Временные ряды

Шпаргалка

Тест Дики-Фуллера statsmodels.tsa.stattools.adfuller

Графики парных и частных коэффициентов автокорреляции statsmodels.graphics.tsaplots.plot_acf и plot_pacf

Модель APMA statsmodels.tsa.stattools.arma_order_select_ic

Модель APИMA statsmodels.tsa.arima.model.ARIMA

Вариант 1

- 1. Сгенерируйте случайные процессы WN (везде возьмите $\mathcal{N}(0,1)$), RW, AR(1) для $\rho=0.5$ и $\rho=-0.5$, MA(1) для $\alpha=0.5$, $\alpha=1$ и $\alpha=5$, WN с трендом y=-1+0.1t+WN, WN с трендом и аддитивной сезонностью $y=-1+0.1t+0.1\sin(\pi t/4)+WN$, WN с трендом и мультипликативной сезонностью $y=(-1+0.1t)(1+0.1\sin(\pi t/4))+WN$. Для каждого процесса покажите по 20 траекторий длины 50- изобразите их разным цветом на общем графике (для каждого процесса свой график итого 11 графиков).
- 2. Сгенерируйте процесс длины 100 $y_t = y_{t-1} \frac{1}{2}y_{t-2} + u_t + 2u_{t-1}$, где u_t WN с $\sigma = 1$. Проверьте его на стационарность с помощью теста Дики—Фуллера. Постройте симуляцию процесса методом ARIMA(p,q,d) параметры подберите сами (попробуйте ручной подбор и автоматический подбор).
- 3. В файле PRMINWGE.raw (описание переременных см. в файле PRMINWGE.txt) приведены годовые данные по уровню безработных в Пуэрто-Рико (переменная ргерор отношение работающих к общей численности), росту уровня ВВП США в млн. долларов (переменная usgnp), средней минимальной зарплате avgmin, средней зарплате avgwage, доля рабочих, подпадающих под закон о минимальной зарплате avgcov, переменная $mincov = (avgmin/avgwage) \cdot avgcov$, Постройте модель

$$\ln(prepop_t) = \beta_0 + \beta_1 \ln(mincov_t) + \beta_2 \ln(usgnp_t).$$

Теперь постройте ту же модель, но относительно детрендированных данных. Введите в модель переменную t. Добавьте переменную $\ln(prgnp_t)$ (рост ВВП в Пуерто–Рико). Попробуйте добавить другие переменные. Попробуйте ввести лаги введенных переменных. Какая модель оказалась лучшей (ориентируйтесь на R_{adj}^2 , AIC и значимость коэффициентов)? Проведите анализ остатков полученной модели (нормальность, гомоскедастичность, неавтокоррелированность).

Вариант 2

- 1. Сгенерируйте случайные процессы WN (везде возьмите $\mathcal{N}(0,1)$), RW, AR(1) для $\rho=0.7$ и $\rho=-0.3$, MA(1) для $\alpha=0.2$, $\alpha=1$ и $\alpha=2$, WN с трендом y=1-0.1t+WN, WN с трендом и аддитивной сезонностью $y=1-0.1t+0.2\sin(\pi t/6)+WN$, WN с трендом и мультипликативной сезонностью $y=(1-0.1t)(1+0.2\sin(\pi t/6))+WN$. Для каждого процесса покажите по 20 траекторий длины 50 изобразите их разным цветом на общем графике (для каждого процесса свой график итого 11 графиков).
- 2. Сгенерируйте процесс длины 100 $y_t = \frac{1}{4}y_{t-2} + u_t + u_{t-1} + u_{t-2}$, где u_t WN с $\sigma = 1$. Проверьте его на стационарность с помощью теста Дики—Фуллера. Постройте симуляцию процесса методом ARIMA(p,q,d) параметры подберите сами (попробуйте ручной подбор и автоматический подбор).
- 3. В файле FERTIL3.raw приведены данные о рождаемости. Переменная gfr число детей на 1000 женщин детородного возраста, ре величина налогового вычета, ww2 бинарная переменная, показывающая годы Второй мировой войны, pill бинарная переменная, показывающая появление

противозачаточных таблеток.Постройте модель

$$gfr_t = \beta_0 + \beta_1 p e_t + \beta_2 w w 2_t + \beta_2 p i l l_t.$$

Теперь постройте ту же модель, но добавьте лаги 1 и 2 по переменной pe_t . Попробуйте добавить лаги pe_{t-3} и pe_{t-4} . Детрендируйте переменную gfr_t (попробуйте линейный и квадратичный тренд), постройте модель на детрендированную переменную. Попробуйте самостоятельно добавить те или иные переменные. Какая модель оказалась лучшей (ориентируйтесь на R^2_{adj} , AIC и значимость коэффициентов)? Проведите анализ остатков полученной модели (нормальность, гомоскедастичность, неавтокоррелированность).