Effective mass

MG

T 24 L 6

$$m_0^2 = -4.9$$
 $m_1^2 = -4.9$ $\lambda_0^2 = 2.5$ $\lambda_1^2 = 2.5$ $\mu^2 = 5$ $g^2 = 0$ replica = 0

 $index\ n=0$

fit: $m_{eff} = 0.266896 \pm 0.000787$

 $\mathrm{index}\ \mathrm{n}{=}\ 1$

fit: $m_{eff} = 0.267266 \pm 0.000839$

Two particle energy index n=0

fit: $m_{eff} = 0.594487 \pm 0.001585$

index n = 1

Three particle energy $\,$ fit: $m_{eff} = 0.943337 \pm 0.007287$

T 24 L 8

$$m_0^2 = -4.9 \quad m_1^2 = -4.9 \quad \lambda_0^2 = 2.5 \quad \lambda_1^2 = 2.5 \quad \mu^2 = 5 \quad g^2 = 0 \quad \text{replica} = 0$$

index n = 0

fit: $m_{eff} = 0.233247 \pm 0.000704$

 $\mathrm{index}\ \mathrm{n}{=}\ 1$

fit: $m_{eff} = 0.233833 \pm 0.000728$

Two particle energy index n=0

fit: $m_{eff} = 0.505590 \pm 0.001560$

 $\mathrm{index}\ \mathrm{n}{=}\ 1$

Three particle energy $\,$ fit: $m_{eff} = 0.524375 \pm 0.002457$

$\mathbf{T}\ \mathbf{24}\ \mathbf{L}\ \mathbf{10}$

$$m_0^2 = -4.9 \quad m_1^2 = -4.9 \quad \lambda_0^2 = 2.5 \quad \lambda_1^2 = 2.5 \quad \mu^2 = 5 \quad g^2 = 0 \quad \text{replica} = 0$$
 index n= 0

fit: $m_{eff} = 0.218105 \pm 0.000715$

 $\mathrm{index}\ \mathrm{n}{=}\ 1$

fit: $m_{eff} = 0.218597 \pm 0.000702$

Two particle energy index n=0

fit: $m_{eff} = 0.461023 \pm 0.001512$

index n = 1

Three particle energy $\,$ fit: $m_{eff} = 0.473909 \pm 0.002439$

L	Т	meff0	Emeff0	meff1	Emeff1	E2	E2err	Е3	E3err
6	24	0.2668961	0.0007874	0.2672665	0.0008387	0.5944866	0.0015848	0.943	3374546172080072868252755193
8	24	0.2332467	0.0007041	0.2338333	0.0007275	0.5055902	0.0015598	NaN	NaN
10	24	0.2181055	0.0007153	30.2185968	0.0007025	0.4610234	0.0015125	NaN	NaN

to be compared with the result of the paper https://arxiv.org/ab $\rm s/1806.02367$

$\overline{\mathrm{V1}}$	V2	V3	V4	V5	V6	V7	V8	V9
$\overline{ m L}$	Т	nconf	ML	E2(L)	E3(L)	E2	E3	E3/ E2
4	24	18000	0.3634(16)	_	_	_	_	_
5	24	28000	0.3049(13)	0.6790(20)	1.1121(93)	0.0692(24)	0.1973(97)	2.85(12)
6	24	7500	0.2684(24)	0.5920(36)	0.962(16)	0.0552(46)	0.156(17)	2.83(26)
7	24	30000	0.2479(12)	0.5378(17)	0.8669(74)	0.0420(23)	0.1233(79)	2.93(17)
8	24	47000	0.2355(10)	0.5035(13)	0.8006(57)	0.0325(18)	0.0941(62)	2.90(17)
9	24	40000	0.2247(11)	0.4756(14)	0.7574(62)	0.0261(20)	0.0832(67)	3.19(24)
10	24	70000	0.21843(85)	0.4565(11)	0.7103(46)	0.0196(15)	0.0550(50)	2.80(23)
11	24	30000	0.2142(13)	0.4464(17)	0.6859(71)	0.0181(23)	0.0434(77)	2.40(37)
12	24	12000	0.2095(21)	0.4367(26)	0.672(11)	0.0177(37)	0.043(12)	2.43(60)
13	24	20000	0.2088(16)	0.4271(21)	0.6546(91)	0.0095(28)	0.0282(98)	2.97(97)
14	24	28000	0.2054(22)	0.4236(28)	0.650(13)	0.0127(38)	0.034(14)	2.64(96)
15	24	40000	0.2057(12)	0.4199(15)	0.6362(66)	0.0086(20)	0.0192(70)	2.23(72)
16	24	52000	0.2045(14)	0.4179(18)	0.6347(83)	0.0089(25)	0.0211(88)	2.37(88)
17	24	70000	0.20540(87)	0.4181(11)	0.6388(50)	0.0073(15)	0.0226(54)	3.11(71)
18	24	36000	0.2051(12)	0.4134(16)	0.6371(71)	0.0032(21)	0.0218(76)	6.8(4.0)

$\overline{V1}$	V2	V3	V4	V5	V6	V7	V8	V9
20	24	70000	0.20477(87)	0.4114(11)	0.6241(52)	0.0018(15)	0.0098(55)	5.4(4.1)
14	48	36000	0.20724(33)	0.42461(63)	0.6530(23)	0.01014(62)	0.0313(24)	3.09(20)
24	48	100000	0.20426(55)	0.4118(11)	0.6194(58)	0.0032(10)	0.0066(59)	2.0(1.7)