

17 - 19 April 2023 · Antwerp, Belgium

The European Event for Electronic System Design & Test

Highly-Bespoke Robust Printed Neuromorphic Circuits

Haibin Zhao, Brojogopal Sapui, Michael Hefenbrock, Zhidong Yang, Michael Beigl and Mehdi B. Tahoori

Karlsruhe Institute of Technology (KIT)

- Printed Electronics
- Printed Neuromorphic Circuits
- Learnable Nonlinear Circuits
- Variation-Aware Training of pNNs
- Experiment
- Conclusion

Printed Electronics – Overview

Source: Khan Y, et al. "A New Frontier of Printed Electronics: Flexible Hybrid Electronics". Advanced Materials, 2020

Printed Electronics – Customizability

High customizability

Printed Electronics – Variation

- Printing variation
 - Definition
 - discrepancy between actual printed values and desired values
 - Reason
 - Printing technologies
 - Minimal printing resolution determined by, e.g., smallest droplet in inkjet printing
 - Physical properties of
 - Functional inks
 - Substrates
 - Environmental conditions

- Printed Electronics
- Printed Neuromorphic Circuits
- Learnable Nonlinear Circuits
- Variation-Aware Training of pNNs
- Experiment
- Conclusion

Printed Neuromorphic Circuit – Motivation

- Conventional digital NNs are infeasible for PE
 - Large feature size
 - Low integration density
 - Low device count

Camarana	Number of transistors			
Components	4-bit digital NN	Analog NN		
Input converter	185	-		
Weighted-sum	265	≤ 4		
Activation	10	2		

Analog neuromorphic circuits were developed

Printed Neuromorphic Circuit – Primitives

Resistor crossbar for weighted-sum

$$V_Z=\frac{g_1}{G}V_1+\frac{g_2}{G}V_2+\frac{g_b}{G}V_b$$
 where $g_i=\frac{1}{R_i}$, G is the sum of g_i , $V_b\equiv 1V$

- Output V_Z is the weighted-sum of input voltages V_i
- Weights and bias represented by conductance values

Printed Neuromorphic Circuit – Primitives

- Printed tanh-like (ptanh) activation circuit
 - Tanh-like characteristic curve

$$V_a = \operatorname{ptanh}(V_Z)$$

= $\eta_1^A + \eta_2^A \cdot \operatorname{tanh}\left(\left(V_Z - \eta_3^A\right) \cdot \eta_4^A\right)$

- $\eta^{\rm A}=\left[\eta_1^{\rm A},\eta_2^{\rm A},\eta_3^{\rm A},\eta_4^{\rm A}\right]$ is the auxiliary parameter
 - translates and scales the tanh function
 - determined by circuit components

$$\boldsymbol{\omega}^{A} = \begin{bmatrix} R_{1}^{A}, R_{2}^{A}, W_{1}^{A}, L_{1}^{A}, W_{2}^{A}, L_{2}^{A} \end{bmatrix}$$
$$T_{1}^{A}$$

Printed Tanh-like Function (ptanh)

Printed Neuromorphic Circuit – Primitives

- Negative weight circuit
 - Recall resistor crossbar

$$\frac{g_i}{G}V_i =: w_i V_i$$

- Problem: weight (conductance) is only positive
- Solution: invert V_i and still use positive conductance

$$(-w_i) \cdot V_i = w_i \cdot (-V_i) \leftarrow w_i \cdot \text{neg}(V_i)$$

where

$$\operatorname{neg}(V_{\operatorname{in}}) = -\left(\eta_1^{\operatorname{N}} + \eta_2^{\operatorname{N}} \cdot \operatorname{tanh}\left(\left(V_z - \eta_3^{\operatorname{N}}\right) \cdot \eta_4^{\operatorname{N}}\right)\right)\right)$$

- $\pmb{\eta}^{\rm N}=\left[\eta_1^{\rm N},\eta_2^{\rm N},\eta_3^{\rm N},\eta_4^{\rm N}\right]$ is the auxiliary parameter
 - determined by circuit components

$$\boldsymbol{\omega}^{N} = [R_{1}^{N}, R_{2}^{N}, R_{3}^{N}, R_{4}^{N}, R_{5}^{N}, W^{N}, L^{N}]$$

Mehdi Tahoori / Karlsruhe Institute of Technology

Printed Neuromorphic Circuit – Network

Resistor crossbar

$$V_a = \eta_1^{A} + \eta_2^{A} \cdot \tanh\left(\left(V_z - \eta_3^{A}\right) \cdot \eta_4^{A}\right)\right)$$

Negative weight circuit

$$\operatorname{neg}(V_{\text{in}}) = -\left(\eta_1^{\text{N}} + \eta_2^{\text{N}} \cdot \tanh\left(\left(V_z - \eta_3^{\text{N}}\right) \cdot \eta_4^{\text{N}}\right)\right)\right)$$

Printed Neuromorphic Circuit - Design

Printed Neuromorphic Circuit

Printed Neural Network

- Printed Electronics
- Printed Neuromorphic Circuits
- Learnable Nonlinear Circuits
- Variation-Aware Training of pNNs
- Experiment
- Conclusion

Learnable Nonlinear Circuits – Motivation

Previous work

- Only conductance in crossbar are learnable
- Nonlinear circuits are predefined
- High customization provided by PE is not leveraged

This work

- Bespoke design of nonlinear circuits to the target tasks
- Variation-aware design considering the components in nonlinear circuits

Printed Neural Network

Learnable Nonlinear Circuits - Challenges

- To optimize physical quantities $oldsymbol{\omega}^{ ext{N}}$ and $oldsymbol{\omega}^{ ext{A}}$
 - Involve ω^{N} and ω^{A} into pNN

• So far
$$V_a = \eta_1^A + \eta_2^A \cdot \tanh\left(\left(V_Z - \eta_3^A\right) \cdot \eta_4^A\right)\right)$$

$$\operatorname{neg}(V_{\text{in}}) = -\left(\eta_1^N + \eta_2^N \cdot \tanh\left(\left(V_Z - \eta_3^N\right) \cdot \eta_4^N\right)\right)\right)$$

- Challenge
 - transformation from ω to η
 - differentiable model for gradient-based optimization
- Solution: ML model (surrogate nonlinear circuit model)
- To consider the constraints on ω for
 - Desired tanh-like shape

• ...

Learnable Nonlinear Circuits – Methodology

- Neural network based surrogate nonlinear circuit model
 - Goal: differentiable transformation from physical quantities ω to auxiliary parameter η
 - Methodology

Learnable Nonlinear Circuits - Methodology

Methodology

- Define design space & constraints
- Sample ω_i from suitable design space, i=1,...,10000
- Obtain characteristic curves from SPICE simulation
- Obtain η_i by fitting curves
- Dataset input ω and target output η
- Train NNs for $\omega \mapsto \eta$

	-						
	R_1^{N} (Ω)	R_2^{N} (Ω)	$R_3^{ m N} \ (k\Omega)$	$R_4^{ m N} (k\Omega)$	$R_5^{ m N} \ (k\Omega)$	W ^N (μm)	L ^N (μm)
minimal	10	5	10	8	10	200	10
maximal	500	250	500	400	500	800	70
inequality	$R_1^{\rm N} >$	> R ₂ ^N	$R_3^{\rm N} >$	$R_4^{\rm N}$	-	-	-

Learnable Nonlinear Circuits – Methodology

- Integration of surrogate models into pNNs with constraints
 - Constraints
 - MIN-MAX constraints $\omega \in [\omega_{\min}, \omega_{\max}]$
 - unconstrained optimization variable -> sigmoid -> denormalization

- Inequality constraints $R_1 > R_2$, with $R_1 \in [(R_1)_{\min}, (R_1)_{\max}]$, $R_2 \in [(R_2)_{\min}, (R_2)_{\max}]$
 - R_1 : same as MIN-MAX constraint
 - R_2 : introducing intermediate variable \mathfrak{W} -> sigmoid $\stackrel{R_1}{\longrightarrow}$ R_2

$$\mathfrak{w} \in \mathbb{R}$$

$$\operatorname{sigmoid}(\mathfrak{w}) \in (0,1)$$

$$\underbrace{\operatorname{sigmoid}(\mathfrak{w})(R_1 - (R_2)_{\min}) + (R_2)_{\min}}_{R_2} \in \left((R_2)_{\min}, R_1\right)$$
 Mehdi Tahoori / Karlsruhe Institute of Technology

Learnable Nonlinear Circuits – Methodology

- Integration of surrogate models into pNNs with constraints
 - Example of negative weight circuit
 - Constraints
 - MIN-MAX constraints on each variable
 - Inequality constraints $R_1^{\text{N}} > R_2^{\text{N}}$ and $R_3^{\text{N}} > R_4^{\text{N}}$
 - learnable parameter corresponding to $\begin{bmatrix} R_1^N, R_3^N, R_5^N, W^N, L^N, k_1^N, k_2^N \end{bmatrix}$
 - Sigmoid -> denormalization -> R_1^N , R_3^N , R_5^N , W^N , L^N
 - Intermediate $w \rightarrow sigmoid \rightarrow R_2^N$ and R_4^N
 - Surrogate model $\omega \mapsto \eta$

Learnable Nonlinear Circuits – Summary

pNN with learnable nonlinear circuits

- Previous: only conductances in resistor crossbar (weights) are learnable by gradient-based optimization
- Now: nonlinear circuits are learned along side the weights

target task

(dataset)

Learnable Nonlinear Circuits – Summary

pNN with learnable nonlinear circuits

- Previous: only conductances in resistor crossbar (weights) are learnable by gradient-based optimization
- Now: nonlinear circuits are learned along side the weights

target task

(dataset)

- Printed Electronics
- Printed Neuromorphic Circuits
- Learnable Nonlinear Circuits
- Variation-Aware Training of pNNs
- Experiment
- Conclusion

Variation-Aware Training – Motivation

- Influence of printing variation
 - Discrepancy of component values
 - Discrepancy of weights/bias/activation functions...
 - Discrepant (wrong) output than desired output
- Variation-aware training of pNNs
 - Variation-unaware training (nominal training)
 - Possibly bad case with high loss
 - Variation-aware training
 - Robust against printing variation

Variation-Aware Training — Objective Function

- Loss function (objective function)
 - Variation-unaware training (nominal training)

$$Loss = \mathcal{L}(\boldsymbol{g}, \boldsymbol{w}, \boldsymbol{x}, \boldsymbol{y})$$

- g: learnable conductance (weights & bias)
- w : learnable parameter for nonlinear circuit
- x, y: input data & target output in dataset

Variation-aware training

- Stochastic modeling of parameter $arepsilon_g \odot g$ and $arepsilon_\omega \odot \omega$, where
 - Each element in $m{arepsilon}$ follows e.g., $\mathcal{U}[0.9,1.1]$ to represent $\pm 10\%$ printing variation
 - ⊙: element-wise product
- Modified training objective: expected loss w.r.t. printing variation arepsilon
- Monte-Carlo approximation for integration

Loss =
$$\mathbb{E}_{\varepsilon} \{ \mathcal{L}(\boldsymbol{g}, \mathbf{w}, \varepsilon, \mathbf{x}, \mathbf{y}) \}$$

= $\int_{\varepsilon} \mathcal{L}(\boldsymbol{g}, \mathbf{w}, \varepsilon, \mathbf{x}, \mathbf{y}) d\varepsilon$
 $\approx \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\boldsymbol{g}, \mathbf{w}, \varepsilon', \mathbf{x}, \mathbf{y})$

- Printed Electronics
- Printed Neuromorphic Circuits
- Learnable Nonlinear Circuits
- Variation-Aware Training of pNNs
- Experiment
- Conclusion

Experiment – Setup

- 13 benchmark datasets
- Learnable nonlinear circuit (LNC)
 - Baseline: fixed nonlinear circuit
- Variation-aware training (VAT)
 - $\pm 5\%$ for low printing variation
 - $\pm 10\%$ for high printing variation
 - Baseline: variation-unaware training
- Evaluation metrics
 - Accuracy of the task (expectation accuracy)
 - Robustness against variation (standard deviation of accuracy)
- Ablation study to analyze the contribution of both approaches

Experiment – Result

Result

Expectation and Variance of Accuracy

Learnable non-	Variation-aware	$\epsilon_{ ext{test}}$		
linear circuit	training	5%	10%	
✓	✓	0.809 ± 0.023	0.786 ± 0.029	K
✓	×	0.752 ± 0.095	0.697 ± 0.130	~
Х	✓	0.731 ± 0.053	0.691 ± 0.080	7
×	×	0.678 ± 0.085	0.626 ± 0.118	4

Overall Improvement

(learnable nonlinear circuits + variation-aware training)

•	<u>. </u>			
	ε = 5%	ε = 10%		
accuracy	19%	26%		
robustness	73%	75%		

Contribution in Accuracy Improvement

	5%	10%
LNC	58%	52%
VAT	42%	48%

Contribution in Robustness Improvement

	5%	10%
LNC	\downarrow	\downarrow
VAT	≈ 100%	≈100%

LNC and VAT provide comparable accuracy improvement

Almost all the robustness improvement is provided by VAT

LNC: learnable nonlinear circuit VAT: variation-aware training

- Printed Electronics
- Printed Neuromorphic Circuits
- Learnable Nonlinear Circuits
- Variation-Aware Training of pNNs
- Experiment
- Conclusion

Conclusion

- Printed electronics provides complementary advantages
 - Compared to traditional silicon-based VLSI technologies
- Low device count, large feature sizes, large latencies
 - Constraints for printed circuits
- Printed analog neuromorphic circuits
 - Analog computing to reduce device count
- Highly-bespoke robust printed neuromorphic circuits
 - 20% 25% accuracy improvement depending on 5% 10% variation
 - 75% robustness improvement
 - Learnable nonlinear circuits (LNC) for bespeaking target tasks
 - Provides comparable accuracy improvement as VAT
 - Slightly reduces robustness
 - Variation-aware training (VAT) in both crossbar and nonlinear circuits
 - Provides comparable accuracy improvement as LNC
 - Provides almost all the improvement in robustness

Highly-Bespoke Robust Printed Neuromorphic Circuits

Thank you for your attention

Haibin Zhao, Brojogopal Sapui, Michael Hefenbrock, Zhidong Yang
Michael Beigl, Mehdi B. Tahoori
Karlsruhe Institute of Technology (KIT)