VE216 Lecture 10

Feedback and Control

Structure of a Control Problem

- plant: the system to be controlled
- sensor: measures the output of plant
- controller: specify a command C to plant based on difference between X and S

Analysis of Wall Finder System

Controller: $v[n] = K(d_i[n] - d_s[n])$

Sensor with no delay: $d_s[n] = d_o[n]$

Locomotion: $d_0[n] = d_o[n-1] - Tv[n-1]$

So we get
$$rac{D_o}{D_i} = rac{-KTR}{1-(1+KT)R}$$

The single pole is z = 1 + kT

Pole Analysis

Analysis of Wall Finder System: Adding Sensor Delay

Controller: $v[n] = K(d_i[n] - d_s[n])$

Sensor with no delay: $d_s[n] = d_o[n-1]$

Locomotion: $d_0[n] = d_o[n-1] - Tv[n-1]$

Or we get

$$D_{i} \longrightarrow \bigoplus_{-} K \longrightarrow \boxed{\frac{\mathcal{R}}{1 - \mathcal{R}}} D_{i}$$

$$rac{D_o}{D_i}=rac{-KTR}{1-R-KTR^2}$$
 with the poles $z=rac{1}{2}\pm\sqrt{(rac{1}{2})^2+KT}$

Poles Analysis

- pole near 0 fast response
- pole near 1 slow response
- slow response, slow mode dominates the response.

When KT become negative, $z=rac{1}{2}$ with $KT=-rac{1}{4}$

- The system is stable.
- Persistent responses (from pole > 1) decay.

When $KT<-rac{1}{4}$, then the poles become complex.

- Oscillation.
- KT=-1 the period of oscillation is 6 since $p_0=e^{\pm j\pi/3}$.

Destabilizing Effect of Delay

z = 0 is the fastest response with 0 delay.

 $z = \frac{1}{2}$ is the fastest response with 1 delay.

 $\emph{z} = 0.682$ is the fastest response with 2 delay. Even slower.

Summary

- Stability of feedback system is determined by dominant pole.
- Delay tend to decrease the stability of the system.