Discrete Mathematics

Cantor's theorem, the halting problem, countable, Schröder-Bernstein theorem, basic rules of counting, multiset, permutation

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Cantor's Diagonal Argument

1890/91, Cantor (1845-1918), the creator of the theory of sets

Question: Show that $|A| \neq |\mathbb{Z}^+|$.

The Diagonal Argument:

- 1) Suppose that $|A| = |\mathbb{Z}^+|$. Then there is a bijection $f: \mathbb{Z}^+ \to A$
- 2) Represent the function *f* as a list:

- 3) Construct an element *x* by considering the diagonal of the list
- 4) Show that $x \neq a_i$ for all $i \in \mathbb{Z}^+$
- 5) Show that $x \in A$
- 6) 4) and 5) give a contradiction

Cantor's Theorem

THEOREM: (Cantor) Let *A* be any set. Then $|A| < |\mathcal{P}(A)|$.

- $\mathcal{P}(A)$: the power set of a set A, i.e., the set of all subsets of A
 - For example: $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $|A| \leq |\mathcal{P}(A)|$
 - The function $f: A \to \mathcal{P}(A)$ defined by $f(a) = \{a\}$ is injective.
- $|A| \neq |\mathcal{P}(A)|$
 - Assume that there is a bijection $g: A \to \mathcal{P}(A)$
 - Define two lists $L = \{a\}_{a \in A}$ (= A) and $R = \{g(a)\}_{a \in A}$ (= $\mathcal{P}(A)$)
 - Define $X = \{a : a \in A \text{ and } a \notin g(a)\}$
 - We must have that $X \in R$. It is clear that $X \subseteq A$ and hence $X \in \mathcal{P}(A) = R$
 - We must have that $X \notin R$. Suppose that X = g(x) for some $x \in A$
 - If $x \in X$, then $x \notin g(x) = X \rightarrow \leftarrow$
 - If $x \notin X$, then $x \in g(x) = X \rightarrow \leftarrow$

The Halting Problem

1936, Turing (1912-1954)

Function
$$HALT(P, I) = \begin{cases} "halts" & \text{if } P(I) \text{ halts;} \\ "loops forever" & \text{if } P(I) \text{ loops forever.} \end{cases}$$

• *P*: a program; *I*: an input to the program *P*.

QUESTION: Is there a Turing machine computing HALT?

- Turing machine: can be represented as a an element of {0,1}*
 - $\{0,1\}^* = \bigcup_{n\geq 0} \{0,1\}^n$: the set of all finite bit strings

THEOREM: There is no Turing machine computing HALT.

- Assume there is a Turing machine **HALT** computing HALT
- Define a new Turing machine **Turing**(*P*) that runs on any Turing machine *P*
 - If HALT(P, P) = "halts", loops forever
 - If HALT(P, P) = "loops forever", halts
- Turing(Turing) loops forever ⇒ HALT(Turing, Turing) = "halts"
 ⇒Turing(Turing) halts
- Turing(Turing) halts ⇒ HALT(Turing, Turing) = "loops forever"
 ⇒Turing(Turing) loops forever

Countable and Uncountable

- **DEFINITION:** A set *A* is **countable** if $|A| < \infty$ or $|A| = |\mathbb{Z}^+|$; otherwise, it is said to be **uncountable**.
 - countably infinite: $|A| = |\mathbb{Z}^+|$

EXAMPLE:

- \mathbb{Z}^+ , \mathbb{N} , \mathbb{Z} , \mathbb{Q}^+ , \mathbb{Q} are countable
- \mathbb{R}^+ , \mathbb{R} , (0,1), [0,1] are uncountable
- **THEOREM:** A set A is countably infinite iff its elements can be arranged as a sequence $a_1, a_2, ...$
 - If A is countably infinite, then there is a bijection $f: \mathbb{Z}^+ \to A$
 - If $A = \{a_1, a_2, ...\}$, then the $f: \mathbb{Z}^+ \to A$ defined by $f(i) = a_i$ is a bijection
 - $a_i = f(i)$ for every i = 1,2,3 ...

Countable and Uncountable

THEOREM: Let *A* be countably infinite, then any infinite subset $X \subseteq A$ is countable.

- Let $A = \{a_1, a_2, ...\}$. Then $X = \{a_{i_1}, a_{i_2}, ...\}$ X is countable
- **THEOREM:** Let *A* be uncountable, then any set $X \supseteq A$ is uncountable.
 - If *X* is countable, then *A* is finite or countably infinite

THEOREM: If *A*, *B* are countably infinite, then so is $A \cup B$

- $A = \{a_1, a_2, a_3, \dots\}, B = \{b_1, b_2, b_3, \dots\}$
- $A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, ...\}$ //no elements will be included twice
 - application: the set of irrational numbers is uncountable

THEOREM: If A, B are countably infinite, then so is $A \times B$

- $A = \{a_1, a_2, a_3, \dots\}, B = \{b_1, b_2, b_3, \dots\}$
- $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_1, b_3), (a_2, b_2), (a_3, b_1), (a_1, b_4), \dots \}$

Schröder-Bernstein Theorem

QUESTION: How to compare the cardinality of sets in general?

- $|\mathbb{Z}^-| = |\mathbb{Z}^+| = |\mathbb{Z}| = |\mathbb{Q}^-| = |\mathbb{Q}^+| = |\mathbb{Q}| = |\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$
- $|\mathbb{R}^-| = |\mathbb{R}^+| = |\mathbb{R}| = |(0,1)| = |[0,1]| = |(0,1)| = |[0,1)|$
- $|\mathbb{Z}^+| \neq |[0,1)|$: in fact $|\mathbb{Z}^+| < |[0,1)|$
- $|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)|$
- $|\mathcal{P}(\mathbb{Z}^+)|$? |[0,1)|: which set has more elements?

THEOREM: If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

EXAMPLE: Show that |(0,1)| = |[0,1)|

- $|(0,1)| \le |[0,1)|$
 - $f:(0,1) \to [0,1)$ $x \to \frac{x}{2}$ is injective
- $|[0,1)| \le |(0,1)|$
 - $g:[0,1) \to (0,1) \ x \to \frac{x}{4} + \frac{1}{2}$ is injective

Schröder-Bernstein Theorem

EXAMPLE:
$$|\mathcal{P}(\mathbb{Z}^+)| = |[0,1)|$$

- $|\mathcal{P}(\mathbb{Z}^+)| \leq |[0,1)|$
 - $f: \mathcal{P}(\mathbb{Z}^+) \to [0,1)$ $\{a_1, a_2, \dots\} \mapsto 0, \dots 1_{a_1} \dots 1_{a_2} \dots \text{ is an injection.}$
- $|[0,1)| \le |\mathcal{P}(\mathbb{Z}^+)|$
 - $\forall x \in [0,1), x = 0, r_1 r_2 \cdots (r_1, r_2, \cdots \in \{0, \dots, 9\}, \text{no } \dot{9})$
 - $0 \leftrightarrow 0000, 1 \leftrightarrow 0001, \dots, 9 \leftrightarrow 1001$
 - x has a binary representation $x = 0.b_1b_2 \cdots$
 - $f:[0,1) \to \mathcal{P}(\mathbb{Z}^+) \ x \mapsto \{i: i \in \mathbb{Z}^+ \land b_i = 1\} \text{ is an injection }$

The continuum hypothesis: There is no cardinal number between \aleph_0 and c, i.e., there is no set A such that $\aleph_0 < |A| < c$.

Basic Rules of Counting

- **DEFINITION:** Let *A* be a finite set. A **partition** of set *A* is a family $\{A_1, A_2, ..., A_k\}$ of *nonempty* subsets of *A* such that
 - $\bigcup_{i=1}^k A_i = A$
 - $A_i \cap A_j = \emptyset$ for all $i, j \in [k]$ with $i \neq j$.
- **The Sum Rule**: Let A be a finite set. Let $\{A_1, A_2, ..., A_k\}$ be a partition of A. Then $|A| = |A_1| + |A_2| + \cdots + |A_k|$.
- **The Product Rule**: Let $A_1, A_2, ..., A_k$ be finite sets. Then $|A_1 \times A_2 \times \cdots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$.
- **The Bijection Rule:** Let *A* and *B* be two finite sets. If there is a bijection $f: A \to B$, then |A| = |B|.

Permutations of Set

- **DEFINITION:** Let $A = \{a_1, ..., a_n\}$ and $r \in [n]$. An r-permutation of A is a sequence of r distinct elements of A.
 - An *n*-permutation of *A* is simply called a **permutation** of *A*.
 - The 2-permutations of $A = \{1,2,3\}$ are 1,2; 1,3; 2,1; 2,3; 3,1; 3,2
- **THEOREM**: An *n*-element set has P(n,r) = n!/(n-r)! Different *r*-permutations.
- **DEFINITION:** Let $A = \{a_1, ..., a_n\}$ and $r \ge 1$. An r-permutation of A with repetition is a sequence of r elements of A.
 - The 2-permutations of $A = \{1,2,3\}$ with repetition are
 - 1,1; 1,2; 1,3; 2,1; 2,2; 2,3; 3,1; 3,2; 3,3
- **THEOREM:** An n-element set has n^r different r-permutations with repetition.

Multiset

DEFINITION: A **multiset** is a collection of elements which are not necessarily different from each other.

- An element $x \in A$ has **multiplicity** m if it appears m times in A.
- A multiset A is called an **n-multiset** if it has n elements.
- $A = \{n_1 \cdot a_1, n_2 \cdot a_2, \dots, n_k \cdot a_k\}$: an $(n_1 + n_2 + \dots + n_k)$ -multiset
 - a_i has multiplicity n_i for all $i \in [n]$.
- $T = \{t_1 \cdot a_1, t_2 \cdot a_2, \dots, t_k \cdot a_k\}$ is called an **r-subset** of A if
 - $0 \le t_i \le n_i$ for every $i \in [k]$, and
 - $t_1 + t_2 + \cdots + t_k = r$

EXAMPLE: $A = \{1 \cdot a, 2 \cdot b, 3 \cdot c, 100 \cdot z\}, T = \{1 \cdot b, 98 \cdot z\}$

- A is a 106-multiset; the multiplicities of a, b, c, z are 1,2,3,100, resp.
- *T* is a 99-subset of *A*

Permutations of Multiset

- **DEFINITION:** Let $A = \{n_1 \cdot a_1, ..., n_k \cdot a_k\}$ be an n-multiset. A **permutation** of A is a sequence $x_1, x_2, ..., x_n$ of n elements, where a_i appears exactly n_i times for every $i \in [k]$.
 - r-permutation of A: a permutation of some r-subset of A
 - $A = \{1 \cdot a, 2 \cdot b, 3 \cdot c\}$
 - a, b, c, b, c, c is a permutation of *A*; bcb is a 3-permutation of *A*;
- **THEOREM:** Let $A = \{n_1 \cdot a_1, n_2 \cdot a_2, \dots, n_k \cdot a_k\}$ be a multiset.

Then A has exactly $\frac{(n_1+n_2+\cdots+n_k)!}{n_1!n_2!\cdots n_k!}$ permutations.

- **REMARK**: Let $A = \{a_1, a_2, ..., a_n\}$ be a set of n elements.
 - r-permutation of A w/o repetition: r-permutation of $\{1 \cdot a_1, ..., 1 \cdot a_n\}$.
 - *r*-permutation of *A* with repetition: *r*-permutation of $\{\infty \cdot a_1, ..., \infty \cdot a_n\}$.