TD 15 - Convergence d'intégrales

Déterminer la nature des intégrales suivantes :

Les fonctions que l'on intègre sont continues sur l'intervalle ouvert d'intégration, elles sont donc localement intégrables.

$$\mathbf{1.}\,I = \int_0^1 \frac{\ln(1+x)}{x} \mathrm{d}x$$

en 0: $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$, la fonction intégrée se prolongeant par continuité en 0, l'intégrale converge.

$$2. J = \int_0^{+\infty} \frac{\operatorname{Arctan} x}{x^{\frac{3}{2}}} dx$$

La fonction que l'on intègre est positive sur $]0; +\infty[$.

$$\underline{\text{en }0:}\ \frac{\text{Arctan}x}{x^{\frac{3}{2}}} \sim x^{\frac{-1}{2}}; \text{ par comparaison à une intégrale usuelle, } \int_0^1 \frac{\text{Arctan}x}{x^{\frac{3}{2}}} \mathrm{d}x \text{ converge.}$$

 $\underline{\text{en} + \infty:}_{\text{converge.}} \ \forall x > 0, 0 \leq \frac{\text{Arctan} x}{x^{\frac{3}{2}}} \leq \frac{\pi}{2x^{\frac{3}{2}}}; \ \text{par comparaison à une intégrale usuelle, } \int_{1}^{+\infty} \frac{\text{Arctan} x}{x^{\frac{3}{2}}} \mathrm{d}x$

En conclusion, l'intégrale J converge.

3.
$$K = \int_0^1 \frac{\mathrm{d}x}{\mathrm{e}^x - 1}$$

La fonction que l'on intègre est positive sur [0; 1].

<u>en 0</u>: $\frac{1}{e^x-1} \sim \frac{1}{e^x}$; par comparaison à une intégrale usuelle, l'intégrale diverge.

4.
$$L = \int_{1}^{+\infty} \frac{\mathrm{d}x}{\mathrm{e}^{x} - 1}$$

La fonction que l'on intègre est positive sur $[1; +\infty[$.

 $\underline{\text{en } +\infty}: \frac{1}{\underline{\text{e}^x-1}} \underset{+\infty}{\sim} \underline{\text{e}^{-x}};$ par comparaison à une intégrale usuelle, l'intégrale converge.

$$5. M = \int_0^1 \frac{\mathrm{d}x}{\sin x}$$

La fonction que l'on intègre est positive sur]0;1].

en 0 : $\frac{1}{\sin x} \sim \frac{1}{x}$; par comparaison à une intégrale usuelle, l'intégrale diverge.

6.
$$N = \int_0^1 \sin \frac{1}{x} dx$$

 $\underline{\text{en }0:} \ \left| \sin \left(\frac{1}{x} \right) \right| \le 1$; par majoration, la fonction est intégrable sur]0;1] et l'intégrale converge.

7.
$$A = \int_0^{+\infty} x e^{-x} \ln x \, dx$$

en 0: $\lim_{x\to 0} x e^{-x} \ln x = 0$ (croissances comparées); la fonction se prolongeant par continuité en 0, $\int_0^1 x e^{-x} \ln x \, dx$ converge.

 $\underline{\text{en } + \infty} : \lim_{x \to +\infty} x^3 \text{e}^{-x} \ln x = 0$ (croissances comparées), donc $x \text{e}^{-x} \ln x = o_{+\infty} \left(\frac{1}{x^2}\right)$; par comparaison à une intégrale usuelle, $\int_1^{+\infty} x \text{e}^{-x} \ln x \, dx$ converge.

En conclusion l'intégrale A converge.

8.
$$P = \int_{1}^{+\infty} \frac{\ln x}{x} dx$$

La fonction que l'on intègre est positive sur $[1; +\infty[$.

 $\underline{\mathrm{en}\,+\infty:}\,\mathrm{Pour}\;x>\mathrm{e}, \frac{\mathrm{ln}x}{x}\geq\frac{1}{x}\,;\,\mathrm{par}\;\mathrm{comparaison}\;\mathrm{\grave{a}}\;\mathrm{une}\;\mathrm{int\acute{e}grale}\;\mathrm{usuelle},\,\mathrm{l'int\acute{e}grale}\;\mathrm{diverge}.$

9.
$$Q = \int_0^1 \frac{\ln x}{x} dx$$

Pour $\varepsilon \in]0;1]$, on a : $\int_{\varepsilon}^{1} \frac{\ln x}{x} dx = \left[\frac{1}{2}(\ln x)^{2}\right]_{\varepsilon}^{1} = -\frac{1}{2}(\ln(\varepsilon))^{2} \underset{\varepsilon \to 0}{\to} -\infty$; l'intégrale diverge.

10.
$$R = \int_0^1 \frac{\ln(x)}{\sqrt{x}} dx$$

Sur [0; 1] la fonction que l'on intègre est de signe constant.

 $\underline{\text{en }0:} \lim_{x\to 0}\frac{x^{\frac{3}{4}} \ln x}{\sqrt{x}} = \lim_{x\to 0}x^{\frac{1}{4}} \ln x = 0 \text{ (croissances comparées) donc } \frac{\ln x}{\sqrt{x}} = o_{x\to 0}\left(\frac{1}{x^{\frac{3}{4}}}\right); \text{ par comparaison a une intégrale usuelle, l'intégrale converge.}$

$$\mathbf{11.}\,S = \int_0^{+\infty} \ln x \,\mathrm{e}^{-x} \mathrm{d}x$$

en 0 : Sur [0; 1] la fonction intégrée est de signe constant.

 $\lim_{x\to 0} \sqrt{x} \ln x e^{-x} = 0 \text{ (croissances comparées) donc } \ln x e^{-x} = o_{x\to 0} \left(\frac{1}{\sqrt{x}}\right); \text{ par comparaison à une intégrale usuelle, } \int_0^1 \ln x e^{-x} dx \text{ converge.}$

 $\underline{\mathrm{en}\,+\infty}$: Sur $[1;+\infty[$ la fonction intégrée est de signe constant.

 $\lim_{x \to +\infty} x^2 \ln x e^{-x} = 0 \text{ (croissances comparées) donc } \ln x e^{-x} = o_{x \to +\infty} \left(\frac{1}{x^2}\right); \text{ par comparaison à une intégrale usuelle, } \int_{1}^{+\infty} \ln x e^{-x} dx \text{ converge.}$

En conclusion, l'intégrale S converge.

12.
$$T = \int_0^{+\infty} \frac{\ln(x)}{1+x^3} dx$$

 $\underline{\text{en }0}$: Sur]0;1] la fonction intégrée est de signe constant.

$$\overline{\lim_{x\to 0}} \sqrt{x} \frac{\ln x}{1+x^3} = 0 \text{ (croissances comparées) donc } \frac{\ln x}{1+x^3} = o_{x\to 0} \left(\frac{1}{\sqrt{x}}\right); \text{ par comparaison à une intégrale usuelle, } \int_0^1 \frac{\ln(x)}{1+x^3} dx \text{ converge.}$$

 $\underline{\mathrm{en}\,+\infty}$: Sur $[1;+\infty[$ la fonction intégrée est de signe constant.

$$\frac{1}{\lim_{x \to +\infty} x^2} \frac{\ln x}{1+x^3} = 0 \text{ (croissances comparées) donc } \frac{\ln x}{1+x^3} = o_{x \to +\infty} \left(\frac{1}{x^2}\right); \text{ par comparaison à une intégrale usuelle, } \int_{1}^{+\infty} \frac{\ln(x)}{1+x^3} dx \text{ converge.}$$

En conclusion, l'intégrale T converge.

13.
$$U = \int_0^1 \frac{\mathrm{d}x}{1 - \sqrt{x}}$$

La fonction que l'on intègre est positive sur [0; 1].

$$\underline{\text{en 1}:}\ \frac{1}{1-\sqrt{x}}=\frac{1+\sqrt{x}}{1-x}\underset{1}{\sim}\frac{2}{1-x}\,;\,\text{pour }a\in[0;1[,\int_{0}^{a}\frac{\mathrm{d}x}{1-x}=-\ln(1-a)\underset{a\rightarrow 1}{\rightarrow}+\infty.$$

Ainsi $\int_0^1 \frac{2}{1-x} dx$ diverge, donc, par comparaison, l'intégrale U diverge.

14.
$$V = \int_0^{+\infty} \frac{\sqrt{x}}{e^x - \cos x} dx$$

La fonction que l'on intègre est positive sur $]0; +\infty[$.

$$\underline{\text{en }0:}\ \frac{\sqrt{x}}{\mathrm{e}^x-\cos x} \overset{\sim}{\sim} \frac{1}{\sqrt{x}}; \text{ par comparaison à une intégrale usuelle, } \int_0^1 \frac{\sqrt{x}}{\mathrm{e}^x-\cos x} \mathrm{d}x \text{ converge.}$$

$$\underline{\text{en } +\infty} : \lim_{x \to +\infty} x^2 \frac{\sqrt{x}}{\text{e}^x - \cos x} = 0 \text{ (croissances comparées) donc } \frac{\sqrt{x}}{\text{e}^x - \cos x} = o_{x \to +\infty} \left(\frac{1}{x^2}\right); \text{ par comparées)}$$

paraison à une intégrale usuelle, $\int_1^{+\infty} \frac{\sqrt{x}}{e^x - \cos x} dx$ converge.

En conclusion, l'intégrale V converge

15.
$$W = \int_0^{+\infty} \sin \frac{1}{x^2} dx$$

$$\underline{\text{en }0:} \ \forall x>0, \left|\sin\frac{1}{x^2}\right|\leq 1 \ \text{donc} \ \forall t\in]0;1], \int_t^1\left|\sin\frac{1}{x^2}\right| \mathrm{d}x\leq 1; \ \text{par majoration, la fonction est intégrable sur }]0;1] \ \text{et} \ \int_0^1\sin\frac{1}{x^2}\mathrm{d}x \ \text{converge.}$$

 $\underline{\text{en } + \infty}$: Pour x suffisamment grand, $\sin \frac{1}{x^2}$ est positif, et $\sin \frac{1}{x^2} \sim \frac{1}{x^2}$; par comparaison à une intégrale usuelle, $\int_{1}^{+\infty} \sin \frac{1}{x^2} dx$ converge.

En conclusion, l'intégrale W converge.

16.
$$X = \int_0^1 \frac{\mathrm{d}x}{x \ln x}$$

Pour $0 < \varepsilon \le a < 1$, $\int_{\varepsilon}^{a} \frac{\mathrm{d}x}{x \ln x} = [\ln|\ln x|]_{\varepsilon}^{a}$; $\lim_{\varepsilon \to 0} \ln|\ln \varepsilon| = +\infty$: l'intégrale diverge.

17.
$$Y = \int_2^{+\infty} \frac{\mathrm{d}x}{x \ln x}$$

Pour $2 \le M$, $\int_2^M \frac{\mathrm{d}x}{x \ln x} = [\ln|\ln x|]_2^M$; $\lim_{M \to +\infty} \ln|\ln M| = +\infty$: l'intégrale diverge.

18.
$$Z = \int_{\frac{2}{\pi}}^{+\infty} \ln\left(\cos\frac{1}{x}\right) \mathrm{d}x$$

La fonction que l'on intègre est de signe constant sur $\left[\frac{2}{\pi};+\infty\right[$.

 $\underline{\mathrm{en}\,+\infty}:\,\ln\left(\cos\frac{1}{x}\right)\underset{+\infty}{\sim}\frac{-1}{2x^2}\,;\,\mathrm{par}\;\mathrm{comparaison}\;\mathrm{\grave{a}}\;\mathrm{une}\;\mathrm{int\acute{e}grale}\;\mathrm{usuelle},\\ \int_{1}^{+\infty}\ln\left(\cos\frac{1}{x}\right)\mathrm{d}x\;\mathrm{converge}.$

$$\underline{\mathrm{en}\ \frac{2}{\pi}:}\ \cos\frac{1}{x}=\sin\left(\frac{\pi}{2}-\frac{1}{x}\right),\,\mathrm{on}\ \mathrm{a}\ \mathrm{donc}\ \ln\left(\cos\frac{1}{x}\right)\underset{\frac{2}{\pi}}{\sim}\ln\left(\frac{\pi}{2}-\frac{1}{x}\right).$$

En posant
$$x = \frac{2}{\pi} + u$$
, on a : $\frac{\pi}{2} - \frac{1}{x} = \frac{\pi}{2} - \frac{1}{\frac{2}{\pi} + u} \sim \frac{\pi^2}{4} u$.

La fonction ln est intégrable au voisinage de 0, donc par comparaison, en appliquant le théorème de changement de variable on en déduit que $\int_{\frac{2}{\pi}}^{1} \ln \left(\cos \frac{1}{x} \right) dx$ converge.

En conclusion, l'intégrale Z converge.