EXPERIMENT NO 3

VERIFICATION OF NORTON'S THEOREM

SUBMITTD BY:- PARTH JOHRI

ROLL NO:- 2K20/B17/33

DELHI TECHNOLOGICAL UNIVERSITY BEE LAB

AIM :- TO VERIFY THE NORTON'S THEOREM

THEORY:-

NORTON THEOREM STATES THAT IT IS POSSIBLE TO SIMPLIFY ANY *LINEAR CIRCUIT NO MATTER HOW TOUGH OR COMPLEX IT IS TO AN EQUIVALENT CIRCUIT THAT IS FAR EASIER TO SOLVE, WITH JUST SINGLE *CURRENT SOURCE AND PARALLEL RESISTANCE CONNECTED TO A LOAD LIKE THEVENINS THEOREM WHERE WE PLACE A VOLTAGE SOURCE ALONG WITH A RESISTANCE CONNECTED IN SERIES

NORTON'S THEOREM IS A WAY TO REDUCE A NETWORK TO AN EQUIVALENT CIRCUIT COMPOSED OF A SINGLE CURRENT SOURCE, PARALLEL RESISTANCE, AND PARALLEL LOAD (RESISTANCE).

- *LINEAR CIRCUIT HERE SIGNIFIES SAME MEANING WHICH IT IMPLIES IN THE SUPERPOSITION THEOREM ALL UNDERLYING MUST BE LINEAR (NO EXPONENTS OR ROOT POWER)
- *A CURRENT SOURCE IS A COMPONENT WHOSE JOB IS TO PROVIDE A CONSTANT AMOUNT OF CURRENT, OUTPUTTING AS MUCH OR AS LITTLE VOLTAGE NECESSARY TO MAINTAIN THAT CONSTANT CURRENT

FOR EXAMPLE:

THIS IS A CIRCUIT THAT IS QUITE LENGTHY TO SOLVE USING MESH ANALYSIS, KCL!

NOW AFTER APPLYING **NORTON THEOREM** TO THE SAME CIRCUIT , THIS IS HOW IT LOOKS LIKE :-

Procedure:

Keep all the resistances $(R_1, R_2, R_3 \& R_L)$ close to their respective maximum values.

Choose any arbitrary values of V_1 and V_2 .

Experiment Part:

Case 1:

Select switch of S_1 to Power and S_2 to Load and Simulate the program from Case 1 tab.

Case 2:

a) Norton Short circuit current analysis:

Apply switch S_1 to power and S_2 to Short and Simulate the program and read Norton short circuit current (I_{sc}) from Case 2(a) tab.

b) Norton Resistance analysis:

Apply switch S_1 to short and S_2 to **power** and **Simulate** the program and read Norton resistance (\mathbf{R}_n) from Case 2(b) tab.

Case 3: Using Isc and Rn determine Load Current

Simulate the program and read Load current (I_L) from Case 3 tab. Compare the load currents (I_L) obtained from Case 1 tab.

MC-Moving Coil.

DPDT- Double pole Double throw.

N.B.:- All the resistances are in ohms.

OBSERVATIONS:-

THE FOLLOWING READINGS ARE TAKEN FROM VLABS:-PICTURE ATTACHED OF THE WORKING VLAB

EACH READING IS TAKEN AFTER INCREMENTING VOLTAGE SOURCES BY 5V AND AFTER CHANING THE VALUES OF RESISTANCES

OBSERVATION TABLE

Observation Table:				HN				HNNN		
Serial no. of Observation	Load Current(I _L) from case 1	Load Voltage(V _L)	Load Resistance (R _L)=V _L /I _L	Norton current(I _{sc}) from case 2(a)	2nd Voltage source(v) from case 2(b)	Ammeter Reading(I) from case 2(b)	Norton Resistance R _n =V/I	Load current $(I_L)=I_{so}*R_n/(R_n*R_L)$		
1st	0.28387	85.161	300	0.67692	110	0.50769	216.67	0.28387		
$\frac{\Delta}{u_k}$ 2nd	0.28372	85.116	300	0.66295	115	0.51240	224.43	0.28371		
8 3rd S	0.28362	85.086	300	0.65007	120	0.51682	232.19	0.28362		
4th	0.28357	85.071	300	0.63814	125	0.52100	239.92	0.28357		
5th	0.28357	85.071	300	0.62708	130	0.52494	247.65	0.28357		
HN N				HN N	7.0	0		HN N		

$\begin{array}{c} \textbf{CONCLUSION/RESULT:} \ \underline{THE} \ \underline{I_1} FROM \ FIRST \\ \textbf{CASE} \ COMES \ OUT \ TO \ BE \ EQUAL \ TO \ \underline{I_2} \ FROM \\ \underline{\textbf{LAST} \ CASE} \ . \end{array}$

HENCE, THE NORTON'S THEOREM HAS BEEN VERIFIED