

THE CHINESE UNIVERSITY OF HONG KONG, SHENZHEN

Course Code

Course Name

Your Title

Author: Your Name
Student ID: Your Student ID

November 23, 2023

Contents

1	\mathbf{Part}	1	4
	1.1	Subsection 1	4
	1.2	Subsection 2	4
2	Part	2	,
3	Part	3	٠
	3.1	Program Framework	•
	3.2	Part 4: Table	4

1 Part 1

This is an example code listing:

```
print("Hello World!")
```

Listing 1: Example Python code

1.1 Subsection 1

This is a subsection.

```
v\begin{document}

\title(CSG3150 Assignment 2)
\author(Yuzhe Yang)
\maketitle

v\section(Part 1)

% Code listing
v\beginf(lstlisting)[language=C++, caption=Example code]
printf("Hello, world!")
\chocklisting
\section(Part 2)
\end(lstlisting)
\section(Part 2)
\end(document)
```

Figure 1: Example image

1.2 Subsection 2

```
v\begin{document}

\title{CSC3150 Assignment 2}
\author{Yuzhe Yang}
\maketitle

v\section{Part 1}

% Code listing
v\begin{lstlisting}{language=C++, caption=Example code}
printf("Hello, world!")
\end{lstlisting}

\section{Part 2}

\end{document}
```

(a) Caption for Image 1

```
  \\begin{document}

  \\title{CSC3150 Assignment 2}
  \author(Yuzhe Yang)
  \maketitle

  \\section{Part 1}

  \$ Code listing
  \\begin{lstlisting} [language=C++, caption=Example code]
  printf("Hello, world!")
  \end{lstlisting}

  \\section{Part 2}

  \\end{document}
```

(c) Caption for Image 3

```
v\begin{document}

\title{CSC3150 Assignment 2}
\author{Yuzhe Yang}
\maketitle

v\section{Part 1}

% Code listing
v\begin{lstlisting}[language=C++, caption=Example code]
printf("Hello, world!")
\end{lstlisting}

\section{Part 2}

\end{document}
```

(b) Caption for Image 2

```
v \begin{document}

\title{CSC3150 Assignment 2}
\author{Yuzhe Yang}
\maketitle

v \section{Part 1}

% Code listing

v \begin{\stlisting}{\language=C++, caption=Example code}
printf("Hello, world!")
\end{\stlisting}

\section{Part 2}
\end{document}
```

(d) Caption for Image 4

Figure 2: Example of the 2x2 Image Grid

2 Part 2

This is an example of an inline equation: $f(x) = x^2$. This is an example of a displayed equation:

$$f_1(x) = x^2 \tag{1}$$

$$f_1(x) = x^2$$
 (1)
 $f_2(x,y) = f_1^2(x) + y^3$ (2)

The sum of A and B is:

This is an example graph:

3 Part 3

Column 1	Column 2	Column 3
Row 1, Column 1	Row 1, Column 2	Row 1, Column 3
Row 2, Column 1	Row 2, Column 2	Row 2, Column 3
Row 3, Column 1	Row 3, Column 2	Row 3, Column 3

Table 1: Example table

Program Framework 3.1

This is an example graph of program framework:

Figure 3: Program Framework

3.2 Part 4: Table

Table 2: USA

		1.5 hour				3 hour		6 hour		
	Method	MAE	RMSE	MAPE	$\mid MAE$	RMSE	MAPE	$\mid MAE$	RMSE	MAPE
	HA	9.09	11.85	1.15	9.09	11.85	1.15	9.09	11.85	1.15
	VAR	7.80	10.47	1.21	8.12	10.82	1.22	8.48	11.24	1.22
	ARIMA	10.51	13.89	2.44	10.48	13.86	2.42	10.60	14.02	2.48
	SVM	8.18	10.95	1.21	8.49	11.27	1.22	8.74	11.56	1.21
	STGCN									ŗ
Arrival Delay	Gwave									ľ
	GAT	7.595	10.222	1.181	7.856	10.492	1.148	8.337	10.995	1.075
	GRU	7.243	9.981	1.181	7.466	10.231	1.195	7.761	10.527	1.164
	ASTGCN	7.312	10.019	1.2	7.545	10.277	1.192	8.018	10.714	1.123
	STPN	6.875	9.411	0.996	7.171	9.762	1.005	7.552	10.189	1.065
	STCGAT	6.615	9.221	1.099	6.947	9.642	1.130	7.278	10.008	1.127
	HA	6.52	8.63	1.28	6.52	8.63	1.28	6.52	8.63	1.28
	VAR	5.56	7.66	1.13	5.82	7.93	1.14	6.17	8.30	1.13
	ARIMA	7.61	10.55	1.13	7.59	10.55	1.12	7.65	10.64	1.14
	SVM	5.96	8.13	1.09	6.24	8.41	1.08	6.43	8.65	1.04
	STGCN			•						
Departure Delay	Gwave			•						
-	GAT	4.854	6.989	0.964	5.05	7.121	0.942	5.362	7.373	0.898
	GRU	4.569	6.897	0.966	4.694	7.019	0.982	4.933	7.201	0.976
	ASTGCN	4.548	6.942	0.98	4.693	7.045	0.961	5.115	7.274	0.965
	STPN	4.812	6.787	1.063	4.930	6.883	1.073	5.117	7.108	1.076
	STCGAT	4.474	6.838	0.944	4.596	6.912	0.948	4.717	7.020	0.950

Table 3: Results on the U.S. delay dataset

		1.5 hour		3 l	nour	6 hour	
	Method	MAE	RMSE	\overline{MAE}	RMSE	MAE	RMSE
Arrival Delay	HA VAR ARIMA SVR STGCN Gwave	9.09 7.80 10.51 8.18	11.85 10.47 13.89 10.95	9.09 8.12 10.48 8.49	11.85 10.82 13.86 11.27	9.09 8.48 10.60 8.74	11.85 11.24 14.02 11.56
Tittivai Belay	GAT GRU ASTGCN STPN STCGAT	7.595 7.243 7.312 6.875 6.615	10.222 9.981	7.856 7.466	10.492 10.231	8.337 7.761	10.995 10.527
Departure Delay	HA VAR ARIMA SVR STGCN Gwave GAT GRU ASTGCN STPN STCGAT						

Table 4: USA

	1.5 hour			3 hour			6 hour			
	Method	MAE	RMSE	MAPE	$\mid MAE$	RMSE	MAPE	MAE	RMSE	MAPE
Arrival Delay	HA VAR ARIMA SVM STGCN Gwave GAT GRU ASTGCN STPN STCGAT									
Departure Delay	HA VAR ARIMA SVM STGCN Gwave GAT GRU ASTGCN STPN STCGAT									

Table 5: Identification of performance indicators in 33 matches

ID	Coord	ination	Distril	bution	Ten	npo	Flexi	bilty	Pres	ssing	Result
	H***	О	H	О	Н	О	H	О	H	О	
1	7.61	4.00	62.25	12.60	539.50	1476.5	732.42	28.58	42.37	51.23	win
2	2.88	8.25	28.71	11.17	1019.9	5692.49	29.30	27.34	46.36	49.81	tie
3	5.10	9.00	8.43	34.17	634.78	596.98	27.77	27.03	40.43	52.02	loss
4	6.01	5.66	6.14	62.40	760.01	934.64	32.74	31.94	44.14	51.62	loss
30	5.61	3.00	62.25	7.13	707.96	2018.5	3230.94	30.18	50.75	58.75	win
31	6.58	4.21	20.10	13.87		1014.3		26.66	44.20	50.13	win
33	3.75	3.35	39.83	21.90	1159.3	80479.62	29.43	27.61	51.34	51.20	tie

Table 6: Notations

Symbol	Definition					
L	Total links of network					
ho	Network Density					
w_{ij}	Number of passes					
$\overset{d_{ij}}{D}$	topological distance					
${D}$	Network Diameter					
C(i)	Clustering Coefficient					
Ì ´	ratio of goals to shots					
d	ratio of defenses to losses					
φ	Distribution of contributes					
t_b	50-ball Passing Time					
μ_i	Number of shots					
$ u_i$	Number of defenses					
S	Score of teamwork					
eta_i	Weight of indicators					
γ	Coordination among players					