Lecture 5

niceguy

September 18, 2023

Definition 0.1. Let $X \subseteq \mathbb{R}^n$. Given $\varepsilon > 0$, the set $\bigcup_{x \in X} \mathcal{U}(x; \varepsilon)$ is called the ε neighbourhood of X.

Theorem 0.1 (The ε neighbourhood theorem). Let $X \subseteq \mathbb{R}^n$ be compact. Let \mathcal{U} be an open subset of \mathbb{R}^n containing X. Then there is an varepsilon > 0 such that the ε neighbourhood of X is contained in \mathcal{U} .

Proof. The ε neighbourhood of X in the euclidean metric is contained in that of the sup metrix, so it suffices to show that this holds for the sup metric. First, fix a set $C \subseteq \mathbb{R}^n$ for each $x \in \mathbb{R}^n$. Define

$$d(x,C) = \inf\{d(x,c)|c \in C\}$$

We claim that d(x, C) is continuous in x. Using the sequence definition, it is enough to show that

$$d(x,C) - d(y,C) \le d(x,y)$$

Letting $c \in C$,

$$d(x,C) - d(x,y) \le d(x,c) - d(x,y) \le d(y,c)$$

Taking the infimum of both sides with free choice of c, we get

$$d(x,C) - d(x,y) \le d(y,C) \Rightarrow d(x,C) - d(y,C) \le d(x,y)$$

We can reverse the argument to show that this holds if we switch x and y. This is enough to prove our claim.

Given \mathcal{U} , define $f: X \mapsto \mathbb{R}$ by

$$f(x) = d(x, \mathcal{U}^C)$$

We know f is continuous and $f(x) \geq 0 \forall x \in X$ since the δ ball of x is contained in \mathcal{U} (because it is open). Because X is compact, f(x) has a minimum value which gives the ε . (Finitely many open balls centred at a point in X cover X).

Lemma 0.1. The rectangle $Q = [a_1, b_1] \times \cdots \times [a_n, b_n] \in \mathbb{R}^n$ is compact.

Proof. We prove this by induction. For the induction step, let $Q = X \times [a_{n+1}, b_{n+1}]$ where we assume X is compact. Let A be an open cover. For any $t \in [a_{n+1}, b_{n+1}]$, it is obvious that $X \times \{t\}$ is compact, since it is isomorphic with X. Let \mathcal{U} be a finite subcover, and by 0.1, the set $X \times [t - \varepsilon, t + \varepsilon]$ is contained in \mathcal{U} . Then for any t, we can find an open V_t defined similarly such that $X \times V_t$ is compact. Since n = 1 holds, we only need finitely many V_t to cover $[a_{n+1}, b_{n+1}]$, and hence it holds for n + 1.