Automata Theory(SCS2112)

Slides By

Dr Damitha D Karunaratna

Transducers

Definition : A transducer is defined by the tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, \omega)$ where

- Q: is a finite set of **internal states**
- $-\sum$: is a finite set of symbols called the **input** alphabet
- $-\Gamma$: is the **output alphabet**
- $-\delta: Q \times \Sigma \rightarrow Q$ is a function called the **transition function**
- $-q_0 \in Q$ is the initial state
- $-\omega$: output function

 $\omega: Q \times \Sigma \to \Gamma$ Mealy Model output depends on input and state

 ω : Q $\rightarrow \Gamma$ Moore Model output depends only on the state

Mealy Machine

- Is an FSM whose output depends on the present state as well as the present input.
- It can be described by a 6 tuple $(Q, \sum, \Gamma, \delta, \omega, q_0)$ where
 - Q : is a finite set of **internal states**
 - \blacksquare Σ : is a finite set of symbols called the **input alphabet**
 - Γ : is the output alphabet
 - $\delta: Q \times \Sigma \to Q$ is a function called the **input transition** function
 - $\omega : Q \times \Sigma \to \Gamma$ is a output transition function
 - $q_0 \in Q$ is the initial state

• The state table of a Mealy Machine is shown below

	Next State				
Present State	input = 0		input = 1		
	State	Output	State	Output	
→a	b	\mathbf{x}_1	c	\mathbf{x}_1	
b	b	X_2	d	X_3	
С	d	X ₃	С	\mathbf{x}_1	
d	d	X ₃	d	X_2	

The state diagram of the above Mealy
Machine is –

Moore Machine

- Is an FSM whose output depends only n the present state.
- It can be described by a 6 tuple $(Q, \sum, \Gamma, \delta, \omega, q_0)$ where
 - Q : is a finite set of **internal states**
 - \blacksquare Σ : is a finite set of symbols called the **input alphabet**
 - Γ : is the output alphabet
 - $\delta: Q \times \Sigma \to Q$ is a function called the **input transition** function
 - $\omega : Q \to \Gamma$ is a output transition function
 - $q_0 \in Q$ is the initial state

• The state table of a Moore Machine is shown below

Present State	Next S	044	
	input = 0	input = 1	Output
→ a	b	C	\mathbf{X}_2
b	b	d	\mathbf{x}_1
С	c	d	X_2
d	d	d	X ₃

The state diagram of the above Moore
Machine is –

Conversion of Moore Machine to Mealy Machine

Input – Moore Machine

Output – Mealy Machine

- **Step 1** Take a blank Mealy Machine transition table format.
- **Step 2** Copy all the Moore Machine transition states into this table format.
- Step 3 Check the present states and their corresponding outputs in the Moore Machine state table; if for a state Q_i output is m, copy it into the output columns of the Mealy Machine state table wherever Q_i appears in the next state.

Conversion of Mealy Machine to Moore Machine

Input – Mealy Machine

Output – Moore Machine

- Step 1 Calculate the number of different outputs for each state (Q_i) that are available in the state table of the Mealy machine.
- **Step 2** If all the outputs of Qi are same, copy state Q_i . If it has n distinct outputs, break Q_i into n states as Q_{in} where $\mathbf{n} = 0, 1, 2...$
- **Step 3** Create an empty Moore machine with new generated state. For Moore machine, Output will be associated to each state irrespective of inputs.

Non-deterministic Finite Automata(NFA)

Definition: A non-deterministic finite automata (**NFA**) is defined by the tuple M = $(Q, \Sigma, \delta, q_0, F)$ where $Q, \Sigma, \delta, q_0, F$ are defined as for dfa, but δ is defined as below

$$\delta: \mathbf{Q} \times (\Sigma \cup \{\in\}) \rightarrow 2^{\mathbf{Q}}$$

Where 2^{Q} is the power set of Q δ Is a relation (not a function)

Differences between DFA and NFA

- The range of δ is a set.
 - There may be multiple transitions defined on the same state on the same input.
- \in is allowed as the second argument of δ
 - NFA can make a transition without consuming an input symbol.
 - Input mechanism is stationary on some moves
- $\{\} \in 2^Q$ transitions may not have been defined for some inputs.

Example of a nfa

- Several edges with the same label originate from one vertex.
- •Has ∈-transitions
- •Some transitions are unspecified eg. $\delta(q_2,a)$

Transition table for the NFA

State	Input Symbols			
	a	b	\in	
$\mathbf{q_0}$	$\{q_1,q_2\}$			
q_1		$\{q_0\}$	$\{q_2\}$	
q_2				

• Example

• Is the string 00101 is accepted by this NFA?

String to check 00101?

26/09/2018

Compiler Theory

Finite Automata - 17

Strings Accepted by NFA

- A string is accepted by an NFA if there is a sequence of possible moves (path) that will take the machine to a final state at the end of the string.
 - For a given string there may be multiple possible walks from the start state.
- A string is rejected only if there is no possible sequence of moves by which a final state can be reached.

Extended Transition function for nfa

$$-\delta^*(q, \in) = \{q\}$$

- Let w = xa, where a $\in \Sigma$ and $\delta^*(q, x) = \{p_1, p_2, ..., p_k\}$ and $\bigcup_{i=1}^k \delta(p_i, a) = \{r_1, r_2, ..., r_m\}$
 - Then $\delta^*(q, w) = \{ r_1, r_2, \dots, r_m \}$

• Definition : For an NFA, the extended transition function is defined such that $q_j \in \delta^*$ (q_i, w) , iff there is a walk in the transition graph from q_i to q_i labeled w.

∈-closure

$$\delta^* (q_0, a) = \{q_1, q_2, q_0\}$$

The set of states that the NFA can reach from a state q (including itself) through \in transitions, is called the \in -closure of q.

$$\in$$
-closure $(q_1) = \{q_1, q_2, q_0\}$

Note that ∈-closure of a state will always include that state itself.

Languages Accepted by NFA

Definition: The language L accepted by an

NFA: $M = (Q, \Sigma, \delta, q_0, F)$ is defined as below:

$$L(M) = \{ w \mid w \in \Sigma^*, \, \delta^* (q_0, w) \cap F \neq \emptyset \}$$

 There is a walk labeled w from the initial vertex of the transition graph to some final vertex.

There may be several walks for a string w that are ended up in different final states

Dead Configurations

What will happen when the string to be read is 110?

- $-\delta^*(q_0, 11) = q_2$
- $-\delta^*(q_2, 0)$ is undefined

In such a situation the automaton is said to be in a dead configuration.

Automaton stopped without any further action

- For every NFA with an arbitrary number of final states there is an equivalent NFA with only one final state.
- Why Non-determinism?

Non-determinism is an effective mechanism for describing some complicated languages concisely.

• Definition: Two finite accepters M1 and M2 are said to be equivalent if they both accept the same language

$$L(M1) = L(M2)$$

Both finite accepters are equivalent and accept the language $L = \{(10)^n | n \ge 0\}$