Introduction to Physiological Measurement

Transducers and Instrumentation for Physiological Measurement

Suresh Devasahayam Professor of Bioengineering

Christian Medical College

Vellore

Outline

- General Principles of measurement
- Examples of measurement
- Sensors for measurement
- Unobtrusive measurement: non-invasive

Why Measure?

- To define normal physiology
- To classify deviations from normal physiology i.e., pathophysiology
- To understand processes and systems

N.B. Physiology is the study of processes and systems that enable homeostasis

The Measurement Process

Examples of Measurement

- Measurement of chemical and gas concentrations
- Measurement of structure imaging
- Electrophysiological Measurement
- Cardiovascular Fluid Mechanics Measurement
- Musculoskeletal Mechanical Measurement

Biopotential Measurement – ECG and Nerve Activity

Concepts for Measurement

- A signal is a physical quantity typically it varies with time (but it can vary with length, space, etc.)
- A system is a process that can modify a signal

Transduction of Signals

- Transducer converts one kind of physical energy into another form
 - e.g., pressure to resistance, temperature to voltage
- Therefore, a transducer is also a system that modifies the signal

Characteristics of signals

- Steady state value single value measurement, slow measurement
- Transient measurement time-varying measurement

Characteristics of Systems

- Predictable behaviour i.e., stationary over time
- Linear acts the same way on small signals and as well as larger signals

Review Questions

- 1. In each of the following transducers, what is the input and output?
 - a) Manometer
 - b) Weighing scale
 - c) Load cell
 - d) Accelerometer
- 2. A piston in a cylinder (like a syringe), and a displacement sensor, can be used as a pressure sensor. What are the potential difficulties with this arrangement? Is any additional element to be added? What is the zero reading of such a transducer?
- 3. When is an electrical pressure transducer better than a mercury manometer?

Characterization of measurement systems

- Static calibration
- Dynamic calibration

Static calibration of transducers

- Input-output relationship
- Linearity
 - Linear: y = m x + c
 - Compensating for nonlinearity
- Offset
- Calibration and curve fitting

Dynamic calibration

- Transient behaviour of physiological systems
 - Changes in system output with time
- Dynamic response = response of a transducer or recording system to a changing signal
- Dynamic characterization
 - Time constant
 - Step response
 - Frequency response
 - Transfer function

Dynamic Measurement – Intra Arterial Blood Pressure

Digitization of Signals

- Sampling and Quantization
- Analog-to-Digital Converters
- The Sampling Theorem
 - If the signal is sampled at a rate which is at least twice the highest frequency contained in the signal, then the original signal can always be recovered

Characterizing signals

- Decomposing signals
- Identifying contamination of signals

---> Next lecture