Orbit-Stabilizer Theorem

Scribe: Fred Zhang

Date: Monday, May 6, 2019

1 Orbits and Stabilizer

Given $s \in S$ and G a permutation group acting on S.

Definition. $orbit(s) = \{\pi \ s \mid \pi \in G\}$

Definition. $stabilizer(s) = \{\pi \in G \mid \pi s = s\}$

Theorem 1.1. Orbit-Stabilizer Theorem: For all $s \in S$ and G acting on S $|orbit(s)| \cdot |stabilizer(s)| = |G|$

stabilizer(s) is a subgroup of G, so by Lagrange's theorem, $|stabilizer(s)| \mid |G|$

Lemma 1.1. If $\pi = s$ and $\pi \in \text{stabilizer}(s)$, then $\pi^{-1}s = s$.

Proof.

$$s = \pi s$$

$$\pi^{-1}s = \pi^{-1}\pi s$$

$$\pi^{-1}s = s$$

So now the orbit of S forms cosets of stabilizer(s) (there is a 1-1 corespondence). So $|\operatorname{orbit}(s)| = \#$ of cosets of stabilizer(s). Applying Lagrange's theorem gives the orbit-stabilizer theorem.