CAPSTONE SPRINT 2

Unpredictable Weather in Vancouver: Let's Predict it with Data Science.

(Not just "why is it so hot?" but also "why is it so cold?")

Problem Statement

Potential Impacts:

- Health
- Retail Store
- Grocery Stores
- Clothing Store

Based on Weather Statistics, can we predict when temperature will be unusually high or low?

Data Set:

87648 hours of Weather Statistics for Vancouver (July 1st, 2013 - June 30, 2023)

- 1. Excel Cleaning
- 2. Python Cleaning
- 3. Seasonal Decomposition
- 4. Feature Selection (Identified through EDA)
- 5. Feature Engineering (Variables for EDA)
- 6. Train/Test Split (7/3 years)

EDA Findings

- Most Weather Stats do not have a correlation with Temperature, except for Dew Point
- The hottest recorded temperature was on June 29, 2021, but the hottest June was in 2015
- Coldest Months: December, January, February
- Hottest Months: July and August (June close 3rd)

Baseline Models and Evaluation Metrics:

- 1. Attempted using Linear Regression to establish a baseline for other models
- 2. Fitted Vector Autoregressive Model (Multivariate Time Series Analysis)

Model 1

Metric	Train	Test
Mean Absolute Error	0.2263	0.2803
Mean Squared Error	0.12	0.1516
Root Mean Squared Error	0.3471	0.3894
Mean Absolute Percentage Error	6.48%	7.22%
R-squared	0.9969365432749397	0.9964635344878252

Model 2

Metric	Train	Test
Mean Absolute Error	3.5403	3.7976
Mean Squared Error	19.22	21.8036
Root Mean Squared Error	4.3842	4.6694
Mean Absolute Percentage Error	115.78%	107.85%
R-squared	0.5112959872106125	0.4914264507814935

Next Steps:

- Learn about VAR parameters to tune model
- Research other models before ML
- Research LSTM RNN
- Research other ML for multivariate time series.