PREDICTING PRE-OWNED CAR PRICES

ANJALI SEBASTIAN

INTRODUCTION

Motivation

Pricing Guide

• Get the best deals ?

Feature Dependent Depreciation

• Color, brand?

Objectives

Develop a model that can reasonably predict price of a used

car

Goals

Collect sufficient data and clean it

Understand correlations

Develop a model using supervised linear regression

Test the model - better than a monkey

METHODOLOGY

DATA AND TOOLS

Web Scrapping

- Scrapped 1700+ pages from carmax.com
- 30+ parameters ... miles, horsepower, curb weight
- Cars around the Seattle and Portland

Cleaning Data

Cleaning and Identifying Outliers

Encoding Data

- Exterior color light, dark, prime
- Brands luxury

Chrome Web Driver

Selenium

Pandas Lib

Statsmodel

Sklearn

Matplotlib

Seaborn

Beautiful Soup

Distribution of Price 0.00008 0.00007 0.00006 0.00005 0.00004 0.00003 0.00002 0.00001 0.00000 10000 20000 30000 40000 50000 60000 Price (USD)

FEATURE ENGINEERING

Log Transform Price

Heteroskedastic

High correlation between features

• Engine Size vs #cylinders > 0.9

Linear Regression – use P-values to remove features

Transforming features vs. target

COMPARING MODELS

Туре	Polynomial Degree	Alpha	MSE-Train	R ² - Train
Ridge	1	1.0	0.02267	0.84693
Ridge	2	1.0	0.01636	0.88949
Ridge	3	1.0	0.01196	0.91925
Lasso	1	0.00026	0.02271	0.84664
Lasso	2	0.00011	0.01657	0.88812
Lasso	3	0.00026	0.01459	0.90144

Use LassoCV and RidgeCV for running 3-fold Cross-validation MSE_PATH_ to get MSE for the test Plotted MSE Test for assessing fit Why Ridge?

Predicted vs Actuals

RESULTS

 R^2 Test = 0.876

MSE Test = 0.017

MSE = $e^{0.017}$ = 1.0171 \sim 1%

RESULTS

CONCLUSION & FUTURE WORK

Are we better than a monkey?

Definitely

Can we use this model as a price guide?

 Case extreme outlier, residual - GMC Yukon SLT, 2017

Can we identify feature dependent depreciation?

Future Work

Original Price as a feature

More data points

Have models specific for a brand, year

Unsupervised learning to cluster brands and specific models

Predict car depreciation of a new car

APPENDIX

Predicted vs Actuals

PREDICTED VS. ACTUALS (RE-TRANSFORMED)

Residuals 0.50 0.25 0.00 Residuals -0.25 -0.50-0.75-1.00 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 Predicted (log scale)

RESIDUALS WITH OUTLIER