Let $q_1 = +2.50 \,\mu\text{C}$ and $q_2 = -3.50 \,\mu\text{C}$. The charge +q must be to the left of q_1 or to the right of q_2 in order for the two forces to be in opposite directions. But for the two forces to have equal magnitudes, +q must be closer to the charge q_1 , since this charge has the smaller magnitude. Therefore, the two forces can combine to give zero net force only in the region to the left of q_1 . Let +q be a distance d to the left of q_1 , so it is a distance $d + 0.600 \, \text{m}$ from q_2 .

$$F_1 = F_2 \text{ gives } \frac{kq|q_1|}{d^2} = \frac{kq|q_2|}{(d+0.600 \text{ m})^2}.$$

$$d = \pm \sqrt{\frac{|q_1|}{|q_2|}} (d + 0.600 \text{ m}) = \pm (0.8452)(d + 0.600 \text{ m}).$$

d must be positive, so
$$d = \frac{(0.8452)(0.600 \text{ m})}{1-0.8452} = 3.27 \text{ m}.$$

The net force would be zero when +q is at x = -3.27 m.

When +q is at x=-3.27 m, \vec{F}_1 is in the -x direction and \vec{F}_2 is in the +x direction.

21.82.

The electric force on one sphere due to the other is $F_{\rm C} = k \frac{\left|q^2\right|}{r^2}$ in the horizontal direction, the force on it due to the uniform electric field is $F_E = qE$ in the horizontal direction, the gravitational force is mg vertically downward and the force due to the string is T directed along the string. For equilibrium $\Sigma F_x = 0$ and $\Sigma F_y = 0$.

- (a) The positive sphere is deflected in the same direction as the electric field, so the one that is deflected to the left is positive.
- (b) The separation between the two spheres is $2(0.530 \text{ m})\sin 25^{\circ} = 0.4480 \text{ m}$.

$$F_{\rm C} = k \frac{|q^2|}{r^2} = \frac{(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(72.0 \times 10^{-9} \text{ C})^2}{(0.4480 \text{ m})^2} = 2.322 \times 10^{-4} \text{ N}.$$

$$F_E = qE$$
.

$$\Sigma F_y = 0$$
 gives $T\cos 25^\circ - mg = 0$ and $T = \frac{mg}{\cos 25^\circ}$.

$$\sum F_x = 0$$
 gives $T \sin 25^{\circ} + F_C - F_E = 0$. $mg \tan 25^{\circ} + F_C = qE$.

Combining the equations and solving for ${\it E}$ gives

$$E = \frac{mg \tan 25^{\circ} + F_{\text{C}}}{q} = \frac{(6.80 \times 10^{-6} \text{ kg})(9.8 \text{ m/s}^2) \tan 25^{\circ} + 2.322 \times 10^{-4} \text{ N}}{72.0 \times 10^{-9} \text{ C}} = 3.66 \times 10^3 \text{ N/C}.$$

98.

We can immediately predict that \vec{E} will be in the $+\hat{i}$ direction.

 \vec{r} points from the point on the semicircle, to the origin, so $\vec{r} = -a \cos \theta \,\hat{\imath} - a \sin \theta \,\hat{\jmath}$, r = a, and $\hat{r} = -\cos \theta \,\hat{\imath} - \sin \theta \,\hat{\jmath}$.

$$\begin{split} \vec{E} &= \int \frac{1}{4\pi\epsilon_0} \frac{\hat{\boldsymbol{r}}}{r^2} \mathrm{d}q = \int_0^\pi \frac{-\cos\theta\,\hat{\boldsymbol{\imath}} - \sin\theta\,\hat{\boldsymbol{\jmath}}}{4\pi\epsilon_0\,a^2} \,\lambda\,a\,\mathrm{d}\theta \\ &= -\frac{1}{4\pi\epsilon_0\,a} \int_0^\pi \left(\cos\theta\,\hat{\boldsymbol{\imath}} + \sin\theta\,\hat{\boldsymbol{\jmath}}\right) \lambda\,\mathrm{d}\theta \\ &= -\frac{1}{4\pi\epsilon_0\,a} \int_0^{\pi/2} \left(\cos\theta\,\hat{\boldsymbol{\imath}} + \sin\theta\,\hat{\boldsymbol{\jmath}}\right) \left(\frac{-Q}{\pi a/2}\right) \mathrm{d}\theta - \frac{1}{4\pi\epsilon_0\,a} \int_{\pi/2}^\pi \left(\cos\theta\,\hat{\boldsymbol{\imath}} + \sin\theta\,\hat{\boldsymbol{\jmath}}\right) \left(\frac{Q}{\pi a/2}\right) \mathrm{d}\theta \\ &= \frac{Q}{2\pi^2\epsilon_0\,a^2} \int_0^{\pi/2} \left(\cos\theta\,\hat{\boldsymbol{\imath}} + \sin\theta\,\hat{\boldsymbol{\jmath}}\right) \mathrm{d}\theta - \frac{Q}{2\pi^2\epsilon_0\,a^2} \int_{\pi/2}^\pi \left(\cos\theta\,\hat{\boldsymbol{\imath}} + \sin\theta\,\hat{\boldsymbol{\jmath}}\right) \mathrm{d}\theta \\ &= \left[\frac{Q}{2\pi^2\epsilon_0\,a^2} \left(\sin\theta\,\hat{\boldsymbol{\imath}} - \cos\theta\,\hat{\boldsymbol{\jmath}}\right)\right]_{\theta=0}^{\pi/2} - \left[\frac{Q}{2\pi^2\epsilon_0\,a^2} \left(\sin\theta\,\hat{\boldsymbol{\imath}} - \cos\theta\,\hat{\boldsymbol{\jmath}}\right)\right]_{\theta=\pi/2}^\pi \\ &= \frac{Q}{2\pi^2\epsilon_0\,a^2} \left[\left(\hat{\boldsymbol{\imath}} - 0\,\hat{\boldsymbol{\jmath}}\right) - \left(0\,\hat{\boldsymbol{\imath}} - \hat{\boldsymbol{\jmath}}\right)\right] - \frac{Q}{2\pi^2\epsilon_0\,a^2} \left[\left(0\,\hat{\boldsymbol{\imath}} - (-1)\,\hat{\boldsymbol{\jmath}}\right) - \left(\hat{\boldsymbol{\imath}} - 0\,\hat{\boldsymbol{\jmath}}\right)\right] \\ &= \frac{Q}{2\pi^2\epsilon_0\,a^2} (\hat{\boldsymbol{\imath}} + \hat{\boldsymbol{\jmath}}) - \frac{Q}{2\pi^2\epsilon_0\,a^2} \left(-\hat{\boldsymbol{\imath}} + \hat{\boldsymbol{\jmath}}\right) = \frac{Q}{\pi^2\epsilon_0\,a^2} \hat{\boldsymbol{\imath}} \right. \end{split}$$

104.

a)
$$Q = \sigma A = \sigma (\pi R_2^2 - \pi R_1^2) = \boxed{\pi \sigma (R_2^2 - R_1^2)}$$

b) Using symmetry, we predict that, on the x-axis, \vec{E} will point in the $\pm \hat{\imath}$ direction. Let R be the distance of a point from the x-axis. Then $\mathrm{d}q = \sigma \, \mathrm{d}A = \sigma \, R \, \mathrm{d}\theta \, \mathrm{d}R$. $\vec{r} = x \, \hat{\imath} - R \cos \theta \, \hat{\jmath} - R \sin \theta \, \hat{k}$, $r = |\vec{r}| = \sqrt{x^2 + R^2 \cos^2 \theta + R^2 \sin^2 \theta} = \sqrt{x^2 + R^2}$, $\hat{r} = \vec{r}/r$.

$$\mathrm{d}\vec{\boldsymbol{E}} = \frac{1}{4\pi\epsilon_0} \frac{\hat{\boldsymbol{r}}}{r^2} \, \mathrm{d}q = \frac{1}{4\pi\epsilon_0} \frac{\vec{\boldsymbol{r}}}{r^3} \, \mathrm{d}q = \frac{\sigma}{4\pi\epsilon_0} \frac{R\left(x\,\hat{\boldsymbol{\imath}} - R\cos\theta\,\hat{\boldsymbol{\jmath}} - R\sin\theta\,\hat{\boldsymbol{k}}\right)}{\left(x^2 + R^2\right)^{3/2}} \, \mathrm{d}\theta \, \mathrm{d}R$$

$$\vec{E} = \frac{\sigma}{4\pi\epsilon_0} \int_{R_1}^{R_2} \int_0^{2\pi} \frac{R(x\,\hat{\imath} - R\cos\theta\,\hat{\jmath} - R\sin\theta\,\hat{k})}{(x^2 + R^2)^{3/2}} d\theta dR$$

$$= \frac{\sigma}{4\pi\epsilon_0} \int_{R_1}^{R_2} \frac{R(x\,\theta\,\hat{\imath} - R\sin\theta\,\hat{\jmath} + R\cos\theta\,\hat{k})}{(x^2 + R^2)^{3/2}} \Big|_{\theta=0}^{2\pi} dR$$

$$= \frac{\sigma}{4\pi\epsilon_0} \int_{R_1}^{R_2} \frac{2\pi x R\,\hat{\imath}}{(x^2 + R^2)^{3/2}} dR = \frac{\sigma x}{4\epsilon_0} \int_{R_1}^{R_2} \frac{2R dR}{(x^2 + R^2)^{3/2}} \hat{\imath}$$

$$= \frac{\sigma x}{4\epsilon_0} \frac{1}{(-1/2)} \frac{\hat{\imath}}{\sqrt{x^2 + R^2}} \Big|_{R=R_1}^{R_2} = \frac{\sigma x}{2\epsilon_0} \left(\frac{1}{\sqrt{x^2 + R_1^2}} - \frac{1}{\sqrt{x^2 + R_2^2}}\right) \hat{\imath}.$$

This is in the $+\hat{\imath}$ direction when x>0 and the $-\hat{\imath}$ direction when x<0, as one would expect.

c) If $x \ll R_1$ (and therefore $x \ll R_2$), $\sqrt{x^2 + R_1^2} \approx R_1$ and $\sqrt{x^2 + R_2^2} \approx R_2$, so

$$\vec{E} \approx \frac{\sigma}{2 \epsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) x \,\hat{\imath} \,.$$

d) The x component of the force on the charge is $F_x = -q \, E_x \approx -q \, \frac{\sigma}{2 \, \epsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) x$. This is the same equation as the force of a spring, with spring constant $k = q \, \frac{\sigma}{2 \, \epsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$. We know that this produces oscillations at an angular frequency $\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{q \, \sigma}{2 \, \epsilon_0 \, m} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)}$, or linear frequency $f = \frac{1}{2 \, \pi} \, \sqrt{\frac{q \, \sigma}{2 \, \epsilon_0 \, m} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)}$.