SOMETHING ABOUT LEVELS

BRIAN WILLIAMS

1. VACUUM MODULES

Definition 1.1. Let d > 1, and consider the dg algebra A_d . Define the A_d -module of positive modes

$$A_{d,+} = H^{d-1}(A_d).$$

Note that there is a natural map of dg A_d -modules $A_d \to A_{d,+}[-d+1]$. Define the dg ideal of *negative modes*

$$A_{d,-} = \ker (A_d \to A_{d,+}[-d+1]).$$

Remark 1.2. We are modeling our terminology on the usual definition of positive and negative modes for Laurent polynomials in one-variable $A_1 = \mathbb{C}[z, z^{-1}]$ via

$$A_{1,+} = \mathbb{C}[z] \subset \mathbb{C}[z, z^{-1}]$$
 and $A_{2,-} = z^{-1}\mathbb{C}[z^{-1}] \subset \mathbb{C}[z, z^{-1}]$

respectively.

Definition 1.3. Fix an element $\theta \in \operatorname{Sym}^{d+1}(\mathfrak{g}^*)^{\mathfrak{g}}$ and let $k \in \mathbb{C}$. The *vacuum module* $\operatorname{Vac}_{(\theta,k)}$ associated to the pair (θ,k) is the induced $\mathfrak{g}_{d,\theta}$ -module

$$\operatorname{Ind}_{U(A_{d,+}\otimes\mathfrak{g})[K]}^{U(\mathfrak{g}_{d,\theta})}(\mathbb{C}_{K=k})=U(\mathfrak{g}_{d,\theta})\otimes_{U(A_{d,+}\otimes\mathfrak{g})[K]}\mathbb{C}_{K=k}.$$

When θ is understood, we refer to this as the *level k* vacuum module.

There is a variant of this definition that makes sense for a fixed θ and no specification of k. It is defined by

$$\operatorname{Vac}_{\theta} = U(\mathfrak{g}_{d,\theta}) \otimes_{U(A_{d+}\otimes\mathfrak{g})[K]} \mathbb{C}[K].$$

This is a $U(\mathfrak{g}_{d,\theta})$ -module in the category of $\mathbb{C}[K]$ -modules.

1.1. BW: Let *V* be the disk module of $\mathbb{U}_{\theta}(\mathfrak{G})$.

Proposition 1.4. The factorization product endows V_{θ} with the structure of a $U(\mathfrak{g}_{d,\theta})$ -module. Moreover, it is equivalent to the θ -vacuum module $V_{\theta} \simeq \operatorname{Vac}_{\theta}$.