Алгебра. Глава б. Теория групп

Д.В.Карпов

2022-2023

Пусть G — множество, и определена $\cdot: G \times G \to G$, удовлетворяющая следующим условиям.

- 1) Ассоциативность $\forall a, b, c \in G$ (ab)c = a(bc).
- 2) Нейтральный элемент. $\exists e \in G$ такой, что $\forall a \in G$ ае = ea = a.
- 3) Oбратный элемент. $\forall a \in G \ \exists a^{-1} \in G$ такой, что $a \cdot a^{-1} = a^{-1} \cdot a = e$.
- 4) Коммутативность $\forall a, b \in G$ ab = ba.
- ullet Если выполнены условия 1 и 2, то G- полугруппа.
- ullet Если выполнены условия 1, 2 и 3, то $G-{\it группа}$.
- Если выполнены условия 1, 2, 3 и 4, то G абелева группа (или, что то же самое, коммутативная группа).
- Операцию в группе можно обозначать как угодно, как правило, используется символ \cdot , но это не обязательно.

Определение

Если G и H — группы с одинаковой операцией \cdot и $H \subset G$, то H — подгруппа G. Обозначение: H < G.

Нейтральный элемент единственен

Доказательство. Пусть их два: e_1 и e_2 . Тогда $e_1 = e_1 e_2 = e_2$.

Свойство 2

Для любого $a\in {\sf G}$, обратный элемент a^{-1} единственен.

Доказательство. Пусть a_1 и a_2 — два обратных элемента к $a \in G$. Тогда $a_1a = aa_2 = e$, откуда $a_1 = a_1(aa_2) = (a_1a)a_2 = a_2$.

Свойство 3

Для любого $a \in G$, $(a^{-1})^{-1} = a$.

Доказательство. Так как $aa^{-1}=a^{-1}a=e$, значит, a является обратным к a^{-1} . По Свойству 2, обратный элемент единственен.

Свойство 4

Для любых $a,b \in G$ выполнено $(ab)^{-1} = b^{-1}a^{-1}$.

Пусть G — группа, $H \subset G$, причем H замкнуто по умножению и взятию обратного элемента (то есть, $\forall a,b \in H$ выполнено $ab \in H$ и $a^{-1} \in H$). Тогда H < G.

Доказательство. • При выполнении этих условий, $\cdot : H \times H \to H$ — ассоциативная операция и для любого элемента существует обратный.

- ullet Пусть $a\in H$. Тогда $a^{-1}\in H\Rightarrow e=aa^{-1}\in H$.
- ullet Значит, H- группа с операцией \cdot , то есть, H< G.

Лемма 2

Пусть $\{H_i\}_{i\in I}$ — множество подгрупп группы G . Тогда $H=\bigcap\limits_{i\in I}H_i$ — тоже подгруппа группы G .

Доказательство. • Достаточно проверить замкнутость по умножению и взятию обратного элемента.

- ullet Пусть $a,b\in H$. Тогда для всех $i\in I$ мы имеем $a,b\in H_i$.
- ullet Следовательно, для всех $i \in I$ мы имеем $ab \in H_i$, откуда следует, что $ab \in H$.
- Кроме того, для всех $i \in I$ мы имеем $a^{-1} \in H_i$, откуда следует, что $a^{-1} \in H$.

Пусть G — группа, $M \subset G$. Тогда

$$\langle M \rangle := \{ t_1 \dots t_n : \forall i \in \{1, \dots, n\} \ t_i \in M \$$
или $t_i^{-1} \in M. \}$ (n не фиксировано, может быть любым натуральным числом)

— подгруппа, порожденная M.

Лемма 3

Пусть G — группа, $M \subset G$. Тогда $\langle M \rangle < G$.

Доказательство. • Поскольку группа G замкнута по умножению и взятию обратных элементов, $\langle M \rangle \subset G$. (Из $t_i^{-1} \in M \subset G$ следует $t_i = (t_i^{-1})^{-1} \in G$. Из $t_1, \ldots, t_n \in G$ следует $t = t_1 \ldots t_n \in G$.

- Пусть $t,s\in\langle M\rangle$. Тогда $t=t_1\dots t_n$ (где $t_i\in M$ или $t_i^{-1}\in M$ для всех i) и $s=s_1\dots s_m$ (где $s_i\in M$ или $s_i^{-1}\in M$ для всех i).
- ullet Тогда $ts=t_1\dots t_n s_1\dots s_m\in\langle M
 angle.$
- ullet $t_{i}^{-1}=t_{n}^{-1}\cdot\dots\cdot t_{1}^{-1}\in\langle M
 angle$, так как для любого i либо $t_{i}^{-1}\in M$, либо $(t_{i}^{-1})^{-1}=t_{i}\in M$.
- По Лемме 1, $\langle M \rangle < G$.

Пусть G — группа.

- 1) Если $M\subset G$ таково, что $\langle M\rangle=G$, то M система образующих группы G.
- 2) Если $a\in G$ таково, что $\{a\}$ система образующих G (то есть, $\langle a\rangle=G$), то G циклическая группа.

Определение

- 1) Пусть G группа, $a \in G$. Порядок элемента a (обозначение: $\operatorname{ord}(a)$) это наименьшее такое $k \in \mathbb{N}$, что $a^k = e$. Если такого k нет, то $\operatorname{ord}(a) = \infty$.
- 2) Порядок группы G это количество ее элементов (то есть, |G|).

- \bullet Если $\operatorname{ord}(a) = 1$, то очевидно, что a = e.
- ullet Положим $a^0 = e$. Пусть $k \in \mathbb{N}$, $a \in G$. Тогда положим $a^{-k} := (a^{-1})^k$.

Свойство 1

Для любых $k, n \in \mathbb{Z}$ выполнено $a^{k+n} = a^k a^n$.

Доказательство. • При $k, n \in \mathbb{N}$ утверждение очевидно. как и при $0 \in \{k, n\}$.

- Если k, n < 0, то $a^{k+n} = (a^{-1})^{|k|+|n|} = (a^{-1})^{|k|} (a^{-1})^{|n|} = a^k a^n.$
- ullet Пусть k<0, n>0. Тогда $a^ka^n=\underbrace{a^{-1}\ldots a^{-1}}\cdot \underbrace{a\ldots a}$.
- ullet При |k|>n после сокращения получится $(a^{-1})^{|k|-n} = a^{k+n}$. При $|k| \le n$ после сокращения получится $a^{n-|k|} = a^{k+n}$.
- \bullet Случай k > 0, n < 0 аналогичен.

Свойство 2

Для любых $k,n\in\mathbb{Z}$ выполнено $(a^k)^n=a^{kn}$.

Доказательство. • При k=0 или n=0 утверждение понятно. При $n\in\mathbb{N}$ утверждение немедленно следует из определения степени.

- При k > 0 $(a^k)^{-1} = (\underbrace{a \dots a}_k)^{-1} = \underbrace{a^{-1} \dots a^{-1}}_k = (a^{-1})^k$.
- ullet Следовательно, при k>0 и n<0 имеем $(a^k)^n=(a^k)^{-|n|}=\left((a^k)^{-1}\right)^{|n|}=(a^{-1})^{k|n|}=a^{kn}.$
- ullet Так как $a^{-k}=(a^{-1})^k$ по определению степени, при k<0 аналогично.

Пусть $G = \langle a \rangle$ — циклическая группа.

- 1) Если $\operatorname{ord}(a) = k \in \mathbb{N}$, то $G = \{a^0 = e, a, \dots, a^{k-1}\}$ и все эти элементы различны.
- 2) Если $\operatorname{ord}(a)=\infty$, то $G=\{a^s:s\in\mathbb{Z}\}$ и все эти элементы различны.

Доказательство. • В любом случае, по определению $G = \{a^s : s \in \mathbb{Z}\}.$

- 1) Докажем, что $\forall n \in \mathbb{N}$ мы имеем $a^n \in \{e = a^0, a, a^2, \dots, a^{k-1}\}.$
- ullet Поделим n на k с остатком: n=qk+r, где $0\leq r\leq k-1$. Тогда $a^n=(a^k)^q\cdot a^r=a^r$, что нам и нужно.
- ullet Пусть $i,j\in\{1,\dots,k-1\}$. Если $a^i=a^j$ и, скажем, i>j, то $e=a^i(a^j)^{-1}=a^{i-j}$. Но i-j< k, противоречие.
- 2) Если $i,j \in \mathbb{Z}$, i > j и $a^i = a^j$, то аналогично $a^{i-j} = e$, а значит, $\operatorname{ord}(a) \neq \infty$, противоречие.

Следствие 1

Для любого $a \in G$ выполнено $\operatorname{ord}(a) = |\langle a \rangle|$.

• Утверждение напрямую следует из Деммы 4.

Любая подгруппа циклической группы — циклическая.

Доказательство. \bullet Пусть $G=\langle a \rangle,\ H < G$. Если $H=\{e\},$ утверждение очевидно. Далее $H \neq \{e\}.$

- ullet Если $a^m \in H$, то и $a^{-m} = (a^m)^{-1} \in H$. Значит, множество $I = \{m \in \mathbb{N} \ : \ a^m \in H\}$ непусто.
- ullet Рассмотрим минимальное такое $d \in I$ и докажем, что $H = \langle a^d
 angle.$
- ullet Предположим противное, пусть $a^n \in H$ и $n \not \mid d$.
- ullet Поделим n на d с остатком: n = dq + r, 0 < r < d. Тогда $a^n = a^{dq+r} = a^{dq} \cdot a^r \in H$.
- ullet Из $a^d \in H$ следует, что $a^{-dq} \in H$, а значит, и $a^r = a^n \cdot a^{-dq} \in H$. Но 0 < r < d противоречит выбору d.

Пусть G — группа, H < G, $a \in G$.

Левый смежный класс — это $aH := \{ah : h \in H\}$.

Правый смежный класс — это $Ha:=\{ha: h\in H\}.$

Свойство 1

|H| = |aH| = |Ha|.

Доказательство. Существует биекция $\varphi: H \to aH$, заданная формулой $\varphi(h):=ah$. Значит, |H|=|aH|. Аналогично, |H|=|Ha|.

Свойство 2

 $b\in aH\Rightarrow a^{-1}b\in H.$

Доказательство. $b \in aH \Rightarrow b = ah$, где $h \in H$. Тогда $a^{-1}b = h \in H$.

Свойство 3

 $aH = bH \iff a^{-1}b \in H.$

Доказательство. \Leftarrow . • Из $a^{-1}b \in H$ следует, что $\forall h \in H \ a^{-1}b \cdot h \in H \Rightarrow bh = a(a^{-1}bh) \in aH$. Таким образом, $bH \subset aH$.

- ullet Так как $a^{-1}b \in H \Rightarrow b^{-1}a = (a^{-1}b)^{-1} \in H$, аналогично получаем $aH \subset bH$.
- \Rightarrow . $aH=bH\Rightarrow b\in aH\Rightarrow a^{-1}b\in H$ по Свойству 2.

Свойство 4

Если $aH \cap bH \neq \emptyset$, то aH = bH.

Доказательство. • Пусть $z \in aH \cap bH$. Тогда $z = ah_1 = bh_2$, где $h_1, h_2 \in H$.

- Следовательно,
- $b = ah_1(h_2)^{-1} \Rightarrow a^{-1}b = a^{-1}ah_1(h_2)^{-1} = h_1(h_2)^{-1} \in H.$
- По Свойствам 2 и 3 имеем aH = bH.

Пусть G — группа, H < G. Тогда индекс G по H(обозначение: (G:H)) — это количество различных смежных классов аН.

• Если множество смежных классов бесконечно. то $(G:H)=\infty.$

Теорема 1

Пусть G — группа, H < G. Тогда:

- 1) $|G| = |H| \cdot (G : H)$;
- 2) если G конечна и $a \in G$, то $|G| : \operatorname{ord}(a)$.

Доказательство. 1) • Очевидно, $x \in G \Rightarrow x \in xH$.

- По свойству 4 группа *G* является объединением различных непересекающихся смежных классов по подгруппе H
- Если $|H| = \infty$ или $(G : H) = \infty$, то очевидно, и $|G|=\infty$. 4D > 4P > 4E > 4E > 900

- ullet Пусть $|H|\in \mathbb{N},\ k:=(G:H)\in \mathbb{N}$ и $G=igcup_{i=1}^k a_iH$, где $a_i\in G$, причем $a_iH\cap a_jH=\varnothing$ при $i\neq j$.
- ullet По Свойству 1 мы имеем $|a_iH|=|H|$ для всех $i\in\{1,\dots,k\}$, следовательно, |G|=k|H|=(G:H)|H|.
- 2) Если $a \in G$, то G имеет циклическую подгруппу $\langle a \rangle$.
- ullet По пункту 1, $|G| \ \dot{} \ |\langle a \rangle| = \operatorname{ord}(a)$ (последнее равенство по Следствию 1).

Симметрическая группа

Определение

Пусть $n \in \mathbb{N}$, $I_n = \{1, \ldots, n\}$.

- 1) Подстановка это биекция $\sigma:I_n\to I_n$. Как правило, мы будем записывать σ как строчку из n чисел: $\sigma(1),\sigma(2),\ldots\sigma(n)$ (на k позиции записывается то число, в которое σ переводит k).
- 2) Симметрическая группа S_n состоит из всех подстановок (в I_n), групповая операция композиция.
- Как нам известно, композиция ассоциативна.
- Единичным элементом в S_n будет тождественная подстановка id (такая, что $\mathrm{id}(i)=i$ для всех $i\in I_n$.
- ullet Так как $\sigma \in S_n$ биекция, существует обратная биекция $\sigma^{-1}:I_n \to I_n$).
- \bullet Таким образом, S_n группа.
- ullet Из курса ДМ нам известно, что $|S_n|=n!$.
- Если $k,n\in\mathbb{N},\ k< n,$ мы будем считать, что $S_k< S_n$ (каждую подстановку из S_k отождествим с подстановкой из S_n , так же переставляющей $1,\dots,k$ и оставляющей на месте $k+1,\dots,n$).

Д.В.Карпов

- ullet Пусть $\sigma \in \mathcal{S}_n$. По теореме Лагранжа, $n! = |\mathcal{S}_n| \ | \operatorname{ord}(\sigma)$.
- Значит, существует такое $k \in \mathbb{N}$, что $\sigma^k = \mathrm{id} \iff \forall i \in I_n \, \sigma^k(i) = i$.
- ullet Тогда для каждого $i\in I_n$ существует такое минимальное $k_i\in\mathbb{N}$, что $\sigma^{k_i}(i)=i$.
- Таким образом, σ разбивается на независимые циклы вида $i, \sigma(i), \dots \sigma^{k_i-1}(i)$. (каждый элемент под воздействием σ переходит в следующий, последний переходит в первый).
- В записи каждого цикла главное циклический порядок, начало не имеет значения.
- \bullet Пример. n=9, $\sigma=643297185$ стандартная запись.
- Разложение на независимые циклы: $\sigma = (167)(24)(3)(59)(8)$.
- Часто циклы длины 1 в этой записи опускают. Можно записать просто $\sigma = (167)(24)(59)$.

- ullet Так, подстановка σ^ℓ прокручивает каждый цикл σ ровно ℓ раз (нужно передвинуться на ℓ ходов по циклу). При этом, цикл может распадаться на несколько меньших.
- ullet Подстановка σ^{-1} прокручивает каждый цикл σ в обратном порядке.
- Пример. Пусть $\sigma=(1678)(243)(59)$. Тогда $\sigma^2=(17)(68)(234)(5)(9), \quad \sigma^3=(1876)(2)(3)(4)(59), \text{ а}$ $\sigma^{-1}=(1876)(234)(59).$

Лемма 6 Пусть $\sigma \in S_n$ раскладывается на независимые циклы длин m_1, \ldots, m_k . Тогда $\operatorname{ord}(\sigma) = [m_1, \ldots, m_k]$.

Доказательство. • $\sigma^{\ell}=\mathrm{id}$, если и только если каждый элемент I_n остается на своем месте.

- Это означает, что каждый цикл длины m_i должен прокрутиться кратное m_i число раз, то есть, $\forall j \in \{1, \dots, k\} \ \ell \cdot m_i$.
- ullet ord (σ) по определению наименьшее такое число ℓ , а это, очевидно, $[m_1,\ldots,m_k]$.

- 2) Транспозиция это цикл длины 2.
- \bullet Транспозиция меняет местами два элемента I_n , а все остальные оставляет на месте.

Теорема 2

При $n \geq 2$, транспозиции — система образующих S_n .

Доказательство. • Индукцией по $2 \le k \le n$ докажем, что транспозиции порождают подгруппу $S_k' < S_n$ (все подстановки, оставляющие на местах числа $k+1,\ldots,n$). База k=2 очевидна.

Переход $k \to k+1$. • Пусть доказано, что каждая подстановка из S_k' — произведение нескольких транспозиций.

ullet Рассмотрим $\sigma \in S_{k+1}'$. Если $\sigma(k+1)=k+1$, то $\sigma \in S_k'$ и утверждение для σ доказано.

Д. В. Карпов

- Рассмотрим транспозицию $\tau = (k+1, i)$ и $\sigma' = \sigma \tau$.
- \bullet Тогда $\sigma'(k+1) = \sigma(\tau(k+1)) = \sigma(i) = k+1$.
- \bullet Так как и τ , и σ оставляют на местах $\{k+2,\ldots,n\}$, σ' тоже эти числа оставляет на местах.
- Значит, $\sigma' \in S'_{\nu}$ и по индукционному предположению $\sigma' = \tau_1 \dots \tau_\ell$, где τ_1, \dots, τ_ℓ — транспозиции.
- \bullet Тогда $\sigma = \sigma \tau^2 = \sigma' \tau = \tau_1 \dots \tau_\ell \tau$.

Лемма 7

Пусть $\sigma_m \in S_n$ — цикл длины m > 2: $\sigma_m = (a_1 a_2 \dots a_m)$. Тогда $\sigma_m = (a_1 a_2)(a_2 a_3) \dots (a_{m-1} a_m).$

Доказательство. • Индукция по m. База m=2 очевидна.

Переход $k \to k+1$. • По индукционному предположению, $(a_1 a_2)(a_2 a_3) \dots (a_{k-1} a_k)(a_k a_{k+1}) = (a_1 a_2 \dots a_k)(a_k a_{k+1}).$

- ullet Цикл $\sigma_k = (a_1 a_2 \dots a_k)$ действует так: $\sigma_k(a_i) = a_{i+1}$ при $1 < i < k - 1, \ \sigma_k(a_k) = a_1.$
- При домножении на транспозицию $(a_k a_{k+1})$ мы меняем местами эти два числа, значит, если $\sigma' = \sigma_k \cdot (a_k a_{k+1})$, то $\sigma'(a_i) = a_{i+1}$ при $1 \le i \le k$ и $\sigma'(a_{k+1}) = a_1$.
- Значит, $\sigma' = \sigma_{k+1}$.

Пусть $\sigma \in S_n$.

- ullet Инверсия это такая пара чисел (i,j), что $1 \leq i < j \leq n$ и $\sigma(i) > \sigma(j)$.
- Через $I(\sigma)$ обозначается количество инверсий в подстановке σ .
- ullet Подстановка σ называется чётной, если $I(\sigma)$ $\dot{}$ 2 и нечетной, если $I(\sigma)$ $\dot{}$ 2

Доказательство. • Пусть τ меняет местами $\sigma(i)$ и $\sigma(j)$, где i < j.

- Подсчитаем четность числа пар, образующих инверсию ровно в одной из подстановок σ и σ' . Очевидно, в такой паре должно быть хотя бы одно из чисел i и j.
- Пусть $\ell \notin \{i, j\}$.
- Если $\ell < i$, то пара (ℓ, i) инверсия в $\sigma \iff (\ell, i)$ инверсия в σ' . Аналогично для пары (ℓ, j) .
- Если $\ell > j$, то пара (ℓ,j) инверсия в $\sigma \iff (\ell,j)$ инверсия в σ' . Аналогично для пары (ℓ,i) .
- ullet Пусть $i<\ell< j$. Тогда в каждой из пар (ℓ,i) и (ℓ,j) есть инверсия ровно в одной из подстановок σ и σ' .
- Количества посчитанных выше инверсий в σ и σ' имеет одинаковую четность. Осталась только пара (i,j), которая образует инверсию ровно в одной из подстановок σ и σ' и делает общее число инверсий в них разной четности.

Свойство 1

Пусть $\sigma = \tau_1 \dots \tau_k$ — разложение $\sigma \in S_n$ в произведение транспозиций. Тогда $I(\sigma) \equiv k \pmod{2}$.

Доказательство. • Отметим, что id — четная подстановка.

• Так как σ получена домножением id на транспозицию k раз, четность подстановки меняется в точности k раз по Лемме 8.

Свойство 2

Произведение подстановок одной четности четно, а произведение подстановок разных четностей нечетно.

Доказательство. • Пусть $\sigma, \sigma' \in S_n$, причем σ представляется как произведение k транспозиций, а σ' — как произведение m транспозиций.

ullet Тогда $I(\sigma) \equiv k \pmod 2$, $I(\sigma') \equiv m \pmod 2$ и $I(\sigma\sigma') \equiv k+m \pmod 2$, откуда следует доказываемое утверждение.

Свойство 3

Цикл длины k — четная подстановка, если и только если k нечетно.

Доказательство. По Лемме 7, цикл длины k представляется в виде произведения k-1 транспозиций. Далее применяем Свойство 1.

Свойство 4

Пусть в разложении на независимые циклы подстановки $\sigma \in S_n - k$ циклов, имеющих длины m_1, \ldots, m_k (не обязательно различные). Тогда σ — четная, если и только если среди чисел m_1, \ldots, m_k — четное количество четных.

Доказательство. Следует из Свойств 2 и 3

Свойство 5

 $I(\sigma) \equiv I(\sigma^{-1}) \pmod{2}$ для любой $\sigma \in S_n$.

Доказательство. • Рассмотрим разложение на транспозиции $\sigma = \tau_1 \tau_2 \dots \tau_k$.

- Так как $\tau_i^{-1} = \tau_i$, мы имеем $\sigma^{-1} = \tau_k \dots \tau_2 \tau_1$.
- По Свойству 1, $I(\sigma) \equiv k \equiv I(\sigma^{-1}) \pmod{2}$.

• A_n — множество всех четных подстановок.

Теорема 3

При $n \ge 2$ выполняется:

- 1) $A_n < S_n$;
- 2) $|A_n| = \frac{n!}{2}$.

Доказательство. 1) • По Свойству 5, если $\sigma \in A_n$, то и $\sigma^{-1} \in A_n$.

- Пусть $\sigma, \sigma' \in A_n$. По Свойству 2, $\sigma \sigma' \in A_n$.
- По Лемме 1, $A_n < S_n$.

- 2) Докажем, что четных и нечетных подстановок в S_n поровну.
- ullet Определим отображение $f:S_n o S_n$ формулой $f(\sigma):=\sigma\cdot (12).$
- Отметим, что $f(f(\sigma)) = \sigma \cdot (12)^2 = \sigma$.
- ullet По Лемме 8, подстановки σ и $f(\sigma)$ всегда разной четности.
- ullet Пусть $A_n = \{\sigma_1, \dots, \sigma_k\}$ и $f(\sigma) = \sigma'$. Тогда все подстановки $\sigma'_1, \dots, \sigma'_k$ различны и нечетны.
- ullet Если $\sigma' \in S_n$ нечетная подстановка, то $f(\sigma')$ четная и $f(f(\sigma')) = \sigma'$.
- ullet Следовательно, $S_n \setminus A_n = \{\sigma'_1, \dots, \sigma'_k\}.$
- ullet Таким образом, $|A_n|=|S_n\setminus A_n|$, откуда следует, что $|A_n|=rac{n!}{2}.$

ullet Пусть G,H — группы. Отображение f:G o H называется гомоморфизмом, если $\forall\ a,b\in G$ f(ab)=f(a)f(b).

Ядро гомоморфизма f — это $\operatorname{Ker}(f) = \{x \in G : f(x) = e_H\}.$

Образ гомоморфизма f — это $Im(f) = \{ y \in H : \exists x \in G : f(x) = y \}.$

Свойство 1

Если f:G o H гомоморфизм, то $f(e_G)=e_H$.

Доказательство. $f(e_G) = f(e_G \cdot e_G) = f(e_G) \cdot f(e_G)$. Умножая левую и правую части $(f(e_G))^{-1}$, получаем $f(e_G) = e_H$.

Свойство 2

Если $f:G \to H$ гомоморфизм, то $f(a^{-1}) = (f(a))^{-1}$.

Доказательство. • $e_H = f(e_G) = f(a \cdot a^{-1}) = f(a) \cdot f(a^{-1})$.

ullet Аналогично, $f(a^{-1}) \cdot f(a) = e_H$. Значит, $f(a^{-1}) = (f(a))^{-1}$. \square

- 1) $\operatorname{Ker}(f) < G$.
- $2) \operatorname{Im}(f) < H.$
- Доказательство. Достаточно проверить условия из Леммы 1.
- 1) Пусть $a, b \in \text{Ker}(f)$. Тогда $f(ab) = f(a)f(b) = e_H \cdot e_H = e_H$, следовательно, $ab \in \text{Ker}(f)$.
- $f(a^{-1}) = (f(a))^{-1} = e_{\mu}^{-1} = e_{H}$, следовательно, $a^{-1} \in \operatorname{Ker}(f)$.
- 2) ullet Пусть $y,y'\in \mathrm{Im}(f)$, а $x,x'\in G$ таковы, что f(x)=y и f(x')=y'.
- Тогда $yy' = f(x)f(x') = f(xx') \in Im(f)$.
- $y^{-1} = (f(x))^{-1} = f(x^{-1}) \in \text{Im}(f)$.
- Если f: G o H гомоморфизм, а N < G, то

Следствие 2

- $f(N) = \{f(x) : x \in N\} < H.$
- Доказательство. Очевидно, f индуцирует гомоморфизм $f|_N: N \to H$.
- ullet По Лемме 9 мы имеем $f(N) = \mathrm{Im}(f|_N) <_{\mathbb{P}} H.$

- \bullet Если f инъекция, то f мономорфизм.
- ullet Если f сюръекция (то есть, $\mathrm{Im}(f)=H$), то f —эпиморфизм.
- \bullet Если f биекция, то f изоморфизм.
- Изоморфизм = мономорфизм + эпиморфизм.

Пусть f:G o H — гомоморфизм групп. Тогда f — мономорфизм, если и только если $\mathrm{Ker}(f)=\{e_G\}.$

Доказательство. \Rightarrow \bullet Если f — мономорфизм, то f — инъекция.

- ullet Пусть $a\in \mathrm{Ker}(f)$. Из $f(a)=e_H=f(e_G)$ следует, что $a=e_G$ (так как f инъекция).
- \leftarrow Пусть f(a) = f(b). Тогда $f(a \cdot b^{-1}) = f(a) \cdot f(b^{-1}) = f(a) \cdot (f(b))^{-1} = f(b) \cdot (f(b))^{-1} = e_H$.
- Значит, $a \cdot b^{-1} \in \text{Ker}(f) = \{e_G\}$, откуда $a \cdot b^{-1} = e_G$ и a = b. Таким образом, f инъекция, а значит, мономорфизм.

Пусть f:G o H — изоморфизм групп. Тогда и $f^{-1}:H o G$ — изоморфизм групп.

Доказательство. • Достаточно доказать, что f^{-1} — гомоморфизм (так как отображение, обратное к биекции — биекция).

- ullet Рассмотрим любые $a,b\in H.$
- ullet Так как f гомоморфизм,

$$f(f^{-1}(ab)) = ab = f(f^{-1}(a)) \cdot f(f^{-1}(b)) = f(f^{-1}(a) \cdot f^{-1}(b)).$$

ullet Из того, что f — биекция, следует, что $f^{-1}(ab)=f^{-1}(a)\cdot f^{-1}(b).$ А это и значит, что f^{-1} — гомоморфизм групп.

Теорема 4

 \simeq — отношение эквивалентности на множестве всех групп.

Доказательство. • Рефлексивность очевидна: тождественное отображение $\mathrm{id}: G \to G$ (заданное формулой $\mathrm{id}(x) = x$ для всех $x \in G$), очевидно, является изоморфизмом.

- Симметричность доказана в Лемме 11.
- ullet Докажем транзитивность. Пусть F,G,H группы, $F\simeq G$ и $G\simeq H.$
- Тогда существуют изоморфизмы $\varphi: F \to G$ и $\psi: G \to H$. Докажем, что их композиция $\psi \varphi: F \to H$ (заданная правилом $(\psi \varphi)(a) := \psi(\varphi(a))$) также является изоморфизмом.
- ullet Композиция биекций ψ и arphi, очевидно, является биекцией.
- ullet Проверим, что $\psi arphi$ гомоморфизм групп:

$$\psi\varphi(\mathsf{a}\mathsf{b}) = \psi(\varphi(\mathsf{a}\mathsf{b})) = \psi(\varphi(\mathsf{a})\cdot\varphi(\mathsf{b})) = \psi(\varphi(\mathsf{a}))\cdot\psi(\varphi(\mathsf{b})) = (\psi\varphi)(\mathsf{a})\cdot(\psi\varphi)(\mathsf{b}).$$

Пусть G группа.

- ullet Автоморфизм группы G это изоморфизм arphi : G o G.
- ullet Множество всех автоморфизмов группы G обозначим через $\operatorname{Aut}(G)$.

Лемма 12

 $\operatorname{Aut}(G)$ — группа относительно композиции.

Доказательство. • Ассоциативность композиции нам известна.

- ullet Очевидно, тождественное отображение id подходит в качестве нейтрального элемента.
- ullet Для каждого $arphi\in {
 m Aut}(G)$ по Лемме 11 мы имеем $arphi^{-1}\in {
 m Aut}(G).$

Пусть G группа, $a \in G$.

- ullet Сопряжение элементом a- это отображение $I_a:G o G$, заданное формулой $I_a(x):=a^{-1}xa$.
- ullet Обозначим через $\mathrm{Inn}(G)$ множество всех сопряжений группы G.
- Очевидно, $I_e = id$.
- ullet Если группа G абелева, то $orall a \in G$ $I_a = \mathrm{id}.$

Для любой группы G $\operatorname{Inn}(G) < \operatorname{Aut}(G)$.

Доказательство. ullet Сначала докажем, что $\mathrm{Inn}(G)\subset\mathrm{Aut}(G)$. Пусть $a\in G$.

- ullet Очевидно, $a^{-1}xa = a^{-1}ya \iff x = y$, поэтому, I_a биекция.
- \bullet Так как $I_a(x)I_a(y)=a^{-1}xaa^{-1}ya=I_a(xy),\ I_a-$ гомоморфизм, а значит, $I_a\in {\rm Aut}(G).$
- По Лемме 1, достаточно проверить замкнутость Inn(G) по умножению и взятию обратного элемента.
- ullet Пусть $a,b\in G$. Тогда $(I_a\cdot I_b)(x)=a^{-1}(b^{-1}xb)a=(ba)^{-1}x(ba)=I_{ba}(x).$ Таким образом, $I_a\cdot I_b=I_{ba}$.
- Теперь для $a \in G$ несложно проверить, что $I_a \cdot I_{a^{-1}} = I_{a^{-1}a} = I_e = \mathrm{id}$ и, аналогично, $I_{a^{-1}} \cdot I_a = \mathrm{id}$.

Пусть G — группа, H < G. Тогда H — нормальная подгруппа G, если $I_a(H) = \{I_a(h) : h \in H\} = H$ для любого $a \in G$. Обозначение: $H \lhd G$.

Лемма 14

Пусть G — группа, H < G. Тогда $H \lhd G$, если и только если aH = Ha для любого $a \in G$.

Доказательство. ullet Пусть $a \in G$. Тогда

$$I_a(H) = H \iff \{a^{-1}ha : h \in H\} = \{h : h \in H\} \iff \{ha : h \in H\} = \{ah : h \in H\} \iff Ha = aH$$

(второе равенство множеств получается из первого умножением на a слева, а это — биекция).

• Поэтому,

$$H \triangleleft G \iff \forall a \in G \ I_a(H) = H \iff \forall a \in G \ aH = Ha. \quad \Box$$

Пусть G — группа, H < G. Тогда $H \lhd G$, если и только если для любых $a \in G$ и $h \in H$ выполнено $I_a(h) \in H$ (или, что то же самое, $I_a(H) \subset H$).

Доказательство. • По определению, $H \lhd G \iff \forall a \in G \ I_a(H) = H.$

- Поэтому, \Rightarrow очевидна.
- \Leftarrow . Для любого $a \in G$ мы знаем, что $I_a(H) \subset H$.
- ullet Так как $a^{-1} \in G$, мы знаем и $I_{a^{-1}}(H) \subset H$. Подействуем на это включение обратной биекцией I_a :

$$H = (I_a \cdot I_{a^{-1}})(H) = I_a(I_{a^{-1}}(H)) \subset I_a(H).$$

ullet Таким образом, для любого $a\in G$ мы знаем, что $I_a(H)\subset H$ и $H\subset I_a(H)$, то есть, $I_a(H)=H$.

Пусть G — группа, а $\{H_i\}_{i\in I}$ — нормальные подгруппы G. Тогда $H = \bigcap_{i \in I} H_i \triangleleft G$.

Доказательство. • Проверим условие из Леммы 15.

- ullet Пусть $a \in G$, $h \in H$. Тогда для любого $i \in I$ мы имеем $h \in H_i$. Так как $H_i \triangleleft G$, мы имеем $I_a(h) \in H_i$.
- ullet Таким образом, $\forall a \in G, \ \forall h \in H \ I_a(h) \in H$, откуда $H \triangleleft G$.

Лемма 17

Пусть G, H — группы, $a f : G \to H$ — гомоморфизм. Тогда $\ker(f)$ \triangleleft G.

Доказательство. • Проверим условие из Леммы 15.

 \bullet Пусть $x \in G$, $a \in \ker(f)$. Тогда $f(x^{-1}ax) = f(x^{-1})f(a)f(x) = f(x^{-1}) \cdot e_H \cdot f(x) =$ $f(x^{-1})f(x) = f(x^{-1}x) = f(e_G) = e_H$

Факторгруппа

- Пусть G группа, $H \triangleleft G$. Будем использовать обозначение $\overline{a} := aH$.
- Факторгруппа $G/H=\{\overline{a}:a\in G\}$. Умножение определим так: $\overline{a}\cdot\overline{b}:=\overline{ab}$.
- Напомним, что для множеств $A, B \subset G$ мы используем обозначение $A \cdot B := \{ab \ : \ a \in A, \ b \in B\}.$
- ullet Если G группа, а H < G, то нетрудно понять, что $H \cdot H = H$ (так как умножение не выводит за пределы H и $H \cdot H \supset eH = H$).

Лемма 18

Пусть G — группа, $H \triangleleft G$. Тогда умножение в G/H определено корректно.

Доказательство. ullet Так как $H \lhd G$, для любого $b \in G$ мы имеем bH = Hb.

• Поэтому, $\overline{a} \cdot \overline{b} = aH \cdot bH = a \cdot (Hb) \cdot H = a \cdot (bH) \cdot H = ab \cdot (H \cdot H) = abH = \overline{ab}$.

Пусть G- группа, $H \lhd G$. Тогда G/H- группа.

Доказательство. Ассоциативность умножения: $\forall \overline{a}, \overline{b}, \overline{c} \in G/H$ $\overline{a} \cdot (\overline{b} \cdot \overline{c}) = \overline{a} \cdot \overline{bc} = \overline{abc} = \overline{ab} \cdot \overline{c} = (\overline{a} \cdot \overline{b}) \cdot \overline{c}$.

Нейтральный элемент — это \overline{e} .

Проверка: $\overline{e} \cdot \overline{a} = \overline{ea} = \overline{a} = \overline{ae} = \overline{a} \cdot \overline{e}$.

Обратный элемент: $(\overline{a})^{-1} := \overline{a^{-1}}$. Проверка: $\overline{a} \cdot \overline{a^{-1}} = \overline{a} \cdot a^{-1} = \overline{e}$ и $\overline{a^{-1}} \cdot \overline{a} = \overline{a^{-1} \cdot a} = \overline{e}$

Лемма 20

Пусть G — группа, $F \lhd G$, H' < G/F. Пусть $H = \{x \in G : \overline{x} \in H'\}$. Тогда H < G, причем |H| = |H'||F|.

Доказательство. • Пусть $x,y\in H$. Тогда $\overline{x},\overline{y}\in H'$, а значит, $\overline{xy}=\overline{x}\cdot\overline{y}\in H'$ (так как H' — группа). Следовательно, $xy\in H$.

- ullet Пусть $x\in H$. Тогда $\overline{x}\in H'$, а значит, $\overline{x^{-1}}=(\overline{x})^{-1}\in H'$ (так как H' группа). Следовательно, $x^{-1}\in H$.
- По Лемме 1, H < G.
- Каждый $\overline{x} \in H'$ это смежный класс xF, содержащий ровно |F| элементов, и все они при факторизации переходят в \overline{x} . Поэтому, |H| = |H'||F|.

Д.В.Карпов

Доказательство. • Зададим отображение $\overline{f}: G/\mathrm{Ker}(f) o \mathrm{Im}(f)$ формулой $\overline{f}(\overline{a}) := f(a)$.

- \bullet Корректность определения f.
- ullet Пусть $a,b\in G$ таковы, что $\overline{a}=\overline{b}$. По Свойству 3 смежных классов, тогда $a^{-1}b \in \ker(f)$.
- \bullet Следовательно, $\overline{f}(\overline{b}) = f(b) = f(a \cdot a^{-1}b) = f(a)f(a^{-1}b) =$ $f(a) \cdot e_H = f(a) = f(\overline{a}).$
- \overline{f} гомоморфизм групп:

$$\overline{f}(\overline{a}\cdot\overline{b})=\overline{f}(\overline{ab})=f(ab)=f(a)f(b)=\overline{f}(\overline{a})\cdot\overline{f}(\overline{b}).$$

- \bullet $\operatorname{Im}(\overline{f}) = \operatorname{Im}(f)$: для любого $y \in \operatorname{Im}(f)$ существует такой $x \in G$, что $\overline{f}(\overline{x}) = f(x) = y$.
- ullet \overline{f} монофорфизм. Проверка: пусть $\overline{a} \in \mathrm{Ker}(f)$. Тогда $f(a) = \overline{f}(\overline{a}) = e_H$, следовательно, $a \in \operatorname{Ker}(f)$, а значит, $\overline{a} = \overline{e}$. Таким образом, $Ker(\overline{f}) = {\overline{e}}.$
- Таким образом, \overline{f} изофорфизм, а значит, $G/\mathrm{Ker}(f) \simeq \mathrm{Im}(f)$.

Пусть G — группа, $H, F \lhd G$, причем F < H. Тогда выполнены следующие утверждения.

- 1) $F \triangleleft H$.
- 2) $H/F \triangleleft G/F$.
- 3) $G/H \simeq (G/F)/(H/F)$.

Доказательство. 1) $F \lhd G \Rightarrow \forall a \in G \quad I_a(F) = F \Rightarrow \Rightarrow \forall a \in H \quad I_a(F) = F \Rightarrow F \lhd H.$

- 2) Из $H \lhd G$ следует, что для любых $a \in G$ и $h \in H$ выполнено $a^{-1}ha \in H$.
- Пусть $\overline{a}:=aF$. Тогда для любых $\overline{a}\in G/F$ и $\overline{h}\in H/F$ выполнено $(\overline{a})^{-1}\cdot \overline{h}\cdot \overline{a}=\overline{a^{-1}ha}\in H/F$.
- Следовательно, $H/F \lhd G/F$.
- 3) Для $a \in G$ положим $\tilde{a} := aH$. По Свойству 3 смежных классов, $\overline{a} = \overline{b} \Rightarrow a^{-1}b \in F \Rightarrow a^{-1}b \in H \Rightarrow \tilde{a} = \tilde{b}$.

- ullet Определим отображение f:G/F o G/H формулой $f(\overline{a}):=\widetilde{a}.$
- ullet Так как из $\overline{a}=\overline{b}$ следует, что $\widetilde{a}=\widetilde{b}$, определение f корректно.
- f гомоморфизм групп:

$$f(\overline{a} \cdot \overline{b}) = f(\overline{ab}) = \widetilde{ab} = \widetilde{a} \cdot \widetilde{b} = f(\overline{a})f(\overline{b}).$$

- \bullet $\operatorname{Ker}(f) = H/F$. Доказательство:
- $\overline{a} \in \operatorname{Ker}(f) \iff \widetilde{e} = f(\overline{a}) = \widetilde{a} \iff a \in H \iff \overline{a} \in H/F.$
- \bullet $\operatorname{Im}(f) = G/H$. Действительно, для любого $\tilde{a} \in G/H$, очевидно, $\bar{a} \in G/F$ и $f(\bar{a}) = \tilde{a}$.
- По Теореме 5, $G/H = \operatorname{Im}(f) \simeq (G/F)/\operatorname{Ker}(f) = (G/F)/(H/F).$

 $[a, b] = a^{-1}b^{-1}ab.$

Свойство 1

Аналогично, $[a, b] \cdot [b, a] = e$.

 $(a^{x})^{-1}(b^{x})^{-1}a^{x}b^{x} = [a^{x}, b^{x}].$

 $a^{x} := I_{x}(a) = x^{-1}ax$.

 $[a,b]=e\iff ab=ba$ (в этом случае говорят, что элементы

• Для $a, x \in G$ будем применять обозначение

• Нетрудно проверить, что $(a^x)^{-1} = (a^{-1})^x$.

Доказательство. $[a, b]^x = x^{-1}(a^{-1}b^{-1}ab)x =$

а и в коммутируют).

Доказательство. $[b, a] \cdot [a, b] = b^{-1}a^{-1}ba \cdot a^{-1}b^{-1}ab = e$.

 $(x^{-1}a^{-1}x)(x^{-1}b^{-1}x)(x^{-1}ax)(x^{-1}bx) = (a^{-1})^{x}(b^{-1})^{x}a^{x}b^{x} =$

Пусть G — группа. Коммутатор элементов $a, b \in G$ — это

Доказательство. $e = a^{-1}b^{-1}ab \iff ba = ab$.

40 × 40 × 40 × 40 × 00 × 00 × 00

Алгебра, Глава 6. Теория групп

Д. В. Карпов

Свойство 2

 $[b, a] = [a, b]^{-1}$.

Свойство 3 $[a, b]^{x} = [a^{x}, b^{x}].$

Пусть G — группа. Коммутант [G,G] — это подгруппа G, порожденная множеством коммутаторов.

Свойство 4

[G,G] состоит из всех произведений коммутаторов элементов G.

Доказательство. • По определению [G,G] состоит из всех произведений вида $t_1 \dots t_n$, где каждый t_i — коммутатор двух элементов G, или обратный к такому коммутатору.

• По Свойству 2, обратный элемент к коммутатору также является коммутатором.

Свойство 5

 $[G,G] \triangleleft G$.

Доказательство. ullet Пусть $x \in G$, $y \in [G, G]$. Тогда $y = [a_1, b_1] \dots [a_n, b_n]$, где $a_1, b_1, \dots, a_n, b_n \in G$.

- ullet Тогда $y^{\times}=([a_1,b_1]\dots[a_n,b_n])^{\times}=[a_1,b_1]^{\times}\dots[a_n,b_n]^{\times}=[a_1^{\times},b_1^{\times}]\dots[a_n^{\times},b_n^{\times}]\in[\mathcal{G},\mathcal{G}].$
- По Лемме 15, $[G, G] \lhd G$.

Теорема 7

Пусть G — группа, $H \lhd G$. Тогда G/H абелева, если и только если [G,G] < H.

Доказательство. \bullet Пусть $\overline{a} := aH$.

- Группа G/H абелева, если и только если для любых $a,b\in G$ выполнено $\overline{a}\cdot\overline{b}=\overline{b}\cdot\overline{a}$. Преобразуем это условие: $\overline{a}\cdot\overline{b}=\overline{b}\cdot\overline{a}\iff \overline{e}=[\overline{a},\overline{b}]=\overline{[a,b]}\iff [a,b]\in H.$
- ullet Таким образом, группа G/H абелева, если и только если

$$\forall a, b \in G \ [a, b] \in H \iff [G, G] \subset H \iff [G, G] < H. \ \square$$

Пусть G — группа, M — множество. Отображение $\cdot: G \times M \to M$ называется действием группы G на множестве M, если выполнены следующие условия:

- 1) $\forall a, b \in G$, $\forall x \in M$ (ab)x = a(bx);
- 2) $\forall x \in M \quad ex = x$.

Примеры действий.

- 1) S_n действует на $\{1, 2, ..., n\}$.
- 2) Если G группа, то $\mathrm{Aut}(G)$ действует на G (здесь G выступает в качестве множества).
- 3) Если G группа, то G (как группа) действует на G (как множестве) левыми умножениями:
- $\forall a \in G \ \forall x \in G \quad ax := ax \ (первое умножение действие, а второе умножение в группе).$

Пусть группа G действует на множестве M.

- 1) Орбита элемента $x \in M$ это
- $\langle x \rangle = \{ax : a \in G\}.$
- 2) Для $a \in G$ и $N \subset M$ положим $aN := \{ax : x \in N\}.$
- 3) Стабилизатор подмножества $N \subset M$ это $St(N) := \{ a \in G : aN = N \}.$

Свойство 1

Для любого $N \subset M$ $\operatorname{St}(N) < G$.

Доказательство. • Достаточно проверить условия из Леммы 1.

- \bullet Пусть $a,b \in \operatorname{St}(N)$. Тогда (ab)N = a(bN) = aN = N, то есть, $ab \in St(N)$.
- \bullet Пусть $a \in \mathrm{St}(N)$. Тогда $a^{-1}N = a^{-1}(aN) = (a^{-1}a)N = eN = N$, то есть,

Свойство 2 Пусть
$$a \in G$$
, $N \subset M$. Тогда $\mathrm{St}(aN) = I_{a^{-1}}(\mathrm{St}(N))$.

Доказательство.

6. Теория групп Д.В.Карпов

Алгебра, Глава

$$x \in \operatorname{St}(aN) \iff (xa)N = x(aN) = aN \iff$$

$$a^{-1}((xa)N) = a^{-1}(aN) \iff$$

$$I_a(x)N = (a^{-1}xa)N = (a^{-1}a)N = eN = N \iff$$

Свойство 3

Для любого
$$x \in M$$
 выполнено $x \in \langle x \rangle$.

Доказательство. $ex = x \Rightarrow x \in \langle x \rangle$.

Пусть
$$x,y\in M$$
, $\langle x\rangle\cap\langle y\rangle
eq\varnothing$. Тогда $\langle x\rangle=\langle y\rangle$.

Доказательство. \bullet Пусть $a,b \in G$ таковы, что ax = by.

- Тогда $y = (b^{-1}b)y = (b^{-1}a)x$, то есть, $y \in \langle x \rangle$. • Пусть $z \in \langle y \rangle$, тогда z = cy, где $c \in G$ и $z = (cb^{-1}a)x \in \langle x \rangle$
- Таким образом, $\langle y \rangle \subset \langle x \rangle$. Аналогично, $\langle x \rangle \subset \langle y \rangle$.

 $I_a(x) \in \mathrm{St}(N)$.

Пусть группа G действует на множестве M, а $x \in M$. Тогда $|\langle x \rangle| \cdot |\operatorname{St}(x)| = |G|$.

Доказательство. • Для $a, b \in G$ $ax = bx \iff (b^{-1}a)x = b^{-1}(ax) = b^{-1}(bx) = x \iff b^{-1}a \in \operatorname{St}(x) \iff b \cdot \operatorname{St}(x) = a \cdot \operatorname{St}(x).$ (в последнем равенстве мы воспользовались Свойством 3 смежных классов).

- Таким образом, элементы G, одинаково действующие на x, образуют смежный класс по подгруппе $\mathrm{St}(x)$.
- ullet Следовательно, $|\langle x \rangle| = (G: \operatorname{St}(x))$ (количеству смежных классов по подгруппе $\operatorname{St}(x)$).
- Теперь Теорема 8 следует из Теоремы 1 (теоремы Лагранжа).

Для любого множества M через S_M обозначим группу всех перестановок множества M (то есть, биекций из M в M) относительно композиции.

- S_M группа для любого множества M (доказательство аналогично случаю S_n).
- ullet Если M конечное множество, то $S_M \simeq S_{|M|}.$

Теорема 9

(A. Cayley.) Любая группа G изоморфна подгруппе группы S_G .

Доказательство. • Для $g \in G$ определим отображение $f_g: G \to G$ формулой $f_g(x) := gx$.

- Проверим, что f_g биекция: $gx = f_g(x) = f_g(y) = gy \iff x = y$ (можно умножить gx = gy слева на g^{-1}).
- ullet Таким образом, $f_g \in S_G$.

- ullet Определим отображение $f:G o S_G$ формулой $f(a):=f_a.$
- ullet Проверим, что f гомоморфизм групп: пусть $a,b\in G$. Тогда

 $\forall x \in G$ имеем

$$f_{ab}(x) = abx = a(bx) = f_a(f_b(x)) = (f_af_b)(x).$$

- ullet Следовательно, $\forall a,b\in G\ f(ab)=f(a)f(b)$ и f гомоморфизм.
- ullet Пусть $a\in\ker(f)$. Тогда $f_a=f(a)=\operatorname{id}$, то есть, $\forall x\in G\ ax=f_a(x)=x$, откуда очевидно следует, что a=e.
- \bullet Таким образом, $\ker(f) = \{e\}.$
- По теореме о гомоморфизме групп (Теореме 5) мы имеем

$$G \simeq G/\{e\} = G/\ker(f) \simeq \operatorname{Im}(f) < S_G.$$

Центр группы G — это множество всех элементов группы, которые коммутируют со всеми элементами G:

$$Z(G):=\{a\in G\ :\ \forall x\in G\ ax=xa\}.$$

ullet Если G абелева, то Z(G)=G.

Свойство 1

$$a \in Z(G) \iff I_a = \mathrm{id}.$$

Доказательство.
$$a \in Z(G) \iff \forall x \in G \text{ ax} = xa \iff \forall x \in G \text{ x} = a^{-1}xa = I_a(x) \iff I_a = \mathrm{id}.$$

Свойство 2

$$a \in Z(G) \iff \forall x \in G \quad I_x(a) = a.$$

Доказательство.
$$a \in Z(G) \iff \forall x \in G \ ax = xa \iff \forall x \in G \ l_x(a) = x^{-1}ax = a.$$

Лемма 21

- $1) \quad Z(G) < G.$
- 2) Если H < Z(G), то $H \triangleleft G$.

Доказательство. 1) • Пусть $a, b \in Z(G), x \in G$. Тогда (ab)x = axb = x(ab), а значит, $ab \in Z(G)$.

- ullet Пусть $a\in Z(G),\ x\in G$. Тогда $a^{-1}x=xa^{-1}\iff a(a^{-1}x)a=a(xa^{-1})a\iff xa=ax$. Значит, $a^{-1}\in Z(G)$.
- По Лемме 1, Z(G) < G.
- 2) Пусть $a \in H$, $x \in G$. По Свойству 2 тогда $x^{-1}ax = a \in H$.
- По Лемме 15, H ⊲ G.

Доказательство. ullet Определим $f:G o \mathrm{Inn}(G)$ формулой $f(a):=I_{a^{-1}}.$

- ullet Так как для любого $x \in \mathcal{G}$
- $I_{a^{-1}}(I_{b^{-1}}(x))=a(bxb^{-1})a^{-1}=(ab)x(ab)^{-1}=I_{(ab)^{-1}}(x),$ мы имеем f(a)f(b)=f(ab), то есть, f гомоморфизм групп.
- ullet По Свойству 1 центра и так как Z(G) < G,

$$a \in \operatorname{Ker}(f) \iff I_{a^{-1}} = \operatorname{id} \iff a^{-1} \in Z(G)$$

 $\iff a \in Z(G).$

- \bullet Таким образом, $\operatorname{Ker}(f) = Z(G)$.
- \bullet Очевидно, $\operatorname{Im}(f) = \operatorname{Inn}(G)$.
- По теореме о гомоморфизме (Теореме 5)

$$G/Z(G) = G/\ker(f) \simeq \operatorname{Im}(f) = \operatorname{Inn}(G).$$

Пусть $p \in \mathbb{P}$. Конечная группа $G \subset |G| = p^n$, где $n \in \mathbb{N}$ называется р-группой.

Теорема 11

Пусть $p \in \mathbb{P}$, а G - p-группа. Тогда |Z(G)| : p.

Доказательство. • Рассмотрим действие Inn(G) на G.

ullet По Теореме 10 мы имеем ${
m Inn}(G)\simeq G/Z(G)$, откуда следует, что

$$|\operatorname{Inn}(G)| = |G/Z(G)| = (G : Z(G)) = \frac{|G|}{|Z(G)|}.$$

- \bullet Значит, $|\mathrm{Inn}(G)| = p^k$, где $k \le n$.
- \bullet По Свойству 4 орбит G разбивается на орбиты под действием Inn(G).
- \bullet По Теореме 8, $|\mathrm{Inn}(G)| = p^k$ делится на размеры всех этих орбит. Следовательно, размер каждой орбиты либо равен 1, либо делится на p.
- По Свойству 2 центра одноэлементные орбиты под действием $\operatorname{Inn}(G)$ образуют в точности элементы из Z(G).
- Так как |G| : p, количество одноэлементных орбит делится на p. Следовательно, |Z(G)|: p.

Пусть $p \in \mathbb{P}$, а H — абелева группа конечного порядка, $|H| \stackrel{.}{\cdot} p$. Тогда H имеет элемент порядка p.

Доказательство. \bullet Индукция по |H|.

• База |H|=p: по теореме Лагранжа (Теореме 1) в группе H могут быть только элемент порядка 1 (это e) и p. Значит, элемент порядка p есть.

Переход. Пусть для групп меньших порядков лемма доказана.

ullet Пусть $a\in H$. Рассмотрим два случая.

Случай 1: $\operatorname{ord}(a) \stackrel{\cdot}{\cdot} p$.

ullet Пусть $\operatorname{ord}(a) = np$. Тогда $\operatorname{ord}(a^n) = p$.

Случай 2: $\operatorname{ord}(a) \not \mid p$.

- ullet Пусть $F = \langle a \rangle$. Тогда |F| = k, (k,p) = 1.
- Очевидно, $F \lhd H$ (любая подгруппа абелевой группы нормальна).

- Рассмотрим группу H/F. Тогда $|H/F| = (H:F) = \frac{|H|}{\iota} \cdot p$.
- ullet По индукционному предположению существует элемент $\overline{b} \in H/F$ с $\operatorname{ord}(\overline{b}) = p$.
- ullet Рассмотрим $b \in H$. Мы знаем, что $b^p \in F$ и $b^s \notin F$ при s < p.
- ullet Пусть $\operatorname{ord}(b) = m = qp + r$, где $0 \le r < p$.
- ullet Тогда $F
 i e = b^{qp+r} = (b^p)^q \cdot b^r$, откуда следует, что $b^r \in F$, а значит, r=0 и m
 otin p.
- ullet Итак, $\operatorname{ord}(b) \ \dot{} \ p$ и по Случаю 1 в H есть элемент порядка p.

Пусть G — конечная группа, H < G, $p \in \mathbb{P}$, $p^k \parallel |G|$. Тогда H — силовская p-подгруппа G, если $|H| = p^k$.

Теорема 12

Пусть G — конечная группа, $p \in \mathbb{P}$, $p^k \parallel |G|$. Тогда G имеет подгруппу порядка p^k .

Доказательство. • Индукция по |G|. База для |G| // p очевидна. Переход. Пусть для групп меньших порядков теорема доказана, а $|G| = np^k$, где $k \ge 1$ и n // p.

• Рассмотрим два случая.

Случай 1: $|Z(G)| \ge p$.

- По Лемме 22, существует $a \in \mathbb{Z}(G)$ с $\operatorname{ord}(a) = p$.
- ullet Тогда $|\langle a \rangle| = p$ по Следствию 1.
- По Лемме 21, $\langle a \rangle \lhd G$. Рассмотрим $G' := G/\langle a \rangle$, тогда $|G'| = (G:\langle a \rangle) = np^{k-1}$ и по индукционному предположению существует подгруппа H' < G' с $|H'| = p^{k-1}$.
- Пусть $H=\{x\in G: \overline{x}\in H'\}$. По Лемме 20, H< G и $|H|=|H'||\langle a\rangle|=p^k$, что нам и нужно \mathbb{R} в \mathbb{R} в \mathbb{R} эрестипанты.

- ullet Тогда рассмотрим действие ${\rm Inn}(G)$ на G.
- \bullet G разбивается этим действием на орбиты. Как мы помним, орбиты всех элементов из Z(G) — одноэлементные, их объединение в точности равно Z(G) и имеет некратное pчисло элементов.
- ullet Так как |G| : p, существует такой элемент $a \in G \setminus Z(G)$, что $|\langle a \rangle|$ / p (здесь $\langle a \rangle$ — орбита элемента a).
- ullet Вспомним, что $\mathrm{St}(a) < G$ и по Теореме 8 мы знаем, что $|\mathrm{St}(a)| \cdot |\langle a \rangle| = |G|.$
- ullet Тогда $p^k \parallel |\operatorname{St}(a)|$. Из $a \notin Z(G)$ следует, что $|\langle a \rangle| > 1$, а значит, |St(a)| < |G|.
- По индукционному предположению, существует такая $H < \operatorname{St}(a)$, что $|H| = p^k$. Тогда H < G и теорема доказана.

Следствие 3

(Теорема Коши.) Пусть G — конечная группа, $p \in \mathbb{P}$, $|G| \stackrel{:}{\cdot} p$. Тогда существует такой $a \in G$, что $\operatorname{ord}(a) = p$.

Доказательство. • Пусть $p^k \parallel |G|$. По Теореме 12, существует H < G, $|H| = p^k$. По Теореме 11 мы имеем $|Z(H)| \cdot p$.

• Так как Z(H) — абелева группа, по Лемме 22 существует $a \in Z(H)$, ord(a) = p.

Теорема 13

Пусть G — конечная группа, $p \in \mathbb{P}$, $|G| \stackrel{\cdot}{\cdot} p$. Тогда выполнены следующие утверждения.

- 1) Если P < G силовская p-подгруппа, то все силовские p-подгруппы G это в точности все подгруппы вида $I_a(P)$, rде $a \in G$.
- 2) Любая p-подгруппа группы G является подгруппой одной из силовских p-подгрупп.

Доказательство. • По Следствию 2, все множества вида $I_a(P)$ — подгруппы G.

- ullet Так как I_a биекция, все они имеют |P| элементов, то есть, являются силовсими p-подгруппами.
- Пусть H < G p-подгруппа (не обязательно силовская). Достаточно доказать, что $\exists a \in G$, для которого $H < I_a(P)$ (если H силовская, то мы получим как раз $H = I_a(P)$).

• H действует левыми сдвигами на множестве левых смежных классов $M = \{aP : a \in G\}$ (это не обязательно фактор-группа!):

для
$$x \in H$$
, $aP \in M$ положим $x \cdot aP := (xa)P$

(условия из определения действия проверяются очевидно).

- Множество M разбивается на орбиты, размеры которых по Теореме 8 делят $|H|=p^s$, а значит, длина каждой орбиты либо делится на p, либо равна 1.
- ullet Так как $|M|=rac{|G|}{|P|}$ / p, есть одноэлементная орбита $\{aP\}.$
- Таким образом, $\forall x \in H \ xaP = aP \Rightarrow x \cdot aPa^{-1} = aPa^{-1}$.
- Так как $aPa^{-1} < G$, это означает, что $x \in aPa^{-1}$.
- ullet Таким образом, $H\subset aPa^{-1}\Rightarrow H< aPa^{-1}$, что мы и доказывали.

