

Background

- What is Next Generation Sequencing?
 - Sample preparation
 - Sequencing by machines
 - Data output
- What are miRNAs?

Problem definition

Finding a method for identifying miRNA biomarkers for Alzheimer's Disease

 Need of new method because of the drawbacks of previously introduced methods

Related works

Methodology

2652 miRNAs

Initial NGS dataset

70 Samples FastQ file for each sample

Preprocessing & Analysis NGS data

Using Galaxy platform

Summarized dataset with miRNA read counts

Excel dataset Initially - 2652 miRNAs After removing lowly abundant -503 miRNAs

Classification

25 miRNAs

Feature Selection

- PCA
- Random Forests
- · Correlation Coefficient

Statistical analysis

- P value & Fold change
 - AUC value

Implementation choices: Tools

NGS data analysis

- Galaxy platform web based, open source platform
- Galaxy tools
 - FastQC Quality check
 - Trim Galore remove adapters and low quality reads
 - Filter FASTQ filter short read sequences
 - Bowtie2 map sequence against reference genome
 - Htseq-count identify read counts

Implementation choices: Tools

Statistical Analysis

- Python clean syntax, straightforward semantics & Third-party toolkits
- Python libraries
 - Numpy
 - Pandas
 - Scipy
 - Scikit learn
 - Matplotlib

Implementation choices: Models

Classification

- Machine Learning models
 - Logistic regression
 - Linear SVM
 - Gaussian SVM
 - Naive Bayes
 - K Nearest Neighbour
 - Random Forests

Implementation choices: Methodologies

Preprocessing

Trimming sequence data - remove adapters, indexes, low quality reads

Filtering - remove short read sequences

Statistical analysis

- P value & Fold change identify most significance miRNAs
- AUC identify dysregulated miRNAs

Implementation choices: Methodologies contd.

Feature selection

- PCA
- Random Forest
- Correlation coefficient

Classification

 Classification - Support vector machine, Logistic regression and Random Forest

NGS data analysis

TCCTGTACTGAGCTGCCCCGAGATGGAATTCTCGGGTGCCAAGGAACTCC TCCTGTACTGAGCTGCCCCGAGGGGAATTCTGGGGTGCCAAGGAACCCCA TCCTGTACTGAGCTGCCCCGAGTGGAATTCTCGGGTGCCAAGGAACTCCA

First 3 sequences from fastQ file

Trimming using Trim Galore

TCCTGTACTGAGCTGCCCCGAGA

TCCTGTACTGAGCTGCCCCGAGGGGAATTCTGGGG

TCCTGTACTGAGCTGCCCCGAG

After trimming

Reference genome SN:chr1

miRBase sequence (From has.gtf file)

..TGCCCCGAGTCCTGTACTGAGCTGCCCCGAGATCCTGTACTGA...

TCCTGTACTGAGCTGCCCCGAGA

Seq1

SN:chr1

Mapping against miRBase

Name=hsa-mir-200a

..TGCCCCGAGTCGTTCCGTCCTGTACTGAGCTGCCCCGAGATCCT...

TCCTGTACTGAGCTGCCCCGAGA Seq1

Seq 1 identified as hsa-mir-200a

Mapping against reference genome TCCTGTACTGAGCTGCCCCGAGA

TCCTGTACTGAGCTGCCCCGAG

After filtering

Second sequence was removed

Count reads of each miRNA

miRNA name	Read counts		
hsa-miR-106b-3p	2622		
hsa-miR-107	594		
hsa-miR-10a-3p	1		
hsa-mir-200a	45		
hsa-miR-1269a	0		

After counting reads for all miRNA

Feature Selection

Results Obtained From Each Stage of Analysis

Filtered miRNAs using significance value and fold change are: ['hsa-mir-30a:hsa-miR-30a-3p', 'hsa-mir-550a-1:hsa-miR-550a-3p', 'hsa-mir-29a:hsa-miR-29a-3p', 'hsa-mir-628:hsa-miR-628-3p', 'hsa-mir-26a-2:hsa-miR-26a-5p', 'hsa-mir-106b:hsa-miR-106b-5p', 'hs a-mir-4781:hsa-miR-4781-3p', 'hsa-mir-10b:hsa-miR-10b-5p', 'hsa-mir-215:hsa-miR-215', 'hsa-mir-548aj-2:hsa-miR-548g-5p', 'hsa-m ir-181a-1:hsa-miR-181a-3p', 'hsa-mir-548x:hsa-miR-548ar-5p', 'hsa-mir-548k:hsa-miR-548av-5p', 'hsa-mir-199a-1:hsa-miR-199a-3p', 'hsa-mir-30e:hsa-miR-30e-3p', 'hsa-mir-4508:hsa-miR-4508', 'hsa-mir-548aj-2:hsa-miR-548x-5p', 'hsa-mir-371b:hsa-miR-371b-5p', 'hsa-mir-5001:hsa-miR-5001-3p', 'hsa-mir-16-2:hsa-miR-16-2-3p', 'hsa-mir-128-2:hsa-miR-128', 'hsa-mir-486:hsa-miR-486-3p', 'hsa--mir-4482-1:hsa-miR-4482-3p', 'hsa-mir-941-4:hsa-miR-941', 'hsa-mir-550a-1:hsa-miR-550a-5p', 'hsa-mir-199a-2:hsa-miR-199b-3p', 'hsa-mir-144:hsa-miR-144-5p', 'hsa-let-7f-2:hsa-let-7f-5p', 'hsa-mir-126:hsa-miR-126-5p', 'hsa-mir-191:hsa-miR-191-3p', 'hsa-mi r-10a:hsa-miR-10a-5p', 'hsa-mir-98:hsa-miR-98', 'hsa-mir-548x:hsa-miR-548x-5p', 'hsa-mir-363:hsa-miR-363-3p', 'hsa-mir-548h-1:h sa-miR-548h-5p', 'hsa-mir-223:hsa-miR-223-3p', 'hsa-mir-5690:hsa-miR-5690', 'hsa-mir-199b:hsa-miR-199b-3p', 'hsa-mir-3200:hsa-m iR-3200-3p', 'hsa-mir-424:hsa-miR-424-3p', 'hsa-mir-644b:hsa-miR-644b-3p', 'hsa-mir-548h-5:hsa-miR-548h-5p', 'hsa-mir-18a:hsa-m iR-18a-5p', 'hsa-mir-548g:hsa-miR-548x-5p', 'hsa-mir-548g:hsa-miR-548g:hsa-miR-548g:hsa-miR-99b:hsa-miR-99 b-5p', 'hsa-mir-25:hsa-miR-25-3p', 'hsa-mir-937:hsa-miR-937', 'hsa-mir-1180:hsa-miR-1180', 'hsa-mir-30c-1:hsa-miR-30c-5p', 'hsa-mir-1180', 'hsa-mir-30c-1:hsa-mir-30c-5p', 'hsa-mir-1180', 'hsa-mir-30c-1:hsa-mir-30c-5p', 'hsa-mir-30c-5p', 'hsa-mir--let-7a-1:hsa-let-7a-5p', 'hsa-mir-941-1:hsa-miR-941', 'hsa-mir-660:hsa-miR-660-5p', 'hsa-mir-421:hsa-miR-421', 'hsa-mir-374a:h sa-miR-374a-5p', 'hsa-mir-328:hsa-miR-328', 'hsa-mir-151a:hsa-miR-151a-5p', 'hsa-mir-548x:hsa-miR-548aj-5p', 'hsa-mir-101-2:hsa -miR-101-3p', 'hsa-mir-28:hsa-miR-28-3p', 'hsa-mir-139:hsa-miR-139-5p', 'hsa-mir-2110:hsa-miR-2110', 'hsa-let-7g:hsa-let-7g-5 p', 'hsa-mir-550a-3;hsa-miR-550a-3-5p', 'hsa-mir-548aj-2;hsa-miR-548ar-5p', 'hsa-mir-144;hsa-miR-144-3p', 'hsa-mir-548e;hsa-miR

Filtered miRNAs Using AUC Analysis

219 miRNAs

- 179 down-regulated miRNAs
- 40 up-regulated miRNAs

Selected miRNAs using AUC analysys: ['hsa-mir-30a:hsa-miR-30a-3p', 'hsa-mir-550a-1:hsa-miR-550a-3p', 'hsa-mir-29a:hsa-miR-29a-3 p', 'hsa-mir-628:hsa-miR-628-3p', 'hsa-mir-26a-2:hsa-miR-26a-5p', 'hsa-mir-106b:hsa-miR-106b-5p', 'hsa-mir-4781:hsa-miR-4781-3 p', 'hsa-mir-10b:hsa-miR-10b-5p', 'hsa-mir-215:hsa-miR-215', 'hsa-mir-548aj-2:hsa-miR-548g-5p', 'hsa-mir-181a-1:hsa-miR-181a-3 p', 'hsa-mir-548x:hsa-miR-548ar-5p', 'hsa-mir-548k:hsa-miR-548av-5p', 'hsa-mir-199a-1:hsa-miR-199a-3p', 'hsa-mir-30e:hsa-miR-30 e-3p', 'hsa-mir-4508:hsa-miR-4508', 'hsa-mir-548aj-2:hsa-miR-548x-5p', 'hsa-mir-371b:hsa-miR-371b-5p', 'hsa-mir-5001:hsa-miR-50 01-3p', 'hsa-mir-16-2:hsa-miR-16-2-3p', 'hsa-mir-128-2:hsa-miR-128', 'hsa-mir-486:hsa-miR-486-3p', 'hsa-mir-4482-1:hsa-miR-4482 -3p', 'hsa-mir-550a-1:hsa-miR-550a-5p', 'hsa-mir-199a-2:hsa-miR-199b-3p', 'hsa-mir-144:hsa-miR-144-5p', 'hsa-let-7f-2:hsa-let-7 f-5p', 'hsa-mir-126:hsa-miR-126-5p', 'hsa-mir-191:hsa-miR-191-3p', 'hsa-mir-10a:hsa-miR-10a-5p', 'hsa-mir-98:hsa-miR-98', 'hsamir-548x:hsa-miR-548x-5p', 'hsa-mir-363:hsa-miR-363-3p', 'hsa-mir-548h-1:hsa-miR-548h-5p', 'hsa-mir-223:hsa-miR-223-3p', 'hsa-mir-548h-1:hsa-miR-548h-5p', 'hsa-mir-223:hsa-miR-223-3p', 'hsa-mir-363:hsa-miR-363-3p', 'hsa-mir-548h-1:hsa-miR-548h-5p', 'hsa-mir-223:hsa-miR-223-3p', 'hsa-mir-363:hsa-miR-363-3p', 'hsa-mir-548h-1:hsa-miR-548h-5p', 'hsa-mir-223:hsa-miR-223-3p', 'hsa-mir-363:hsa-miR-363-3p', 'hsa-mir-363-3p', 'hsa-mir-36 ir-5690:hsa-miR-5690', 'hsa-mir-199b:hsa-miR-199b-3p', 'hsa-mir-3200:hsa-miR-3200-3p', 'hsa-mir-424:hsa-miR-424-3p', 'hsa-mir-6 44b:hsa-miR-644b-3p', 'hsa-mir-548h-5:hsa-miR-548h-5p', 'hsa-mir-18a:hsa-miR-18a-5p', 'hsa-mir-548g:hsa-miR-548x-5p', 'hsa-mir-548g:hsa-miR-548g-5p', 'hsa-mir-21:hsa-miR-21-5p', 'hsa-mir-99b:hsa-miR-99b-5p', 'hsa-mir-25:hsa-miR-25-3p', 'hsa-mir-937:hsa-m iR-937', 'hsa-mir-1180:hsa-miR-1180', 'hsa-mir-30c-1:hsa-miR-30c-5p', 'hsa-let-7a-1:hsa-let-7a-5p', 'hsa-mir-660:hsa-miR-660-5 p', 'hsa-mir-421:hsa-miR-421', 'hsa-mir-374a:hsa-miR-374a-5p', 'hsa-mir-151a:hsa-miR-151a-5p', 'hsa-mir-548x:hsa-miR-548aj-5p', 'hsa-mir-101-2:hsa-miR-101-3p', 'hsa-mir-28:hsa-miR-28-3p', 'hsa-mir-139:hsa-miR-139-5p', 'hsa-mir-2110:hsa-miR-2110', 'hsa-let -7g:hsa-let-7g-5p', 'hsa-mir-550a-3:hsa-miR-550a-3-5p', 'hsa-mir-548aj-2:hsa-miR-548ar-5p', 'hsa-mir-144:hsa-miR-144-3p', 'hsamir-548e:hsa-miR-548e', 'hsa-mir-3074:hsa-miR-3074-5p', 'hsa-mir-1294:hsa-miR-1294', 'hsa-mir-19a:hsa-miR-19a-3p', 'hsa-mir-199 a-1:hsa-miR-199b-3p', 'hsa-mir-17:hsa-miR-17-3p', 'hsa-mir-340:hsa-miR-340-3p', 'hsa-mir-3158-2:hsa-miR-3158-3p', 'hsa-mir-548 x:hsa-miR-548g-5p', 'hsa-mir-331:hsa-miR-331-3p', 'hsa-mir-4742:hsa-miR-4742-3p', 'hsa-mir-4482-2:hsa-miR-4482-3p', 'hsa-mir-54 8h-2:hsa-miR-548h-5p', 'hsa-mir-324:hsa-miR-324-5p', 'hsa-mir-18b:hsa-miR-18b-5p', 'hsa-mir-659:hsa-miR-659-5p', 'hsa-mir-532:h sa-miR-532-5p', 'hsa-mir-3158-1:hsa-miR-3158-3p', 'hsa-mir-671:hsa-miR-671-3p', 'hsa-let-7d:hsa-let-7d-3p', 'hsa-mir-29b-2:hsamiR-29b-3p', 'hsa-mir-548h-4:hsa-miR-548h-5p', 'hsa-mir-3615:hsa-miR-3615', 'hsa-mir-4746:hsa-miR-4746-5p', 'hsa-mir-210:hsa-mi R-210', 'hsa-mir-3127:hsa-miR-3127-3p', 'hsa-mir-130b:hsa-miR-130b-3p', 'hsa-mir-550a-2:hsa-miR-550a-5p', 'hsa-let-7a-2:hsa-let -7a-5p', 'hsa-mir-148a:hsa-miR-148a-3p', 'hsa-mir-190a:hsa-miR-190a', 'hsa-mir-1304:hsa-miR-1304-3p', 'hsa-mir-4792:hsa-miR-479 2', 'hsa-mir-106b:hsa-miR-106b-3p', 'hsa-mir-29b-1:hsa-miR-29b-3p', 'hsa-mir-30b:hsa-miR-30b-5p', 'hsa-mir-378d-2:hsa-miR-378 d', 'hsa-mir-20a:hsa-miR-20a-5p', 'hsa-mir-323b:hsa-miR-323b-3p', 'hsa-mir-548ar:hsa-miR-548ar-5p', 'hsa-mir-378i:hsa-miR-378

Univariate selection to identify most related miRNAs

50 miRNAs

 Visualization of the overlap between set of miRNAs selected from PCA and Random Forest

Correlation heatmaps

hsa-mir-3615:hsa-

PCA

hsa-mir-92b:hsa-miR-92b-3p hsa-mir-363:hsa-miR-363-3p hsa-let-7c:hsa-let-7c hsa-mir-215:hsa-miR-215 hsa-mir-3615:hsa-miR-3615 hsa-mir-106b:hsa-miR-106b-3p hsa-mir-28:hsa-miR-28-3p hsa-let-7d:hsa-let-7d-3p hsa-mir-942:hsa-miR-942 hsa-mir-151b:hsa-miR-151b hsa-mir-125a:hsa-miR-125a-5p hsa-mir-148b:hsa-miR-148b-3p hsa-mir-345:hsa-miR-345-5p hsa-mir-3158-2:hsa-miR-3158-3p hsa-mir-30a:hsa-miR-30a-3p hsa-mir-339:hsa-miR-339-3p brain-mir-159:brain-mir-159 hsa-mir-1307:hsa-miR-1307-3p

hsa-mir-151b:hsa-

hsa-mir-148b:hsa

Random Forest

rsa-mir-1285-1:hsa-miR-1285-5 brain-mir-219:brain hsa-mir-199a-2:hsa-miR ısa-mir-29a:hsa hsa-mir-550a-1:hsahsa-mir-148b:hsa mir-199b:hsa hsa-mir-29bhsa-mir-199a-2

Accuracy with correlation coefficients

PCA

Random Forest

Selected miRNAs using correlations

11 miRNAs

Correlation

hsa-mir-4781:hsa-miR-4781-3p

brain-mir-112:brain-mir-112

hsa-let-7a-3:hsa-let-7a-5p

hsa-mir-148b:hsa-miR-148b-5p

hsa-mir-29b-2:hsa-miR-29b-3p

brain-mir-431:brain-mir-431

hsa-mir-378a:hsa-miR-378a-5p

hsa-mir-548h-5:hsa-miR-548h-5p

hsa-mir-3909:hsa-miR-3909

hsa-mir-625:hsa-miR-625-5p

hsa-mir-24-1:hsa-miR-24-3p

Selected miRNAs using Overlap

Accuracies

Validation of the results

- HMDD v3.2 was used with the final set of 25 miRNAs
 - 10 miRNAs were identified
 - 2 from less correlated set

8 from overlapped data from both PCA & RF

```
corr_validate
['hsa-mir-148b', 'hsa-mir-29b-2']
```

```
('hsa-mir-186',
  'hsa-mir-144',
  'hsa-mir-151a',
  'hsa-mir-98',
  'hsa-mir-148a',
  'hsa-let-7g',
  'hsa-mir-15a',
  'hsa-mir-144']
```

Evaluation of the results

ROC curve for obtained 25 miRNAs

ROC curves for 5 miRNAs with the highest AUC values

Evaluation of methodology

- Analyzed another dataset using the same methodology
- Used the data set under the accession number GSE147218 in NCBI database
- Obtained results were,
 - Overlap

['hsa-miR-193b-5p']

Correlation Coefficient

hsa-miR-1287-3p hsa-let-7f-1-3p hsa-miR-1283 hsa-miR-4703-3p hsa-miR-155-3p hsa-miR-1254 hsa-miR-3131 hsa-miR-26b-5p

Significance of our methodology

- Both statistical and machine learning approaches were used
- Feature selection was done using more than one method
 - Random Forest
 - PCA
 - Correlation coefficient values
- Higher accuracy compared to the study done using the same data set
 - Study by Leidinger et al.: 93.3%
 - Our Study : 95.24%

Deliverables Addressed in Phase 1

Milestone 01: Background study

: Dataset selection

Data set from NCBI database under the accession number GSE46579

Milestone 02: Preprocessing dataset (Galaxy tool)

: Data visualization and normalization

Milestone 03: Statistical analysis

Using significance values, fold change and AUC values

Deliverables Addressed in Phase 2

- Milestone 01: Identify Biomarker miRNA set
 - Using,
 - PCA
 - Random Forests
 - Correlation coefficient
- Milestone 02 : Result Validation
 - Using HMDD v3.2
- Milestone 03: Analyzing another data set using the same methodology
 - Use GSE147218 dataset

Phase 1 Gantt Chart

Phase 2 Gantt Chart

	Week 1 & 2	Week 3 & 4	Week 5 & 6	Week 7 & 8	Week 9 & 10	Week 11 & 12	Week 13 & 14	Week 15
TASK	9-Nov 20-Nov	23-Nov 4-Dec	7-Dec 18-Dec	4-Jan 15-Jan	18-Jan 29-Jan	1-Feb 12-Feb	15-Feb 26-Feb	1-Mar 5-Mar
Deciding milestones for sem 8								
Milestone 1:								
Task 1.1: Feature selection using PCA & RF								
Task 1.2: Comparing with previous studies								
Task 1.3 : Feature selection using correlations								
Milestone 2:								
Task 2.1: Searching validation datasets								
Task 2.2 : Validation of the result								
Milestone 3:								
Task 3.1 : Analysis of GSE147218 datset								
Task 3.2 : Compare the result with previous stud	lies							
Task 3.3: Result evaluation using ROC curve and	lysis							
Report writing								
Research article writing								
Creating web & github								

Future plan

- Developing a web based tool
 - Visualizing the distributions of datasets, preprocessing, statistical analysis and classification effortlessly.

