Übungen zur Einführung in die Geometrie und Topologie – Blatt 10

Uni Bonn, SS 2023

Aufgabe 37. Beweise oder widerlege für eine Gruppenoperation $\rho: G \times X \to X$ auf einem Hausdorff-Raum X, dass folgende Aussagen äquivalent sind:

- (a) ρ ist frei und proper;
- (b) Die Quotientenabbildung $X \to X/G$ ist eine Überlagerung.

Aufgabe 38. Sei $p: \overline{X} \to X$ eine Überlagerung mit einem wegweise zusammenhängenden und lokal wegweise zusammenhängenden Totalraum. Entscheide, welche der folgenden Aussagen äquivalent sind: (Begründe die Antwort.)

- (a) p ist ein Homöomorphismus.
- (b) Es gibt eine Abbildung $s: X \to \overline{X}$ mit $p \circ s = \mathrm{id}_X$.
- (c) Die Abbildung p induziert einen Isomorphismus $p_* \colon \pi_1(\overline{X}, \overline{x}) \to \pi_1(X, p(\overline{x}))$ für jeden Punkt $\overline{x} \in \overline{X}$.
- (d) Die Abbildung p induziert einen Isomorphismus $p_* \colon \pi_1(\overline{X}, \overline{x}) \to \pi_1(X, p(\overline{x}))$ für einen Punkt $\overline{x} \in \overline{X}$.
- (e) Die Gruppen $\pi_1(\overline{X}, \overline{x})$ und $\pi_1(X, p(\overline{x}))$ sind isomorph für einen Punkt $\overline{x} \in \overline{X}$.
- (f) Die Gruppen $\pi_1(\overline{X}, \overline{x})$ und $\pi_1(X, p(\overline{x}))$ sind isomorph für jeden Punkt $\overline{x} \in \overline{X}$.

Aufgabe 39. Sei $t \in \mathbb{R}$. Sei ρ die \mathbb{Z} -Operation auf S^1 , die durch den Selbsthomöomorphismus $S^1 \xrightarrow{\cong} S^1$, $z \mapsto z \cdot \exp(2\pi i t)$ gegeben ist. Entscheide, für welche t diese Operation ρ frei und proper ist. (Begründe die Antwort.)

Aufgabe 40. Beweise oder widerlege die folgenden Aussagen:

- (a) Die universelle Überlagerung von $S^1 \vee S^2$ existiert;
- (b) Falls die universelle Überlagerung von $S^1 \vee S^2$ existiert, so ist ihr Totalraum kompakt.