6 Two examples – the Gamma function and the Riemann ζ -function

6.1 The Gamma function

A natural question to ask is whether the factorial function n! is actually giving the values at nonnegative integers of some nice function with a larger domain. This problem had certainly been raised as early as the 1720s by Daniel Bernoulli and Christian Goldbach. As we shall show, one can actually fit a meromorphic function Γ to this data.

Euler was the first to solve Bernoulli and Goldbach's problem. In 1729 Euler had sent the formula

$$m! = \prod_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^m}{1 + \frac{m}{n}}$$

to Goldbach ... without fussing too much about whether anything converges! In 1730 he wrote again to Goldbach that he had shown that

$$m! = \int_0^1 (-\ln s)^m ds.$$

The way that the Gamma function is usually introduced is as a function of a real variable, defined via an integral

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt \qquad x > 0.$$

The notation and formula, which are due to Legendre in 1811, just comes from the previous formula by a change of variables. (Note that $\Gamma(x+1)=x!$.) As we saw, this integral converges if you replace x with z in the right half-plane, extending $\Gamma(z)$ for $\operatorname{Re} z > 0$.

Via a series of messy of analytic continuations one can extend the definition to give a function analytic on all of \mathbb{C} except at 0 and the negative integers (where the function has simple poles). Rather than do this, we'll follow Euler's original idea and define Γ in one go via infinite products. For this we need to know that Γ should have poles at $0, -1, -2, \ldots$, and that $\Gamma(1)$ should be 0! = 1.

Let $a_n = -n$, for $n = 0, 1, 2, \ldots$ Then the rank of the canonical product corresponding to $\{a_n\}$ is 1 and so the canonical product is

$$Q(z) = z \prod_{n=1}^{\infty} E_1\left(\frac{-z}{n}\right) = z \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}.$$

By Weierstrass's theorem, Q is entire with simple zeros at $0, -1, -2, -3, \ldots$. Hence, for any constant c, the function

$$f(z) = \frac{e^{cz}}{Q(z)}$$

is a meromorphic function with simple poles at $z = 0, -1, -2, -3, \ldots$ In order to defined Γ we want to choose c in order to make f(1) = 1. Now, at z = 1 all the terms in the infinite product are positive reals, so there is no problem taking logarithms.

$$\operatorname{Log} f(1) = \ln f(1) = c - \ln 1 - \lim_{N \to \infty} \sum_{n=1}^{N} \ln \left(\left(1 + \frac{1}{n} \right) e^{-\frac{1}{n}} \right)$$

$$= c - \lim_{N \to \infty} \sum_{n=1}^{N} \ln \left(\frac{n+1}{n} \right) - \frac{1}{n}$$

$$= c + \lim_{N \to \infty} \sum_{n=1}^{N} \left(\frac{1}{n} - \ln(n+1) + \ln n \right)$$

$$= c + \lim_{N \to \infty} \left(\sum_{n=1}^{N} \frac{1}{n} \right) - \ln(N+1)$$

since most of the log terms cancel. This requires just a small tweak, using the fact that $\lim_{N\to\infty} \ln(N+1) - \ln N = 0$:

$$\operatorname{Log} f(1) = c + \lim_{N \to \infty} \left(\left(\sum_{n=1}^{N} \frac{1}{n} - \ln N \right) + (\ln N - \ln(N+1)) \right)$$
$$= c + \lim_{N \to \infty} \left(\sum_{n=1}^{N} \frac{1}{n} - \ln N \right).$$

This last term is called *Euler's constant* γ :

$$\gamma = \lim_{N \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N} - \ln N \right)$$

Remark: γ is a fundamental constant of mathematics as are π and e. It is conjectured that γ is transcendental — it is not even known whether γ is irrational.

Since we want Log f(1) = 0, this means that we need to choose $c = -\gamma$.

Definition: The Gamma function is defined as

$$\Gamma(z) := \frac{e^{-\gamma z}}{Q(z)} = \frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right)^{-1} e^{\frac{z}{n}}.$$

Remark: This formula for the Gamma function is due to Weierstrass (1815–1897). It is what motivated him to develop the Weierstrass Factorization Theorem.

Let's heuristically expand out Euler's original product:

$$m! = \prod_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^m}{1 + \frac{m}{n}}$$

$$= \prod_{n=1}^{\infty} \frac{(n+1)^m}{n^m \left(1 + \frac{m}{n}\right)}$$

$$= \left(\frac{2^m}{1+m}\right) \left(\frac{3^m}{2^{m-1}(2+m)}\right) \left(\frac{4^m}{3^{m-1}(3+m)}\right) \dots$$

$$= \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots}{(1+m) \cdot (2+m) \cdot (3+m) \cdot \dots}???$$

Gauss in fact rewrote this taking a little more care about how the limit should be taken (although still not checking convergence!).

Lemma 29. (Gauss's formula) For $z \neq 0, -1, -2, \ldots$,

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! \, n^z}{z(z+1) \cdots (z+n)}.$$

Remark: The term n^z should be interpreted as the principal value, that is

p.v.
$$n^z = \exp(z \operatorname{Log} n)$$
.

Proof. For any fixed z we have

$$\Gamma(z) = \frac{e^{-\gamma z}}{z} \lim_{n \to \infty} \prod_{k=1}^{n} \left(\frac{k}{k+z}\right) e^{\frac{z}{k}}$$

$$= \lim_{n \to \infty} \frac{n!}{z(z+1)\cdots(z+n)} \exp\left(-\gamma z + \sum_{1}^{n} \frac{z}{k}\right)$$

$$= \lim_{n \to \infty} \frac{n!}{z(z+1)\cdots(z+n)} \cdot \exp(z\log n) \cdot \exp(z(-\gamma + \sum_{1}^{n} \frac{1}{k} - \log n))$$

$$= \lim_{n \to \infty} \frac{n!}{z(z+1)\cdots(z+n)} \cdot n^{z} \cdot \lim_{n \to \infty} \exp(z(-\gamma + \sum_{1}^{n} \frac{1}{k} - \log n))$$

$$= \lim_{n \to \infty} \frac{n!n^{z}}{z(z+1)\cdots(z+n)}$$

Example: Take z = 3. The right-hand side is then

$$\lim_{n \to \infty} \frac{n! \, n^3}{3 \cdot 4 \cdot 5 \cdots (n+3)} = \lim_{n \to \infty} \frac{1 \cdot 2 \cdot n^3}{(n+1)(n+2)(n+3)} = 2 = (z-1)!$$

Gauss's formula gives the following

Lemma 30. (The Functional Equation) For $z \neq 0, -1, -2, ...$

$$\Gamma(z+1) = z\Gamma(z).$$

Proof. For any fixed z,

$$\Gamma(z+1) = \lim_{n \to \infty} \frac{n! \, n^{z+1}}{(z+1)(z+2)\cdots(n+z+1)}$$

$$= z \lim_{n \to \infty} \frac{n! \, n^{z+1}}{z(z+1)(z+2)\cdots(n+z+1)}$$

$$= z \lim_{n \to \infty} \frac{(n+1)! \, (n+1)^z}{z(z+1)(z+2)\cdots(n+z+1)} \cdot \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^{z+1}$$

$$= z \, \Gamma(z) \cdot 1$$

where we have used Gauss' formula, as well as the continuity of $w \mapsto w^{z+1}$ at w = 1.

We now have a function Γ which has poles at the rights places and for which $\Gamma(m+1) = m!$ for any positive integer m. We would like to show that it equals the integral formula that one usually starts with.

Lemma 31. For
$$x > 0$$
, $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$. Indeed,
$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt \quad \text{for } \text{Re } z > 0.$$

Proof. Suppose that x > 0 and that n is a nonnegative integer. First observe that

$$\int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{x-1} dt = \frac{1}{x} \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n-1} t^{x} dt$$

$$= \frac{n-1}{n} \frac{1}{x(x+1)} \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n-2} t^{x+1} dt$$

$$= \frac{n!}{n^{n}} \frac{1}{x(x+1) \cdots (x+n-1)} \int_{0}^{n} t^{x+n-1} dt$$

$$= \frac{n!}{n^{n}} \frac{n^{x+n}}{x(x+1) \cdots (x+n-1)(x+n)}.$$

That is,

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \frac{n! n^x}{x(x+1)\cdots(x+n)}.$$

If we can show that $\int_0^n (1-\frac{t}{n})^n t^{x-1} dt \to \int_0^\infty e^{-t} t^{x-1} dt$ as $n \to \infty$ then we have our result from Gauss' Lemma.

This is a little delicate as we are dealing with

- an infinite interval $[0, \infty)$;
- potentially unbounded functions (at t = 0);
- n appearing in the upper limit of the integral.

Fix $\epsilon > 0$. Now for $0 \le t \le 1$ and any $n, 0 \le \left(1 - \frac{t}{n}\right)^n \le 1$ and $0 \le e^{-t} \le 1$. Since $\int_0^1 t^{x-1} dx$ converges there exists $\alpha > 0$ such that $\int_0^\alpha t^{x-1} dx < \epsilon/5$, and hence

$$\left| \int_0^\alpha \left(1 - \frac{t}{n} \right)^n \, t^{x-1} \, dt \right| < \frac{\epsilon}{5}, \qquad \left| \int_0^\alpha e^{-t} \, t^{x-1} \, dt \right| < \frac{\epsilon}{5}.$$

Also, there exists R such that

$$\left| \int_{R}^{\infty} e^{-t} t^{x-1} dt \right| < \frac{\epsilon}{5}.$$

If $R \leq t \leq n$ then

$$0 \le \left(1 - \frac{t}{n}\right)^n < e^{-t}$$

and so

$$\left| \int_{R}^{n} \left(1 - \frac{t}{n} \right)^{n} \, t^{x-1} \, dt \right| < \left| \int_{R}^{n} e^{-t} \, t^{x-1} \, dt < \left| \int_{R}^{\infty} e^{-t} \, t^{x-1} \, dt \right| < \frac{\epsilon}{5}.$$

Now on the compact subset $[\alpha, R]$

$$\left(1 - \frac{t}{n}\right)^n t^{x-1} \to e^{-t} t^{x-1}$$

uniformly in t as $n \to \infty$, and so for large enough n,

$$\left| \int_{\alpha}^{R} \left(1 - \frac{t}{n} \right)^n t^{x-1} dt - \int_{\alpha}^{R} e^{-t} t^{x-1} dt \right| < \frac{\epsilon}{5}$$

too. Putting this all together, for large enough n,

$$\begin{split} \left| \int_0^n \left(1 - \frac{t}{n} \right)^n \, t^{x-1} \, dt - \int_0^\infty e^{-t} \, t^{x-1} \, dt \right| \\ &= \left| \int_0^\alpha \left(1 - \frac{t}{n} \right)^n \, t^{x-1} \, dt + \int_\alpha^R \left(1 - \frac{t}{n} \right)^n \, t^{x-1} \, dt + \int_R^n \left(1 - \frac{t}{n} \right)^n \, t^{x-1} \, dt \right| \\ &- \int_0^\alpha e^{-t} \, t^{x-1} \, dt - \int_\alpha^R e^{-t} \, t^{x-1} \, dt - \int_R^\infty e^{-t} \, t^{x-1} \, dt \right| \\ &\leq \left| \int_0^\alpha \left(1 - \frac{t}{n} \right)^n \, t^{x-1} \, dt \right| + \left| \int_R^n \left(1 - \frac{t}{n} \right)^n \, t^{x-1} \, dt \right| + \left| \int_0^\alpha e^{-t} \, t^{x-1} \, dt \right| \\ &+ \left| \int_R^\infty e^{-t} \, t^{x-1} \, dt \right| + \left| \int_\alpha^R \left(1 - \frac{t}{n} \right)^n \, t^{x-1} \, dt - \int_\alpha^R e^{-t} \, t^{x-1} \, dt \right| \\ &< \epsilon. \end{split}$$

Exercise: Show that $\int_0^\infty t^{z-1}e^{-t} dt$ is analytic for Re z > 0 and therefore by analytic continuation coincides with $\Gamma(z)$ in that region.

The Gamma function satisfies the following useful functional equation.

Lemma 32. For $z \in \mathbb{C} \setminus \mathbb{Z}$,

$$\Gamma(z) \Gamma(1-z) = \frac{\pi}{\sin \pi z}.$$

Proof.

$$\begin{split} &\Gamma(z) \, \Gamma(1-z) \\ &= \lim_{n \to \infty} \frac{(n!)^2 \, n^z \, n^{1-z}}{z(z+1) \cdots (z+n)(1-z)(2-z) \cdots (n+1-z)} \\ &= \lim_{n \to \infty} \frac{1}{z} \left\{ (1+z) \left(1 + \frac{z}{2} \right) \cdots \left(1 + \frac{z}{n} \right) (1-z) \left(1 - \frac{z}{2} \right) \cdots \left(1 - \frac{z}{n} \right) \right\}^{-1} \cdot \frac{n}{n+1-z} \\ &= \lim_{n \to \infty} \frac{1}{z} \prod_{k=1}^n \left(1 - \frac{z^2}{k^2} \right)^{-1} = \frac{1}{z} \frac{\pi z}{\sin \pi z} = \frac{\pi}{\sin \pi z}. \end{split}$$

Example: Taking $z = \pi/2$, $\Gamma\left(\frac{1}{2}\right)^2 = \pi$.

6.2 The Riemann ζ -function

The **Basel Problem** was posed by Pietro Mengoli in 1644: compute $\sum_{n=1}^{\infty} \frac{1}{n^2}$. This was finally solved by Euler in 1735. As we saw

$$\frac{\sin(z)}{z} = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 n^2}\right).$$

If you are bold, you multiply out the brackets:

$$\frac{\sin(z)}{z} = 1 - \frac{1}{\pi^2} \left(\sum_{n=1}^{\infty} \frac{1}{n^2} \right) z^2 + (\dots) z^4 + \dots$$

On the other hand, writing our the Taylor series

$$\frac{\sin(z)}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots$$

and so, on comparing coefficients, Euler concluded that

$$\frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{6!}.$$

Not surprisingly, Euler then considered the function $s \mapsto \sum_{n=1}^{\infty} \frac{1}{n^s}$ for other integer values of s > 1. Chebyshev (1821–1894) then extended this to real s > 1.

In 1859 Riemann extended this further to complex values and provided our current notation. For $\text{Re}\,z>1$, let

$$\zeta(z) = \sum_{n=1}^{\infty} n^{-z} = \sum_{n=1}^{\infty} \frac{1}{n^z}.$$

Given any $\delta > 0$, the series is uniformly and absolutely convergent on $\operatorname{Re} z \geq 1 + \delta$ because then $|n^{-z}| \leq n^{-1-\delta}$. Since each term $n^{-z} = \exp(-z \operatorname{Log} n)$ is an entire function it follows that ζ is analytic on $\operatorname{Re} z > 1$.

One reason why the ζ -function is so central in number theory stems from the fact that it contains information about primes.

Lemma 33. (Euler's formula) For Re z > 1,

$$\zeta(z) = \prod_{n=1}^{\infty} \left(1 - \frac{1}{p_n^z}\right)^{-1} = \prod_{n=1}^{\infty} \left(1 - p_n^{-z}\right)^{-1}.$$

where p_n is the nth prime.

Proof. This is just about a statement that the Sieve of Eratosthenes removes all the primes! To see this

$$\zeta(z) = 1 + \frac{1}{2^z} + \frac{1}{3^z} + \frac{1}{4^z} + \frac{1}{5^z} + \dots$$

so

$$\frac{1}{2^z}\zeta(z) = \frac{1}{2^z} + \frac{1}{4^z} + \frac{1}{6^z} + \frac{1}{8^z} + \dots$$

Subtracting we get

$$\left(1 - \frac{1}{2^z}\right)\zeta(z) = 1 + \frac{1}{3^z} + \frac{1}{5^z} + \frac{1}{7^z} + \frac{1}{9^z} + \dots$$

Repeating

$$\left(1 - \frac{1}{3^z}\right)\left(1 - \frac{1}{2^z}\right)\zeta(z) = 1 + \frac{1}{5^z} + \frac{1}{7^z} + \frac{1}{11^z} + \dots$$

gives the series with all the terms corresponding to multiples of 2 and 3 removed. Indeed for any N

$$\zeta(z) \prod_{n=1}^{N} \left(1 - \frac{1}{p_n^z} \right) = 1 + \frac{1}{p_{n+1}^z} + \dots$$
(6)

having removed all the multiples of 2 up to p_n .

For any z with Re z > 1, the convergence of $\zeta(z)$ implies that the right-hand side of (6) converges to 1, and hence

$$\prod_{n=1}^{\infty} \left(1 - \frac{1}{p_n^z} \right) = \frac{1}{\zeta(z)}$$

which gives the required result.

Another proof can be found by writing each term $(1 - p_n^{-z})^{-1}$ out as a geometric series. The Riemann zeta function is related to the Gamma function via the following identity.

Theorem 34. For $\operatorname{Re} z > 1$,

$$\zeta(z)\Gamma(z) = \int_0^\infty (e^t - 1)^{-1} t^{z-1} dt.$$

Proof. For t near ∞ the term $(e^t-1)^{-1}$ behaves like e^{-t} whilst for t near 0 it behaves like t^{-1} . Consequently it is easy to check that the two improper integrals $\int_0^1 (e^t-1)^{-1} t^{z-1} dt$ and $\int_1^\infty (e^t-1)^{-1} t^{z-1} dt$ converge uniformly on compact sets in Re z>1. Consequently, $\int_0^\infty (e^t-1)^{-1} t^{z-1} dt$ is analytic on Re z>1 and therefore, by analytic continuation, it is enough to check the above equality for x>1.

For such x,

$$\zeta(x)\Gamma(x) = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{n^{x}} \cdot \int_{0}^{\infty} e^{-u} u^{x-1} du$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \int_{0}^{\infty} e^{-u} \left(\frac{u}{n}\right)^{x-1} \frac{du}{n}$$

$$(\text{let } u = nt)$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \int_{0}^{\infty} e^{-nt} t^{x-1} dt$$

$$= \lim_{N \to \infty} \int_{0}^{\infty} \sum_{n=1}^{N} \left(e^{-t}\right)^{n} t^{x-1} dt$$

$$= \lim_{N \to \infty} \int_{0}^{\infty} \frac{e^{-t} - e^{-(N+1)t}}{1 - e^{-t}} t^{x-1} dt.$$

At this point let

$$g_N(t) = \frac{e^{-t} - e^{-(N+1)t}}{1 - e^{-t}} t^{x-1},$$
 $g(t) = \frac{e^{-t}}{1 - e^{-t}} t^{x-1}.$

Then $0 \leq g_N(t) \leq g(t)$. Since $\int_0^\infty g(t) dt$ converges and $g_N \to g$ pointwise on $(0, \infty)$, the Dominated Convergence Theorem tells us that $\int_0^\infty g_N(t) dt \to \int_0^\infty g(t) dt$. That is

$$\zeta(x)\Gamma(x) = \int_0^\infty \frac{e^{-t}}{1 - e^{-t}} t^{x-1} dt$$
$$= \int_0^\infty (e^t - 1)^{-1} t^{z-1} dt$$

as claimed.

Introduced as we did above, one still has the issue of extending ζ to be a meromorphic function on the plane. We could try to proceed as we did for the Gamma function, and use a product expansion. Let us label the zeros of the zeta function as $\{a_n\}$. The following expansion is due to Hadamard.

Theorem 35. If Re z > 1, then

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z} = \frac{e^{(\ln(2\pi) - 1 - \gamma/2)z}}{2(z-1)\Gamma(1+z/2)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right) e^{z/a_n}.$$

Actually if you group the terms the right way you can also make sense of writing

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z} = \frac{\pi^{z/2}}{2(z-1)\Gamma(1+z/2)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right).$$

The problem with these expansions is that (unlike the case for Γ) we don't know precisely what the zeros of ζ are. One is therefore stuck with the rather involved series of analytic extensions that we described earlier. Each of these steps requires showing that a certain formula

- (a) defines an analytic function
- (b) agrees with the previous definition on some reasonable sized set.

Rather than head in this direction, we'll look (without proof) at a few of the properties of ζ . One thing that Hadamard's formula does show is that ζ is a meromorphic function. With a little more analysis one can show that the product has a single simple pole at z=1 and is analytic elsewhere.

The final stage in the continuation process uses the following.

Theorem 36. (Riemann's functional equation) For $z \neq 0, 1, 2, ...$

$$\zeta(z) = 2(2\pi)^{z-1} \Gamma(1-z) \zeta(1-z) \sin(\pi z/2).$$

This equation allows us to read off some of the properties of ζ . Suppose, for example that z=-2k (k=1,2,...). Then $\zeta(z)=0$ since the sin term vanishes and the rest of the terms are finite. These are called the trivial zeros of ζ . A good deal of modern number theory concerns identifying where the other zeros are. By Euler's product formula, ζ has no zeros with Re z>1. If Re z<0 then $\Gamma(1-z)$ and $\zeta(1-z)$ are therefore nonzero, and so there are no nontrivial zeros there either. Thus, every nontrivial zero of ζ lies in the strip $0 \le \text{Re } z \le 1$.

The statement that none of the zeros lies on the line Re z=1 is equivalent to the Prime Number Theorem, that is, if $\pi(x)$ denotes the number of primes less than or equal to x, then

$$\lim_{x \to \infty} \frac{\pi(x)}{x \ln x} = 1.$$

(See H.G. Diamond, Elementary methods in the study of the distribution of prime numbers. Bull. Amer. Math. Soc. (N.S.) 7 (1982), 553–589.

A more precise version of the Prime Number Theorem says that

$$\pi(x) = \operatorname{Li}(x) + O(xe^{-c\sqrt{\ln x}})$$

where $\operatorname{Li}(x) = \int_2^x \frac{1}{\ln t} dt = \operatorname{li}(x) - \operatorname{li}(x)$ is the offset logarithmic integral function.

The Riemann hypothesis says that in fact all the nontrivial zeros lie on the line Re $z = \frac{1}{2}$. Assuming this, one can get a better estimate for $\pi(x)$:

$$|\pi(x) - \operatorname{li}(x)| \le \frac{\sqrt{x} \ln x}{8\pi}.$$

7 The Open Mapping Principle and the Inverse Function Theorem

[Chapter 8 of Brown and Churchill, Seventh Edition, has a good coverage of mappings by elementary functions and in addition gives a nice introduction to Riemann surfaces. Chapter 9 covers conformal mappings.]

One of the great challenges in complex analysis is to get a good geometric feeling for what analytic functions are doing. One no longer has a graph to look at. The best that one can often do is to try to understand what the function does to certain subsets of \mathbb{C} .

Example: Let $f(z) = \frac{z+1}{z-1}$. This is an example of a Möbius transformation and you saw in second year that it maps (lines and circles) to (lines and circles) in the (extended) complex plane. Furthermore, Möbius transformation are invertible. A consequence of this is that the boundary of a region Ω gets mapped to the boundary of $f(\Omega)$. In this case, if we want to identify $f(\mathbb{D})$ we can see that the unit circle maps to the line through f(-1) = 0 and $f(i) = \frac{i+1}{i-1} = -i$, that is, the imaginary axis. This is the boundary of $f(\mathbb{D})$. The point 0 maps to -1 and so $f(\mathbb{D})$ must be the left half-plane.

Example: Let $f(z) = \frac{4z}{(z+1)^2}$. This is NOT a Möbius transformation! One can show (exercise) that

$$f(e^{i\theta}) = \frac{2}{\cos\theta + 1}$$

and so the image of the unit circle is the ray $[1, \infty)$. So where does \mathbb{D} map to? This is already quite complicated. For example, the interval (-1,1] maps to $(-\infty,1]$, while the interval from -i to i maps to the circle centred at 1 of radius 1.

Actually, in this case, for $z \neq 0$,

$$f(1/z) = \frac{4/z}{(1/z+1)^2} = f(z)$$

so in particular, the image of the punctured disk 0 < |z| < 1 is exactly the same as the image of the outside. Indeed, for all $w \neq 0$, the equation f(z) = w is a quadratic equation in z which has two solutions

$$z = \frac{1 - 2w \pm \sqrt{1 - 4w}}{2w}.$$

Thus f is an onto function. The image of the open unit disk is $\mathbb{C} \setminus [1, \infty)$.

Example: What about $f(z) = \sin z$. This is clearly not one-to-one. Even working out the image of the unit circle is not at all easy: writing

$$f(e^{i\theta}) = \frac{e^{ie^{i\theta}} - e^{-ie^{i\theta}}}{2i}$$

doesn't look at that promising! If you look at the image of the circle of radius 2, it has a couple of loops in it. This doesn't happen with small circles however (heuristically because $\sin z \approx z$ for small z.

We need some extra facts about analytic maps to progress.

7.1 Open mappings

Our first result says that a nonconstant analytic function never squashes open balls flat!

Theorem 37. (The Open Mapping Principle) If f is analytic in a region Ω , and is not constant, then w = f(z) maps open sets of Ω into open sets in the w-plane. More specifically, if z_0 is in Ω and if $w_0 = f(z_0)$ then for every $\epsilon > 0$ there is a $\delta > 0$ such that the image of $|z - z_0| < \epsilon$ contains the ball $|w - w_0| < \delta$.

Proof. The function $g(z) = f(z) - w_0$ clearly has a zero at z_0 , of order n say. Since nonconstant analytic functions have isolated zeros there exists $0 < \rho < \epsilon$ such that $f(z) - w_0$ does not vanish for $0 < |z - z_0| \le \rho$. Let δ be the minimum of $|f(z) - w_0|$ on the circle $|z - z_0| = \rho$. By compactness, $\delta > 0$. We are going to show that $D(w_0, \delta) \subseteq f(D(z_0, \rho)) \subseteq f(D(z_0, \epsilon))$.

Suppose now that $w = w_0 + \alpha$ is an arbitrary point in the disk centred at w_0 of radius δ (so $|\alpha| < \delta$. Then $h(z) = f(z) - w_0 - \alpha$ has the same number of zeros in the disk $|z - z_0| < \rho$ by Rouché's Theorem. That is, h has n zeros in this disk if counted according to multiplicity. In particular, there exists at least one point z in this disk at which f(z) = w. Thus $D(w_0, \delta)$ is contained in $f(D(z_0, \rho))$.

Corollary 38. $f(\Omega)$ is a region (if Ω is a region).

Proof. We have just proved that Ω is open. Since f is continuous $f(\Omega)$ is connected ("connectedness" is a topological concept).

Remark: While connectedness is preserved under continuous maps, simple connectedness is not. For example, let $f(z) = z^2$ and let $\Omega = \{re^{i\theta} : 1 < r < 2, 0 < \theta < 5\}$.

For a differentiable function $f:(a,b)\to\mathbb{R}$ we know that if f'(x) is never zero on (a,b) then f is one-to-one on (a,b). This is a simple consequence of Rolle's Theorem. Unfortunately, for complex functions there is no Rolle's Theorem, and the fact that f'(z) does not vanish on some region Ω is not enough to deduce that f is one-to-one on Ω — see the example above! The best that one could hope for is local invertibility.

Recall that if $F: \mathbb{R}^2 \to \mathbb{R}^2$,

$$F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$

is continuously differentiable at (x_0, y_0) , and

$$DF = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

is invertible there, then F is one-to-one on some neighbourhood of (x_0, y_0) . Of course every analytic function $f: \Omega \to \mathbb{C}$ can be thought of as corresponding to such a function, with some particular restrictions on the components u and v.

Theorem 39. Suppose f is analytic on Ω , and that $z_0 \in \Omega$. If $f'(z_0) \neq 0$ then f is one-to-one on some neighbourhood of z_0 .

Proof. Let f = u + iv and let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be the corresponding function as above. Note that

$$\det(DF) = u_x v_y - v_x u_y = u_x^2 + u_y^2 = v_x^2 + v_y^2$$

so det(DF)(x, y) = 0 if and only if f'(x + iy) = 0.

In particular, if $f'(z_0) = f'(x_0 + iy_0) \neq 0$ then F and hence f is one-to-one/invertible on some open neighbourhood of z_0 .

What is perhaps surprising is that the converse of this result holds. Note that the corresponding result for $F: \mathbb{R}^2 \to \mathbb{R}^2$ is not true. One can take, for example

$$F\binom{x}{y} = \binom{x^3}{y}$$

which is a bijection from \mathbb{R}^2 to \mathbb{R}^2 , but DF is not invertible at (0,0).

Theorem 40. Suppose f is analytic on Ω , and that $z_0 \in \Omega$. If $f'(z_0) = 0$ then f is not one-to-one on any neighbourhood of z_0 .

Proof. As in the proof of the Open Mapping Principle, let $w_0 = f(z_0)$ and let $g(z) = f(z) - w_0$. If $f'(z_0) = 0$ then the series expansion for f around z_0 looks like

$$f(z) = f(z_0) + \frac{f''(z_0)}{2}(z - z_0)^2 + \dots$$

and so g has a zero of order at least 2 at z_0 . Proceeding as in the proof of the OMP we see that for any small $\epsilon > 0$ there will be a $\delta > 0$ such that for all $w \in D(w_0, \delta)$ there are at least two solutions (by multiplicity) in $D(z_0, \epsilon)$ to f(z) = w.

If f were one-to-one on such a neighbourhood this would require that these multiple solutions were all repeated roots. This would imply that f'(z) = 0 for all $z \in f^{-1}(D(w_0, \delta))$. Since f is continuous, this inverse image is open and hence contains an open disk $D(z_0, r)$. But if f'(z) = 0 on an open disk around z_0 it must be constant on that disk which would contradict that f were one-to-one.

Example: Let $f(z) = z^2$ (or z^3 or ...). Think about what f does to a little ball around $z_0 \neq 0$. Then think about what it does to any little ball around $z_0 = 0$. The above discussion is just making a little more precise the statement that locally an analytic function behaves like its affine approximation $g(z) = f(z_0) + f'(z_0)(z - z_0)$.