Estudo de Junção PN

Ana Sofia Camões de Sousa | 96508 Duarte Miguel de Aguiar Pinto e Morais Marques | 96523 Isabel Maria Jaló Alexandre | 96537 Martim da Costa Graça Marques Ferreira | 96554 Grupo 5C

Objetivos

Este trabalho tem como objetivo estudar o comportamento e determinar características de uma junção PN de silício e a sua variação com a temperatura.

Montagem

Figura 1: Esquema elétrico e de blocos da montagem experimental para polarização direta do díodo.

Figura 2: Esquema elétrico e de blocos da montagem experimental para polarização inversa do díodo.

Formulário

Lei de Ohm:

$$V = R \cdot I \tag{1}$$

Modelo Standard/padrão

Polarização direta

Corrente díodo:

$$I = I_S(e^{\frac{qV_D}{\eta K_B T}} - 1) \tag{2}$$

$$I_S(T) = aT^3 e^{\frac{-E_G}{K_B T}} \tag{3}$$

Tensão aos terminais do díodo:

$$V = RI + V_D = RI + \frac{\eta K_B T}{q} \ln(\frac{I}{I_S(T)} + 1) = R(T)I + b(T)\ln(\frac{I}{I_S(T)} + 1)$$
(4)

Polarização inversa

$$I = -I_S \tag{5}$$

Modelo mais complexo

Polarização direta

Corrente díodo:

$$I = I_S(e^{\frac{qV_D}{K_BT}} - 1) + I_R(e^{\frac{qV_D}{2K_BT}} - 1)$$
(6)

$$I_S(T) = aT^3 e^{\frac{-E_G}{K_B T}} \tag{7}$$

$$I_R(T) = bT^{\frac{5}{2}} e^{\frac{-E_G}{2K_B T}} \tag{8}$$

Tensão aos terminais do díodo:

$$V = RI + V_D = R(T)I + \frac{2K_BT}{q}\ln(\sqrt{(\frac{I_R(T)}{2I_S(T)})^2 + (1 + \frac{I_R(T) + I}{I_S(T)})} - \frac{I_R(T)}{2I_S(T)})$$
(9)

Polarização inversa

$$I = -I_S - I_R \tag{10}$$

Procedimento experimental

Polarização Direta

1. Foi montado o circuito correspondente à polarização direta.

- 2. Ajustou-se a temperatura no controlador, dando a indicação de temperatura igual a $T_1 = 21.4$ °C. A temperatura do controlador estabilizou inicialmente em $T_1 = (21.8 \pm 0.1)$ °C.
- 3. Tendo-se fixado a resistência em diversos valores, fez-se variar a tensão do gerador tendo-se registado os valores da intensidade de corrente que percorria o díodo e a tensão aos seus terminais. Os valores de resistência considerados foram: $100 \ k\Omega$, $20 \ k\Omega$, $1 \ k\Omega$ e $200 \ \Omega$.
- 4. O procedimento foi repetido para diferentes temperaturas.
- 5. Por vezes, as medidas oscilavam entre dois valores consecutivos, tendo-se registado a média desses valores.
- 6. Existiam três conjuntos de resistências em série; um dos conjuntos admitia valores de 100Ω a 1000Ω , outra de 1000Ω a 10000Ω e outra de $10 k\Omega$ a $100 k\Omega$ (em valores discretos). As resistências eram selecionadas colocando ou retirando cavilhas em orifícios; ao colocar uma cavilha num orifício, coloca-se a respetiva resistência do conjunto de resistências em curto-circuito (daí cada conjunto poder admitir diferentes valores totais de resistência).
- 7. Verificou-se que a temperatura variou ao longo das medições, tendo-se registado o seu valor antes de cada medição.

Temperatura 1:

$I \pm 0.1 \; (\mu A)$	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
10.0	0.186	21.8
20.0	0.2125	21.7
30.0	0.228	21.7
40.0	0.239	21.7
50.0	0.248	21.7
60.0	0.255	21.7
70.0	0.261	21.7
80.0	0.266	21.65
90.0	0.271	21.6
100.0	0.275	21.6

Tabela 1: $R_1 = 100 \ k\Omega$

$I(\mu A)$	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
99.9 ± 0.1	0.275	21.6
199.95 ± 0.1	0.304	21.6
300.1 ± 0.1	0.321	21.6
400.0 ± 0.1	0.334	21.6
500 ± 1	0.344	21.6
599.5 ± 1	0.352	21.55
701 ± 1	0.360	21.5
800.5 ± 1	0.366	21.5
900 ± 1	0.372	21.5
1000 ± 1	0.378	21.5

Tabela 2: $R_1 = 20 \ k\Omega$

$I \pm 0.01 \ (mA)$	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
0.99	0.378	21.5
2.00	0.417	21.5
4.00	0.458	21.5
6.005	0.481	21.5
8.00	0.497	21.5
10.00	0.509	21.5
11.99	0.5185	21.5
14.00	0.527	21.5
16.00	0.534	21.5
18.00	0.540	21.5
20.00	0.5455	21.5

Tabela 3: $R_1 = 1 k\Omega$

I(mA)	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
19.99 ± 0.01	0.5455	21.6
29.99 ± 0.01	0.5665	21.6
40.0 ± 0.1	0.582	21.6
50.0 ± 0.1	0.5935	21.6
60.0 ± 0.1	0.603	21.6
70.0 ± 0.1	0.611	21.6
80.05 ± 0.1	0.618	21.65
90.0 ± 0.1	0.624	21.7
100.0 ± 0.1	0.630	21.7

Tabela 4: $R_1 = 200 \ \Omega$

Temperatura 2:

8. Selecionou-se 30.0 °C no controlador.

$I \pm 0.1 \; (\mu A)$	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
10.0	0.162	30.1
19.9	0.189	30.1
29.95	0.205	30.05
39.9	0.216	30.1
50.0	0.2245	30.1
60.0	0.232	30.1
70.0	0.238	30.1
80.0	0.243	30
90.0	0.248	30
99.9	0.252	30

Tabela 5: $R_1 = 100 \ k\Omega$

$I(\mu A)$	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
99.75 ± 0.1	0.252	30.05
200.0 ± 0.1	0.280	30.1
299.85 ± 0.1	0.2975	30.0
400 ± 1	0.310	30.0
500 ± 1	0.320	30.05
600 ± 1	0.329	30.0
700 ± 1	0.336	30.0
800 ± 1	0.343	30.0
900 ± 1	0.349	30.0
999 ± 1	0.355	30.0

Tabela 6: $R_1 = 20 \ k\Omega$

$I \pm 0.01 \ (mA)$	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
1.00	0.355	30.0
2.00	0.394	30.0
4.00	0.4355	30.0
6.00	0.4585	30.05
8.00	0.475	30.0
10.00	0.487	30.0
11.995	0.497	30.0
14.00	0.5055	30.0
16.00	0.513	30.05
18.00	0.519	30.0
20.005	0.525	30.0

Tabela 7: $R_1 = 1 k\Omega$

I(mA)	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
20.025 ± 0.01	0.525	30.0
29.995 ± 0.01	0.5465	30.0
40.05 ± 0.1	0.562	30.0
50.0 ± 0.1	0.574	30.0
60.0 ± 0.1	0.584	30.0
70.0 ± 0.1	0.592	29.95
80.0 ± 0.1	0.5995	30.0
90.05 ± 0.1	0.606	30.0
100.1 ± 0.1	0.612	30.1

Tabela 8: $R_1 = 200 \Omega$

Temperatura 3:

9. Selecionou-se 60.0 °C no controlador.

$I \pm 0.1 \; (\mu A)$	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
10.05	0.092	60.1
19.95	0.119	60.4
29.9	0.135	59.9
40.1	0.146	59.9
50.0	0.154	59.9
60.0	0.161	59.7
70.15	0.1655	60.15
80.1	0.171	60.0
90.05	0.175	60.2
100.05	0.179	60.2

Tabela 9: $R_1 = 100 \ k\Omega$

$I(\mu A)$	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
99.95 ± 0.1	0.1795	59.85
200.0 ± 0.1	0.206	60.1
300.15 ± 0.1	0.223	60.0
401 ± 1	0.236	59.9
499.5 ± 1	0.245	60.1
600.5 ± 1	0.254	59.8
701 ± 1	0.261	60.0
800 ± 1	0.267	60.2
900 ± 1	0.274	60.2
999.5 ± 1	0.2795	60.2

Tabela 10: $R_1 = 20 \ k\Omega$

$I \pm 0.01 \ (mA)$	$V \pm 0.001 \; (V)$	$T \pm 0.1 ^{\circ}C$
0.995	0.280	59.9
1.995	0.3175	60.0
3.995	0.357	60.0
5.985	0.381	60.0
8.005	0.398	60.1
10.01	0.411	60.0
12.005	0.422	59.9
14.02	0.431	59.7
16.025	0.438	60.1
17.99	0.445	60.1
20.00	0.451	59.95

Tabela 11: $R_1 = 1 k\Omega$

I(mA)	$V \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
19.99 ± 0.01	0.451	60.2
30.01 ± 0.01	0.476	59.9
40.1 ± 0.1	0.4925	60.1
50.0 ± 0.1	0.506	59.6
59.95 ± 0.1	0.516	60.2
70.0 ± 0.1	0.526	60.0
80.2 ± 0.1	0.535	59.95
90.0 ± 0.1	0.542	59.9
100.05 ± 0.1	0.5485	60.0

Tabela 12: $R_1 = 200 \ \Omega$

Temperatura 4:

10. Selecionou-se 80.0 °C no controlador.

A escala do voltímetro foi alterada.

$I \pm 0.1 \; (\mu A)$	$V \pm 0.0001 \; (V)$	$T \pm 0.1~^{\circ}C$
10.0	0.05385	80.0
20.05	0.0766	80.2
29.9	0.0907	80.2
40.0	0.1013	80.0
50.0	0.1090	79.8
59.9	0.11515	80.0
70.2	0.1209	80.1
80.2	0.1262	80.3
89.8	0.1306	80.3
100.15	0.1351	80.1

Tabela 13: $R_1 = 100 \ k\Omega$

$I(\mu A)$	$V \pm 0.0001 \; (V)$	$T \pm 0.1~^{\circ}C$
100.4 ± 0.1	0.1350	79.9
200.15 ± 0.1	0.1614	80.0
299.8 ± 0.1	0.1777	80.2
400.8 ± 0.1	0.19035	80.3
500 ± 1	0.2003	80.1
601 ± 1	0.2087	80.0
700.5 ± 1	0.2156	80.0
801 ± 1	0.2216	80.0
902 ± 1	0.2272	80.0
1000 ± 1	0.2322	80.0

Tabela 14: $R_1 = 20 \ k\Omega$

$I \pm 0.01 \ (mA)$	$V \pm 0.0001 \; (V)$	$T \pm 0.1~^{\circ}C$
1.01	0.2328	80.1
1.99	0.2678	79.9
4.00	0.3061	80.0
6.00	0.32935	80.1
7.99	0.34605	80.0
10.005	0.35925	80.0
12.01	0.3701	80.0
13.98	0.37915	80.2
16.045	0.3875	80.0
18.005	0.3943	80.0
19.99	0.40085	79.9

Tabela 15: $R_1 = 1 k\Omega$

I(mA)	$V \pm 0.0001 \; (V)$	$T \pm 0.1~^{\circ}C$
19.96 ± 0.01	0.4007	79.7
30.03 ± 0.01	0.4253	79.9
40.0 ± 0.1	0.4437	80.1
50.0 ± 0.1	0.4578	80.0
60.1 ± 0.1	0.4694	79.8
70.0 ± 0.1	0.4789	79.8
80.1 ± 0.1	0.4872	79.8
90.1 ± 0.1	0.4943	79.7
100.1 ± 0.1	0.50105	80.3

Tabela 16: $R_1 = 200 \ \Omega$

Temperatura 5:

11. Selecionou-se $100.0 \, ^{\circ}C$ no controlador.

$I \pm 0.1 \; (\mu A)$	$V \pm 0.0001 \; (V)$	$T \pm 0.1~^{\circ}C$
10.1	0.0244	99.9
20.1	0.0398	100.0
30.0	0.0506	100.1
39.95	0.0593	100.2
49.8	0.0664	100.5
59.9	0.0729	100.2
69.9	0.0782	100.0
80.0	0.0828	100.0
90.0	0.0868	99.9
100.3	0.0904	100.0

Tabela 17: $R_1 = 100 \ k\Omega$

$I(\mu A)$	$V \pm 0.0001 \; (V)$	$T \pm 0.1~^{\circ}C$
100.6 ± 0.1	0.0904	100.2
199.8 ± 0.1	0.1167	100.0
300.7 ± 0.1	0.1330	100.0
400.1 ± 0.1	0.1446	100.5
498 ± 1	0.1543	100.9
597 ± 1	0.1627	100.9
703 ± 1	0.1713	100.9
801 ± 1	0.1781	100.3
904 ± 1	0.1834	99.7
1001 ± 1	0.1876	99.7

Tabela 18: $R_1 = 20 \ k\Omega$

$I \pm 0.01 \ (mA)$	$V \pm 0.0001 \; (V)$	$T \pm 0.1~^{\circ}C$
1.01	0.18775	100.4
2.05	0.2225	100.4
4.02	0.2586	100.0
6.045	0.2814	99.3
7.97	0.2966	99.7
10.03	0.3099	100.2
12.025	0.3211	100.4
14.04	0.3311	100.5
15.99	0.3399	100.3
18.00	0.34785	100.0
20.07	0.3548	99.7

Tabela 19: $R_1 = 1 k\Omega$

I(mA)	$V \pm 0.0001 \; (V)$	$T \pm 0.1~^{\circ}C$
20.04 ± 0.01	0.3541	99.7
30.00 ± 0.01	0.3788	99.5
39.99 ± 0.01	0.3963	99.8
50.0 ± 0.1	0.4106	99.9
60.1 ± 0.1	0.4222	99.6
70.1 ± 0.1	0.4319	100.3
80.2 ± 0.1	0.4410	100.3
90.0 ± 0.1	0.4490	100.5
100.2 ± 0.1	0.4568	100.7

Tabela 20: $R_1 = 200 \ \Omega$

Polarização Inversa

- 12. Foi montado o circuito correspondente à polarização inversa.
- 13. Tendo-se fixado a resistência a 100 $k\Omega$, fez-se variar a tensão do gerador tendo-se registado os valores de tensão aos seus terminais (V_g) e entre os terminais do conjunto de resistências (V_r) , começando-se com a temperatura do último ensaio, aproximadamente 100.0 °C.

27 de maio de 2021

- 14. O procedimento foi repetido para aproximadamente as mesmas temperaturas que o procedimento da polarização direta.
- 15. Para arrefecer a junção, abanou-se um cartaz laminado na sua proximidade. Mais tarde, empregou-se ainda uma pequena ventoinha de secretária.
- 16. O aparato foi colocado numa posição vertical para permitir melhor circulação de ar.

$V_g(V)$	$V_r \pm 0.01 \; (V)$	$T \pm 0.1~^{\circ}C$
5.083 ± 0.001	1.640	100.1
7.48 ± 0.01	1.682	100.1
9.98 ± 0.01	1.746	99.9
12.53 ± 0.01	1.808	100.0
14.98 ± 0.01	1.869	99.7
17.40 ± 0.01	1.928	100.1
20.04 ± 0.01	1.950	100.4
22.49 ± 0.01	1.956	100.6
25.03 ± 0.01	1.951	100.5

Tabela 21: $100.0 \, ^{\circ}C$ selecionados no controlador.

$V_g(V)$	$V_r \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
5.0345 ± 0.001	0.518	82.2
7.47 ± 0.01	0.548	82.4
10.07 ± 0.01	0.573	82.0
12.44 ± 0.01	0.608	82.7
14.99 ± 0.01	0.608	82.7
17.48 ± 0.01	0.608	82.5
19.98 ± 0.01	0.612	82.4
22.505 ± 0.01	0.616	82.1
25.04 ± 0.01	0.624	82.0

Tabela 22: $82.0 \, ^{\circ}C$ selecionados no controlador.

$V_g \pm 0.01 \; (V)$	$V_r \pm 0.001 \; (V)$	$T \pm 0.1~^{\circ}C$
4.96	0.0889	58.9
7.48	0.0982	59.2
10.04	0.1021	58.9
12.50	0.1070	59.1
14.98	0.1120	59.2
17.53	0.1167	59.3
20.01	0.1210	59.8
22.45	0.1233	59.8
24.99	0.1255	59.7

Tabela 23: $60.0 \,^{\circ}C$ selecionados no controlador.

$V_g \pm 0.01 \; (V)$	$V_r \pm 0.0001 \ (V)$	$T \pm 0.1 ^{\circ}C$
4.97	0.0085	35.1
7.45	0.0093	35.1
9.99	0.0100	35.1
12.47	0.0106	35.1
15.02	0.0111	35.1
17.45	0.0116	35.1
20.04	0.0120	35.2
22.52	0.0123	35.2
24.98	0.0127	35.2

Tabela 24: $35.0 \,^{\circ}C$ selecionados no controlador.

$V_g \pm 0.01 \; (V)$	$V_r \pm 0.0001 \ (V)$	$T \pm 0.1~^{\circ}C$
5.06	0.00325	27.5
7.51	0.00364	27.5
9.95	0.00389	27.4
12.51	0.00410	27.4
14.98	0.00437	27.3
17.47	0.00457	27.3
20.07	0.00470	27.3
22.55	0.00480	27.2
24.99	0.00492	27.2

Tabela 25: $27.0 \, ^{\circ}C$ selecionados no controlador.

Nota: Nas medições efetuadas podem existir erros sistemáticos dado não ser dado tempo suficiente para uma estabilização adequada. Constataram-se que existem discrepâncias entre a temperatura do sensor (o qual arrefece mais rapidamente) e a temperatura do díodo, pelo que poderão advir daqui erros acrescidos.

Nota: Para a voltagem V_r , na temperatura de 100.0 °C foram anotados três algarismos significativos, pois a resolução do voltímetro era igual a 0.001, no entanto, devido a grandes oscilações dessa grandeza, decidiu-se considerar uma incerteza de 0.01. Ocorreu o análogo para 60.0 °C e 27.0 °C.

Análise dos dados

Polarização Direta

Figura 3: Dados recolhidos e ajustes realizados para a temperatura T_1

Figura 4: Dados recolhidos e ajustes realizados para a temperatura T_2

Figura 5: Dados recolhidos e ajustes realizados para a temperatura T_3

Figura 6: Dados recolhidos e ajustes realizados para a temperatura T_4

Figura 7: Dados recolhidos e ajustes realizados para a temperatura T_5

Os ajustes e valores obtidos para o modelo standard foram:

$$\eta = 1.634 \pm 0.001$$

 $a = (6 \pm 2) \times 10^{-8}$
 $E_G = (6.24 \pm 0.08) \times 10^{-20}$

Figura 8: Modelo standard: valores determinados para b(T) e ajuste ao modelo

Figura 9: Modelo standard: valores determinados para $I_S(T)$ e ajuste ao modelo

É óbvio, pelo ajuste dos valores determinados através dos dados de b(T) à expressão teórica, que este modelo não é o mais fidedigno.

Os ajustes e valores obtidos para o modelo mais complexo foram:

$$a = (1.1 \pm 0.3) \times 10^{-2}$$

 $b = (2.1 \pm 0.3) \times 10^{-5}$
 $E_G = (1.46 \pm 0.02) \times 10^{-19} \approx 0.91 eV$

Figura 10: Modelo mais complexo: valores determinados para $I_S(T)$ e ajuste ao modelo

Figura 11: Modelo mais complexo: valores determinados para $I_R(T)$ e ajuste ao modelo

Este modelo tem um ajuste substancialmente melhor aos dados recolhidos.

Polarização Inversa

Figura 12: Comparação entre correntes experimentais (calculadas a partir dos dados recolhidos) e teóricas, determinadas a partir dos modelos para T_1

Figura 13: Comparação entre correntes experimentais (calculadas a partir dos dados recolhidos) e teóricas, determinadas a partir dos modelos para T_2

Figura 14: Comparação entre correntes experimentais (calculadas a partir dos dados recolhidos) e teóricas, determinadas a partir dos modelos para T_3

Figura 15: Comparação entre correntes experimentais (calculadas a partir dos dados recolhidos) e teóricas, determinadas a partir dos modelos para T_4

Figura 16: Comparação entre correntes experimentais (calculadas a partir dos dados recolhidos) e teóricas, determinadas a partir dos modelos para T_5

Está claro que, à exceção da T_1 , considerando o modelo standard, os modelos não providenciam boas aproximações aos dados observados.