

计算机控制系统设计与实践

浙江大学控制科学与工程学院 2025年2月

浙江大学控制科学与工程学学院 College of Control Science & Engineering Zhejiang University

一、概述

1、控制的基本形式

控制的基本要求: 稳、准、快、优

2、四个(类)基本环节

被控对象: 工业过程 (化工、制药、汽车生产...)

运动对象(氦、4、6、8、8...)

社会科学(人口、经济、管理等)

控制要求: 过程型指标+结果性指标

主要作用:控制输出或政策执行,达成控制目标

主要关注:结构与动作方式

安装与作用形式

细节:泄漏应对或漏洞管控

被控对象 (控制目标)

检测仪表 (相关信息感知)

控制器 (分析+决策)

执行器 (驱动)

主要作用: 感知被测量信息

主要关注: 成熟可靠的仪器设备

不能测 不准确 不稳定 不及时 不完备

弥补感知不足→数据挖掘、深度学习等

主要作用: 系统分析 + 综合决策

主要关注:制定合适的控制算法、方略政策

平衡稳定、精准快速(稳、准、快)

3、反馈的两种形式:正反馈和负反馈

正反馈:原理上致使受控量实际值和期望值偏差增大的反馈形式,系统趋向于不稳定状态

负反馈:原理上致使受控量实际值和期望值偏差减小的反馈形式,系统趋向于稳定状态

◆ **血液循环**:①活动增强血压增高→大脑心血管中心通过交感、迷走神经减弱心脏活动松弛血管→血压恢复正常

②大量失血血压下降→冠状动脉血流减少→心肌收缩力减弱→输出血量更少, 甚至导致死亡

□ 新闻传播: 传播信息与阅读者认识理解趋于一致, 传播效果趋于传播目标

传播信息与阅读者认识理解有较大偏差,新信息快速注入→认识偏离越来越大

--快速给出真实信息或及时进行纠正

■ 核裂变: U235等重原子核在自由中子轰击下,会产生2-3个更轻的原子核和2-3个自由中子,并释放巨大能量

放出的中子继续引发重核裂变,中子总数及裂变过程将随时间按指数规律增长

--不予控制-核爆, 辅以控制-核能

感知信息: 弥补感知不足, 拓展数

据挖掘、深度学习等知识

综合决策:整体优化

是相对人工控制概念而言的,就是在没有人直接参与的情况下,**感知信息,系统分析、综合决策、自动干预**,达成稳定、有序的预期目标

- 不同的领域背景、相同的目标方向
- 不同的现在过去将来、相似的比例积分微分

给予被控对象以必要干预,使机器、设备、生产过程或经济社会活动中的状态、指标或参数,按照预定或期望的规律运行。

目标实现

控制

本质

要达成稳定、有序的预期目标,前提是**负反馈**作用(必要条件);正反馈可以使系统由旧稳态发展成新稳态(死亡、核爆、舆情,回归有序)

征求意见

专题研究

修改

迭代

完善

出台实施

跟踪 研究

工业控 制过程

自动

控制

政策制 定过程

控制

思想

目标 把控

• 单一目标,成效"合理"最大化

起草

调研

• 多元目标,成效"综合"最大化

(二) 计算机控制系统组成

计算机 + 控制 → 系统

(二) 计算机控制系统组成

"前端"

大屏、操作站

"中端"

控制站、控制柜

控制器

被控变量 测量值

执行器

"后端" 被控对象及现场仪表

检测仪表 & 执行器

被控对象

被控变量

检测仪表

1、计算机控制系统的工作过程

展示信号

①数据采集: 周期采集被控变量及相关变量的测量值

②控制决策:对测量信号进行处理分析,产生控制信号,如PID

③控制输出:把控制信号送给执行器,执行器动作进行调节

2、计算机控制系统的基本组成

1) 软件组成

系统软件 支持软件

应用软件

2) 硬件组成

操作系统及其配套 软件、数据库等 开发应用软件的软件, 如高级语言、组态软件 针对特定需求开发的 控制和管理程序

计算机控制系统的I/O接口

组成计算机控制"系统"的部件

思考题:

计算机控制系统中的"计算机"与普通计算机相比 会有哪些方面的"相同"和"不同"?

- > 可靠性
- > 可维护性
- > 实时性
- > 网络通信

(三) 计算机控制的简要发展过程

1、最古老的控制器:模拟调节器

在计算机控制系统出现以前,自动化控制主要采用基于模拟电路的模拟式调节器来实现控制,称为常规仪表控制系统。

这类系统在上世纪80年代之前是主流,90年代后快速减少,目前已经非常少见。

模拟式调节器

2.计算机控制系统的几个典型发展阶段

直接数字量控制DDC

始于50年代末 期 具有里程碑意义 集中型计算机 控制系统

> 60年代 控制集中 危险集中 信息集中

集散控制系统 DCS

> 70年代中 控制分散 危险分散 信息集中

分布式IO DCS

模拟信号到IO 站点 站点 站站间现场总线 连接 现场总线控制 系统FCS

90年代

全数字通信全分散控制

半数字,半分散

过渡型结构

(1) 直接数字量控制 Direct Digital Control, DDC

本质: 用一台计算机取代一组调节器, 构成闭环控制回路

优点: 灵活, 精度高, 分时处理多个回路, 实现复杂控制

时间:起于50年代末期

历史意义: 开辟了轰轰烈烈的计算机工业应用时代

突出问题: 造价昂贵、成本很高

(2) 集中型计算机控制系统

DDC系统的突出问题: 昂贵、成本高 用一台计算机控制尽可 → 能多的回路?降低单位 回路的成本

优 越 性: 集中控制 → 便于实现集中管理、便于实现复杂控制、优化控制功能

突出问题: 当时的计算机性能低 → 容易出现负荷过载

控制集中 → 危险集中,集中度越高系统越"脆弱"。

(3) 集散/分布式控制系统 Distributed Control System, DCS

集中型计算机控制系统的两个特征:

危险的集中

第决

控制功能分散到若干个控制站实现

信息的集中

集中测控信息,满足整体管控目标

分散控制 & 集中管理

DCS的物理结构示意

DCS的两种含义: 是一类特定的分布式计算机控制系统(狭义)

是一种具有分布式结构的计算机控制系统 (广义)

DCS的功能层次示意

从"上级"获取指示,从"下级"获取信息,产生对"下级"的控制。

- 常常将2个或多个功能层上的(部分)任务压缩到一个物理层上实现,简化DCS。
- 最常见的为2级DCS

自动控制系统的几个层面

回看物理结构示意图

思考题:

远程节点的引入有什么好处、有什么问题、有什么启示?

DCS是半数字的控制系统 DCS还是半分散的控制系统 引入"冗余"的手段,可靠性更高

DCS的图示

第一套集散控制系统 (1975年) Honeywell TDC2000

国内第一套 具有1: 1热冗余技术 集散控制系统 (1993年) 中控JX-100 DCS

打破了国外高端控制系统 在我国市场的垄断局面

中控JX-300XP集散控制系统

主控制卡

(4) 现场总线控制系统 Fieldbus Control System, FCS

全数字、全分散的控制系统会是怎样的?

全分散

(四) 网络通信技术简介

1、若干基本概念

(1) 模拟信号与数字信号

模拟信号是一个连续的物理量

数字信号是用不连续的物理状态来表示

(2) 并行传输与串行传输

并行传输:以字或字节为单位、多个位同时传输;快、线多、不宜远距离通信

串行传输:逐位传输,慢、通信线少、适宜远距离通信

几乎所有计算机控制系统均采用串行数据通信

(3) 通信双方的交互方式

单工通信:单一方向传输,没有反向交互(如传统的键盘、鼠标通信)

半双工通信:双方可以交互数据,但不在同时,应用广泛(只需2根通信线)

全双工通信:双方可以同时交互数据,效率高,至少3根(共地)或4根通信线

(4) 波特率

波特率: 指单位时间内传输的信息量, 单位通常用"位/秒"表示

例如: Profibus - PA的波特率位31.25kbps

Profibus - DP的最大波特率位12Mbps

(5) 基带传输与频带传输

基带传输:数字信号的数字传输。按数字波形、以"位"流形式直接在信道上传输,速度较

高,远距离传输易因信号衰减发生畸变(中继)

频带传输:数字信号的模拟传输。也称为载波传输,发送端把数字信号调制成一定频带范围

的模拟信号,接收方解调还原。如HART信号,FSK

宽带传输:适用于传输影像、语音信息,将信道分成多个子信道,分别传送音频、视频和数

字信号。

(6) 计算机网络的拓扑结构

(7) 网络传输介质

网络传输介质是指通信网络中数据发送方与接收方之间的物理通路,

常用的传输介质有:双绞线、同轴电缆、光纤和无线传输等。

工业控制系统的通信网络多采用:带屏蔽的双绞线STP、光纤

(8) 总线接口技术

总线(BUS)是指计算机系统中采用的一组公共信号线,它是计算机系统的通信线。

总线标准定义了各信号线的信号、时序、电气和机械特性。

总线的分类:片内总线、系统总线、局部总线、外部总线

与仪器/设备之间的连接总线 ,用以进行组网与通信。

外部总线类型:串行通信总线、USB总线、现场总线、工业以太网等

总线的性能指标: 时钟频率 (MHz)

总线宽度 (bit位)

总线传输速率 (Mbps, 每秒兆字节)

同步或异步方式

多路复用

信号线数

2、串行总线

(1) RS-232总线

- · RS-232标准是一种全双工通信协议
- · 标准接口是25针D型插头;后简化成9针,一般只用TXD、RXD、GND三条线
- · 单端输入(单线共地),抗干扰能力弱
- · 工作速率低 (19.6Kbps) 、通信距离短 (15m, 加Modem可延长)

引脚顺序	引脚作用+名称	
1	数据载波检测	DCD TXD
2	数据发射	
3	数据接收	RXD
4	数据设备准备	DSR
5	地	GND DTR
6	数据终端准备	
7	清除发送	CTS
8	请求发送	RTS
9	振铃指示	RI

(2) 串行通信总线 RS-422

RS-422是由RS-232改进而来:

- · RS-422接口采用差动、双线平衡传输,抑制 共模干扰能力较强
- · 接收器高输入阻抗, 发送驱动能力更强
- ・最高传输速率为10Mbps
- ・最大通信距离1200m (不加中继且与传输速 率有关)

DIP/SO

- · 传输线允许连多个接收节点
- ・全双工通信

TYPICAL FULL-DUPLEX OPERATING CIRCUIT

(3) RS-485

MAXIM

- · 差动、双线平衡传输, 共模干扰抑制能力强
- ・最高传输速率10Mbps,最大通信距离1200m (不加中继且与传输速率有关)
- ・半双工工作方式:任何时候一点发送、多点接收

通过发送使能控制,实现多点双向通信,多点互连非常方便

・同一网段最大支持32个节点,如果使用特制芯片,可以连接128个甚至更多节点

现场总线"首选"标准

Fig. 1 2-Wire RS-485 Connections

(3) 现场总线 (Fieldbus)

现场总线:连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通信网络 用于把遵循特定通信协议的控制系统现场仪表、设备连接组网

现场总线技术特征: 全数字→现场设备高度自治

全分散→系统结构高度分散

协议高度开放性 (美好愿望而已,不是标准而是标准群)

实时以太网技术已被广泛接受

类型	技术名称	类型	技术名称	
Type1	TS61158 现场总线	Type11	TCnet 实时以太网 以太网	
Type2	CIP 现场总线	Type12	EtherCAT 实时以太网 以太网	
Type3	Profibus 现场总线 RS-485	Type13	Ethernet Powerlink 实时以太网 以	太网
Type4	P-NET 现场总线 RS-485	Type14	EPA 实时以太网 以太网	
Туре5	FF HSE 高速以太网 以太网	Type15	Modbus-RTPS 实时以太网 以太网	
Туре6	SwiftNet 被撤消	Type16	SERCOS I 、 II 现场总线	
Type7	WorldFIP 现场总线	Type17	VNET/IP 实时以太网 以太网	
Type8	INTERBUS 现场总线 RS-485	Type18	CC_Link 现场总线	
Туре9	FF H1 现场总线	Type19	SERCOS III 实时以太网 以太网	
Type10	PROFINET 实时以太网 以太网	Type20	HART 现场总线	

思考题: 现场总线与一般计算机通信网络的技术特征方面有何差异?

(通信速度、可靠性、安全 (safety) 、网络拓扑)

(4) 工业以太网 以太网技术从办公自动化走向工业自动化

- Ethernet产生于上世纪70年代,初期的传输速率很低
- 介质访问控制协议: CSMA/CD (Carrier Sense Multiple Access / Collision Detection)
- 应用广泛、开放性兼容性好……
- · 工业以太网出现在上世纪90年代, 之前一般认为以太网不适合工控底层网络

思考题:工控系统为什么以前不用Ethernet通信?

- CSMA/CD→先听后说/边听边说→大负荷时存在碰撞可能→存在"原理上的不确定性"
- · 通信速率↑,网络负荷↓,碰撞概率↓
- · 交换技术发展 → 进一步减轻碰撞问题
- · e网负荷 < 10%时,基本无碰撞;负荷 < 25%时,e网通信响应时间明显短于令牌网
- · "不确定性"不再是e网用于工控底层网络的主要障碍(工业以太网)

工业控制系统网络通信的特点:

- ◆ 短帧信息多、长帧信息少
- ◆ 周期性信息多(测量、控制信息),非周期性信息少(操作指令、组态信息;报警等突发性事件信息)
- ◆ 信息流向方向性明显
- ◆ 节点数少、网络负荷较平稳
- ◆ 简化的OSI模型 (7层→3、4层)

工业以太网碰撞概率是很低的

技术名称	技术来源	应用领域
Ethernet/IP	美国Rockwell公司	过程控制
PROFINET	德国Siemens公司	过程控制、运动控制
P-NET	丹麦Process-Data A/S公司	过程控制
Vnet/IP	日本Yokogawa横河	过程控制
TC-net	东芝公司	过程控制
EtherCAT	德国Beckhoff公司	运动控制
Ethernet Powerlink	奥地利B&R公司	运动控制
EPA	浙江大学、浙江中控公司等	过程控制、运动控制
Modbus/TCP	法国Schneider-electric公司	过程控制
HSE	现场总线基金会	过程控制、运动控制
SERCOS-III	德国Hilscher公司	运动控制

EPA: 我国自动化领域首个国际标准

由浙江大学、浙江中控技术有限公司、中科院沈阳自动化所、重庆邮电学院、清华大学、大连理工大学等单位联合制定,用于工厂自动化的实时以太网通信标准。该标准得到国际电工委员会的正式承认,拥有自主知识产权

意义:打破现场总线核心技术与标准 被国外垄断(芯片、专利、标准)的局面

ISO标准制订会议

- ✓ 在国际流程工业先进控制与优化领域形成话语权
- ✓ 提升了国际影响力
- ✓ 推动了我国先进控制与优化技术及软件的规范化、自主化和互联互通
- ✓ 对我国高端自动化产业发展具有重要的战略意义。

