Outline

The point of all of this

▶ posterior probabilities $p(\theta|\text{data}) = \frac{p(\text{data}|\theta)p(\theta)}{p(\text{data})}$

We interpret $p(\theta|\text{data})$ as the probability distribution of a random variable θ , from which we sample (via MCMC)

Why sample?

- 1. explore parameter space
- 2. samples can be useful
 - explore interventions, forecasts

MCMC: Sampling from a distribution

• We can calculate (in a deterministic model) $p(\theta|\text{data})$ given any θ – how do we sample?

MCMC: Sampling from a distribution

• We can calculate (in a deterministic model) $p(\theta|\text{data})$ given any θ – how do we sample?

Deterministic models

 $p(\theta|\mathrm{data}) \propto p(\mathrm{data}|\theta)p(\theta)$ Use MCMC to get samples from it: $\theta_1, \theta_2, \theta_3, \dots$

Stochastic models

Stochastic models

- ightharpoonup one θ can lead to many possible outcomes X
- we can
 - 1. sample from $p(X|\theta)$ (via simulation)
 - 2. evaluate the trajectory likelihood $p(\text{data}|X,\theta)$
- we can't directly evaluate the likelihood $p(\text{data}|\theta)$ $p(\text{data}|\theta) = \sum_{X} p(\text{data}|X,\theta) p(X|\theta)$
- ▶ The number of possible trajectories X for one value of θ is large (usually infinite)
- We replace the sum above with a Monte Carlo (random) sample

Sequential Monte Carlo (SMC) / Particle Filter I

We sample J trajectories X_J from $p(X_{J,1}|\theta)$ and sum over $p(y_1|X_{J,1},\theta)$

Sequential Monte Carlo (SMC) / Particle Filter II

We then sample J trajectories X_J from $p(X_{J,2}|y_1,\theta)$ and sum over $p(y_2|X_{J,2},\theta)$

Sequential Monte Carlo (SMC) / Particle Filter III

The sum of all these (logged) values is $\sum_{J} p(y_{1:T}|X_{J},\theta)p(X_{J}|\theta)$ which is a sample estimate of the likelihood.

$$\label{eq:log-likelihood:log} \begin{aligned} & \text{Log-Likelihood:} \log\{p(y_{1:T}|\theta)\} = \sum_{T} \log\{p(y_{t}|y_{1:t-1},\theta)\} \end{aligned}$$

Sequential Monte Carlo (SMC) / Particle Filter IV

We can also retrieve filtered trajectories, that is samples from p(X|data) by following the particles from the last point backwards.

pMCMC

- Once we can estimate $p(\text{data}|\theta)$, we can combine this with the prior to evaluate the posterior $p(\theta|\text{data})$ for any θ .
- ▶ We can then use MCMC to sample from this -> pMCMC

MCMC

stimating the likelihood

NOMC

