Lakshya Paliwal

EDUCATION

Manipal University Jaipur

Aug 2023 - Jun 2027 (Expected)

B.Tech in Computer Science and Engineering

CGPA: 8.90/10

Relevant Coursework: Machine Learning, Deep Learning, Data Structures and Algorithms, Data Science, Artificial Intelligence, Statistics and Probability, Computer Organization and Architecture, Advanced Mathematics for Data Science, Linear Algebra for ML.

SKILLS

Programming Languages: Python, C, C++, Java, SQL

Machine Learning/Deep Learning Libraries: Hugging Face Transformers, TensorFlow, Keras, Scikit-learn, XGBoost, LightGBM,

pandas, NumPy, Matplotlib, Seaborn

Data Science Tools: Jupyter Notebook, Colab, Git, GitHub, VS Code, ZenML, MLflow

AI Frameworks: LangChain, LangGraph, Hugging Face Transformers.

Research Tools: Pandas, NumPy, OpenCV, Pickle

Technologies: FastAPI, Flask, Docker

Domains & Expertise: Machine Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), Computer Vision (CV),

Data Analysis

Soft Skills: Leadership, Collaboration, Problem-Solving, Time Management, Communication, Adaptability

RESEARCH EXPERIENCE

Chronocept Feb 2025

Annotator

- Contributed to **Chronocept**, an AI research initiative focused on enhancing machine temporal reasoning by integrating **temporal validity** into natural language processing (NLP) systems. This enables AI models to reason about time, track event timelines, and distinguish between past, present, and future occurrences with greater accuracy.
- Annotated 250+ text samples using a structured three-step process:
 - Text Segmentation: Extracted grammatically and semantically meaningful subtexts while preserving temporal integrity.
 - **Temporal Axis Classification:** Categorized subtexts into predefined temporal axes (e.g., *Main Axis, Intention Axis, Hypothetical Axis*) to structure event timelines.
 - **Temporal Validity Modeling:** Assigned probability distributions to capture the validity of events over time, aiding machine understanding of temporal sequences.
- Contributed to the development of the Chronocept Dataset, a benchmark dataset designed to improve AI-driven temporal reasoning in NLP models.

RESEARCH PROJECTS

• Car-Price-Prediction:

- End to End machine learning pipeline for predicting car prices. The model uses data (such as horsepower, enginesize, curbweight, etc.) to estimate prices of a car.
- Conducted exploratory data analysis (EDA) using Pandas, Matplotlib, and Seaborn to understand feature correlations (Univariate, Bivariate, Multivariate analysis etc.)
- Pipelines orchestrated using ZenML, ensuring modularity and reproducibility in data ingestion, preprocessing, model training, and evaluation.
- Integrated MLflow for model tracking, experiment logging, and performance monitoring.
- Car-Price-Prediction GitHub.
- Technologies: Python, NumPy, Matplotlib, Seaborn, Scikit-learn, Pandas, ZenML, MLflow.

· Car-Park-In-Go:

- Built a user-friendly web interface to display real-time parking availability, ensuring seamless user interaction. Utilized Python with Flask for backend development.
- Each frame is processed to extract regions corresponding to predefined parking spaces. The CNN model classifies these regions as either "Occupied" or "Free".
- Provides an API endpoint to get the current count of free and occupied spaces.
- Car-Park-In-Go GitHub.
- Technologies: Python, Tensorflow/Keras, Flask, OpenCV, Pickle, Numpy.

• Kisaan-Saathi:

- Implemented a machine learning model using the pretrained Xception architecture to accurately identify 38 different crop diseases.
- ImageDataGenerator for data augmentation during training and fine-tuned the model by unfreezing layers, enhancing its accuracy.
- Integrated a multi language chatbot within the application using the Gemini API to provide personalized assistance, address farmers' queries, and deliver tailored agricultural advice in real time.
- Utilized Docker to containerize the application, ensuring consistent deployment across various environments.

- Kisaan-Saathi Github.
- Technologies Used: Python, Tensorflow/Keras, Streamlit, Google Gemini API.

• Wanderwise-AI-Travel-Planner:

- This application helps users generate personalized travel itineraries based on their city of choice, interests, and available time, while integrating real-time weather information and Google Maps links.
- Multi-Agent AI System: Implemented multiple AI agents for different tasks, ensuring an efficient travel planning process.
- State Graph Workflow: Designed a structured itinerary-building process using LangGraph and custom state management.
- Wanderwise-AI-Travel-Planner GitHub.
- Technologies: LangChain, LangGraph, Python, Weather API, Gradio.

• HealthCare-Hub:

- Integrates multiple machine learning models to provide solutions for various healthcare-related predictions.
- Integrated all predictive models into a cohesive and user-friendly Streamlit web application, providing an accessible interface for users to input data and receive predictions.
- Models integrated under this Web-Application: Bone Fracture Detection, Brain Tumor Detection, Asthma Prediction, Breast Cancer Classification, Calories Burnt Estimation, Diabetes Risk Assessment, Heart Disease Prediction, Medical Insurance Cost Estimation, Mental Health Support Chatbot.
- HealthCare-Hub GitHub.
- Technologies: TensorFlow/Keras, OpenCV, NumPy, Matplotlib, Python, Streamlit.

ACHIEVEMENTS

- Dean's List: Recognized on the Dean's List in the 2nd and 3rd semester for academic excellence.
- Deep learning Specialization: Deep Learning Specialization through DeepLearning.AI and Stanford University under the guidance of Andrew Ng.
- Machine Learning Specialization: Machine Learning Specialization through DeepLearning.AI and Stanford University under the guidance of Andrew Ng.