Esame di Ricerca Operativa del 09/06/15

(Cognome)	(Nome)	(Corso di laurea)
Egonoisio 1 Completeno le gomente tebello	considerande il puebleres di pue men	omaniana linaana.

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min \ 23 \ y_1 + 2 \ y_2 + 16 \ y_3 + 10 \ y_4 + y_5 + 17 \ y_6 \\ 5 \ y_1 - y_2 + 2 \ y_3 - y_4 - 4 \ y_5 - 2 \ y_6 = -1 \\ -y_1 - 2 \ y_2 + 3 \ y_3 + 3 \ y_4 - y_5 + 2 \ y_6 = 1 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x =	, ,	
{1, 4}	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{3,6}					
2° iterazione						

Esercizio 3. Un albergo deve garantire il servizio di portineria 24/24 ore al giorno. Ogni lavoratore lavora 8 ore consecutive ogni 24 ore. Il numero minimo di personale in ogni fascia oraria é dato dalla seguente tabella:

Fascia oraria	Numero minimo	Fascia oraria	Numero minimo
2-6	4	14-18	7
6-10	8	18-22	12
10-14	10	22-2	4

Formulare un modello che trovi il numero minimo di persone necesssarie ad espletare il servizio
significato variabili decisionali e modello:

c=	intcon=
A=	b=
Aeq=	beq=
1b=	ub=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) (3,7) (4,6)	(2,3)	x =		
(1,2) (1,3) (1,4)				
(3,5) (3,7) (4,6)	(4,3)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,3) (3,7) (4,3) (4,6) (5,7)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 7 \ x_1 + 12 \ x_2 \\ 15 \ x_1 + 12 \ x_2 \ge 50 \\ 14 \ x_1 + 17 \ x_2 \ge 59 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	41	62	92
2		27	54	56
3			11	13
4				94

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

5-albero:	$\Gamma(P) =$
b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo	4.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 5-albero di costo minimo come rilassamento istanziando, nell'ordine, le variabili x_{45} , x_{35} , x_{15} . Dire se l'algoritmo é terminato.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1 + x_2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 + x_2^2 + 2x_1x_2 - 36 \le 0, \quad 1 - x_1x_2 \le 0}.$$

Soluzioni del sistema	Massimo		Minimo		Sella		
x	λ_1	λ_2	globale	locale	globale	locale	
(-1, -1)							
(1, 1)							
$\left(3+\sqrt{8},\ 3-\sqrt{8}\right)$							
$(3-\sqrt{8},\ 3+\sqrt{8})$							
$\left(-3+\sqrt{8}, \ -3-\sqrt{8}\right)$							
$\left(-3-\sqrt{8},\ -3+\sqrt{8}\right)$							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 + 4 x_2^2 - 2 x_1 - 9 x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-3,0), (4,1), (5,-3) e (-4,-2). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-\frac{10}{3}, -\frac{2}{3}\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} & \min \ 23 \ y_1 + 2 \ y_2 + 16 \ y_3 + 10 \ y_4 + y_5 + 17 \ y_6 \\ & 5 \ y_1 - y_2 + 2 \ y_3 - y_4 - 4 \ y_5 - 2 \ y_6 = -1 \\ & -y_1 - 2 \ y_2 + 3 \ y_3 + 3 \ y_4 - y_5 + 2 \ y_6 = 1 \\ & y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (4, -3)	SI	NO
{1, 4}	$y = \left(-\frac{1}{7}, \ 0, \ 0, \ \frac{2}{7}, \ 0, \ 0\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{3, 6}	$\left(-\frac{19}{10}, \ \frac{33}{5}\right)$	$\left(0,\ 0,\ 0,\ 0,\ \frac{1}{2}\right)$	4	$0, \frac{5}{9}$	3
2° iterazione	{4, 6}	$\left(-\frac{31}{4},\frac{3}{4}\right)$	$\left(0,\ 0,\ 0,\ 0,\ \frac{1}{2}\right)$	2	$\frac{2}{5}$	6

Esercizio 3.

COMANDI DI MATLAR

c=[1 1 1 1 1 1]	intcon=[1 2 3 4 5 6]
beq=[b=[-4;-8;-10;-7;-12;-4]
Aeq=[]	A=[-10000-1;-1-10000;0-1-1000;00-1-10;000-1-10;0000-1-1]
1b=[0 0 0 0 0 0]	ub=[]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) (3,7) (4,6)	(2,3)	x = (0, 0, 5, 12, -5, 8, 10, 0, 2, 0, 0)	NO	SI
(1,2) (1,3) (1,4)				
(3,5) (3,7) (4,6)	(4,3)	$\pi = (0, 9, 8, 5, 15, 14, 12)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,3) (3,7) (4,3) (4,6) (5,7)	(1,3) (1,4) (2,3) (3,7) (4,6) (5,7)
Archi di U	(3,5)	(3,5)
x	(0, 0, 5, 7, 0, 6, 7, 0, 2, 3, 0)	(0, 0, 5, 7, 0, 6, 7, 0, 2, 3, 0)
π	(0, 3, 11, 5, 7, 14, 15)	(0, 0, 8, 5, 4, 14, 12)
Arco entrante	(1,3)	(3,5)
ϑ^+,ϑ^-	9 , 0	0,3
Arco uscente	(4,3)	(3,7)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		2		5		7	7	4	1	(5
nodo 2	19	1	19	1	19	1	19	1	19	1	19	1	19	1
nodo 3	14	1	14	1	14	1	14	1	14	1	14	1	14	1
nodo 4	$+\infty$	-1	$+\infty$	-1	33	2	28	5	28	5	28	5	28	5
nodo 5	$+\infty$	-1	25	3	22	2	22	2	22	2	22	2	22	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	43	7	39	4	39	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	27	5	27	5	27	5	27	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2,	3	2,	5	4,	5	4,	7	4,	6	(3	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

aamanina aumantanta	\$		24
cammino aumentante	δ	<u>x</u>	v
1 - 2 - 5 - 7	5	(5, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0)	5
1 - 3 - 5 - 7	6	(5, 6, 0, 5, 0, 6, 0, 0, 11, 0, 0)	11
1 - 2 - 4 - 6 - 5 - 7	4	(9, 6, 4, 5, 0, 6, 4, 0, 15, 4, 0)	15

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 7 \ x_1 + 12 \ x_2 \\ 15 \ x_1 + 12 \ x_2 \ge 50 \\ 14 \ x_1 + 17 \ x_2 \ge 59 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{59}{14}, 0\right)$$
 $v_I(P) = 30$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(5,0)$$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	41	62	92
2		27	54	56
3			11	13
4				94

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4.

ciclo:
$$4 - 3 - 5 - 2 - 1$$
 $v_S(P) = 152$

 $v_I(P) = 117$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{45} , x_{35} , x_{15} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1 + x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 + 2x_1x_2 - 36 \le 0, \quad 1 - x_1x_2 \le 0\}.$$

Soluzioni del sistema	Massimo		Mini	Sella			
x	λ_1	λ_2	globale	locale	globale	locale	
(-1, -1)	0	-1	NO	SI	NO	NO	NO
(1, 1)	0	1	NO	NO	NO	SI	NO
$\left(3+\sqrt{8},\ 3-\sqrt{8}\right)$	-1/12	0	SI	SI	NO	NO	NO
$\left(3-\sqrt{8},\ 3+\sqrt{8}\right)$	-1/12	0	SI	SI	NO	NO	NO
$\left(-3+\sqrt{8},\ -3-\sqrt{8}\right)$	1/12	0	NO	NO	SI	SI	NO
$\left(-3-\sqrt{8}, \ -3+\sqrt{8}\right)$	1/12	0	NO	NO	SI	SI	NO

Esercizio 10. Si consideri il seguente problema:

$$\left\{ \begin{array}{ll} \min \ 2 \ x_1^2 + 4 \ x_2^2 - 2 \ x_1 - 9 \ x_2 \\ x \in P \end{array} \right.$$

dove P è il poliedro di vertici (-3,0), (4,1), (5,-3) e (-4,-2). Fare una iterazione del metodo del gradiente proiettato.

Ī	Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
					possibile		
	$\left(-\frac{10}{3}, -\frac{2}{3}\right)$	(-2,1)	$\begin{pmatrix} 1/5 & 2/5 \\ 2/5 & 4/5 \end{pmatrix}$	$\left(\frac{44}{5}, \frac{88}{5}\right)$	$\frac{5}{132}$	$\frac{5}{132}$	(-3,0)