Local feature: Blob detection

Lu Peng
School of Computer Science,
Beijing University of Posts and Telecommunications

0

Machine Vision Technology								
Semantic information					Metric 3D information			
Pixels	Segments	Images	Videos		Camera		Multi-view Geometry	
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking		Camera Model	Camera Calibration	Epipolar Geometry	SFM
10	4	4	2		2	2	2	2

2020/3/22

Beijing University of Posts and Telecommunications

Blob detection

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

2

Achieving scale covariance

- Goal: independently detect corresponding regions in scaled versions of the same image
- Need scale selection mechanism for finding characteristic region size that is covariant with the image transformation

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

3

From edges to blobs

- Edge = ripple
- Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

6

Scale selection

- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:

Why does this happen?

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

7

_

Scale normalization

• The response of a derivative of Gaussian filter to a perfect step edge decreases as $\boldsymbol{\sigma}$ increases

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

8

Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases
- • To keep response the same (scale-invariant), must multiply Gaussian derivative by $\boldsymbol{\sigma}$
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

9

10

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

2020/3/22

Beijing University of Posts and Telecommunications

Source: S. Lazebnik

Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Scale-normalized:

$$\nabla_{\mathsf{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

12

12

Scale selection

• At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?

image

Laplacian

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

13

Scale selection

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
- To get maximum response, the zeros of the Laplacian have to be aligned with the circle
- The Laplacian is given by (up to scale): $(x^2+y^2-2\sigma^2)\,e^{-(x^2+y^2)/2\sigma^2}$
- Therefore, the maximum response occurs at $\sigma = r/\sqrt{2}$.

Beijing University of Posts and Telecommunications

Source: S. Lazebnik

14

2020/3/22

Characteristic scale

 We define the characteristic scale of a blob as the scale that produces peak of Laplacian response in the blob center

characteristic scale

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> *International Journal of Computer Vision* **30** (2): pp 77--116.

2020/3/22

Beijing University of Posts and Telecommunications

Source: S. Lazebnik

Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

16

16

Scale-space blob detector: Example

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

17

Scale-space blob detector: Example

sigma = 11.9912

2020/3/22

Beijing University of Posts and Telecommunications

Source: S. Lazebnik

18

Scale-space blob detector

- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

19

Scale-space blob detector: Example

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

20

20

Efficient implementation

Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

21

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

22

Invariance and covariance properties

- Laplacian (blob) response is invariant w.r.t. rotation and scaling
- Blob location and scale is covariant w.r.t. rotation and scaling
- What about intensity change?

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Achieving affine covariance

 Affine transformation approximates viewpoint changes for roughly planar objects and roughly orthographic cameras

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

24

24

Achieving affine covariance

Consider the second moment matrix of the window containing the blob:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Recall:

 $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const} \qquad (\lambda_{\text{max}})^{-1/2}$

This ellipse visualizes the "characteristic shape" of the window

Source: S. Lazebnik

Affine adaptation example

Scale-invariant regions (blobs)

2020/3/22

Beijing University of Posts and Telecommunications

Source: S. Lazebnik

26

Affine adaptation example

Affine-adapted blobs

2020/3/22

Beijing University of Posts and Telecommunications

Source: S. Lazebnik

27

From covariant detection to invariant description

- Geometrically transformed versions of the same neighborhood will give rise to regions that are related by the same transformation
- What to do if we want to compare the appearance of these image regions?
 - Normalization: transform these regions into same-size circles

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

28

28

Affine normalization

- Problem: There is no unique transformation from an ellipse to a unit circle
 - We can rotate or flip a unit circle, and it still stays a unit circle

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

29

Eliminating rotation ambiguity

- To assign a unique orientation to circular image windows:
 - Create histogram of local gradient directions in the patch
 - Assign canonical orientation at peak of smoothed histogram

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

30

30

From covariant regions to invariant features

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

31

Invariance vs. covariance

Invariance:

• features(transform(image)) = features(image)

Covariance:

• features(transform(image)) = transform(features(image))

Covariant detection => invariant description

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

32