Homework 8

- 1. Use theorems on the Fourier transform from the textbook and the lectures to execute the following steps:
 - (a) For a Schwartz function $\phi \in \mathcal{S}(\mathbb{R}^n)$ with $n \geq 2$, define $\frac{\partial_1}{|\nabla|}\phi$ using the Fourier transform. Prove that the operator $\frac{\partial_1}{|\nabla|}: \mathcal{S} \to X$ for, say, $X = \bar{C}_0(\mathbb{R}^n)$ the space of continuous functions limiting to 0 at infinity, is defined.

Definition. Define $\frac{\partial_1}{|\nabla|}: \mathcal{S} \to \bar{C}_0(\mathbb{R}^n)$ by

$$\frac{\partial_1}{|\nabla|}(\phi) = \left(\frac{k_1}{|k|}\hat{\phi}(k)\right)^{\vee}.$$

Proof We know that S is closed under Fourier so $k_1\hat{\phi}(k) \in S$. So it suffices to show that we can take Fourier transforms of $\frac{1}{|k|}\phi$ for $\phi \in S$, since $\left(\frac{1}{|k|}\phi\right)^{\vee}$ is a particular one. We can simply integrate to compute Fourier for any L^1 function, so it suffices to show that $\frac{1}{|k|}\phi \in L^1$. Note that

$$\int_{\mathbb{R}^n} \frac{1}{|k|} \phi = \int_{B_1} \frac{1}{|k|} \phi + \int_{B_1^{\complement}} \frac{1}{|k|} \phi.$$

Now $\int_{B_1} \frac{1}{|k|^{\alpha}} \phi$ is finite since $1 = \alpha < n \le 2$, and $\int_{B_1^0} \frac{1}{|k|} \phi$ is finite since

$$\int_{B_{\mathbf{1}}^{\mathbf{C}}}\frac{1}{|k|}\phi\leq\int_{B_{\mathbf{1}}^{\mathbf{C}}}\phi<\infty$$

because $\phi \in \mathcal{S}$. So $\frac{1}{|k|}\phi \in L^1$ and we're done.

(b) Prove that if, for all $\phi \in S$, we have that

$$\left\| \left| \frac{\partial_1}{|\nabla|} \phi \right| \right\|_q \le C \left\| \phi \right\|_p$$

for some $p, q \in \mathbb{N}$, then p = q.

Proof Fix $\phi \in S$. Let $\phi_{\lambda} = \phi(\frac{x}{\lambda})$ which is in S for all $\lambda > 0$. Then by using scaling, we find that

$$\begin{aligned} \left\| \frac{\partial}{\partial x} \cdot \phi_{\lambda} \right\|_{\rho} &= \left\| \left(\frac{\kappa_{1}}{|\mathbf{k}|} \cdot \hat{\phi}_{\lambda}(\kappa) \right)^{\nu} \right\|_{\rho} \\ &= \left\| \left(\frac{\kappa_{1} \lambda^{*}}{|\mathbf{k}|} \cdot \hat{\phi}(\lambda \kappa) \right)^{\nu} \right\|_{\rho} \\ &= \left\| \left(\frac{\kappa_{1} \lambda^{*}}{|\mathbf{k}|} \cdot \hat{\phi}(\kappa) \right)^{\nu}_{\lambda} \right\|_{\rho} \\ &= \left\| \lambda^{2\nu} \left(\frac{\kappa_{1} \lambda^{*}}{|\mathbf{k}|} \cdot \hat{\phi}(\kappa) \right)^{\nu}_{\lambda} \left(\frac{\alpha}{\lambda} \right) \right\|_{\rho} \\ &= \lambda^{2\rho} \left\| \frac{\partial}{\partial x} \cdot \hat{\phi}(\kappa) \right\|_{\rho} \end{aligned}$$

$$\| \phi_{\lambda} \|_{2} = \left(\int_{\mathbb{R}^{2}} \left[\phi \left(\frac{x}{\lambda} \right) \right]^{2} \right)^{1/2}$$

$$= \lambda^{1/2} \left(\int_{\mathbb{R}^{2}} \phi^{2} \right)^{1/2}$$

$$= \lambda^{1/2} \| \phi \|_{2}$$

$$R + 5$$

And thus we have, for all $\lambda > 0$,

$$\lambda^{\frac{1}{e} \left\| \frac{3}{1 \sqrt{1}} \phi \right\|_{1}} \leq C \lambda^{\frac{1}{e}} \left\| \phi \right\|_{1}$$

$$\Rightarrow \lambda^{\frac{1}{e} - \frac{1}{e}} \left\| \frac{3}{1 \sqrt{1}} \phi \right\|_{1} \leq C \left\| \phi \right\|_{1}$$

$$\Rightarrow \frac{1}{e} = \frac{1}{2}$$

and so p must be equal to q.

(c) A fundamental and hard theorem of real variable theory states that the converse is true. However, for one particular p it is easy to prove that $\left|\left|\frac{\partial_1}{|\nabla|}\phi\right|\right|_p \leq C\left|\left|\phi\right|\right|_p \quad \forall \phi \in \mathcal{S}$. Find that p and prove the estimate. What is your C?

Proof Since Hausdorff-Young gives us that $\left| \left| \hat{\phi} \right| \right|_2 \le \left| \left| \phi \right| \right|_2$ for all $\phi \in \mathcal{S}$, then

$$\left\| \left(\frac{k_1}{|k|} \hat{\phi} \right)^{\vee} \right\|_2 \le \left\| \left(\frac{k_1}{|k|} \hat{\phi} \right) \right\|_2$$

$$\le \left\| \left| \hat{\phi} \right| \right|_2 \quad \text{because } \frac{k_1}{|k|} \le 1$$

$$< \left| |\phi| \right|_2$$

So C = 1.

2. Assume $f \in C^1_{loc}(\mathbb{R} \setminus \{a\})$ and $\int_{a-1}^{a+1} |f'| dx < \infty$. Show that (a) one sided limits $f(a \pm 0)$ are finite and (b) use them to compute the distributional derivative f' on \mathbb{R} .

Proof To see that the one-sided limits $\lim_{t\to a^{\pm}} f(t)$ are finite, observe that the Fundamental Theorem of Calculus gives us, for any $t \in B_1(a)$,

$$f(t) = f(a+1) - \int_{t}^{a+1} f'(x) dx,$$

and taking limits on both sides we find that

$$\lim_{t \to a^{+}} f(t) = f(a+1) - \int_{a}^{a+1} f'(x) \, dx < \infty$$

And similarly we have

$$\lim_{t \to a^{-}} f(t) = f(a-1) + \int_{a-1}^{a} f'(x) \, dx < \infty$$

and (a) is proved. For use in part (b), denote $f(a^+) := \lim_{t \to a^+} f(t)$ and $f(a^-) := \lim_{t \to a^-} f(t)$. \square

Proof For any ϕ , the distributional derivative $Df(\phi)$ is

$$(Df)(\phi) = -\int_{-\infty}^{\infty} f\phi'$$

$$= -\int_{-\infty}^{a^{-}} f\phi' - \int_{a^{+}}^{\infty} f\phi'$$

$$\stackrel{\text{IBP}}{=} -\left(\left[f\phi\right]_{-\infty}^{a^{-}} - \int_{-\infty}^{a^{-}} f'\phi\right) - \left(\left[f\phi\right]_{a^{+}}^{\infty} - \int_{a^{+}}^{\infty} f'\phi\right)$$

$$= -\left[f(a^{-})\phi(a) - f(a^{+})\phi(a)\right] + \left(\int_{-\infty}^{a^{-}} f'\phi + \int_{a^{+}}^{\infty} f'\phi\right)$$

$$= \int_{-\infty}^{a^{-}} f'\phi + \left[f(a^{+}) - f(a^{-})\right]\phi(a) + \int_{a^{+}}^{\infty} f'\phi$$

where writing a^- or a^+ in the bounds denotes an improper integral, that is, $\int_{-\infty}^{a^-} := \lim_{\substack{\alpha > -\infty \\ \beta \not = a}} \int_{\alpha}^{\beta}$.

Chapter 6

6. Prove that the distributional derivative of a monotone nondecreasing function on \mathbb{R} is a Borel measure. [Hint: Use 6.13 and 6.22]

Proof Let f be a monotonic function, so that T_f is a distribution in $\mathcal{D}'(\mathbb{R})$, and let $j \in C_c^{\infty}(\mathbb{R})$ with $\int j = 1$, and for each $n \in \mathbb{N}$, let $j_n = 2^n j(2^{-n}x)$. Using Theorem 6.13, then the distributions $j_n * T_f \xrightarrow{n} T_f$ and each $j_n * T_f = T_{j_n * f}$. Note that each $j_n * f$ is itself a monotone function, since if a < b then

$$j_n * f(a) = \int_{\mathbb{R}} j_n(\cdot) f(a - \cdot) < \int_{\mathbb{R}} j_n(\cdot) f(b - \cdot) = j_n * f(b)$$

because f is monotone. Now observe that since f_n has a classical derivative, then the distributional derivative $DT_{f_n} = T_{f'_n}$ and f'_n is nonnegative because f_n is monotonic. Now for all $\phi \geq 0$,

$$DT_{f_n}(\phi) = T_{f'_n}(\phi) = \int_{\mathbb{R}} f'(x)\phi(x) dx \ge 0$$

so every DT_{f_n} is a positive distribution, and since

$$DT_{f_n}(\phi) \xrightarrow{n} DT_f(\phi),$$

for all ϕ , then it is a positive distribution as well. Thus by Theorem 6.22, we can conclude that DT_f is a Borel measure.

7. Let \mathcal{N}_T be the null-space of a distribution, T. Show that there is a function $\phi_0 \in \mathcal{D}$ so that every element $\phi \in \mathcal{D}$ can be written as $\phi = \lambda \phi_0 + \psi$ with $\psi \in \mathcal{N}_T$ and $\lambda \in \mathbb{R}$. One says that the null-space \mathcal{N}_T has 'codimension one'.

[Hint: Recall the proof that the kernel of any linear functional in any vector space has the codimension 1]

Proof Let $\widetilde{\phi} \in \mathcal{D}$ so that $T\widetilde{\phi} \neq 0$ (if this doesn't exist then T = 0 and $\mathcal{N}_T = \mathcal{D}$ so we're done). Denote $\phi_0 = \frac{\widetilde{\phi}}{T\widetilde{\phi}}$, so that

$$T\phi_0 = 1.$$

Then for any $\phi \in \mathcal{D}$, we can denote

$$\lambda = T\phi$$

and observe that $T\phi = T(\lambda\phi_0)$, so $\phi - \lambda\phi_0 \in \mathcal{N}_T$. Denoting $\psi = \phi - \lambda\phi_0$, we find that

$$\phi = \lambda \phi_0 + \psi$$

and we're done.

8. Show that a function f is in $W^{1,\infty}(\Omega)$ if and only if f=g a.e. where g is a function that is bounded and Lipschitz continuous on Ω , i.e., there exists a constant C such that

$$|g(x) - g(y)| \le C|x - y|$$
 for all $x, y \in \Omega$.

Proof (\Longrightarrow) Let $g \in W^{1,\infty}$. By Theorem 6.13, construct g_n to be a sequence of C^{∞} functions converging to g as distributions. Since they converge as distributions to g, then they converge uniformly almost everywhere to g^{\dagger} . So there exists N > 0 such that for all n > N and all x,

$$|g_n(x) - g(x)| < \varepsilon.$$

Then for any particular n > N,

$$g(x+h) - g(x) \le g_n(x+h) - g_n(x) + 2\varepsilon$$

$$= \int_x^{x+h} g'_n dt + 2\varepsilon$$

$$\le |h| ||g'_n||_{\infty} + 2\varepsilon$$
 by FTC

Proof $(\Leftarrow=)$

Supplye g has Lipschitz constant C, and for each $n \in \mathbb{N}$ let $G_n = \underbrace{g(x + n^{-1}) - g(x)}_{N^{-1}}$ $\leq C$ in absolute value. Then $\forall \varphi \in L'$, $\forall u$, $\int G_n \varphi \leq \int C \varphi = C ||\varphi||_{L^p}$, ε_0 every $G_n \in L^{1 \times} \cong L^{\infty}$. Note that $||\varphi||_{L^p} = |\langle G_n, \varphi \rangle \leq C$

So every $\|G_n\|_{\infty} \leq C$. This means that the sequence $\{G_n\}_{n=1}^{\infty} \subset B_C(L^{\infty})$, and Banach-Alaogly gives that $B_C(L^{\infty})$ is we compact,

[†]This was proved in lecture. I know how to write the proof of this fact, but I'm omitting it since we know this already.

For
$$\exists$$
 a subsequence $G_{n_{K}} \xrightarrow{w_{R}} G$, that is,
$$\langle G_{n_{K}}, \phi \rangle \xrightarrow{K} \langle G, \phi \rangle \quad \forall \phi \in L'.$$
So $DG_{n_{K}} \xrightarrow{K} DG$, since
$$\langle DG_{n_{K}}, \phi \rangle = -\langle G_{n_{K}}, \phi^{i} \rangle \xrightarrow{K} -\langle G, \phi^{i} \rangle = \langle DG, \phi \rangle.$$
Note also that $G = \lim_{K \to \infty} G_{n_{K}} = \lim_{K \to \infty} \frac{g(x - \frac{1}{n_{K}}) - g(x)}{n_{K}^{-1}} \quad \text{which is the}$

$$\forall ight \quad \text{derivative of } g, \quad So \quad G = DT_{g}.$$
Thus $\forall \|\phi\|_{1} \leq 1$ we have
$$|\langle DT_{g}, \phi \rangle| = |\langle G, \phi \rangle| = \lim_{K \to \infty} |\langle G_{n_{K}}, \phi \rangle| \leq \|G_{n_{K}}\|_{1} \|\phi\|_{1} \leq C.$$

- **11.** Functions in $W^{1,p}(\mathbb{R}^n)$ can be very rough for $n \geq 2$ and $p \leq n$.
 - (a) Construct a spherically symmetric function in $W^{1,p}(\mathbb{R}^n)$ that diverges to infinity as $x \to 0$. Answer: Let

$$f(x) = \ln\left(|x|^{-a}\right) \chi_{B_1}$$

Where B_1 denotes the unit ball, and a > 0 is to be determined. Note that f is written in terms of |x|, so it is spherically symmetric, and as $x \to 0$, f(x) clearly approaches ∞ . Claim: With the right choice of a, then $f \in W^{1,p}(\mathbb{R}^n)$.

• $f \in L^p$. On B_1 , we have

$$\ln(|x|^{-a}) = \left|\ln(|x|^{-a})\right| \le |x|^{-a}$$

so if we choose $0 < a < \frac{n}{p}$, then

$$\left|\ln\left(|x|^{-a}\right)\right|^p \le |x|^{-ap},$$

which is integrable over B_1 .

• $\partial_i f \in L^p$. Observe that for any $i = 1 \dots n$,

$$|\partial_i f|^p = \left(\frac{ax_i}{|x|^2}\right)^p \le \frac{a^p}{|x|^p}$$

which is integrable over B_1 since p < n, so the claim is proved.

(b) Use this to construct a function in $W^{1,p}(\mathbb{R}^n)$ that diverges to infinity at every rational point in the unit cube.

[Hint. Write the function in (b) as a sum over the rationals. How do you prove that the sum converges to a $W^{1,p}(\mathbb{R}^n)$ function?]

Answer: Let r_j be an enumeration of the rationals. Note that the following function clearly diverges to infinity since it's value is at least that of f(0) using the function f from part (b).

Let
$$\phi = \sum_{j=1}^{\infty} 2^{-j} f(x-r_j)$$
 $\phi_n = \sum_{j=1}^{n} 2^{-j} f(x-r_j)$

Where we work in \mathbb{R}^d so that we can use n as an index.

Show: $\phi_n \nearrow \phi$

BC

 $\{\phi_n\}$

Choose K_0 so that $2^{-K+1} \|f\|_p < E$. Then $\forall m,n > K_0$,

 $\|\phi_n - \phi_m\|_p = \|\sum_{j=m}^m 2^{-j} f(x-r_j)\|_p$ where $n > m$ $W|_{QQ}$

$$= \|\sum_{j=m}^m 2^{-j} f(x)\|_p$$

By L_p shift invariance

$$= \left(\sum_{j=m}^n 2^{-j}\right) \|f\|_p$$

$$< 2^{-K+1} \|f\|_p$$

$$< 2^{-K+1} \|f\|_p$$

$$< 8$$

Taking
$$\partial_i$$
 of $\phi_n = \sum_{j=1}^n 2^{-j} f(x-r_i)$, we find that $\partial_i \phi_n = \sum_{j=1}^n 2^{-j} \partial_i f(x-r_i)$.

For each i=1,...,d, Choose K_i so that $2^{-K_i+1}\|\partial_i f\|_p < E$. Then by the same reasoning as with f, we can see that $\forall m,n > K_i$, $\|\partial_i \phi_n - \partial_i \phi_n\|_p = \left\|\sum_{j=m}^{\infty} 2^{-j} \partial_i f(x-r_i)\right\|_p$ $\leq 2^{-K_i+1}\|\partial_i f\|_p$ $\leq 2^{-K_i+1}\|\partial_i f\|_p$

and after rescaling, we conclude that d_n is Cauchy in $W^{1,p}$. Since $W^{1,p}(\mathbb{R}^d)$ is complete, then $\Phi \in W^{1,p}(\mathbb{R}^d)$ and wire done.