Genetic Algorithm

Local Search and GA

- Local search methods involve making small changes to potential solutions to a problem until an optimal solution is identified.
- Genetic Algorithm (GA) is a search-based **optimization** technique based on the principles of **Natural Genetics** and **Natural Selection**.
- It finds the Optimal Solution based in survival of the fittest.
- Optimization is the process of making something better i.e. to get the "best" output value.

Evolutionary Computing

- Natural systems as guiding metaphors
- Charles Darwinian Evolution 1859
- Theory of natural selection
 - It proposes that the plants and animals that exist today are the result of millions of years of adaptation to the demands of the environment
- Over time, the entire population of the ecosystem is said to evolve to contain organisms that, on average, are fitter for environment than those of previous generations of the population

Genetic Algorithms

- The concepts of GAs are directly derived from natural evolution.
- GAs emulate ideas from genetics and natural selection and can search potentially large spaces
- Based on: survival of the most fittest individual
- Two key steps: reproduction, survive

Genetic Algorithm

Based on Darwinian Paradigm

• Intrinsically a robust search and optimization mechanism

Genetic Algorithm

- The process for running a genetic algorithm is as follows.
 - 1. Generate a random population of chromosomes (this is the first generation).
 - 2. If termination criteria are satisfied, stop. Otherwise, continue with step 3.
 - 3. Determine the fitness of each chromosome.
 - 4. Apply crossover and mutation to selected chromosomes from the current generation to generate a new population of chromosomes—the next generation.
 - 5. Return to step 2.

Genetic Algorithms

- Before we can apply Genetic Algorithm to a problem, we need to answer:
 - How can an individual be represented?
 - What is the fitness function?
 - How are individuals selected?
 - How do individuals are generated?

Representation of States (Solution)

- States as sequence of strings
- Each state or individual is represented as a string over finite alphabet $\{0,1\}$. It is also called **chromosome** which contains **genes**.

Recall that every state is a solution in local search

Reproduction: Building New States

- After representing <u>States</u> (Solutions).
- Build a population of random solutions.
- Let them reproduce using genetic operations.
 - At each generation: apply "survival of the fittest"
 - Hopefully better and better solutions evolve over time
 - The <u>best solutions are more likely to survive and more likely to produce</u> even better solutions

Evaluation and Selection

- We then see how good the solutions are, using an <u>evaluation function</u> (recall f(n) in infomed search)
 - Often it is a heuristic, especially if it is computationally expensive to do a complete evaluation
 - The final population can then be evaluated more deeply to decide on the best solution

Survival of the Fittest

Select the surviving population

- Likelihood of survival is related in some way to your score on the fitness function
 - The most common technique is <u>roulette wheel selection</u>
- Note we always keep the <u>best solution</u> so far

Remember: <u>Its local search</u>

Genetic Operators

- These operators mimic what happens to our genetic material when we reproduce
 - Crossover
 - Mutation

Crossover Operator

- Cut two solutions at a random point and switch the respective parts
- Typically a value of 0.7 for crossover probability gives good results.

Crossover

Crossover operator

- The crossover operator is applied to two chromosomes of the same length as follows:
 - 1. Select a random crossover point.
 - 2. Break each chromosome into two parts, splitting at the crossover point.
 - 3. Recombine the broken chromosomes by combining the front of one with the back of the other, and vice versa, to produce two new chromosomes.
- For example, consider the following two chromosomes:
 - 110100110001001
 - 010101000111101

Mutation operator

- Randomly change one bit in the solution
 - Mutation is a unary operator (i.e., applied to just one argument—a single gene)
- Occasional mutation <u>makes the method much less sensitive</u> to the original population and also <u>allows "new" solutions</u> to emerge

Mutation

- Fitness Function for a mathematic function
- Ex. attempt to maximize the function:
 - $f(x) = \sin(x)$ in range $0 \le x \le 15$

- Using population size of 4 chromosomes
- First Generation: Generate a random population:

$$c1 = 1001$$
 (9) $c3 = 1010$ (10) $c2 = 0011$ (3) $c4 = 0101$ (5)

- To calculate **fitness** of a chromosome, we calculate f(x) for its decimal value
- Assign fitness as a numeric value from <u>0 to 100</u>
 - 0 is the least fit
 - 100 is the most fit.
- f(x) generates real numbers between -1 and 1.
- Assign a fitness score of 100 to f(x) = 1 and fitness of 0 to f(x) = -1
- Fitness of 50 will be assigned to f(x) = 0

Fitness of x, f'(x):

•
$$f'(x) = 50(f(x) + 1)$$

•
$$f'(x) = 50(\sin(x) + 1)$$

X	$f(x)=\sin(x)$	f'(x) = 50(f(x)+1)
0		
1		
2		
<u>3</u>		
4		
<u>5</u>		
6		
7		
8		
<u>9</u>		
<u>10</u>		
11		
12		
13		
14		
15		

- The range of real numbers from 0 to 100 is divided up between the chromosomes proportionally to each chromosome's fitness.
- In first generation:
 - c1 has 46.3% of the range (i.e., from 0 to 46.3)
 - c2 37.4% of the range (i.e., from 46.4 to 83.7)
 - Table 14.1 Generation 1

Chromosome	Genes	Integer value	f(x)	Fitness f'(x)	Fitness ratio
c1	1001	9	0.41	70.61	46.3%
c2	0011	3	0.14	57.06	37.4%
c3	1010	10	-0.54	22.80	14.9%
c4	0101	5	-0.96	2.05	1.34%

Roulette-wheel selection

- A random number is generated between 0-100
- This number will fall in the range of one of the chromosomes (suppose c1)
 - c1 chromosome has been selected for reproduction
- The next random number is used to select second chromosome's (suppose c2)
- Hence, fitter chromosomes will tend to produce more offspring than less fit chromosomes.
- Important: Method does not stop less fit chromosomes from reproducing, to ensure that populations do not stagnate, by constantly breeding from the same parents.

Next Generation

- Need 4 random numbers for next generation
- Assume that:
- First random number is 56.7 (c2 is chosen)
- Second random number is 38.2 (c1 is chosen)
- Third random number is 20 (c1 is chosen)
- Fourth random number is 85 (c3 is chosen)

Next Generation cont.

- Combine first two to produce two new offspring:
 - Crossover point

c1 = 1001 (9) c2 = 0011 (3) c5 = 1011 (11)
$$c6 = 0001$$
 (1)

- Combine last two to produce two new offspring:
 - Crossover point

c1 = 1001 (9) c3 = 1010 (10) c8 = 1011 (11)
$$c7 = 1000$$
 (8)

Second generation: c5 to c8

- c4 did not have a chance to reproduce (its genes will be lost)
- Fittest chromosome in the first generation (c1), able to reproduce twice
- Passing on its highly fit genes to all members of the next generation

Table 14.2 delleration 2	Table	14.2	Generation 2
--------------------------	--------------	------	--------------

Chromosome	Genes	Integer value	f(x)	Fitness $f'(x)$	Fitness ratio
c5	1011	11	-1	0	0%
с6	0001	1	0.84	92.07	48.1%
с7	1000	8	0.99	99.47	Extreme 51.9%
c8	1011	11	-1	0	0%

Termination criteria

• Termination criteria would probably determine that c7 is the most fit (local optimum) and the algorithm will be stopped.

Example:
$$f(x) = x^2$$

• Problem: Maximize the function $f(x) = x^2$ where x varies between 1 and 31.

• Step 1:

- Code the decision variable of the problem a binary unsigned integer of length
 5.
- To start we select an initial population of size 4 by tossing a fair coin times.
- Fitness function is defined by $f(x) = x^2$

Example: $f(x) = x^2$

String No.	Initial Pop.	<i>x</i> -value	$f(x) = x^2$
1	01101	13	169
2	11000	24	576
3	01000	8	64
4	10011	19	361

String No.	x-value	$f(x) = x^2$	P-select $\frac{f_i}{\sum f}$	Expected Count $\frac{f_i}{avg}$	Roulette Wheel
1	13	169	0.14	0.58	1
2	24	576	0.49	1.97	2
3	8	64	0.06	0.22	0
4	19	361	0.31	1.23	1

$$f(x) = x^2$$

- The best strings get more copies, while the weak ones just die off.
- After selection, crossover takes place
 - Strings combined randomly using one point cross over
 - Apply one bit mutation

String No.	x-value	One Point Cross Over	New Children
1	13	0110 1	11001
2	24	1100 0	01100
2	24	11 000	10000
4	19	10 011	11011

Apply Mutation	New Population
11 <u>0</u> 01	11101
0 1 1 0 <u>0</u>	01101
10 <u>0</u> 00	10100
1 1 0 <u>1</u> 1	11001

$$f(x) = x^2$$

New Population

String No.	Initial Pop.	x-value	$f(x) = x^2$
1	11101	29	841
2	01101	13	169
3	10100	20	400
4	11001	25	625

• Find the maximum value of function

$$f(x) = -x^2 + 15x$$

- Represent problem using *chromosomes* built from four *genes*:
- Initial random population of size N = 6:

Integer	Binary code	Integer	Binary code	Integer	Binary code
1	0001	6	0110	11	1011
2	0010	7	0111	12	1100
3	0 0 1 1	8	1000	13	1 1 0 1
4	0100	9	1001	14	1110
5	0101	10	1010	15	1111

• Determine chromosome *fitness* for each chromosome:

Chromosome label	Chromosome string	Decoded integer	Chromosome fitness	Fitness ratio, %
X1	1 1 0 0	12	36	16.5
X2	0 1 0 0	4	44	20.2
X3	0 0 0 1	1	14	6.4
X4	1 1 1 0	14	14	6.4
X5	0 1 1 1	7	56	25.7
X6	1 0 0 1	9	54	24.8

• Use fitness ratios to determine which chromosomes are selected for *crossover* and *mutation* operations:

Assume we have the following function

$$f(x) = x^3 - 60x^2 + 900x + 100$$

where x is constrained to [0-31]. We wish to maximize f(x) (the optimal is x=10). Using a binary representation we can represent x using five binary digits.

• Given the following four chromosomes give the values for x and f(x).

Chromosome	Binary String
P_1	11100
P_2	01111
P_3	10111
P_{4}	00100

- If P_3 and P_2 are chosen as parents and we apply one point crossover show the resulting children, C_1 and C_2 . Use a crossover point of 1 (where 0 is to the very left of the chromosome)
- Do the same using P₄ and P₂ with a crossover point of 2 and create C₃ and C₄
- Calculate the value of x and f(x) for C₁ to C₄.
- Assume the initial population was $x = \{17, 21, 4, 28\}$. Using one-point crossover, what is the probability of finding the optimal solution? Explain your reasons.

Practice Question – SOLUTION

• Given the following four chromosomes give the values for x and f(x).

Chromosome	Binary String	Х	f(x)
P_1	11100	28	212
P_2	01111	15	3475
P_3	10111	23	1227
P_4	00100	4	2804

Practice Question – SOLUTION

- If P_3 and P_2 are chosen as parents and we apply one point crossover show the resulting children, C_1 and C_2 . Use a crossover point of 1 (where 0 is to the very left of the chromosome)
- Calculate the value of x and f(x) for C₁ to C₄.

Chromosome	Binary String	X	f(x)
C_1	11111	31	131
C_2	00111	7	3803
C_3	00111	7	3803
C_4	01100	12	3998

GA Example - Crossover

P_3	1	0	1	1	1	P_4	0	0	1	0	0
P_2	0	1	1	1	1	P ₂	0	1	1	1	1
C_1	1	1	1	1	1	C ₃	0	0	1	1	1
C_2	0	0	1	1	1	C_4	0	1	1	0	0

GA Example - After First Round of Breeding

- The average evaluation has risen P_2 , was the strongest individual in the initial population. It was chosen both times but we have lost it from the current population
- We have a value of x=7 in the population which is the closest value to 10 we have found

Chromosome	Binary String	X	f(x)
P_{1}	11111	31	131
P_2	00111	7	3803
P_3	00111	7	3803
P_4	01100	12	3998
	TOTAL		11735
	AVERAGE		2933.75