

Applied Workshop: Doppler Lidars for Wind Energy

Elliot Simon < ellsim@dtu.dk >

PhD Student, Meteorology & Remote Sensing, DTU Wind Energy (RISØ)

Vrije Universiteit Brussel

September 19, 2018 @ 9AM

How and what does a Doppler lidar measure?

- Doppler lidars measure motion, unlike ranging lidars (which can only measure distance)
- Simplified measurement process:
 - Laser light (near infrared, 1.5 μm) is emitted
 - Beam interacts with aerosols (particles) suspended in the air
 - The light frequency (wavelength) is shifted by the apparent speed
 - The backscatter signal is received and digitized
 - The dominant frequency is found by spectral analysis
 - Using the Doppler shift and speed of light, the radial velocity is obtained

$$\Delta f = \frac{v_r}{c} f_0$$
; where $\Delta f = f - f_0$

• True wind speed & radial wind speed relationship $v_r = v * \cos(\theta)$

 θ = beam alignment relative to the wind direction When parallel: v_r = true wind speed; when perpendicular v_r = 0 speed

Two varieties: Pulsed vs. continuous wave (CW)

Pulsed

- Collimated beam (parallel rays)
- Measures all distances at once
- Uses time of flight to differentiate ranges
- Probe volume is constant with distance
- Blind zone exist close to telescope

Continuous Wave

- Focused beam
- Measures one distance at a time
- Must refocus to measure at another point
- Probe volume is a 4th power function of focus range
- Can measure very close to telescope

Doppler lidar applications in wind energy

- Wind resource assessment (e.g. wind profiles, big picture over complex terrain)
- Validation of other sensors and as an independent observation
- Power performance assessment
- Validation of models (e.g. wind atlases, LES)
- Turbine wake and inflow measurements (e.g. validating wake and load models)
- Wind turbine & wind farm control
- Forecasting (either data assimilation into NWP or using statistical models)

Most common systems

Ground based profilers

Leosphere WindCube V2

Pentalum SpiDAR

Zephir 300

Mitsubishi CWL

Nacelle

Zephir Dual Mode

Windar Wind Eye/Vision
Mitsubishi NL (9 beam)

Avent (Leosphere) WindIris (4 beam)

Scanning

Leosphere WindCube 1/2/400S

Halo StreamLine XR

Lockheed Martin WindTracer

Mitsubishi LS CDLS

Common measurement techniques

<u>Others</u>

- Dual Doppler
- Triple Doppler
- Adaptive
- Complex

Velocity azimuth display (VAD)

Sizing up

Strengths

- Portable / relatively fast to deploy and move
- No building permissions needed
- Spatial measurement
- Measures remotely (no tower, no flow distortion)
- Configurable ranges
- Scanning lidar trajectories are configurable (point/area/volume)
- Validation history against calibrated sensors

<u>Challenges</u>

- Only radial measurements
- Measurements are spatially averaged (probe volume)
- Limited by low backscatter signal in certain conditions (availability)
- Eye safety & (in some cases) planning permission considerations
- Power consumption
- Beam blockage
- Requires expert knowledge
- Limited inclusion in standards

Data formats

- Most devices output measurements in CSV format, 1 file per 10 minutes
- We aren't very organized yet, but are starting to get there!
- FAIR data principles (Findable, Accessible, Interoperable, Reusable)
- e-WindLidar: standardization group
 - Metadata cards
 - <u>Lidaco</u>: modular converter to netCDF4 format
 - Data catalogue (citable with DOI, permissions system)
 - Common tools and data products: spectra > radial speeds > vector > flow parameters
 - Upcoming workshop: October 3rd @ DTU Risø

Closing remarks

- DTU PhD summer school on <u>Remote Sensing for Wind Energy</u> (1 week, 2.5 ECTS)
- Questions?
- Let's begin the exercise!
- If you want to follow/play along on your own computer:
 - Download Python Anaconda distribution (3.6.x version) add to PATH env. variable https://www.anaconda.com/download/
 - Download files from GitHub repo:https://github.com/elliotsimon/2018-EAWE-lidar-workshop
 - Navigate to where you saved the files (file explorer or shell)
 - If file explorer on windows: Shift + Right Click > Open command window here
 - "jupyter notebook" will launch a browser window
 - Open the .ipynb file