- Q1 On considère une fonction polynomiale du second degré de la forme $f(x)=ax^2+bx+c$ avec a
 eq 0 .
- **a.** Calculez f'(x).
- **b.** Etablir le tableau de signes de f^\prime en étudiant séparément les cas a>0 et a<0.
- ${f c.}$ En déduire le tableau de variations de la fonction f en fonction du signe de a.
- **d.** Déterminez les coordonnées du sommet de la parabole sous forme de quotients.
- **e.** Quel est le signe de f(x) si $\Delta < 0$?
- Pour chacune des fonctions polynomiales suivantes, calculez la fonction dérivée et en déduire une minoration ou une majoration de la fonction.

$$\begin{array}{lll} f_1: x \longmapsto 2x^2-4x+5 & f_2: x \longmapsto -3x^2+7x-1 \\ f_3: x \longmapsto 4x^2-6x-5 & f_4: x \longmapsto -9x^2+6x-1 \\ \text{Comment pouvait-on deviner plus rapidement la} \end{array}$$

dernière réponse ?

E2 Les fonctions suivantes admettent-elles des extremums ?

$$f:x\longmapsto x^3-2x^2+2x-7 \ g:x\longmapsto -2x^3+3x^2+12x-10$$

$$g: x \longmapsto -2x^3 + 3x^2 + 12x - 10$$

 $h: x \longmapsto -x^3 + 9x^2 - 27x + 12$

- Considérons la fonction $f:x\longmapsto rac{x}{3}+rac{12}{x}$.
- a. Déterminez son domaine de définition.
- b. Déterminez son domaine de dérivabilité.
- ${f c.}$ Calculez la dérivée de la fonction f.
- ${
 m d.}$ Ecrire $f^{\prime}(x)$ sous la forme d'un quotient et étudier son signe.
- **e.** En déduire le tableau de variations de f.
- **f.** Etudiez la parité de la fonction f.
- g. Complétez le tableau de valeurs suivant :

\boldsymbol{x}	1	2	3	4	6	8	12
f(x)							

h. Tracez la courbe représentative de f.

- On considère la fonction f définie par : $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto 3x^3-36x$
- **a.** Etudiez la parité de la fonction f.
- **b.** Déterminez les racines de la fonction f.
- **c.** Calculez f' puis la factoriser.
- d. Etablir son tableau de signes.
- e. En déduire son tableau de variations.
- **f.** Tracez la courbe représentative de f.

Indication : $2\sqrt{3}pprox 3,5$

- Considérons la fonction $f: x \longmapsto rac{x^2}{54} + rac{1}{x}$
- **a.** Déterminez le domaine de définition de f.
- **b.** Déterminez le domaine de dérivabilité de f.
- **c.** Calculez f'(x).
- **d.** Etudier les variations de $g:x\longmapsto x^2+3x+9$ pour en déterminer le signe puis développer $(x-3)(x^2+3x+9)$ pour faire le lien avec f'(x).
- **e.** Etudiez le signe de f'(x).
- **f.** En déduire le tableau de variations de f.
- **g.** Calculez f(3) et f(6).
- **h.** Complétez la courbe représentative de f.

 ${f i.}$ La courbe représentative de f admet-elle un centre de symétrie ? Justifier.

E6 Considérons les fonctions suivantes.

 $f: x \longmapsto x \sqrt{x} \quad g: x \longmapsto x^2 \sqrt{x} \quad h: x \longmapsto g(x) - f(x)$

- **a.** Pourquoi peut-on affirmer que ces fonctions sont définies sur \mathbb{R}^* et dérivable sur \mathbb{R}^* ?
- **b.** Calculez les fonctions dérivées de ces fonctions.
- c. Etudiez les variations de ces fonctions.
- d. Déterminez les zéros de ces fonctions.
- e. En déduire le signe de ces fonctions.
- f. Associez chaque fonction à sa courbe.

