Méthode Ford & Fulkerson

tant qu'il existe une chaîne augmentante faire

- chercher une chaîne augmentante
- augmenter le flot sur la chaîne fait

A préciser :

- comment chercher
- de combien augmenter

Le théorème Flot-max Coupe-min

Théorème:

Soit f un flot dans un réseau G(V,E) de source s et puits t. Les conditions suivantes sont équivalentes :

- 1. f est un flot maximum
- 2. le réseau résiduel G_f ne contient pas de chaîne augmentante
- 3. |f| = c(S,S') pour une coupe (S,S') de G

Preuve:

$$3 \Rightarrow 1$$

Comme $|f| \le c(S,S')$ pour toute coupe (S,S') de G, si on a égalité, c'est un flot maximum.

 $1 \Rightarrow 2$

ou plus exactement $-2 \Rightarrow -1$

Supposons que G_f contient une chaîne augmentante.

Ainsi, on peut augmenter f et donc f n'est pas un flot maximum.

Si G_f ne contient pas de chaîne augmentante, c'est que G_f ne contient pas de chemin de s vers t. Soit $S=\{x\in V\mid \text{il existe un chemin dans }G_f\text{ de }s\text{ vers }x\}$ et soit S'=V-S.

Ainsi (S, S') est une coupe qui sépare s de t ($s \in S$ et $t \notin S$).

Soit uv un arc de G, avec $u \in S$ et $v \in S'$. Comme uv n'est pas dans G_f , nous devons avoir f(uv)=c(uv).

Ainsi |f| = c(S,S').

CQFD

Le résultat final (après 200 000 augmentations)

Conclusion

Tel quel l'algorithme n'est pas polynomial!

Que pouvons nous dire quand même?

$$O(f_{\text{max}} |E|)$$

Pourquoi?

Car si les capacités sont entières, alors toutes les valeurs sont toujours entières!

Version Edmonds-Karp

Il s'agit de choisir une plus courte chaîne augmentante.

Intérêt?

Complexité en $O(n m^2)$

avec n=|V| et m=|E|

Idée de la preuve

Notons $dist_f(x,y)$ la distance du sommet x au sommet y dans G_f .

Remarque (non triviale):

la fonction dist f(s,t) est croissante (non décroissante) en f.

Corollaire:

On a au plus O(n m) augmentations

La méthode Ford & Fulkerson avec capacités réelles

Exemple de pb. avec Ford & Fulkerson

$$\alpha = \frac{\sqrt{5} - 1}{2} \approx 0,618033988749895...$$

Le flot maximum (trivial ...)

$$\alpha = \frac{\sqrt{5} - 1}{2} \approx 0,618033988749895...$$

Une propriété

Soit $\alpha = (\text{sqrt}(5)-1)/2 \approx 0.618$

On définit

$$a_n = \alpha^n$$

Et on obtient

$$a_0 = 1$$

$$a_1 = \alpha$$

$$a_{n+2} = a_n - a_{n+1}$$

Les augmentations (1)

augmentation: 1

chaîne : s,3,4,t

Les augmentations (2)

augmentation: a₁

chaîne: s,2,4,3,1,t

Les augmentations (3)

augmentation: a₁

chaîne: s,3,4,2,t

Les augmentations (4)

augmentation: a₂

chaîne: s,2,4,3,1,t

Les augmentations (5)

augmentation: a₂

chaîne : s,1,3,4,t

Les augmentations (6)

augmentation: a₃

	s,1	s,2	s,3	3,1	2,4	3,4	2,t	4,t	1,t
cap	M	M	M	1	α	1	M	M	M
1			1			1		1	
2		$\mathbf{a_1}$	1	$\mathbf{a_1}$	$\mathbf{a_1}$	1-a ₁		1	$\mathbf{a_1}$
3		$\mathbf{a_1}$	1+a ₁	\mathbf{a}_1	0	1	$\mathbf{a_1}$	1	$\mathbf{a_1}$
4		a ₁ + a ₂	1+a ₁	a ₁ + a ₂	$\mathbf{a_2}$	1-a ₂	\mathbf{a}_1	1	a ₁ + a ₂
5	$\mathbf{a_2}$	a ₁ +a ₂	1+a ₁	$\mathbf{a_1}$	\mathbf{a}_{2}	1	\mathbf{a}_1	1+a ₂	a ₁ +a ₂
•									
•									
•									

	flot 3 →1	flot 2→4	flot 3 → 4
4k+1	$\mathbf{a_{2k}}$	$\mathbf{a}_{2\mathbf{k}+1}$	0
4k+2	$\mathbf{a}_{2\mathbf{k}+2}$	0	$\mathbf{a}_{2\mathbf{k}+1}$
4k+3	$\mathbf{a}_{2\mathbf{k}+2}$	$\mathbf{a}_{2\mathbf{k}+1}$	0
4k+4	0	$\mathbf{a}_{2\mathbf{k}+3}$	$\mathbf{a}_{2\mathbf{k}+2}$
4k+5	$\mathbf{a}_{2\mathbf{k}+2}$	$\mathbf{a}_{2\mathbf{k}+3}$	0

Le problème ...

Le problème est que la suite des augmentations est 1, a_1 , a_1 , a_2 , a_2 , a_2 , a_3 , a_3 , a_4 , a_4 , ...

Ce qui nous fait converger vers

$$1 + 2\sum_{i=1}^{\infty} \alpha^{i} = 2\sum_{i=0}^{\infty} \alpha^{i} - 1 = 2\frac{1}{1-\alpha} - 1 = \frac{2-1+\alpha}{1-\alpha} = \frac{1+\alpha}{1-\alpha}$$

Ce qui est inférieur à 5, donc on est bien loin de 2M+1!

Réseaux avec bornes inf et sup

Dans les réseaux que nous avons vu précédemment, $f(e) \ge 0$.

Dans un cas plus général : toute arête e dispose de deux bornes, b(e) et c(e) et on exige

$$b(e) \le f(e) \le c(e)$$

Ford & Fulkerson?

Peut-on adapter

l'algorithme de Ford & Fulkerson?

OUI mais

Réseau résiduel

Si on a un arc de *u* vers *v*, alors

on met dans G_f un arc de u vers v de capacité

$$c_f(u,v) = c(u,v) - f(u,v)$$

 $(\operatorname{si} c(u,v) > f(u,v))$

on met dans G_f un arc de ν vers u de capacité

$$c_f(v,u) = f(u,v) - b(u,v)$$
$$(f(u,v) > b(u,v))$$

Le réseau résiduel

Recherche de chaîne augmentante

La chaîne augmentante

C

On peut faire une augmentation de $min\{11,4,2,5,9\}=2$.

Le flot résultant

Le réseau résiduel

La chaîne augmentante

On peut faire une augmentation de $min{3,1,7}=1$.

Le flot résultant

Le réseau résiduel

Recherche de chaîne augmentante

Recherche de chaîne augmentante

Et on ne peut plus continuer!

La coupe

Définition:
$$c(S) = \sum_{e \in (S;S')} c(e) - \sum_{e \in (S';S)} b(e)$$

Propriété: pour tout flot f et pour toute coupe S $|f| \le c(S)$

Corollaire: Si |f| = c(S) alors le flot est maximum et la coupe S est de capacité minimum.

La coupe (suite)

Le théorème du flot max – coupe min se déduit exactement comme dans le cas précédent;

Mais ...

Il reste un seul problème ...

Dans le cas classique, nous avons commencé avec un flot nul, puis augmenté

Mais ici un flot nul n'est pas un flot "correcte" (ne respecte pas $b(e) \le f(e)$)

Un flot "correcte" on appelle un flot admissible.

Recherche de flot admissible

Cas simple où il n'en existe pas :

Recherche de flot admissible

Cas plus compliqué où il n'en existe pas :

Recherche de flot admissible

On rajoute une "source" s, et un "puits" t.

On construit un réseau "classique" avec borne inférieure 0 et borne supérieure <u>c</u>.

Pour chaque nœud v on rajoute

- un arc (v, \underline{t}) avec $\underline{c}(v, \underline{t}) = \sum_{e \in \text{Out}(v)} b(e)$
- un arc (\underline{s}, v) avec $\underline{c}(\underline{s}, v) = \sum_{e \in \text{In}(v)} b(e)$

Pour toute les autres arcs on définit

$$\underline{c}(e) = c(e) - b(e)$$

On rajoute deux arcs: $\underline{c}(s, t) = \infty$ et $\underline{c}(t, s) = \infty$.

Exemple

La caractérisation

Théorème: Le réseau original admet un flot admissible si et seulement si le flot maximum du réseau modifié sature toutes les arêtes sortants de <u>s</u>.

Remarque : dans ce cas les arcs entrants en <u>t</u> sont aussi saturés.

La preuve

SI:

Supposons avoir un flot maximum <u>f</u> dans le réseau modifié.

Pour le réseau original on défini pour toutes les $arcs f(e) = \underline{f}(e) + b(e)$.

Comme nous avons $0 \le \underline{f}(e) \le \underline{c}(e) = c(e) - b(e)$ on obtient $b(e) \le f(e) \le c(e)$

La preuve (suite)

La conservation des flots : soit v un sommet, $v \neq s$, t nous avons dans G_{aux}

$$\Sigma_{e \in \text{In}(v)} \underline{f}(e) + \underline{f}(\underline{s},v) = \Sigma_{e \in \text{Out}(v)} \underline{f}(e) + \underline{f}(v,\underline{t})$$

mais comme

$$\underline{f}(\underline{s},v) = \underline{c}(\underline{s},v) = \Sigma_{e \in \text{In}(v)} b(e)$$

et

$$\underline{f}(v,\underline{t}) = \underline{c}(v,\underline{t}) = \Sigma_{e \in \text{Out}(v)} b(e)$$

on a

$$\Sigma_{e \in \text{In}(v)} f(e) = \Sigma_{e \in \text{Out}(v)} f(e)$$

et ainsi le flot f est admissible.

La preuve (3)

Seulement si:

En fait la preuve est "réversible".

En effet, si on a un flot admissible, on peut en déduire un flot \underline{f} dans G_{aux} .

Le résultat vérifie la conservation des flots dans tous les sommets, sauf éventuellement s et t.

Mais ceci peut être assuré, en utilisant les arcs de capacité infinie entre elles.

L'exemple

L'exemple (2)

Gaux

L'exemple (3)

L'exemple (4)

L'exemple (5)

L'exemple (6)

L'exemple (7)

L'exemple (8)

L'exemple (8)

L'exemple

L'exemple (10)

L'exemple (11)

L'exemple (12)

L'exemple (13)

L'exemple (14)

Et le flot admissible

Une augmentation

Et nous voici au point de départ

Un cas négative

Gaux

Gaux

Gaux

Gaux

Conclusion

Conclusion

Conclusion

