Sprawozdanie 5

Stanisław Wilczyński 26 maja 2017

Zadanie 1

W tym zadaniu będziemy porównywać ryzyko $(E||\mu-\hat{\mu}||^2)$ dla różnych estymatorów średniej rozkładu. Dla p=500 będziemy generować 500 razy wektor losowy $X=(X_1,\ldots,X_p)$ z rozkładu $N(\mu,I)$ dla różnych ustawień μ . Następnie dla każdego ustawienia obliczamy średni błąd kwadratowy między średnią rozkładu a estymatorem. Będziemy używali następujących ustawień:

$$\mu_1 = (0, 0, \dots, 0)$$

$$\mu_2 \sim N(0, 5I)$$

$$\mu_3 \sim N(20, 5I)$$

Jeśli chodzi o estymatory będziemy porównywać $\hat{\mu}^{MLE} = X$, $\hat{\mu}^{JS} = \left(1 - \frac{p-2}{||X||^2}\right) X$ oraz $\hat{\mu_i}^{EB} = \overline{X} + \left(1 - \frac{p-3}{S}\right) (X_i - \overline{X})$, gdzie $S = \sum_{i=1}^p (X_i - \overline{X})^2$.

Otrzymane wyniki są całkowicie zgdone z naszymi oczekiwaniami i teorią z wykładu. Dla pierwszych ustawień $\hat{\mu}^{MLE}$ ma wyestymowane ryzyko około p, natomiat zarówno $\hat{\mu}^{JS}$ jak i $\hat{\mu}^{EB}$ ponad 100 razy mniejsze. Przy drugich ustawieniach z powodu większej wariancji naszego wektora średnich wartości ryzyka estymatorów bayesowkiego i Jamesa-Steina są większe niż w pierwszym przypadku, ale wciąż zdecydowanie lepsze niż estymatora największej wiarogodności. W obu tych przypadkach wyniki dla tych estymatorów są podobne, gdyż widzimy, że dla $\overline{X}=0$ wartości obu tych estymatorów są bardzo bliskie (a wartości bliskie 0 są prawdopodobne, jeśli μ jest generowane z rozkładu o średniej 0). W trzecim przypadku średnia rozkładu, z którego generowany jest wektor średnich jest daleko od 0. Do takich ustawień przystosowany jest tylko estymator bayesowski, gdyż estymator Jamesa-Steina nie bierze pod uwagę \overline{X} , które estymuje średnią rozkładu, z którego było generowane μ . W związku z tym tylko ryzyko estymatora bayesowkiego jest wyraźnie lepsze od ryzyka $\hat{\mu}^{MLE}$.

	$\hat{\mu}^{MLE}$	$\hat{\mu}^{JS}$	$\hat{\mu}^{EB}$
μ_1	499.12107	2.09118	3.26154
μ_2	501.28422	419.38327	419.66318
μ_3	500.86187	499.83876	419.72244

Table 1: Estymowane ryzyko estymatorów przy kolejnych ustawieniach

Zadanie 2

W tym zadaniu użyjemy ustawień dla średniej jak w zadaniu 1. Tym razem jednak nasz wektor $X = (X_1, \ldots, X_p) \sim N(\mu, \Sigma)$, gdzie $\Sigma_{ii} = 1$ oraz $\Sigma_{ij} = 0.7$ dla $i \neq j$. Będziemy porównywać ryzyka estymatorów największej wiarogodności z modyfikacją estymatora bayesowskiego, tzn. $\hat{\mu}_{MEB} = \left(1 - \frac{\tilde{p}-2}{X^TE^{-1}X}\right)X$, gdzie $\tilde{p} = \frac{Tr(\Sigma)}{\lambda_{max}(\Sigma)}$.

	$\hat{\mu}^{MLE}$	$\hat{\mu}^{MEB}$
μ_1	552.48358	553.75108
μ_2	491.21785	491.27922
μ_3	515.05425	515.11011

Table 2: Estymowane ryzyko estymatorów przy kolejnych ustawieniach

Zgodnie z teorią zawartą w pracy M.E. Bock na temat modyfikacji estymatorów średniej w rozkładzie normalnym wielowymiarowym (link do tej pracy), aby estymator działał dobrze \tilde{p} musi być wiekszę od 2. Niestety, największa wartość własna macierzy Σ wynosi 350.3, przez co \tilde{p} nie spełnia wymaganego warunku. Otrzymane przez nas rezultaty pokazują, że przy tym niespełnionym założeniu estymator $\hat{\mu}^{MEB}$ ma ryzyko bardzo bliskie ryzyka estymatora największej wiarogodności, w związku z czym działa po prostu słabo.