Modeling the Impact of Imbalance Costs and Market Design on Generating Expansion of Stochastic Units IFORS 2014 (Barcelona)

Salvador Pineda ¹ Juan M. Morales ²

¹University of Copenhagen, funded by FEMs project (www.futureelmarket.dk)

 $^2\mathsf{Technical}$ University of Denmark, funded by CITIES project (www.smart-cities-centre.org)

July, 14, 2014

What is this presentation about?

- 200 MW of wind capacity: n_1 or n_2 ?
 - a) Since $wind_2 > wind_1 \rightarrow \overline{w}_1 = 0$ MW and $\overline{w}_2 = 200$ MW
 - b) It depends on forecast errors and how these are handled by the market

Salvador Pineda July, 14, 2014 2 / 30

Where should we start?

- 200 MW of conventional capacity: n_1 or n_2 ?
 - a) Historical data:
 - If $\lambda_1 > \lambda_2 \rightarrow 200$ MW at n_1
 - If $\lambda_2 > \lambda_1 \rightarrow 200$ MW at n_2
 - b) Not so sure since you are neglecting the impact of your capacity on the market outcomes

Salvador Pineda July, 14, 2014 3 / 30

How do we model the impact of capacity on market?

- Two decision makers
- Each with their individual objectives
- Act and react in a noncooperative sequential manner
- Framework: bilevel programming

Salvador Pineda July, 14, 2014 4 / 30

How do we formulate the GEP using bilevel programming?

s.t.
$$f(\overline{p}) \leqslant 0$$
 (1b)

$$(\Phi, \lambda) \in \arg \begin{cases} \underset{\Phi}{\operatorname{Min}} & \mathcal{C}(\Phi) \\ \text{s.t.} & h(\Phi) - l = 0 : \lambda \\ g(\overline{p}, \Phi) \leqslant 0 : \sigma \end{cases} \tag{1c}$$

$$g(\overline{p}, \Phi) \leqslant 0 : \sigma$$
 (1e)

Salvador Pineda July, 14, 2014

How do we solve the bilevel problem?

• We replace the lower-level problem by its KKT conditions (convexity)

$$\underset{\overline{p}}{\operatorname{Max}} \quad \Pi\left(\Phi,\lambda\right) - \mathcal{C}^{I}\left(\overline{p}\right) \tag{2a}$$

s.t.
$$f(\overline{p}) \leq 0$$
 (2b)

$$h\left(\Phi\right) - l = 0 \tag{2c}$$

$$g\left(\overline{p},\Phi\right) \leqslant 0\tag{2d}$$

$$\nabla_{\Phi} \mathcal{C} + \lambda^T \nabla_{\Phi} h + \sigma^T \nabla_{\Phi} g = 0 \tag{2e}$$

$$\sigma \geqslant 0 \tag{2f}$$

$$\sigma^T g = 0 \tag{2g}$$

6 / 30

Salvador Pineda July, 14, 2014

Any alternative?

• Replace the complementarity conditions by primal-dual strong duality

$$\underset{\overline{p}}{\operatorname{Max}} \quad \Pi\left(\Phi,\lambda\right) - \mathcal{C}^{I}\left(\overline{p}\right) \tag{3a}$$

s.t.
$$f(\overline{p}) \leqslant 0$$
 (3b)

$$h\left(\Phi\right) - l = 0 \tag{3c}$$

$$g\left(\overline{p},\Phi\right)\leqslant0\tag{3d}$$

$$\nabla_{\Phi} \mathcal{C} + \lambda^T \nabla_{\Phi} h + \sigma^T \nabla_{\Phi} g = 0 \tag{3e}$$

$$\sigma \geqslant 0 \tag{3f}$$

$$C(\Phi) = \min_{\Phi} C(\Phi) + \lambda^{T} (h(\Phi) - l) + \sigma^{T} g(\Phi, \overline{p})$$
 (3g)

→ロト → □ ト → 重 ト → 重 → りへで

Salvador Pineda July, 14, 2014 7 / 30

How do we deal with demand variations?

 We use scenarios characterizing the demand variability throughout the planning horizon (l_s, π_s)

s.t.
$$f(\overline{p}) \leqslant 0$$
 (4b)

$$(\Phi_{s}, \lambda_{s}) \in \arg \begin{cases} \underset{\Phi}{\operatorname{Min}} & \mathcal{C}(\Phi_{s}) \\ \text{s.t.} & h(\Phi_{s}) - l_{s} = 0 : \lambda_{s} \\ g(\overline{p}, \Phi_{s}) \leqslant 0 : \sigma_{s} \end{cases} \forall s. \tag{4d}$$

$$(4e)$$

Salvador Pineda July, 14, 2014

What stays the same for GE of stochastic units?

 We can also use bilevel programming to model the impact of new capacities on market outcomes

◀□▶
◀□▶
◀□▶
◀□▶
◀□▶
◀□▶
◀□▶
◀□▶
◀□▶

Salvador Pineda July, 14, 2014 9 / 30

What is different for GE of stochastic units?

- Wind variability: the production of stochastic units depends on weather conditions
- Wind uncertainty: the production of stochastic units is difficult to forecast 24 hours ahead

◆□▶ ◆圖▶ ◆重▶ ◆重▶ = = *り९♡

How do we incorporate wind variability into the GEP?

- We use scenarios characterizing the wind and demand variability throughout the planning horizon (ρ_s, l_s, π_s)
- $\rho_s \in [0,1]$ is the capacity factor of wind

Salvador Pineda

$$\underset{\overline{p}^{W}}{\operatorname{Max}} \quad \sum_{s} \pi_{s} \Pi \left(\Phi_{s}, \lambda_{s} \right) - \mathcal{C}^{I} \left(\overline{p}^{W} \right)
\text{s.t.} \quad f \left(\overline{p}^{W} \right) \leq 0$$
(5a)

s.t.
$$f(\bar{p}^W) \leq 0$$
 (5b)

$$(\Phi_{s}, \lambda_{s}) \in \arg \begin{cases} \underset{\Phi}{\operatorname{Min}} & \mathcal{C}(\Phi_{s}) \\ \text{s.t.} & h(\Phi_{s}) - l_{s} = 0 : \lambda_{s} \\ g(\overline{p}^{W}, \Phi_{s}; \rho_{s}) \leqslant 0 : \sigma_{s} \end{cases} \forall s. \tag{5d}$$

$$(5c)$$

$$(5d)$$

$$(5e)$$

$$g\left(\overline{p}^{W}, \Phi_{s}; \rho_{s}\right) \leqslant 0 : \sigma_{s}$$
 (5e)

July, 14, 2014

11 / 30

How do we incorporate wind uncertainty into the GEP?

- We need to model two markets:
 - Day-ahead market
 - Balancing market
- We need to include more uncertain parameters:
 - Production forecast: ρ_s
 - Forecast errors: $\Delta \rho_{sr}$

Salvador Pineda July, 14, 2014 12 / 30

How do we model the two markets?

Salvador Pineda July, 14, 2014

What if the two markets are coordinated?

Salvador Pineda July, 14, 2014 14 / 30

What are the differences between the market design?

Inefficient market

Day-ahead:
$$\min \mathcal{C}^D(\overline{p}^W)$$

$$\Phi^D_s$$

Balancing: min $\mathcal{C}^B(\overline{p}^W, \Phi^D)$

- Cheapest day-ahead
- Expensive balancing
- High total cost
- Reserves after energy

Efficient market

Day-ahead + balancing

$$\min \, \mathcal{C}^D(\overline{p}^W) + \textstyle \sum_r \pi_{sr} \mathcal{C}^B(\overline{p}^W, \Phi^D)$$

- More expensive day-ahead
- Cheaper balancing
- Minimum total cost
- Simultaneous reserve and energy

How do we characterize the uncertain parameters?

 $s \rightarrow$ scenarios in the day-ahead market $r \rightarrow$ scenarios in the balancing market

4 L P 4 B P 4 E P 4 E P 5 - *)4(C*

16 / 30

How do we incorporate scenarios into the GEPs?

Inefficient market

MAXIMIZE GENCO'S PROFIT B Market (s1,r1) DA MARKET (S1) B Market (s1,r2) B market (s2,r1) DA MARKET (S2) B Market (s2,r2) B Market (s3,r1) DA MARKET (S3) B Market (s3,r2) B Market (s4,r1) DA MARKET (S4) B Market (s4,r2)

Efficient market

MAXIMIZE GENCO'S PROFIT					
DA MARKET (S1)	B MARKET (S1,R1)				
	B Market (s1,r2)				
DA MARKET (S2)	B market (s2,r1)				
	B Market (s2,r2)				
DA MARKET (S3)	B Market (s3,r1)				
	B Market (s3,r2)				
DA MARKET (S4)	B MARKET (s4,R1)				
	B market (s4,r2)				

Salvador Pineda July, 14, 2014 17 / 30

How do we formulate a GEP under the efficient market?

$$\underset{\overline{p}^{W}}{\operatorname{Max}} \quad \sum_{s} \pi_{s} \left(\Pi^{D} \left(\Phi_{s}^{D}, \lambda_{s}^{D} \right) + \sum_{r} \pi_{sr} \Pi^{B} \left(\Phi_{sr}^{B}, \lambda_{sr}^{B} \right) \right) - \mathcal{C}^{I} \left(\overline{p}^{W} \right) \quad \text{(6a)}$$
s.t.
$$f \left(\overline{p}^{W} \right) \leq 0 \quad \text{(6b)}$$

$$\begin{pmatrix} \Phi_{s}^{D}, \lambda_{s}^{D} \\ \Phi_{sr}^{D}, \lambda_{sr}^{D} \end{pmatrix} \in \arg \begin{cases} \min \limits_{\Phi_{s}^{D}, \Phi_{sr}^{B}} & \mathcal{C}^{D}\left(\Phi_{s}^{D}\right) + \sum_{r} \pi_{sr} \mathcal{C}^{B}\left(\Phi_{sr}^{B}\right) \\ \text{s.t.} & h^{D}\left(\Phi_{s}^{D}\right) - l_{s} = 0 : \lambda_{s}^{D} \\ g^{D}\left(\overline{p}^{W}, \Phi_{s}^{D}; \rho_{s}\right) \leqslant 0 \\ h^{B}\left(\Phi_{sr}^{B}\right) = 0 : \pi_{sr} \lambda_{sr}^{B} \\ g^{B}\left(\overline{p}^{W}, \Phi_{s}^{D}, \Phi_{sr}^{B}; \rho_{s}, \Delta \rho_{sr}\right) \leqslant 0 \end{cases}$$
 (6c)

←□ → ←□ → ← □ → ← □ → へ○

Salvador Pineda July, 14, 2014 18 / 30

How do we formulate a GEP under the inefficient market?

$$\underset{\overline{p}^{W}}{\operatorname{Max}} \quad \sum_{s} \pi_{s} \left(\Pi^{D} \left(\Phi_{s}^{D}, \widehat{\lambda}_{s}^{D} \right) + \sum_{r} \pi_{sr} \Pi^{B} \left(\Phi_{sr}^{B}, \lambda_{sr}^{B} \right) \right) - \mathcal{C}^{I} \left(\overline{p}^{W} \right) \quad \text{(7a)}$$

s.t.
$$f(\overline{p}^W) \leq 0$$
 (7b)

$$\begin{pmatrix} \Phi_{s}^{D}, \lambda_{s}^{D} \\ \Phi_{sr}^{D}, \lambda_{sr}^{D} \end{pmatrix} \in \arg \begin{cases} \min \limits_{\Phi_{s}^{D}, \Phi_{sr}^{B}} \mathcal{C}^{D} \left(\Phi_{s}^{D} \right) + \sum_{r} \pi_{sr} \mathcal{C}^{B} \left(\Phi_{sr}^{B} \right) \\ \text{s.t.} \quad h^{B} \left(\Phi_{sr}^{B} \right) = 0 : \pi_{sr} \lambda_{sr}^{B} \\ g^{B} \left(\overline{p}^{W}, \Phi_{s}^{D}, \Phi_{sr}^{B}; \rho_{s}, \Delta \rho_{sr} \right) \leqslant 0 \\ \Phi_{s}^{D} \in \arg \begin{cases} \min \limits_{\Phi_{s}^{D}} \mathcal{C}^{D} \left(\Phi_{s}^{D} \right) \\ \text{s.t.} \quad h^{D} \left(\Phi_{s}^{D} \right) - l_{s} = 0 : \hat{\lambda}_{s}^{D} \\ g^{D} \left(\overline{p}^{W}, \Phi_{s}^{D}; \rho_{s} \right) \leqslant 0 \end{cases} \end{cases}$$
(7c)
$$(7c)$$

$$(7d)$$

$$\forall s.$$

$$(7e)$$

$$(7f)$$

$$(7f)$$

$$(7g)$$

Salvador Pineda July, 14, 2014 19 / 30

Should we try with some numbers?

Unit	P_g^{max}	C_g	$P_g^{max,u}$	C_g^u	$P_g^{max,d}$	$\overline{C_g^d}$
g_1	400	20	-	-	-	-
g_2	400	30	50	35	50	29
g_3	600	22	-	-	-	-

$$F_{n_1n_2}^{max} = 200 \mathsf{MW}$$

Salvador Pineda July, 14, 2014 20 / 30

How is the variability of the load?

Peak load = 660 MW $L_{n_2} = 10 \cdot L_{n_1}$ Load forecast errors disregarded

| **イロト 4回 ト 4 恵 ト 4 恵 ト - 恵 - り**90で

Salvador Pineda July, 14, 2014 21 / 30

How is the variability of the wind?

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Salvador Pineda July, 14, 2014 22 / 30

How much should we invest under the inefficient market?

Inefficient market

- Total capacity of 200 MW
- $n_1 = \downarrow$ wind \uparrow balancing
- $n_2 = \uparrow$ wind \downarrow balancing
- $\kappa = 0 \rightarrow \text{Wind predictable}$
- $\kappa = 1 \rightarrow$ Forecast errors

- For low forecast errors $(\kappa = [0, 0.2]) \rightarrow 200$ MW at n_2
- For medium forecast errors $(\kappa = [0.3, 0.8]) \rightarrow 200$ MW at n_1
- For high forecast errors $(\kappa = 1) \rightarrow 100$ MW at n_1

Salvador Pineda July, 14, 2014

How much should we invest under the efficient market?

Efficient market

- Total capacity of 200 MW
- $n_1 = \downarrow$ wind \uparrow balancing
- $n_2 = \uparrow$ wind \downarrow balancing
- $\kappa = 0 \rightarrow \text{Wind predictable}$
- $\kappa = 1 \rightarrow$ Forecast errors

- For low forecast errors ($\kappa = [0, 0.6]$) \rightarrow 200 MW at n_2
- For medium errors ($\kappa = 0.8$) \rightarrow 60 MW at n_1 and 140 MW at n_2
- For high forecast errors ($\kappa=1$) \rightarrow 100 MW at n_1 and 100 MW at n_2

Salvador Pineda July, 14, 2014 24 / 30

What is the impact of market design on the investment?

Inefficient market

Efficient market

- $\downarrow \kappa \rightarrow 200$ MW at n_2 for both markets
- $\uparrow \kappa \rightarrow \begin{cases} 100 \text{ MW at } n_1 \text{ for the inefficient} \\ 100 \text{ MW at } n_1 \text{ and } 100 \text{ MW at } n_2 \text{ for the efficient} \end{cases}$

Salvador Pineda July, 14, 2014

What about the producer's profit and the renewable share?

16 (specific (mg)) 14 (specific (mg)) 16 (specific (mg)) 17 (specific (mg)) 18 (specific

0.4

Demand covered by wind

- Higher profits for the wind producer with effective market
- Higher wind penetration levels with effective market

→ロト ◆個ト ◆差ト ◆差ト 差 めらで

26 / 30

What have I learned from this presentation?

- GEP are formulated as bilevel optimization problems.
- Wind variability easy to incorporate into GEP models.
- To incorporate wind uncertainty: day-ahead and balancing markets.
- Forecast errors may significantly affect investment decisions.
- An efficient market design encourages investment of stochastic units.

Salvador Pineda July, 14, 2014 27 / 30

What is left for future research?

- Model competition among investors
- Compare with investments by central planner
- Obtain investment for intermediate market designs
- Apply dedicated computational methods to improve tractability

Salvador Pineda July, 14, 2014 28 / 30

Where can I get further details?

Modeling the Impact of Imbalance Costs on Generating Expansion of Stochastic Units

Salvador Pineda University of Copenhagen, s.pineda@math.ku.dk

Juan M. Morales

 $Technical\ University\ of\ Denmark,\ jmmgo@imm.dtu.dk$

The imbalance costs incurred by a stochastic power producer due to forecast production errors have a significant impact on its total profit and therefore, such an impact needs to be taken into account when evaluating investment decisions. In this paper, we propose a modeling framework to analyze the effect of these imbalance costs on optimal generating expansion decisions of stochastic units. The proposed model is cast as a mathematical program with equilibrium constraints, which allows the explicit representation of both the day-ahead and balancing market-clearing mechanisms. We use the proposed framework to investigate the effect

Salvador Pineda July, 14, 2014 29 / 30

Thanks for the attention!

More questions?

Website: https://sites.google.com/site/slv2pm/