

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) **Offenlegungsschrift**
(11) DE 3217751 A1

(51) Int. Cl. 3:

C 04B 35/46

C 01 G 23/047

(71) Anmelder:

Degussa AG, 6000 Frankfurt, DE

- (21) Aktenzeichen: P 32 17 751.8
- (22) Anmeldetag: 12. 5. 82
- (43) Offenlegungstag: 17. 11. 83

(72) Erfinder:

Ettlinger, Manfred, Dr., 8757 Karlstein, DE; Ferch,
Hort, Dr., 6454 Bruchköbel, DE; Koth, Detlev, Dr.,
7889 Grenzach-Wyhlen, DE; Simon, Edgar, 6463
Freigericht, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Preßlinge aus pyrogen hergestelltem Titandioxid, Verfahren zu ihrer Herstellung sowie ihre Verwendung

Es werden Preßlinge aus pyrogen hergestelltem Titandioxid unter Verwendung von sauer reagierenden organischen oder anorganischen Verbindungen hergestellt. Da der Zusatz von Bindemitteln wie Kieselgel, Kaolin etc. vermieden wird, erhält man Preßlinge mit einem Titandioxidgehalt von bis zu 99 Gew.%, mit einem zugänglichen Porenvolumen von 45–55% des Preßlingvolumens und einer Härte von mindestens 16 kp, die für den Einsatz als Katalysatorträger geeignet sind. (32 17 751)

1 Degussa Aktiengesellschaft
Weißenstraße 9, 6000 Frankfurt am Main

5

Preßlinge aus pyrogen hergestelltem Titandioxid,
Verfahren zu ihrer Herstellung sowie ihre Verwendung

10 Patentansprüche:

1. Preßlinge, bis zu 99 Gew.-% bestehend aus
pyrogen hergestelltem Titandioxid, gegebenen-
falls mit einem SiO_2 -Gehalt von ≤ 1 Gew.-% und
15 einem zugänglichen Porenvolumen von 45 - 55 %
des Preßlingvolumens und einer Härte von min-
destens 16 kp.

2. Verfahren zur Herstellung von Preßlingen aus
pyrogen hergestelltem Titandioxid gemäß Anspruch 1,
dadurch gekennzeichnet, daß man das pyrogen her-
gestellte Titandioxid vorlegt, dann intensiv mit
einem Preßhilfsmittel vermengt und dieses Gemenge
mit einer bei höherer Temperatur leicht flüchtigen
und/oder zersetzbaren flüssigen anorganischen
oder organischen Säure oder einem Gemisch dersel-
ben und/oder der wässrigen Lösung einer in Wasser
sauer reagierenden Verbindung vermischt und an-
schließend durchsiebt, unter der Maßgabe, daß die
30 Vermengung mit einem Preßhilfsmittel auch nach
der Vermischung von Titandioxid und sauer reagie-
render Verbindung erfolgen kann,
das gesiebte Gemisch auf bekanntem Wege in ein
fließfähiges Pulver überführt und durch Pressen
35 formt, die erhaltenen Preßlinge langsam vor-
trocknet und die vorgetrockneten Preßlinge bei
Temperaturen von 450° - 700°C tempert.

...

10005-000

- 2 -

- 1 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man als Preßhilfsmittel 3 - 15 Gew.-% pulverförmigen Graphit, bezogen auf die Gesamtmenge des Gemisches einsetzt.
- 5 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man die Säure zu 2 - 20 Gew.-% einsetzt, bezogen auf die Gesamtmenge des Gemisches.
- 10 5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man die wässrige Lösung eines sauer hydrolysierenden Metallsalzes einsetzt.
- 15 6. Verwendung von Preßlingen nach Anspruch 1, dadurch gekennzeichnet, daß man sie als Katalysatorträger oder Katalysatoren einsetzt.

20

25

30

35

...

1 Degussa Aktiengesellschaft
Weißenstraße 9, 6000 Frankfurt am Main

5 Preßlinge aus pyrogen hergestelltem Titandioxid,
Verfahren zu ihrer Herstellung sowie ihre Verwendung

10 Die Erfindung betrifft Preßlinge aus hochdispersem
pyrogen hergestelltem Titandioxid, Verfahren zu
ihrer Herstellung sowie deren Verwendung.

15 Pyrogenes Titandioxid wird durch Hochtemperatur-
hydrolyse einer verdampfbaren Titanverbindung, in
der Regel Titanetrachlorid, in einer Knallgasflamme
hergestellt. Dieses Verfahren wird in der DE-PS
870 242 (1953) beschrieben. Die entstehenden Pro-
dukte haben überwiegend Anatasstruktur. Sie sind
hydrophil, sehr rein und äußerst feinteilig. Die
20 Primärteilchen (DIN 53206) zeigen in elektronen-
mikroskopischen Aufnahmen Kugelform und Durchmesser
von 10 - 100 nm. Ein im Handel befindliches Produkt
hat eine mittlere Primärteilchengröße von 30 nm.
Definierte Agglomerate (nach DIN 53206) existieren
25 nicht, ihre Größe hängt von der Vorbehandlung bzw.
Handhabung der Substanz ab. Die Oberfläche der Teil-
chen ist glatt und porenfrei. Es besteht nur eine
äußere, leicht zugängliche Oberfläche. Die spezifi-
sche Oberfläche nach BET kann - je nach Produktions-
30 bedingungen - zwischen 20 und 100 m²/g liegen. Das
erwähnte Handelsprodukt weist eine spezifische
Oberfläche von 50 ± 15 m²/g auf.

35 Aufgrund der hohen Reinheit, der hohen spezifischen
Oberfläche und des Fehlens von Poren wurde pyrogen
hergestelltes Titandioxid als Titandioxid-Komponente

...

1 oder als Trägermaterial in Katalysatorsystemen einge-
setzt (V.Rieves-Arnau, G. Munuera, Appl. Surface Sci. 6
(1980) 122; N.K. Nag, T.Fransen, P.Mars, J. Cat. 68,
77 (1981); F.Solymosi, A.Erdöhelyi, M. Kocsis,
5 J. Chem. Soc. Faraday Trans 1, 77, 1003 (1981);
D.G. Mustard, C.H. Bartholomew, J. Cat. 67, 186 (1981);
M.A. Vannice, R.L. Garten, J. Cat. 63, 255 (1980),
M.A. Vannice, R.L. Garten, J. Cat. 66, 242 (1980).

10 In den aufgeführten Literaturzitaten werden jedoch nur
pulverförmige Katalysatorsysteme behandelt.
Soll pyrogen hergestelltes Titandioxid im technischen
Maßstab in Katalysatorsystemen verwendet werden, ist
es zweckmäßig, das pulverförmige Produkt in einen
15 Formkörper unter weitgehender Erhaltung der spezifi-
schen Oberfläche und deren leichter Zugänglichkeit
zu überführen. Bisher bekannt ist die Herstellung von
Formkörpern aus hergestellter feinteiliger Kiesel-
säure bzw. Aluminiumoxid unter Verwendung von Kiesel-
20 säuresol (Chem.Ing. Tech. 52 (1980) 628-634).
Die erhaltenen Formkörper sind jedoch mit einer Härte
von nur 4,3 kp (Siliciumdioxid) bzw. 5,6 kp (Alumi-
niumoxid) für den Einsatz in Katalysatorschüttungen
wenig geeignet.

25 Der wesentliche Nachteil des bekannten Verfahrens be-
steht darin, daß als Bindemittel in jedem Fall Kiesel-
säuresol eingesetzt werden muß. Das führt dazu, daß die
Formkörper neben dem feinteiligen Metallocid immer
30 auch in beträchtlichen Mengen Siliciumdioxid enthalten,
das aus dem Bindemittel herrührt. Störend kann sich
dieser Gehalt insbesondere dann auswirken, wenn als
feinteiliges Metallocid z.B. Aluminiumoxid eingesetzt
wird, da aufgrund des erheblichen Anteils an Silicium-
35 dioxid im Formkörper die katalytische Wirkung des
Aluminiumoxids dann nicht mehr unverfälscht zum Tragen
kommt.

...

- 5 -

1 Aufgabe der Erfindung ist ein Preßling aus pyrogen hergestelltem Titandioxid, der unter weitgehender Erhaltung der spezifischen Oberfläche im Vergleich zum Ausgangsmaterial hergestellt werden kann, eine für die
5 Verwendung in Katalysatorschüttungen ausreichende Härte aufweist und vor allem bis zu 99 Gew.-% aus TiO₂ bestehen kann. Der Einsatz von ansonsten gebräuchlichen Bindemitteln wie z.B. Kieselgel, Wasserglaslösungen oder Kaolin soll bei der Herstellung vermieden
10 werden, um nicht zwangsweise eventuell katalytisch wirksamen Fremdoxide in den Preßling einzubringen.

Gegenstand der Erfindung sind Preßlinge, die bis zu 99 Gew.-% aus pyrogen hergestelltem Titandioxid
15 bestehen und gegebenenfalls einen SiO₂-Gehalt von \leq 1 Gew.-% besitzen, mit einem zugänglichen Porenvolumen von 45 - 55 % des Preßlingvolumens und einer Härte von mindestens 16 kp.

20 Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Preßlingen aus pyrogen hergestelltem Titandioxid gemäß Anspruch 1, das dadurch gekennzeichnet ist, daß man das pyrogen hergestellte Titandioxid vorlegt, dann intensiv mit einem Preßhilfsmittel ver-
25 mengt und dieses Gemenge mit einer bei höherer Temperatur leicht flüchtigen und/oder zusetzbarer flüssiger anorganischen oder organischen Säure oder einem Gemisch derselben und/oder der wässrigen Lösung einer in Wasser sauer reagierenden Verbindung vermischt und anschließend durchsiebt, unter der Maßgabe, daß die Vermengung mit einem Preßhilfsmittel auch nach der Vermischung von
30 Titandioxid und sauer reagierender Verbindung erfolgen kann,
35 das gesiebte Gemisch auf bekanntem Wege in ein fließfähiges Pulver überführt und durch Pressen formt, die

...

1 erhaltenen Preßlinge langsam vortrocknet und die vor-
getrockneten Preßlinge bei Temperaturen von 450° -
700°C tempert.

5 Zur Durchführung des erfindungsgemäßen Verfahrens sind
prinzipiell alle Mischer oder Mühlen geeignet, die
eine gute Homogenisierung ermöglichen, wie z.B.
Schaufel-, Wirbelschicht-, Kreisel- oder Luftstrom-
mischer. Besonders geeignet sind Mischer, mit denen
10 eine zusätzliche Verdichtung des Mischgutes möglich
ist, z.B. Pflugscharmischer, Kollergänge, Kugelmühlen
oder Schwingmühlen.

Die flüssigen Komponenten können dabei auf das in den
15 genannten Geräten vorgelegte Oxid aufgesprüht oder in
sonst geeigneter Form eindosiert werden.

Als Preßhilfsmittel werden mehrfunktionelle Alkohole
eingesetzt, davon bevorzugt Äthandiol, Glycerin,
Erythrite, Pentite, Hexite, wie z.B. Sorbit.

20 In einer bevorzugten Ausführungsform wird pulverför-
miger Graphit in einer Menge von 2 - 15 Gew.-%, be-
vorzugt von 3 - 10 Gew.-%, bezogen auf die Gesamt-
menge der Mischung, als Preßhilfsmittel mit dem vorge-
25 legten Titandioxid vermenigt.

Als Säuren besonders geeignet sind flüssige organische
Säuren wie z.B. Ameisen-, Essig-, Chloressig-, Propion-
oder Buttersäure bzw. ein Gemisch derselben.

30 Bevorzugt eingesetzt werden vor allem auch die wasser-
löslichen organischen Säuren wie z.B. Malon-, Oxal-,
Citronen-, Isocitronen-, Äpfel-, Wein- oder Glykolsäure
bzw. ein Gemisch derselben. Außer diesen Säuren, deren
35 Acidität durch Carboxylgruppen verursacht wird, sind
auch organische Säuren besonders geeignet, die anor-

...

1 ganische saure Gruppen enthalten wie z.B. Paratoluolsulfonsäure. Flüssige anorganische Säuren wie z.B. Salzsäure oder Salpetersäure eignen sich ebenfalls. Besonders geeignet sind Säuremengen von 2 - 20 Gew.-%, 5 bevorzugt 3 - 10 Gew.-%, bezogen auf das Gesamtgemenge. Dabei reichen bei der Anwendung von stärkeren Säuren kleinere Mengen aus als bei der Anwendung von schwächeren Säuren.

10 Es ist jedoch nicht notwendig, eine freie Säure einzusetzen. In einer bevorzugten Ausführungsform der Erfindung kann die wässrige Lösung von hydrolysierenden, saure Lösungen bildenden Metallsalzen verwendet werden. Diese Variante erweist sich dann als besonders wertvoll, 15 wenn die Imprägnierung des Preßlings z.B. mit einem katalytisch aktiven Metall(oxid) vorgesehen ist. Beim erfindungsgemäßen Verfahren erhält man durch Verwendung einer sauer hydrolysierenden Verbindung dieses Metalls als Produkt einen mit Metalloxid imprägnierten 20 Preßling. Das Metalloxid kann anschließend gegebenenfalls auch zum Metall reduziert werden. Bevorzugt eingesetzt werden sauer hydrolysierende Verbindungen von Übergangsmetallen.

25 Die Konzentrationen dieser Verbindungen in der Mischung sind so zu wählen, daß sie dem gewünschten Gehalt an katalytisch aktivem Metall(oxid) im Preßling entsprechen.

30 Sollte die gewünschte Konzentration sehr gering sein, kann zusätzlich eine der erfindungsgemäß verwendbaren Säuren zugesetzt werden, um Preßlinge mit ausreichender Festigkeit herzustellen.

35 Gemäß Erfindung ist auch die Dotierung der Preßlinge mit Nichtmetalloxiden möglich wie z.B. Phosphoroxid.

...

1 Zu diesem Zweck wird bei dem erfindungsgemäßen Verfahren als Säure Phosphorsäure eingesetzt.
 Nach dem Mischprozeß wird das gesiebte, pulverförmige Gemisch bei Temperaturen bis 120°C, bevorzugt zwischen

5 80 und 120°C gegebenenfalls teilweise getrocknet, bis man ein fließfähiges Pulver erhält. Als fließfähig bezeichnet man dabei ein Pulver, das selbstständig beispielsweise aus dem Einfüllstutzen der Preßvorrichtung in die Preßmatrize fließt und diese homogen füllt.

10 In einer bevorzugten Ausführungsform kann man nach dem Mischprozeß 0,1 - 3 Gew.-%, bezogen auf das Gesamtgemisch, einer pyrogen hergestellten, hydrophobierten Kieselsäure, wie z.B. Aerosil R 972 zusetzen, die zu

15 85 Gew.-% Wasser in adsorbierter Form enthält.

In diesem Fall erhält man, ohne daß eine teilweise Trocknung notwendig wäre, ein freifließendes Pulver, das anschließend verpreßt werden kann.

20 Dieser Weg der Überführung in ein fließfähiges Pulver kann natürlich nur dann gewählt werden, wenn die so eingeführten geringen SiO₂-Mengen bei der weiteren Verwendung des Preßlings nicht stören.

25 Das Verpressen kann man mit jeder Vorrichtung durchführen, die einen Stempeldruck von 0,5 bis 2 t/cm² erreicht. Bevorzugt wendet man einen Bereich von 1 - 2 t/cm² an. Die erhaltenen Preßlinge werden anschließend bei Temperaturen von 20 bis 100°C, bevorzugt von 20°C bis 50°C, vorgetrocknet.

30 Die vorgetrockneten Preßlinge können anschließend bei einer Temperatur von 450 bis 700°C, vorzugsweise von 500 bis 600°C getempert werden.

35

...

1 Die nach dem erfindungsgemäßen Verfahren erzeugten Produkte sind als Katalysatorträger bzw. Katalysatoren geeignet.

5 45 - 55 % des Preßlingvolumens bestehen aus zugänglichen Hohlräumen. Das bedeutet, daß die Preßlinge aus pyrogen hergestelltem Titandioxid, die im Mittel ein Volumen von $0,38 \text{ cm}^3$ besitzen, ein zugängliches Porenvolumen von $0,17 - 0,21 \text{ cm}^3/\text{Preßling}$ aufweisen.

10 Das Schüttgewicht beträgt etwa 1200 g/l. Das erfindungsgemäße Verfahren weist den Vorteil auf, daß die hergestellten Preßlinge eine Bruchfestigkeit von mindestens 16 kp besitzen und so z.B. in Katalysatorschüttungen gegen mechanischen Beanspruchung widerstandsfähig sind. Zugleich besitzen die Preßlinge eine hohe Oberfläche, die nur in begrenztem Umfang den Oberflächenwert des Ausgangsoxides unterschreitet.

15 20 Aufgrund des erfindungsgemäßen Verfahrens ist es weiterhin möglich, ohne Verwendung von SiO_2 -haltigen Bindemitteln aus pyrogen hergestelltem Titandioxid Preßlinge zu gewinnen. Es können also auf der einen Seite TiO_2 -Preßlinge

25 30 hergestellt werden, deren TiO_2 -Gehalt allein durch die Reinheit des eingesetzten TiO_2 bestimmt wird, da die bevorzugt eingesetzten organischen Säuren wie z.B. Essigsäure oder Citronensäure und das Preßhilfsmittel Graphit nach der vorgeschriebenen Temperaturbehandlung des Preßlings verdampft bzw. oxidiert oder zersetzt sind.

35 Auf der anderen Seite kann aber durch die gezielte Auswahl von sauer hydrolysierten Metallsalzen ein TiO_2 -Trägerkatalysator mit einem bestimmten Metallocid- bzw. nach der eventuellen Reduktion Metallgehalt hergestellt werden.

...

1 Die folgenden Beispiele dienen zur näheren Erläuterung
der vorliegenden Erfindung.

Die Bruchfestigkeit wird mit einem Bruchfestigkeits-
tester des Typs ZE/205 der Fa. Dr.K.Schlenninger & Co.

5 gemessen.

Das Porenvolumen der Preßlinge wird auf einfache Weise
so bestimmt, daß man die Preßlinge in einem Glas bei
Zimmertemperatur so lange Wasser aufnehmen läßt, bis
keine Luftblasen mehr aufsteigen. Anschließend werden

10 die Preßlinge aus dem Wasser genommen, an der Ober-
fläche mit einem Papier abgetrocknet und gewogen. Aus
der Differenz zwischen dem Gewicht vor und nach der
Wasserabsorption ergibt sich die Menge des absorbierten
15 Wassers und damit das Porenvolumen der Preßlinge, das
jeweils in Prozenten des Preßlingvolumens von $0,38 \text{ cm}^3$
in den Beispielen aufgeführt wird.

Die Messung der spezifischen Oberflächen der Preßlinge
erfolgt nach der BET-Methode (DIN 66 131) (J.Am.Chem.
20 Soc. 60 (1938)309).

25

30

35

...

Beispiel 1

50 g Titandioxid (Spez. Oberfläche: $48 \text{ m}^2/\text{g}$, Stampfdichte 150 g/l) werden mit 2,5 g Pudergraphit in einem Schlagkreuzmischer homogenisiert. Das Gemenge gibt man 5 in eine Retsch-Mühle (Kollergang) und gießt eine Lösung von 2,5 g Citronensäure in 5 g Wasser unter Mahlen hinzu. Das Gemisch wird durch ein Sieb von 1,5 mm Maschenweite gerieben und ca. 1 Stunde im Trockenschrank bei 120°C getrocknet.

10 Das nach dieser Behandlung gut fließende Pulver verpreßt man mit einem Pressdruck von ca. $1,5 \text{ t/cm}^2$. Die Preßlinge werden ca. 24 Stunden bei Raumtemperatur vorgetrocknet und danach 30 Minuten bei 550°C getempert.

15

Bruchfestigkeit:	17 kp
Spez. Oberfläche	$44 \text{ m}^2/\text{g}$
Porenvolumen:	47,3 %
Porenvolumen/g:	$0,3 \text{ cm}^3/\text{g}$

20

Beispiel 2

Wie Beispiel 1, nur mit 10 g Oxalsäure in 10 g Wasser

25

Bruchfestigkeit:	20 kp
Spez. Oberfläche	$45 \text{ m}^2/\text{g}$
Porenvolumen	45 %
Porenvolumen/g	$0,27 \text{ cm}^3/\text{g}$

30

Beispiel 3

Wie Beispiel 1, nur mit 4 g Malonsäure in 2 g warmem Wasser und Trocknung bei 100°C

35

- 12 -

1	Bruchfestigkeit:	18 kp
	Spez. Oberfläche:	45 m ² /g
	Porenvolumen	50 %
5	Porenvolumen/g	0,35 cm ³ /g

Beispiel 4

Wie Beispiel 1, nur mit 4 g Eisessig

10	Bruchfestigkeit:	16 kp
	Spez. Oberfläche:	44 m ² /g
	Porenvolumen:	50 %
	Porenvolumen/g:	0,37 cm ³ /g

15

Beispiel 5

Wie Beispiel 1 nur 4 g Toluolsulfonsäure in 2 g Wasser und Trocknung von 30 Minuten bei 65°C. Die Tabletten zeigen folgende Werte:

25	Mittlere Bruchfestigkeit:	19 kp
	Spez. Oberfläche:	30 m ² /g
	Porenvolumen:	47,3 % des Preß- lingvolumens
	Porenvolumen/g:	0,36 cm ³ /g

Beispiel 6

30 Wie Beispiel 1 nur wird ein pyrogenes Titandioxid mit 68 m²/g spez. Oberfläche eingesetzt. Die Tabletten zeigen folgende Werte:

35	Mittlere Bruchfestigkeit:	16 kp
	Spez. Oberfläche:	61 m ² /g
	Porenvolumen:	52,6 % des Preß- lingvolumens
	Porenvolumen/g:	0,43 cm ³ /g

...

Beispiel 7

50 g Titandioxid (Spez. Oberfläche: $48 \text{ m}^2/\text{g}$) werden mit 2,5 g Zitronensäure in 5 g Wasser langsam in einer Retschmühle versetzt. Dann gibt man 2,5 g Glycerin hinzu und mahlt. Danach wird das Gemisch durch ein Sieb mit 1,5 mm Maschenweite gerieben und 1 Stunde im Trockenschrank bei 120°C getrocknet. Anschließend werden 2,5 g "trockenes Wasser" (pulverförmiges Gemisch aus 85 % Wasser und 15 % pyrogener, hydrophober Kieselsäure) im Schüttelmischer zugemischt und das entstandene, gut fließfähige Pulver mit einem Preßdruck von 1 t/cm² verpreßt. Die Preßlinge werden nach 24 Stunden Lagerung bei Raumtemperatur 30 min bei 550°C gegläut.

15

	Mittlere Bruchfestigkeit:	18 kp
	Mittlere Spez. Oberfläche:	$42 \text{ m}^2/\text{g}$
	Porenvolumen:	47,3 % des Preßlingvolumens
20	Porenvolumen/g:	$0,3 \text{ cm}^3/\text{g}$

Beispiel 8

Wie Beispiel 7, nur mit 7,5 g 20%iger Salpetersäure,

25

	Mittlere Bruchfestigkeit:	19 kp
	Mittlere Spez. Oberfläche:	$46 \text{ m}^2/\text{g}$
	Porenvolumen:	47,3 % des Preßlingvolumens
30	Porenvolumen/g:	$0,3 \text{ cm}^3/\text{g}$

Beispiel 9

Wie Beispiel 7, nur mit 9 g 40%iger Phosphorsäure

35 Phosphoroxidgehalt (P_2O_5) 7,1 %

1 Mittlere Bruchfestigkeit: > 20 kp
Mittlere Spez. Oberfläche: $48 \text{ m}^2/\text{g}$
Porenvolumen: 45 % des Preßling-volumens
5 Porenvolumen/g: $0,29 \text{ cm}^3/\text{g}$

Beispiel 10
Wie Beispiel 7 nur mit 2,5 g Zirkonoxichlorid in
10 5 g Wasser suspendiert.
Zirkonoxidgehalt 1,7 g

15 Mittlere Bruchfestigkeit: 17 kp
Mittlere Spez. Oberfläche: $48 \text{ m}^2/\text{g}$
Porenvolumen: 47,3 % des Preß-
lingvolumens
Porenvolumen/g: $0,3 \text{ cm}^3/\text{g}$

Beispiel 11
20 50 g Titandioxid (Spez. Oberfläche $48 \text{ m}^2/\text{g}$, Stampf-dichte 150 g/l) werden in der Retsch-Mühle (Kollergang) mit einer Lösung von 6 g Nickel(II)chlorid-Hexahydrat und 2,5 g Glycerin in 10 g Wasser unter Mahlen versetzt. Das Gemisch wird durch ein Sieb mit 1 mm Maschenweite gerieben und anschließend in einem Taumelmischer mit 1,5 g eines Pulvers aus 83 Gew. Teilen Wasser und 17 Gew. Teilen hydrophober, pyrogener Kieselsäure vereinigt.
25 Das nach dieser Behandlung freifließende Pulver wird mit einem Druck von $1 \text{ t}/\text{cm}^2$ verpresst. Die entstandenen Preßlinge werden 2 Stunden bei 80°C getrocknet und danach 1 Stunde bei 500°C getempert.
30 Die Bruchfestigkeiten liegen im Mittel über 20 kp. Die spezifische Oberfläche beträgt $43 \text{ m}^2/\text{g}$.
35 Der Nickeloxidgehalt beläuft sich auf 1,8 g