Revisit to Deep Cox Mixtures for Survival Regression

CS598 - Deep Learning for Healthcare

Chris Yu hmyu2@illinois.edu Jimmy Lee jl279@illinois.edu

Introduction

What is Survival Analysis?

- Statistical methods for analyzing the expected duration of time until one or more events happen.
- Commonly used in healthcare, engineering, economics, etc.
- Deals with "censored data" (where the event of interest hasn't occurred by the end of the study).

Figure 2: Survival curves that don't satisfy the proportional hazards assumption.

Problems Statements

Widely-Used Models: Cox Proportional Hazards

Major Problem: Poor Calibration

Deep Learning Models: DeepSurv, DeepHit,Deep Survival Machines (DSM).

Problem: Emphasis on *ranking performance* rather than the *absolute score values*.

Real World Consequences overestimating risk for millions, impacting healthcare decisions.

Deep Cox Mixtures (DCM): Concept

- Model Idea: Extends the standard Cox model to handle diverse patient risk profiles by
 modeling survival as a finite mixture of K distinct Cox models.
- Individuals are probabilistically assigned to **latent subgroups** $Z \in \{1,...,K\}$.
- Each subgroup has its own baseline survival curve $S_k(t)$, estimated non-parametrically.
- The final predicted survival S(t|x) for an individual is a weighted average of the cluster-specific survival functions, based on their subgroup probabilities P(Z|X=x).

$\begin{array}{c|c} & \Phi(\theta; x) \\ \hline & Encoder \end{array}$

Deep Cox Mixtures (DCM): Concept

- Input Data: Uses standard right-censored survival data: $D=\{(x_i,\delta_i,u_i)\}_{i=1}^N$, where x_i are covariates, δ_i is the event indicator (1=event, 0=censored), and u_i is the observed time.
- Learning Method: Model parameters are optimized using Maximum Likelihood
 Estimation (MLE).

$$\mathcal{L}(heta, \Lambda_k) = \prod_{i=1}^{|\mathcal{D}|} \int_Z (\lambda_k(u_i|x_i))^{\delta_i} S_k(u_i|x_i) \mathbb{P}(Z=k|x_i).$$

Original paper

Our Reproduction

Reproduction: Kaplan-Meier Curves

By simulating survival curves for the SUPPORT dataset based on our DCM implementation, we observed curves with a **similar shape** to those presented in the original paper

Model	Brier	CTD	AUC	ECE
СРН	0.1206	0.8082	0.8337	0.0718
CPH (Non-White)	0.1285	0.8398	0.8398	0.0764
DCM	0.1064	0.8270	0.8552	0.0103
DCM (Non-White)	0.1127	0.8595	0.8595	0.0169
DSM	0.1073	0.8281	0.8566	0.0259
DSM (Non-White)	0.1140	0.8591	0.8591	0.0311
RSF	0.1095	0.8153	0.8416	0.0147
RSF (Non-White)	0.1190	0.8373	0.8373	0.0270

Original paper

Model	Brier	CTD	AUC	ECE
СРН	0.1323	0.7304	0.7385	0.0363
CPH (Non-White)	0.1287	0.7360	0.7392	0.0619
DCM	0.1291	0.7356	0.7498	0.0478
DCM (Non-White)	0.1287	0.7216	0.7227	0.0387
DSM	0.1373	0.7002	0.7059	0.0494
DSM (Non-White)	0.1377	0.6757	0.6820	0.0606
RSF	0.1331	0.7183	0.7224	0.0400
RSF (Non-White)	0.1318	0.7262	0.7277	0.0468

Reproduction: Metrics Comparison SEER

- Lower ECE in the minority group indicates better calibration, which is a **positive sign** for DCM's calibration on this dataset compared to the original paper's claims.
- Our CTD (0.7356) was close to the original DCM indicating similar ranking ability.

Our Reproduction

Model	Brier	CTD	AUC	ECE
CPH	0.2136	0.6686	0.7214	0.0310
CPH (Non-White)	0.2069	0.6905	0.7446	0.0685
DCM	0.2118	0.6753	0.7256	0.0256
DCM (Non-wnite)	0.2073	0.0939	0.7424	0.0501
DSM	0.2130	0.6718	0.7236	0.0315
DSM (Non-White)	0.2056	0.6939	0.7478	0.0650
RSF	0.2109	0.6751	0.7273	0.0348
RSF (Non-White)	0.2031	0.6974	0.7522	0.0603

Original paper

Model	Brier	CTD	AUC	ECE
СРН	0.1969	0.6659	0.7387	0.0397
(Non-White)	0.1822	0.6816	0.7688	0.0453
DCM	0.2105	0.6502	0.7157	0.0794
DCM (Non-White)	0.2101	0.6698	0.7362	0.1606
DSM	0.2090	0.6490	0.7138	0.0733
DSM (Non-White)	0.2028	0.6571	0.7274	0.1303
RSF	0.2024	0.6544	0.7354	0.0762
RSF (Non-White)	0.1919	0.6757	0.7549	0.0842

Our Reproduction

Reproduction: Metrics Comparison SUPPORT

Our DCM reproduction showed weaker
calibration (significantly higher ECE: 0.0794)
and lower ranking (CTD: 0.6502) compared to
the original paper's reported DCM metrics (ECE:
0.0256, CTD: 0.6753).

Reasons for Observed Differences

Overall Reproducibility: The original paper was found to be **partially reproducible**.

Factors Limiting Exact Reproduction:

- Unavailable original training code.
- Unclear step of training and evaluation.

Evaluating DCM on GBSG Dataset

- The German Breast Cancer Study Group (GBSG)
- Dataset Origin: a late 1980s clinical trial for node-positive breast cancer cases.
- Data: Contains complete prognostic profiles for 686 patients, focusing on disease and treatment responses.

GBSG Dataset: Performances

Model	Brier	CTD	AUC	ECE
CPH	0.2210	0.6979	0.7545	0.1016
CPH (Non-White)	0.3235	0.4863	0.4555	0.2424
DCM	0.2302	0.6784	0.7197	0.0745
DCM (Non-White)	0.3054	0.5378	0.5315	0.2961
DSM	0.2452	0.6803	0.7069	0.1205
DSM (Non-White)	0.3861	0.5375	0.5258	0.3149
RSF	0.2295	0.6933	0.7226	0.1464
RSF (Non-White)	0.3054	0.5378	0.5315	0.2961

- Our DCM model achieved competitive performance compared to other deep learning approaches (DSM/RSF).
- DCM showed great performance in ranking accuracy (CTD 0.6784) compared to the traditional CPH model (CTD 0.6979).
- DCM maintained reasonable calibration (ECE 0.0745) on this dataset.

Conclusion

Survival models struggle with calibration and non-proportional hazards.

DCM is promising: uses **deep learning** and **latent subgroups** for survival modeling.

Reproduction study results were **mixed**:

- Successfully reproduced Kaplan-Meier curve shapes.
- Metrics varied; calibration (ECE) challenging on SUPPORT.
- Strong performance on SEER (better than baselines).
- Competitive performance on **GBSG** (good ranking, reasonable calibration).

Reproducibility was **partial**: limited by missing code, unclear steps, preprocessing details.