Rappel:
$$Z = a + ib = p(cos \Psi + isin \Psi) = p e^{i\Psi} \in \mathbb{C}$$
 contesienne polaire trig. polaire exp.

Formule de Moivre:
$$(pe^{i\varphi})^n = p^n e^{in\varphi}, p > 0, \forall \in \mathbb{R}$$
, $n \in \mathbb{N}^*$.

$$z^{15} = (3 + 3\sqrt{3})^{15} = [coefficient binomiaux -]_très long.$$

$$|z| = \sqrt{9 + 27} = 6$$
; $arg z = Arctg \frac{3\sqrt{3}}{3} = Arctg \sqrt{3}' = \frac{11}{3}$
 $Re z = 3 > 0$

$$\Rightarrow z = 6e^{i\frac{\pi}{3}} \Rightarrow z'^{5} = 6^{15}e^{5\pi i} = 6^{15}e^{\pi i} = -6^{15}e^{5\pi i}$$

Conjugaison

$$\underline{Def} \quad z = a + ib \in \mathbb{C}, \text{ alors le conjugué de z est } \underline{\overline{z}} = a - ib,$$

$$Si \quad \overline{z} \neq 0 \Rightarrow z' = \frac{a - ib}{a^2 + b^2} = \frac{\overline{z}}{|z|^2} \Rightarrow \overline{z} = |z|^2 \in \mathbb{R}.$$

$$Si \ 7 \neq 0 \implies 7' = \frac{a - ib}{a^2 + b^2} = \frac{\overline{z}}{|7|^2} \implies \overline{72} = |7|^2 \in \mathbb{R}$$

$$Z = \int (\cos \theta + i \sin \theta) = \sum \overline{Z} = \int (\cos \theta - i \sin \theta) = \sum \int (\cos \theta) = \sum \int$$

Triangle de Pascal

$$(1) \quad \overline{2 \pm W} = \overline{2} \pm \overline{W}$$

₹2, W ∈ C ~ utiliser la forme cartesienne

(2)
$$\overline{2 \cdot W} = \overline{2} \cdot \overline{W}$$

$$(3) \qquad \overline{\left(\frac{2}{w}\right)} = \frac{\overline{2}}{\overline{w}}$$

 $W \neq 0$ \rightarrow utiliser la forme polaire.

$$(4) \qquad |\overline{z}| = |z|$$

$$(5) \ \ \overline{z} = \alpha + i \beta \ , \ \overline{\overline{z}} = \alpha - i \beta$$

$$\alpha = Rez = \frac{z + \overline{z}}{2}$$

$$\delta = \overline{Imz} = \frac{z - \overline{z}}{2i}$$

$$I_{m2} = \frac{2}{3}$$

En particulier, si
$$|z| = 1$$

 $z = \cos \theta + i \sin \theta = e^{i \theta}$

$$=> \frac{\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}}{\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}}$$

$$\Rightarrow \forall \varphi \in \mathbb{R}$$

$$SM \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}$$

Application: Exprimer sin's en termes des fonctions d'augle multiple.

$$\sin^{4} 9 = \left(\frac{e^{i} - e^{-i} 9}{2i}\right)^{4} = \frac{1}{16} \left(e^{4i} - 4e^{2i} + 6 - 4e^{-2i} + e^{-4i} \right) = \frac{1}{8} \cos 49 - \frac{1}{2} \cos 29 + \frac{3}{8}.$$

$$2 \cos 49 = \frac{1}{8} \cos 29 + \frac{3}{8} \cos 29 = \frac{1}{8} \cos 49 - \frac{1}{2} \cos 49 + \frac{3}{8} \cos 49 = \frac{1}{8} \cos 49 = \frac{$$

Racines des nombres complexes.

Proposition $S: w = se^{iY}, w \in C^*, s > 0, Y \in \mathbb{R}, alors pour tout <math>n \in \mathbb{N}^*$ $\left\{ z \in C^* : z^n = w \right\} = \left\{ \sqrt[n]{s'} e^{i\frac{y+2k\pi}{n}}, k = 0, 1, ... n-1 \right\}.$ de Moirre

Dém. Soit $z = \Gamma e^{i\vartheta}$, $\Gamma > 0$, $\vartheta \in \mathbb{R}$. Supposons que $z^h = w = > \Gamma^h e^{in\vartheta} = S e^{i\vartheta}$

 $= > \Gamma^{n} = S > 0 <= > \Gamma = \sqrt{S} \quad \text{et} \quad nS = 9 + 2k\pi \quad , \quad k \in \mathbb{Z}.$ $= > \mathcal{Y} = \frac{9 + 2k\pi}{n} \quad , \quad k \in \mathbb{Z} = > \quad k = 0 \Rightarrow \frac{9}{n} + \frac{2k\pi}{n} \quad \Rightarrow \quad \text{meme solution}$ $k = n \Rightarrow \frac{9 + 2n\pi}{n} = \frac{9}{n} + 2\pi \quad \Rightarrow \quad \text{pour } k = 0 \text{ et } k = n$

 $= > \left\{ S = \frac{\varphi + 2k\pi}{n}, k = 0, 1, 2, \dots, n - 1 \right\}$

 $= \begin{cases} \begin{cases} \frac{1}{2} \in \mathbb{C}^* : \frac{1}{2} = w \end{cases} = \begin{cases} \frac{1}{2} = \frac{1}{2} & \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \\ \frac{1}{2} = \frac{1}{2} & \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \end{cases} = \begin{cases} \frac{1}{2} = \frac{1}{2}$

Racines cartées $z^2 = w = s e^{i\varphi}$, s > 0, alors $\left\{z = \sqrt{s'} e^{i\frac{\varphi}{2}}, k = 0, 1\right\} = \left\{\sqrt{s'} e^{i\frac{\varphi}{2}}, \sqrt{s'} e^{i\frac{\varphi}{2}}, \sqrt{s'} e^{i\frac{\varphi}{2}}\right\} = \left\{\sqrt{s'} e^{i\frac{\varphi}{2}}, -\sqrt{s'} e^{i\frac{\varphi}{2}}\right\}.$

=> il existe 2 racines carrées pour tout $w \neq 0$, $w \in \mathbb{C}$.

$$Z_1^2 = Z_2^2 = W$$
, $Z_1 = -Z_2$

 $\frac{\varphi}{\frac{1}{2}+1}$ $-\frac{1}{2}=\frac{1}{2}$

Ex Resondre
$$(-1+i)=7^3$$
, $7 \in \mathbb{C}$

Soit
$$w = -1 + i = \sqrt{2} e^{i \frac{3\pi}{4}}$$

$$|w| = \sqrt{2}$$
, $argw = Arctg + 1 + 11 = Arctg (-1) + 1 = -\frac{71}{4} + 11 = \frac{371}{4}$
 $Rew = -140$

=> Proposition =>
$$\{2: 2^3=w, 2\in \mathbb{C}^*\} = \{\sqrt[3]{2^2} e^{i\frac{3\pi}{4}+2k\pi}, k=0,1,2\}$$

Exercice: écrire les solutions explicites sous forme polaire et les presenter graphiquement.

$$K=0 \Rightarrow Z_0 = \sqrt[6]{2} e^{i\frac{\pi}{4}}$$

$$K = 2 \implies Z_2 = \sqrt[6]{2} \ \ell^{i} \left(\frac{\overline{u}}{4} + \frac{4\overline{u}}{3}\right) = \sqrt[6]{2} \ \ell^{i} \frac{19\overline{u}}{12} =$$

$$= \sqrt[6]{2} \ \ell^{-i} \frac{5\overline{u}}{12}$$

Les trois solutions {20,21,72} se trouvent aux sommets d'un triangle régulier.

Ex Soit
$$z \neq 0$$
, $z \in \mathbb{C}$. Alors l'équation $\left(\frac{Z}{\overline{z}}\right)^2 = z$ possède
Vrai (1) Exactement 3 solutions dans \mathbb{C}^{\times} .

- (2) Exactement 2 solutions dans C*
- (3) Un nombre infini de solutions dans C*

 (4) au moins une solution dans C* avec /2/>1.

Soit
$$z \neq 0$$
, $z = \int e^{i\varphi}$, $\int z = \int e^{i\varphi}$, $\int z = \int e^{i\varphi}$ $= z = \int e^{i\varphi}$

En général: Les racines n'ièmes de $w \in \mathbb{C}^*$ sont situées sur un cercle de rayon ||w|| aux sommets d'un polygone régulier à n côtés L'orientation du polygone depend de l'argument de w.

22

Equations polynomiales dans C.

Quadratique dans $C: az^2+bz+c=0$ $a,b,c\in C,z\in C,a\neq 0$. => $z = -\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$ racine carrée d'un nombre complexe!

=> $Si \ b^2-4ac = 0$ => il y a rene solution $z = -\frac{b}{2a}$ à multiplicité 2. => $Si \ b^2-4ac \neq 0$ => il existe toujours 2 solutions complexes.

Théorème fondamental de l'Algebre.

Toute polynôme $P(z) = \alpha_n z^n + \alpha_{h-1} z^{h-1} + ... + \alpha_1 z + \alpha_0$, $\alpha_n, \alpha_{h-1}, ... = \alpha_1, \alpha_0 \in \mathbb{C}$, $\alpha_n \neq 0$ peut s'écrire sous la forme: $P(z) = \alpha_n (z - z_1)(z - z_2) - ... - (z - z_n) \text{ où } z_1, z_2, ... z_n \in \mathbb{C} \text{ (peut-être avec répétitions)}$

 $P(z) = a_n \left(z - w_i\right)^{m_i} \left(z - w_i\right)^{m_i} \left(z - w_i\right)^{m_i} \qquad (z - w_p)^{m_p} \quad \text{où } w_i \dots w_p \in \mathbb{C} \quad \text{distincts}$

On dit que mi est la <u>multiplicité</u> de la racine wi.

Kemarque Ce n'est pas vrai dans IK.

 $(x^2 + 4x + 8)(x^2 + 7) = P(x)$ digré 4, n'a pas de raches dans R

Trouver les 4 racines complexes de ce polynôme $Z \in \{-2\pm 2i, \pm i\sqrt{7}\}$.

Ex Est-ce que le polynôme $z^2 + (1-i)z - i = P(z)$ est divisible par (z-i)? V_n calcule $P(i) = i^2 + (1-i)i - i = -1 + i + 1 - i = 0 = 7 = i$ est une racine => Oui.

Polynômes à coefficients dans R

Proposition $Si \neq C$ est une racine de P(z) à coefficients réels, alors \neq l'est aussi.

Dém' On va demontrer que $P(z) = 0 \Rightarrow P(\overline{z}) = 0$, si P(z) à coefficients $P(\overline{z}) = \sum_{k=0}^{h} a_k \overline{z}^k = \sum_{k=0}^{h} \overline{a_k} \overline{z}^k = \sum_{k=0}^{h} \overline{a_k} \overline{z}^k = \sum_{k=0}^{h} \overline{a_k} \overline{z}^k = \overline{P(z)} = \overline{0} = 0$. $A_n \overline{z}^h + a_{h-1} \overline{z}^{h-1} + \dots + a_1 \overline{z} + a_0$ \Rightarrow Si z est rune radhe, alors \overline{z} l'est aussi \overline{z} \overline{z}

Soit P(2) à coefficients réels

Alors si $P(z_i) = 0$ et $z_i \notin \mathbb{R} \implies (z-\overline{z_i})(z-\overline{z_i})$ divise P(z)

 $= \sum_{\{z-z_i\}} (z-\overline{z_i}) = (z^2 - z(z_i + \overline{z_i}) + z_i \overline{z_i}) = (z^2 - (2Rez_i)z + |z_i|^2) \text{ divise } P(z)$ $= 2Rez_i |z_i|^2$

Conclusion: Tout polynôme non-constant à coefficients réels peut être factorisé en polynômes à coefficients réels de degré 1 ou 2, irreductibles sur R.

Déf Un polynôme non-constant est irreduchible sur R (sur C) s'il n'est pas égal au produit des dux polynômes non-constants à coefficients dans R (dans C).

 $\frac{E_X}{X^2 + 4x + 8} \quad \text{ust irreductible sur } R \quad (\text{mais pas sur } C).$ $X^2 + 4x + 8 = (x + 2 + 2i)(x + 2 - 2i) \quad \text{sur } C.$

 $\chi^2 + 5\chi + 6 = (\chi + 2)(\chi + 3)$ n'est pas irreductible sur R.

Théorème fondamental de l'algèbre => Les seuls polynômes irreductibles sur C sont les polynômes linéaires

Sous-ensembles du plan complexe.

Ex1. Soif
$$z \in \mathbb{C}$$
, $r > 0$

Alors
$$\begin{cases} \frac{1}{2} \in \mathbb{C} : |z-z_0| = r \end{cases}$$

est run cercle de rayon r et centre z_0 ,
 $|z-z_0| = |x+iy-x_0-iy_0| = |x-x_0+i(y-y_0)| =$

$$= \sqrt{(x-x_0)^2 + (y-y_0)^2} = r$$

=7
$$(x-x_0)^2 + (y-y_0)^2 = r^2$$
 équation du cercle de rayon r centré en (x_0,y_0) .

$$\frac{\sum 2}{2} = -1 = \sum 3 \text{ oif } z = p e^{i\varphi}, p > 0.$$

$$\Rightarrow \frac{e^{-i\varphi}}{p e^{i\varphi}} = e^{-2i\varphi} = -1 = e^{i(\pi + 2\pi k)}$$

$$\Rightarrow - \varphi = \left\{ \frac{\pi}{2}, \frac{\pi}{2} + \pi \right\} \Rightarrow \varphi = \left\{ -\frac{\pi}{2}, -\frac{3\pi}{2} \right\}; p > 0.$$

$$\Rightarrow \text{ deux intervalles } \left\{ \pm i \cdot b, \cdot b > 0 \right\}.$$

ib, b>0

-ib, 6>0