

ES-DOC: CIM 2 & CMIP6 From definitions to specializations

Mark A. Greenslade

Institut Pierre Simon Laplace (IPSL)

CIM v2.o – Definitions

A data model for documenting climate modelling experiments, processes, output, simulations, workflows.

The data model is partitioned into packages, each package addressing a particular documentation/problem space.

An eco-system of tools & services is built upon the data model.

CIM v2.o – Packages

Activity

Data

Designing

DRS

Platform

Science

Shared

Software

Time

CIM v2.o - Class Definition

```
def numerical experiment():
    """Defines a numerical experiment.
    0.00
    return {
        'type': 'class',
        'base': 'activity.activity',
        'is abstract': False,
        'properties': [
            ('related experiments', 'linked to(designing.numerical experiment, designing.experimental relationships)', '0.N',
                "Other experiments which have defined relationships to this one."),
            ('related mips', 'linked to(designing.project)', '0.N',
                "MIP's that require this experiment."),
            ('required period', 'linked to(designing.temporal constraint)', '1.1',
                "Constraint on start date and duration."),
            ('requirements', 'linked_to(designing.numerical_requirement)', '0.N',
                "Additional requirements that conformant simulations need to satisfy.")
        'constraints': [
            ('cardinality', 'duration', '0.0'),
            ('cardinality', 'rationale', '1.1')
```


CIM v2.o – ENUM Definition

```
def coupling framework():
    """The set of terms which define known coupling frameworks.
    0.00
    return {
        'type': 'enum',
        'is open': False,
        'members': [
            ("OASIS", "The OASIS coupler - prior to OASIS-MCT"),
            ("OASIS3-MCT", "The MCT variant of the OASIS coupler"),
            ("ESMF", "Vanilla Earth System Modelling Framework"),
            ("NUOPC", "National Unified Operational Prediction Capability variant of ESMF"),
            ("Bespoke", "Customised coupler developed for this model"),
            ("Unknown", "It is not known what/if-a coupler is used"),
            ("None", "No coupler is used")
```


CIM v2.o - Definitions Tooling

Definitions

Validator

Parser

Generators

CIM v2.o — Tooling — Generator Output

```
class NumericalExperiment(activity.Activity):
    """A concrete class within the cim v2 type system.
    Defines a numerical experiment.
    .....
    def init (self):
        """Instance constructor.
        .....
        super(NumericalExperiment, self). init ()
        self.related experiments = []
                                                           # designing.NumericalExperiment (0.N)
        self.related_mips = []
                                                           # designing.Project (0.N)
        self.required period = None
                                                           # designing.TemporalConstraint (1.1)
        self.requirements = []
                                                           # designing.NumericalRequirement (0.N)
```


- pyesdoc = python client to the esdoc eco-system
- at the heart of the ES-DOC eco-system
- mature, unit-tested, pip installable

Create Validate I/O

Archival HTML / PDF Publish

pyesdoc usage scenario – transforming a spreadsheet into archived CIM 2.0 documents

pyesdoc usage scenario – transforming documents into HTML pages

pyesdoc usage scenario – validating a CIM 2.0 document

pyesdoc usage scenario – publishing documents to ES-DOC web-service

CIM v2.o - Web Assets

Web Service

api.es-doc.org

Search search.es-doc.org

View

view.es-doc.org

Compare

compare.es-doc.org

CIM v2.o – Web Service

Web Service Endpoints @ api.es-doc.org

Publishing

/2/document/create/2/document/delete/2/document/retrieve/2/document/update

Search

/2/document/search-drs
/2/document/search-externalid
/2/document/search-id
/2/document/search-name
/2/summary/search
/2/summary/search-setup

CIM v2.o — Search & View

Documentation search & view @ search.es-doc.org

Project / MIP Era:	Document Type:	Document Version:	Sub MIP:					
CMIP6-DRAFT \$	Experiment \$	Latest \$	AERCHEMMIP	\$				
Total Documents = 241	. Filtered Documents = 34		<<	<	Page 1 of 2	>	>>	25 / page 💠
Name	Alternative Name	Description						Version
hist-1950HC	HISTghg+ntcf+hc1950	historical forcing, but with1950	s halocarbon concer	trations	:			1
hist-piAer	histghgntcf	historical forcing, but with pre-i	industrial aerosol em	issions				1
hist-piNTCF	HISTghg	historical forcing, but with pre-i	industrial NTCF emis	sions				1
historical	cmip6Historical	all-forcing simulation of the rec	ent past					1
histSST	histSST	historical SSTs and historical for	orcing					1
histSST-1950HC	HISTsstghgntcfhc1950	historical SSTs and historical for	orcing, but with1950	halocarl	oon concentrations			1
histSST-piAer	HISTsstghgntcf	historical SSTs and historical for	orcing, but with pre-in	ndustria	aerosol emissions			1
histSST-piCH4	WMFORCch4	historical SSTs and historical fo	orcing, but with pre-in	ndustria	methane concentrations			1
histSST-piN2O	WMFORCn20	historical SSTs and historical for	orcings, but with pre-	industri	al N2O concentrations			1
histSST-piNTCF	HISTsstghgntcf1850	historical SSTs and historical fo	orcing, but with pre-in	ndustria	NTCF emissions			1
histSST-piO3	HISTsstghg	historical SSTs and historical for	orcing, but with pre-in	ndustria	ozone precursor emissions			1
piClim-2xDMS	piSSTclim-2xDMS	pre-industrial climatolgical SST	s and forcing, but wi	th doub	led emissions of DMS			1
piClim-2xdust	piSSTclim-2xdust	pre-industrial climatolgical SST	s and forcing, but wi	th doub	led emissions of dust			1
piClim-2xss	piSSTclim-2xss	pre-industrial climatolgical SST	s and forcing, but wi	th doub	led emissions of sea salt			1
piClim-aer	piSSTclim-Aer	Pre-industrial timeslice with fixe	ed SSTs, but 2014 ac	erosol e	missions			1
piClim-BC	piSSTclim-BC	pre-industrial climatolgical SST	s and forcing, but wi	th 2014	black carbon emissions			1
piClim-CH4	piSSTclim-CH4	pre-industrial climatolgical SST	s and forcing, but wi	th 2014	methane concentrations (include	ding che	mistry)	1
piClim-control	piSSTclim	pre-industrial with prescribed of	limatological SSTs					1
piClim-control	erf-piControl	RFMIP pre-industrial control eff	fective radiative forci	ng				1
piClim-HC	piSSTclim-HC	pre-industrial climatolgical SST chemistry)	s and forcing, but wi	th 2014	halocarbon concentrations (inc	luding		1
piClim-N2O	piSSTclim-N2O	pre-industrial climatolgical SST	s and forcing, but wi	th 2014	N2O concentrations (including	chemist	ry)	1
piClim-NOX	piSSTclim-NOX	pre-industrial climatolgical SST	s and forcing, but wi	th 2014	NOx emissions			1
piClim-NTCF	piSSTclim-NTCF	pre-industrial climatolgical SST	s and forcing, but wi	th 2014	NTCF emissions			1
piClim-O3	piSSTclim-O3	pre-industrial climatolgical SST	s and forcing, but wi	th 2014	ozone precursor emissions			1
Total Documents = 241. F	iltered Documents = 34.				Documentation Se	earch v0	.9.5.0	9 2016 ES-DOC

CMIP6-DRAFT Experiment : Historical

Overview

MIP Era cmip6-draf

Related MIPs aerchemmip | c4mip | cmip6 | damip | dcpp | gmmip | highresmip | ismip6 | Is3mip | lumip | rfmip

Canonical Name historical

Alternative Names cmip6Historical

Internal Name CMIP6Historical1.1

Long Name all-forcing simulation of the recent past

Description Simulation of recent past (1850 to 2014). Impose changing conditions (consistent with observations). Should be

initialised from a point early enough in the pre-industrial control run to ensure that the end of all the perturbed runs

branching from the end of this historical run end before the end of the control.

Rationale Spans the period of extensive instrumental temperature measurements from 1850 to the present. Evaluate model

performance against present climate and observed climate change.

 Keywords
 CMIP6 | Historical | Reference

 Related Experiments
 amip | esm-hist | piControl

Model Configuration

Atmosphere-Ocean General Circulation Model Configuration

Name AOGCMconfiguration

Description Use a coupled Atmosphere-Ocean general circulation model

Conformance Requested ? False

Keywords AOGCM | Atmosphere-Ocean General circulation model

Temporal Constraints

1850/01/01-2015/01/01

Start Date 1850-01-01
Required Duration 165 years

Description Historical, pre-Industrial to present

Conformance Requested ? Fals

Keywords 1850 | 2014 | Historical | Recent Past | pre-industrial to present | IPCC

Forcing Constraints

Historical Simple Aerosol Plume Climatology

Name HistoricalSimpleAerosolPlumeClimatology

Description Apply fields of aerosol optical properties (fine and coarse mode aerosol optical depth (AOD), single scattering

CMIP6 Specializations – Problem Space

CIM 2.0 is a set of **static** data structures – think standardization.

However on a project by project basis we need to capture much finer grained documentation – think fluid scientific narratives.

Specializations allow the scientific community to decide what (model) documentation they wish to capture.

The CIM moves from the foreground to the background (where it belongs).

CMIP6 Specializations – Problem Space

Consider capturing information related to a model's:

ocean advection schema; ocean lateral & vertical physics; atmosphere transport layer; sea-ice radiative properties; ocean bio-geochemistry boundary forcing;

Only the community can decide what to capture – not ES-DOC.

CMIP6 Specializations – Community role

Let the community own a set of specializations per modelling realm:

Let the community define a specialization per realm process.

Let the community automatically validate each specialization.

Let the community automatically generate artefacts, e.g. mindmaps.

CMIP6 Specializations – ES-DOC role

Let ES-DOC guide the realm experts via workshops & training resources.

Let ES-DOC aggregate the various specializations.

Let ES-DOC build value added downstream tools.

Let ES-DOC ensure visibility of final documentation.

CMIP6 Specializations - GitHub

One GitHub repo per modelling realm – community owned

https://github.com/ES-DOC/cmip6-specializations-aerosols

https://github.com/ES-DOC/cmip6-specializations-atmosphere

https://github.com/ES-DOC/cmip6-specializations-atmospheric-chemistry

https://github.com/ES-DOC/cmip6-specializations-landice

https://github.com/ES-DOC/cmip6-specializations-landsurface

https://github.com/ES-DOC/cmip6-specializations-ocean

https://github.com/ES-DOC/cmip6-specializations-ocean-bgc

https://github.com/ES-DOC/cmip6-specializations-seaice

CMIP6 Specializations - Authoring

```
SUB_PROCESS_DETAILS['momentum:operator'] = {
    'description': 'Properties of lateral physics operator for momentum in ocean',
    'properties': [
        ('direction', 'ENUM:latphys_operator_direc_types', '1.1',
            'Direction of lateral physics momemtum scheme in the ocean'),
        ('order', 'ENUM: latphys operator order types', '1.1',
            'Order of lateral physics momentum scheme in the ocean'),
        ('discretisation', 'ENUM:latphys operator discret types', '1.1',
            'Discretisation of lateral physics momemtum scheme in the ocean'),
SUB PROCESS DETAILS['momentum:eddy viscosity coeff'] = {
    'description': 'Properties of eddy viscosity coeff in lateral physics momemtum scheme in the ocean',
    'properties': [
        ('type', 'ENUM:latphys eddy visc coeff types', '1.1',
            'Lateral physics momemtum eddy viscosity coeff type in the ocean'),
        ('constant coefficient', 'int', '0.1',
            'If constant, value of eddy viscosity coeff in lateral physics momemtum scheme (in m2/s)'),
        ('variable coefficient', 'str', '0.1',
            'If space-varying, describe variations of eddy viscosity coeff in lateral physics momemtum scheme'),
        ('coeff background', 'int', '1.1',
            'Background value of eddy viscosity coeff in lateral physics momemtum scheme (in m2/s)'),
        ('coeff backscatter', 'bool', '1.1',
            'Is there backscatter in eddy viscosity coeff in lateral physics momemtum scheme ?')
```

Very simple python data structures

Help guides & support from ES-DOC

Validation tool to sanity check

Great for small workshops

CMIP6 Specializations - Tooling

Specializations

Validator

Parser

Generators

CMIP6 Specializations - Mindmap

CMIP6 Specializations – IPython Notebooks

ES-DOC Model Documentation

MIP Era: cmip6 Institute: ipsl Model: IPSL-CM6A-LR Realm: Ocean

Realm Processes: Timestepping Framework, Advection, Lateral Physics, Vertical Physics, Uplow Boundaries, Boundary Forcing.

Notebook Help: Goto notebook help page Notebook Initialised: 2016-09-01 13:13:38

Notebook setup (non-editable)

```
In [ ]: import urllib2
import pyesdoc
import IPython
IPython.core.display.HTML(urllib2.urlopen('http://bit.ly/lBf5Hft').read())
```

Documentation setup

Ocean --> Key Properties

Ocean --> TimesteppingFramework

Characteristics of ocean time stepping framework

IPython notebooks are generated from specializations.

One notebook per model per realm.

As the specializations evolve, so do the notebooks.

CMIP6 Specializations – IPython Notebooks

```
In [ ]: DOC['lateral physics.momentum.operator.direction'] = ""
        # Direction of lateral physics momentum scheme in the ocean
        # OPTIONAL ENUM - choose ONE from:
             "Geopotential"
              "Horizontal"
              "Iso-level"
              "Isoneutral'
              "Isopycnal"
              "Other: [Please specify]"
In [ ]: DOC['lateral_physics.momentum.operator.order'] = ""
        # Order of lateral physics momentum scheme in the ocean
        # OPTIONAL ENUM - choose ONE from:
             "Bi-harmonic"
              "Harmonic"
              "Other: [Please specify]"
In []: DOC['lateral physics.momentum.operator.discretisation'] = ""
        # Discretisation of lateral physics momentum scheme in the ocean
        # OPTIONAL ENUM - choose ONE from:
             "Flux limiter"
             "Higher order"
             "Second order"
             "Other: [Please specify]"
In []: DOC['lateral physics.momentum.eddy viscosity coeff.type'] = ""
        # Lateral physics momemtum eddy viscosity coeff type in the ocean
        # OPTIONAL ENUM - choose ONE from:
              "Space varying'
              "Time + space varying (Smagorinsky)"
             "Other: [Please specify]"
In [ ]: DOC['lateral physics.momentum.eddy viscosity coeff.constant coefficient'] = ""
        # If constant, value of eddy viscosity coeff in lateral physics momentum scheme (in m2/s)
In [ ]: DOC['lateral physics.momentum.eddy viscosity coeff.variable coefficient'] = ""
        # If space-varying, describe variations of eddy viscosity coeff in lateral physics momentum scheme
        # MANDATORY STRING
In [ ]: DOC['lateral_physics.momentum.eddy_viscosity_coeff.coeff_background'] = ""
        # Background value of eddy viscosity coeff in lateral physics momemtum scheme (in m2/s)
        # OPTIONAL INTEGER
In []: DOC['lateral physics.momentum.eddy viscosity coeff.coeff backscatter'] = ""
        # Is there backscatter in eddy viscosity coeff in lateral physics momentum scheme ?
        # OPTIONAL BOOLEAN - choose ONE from:
             "True"
             "False"
```

The notebooks can be iteratively completed over time.

The notebooks will be hosted by ES-DOC.

Light-weight but effective solution to gathering a lot of complex information.

CMIP6 Specializations – Comparator

Model comparison
@ compare.es-doc.org

CMIP6 Specializations – CMIP5 Mappings

Seeding CMIP6 model documentation from CMIP5

Realm expert define mapping in a spreadsheet

A pyesdoc python script generates the initial CMIP6 documents

Prologue

Forcing specializations — see table 12.1

Ensemble variance with cdf2cim

Questionnaire

Further Info URL service

