Lista de Exercícios 4

Gustavo Higuchi

August 30, 2016

Contents

Exercício 1	2
Exercício 2	2
Exercício 3	2
Exercício 4	2
Exercício 5	3

Exercício 1

Para mostrar que $\log_b n \le c * \log_a n$, basta

$$\log_b n = \frac{\log_a n}{\log_a b} \le c * \log_a n$$

$$\frac{1}{\log_a b} \le c$$
(1)

Então, para um $c \geq \frac{1}{\log_a b}$ e um $n_0 \geq 1$

$$\log_b n = O(\log_a n) \tag{2}$$

Exercício 2

Pela definição, $\exists c_1, n_1$ tal que $\bar{f}(n) \leq c_1 f(n)$ para $n \geq n_1$ E pela definição, $\exists c_2, n_2$ tal que $\bar{g}(n) \leq c_2 g(n)$ para $n \geq n_2$ Assim

$$\bar{f}(n)\bar{g}(n) \le c_1 f(n)c_2 g(n)$$
 $\le c_3 f(n)g(n), \text{ onde } c_3 = c_1 * c_2$
(3)

para $n \geq \max\{n_1, n_2\}$

Exercício 3

Se dividir a função f(x) em 3 funções, teremos

$$g(x) = x + 1$$

$$h(x) = \log(x^2 + 1)$$

$$i(x) = 3x^2$$

$$f(x) = g(x)h(x) + i(x)$$

$$(4)$$

Então,

$$g(x) = O(x+1) = O(x)$$

$$h(x) = O(\log(x^2+1)) = O(\log x^2) = O(\log x)$$

$$i(x) = O(3x^2) = O(x^2)$$
(5)

$$f(x) = O(x) * O(\log x) + O(x^2)$$

$$= O(x \log x) + O(x^2)$$

$$= O(x^2)$$
(6)

Exercício 4

Sim para o primeiro, pois existe uma constante c tal que

$$2^{n+1} \le c * 2^n \tag{7}$$

para um $n_0 \ge 1$ e c = 2

Porém, para o segundo, temos

$$2^{2n} = c * 2^n \tag{8}$$

para um $n_0 \geq 0$ e um $c = 2^{10000},$ quando n = 10001 teremos

$$2^{2*10001} \le 2^{10000} * 2^{10001}$$

$$2^{20002} \le 2^{20001}$$
(9)

o que é falso, portanto não há uma constante que multiplica 2^n tal que para todo $n>n_0,\,2^{2n}$ seja menor que $c*2^n$

Exercício 5

(a)

Proof.

 $2^n = 2 * 2 * 2 * 2 * 2 * ... * 2$, enquanto n! = n * (n-1) * (n-2) * ... * 4 * 3 * 2 * 1

Então, para um
$$n_0 = 1$$
 e um $c = 2$, $2^n = O(n!)$

(b)

Proof.

Como $\log n!$ pode ser reescrito da seguinte forma:

$$\log n! = \sum_{i=0}^{n} \log(n-i) \tag{10}$$

E assim teremos o seguinte

$$\sum_{i=0}^{n} \log(n-i) < \sum_{i=0}^{n} \log n$$

$$= n * \log n = O(n \log n)$$
(11)