Variational Inference via Stochastic Backpropagation

Kai Fan

February 27, 2016

Preliminaries

Stochastic Backpropagation

Variational Auto-Encoding

Related Work

Outline

Preliminaries

Stochastic Backpropagation

Variational Auto-Encoding

Related Work

Bayesian inference on latent variable model

• y observed data x latent variable $p_{\theta}(\mathbf{x}, \mathbf{y})$ probabilistic model

Bayesian inference on latent variable model

- y observed data
 x latent variable
 p_θ(x, y) probabilistic model
- Purpose: we are (very) interested in inferring a posterior distribution $p_{\theta}(\mathbf{x}|\mathbf{y})$
 - Enables learning parameters in latent variable models
 - Deep learning

Bayesian inference on latent variable model

- y observed data
 x latent variable
 p_θ(x, y) probabilistic model
- Purpose: we are (very) interested in inferring a posterior distribution $p_{\theta}(\mathbf{x}|\mathbf{y})$
 - ▶ Enables learning parameters in latent variable models
 - Deep learning
- ▶ Difficulty: $p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{y})}$ is most often intractable.

Non-variational approx. inference methods

- ▶ Point estimate of $p_{\theta}(\mathbf{x}|\mathbf{y})$ (MAP)
 - ► Fast
 - Overfitting
- Markov Chain Monte Carlo (MCMC)
 - Asymptotically unbiased
 - Expensive, slow to assess convergence

Variational Inference

- Introduce variational distribution $q_{\phi}(\mathbf{x})$ or $q_{\phi}(\mathbf{x}|\mathbf{y})$ of true posterior.
 - ϕ variational parameters
- ▶ Objective: minimize w.r.t. the KL-divergence

$$D_{KL}(q_{\phi}(\mathbf{x}|\mathbf{y})||p_{\theta}(\mathbf{x}|\mathbf{y}))$$

• $q_{\phi}(\mathbf{x}|\mathbf{y}) = p_{\theta}(\mathbf{x}|\mathbf{y})$ achieves 0 KL divergence.

Lower Bound

From marginal log-likelihood to lower bound,

$$egin{aligned} \log p_{ heta}(\mathbf{y}) &= \mathbb{E}_q \left[\log rac{p_{ heta}(\mathbf{y}, \mathbf{x})}{q_{\phi}(\mathbf{x}|\mathbf{y})}
ight] + D_{\mathcal{KL}}(q_{\phi}(\mathbf{x}|\mathbf{y})||p_{ heta}(\mathbf{x}|\mathbf{y})) \ &\geq \mathbb{E}_q[\log p_{ heta}(\mathbf{y}, \mathbf{x}) - \log q_{\phi}(\mathbf{x}|\mathbf{y})] \ &\triangleq \mathcal{L} \end{aligned}$$

- Objective: maximize w.r.t the Lower Bound
- Non-gradient-based optimization technique: Mean-Field VB with fixed-point equations
 - Efficiency
 - Intractable / not applicable in many cases

Outline

Preliminaries

Stochastic Backpropagation

Variational Auto-Encoding

Related Work

Reparameterized Gradient Estimator

- lacktriangle Consider a general form of lower bound $\mathcal{L} = \mathbb{E}_{q_\phi(\mathbf{x}|\mathbf{y})}[f(\mathbf{y},\mathbf{x})]$
- Monte Carlo Gradient Approximation at Iteration t
 - sample ϵ^t from some base distribution $p(\epsilon)$
 - lacktriangle transformation $old x^t = g_\phi(\epsilon^l)$, s.t. $old x^t \sim q_\phi(old x|old y)$
 - lacktriangle compute $abla_{\phi} f(\mathbf{y}, \mathbf{x}^t)$ to approximate $abla_{\phi} \mathcal{L}$
- Reparameterization has to exist. E.g. Gaussian, Laplace, Student t's, etc.

Reparameterization Trick

Reparameterised form

Gaussian Backpropagation

x $\sim \mathcal{N}(\mu, \mathbf{C})$, we have following identities.

$$\begin{split} \nabla_{\mu_i} \mathbb{E}_{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\mathbf{C})}[f(\mathbf{x})] &= \mathbb{E}_{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\mathbf{C})}[\nabla_{z_i} f(\mathbf{x})] \\ \nabla_{C_{ij}} \mathbb{E}_{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\mathbf{C})}[f(\mathbf{x})] &= \frac{1}{2} \mathbb{E}_{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\mathbf{C})}[\nabla_{z_i,z_j}^2 f(\mathbf{x})], \\ \nabla_{C_{i,j},C_{k,l}}^2 \mathbb{E}_{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\mathbf{C})}[f(\mathbf{x})] &= \frac{1}{4} \mathbb{E}_{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\mathbf{C})}[\nabla_{z_i,z_j,z_k,z_l}^4 f(\mathbf{x})], \\ \nabla_{\mu_i,C_{k,l}}^2 \mathbb{E}_{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\mathbf{C})}[f(\mathbf{x})] &= \frac{1}{2} \mathbb{E}_{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\mathbf{C})}\left[\nabla_{z_i,z_k,z_l}^3 f(\mathbf{x})\right]. \end{split}$$

- ▶ Unbiased estimator of $\nabla^k \mathbb{E}[f]$, k = 1, 2
- ▶ Higher order derivatives need to calculated w.r.t. *f*

Reparameterized Gaussian Backpropagation

- $lackbox{x} \sim \mathcal{N}(m{\mu}, \mathsf{RR}^{ op})$, thus $m{x} = m{\mu} + \mathsf{R}m{\epsilon}$ where $m{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- New identities

$$\begin{split} \nabla_{\mathbf{R}} \mathbb{E}_{\mathcal{N}(\boldsymbol{\mu}, \mathbf{C})}[f(\mathbf{x})] &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}_{d_z})}[\boldsymbol{\epsilon} \mathbf{g}^{\top}] \\ \nabla_{\boldsymbol{\mu}, \mathbf{R}}^{2} \mathbb{E}_{\mathcal{N}(\boldsymbol{\mu}, \mathbf{C})}[f(\mathbf{x})] &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}_{d_z})}[\boldsymbol{\epsilon}^{\top} \otimes \mathbf{H}] \\ \nabla_{\mathbf{R}}^{2} \mathbb{E}_{\mathcal{N}(\boldsymbol{\mu}, \mathbf{C})}[f(\mathbf{x})] &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}_{d_z})}[(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T}) \otimes \mathbf{H}] \end{split}$$

where \otimes is Kronecker product, and gradient **g**, Hessian **H** are evaluated at $\mu + \mathbf{R}\epsilon$ in terms of $f(\mathbf{x})$.

- Still easy to obtain unbiased estimator
- ► Hessian-vector multiplication due to the fact that $(A^{\top} \otimes B)vec(V) = vec(AVB)$

Bayesian Logreg

- lacktriangle Prior $\mathcal{N}(\mathbf{0}, \mathbf{\Lambda})$ where $\mathbf{\Lambda}$ is diagonal
- ▶ Variational distribution $q(\beta|\mu, \mathbf{D})$ where \mathbf{D} is diagonal for simplicity.

Outline

Preliminaries

Stochastic Backpropagation

Variational Auto-Encoding

Related Work

Model Formulation

- ► Gaussian latent variable, prior $p(\mathbf{x}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
- ▶ Generative model $p_{\theta}(\mathbf{y}|\mathbf{x})$, characterize a non-linear transformation, e.g. MLP
- Recognition model $q_{\phi}(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{D})$, where $\phi = [\boldsymbol{\mu}, \mathbf{D}] = \mathsf{MLP}(\mathbf{y}; W, b)$ and denote $\psi = (W, b)$

Objective Function: $L = \log p(\mathbf{y}|\mathbf{x}) + \log p(\mathbf{x}) - \log q(\mathbf{x}|\mathbf{y})$

- ▶ $\log p(\mathbf{y}|\mathbf{x})$ reconstruction error
- ▶ $\log p(\mathbf{x}) \log q(\mathbf{x}|\mathbf{y})$ regularization
- ▶ Unlike VEM, (θ, ψ) is optimized simultaneously, by gradient based algorithm.

Unrolled VAE

Back to Backpropagation

► Fast Gradient computation

$$\begin{split} & \nabla_{\psi_{l}} \mathbb{E}_{\mathcal{N}(\boldsymbol{\mu}, \mathbf{C})}[f(\mathbf{x})] = \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})} \left[\mathbf{g}^{\top} \frac{\partial (\boldsymbol{\mu} + \mathbf{R} \boldsymbol{\epsilon})}{\partial \psi_{l}} \right] \\ & \nabla^{2}_{\psi_{l_{1}} \psi_{l_{2}}} \mathbb{E}_{\mathcal{N}(\boldsymbol{\mu}, \mathbf{C})}[f(\mathbf{x})] = \\ & \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})} \left[\frac{\partial (\boldsymbol{\mu} + \mathbf{R} \boldsymbol{\epsilon})}{\partial \psi_{l_{1}}}^{\top} \mathbf{H} \frac{\partial (\boldsymbol{\mu} + \mathbf{R} \boldsymbol{\epsilon})}{\partial \psi_{l_{2}}} + \mathbf{g}^{\top} \frac{\partial^{2} (\boldsymbol{\mu} + \mathbf{R} \boldsymbol{\epsilon})}{\partial \psi_{l_{1}} \partial_{l_{2}}} \right] \end{split}$$

 \triangleright $\mathcal{O}(d_z^2)$ algorithmic complexity for both 1st and 2nd derivative.

Back to Backpropagation

For any F, $\mathbf{H}_{\psi}\mathbf{v} = \lim_{\gamma \to 0} \frac{\nabla F(\psi + \gamma \mathbf{v}) - \nabla F(\psi)}{\gamma}$

$$\begin{split} \mathbf{H}_{\boldsymbol{\psi}}\mathbf{v} &= \left. \frac{\partial}{\partial \gamma} \nabla F(\boldsymbol{\psi} + \gamma \mathbf{v}) \right|_{\gamma = 0} \\ &= \left. \frac{\partial}{\partial \gamma} \mathbb{E}_{\mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\mathbf{g}^{\top} \left. \frac{\partial \left(\boldsymbol{\mu}(\boldsymbol{\psi}) + \mathbf{R}(\boldsymbol{\psi}) \boldsymbol{\epsilon} \right)}{\partial \boldsymbol{\psi}} \right|_{\boldsymbol{\psi} \leftarrow \boldsymbol{\psi} + \gamma \mathbf{v}} \right] \right|_{\gamma = 0} \\ &= \mathbb{E}_{\mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left. \frac{\partial}{\partial \gamma} \left(\mathbf{g}^{\top} \left. \frac{\partial \left(\boldsymbol{\mu}(\boldsymbol{\psi}) + \mathbf{R}(\boldsymbol{\psi}) \boldsymbol{\epsilon} \right)}{\partial \boldsymbol{\psi}} \right|_{\boldsymbol{\psi} \leftarrow \boldsymbol{\psi} + \gamma \mathbf{v}} \right) \right] \right|_{\gamma = 0} \end{split}$$

- ▶ PCG only requires $\mathbf{H}_{\psi}\mathbf{v}$ to solve linear system Hp = -g.
- ▶ For K iteration of PCG, relative tolerance $e < \exp(-2K/\sqrt{c})$, where c is matrix conditioner. Thus, c can be nearly as large as $O(K^2)$.
- ► Complexity for each iteration: $\mathcal{O}(Kdd_z^2)$ v.s. $\mathcal{O}(dd_z^2)$

Theoretical Perspective

- ▶ If f is an L-Lipschitz differentiable function and $\epsilon \sim \mathcal{N}(0, \mathbf{I}_{d_z})$, then $\mathbb{E}[(f(\epsilon) \mathbb{E}[f(\epsilon)])^2] \leq \frac{L^2 \pi^2}{4}$.
- $\mathbb{P}\left(\left|\frac{1}{M}\sum_{m=1}^{M}f(\epsilon_m)-\mathbb{E}[f(\epsilon)]\right|\geq t\right)\leq 2e^{-\frac{2Mt^2}{\pi^2L^2}}.$
- ▶ In most application, M = 1 is used as MC integration.

VAE Experiments

Manifold of Generative Model by setting $d_z = 2$

VAE Experiments

Lower Bound

Outline

Preliminaries

Stochastic Backpropagation

Variational Auto-Encoding

Related Work

Semi-supervised VAE (NIPS 2014)

Generative Model:
$$p(y) = Cat(y|\pi)$$
; $p(\mathbf{x}) = \mathcal{N}(0, \mathbf{I})$; $p(\mathbf{y}|y, \mathbf{x}) = MLP$

Inference model

q(y|x)= classifier

Generative model

Recognition Model: $q(\mathbf{x}|y,\mathbf{y}) = \mathcal{N}(\mu_{\phi}(y,\mathbf{y}), \mathbf{D}_{\phi}(\mathbf{y}))$ and $q(y|\mathbf{y}) = Cat(y|\pi(\mathbf{y}))$, parameter function is also MLP.

Neural Variational Inference (ICML 2014)

Sigmoid Belief Networks

- ▶ Generative Model: $\mathbf{h}_L \to \mathbf{h}_{L-1}... \to \mathbf{h}_1 \to \mathbf{y}$
- Recognition Model: reverse the arrow direction
- Learning signal or control variate for variance reduction borrowing idea form RL

$$egin{aligned}
abla_{\phi} L &= \mathbb{E}_q[(\log p_{ heta}(x,z) - \log q_{\phi}(z|x)) imes
abla_{\phi} \log q_{\phi}(z|x)] \ &= \mathbb{E}_q[(\log p_{ heta}(x,z) - \log q_{\phi}(z|x) - C_{\xi}(x)) imes
abla_{\phi} \log q_{\phi}(z|x)] \end{aligned}$$

• (θ, ϕ, ξ) joint learning

Dynamic Modeling

- ▶ DRAW (Dynamic VAE with LSTM, ICML 2015, reviewed before)
- ▶ DSBN (NIPS 2015), generative model is similar to HMM

Dynamic Modeling, ctd

hGCHMM, my model

Bayesian Dark Knowledge (NIPS 2015)

- ▶ Teacher Model: deep neural networks $T(y|x,\theta)$, prior $p(\theta|\lambda)$
- ▶ Student Model: deep neural networks $S(y|x,\omega)$, prior $p(\omega|\gamma)$
- Two step training (or distilled SGLD, term they used in paper)
 - ▶ Mini-bactch data (X, Y) with size B
 - ▶ SGLD update θ

$$\Delta \theta_{t+1} = \frac{\eta_t}{2} \left(\nabla_{\theta} \log p(\theta|\lambda) + \frac{N}{B} \sum_{x_i \in X} \nabla_{\theta} \log p(y_i|x_i, \theta) \right) + \mathcal{N}(0, \eta_t)$$

▶ SGD update ω with noisy data \tilde{X} only; \tilde{y}_i is obtained by feeding \tilde{x}_i to current teacher model

$$\Delta \omega_{t+1} =
ho_t \left(rac{1}{B} \sum_{ ilde{x}_i \in ilde{X}}
abla_\omega \log p(ilde{y}_i | ilde{x}_i, \omega) + \gamma \omega_t
ight)$$

Outline

Preliminaries

Stochastic Backpropagation

Variational Auto-Encoding

Related Work

- Minimize the difference between Generative model and recognition model
- Variational inference framework