

LECTURE 4:

RECURRENT NEURAL NETWORK

University of Washington, Seattle

Fall 2025

Previously in EEP 596...

self.cnn1

- In-channel # : 1
- Out-channel # : 16
- Kernel size : 5
- Stride = 1
- Padding = 2
- ReLU

self.maxpool1

Kernel size: 2

size : 2 • In-channel # : 16

• Out-channel #: 32

self.cnn2

- Kernel size : 5
- Stride = 1
- Padding = 2
- ReLU

self.maxpool2

Kernel size : 2

Flatten

self.fc1

 $1568 \to 10$

OUTLINE

Part 1: Introduction to RNNs

- Why do we need RNNs?
- RNN Architecture
- Embedding and Decoder

Part 2: Training RNNs

- Backpropagation in RNNs
- Vanishing/Exploding Gradient Problem
- Training with Teacher Forcing

Part 3: RNN Problem Types

- RNN Configurations
- RNN Extensions

INTRODUCTION TO RNNs

Why do we need RNNs?

RNN Architecture

Embedding and Decoder

Feed-Forward Network

Feed-Forward Network

Feed-Forward Network neurons have no memory of past inputs

Korean

안녕하세요, 제 이름은 지민이에요

English

Hello, my name is Jimin

Korean 안녕하세요,

English Hello,

Korean

Korean

Korean

Korean

Korean

안녕하세요, 제 이름은 지민이에요

English

Hello, my name is Jimin

Each word in a sentence is dependent to the past words → Need memory

Korean

안녕하세요, 제 이름은 지민이에요, 그리고 저는 비디오게임을 좋아해요

English

Hello, my name is Jimin, and I like videogames

A sentence (input) could have different sizes

We need a neural network architecture that can handle:

Data order

- Data order
- Temporal dependencies

- Data order
- Temporal dependencies
- Variable input sizes

- Data order
- Temporal dependencies
- Variable input sizes

Unfold in Time

$$egin{array}{lll} oldsymbol{a}^{(t)} &=& oldsymbol{b} + oldsymbol{W} oldsymbol{h}^{(t-1)} + oldsymbol{U} oldsymbol{x}^{(t)} \ oldsymbol{b}^{(t)} &=& anh(oldsymbol{a}^{(t)}) \ oldsymbol{o}^{(t)} &=& oldsymbol{c} + oldsymbol{V} oldsymbol{h}^{(t)} \ oldsymbol{g}^{(t)} &=& ext{softmax}(oldsymbol{o}^{(t)}) \end{array}$$

Brain is Highly Recurrent

Neurons themselves have temporal voltage dynamics

Different parts of brain exchange information both forward and backward

Brain is Highly Recurrent

Credit: Allen Institute for Brain Science

Sequential Data

Speech recognition

Music generation

Sentiment classification

DNA sequence analysis

Machine translation

Video activity recognition

Name entity recognition

"There is nothing to like in this movie."

AGCCCCTGTGAGGAACTAG

Voulez-vous chanter avec moi?

Yesterday, Harry Potter met Hermione Granger. The quick brown fox jumped over the lazy dog."

AGCCCCTGTGAGGAACTAG

Do you want to sing with me?

Running

Yesterday, Harry Potter met Hermione Granger.

Embedding and Decoder

안녕하세요 Hello

Embedding

Embedding

Embedding

Embedding matrix is trainable

Embedding

Embedding matrix can encode semantic representations of inputs

안녕하세요 Hello

Decoder

Backpropagation in RNNs

- → Forward
- ← Backward

Backpropagation in RNNs

- → Forward
- ← Backward

Backpropagation is performed backward in time

Vanishing and Exploding Gradients

- → Forward
- Backward

output

hidden

input

Vanishing and Exploding Gradients

→ Forward Backward output hidden h_0 x_0 input χ_2

Longer input sequence → higher risk of Vanishing/Exploding Gradients!

Vanishing and Exploding Gradients

- Use gated RNN architecture e.g., LSTM, GRU (Next week)
- ReLU activation as nonlinearity
- Smaller number of sequence
- Smaller learning rate

Training RNN with Teacher Forcing

"Two" "birds" "running"

RNN RNN RNN

Start> "Two" "people"

Ground truth

Without Teacher Forcing

With Teacher Forcing

RNN PROBLEM TYPES

RNN Configurations

RNN Extensions

RNN Configurations

One to One

one to one

One to One

one to one

Identical to Feed Forward Network

One to Many

one to many

One to Many

Image credit: www.analyticsvidhya.com

Image captioning

Music generation

Many to One

many to one

Many to One

many to one

Sentiment Analysis

Many to Many

Many to Many

many to many

many to many

Machine Translation

Video Captioning

RNN Extensions

Regular RNN

Bi-directional RNN

Deep RNN

(+)Can provide better performanceOften used for complex problems

(-)
Potential for overfitting
Longer training time

Bi-directional RNNs

(+)

Higher performance in Natural Language Processing tasks

Suitable when both left and right contexts are used

(-)

Harder to train than Uni-directional RNN Not suitable for real-time processing

Bi-directional RNN

Next episode in EEP 596...

Long-short-term memory (LSTM)

Gated recurrent units (GRU)

Next episode in EEP 596...

