Bio Data Science

Prof. Dr. Jochen Kruppa

25. August 2022

Inhaltsverzeichnis

Willkommen

Auf den folgenden Seiten wirst du eine Menge über Statistik oder Data Science lernen. Du musst dafür nicht eine meiner Veranstaltungen besuchen. Gerne kannst du hier und dort einmal schauen, ob etwas für dich dabei ist. Das Skript wird fortlaufend von mir ergänzt. Neben dem Skript gibt es auch noch die erklärenden YouTube Videos. Ich freue mich, dass du Lust hast hier etwas zu lernen... oder aber du musst – da bald eine Klausur ansteht. Wie auch immer – schau dich einfach mal um. Im Anhang findest du auch einen kleinen Leitfaden für das Schreiben einer Abschlussarbeit. Vielleicht hilft dir die Anleitung ja beim Schreiben.

Gesammelte Klausurfragen Bio Data Science

Du findest die gesammelten Klausurfragen auf GitHub. Die Klausurfragen zu den einzelnen Vorlesungen in einem Modul werden in den entsprechenden Übungen besprochen. Bitte komme in die Übungen.

Lernen...

Du liest hier gerade das Skript für meine Vorlesungen an der Hochschule Osnabrück an der Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL). Wie immer Leben kannst du auf verschiedene Arten und Weisen den Stoff, den ich vermitteln will, lernen. Daher gibt es noch zwei andere Möglichkeiten. Zum einen Lernen auf YouTube, mit meinen Lernvideos oder du schaust dir das Material auf GitHub an. Auf GitHub habe ich auch Informationen, die du vielleicht brauchen kannst. Ebenso findest du im Kapitel ?? noch andere Literaturempfehlungen.

... auf YouTube

Wenn du möchtest kannst du auf YouTube unter https://www.youtube.com/c/JochenKruppa noch einige Lehrvideos als Ergänzung schauen. In den Videos wiederhole ich Inhalte und du kannst auf Pause drücken um nochmal Programmierschritte nachverfolgen zu können.

... auf GitHub

Alle Materialien von mir findest du immer auf GitHub unter https://github.com/jkruppa/teaching. Selbst wenn du nicht mehr in einem meiner Kurse bist, kannst du so auf die Lehrinhalte immer nochmal zugreifen und die aktuellen Versionen haben. Auf GitHub liegt auch immer eine semesteraktuelle Version der gesammelten Klausurfragen für meine Module.

Kontakt

Wie erreichst du mich? Am einfachsten über die gute, alte E-Mail. Bitte bachte, dass gerade kurz vor den Prüfungen ich mehr E-Mails kriege. Leider kann es dann einen Tick dauern.

Einfach an j.kruppa@hs-osnabrueck.de schreiben. Du findest hier auch eine kurze Formulierungshilfe. Einfach auf den Ausklapppfeil klicken.

Bitte gib immer in deiner E-Mail dein Modul - was du belegst - mit an. Pro Semester unterrichte ich immer *drei* sehr ähnlich klingende Module. Daher schau nochmal hier in der Liste, wenn du unsicher bist.

Hallo Herr Kruppa,

- ... ich belege gerade Ihr Modul Modulname und hätte eine Bitte/Frage/Anregung...
- ... ich benötige Hilfe bei der Planung/Auswertung meiner Bachelorarbeit...

Mit freundlichen Grüßen

M. Muster

1 Organisation

Den Teil kannst du hier überspringen, wenn es dich nicht so richtig interessiert, was ich alles an Vorlesungen anbiete. Wenn es dir um *statistische* Inhalte geht, dann gehe einfach weiter in das nächste Kapitel.

1.1 Statistische Beratung

Ich biete auch Termine für die statistische Beratung von Abschlussarbeiten sowie Projekten an. Dafür musst du mir einfach nur eine E-Mail schreiben und dann erhälst du einen Termin innerhalb der nächsten zwei Wochen.

Die Beratung ist grundsätzlich anonym und vertraulich. Wenn du willst kannst du gerne noch dein:e Betreuer:in mitbringen. Das ist aber keine Voraussetzung oder Notwendigkeit.

1.2 R Tutorium

Im Rahmen der statistischen Beratung bieten wir auch ein R Tutorium für alle Mitglieder:innen der Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL) an. Die aktuellen Termine findest du in Tabelle ??.

Im R Tutorium besprechen wir aktuelle Themen der Teilnehmer:innen. Meist sind dies aktuelle Fragen zu den BAchelorarbeiten. Auch wenn du kein dringendes Problem hats, kannst du gerne kommen und dir die Fragestellungen anhören. Bitte beachte folgende Hinweise zu den Terminen.

i Hinweise zu dem R Tutorium

Das R Tutorium findet **nicht** im Prüfungszeitraum der Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL) statt.

Das R Tutorium findet **nicht** im *Februar* und *März* statt. Das R Tutorium findet **nicht** im *August* und *September* statt.

Tabelle 1.1: Aktuelle Termine des R Tutoriums im Semester

Termin	Uhrzeit	Raum	Anmerkung
$n\ddot{a}chste$	Termine	ab	Oktober 2022

1.3 Vorlesungen an der Hochschule Osnabrück

Von mir angebotene Vorlesungen werden an der Hochschule Osnabrück an der Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL) in ILIAS verwaltet. Alle notwendigen Informationen und Materialien sind auf ILIAS unter https://lms.hs-osnabrueck.de/ zu finden. Wenn du in dem Kurs nicht angemeldet bist, dann kontaktiere mich bitte per Mail. Auch die Kommunikation erfolgt von meiner Seite aus über ILIAS.

Wenn du nicht in der Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL) studierst oder aber in einem Studiengang, der meine Module nicht anbietet, steht es dir natürlich frei, sich in meine Vorlesungen zu setzten. Du findest in Tabelle ?? eine Übersicht der angebotenen Module und auch die inhaltliche Ordnung nach Lernstufe. Bitte informiere dich in deinem Studierendensekretariat über die Modalitäten zur Prüfungsteilnahme.

Eine inhaltliche Übersicht findet sich auf dem Google Spreadsheet. Die Planung ist aktuell (Stand Sommer 2022) noch nicht abgeschlossen. Im Zweifel einfach bei mir einmal per Mail anfragen.

Auf ILIAS findest du alle aktuellen Kursinformationen und erhälst auch die Mails, wenn Änderungen im Kursablauf stattfinden.

belle 1.2: Angebotene Statistik Module an der Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL). Stufe gibt das Lernniveau an.

	Landwirtsch	aft;		
	Angewand- te Pflanzen-	Wirtschafts-	Bioverfahrens	
St	biologie – Gartenbau, Pflanzen- ukechnologie	ingenieur- wesen Agrar / Le- bensmittel	in Agrar- und Lebensmit- telwirtschaft	Pflan- zenwis- sen- schaften
1	Mathematik und Statistik	Statistik	Angewandte Statistik für Bioverfahrens- technik	
2	Angewandte Statistik und Versuchswe- sen	Angewandte Statistik und Versuchswe- sen		
3	Spezielle Statistik und Versuchswe- sen			Biostatistik

2 Literatur

Was ist gute Literatur? Immer schwer zu beurteilen. Im folgenden liste ich einige Literaturquellen auf. Zum einen basiert eine Menge von dem R Code auf Wickham (2016) zum Anderen möchtest du dich vielleicht nochmal rechts oder links weiter bilden. Du musst aber nicht um die Klausur bestehen zu können. Siehe es eher als ein Angebot.

i Die Frage nach der Klausur...

Und daher hier nochmal gleich zu Anfang, es ist nicht notwendig mehr als das Skript durchzuarbeiten und bei den Übungen zu sein um die Klausur zu bestehen. Für deine Bachelorarbeit wirst du aber Programmieren in R können müssen.

Neben diesem Modul musst du vermutlich noch andere Module belegen. Deshalb hier eine Auswahl Literatur, die dir helfen mag. Zum einen ist die Literatur anders geschrieben und zum anderen sind dort andere Imhalte.

2.1 Parametrische Statistik

Dormann (2013) liefert ein tolles deutsches Buch für die Vertiefung in die Statistik. Insbesondere wenn du wissenschaftlich Arbeiten willst weit über die Bachelorarbeit hinaus. Dormann baut in seinem Buch eine hervorragende Grundlage auf. Das Buch ist an der Hochschule Osnabrück kostenlos über den Link zu erhalten.

2.2 Experimental methods in agriculture

Onofri und Sacco (2021) haben das Buch Experimental methods in agriculture geschrieben. Wir werden auf dieses englische Buch ab und zu mal verweisen. Insbesondere der Einleitungstext zur Wissenschaft und dem Design von Experiementen ist immer wieder lesenswert. Spätere Teile des Buches sind etwas mathematischer und nicht für den Einstieg unbedingt geeignet. Aber schaue es dir selber an.

2.3 R for Data Science

Wickham (2016) ist die Grundlage für die R Programmierung. Das Material von Wickahm findet sich kostenlos online unter https://r4ds.had.co.nz/ und https://www.tidyverse.org/. Wir werden uns hauptsächlich mit R wie es Wickham lehrt beschäftigen. Somit ist Wickham unsere Grundlage für R.

2.4 Practical Statistics for Data Scientists

Bruce (2020) schreibt ein Buch für den Anwender. Ohne Vorkenntnisse ist das Buch vermutlich etwas schwer zu lesen. Dafür bietet das Buch aber *nach* einem Statistikkurs sehr gute Anknüpfungspunkte Richtung maschinelles Lernen und somit der Klassifikation. Das Buch ist auch hier in der englischen Version und hier in der deutschen Version zu erhalten. Beide Links benötigen den Zugang über die Hochschule Osnabrück.

2.5 Data Science for Agriculture in R

Schmidt liefert auf der Webseite https://schmidtpaul.github.i o/DSFAIR/index.html eine tolle Sammlung an experimentellen Designs bzw. Versuchsanlagen samt der Auswertung in R. Ohne Vorkenntnisse schwer zu verstehen. Sollte aber nach einem Kurs Statistik dann möglich sein. Gerne hier auch mich fragen, dann können wir gemeinsam das passende Design raussuchen und besprechen.

Odds & Ends

Introducing Probability & Decision with a Visual Emphasis

2.6 Odds & Ends

Am Ende dann noch eine Mathebuch von Weisberg zu finden unter https://jonathanweisberg.org/vip/. Eigentlich eher ein Buch über Wahrscheinlichkeiten und wenn ein Buch am Ende stehen muss, dann ist es dieses Buch. Ich finde es sehr spannend zu lesen, aber das ist dann vermutlich special intrest.

Referenzen

3 Einführung

In diesem Kapitel nenne ich die wichtigsten Lernziele, die nach dem Lesen des Skriptes von dir erreicht worden sein sollten. Je nach besuchten Kurs kann natürlich nicht alles geschafft worden sein. So sehe diese Übersicht als Einführung für das was später kommt. Wenn du die Beispiele hir verstehst, dann hast du eine gute und solide Grundlage in Statistik und Bio Data Science.

Ein Wort der Warnung...

Wenn du dieses Bild eines niedergeschlagenen Engels der Statistik siehst...

... dann bedeutet der niedergeschlagene Engel der Statistik:

- 1) Wir opfern Genauigkeit für Anwendbarkeit. Ja, manchmal ist es eben statstisch nicht richtig was hier steht, aber aus Gründen der Anwendung fahren wir mal über den Engel drüber. Schade.
- 2) Wir sind hier Anfänger und Anwender. Später kannst du noch tiefer ins Detail gehen. Hier wollen wir die Grundlagen lernen. Das hat dann einen Preis an *Richtigkeit*.
- 3) Wir wollen fertig werden. Durch geschicktes Manövrieren können wir an einen Punkt kommen, wo kein statistischer Test mehr passt. Das wollen wir nicht. Deshalb zahlen wir hier auch einen Preis. Passt aber.

Deshalb konzentrieren wir uns auf einige wichtige Lernziele, die wir jetzt einmal nacheinander durchgehen.

3.1 Lernziel 1: Eine explorative Datananalyse durchführen

Gleich zu Beginn R Code zu zeigen und eine entsprechende Abbildung ist vielleicht ungewöhnlich, aber wir wollen zu dieser Abbildung ?? hin. In Abbildung ?? siehst du einen Boxplot. Und wie wir aus den Daten flea_dog_cat.xlsx einen Boxplot erstellen, das soll uns in den nächsten Kapitel beschäftigen. Dafür müssen wir nämlich eine Menge in dem Codeblock verstehen und dann auch Anwenden können. Und natürlich lernen was eigentlich ein Boxplot ist und was in einem Boxplot eigentlich dargestellt ist.

Data

Abbildung 3.1: Boxplot der Sprungweiten [cm] von Hunden und Katzen.

Hier ist der Codeblock der in R die Abbildung?? erstellt.

```
## Einlesen von Daten aus Excel
data_tbl <- read_excel("data/flea_dog_cat.xlsx")</pre>
## Umformen der <chr> Spalte in einen Factor <fct>
data_tbl <- data_tbl %>%
 mutate(animal = as_factor(animal))
## Auswählen der wichtigen Spalten für den Boxplot
data_tbl <- data_tbl %>%
  select(animal, jump_length)
## Generieren des Boxplots in agplot()
ggplot(data_tbl, aes(x = animal, y = jump_length,
                     fill = animal)) +
  geom_boxplot() +
  geom jitter() +
  labs(x = "Tierart", y = "Sprungweite in [cm]",
       fill = "Tierart") +
  scale_x_discrete(labels = c("Hund", "Katze")) +
  theme_bw()
```

Wir müssen nun folgende Dinge lernen um den Codeblock zu verstehen:

- Wir müssen das Datenbeispiel verstehen. Was sind das eigentlich für Daten, die wir da abbilden? Was sind überhaupt Daten im Sinne der Statistik bzw. für R.
- Wir müssen den R Code verstehen. Von einzelnen wichtigen Opertatoren wie -> und %\>% zu dem den Unterschieden von Worten und Objekten.
- Wie kriegen wir Daten aus Excel in R hinein? Wir können die Daten ja nicht einfach in R eintragen sondern haben die Daten ja meist in einer (Excel) Datei wie flea_dog_cat.xlsx.
- Was ist eigentlich ein Boxplot und welche statistsichen Maßzahlen werden hier eigentlich abgebildet?
- Wie funktioniert eigentlich die Funktioen ggplot() mit der wir den Boxplot erstellt haben?

All diese Fragen und weitere Fragen, die sich diesen Fragen anschließen, wollen wir uns in den nächsten Kapitel anschauen.

Leider kann ich hier nur *linear* schreiben. Deshalb musst du eventuell mal ein Kapitel wiederholen oder etwas quer lesen. Du kanst dir ja auch nicht immer alles auf einmal merken.

3.2 Lernziel 2: RStudio und R

Um Data Science durchführen zu können musst du etwas Programmieren können. Wir programmieren in R und nutzen die Software um Abbildungen zu erstellen und Analysen zu rech-

Wir arbeiten in R und nutzen dafür das RStudio. Führe einfach folgende Schritte aus um erst R zu installieren und dann das RStudio.

- 1. R installieren unter https://cran.rstudio.com/
- 2. RStudio installieren unter https://www.rstudio.com/pr oducts/rstudio/download/#download

Bitte die Reihenfolge beachten. Beide Schritte kannst du dir auch nochmals im Video anschauen oder aber du kommst in das R Tutorium was regelmäßig an der Hochschule Osnabrück von mir angeboten wird. Die Termine findest du im Kapitel??.

Was ist eigentlich RStudio und woher kriege ich das?

Du findest auf YouTube Einführung in R - Teil 01 - Installation von RStudio und R als Video. Ich gehe in dem Video einmal alle wichtigen Schritte durch und so kannst du dir Rstudio und R installieren.

3.3 Lernziel 3: Statistische Versuche verstehen

Wie funktioniert ein statistischer Versuch? Ich könnte auch wissenschaftliches Experiment schreiben, aber ein wissenschaftliches Experiment ist sehr abstrakt. Wir wollen ja einen Versuch durchführen und danach - ja was eigentlich? Was wollen wir nach dem Versuch haben? Meistens eine neue Erkenntnis. Um

diese Erkenntnis zu validieren oder aber abzusichern nutzen wir Statistik. Dazu musst du noch wissen, dass wir eine spezielle Form der Statistik nutzen: die frequentistische Statistik.

Die frequentistische Statistik basiert - wie der Name andeutet - auf Wiederholungen in einem Versuch. Daher der Name frequentistisch. Also eine Frequenz von Beobachtungen. Ist ein wenig gewollt, aber daran gewöhnen wir uns schon mal. Konkret, ein Experiment welches wir frequentistisch Auswerten wollen besteht immer aus biologischen Wiederholungen. Wir müssen also ein Experiment planen in dem wir wiederholt ein Outcome an vielen Tieren, Pflanzen oder Menschen messen. Auf das Outcome gehen wir noch später ein. Im Weiteren konzentrieren wir uns hier auf die parametrische Statistik. Die parametrische Statistik beschäftigt sich mit Parametern von Verteilungen. Ein schwieriger Satz. Schauen wir uns einmal eine Verteilung an.

3.3.1 Possionverteilung

Abbildung ?? zeigt eine Poissonverteilung. Eine Poissonverteilung beschreibt Zähldaten. Mehr zu der Poissonverteilung findest du im Kapitel ??. Wir zählen bei 39 Hunden wiviele Flöhe jeder Hund jeweils hatte. Danach zeichnen wir uns einen Dotplot der die Verteilung der Anzahl Flöhe auf den Hunden wiederspiegelt.

Eine Verteilung hat Parameter. Parameter sind die Eigenschaften einer Verteilung, die notwendig sind um eine Verteilung vollständig zu beschreiben.

Im Falle der Possionverteilung brauchen wir nur einen Paramter für den höchsten Punkt der Kurve. Wir nennen diesen Punkt Lambda (λ). Die Ausbreitung der Kurve ist eine Funktion von λ und steigt mit λ an.

3.3.2 Normalverteilung

Abbildung ?? zeigt eine Normalverteilung. Mehr zu der Poissonverteilung findest du im Kapitel ??. Hier haben wir das Flohgewicht von den Flöhen von 24 Hunden gemessen, die mit Flöhen befallen waren. Wir sehen, dass sich eine Glockenkurve

Minerbiologisch O Wiederholung

Enidlpuhrek teinRespecifiere deflanze y
oder Mensch. Eine technische
Wiederholung ist die gleiche
Messung an dem gleichen Tier,
Pflanze oder Mensch.

Parameter sind Zahlen, die eine Verteilungskurve beschreiben.

Abbildung 3.2: An 39 Hunden wurde die Anzahl an Flöhen gezählt.

bildet oder zumindestens etwas ähnliches. Wir können annehmen, dass das Gewicht approximativ normalverteilt ist.

Im Falle der Normalverteilung brauchen wir einen Paramter für den höchsten Punkt der Kurve, sowie einen Parameter für die Ausbreitung, also wie weit geht die Kurve nach links und nach rechts. Der Mittelwert \bar{y} beschriebt den höchsten Punkt einer Normalverteilung. Die Standardabweichung s_y beschreibt die Ausbreitung einer Normalverteilung.

Wie gehen wir nun vor, wenn wir ein Experiment durchführen wollen?

- 1) Wir müssen auf jeden Fall wiederholt ein Outcome an verschiedenen Tieren, Pflanzen oder Menschen messen.
- 2) Wir überlegen uns aus welcher Verteilungsfamilie unser Outcome stammt, damit wir dann die entsprechende Verfahren zur Analyse nehmen können.

Wir nutzen das Wort **approximativ** wenn wir sagen wollen, dass ein Outcome näherungsweise normalverteilt ist.

Abbildung 3.3: An 39 Hunden wurde die Anzahl an Flöhen gezählt.

3.4 Lernziel 4: Falsifikationsprinzip

Grundlagen der Wissenschaft und Falsifikationsprinzip

Du findest auf YouTube Grundlagen der Wissenschaft und Falsifikationsprinzip als Video Reihe.

Wenn wir ein Experiment durchführen dann erheben wir einmalig Daten D_1 . Wir könnten das Experiment wiederholen und erneut Daten D_2 erheben. Wir können das Experiment j-mal wiederholen und haben dann Daten von $D_1, ..., D_i$. Dennoch werden wir nie alle Daten erheben können, die mit einem Experiment verbunden sind.

Nehmen wir das Beispiel, dass wir die Sprungweite von Hundeund Katzenflöhen vergleichen wollen. Wir können nicht alle Hunde- und Katzenflöhe messen. Wir können nur eine Stichprobe an Daten D_1 erheben. Über diese Daten D_1 können wir dann später durch statistische Algorithmen eine Aussage treffen. Wichtig ist hier sich zu merken, dass wir eine Grundgesamtheit haben aus der wir eine Stichprobe ziehen. Wir müssen darauf achten, dass die Stichprobe repräsentativ ist und damit strukturgleich zur Grundgesamtheit ist. Die Strukturgleichkeit

Strukturgleichkeit erreichen wir durch Randomisierung.

erreichen wir durch Randomisierung. Wir veranschaulichen diesen Zusammenhang in Abbildung ??. Ein Rückschluß von der Stichprobe ist nur möglich, wenn die Stichprobe die Grundgesamtheit repräsentiert. Auch eine Randomisierung mag dieses Ziel nicht immer erreichen. Im Beispiel der Hundeflöhe könnte wir eine Art an Flöhen übersehen und diese Flohart nicht mit in die Stichprobe aufnehmen. Ein Rückschluß auf diese Flohart wäre dann mit unserem Experiment nicht möglich.

Abbildung 3.4: Abbildung über die Grundgesamtheit und die Stichprobe(n) D_1 bis D_j . Durch Randomisierung wird Sturkturgleichheit erreicht, die dann einen Rückschluß von der Stichprobe auf die Grundgesamtheit erlaubt. Jede Stichprobe ist anders und nicht jede Randomisierung ist erfolgreich was die Strukturgleicheit betrifft.

Tabelle $\ref{tab:probe}$ zeigt nochmal die Zusammenfassung von der Grundgesamtheit un der Stichprobe im Vergleich. Wichtig ist zu merken, dass wir mit unserem kleinen Experiment Daten D generieren mit denen wir einen Rückschluß und somit eine Verallgemeinerung erreichen wollen.

Tabelle 3.1: Vergleich von Grundgesamtheit und Stichprobe.

Grundgesamtheit	Stichprobe
n ist riesig bis unfassbar.	n von D ist klein.
der Mittelwert wird mit μ_y beschrieben.	der Mittelwert wird mit \bar{y} beschrieben.

Grundgesamtheit	Stichprobe		
die Varianz wird mit σ^2	die Varianz wird mit s^2		
beschrieben die Standardabweichung	beschrieben die Standardabweichung		
wird mit σ beschrieben.	wird mit s beschrieben.		

Teil I Datenbeispiele

Wir brauchen am Anfang erstmal ein simples Beispiel. Konkrete Zahlen mit denen wir arbeiten können und Grundlagen aufbauen können. Was liegt da näher als sich einmal am Kopf zu kratzen und zu fragen, was juckt den da? Genau! Flöhe. Wir schauen uns einmal Flöhe auf Hunden und Katzen an. Daran können wir viel über Zahlen und Buchstaben in der Statistik und dann im Programmieren lernen.

Zahlen, Buchstaben und Wörter

Mir ist bewusst, dass du die Unterschiede kennst. Nur leider ist eine Zahl nicht nur eine Zahl und ein Wort nicht immer ein Wort. Das hat mit der eingeschränkten Kommunikationsfähigkeit von Computerprogrammen zu tun. R braucht da deine Mithilfe und dein *neues* Verständnis von Buchstaben und Zahlen. Eben wie ein Computer denkt.

Von Flöhen und Hunden

In unserem ersten Beispiel in Kapitel ?? geht es darum einmal ein Gefühl für Daten zu kriegen. Also was sind diese Zahlen und Buchstaben eigentlich? Wie sind Daten aufgebaut und wie musst du Daten bauen, so dass wir auch mit den Daten arbeiten können? Wir schauen uns dafür einmal Flöhe auf Hunden an und fragen uns welche Typen von Zahlen können wir erheben?

Von Flöhen, Hunden und Katzen

In unserem zweiten Beispiel in Kapitel ?? erweitern wir unserer erstes Beispiel aus Kapitel ?? um die Katzen. Das heist, dass eigentlich alles gleich bleibt. Wir schauen usn zusätlich noch als zweite Gruppe die Katzen an. Nun können wir die Frage stellen, unterscheiden sich Flöhe auf Hunden und Katzen gegeben von gemessenen Eigenschaften?

Von Flöhen auf Tieren

In unserem dritten Beispiel in Kapitel ?? erweitern wir das Beispiel um den Fuchs mit einem weiteren Tier. Dadurch haben wir nicht mehr einen Faktor mit zwei Leveln vorliegen sondern einen mit drei Leveln. Die Fragestrellung erweitert sich jetzt auf einen *multiplen* Gruppenvergleich. Wir vergleichen nicht mehr nur noch zwei Gruppen miteinander sondern drei.

Von Flöhen auf Tieren in Habitaten

In unserem vierten Beispiel in Kapitel ?? schauen wir uns zusätzlich zu dem dritten Beispiel in Kapitel ?? noch verschiedene Habitate (eng. site) an. Wir haben nämlich die Hunde-, Katzen-, und Fuchsflöhe nicht nur an einem Ort sondern an verschiedenen Orten gesammelt und gemessen. Wir haben einen zweiten Faktor vorliegen.

4 Von Flöhen und Hunden

In unserem ersten Beispiel wollen wir uns verschiedene Daten D von Hunden und Hundeflöhen anschauen. Unter anderem sind dies die Sprungweite, die Anzahl an Flöhen, die Boniturnoten auf einer Hundemesse sowie der Infektionsstatus. Hier nochmal detailiert, was wir uns im folgenden im Kapitel einmal anschauen wollen.

• Sprungweite in [cm] von verschiedenen Flöhen

$$Y_{iumn} = \{5.7, 8.9, 11.8, 8.2, 5.6, 9.1, 7.6\}.$$

• Anzahl an Flöhen auf verschiedenen Hunden

$$Y_{count} = \{18, 22, 17, 12, 23, 18, 21\}.$$

• Boniturnoten [1 = schlechteste bis 9 = beste Note] von verschiedenen Hunden

$$Y_{grade} = \{8, 8, 6, 8, 7, 7, 9\}.$$

• Infektionstatus [0 = gesund, 1 = infiziert] mit Flöhen von verschiedenen Hunden

$$Y_{infected} = \{0, 1, 1, 0, 1, 0, 0\}.$$

Je nachdem was wir messen, nimmt Y andere Zahlenräume an. Wir sagen, Y folgt einer Verteilung. Die Sprungweite ist normalverteilt, die Anzahl an Flöhen folgt einer Poisson Verteilung, die Boniturnoten sind multinominal/ordinal bzw. kategorial verteilt. Der Infektionsstatus ist binomial verteilt. Wir werden uns später die Verteilungen anschauen und visualisieren. Das können wir hier aber noch nicht. Wichtig ist, dass du schon

mal gehört hast, dass Y unterschiedlich verteilt ist, je nachdem welche Dinge wir messen.

Tabelle ?? zeigt dir die Darstellung der Daten von oben in einer einzigen Tabelle. Bitte bachte, dass genau eine Zeile für eine Beobachutng, in diesem Fall einem Hund, vorgesehen ist.

Tabelle 4.1: Sprunglängen [cm] für Hundeflöhe. Die Tabelle ist im Long-Format dargestellt.

animal	$jump_length$	flea_count	grade	infected
dog	5.7	18	8	0
dog	8.9	22	8	1
dog	11.8	17	6	1
dog	8.2	12	8	0
\log	5.6	23	7	1
dog	9.1	18	7	0
dog	7.6	21	9	0

Datei f
 ür von Fl
 öhen und Hunden

Du findest die Datei flea_dog.xlsx auf GitHub jkruppa.github.io/data/ als Excel oder auch als CSV.

5 Von Flöhen, Hunden und Katzen

Wir wollen jetzt das Beispiel von den Hunden und Flöhen um eine Spezies erweitern. Wir nehmen noch die Katzen mit dazu und fragen uns, wie sieht es mit der Sprungfähigkeit von Katzen und Hundeflöhen aus? Konzentrieren wir uns hier einmal auf die Sprungweite. Wir können wie in dem Beispiel ?? die Sprungweiten [cm] wieder aufschreiben:

$$Y_{jump} = \{3.2, 2.2, 5.4, 4.1, 4.3, 7.9, 6.1\}.$$

Wenn wir jetzt die Sprungweiten der Hundeflöhe mit den Katzenflöhen vergleichen wollen haben wir ein Problem. Beide Zahlenvektoren heißen gleich, nämlich Y_{jump} . Wir könnten jeweils in die Indizes noch dog und cat schreiben als $Y_{jump,dog}$ und $Y_{jump,cat}$ und erhalten folgende Vektoren.

$$Y_{jump,\,dog} = \{5.7, 8.9, 11.8, 8.2, 5.6, 9.1, 7.6\}$$

$$Y_{jump,\,cat} = \{3.2, 2.2, 5.4, 4.1, 4.3, 7.9, 6.1\}$$

Dadurch werden die Indizes immer länger und unübersichticher. Auch das Y einfach Y_{dog} oder Y_{cat} zu nennen ist keine Lösung - wir wollen uns vielleicht später nicht nur die Sprungweite vergleichen, sondern vielleicht auch die Anzahl an Flöhen oder den Infektionsstatus. Dann ständen wir wieder vor dem Problem die Y für die verschiedenen Outcomes zu unterscheiden. Daher erstellen wir uns die Tabelle $\ref{eq:continuous}$. Wir haben jetzte eine Datentabelle.

Tabelle 5.1: Sprunglängen [cm] für Hunde- und Katzenflöhe. Die Tabelle ist im Wide-Format dargestellt.

dog	cat
5.7	3.2
8.9	2.2
11.8	5.4
8.2	4.1
5.6	4.3
9.1	7.9
7.6	6.1

Intuitiv ist die Tabelle ?? übersichtlich und beinhaltet die Informationen die wir wollten. Dennoch haben wir das Probem, das wir in dieser Tabelle ?? nicht noch weitere Outcomes angeben können. Wir können die Anzahl an Flöhen auf den Hunde und Katzen nicht darstellen. Als Lösung ändern wir die Tabelle ?? in das Long-Format. Dargestellt in Tabelle ??. Jede Beobachtung belegt nun eine Zeile. Dies ist sehr wichtig im Kopf zu behalten, wenn du eigene Daten in z.B. Excel eingibts.

Tabelle 5.2: Tabelle der Sprunglängen [cm], Anzahl an Flöhen, Boniturnote sowie der Infektionsstatus von Hundeund Katzenflöhe. Die Tabelle ist im Long-Format dargestellt.

animal	jump_length	flea_count	grade	infected
dog	5.7	18	8	0
dog	8.9	22	8	1
dog	11.8	17	6	1
dog	8.2	12	8	0
dog	5.6	23	7	1
dog	9.1	18	7	0
dog	7.6	21	9	0
cat	3.2	12	7	1
cat	2.2	13	5	0
cat	5.4	11	7	0
cat	4.1	12	6	0
cat	4.3	16	6	1
cat	7.9	9	6	0

animal	jump_length	flea_count	grade	infected
cat	6.1	7	5	0

 \P Datei für von Flöhen, Hunden und Katzen

Du findest die Datei flea_dog_cat.xlsx auf GitHub jkruppa.github.io/data/ als Excel oder auch als CSV.

6 Von Flöhen auf Tieren

Wir wollen jetzt das Beispiel von den Hunde- und Katzenflöhen um eine *weitere* Spezies erweitern. Wir nehmen noch die Füchse mit dazu und fragen uns, wie sieht es mit der Sprungfähigkeit von Hunde-, Katzen- und Fuchsflöhen aus?

Tabelle 6.1: Sprunglängen [cm] für Hunde-, Katzen- und Fuchsflöhe.

jump_length	flea_count	grade	infected
5.7	18	8	0
8.9	22	8	1
11.8	17	6	1
8.2	12	8	0
5.6	23	7	1
9.1	18	7	0
7.6	21	9	0
3.2	12	7	1
2.2	13	5	0
5.4	11	7	0
4.1	12	6	0
4.3	16	6	1
7.9	9	6	0
6.1	7	5	0
7.7	21	5	1
8.1	25	4	1
9.1	31	4	1
9.7	12	5	1
10.6	28	4	0
8.6	18	4	1
10.3	19	3	0
	5.7 8.9 11.8 8.2 5.6 9.1 7.6 3.2 2.2 5.4 4.1 4.3 7.9 6.1 7.7 8.1 9.1 9.7 10.6 8.6	5.7 18 8.9 22 11.8 17 8.2 12 5.6 23 9.1 18 7.6 21 3.2 12 2.2 13 5.4 11 4.1 12 4.3 16 7.9 9 6.1 7 7.7 21 8.1 25 9.1 31 9.7 12 10.6 28 8.6 18	5.7 18 8 8.9 22 8 11.8 17 6 8.2 12 8 5.6 23 7 9.1 18 7 7.6 21 9 3.2 12 7 2.2 13 5 5.4 11 7 4.1 12 6 4.3 16 6 7.9 9 6 6.1 7 5 7.7 21 5 8.1 25 4 9.1 31 4 9.7 12 5 10.6 28 4 8.6 18 4

? Datei für von Flöhen auf Tieren

Du findest die Datei flea_dog_cat_fox.xlsx auf GitHub jkruppa.github.io/data/ als Excel oder auch als CSV.

7 Von Flöhen auf Tieren in Habitaten

Wir schauen uns in diesem Beispiel wiederum drei Tierarten an: Hunde, Katzen und Füchse. Auf diesen Tierarten messen wir die Sprunglänge von jeweils zehn Tieren. Im Vergleich zu dem vorherigen Beispiel erweitern wir die Daten um eine Spalte site in der wir vier verschiedene Messorte protokollieren. Es ergibt sich folgende Tabelle ?? und die dazugehörige Abbildung ??.

Tabelle 7.1: Sprunglängen [cm] für Hunde-, Katzen- und Fuchsflöhe in verschiedenen Habitaten.

	animal	site	rep	jump_{-}	_length
c	at	city		1	12.04
c	at	city		2	11.98
c	at	city		3	16.10
c	at	city		4	13.42
c	at	city		5	12.37
c	at	city		6	16.36
c	at	city		7	14.91
c	at	city		8	11.17
c	at	city		9	12.38
c	at	city		10	15.06
c	at sn	nalltov	m	1	15.24
c	at sn	nalltov	m	2	13.36
c	at sn	nalltov	m	3	15.08
c	at sn	nalltov	m	4	12.83
c	at sn	nalltov	m	5	14.68
c	at sn	nalltow	n	6	10.73
c	at sn	nalltov	m	7	13.35
c	at sn	nalltov	m	8	14.54
c	at sn	nalltov	m	9	12.99
c	at sn	nalltov	/n :	10	14.51

animal	site	rep	jump_{-}	_length
cat	village	1	_	17.59
cat	village	2)	11.24
cat	village	3	3	12.44
cat	village	4	E	13.63
cat	village	5)	14.92
cat	village	6	j	17.43
cat	village	7	7	18.30
cat	village	8	}	16.35
cat	village	9)	16.34
cat	village	10	0	14.23
cat	field	1	-	13.70
cat	field	2	?	15.13
cat	field	3	;	17.99
cat	field	4	Ł	14.60
cat	field	5	,)	16.16
cat	field	6	;	14.26
cat	field	7	7	15.39
cat	field	8	3	16.85
cat	field	9)	19.02
cat	field	10	0	18.76
dog	city	1	-	19.35
dog	city	2	?	17.10
dog	city	3	,	19.85
dog	city	4	Ė	15.33
dog	city	5	<u>,</u>	15.15
dog	city	6	;	19.57
dog	city	7	,	15.44
dog	city	8	;	16.09
dog	city	9)	15.91
dog	city	10	0	13.01
dog s	$\mathbf{malltow}$	n 1	=	17.72
dog s	$\mathbf{malltow}$			17.11
dog s	$\operatorname{malltow}$			17.57
dog s	$\mathbf{malltow}$	n = 4	L	17.12
dog s	$\mathbf{malltow}$	n 5	<i>,</i>	16.02
dog s	$\mathbf{malltow}$			22.61
0	$\mathbf{malltow}$			16.49
0	$\operatorname{malltow}$			18.64
dog s	$\mathbf{malltow}$	n = 9)	17.21

anima	l site	rep	jump_{-}	_length
dog	$\operatorname{smalltow}$	n	10	19.90
dog	village		1	16.60
dog	village		2	15.28
dog	village		3	16.91
dog	village		4	15.08
dog	village		5	18.56
dog	village		6	16.34
dog	village		7	17.61
dog	village		8	14.80
dog	village		9	17.52
dog	village		10	16.93
dog	field		1	15.78
dog	field		2	17.02
dog	field		3	15.41
dog	field		4	15.61
dog	field		5	19.87
dog	field		6	19.24
dog	field		7	17.65
dog	field		8	18.83
dog	field		9	17.60
dog	field		10	14.67
fox	city		1	19.50
fox	city		2	18.49
fox	city		3	19.78
fox	city		4	19.45
fox	city		5	21.56
fox	city		6	21.37
fox	city		7	18.64
fox	city		8	20.08
fox	city		9	21.62
fox	city		10	20.68
fox	small tow	n	1	19.81
fox	small tow	n	2	17.78
fox	small tow	n	3	19.65
fox	small tow	n	4	16.38
fox	$\operatorname{smalltow}$	n	5	17.46
	$\operatorname{smalltow}$	n	6	17.02
fox	$\operatorname{smalltow}$	n	7	19.38
fox	$\operatorname{smalltow}$	n	8	15.89

anim	al site	rep	jump_	length
fox	smalltov	vn	9	17.15
fox	smalltov	vn	10	17.43
fox	village	е	1	15.32
fox	village	9	2	17.59
fox	village	Э	3	15.70
fox	village	9	4	18.58
fox	village	9	5	16.85
fox	village	9	6	18.25
fox	village	9	7	18.75
fox	village	9	8	16.96
fox	village	9	9	13.38
fox	village	9	10	18.38
fox	field		1	16.85
fox	field		2	13.55
fox	field		3	13.89
fox	field		4	15.67
fox	field		5	16.38
fox	field		6	14.59
fox	field		7	14.03
fox	field		8	13.63
fox	field		9	14.09
fox	field		10	15.52

Die Datentabelle ist in dieser Form schon fast nicht mehr überschaubar. Daher hilft hier die explorative Datenanalyse weiter. Wir schauen uns daher die Daten einmal als einen Boxplot in Abbildung ?? an. Wir sehen hier, dass wir drei Tierarten an vier Orten die Sprungweite in [cm] gemessen haben.

Patei für von Flöhen auf Tieren in Habitaten

Du findest die Datei flea_dog_cat_fox_site.xlsx auf GitHub jkruppa.github.io/data/ als Excel oder auch als CSV.

Über die explorative Datenanalyse erfährst du mehr im Kapitel??

Abbildung 7.1: Boxplot der Sprungweiten [cm] für Hunde-, Katzen- und Fuchsflöhe in verschiedenen Habitaten.

8 Von vielen Flöhen auf Hunden und Katzen

Wir schauen uns in diesem Beispiel wiederum nur zwei Tierarten an: Hunde und Katzen. Auf diesen Tierarten messen wir wieder die Sprunglänge in [cm] von jeweils 400 Tieren. Im Vergleich zu dem vorherigen Beispiel erweitern wir die Daten um eine Spalte jump_weight in [mg] sowie sex [male, female]. Es ergibt sich folgende Tabelle ?? mit den ersten zehn Beobachtungen und die dazugehörige Abbildung ??.

Tabelle 8.1: Sprunglängen [cm], Gewichte [mg], Geschecht [sex] für Hunde- und Katzenflöhe.

animal	sex	weight	jump_length
cat	male	6.02	16.93
cat	$_{\mathrm{male}}$	5.99	16.22
cat	male	8.05	18.96
cat	$_{\mathrm{male}}$	6.71	19.83
cat	male	6.19	17.37
cat	male	8.18	14.45
cat	male	7.46	15.46
cat	male	5.58	15.81
cat	male	6.19	19.14
cat	male	7.53	15.72

Die Datentabelle ist in dieser Form schon fast nicht mehr überschaubar. Daher hilft hier die explorative Datenanalyse weiter. Wir schauen uns daher die Daten einmal als einen Scatterplot in Abbildung ?? an. Wir sehen hier, dass wir das mit dem Gewicht [mg] der Flöhe auch die Sprungweite in [cm] steigt. Über die explorative Datenanalyse erfährst du mehr im Kapitel ??

Abbildung 8.1: Scatterplot der Sprunglängen [cm] und Gewichte [mg] für Hunde- und Katzenflöhe.

₱ Datei f
ür von vielen Fl
öhen auf Hunden und Katzen

Du findest die Datei flea_dog_cat_length_weight.xlsx auf GitHub jkruppa.github.io/data/ als Excel oder auch als CSV.

Teil II Programmieren in R

Was solltest du nun zuerst Lesen? Es ist sehr schwierig die Programmierung exakt so zu schreiben, dass das Programmieren linear verständlich ist. Du brauchst im Prinzip das Wissen aus Kapitel ?? Operatoren, Funktionen und Pakete um die Grundlagen zu verstehen. Auf der anderen Seite fehlt dir vielleicht noch das Verständnis von Buchstaben und Zahlen in R. Diesen Zusammenhang zwischen Buchstaben und Zahlen erkläre ich als erstes im folgenden Kapitel?? Von Buchstaben und Zahlen.

Im vorherigen Kapitel zu den Beispielen haben wir die Datentabelle Tabelle ?? mit den Hunde- und Katzenflöhen erschaffen. Bevor wir uns weiter mit statistischen Kennzahlen beschäftigen, wollen wir uns einmal die Realisierung der Tabelle Tabelle?? mit den Hunde- und Katzenflöhen in R anschauen. Dabei wollen wir auch Eigenschaften von Zahlen und Buchstaben lernen, die notwendig sind um mit einem Programm wie R kommunizieren zu können. Wir wollen später R nutzen um die explorative Datenanalyse anzuwenden. Über die explorative Datenanalyse lernen wir in späteren Kapiteln mehr.

Einführung in R per Video

Du findest auf YouTube Grundlagen in R als Video Reihe. Ich werde zwar alles nochmal hier als Text aufschreiben, aber manchmal ist das Sehen und Hören dann einfacher.

9 Von Buchstaben und Zahlen

Im Kapitel ?? haben wir uns folgende Daten in Tabelle ?? angeschaut. Bevor wir uns weiter mit statistischen Kennzahlen beschäftigen, wollen wir uns einmal die Realisierung der Tabelle Tabelle ?? in R anschauen. Das heist, wie ist eine Tabelle in R aufgebaut und was sehen wir da eigentlich?

Tabelle 9.1: Sprunglängen [cm] für Hunde- und Katzenflöhe.

animal	jump_length	flea_count	grade	infected
dog	5.7	18	8	FALSE
dog	8.9	22	8	TRUE
dog	11.8	17	6	TRUE
dog	8.2	12	8	FALSE
dog	5.6	23	7	TRUE
dog	9.1	18	7	FALSE
dog	7.6	21	9	FALSE
cat	3.2	12	7	TRUE
cat	2.2	13	5	FALSE
cat	5.4	11	7	FALSE
cat	4.1	12	6	FALSE
cat	4.3	16	6	TRUE
cat	7.9	9	6	FALSE
cat	6.1	7	5	FALSE

Dabei wollen wir auch Eigenschaften von Zahlen und Buchstaben lernen, die notwendig sind um mit einem Programm wie R kommunizieren zu können. Nun haben wir Tabelle Tabelle ?? mit Daten zu verschiedenen Oucomes, wie Sprungweite [cm], Anzahl an Flöhen auf Hunden und Katzen, die Boniturnoten oder aber den Infektionsstatus. Die Tabelle Tabelle ?? ist zwar nicht groß aber auch nicht wirklich klein. Wir wollen uns nun damit beschäftigen, die Zahlen sinnvoll in R darzustellen. Wir

wollen mit der Darstellung einer Datentabelle in R beginnen, einem tibble().

9.1 Daten in R sind tibble()

Im folgenden sehen wir die Datentabelle Tabelle?? in R als tibble dargestellt. Was ist nun ein tibble? Ein tibble ist zu aller erst ein Speicher für Daten in R. Das heist wir haben Spalten und Zeilen. Jede Spalte repräsentiert eine Messung oder Variable und die Zeilen jeweils eine Beobachtung.

# A CIDDIE. 14 X	# A	tibble:	14	X	5
------------------	-----	---------	----	---	---

	${\tt animal}$	jump_length	flea_count	grade	infected
	<chr></chr>	<dbl></dbl>	<int></int>	<dbl></dbl>	<lg1></lg1>
1	dog	5.7	18	8	FALSE
2	dog	8.9	22	8	TRUE
3	dog	11.8	17	6	TRUE
4	dog	8.2	12	8	FALSE
5	dog	5.6	23	7	TRUE
6	dog	9.1	18	7	FALSE
7	dog	7.6	21	9	FALSE
8	cat	3.2	12	7	TRUE
9	cat	2.2	13	5	FALSE
10	cat	5.4	11	7	FALSE
11	cat	4.1	12	6	FALSE
12	cat	4.3	16	6	TRUE
13	cat	7.9	9	6	FALSE
14	cat	6.1	7	5	FALSE

Als erstes erfahren wir, dass wir einen A tibble: 14 x 5 vorliegen haben. Das heist, wir haben 14 Zeile und 5 Spalten. In einem tibble wird immer in der ersten Zeile angezeigt wieviele Beobachtungen wir in dem Datensatz haben. Wenn das tibble zu groß wird, werden wir nicht mehr das ganze tibble sehen sondern nur noch einen Ausschnitt. Im Weiteren hat jede Spalte noch eine Eigenschaft unter dem Spaltennamen:

• <chr> bedeutet character. Wir haben also hier Worte vorliegen.

- <dbl> bedeutet double. Ein double ist eine Zahl mit Kommastellen.
- <int> bedeutet integer. Ein integer ist eine ganze Zahl ohne Kommastellen.
- <lg1> bedeutet logical oder boolean. Hier gibt es nur die Ausprägung wahr oder falsch. Somit TRUE oder FALSE. Statt den Worten TRUE oder FALSE kann hier auch 0 oder 1 stehen.
- <str> bedeutet string der aus verschiedenen character besteht kann, getrennt durch Leerzeichen.

? Zahlen, Buchstaben, Skalenniveau - Was ist das eigentlich?

Du findest auf YouTube Einführung in R - Teil 06 - Zahlen, Buchstaben, Skalenniveau - Was ist das eigentlich? als Video. Hier erkläre ich den Zusammenhang nochmal in einem Video.

9.2 Faktoren als Wörter zu Zahlen

Ein Computer und somit auch eine Programmsprache wie R kann keine Buchstaben verrechnen. Ein Programm kann nur mit Zahlen rechnen. Wir haben aber in der Datentabelle Tabelle ?? in der Spalte animal Buchstaben stehen. Da wir hier einen Kompromiss eingehen müssen führen wir Faktoren ein. Ein Faktor kombiniert Buchstaben mit Zahlen. Wir als Anwender sehen die Buchstaben, die Wörter bilden. Intern steht aber jedes Wort für eine Zahl, so dass R mit den Zahlen rechnen kann. Klingt ein wenig kryptisch, aber wir schauen uns einen factor einmal an.

```
data_tbl$animal[1:8]
```

```
[1] "dog" "dog" "dog" "dog" "dog" "dog" "cat"
```

Was haben wir gemacht? Als erstes haben wir die Spalte animal aus dem Datensatz data_tbl mit dem Dollarzeichen \$ herausqezogen. Mit dem \$ Zeichen können wir uns eine einzelne Spalte

Ein Faktor ist eine Variable mit mehrern Faktorstufen oder Leveln. Für uns sieht der Faktor wie ein Wort aus, hinter jedem Wort steht aber eine Zahl mit der gerechnet werden kann. aus dem Datensatz data_tbl rausziehen. Du kannst dir das \$ wie einen Kleiderbügel und das data_tbl als einen Schrank für Kleiderbügel verstellen. An dem Kleiderbügel hängen dann die einzelnen Zahlen und Worte. Wir nehmen aber nicht den ganzen Vektor sondern nur die Zahlen 1 bis 8, dargestellt durch [1:8]. Die Gänsefüße " um dog zeigen uns, dass wir hier Wörter oder charactervorliegen haben. Schauen wir auf das Ergebnis, so erhalten wir sieben Mal dog und einmal cat. Insgesamt die ersten acht Einträge der Datentabelle. Wir wollen diesen Vektor uns nun einmal als Faktor anschauen. Wir nutzen die Funktion as_factor().

```
as.factor(data_tbl$animal[1:8])
```

[1] dog dog dog dog dog dog cat Levels: cat dog

Im direkten vergleich verschwinden die Gänsefüße " um dog und zeigen usn, dass wir hier keine character mehr vorliegen haben. Darüber hinaus sehen wir auch, dass die der Faktor jetzt Levels hat. Exakt zwei Stück. Jeweils einen für dog und einen für cat. Wir werden später Faktoren benötigen, wenn wir zum Beispiel eine einfaktorielle ANOVA rechnen. Hier siehst du schon den Begriff Faktor wieder.

9.3 Von Wörtern und Objekten

Das mag etwas verwirrend sein, denn es gibt in R Wörter string <str> oder character <chr>. Wörter sind was anderes als Objekte. Streng genommen sind beides Wörter, aber in Objekten werden Dinge gespeichert wohin gegen das Wort einfach ein Wort ist. Deshalb kennezeichnen wir Wörter auch mit Gänsefüßchen als win "wort" und zeigen damit, dass es sich hier um einen String handelt.

Wir tippen "animal" in R und erhalten "animal" als Wort zurück. Das sehen wir auch an dem Ausdruck mit den Gänsefüßchen. Über Fu Kapitel

Wir brauchen später zum Modellieren einen Datensatz, der meist aus einer **Outcome**-Spalte, einer **Faktor**-Spalte mit der Behandlung und einer **Faktor**-Spalte mit dem Block oder Cluster besteht.

 $Outcome \sim Behandlung + Block$

```
"animal"
```

[1] "animal"

Wir tippen animal ohne die Anführungszeichen in R und erhalten den Inhalt von animal ausgegeben. Dafür müssen wir aber das Objekt animal erst einmal über den Zuweisungspfeil <-erschaffen.

```
animal <- c("dog", "cat", "fox")
animal</pre>
```

```
[1] "dog" "cat" "fox"
```

Sollte es das Objekt animal nicht geben, also nicht über den Zuweisungspfeil <- erschaffen worden, dann wird eine Fehlermeldung von R ausgegeben:

Fehler in eval(expr, envir, enclos) : Objekt 'animal' nicht gefunden

9.4 Zusammenfassung

Tabelle ?? zeigt eine Übersicht wie einzelne Variablennamen und deren zugehörigen Beispielen sowie den Namen in R, der Informatik allgemein, als Skalenneivau und welcher Verteilungsfamilie die Variable angehören würde. Leider ist es so, dass wieder gleiche Dinge unterschiedliche benannt werden. Aber an dieses doppelte Benennen können wir uns in der Statistik schonmal gewöhnen.

Über den Zuweisungspfeil <- kannst du im Kapitel ?? mehr erfahren.

Variablennamen meint hier immer den Namen der Spalte im Datensatz bzw. tibble

belle 9.2: Zusammenfassung und Übersicht von Variablennamen und deren Bennung in R, in der Informatik allgein, als Skalenniveau und die dazugehörige Verteilungsfamilie.

Variable Beispi el		R Infoma	R InfomatikSkalenniveau		
weight	12.3, 12.4, 5.4, 21.3, 13.4	numeri d ouble	continuous	Gaussian	
count	5, 0, 12, 23, 1, 4, 21	integerinteger	continuous	Poisson	
dosis	low, mid, high	ordered	categorical / discrete / ordinal	Ordinal	
field	mainz, berlin, kiel	factor	categorical / discrete	Multinomial	
cancer	0, 1	factor	dichotomous / binary / nominal	Binomial	
treatme	entplacebo", "aspirin"	charact dr aract	er/ kitrlint omous / binary / nominal	Binomial	
birth	2001-12-02, 2005-05-23	date			

10 Operatoren, Funktionen und Pakete

Es ist immer schwierig, wann die Grundlagen von R einmal gelehrt werden sollte. Wenn du nichts von Programmierung bis jetzt gehört hast, dann mag es keinen Sinn ergeben mit Operatoren, wie dem Zuweisungspfeil <- und der Pipe %>% zu beginnen. Wir brauchen aber für die Programmierung folgende zentrale Konzepte.

- Wir müssen zusätzliche Pakete in R installieren und laden können (siehe Kapitel ??).
- Wir müssen verstehen wie wir uns einen Vektor mit c() bauen (siehe Kapitel ??).
- Wir müssen wissen was eine Funktion in R ist (siehe Kapitel ??).
- Wir müssen den Operator Zuweisungspfeil <- verstehen und anwenden können (siehe Kapitel ??).
- Wir müssen den Operator Pipe %>% verstehen und anwenden können (siehe Kapitel ??).
- Wir müssen den Operator \$ verstehen, da manche Funktionen in R nicht mit Datensätzen sondenr nur mit Vektoren arbeiten können (siehe Kapitel ??).
- Wir müssen verstehen wie wir ein Modell in R mit der Tilde ~ definieren (siehe Kapitel ??).
- Wir müssen wissen und verstehen wie wir mit ? englische Hilfeseiten öffnen können (siehe Kapitel ??).

Nicht alle Konzepte brauchst du *unmittelbar* aber ich nutze diese Konzepte wiederholt in allen Kapiteln, so dass du hier immer wieder mal schauen kannst, was die Grundlagen sind.

10.1 Pakete und library()

In der Vanilla-Variante hat R sehr wenige Funktionen. Ohne zusätzliche Pakete ist R mehr ein sehr potenter Taschenrechner. Leider mit der Funktionalität aus den 90'zigern, was die Programmierumgebung und die Funktionen angeht. Das wollen wir aber nicht. Wir wollen auf den aktuellen Stand der Technik und auch Sprache programmieren. Daher nutzen wir zusätzliche R Pakete.

Abbildung 10.1: Auf den Reiter *Packages* klicken und dann *Install*. In der deutschen version vom RStudio mögen die Begriffe leicht anders sein.

In Abbildung ?? wird gezeigt wie du ein zusätzliches Paket installieren kannst. Hierbei ist nochmal wichtig den semantischen Unterschied zu wissen. Es gibt das Paket tidyverse was wir viel nutzen. Wir isnatllieren einmalig Pakete der Funktion install.packages() oder eben wie in Abbildung ?? gezeigt. Wir nutzen die Funktion library() um ein Paket in R zu laden. Ja, es müsste anders heisen, tut es aber nicht.

```
## Das Paket tidyverse installieren - einmalig
install.packages(tidyverse)
```

Als Vanilla beschreibt man in der Informatikerwelt ein Programm, was keine zusätzlichen Pakete geladen hat. Also die reinst Form ohne zusätzlichen Geschmack.

```
## Das Paket tidyverse laden - jedes Mal
library(tidyverse)
```

Nun muss man sich immer merken, ob das Paket schon installiert ist oder man schreibt relativ viele library() untereinander. Das passiert schnell, wenn du viele Pakete laden willst. Dafür erlaubt dir das Paket pacman eine Vereinfachung. Die Funktion p_load() installiert Pakete, wenn die Pakete nicht installiert sind. Sollten die Pakete installiert sein, so werden die Pakete geladen. Du musst nur einmal install.packages(pacman) ausführen um das Paket pacman zu installieren.

```
pacman::p_load(tidyverse, magrittr, readxl)
```

Schlussendlich gibt es noch die Möglichkeit sich alles nochmal bei YouTube anzuschauen.

Unterschied von Packages und Libraries in R

Du findest auf YouTube Einführung in R - Teil 03 - Unterschied Packages und Libraries in R als Video. Hier erkläre ich nochmal den Ablauf zwischen Installieren eines Paketes und dem Laden eines Paketes.

10.2 Einen Vektor bauen c()

Wir können mit der Funktion c() Zahlen und Wörter zu einem Vektor kombinieren.

```
c("dog", "dog", "cat", "cat", "fox", "fox")
```

```
[1] "dog" "dog" "cat" "cat" "fox" "fox"
```

Hier werden die Wörter "dog", "cat" und "fox" miteinader in einen Vektor kombiniert. Wir erinnern uns an das \$ Zeichen, was uns erlaubt eine Variable als Vektor aus einem tibble() herauszuziehen.

10.3 Funktionen

Wir haben schon einige Funktion nebenbei in R kennengelernt. Zum einen as.factor() um einen Faktor zu erstellen oder aus dem Kapitel ??, wo wir die Funktion install.packages() nutzen um ein Paket zu installieren oder aber die Funktion library() um ein Paket in R zu laden.

Funktionen sehen aus wie Wörter. Haben aber keine Gänsefüßchen und beinhalten auch keine Daten oder Vektoren. Funktionen können mit Daten und Vektoren rechnen und geben das Berechnete dann wieder. Nehmen wir als Beispiel die Funktion mean(), die den Mittelwert von einer Reihe Zahlen berechnet.

```
y <- c(1.2, 3.4, 2.1, 6, 4.3)
mean(y)
```

[1] 3.4

Wir sehen, dass wir mit der Funktion c() die Zahlen 1.2, 3.4, 2.1, 6, 4.3 zusammenkleben. Danach speichern wir die Zahlen in den Objekt y als einen Vektor ab. Wir müssen ynicht erst erschaffen, das Erschaffen und Speichern passiert in R in einem Schritt. Wir stecken nun den Vektor y in die Funktion mean() und erhalten den Mittelwert von 3.4 der Zahlen wiedergegeben.

10.4 Zuweisungspfeil <-

Mit dem Zuweisungspfeil speichern wir *Dinge* in Objekte in R. Das heist wir speichern damit intern in R Datensätze und viele andere Sachen, die wir dan später wieder verwenden wollen. Schauen wir uns das einmal im Beispiel an. Schrieben wir nur den Vektor c() mit Hunden und Katzen darin, so erscheint eine Ausgabe in R.

```
c("dog", "dog", "cat", "cat", "fox", "fox")
```

Eigentlich müssen in der Programmierung Objekte erst deklariert werden und somit erschaffen. Erst dann können Objekte initalisiert und somit befüllt bzw. etwas zugewiesen werden.

```
[1] "dog" "dog" "cat" "cat" "fox" "fox"
```

Schreiben wir den gleichen Vektor und nutzen den Zuweisungspfeil, dann wird der Vektor in dem Objekt animal gespeichert.

```
animal <- c("dog", "dog", "cat", "cat", "fox", "fox")</pre>
```

Wie kommen wir jetzt an die Sachen, die in animal drin sind? Wir können einfach animal in R schreiben und dann wird uns der Inhalt von animal ausgegeben.

animal

```
[1] "dog" "dog" "cat" "cat" "fox" "fox"
```

Wir nutzen den Zuweisungspfeil <- ist zentral für die Nutzung von R. Wir brauchen den Zuweisungspfeil <- um Objekte in R zu erschaffen und Ergebnisse intern abzuspeichern. Zusammen mit Funktionen nutzen wir nur noch die Pipe %>% öfter.

10.5 Pipe %>%

Pipes in R

Du findest auf YouTube Einführung in R - Teil 11 - Pipes in R als Video. Hier erkläre ich den Zusammenhang nochmal in einem Video.

Im Weiteren nutzen wir den Pipe Operator dargestellt als %\>%. Du kannst dir den Pipe Operator als eine Art Röhre vorstellen in dem die Daten verändert werden und dann an die nächste Funktion weitergeleitet werden. Im folgenden siehst du viele Funktionen, die aneinander über Objekte miteinander verbunden werden. Im Kapitel ?? erfährst du mehr über die Funktionen select()und filter().

Der Zuweisungspfeil <- ist zentral für die Nutzung von R.

```
data_tbl <- read_excel("data/flea_dog_cat.xlsx")
animal_1_tbl <- select(data_tbl, animal, jump_length)
animal_2_tbl <- filter(animal_1_tbl, jump_length >= 4)
sort(animal_2_tbl$jump_length)

[1] 4.1 4.3 5.4 5.6 5.7 6.1 7.6 7.9 8.2 8.9 9.1 11.8

data_tbl %>%
    select(animal, jump_length) %>%
    filter(jump_length >= 4) %>%
    pull(jump_length) %>%
    sort
```

[1] 4.1 4.3 5.4 5.6 5.7 6.1 7.6 7.9 8.2 8.9 9.1 11.8

Im unteren Beispiel siehst du die Nutzung des Pipe Operators %>%. Das Ergebnis ist das gleiche, aber der Code ist einfacher zu lesen. Wir nehmen den Datensatz data_tbl leiten den Datensatz in den Funktion select() und wählen die Spalten animal sowie jump_length. Dann filtern wir noch nach jump_lengthgrößer als 4 cm. Dann ziehen wir uns mit der Funktion pull() die Spalte jump_length aus dem Datensatz. Den Vektor leiten wir dann weiter in die Funktion sort() und erhalten die sortierten Sprunglängen zurück.

10.6 Spalte extrahieren \$

Wir nutzen eigentlich die Funktion pull() um eine Spalte bzw. Vektor aus einem Datensatz zu extrahieren.

```
data_tbl %>%
   pull(animal)

[1] "dog" "dog" "dog" "dog" "dog" "dog" "cat" "cat" "cat" "cat"
[13] "cat" "cat"
```

Manche Funktionen in R, besonders die älteren Funktionen, benötigen keinen Datensatz sondern meist zwei bis drei Vektoren. Das heißt, wir können nicht einfach einen Datensatz in eine Funktion über data = data_tbl stecken sondern müssen der Funktion Vektoren übergeben. Dafür nutzen wir den \$ Operator.

```
data_tbl$animal

[1] "dog" "dog" "dog" "dog" "dog" "dog" "cat" "cat" "cat" "cat"
[13] "cat" "cat"

data_tbl$jump_length

[1] 5.7 8.9 11.8 8.2 5.6 9.1 7.6 3.2 2.2 5.4 4.1 4.3 7.9 6.1
```

Wir werden versuchen diese Schreibweise zu vermeiden, aber manchmal ist es sehr nützlich die Möglichkeit zu haben auf diese Weise eine Spalte zu extrahieren.

10.7 Modelle definieren mit formula

Wir müssen später Modelle in R definieren um zum Beispiel den t
 Test oder aber eine lineare Regression rechnen zu können. Wir nutzen dazu in R die formula Syntax. Das heißt links von der Tilde ~ steht das y, also der Spaltenname aus dem Datensatz data = den wir nutzen, der das Outcome repräsentiert. Rechts von der Tilde ~ stehen alle $x_1, ..., x_p$, also alle Spalten aus dem Datensatz data = den wir nutzen, der die Einflussfaktoren repräsentiert.

In unserem Beispiel mit den Hunde- und Katzenflöhen aus Kapitel \ref{pitel} wäre das g die Spalte jump_length und das g der Faktor animal. Wir erstellen mit der Funktion formula() das Modell in R. Wir brauchen später die Funktion formula nur implizit, aber hier ist es gut, das du einmal siehst, wie so eine Formula in R aussieht.

```
formula(jump_length ~ animal)
```

```
jump_length ~ animal
```

Wenn die Formel sehr lang wird bzw. wir die Namen der Spalten aus anderen Funktionen haben, können wir auch die Funktion reformulate() nutzen. Wir brauchen die Funktion aber eher im Bereich des maschinellen Lernens. Hier ist die Funktion reformulate() aufgeführt, da es inhaltlich passt.

 $jump_length ~ animal + sex + site$

10.8 Hilfe mit?

Das Fragezeichen? vor einem Funktionsnamen erlaubt die Hilfeseite zu öffnen. Die Hilfsseiten findest du auch in einem der Reiter im RStudio.

Abbildung 10.2: Neben den Paketen in R findet sich auch der Reiter Help, wo du Hilfe für die einzelnen Funktionen findets..

11 Daten einlesen

Die Daten aus unserem Experiment müssen rein in R. Das heißt, wir haben meist unsere Daten in einer Exceldatei vorliegen und wollen diese Daten nun in R einlesen.

Gängige Fehler beim Einlesen von Dateien in R sind folgende Probelem. Wir wollen diese Probeleme nacheinander einmal durchgehen. Aber keine Sorge, das Einlesen von Daten in R ist immer am Anfang etwas frickelig. Du kannst gerne in das R Tutorium (siehe Kapitel ?? für Raum und Zeiten) kommen, dann können wir dir da beim Einlesen der Daten helfen.

- das Format der Daten ist nicht richtig (Kapitel??)
- der Pfad zur Datei ist falsch (Kapitel??)
- in der Datei sind komische Zeichen, wie Umlaute und Co. (Kapitel ??)
- in der Datei sind Leerzeichen in den Spaltennamen (Kapitel ??)

11.1 Genutzte R Pakete für das Kapitel

Wir wollen folgende R Pakete in diesem Kapitel nutzen.

```
pacman::p_load(tidyverse, magrittr, janitor)
```

Am Ende des Kapitels findest du nochmal den gesamten R Code in einem Rutsch zum selber durchführen oder aber kopieren.

11.2 Dateiformat

Wir unterschieden bei Datenformaten zwischen den Wide Format und dem Long Format. Meistens gibst du die Daten intuitv

Im Anhang ?? findest du Beispiele für die Auswertung von Daten. Du kannst dir dort das Format anschauen und dann entsprechend deine Daten formatieren. Du findest auch alle Dateien auf GitHub unter jkruppa.github.io/data/ als Excel oder auch als CSV. Schau dir die Beispiele einmal an.

Das Buch Cookbook for R stellt auch Beispiele für die Funktion gather() zu Verfügung für die Umwandlung von Wide zu Long Format: Converting data between wide and long format im Wide Format in Excel ein. Das ist in Excel auch übersichtlicher. R und später die Funktion ggplot() zur Visualisierung der Daten kann aber nur mit dem Long Format arbeiten. Wir können aber mit der Funktion gather() das Wide Format in das Long Format umwandeln.

11.2.1 Wide Format

In Tabelle ?? sehen wir eine typische Datentabelle in einem Wide Format. Die Spalten egeben jeweils die Tierart wieder und die Einträge in den Spalten sind die Sprungweiten in [cm].

Tabelle 11.1: Eine Datentabelle mit Sprungweiten in [cm] von Hunde- und Katzenflöhen im Wide Format.

dog	cat
5.2	10.1
4.9	9.4
12.1	11.8
8.2	6.7
5.6	8.2
9.1	9.1
7.4	7.1

Wir können diese Datentablle auch in R erstellen und uns als tibble() wiedergeben lassen.

5 5.6 8.2 6 9.1 9.1 7 7.4 7.1

Wir können aber mit einem Wide-Format nicht mit ggplot() die Daten aus der Tabelle?? visualisieren. Deshalb müssen wir entweder das Wide Format in das Long Format umwandeln oder die Daten gleich in Excel im Long Format erstellen.

11.2.2 Long Format

Wenn du Daten erstellst ist es wichtig, dass du die Daten in Excel im Long-Format erstellst. Dabei muss eine Beobachtung eine Zeile sein. Du siehst in Abbildung ?? ein Beispiel für eine Tabelle in Excel, die dem Long Format folgt.

4	Α	В	С	D	Е
1	animal	jump_length	flea_count	grade	infected
2	dog	5,2	18	8	0
3	dog	4,9	22	7	1
4	dog	12,1	17	5	1
5	dog	8,2	12	6	0
6	dog	5,6	23	7	1
7	dog	9,1	18	7	0
8	dog	7,4	21	9	0
9	cat	3,2	12	9	1
10	cat	1,2	13	5	0
11	cat	6,6	11	7	0
12	cat	4,1	12	8	0
13	cat	4,3	16	6	1
14	cat	7,8	9	6	0
15	cat	6,2	7	8	0

Abbildung 11.1: Beispiel für eine Exceldatentabelle in Long Format.

Im Folgenden sehen wir einmal wie die Funktion gather() das tibble() in Wide Format in ein tibble() in Long Format umwandelt. Wir müssen dafür noch die Spalte benennen mit Wenn du schon Daten hast, dann macht es eventuell mehr Sinn eine neue Exceldatei anzulegen in der du dann die Daten in das Long Format kopierst. der Option key = in die die Namen der Spalten aus dem Wide Format geschrieben werden sowie den Spaltennamen für die eigentlichen Messwerte mit der Option value =.

A tibble: 14 x 2 animal jump_length <chr> <dbl> 1 dog 5.2 2 dog 4.9 12.1 3 dog 4 dog 8.2 5.6 5 dog 6 dog 9.1 7.4 7 dog 8 cat 10.1 9 cat 9.4 10 cat 11.8 11 cat 6.7 12 cat 8.2 13 cat 9.1 14 cat 7.1

Wir sehen, dass ein Long Format viel mehr Paltz benötigt. Das ist aber in R kein Problem. Wir sehen die Daten kaum sondern nutzen Funktionen wie ggplot() um die Daten zu visualisieren. Wichtig ist, dass du die Daten in Excel sauber abgelegt hast.

Im Folgenden schauen wir uns noch komplexere Daten in Tabelle ?? an. Das Datenbeispiel ist im Wide Format mit einem Behandlungsfaktor treatment einem Clusterfaktor block sowie mehreren Messwiederholungen zu unterschiedichen Zeitpunkten t_1 bis t_6 angelegt.

Tabelle 11.2: Komplexeres Datenbeispiel im Wide Format mit einem Behandlungsfaktor treatment einem Clusterfaktor block sowie mehreren Messwiederholungen zu unterschiedichen Zeitpunkten t_1 bis t_6.

								_
treatment		block	t_1	t_2	t_3	t_4	t_5 t_	_6
A	1	16.	73	16.01	16.23	15.31	19.22	
A	2	16.	21	13.67	16.59	17.85	19.68	
A	3	18.	59	14.52	18.42	13.91	17.02	
A	4	11.	87	15.91	20.80	16.39	14.72	
В	1	16.	81	17.10	17.74	16.19	18.40	
В	2	15.	91	15.94	17.07	15.72	17.83	-
В	3	16.	18	16.37	19.27	19.12	17.46	-
В	4	14.	06	15.79	18.61	16.91	15.11	-
C	1	14.	91	14.57	13.09	15.48	18.32	
C	2	15.	14	15.82	18.02	17.33	22.45	
\mathbf{C}	3	13.	95	14.71	16.37	16.14	16.29	-
\mathbf{C}	4	14.	98	14.54	17.63	19.81	18.12	4
D	1	15.	62	13.05	16.50	18.07	19.17	-
D	2	17.	79	16.68	15.74	16.17	19.03	
D	3	15.	44	12.20	20.61	15.84	14.65	
D	4	11.	83	14.80	17.07	18.67	17.69	

Im Folgenden Codeblock sehen wir, wie die Funktion gather() die Daten in Tabelle Tabelle?? in ein Long Format umwandelt. Die Funktion fasst die Messwiederholungen der Spalten t_1 bis t_6 zusammen, in dem die Werte alle in der Spalte drymatter untereinander geklebt werden. Die Spalten treatment und block werden dann sechs Mal wiederholt untereinander geklebt.

```
data_tbl %>%
  gather(key = "time_point", value = "drymatter", t_1:t_6) %>%
  arrange(treatment, block)
```

1	Α			1	t_1	16.7
2	Α			1	t_2	16.0
3	Α			1	t_3	16.2
4	Α			1	t_4	15.3
5	Α			1	t_5	19.2
6	Α			1	t_6	20.3
7	Α			2	t_1	16.2
8	Α			2	t_2	13.7
9	Α			2	t_3	16.6
10	Α			2	t_4	17.8
# .		with	86	more	rows	

11.3 Importieren mit RStudio

Wir können das RStudio nutzen um Daten mit Point-and-Klick rein zuladen und dann den Code wieder in den Editor kopieren. Im Prinzip ist dieser Weg der einfachste um einmal zu sehen, wie ein pfad funktioniert und der Code lautet. Später benötigt man diese 'Krücke' nicht mehr. Wir nutzen dann direkt den Pfad zu der Datei. Abbildung ?? zeigt einen Ausschnitt, wo wir im RStudio die *Import Dataset* Funktionalität finden.

Abbildung 11.2: Auf den Reiter *Einviroment* klicken und dann *Import Dataset*. In der deutschen version vom RStudio mögen die Begriffe leicht anders sein.

Importieren mit RStudio als Video

Du findest auf YouTube Einführung in R - Teil 21.0 - Daten importieren mit RStudio - Point and Klick als Video. Point and Klick ist als Video einfacher nachzuvollziehen als Screenshots in einem Fließtext.

11.4 Importieren per Pfad

In Abbildung ?? können wir sehen wie wir den Pfad zu unserer Excel Datei flea_dog_cat.xlsx finden. Natürlich kannst du den Pfad auch anders herausfinden bzw. aus dem Explorer oder Finder kopieren.

Abbildung 11.3: Durch den Rechts-Klick auf die Eigenschaften einer Datei kann man sich den Pfad zur Datei anzeigen lassen. **Achtung!** Unter Windows muss der Slash \ noch in den Backslash / gedreht werden.

Nachdem wir den Pfad gefunden haben, können wir den Pfad in die Funktion read_excel() kopieren und die Datei in das Objekt data_tbl einlesen. Ja, es wird nichts in der R Console ausgegeben, da sich die Daten jetzt in dem Object data_tbl befinden.

```
## Ganzer Pfad zur Datei flea_dog_cat.xlsx
data_tbl <- read_excel("data/flea_dog_cat.xlsx")</pre>
```

\blacksquare Unterschied zwischen \setminus in Windows und \nearrow in R

Achte einmal auf den Slash im Pfad in R und einem im Pfsd in Windows. Einmal ist es der Slash \ im Dateipfad und einmal der Backslash /. Das ist sehr ärgerlich, aber dieses Problem geht zurück in die 80'ziger. Bill hat entschieden für sein Windows / zu nutzen und Steve (und Unix) eben /. Und mit dieser Entscheidung müssen wir jetzt leben...

11.5 Auf ein englisches Wort in Dateien

Ein großes Problem in Datein sind Umlaute (ä,ö,ü) oder aber andere (Sonder)zeichen (ß, ?, oder #). Als dies sollte vermieden werden. Eine gute Datei für R beinhaltet nur ganze Wörter, Zahlen oder aber leere Felder. Ein leeres Feld ist ein fehlender Wert. Abbildung ?? zeigt eine gute Exceldatentablle. Wir schreiben jump_length mit Unterstrich um den Namen besser zu lesen zu können. Sonst ist auch alles in Englisch geschrieben. Wir vermeiden durch die neglische Schreibweise aus versehen einen Umlaut oder anderweitig problematische Zeichen zu verwenden. Später können wir alles noch für Abbildungen anpassen.

11.6 Spaltennamen in der (Excel)-Datei

Die Funktion clean_names() aus dem R Paket janitor erlaubt es die Spaltennamen einer eingelesenen Datei in eine für R gute Form zu bringen.

- Keine Leerzeichen in den Spaltennamen.
- Alle Spaltennamen sind klein geschrieben.

4	Α	В	С	D	Е
1	animal	jump_length	flea_count	grade	infected
2	dog	5,2	18	8	0
3	dog	4,9	22	7	1
4	dog	12,1	17	5	1
5	dog	8,2	12	6	0
6	dog	5,6	23	7	1
7	dog	9,1	18	7	0
8	dog	7,4	21	9	0
9	cat	3,2	12	9	1
10	cat	1,2	13	5	0
11	cat	6,6	11	7	0
12	cat	4,1	12	8	0
13	cat	4,3	16	6	1
14	cat	7,8	9	6	0
15	cat	6,2	7	8	0

Abbildung 11.4: Beispiel für eine gute (Excel)Datentabelle. Keine Umlaute sind vorhanden und die Spaltennamen haben keine Leerzeichen oder Sonderzeichen.

data_tbl %>% clean_names()

A tibble: 14 x 5

	animal	jump_length	flea_count	grade	infected
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	dog	5.7	18	8	0
2	dog	8.9	22	8	1
3	dog	11.8	17	6	1
4	dog	8.2	12	8	0
5	dog	5.6	23	7	1
6	dog	9.1	18	7	0
7	dog	7.6	21	9	0
8	cat	3.2	12	7	1
9	cat	2.2	13	5	0
10	cat	5.4	11	7	0
11	cat	4.1	12	6	0
12	cat	4.3	16	6	1
13	cat	7.9	9	6	0
14	cat	6.1	7	5	0

12 Daten bearbeiten

Wir haben in dem vorherigen Kapitel Daten eingelesen. Jetzt wollen wir die Daten aufräumen (eng. tidy). Es ist notwendig, dass wir die Daten so aufarbeiten, dass R damit umgehen kann. Insbesondere das Erstellen von Faktoren ist wichtig, wenn die Spalte ein Faktor ist. R muss wissen was für Eigenschaften eine Spalte hat. Sonst funktionieren spätere Anwendungen in R nicht richtig oder geben einen Fehler wieder.

Es gibt zwei Möglichkeiten wie du mit deinen Daten umgehst:

- 1) Du änderst all deine Daten in Excel. Das mag bei einem kleinen Datensatz gut funktionieren. Dann musst du dich nicht mit dem *Programmieren* beschäftigen.
- 2) Du willst lernen die Daten auch in R zu verändern. Dann hilft dir dieses Kapitel. Auch in den folgenden Kapiteln werde ich immer wieder Funktionen wie select(), filter() und mutate()nutzen. Dann kannst du hier nochmal schauen, was die Funktionen machen.

Im Folgenden wollen wir den Datensatz data_tbl in R bearbeiten. Das heißt wir wollen Spalten auswählen mit select() oder Zeilen auswählen mit filter(). Schlussendlich wollen wir auch die Eigenschaften von Spalten mit der Funktion mutate ändern. Wir laden also den Datensatz flea_dog_cat.xlsx einmal in R.

```
data_tbl <- read_excel("data/flea_dog_cat_fox.xlsx")</pre>
```

Es ergibt sich folgende Tabelle ??, die wir schon aus vorherigen Kapiteln kennen.

Tabelle 12.1: Tabelle der Sprunglängen [cm], Anzahl an Flöhen, Boniturnote sowie der Infektionsstatus von Hunden, Katzen und Füchsen.

animal	jump_length	flea_count	grade	infected
dog	5.7	18	8	0
dog	8.9	22	8	1
dog	11.8	17	6	1
dog	8.2	12	8	0
dog	5.6	23	7	1
dog	9.1	18	7	0
dog	7.6	21	9	0
cat	3.2	12	7	1
cat	2.2	13	5	0
cat	5.4	11	7	0
cat	4.1	12	6	0
cat	4.3	16	6	1
cat	7.9	9	6	0
cat	6.1	7	5	0
fox	7.7	21	5	1
fox	8.1	25	4	1
fox	9.1	31	4	1
fox	9.7	12	5	1
fox	10.6	28	4	0
fox	8.6	18	4	1
fox	10.3	19	3	0

12.1 Genutzte R Pakete für das Kapitel

Wir wollen folgende R Pakete in diesem Kapitel nutzen.

```
pacman::p_load(tidyverse, readxl, magrittr, janitor)
```

Am Ende des Kapitels findest du nochmal den gesamten R Code in einem Rutsch zum selber durchführen oder aber kopieren.

12.2 Spalten wählen mit select()

YouTube - Spalten auswählen mit select()

Du findest auf YouTube Einführung in R - Teil 12 - Spalten auswählen mit select() als Video zum nochmal anschauen.

Der Datensatz, den wir im Experiment erschaffen, ist meist riesig. Jetzt könnten wir natürlich eine Exceltabelle mit unterschiedlichen Sheets bzw. Reitern erstellen oder aber die Spalten die wir brauchen in R selektieren. Wir nutzen die Funktion select() um Spalten zu wählen. Im folgenden Codeblock wählen wir die Spalten animal, jump_length und flea_count.

```
data_tbl %>%
  select(animal, jump_length, flea_count)
```

A tibble: 21 x 3

	animal	jump_length	flea_count
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	dog	5.7	18
2	dog	8.9	22
3	dog	11.8	17
4	dog	8.2	12
5	dog	5.6	23
6	dog	9.1	18
7	dog	7.6	21
8	cat	3.2	12
9	cat	2.2	13
10	cat	5.4	11
# .	with	n 11 more rov	is

Wir können die Spalten beim selektieren auch umbenennen und in eine andere Reihenfolge bringen.

```
data_tbl %>%
  select(Sprungweite = jump_length, flea_count, animal)
```

Wir nutzen die Funktion select()um Spalten zu wählen.

A tibble: 21 x 3

	Sprungweite	flea_count	animal
	<dbl></dbl>	<dbl></dbl>	<chr></chr>
1	5.7	18	dog
2	8.9	22	dog
3	11.8	17	dog
4	8.2	12	dog
5	5.6	23	dog
6	9.1	18	dog
7	7.6	21	dog
8	3.2	12	cat
9	2.2	13	cat
10	5.4	11	cat
# .	with 11 n	nore rows	

Du findest auf der englischen Hilfeseite für select() noch weitere Beispiele für die Nutzung.

12.3 Zeilen wählen mit filter()

Du findest auf YouTube Einführung in R - Teil 13 - Zeilen auswählen mit filter() als Video zum nochmal anschauen.

Während wir die Auswahl an Spalten gut und gerne auch in Excel durchführen können, so ist dies bei der Auswahl der Zeilen nicht so einfach. Wir können in R hier auf die Funktion filter() zurückgreifen. Wir nutzen die Funktion filter() um Zeilen nach Kriterien zu wählen.

Im folgenden Codeblock wählen wir die Zeilen aus in denen die Worte dog und fox stehen. Wir nutzen dazu den Operator %in% um auszudrücken, dass wir alle Einträge in der Spalte animal wollen die in dem Vektor c("dog", "fox") beschrieben sind.

```
data_tbl %>%
  filter(animal %in% c("dog", "fox"))
```

Wir nutzen die Funktion filter() um Zeilen nach Kriterien zu wählen. # A tibble: 14×5

	${\tt animal}$	jump_length	${\tt flea_count}$	grade	infected
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	dog	5.7	18	8	0
2	dog	8.9	22	8	1
3	dog	11.8	17	6	1
4	dog	8.2	12	8	0
5	dog	5.6	23	7	1
6	dog	9.1	18	7	0
7	dog	7.6	21	9	0
8	fox	7.7	21	5	1
9	fox	8.1	25	4	1
10	fox	9.1	31	4	1
11	fox	9.7	12	5	1
12	fox	10.6	28	4	0
13	fox	8.6	18	4	1
14	fox	10.3	19	3	0

Es stehen dir Folgende logische Operatoren zu Verfügung wie in Tabelle ?? gezeigt. Am Anfang ist es immer etwas schwer sich in den logischen Operatoren zurechtzufinden. Daher kann ich dir nur den Tipp geben einmal die Operatoren selber auszuprobieren und zu schauen, was du da so rausfilterst.

Tabelle 12.2: Logische Opertairen und R und deren Beschreibung

Logischer	
Operator	Beschreibung
<	kleiner als (eng. less than)
<=	kleiner als oder gleich (eng. less than or equal to)
>	größer als (eng. greater than)
>=	größer als oder gleich (eng. greater than or equal to)
==	exact gleich (eng. exactly equal to)
!=	nicht gleich (eng. not equal to)
!x	nicht (eng. $not x$)
$\mathbf{x} \mid \mathbf{y}$	oder (eng. $x \ or \ y$)
x & y	und (eng. x and y)

Hier ein paar Beispiele. Probiere gerne auch mal Operatoren selber aus. Im folgenden Codeblock wollen wir nur die Zeilen haben, die eine Anzahl an Flöhen größer von 15 haben.

```
data_tbl %>%
  filter(flea_count > 15)
```

A tibble: 13×5

animal jump_length flea_count grade infected <dbl> <dbl> <chr> <dbl> <dbl> 1 dog 5.7 18 8 0 2 dog 8.9 22 8 1 11.8 17 6 1 3 dog 5.6 23 7 4 dog 1 5 dog 9.1 18 7 0 6 dog 7.6 21 9 0 7 cat 4.3 16 6 1 5 8 fox 7.7 21 1 9 fox 8.1 25 4 1 10 fox 9.1 31 4 1 11 fox 10.6 28 4 0 4 12 fox 8.6 1 18 13 fox 10.3 19 3 0

Wir wollen nur die infizierten Tiere haben.

```
data_tbl %>%
  filter(infected == TRUE)
```

A tibble: 10×5

animal jump_length flea_count grade infected <chr>> <dbl> <dbl> <dbl> <dbl> 1 dog 8.9 22 8 1 2 dog 11.8 17 6 1 7 5.6 23 1 3 dog 4 cat 3.2 12 7 1 5 cat 4.3 16 6 1 6 fox 7.7 21 5 1 7 fox 25 4 8.1

8 fox	9.1	31	4	1
9 fox	9.7	12	5	1
10 fox	8.6	18	4	1

Wir wollen nur die infizierten Tiere haben UND die Tiere mit einer Flohanzahl größer als 20.

```
data_tbl %>%
  filter(infected == TRUE & flea_count > 20)
```

A tibble: 5 x 5 animal jump_length flea_count grade infected <chr> <dbl> <dbl> <dbl> <dbl> 1 dog 8.9 22 1 5.6 23 7 2 dog 1 3 fox 7.7 5 25 4 fox 8.1 4 1 5 fox 9.1 31 4 1

Du findest auf der englischen Hilfeseite für filter() noch weitere Beispiele für die Nutzung.

12.4 Spalten ändern mit mutate()

• YouTube - Eigenschaften von Variablen ändern mit mutate()

Du findest auf YouTube Einführung in R - Teil 14 - Eigenschaften von Variablen ändern mit mutate() als Video zum nochmal anschauen.

Nachdem wir die Spalten mit select() udn eventuell die Zeieln mit filter() gewählt haben. müssen wir jetzt noch die Eigenschaften der Spalten ändern. Das Ändern müssen wir nicht immer tun, aber häufig müssen wir noch einen Faktor erschaffen. Wir nutzen noch die Funktion pull() um uns die Spalte

Wir nutzen die Funktion mutate() um die Eigenschaften von Spalten daher Variablen zu ändern.

Die Reihenfolge der Funktionen ist wichtig um unliebsame Effekte zu vermeiden.

- 1) Erst wählen wir die Spalten mit select()
- Dann filtern wir die Zeilen mit filter()
- Abschließend ändern wir die Eigenschaften der Spalten mit mutate()

animal aus dem Datensatz zu ziehen. Nur so sehen wir die vollen Eigenschaften des Faktors. Später nutzen wir pull seltener und nur um zu kontrollieren, was wir gemacht haben.

Im folgenden Codeblock verwandeln wir die Variable animal in einen Faktor durch die Funktion as_factor. Wir sehen, dass die Level des Faktoes so sortiert sind, wie das Auftreten in der Spalte animal.

```
data_tbl %>%
  mutate(animal = as_factor(animal)) %>%
  pull(animal)
```

[1] dog dog dog dog dog dog cat cat cat cat cat cat cat fox fox fox fox [20] fox fox

Levels: dog cat fox

Wollen wir die Sortierung der Level ändern, können wir die Funktion factor() nutzen. Wir ändern die Sortierung des Faktors zu fox, dog und cat.

```
data_tbl %>%
  mutate(animal = factor(animal, levels = c("fox", "dog", "cat"))) %>%
  pull(animal)
```

[1] dog dog dog dog dog dog cat cat cat cat cat cat cat fox fox fox fox [20] fox fox

Levels: fox dog cat

Wir können auch die Namen (eng. *labels*) der Level ändern. Hier musst du nur aufpassen wie du die alten Labels überschreibst. Wenn ich *gleichzeitig* die Level und die Labels ändere komme ich häufig durcheinander. Da muss du eventuell nochmal schauen, ob auch alles so geklappt hat wie du wolltest.

```
data_tbl %>%
  mutate(animal = factor(animal, labels = c("Hund", "Katze", "Fuchs"))) %>%
  pull(animal)
```

[1] Katze Katze Katze Katze Katze Katze Hund Hund Hund Hund [13] Hund Hund Fuchs Fuchs Fuchs Fuchs Fuchs Fuchs Levels: Hund Katze Fuchs

Du findest auf der englischen Hilfeseite für mutate() noch weitere Beispiele für die Nutzung. Insbesondere die Nutzung von mutate() über mehrere Spalten gleichzeitig erlaubt sehr effiezientes Programmieren. Aber das ist für den Anfang etwas viel.

Die Funktionen select(), filter() und mutate() in R

Bitte schaue dir auch die Hilfeseiten der Funktionen an. In diesem Skript kann ich nicht alle Funktionalitäten der Funktionen zeigen. Oder du kommst in das R Tutorium welches ich anbiete und fragst dort nach den Möglichkeiten Daten in R zu verändern.

12.5 Gruppieren mit group_by()

Sobald wir einen Faktor erschaffen haben, können wir die Daten in R auch nach dem Faktor gruppieren. Das heißt wir nutzen die Funktion group_by() um R mitzuteilen, dass nun folgende Funktionen getrennt für die einzelen Gruppen erfolgen sollen. Im folgenden Codeblock siehst du die Anwendung.

```
data_tbl %>%
  mutate(animal = as_factor(animal)) %>%
  group_by(animal)
```

A tibble: 21 x 5
Groups: animal [3]

	${\tt animal}$	jump_length	flea_count	grade	${\tt infected}$
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	dog	5.7	18	8	0
2	dog	8.9	22	8	1
3	dog	11.8	17	6	1
4	dog	8.2	12	8	0
5	dog	5.6	23	7	1

6	dog	9.1	18	7	0
7	dog	7.6	21	9	0
8	cat	3.2	12	7	1
9	cat	2.2	13	5	0
10	cat	5.4	11	7	0

... with 11 more rows

Auf den ersten Blick ändert sich nicht viel. Es entsteht aber die Zeile # Groups: animal [3]. Wir wissen nun, dass wir nach der Variable animal mit drei Gruppen die Datentabelle gruppiert haben. Die Anwendung siehst du in Kapitel ?? bei der Berechung von deskriptiven Maßzahlen.

12.6 Mehr Informationen durch glimpse() und str()

Am Ende noch zwei Funktionen zur Kontrolle, was wir hier eigentlich gerade tun. Mit der Funktion glimpse() können wir uns einen Einblick in die Daten geben lassen. Wir sehen dann nochmal kurz und knapp wieviel Zeieln und Spalten wir haben und welche Inhalte in den Spalten stehen. Die gleichen Informationen erhalten wir auch durch die Funktion str(). Die Funktion str()geht aber noch einen Schritt weiter und nennt uns auch Informationen zu dem Objekt. Daher wir wissen jetzt, dass es sich beim dem Objekt data_tbl um ein tibble() handelt.

```
glimpse(data_tbl)
```

str(data_tbl)

```
tibble [21 x 5] (S3: tbl_df/tbl/data.frame)

$ animal : chr [1:21] "dog" "dog" "dog" "dog" ...

$ jump_length: num [1:21] 5.7 8.9 11.8 8.2 5.6 9.1 7.6 3.2 2.2 5.4 ...

$ flea_count : num [1:21] 18 22 17 12 23 18 21 12 13 11 ...

$ grade : num [1:21] 8 8 6 8 7 7 9 7 5 7 ...

$ infected : num [1:21] 0 1 1 0 1 0 0 1 0 0 ...
```

Teil III Explorative Datenanalyse

Wir haben die Daten jetzt in R Eingelesen und im Zweifel noch angepasst. Nun wollen wir uns die Daten einmal angucken. Nicht in dem Sinne, dass wir auf die Datentabelle schauen. Sondern wir wollen die Daten visualisieren. Wir erstellen Abbildungen von den Daten und versuchen so mehr über die Daten zu erfahren. Sehen wir Zusammenhänge zwischen verschiedenen Variablen bzw. Spalten? Wir führen eine explorative Datenanalyse durch. Über die exploratibve Datenanalyse wollen wir uns in diesem Kapitel einmal Gedanken machen.

Per Video

Du findest auf YouTube Grundlagen in R als Video Reihe. Du musst die Grundlagen in R verstanden haben, damit du dem R Code folgen kannst.

Wir kürzen die explorative Datenanalyse häufig als EDA ab.

13 Deskriptive Statistik

Wir nutzen die deskriptive Statistik um Zahlen zusammenzufassen. Das heißt wir haben einen Datensatz vorliegen wie den Datensatz flea_dog_cat.xlsx. Wir wollen jetzt den großen Datensatz in wenige Zahlen wiedergeben. Warum wenige Zahlen? Wenn wir das Ergebnis präsentieren wollen, dann müssen es wenige Zahlen sein, die den Datensatz gut zusammenfassen. Daher ist es wichtig zu wissen, dass wir dutzende bis hunderte Zahlen durch meist eine oder zwei Zahlen beschreiben wollen. Wir brauchen die statistischen Maßzahlen aus diesem Kapitel später um teilweise noch extrem größere Datensätze darstellen zu können. Ebenso werden wir die Maßzahlen aus diesem Kapitel dafür verwenden statistische Tests und Modelle zu rechnen.

Nehmen wir nun als Beispiel die Sprungweiten in [cm] von Hundeflöhen. Wir messen sieben Sprungweiten von sieben Hundeflöhen und messen dabei folgende Werte in [cm]: 5.7, 8.9, 11.8, 8.2, 5.6, 9.1 und 7.6. Wir schreiben nun y als einen Vektor in der Form

$$y = \{5.7, 8.9, 11.8, 8.2, 5.6, 9.1, 7.6\}.$$

In R würde der Vektor wie etwas anders aussehen.

```
y <- c(5.7, 8.9, 11.8, 8.2, 5.6, 9.1, 7.6)
```

Wir wollen nun die Zahlen in y beschrieben und durch wenige andere Zahlen zusammenfassen. Einige der statistischen Maßzahlen sind dir vermutlich schon bekannt, andere eher neu.

Eigentlich schätzen wir die **Parameter einer Verteilung**. Aber das kommt nochmal später genauer, wenn wir wissen was Verteilungen sind.

i Parametrik versus Nicht-Parametrik

Wenn wir einen Zahlenvektor wie durch $y = \{5.7, 8.9, 11.8, 8.2, 5.6, 9.1, 7.6\}$ beschrieben zusammenfassen wollen, haben wir zwei Möglichkeiten.

- 1) Die **parametrische Variante** indem wir *mit den Zahlen* rechnen und deskriptive Maßzahlen wie Mittelwert, Varianz und Standardabweichung berechnen. Diese Maßzahlen kommen aber in den Zahlen nicht vor.
- 2) Die **nicht-parametrische** Variante indem wir die Zahlen in Ränge umwandeln, also sortieren, und *mit den Rängen* der Zahlen rechnen. Die deskriptiven Maßzahlen wären dann Median, Quantile und Quartile.

13.1 Mittelwert

Der Mittelwert einer Zahlenreihe beschreibt den Schwerpunkt der Zahlen. Der Mittelwert wird auch als Lageparameter benannt. Wir schreiben den Mittelwert mit einem Strich über den Vektor, der die Zahlen enthält. Im folgenden ist die Formel für den Mittelwert der Sprungweite in [cm] der Hunde gezeigt. Der Mittelwert ist in dem Sinne eine künstliche Zahl, da der Mittlwert häufig nicht in den beobachteten Zahlen vorkommt.

Wir werden immer mal wieder **Formeln vereinfachen**. Zum Beispiel nur \sum schreiben anstatt \sum_{i}^{n} , wenn wir einen Vektor aufsummieren und uns die Indizes sparen...

$$\bar{y} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{5.7 + 8.9 + 11.8 + 8.2 + 5.6 + 9.1 + 7.6}{7} = 8.13$$

Im Durchschnitt oder im Mittel springen Hundeflöhe 8.13 cm weit.

Der Mittelwert und der M sind zwei Lageparameter ein Verteilung. Beide beschreiber telle, wo die Verteilungskur öchsten ist. In der Abbildung \ref{Model} wollen wir die Formel nochmal visualisieren. Vielleicht fällt dir dann der Zusammenhang von dem Index i und der gesamten Fallzahl n leichter.

Abbildung 13.1: Zusamenhang zwischen y sowie dem Index i in der Formel für den Mittelwert.

In R können wir den Mittelwert einfach mit der Funktion mean() berechnen. Wir wollen dann den Mittelwert noch auf die zweite Kommastelle runden. Das machen wir dann mit der Funktion round().

[1] 8.13

Wir erhalten das gleiche Ergebnis wie oben in unserer händischen Rechnung. Die Hundeflöhe springen im Mittel 8.13 cm weit.

Der Mittelwert ist eine bedeutende Maßzahl der Normalverteilung. Daher merken wir uns hier schon mal, dass wir den Mittelwert brauchen werden. Auch wenn wir darüber nachdenken ob sich zwei Gruppen unterscheiden, so nutzen wir hierzu den Mitelwert. Unterscheiden sich die *mittleren* Sprungweiten in [cm] von Hunde- und Katzenflöhen?

13.2 Spannweite

Die Spannweite erlaubt uns zu überprüfen was die kleinste Zahl und die größte Zahl ist. Also uns das Minimum und das Maximum einer Zahlenreihe anzuschauen. Auf den ersten Blick mag das nicht so sinnig sein, aber wenn wir uns hunderte von Beobachtungen anschauen, wollen wir wissen, ob wir nicht einen Fehler bei Eintragen der Daten gemacht haben. Wir wissen eigentlich, dass z.B keine negativen Zuwachsraten auftreten können.

$$y_{range} = y_{max} - y_{min} = 12.1 - 4.9 = 7.2 \label{eq:yrange}$$

Die Hundeflöhe springen in einer Spannweite von 7.2 cm. Das kommt einem *normal* vor. Die Spannweite ist nicht übertrieben groß. Der minimale Wert ist 4.9 und der maximale Wert it 12.1 und somit sind beide Zahlen in Ordnung. Keine der beiden Zahlen ist übertrieben groß oder gar negativ.

In R können wir die Spannweite mit range() wie folgt berechnen. Wir erhalten den minmialen udn maximalen Wert.

[1] 5.6 11.8

Wir merken uns, dass die Spannweite eine Maßzahl für die Validität der Daten ist. Hat das Experiment geklappt oder kamen da nur komische Zahlen bei raus, die wir so in der Realität nicht erwarten würden. Zum Beispiel negative Sprungweiten, weil wir einmalauf das Minuszeichen gekommen sind.

13.3 Varianz

Bis jetzt können wirmit dem Mittelwert \bar{y} die Lage oder den Mittelpunkt unserer Zahlenreihe beschreiben. Uns fehlt damit aber die Information über die Streuung der Zahlen. Sind die Zahlen alle eher gleich oder sehr verschieden? Liegen die Zahlen

Die Spannweite dient dazu in einem Datensatz zu übersprüfen ob die Spalte, oder auch Variable genannt, den richtigen Zahlenraum aufweist. Das machen wir durch die Funktion range().

daher alle bei dem Mittelwert oder sind die Zahlen weit um den Mittelwert gestreut.

Die Streuung der Zahlen um den Mittelwert beschreibt die Varianz oder auch s^2 . Wir berechnen die Varianz indem wir von jeder Zahl den Mittelwert aller Zahlen abziehen und dann das Ergebnis quadrieren. Das machen wir für alle Zahlen und addieren dann die Summe auf. Wir erhalten die Quadratsumme von y.

$$s^2 = \sum_{i=1}^{n} \frac{(y_i - \bar{y})^2}{n - 1} = \frac{(5.7 - 8.13)^2 + \dots + (7.6 - 8.13)^2}{7 - 1} = 4.6$$

Die Varianz berschreibt also die Streuung der Zahlen im Quadrat um den Mittelwert. Das heißt in unserem Beispiel, dass die Sprungweite eine Varianz von 4.6 cm² hat. Wir können Quadratzentimeter schlecht interpretieren. Deshalb führen wir gleich die Wuzel der Varianz ein: die Standardabweichung.

In R lässt sich die Varianz einfach durch die Funktion var () berechnen.

[1] 4.6

Wir benötigen die Varianz häufig nur als Zwischenschritt um die Standardabweichung zu berechnen. Das Konzept der Abweichungsquadrate benötigen wir aber in der Varianzanalyse (ANOVA) und für die Beschreibung einer Normalverteilung.

13.4 Standardabweichung

Die Standardabweichugn ist die Wurzel der Varianz. Wo die Varianz die Abweichung der Sprungweite in [cm²] beschreibt, beschreibt die Standardabweichung die Streung der Sprungweite in [cm].

Abweichungsquadrate sind ein wichtiges Konzept in der Statistik. Wenn wir wissen wollen, wie groß eine Abweichung von einer Zahl zu einer anderen ist, dann nutzen wir immer das Quadrat der Abweichung und bilden die Quadratsumme..

$$s = \sqrt{s^2} = \sqrt{4.6} = 2.14$$

Wir können also schreiben, dass die Flöhe im Mittel 8.13 \pm 2.14cm weit springen. Somit haben wir die Lage und die Streuung der Zahlenreihe y der Sprungweite in [cm] mit zwei Zahlen beschrieben.

In R können wir die Standardabweichung einfach mit der Funktion sd() berechnen.

[1] 2.14

13.5 Mittelwert und Varianz - eine Herleitung

Was ist der Mitelwert und die Varianz genau? Schauen wir uns das einmal in Abbildung \ref{Model} an. Die graue Linie oder Grade beschreibt den Mittelwert der fünf Beobachtungen. Die fünf Beobachtungen sind als blaue Punkt dargestellt. Auf der x-Achse ist nur der Index des Punktes. Das heißt y_1 ist der erste Punkte, das der Index i gleich 1 ist.

Wenn wir die Summe der Abweichungen von y_1 bis y_5 zu dem Mittelwert bilden, so wird diese Summe 0 sein. Der Mittelwert liegt genau in der Mitte der Punkte. In unserem Beispiel ist der Mittelwert $\bar{y}=5.8$. Wi können jetzt die Abstände wie in der folgenden Tabelle berechnen.

Wir nennen die Abstände $y_i - \bar{y}$ nach dem griechischen Buchstaben Epsilon ϵ . Das ϵ soll an das e von Error erinnern. So meint dann Error eben auch Abweichung. Ja, es gibt hier viele Worte für das gleiche Konzept.

Wir berechnen einen Mittelwert von den Epsilons mit $\bar{\epsilon} = 0$. Ein Mittelwert nahe Null bzw. von Null wundert uns nicht. Wir haben die Gerade ja so gebaut, das nach oben und unten Wir schreiben immer den Mittelwert plusminus die Standardabweichung. Also immer $\bar{y} \pm s$.

Abbildung 13.2: Die graue Linie beschreibt den Mittelwert der genau so durch die blauen Punkte geht, dass die Abstände der Punkte oberhalb und unterhalb zu Null aufaddieren. Die Linie liegt in der Mitte der Punkte. Die quadrierten Abstände sind die Varainz der blauen Punkte. Auf der x-Achse ist der Index des Punktes eingetragen.

Index				
i	У	ϵ	$y_i - \bar{y}$	Wert
1	5.7	ϵ_1	$y_1 - \bar{y}$	5.7 - 8.13 =
2	8.9	ϵ_2	$y_2 - \bar{y}$	$-2.43 \\ 8.9 - 8.13 = \\ 0.77$
3	11.8	ϵ_3	$y_3 - \bar{y}$	11.8 - 8.13 = 3.67
4	8.2	ϵ_4	$y_4 - \bar{y}$	8.2 - 8.13 = 0.07
5	5.6	ϵ_5	$y_5 - \bar{y}$	5.6 - 8.13 =
6	9.1	ϵ_4	$y_4 - \bar{y}$	-2.53 $9.1 - 8.13 =$
7	7.6	ϵ_5	$y_5 - \bar{y}$	0.97 $7.6 - 8.13 =$
				-0.53

die gleichen Abstände sind. Die Varianz s^2 der y ist $s_y^2 = 4.599$ und die Varianz von ϵ ist $s_\epsilon^2 = 4.599$. In beiden Fällen ist die Zahl gleich. Wir können uns merken, dass die Epsilons einen Mittelwert von 0 haben und eine Varianz von s_y^2 .

13.6 Standardfehler oder Standard Error (SE)

Wenn wir den Mittelwert der Sprungweiten berichten dann gehört die Standardabweichung der Sprungweiten mit als beschreibendes Maß dazu. Wir berichten keinen Mittelwert ohne Standardabweichung.

Nun ist es aber so, dass der Mittelwert und die Standardabweichung von der Fallzahl abhängen. Je mehr Fallzahl bzw. Beoabchtungen wir haben, desto genauer wird der Mittelwert sein. Oder anders ausgedrückt \bar{y} wird sich μ_y annähern. Das gleiche

Wir schreiben auch, dass die Residuen genannt ϵ normalverteilt sind mit $\mathcal{N}(0, s_y^2)$.

gilt auch für die Standardabweichung s_y , die sich σ_y mit steigender Fallzahl annähert.

Aus diesem Grund brauchen wir noch einen Fehler bzw. eine Maßzahl für die Streuung, die unabhängig von der Fallzahl ist. Wir skalieren also die Standardabweichung mit der Fallzahl indem wir die Standardbweichung durch die Wurzel der Fallzahl teilen.

$$SE = \frac{s}{\sqrt{n}} = \frac{2.14}{2.65} = 0.81$$

Wir müssten ein Paket in R laden um den Standardfehler zu berechnen. Das Laden von zusätzlichen Paketen wollen wir hier aber vermeiden; wir können den Standardfehler auch einfach selber berechnen.

```
se <- sd(y)/sqrt(length(y))
se %>% round(2)
```

[1] 0.81

Wir erhalten einen Standardfehler von 0.81. Diese Zahl ist in dem Sinne nicht zu interpretieren, da wir hier nur Experimente losgelöst von deren Fallzahl miteinander vergleichen können. Auf der anderen Seite können wir ohne die berichtete Fallzahl nicht vom Standardfehler auf die Standardabweichung schließen

Wir benötigen den Standardfehler eigentlich nicht zum Berichten von Ergebnissen. Der Standardfehler ist nicht als Zahl interpretierbar und somit eine reine statistische Größe. Tabelle ?? zeigt die Zusammenfassung und den Vergleich von Standardabweichung und Standardfehler.

Wir berichten den **Standardfehler** immer zusammen mit der Fallzahl, so dass die Standardabweichung berechnet werden kann.

Tabelle 13.2: Zusammenfassung und Vergleich von Standardabweichung und Standardfehler

Standardabweichung	Standardfehler
ist eine Aussage über die Streuung der erhobenen Werte einer Stichprobe. hängt von der biologischen Variabilität ab. ist ein beschreibendes Maß.	ist eine Aussage über die Genauigkeit des Mittelwertes einer Stichprobe. abhängig von der Messgenauigkeit ist ein statistisches Maß.
ist ein beschreibendes Maß ist nur wenig durch die Größe der Stichprobe beineinflussbar.	steht im direkten Verhältnis zur Größe der Stichprobe.

i Standardfehler wird in der Metaanalyse genutzt

Der Standardfehler ist bedeutend in der Metaanalyse. Also dem gemeinsamen Auswerten von mehreren klinischen Studien. Du kannst im Buch Doing Meta-Analysis with R: A Hands-On Guide mehr darüber erfahren. Wir nutzen keine Metaanalysen in den Grundlagenveranstaltungen.

13.7 Median

Wir wollen uns jetzt noch eine andere Art der Zusammenfassung von Zahlen anschauen. Anstatt mit den Zahlen zu rechnen, sortieren wir jetzt die Zahlen aus dem Vektor $y = \{5.7, 8.9, 11.8, 8.2, 5.6, 9.1, 7.6\}$ nach dem Rang. Wir rechnen dann mit den $R\ddot{a}ngen$. Die kleinste Zahl kriegt den kleinsten Rang. Wir können R nutzen über due Funktion sort () um den Vektor y zu sortieren.

[1] 5.6 5.7 7.6 8.2 8.9 9.1 11.8

Der Standardfehler oder Standard Error (SE) oder Standard Error of the Mean (SEM) wird uns wieder beim statistischen Testen und dem t-Test begegnen.

$$T_{calc} = \frac{\bar{y_1} - \bar{y_2}}{s_p \cdot \sqrt{\frac{2}{n}}} \approx \frac{\bar{y_1} - \bar{y_2}}{SEM}$$

Der Nenner beim t-Test kann als Standardfehler gesehen werden. Wir benötigen den Standardfehler also im Kontext des statistischen Testen als eine statististische Maßzahl. Der Median \tilde{y} ist die mittlere Zahl eines Zahlenvektors. Wir haben hier sieben Zahlen, also ist der Median die vierte Zahl. Wir müssen hier aber zwischen einr ungeraden Anzahl und einer geraden Anzahl unterscheiden.

• Ungerade Anzahl von Zahlen, der Median ist die mittlere Zahl des Vektors y:

$$5.6, 5.7, 7.6, \underbrace{8.2,}_{Median} 8.9, 9.1, 11.8$$

In R können wir den Median einfach mit der Funktion median() berechnen.

```
median(y)
```

[1] 8.2

• Gerade Anzahl von Zahlen, der Median ist der Mittelwert der beiden mittleren Zahlen des Vektors y:

$$\underbrace{8.2, 8.9,}_{Median = \underbrace{8.2 + 8.9}_{2} = 8.55} 9.1, 11.8, 13.1$$

In R können wir den Median wieder einfach mit der Funktion median() berechnen. Wir müssen nur die Zahl 13.1 zu dem Vektor y mit der Funktion c() hinzufügen.

[1] 8.55

Der Median ist eine Alternative zu dem Mitelwert. Insbesondere in Fällen, wo es sehr große Zahlen gibt, die den Mittelwert in der Aussage *verzerren*, kann der Median sinnvoll sein.

Wenn der Mittelwert stark von dem Median abweicht, deutet dies auf eine schiefe Verteilung oder aber Ausreißer in den Daten hin. Wir müssen dann in der explorativen Datenanalyse der Sachlage nachgehen

Median versus Mittelwert

Zur Veranschaulichung des Unterschiedes zwischen Median und Mittelwert nehmen wir die Mietpreise in New York. Der *mittlere* Mietpreis für eine 2-Zimmerwohnung in Manhattan liegt bei 5000\$ pro Monat. In den *mittleren* Mietpreis gehen aber auch die Mieten der Billionaires' Row mit ein. Der *mediane* Mietpreis liegt bei 4000\$. Die hohen Mieten *ziehen* den Mittelwert nach rechts.

13.8 Quantile und Quartile

Bei dem Mittelwert beschreibt die Standardabweichung die Streuung der Daten um den Mitelwert. Bei dem Median sind dies die *Quartile*. Die Quartile beschreiben die Streuung der Daten um den Median. Um die Quartile bestimmen zu können, teilen wir die Daten in 100 Quantile. Du kannst dir Quantile wie Prozente vorstellen. Wir schneiden die Daten also in 100 Scheiben. Das geht natürlich erst wirklich, wenn wir hundert Zahlen haben. Deshalb hilft man sich mit Quartilen - von Quarta, ein Viertel - aus. Tabelle ?? zeigt den Zusammenhang.

Tabelle 13.3: Zusammenfassung und Vergleich von Quantilen, Quartilen und Median

Quantile	Quartile	Median
25% Quantile 50% Quantile 75% Quantile	1^{st} Quar 2^{nd} Quar 3^{rd} Quar	tile Median

Wir bestimmen die Quartile wie den Median. Wir müssen unterscheiden, ob wir eine ungerade Anzahl an Zahlen oder eine gerade Anzahl an Zahlen vorliegen haben.

• Ungerade Anzahl von Zahlen, das 1^{st} Quartile ist die mittlere Zahl des unteren Mittels und das 3^{rd} Quartile ist

die mittlere Zahl des oberen Mittels des Vektors y:

$$5.6, \underbrace{5.7,}_{1st}\underbrace{7.6, 8.2, 8.9,}_{3rd}\underbrace{9.1,}_{Quartile}11.8$$

• Gerade Anzahl von Zahlen, das 1^{st} Quartile ist der Mittelwert der beiden mittleren Zahl des unteren Mittels und das 3^{rd} Quartile ist der Mitelwert der beiden mittleren Zahlen des oberen Mittels des Vektors y:

$$5.6, \underbrace{5.7, 7.6}_{1st\ Quartile = \underbrace{5.7 + 7.6}_{2} = 6.65} 8.2, 8.9, \underbrace{9.1, 11.8}_{3rd\ Quartile = \underbrace{9.1 + 11.8}_{2} = 10.45} 13.1$$

In R können wir den Median einfach mit der Funktion quantile() berechnen. Wir berechnen hier das 25% Quantile also das 1^{st} Quantile sowie das 50% Quantile also den Median und das 75% Quantile also das 3^{rd} Quartile.

```
y %>% quantile(probs = c(0.25, 0.5, 0.75)) %>% round(2)
```

25% 50% 75% 6.65 8.20 9.00

```
c(y, 13.1) %>% quantile(probs = c(0.25, 0.5, 0.75)) %>% round(2)
```

25% 50% 75% 7.12 8.55 9.77

Warum unterscheiden sich die händisch berechneten Quartile von den Quartilen aus R? Es gibt verschiedene Arten der Berechnung. In der Klausur nutzen wir die Art und Weise wie die händische Berechnung hier beschrieben ist. Später in der Anwendung nehmen wir die Werte, die R ausgibt. Die Abweichungen sind so maginal, dass wir diese Abweichungen in der praktischen Anwendung ignorieren wollen.

Das 95% Quantile und das 97.25% Quantile werden wir später nochmal im statistischen Testen brauchen. Auch hier ist die Idee, dass wir die Daten in hundert Teile schneiden und uns dann die extremen Zahlen anschauen.

13.9 Interquartilesabstand (IQR)

Der Interquartilesabstand (IQR) beschreibt den Abstand zwischen dem 1^{st} Quartile und dem 3^{rd} Quartile. Daher ist der Interquartilesabstand (IQR) ähnlich der Spannweite zwischen dem maximalen und minimalen Wert. Wir benötigen das Interquartilesabstand (IQR) in der explorativen Datenanalyse wenn wir einen Boxplot erstellen wollen.

$$IQR = 3^{rd}$$
 Quartile -1^{st} Quartile $=9.1-5.7=3.4$

13.10 Zusammenfassen von Daten per Faktor

Gut und soll ich jetzt für jeden Faktorlevel überall den Mittelwert mit mean() berechnen? Geht das nicht einfacher? Ja, geht es. Im folgenden siehst du, wie du den verschiedene deskriptive Maßzahlen in einem Rutsch berechnen kannst.

```
data_tbl %>%
    mutate(animal = as_factor(animal)) %>%
    group_by(animal) %>%
    summarise(mean = mean(jump_length),
              sd = sd(jump_length),
              median = median(jump_length),
               quantiles = quantile(jump length,
                                    probs = c(0.25, 0.5, 0.75))) \%
    mutate(across(where(is.numeric), round, 2))
# A tibble: 6 x 5
            animal [2]
# Groups:
                  sd median quantiles
  animal
         mean
  <fct>
         <dbl> <dbl>
                      <dbl>
                                 <dbl>
1 dog
          8.13
               2.14
                        8.2
                                  6.65
          8.13
                2.14
                        8.2
                                  8.2
2 dog
          8.13 2.14
                        8.2
                                  9
3 dog
4 cat
          4.74 1.9
                        4.3
                                  3.65
```

5 cat 4.74 1.9 4.3 4.3 6 cat 4.74 1.9 4.3 5.75

14 Visualisierung von Daten

Ein wichtiger Teil in der Analyse von Daten ist die Visualisierung. Wir glauben keine Auswertung eines mathematischen Algorithmus, wenn wir nicht die Bestätigung in einer Abbildung sehen. Daher ist die Visualisierung die Grundlage für ein fundiertes, wissenschaftliches Arbeiten. In diesem Kapitel stelle ich dir verschiedene Abbilungen vor, die uns helfen werden zu Verstehen ob es einen Zusammenhang zwischen Y und X gibt. Wir haben ein y vorliegen, was wir auf die y-Achse eines Graphen legen und daneben dann mehrere Variablen bzw. Spalten die wir x nennen. Eine der Variablen legen wir auf die x-Achse des Graphen. Nach den anderen x färben wir die Abbildung ein.

14.1 Genutzte R Pakete für das Kapitel

Wir wollen folgende R Pakete in diesem Kapitel nutzen.

Am Ende des Kapitels findest du nochmal den gesamten R Code in einem Rutsch zum selber durchführen oder aber kopieren.

14.2 Grundlagen in ggplot()

Wir nutzen in R das R Paket ggplot2 um unsere Daten zu visualisieren. Die zentrale Idee von ggplot2 ist, dass wir uns eine Abbildung wie ein Sandwich bauen. Zuerst legen wir eine Scheibe Brot hin und legen uns dann Scheibe für Scheibe weitere Schichten übereinander. Oder die Idee eines Bildes, wo

Wir nennen eine Abbildung auch häufig Plot. Das ist der englische Begriff und hat nichts in unserem Kontext mit einer Fläche zu tun.

Im Gegensatz zu dem Pipe-Operator %>% nutzt ggplot den Operator + um die verschiedenen ggplot Funktionen (geom_) miteinander zu verbinden.

wir erst die Leinwand definieren und dann Farbschicht über Farbschicht auftragen. Das Konzept von ggplot2ist schlecht zu beschreiben deshalb habe ich auch noch zwei Videos hierfür gemacht. Um den Prozess von ggplot2 zu visualisieren...

Grundlagen von ggplot() im Video

Du findest auf YouTube Einführung in R - Teil 16.0 - Trockenübung ggplot2 simpel und einfach erklärt als Video. Sowie auch auf YouTube Einführung in R - Teil 16.1 - Abbildungen mit ggplot in R erstellen. Idee und Konzept von ggplot als Video. Also alles nochmal als Video - vielleicht einfacher nachzuvollziehen als in einem Fließtext.

Die Funktion ggplot() ist die zentrale Funktion, die die Leinwand erschafft auf der wir dann verschiedene Schichten aufbringen werden. Diese Schichten heißen geom. Es gibt nicht nur ein geom sondern mehrere. Zum Beispiel das geom_boxplot für die Erstellung von Boxplots, das geom_histogram für die Erstellung von Histogrammen. Die Auswahl ist riesig. Die einzelnen Schichten werden dann über den Operator + miteinander verbunden. Soviel erstmal zur Trockenübung. Schauen wir uns das ganze einmal an einem Beispiel an.

14.2.1 Datenbeispiel

Wir importieren den Datensatz flea_cat_dog.xlsx und wollen einzelne Variablen visualisieren. Wir kennen den Datensatz schon aus dem Kapitel ??. Dennoch nochmal hier der Datensatz in Tabelle??.

```
flea_dog_cat_tbl <- read_excel("data/flea_dog_cat.xlsx") %>%
 mutate(animal = as factor(animal))
```

Im folgenden ist es wichtig, dass du dir die Spaltennamen merkst. Wir können nur die exakten, wortwörtlichen Spaltennamen verwenden. Sonst erhalten wir einen Fehler. Deshalb haben wir auch keine Leerzeichen in den Spaltennamen.

Spaltennamen sind in Englisch und haben keine Leerzeichen. Die Funktion clean_names() aus dem R Paket janitor ist hier eine Hilfe.

Tabelle 14.1: Beispieldatensatz für Eigenschaften von Flöhen von zwei Tierarten.

animal	$jump_length$	$flea_count$	grade	infected
dog	5.7	18	8	0
dog	8.9	22	8	1
dog	11.8	17	6	1
dog	8.2	12	8	0
dog	5.6	23	7	1
dog	9.1	18	7	0
dog	7.6	21	9	0
cat	3.2	12	7	1
cat	2.2	13	5	0
cat	5.4	11	7	0
cat	4.1	12	6	0
cat	4.3	16	6	1
cat	7.9	9	6	0
cat	6.1	7	5	0

14.2.2 Erste Abbildung in ggplot()

Der folgende R Code erstellt die Leinwand in der Abbildung?? für die folgende, zusätzliches Schichten (geom).

```
ggplot(data = flea_dog_cat_tbl,
    aes(x = animal , y = jump_length))
```

Wir schauen uns einmal den Code im Detail an.

- ggplot ruft die Funktion auf. Die Funktion ist dafür da den Plot zu zeichnen.
- data = flea_dog_cat_tbl bennent den Datensatz aus dem der Plot gebaut werden soll.
- aes()ist die Abkürzung für aesthetics und beschreibt, was auf die x-Achse soll, was auf die y-Achse soll sowie ob es noch andere Faktoren in den Daten gibt.
 - x braucht den Spaltennamen für die Variable auf der x-Achse.

 y braucht den Spaltennamen für die Variable auf der y-Achse.

Abbildung 14.1: Leere ggplot() Leinwand mit den Spalten animal und jump_length aus dem Datensatz flea_dog_cat_tbl.

Wir sehen, dass wir nichts sehen in Abbildung ??. Der Grund ist, dass wir noch kein geom hinzugefügt haben. Das geom beschreibt nun wie die Zahlen in der Datentabelle flea_dog_cat_tbl visualisiert werden sollen.

14.3 Häufig verwendete Abbildungen

In diesem Kapitel wollen wir durch die häufigsten und wichtigsten Abbildungen in der explorativen Datenanalyse durchghen. Das wären im folgenden diese Abbildungen:

• **Histogramm** in Kapitel ?? für mehr als 20 Beobachtungen (pro Gruppe). Wir nutzen ein Histogramm um die Verteilung einer Variable zu visualisieren.

Faktoren meint hier andere Gruppenvariablen. Variablen sind ein anderes Wort für Spalten. Also Variablen die wir mit as_factorerschaffen haben.

- Boxplot in Kapitel ?? für 5 bis 20 Beobachtungen (pro Gruppe). Ebenso wie bei einem Histogramm, geht es bei einem Boxplot auch um die Verteilung der einer Variable.
- **Dotplot** in Kapitel ?? für 3 bis 5 Beobachtungen (pro Gruppe). Hier geht es weniger um die Verteilung der Variable, sondern darum die wenigen Beobachtungen zu visualisieren.
- Scatterplot in Kapitel ?? für zwei kontinuierliche Variablen. Auch xy-Plot genannt. Die Abbildung, die dir bekannt sein müsste. Wir zeichnen hier eine Grade durch eine Punktewolke.
- Mosaicplot in Kapitel ?? für zwei diskrete Variablen. Eine etwas seltene Abbildung, wenn wir Variablen abbilden wollen, die diskret sind bzw. aus Kategorien bestehen.

• Histogramm, Boxplot, Scatterplot und Mosaicplot im Video

Du findest auf YouTube Einführung in R - Teil 16.2 - Histogramm, Boxplot, Scatterplot und Mosaicplot mit ggplot in R als Video. Weitere Videos werden dann noch folgen und ergänzt.

14.3.1 Histogramm

Wir nutzen für die Erstellung eines Histogramms den Datensatz dog_fleas_hist.csv. Wir brauchen für ein anständiges Histogramm, wo du auch was erkennen kannst, mindestens 20 Beobachtung. Am besten mehr noch mhr Beobachtungen. Deshalb schauen wir uns jetzt einmal 39 Hunde an und zählen wieviele Flöhe die Hunde jeweils haben, dargestellt in der Spalteflea_count. Darüber hinaus bestimmen wir auch noch das mittlere Gewicht der Flöhe auf dem jeweiligen Hund, dargestellt in der Spalte flea_weight.

```
dog_fleas_hist_tbl <- read_csv("data/dog_fleas_hist.csv")</pre>
```

Konkret ist eine **Variable** gleich einer **Spalte** in einem Datensatz.

Tabelle 14.2: Beispieldatensatz für die Anzahl an Flöhen auf 39 Hunden. Gezählt wurde die Anzahl an Flöhen flea_count und das gemittelte Gewicht der Flöhe flea_weight.

flea_count	flea_weight
0	0.00
1	7.43
4	21.04
2	20.07
1	21.90
0	0.00
2	24.96
1	27.08
5	16.58
1	19.92
0	0.00
0	0.00
2	24.63
4	21.64
3	20.97
1	23.15
0	0.00
3	14.91
1	19.39
2	17.66
1	19.15
1	25.10
2	26.38
2	19.33
2	13.29
1	17.81
0	0.00
2	23.56
1	18.64
1	15.64
3	19.88
1	18.40
1	25.17
0	0.00

flea_count	flea_weight
0	0.00

Tabelle ?? zeigt den Datensatz dog_fleas_hist.csv. Wir wollen jetzt die Variable flea_count und flea_weight jeweils abbilden. Wir beginnen mit der diskreten Variable flea_count. Im Gegensatz zu der Variable flea_weight haben wir bei der Anzahl gleiche Zahlen vorliegen, die wir dann zusammen darstellen können. Abbildung ?? zeigt die Darstellung der Tabelle. Auf der x-Achse ist die Anzahl an Flöhen dargestellt. Auf der y-Achse die Anzahl der jeweiligen Anzahl an Flöhen. Das klingt jetzt etwas schief, aber schauen wir uns die Abbilung näher an.

Abbildung 14.2: Die Anzahl von Flöhen auf 39 Hunden. Jeder Punkt entspricht einem Hund und der entsprechenden Anzahl an Flöhen auf dem Hund.

Wir sehen in Abbildung ?? dasacht Hunde keine Flöhe hatten - also eine Anzahl an Flöhen von 0. Auf der anderen Seite hatten zwei Hunde vier Flöhe und ein Hund hatte sogar fünf Flöhe. Wir sehen also die *Verteilung* der Anzahl an Flöhen über alle unsere 39 Hundebeobachtungen.

Wir schauen uns aber die Verteilung der Anzahl an Flöhen

meist nicht in der Form von gestapelten Punkten an, sondern in der Form eines Histogramms also einem Balkendiagramm. Abbildung ?? zeigt das Histogramm für die Anzahl der Flöhe.

```
ggplot(data = dog_fleas_hist_tbl, aes(x = flea_count)) +
  geom_histogram(binwidth = 1, fill = "gray", color = "black") +
  theme_bw() +
  labs(x = "Anzahl Flöhe", y = "Anzahl")
```


Abbildung 14.3: Histogramm der Anzahl von Flöhen auf 39 Hunden.

Was sehen wir in der Abbildung ??? Anstatt von gestapelten Punkten sehen wir jetzt Balken, die die jeweilige Anzahl an Flöhen zusammenfassen. Der Unterschied ist bei einer diskreten Variable wie der Anzahl (eng. count) relativ gering.

Anders sieht es für kontenuierliche Variablen mit Kommazahlen aus. Schauen wir uns das Gewicht der Flöhe an, so sehen wir, dass es sehr viele Zahlen gibt, die nur einmal vorkomen. Abbildung ?? zeigt das Histogramm für das Geicht der Flöhe.

```
ggplot(data = dog_fleas_hist_tbl, aes(x = flea_weight)) +
geom_histogram(binwidth = 1, fill = "gray", color = "black") +
```

```
theme_bw() +
labs(x = "Gewicht [mg]", y = "Anzahl")
```


Abbildung 14.4: Histogramm des Gewichts von Flöhen auf 39 Hunden.

Wie entsteht nun ein Hisotgramm für konetnierliche Zahlen? Schauen wir uns dafür einmal ein kleineres Datenbeispiel an, in dem wir nur Flöhe mit einem Gewicht größer als 11 und kleiner als 19 wäheln. Wir nutzen dazu die Funktion filter(flea_weight > 11 & flea_weight < 19). Wir erhalten folgende Zahlen und das entsprechende Histogramm.

[1] 13.29 14.91 15.64 16.58 17.66 17.81 18.40 18.64

Abbildung ?? zeigt das Histogramm der reduzierten Daten. Die roten vertikalen Linien zeigen die Position der einzelnen Flohgewichte auf der x-Achse. Die blauen Hilfslinien machen nochmal klarer, wie hoch die einzelnen Balken sind sowie welche Beobachtungen auf der x-Achse in den jeweiligen Balken mit eingehen. Wir sehen, dass wir einen Hund mit Flöhen haben, die zwischen 12.5 und 13.5 wiegen - der entsprechende Balken erhält die Anzahl von eins. Auf der anderen Seite sehen wir, dass

Abbildung 14.5: Zusammenhang zwischen den einzelnen Beobachtungen und der Höhe der einzelnen Balken am Beispiel von acht Hunden.

es drei Hunde mit Flöhen, die zwischen 17.5 und 18.5 wiegen. Daher wächst der Balken auf eine Anzahl von drei.

Wir können mit der Option binwidth in dem geom_histogram() einstellen, wie breit auf der x-Achse die jeweiligen Balken sein sollen. Hier empfiehlt es sich verschiedene Zahlen für binwidthauszuprobieren.

14.3.2 Density Plot

Eine weitere Möglichkeit sich eine Verteilung anzuschauen, ist die Daten nicht als Balkendiagramm sondern als Densityplot - also Dichteverteilung - anzusehen. Im Prinzip verwandeln wir die Balken in eine Kurve. Damit würden wir im Prinzip unterschiedliche Balkenhöhen ausgleichen udn eine "glattere" Darstellung erreichen. Wir wir aber gleich sehen werden, benötigen wir dazu eine Menge an Beoabchtungen und auch dann ist das Ergebnis eventuell nicht gut zu interpretieren.

```
ggplot(data = dog_fleas_hist_tbl, aes(x = flea_count)) +
  geom_histogram(binwidth = 1, fill = "gray", color = "black") +
  theme_bw() +
  labs(x = "Anzahl Flöhe", y = "Anzahl")

ggplot(data = dog_fleas_hist_tbl, aes(x = flea_count)) +
  geom_density(fill = "gray", color = "black") +
  theme_bw() +
  labs(x = "Anzahl Flöhe", y = "Häufigkeit")
```


Abbildung 14.6: Zusammenhang von Histogramm und Densityplot an der Anzahl der Flöhe auf 39 Hunden.

Abbildung ?? zeigt auf der linken Seite erneut die Abbildung des Histogramms als Balkendiagramm für die Anzahl der Flöhe auf den 39 Hunden. Auf der rechten Seite die entsprechenden gleichen Daten als Denistyplot. Klar ist die Wellenbewegung des Densityplots zu erkennen. Hier leigen zu wenige Beobachtungen und Kategorien auf der x-Achse vor, so dass der Densityplot nicht zu empfehlen ist.

```
ggplot(data = dog_fleas_hist_tbl, aes(x = flea_weight)) +
  geom_histogram(binwidth = 1, fill = "gray", color = "black") +
```

```
theme_bw() +
labs(x = "Gewicht [mg]", y = "Anzahl")

ggplot(data = dog_fleas_hist_tbl, aes(x = flea_weight)) +
geom_density(fill = "gray", color = "black") +
theme_bw() +
labs(x = "Gewicht [mg]", y = "Häufigkeit")
```


Abbildung 14.7: Zusammenhang von Histogramm und Densityplot am Gewicht der Flöhe auf 39 Hunden.

Abbildung ?? zeigt auf der linken Seite erneut die Abbildung des Histogramms als Balkendiagramm für das Gewicht der Flöhe auf den 39 Hunden. Insbesondere bei dieser Abbildung erkennst du die Nachteile des Densityplot. Dadurch das es einen Peak von acht Hunden mit einem Flohgewicht von 0 gibt, zeigt der Densityplot eine seltsame Wellenform. Es emppfielt sich daher die Daten zuerst als Histogramm zu betrachten.

14.3.3 Boxplot

In Kapitel ?? haben wir den Median und die Quartile kennengelernt. Mit dem Boxplot können wir den Median und die Quartile visualisieren. In Abbildung ?? sehen wir einen Boxplot, der den Median und die Quartile visualisiert. Die Box wird aus dem IQR gebildet. Der Median wird als Strich in der Box gezeigt. Die Schnurrhaare (eng. Whiskers) sind das 1.5 fache des IQR. Punkte die außerhalb der Schnurrhaare liegen werden als einzelne Punkte dargestellt. Diese einzelnen Punkte werden auch als Ausreißer (eng. Outlier) bezeichnet.

Abbildung 14.8: Ein Boxplot der die statistischen Maßzahlen Median und Quartile visualisiert. Die Box wird aus dem IQR gebildet. Der Median wird als Strich in der Box gezeigt. Die Schnurrhaare sind das 1.5 fache des IQR. Punkte die außerhalb der Schnurrhaare liegen werden als einzele Punkte dargestellt.

In Abbildung ?? sehen wir den Zusammenhang zwischen einem Histogramm, Densityplot und dem Boxplot. Der Median \tilde{y} im Boxplot zeigt die höchste Stelle des Densityplots an. Durch einen Boxplot kann die Verteilung der entsprechenden Zahlen abgeschätzt werden.

Abbildung 14.9: Der Zusammenhang von Histogram, Densityplot und Boxplot.

Die "liegende" Darstellung des Boxplots dient nur der Veranschaulichung und dem Verständnis des Zusammenhangs von

Histogramm und Boxplot. In der Abbildung ?? sehen wir drei Boxplots für einen Faktor mit drei Leveln. Jedes Level wird duch einen Boxplot dargestellt. Zum Beispiel eine Düngerbehandlung mit drei Konzentrationen. Auf der x-Achse würden wir die Behandelung finden und auf der y-Achse das Trockengewicht in [kg/ha].

Abbildung 14.10: Typische Darstellung von drei Gruppen jeweils dargestellt durch einen Boxplot. Boxplots werden in der Anwendung stehtend dargestellt. Insbesondere wenn die Boxplots mehrere Gruppen repräsentieren.

Wie erstellen wir nun einen Boxplot in R? Zuerst laden wir die Daten mit der Funktion read_excel() in R, wenn du die Daten als .xlsx Datei vorliegen hast. Im XX kannst du nochmal das Importieren von Daten wiederholen.

```
flea_dog_cat_tbl <- read_excel("data/flea_dog_cat.xlsx")</pre>
```

In Abbildung ?? ist der Boxplot für die Daten aus der Datei flea_dog_cat.xlsx dargestellt. Auf der x-Achse finden wir die Tierart als cat und dog. Auf der y-Achse ist die Sprungweite in [cm] dargestellt.

Abbildung 14.11: An 39 Hunden wurde die Anzahl an Flöhen gezählt.

Wir erkennen auf einen Blick, dass die Sprungweite von den Hundeflöhen weiter ist als die Sprungweite der Katzenflöhe. Im Weiteren können wir abschätzen, dass die Streuung etwa gleich groß ist. Die Boxen sind in etwa gleich groß und die Whiskers in etwa gleich lang.

Abbildung 14.12: An 39 Hunden wurde die Anzahl an Flöhen gezählt.

Wir neigen dazu die Boxplots überzuinterpretieren, wenn die Anzahl der Beobachtungen klein ist. Deshalb können wir mit dem geom_jitter() noch die Beobachtungen zu den Boxplot ergänzen, dargestellt in Abbildung ??. Die Funktion geom_jitter() streut die Punkte zufällig, so dass keine Punkte übereinanderliegen. Wir haben hier die Streuuweite durch die Option width = 0.25 etwas eingeschränkt. Darüber hinaus habe wir das Aussehen der Punkte mit shape = 1 geändert, so dass wir die Jitter-Punkte von den potenziellen Ausreißer-Punkten unterscheiden können. Du kannst auch andere Zahlen hinter shape eintragen um verschiedene Punktesymbole durchzuprobieren. Eine Übersicht an shapes findest du auch hier unter Cookbook for R > Graphs > Shapes and line types.

14.3.4 Dotplot

Wenn wir weniger als fünf Beobachtungen haben, dann ist meist ein Boxplot verzerrend. Wir sehen eine Box und glauben, dass wir viele Datenpunkte vorliegen haben. Bei 3 bis 7 Beobachtungen je Gruppe bietet sich der Dotplot als eine Lösung an. Wir stellen hier alle Beobachtungen als einzelne Punkte dar.

Wie erstellen wir nun einen Dotplot in R? Zuerst laden wir die Daten mit der Funktion read_excel() in R, wenn du die Daten als .xlsx Datei vorliegen hast. Im XX kannst du nochmal das Importieren von Daten wiederholen.

Abbildung 14.13: Der Dotplot für die Anzahl der Flöhe für die beiden Tierarten Hund und Katze.

In Abbildung ?? sehen wir den Dotplot aus der Datei flea_dog_cat.xlsx. Auf der x-Achse sind die Level des Faktors animal dargestellt und auf der y-Achse die Notenbewertung grade der einzelnen Hunde und Katzen. Die Funktion geom_dotplot() erschafft das Layer für die Dots bzw. Punkte. Wir müssen in der Funktion noch zwei Dinge angeben, damit der Plot so aussieht, dass wir den Dotplot gut interpretieren

können. Zum einen müssen wir die Option binaxis = y wählen, damit die Punkte horizontal geordent werden. Zum anderen wollen wir auch, dass die Punkte zentriert sind und nutzen dafür die Option stackdir = center.

Abbildung 14.14: Der Dotplot für die Anzahl der Flöhe für die beiden Tierarten Hund und Katze. Die schwarze Linie stelt den Median für die beiden Tierarten dar.

Nun macht es wenig Sinn bei sehr wenigen Beobachtungen noch statistische Maßzahlen mit in den Plot zu zeichnen. Sonst hätten wir auch gleich einen Boxplot als Visualisierung der Daten wählen können. In Abbildung ?? sehen wir die Ergänzung des Medians. Hier müssen wir etwas mehr angeben, aber immerhin haben wir so eine Idee, wo die "meisten" Beobachtungen wären. Aber auch hier ist Vorsicht geboten. Wir haben sehr

wenige Beobachtungen, so dass eine Beobachtung mehr oder weniger große Auswirkungen auf den Median und die Interpretation hat.

14.3.5 Scatterplot

Der Scatterplot wird auch xy-Plot genannt. Wir stellen in einem Scatterplot zwei kontenuierliche Variablen dar. Dann wollen wir eine Linie durch die Punkte legen. Im Prinzip fragen wir uns, wie hänge die Werte auf der y-Achse von den Werten auf der x-Achse ab? Wenn sich also die Werte auf der x-Achse erhöhen, wie verhalten sich dann die Werte auf der y-Achse?

```
ggplot(data = flea_dog_cat_tbl, aes(x = flea_count, y = jump_length)) +
    geom_point() +
    stat_smooth(method = "lm", se = FALSE) +
    theme_bw() +
    labs(x = "Anzahl der Flöhe", y = "Sprungweite in [cm]")
```


Abbildung 14.15: Zusammenhang zwischen der Sprungweite in [cm] und der Anzahl an Flöhen auf den 39 Hunden. Jeder Punkt stellt einen Hund dar.

Abbildung ?? zeigt den Scatterplot für die Spalte flea_count

auf der x-Achse und jump_length auf der y-Achse. Mit der Funktion geom_point() können wir die Punktepaare für jede Beobachtung zeichnen. In unserem Fall zeichnen wir mit der Funktion stat_smooth() noch die entsprechende Grade durch die Punkte. Es handelt sich hierbei um eine Regression. Du kannst im Kapitel XX mehr darüber erfahren.

14.3.6 Mosaic Plot

Wenn wir zwei Spalten visualisieren wollen, die aus zwei Faktoren bestehen mit jeweils zwei Leveln, dann nutzen wir den Mosaic Plot. Wir nutzen den Datensatz flea_dog_cat.xlsx mit vierzehn Beobachtungen. Schauen wir uns einmal die 2x2 Kreuztabelle der beiden Spalten animal and infected an.

```
flea_dog_cat_tbl %>%
  mutate(animal = factor(animal, levels = c("dog", "cat"))) %>%
  tabyl(animal, infected)

animal 0 1
  dog 4 3
  cat 5 2
```

Wir sehen in der Tabelle, dass wir mehr uninfizierte Tiere (n = 9) als infizierte Tiere haben (n = 5). Die Aufteilung zwischen den beiden Tierarten ist nahezu gleich. Im folgenden wollen wir diese Tabelle durch einen Mosaic Plot einmal visualisieren.

```
ggplot(data = flea_dog_cat_tbl) +
  geom_mosaic(aes(x = product(animal, infected), fill = animal))
```


Abbildung 14.16: Visualisierung einer 2x2 Tabelle als Mosaic Plot. Die unterschiedlich großen Flächen geben die Verhältnisse wieder.

Abbildung ?? zeigt den Mosaic Plot für die Variable animal and infected. Die untrschiedlich großen Flächen bilden die Verhältnisse der 2x2 Tabelle ab. So sehen wir, dass es mehr uninfizierte Tiere als infizierte Tiere gibt. Am meisten gibt es uninfizierte Katzen. Am wenigstens treten infizierte Katzen auf.

14.3.7 Überschriften, Achsen und Legenden

Wenn du mehr machen willst, also die Überschriften anpassen oder aber die Achsenbeschriftung ändern, dann gibt es hier global Hilfe im ggplot Manual. Die Webseite R Cookbook hat auch spezielle Hilfe für ggplot().

- Überschriften von Abbildungen
- Achsenbeschriftung
- Legende
- Farben

Im Kapitel ?? findest du Informationen zum R Tutorium, wann und wo es stattfindet. In Abbildung ?? siehst du eine Abbildung mit Titel und veränderten Beschriftungen. Die Möglichkeiten sind nahezu unbegrenzt und sprengen auch hier den Rahmen. Im Zweifel im R Tutorium vorbeischauen oder aber in der Vorlesung fragen.

Abbildung 14.17: Beispielhafte Abbildung mit Titel und geänderter Achsenbeschrittung

14.3.8 Die Okabe-Ito Farbpalette

Neben den klassischen Farben im R Paket ggplotgibt es noch weit, weit mehr Farbpaletten. Wir nutzen in der Folge immer wieder die Okabe-Ito Farbpalette aus dem R Paket see. Die Okabe-Ito Farbpalette ist speziell so gebaut, dass die Farben sich gut für farbenblinde Personen unterscheiden. Der Kontrast

Mehr zum R Paket see auf der Hilfeseite des Paketes zwischen den Farben ist sehr gut. Wenn du eine andere Farbpalette nutzen willst, findest du hier noch andere Color Scales.

```
ggplot(data = flea_dog_cat_tbl,
    aes(x = animal, y = jump_length,
        fill = animal)) +
    geom_boxplot() +
    scale_fill_okabeito() +
    theme_bw()
```


Abbildung 14.18: Beispielhafte Abbildung der Okabe-Ito Farbpalette für Boxplots.

Abbildung 14.19: Beispielhafte Abbildung der Okabe-Ito Farbpalette für Scatterplots.

Teil IV

Frequentistische Hypothesentests

Grundlagen der Wissenschaft und Falsifikationsprinzip

Du findest auf YouTube Grundlagen der Wissenschaft und Falsifikationsprinzip als Video.

Das statistische Testen - eine Geschichte voller Missverständnisse. Wir wollen uns in diesem Kapitel mit den Grundlagen des frequentistischen Hypothesentestens beschäftigen. Wenn ich hier einen Unterschied mache, dann muss es ja auch noch ein anderes Hypothesentesten geben. Ja, das nennt man dann bavesianische Statistik und kommt eventuell mal später. Wir konzentrieren uns aber zuerst auf frequentistische Hypothesentesten was seit gut hundert Jahren genutzt wird. Ich werde hier textlich nur einen kurzen Einstieg liefern. Vielleicht wird es in den folgenden Jahren länger aber aktuell (Ende 2022) bleiben wir hier bei einem kurzen Einstieg.

Beginnen wir mit der Logik der Forschung oder allgemeiner formuliert, als die Grundlage der Wissenschaft. Wir basieren all unsere Entscheidungen in der Wissenschaft auf dem Falsifikationsprinzip. Also bitte merken, wir können nur ablehnen (eng. reject).

i Logik der Forschung

"Das ist die Logik der Forschung, die nie verifizieren, sondern immer nur jene Erklärungen beibehalten kann, die beim derzeitigen Erkenntnisstand am wenigsten falsifiziert sind." – Wößmann, L.

Wir ersetzen schlechte Modelle (der Wirklichkeit) durch weniger schlechte Modelle (der Wirklichkeit).

Wir wollen hier auf keinen Fall die Leistungen von Altvorderen schmälern. Dennoch hatten Ronald Fischer (1890 - 1962), als der Begründer der Statistik, andere Vorraussetzungen als wir heutzutage. Als wichtigster Unterschied sei natürlich das Gerät genannt, an dem du gerade diese Zeilen liest: dem Computer. Selbst die Erstellung einfachster Abbildungen war sehr, sehr zeitaufwendig. Die Berechnung von Zahlen lohnte sich mehr, als die Zahlen zu visualisieren. Insbesondere wenn wir die Explorative Datenanalyse nach John Tukey (1915 - 2000) durchführen. Forschung basiert auf dem Falsifikationsprinzip. Wir können nur ablehnen und behalten das weniger schlechte Modell bei.

Undenkbar zu den Zeiten von Ronald Fischer mehrere Abbildungen unterschiedlich nach Faktoren einzufärben und sich die Daten anzugucken.

Neben dieser Begrenzung von moderner Rechenkapazität um 1900 gab es noch eine andere ungünstige Entwicklung. Stark vereinfacht formuliert entwickelte Ronald Fischer statistische Werkzeuge um abzuschätzen wir wahrscheinlich die Nullhypothese unter dem Auftreten der beobachteten Daten ist. Nun ist es aber so, dass wir ja auch eine Entscheidung treffen wollen. Nach der Logik der Forschung wollen wir ja eine Hypothese falsifizieren, in unserem Fall die Nullhypothese. Die Entscheidungsregeln, also die statistische Testtheorie, kommen nun von Jerzy Neyman (1894 - 1981) und Egon Pearson (1895 - 1980), beide als die Begründer der frequentistischen Hypothesentests.

Schlussendlich gibt es noch eine andere Störmung in der Statistik, die auf den mathematischen Formeln von Thomas Bayes (1701 - 1761) basieren. In sich eine geschlossene Theorie, die auf der *inversen* Wahrscheinlichkeit basiert. Das klingt jetzt etwas schräg, aber eigentlich ist die bayesianische Statistik die Statistik, die die Fragen um die Alternativehypothese beantwortet. Der Grund warum die bayesianische Statistik nicht angewendet wurde, war der Bedarf an Rechenleistung. Die bayesiansiche Statistik lässt sich nicht händisch in endlicher Zeit lösen. Dieses technische Problem haben wir aber nicht mehr. Eigentlich könnten wir also die bayesiansiche Statistik verwenden. Wir wollen hier aber (noch) nicht auf die bayesianische Statistik eingehen, das werden wir später tun.

Wenn du allgemein Interesse hast an der Geschichte der Statistik dann sei auf Salsburg (2001) verwiesen. Ein sehr schönes Buch, was die *geschichtlichen* Zusammenhänge nochmal aufzeigt.

Kommen wir aber nun zu den wichtigeren Punkten. Das Kapitel ist sehr umfangreich und enthält viele Informationen, die wir teilweise später nochmal brauchen. Darüber hinaus müssen wir noch das *Lernen und Verstehen* von der *Anwendung* unterscheiden.

• Zum Lernen und Verstehen des statistischen Testen

Über die Nullhypothese erfährst du mehr in dem folgenden ?@sec-hypothesen

- nutzen wir das Konzept der Teststatistik T (siehe **?@secteststatistik**)
- Zur Anwendung nutzen wir das Konzept des p-Wertes $Pr(T|H_0)$ (siehe ?@sec-pwert) und das Konzept der 95% Konfidenzintervalle (siehe ?@sec-ki)

♦ Ein Wort zur Klausur

Abhängig von der Lernstufe - daher welche Veranstaltung du gerade bei mir besuchst - kommt nicht alles aus diesem Kapitel dran in der Klausur. Bitte gleiche die Inhalte, die ich in der aktuellen Vorlesung unterrichte, mit dem Material hier ab. Als Faustregel gilt, je höher die Lernstufe desto mehr musst du von dem statistischen Testen Wissen und Verstehen. Beachte auch die Probeklausur in deiner Veranstaltung und die gesammelten Klausurfragen auf GitHub.

Die Hypothesen

Wir können auf allen Daten einen statistischen Test rechnen und erhalten statistische Maßzahlen wie eine Teststatistik oder einen p-Wert. Nur leider können wir mit diesen statistischen Maßzahlen nicht viel anfangen ohne die Hypothesen zu kennen. Jeder statistische Test testet eine Nullhypothese. Ob diese Hypothese dem Anwender nun bekannt ist oder nicht, ein statistischer Test testet eine Nullhypothese. Daher müssen wir uns immer klar sein, was die entsprechende Nullhypothese zu unserer Fragestellung ist. Wenn du hier stockst, ist das ganz normal. Eine Fragestellung mit einer statistischen Hypothese zu verbinden ist nicht immer so einfach gemacht.

\blacksquare Die Nullhypothese H_0 und die Alternativehypothese H_A

Die Nullhypothese H_0 nennen wir auch die Null oder Gleichheitshypothese. Die Nullhypothese sagt aus, dass zwei Gruppen gleich sind oder aber kein Effekt zu beobachten ist.

Im Anhang ?? findest du verschiedene Beispiele zu Auswertungen von Datenbeispielen.

$$H_0: \bar{y}_1 = \bar{y}_2$$

Die Alternativehypothese H_A oder H_1 auch Alternative genannt nennen wir auch Unterschiedshypothese. Die Alternativehypothese besagt, dass ein Unterschied vorliegt oder aber ein Effekt vorhanden ist.

$$H_A:\bar{y}_1\neq\bar{y}_2$$

Als Veranschaulichung nehmen wir das Beispiel aus Kapitel ??. Wir formulieren als erstes die Fragestellung. Eine Fragestellung endet mit einem Fragezeichen.

Liegt ein Unterschied zwischen den Sprungweiten von Katzen und Hundeflöhen vor?

Wir können die Frage auch anders formulieren.

Springen Hunde und Katzenflöhe unterschiedlich weit?

Wichtig ist, dass wir eine primäre Fragestellung formulieren. Wir können auch mehrere Fargen an einen Datensatz haben. Das ist auch vollkommen normal. Nur hat *jede* Fragestellung ein eigenes Hypothesenpaar. Wir bleiben aber bei dem simplen Beispiel.

Wie sieht nun die statistische Hypothese in diesem Beispiel aus? Wir wollen uns die Sprungweite in [cm] anschauen. In diesem Fall wollen wir die mittlere Sprungweite der Hundeflöhe \bar{y}_{dog} mit der mittleren Sprungweite der Katzenflöhe \bar{y}_{cat} vergleichen. Es ergibt sich folgendes Hypothesenpaar.

$$H_0: \bar{y}_{dog} = \bar{y}_{cat}$$

$$H_A: \bar{y}_{dog} \neq \bar{y}_{cat}$$

Es ist wichtig sich in Erinnerung zu rufen, dass wir nur und ausschließlich Aussagen über die Nullhypothese treffen werden. Das frequentistische Hypothesentesten kann nichts anders. Wir kriegen keine Aussage über die Alternativhypothese sondern nur eine Abschätzung der Wahrscheinlichkeit des Auftretens

Das Falisifkationsprinzip - wir können nur Ablehnen - kommt hier zusammen mit der

frequentistischen Statistik in der wir nur eine

Wahrscheinlichkeitsaussage über das Auftreten der Daten D - unter der Annahme H_0 gilt - treffen können.

der Daten im durchgeführten Experiment, wenn die Nullhypothese wahr wäre.

Die Testentscheidung...

In den folgenden Kapiteln werden wir verschiedene statistische Tests kennenlernen. Alle statistischen Tests haben gemein, dass ein Test eine Teststatistik T_{calc} berechnet. Darüber hinaus liefert jeder Test auch einen p-Wert (eng. p-value). Manche statistischen Test geben auch ein 95% Konfidenzintervall wieder. Eine Testentscheidung gegen die Nullhypothese H_0 kann mit jedem der drei statistischen Maßzahlen durchgeführt werden. Die Regel für die Entscheidung, ob die Nullhypothese H_0 abgelehnt werden kann, ist nur jeweils anders. In Tabelle $\ref{thm:pothere}$ sind die Entscheidungsregeln einmal zusammengefasst.

belle 14.3: Zusammenfassung der statistischen Testentscheidung unter der Nutzung der Teststatistik, dem p-Wert dem 95% Konfidenzintervall. Die Entscheidung nach der Teststatistik ist veraltet und dient nur dem konzephellen Verständnisses. In der Forschung angewandt wird der p-Wert und das 95% Konfidenzintervall. Im Fall des Konfidenzintervalls müssen wir noch unterschieden, ob wir einen Mittelwertsunterschied Δ_{A-B} oder aber einen teilsunterschied $\Delta_{A/B}$ betrachten.

	Teststatistik	p-Wert	95% Konfidenzin- tervall
	T_{calc}	$Pr(\geq T_{calc} H_0)$	KI_{1-lpha}
H_{0}	$T_{calc} \geq$	$Pr(\geq$	Δ_{A-B} : enthält <u>nicht</u>
ableh-	$T_{\alpha=5\%}$	$T_{calc} H_0) \le \alpha$	0
nen			
H_{0}			$\Delta_{A/B}$: enthält <u>nicht</u>
ableh-			1
nen			

Wir wollen in den folgenden Abschnitten die jeweiligen Entscheidungsregeln eines statistisches Tests einmal durchgehen.

• Die Testentscheidung gegen die Nullhypothese anhand der Teststatistik in ?@sec-teststatistik

- Die Testentscheidung gegen die Nullhypothese anhand dem p-Wert in ?@sec-pwert
- Die Testentscheidung gegen die Nullhypothese anhand des 95% Konfidenzintervall in ?@sec-ki

Streng genommen gilt die Regel $T_{calc} \geq T_{\alpha=5\%}$ nur für eine Auswahl an statistischen Tests siehe dazu auch ?@secteststatistik. Bei manchen statistischen Tests Entscheidung gedreht. Hier lassen wir das aber mal so stehen...

... anhand der Teststatistik

Prinzip des statistischen Testens I - Die Teststatistik

Du findest auf YouTube Prinzip des statistischen Testens I - Die Teststatistik als Video. Ich werde zwar alles nochmal hier als Text aufschreiben, aber manchmal ist das Sehen und Hören dann einfacher.

Wir wollen uns dem frequentistischen Hypothesentesten über die Idee der Teststatistik annähern. Im folgenden sehen wir die Formel für den t-Test. Den t-Test werden wir im Kapitel?? uns nochmal detaillierter anschauen. Hier nutzen wir die vereinfachte Formel um das Konzept zu verstehen.

$$T_{calc} = \frac{\bar{y}_1 - \bar{y}_2}{s_p \cdot \sqrt{2/n_g}}$$

mit

- \bar{y}_1 dem Mittelwert für die erste Gruppe.
- \bar{y}_2 dem Mittelwert für die zweite Gruppe.
- s_p der gepoolten Standardabweichung mit $s_p = \frac{s_A + s_B}{2}$.
- n_q der Gruppengröße der gruppen. Wir nehmen an beide Gruppen sind gleich groß.

Wir benötigen also zwei Mittelwerte \bar{y}_1 und \bar{y}_2 und deren gepoolte Standardabweichung s_p sowie die Anzahl der Beobachtungen je Gruppe n_g . Wenden wir die Formel des t-Tests einmal auf den folgenden Beispieldatensatz an. In **?@tbl-dog-cat-small-delta** ist eine Datenbeispiel gegeben.

Tabelle 14.4: Beispiel für die Berechnung von einem Mittelwertseffekt an der Sprunglänge [cm] von Hunde und Katzenflöhen.

animal	jump_length		
cat	8.5		
cat	9.9		
cat	8.9		
cat	9.4		
dog	8.0		
dog	7.2		
dog	8.4		
dog	7.5		

Wir berechnen nun die Mittelwerte und die Standardabweichungen aus der obigen Datentabelle. Die Werte setzen wir dann in die Formel ein.

$$T_{calc} = \frac{9.2 - 7.8}{\frac{(0.6 + 0.5)}{2} \cdot \sqrt{2/4}} = 3.6$$

mit

- $\bar{y}_{cat} = 9.2$ dem Mittelwert für die Gruppe cat.
- $s_p = 0.55$ der gepoolten Standardabweichung mit $s_p = \frac{0.6 + 0.5}{2}$.
- $n_g=4$ der Gruppengröße der Gruppe A und B. Wir nehmen an beide Gruppen sind gleich groß.

Wir haben nun die Teststatistik $T_{calc}=3.6$ berechnet. In der ganzen Rechnererei verliert man manchmal den Überblick. Erinnern wir uns, was wir eigentlich wollten. Die Frage war, ob

sich die mittleren Sprungweiten der Hunde- und Katzenflöhe unterschieden. Wenn die H_0 wahr wäre, dann wäre der Unterschied Δ der beiden Mittelwerte der Hunde- und Katzenflöhe gleich null. Oder nochmal in der Analogie der t-Test Formel, dann wäre im Zähler $\Delta = \bar{y}_{cat} - \bar{y}_{dog} = 0$. Wenn die Mittelwerte der Sprungweite [cm] der Hunde- und Katzenflöhe gleich wäre, dann wäre die berechnete Teststatistik $T_{calc} = 0$, da im Zähler Null stehen würde. Die Differenz von zwei gleichen Zahlen ist Null.

Je größer die berechnete Teststatistik T_{calc} wird, desto unwahrscheinlicher ist es, dass die beiden Mittelwerte per Zufall gleich sind. Wie groß muss nun die berechnete Teststatistik T_{calc} werden damit wir die Nullhypothese ablehnen können?

Abbildung 14.20: Die t-Verteilung aller möglichen T_{calc} wenn die Nullhypothese wahr ist. Der Mittelwert der t-Verteilun ist T=0. Wenn wir keinen Effekt erwarten würden dann wären die beiden Mittelwerte \bar{y}_1 und \bar{y}_2 gleich groß. Die Differenz wäre 0. Je größer der T_{calc} wird desto weniger können wir davon ausgehen, dass die beiden Mittelwerte gleich sind. Liegt der T_{calc} über dem kritischen Wert von $T_{\alpha=5\%}$ dann wir die Nullhypothese abgelehnt.

In Abbildung ?? ist die Verteilung aller möglichen T_{calc} Werte unter der Annahme, dass die Nullhypothese wahr ist, dargestellt. Wir sehen, dass die t-Verteilung am höchsten bei T_{calc} =

0 ist und niedrigeren Werte mit steigenden t-Werten annimmt. Wenn T=0 dann sind auch die Mittelwerte gleich. Je größer unsere berechnete Teststatistik T_{calc} wird, desto unwahrscheinlicher ist es, dass die Nullhypothese gilt. Die t-Verteilug ist so gebaut, dass die Fläche A unter der Kurve gleich A=1 ist. Wir können nun den kritschen Wert $T_{\alpha=5\%}$ berechnen an dem rechts von dem Wert eine Fläche von 0.05 oder 5% liegt. Sommit liegt dann links von dem kritischen Wert die Fläche von 0.95 oder 95%. Den kritischen Wert $T_{\alpha=5\%}$ können wir statistischen Tabellen entnehmen. Oder wir berechnen den kritischen Wert direkt in R mit $T_{\alpha=5\%}=2.78$.

Kommen wir zurück zu unserem Beispiel. Wir haben in unserem Datenbeispiel für den Vergleich von der Sprungweite in [cm] von Hunde- und Katzenflöhen eine Teststatistik von $T_{calc}=3.6$ berechnet. Der kritische Wert um die Nullhypothese abzulehnen liegt bei $T_{\alpha=5\%}=2.78$. Wenn $T_{calc}\geq T_{\alpha=5\%}$ wird die Nullhypothese (H₀) abgelehnt. In unserem Fall ist $3.6\geq 2.78$. Wir können die Nullhypothese ablehnen. Es gibt einen Unterschied zwischen der mittleren Sprungweite von Hunde- und Katzenflöhen.

Es gibt einen Unterschied zwischen der mittleren Sprungweite von Hunde- und Katzenflöhen. Die Aussage ist **statistisch** falsch. Wir können im frequentistischen Hypothesentesten keine Aussage über die H_A treffen. Im Sinne der Anwendbarkeit soll es hier so stehen bleiben.

Nun ist es leider so, dass jeder statistische Test seine eigene Teststatistik T hat. Daher ist es etwas mühselig sich immer neue und andere kritische Werte für jeden Test zu merken. Es hat sich daher eingebürgert, sich nicht die Teststatistik für die Testentscheidung gegen die Nullhypothese zu nutzen sondern den p-Wert. Den p-Wert wollen wir uns in dem folgenden Abschnitt anschauen.

Entscheidung mit der berechneten Teststatistik

Bei der Entscheidung mit der Teststatistik müssen wir zwei Fälle unterschieden.

(1) Bei einem t-Test und einem \mathcal{X}^2 -Test gilt, wenn

 $T_{calc} \geq T_{\alpha=5\%}$ wird die Nullhypothese (H₀) abge-

(2) Bei einem Wilcoxon-Mann-Whitney-Test gilt, wenn $T_{calc} < T_{\alpha=5\%}$ wird die Nullhypothese (H_0) abge-

Achtung – Wir nutzen die Entscheidung mit der Teststatistik nur und ausschließlich in der Klausur. In der praktischen Anwendung hat die Betrachtung der berechneten Teststatistik keine Verwendung mehr.

... anhand dem p-Wert

Prinzip des statistischen Testens II - Der p-Wert

Du findest auf YouTube Prinzip des statistischen Testens II - Der p-Wert als Video Reihe. Ich werde zwar alles nochmal hier als Text aufschreiben, aber manchmal ist das Sehen und Hören dann einfacher.

In dem vorherigen Abschnitt haben wir gelernt, wie wir zu einer Entscheidung gegen die Nullhypothese anhand der Teststatistik kommen. Wir haben einen kritischen Wert $T_{\alpha=5\%}$ definiert bei dem rechts von dem Wert 5% der Werte liegen. Anstatt nun den berechneten Wert T_{calc} mit dem kritischen Wert $T_{\alpha=5\%}$ zu vergleichen, vergleichen wir jetzt die Flächen rechts von den jeweiligen Werten.

In Abbildung ?? sind die Flächen auch eingetragen. Da die gesamte Fläche unter der t-Verteilung mit A=1 ist, können wir die Flächen auch als Wahrscheinlichkeiten lesen. Die Fläche rechts von der berechneten Teststatistik T_{calc} wird $Pr(T_{calc}|H_0)$ oder p-Wert genannt. Die gesamte Fläche rechts von dem kritischen Wert $T_{\alpha=5\%}$ wird α genannt und liegt bei 5%. Wir können also die Teststatistiken oder den p-Wert mit dem α -Niveau von 5% vergleichen.

Wir schreiben Pr und meinen damit eine Wahrscheinlichkeit (eng. probability). Häufig wird auch nur das P verwendet, aber dann kommen wir wieder mit anderen Konzepten in die Quere.

Tabelle 14.5: Zusammenhang zwischen der Teststatistik T und der Fläche A rechts von der Teststatistik. Die Fläche rechts von der berechneten Teststatistik T_{calc} wird $Pr(T|H_0)$ oder p-Wert genannt. Die Fläche rechts von dem kritischen Wert $T_{\alpha=5\%}$ wird α genannt und liegt bei 5%.

$$\begin{array}{c|cccc} \hline \text{Teststatistik } T & \text{Fläche } A \\ \hline T_{calc} & Pr(T_{calc}|H_0) \text{ oder } p\text{-Wert} \\ T_{\alpha=5\%} & \alpha \\ \end{array}$$

Der p-Wert oder $Pr(T|H_0)$ ist eine Wahrscheinlichkeit. Eine Wahrscheinlichkeit kann die Zahlen von 0 bis 1 annehmen. Dabei sind die Grenzen einfach zu definieren. Eine Wahrscheinlichkeit von Pr(A)=0 bedeutet, dass das Ereignis A nicht auftritt; eine Wahrscheinlichkeit von Pr(A)=1 bedeutet, dass das Ereignis A eintritt. Der Zahlenraum dazwischen stellt jeden von uns schon vor große Herausforderungen. Der Unterschied zwischen 40% und 60% für den Eintritt des Ereignisses A sind nicht so klar zu definieren, wie du auf den ersten Blick meinen magst.

Ein frequentistischer Hypothesentest beantwortet die Frage, mit welcher Wahrscheinlichkeit Pr die Teststatistik T aus dem Experiment mit den Daten D zu beobachten wären, wenn es keinen Effekt gäbe (H_0 ist wahr).

Im Englischen gibt es die Begrifflichkeiten einer Likelihood und einer Probability in der Statistik. Meist wird beides ins Deutsche ungenau mit Wahrscheinlichkeit übersetzt oder wir nutzen einfach Likelihood. Was aber auch nicht so recht weiterhilft. Es handelt sich hierbei aber um zwei unterschiedliche Konzepte. Deshalb Übersetzen wir Likelihood mit Plausibilität und Probability mit Wahrscheinlichkeit.

Im Folgenden berechnen wir den p-Wert in R mit der Funktion t.test(). Mehr dazu im Kapitel ??, wo wir den t-Test und deren Anwendung im Detail besprechen.

A tibble: 1 x 2 statistic p.value

Likelihood heißt Plausibilität und Probability heißt Wahrscheinlichkeit.

<dbl> <dbl> 1 2.81 0.0309

Wir erhalten einen p-Wert von 0.031 und vergleichen diesen Wert zu einem α von 5%. Ist der p-Wert kleiner als der α -Wert von 5%, dann können wir die Nullhypothese ablehnen. Da 0.031 kleiner ist als 0.05 können wir die Nullhypothese und damit die Gleichheit der mittleren Sprungweiten in [cm] ablehnen. Wir sagen, dass wir ein signifikantes Ergebnis vorliegen haben.

Entscheidung mit dem p-Wert

Wenn der p-Wert $\leq \alpha$ dann wird die Nullhypothese (H_0) abgelehnt. Das Signifikanzniveau α wird als Kulturkonstante auf 5% oder 0.05 gesetzt. Die Nullhypothese (H_0) kann auch Gleichheitshypothese gesehen werden. Wenn die H_0 gilt, liegt kein Unterschied zwischen z.B. den Behandlungen vor.

... anhand des 95% Konfidenzintervall

Ein statistischer Test der eine Teststatistik T berechnet liefert auch immer einen p-Wert. Nicht alle statistischen Tests ermöglichen es ein 95% Konfidenzintervall zu berechnen. Abbildung \ref{Model} zeigt ein 95% konfidenzintervall.

Abbildung 14.21: Ein 95% Konfidenzintervall. Der Punkt in der Mitte entspricht dem Unterschied oder Effekt Δ .

Mit der Teststatistik T und dem damit verbundenen p-Wert haben wir uns Wahrscheinlichkeiten angeschaut und erhalten eine Wahrscheinlichkeitsaussage. Eine Wahrscheinlichkeitsaussage sagt aber nichts über den Effekt Δ aus. Also wie groß ist der mittlere Sprungunterschied zwischen Hunde- und Katzenflöhen. Eine nährere betrachtung von dem Effekt in der Statistik findest du in $\mathbf{?@sec\text{-effect}}$.

Wir sagen, dass wir ein signifikantes Ergebnis haben, wenn der p-Wert kleiner ist als die Signifikanzschwelle α von 5%.

Mit **p-Werten** haben wir Wahrscheinlichkeitsaussagen und damit über die **Signifikanz**. Damit haben wir noch keine Aussage über die **Relevanz** des beobachtenten Effekts.

Die Idee von 95% Kondifenzintervallen ist es jetzt den Effekt mit der Wahrscheinlichkeitsaussage zusammenzubringen und beides in einer Visualisierung zu kombinieren. Im Folgenden sehen wir die vereinfachte Formel für das 95% Konfidenzintervall eines t-Tests.

$$\left[(\bar{y}_1 - \bar{y}_2) - T_{\alpha = 5\%} \cdot \frac{s_p}{\sqrt{n}}; \; (\bar{y}_1 - \bar{y}_2) + T_{\alpha = 5\%} \cdot \frac{s_p}{\sqrt{n}}; \; \right]$$

Die Formel ist ein wenig komplex, aber im Prinzip einfach. Der linke und der rechte Teil neben dem Semikolon sind fast gleich, bis auf das Plus- und Minuszeichen. Abbildung ?? visualisert die Formel einmal. Wir sehen Folgendes in der Formel und dann in der entsprechenden Abbildung:

- $(\bar{y}_1 \bar{y}_2)$ ist der Effekt Δ . In diesem Fall der Mittelwertsunterschied. Wir finden den Effekt als Punkt in der Mitte des Intervals.
- $T_{\alpha=5\%} \cdot \frac{s}{\sqrt{n}}$ ist der Wert, der die Arme des Intervals bildet. Wir vereinfachen die Formel mit s_p für die gepoolte Standardabweichung und n_g für die Fallzahl der beiden Gruppen. Wir nehmen an das beide Gruppen die gleiche Fallzahl $n_1=n_2$ haben.

Wir können eine biologische Relevanz definieren, dadurch das ein 95% Konfidenzintervall die Wahrscheinlichkeitsaussage über die Signifkanz, daher ob die Nullhypothese abgelehnt werden kann, mit dem Effekt zusammenbringt. Wo die Signifikanzschwelle klar definiert ist, hängt die Relevanzschwelle von der wissenschaftlichen Fragestellung und weiteren externen Faktoren ab. Die Signifikanzschwelle liegt bei 0, wenn wir Mittelwerte miteinander vergleichen und bei 1, wenn wir Anteile vergleichen. Abbildung ?? zeigt fünf 95% Konfidenzintervalle (a-e), die sich anhand der Signifikanz und Relevanz unterscheiden. Bei der Relevanz ist es wichtig zu wissen in welche *Richtung* der Effekt gehen soll. Erwarten wir einen positiven Effekt wenn wir die Differenz der beiden Gruppen bilden oder einen negativen Effekt?

Wir wollen uns nun einmal anschauen, wie sich ein 95% Konfidenzintervall berechnet. Wir nehmen dafür die vereinfachte Formel und setzen die berechneten statistischen Maßzahlen ein.

Die Funktion factor() in R erlaubt es dir die Level eines Faktors zu sortieren und so festzulegen ob Level cat minus Level dog oder umgekehrt von R gerechnet wird.

$$\left(\frac{\overline{y}_{1}-\overline{y}_{2}}{\sqrt{1}}\right)-\frac{\overline{y}_{2}}{\sqrt{1}}\left(\frac{\overline{y}_{1}-\overline{y}_{2}}{\sqrt{1}}\right)+\frac{\overline{y}_{2}}{\sqrt{1}}$$

$$S$$

$$0$$

$$0$$

$$A$$

Abbildung 14.22: Zusammenhang zwischen der vereinfachten Formel für das 95% Konfidenzintervall und der Visualisierung des 95% Konfidenzintervalls. Der Effektschätzer wird als Punkt in der Mitte des Intervalls dargestellt. Der Effektschäter Δ kann entweder ein Mittelwertsunterschied sein oder ein Anteilsunterschied. Bei einem Mittelwertsunterschied kann die Nullhypothese abgelehnt werden, wenn die 0 nicht im Konfidenzintervall ist; bei einem Anteilsunterschied wenn die 1 nicht im Konfidenzintervall ist. Die Arme werden länger oder kürzer je nachdem wie sich die statistischen Maßzahlen s und n verändern.

Abbildung 14.23: Verschiedene signifikante und relevante Konfidenzintervalle: (a) nicht signifikant und nicht relevant; (b) signifikant und nicht relevant; (c) signifikant und relevant; (d) signifikant und nicht relevant, der Effekt ist zu klein; (e) signifikant und potenziell relevant, Effekt zeigt in eine unerwartete Richtung gegeben der Relevanzschwelle.

In der Anwendung werden wir die Konfidenzintervalle nicht selber berechnen. Wenn ein statistisches Verfahren konfidenzintervalle berechnen kann, dann liefert die entsprechende Funktion in R das Konfidenzintervall.

Es ergibt sich Folgende ausgefüllte, vereinfachte Formel für das 95% Konfidenzintervalls eines t-Tests für das Beispiel des Sprungweitenunterschieds [cm] zwischen Hunde- und Katzenflöhen.

Wir nutzen hier eine **vereinfachte Formel** für das Konfidenzintervall um das Konzept zu verstehen. Später berechnen wir das Konfidenzintervall in R.

$$\left[(9.2 - 7.8) - 2.78 \cdot \frac{0.55}{\sqrt{4}}; \; (9.2 - 7.8) + 2.78 \cdot \frac{0.55}{\sqrt{4}}; \right]$$

mit

• $\bar{y}_{cat} = 9.2$ dem Mittelwert für die Gruppe cat.

- $\bar{y}_{dog} = 7.8$ dem Mittelwert für die Gruppe dog.
- $T_{\alpha=5\%} = 2.78$ dem kritischen Wert.
- $s_p = 0.55$ der gepoolten Standardabweichung mit $s_p = \frac{0.6 + 0.5}{2}$.
- $n_g = 4$ der Gruppengröße der Gruppe A und B. Wir nehmen an beide Gruppen sind gleich groß.

Lösen wir die Formel auf, so ergibt sich folgendes 95% Konfidenzintervall des Mittelwertsunterschiedes der Hunde- und Katzenflöhe.

[0.39; 2.20]

Wir können sagen, dass mit 95% Wahrscheinlichkeit das Konfidenzintervall den wahren Effektunterschied Δ überdeckt. Oder etwas mehr in Prosa, dass wir eine Sprungweiten*unterschied* von 0.39 cm bis 2.20 cm zwischen Hunde- und Katzenflöhen erwarten würden.

Die Entscheidung gegen die Nullhypothese bei einem Mittelwertsunterschied erfolgt bei einem 95% Konfidenzintervall danach ob die Null mit im Konfidenzintervall liegt oder nicht. In dem Interval [0.39; 2.20] ist die Null nicht enthalten, also können wir die Nullhypothese ablehnen. Es ist mit einem Unterschied zwischen den mittleren Sprungweiten von Hunde- und Katzenflöhen auszugehen.

In unserem Beispiel, könnten wir die Relevanzschwelle für den mittleren Sprungweitenunterschied zwischen Hund- und Katzenflöhen auf 2 cm setzen. In dem Fall würden wir entscheiden, dass der mittlere Sprungweitenunterschied nicht relevant ist, da die 2 cm im Konfidenzintervall enthalten sind. Was wäre wenn wir die Relevanzschwelle auf 4 cm setzen? Dann wäre zwar die Relevanzschwelle nicht mehr im Konfidenzintervall, aber wir hätten Fall (d) in der Abbildung ?? vorliegen. Der Effekt ist einfach zu klein, dass der Effekt relevant sein könnte.

Entscheidung mit dem 95% Konfidenzintervall

Bei der Entscheidung mit dem 95% Konfidenzinterval müssen wir zwei Fälle unterscheiden.

- (1) Entweder schauen wir uns einen Mittelwertsunterschied $(\Delta_{y_1-y_2})$ an, dann können wir die Nullhypothese (H_0) nicht ablehnen, wenn die $\mathbf{0}$ im 95% Konfidenzinterval ist.
- (2) Oder wir schauen uns einen Anteilsunterschied (Δ_{y_1/y_2}) an, dann können wir die Nullhypothese (H_0) nicht ablehnen, wenn die 1 im 95% Konfidenzinterval ist.

Auswirkung des Effektes, der Streuung und der Fallzahl

Wir wollen einmal den Zusammenhang zwischen dem Effekt Δ , der Streuung als Standardabweichung s und Fallzahl n uns näher anschauen. Wir können die Formel des t-Tests wie folgt vereinfachen.

$$T_{calc} = \frac{\bar{y}_1 - \bar{y}_1}{s_p \cdot \sqrt{2/n_g}}$$

Für die Betrachtung der Zusammenhänge wandeln wir $\sqrt{2/n_g}$ in 1/n um. Dadurch wandert die Fallzahl n in den Zähler. Die Standardabweichung verallgemeinern wir zu s und damit allgemein zur Streuung. Abschließend betrachten wir $\bar{y}_A - \bar{y}_B$ als den Effekt Δ . Es ergibt sich folgende vereinfachte Formel.

$$T_{calc} = \frac{\Delta \cdot n}{s}$$

Wir können uns nun die Frage stellen, wie ändert sich die Teststatistik T_{calc} in Abhängigkeit vom Effekt Δ , der Fallzahl n und der Streuung s in den Daten. Die Tabelle ?? zeigt die Zusammenhänge auf. Die Aussagen in der Tabelle lassen sich generalisieren. So bedeutet eine steigende Fallzahl meist mehr signifikante Ergebnisse. Eine stiegende Streuung reduziert die Signifikanz eines Vergleichs. Ein Ansteigen des Effektes führt

zu mehr signifikanten Ergebnissen. Ebenso verschiebt eine Veränderung des Effekt das Konfidenzintervall, eine Erhöhung der Streuung macht das konfidenzintervall breiter, eine sinkende Streeung macht das konfidenzintervall schmaller. bei der Fallzahl verhält es sich umgekehrt. Eine Erhöhung der Fallzahl macht das Konfidenzintervall schmaller und eine sinkende Fallzahl das Konfidenzintervall breiter.

oelle 14.6: Zusammenhang von der Teststatistik T_{calc} und dem p-Wert $Pr(\geq T_{calc}|H_0)$ sowie dem $KI_{1-\alpha}$ in nängigkeit vom Effekt Δ , der Fallzahl n und der Streuung s.

	T_{calc}	$Pr(\geq T_{ca}$	$_{lc} H_{0})_{1-lpha}$	T_{calc}	$Pr(\geq T_{ca}$	$\frac{1}{lc} H_{0} _{1-lpha}$
$\Delta\uparrow$	steigt	sinkt	verscho \(\) e\(\)	sinkt	steigt	verschoben
$s \uparrow$	sinkt	steigt	breiter $s \downarrow$	steigt	sinkt	$\operatorname{schmaller}$
$n\uparrow$	steigt	sinkt	$\operatorname{schmal}_{\mathbf{e}r} \downarrow$	sinkt	steigt	breiter

Testtheorie

 \P Prinzip der statistischen Testentscheidung - ${
m H}_0$ und ${
m H}_A$

Du findest auf YouTube Prinzip der statistischen Testentscheidung - H_0 und H_A als Video Reihe. Ich werde zwar alles nochmal hier als Text aufschreiben, aber manchmal ist das Sehen und Hören dann einfacher.

Vielleicht ist die Idee der Testentscheidung besser mit der Analogie des Rauchmelders zu verstehen. Wir nehmen an, dass der Rauchmelder der statistische Test ist. Der Rauchmelder hängt an der Decke und soll entscheiden, ob es brennt oder nicht. Daher muss der Rauchmelder entscheiden, die Nullhypothese "kein Feuer" abzulehnen oder die Hypothese "kein Feuer" beizubehalten.