

Projet N°7: Implémentez un modèle de scoring

Agustin Bunader (autofinancé) Soutenance de Projet Août 2021

Programme

Problématique – Présentation

Contexte:

• L'entreprise spécialisé en crédits à la consommation souhaite développer un modèle de scoring de la probabilité de défaut de paiement des clients

Objectifs:

- Développer un modèle de scoring de la probabilité de défaut de paiement du client
- Développer un dashboard interactif pour assurer une transparence sur les décisions d'octroi de crédit

Mission:

- Construire un modèle de scoring qui donnera une prédiction sur la probabilité de faillite d'un client de façon automatique
- Construire un dashboard interactif que permettra d'interpréter les prédictions faites par le modèle et d'améliorer la connaissance client des chargés de relation client

Sources:

• Base de données contenant des informations personnelles et financières des clients avec plus de 300000 clients et 120 features dans le set d'entraînement

Contraintes:

- Fonctionnement en temps réel
- Utilisation des services gratuites avec une puissance de calcul très faible et une capacitée de stockage inferieure à 1 GO

Problématique – Etapes

Interprétation :

- Exploration des données et choix des features adaptés
- Classification non-supervisée des clients avec un modèle de machine learning expliqué et réutilisable par l'équipe de relation client

Problématique – Livrables

Files:

- P7_01_analyse.ipynb : EDA + Feature engineering + Feature selection + Scoring + Model evaluation
- P7_02_LIME_SHAP.ipynb : Interprétation du model
- P7_03_extras.ipynb : Dataframes extras utilises dans le dashboard
- P7_04_dashboard.py : Python contenant la version locale du dashboard crée avec Streamlit
- P7_05_note_methodologique.pdf : Fichier décrivant les détails techniques du projet
- P7_06_presentation.pdf : Présentation du projet

Cloud:

- Le repository Github du projet est disponible en cliquant ici
- Le dashboard est aussi disponible en cliquant ici

Analyse des donnés – Source

Analyse des donnés – Feature engineering

Processus:

- Création des variables dummy pour les features du type catégoriel
- Détection des anomalies dans les dates et des catégories non-interprétables
- Création des nouveau features (ratios, catégories basées sur des données discrètes, durée du crédit et agréger les données)
- Suppression des features avec plus de 20% des valeurs manquants et imputation des valeurs manquants sur les colonnes restantes
- Agréger les différents dataframes sur la colonne SK_ID_CURR

Clients with previous loans in general: 85.84%

	DAYS_BIRTH	DAYS_EMPLOYED
count	307511.000000	307511.000000
mean	43.936973	-174.835742
std	11.956133	387.056895
min	20.517808	-1000.665753
25%	34.008219	0.791781
50%	43.150685	3.323288
75%	53.923288	7.561644
max	69.120548	49.073973

Analyse des donnés – Clients

Applications:

- 307511 set d'entraînement
- 48744 set de test

Target 0 : client qui n'a eu aucune difficulté à rembourser son prêt

Target 1 : client qui n'a pas remboursé son prêt

1.58%

17.41%

Unused offer

Refused

Analyse des donnés – Déséquilibre

Applications:

- 307511 set d'entraînement
- 48744 set de test

Libraire imblearn, méthode under_sampling

Comme est-ce qu'on peut réduire les conséquences de se déséquilibre ?

- SMOTE (Synthetic Minority Oversampling Technique)
- RandomUnderSampler (undersampling)

SMOTE consiste en la création des individus « synthétiques » sur la base de ceux déjà existants en choisissant au hasard un point dans la classe minoritaire et en calculant les k plus proches voisins pour ce point. Les points synthétiques sont ajoutés entre le point choisi et ses voisins.

RandomUnderSampler supprime des individus appartenant à la classe la plus lourde en choisissant des points aléatoires sans ou avec replacement (sans dans notre cas)

Modélisation – Problématique

Problématique:

- L'analyse du risque de crédit est une forme d'analyse effectuée par un analyste de crédit pour déterminer la capacité d'un emprunteur à honorer ses dettes
- Eviter cataloguer comme applications à risque des potentiels clients qui ne présentent pas de risquer

- Vrai négatif (TN) et Vrai positif (TP) : prédictions correctes
- Faux négatif (FN) : TARGET 1 prédit comme TARGET 0. Haut exposition au risque
- Faux positif (FP) : TARGET 0 prédit comme TARGET 1. Potentielle client perdu

On cherche à **diminuer** les prédictions fausses (FP+FN) avec un intérêt principale sur les **Faux négatifs**.

Modélisation - Scoring

Problème:

- Limiter les Faux négatifs
- Limiter les Faux positifs

Mesures

- Accuracy : Proportion de prédictions que le modèle a classées correctement.
- Precision: Quelle proportion d'identifications positives était réellement correcte ?
- Recall: Quelle proportion de positifs réels a été identifiée correctement ?
- F1-Score: Mesure de la précision d'un test, c'est la moyenne harmonique de Precision et Recall fournissant un score unique qui équilibre à la fois les préoccupations de Precision et de Recall en un seul nombre avec un score maximum de 1 (précision et rappel parfaits) et 0. Globalement, c'est une mesure de la précision et de la robustesse du modèle.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2 \cdot TP}{2 \cdot TP + TP + FP + FN}$$

- TP: Vrai positif
- TN : Vrai négatif
- FP : Faux positif
- FN : Faux négatif

Modélisation – Méthodologie

Baseline:

• Logistic Regression avec imputation des valeurs manquants et normalisation des features (feature scaling)

Rééquilibrage :

RandomUnderSampler

Algorithmes:

- Logistic Regression
- Random Forest Classifier
- XGBClassifier
- LGBMClassifier

Modélisation – Comparaison des modèles

```
Accuracy Precision Recall
                                                       F1
                                                               Time
Logistic Regression
                                           0.68
                                                  0.68 00:00:14
                        0.68
                                 0.69
RandomForestClassifier
                        1.0
                                 1.0
                                           1.0
                                                        00:00:24
XGBClassifier
                        0.82
                                 0.82
                                           0.81
                                                  0.82 00:00:10
LGBMClassifier
                                 0.87
                                                  0.87 00:00:13,
                        0.87
                                           0.87
                          Accuracy Precision Recall
1:
                                                       F1
                                                               Time
Logistic Regression
                                                       00:00:19
                        0.71
                                 0.71
                                           0.71
                                                  0.71
RandomForestClassifier
                       1.0
                                 1.0
                                           1.0
                                                  1.0
                                                        00:00:40
XGBClassifier
                                 0.85
                                                 0.85 00:00:27
                        0.85
                                           0.84
LGBMClassifier
                                 0.9
                                           0.9
                                                  0.9 00:00:30
                        0.9
                          Accuracy Precision Recall
2:
                                                       F1
                                                               Time
Logistic Regression
                        0.7
                                 0.7
                                           0.69
                                                  0.69
                                                       00:00:31
RandomForestClassifier
                                 1.0
                                           1.0
                                                  1.0
                                                        00:00:32
XGBClassifier
                        0.83
                                 0.83
                                           0.83
                                                  0.83
                                                        00:00:20
LGBMClassifier
                                                 0.88 00:00:21}
                        0.88
                                 0.88
                                           0.88
```

Scores for second dataset (complete traeatment)
Logistic Regression AUC Score: 0.7773565726391518
RandomForestClassifier AUC Score: 1.0

XGBClassifier AUC Score: 0.9280718880328213

LGBMClassifier AUC Score: 0.9631260094833426

LGBMClassifier
TARGET 1 predicted: 4970
Confusion Matrix:
[[4445 519]
[515 4451]]

RandomForestClassifier a des problèmes de surapprentissage

Modélisation – Sélection des features

Taille originale:

394 features

1:	Accura	acy Precis	ion Reca	11	F1	Time
Logistic Regression	0.71	0.71	0.71	0.71	00:00:	19
RandomForestClassifier	1.0	1.0	1.0	1.0	00:00:4	40
XGBClassifier	0.85	0.85	0.84	0.85	00:00:	27
LGBMClassifier	0.9	0.9	0.9	0.9	00:00:	30,

Logistic Regression AUC Score: 0.7773565726391518

RandomForestClassifier AUC Score: 1.0

XGBClassifier AUC Score: 0.9280718880328213 LGBMClassifier AUC Score: 0.9631260094833426

Taille après réduction :

• 40 features

{0:	Accui	racy Preci	sion Reca	11	F1 '	Time
Logistic Regression	0.68	0.68	0.67	0.68	00:00:0	5
RandomForestClassifier	1.0	1.0	1.0	1.0	00:00:2	3
XGBClassifier	0.82	0.82	0.82	0.82	00:00:0	5
LGBMClassifier	0.86	0.86	0.86	0.86	00:00:00	5}

Logistic Regression AUC Score: 0.7459157808959102

RandomForestClassifier AUC Score: 1.0

XGBClassifier AUC Score: 0.9017131765952068

LGBMClassifier AUC Score: 0.9423653365041833

Dashboard – Technologies utilisées

Dashboard – Présentation

Prédiction de TARGET

Détails du client

Dashboard – Présentation

Dashboard – Interprétabilité

LightGBM: L'interprétabilité commence avec la vision globale du modèle que l'importance des features proportionne

LIME: L'importance globale d'un feature peut ne pas être la même dans le contexte local (et vice versa) également si le modèle a des centaines de variables (local fidelity)

Conclusions – Aller plus loin

Un modèle plus performant :

Même si SHAP est disponible sur le Notebook d'interprétation, son calcul est particulièrement lourd car il doit faire toutes les permutations possibles donnant comme résultat un fichier au-dessus de 100MB qui manque de réactivité lors de l'utilisation du Dashboard. Il faudrait améliorer la sélection des features ou le modèle dans son ensemble.

Améliorer le Dashboard :

- Explicabilité plus précise (notamment liée au point précèdent)
- Ajouter des graphiques interactifs (autre fois, liée à SHAP)
- Faire évoluer le scoring du client en même temps que les features sont modifiées (interactivité)

Maintenance:

Itération mensuelle de l'algorithme et contrôle de l'évolution des prédictions. Selon la situation, des nouveaux features peuvent être ajoutés ou peuvent remplacer des features existants.

