Сжатие без учёта контекста. Разделимые и неразделимые коды

Александра Игоревна Кононова

МИЭТ

28 января 2021 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

Энтропийное сжатие

Модель источника X — источник без памяти, строится по кодируемому сообщению C:

- $lue{1}$ кодируемое сообщение $C \in A_1^+$ (на практике символы первичного алфавита $a \in A_1$ — байты);
- символы считаются независимыми: p(a) = const(но $p(a_i) \neq p(a_i)$ в общем случае для $a_i, a_i \in A_1$);
- их вероятности оцениваются по частотам в сообщении C;
- количество информации $I(a_i)$ (как и суммарное I(C), и среднее источника I(X)) оценивается исходя из оценок $p(a_i)$.

Если $\forall a_i, a_i \in A_1$ верно $p(a_i) = p(a_i)$ — модель без памяти Xне избыточна, энтропийное сжатие не уменьшит объёма; если вероятности символов (байтов) не равны друг другу (и $\frac{1}{256}$) энтропийное сжатие уменьшит объём данных приблизительно до I(X).

Алфавитное префиксное кодирование

- **1** Каждому символу $a \in A_1$ сопоставляется код $code(a) \in A_2^+$, для двоичного кодирования $A_2 = \{0,1\}$ и code(a) префиксный код из 0 и 1.
- 2 Длина кода code(a) должна быть как можно ближе к I(a) (для двоичного кодирования— в битах).

Префиксный код = дерево

Оптимальный код — сбалансированное с учётом весов дерево.

Дерево Шеннона—Фано строится сверху вниз:

- все символы сортируются по частоте;
- упорядоченный ряд символов делится на две части так, чтобы в каждой из них сумма частот символов была примерно одинакова;
- новое деление.

Шеннона-Фано

Код Хаффмана

Дерево Хаффмана строится **снизу вверх** (от листовых узлов к корневому узлу):

- все символы сортируются по частоте;
- два последних (самых редких) элемента отсортированного списка узлов заменяются на новый элемент с частотой, равной сумме исходных;
- новая сортировка.

«Авиакатастрофа» — кодирование Хаффмана

{S8(14)}

Код Хаффмана имеет минимальную длину среди префиксных. Не увеличивает размера исходных данных в худшем случае.

Арифметический (интервальный) код

Неалфавитное неразделимое кодирование

$$C = c_0 c_1 c_2 ... c_n \to z \in [0, 1);$$
 $(0, 1) \simeq \mathbb{R}$

$$I(z) pprox I(C)$$
, и чаще всего $I(z) >> 64$ бит $> I(\mathtt{double})$

Спасибо за внимание!

ТЕИМ

http://miet.ru/

Александра Игоревна Кононова illinc@mail.ru

