2003

\mathbf{A}

câu 5: cho x,y,z là các số thực dương thỏa mãn $x+y+z \leq 1$. Chứng minh rằng:

$$\sqrt{x^2 + \frac{1}{x^2}} + \sqrt{y^2 + \frac{1}{y^2}} + \sqrt{z^2 + \frac{1}{z^2}} \ge \sqrt{82}$$

lời giải:

$$x^{2} + \frac{1}{81x^{2}} \ge \frac{2}{9} \Rightarrow x^{2} + \frac{1}{x^{2}} \ge \frac{2}{9} + \frac{80}{81x^{2}}$$
$$\Rightarrow \sqrt{x^{2} + \frac{1}{x^{2}}} \ge \sqrt{\frac{2}{9} + \frac{80}{81x^{2}}}$$

dùng bất đẳng thức Bunyakovsky:

$$(a_1^2 + a_2^2 + \dots + a_n^2) \cdot (b_1^2 + b_2^2 + \dots + b_n^2) \ge (a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n)^2$$

cho $b_1 = 1, b_2 = 1, ..., b_n = 1$ ta có:

$$n.(a_1^2 + a_2^2 + \dots + a_n^2) \ge (a_1 + a_2 + \dots + a_n)^2$$

$$\Rightarrow n.(t_1 + t_2 + \dots + t_n) \ge (\sqrt{t_1} + \sqrt{t_2} + \dots + \sqrt{t_n})^2$$

$$\Rightarrow \sqrt{t_1 + t_2 + \dots + t_n} \ge \frac{1}{\sqrt{n}}.(\sqrt{t_1} + \sqrt{t_2} + \dots + \sqrt{t_n})$$

áp dụng bất đẳng thức trên cho $\frac{2}{9},\frac{2}{81x^2},...,\frac{2}{81x^2},$ ta có:

$$\sqrt{\frac{2}{9} + \frac{80}{81x^2}} \ge \frac{1}{\sqrt{41}} \cdot (\sqrt{\frac{2}{9}} + 40 \cdot \sqrt{\frac{2}{81x^2}})$$
$$= \frac{1}{\sqrt{41}} \cdot (\frac{\sqrt{2}}{3} + \frac{40\sqrt{2}}{9} \cdot \frac{1}{x})$$

tương tự cho y, z, từ đó ta có:

$$P \geq \frac{1}{\sqrt{41}}.(\sqrt{2} + \frac{40\sqrt{2}}{9}.(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}))$$

$$\geq \frac{1}{\sqrt{41}} \cdot (\sqrt{2} + \frac{40\sqrt{2}}{9} \cdot \frac{9}{x+y+z}) \geq \sqrt{82}$$

\mathbf{B}

câu 4:

1) tìm min, max của hàm số

$$x + \sqrt{4 - x^2}$$

lời giải: đặt $y=\sqrt{4-x^2}$, khi đó $x\in[-2,2],y\in[0,2],x^2+y^2=4,f=x+y$

$$f^2 = 4 + 2xy \le 8 \Rightarrow f \le 2\sqrt{2}$$

vậy max của f
 la $2\sqrt{2}$ giả sử $x\leq 0,$ khi đó

$$f^2 = 4 + 2xy \le 4$$

suy ra min của f là -2 khi $x \le 0$, với $x \ge 0$, dễ thấy f luôn lớn hơn 0 vậy min của f là -2

\mathbf{D}

2005

\mathbf{A}

câu 5: cho x,y,z là các số dương thỏa mãn $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4$, chứng minh rằng:

$$\frac{1}{2x+y+z} + \frac{1}{x+2y+z} + \frac{1}{x+y+2z} \le 1$$

lời giải: áp dụng

$$\frac{1}{a+b+c+d} \leq \frac{1}{16}.(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})$$

ta có:

$$\frac{1}{2x+y+z} \leq \frac{1}{16}.(\frac{2}{x}+\frac{1}{y}+\frac{1}{z})$$

tương tự cho y,z và cộng từng vế ta được:

$$P \le \frac{1}{4} \cdot (\frac{1}{x} + \frac{1}{y} + \frac{1}{z}) = 1$$

\mathbf{B}

câu 5: chúng minh rằng với mọi $x \in R$ ta có:

$$(\frac{12}{5})^x + (\frac{15}{4})^x + (\frac{20}{3})^x \ge 3^x + 4^x + 5^x$$

lời giải: áp dụng

$$\frac{ab}{c} + \frac{bc}{a} + \frac{ca}{b} \ge a + b + c$$

cho $3^x, 4^x, 5^x$

\mathbf{D}

câu 5: cho các số dương x, y, z thỏa xyz = 1, chứng minh rằng:

$$\frac{\sqrt{1+x^3+y^3}}{xy} + \frac{\sqrt{1+y^3+z^3}}{yz} + \frac{\sqrt{1+z^3+x^3}}{zx} \geq 3\sqrt{3}$$

lời giải:

$$1 + x^3 + y^3 \ge 3xy \Rightarrow \frac{\sqrt{1 + x^3 + y^3}}{xy} \ge \frac{\sqrt{3}}{\sqrt{xy}}$$
$$\Rightarrow P \ge \sqrt{3}.(\frac{1}{\sqrt{xy}} + \frac{1}{\sqrt{yz}} + \frac{1}{\sqrt{zx}}) \ge 3\sqrt{3}$$

2006

\mathbf{A}

câu 4:

2) cho hai số thực x, y thỏa

$$(x+y)xy = x^2 + y^2 - xy$$

tìm giá trị lớn nhất của $\frac{1}{x^3} + \frac{1}{y^3}$

lời giải: đặt $a=\frac{1}{x}, b=\frac{1}{y},$ khi đó:

$$(\frac{1}{a}+\frac{1}{b}).\frac{1}{ab}=\frac{1}{a^2}+\frac{1}{b^2}-\frac{1}{ab}$$

$$\Rightarrow a+b=a^2+b^2-ab\Rightarrow a+b+3ab=(a+b)^2$$
 đặt $t=a+b$, khi đó $ab=\frac{t^2-t}{3}$ ta có $(a+b)^2\geq 4ab\Rightarrow t^2\geq \frac{4}{3}.(t^2-t)$
$$\Rightarrow 0\leq t\leq 4\Rightarrow 0\leq a+b\leq 4$$

vậy
$$P = a^3 + b^3 = (a^2 + b^2)(a + b) - ab(a + b) = (a + b + ab)(a + b) - ab(a + b) = (a + b)^2 \le 16$$

\mathbf{B}

câu 4:

2) cho số thực $\boldsymbol{x},\boldsymbol{y}$ tìm giá trị nhỏ nhất của

$$\sqrt{(x-1)^2+y^2} + \sqrt{(x+1)^2+y^2} + |y-2|$$

lời giải: áp dụng BĐT Minkowski

$$\sqrt{a^2 + b^2} + \sqrt{c^2 + d^2} \ge \sqrt{(a+c)^2 + (b+d)^2}$$

 $d\hat{a}u = x\dot{a}y ra khi ad = bd$

$$\sqrt{(x-1)^2 + y^2} + \sqrt{(x+1)^2 + y^2} \ge 2\sqrt{x^2}$$

 \mathbf{D}

2012

 $\mathbf{A1}$

 \mathbf{A}

 \mathbf{B}

 \mathbf{D}