第四章 连通性

说明:由于本章内容相对比较独立,与其他章节关系不大,所以在课时不足的情况下本章可以不讲,但不会影响整个教学的完整性。同时考虑到学生的需求,所以将本章的教案和课件在此也一起放上,可供学生参阅。

本章的五节分别介绍4类重要的拓扑不变性质.本章讨论连通性、道路连通性、局部连通性及 其 在实分析中的一些简单的应用.

教学重点:连通空间、局部连通空间;教学难点:连通分支.

4.1 连通空间

在拓扑中怎样定义连通,分隔区间(0,1),(1,2)的关系与(0,1),[1,2)的关系不同,虽然他们都不相交,但相连的程度不一样.

定义 4.1.1 设 $A, B \subset X$, 若 $A \cap B^- = A^- \cap B = \phi$, 则称 A, B 是隔离的.

区间(0, 1)与(1, 2)隔离,但区间(0, 1)与[1, 2)不隔离.

几个基本事实: (1)两不交的开集是隔离 的; (2)两不交的闭集是隔离的; (3)隔离子集的子集是隔离的。

定义 **4.1.2** X 称为不连通的,若 X 中有非空的隔离子集 A, B 使 $X = A \cup B$,即 X 可表为两非空 隔离集之并。否则 X 称为连通的。

包含多于一个点的离散空间不连通, 平庸空间是连通的.

定理 4.1.1 对空间X, 下述等价:

- (1) X 是不连通的;
- (2) X 可表为两非空不交闭集之并;
- (3) X 可表为两非空不交开集之并;
- (4) X 存在既开又闭的非空真子集.

证明 (1)⇒(2)设隔离集A,B之并是 $X,B^-=B^-\cap (A\cup B)=(B^-\cap A)\cup (B^-\cap B)=B$. 同理, A 也是闭的.

(2)⇒(3)设X 是两非空不交闭集A,B之并,则X 是两非空不交开集A,B之 并.

(3) \Rightarrow (4) 设 X 是两非空不交开集 A, B 之 并,则 A, B 都 是 X 的既开又团的非空真子集. (4) \Rightarrow (1) 岩 A 是 X 的开闭集,则 A, X = A 隔离.

例 4.1.1 Q 不是 R 的连通子空间,因为 $Q = (Q \cap (-\infty, \pi))(Q \cap (\pi, +\infty))$.

定理 4.1.2 R 是连通的.

证明 若 R 不连通,则 R 是两非空不交闭集 A,B 之并 . 取定 $a \in A, b \in B$,不妨设 a < b .

令 $A^* = [a,b] \cap A, B^* = [a,b] \cap B$ 则 $A^*, B^* \to R$ 两非空不交闭集且 $[a,b] = A^* \cup B^*$.让 $c = \sup A^*$. 因 $A^* \to B$ 是闭的, $c \in A^*, c < b, (c,b] \subset B^*$,因 $B^* \to B$ 是闭的, $c \in B^*$,从而 $A^* \cap B^* \neq \phi$,矛盾.

定义 4.1.3 若 X 的子空间 Y 是连通的,则称 Y 为连通子集,否则,称为不连通子集.

定理 **4.1.3** 设 $A, B \subset Y \subset X$, 则 $A, B \in Y$ 的隔离集 $\Leftrightarrow A, B \in X$ 的隔离集.

证明 $c_{Y}(A) \cap B = c_{X}(A) \cap B \cap Y = c_{X}(A) \cap B$; 同理, $c_{Y}(B) \cap A = c_{X}(B) \cap A$.

定理 **4.1.4** 设Y 是X 的连通子集. 如果X 有隔离子集A,B 使Y \subset A \cup B , 则Y \subset A 或Y \subset B .

证明 $A \cap Y, B \cap Y \in Y$ 的隔离集, 所以 $A \cap Y = \emptyset$, 或 $B \cap Y = \emptyset$, 于是 $Y \subset A$ 或 $Y \subset B$.

定理 **4.1.5** 若Y 是X 的连通了集且 $Y \subset Z \subset Y^-$,则Z 是连通的.

证明 若Z 不连通,X 的非空隔离集A,B 使 $Z=A\cup B\supset Y$,于是 $Y\subset A$ 或 $Y\subset B$,不 妨设 $Y\subset A$,那 么 $Z\subset Y^-\subset A^-$,于是 $B=Z\cap B=\phi$,矛盾.

定理 4.1.6 设 $\{Y_{\lambda}\}_{y \in r}$ 是空间 X 的连通子集族. 如果 $\bigcap_{y \in r} Y_{\lambda} \neq \emptyset$, 则 X 连通.

证明 若 $\bigcup_{y \in \tau} Y_{\lambda}$ 是 X 中隔离集A, B之并,取定 $x \in \bigcap_{y \in \tau} Y_{\lambda} \neq \emptyset$,不妨设 $x \in A$,则 . $\forall \gamma \in \tau, Y_{\gamma} \subset A$, 所以 $\bigcup_{y \in \tau} Y_{\lambda} \subset A$, 于是 $B = \emptyset$.

定理 4.1.7 设 $Y \subset X$.若 $\forall x, y \in Y, \exists X$ 的连通子集 Y_{xy} 使 $x, y \in Y_{xy} \subset Y$, 则Y 连通.

证明 设 $Y \neq \phi$,取定 $a \in Y$,则 $\bigcup_{\gamma \in \epsilon} Y_{ay} \subset A$ 且 $a \in \bigcap_{\gamma \in \epsilon} Y_{ay}$,所以Y连通.

定理 4.1.8(连续映射保持) 设 $f: X \to Y$ 连续. 若 X 连通, 则 f(X) 连通.

证明 若 f(X) 不连通,则 f(X) 含有非空的开闭真子集 A . 由于 $f:X\to f(X)$ 连续,于是 $f_{-}(A)$ 是 X 的 非空开闭真子集.

连续映射保持性 可商性 拓扑不变性.

有限可积性. 对于拓扑性质 P, 要证有限可积性, 因为 $X_1 \times X_2 \times ... \times X_n$ 同胚于 $X_1 \times ... \times X_{n-1} \times X_n$, 所以只须证: 若X,Y 具性质 P, 则 $X \times Y$ 具有性质 P.

定理 4.1.9 (有限可积性) 设 $X_1, X_2, ..., X_n$ 连通, 则 $X_1 \times X_2 \times ... \times X_n$ 连通.

证明 仅证若 X,Y 连通,则 $X\times Y$ 连通.取定 $(a,b)\in X\times Y. \forall (x,y)\in X\times Y$ 令 $S_{xy}=(X\times \{y\})(\{a\}\times Y)$ 由于 $X\times \{y\}$ 同胚于 $X,\{a\}\times Y$ 同胚于 Y,所以 $X\times \{y\}$, $\{a\}\times Y$, 都 连通且 $(a,y)\in (X\times \{y\})\cap (\{a\}\times Y)$, 由定理41.6, S_{xy} 连 通 且 $(x,y)\in S_{xy}$, 再 由 定 理 4.1.7 $X\times Y=\{S_{xy}\mid (x,y)\in X\times Y\}$ 连通.

4.2 连通性的某些简单应用

利用 R 连通性的证明(定理 4.1.2)知, 区间都是连通的. 区间有 9 类:

无限区间 5 类: $(-\infty,+\infty),(a,+\infty),[a,+\infty),(-\infty,h),(-\infty,h]$,

有限区间 4 类: (a, b), [a, b), (a, b], [a, b].

定理 4.2.1 设 $E \subset R$,则E连通 $\Leftrightarrow E$ 是区间.

证明 若 E 不是区间, $\exists a < c < b$,使 $a,b \in E$ 但 $c \notin E$ 令 $A = (-\infty,c) \cap E, B = (c,+\infty)$ 则 E 是不交的 非空开集 A,B 之并.

定理 4.2.2 设 X 连通, $f: X \to R$ 连续, 则 f(X) 是 R 的 个区间.

注 $x,y \in X$, 如果 t 介于 f(x) 与 f(y) 之间,则 $\exists z \in X$,使 f(z) = t. 事实上,不妨设 $f(x) \le t \le f(y)$ 则 $t \in [f(x), f(y)] \subset f(X)$ 所以 $\exists z \in X$,使 f(z) = t.

定理 **4.2.3**(介值定理) 设 $f:[a,h] \to R$ 连续,若 r 介于 f(a) 与 f(b) 之间,则 $\exists z \in [a,h]$ 使 f(z) = r.

定理 **4.2.4**(不动点定理) 设 $f:[0,1] \rightarrow [0,1]$ 连续, 则 $z \in [0,1]$ 使 f(z) = z.

证明 不妨设 0 < f(0), f(1) < 1. 定义 $F : [0,1] \to R$ 使F(x) = x - f(x),则F 连续且 $F(0) < 0 < F(1), z \in [0,1]$ 使得F(z) = 0,即f(z) = z.

定义 $f: R \to R^2$ 为 $f(t) = (\cos 2\pi t, \sin 2\pi t)$,则 f 连续且 $f(R) = S^1$,于是 S^1 是连通的. 对 $x = (x_1, x_2) \in S^1, -x = (-x_1, -x_2) \in S^1$ 称为 x 的对径点,映射 $r: S^1 \to S^1$ 定义为 r(x) = -x 称为对 经映射,则 r 连续.

定理 4.2.5(Borsuk-Ulam 定理) 设 $f: S^1 \to R$ 连续,则 $x \in S^1$,使f(x) = f(-x).

证明 定义 $F: S^1 \to R$ 为 F(x) = f(x) - f(-x),则 F 连续、若 $a \in S^1$,使得 $f(a) \neq f(-a)$ 则 $F(a) \cdot F(-a) < 0$,由定理 4.2.2, $\exists z \in S^1$,使得 F(z) = 0,即 f(z) = f(-z).

定理 **4.2.6** $R'' - \{0\}$ 连通, 其中 $n > 1,0 = (0,0,...,0) \in R''$.

证明 只证 n=2 的情形. 令 $A = [0,+\infty) \times (R - \{0\}), B(-\infty,0] \times (R - \{0\}), 则$

 $A \cup B = R'' - \{0\}$. 由于 $(0,+\infty) \times (R - \{0\}) \subset A \subset [0,+\infty) \times (R - \{0\})$,所以A 连通. 同理B 连通,从而A,B 连通.

定理 **4.2.7** R^2 与 R 不同胚.

证明 若. 存在同胚 $f: R^2 \to R$,令 $g = f_{R^2 - \{0\}}: R^2 - \{0\} \to R$,则 g 连续,从而 $g(R^2 - \{0\}) = R^2 - \{0\}$ 连通,矛盾.

4.3 连通分支

将不连通集分解为一些"最大"连通了集("连通分支")之并.

定义 4.3.1 $x,y \in X$ 称为连通的,若 X 的连通子集同时含x,y,记为 $x \sim y$.点的连通关系~ 是等 价关系: $(1)x \sim x;(2)x \sim y \Leftrightarrow y \sim x;(3)x \sim y,y \sim z \Rightarrow x \sim z$.

定义 4.3.2 空间 X 关于点的连通关系的每一等价类称为 X 的一个连通分支.

 $x\sim y \Leftrightarrow x,y$ 属于 X 的同一连通分支. $X \in X$ 的全体连通分支的互不相交并.

定理 4.3.1 设 C 是空间 X 的连通分支,则

- (1)若Y 是X 的连通了集且 $Y \cap C \neq \phi$,则 $Y \subset C$;
- (2)C 是连通的闭集.

证明 (1)収定 $x \in Y \cap C, \forall y \in Y$ 则 $x \sim y$ 所以 $y \in C$.

(2)取定 $c\in C$, $\forall x\in C$, $\exists X$ 的连通集 $Y_x(c,x\in Y_x)$,由于 $Y_x\cap C\neq \phi,Y_x\subset C$,于是 $C=\cup\{Y_x\mid x\in C\}\ \bot\ c\in\cap\{Y_x\mid x\in C\},\ \text{所以 C 是连通的.}\ \text{从而 }C^-$ 连通且 $C^-\cap C\neq \phi$,于是 $C^-\subset C$,故 C 闭.

以上说明:连通分支是最大的连通了集.

连通分支可以不是开集. Q的连通分支都是单点集,不是Q的开了集 $\forall x,y\in Q$, 由定理 4.2.1,不存在Q的连通子集同时含有x,y,所以Q的连通分支都是单点集

4.4 局部连通空间

例 4.4.1 (拓扑学家的正弦曲线) 令

$$S = \{(x, \sin(1/x) \mid x \in (0,1]\}, T = \{0\} \times [-1,1], S_1 = S \cup T,$$

则 $\overset{-}{S}=S_1$,于是 S,S_1 连通. 在 S_1 中,S 中点与 T 中点的"较小的"邻域表现出不同的连通性

 $S_1=S \cup T=S$

定义 **4.4.1** 设 $x \in X$ 岩x 的每一邻域U 中都含有x 的某一连通的邻域V,称X 在x 是局部连通的。空间X 称为局部连通的,岩X 在每一点是局部连通的。

S. 是连通, 非局部连通的. 多于一点的离散空间是局部连通, 非连通的.

定理 4.4.1 对空间 X, 下述等价:

- (1) X 是局部连通;
- (2) X 的任 开集的任 连通分支是开集;
- (3) X 有 个基,每 元是连通的.

证明 (1) \Rightarrow (2) 设 C 是 X 的开集 U 的连通分文. $\forall x \in C, \exists x$ 的连通的邻域 $V \subset U$,于是 $V \cap C \neq \emptyset, V \subset C$,所以 C 是 x 的邻域、故 C 开.

- (2) \Rightarrow (3) 令 $\mathcal{B} = \{C \subset X \mid C \in \mathcal{L}X \text{ 的开集}U \text{ 的连通分支}\}, 则<math>\mathcal{B} \in \mathcal{L}X \text{ 的基}.$
- (3)⇒ (1)设U 是x 的邻域,存在开集V 使 $x \in V \subset U$,连通开集 C 使 $x \in C \subset V \subset U$,所以X 局部连通.

定理 **4.4.2** 设 $f: X \to Y$ 是连续开映射. 若 X 局部连通, 则 f(X) 局部连通.

证明. $\forall y \in f(X)$,及 $y \in f(X)$ 中的邻域U, 取 $x \in f^{-1}(y)$,则 $f^{-1}(U0 \to x)$ 的邻域,X 的连通开集V 使 $x \in V \subset f^{-1}(U)$,于是 $y = f(x) \in f(V) \subset U$.

定理 **4.4.3** 局部连通性是有限可积性,即设 $X_1, X_2, ..., X_n$ 局部连通,则 $X_1 \times X_2 \times ... \times X_n$ 局部连通.

证明 仅证若 X_1, X_2 局部连通,则 $X_1 \times X_2$ 局部连通.设 \mathcal{B}_1 , \mathcal{B}_2 分别是 X_1, X_2 的由连通开集组成的基,则{ $B_1 \times B_2 \mid B_1 \in \mathcal{B}_1$, $B_2 \in \mathcal{B}_2$ }是 $X_1 \times X_2$,的由连通开集组成的基(定理 3.2.4).

4.5 道路连通空间

定义 **4.5.1** 设 X 是拓扑空间,连续映射 $f:[0,1] \to X$ 称为 X 中的一条道路, f(0), f(1) 分别称为 f 的起点和终点, f 称为从 f(0) 到 f(1) 的一条道路, f([0,1]) 称为 X 中的一条曲线. 若 f(0) = f(1), f 称为闭路.

定义 4.5.2 对空间 X, 如果 $\forall x, y \in X, \exists X$ 中从 x 到 y 的道路, 则称 X 是道路连通的.

类似可定义道路连通子集.

R 是道路连通的, $\forall x, y \in R$, 定义 $f:[0,1] \to R$ 为 f(t)=(1-t)x+ty.

定理 4.5.1 道路连通⇒连通.

 \mathcal{B} 设 X 道路连通. $\forall x, y \in X, \exists X \ \text{中从} x \ \text{到} \ y \ \text{ 的道路} \ f: [0,1] \to X$, 这时 $f([0,1]) \ \mathcal{E} \ X$ 中含x,y 的连通了集,所以X 连通.

拓扑学家正弦曲线 S: 是连通, 非道路连通的空间.

定理 4.5.2 设 $f: X \to Y$ 连续. 若X 道路连通, 则f(X) 道路连通.

证明 $\forall y_1, y_2 \in f(X), \exists x_1, x_2 \in X \oplus y_1 = f(x_1), y_2 = f(x_2)$,存在道路 $g:[0,1] \to X$ 使 $g(0) = x_1, g(1) = x_2$,则 feg: $[0,1] \to Y$ 是 f(X)中从 y_1 到 y_2 的道路.

定理 4.5.3 道路连通性是有限可积性.

证明 仅证若 X_1, X_2 ,是道路连通,则 $X_1 \times X_2$,道路连通.

 $\forall x = (x_1, x_2), y = (y_1, y_2) \in X_1 \times X_2, \text{ 则存在道路 } f_i : [0,1] \to X_1 \times X_2 \text{ 使 } f_i(0) = x_i, f_i(1) = y_i,$ 定义 $f : [0,1] \to X_1 \times X_2$ 为 $f(t) = (f_1(t), f_2(t)), \text{ 则 f 是从 x 到 y 的道路.}$

可引进局部道路连通空间的概念. 同时, 与连通分支类似 , 可建立道路连通分支: 空间中最大的道路连通子集.