/(v)/v

$$\begin{array}{c|c} AB(CH_2)_n & -N \\ \hline \\ R^1 & Z^2 \\ Z^3 & N \end{array} \begin{array}{c} Z^5 \\ Z^4 \end{array}$$

(Ia)

wherein:

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, one is CR^{1a} and the remainder are CH, or one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH;

 R^1 is selected from hydroxy; (C₁₋₆) alkoxy optionally substituted by (C₁₋₆)alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups, NH₂CO, hydroxy, thiol, (C₁₋₆)alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C₁₋₆)alkylsulphonyloxy; (C₁₋₆)alkoxy-substituted (C₁₋₆)alkyl; halogen; (C₁₋₆)alkyl; (C₁₋₆)alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C₁₋₆)alkylsulphonyl; (C₁₋₆)alkylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups, or when one of Z¹, Z², Z³, Z⁴ and Z⁵ is N, R¹ may instead be hydrogen;

 R^{1a} is selected from H and the groups listed above for R^{1} ;

 R^3 is hydrogen; or

 R^3 is in the 2- or 3-position and is:

carboxy; (C_{1-6}) alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy($C_{1-6})$ alkyl, aminocarbonyl($C_{1-6})$ alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy((C_{1-6}) alkyl, aminocarbonyl((C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkyl optionally substituted by (C_{1-6}) alkoxycarbonyl optionally substituted by (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkyl, (C_{1-6}) alkyl, (C_{1-6}) alkyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkenylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulphonylsulpho

 R^3 is in the 2- or 3-position and is (C_{1-4}) alkyl or ethenyl substituted with any of the groups listed above for R^3 and/or 0 to 3 groups R^{12} independently selected from:

thiol; halogen; (C_{1-6}) alkylthio; trifluoromethyl; azido; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; hydroxy optionally substituted by

a

 (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylcarbonyl or (C_{2-6}) alkenylcarbonyl; amino optionally mono- or disubstituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{2-6}) alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy((C_{1-6}) alkyl, aminocarbonyl((C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy((C_{1-6}) alkyl, aminocarbonyl((C_{1-6}) alkyl or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{2-6}) alkenylsulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; provided that when (C_{2-6}) alkenylsulphonyl or amino and carboxy containing substituents these may optionally together form a cyclic ester or amide linkage, respectively;

wherein R^{10} is selected from (C_{1-4}) alkyl; (C_{2-4}) alkenyl; aryl; a group R^{12} as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; or tetrazolyl;

 R^4 is a group -CH₂- R^5 in which R^5 is selected from:

 $(C_{3-12})alkyl; \ hydroxy(C_{3-12})alkyl; \ (C_{1-12})alkoxy(C_{3-12})alkyl; \ (C_{1-12})alkanoyloxy(C_{3-12})alkyl; \ (C_{3-6})cycloalkyl(C_{3-12})alkyl; \ hydroxy-, \ (C_{1-12})alkoxy- \ or \ (C_{1-12})alkanoyloxy-(C_{3-6})cycloalkyl(C_{3-12})alkyl; \ cyano(C_{3-12})alkyl; \ (C_{2-12})alkenyl; \ (C_{2-12})alkynyl; \ tetrahydrofuryl; \ monoordi-(C_{1-12})alkylamino(C_{3-12})alkyl; \ (C_{1-12})alkyl- \ or \ acyl-aminocarbonyl(C_{3-12})alkyl; \ mono- \ or \ di-(C_{1-12})alkylamino(hydroxy) \ (C_{3-12})alkyl; \ optionally \ substituted \ phenyl(C_{1-2})alkyl; \ optionally \ substituted \ diphenyl(C_{1-2})alkyl; \ optionally \ substituted \ heteroaryl \ or \ heteroaryl \ or \ heteroaroylmethyl; \ optionally \ substituted \ heteroaroyl \ or \ heteroaroylmethyl; \ optionally \ substituted \ heteroaroyl \ or \ heteroaroylmethyl; \ optionally \ substituted \ heteroaroyl \ or \ heteroaroylmethyl; \ optionally \ substituted \ heteroaroyl \ or \ heteroaroylmethyl; \ optionally \ substituted \ heteroaroyl \ or \ heteroaroylmethyl; \ optionally \ substituted \ heteroaroyl \ or \ heteroaroylmethyl; \ optionally \ substituted \ heteroaroyl \ or \ heteroaroylmethyl; \ optionally \ substituted \ heteroaroyl \ or \ heteroaroylmethyl; \ optionally \ substituted \ heteroaroyl \ or \ heteroaroylmethyl; \ optionally \ substituted \ heteroaroylmethyl; \ optionally \ optionally \ substituted \ heteroaroylmethyl; \ optionally \ optio$

n is 0, 1 or 2;

AB is $NR^{11}CO$, $CO-CR^8R^9$ or $CR^6R^7-CR^8R^9$ or when n is 1 or 2, AB may instead be $O-CR^8R^9$ or $NR^{11}-CR^8R^9$, or when n is 2 AB may instead be $CR^6R^7-NR^{11}$ or CR^6R^7-O , provided that when n is 0, B is not CH(OH),

and wherein:

each of R^6 and R^7 R^8 and R^9 is independently selected from: H; thiol; (C_{1-6})alkylthio; halo; trifluoromethyl; azido; (C_{1-6})alkyl; (C_{2-6})alkenyl; (C_{1-6})alkoxycarbonyl; (C_{1-6})alkylcarbonyl; (C_{2-6})alkoxycarbonyl; (C_{2-6})alkylcarbonyl; (C_{2-6})alkylcarbonyl;

36

0

6)alkenyloxycarbonyl; (C_{2-6})alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-6})alkylsulphonyl; (C_{2-6})alkenylsulphonyl; or (C_{1-6})alkyloryl wherein the amino group is optionally substituted by (C_{1-6})alkyl or (C_{1-6})alkenyl; or R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined; and each R^{11} is independently H, trifluoromethyl, (C_{1-6})alkyl, (C_{1-6})alkenyl, (C_{1-6})alkoxycarbonyl, (C_{1-6})alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6})alkoxycarbonyl, (C_{1-6})alkylcarbonyl, (C_{1-6})alkylcarbonyl, (C_{1-6})alkenyloxycarbonyl, (C_{2-6})alkenylcarbonyl, (C_{1-6})alkyl or (C_{1-6})alkenyl and optionally further substituted by (C_{1-6})alkyl or (C_{1-6})alkenyl;

or where one of R³ and R⁶, R⁷, R⁸ or R⁹ contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester or amide linkage,

wherein the said compound inhibits enzyme-mediated cleavage of a polynucleotide substrate.

(Amended) A method of modulating the activity of a mammalian type II topoisomerase enzyme comprising contacting said enzyme with a compound of formula (Ib), wherein said compound is:

103(0)

$$(R^{1})_{m}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

wherein:

m is 1 or 2

(Ib)

each R^1 is independently hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, NH₂CO, hydroxy, thiol, (C_{1-6}) alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or

two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups; either \mathbb{R}^2 is hydrogen; and

 R^3 is in the 2- or 3-position and is hydrogen or (C_{1-6}) alkyl or (C_{2-6}) alkenyl optionally substituted with 1 to 3 groups selected from:

thiol; halogen; (C_{1-6}) alkylthio; trifluoromethyl; azido; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; hydroxy optionally substituted by

 (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylcarbonyl or (C_{2-6}) alkenylcarbonyl; amino optionally mono- or disubstituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{2-6}) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; oxo; (C_{1-6}) alkylsulphonyl; or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

 R^3 is in the 3-position and R^2 and R^3 together are a divalent residue = $CR^{5^1}R^{6^1}$ where R^{5^1} and R^{6^1} are independently selected from H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, aryl (C_{1-6}) alkyl and aryl (C_{2-6}) alkenyl, any alkyl or alkenyl moiety being optionally substituted by 1 to 3 groups selected from those listed above for substituents on R^3 ;

R⁴ is a group -CH₂-R⁵ in which R⁵ is selected from:

 $(C_{3-12})alkyl; hydroxy(C_{3-12})alkyl; (C_{1-12})alkoxy(C_{3-12})alkyl; (C_{1-12})alkanoyloxy(C_{3-12})alkyl; (C_{3-6})cycloalkyl(C_{3-12})alkyl; hydroxy-, (C_{1-12})alkoxy- or (C_{1-12})alkanoyloxy-(C_{3-6})cycloalkyl(C_{3-12})alkyl; cyano(C_{3-12})alkyl; (C_{2-12})alkenyl; (C_{2-12})alkynyl; tetrahydrofuryl; monoor di-(C_{1-12})alkylamino(C_{3-12})alkyl; acylamino(C_{3-12})alkyl; (C_{1-12})alkyl- or acyl-aminocarbonyl(C_{3-12})alkyl; mono- or di-(C_{1-12})alkylamino(hydroxy) (C_{3-12})alkyl; optionally substituted phenyl(C_{1-2})alkyl; optionally substituted diphenyl(C_{1-2})alkyl; optionally substituted benzoyl or benzoylmethyl; optionally substituted heteroaryl(C_{1-2})alkyl; and optionally substituted heteroaroyl or heteroaroylmethyl;$

n is 0, 1 or 2;

A is NR^{11} , O, $S(O)_X$ or CR^6R^7 and B is NR^{11} , O, $S(O)_X$ or CR^8R^9 where x is 0, 1 or 2 and wherein:

each of R^6 and R^7 R^8 and R^9 is independently selected from: H; thiol; (C_{1-6}) alkylthio; halo; trifluoromethyl; azido; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{1-6}) alkylor of (C_{1-6}) alkenyl;

or R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined;

or ${\rm R}^6$ and ${\rm R}^8$ together represent –O- and ${\rm R}^7$ and ${\rm R}^9$ are both hydrogen;

or \mathbb{R}^6 and \mathbb{R}^7 or \mathbb{R}^8 and \mathbb{R}^9 together represent oxo;

and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{1-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted

R

by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl or (C_{1-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl;

provided that A and B cannot both be selected from NR^{11} , O and $S(O)_X$ and when one of A and B is CO the other is not CO, O or $S(O)_X$,

wherein the said compound inhibits enzyme-mediated cleavage of a polynucleotide substrate.

(Amended) A method of modulating the activity of a mammalian type II topoisomerase enzyme comprising contacting said enzyme with a compound, wherein said compound is selected from the group consisting of:

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-(1-(R)-hydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-hydroxymethyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[2S]-1-Heptyl-4-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)ethyl]-2-hydroxymethylpiperazine;

[2S]-2-Carboxymethyl-1-heptyl-4-[2-(R,S)-hydroxy-2-(6-methoxyquinolin-4-yl)ethyl]piperazine trihydrochloride; and

1-Hydroxyheptyl-4-[2-(R)-hydroxy-2-(6-methoxyquinolin-4-yl)ethyl]piperazine,

wherein the said compound inhibits enzyme-mediated cleavage of a polynucleotide substrate.

REMARKS

Claims 1-26, 37, and 38 are pending in the instant application. Claims 1-12, 16-26, 37, and 38 stand rejected. The Applicants traverse all of the grounds of rejection raised by the Examiner. Claims 13-15 stand objected to. Claims 27-36 have been withdrawn as being drawn to the non-elected invention. Claims 13-15 have been rewritten as independent claims herein. Claims 1-12, 16-26, 37, and 38 are cancelled and withdrawn from consideration without prejudice. The Applicants reserve the right to prosecute, in one or more patent applications, the