Denngobur 2756a

Исследовать ручкимональную последовательность $f_n(x) = arctg nx$

на равнамерную сходимость на мнотестве $(0, +\infty)$

Due beauto $x \in (0; +\infty)$ lim $\arctan x = \frac{\pi}{2}$, notroug $f_n(x) = \arctan nx \rightarrow \frac{\pi}{2}$ Ha $(0, +\infty)$.

Рассиотрим величину

$$r_n = \sup_{(v_j + \infty)} \left| \arctan x - \frac{\pi}{2} \right| = \max_{(v_j + \infty)} \left(\frac{\pi}{2} - \arctan x \right) = \frac{\pi}{2}, \quad m. \kappa.$$

рушкуня arctgnz возрастает на $(0, +\infty)$. Следовательно, $\lim_{n\to\infty} \Gamma_n \neq 0$,

a zuarum arctgna # 2 na (0; =)

Derugobur 27568.

Исследовать ручкумональную последовательность $f_n(x) = x$ arcty nx

на равнамерную сходимость на инотестве $(0, +\infty)$

Deelugue, and $f_n(x) = x \operatorname{arctg} nx \xrightarrow{\pi}_{n \neq 0} \overline{x} x \quad n \in (0; +\infty)$

Рассиотрии вешину

$$r_n = \sup_{(0;+\infty)} \left| x \operatorname{arctgn} x - \overline{x}^T x \right| = \sup_{(0;+\infty)} x \left(\overline{x}^T - \operatorname{arctgn} x \right) =$$

= $\sup_{(0,+\infty)} x \operatorname{arctg} \frac{1}{nx} \leq x \cdot \frac{1}{nx}$ ger gormamorno sonsuux x.

The sum of the state of $f_n(x) = x \operatorname{arctg} nx \xrightarrow{\pi} \frac{\pi}{x} x$ he $(0, +\infty)$.