Automated Detection and Analysis of Hardware Trojans in FPGAs

Nicholas Houghton

University of Victoria nhoughto@uvic.ca

December 2, 2016

Overview

- Introduction
- 2 Trojan Detector
- 3 Hardware Trojan System (HTS)
- 4 Case Study

Introduction: Background

- What are hardware trojans?
- How are devices affected by them?
- How do they work?

Introduction: Objectives

- Devise a method to detect trojans in FPGAs
- Devise a method to describe descovered trojans
- Build an application to automate these processes.
- Automate the visualization technique presented in [Moein, 2016]

Introduction: Two New Applications

- Automated Hardware Trojan Detector (desktop application)
- The Hardware trojan system (website)

Trojan Detector: Use-Case

Figure: Use-Case

Trojan Detector: Methodology

Figure: Methdology Overview

Trojan Detector: FPGA

FPGA: Field Programmable Gate-Array

Figure: Simplified FPGA Layout

Trojan Detector: Gate-Array Architecture

Figure: Gate-Array of Block Columns

Trojan Detector: Sub Columns

Figure: Column Composition

Trojan Detector: Frame Addressing

Table: Bitstream Frame Address Structure

	Unused									BA			Row Address					Major Address								Minor Address					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	Х	×	×	Х	Х	Х	Х	×	х	×	×	Х	×	Х	×	Х	Х	х	0	0	0	0	0	0	0	0	0

Trojan Detector: Component Mapping

$$n = (W - C) + B$$
 (1) $i = B - \lfloor \frac{w}{n} \rfloor$ (2)

where:

- n: Number of Words per Block
- W: Number of 32-bit words per frame
- C: Number of clock words per frame
- B: Number of blocks per column
- w: Modified Word's number in the frame
- i: Block number in column

Trojan Detector: Trojan Attributes

Figure: Hardware Trojan Taxonomy [Moein, 2016]

Relation Matrix

Figure: Relation Matrix R

Trojan Detector: User-Interface

Figure: Hardware Trojan Detector User-Interface

HTS: Classification Tool

- Allows users to pick attributes observed in their trojan using a simple user-interface.
- Generates a directed graph visual.
- Generates a severity vector rating.
- Allows users to save entries to the database for future use.

Case Study: AES-T100

The Trojan leaks the secret key from a cryptographic chip running the AES algorithm through a covert channel. The channel adapts the concepts from spread spectrum communications (also known as Code-Division Multiple Access (CDMA)) to distribute the leakage of single bits over many clock cycles. The Trojan employs this method by using a pseudo-random number generator (PRNG) to create a CDMA code sequence, the PRNG initialized to a predefined value. The code sequence is then used to XOR modulate the secret information bits. The modulated sequence is forwarded to a leakage circuit (LC) to set up a covert CDMA channel in the power side-channel. The LC is realized by connecting eight identical flip-flop elements to the single output of the XOR gate to mimic a large capacitance. [Salmani, 2015]

- Attribute 3: Fabrication
- Attribute 4: Testing
- Attribute 5: Assembly
- Attribute 6: System
- Attribute 7: RTL
- Attribute 13: Information Leakage
- Attribute 16: Sequential
- Attribute 18: Functional
- Attribute 20: Always On
- Attribute 24: Large
- Attribute 26: Augmented
- Attribute 27: Distributed
- Attribute 29: Processor
- Attribute 30: Memory
- Attribute 31: IO
- Attribute 32: Power Supply
- Attribute 33: Clock Grid

Case Study: Visualization

Figure: Directed Graph of the AES-T100 Benchmark

References

S. Moein and T. A. Gulliver and F. Gebali and A. Alkandari (2016)

A New Characterization of Hardware Trojans *IEEE Access* v4. 2721 – 2731.

J. Zhang and G. Qu (2014)

A survey on security and trust of FPGA-based systems Field-Programmable Technology 147 – 152.

H. Li and Q. Liu and J. Zhang and Y. Lyu (2015)

A Survey of Hardware Trojan Detection, Diagnosis and Prevention 2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics) 173 – 180.

H. Salmani and M. Tehranipoor and R. Karri (2013)

On design vulnerability analysis and trust benchmarks development 2013 IEEE 31st International Conference on Computer Design (ICCD) 471 – 474.

The End