EXPERIMENT 7

AIM:

To implement a program for decomposing time series data into **Trend** and **Seasonality** components.

PROCEDURE:

Upload Dataset

Use files.upload() to upload the Crop_recommendation.csv file into Google Colab.

Load the Dataset

Read the uploaded CSV file using pandas.

Prepare Time Series Data

Add a synthetic daily date index starting from "2020-01-01" to simulate time-based data.

Select Target Column

Choose a numerical column (e.g., "rainfall") for time series decomposition.

Set Decomposition Parameters

Define a seasonal period (odd number, e.g., 29) for STL decomposition.

Plot Original Time Series

Visualize the selected time series before decomposition.

Apply STL Decomposition

Use the STL method from statsmodels to decompose the series into **Trend**, **Seasonality**, and **Residuals**.

Visualize Decomposed Components

Plot each component separately for analysis.

Analyze Sample Values

Display the last few values of the trend, seasonal, and residual components.

CODE:

Import Libraries

import numpy as np

import pandas as pd

```
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import STL
from google.colab import files
# Step 1: Upload the CSV File
uploaded = files.upload()
# Step 2: Load the Dataset
file_name = list(uploaded.keys())[0]
df = pd.read_csv(file_name)
# Step 3: Create a Fake Time Index (Simulating Daily Data)
df['Date'] = pd.date_range(start="2020-01-01", periods=len(df), freq='D')
df.set_index('Date', inplace=True)
# Step 4: Select a Time Series Column (e.g., "rainfall")
column_name = "rainfall"
if column_name not in df.columns:
  raise ValueError(f"Column '{column_name}' not found in dataset. Available columns:
{df.columns}")
time_series = df[column_name]
# Step 5: Define an Odd Seasonal Period (e.g., 29)
period = 29 # Must be an odd number \ge 3
# Step 6: Plot Original Data
plt.figure(figsize=(10, 4))
plt.plot(time_series, label="Original Data", color='blue')
plt.title(f"Original Time Series Data: {column_name}")
plt.xlabel("Time")
plt.ylabel("Value")
plt.legend()
plt.show()
# Step 7: Apply Time Series Decomposition
stl = STL(time_series, seasonal=period, robust=True)
result = stl.fit()
```

```
# Step 8: Plot the Decomposed Components
plt.figure(figsize=(12, 8))
plt.subplot(3, 1, 1)
plt.plot(result.trend, label="Trend", color="red")
plt.title("Trend Component")
plt.legend()
plt.subplot(3, 1, 2)
plt.plot(result.seasonal, label="Seasonality", color="green")
plt.title("Seasonality Component")
plt.legend()
plt.subplot(3, 1, 3)
plt.plot(result.resid, label="Residuals", color="purple")
plt.title("Residual Component")
plt.legend()
plt.tight_layout()
plt.show()
# Step 9: Display Sample Values
print("\nTrend Sample:\n", result.trend.tail())
print("\nSeasonality Sample:\n", result.seasonal.tail())
print("\nResidual Sample:\n", result.resid.tail())
```

OUTPUT:

Original Time Series Data: rainfall

Trend Sample:

Date	
2026-01-04	153.517953
2026-01-05	146.999499
2026-01-06	140.188421
2026-01-07	133.042420
2026-01-08	125.576507

Name: trend, dtype: float64

Seasonality Sample:

2026-01-04 11.513146 2026-01-05 -19.794404 2026-01-06 -15.592670 2026-01-07 1.761364 2026-01-08 17.800543

Name: season, dtype: float64

Residual Sample:

Date

2026-01-04 12.743409 2026-01-05 0.719515 2026-01-06 48.727088 2026-01-07 -7.628491 2026-01-08 -2.440009 Name: resid, dtype: float64

RESULT:

The STL decomposition successfully separated the rainfall time series into trend, seasonality, and residual components. This helps in understanding long-term patterns, periodic behavior, and random fluctuations in the data.