Fundamentos Teóricos da Computação

Apresentação da Disciplina –

Zenilton Kleber Gonçalves do Patrocínio Jr.

Ciência da Computação – PUC Minas Belo Horizonte, Brasil

2025

Sumário

- Computabilidade e Decidibilidade
 - Introdução
 - Histórico
- Apresentação da Disciplina
 - Introdução
 - Conteúdo Programático
 - Bibliografia
 - Avaliações

Introdução

Computabilidade, Decidibilidade e Complexidade

- O que é um computador?
- Quais são suas capacidades e limitações?
- Que classe de problemas s\u00e3o comput\u00e1veis?
- Como determinar a complexidade da solução?

Como obter um modelo geral para o conceito de computabilidade?

Introdução

Computabilidade, Decidibilidade e Complexidade

- O que é um computador?
- Quais são suas capacidades e limitações?
- Que classe de problemas s\u00e3o comput\u00e1veis?
- Como determinar a complexidade da solução?

Como obter um modelo geral para o conceito de computabilidade?

Introdução

"Algoritmo"

Um processo finito de ações executar uma determinada tarefa

"Algoritmos" também possuem um papel importante na matemática

Exemplo: algoritmo de Euclides para MDC

A noção de algoritmo só foi definida, precisamente, no século XX

Antes disso, os matemáticos baseavam-se na noção intuitiva de "algoritmo"

Qual o problema de se usar uma noção intuitiva?

A noção de algoritmo só foi definida, precisamente, no século XX

Antes disso, os matemáticos baseavam-se na noção intuitiva de "algoritmo"

Qual o problema de se usar uma noção intuitiva?

Uma noção intuitiva não é suficiente para se obter provas sobre propriedades de algoritmos!

Exemplo

Em 1900, Hilbert propôs uma série de problemas matemáticos:

 10° Problema de Hilbert era o de encontrar um "algoritmo" para determinar, dado um polinômio com coeficientes inteiros, se o mesmo possuía raízes inteiras

Uma noção intuitiva não é suficiente para se obter provas sobre propriedades de algoritmos!

Exemplo

Em 1900, Hilbert propôs uma série de problemas matemáticos:

 10° Problema de Hilbert era o de encontrar um "algoritmo" para determinar, dado um polinômio com coeficientes inteiros, se o mesmo possuía raízes inteiras

Uma noção intuitiva não é suficiente para se obter provas sobre propriedades de algoritmos!

Exemplo

Em 1900, Hilbert propôs uma série de problemas matemáticos:

 10° Problema de Hilbert era o de encontrar um "algoritmo" para determinar, dado um polinômio com coeficientes inteiros, se o mesmo possuía raízes inteiras

Aparentemente, Hilbert supunha que tal "algoritmo" existia

Esse "algoritmo" não existe - esse problema é indecidível

Provar que um algoritmo não existe requer uma definição formal do conceito de algoritmo!

Aparentemente, Hilbert supunha que tal "algoritmo" existia

Esse "algoritmo" não existe - esse problema é indecidível

Provar que um algoritmo não existe requer uma definição formal do conceito de algoritmo!

Aparentemente, Hilbert supunha que tal "algoritmo" existia

Esse "algoritmo" não existe - esse problema é indecidível

Provar que um algoritmo não existe requer uma definição formal do conceito de algoritmo!

A definição formal do conceito de algoritmo veio em 1936, a partir dos trabalhos de Church, Turing e Gödel/Kleene:

- Church utilizou uma notação denominada λ -calculus para definir o conceito de algoritmo;
- Turing definiu o conceito através de um modelo de máquina - máquina de Turing;
- Gödel/Kleene definiram a classe das funções computáveis como sendo a classe das funções recursivas parciais.

As 3 definições são equivalentes:

 A conexão, entre a noção informal de algoritmo e essas definições formais, é conhecida como Tese de Church-Turing.

Modelos possibilitam demonstrar a existência de problemas que não podem ser resolvidos utilizando computadores:

- Determinar se uma asserção matemática é verdadeira:
- Determinar a parada de um programa;
- Testar a existência de solução inteira para polinômios;

As 3 definições são equivalentes:

 A conexão, entre a noção informal de algoritmo e essas definições formais, é conhecida como Tese de Church-Turing.

Modelos possibilitam demonstrar a existência de problemas que não podem ser resolvidos utilizando computadores:

- Determinar se uma asserção matemática é verdadeira;
- Determinar a parada de um programa;
- Testar a existência de solução inteira para polinômios;
- . . .

Aplicação de Modelos

- Modelos matemáticos para descrever um computador genérico
- Caracterizar classes de problemas computáveis
- Analisar complexidade de algoritmos

Modelos matemáticos para classes de computadores

- Autômatos de Estados Finitos processamento de texto, reconhecimento de voz e de padrões, projeto de hardware
- Gramáticas Livres de Contexto construção de compiladores, projeto de linguagens de programação

Aplicação de Modelos

- Modelos matemáticos para descrever um computador genérico
- Caracterizar classes de problemas computáveis
- Analisar complexidade de algoritmos

Modelos matemáticos para classes de computadores

- Autômatos de Estados Finitos processamento de texto, reconhecimento de voz e de padrões, projeto de hardware
- Gramáticas Livres de Contexto construção de compiladores, projeto de linguagens de programação

Apresentação da Disciplina

Fundamentos Teóricos da Computação - Ementa

- Linguagens.
- Expressões regulares.
- Gramáticas.
- Autômatos.
- Máquinas de Turing.
- Hierarquia de Chomsky.
- Decidibilidade.

Apresentação da Disciplina

Professor

Zenilton Kleber Gonçalves do Patrocínio Júnior – zenilton@pucminas.br

Programa de Pós-graduação em Informática – Mestrado/Doutorado

http://imscience.icei.pucminas.br/index.html http://www.icei.pucminas.br/professores/zenilton

Horários

- 2^a-feiras De 08h50 às 10h30
- 4^a-feiras De 08h50 às 10h30

13 / 15

- Introdução
- 2 Autômatos finitos / Linguagens regulares
 - AFD × AFN × AFN-λ / Gramática linear e regular
 - Propriedades de fechamento / Lema do bombeamento
- Autômatos de pilha / LLC
 - APD × APN / GLC / Derivação / Formas normais (FNC
 - Propriedades de fechamento / Lema do bombeamento
- 🚇 Máquinas de Turing / Ling. Recursivas e LRE
 - MTD × MTN (e outras variações de MT) / Gramática irrestrita
 - Autômatos linearmente limitados / LSC / GSC
 - Hierarquia de Chomsky
- Computabilidade / Decidibilidade
 - Problemas de decisão / MT para PD
 - Tese de Church-Turing / MT Universa
 - Problemas indecidíveis / Redução de um problema a outro

- Introdução
- Autômatos finitos / Linguagens regulares
 - AFD × AFN × AFN-λ / Gramática linear e regular
 - Propriedades de fechamento / Lema do bombeamento
- Autômatos de pilha / LLC
 - APD × APN / GLC / Derivação / Formas normais (FNC)
 - Propriedades de fechamento / Lema do bombeamento
- Máquinas de Turing / Ling. Recursivas e LRE
 - MTD × MTN (e outras variações de MT) / Gramática irrestrita
 - Autômatos linearmente limitados / LSC / GSC
 - Hierarquia de Chomsky
- Computabilidade / Decidibilidade
 - Problemas de decisão / MT para PD
 - Tese de Church-Turing / MT Universal
 - Problemas indecidíveis / Redução de um problema a outro

- Introdução
- Autômatos finitos / Linguagens regulares
 - AFD × AFN × AFN-λ / Gramática linear e regular
 - Propriedades de fechamento / Lema do bombeamento
- Autômatos de pilha / LLC
 - APD × APN / GLC / Derivação / Formas normais (FNC)
 - Propriedades de fechamento / Lema do bombeamento
- Máquinas de Turing / Ling. Recursivas e LRE
 - MTD × MTN (e outras variações de MT) / Gramática irrestrita
 - Autômatos linearmente limitados / LSC / GSC
 - Hierarquia de Chomsky
- Computabilidade / Decidibilidade
 - Problemas de decisão / MT para PD
 - Tese de Church-Turing / MT Universal
 - Problemas indecidíveis / Redução de um problema a outro

- Introdução
- Autômatos finitos / Linguagens regulares
 - AFD × AFN × AFN-λ / Gramática linear e regular
 - Propriedades de fechamento / Lema do bombeamento
- Autômatos de pilha / LLC
 - APD × APN / GLC / Derivação / Formas normais (FNC)
 - Propriedades de fechamento / Lema do bombeamento
- Máquinas de Turing / Ling. Recursivas e LRE
 - MTD × MTN (e outras variações de MT) / Gramática irrestrita
 - Autômatos linearmente limitados / LSC / GSC
 - Hierarquia de Chomsky
- Computabilidade / Decidibilidade
 - Problemas de decisão / MT para PD
 - Tese de Church-Turing / MT Universal
 - Problemas indecidíveis / Redução de um problema a outro

- Introdução
- Autômatos finitos / Linguagens regulares
 - AFD × AFN × AFN-λ / Gramática linear e regular
 - Propriedades de fechamento / Lema do bombeamento
- Autômatos de pilha / LLC
 - APD × APN / GLC / Derivação / Formas normais (FNC)
 - Propriedades de fechamento / Lema do bombeamento
- Máquinas de Turing / Ling. Recursivas e LRE
 - MTD × MTN (e outras variações de MT) / Gramática irrestrita
 - Autômatos linearmente limitados / LSC / GSC
 - Hierarquia de Chomsky
- Computabilidade / Decidibilidade
 - Problemas de decisão / MT para PD
 - Tese de Church-Turing / MT Universal
 - Problemas indecidíveis / Redução de um problema a outro

Bibliografia

- VIEIRA, Newton José. Introdução aos fundamentos da computação: linguagens e máquinas. São Paulo: Pioneira Thomson Learning, 2006.
- SIPSER, Michael. Introdução à teoria da computação. São Paulo: Thomson Learning, 2007.
- HOPCROFT, John E.; ULLMAN, Jeffrey D.; MOTWANI, Rajeev. Introdução à teoria de autômatos, linguagens e computação. Rio de Janeiro: Campus, 2003.
- SUDKAMP, Thomas A. Languages and machines: an introduction to the theory of computer science. 3rd ed. Boston: Pearson, Addison Wesley, 2006.
- GAREY, Michael R.; JOHNSON, David S. Computers and intractability: a guide to the theory of NP-Completeness. New York: W. H. Freeman, 1979.
- PAPADIMITRIOU, Christos H.; STEIGLITZ, Kenneth. Combinatorial optimization: algorithms and complexity. Mineola: Dover, 1998.
- MENEZES, Paulo Fernando Blauth. Linguagens formais e autômatos. 5. ed. Porto Alegre: Sagra-Luzzatto, 2005.
- DIVERIO, Tiarajú Asmuz. Teoria da computação: máquinas universais e computabilidade. 2. ed. Porto Alegre: Sagra Luzzatto, 2000.

Avaliações

Atividade	Quantidade	Valor unitário	Subtotal
Provas	03	30 pts	00 pts
Lista de exercícios	03	01 ou 02 pts	05 pts
ADA	01	05 pts	05 pts
		Total	100 pts

Reavaliação → 1 × 30 pts substituindo a menor prova !!!