1167. $y = \sin x \sin 2x \sin 3x$;	найти $y^{(10)}$.
1168. $y = x \sinh x$;	найти $y^{(100)}$
1169. $y = e^x \cos x$;	найти y^{IV} .
1170. $y = \sin^2 x \ln x$:	найти $u^{(6)}$.

В следующих примерах, считая х независимой переменной, найти дифференциалы указанного порядка:

1171. $y = x^5$;	найти <i>d⁵y</i> .
1172. $y = 1/\sqrt{x}$;	найти <i>d³y.</i>
1173. $y = x \cos 2x$;	найти <i>d</i> ¹⁰ <i>y</i>
1174. $y = e^x \ln x$;	найти d^4y .
1175. $y = \cos x \cdot \operatorname{ch} x$;	найти <i>d⁶y</i> .

В следующих примерах найти дифференциалы указанного порядка, если u — функция от x, дифференцируемая достаточное число раз:

1176.	$y=u^2$;	найти <i>d</i> 10	y
1177.	$y=e^{\mu};$	найти <i>d</i> 4g	y.
1178.	$y = \ln u;$	найти <i>d³</i>	y.

1179. Найти d^2y , d^3y и d^4y от функции y=f(x), считая x функцией от некоторой независимой переменной.

1180. Выразить производные y'' и y''' от функции y = f(x) через последовательные дифференциалы переменных x и y, не предполагая x независимой переменной.

1181. Показать, что функция $y = C_1 \cos x + C_2 \sin x$, где C_1 и C_2 — произвольные постоянные, удовлетворяет уравнению

$$y^{\prime\prime}+y=0.$$

1182. Показать, что функция $y = C_1 \text{ch } x + C_2 \text{sh } x$, где C_1 и C_2 — произвольные постоянные, удовлетворяет уравнению

 $y^{\prime\prime}-y=0.$

1183. Показать, что функция $y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}$, где C_1 и C_2 — произвольные постоянные и λ_1 , λ_2 — постоянные, удовлетворяет уравнению

$$y'' - (\lambda_1 + \lambda_2) y' + \lambda_1 \lambda_2 y = 0_{\bullet}$$