CS512 Final Project:

Image Classification using k Nearest Neighbours algorithm

GROUP 2:

ABHISHEK BHATT (ab2083)

HARSH BHATT (hb371)

SIVA HARSHINI DEV BONAM (sdb202)

TIANZHI CAO (tc796)

Project Goals

- Implement KNN algorithm to find nearest neighbours (pre-labeled images in the MNIST training set) of an input image from the MNIST testing set.
- Write an application on top of the KNN implementation that takes an image as input, and returns the digit it contains as an output.
- Summarize the overall performance of the implementation in terms of time and accuracy.

Dataset

- MNIST database of handwritten digits
- Training set: 60,000 examples (IDX file format for implementation)
- Test set: 10,000 examples (PNG file format for implementation)
- Each image is 28x28 pixels in the raw dataset
- Data is at rest and can fit in a typical desktop

Project Modules

- Algorithm implementation: Python class KnnClassifier
- Image classifier web application: knn_image_class ifier

Application Demo

To deploy the web application, we need to run applicationknnimageclassifier.py with Python. The UI is then accessible at port 8080 on the localhost URL.

KNN Image Classifier

Select files:

Choose Files No file chosen

Submit

KNN Image Classifier

Select files:

Choose Files 6 files

Submit

"407401"

KNN Image Classifier

Select files:

Choose Files 13 files

2712117423512

Submit

"2712117423512"

Analysis

Average Correct Rate

Running Time

Calculation Time

Observations

- No significant change in accuracy was observed for k = 1 to 10.
- Average correctness of predicted labels decreases after sub-sampling, but the drop is insignificant overall.
- Running time drops sharply after sub-sampling, as we increase size of training set.
- Average correctness of predicted labels is roughly same for all train sizes.
- Running time increases approximately linearly until we take 70% of the training set (10% increments for each observation).
- Beyond 70%, there is a sharp increase in running time per increment.

Conclusion

Through this project we have successfully demonstrated the application of the K-Nearest Neighbours algorithm for image classification and analyzed its performance in terms of the size of the training dataset.

Thank you