

КАТАЛОГ АВТОМАТИЗИРОВАННЫХ ЛАБОРАТОРНЫХ СТЕНДОВ

ИННОВАЦИОННЫЕ РАЗРАБОТКИ

ДОРОГИЕ ДРУЗЬЯ!

Пензенский государственный университет предлагает учебным заведениям и предприятиям различных форм собственности сотрудничество по проектированию и изготовлению автоматизированных лабораторных стендов — измерительных систем (платформ) для исследования свойств материалов и элементов электронной техники.

Стенды, изготавливаемые в ПГУ, позволяют внедрить современные информационные технологии при подготовке высококвалифицированных специалистов электронного, электротехнического, радиотехнического, приборостроительного направлений подготовки.

Наши лабораторные стенды разработаны при непосредственном участии лучших специалистов региона: преподавателей и сотрудников ПГУ, что является гарантией высокого качества вышеназванных платформ и их конкурентоспособности в реальных условиях обучения будущих и повышения квалификации действующих специалистов.

Пензенский государственный университет является не только лидером регионального рынка высшего образования, но и признанным научно-техническим центром с богатой историей и традициями научно-исследовательской работы и изобретательства. Доверяя создание автоматизированных лабораторных стендов нашим специалистам, вы получаете современные и надежные образцы натурных аналогов электрооборудования для формирования профессиональных навыков ваших студентов и сотрудников.

Мы открыты для сотрудничества и готовы рассмотреть любые предложения и пожелания наших потенциальных партнеров и изготовить оборудование в соответствии с заданными вами параметрами. Автоматизированные лабораторные стенды от Пензенского государственного университета — это реальная интеграция образования и науки для создания высокотехнологичной инфраструктуры образовательной среды как основа удовлетворения требованиям качественной подготовки технических специалистов.

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ СЕГНЕТОЭЛЕКТРИКОВ

НАЗНАЧЕНИЕ

Автоматизированные измерения характеристик сегнетоэлектриков

СОСТАВ АППАРАТНОЙ ЧАСТИ

- Измерительный блок с термокамерой и образцом сегнетоэлектрика
- Персональный компьютер

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Автоматизированные измерения характеристик сегнетоэлектриков:

- петли сегнетоэлектрического гистерезиса и ее параметров,
- основной кривой поляризации,
- температурной зависимости

диэлектрической проницаемости и тангенса угла диэлектрических потерь,

• временных зависимостей напряженности поля и заряда на образце.

	OI O D/IOIUI
Максимальное напряжение на образце	250 B
Частотный диапазон напряжения поляризации	20 - 2000 Гц
Максимальная температура образца	90 °C

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ МАГНИТОМЯГКИХ МАТЕРИАЛОВ

НАЗНАЧЕНИЕ

Автоматизированные измерения характеристик магнитомягких материалов

СОСТАВ АППАРАТНОЙ ЧАСТИ

- Измерительный блок со сменными образцами магнитомягких материалов
- Персональный компьютер

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Автоматизированные измерения характеристик магнитомягких материалов:

- петли гистерезиса и ее параметров,
- основной кривой намагничивания,
- магнитной проницаемости,
- временных зависимостей индукции и напряженности поля в образце.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО БЛО	KA
Количество образцов	2
Максимальная амплитуда тока намагничивания	1 A
Частотный диапазон тока намагничивания	10 - 2000 Гц
Максимальная амплитуда напряжения на обмотке намагничивания	20 B

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИЗМЕРЕНИЙ СТАТИЧЕСКИХ МАГНИТНЫХ ХАРАКТЕРИСТИК ПО МЕТОДИКЕ ГОСТ 8.377-80

НАЗНАЧЕНИЕ

Автоматизированные измерения характеристик магнитомягких материалов для научных исследований и промышленного контроля.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

- В стенде осуществляется программная реализация следующих процедур измерений в соответствии с ГОСТ 8.377-80:
- измерение петли гистерезиса и ее параметров,
- измерение основной кривой намагничивания,
- размагничивание образца.

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Программное обеспечение стенда работает в среде OC Windows. Результаты измерений сохраняются в базе данных. Экспорт данных в текстовом формате.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО БЛОКА		
Диапазоны установки тока намагничивания		
с разрешением 12 бит	0,5; 5; 30 A	
Основная приведенная погрешность установки тока намагничивания		
Максимальное напряжение между клеммами подключения		
обмотки намагничивания	20 B	
Пределы измерений магнитного потока 100; 200; 500; 1000; 200	0; 5000 мкВеб	
Основанная приведенная погрешность измерения магнитного потока	2 %	
Электропитание от сети переменного тока	220 В. 50 Гп	

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ПРОВОДНИКОВ

НАЗНАЧЕНИЕ

Автоматизированные измерения температурных зависимостей сопротивления проводников

СОСТАВ АППАРАТНОЙ ЧАСТИ

- Измерительный блок с установленной в него термокамерой и образцами проводниковых материалов (медь, никель, константан, резистивный сплав)
- Персональный компьютер

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Автоматизированные измерения температурных характеристик проводниковых материалов:

- температурной зависимости сопротивления материала,
- температурного коэффициента сопротивления,
- зависимости температурного коэффициента сопротивления от состава.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОІ	ГО БЛОКА
Диапазон сопротивлений образцов	50 — 300 Ом
Максимальная температура образцов	90 °C
Абсолютная погрешность измерения температуры	1 °C
Количество образцов проводниковых материалов	4

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ПОСТОЯННЫХ РЕЗИСТОРОВ

НАЗНАЧЕНИЕ

Автоматизированные измерения температурных характеристик резисторов постоянного сопротивления

СОСТАВ АППАРАТНОЙ ЧАСТИ

- Измерительный блок
- Кассеты с наборами постоянных резисторов
- Персональный компьютер

- Измерение температурных характеристик постоянных резисторов
- Оценка разброса значений номинального сопротивления
- Определение температурного коэффициента сопротивления
- Определение законов распределения сопротивления и температурного коэффициента сопротивления

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО	БЛОКА
Количество образцов резисторов в наборе	до 29
Диапазон измеряемых сопротивлений	400 - 1600 Ом
Основная погрешность измерения сопротивления не более	0,05 %
Абсолютная погрешность измерения температуры не более	1 °C
Максимальная температура нагрева	95 °C
Длительность цикла измерений не более	2 c

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ПОСТОЯННЫХ КОНДЕНСАТОРОВ

НАЗНАЧЕНИЕ

Автоматизированные измерения температурных характеристик постоянных конденсаторов

СОСТАВ АППАРАТНОЙ ЧАСТИ

- Измерительный блок с термокамерой и набором образцов постоянных конденсаторов
- Персональный компьютер

- Измерение температурных характеристик емкости постоянных конденсаторов
- Определение температурных коэффициентов емкости образцов
- Построение зависимости диэлектрической проницаемости материала от температуры

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО БЛОКА	
Количество образцов конденсаторов	7
Основная погрешность измерения емкости	0,1 %
Абсолютная погрешность измерения температуры не более	1 °C
Максимальная температура нагрева	95 °C
Длительность цикла измерений не более	0,5 c

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ПОЛУПРОВОДНИКОВ МЕТОДОМ ЭФФЕКТА ХОЛЛА

НАЗНАЧЕНИЕ

Автоматизированные измерения зависимости эдс Холла от индукции магнитного поля, температуры и тока в образце

СОСТАВ АППАРАТНОЙ ЧАСТИ

- Измерительный блок
- Магнитная система со встроенными образцами
- Персональный компьютер

- Автоматизированные измерения зависимости эдс Холла от индукции поля при различных значениях температуры и тока через образец и при различной полярности электрического и магнитного полей
- Построение зависимости удельной электропроводности, концентрации и подвижности носителей заряда от температуры
- Определение ширины запрещенной зоны материала полупроводника

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО БЛОКА И МАГНИТНОЙ СИСТЕМЫ	
Габаритные размеры магнитной системы	120х70х65 мм
Масса магнитной системы не более	2 кг
Максимальная индукция магнитного поля в зазоре	0,15 Τλ
Количество образцов	2
Максимальный ток через образец	4 mA
Максимальное напряжение на образце	6 B
Диапазон измерения эдс Холла	200 мВ
Максимальная температура образца	100 °C

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ФОТОЭЛЕКТРИЧЕСКИХ СВОЙСТВ ПОЛУПРОВОДНИКОВ

НАЗНАЧЕНИЕ

Автоматизированные измерения фотоэлектрических характеристик полупроводниковых материалов и приборов

СОСТАВ АППАРАТНОЙ ЧАСТИ

- Измерительный блок
- Оптическая система с набором светодиодов и фотоприемников
- Персональный компьютер

- Автоматизированные измерения люксамперных, спектральных, переключательных характеристик фотоприемников
- Расчет электрофизических параметров исходного материала

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО БЛ	\OKA
Количество источников излучения (светодиодов)	10
Диапазон длин волн источников излучения	400-1000 нм
Количество приемников излучения	6
Диапазон изменения напряжения источников излучения	0-10 B
Диапазон изменения напряжения приемников излучения	0-6 B
Диапазон измерения тока приемников излучения	0,3-3000 мкА
Диапазон измерения фото-э.д.с.	5-500 мВ
Диапазон измерения длительности переходного процесса тока	
приемников излучения	0,1-200 мс

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ВОЛЬТ-ФАРАДНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВЫХ СТРУКТУР

НАЗНАЧЕНИЕ

Автоматизированные измерения вольтфарадных и вольтамперных характеристик полупроводниковых структур

СОСТАВ АППАРАТНОЙ ЧАСТИ

- Измерительный блок со встроенными образцами
- Набор внешних образцов
- Персональный компьютер

- Автоматизированные измерения C-V и G-V- характеристик полупроводниковых структур
- Автоматизированные измерения ВАХ полупроводниковых структур
- Расчет профиля распределения концентрации легирующей примеси
- Определение емкости и толщины диэлектрика, сопротивления подложки МДП-структуры

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО БЛОКА	
Диапазоны измерения емкости образцов	1000, 300, 100, 30, 10 пФ
Диапазон изменения напряжения смещения на образце	±10 B
Максимальный постоянный ток смещения	10 мкА
Частота тестового сигнала	1 МГц
Амплитуда тестового сигнала на образце	25, 250 мВ
Количество встроенных образцов	3
Относительная погрешность измерения емкости	3 %

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ БИПОЛЯРНЫХ ТРАНЗИСТОРОВ

НАЗНАЧЕНИЕ

Автоматизированные измерения характеристик биполярных транзисторов

СОСТАВ АППАРАТНОЙ ЧАСТИ

- Измерительный блок с установленной в него термокамерой и образцами биполярных транзисторов
- Персональный компьютер

- Стенд позволяет реализовать цикл лабораторных работ:
- измерение BAX p n-перехода и сравнение ее с идеальной характеристикой,
- исследование прямой ветви ВАХ различных схем диодного включения транзистора при различных температурах,
- измерение обратной ветви ВАХ электронно-дырочного перехода при различных температурах,
- исследование явлений лавинного и туннельного пробоя,
- измерение входных характеристик транзистора при различных напряжениях на коллекторе и различных температурах,
- исследование семейства выходных характеристик транзистора при различных температурах,
- передаточные характеристики и характеристики обратной связи биполярного транзистора в схеме с общим эмиттером.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО БЛОКА	
Количество образцов	4
Диапазон напряжений на переходе	-100 + 2 B
Максимальное напряжене коллектор - эмиттер	10 B
Пределы измерения тока	50; 10; 2; 0,5; 0,1 и 0,02 мА
Основная погрешность измерения ВАХ не более	0,5 %
Абсолютная погрешность измерения температуры не более	1 °C
Максимальная температура нагрева	95 °C
Длительность цикла измерений не более	1,5 c

АВТОМАТИЗИРОВАННЫЙ ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ПОЛЕВЫХ ТРАНЗИСТОРОВ

НАЗНАЧЕНИЕ

Автоматизированные измерения характеристик полевых транзисторов с управляющим р-п-переходом и изолированным затвором

СОСТАВ АППАРАТНОЙ ЧАСТИ

- Измерительный блок с установленной в него термокамерой и образцами полевых транзисторов
- Персональный компьютер

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Стенд позволяет реализовать цикл лабораторных работ:

• Измерение передаточной характеристики.

- Измерение выходных характеристик транзистора при различных напряжениях на затворе.
- Исследование семейства выходных характеристик транзистора при различных температурах.
- Измерение крутизны передаточной характеристики в зависимости от напряжения на затворе.
- Определение термостабильной точки передаточной характеристики полевого транзистора.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЬНОГО	О БЛОКА
Количество образцов	4
Диапазон напряжений затвор - исток	-6 +6 B
Диапазон напряжений сток - исток	-10 + 10 B
Пределы измерения тока	20; 2; 0,2; и 0,02 мА
Основная погрешность измерения ВАХ не более	0,5 %
Абсолютная погрешность измерения температуры не более	1 °C
Максимальная температура нагрева	95 °C
Длительность цикла измерений не более	1,5 c

