Let $A \subseteq \mathbb{R}^n$. We will show \overline{A} is closed.

Let x be a limit point of \overline{A} . We must show $x \in \overline{A}$.

We have a sequence (\mathbf{x}_m) converging to \mathbf{x} with each \mathbf{x}_m in \overline{A} .

Fixing m, as \mathbf{x}_m is in the closure of A, there is a sequence $(\mathbf{z}_{m,k})$ converging to \mathbf{x}_m as k goes to infinity.

The right thing to do is, for each m, to pick an integer k_m so that $\|\mathbf{z}_{m,k_m} - \mathbf{x}_m\|$ is at most 1/m.

Define y_m to be z_{m,k_m} . By definition, each y_m is in A.

To see that (\mathbf{y}_m) converges to \mathbf{x} , let $\epsilon > 0$. Choose N so that for all $m \geq N$, $\|\mathbf{x}_m - \mathbf{x}\| < \epsilon/2$.

Let $M = \max\{N, 2/\epsilon\}$. Note that for $m \ge M$, $1/m \le 1/M \le \epsilon/2$. Thus, for all $m \ge M$, we have

$$\|\mathbf{y}_m - \mathbf{x}\| \le \|\mathbf{y}_m - \mathbf{x}_m\| + \|\mathbf{x}_m - \mathbf{x}\|$$

$$\le \|\mathbf{z}_{m,k_m} - \mathbf{x}_m\| + \frac{\epsilon}{2}$$

$$\le \frac{1}{m} + \frac{\epsilon}{2} < \epsilon.$$

By the definition, this shows (y_m) converges to x. Thus, x is a limit point of A and so $x \in \overline{A}$, as required.