Aracın hız değişimi $(\vec{y}_{son} - \vec{y}_{ilk})$ pozitif olduğunda ivme pozitif, hız değişimi negatif olduğunda ivme negatif değer alır. Bu durumda A aracının ivmesi pozitif, B aracının ivmesi negatif olur.

x=0 noktasından ϑ_0 ilk hız ile geçen ve pozitif yönde hızlanan bir aracın ϑ -t grafiği Grafik 1.4'teki gibi olur. Grafiğin eğiminden yararlanarak cismin ivmesinin büyüklüğü hesaplanabilir.

Grafik 1.4: t = 0 anında ϑ_0 hızıyla hızlanan hareket

Grafikten yararlanarak $\frac{\Delta \vartheta}{\Delta t} = \frac{\vartheta - \vartheta_0}{t - O} = a$ yazılır. İfade düzenlendiğinde

 $\vartheta=\vartheta_0+a\cdot t$ matematiksel modeli elde edilir. Grafik çizgisinin yatay eksen ile arasında kalan alanın hesaplanmasıyla cismin yatay doğrultuda aldığı mesafe bulunabilir.

Bu durumda $\Delta x = \frac{(\vartheta + \vartheta_0)}{2} \cdot t$ elde edilir. Bu denklemde $\vartheta = \vartheta_0 + a \cdot t$ yerine yazıldığında yer değiştirme büyüklüğü için $x = \vartheta_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$ matematiksel denklemi elde edilir.

Şekil 1.3'te doğrusal bir yolda x=0 konumundan ilk hız ile geçen A ve B araçları gösterilmektedir. A aracı kuzey yönünde, B aracı güney yönünde yavaşlayarak ilerlemektedir. A aracının hız değişimi $(\vec{\vartheta}_{son} - \vec{\vartheta}_{ilk})$ negatif olduğundan ivmesi negatif, B aracının hız değişimi pozitif olduğundan ivmesi pozitif olur.

Doğrusal bir yolda x=0 noktasından 3ϑ hızı ile geçen ve zıt yönlerde yavaşlayan A ve B araçlarının hareketlerine ait x-t, v-t, ve a-t grafikleri Grafik 1.5'teki gösterilmektedir.

Grafik 1.5: A ve B araçlarına ait x-t, ϑ -t, α -t grafikleri

Şekil 1.3: Zıt yönlerde sabit ivmeyle yavaşlayan A ve B araçları