People + Al Research

XRAI: Better Attributions Through Regions

Andrei Kapishnikov*, Tolga Bolukbasi*, Fernanda Viegas, Michael Terry People + Al Research Initiative, Google Research

Motivation

Pixel-Based Attribution Methods

Saliency methods link a deep neural network's (DNN) prediction to the input features that most influence that prediction.

Pixel-based saliency methods provide fine-grained attributions for image models. By attributing individual pixels, these techniques provide fine-grained attributions.

However, pixel-based attributions can sometimes be challenging to read and interpret. Salient pixels may be scattered across the image, with positive and negative attributions intermixed.

The choice of baseline (e.g., a black baseline for Integrated Gradients) can also have a significant effect on the saliency method's results.

Left: Input image. **Right:** Salient pixels identified by Integrated Gradients for class "ground beetle," using a **black baseline**.

Left: Input image of a cat and dog. **Right:** Gradients for class "cat." Notice how there are both positive (green) and negative (red) attributions for both the cat and the dog.

Evaluating Attribution Methods is Challenging

Assessing the **quality** and **correctness** of attribution methods also remains a core challenge, making it difficult to understand how well one method performs compared to another.

Sanity Check: Perturbation-E

To aid assessment of saliency methods, we introduce an axiom, **Perturbation-ε**, that serves as a sanity check for saliency methods. In a nutshell, Perturbation-ε says that if you remove a feature and the output of the classifier is changed, then that feature should not have zero attribution. We found that Integrated Gradients doesn't always satisfy this axiom.

Axiom 1 Perturbation- ϵ : Given ϵ , for every feature x_i in an input $\mathbf{x} = [x_1, ..., x_N]$ where all features except for x_i are fixed, if the removal (setting $x_i = 0$) of feature x_i causes the output to change by Δy , then Perturbation- ϵ is satisfied if the inequality $attr(x_i) \geq \epsilon * \Delta y$ is satisfied.

XRAI Method

XRAI identifies salient regions as opposed to pixels.

Above: XRAI identifies the most salient regions leading for prediction of a given class.

The XRAI Algorithm

- 1. Pixel-level attribution: XRAI performs pixel-level attribution for the input image. In our current implementation, we use Integrated Gradients with two baselines, a black baseline and a white baseline.
- **2. Oversegmentation**: Separately from model attribution, XRAI oversegments the image to create a patchwork of small regions. XRAI currently uses Felzenswalb's graph-based method in the skimage package to create segments.
- **3. Region selection**: For each segment, XRAI sums the attributions within that segment. Segments are then rank-ordered from most to least positive, in terms of summed attributions.

Once segments are rank-ordered, it is possible to reveal the top n% of the image (by area) that contributes most to a given class prediction.

Performance Information Curves (PIC)

Performance Information Curve (PIC): A method for assessing image-based attributions

- 1. Identify salient regions in the image.
- 2. Remove irrelevant information by blurring.
- Determine amount of information in the image. We approximate information/entropy by the compressed image size using the webp format.
- 4. Calculate a performance metric at each information level. We use two performance metrics: Accuracy for **AIC** and the relative softmax for **SIC**.

Benefits of PICs: Blurring is a relatively natural alteration (e.g., bokeh images are real), and the techniques measure *information content*, rather than the revealed area (information content for a given area can vary within and between images).

Compressed size: 410KB

Salient pixels: 5%

Results

Compressed size: 1205KB

Salient pixels: 100%

Using the AIC and SIC methods described above, XRAI is consistently better for both AIC/SIC and for localization metrics. For the localization metrics, we used the ImageNet dataset, which provides object location ground truth in the form of bounding boxes. We calculated the F1-score, Mean Absolute Error (MAE), and Area Under the Receiver Operator Characteristic (ROC) curve (AUC).

AIC/SIC Results:

Method	Resnet50-V2		Inception	
	SIC	AIC	SIC	AIC
XRAI	0.749	0.728	0.720	0.727
GradCam	0.760	0.727	0.703	0.724
IG (B+W)	0.575	0.579	0.601	0.634
IG (4-Rand)	0.623	0.636	0.595	0.638
IG (Black)	0.515	0.527	0.530	0.576
Grad	0.521	0.532	0.480	0.543
Grad*Input	0.315	0.392	0.298	0.409
Edges	0.473	0.552	0.403	0.514
Random	0.445	0.473	0.278	0.401

Localization results

Method	AUC	F1	MAE
XRAI	0.836	0.786	0.149
IG (Black)	0.710	0.674	0.219
IG (4-Rand)	0.709	0.674	0.223
IG (B+W)	0.729	0.681	0.216
GradCAM	0.742	0.715	0.194

Above: ImageNet segmentation dataset localization metrics

Left: Area under the curve for SIC and AIC for all methods. **Right:** Visualized.