

ALC4042 (PN: ALC4042-CG)

AUDIO CODEC WITH USB TO I2S AUDIO CONTROLLER AND HARDWARE ACTIVE NOISE CANCELLATION

DATASHEET

Rev. 1.14 03 December 2019 Track ID: JATR-8275-15

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047 www.realtek.com

COPYRIGHT

©2017 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document 'as is', without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark, of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the hardware and software engineer's general information on the Realtek ALC4042 USB2.0 Audio Codec.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process.

ELECTROSTATIC DISCHARGE (ESD) WARNING

This product can be damaged by Electrostatic Discharge (ESD). When handling, care must be taken. Damage due to inappropriate handling is not covered by warranty.

Do not open the protective conductive packaging until you have read the following, and are at an approved anti-static workstation.

- Use an approved anti-static mat to cover your work surface.
- Use a conductive wrist strap attached to a good earth ground
- Always discharge yourself by touching a grounded bare metal surface or approved anti-static mat before picking up an ESD-sensitive electronic component
- If working on a prototyping board, use a soldering iron or station that is marked as ESD-safe
- Always disconnect the microcontroller from the prototyping board when it is being worked on

REVISION HISTORY

Revision	Release Date	Summary
1.0	2017/06/02	First release.
1.1	2017/08/25	Corrected minor typing errors.
		Revised Figure 1 Block Diagram, page 5.
		Revised Figure 2 Pin Assignments, page 6.
		Revised Table 3 GPIO, UART, , page 8.
		Revised Table 4 I2C Interface, page 8.
		Revised Ordering Information status, page 17.
1.11	2019/03/04	Update supports Audio Jack describe on general description.
1.12	2019/07/03	Update block diagram
1.13	2019/10/02	Update block diagram
1.14	2019/12/03	Update block diagram
		Update pin assignments

Table of Contents

1.	1. GENERAL DESCRIPTION	1
2.	2. FEATURES	2
	 2.1. GENERAL HARDWARE FEATURES 2.2. USB CONTROLLER FEATURES 2.3. MICRO CONTROLLER UNIT 2.4. CONFIGURABLE GPIO PINS 2.5. SOFTWARE FEATURES 	
3.	3. SYSTEM APPLICATIONS	4
4.	4. BLOCK DIAGRAM	5
5.	5. PIN ASSIGNMENTS	6
	5.1. PIN ASSIGNMENTS FIGURE	6
6.	6. PIN DESCRIPTIONS	7
	 6.1. I/O TYPE DESCRIPTION 6.2. USB TRANSCEIVER INTERFACE 6.3. GPIO, UART, DMIC, AND SPI INTERFACE 6.4. I2C INTERFACE 6.5. I2S INTERFACE 6.6. ANALOG I/O 6.7. FILTER/REFERENCE 6.8. POWER/GROUND 	
7.	7. ELECTRICAL CHARACTERISTICS	11
	7.1. ABSOLUTE MAXIMUM RATINGS 7.2. RECOMMENDED OPERATING CONDITION 7.3. DC CHARACTERISTICS	
8.		
	8.1. MECHANICAL DIMENSIONS – QFN 48 6x6mm OUTLINE	16
9.	9. APPLICATION CIRCUITS	17
1(10. ORDERING INFORMATION	17

List of Tables

TABLE 1.	I/O TYPE DESCRIPTION	7
TABLE 2.	USB Transceiver Interface	7
TABLE 3.	GPIO, UART, DMIC, AND SPI INTERFACE	8
Table 4.	I2C Interface	8
TABLE 5.	I2S Interface	9
TABLE 6.	Analog I/O	9
Table 7.	FILTER/REFERENCE	9
	POWER/GROUND	
TABLE 9.	ABSOLUTE MAXIMUM RATINGS	11
	RECOMMENDED OPERATING CONDITION	
TABLE 11.	DC CHARACTERISTICS	11
Table 12.	SPDIF OUTPUT TIMING	12
	I2C CONTROL INTERFACE	
	MASTER MODE	
Table 15.	ANALOG PERFORMANCE	15
Table 16.	ORDERING INFORMATION	17

List of Figures

FIGURE 1.	BLOCK DIAGRAM	5
	PIN ASSIGNMENTS	
FIGURE 3.	SPDIF OUTPUT TIMING	12
FIGURE 4.	I2C CONTROL INTERFACE	13
	I2S MASTER MODE TIMING.	

1. General Description

The ALC4042 is a single-chip USB 2.0 audio codec with embedded USB 2.0 to I2S and SPDIF interface for high analog and digital audio performance. The ALC4042 integrates stereo analog input and output, USB, I2S, I2C, digital microphone, and SPDIF interfaces to support a standard USB audio device class designed for all major commercial operating systems, e.g., Windows, Linux, and Android.

The ALC4042 features a Class-G type ultra-low-power cap-saving headphone amplifier. It is a high efficiency audio amplifier with an integrated Class-G voltage converter that enhances efficiency at low output power. The ALC4042 integrates a USB 2.0 function controller and USB transceiver optimized for a high data transfer rate, a high speed MCU (Micro Processor Unit), DC-to-DC regulators, digital audio I2S interface and I2C control interface, and SPI interface into a single chip.

The ALC4042 connects codecs and DACs that typically have digital I2S and are configured by an I2C interface to a USB host system with programmable capabilities in order to remove the need for complex audio configuration and operations. The ALC4042 integrates an SPDIF output interface for external compressed audio data decoding.

The ALC4042 supports Universal Audio Jack, where it not only operates with OMTP and CTIA Headset, but also as a Line-in/Microphone. The ALC4042 detects OMTP and Standard headsets with no extra MOSFET or analog switch required. The ALC4042 provides a 'Headset Push-Button Control' function; certain types of push button behavior on the headset line ca be detected, and control corresponding to individual push button behavior can be customized by the Realtek Audio FW according to customer's requests.

2. Features

2.1. General Hardware Features

- Digital-to-Analog Converter with 105dBA SNR
- Analog-to-Digital Converter with 94dBA SNR
- One stereo DAC supports 8/16/22.05/24/32/44.1/48/96/176.4/192/384KHz Sample Rate, 16/24/32-bit
- Two stereo ADCs support 8/16/22.05/24/32/44.1/48/96/176.4/192/384KHz Sample Rate, 16/24/32-bit
- Class-G type headphone output without DC blocking capacitors
- Ultra-Low-Power for headphone playback
- Hardware Feed-Forward or Feedback Active Noise Cancellation (ANC) feature
- Seven band hardware equalizers and AGC (Auto Gain Control) function for playback streaming
- Six band hardware equalizers function for recording streaming
- Single-ended analog microphone inputs with pre-amplifiers (0/20/24/30/35/40/44/50/52dB)
- Low noise microphone and programmable MICBIAS voltage level
- Audio jack detection feature
- 4-Button Headset in-line with customizable multi-function control support
- One I2S digital interface, supports master/slave mode
- I2S digital interface supports 8/16/22.05/32k/44.1/48/88.2/96/176.4/192/384kHz, 16/24/32-bit
- I2S digital interface supports TDM format up to 8 channels output/input
- One I2C control interface, supports master mode
- Two stereo digital microphone interfaces, share the same DMIC-CLK
- One SPI (Serial Peripheral Interface, Mode 0~Mode 3) interface
- UART interface for external devices
- Built-in Analog LDO
- 48-pin QFN 'Green' package

2.2. USB Controller Features

- Compliant with USB Specification 2.0 Full-Speed and High-Speed transfer mode
- Compliant with USB Audio Class Specification Rev1.0 and 2.0
- Supports 6 isochronous endpoints; each can be customized
- Supports one endpoint0 for control transfer and two endpoints for interrupt transfer
- Supports Selective Suspend mode
- Supports USB LPM-L1 protocol
- Supports jack detection, headset's 4-button detection, and GPIOs Remote wakeup function in suspend mode
- Internal PLL supports non-crystal design
- Built-in Self-Loop-Back BIST for testing purposes

2.3. Micro Controller Unit

- On-chip high-performance and low-power MCU
- Software controlled connection to USB bus for re-enumeration
- Internal programmable memory support for various Realtek codec and audio configurations
- Watchdog control for MCU reset and interrupt
- Configurable VID (Vendor ID), PID (Product ID) and serial number string

2.4. Configurable GPIO Pins

- Programmable inputs and outputs for control purposes
- Toggle PWM LED driver and controller upon firmware or custom driver customizations

2.5. Software Features

- Does not require a custom audio driver
- USB Audio Class compliant; operates with native driver in Microsoft Windows XP, VISTA, Windows 7, Windows 8, Windows 8.1, and Windows 10
- Realtek custom audio driver provides a certified logo driver for Microsoft Windows XP, VISTA, Windows 7, Windows 8, Windows 8.1, and Windows 10
- Realtek Control Panel (Realtek Audio Manager) for enhanced user experience
 - ◆ Audio I/O Jack and Device settings and controls
 - ◆ Application Enhancements for both voice processing and audio post processing and effects
 - ◆ Reduces audio software development and usage complexity
- Selective suspend function saves power in Standby mode

3. System Applications

- USB Docking Station for Notebook, Tablet, PCs
- Embedded USB audio applications
- USB headset, headphone, microphone, speaker, and generic audio accessories

4. Block Diagram

Figure 1. Block Diagram

5. Pin Assignments

5.1. Pin Assignments Figure

Figure 2. Pin Assignments

5.2. Package and Version Identification

Green package is indicated by a 'G' in the location marked 'T' in 'TXXXVS' in Figure 2.

6. Pin Descriptions

6.1. I/O Type Description

Table 1. I/O Type Description

I/O Type	Description			
I	Input			
О	Output			
IH	Input with internal pull-up 200K			
IL	Input with internal pull-down 200K			
IO	Input/Output			
IOH	Input/Output with internal pull-up 200K			
IOL	Input/Output with internal pull-down 200K			
IOSH	Input/Output with Schmitt trigger			
IO-U	USB related IO			
CLK	Clock related IO			
PWR-O	Power output pin			
PWR-I	Power input pin			
GND	Ground related pin			

6.2. USB Transceiver Interface

Table 2. USB Transceiver Interface

Name	Type	Pin No.	Pin No. Description		
DP	IO-U	8	USB D+ signal		
DM	IO-U	9	USB D- signal		
RREF	-	11	External Reference. Requires 1% precision 6.25k or 6.2k resistor to ground		
-		•	Total: 3 Pins		

6.3. GPIO, UART, DMIC, and SPI Interface

Table 3. GPIO, UART, DMIC, and SPI Interface

Name	Type	Pin No.	Description	
GPIO_AL[1] /Codec_PWDN	Ю	5	General purpose input and output; operates even in USB suspend mode	
GPIO_AL[0] /IRQ	Ю	6	General purpose input and output; operates even in USB suspend mode	
SPI-WP#	О	17	SPI serial flash write protected	
SPI-MOSI	О	16	Serial data in to internal flash	
SPI-MISO	I	15	Serial data out from internal flash	
SPI-SCK	О	14	Clock signal to internal flash	
SPI-CS#	О	13	Chip select to internal flash	
GPIO_AL[3] /LED	Ю	44	General purpose input and output; operates even in USB suspend mode /LED controller	
CTS	IO		Clear-to-send handshaking signal	
/GPIO[8]		43	/General purpose input and output	
/DMIC_DAT			/Primary DMIC data	
RTS	IO	42	Request-to-send handshaking signal	
/GPIO[7]			/General purpose input and output	
/DMIC_CLK			/DMIC clock	
TXD	IO	41	Serial data transmit	
/GPIO[6]			/General purpose input and output	
/SPDIF_OUT			/SPDIF-Out	
/DMIC_DAT2			/Secondary DMIC data	
RXD	IO	40	Serial data receive	
/GPIO[5]			/General purpose input and output	
/JD0			/Jack detection	
-			Total: 12 Pins	

6.4. I2C Interface

Table 4. I2C Interface

Name	Type	Pin No.	Description
I2C_SDA_M	IO	45	I2C Bus Data – Master
/GPIO[16]			/General purpose input and output
I2C_SCL_M	IO	46	I2C Bus clock– Master
/GPIO[17]			/General purpose input and output
-			Total: 2 Pins

6.5. I2S Interface

Table 5. I2S Interface

Name	Type	Pin No.	Description
I2S0_SCK	IO	1	I2S Clock output
/GPIO[19]			/General purpose input and output
I2S0_WS	IO	2	I2S channel select
/GPIO[20]			/General purpose input and output
I2S0_SD_IN	IO	3	I2S data input
/GPIO[21]			/General purpose input and output
I2S0_SD_OUT	IO	4	I2S data output
/GPIO[22]			/General purpose input and output
I2S0_MCLK	IO	48	System Master Clock
/GPIO[18]			/General purpose input and output
-			Total: 5 Pins

Note: when GPIO[16] and GPIO[17] are for I2C function, which GPIO[18] ~ GPIO[22] can't support GPIO function.

6.6. Analog I/O

Table 6. Analog I/O

<u> </u>						
Name Type Pin No.		Pin No.	Description	Characteristic Definition		
RING2	I	25	Combo jack microphone input	Analog input		
SLEEVE	I	24	Combo jack microphone input	Analog input		
LINE_L	I	19	Line input left channel	Analog input		
LINE_R	R I 20		Line input right channel	Analog input		
HPOUT_R O 32		32	Headphone output Right channel	Analog output		
HPOUT_L	О	31	Headphone output Left channel	Analog output		
-			Total: 6 Pins			

6.7. Filter/Reference

Table 7. Filter/Reference

Name	Type	Pin No.	Description	Characteristic Definition
VREF	-	22	Analog I/O reference voltage	4.7uF Capacitor to analog ground
CPVREF	-	30	Analog I/O reference voltage	Connected to analog ground
MICBIAS1	О	29	MIC BIAS Voltage output	Programmable Analog DC output
MICBIAS2	О	28	MIC BIAS Voltage output	Programmable Analog DC output
MIC_CAP	-	26	Microphone input reference voltage	10uF Capacitor to analog ground
DACREF	-	18	DAC/ADC reference voltage	4.7uF Capacitor to analog ground
CBN1	-	36	Charge pump Bucket Capacitor	2.2μF capacitor to CPN1
CBP1	-	35	Charge pump Bucket Capacitor	2.2μF capacitor to CPP1
CBN2	-	38	Charge pump Bucket Capacitor	2.2μF capacitor to CPN2
CBP2	-	37	Charge pump Bucket Capacitor	2.2μF capacitor to CPP2
-			Total: 10 Pins	

6.8. Power/Ground

Table 8. Power/Ground

Name	Type	Pin No.	Description	
DV12S	PWR-O	7	Regulated 1.2V output for core power	
D3V3	PWR-O	12	3.3V power output from integrated VBUS-to-3.3V regulator and I/O interface	
VBUS	PWR-I	10	USB bus 5.0V power input for integrated multiple regulators. This power pin can accept 3.3V of USB power input for 3.3V system	
VDD_I2S	PWR-O	47	VDD_I2S for companion I2S IO power	
AVDD	PWR-O	21	Analog power	
CPVPP	PWR-O	33	Charge Pump Positive Voltage Output	
CPVDD	PWR-O	34	Charge Pump Voltage Output	
CPVEE	PWR-O	39	Charge Pump Negative Voltage Output	
MICVDD	PWR-O	27	Microphone bias power	
AGND	GND	23	Analog ground	
	-		Total: 10 Pins	

7. Electrical Characteristics

7.1. Absolute Maximum Ratings

Table 9. Absolute Maximum Ratings

Symbol	Minimum	Typical	Maximum	Units	
VBus	-0.3	5.0	5.5	V	
Ta	0	-	+70	°C	
Ts	-40	-	+125	°C	
ESD (E	lectrostatic Disc	harge)			
Susceptibility Voltage					
Pass 3500V					
	VBus Ta Ts	VBus -0.3 Ta 0 Ts -40 ESD (Electrostatic Disc)	Symbol Minimum Typical VBus -0.3 5.0 Ta 0 - Ts -40 - ESD (Electrostatic Discharge) Susceptibility Voltage	Symbol Minimum Typical Maximum VBus -0.3 5.0 5.5 Ta 0 - +70 Ts -40 - +125 ESD (Electrostatic Discharge) Susceptibility Voltage	

7.2. Recommended Operating Condition

Table 10. Recommended Operating Condition

Symbol	Description	Min.	Тур.	Max.	Unit
VBus	Supply Voltage	4.5	5	5.5	V

7.3. DC Characteristics

Table 11. DC Characteristics

Symbol	Description	Min.	Тур.	Max.	Unit
$ m V_{IH}$	Input Voltage High	2	-	3.3	V
$ m V_{IL}$	Input Voltage Low	-0.5	-	0.8	V
V_{OH}	Output Voltage High	2.4	-	-	V
V_{OL}	Output Voltage Low	-	-	0.4	V
I_{OH}	Output Current High	-	-	4	mA
I_{OL}	Output Current Low	-	-	4	mA

7.4. AC Characteristics

7.4.1. SPDIF Output Timing

Table 12. SPDIF Output Timing

Parameter	Symbol	Minimum	Typical	Maximum	Units
SPDIF-OUT Frequency	ı	=	3.072	-	MHz
SPDIF-OUT Period	Tcycle	-	325.6	-	ns
SPDIF-OUT Jitter	Tjitter	-	-	4	ns
SPDIF-OUT High Level Width	THigh	156.2 (48%)	162.8 (50%)	169.2 (52%)	ns (%)
SPDIF-OUT Low Level Width	TLow	156.2 (48%)	162.8 (50%)	169.2 (52%)	ns (%)
SPDIF-OUT Rising Time	Trise	-	2.0	-	ns
SPDIF-OUT Falling Time	Tfall	-	2.0	-	ns

Figure 3. SPDIF Output Timing

7.4.2. I2C Control Interface

Table 13. I2C Control Interface

Parameter	Symbol	Min	Тур	Max	Units
Clock Low Pulse Duration	Tw(9)	1.3	-	-	μs
Clock High Pulse Duration	Tw(10)	0.6	-	-	μs
Clock Frequency	f	0	-	400(*2)	KHz
Setup Time for a Repeated START Condition	Tsu(6)	600	-	-	ns
Start Hold Time	Th(5)	600	-	-	ns
Data Setup Time	Tsu(7)	100	-	-	ns
Data Hold Time	Th(6)	-	-	900	ns
Rising Time	Tr	-	-	300	ns
Falling Time	Tf	-	-	300	ns
Setup Time	Tsu(8)	600	-	-	ns
Bus Free Time Between a STOP and START Condition	Tbuf	1.3	-	-	μs
Pulse Width of Spikes Suppressed Input Filter	Tsp	0	-	50	ns

- Note 1: The host must apply the MCLK clock during I2C control interface access.
- Note 2: If MCLK provide 256*8KHz, I2C clock frequency only can support 400 KHz
- Note 3: There is no need for MCLK in 12C communications.

Figure 4. I2C Control Interface

7.4.3. I2S Master Mode

Table 14. Master Mode

Parameter	Symbol	Min	Тур	Max	Units
LRCK output to BCLK delay	t_{LRD}	-	ı	30	ns
Data output to BCLK delay	$t_{ m ADD}$	-	-	30	ns
Data input Setup time	t_{DAS}	10	-	-	ns
Data input Hold time	t_{DAH}	10	1	-	ns

Figure 5. I2S Master Mode Timing

7.5. Analog Performance

Standard Test Conditions

- Tambient=25°C, VBUS=5.0V ±5%
- 1kHz input sine wave; Sampling frequency=48kHz; 0dB=1Vrms
- 10KΩ/50pF load; Test bench Characterization BW: 20Hz~22kHz

Table 15. Analog Performance

Parameter	Min	Тур	Max	Units
Full-Scale Input Voltage				
All ADC (Gain=0dB)	-	0.6	-	Vrms
Line Input		0.6		VIIIIS
MIC Input		0.6		
Full-Scale Output Voltage	-		-	
All DAC (Gain=0dB)	-	1.0	-	
Headphone Out @10KΩ load	-	1.0	-	Vrms
Headphone Out @32Ω load	-	1.0	-	
Headphone Out @16Ω Load	-	0.9	-	
SNR (A Weighted)				
ADC	-	94	-	
DAC	-	100	-	
Headphone Out @16Ω Load	-	98	-	dB FSA
Headphone Out @32Ω Load	=	98	-	
MIC_IN to Stereo ADC with 0dB	=	93	-	
LINE_IN to stereo ADC with 0dB	-	93	-	
Total Harmonic Distortion Plus Noise, THD+N				
ADC	-	-84	-	
DAC	-	-85	-	dB FS
Headphone Out @16Ω Load	-	-81	-	
Headphone Out @32Ω Load	-	-81	-	
Frequency Response				
ADC (-3dB lower edge, -1dB higher edge)	10	-	0.454*Fs	Hz
DAC (-3dB lower edge, -1dB higher edge)	10	-	0.454*Fs	
Crosstalk	-	-80	-	dB
Current consumption @ Idle(only for HID without	-	30	-	mA
Audio)		15		4
Current consumption @ Active(*1)	-	45	-	mA
Current consumption @ Suspend	-	490	-	μΑ

Note: FSA=Full-Scale with A-weighting filter. FS=Full-Scale. Note 1: only DAC to headphone out@32ohm 1mW output power

8. Mechanical Dimensions

8.1. Mechanical Dimensions – QFN 48 6x6mm Outline

8.2. Mechanical Dimensions Notes

Symbol	Dimension in mm				Dimension in incl	n
	Min	Nom	Max	Min	Nom	Max
A	0.75	0.85	1.00	0.030	0.034	0.039
A_1	0.00	0.02	0.05	0.000	0.001	0.002
A_3		0.20 REF		0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E	6.00BSC			0.236BSC		
D2/E2	4.15	4.4	4.65	0.163	0.173	0.183
e		0.40BSC		0.016BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020

Notes: CONTROLLING DIMENSION: MILLIMETER (mm).
REFERENCE DOCUMENT: JEDEC MO-220

9. Application Circuits

To guarantee the best compatibility and performance quality in hardware design with specific requirements, please contact Realtek to receive the latest application circuits. Any modification made to the reference circuits is recommended to be reviewed by Realtek. Realtek may update the latest application circuits without modifying this datasheet.

10. Ordering Information

Table 16. Ordering Information

Part Number	Package	Status
ALC4042-CG	MQFN-48 'Green' Package (6mm x 6mm)	MP

Realtek Semiconductor Corp. Headquarters

No. 2, Innovation Road II Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047 www.realtek.com