Informe del Trabajo Práctico N°9 y N°10 de Física General <u>Péndulo Balístico y Choques</u>

Integrantes:
Día y Turno:
Objetivo 1: Calcular la velocidad inicial de un proyectil utilizando los principios de conservación de cantidad de movimiento y energía.
Materiales y Métodos: de acuerdo a Guía de Trabajos Prácticos de Física General.
Completar en el espacio asignado:
1. Realice el diagrama del sistema indicando m, M, L, h, α
2. Escriba la ecuación que describe el principio de conservación de la <u>cantidad de movimiento</u> para este sistema:
3. Escriba la ecuación que describe el principio de conservación de energía para este sistema:

Completar con datos experimentales:

$g = 9,7949 \text{ m/s}^2$

#	mbala±ε _m (g)	Mpendulo ±ε _M (g)	$L\pm\epsilon_{L}\left(m ight)$	α ±εα(°)	h ±εh (m)	V ±εV (m/s)
1						
2						
3						
4						
5						
P						

4										
5										
Toble 4. Mediciones pers le determinación de la velocidad del preventil										
Tabla 1: Mediciones para la determinación de la velocidad del proyectil										
4. Velocidad inicia	al del proyecti	il:								
	vha	lo Lorr								
	VDa	la±εv=								
5. Cálculo de la Ei	acraía Cinátic	es provis v posto	rior al chaqua							
	_		_							
Energía cinética p	revia al cho	que (utilizando v	i) :							
Energía cinética p	osterior al	choque (utilizand	lo V):							
_			-		•					
_										
6. ¿Qué porcentaj	e de la energi	a cinética de la b	oala se transm	itió al péndulo?						
			0/_							
			%							
			%							
			%							
			%							
Objetivo: Verificar		n de cantidad de r		y energía cinética	a (Ec) en distintos					
tipos de choque de	cuerpos.		movimiento (P)	-						
tipos de choque de Materiales y Méto	cuerpos. dos: de acuer	do a Guía de Trab	movimiento (P)	-						
tipos de choque de	cuerpos. dos: de acuer	do a Guía de Trab	movimiento (P)	-						
tipos de choque de Materiales y Méto	cuerpos. dos: de acuer	do a Guía de Trab	movimiento (P)	-						
tipos de choque de Materiales y Méto Completar con da	cuerpos. dos: de acuer	do a Guía de Trab	movimiento (P) pajos Prácticos	-						
tipos de choque de Materiales y Méto Completar con da	cuerpos. dos: de acuer	do a Guía de Trab ntales: <u>Caso A</u> = Sin s	movimiento (P) pajos Prácticos sobrecarga	-						
tipos de choque de Materiales y Méto Completar con da	cuerpos. dos: de acuer	do a Guía de Trab ntales: <u>Caso A</u> = Sin : <u>Caso B</u> = Des.2	movimiento (P) pajos Prácticos sobrecarga con 2 masas	-						
tipos de choque de Materiales y Méto Completar con da	cuerpos. dos: de acuer	do a Guía de Trab ntales: <u>Caso A</u> = Sin s	movimiento (P) pajos Prácticos sobrecarga con 2 masas	-						

1- Conservación de la cantidad de movimiento en un CHOQUE ELÁSTICO. Partiendo del cuerpo 2 quieto (t_{2i} =0)

Caso	$m_1 \pm \varepsilon_{m1}$ (kg)	$m_2\pm \varepsilon_{m2}$ (kg)	$t_{1i}\pm \epsilon_{t1i}$ (s)	$t_{2i}\pm \epsilon_{t2i}$ (s)	$t_{1f}(s) \pm \epsilon_{t1f}$	$t_{2f}(s) \pm \epsilon_{t2f}$	L_1 (m) $\pm \epsilon_{L1}$	$L_2(m) \pm \varepsilon_{L2}$
Α								
В								
С								

Tabla 2: Mediciones experimentales para el cálculo de la cantidad de movimiento en el choque elástico. m: masa de los carros. t: tiempo transcurrido en pasar la bandera por el photogate. L: largo de la bandera.

	$ extsf{V}_{1i} \pm \epsilon_{v1i} extsf{(m/s)}$	$\mathbf{v_{2i}} \pm \epsilon_{v2i}$ (m/s)	$\mathbf{v_{1f}} \pm \epsilon_{v1f}$ (m/s)	$\mathbf{v}_{2f} \pm \epsilon_{v2f} (m/s)$	$\textbf{Pi} \; \textbf{±} \epsilon_{Pi} (\textbf{kg.m/s})$	$pf\pm\epsilon_{\mathrm{Pf}}(kg.m/s)$	е
Α							
В							
С							

Tabla 3: Cálculos para determinar si existe conservación de la Cantidad de Movimiento. Tener en cuenta el carácter vectorial de la velocidad. Velocidad: v = L/t. Cantidad de Movimiento: P = m.v

Con Coeficiente de Restitución =
$$e = -\left[\frac{v_{-1f} - v_{2f}}{v_{1i} - v_{2i}}\right]$$

Choque perfectamente elástico : e = 1

Choque inelástico: e ≠ 1

Conclusiones:

8. Caso A		
9. Caso B		
10. Caso C		

2- Conservación de la cantidad de movimiento en un CHOQUE INELÁSTICO. Partiendo del cuerpo 2 quieto $(t_{2i}=0)$

Caso	$m_1 \pm \varepsilon_{ml}$ (kg)	$m_2 \pm \varepsilon_{m2}$ (kg)	$\mathbf{t_{1i}} \pm \epsilon_{t1i}$ (s)	$\mathbf{t_{2i}} \pm \epsilon_{t2i}$ (s)	$t_f(s) \pm \epsilon_{tf}$	$L_1(m) \pm \varepsilon_{L1}$	$L_2(m) \pm \varepsilon_{L2}$
Α							
В							
С							

Tabla 4: Mediciones experimentales para el cálculo de la cantidad de movimiento en el choque elástico. m: masa de los carros. t: tiempo transcurrido en pasar la bandera por el photogate. L: largo de la bandera.

	$ extsf{V}_{1i} \pm \epsilon_{v1i} ext{ (m/s)}$	$\mathbf{v}_{2i}\pm \epsilon_{v2i}$ (m/s)	$V_f \pm \epsilon_{vf}$ (m/s)	Pi ± ϵ_{Pi} (kg.m/s)	$pf \pm \epsilon_{\mathrm{Pf}} (kg.m/s)$
Α					
В					
С					

Tabla 5: Cálculos para determinar si existe conservación de la Cantidad de Movimiento. Tener en cuenta el carácter vectorial de la velocidad. Velocidad: v = L/t. Cantidad de Movimiento: P = m.v

Conclusiones:

11. Caso A			
12. Caso B			
13. Caso C			

3. Si un deslizador colisiona con el otro extremo del riel de aire comprimido y rebota (se coloca un accesorio para tal fin) cuando regrese a la posición inicial, ¿tendrá la misma cantidad de movimiento, pero de sentido contrario? Verifíquelo experimentalmente para el **Caso A**.

Caso	$V_{2f (ida)} \pm \epsilon_{v2f} (m/s)$	$\mathbf{V}_{2f(vuelta)} \pm \epsilon_{\mathrm{vf2}}(m/s)$	$P_{ida} \pm \epsilon_{Pi}$ (kg.m/s)	$P_{vuelta} \pm \epsilon_{Pv}$ (kg.m/s)
Α				

Tabla 6: Cálculos para determinar si existe conservación de la Cantidad de Movimiento. Tener en cuenta el carácter vectorial de la velocidad. Velocidad: v = L/t. Cantidad de Movimiento: P = m.v

14. Conclusiones:			

3. Conservación de la Energía cinética (Ec) en CHOQUES ELÁSTICOS.

Caso	$v_{1i}\pm \epsilon_{v1i}$ (m/s)	$\mathbf{v_{2i}} \pm \epsilon_{v2i} (m/s)$	$V_{1f}\pm \epsilon_{v1f}$ (m/s)	$\mathbf{v}_{2f} \pm \epsilon_{v2f} (m/s)$	$E_{ci} \pm \varepsilon_{Eci}$ (kg.m ² /s ²)	$E_{ci} \pm \epsilon_{Ecf} (kg.m^2/s^2)$
Α						
В						
С						

Tabla 7: Cálculos Conservación de la Energía cinética en choques elásticos. Se utilizan las mismas mediciones que la tabla 2.

Con Energía cinética: $Ec = \frac{1}{2}mv^2$

Conclusiones: ¿Se verifica la conservación de la Ec? Justifique.

15. Caso A	
16. Caso B	
17. Caso C	

4. Conservación de la Energía cinética	a (Ec) en CHOQUES INELÁST	TCOS.
--	---------------------------	-------

Caso	$\mathbf{v_{1i}\pm}\epsilon_{v1i}$ (m/s)	$\mathbf{V_{2i}} \pm \epsilon_{v2i} (m/s)$	$V_f \pm \epsilon_{vf}$ (m/s)	$E_{ci} \pm \epsilon_{Eci}$ (kg.m ² /s ²)	$E_{ci} \pm \varepsilon_{Ecf}$ (kg.m ² /s ²)
Α					
В					
С					

Tabla 8: Cálculos Conservación de la Energía cinética en choques inelásticos. Se utilizan las mismas mediciones que la tabla 4.

Conclusiones: ¿Se verifica la conservación de la Ec? Justifique.

18. Caso A	
19. Caso B	
20. Caso C	

Conclusiones Generales:

21. Conservación de la cantidad de movimiento en los choques elásticos. ¿E cuales se cumple y por qué? Justifique en el caso de una negativa.	Ξn

22. Conservación de la cantidad de movimiento en los choques inelásticos. ¿En
cuales se cumple y por qué? Justifique en el caso de una negativa.
23. Conservación de la energía cinética en los choques elásticos. ¿En cuales se cumple y por qué? Justifique en el caso de una negativa.
24. Conservación de la energía cinética en los choques inelásticos. ¿En cuales se cumple y por qué? Justifique en el caso de una negativa.