An Introduction to knitr and RMarkdown

https://github.com/sahirbhatnagar/knitr-tutorial

Sahir Bhatnagar August 12, 2015

McGill Univeristy

Acknowledgements

- Toby, Matthieu, Vaughn, Ary
- Maxime Turgeon (Windows)
- Kevin McGregor (Mac)
- Greg Voisin
- Don Knuth (T_EX)
- Friedrich Leisch (Sweave)
- Yihui Xie (knitr)
- John Gruber (Markdown)
- John MacFarlane (Pandoc)
- You

Disclaimer #1

R Markdown v2

I don't work for, nor am I an author of any of these packages. I'm just a messenger.

Disclaimer #2

- Material for this tutorial comes from many sources. For a complete list see: https://github.com/sahirbhatnagar/knitr-tutorial
- Alot of the content in these slides are based on these two books.

Objectives for today

• Create a reproducible document (pdf, html)

Objectives for today

• Create a reproducible document (pdf, html)

C'est parti

What?

What is needed for Reproducible research?

Why?

001-motivating-example

A Motivating Example

Demonstrate: 001-motivating-example

How?

Tools for Reproducible Research

Free and Open Source Software

- RStudio: Creating, managing, compiling documents
- LATEX: Markup language for typesetting a pdf
- Markdown: Markup language for typesetting an html
- R: Statistical analysis language
- knitr: Integrate LaTeXand R code. Based on Prof. Friedrich Leisch's Sweave

knitr

What knitr does

LATEX example:

What knitr does

LATEX example:

Compiling a .Rnw document

The two steps on previous slide can be executed in one command:

knitr::knit2pdf()

or in RStudio:

Incorporating R code

• Insert R code in a Code Chunk starting with

and ending with

In RStudio:

Example 1: Show code and results

[1] 0.031

```
<<example-code-chunk-name, echo=TRUE>>=
x <- rnorm(50)
mean(x)
@

produces

x <- rnorm(50)
mean(x)</pre>
```

Example 2: Tidy code

```
<<erample-code-chunk-name2, echo=TRUE, tidy=TRUE>>=
for(i in 1:5){ print(i+3)}
@
```

produces

```
for (i in 1:5) {
    print(i + 3)
}

## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
```

Example 2.2: don't show code

```
<<example-code-chunk-name3, echo=FALSE>>=
for(i in 1:5){ print(i+3)}
@
```

produces

```
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
```

Example 2.3: don't evaluate and don't show the code

```
<<example-code-chunk-name4, echo=FALSE, eval=FALSE>>=
for(i in 1:5){ print(i+3)}
@
```

produces

R output within the text

- Include R output within the text
- We can do that with "S-expressions" using the command \Sexpr{...}

Example:

The iris dataset has $\Prow(iris)$ rows and $\Prow(iris)$ columns

produces

The iris dataset has 150 rows and 5 columns

Include a Figure

```
<<fre><<fig.ex, fig.cap='Linear Regression',fig.height=3,fig.width=3>>=
plot(mtcars[ , c('disp','mpg')])
fit <- lm(mpg ~ disp , data = mtcars)
abline(fit,lwd=2)
@</pre>
```


Figure 1: Linear regression

Include a Table

```
<<table.ex, results='asis'>>=
library(xtable)
tab <- xtable(iris[1:5,1:5],caption='Sample of Iris data')
print(tab, include.rownames=FALSE)
@</pre>
```

```
library(xtable)
tab <- xtable(iris[1:5,1:5], caption = 'Sample of Iris data')
print(tab, include.rownames = F)</pre>
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.10	3.50	1.40	0.20	setosa
4.90	3.00	1.40	0.20	setosa
4.70	3.20	1.30	0.20	setosa
4.60	3.10	1.50	0.20	setosa
5.00	3.60	1.40	0.20	setosa

Table 1: Sample of Iris data

RMarkdown

Markdown: HTML without knowing HTML

R + Markdown = RMarkdown

What rmarkdown does

RMarkdown example:

What rmarkdown does

RMarkdown example:

Compiling a .Rmd document

The two steps on previous slide can be executed in one command:

rmarkdown::render()

or in RStudio:

Final Remarks

How to choose between LATEX and Markdown?

Math/stat symbols beamer presentations customized documents publish to journals, arXiv

Markdown

quick and easy reports use javascript libraries interactive plots publish to websites

Opinion: Reproducible research can still be wrong: Adopting a prevention approach

Jeffrey T. Leek^{a,1} and Roger D. Peng^b

^aAssociate Professor of Biostatistics and Oncology and ^bAssociate Professor of Biostatistics, Johns Hopkins University, Baltimore, MD

computational tools such as knitr, iPython notebook, LONI, and Galaxy (8) have simplified the process of distributing reproducible data analyses.

Always Remember ...

$${\rm Reproducibility} \propto \frac{1}{{\rm copy~paste}}$$

Is the juice worth the squeeze?

Session Info

- R version 3.2.1 (2015-06-18), x86_64-pc-linux-gnu
- Base packages: base, datasets, graphics, grDevices, methods, stats, utils
- Other packages: data.table 1.9.4, dplyr 0.4.1, ggplot2 1.0.1, knitr 1.10.5, xtable 1.7-4
- Loaded via a namespace (and not attached): assertthat 0.1, chron 2.3-45, colorspace 1.2-6, DBI 0.3.1, digest 0.6.8, evaluate 0.7, formatR 1.2, grid 3.2.1, gtable 0.1.2, highr 0.5, magrittr 1.5, MASS 7.3-43, munsell 0.4.2, parallel 3.2.1, plyr 1.8.3, proto 0.3-10, Rcpp 0.12.0, reshape2 1.4.1, scales 0.2.5, stringi 0.5-5, stringr 1.0.0, tools 3.2.1

Slides made with Beamer mtheme