Real Time Operating System

Applications

Real Time OS

Hardware

Types of RTOS

- 1. Hard Real Time OS
- 2. Soft Real Time OS
- 3. Firm Real Time OS

* result should be accurate

* result should be calculated

in minimal/deterministic

Functions of RTOS

- 1. Hardware Abstraction
- 2. Task Management
- 3. Memory Management
- 4. CPU Scheduling
- 5. Interrupt Handling

CPU Scheduling

05 dota structures

1) Job queue/process list

2) Ready queue

3) Waiting queues

Algorithm:

1) FCFS

2) SJF

3) Poiority

4) RR

5) Fair Share

interrupt_handler() {

1) Save execution content of current save into its PLB

2) find address of ISR from IVT

3) call ISR

4) pid = cpu-schedulos();

5) CPU_dispatcher(pid);

content of selected process

int cpv_scheduler() {

if (remain_ting > 0)

select some process

to be executed next

else

select new process

to be executed next

return pid;

CPU Simer

Process Life Cycle

Types of Scheduling

CPU Scheduling Criterias

- 1. CPU Utilization (Ideal : Max)
 - -desktop system 70°%
- server system 30 %.

 2. Throughput (Ideal: Max)
 - Amount of work done in unit time
- 3. Waiting Time (Ideal: Min)
 - working for CPV
 - total time spent by process into ready quill
- 4. Response Time (Idad: Min)
 - -time from arived of process into ready queue uppo first time getting scheduled
- 5. Turn Around Time (Ideal : Min)
 - total time of process spent into memory
 - time from creation to termination of process

FCFS (First Come First Serve) (Mon-preemptive)

	Process	Arrival	CPU Burst	WT	RT	TAT		Process	Arrival	CPU Burst	71	RT	TAT
)	P1	0	24	o '	\bigcirc	24	} [Р3	0	3	0	\bigcirc	3
(P2	0	3	1	24	,	- \[P2	0	3	3	3) G
	P3	0	3	24 27	27	-27 30		P1	0	24	6	3	3 60
	F	2)	Gantt	P2	P3			PS	P2		PI		
\bigcirc			24	2	7 3	\bigcirc) 3	3 ((0			30
PI							P	3					
P2							P	2					
PZ PS							F)					

Convoy Effect

- due to arrival of longer process early, all other processes has to wait for longer time to get CPU access
- we can not control the sequenece of process arival into ready queue

SJF (Shortest Tob First) (Preemptive)

(Mon-Preemptive)

			_		
Process	Arrival	CPU Burst	WT	RT	TAT
P1	0	7		\bigcirc	7
P2	2	4	6	6	(0
P3	4	1	3	2	4
P4	5	4		7	1 /
				/	• •

(Shi	rtest		aing T			st)
į	Process	Arrival	CPU Burst	Remain	WT	RT	TAT
į	P1	0	7	5	9	\bigcirc	16
	P2	2	4	2	<u>\</u>	$\overline{\bigcirc}$	5
į	Р3	4	1	0	0	0	1
į	P4	5	4	4	2	2	6

				-			
		PI	P3	PZ	2	P 29	
\bigcirc	2	45	7	8	12)	16
PI	P2	P3P4					
		\$7 93		- {			
		F 83	<u> </u>	P4		٩	

Priority

(Mon-Preemptive)

(Preemptive)		Preen	eb)	ĵ~e)
--------------	--	-------	-----	-----	---

Process	Arrival	CPU Burst	Priority	WT	RT	TAT
P1	0	10	3	6	\Diamond	16
P2	0	1	1 (H)			1
P3	0	2	4(4)	16	16	12
P4	0	5	2] [J	6

				_		
Process	Arrival	CPU Burst	Priority	NT	RT	TAT
P1	0	10	3	6	6	16
P2	1	1	1	Ď	\bigcirc	1
Р3	3	2	4	13	1-3	15
P4	0	5	2	4)	0	6

	.bs	P4	\mathbb{Q}		PS)
() P))		5	1	18
f) 2 3 14				
P	5				