Math 222a Lecture Notes, Fall 2020 Partial Differential Equations

Professor: Daniel Tataru Vishal Raman

Contents

	September 1st, 2020
	1.1 Introduction
	1.2 Classification of PDE's
	1.3 Initial Value Problems
	1.4 Boundary Value Problems
	1.5 Fluid Classification
2	September 3rd, 2020
	2.1 Picard-Lindeloff Theorem
	2.2 Contraction Principle
	2.3 Bootstrap Argument

§1 September 1st, 2020

§1.1 Introduction

Partial differential equations apply to functions $u : \mathbb{R}^n \to \mathbb{R}(\mathbb{C})$, where u refers to the space dimension. Usually, $n \geq 2(n = 1 \text{ corresponds to ODEs})$.

We present the following notation:

- $\frac{\partial}{\partial x_i}u = \partial_i u$
- There is also multi-index notation, where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\partial^{\alpha} u = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \dots \partial_n^{\alpha_n} u$. The size of α is given by $|\alpha| = \sum_{i=1}^n \alpha_i$.
- $C(\mathbb{R}^n)$, continuous functions in \mathbb{R}^n .
- $C(\Omega)$, $\Omega \subset \mathbb{R}^n$, continuous functions in Ω .
- $C^1(\mathbb{R}^n)$, $C^1(\Omega)$, continuously differentiable functions.
- $C^k(\mathbb{R}^n), C^k(\Omega), k$ -times differentiable.
- $C^{\infty}(\mathbb{R}^n) = \bigcap_{k=0}^{\infty} C^k(\mathbb{R}^n).$

We consider an example PDE,

$$F(u, \partial u, \partial^2 u, \dots, \partial^k u) = 0.$$

In the above, $k \geq 1$ and k is the **order** of the equation. We also have the shorthand $F(\partial^{\leq k} u) = 0$.

§1.2 Classification of PDE's

Definition 1.1 (Linear PDE). The PDE is a linear function of its arguments. We can apply multi-index notation, as follows:

$$\sum_{|\alpha| < k} c_{\alpha} \partial^{\alpha} u = f(x).$$

If f(x) = 0, the PDE is **homogeneous**, otherwise it is **inhomogeneous**.

This can be separated into linear PDEs with constant coefficients, $c_{\alpha} \in \mathbb{R}$, \mathbb{C} and variables coefficients, $c_{\alpha} = c_{\alpha}(x)$. [In this class, we focus on constant coefficient PDEs, but many of the techniques can be extended to variable coefficient PDEs.]

Definition 1.2 (Nonlinear PDE). We look at a function $F = F(u, \partial u, \dots, \partial^k u)$. The highest order terms are take the *leading role*.

• Semilinear PDE's: F is linear, with constant or variable coefficients in $\partial^k u$:

$$\sum_{|\alpha|=k} c_{\alpha}(x)\partial^{\alpha} u = N(\partial^{\leq k-1} u).$$

The LHS is called the principal part, and the RHS is the perturbative role.

• Quasilinear PDE's:

$$\sum_{|\alpha|=k} c_{\alpha}(\partial^{\leq k-1}u)\partial^{\alpha}u = N(\partial^{\leq k-1}u).$$

• Fully Nonlinear PDE's: $F(\partial^{\leq k}u) = 0$, with a nonlinear dependence on $\partial^k u$.

Some examples:

• Linear, homogeneous, variable coefficients, order 1:

$$\sum_{k=1}^{u} c_k(x)\partial_k(u) = 0.$$

• Define $\Delta = \partial_1^2 + \cdots + \partial_n^2$, the Laplacian operator. We have a linear, constant coefficients, inhomogeneous, order 2:

$$\Delta u = f$$
.

• Semilinear, order 2:

$$\Delta u = u^3$$
.

[Note that translation invariance makes homogeneous vs inhomogeneous not useful for classification in the case of nonlinear PDE's.]

• Harmonic Map Equation:

$$\Delta u = u |\nabla u|^2.$$

It is still semilinear, but with a stronger nonlienarity.

• Monge Ampere Equation:

$$\mathbb{R}^2, \partial_1^2 u \partial_2^2 u - (\partial_1 \partial_2 u)^2 = 0.$$

It is a fully nonlinear equation.

§1.3 Initial Value Problems

We have various types of problems:

• (Stationary Problems) With $u: \mathbb{R}^n \to \mathbb{R}$,

$$F(\partial^{\leq k} u) = 0,$$

might describe an equilibrium configuration of a physical system.

• (Evolution Equations) With $u : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, u(t,x) describes the state at time t. We can think about the order in x or in t.

Definition 1.3 (Initial Value Problem/Cauchy Problem). A PDE with initial conditions.

Example 1.4

Consider the heat equation:

$$\partial_t u = \Delta_x u,$$

$$u(t=0,x) = u_o(x).$$

The equation is first order in t, but second order in x.

Example 1.5

In $[\mathbb{R} \times \mathbb{R}]$, the vibrating string:

$$\partial_t^2 u = \partial_x^2 u,$$

$$u(t=0,x) = u_0(x),$$

$$\partial_t u(t=0,x) = u_1(x).$$

Note that this equation is second order in time, and requires 2 pieces of initial data. An easier problem: Compute the Taylor series of u at some point $(0, x_0)$. It requires $\partial_t^{\alpha} \partial_x^{\beta} u(0, x_0)$.

- This is obvious if we have no time derivative or exactly 1.
- Second order time derivatives come from the equation.
- Third order or higher time derivatives come from differentiating the equation:

$$\partial_t^3 u = \partial_x^2 \partial_t u.$$

§1.4 Boundary Value Problems

We begin with an example.

Example 1.6

Take $\Delta u = f$ in $\Omega \subset \mathbb{R}^3$, which represents equilibrium for temperature in a solid. To solve, we need information about the boundary of Ω . For example,

$$\Delta u = f \in \Omega,$$

$$u = g \in \partial \Omega$$
.

§1.5 Fluid Classification

We take $u: \mathbb{R}^n \to \mathbb{R}(\mathbb{C})$, and

$$F(\partial^{\leq k} u) = 0.$$

This is considered to be a scalar equation.

We could also take a **system** of equations, where $u : \mathbb{R}^n \to \mathbb{R}^m(\mathbb{C}^m)$, where $u = [u_i]$ a column of equations. These are often more difficult than scalar equation. We should have

$$F(\partial^{\leq k} u) = 0,$$

but $F: \mathbb{R}^{(\cdot)} \to \mathbb{R}^m(\mathbb{C}^m)$.

Example 1.7

A 2-system:

$$\Delta u = v$$
,

$$\Delta v = -u$$
.

We can often reduce the order of a scalar equation by turning it into a system:

Example 1.8

Consider the vibrating string,

$$\partial_t^2 u = \partial_x^2 u.$$

If we take $v = \partial_t u$, the it suffices to solve the system,

$$\partial_t u = v,$$

$$\partial_t v = \partial_x^2 u.$$

We van reduce it further by saying $u_1 = \partial_x u, u_2 = \partial_t u$ for the system,

$$\partial_t u_1 = \partial_x u_2,$$

$$\partial_t u_2 = \partial_x u_1.$$

§2 September 3rd, 2020

§2.1 Picard-Lindeloff Theorem

Consider the example, $x' = f(x), x(0) = x_0, x : \mathbb{R} \to \mathbb{R}^n$. We ask for existence, uniqueness, continuous dependence on initial data.

Definition 2.1 (Locally Lipschitz). A **Lipschitz** continuous function f is one that satisfies,

$$|f(x) - f(y)| \le c|x - y|.$$

A function is **Locally Lipschitz** if for each R, there exists c(R) such that

$$|f(x) - f(y)| \le c(r)|x - y|, x, y \in Ball(0, R).$$

As examples, f(x) = x is Lipschitz, $f(x) = x^2$ is not Lipschitz, but is locally Lipschitz.

Definition 2.2 (Locally well-posed). For each $x_0 \in \mathbb{R}^n$, there exists T > 0 (lifespan) and a unique solution $u \in C^1[0,T;\mathbb{R}^n]$ with the property that $u_0 = x_0$ and the solution has a Lipschitz dependence on the data: x_0, y_0 initial data, $T = T(x_0)$. For $T_1 < T$, there exists $\epsilon > 0$ such that if $|y_0 - x_0| \le \epsilon$ then $T(y) > T_1$ and

$$\sup_{t \in [0, T_1]} |x(t) - y(t)| \le \tilde{C} |x_0 - y_0|.$$

Theorem 1 (Picard-Lindelof)

Assume that f is locally Lipschitz continuous. Then the ODE is locally well-posed.

§2.2 Contraction Principle

We will use the "Contraction principle" - recall the following definitions:

Definition 2.3 (Fixed-point Problem). Let X be a Banach space, let $D \subset X$ be a closed subset of X, and let $F: D \to D$. Question: Can we solve the equation F(u) = u where $u \in D$.

Definition 2.4 (Contraction).

$$||F(u) - F(v)||_X \le L||u - v||,$$

where L < 1.

If F is a contraction, then it has a unique fixed point. The existence proof follows an iterative construction: start with an arbitrary element $u_0 \in D$ and define $u_{n+1} = F(u_n)$. We would show $\{u_n\}$ is a Cauchy sequence, so it converges.

We now prove the theorem. We have $x' = f(x), x(0) = x_0$, so

$$x(t) = x_0 + \int_0^t f(x(s))ds, t \in [0, T].$$

We choose $X = C[0,T;\mathbb{R}^n]$, $F(x)(t) = x_0 + \int_0^t f(x(s))ds$. Then x solves the ODE in (0,T) if F(x) = x.

We have to choose R, T. Then

$$D = \{x \in X : ||x - x_0||_X \le R\}.$$

Let $R = |x_0|$. Next, we choose T so that $F: D \to D$ is Lipschitz. For $F: D \to D$, we estimate the size of $F(x) - x_0$.

$$F(x)(t) - x_0| = \left| \int_0^t f(x(s))ds \right|$$

$$\leq \left| \int_0^t f(x_0(s))ds \right| + \left| \int_0^t f(x) - f(x_0)ds \right|$$

$$\leq T|f(x_0)| + CT||x - x_0||_X$$

Hence,

$$||F(x) - x_0|| \le T(|f(x_0)| + CR).$$

Thus, we choose T such that $T(|f(x_0)| + CR) \leq R$.

Now look at differences: For $x, y \in D$,

$$|F(x)(t) - F(y)(t)| \le \int_0^t |f(x(s)) - f(y(s))| ds$$

 $\le TC \sup_{s \in [0,T]} |x(s) - y(s)|$

thus,

$$||F(x) - F(y)||_X \le CT||x - y||_X$$

so we can choose T so that $CT||x-y||_X < 1$.

By the contraction principle, there exists a unique solution $x \in D$.

To prove uniqueness of a solution, we have to show that any solution has to stay in D, up to time T.

Suppose a solution \tilde{x} leave the ball before time T. We repeat the above computation up to the exit time T_0 . Then, $T_0(|f(x_0) + CR|) < T$, since $T_0 < T$. This is a contradiction since T_0 is the exit time.

§2.3 Bootstrap Argument

Consider a bootstrap argument: try to solve an equation and show that the solution x satisfies some bound $||x||_T \leq R$. The difficulty is that a priori, we do not know any bound on $||x||_T$. The solution: make a bootstrap assumption, $||x||_T \leq 2R$ and show that $||x||_T \leq R$ under this assumption.

So far, we know uniqueness in [0,T], where $T=T(x_0)$ given by the contraction argument. We now show global uniqueness: Suppose we have a solution x_0 with maximal lifespan $T_{max}(x_0)$. Suppose y is another solution. We look at the maximal T so that x=y in [0,T). We now think of T as the initial time. We x(T)=y(T) from continuity. Then, the solution is unique up to some time $T+T_0$, so x=y in $[T,T+T_0]$, contradicting the maximality of T. This is called a "continuity argument".

Next, we compare two solutions: We have $x(0) = x_0, x : [0,T) \to R^n$. We choose $T_1 < T$. Then $x : [0,T_1] \to \mathbb{R}^n$. We compare x with a "nearby" solution $y(0) = y_0$ close to x_0 . We have $||x||_{X_{T_1}} \le R$ since we have continuity on a compact set. We claim the following: if $|y_0 - x_0| < \epsilon$, then x, y stay close. We make a bootstrap assumption $||y||_{X_{T_1}} \le 2R$.

$$\frac{d}{dt}|x-y|^2 = 2(x-y)(f(x) - f(y)) \le 2C|x-y|^2.$$

This is the *Gronwall Inequality*. It follows that

$$|x - y|^2(t) \le e^{2ct}|x - y|^2(0) = e^{2ct}|x_0 - y_0|^2$$
.

To close the bootstrap:

$$||y||_{X_{T_1}} \le ||x||_{X_{T_1}} + ||x - y||_{X_{T_1}} \le R + e^{cT_1}||x_0 - y_0|| \le \frac{3R}{2},$$

which is better than the bootstrap assumption.