

SEQUENCE LISTING

<110> Nuttall, Paulina
Paesen, Guido Christiaan

<120> Histamine and Serotonin Binding
Molecules

<130> 2369-1-002

<140> US 09/555,296

<141> 2002-09-13

B1 <150> PCT/GB98/03530

<151> 1998-11-26

<150> GB 9725046.8

<151> 1997-11-26

<150> GB 9813917.3

<151> 1998-06-26

<160> 31

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 190

<212> PRT

<213> Rhipicephalus appendiculatus

<400> 1

Met	Lys	Leu	Leu	Leu	Ser	Leu	Ala	Phe	Val	Leu	Ala	Leu	Ser	Gln	Val
1					5				10				15		
Lys	Ala	Asp	Lys	Pro	Val	Trp	Ala	Asp	Glu	Ala	Ala	Asn	Gly	Glu	His
					20				25			30			
Gln	Asp	Ala	Trp	Lys	His	Leu	Gln	Lys	Leu	Val	Glu	Glu	Asn	Tyr	Asp
					35			40			45				
Leu	Ile	Lys	Ala	Thr	Tyr	Lys	Asn	Asp	Pro	Val	Trp	Gly	Asn	Asp	Phe
					50			55			60				
Thr	Cys	Val	Gly	Thr	Ala	Ala	Gln	Asn	Leu	Asn	Glu	Asp	Glu	Lys	Asn
					65			70			75		80		
Val	Glu	Ala	Trp	Phe	Met	Phe	Met	Asn	Asn	Ala	Asp	Thr	Val	Tyr	Gln
					85			90			95				
His	Thr	Phe	Glu	Lys	Ala	Thr	Pro	Asp	Lys	Met	Tyr	Gly	Tyr	Asn	Lys
					100			105			110				
Glu	Asn	Ala	Leu	Thr	Tyr	Gln	Thr	Glu	Asp	Gly	Gln	Val	Leu	Thr	Asp
					115			120			125				
Val	Leu	Ala	Phe	Ser	Asp	Asp	Asn	Cys	Tyr	Val	Ile	Tyr	Ala	Leu	Gly
					130			135			140				
Pro	Asp	Gly	Ser	Gly	Ala	Gly	Tyr	Glu	Leu	Trp	Ala	Thr	Asp	Tyr	Thr
					145			150			155		160		
Asp	Val	Pro	Ala	Ser	Cys	Leu	Glu	Lys	Phe	Asn	Glu	Tyr	Ala	Ala	Gly
					165			170			175				
Leu	Pro	Val	Pro	Asp	Val	Tyr	Thr	Ser	Asp	Cys	Leu	Pro	Glu		
					180			185			190				

RECEIVED

JUL 16 2002

TECH CENTER 1600/2900

<210> 2
<211> 190
<212> PRT
<213> Rhipicephalus appendiculatus

<400> 2
Met Lys Leu Leu Ile Leu Ser Leu Ala Leu Val Leu Ala Leu Ser Gln
1 5 10 15
Val Lys Gly Asn Gln Pro Asp Trp Ala Asp Glu Ala Ala Asn Gly Ala
20 25 30
His Gln Asp Ala Trp Lys Ser Leu Lys Ala Asp Val Glu Asn Val Tyr
35 40 45
Tyr Met Val Lys Ala Thr Tyr Lys Asn Asp Pro Val Trp Gly Asn Asp
50 55 60
Phe Thr Cys Val Gly Val Met Ala Asn Asp Val Asn Glu Asp Glu Lys
65 70 75 80
Ser Ile Gln Ala Glu Phe Leu Phe Met Asn Asn Ala Asp Thr Asn Met
85 90 95
Gln Phe Ala Thr Glu Lys Val Thr Ala Val Lys Met Tyr Gly Tyr Asn
100 105 110
Arg Glu Asn Ala Phe Arg Tyr Glu Thr Glu Asp Gly Gln Val Phe Thr
115 120 125
Asp Val Ile Ala Tyr Ser Asp Asp Asn Cys Asp Val Ile Tyr Val Pro
130 135 140
Gly Thr Asp Gly Asn Glu Glu Cys Tyr Glu Leu Trp Thr Thr Asp Tyr
145 150 155 160
Asp Asn Ile Pro Ala Asn Cys Leu Asn Lys Phe Asn Glu Tyr Ala Val
165 170 175
Gly Arg Glu Thr Arg Asp Val Phe Thr Ser Ala Cys Leu Glu
180 185 190

B1
<210> 3
<211> 200
<212> PRT
<213> Rhipicephalus appendiculatus

<400> 3
Met Lys Val Leu Leu Val Leu Gly Ala Ala Leu Cys Gln Asn Ala
1 5 10 15
Asp Ala Asn Pro Thr Trp Ala Asn Glu Ala Lys Leu Gly Ser Tyr Gln
20 25 30
Asp Ala Trp Lys Ser Leu Gln Gln Asp Gln Asn Lys Arg Tyr Tyr Leu
35 40 45
Ala Gln Ala Thr Gln Thr Asp Gly Val Trp Gly Glu Glu Phe Thr
50 55 60
Cys Val Ser Val Thr Ala Glu Lys Ile Gly Lys Lys Lys Leu Asn Ala
65 70 75 80
Thr Ile Leu Tyr Lys Asn Lys His Leu Thr Asp Leu Lys Glu Ser His
85 90 95
Glu Thr Ile Thr Val Trp Lys Ala Tyr Asp Tyr Thr Glu Asn Gly
100 105 110
Ile Lys Tyr Glu Thr Gln Gly Thr Arg Thr Gln Thr Phe Glu Asp Val
115 120 125
Phe Val Phe Ser Asp Tyr Lys Asn Cys Asp Val Ile Phe Val Pro Lys
130 135 140
Glu Arg Gly Ser Asp Glu Gly Asp Tyr Glu Leu Trp Val Ser Glu Asp

145 150 155 160
Lys Ile Asp Lys Ile Pro Asp Cys Cys Lys Phe Thr Met Ala Tyr Phe
165 170 175
Ala Gln Gln Gln Glu Lys Thr Val Arg Asn Val Tyr Thr Asp Ser Ser
180 185 190
Cys Lys Pro Ala Pro Ala Gln Asn
195 200

<210> 4
<211> 209
<212> PRT
<213> Rhipicephalus appendiculatus

<400> 4
Met Lys Met Gln Val Val Leu Leu Leu Thr Phe Val Ser Ala Ala Leu
1 5 10 15
Ala Thr Gln Ala Glu Thr Thr Ser Ala Lys Ala Gly Glu Asn Pro Leu
20 25 30
Trp Ala His Glu Glu Leu Leu Gly Lys Tyr Gln Asp Ala Trp Lys Ser
35 40 45
Ile Asp Gln Gly Val Ser Val Thr Tyr Val Leu Ala Lys Thr Thr Tyr
50 55 60
Glu Asn Asp Thr Gly Ser Trp Gly Ser Gln Phe Lys Cys Leu Gln Val
65 70 75 80
Gln Glu Ile Glu Arg Lys Glu Glu Asp Tyr Thr Val Thr Ser Val Phe
85 90 95
Thr Phe Arg Asn Ala Ser Ser Pro Ile Lys Tyr Tyr Asn Val Thr Glu
100 105 110
Thr Val Lys Ala Val Phe Gln Tyr Gly Tyr Lys Asn Ile Arg Asn Ala
115 120 125
Ile Glu Tyr Gln Val Gly Gly Leu Asn Ile Thr Asp Thr Leu Ile
130 135 140
Phe Thr Asp Gly Glu Leu Cys Asp Val Phe Tyr Val Pro Asn Ala Asp
145 150 155 160
Gln Gly Cys Glu Leu Trp Val Lys Lys Ser His Tyr Lys His Val Pro
165 170 175
Asp Tyr Cys Thr Phe Val Phe Asn Val Phe Cys Ala Lys Asp Arg Lys
180 185 190
Thr Tyr Asp Ile Phe Asn Glu Glu Cys Val Tyr Asn Gly Glu Pro Trp
195 200 205
Leu

B1
<210> 5
<211> 207
<212> PRT
<213> Rhipicephalus appendiculatus

<400> 5
Met Phe Leu Ala Gly Phe Phe Ile Phe Gly Ala Ala Val Leu Ser Val
1 5 10 15
Leu Ala Glu Glu Thr Pro Asn Asp Arg Cys Thr Thr His Thr Pro Asn
20 25 30
Gly Trp Gln Phe Leu Lys Lys Gly Lys Arg Tyr Asp Met Lys Gln Arg
35 40 45
Thr Phe Gln Thr Pro Asn Ser Asp Asp Thr Lys Cys Leu Ser Ser Thr
50 55 60

Ile Asp Gly Lys Asn Glu Asn Asn His Thr Val Gln Ala Thr Ile Arg
65 70 75 80
Tyr Arg Asn Gly Tyr Glu Gly Lys Trp Asp Thr Ile Arg Gln Glu Tyr
85 90 95
Glu Phe Pro Asn Tyr Thr Ala Gly Asp Tyr Asn Ser Met Lys Thr Thr
100 105 110
Asp Lys Ser Pro Pro Pro Ala Ser Tyr Leu Phe Gly Tyr Thr Gly
115 120 125
Ser Ser Cys Ala Val Val Tyr Val Asn Ser Ile Gly Pro Val Arg Ser
130 135 140
Asn Ser Glu Asn Pro Pro Glu Arg Leu Thr Ala Ser Gln Glu Ser Ala
145 150 155 160
Gln Arg Asp Cys Val Leu Trp Val Asp His Asp Glu Lys Ala Thr Gln
165 170 175
Glu Gln Cys Cys Glu Asp Phe Phe Lys Thr His Cys Lys Glu Thr Val
180 185 190
His Val Ile Tyr Asp Val Asn Arg Cys Lys Glu Asn Gly Ser Glu
195 200 205

B1
<210> 6
<211> 198
<212> PRT
<213> Boophilus microplus

<400> 6
Met Asn Ser Ala Leu Trp Val Leu Leu Gly Ser Ser Leu Trp Leu His
1 5 10 15
Thr Val Ala Phe Met Ile Pro Thr Trp Ala Asp Glu Gly Arg Phe Gly
20 25 30
Lys Tyr Gln Asn Ala Trp Lys Ala Leu Asn Gln Arg Ile Asn Thr Thr
35 40 45
His Val Leu Val Arg Ser Thr Tyr Ile Asp Asn Pro Tyr Leu Trp Gly
50 55 60
Lys Asn Phe Ser Cys Val Arg Ala Arg Thr Val Glu Val Phe Pro Ser
65 70 75 80
Ser Lys Thr Val Glu Leu Glu Phe Ser Phe Arg Asn Arg Thr Gly Ile
85 90 95
Leu Cys Met Arg Asn Gln Thr Val Arg Ala Gly Lys Asp Tyr Phe Tyr
100 105 110
His Gln Pro Asn Ala Phe Glu Phe Met Leu Arg Gly Asn Arg Ser Phe
115 120 125
Ser Asn Ala Val Met Phe Thr Asp Gly Met Thr Cys Asn Leu Leu Ser
130 135 140
Phe Pro Tyr Gln Arg Asn Lys Pro Gln Cys Glu Leu Trp Val Lys Asp
145 150 155 160
Thr Arg Val Asp Asn Ile Pro Pro Cys Cys Ser Phe Met Phe Asp Tyr
165 170 175
Leu Cys Pro Gln Pro Arg Pro Phe Ile Ile Tyr Asp Lys Ala Met Cys
180 185 190
Thr Val Arg Pro Pro Arg
195

<210> 7
<211> 203
<212> PRT
<213> Boophilus microplus

<400> 7

Met Lys Ala Leu Leu Ile Ala Val Gly Tyr Leu Ala Ala Val Thr Ala
1 5 10 15
Ala Pro Gln Ala Ser Pro Ser Ser Pro Arg Asn Glu Pro Leu Lys Asn
20 25 30
Thr Thr Trp His Ser Lys Glu Leu Lys Asn Tyr Gln Asp Ala Trp Lys
35 40 45
Ser Ile Asn Gln Asn Val Ser Thr Thr Tyr Tyr Phe Leu Arg Ser Thr
50 55 60
Tyr Asn Asn Asp Ser Val Trp Gly Lys Asn Phe Thr Cys Leu Ser Val
65 70 75 80
Thr Val Thr Ser Lys His Glu Ser Thr Phe Thr Val Glu Tyr Asn Thr
85 90 95
Thr Tyr Lys Asn Gln Ser Gln Gln Trp Val Ser Met Thr Glu Asn Val
100 105 110
Thr Ala Val Gln Glu Glu Gly Tyr Asp Val Lys Asn Ile Ile Gln Trp
115 120 125
Thr Thr Glu Asn Asn Thr Lys Phe Asn Asp Thr Val Val Phe Thr Asp
130 135 140
Gly Gln Thr Cys Asp Leu Leu Tyr Ile Pro Tyr Lys Glu Asn Gly Tyr
145 150 155 160
Glu Leu Trp Val Arg Ser Asp Tyr Leu Gln Asn Thr Pro Thr Cys Cys
165 170 175
Gln Phe Ile Phe Asp Leu Val Ala Leu Gly Arg Thr Thr Tyr Asn Ile
180 185 190
Ser Thr Pro Asp Cys Val Thr Lys Thr Ser Arg
195 200

B1
<210> 8

<211> 203

<212> PRT

<213> Boophilus microplus

<400> 8

Met Lys Ala Leu Leu Ile Ala Val Val Tyr Leu Thr Ala Val Thr Ala
1 5 10 15
Ala Asp Gln Ala Pro Pro Ser Ser Thr Arg Asn Glu Pro Leu Glu Lys
20 25 30
Thr Thr Trp His Asn Gln Thr Leu Gly Arg Tyr Gln Asp Ala Trp Lys
35 40 45
Ser Ile Asn Gln Ser Val Gly Thr Thr Tyr Tyr Phe Leu Arg Ser Thr
50 55 60
Tyr Asn Asn Asp Ser Val Trp Gly Lys Asn Phe Thr Cys Leu Ser Val
65 70 75 80
Thr Val Thr Ser Lys Tyr Glu Ser Thr Phe Thr Val Glu Tyr Asn Thr
85 90 95
Thr Tyr Lys Asn Gln Ser Gln Gln Trp Val Ser Met Ser Glu Asn Val
100 105 110
Thr Ala Val Gln Glu Glu Gly Tyr Ser Val Lys Asn Ile Ile Gln Trp
115 120 125
Thr Thr Glu Asn Asn Thr Lys Phe Asn Asp Thr Val Val Phe Thr Asp
130 135 140
Gly Gln Thr Cys Asp Val Leu Tyr Ile Pro Tyr Lys Glu Asp Gly Tyr
145 150 155 160
Glu Leu Trp Val Arg Ser Glu Tyr Leu Gln Asn Thr Pro Thr Cys Cys
165 170 175
Gln Phe Ile Phe Asp Leu Val Ala Leu Gly Arg Thr Thr Tyr Asn Ile

180 185 190
Ser Thr Pro Asn Cys Val Ala Thr Thr Ala Gly
195 200

<210> 9
<211> 285
<212> PRT
<213> Boophilus microplus

400 > 9
Met Ala Leu Arg Phe Ala Leu Leu Leu Ala Cys Ile Val Thr Ala Cys
1 5 10 15
Gly Trp Arg Thr Arg Ile Gln Glu Lys Gly Pro Glu Asn Asn Pro Leu
20 25 30
Met Asn Thr Gln Arg Leu Gly Lys Met Gln Asp Ala Trp Lys Ser Leu
35 40 45
Glu Lys Ala Thr Asn Gln Ser Tyr Val Leu Val Phe Arg Ser Arg Asn
50 55 60
His Glu Pro Glu Ile Ser Cys Val Tyr Val Arg Ala Ser Asn Ile Asn
65 70 75 80
Asn Asp Thr Lys Thr Ala Thr Tyr Thr Arg Thr Tyr Tyr Asn Met Thr
85 90 95
Ala Asn Ala Thr Met Thr Val Asn Tyr Thr Ala Arg Ala Leu Lys Gln
100 105 110
Val Asp Tyr Glu Ser Glu Asn Val Val Arg Val Asn Leu Thr Gly Gly
115 120 125
Val Pro Ser Asn Asp Thr Val Pro Leu Gly Ser Tyr Glu Tyr Val Glu
130 135 140
Tyr Gly Asn Tyr Ser Cys Asn Ser Ser Ser Thr Pro Phe Leu Asp Ala
145 150 155 160
Val Gln Met Ala Ser Gln Gly Gln Ser Arg Gly Pro Asp Ile Glu Gly
165 170 175
Arg Thr Tyr Leu Asp Phe Tyr Val Val Tyr Asn Gln Pro Ser Cys Asn
180 185 190
Val Leu Lys Ser Pro Leu Leu Gly Gly Ala Cys Asp Phe Trp Val Thr
195 200 205
Glu Ser Glu Leu Gln Lys Ala Leu Asn Lys Thr Ser Glu Lys Lys Lys
210 215 220
Thr Lys Leu Glu Ala Arg Ala Arg Lys Ala Gly Gly Asp Ser Asp Asp
225 230 235 240
Gln Gly Pro Glu Leu Glu Val Val Phe Lys Asn Leu Pro Pro Pro Cys
245 250 255
Arg Ala Ala Phe Ile Thr Ser Cys Gly Tyr Pro Thr Phe Leu Met Tyr
260 265 270
Asn Lys Thr Ile Cys Asn Arg Thr Asp Ser Ala Ala Val
275 280 285

B1
<210> 10
<211> 284
<212> PRT
<213> Boophilus microplus

400 > 10
Met Ala Leu Arg Phe Ala Leu Leu Leu Ala Cys Ile Val Thr Ala Cys
1 5 10 15
Gly Trp Arg Thr Arg Ile Gln Glu Lys Gly Pro Glu Asn Asn Pro Leu
20 25 30

B1

Met Asn Thr Gln Arg Leu Gly Lys Met Gln Asp Ala Trp Lys Ser Leu
35 40 45
Glu Lys Ala Ala Asn Gln Thr Tyr Val Leu Val Phe Arg Ser Arg Asn
50 55 60
His Glu Pro Asp Ile Ser Cys Val Tyr Val Arg Ala Ser Asn Leu Asp
65 70 75 80
Asn Ala Thr Lys Thr Ala Asp Tyr Thr Arg Thr Tyr Tyr Asn Met Thr
85 90 95
Ala Lys Gln Asn Val Ser Val Asn Tyr Thr Ala Arg Ala Leu Lys Gln
100 105 110
Val Asp Tyr Glu Ser Glu Asn Val Val Arg Val Asn Leu Thr Gly Gly
115 120 125
Val Pro Ser Asn Asp Thr Val Pro Pro Gly Ser Phe Glu Tyr Val Glu
130 135 140
Tyr Gly Asn Tyr Ser Cys Asn Ser Ser Thr Pro Phe Leu Asp Ala
145 150 155 160
Val Gln Met Ala Ser Gln Gly Gln Ser Trp Gly Pro Asp Val Glu Gly
165 170 175
Arg Thr Tyr Leu Asp Phe Tyr Val Val Tyr Asn Gln Pro Ser Cys Asn
180 185 190
Val Leu Lys Ser Pro Leu Leu Gly Gly Ala Cys Asp Phe Trp Val Pro
195 200 205
Gln Ser Glu Leu Asp Lys Val Leu Asn Lys Lys Gly Asp Lys Lys Lys
210 215 220
Pro Ala Lys Ser Ser Gln Asn Gly Asp Glu Gly Ser Asp Ala Glu
225 230 235 240
Gln Pro Glu Leu Glu Ala Ile Phe Lys His Leu Pro Pro Pro Cys Arg
245 250 255
Ala Ala Phe Ile Thr Ser Cys Gly Tyr Pro Asn Phe Leu Met Tyr Asn
260 265 270
Lys Thr Ile Cys Asn Ala Ala Gly His Ala Ala Asn
275 280

<210> 11
<211> 321
<212> PRT
<213> Boophilus microplus

<400> 11

Met Asp Ile Arg Ser Ala Val Leu Phe Ala Cys Ile Val Ser Ala Cys
1 5 10 15
Cys Gly Phe Trp Arg Trp Thr Thr Arg Arg Val Thr Lys Lys Pro Asp
20 25 30
Asn Ser Pro Leu Leu Asn Asn Gln His Leu Gly Leu Phe Gln Asp Ala
35 40 45
Trp Lys Thr Ile Glu Glu Thr Ser Asn Asp Thr Tyr Val Leu Met Phe
50 55 60
Arg Ser Lys His Tyr Asp His Glu Asn Lys Ala Lys Cys Val Phe Val
65 70 75 80
Thr Ala Asn Ile Thr Asp Ser Arg Asn Lys Thr Ala Asn Tyr Thr Ile
85 90 95
Thr Tyr Tyr Asp Thr Thr Asn Thr Ser Asn Asn Phe Thr Ile Pro
100 105 110
Val Arg Ala Leu Asn Gln Thr Asp Tyr Ser Leu Glu Asn Val Ile Arg
115 120 125
Ala Ser Phe Asn Gly Asp Thr Pro Ser Ser Thr Pro Ala Pro Pro Gly
130 135 140

```
<210> 12
<211> 770
<212> DNA
<213> Rhipicephalus appendiculatus
```

```

<400> 12
agaaaggccaa catgaagctt ctgctctctc ttgccttcgt cttagctctc agccaagtta 60
aagccgataa gccagttgg gcggatgaag cggcaaacgg ggaacaccaa gacgcctgga 120
agcatctcca aaaactcggtt gaagagaatt acgacttgat aaaaggccacc tacaagaacg 180
acccagtttgg gggtaacgac ttcacttgcg tgggtactgc agcgcagaat ttgaacgagg 240
acgagaagaa cggtgaagca tggttatgt ttatgaataa tgctgatacc gtataccaaac 300
atactttga aaaggcgact cctgataaaa tgtacggta caataaggaa aacgccatca 360
catatcaaacc agaggatggg caacttctca cagacgtcct tgcattctc gacgacaatt 420
gctatgtcat ctacgctctt ggcccagatg gaagtggagc agttacgaa ctctgggcta 480
ccgattacac ggatgttcca gccagttgtc tagagaagtt caatgagttat gtcgcaggc 540
tgccggtagc ggacgtatac acaagtgtt gcctccaga ataacttggg catatcgtaa 600
tttcaacttc aaagtgtgtt attgtcagca tatgtctcga gtgtttgatg tagtgcgttc 660
gatgtgcca ttcatctagg tttcgggtgt tcggtaactt atgctcactg ccgacggcca 720
qcacqagtac tcgaaaataa aqtattctqa aatcqaaaaaaa aaaaaaaaaaa 770

```

<210> 13
<211> 793
<212> DNA
<213> *Rhipicephalus appendiculatus*

```
<400> 13
gccgcgacgg aacttcgaag gaagtcagca tgaagtttatactctct cttgccctcg      60
tcctcgccct cagccaggaaatc agccagatttgcggccatgaa gcggcaaatgtgcacaccca      120
agacgcctgg aagagtctga aagcggacgt tgaaaacgtt tactacatgg      180
tgaaggccac ctataagaat gacccagtgt ggggcaatga cttcacttgc gtgggtgtta      240
tggcaaatga tgtcaacgag gatgagaaga gcattcaagc agagtttttg tttatgaata      300
atgctgacac aaacatgcaaa ttgcactgtaaaagggtgac tgctgttaaaa atgtatggtt      360
```

acaataggga aaacgccttc agatacgaga cgaggatgg ccaagtttc acagacgtca 420
 ttgcatactc ttagtgcacaac tgcatgtca tctacgttcc tggcacagac gggaaatgagg 480
 aagggttacga actatggact acggattacg acaacattcc agccaattct ttaaataagt 540
 ttaatgagta cgctgttagt agggagacaa gggatgtatt cacaactgtc tgccttagagt 600
 aataacttca gaatgtcggt cttaaaaggc gaaaaaccacaa caatgtgaac atcgcttgc 660
 tggctcgac gtagccagcg ataatgttgc ttccctgggt ttctgggtt ggatactttt 720
 agccactgccc gaagagctgt aaaggtaatg aaaaataaaaaa tgttcaagag tgtgaaaaaaaaaaa 780
 aaaaaaaaaaaa aaa 793

<210> 14
 <211> 753
 <212> DNA
 <213> Rhipicephalus appendiculatus

<400> 14

aaagcactca acatgaaggt tctttgttg gttcttggag ctgcttttgc ccagaatgca	60
gatgcaaacca accatggc gaacgaagct aaattggat cttaccaaga cgccttggaa	120
aggcttcagc aagacaaaaa caagagatac tatttggcac aagcgacaca aacgactgac	180
ggcgtatggg gtgaagagtt tacttgttg agtgttacgg ctgagaagat tggaaagaaa	240
aaacttaacg ctacgatcct ctataaaaaat aagcacctta ctgacctgaa agagagtcat	300
gaaacaatca ctgtctggaa agcatacgac tacacaacgg agaatggcat caagtacgag	360
acgcaaggga caaggacgc gactttcgaa gatgttttg tattctctga ttacaagaac	420
tgcgtatgtaa ttccgttcc caaagagaga ggaagcgacg agggcgacta tgaattgtgg	480
gttagtgaag acaagattga caagattccc gattgtgca agttaacgt ggcgtacttt	540
gcccaacagc aggagaagac gttcgtaat gtatacactg actcatcatg caaaccagca	600
ccagctcaga actgatattc tgtaatgct tgaaccgtaa tggttcgacc tgcagtctag	660
aaacatttac caccatcagc gtgattatct taccgttagtt tcttaggtct tgttcttga	720
ataaaaatagt tccctgcatt gacaaaaaaaaaaa aaa	753

<210> 15
 <211> 719
 <212> DNA
 <213> Rhipicephalus appendiculatus

<400> 15

atgaagatgc aggttagtgct cttaattacc tttgttagcg ccgccttcgc cactcaagcg	60
gagactacat ctgcggaaaggc aggagaaaaac ccgccttggc cgcatgagga actacttgg	120
aaatatcaag atgccttggaa aagcatcgat cagggcgtgt cggtgactta tgccttgc	180
aagacaacat atgagaatga cacaggatca tggggatccc agttaatgtg cctccaggta	240
caagaaatag aaagaaagga agaagactat acagttacat ctgtttcac ctttagaaat	300
gcgtttctc caatcaagta ttacaacgtg acagaaacag tgaaggccgt tttcaatat	360
ggatacaaaaa acataaggaa tcaatttga taccaagtgg gcgggtggact taacataacc	420
gacacgctca ttttactga tggagaatta tgcatgttt tctatgttcc caatgcagat	480
caagggttgc agctctgggt caaaaagagt cactacaac acgttaccaga ctactgcacg	540
ttcggttca atgtttctg tgcggaaagac aggaaaaacct acgtatattttaatgaagaa	600
tgtttata acggcgaacc ctggctttaa aggcaaaaaaaaaat tctataaaat acggtttctg	660
tagtaagtac taatagaag tagttgaata ataaaaagat tgtaagtgc aaaaaaaaaaaa	719

<210> 16
 <211> 832
 <212> DNA
 <213> Rhipicephalus appendiculatus

<400> 16

caactgatca ctaaaatgtt ctttgcgggt ttcttcattt tcggcgctgc cgtccctctca	60
gttttggctg aggagacacc taatgataga tgtactacac acactcctaa tggatggcag	120
tttctcaaga aaggcaagag atacgatatg aaacagagaa cttccaaac acctaactca	180

gacgacacta aatgcctgtc cagtaactatc gacggaaaga atgaaaataa ccatacagta	240
caagcaacga taagatatcg aaatggttat gaagggaaat gggacaccat cgcgcaggag	300
tacgagttcc ccaactacac tgcaggagac tacaactcca tgaagacaac agacaaatcc	360
ccgcctccgc cgccatcata cctgttggaa tatactggaa gctctgtgc cgtgtgtac	420
gtgaattcca ttggacctgt tcgttagcaat tctgaaaacc caccagaaag actcacagca	480
agtcaaggaaa gtgcacaacg cgattgcgtc ctttgggtcg atcacatgaa aaaagctacc	540
caagaacaat gctgtgaaga tttcttcaag acccactgca aagagactgt ccatgtcata	600
tacgacgtga atagatgcaa ggagaatggc agtgaataac acgatgccgg gaatggcatg	660
gcaacttcat ttatgaagga agacttccac agatgtaaaa cttgccttca ttttgcttgt	720
tacttagac caacatattc ttccctttcc gacttcaatg atatgatcta ggttgtaaaa	780
agagcgtttt aataaagaaa gtattagcat cgatgatgaa aatataaaaa aa	832

<210> 17

<211> 1488

<212> DNA

<213> Ambyomma variegatum

<400> 17

gcgaccgcgc ccagccgtac agaacaataa gccttcgttg caaacgtgca gcgtagtcgg	60
atgcctagtt aaacaccaca cacacgtaaa aagttagacga aactggcttc gcttccagca	120
ccaaaggcaggat catcgcttgg tccactgacg atgaactctg ctttgggtt tttacttagga	180
tcatccttat ggctgcatac ggtagcgttc atgatcccata catggcaga tgaaggcagg	240
tttggcaagt accagaacgc ctggaaggcc ctgaatcagc ggattaacac aacacatgtc	300
cttgcgttggt caacgtatata cgacaatcca tatattatggg gcaagaactt ctcatgcgt	360
cgcgctcgaa ctgtcgaaatg ctttcccagc agcaagactg tggaaactgaa gtttagttc	420
agaaaacagga ctggatattt gtgcgtgaa aatcaaacgg ttgcgactgg aaaggattac	480
ttttatcatc agcctaaccgc ctgcgttccat atgctgagag gtaacagggtc gtttcttaac	540
gctgtcatgt ttaccgcgtt aatgacatgt aatctgctca gcttccata ccagcgcaac	600
aaaccacaat gcaactatg ggtgaaggac acgcgcgtcg acaacattcc cccttggc	660
tcgttcatgt tcgactatcc ttgcgttccat tcatcatttca cgacaaagca	720
atgtgcacgg tgaggccacc ccgcgtagaaa gaaaaggat gaaaaggctt ctcgaagaag	780
caacaaccaa tcagtgccttca caagagaacc gttccagtcc tgcgaaaggat ggcctccca	840
aaacacatac atttcactgc aaagatgacc gatgcgtcg caaattcgat tcctagaact	900
caagtgtgt tttggaaact cgaaaaggag acagtagaaatg ctaactgctg tgatacctag	960
gccaggcatt tccgtccggc actgtttttt atgaataggg tagggtgaaa gtatttggc	1020
tttgctgtgg cccaaataat agcgttatatt agcggactg catcgaaatg ccagatgcta	1080
taaaggcactt aaaaactact tctgccttgg aacttcgtatg gtattgaata gatcatgcgc	1140
gcacagaaaa gaaaaggatc aatcaaaaaca taaaaggat tcttcgtatg tgcgcaaaagc	1200
atcccctaag tccacgttcc aataatgggtt catttcataat agcgtatgt tctatacgtt	1260
cttaagatgc taccggcat tcatccctt ctcgttcatg cctcatggat ctgaaccaag	1320
ttttcttatt ggccttgg tttccggtag ctacagatgtt cagcagcacc attgttagt	1380
catatttat cttcgtgttgc tgggtgtcgtt agtataat tctgccttatt cacgtatattt	1440
gcacaatgtt aataaaacatt tgcctgccta aaaaaaaaaa aaaaaaaaaa	1488

<210> 18

<211> 760

<212> DNA

<213> Boophilus microplus

<400> 18

ctccagctct gcttcgtac gtaaggctct cctgatcgct gtcggctacc tggctccgt	60
cacagcggca cccccaaatcg tccgttccctc tccgaggaaac gaaccactca agaataactac	120
gtggcacagc aaggaactgaa aaaattatca agatgcgtgg aagtccatca atcaaaaacgt	180
cagcaactacc tactacttcc tcagatcaac ctacaacaac gacagtgtct ggggtaaaaaa	240
tttcacctgt cttagcgtca cggtgacatc gaaacatgaa tcaacgttca ccgtcgaata	300
taacaccacg tacaaaaatc agagccaaca atgggtcagc atgacggaaa acgtcacggc	360
cgtgcaggag gagggctacg acgtaaaaaa tatcattcag tggacaacag agaataacac	420

aaagttcaat gatactgtt ttttacgga cggccagact tgtgatctgt tgtacatccc 480
 gtacaaaagaa aacggttacg agctgtgggt gcgttggat tacctgcaga acactccaac 540
 gtgctgccag ttcatcttt acctcgatc attgggacgt accacgtaca atatctccac 600
 tcctgactgc gtgacaaaaa cctctcgta gaccgtgaaa gccgcggctt atgctactcg 660
 actgctcagg ttgaaagagt agggagcccc gacgcgcact actactaaaa atgattccaa 720
 ataaagtatt caaacatttc aaaaaaaaaa aaaaaaaaaa 760

<210> 19
 <211> 765
 <212> DNA
 <213> Boophilus microplus

<400> 19

agtgactcct gctctgttc gacgatgaag	gctctcctga tcgctgtcg	ctacactgact	60
gccgtcacag cggcagacca agctccgcct	tcctctacga ggaatgaacc	actcgagaaaa	120
actacctggc acaaccagac actgggacgt	tatcaagatg cgtggaaatc	catcaatcaa	180
agcgtcggtca ctacacta cttcctcaga	tcaacctaca acaacgcacag	cgtgtgggt	240
aaaaatttca cctgtcttag cgtcacgggt	acatcgaaat atgaatcaac	gttcaccgtc	300
gaatataaca ccacgtacaa aaatcagagc	caacaatggg ttagcatgtc	ggaaaaacgtc	360
acggccgtgc aggagggcgg ctacagtgtt	aaaaacatca ttcaagtggac	aacggagaat	420
aacacaaagt tcaatgatac tttttttt	acggacggcc agacttgta	tgtgttatac	480
atcccgta aagaagacgg ttacgagctg	tgggtgcgtt cggaaatacc	gcagaacact	540
ccaaacgtgct gccagttcat ctttgacctc	gtcgcatgg gacgtaccac	gtacaatatc	600
tccactccta actgcgtggc caccaccgt	ggttagacaa tgcaagccgc	ggcttaattt	660
actcgaccgc tcaggttgg agtgccggg	gcctcgacgg gcactactac	ttaaaatgat	720
ttcgaataaa gtattcaagc atttctggaa	aaaaaaaaaa aaaaaa		765

<210> 20
 <211> 1046
 <212> DNA
 <213> Boophilus microplus

<220>
 <221> misc_feature
 <222> (1) ... (1046)
 <223> n = A,T,C or G

<400> 20

gatggcgctc agatggcac ttctgtggc gtgcacatgtc	acggcatgtg gctggagaac	60
acggattcaa gagaaaggta ccgagaacaa ccctctcatg	aacacccaaac gtttggaaaa	120
aatgcaagac gcatggaga gtttggaaaa ggcaacaaat	cagtcgtatg tcttgggtt	180
ccgctcaaga aatcacaac cagagatatc ctgcgtgtac	gtgagggtctt gtaatataaa	240
taatgacact aaaactgca aatataccag aacatattac	aatatgacgg caaacgcac	300
catgacgggt aattataactg caagagctt gaagcaagtg	gactatgagt cggaaaatgt	360
cgtacgatc aacctgacag tgggggtccc cagcaacat	acagttcctt ttggaaagct	420
cgaatacgtc gagtagcgtt attactcctg caatagctca	tcgacaccct ttttggatgc	480
tgtgcaaatg gcatgcgaag ggaatccag agggccggat	atcgaaggcc gcacatatct	540
agacttctac gtcgtctaca atcaaccatc gtcaatgtc	ctgaagtccc cgctcctgg	600
aggtgtttgt gacttttggg tgacagaatc cgagttgcaa	aaagcactaa ataagacatc	660
agagaagaaa aaaacaaagc tagaagcgag agcaaggaaa	gctggaggag attccgatga	720
ccagggaccc gaaactggagg tcgttctcaa aatctgccc	cctccctgc ggcgcacgtt	780
cataacttcc tgcggctatc caactttct tatgtacaac	aagaccatct gtaatcgac	840
ggattctgtc gcggtgtgaa cgtccctgc gagcaagtag	aacgtccgtg aagacagcag	900
gaagatagtt gactgtttt tggcgaaat gtgactacta	gtctgaatca ttaaaaagat	960
tcngctgacg ggtgtggcgg gaactttttt aatgaaatt	ggtcataactt gttgaaagac	1020
aaaaataaaaa caatatgtt ctcctc		1046

<210> 21
<211> 1025
<212> DNA
<213> Boophilus microplus

<400> 21

ggaaaaccagg atggcgctca gatttgcact tctgctggcg tgcacatcgta cggcatgtgg 60
ctggagaaca cggattcaag agaaaggccc cgagaacaac cctctcatga acacccaacg 120
tttggaaaaa atgcaagacg catggaaagag tctggaaaag gcagcaaatac agacgtatgt 180
cttgggtttc cgctcaagaa atcacgaacc agatataatcc tgcgtctacg tgagagctag 240
taattttagat aatgcaacta aaactgcaga ttataccaga acatattaca atatgacggc 300
aaaacaaaaac gtgtcgtaa attatactgc aagagctctg aagcaagtgg actatgagtc 360
ggaaaatgtc gtacgagtaa acctgacagg tggggcccc agtaacgata cagttcctcc 420
tggaaagcttc gaatacgtcg agtacggtaa ttactcctgc aatagctcat cgacaccctt 480
tttggatgtc gtgcaaatgg catcgcaagg gcaatcctgg gggccggatg tcgaagggcg 540
cacatatcta gatttctacg tcgtctacaa tcaaccgtcg tgcaatgtcc tgaagtcccc 600
gtcctggga ggtgcttg acttctgggt gccacaatca gagttggaca aggtactaaa 660
caaaaaagga gataagaaaa agccagctaa gtcaagcagt caaaatggag acgaagggttc 720
tgatgccgag caacctgaac tggaggccat cttaaacat ctacccccc cctggccgccc 780
acggttcata acttcctgcg gctatccaaa ttttctcatg tacaacaaga cgatctgtaa 840
tgcagcgggt catgctgcga actgaacggtc ctctgcgaac gagtagagcg tgcgtaaaaaa 900
caactggtct gaatctttt aaaaaattcgg caaagtgcgg gtggcgcgaa cttttatcaa 960
actggtcata catgtgaaag aaaaaataa aacaaaatgt gcataaaaaaa aaaaaaaaaaa 1020
aaaaaa 1025

B1
<210> 22
<211> 1156
<212> DNA
<213> Boophilus microplus

<220>
<221> misc_feature
<222> (1)...(1156)
<223> n = A,T,C or G

<400> 22

cgaagagcag gtacgattcg aatctttgca atggacattc gcagcgctgt tttgttcg 60
tgcacatcgctc cggcggtttc tggctttgg cgctggacaa cacggagggt aactaaaaag 120
cctgataaca gcccctgtt gacaacccaa catcttggtc tttccagga cgcatggaaag 180
actatagaag agacgtccaa tgatacgtat gtcctgtat tccgctcaaa acattacgac 240
cacgagaaca aggctaaatg tgtcttcgta acggcaaata ttactgactc ccggacaaa 300
actgccaatt acacaataac gtattacgt actacaacaa atacatccaa caattttaca 360
atcccaactgaa gagctctgaa cccaaactgac tactcaactg aaaatgtgt tcgagcaagc 420
ttcaacggcg acactccaag ctctactcca gcccctcccg gaagcagcgt gtacattcag 480
tataataatg ttacctgcta cgcccaatata caccctttt caaataatgg aatcagtgc 540
aaatatgtat aaatgccccg ggatggccgaa aattacttgt tcgacaattt tattgggtct 600
tacttggact tctacgttgt gttcagccag ccgacatgca acgttctcag agtccgagaa 660
ggatgtact tctggctaaag gaaaactgag ttgccaagcc tactgaaagc agcagaaaaat 720
gatgacaacg ataacacgga atcgctgaag aactattggg aaagaagaat aaataatact 780
aaaacaagat ttgcacataa tactaagaaaa tgtaagatgt acgtacaacg ttattcaatt 840
gagaaggctg aagatgtctt taaaaacact gctttaaac acctccccc cggactgccc 900
tttgccttcc tggccgcctt tggaaatcca gcattcacaa tatacgaccc agaaacatgt 960
aatagctccc tgccagctaa tatggcagaa agttaaatga gctatttcac ttcatgttcg 1020
accgtatgcc tggatgtcaa gaagggtgagg ttggacagga tacttccgaa ttatttttc 1080
agtctgcctt gtacgcacga aataacaaaa tatctgtga agccnncaac nnnnnnaana 1140
anaaaaana aaaaaa 1156

<210> 23
<211> 26.
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<221> misc_feature
<222> (1)...(26)
<223> n = A,T,C or G

<400> 23
aayggngarc aycargaygc ntggaa

26

B |
<210> 24
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<221> misc_feature
<222> (1)...(26)
<223> n = A,T,C or G

<400> 24
ktrtmrtcng tnryccanar ytcrta

26

<210> 25
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> tagging sequence

<400> 25
tatatgatca gaaaacccgc tctggg

26

<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> tagging sequence

<400> 26
tatactcgag ccagggttcg ccgt

24

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> amplifying oligonucleotide

<400> 27
tatgaagatg caggttagtgc

20

<210> 28
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> amplifying oligonucleotide

<400> 28
atatgatcag ccagggttcg ccgt

24

B1
<210> 29
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 29
tatgagctca tgaactctgc cttgtgg

27

<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 30
tatggatccg gggtgccctc accg

24

<210> 31
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> octapeptide

<400> 31
Ala Glu Ala Phe Ala Glu Ala Trp
1 5