3.3.4 ЭФФЕКТ ХОЛЛА В ПОЛУПРОВОДНИКАХ

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с регулируемым источником питания; вольтметр; амперметр; миллиамперметр; миллитесламетр; источник питания, образцы легированного германия.

Перед выполнением работы необходимо ознакомиться с основами элементарной теории движения носителей заряда в металлах и полупроводниках (п. 4 введения к разделу).

В работе изучаются особенности проводимости полупроводников в геометрии мостика Холла. Ток пропускается по плоской полупроводниковой пластинке, помещённой в перпендикулярное пластинке магнитное поле. Измеряется разность потенциалов между краями пластинки в поперечном к току направлении. По измерениям определяется константа Холла, тип проводимости (электронный или дырочный) и вычисляется концентрация основных носителей заряда на основе соотношения:

$$R_H = \frac{1}{nq},\tag{1}$$

где n- концентрация основных носителей заряда, R_H -постоянная Холла, q - заряд носителя.

Экспериментальная установка

Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках

Электрическая схема установки для измерения ЭДС Холла представлена на рис. 1. В зазоре электромагнита (рис. 1а) создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора источника питания электромагнита. Ток питания электромагнита измеряется внешним амперметром A1. Направление тока в обмотках электромагнита меняется переключением разъёма K1.

Градуировка электромагнита (связь тока с индукцией поля) проводится при помощи миллитесламетра на основе датчика Холла.

Прямоугольный образец из легированного германия, смонтированный в специальном держателе (рис. 16), подключается к источнику питания образца. При замыкании ключа K2 вдоль длинной стороны образца течёт ток, величина которого регулируется на источнике питания образца и измеряется миллиамперметром A2.

В образце, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов 34, которая измеряется с помощью вольтметра V.

Контакты 3 и 4 вследствие неточности подпайки могут лежать не на одной эквипотенциали. Тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения вдоль пластинки. Исключить этот эффект можно, если при каждом значении тока через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$U_{\perp} = U_{34} - U_0 \tag{2}$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку U_{\perp} можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле

$$\rho_0 = \frac{U_{35}ah}{II} \tag{3}$$

где l — расстояние между контактами 3 и 5, a — ширина образца, h — его толщина.

ЗАДАНИЕ

В работе предлагается исследовать зависимость ЭДС Холла от величины магнитного поля при различных значениях тока через образец для определения константы Холла; определить знак носителей заряда и проводимость материала образца.

- 1. Соберите установку согласно схеме на рис. 1.
- 2. Запустите программу «Название программы»
- 3. Введите фамилие в поле «Введите фамилию», нажмите клавищу ENTER.
- 4. Ознакомьтесь с устройством и принципом работы измерителя магнитной индукции ATE-8702. Техническое описание (TO) расположено на установке. Включите измеритель индукции кнопкой «POWER»; через 2-3 секунды последовательным нажатием кнопки «MODE» установите режим измерения в постоянном поле « a_1 » (см. рис. 2 TO).

Снимите защитный колпачок с сенсорной головки датчика и коснитесь головкой поверхности магнита в зазоре.

Для удержания показаний дисплея нажмите кнопку «HOLD»; повторное нажатие этой кнопки возвращает прибор в режим измерений.

- 5. Установите ручки регулировки источника питания электромагнита в минимальное положение и нажмите на кнопку «Градуировка электромагнита».
 - Измерьте калибровочную кривую электромагнита: измерьте магнитную индукцию миллитесламетром, полученное значение введите в поле«Индукция», нажмите клавишу ENTER, плавно измените ток питания электромагнита. Повторите для 15-20 значений тока питания электромагнита.
- 6. После окончания калибровки выйдите в меню программы с помощью клавиши «Меню». Перейдите к выполнению основного эксперимента соответствующей кнопкой.
- 7. Введите а в соответствующее поле, нажмите клавишу ENTER. Установите ручки регулировки источника питания электромагнита в минимальное положение, нажмите кнопку «Старт». Снимите 15 точек, затем, остановив процесс кнопкой «Стоп», измените ток на источнике питания электромагнита. Запустите получение данных кнопкой «Новое напряжение». Повторите для 10-12 значений тока на источнике питания электромагнита.
- 8. После окончания основного эксперимента выйдете в основное меню программы кнопкой «Меню». Перейдите к определению знаку носителей заряда соответствующей кнопкой.
- 9. Определите знак носителей заряда в образце. Для этого необходимо знать направление тока через образец, направление магнитного поля и знак ЭДС Холла.
 - Направление тока в образце показано знаками «+» и «-» на рис. 1. Направление тока в обмотках электромагнита при установке разъёма K_1 в положение 1 показано стрелкой на торце магнита.
 - Измерьте разность потенциалов без магнитного поля (установите ручки регулировки источника питания электромагнита в минимальное положение, нажмите кнопку «Без поля»). Подайте небольшое напряжение на электромагнит, нажмите кнопку «С полем». Определите характер проводимости образца (дырочный или электронный).
- 10. Выключите источник питания электромагнита, перейдите в основное меню программы кнопкой «Меню». Перейдите к измерению удельной проводимости соответствующей кнопкой.
- 11. Удалите держатель с образцом из зазора электромагнита; подключите к клемма «U» и «0» вольтметра провода 3 и 5; введите параметры образца в соответствующие поля (после ввода обязательно нажать клавишу «ENTER»). Нажмите кнопку «Старт».
- 12. Перейдите в основное меню программы. Нажмите на кнопку «Обработка данных».
- 13. Разберите установку, все полученные данные и графики хранятся в папке с вашей фамилией, сохраните их себе, например, на флешку.