Introduction

Topic of the lecture

Reasoning about norm violation

- Contrary-to-duties, CTDs
- Why do we need CTD for NMAS?
 - Norm enforcement
- Main issue in deontic logic
 - fish-hook
- Thorny issue too
- Deontic logic-based agent: a holy grail?

Layout

- The CTD problem
 - how to detach an obligation in a violation context
- Ways to handle it
 - Temporal DDL
 - 2-dimensional SDL
 - SDL with sub-ideality
 - Dynamic DDL
- Example from ACL
 - Dialogue rules as soft constraints

A bit of terminology

Primary obligation

Unconditional or conditional

Contrary-to-duty (or secondary, CTD) obligation

Condition: primary norm violated

According-to-duty (ATD) obligation

Condition: primary norm fulfilled

Multiple CTD or ATD levels

A bit of terminology

Primary obligation

Unconditional or conditional

Contrary-to-duty (or secondary, CTD) obligation

Condition: primary norm violated

According-to-duty (ATD) obligation

Condition: primary norm fulfilled

Multiple CTD or ATD levels

$$\bigcirc A$$

 $\bigcirc (B/\neg A)$
 $\bigcirc (?/?)$

A bit of terminology

Primary obligation

Unconditional or conditional

Contrary-to-duty (or secondary, CTD) obligation

Condition: primary norm violated

According-to-duty (ATD) obligation

Condition: primary norm fulfilled

Multiple CTD or ATD levels Hansen's infinitly bad set:

$$\{p_i: i \in N\} \cup \{\bigcirc \neg p_1\} \cup \{\bigcirc (\neg p_{i+1}/p_1 \wedge ... \wedge p_i): i \in N\}$$

Factual Detachment

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

"How can we take seriously a conditional obligation if it cannot, by way of detachment, lead to an unconditional obligation?" (van Eck, 1982, p. 263).

Factual Detachment

$$\frac{\bigcirc (B/A)}{\bigcirc B} \quad A \quad (FD)$$

"How can we take seriously a conditional obligation if it cannot, by way of detachment, lead to an unconditional obligation?" (van Eck, 1982, p. 263).

Forrester

Weakening the Consequent

$$\frac{\bigcirc (B/A) \qquad \Box (B \rightarrow C)}{\bigcirc (C/A)} (WC)$$

$$\cap (B/A)$$

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

Factual Detachment

$$\begin{array}{ccc}
 & \square(B \to A) \\
 & \square(\neg A \to \neg B) \\
\hline
 & \bigcirc \neg B
\end{array}$$
(WC)

$$\frac{\bigcirc (B/A)}{\bigcirc B} \qquad (FD)$$

'Gentle murderer' scenario

$$\{\bigcirc \neg k, \Box (k \land g \rightarrow k), \bigcirc (k \land g/k), k\} \vdash \bot$$

Forrester

Weakening the Consequent

$$\frac{\bigcirc (B/A) \quad \Box (B \rightarrow C)}{\bigcirc (C/A)} (WC) \qquad \frac{\bigcirc (B/A) \quad A}{\bigcirc B} (FD)$$

Factual Detachment

$$\frac{\bigcirc (B/A)}{\bigcirc B}$$
 (FD)

$$\frac{\Box(B \to A)}{\Box(\neg A \to \neg B)} (WC) \qquad \frac{\Box(B/A) \qquad A}{\bigcirc B} (FD)$$

$$\frac{\bigcirc (B/A)}{\bigcirc B} \qquad (FD)$$

$$\{\bigcirc \neg k, \Box (k \land g \rightarrow k), \bigcirc (k \land g/k), k\} \vdash \bot$$

Forrester

Weakening the Consequent

$$\frac{\bigcirc (B/A) \qquad \Box (B \rightarrow C)}{\bigcirc (C/A)} (WC) \qquad \frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

'Gentle murderer' scenario

$$\{\bigcirc \neg k, \Box (k \land g \rightarrow k), \bigcirc (k \land g/k), k\} \vdash \bot$$

Chisholm

Deontic detachment

$$\frac{\bigcirc A \quad \bigcirc (B/A)}{\bigcirc B} (DD)$$

Factual Detachment

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

$$\frac{\bigcirc(\neg B/\neg A) \qquad \neg A}{\bigcirc \neg B} (FD)$$

$$\{\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a), \neg a\} \vdash \bot$$

Chisholm

Deontic detachment

$$\frac{\bigcirc A \quad \bigcirc (B/A)}{\bigcirc B} (DD)$$

Factual Detachment

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

$$\frac{\bigcirc(\neg B/\neg A) \qquad \neg A}{\bigcirc \neg B} (FD)$$

$$\{\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a), \neg a\} \vdash \bot$$

Chisholm

Deontic detachment

$$\frac{\bigcirc A \quad \bigcirc (B/A)}{\bigcirc B} (DD)$$

Factual Detachment

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD)$$

$$\frac{\bigcirc(\neg B/\neg A) \qquad \neg A}{\bigcirc \neg B} (FD)$$

$$\{\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a), \neg a\} \vdash \bot$$

An inside: conditional obligation within SDL (1)

Chisholm set:
$$\{\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a), \neg a\}$$

Below \rightarrow is material implication, and O is like \square

Two candidate definitions

Option 1
$$\bigcirc$$
 $(B/A) =_{def} O(A \rightarrow B)$
Option 2 \bigcirc $(B/A) =_{def} A \rightarrow OB$

Usual representation of Chisholm set:

$$\{\bigcirc a, O(a \rightarrow t), \neg a \rightarrow O \neg t, \neg a\} \vdash \bot$$

Why option 1 + option 2?

An inside: conditional obligation within SDL (2)

$$\{\bigcirc a, \bigcirc (t/a), \bigcirc (\neg t/\neg a), \neg a\}$$

option 1 + option 1:

$$\{\bigcirc a, O(a \rightarrow t), O(\neg a \rightarrow \neg t), \neg a\}$$

option 2 + option 2:

$$\{\bigcirc a, a \rightarrow Ot, \neg a \rightarrow O\neg t, \neg a\}$$

option 2 + option 1:

$$\{\bigcirc a, a \rightarrow Ot, O(\neg a \rightarrow \neg t), \neg a\}$$

Ways out

$$\frac{\bigcirc (B/A) \qquad A}{\bigcirc B} (FD) \qquad \qquad \frac{\bigcirc A \qquad \bigcirc (B/A)}{\bigcirc B} (DD)$$

$$\frac{\bigcirc (B/A) \qquad \Box (B \rightarrow C)}{\bigcirc (C/A)} (WC)$$

Keep (FD) - perhaps in a qualified form - but

Easy way: give up (DD)/(WC)

So-called non-normal modal logic (Forrester)

 \rightarrow : relevant implication (Goble)

Hard way: make (FD) coexist with (DD)/(WC)

■ This lecture: different ways to do it

Adding time

Basic idea

before the violation \neq after the violation

Åqvist's system DARB: DDL supplemented with \oplus ("next") and \boxed{s} ("settledness")

_ .

Semantics of DARB (1)

Frame

- (*Tree*, <): a tree-like structure, where
 - *Tree*: a set of moments, m_1 , m_2 , ...
 - <: temporal relation (says which moment is next to which)</p>
 - *h* : a history (a maximal chain of moments)
 - \blacksquare H_m : the set of histories passing through moment m.
- ≥: a ranking of histories in terms of betterness

NB: Truth-value of formulae made relative to pairs m/h

 $\mathfrak{M}, m/h \models A$: in model \mathfrak{M} , formula A is true at moment m in history h

 $[A]_m$: the set of histories making A true at m

Semantics of DARB (2)

Evaluation rules

$$\mathfrak{M}, m/h \models \oplus A \Leftrightarrow \mathfrak{M}, m+1/h \models A$$

$$\mathfrak{M}, m/h \models \boxed{s}A \Leftrightarrow (\forall h' \in H_m)(\mathfrak{M}, m/h' \models A)$$

$$\mathfrak{M}, m/h \models \bigcirc(B/A) \Leftrightarrow \mathsf{best}_{\geq}([A]_m) \subseteq [B]_m.$$

Case where A and B (will) occur simultaneously

Old representation	New representation
OA	$\bigcirc \oplus A$
$\mathcal{O}(A o B)$	$\bigcirc(\oplus B/\oplus A)$
$\neg A \rightarrow O \neg B$	$\oplus \bigcirc (\neg B/\neg A)$
$\neg A$	$\oplus \neg A$

Case where A and B (will) occur simultaneously

Old representation	New representation
OA	$\bigcirc \oplus A$
O(A o B)	$\bigcirc(\oplus B/\oplus A)$
$\neg A o O \neg B$	$\oplus \bigcirc (\neg B/\neg A)$
$\neg A$	$\oplus \neg A$

Case where A and B (will) occur simultaneously

Old representation	New representation
OA	$\bigcirc \oplus A$
${\it O}({\it A} ightarrow {\it B})$	$\bigcirc(\oplus B/\oplus A)$
eg A o O eg B	$\oplus \bigcirc (\neg B/\neg A)$
$\neg A$	$\oplus \neg A$

Exercise

Explain why the previous picture shows the new representation is consistent. (Use the evaluation rules for the connectives, and assume h₃ is the 'actual' history)

Case where A and B (will) occur simultaneously

Old representation	New representation
OA	$\bigcirc \oplus A$
$\mathcal{O}(A o B)$	$\bigcirc(\oplus B/\oplus A)$
$\neg A \rightarrow O \neg B$	$\oplus \bigcirc (\neg B/\neg A)$
$\neg A$	$\oplus \neg A$

$$\begin{array}{c|c}
\bigcirc \oplus A & \bigcirc (\oplus B/ \oplus A) \\
\hline
\bigcirc \oplus B & \\
\hline
& \oplus \bigcirc (\neg B/\neg A) & \oplus \neg A \\
\hline
& \oplus \bigcirc \neg B
\end{array}$$
 (FD)

Case where A and B (will) occur simultaneously

Old representation	New representation
OA	$\bigcirc \oplus A$
${\it O}({\it A} ightarrow {\it B})$	$\bigcirc(\oplus B/\oplus A)$
eg A o O eg B	$\oplus \bigcirc (\neg B/\neg A)$
$ eg \mathcal{A}$	$\oplus \neg A$

Remarks

- Forrester example: same idea
- But troubles with the case where B occurs before A

Consequent-before-the-antecedent

Chisholm words example

In DARB: qualified version of the factual detachment rule

$$\frac{\bigcirc_t(B/A)}{\bigcirc_t B} \quad A_{t'} \quad (t' \leq t)$$

time of *B* (within the scope of \bigcirc) (strictly) before t'.

Can the past be undone?

Exercise in class

Give a consistent representation of the Chisholm set for the case where *B* follows *A*.

Old representation	New representation
OA	$\bigcirc \oplus A$
O(A o B)	$\bigcirc(\oplus\oplus B/\oplus A)$
$\neg A \rightarrow O \neg B$	$\oplus \bigcirc (\oplus \neg B/\neg A)$
$\neg A$	$\oplus \neg A$

Exercise in class

Give a consistent representation of the Chisholm set for the case where *B* follows *A*

OGGO WHOLE D TOHOWO 71.	
Old representation	New representation
OA	$\bigcirc \oplus A$
O(A o B)	$\bigcirc(\oplus\oplus B/\oplus A)$
$\neg A o O \neg B$	$\oplus \bigcirc (\oplus \neg B / \neg A)$
$\neg A$	$\oplus \neg A$

Basics

Two senses of "ought"

- actual
- ideal or prima facie

Y modality: goes backwards in time

Material reading: Synthese paper on Moodle.

Exercise in class

Read sec. 2.2 of the paper. And

- Identify a condition on R to validate ax 3.5
- Use a direct argument to show the validity of ax 3.2
- Use a reductio ad absurdum to show the validity of ax 3.1, 3.3 and 3.4.

$$ObA =_{df} YO(r \rightarrow A)$$
 $Ob(B/A) =_{df} YO(A \rightarrow ObB)$

Premisses are evaluated at < t, t >

$$< t, t> \models Ob(B/A)$$

 $< t, t> \models ObA$
 $< u, t> \models r \rightarrow ObB$
 $\downarrow \downarrow$
ideal (prima facie) "ought"
 $< U, t>$

$$< t, t> \models Ob(\neg B/\neg A)$$
 $< t, t> \models \neg A$
 $< t, t> \models Ob \neg B$
 $\downarrow \downarrow$
actual "ought"
 $< \blacksquare . t>$

$$ObA =_{df} YO(r \rightarrow A)$$
 $Ob(B/A) =_{df} YO(A \rightarrow ObB)$

Premisses are evaluated at < t, t >

$$ObA =_{df} YO(r \rightarrow A)$$
 $Ob(B/A) =_{df} YO(A \rightarrow ObB)$

Premisses are evaluated at < t, t >

$$< t, t> \models Ob(B/A)$$
 $< t,$
 $< t, t> \models ObA$
 $< u, t> \models r \rightarrow ObB$
 $\downarrow \downarrow$
ideal (prima facie) "ought"
 $< u, t> \models r \rightarrow ObB$

$$< t, t > \models Ob(\neg B/\neg A)$$

$$< t, t > \models \neg A$$

$$< t, t > \models Ob \neg B$$

$$\downarrow \downarrow$$
actual "ought"

$$ObA =_{df} YO(r \rightarrow A)$$
 $Ob(B/A) =_{df} YO(A \rightarrow ObB)$

Premisses are evaluated at < t, t >

Exercises in class

- Show that the two inferences bottom of the previous slide are sound
- Show that $\langle t, t \rangle \models (ObA) \land \neg A$ is inconsistent, if Ob is defined by $ObA =_{df} YOA$

Exercises in class

- Show that the two inferences bottom of the previous slide are sound
- Show that $\langle t, t \rangle \models (ObA) \land \neg A$ is inconsistent, if Ob is defined by $ObA =_{df} YOA$

SDL with sub-ideality

Jones and Porn

Two relations

- R (ideality) and R' (sub-ideality)
- for all x, xRx or xR'x

Two pairs of modalities

 \bigcirc (O, P) and (O', P')

SDL with sub-ideality (2)

Jones and Porn

- Ought $A = OA \land P' \neg A$
- Nec $A = OA \wedge O'A$

New Chisholm set

Ought A

 $Nec(A \rightarrow \textbf{Ought } B)$

 $Nec(\neg A \rightarrow \textbf{Ought } \neg B)$

 $\neg A$

Exercise:

Show the new Chisholm set is consitent