$$\frac{1}{V(\vec{k}-\vec{k}')} = \frac{(2\pi)^3}{V_{unit}} \sum_{\vec{q}} \delta(\vec{k}' - \vec{q}') \delta(\vec{q})$$
where $\delta(\vec{k}') = \delta(\vec{k}' - \vec{k}') \delta(\vec{q})$

1. sathering is 0 unless
$$\left[\frac{1}{2} - \frac{1}{2} = \frac{1}{4}\right]$$

2. Intensity of scattering is $15(\tilde{a})1^2$ with structure factor $5(\tilde{a})$

additional distance: 2d sin 6

constructive Interference: [n7=2dsin8]

Bragg condition

define unit vectors: $\hat{\lambda}_{1}, \hat{\lambda}_{1}', \hat{\lambda}_{2}'$

$$\hat{h} = \left(\frac{2\pi}{n}\right)\hat{h}$$

assure lane condition : 12-12 = q

$$d = \frac{2\pi}{19 \text{ min}}$$

$$\vec{a} = n \, \vec{a}_{\text{min}}$$

(hhl) ville index of G [uz, v, wa] position of atom & in unit cell.

$$S_{hkl} = f_{cs} + f_{cs} (-1)^{h+2+(s)}$$

vanishes unless h+2+(is even Cselection rule / systematic absence)

for fcc: 5 vanistes unles h,h,l one all even or all odd

{h2/}	N= h2+62+e2	SC	6 cc	fcc
{100}	1	✓	*	*
2110}	2		\checkmark	X
{111}	3	V	×	V
[200]	4	V	, , , , , , , , , , , , , , , , , , ,	/

for
$$SC : N = 1, 7, 3, 4, 5, 6, 8$$

 $6CC : N = 7, 4, 6, 8$
 $CC : N = 3, 4, 8, 11, 12, 16$