MAP 433 : Introduction aux méthodes statistiques. Cours 8

Marc Hoffmann

4 avril 2014

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

> Construction d'un test : hypothèses générales

Tests asymptotiques

Aujourd'hui (et la semaine prochaine...)

- 1 Notion de test et d'erreur de test
 - Hypothèse simple contre alternative simple
 - Lemme de Neyman-Pearson
- 2 Construction d'un test : hypothèses générales
 - Retour sur un exemple
 - Principe de construction
- 3 Tests asymptotiques
- 4 Tests d'adéquation
 - Tests de Kolmogorov-Smirnov
 - Tests du χ^2

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de

Construction d'un test : hypothèses

Tests asymptotiques

Exemple introductif

On observe 10 lancers d'une pièce de monnaie et on obtient le résultat suivant :

$$(P, P, F, F, P, F, P, P, F, P)$$
.

La pièce est-elle équilibrée?

Répondre à cette question revient à construire une procédure de décision :

$$\varphi = \varphi(P, P, F, F, P, F, P, P, F, P)$$

 $= \left\{ \begin{array}{ll} 0 & \text{on accepte l'hypothèse} \ll \text{la pièce est équilibrée} \gg \\ 1 & \text{on rejette l'hypothèse} \ll \text{la pièce est équilibrée} \end{array} \right. \\ \right.$

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

> Hypothese simple contre alternative simple Lemme de

Construction d'un test : hypothèses

Tests asymptotiques

Résolution

On associe l'expérience statistique (par exemple)

$$\mathcal{E}^{10} = ig(\{0,1\}^{10}, ext{parties de}ig(\{0,1\}^{10}ig), \{\mathbb{P}^{10}_{artheta}, artheta \in [0,1]\}ig),$$
 avec $ig(P = 0, \ F = 1ig)$ $\mathbb{P}^{10}_{artheta} = ig(artheta\delta_0(dx) + (1-artheta)\delta_1(dx)ig)^{\otimes 10}.$

Hypothèse nulle : « la pièce est équilibrée »

$$H_0: \vartheta = \frac{1}{2}$$

Hypothèse alternative : « la pièce est truquée »

$$H_1: \vartheta
eq rac{1}{2}$$

MAP 433 : Introduction aux méthodes statistiques. Cours 8

Marc Hoffmann

Notion de test et d'erreur de test

simple contre alternative simple Lemme de Neyman-Pearsoi

Construction d'un test : hypothèses générales

Tests asymptotiques

Résolution (cont.)

- On note Z l'observation.
- On construit une règle de décision simple :

$$\varphi = 1_{\left\{ Z \in \mathcal{R} \right\}} = \left\{ \begin{array}{ll} 0 & \text{on accepte l'hypothèse.} \\ 1 & \text{on rejette l'hypothèse.} \end{array} \right.$$

- $\mathcal{R} \subset \mathfrak{Z}$ (espace des observables) : zone de rejet ou région critique.
- Exemple ¹

$$\mathcal{R} = \{ \left| \widehat{\vartheta}(Z) - \frac{1}{2} \right| > t_0 \}, \ \widehat{\vartheta}(Z) = \widehat{\vartheta}_{\mathsf{n}}^{\,\mathsf{mv}} \left(\stackrel{\mathsf{exemple}}{=} 0, 6 \right)$$

où t_0 est un seuil à choisir... Comment?

ests

MAP 433 : Introduction aux méthodes

statistiques.

Notion de test et d'erreur de test

Tests

Tests d'adéquation

1. léger abus de notation...

Erreur de décision

■ Lorsque l'on prend la décision φ , on peut se tromper de deux manières :

Rejeter
$$H_0$$
 $(\varphi = 1)$ alors que $\vartheta = \frac{1}{2}$

ou encore

Accepter
$$H_0$$
 ($\varphi = 0$) alors que $\vartheta \neq \frac{1}{2}$.

■ Erreur de première espèce (=rejeter à tort)

$$\mathbb{P}^{10}_{\frac{1}{2}}\left[\varphi=1\right]$$

■ Erreur de seconde espèce (=accepter à tort)

$$\big(\,\mathbb{P}^{10}_{\vartheta}\,\big[\varphi=0\big],\ \ \vartheta\neq\frac{1}{2}\big).$$

オロトオ御トオ連トオ連ト 連 り900

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

simple contre alternative simple Lemme de Neyman-Pearson

Construction d'un test : hypothèses générales

Tests asymptotiques

Conclusion provisoire

- Un « bon test » φ doit garantir simultanément des erreurs de première et seconde espèce petites.
- Un test optimal existe-t-il?
- Si non, comment aborder la notion d'optimalité et comment construire un test optimal?

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

> Hypothèse simple contre alternative simple Lemme de

Construction d'un test : hypothèses

Tests asymptotiques

Définition formelle

- Situation : $\mathcal{E} = (\mathcal{Z}, \mathfrak{Z}, \{\mathbb{P}_{\vartheta}, \vartheta \in \Theta\})$ engendrée par l'observation Z.
- Hypothèse nulle et alternative : $\Theta_0 \subset \Theta$ et $\Theta_1 \subset \Theta$ t.q.

$$\Theta_0\cap\Theta_1=\emptyset.$$

Définition (Test simple)

Un test (simple) de l'hypothèse nulle $H_0: \vartheta \in \Theta_0$ contre l'alternative $H_1: \vartheta \in \Theta_1$ est une statistique $\varphi = \varphi(Z) \in \{0,1\}$. (Fonction d') erreur de première espèce :

$$\vartheta \in \Theta_0 \leadsto \mathbb{P}_{\vartheta} \left[\varphi = 1 \right]$$

(Fonction d') erreur de seconde espèce

$$\vartheta \in \Theta_1 \leadsto \mathbb{P}_{\vartheta}\left[\varphi = 0 \right] = 1 - {\it puissance}_{\varphi}(\vartheta).$$

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

simple contre alternative simple Lemme de Neyman-Pearson

Construction d'un test : hypothèses générales

Tests asymptotiques

Hypothèse simple contre alternative simple

- Cas où $\Theta = \{\vartheta_0, \vartheta_1\}$ avec $\vartheta_0 \neq \vartheta_1$.
- Existe-t-il un test φ^* optimal, au sens où : $\forall \varphi$ test simple, on a simultanément

$$\mathbb{P}_{\vartheta_0}\left[\varphi^{\star}=1\right] \leq \mathbb{P}_{\vartheta_0}\left[\varphi=1\right]$$

et

$$\mathbb{P}_{\vartheta_1}\left[\varphi^{\star}=0\right] \leq \mathbb{P}_{\vartheta_1}\left[\varphi=0\right]$$
 ?

■ Si \mathbb{P}_{ϑ_0} et \mathbb{P}_{ϑ_1} ne sont pas étrangères (cf. Cours 6) un tel test φ^* ne peut pas exister.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

lotion de test t d'erreur de est

Hypothèse

simple contre alternative simple Lemme de Neyman-Pearson

Construction d'un test : hypothèses générales

Tests asymptotiques

Absence d'optimalité stricte

■ Equivalence tests simples \longleftrightarrow estimateurs $\widehat{\vartheta}$ de ϑ via la représentation :

$$\widehat{\vartheta} = \vartheta_0 1_{\mathcal{R}^c} + \vartheta_1 1_{\mathcal{R}} \Longleftrightarrow \varphi = 1_{\mathcal{R}}.$$

■ Fonction de risque

$$\mathcal{P}(\varphi, \vartheta) = \mathbb{E}_{\vartheta} \left[1_{\widehat{\vartheta} \neq \vartheta} \right], \ \ \vartheta = \vartheta_0, \vartheta_1.$$

- La fonction de perte $\ell(\widehat{\vartheta}, \vartheta) = 1_{\widehat{\vartheta} \neq \vartheta}$ joue le même rôle que la perte quadratique $(\widehat{\vartheta} \vartheta)^2$ dans le Cours 6.
- Test optimal $\varphi^* \iff$ estimateur optimal ϑ^* pour \mathcal{P} .
- Comme pour le cas du risque quadratique, dès que \mathbb{P}_{ϑ_0} et \mathbb{P}_{ϑ_1} ne sont pas étrangères, un estimateur optimal n'existe pas (cf. Cours 6).

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de est Hypothèse

simple contre alternative simple Lemme de Neyman-Pearson

Construction d'un test : hypothèses générales

Tests asymptotiques

Riposte : principe de Neyman

On « disymétrise » les hypothèses H₀ et H₁: H₀ est « plus importante » que H₁ dans le sens suivant : on impose une erreur de première espèce prescrite.

Définition

Pour $\alpha \in [0,1]$, un test $\varphi = \varphi_{\alpha}$ de l'hypothèse nulle $H_0: \vartheta \in \Theta_0$ contre une alternative H_1 est de niveau α si

$$\sup_{\vartheta \in \Theta_0} \mathbb{P}_{\vartheta} \left[\varphi_{\alpha} = 1 \right] \leq \alpha.$$

• Un test de niveau α ne dit rien sur l'erreur de seconde espèce (comportement sur l'alternative).

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Hypothèse

simple contre alternative simple Lemme de Neyman-Pearson

Construction

d'un test : hypothèses générales

Tests asymptotiques

Principe de Neyman (cont.)

- Choix de la « disymétrisation » = choix de modélisation.
- Principe de Neyman : $\alpha \in (0,1)$, parmi les test de niveau α , chercher celui (ou ceux) ayant une erreur de seconde espèce minimale.

Définition

Un test de niveau α est dit Uniformément Plus Puissant (UPP) si son erreur de seconde espèce est minimale parmi celles des tests de niveau α .

■ Pour le cas d'une hypothèse simple contre une alternative simple, un test UPP existe.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de

Hypothèse simple contre alternative simple Lemme de

Construction d'un test : hypothèses

Tests

Principe de construction

■ $f(\vartheta, z) = \frac{d\mathbb{P}_{\vartheta}}{d\mu}(z), z \in \mathfrak{Z}, \vartheta = \vartheta_0, \vartheta_1, \mu$ mesure dominante. L'EMV –si bien défini– s'écrit

$$\widehat{\vartheta}_{n}^{\,\text{mv}} = \vartheta_{0} \mathbf{1}_{\{f(\vartheta_{1},Z) < f(\vartheta_{0},Z)\}} + \vartheta_{1} \mathbf{1}_{\{f(\vartheta_{0},Z) < f(\vartheta_{1},Z)\}}.$$

On choisit une région critique de la forme

$$\mathcal{R}(c) = \big\{ f(\vartheta_1, Z) > cf(\vartheta_0, Z) \big\}, \ c > 0$$

et on calibre $c=c_{\alpha}$ de sorte que

$$\mathbb{P}_{\vartheta_0}\left[Z\in\mathcal{R}(c_\alpha)\right]=\alpha.$$

Le test ainsi construit (si cette équation admet une solution) est de niveau α . On montre qu'il est UPP.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

simple contre alternative simple Lemme de

Neyman-Pearson

Constructior d'un test : hypothèses générales

Tests asymptotiqu

Lemme de Neyman-Pearson

Proposition

Soit $\alpha \in [0,1]$. S'il existe c_{α} solution de

$$\left| \mathbb{P}_{\vartheta_0} \left[f(\vartheta_1, Z) > c_{\alpha} f(\vartheta_0, Z) \right] = \alpha \right|$$

alors le test de région critique $\mathcal{R}_{\alpha} = \{f(\vartheta_1, Z) > c_{\alpha}f(\vartheta_0, Z)\}$ est de niveau α et UPP pour tester $H_0: \vartheta = \vartheta_0$ contre $H_1: \vartheta = \vartheta_1$.

■ Si $U = f(\vartheta_1, Z)/f(\vartheta_0, Z)$ bien définie et $\mathcal{L}(U) \ll dx$ (sous \mathbb{P}_{ϑ_0}), alors $\mathbb{P}_{\vartheta_0} [U > c_{\alpha}] = \alpha$ admet une solution.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

> imple contre alternative imple

Lemme de Neyman-Pearson

Construction d'un test : hypothèses générales

Tests

Exemple de mise en oeuvre

On observe

$$Z = (X_1, \ldots, X_n) \sim_{\mathsf{i.i.d.}} \mathcal{N}(\vartheta, 1).$$

- Construction du test de N-P. de $H_0: \vartheta = \vartheta_0$ contre $H_1: \vartheta = \vartheta_1$, avec $\vartheta_0 < \vartheta_1$.
- Mesure dominante μ^n = mesure de Lebesgue sur \mathbb{R}^n et

$$f(\vartheta, Z) = \frac{1}{(2\pi)^{n/2}} \exp\big(-\frac{1}{2} \sum_{i=1}^{n} X_i^2 + n \vartheta \overline{X}_n - \frac{n \vartheta^2}{2}\big).$$

Rapport de vraisemblance

$$\frac{f(\vartheta_1, Z)}{f(\vartheta_0, Z)} = \exp\left(n(\vartheta_1 - \vartheta_0)\overline{X}_n - \frac{n}{2}(\vartheta_1^2 - \vartheta_0^2)\right).$$

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

alternative simple Lemme de Neyman-Pearson

Construction d'un test :

Tests asymptotiques

Exemple (cont.)

Zone de rejet du test de N-P. :

$$\begin{aligned} & \left\{ f(\vartheta_1, Z) > cf(\vartheta_0, Z) \right\} \\ = & \left\{ n(\vartheta_1 - \vartheta_0) \overline{X}_n - \frac{n}{2} (\vartheta_1^2 - \vartheta_0^2) > \log c \right\} \\ = & \left\{ \overline{X}_n > \frac{\vartheta_0 + \vartheta_1}{2} + \frac{\log c}{n(\vartheta_1 - \vartheta_0)} \right\}. \end{aligned}$$

■ Choix de c. On résout

$$\mathbb{P}_{\vartheta_0}\left[\overline{X}_n > \frac{1}{2}(\vartheta_0 + \vartheta_1) + \frac{\log c}{n(\vartheta_1 - \vartheta_0)}\right] = \alpha.$$

■ Approche standard : on raisonne sous \mathbb{P}_{ϑ_0} . On a

$$\overline{X}_n = \vartheta_0 + \frac{1}{\sqrt{n}} \xi^{n,\vartheta_0},$$

où ξ^{n,ϑ_0} est une gaussienne standard $\mathcal{N}(0,1)$ sous \mathbb{P}_{ϑ_0} mais pas sous une autre probabilité \mathbb{P}_{ϑ} si $\vartheta \neq \vartheta_0$!

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

simple contre alternative simple Lemme de Neyman-Pearson

Construction d'un test : hypothèses

Tests asymptotiques

Exemple (fin)

■ Résolution de

$$\mathbb{P}_{\vartheta_0}\left[\vartheta_0 + \frac{1}{\sqrt{n}}\xi^{n,\vartheta_0} > \frac{1}{2}(\vartheta_0 + \vartheta_1) + \frac{\log c}{n(\vartheta_1 - \vartheta_0)}\right] = \alpha.$$

■ Equivalent à $\mathbb{P}_{\vartheta_0}\left[\xi^{n\vartheta_0} > \frac{\sqrt{n}}{2}(\vartheta_1 - \vartheta_0) + \frac{1}{\sqrt{n}}\frac{\log c}{\vartheta_1 - \vartheta_0}\right] = \alpha$, soit

$$\frac{\sqrt{n}}{2}(\vartheta_1 - \vartheta_0) + \frac{1}{\sqrt{n}} \frac{\log c}{\vartheta_1 - \vartheta_0} = \Phi^{-1}(1 - \alpha),$$

où
$$\Phi(x) = \int_{-\infty}^{x} e^{-u^2/2} \frac{du}{\sqrt{2\pi}}$$
.

Conclusion

$$c_{\alpha} = \exp\left(n\frac{(\vartheta_1 - \vartheta_0)^2}{2} + \sqrt{n}(\vartheta_1 - \vartheta_0)\Phi^{-1}(1 - \alpha)\right)$$

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

simple contre alternative simple Lemme de

Neyman-Pearson

Construction d'un test : hypothèses générales

Tests asymptotique

Bilan provisoire

- Si l'on accepte le principe de Neyman, on sait résoudre le problème à deux points.
- Que faire si l'hypothèse nulle H₀ ou l'alternative H₁ sont composites?
 - On peut proposer des extensions si l'on dispose de structures particulières sur la vraisemblance du modèle (Poly. Ch. 7.3, hors programme).
 - On sait dire beaucoup de choses dans le cas gaussien.
- Critique méthodologique de l'approche de Neyman notion de p-valeur.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de

simple contre alternative simple Lemme de Nevman-Pearson

Construction d'un test : hypothèses

Tests asymptotiques

Situation

- Situation: on part d'une expérience statistique $(\mathfrak{Z}, \mathcal{Z}, \{\mathbb{P}_{\vartheta}, \vartheta \in \Theta\})$ engendrée par l'observation Z.
- On souhaite tester :

$$H_0: \vartheta \in \Theta_0 \subset \Theta$$
 contre $H_1: \vartheta \in \Theta_1$

avec $\Theta_0 \cap \Theta_1 = \emptyset$.

■ Si $\Theta_0 = \{\vartheta_0\}$ et $\Theta_1 = \{\vartheta_1\}$, on a Neyman-Pearson. Et sinon?

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de

Construction d'un test : hypothèses générales

Retour sur un exemple
Principe de

Tests asymptotiques

Principe de construction

- « Trouver » une statistique libre sous l'hypothèse : toute quantité $\phi(Z)$ observable dont on connait la loi sous l'hypothèse, c'est-à-dire la loi de $\phi(Z)$ sous \mathbb{P}_{ϑ} avec $\vartheta \in \Theta_0$.
- On « regarde » si le comportement de $\phi(Z)$ est typique d'un comportement sous l'hypothèse.
- Si oui, on accepte H_0 , si non on rejette H_0 .
- On quantifie « oui/non » par le niveau α du test.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de

Construction d'un test : hypothèses générales

Retour sur un exemple
Principe de construction

Tests symptotique

Tests

Exemple: test sur la variance

• On observe $Z = (Y_1, \ldots, Y_n)$,

$$Y_1, \ldots, Y_n \sim_{\mathsf{i.i.d.}} \mathcal{N}(\mu, \sigma^2)$$

avec
$$\vartheta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times (0, +\infty)$$
.

Premier cas : on teste

$$H_0: \sigma^2 = \sigma_0^2$$
 contre $H_1: \sigma^2 > \sigma_0^2$.

■ Sous l'hypothèse (c'est-à-dire sous \mathbb{P}_{ϑ} avec $\vartheta=(\mu,\sigma_0)$ et $\mu\in\mathbb{R}$ quelconque), on a

$$(n-1)\frac{s_n^2}{\sigma_0^2} \sim \chi^2(n-1)$$

avec
$$s_n^2 := \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y}_n)^2$$
.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Retour sur un exemple Principe de construction

Tests asymptotiques

Test sur la variance (cont.)

■ Donc, sous l'hypothèse, le comportement « typique » de

$$\phi(Z) = (n-1)\frac{s_n^2}{\sigma_0^2}$$

est celui d'une variable aléatoire de loi du χ^2 à n-1 degrés de liberté.

• Soit $q_{1-\alpha,n-1}^{\chi^2} > 0$ tel que si $U \sim \chi^2(n-1)$, alors

$$\mathbb{P}\left[U>q_{1-\alpha,n-1}^{\chi^2}\right]=\alpha.$$

■ Sous l'hypothèse $\phi(Z) \stackrel{d}{=} U$ et donc la probabilité pour que $\phi(Z)$ dépasse $q_{1-\alpha,n-1}^{\chi^2}$ est inférieure (égale) à α (comportement atypique si α petit).

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Retour sur un exemple Principe de construction

Tests asymptotiques

Test sur la variance (cont.)

■ Règle de décision : On accepte l'hypothèse si

$$\phi(Z) \le q_{1-\alpha,n-1}^{\chi^2}.$$

On la rejette sinon.

- Par construction, on a un test de niveau α .
- On ne sait rien dire sur l'erreur de seconde espèce, mis à part qu'elle est minimale parmi les tests de zone de rejet de la forme de $\{\phi(Z)>c\}$, c>0...

MAP 433 : Introduction aux méthodes statistiques. Cours 8

Marc Hoffmann

Notion de test et d'erreur de

Construction d'un test : hypothèses générales

Retour sur un exemple Principe de construction

Tests asymptotiques

Test sur la variance (fin)

Deuxième cas : On teste

$$H_0: \sigma^2 \leq \sigma_0^2$$
 contre $H_1: \sigma^2 > \sigma_0^2$.

Pas de statistique libre évidente... Mais, pour $\sigma^2 \leq \sigma_0^2$, on a

$$\mathbb{P}_{\sigma} \left[(n-1) \frac{s_{n}^{2}}{\sigma_{0}^{2}} > q_{1-\alpha,n-1}^{\chi^{2}} \right] = \mathbb{P}_{\sigma} \left[(n-1) \frac{s_{n}^{2}}{\sigma^{2}} > \frac{\sigma_{0}^{2}}{\sigma^{2}} q_{1-\alpha,n-1}^{\chi^{2}} \right] \\
\leq \mathbb{P}_{\sigma} \left[(n-1) \frac{s_{n}^{2}}{\sigma^{2}} > q_{1-\alpha,n-1}^{\chi^{2}} \right] \\
= \alpha.$$

La même statistique de test convient pour contrôler l'erreur de première espèce que pour l'hypohèse nulle simple. On choisit ici la même règle de décision. MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Retour sur un exemple Principe de construction

Tests asymptotiques

Conclusion provisoire

- Pour contruire un test de l'hypothèse $H_0: \vartheta \in \Theta_0$ contre $H_1: \vartheta \in \Theta_1$, on cherche une statistique libre sous l'hypothèse et on rejette pour un seuil qui dépend de la loi de la statistique sous H_0 , de sorte de fournir une zone de rejet maximale.
- Le plus souvent, la statistique est obtenue via un estimateur. Sauf exception (comme la cas gaussien) une telle statistique est difficile à trouver en général.
- Simplification cadre asymptotique (où la gaussianité réapparaît le plus souvent...).

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales Retour sur un exemple Principe de construction

Tests asymptotiques

Le test de Wald : hypothèse nulle simple

- <u>Situation</u> la suite d'expériences $(\mathfrak{Z}^n, \mathcal{Z}^n, \{\mathbb{P}^n_{\vartheta}, \vartheta \in \Theta\})$ est engendrée par l'observation Z^n , $\vartheta \in \Theta \subset \mathbb{R}$
- Objectif : Tester

$$H_0: \vartheta = \vartheta_0$$
 contre $\vartheta \neq \vartheta_0$.

■ Hyopthèse : on dispose d'un estimateur $\widehat{\vartheta}_n$ asymptotiquement normal

$$\sqrt{n}(\widehat{\vartheta}_n - \vartheta) \stackrel{d}{ o} \mathcal{N}(0, \nu(\vartheta))$$

en loi sous \mathbb{P}^n_{ϑ} , $\forall \vartheta \in \Theta$, où $\vartheta \leadsto v(\vartheta) > 0$ est continue.

■ Sous l'hypothèse (ici sous $\mathbb{P}^n_{\vartheta_0}$) on a la convergence

$$\sqrt{n} \frac{\widehat{\vartheta}_n - \vartheta_0}{\sqrt{\nu(\widehat{\vartheta}_n)}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

en loi sous $\mathbb{P}^n_{\vartheta_0}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : nypothèses générales

Tests asymptotiques

Test de Wald (cont.)

- Remarque $\sqrt{v(\widehat{\vartheta}_n)} \leftrightarrow \sqrt{v(\vartheta_0)}$ ou d'autres choix encore...
- On a aussi

$$T_n = n \frac{(\widehat{\vartheta}_n - \vartheta_0)^2}{\nu(\widehat{\vartheta}_n)} \stackrel{d}{\longrightarrow} \chi^2(1)$$

sous $\mathbb{P}^n_{\vartheta_0}$.

■ Soit $q_{1-\alpha,1}^{\chi^2}>0$ tel que si $U\sim\chi^2(1)$, on a $\mathbb{P}\left[U>q_{1-\alpha,1}^{\chi^2}
ight]=\alpha$. On choisit la zone de rejet

$$\mathcal{R}_{n,\alpha}=\big\{T_n\geq q_{1-\alpha,1}^{\chi^2}\big\}.$$

Le test de zone de rejet $\mathcal{R}_{n,\alpha}$ s'appelle Test de Wald de l'hypothèse simple $\vartheta=\vartheta_0$ contre l'alternative $\vartheta\neq\vartheta_0$ basé sur $\widehat{\vartheta}_n$.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Tests asymptotiques

Propriétés du test de Wald

Proposition

Le test Wald de l'hypothèse simple $\vartheta=\vartheta_0$ contre l'alternative $\vartheta\neq\vartheta_0$ basé sur $\widehat{\vartheta}_n$ est

lacktriangle asymptotiquement de niveau lpha :

$$\mathbb{P}_{\vartheta_0}^n \left[T_n \in \mathcal{R}_{n,\alpha} \right] \to \alpha.$$

convergent ou (consistant). Pour tout point $\vartheta \neq \vartheta_0$

$$\mathbb{P}_{\vartheta}^{n}\left[T_{n}\notin\mathcal{R}_{n,\alpha}\right]\to0.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 8

Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Tests asymptotiques

Preuve

- Test asymptotiquement de niveau α par construction.
- Contrôle de l'erreur de seconde espèce : Soit $\vartheta \neq \vartheta_0$. On a

$$T_{n} = \left(\sqrt{n} \frac{\widehat{\vartheta}_{n} - \vartheta}{\sqrt{\nu(\widehat{\vartheta}_{n})}} + \sqrt{n} \frac{\vartheta - \vartheta_{0}}{\sqrt{\nu(\widehat{\vartheta}_{n})}}\right)^{2}$$
$$=: T_{n,1} + T_{n,2}.$$

On a $T_{n,1} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$ sous \mathbb{P}^n_{ϑ} et

$$T_{n,2} \xrightarrow{\mathbb{P}_{\vartheta}^n} \pm \infty \text{ car } \vartheta \neq \vartheta_0$$

Donc $T_n \xrightarrow{\mathbb{P}_{\vartheta}^n} +\infty$, d'où le résultat.

■ Remarque : si $\vartheta \neq \vartheta_0$ mais $|\vartheta - \vartheta_0| \lesssim 1/\sqrt{n}$, le raisonnement ne s'applique pas. Résultat non uniforme en le paramètre.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Tests asymptotiques

Test de Wald : hypothèse nulle composite

■ Même contexte : $\Theta \subset \mathbb{R}^d$ et on dispose d'un estimateur $\widehat{\vartheta}_n$ asymptotiquement normal :

$$\sqrt{n}(\widehat{\vartheta}_n - \vartheta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\vartheta))$$

où $V(\vartheta)$ est définie positive et continue en ϑ .

■ But Tester $H_0: \vartheta \in \Theta_0$ contre $H_1: \vartheta \notin \Theta_0$, où

$$\Theta_0 = \{ \vartheta \in \Theta, \ g(\vartheta) = 0 \}$$

et

$$g: \mathbb{R}^d \to \mathbb{R}^m$$

 $(m \le d)$ est régulière.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Tests asymptotiques

Test de Wald cont.

■ Hypothèse : la différentielle (de matrice $J_g(\vartheta)$) de g est de rang maximal m en tout point de (l'intérieur) de Θ_0 .

Proposition

En tout point ϑ de l'intérieur de Θ_0 (i.e. sous l'hypothèse), on a, en loi sous \mathbb{P}^n_{ϑ} :

$$\sqrt{n}g(\widehat{\vartheta}_n) \stackrel{d}{\longrightarrow} \mathcal{N}(0, J_g(\vartheta)V(\vartheta)J_g(\vartheta)^T),$$

$$\begin{split} T_n &= n g(\widehat{\vartheta}_n)^T \Sigma_g(\widehat{\vartheta}_n)^{-1} g(\widehat{\vartheta}_n) \stackrel{d}{\longrightarrow} \chi^2(m) \\ où \Sigma_g(\vartheta) &= J_g(\vartheta) V(\vartheta) J_g(\vartheta)^T. \end{split}$$

■ Preuve : méthode « delta » multidimensionnelle.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmanr

Notion de test et d'erreur de

Construction d'un test : hypothèses générales

Tests asymptotiques

Test de Wald (fin)

Proposition

Sous les hypothèses précédentes, le test de zone de rejet

$$\mathcal{R}_{\alpha} = \left\{ T_n \ge q_{1-\alpha,m}^{\chi^2} \right\}$$

avec
$$\mathbb{P}\left[U>q_{1-\alpha,m}^{\chi^2}\right]=lpha$$
 si $U\sim\chi^2(m)$ est

■ Asymptotiquement de niveau α en tout point ϑ de (l'intérieur) de Θ_0 :

$$\mathbb{P}_{\vartheta}^{n}\left[T_{n}\in\mathcal{R}_{n,\alpha}\right]\to\alpha.$$

■ Convergent : pour tout $\vartheta \notin \Theta_0$ on a

$$\mathbb{P}_{\vartheta}^{n}\left[T_{n}\notin\mathcal{R}_{n,\alpha}\right]\rightarrow0.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Tests asymptotiques

Tests d'adéquation

 <u>Situation</u> On observe (pour simplifier) un *n*-échantillon de loi *F* inconnu

$$X_1, \ldots, X_n \sim_{\text{i.i.d.}} F$$

Objectif Tester

$$H_0: F = F_0$$
 contre $F \neq F_0$

où F_0 distribution donnée. Par exemple : F_0 gaussienne centrée réduite.

Il est très facile de construire un test asymptotiquement de niveau α . Il suffit de trouver une statistique $\phi(X_1, \ldots, X_n)$ de loi connue sous l'hypothèse.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Tests asymptotiques

Tests d'adéquation

Tests de Kolmogorov-Smirnov

Test d'adéquation : situation

Exemples : sous l'hypothèse

$$\phi_1(X_1 \ldots, X_n) = \sqrt{nX_n} \sim \mathcal{N}(0, 1)$$
 $\phi_2(X_1, \ldots, X_n) = \sqrt{n} \frac{\overline{X}_n}{s_n} \sim \mathsf{Student}(n-1)$ $\phi_3(X_1, \ldots, X_n) = (n-1)s_n^2 \sim \chi^2(n-1).$

- Le problème est que ces tests ont une faible puissance : ils ne sont pas consistants.
- Pas exemple, si $F \neq$ gaussienne mais $\int_{\mathbb{R}} x dF(x) = 0$, $\int_{\mathbb{R}} x^2 dF(x) = 1$, alors

$$\mathbb{P}_{F}\left[\phi_{1}(X_{1},\ldots,X_{n})\leq x\right]\rightarrow\int_{-\infty}^{x}e^{-u^{2}/2}\frac{du}{\sqrt{2\pi}},\ x\in\mathbb{R}.$$

(résultats analogues pour ϕ_2 et ϕ_3).

■ La statistique de test ϕ_i ne caractérise pas la loi F_0 .

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Tests asymptotiques

Tests d'adéquation

Tests de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov

Rappel Si la fonction de répartition F est continue,

$$\sqrt{n}\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x)-F(x)\right|\stackrel{d}{\longrightarrow}\mathbb{B}$$

où la loi de \mathbb{B} ne dépend pas de F.

Proposition (Test de Kolmogorov-Smirnov)

Soit $q_{1-\alpha}^{\mathbb{B}}$ tel que $\mathbb{P}\left[\mathbb{B}>q_{1-\alpha}^{\mathbb{B}}
ight]=\alpha$. Le test défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ \sqrt{n} \sup_{x \in \mathbb{R}} \left| \widehat{F}_n(x) - F_0(x) \right| \ge q_{1-\alpha}^{\mathbb{B}} \right| \right\}$$

est asymptotiquement de niveau $\alpha: \mathbb{P}_{F_0}\left[\widehat{F}_n \in \mathcal{R}_{n,\alpha}\right] \to \alpha$ et consistant :

$$\forall F \neq F_0 : \mathbb{P}_F \left[\widehat{F}_n \notin \mathcal{R}_{n,\alpha} \right] \to 0.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

asymptotiques

Tests d'adéqua

Tests de Kolmogorov-Smirnov

Test du Chi-deux

■ X variables qualitative : $X \in \{1, ..., d\}$.

$$\mathbb{P}\left[X=\ell\right]=p_{\ell},\;\ell=1,\ldots d.$$

- La loi de X est caratérisée par $\boldsymbol{p} = (p_1, \dots, p_d)^T$.
- Notation

$$\mathcal{M}_d = \{ \boldsymbol{p} = (p_1, \dots, p_d)^T, \ 0 \le p_\ell, \sum_{\ell=1}^d p_\ell = 1 \}.$$

Objectif $q \in \mathcal{M}_d$ donnée. A partir d'un *n*-échantillon

$$X_1,\ldots,X_n\sim_{\text{i.i.d.}} \boldsymbol{p},$$

tester $H_0: \boldsymbol{p} = \boldsymbol{q}$ contre $H_1: \boldsymbol{p} \neq \boldsymbol{q}$.

Introduction aux méthodes statistiques. Cours 8

MAP 433:

Marc Hoffmann

Notion de test et d'erreur de

Construction d'un test : nypothèses générales

Tests asymptotiques

ests

Tests de Kolmogorov-

Construction « naturelle » d'un test

Comparaison des fréquences empiriques

$$\widehat{p}_{n,\ell} = rac{1}{n} \sum_{i=1}^n 1_{X_i = \ell}$$
 proche de q_ℓ , $\ell = 1, \ldots, d$?

Loi des grands nombres :

$$(\widehat{p}_{n,1},\ldots,\widehat{p}_{n,d}) \stackrel{\mathbb{P}_p}{\longrightarrow} (p_1,\ldots,p_d) = \boldsymbol{p}.$$

Théorème central-limite?

$$\boldsymbol{U}_{n}(\boldsymbol{p}) = \sqrt{n} \left(\frac{\widehat{p}_{n,1} - p_{1}}{\sqrt{p_{1}}}, \dots, \frac{\widehat{p}_{n,d} - p_{d}}{\sqrt{p_{d}}} \right) \stackrel{d}{\longrightarrow} ?$$

Composante par composante oui. Convergence globale plus délicate. MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Tests asymptotiques

ests

Tests de Kolmogorov-

Statistique du Chi-deux

Proposition

Si les composantes de **p** sont toute non-nulles

lacktriangle On a la convergence en loi sous \mathbb{P}_{p}

$$\boldsymbol{U}_n(\boldsymbol{p}) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\boldsymbol{p}))$$

avec
$$V(\mathbf{p}) = \mathrm{Id}_d - \sqrt{\mathbf{p}} (\sqrt{\mathbf{p}})^T$$
 et $\sqrt{\mathbf{p}} = (\sqrt{p_1}, \dots, \sqrt{p_d})^T$.

De plus

$$\|\boldsymbol{U}_n(\boldsymbol{p})\|^2 = n \sum_{\ell=1}^d \frac{(\widehat{p}_{n,\ell} - p_\ell)^2}{p_\ell} \stackrel{d}{\longrightarrow} \chi^2(d-1).$$

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

asymptotiques

Tests

Tests de Kolmogorov-Smirnov

Preuve de la normalité asymptotique

■ Pour i = 1, ..., n et $1 \le \ell \le d$, on pose

$$Y_\ell^i = rac{1}{\sqrt{p_\ell}}ig(1_{\{X_i=\ell\}}-p_\ellig).$$

Les vecteurs $\mathbf{Y}_i = (Y_1^i, \dots, Y_d^i)$ sont indépendants et identiquement distribués et

$$\boldsymbol{U}_n(\boldsymbol{p}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \boldsymbol{Y}_i,$$

$$\mathbb{E}\left[Y_{\ell}^{i}\right]=0,\,\mathbb{E}\left[(Y_{\ell}^{i})^{2}\right]=1-\rho_{\ell},\,\mathbb{E}\left[Y_{\ell}^{i}Y_{\ell'}^{i}\right]=-(\rho_{\ell}\rho_{\ell'})^{1/2}.$$

On applique le TCL vectoriel.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Tests asymptotiques

ests

Tests de Kolmogorov-Smirnov Tests du χ^2

Convergence de la norme au carré

- On a donc $\boldsymbol{U}_n(\boldsymbol{p}) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\boldsymbol{p}))$.
- On a aussi

$$\|\boldsymbol{U}_{n}(\boldsymbol{p})\|^{2} \stackrel{d}{\longrightarrow} \|\mathcal{N}(0, V(\boldsymbol{p}))\|^{2}$$
$$\sim \chi^{2}(\operatorname{Rang}(V(\boldsymbol{p})))$$

par Cochran : $V(\mathbf{p}) = \operatorname{Id}_d - \sqrt{\mathbf{p}} (\sqrt{\mathbf{p}})^T$ est la projection orthogonale sur $\operatorname{vect}\{\sqrt{\mathbf{p}}\}^\perp$ qui est de dimension d-1.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction
d'un test :
hypothèses
générales

Tests asymptotiques

Tests

d'adéquatior Tests de Kolmogorov-

Kolmogorov-Smirnov

Test d'adéquation du χ^2

• « distance » du χ^2 :

$$\chi^2(\boldsymbol{p},\boldsymbol{q}) = \sum_{\ell=1}^d \frac{(p_\ell - q_\ell)^2}{q_\ell}.$$

• Avec ces notations $\|\boldsymbol{U}_n(\boldsymbol{p})\|^2 = n\chi^2(\widehat{\boldsymbol{p}}_n, \boldsymbol{p}).$

Proposition

Pour $\mathbf{q} \in \mathcal{M}_d$ le test simple défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ n\chi^2(\widehat{oldsymbol{
ho}}_n, oldsymbol{q}) \geq q_{1-\alpha,d-1}^{\chi^2}
ight\}$$

où $\mathbb{P}\left[U>q_{1-\alpha,d-1}^{\chi^2}
ight]=lpha$ si $U\sim\chi^2(d-1)$ est asymptotiquement de niveau lpha et consistant pour tester

$$H_0: \boldsymbol{p} = \boldsymbol{q}$$
 contre $H_1: \boldsymbol{p} \neq \boldsymbol{q}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

Tests asymptotiques

Tests d'adéqua

Tests de Kolmogorov

Exemple de mise en oeuvre : expérience de Mendel

Soit d = 4 et

$$\mathbf{q} = \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right).$$

Répartition observée : n = 556

$$\widehat{\boldsymbol{p}}_{556} = \frac{1}{556} (315, 101, 108, 32).$$

■ Calcul de la statistique du χ^2

$$556 \times \chi^2(\widehat{\boldsymbol{p}}_{556}, \boldsymbol{q}) = 0,47.$$

- On a $q_{95\%,3} = 0,7815$.
- **Conclusion**: Puisque 0,47 < 0,7815, on accepte l'hypothèse $\mathbf{p} = \mathbf{q}$ au niveau $\alpha = 5\%$.

MAP 433 : Introduction aux méthodes statistiques. Cours 8

> Marc Hoffmann

Notion de test et d'erreur de test

Construction d'un test : hypothèses générales

ēsts symptotiques

Tests

Tests de Kolmogorov-Smirnov