# Aula 02: Amostragem de Sinais Analógicos

#### Para esta aula é necessário trazer fone de ouvido.

#### 1. Introdução

Um sistema de processamento digital de sinais pode ser representado conforme apresentado na figura



Onde o conversor A/D é subdividido, de modo simplificado, em



# 2. Amostragem

A amostragem de um sinal analógico pode ser entendida como a multiplicação do mesmo por um trem de impulsos com espaçamento de  $T_s$ . Matematicamente, este processo é representado por

$$x_s(t) = x(t).\sum_{r=-\infty}^{\infty} \delta(t - rT_s)$$

## 3. Quantização e codificação

A quantização de um sinal amostrado pode ser entendida como o "arredondamento" das amostras do sinal para níveis de amplitude pré-determinados, com o objetivo de tornar a codificação mais eficiente.

Já a codificação é o processo responsável pela conversão das amplitudes das amostras do sinal quantizado em conjuntos de dígitos binários, de modo a possibilitar o armazenamento, envio e processamento do sinal digital.

#### 4. Atividades

- **SIMULINK:** O arquivo *Aula02 ex01.mdl* fornece o diagrama de um circuito utilizado para amostrar, quantizar e reconstruir um sinal por interpolação.
- Rode o arquivo, analise os gráficos e responda:
  - a) Qual é a frequência do sinal original?
  - b) Qual é a amplitude de pico-a-pico do sinal original?
  - c) Qual é a frequência de amostragem utilizada?
  - d) Quantas amostras do sinal foram apresentadas no osciloscópio?
  - e) Qual é a diferença (em Volts) entre dois níveis consecutivos de quantização?
  - f) Quais são os níveis de quantização e quantos bits são necessários para representa-los?
- 1.2. Mantenha a frequência do sinal senoidal (f) igual a 500Hz e simule a amostragem com as seguintes frequências:

a) 
$$f_s = 8KHz$$

d) 
$$f_c = 900 Hz$$

a) 
$$f_s = 8KHz$$
 d)  $f_s = 900Hz$   
b)  $f_s = 4KHz$  e)  $f_s = 500Hz$   
c)  $f_s = 1KHz$  f)  $f_s = 100Hz$ 

e) 
$$f_s = 500 Hz$$

c) 
$$f_s = 1KHz$$

f) 
$$f_s = 100 Hz$$

Verifique que para um dado sinal limitado em frequência, x(t), a recuperação só é possível se, e somente se, a frequência de amostragem escolhida obedecer ao critério definido por Nyquist.

Obs:

Para modificar a <u>frequência de amostragem</u>, o tempo de amostragem  $(T_s = 1/f_s)$ deve ser atualizado em dois campos:

- 1) Campo Period do gerador de impulsos, pertencente ao bloco amostrador;
- 2) Campo Sample time do multiplicador, pertencente ao bloco sample&hold.

A frequência do sinal analógico pode ser modificada diretamente no bloco gerador de sinais, campo Frequency.

1.3. Mantenha a frequência do sinal senoidal (f) igual a 500Hz, a frequência de amostragem  $(f_s)$  igual a 8KHz e simule a quantização para codificações de:

a) 
$$n_{bits} = 16$$

c) 
$$n_{bits} = 4$$

b) 
$$n_{bits} = 8$$

d) 
$$n_{bits} = 2$$

Obs:

Para ajustar a quantização conforme a quantidade de bits deve-se inserir no campo Quantization interval, do bloco Quantizador a distância,  $\Delta_{Nivels}(V)$ , entre dois Quantization uner var, de siete  $\frac{V_{pp}}{n_{Nivels}} = \frac{V_{pp}}{n_{Nivels}} = \frac{V_{pp}}{2^{n_{bits}}}$ 

II. **MATLAB:** Agora, para verificar os efeitos da amostragem e quantização, crie um programa em Matlab, do tipo  $Aula02_{ex}02.m$  que gere o gráfico da função  $x(t) = sen(2\pi ft)$ 

#### Obs:

Para desenvolver este algoritmo, devem-se seguir os passos abaixo:

- Definir uma frequência f e um tempo de observação  $T_{max}$  para o sinal senoidal
- Definir uma frequência de amostragem f<sub>s</sub>
- Criar um vetor de tempo t que vá de 0 até  $T_{max}$ , espaçado de  $T_s = 1/f_s$
- Obter o vetor com as amostras de x(t)
- Plotar x em função de t (utilize plot)
- Definir uma quantidade de bits de quantização  $n_{bits}$
- Encontrar a distância  $\Delta_{Niveis}$  entre os níveis de quantização
- Quantizar as amostras através da equação

$$x_q = \Delta_{Niveis}.* \operatorname{round}\left(rac{x}{\Delta_{Niveis}}
ight)$$

- Plotar  $x_q$  em função de t (utilize stem e sobreponha o plot anterior)
- Reproduza o tom a partir do comando  $sound(x_a, f_s)$
- 2.1. Mantenha a frequência do sinal senoidal (f) igual a 500Hz, o tempo de observação  $(T_{max})$  igual a 1s, a quantidade de bits  $(n_{bits})$  igual a 8 e simule com diferentes frequências de amostragem. Para cada caso, ouça o efeito da mudança da variação da frequência de amostragem no áudio gerado, verifique o comprimento do vetor  $x_q$  e complete a tabela.

| $f_{S}$            | No. Amostras | $f_{\scriptscriptstyle S}$ | No. Amostras |
|--------------------|--------------|----------------------------|--------------|
| $f_{\rm S} = 8KHz$ |              | $f_{\rm S} = 900 Hz$       |              |
| $f_{\rm S} = 4KHz$ |              | $f_s = 500Hz$              |              |
| $f_s = 1KHz$       |              | $f_{\rm S} = 100 Hz$       |              |

2.2. Mantenha a frequência do sinal senoidal (f) igual a 500Hz, o tempo de observação  $(T_{max})$  igual a 1s, a frequência de amostragem  $(f_s)$  igual a 8KHz e simule a quantização para diferentes quantidades de bits. Para cada caso, calcule a quantidade total de bits para um segundo do sinal amostrado e complete a tabela:

| n <sub>bits</sub> /amostra | n <sub>bits</sub> Total | n <sub>bits</sub> /amostra | n <sub>bits</sub> Total |
|----------------------------|-------------------------|----------------------------|-------------------------|
| $n_{bits} = 16$            |                         | $n_{bits} = 4$             |                         |
| $n_{bits} = 8$             |                         | $n_{bits} = 2$             |                         |

### Exercícios de fixação\*

I. Os fonoaudiólogos usam um equipamento chamado audiômetro para testar a audição de seus pacientes. Basicamente, este aparelho reproduz um tom dado pela senóide  $x(t) = sen(2\pi ft)$  para  $100Hz \le f \le 3000Hz$ , com certa duração,  $T_{total}$ 

Usando uma freqüência de amostragem que você achar mais conveniente (e que atenda aos critérios de Nyquist), escreva uma função MatLab  $Aula02\_fix01(f,Ttotal)$  que, dada uma freqüência f e uma duração  $T_{total}$  gere nos fones de ouvido um tom desta duração, nesta freqüência.

Exemplo:  $Aula02_fix01(2500,10)$  deve gerar um tom em 2500 Hz com duração de 10s. Teste para as freqüências do exercício anterior e verifique o efeito da escolha da freqüência de amostragem.

II. (Assis e Eisencraft). No filme contatos imediatos de terceiro grau do diretor Steven Spilberg, é descrito um contato entre seres humanos e seres de uma raça alienígena. A comunicação era feita através de uma sequência composta por 5 tons (de 1 segundo cada) nas freqüências 493,9Hz, 554,4Hz, 440Hz, 220Hz e 329,6Hz. Sua tarefa consiste em criar um programa MaLab (Aula02\_fix02.m) que gere esta sequência de tons. Para isto, não utilize qualquer forma de loop e utilize o comando sound apenas uma vez.