DOSAGES: 1ere

Dosage spectrophotométrique de la vanilline dans un sachet de sucre vanillé.

Flash info! Sur le magazine en ligne « Femina.fr » Cyril Lignac dévoile sa recette de galette des rois originale pour changer de la traditionnelle frangipane.

Cyrielle Robart

jeu. 4 janvier 2024 à 12:28 PM UTC+1

« Tous en cuisine, menu de fêtes » (M6), c'est bientôt fini ! Pour cette dernière semaine, Cyril Lignac continue de régaler les gourmands avec des recettes accessibles à tous et toujours pleines de saveurs. Au programme du mercredi 3 janvier 2024 ? Une réinterprétation de la galette des Rois à la frangipane à l'occasion de l'Epiphanie, qui se tiendra ce dimanche 7 janvier.

Dans sa recette on trouve l'utilisation de sucre vanillé.

Sur l'étiquette d'un sachet de sucre vanillé, il est précisé l'information suivante : « 4,0 % en masse de vanilline ». On souhaite vérifier cette information.

Document n°1 : Protocole de préparation de la gamme étalon

- Dans une fiole jaugée de 1,00 L, introduire 100 mg de vanilline pure.
- Dissoudre complétement la vanilline et compléter jusqu'au trait de jauge avec de l'eau distillée. On obtient une solution mère notée S_0 .
- Dans une fiole jaugée de 100,0 mL, introduire 1,00 mL de S₀ et compléter au trait de jauge avec de l'eau distillé. On note S₁ la solution fille obtenue.
- Préparer de même des solutions filles S_2 à S_6 en prélevant respectivement des volumes égaux à 2,0 ; 3,0 ; 4,0 ; 5,0 et 6,0 mL de S_0 .
- Mesurer l'absorbance A des six solutions pour une longueur d'onde de 348 nm. A cette longueur d'onde, seule la vanilline absorbe.

Protocole de préparation de l'échantillon de sucre vanillé

- Dans une fiole jaugée de 500,0 mL, introduire 1,0 g de sucre vanillé.
- Dissoudre complétement le sucre et compléter jusqu'au trait de jauge avec de l'eau distillée
- Mesurer d'absorbance de la solution de sucre vanillé pour une longueur d'onde de 348 nm.

Résultats expérimentaux

Solutions filles	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	Sucre vanillé
Concentration en µmol.L ⁻¹		13	20	26	33	39	
Absorbance A	0,175	0,342	0,510	0,670	0,851	1,020	0,241

Donnée: masse molaire moléculaire de la vanilline M = 152,0 g.mol⁻¹.

<u>Question 1</u>: Montrer que la concentration de la solution mère vaut $6,6.10^{-4}$ mol.L⁻¹, puis en déduire la concentration molaire de la solution fille S_1 . On détaillera tout le raisonnement et on justifiera les calculs.

<u>Question 2</u>: le protocole de dissolution et de dilution de S_0 en S_1 sont incomplets. Réécrire chaque protocole avec toutes les étapes nécessaires.

<u>Question 3</u>: Comment a-t-on déterminé la longueur d'onde de travail (à l'aide de quelle courbe et où s'est-on placé et pourquoi ?). *On pourra tracer l'allure de la courbe concernée*. Cette longueur d'onde de travail correspond-elle à un rayonnement visible ? Justifier.

<u>Question 4 :</u> Enoncer la loi de Beer-Lambert, puis à l'aide d'une courbe tracée sur votre copie ou de l'utilisation de la calculatrice programmable en mode stat, montrer qu'elle est vérifiée pour le tableau de mesure. *Attention à bien présenter vos résultats et le raisonnement.*

Question 5 : déterminer la concentration molaire de la solution de sucre vanillée en vanilline.

<u>Question 6</u>: En déduire le pourcentage massique en vanilline du sucre vanillé et le comparer à l'indication de l'étiquette, conclure. Le raisonnement et les étapes doivent être correctement décrites et rédigées.