

Control por Computador

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

Extensión de las técnicas clásicas al diseño de sistemas discretos de control

José María Sebastián
Rafael Aracil
Manuel Ferre
Departamento de Automática, Ingeniería
Flectrónica e Informática Industrial

Extensión de las técnicas clásicas al diseño de sistemas discretos de control

INDUSTRIALES ETSIL | UPM

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

- Introducción
- Cálculo de reguladores con el lugar de las raíces
 - Reguladores P
 - Reguladores PD
 - Reguladores PI
 - Reguladores PID

INDUSTRIALES ETSII | UPM

Introducción

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

A similitud del diseño de los reguladores continuos, se puede emplear:

• Diseño de reguladores discretos empleando la técnica del lugar de las raíces

Cálculo de reguladores con el lugar de las raíces

INDUSTRIALES

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

ETSII | UPM

Los pasos a seguir en el diseño de reguladores discretos empleando la técnica del lugar de las raíces son:

- Elección de la posición de los polos dominantes según las especificaciones.
- Construir el lugar de las raíces del sistema en función de la información en cadena abierta.
- Analizar las características dinámicas pedidas:

Elegir entre
$$\begin{cases} P \\ PD \end{cases}$$
 Añadiendo polos y ceros

• Analizar las características estáticas pedidas:

Elegir entre
$$\begin{cases} P \Rightarrow \begin{cases} P \\ PI \end{cases} \\ PD \Rightarrow \begin{cases} PD \\ PID \end{cases} \end{cases}$$
 Añadiendo polos y ceros

Regulador P

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

El regulador proporcional es R(z)=K

Regulador PD

Unidad Docente Automática, Departamento Automática, Ing. Electrónica e Informática Indust.

ETSII | UPM

$$X(z) = R(z) E(z)$$

El regulador PD será:
$$x_k = K \left[e_k + T_d \frac{e_k - e_{k-1}}{T} \right]$$

Tomando transformada z:

$$X(z) = K \left[E(z) + T_d \frac{E(z) - z^{-l}E(z)}{T} \right] = K \left[\frac{T + T_d}{T} - \frac{T_d}{T} z^{-l} \right] E(z)$$

$$R(z) = \frac{X(z)}{E(z)} = K \frac{\frac{T + T_d}{T}z - \frac{T_d}{T}}{z} = K_d \frac{z - c_d}{z}$$

Regulador PD

Unidad Docente Automática, Departamento Automática, Ing. Electrónica e Informática Indust.

$$R(z) = \frac{X(z)}{E(z)} = K \frac{\frac{T + T_d}{T}z - \frac{T_d}{T}}{z} = K_d \frac{z - c_d}{z}$$

Con: $c_d = \frac{T_d}{T + T_J}$. Se introduce pues un cero y un polo

Ajuste:

- La posición de c_d se fija con el criterio del argumento para que el lugar de las raíces pase por el punto de funcionamiento.
- El valor de K_d se fija con el criterio del módulo, obligando que los polos del sistema en cadena cerrada estén sobre el punto de funcionamiento.

Regulador Pl

Unidad Docente Automática, Departamento Automática, Ing. Electrónica e Informática Indust

ETSII | UPM

$$\begin{array}{c}
\{e_k\} \\
\hline
E(z)
\end{array}
\qquad
\begin{array}{c}
\{x_k\} \\
X(z)
\end{array}
\qquad X(z) = R(z) E(z)$$

El regulador PI será:
$$x_k = K \left| e_k + \frac{T}{T_i} \sum_{i=0}^k e_i \right|$$

Para calcular la transformada z se forma:

$$x_{k-1} = K \left[e_{k-1} + \frac{T}{T_i} \sum_{i=0}^{k-1} e_i \right] \quad \Rightarrow \quad x_k - x_{k-1} = K \left[e_k - e_{k-1} + \frac{T}{T_i} e_k \right]$$

$$X(z)(1-z^{-1}) = K\left[\frac{T_i + T}{T_i} - z^{-1}\right]E(z) \implies R(z) = K\frac{(T_i + T)z - T_i}{T_i(z-1)}$$

$$R(z) = \frac{X(z)}{E(z)} = K_i \frac{z - c_i}{z - 1} \qquad \text{con} \qquad c_i = \frac{T_i}{T_i + T}$$

Regulador Pl

Unidad Docente Automática, Departamento Automática, Ing. Electrónica e Informática Indust.

 $R(z) = \frac{X(z)}{E(z)} = K_i \frac{z - c_i}{z - 1}$

$$con c_i = \frac{T_i}{T_i + T}$$

Se introduce un cero en *ci* y un polo en *1*.

- La posición de c_i se fija a 1/6 de la distancia entre los polos dominantes en cadena cerrada y la circunferencia unidad, medido sobre el eje real a partir de la posición z=1. Al estar muy cerca el polo y el cero introducido, no se modifica significativamente el lugar de las raíces.
- El valor de K_i se fija con el criterio del módulo, obligando que los polos del sistema en cada cerrada estén sobre el punto de funcionamiento.

Regulador PID

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

 $R(z) = \frac{X(z)}{E(z)} = K \frac{z - c_d}{z} \frac{z - c_i}{z - 1}$

Con los siguientes criterios de diseño:

- La posición de c_d se fija con el criterio del argumento para que el lugar de las raíces pase por el punto de funcionamiento.
- La posición de c_i se fija a 1/6 de la distancia entre los polos dominantes en cadena cerrada y la circunferencia unidad, medido sobre el eje real a partir de la posición z=1. Al estar muy cerca el polo y el cero introducido, no se modifica significativamente el lugar de las raíces.
- El valor de *K* se fija con el criterio del módulo, obligando que los polos del sistema en cada cerrada estén sobre el punto de funcionamiento.

INDUSTRIALES ETSII | UPM

Regulador PID

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

Al introducir el par polo-cero del PI, se suele aumentar el intervalo de establecimiento y disminuir la sobreoscilación, por lo que puede que no se cumplan las condiciones dinámicas. Una opción es alejar el cero del par. Los pasos serían los siguientes:

- La posición de c_i se fija a 1/3 de la distancia entre los polos dominantes en cadena cerrada y la circunferencia unidad, medido sobre el eje real a partir de la posición z=1
- Se recalcula la posición del cero $\,c_d\,$ del PD con el criterio del argumento para que el lugar de las raíces pase por el punto de funcionamiento, incorporando la acción del par polo-cero del PI.
- El valor de K se fija con el criterio del módulo, obligando que los polos del sistema en cada cerrada estén sobre el punto de funcionamiento, e incorporando la acción del PD y del PI.