

Lecture 5. Higher-order functions

Functional Programming

Utrecht University

1

- data-flow only through function arguments and return values
 - no hidden data-flow through mutable variables/state

- data-flow only through function arguments and return values
 - no hidden data-flow through mutable variables/state
- (almost) unique types
 - no inheritance hell

- · data-flow only through function arguments and return values
 - no hidden data-flow through mutable variables/state
- (almost) unique types
 - no inheritance hell
- high-level declarative data-structures
 - no explicit reference-based data structures

- · data-flow only through function arguments and return values
 - no hidden data-flow through mutable variables/state
- (almost) unique types
 - no inheritance hell
- high-level declarative data-structures
 - no explicit reference-based data structures
- · function call and return as only control-flow primitive
 - no loops, break, continue, goto

- · function call and return as only control-flow primitive
 - no loops, break, continue, goto
 - instead: higher-order functions (functions which use other functions)
 - extra pay-off: huge abstraction power -> more code reuse!

Goals of today

- · Define and use higher-order functions
 - Functions which use other functions
 - In particular, map, filter, foldr and foldl
 - vs general recursion
- Use anonymous functions
- Understand function composition
- Understand partial application

Chapter 7 and 4.5-4.6 from Hutton's book

Higher-order functions vs curried functions

• Curried functions (of multiple arguments):

```
f :: a -> b -> c
read
f :: a -> (b -> c)
```

• Higher-order functions:

• Exercise: come up with some examples from high school mathematics

What can higher-order functions do?

- How can we use argument-functions?
- Can we pattern match on them?
- Can we inspect their source code from a higher-order function?

What can higher-order functions do?

- How can we use argument-functions?
 - By applying them! That's it!
- Can we pattern match on them?
 - No! But we can feed them inputs and pattern match on the results!
- Can we inspect their source code from a higher-order function?
 - No! Only their input-output behaviour!

Usage of map

From the previous lectures...

- map applies a function uniformly over a list
 - The function to apply is an *argument* to map

```
map :: (a -> b) -> [a] -> [b]
> map length ["a", "abc", "ab"]
[1,3,2]
```

• It is very similar to a list comprehension

```
> [length s | s <- ["a", "abc", "ab"]]
[1,3,2]</pre>
```

Cooking map

1. Define the type

```
map :: _
```

- 2. Enumerate the cases
 - We **cannot** pattern match on functions

map f
$$[]$$
 = $_$ map f $(x:xs)$ = $_$

Try it yourself!

Cooking map

1. Define the type

```
map :: (a -> b) -> [a] -> [b]
```

- 2. Enumerate the cases
 - We **cannot** pattern match on functions

map f [] =
$$_$$

map f (x:xs) = $_$

3. Define the simple (base) cases

$$\mathsf{map} \ \mathsf{f} \ [] \qquad = \ []$$

Cooking map

- 4. Define the other (recursive) cases
 - · The current element needs to be transformed by f
 - The rest are transformed uniformly by map

$$map f (x:xs) = f x : map f xs$$

It makes **no difference** whether the function we use is global or is an argument

Usage of filter

filter p xs leaves only the elements in xs which satisfy the predicate p

- A predicate is a function which returns True or False
- In other words, p must return Bool

```
> even x = x `mod` 2 == 0
> filter even [1 .. 4]
[2,4]
> largerThan10 x = x > 10
> filter largerThan10 [1 .. 4]
[]
```

Cooking filter

1. Define the type

```
filter :: _
```

2. Enumerate the cases

```
filter p [] = _
filter p (x:xs) = _
```

Try it yourself!

Cooking filter

1. Define the type

```
filter :: (a -> Bool) -> [a] -> [a]
```

2. Enumerate the cases

```
filter p [] = _ filter p (x:xs) = _
```

3. Define the simple (base) cases

```
filter p [] = []
```

Cooking filter

- 4. Define the other (recursive) cases
 - We have to distinguish whether the predicate holds
 - Version 1, using conditionals

Version 2, using guards

Alternative definitions using comprehensions

map and filter can be easily defined using comprehensions

$$map \qquad f xs = [f x | x <- xs]$$

filter
$$p xs = [x | x < -xs, p x]$$

The recursive definitions are better to reason about code

(Ab)use of local definitions

Suppose we want to double the numbers in a list

 We can define a double function and apply it to the list double n = 2 * n doubleList xs = map double xs

(Ab)use of local definitions

Suppose we want to double the numbers in a list

 We can define a double function and apply it to the list double n = 2 * n doubleList xs = map double xs

 This pollutes the code, so we can put it in a where doubleList xs = map double xs
 where double n = 2 * n

(Ab)use of local definitions

Suppose we want to double the numbers in a list

We can define a double function and apply it to the list

```
double n = 2 * n
doubleList xs = map double xs
```

This pollutes the code, so we can put it in a where

```
doubleList xs = map double xs
  where double n = 2 * n
```

- But we are still using too much code for such a simple and small function!
 - Each call to map or filter may require one of those

Anonymous functions

\ arguments -> code

Haskell allows you to define functions without a name

doubleList
$$xs = map (\x -> 2 * x) xs$$

- They are called anonymous functions or (lambda) abstractions
- The \ symbol resembles a Greek λ

Anonymous functions

\ arguments -> code

Haskell allows you to define functions without a name

doubleList
$$xs = map (\x -> 2 * x) xs$$

- They are called anonymous functions or (lambda) abstractions
- The \ symbol resembles a Greek λ

Historical note: the theoretical basis for functional programming is called λ -calculus and was introduced in the 1930s by the American mathematician Alonzo Church

Anonymous functions are just functions

• They have a type, which is always a function type

Anonymous functions are just functions

• They have a type, which is always a function type

```
> :t \x -> 2 * x
\x -> 2 * x :: Num a => a -> a
```

• You can use it everywhere you need a function

```
> (\x -> 2 * x) 3
6
> filter (\x -> x > 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]
```

Anonymous functions are just functions

• They have a type, which is always a function type

```
> :t \x -> 2 * x
\x -> 2 * x :: Num a => a -> a
```

• You can use it everywhere you need a function

```
> (\x -> 2 * x) 3
6
> filter (\x -> x > 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]
```

• Even when you define a function

double =
$$\x -> 2 * x$$

Functions which return functions

```
flip :: (a -> b -> c) -> (b -> a -> c)
flip f = _
```

Functions which return functions

```
flip :: (a -> b -> c) -> (b -> a -> c)
flip f = y \times -> f \times y
```

- This function is called a combinator
 - It creates a function from another function
- The resulting function may get more arguments
 - They appear in reverse order from the original

```
> flip map [1,2,3] (\x -> 2 * x)
[2,4,6]
```

Functions are curried

- In Haskell, functions take one argument at a time
 - The result might be another function

```
map :: (a -> b) -> [a] -> [b]
map :: (a -> b) -> ([a] -> [b])
```

- We say functions in Haskell are curried
- A two-argument function is actually a one-argument function which returns yet another function which takes the next argument and produces a result

Different ways to write

Take a function with three arguments

```
addThree :: Int -> Int -> Int -> Int addThree x y z = x + y + z
```

Parentheses in functions associate to the right

```
addThree :: Int -> (Int -> (Int -> Int))
```

Different ways to write

Take a function with three arguments

```
addThree :: Int -> Int -> Int -> Int
addThree x y z = x + y + z
```

Parentheses in functions associate to the right

```
addThree :: Int -> (Int -> (Int -> Int))
```

We can define the function in these other ways

Partial application

- Since Haskell functions take one argument at a time, we can provide less than the ones stated in the signature
 - The result is yet another function
 - We say the function has been **partially appplied**

```
> :t map (\x -> 2 * x)
map (\x -> 2 * x) :: ???
```

Partial application

- Since Haskell functions take one argument at a time, we can provide less than the ones stated in the signature
 - The result is yet another function
 - We say the function has been partially appplied

```
> :t map (\x -> 2 * x)
map (\x -> 2 * x) :: Num b => [b] -> [b]
> :{
    let doubleList = map (\x -> 2 * x)
    in doubleList [1,2,3]
| :}
[2,4,6]
```

Definition by partial application

Instead of writing out all the arguments

doubleList xs = map (
$$x -> 2 * x$$
) xs

Haskells make use of partial application if possible

doubleList = map
$$(\x -> 2 * x)$$

Note that xs has been dropped from **both** sides

Definition by partial application

Instead of writing out all the arguments

doubleList xs = map (
$$x -> 2 * x$$
) xs

Haskells make use of partial application if possible

doubleList = map
$$(\x -> 2 * x)$$

Note that xs has been dropped from **both** sides

Technical note: this is called η (eta) reduction

Sections

Sections are shorthand for partial application of operators

```
(x \#) = \y -> x \# y -- Application of 1st arg.

(\# y) = \x -> x \# y -- Application of 2nd arg.
```

They help us remove even more clutter

```
doubleList = map (2 *)
largerThan10 = filter (> 10)
```

Sections

Sections are shorthand for partial application of operators

```
(x \#) = \y -> x \# y -- Application of 1st arg.
(\# y) = \x -> x \# y -- Application of 2nd arg.
```

They help us remove even more clutter

```
doubleList = map (2 *)
largerThan10 = filter (> 10)
```

Warning! Order matters in sections

```
> filter (> 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]
> filter (10 >) [1 .. 20]
[1,2,3,4,5,6,7,8,9]
```

Apply a list of functions in order to a starting argument

```
> applyAll [(+ 1), (* 2), (\x -> x - 3)] 3
5 -- ((3 + 1) * 2) - 3
```

- · Define the function
- What is the type of applyAll?

Try it yourself!

```
applyAll [f] x = f x
applyAll (f : fs) x = applyAll fs (f x)
```

Let's think harder about the base case!

```
applyAll [f] x = f x

applyAll (f : fs) x = applyAll fs (f x)

Let's think harder about the base case!

applyAll [] x = x

applyAll (f : fs) x = applyAll fs (f x)
```

```
applyAll [f] x = f x
applyAll (f : fs) x = applyAll fs (f x)
Let's think harder about the base case!
applyAll [] x = x
applvAll (f : fs) x = applvAll fs (f x)
> :t applyAll
applyAll :: [a -> a] -> a -> a
```

Function composition

Another example of function combinator

• g composed with f, or g after f

Function composition

Another example of function combinator

• g composed with f, or g after f

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$$

q. f = $x \rightarrow q$ (f x)

Examples of function composition

```
not :: Bool -> Bool
even :: Int -> Bool
odd x = not (even x)
odd = not . even -- Better
-- Remove all elements which satisfy the predicate
filterNot :: (a -> Bool) -> [a] -> [a]
Try it yourself!
```

Examples of function composition

```
not · · · Bool -> Bool
even :: Int -> Bool
odd x = not (even x)
odd = not . even -- Better
-- Remove all elements which satisfy the predicate
filterNot :: (a -> Bool) -> [a] -> [a]
filterNot p xs = filter (x \rightarrow not (p x)) xs
filterNot p xs = filter (not . p) xs -- Better
filterNot p = filter (not . p) -- Even better
```

Function pipelines

You can define many functions as a **pipeline**

- · Sequence of functions composed one after the other
- This style of coding is called *point-free*
 - Even though it actually has more point symbols!

Point-free craziness

You can go even further in this point-free style by using more combinators

Warning! Don't overdo it!

This definition of average is less readable

Question

```
Write applyAll in point-free style
```

```
applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)
```

Hint: for the first case remember that id x = x

Question

Folds

Similar functions

```
sum [] = \emptyset
sum (x:xs) = x + sum xs

product [] = 1
product (x:xs) = x * product xs

and [] = True
and (x:xs) = x && and xs
```

Similar functions

```
sum [] = 0
sum (x:xs) = x + sum xs

product [] = 1
product (x:xs) = x * product xs

and [] = True
and (x:xs) = x && and xs
```

- The three return a value in the [] case
- For the x:xs case, they *combine* the head with the result for the rest of the list
 - (+) for sum, (*) for product, (&&) for and

Avoid duplication, abstract!

```
sum [] = \emptyset
sum (x:xs) = x + sum xs
```

Let's replace the moving parts with arguments f and v

• First-class functions are key for abstraction

Avoid duplication, abstract!

- · The previous definitions become much shorter
- The use of foldr conveys an intention
 - They all compute a result by iteratively applying a function over all the elements in the list

```
sum = foldr (+) 0

product = foldr (*) 1

and = foldr (&&) True
```

foldr is for "fold right"

```
foldr (+) 0 (x : y : z : [])
=
x + foldr (+) 0 (y : z : [])
x + (y + foldr (+) 0 (z : []))
x + (v + (z + foldr 0 [1))
=
x + (y + (z + 0))
```

- foldr introduces parentheses "to the right"
- Initial value is in innermost parentheses

Another view of foldr

- (:) is replaced by the combination function
- [] is replaced by the initial value

```
length [] = 0
length (_:xs) = 1 + length xs

foldr _ v [] = v
foldr f v (x:xs) = f x (foldr f v xs)
```

length = foldr f v

Try it yourself!

```
Case of empty list, []length [] = 0= v = foldr f v []
```

```
    Case of empty list, []

 length [] = 0
              = v = foldr f v []

    Case of cons, x:xs

  length (x:xs) = 1 + length xs
                   = f x (foldr f v xs)
                   = -- Assuming we know it for xs
                      f x (length xs)
     · We need to have a function such that
       f \times (length \times s) = 1 + length \times s
       ===> f \times v = 1 + v
       ==> f = \x \x \x \x -> 1 + \x \x
```

```
In conclusion,
length = foldr (\ \vee -> 1 + \vee) 0
length [1,2,3]
= -- definition of length
foldr (\ \ y \rightarrow 1 + y) [1,2,3]
= -- application of foldr
1 + (1 + (1 + 0))
= -- perform addition
```

Left folds

```
foldr (+) \emptyset [x,y,z]
= (x + (y + (z + \emptyset)))
```

Is it possible to have a "mirror" function foldl?

foldl
$$(+)$$
 0 $[x,y,z]$
= $(((0 + x) + y) + z)$

- · Parenthesis associate to the left
- Initial value still in the innermost position

Calculating fold1

• The case for empty lists is the same as foldr

```
foldl f v [] = v
```

Calculating fold1

• The case for empty lists is the same as foldr

foldl f
$$v [] = v$$

• For the general case, notice this fact:

• The second argument works as an accumulator

foldl f v
$$(x:xs) = foldl f (f v x) xs$$

foldr versus foldl

```
foldr (+) 0 [1, 2, ..., n]
= 1 + foldr (+) 0 [2, ..., n]
= \dots = 1 + (2 + (\dots + (n + 0)))
      = 1 + (2 + (... + n)) = ...
  foldl (+) 0 [1, 2, ..., n]
= foldl (+) (0 + 1) [2, ..., n]
= \dots = foldl (+) (((0 + 1) + \dots) + n) []
= (((0 + 1) + ...) + n)
= ((1 + ...) + n) = ...
```

With foldr and foldl you wait until the end to start combining

foldr versus foldl

```
foldl' (+) 0 [1, 2, ..., n]

= foldl' (+) (0 + 1) [2, ..., n]

= foldl' (+) 1 [2, ..., n] -- (!)

= foldl' (+) (1 + 2) [..., n]

= foldl' (+) 3 [..., n] -- (!)
```

- With foldr and foldl you wait until the end to start combining
- With fold1' you compute the value "on the go"
 - foldl' is usually more efficient

foldr versus foldl

```
In the case of (+), the result is the same
> foldr (+) 0 [1,2,3]
> foldl (+) 0 [1,2,3]
6
This is not the case for every function
> foldr (-) 0 [1,2,3]
> foldl (-) 0 [1,2,3]
-6
```

Monoids

One possible set of properties which ensure that the direction of folding does not matter

Monoids

One possible set of properties which ensure that the direction of folding does not matter

1. The initial value does not affect the outcome

$$f \lor x = x = f \lor x$$
 0 + x = x = x + 0

• We say that v is an *identity* for f

51

Monoids

One possible set of properties which ensure that the direction of folding does not matter

1. The initial value does not affect the outcome

$$f v x = x = f v x$$
 0 + x = x = x + 0

- We say that v is an identity for f
- 2. The way we parenthesize does not affect the outcome

$$f (f x y) z = f x (f y z)$$

(x + y) + z = x + (y + z)

• We say that the operation f is associative

A data type with such an operation is called a **monoid**

Avoid explicit recursion

- map, filter, foldr and foldl abstract common recursion patterns over lists
 - Most functions can be written as a combination of those
- *Good style*: prefer using those functions over recursion

Why?

Avoid explicit recursion

- map, filter, foldr and foldl abstract common recursion patterns over lists
 - Most functions can be written as a combination of those
- *Good style*: prefer using those functions over recursion
 - · The intention of the code is clearer
 - · Less code written means less code to debug
 - Complex recursion suggest that you might be doing too much in one function
 - Primitive rather than general recursion: always terminates!

Avoid explicit recursion, example

```
count \,\, p \, xs counts how many elements in xs satisfy p
```

Try it yourself!

Avoid explicit recursion, example

```
count p xs counts how many elements in xs satisfy p
count :: (a -> Bool) -> [a] -> Int
count [] = 0
count p (x:xs) \mid p x = 1 + count p xs
               | otherwise = count p xs
count p xs = length (filter p xs)
count p = length . filter p
```

```
applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)
Is applyAll as a right or a left fold?
```

```
applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)
Is applyAll as a right or a left fold?
> applyAll [f1,f2,f3] \times
f3 (f2 (f1 x)) -- start from the left value
-- Solution 1
applyAll fs x = foldl (\y f -> f y) x fs
```

```
applyAll [] = id
applyAll (f : fs) = applyAll fs . f
We can also see it as a series of compositions
> applyAll [f1,f2,f3]
id . (f3 . (f2 . f1))
```

```
applyAll [] = id
applyAll (f : fs) = applyAll fs . f
We can also see it as a series of compositions
> applyAll [f1,f2,f3]
id . (f3 . (f2 . f1))
-- Solution 2
applyAll fs = foldr (\r f -> f . r) id fs
Can we make it look better?
```

```
applyAll fs = foldr (\r f -> f . r) id fs
-- Drop the argument in both sides
applyAll = foldr (\r f -> f . r) id
-- Use "normal" application order for (.)
applyAll = foldr (\r f -> (.) f r) id
-- Use the flip combinator
applyAll = foldr (flip (.))
                                  id
-- "flip (.)" has a name for itself
applyAll = foldr (>>>)
                                    id
```

Important concepts

- Higher-order functions *use* functions
- Curried functions return functions

Important concepts

- Higher-order functions *use* functions
- Curried functions return functions
- Anonymous functions are introduced by \x -> ...
- · All multi-argument functions in Haskell are curried
 - They take one parameter at a time

• Functions can be partially applied

Important concepts

- Higher-order functions use functions
- Curried functions return functions
- Anonymous functions are introduced by \x -> ...
- · All multi-argument functions in Haskell are curried
 - They take one parameter at a time

- Functions can be partially applied
- map, filter, foldr and foldl describe common recursion patterns over lists

Acknowledgements

Function composition image taken from adit.io/posts/2013-07-22-lenses-in-pictures.html

A type inference question

Given a list of numbers, let's create a list of "adders", each of them adding this number to another given one

A type inference question

Let us look at the types of the functions involved

```
(+) :: Int -> (Int -> Int)
-- Generalized type
map :: (a -> b) -> [a] -> [b]
-- In our case a = Int
               a \rightarrow b = Int \rightarrow (Int \rightarrow Int)
         Thus, b = Int -> Int
map :: (Int -> Int -> Int)
    -> [Int] -> [Int -> Int]
```