Sílabo del Curso: Inteligencia Artificial

(32 Clases, 2 horas cada una, con 10 minutos de descanso. Las presentaciones finales se realizarán en otra fecha.)

ÍNDICE DE CONTENIDOS

- 1. Objetivos Principales
- 2. Estructura del Curso
- 3. Semana 1: Introducción Histórica y GOFAI (Clases 1-2)
- 4. Semana 2: Búsqueda No Informada e Informada (Clases 3-4)
- 5. Semana 3: Representación del Conocimiento y Razonamiento (Clases 5-6)
- 6. Semana 4: Teoría de Juegos I Fundamentos y Mecanismos (Clases 7-8)
- 7. Semana 5: Teoría de Juegos II Juegos Repetidos y Torneos de Axelrod (Clases 9-10)
- 8. Semana 6: Búsqueda Adversaria: Minimax y Alpha-Beta (Clases 11-12)
- 9. Semana 7: Autómatas Finitos y Celulares (Clases 13-14)
- 10. Semana 8: Modelado Basado en Agentes (ABM) (Clases 15-16)
- 11. Semana 9: Algoritmos Genéticos: Fundamentos (Clases 17-18)
- 12. Semana 10: Algoritmos Genéticos y Aplicaciones (Clases 19-20)
- 13. Semana 11: Aprendizaje por Refuerzo: Fundamentos (Clases 21-22)
- 14. Semana 12: Aprendizaje por Refuerzo Avanzado (Clases 23-24)
- 15. Semana 13: Integración de Técnicas Clásicas (Clases 25-26)
- 16. Semana 14: Torneos de Axelrod y Co-Evolución (Clases 27-28)
- 17. Semana 15: Autómatas Celulares Avanzados y ABM (Clases 29-30)
- 18. Semana 16: Revisión y Cierre (Clases 31-32)
- 19. Entornos y Mecanismos Clave
- 20. Método de Evaluación (Orientativo)
- 21. Conclusión

OBJETIVOS PRINCIPALES

- 1. Comprender la evolución histórica de la IA y los fundamentos de la IA clásica (GOFAI).
- 2. Implementar y comparar algoritmos de búsqueda (BFS, DFS, A*, etc.) en entornos de prueba.
- 3. **Diseñar** sistemas de razonamiento simbólico y basados en reglas.
- 4. **Dominar** los conceptos centrales de la **Teoría de Juegos**, con énfasis en **mecanismos de diseño**, juegos repetidos y torneos estilo Robert Axelrod.
- 5. **Implementar** búsqueda adversaria (Minimax, Alpha-Beta) en juegos de tablero.
- 6. **Explorar** autómatas finitos y **autómatas celulares** (ej. Conway's Game of Life) para entender comportamiento emergente.
- 7. Aplicar algoritmos evolutivos (genéticos) en problemas de optimización y experimentación.
- 8. Introducir conceptos de aprendizaje por refuerzo y desarrollar agentes Q-learning.
- 9. **Utilizar** entornos compartidos para experimentar, comparar y competir con diferentes estrategias de IA.

ESTRUCTURA DEL CURSO

- 32 clases en 16 semanas (2 clases por semana, 2 horas cada clase).
- Cada semana se enfoca en un tema central (teoría + práctica).
- Se crean o utilizan **entornos** para probar y comparar algoritmos.
- Las presentaciones finales se realizarán fuera de este calendario.

SEMANA 1: INTRODUCCIÓN HISTÓRICA Y GOFAI (CLASES 1-2)

Clase 1

- Tema Principal: Historia de la IA y Fundamentos de GOFAI
- · Contenido:
 - Orígenes de la IA, "inviernos" de la IA, reaparición del aprendizaje automático
 - Visión general del curso y sus proyectos
- · Actividades:
 - Debate: "¿Qué es inteligencia en máquinas?"
 - Descripción de los principales entornos y proyectos

Clase 2

- Tema Principal: Razonamiento Simbólico y Reglas
- Contenido:
 - o GOFAI: sistemas basados en reglas, representación del conocimiento (nociones básicas)
- Actividades:
 - o Demostración de un chatbot o solucionador de acertijos con reglas if-then
 - Proyecto 1: Iniciar un agente de reglas sencillo (mini-sistema experto o puzzle)

SEMANA 2: BÚSQUEDA NO INFORMADA E INFORMADA (CLASES 3-4)

PROF Clase 3

- Tema Principal: Búsqueda No Informada (BFS, DFS, Coste Uniforme)
- · Contenido:
 - o Representación de grafos, espacios de estados
 - Implementaciones de BFS/DFS en problemas simples
- Actividades:
 - Entorno Laberinto o 8-Puzzle: comparar BFS y DFS
 - Iniciar Proyecto 2 (resolver el problema con búsqueda no informada)

- Tema Principal: Búsqueda Informada (A*, Greedy Best-First)
- Contenido:
 - Diseño de heurísticas, comparación A* vs BFS/DFS

Actividades:

- Implementar A* y medir rendimiento
- Finalizar Proyecto 2 con pruebas de heurísticas

SEMANA 3: REPRESENTACIÓN DEL CONOCIMIENTO Y RAZONAMIENTO (CLASES 5-6)

Clase 5

- Tema Principal: Redes Semánticas, Ontologías y Sistemas Expertos
- Contenido:
 - Ontologías (RDF, frames) y razonamiento simbólico
 - o Diferencias entre búsqueda y razonamiento basado en conocimiento
- · Actividades:
 - Demostración de ontologías simples (familia, medicina básica, etc.)
 - Proyecto 3: Iniciar sistema experto (motor de reglas + base de conocimiento)

Clase 6

- Tema Principal: Inferencia y Limitaciones de GOFAI
- · Contenido:
 - Encadenamiento hacia adelante y atrás
 - Ventajas y desventajas de la IA simbólica
- · Actividades:
 - Programar reglas de inferencia en Python
 - Validar Proyecto 3 en distintos escenarios

SEMANA 4: TEORÍA DE JUEGOS I - FUNDAMENTOS Y MECANISMOS (CLASES 7-8)

Clase 7

PROF

- Tema Principal: Conceptos Básicos de Teoría de Juegos
- · Contenido:
 - o Payoff matrices, juegos de suma cero y no cero
 - o Equilibrio de Nash, ejemplos clásicos (Dilema del Prisionero, etc.)
- Actividades:
 - Simulador básico de un juego (Dilema del Prisionero de 1 ronda)
 - Discusión sobre estrategias dominantes y equilibrios

- Tema Principal: Diseño de Mecanismos y Tipos de Juegos
- · Contenido:
 - o Cómo diseñar payoff matrices o recompensas para influir en la conducta
 - Juegos con información completa/incompleta, subastas, negociación

Actividades:

- Análisis de distintos mecanismos (subasta sellada, Vickrey, etc.)
- Preparar el terreno para juegos repetidos y estrategias evolutivas

SEMANA 5: TEORÍA DE JUEGOS II - JUEGOS REPETIDOS Y TORNEOS DE AXELROD (CLASES 9-10)

Clase 9

- Tema Principal: Juegos Repetidos y Estrategias Clásicas
- Contenido:
 - Iterated Prisoner's Dilemma (IPD), tit-for-tat, grim trigger
 - o Concepto de recíproca, estabilidad y cooperación
- · Actividades:
 - Proyecto 4: Diseñar estrategias de IPD
 - Ajustes de payoff y análisis de convergencia al cooperar o traicionar

Clase 10

- Tema Principal: Torneos de Axelrod y Mecanismos Evolutivos
- · Contenido:
 - Robert Axelrod, estudio empírico de estrategias, ruido en iteraciones
 - o Co-evolución de estrategias en un ambiente repetido
- Actividades:
 - Torneo de Axelrod (round-robin) con registro de puntuaciones
 - o Observación de estrategias ganadoras, "eye for eye" vs. "always defect", etc.

SEMANA 6: BÚSQUEDA ADVERSARIA: MINIMAX Y ALPHA-BETA (CLASES 11-12)

Clase 11

PROF

- Tema Principal: Minimax en Juegos Adversarios
- · Contenido:
 - Árboles de juego, evaluación de posiciones, podas iniciales
 - Aplicación en juegos como Tres en Raya (Tic-Tac-Toe)
- Actividades:
 - Proyecto 5: Crear agente adversario para un juego de tablero (Tic-Tac-Toe, Conecta 4)
 - Programar versión básica de Minimax

- Tema Principal: Alpha-Beta y Heurísticas de Evaluación
- Contenido:
 - Poda Alpha-Beta para mejorar la eficiencia
 - Profundidad limitada y evaluación heurística

Actividades:

- Integrar Alpha-Beta en el mismo juego
- o Competir agentes con limitación de tiempo o profundidad

SEMANA 7: AUTÓMATAS FINITOS Y CELULARES (CLASES 13-14)

Clase 13

- Tema Principal: Teoría de Autómatas Finitos (AFD/AFN)
- Contenido:
 - Máquinas de estados y su uso en IA
 - Ejemplos: reconocimiento de patrones, máquinas expendedoras
- Actividades:
 - Proyecto 6: Implementar un autómata finito y probar entradas/estados
 - Visualización de transiciones

Clase 14

- Tema Principal: Autómatas Celulares y Conway's Game of Life
- · Contenido:
 - Reglas de nacimiento y muerte, comportamiento emergente
 - Variantes (Highlife, Seeds) y aplicaciones de AC
- Actividades:
 - Programar Game of Life
 - Observar ciclos, estabilidad y patrones (planeadores, etc.)

SEMANA 8: MODELADO BASADO EN AGENTES (ABM) (CLASES 15-16)

Clase 15

PROF

- Tema Principal: Introducción a ABM y Sistemas Complejos
- · Contenido:
 - Depredador-presa, Boids (flocking)
 - · Librerías como Mesa (Python)
- Actividades:
 - Plantear Proyecto 7: un ABM sencillo (recursos, interacción entre agentes)

- Tema Principal: Implementación y Análisis de ABM
- · Contenido:
 - Parámetros de comportamiento, reglas locales y efectos globales
 - Visualización y medición de resultados (densidad, poblaciones, etc.)
- Actividades:
 - Programar el ABM y experimentar con valores

SEMANA 9: ALGORITMOS GENÉTICOS: FUNDAMENTOS (CLASES 17-18)

Clase 17

- Tema Principal: Conceptos Básicos de Algoritmos Genéticos (AG)
- · Contenido:
 - Población, selección, cruce, mutación
 - Función de aptitud y codificación
- · Actividades:
 - Ejemplo simple (maximizar f(x))
 - Proyecto 8: GA para TSP, Knapsack u otro problema de optimización

Clase 18

- Tema Principal: Ajuste de Parámetros y Convergencia
- Contenido:
 - Tasas de mutación, tipos de selección (ruleta, torneo)
 - Visualización de convergencia de generaciones
- Actividades:
 - Competencia: ¿Quién logra la mejor aptitud tras X generaciones?
 - · Documentar conclusiones de rendimiento

SEMANA 10: ALGORITMOS GENÉTICOS Y APLICACIONES (CLASES 19-20)

Clase 19

- Tema Principal: Aplicaciones Avanzadas de AG y Co-Evolución
- · Contenido:
 - Estrategias evolutivas, programación genética (GP)
 - o Co-evolución en entornos multi-agente
- Actividades:
 - Refinar la implementación del GA
 - o Comparar modos de selección y su impacto en la velocidad de convergencia

Clase 20

- Tema Principal: Integración de AG con Otros Métodos
- · Contenido:
 - GA para generar heurísticas en búsqueda adversaria
 - Evolución de estrategias en IPD (combinación con teoría de juegos)
- Actividades:
 - Probar variantes de GA en distintos entornos

SEMANA 11: APRENDIZAJE POR REFUERZO: FUNDAMENTOS (CLASES 21-22)

Clase 21

- Tema Principal: Fundamentos de Aprendizaje por Refuerzo (RL)
- Contenido:
 - · Agente, entorno, recompensas, estados y acciones
 - o Diferencias con búsqueda clásica y algoritmos evolutivos
- Actividades:
 - Proyecto 9: Q-Learning en un Gridworld o Maze sencillo
 - Configurar funciones de recompensa y castigo

Clase 22

- **Tema Principal:** Q-Learning, ϵ -Greedy y Parametrización
- Contenido:
 - Tasa de aprendizaje (α), factor de descuento (γ), exploración (ϵ)
 - Visualización de la Q-Table
- Actividades:
 - Ajustar hiperparámetros y comparar convergencia
 - o Evaluar desempeño del agente en varios escenarios

SEMANA 12: APRENDIZAJE POR REFUERZO AVANZADO (CLASES 23-24)

Clase 23

- Tema Principal: Ajustes Avanzados y Shaping de Recompensas
- · Contenido:
 - o Decaimiento de ϵ , shaping de recompensas, atascos
 - Problemas de convergencia
- Actividades:
 - Mejorar el agente Q-Learning con técnicas de shaping
 - Comparar resultados de velocidad/calidad de la política aprendida

Clase 24

- Tema Principal: Extensión a Entornos Complejos o Multi-Agente
- · Contenido:
 - Visión general de SARSA, DQN (opcional)
 - RL en sistemas cambiantes o multi-agente
- Actividades:
 - Debate: escenarios multi-agente con RL

SEMANA 13: INTEGRACIÓN DE TÉCNICAS CLÁSICAS (CLASES 25-26)

Clase 25

- Tema Principal: Retrospectiva y Combinación de Métodos
- Contenido:
 - Ejemplos de IA híbrida: reglas + búsqueda + RL + GA
 - Casos reales donde conviven enfoques clásicos
- Actividades:
 - Revisión de proyectos pasados
 - Brainstorm de un proyecto integrador con varios métodos

Clase 26

- Tema Principal: Diseño de Mecanismos en Profundidad
- · Contenido:
 - Subastas, negociación, reglas avanzadas de juego
 - Énfasis en la ética y la equidad en el diseño
- Actividades:
 - o Taller: crear un mini-entorno de subasta o negociación
 - Discusión de cómo afectan las reglas a los agentes

SEMANA 14: TORNEOS DE AXELROD Y CO-EVOLUCIÓN (CLASES 27-28)

Clase 27

- Tema Principal: Ampliación de los Torneos de Axelrod
- Contenido:
 - IPD con variaciones (ruido, mutaciones de estrategia)
 - o Observación de cooperación emergente y estabilidad
- Actividades:
 - Programar un entorno que permita "evolucionar" estrategias a lo largo de rondas
 - o Medir y graficar evolución de la población

Clase 28

- Tema Principal: Análisis de Resultados y Comparaciones
- Contenido:
 - Relación con sistemas evolutivos y aprendizaje por refuerzo
 - Estrategias estables y dinámicas de traición/cooperación
- Actividades:
 - o Ajustar reglas (payoff, ruido) y observar cambios
 - o Discusión sobre implicaciones en teoría de juegos e IA

SEMANA 15: AUTÓMATAS CELULARES AVANZADOS Y ABM (CLASES 29-30)

Clase 29

- Tema Principal: Variantes del Game of Life y Sistemas Complejos
- Contenido:
 - Alteraciones de reglas (nacimiento/muerte), bordes toroidales, etc.
 - o Aplicaciones en biología, sociología, urbanismo
- Actividades:
 - o Probar cambios de reglas en Game of Life
 - Analizar patrones y comportamiento emergente

Clase 30

- Tema Principal: ABM + RL o ABM + AG
- · Contenido:
 - Hibridar ABM con aprendizaje o evolución
 - Retos en simulaciones de muchos agentes
- Actividades:
 - Experimentar con un ABM donde los agentes aprendan o muten
 - Discusión sobre complejidad y escalabilidad

SEMANA 16: REVISIÓN Y CIERRE (CLASES 31-32)

Clase 31

- Tema Principal: Exploración de Temas Opcionales y Ajustes Finales
- · Contenido:
 - o Discusión de subtemas (subastas multi-agente, teoría de contratos, etc.)
 - No hay presentaciones formales (se programan aparte)
- Actividades:
 - Demostraciones informales o pruebas extremas en entornos
 - Debate: IA clásica vs. IA moderna

Clase 32

- Tema Principal: Reflexiones Finales y Perspectivas Futuras
- · Contenido:
 - Resumen de aprendizajes clave y conexiones con Deep Learning o Robótica
 - Conclusiones sobre Teoría de Juegos, Búsqueda, RL, etc.
- Actividades:
 - Retroalimentación entre estudiantes e instructor
 - Cierre del curso (sin presentaciones formales; examen/proyecto final en otra fecha)

ENTORNOS Y MECANISMOS CLAVE

- 1. Proyecto 1 (Reglas/GOFAI): Agente simbólico (chatbot/puzzle).
- 2. Proyecto 2 (Búsqueda): Laberinto o 8-puzzle con BFS/DFS/A*.
- 3. Proyecto 3 (Sist. Experto): Base de conocimiento + motor de inferencia.
- 4. **Proyecto 4 (Teoría de Juegos / IPD)**: Torneos repetidos al estilo Axelrod, analizando payoff y cooperación.
- 5. **Proyecto 5 (Búsqueda Adversaria)**: Juegos de tablero (Tic-Tac-Toe, Conecta 4) con Minimax/Alpha-Beta.
- 6. Proyecto 6 (Autómatas): FSM simple + Conway's Game of Life.
- 7. Proyecto 7 (ABM): Depredador-presa, boids u otro modelo de agentes.
- 8. Proyecto 8 (AG): TSP, Knapsack o problemas de optimización; co-evolución de estrategias.
- 9. Proyecto 9 (RL): Gridworld/Maze con Q-Learning (y variantes).

El **diseño de mecanismos** aparece en teoría de juegos (estructurar payoff matrices, subastas), en RL (recompensas) y en GA (función de aptitud). Así, se investiga cómo los cambios en las reglas impactan la conducta emergente de los agentes.

MÉTODO DE EVALUACIÓN (ORIENTATIVO)

- Proyectos y Tareas Prácticas (implementación y documentación).
- Exámenes Teóricos Parciles . (Por definir de 3 a 5)
- Proyecto Final / Presentaciones (fuera de las 32 clases, de carácter integrador o de investigación adicional).

CONCLUSIÓN

Este programa abarca IA Clásica con un enfoque especial en la Teoría de Juegos, expandiendo los conceptos de juegos repetidos, mecanismos de diseño y torneos de Axelrod, además de cubrir la búsqueda, los sistemas expertos, la búsqueda adversaria, autómatas, algoritmos genéticos y aprendizaje por refuerzo. A lo largo de 32 clases, los estudiantes tienen oportunidades de:

- Experimentar con distintos métodos en entornos específicos.
- **Comparar** resultados y reflexionar sobre la influencia de la estructura de recompensas y la dinámica de interacción.
- Obtener una base sólida de IA Clásica para luego profundizar en técnicas más modernas de Machine Learning o Deep Learning.

Las **presentaciones finales** y el **examen** se llevarán a cabo fuera de este cronograma, permitiendo que cada participante muestre su proyecto integrador o realice investigaciones complementarias.
