COM 205 - Digital Logic Design Boolean Algebra and Logic Gates

Assist. Prof. Özge ÖZTİMUR KARADAĞ ALKÜ

Last Week

- Conversion among canonical forms
- Digital Logic Gates

Example

- Simplify the functions:
 - f = x'y+xy'+xy+x'y'
 f = y(x'+x) + y'(x+x') (distributive law)
 = y + y'
 - = 1
 - F=(BC'+A'D)(AB'+CD')
 - =AB'BC'+BC'CD'+AA'B'D+A'CDD' (distributive law)
 - =0

Example

- Given the truth table of F
 - Find its minterms
 - Find the minterms for F'
 - Represent F in sum of products form.
 - Represent the function with minimum number of terms.

X	у	z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Example

- Given the truth table of F
 - Find its minterms
 - Find the minterms for F'
 - Represent F in sum of products form.
 - Represent the function with minimum number of terms.

•	F	(x,y,z)	$=\sum_{i}$	(2	,3,	6,	7)
	• '	、ハンフノー	, 4	-	, – ,	ς,	• /

•
$$F(x,y,z)=\sum_{x}(0,1,4,5)$$

•
$$F(x,y,z)=x'y(z'+z)+xy(z'+z)=x'y+xy=y(x'+x)=y$$

X	у	z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Gate-Level Minimization

- Task of finding an optimal gate-level implementation of the Boolean Functions
- The Map Method: Simple, straightforward procedure for minimizing Boolean functions. Karnaugh map (K-map)
 - K-map is a diagram made-up of squares, each representing one minterm of the function to be minimized.
 - The simplified expressions produces by the map are in one of the two standard forms: sum of products or product of sums.
 - It is assumed that the simplest algebraic expression is an algraic expression with a minimum number of terms and with the smallest possible number of literals in each term.
 - Simplest expression is not unique.

Two-variable Map

m _o	m_1
m ₂	m_3

• Representation of functions in the map:

1

$$F=m_1+m_2+m_3=x'y+xy'+xy=x+y$$

F=xy

F=x+y

• Three-variable map:

m_0	m_1	m ₂	m_3
m ₄	m ₅	m ₇	m_6

	00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
1	xy'z'	xy'z	xyz	xyz'

• Which squares corresspond to x?

- Any two adjacent squares in the map differ by only one variable, which is primed in one square and unprimed in the other.
 - For example: m₅ and m₇ in two adjacent squares.
 - $m_5+m_7 = xy'z+xyz = xz(y+y')=xz$

m_0	m_1	m ₂	m ₃
m ₄	m ₅	m ₇	m ₆

	00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
1	xy'z'	xy'z	xyz	xyz'

• Three-variable map:

m_0	m_1	m ₂	m_3
m ₄	m ₅	m ₇	m_6

	00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
1	xy'z'	xy'z	хух	xyz'

Which squares corresspond to y?

• Three-variable map:

m ₀	m ₁	m ₂	m ₃
m ₄	m ₅	m ₇	m_6

	00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
1	xy'z'	xy'z	xyz	xyz'

• Which squares corresspond to z?

K-Map Method

m ₀	m_1	m ₂	m ₃
m ₄	m ₅	m ₇	m_6

Which squares correspond to xy?

	00	01	11	10
0				
1				

m ₀	m_1	m ₂	m ₃
m ₄	m ₅	m ₇	m ₆

10

• Which squares correspond to xy'?

	00	01	11	10
0				
1				

- Ex: Simplify the Boolean Function
- $F(x,y,z)=\sum (2,3,4,5)$

	00	01	11	10
0			1	1
1	1	1		

• F=xy'+

- Ex: Simplify the Boolean Function
- $F(x,y,z)=\sum (2,3,4,5)$

	00	01	11	10
0			1	1
1	1	1		

- In certain cases, two squares in the map are considered to be adjacent even though they do not touch eachother.
 - m_0 and m_2 are adjacent $m_0+m_2=x'y'z'+x'yz'=x'z'(y'+y)=x'z'$
 - m_4 and m_6 are adjacent $m_4+m_6=xy'z'+xyz'=xz'(y'+y)=xz'$

m_0	m ₁	m ₂	m ₃
m ₄	m ₅	m ₇	m_6

	00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
1	xy'z'	xy'z	хух	xyz'

K-Map

• Ex: Simplify the Boolean Function

• $F(x,y,z)=\sum (3,4,6,7)$

	00	01	11	10
0			1	
1	1		1	1

• F=yz+xz'

K-Map

• Ex: Simplify the Boolean Function

• $F(x,y,z)=\sum (3,4,6,7)$

	00	01	11	10
0			1	
1	1		1	1

• F=xz'+ yz

K-Map

- The number of adjacent squares that may be combined must always represent a number that is a power of two, such as 1,2,4,8.
- As more squares are combined, we obtain a product term with fewer literals.

- One square represents one minterm → three literals
- Two squares represent a term with two literals
- Four squares represent a term with one literal
- Eight squares produce a function that is always equal to 1.

• Ex: Simplify the following Boolean Function

•
$$F(x,y,z) = \sum (0,2,4,5,6)$$

	00	01	11	10
0	1			1
1	1	1		1

- Ex: Simplify the following Boolean Function
- $F(x,y,z) = \sum (0,2,4,5,6)$

	00	01	11	10
0	1			1
1	1	1		1

• F = z'+xy'

- Let the Boolean Function F=A'C+A'B+AB'C+BC
- a) Express this function as a sum of minterms
- b) Find the minimal sum-of-products expression
- F(A,B,C)=∑
- Obtain the K-map,
- Find the function.

•	RASRI.	m1,m2	m3 r	n5 m6
	DAJNI.	IIII	,1110,1	112,1110

• irem: m2 m3 m4 m5 m6 m7

	00	01	11	10
0		1	1	1
1		1	1	

- Let the Boolean Function F=A'C+A'B+AB'C+BC
- a) Express this function as a sum of minterms
- b) Find the minimal sum-of-products expression

•
$$F(A,B,C)=\sum (1,2,3,5,7)$$

• F= C+A'B