Nota de Estudo — Revisão de Trocadores de Calor

Nota de Estudo — Revisão de Trocadores de Calor

Autor: Fábio Magnani (fabio.magnani@ufpe.br)

Curso: Engenharia Mecânica - UFPE Início do desenvolvimento: 29/08/2025

Primeira publicação: 05/09/2025

Versão Atual: v-2025-09-05-a (fase de teste técnico no Colab, teste didático-

pedagógico com estudantes e início da revisão final de código/texto)

Objetivo

Revisar o modelo matemático para trocadores de calor, de forma direta e aplicada.

Estrutura

- Equações dos Trocadores de Calor
- Coeficiente global de transferência de calor, propriedades dos fluidos e dos sólidos
- Dedução da temperatura média logarítmica
- Caso A Fluxo contra-corrente (análise: UA e temperaturas de entrada conhecidos; temperatura de saida desconhecida)
- Caso B Fluxo contra-corrente (projeto: temperaturas de entrada e de saída conhecids; UA desconhecido)

- Caso C Levando os parâmetros ao limite
- Caso C Fluxo paralelo
- Caso D Efetividade-NUT (ϵ -NUT)
- Caso E Um dos lados com temperatura constante (mudança de fase)
- Caso F Os dois lados com temperatura constante (mudança de fase)
- Caso G Um dos lados com um trecho com temperatura variável e outro com temperatura constante
- Considerações finais

Hipóteses Simplificativas

O modelo matemático desenvolvido nesta nota de estudo usa as seguintes hipóteses: - Regime permanente - Não há troca de calor para fora do trocador, apenas entre os dois escoamentos - O coeficiente global de transferência de calor, U, é constante - O calor específico dos dois fluidos é constante, o que permite usar a relação $\Delta h = c_p \Delta T$. Vale a pena observar que vale, inclusive, o caso em que $c_p = \infty$ (i.e., caso em que há mudança de fase, no qual há variação da energia, Δh , sem variação da temperatura, ΔT).

Observação

Para detalhes específicos, particularmente para os coeficientes de transferência de calor, o estudante deve procurar as referências.

Referências

- Incropera, F. P., Bergman, T. L., Lavine, A. S., Fundamentos de Transferência de Calor e de Massa, capítulo 11, 8ª ed., LTC, 2019.
- Stoecker, W. F. Design of Thermal Systems, capítulo 5, 3rd ed., McGraw-Hill, 1989.

Notação

Equações dos Trocadores de Calor

Um trocador de calor convencional pode ser representado pela figura 1, onde se vê dois escoamentos (h quente; c frio) entrando no trocador. Esses escoamentos não são misturados, sendo que a única interação entre eles é o resfriamento do quente e o aquecimento do frio, através da uma transferência de calor atravé da parede sólida que separa os dois escoamentos.

Figura 1. Trocador de calor com escoamento em contracorrente.

Outra configuração possível é mostrado na figura 2, onde cada fluido entra de um lado do trocador (trocador com escoamento em paralelo). Vamos discutir as consequências disso mais para a frente. Do ponto de vista das equações, neste momento, isso não é importante. Outras configurações de trocadores podem ser encontradas e discutidas nas referências.

Figura 2. Trocador de calor com escoamento paralelo.

Basicamente, os trocadores de calor têm três equações: - Primeira Lei do lado quente: $\dot{Q}=\dot{m}_hc_{p,h}(T_{h,1}-T_{h,2})\equiv C_h(T_{h,1}-T_{h,2})$

- Primeira Lei d
 lado frio: $\dot{Q}=\dot{m}_c c_{p,c} (T_{c,2}-T_{c,1}) \equiv C_c (T_{c,2}-T_{c,1})$
- Equação do trocador de calor: $\dot{Q}=UA\,\Delta T_{lm},\,\mathrm{com}\,\,\Delta T_{lm}=(\Delta T_1-\Delta T_2)/\ln(\Delta T_1/\Delta T_2).$

Observação: se $T_{c,1}$ é a entrada ou a saída do lado frio, depende se o trocador é em fluxo contradorrente (Fig. 1) ou paralelo (Fig. 2). O que importa lembrar é que ${\bf 1}$ nesse caso significa que é a parte do lado frio que fica junto à entrada do lado quente.

Coeficiente global U (resistências em série, tubo-duplo)

Resistência total (K/W):

$$\begin{split} R_{tot} &= \frac{1}{h_i A_i} + \frac{R''_{f,i}}{A_i} + \frac{\ln(D_o/D_i)}{2\pi L k_w} + \frac{R''_{f,o}}{A_o} + \frac{1}{h_o A_o}. \\ &\text{Então } UA = 1/R_{tot}. \end{split}$$

Figura 3. Transferência de calor entre o lado quente e o lado frio.

- Parede cilíndrica: $A_i = \pi D_i L$, $A_o = \pi D_o L$.
- Fatores de incrustação típicos: $R_f''\approx 2\times 10^{-4}$ a 4×10^{-4} m²K/W (água tratada).
- Eficiências de aleta $\eta_i, \eta_o = 1$ aqui (sem aletas).

Correlação para h (exemplo): Dittus-Boelter (turbulento interno)

 $Nu=0.023\,Re^{0.8}\,Pr^n$, com n=0.4 para aquecimento do fluido e n=0.3 para resfriamento. $h=Nu\,k/L_c$ (use $L_c=D$ em dutos; no anular, $D_h=D_s-D_o$).

Escalonamento: $h \propto \rho^{0.8} \dot{m}^{0.8} \mu^{-0.8} k \, Pr^n$ via $Re = \rho v D/\mu$ e $v = \dot{m}/(\rho A)$. Logo, $q \sim U A \Delta T_{lm}$ cresce fortemente com vazão e com condutividade do fluido.

Dedução da Temperatura Média Logarítmica (TML)

Elemento diferencial dA

- Diferença local: $\Delta T = T_h T_c.$
- Balanços: $dq=-C_h\,dT_h=C_c\,dT_c=U\,\Delta T\,dA.$

Figura 4. Balanço de energia em um elemento infinitesimal.

Equação diferencial

Da definição,
$$d(\Delta T) = dT_h - dT_c = -dq \left(\frac{1}{C_h} + \frac{1}{C_c}\right)$$
.
Com $dq = U \Delta T dA$: $d(\Delta T)/\Delta T = -U \left(\frac{1}{C_h} + \frac{1}{C_c}\right) dA$.

Integração em A

$$\begin{split} &\ln(\Delta T_2/\Delta T_1) = -UA\left(\frac{1}{C_h} + \frac{1}{C_c}\right). \\ &\text{Integrando} \ dq = U \ \Delta T \ dA: \\ &q = U \int_0^A \Delta T \ dA = UA \left(\Delta T_1 - \Delta T_2\right) / \ln(\Delta T_1/\Delta T_2) \equiv UA \ \Delta T_{lm}. \end{split}$$

Observações - Se $\Delta T_1 = \Delta T_2,$ então $\Delta T_{lm} = \Delta T.$

- Em mudança de fase com T constante, use $\Delta T_1 = T_{sat} - T_{c,2}$ e $\Delta T_2 = T_{sat} - T_{c,1}$ (ou análogas para o frio saturado).

Exemplo 1 — Análise contracorrente com U por correlação

Meta: calcular U a partir de correlações (Dittus–Boelter) num trocador tubo-duplo água-água; depois obter q, $T_{h,2}$ e $T_{c,2}$ usando a solução fechada da TML (sem discretização).

Geometria e materiais (hipóteses explícitas): - Tubo interno de cobre $(k_w \approx 385 \text{ W/(m \cdot K)}), D_i = 0.020 \text{ m}, D_o = 0.024 \text{ m}, L = 5 \text{ m}.$

- Anular formado por tubo externo de aço carbono (parede fina para condução, adotamos apenas k_w do tubo interno na resistência), diâmetro interno do anular $D_s=0.040~\rm m.$
- Sem aletas; incrustações $R_{f,i}''=R_{f,o}''=2.0\times 10^{-4}~\mathrm{m^2K/W}.$

Propriedades (água, valores típicos): - Lado quente (média de filme próxima de 60 °C): $\rho_h = 983 \text{ kg/m}^3$, $\mu_h = 4.66 \times 10^{-4} \text{ Pa} \cdot \text{s}$, $k_h = 0.654 \text{ W/(m} \cdot \text{K)}$, $c_{p,h} = 4180 \text{ J/(kg} \cdot \text{K)}$, $Pr_h \approx 3.6$.

- Lado frio (média de filme ~ 25–30 °C): $\rho_c=996$ kg/m³, $\mu_c=8.0\times 10^{-4}$ Pa·s, $k_c=0.613$ W/(m·K), $c_{p,c}=4180$ J/(kg·K), $Pr_c\approx 5.4.$

Condições de entrada:

$$dotm_h=1.20$$
 kg/s a $T_{h,1}=80$ °C (no tubo), $dotm_c=1.00$ kg/s a $T_{c,1}=20$ °C (no anular). Contracorrente.

Fechado (TML): com $kA=UA(1/C_h+1/C_c)$ e $\Delta T_{in}=T_{h,1}-T_{c,1}$, define-se $M=\frac{C_hC_c}{C_h+C_c}\,(1-e^{-kA})$. Então o calor total é

$$q = \frac{M}{1 + M/C_c} \, \Delta T_{in}$$

e, em seguida, $T_{h,2}=T_{h,1}-q/C_h,\,T_{c,2}=T_{c,1}+q/C_c,\,\Delta T_{lm}$ segue da definição.

$$h_i = 18,643.9 \text{ W/m}^2.\text{K}, \quad h_o = 5,682.5 \text{ W/m}^2.\text{K}, \quad UA = 549.5 \text{ W/K}$$
 $Re_h = 163,936, Re_c = 24,868$ $q = 26,234.4 \text{ W} \quad | \quad Th2 = 74.77 \text{ °C} \quad | \quad Tc2 = 26.28 \text{ °C} \quad | \quad \Delta T_lm = 54.25 \text{ K}$

(c) Análise física (numérica e escalonamento)

- Com os números atuais (água
–água), Re_h e Re_c estão em regime turbulento, validando Dittus
–Boelter.
- h_i e h_o da ordem de 10³ W/(m²·K) resultam em UA na ordem de 10³ W/K para L=5 m.
- Resistência de parede em cobre é pequena; se trocássemos para aço carbono $(k_w \approx 50 \text{ W/(m \cdot K)})$, UA cairia perceptivelmente.
- Escalonamento: como Nu $simRe^{0.8}Pr^n$, então h sim $dotm^{0.8}$; duplicar a vazão do lado limitante aproxima q de $C_{min}(T_{h,1}-T_{c,1})$.
- A TML produz $q=UA\,\Delta T_{lm},$ coerente com as saídas $T_{h,2}$ e $T_{c,2}$ encontradas pela solução fechada.

Exemplo 2 — Projeto: determinar UA para um q desejado (contracorrente)

Dados $q_{des},~C_h,~C_c,~T_{h,1}$ e $T_{c,1}$. A partir da solução fechada, com $kA=UA(1/C_h+1/C_c)$ e $M=(C_hC_c/(C_h+C_c))(1-e^{-kA})$, tem-se $q=\frac{M}{1+M/C_c}\,\Delta T_{in}$, onde $\Delta T_{in}=T_{h,1}-T_{c,1}$. Isolando e^{-kA} obtém-se uma forma direta para UA (sem iteração).

UA requerido 4,461.7 W/K (kA = 1.957)

(c) Análise física

- Para q_{des} fixo, UA cresce quando C_{min} é pequeno (trocador precisa compensar com área/coeficientes maiores).
- A expressão fechada exige $q_{des} < C_c \, \Delta T_{in}$ (limite de capacidade); caso contrário, não há solução física.

Exemplo 3 — Aproximação ao pinch (contracorrente)

Usamos o mesmo UA do Ex. 1 mas reduzimos a diferença de entrada para aproximar $\Delta T_{min} \rightarrow 0$.

1,242.4 W | Th2 = 59.67 °C | Tc2 = 50.50 °C |
$$\Delta$$
T1 = 9.505 K | Δ T2 = 9.670 K | Δ T_min = 9.

(c) Análise física

- À medida que $\Delta T_{min} \rightarrow 0$, a necessidade de UA explode para manter o mesmo q.
- Em projeto real, impõe-se uma margem mínima de temperatura (por exemplo 5–10 K) para robustez operacional.

Exemplo 4 — Um lado em mudança de fase (quente a T_{sat} constante)

Com o quente a T_{sat} constante (condensação), a solução diferencial dá diretamente $T_{c,2}=T_{sat}-(T_{sat}-T_{c,1})\,e^{-UA/C_c}$ e $q=C_c(T_{c,2}-T_{c,1})$.

q 51,859.9 W | Tc2 30.34 °C |
$$\Delta T_{lm} = 34.57$$
 K

(c) Análise física

- Quando UA/C_c é grande, $e^{-UA/C_c} \to 0$ e $T_{c,2} \to T_{sat}$ (limite ideal).
- O cálculo volta a ser puramente logarítmico para a TML, com $\Delta T_1 = T_{sat} T_{c,2}$ e $\Delta T_2 = T_{sat} T_{c,1}$.

Exemplo 5 — Ambos os lados mudam de fase (ΔT constante)

Se as duas correntes estão a temperaturas constantes, ΔT é constante e $q = UA \Delta T$.

$$\Delta T = 70.00 \text{ K} \mid q = 70,000.0 \text{ W}$$

(c) Análise física

- É o caso mais simples via TML, pois $\Delta T_{lm} = \Delta T$.
- Limitações passam a ser de área disponível e níveis de pressão.

Exemplo 6 — Condensador real: seção sensível + seção latente

Quando o quente entra superaquecido e sai condensado, separam-se duas regiões: 1) Sensível: T_h cai de $T_{h,1}$ até T_{sat} ; 2) Latente: condensação a T_{sat} . Modelamos como dois trocadores em série, com UA_s e UA_l atribuídos.

```
q_need (até T_sat) = 125,400 W | q_s (com UA_s) = 53,161 W | Th2_s = 107.3 °C Seção latente: q_l = 54,519 W | Tc2 = 45.8 °C | q_total = 107,680 W
```

(c) Análise física

- Se $q_s < C_h(T_{h,1} T_{sat})$, a área alocada à seção sensível é insuficiente; redistribua UA entre as seções.
- A divisão em duas regiões evita recorrer a c_p efetivo e mantém o modelo transparente.

Exemplo 7 — Paralelo e comparação com contracorrente (fechado)

Para paralelo, com $\Delta T_1 = T_{h,1} - T_{c,1}$ conhecido na entrada, a solução fechada dá $q_{par} = \frac{C_h C_c}{C_h + C_c} \left(1 - e^{-kA}\right) \Delta T_1 \text{ e perfis exponenciais análogos}.$

q_contracorrente 45,766.1 W | q_paralelo 55,981.6 W

(c) Análise física

- Para UA e entradas idênticas, contracorrente produz q maior que paralelo, pois mantém ΔT mais alto ao longo do comprimento.
- A diferença diminui quando $C_h \gg C_c$ ou vice-versa (efeito capacidade domina).

Fechamento

Resumo

- A TML decorre de uma queda exponencial de ΔT no espaço de área, levando a expressões fechadas úteis para análise e projeto.
- U por correlações (ex.: Dittus–Boelter) conecta escoamento e propriedades a q via $UA \Delta T_{lm}$.
- Em mudança de fase, soluções analíticas simples emergem: $T_{c,2} = T_{sat} (T_{sat} T_{c,1})e^{-UA/C_c}$.
- Condensadores reais pedem seções sensível+latente com alocação de UA.

Referências

Incropera & DeWitt; Çengel & Ghajar; Kays & London (escoamentos internos); Notas do curso.