Assignment 2

Control Theory, Professor Wang

Su Kezheng | 2012604 | 748527866@qq.com

Question 1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Question 2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
2A • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
2B • • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
2C • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
Question 3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
Question 4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
Question 5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
Question 6	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
6A • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
6B • •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
Question 7	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
Question 8	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8

Question 1

将系统的微分方程表示

$$\ddot{y} + 4\ddot{y} + 2\dot{y} + y = \ddot{u} + \dot{u} + 3u$$

化为系统的状态空间表达式,并求系统的状态转移矩阵

Answer: 由微分方程可知各项系数为:

$$a_3=1, a_2=4, a_1=2, a_0=1, b_3=0, b_2=1, b_1=1, b_0=3$$

则可以确定:

$$\begin{cases} h_0 = b_3 = 0 \\ h_1 = b_2 - a_2 h_0 = 1 \\ h_2 = b_1 - a_2 h_1 - a_1 h_0 = -3 \\ h_3 = b_0 - a_2 h_2 - a_1 h_1 - a_0 h_0 = 13 \end{cases}$$

所以系统的状态空间表达式为:

$$\begin{cases} \begin{pmatrix} \dot{x_1}(t) \\ \dot{x_2}(t) \\ \dot{x_3}(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} + \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} u(t) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -4 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} + \begin{pmatrix} 1 \\ -3 \\ 13 \end{pmatrix} u(t) \\ y(t) = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} + h_0 u(t) = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}$$

对于线性定常系统, 其状态转移矩阵为 $\Phi(t,0) = \Phi(t) = e^{At}$

下面只需要求系统矩阵 $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -4 \end{pmatrix}$ 的矩阵指数函数

首先由矩阵的特征方程 $|\lambda I - A| = 0$ 求得系统的特征值为:

$$\lambda_1 \in \mathbb{R}, \lambda_2 \neq \lambda_3 \in \mathbb{C}$$

即一个实特征根以及两个互异的复特征根,又由矩阵 A 为友矩阵

Question 2

将下列线性定常系统

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

其中

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

2A

化为对角线标准形

Answer: 首先由矩阵 A 的特征方程 $|\lambda I - A| = 0$ 求得系统的特征值为:

$$\lambda_1=-1, \lambda_2=-2, \lambda_3=-3$$

则可求得与特征值 $\lambda_1, \lambda_2, \lambda_3$ 对应的特征向量分别为:

$$p_1 = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}^T, p_2 = \begin{pmatrix} 1 & -2 & 4 \end{pmatrix}^T, p_3 = \begin{pmatrix} 1 & -3 & 9 \end{pmatrix}^T$$

则将 A 对角化的变换矩阵 P 及其逆矩阵 P^{-1} 分别为:

$$P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -2 & -3 \\ 1 & 4 & 9 \end{pmatrix}, P^{-1} = \begin{pmatrix} 3 & 5/2 & 1/2 \\ -3 & -4 & -1 \\ 1 & 3/2 & 1/2 \end{pmatrix}$$

即

$$P^{-1}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

2B

求系统的状态转移矩阵

Answer: 由于对于线性定常系统其状态转移矩阵为: $\Phi(t) = e^{At}$, 则有:

$$\begin{split} e^{At} &= P \begin{pmatrix} e^{-t} & 0 & 0 \\ 0 & e^{-2t} & 0 \\ 0 & 0 & e^{-3t} \end{pmatrix} P^{-1} \\ &= \begin{pmatrix} 3e^{-t} - 3e^{-2t} + e^{-3t} & 5e^{-t}/2 - 4e^{-2t} + 3e^{-3t}/2 & e^{-t}/2 - e^{-2t} + e^{-3t}/2 \\ -3e^{-t} + 6e^{-2t} - 3e^{-3t} & -5e^{-t}/2 + 8e^{-2t} - 9e^{-3t}/2 & -e^{-t}/2 + 2e^{-2t} - 3e^{-3t}/2 \\ 3e^{-t} - 12e^{-2t} + 9e^{-3t} & 5e^{-t}/2 - 16e^{-2t} + 27e^{-3t}/2 & e^{-t}/2 - 4e^{-2t} + 9e^{-3t}/2 \end{pmatrix} \end{split}$$

2C

求系统的状态方程的输出方程的解 $(x(t_0) = x_0)$

Answer: 对于线性定常系统的输出为:

$$\begin{split} x(t) &= e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau = \Phi(t-t_0)x(t_0) + \int_{t_0}^t \Phi(t-\tau)Bu(\tau)d\tau \\ &= \Phi(t-t_0)x_0 + \int_{t_0}^t \begin{pmatrix} 3e^{-t} - 6e^{-2t} + 3e^{-3t} \\ -3e^{-t} + 12e^{-2t} - 9e^{-3t} \\ 3e^{-t} - 24e^{-2t} + 27e^{-3t} \end{pmatrix} u(\tau)d\tau \\ y(t) &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}x(t) \end{split}$$

Question 3

已知线性定常系统的系数矩阵为

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

试将 A 化为 Jordan 标准形

Answer: 首先由矩阵 A 的特征方程 $|\lambda I - A| = 0$ 求得系统的特征值为:

$$\lambda_1=2,\,\lambda_2=\lambda_3=1$$

即存在一个二重根 1, 当取 $\lambda = 1$, 由方程

$$(\lambda I - A)P_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} p_{11} \\ p_{21} \\ p_{31} \end{pmatrix} = 0$$

可得 $p_{31} = 0$, p_{11} 和 p_{21} 可取任意值

分别令 $p_{11}=1, p_{21}=0$ 以及 $p_{11}=0, p_{21}=1$ 可得两个独立特征向量

$$P_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, P_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

同理由 $\lambda = 2$, 可得特征向量

$$P_3 = \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

则可得非奇异变换矩阵为:

$$P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

则 A 在上述矩阵作用下化为 Jordan 标准形为

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

4

Question 4

已知线性定常系统的系数矩阵为

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -4 & -3 \end{pmatrix}$$

试将A化为模态规范形

Answer: 首先由矩阵 A 的特征方程 $|\lambda I - A| = 0$ 求得系统的特征值为:

$$\lambda_1=-1,\,\lambda_2=-1+j,\,\lambda_3=-1-j$$

当取 $\lambda_1 = -1$,由方程

$$(\lambda I - A)Q_1 = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ 2 & 4 & 2 \end{pmatrix} \begin{pmatrix} q_{11} \\ q_{21} \\ q_{31} \end{pmatrix} = 0$$

任取 $q_{11}=1$,可得 $q_{31}=q$,和 $q_{21}=-1$,即:

$$Q_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

当取 $\lambda_2 = -1 + j$, 由方程

$$(\lambda I - A)Q_2 = \begin{pmatrix} -1 + j & -1 & 0 \\ 0 & -1 + j & -1 \\ 2 & 4 & 2 + j \end{pmatrix} \begin{pmatrix} q_{12} \\ q_{22} \\ q_{32} \end{pmatrix} = 0$$

任取 $q_{12}=1$, 可得 $q_{22}=-1+j$, 和 $q_{32}=-2j$, 即:

$$Q_2 = \begin{pmatrix} 1 \\ -1+j \\ -2j \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + j \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$

则可得变换矩阵为

$$Q = \begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix}, Q^{-1} = \begin{pmatrix} 2 & 2 & 1 \\ -1 & -2 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$

5

所以 A 的模态规范形为:

$$Q^{-1}AQ = \begin{pmatrix} 2 & 2 & 1 \\ -1 & -2 & -1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -4 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & -1 \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \sigma & \omega \\ 0 & -\omega & \sigma \end{pmatrix}$$

Question 5

已知矩阵

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$

分别计算矩阵指数函数 $e^{At}, e^{Bt}, e^{(A+B)t}$,并说明为什么 $e^{At}e^{Bt} \neq e^{(A+B)t}$

Answer: 首先由矩阵 A 的特征方程 $|\lambda I - A| = 0$ 求得系统的特征值为:

$$\lambda_1 = \lambda_2 = 0$$

此时方程已化为 Jordan 标准形,即:

$$I^{-1}AI = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

于是矩阵 A 的状态转移矩阵为:

$$e^{At} = I \begin{pmatrix} e^{0t} & te^{0t} \\ 0 & e^{0t} \end{pmatrix} I^{-1} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

下求矩阵 B 的状态转移矩阵, 先求出矩阵 B 的预解矩阵:

$$(sI - B)^{-1} = \begin{pmatrix} s & 0 \\ 1 & s \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{s} & 0 \\ -\frac{1}{s^2} & \frac{1}{s} \end{pmatrix}$$

则对上式两边做 Laplace 逆变换可得:

$$e^{Bt} = \begin{pmatrix} 1 & 0 \\ -t & 1 \end{pmatrix}$$

对于矩阵 $A + B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,同理由 Laplace 变换法可得:

$$e^{(A+B)t} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$$

解释为什么 $e^{At}e^{Bt} \neq e^{(A+B)t}$:

对于 Laplace 变换法求矩阵函数,由于对于矩阵运算 $A^{-1}B^{-1} \neq (A+B)^{-1}$,故

$$e^{At}e^{Bt} \neq e^{(A+B)t}$$

Question 6

证明以下结论:

6A

已知矩阵

$$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

证明:

$$e^{At} = e^{\lambda t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

Answer: 由于此时方程已化为 Jordan 标准形,即:

$$I^{-1}AI = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

则矩阵 A 的矩阵指数函数为:

$$e^{At} = I \begin{pmatrix} e^{\lambda t} & te^t \\ 0 & e^{\lambda t} \end{pmatrix} I^{-1} = e^{\lambda t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

6B

已知矩阵

$$A = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$

证明:

$$e^{At} = e^{\alpha t} \begin{pmatrix} \cos \beta t & \sin \beta t \\ -\sin \beta t & \cos \beta t \end{pmatrix}$$

Answer: 先求出矩阵 A 的预解矩阵:

$$(sI-A)^{-1} = \begin{pmatrix} s-\alpha & -\beta \\ \beta & s-\alpha \end{pmatrix}^{-1} = \begin{pmatrix} \frac{s-\alpha}{(s-\alpha)^2+\beta^2} & \frac{\beta}{(s-\alpha)^2+\beta^2} \\ -\frac{\beta}{(s-\alpha)^2+\beta^2} & \frac{s-\alpha}{(s-\alpha)^2+\beta^2} \end{pmatrix}$$

则对上式两边做 Laplace 逆变换可得:

$$e^{At} = e^{\alpha t} \begin{pmatrix} \cos \beta t & \sin \beta t \\ -\sin \beta t & \cos \beta t \end{pmatrix}$$

Question 7

证明二阶矩阵
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 的特征多项式可以写为:

$$det(\lambda I-A)=\lambda^2-(trA)\lambda+detA$$

其中

$$trA = a_{11} + a_{22} = \lambda_1 + \lambda_2, \; detA = a_{11}a_{22} - a_{21}a_{12} = \lambda_1\lambda_2$$

Answer: 由矩阵 A 的特征方程 $|\lambda I - A| = 0$ 可得:

$$\begin{split} \det(\lambda I - A) &= \mid \lambda I - A \mid = (\lambda - a_{11})(\lambda - a_{22}) - a_{21}a_{12} \\ &= \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{21}a_{12} \\ &= \lambda^2 - (trA)\lambda + \det A \end{split}$$

Question 8

已知线性定常连续系统的状态空间表达式为

$$\begin{cases} \dot{x}(t) = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t) \\ y(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} x(t) \end{cases}$$

采取采样周期为T=1,求离散化后系统的离散状态空间表达式

Answer: 记 $A = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 \end{pmatrix}$, $D = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 则上述线性定常系统的状态空间表达式为:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \ x(0) = x_0 \\ y(t) = Cx(t) + Du(t), \ t \geqslant 0 \end{cases}$$

此时 $G(k) = e^{AT} = G$, H(k) = B, 由采样周期为 T = 1 先求出矩阵 A 的预解矩阵:

$$(sI - A)^{-1} = \begin{pmatrix} s & -1 \\ 0 & s - 2 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{s} & \frac{1}{s(s - 2)} \\ 0 & \frac{1}{s - 2} \end{pmatrix}$$

则对上式两边做 Laplace 逆变换可得:

$$e^{At} = \begin{pmatrix} 1 & -\frac{1 - e^{2t}}{2} \\ 0 & e^{2t} \end{pmatrix}$$

即离散化后系统的离散状态空间表达式为:

$$\begin{cases} x(k+1) = \begin{pmatrix} 1 & -\frac{1-e^{2t}}{2} \\ 0 & e^{2t} \end{pmatrix} x(k) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(k) \\ y(k) = \begin{pmatrix} 1 & 0 \end{pmatrix} x(k) \end{cases}$$