Representative approach for big data dimension reduction with binary responses

A novel approach: Representative

Xuelong Wang, Jie Yang

May 16, 2019

- Background and Challenges
- 2 A novel approach: Representative
- Simulation results
- 4 Aysmptotic property

Sufficient Dimension Reduction

Model Settings

$$Y = f(X, \epsilon) = f(\beta_1 X, \dots, \beta_k X, \epsilon)$$

x is explanatory variable, column vectors on \mathbb{R}^p ,

 $\beta's$ are unknown row vectors,

 ϵ is independent of X,

f is an arbitrary unknown function on \mathbb{R}^{k+1}

- $(\beta_1 X, \dots, \beta_k X)'$ is the projection of the $X \in \mathbb{R}^p$ into \mathbb{R}^K , K << p
- Lower dimension projection of X contains most of the information

Sufficient Dimension Reduction

The space spaned by eta's

- Effective dimension-reduction direction (e.d.r)
 - A Linear combination of $\beta's$
- \bigcirc A Linear space \mathcal{B} :
 - Spanned by $\beta's$ (Span(β)) \Leftrightarrow All the possible linear combination of $\beta's$
 - Since f is arbitrary, f and $\beta's$ are not Estimable
 - Only the B can be identified
 - Inverse Regression is one of the methods of estimating the Effective dimension-reduction space (B)

Sliced Inverse Regression method

Original data

Sorted and sliced by y

Slice means of standardized data

$$\hat{V} = n^{-1} \sum_{h=1}^n n_h \bar{x}_h \bar{x}_h^T \qquad \qquad \text{Conduct PCA on } \hat{V} \\ \text{Find the first Kth eigenvectors } \hat{\eta} \qquad \qquad \hat{\beta}_k = \hat{\eta}_k \Sigma_{xx}^{-1/2}$$

Estimated Covariance matrix

Binary response

The curse of Binary response for the sliced-based methods

Since the responses only have to values, the number slices

- For the method using only first moment, only one direction can be recovered
- For the method using more than moment(SAVE), there are situations they cannot recover all the directions

Background and Challenges

Using SVM to estimate the sudo conditional probability

Representative approach

Data generating models for binary response

Let Y^* as the latent response and Y as the observed binary response,

$$Y = \begin{cases} 0 & Y^* < \theta \\ 1 & Y^* \ge \theta \end{cases}$$

Where θ is the cutoff value.

$$Y^* = f(X^T \beta_1, \dots, X^T \beta_p, \epsilon),$$

Where ϵ is a random variable. Thus, we have

$$\mathcal{P}(Y=1|X)=\Pr(Y^*>\theta|X).$$

Note that different distribution ϵ will eventually affect the distribution of Y.

Data generating models

Conditional probability model

$$\lambda(\mathcal{P}(Y=1|X)) = h(\beta_1^T X, \dots, \beta_p X)$$

$$\mathcal{P}(Y=1|X) = \lambda^{-1} \circ h(\beta_1^T X, \dots, \beta_p X)$$

$$= g(\beta_1^T X, \dots, \beta_p X)$$

A novel approach: Representative

Troubles for traditional methods

Background and Challenges

The conditional expecation and representative