Sekvenovanie a zostavovanie genómov (genome sequencing and assembly)

Tomáš Vinař 25.9.2025

Typický priebeh sekvenovania

- 1. Chromozómy náhodne rozsekáme na menšie kúsky (napr. pomocou sonikácie)
- Menšie kúsky namnožíme
 (napr. pomocou PCR, bakteriálneho klonovania a pod.)
- 3. Konce týchto kúskov osekvenujeme niektorou zo sekvenovacích technológií ⇒ mnoho krátkych reťazcov, ktoré nazývame **čítania**
- 4. Čítania výpočtovo zostavíme späť do chromozómov

Prehľad sekvenovacích technológií

Technológia	Dĺžka čítania	Chybovosť	Za deň	Cena za GB
1. generácia				
Sanger	do 1000 bp	< 1%	3 MB	\$4 mil.
2. (next) generácia (cca od 2004)				
Illumina	300bp	< 0.1%	2 TB	\$3
3. generácia (cca od 2018)				
PacBio HiFi	cca 15 Kbp	< 1%	360 GB	\$15
Oxford Nanopore	5-100+kbp	< 5%	50 GB	\$10

Bioinformatický problém: Zostavenie genómu (sequence assembly)

- Vstup: krátke čítania sekvenovanej DNA
- Ciel': zostaviť pôvodnú DNA
 - riadime sa zhodou v prekrývajúcich častiach čítaní
- Dôležité faktory:
 - dĺžka genómu
 - dĺžka jednotlivých čítaní
 - pokrytie (coverage) koľko krát čítania pokrývajú genóm?

Formulácia problému (jednoduchá, ale nerealistická)

Najkratšie spoločné nadslovo (shortest common superstring)

Úloha: Daných je niekoľko reťazcov $S_1, S_2, \ldots S_n$ (čítania), nájdite **najkratší** reťazec S, ktorý obsahuje **každý** vstupný reťazec S_i ako (súvislý) **podreťazec**.

Motivácia: čo najviac využiť prekryvy medzi čítaniami

Príklad:

Vstup: $S_1 = \mathsf{GCCAAC}, S_2 = \mathsf{CCTGCC}, S_3 = \mathsf{ACCTTC}$

 $\mbox{V\'{y}stup:} \ S = \mbox{CCTGCCAACCTTC}$

(čítania spojené v poradí S_2, S_1, S_3)

Najkratšie spoločné nadslovo

- Problém je NP ťažký
 takže nepoznáme rýchly algoritmus, ktorý vždy nájde najlepšie riešenie
- Jednoduchá heuristika: opakovane nájdi dva reťazce, ktoré sa prekrývajú najviac a zlúč ich do jedného reťazca
- Príklad: CATATAT, TATATA, ATATATC

Optimum: CATATATATC, dĺžka 10

Heuristika: CATATATCTATATA, dĺžka 14

- V skutočnosti táto heuristika aproximačný algoritmus:
 Nájdené riešenie je najviac 3, 5× horšie ako optimálne
 T.j. je to 3,5-aproximačný algoritmus
 (možno aj 2-aproximačný, otvorený problém)
- Existuje aj 2,5-aproximačný algoritmus

Najkratšie spoločné nadslovo: Čo sme nezahrnuli do formulácie

- V sekvenovaní sa vyskytujú chyby
- Polymorfizmus
- Orientácia čítaní (vlákno, strand)
- Kontaminácia cudzou sekvenciou, chiméry
- Viac chromozómov, neúplné pokrytie čítaniami
- Repetitívna sekvencia (sequence repeats, opakovania)
 cca 50% ľudského genómu

Príklad: 10xTTAATA, 10xATATTA, 3xTTAGCT

TTAATATTAGCT?

TTAATATTAATATTAATATTAATATTAGCT?

TTAATATTA + ATATTAGCT?

Čo sme nezahrnuli do formulácie: kvalita báz

- K čítaniam máme väčšinou informáciu o kvalite báz
 Aká je pravdepodobnosť, že daná báza je správna?
- \bullet Báza s kvalitou $q\Rightarrow$ pravdepodobnosť chyby $10^{-q/10}$ napr. báza s q=40 je správna s pr. 99.99%

Príklad výsledku Sangerovho sekvenovania (trace):

Najkratšie spoločné nadslovo: Zľahčujúce faktory

Prídavná informácia: spárované čítania (pair-end reads)

Zjednodušenie: nemusíme spojiť všetko do jedného reťazca, spájame len časti spojené viacerými čítaniami Konzervatívny prístup (radšej menej pospájať, ale nerobiť chyby)

Najkratšie spoločné nadslovo: Zhrnutie

- Nerealistická formulácia, ťažký výpočtový problém
- Ale teoretický problém môže poskytnúť nejaký posun k pochopeniu skutočného problému
- Overlap-Layout-Consensus prístup motivovaný greedy algoritmami pre najkratšie spoločné nadslovo (budúci týždeň)

Skladanie krátkych čítaní: de Bruijnove grafy

- ullet Nasekajme čítania na (prekrývajúce sa) kúsky dĺžky k
- Zostavme z nich de Bruijnov graf
 - vrcholy: podreť azce dĺžky k všetkých čítaní
 - hrany: nadväzujúce k-tice v rámci každého čítania (s prekryvom k-1)
 - Graf je orientovaný (hrany majú smer)
- \bullet **Príklad:** k=2, čítania: CCTGCC, GCCAAC

Ako použiť de Bruijnove grafy?

- jediný chromozóm a žiadne "nejednoznačné" k-tice
 zostavenie = Eulerovská cesta
 (cesta v grafe, ktorá použije každú hranu práve raz)
- ullet Eulerovskú cestu možno nájsť v čase O(m+n)
- v realistickom prípade:
 zostavenie genómu zodpovedá niekoľkým
 pochôdzkam v de Bruijnovom grafe (nazývame kontigy),
 ktoré dohromady pokrývajú veľkú časť hrán

Príklad: sada čítaní a zodpovedajúci deBruijnov graf

```
GTCGAGCAAGTACGAGCATAG
TCGAGCA AGCATAG
AGCAAAT AGCATAG
GTCGACC GTACGAG
GTCGAGC TACGAGC
CGAGCAA ACGAGCA
AGTgCGA
CAAGTAC
GCAAGTAC
GAGCAAG GAGCAT
GAGCAAG GAGCATA
TACGAGC
```


Príklad: zjednodušovanie de Bruijnovho grafu

Spojíme jednoznačné cesty do vrcholov

Príklad: odstraňovanie chýb z de Bruijnovho grafu

Odstránenie chýb (výbežkov a bublín s nízkym pokrytím)

Spájaním dostaneme 4 kontigy (pôv. GTCGAGCAAGTACGAGCATAG)

Typické výsledky zostavovania genómov

- Veľa kratších kontigov,
 niekedy spájané do väčších celkov (scaffolds) pomocou ďalšej informácie
 (napr. spárované čítania, čítania 3. generácie)
- Niektoré časti nemožno jednoznačne zostaviť z dôvodu dlhých opakujúcich sa sekvencií

Príklad: človek chr14, 88 Mbp, $70 \times$ pokrytie

Metóda	Počet kontigov	Chýb	N50 po korekcii
Velvet (základný de Bruijn)	>45000	4910	2.1 kbp
Velvet (scaffolding)	3565	9156	27 kbp
AllPaths-LG	225	45	4.7 Mbp

N50: kontigy s touto alebo dlhšou dĺžkou pokrývajú 50% genómu

korekcia: rozsekneme všetky zle spojené kontigy

Zhrnutie

- Sekvenovanie genómu je zložitý proces, v ktorom hrá bioinformatika dôležitú úlohu
- Illumina nízka cena, krátke čítania
- Problém zostavovania genómu, najkratšie spoločné nadslovo
- Praktické riešenie pre krátke čítania: de Bruijnove grafy
- V zostavenej sekvencii môžu byť chyby, medzery, viaceré kontigy
- Na budúce: ako sa vysporiadať s dlhými čítaniami 3. generácie?
- Pokrytie genómu a veľkosť čítania hrajú najdôležitejsiu úlohu pri tom, ako fragmentovaný bude výsledok:
 - pre Sanger: 7-10× pokrytie
 - pre NGS: $40-70 \times$ pokrytie
 - pre 3. generáciu: 30× pokrytie

História sekvenovania genómov

1976	MS2 (RNA vírus) 40 kB
1988	projekt sekvenovania ľudského genómu (15 rokov)
1995	baktéria <i>H. influenzae</i> 2 MB, shotgun (TIGR)
1996	S. cerevisiae 10 MB, BAC-by-BAC (Belgicko, Británia)
1998	C. elegans 100 MB, BAC-by-BAC (Wellcome Trust)
1998	Celera: ľudský genóm do troch rokov!
2000	D. melanogaster 180 MB, shotgun (Celera, Berkeley)
2001	2x ľudský genóm 3 GB (NIH, Celera)
po 2001	Myš, potkan, kura, šimpanz, pes,
2007	Watsonov a Venterov genóm (454)
2012	1000 ľudských genómov
2021	3,5 milióna genómov SARS-CoV-2
2021	UK Biobank 200,000 ľudských genómov + veľa ďalších dát
2022	Naozaj dokončený ľudský genóm (telomere to telomere)
2024	All of US 246,000 ľudských genómov + zdravotné záznamy