

Data warehousing in the era of Big Data: Intro to Amazon Redshift

Shree Kenghe, Solution Architect, AWS

Agenda

- Introduction
- Benefits
- Use cases
- Getting started
- Q&A

AWS big data portfolio

Collect

AWS Import/Export

Amazon

Kinesis Firehose

Store

S3 .

Amazon RDS, Amazon Aurora

Amazon Glacier

Amazon CloudSearch

Amazon DynamoDB

Amazon Elasticsearch Service

Analyze

AWS Data Pipeline

Relational data warehouse

Massively parallel; petabyte scale

Fully managed

HDD and SSD platforms

\$1,000/TB/year; starts at \$0.25/hour

The Amazon Redshift view of data warehousing

Enterprise

10x cheaper

Easy to provision

Higher DBA productivity

Big data

10x faster

No programming

Easily leverage BI tools, Hadoop, machine learning, streaming

SaaS

Analysis inline with process flows

Pay as you go, grow as you need

Managed availability and disaster recovery

Forrester Wave™ Enterprise Data Warehouse Q4 '15

The Forrester Wave™ is copyrighted by Forrester Research, Inc. Forester and Forrester Wave™ are trademarks of Forrester Research, Inc. The Forrester Wave™ is a graphical representation of Forrester's call on a market and is plotted using a detailed spreadsheet with exposed scores, weightings, and comments. Forrester does not endorse any vendor, product, or service depicted in the Forrester Wave. Information is based on best available resources. Opinions reflect judgment at the time and are subject to change.

Selected Amazon Redshift customers

BEACHMINT.

Amazon Redshift architecture

Leader node

Simple SQL endpoint

Stores metadata

Optimizes query plan

Coordinates query execution

Compute nodes

Local columnar storage

Parallel/distributed execution of all queries, loads, backups, restores, resizes

Start at just \$0.25/hour, grow to 2 PB (compressed)

DC1: SSD; scale from 160 GB to 326 TB

DS2: HDD; scale from 2 TB to 2 PB

Amazon S3 / EMR / DynamoDB / SSH

Dramatically less I/O

Column storage

Data compression

Zone maps

Direct-attached storage

Large data block sizes

Table	Ī	Column		Encoding	
listing	1	listid	1	delta	
listing	-	sellerid		delta32k	
listing		eventid		delta32k	
listing	1	dateid	1	bytedict	
listing		numtickets	1	bytedict	
listing	1	priceperticket	1	delta32k	
listing	1	totalprice		mostly32	
listing	1	listtime	1	raw	

Parallel and distributed

Query

Load

Export

Backup

Restore

Resize

Hardware optimized for I/O intensive workloads, 4 GB/sec/node

Enhanced networking, over 1 million packets/sec/node

Choice of storage type, instance size

Regular cadence of auto-patched improvements

New Dense Storage (HDD) instance type (Jun 15)

Improved memory 2x, compute 2x, disk throughput 1.5x

Cost: Same as our prior generation!

Performance improvement: 50%

Enhanced I/O and commit improvements (Jan 16)
Reduce amount of time to commit data
Throughput performance improvement: 35%

Improved memory allocation for query processing (May 16)
Increased overall throughput by up to 60%

Benefit #2: Amazon Redshift is inexpensive

DS2 (HDD)	Price per hour for DS2.XL single node	Effective annual price per TB compressed
On-demand	\$ 0.850	\$ 3,725
1 year reservation	\$ 0.500	\$ 2,190
3 year reservation	\$ 0.228	\$ 999

DC1 (SSD)	Price per hour for DC1.L single node	Effective annual price per TB compressed
On-demand	\$ 0.250	\$ 13,690
1 year reservation	\$ 0.161	\$ 8,795
3 year reservation	\$ 0.100	\$ 5,500

Pricing is simple
Number of nodes x price/hour
No charge for leader node
No upfront costs
Pay as you go

Benefit #3: Amazon Redshift is fully managed

Continuous/incremental backups

Multiple copies within cluster

Continuous and incremental backups to Amazon S3

Continuous and incremental backups across regions

Streaming restore

Benefit #3: Amazon Redshift is fully managed

Fault tolerance

Disk failures

Node failures

Network failures

Availability Zone/region level disasters

Benefit #4: Security is built-in

- Load encrypted from S3
- SSL to secure data in transit
 - ECDHE perfect forward security
- Amazon VPC for network isolation
- Encryption to secure data at rest
 - All blocks on disks and in S3 encrypted
 - Block key, cluster key, master key (AES-256)
 - On-premises HSM & AWS CloudHSM support
- Audit logging and AWS CloudTrail integration
- SOC 1/2/3, PCI-DSS, FedRAMP, BAA

Benefit #5: We innovate quickly

Well over 125 new features added since launch Release every two weeks

HyperLogLog: analysis of a near-optimal cardinality algorithm

Approximate functions

User defined functions

Machine learning

Data science

Benefit #7: Amazon Redshift has a large ecosystem

Benefit #8: Service oriented architecture

Use cases

NTT Docomo: Japan's largest mobile service provider

döcomo

68 million customers

Tens of TBs per day of data across a mobile network

6 PB of total data (uncompressed)

Data science for marketing operations, logistics, and so on

Greenplum on-premises

Scaling challenges

Performance issues

Need same level of security

Need for a hybrid environment

NTT Docomo: Japan's largest mobile service provider döcomo

125 node DS2.8XL cluster 4,500 vCPUs, 30 TB RAM 2 PB compressed

10x faster analytic queries 50% reduction in time for new BI application deployment Significantly less operations overhead

Nasdaq: powering 100 marketplaces in 50 countries

Orders, quotes, trade executions, market "tick" data from 7 exchanges 7 billion rows/day

Analyze market share, client activity, surveillance, billing, and so on

Microsoft SQL Server on-premises

Expensive legacy DW (\$1.16 M/yr.)

Limited capacity (1 yr. of data online)

Needed lower TCO

Must satisfy multiple security
and regulatory requirements

Similar performance

Nasdaq: powering 100 marketplaces in 50 countries

23 node DS2.8XL cluster 828 vCPUs, 5 TB RAM 368 TB compressed 2.7 T rows, 900 B derived 8 tables with 100 B rows

7 man-month migration 1/4 the cost, 2x storage, room to grow

Faster performance, very secure

Getting started

Provisioning

Enter cluster details

NODE CONFIGURATION

ADDITIONAL CONFIGURATION

REVIEW

Provide the details of your cluster. Fields marked with * are required.

Cluster Identifier*	pptest	This is the unique key that identifies a cluster. This parameter is stored as a lowercase string. (e.g. my-dw-instance)
Database Name	webinardb	Optional. A default database named dev is created for the cluster. Optionally, specify a custom database name (e.g. mydb) to create an additional database.
Database Port*	5439	Port number on which the database accepts connections.
Master User Name*	pavanpo	Name of master user for your cluster. (e.g. awsuser)
Master User Password*	•••••	Password must contain 8 to 64 printable ASCII characters excluding: /, ", ', and @. It must contain 1 uppercase letter, 1 lowercase letter, and 1 number.
Confirm Password*	•••••	Confirm Master User Password.

Cancel

Continue

Select node configuration

Cancel

Previous

Continue

Select security settings and provision

Cluster pptest is being created.
Note: Your cluster may take a few minutes to launch.

View your cluster on the Clusters dashboard.

Point-and-click resize

Resize

- Resize while remaining online
- Provision a new cluster in the background
- Copy data in parallel from node to node
- Only charged for source cluster

Data modeling

Souters

Zone maps

SELECT COUNT(*) FROM LOGS WHERE DATE = '09-JUNE-2013'

Unsorted table

MIN: 01-JUNE-2013 MAX: 20-JUNE-2013

MIN: 08-JUNE-2013 MAX: 30-JUNE-2013

MIN: 12-JUNE-2013 MAX: 20-JUNE-2013

MIN: 02-JUNE-2013 MAX: 25-JUNE-2013

Sorted by date

MIN: 01-JUNE-2013 MAX: 06-JUNE-2013

MIN: 07-JUNE-2013 MAX: 12-JUNE-2013

MIN: 13-JUNE-2013 MAX: 18-JUNE-2013

MIN: 19-JUNE-2013 MAX: 24-JUNE-2013

Soutens

- Single column
- Compound
- Interleaved

SOUTENS

Single Column

[SORTKEY (date)]

Date	Region	Country
2-JUN-2015	Oceania	New Zealand
2-JUN-2015	Asia	Singapore
2-JUN-2015	Africa	Zaire
2-JUN-2015	Asia	Hong Kong
3-JUN-2015	Europe	Germany
3-JUN-2015	Asia	Korea

- Best for:
 - Queries that use 1st column (i.e. date) as primary filter
 - Can speed up joins and group bys
 - Quickest to VACUUM

Southers

Compound

Table is sorted by 1st column, then 2nd column etc.

[SORTKEY COMPOUND (date, region, country)]

Date	Region	Country
2-JUN-2015	Africa	Zaire
2-JUN-2015	Asia	Korea
2-JUN-2015	Asia	Singapore
2-JUN-2015	Europe	Germany
3-JUN-2015	Asia	Hong Kong
3-JUN-2015	Asia	Korea

- Best for:
 - Queries that use 1st column as primary filter, then other cols
 - Can speed up joins and group bys
 - Slower to VACUUM

Interleaved

Equal weight is given to each column.

[SORTKEY INTERLEAVED (date, region, country)]

Date	Region	Country
2-JUN-2015	Africa	Zaire
3-JUN-2015	Asia	Singapore
2-JUN-2015	Asia	Korea
2-JUN-2015	Europe	Germany
3-JUN-2015	Asia	Hong Kong
2-JUN-2015	Asia	Korea

- Best for:
 - Queries that use different columns in filter
 - Queries get faster the more columns used in the filter
 - Slowest to VACUUM

- EVEN
- KEY
- ALL

Gender ID Name M John Smith 101 F 292 Jane Jones M Peter Black 139 446 M Pat Partridge 658 F Sarah Cyan M Brian Snail 164 M James White 209 F Lisa Green 306

ID	Gender	Name
101	М	John Smith
306	F	Lisa Green

ID	Gender	Name
292	F	Jane Jones
209	М	James White

ID	Gender	Name
139	М	Peter Black
164	М	Brian Snail

ID	Gender	Name
446	М	Pat Partridge
658	F	Sarah Cyan

Gender Name John Smith 101 M 292 F Jane Jones Peter Black 139 M Pat Partridge 446 M 658 F Sarah Cyan 164 Brian Snail M 209 James White M 306 F Lisa Green

ID	Gender	Name
101	М	John Smith
306	F	Lisa Green

2

KEY

ID	Gender	Name
292	F	Jane Jones
209	М	James White

3

D	Gender	Name
139	М	Peter Black
164	М	Brian Snail

ID	Gender	Name
446	М	Pat Partridge
658	F	Sarah Cyan

Gender Name ID John Smith 101 M F Jane Jones 292 Peter Black 139 M Pat Partridge 446 M F 658 Sarah Cyan Brian Snail M 164 James White 209 M F Lisa Green 306

ID	Gender	Name
101	М	John Smith
139	М	Peter Black
446	М	Pat Partridge
164	М	Brian Snail
209	М	James White

ID	Gender	Name
292	F	Jane Jones
658	F	Sarah Cyan
306	F	Lisa Green

4

Gender ID Name M John Smith 101 F Jane Jones 292 M Peter Black 139 M Pat Partridge 446 F Sarah Cyan 658 Brian Snail 164 M James White 209 M F Lisa Green 306

101	м	John Smith
292	P	Jame Jones
139	М	Peter Black
446	М	Pat Partridge
658	P	Sarah Oyan
164	М	Brian Small
209	М	Lisa Green
306	P	James White

101	М	John Smith	
292	r	Jane Jones	
139	М	Peter Black	
446	М	Pat Partridge	
658	P	Sarah Oyan	
164	М	Brian Small	
209	М	Lisa Green	
306		James White	

- EVEN
 - Tables with no joins or group by
- KEY
 - Large Fact tables
 - Large dimension tables
- ALL
 - Medium dimension tables (1K 2M)
 - Small dimension tables

Loading data

Data loading options

Data loading options

Data loading options

Use multiple input files to maximize throughput

Use the COPY command

Each slice can load one file at a time

A single input file means only one slice is ingesting data

Instead of 100MB/s, you're only getting 6.25MB/s

Use multiple input files to maximize throughput

Use the COPY command

You need at least as many input files as you have slices

With 16 input files, all slices are working so you maximize throughput

Get 100MB/s per node; scale linearly as you add nodes

Querying

Amazon Redshift works with your existing BI tools

View explain plans


```
select
    lo orderkey.
    p name,
    c name.
    s address.
    lo quantity
    lineorder lo.
    part p,
    supplier s,
    customer c.
    dwdate d
    lo custkev = c custkev
            lo partkey = p partkey
    and
            lo suppkey = s suppkey
            lo_orderdate = d_datekey
            d sellingseason = 'Summer'
    and
```

Monitor query performance

Resources

Detail Pages

- http://aws.amazon.com/redshift
- https://aws.amazon.com/marketplace/redshift/
- Amazon Redshift Utilities GitHub

Best Practices

- http://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-bestpractices.html
- http://docs.aws.amazon.com/redshift/latest/dg/c_designing-tables-bestpractices.html
- http://docs.aws.amazon.com/redshift/latest/dg/c-optimizing-queryperformance.html

Thank you!