Auslutter Komplethut as Br

TX; 12 C Rn X; -> K & Rr deson det for alle ero fins NEM s.a

11 Xy-XII < E nai j>, N, x, \$ 150 for alle ero fins NEM s.a

DEF: En følge {K;?;= C R" er en Canchy-følge derson det for entre Exo fins NEAT S.a. IXx-Kelle Rai K, l >, NT.

NESTEN RIXTIG.

Teorem: En følge (R) CIR er Canchy hviss den es konvergent, dus. at det fins x ∈ 1R° s.a. 11 x-x, 11 → 0 no j-70.

Beris: a Anta forst at det fins ZEIRA s.a. Zi - Z noi jose 6itt E20-Nà fins N∈N s.a. (x, -x1< € dessom j>, N La K, l > N og se på | KK-Ke).

Anda at {kj}, es Canchy.

Husk: Enhves begrenset fælge i Rh.

Merk fasst: enliver Canchy-fælge er begrenset.

Så det fins $\{\vec{X}_{j(m)}\}_{k=1}^{\infty}$ son konvergerer mot et punkt $\vec{X} \in \mathbb{R}^n$.

Shal vise at is - it nois - so-

Git Ezo. Da fins NeM s.a.

[] Ku-Kel < & for Kil > N.

Det firs også N2 s.a. | Rjen-X | < \frac{\xi}{2}

noi j(k) > N2. -

La N= max ? N, N2?,

For $j \gg N$ for vi $|\vec{x}_j - \vec{x}| = |\vec{x}_j - \vec{x}_{j(k)} + \vec{x}_{j(k)} - \vec{x}|$ for $j(k) \gg N$,

< | Xj - Ljai] + | Ljai-x] < \frac{\xi}{2} + \frac{\xi}{2} = \xi.

DFF: Et metrisk rom er <u>komplett</u> desom enhver Canchy-folge er konvergent.

Eks: Q < R er et meinisk som.

Vet at \(\sum_{2} \) \Q \\

Men det fins \(q_{j} \in \) \Q \(\san_{2} \) \rangle 2.

Da es \(\{ q_{j}\}\)_{j=1}^{20} \end{en} \quad \text{Conschy-fidge i Q} \quad \text{Som ikke konvergerer mot now tall i Q}.

Uniform Kontinuitet

DEF: La ACR og F: A-) 18". Vi sie at Fer uniforms kontinuelig do som det for entre Eso fins Sso s.a. \F(x)-F(g) \< na \x-g < S.

flusk kond; F es kont. i R∈A okosom det for entire exo fins 820 Sa. [F(Z)-F(g)]< 8 no 12-9)(S. Fer kont. dusom Fer kont. i alle punkter ZeA.

Teorem: Enhver kontinuerlig funksjon på en lukket og kugrenset mongoli i IR" er uniformt kontinuelig.

thusk: Vi brokte olde resultated til à vise at alle kontinuetze funksjonu pë et rektangel i R² er integrebare.

La ACR" vove bukket og begrønset, Bowls' la ge C(A) (j kon). funksjon pë A), og anta for á fá en motsigelse at f åke er uniformt kont

> DVS: Det fins E>O og følge R, D, EA sa. [k-v;]-10 nai j-20 men 18[3]-8(9:1) > & for alle je NJ.

Sidun A es Tukket og kygrenset has $\{\vec{x}_j\}$ en konvegent delfolgre. $\vec{X}_{k(j)} \longrightarrow \vec{X} \in A$

Da er ogsa Bulj) konvegent og ynn -1 X na j-100 siden

((() - () ()) - () neir () -> 20.

Så vi ha en motsigelse.

Herapyon on audichinger

$$F: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

Velger $K_0 \in \mathbb{R}^n$
 $X_1 := F(K_0)$
 $X_2 := F(K_1) = F(F(K_0)) = F^{(2)}(K_0)$
 $X_n := F(X_{n-1}) = F^{(n)}(K_0)$

Dynamich system

Has sett eksempel; (x,y) velder : R2 er antall by thedgr (x) og rovdyr (y) i en popularjón.

Studeser iteragen as A.

Els:

BANACH'S FIKSPINKTEOREM

DEF: Deson ACPA og F:A→A er en avkilding med F(又)=Z for en Z∈A. Da sie vi at Z e et filogunld.

DEF: En avkilding $F: A \rightarrow A$ kalles en kontrakspon deson det fins 0: s < 1so $|F(\vec{x}) - F(\vec{y})| \le s \cdot |\vec{x} - \vec{y}|$, for alle $\vec{x}, \vec{y} \in A$.

Lemma: Desorn $F:A \rightarrow A$ e en kontroksjon

og $\vec{k} \in A$ e et filospurkt så

hov vi $F^{(n)}(\vec{y}) \rightarrow \vec{k}$ for alle $\vec{g} \in A$.

Beris: $|F(\vec{k}) - F(\vec{y})| \leq S \cdot |\vec{k} - \vec{y}|$ $|\vec{k} - F(\vec{y})| \leq S \cdot |\vec{k} - \vec{y}|$ $|F(\vec{k}) - F(F(\vec{y}))| \leq S |\vec{k} - F(\vec{y})|$ $|\vec{k} - F^{(n)}(\vec{y})| \leq S^2 |\vec{k} - \vec{y}|$ $|\vec{k} - F^{(n)}(\vec{y})| \leq S^2 |\vec{k} - \vec{y}|$ $|\vec{k} - F^{(n)}(\vec{y})| \leq S^2 |\vec{k} - \vec{y}|$

Teorem (Bonach) La A vove en Ynkhet

og begrenset mengde i Bh og

la F: A -1 A vove en tontraktion.

Da fins et entgdig fikspunkt xeA

for F og F⁽ⁿ⁾(y) -1 x for

alle y e A.

Bods: Vi behove bose à vise chisters.

La $\vec{y} \in A$ vove vilkarlig. Vil vise at $F^{(n)}(\vec{y})$ konvegeer mot et punkt nar $n \rightarrow \infty$.

R:= diam (A)

La 220,

La NEM sa. S.R < E.

For NEKCL:

Si $\{F^{(n)}(\vec{g})\}$ e Counchy =) $F^{(n)}(\vec{g})$ konvergere not et punt $\vec{\chi} \in A = 1$ $\vec{\chi}$ e et filispunkt [3]