IT Fundamentals Hoofdstuk 5 Boolese uitdrukkingen en functies

Jens Buysse, Karine Van Driessche, Koen Mertens, Lieven Smits 11 september 2020

Inhoud I

Boolese uitdrukkingen en functies

Notatie

Boolese uitdrukkingen

Minimale en maximale Boolese uitdrukkingen

Disjunctieve normaalvorm: DNV

Conjunctieve normaalvorm: CNV

Vereenvoudigen van Boolese uitdrukkingen

Oefeningen

Boolese uitdrukkingen en functies

Boolese uitdrukkingen en functies

- Notatie
- Boolese uitdrukkingen
- Minimale en maximale Boolese uitdrukkingen
- Disjunctieve normaalvorm: DNV
- Conjunctieve normaalvorm: CNV
- Vereenvoudigen van Boolese uitdrukkingen
- Oefeningen

Notatie

Notatie

$$B = (B, +, \cdot, \bar{\ }, 0, 1), \text{ met } B = \{0, 1\} \text{ en }$$

	0					1		
0	0	1	_	0	0	0	0	1
1	1	1		1	0	1	1	0

Notatie

$$B = (B, +, \cdot, \bar{\ }, 0, 1), \text{ met } B = \{0, 1\} \text{ en }$$

+	0	1			1		-
0	0	1	0	0		0	1
0	1	1	1	0	1	1	0

 $a, b, c, ... \in B$ zijn constanten $x, y, z, ... \in B$ zijn variabelen

Een Boolese functie

Een Boolese functie

Definitie
Een **Boolese functie** is van de vorm

$$f: B^n \to B: (x_1, x_2, ..., x_n) \mapsto f(x_1, x_2, ..., x_n)$$

met $f(x_1, x_2, ..., x_n)$ een booleaanse uitdrukking.

1.
$$f(x,y) = x + \overline{y} + \overline{x} \cdot y$$

1.
$$f(x,y) = x + \overline{y} + \overline{x} \cdot y$$

1.
$$f(x, y) = x + \overline{y} + \overline{x} \cdot y$$

X	У	\overline{x}	\overline{y}	$\overline{x} \cdot y$	f(x,y)
0	0	1	1	0	1
0	1	1	0	1	1
1	0	0	1	0	1
1	1	0	0	0	1

1.
$$f(x,y) = x + \overline{y} + \overline{x} \cdot y$$

X	У	\overline{x}	\overline{y}	$\overline{x} \cdot y$	f(x,y)
0	0	1	1	0	1
0	1	1	0	1	1
1	0	0	1	0	1
1	1	0	0	0	1

2.
$$f: B^3 \to B: (x, y, z) \mapsto x + (y \cdot \overline{z})$$

Eigenschap

Twee Boolese functies, f en g, in n veranderlijken zijn gelijk als en slechts als

$$f(x_1, x_2, ..., x_n) = g(x_1, x_2, ..., x_n)$$

voor alle $(x_1, x_2, ..., x_n) \in B^n$

Eigenschap

Twee Boolese functies, f en g, in n veranderlijken zijn gelijk als en slechts als

$$f(x_1, x_2, ..., x_n) = g(x_1, x_2, ..., x_n)$$

voor alle $(x_1, x_2, ..., x_n) \in B^n$

Voorbeeld

Eigenschap

Twee Boolese functies, f en g, in n veranderlijken zijn gelijk als en slechts als

$$f(x_1, x_2, ..., x_n) = g(x_1, x_2, ..., x_n)$$

voor alle $(x_1, x_2, ..., x_n) \in B^n$

Voorbeeld

Zijn de volgende twee Boolese functies gelijk?

$$f(x, y) = (\overline{x} + y) \cdot \overline{y}$$

 $g(x, y) = \overline{x + y}$

Definitie

Een Boolese uitdrukking in n variabelen, $x_1, x_2, ..., x_n$ is **minimaal** als ze het product is van n factoren en waarbij de k-de factor x_k of \overline{x}_k is.

Definitie

Een Boolese uitdrukking in n variabelen, $x_1, x_2, ..., x_n$ is **minimaal** als ze het product is van n factoren en waarbij de k-de factor x_k of \overline{x}_k is.

Definitie

Een Boolese uitdrukking in n variabelen, $x_1, x_2, ..., x_n$ is **minimaal** als ze het product is van n factoren en waarbij de k-de factor x_k of \overline{x}_k is.

Voorbeelden

• Alle minimale uitdrukkingen in 1 variabele: x, \overline{x} .

Definitie

Een Boolese uitdrukking in n variabelen, $x_1, x_2, ..., x_n$ is **minimaal** als ze het product is van n factoren en waarbij de k-de factor x_k of \overline{x}_k is.

- Alle minimale uitdrukkingen in 1 variabele: x, \overline{x} .
- Alle minimale uitdrukkingen in 2 variabelen:...

Definitie

Een Boolese uitdrukking in n variabelen, $x_1, x_2, ..., x_n$ is **minimaal** als ze het product is van n factoren en waarbij de k-de factor x_k of \overline{x}_k is.

- Alle minimale uitdrukkingen in 1 variabele: x, \overline{x} .
- Alle minimale uitdrukkingen in 2 variabelen:...
- Alle minimale uitdrukkingen in 3 variabelen:...

Definitie

Een Boolese uitdrukking in n variabelen, $x_1, x_2, ..., x_n$ is **maximaal** als ze de som is van n termen en waarbij de k-de term x_k of \overline{x}_k is.

Definitie

Een Boolese uitdrukking in n variabelen, $x_1, x_2, ..., x_n$ is **maximaal** als ze de som is van n termen en waarbij de k-de term x_k of \overline{x}_k is.

Definitie

Een Boolese uitdrukking in n variabelen, $x_1, x_2, ..., x_n$ is **maximaal** als ze de som is van n termen en waarbij de k-de term x_k of \overline{x}_k is.

Voorbeelden

• Alle maximale uitdrukkingen in 1 variabele: x, \overline{x} .

Definitie

Een Boolese uitdrukking in n variabelen, $x_1, x_2, ..., x_n$ is **maximaal** als ze de som is van n termen en waarbij de k-de term x_k of \overline{x}_k is.

- Alle maximale uitdrukkingen in 1 variabele: x, \overline{x} .
- Alle maximale uitdrukkingen in 2 variabelen:...

Definitie

Een Boolese uitdrukking in n variabelen, $x_1, x_2, ..., x_n$ is **maximaal** als ze de som is van n termen en waarbij de k-de term x_k of \overline{x}_k is.

- Alle maximale uitdrukkingen in 1 variabele: x, \overline{x} .
- Alle maximale uitdrukkingen in 2 variabelen:...
- Alle maximale uitdrukkingen in 3 variabelen:...

Definitie

De **DNV** van een Boolese uitdrukking in n variabelen is een som van minimale uitdrukkingen in n variabelen.

Definitie

De **DNV** van een Boolese uitdrukking in n variabelen is een som van minimale uitdrukkingen in n variabelen.

•
$$f(x,y) = x \cdot y + \overline{x} \cdot y$$

Definitie

De **DNV** van een Boolese uitdrukking in **n** variabelen is een som van minimale uitdrukkingen in **n** variabelen.

- $f(x,y) = x \cdot y + \overline{x} \cdot y$
- $f(x, y, z) = \overline{x} \cdot y \cdot z + \overline{x} \cdot \overline{y} \cdot z + \overline{x} \cdot \overline{y} \cdot \overline{z}$

Opstellen DNV Methode 1: Gebruik axioma's en eigenschappen

Opstellen DNV Methode 1: Gebruik axioma's en eigenschappen

Voorbeeld

$$f(x, y, z) = x \cdot y + x \cdot \overline{y} \cdot (x + z)$$


```
Eigenschap \begin{split} f(x_1,x_2,...,x_n) &= \\ f(1,1,...,1)x_1x_2 &...x_n + f(0,1,...,1)\overline{x}_1x_2 &...x_n + ... + f(0,0,...,0)\overline{x}_1\overline{x}_2 &...\overline{x}_n \end{split}
```



```
Eigenschap f(x_1, x_2, ..., x_n) = f(1, 1, ..., 1)x_1x_2 ... x_n + ... + f(0, 0, ..., 0)\overline{x}_1\overline{x}_2 ... \overline{x}_n Voorbeelden

1. f(x, y) = \overline{x} + \overline{y}
```



```
Eigenschap f(x_1, x_2, ..., x_n) = f(1, 1, ..., 1)x_1x_2 ... x_n + ... + f(0, 0, ..., 0)\overline{x}_1\overline{x}_2 ... \overline{x}_n Voorbeelden

1. f(x, y) = \overline{x} + \overline{y}
```



```
Eigenschap f(x_1, x_2, ..., x_n) = f(1, 1, ..., 1)x_1x_2 ... x_n + f(0, 1, ..., 1)\overline{x}_1x_2 ... x_n + ... + f(0, 0, ..., 0)\overline{x}_1\overline{x}_2 ... \overline{x}_n Voorbeelden

1. f(x,y) = \overline{x} + \overline{y} = f(1, 1)xy + f(1, 0)x\overline{y} + f(0, 1)\overline{x}y + f(0, 0)\overline{x}\overline{y}
```



```
Eigenschap f(x_1, x_2, ..., x_n) = f(1, 1, ..., 1)x_1x_2 ... x_n + f(0, 1, ..., 1)\overline{x}_1x_2 ... x_n + ... + f(0, 0, ..., 0)\overline{x}_1\overline{x}_2 ... \overline{x}_n

Voorbeelden

1. f(x,y) = \overline{x} + \overline{y}
= f(1, 1)xy + f(1, 0)x\overline{y} + f(0, 1)\overline{x}y + f(0, 0)\overline{x}\overline{y}
= ...
```



```
Eigenschap f(x_1, x_2, ..., x_n) = f(1, 1, ..., 1)x_1x_2 ... x_n + f(0, 1, ..., 1)\overline{x}_1x_2 ... x_n + ... + f(0, 0, ..., 0)\overline{x}_1\overline{x}_2 ... \overline{x}_n Voorbeelden
```

```
f(x,y) = \overline{x} + \overline{y}
= f(1,1)xy + f(1,0)x\overline{y} + f(0,1)\overline{x}y + f(0,0)\overline{x}y
= ...
```

2.
$$f(x, y, z) = x \cdot y + x \cdot \overline{y} \cdot (x + z)$$

Definitie

De **CNV** van een uitdrukking in **n** variabelen is een product van maximale uitdrukkingen in **n** variabelen (duale van DNV).

Definitie

De **CNV** van een uitdrukking in **n** variabelen is een product van maximale uitdrukkingen in **n** variabelen (duale van DNV).

Voorbeelden

Definitie

De **CNV** van een uitdrukking in **n** variabelen is een product van maximale uitdrukkingen in **n** variabelen (duale van DNV).

Voorbeelden

•
$$f(x,y) = (x+y) \cdot (\overline{x} + y)$$

Definitie

De **CNV** van een uitdrukking in **n** variabelen is een product van maximale uitdrukkingen in **n** variabelen (duale van DNV).

Voorbeelden

- $f(x,y) = (x+y) \cdot (\overline{x}+y)$
- $f(x, y, z) = (\overline{x} + y + z) \cdot (\overline{x} + \overline{y} + z) \cdot (\overline{x} + \overline{y} + \overline{z})$

CNV: Gebruik de uitvoertabel

CNV: Gebruik de uitvoertabel

Methode DNV	Methode CNV	
Stel de outputtabel op	Stel de outputtabel op	
Zoek alle outputwaarden = 1	Zoek alle outputwaarden = 0	
Construeer de minimale term : • als input $x_i = 1$ dan x_i • als input $x_i = 0$ dan x_i	Construeer de maximale uitdr. : • als input $x_i = 0$ dan $\overline{x_i}$ • als input $x_i = 1$ dan $\overline{x_i}$	
Verbind alle termen met een +	Verbind alle uitdr. met een . GEN	ΙT

Opstellen van de CNV Voorbeeld

Opstellen van de CNV Voorbeeld

$$f(x, y, z) = x \cdot y + x \cdot \overline{y} \cdot (x + z)$$

Vereenvoudigen m.b.v. eigenschappen en axioma's

Vereenvoudigen m.b.v. eigenschappen en axioma's

Welke axioma's en eigenschappen er moeten toegepast worden, om de uitdrukking te vereenvoudigen, daar zijn geen vaste regels voor. Het beste resultaat vindt men via *trial and error*.

- 1 Bepaal de DNV en CNV van f(x, y, z) als:
 - (a) f(1,1,1) = f(1,0,1) = f(1,1,0) = f(0,0,0) = 1. Alle andere waarden van f zijn O.
 - (b) f(0,0,0) = f(0,1,0) = f(0,1,1) = 1. De andere waarden v. f zijn 0.

- 1 Bepaal de DNV en CNV van f(x, y, z) als:
 - (a) f(1,1,1) = f(1,0,1) = f(1,1,0) = f(0,0,0) = 1. Alle andere waarden van f zijn O.
 - (b) f(0,0,0) = f(0,1,0) = f(0,1,1) = 1. De andere waarden v. f zijn 0.
- 2 Bepaal de DNV van f(x, y, z, u) als:
 - (a) f(1,1,1,1) = f(1,0,0,1) = f(1,0,1,0) = 1. Alle andere waarden van f zijn 0.
 - (b) f(1,0,1,0) = f(0,0,0,0) = f(0,1,0,1) = f(1,1,1,1) = 1. Alle andere waarden v. f zijn 0.

3 Geef de DNV (op twee verschillende manieren) en CNV van:

- (a) $f(x, y, z) = \overline{x + y + z}$
- (b) $f(x, y, z) = ((\overline{x} + y) + \overline{z}) \cdot \overline{z} \cdot x$
- (c) $f(x, y, z) = (x \cdot (\overline{y} + z)) + \overline{z}$

- 3 Geef de DNV (op twee verschillende manieren) en CNV van:
 - (a) $f(x, y, z) = \overline{x + y + z}$
 - (b) $f(x, y, z) = ((\overline{x} + y) + \overline{z}) \cdot \overline{z} \cdot x$
 - (c) $f(x, y, z) = (x \cdot (\overline{y} + z)) + \overline{z}$
- 4 Vereenvoudig:
 - (a) $(x + y) \cdot (\overline{y} \cdot \overline{z}) + (x \cdot \overline{y})$
 - (b) $x \cdot \overline{y} + (\overline{x} + y) \cdot y$
 - (c) $((x + y) + x \cdot z) \cdot (x + y \cdot z)$
 - (d) $(x + x \cdot y + x \cdot y \cdot z) \cdot (x \cdot y + x \cdot z) \cdot (y + x \cdot y \cdot z)$

