CAPSTONE PROJECT

PREDICTIVE MAINTENANCE OF INDUSTRIAL MACHINERY

Presented By: Omkar Desai

Sant Gajanan Maharaj College Of Engineering Mahagaon MCA

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Example: Develop a predictive maintenance model for a fleet of industrial machines to anticipate failures before they occur. This project will involve analyzing sensor data from machinery to identify patterns that precede a failure. The goal is to create a classification model that can predict the type of failure (e.g., tool wear, heat dissipation, power failure) based on real-time operational data. This will enable proactive maintenance, reducing downtime and operational costs.

PROPOSED SOLUTION

- Develop a machine learning-powered predictive maintenance system.
- Collect and analyze real-time sensor data (temperature, vibration, voltage, current).
- Detect early warning signs of three failure types:
 - Tool Wear
 - Heat Dissipation Issues
 - Power Failures
- Data Preprocessing:
 - Clean and preprocess the collected data to handle missing values, outliers, and inconsistencies.
 - Feature engineering to extract relevant features from the data that might impact bike demand.
- Machine Learning Algorithm:
 - Implement a machine learning algorithm, such as a time-series forecasting model (e.g., ARIMA, SARIMA, or LSTM), to predict bike counts based on historical patterns.
 - Consider incorporating other factors like weather conditions, day of the week, and special events to improve prediction accuracy.
- Deployment:
 - Develop a user-friendly interface or application that provides real-time predictions for bike counts at different hours.
 - Deploy the solution on a scalable and reliable platform, considering factors like server infrastructure, response time, and user accessibility.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the . "Predictive Maintenance of Industrial Machinery" Here's a suggested structure for this section:

System requirements :-

IBM Cloud(mandatory)

IBM Watson studio for model development and deployment

IBM cloud object storage for dataset handling.

ALGORITHM & DEPLOYMENT

- Algorithm Selection:
 - Random Forest Classifier(or SVM based on performance).
- Data Input:
 - Air temperature [K], Process temperature [K], Torque [Nm] and many more..
- Training Process:
 - Supervised learning using labelled fault types..
- Prediction Process:
 - Model deployed on IBM Watson Studio with API endpoint for real-time predictions.

RESULT

PIPELINE LEADERBOARD

Projects / predictive_maintenance1 / Maintenance_ML (i) ★ Rank by: Accuracy (Optimized) | Cross validation score 💝 Experiment summary Pipeline comparison Time elapsed: 2 minutes View log Save code Pipeline leaderboard

▽ Accuracy (Optimized) Rank 1 Specialization **Build time** Name Algorithm **Enhancements** Cross Validation FE HPO-2 Pipeline 4 O Snap Random Forest Classifier 00:00:41 0.995 HPO-1 2 O Snap Random Forest Classifier FE Pipeline 3 0.995 HPO-1 00:00:33 3 Pipeline 8 O Snap Decision Tree Classifier 0.994 FE HPO-2 00:00:27 Pipeline 2 O Snap Random Forest Classifier 0.994 HPO-1 00:00:10

Prediction results

DATA INPUT

OUTPUT

Prediction results

 Display format for prediction results
 Image: Control of the control of

CONCLUSION

The **predictive maintenance model** helps **anticipate machine failures** (tool wear, heat dissipation, power issues) before they occur.

FUTURE SCOPE

- Integrate Deep Learning models (LSTM, Transformers) for more accurate time-series predictions of failures.
- Mobile Application Development to provide real-time alerts and remote monitoring for operators.
- Automated Maintenance Scheduling directly trigger work orders and manage spare part inventory.
- Cloud Integration for scalable data storage, model deployment, and analytics across multiple sites.
- Cross-Industry Expansion adapt the solution for sectors like manufacturing, energy, transportation, and smart factories.

•

IBM CERTIFICATIONS

IBM CERTIFICATIONS

IBM CERTIFICATIONS

THANK YOU

