

(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

Tutorial (Balanced Mixer SBM)

■The mixer is based on a **nonlinear device N** characterized with the following 3rd order transfer function:

■The following block diagram represents a single balanced mixer SBM consisting of two 180°-couplers and two identical mixers N.

- 1) In the studied case, the input voltages are $V_{\Sigma 1} = (\sqrt{2}.V_{RF})$ and $V_{\Delta 1} = (\sqrt{2}.V_{LO})$. Therefore, express the input control voltages $V_{\rm IN1}$ and $V_{\rm IN2}$ of N as a function of $V_{\rm LO}$ and $V_{\rm RF}$.
- $V_{\text{IN}2} = \frac{1}{\sqrt{2}} \left(\sqrt{\Sigma_{\text{I}}} + \sqrt{V_{\text{A}}} \right) = \sqrt{V_{\text{RF}}} \sqrt{V_{\text{LO}}}$ 2) Deduce the expressions of output voltages $\left(V_{\text{OUT1}}, V_{\text{OUT2}} \right)$ as a function of V_{LO} and V_{RF} . $V_{\text{OUT4}} = \alpha \left(\sqrt{V_{\text{RF}} + V_{\text{LO}}} \right)^{2} b \left(\sqrt{V_{\text{RF}} + V_{\text{LO}}} \right)^{3}$ $\sqrt{V_{\text{OUT2}}} = \alpha \left(\sqrt{V_{\text{RF}} + V_{\text{LO}}} \right)^{2} b \left(\sqrt{V_{\text{RF}} + V_{\text{LO}}} \right)^{3}$
- 3) The SBM down-converter is designed at an IF angular frequency $\omega_{IF} = \omega_{LO} \omega_{RF}$.
- **∆**port of the SBM as a function of V_0 and V_1 . What are the remaining frequencies at the IF output
 - 5) What are the advantages of this SBM configuration (LO input at Δ port)?
 - 6) Express the voltage conversion gain G_{CV} of the SBM. What is the power conversion gain G_{CP} if all LO-RFIslation of SBM = LO-RFIslation of unper coupler 180° couplers are matched to 50Ω ?
 - 7) What are the values of LO-to-RF and LO-to-IF isolations?

port of the SBM?

