MEASURE SPACES

COLTON GRAINGER (MATH 6130 ANALYSIS)

2. Assignment due 2018-09-26

- 2.1. Finite coverings of a measure space. Let $\{E_i\}_{i=1}^n$ be a finite sequence of measurable subsets of the measure space (X, \mathcal{M}, μ) , where $\mu(X) = 1$. If each point of X belongs to at least three of these sets, then at least one of the E_i has measure $\geq \frac{3}{n}$.
- 2.2. Equivalence relations on a finite space [1, No. 2.12]. Let (X, \mathcal{M}, μ) be a finite measure space.
 - (a) If $E, F \in \mathcal{M}$ and $\mu(E\Delta F) = 0$, then $\mu(E) = \mu(F)$.
 - (b) Say that $E \sim F$ iff $\mu(E\Delta F) = 0$: then \sim is an equivalence relation on \mathcal{M} .
 - (c) If $E, F \in \mathcal{M}$, define $\rho(E, F) = \mu(E\Delta F)$. Then $\rho(E, G) \le \rho(E, F) + \rho(F, G)$ for all $E, F, G \in \mathcal{M}$, and hence ρ defines a metric on the quotient space \mathcal{M}/\sim .

Proof. Let E, F be measurable sets, and suppose that $\mu(E\Delta F) = 0$. Since

$$E\Delta F = (E \setminus F) \sqcup (F \setminus E)$$

from countable additivity we have $0 = \mu(E \triangle F) = \mu(E \setminus F) + \mu(F \setminus E)$. Now μ maps into $[0, \infty]$, so both $\mu(E \setminus F) = \mu(F \setminus E) = 0$. Lastly, break into disjoint sets $E = (E \setminus F) \sqcup (E \cap F)$ and F likewise, so that, by countable additivity,

(1)
$$\mu(E) = \mu(E \setminus F) + \mu(E \cap F)$$

$$= \mu(E \cap F) + \mu(F \setminus F)$$

$$= \mu(F).$$

- 2.3. Large sets in semifinite measures [1, No. 2.14]. If μ is a semifinite measure and $\mu(E) = \infty$, then for any C > 0 there exists $F \subset E$ with $C < \mu(F) < \infty$.
- 2.4. Semifinite parts [1, No. 2.15]. If μ is a measure on (X, \mathcal{M}) , define μ_0 on \mathcal{M} for each $E \subset X$ by

$$\mu_0(E) = \sup \{ \mu(F) : F \subset E \text{ and } \mu(F) \le \infty \}.$$

- (a) μ_0 is a semifinite measure.¹
- (b) If μ is semifinite, then $\mu_0 = \mu$.
- 2.5. Countable additivity for intersections in outer measures [1, No. 2.17]. If μ^* is an outer measure and $\{A_j\}_1^{\infty}$ is a sequence of disjoint μ^* -measurable sets, then $\mu^*(E \cap (\cup_1^{\infty} A_j)) = \sum_1^{\infty} \mu^*(E \cap A_j)$ for any $E \subset X$.
- 2.6. [1, No. 2.18]. Let $\mathscr{A} \subset \mathscr{P}(X)$ be an algebra, \mathscr{A}_{σ} the collection of countable unions of sets in \mathscr{A} , and $\mathscr{A}_{\sigma\delta}$ the collection of countable intersections of sets in \mathscr{A}_{σ} . Let μ be a premeasure on \mathscr{A} and μ^* the induced outer measure.
 - (a) For any $E \subset X$ and $\epsilon > 0$ there exists $A \in \mathscr{A}_{\sigma}$ with $E \subset A$ and $\mu^*(A) \leq \mu^*(E) + \epsilon$.
 - (b) If $\mu^*(E) < \infty$, then E is μ^* measurable iff there exists $B \in \mathscr{A}_{\sigma\delta}$ with $E \subset B$ and $\mu^*(B \setminus E) = 0$.
 - (c) If μ is σ -finite, the restriction $\mu^*(E) < \infty$ in (b) is superfluous.

Date: 2018-09-16. Compiled: 2018-09-22.

1

¹It's called the **semifinite part** of μ .

- 2.7. [1, No. 2.19]. Let μ^* be an outer measure on X induced from a premeasure, such that $\mu^*(X) < \infty$. If $E \subset X$, define the inner measure of E to be $\mu_*(E) = \mu^*(X) \mu^*(E^c)$. Then E is μ^* -measurable iff $\mu^*(E) = \mu_*(E)$.
- 2.8. [1, No. 2.22]. Let (X, \mathcal{M}, μ) be a measure space, μ^* the outer measure induced by μ according to

$$\mu^*(E) = \inf \left\{ \sum_{1}^{\infty} \mu(A_j) : A_j \in \mathscr{A}, E \subset \bigcup_{1}^{\infty} A_j \right\},$$

and \mathcal{M}^* the σ -algebra of μ^* -measurable sets, and $\tilde{\mu} = \mu^* | \mathcal{M}^*$.

- (a) If μ is σ -finite, then $\tilde{\mu}$ is the completion of μ .
- 2.9. [1, No. 2.23]. Let \mathscr{A} be the collection of finite unions of sets of the form $(a, b] \cap \mathbb{Q}$ with $-\infty \le a \le b \le \infty$.
 - (a) Knowing "if $\mathscr E$ is an elementary family, the collection $\mathscr A$ of finite disjoint unions of members of $\mathscr E$ is an algebra" we have that $\mathscr A$ is an algebra of $\mathbb Q$.

1. Revisions

Problems revised for completion.

1.1. Closure under countable increasing unions [1, No. 1.4]. An algebra \mathscr{A} is an σ -algebra iff \mathscr{A} is closed under countable increasing unions. That is,

if
$$\{E_i\}_1^{\infty} \subset \mathscr{A}$$
 and $E_1 \subset E_2 \subset \cdots$, then $\bigcup_1^{\infty} \in \mathscr{A}$.

- 1.2. **Linear combinations of measures [1, No. 1.7].** If μ_1, \ldots, μ_n are measures on (X, \mathcal{M}) and $a_1, \ldots, a_n \in [0, \infty)$, then $\sum_{i=1}^{n} a_i \mu_i$ is a measure on (X, μ) .
- 1.3. Summing sets by union and intersection [1, No. 1.9]. If (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$, then $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.
- 1.4. A measure relative to set intersection [1, No. 1.10]. If (X, \mathcal{M}, μ) is a measure space and $E \in \mathcal{M}$, define $\mu_E(A) = \mu(A \cap E)$ for all $A \in \mathcal{M}$.

Then μ_E is a measure.

REFERENCES

[1] G. B. Folland, *Real analysis*, Second. John Wiley & Sons, Inc., New York, 1999.