Лекция 16

Геометрические показатели орбит и зоны радиовидимости

Период обращения спутника, находящегося на круговой или эллиптической орбите, определяется соотношением:

$$T_0 = \frac{2\pi}{\sqrt{\mu}} a^{3/2}$$

а – большая полуось орбиты (радиус круговой орбиты); $\kappa m^3/c^2$, G, M — гравитационная постоянная и масса Земли.

Угловая скорость спутника, находящегося на орбите (орбитальная скорость), определяется соотношением:

$$\omega = \sqrt{\mu \left(\frac{2}{r_c} - \frac{1}{a}\right)}$$

r_c – расстояние от спутника до центра Земли

 $r = R_3 + h$, где R_3 - радиус Земли, h — высота орбиты. Тогда

$$\omega = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{r}\right)} = \sqrt{\mu \left(\frac{2-1}{r}\right)} = \sqrt{\frac{\mu}{r}}$$
 T. e. $\omega = \sqrt{\frac{\mu}{r}} = \text{const}$

Для эллиптических орбит $r_c = r(t) \neq const$, поэтому

$$\omega = \sqrt{\mu \left(\frac{2}{r_c(t)} - \frac{1}{a}\right)} = \omega(t) \neq const$$

Параметры орбит спутников

Положение орбит спутника в геоцентрической системе координат определяют шестью независимыми параметрами:

- 1. большой полуосью а;
- 2. эксцентриситетом e;
- 3. долготой восходящего узла Ω ;
- 4. наклонением орбиты -i;

5. угловым расстоянием (аргумент) перигея - ω;

6. средней аномалией – M_0 .

Ось X направлена из центра Земли до пересечения Гринвичского меридиана с экватором,

ось Y направлена в точку с координатами 0° с.ш 90° в.д,

ось Z направлена вдоль оси вращения Земли.

Эллипс — замкнутая кривая на плоскости, которая может быть получена как пересечение плоскости и кругового цилиндра.

Эллипс является геометрическим местом точек, сумма расстояний от которых до двух заданных точек F_1 и F_2 , называемых фокусами эллипса, есть величина постоянная. $F_1X + F_2X = 2 \cdot a$

Большая ось 2а — это отрезок, проходящий через фокусы эллипса, концы которого лежат на эллипсе.

Малая ось 2b — это отрезок, перпендикулярный большой оси эллипса и проходящий через ее центральную точку, концы которого лежат на эллипсе.

Фокальное расстояние с: $c = |F_1F_2|/2$

Большая полуось а — это отрезок, проведённый из центра эллипса к вершине на большой оси.

Эксцентриситет е: $e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}}$ (0<e<1) характеризует степень вытянутости эллипса.

Перифокусное расстояние r_p — минимальное расстояние от фокуса до точки на эллипсе, отсчитываемое вдоль большой оси.

Апофокусное расстояние r_a — максимальное расстояние от фокуса до точки на эллипсе, отсчитываемое вдоль большой оси.

Апогей – наиболее удаленная от центра Земли точка.

Перигей – наиболее приближенная к центру Земли точка.

Восходящий узел — это точка, в которой КА переходит из южного полушария в северное.

Нисходящий узел — точка перехода КА из северного полушария в южное.

Долгота восходящего узла \Omega — это угол, расположенный в экваториальной плоскости, и отсчитываемый от оси ОХ до линии, соединяющей восходящий и нисходящий узлы.

Наклонение орбиты i — это двугранный угол между плоскостью орбиты и плоскостью экватора, отсчитываемый от плоскости экватора против хода часовой стрелки для наблюдателя, находящегося в точке восходящего узла.

Аргумент перигея ω — это угловое расстояние от перигея до восходящего узла, отсчитываемое в плоскости орбиты КА в направлении его движения.

Перигелий

Аномалия (в небесной механике) — угол, используемый для описания движения тела по эллиптической орбите.

Истинная аномалия *v* представляет собой угол между радиус вектором и направлением на перицентр (перигей).

Средняя аномалия (обычно обозначается M_0) — произведение «среднего движения» КА и интервала времени после прохождения перицентра. Таким образом, средняя аномалия — угловое расстояние от перицентра КА, движущегося с постоянной угловой скоростью, равной среднему движению.

Эксцентрическая аномалия (обозначается E) — параметр, используемый для выражения переменной длины радиусвектора r. Уравнение, связывающее эти величины, имеет вид: $r = a(1 - e \cdot cos(E))$

Уравнение Кеплера: $E - e \cdot \sin(E) = M$

$$t-t_0 = \sqrt{\frac{a^3}{\mu}} \left(E - e \cdot \sin(E) \right) \implies M = \sqrt{\frac{\mu}{a^3}} (t-t_0) \qquad \sqrt{\frac{\mu}{a^3}} \qquad \begin{array}{c} - \text{ среднее} \quad \text{движение} \\ \text{ (средняя угловая ско-рость движения КА)} \end{array}$$

t₀ – момент времени прохождения КА перигея.

Обозначим высоту орбиты в точке перигея h_n , а в точке апогея $-h_a$, тогда

большая полуось орбиты: $a = R_3 + 0.5(h_{\Pi} + h_a)$

эксцентриситет орбиты:

$$\mathrm{e}=rac{\mathrm{c}}{\mathrm{a}}=rac{(\mathrm{h}_{\mathrm{a}}-\mathrm{h}_{\mathrm{\Pi}})\,/\,2}{\mathrm{R}_{\mathrm{3}}+\mathrm{0},5(\mathrm{h}_{\mathrm{\Pi}}+\mathrm{h}_{\mathrm{a}})}=rac{(\mathrm{h}_{\mathrm{a}}-\mathrm{h}_{\mathrm{\Pi}})}{2\mathrm{R}_{\mathrm{3}}+(\mathrm{h}_{\mathrm{\Pi}}+\mathrm{h}_{\mathrm{a}})}$$
 $\mathrm{R}_{\mathrm{3}}-\mathrm{радиус}$ Земли.

Точка пересечения с поверхностью Земли радиуса-вектора, проведенного в данную точку орбиты из центра Земли, называется подспутниковой точкой. Из этой точки КА виден точно в зените, т.е. ось луча антенны при наведении ее на спутник должна быть перпендикулярна поверхности Земли. В любой другой точке земной поверхности положение луча антенны земной станции (3С) отличается от зенита и характеризуется двумя углами — азимутом и углом места.

Координаты подспутниковой точки (широта и долгота):

$$\phi_{\text{IIIC}} = \arcsin(\sin(i) \cdot \sin(\omega + v(t - t_0)))$$

$$\theta_{\text{AC}} = \Omega_0 \frac{2\pi}{T_{\text{3B}}} (t - t_0) + \arctan\left(\cos(i) \cdot tg(\omega + v(t - t_0))\right)$$

Т_{зв} – длительность звездных суток, равная интервалу времени, за который Земля совершает один оборот вокруг своей оси относительно звезд ($T_{\rm \tiny 3R} = 23$ ч 56 мин 04 с).

Широта подспутниковой точки характеризует угол между радиус-вектором, **7** проведенным из центра Земли, и плоскостью экватора.

Долгота подспутниковой точки характеризует угол между плоскостью Гринвичского меридиана и плоскостью меридиана, проходящего через подспутниковую точку.

Для КА, находящегося на экваториальной геостационарной орбите, период обращения которого точно равен звездным суткам, азимут (A) и угол места (Y) земной станции (3C) можно вычислить согласно выражениям:

$$A \approx \arctan \frac{\sin(\theta_{\text{Ac}} - \theta_{\text{3c}})}{-\sin(\phi_{\text{3c}}) \cdot \cos(\theta_{\text{Ac}} - \theta_{\text{3c}})} + k\pi$$

$$\gamma \approx \arcsin \frac{H\cos(\phi_{3c})\cos(\theta_{dc} - \theta_{3c}) - R_3}{\sqrt{H^2 + R_3^2 - 2HR_3\cos(\phi_{3c})\cos(\theta_{dc} - \theta_{3c})}}$$

 $\phi_{3c},\,\theta_{3c},$ - широта и долгота точки размещения 3C;

k=0 при $\phi_{3c}<0$, $\theta_{дc}>\theta_{3c}$, k=2 при $\phi_{3c}<0$, $\theta_{дc}<\theta_{3c}$, k=1 при $\phi_{3c}>0$;

Н=42170 км – высота орбиты относительно центра Земли.

Период обращения спутника обычно выбирают равным $T_0 = T_{3B}/N$, где N- число обращений спутника вокруг Земли за сутки. При таком T_0 спутник появляется над одними и теми же районами Земли в одинаковые моменты времени.

Зоны радиовидимости ЗС

Зоной радиовидимости ЗС называют часть земной поверхности, откуда КА виден под углами от δ_{\min} до δ_{\max} относительно горизонта, где δ_{\min} — минимальный угол возвышения антенны, начиная с которого ЗС может принимать сигналы спутника (угол между направлением на КА и плоскостью, касательной к поверхности Земли), а δ_{\max} — максимальный угол возвышения

антенны, при котором связь пропадает.

Для границы зоны радиовидимости можно записать в каждый момент времени следующие соотношения:

$$\alpha + \delta_{min} + \varphi_0 = 90^0$$

$$R_{\text{max}}^2 = r^2 + R_3^2 \alpha - 2R_3 r \cos(\varphi_0)$$

$$R_{\text{max}} = R_3 \frac{\sin(\varphi_0)}{\sin(\alpha)} = r \frac{\sin(\varphi_0)}{\cos(\delta_{\text{min}})}$$

 ϕ_0 — угловое расстояние границы зоны радиовидимости от подспутниковой точки х; R_{max} — максимальная наклонная дальность; r — радиус-вектор спутника.

Орбита ИСС

Зона охвата территории ИСС

Границы зоны радиовидимости определяют следующим образом:

- 1. задают:
 - > момент времени,
 - > параметры орбиты,
 - ➤ координаты подспутниковой точки,
 - > значение радиус-вектора спутника,
 - > минимальное возвышение антенн;
- 2. рассчитывают углы α и ϕ_0 :

$$\sin(\alpha) = (R_3 \cos(\delta_{\min}))/r$$

$$\phi_0 = 90^0 - \delta_{\min} - \arcsin((R_3 \cos(\delta_{\min}))/r)$$

Географические координаты границы зоны радиовидимости $\phi_{\text{шгр}}$ и $\theta_{\text{дгр}}$ связаны с координатами подспутниковой точки соотношением:

$$\cos(\varphi_0) = \sin(\varphi_{\text{шc}})\sin(\varphi_{\text{шгp}}) + \cos(\varphi_{\text{шc}})\cos(\varphi_{\text{шгp}})\cos(\theta_{\text{дc}} - \theta_{\text{дгp}})$$

Поэтому если последовательно задавать значения угла $\phi_{\text{шгр}}$ в пределах $\phi_{\text{шс}} + \phi_0$, то можно найти значения $\theta_{\text{дгр}}$ и по этим данным построить зону радиовидимости.

Область покрытия несколько отличается от зоны радиовидимости, поскольку она устанавливается с учетом минимального порогового уровня мощности бортового ретранслятора (обычно это на 3 дБ меньше, чем в направлении максимума).

Надежность обслуживания абонентов

Зависит от таких параметров ССС как связность и кратность покрытия.

Связность — возможность соединения абонентов, расположенных в одной или разных зонах обслуживания. Связность обеспечивается при наличии между абонентами непрерывного или квазинепрерывного канала связи. Непрерывная связность обеспечивается, если в зоне радиовидимости обоих абонентов находится, как минимум, один КА.

Кратность покрытия n – это нахождение нескольких КА одновременно в зоне радиовидимости абонентов. Для расчета числа КА, обеспечивающих глобальное покрытие земной поверхности, можно записать выражение:

$$N = \left\lceil \frac{4\sqrt{3}}{9} \left(\frac{\pi}{\gamma} \right)^2 \right\rceil = q \cdot p$$

$$\gamma = \arccos\left(\frac{\cos(\delta)}{1 + h/R_3}\right) - \delta$$

h – высота орбиты КА

$$q = \left[2\pi / (\sqrt{3}\gamma) \right]$$

 $q = \lceil 2\pi/(\sqrt{3}\gamma) \rceil$ — количество КА, расположенных в одной орбитальной плоскости;

$$p = \left\lceil 2\pi/(3\gamma) \right\rceil$$

 $p = \lceil 2\pi/(3\gamma) \rceil$ — количество орбитальных плоскостей;

Многократная связность обеспечивается, если в зоне радиовидимости абонентов находится несколько КА в течение заданного времени.

Вероятность одновременного нахождения в зоне радиовидимости п спутников можно определить из уравнения:

$$P = 1 - \left(1 - \frac{\Delta T}{T}\right)$$
 ΔT — доля периода, в течение которой КА в среднем находится в зоне радиовидимости 3C.

Время пребывания КА в зоне радиовидимости зависит от параметров орбиты и угла места 3C. Чем выше орбита, тем больше время пребывания КА в пределах прямой видимости 3C.

Особенности построения МЕО и LEO систем

При построении МЕО и LEO орбитальных спутниковых группировок используют круговые орбиты одинаковой высоты и наклона с равномерным распределением n_n плоскостей в пространстве и n_c спутников в каждой плоскости. При этом *угол между смежными плоскостиями* составляет $\Delta \phi = 180^{\circ}/n_n$, а *угловое расстояние между спутниками в каждой плоскости*: $\Delta \psi = 360^{\circ}/n_c$. При использовании полярных орбит область наибольшего разрежения спутников находится в экваториальном поясе, а наибольшего скопления — в приполярных областях.

Фазирование орбитальных плоскостей

случайное

смещение спутников в разных орбитальных плоскостях на случайную величину $\Delta \psi_{\scriptscriptstyle W}$

упрощает процесс разворачивания и эксплуатации орбитальной группировки, особенно в случае использования КА с небольшой массой, энергопотреблением и точностью ориентации

фиксированное

смещение спутников в смежных орбитальных плоскостях на величину $\Delta \psi_{\psi} = \Delta \psi/2$

позволяет минимизировать общее количество КА для полного покрытия земной поверхности при обеспечении заданных вероятностновременных характеристик информационного обмена

Угловой размер зоны обслуживания α_0 для систем со случайным 13 фазированием орбитальных плоскостей:

$$\alpha_0 = \arccos\left(\cos^2(2\pi/n_{_{\Pi}}) \cdot \left(\cos(2\pi/n_{_{\Pi}}) - \sin^2(2\pi/n_{_{\Pi}})\right)\right)$$

а для систем с фиксированным фазированием:

$$\alpha_0 = 2 \left(\Delta \phi - \arccos \left(\frac{\sin(\Delta \phi)}{\sqrt{1 + \cos(\Delta \psi / 2)(\cos(\Delta \psi / 2) - 2\cos(\Delta \psi))}} \right) \right)$$

От углового размера зоны обслуживания зависит максимальное время пребывания абонента в зоне обслуживания:

$$T_0 \approx 1,65 \cdot 10^{-4} \sqrt{(R_3 + h)^3}$$

Очевидно, что с уменьшением высоты орбиты существенно возрастает угловая скорость обращения КА. При этом увеличивается скорость «скольжения» зон обслуживания, равная $v_c = 120\pi R_3/T_0$ км/ч. В результате уменьшается длительность сеанса связи и становится более ощутимым влияние эффекта Доплера.

Параметры глобальных систем спутниковой радиотелефонной связи

Характеристики	Название системы				
	Iridium	Globalstar	Odissey	ISO	Triton
Тип орбиты	LEO	LEO	MEO	MEO	GEO
Ширина луча, град	8,2	20,5	6,5	4,5	1,5
Диаметр мгновенной зоны парциального луча, км	600	1642	1192	813	942
Время радиовидимости, мин	9	10 – 12	90	90	Кругло- суточно
Задержка при одиночном скачке (местная связь), мс	240	120	190	240	400
Глобальная задержка (международная связь), мс	410	250	380	480	600