Biologia Systemów 2024/25 Spatial Proteomics, zadanie dodatkowe

M. Możejko, K. Gogolewski

SCVI (3 pkt)

W zadaniu korzystaliśmy z redukcji wymiarowości opartej na PCA. W tym dodatkowym zadaniu należy:

- Wytrenować model SCVI (https://docs.scvi-tools.org/en/latest/user_guide/models/scvi.html) na danych z ekspresji markerów,
- Użyć wytrenowanego modelu w algorytmie CellCharter,
- Porównać wyniki z wynikami uzyskanymi przy użyciu PCA w podobny sposób jak porównywaliśmy je z bazowymi modalnościami (średnia ekspresja markerów, histogramy typów komórkowych).

BERT-Charter (7 pkt)

W tym zadaniu należy:

- 1. Przygotować torch. Dataset, który:
 - \bullet dla i-tejkomórki oraz
 n $\ layers$ zwróci n $\ layers$ zbiorów komórek:
 - odległość 0 oryginalna komórka,
 - odległość 1 najbliżsi sąsiedzi,
 - _
 - odległość n layers 1 komórki oddalone o długość najkrótszej ścieżki n layers 1 w grafie.
 - \bullet zwróci sekwencję wszystkich ekspresji markerów komórek oraz numer warstwy +1 każdej z komórek (centralna komórka =1, bezpośredni sąsiedzi =2, itd.).
- 2. Przygotować NeighborhoodEmbedder (torch.Module), który:
 - przyjmie zbiór z poprzedniego punktu,
 - zwróci sekwencję o wymiarze embedding_dim,
 - dla każdej komórki:
 - obliczy sumę liniowego embeddingu ekspresji markerów,
 - doda uczalne zanurzenie numeru warstwy,
 - dla komórek z numerem warstwy 0 zastąpi embedding ekspresji maskującym wektorem (mask vector)
 o wymiarze embedding_dim.
- 3. Przygotować moduł BertCharter (torch.Module), który:
 - korzysta z NeighborhoodEmbeddera,
 - korzysta z TransformerEncoder z:
 - hidden_dim domyślnie 128 (równym embedding_dim),
 - 4 warstwami,
 - 4 głowami.
 - Wyjście ostatniej warstwy encodera przekazuje do warstwy liniowej o wymiarze liczby markerów (40),
 - Zwraca:
 - sekwencję wyjściową z ostatniej warstwy encodera,
 - sekwencję do predykcji markerów.
- 4. Napisać petle trenującą, która:

- bazuje na DataLoaderze z Datasetu z punktu 1,
- w każdej iteracji:
 - losowo maskuje określony procent komórek (domyślnie 15%),
 - zamienia numer warstwy zamaskowanych komórek na 0,
 - BertCharter przewiduje z powrotem wszystkie markery (zamaskowane i niezamaskowane),
 - funkcja kosztu: MSE lub MAE na wszystkich markerach,
 - wagi:
 - * 1 dla zamaskowanych markerów,
 - * 0.1 dla niezamaskowanych.
- Opcjonalnie: dodać zbiór walidacyjny.

5. Przy pomocy wytrenowanego modelu:

- obliczyć reprezentację otoczenia każdej komórki przez uśrednienie wyjścia z ostatniej warstwy encodera wzdłuż sekwencji,
- porównać reprezentacje otoczeń:
 - z otoczeniami uzyskanymi z bazowej modalności,
 - z wynikami CellChartera.

Oddawanie rozwiązań Deadline na przesłanie rozwiązań - 31 maja 2025 roku do godziny 20:00. Rozwiązania oraz ewentualne pytania należy przesyłać na adres: marcin.mozejko@student.uw.edu.pl, z kopią do: k.gogolewski@mimuw.edu.pl. W tytule wiadomości (zarówno z pytaniami, jak i oddawanymi rozwiązaniami) prosimy umieszczać: [BiolSys] Spatial proteomics - zadanie dodatkowe.