Université du Québec à Montréal

 ${\it INF5130}: Algorithmique$

Devoir 2

Hiver 2023

Exercice 1 (25 points)

		2					
p_k	0,21	0,01	0,05	0,12	0,18	0,03	0,4

$$C[1;1] = p1 = 0,21$$
 $C[2;2] = p2 = 0,01$ $C[3;3] = p3 = 0,05$
 $C[4;4] = p4 = 0,12$ $C[5;5] = p5 = 0,18$ $C[6;6] = p6 = 0,03$
 $C[7;7] = p7 = 0,4$

$$C[1;2] = min(\mathbf{0} + \mathbf{0.1}; 0.21 + 0) + 0.21 + 0.01 = 0.23$$

$$C[2;3] = min(0 + 0.5; \mathbf{0.01} + \mathbf{0}) + 0.01 + 0.05 = 0.07$$

$$C[3;4] = min(0 + 0.12; \mathbf{0.05} + \mathbf{0}) + 0.05 + 0.12 = 0.22$$

$$C[4;5] = min(0+0.18; \mathbf{0.12} + \mathbf{0}) + 0.12 + 0.18 = 0.42$$

$$C[5; 6] = min(\mathbf{0} + \mathbf{0.03}; 0.18 + 0) + 0.18 + 0.03 = 0.24$$

$$C[6;7] = min(0+0.4; \mathbf{0.03} + \mathbf{0}) + 0.4 + 0.03 = 0.46$$

$$C[1;3] = min(\mathbf{0} + \mathbf{0.07}; 0.21 + 0.05; 0.23 + 0) + 0.21 + 0.01 + 0.05 = 0.34$$

$$C[2;4] = min(0 + 0.22; 0.1 + 0.12; \mathbf{0.07} + \mathbf{0}) + 0.01 + 0.05 + 0.12 = 0.25$$

$$C[3;5] = min(0 + 0.42; 0.05 + 0.18; \mathbf{0.22} + \mathbf{0}) + 0.05 + 0.12 + 0.18 = 0.57$$

$$C[4;6] = min(0 + 0.24; \mathbf{0.12} + \mathbf{0.03}; 0.42 + 0) + 0.12 + 0.18 + 0.03 = 0.48$$

$$C[5;7] = min(0 + 0.46; 0.18 + 0.4; \mathbf{0.24} + \mathbf{0}) + 0.18 + 0.03 + 0.4 = 0.85$$

$$C[1;4] = min(\mathbf{0} + \mathbf{0.25}; 0.21 + 0.22; 0.23 + 0.12; 0.34 + 0) + 0.21 + 0.01 + 0.05 + 0.12 = 0.64$$

$$C[2;5] = min(0 + 0.57; 0.01 + 0.42; \mathbf{0.07} + \mathbf{0.18}; \mathbf{0.25} + \mathbf{0}) + 0.01 + 0.05 + 0.12 + 0.18 = 0.61$$

$$C[3;6] = min(0 + 0.42; 0.05 + 0.24; \mathbf{0.22} + \mathbf{0.03}; 0.57 + 0) + 0.05 + 0.12 + 0.18 + 0.03 = 0.63$$

$$C[4;7] = min(0 + 0.85; 0.12 + 0.46; 0.42 + 0.4; \mathbf{0.48} + \mathbf{0}) + 0.12 + 0.18 + 0.03 + 0.4 = 1.21$$

C[1;5] = min(0+0.61;0.21+0.57;0.23+0.42; 0.34 + 0.18;0.64+0) + 0.21+0.01+0.05+0.12+0.18 = 1.09 C[2;6] = min(0+0.63;0.01+0.48;0.07+0.24; 0.25 + 0.03;0.61+0) + 0.01+0.05+0.12+0.18+0.03 = 0.67 C[3;7] = min(0+1.21;0.05+0.85;0.22+0.45;0.57+0.4; 0.63 + 0) + 0.05+0.12+0.18+0.03+0.4 = 1.41

 $C[1;6] = min(0+0.67;0.21+0.63;0.23+0.48; \textbf{0.34} + \textbf{0.24};0.64+0.03;1.09+0)+0.21+0.01+0.05+0.12+0.18+0.03 = 1.18 \\ C[2;7] = min(0+1.41;0.01+1.21;0.07+0.85;0.25+0.46;0.61+0.4;\textbf{0.67+0})+0.01+0.05+0.12+0.18+0.03+0.4 = 1.46$

 $C[1;6] = min(0+0.67;0.21+1.41;0.23+1.21;0.34+0.85; \ \textbf{0.64+0.46};1.09+0.4;1.18+0)+0.21+0.01+0.05+0.12+0.18+0.03+0.4=2.1$

Matrice C:

	0	1	2	3	4	5	6	7
1	0	0.21	0.23	0.34	0.64	1.09	1.18	2.1
2		0	0.01	0.07	0.25	0.61	0.67	1.46
3			0	0.05	0.22	0.57	0.63	1.41
4				0	0.12	0.42	0.48	1.21
5					0	0.18	0.24	0.85
6						0	0.03	0.46
7							0	0.4
8								0

Matrice racine:

	0	1	2	3	4	5	6	7
1	0	1	1	1	1	4	4	5
2 3		0	2	3	4	4/5	5	7
3			0	3	4	$egin{array}{c c} 4/5 \\ 5 \\ 5 \\ 5 \end{array}$	5	7
4				0	4	5	5	7
4 5 6					0	5	5	7
6						0	6	7
7							0	7
8								0

Arbre de recherche optimal :

Espérance du temps de recherche : 2,1.

Exercice 2 (25 points)

Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
Pénalité	95	85	55	60	50	45	40	30	20	10

			1							
Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
$N_i(F)$	0	0	1	1	1	1	1	1	1	1

		2	1							
Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
$N_i(F)$	0	1	2	2	2	2	2	2	2	2

		3								
		2	1							
Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
$N_i(F)$	0	2	3	3	3	3	3	3	3	3

		3	4							
		2	1							
Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
$N_i(F)$	0	2	3	3	3	3	3	3	3	3

		3	4							
		2	1	5						
Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
$N_i(F)$	0	2	3	4	4	4	4	4	4	4

		3	4							
		2	1	5	6					
Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
$N_i(F)$	0	2	3	4	5	5	5	5	5	5

		3	4							
	7	2	1	5	6					
Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
$N_i(F)$	0	2	3	4	5	5	5	5	5	5

		3	4		8					
	7	2	1	5	6					
Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
$N_i(F)$	0	2	3	4	5	5	5	5	5	5

		3	4		8					
	7	2	1	5	6	9				
Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
$N_i(F)$	0	2	3	4	5	6	6	6	6	6

		3	4		8					
	7	2	1	5	6	9		10		
Tâche	1	2	3	4	5	6	7	8	9	10
Échéance	3	2	2	3	4	5	1	5	6	8
$N_i(F)$	0	2	3	4	5	6	6	7	7	7

 $\textbf{Ordonnancement optimal}: 3\ 2\ 1\ 5\ 6\ 9\ 10\ 7\ 4\ 8$

Pénalité : 60 + 40 + 30 = 130

Exercice 3 (25 points)

$$((x_1 \to x_2) \land x_1) \lor \neg x_2.$$

Étape 1 :

$$\phi_1' = y_1$$

$$\phi_2' = y_1 \leftrightarrow (y_2 \lor \neg x_2)$$

$$\phi_3' = y_2 \leftrightarrow (y_3 \land x_1)$$

$$\phi_4' = y_3 \leftrightarrow (x_1 \rightarrow x_2)$$

$$\phi^{'} = y_1 \wedge (y_1 \leftrightarrow (y_2 \vee \neg x_2)) \wedge (2 \leftrightarrow (y_3 \wedge x_1)) \wedge (y_3 \leftrightarrow (x_1 \rightarrow x_2))$$

$$\phi^{'} = \phi_1^{'} \wedge \phi_2^{'} = y_1 \wedge \phi_3^{'} = y_1 \wedge \phi_4^{'} = y_1$$

Étape 2:

y_2	y_3	x_1	$y_1 \leftrightarrow (y_2 \vee \neg x_2)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$\neg \phi_2'' = (\neg y_1 \wedge \neg y_2 \wedge \neg x_2) \vee (\neg y_1 \wedge y_2 \wedge \neg x_2) \vee (\neg y_1 \wedge y_2 \wedge x_2) \vee (y_1 \wedge \neg y_2 \wedge \neg x_2)$$
$$\phi_2'' = (y_1 \vee y_2 \vee x_2) \wedge (y_1 \vee \neg y_2 \vee x_2) \wedge (y_1 \vee \neg y_2 \vee \neg x_2) \wedge (\neg y_1 \vee y_2 \vee x_2)$$

y_1	y_2	x_1	$y_2 \leftrightarrow (y_3 \wedge x_1)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$\neg \phi_3^{''} = (\neg y_2 \wedge \neg y_3 \wedge x_1) \vee (y_2 \wedge \neg y_3 \wedge \neg x_1) \vee (y_2 \wedge \neg y_3 \wedge x_1) \vee (y_2 \wedge y_3 \wedge \neg x_1)$$

$$\phi_3^{''} = (y_2 \vee y_3 \vee \neg x_1) \wedge (\neg y_2 \vee y_3 \vee x_1) \wedge (\neg y_2 \vee y_3 \vee \neg x_1) \wedge (\neg y_2 \vee \neg y_3 \vee x_1)$$

y_3	x_1	x_2	$\phi_4' = y_3 \leftrightarrow (x_1 \to x_2)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$\neg \phi_4'' = (\neg y_3 \land x_1 \land \neg x_1) \lor (\neg y_3 \land \neg x_1 \land x_2) \lor (\neg y_3 \land x_1 \land x_2) \lor (y_3 \land x_1 \land \neg x_2)$$
$$\phi_4'' = (y_3 \lor \neg x_1 \lor x_1) \land (y_3 \lor x_1 \lor \neg x_2) \land (y_3 \lor \neg x_1 \lor \neg x_2) \land (\neg y_3 \lor \neg x_1 \lor x_2)$$

Etape 3:

$$\phi_{1} = \phi_{1} = (y_{1} \lor z_{1} \lor z_{2}) \land (y_{1} \lor \neg z_{1} \lor z_{2}) \land (y_{1} \lor z_{1} \lor \neg z_{2}) \land (y_{1} \lor \neg z_{1} \lor \neg z_{2})$$

$$\phi_{2}^{"'} = \phi_{2}^{"}$$

$$\phi_{3}^{"'} = \phi_{3}^{"}$$

$$\phi_{4}^{"''} = \phi_{4}^{"}$$

Exercice 4 (25 points)

I. Ligne 1:

SM[1][2]:

pour
$$k = 0$$
, $SM[1][2] = [1][1] + S[0][2] = 15 + 0 = 15$
pour $k = 1$, $SM[1][2] = [0][1] + S[1][2] = 0 + 20 = 20$

SM[1][3]:

pour
$$k = 0$$
, $SM[1][3] = [1][2] + S[0][3] = 20 + 0 = 20$
pour $k = 1$, $SM[1][3] = [0][2] + S[1][3] = 0 + 18 = 18$

SM[1][4]:

pour
$$k = 0$$
, $SM[1][4] = [1][3] + S[0][3] = 20 + 0 = 15$
pour $k = 1$, $SM[1][4] = [0][3] + S[1][3] = 0 + 25 = 25$

Ligne 2:

SM[2][2]:

pour
$$k = 0$$
, $SM[2][2] = [2][1] + S[0][2] = 30 + 0 = 30$
pour $k = 1$, $SM[2][2] = [1][1] + S[1][2] = 15 + 20 = 35$
pour $k = 2$, $SM[2][2] = [0][1] + S[2][2] = 0 + 40 = 40$

SM[2][3]:

pour
$$k = 0$$
, $SM[2][3] = [2][2] + S[0][3] = 40 + 0 = 40$
pour $k = 1$, $SM[2][3] = [1][2] + S[1][3] = 20 + 18 = 38$
pour $k = 2$, $SM[2][3] = [0][2] + S[2][3] = 0 + 38 = 38$

SM[2][4]:

pour
$$k = 0$$
, $SM[2][4] = [2][3] + S[0][4] = 40 + 0 = 40$
pour $k = 1$, $SM[2][4] = [1][3] + S[1][4] = 20 + 25 = 45$
pour $k = 2$, $SM[2][4] = [0][3] + S[2][4] = 0 + 35 = 35$

Ligne 3:

SM[3][2]:

pour
$$k = 0$$
, $SM[3][2] = [3][1] + S[0][2] = 45 + 0 = 45$
pour $k = 1$, $SM[3][2] = [2][1] + S[1][2] = 30 + 20 = 50$
pour $k = 2$, $SM[3][2] = [1][1] + S[2][2] = 15 + 40 = 55
pour $k = 3$, $SM[3][2] = [0][1] + S[3][2] = 0 + 54 = 54$$

SM[3][3]:

pour
$$k = 0$$
, $SM[3][3] = [3][2] + S[0][3] = 55 + 0 = $\underline{55}$
pour $k = 1$, $SM[3][3] = [2][2] + S[1][3] = 40 + 18 = 58$$

```
pour k = 2, SM[3][3] = [1][2] + S[2][3] = 20 + 38 = 58
pour k = 3, SM[3][3] = [0][2] + S[3][3] = 0 + 59 = <u>59</u>
```

SM[3][4]:

pour k = 0, SM[3][4] = [3][3] + S[0][4] = 59 + 0 = 59pour k = 1, SM[3][4] = [2][3] + S[1][4] = 40 + 25 = 65pour k = 2, SM[3][4] = [1][3] + S[2][4] = 20 + 35 = 55pour k = 3, SM[3][4] = [0][3] + S[3][4] = 0 + 47 = 47

Ligne 4:

SM[4][2]:

pour k = 0, SM[4][2] = [4][1] + S[0][2] = 60 + 0 = 60pour k = 1, SM[4][2] = [3][1] + S[1][2] = 45 + 20 = 65pour k = 2, SM[4][2] = [2][1] + S[2][2] = 30 + 40 = 70pour k = 3, SM[4][2] = [1][1] + S[3][2] = 15 + 54 = 69pour k = 4, SM[4][2] = [0][1] + S[4][2] = 0 + 65 = 65

SM[4][3]:

pour k = 0, SM[4][3] = [4][2] + S[0][3] = 70 + 0 = 70pour k = 1, SM[4][3] = [3][2] + S[1][3] = 55 + 18 = 73pour k = 2, SM[4][3] = [2][2] + S[2][3] = 40 + 38 = 78pour k = 3, SM[4][3] = [1][2] + S[3][3] = 20 + 59 = 79pour k = 4, SM[4][3] = [0][2] + S[4][3] = 0 + 68 = 68

SM[4][4]:

pour k=0, SM[4][4]=[4][3]+S[0][4]=79+0=59pour k=1, $SM[4][4]=[3][3]+S[1][4]=59+25=\underline{84}$ pour k=2, SM[4][4]=[2][3]+S[2][4]=40+35=75pour k=3, SM[4][4]=[1][3]+S[3][4]=20+47=67pour k=4, SM[4][4]=[0][3]+S[4][4]=0+69=69

Ligne 5:

SM[5][2]:

pour k = 0, SM[5][2] = [5][1] + S[0][2] = 75 + 0 = 75pour k = 1, SM[5][2] = [4][1] + S[1][2] = 60 + 20 = 80pour k = 2, SM[5][2] = [3][1] + S[2][2] = 45 + 40 = 85pour k = 3, SM[5][2] = [2][1] + S[3][2] = 30 + 54 = 84pour k = 4, SM[5][2] = [1][1] + S[4][2] = 15 + 55 = 80pour k = 5, SM[5][2] = [0][1] + S[5][2] = 0 + 70 = 70

SM[5][3]:

pour k = 0, SM[5][3] = [5][2] + S[0][3] = 85 + 0 = 85

pour
$$k = 1$$
, $SM[5][3] = [4][2] + S[1][3] = 70 + 18 = 88$
pour $k = 2$, $SM[5][3] = [3][2] + S[2][3] = 55 + 38 = 83$
pour $k = 3$, $SM[5][3] = [2][2] + S[3][3] = 40 + 59 = 99$
pour $k = 4$, $SM[5][3] = [1][2] + S[4][3] = 20 + 68 = 88$
pour $k = 5$, $SM[5][3] = [0][2] + S[5][3] = 0 + 78 = 78$

SM[5][4]:

pour
$$k=0$$
, $SM[5][4]=[5][3]+S[0][4]=99+0=99$
pour $k=1$, $SM[5][4]=[4][3]+S[1][4]=79+25=\underline{104}$
pour $k=2$, $SM[5][4]=[3][3]+S[2][4]=59+35=94$
pour $k=3$, $SM[5][4]=[2][3]+S[3][4]=40+47=87$
pour $k=4$, $SM[5][4]=[1][3]+S[4][4]=20+69=89$
pour $k=5$, $SM[5][4]=[0][3]+S[5][4]=0+80=80$

$$SM = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 15 & 20 & 20 & 25 \\ 30 & 40 & 40 & 45 \\ 45 & 55 & 59 & 65 \\ 60 & 70 & 79 & 84 \\ 75 & 85 & 99 & 104 \end{pmatrix} \qquad NH = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & 2 & 0 & 1 \\ 3 & 2 & 3 & 1 \\ 4 & 2 & 3 & 1 \\ 5 & 2 & 3 & 1 \end{pmatrix}.$$

II. Le revenu maximal est de 104\$ pour 1 heure de travail dans l'entreprise 4, 3 heures dans l'entreprise 3 et 2 dans l'entreprise 2. Selon la matrice NH, on doit regarder les dernières non nulles de chaque colonne. Cela correspond au nombre d'heures que l'étudiant doit travailler dans chaque entreprise pour un revenu maximal.