COURSE 10

4.2.3. Factorization methods - LU methods

The matrix A can be factored into the product of a lower triangular matrix L and an upper triangular matrix U, namely A = LU.

$$Ax = b \iff LUx = b,$$

where

$$L = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & & & & \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{pmatrix} \qquad U = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & & & & \\ 0 & 0 & \dots & u_{nn} \end{pmatrix}.$$

We solve the systems in two stages:

First stage: Solve Lz = b,

Second stage: Solve Ux = z.

Methods for computing matrices L and U: **Doolittle method** where all diagonal elements of L have to be 1; **Crout method** where all

diagonal elements of U have to be 1 and **Choleski method** where $l_{ii} = u_{ii}$ for i = 1, ..., n.

Remark 1 LU factorizations are modified forms of Gauss elimination method.

Doolittle method

We consider $a_{kk} \neq 0$, $k = \overline{1, n-1}$. Denote

$$l_{i,k} := \frac{a_{i,k}^{(k-1)}}{a_{k,k}^{(k-1)}}, \quad i = \overline{k+1, n}$$

$$t^{(k)} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ l_{k+1,k} \\ \vdots \\ l_{n,k} \end{bmatrix},$$

having zeros for the first k-th lines, and

$$M_k = I_n - t^{(k)} e_k \in \mathcal{M}_{n \times n}(\mathbb{R})$$
 (1)

where $e_k = \begin{pmatrix} 0 & \dots & 1 & \dots & 0 \end{pmatrix}$ is the k-unit vector of dimension n,(has

where
$$e_k = \begin{pmatrix} 0 & \dots & 1 & \dots & 0 \end{pmatrix}$$
 is the k -unit vector of dimension n , (has 1 on the k -th position) and $I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & & & & \\ 0 & 0 & \dots & 1 \end{pmatrix}$ is the identity matrix of order n

of order n.

 $a_{i,k}^{(0)}$ are elements of A; $a_{i,k}^{(1)}$ are elements of $M_1 \cdot A$; ...; $a_{i,k}^{(k-1)}$ are elements of $M_{k-1} \cdot ... \cdot M_1 \cdot A$.

Definition 2 The matrix M_k is called the Gauss matrix, the components $l_{i,k}$ are called the Gauss multiplies and the vector $t^{(k)}$ is the Gauss vector.

Remark 3 If $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, then the Gauss matrices M_1, \ldots, M_{n-1} can be determined such that

$$U = M_{n-1} \cdot M_{n-2} \dots M_2 \cdot M_1 \cdot A$$

is an upper triangular matrix. Moreover, if we choose

$$L = M_1^{-1} \cdot M_2^{-1} \dots M_{n-1}^{-1}$$

then

$$A = L \cdot U$$
.

Example 4 Find LU factorization for the matrix

$$A = \left(\begin{array}{cc} 2 & 1 \\ 6 & 8 \end{array}\right).$$

Solve the system $\begin{cases} 2x_1 + x_2 = 3 \\ 6x_1 + 8x_2 = 9 \end{cases}.$

Sol.

$$M_{1} = I_{2} - t^{(1)}e_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ \frac{6}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}.$$

We have

$$U = M_1 A = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 6 & 8 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix}$$
$$L = M_1^{-1} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}.$$

So

$$A = \begin{pmatrix} 2 & 1 \\ 6 & 8 \end{pmatrix} = L \cdot U = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix}.$$

We have

$$L \cdot U \cdot x = \begin{pmatrix} 3 \\ 9 \end{pmatrix}$$
$$Ux = z$$

and

$$\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 9 \end{pmatrix} \Rightarrow z = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \Rightarrow x = \begin{pmatrix} 1.5 \\ 0 \end{pmatrix}.$$

4.3. Iterative methods for solving linear systems

Because of round-off errors, direct methods become less efficient than iterative methods for large systems (>100~000~variables).

An iterative scheme for linear systems consists of converting the system

$$Ax = b (2)$$

to the form

$$x = \tilde{b} - Bx.$$

After an initial guess for $x^{(0)}$, the sequence of approximations of the solution $x^{(0)}, x^{(1)}, ..., x^{(k)}, ...$ is generated by computing

$$x^{(k)} = \tilde{b} - Bx^{(k-1)}$$
, for $k = 1, 2, 3, ...$

4.3.1. Jacobi iterative method

Consider the $n \times n$ linear system,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n, \end{cases}$$

where we assume that the diagonal terms $a_{11}, a_{22}, \ldots, a_{nn}$ are all nonzero.

We begin our iterative scheme by solving each equation for one of the variables:

$$\begin{cases} x_1 = u_{12}x_2 + \dots + u_{1n}x_n + c_1 \\ x_2 = u_{21}x_1 + \dots + u_{2n}x_n + c_2 \\ \dots \\ x_n = u_{n1}x_1 + \dots + u_{nn-1}x_{n-1} + c_n, \end{cases}$$

where
$$u_{ij} = -\frac{a_{ij}}{a_{ii}}, \ c_i = \frac{b_i}{a_{ii}}, \ i = 1, ..., n.$$

Let $x^{(0)}=(x_1^{(0)},x_2^{(0)},...,x_n^{(0)})$ be an initial approximation of the solution. The k+1-th approximation is:

$$\begin{cases} x_1^{(k+1)} = u_{12}x_2^{(k)} + \dots + u_{1n}x_n^{(k)} + c_1 \\ x_2^{(k+1)} = u_{21}x_1^{(k)} + u_{23}x_3^{(k)} + \dots + u_{2n}x_n^{(k)} + c_2 \\ \dots \\ x_n^{(k+1)} = u_{n1}x_1^{(k)} + \dots + u_{nn-1}x_{n-1}^{(k)} + c_n, \end{cases}$$

for k = 0, 1, 2, ...

An algorithmic form:

$$x_i^{(k)} = \frac{b_i - \sum\limits_{j=1, j \neq i}^{n} a_{ij} x_j^{(k-1)}}{a_{ii}}, \ i = 1, 2, ..., n, \ \text{for } k \ge 1.$$

The iterative process is terminated when a convergence criterion is satisfied.

Stopping criterions: $\left|x^{(k)}-x^{(k-1)}\right|<\varepsilon$ or $\frac{\left|x^{(k)}-x^{(k-1)}\right|}{\left|x^{(k)}\right|}<\varepsilon$, with $\varepsilon>0$ - a prescribed tolerance.

Example 5 Solve the following system using the Jacobi iterative method. Use $\varepsilon = 10^{-3}$ and $x^{(0)} = (0\ 0\ 0\ 0)$ as the starting vector.

$$\begin{cases} 7x_1 - 2x_2 + x_3 & = 17 \\ x_1 - 9x_2 + 3x_3 - x_4 & = 13 \\ 2x_1 + 10x_3 + x_4 & = 15 \\ x_1 - x_2 + x_3 + 6x_4 & = 10. \end{cases}$$

These equations can be rearranged to give

$$x_1 = (17 + 2x_2 - x_3)/7$$

$$x_2 = (-13 + x_1 + 3x_3 - x_4)/9$$

$$x_3 = (15 - 2x_1 - x_4)/10$$

$$x_4 = (10 - x_1 + x_2 - x_3)/6$$

and, for example,

$$x_1^{(1)} = (17 + 2x_2^{(0)} - x_3^{(0)})/7$$

$$x_2^{(1)} = (-13 + x_1^{(0)} + 3x_3^{(0)} - x_4^{(0)})/9$$

$$x_3^{(1)} = (15 - 2x_1^{(0)} - x_4^{(0)})/10$$

$$x_4^{(1)} = (10 - x_1^{(0)} + x_2^{(0)} - x_3^{(0)})/6.$$

Substitute $x^{(0)}=(0,0,0,0)$ into the right-hand side of each of these equations to get

$$x_1^{(1)} = (17 + 2 \cdot 0 - 0)/7 = 2.428 571 429$$
 $x_2^{(1)} = (-13 + 0 + 3 \cdot 0 - 0)/9 = -1.444 444 444$
 $x_3^{(1)} = (15 - 2 \cdot 0 - 0)/10 = 1.5$
 $x_4^{(1)} = (10 - 0 + 0 - 0)/6 = 1.666 666 667$

and so $x^{(1)} = (2.428\ 571\ 429, -1.444\ 444\ 444, 1.5, 1.666\ 666\ 667).$ The Jacobi iterative process:

$$x_1^{(k+1)} = \left(17 + 2x_2^{(k)} - x_3^{(k)}\right) / 7$$

$$x_2^{(k+1)} = \left(-13 + x_1^{(k)} + 3x_3^{(k)} - x_4^{(k)}\right) / 9$$

$$x_3^{(k+1)} = \left(15 - 2x_1^{(k)} - x_4^{(k)}\right) / 10$$

$$x_4^{(k+1)} = \left(10 - x_1^{(k)} + x_2^{(k)} - x_3^{(k)}\right) / 6, \qquad k \ge 1.$$

We obtain a sequence that converges to

 $\mathbf{x}^{(9)} = (2.000127203, -1.000100162, 1.000118096, 1.000162172).$

4.3.2. Gauss-Seidel iterative method

Almost the same as Jacobi method, except that each x-value is improved using the most recent approx. of the other variables.

For a $n \times n$ system, the k + 1-th approximation is:

$$\begin{cases} x_1^{(k+1)} = u_{12}x_2^{(k)} + \ldots + u_{1n}x_n^{(k)} + c_1 \\ x_2^{(k+1)} = u_{21}x_1^{(k+1)} + u_{23}x_3^{(k)} + \ldots + u_{2n}x_n^{(k)} + c_2 \\ \ldots \\ x_n^{(k+1)} = u_{n1}x_1^{(k+1)} + \ldots + u_{nn-1}x_{n-1}^{(k+1)} + c_n, \end{cases}$$
 with $k = 0, 1, 2, \ldots; \ u_{ij} = -\frac{a_{ij}}{a_{ii}}, \ c_i = \frac{b_i}{a_{ii}}, \ i = 1, \ldots, n \ (as in Jacobi method)$

method).

Algorithmic form:

$$x_i^{(k)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)}}{a_{ii}}$$

for each i = 1, 2, ...n, and for $k \ge 1$.

Stopping criterions: $\left|x^{(k)}-x^{(k-1)}\right|<\varepsilon$, or $\frac{\left|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right|}{\left|\mathbf{x}^{(k)}\right|}<\varepsilon$, with ε - a prescribed tolerance, $\varepsilon>0$.

Remark 6 Because the new values can be immediately stored in the location that held the old values, the storage requirements for \mathbf{x} with the Gauss-Seidel method is half than that for Jacobi method and the rate of convergence is faster.

Example 7 Solve the following system using the Gauss-Seidel iterative method. Use $\varepsilon = 10^{-3}$ and $\mathbf{x}^{(0)} = (0\ 0\ 0\ 0)$ as the starting vector.

$$\begin{cases} 7x_1 - 2x_2 + x_3 & = 17 \\ x_1 - 9x_2 + 3x_3 - x_4 & = 13 \\ 2x_1 + 10x_3 + x_4 & = 15 \\ x_1 - x_2 + x_3 + 6x_4 & = 10 \end{cases}$$

We have

$$x_1 = (17 + 2x_2 - x_3)/7$$

$$x_2 = (-13 + x_1 + 3x_3 - x_4)/9$$

$$x_3 = (15 - 2x_1 - x_4)/10$$

$$x_4 = (10 - x_1 + x_2 - x_3)/6,$$

and, for example,

$$x_1^{(1)} = (17 + 2x_2^{(0)} - x_3^{(0)})/7$$

$$x_2^{(1)} = (-13 + x_1^{(1)} + 3x_3^{(0)} - x_4^{(0)})/9$$

$$x_3^{(1)} = (15 - 2x_1^{(1)} - x_4^{(0)})/10$$

$$x_4^{(1)} = (10 - x_1^{(1)} + x_2^{(1)} - x_3^{(1)})/6,$$

which provide the following Gauss-Seidel iterative process:

$$x_{1}^{(k+1)} = \left(17 + 2x_{2}^{(k)} - x_{3}^{(k)}\right) / 7$$

$$x_{2}^{(k+1)} = \left(-13 + x_{1}^{(k+1)} + 3x_{3}^{(k)} - x_{4}^{(k)}\right) / 9$$

$$x_{3}^{(k+1)} = \left(15 - 2x_{1}^{(k+1)} - x_{4}^{(k)}\right) / 10$$

$$x_{4}^{(k+1)} = \left(10 - x_{1}^{(k+1)} + x_{2}^{(k+1)} - x_{3}^{(k+1)}\right) / 6, \quad \text{for } k \ge 1.$$

Substitute $\mathbf{x}^{(0)} = (0,0,0,0)$ into the right-hand side of each of these equations to get

$$x_1^{(1)} = (17 + 2 \cdot 0 - 0)/7 = 2.428 571 429$$

 $x_2^{(1)} = (-13 + 2.428 571 429 + 3 \cdot 0 - 0)/9 = -1.1746031746$
 $x_3^{(1)} = (15 - 2 \cdot 2.428 571 429 - 0)/10 = 1.0142857143$
 $x_4^{(1)} = (10 - 2.428 571 429 - 1.1746031746 - 1.0142857143)/6$
 $= 0.8970899472$

and so

 $\mathbf{x}^{(1)} = (2.428571429 - 1.1746031746, 1.0142857143, 0.8970899472).$

Similar procedure generates a sequence that converges to

 $\mathbf{x}^{(5)} = (2.000025, -1.000130, 1.000020.0.999971).$

4.3.3. Relaxation method

In case of convergence, the Gauss-Seidel method is faster than Jacobi method. The convergence can be more improved using **relaxation method (SOR method)** (SOR=Succesive Over Relaxation)

Algorithmic form of the method:

$$x_i^{(k)} = \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right) + (1 - \omega) x_i^{(k-1)}$$

for each i = 1, 2, ...n, and for $k \ge 1$.

For $0 < \omega < 1$ the procedure is called **under relaxation method**, that can be used to obtain convergence for systems which are not convergent by Gauss-Siedel method.

For $\omega > 1$ the procedure is called **over relaxation method**, that can be used to accelerate the convergence for systems which are convergent by Gauss-Siedel method.

By Kahan's Theorem follows that the method converges for $0 < \omega < 2$.

Remark 8 For $\omega = 1$, relaxation method is Gauss-Seidel method.

Example 9 Solve the following system, using relaxation iterative method. Use $\varepsilon = 10^{-3}$, $\mathbf{x}^{(0)} = (1\ 1\ 1)$ and $\omega = 1.25$,

$$4x_1 + 3x_2 = 24$$

 $3x_1 + 4x_2 - x_3 = 30$
 $-x_2 + 4x_3 = -24$

We have

$$x_1^{(k)} = 7.5 - 0.937x_2^{(k-1)} - 0.25x_1^{(k-1)}$$

$$x_2^{(k)} = 9.375 - 9.375x_1^{(k)} + 0.3125x_3^{(k-1)} - 0.25x_2^{(k-1)}$$

$$x_3^{(k)} = -7.5 + 0.3125x_2^{(k)} - 0.25x_3^{(k-1)}, \text{ for } k \ge 1.$$

The solution is (3, 4, -5).

4.3.4 The matriceal formulations of the iterative methods

Split the matrix A into the sum

$$A = D + L + U,$$

where D is the diagonal of A, L the lower triangular part of A, and U the upper triangular part of A. That is,

$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & \cdots & \ddots & \vdots \\ \vdots & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix}, \quad L = \begin{bmatrix} 0 & \cdots & 0 \\ a_{21} \vdots & & \ddots \\ \vdots & \cdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{bmatrix},$$

$$U = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ \vdots & \cdots & \ddots & \vdots \\ & \ddots & a_{n-1,n} \\ 0 & \cdots & & 0 \end{bmatrix}$$

The system Ax = b can be written as

$$(D+L+U)\mathbf{x} = \mathbf{b}.$$

The **Jacobi method** in matriceal form is given by:

$$D\mathbf{x}^{(k)} = -(L+U)\mathbf{x}^{(k-1)} + \mathbf{b}$$

the Gauss-Seidel method in matriceal form is given by:

$$(D+L)\mathbf{x}^{(k)} = -U\mathbf{x}^{(k-1)} + \mathbf{b}$$

and the relaxation method in matriceal form is given by:

$$(D + \omega L)\mathbf{x}^{(k)} = ((1 - \omega)D - \omega U)\mathbf{x}^{(k-1)} + \omega \mathbf{b}$$

Convergence of the iterative methods

Remark 10 The convergence (or divergence) of the iterative process in the Jacobi and Gauss-Seidel methods does not depend on the initial guess, but depends only on the character of the matrices themselves. However, a good first guess in case of convergence will make for a relatively small number of iterations.

A sufficient condition for convergence:

Theorem 11 (Convergence Theorem) If A is strictly diagonally dominant, then the Jacobi, Gauss-Seidel and relaxation methods converge for any choice of the starting vector $\mathbf{x}^{(0)}$.

Example 12 Consider the system of equations

$$\begin{bmatrix} 3 & 1 & 1 \\ -2 & 4 & 0 \\ -1 & 2 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}.$$

The coefficient matrix of the system is strictly diagonally dominant since

$$|a_{11}| = |3| = 3 > |1| + |1| = 2$$

 $|a_{22}| = |4| = 4 > |-2| + |0| = 2$
 $|a_{33}| = |-6| = 6 > |-1| + |2| = 3$.

Hence, if the Jacobi or Gauss-Seidel method are used to solve the system of equations, they will converge for any choice of the starting vector $\mathbf{x}^{(0)}$.

Example 13 Consider the linear system

$$4x_1 + x_2 = 3$$
$$2x_1 + 5x_2 = 1.$$

Perform two iterations of Jacobi, Gauss-Seidel and relaxation methods to this system, beginning with the vector x = [3, 11] and for $\omega = 1.25$.

(Solutions of the system are 7/9 and -1/9).

5. Numerical methods for solving nonlinear equations in $\mathbb R$

The roots of the iterative methods are traced back to Egyptians and Babylonians (cc. 1800 B.C.).

Example. Kepler's Equation: consider a two-body problem like a satellite orbiting the earth or a planet revolving around the sun. Kepler discovered that the orbit is an ellipse and the central body F (earth, sun) is in a focus of the ellipse. The speed of the satellite P is not uniform: near the earth it moves faster than far away. It is used Kepler's law to predict where the satellite will be at a given time. If we want to know the position of the satellite for t = 9 minutes, then we have to solve the equation $f(E) = E - 0.8sinE - 2\pi/10 = 0$.

Let $f: \Omega \to \mathbb{R}, \ \Omega \subset \mathbb{R}$. Consider the equation

$$f(x) = 0, \quad x \in \Omega. \tag{3}$$

We attach a mapping $F: D \to D, D \subset \Omega^n$ to this equation.

Let $(x_0,...,x_{n-1}) \in D$. Using F and the numbers $x_0,x_1,...,x_{n-1}$ we construct iteratively the sequence

$$x_0, x_1, ..., x_{n-1}, x_n, ...$$
 (4)

with

$$x_i = F(x_{i-n}, ..., x_{i-1}), \quad i = n,$$
 (5)

The problem consists in choosing F and $x_0, ..., x_{n-1} \in D$ such that the sequence (4) to be convergent to the solution of the equation (3).

Definition 14 The procedure of approximation the solution of equation (3) by the elements of the sequence (4), computed as in (5), is called F-method.

The numbers $x_0, x_1, ..., x_{n-1}$ are called **the starting points** and the k-th element of the sequence (4) is called an approximation of k-th order of the solution.

If the set of starting points has only one element then the F-method is **an one-step method**; if it has more than one element then the F-method is **a multistep method**.

Definition 15 If the sequence (4) converges to the solution of the equation (3) then the F-method is convergent, otherwise it is divergent.

Definition 16 Let $\alpha \in \Omega$ be a solution of the equation (3) and let $x_0, x_1, ..., x_{n-1}, x_n, ...$ be the sequence generated by a given F-method. The number p having the property

$$\lim_{x_i \to \alpha} \frac{\alpha - F(x_{i-n}, ..., x_i)}{(\alpha - x_i)^p} = C \neq 0, \quad C = constant,$$

is called the order of the F-method.

We construct some classes of F-methods based on the interpolation procedures.

Let $\alpha \in \Omega$ be a solution of the equation (3) and $V(\alpha)$ a neighborhood of α . Assume that f has inverse on $V(\alpha)$ and denote $g := f^{-1}$. Since

$$f(\alpha) = 0$$

it follows that

$$\alpha = g(0).$$

This way, the approximation of the solution α is reduced to the approximation of g(0).

Definition 17 The approximation of g by means of an interpolating method, and of α by the value of g at the point zero is called **the** inverse interpolation procedure.

5.1. One-step methods

Let F be a one-step method, i.e., for a given x_i we have $x_{i+1} = F(x_i)$.

Remark 18 If p = 1 the convergence condition is |F'(x)| < 1.

If p>1 there always exists a neighborhood of α where the F-method converges.

All information on f are given at a single point, the starting value \Rightarrow we are lead to Taylor interpolation.

Theorem 19 Let α be a solution of equation (3), $V(\alpha)$ a neighborhood of α , $x, x_i \in V(\alpha)$, f fulfills the necessary continuity conditions. Then we have the following method, denoted by F_m^T , for approximating α :

$$F_m^T(x_i) = x_i + \sum_{k=1}^{m-1} \frac{(-1)^k}{k!} [f(x_i)]^k g^{(k)}(f(x_i)), \tag{6}$$

where $g = f^{-1}$.

Proof. There exists $g = f^{-1} \in C^m[V(0)]$. Let $y_i = f(x_i)$ and consider Taylor interpolation formula

$$g(y) = (T_{m-1}g)(y) + (R_{m-1}g)(y),$$

with

$$(T_{m-1}g)(y) = \sum_{k=0}^{m-1} \frac{1}{k!} (y - y_i)^k g^{(k)}(y_i),$$

and $R_{m-1}g$ is the corresponding remainder.

Since $\alpha = g(0)$ and $g \approx T_{m-1}g$, it follows

$$\alpha \approx (T_{m-1}g)(0) = x_i + \sum_{k=1}^{m-1} \frac{(-1)^k}{k!} y_i^k g^{(k)}(y_i).$$

Hence,

$$x_{i+1} := F_m^T(x_i) = x_i + \sum_{k=1}^{m-1} \frac{(-1)^k}{k!} [f(x_i)]^k g^{(k)}(f(x_i))$$

is an approximation of α , and F_m^T is an approximation method for the solution α .

Concerning the order of the method ${\cal F}_m^T$ we state:

Theorem 20 If $g = f^{-1}$ satisfies condition $g^{(m)}(0) \neq 0$, then $\operatorname{ord}(F_m^T) = m$.

Remark 21 We have an upper bound for the absolute error in approximating α by x_{i+1} :

$$\left|\alpha - F_m^T(x_i)\right| \leq \frac{1}{m!} [f(x_i)]^m M_m g, \quad \text{with } M_m g = \max_{y \in V(0)} \left|g^{(m)}(y)\right|.$$

Particular cases.

1) Case m = 2.

$$F_2^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)}.$$

This method is called **Newton's method** (the tangent method). Its order is 2.

2) Case m = 3.

$$F_3^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)} - \frac{1}{2} \left[\frac{f(x_i)}{f'(x_i)} \right]^2 \frac{f''(x_i)}{f'(x_i)},$$

with $\operatorname{ord}(F_3^T)=3$. So, this method converges faster than F_2^T .

3) Case m = 4.

$$F_4^T(x_i) = x_i - \frac{f(x_i)}{f'(x_i)} - \frac{1}{2} \frac{f''(x_i)f^2(x_i)}{[f'(x_i)]^3} + \frac{\left(f'''(x_i)f'(x_i) - 3[f''(x_i)]^2\right)f^3(x_i)}{3![f'(x_i)]^5}.$$

Remark 22 The higher the order of a method is, the faster the method converges. Still, this doesn't mean that a higher order method is more efficient (computation requirements). By the contrary, the most efficient are the methods of relatively low order, due to their low complexity (methods F_2^T and F_3^T).