Ferienkurs Experimentalphysik 2 Probeklausur

Tutoren: Julien Kollmann und Gloria Isbrandt

1 Aufgabe

Betrachten Sie eine Verteilung punktförmiger, positiver Ladungen mit einer Ladung Q_0 an der Stelle $x_0 = 0$ und einer Ladung Q_1 an der Stelle x_1 .

 $TEIL\ A$: An welcher Stelle x_2 könnte eine dritte positive Ladung platziert werden, sodass die auf Q_0 wirkende Gesamtkraft null ist? Geben Sie zwei solcher x_2 mit zugehöriger Ladung Q_2 an.

 $TEIL\ B$: Beschreiben Sie qualitativ (max. zwei bis drei Sätze) die Folgen einer Auslenkung der Ladung Q_0 um dx.

2 Aufgabe

Zwischen die Platten eines Kondensators (Parameter A, d_0, Q) wird eine Glasplatte $(\varepsilon_r = 2)$ geschoben. Die Spannungsquelle bleibt angeschlossen. Alle Ergebnisse sind in Abhängigkeit der genannten Parameter zu formulieren.

- Berechnen Sie die im Kondensator gespeicherte Energie.
- Der Abstand der Platten wird jetzt auf $d = 2d_0$ vergrößert. Wie viel Energie ist jetzt im Kondensator gespeichert? Machen Sie sich zunächst Gedanken über ein Ersatzschaltbild.

3 Aufgabe

Ein Motor wird durch eine Batterie mit Strom gespeist. Die beiden sind durch ein Kupferkabel verbunden ($\rho = 1,69 \cdot 10^{-8} \Omega m$ und $n = 8,49 \cdot 10^{28} e^-/m^3$) mit einem Durchmesser von d = 5mm und einer Länge von l = 1m. Berechnen Sie, wie lange ein Elektron braucht um von der Batterie zum Motor zu reisen, wenn ein Strom von l = 100A vorliegt.

4 Aufgabe

Die beiden Stromkreise, die im Bild dargestellt sind, werden mit dem selben Strom I durchflossen; der eine im Uhrzeigersinn und der andere gegen der Uhrzeigersinn. Es sei bekannt, dass $R_1 = 2R_2$ und $R_2 = 2R_0$. Bestimme die Winkel φ_1 und φ_2 der Stromkreis-Kreissegmente, sodass das Magnetfeld im Mittelpunkt verschwindet.

5 Aufgabe

Ein Kondensator ($C=10\,\mu\text{F}$) mit einem Leckwiderstand von $10\,\text{M}\Omega$ wird an eine Wechselspannungsquelle $U=U_0\cos\omega t$ mit $U_0=300\,\text{V}$ und $\omega=\frac{2\pi}{50\,\text{s}}$ angeschlossen. Welcher Strom (Blind- plus Wirkstrom) fließt, und welche Leistung wird im Kondensatorverbraucht? Hinweis: $\sin x = \frac{\tan x}{\sqrt{1+\tan^2 x}}$

6 Aufgabe

Es ist ein Schaltkreis mit Gleichspannung V_0 gezeigt, für den vor dem Öffnen (t=0) der Schalter lange Zeit in Position 1 war. Der Kondensator ist also nicht geladen; Nehmen Sie weiterhin eine Widerstandsfreie Spule L an.

- Berechnen Sie die Energie, die zum Zeitpunkt t=0 im gezeigten Stromkreis gespeichert ist.
- ullet Geben Sie ein Beispiel eines mechanischen Systems an, das der Schaltung aus C und L entspricht und identifizieren Sie die einzelnen Teile miteinander.
- Geben Sie eine Funktion (mit den gegebenen Parametern) an, die den zeitlichen Verlauf der Kondensatorladung beschreibt.
- Beschreiben oder skizzieren Sie qualitativ den Verlauf der in der Spule gespeicherten Energie.

7 Aufgabe

a) Ein Raumschiff, welches mit einer Geschwindigkeit von $v_R = 0,8c$ von der Erde weg fliegt, schieße eine Sonde nach vorne (in die gleiche Richtung wie sie sich selbst bewegt) mit einer Geschwindigkeit $v_S = 0,8c$ relativ zum Raumschiff selbst. Man bestimme die Geschwindigkeit zur Sonde von der Erde aus gesehen $v_{E,S}$.

b) Ein radioaktives Material emittiert beim Zerfall zwei Teilchen in entgegengesetzte Richtungen mit jeweils Geschwindigkeit v=0,6c. Man bestimme die Geschwindigkeit des einen Teilchens relativ zum anderen.

8 Aufgabe

Das Sonnenlicht trifft auf die Erde mit einer maximalen Intensität von $1,38kW/m^2$.

- a) Berechne die Amplitude E_0 des elektrischen Anteil der Welle.
- b) Berechne die Amplitude B_0 .