STA302 METHODS OF DATA ANALYSIS I

MODULE 6: DECOMPOSING THE VARIANCE

PROF. KATHERINE DAIGNAULT

MODULE 6 OUTLINE

- I. Decomposition of the Sum of Squares
- 2. ANOVA Test for Overall Significance
- 3. Partial F Test

VARIATION IN LINEAR REGRESSION

- Fitting a linear model minimizes the RSS (i.e. variation around the line)
- Intuitively, we could use the idea of variation to decide which plot shows a stronger linear relationship
 - Left plot has less variation around the trend so trend is more prominent
 - Can also think of it as the predictor explains the spread better on the left than on the right
 - We have more leftover (i.e. residual) variation on the right
- The hypothesis test on slope in SLR also uses variation to decide on presence of significant linear relationship
 - If $\hat{\beta}_1 0$ is much bigger than variation expected in estimating $\hat{\beta}_1$, then 0 is not plausible value

© STA302 - DAIGNAULT

3

T-TEST IN SLR & VARIATION

- If we have no linear relationship, then $\beta_1=0$ which means $\hat{\beta}_0=\bar{y}$
 - This also means $y_i = \beta_0 + \varepsilon$, a horizontal line
- When we have a linear relationship, there is a difference between \bar{y} (no relationship) and \hat{y}_i
 - The farther from 0 the slope is, the bigger this difference, and the more significant the linear relationship
- lacksquare But test statistic also compares $\hat{eta}_1 0$ to variation in estimating \hat{eta}_1
 - This variation includes $s^2 = \frac{\sum (y_i \hat{y}_i)^2}{n-2}$
- For t-test to indicate significant linear relationship, $\hat{y}_i \bar{y}$ across all observations (i.e. total) would need to overall be larger than residual differences $y_i \hat{y}_i$ overall (i.e. total)

© STA302 - DAIGNAULT

4

SOURCES OF VARIATION IN REGRESSION

- We aim to explain the variation/variability we see in our response
 - Quantified by $SST = \sum (y_i \bar{y})^2$ (i.e. numerator of sample variance of y)
- Each predictor added to a model for y captures/explains a portion of this variation
 - Each is (hopefully) related to y and so explains the trend
 - Amount of overlap coincides with magnitude of difference $\hat{\beta}_i 0$
- As more predictors are added, more variation in y is explained, but some will always be leftover

DECOMPOSITION OF SUM OF SQUARES

- There are three sources of variation in linear regression models:
 - Total amount of variation prior to fitting a model (ignoring predictors): $SST = \sum (y_i \bar{y})^2$, called Total Sum of Squares
 - Overall variation explained by the predictors/the model:

$$SS_{reg} = \sum (\hat{y}_i - \bar{y})^2$$
, called Regression Sum of Squares

Leftover/Unexplained variation leftover from fitting the model

$$RSS = \sum (y_i - \hat{y}_i)^2$$
, called the Residual Sum of Squares

■ The decomposition relates these three sources of variation together:

$$SST = SS_{reg} + RSS$$

MORE ABOUT THE DECOMPOSITION

The decomposition

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2$$

can be shown to be true by expanding squares and manipulating terms

- Sum of squares are measures of distance, like numerator of sample variances
- Each term also has a degree of freedom (like denominator of sample variance)
 - SST has degree of freedom (df) n-1
 - RSS has degree of freedom (df) n-p-1 where p is number of predictors
 - SS_{reg} has degree of freedom (df) p
- DFs decompose too: n 1 = (n p 1) + (p)

MODULE 6 OUTLINE

- I. Decomposition of the Sum of Squares
- 2. ANOVA Test for Overall Significance
- 3. Partial F Test

USING THE DECOMPOSITION TO BUILD A TEST

- T-test on slope in SLR tells us if the predictor is significantly related to response
 - Equivalent to saying a linear relationship exists
- T-tests on slopes in MLR can only say if this predictor is linearly related to response in presence of others.
 - Cannot give overall notion of whether a linear relationship exists in model
- Can use decomposition to create such a test
 - Indicates if at least one predictor overlaps *Y* enough to result in a significant linear relationship
 - Does this by checking if a significant amount of variation is explained

© STA302 - DAIGNAULT

,

INTUITION BEHIND THE TEST

- Significant linear relationship = significant amount of variation in response was explained by model
 - So SS_{reg} would be large relative to SST
- Every dataset is different, so every data's SST is different
 - Cannot look at ratio of SS_{reg} to SST
- Due to decomposition, a model where ${}^{SS_{reg}}/{}_{SST}$ is large necessarily means ${}^{RSS}/{}_{SST}$ is small.
 - A good model therefore should have $SS_{reg} > RSS$
- Test of Overall Significance checks if SS_{reg} is significantly bigger than RSS

ANOVATEST OF OVERALL SIGNIFICANCE

- Analysis of Variance Test of Overall Significance compares RSS and SS_{reg} to identify existence of a linear relationship
- Hypothesis: H_0 : $\beta_1 = \mathbf{0}$ versus H_a : $\beta_1 \neq \mathbf{0}$ where we split our vector of coefficients $\boldsymbol{\beta} = (\beta_0, \boldsymbol{\beta}_1)^T$
 - Testing the null "all slopes are zero" versus "at least one slope is not zero"
- Assuming the null is true, we test this using the statistic $F^* = \frac{SS_{reg}/p}{RSS/n-p-1} \sim F(p,n-p-1)$
 - Dividing each SS by its df standardizes the quantity, giving us the Mean Squares Regression and Mean Squares Residual
- Test components sometimes summarized in an ANOVA table:

Source	DF	Sum Squares	Mean Squares	F value
Regression	p	SS_{reg}	$MS_{reg} = \frac{SS_{reg}}{p}$	MS_{reg}/MSR
Residual	n - p - 1	RSS	$MSR = \frac{RSS}{n - p - 1}$	_
Total	n-1	SST	_	-

CONCLUDING ANOVA TEST

- F distribution assumes the null hypothesis is true.
 - Displays values we expect if no linear relationship exists
 - Expect to see small values of $F^* = \frac{SS_{reg}/p}{RSS/n-p-1}$
- More extreme F^* values will be in the right tail
 - Bigger values are due to $MS_{reg} > MSR$
 - The larger this ratio, the larger the test statistic will be, and therefore the smaller the p-value
- If p-value $< \alpha$, or $F^* > F_{(1-\alpha),(p,n-p-1)}$, then reject H_0 and conclude a statistically significant linear relationship exists for at least one predictor

EXAMPLE BY HAND & USING R

A model involving 3 predictors (X_1, X_2, X_3) is fit to a response Y using a sample of 30.

The response has sample variance $s_y^2 = 376.6853$.

The model yields an estimated error variance of $s^2 = 50.555$.

Find the elements of the ANOVA table and conclude the ANOVA test.

 H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$ vs H_a : at least one $\beta_i \neq 0$

I. Degrees of freedom: n = 30, p = 3 $df_{RSS} = 26, df_{SST} = 29, df_{SS_{reg}} = 3$

2. Find the sums of squares:

$$SST = (n-1)s_y^2 = 29(376.6853) = 10923.87$$

 $RSS = (n-p-1)s^2 = 26(50.555) = 1314.43$
 $SS_{reg} = SST - RSS = 10923.87 - 1314.43 = 9609.44$

3. Find the mean squares:

$$MSR = \frac{RSS}{n-p-1} = \frac{1314.43}{26} = 50.555$$

$$MS_{reg} = \frac{SS_{reg}}{p} = \frac{9609.44}{3} = 3203.147$$

4. Compute test statistic:
$$F^* = \frac{MS_{reg}}{MSR} = \frac{3203.147}{50.555} = 63.36$$

```
5. Conclude: [1] 2.975154 \rightarrow 63.36 > 2.98
```

```
> data <- read.table("defects.txt", header=T)</pre>
> # fit a model using Defective as response, others are predictors
> model1 <- lm(Defective ~ Temperature + Density + Rate, data=data)
> summary(model1)
lm(formula = Defective ~ Temperature + Density + Rate, data = data)
Residuals:
               1Q Median
-12.7367 -4.1116 -0.5755
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.3244
                       65.9265
Temperature 16.0779
Density
             -1.8273
                        1.4971 -1.221
                                         0.2332
             0.1167
Rate
                        0.1306
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 7.11 on 26 degrees of freedom
Multiple R-squared: 0.8797
                              Adjusted R-squared: 0.8658
F-statistic: 63.36 on 3 and 26 DF, p-value: 4.371e-12
```

13

© STA302 - DAIGNAULT

Reject null and conclude significant linear relationship exists for at least one predictor.

MODULE 6 OUTLINE

- I. Decomposition of the Sum of Squares
- 2. ANOVA Test for Overall Significance
- 3. Partial F Test

TESTING A SUBSET OF PREDICTORS

- Suppose ANOVA test says at least one of X_1, X_2, X_3 is related to Y
 - Then t-test on each coefficient says only X_3 significantly related
- Is the simple model with only X_3 as good as the 3-predictor model?
 - Can we remove the two insignificant predictors at the same time?
 - Since each predictor is conditionally related to *Y*, t-test only says you can remove them one at a time.
- A Partial F Test can account for the conditionality to say if both X's can be removed simultaneously
 - If simple model as good as 3-predictor model, then SS_{reg} should be similar, and equivalently RSS of each model should be similar
 - If smaller model's *RSS* is too much bigger, then we can't remove all insignificant predictors at once.

A TALE OF TWO MODELS

- A Partial F Test compares 2 models
 - Complete/full model (the bigger one) with p predictors, e.g. the 3predictor model
 - Reduced model (the smaller one), e.g. the simple X_3 model
 - We say reduced model has p k predictors left (i.e. k were removed)
- **Each** model uses same data/response, so *SST* is the same.
- A model with more predictors (even non-significant ones) has smaller RSS so

$$RSS_{reduced} > RSS_{full} \Leftrightarrow SS_{reg,reduced} < SS_{reg,full}$$

 Adjust for additional predictors by standardizing with degrees of freedom of each model.

PARTIAL F TEST FOR SUBSETS OF MODELS

- Test is built assuming null hypothesis is true: $H_0: \beta_2 = 0$ versus $H_a: \beta_2 \neq 0$ where $\beta = (\beta_0, \beta_1, \beta_2)^T$
 - β_2 is a vector of k coefficients that were removed from the full model to make the reduced model.
 - i.e. reduced model has the p-k predictors matching coefficients in β_1 , so testing if ok to drop k predictors because their β 's are 0
- We quantify the difference between the RSS in the two models as $RSS_{drop} = RSS_{reduced} RSS_{full}$
 - A substantially better full model gives a bigger RSS_{drop} , while similar full and reduced models give a smaller RSS_{drop}
- Like the ANOVA test, we look at a ratio of mean sums of squares, comparing the mean SS difference $\binom{RSS_{drop}}{k}$ to the model with the smallest mean squares residual (i.e. the full model):

$$F^* = \frac{{_{RSS_{drop}}/_k}}{{_{RSS_{full}}/_{n-p-1}}} \sim F(k, n-p-1)$$

CONCLUDING THE PARTIAL F TEST

- The null assumes it is true that the smaller model is better (MSR_{drop}) is small relative to MSR_{full}
- If $F^* < F_{(1-\alpha),(k,n-p-1)}$, we fail to reject the null
 - The additional SS_{reg} from k predictors not enough to keep the predictors \leftarrow outcome we want if aiming for simpler/smaller models
 - Conclude there does not exist a significant linear relationship between *Y* and <u>any</u> of the *k* predictors.
- If $F^* > F_{(1-\alpha),(k,n-p-1)}$, or p-value $< \alpha$, we reject the null
 - Additional SS_{reg} from k predictors explains a lot of variation so we want to keep these predictors
 - Conclude there exists a significant linear relationship between *Y* and <u>at least one</u> of the *k* predictors.

EXAMPLE BY HAND & USING R

A model involving 3 predictors (X_1, X_2, X_3) is fit to a response Y using a sample of 30.

The response has sample variance $s_y^2 = 376.6853$.

The 3-predictor model yields an estimated error variance of $s^2 = 50.555$.

If a model with only X_1 yields an RSS = 1497.03, test whether this model is better.

 H_0 : $\beta_2 = \beta_3 = 0$ vs H_a : at least one $\beta_i \neq 0$

I. Define models and values:

Full model: RSS = 1314.43, df = 26Reduced model: RSS = 1497.03, df = 28

2. Find RSS_{drop} :

$$RSS_{drop} = RSS_{reduced} - RSS_{full}$$

= 1497.03 - 1314.43 = 182.6

3. Compute test statistic:

$$F^* = \frac{RSS_{drop}/k}{RSS_{full}/n - p - 1} = \frac{182.6/2}{1314.43/26} = 1.81$$

We fail to reject the null, so no significant linear relationship exists between Y and either X_2 or X_3 , so they can be removed from the full model.

```
> # fit simple model using only Temperature
> model2 <- lm(Defective ~ Temperature, data=data)</pre>
Call:
lm(formula = Defective ~ Temperature, data = data)
Residuals:
     Min
              1Q Median
                                30
-18.5952 -4.9203 -0.6253
                           4.2133 15.1861
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -40.938
                         5.298 -7.727 2.04e-08 ***
                         2.327 13.279 1.32e-13 ***
Temperature
             30.904
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 7.312 on 28 degrees of freedom
Multiple R-squared: 0.863,
                               Adjusted R-squared: 0.8581
F-statistic: 176.3 on 1 and 28 DF, p-value: 1.317e-13
> # to conduct partial F test
                                  — anova(reduced, full)
> anova(model2, model1) ←
Analysis of Variance Table
Model 1: Defective ~ Temperature
Model 2: Defective ~ Temperature + Density + Rate
 Res.Df RSS Df Sum of Sq
                                 F Pr(>F)
1
      28 1496.8
                                                             19
      26 1314.4 2 182.42 1.8042 0.1846
        RSS_{drop}
```

CONSIDERATIONS FOR USING THESE TESTS

- General order of tests in an analysis:
 - ANOVA overall test → T-tests on individual coefficients → Partial F Test
 - T-tests can help inform what predictors you may consider wanting to drop
- Always check assumptions before using a hypothesis test of any kind
 - In partial F test, important to verify assumptions in both full and reduced models
- Caution when using partial F test:
 - Cannot compare models from different datasets
 - Cannot compare models that are not subsets of one another
 - E.g. model 1 uses predictors X_1, X_2, X_3 , while model 2 uses predictors X_2, X_4 and model 3 uses X_2, X_3 , partial F test can only be used on models 1 and 3

MODULE TAKE-AWAYS

- I. What do the components of the sum of squares decomposition measure?
- 2. How are these components measured/computed?
- 3. What is the difference between the hypothesis for the ANOVA test and the Partial F test?
- 4. How is the decomposition used differently for the ANOVA test and the Partial F test?
- 5. How do we conduct each decomposition-based test?
- 6. What are the conclusions of each decomposition-based test?