Aflevering 11

Lucas Bagge

Showhide: Opgave 1.6: Ændring i stormmønster

DMI vedligeholder en side med alle <u>storme i Danmark</u> fra 1891 og fremefter. Stormene kalssificeres i fire styrkekategorier ud fra vindstyrken. I nedenstående tabel har jeg optalt antallet af storme i de forskellige kategorier for fire 30-års perioder.

Periode	Stormstyrke 1	Stormstyrke 2	Stormstyrke 3 og 4
1891-1920	39	16	4
1921-1950	21	8	8
1951-1980	14	12	5
1981-2010	18	12	10

(a) Opstil den statistiske model, hvor antallet af storme for hver periode følger sin egen multinomialfordeling på de tre kategorier 1, 2 og 3+4. Angiv inden for den opstillede model hypotesen, at der er samme sandsynlighedsvektor for de tre styrkekategorier 1, 2 og 3+4 for de fire tidsperioder.

(b) Undersøg, om data er i overensstemmelse med hypotesen om samme sandsynlighedsvektor for kategorierne 1, 2 og 3+4 for de fire tidsperioder.

For storme i Danmark finder I således ikke en ændring i fordeling på styrkekategori. Den næste tabel viser fordelingen af hurricanes fra verdenshavene på styrkekategorierne 1-3 og 4-5. Der er data fra to tidsperioder: 1975-1989 og 1990-2004. Data er fra artiklen Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment.

Periode	Hurricanes 1-3	Hurricanes 4-5
1975-1989	617	171
1990-2004	508	269

(c) Undersøg om fordelingen af hurricanes på de to styrkekategorier er den samme for de to tidsperioder.

For hurricanes ser det således ud til, at der er sket en ændring. I det sidste spørgsmål i denne opgave skal du se på, om ændringen er den samme i de forskellige verdenshave. Den næste tabel viser fordelingen af de største hurricanes (kategori 4-5) på fem verdenshave for de to tidsperioder.

Verdenshav	1975-1989	1990-2004
East Pacific Ocean	36	49
West Pacific Ocean	85	116
North Atlantic	16	25
Southwestern Pacific	10	22
Indian	24	57

(d) Opstil model for data, og undersøg, om fordeling på de fem verdenshave er den samme i de to perioder.

a)

library(tidyverse)

```
data <- tribble(
    ~"Periode", ~"Stomr1", ~"Storm2", ~"Storm_3_4",
    "1891-2920", 39, 16, 4,
    "1921-1950", 21, 8, 8,
    "1951-1980", 14, 12, 5,
    "1981-2010", 18, 12, 10
)
data %>%
    summarise(across(where(is.numeric), ~ sum(.)))
## # A tibble: 1 x 3
```

```
## # A tibble: 1 x 3
## Stomr1 Storm2 Storm_3_4
## <dbl> <dbl> <dbl> ## 1 92 48 27
```

 $A_{1j} \sim multinom(92, \pi_{1j}) \\ A_{2j} \sim multinom(48, \pi_{2j}) \\ A_{3j} \sim multinom(27, \pi_{3j}) \\ a_{ij} = (a_{1i}, ..., a_{i3}) \\ \pi_{ij} = (\pi_{i1}, ..., \pi_{u3}) \\ i = 1, ..., 4j = 1, ...$

hvpotese om samme sandynlgíeh

$$\pi_{ij} = \pi_j$$

b)

Benytter af følgende kode:

```
hom_test <- function(obs){</pre>
  ex = outer(rowSums(obs), colSums(obs)) / sum(obs)
  obs1 <- ifelse(obs == 0, 1, obs)
 G <- 2 * sum(obs * log(obs1/ex))
 pval = 1 - pchisq(G, (dim(obs)[1] - 1) * (dim(obs)[2] - 1))
  return(list(Forvendtede = ex, G = G, Pvaerdi = pval))
hom_test(rbind(c(39,
                  4),
               c(21,
                  8,
                  8),
               c(14,
                  12,
                  5),
               c(18,
                  12,
                  10)))
```

```
## $Forvendtede
## [,1] [,2] [,3]
```

```
## [1,] 32.50299 16.95808 9.538922
## [2,] 20.38323 10.63473 5.982036
## [3,] 17.07784 8.91018 5.011976
## [4,] 22.03593 11.49701 6.467066
##
## $G
## [1] 10.7671
##
## $Pvaerdi
## [1] 0.09584665
```

Her kan vi ikke forkaste H0. Dermed tyder det på at det er perioden der er afgørende.

c)

```
## $Forvendtede
## [,1] [,2]
## [1,] 566.4537 221.5463
## [2,] 558.5463 218.4537
##
## $G
## [1] 32.51158
##
## $Pvaerdi
## [1] 1.184847e-08
```

Hermed kan vi ikke forkaste H0 og derfro må det være tidsperioden der er afgørende:

d)

Opstille modellen.

 $A_{1j} \sim multinom(85, \pi_{1j}) \\ A_{2j} \sim multinom(202, \pi_{2j}) \\ A_{3j} \sim multinom(41, \pi_{3j}) \\ A_{4j} \sim multinom(32, \pi_{3j}) \\ A_{5j} \sim multinom(81, \pi_{3j$

```
hom_test <- function(obs){</pre>
  ex = outer(rowSums(obs), colSums(obs)) / sum(obs)
  obs1 \leftarrow ifelse(obs == 0, 1, obs)
  G \leftarrow 2 * sum(obs * log(obs1/ex))
  pval = 1 - pchisq(G, (dim(obs)[1] - 1) * (dim(obs)[2] - 1))
  return(list(Forvendtede = ex, G = G, Pvaerdi = pval))
}
hom_test(
  rbind
  (
    с(
      36,
      49
    ),
    с(
      85,
      116
    ),
    с(
      16,
      25
    ),
    с(
      10,
      22
    ),
    с(
      24,
      57
    )
  )
```

```
## $Forvendtede
            [,1]
                      [,2]
## [1,] 33.03409 51.96591
## [2,] 78.11591 122.88409
## [3,] 15.93409
                  25.06591
## [4,] 12.43636
                  19.56364
## [5,] 31.47955
                  49.52045
##
## $G
## [1] 5.232063
##
## $Pvaerdi
## [1] 0.2643042
```

VI forkaster H0. dermed afhænger de ikke af verdenshavene men af tidsperioden.