Theorem 1. Let g be an element of a group G and write

$$\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}.$$

Then $\langle g \rangle$ is a subgroup of G.

Proof. Since $1 = g^0$, $1 \in \langle g \rangle$. Suppose $a, b \in \langle g \rangle$. Then $a = g^k$, $b = g^m$ and $ab = g^k g^m = g^{k+m}$. Hence $ab \in \langle g \rangle$ (note that $k + m \in \mathbb{Z}$). Moreover, $a^{-1} = (g^k)^{-1} = g^{-k}$ and $-k \in \mathbb{Z}$, so that $a^{-1} \in \langle g \rangle$. Thus, we have checked the three conditions necessary for $\langle g \rangle$ to be a subgroup of G. \square

Definition 2. If $g \in G$, then the subgroup $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ is called the **cyclic subgroup of** G **generated by** g, If $G = \langle g \rangle$, then we say that G is a **cyclic group** and that g is a **generator** of G.

Examples 3. 1. If G is any group then $\{1\} = \langle 1 \rangle$ is a cyclic subgroup of G.

- 2. The group $G = \{1, -1, i, -i\} \subseteq \mathbb{C}^*$ (the group operation is multiplication of complex numbers) is cyclic with generator i. In fact $\langle i \rangle = \{i^0 = 1, i^1 = i, i^2 = -1, i^3 = -i\} = G$. Note that -i is also a generator for G since $\langle -i \rangle = \{(-i)^0 = 1, (-i)^1 = -i, (-i)^2 = -1, (-i)^3 = i\} = G$. Thus a cyclic group may have more than one generator. However, not all elements of G need be generators. For example $\langle -1 \rangle = \{1, -1\} \neq G$ so -1 is not a generator of G.
- 3. The group G = U(7) = the group of units in \mathbb{Z}_7 is a cyclic group with generator 3. Indeed,

$$\langle 3 \rangle = \{1 = 3^0, 3 = 3^1, 2 = 3^2, 6 = 3^3, 4 = 3^4, 5 = 3^5\} = G.$$

Note that 5 is also a generator of G, but that $\langle 2 \rangle = \{1, 2, 4\} \neq G$ so that 2 is not a generator of G.

- 4. $G = \langle \pi \rangle = \{ \pi^k : k \in \mathbb{Z} \}$ is a cyclic subgroup of \mathbb{R}^* .
- 5. The group G = U(8) is not cyclic. Indeed, since $U(8) = \{1, 3, 5, 7\}$ and $\langle 1 \rangle = \{1\}$, $\langle 3 \rangle = \{1, 3\}$, $\langle 5 \rangle = \{1, 5\}$, $\langle 7 \rangle = \{1, 7\}$, it follows that $U(8) \neq \langle a \rangle$ for any $a \in U(8)$.

If a group G is written additively, then the identity element is denoted 0, the inverse of $a \in G$ is denoted -a, and the powers of a become na in additive notation. Thus, with this notation, the cyclic subgroup of G generated by a is $\langle a \rangle = \{na : n \in \mathbb{Z}\}$, consisting of all the multiples of a. Among groups that are normally written additively, the following are two examples of cyclic groups.

- 6. The integers \mathbb{Z} are a cyclic group. Indeed, $\mathbb{Z} = \langle 1 \rangle$ since each integer $k = k \cdot 1$ is a multiple of 1, so $k \in \langle 1 \rangle$ and $\langle 1 \rangle = \mathbb{Z}$. Also, $\mathbb{Z} = \langle -1 \rangle$ because $k = (-k) \cdot (-1)$ for each $k \in \mathbb{Z}$.
- 7. \mathbb{Z}_n is a cyclic group under addition with generator 1.

Theorem 4. Let g be an element of a group G. Then there are two possibilities for the cyclic subgroup $\langle g \rangle$.

Case 1: The cyclic subgroup $\langle g \rangle$ is finite. In this case, there exists a smallest positive integer n such that $g^n = 1$ and we have

- (a) $g^k = 1$ if and only if $n \mid k$.
- (b) $g^k = g^m$ if and only if $k \equiv m \pmod{n}$.

(c) $\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}$ and the elements $1, g, g^2, \dots, g^{n-1}$ are distinct.

Case 2: The cyclic subgroup $\langle g \rangle$ is infinite. Then

- (d) $g^k = 1$ if and only if k = 0.
- (e) $g^k = g^m$ if and only if k = m.
- (f) $\langle g \rangle = \{\ldots, g^{-3}, g^{-2}, g^{-1}, 1, g, g^2, g^3, \ldots\}$ and all of these powers of g are distinct.

Proof. Case 1. Since $\langle g \rangle$ is finite, the powers g, g^2, g^3, \ldots are not all distinct, so let $g^k = g^m$ with k < m. Then $g^{m-k} = 1$ where m - k > 0. Hence there is a positive integer l with $g^l = 1$. Hence there is a smallest such positive integer. We let n be this smallest positive integer, i.e., n is the smallest positive integer such that $g^n = 1$.

- (a) If $n \mid k$ then k = qn for some $q \in n$. Then $g^k = g^{qn} = (g^n)^q = 1^q = 1$. Conversely, if $g^k = 1$, use the division algorithm to write k = qn + r with $0 \le r < n$. Then $g^r = g^k(g^n)^{-q} = 1(1)^{-q} = 1$. Since r < n, this contradicts the minimality of n unless r = 0. Hence r = 0 and k = qn so that $n \mid k$.
 - (b) $g^k = g^m$ if and only if $g^{k-m} = 1$. Now apply Part (a).
- (c) Clearly, $\{1, g, g^2, \ldots, g^{n-1}\} \subseteq \langle g \rangle$. To prove the other inclusion, let $a \in \langle g \rangle$. Then $a = g^k$ for some $k \in \mathbb{Z}$. As in Part (a), use the division algorithm to write k = qn + r, where $0 \le r \le n 1$. Then

$$a = g^k = g^{qn+r} = (g^n)^q g^r = 1^q g^r = g^r \in \{1, g, g^2, \dots, g^{n-1}\}$$

which shows that $\langle g \rangle \subseteq \{1, g, g^2, \dots, g^{n-1}\}$, and hence that

$$\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}.$$

Finally, suppose that $g^k = g^m$ where $0 \le k \le m \le n-1$. Then $g^{m-k} = 1$ and $0 \le m-k < n$. This implies that m-k=0 because n is the smallest positive power of g which equals 1. Hence all of the elements $1, g, g^2, \ldots, g^{n-1}$ are distinct.

- Case 2. (d) Certainly, $g^k = 1$ if k = 0. If $g^k = 1$, $k \neq 0$, then $g^{-k} = (g^k)^{-1} = 1^{-1} = 1$, also. Hence $g^n = 1$ for some n > 0, which implies that $\langle g \rangle$ is finite by the proof of Part (c), contrary to our hypothesis in Case 2. Thus $g^k = 1$ implies that k = 0.
 - (e) $g^k = g^m$ if and only if $g^{k-m} = 1$. Now apply Part (d).
- (f) $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ by definition of $\langle g \rangle$, so all that remains is to check that these powers are distinct. But this is the content of Part (e).

Recall that if g is an element of a group G, then the **order** of g is the smallest positive integer n such that $g^n = 1$, and it is denoted o(g) = n. If there is no such positive integer, then we say that g has **infinite order**, denoted $o(g) = \infty$. By Theorem 4, the concept of order of an element g and order of the cyclic subgroup generated by g are the same.

Corollary 5. If g is an element of a group G, then $o(g) = |\langle g \rangle|$.

Proof. This is immediate from Theorem 4, Part (c).

If G is a cyclic group of order n, then it is easy to compute the order of all elements of G. This is the content of the following result.

Theorem 6. Let $G = \langle g \rangle$ be a cyclic group of order n, and let $0 \le k \le n-1$. If $m = \gcd(k, n)$, then $o(g^k) = \frac{n}{m}$.

Proof. Let k = ms and n = mt. Then $(g^k)^{n/m} = g^{kn/m} = g^{msn/m} = (g^n)^s = 1^s = 1$. Hence n/m divides $o(g^k)$ by Theorem 4 Part (a). Now suppose that $(g^k)^r = 1$. Then $g^{kr} = 1$, so by Theorem 4 Part (a), $n \mid kr$. Hence

$$\frac{n}{m} \left| \frac{k}{m} r \right|$$

and since n/m and k/m are relatively prime, it follows that n/m divides r. Hence n/m is the smallest power of g^k which equals 1, so $o(g^k) = n/m$.

Theorem 7. Let $G = \langle g \rangle$ be a cyclic group where o(g) = n. Then $G = \langle g^k \rangle$ if and only if gcd(k, n) = 1.

Proof. By Theorem 6, if $m = \gcd(k, n)$, then $o(g^k) = n/m$. But $G = \langle g^k \rangle$ if and only if $o(g^k) = |G| = n$ and this happens if and only if m = 1, i.e., if and only if $\gcd(k, n) = 1$.

Example 8. If $G = \langle g \rangle$ is a cyclic group of order 12, then the generators of G are the powers g^k where gcd(k, 12) = 1, that is g, g^5 , g^7 , and g^{11} . In the particular case of the additive cyclic group \mathbb{Z}_{12} , the generators are the integers 1, 5, 7, 11 (mod 12).

Now we ask what the subgroups of a cyclic group look like. The question is completely answered by Theorem 10. Theorem 9 is a preliminary, but important, result.

Theorem 9. Every subgroup of a cyclic group is cyclic.

Proof. Suppose that $G = \langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ is a cyclic group and let H be a subgroup of G. If $H = \{1\}$, then H is cyclic, so we assume that $H \neq \{1\}$, and let $g^k \in H$ with $g^k \neq 1$. Then, since H is a subgroup, $g^{-k} = (g^k)^{-1} \in H$. Therefore, since k or -k is positive, H contains a positive power of g, not equal to 1. So let m be the smallest positive integer such that $g^m \in H$. Then, certainly all powers of g^m are also in H, so we have $\langle g^m \rangle \subseteq H$. We claim that this inclusion is an equality. To see this, let g^k be any element of H (recall that all elements of G, and hence H, are powers of g since G is cyclic). By the division algorithm, we may write k = qm + r where $0 \leq r < m$. But $g^k = g^{qm} g^r = (g^m)^q g^r$ so that

$$g^r = (g^m)^{-q} g^k \in H.$$

Since m is the smallest positive integer with $g^m \in H$ and $0 \le r < m$, it follows that we must have r = 0. Then $g^k = (g^m)^q \in \langle g^m \rangle$. Hence we have shown that $H \subseteq \langle g^m \rangle$ and hence $H = \langle g^m \rangle$. That is H is cyclic with generator g^m where m is the smallest positive integer for which $g^m \in H$. \square

Theorem 10 (Fundamental Theorem of Finite Cyclic Groups). Let $G = \langle g \rangle$ be a cyclic group of order n.

- 1. If H is any subgroup of G, then $H = \langle g^d \rangle$ for some $d \mid n$.
- 2. If H is any subgroup of G with |H| = k, then $k \mid n$.
- 3. If $k \mid n$, then $\langle g^{n/k} \rangle$ is the unique subgroup of G of order k.

Proof. 1. By Theorem 9, H is a cyclic group and since $|G| = n < \infty$, it follows that $H = \langle g^m \rangle$ where m > 0. Let $d = \gcd(m, n)$. Since $d \mid n$ it is sufficient to show that $H = \langle g^d \rangle$. But $d \mid m$ also, so m = qd. Then $g^m = (g^d)^q$ so $g^m \in \langle g^d \rangle$. Hence $H = \langle g^m \rangle \subseteq \langle g^d \rangle$. But d = rm + sn, where $r, s \in \mathbb{Z}$, so

$$g^d = g^{rm+sn} = g^{rm}g^{sn} = (g^m)^r(g^n)^s = (g^m)^r(1)^s = (g^m)^r \in \langle g^m \rangle = H.$$

This shows that $\langle g^d \rangle \subseteq H$ and hence $\langle g^d \rangle = H$.

- 2. By Part (a), $H = \langle g^d \rangle$ where $d \mid n$. Then k = |H| = n/d so $k \mid n$.
- 3. Suppose that K is any subgroup of G of order k. By Part (a), let $K = \langle g^m \rangle$ where $m \mid n$. Then Theorem 6 gives $k = |K| = |g^m| = n/m$. Hence m = n/k, so $K = \langle g^{n/k} \rangle$. This proves (c).

Remark 11. Part (b) of Theorem 10 is actually true for *any* finite group G, whether or not it is cyclic. This result is Lagrange's Theorem (Theorem 6.5, Page 86 of Judson).

The subgroups of a group G can be diagrammatically illustrated by listing the subgroups, and indicating inclusion relations by means of a line directed upward from H to K if H is a subgroup of K. Such a scheme is called the **lattice diagram** for the subgroups of the group G. We will illustrate by determining the lattice diagram for all the subgroups of a cyclic group $G = \langle g \rangle$ of order 12. Since the order of g is 12, Theorem 10 (c) shows that there is exactly one subgroup $\langle g^d \rangle$ for each divisor d of 12. The divisors of 12 are 1, 2, 3, 4, 6, 12. Then the unique subgroup of G of each of these orders is, respectively,

$$\{1\} = \langle g^{12} \rangle, \quad \langle g^6 \rangle, \quad \langle g^4 \rangle, \quad \langle g^3 \rangle, \quad \langle g^2 \rangle, \quad \langle g \rangle = G.$$

Note that $\langle g^m \rangle \subseteq \langle g^k \rangle$ if and only if $k \mid m$. Hence the lattice diagram of G is:

Finally, here is one more result about cyclic groups that is sometimes useful (for example, in the proof that U(4n) is cyclic—see Homework 5 solutions).

Lemma 12. A cyclic group contains at most one element of order 2.

Put another way, an involution of a cyclic group, if it exists, is unique.

Proof. Let $G = \langle a \rangle$ be a cyclic group.

If G is infinite, then there are no elements of order 2. So, assume the order of G is finite: $|G| = n < \infty$. If n = 1, then $G = \langle e \rangle$; if n = 2, then $G = \{e, a\}$ and $a^2 = e$. In both cases, there is nothing to prove.

Suppose n > 2, and let $x, y \in G$ be two non-identity elements of G, say, $x = a^j$ and $y = a^k$, where 1 < j, k < n. If $x^2 = e$, then $a^{2j} = e$. Therefore n divides 2j (by Theorem 4(a)). But j < n implies 2j < 2n, so the only way to have $n \mid 2j$ is n = 2j. If $y^2 = e$, then the same argument applied to k yields n = 2k. It follows that if $x^2 = e = y^2$, then j = k and so $x = a^j = a^k = y$. Hence involutions of cyclic groups are unique.

¹Recall, an *involution* is an element of order 2.