Problem 1

If $A = U\Sigma V^T$ is the SVD of a square invertible matrix A, what is the SVD of A^{-1} ?

Solution The SVD of a mxn matrix A is given by $A = UWV^T$ where,

 $U: m \times n$ orthonormal eigenvectors of AA^{T}

 V^T : $n \times n$ orthonormal eigenvectors of A^TA

W: $n \times n$ diagonal matrix having diagonal elements as the square roots of the eigenvalues of $A^{T}A$.

Since, U & V are orthogonal, $U^T = U^{-1}$ and $V^T = V^{-1}$

A diagonal matrix D with non-zero entries will have an inverse as

$$D^{-1} = \begin{bmatrix} 1/d_1 & 0 & 0 & \dots & 0 \\ 0 & 1/d_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1/d_n \end{bmatrix}$$

where d_1, d_1, \ldots, d_n are elements of D. Hence, the diagonal matrix W can also be inverted in the same way.

Hence,
$$A^{-1} = (UWV^T)^{-1} = (V^T)^{-1}W^{-1}U^{-1} = VW^{-1}U^T$$
.

Problem 2

If $A = U\Sigma V^T$ is the SVD of a square invertible matrix A, what is the SVD of A^{-1} ?

Solution The Eigendecomposition of a matrix is as follows.

The matrix U is formed by placing the eigenvector of A as its column. The Λ is a diagonal matrix where diagonal elements are eigenvalues.

So,
$$AU = U\Lambda$$
. Hence, $A = U\Lambda U^{-1}$

In positive semi-definite matrix, the eigenvalues are greater than or equal to zero. Also, any two eigenvector are orthogonal.

Hence, U is a orthogonal matrix and if we normalize its eigenvetor then it becomes orthonormal.

So, we can write $A = U\Lambda U^{-1}$.

The eigendecomposition of A satisfies all the requirement of having SVD.

Problem 3

If A is not positive semidefinite, how can we modify signs in $A = U\Lambda U^T$

Solution If A is not positive semi-definite then there exists eigenvalues which are not positive. In such case, we can take absolute value of eigen vectors to form the diagonal matrix Λ .

Problem 4

Show that for a square $A = USU^T$ one has $AA^T = US^2U^T$ and $A^TA = V^TS^2V$, and that these are eigen decompositions.

Solution Given,
$$A = USU^T$$

So, $A^T = (USU^T)^T$
 $\implies A^T = (U^T)^TS^TU^T$
 $\implies A^T = US^TU^T$

$$\begin{array}{ll} \mathrm{So}, & \mathrm{A}^{\mathrm{T}}\mathrm{A} = \mathrm{U}\mathrm{S}\mathrm{U}^{\mathrm{T}}\mathrm{U}\mathrm{S}^{\mathrm{T}}\mathrm{U}^{\mathrm{T}} \\ \Longrightarrow & \mathrm{A}^{\mathrm{T}}\mathrm{A} = \mathrm{U}\mathrm{S}\mathrm{S}^{\mathrm{T}}\mathrm{U}^{\mathrm{T}} \\ \Longrightarrow & \mathrm{A}^{\mathrm{T}}\mathrm{A} = \mathrm{U}\mathrm{S}^{2}\mathrm{U}^{\mathrm{T}} \end{array}$$

$$\begin{array}{l} \mathrm{So}, \quad \mathrm{A}\mathrm{A}^{\mathrm{T}} = \mathrm{U}\mathrm{S}\mathrm{U}^{\mathrm{T}}\mathrm{U}\mathrm{S}^{\mathrm{T}}\mathrm{U}^{\mathrm{T}} \\ \Longrightarrow \ \mathrm{A}\mathrm{A}^{\mathrm{T}} = \mathrm{U}\mathrm{S}\mathrm{S}^{\mathrm{T}}\mathrm{U}^{\mathrm{T}} \\ \Longrightarrow \ \mathrm{A}\mathrm{A}^{\mathrm{T}} = \mathrm{U}\mathrm{S}^{2}\mathrm{U}^{\mathrm{T}} \end{array}$$