$f(n) + g(n) = \Theta(min(f(n),g(n)))$

Sea finitg(n) = Θ (min $\{f(n),g(n)\}$); entonces $\exists c_1,c_2>0$ tal que $\forall n \geq n_0$:

=> c_2 min $\{f(n),g(n)\}$ $\leq f(n)$ tal $\{g(n)\}$ $\leq c_1$ min $\{f(n),g(n)\}$ Como $g,f:H\to N$, entonces podemos das un contradigo que $\{g(n)\}$ que $\{g(n)\}$

Sea $f(n) = 2^n$ y g(n) = 1 (o coalquier constante)

Entances, en este caso en portirular: $m(n) \{f(n), g(n)\} = f(n) \} \forall n > 0$ $C_2 g(n) \{f(n) + g(n)\} \{f(n)\} \{f(n)\}$

Podemos acutar por debajo a 2º+1 con Cz=3

pero esimposible acutar a 2º+1 por

arriba con una constante

 $2^{n} = 2$ con n = 1 $2^{n} = 4$ con n = 2 $2^{n} = 8$ (on n = 3

Sea fin1=0(g(n1) entontes $\exists c>0$ y hot $N \ni \forall n \ge n_0$ f(n) $\le c_2 g(n)$

Podemos proponer un contraejemplo: f(n)=2n g(n)=n, entonces tenemos:

Existe c>0, no EN > Yn>no

2n < C n

2 = C que lomando C = 2, no=1, se cumple

pero, no se cumple para 2fin) = 0 (2gin)

Existe (>0, no & N) & Y n > no

$$\frac{2^{2n}}{2^n} \leq C$$

2" = C => no pode mos a cotal superiormente a 2" (on una constante.

Por la lando no se comple