Simulating impacts of power plant flexibility on CCS Chains with gCCS

Laurence Robinson – E.ON Technologies (Ratcliffe) Ltd. APMF – Royal Garden Hotel – London – 2nd April 2014

Contents

- ETI System modelling toolkit project
- gCCS capabilities
- Analysis of a dynamic case study
- Summary

Energy Technologies Institute (ETI)

Public-private partnership between global industries and the UK Government set up with the objectives of

- ensuring clean, secure and affordable energy supplies are available to power everyday living and business
- reducing greenhouse gas emissions to tackle the effects of climate change

The ETI makes targeted investments in key technologies that will help the UK meet its legally binding 2050 targets

ETI members

Public institutions

Technology Strategy Board Driving Innovation

System-wide modelling: high-level requirements

CCS System Modelling Tool-kit Project

- Energy Technologies Institute (ETI) commissioned £3m (\$5m) project
- E.ON, EDF, Rolls-Royce, Petrofac/CO2DeepStore, PSE, E4tech
- September 2011- Spring 2014

→ Create a commercially available product

- built on PSE's gPROMS platform
- High-fidelity system-wide CCS modelling
- Toolbox and ecosystem

Modelling Toolkit Capabilities

Transmission **Power Plant** CO2 capture Compression Injection PF Coal Gas Phase · Gas field · Amine scrubbing Multistage Compression CCGT WGS & Selexol Dense Phase · Saline aquifers · Water Drying • IGCC • Cryogenic CO2 separation

Oxyfuel

Modelling Toolkit Capabilities

Why is dynamic simulation of CCS important?

- To achieve carbon reduction targets in the UK, electricity must be effectively decarbonised by ~2030
- Therefore to meet these targets fossil plants must have CO₂ capture and sequestration to eliminate their emissions.
- Fossil plant currently provides the on-demand flexible generation to meet changes in demand over the day.
- In-flexible intermittent generation(e.g. wind & solar) means fossil plant will be required to change load around less predictable changes in green supply.

Typical day in 2010

Wind= low penetration

Baseload=Inflexible Nuclear

Flexible =(Gas and Coal) varies

around the demand curve

Barrage = Intermittent Tidal

- Barrage
- **■** Useable Wind
- □ Flexible
- Lose Base or Spill
- ☑ Spill
- Baseload
- □ -Spill

Grid Demand (MW)

Windy day in 2030 with high wind penetration

Wind= high penetration

Flexible =(Gas and Coal) varies

around the demand curve and

also variations in wind power

■ Barrage
■ Useable Wind
□ Flexible
■ Lose Base or Spill
☑ Spill
■ Baseload
□ -Spill

Additional power at night is large enough to impact base load plant – requires spill of renewable or baseload power.

Case Study: dynamic analysis

System overview

Dynamic analysis Scheduled changes in power plant load

Scenario DS1.1

Scenario DS1.2

Dynamic analysis - Power plant

Dynamic analysis - CO₂ capture plant

Dynamic analysis - CO₂ capture plant

Dynamic analysis Power/CO₂ capture two-way coupling

Dynamic analysis

Time (hours)

DS 1.1 DS 1.2

Final remarks

- A dynamic simulation of a full scale CCS chain has been completed in a single model using gCCS
- gCCS can be used to identify key areas of interest for components across the CCS chain based on their response to dynamic operation.
- gCCS can be used to inform and aid the design of safe control systems and operating procedures
- The dynamic performance can still be improved the real test will be using these tools "in anger" against operating plant data.

Thank you for your attention

Acknowledgement to ETI Modelling toolkit project team:

- Andrew Green (ETI)
- Thierry Moes (Rolls-Royce)
- Bhavesh Limani (EdF Energy)
- Luca Bertuccioli(E4Tech)
- Ian Phillips(CO2 DeepStore)
- Alfredo Ramos and team (PSE)

