

Physik Aufgaben – Serie 14.

FS 2017 Prof. Dr. Thomas Ihn

[++]

Version 28. Mai 2017

Aufgabe 14.1. Beugung an zirkulärer Blende, Auflösungsvermögen [++]

Tritt ein Lichtbündel auf eine kreisförmigen Blende des Radius a, so entsteht ein aus konzentrischen Ringen bestehendes Beugungsmuster. Die Intensität als Funktion des Betrachtungswinkels θ ist

Abbildung 14.1: Blende, Schirm, und Beugungsmuster auf dem Schirm.

$$I(\theta) = I_0 \left(\frac{J\left(\frac{2\pi}{\lambda}an\sin(\theta)\right)}{\frac{2\pi}{\lambda}an\sin(\theta)} \right)^2 \tag{1}$$

wobei λ die Wellenlänge des Lichts im Vakuum ist, n der Brechungsindex des Mediums zwischen Blende und Schirm, und J eine mathematische Funktion¹ mit der Eigenschaft, dass J(x)/x bei x=0 maximal ist und bei $x\approx 3.8317$ ihr erstes Minimum annimmt.

- (a) Geben Sie eine Formel für den Sinus des Betrachtungswinkel $\sin(\theta_1)$, unter dem das erste Minimum des Beugungsmusters erscheint, als Funktion von λ , a, n und eines numerischen Vorfaktors.
- (b) Der Abstand zwischen Blende und Schirm sei $L=2\,\mathrm{cm}$, der Radius der Blende sei $a=0.5\,\mathrm{cm}$. Wir verwenden grünes Licht der Wellenlänge $\lambda=500\,\mathrm{nm}$, und das Medium in dem sich das optische System befindet sei Luft mit n=1. Berechnen sie den Abstand r_1 zwischen dem zentralen Beugungsmaximum und dem ersten Beugungsminimum.
- (c) Das oben betrachtete optische System sei Teil eines Mikroskops. Können Sie damit ein Pantoffeltierchen der Grösse 100 μm auflösen? Können Sie ein Virus der Grösse 100 nm auflösen?

Aufgabe 14.2. Schwarzkörperstrahlung

Das Verständnis der Schwarzkörperstrahlung ermöglicht uns, die Temperatur der Planeten eines Planetensystems abzuschätzen. Hier betrachten wir das Sonnensystem.

¹die sogenannte Bessel-Funktion erster Art

Die Temperatur der Sonne ist $T_{\rm S}=5778$ K. Der Radius der Sonne ist $R_{\rm S}=6.957\times 10^8$ m. Der Abstand zwischen der Sonne und der Erde ist $L_{\rm SE}=1.496\times 10^{11}$ m. Der Radius der Erde ist $R_{\rm E}=6.378\times 10^6$ m.

- (a) Bei welcher Wellenlänge $\lambda_{\rm S}^{\rm max}$ gibt die Sonne ihre grösste Strahlungsleistung ab?
- (b) Berechnen Sie die Gesamtleistung der Sonne.
- (c) Bestimmen Sie die Temperatur $T_{\rm E}$ der Erde unter der Annahme, dass die Erde ein sich im Strahlungsgleichgewicht befindender schwarzer Körper ist.
- (d) Bei welcher Wellenlänge $\lambda_{\rm E}^{\rm max}$ gibt die Erde ihre grösste Strahlungsleistung ab?