Постановка

У пещерного человека есть n камней. Он выбирает два самых тяжелых камня и бьет ими друг о друга. Предположим что веса камней x и y.

- Если x=y, то оба камня разбиваются.
- Если x < y, то камень с весом x разбивается, а вес второго камня будет равным y-x.

Пещерный человек продолжает это делать пока останется не более одного камня. Найдите минимальный возможный вес оставшегося камня. Если камней не осталось выведите 0.

Входные данные

Список весов камней, длины n.

Выходные данные

Выведите вес оставшегося камня.

Пример 1

Входные данные	Выходные данные
2 7 4 1 8 1	1

Входные данные	Выходные данные
2 7 4 1 8	0

Постановка

Роботу передают команды в виде последовательности букв, где каждая буква представляет отдельную команду. Робот может выполнять команды в любом порядке. Каждая команда выполняется за одну секунду. В каждую отдельную секунду робот может или выполнять команду, или бездействовать.

Однако, в связи с функциональными особенносями робота, он не может выполнять одну и ту же команду в течение n секунд, то есть между любыми двумя одинаковыми командами должно быть не менее n секунд. Вычислите время на за которое робот выполнит все команды.

Входные данные

В первой строке записана последовательность команд, состоящая из символов a-z. Во второй строке записано n- время востановления в секундах

Выходные данные

Выведите количество секунд необходимых для выполнения всех команд.

Пример 1

Входные данные	Выходные данные
a a a b b b 0	6

Входные данные	Выходные данные
aaabbb	8
2	

Постановка

Число будет являться "привлекательным" если оно положительное и его простые множители находятся в массиве primeNumders. Найдите *n*-ое "привелкательное" число.

Входные данные

В первой строке записано n - номер "привлекательного" необходимого привлекательного числа. Во второй строке записан массив primeNumders.

Выходные данные

Выведите n-ое "привлекательное" число.

Пример 1

Входные данные	Выходные данные
1	1
2 3 5	

Входные данные	Выходные данные
12 2 7 13 19	32

Постановка

В стране Турляндии n озер. Если над озером идет дождь оно становится переполненным. Если над переполненным озером пойдет дождь то будет наводнение. Перед сезоном дождей синоптики подготовили идеальный прогноз, предсказывающий в какие дни будут дожди. Помогите правительству Турляндии избежать наводнений. В день когда дождя не будет, на одном из озер можно установить дренаж для уменьшения излишек воды. Если установить дренаж на непереполненное озеро то ничего не произойдет.

Входные данные

Введите прогноз синоптиков. Прогноз представляет собой массив целочисленных значений.

- Если forecast[i]=0, то дождя в этот день не будет и можно поставить дренаж на одно из озер.
- Если forecast[i]>0, то будет дождь и озеро с номером forecast[i] будет переполнено.

Выходные данные

Выведите массив отражающий действия правительства Турляндии.

- len(ans) = len(forecast).
- \bullet ans[i] = -1, если в i-й день идет дождь.
- \bullet ans[i] = k, где k номер озера на котором поставят дренаж в день без дождя.

Если не удается избежать наводнения то верните пустой массив.

Пример 1

Входные данные	Выходные данные
1 2 3 4	-1 -1 -1 -1

Пример 2

Входные данные	Выходные данные
1 2 0 0 2 1	-1 -1 2 1 -1 -1

Входные данные	Выходные данные
1 2 0 1 2	Null

Постановка

В городе Паралелоград построили аэропорт. Для нормального функционирования которого необходимо просчитать силуэт города. Силуэт города - контур, образованный всеми зданиями города, если смотреть с растояния. Все здания представляют собой идеальные прямоугольники, основанные на абсолютно плоской поверхности на высоте 0. Помогите руководству аэропорта просчитать силуэт города.

Входные данные

Геометрическая информация о каждом здании дана в массиве зданий, где здание описывается тремя параметрами [x,y,h]:

- х координата левого края здания.
- у координата правого края здания.
- h высота здания.

Выходные данные

Выведите силуэт города в виде «ключевых точек», отсортированных по их координате х в форме [[х1, у1], [х2, у2], ...]. Каждая ключевая точка является левой конечной точкой некоторого горизонтального сегмента на линии силуэта, за исключением последней точки в списке, которая всегда имеет координату у=0 и используется для обозначения окончания линии силуэта там, где заканчивается крайнее правое здание.

Пример 1

Входные данные	Выходные данные
[[0,2,3],[2,5,3]]	[[0,3],[5,0]]

Входные данные	Выходные данные
[[2,9,10],[3,7,15],[5,12,12]	[[2,10],[3,15],[7,12],
[,[15,20,10],[19,24,8]]	[12,0],[15,10],[20,8],[24,0]]