同济大学课程考核试卷(A卷 2023—2024 学年第一学期

命题教师签名:

审核教师签名:

课号: 5000590002301 课名: 数学分析

考试考查:考试

此卷选为: 测试一考试试卷

年级	专业	学号		任课教师	李雨生
题号		_		三四	总分
得分		A)	**/		

(注意:本试卷共四大题, 二大张,满分100分. 考试时间为120分钟。要求写出解题过程,否则不予计 分)

- 填空题 (满分15分,每小题5分)
- 1 函数极限 lim x ln(1-x) 是

$$3$$
设
$$\begin{cases} x = t - \sin t, \\ y = 1 - \cos t \end{cases}$$
 $0 \le t \le 2\pi$ 。则函数 $y = y(x)$ 在 $t = \pi$ 的二阶导数值是()).

- . 选择题 (满分 16 分,每小题 4 分)
- 5 设函数 f(x) 在[0,1]上二阶可导,且 f''(x) < 0。则下列不等式成立的是(

 - (A) f'(1) < f'(0) < f(1) f(0) (B) f'(1) < f(1) f(0) < f'(0)

 - (C) f(1)-f(0) < f'(1) < f'(0) (D) f'(1) < f(0)-f(1) < f'(0)
- 6 设函数 f(x) 有二阶连续导数, 满足 f(0) = f'(0) = 0, $f''(0) \neq 0$. 设 $F(x) = f(1 \cos x)$,

则当 $x \to 0$, F(x)作为无穷小的阶数(

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- 7. 设 f(x) 为偶函数, 二阶连续可导, f''(0) = 2, 则有 $f(\frac{1}{n}) f(0)$ 等价于

》测试考试试卷 (A 卷) --1

- (B) $\frac{2}{n}$ (C) $\frac{1}{n^2}$ (D) $\frac{2}{n^2}$

对于(0,1)上的函数f(x),给出三个条件,

- (i) f(x)一致连续
- (ii) f(x)处处可导

(iii) 存在M > 0, 对任何 $x, y \in (0,1)$ 有 $|f(x) - f(y)| \le M|x - y|$

则下列蕴涵关系正确的是

- (A) $i \Rightarrow ii$
- (B) $i \Rightarrow iii$
- (D) iii ⇒ i

三 计算题 (满分20分,每小题10分)

9. 求函数 $f(x) = (2+x)^x - 2^x 在 0$ 点的 Taylor 公式 (Maclaurin 公式) 的第一个非零项。

设 α 和 β 为正的常数,且 $\lim_{x\to a} [(x^{2\alpha} + x^{\alpha})]^{1/\alpha}$ $[x^2] = \beta$, 求 α 和 β . 10.

四 证明题 (满分 48 分,每小题各 12 分)

11 用 $\varepsilon - \delta$ 定义证明 $\lim_{x \to 3} x^2 = 9$.

- 13. 证明:
- (1) 若函数 f(x) 为区间[a,b]上的凸函数,则 $max\{f(a),f(b)\}$ 为f(x)的最大值;
- (2) 若 $x \in (0,\frac{\pi}{2})$, 则 $\frac{\sin x}{x} \ge \frac{2}{\pi}$.

14. 设函数 f(x) 在有限区间 [a,b) 上连续. 证明 f(x) 在 [a,b) 上一致连续的充要条件是 f(x) 在 b 点的左极限存在有限.

