FALL 2018 CISC 311

OBJECT & STRUCTURE & ALGORITHM I

- Chapter 7: Binary Trees

Outline

- The tree ADT
- The binary tree ADT
- Implementations
- Tree traversal
 - Preorder traversal
 - Postorder traversal
 - Inorder traversal
 - Breadth-first search

Exercise

- Given a sorted sequence and a search key, find it in the sequence
 - For example: 1, 3, 4, 6, 8, 11, 12, 15, 19, 22, 25, 26, 27, 29
 - Search key: 19
 - What's the complexity of the solution? O(n)
 - Can we come up with another solution? O(log n)

BruteForceSearch.java

Binary Search

Binary Search (cont'd.)

```
Algorithm binarySearch(A, key)
    Input A array A, key search key
    Output m
    L \leftarrow 0
    R \leftarrow arr.length - 1
    if L > R then return -1
    while L \le R do
        m \leftarrow \text{floor}((L+R)/2)
        if arr[m] = key then return m
        else if arr[m] < key then
             L \leftarrow m + 1
        else if arr[m] > key then
            R \leftarrow m-1
    return –1
```

BinarySearch.java

Second Exercise

- Given a sorted sequence, insert a new element into the sequence
 - For example: 1, 3, 4, 6, 8, 11, 12, 15, 19, 22, 25, 26, 27, 29
 - Insert 20 into the sequence
 - What's the complexity of the solution? O(n)
- Slow insertion in an ordered array
 - These multiple moves are time-consuming, requiring, on the average, moving half the items (n/2 moves)
 - Deletion involves the same multiple move operation and is thus equally slow
 - If you're going to be doing a lot of insertions and deletions, an ordered array is a bad choice

Why We Need Trees

- Slow searching in a linked list
 - Insertions and deletions are quick to perform on a linked list
 - These operations require O(1) time
 - You will need to visit an average of n/2 objects, comparing each one's value with the key. This process is slow, requiring O(n) time
- Tree to the rescue!
 - With the quick insertion and deletion of a linked list
 - And also with the quick searching of an ordered array

What is a Tree

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Applications:
 - Organization charts
 - File systems
 - Programming environments

Tree Terminology

- Path: edge connected nodes
- Root: node without parent (A)
 - One and only one path from root to any nodes
- Ancestors of a node: parent, grandparent, great-grandparent, etc.
- Descendant of a node: child, grandchild, great-grandchild, etc.
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)

Tree Terminology (cont'd.)

- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Subtree: tree consisting of a node and it descendants
- Visiting: program control arrives at the node
- Traversing: visit all the nodes in some specified order

Tree ADT

- A tree node supports getElement (): returns the element stored at the tree node
- Generic methods:
 - Integer size()
 - boolean isEmpty()
- Accessor methods:
 - Node root()
 - Node parent (n)
 - Iterable children(n)
 - Integer numChildren(n) Iterable nodes()

- Query methods:
 - boolean isInternal(n)
 - boolean isExternal(n)
 - boolean isRoot(n)

Tree.java

Method	Description
size()	Returns the number of nodes and hence elements that are contained in a tree
isEmpty()	Returns true if the tree does not contain any nodes and thus no elements
root()	Returns the node of the root of the tree or null if empty
parent(n)	Returns the node of the parent of the node n or null if empty
children(n)	Returns an iterable collection containing the children of node $\it n$ if any
numChildren(<i>n</i>)	Returns the number of children of node n

Tree.java

Method	Description
isInternal(<i>n</i>)	Returns true if node n has at least one child
isExternal(<i>n</i>)	Returns true if node n does not have any children
isRoot(n)	Returns true if node n is the root of the tree
nodes()	Returns an iterable collection of all nodes of the tree

Tree.java

Binary Trees

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees)
- We call the children of an internal node left child and right child

Binary Trees (cont'd.)

- Alternative recursive definition: a binary tree is either
 - A tree consisting of a single node, or

A tree whose root has an ordered pair of children, each of which

is a binary tree

- Applications:
 - Arithmetic expressions
 - Decision processes
 - Searching

Binary Tree ADT

- The Binary Tree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
 - Additional methods:
 - Node left (n)
 - Node right(n)
 - Node sibling (n)
 - Sibling of a Node n as the other child of n's parent
 - n does not have a sibling if it is the root, or if it is the only child of its parent

BinaryTree.java

Additional Methods of Binary Trees

Method	Description
left(n)	Returns the node of the left child of n or null if n has no left child
right(n)	Returns the node of the right child of n or null if n has no left child
sibling(n)	Returns the node of the sibling of n or null if n has no siblings

BinaryTree.java

Types of Binary Trees

- A <u>proper</u> binary tree is a binary tree in which every node has either zero or two children
- A <u>complete</u> binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible
- A <u>perfect</u> binary tree is a binary tree in which all internal nodes have two children and all leaves have the same depth or same level
- A <u>balanced</u> binary tree is a binary tree in which the left and right subtrees of every node differ in height by no more than 1

Properties of Binary Trees

Notation

- \blacksquare T: nonempty tree
- *n* : number of nodes
- n_F : number of external nodes
- n_l : number of internal nodes
- *h* : height
- Properties:

■
$$h + 1 \le n \le 2^{h+1} - 1$$

- $1 \le n_E \le 2^h$
- $h \le n_1 \le 2^h 1$
- $\log_2(n+1) 1 \le h \le n-1$

balanced, complete, perfect and proper

Properties of Binary Trees (cont'd.)

Notation

- T: nonempty proper tree
- *n* : number of nodes
- n_F : number of external nodes
- n_1 : number of internal nodes
- *h*: height
- Properties:
 - $2h + 1 \le n \le 2^{h+1} 1$
 - $h + 1 \le n_E \le 2^h$
 - $h \le n_1 \le 2^h 1$
 - $\log_2(n+1)-1 \le h \le (n-1)/2$
 - $n_E = n_I + 1$

Implementation

Linked Structure for Trees

 A node is represented by an object storing

Element

Parent node

Sequence of children nodes

 Node objects implement the node ADT

Depth of a Node

- Method: depth (n)
 - If n is the root, then the depth of the tree is 0
 - Otherwise, the depth of n is one plus the depth of the parent of n

Height of a Tree

- Method: height()
 - Height of a tree = maximum of the depths of its nodes

Two Additional Methods

N	/lethod	Description
dep	th(<i>n</i>)	Returns the number of levels separating node $\it n$ from the root
heig	ht (<i>n</i>)	Returns the height of the tree

Linked Structure for Binary Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implement the node ADT

Method	Description
addRoot(<i>e</i>)	Creates a root for an empty tree, storing e as the element, and returns the node of the root; an error occurs if the tree is not empty
addLeft(n,e)	Creates a left child of node n , storing element e , and returns the node of the new node; an error occurs if n is already has a left child
addRight(<i>n</i> , <i>e</i>)	Creates a right child of node n , storing element e, and returns the node of the new node; an error occurs if n is already has a right child
set(n,e)	Replaces the element stored at node $\it n$ with element $\it e$, and returns the previously stored element
attach (n, T_1, T_2)	Attaches the internal structures T_1 and T_2 as the respective left and right subtrees of leaf node n and resets T_1 and T_2 to empty trees; an error condition occurs if n is not a leaf
remove(n)	Removes the node at node n , replacing it with its child (if any), and returns the element that had been stored at n ; an error occurs if n has two children

LinkedBinaryTree.java

Array-Based Representation of Binary Trees

- Based on a way of numbering the node of T
 - If p is the root of T, then f(p) = 0
 - If p is the left child of node q, then f(p) = 2f(q) + 1
 - If p is the right child of node q, then f(p) = 2f(q) + 2
 - If p is the parent of node q, then f(p) = (f(q) 1)/2
 - f(): Level numbering of the nodes in a binary tree T

Array-Based Representation of Binary Trees (cont'd.)

Nodes are stored in an array A

- Node v is stored at A[rank(v)]
 - rank(root) = 0
 - If node is the left child of parent(node), $rank(node) = 2 \cdot rank(parent(node)) + 1$
 - If node is the right child of parent(node), $rank(node) = 2 \cdot rank(parent(node)) + 2$

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Preorder Traversal

```
Algorithm preOrder(v)
visit(v)
for each child c of v do
preOrder(c)
```


Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Postorder Traversal

```
Algorithm postOrder(v)
for each child c of v do
postOrder(c)
visit(v)
```


Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - Internal nodes: operators
 - External nodes: operands
- Example:
 - Arithmetic expression tree for the expression $(2 \times (a-1) + (3 \times b))$

Decision Tree

- Binary tree associated with a decision process
 - Internal nodes: questions with yes/no answer
 - External nodes: decisions
- Example:

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v

```
Algorithm inOrder(v)

if left(v) \neq null then

inOrder(left(v))

visit(v)

if right(v) \neq null then

inOrder(right(v))
```


Print Arithmetic Expressions

- Specialization of an inorder traversal
 - Print operand or operator when visiting node
 - Print "(" before traversing left subtree
 - Print ")" after traversing right subtree


```
Algorithm printExpression(v)

if left(v) ≠ null then

print("(")

inOrder(left(v))

print(v.element())

if right(v) ≠ null then

inOrder(right(v))

print(")")
```


Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - Recursive method returning the value of a subtree
 - When visiting an internal node, combine the values of the subtrees

```
Algorithm evalExpr(v)

if isExternal(v)

return v.element()

else

x \leftarrow \text{evalExpr}(\text{left}(v))

y \leftarrow \text{evalExpr}(\text{right}(v))

\Diamond \leftarrow \text{operator stored at } v

return x \Diamond y
```


Breadth-first Search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

Breadth-first Search (cont'd.)

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

Breadth-first Search (cont'd.)

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

Breadth-first Search (cont'd.)

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

Exercise 7.1

Summary

- Tree
- Binary tree
- Implementation
 - Linked-based structure
 - Array-based structure
- Tree traversal
 - Preorder traversal
 - Postorder traversal
 - Inorder traversal
 - Breadth-first search

