Resumen.

Este documento es una guía que pretende ser un índice de todos los experimentos que se realicen con motivo del desarrollo del TFG.

Introducción.

En este proyecto se propone un estudio analitico y exploratorio de la aplicación del deep learning a la clasificación de imágenes médicas para crear un asistente que pueda servir de apoyo en la toma de decisiones.

Se estudiará un conjunto de datos basado en fotografías de lesiones cutáneas y se pretende poder clasificar cuál es el tipo de lesión de piel que sufre el paciente.

Dominio del problema.

La información proviene de un set de datos de Kaggle que cuenta con 10015 imágenes.

Las clases en las que se divide la información son las siguientes:

Nombre completo de la lesión	Diminutivo
Actinic keratoses and intraepithelial carcinoma / Bowen's disease	akiec
Basal cell carcinoma	bcc
Benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses)	bkl
Dermatofibroma	df
Melanoma	mel
Melanocytic nevi	nv
Vascular lesions (angiomas, angiokeratomas, pyogenic granulomas and hemorrhage)	vasc

La información no está equilibrada. Como se muestra en la imagen siguiente, mel es la clase dominante.

Tabla resumen de experimentos

Nombre	Objetivo	Resultados
Exp 0	Confirmar si la premisa: Una cnn funciona mejor si se le aplica transfer learning que si se le dan todos los datos para aprender.	Satisfactorio
Exp 1	Comprobar si diversas configuraciones mejoran nuestra red de forma significativa.	Satisfactoria
Exp 2	Confirmar la robustez de las redes.	En proceso
Exp 3	Comprobar si las arquitecturas ccn convencionales pueden mejorar la precisión alcanzada anteriormente	Satisfactoria
Exp 4	Comprobar si el fine-tuning aumenta de forma significativa la precisión de las redes	En proceso
Exp 5	Comprobar si el ensamblaje de arquitecturas es beneficioso para el aumento de precisión	En proceso
Ехр 6	Crear un segmentador semántico	