Biological data format

Sequence: fasta and fastq

Interval: BED, GFF, GTF

Software installation

```
Entrez direct for data download:
conda install -c bioconda entrez-direct

Install seqkit sequence manipulation suit
conda install -c bioconda seqkit

Install seqtk
conda install -c bioconda seqtk

Install bedtools
conda install -c bioconda bedtools
```

Bio data formats

• **Genebank**: store sequence, functional annotations, intervals

• **Fasta**: sequence

• Fastq: sequence and qualities

• **bed, gff, gtf**: intervals, scores, annotations

• sam, bam, cram: sequence alignments (reviewed later)

vcf: variant calls (reviewed later)

Gene bank

Take a look at the Hepatitis C genome with the accession number https://www.ncbi.nlm.nih.gov/nuccore/NC 004102.1

This NCBI entry shows sequences in **Genbank** format

Let's download and view this example:

```
$ efetch -db nuccore -id NC_004102.1 -format gb > NC_004102.1.gb
$ head -n 20 NC_004102.1.gb
```

```
LOCUS
            NC 004102
                                    9646 bp ss-RNA
                                                       linear
                                                                VRL 11-JUL-2019
DEFINITION Hepatitis C virus genotype 1, complete genome.
            NC_004102
ACCESSION
VERSION
            NC 004102.1
DBLINK
            BioProject: PRJNA485481
            RefSeq.
KEYWORDS
SOURCE
            Hepatitis C virus genotype 1
  ORGANISM Hepatitis C virus genotype 1
            Viruses; Riboviria; Orthornavirae; Kitrinoviricota; Flasuviricetes;
            Amarillovirales; Flaviviridae; Hepacivirus.
            1 (bases 342 to 369; 371 to 827)
REFERENCE
 AUTHORS
            Choi, J., Xu, Z. and Ou, J.H.
            Triple decoding of hepatitis C virus RNA by programmed
 TITLE
            translational frameshifting
            Mol. Cell. Biol. 23 (5), 1489-1497 (2003)
  JOURNAL
   PUBMED
            12588970
```

Gene bank

- Genebank is compex format that contains various types of information
- Different elements of sequence description including taxonomy
- Genomic intervals corresponding to various genomic features (3'UTR, CDS, genes)
- Links to peptide sequences
- The starting LOCUS field is not optional, without it this file will not be recognized as genebank
- The file must end with //, this is a signal for the software to stop reading the file
- Genebank file can hold nucleotides or amino-acids
- Typical extensions: gb or gbk
- Link to full specs of Genebank file: https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

The Genebank file always contains a sequence (nucleotide or peptide)

We can download this sequence separately in **fasta** format with efetch \$ efetch -db nuccore -id NC_004102.1 -format fasta > NC_004102.1.fasta

Typical file extension: **fasta, fa, fna,** rarely **seq** \$ head NC 004102.1.fasta

Fasta contains Id and the sequence (nucleotide or protein) itself

Id must start with >, this is the only requirement, the file will not be recognized as fasta without >

The Genebank file always contains a sequence (nucleotide or peptide)

We can download this sequence with efetch \$ efetch -db nuccore -id NC 004102.1 -format fasta > NC 004102.1.fasta

Typical file extension: **fasta, fa, fna,** rarely **seq** \$ head NC 004102.1.fasta

Software to manipulate **fasta** files

fastx-toolkit: http://hannonlab.cshl.edu/fastx toolkit/

Fasta utilities: https://github.com/jimhester/fasta utilities

Pyfaidx: https://pypi.org/project/pyfaidx/

Seqmagick: https://github.com/fhcrc/seqmagick

Seqkit: https://bioinf.shenwei.me/seqkit/

Go ahead and install seqkit with conda

Scan through seqkit page to check its capabilities https://bioinf.shenwei.me/seqkit/

Practice manipulating fasta files with seqkit

Download practice file:

https://raw.githubusercontent.com/slavailn/bioinf_training/main/mirna_mm10.fasta

\$ head mirna_mm10.fasta

Print summary stats for a fasta file

\$ seqkit stats mirna_mm10.fasta

Print name only

\$ seqkit seq -n mirna_mm10.fasta | head

Print ids only

\$ seqkit seq -n -i mirna_mm10.fasta

Practice manipulating fasta files with seqkit (continued)

Print only sequences

\$ seqkit seq -s mirna_mm10.fasta | head

Remove wrap

\$ seqkit seq -w 0 NC_004102.1.fasta | head -n 3

Why the output from this command looks strange?

No wrap is useful if you intend to use Unix commands that would "break" over carriage returns (/n), like grep, tr, etc.

Convert DNA to RNA

\$ seqkit seq --dna2rna NC_004102.1.fasta | head

Convert RNA to DNA

\$ seq --dna2rna NC_004102.1.fasta | seqkit seq --rna2dna | head

Practice manipulating fasta files with seqkit (continued)

Filter by sequence length

\$ seq -m 20 -M 22 mirna_mm10.fasta | seqkit stats

Extract subsequences, for example extract first 3 bases

\$ subseq -r 1:3 mirna_mm10.fasta | head

Extract last 3 bases

\$ seqkit subseq -r -3:-1 mirna_mm10.fasta | head

Extract all except first 3 and 3 last bases

\$ seqkit subseq -r 3:-3 mirna_mm10.fasta | head

Use sliding window to calculate GC content and show it as a table

\$ seqkit sliding -s 5 -W 30 NC_004102.1.fasta | seqkit fx2tab -n -g | head

Practice manipulating fasta files with seqkit (continued)

Create fasta index

```
$ seqkit faidx NC_004102.1.fasta
$ cat NC_004102.1.fasta.fai
```

Format of faidx index file

- NAME Name of this reference sequence
- **LENGTH** Total length of this reference sequence, in bases
- OFFSET Offset within the FASTA file of this sequence's first base LINEBASES The number of bases on each line
- LINEWIDTH The number of bytes in each line, including the newline

Plot and collect sequence related data distributions

\$ seqkit watch --fields ReadLen mirna_mm10.fasta -O len.png # -O len.png will save the graph as png

Fastq format contain the same data as fasta with added base quality values

Let's download practice fastq file

\$ wget https://raw.githubusercontent.com/slavailn/bioinf_training/main/sample.fastq

\$ head -n 4 sample.fastq

- Line 1: must start with @
- Line 2 : sequence
- Line 3 : comment line
- Line 4 : base qualities

The first line (ID) in fastq must follow @ and it has a specific format when generated by Illumina sequencers, see below

Example: @K00243:168:H7LCKBBXY:5:1109:18294:28340

K00243: 168: H7LCKBBXY: 5: 1109: 18294: 28340

- K00243: Instrument ID
- 168: Run number
- **H7LCKBBXY:** Flowcell ID
- 5: Flowcell lane
- **1109:** tile number
- 18294: tile X coordinate
- 28340: tile Y coordinate

Other possible fields in Illumina ID that may follow standard fields shown on the previous slide depending on sequencing configuration

@InstrID:RunNum:FlowCell:Lane:Tile:X:I:**UMI**:**READ1/2:FILT:CONTROL:**

- <uMI>: Unique molecular identifier, useful for PCR duplicates filtering
- READ: Read 1 or 2 in paired-end sequencing
- **FILT:** passed quality filtering (Y/N)
- CONTROL: numeric 0, if none of the control bits are on, otherwise an even number
- **INDEX:** index sequence

Line 4 – base qualities

@K00243:168:H7LCKBBXY:5:1109:18294:28340
TAGACACTTATTGGAGGTTTTCTAGGCTTCTCTCATTGAAGCACACATGCCCACT+

The qualities are integer mappings of probability that the base call is wrong

The base qualities are a way to assess the reliability of base calls

First, they were developed for Sanger sequencing

These are called Phred quality scores

$$Q_{sanger} = -10Log_{10}P$$

Line 4 – base qualities

Interpreting the base qualities on Phred scale

- $10 \rightarrow 1/10$ [0.1] probability of base being wrong (Bad quality)
- 20 \rightarrow 1/100 [0.01] probability of base being wrong (OK quality)
- 30 \rightarrow 1/1000 [0.001] probability of base being wrong (Good quality)

Example quality line:

AAFFFJJFFJ-FJFJJJJJJJJJJJJJJJJJJJJJJJJAF-

Examples of quality encodings

Symbol	ASC code	Quality
Α	65	32
F	70	37
J	74	41
-	45	12

Table of Illumina qualities from 0 - 40: https://tinyurl.com/mr2y4w7a

Line 4 – base qualities

Illumina had different quality encoding schemes

Since Illumina v.1.8 their sequencing base qualities are on Phred33 scale – the original format used in Sanger sequencing

Phred33 used ASCII character 33 as base, for example if the quality value is 1:

$$Q = AscII_code('I') - 33 = 73 - 33 = 40$$

AscII table link: https://www.ascii-code.com/

Earlier version of quality encoding since Illumina 1.3 and before 1.8 used Phred64 scheme

Before Illumina 1.3 we had ASCII 59 – 126 with quality values: -5 - 62

How to determine which version of quality encoding you are dealing with

A quality control software **FastQC** will print the encoding version as part of the analysis

We can also use **fastqFormatDetect.pl** perl script:

https://gist.github.com/tjanez/d23e20c1a777a222fd7d

Let's download this script:

\$ wget

https://gist.githubusercontent.com/tjanez/d23e20c1a777a222fd7d/raw/afc2883838dd83981c6 442c29ec45b7be8750dac/fastqFormatDetect.pl

Give yourself a permission to run this script

\$ perl fastqFormatDetect.pl # print help

\$ perl fastqFormatDetect.pl sample.fastq -a

Manipulate fastqc files with *seqtk*

Install *seqtk* with conda

seqtk is a fast, lightweight tool created by Heng Li designed for the processing of fasta and fastq sequences

Many functions in seqtk will overlap with those in seqkit

Take a look at documentation, there is not much https://github.com/lh3/seqtk#readme

What tools are available?

\$ seqtk

Help for individual tools

\$ seqtk seq

Manipulate fastqc files with **seqtk** (continuation)

Convert fastq to fasta

\$ seqtk seq -A sample.fastq | head

Mask bases with quality lower than integer

\$ seqtk seq -q 20 sample.fastq | grep '[acgt]'

Drop sequences shorter than integer

\$ seqtk seq -L 20 mirna_mm10.fasta | grep '^>' | wc -l

Reverse complement

\$ seqtk seq -r mirna_mm10.fasta | head

\$ head mirna_mm10.fasta

Take a fraction of the reads as a random subsample

\$ seqtk seq -f 0.1 sample.fastq | seqkit stats # take 10% percent of reads as random sample

Manipulate fastqc files with **seqtk** (continuation)

Why do we need 'seed' with random sampling?

Setting 'seed' will ensure that the same random numbers will be generated between sampling procedures

```
$ seqtk seq -f 0.1 -s 10 sample.fastq | head
$ seqtk seq -f 0.1 -s 10 sample.fastq | head # these sampling procedures have the same seed
and will retrieve the same sequences
```

\$ seqtk seq -f 0.1 -s 100 sample.fastq | head # changing the seed will result in different sequences being retrieved

We must set the same seed for Read 1 and Read 2 when down-sampling paired-end reads

```
Identify high or low GC regions
$ seqtk gc # look at help
$ seqtk gc NC_004102.1.fasta
```

Manipulate fastqc files with **seqtk** (continuation)

Get nucleotide composition

\$ seqtk comp

Help seems unclear, what is the meaning of columns? https://github.com/lh3/seqtk/issues/47

\$ seqtk comp NC_004102.1.fasta

Introduce point mutation

\$ seqtk mutfa

\$ head NC_004102.1.fasta # print head of Hepatitis C genome

Change C at position 3 to A

\$ echo 'NC_004102.1 3 bla A' > in.snp

\$ seqtk mutfa NC_004102.1.fasta in.snp | head

In genomics we frequently deal with interval-type data

- Intervals are also called ranges
- Interval describes a genomic position of a subsequence
- In the simplest case we only need the **name of the sequence (chromosome)**, the **start** and the **end** of the subsequence to describe the interval

Example:

>NC12345

ACT**GGG**TCAATG

If positions are 1-based, the subsequence **GGG** can be described as follows:

Chr start end

NC12345 4 6

This is an example of BED file in its simplest form

BED format

In the minimal case, bed format requires only 3 columns separated by TAB: chr, start, end

BED file below will describe 3 intervals in Hep C genome

NC_004102.1	3	10
NC_004102.1	25	56
NC_004102.1	50	65

There are different versions of BED files that contain additional attributes, such as, name, strand, score and others

The most informative BED format contains 12 columns

BED format

Column	Title	Description
1	Chrom	Chromosome, Scaffold, sequence
2	Start	Start position (0-based)
3	End	End position (1-based)
4	Name	Name of the interval
5	Score	Score associated with the interval (for example, p-value)
6	Strand	Forward or reverse strand
7	ThickStart	Start of the thick block in the browser
8	ThickEnd	End of the thick block in the browser
9	itemRGB	Color of the block as it appears in the browser
10	BlockCount	Number of blocks (useful for exons)
11	BlockSizes	Size of the blocks (exons)
12	BlockStarts	Start of the blocks (exons)

BED format

- BED files can have an optional header with one or more lines of text
- Header has no established format
- A header typically gives instructions to genomic browser regarding display of the intervals stored in the bed file or provide information about the file

```
browser position chr7:127471196-127495720
browser hide all
track name="ItemRGBDemo" description="Item RGB demonstration" visibility=2 itemRgb="On"
chr7
                                                      127471196
                                                                                 255,0,0
        127471196
                     127472363
                                   Pos<sub>1</sub>
                                           0
                                                                   127472363
chr7
        127472363
                     127473530
                                   Pos2
                                           0
                                                      127472363
                                                                   127473530
                                                                                 255,0,0
chr7
        127473530
                     127474697
                                   Pos3
                                           0
                                                      127473530
                                                                   127474697
                                                                                 255,0,0
                                                +
chr7
        127474697
                                   Pos4
                                           0
                                                                                 255,0,0
                     127475864
                                                +
                                                      127474697
                                                                   127475864
chr7
                                                                                 0,0,255
        127475864
                     127477031
                                   Neg1
                                           0
                                                      127475864
                                                                   127477031
chr7
        127477031
                     127478198
                                   Neg2
                                           0
                                                      127477031
                                                                   127478198
                                                                                 0,0,255
chr7
        127478198
                     127479365
                                   Neg3
                                                      127478198
                                                                   127479365
                                                                                 0,0,255
chr7
        127479365
                     127480532
                                   Pos5
                                           0
                                                      127479365
                                                                   127480532
                                                                                 255,0,0
                                                +
chr7
        127480532
                     127481699
                                           0
                                                                                 0,0,255
                                   Neg4
                                                      127480532
                                                                   127481699
```

https://en.wikipedia.org/wiki/BED (file format)

BED format

Bed files are given extension .bed, or bed3, bed9, bed12 based on the number of columns in the file

Software that manipulates bed and other interval files:

Bedtools https://bedtools.readthedocs.io/en/latest/

Bedops https://bedops.readthedocs.io/en/latest/

Bedtk https://github.com/lh3/bedtk

GFF (general feature format) and **GTF** files is another way address genomic intervals, like **BED**, they are tab delimited text files

GFF/GTF files have 9 columns, the coordinates start at 1

GFF/GTF format

Column	Title	Description
	seqid	Chromosome, contig, name of the sequence
	source	Algorithm, procedure that generated the feature
	type	The feature type like gene, transcript, exon, etc
	start	Feature start, 1-based
	end	Feature end, 1-based
	score	Numeric value associated with the feature (for example p-value)
	strand	Forward or reverse
	Phase	Coding sequence (CDS) phase, can be 0,1, or 2. Phase is relative of open reading frame, it indicates how many bases need to be removed (0, 1 or 2) from the start of CDS to reach the next codon
	Attributes	A list of "tag:value" pairs separated by semicolons

https://en.wikipedia.org/wiki/General_feature_format

GFF/GTF format

GFF example

```
browser position chr22:10000000-10025000
browser hide all
track name=regulatory description="TeleGene(tm) Regulatory Regions" visibility=2
       TeleGene
                        enhancer
chr22
                                       10000000
                                                        10001000
                                                                        500
                                                                                               touch1
      TeleGene
                                                       10010100
                                                                                               touch1
chr22
                        promoter
                                       10010000
                                                                       900
                                                                                               touch2
chr22 TeleGene
                        promoter
                                       10020000
                                                       10025000
                                                                       800
```

GTF is an extension of GFF

8 fields first fields in GTF file are the same as in GFF

The 9th column is different and must contain *gene_is* and *transcript_id* attributes

Example of 9th field of the GFT file

```
gene_id "Em:U62317.C22.6.mRNA"; transcript_id "Em:U62317.C22.6.mRNA"; exon_number 1
```

Working with bedtools

bedtools - https://bedtools.readthedocs.io/en/latest/

Bedtools is comprehensive toolset for interval arithmetic

It has many functions, but the main ones include calculating intersect, complement, merge, count, and shuffle intervals

Bedtools has a comprehensive tutorial:

http://quinlanlab.org/tutorials/bedtools/bedtools.html

List the tools

\$ bedtools -h