ODE Homework 2 (3%)

Chengyu Hsieh, B13201053

Let P_n be the Legendre polynomial of degree n. Prove that $|P'_n(x)| < n^2$ and $|P''_n(x)| < n^4$ for -1 < x < 1.

Proof

For n = 0 or n = 1, one can check that the condition that the problem gave does not hold. We thus assume $n \geq 2$. It has been shown in [2] that $P_n(x) \leq 1$ in [-1,1]. The Markov brothers' inequality[1] states that for a polynomial p with degree $\leq n$, we have

$$\max_{-1 \le x \le 1} |p^k(x)| \le (\max_{-1 \le x \le 1} |T_n^k|) (\max_{-1 \le x \le 1} |p(x)|) = \frac{n^2(n^2 - 1^2) \dots (n^2 - (k - 1)^2)}{1 \cdot 3 \dots (2k - 1)} (\max_{-1 \le x \le 1} |p(x)|)$$

with the equality holding only if $p = \gamma T_n$ where $|\gamma| = 1[1]$.

For the case of $|P''_n(x)|$, applying the Markov brothers' inequality on $|P''_n(x)|$ gives us

$$|P_n''(x)| \le \frac{n^2(n^2 - 1^2)}{1 \cdot 3} \max_{-1 \le x \le 1} |P_n(x)| < n^2(n^2 - 1) < n^4$$

For the case of P'_n , we again apply the Markov brothers' inequality to $|P'_n(x)|$. Note that $\not\exists \gamma$ with $|\gamma| = 1$ such that $P'_n(x) = \gamma T_n$. Hence the equality does not hold. Thus

$$|P'_n(x)| < n^2 \max_{-1 \le x \le 1} |P_n(x)| = n^2$$

References

- [1] A. Shadrin. Twelve proofs of the markov inequality. 2005.
- [2] Gábor Szegő. Orthogonal Polynomials, volume 23 of Colloquium Publications. American Mathematical Society, 4th edition, 1939.