

Exact Solution of Linear Equations Using P-Adic Expansions*

John D. Dixon

Department of Mathematics and Statistics, Carleton University, Ottawa K1S 5B6, Canada

Summary. A method is described for computing the exact rational solution to a regular system Ax = b of linear equations with integer coefficients. The method involves: (i) computing the inverse (mod p) of A for some prime p; (ii) using successive refinements to compute an integer vector \bar{x} such that $A\bar{x} \equiv b \pmod{p^m}$ for a suitably large integer m; and (iii) deducing the rational solution x from the p-adic approximation \bar{x} . For matrices A and b with entries of bounded size and dimensions $n \times n$ and $n \times 1$, this method can be implemented in time $O(n^3(\log n)^2)$ which is better than methods previously used.

Subject classifications: (MR 1980) AMS(MOS); 65F05, 15A06, 10M10, 10A30 CR: 5.14

Introduction

In some situations it is desirable to obtain the exact rational solution to a nonsingular system Ax=b of linear equations with integer coefficients; for example, in some number theory problems and in cases where the system is so ill-conditioned that the usual floating point calculations are inadequate. There are presently two approaches used to find such exact solutions: direct computation using multiprecision arithmetic and congruence techniques. To date the only form of the congruence technique which has appeared feasible is: (i) computation of $\det A$ and $(\operatorname{adj} A)b$ modulo p for a number of different moduli p (usually chosen prime); (ii) use of the Chinese Remainder Theorem to combine these results for a composite modulus; and (iii) application of the Hadamard inequality to $\det A$ and the entries of $(\operatorname{adj} A)b$ to deduce the required rational solution from the congruential values. The congruence method has the advantage that for suitable choice of the moduli most calculations are carried out in

^{*} This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (Grant No. A 7171)

J.D. Dixon

single precision, but on the other hand involves considerable redundancy. Which of the two methods is superior is not entirely clear (see [1] and the literature quoted there); but in either case for an $n \times n$ system in which all coefficients lie in a fixed range $[-\beta, \beta]$ the number of arithmetic operations between numbers the size of β grows at least as fast as n^4 .

In the present paper we describe another method, which is also congruential but based on a single prime modulus p and with time complexity $O(n^3(\log n)^2)$. Although p-adic methods have been proposed before (see [4]), they have not appeared practical. Our method is both theoretically attractive and efficient in practice.

Outline of the Method

Consider the system Ax = b where A is an $n \times n$ nonsingular integer matrix and b is an $n \times 1$ integer matrix. Let λ_i denote the (Euclidean) length of the ith column of A and λ_0 be the length of b. Then Hadamard's determinant inequality shows that $|\det A| \leq \prod_{i=1}^n \lambda_i$. If we define $\delta = \prod' \lambda_i$ where the product is over the n largest of $\lambda_0, \ldots, \lambda_n$ then Cramer's rule shows that the rational entries in the solution x to Ax = b have their numerators and denominators all bounded in absolute value by δ . Now let β be a bound on the absolute values of the entries of A and b. Then certainly $\delta \leq \beta^n n^{n/2}$. We shall suppose that p is a prime such that $p \leq \beta$ and $p \not \downarrow \det A$. In what follows we shall measure the time taken by our algorithm in terms of the number of arithmetic operations between integers of size up to β .

The first step in the solution of Ax = b is to compute an inverse (mod p) to A. In other words we find an $n \times n$ integer matrix C whose entries lie in the range [0, p-1] and such that $AC \equiv I(\text{mod } p)$. Using classical methods C can be computed in $O(n^3)$ operations (where an operation is defined to mean an integer arithmetic operation between numbers of magnitude β).

The second step is to compute a p-adic approximation \bar{x} to x. This is done as follows. Consider the two sequences of integer column vectors $\{x_i\}$, $\{b_i\}$ (where all entries of x_i lie in [0, p-1]) defined by: $b_0 = b$; and $x_i \equiv Cb_i \pmod{p}$, $b_{i+1} = p^{-1}(b_i - Ax_i)$ for $i \geq 0$. Note that $b_i - Ax_i \equiv A(Cb_i - x_i) \equiv 0 \pmod{p}$, so the entries of b_{i+1} are integers. Also, since all entries of x_i lie in [0, p-1], simple induction shows all entries of b_i lie in $[-n\beta, n\beta]$. The entries of b_i are integer of length $O(\log n + \log \beta) = O(\log n)$, so x_i , b_{i+1} can be computed from b_i in $O(n^2 \log n)$ operations. We shall terminate the construction of these sequences after computing x_{m-1} , b_m where m is an integer to be defined below; this

construction takes a total of $O(mn^2 \log n)$ operations. Putting $\bar{x} = \sum_{i=0}^{m-1} x_i p^i$ we have

$$A\bar{x} = \sum_{i=0}^{m-1} p^i A x_i = \sum_{i=0}^{m-1} p^i (b_i - p b_{i+1}) = b_0 - p^m b_m.$$

Hence $A\bar{x} \equiv b \pmod{p^m}$ as required.

The final step is to recover the rational solution x from the p-adic approximation \bar{x} . In the next section we shall show that there is a choice of m such that $m = O(n \log n)$, and that each component of x can be recovered from the corresponding component of \bar{x} in $O(m^2)$ operations; thus x can be recovered from \bar{x} in $O(nm^2) = O(n^3(\log n)^2)$ operations. Hence the total computation of the exact solution to Ax = b takes $O(n^3(\log n)^2)$ operations.

Decoding to Rational Form

To perform the final step in the above solution Ax = b we must solve the following problem. Given that there is an unknown fraction f/g with |f|, $|g| \le \delta$ and that $gs = f \pmod{h}$ for known integers s, h ($s = \overline{x}$ and $h = p^m$ in the case above), give an efficient algorithm to compute f/g. It is clear that h cannot be too small if the solution is to be unique. The following theorem gives appropriate conditions.

Theorem. Let s,h>1 be integers and suppose that there exist integers f,g such that

 $gs \equiv f \pmod{h}$ and $|f|, |g| \leq \lambda h^{\frac{1}{2}}$

where $\lambda = 0.618...$ is a root of $\lambda^2 + \lambda - 1 = 0$. Let w_i/v_i (i = 1, 2, ...) be the convergents to the continued fraction for s/h and put $u_i = v_i s - w_i h$. If k is the least integer such that $|u_k| < h^{\frac{1}{2}}$, then $f/g = u_k/v_k$.

Proof. It is well known that the sequences $\{w_i\}$, $\{v_j\}$ are increasing while $\{u_i\}$ is alternating in sign and decreasing in absolute value (see, for example, [2] for properties of continued fractions).

Now put f = gs - th. Then

$$\left| \frac{s}{h} - \frac{t}{g} \right| = \left| \frac{fg}{hg^2} \right| < \frac{1}{2g^2}$$

and so t/g equals one of the convergents, say w_j/v_j , of s/h ([2], Theorem 19). Since w_j and v_j are relatively prime, $|u_j| \le |f| \le \lambda h^{\frac{1}{2}}$, and so the definition of k shows that $j \ge k$. On the other hand, $u_j = v_j s - w_j h$ and $u_k = v_k s - w_k h$, and so $u_j v_k - u_k v_j \equiv 0 \pmod{h}$. Since $j \ge k$, $|u_j v_k - u_k v_j| \le (|u_j| + |u_k|)|v_j| < (\lambda + 1)\lambda h = h$; hence $u_j v_k = u_k v_j$ and so j = k. Thus $f/g = u_k/v_k$ as asserted and the theorem is proved.

In practice f/g is best calculated by using a modification of the Euclidean algorithm. We may assume $0 \le s \le h$, and make a slight change in notation by replacing u_i by $|u_i|$ (recall that the original $\{u_i\}$ is alternating). We generate the integer sequences $\{u_i\}$, $\{v_i\}$ and $\{q_i\}$ defined by:

$$u_{-1} = h$$
, $u_0 = s$, $v_{-1} = 0$, $v_0 = 1$

and $q_i = [u_{i-1}/u_i]$, $u_{i+1} = u_{i-1} - q_i u_i$, $v_{i+1} = v_{i-1} + q_i v_i$ for i = 0, 1, ..., until the first index k where $u_k < h^{\frac{1}{2}}$. Then (under the hypotheses of the theorem) we have $f/g = (-1)^k u_k/v_k$. (The replacement of u_i by $|u_i|$ means that all sequences consist of positive integers and this simplifies the necessary multiprecision arithmetic.) To estimate the number of operators (involving numbers of size β) required to

J.D. Dixon

compute f/g we proceed as follows. Simple induction shows that $v_i \ge \prod_{j=0}^{i-1} q_j$ and $v_i \ge 2^{i/2}$ for $i \ge 0$. Since $(-1)^k u_k/v_k$ is equal to f/g in its lowest terms, $|v_k| \le |g| < h^{\frac{1}{2}}$. Thus $\sum_{j=0}^{k-1} \log q_j$ and k are both $O(\log h)$. The integers u_i , v_i are all bounded by h and so the multiprecision computation of f/g will take at most $\Sigma O(\log q_j + 1)$ $O(\log h) = O(\log h)^2$ operations. (In fact, almost all steps will involve simple precision values of q_i ; see [3], p. 305.)

Returning to the solution Ax = b we have $h = p^m$ and can ensure that the hypotheses of the theorem hold for the components of x provided $\delta \le \lambda p^{m/2}$. Thus take $m = 2[\log(\delta \lambda^{-1})/\log p]$. As we saw above $\delta \le \beta^n n^{n/2}$, and so, assuming p has been fixed, we have $m = O(n \log n)$ as required.

Remark. Examining the above analysis of the time complexity with a little more care it will be seen that the $\log n$ factors all enter in the form $(\log n + \log \beta)$. In practice, for the values of n and β which are likely to occur, $\log n$ will be smaller than $\log \beta$ and this factor will be roughly constant. Thus, in practical cases, the time taken to solve Ax = b may be expected to be proportional to n^3 rather than $n^3(\log n)^2$.

Practical Considerations

About half of the calculations are carried out modulo p, so to simplify multiplication it is convenient to choose p so that p^2 is no larger than the maximum integer which the computer used can handle. In rare cases, det $A \neq 0$ but is divisible by p; this will be recognized in the computation of C and then a new choice of p must be made. There is a modest saving possible by using the LU-factorization of A rather than computing C, but the major time is spent on the last two steps. Computing \bar{x} is straight forward, and the fact that its components are expressed as integers to the base p should be used in the computations of the final step. It is worthwhile to code the last step carefully using, for example, Lehmer's trick (see [3], p. 306) to speed up the calculation.

We noted in an earlier remark that in practice the time taken by this method to solve Ax = b exactly is roughly proportional to n^3 and so comparable to the time taken by a singleprecision floating-point solution by direct methods. Some very limited experiments (with $\beta = p$ and p^2 approximately the maximum size of an integer for the computer used) suggest that the exact solution takes approximately 10-20 times longer. This compares very favourably with the figures given in [1] for the methods considered there. It should be noted however that the alternative methods mentioned in the introduction have two properties which our method does not: (i) they permit simple computation of det A; and (ii) they can be used to compute A^{-1} with only a little more work (while our method seems to require the equivalent of solving Ax = b n times). However, for the problem of finding the exact solution of a single system Ax = b, the method described here should be superior to the other methods for all but the smaller values of n.

References

- 1. Cabay, S., Lam, T.P.L.: Congruence techniques for the exact solution of integer systems of linear equations. ACM Trans. Math. Software 3, 386-397 (1977)
- 2. Khinchin, A.Ya.: Continued Fractions, 3rd ed. Chicago: Univ. Chicago Press, 1961
- 3. Knuth, D.: The Art of Computer Programming, Volume 2. Reading, MA: Addison-Wesley, 1969
- Krishnamurthy, E.V., Rao, T.M., Subramanian, K.: P-adic arithmetic procedures for exact matrix computations. Proc. Indian Acad. Sci. 82A, 165-175 (1975)

Received January 29, 1982 / August 6, 1982