CI	Δ	TA	1S :
1		117	1.3.

- 1. A deposition system for oblique deposition comprising:
 - a source of vaporized species;
 - a substrate contacted by vaporized species forming a tilted thin film; and
 - a collimator having an array of holes oriented at approximately an oblique angle θ , the collimator placed between the source and the substrate to limit the passage to vaporized species traveling at approximately an oblique angle θ .

10

5

- The deposition system of claim 1 wherein the oblique angle θ is greater than 35° and less than 90°.
- 3. The deposition system of claim 1 wherein the oblique angle θ is greater than 55° and less than 75°.
 - The deposition system of claim 1 wherein the holes are arranged in a radial pattern.
- The deposition system of claim 1 wherein the holes are arranged so that the vaporized species passing through the collimator subsequently contact the substrate to form a radial pattern in the tilted thin film.
- 6. The deposition system of claim 1 wherein the holes are arranged in a circumferential pattern.
 - 7. The deposition system of claim 1 wherein the holes are arranged so that the vaporized species passing through the collimator subsequently contact the substrate to form a circumferential pattern in the tilted thin film.

	8.	The deposition system of claim 1 wherein the holes are arranged	
	so that	the vaporized species passing through the collimator subsequently	
	contact t	he substrate to form a tilted thin film with azimuthal symmetry.	
5	9.	A method for collimated oblique deposition onto a substrate, the	
	method comprising:		
		placing a collimator between a source of a material and the	
		substrate, wherein the collimator has a surface, and the	
		collimator has openings tilted at an angle relative to a	
10		surface normal;	
		applying energy such that vaporized species leave the source and	
		travel through the openings; and	
		depositing the vaporized species on the substrate resulting in a	
		tilted thin film.	
15			
	10.	The method of claim 9 additionally comprising:	
		applying differential pumping such that a first chamber is	
		subjected to a first pressure and a second chamber is	
		subjected to a second pressure where the first pressure is	
20		less than the second pressure.	
	11.	The method of claim 9 wherein the angle is greater than	
	approxi	mately 55° and less than approximately 75°.	
25	12.	The method of claim 9 wherein the openings are arranged in a	

The method of claim 9 wherein the vaporized species are

13.

radial pattern.

deposited on the substrate in a radial pattern.

25

14.	The method of claim 9 wherein the openings are arranged in a			
circumferentia	al pattern.			
15.	The method of claim 9 wherein the vaporized species are			
deposited on the substrate in a circumferential pattern.				
16.	A method of forming a magnetic storage media on a substrate,			
the magnetic storage media comprising at least one thin film tilted at an angle				
relative to a	surface normal and having azimuthal symmetry, the method			
comprising:				
	depositing one or more materials through a collimator onto a			
	substrate, wherein the collimator has openings tilted at an			
	angle greater than 45° and less than 90° relative to a			
	surface normal; and			
	rotating the substrate during deposition.			
17.	The method of claim 16, wherein the materials are from a source			
the method additionally comprising:				
	applying a first vacuum between the collimator and substrate;			
	applying a second vacuum between the collimator and the source			
	and			
	applying differential pumping such that the substrate is subjected			
	to a first pressure and the source is subjected to a second			

pressure.

pressure where the first pressure is less than the second

- The method of claim 16 wherein the openings are distributed across the collimator for deposition of the materials at a substantially uniform thickness.
- A collimator for oblique deposition of a deposition beam resulting in a tilted thin film with azimuthal symmetry, the collimator comprising:
 - a block for intercepting a portion of the deposition beam, the block having a surface and a center; and
- a plurality of openings in the block for passage of a portion of the deposition beam, the openings being tilted at an angle relative to an axis drawn normal to the block.
- The collimator of claim 1 wherein the angle is greater than 35° and less than 90°.
 - The collimator of claim 19 wherein the angle is greater than 55° and less than 75°.
- 20 22. The collimator of claim 19 wherein the openings are arranged in a radial pattern.
 - The collimator of claim 19 wherein the opening are arranged in a circumferential pattern.

25