Equations of a straight line-

1) Slope - Intercept form: y=mx+ C Islope by-intercept

Mone about slope:

Slopes of passallel lines are equal slopes of perpendicular lines:

So if we know the slope of a line and its y-intercept then we can use 3=mx+c form to get equation of the line but what if we don't know 'C' but we know the coordinates of a point which is on the line?

(2) Slope-Point Form:

As we know $M = \frac{\sqrt{2} - \sqrt{1}}{\chi_2 - \chi_1} \Rightarrow \sqrt{2} - \sqrt{1} = M(\chi_2 - \chi_1)$

To generalize this, let's supplace y_2 by $y \in X_2$ by $x : J-y_1 = m(x-x_1)$

(3) Two-Points Form:

Replacing $m = \frac{32-31}{x_2-x_1}$ in the above equation

$$(J.-J_1) = (J_2-J_1)(x-X_1)$$

$$(X_2-X_1)$$

We can use this form to get equation of the line in we know coordinates of two points $A(x_1, y_1)$

WE CAM USE INIS TOLLIN 1- U

if we know coordinates of two points $A(x_1, y_1)$ & $B(x_2, y_2)$ which are on the line

(4) Intercept Form:
$$\frac{x}{a} + \frac{y}{b} = 1$$

where a is x-intercept & b is y-intercept.

where a, b & c are some constants. (they are not x or y intercepts)

ax+by = -c => Dividing this eq by (-c)

$$-\frac{a}{c} \cdot x + \left(-\frac{b}{c}\right) \cdot y = 1$$

$$\frac{2}{\left(\frac{-C}{a}\right)} + \frac{2}{\left(\frac{-C}{b}\right)} = 1$$

comparing this with intercept form

$$x-intercept = -\frac{C}{a}$$
 & $y-intercept = -\frac{C}{b}$

To find the slope, we need to get the general form into $y = m \times + c$ kind of form.

$$\therefore \alpha x + by + c = 0 \Rightarrow by = -\alpha x - C$$

$$\int \frac{1}{a} = \left(-\frac{a}{b}\right) \cdot x - \frac{c}{b}$$

$$\frac{1}{a} \cdot slope = -\frac{a}{b}$$

Basics of Trigonometry

Sin
$$0 = \frac{Opposite Side}{Hypotenuse}$$
 tam $0 = \frac{Sin 0}{\cos 0}$
 $\cos 0 = \frac{Adjacent Side}{Hypotenuse}$ tam $0 = \frac{Oppos}{Adjace}$

$$\cos \theta = \frac{Adjacent Side}{Hypotenuse}$$

$$tam0 = \frac{Opposite Side}{Adjacent Side}$$

$$Sin O = AB$$

$$A C$$

$$Cose CO = AC$$

$$\cos \theta = \frac{BC}{AC}$$

$$\int_{Sec}^{AC} = \frac{AC}{BC}$$

$$\cot \theta = \frac{BC}{AB}$$

- Units to measure an angle - Degree & Radian

Rule-→ ANISTIC

In Q-1: All thigonomethic hatios are the

→ (T+0) Rule & (T2+0) Rule-

any-taig-
$$f^n(\pi \pm \theta) = \pm same - taig-f^n(\theta)$$
 determined by

All/s/t/c Rule

omy-trig-
$$f^{M}(\frac{\pi}{2}\pm\theta)=\pm$$
 function-changes(θ)

$$sin \rightarrow cos$$
 cosec $\rightarrow sec$ $cos \rightarrow sin$ sec $\rightarrow cosec$ fun $\rightarrow cot$ cot $\rightarrow tan$

Examples of (TT+0) Rule:

$$sin(\pi + \theta) = -sin(\theta)$$

By doing $\pi + \theta$, we

function duesn't change fall in Q-3 whole isin' is -ve-

$$tan (\pi + 0) = + tan(0)$$

$$sin(\pi - \theta) = + sin(\theta)$$

$$cosec(\pi - \theta) = \pm cosec(\theta)$$

$$sec(\pi + \theta) = -sec\theta$$

$$cosec(\pi - \theta) = + cosec(\theta)$$

Examples of (1/2 ±0) kule:

$$Sim \left(\frac{\pi}{2} + \theta \right) = +\omega S \left(\theta \right)$$

$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\left(\theta\right)$$

wsec +>sec

 $tam\left(\frac{1}{2}-0\right)=cot(0)$

	0	30=W	45=774	60'= 11/3	90'= 11/2		
S'iV	٥	1/2	1/2	\\\3/ ₂	1		
COS	1	<u>\(\sqrt{3}\) \(\q \)</u>	1/2	- (ص	0		
tam sino coso	0	-\2\(\frac{13}{3}\gamma	1	[3] [3]	8		

	0	30	45	60	90
sin					
cos					
tan					
cosec					
sec					
cot					