Natural Language Processing

Lecture 10:

Machine Learning: Linear and Log-Linear Models

10/23/2018

COMS W4705
Daniel Bauer

Machine Learning and NLP

- We have encountered many different situations where we had to make a prediction:
 - Text classification, language modeling, POS tagging, constituency/dependency parsing,
 - These are all classification problems of some form.
- Today: Some machine learning background. Linear/loglinear models. Basic neural networks.

Generative Algorithms

- Assume the observed data is being "generated" by a "hidden" class label.
- Build a different model for each class.
- To predict a new example, check it under each of the models and see which one matches best.
- ullet Model P(x|y) and P(y). Then use bases rule

$$P(y|x) = rac{P(x|y) \cdot P(y)}{P(x)}$$

Discriminative Algorithms

• Model conditional distribution of the label given the data P(y|x)

- Learns decision boundaries that separate instances of the different classes.
- To predict a new example, check on which side of the decision boundary it falls.

Machine Learning Definition

- "Creating systems that improve from experience."
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

(Tom Mitchel, Machine Learning 1997)

Inductive Learning (a.k.a. Science)

- Goal: given a set of input/output pairs (training data), find the function f(x) that maps inputs to outputs.
 Problem: We did not see all possible inputs!
- Learn an approximate function h(x) from the training data and hope that this function *generalize well* to unseen inputs.
- Ockham's razor: Choose the simplest hypothesis that is consistent with the training data.
- vs. deductive learning: start from general rule and infer new knowledge from it.

Supervised Learning

• Given: Training data consisting of training examples $(\mathbf{x_1}, y_1), \ldots, (\mathbf{x_n}, y_n)$, where $\mathbf{x_i}$ is an input example (a d-dimensional vector of attribute values) and y_i is the label.

example					label
1	X ₁₁	X ₁₂	• • •	X _{1d}	y 1
	•••	•••	•••	•••	• • •
i	X _{i1}	X _i 2	•••	Xid	Уi
	•••	•••	•••	•••	•••
n	X _{n1}	X_{n2}	•••	X _{nd}	Уn

- Goal: learn a hypothesis function h(x) that approximates the true relationship between x and y. This functions should
 - 1) ideally be consistent with the training data.
 - 2) generalize to unseen examples.
- In NLP, y_i are often drawn from a finite, discrete set. What are some examples for $(\mathbf{x_i}, y_i)$ pairs in NLP?

Classification and Regression

- Recall: In supervised learning, training data consisting of training examples
 - $(\mathbf{x_1}, y_1), ..., (\mathbf{x_n}, y_n)$, where $\mathbf{x_j}$ is an input example (a d-dimensional vector of attribute values) and y_i is the label.
- Two types of supervised learning problems:
 - In classification: y_j is a finite, discrete set.
 Typically y_j∈ {-1, +1}. i.e. predict a label from a set of labels.
 Learn a classifier function:

$$h: \mathbb{R}^d o \{-1, +1\}$$

• In regression: $\mathbf{x_j} \in \mathbb{R}^d$, $y_i \in \mathbb{R}$. i.e. predict a numeric value. Learn a **regressor** function:

$$h: \mathbb{R}^d o \mathbb{R}$$

Linear Classification and Regression

Regression

Linear Classification

Training ML models

- How can we be confident about the learned function?
- Can compute empirical error/risk on the training set:

$$E_{train}(h) = \sum_{i=1}^{n} loss(y_i, h(x_i))$$

- Typical loss functions:
 - Least square loss (L2): $loss(y_i, h(x_i)) = (y_i h(x_i))^2$
 - Classification error: $loss(y_i,h(x_i)) = \left\{ egin{array}{l} 1 \ {
 m if} \ sign(h(x_i))
 eq sign(y_i) \\ 0 \ {
 m otherwise}. \end{array}
 ight.$

Training ML models

Empirical error/risk:

$$E_{train}(h) = \sum_{i=1}^{n} loss(y_i, h(x_i))$$

- ullet Training aims to minimize $\,E_{train}$.
- We hope that this also minimizes E_{test} , the test error.

Overfitting

- Problem: Minimizing empirical risk can lead to overfitting.
 - This happens when a model works well on the training data, but it does not generalize to testing data.
 - Data sets can be noisy. Overfitting can model the noise in the data.

Preventing Overfitting

- Solutions: Simpler models.
 - Reduce the number of features (feature selection).
 - Model selection.
 - Regularization.
 - Cross validation.
- However: Adding wrong assumptions (bias) to the training algorithm can lead to underfitting!

Goodness of Fit

Linear Classification

 $\mathbf{w} \cdot \mathbf{x}$

Linear Model

$$f(x_i) = sign(\sum_{j=0}^d w_j x_{ij})$$

Linear Models

- We have chosen a function class defines a function class (linear separators).
 - Specified by parameter w.
- Need to estimate w on the basis of the training set.
- What loss should we use? One option: minimize classification error:

$$loss(y_i,h(x_i)) = \left\{egin{array}{l} 1 ext{ if } sign(h(x_i))
eq sign(y_i) \ 0 ext{ otherwise.} \end{array}
ight.$$

Perceptron Learning

- Problem: Threshold function is not differentiable, so we cannot find a closed-form solution or apply gradient descent.
- Instead use iterative perceptron learning algorithm:
 - Start with arbitrary hyperplane.
 - Adjust it using the training data.
 - Update rule: $w_j \leftarrow w_j + (y h_{\mathbf{w}}(\mathbf{x})) imes x_j$
- Perceptron Convergence Theorem states that any linear function can be learned using this algorithm in a finite number of iterations.

Perceptron Learning Algorithm

Input: Training examples $(x_1, y_1),...,(x_n, y_n)$

Output: A perceptron defined by $(w_0, w_1,...,w_d)$

Initialize $w_j \leftarrow 0$, for j=0...d

while not converged:

"convergence" means that the weights don't change for one entire iteration through the training data.

shuffle training examples. for each training example $(\mathbf{x}_i, \mathbf{y}_i)$:

if output - target != 0: #(output and prediction do not match)

for each weight w_j:

$$w_j \leftarrow w_j + (y - h_{\mathbf{w}}(\mathbf{x})) \times x_j$$

Perceptron

- Simple learning algorithm. Guaranteed to converge after a finite number of steps.
 - But only if the data is linearly separable.

Feature Functions

- In NLP we often need to make multi-class decisions.
 Linear models provide only binary decisions.
- Use a feature function $\phi(x,y)$ where x is an input object and y is a possible output.
- The values of ϕ are d-dimensional vectors.

$$\phi(x,y): \mathcal{X} imes \mathcal{Y}
ightarrow \mathbb{R}^d$$

Linear Models with Feature Function

- Prediction becomes $\underset{y'}{\arg\max}\,\phi(x,y)\cdot\mathbf{w}$
- Compute dot product between feature value and weights.
 - then choose the y' that gives the highest product.
- Can still use perceptron for training.

Log-Linear Model

(a.k.a. "Maximum Entropy Models")

Define conditional probability P(y|x)

$$\sum_{y} P(y|x; \mathbf{w}) = rac{\exp\left(\mathbf{w} \cdot \phi(x, y)
ight)}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w} \cdot \phi(x, y))}$$

- $\exp(d) = e^z$ is positive for any z.
- $ullet \sum_y P(y|x;\mathbf{w}) = 1$

But how should we estimate w?

Log-Likelihood

• Define the log-likelihood of some model \mathbf{w} on the training data $(x_1, y_1), ..., (x_n, y_n)$ as

$$LL(\mathbf{w}) = \sum_{i=1}^n \log P(y_i|x_i;\mathbf{w})$$

We want to compute the maximum likelihood

$$LL^*(\mathbf{w}) = rg \max_{\mathbf{w}} \sum_{i=1}^n \log P(y_i|x_i;\mathbf{w})$$

 Unfortunately, there is no general analytical solution. Can use gradient-based optimization.

Simple Gradient Ascent

Initialize $w \leftarrow$ any setting in the parameter (weight) space

for a set number of iterations T:

for each w_i in w:

$$w_i' \leftarrow w_i + lpha rac{\partial}{\partial w_i} LL(\mathbf{w})$$

update each w_i to w'_i

- Follow the gradients (partial derivatives) to find a parameter setting that maximizes LL(w)
- $\alpha > 0$ is the **learning rate** or **step size.**

Partial Derivative of the Log Likelihood

$$rac{\partial}{\partial_i} LL(\mathbf{w}) = rac{\partial}{\partial_i} \sum_{i=1}^n \log P(y_i|x_i;\mathbf{w})$$

$$=\sum_i \phi_j(x_i,y_i) - \sum_i \sum_y P(y|x_i;\mathbf{w})\phi_j(x_i,y)$$

Regularization

- Problem: Parameter estimation can overfit the training data.
- Can include a regularization term. For example L₂ regularizer:

$$LL(\mathbf{w}) = \sum_{i=1}^n \log P(y_i|x_i;\mathbf{w}) - rac{\lambda}{2} |\mathbf{w}|^2$$

Regularization

$$LL(\mathbf{w}) = \sum_{i=1}^n \log P(y_i|x_i;\mathbf{w}) - rac{\lambda}{2} |\mathbf{w}|^2$$

- $\lambda > 0$ controls the strength of the regularization.
- Since we are maximizing $\mathbf{w}^* = \arg\max_{\mathbf{w}} LL(\mathbf{w})$, there is now a trade-off between fit and model 'complexity'.

$$rac{\partial}{\partial_j} LL(\mathbf{w}) = \sum_i \phi_j(x_i, y_i) - \sum_i \sum_y P(y|x_i; \mathbf{w}) \phi_j(x_i, y) - \lambda w_j$$

POS Tagging with Log-Linear Models

- Previously we used a generative model (HMM) for POS tagging.
- Now we want to use a discriminative model for

$$P(t_1,t_2,\ldots,t_n|w_1,w_2,\ldots,w_n) \ = \prod_{i=1}^m P(t_i|t_1,\ldots,t_{i-1},x_1,\ldots,x_m)$$

 Next tag is conditioned on previous tag sequence and all observed words.

Maximum Entropy Markov Models (MEMM)

Make an independence assumption (similar to HMM):

$$egin{aligned} &P(t_1,t_2,\ldots,t_n|w_1,w_2,\ldots,w_n)\ &=\prod_{i=1}^m P(t_i|t_1,\ldots,t_{i-1},w_1,\ldots,w_m)\ &=\prod_{i=1}^m P(t_i|t_{i-1},w_1,\ldots,w_m) \end{aligned}$$

Probability only depends on the previous tag.

MEMMs

$$\prod_{i=1}^m P(t_i|t_{i-1},w_1,\ldots,w_m)$$

Model each term using a log-linear model

$$P(t_i|t_{i-1}, w_1, \dots, w_m) = \frac{\exp(\mathbf{w} \cdot \phi(w_1, \dots, w_m, i, t_{i-1}, t_i))}{\sum_{t'} \exp(\mathbf{w} \cdot \phi(w_1, \dots, w_m, i, t_{i-1}, t'))}$$

- ϕ is a feature function defined over:
 - the observed words w₁,...,w_m
 - the position of the current word
 - the previous tag t_{i-1}
 - the suggested tag for the current word t_i
- t' is a variable ranging over all possible tags.

MEMMs

$$P(t_i|t_{i-1}, w_1, \dots, w_m) = rac{\exp(\mathbf{w} \cdot \phi(w_1, \dots, w_m, i, t_{i-1}, t_i))}{\sum_{t'} \exp(\mathbf{w} \cdot \phi(w_1, \dots, w_m, i, t_{i-1}, t'))}$$

- Training: same as any log-linear model.
- ullet Decoding: Need to find $rg \max_{t_1,\ldots t_m} P(t_i,\ldots,t_m|t_{i-1},w_1,\ldots,w_m)$
 - Can use Viterbi algorithm!

Feature Function

(Ratnaparkhi, 1996)

- $\phi(w_1,\ldots,w_m,i,t_{i-1},t_i)$ is a feature vector of length d.
- $(W_{i},t_{i}), (W_{i-1},t_{i}), (W_{i-2},t_{i}), (W_{i+1},t_{i}), (W_{i+2},t_{i})$
- (t_{i-1},t_i)
- (w_i contains numbers, t_i),
 (w_i contains uppercase characters, t_i)
 (w_i contains a hyphen, t_i)
- (prefix₁ of w_i,t_i), (prefix₂ of w_i,t_i), (prefix₃ of w_i,t_i), (prefix₄ of w_i,t_i)
 (suffix₁ of w_i,t_i), (suffix₂ of w_i,t_i), (suffix₃ of w_i,t_i), (suffix₄ of w_i,t_i)

Feature Example

The stories about well-heeled communities and developers ... DT NNS IN ??

- (well-helled,JJ), (about,JJ), (stories,JJ), (communities, JJ), (and,JJ)
- (IN,JJ)
- (w_i contains a hyphen, JJ)
- (w,JJ), (we,JJ), (wel,JJ), (well, JJ)
 (d,JJ), (ed,JJ), (led,JJ), (eled, JJ)