11.0 Spoken Document Understanding and Organization for User-content Interaction

- **References**: 1. "Spoken Document Understanding and Organization", IEEE Signal Processing Magazine, Sept. 2005, Special Issue on Speech Technology in Human-Machine Communication
 - 2. "Multi-layered Summarization of Spoken Document Archives by Information Extraction and Semantic Structuring", Interspeech 2006, Pittsburg, USA

User-Content Interaction for Spoken Content Retrieval

Problems

- Unlike text content, spoken content not easily summarized on screen, thus retrieved results difficult to scan and select
- User-content interaction always important even for text content

Possible Approaches

- Automatic summary/title generation and key term extraction for spoken content
- Semantic structuring for spoken content
- Multi-modal dialogue with improved interaction

Multi-media/Spoken Document Understanding and Organization

- Key Term/Named Entity Extraction from Multi-media/Spoken Documents
 - personal names, organization names, location names, event names
 - key phrase/keywords in the documents
 - very often out-of-vocabulary (OOV) words, difficult for recognition
- Multi-media/Spoken Document Segmentation
 - automatically segmenting a multi-media/spoken document into short paragraphs, each with a central topic
- Information Extraction for Multi-media/Spoken Documents
 - extraction of key information such as who, when, where, what and how for the information described by multi-media/spoken documents.
 - very often the relationships among the key terms/named entities
- Summarization for Multi-media/Spoken Documents
 - automatically generating a summary (in text or speech form) for each short paragraph
- Title Generation for Multi-media/Spoken Documents
 - automatically generating a title (in text or speech form) for each short paragraph
 - very concise summary indicating the topic area
- Topic Analysis and Organization for Multi-media/Spoken Documents
 - analyzing the subject topics for the short paragraphs
 - clustering and organizing the subject topics of the short paragraphs, giving the relationships among them for easier access

Integration Relationships among the Involved Technology Areas

Key Term Extraction from Spoken Content (1/2)

- Key Terms: key phrases and keywords
- Key Phrase Boundary Detection
- An Example

- "hidden" almost always followed by the same word
- "hidden Markov" almost always followed by the same word
- "hidden Markov model" is followed by many different words
- Left/right boundary of a key phrase detected by context statistics

Key Term Extraction from Spoken Content (2/2)

- Prosodic Features
 - key terms probably produced with longer duration, wider pitch range and higher energy
- Semantic Features (e.g. PLSA)
 - key terms usually focused on smaller number of topics

- Lexical Features
 - TF/IDF, POS tag, etc.

Extractive Summarization of Spoken Documents

summary of document d:

- Selecting most representative utterances
 Wroniglytheogniged all of ocument but avoiding redundancy
- Scoring sentences based on prosodic, semantic, lexical features and confidence measures, etc.
- Based on a given summarization ratio

Title Generation for Spoken Documents

- Titles for retrieved documents/segments helpful in browsing and selection of retrieved results
- Short, readable, telling what the document/segment is about
- One example: Scored Viterbi Search

Semantic Structuring (1/2)

- Example 1: retrieved results clustered by Latent Topics and organized in a two-dimensional tree structure (multi-layered map)
 - each cluster labeled by a set of key terms representing a group of retrieved documents/segments
 - each cluster expanded into a map in the next layer

Semantic Structuring (2/2)

Example 2: Key-term Graph

- each retrieved spoken document/segment labeled by a set of key terms
- relationships between key terms represented by a graph

Multi-modal Dialogue

• An example: user-system interaction modeled as a Markov Decision Process (MDP)

Example goals

- small average number of dialogue turns (average number of user actions taken) for successful tasks (success: user's information need satisfied)
- less effort for user, better retrieval quality

Spoken Document Summarization

Why summarization?

Huge quantities of information

Spoken content difficult to be shown on the screen and difficult to

browse

News articles

Social Media

Spoken Document Summarization

More difficult than text summarization

- Recognition errors, Disfluency, etc.

Extra information not in text

- Prosody, speaker identity, emotion, etc.

Unsupervised Approach: Maximum Margin Relevance (MMR)

Select relevant and non-redundant sentences

$$MMR(x_i) = Rel(x_i) - \lambda Red(x_i, S)$$

Relevance : $Rel(x_i) = Sim(x_i, d)$

Redundancy : $Red(x_i, S) = Sim(x_i, S)$

Sim (x_i, \bullet) : Similarity measure

Supervised Approach: SVM or Similar

Trained with documents with human labeled summaries Binary classification problem: $x_i \in S$, or $x_i \notin S$ **Training data** $v(x_i)$: Feature d_N: document S_N : Summary vector of x_i Human d₂: document S₂: Summary labeled Binary **Feature** d₁: document S₁: Summary Classification Extraction $S_1, S_2....$ $(x_1, x_2....$ model s_i : selected x_m : utterance utterance **Training phase Testing phase** $V(\widehat{x_i})$: Feature **Testing data** vector of $\hat{x_i}$ $\widehat{d_N}$: document Ranked utterances Binary $\widehat{\chi_1}, \widehat{\chi_2}$ Feature Classification $\widehat{x_m}$: utterance Extraction model **ASR System**

Domain Adaptation of Supervised Approach

Problem

- Hard to get high quality training data
- In most cases, we have labeled out-of-domain references but not labeled target domain references

Goal

Taking advantage of out-of-domain data

Domain Adaptation of Supervised Approach

• $Model_0$ trined by out-of-domain data, used to obtain $summary_0$ for target domain

Domain Adaptation of Supervised Approach

• $Model_0$ trined by out-of-domain data, used to obtain $summary_0$ for target domain

• summary₀ together with out-of-domain data jointly used to train Model₁

Document Summarization

- Extractive Summarization
 - select **sentences** in the document
- Abstractive Summarization
 - Generate sentences describing the content of the document

Document Summarization

Extractive Summarization

- select **sentences** in the document

Abstractive Summarization

- Generate sentences describing the content of the document

Abstractive Summarization (1/4)

An Example Approach

- (1) Generating candidate sentences by a graph
- (2) Selecting sentences by topic models, language models of words, parts-of-speech(POS), length constraint, etc.

Abstractive Summarization (2/4)

 1) Generating Candidate sentences <u>Graph construction</u> + search on graph

Node: "word" in the sentence

Edge: word ordering in the sentence

□X1:這個飯店房間算舒適.

□X2: 這個 飯店 的 房間 很 舒適 但 離 市中心 太遠 不方便

■ X3: 飯店 挺 漂亮 但 房間 很 舊

■ X4:離 市中心 遠

Abstractive Summarization (3/4)

 1) Generating Candidate sentences Graph construction + search on graph

□X1: 這個 飯店 房間 算 舒適

□X2: 這個 飯店 的 房間 很 舒適 但 離 市中心 太遠 不方便

■ X3: 飯店 挺 漂亮 但 房間 很 舊

■ X4:離市中心遠

Abstractive Summarization (3/4)

- 1) Generating Candidate sentences Graph construction
 - + search on graph

□X1:這個 飯店 房間 算 舒適

□ X2: 這個 飯店 的 房間 很 舒適 但 離 市中心 太遠 不方便

□ X3: 飯店 挺 漂亮 但 房間 很 舊

■ X4:離 市中心 遠

Abstractive Summarization (3/4)

 1) Generating Candidate sentences <u>Graph construction</u> + search on graph

■X1: <u>這個</u> 飯店 房間 算 舒適

□ X2: 這個 飯店 的 房間 很 舒適 但 離 市中心 太遠 不方便

■ X3: 飯店 挺 漂亮 但 房間 很 舊

I X4:離市中心遠 這個 飯店 房間 第一 下中心 深亮 不方便 遂

Abstractive Summarization (4/4)

1) Generate Candidate sentences Graph construction +

search on graph

- Search : find Valid path on graph
- Valid path: path from start node to end node
- e.g. 飯店房間很舒適但離市中心遠

■ X1:這個 飯店 房間 算 舒適

■ X2: 這個 飯店 的 房間 很 舒適 但 離 市中心 太遠 不方便

X3:飯店挺漂亮但房間很舊

1 X4:離 市中心 遠

Abstractive Summarization (4/4)

- 1) Generating Candidate sentences Graph construction
 - + search on graph
 - Search : find Valid path on graph
 - Valid path : path from start node to end node

■ X1: 這個 飯店 房間 算 舒適

□ X2: 這個 飯店 的 房間 很 舒適 但 離 市中心 太遠 不方便

X3:飯店挺漂亮但房間很舊

■ X4:離市中心遠

e.g. 飯店 房間 很 舒適 但 離 市中心 遠 飯店 挺 漂亮 但 房間 很舊

Sequence-to-Sequence Learning (1/3)

• Both input and output are sequences with different lengths.

- machine translation (machine learning→機器學習)
- summarization, title generation
- spoken dialogues
- speech recognition

Sequence-to-Sequence Learning (2/3)

• Both input and output are sequences with different lengths.

- machine translation (machine learning→機器學習)
- summarization, title generation
- spoken dialogues
- speech recognition

Sequence-to-Sequence Learning (3/3)

• Both input and output are sequences with different lengths.

- machine translation (machine learning→機器學習)
- summarization, title generation
- spoken dialogues
- speech recognition

End-to-end Deep Learning for Speech Recognition

- Jointly Learn the Sound (Acoustic Models), Vocabulary (Lexicon) and Sentence Structure (Language Model)
 - rather than trained separately with different criteria
- One example
- A 70-year-old person has heard roughly no more than 0.6 million of hrs of voice in his life
 - machines can be trained with more than this quantity of data in very short time

Multi-modal Interactive Dialogue

- Interactive dialogue: retrieval engine interacts with the user to find out more precisely his information need
 - User entering the query
 - When the retrieved results are divergent, the system may ask for more information rather than offering the results

Multi-modal Interactive Dialogue

- Interactive dialogue: retrieval engine interacts with the user to find out more precisely his information need
 - User entering the second query
 - when the retrieved results are still divergent, but seem to have a major trend, the system may use a key word representing the major trend asking for confirmation
 - User may reply: "Yes" or "No, Asia"

Markov Decision Process (MDP)

- A mathematical framework for decision making, defined by (S,A,T,R,π)
 - S: Set of states, current system status $\{s_1, s_2, s_3, s_4, s_4, s_5, s_6, s_7, s_8, s_8, s_9\}$

 - T: transition probabilities between states when a certain action is taken
 - R: reward received when taking an action $\{R_1,R_2,R_3,$
 - π : policy, choice of action given the state $\{\pi: s_i \to A_i\}$
- Objective: Find a policy that maximizes the expected total reward

Multi-modal Interactive Dialogue

Model as

<u>Markov</u>

<u>Decision</u>

<u>Process (MDP)</u>

- After a query entered, the system starts at a certain state
- States: retrieval result quality estimated as a continuous variable (e.g. MAP) plus the present dialogue turn
- Action: at each state, there is a set of actions which can be taken: asking for more information, returning a keyword or a document, or a list of keywords or documents asking for selecting one, or

showing results....

- User response corresponds to a certain negative reward (extra work for user)
- when the system decides to show to the user the retrieved results, it earns some positive reward (e.g. MAP improvement)
- Learn a policy maximizing rewards from historical user interactions($\pi\colon S_i \to A_j$)

Reinforcement Learning

• Example approach: Value Iteration

- Define value function: $Q^{\pi}: S \times A \to \mathbb{R}$ $Q^{\pi}(s,a) = E\left[\sum_{k=0}^{\infty} \gamma^k r_k \middle| s_0 = s, a_0 = a\right]$ the expected discounted sum of rewards given π started from (s,a)
- The real value of Q can be estimated iteratively from a training set:

$$Q^*(s, a) = E_{s'|s,a}[R(s, a, s') + \gamma_{b \in A}^{max}Q^*(s', b)]$$

- $Q^*(s,a)$:estimated value function based on the training set
- Optimal policy is learned by choosing the best action given each state such that the value function is maximized

Question-Answering (QA) in Speech

- Question, Answer, Knowledge Source can all be in text form or in Speech
- Spoken Question Answering becomes important
 - spoken questions and answers are attractive
 - the availability of large number of on-line courses and shared videos today makes spoken answers by distinguished instructors or speakers more feasible, etc.
- Text Knowledge Source is always important

Three Types of QA

Factoid QA:

- What is the name of the largest city of Taiwan? Ans: Taipei.

• Definitional QA:

– What is QA?

Complex Question:

– How to construct a QA system?

Factoid QA

Question Processing

- Query Formulation: transform the question into a query for retrieval
- Answer Type Detection (city name, number, time, etc.)

Passage Retrieval

Document Retrieval, Passage Retrieval

Answer Processing

Find and rank candidate answers

Factoid QA – Question Processing

Query Formulation: Choose key terms from the question

- Ex: What is the name of the largest city of Taiwan?
- "Taiwan", "largest city" are key terms and used as query

Answer Type Detection

- "city name" for example
- Large number of hierarchical classes hand-crafted or automatically learned

An Example Factoid QA

 Watson: a QA system develop by IBM (text-based, no speech), who won "Jeopardy!"

Definitional QA

- Definitional QA \approx Query-focused summarization
- Use similar framework as Factoid QA
 - Question Processing
 - Passage Retrieval
 - Answer Processing is replaced by Summarization

Key terms

- "Automatic Key Term Extraction From Spoken Course Lectures Using Branching Entropy and Prosodic/Semantic Features", IEEE Workshop on Spoken Language Technology, Berkeley, California, U.S.A., Dec 2010, pp. 253-258.
- "Unsupervised Two-Stage Keyword Extraction from Spoken Documents by Topic Coherence and Support Vector Machine", International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, Mar 2012, pp. 5041-5044.

Title Generation

- "Automatic Title Generation for Spoken Documents with a Delicate Scored Viterbi Algorithm", 2nd IEEE Workshop on Spoken Language Technology, Goa, India, Dec 2008, pp. 165-168.
- "Abstractive Headline Generation for Spoken Content by Attentive Recurrent Neural Networks with ASR Error Modeling" IEEE Workshop on Spoken Language Technology (SLT), San Diego, California, USA, Dec 2016, pp. 151-157.

Summarization

- "Supervised Spoken Document Summarization Jointly Considering Utterance Importance and Redundancy by Structured Support Vector Machine", Interspeech, Portland, U.S.A., Sep 2012.
- "Unsupervised Domain Adaptation for Spoken Document Summarization with Structured Support Vector Machine", International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, May 2013.
- "Supervised Spoken Document Summarization Based on Structured Support Vector Machine with Utterance Clusters as Hidden Variables", Interspeech, Lyon, France, Aug 2013, pp. 2728-2732.
- "Semantic Analysis and Organization of Spoken Documents Based on Parameters Derived from Latent Topics", IEEE Transactions on Audio, Speech and Language Processing, Vol. 19, No. 7, Sep 2011, pp. 1875-1889.
- "Spoken Lecture Summarization by Random Walk over a Graph Constructed with Automatically Extracted Key Terms," InterSpeech 2011

Summarization

- "Speech-to-text and Speech-to-speech Summarization of Spontaneous Speech", IEEE Transactions on Speech and Audio Processing, Dec. 2004
- "The Use of MMR, diversity-based reranking for reordering document and producing summaries" SIGIR, 1998
- "Using Corpus and Knowledge-based Similarity Measure in Maximum Marginal Relevance for Meeting Summarization" ICASSP, 2008
- "Opinosis: A Graph-Based Approach to Abstractive Summarization of Highly Redundant Opinions", International Conference on Computational Linguistics, 2010

Interactive Retrieval

- "Interactive Spoken Content Retrieval by Extended Query Model and Continuous State Space Markov Decision Process", International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, May 2013.
- "Interactive Spoken Content Retrieval by Deep Reinforcement Learning", Interspeech, San Francisco, USA, Sept 2016.
- Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, The MIT Press, 1999.
- Partially observable Markov decision processes for spoken dialog systems, Jason D. Williams and Steve Young, Computer Speech and Language, 2007.

Question Answering

- Rosset, S., Galibert, O. and Lamel, L. (2011) Spoken Question
 Answering, in Spoken Language Understanding: Systems for
 Extracting Semantic Information from Speech
- Pere R. Comas, Jordi Turmo, and Lluís Màrquez. 2012. "Sibyl, a factoid question-answering system for spoken documents." ACM Trans. Inf. Syst. 30, 3, Article 19 (September 2012), 40
- "Towards Machine Comprehension of Spoken Content: Initial TOEFL Listening Comprehension Test by Machine", Interspeech, San Francisco, USA, Sept 2016, pp. 2731-2735.
- "Hierarchical Attention Model for Improved Comprehension of Spoken Content", IEEE Workshop on Spoken Language Technology (SLT), San Diego, California, USA, Dec 2016, pp. 234-238.

• Sequence-to-sequence Learning and End-to-end Speech Recognition

- "Sequence to Sequence Learning with Neural Networks", NIPS,
 2014
- "Listen, Attend and Spell: A Neural Network for Large Vocabulary Conversational Speech Recognition", ICASSP 2016
- Alex Graves, Santiago Fernandez, Faustino Gomez, and Jürgen Schmidhuber, "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks," in Proceedings of the 23rd international conference on Machine learning. ACM, 2006, pp. 369-376
- Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yoshua Bengio, "End-to-end attention-based large vocabulary speech recognition," in Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 4945-4949