

Feature allocations, probability functions, and paintboxes

Tamara Broderick, Jim Pitman, Michael I. Jordan UC Berkeley

"clusters",
"classes",
"blocks (of a partition)"

"clusters",
"classes",
"blocks (of a partition)"

Picture 2

Picture 3

Picture 4

Picture 5

Picture 6

Picture 7

Latent feature allocation

Cat Oob Nouse, it and theel

Picture I

Picture 2

Picture 3

Picture 4

Picture 5

Picture 6

Picture 7

"features",
"topics"

- Exchangeable
- Finite # of featuresper data point

Characterizations

- Exchangeable cluster distributions are characterized
- What about exchangeable feature distributions?

Exchangeable partition probability function (EPPF)

"Exchangeable feature probability function" (EFPF)?

For
$$n = 1, 2, ..., N$$

For n=1,2,...,N1. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $S_{n-1,k}$ $\theta+n-1$

For n = 1, 2, ..., N

I. Data point *n* has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $S_{n-1,k}$ $\theta + n - 1$

2. Number of new features for data

point *n*:
$$K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$$

$$k = 1 \quad 2 \quad \cdots \quad K$$

$$n = 1 \quad \boxed{\qquad \qquad }$$

$$2 \quad \boxed{\qquad \qquad }$$

$$\vdots \quad \boxed{\qquad \qquad }$$

$$N \quad \boxed{\qquad \qquad }$$

- I. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $S_{n-1,k}$ $\theta + n 1$
- 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n 1}\right)$

For n = 1, 2, ..., N

I. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $S_{n-1,k}$ $\theta + n - 1$

2. Number of new features for data point n: $\tau_{\mathcal{L}^+}$ θ

point *n*:
$$K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$$

For n = 1, 2, ..., N

I. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $S_{n-1,k}$ $\theta + n - 1$

2. Number of new features for data point n: $\tau = \theta$

point n:
$$K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$$

- I. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $S_{n-1,k}$ $\theta + n 1$
- 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n 1}\right)$

- I. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $S_{n-1,k}$ $\theta + n 1$
- 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n 1}\right)$

- I. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $S_{n-1,k}$ $\theta + n 1$
- 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n 1}\right)$

For n = 1, 2, ..., N

I. Data point *n* has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $S_{n-1,k}$ $\theta + n - 1$

2. Number of new features for data

point *n*:
$$K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$$

For n = 1, 2, ..., N

I. Data point *n* has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $S_{n-1,k}$ $\theta + n - 1$

2. Number of new features for data

point *n*:
$$K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$$

"Exchangeable feature probability function" (EFPF)?

"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)

"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)

$$k = 1 \quad 2 \quad \cdots \quad K$$

$$n = 1 \quad 2 \quad \cdots \quad K$$

$$2 \quad \boxed{\qquad \qquad \qquad \qquad }$$

$$\mathbb{P}(\quad : \quad \boxed{\qquad \qquad })$$

$$= \frac{1}{K_N!} (\theta \gamma)^{K_N} \exp \left(-\theta \gamma \sum_{n=1}^N (\theta + n - 1)^{-1}\right) \prod_{k=1}^{K_N} \frac{\Gamma(S_{N,k}) \Gamma(N - S_{N,k} + \theta)}{\Gamma(N + \theta)}$$

"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)

$$k = 1 \quad 2 \quad \cdots \quad K$$

$$n = 1 \quad 2 \quad \cdots \quad K$$

$$2 \quad \boxed{\qquad \qquad \qquad \qquad }$$

$$\mathbb{P}(\quad : \quad \boxed{\qquad \qquad })$$

Size of kth feature

$$= \frac{1}{K_N!} (\theta \gamma)^{K_N} \exp \left(-\theta \gamma \sum_{n=1}^N (\theta + n - 1)^{-1}\right) \prod_{k=1}^{K_N} \frac{\Gamma(S_{N,k}) \Gamma(N - S_{N,k} + \theta)}{\Gamma(N + \theta)}$$

"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)

$$k = 1 \quad 2 \quad \cdots \quad K$$

$$n = 1 \quad 2 \quad \cdots \quad K$$

$$2 \quad \boxed{\qquad \qquad \qquad }$$

$$\mathbb{P}(\quad : \quad \boxed{\qquad \qquad }$$

Size of kth feature

Number of features

$$= \frac{1}{K_N!} (\theta \gamma)^{K_N} \exp \left(-\theta \gamma \sum_{n=1}^N (\theta + n - 1)^{-1}\right) \prod_{k=1}^{K_N} \frac{\Gamma(S_{N,k}) \Gamma(N - S_{N,k} + \theta)}{\Gamma(N + \theta)}$$

"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)

$$k = 1 \quad 2 \quad \cdots \quad K$$

$$n = 1$$

$$2 \quad \square \quad \square$$

$$\mathbb{P}($$

$$\vdots \quad \square \quad \square$$

$$N \quad \square \quad \square$$

Number of data points

Size of kth

feature

Number of features

$$= \frac{1}{K_N!} (\theta \gamma)^{K_N} \exp \left(-\theta \gamma \sum_{n=1}^N (\theta + n - 1)^{-1}\right) \prod_{k=1}^{K_N} \frac{\Gamma(S_{N,k}) \Gamma(N - S_{N,k} + \theta)}{\Gamma(N + \theta)}$$

"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)

 $= p(N; S_{N,1}, S_{N,2}, \dots, S_{N,K})$

"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)

$$= p(N; S_{N,1}, S_{N,2}, \dots, S_{N,K})$$

"Exchangeable feature probability function" (EFPF)?

Counterexample

"Exchangeable feature probability function" (EFPF)?

Counterexample

$$\mathbb{P}(\text{row} = \square) = p_1$$
 $\mathbb{P}(\text{row} = \square) = p_2$
 $\mathbb{P}(\text{row} = \square) = p_3$
 $\mathbb{P}(\text{row} = \square) = p_4$

"Exchangeable feature probability function" (EFPF)?

Counterexample

$$\mathbb{P}(\text{row} = \square) = p_1$$

$$\mathbb{P}(\text{row} = \square) = p_2$$

$$\mathbb{P}(\text{row} = \blacksquare \blacksquare) = p_3$$

$$\mathbb{P}(\text{row} = \square) = p_4$$

"Exchangeable feature probability function" (EFPF)?

Counterexample

$$\mathbb{P}(\text{row} = \square) = p_1$$
 $\mathbb{P}(\text{row} = \square) = p_2$
 $\mathbb{P}(\text{row} = \square) = p_3$
 $\mathbb{P}(\text{row} = \square) = p_4$

$$\mathbb{P}(\blacksquare)$$
 $\mathbb{P}(\blacksquare)$

"Exchangeable feature probability function" (EFPF)?

Counterexample

$$\mathbb{P}(\text{row} = \square) = p_1$$
 $\mathbb{P}(\text{row} = \square) = p_2$
 $\mathbb{P}(\text{row} = \square) = p_3$
 $\mathbb{P}(\text{row} = \square) = p_4$

$$\mathbb{P}(\begin{array}{c} \blacksquare \\ p_1p_2 \end{array}) \quad \mathbb{P}(\begin{array}{c} \blacksquare \\ p_3p_4 \end{array})$$

"Exchangeable feature probability function" (EFPF)?

Counterexample

$$\mathbb{P}(\text{row} = \square) = p_1$$
 $\mathbb{P}(\text{row} = \square) = p_2$
 $\mathbb{P}(\text{row} = \square) = p_3$
 $\mathbb{P}(\text{row} = \square) = p_4$

$$\mathbb{P}(\begin{array}{c} \blacksquare \\ p_1p_2 \neq p_3p_4 \end{array})$$

Exchangeable cluster distributions

= Cluster distributions with EPPFs

Exchangeable feature distributions

Feature distributions with EFPFs

Exchangeable cluster distributions

= Cluster distributions with EPPFs

Exchangeable feature distributions

Feature distributions with EFPFs

Exchangeable cluster distributions

- = Cluster distributions with EPPFs
- = Kingman paintbox partitions

Exchangeable feature distributions

= Feature paintbox allocations

Feature distributions with EFPFs

Two feature example

Indian buffet process: beta feature frequencies

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...
I. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...
1. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_j^+$

$$q_k \sim \text{Beta}(1, \theta + m - 1)$$

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...
1. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_j^+$

$$q_k \sim \text{Beta}(1, \theta + m - 1)$$

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...
1. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^{m} K_j^+$

$$q_k \sim \text{Beta}(1, \theta + m - 1)$$

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...
1. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=0}^{m} K_j^+$

$$q_k \sim \text{Beta}(1, \theta + m - 1)$$

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...
1. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=0}^{m} K_j^+$

$$q_k \sim \text{Beta}(1, \theta + m - 1)$$

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...

1. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$

Set $K_m = \sum_{j=1}^{m} K_j^+$

$$q_k \sim \text{Beta}(1, \theta + m - 1)$$

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...
1. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{i=1}^m K_j^+$

$$q_k \sim \text{Beta}(1, \theta + m - 1)$$

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...

1. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$

Set $K_m = \sum_{i=1}^m K_j^+$

$$q_k \sim \text{Beta}(1, \theta + m - 1)$$

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...
1. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{i=1}^m K_j^+$

$$q_k \sim \text{Beta}(1, \theta + m - 1)$$

Indian buffet process: beta feature frequencies

For
$$m$$
 = 1, 2, ...
1. Draw K_m^+ = Poisson $\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{i=1}^m K_j^+$

$$q_k \sim \text{Beta}(1, \theta + m - 1)$$

"Feature frequency models"

Two feature example

Two feature example

Not a feature frequency model

Exchangeable cluster distributions

- = Cluster distributions with EPPFs
- = Kingman paintbox partitions

Exchangeable feature distributions

= Feature paintbox allocations

Feature distributions with EFPFs

Feature frequency models: EFPFs?

Exchangeable cluster distributions

- = Cluster distributions with EPPFs
- = Kingman paintbox partitions

Exchangeable feature distributions

= Feature paintbox allocations

Distributions with EFPFs: frequencies?

Exchangeable cluster distributions

- = Cluster distributions with EPPFs
- = Kingman paintbox partitions

Exchangeable feature distributions

= Feature paintbox allocations

Feature distributions with EFPFs

= Feature frequency models

• Feature paintbox: characterization of exchangeable feature models

• Feature paintbox: characterization of exchangeable feature models

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs)

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs)

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs)

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust)

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust, etc)

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust, etc)
- Other combinatorial structures

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections (CRMs, dust, etc)
- Other combinatorial structures

References

- T. Broderick, J. Pitman, and M. I. Jordan. Feature allocations, probability functions, and paintboxes. *Bayesian Analysis, to appear.* Preprint arXiv:1301.6647, 2013.
- T. Broderick, M. I. Jordan, and J. Pitman. Clusters and features from combinatorial stochastic processes. *Statistical Science, to appear.* Preprint arXiv: 1206.5862, 2012.
- T. Broderick, L. Mackey, J. Paisley, and M. I. Jordan. Combinatorial clustering and the beta negative binomial process. *Preprint arXiv:1111.1802*, 2011.
- T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In *Advances in Neural Information Processing Systems*, 2006.
- N. L. Hjort. Nonparametric bayes estimators based on beta processes in models for life history data. *Annals of Statistics*, 18(3):1259–1294, 1990.
- Y. Kim. Nonparametric Bayesian estimators for counting processes. *Annals of Statistics*, 27(2):562–588, 1999.
- J. F. C. Kingman. The representation of partition structures. Journal of the London Mathematical Society, 2(2):374, 1978.
- J. Pitman. Exchangeable and partially exchangeable random partitions. *Probability Theory and Related Fields*, 102(2):145–158, 1995.
- R. Thibaux and M. I. Jordan. Hierarchical beta processes and the Indian buffet process. In *Proceedings of the International Conference on Artificial Intelligence and Statistics*, 2007.
- M. Zhou, L. Hannah, D. Dunson, and L. Carin. Beta-negative binomial process and Poisson factor analysis. In *Proceedings* of the International Conference on Artificial Intelligence and Statistics, 2012.