GlobalDataLoader in Multi DeepLearning Task

Xie Jian

I2EC, ICS, NJU

April 7, 2021

1/44

Table of Contents

- Introduction
- Sampling Alogrithm
- Global DataLoader
- 4 Experiment

Table of Contents

- Introduction
- Sampling Alogrithm
- Global DataLoader
- 4 Experiment

Introduction

Data loading

- Sampler sample some index randomly
- Worker read the data from disk and decode them
- Task fecth data and start training

4 / 44

Problem

The data will be repeatedly read and processed by different tasks.

Multiple tasks with worker = 4, batch size = 32GPU: Tesla T4 with 16G memory, CPU: 48 Intel(R) Xeon(R) Gold 5118

Figure: data loading time

Optimization

Global Buffer Pool

• If data in buffer pool, there is no need to read data from disk

Problem

 Random replacement algorithm

Figure: hit rate with buffer size

Optimization

Global Sampler

• Make the sampled elements have a greater probability of being equal

Table of Contents

- Introduction
- Sampling Alogrithm
- Global DataLoader
- 4 Experiment

Sampling: problem description

Defination

Assume there are two sets $\{S_1, S_2\}$, we should randomly select 2 elements $\{e_1, e_2\}$ from them. The algorithm should to make sure to:

$$p(e_1) = \frac{1}{|S_1|}$$
 $p(e_2) = \frac{1}{|S_2|}$
 $Maximize(p(e_1 = e_2))$ (1)

Independently Sampling Algorithm

Assumption

There are two sets: S_1 , S_2 , and their length is n_1 , n_2 . The intersection set of them is S_i , whose length is n_i . We divide the set S_1 into S_i and $S_{d1} = S_1 - S_i$. We divide the set S_2 into S_i and $S_{d2} = S_2 - S_i$. Sample(S): randomly select an element in S

Example

$$S_1 = \{1, 2, 3, 4, 5\} = \{1, 2, 3\} \cup \{4, 5\}$$

 $S_2 = \{1, 2, 3, 6, 7\} = \{1, 2, 3\} \cup \{6, 7\}$

Independently Sampling Algorithm

S1

- $step_{11}$:randomly select a set from S_i and S_{d1}
- $step_{21}$:if S_{d1} , e_1 =Sample(S_{d1})
- $step_{31}$:if S_i , e_1 =Sample(S_i)

S2

- step₁₂:randomly select a set from S_i and S_{d2}
- $step_{22}$:if S_{d2} , e_2 =Sample(S_{d2})
- $step_{32}$:if S_i , e_2 =Sample(S_i)

Probability

$$p(e_1 = e_2) = \frac{n_i}{n_1 * n_2} \tag{2}$$

Dependently Sampling Algorithm I

Insight

The $step_{31}$ is same as $step_{32}$ (randomly select an element e from S_i).

Example

$$S_1 = \{1, 2, 3\} \cup \{4, 5\}; \ S_2 = \{1, 2, 3\} \cup \{6, 7\}$$

- Firstly, randomly sampling element e_i in $\{1, 2, 3\}$
- As for S_1 , if select set $\{1,2,3\}$ with probability $p_1(S_i) = 0.6$, then we can let $e_1 = e_i$
- As for S_2 , select set $\{1,2,3\}$ with probability $p_2(S_i) = 0.6$, then we can let $e_2 = e_i$
- $p(e_1 = e_2) = p_1(S_i) * p_2(S_i) = 0.36$

Dependently Sampling Algorithm I

Algorithm

• $step_0$: $e_i = Sample(S_i)$

S1

- $step_{11}$:randomly select a set from S_i and S_{d1}
- $step_{21}$:if S_{d1} , $e_1 = Sample(S_{d1})$
- $step_{31}$:if S_i , $e_1 = e_i$

S2

- $step_{12}$:randomly select a set from S_i and S_{d2}
- $step_{22}$:if S_{d2} , $e_2 = Sample(S_{d2})$
- $step_{32}$:if S_i , $e_2 = e_i$

Probability

$$p(e_1 = e_2) = \frac{n_i}{n_1} * \frac{n_i}{n_2} = \frac{n_i^2}{n_1 * n_2}$$
(3)

Dependently Sampling Algorithm I

Insight

The $step_{11}$ and $step_{12}$ are similar. We can merge them.

Example

$$S_1 = \{1, 2, 3\} \cup \{4, 5\}; S_2 = \{1, 2, 3\} \cup \{6, 7\}$$

- Firstly, we randomly select a set from $\{1, 2, 3\}$ and $\{4, 5\}$
- If we choose $\{1,2,3\}$, the S1 and S2 will both select an element from $\{1,2,3\}$
- If we choose $\{4,5\}$, then S1 will sampling in $\{4,5\}$ and S2 in $\{6,7\}$
- $p(e_1 = e_2) = p_1(S_i) = 0.6$

Dependently Sampling Algorithm II

Algorithm

- $step_0$: $e_i = Sample(S_i)$
- $step_1$: randomly select a set from S_i and S_{d1}

S1

- $step_{21}$: if S_{d1} , e_1 =Sample(S_{d1})
- $step_{31}$: if S_i , $e_1 = e_i$

S2

- $step_{22}$: if S_{d1} , e_2 =Sample(S_{d2})
- $step_{32}$: if S_i , $e_2 = e_i$

Problem: $n_1 \neq n_2$

$n_1 > n_2$

$$S_1 = \{1, 2, 3\} \cup \{4\}; S_2 = \{1, 2, 3\} \cup \{6, 7\}$$

- S_1 select $\{1, 2, 3\}$ with probability $p_1(S_i) = 0.75$
- Then S_2 select an element e from S_i with probability $p_2(e) = p_1(S_i) * \frac{1}{3} = 0.25 > 0.2$

$n_1 < n_2$

$$S_1 = \{1, 2, 3\} \cup \{4, 6\}; S_2 = \{1, 2, 3\} \cup \{7\}$$

- S_1 select $\{4,6\}$ with probability $p_1(S_{d1}) = 0.4$
- Then S_2 select an element e from S_{d2} with probability $p_2(e) = p_1(S_{d1}) * \frac{1}{1} = 0.4 > 0.25$

Case1: n1 < n2

Problem

$$(p_1(S_i) = \frac{n_i}{n_1}) > (p_2(S_i) = \frac{n_i}{n_2})$$
 (4)

Approach

So in $step_1$, when select S_i , it should be changed S_{d2} in probability of p.

$$\begin{cases}
p_2(S_i) = p_1(S_i) * (1 - p) = \frac{n_i}{n_2} \\
p_2(S_{d2}) = p_2(S_{d1}) + p_1(S_i) * p = 1 - \frac{n_i}{n_2}
\end{cases}$$
(5)

$$p = 1 - \frac{n_1}{n_2} \tag{6}$$

Dependently Sampling Algorithm II

Algorithm

- $step_0$: $e_i = Sample(S_i)$
- $step_1$: randomly select a set from S_i and S_{d1}

S1

- $step_{21}$:if S_{d1} , e_1 =Sample(S_{d1})
- $step_{31}$:if S_i , $e_1 = e_i$

S2

- $step_{22}$: if S_{d1} , e_2 =Sample(S_{d2})
- *step*₃₂: if *S*_i:
 - let $S = S_{d1}$ in probability of $1 \frac{n_1}{n_2}$
 - if S_{d1} , $e_2 = Sample(S_{d2})$
 - if S_i , $e_2 = e_i$

Probability

$$p(e_1 = e_2) = p_1(S_i) * (\frac{n_1}{n_2}) = \frac{n_i}{n_2}$$

Case2: n1 > n2

Problem

$$(p_1(S_{d1}) = 1 - \frac{n_i}{n_1}) > (p_2(S_{d_2}) = 1 - \frac{n_i}{n_2})$$
 (7)

Approach

So in $step_1$, when select S_{d1} , it should be changed S_i in probability of p. The equation is

$$\begin{cases}
p_2(S_i) = p_1(S_i) + p_2(S_{d1}) * p = \frac{n_i}{n_2} \\
p_2(S_{d2}) = p_2(S_{d1}) * (1 - p) = 1 - \frac{n_i}{n_2}
\end{cases}$$
(8)

$$p = 1 - \frac{n1 * (n2 - n_i)}{n2 * (n1 - n_i)}$$
(9)

20 / 44

Dependently Sampling Algorithm II

Algorithm

- $step_0$: $e_i = Sample(S_i)$
- $step_1$: randomly select a set from S_i and S_{d1}

S1

- $step_{21}$:if S_{d1} , e_1 =Sample(S_{d1})
- $step_{31}$:if S_i , $e_1 = e_i$

S2

- $step_{22}$: if S_{d1} :
 - let $S = S_i$ in probability of $1 \frac{n1*(n2-n_i)}{n2*(n1-n_i)}$
 - if S_{d1} , $e_2 = Sample(S_{d2})$
 - if S_i , $e_2 = e_i$
- $step_{32}$: if S_i , $e_2 = e_i$

Probability

$$p(e_1 = e_2) = p_1(S_i) = \frac{n_i}{n_1}$$

Why not shuffle $S_1 \cup S_2$

Probability

$$p(e_1 = e_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} < \frac{|S_1 \cap S_2|}{\max(|S_1|, |S_2|)}$$

randomly select in $S_1 \cup S_2$: "starvation"

if
$$|S_1| = 99, |S_2| = 1$$
, then $p(e \in S_1) = 0.99, p(e \in S_2) = 0.01$
So task2 may be starving

shuffle $S_1 \cup S_2$: offset

$$S_1 = \{2,3\}, S_2 = \{1,2,3\}$$
 $\{2,3\}$
 $\{1,2,3\}$
 $\{1,2,3\}$

Sampling Tree: there are two sets: S_1 , S_2

- $A = S_1 \cap S_2$
- $B = S_1 A$
- $A = S_2 \cap A$

Figure: Sampling Tree

Sampling Tree: insert S_3

- $A \subset S_3$
- Insert {S₃ : I₃} in A ascending order
- $S_3 = S_3 A$
- Insert S₃ in subtree that has the largest intersection with S₃

Figure: Sampling Tree

GlobalDataLoader in Multi DeepLearning Ta

Sampling Tree: Insert S_3

- *B* ⊄ *S*₃
- Create new node: $D = S_3 \cap B$
- E = B D
- $F = S_3 D$

Figure: Sampling Tree

Sampling Tree: Delete S_3

- Delete S₃ in root
- Recursively let the subtree delete S₃
- Until reaching the leaf node, then delete it
- The corresponding parent node merges the child nodes

Figure: Sampling Tree

Sampling Tree: Sampling in root

- Split U into parent and child
 - $p < \frac{l_a}{l_b}$, parent $\cup \{S1\}$
 - •
 - $p > \frac{I_i}{I_{i+1}}$, child $\cup \{S_i, S_{i+1}, ...\}$
- Sampling e in A, which represents the sampling result of parent
- Push down child
- Because e ∉ A, so we need to push down e and the collection U_e containing it

Figure: Sampling Tree

27 / 44

Sampling Tree: Sampling in child

- Split child into parent and child
- Sampling e in A, which represents the sampling result of parent
- Push down child
- Because $e \notin A$, so we need to push down e and the collection containing it
- if $U_e \subset U$, then add e in this node

Figure: Sampling Tree

Example

GlobalDataLoader in Multi DeepLearning Ta

Example

30 / 44

Sampling Tree: randomly prove

Basis

1-path: $p(e) = \frac{1}{I}$

Induction

Assume for k-path, $p(e) = \frac{1}{I}$

For (k+1)-path, add a root node: $\{A: I_a\}$.

Case1: sampling in A

$$p(e) = p(A) * \frac{1}{I_a} = \frac{I_a}{I + I_a} * \frac{1}{I_a} = \frac{1}{I + I_a}$$

Case2: sampling in subtree

$$p(e) = (1 - p(A)) * \frac{1}{l} = \frac{l}{l+l_2} * \frac{1}{l} = \frac{1}{l+l_2}$$

31 / 44

Table of Contents

- Introduction
- Sampling Alogrithm
- 3 Global DataLoader
- 4 Experiment

Architecture

Task Manager and Loader

Task Manager

- recieve task <task name, index set> and return head address
- send hearbeat

Loader

- process pool
- read data from disk and decode them
- write them in buffer pool

Buffer Pool: Data Structure

data

- There are two kinds of nodes: inode and datanode, and they are fixed size.
- Every task has a head inode address

35 / 44

Buffer Pool: Valid Byte

valid byte

- used bit: If the used bit is equal to 1, this inode is used
- next bit: If the next bit is equal to 1, the next addr is valid
- data bit: If the data bit is equal to 1, the data addr is valid

Buffer Pool Manager

- BM is responsible for maintaining three tables
- BM is responsible for freeing useless nodes

Figure: Sampling Tree

which data shound be free

Expection diff

The difference between the number of times data has been quoted and the number of times data should be quoted

Example

$$S1 = 1, 2, 3, S2 = 1, 2$$

The Sampling result is S1: 3, S2: 2

$$ExpectionDiff(3) = 1 - 1 = 0,$$

$$ExpectionDiff(2) = 2 - 1 = 1$$

Answer

Choose the smallest Expection diff

Table of Contents

- Introduction
- Sampling Alogrithm
- Global DataLoader
- 4 Experiment

Hit rate Experiment

Assumption

There are two sets: S_1 , S_2 , and their length is n_1 , n_2

The intersection set of them is S_i , whose length is n_i

 $hitrate = \frac{hit}{n_i}$

bufferSize = k, which means that the buffer can have k datanode, and we ignore the size of the inode

Number of orphans

$$p(e_1 = e_2 | e_2 \in S_i) = \frac{n_1}{n_2}$$

Assume $p = \frac{n_1}{n_2}$

$$N = \sum_{i=0}^{n_i} \left(1 - \frac{n_1 - i}{n_2 - i}\right)$$

$$\geq \sum_{i=0}^{n_1} \left(1 - \frac{n_1 - i}{n_2 - i}\right)$$

$$= \sum_{i=0}^{p*n_2} \left(1 - \frac{p*n_2 - i}{n_2 - i}\right)$$

$$\approx \int_{i=0}^{p*n_2} \left(1 - \frac{p*n_2 - i}{n_2 - i}\right)$$

$$= n_2 * (p - 1) \ln^{1-p}$$
(10)

Figure:

Hit rate

$$buffer_size = \frac{k}{n_2}$$

Figure:

Time Experiment

Figure: time

Figure: time with GlobalDataLoader

Correctness Experiment

