# A look ahead at Spark's development

Reynold Xin @rxin
Spark Summit EU, Amsterdam
Oct 29th, 2015



# Spark stack diagram





# Spark stack diagram (a different take)

Frontend (user facing APIs)

Backend (execution)



# Spark stack diagram (a different take)

Frontend (RDD, DataFrame, ML pipelines, ...)

Backend (scheduler, shuffle, operators, ...)



# Last 12 months of Spark evolution

### Frontend

DataFrames

Data sources

R

Machine learning pipelines

. . .

### Backend

Project Tungsten

Sort-based shuffle

Netty-based network

. . .



# Last 12 months of Spark evolution

### Frontend

### DataFrames

Data sources

R

Machine learning pipelines

. . .

### Backend

### Project Tungsten

Sort-based shuffle

Netty-based network

. . .



# DataFrame: A Frontend Perspective

# Spark DataFrame

Scalable data frame for Java, Python, R, Scala

Similar APIs as single-node tools (Pandas, dplyr), i.e. easy to learn

```
> head(filter(df, df$waiting < 50)) # an example in R
## eruptions waiting
##1    1.750    47
##2    1.750    47
##3    1.867    48</pre>
```

databricks

# Spark RDD Execution





## Spark DataFrame Execution



Intermediate representation for computation



## Spark DataFrame Execution



Simple wrappers to create logical plan

Intermediate representation for computation



# Benefit of Logical Plan: Simpler Frontend

Python: ~2000 line of code (built over a weekend)

R:~1000 line of code

i.e. much easier to add new language bindings (Julia, Clojure, ...)

databricks

### Performance



Runtime for an example aggregation workload



# Benefit of Logical Plan: Performance Parity Across Languages



Runtime for an example aggregation workload (secs)

# Tungsten: A Backend Perspective

Storage

Network

CPU



2010 Storage 50+MB/s (HDD)

1Gbps

CPU ~3GHz

Network

TIGICA VV CATO TICITORO

2010

1Gbps

~3GHz

2015

500+MB/s

(SSD)

10Gbps

~3GHz

Storage 50+MB/s (HDD)

Network

CPU

databricks

Storage

Network

CPU

databricks

2010

50+MB/s

(HDD)

1Gbps

~3GHz

2015

500+MB/s

(SSD)

10Gbps

~3GHz

10X

10X

# Project Tungsten

Substantially speed up execution by optimizing CPU efficiency, via:

- (1) Runtime code generation
- (2) Exploiting cache locality
- (3) Off-heap memory management

databricks

## From DataFrame to Tungsten



Initial phase in Spark 1.5

More work coming in 2016



# 3 Things to Look Forward To

# Dataset API in Spark 1.6

Typed interface over DataFrames / Tungsten



### Dataset

"Encoder" to specify type information so Spark can translate it into DataFrame and generate optimized memory layouts Dataset[T]

encoder

DataFrame

Checkout SPARK-9999



## Streaming DataFrames

Easier-to-use APIs (batch, streaming, and interactive)

### And optimizations:

- Tungsten backends
- native support for out-of-order data
- data sources and sinks

```
val stream = read.kafka("...")
stream.window(5 mins, 10 secs)
   .agg(sum("sales"))
   .write.jdbc("mysql://...")
```

### Largest VM in the Cloud

THURSDAY, JANUARY 8, 2015



Standard G5

DREW MCDANIEL Principal Program Manager, Azure

### G-Series Size Details

| VM Size     | Cores | RAM |
|-------------|-------|-----|
| Standard_G1 | 2     | 2   |
| Standard_G2 | 4     | 5   |
| Standard_G3 | 8     | 11  |
| Standard_G4 | 16    | 22  |
|             |       | I   |

32

# AWS Announces X1 Instances For EC2 With 2TB Of Memory, Launching Next Year

Introducing

AVAILABLE IN THE FIRST

Posted Oct 8, 2015 by Frederic Lardinois (@frederic!)

926

448 GiB









Support





Amazon today announced a macchia new instance time for its AMS ECO compute conice. The

64





#### Amazon

#### FOUNDED 1994

### OVERVIEW

Amazon is an e-commerce retailer formet to provide consumers with products in twit offers users with merchandise and cont purchased for resale from vendors and the by third-party sellers. Operating in North and International markets, Amazon proviservices through websites such as amazon.

amazon.ca. It also enables authors, music

### filmmakers, ... LOCATION Seattle, WA

ATEGORIES

#### CATEGORIES

E-Commerce, Crowdsourcing, Groceries, Co Goods, Delivery, Software, Retail, Internet

#### UNDERS

Rezos

6596 GB



- DRAM latency
- SSD capacity
- Byte addressible



# Unified API, One Engine, Automatically Optimized



databricks





# Office Hours Today @ Databricks booth

|               | Topic Area                   |
|---------------|------------------------------|
| 10:30 – 11:30 | Spark general (Reynold)      |
| 13:00 – 14:00 | R and data science (Hossein) |
| 13:30 – 14:30 | machine learning (Joseph)    |
| 14:00 – 15:00 | Spark, YARN, etc (Andrew)    |

