デジタル信号処理の基礎-例題と Python による図で説く-

共立出版

正誤情報

最終更新: 2018 年 10 月 30 日

	行数,		
ページ	図・表・式番号	誤	正
		時刻0のときだけ値1をとり、	時刻0のときだけ値1をとり,
17	1 行目	そのほかのすべて時刻	そのほかのすべての時刻
44	図 3.19 (c)	X[n] $y[n]$ $y[n]$ a a b a b b a b b c c	x[n] $y[n]$ $y[n]$ $y[n]$ $y[n]$ $y[n]$ $y[n]$
67	図 5.2	$f(x_k) \Delta x$ $x_0 = a \qquad x_k = k\Delta x \qquad x_n = b$	$f(x_k) \Delta x$ $x_0 = a$ $x_k = \underline{a + k\Delta x}$ $x_n = b$
		00	∞
77	3 行目	$\cdots = \sum_{n=-\infty}^{\infty} (ae^{-j\omega})^n = \cdots$	$\cdots = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \cdots$
		= x[0] + x[1] + x[2]	= x[0] + x[1] + x[2]
88	下から5行目	$\cdots + x[N-1],$	$\pm \cdots + x[N-1],$
89	下から5行目	$f(u) = a_0 + a_2 u^2 + a_4 u^4$ $\cdots + a_{N-2} u^{N-2} + \cdots$	$f(u) = a_0 + a_2 u^2 + a_4 u^4$ $+ \dots + a_{N-2} u^{N-2} + \dots$
		 インパルス応答は右側系列で	 インパルス応答は右側系列で
116	6 行目	なければない.	なければ <u>ならない</u> .
186	3 行目	また, ω_0 は	また, $\underline{\omega_c}$ は
		$1 \uparrow \qquad x[2n]$	$1 \stackrel{\uparrow}{\bullet} \stackrel{\bullet}{\bullet} x[2n]$
190	図 Ex.1 (3)	$0 \xrightarrow{n}$	$0 \xrightarrow{n}$

ページ	行数, 図・表・式番号	誤	正
191	⊠ Ex.7	0.250 0.125 0.000 -5 0 5 10 15	h[n] 1.00 - 0.50 - 0.25 - 0.00
		$\sum_{i=1}^{\infty} 1$	~4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
194	7 行目	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{1}{k} \sin(kt)$.	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{2}{k} \sin(kt)$.
194	8 行目	$a_0 = \frac{1}{2} \cdot \frac{2}{T} \int_0^T t dt = \frac{1}{T} \left[\frac{t^2}{2} \right]_0^T = \frac{T}{2}.$	1 00 1 L - 10
		$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$	$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$
		$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$	$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$
194	10 行目	$-\frac{2\pi}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$	$-\frac{2T}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$
194	11 行目	$= \frac{2T}{2\pi kT} \int_0^T \cos\left(\frac{2\pi k}{T}t\right) dt = 0.$	$= \frac{2T}{2\pi kT} \left[\cos \left(\frac{2\pi k}{T} t \right) \right]_0^T = 0.$