1.645 | 1.960  |

| v         0.02         0.015         0.01         0.0075         0.005         0.0025         0.0005           1         15.894         21.205         31.821         42.433         63.656         127.321         636.578           2         4.849         5.643         6.965         8.073         9.925         14.089         31.600           3         3.482         3.896         4.541         5.047         5.841         7.453         12.924           4         2.999         3.298         3.747         4.088         4.604         5.598         8.610           5         2.757         3.003         3.365         3.634         4.032         4.773         6.869           6         2.612         2.829         3.143         3.372         3.707         4.317         5.959           7         2.517         2.715         2.998         3.250         3.690         4.781           10         2.359         2.527         2.764         2.932         3.169         3.581         4.587           11         2.328         2.491         2.718         2.879         3.106         3.497         4.437           12         2.303                                                                                                                                                    |                  |        |        |        | α      |        |         |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|--------|--------|--------|--------|---------|---------|
| 2         4.849         5.643         6.965         8.073         9.925         14.089         31.600           3         3.482         3.896         4.541         5.047         5.841         7.453         12.924           4         2.999         3.298         3.747         4.088         4.604         5.598         8.610           5         2.757         3.003         3.365         3.634         4.032         4.773         6.869           6         2.612         2.829         3.143         3.372         3.707         4.317         5.959           7         2.517         2.715         2.998         3.203         3.499         4.029         5.408           8         2.449         2.634         2.896         3.085         3.355         3.833         5.041           9         2.398         2.574         2.821         2.998         3.250         3.690         4.781           10         2.359         2.527         2.764         2.932         3.106         3.497         4.437           12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282 <th><math>\boldsymbol{v}</math></th> <th>0.02</th> <th>0.015</th> <th>0.01</th> <th>0.0075</th> <th>0.005</th> <th>0.0025</th> <th>0.0005</th> | $\boldsymbol{v}$ | 0.02   | 0.015  | 0.01   | 0.0075 | 0.005  | 0.0025  | 0.0005  |
| 3         3.482         3.896         4.541         5.047         5.841         7.453         12.924           4         2.999         3.298         3.747         4.088         4.604         5.598         8.610           5         2.757         3.003         3.365         3.634         4.032         4.773         6.869           6         2.612         2.829         3.143         3.372         3.707         4.317         5.959           7         2.517         2.715         2.998         3.203         3.499         4.029         5.408           8         2.449         2.634         2.896         3.085         3.355         3.833         5.041           9         2.398         2.574         2.821         2.998         3.250         3.690         4.781           10         2.359         2.527         2.764         2.932         3.169         3.581         4.587           11         2.328         2.491         2.718         2.879         3.106         3.497         4.437           12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282 <th>1</th> <th>15.894</th> <th>21.205</th> <th>31.821</th> <th>42.433</th> <th>63.656</th> <th>127.321</th> <th>636.578</th>                    | 1                | 15.894 | 21.205 | 31.821 | 42.433 | 63.656 | 127.321 | 636.578 |
| 4         2.999         3.298         3.747         4.088         4.604         5.598         8.610           5         2.757         3.003         3.365         3.634         4.032         4.773         6.869           6         2.612         2.829         3.143         3.372         3.707         4.317         5.959           7         2.517         2.715         2.998         3.203         3.499         4.029         5.408           8         2.449         2.634         2.896         3.085         3.355         3.833         5.041           9         2.398         2.574         2.821         2.998         3.250         3.690         4.781           10         2.359         2.527         2.764         2.932         3.169         3.581         4.587           11         2.328         2.491         2.718         2.879         3.106         3.497         4.437           12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282         2.436         2.650         2.801         3.012         3.372         4.221           4         2.524                                                                                                                                                  | <b>2</b>         | 4.849  | 5.643  | 6.965  | 8.073  | 9.925  | 14.089  | 31.600  |
| 5         2.757         3.003         3.365         3.634         4.032         4.773         6.869           6         2.612         2.829         3.143         3.372         3.707         4.317         5.959           7         2.517         2.715         2.998         3.203         3.499         4.029         5.408           8         2.449         2.634         2.896         3.085         3.355         3.833         5.041           9         2.398         2.574         2.821         2.998         3.250         3.690         4.781           10         2.359         2.527         2.764         2.932         3.169         3.581         4.587           11         2.328         2.491         2.718         2.879         3.106         3.497         4.437           12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282         2.436         2.650         2.801         3.012         3.372         4.221           14         2.264         2.415         2.624         2.771         2.977         3.326         4.140           15         2.249 <th>3</th> <th>3.482</th> <th>3.896</th> <th>4.541</th> <th>5.047</th> <th>5.841</th> <th>7.453</th> <th>12.924</th>                           | 3                | 3.482  | 3.896  | 4.541  | 5.047  | 5.841  | 7.453   | 12.924  |
| 6         2.612         2.829         3.143         3.372         3.707         4.317         5.959           7         2.517         2.715         2.998         3.203         3.499         4.029         5.408           8         2.449         2.634         2.896         3.085         3.355         3.833         5.041           9         2.398         2.574         2.821         2.998         3.250         3.690         4.781           10         2.359         2.527         2.764         2.932         3.169         3.581         4.587           11         2.328         2.491         2.718         2.879         3.106         3.497         4.437           12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282         2.436         2.650         2.801         3.012         3.372         4.221           14         2.264         2.415         2.624         2.771         2.977         3.286         4.073           15         2.249         2.397         2.602         2.746         2.947         3.286         4.073           16         2.235 </th <th></th> <th>2.999</th> <th></th> <th></th> <th>4.088</th> <th></th> <th></th> <th></th>                                                |                  | 2.999  |        |        | 4.088  |        |         |         |
| 7         2.517         2.715         2.998         3.203         3.499         4.029         5.408           8         2.449         2.634         2.896         3.085         3.355         3.833         5.041           9         2.398         2.574         2.821         2.998         3.250         3.690         4.781           10         2.359         2.527         2.764         2.932         3.169         3.581         4.587           11         2.328         2.491         2.718         2.879         3.106         3.497         4.437           12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282         2.436         2.650         2.801         3.012         3.372         4.221           14         2.264         2.415         2.624         2.771         2.977         3.326         4.140           15         2.249         2.397         2.602         2.746         2.947         3.286         4.073           16         2.235         2.382         2.583         2.724         2.921         3.252         4.015           17         2.244<                                                                                                                                             | 5                | 2.757  | 3.003  | 3.365  | 3.634  | 4.032  | 4.773   | 6.869   |
| 8         2.449         2.634         2.896         3.085         3.355         3.833         5.041           9         2.398         2.574         2.821         2.998         3.250         3.690         4.781           10         2.359         2.527         2.764         2.932         3.169         3.581         4.587           11         2.328         2.491         2.718         2.879         3.106         3.497         4.437           12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282         2.436         2.650         2.801         3.012         3.372         4.221           14         2.264         2.415         2.624         2.771         2.977         3.326         4.140           15         2.249         2.397         2.602         2.746         2.947         3.286         4.073           16         2.235         2.382         2.583         2.724         2.921         3.252         4.015           17         2.224         2.368         2.567         2.706         2.898         3.222         3.965           18         2.214                                                                                                                                             | 6                | 2.612  | 2.829  | 3.143  | 3.372  | 3.707  | 4.317   | 5.959   |
| 9         2.398         2.574         2.821         2.998         3.250         3.690         4.781           10         2.359         2.527         2.764         2.932         3.169         3.581         4.587           11         2.328         2.491         2.718         2.879         3.106         3.497         4.437           12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282         2.436         2.650         2.801         3.012         3.372         4.221           14         2.264         2.415         2.624         2.771         2.977         3.326         4.140           15         2.249         2.397         2.602         2.746         2.947         3.286         4.073           16         2.235         2.382         2.583         2.724         2.921         3.252         4.015           17         2.224         2.368         2.567         2.706         2.898         3.222         3.965           18         2.214         2.356         2.552         2.689         2.878         3.197         3.922           19         2.20                                                                                                                                             | 7                | 2.517  | 2.715  | 2.998  | 3.203  | 3.499  | 4.029   | 5.408   |
| 10         2.359         2.527         2.764         2.932         3.169         3.581         4.587           11         2.328         2.491         2.718         2.879         3.106         3.497         4.437           12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282         2.436         2.650         2.801         3.012         3.372         4.221           14         2.264         2.415         2.624         2.771         2.977         3.326         4.140           15         2.249         2.397         2.602         2.746         2.947         3.286         4.073           16         2.235         2.382         2.583         2.724         2.921         3.252         4.015           17         2.224         2.368         2.567         2.706         2.898         3.222         3.965           18         2.214         2.356         2.552         2.689         2.878         3.197         3.922           19         2.205         2.346         2.539         2.674         2.861         3.174         3.883           20         2.1                                                                                                                                             | 8                | 2.449  | 2.634  | 2.896  | 3.085  | 3.355  | 3.833   | 5.041   |
| 11         2.328         2.491         2.718         2.879         3.106         3.497         4.437           12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282         2.436         2.650         2.801         3.012         3.372         4.221           14         2.264         2.415         2.624         2.771         2.977         3.326         4.140           15         2.249         2.397         2.602         2.746         2.947         3.286         4.073           16         2.235         2.382         2.583         2.724         2.921         3.252         4.015           17         2.224         2.368         2.567         2.706         2.898         3.222         3.965           18         2.214         2.356         2.552         2.689         2.878         3.197         3.922           19         2.205         2.346         2.539         2.674         2.861         3.174         3.883           20         2.197         2.336         2.528         2.661         2.845         3.153         3.819           21         2.1                                                                                                                                             | 9                | 2.398  | 2.574  | 2.821  | 2.998  | 3.250  | 3.690   | 4.781   |
| 12         2.303         2.461         2.681         2.836         3.055         3.428         4.318           13         2.282         2.436         2.650         2.801         3.012         3.372         4.221           14         2.264         2.415         2.624         2.771         2.977         3.326         4.140           15         2.249         2.397         2.602         2.746         2.947         3.286         4.073           16         2.235         2.382         2.583         2.724         2.921         3.252         4.015           17         2.224         2.368         2.567         2.706         2.898         3.222         3.965           18         2.214         2.356         2.552         2.689         2.878         3.197         3.922           19         2.205         2.346         2.539         2.674         2.861         3.174         3.883           20         2.197         2.336         2.528         2.661         2.845         3.153         3.819           21         2.189         2.328         2.518         2.649         2.831         3.135         3.819           22         2.1                                                                                                                                             | 10               | 2.359  | 2.527  | 2.764  | 2.932  | 3.169  | 3.581   | 4.587   |
| 13         2.282         2.436         2.650         2.801         3.012         3.372         4.221           14         2.264         2.415         2.624         2.771         2.977         3.326         4.140           15         2.249         2.397         2.602         2.746         2.947         3.286         4.073           16         2.235         2.382         2.583         2.724         2.921         3.252         4.015           17         2.224         2.368         2.567         2.706         2.898         3.222         3.965           18         2.214         2.356         2.552         2.689         2.878         3.197         3.922           19         2.205         2.346         2.539         2.674         2.861         3.174         3.883           20         2.197         2.336         2.528         2.661         2.845         3.153         3.850           21         2.189         2.328         2.518         2.649         2.831         3.135         3.819           22         2.183         2.320         2.508         2.639         2.819         3.119         3.792           23         2.1                                                                                                                                             | 11               | 2.328  | 2.491  | 2.718  | 2.879  | 3.106  | 3.497   | 4.437   |
| 14         2.264         2.415         2.624         2.771         2.977         3.326         4.140           15         2.249         2.397         2.602         2.746         2.947         3.286         4.073           16         2.235         2.382         2.583         2.724         2.921         3.252         4.015           17         2.224         2.368         2.567         2.706         2.898         3.222         3.965           18         2.214         2.356         2.552         2.689         2.878         3.197         3.922           19         2.205         2.346         2.539         2.674         2.861         3.174         3.883           20         2.197         2.336         2.528         2.661         2.845         3.153         3.850           21         2.189         2.328         2.518         2.649         2.831         3.135         3.819           22         2.183         2.320         2.508         2.639         2.819         3.119         3.792           23         2.177         2.313         2.500         2.629         2.807         3.104         3.768           24         2.1                                                                                                                                             | 12               | 2.303  | 2.461  | 2.681  | 2.836  | 3.055  | 3.428   | 4.318   |
| 15         2.249         2.397         2.602         2.746         2.947         3.286         4.073           16         2.235         2.382         2.583         2.724         2.921         3.252         4.015           17         2.224         2.368         2.567         2.706         2.898         3.222         3.965           18         2.214         2.356         2.552         2.689         2.878         3.197         3.922           19         2.205         2.346         2.539         2.674         2.861         3.174         3.883           20         2.197         2.336         2.528         2.661         2.845         3.153         3.850           21         2.189         2.328         2.518         2.649         2.831         3.135         3.819           22         2.183         2.320         2.508         2.639         2.819         3.119         3.792           23         2.177         2.313         2.500         2.629         2.807         3.104         3.768           24         2.172         2.307         2.492         2.620         2.797         3.091         3.745           25         2.1                                                                                                                                             | 13               | 2.282  | 2.436  | 2.650  | 2.801  | 3.012  | 3.372   | 4.221   |
| 16         2.235         2.382         2.583         2.724         2.921         3.252         4.015           17         2.224         2.368         2.567         2.706         2.898         3.222         3.965           18         2.214         2.356         2.552         2.689         2.878         3.197         3.922           19         2.205         2.346         2.539         2.674         2.861         3.174         3.883           20         2.197         2.336         2.528         2.661         2.845         3.153         3.850           21         2.189         2.328         2.518         2.649         2.831         3.135         3.819           22         2.183         2.320         2.508         2.639         2.819         3.119         3.792           23         2.177         2.313         2.500         2.629         2.807         3.104         3.768           24         2.172         2.307         2.492         2.620         2.797         3.091         3.745           25         2.167         2.301         2.485         2.612         2.787         3.078         3.725           26         2.1                                                                                                                                             | 14               | 2.264  | 2.415  | 2.624  | 2.771  | 2.977  | 3.326   | 4.140   |
| 17         2.224         2.368         2.567         2.706         2.898         3.222         3.965           18         2.214         2.356         2.552         2.689         2.878         3.197         3.922           19         2.205         2.346         2.539         2.674         2.861         3.174         3.883           20         2.197         2.336         2.528         2.661         2.845         3.153         3.850           21         2.189         2.328         2.518         2.649         2.831         3.135         3.819           22         2.183         2.320         2.508         2.639         2.819         3.119         3.792           23         2.177         2.313         2.500         2.629         2.807         3.104         3.768           24         2.172         2.307         2.492         2.620         2.797         3.091         3.745           25         2.167         2.301         2.485         2.612         2.787         3.078         3.725           26         2.162         2.296         2.479         2.605         2.779         3.067         3.707           27         2.1                                                                                                                                             | 15               | 2.249  | 2.397  | 2.602  | 2.746  | 2.947  | 3.286   | 4.073   |
| 18         2.214         2.356         2.552         2.689         2.878         3.197         3.922           19         2.205         2.346         2.539         2.674         2.861         3.174         3.883           20         2.197         2.336         2.528         2.661         2.845         3.153         3.850           21         2.189         2.328         2.518         2.649         2.831         3.135         3.819           22         2.183         2.320         2.508         2.639         2.819         3.119         3.792           23         2.177         2.313         2.500         2.629         2.807         3.104         3.768           24         2.172         2.307         2.492         2.620         2.797         3.091         3.745           25         2.167         2.301         2.485         2.612         2.787         3.078         3.725           26         2.162         2.296         2.479         2.605         2.779         3.067         3.707           27         2.158         2.291         2.473         2.598         2.771         3.057         3.689           28         2.1                                                                                                                                             | 16               | 2.235  | 2.382  | 2.583  | 2.724  | 2.921  | 3.252   | 4.015   |
| 19         2.205         2.346         2.539         2.674         2.861         3.174         3.883           20         2.197         2.336         2.528         2.661         2.845         3.153         3.850           21         2.189         2.328         2.518         2.649         2.831         3.135         3.819           22         2.183         2.320         2.508         2.639         2.819         3.119         3.792           23         2.177         2.313         2.500         2.629         2.807         3.104         3.768           24         2.172         2.307         2.492         2.620         2.797         3.091         3.745           25         2.167         2.301         2.485         2.612         2.787         3.078         3.725           26         2.162         2.296         2.479         2.605         2.779         3.067         3.707           27         2.158         2.291         2.473         2.598         2.771         3.057         3.689           28         2.154         2.286         2.467         2.592         2.763         3.047         3.674           29         2.1                                                                                                                                             | 17               | 2.224  | 2.368  | 2.567  | 2.706  | 2.898  | 3.222   | 3.965   |
| 20       2.197       2.336       2.528       2.661       2.845       3.153       3.850         21       2.189       2.328       2.518       2.649       2.831       3.135       3.819         22       2.183       2.320       2.508       2.639       2.819       3.119       3.792         23       2.177       2.313       2.500       2.629       2.807       3.104       3.768         24       2.172       2.307       2.492       2.620       2.797       3.091       3.745         25       2.167       2.301       2.485       2.612       2.787       3.078       3.725         26       2.162       2.296       2.479       2.605       2.779       3.067       3.707         27       2.158       2.291       2.473       2.598       2.771       3.057       3.689         28       2.154       2.286       2.467       2.592       2.763       3.047       3.674         29       2.150       2.282       2.462       2.586       2.756       3.038       3.660         30       2.147       2.278       2.457       2.581       2.704       2.971       3.551                                                                                                                                                                                                                                     | 18               | 2.214  | 2.356  | 2.552  | 2.689  | 2.878  | 3.197   | 3.922   |
| 21       2.189       2.328       2.518       2.649       2.831       3.135       3.819         22       2.183       2.320       2.508       2.639       2.819       3.119       3.792         23       2.177       2.313       2.500       2.629       2.807       3.104       3.768         24       2.172       2.307       2.492       2.620       2.797       3.091       3.745         25       2.167       2.301       2.485       2.612       2.787       3.078       3.725         26       2.162       2.296       2.479       2.605       2.779       3.067       3.707         27       2.158       2.291       2.473       2.598       2.771       3.057       3.689         28       2.154       2.286       2.467       2.592       2.763       3.047       3.674         29       2.150       2.282       2.462       2.586       2.756       3.038       3.660         30       2.147       2.278       2.457       2.581       2.750       3.030       3.646         40       2.123       2.250       2.423       2.542       2.704       2.971       3.551                                                                                                                                                                                                                                     | 19               | 2.205  | 2.346  | 2.539  | 2.674  | 2.861  | 3.174   | 3.883   |
| 22       2.183       2.320       2.508       2.639       2.819       3.119       3.792         23       2.177       2.313       2.500       2.629       2.807       3.104       3.768         24       2.172       2.307       2.492       2.620       2.797       3.091       3.745         25       2.167       2.301       2.485       2.612       2.787       3.078       3.725         26       2.162       2.296       2.479       2.605       2.779       3.067       3.707         27       2.158       2.291       2.473       2.598       2.771       3.057       3.689         28       2.154       2.286       2.467       2.592       2.763       3.047       3.674         29       2.150       2.282       2.462       2.586       2.756       3.038       3.660         30       2.147       2.278       2.457       2.581       2.750       3.030       3.646         40       2.123       2.250       2.423       2.542       2.704       2.971       3.551         60       2.099       2.223       2.390       2.504       2.660       2.915       3.460                                                                                                                                                                                                                                     | 20               | 2.197  | 2.336  | 2.528  | 2.661  | 2.845  | 3.153   | 3.850   |
| 23         2.177         2.313         2.500         2.629         2.807         3.104         3.768           24         2.172         2.307         2.492         2.620         2.797         3.091         3.745           25         2.167         2.301         2.485         2.612         2.787         3.078         3.725           26         2.162         2.296         2.479         2.605         2.779         3.067         3.707           27         2.158         2.291         2.473         2.598         2.771         3.057         3.689           28         2.154         2.286         2.467         2.592         2.763         3.047         3.674           29         2.150         2.282         2.462         2.586         2.756         3.038         3.660           30         2.147         2.278         2.457         2.581         2.750         3.030         3.646           40         2.123         2.250         2.423         2.542         2.704         2.971         3.551           60         2.099         2.223         2.390         2.504         2.660         2.915         3.460           120         2.                                                                                                                                             | 21               | 2.189  | 2.328  | 2.518  | 2.649  | 2.831  | 3.135   | 3.819   |
| 24       2.172       2.307       2.492       2.620       2.797       3.091       3.745         25       2.167       2.301       2.485       2.612       2.787       3.078       3.725         26       2.162       2.296       2.479       2.605       2.779       3.067       3.707         27       2.158       2.291       2.473       2.598       2.771       3.057       3.689         28       2.154       2.286       2.467       2.592       2.763       3.047       3.674         29       2.150       2.282       2.462       2.586       2.756       3.038       3.660         30       2.147       2.278       2.457       2.581       2.750       3.030       3.646         40       2.123       2.250       2.423       2.542       2.704       2.971       3.551         60       2.099       2.223       2.390       2.504       2.660       2.915       3.460         120       2.076       2.196       2.358       2.468       2.617       2.860       3.373                                                                                                                                                                                                                                                                                                                                   | 22               | 2.183  | 2.320  | 2.508  | 2.639  | 2.819  | 3.119   | 3.792   |
| 25       2.167       2.301       2.485       2.612       2.787       3.078       3.725         26       2.162       2.296       2.479       2.605       2.779       3.067       3.707         27       2.158       2.291       2.473       2.598       2.771       3.057       3.689         28       2.154       2.286       2.467       2.592       2.763       3.047       3.674         29       2.150       2.282       2.462       2.586       2.756       3.038       3.660         30       2.147       2.278       2.457       2.581       2.750       3.030       3.646         40       2.123       2.250       2.423       2.542       2.704       2.971       3.551         60       2.099       2.223       2.390       2.504       2.660       2.915       3.460         120       2.076       2.196       2.358       2.468       2.617       2.860       3.373                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23               | 2.177  | 2.313  | 2.500  | 2.629  | 2.807  | 3.104   | 3.768   |
| 26         2.162         2.296         2.479         2.605         2.779         3.067         3.707           27         2.158         2.291         2.473         2.598         2.771         3.057         3.689           28         2.154         2.286         2.467         2.592         2.763         3.047         3.674           29         2.150         2.282         2.462         2.586         2.756         3.038         3.660           30         2.147         2.278         2.457         2.581         2.750         3.030         3.646           40         2.123         2.250         2.423         2.542         2.704         2.971         3.551           60         2.099         2.223         2.390         2.504         2.660         2.915         3.460           120         2.076         2.196         2.358         2.468         2.617         2.860         3.373                                                                                                                                                                                                                                                                                                                                                                                                   | 24               | 2.172  | 2.307  | 2.492  | 2.620  | 2.797  | 3.091   | 3.745   |
| 27     2.158     2.291     2.473     2.598     2.771     3.057     3.689       28     2.154     2.286     2.467     2.592     2.763     3.047     3.674       29     2.150     2.282     2.462     2.586     2.756     3.038     3.660       30     2.147     2.278     2.457     2.581     2.750     3.030     3.646       40     2.123     2.250     2.423     2.542     2.704     2.971     3.551       60     2.099     2.223     2.390     2.504     2.660     2.915     3.460       120     2.076     2.196     2.358     2.468     2.617     2.860     3.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25               | 2.167  | 2.301  | 2.485  | 2.612  | 2.787  | 3.078   | 3.725   |
| 28     2.154     2.286     2.467     2.592     2.763     3.047     3.674       29     2.150     2.282     2.462     2.586     2.756     3.038     3.660       30     2.147     2.278     2.457     2.581     2.750     3.030     3.646       40     2.123     2.250     2.423     2.542     2.704     2.971     3.551       60     2.099     2.223     2.390     2.504     2.660     2.915     3.460       120     2.076     2.196     2.358     2.468     2.617     2.860     3.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26               | 2.162  | 2.296  | 2.479  | 2.605  | 2.779  | 3.067   | 3.707   |
| 29     2.150     2.282     2.462     2.586     2.756     3.038     3.660       30     2.147     2.278     2.457     2.581     2.750     3.030     3.646       40     2.123     2.250     2.423     2.542     2.704     2.971     3.551       60     2.099     2.223     2.390     2.504     2.660     2.915     3.460       120     2.076     2.196     2.358     2.468     2.617     2.860     3.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>27</b>        | 2.158  | 2.291  | 2.473  | 2.598  | 2.771  | 3.057   | 3.689   |
| 30     2.147     2.278     2.457     2.581     2.750     3.030     3.646       40     2.123     2.250     2.423     2.542     2.704     2.971     3.551       60     2.099     2.223     2.390     2.504     2.660     2.915     3.460       120     2.076     2.196     2.358     2.468     2.617     2.860     3.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28               | 2.154  | 2.286  | 2.467  | 2.592  | 2.763  | 3.047   | 3.674   |
| 40     2.123     2.250     2.423     2.542     2.704     2.971     3.551       60     2.099     2.223     2.390     2.504     2.660     2.915     3.460       120     2.076     2.196     2.358     2.468     2.617     2.860     3.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29               | 2.150  | 2.282  | 2.462  | 2.586  | 2.756  | 3.038   | 3.660   |
| 60     2.099     2.223     2.390     2.504     2.660     2.915     3.460       120     2.076     2.196     2.358     2.468     2.617     2.860     3.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30               | 2.147  | 2.278  | 2.457  | 2.581  | 2.750  | 3.030   | 3.646   |
| <b>120</b> 2.076 2.196 2.358 2.468 2.617 2.860 3.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40               | 2.123  | 2.250  | 2.423  | 2.542  | 2.704  | 2.971   | 3.551   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60               | 2.099  | 2.223  | 2.390  | 2.504  | 2.660  | 2.915   | 3.460   |
| $\infty$ 2.054 2.170 2.326 2.432 2.576 2.807 3.290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120              | 2.076  | 2.196  | 2.358  | 2.468  | 2.617  | 2.860   | 3.373   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\infty$         | 2.054  | 2.170  | 2.326  | 2.432  | 2.576  | 2.807   | 3.290   |

#### Use of z-test

- **11.45** With reference to Exercise 11.13 on page 400, assume a bivariate normal distribution for x and y.
- (a) Calculate r.
- (b) Test the null hypothesis that  $\rho = -0.5$  against the alternative that  $\rho < -0.5$  at the 0.025 level of significance.
- (c) Determine the percentage of the variation in the amount of particulate removed that is due to changes in the daily amount of rainfall.

#### Solution:

(a) 
$$S_{xx} = 244.26 - 45^2/9$$
  
 $S_{yy} = 133,786 - 1094^2/9 = 804.2222,$   
and  $S_{xy} = 5348.2 - (45)(1094)/9 = -121.8.$ 

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}.$$

$$r = \frac{-121.8}{\sqrt{(19.26)(804.2222)}} = -0.979.$$

$$z = \frac{\sqrt{n-3}}{2} \ln \left[ \frac{(1+r)(1-\rho_0)}{(1-r)(1+\rho_0)} \right]$$

(b) The hypotheses are

$$H_0: \rho = -0.5,$$
  
 $H_1: \rho < -0.5.$ 

$$\alpha = 0.025$$
.  
Critical regions:  $z < -1.96$ .  
Computations:  $z = \frac{\sqrt{6}}{2} \ln \left[ \frac{(0.021)(1.5)}{(1.979)(0.5)} \right] = -4.22$ .  
Decision: Reject  $H_0$ ;  $\rho < -0.5$ .

(c) 
$$(-0.979)^2(100\%) = 95.8\%$$
.

# 11.47 The following data were obtained in a study of the relationship between the weight and chest size of

infants at birth.

| Weight (kg) | Chest Size (cm) |
|-------------|-----------------|
| 2.75        | 29.5            |
| 2.15        | 26.3            |
| 4.41        | 32.2            |
| 5.52        | 36.5            |
| 3.21        | 27.2            |
| 4.32        | 27.7            |
| 2.31        | 28.3            |
| 4.30        | 30.3            |
| 3.71        | 28.7            |

- (a) Calculate r.
- (b) Test the null hypothesis that  $\rho = 0$  against the alternative that  $\rho > 0$  at the 0.01 level of significance.
- (c) What percentage of the variation in infant chest sizes is explained by difference in weight?

| Quantity | Computing formula                       |
|----------|-----------------------------------------|
| $S_{xx}$ | $\Sigma x_i^2 - (\Sigma x_i)^2/n$       |
| $S_{xy}$ | $\sum x_i y_i - (\sum x_i)(\sum y_i)/n$ |
| $S_{yy}$ | $\Sigma y_i^2 - (\Sigma y_i)^2/n$       |

#### Solution:

(a) 
$$S_{xx} = 128.6602 - 32.68^2/9 = 9.9955,$$
  
 $S_{yy} = 7980.83 - 266.7^2/9 = 77.62,$   
 $S_{xy} = 990.268 - (32.68)(266.7)/9 = 21.8507.$   
 $r = \frac{21.8507}{\sqrt{(9.9955)(77.62)}} = 0.784.$ 

(b) The hypotheses are

$$H_0: \rho = 0,$$
  
 $H_1: \rho > 0.$ 

$$\alpha = 0.01.$$

Critical regions: t > 2.998.

Computations:  $t = \frac{0.784\sqrt{7}}{\sqrt{1-0.784^2}} = 3.34$ .

Decision: Reject  $H_0$ ;  $\rho > 0$ .

(c) 
$$(0.784)^2(100\%) = 61.5\%$$
.

## Analysis-of-Variance Approach

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

## **Regression Identity**

The total sum of squares equals the regression sum of squares plus the error sum of squares: SST = SSR + SSE.

#### Coefficient of Determination

The **coefficient of determination**,  $\mathbf{r}^2$ , is the proportion of variation in the observed values of the response variable explained by the regression. Thus,

$$r^2 = \frac{SSR}{SST}.$$

$$r^2 = \frac{\text{explained variation}}{\text{total variation}}$$

$$r^2 = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST}.$$

#### EXAMPLE

#### The Coefficient of Determination Consider Age and Price of Orions data

$$\bar{y} = \frac{\sum y_i}{n} = \frac{975}{11} = 88.64.$$

#### Table for computing SST for the Orion price data

| Age (yr) | Price (\$100) | $y - \bar{y}$ | $(y-\bar{y})^2$ |
|----------|---------------|---------------|-----------------|
| 5        | 85            | -3.64         | 13.2            |
| 4        | 103           | 14.36         | 206.3           |
| 6        | 70            | -18.64        | 347.3           |
| 5        | 82            | -6.64         | 44.0            |
| 5        | 89            | 0.36          | 0.1             |
| 5        | 98            | 9.36          | 87.7            |
| 6        | 66            | -22.64        | 512.4           |
| 6        | 95            | 6.36          | 40.5            |
| 2        | 169           | 80.36         | 6458.3          |
| 7        | 70            | -18.64        | 347.3           |
| 7        | 48            | -40.64        | 1651.3          |
|          | 975           |               | 9708.5          |

## Regression Identity

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$SSR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- a. Compute SST, SSR, and SSE.
- b. Compute the coefficient of determination, r<sup>2</sup>.

$$SST = \Sigma (y_i - \bar{y})^2 = 9708.5$$

#### Table for computing SSR for the Orion data

$$\hat{y} = 195.47 - 20.26x$$

the estimated or **fitted regression** line is

| Age (yr) | Price (\$100)<br>y | ŷ      | $\hat{y} - \bar{y}$ | $(\hat{y} - \bar{y})^2$ |
|----------|--------------------|--------|---------------------|-------------------------|
| 5        | 85                 | 94.16  | 5.53                | 30.5                    |
| 4        | 103                | 114.42 | 25.79               | 665.0                   |
| 6        | 70                 | 73.90  | -14.74              | 217.1                   |
| 5        | 82                 | 94.16  | 5.53                | 30.5                    |
| 5        | 89                 | 94.16  | 5.53                | 30.5                    |
| 5        | 98                 | 94.16  | 5.53                | 30.5                    |
| 6        | 66                 | 73.90  | -14.74              | 217.1                   |
| 6        | 95                 | 73.90  | -14.74              | 217.1                   |
| 2        | 169                | 154.95 | 66.31               | 4397.0                  |
| 7        | 70                 | 53.64  | -35.00              | 1224.8                  |
| 7        | 48                 | 53.64  | -35.00              | 1224.8                  |
|          |                    |        |                     | 8285.0                  |

$$r^2 = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST}.$$

(b) 
$$r^2 = \frac{SSR}{SST} = \frac{8285.0}{9708.5} = 0.853$$
 (85.3%).

$$SSR = \Sigma (\hat{y}_i - \bar{y})^2 = 8285.0,$$

## Chapter 12

# Multiple Linear Regression and Nonlinear Regression Models

$$\hat{y} = b_0 + b_1 x_1 + \dots + b_k x_k,$$

Multiple Regression coefficient

$$\widehat{\boldsymbol{b}}_{1} = \frac{(\sum x_{1}y)(\sum x_{2}^{2}) - (\sum x_{2}y)(\sum x_{1}x_{2})}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$\widehat{\boldsymbol{b}}_{2} = \frac{(\sum x_{2}y)(\sum x_{1}^{2}) - (\sum x_{1}y)(\sum x_{1}x_{2})}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$\widehat{\boldsymbol{b}}_{0} = \bar{Y} - \hat{b}_{1}\bar{X}_{1} - \hat{b}_{2}\bar{X}_{2}$$

## polynomial regression model

$$\hat{y} = b_0 + b_1 x + b_2 x^2 + \dots + b_r x^r.$$

$$v = a + bx + cx^2$$
 (Quadratic)

$$\sum y = na + b \sum x + c \sum x^2$$

$$\sum xy = a\sum x + b\sum x^2 + c\sum x^3$$

$$\sum x^2 y = a \sum x^2 + b \sum x^3 + c \sum x^4$$

Normal Estimation Equations for Multiple Linear Regression

$$nb_0 + b_1 \sum_{i=1}^n x_{1i} + b_2 \sum_{i=1}^n x_{2i} + \dots + b_k \sum_{i=1}^n x_{ki} = \sum_{i=1}^n y_i$$

$$b_0 \sum_{i=1}^n x_{1i} + b_1 \sum_{i=1}^n x_{1i}^2 + b_2 \sum_{i=1}^n x_{1i} x_{2i} + \dots + b_k \sum_{i=1}^n x_{1i} x_{ki} = \sum_{i=1}^n x_{1i} y_i$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b_0 \sum_{i=1}^n x_{ki} + b_1 \sum_{i=1}^n x_{ki} x_{1i} + b_2 \sum_{i=1}^n x_{ki} x_{2i} + \dots + b_k \sum_{i=1}^n x_{ki}^2 = \sum_{i=1}^n x_{ki} y_i$$

These equations can be solved for  $b_0, b_1, b_2, \ldots, b_k$  by any appropriate method for solving systems of linear equations. Most statistical software can be used to obtain numerical solutions of the above equations.

Formula for the multiple correlation coefficient:

$$R = \sqrt{\frac{r_{yx_1}^2 + r_{yx_2}^2 - 2r_{yx_1} \cdot r_{yx_2} \cdot r_{x_1x_2}}{1 - r_{x_1x_2}^2}}$$

## **Example:**

## Estimate the multiple linear regression equation

|   |                |                | $\mu_{Y x_1,x_2} = \beta_0 + \beta_1 x_1 + \beta_2 x_2.$ |
|---|----------------|----------------|----------------------------------------------------------|
| У | X <sub>1</sub> | X <sub>2</sub> | F1   w1, w2   F   F   F   F   F   F   F   F   F          |

**Class Activity** 

Multiple Regression coefficient

$$\widehat{\boldsymbol{b}}_{1} = \frac{(\sum x_{1}y)(\sum x_{2}^{2}) - (\sum x_{2}y)(\sum x_{1}x_{2})}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$\widehat{\boldsymbol{b}}_{2} = \frac{(\sum x_{2}y)(\sum x_{1}^{2}) - (\sum x_{1}y)(\sum x_{1}x_{2})}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

$$(\sum x_1^2)(\sum x_2^2) - (\sum x_1x_2)^2$$

$$\hat{\boldsymbol{b}}_{0} = \bar{Y} - \hat{b}_{1}\bar{X}_{1} - \hat{b}_{2}\bar{X}_{2}$$

= 181.5 - 3.148(69.375) - (-1.656)(18.125) = **-6.867** 

| У   | $x_1$ | X <sub>2</sub> |
|-----|-------|----------------|
| 140 | 60    | 22             |
| 155 | 62    | 25             |
| 159 | 67    | 24             |
| 179 | 70    | 20             |
| 192 | 71    | 15             |
| 200 | 72    | 14             |
| 212 | 75    | 14             |
| 215 | 78    | 11             |

#### Solution:

Mean

Sum

| y     | X <sub>1</sub> | X <sub>2</sub> |
|-------|----------------|----------------|
| 140   | 60             | 22             |
| 155   | 62             | 25             |
| 159   | 67             | 24             |
| 179   | 70             | 20             |
| 192   | 71             | 15             |
| 200   | 72             | 14             |
| 212   | 75             | 14             |
| 215   | 78             | 11             |
| 181.5 | 69.375         | 18.125         |
| 1452  | 555            | 145            |

Sum

|       |      |                  | `                | ,        |
|-------|------|------------------|------------------|----------|
| X12   | X22  | X <sub>1</sub> y | X <sub>2</sub> y | $X_1X_2$ |
| 3600  | 484  | 8400             | 3080             | 1320     |
| 3844  | 625  | 9610             | 3875             | 1550     |
| 4489  | 576  | 10653            | 3816             | 1608     |
| 4900  | 400  | 12530            | 3580             | 1400     |
| 5041  | 225  | 13632            | 2880             | 1065     |
| 5184  | 196  | 14400            | 2800             | 1008     |
| 5625  | 196  | 15900            | 2968             | 1050     |
| 6084  | 121  | 16770            | 2365             | 858      |
| 38767 | 2823 | 101895           | 25364            | 9859     |

For example, the nursing instructor wishes to see whether a student's grade point average and age are related to the student's score on the state board nursing examination. She selects five students and obtains the following data.

| Student | $GPAx_1$ | Age x <sub>2</sub> | State board score y |
|---------|----------|--------------------|---------------------|
| A       | 3.2      | 22                 | 550                 |
| В       | 2.7      | 27                 | 570                 |
| C       | 2.5      | 24                 | 525                 |
| D       | 3.4      | 28                 | 670                 |
| E       | 2.2      | 23                 | 490                 |

Estimate the multiple linear regression equation

OR 
$$\mu_{Y|x_1,x_2} = \beta_0 + \beta_1 x_1 + \beta_2 x_2.$$

Estimate the multiple linear regression equation

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2.$$

For the data regarding state board scores, find the value of *R*.

The multiple regression equation obtained from the data is

$$y' = -44.81 + 87.64x_1 + 14.533x_2$$

Home work

Formula for the multiple correlation coefficient:

$$R = \sqrt{\frac{r_{yx_1}^2 + r_{yx_2}^2 - 2r_{yx_1} \cdot r_{yx_2} \cdot r_{x_1x_2}}{1 - r_{x_1x_2}^2}}$$

For the data regarding state board scores, find the value of *R*.

#### Solution

The values of the correlation coefficients are

$$r_{yx_1} = 0.845$$
  
 $r_{yx_2} = 0.791$   
 $r_{x_1x_2} = 0.371$ 

Substituting in the formula, you get

$$R = \sqrt{\frac{r_{yx_1}^2 + r_{yx_2}^2 - 2r_{yx_1} \cdot r_{yx_2} \cdot r_{x_1x_2}}{1 - r_{x_1x_2}^2}}$$

$$= \sqrt{\frac{(0.845)^2 + (0.791)^2 - 2(0.845)(0.791)(0.371)}{1 - 0.371^2}}$$

$$= \sqrt{\frac{0.8437569}{0.862359}} = \sqrt{0.9784288} = 0.989$$

# Normal Estimation Equation for linear, polynomial and Multiple linear regression

$$y = a + bx$$

$$\sum y = na + b \sum x$$

$$\sum xy = a \sum x + b \sum x^{2}$$

$$y = a + bx + cx^{2}$$

$$\sum y = na + b \sum x + c \sum x^{2}$$

$$\sum xy = a \sum x + b \sum x^{2} + c \sum x^{3}$$

$$\sum x^{2} y = a \sum x^{2} + b \sum x^{3} + c \sum x^{4}$$

$$y = a + bx_1 + cx_2$$

$$\sum y = na + b \sum x_1 + c \sum x_2$$

$$\sum x_1 y = a \sum x_1 + b \sum x_1^2 + c \sum x_1 x_2$$

$$\sum x_2 y = a \sum x_2 + b \sum x_1 x_2 + c \sum x_2^2$$

## Class Activity with Calculator

## Polynomial Regression

12.2: Given the data

fit a regression curve of the form  $\mu_{Y|x} = \beta_0 + \beta_1 x + \beta_2 x^2$  and then estimate  $\mu_{Y|2}$ .

#### Solution:

$$y = a + bx + cx^2$$

$$\sum y = na + b \sum x + c \sum x^2$$

$$\sum xy = a\sum x + b\sum x^2 + c\sum x^3$$

$$\sum xy = a \sum x + b \sum x^2 + c \sum x^3$$
$$\sum x^2 y = a \sum x^2 + b \sum x^3 + c \sum x^4$$

$$10b_0 + 45b_1 + 285b_2 = 63.7,$$
  
 $45b_0 + 285b_1 + 2025b_2 = 307.3,$   
 $285b_0 + 2025b_1 + 15{,}333b_2 = 2153.3.$ 

Solving these normal equations, we obtain

$$b_0 = 8.698, b_1 = -2.341, b_2 = 0.288.$$

Therefore,

$$\hat{y} = 8.698 - 2.341x + 0.288x^2.$$

our estimate of  $\mu_{Y|2}$  is

$$\hat{y} = 8.698 - (2.341)(2) + (0.288)(2^2) = 5.168.$$

12.4 An experiment was conducted to determine if the weight of an animal can be predicted after a given period of time on the basis of the initial weight of the animal and the amount of feed that was eaten. The following data, measured in kilograms, were recorded:

| $\mathbf{Final}$ | Initial       | $\mathbf{Feed}$ |
|------------------|---------------|-----------------|
| Weight, $y$      | Weight, $x_1$ | Weight, $x_2$   |
| 95               | 42            | 272             |
| 77               | 33            | 226             |
| 80               | 33            | 259             |
| 100              | 45            | 292             |
| 97               | 39            | 311             |
| 70               | 36            | 183             |
| 50               | 32            | 173             |
| 80               | 41            | 236             |
| 92               | 40            | 230             |
| 84               | 38            | 235             |

(a)  $\hat{y} = -22.99316 + 1.39567x_1 + 0.21761x_2$ .

(a) Fit a multiple regression equation of the form

$$\mu_{Y|x_1,x_2} = \beta_0 + \beta_1 x_1 + \beta_2 x_2.$$

#### Solution 12.4

| 42  |                                        |                                                                              |                                                                                                                                                                                            | <b>x1</b> y                                                                                                                                                                                | x2 y                                                                                                                                                                                                                                                                                                                             | Sq( x1)                                                                                                                                                                                                                                                                                                                                                                                                                         | sq (x2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x1 x2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|----------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 272                                    | 95                                                                           |                                                                                                                                                                                            | 3990                                                                                                                                                                                       | 25840                                                                                                                                                                                                                                                                                                                            | 1764                                                                                                                                                                                                                                                                                                                                                                                                                            | 73984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 33  | 226                                    | 77                                                                           |                                                                                                                                                                                            | 2541                                                                                                                                                                                       | 17402                                                                                                                                                                                                                                                                                                                            | 1089                                                                                                                                                                                                                                                                                                                                                                                                                            | 51076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 33  | 259                                    | 80                                                                           |                                                                                                                                                                                            | 2640                                                                                                                                                                                       | 20720                                                                                                                                                                                                                                                                                                                            | 1089                                                                                                                                                                                                                                                                                                                                                                                                                            | 67081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 45  | 292                                    | 100                                                                          |                                                                                                                                                                                            | 4500                                                                                                                                                                                       | 29200                                                                                                                                                                                                                                                                                                                            | 2025                                                                                                                                                                                                                                                                                                                                                                                                                            | 85264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 39  | 311                                    | 97                                                                           |                                                                                                                                                                                            | 3783                                                                                                                                                                                       | 30167                                                                                                                                                                                                                                                                                                                            | 1521                                                                                                                                                                                                                                                                                                                                                                                                                            | 96721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 36  | 183                                    | 70                                                                           |                                                                                                                                                                                            | 2520                                                                                                                                                                                       | 12810                                                                                                                                                                                                                                                                                                                            | 1296                                                                                                                                                                                                                                                                                                                                                                                                                            | 33489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 32  | 173                                    | 50                                                                           |                                                                                                                                                                                            | 1600                                                                                                                                                                                       | 8650                                                                                                                                                                                                                                                                                                                             | 1024                                                                                                                                                                                                                                                                                                                                                                                                                            | 29929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 41  | 236                                    | 80                                                                           |                                                                                                                                                                                            | 3280                                                                                                                                                                                       | 18880                                                                                                                                                                                                                                                                                                                            | 1681                                                                                                                                                                                                                                                                                                                                                                                                                            | 55696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 40  | 230                                    | 92                                                                           |                                                                                                                                                                                            | 3680                                                                                                                                                                                       | 21160                                                                                                                                                                                                                                                                                                                            | 1600                                                                                                                                                                                                                                                                                                                                                                                                                            | 52900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 38  | 235                                    | 84                                                                           |                                                                                                                                                                                            | 3192                                                                                                                                                                                       | 19740                                                                                                                                                                                                                                                                                                                            | 1444                                                                                                                                                                                                                                                                                                                                                                                                                            | 55225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 270 | 2417                                   | 925                                                                          |                                                                                                                                                                                            | 21726                                                                                                                                                                                      | 204560                                                                                                                                                                                                                                                                                                                           | 14522                                                                                                                                                                                                                                                                                                                                                                                                                           | 601265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 33<br>45<br>39<br>36<br>32<br>41<br>40 | 33 259<br>45 292<br>39 311<br>36 183<br>32 173<br>41 236<br>40 230<br>38 235 | 33     259     80       45     292     100       39     311     97       36     183     70       32     173     50       41     236     80       40     230     92       38     235     84 | 33     259     80       45     292     100       39     311     97       36     183     70       32     173     50       41     236     80       40     230     92       38     235     84 | 33       259       80       2640         45       292       100       4500         39       311       97       3783         36       183       70       2520         32       173       50       1600         41       236       80       3280         40       230       92       3680         38       235       84       3192 | 33       259       80       2640       20720         45       292       100       4500       29200         39       311       97       3783       30167         36       183       70       2520       12810         32       173       50       1600       8650         41       236       80       3280       18880         40       230       92       3680       21160         38       235       84       3192       19740 | 33       259       80       2640       20720       1089         45       292       100       4500       29200       2025         39       311       97       3783       30167       1521         36       183       70       2520       12810       1296         32       173       50       1600       8650       1024         41       236       80       3280       18880       1681         40       230       92       3680       21160       1600         38       235       84       3192       19740       1444 | 33       259       80       2640       20720       1089       67081         45       292       100       4500       29200       2025       85264         39       311       97       3783       30167       1521       96721         36       183       70       2520       12810       1296       33489         32       173       50       1600       8650       1024       29929         41       236       80       3280       18880       1681       55696         40       230       92       3680       21160       1600       52900         38       235       84       3192       19740       1444       55225 |

Normal equation of Multiple Regression:

$$y = a + bx_1 + cx_2$$

$$\sum y = na + b \sum x_1 + c \sum x_2$$

$$\sum x_1 y = a \sum x_1 + b \sum x_1^2 + c \sum x_1 x_2$$

$$\sum x_2 y = a \sum x_2 + b \sum x_1 x_2 + c \sum x_2^2$$

Substitute values from table in normal equation and Form the linear equation and solve via calculator for multiple linear coefficient

(a) 
$$\hat{y} = -22.99316 + 1.39567x_1 + 0.21761x_2$$
.

## Chapter 13

## One-Factor Experiments: General

- 13.1 Analysis-of-Variance Technique ANOVA.
- 13.3 One-Way Analysis of Variance:
  Completely Randomized Design (One-Way ANOVA)

Assumptions and Hypotheses in One-Way ANOVA

$$H_0$$
:  $\mu_1 = \mu_2 = \cdots = \mu_k$ ,

 $H_1$ : At least two of the means are not equal.

Use of F-Test in ANOVA

| Source   | df           | SS  | MS = SS/df                | F-statistic           |
|----------|--------------|-----|---------------------------|-----------------------|
| Residual | <i>k</i> – 1 | SSR | $MSR = \frac{SSR}{k-1}$   | $F = \frac{MSR}{MSE}$ |
| Error    | n-k          | SSE | $MSE = \frac{SSE}{n - k}$ |                       |
| Total    | n - 1        | SST |                           |                       |

The null hypothesis  $H_0$  is rejected at the  $\alpha$ -level of significance when

$$f > f_{\alpha}[k-1, k(n-1)].$$

## The F-Distribution

Analysis-of-variance procedures rely on a distribution called the *F-distribution*, named in honor of Sir Ronald Fisher.

A variable is said to have an F-distribution if its distribution has the shape of a special type of right-skewed curve, called an F-curve. There are infinitely many F-distributions, and we identify an F-distribution (and F-curve) by its number of degrees of freedom, just as we did for t-distributions

Two different F-curves



An *F*-distribution, however, has two numbers of degrees of freedom instead of one. Figure depicts two different *F*-curves;

one has 
$$df = (10, 2)$$
, and the other has  $df = (9, 50)$ .

The first number of degrees of freedom for an *F*-curve is called the **degrees of freedom for the numerator**, and the second is called the **degrees of freedom for the denominator**.

Thus, for the F-curve in Fig. with df = (10, 2), we have

741

| Tab      | ole A.6 Cri | itical Value | s of the F-1 | Distribution | n                    |        | a f <sub>e</sub> |        |        |
|----------|-------------|--------------|--------------|--------------|----------------------|--------|------------------|--------|--------|
|          |             |              |              | j            | $f_{0.05}(v_1, v_2)$ | .)     |                  |        |        |
|          |             |              |              |              | v <sub>1</sub>       |        |                  |        |        |
| $v_2$    | 1           | 2            | 3            | 4            | 5                    | 6      | 7                | 8      | 9      |
| 1        | 161.45      | 199.50       | 215.71       | 224.58       | 230.16               | 233.99 | 236.77           | 238.88 | 240.54 |
| 2        | 18.51       | 19.00        | 19.16        | 19.25        | 19.30                | 19.33  | 19.35            | 19.37  | 19.38  |
| 3        | 10.13       | 9.55         | 9.28         | 9.12         | 9.01                 | 8.94   | 8.89             | 8.85   | 8.81   |
| 4        | 7.71        | 6.94         | 6.59         | 6.39         | 6.26                 | 6.16   | 6.09             | 6.04   | 6.00   |
| 5        | 6.61        | 5.79         | 5.41         | 5.19         | 5.05                 | 4.95   | 4.88             | 4.82   | 4.77   |
| 6        | 5.99        | 5.14         | 4.76         | 4.53         | 4.39                 | 4.28   | 4.21             | 4.15   | 4.10   |
| 7        | 5.59        | 4.74         | 4.35         | 4.12         | 3.97                 | 3.87   | 3.79             | 3.73   | 3.68   |
| 8        | 5.32        | 4.46         | 4.07         | 3.84         | 3.69                 | 3.58   | 3.50             | 3.44   | 3.39   |
| 9        | 5.12        | 4.26         | 3.86         | 3.63         | 3.48                 | 3.37   | 3.29             | 3.23   | 3.18   |
| 10       | 4.96        | 4.10         | 3.71         | 3.48         | 3.33                 | 3.22   | 3.14             | 3.07   | 3.02   |
| 11       | 4.84        | 3.98         | 3.59         | 3.36         | 3.20                 | 3.09   | 3.01             | 2.95   | 2.90   |
| 12       | 4.75        | 3.89         | 3.49         | 3.26         | 3.11                 | 3.00   | 2.91             | 2.85   | 2.80   |
| 13       | 4.67        | 3.81         | 3.41         | 3.18         | 3.03                 | 2.92   | 2.83             | 2.77   | 2.71   |
| 14       | 4.60        | 3.74         | 3.34         | 3.11         | 2.96                 | 2.85   | 2.76             | 2.70   | 2.65   |
| 15       | 4.54        | 3.68         | 3.29         | 3.06         | 2.90                 | 2.79   | 2.71             | 2.64   | 2.59   |
| 16       | 4.49        | 3.63         | 3.24         | 3.01         | 2.85                 | 2.74   | 2.66             | 2.59   | 2.54   |
| 17       | 4.45        | 3.59         | 3.20         | 2.96         | 2.81                 | 2.70   | 2.61             | 2.55   | 2.49   |
| 18       | 4.41        | 3.55         | 3.16         | 2.93         | 2.77                 | 2.66   | 2.58             | 2.51   | 2.46   |
| 19       | 4.38        | 3.52         | 3.13         | 2.90         | 2.74                 | 2.63   | 2.54             | 2.48   | 2.42   |
| 20       | 4.35        | 3.49         | 3.10         | 2.87         | 2.71                 | 2.60   | 2.51             | 2.45   | 2.39   |
| 21       | 4.32        | 3.47         | 3.07         | 2.84         | 2.68                 | 2.57   | 2.49             | 2.42   | 2.37   |
| 22       | 4.30        | 3.44         | 3.05         | 2.82         | 2.66                 | 2.55   | 2.46             | 2.40   | 2.34   |
| 23       | 4.28        | 3.42         | 3.03         | 2.80         | 2.64                 | 2.53   | 2.44             | 2.37   | 2.32   |
| 24       | 4.26        | 3.40         | 3.01         | 2.78         | 2.62                 | 2.51   | 2.42             | 2.36   | 2.30   |
| 25       | 4.24        | 3.39         | 2.99         | 2.76         | 2.60                 | 2.49   | 2.40             | 2.34   | 2.28   |
| 26       | 4.23        | 3.37         | 2.98         | 2.74         | 2.59                 | 2.47   | 2.39             | 2.32   | 2.27   |
| 27       | 4.21        | 3.35         | 2.96         | 2.73         | 2.57                 | 2.46   | 2.37             | 2.31   | 2.25   |
| 28       | 4.20        | 3.34         | 2.95         | 2.71         | 2.56                 | 2.45   | 2.36             | 2.29   | 2.24   |
| 29       | 4.18        | 3.33         | 2.93         | 2.70         | 2.55                 | 2.43   | 2.35             | 2.28   | 2.22   |
| 30       | 4.17        | 3.32         | 2.92         | 2.69         | 2.53                 | 2.42   | 2.33             | 2.27   | 2.21   |
| 40       | 4.08        | 3.23         | 2.84         | 2.61         | 2.45                 | 2.34   | 2.25             | 2.18   | 2.12   |
| 60       | 4.00        | 3.15         | 2.76         | 2.53         | 2.37                 | 2.25   | 2.17             | 2.10   | 2.04   |
| 120      | 3.92        | 3.07         | 2.68         | 2.45         | 2.29                 | 2.18   | 2.09             | 2.02   | 1.96   |
| $\infty$ | 3.84        | 3.00         | 2.60         | 2.37         | 2.21                 | 2.10   | 2.01             | 1.94   | 1.88   |

Table A.6 (continued) Critical Values of the F-Distribution

|          |        |        |        |        | $f_{0.05}($ | $v_1, v_2)$ |        |        |        |          |
|----------|--------|--------|--------|--------|-------------|-------------|--------|--------|--------|----------|
|          |        |        |        |        | ı           | '1          |        |        |        |          |
| $v_2$    | 10     | 12     | 15     | 20     | 24          | 30          | 40     | 60     | 120    | $\infty$ |
| 1        | 241.88 | 243.91 | 245.95 | 248.01 | 249.05      | 250.10      | 251.14 | 252.20 | 253.25 | 254.31   |
| 2        | 19.40  | 19.41  | 19.43  | 19.45  | 19.45       | 19.46       | 19.47  | 19.48  | 19.49  | 19.50    |
| 3        | 8.79   | 8.74   | 8.70   | 8.66   | 8.64        | 8.62        | 8.59   | 8.57   | 8.55   | 8.53     |
| 4        | 5.96   | 5.91   | 5.86   | 5.80   | 5.77        | 5.75        | 5.72   | 5.69   | 5.66   | 5.63     |
| 5        | 4.74   | 4.68   | 4.62   | 4.56   | 4.53        | 4.50        | 4.46   | 4.43   | 4.40   | 4.36     |
| 6        | 4.06   | 4.00   | 3.94   | 3.87   | 3.84        | 3.81        | 3.77   | 3.74   | 3.70   | 3.67     |
| 7        | 3.64   | 3.57   | 3.51   | 3.44   | 3.41        | 3.38        | 3.34   | 3.30   | 3.27   | 3.23     |
| 8        | 3.35   | 3.28   | 3.22   | 3.15   | 3.12        | 3.08        | 3.04   | 3.01   | 2.97   | 2.93     |
| 9        | 3.14   | 3.07   | 3.01   | 2.94   | 2.90        | 2.86        | 2.83   | 2.79   | 2.75   | 2.71     |
| 10       | 2.98   | 2.91   | 2.85   | 2.77   | 2.74        | 2.70        | 2.66   | 2.62   | 2.58   | 2.54     |
| 11       | 2.85   | 2.79   | 2.72   | 2.65   | 2.61        | 2.57        | 2.53   | 2.49   | 2.45   | 2.40     |
| 12       | 2.75   | 2.69   | 2.62   | 2.54   | 2.51        | 2.47        | 2.43   | 2.38   | 2.34   | 2.30     |
| 13       | 2.67   | 2.60   | 2.53   | 2.46   | 2.42        | 2.38        | 2.34   | 2.30   | 2.25   | 2.21     |
| 14       | 2.60   | 2.53   | 2.46   | 2.39   | 2.35        | 2.31        | 2.27   | 2.22   | 2.18   | 2.13     |
| 15       | 2.54   | 2.48   | 2.40   | 2.33   | 2.29        | 2.25        | 2.20   | 2.16   | 2.11   | 2.07     |
| 16       | 2.49   | 2.42   | 2.35   | 2.28   | 2.24        | 2.19        | 2.15   | 2.11   | 2.06   | 2.01     |
| 17       | 2.45   | 2.38   | 2.31   | 2.23   | 2.19        | 2.15        | 2.10   | 2.06   | 2.01   | 1.96     |
| 18       | 2.41   | 2.34   | 2.27   | 2.19   | 2.15        | 2.11        | 2.06   | 2.02   | 1.97   | 1.92     |
| 19       | 2.38   | 2.31   | 2.23   | 2.16   | 2.11        | 2.07        | 2.03   | 1.98   | 1.93   | 1.88     |
| 20       | 2.35   | 2.28   | 2.20   | 2.12   | 2.08        | 2.04        | 1.99   | 1.95   | 1.90   | 1.84     |
| 21       | 2.32   | 2.25   | 2.18   | 2.10   | 2.05        | 2.01        | 1.96   | 1.92   | 1.87   | 1.81     |
| 22       | 2.30   | 2.23   | 2.15   | 2.07   | 2.03        | 1.98        | 1.94   | 1.89   | 1.84   | 1.78     |
| 23       | 2.27   | 2.20   | 2.13   | 2.05   | 2.01        | 1.96        | 1.91   | 1.86   | 1.81   | 1.76     |
| 24       | 2.25   | 2.18   | 2.11   | 2.03   | 1.98        | 1.94        | 1.89   | 1.84   | 1.79   | 1.73     |
| 25       | 2.24   | 2.16   | 2.09   | 2.01   | 1.96        | 1.92        | 1.87   | 1.82   | 1.77   | 1.71     |
| 26       | 2.22   | 2.15   | 2.07   | 1.99   | 1.95        | 1.90        | 1.85   | 1.80   | 1.75   | 1.69     |
| 27       | 2.20   | 2.13   | 2.06   | 1.97   | 1.93        | 1.88        | 1.84   | 1.79   | 1.73   | 1.67     |
| 28       | 2.19   | 2.12   | 2.04   | 1.96   | 1.91        | 1.87        | 1.82   | 1.77   | 1.71   | 1.65     |
| 29       | 2.18   | 2.10   | 2.03   | 1.94   | 1.90        | 1.85        | 1.81   | 1.75   | 1.70   | 1.64     |
| 30       | 2.16   | 2.09   | 2.01   | 1.93   | 1.89        | 1.84        | 1.79   | 1.74   | 1.68   | 1.62     |
| 40       | 2.08   | 2.00   | 1.92   | 1.84   | 1.79        | 1.74        | 1.69   | 1.64   | 1.58   | 1.51     |
| 60       | 1.99   | 1.92   | 1.84   | 1.75   | 1.70        | 1.65        | 1.59   | 1.53   | 1.47   | 1.39     |
| 120      | 1.91   | 1.83   | 1.75   | 1.66   | 1.61        | 1.55        | 1.50   | 1.43   | 1.35   | 1.25     |
| $\infty$ | 1.83   | 1.75   | 1.67   | 1.57   | 1.52        | 1.46        | 1.39   | 1.32   | 1.22   | 1.00     |

#### **PROCEDURE**

#### One-Way ANOVA Test

**Purpose** To perform a hypothesis test to compare k population means,  $\mu_1, \mu_2, \dots, \mu_k$ 

#### Assumptions

- Simple random samples
- 2. Independent samples
- 3. Normal populations
- 4. Equal population standard deviations

Step 1 The null and alternative hypotheses are, respectively,

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_k$$

Ha: Not all the means are equal.

- Step 2 Decide on the significance level,  $\alpha$ .
- Step 3 Compute the value of the test statistic

$$F = \frac{MSR}{MSE}$$

and denote that value  $F_0$ . To do so, construct a one-way ANOVA table:

| Source     | df    | SS  | MS = SS/df          |                   | F-st | atistic    |
|------------|-------|-----|---------------------|-------------------|------|------------|
| Regression | k - 1 | SSR | MSR =               | $\frac{SSR}{k-1}$ | F =  | MSR<br>MSE |
| Error      | n - k | SSE | $MSE = \frac{1}{R}$ | $\frac{SSE}{1-k}$ |      |            |
| Total      | n-1   | SST |                     |                   |      |            |

Step 4 The critical value is  $F_{\alpha}$  with df = (k-1, n-k). Use Table VIII to find the critical value.



Step 5 If the value of the test statistic falls in the rejection region, reject  $H_0$ ; otherwise, do not reject  $H_0$ .

Step 6 Interpret the results of the hypothesis test.

## Example:

Energy Consumption The Energy Information Administration gathers data on residential energy consumption and expenditures and publishes its findings in Residential Energy Consumption Survey: Consumption and Expenditures. Suppose that we want to decide whether a difference exists in mean annual energy consumption by households among the four U.S. regions.

Let  $\mu_1$ ,  $\mu_2$ ,  $\mu_3$ , and  $\mu_4$  denote last year's mean energy consumptions by households in the Northeast, Midwest, South, and West, respectively.

| Northeast | Midwest | South | West |
|-----------|---------|-------|------|
| 15        | 17      | 11    | 10   |
| 10        | 12      | 7     | 12   |
| 13        | 18      | 9     | 8    |
| 14        | 13      | 13    | 7    |
| 13        | 15      |       | 9    |
|           | 12      |       |      |
| 13.0      | 14.5    | 10.0  | 9.2  |

← Means

- a) Construct one-way ANOVA table
- b) Test the hypothesis at 0.05 level of significance

$$SSR = n_{-1}(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + \dots + n_k(\bar{x}_k - \bar{x})^2.$$

$$SSE = (n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_k - 1)s_k^2.$$

#### **Solution:**

$$\bar{x} = \frac{\sum x_i}{n} = \frac{15 + 10 + 13 + \dots + 7 + 9}{20} = \frac{238}{20} = 11.9.$$

$$SSR = n_{-1}(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + n_3(\bar{x}_3 - \bar{x})^2 + n_4(\bar{x}_4 - \bar{x})^2$$

$$= 5(13.0 - 11.9)^2 + 6(14.5 - 11.9)^2 + 4(10.0 - 11.9)^2 + 5(9.2 - 11.9)^2$$

$$= 97.5.$$

$$MSR = \frac{SSR}{k - 1} = \frac{97.5}{4 - 1} = 32.5.$$

, we determine *MSE*. We have k = 4,  $n_1 = 5$ ,  $n_2 = 6$ ,  $n_3 = 4$ ,  $n_4 = 5$ ,

n = 20. Computing the variance of each sample gives

$$s_1^2 = 3.5$$
,  $s_2^2 = 6.7$ ,  $s_3^2 = 6.\overline{6}$ , and  $s_4^2 = 3.7$ .

Use calculator

$$MSE = \frac{SSE}{n-k} = \frac{82.3}{20-4} = 5.144.$$

Finally, 
$$F = \frac{MSR}{MSE} = \frac{32.5}{5.144} = 6.32.$$

| Source            | df      | SS           | MS = SS/df      | F-statistic |
|-------------------|---------|--------------|-----------------|-------------|
| Resudual<br>Error | 3<br>16 | 97.5<br>82.3 | 32.500<br>5.144 | 6.32        |
| Total             | 19      | 179.8        | •               |             |

 $H_0$ :  $\mu_1 = \mu_2 = \mu_3 = \mu_4$  (mean energy consumptions are all equal) **Step 1 State the null and alternative hypotheses.**  $H_a$ : Not all the means are equal.

$$df = (k - 1, n - k) = (4 - 1, 20 - 4) = (3, 16).$$



From Step 3, the value of the test statistic is F = 6.32, falls in the rejection re gion. Thus we reject  $H_0$ .

The test results are statistically significant at the 5% level.

Step 2 Decide on the significance level,  $\alpha$ .

**Step 3** Compute the value of the test statistic

Step 4 The critical value is  $F_{\alpha}$  with df = (k-1, n-k). Use Table to find the critical value.

Step 5 If the value of the test statistic falls in the rejection region, reject  $H_0$ ; otherwise, do not reject  $H_0$ .

#### Example

## Compute SST ,SSR ,SSE ?

use of the computing formulas.

| Northea | st Midwest | South | West |
|---------|------------|-------|------|
| 15      | 17         | 11    | 10   |
| 10      | 12         | 7     | 12   |
| 13      | 18         | 9     | 8    |
| 14      | 13         | 13    | 7    |
| 13      | 15         |       | 9    |
|         | 12         |       |      |
| 13.0    | 14.5       | 10.0  | 9.2  |

← Means

$$k = 4$$
  
 $n_1 = 5$   $n_2 = 6$   $n_3 = 4$   $n_4 = 5$   
 $T_1 = 65$   $T_2 = 87$   $T_3 = 40$   $T_4 = 46$ 

and

$$n = \Sigma n_j = 5 + 6 + 4 + 5 = 20$$
  
 $\Sigma x_i = \Sigma T_j = 65 + 87 + 40 + 46 = 238.$ 

Summing the squares of all the data

$$\Sigma x_i^2 = (15)^2 + (10)^2 + (13)^2 + \dots + (7)^2 + (9)^2 = 3012.$$

$$SST = \Sigma x_i^2 - (\Sigma x_i)^2 / n$$

$$= 3012 - (238)^2 / 20 = 3012 - 2832.2 = 179.8,$$

SSR = 
$$\Sigma (T_j^2/n_j) - (\Sigma x_i)^2/n$$
  
=  $(65)^2/5 + (87)^2/6 + (40)^2/4 + (46)^2/5 - (238)^2/20$   
=  $2929.7 - 2832.2 = 97.5$ ,

$$SSE = SST - SSR = 179.8 - 97.5 = 82.3.$$

#### **Lowering Blood Pressure**

A researcher wishes to try three different techniques to lower the blood pressure of individuals diagnosed with high blood pressure. The subjects are randomly assigned to three groups; the first group takes medication, the second group exercises, and the third group follows a special diet. After four weeks, the reduction in each person's blood pressure is recorded. At  $\alpha = 0.05$ , test the claim that there is no difference among the means. The data are shown.

| Medication | Exercise | Diet |
|------------|----------|------|
| 10         | 6        | 5    |
| 12         | 8        | 9    |
| 9          | 3        | 12   |
| 15         | 0        | 8    |
| 13         | 2        | 4    |

$$SSR = n_{-1}(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + \dots + n_k(\bar{x}_k - \bar{x})^2.$$

$$SSE = (n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_k - 1)s_k^2.$$

#### Solution

**Step 1** State the hypotheses and identify the claim.

$$H_0$$
:  $\mu_1 = \mu_2 = \mu_3$  (claim)

 $H_1$ : At least one mean is different from the others.

**Step 2** Find the critical value. Since k = 3 and N = 15,

$$d.f.N. = k - 1 = 3 - 1 = 2$$

d.f.D. = 
$$N - k = 15 - 3 = 12$$

The critical value is 3.89,  $\alpha = 0.05$ .

**Step 3** Compute the test value,

$$\overline{X}_1 = 11.8$$
  $\overline{X}_2 = 3.8$   $\overline{X}_3 = 7.6$   $s_1^2 = 5.7$   $s_2^2 = 10.2$   $s_3^2 = 10.3$ 

- **Step 4** Make the decision. The decision is to reject the null hypothesis, since 9.17 > 3.89.
- **Step 5** Summarize the results. There is enough evidence to reject the claim and conclude that at least one mean is different from the others.

13.2 The data in the following table represent the number of hours of relief provided by five different brands of headache tablets administered to 25 subjects experiencing fevers of 38°C or more. Perform the analysis of variance and test the hypothesis at the 0.05 level of significance that the mean number of hours of relief provided by the tablets is the same for all five brands. Discuss the results.

| Tablet |     |     |          |     |  |
|--------|-----|-----|----------|-----|--|
| A      | B   | C   | D        | E   |  |
| -5.2   | 9.1 | 3.2 | $^{2.4}$ | 7.1 |  |
| 4.7    | 7.1 | 5.8 | 3.4      | 6.6 |  |
| 8.1    | 8.2 | 2.2 | 4.1      | 9.3 |  |
| 6.2    | 6.0 | 3.1 | 1.0      | 4.2 |  |
| 3.0    | 9.1 | 7.2 | 4.0      | 7.6 |  |

- State the hypotheses and identify the claim.
- Find the critical value.
- Compute the test value.
- Make the decision.
- e. Summarize the results, and explain where the differences in the means are.

#### Solution:

The hypotheses are

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_5,$ 

 $H_1$ : At least two of the means are not equal.

 $\alpha = 0.05$ .

Critical region: f > 2.87 with  $v_1 = 4$  and  $v_2 = 20$  degrees of freedom.

Computation:

| Source of | Sum of  | Degrees of | Mean   | Computed |
|-----------|---------|------------|--------|----------|
| Variation | Squares | Freedom    | Square | f        |
| Tablets   | 78.422  | 4          | 19.605 | 6.59     |
| Error     | 59.532  | 20         | 2.977  |          |
| Total     | 137.954 | 24         |        |          |

Decision: Reject  $H_0$ .

The mean number of hours of relief differ significantly.

Questions?