Problem Set 4

Due on November 19

1. Using the constraints of conformal invariance, determine the coordinate dependence of the 3-point function of primary fields A_i with dimensions (h_i, \tilde{h}_i) :

$$\langle A_1(z_1,\bar{z}_1)A_2(z_2,\bar{z}_2)A_3(z_2,\bar{z}_2)\rangle$$
.

2. The dilaton vertex operator corresponds to setting the polarization tensor

$$\epsilon^{\mu\nu} = \eta^{\mu\nu} - k^{\mu}\bar{k}^{\nu} - k^{\nu}\bar{k}^{\mu}$$

Calculate the 3-point function for two on-shell tachyons and one dilaton. Show that it has no dependence on the auxiliary vector \bar{k} provided it satisfies $k \cdot \bar{k} = 1$.

- 3. Calculate the 3-point function for two dilatons and a graviton. Which term in the space-time effective action reproduces it? What is the 3-point function of three dilatons?
- 4. Calculate the 3-point amplitude for two massless closed string states and a closed string tachyon. Express it in terms of the massless state polarizations $\epsilon^1_{\mu\nu}$ and $\epsilon^2_{\mu\nu}$, and momenta k^1 and k^2 .
- 5. Calculate the 4-point amplitude for two massless closed strings, of polarizations $\epsilon^1_{\mu\nu}$ and $\epsilon^2_{\mu\nu}$, and momenta k^1 and k^2 ; and two closed string tachyons, of momenta k^3 and k^4 .

What is the leading pole in the s-channel? How is its residue related to the result from Problem 4?