

Nas seguintes táboas vemos os sufijos empregados para factores decimais e binarios:

| Factores decimais |             |                                                              |
|-------------------|-------------|--------------------------------------------------------------|
| Nome              | Abreviatura | Factor                                                       |
| KiloByte          | KB          | 10 <sup>3</sup> Bytes = 1.000 Bytes                          |
| MegaByte          | MB          | 10 <sup>6</sup> Bytes = 1.000.000 Bytes                      |
| GigaByte          | GB          | 10 <sup>9</sup> Bytes = 1.000.000.000 Bytes                  |
| TeraByte          | ТВ          | 10 <sup>12</sup> Bytes = 1.000.000.000.000 Bytes             |
| PetaByte          | РВ          | 10 <sup>15</sup> Bytes = 1.000.000.000.000 Bytes             |
| ExaByte           | EB          | 10 <sup>18</sup> Bytes = 1.000.000.000.000.000 Bytes         |
| ZettaByte         | ZB          | 10 <sup>21</sup> Bytes = 1.000.000.000.000.000.000.000 Bytes |

| Factores binarios |             |                                                             |
|-------------------|-------------|-------------------------------------------------------------|
| Nome              | Abreviatura | Factor                                                      |
| KibiByte          | KiB         | 2 <sup>10</sup> Bytes = 1.024 Bytes                         |
| MebiByte          | MiB         | 2 <sup>20</sup> Bytes = 1.048.576 Bytes                     |
| GibiByte          | GiB         | 2 <sup>30</sup> Bytes = 1.073.741.824 Bytes                 |
| TebiByte          | TiB         | 2 <sup>40</sup> Bytes = 1.099.511.627.776 Bytes             |
| PebiByte          | PiB         | 2 <sup>50</sup> Bytes = 1.125.899.906.842.624 Bytes         |
| ExbiByte          | EiB         | 2 <sup>60</sup> Bytes = 1.152.921.504.606.846.976 Bytes     |
| ZebiByte          | ZiB         | 2 <sup>70</sup> Bytes = 1.180.591.620.717.411.303.424 Bytes |



## 1. Converte as seguintes unidades

- 2 MB = 2000 KB
- 10000 KiB = 9,765625 MiB
- 4 GB/s = 4000 MB/s
- 1024 MB/s = 1,024 GB/s
- 4 GB/s = 4\*1000\*8 = 32000 Mbps



2. Calcula a velocidade de transferencia dos datos nos buses das seguintes características:

1 bit e 100 Khz= 1\*100 Kbps -> 1\*100\*1000 bps

32 bits e 1000 Khz = (32\*1000)/(1000\*8)= 4 MB/s

32 bits e 66 Mhz = (32\*66)/(1000\*8) = 0,264 GB/s



3. Calcula o tamaño en GiB dun disco duro de 500GB

500\*10^9= 500\*10^9/2^30= 465'66 GiB



4. Calcula a cantidade de memoria que podemos direccionar empregando 32 bits

 $2^32 = 4294967296 / 2^30 = 4 \text{ GiB}$ 



- 5. Que tipo memoria emprega unha menor voltaxe?
  - a) SDRAM
  - b) DDR
  - c) DDR3
  - d) DDR2



- 6. Indica que módulo de memoria ten unha latencia menor
  - a) DDR2-800 con CL9
  - b) DDR2-800 con CL8
  - c) DDR2-800 con CL6
  - d) DDR2-800 con CL5



- 7. Indica que módulo de memoria ten unha latencia menor
  - a) DDR2-1066 con CL5.

$$t = 1/f -> 1/533x10^8 = 1,87$$

CAS=CLXT= 
$$5 \times 1.87 = 9.35 \text{ ns}$$

b) DDR3-1800 con CL8



- 8. Calcula a latencia dos seguintes módulos en unidades de ns e indica cal ten unha latencia menor
  - a) DDR2-1066 con CL5.
  - b) DDR3-1800 con CL8