

WHAT IS CLAIMED IS:

1	1. A device for ablating tissue, comprising:
2	an ablating device having at least one ablating element and a bottom surface,
3	the bottom surface being positioned adjacent to tissue to be ablated; and
4	a cover extending over the bottom surface;
5	a cavity defined by a space between the cover and bottom surface; and
6	a flowable material positioned in the cavity;
7	wherein the cover is movable relative to the ablating device to a position
≟ - 3 8	which exposes the bottom surface while leaving the flowable material positioned between the
4 8 9 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	ablating device and the tissue to be ablated.
J N	
] 1 =	2. The device of claim 1, wherein:
j 2	the ablating device has a removable tip.
<u>.</u> 1	3. The device of claim 1, wherein:
]] 2	the flowable material has a boiling temperature of at least 100 degrees C and a
] 1 1 3	vapor pressure higher than water.
]	vapor pressure inglier than water.
1	4. The device of claim 1, wherein:
2	the flowable material is selected from the group consisting of PEG and
3	glycerine.
1	5. The device of claim 1, wherein:
2	the ablating device has a plurality of ablating elements.
1	6. The device of claim 1, wherein:
2	the ablating device forms a closed loop.
1	7. The device of claim 1, wherein:
2	the cover is a sleeve which surrounds the ablating device.
	A mash od of chloting tipour appropriate the stage of
1	8. A method of ablating tissue, comprising the steps of:
2	providing an ablating device and a cover, the ablating device having a bottom
3	surface, the cover being spaced apart from the bottom surface to define a fluid cavity, the
4	fluid cavity containing a fluid;

3	positioning the cover against a tissue surface,					
6	moving the cover away from the bottom surface so that the bottom surface is					
7	exposed and positioned adjacent the tissue surface, the flowable material conforming to the					
8	shape of the tissue surface and being positioned between the bottom surface of the ablating					
9	device and the tissue surface; and					
10	ablating the tissue after the moving step.					
1	9. The method of claim 8, wherein:					
2	the positioning step is carried out with the tissue surface being an epicardial					
<u>니</u> 3	surface.					
	10. The method of claim 8, wherein:					
Π_2	the moving step is carried out by moving the cover while substantially					
다 3 대 3	maintaining the position of the ablating device.					
<u> </u>	11. The method of claim 8, wherein:					
N 2	the providing step is carried out with the cover having a removable tip.					
01 0 1	12. The method of claim 8, wherein:					
<u>부</u> 2	the providing step is carried out with the flowable material having a boiling					
3	temperature of at least 120 degrees C					
1	13. The method of claim 8, wherein:					
2	the providing step is carried out with the flowable material being selected from					
3	the group consisting of PEG and glycerine.					
1	14. The method of chaim 8, wherein:					
. 2	the providing step is carried out with the ablating device having a plurality of					
3	ablating elements.					
1	15. The method of claim 8, wherein:					
2	the providing and moving steps are carried out with the ablating device					
3	forming a closed loop.					
1	16. The method of claim 15, wherein:					

2	the providing and moving steps are carried out with the ablating device				
3	forming a closed loop around the pulmonary veins; and				
4	the ablating step is carried out to form an ablation around the pulmonary veins.				
1	17. A device for ablating tissue, comprising:				
2	a body having a first part and a second part which are coupled together to form				
3	a closed loop and separated to open the closed loop;				
4	at least one ablating element mounted to the body; and				
5	a flexible tip extending from an end of the body, the tip extending for at leas				
<u>⊢</u> 6 □	two inches and being free of any ablating elements, the flexible tip facilitating advancement				
	of the body through a space between the epicardium and pericardium.				
	18. The device of claim 17, wherein:				
M ₂	the tip is removable from the body.				
≡ <u></u> ≟ 1	19. The device of claim 17, wherein:				
1 2 1 1	the body has a plurality of ablating elements attached thereto.				
	20. The device of claim 17, wherein:				
날 2	the ablating device has an ultrasonic transducer.				
1	21. The device of claim 17, wherein:				
2	the body has a convex bottom surface which is positioned adjacent the tissue				
3	to be ablated.				
1	22. The device of claim 21, wherein:				
2	a membrane forms the convex surface.				
1	23. The device of claim 22, wherein:				
2	the membrane partially defines a cavity containing a fluid.				
1	24. The device of claim 17, wherein:				
2	the ablating device has a plurality of ablating elements.				
1	25. The device of claim 17, wherein:				
2	the ablating device forms a closed loop around the heart.				

1		26.	A system of forming an ablation from an epicardial location,			
2	comprising the steps of:					
3	a liquid delivery device for delivering a liquid to a space between the pericardium and epicardium to create a liquid environment around the heart; and					
4						
5	at least one ablating element for ablating tissue when submerged in the liquid					
6	environment around the heart.					
1		27.	The system of claim 26, wherein:			
2		the ab	lating element is an element selected from the group consisting of RF,			
1 1 1 1	ultrasound, mi	crowav	ve, cryo and laser			
	•	28.	The system of claim 26, wherein:			
		the liq	uid delivery device is delivered through a penetration in the			
₩ Ѿ3	pericardium.					
	· ·	29.	A method of ablating tissue from an epicardial location, comprising the			
7 2 11 2	steps of:					
달 3 		-	ling an ablating device having a tip;			
4		advan	cing the ablating device through a space between the epicardium and			
5 6	pericardium;	remov	ving the tip of the ablating device; and			
7			ng tissue with the ablating device.			
1		30.	The method of claim 29, further comprising the step of:			
2		formi	ng a closed loop with the ablating device after the removing step.			
1		31.	The method of claim 29, wherein:			
2		the ac	lvancing step is carried out with the ablating device having a plurality of			
3	ablating elem	ents.				
1		32.	The method of claim 29, wherein:			
2		ablati	ng step is carried out to form an ablation around the pulmonary veins.			
1		33 .	The method of claim 29, wherein:			

2	the providing step is carried out with the tip having a length of at least two			
3	inches and being free of ablating elements.			
1	34. The method of claim 33, wherein:			
2	the providing step is carried out with the tip having a length of at least four			
3	inches.			
1	35. A method of forming an ablation from an epicardial location,			
2	comprising the steps of:			
3	creating a liquid environment around a patient's heart;			
ㅁ 급4	positioning an ablating device against an epicardial location of the patient's			
0 04 0 0 0 5	heart; and			
9 6	ablating tissue from the epicardial location while the ablating device is			
口 位 位 位 7	contained within the liquid environment.			
1 2 3	36. The method of claim 35, wherein:			
<u> </u>	the creating step is carried but by at least partially filling the pericardial space			
다 3 달	with the liquid to create the liquid environment around the patient's heart.			
1	37. The method of claim 35, wherein:			
2	the ablating step is carried out with the ablating device being submerged			
. 3	within the liquid.			
1	38. The method of claim 35, wherein:			
2	the creating step is carried out with the liquid environment being contained by			
3	the pericardium.			
1	39. The method of claim 35, wherein:			
2	the ablating step is carried out with the ablating device having an ablating			
3	element which uses RF, ultrasound, laser, cold or microwave.			
. 1	40. The method of claim 35, wherein:			
2	the creating step is carried out with the pericardium being incised to create an			
3	opening, the fluid environment having an exposed free surface of the liquid.			
1	The method of claim 35, wherein:			

2	the creating step is carried out with the ablating device passing through a
3	penetration in the pericardium.
1	42. A method of ablating tissue, comprising the steps of:
2	providing an ablating device having a convex contact surface;
3	positioning the convex contact surface adjacent to an epicardial surface;
4	ablating the epicardial tissue after the positioning step.
1	43. The method of claim 42, wherein:
2	the providing step is carried out with the ablating device comprising an
3	ultrasonic transducer.
1	44. The method of claim 43, wherein.
2	the providing step is carried out with the convex surface being formed by an
3	element mounted to the ultrasonic transducer.
	45 The weeks of addition 44 Archanging
1	45. The method of claim 44/wherein:
2	the providing step is carried out with a membrane forming the convex surface.
1	46. The method of claim 45, wherein:
2	the providing step is carried out with the membrane partially defining a cavity
3	containing a fluid.
1	47. The method of claim 42 wherein:
2	the providing step is carried out with the ablating device having a plurality of
3	ablating elements.
1	48. The method of claim 42, wherein:
. 2	the providing and moving steps are carried out with the ablating device
3	forming a closed loop around the heart.
1	49. The method of claim 48, wherein:
2	the providing and moving steps are carried out with the ablating device
3	forming a closed loop around the pulmonary veins; and
4	the ablating step is carried out to form an ablation around the pulmonary veins.
1	50 An ablating device for ablating tissue, comprising

2	a body;					
3	an ablating element coupled to the body;					
4	a membrane extending over at least part of the ablating element, the membra					
5	being spaced apart from the ablating element to form a fluid cavity; and					
6	the fluid cavity containing a fluid.					
1	51. The ablating device of claim 50, further comprising:					
2	a fluid source coupled to the fluid inlet for circulating the fluid through the					
3	fluid cavity.					
<u>=</u> 1	52. The ablating device of claim 51, further comprising:					
<u></u>	a heat exchanger having an inlet which receives the fluid and an outlet which					
	returns the fluid to the fluid cavity.					
$\overline{\mathbb{D}}_1$	53. The ablating device of claim 50, wherein:					
± 2	the membrane forms a convex contact surface.					
TJ ==						
1	54. The ablating device of claim 50, wherein:					
□ 2 ⊨	the membrane forms the convex contact surface with fluid pressure.					
1	55. The ablating device of dlaim 50, wherein:					
2	the membrane permits some of the fluid to pass therethrough to wet the target					
3	tissue with the fluid.					
1	56. The ablating device of claim 50, wherein:					
2	the membrane extends over more than one ablating element.					
1	57. An ablating device for ablating tissue, comprising:					
2	a body;					
3	an ablating element coupled to the body;					
4	a flexible skirt surrounding at least a portion of the ablating element;					
5	the fluid cavity containing a fluid.					
1	58. / The ablating device of claim 57, further comprising:					
2	a fluid delivery channel which delivers fluid to the fluid cavity.					
1	59. The ablating device of claim 57, wherein:					

- 2 the body has a contact surface on a bottom side, the contact surface being
- 3 convex.
- A method of ablating tissue from an epicardial location using a device
- 2 according to claims 51-59.

roomena, recect

58