1 Криптография

1.1

Постановка задачи. Простейшие криптосистемы. Сдвиг и афинное преобразование. Частотный анализ. Биграммы.

1.2

1.3

Вычет а называется обратимым по модулю N, если сущетсвует вычет x такой, что

$$ax \equiv 1 \pmod{N}$$

Вычет является обратимым тогда и только тогда, когда он взаимно прост с модулем ($\mathrm{HOД}(a,N)=1$).

Теорема Ферма утверждает, что если p - простое число и a - целое число, не делящееся на p, то

$$a^{p-1} \equiv 1 \pmod{p}$$
;

Функция Эйлера $\varphi(n)$ — мультипликативная арифметическая функция, равная количеству натуральных чисел, меньших n n и взаимно простых с ним. При этом полагают по определению, что число 1 взаимно просто со всеми натуральными числами, и $\varphi(1)=1$. Пример: $\varphi(24)=8$: 1,5,7,11,13,17,19,23.

Теорема Эйлера гласит, что если a и m взаимно просты, то $a^{\varphi(m)} \equiv 1 \pmod{m}$. Малая теорема Ферма является следствием теореми Эйлера.

Китайская теорема об остатках. Пусть $n_1, n_2, ..., n_k$ - некоторые попарно взаимно простые числа, а $r_1, r_2, ..., r_k$ - некоторые целые числа. Тогда существует такое целое число M, что оно будет решением системы уравнений:

$$\begin{cases} M \equiv r_1 \pmod{n_1} \\ M \equiv r_2 \pmod{n_2} \\ + \cdot \\ M \equiv r_k \pmod{n_k} \end{cases}$$

Причём это решение единственно по модулю $n_1 \cdot n_2 \cdot \ldots \cdot n_k$