(Minden feladat 10 pontot ér, indoklás nélküli eredményközlést nem fogadunk el, a dolgozat idő tartama 90 perc.)

1. Konvergens-e az alábbi sorozat és ha igen, mi a határértéke?

$$\left(\frac{n+4}{n-2}\right)^{n+2}$$

MO.

$$\left(\frac{n+4}{n-2}\right)^{n+2} = \frac{\left(\frac{n+4}{n}\right)^{n+2}}{\left(\frac{n-2}{n}\right)^{n+2}} = \frac{\left(1+\frac{4}{n}\right)^n \left(\frac{n+4}{n}\right)^2}{\left(1+\frac{-2}{n}\right)^n \left(\frac{n-2}{n}\right)^2} \to \frac{e^4 \cdot 1}{e^{-2} \cdot 1} = e^6,$$

felhasználva, hogy (1 + $\frac{x}{n})^n \to e^x$ és hogy a határértékképzés invariáns az alapműveletekre.

2. Létezik-e az alábbi határérték, és ha igen, mennyi az értéke?

$$\lim_{x \to 2} \frac{\sqrt{x+7} - 3}{x - 2}$$

MO.

$$\frac{\sqrt{x+7}-3}{x-2} = \frac{(\sqrt{x+7}-3)(\sqrt{x+7}+3)}{(x-2)(\sqrt{x+7}-3)} = \frac{x+7-9}{(x-2)(\sqrt{x+7}-3)} = \frac{x-2}{(x-2)(\sqrt{x+7}+3)} = \frac{1}{\sqrt{x+7}+3} \xrightarrow{x\to 2} \frac{1}{6}$$

ahol felhasználtuk, hogy az $x\mapsto \sqrt{x+7}+3$ folytonos, így a határértéke 2-ben ugyanaz, mint a 2-beli értéke.

3. Hol vannak szakadásai az alábbi függvénynek és ezek milyen osztályú szakadások (azaz elsőv. másodfajú, ugrás, megszüntethető, végtelen vagy lényeges szakadások-e ezek)?

$$\operatorname{arctg}\left(\frac{1}{x}\right) \cdot e^{-\frac{1}{x-1}}$$

MO. discont $(f) = \{0, 1\}$, mert máshol f folytonos, ezeken pedig nem értelmes.

$$\lim_{x \to 1^{-}} \arctan\left(\frac{1}{x}\right) \cdot e^{-\frac{1}{x-1}} = \frac{\pi}{4} \cdot e^{-\frac{1}{0-}} = \frac{\pi}{4} \cdot \infty = \infty, \qquad \lim_{x \to 1^{+}} \arctan\left(\frac{1}{x}\right) \cdot e^{-\frac{1}{x-1}} = \frac{\pi}{4} \cdot e^{-\frac{1}{0+}} = \frac{\pi}{4} \cdot 1 = \frac{\pi}{4}$$

ahol felhasználtuk, hogy arct
g $1=\frac{\pi}{4},$ mert tg $\frac{\pi}{4}=1.$ Az egyik oldali határérték nem véges, azaz
–1-ben másodfajú szakadása van f-nek, és mindegyik létezik és legalább az egyik végtelen, azaz ez egy
 végtelen szakadás.

$$\lim_{x \to 0^{-}} \arctan\left(\frac{1}{x}\right) \cdot e^{-\frac{1}{x-1}} = -\frac{\pi}{2} \cdot e^{-\frac{1}{-1}} = -\frac{\pi}{2} \cdot e, \qquad \lim_{x \to 0^{+}} \arctan\left(\frac{1}{x}\right) \cdot e^{-\frac{1}{x-1}} = \frac{\pi}{2} \cdot e^{-\frac{1}{-1}} = \frac{\pi}{2} \cdot e$$

Mivel a két egyoldali határérték véges, a szakadás elsőfajú. Mivel nem egyenlők, ez egy ugrás.

4. Mely intervallumokon monoton az alábbi valós függvény és hol van lokális szélsőértéke?

$$e^{x}(x^{2}-8)$$

MO. Legyen $f(x) = e^x(x^2 - 8)$, $f'(x) = e^x(x^2 + 2x - 8) = e^x(x + 4)(x - 2)$. $e^x > 0$ mindig, így f' pozitív a $(-\infty; -4)$ és a $(2; +\infty)$ intervallumban és negatív a (-4; 2) intervallumban. Mivel a függvény folytonos, előtte nő, utána csökken, ezért -4-ben maximuma van, 2-ben pedig lokális minimuma.

5. Igazoljuk, hogy minden $x \ge 0$ esetén $\frac{1}{1+x} \le 1 - x + x^2$.

MO. Legyen $f(x) = 1 - x + x^2 - \frac{1}{1+x}$ az $[0, +\infty)$ intervallumon. Elég belátni, hogy f monoton növekvő a $[0, +\infty)$ intervallumon, azaz minden $0 \le x_1 < x_2$ esetén $f(x_1) \le f(x_2)$, mert akkor $x_1 = 0$ és $x_2 = x$ helyettesítéssel kapjuk, hogy $f(0) = 0 \le f(x)$, ami a kívánt összefüggés. Tudjuk, hogy f akárhányszor deriválható ezért a monotonitása kimutatására az analitikus feltételt lehet alkalmazni. $f'(x) = 2x - 1 + 1/(1+x)^2$. Vegyük észre, hogy f'(0) = 0, így elég az $f'(x) \ge 0 = f'(0)$ -hez, f' monotonitását belátni. Ezt szintén a derivált előjeléből állapítjunk meg. $f''(x) = 2 - 2/(1+x)^3$. $2 - 2/(1+x)^3 \ge 0$ igaz nemnegatívokra, mert ekvivalens $1 \ge 1/(1+x)^3$ -vel, ami pedig ekvivalens $(1+x)^3 \ge 1$ -vel, ami triviálisan igaz a nemnegatívokon.

6.1. a)
$$\lim_{x\to 0+} x(e^{-1/x}-1) = ?$$
, b) $\lim_{x\to \infty} x(e^{-1/x}-1) = ?$

Legyen (a_n) pozitív tagú sorozat!

6.2. Igaz-e, hogy ha $a_n \to 1$, akkor $(a_n)^n \to 1$?

6.3. Igaz-e, hogy ha $a_n \to 1$, akkor $\sqrt[n]{a_n} \to 1$?

MO. 6.1. a) $\lim_{x\to 0+} e^{-1/x} - 1 \stackrel{\vartheta=-1/x}{=} \lim_{\vartheta\to -\infty} e^{\vartheta} - 1 = -1$, fgy $\lim_{x\to 0+} x(e^{-1/x} - 1) = 0 \cdot (-1) = 0$. b)

$$\lim_{x \to \infty} x(e^{-1/x} - 1) = \lim_{x \to \infty} -\frac{e^{-\frac{1}{x}} - 1}{-\frac{1}{x}} \stackrel{\vartheta = -1/x}{=} \lim_{\vartheta \to 0} -\frac{e^{\vartheta} - 1}{\vartheta} = -1$$

6.2. Nem igaz. Bár $1+1/n \to 1,$ de $(1+\frac{1}{n})^n \to e \neq 1.$

6.3. Igaz. Mivel $a_n \to 1$, ezért van olyan N természetes szám, hogy minden n > N-re $\frac{1}{2} \le a_n \le 2$, így $1 \leftarrow \sqrt[n]{\frac{1}{2}} \le \sqrt[n]{a_n} \le \sqrt[n]{2} \to 1$, így a rendőrelv miatt $\sqrt[n]{a_n} \to 1$.

iMSc. a) Igaz-e, hogy ha $\lim(a_{n+1} - a_n) = 0$, akkor (a_n) konvergens? b) Igaz-e fordítva?

MO. a) Nem igaz. $\sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} - \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \to 0$, de $\sqrt{n} \to \infty$. b) Igaz. Ha (a_n) konvergens, akkor mindne részsorozata is konvergens, így (a_{n+1}) is és ugyanoda tart, mint (a_n) , így a HIA miatt $\lim_{n \to \infty} (a_{n+1} - a_n) = \lim_{n \to \infty} (a_{n+1}) - \lim_{n \to \infty} (a_n) = 0$.