$12n_{0003} (K12n_{0003})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1.97857 \times 10^{48} u^{47} - 8.37875 \times 10^{48} u^{46} + \dots + 1.28272 \times 10^{49} b + 5.04932 \times 10^{48}, \\ -1.38689 \times 10^{49} u^{47} - 4.12412 \times 10^{49} u^{46} + \dots + 1.28272 \times 10^{49} a - 7.42829 \times 10^{49}, \ u^{48} + 3u^{47} + \dots + 2u - 10^{49} u^{48} + u^{$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 60 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.98 \times 10^{48} u^{47} - 8.38 \times 10^{48} u^{46} + \dots + 1.28 \times 10^{49} b + 5.05 \times 10^{48}, \ -1.39 \times 10^{49} u^{47} - 4.12 \times 10^{49} u^{46} + \dots + 1.28 \times 10^{49} a - 7.43 \times 10^{49}, \ u^{48} + 3u^{47} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.08121u^{47} + 3.21513u^{46} + \dots + 0.931628u + 5.79103 \\ 0.154247u^{47} + 0.653200u^{46} + \dots - 0.117415u - 0.393641 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.794887u^{47} + 2.62840u^{46} + \dots - 0.210005u + 5.42589 \\ 0.264517u^{47} + 0.943944u^{46} + \dots + 0.140724u - 0.121410 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.138808u^{47} + 0.0569367u^{46} + \dots + 1.13835u - 1.23220 \\ 0.0866426u^{47} + 0.143205u^{46} + \dots + 1.07929u - 1.07605 \\ 0.0866426u^{47} + 0.143205u^{46} + \dots - 0.0590538u + 0.156142 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.197793u^{47} + 0.746837u^{46} + \dots - 0.411380u + 1.70840 \\ 0.497798u^{47} + 1.23878u^{46} + \dots + 1.17262u + 0.785808 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.23546u^{47} + 3.86833u^{46} + \dots + 0.814213u + 5.39739 \\ 0.154247u^{47} + 0.653200u^{46} + \dots - 0.117415u - 0.393641 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.23812u^{47} - 2.80513u^{46} + \dots - 9.14389u + 0.0144920 \\ 0.146826u^{47} + 0.655230u^{46} + \dots + 0.00400667u + 0.694477 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.138808u^{47} + 0.0569367u^{46} + \dots + 1.13835u - 1.23220 \\ 0.146826u^{47} + 0.655230u^{46} + \dots + 0.00400667u + 0.694477 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.138808u^{47} + 0.0569367u^{46} + \dots + 1.13835u - 1.23220 \\ -0.270573u^{47} - 0.659768u^{46} + \dots + 0.0521111u - 0.515628 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $7.13383u^{47} + 19.7832u^{46} + \cdots + 16.2053u + 20.7902$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{48} + 31u^{47} + \dots + 24u + 1$
c_2, c_5	$u^{48} + 7u^{47} + \dots + 12u + 1$
c_3	$u^{48} - 7u^{47} + \dots + 12u^2 + 1$
c_4, c_7	$u^{48} + 3u^{47} + \dots - 8192u + 4096$
c_6,c_{10}	$u^{48} - 3u^{47} + \dots - 2u + 1$
<i>C</i> ₈	$u^{48} + 9u^{47} + \dots - 23626848u + 3579401$
c_9,c_{11}	$u^{48} - 3u^{47} + \dots - 8u + 1$
c_{12}	$u^{48} + 29u^{47} + \dots + 8u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{48} - 21y^{47} + \dots + 2824y + 1$
c_2, c_5	$y^{48} + 31y^{47} + \dots + 24y + 1$
c_3	$y^{48} - 73y^{47} + \dots + 24y + 1$
c_4, c_7	$y^{48} + 65y^{47} + \dots + 184549376y + 16777216$
c_6,c_{10}	$y^{48} - 9y^{47} + \dots - 8y + 1$
<i>C</i> ₈	$y^{48} + 83y^{47} + \dots + 697935129971156y + 12812111518801$
c_9,c_{11}	$y^{48} - 29y^{47} + \dots - 8y + 1$
c_{12}	$y^{48} - 17y^{47} + \dots + 200y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.888432 + 0.471966I		
a = -0.334610 - 1.300970I	-4.63723 - 0.72636I	-3.19086 - 0.34526I
b = -0.050019 + 0.219961I		
u = 0.888432 - 0.471966I		
a = -0.334610 + 1.300970I	-4.63723 + 0.72636I	-3.19086 + 0.34526I
b = -0.050019 - 0.219961I		
u = 0.636986 + 0.733622I		
a = 0.279122 + 0.849564I	-5.67745 + 5.32167I	-4.21900 - 6.97135I
b = -0.813791 - 0.933020I		
u = 0.636986 - 0.733622I		
a = 0.279122 - 0.849564I	-5.67745 - 5.32167I	-4.21900 + 6.97135I
b = -0.813791 + 0.933020I		
u = -1.035480 + 0.144515I		
a = 0.398707 + 0.045146I	1.83509 - 0.11544I	4.43775 + 1.73282I
b = -0.005777 - 0.451241I		
u = -1.035480 - 0.144515I		
a = 0.398707 - 0.045146I	1.83509 + 0.11544I	4.43775 - 1.73282I
b = -0.005777 + 0.451241I		
u = 0.468363 + 0.992714I		
a = -0.028122 + 0.951893I	-3.89164 - 1.83510I	-3.88038 + 1.67120I
b = 0.197854 - 0.122368I		
u = 0.468363 - 0.992714I		
a = -0.028122 - 0.951893I	-3.89164 + 1.83510I	-3.88038 - 1.67120I
b = 0.197854 + 0.122368I		
u = -0.438971 + 0.749800I		
a = -0.150656 - 0.909768I	-1.87656 - 2.26693I	-0.23419 + 4.23054I
b = -0.434634 + 0.073940I		
u = -0.438971 - 0.749800I		
a = -0.150656 + 0.909768I	-1.87656 + 2.26693I	-0.23419 - 4.23054I
b = -0.434634 - 0.073940I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.055170 + 0.454319I		
a = 0.350993 - 0.350907I	0.47415 + 4.77230I	2.90925 - 7.59230I
b = -0.229165 + 0.586958I		
u = 1.055170 - 0.454319I		
a = 0.350993 + 0.350907I	0.47415 - 4.77230I	2.90925 + 7.59230I
b = -0.229165 - 0.586958I		
u = -1.157600 + 0.418766I		
a = -0.250131 + 0.368235I	0.69730 - 2.30425I	0
b = 0.366611 + 0.145765I		
u = -1.157600 - 0.418766I		
a = -0.250131 - 0.368235I	0.69730 + 2.30425I	0
b = 0.366611 - 0.145765I		
u = -0.617941 + 0.399224I		
a = 0.060615 + 0.914870I	-1.23836 - 4.95401I	0.95024 + 9.76424I
b = -1.57348 - 1.15912I		
u = -0.617941 - 0.399224I		
a = 0.060615 - 0.914870I	-1.23836 + 4.95401I	0.95024 - 9.76424I
b = -1.57348 + 1.15912I		
u = -0.690433 + 0.022710I		
a = 0.340123 + 0.236436I	1.274320 - 0.061861I	8.91275 - 0.63325I
b = 0.710419 - 0.336425I		
u = -0.690433 - 0.022710I		
a = 0.340123 - 0.236436I	1.274320 + 0.061861I	8.91275 + 0.63325I
b = 0.710419 + 0.336425I		
u = 0.952290 + 0.917135I		
a = 0.86871 - 1.24612I	-5.72498 + 3.38721I	0
b = -2.02867 + 0.31602I		
u = 0.952290 - 0.917135I		
a = 0.86871 + 1.24612I	-5.72498 - 3.38721I	0
b = -2.02867 - 0.31602I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.663259 + 0.139973I		
a = 0.219248 - 1.384360I	0.85103 + 2.84744I	6.69474 - 7.55737I
b = 0.12321 + 1.65156I		
u = 0.663259 - 0.139973I		
a = 0.219248 + 1.384360I	0.85103 - 2.84744I	6.69474 + 7.55737I
b = 0.12321 - 1.65156I		
u = -0.864759 + 1.001780I		
a = -0.70764 - 1.33859I	-14.6682 - 3.0850I	0
b = 2.09539 + 0.70588I		
u = -0.864759 - 1.001780I		
a = -0.70764 + 1.33859I	-14.6682 + 3.0850I	0
b = 2.09539 - 0.70588I		
u = -0.934317 + 0.943776I		
a = 1.07851 + 1.19683I	-9.73534 + 1.58904I	0
b = -2.15162 + 0.09289I		
u = -0.934317 - 0.943776I		
a = 1.07851 - 1.19683I	-9.73534 - 1.58904I	0
b = -2.15162 - 0.09289I		
u = 0.325135 + 0.583617I		
a = 1.010560 - 0.435996I	-1.73157 - 0.74220I	-3.53436 + 1.20207I
b = -0.100686 - 0.124770I		
u = 0.325135 - 0.583617I		
a = 1.010560 + 0.435996I	-1.73157 + 0.74220I	-3.53436 - 1.20207I
b = -0.100686 + 0.124770I		
u = 1.213470 + 0.584928I		
a = -0.504959 - 0.128402I	-1.32166 + 7.73642I	0
b = 0.658444 - 0.124156I		
u = 1.213470 - 0.584928I		
a = -0.504959 + 0.128402I	-1.32166 - 7.73642I	0
b = 0.658444 + 0.124156I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.978343 + 0.926207I		
a = 0.80633 + 1.44174I	-9.59881 - 8.46951I	0
b = -2.29946 - 0.61084I		
u = -0.978343 - 0.926207I		
a = 0.80633 - 1.44174I	-9.59881 + 8.46951I	0
b = -2.29946 + 0.61084I		
u = 0.866755 + 1.048470I		
a = -0.729094 + 1.119430I	-10.22760 - 1.78431I	0
b = 1.93255 - 0.26341I		
u = 0.866755 - 1.048470I		
a = -0.729094 - 1.119430I	-10.22760 + 1.78431I	0
b = 1.93255 + 0.26341I		
u = -1.051530 + 0.891321I		
a = -1.31485 - 1.07651I	-14.0441 - 3.8628I	0
b = 2.10442 - 0.11160I		
u = -1.051530 - 0.891321I		
a = -1.31485 + 1.07651I	-14.0441 + 3.8628I	0
b = 2.10442 + 0.11160I		
u = -0.905222 + 1.060420I		
a = -0.888396 - 1.029930I	-13.8372 + 7.1481I	0
b = 2.14464 - 0.04344I		
u = -0.905222 - 1.060420I		
a = -0.888396 + 1.029930I	-13.8372 - 7.1481I	0
b = 2.14464 + 0.04344I		
u = 1.07786 + 0.91788I		
a = -1.00742 + 1.16837I	-9.52196 + 8.95742I	0
b = 2.09175 - 0.23831I		
u = 1.07786 - 0.91788I		
a = -1.00742 - 1.16837I	-9.52196 - 8.95742I	0
b = 2.09175 + 0.23831I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.06846 + 0.94471I		
a = -0.91395 - 1.39925I	-13.2732 - 14.4519I	0
b = 2.30191 + 0.42350I		
u = -1.06846 - 0.94471I		
a = -0.91395 + 1.39925I	-13.2732 + 14.4519I	0
b = 2.30191 - 0.42350I		
u = 0.518541 + 0.209657I		
a = -0.15012 - 2.09948I	0.60718 + 2.45344I	2.01156 - 2.44263I
b = -0.571793 + 1.215850I		
u = 0.518541 - 0.209657I		
a = -0.15012 + 2.09948I	0.60718 - 2.45344I	2.01156 + 2.44263I
b = -0.571793 - 1.215850I		
u = -0.097000 + 0.527699I		
a = -0.97037 - 3.44326I	-1.36020 - 1.48509I	-1.96785 + 10.33925I
b = -0.320461 - 0.724196I		
u = -0.097000 - 0.527699I		
a = -0.97037 + 3.44326I	-1.36020 + 1.48509I	-1.96785 - 10.33925I
b = -0.320461 + 0.724196I		
u = -0.326195 + 0.340981I		
a = 4.53740 + 4.91757I	-1.80837 + 2.42279I	4.5070 + 19.1208I
b = -0.647629 + 0.837735I		
u = -0.326195 - 0.340981I		
a = 4.53740 - 4.91757I	-1.80837 - 2.42279I	4.5070 - 19.1208I
b = -0.647629 - 0.837735I		

II. $I_2^u = \langle u^2 a + b, \ u^5 a + u^5 + \dots - a - 2, \ u^6 - u^5 - u^4 + 2u^3 - u + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ -u^{2}a \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ -u^{2}a \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{2}a + a \\ -u^{2}a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - u^{2}a - 2u^{3} + u^{2} + a + 2u - 1 \\ -u^{2}a + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes

$$= 2u^{5}a + u^{4}a + u^{5} - 4u^{3}a - 6u^{4} + 5u^{2}a - u^{3} + 3au + 7u^{2} - 2a - 4u - 4$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_3,c_5	$(u^2 - u + 1)^6$
c_2	$(u^2 + u + 1)^6$
c_4, c_7	u^{12}
c_6, c_{11}	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)^2$
C ₈	$(u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)^2$
c_9, c_{10}	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^2$
c_{12}	$(u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5	$(y^2 + y + 1)^6$
c_4, c_7	y^{12}
c_6, c_9, c_{10} c_{11}	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$
c_8, c_{12}	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.002190 + 0.295542I		
a = 0.815127 - 0.417821I	1.89061 + 1.10558I	4.53097 - 2.95636I
b = -0.500000 + 0.866025I		
u = -1.002190 + 0.295542I		
a = -0.045720 + 0.914831I	1.89061 - 2.95419I	7.73749 + 4.22314I
b = -0.500000 - 0.866025I		
u = -1.002190 - 0.295542I		
a = 0.815127 + 0.417821I	1.89061 - 1.10558I	4.53097 + 2.95636I
b = -0.500000 - 0.866025I		
u = -1.002190 - 0.295542I		
a = -0.045720 - 0.914831I	1.89061 + 2.95419I	7.73749 - 4.22314I
b = -0.500000 + 0.866025I		
u = 0.428243 + 0.664531I		
a = 0.93136 - 1.30101I	-1.89061 - 2.95419I	-0.76561 + 6.31197I
b = -0.500000 - 0.866025I		
u = 0.428243 + 0.664531I		
a = -1.59239 - 0.15607I	-1.89061 + 1.10558I	-4.61123 - 3.09109I
b = -0.500000 + 0.866025I		
u = 0.428243 - 0.664531I		
a = 0.93136 + 1.30101I	-1.89061 + 2.95419I	-0.76561 - 6.31197I
b = -0.500000 + 0.866025I		
u = 0.428243 - 0.664531I		
a = -1.59239 + 0.15607I	-1.89061 - 1.10558I	-4.61123 + 3.09109I
b = -0.500000 - 0.866025I		
u = 1.073950 + 0.558752I		
a = 0.679704 + 0.059778I	3.66314I	-0.57335 - 1.75283I
b = -0.500000 - 0.866025I		
u = 1.073950 + 0.558752I		
a = -0.288082 - 0.618530I	7.72290I	3.68173 - 7.68692I
b = -0.500000 + 0.866025I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.073950 - 0.558752I		
a = 0.679704 - 0.059778I	-3.66314I	-0.57335 + 1.75283I
b = -0.500000 + 0.866025I		
u = 1.073950 - 0.558752I		
a = -0.288082 + 0.618530I	-7.72290I	3.68173 + 7.68692I
b = -0.500000 - 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^6)(u^{48} + 31u^{47} + \dots + 24u + 1)$
c_2	$((u^2 + u + 1)^6)(u^{48} + 7u^{47} + \dots + 12u + 1)$
c_3	$((u^2 - u + 1)^6)(u^{48} - 7u^{47} + \dots + 12u^2 + 1)$
c_4, c_7	$u^{12}(u^{48} + 3u^{47} + \dots - 8192u + 4096)$
<i>C</i> ₅	$((u^2 - u + 1)^6)(u^{48} + 7u^{47} + \dots + 12u + 1)$
<i>C</i> ₆	$((u^6 - u^5 - u^4 + 2u^3 - u + 1)^2)(u^{48} - 3u^{47} + \dots - 2u + 1)$
c ₈	$(u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)^2$ $\cdot (u^{48} + 9u^{47} + \dots - 23626848u + 3579401)$
c_9	$((u^6 + u^5 - u^4 - 2u^3 + u + 1)^2)(u^{48} - 3u^{47} + \dots - 8u + 1)$
c_{10}	$((u^6 + u^5 - u^4 - 2u^3 + u + 1)^2)(u^{48} - 3u^{47} + \dots - 2u + 1)$
c_{11}	$((u^6 - u^5 - u^4 + 2u^3 - u + 1)^2)(u^{48} - 3u^{47} + \dots - 8u + 1)$
c_{12}	$((u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^2)(u^{48} + 29u^{47} + \dots + 8u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^6)(y^{48} - 21y^{47} + \dots + 2824y + 1)$
c_2, c_5	$((y^2 + y + 1)^6)(y^{48} + 31y^{47} + \dots + 24y + 1)$
c_3	$((y^2 + y + 1)^6)(y^{48} - 73y^{47} + \dots + 24y + 1)$
c_4, c_7	$y^{12}(y^{48} + 65y^{47} + \dots + 1.84549 \times 10^8 y + 1.67772 \times 10^7)$
c_6, c_{10}	$((y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2)(y^{48} - 9y^{47} + \dots - 8y + 1)$
c_8	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2$ $\cdot (y^{48} + 83y^{47} + \dots + 697935129971156y + 12812111518801)$
c_9, c_{11}	$((y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2)(y^{48} - 29y^{47} + \dots - 8y + 1)$
c_{12}	$((y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2)(y^{48} - 17y^{47} + \dots + 200y + 1)$