Numerieke Modellering en Benadering: Practicum 1

Ellen Anthonissen Marte Biesmans

vrijdag 21 april 2016

Opgave 1

De Householder transformatiematrix

$$F = I - 2\frac{vv^*}{v^*v}$$

heeft als eigenwaarden -1 en 1 en als eigenvectoren respectievelijk v en w met $w\perp v$. Deze resultaten zijn als volgt bekomen: De Householder transformatiematrix F is symmetrisch

$$F^* = (I - 2\frac{vv^*}{v^*v})^* = I - 2\frac{vv^*}{v^*v} = F$$

en unitair

$$F^*F = FF^* = (I - 2\frac{vv^*}{v^*v})(I - 2\frac{vv^*}{v^*v}) = I - 4\frac{vv^*}{v^*v} + 4\frac{v(v^*v)v^*}{(v^*v)^2} = I.$$

Omdat F unitair is, moeten de eigenwaarden van F op de complexe eenheidscirkel gelegen zijn. Omdat F reëel en symmetrisch is, zijn de eigenwaarden reële getallen. Hieruit volgt dat de eigenwaarden enkel ± 1 kunnen zijn.

Als we nu Fv uitrekenen, bekomen we

$$Fv = v - 2\frac{vv^*}{v^*v}v = -v.$$

Hieruit volgt dat v en eigenvector is bijhorende bij de eigenwaarde -1. Neem nu w met $w \perp v$ en we rekenen Fw uit, dan bekomen we

$$Fw = w - 2\frac{vv^*}{v^*v}w = w,$$

want $v^*w=0$. Hieruit volgt das w een eigenvector is bijhorende bij de eigenwaarde 1.

Geometrisch gezien komt dit overeen met een spiegeling over de w-as. Neem een vector a en ontbind die in een compontent volgens de v-as en een component volgens de w-as. De component volgens de v-as zal vermenigvuldigt worden met -1 en die volgens de w-as met 1. Zo bekomen we een spiegeling rond de w-as.

$\mathbf{n} \setminus \kappa$	1	10^{4}	10^{8}
10	0,0044	0,0022	0,0025
100	0,1883	0,1403	$0,\!1306$
1000	28,2691	27,725	27,9583

Tabel 1: De snelheid van de expliciete methode

$n \setminus \kappa$		10^{4}	10^{8}
10	0,0050	0,0015	0,0013
100	0,0115	0,0131	0,0163
1000	0,0050 $0,0115$ $7,9605$	7,7967	$7,\!8586$

Tabel 2: De snelheid van de impliciete methode

Tabel 3: De ordegrootte van de relatieve fout van de expliciete methode

Tabel 4: De ordegrootte van de relatieve fout van de impliciete methode

Tabel 5: De ordegrootte van de verhouding van de norm van het residu op de b-vector van de expliciete methode

$\mathbf{n} \setminus \kappa$	1	10^{4}	10^{8}
10	10^{-16}	10^{-13}	10^{-9}
$ \begin{array}{r} $	10^{-15}	10^{-13}	10^{-10}
1000	10^{-15}	10^{-13}	10^{-10}

Tabel 6: De ordegrootte van de verhouding van de norm van het residu op de b-vector van de impliciete methode

Opgave 2

EVENTUEEL MATLAB CODE

Opgave 3

Opgave 4

Neem een vector $x \in \mathbb{R}^n$. Schrijf x als lineaire combinatie van de eigenvectoren van A $q_1, q_2 \dots q_n$ met bijhorende eigenwaarden $\lambda_1, \lambda_2 \dots \lambda_n$:

$$x = \sum_{j=1}^{n} a_j q_j,$$

dan is het Rayleigh quotiënt van x:

$$r(x) = \frac{\sum_{j=1}^{n} a_j^2 q_j \lambda_j}{\sum_{j=1}^{n} a_j^2}.$$

Het Rayleigh quotiënt is onafhankelijk van de schaal van x, dus stel $||a||=||[a_1\ a_2\ ...\ a_n]^T||=1$, dan is $\sum_{j=1}^n a_j^2=1$. Dan wordt

$$r(x) = \sum_{j=1}^{n} a_j^2 q_j \lambda_j.$$

Stel nu dat $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, dan is het Rayleigh quotiënt maxiaal voor $a = e_1$ met de waarde λ_{max} en minimaal voor $a = e_n$ met de waarde λ_{min} . Dus het Rayleigh quotiënt bevint zich in het interval $[\lambda_{min}, \lambda_{max}]$.

Ook is het Rayleigh quetiënt een continu voor $a \neq 0$, dus elke waarde tussen λ_{min} en λ_{max} wordt bereikt voor een x.

Opgave 5

Opgave 6

We maken gebruik van de ongelijkheid

$$\frac{\|e_n\|_A}{\|e_0\|_A} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^n.$$

Voor n=10 wordt dit

$$\frac{\|e_{10}\|_A}{\|e_0\|_A} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{10}.$$

Gebruik makende van de gegevens $||e_0||_A = 1$ en $||e_{10}||_A = 2 \times 2^{-10}$, bekomen we

$$9 \le \kappa$$
.

We vinden dus een ondergrens voor κ . Voor n = 20 wordt de ongelijkheid

$$\frac{\|e_{20}\|_A}{\|e_0\|_A} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{20}.$$

Gebruik makende van het gegeven $||e_0||_A=1$ en het berekende $9\leq \kappa$, bekomen we

$$||e_{20}||_A \le 2 \times 2^{-20}$$
.

We vinden dus een bovengrens voor $||e_{20}||_A$.

Opgave 7

Opgave 8

Opgave 9

De interlace eigenschap van een tridiagonale, symmetrische en reële matrix A luidt als volgt. Voor $A \in \mathbb{R}^{n \times n}$, en $A^{(1)}, A^{(2)} \dots A^{(n)}$ de principale vierkante submatrices van dimensie $1, 2 \dots n$, geldt dat de eigenwaarden van deze submatrices interlacen. Dit wil zeggen dat $\lambda_j^{(k+1)} \leq \lambda_j^{(k)} \leq \lambda_{j+1}^{(k+1)}$. Als A irreduceerbaar is (en dus geen nul heeft op een nevendiagonaal), dan worden de ongelijkheden stricte ongelijkheden.

Als voorbeeld nemen we de tridiagonale, symmetrische en reële matrix

$$A = \begin{bmatrix} 1 & 5 & 0 & 0 \\ 5 & 2 & 6 & 0 \\ 0 & 6 & 3 & 7 \\ 0 & 0 & 7 & 4 \end{bmatrix}.$$

We zien duidelijk op figuur 1 dat de eigenwaarden van een principale submatrix tussen de eigenwaarden van de principale submatrix van een dimensie groter liggen.

Figuur 1: De eigenwaarden van de opeenvolgende principale submatrices van A

Opgave 10