Decision Trees

-Entrophy = gain information

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)

Department of Electrical Engineering

National Taiwan University

tianliyu@ntu.edu.tw

Readings: AIMA 18.3, 18.4, 18.10

Outline

- 1 Learning Decision Trees
 - Choosing Attributes
- Model Evaluation
 - Metrics
 - Cross-Validation
 - Comparison
- 3 Generalization and Overfitting
- 4 Ensemble

Attribute-based Representations

• Restaurant example.

Example	Market Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	Τ	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Decision Trees

• One possible representation for hypotheses.

Expressiveness of Decision Trees

- Goal \Leftrightarrow (Path₁ \vee Path₂ $\vee \cdots$).
- $Path_i \Leftrightarrow (Attribute_1 = a_1 \land Attribute_2 = a_2 \land \cdots).$
- Decision trees can express any function of the input attributes.
- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example, but it won't generalize to new examples.
- Prefer to find more compact decision trees.

Hypothesis Space

- How many distinct decision trees with n Boolean attributes?
 - Truth table with 2ⁿ rows.
 - Every truth table can be expressed by one decision tree ⇒ At least 2²ⁿ decision trees.
 - If different order of attributes counts as ⇒ At least n! · 2^{2ⁿ} decision trees.
- More expressive hypothesis space
 - Increase the chance that c can be expressed.
 - May be weak at generalization if we let the decision tree be too expressive.

Learning Decision Trees (ID3 [Quinlan, 1986])

- Aim: Find a small tree consistent with training examples.
- Idea: Recursively choose the best attribute.

```
DTL(examples, attributes, examples_{parent})
```

```
if examples is empty then return Plurality-Value(examples<sub>parent</sub>)
     elseif all examples have same classification then return the classification
     elseif attributes is empty then return Plurality-Value(examples)
     else
          A \leftarrow \operatorname{argmax}_{a \in attributes} \operatorname{IMPORTACE}(a, examples)
 5
           tree \leftarrow a new decision tree with root A
 6
           for textbfeach value v_k of A
 8
                exs \leftarrow elements of examples with <math>A = v_k
 9
                subtree \leftarrow DTL(exs, attributes - A, examples)
                add a branch to tree with label A = v_k and subtree subtree
10
11
           return tree
```

Choosing Attributes

- The restaurant example consist of 6 positive and 6 negative examples.
- Patrons is a better choice gives more information about the classification.

Information

- Measure of information: Shannon's entropy.
 - Gives the lower bound of the most compact encoding of a random variable in bits.
- The entropy of a random variable V with values v_k , each with probability $P(v_k)$, is defined as

$$H(V) = -\sum_{k} P(v_k) \log_2 P(v_k).$$

For Boolean variables, define

$$B(q) = -q \log_2 q - (1-q) \log_2 (1-q).$$

- The entropy of a fair coin: $H = B(0.5) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1 bit.$
- The entropy of a unfair coin (99% head): $H = B(0.99) = -(0.99 \log_2 0.99 + 0.01 \log_2 0.01) = 0.08 bits.$

9 / 29

Information

- p positive and n negative examples at the root $\Rightarrow B(p/(p+n))$ bits needed to classify a new example.
- Attribute A splits the examples E into subsets E_k , each of which (we hope) needs less information to complete the classification.
- Let E_k have p_k positive and n_k negative examples $\Rightarrow B(p_k/(p_k + n_k))$ bits needed to classify a new example \Rightarrow expected number of bits per example over all branches is

Remainder(A) =
$$\sum_{k} \frac{p_k + n_k}{p + n} B(\frac{p_k}{p_k + n_k})$$
.

- For *Patrons*, this is 0.459 bits; for *Type*, this is (still) 1 bit
 ⇒ Choose the attribute that minimizes the remaining information.
 - ⇒ Choose the attribute with the most information gain:

$$Gain(A) = B(\frac{p}{p+n}) - Remainder(A)$$

4D> 4A> 4B> 4B> B 990

Decision Tree Learned from the Examples

• Decision tree learned from the 12 examples:

• Substantially simpler than a full tree — a more complex hypothesis isn't justified by small amount of data.

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

Confusion matrix:

	PREDICTED CLASS							
	Те	*Class=Yes	Class=No					
ACTUAL	Class=Yes	True	False					
CLASS		Positive	Negative					
CLASS	Class=No	False	True					
		Positive	Negative					

Accuracy

$$Accuracy = rac{TP + TN}{TP + TN + FP + FN}$$
對角線最大化約好

- Probably most widely-used metric.
- Can be misleading. Consider class 0 consisting of 9990 instances and class 1 consisting of 10 instances. Classifying everything as class 0 yields 99.9% accuracy.

Other Metrics

$$Precision(p) = rac{TP}{TP + FP}$$
 $Recall(r) = rac{TP}{TP + FN}$
 $F - measure(F) = rac{2pr}{p+r} = rac{2TP}{2TP + FP + FN}$

Performance Measurement

- How do we know whether $h \approx c$?
 - Use theorems of computational/statistical learning theory
 - 2 Try h on a new test set of examples (use same distribution over example space as training set)
- Learning curve = % correct on test set as a function of training set size

Cross-Validation

```
data 不會均分
test data < train data (e.g. 1:3, 1:4...)
```

- The idea of having training and testing sets is called cross-validation.
- Holdout cross-validation
 - Randomly split the available data into a training set and a testing set.
 - Simple, fast, but not able to use all available data.
- k-fold cross-validation
 random均分成k份
 第n次用第n組當testing data、剩下k-1組training data
 - Randomly split the data into k equal-sized subsets.
 - Perform k rounds of learning using k-1 subsets as training and the rest as testing.
 - Popular choice of k is 5 to 10.
 - Accurate statistics, but longer computation.

ROC

- Receiver operating characteristic.
- ROC curve: FPR as x-axis; TPR as y-axis.

$$FPR(FP \ rate) = \frac{FP}{FP + TN}$$

$$TPR(TP \ rate) = \frac{TP}{TP + FN}$$

- (FPR, TPR):
 - (0,0): Classify everything as negative.
 - (1,1): Classify everything as positive.
 - (0,1): Ideal. 沒有東西弄錯

AUC

- Model 1 is better for small FPR.
- Model 2 is better for large FPR.
- Area under the ROC curve (AUC).
 - Ideal: 1.
 - Random guess: 0.5.

Generalization and Overfitting

- If some attributes are irrelevant, DTL still outputs a large tree.
 - The outputs of fair dices with attributes of color, size, and so on.
- To overcome overfitting,
 - we can stop growing the tree before overfitting,
 - or we can allow overfitting, and then post-prune the tree (most common).
- How to decide what to post-prune?

 - Use statistical tests.
 - Use explicit measures the complexity of the encoding of the tree and training examples (minimum description length principle).

χ^2 Pruning

- Information gain of an irrelevant attribute is expected to be zero, but the sampling noise may still yield some gain.
- Assuming true irrelevant, the expected number of p_k and n_k can be expressed as

$$\hat{p}_k = \frac{p}{p+n} \times (p_k + n_k)$$
 $\hat{n}_k = \frac{n}{p+n} \times (p_k + n_k)$

- Define $\triangle = \sum_k \frac{(p_k \hat{p}_k)^2}{\hat{p}_k} + \frac{(n_k \hat{n}_k)^2}{\hat{n}_k}$, \triangle is of χ^2 distribution with (n + p 1) degree of freedom.
- For example, with 3 degree of freedom, $\triangle \le 7.82$ encourages the pruning with 5% level of significance.

Rule Post-Pruning

J48 v8

• Used by C4.5rules [Quinlan, 1993].

tree 沒有避免 overfititng

- ① Convert the decision tree into rules (one rule per path).
- 3 Sort the the pruned rules by their accuracy, and consider them in this sequence when classifying instances.
 - For example,

```
rule (Patron = Full) \land (Hungry = No) \Rightarrow (WillWait = False).
```

 Rule post-pruning considers removing (Patron = Full) and (Hungry = NO) in this example.

Ensemble

- Use multiple weak classifiers to prevent from overfitting.
- Embedding
- Bagging
- Boosting

Embedding

≈ Kernel method

ullet Random forest: randomly select k attributes to create weak classifiers.

Bagging

• Sampling with replacement from the dataset to form new datasets.

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample (supposedly n items).
- Probability $(1-1/n)^n$ of not being selected.n 個通通沒被選到
- When *n* is large, it is about $1/e \simeq 37\%$
- About 37% of noise (if any) not being selected.

好處: 有可能完全沒有noise

Boosting

if preprocessing is good, boosting if not, bagging is better.

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records.
- Initially, all n items are assigned equal weights.
- Unlike bagging, weights vary at the end of boosting round.

AdaBoost

- Weak classifiers: C_i
- Error rates:

$$\epsilon_i = \frac{1}{N} \sum_{j=i}^{N} w_j \cdot \delta[C_i(x_j) \neq y_j]$$

• Importance of a classifier:

錯誤率越小 越重要

$$\alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}$$

• Weight update (c normalization factor):

$$w_j \leftarrow c \cdot w_j egin{cases} e^{-lpha_i} & C_i(x_j) = y_j & ext{ yi find} \\ e^{lpha_i} & C_i(x_j) \neq y_j & ext{ find} \end{cases}$$

AdaBoost

- The equations of the previous slide are such to minimize the total error. We omit the derivations here.
- Initially, $w_j = \frac{1}{N}$.
- Any intermediate round yields error rate higher than 0.5, weights are reverted back to $\frac{1}{N}$.
- Classification:

$$C^*(x) = \underset{y}{\operatorname{argmax}} \sum_{j} \alpha_j \cdot \delta[C_j(x) = y]$$

Summary

- Decision tree learning using information gain.
- Learning performance = prediction accuracy measured on test set.
- Cross-validation combats overfitting.
- Bayesian learning is reasonable, but computationally expensive. A common simplification is the MAP learning.
- MAP learning reduces to finding the ML hypothesis when assuming all hypotheses are equally probable.
- Prior that penalizes complexity combat overfitting and results in MDL.
- Bayesian networks provide a natural representation for (causally induced) conditional independence.
- Topology + CPTs = compact representation of joint distribution.
- Bayesian networks are generally easy to construct with human knowledge or other machine learning techniques.