

Voxon Media Creation Guide

The Voxon VX1 can display many types of 3D content. *VoxieOS* is Voxon's primary media player, supporting many common 3D file types such as .OBJ, .STL, .PLY, .KV6, KVS, .MOL, .FBX (via Unity), DICOM, .DICOS, .JPG, .PNG (including heightmap), and .KNI. KniView can be used to capture and playback depth camera footage while custom VX applications can be developed in C/C++ or using *Unity* via the *Voxon Unity Plugin*. *Unity* has a vast community and with plugin support, it is often used as a means to view 3D media.

This document will walk through the process of creating and viewing content for *VoxieOS* and *KniView*.

Figure 1 Media and content creation flow chart for Voxon volumetric technology

Navigating and Viewing Content

The *VoxieOS* interface is designed to be like a '3D file browser'. By default, it's starting directory is located at 'C:\Voxon\Media\'. after being launched, *VoxieOS* will show the file content of its starting directory. This can be changed by editing the *voxieOS.ini* file.

We encourage Voxon users to place their media content inside the C:\Voxon\Media\MyMedia\ folder. However, you can obviously manage your media anyway you like as they are just files in folders.

To interact with *VoxieOS*, you can use a keyboard, mouse or the space mouse. Key bindings and commands are displayed on the secondary (touch) screen depending on the type of media being viewed.

Use the file browser to navigate to the media content to view.

Figure 2 VoxieOS's file browser.

Mounting a USB Drive

If a USB drive is inserted while *VoxieOS* is running, *VoxieOS* will automatically mount to the drive and show its contents. This is a quick way to view files. **Note: large file types may not be as performant when viewing on a USB drive compared to being viewed from the VX1's hard drive.**

VoxieOS.ini settings

The *VoxieOS.ini* file is a user editable file for setting up the *VoxieOS* experience. This file is included along with the *VoxieOS.exe* by default and is installed under 'C:\Voxon\Software\VoxieOS\'.

When *VoxieOS* is launched it loads in the settings contained in this .ini file. Below is a table listing the values and parameters available.

Note: some of these options are also available on VoxieOS's menu tab.

Value (and default value)	Description
startpath=.\\Media	Starting path: absolute or if relative, relative to VoxieOS.exe.
mediadir=.\	Location of VoxieOS's internal icons
	(models) relative to VoxieOS.exe. Best to
	keep these alongside VoxieOS.exe.
hide_exts=.c;.h;.ini;.kc;.asm;.bmp	Inaccessible file extensions (hide these file
	types for simplicity of browsing).
iconperrow=3;	How many icons per row. Range is 2 – 6.
showborder=0;	1=displays wireframe box around volume in
	some modes, 0=disable.
autocycle=0;	1=cycle through animations
	(ZIP)/heightmaps in current directory
	automatically, 0=disable
heimap_inv_ctrls=1;	1=invert rotation controls for heightmaps
	(control camera), 0=control model
model_max_fileng_preview=50000000;	Largest 3D model file size (in bytes) to
	show preview in icon. Larger files show as
	a generic icon.
heimap_max_fileng_preview=3000000;	Largest heightmap/image file size (in bytes)
	to show preview in icon. Larger files show
	as generic icon.
gobble_sphere_brightness=64;	For DICOM, 4 is default. Range:1-255. The
	size of the subtraction or addition ('gobble')
	sphere when changing the data.

VoxieOS Menu Settings

When *VoxieOS* isn't displaying media, the menu contains the following options:

Option (and default setting)	Description
Sort By: Name	Sort the media by name or by media type.
Order : Asc.	Sort the media in Descending or Ascending order.
Refresh Listing	Refreshes the current directory. If files within the directory have changed the changes will be updated in the file browser.
Load All pos&ori	Loads in all the pos&ori settings within the current working directory.
Save All pos&ori	Saves all the pos&ori settings within the current working directory.
Icons per line : 3	How many icons / files are displayed per line in the file browser.
Show borders: off	Toggles between showing a white border around the volume.
Save VoxieOS.ini	Save changes to voxieOS.ini.

Quitting VoxieOS

Unlike most VX apps, rather than just pressing 'ESC' to exit the application, SHIFT + ESC is required to exit *VoxieOS*. This is because VoxieOS is used to launch other VX Apps and binding ESC to exit *VoxieOS* could result in accidentally closing *VoxieOS* as well as the other VX app.

Saving Rotation, Detail, Orientation and Scale Settings (Pos&Ori)

Each media file can have its transform and view settings saved. These settings are collectively known as 'pos&ori' settings, containing the position, orientation, scale, color, gamma, density and shading settings for that particular media. The 'pos&ori' settings are stored in the media's local folder within the *posori.ini* file.

When a media type is opened, *VoxieOS* will load up the 'pos&ori' settings and show the media as instructed by the *posori.ini* file.

Any 'pos&ori' settings made will be remembered until *VoxieOS* is closed. 'Pos&ori' settings can be saved, loaded or reset using the buttons found within the viewing media type's unique menu tab.

Figure 3 Model / Animation unique menu tab with pos&ori settings

Media Examples Included in the Developers Kit

The *Developers Kit* contains a variety of media examples. Most of the general media examples are located within the Media folder ('C:\Voxon\Media\Media Examples'). More advanced media types and tools can be found under 'C:\Voxon\Developers\Media Creation'.

Filename	File Location	Description
Muscle_Car.obj	Media Examples \ Models \ OBJ \ MuscleCar	Obj with material file but no texture files. (colours from the material file).
Apricot_02_hi_poly. obj	Media Examples \ Models \ OBJ \ Apricot	Obj with texture.
Ant.stl	Media Examples \ Models \ STL	STL image.
Stuart.kv6	Media Examples \ Models \ KV6	Kv6 example.
Fish.zip	Media Examples \ Animations	Animation Sequence.
Human_hand.zip	Media Examples \ DICOM	DICOM example.
Bun_zipper,ply	Media Examples \ Models \ Ply \ Stanford Bunny \ reconstruction (mesh)	Ply mesh example.
Bun000.ply	Media Examples \ Models \ Ply \	Ply point cloud example.

	Stanford Bunny \ data (pointcloud)	
Acetone.mol	Media Examples \ Molecules	Mol example.
Earth1k.jpg	Media Examples \ HeightMap	HeightMap with texture.
Canyon.jgp	Media Examples \ HeightMap	HeightMap without texture.
PolyCount_test	Developers Kit \ Media Creation \ PolyCount Test	Resolution test.
Fishhook.zip	Media Examples \ Thumbnail Example	Example for a custom thumbnail for animation.

Viewing 3D Models with VoxieOS

VoxieOS can view many types of 3D formats such as .OBJ, .STL, .PLY, .KV6. To view a model, navigate to it through the file browser and press 'Enter' on the keyboard, or click the left button on the Space Mouse or mouse. *VoxieOS* will load the media when viewing these file types. The model can be moved in any direction, rotated by any angle and scaled to any size. Models can also be rendered to show either their surfaces or just as a wireframe.

Whenever *VoxieOS* is viewing a media file, a unique menu tab appears on the VoxieMenu and specific key bindings are displayed on the secondary (touch) screen.

These are the Voxie Menu items when viewing a 3D Object

Option	Description
Prev Model	Loads and views the previous model in the
	current directory.
Next Model	Loads the next model in the current
	directory.
Prev Frame	If the model is part of an animation, shows
	the previous frame
Next Frame	If the model is part of an animation, shows
	the next frame
Draw Stats	Displays frame number and the filename of
	the model on the volumetric display.
AutoCycle	If enabled, when viewing a model after a
	short period of time the next model in
	sequence will be loaded. This process will
	repeat and loop from the last model back to
	the first creating an idle 'slideshow'
	experience.
Cross section	Views only a cross section of the model.
	The cross section can be adjusted by
	moving the transform.

Show Out Of Bounds	If the model is outside of the volumetric display's bounds, an arrow on the display
	will point to where the model is located.
Wireframe	If enabled, the current model will be shown
	as a wireframe model (surfaces are shown
	otherwise).
Reset pos&ori	Resets the current model's pospori to
	default
Load All pos&ori	Loads all the pos&ori settings for all the
·	models in the current working directory.
Pause / Resume	Pauses the current animation.
Save All pos&ori	Saves all pos&ori settings for models within
	the current working directory.

Basic Summary of Supported Model Format Types

.OBJ (Wavefront .obj) "Object" File

OBJ files only store geometry data and reference additional material files (.mtl) which in turn can reference additional texture files (raster images PNG, JPG etc). as OBJ filetype relies on referencing other files aren't as straightforward as the other media types to use.

The .obj and .mtl files are human readable and can be edited with a text editor. Inside them you'll find references to the texture file names. Sometimes these file references are wrong and need to be edited for the materials and textures to load.

```
Apricot_02_hi_poly.obj - Notepad
File Edit Format View Help
# 3ds Max Wavefront OBJ Exporter v0.97b - (c)2007 guruware
# File Created: 31.10.2019 02:06:59
mtllib Apricot_02_hi_poly.mtl
# object Apricot 02 hi poly
  1.7136 2.5308 -0.7333
  1.7498 2.5340 -0.6463
  1.7452 2.4878 -0.6448
  1.7082 2.4848 -0.7314
  1.7828 2.5370 -0.5582
  1.7790 2.4905 -0.5570
  1.7745 2.4439 -0.5553
  1.7401 2.4416 -0.6428
  1.7025 2.4390 -0.7291
  1.8124 2.5395 -0.4689
  1.8094 2.4928 -0.4679
```

Figure 4 The contents of the Apricot_02_hi_poly.obj

The Apricot media example .obj file is very long but at the top it is referencing the material file. Inside the file you can see all the data defined.

```
Apricot_02_hi_poly.mtl - Notepad
File Edit Format View Help
# 3ds Max Wavefront OBJ Exporter v0.97b - (c)2007 guruware
# File Created: 31.10.2019 02:06:59
newmtl Apricot_02_material
        Ns 70.0000
       Ni 1.6000
        d 1.0000
        Tr 0.0000
        Tf 1.0000 1.0000 1.0000
        illum 2
        Ka 0.5880 0.5880 0.5880
        Kd 0.6275 0.6275 0.6275
        Ks 0.0000 0.0000 0.0000
        Ke 0.0000 0.0000 0.0000
        map_Ka textures/Apricot_02_diffuse.png
        map_Kd textures/Apricot_02_diffuse.png
        map_Ks textures/Apricot_02_specular.png
        map_bump textures/Apricot_02_normal.png
        bump textures/Apricot_02_normal.png
```

Figure 5 The contents of the Apricot_02_hi_poly.mtl material file

All the values for the material are defined here and any textures are referenced here too. As you can notice there are some PNG images that are holding the texture data.

KV6 / KVS format

A KV6 is a voxel based format developed by Ken Silverman. Instead of using a mesh based on geometry data, the model is drawn from a series of voxels (a 3D pixel). If you zoom in closely to any KV6 model you'll notice the voxels. Textures and materials are embedded into the voxels as each voxel has its own colour. The KV6 file doesn't need any additional files. The main drawback to a KV6 file is that because it is a voxel based format and not geometry it can't be scaled (zoomed in) without losing resolution (unlike as a vector based format).

Included in the *Developers Kit* is *Poly2vox*, a command line application that can convert many 3D model formats into a .kv6. *Poly2Vox* can be located at '...\Developers Kit\Media Creation\Media Creation Tools\'

Running 'Poly2Vox /?' In a command prompt will show the parameters and syntax for using *Poly2Vox*.

KVS file format is similar to a KV6 but uses uses an octree for better compression You can convert KV6 to KVS using:

"pnd3d caco.kv6 /out:caco.kvs"

Pnd3D is a voxel engine that Ken Silverman created in the late 2000s as well as being its own Voxel engine it can convert .KV6 into .KVS

Pnd3D.zip is located in '...\Developers Kit\Media Creation\Media Creation Tools\'

```
POLY2VOX [input] [output] [/v#] [/s#] [/f#] [/n#] [/r#] [/m#] [/x#] [/p(file)]
By Ken Silverman (http://advsys.net/ken) Compiled: Sep 7 2017
Converts models from polygon to voxel format.
Supported polygon formats: ASC,3DS,MD2,MD3,OBJ,STL
Supported voxel formats: VOX,KVX,KV6,VXL (default:KV6)
Supported texture formats: PNG,JPG,TGA,GIF,CEL,PCX,BMP,DDS
POLY2VOX can load files out of a ZIP file.
     Specify voxel size of longest dimension. 1-1024, <=256 for KVX
/s# Specify explicit scale factor. Use this to ensure the size of all frames
      is consistent. This factor depends on the coordinate system used by the
      polygon model, so it can be anything. Run without the scale factor first
      to find a reasonble starting value to try.
     Specify frame number (MD2/MD3 only)
      Specify next frame number for interpolation (MD2/MD3 only)
      Specify texture interpolation method: {1:nearest, 4:4x4 (default)}
Specify frame interpolation ratio: {0.0-1.0}, default:0.0 (MD2/MD3 only)
      Specify number of mips to save: 1,5, default:5. (KVX only)
/k?
      Specify illumination model for OBJ (Ex: /ka, /kd, /ks, /ke)
      Polygon render (default) /y2: Polygon render using supercover
                                     /w2: Wireframe render using supercover
      Wireframe render
      Experimental xor-style render for gap-less models; buggy color conversion
      Center model in bounding box (default is to use polygon file's 0,0,0)
     Center of model is centroid
/b(1/r/b/f/u/d)# Clip boundary (Left/Right/Back/Front/Up/Down). Ex: /bu-1.2 /t(file) Select a texture file (if not specified in polygon model).
           Specify Build-style palette (first 768 bytes of file, range:0-63)
/p(file)
/z(file)
           Specify a ZIP file to mount. Files inside seen as local dir.
xamples:
poly2vox bike
                                             (finds bike.*, writes bike.kvx, size=128)
                                    250 (rèads bike.3ds, writes bike.kv6, size=250)
(finds land.*, writes land.vxl, size=1024^2*256)
poly2vox bike.3ds bike.kv6 /v250
poly2vox land land.vxl
poly2vox pig.md2 pig.kvx /v128 /f2 /n3 /r.5
                                                            (convert interpolated frame)
poly2vox trooper.md2 trooper.kvx /s.115 /f0
                                                              (use explicit scale factor)
poly2vox trooper.md2 trooper.kvx /s0.115 /f0 /ppalette.dat (ufor /L %i in (0,1,50) do start /i poly2vox /zmonst.zip monst%i.obj
                                                                             (user palette)
                                                                                      (batch)
```

Figure 6 The embedded help file for Poly2Vox for syntax help.

STL "Standard Triangle Language" file format

STL files are commonly used for 3D printing and only contain the geometry data. There is no material, texture, or color data stored in an STL. STL files also can be in ASCII (human readable) or binary. STLs are great for 3D models that don't require the use of colour or materials.

PLY "Polygon" file format

PLY was originally developed to store data for 3D scanners. The PLY format can store geometry (mesh) or point cloud data. The point cloud use case is of interest to Voxon's

technology as it is the only native point cloud based media type supported. The file can be in ASCII (human readable) or binary.

3D Model Sequence (Animation) with VoxieOS

Any collection of 3D models can be played as a sequence. For *VoxieOS* to detect an animation sequence the filenames need to be named sequentially (e.g animation1.obj,animation2.obj,animation3.obj,...). You can either compress these files into a .zip file. Or put them inside their own sub directory (folder).

Figure 7 The contents of fish.zip animation sequence.

The contents inside the example animation *fish.zip* is a collection of 21 K6V fish models in sequence. The *info.ini* file is the playback properties and the undwat.flac is a sound file (optional) that accompanies the animation.

Tip for batch renaming files: a quick way to rename a whole heap of files at once is to select them all in Windows Explorer and right click and click rename.

Figure 8 Selecting all the files in Windows Explorer and clicking Rename will batch rename all selected files

Rename the files and they will be renamed sequentially!

Figure 7 And presto! All the files have been renamed

Yes, I know that these are .mp3 files but it doesn't matter the extension!

Having the files in a .zip or just in their own folder will play just the same. While a .zip file does not need the *info.ini* however to use a folder as an animation the files <u>must be accompanied with an *info.ini*.</u>

The *info.ini* file contains the parameters for the animation playback.

```
📕 info.ini - Notepad
                                                 ×
File Edit Format View
animfile=fish%02d.kv6
animsnd=undwat.flac
animscale=2.0;
animmode=1;
animfps=20.0;
anim_autocycle_loops=5;
//anim autocycle seconds=5;
anim_reset_posori=1;
anim_showtim[0]=4;
anim_showrat[0]=1;
anim showtim[1]=12;
anim_showrat[1]=0;
anim_showtim[2]=14;
anim_showrat[2]=1;
```

Figure 8 The contents of the info.ini

A detailed description of the values and parameters available in an *info.ini* file.

animfile=fish%02d.kv6	The filenames to open, limited printf-style formatting to select files in order. Typically: file%d.ext or file%0#d.ext
animsnd=undwat.flac	audio file to play .wav, .flac, .mp3
anim_staticfile=bulstand.kvs	Add a static 3D model to the animation
animscale=2.0;	playback at scale
animmode=1;	Animation playback mode 0=forward, 1=pingpong
animfps=20.0;	frames per second to play back at (default is 15)
animforcescale=1.0;	set a forced scale - useful when animation frames vary in size
anim_autocycle_loops=1;	in autocycle mode, tells how many loops to play before next file

Voxon Media Creation Guide Matthew Vecchio for Voxon Photonics Last Updated: 24/11/2021

anim_autocycle_seconds=5;	in autocycle mode, tells how long seconds to play before next file
anim_autocycle_nokillsound=0;	if enabled continues audio playback after changing animation
anim_reset_posori=1;	reset pos & ori on load of animation
anim_showtim[0]=0.5;	custom animation sequence. Time in seconds.
anim_showrat[0]=0.2;	ratio from 1st to last frame:{0.01.0}
anim_showtim[1]=1.5;	can have multiple animation sequences just add to the array anim_showtim[1], anim_showtim[2] etc"
anim_showrat[1]=0.4;	ratio from 1st to last frame:{0.01.0} for this segment

Showing a Custom Thumbnail for Animations

A custom thumbnail can be shown on VoxieOS by including a 3D media file named as 'thumbnail.*' (* = the relevant file extension) within the zipped folder. Standard 3D files are supported; KV6, KVS, STL, PLY and OBJ. See the 'Fishhook.zip' example located in the "Media Examples' folder (by Default C:\ Voxon \ Media \ Media Examples \ Thumbnail Example').

Figure 9 Custom thumbnail for animation. (loads thumbnail.KV6 from the embedded zip animation)

HeightMap with VoxieOS

Heightmaps are 2D Images with a height map channel next to it. These can be any 2D image types (JPG, PNG, GIF, BMP, PCX... etc) but require a 1:1 height channel to the right side of the image.

Figure 10 Viewing a heightmap in a standard 2D image viewer

Looking at the earth1k.jpg heightmap example in a 2D image viewer shows the image on the left and the heightmap on the right. The 'heightmap' part of the image works by white (color

0xffffff) representing the highest point of the map and black (0x000000) being the lowest point of the map and all the greyscale being the height in-between. Actually the left image can be considered the texture and the right image is the height map.

Viewing this file through *VoxieOS* will combine these two images to make a heightmap.

Figure 11 Viewing a heightmap on the Voxon simulator

Heightmaps cannot be transformed along the Z axis. They always sit 'flat' but their height's scale, the distance between the map's highest and lowest point can be adjusted.

Like any media type in *VoxieOS* Heightmap has its own set of options under its file menu. Here is a breakdown of their unique menu tab.

Option	Description
Prev Model	Loads and views the previous model in the
	current directory.
Next Model	Loads the view of the next model in the current directory.
Invert hgt=Off	Inverts the heightmap. Higher density areas are displayed lower on the display while lower density areas are displayed higher on the display.
Invert ctrls=On	Inverts the rotational controls (rotate object
	VS rotate camera)
Height scaling=1	How extreme the high
AutoCycle=Off	If enabled when viewing a model after a short period of time the next model in sequence will be loaded. This process will

	repeat and loop from the last model back to the first creating an idle 'slideshow'
	experience.
Slice Dither=On	Add Dither to the slices. Makes the vertical
	slices appear more smooth
Text Filter = Bilinear	Switch between Bilinear Interpolation or
	nearest neighbour. Bilinear creates smooth
	transitions between the heightmap's points.
	Nearest Neighbour culls the data to a point
	and creates a more jagged appearance.
Texture=On	Toggles on and off the texture for the
	heightmap (the 2D image)
Reset cam	Reset the viewpoint to default
Load All pos&ori	Loads all the pos&ori settings for all the
	models in the current working directory
Save All pos&ori	Saves all pos&ori settings for models within
·	the current working directory.

Heightmap with no texture

It's possible to view a heightmap without a texture. Canyon.png is an example of this. Here is what the file looks like on a typical 2D image viewer.

Figure 12 Viewing canyon.png in a standard 2D image viewer.

When viewing *canyon.jpg* on the volumetric display (or simulator) it will be interpreted as a heightmap.

Figure 13 Viewing canyon.png on the Voxon Simulator.

DICOM / DICOS with VoxieOS

Voxon's Photonic Engine has native support for viewing DICOM or DICOS data. DICOM stands for Digital Imaging and Communications in Medicine (DICOS is the security equivalent). This is a powerful data type that shows medical or security imaging. For more information about the DICOM data type can be obtained from https://www.dicomstandard.org/

For the *VoxieOS* to view DICOM/DICOS files (files with the. DCM , .DCS extension), they need to be compressed in sequence into a single file aka a 'compressed .zip file' or placed together within a directory. Like an animation sequence these files need to be named sequentially though there is no need for an info.ini to be included.

For DICOM / DICOS files to have any useful depth you need many DCM files. A DCM file is a single slice of the image. A collection of at least 50 slices of your image is needed to make it look interesting on our volumetric technology. The human hand example (human_hand.zip) has about 500 DCM files.

While DICOM files can be in a few different file types. They can be converted to DCM by an open source program 3D Slicer (https://www.slicer.org/). 3D Slicer is great for preparing DICOM files. In fact, any stack of raster images can be opened with 3D Slicer and converted to DCM. This is a great way to use the DICOM media file type for non-medical uses.

Showing a Custom Thumbnail for DICOM

A custom thumbnail can be shown on VoxieOS by including a 3D media file named as 'thumbnail.*' (* = the relevant file extension) within the zipped folder. Standard 3D files are supported; KV6, KVS, STL, PLY and OBJ. See the 'Fishhook.zip' example located in the

"Media Examples' folder (by Default C:\ Voxon \ Media \ Media Examples \ Thumbnail Example').

Use the 'Save to STL' feature (located on the DICOM tab within VoxieMenu). To create a good 3D model of DICOM.

Where to find DICOM files

Any medical image company will know of the DICOM file type. Often due to issues of privacy, these files are not accessible by the public.

The Cancer Imaging Archive is a website which allows you to download free anonymous DICOM data which you can use to explore this media type.

https://www.cancerimagingarchive.net/

Video Tutorial of Making a DICOM file

A video tutorial of viewing DICOM files on a VX1 can be found here: https://www.youtube.com/watch?v=bOfc4GKFcXQ&t=17s it is also included in the Developers Kit and can be found at '...\Voxon\Developers Kit\Media Creation\DICOM'

DICOM Media Example – Human_hand.zip

oxon > Media > S	SamplePack > DICC	M > Human_hand	zip										
IMG0001.dcm	IMG0039.dcm	IMG0077.dcm	IMG0115.dcm	IMG0153.dcm	IMG0191.dcm	IMG0229.dcm	IMG0267.dcm	IMG0305.dcm	IMG0343.dcm	IMG0381.dcm	IMG0419.dcm	IMG0457.dcm	IMG0495.dc
IMG0002.dcm	IMG0040.dcm	IMG0078.dcm	IMG0116.dcm	IMG0154.dcm	IMG0192.dcm	IMG0230.dcm	IMG0268.dcm	IMG0306.dcm	IMG0344.dcm	IMG0382.dcm	IMG0420.dcm	IMG0458.dcm	IMG0496.dc
MG0003.dcm	IMG0041.dcm	MG0079.dcm	IMG0117.dcm	MG0155.dcm	IMG0193.dcm	IMG0231.dcm	IMG0269.dcm	MG0307.dcm	IMG0345.dcm	IMG0383.dcm	IMG0421.dcm	IMG0459.dcm	
MG0004.dcm	IMG0042.dcm	MG0080.dcm	IMG0118.dcm	MG0156.dcm	MG0194.dcm	IMG0232.dcm	IMG0270.dcm	IMG0308.dcm	IMG0346.dcm	IMG0384.dcm	IMG0422.dcm	IMG0460.dcm	
MG0005.dcm	IMG0043.dcm	IMG0081.dcm	IMG0119.dcm	IMG0157.dcm	IMG0195.dcm	IMG0233.dcm	IMG0271.dcm	IMG0309.dcm	IMG0347.dcm	IMG0385.dcm	IMG0423.dcm	IMG0461.dcm	
IMG0006.dcm	IMG0044.dcm	IMG0082.dcm	IMG0120.dcm	IMG0158.dcm	IMG0196.dcm	IMG0234.dcm	IMG0272.dcm	IMG0310.dcm	IMG0348.dcm	IMG0386.dcm	IMG0424.dcm	IMG0462.dcm	
IMG0007.dcm	IMG0045.dcm	IMG0083.dcm	IMG0121.dcm	IMG0159.dcm	IMG0197.dcm	IMG0235.dcm	IMG0273.dcm	IMG0311.dcm	MG0349.dcm	IMG0387.dcm	IMG0425.dcm	IMG0463.dcm	
IMG0008.dcm	IMG0046.dcm	IMG0084.dcm	IMG0122.dcm	IMG0160.dcm	IMG0198.dcm	IMG0236.dcm	IMG0274.dcm	IMG0312.dcm	MG0350.dcm	IMG0388.dcm	IMG0426.dcm	MG0464.dcm	
IMG0009.dcm	IMG0047.dcm	IMG0085.dcm	IMG0123.dcm	IMG0161.dcm	IMG0199.dcm	IMG0237.dcm	IMG0275.dcm	IMG0313.dcm	IMG0351.dcm	IMG0389.dcm	IMG0427.dcm	IMG0465.dcm	
IMG0010.dcm	IMG0048.dcm	IMG0086.dcm	IMG0124.dcm	IMG0162.dcm	IMG0200.dcm	IMG0238.dcm	MG0276.dcm	IMG0314.dcm	IMG0352.dcm	IMG0390.dcm	IMG0428.dcm	IMG0466.dcm	
IMG0011.dcm	IMG0049.dcm	IMG0087.dcm	IMG0125.dcm	IMG0163.dcm	MG0201.dcm	IMG0239.dcm	MG0277.dcm	IMG0315.dcm	IMG0353.dcm	IMG0391.dcm	IMG0429.dcm	IMG0467.dcm	
MG0012.dcm	IMG0050.dcm	MG0088.dcm	IMG0126.dcm	IMG0164.dcm	MG0202.dcm	IMG0240.dcm	IMG0278.dcm	IMG0316.dcm	MG0354.dcm	IMG0392.dcm	IMG0430.dcm	IMG0468.dcm	
IMG0013.dcm	IMG0051.dcm	MG0089.dcm	IMG0127.dcm	IMG0165.dcm	MG0203.dcm	IMG0241.dcm	IMG0279.dcm	MG0317.dcm	IMG0355.dcm	IMG0393.dcm	IMG0431.dcm	IMG0469.dcm	
IMG0014.dcm	IMG0052.dcm	IMG0090.dcm	IMG0128.dcm	IMG0166.dcm	IMG0204.dcm	IMG0242.dcm	IMG0280.dcm	IMG0318.dcm	IMG0356.dcm	IMG0394.dcm	IMG0432.dcm	IMG0470.dcm	
IMG0015.dcm	IMG0053.dcm	IMG0091.dcm	IMG0129.dcm	IMG0167.dcm	IMG0205.dcm	IMG0243.dcm	IMG0281.dcm	IMG0319.dcm	IMG0357.dcm	IMG0395.dcm	IMG0433.dcm	IMG0471.dcm	
IMG0016.dcm	IMG0054.dcm	IMG0092.dcm	IMG0130.dcm	IMG0168.dcm	IMG0206.dcm	IMG0244.dcm	IMG0282.dcm	IMG0320.dcm	IMG0358.dcm	IMG0396.dcm	IMG0434.dcm	IMG0472.dcm	
IMG0017.dcm	IMG0055.dcm	IMG0093.dcm	IMG0131.dcm	IMG0169.dcm	IMG0207.dcm	IMG0245.dcm	IMG0283.dcm	IMG0321.dcm	IMG0359.dcm	IMG0397.dcm	IMG0435.dcm	IMG0473.dcm	
IMG0018.dcm	IMG0056.dcm	IMG0094.dcm	IMG0132.dcm	IMG0170.dcm	IMG0208.dcm	IMG0246.dcm	IMG0284.dcm	IMG0322.dcm	MG0360.dcm	IMG0398.dcm	IMG0436.dcm	MG0474.dcm	
IMG0019.dcm	IMG0057.dcm	IMG0095.dcm	IMG0133.dcm	IMG0171.dcm	MG0209.dcm	IMG0247.dcm	MG0285.dcm	IMG0323.dcm	IMG0361.dcm	IMG0399.dcm	IMG0437.dcm	MG0475.dcm	
IMG0020.dcm	IMG0058.dcm	IMG0096.dcm	IMG0134.dcm	MG0172.dcm	MG0210.dcm	IMG0248.dcm	IMG0286.dcm	MG0324.dcm	IMG0362.dcm	IMG0400.dcm	IMG0438.dcm	IMG0476.dcm	
IMG0021.dcm	IMG0059.dcm	IMG0097.dcm	IMG0135.dcm	MG0173.dcm	MG0211.dcm	IMG0249.dcm	IMG0287.dcm	IMG0325.dcm	IMG0363.dcm	IMG0401.dcm	IMG0439.dcm	MG0477.dcm	
IMG0022.dcm	IMG0060.dcm	MG0098.dcm	IMG0136.dcm	MG0174.dcm	MG0212.dcm	IMG0250.dcm	IMG0288.dcm	IMG0326.dcm	IMG0364.dcm	IMG0402.dcm	IMG0440.dcm	IMG0478.dcm	
IMG0023.dcm	IMG0061.dcm	MG0099.dcm	IMG0137.dcm	MG0175.dcm	IMG0213.dcm	IMG0251.dcm	IMG0289.dcm	IMG0327.dcm	IMG0365.dcm	IMG0403.dcm	IMG0441.dcm	IMG0479.dcm	
IMG0024.dcm	IMG0062.dcm	IMG0100.dcm	IMG0138.dcm	IMG0176.dcm	IMG0214.dcm	IMG0252.dcm	IMG0290.dcm	IMG0328.dcm	IMG0366.dcm	IMG0404.dcm	IMG0442.dcm	IMG0480.dcm	
IMG0025.dcm	IMG0063.dcm	IMG0101.dcm	IMG0139.dcm	IMG0177.dcm	IMG0215.dcm	IMG0253.dcm	IMG0291.dcm	IMG0329.dcm	IMG0367.dcm	IMG0405.dcm	IMG0443.dcm	IMG0481.dcm	
IMG0026.dcm	IMG0064.dcm	IMG0102.dcm	IMG0140.dcm	IMG0178.dcm	IMG0216.dcm	IMG0254.dcm	IMG0292.dcm	IMG0330.dcm	IMG0368.dcm	IMG0406.dcm	IMG0444.dcm	IMG0482.dcm	
MG0027.dcm	IMG0065.dcm	IMG0103.dcm	IMG0141.dcm	IMG0179.dcm	MG0217.dcm	IMG0255.dcm	MG0293.dcm	IMG0331.dcm	MG0369.dcm	IMG0407.dcm	IMG0445.dcm	MG0483.dcm	
IMG0028.dcm	IMG0066.dcm	IMG0104.dcm	IMG0142.dcm	IMG0180.dcm	MG0218.dcm	IMG0256.dcm	MG0294.dcm	IMG0332.dcm	MG0370.dcm	IMG0408.dcm	IMG0446.dcm	MG0484.dcm	
IMG0029.dcm	IMG0067.dcm	IMG0105.dcm	IMG0143.dcm	IMG0181.dcm	MG0219.dcm	IMG0257.dcm	MG0295.dcm	IMG0333.dcm	IMG0371.dcm	IMG0409.dcm	IMG0447.dcm	IMG0485.dcm	
IMG0030.dcm	IMG0068.dcm	IMG0106.dcm	IMG0144.dcm	MG0182.dcm	MG0220.dcm	IMG0258.dcm	IMG0296.dcm	MG0334.dcm	IMG0372.dcm	IMG0410.dcm	IMG0448.dcm	IMG0486.dcm	
MG0031.dcm	MG0069.dcm	IMG0107.dcm	IMG0145.dcm	IMG0183.dcm	MG0221.dcm	MG0259.dcm	MG0297.dcm	MG0335.dcm	MG0373.dcm	IMG0411.dcm	MG0449.dcm	MG0487.dcm	
IMG0032.dcm	IMG0070.dcm	MG0108.dcm	IMG0146.dcm	MG0184.dcm	MG0222.dcm	IMG0260.dcm	MG0298.dcm	MG0336.dcm	MG0374.dcm	IMG0412.dcm	IMG0450.dcm	MG0488.dcm	
IMG0033.dcm	IMG0071.dcm	IMG0109.dcm	IMG0147.dcm	IMG0185.dcm	IMG0223.dcm	IMG0261.dcm	IMG0299.dcm	IMG0337.dcm	IMG0375.dcm	IMG0413.dcm	IMG0451.dcm	■ IMG0489.dcm	
IMG0034.dcm	IMG0072.dcm	IMG0110.dcm	IMG0148.dcm	IMG0186.dcm	MG0224.dcm	IMG0262.dcm	IMG0300.dcm	IMG0338.dcm	IMG0376.dcm	IMG0414.dcm	IMG0452.dcm	MG0490.dcm	
IMG0035.dcm	IMG0073.dcm	IMG0111.dcm	IMG0149.dcm	IMG0187.dcm	IMG0225.dcm	IMG0263.dcm	IMG0301.dcm	IMG0339.dcm	MG0377.dcm	IMG0415.dcm	IMG0453.dcm	MG0491.dcm	
IMG0036.dcm	IMG0074.dcm	IMG0112.dcm	IMG0150.dcm	IMG0188.dcm	IMG0226.dcm	IMG0264.dcm	IMG0302.dcm	IMG0340.dcm	MG0378.dcm	IMG0416.dcm	IMG0454.dcm	MG0492.dcm	
IMG0037.dcm	IMG0075.dcm	IMG0113.dcm	IMG0151.dcm	IMG0189.dcm	MG0227.dcm	IMG0265.dcm	IMG0303.dcm	IMG0341.dcm	MG0379.dcm	IMG0417.dcm	IMG0455.dcm	MG0493.dcm	
IMG0038.dcm	IMG0076.dcm	IMG0114.dcm	IMG0152.dcm	IMG0190.dcm	IMG0228.dcm	IMG0266.dcm	IMG0304.dcm	IMG0342.dcm	IMG0380.dcm	IMG0418.dcm	IMG0456.dcm	IMG0494.dcm	

Figure 14 The contents of the human_hand.zip example DICOM file

The *human_hand.zip* is a collection of 496 DCM files named and numbered sequentially. Each DCM file is one slice of the image.

When loading 'Human_hand.zip' via VoxieOS

Figure 15 Viewing the 'Human_hand.zip' DICOM with the Voxon Simulator

Viewing a DICOM/DICOS file

To render a DICOM image, a contour value needs to be set. A DCM image is like a heightmap; it shows the density of the image. The whiter the pixel the higher the density of the material. The contour value determines a threshold of what density to render and what to not show. Parsing through the contour thresholds will reveal different data within the DICOM image. As skin and bone have different densities; it's easy to isolate either the skeleton, or the skin by adjusting the contour value. DICOM data is so rich that additional tools and processes are usually needed to help interpret the data.

Figure 16 adjusting the contour thresholds for viewing a DICOM

In this example, the contour threshold for the purple channel is set high to reveal only the skeleton of the hand. The contour threshold of the blue channel is set low to reveal only the skin of the hand.

The contour value is a powerful way to parse through DICOM data and render what is important.

There are many options within the DICOM's unique menu tab. Here is a description of each attribute.

Option	Description
Prev Dicom	Loads and renders the previous DICOM zip
	image in the current directory.
Next Dicom	Loads and renders the next DICOM zip
	image in the current directory.
Detail Slider	How much detail to show in the image.
	Higher detail means more voxels are being
	rendered, reducing system performance.
Detail@Stop	If enabled when the image is not being
	adjusted (moved, rotated or scaled) the
	image will show at high detail.
Contour Value 1	The threshold for the 1 st contour value. If
	you see no image slide this value around

	until an image is present. The color blocks
	beneath the slider represent what color to
	render the data.
Contour Value 2	The threshold for the 2 nd contour value. If
	you see no image slide this value around
	until an image is present. The color blocks
	beneath the slider represent what color to
	render the data.
Reset pos&ori	Resets the current pos&ori for the image
Load All pos&ori	Loads all the pos&ori settings into memory
Cross section	If enabled shows a cross section of the DICOM
Draw Stats	Shows debugging and extra stats on the
	secondary (touch) screen.
Save To STL	Exports a STL model of the current image.
	The file is named 'Voxie000.stl' and located
	where the VoxieOS.exe file is stored.
Save to STL;flip	Exports a flipped STL image of the current
•	image. The file is named 'Voxie000.stl' and
	located where the VoxieOS.exe file is
	stored.
Save All pos&ori	Saves al the pos&ori settings made within
•	the current working directory to posori.ini
	files
Wire frame	If enabled shows the DICOM as a
	wireframe instead of a surface
Ruler	Enables a ruler for accurate (assuming the
	meta data is correct) measurement
	Pt 1 – define the 1 st point
	Pt 2 – defines the 2 nd point. Revealing the
	distance between the two points
	Pt 3 – shows the angle of the line from
	another point
	'
	l

'Gobble Mode' with DICOM

Pressing the 'G' key while viewing a DICOM will enter 'gobble mode'. While in gobble mode pressing the left button on the mouse or space mouse will erase all the data within the sphere. The diameter of the 'gobble' can be adjusted by holding the right mouse or space mouse button. Gobble mode can be useful to remove unwanted data to increase clarity of the image. Pressing 'G' again when in gobble mode will exit gobble mode.

Figure 17 'Gobble mode' in action.

Similar to 'Gobble Mode' pressing the 'F' key will enter 'fill mode' where the sphere can be filled with data instead. Pressing 'F' a second time will exit 'fill mode'.

Molecule File Type

VoxieOS can read a .mol file type which is created using the MDL molfile format, a chemical file format. A MOL file contains plain text information about atoms and bonds. Viewing molecules in true 3D can make them easier to understand.

Figure 18 Viewing a .mol file with VoxieOS.

When viewing a .mol file the following unique options are available.

Option	Description
Prev .MOL	Loads and renders the previous .mol file in
	the current working directory.
Next .MOL	Loads and renders the next .mol file in the current working directory.
Show symbols	If enabled, it shows the chemical symbol of
	the node.
Node size	How large to render a node.
Bong thickness	How thick the bonds are rendered.
Reset pos&ori	Resets the pos&ori values to default.
Load All pos&ori	Loads all the pos&ori values from the
-	current working directory's pos&ori.ini.
Pause	pauses or animates the model.
Save All pos&ori	Saves all the pos&ori values to the
-	pos&ori.ini file in the current working
	directory.

Playing Depth Camera Footage with VoxieOS

Figure 19 Playing depth camera footage (.kni file) through VoxieOS

Depth camera footage captured with *KniView* or *Knife* (.kni file format) can be played back within *VoxieOS*. This is footage that has been captured by a stereoscopic infrared camera. A KNI file stands for 'Ken's Natural Interaction' The format was developed by Voxon's Ken Silverman. It is a volumetric interpretation of depth camera footage.

Depth camera footage is created by combining various types of image data to create a depth image. A depth image knows the relative (or absolute) distance between each pixel so that an image could be created in a 3D space. The image is never fully 3D as it is only from the camera(s) perspective. To achieve this, each depth camera model works slightly differently but they usually comprise three layers of data. Firstly a depth layer, usually achieved by 'time of flight', or from interpreting polygraph views. The other two layers are formed by traditional RGB colour camera(s) and an infrared camera(s). Depth camera hardware usually contains at least one microphone to record audio.

.kni playback can be moved, rotated and scaled similar to other types of media and *VoxieOS* stores their own pos&ori settings. When playing back a .kni file, you can tweak the gamma and density settings to really bring out the quality of the image.

Option	Description
Prev Kni	Loads and views the previous Kni video in
	the current directory.

Next Kni	Loads and views the next Kni video in the current directory.
Play Speed = 1	The playback speed. 1 is the default Realtime playback speed
RGB / Infrared	View the RGB or Infrared channel
AutoCycle	If enabled and within a folder of multiple KNI views the content will cycle to the next
	KNI file after playback is ended
Reset pos&ori	Resets the current pos&ori settings for the current KNI video
Load All pos&ori	Loads the pos&ori.ini values saved in the current working directory.
Pause	Pauses the KNI playback
Save All pos&ori	Saves the pos&ori settings into the local pos&ori.ini file.

Using a Depth Camera with Voxon Display Technology

Voxon's volumetric technology is able to capture, stream, record and playback depth camera footage. For this to occur, a compatible depth camera is required. Supported models include:

- Microsoft Kinect V2
- Microsoft Azure Kinect
- Creative/Intel SR300
- Intel D415

Voxon recommends a Microsoft Azure Kinect or Microsoft Kinect v2.

The software needed to do this is located within 'C:\Voxon\Software\KniView'. The two main programs are *KniView*, and *Knife*. Both programs will assume a recording is required.

Note: When launching either application they will launch in live video capture mode and require an attached depth camera. To run them in a playback mode they must be run as a command line with a filename to the kni media to be playback.

KniView – playing live footage or recording on a volumetric display

KniView is a VX app (that can also be run as a standard Windows application) used for playing back or streaming depth camera content. KniView can have a network connection to other systems running KniView for 'volumetric video calls'. TCP or UDP connections are available. Networked systems do not need to send their own footage and KniView does not need to run on actual Voxon hardware. Multiple connections are available too. KniView can play KNI files but they can only be loaded via command prompt.

Figure 20 KniView running on a Voxon VX1

KniView streaming live video content using a Microsoft Azure Kinect camera.

Knife - recording and editing depth camera

Knife is not a VX app. It is a standard Windows application designed to record and edit depth camera footage.

Figure 21 Knife being run on a Windows PC

Inside the *KniView* folder are many files. Most of the included .dlls are libraries required to access the different camera types, as each camera type has been reverse engineered to work with the .knii file type. Here is a summary of the important files for developing content:

File	Description
Kni_newwav.exe	Command line application to replace a Kni file's embedded wav file. Run as a command prompt "Kni_newwav KniFileToEdit.kni wavefiletoEncode.wav 0" (the offset in seconds to encode the wave).
	The output will always be called 'temp.kni' so make sure you rename your new file.
Knife.exe	The executable for the Knife application. For recording, editing, and playing back KNI files on the standard Windows application.
Knife.txt	Help file for using Knife.
Knife_azure.exe	Knife application dedicated to run with Microsoft Azure camera.
Knife_intel.exe	Knife application dedicated to run with Microsoft Intel based cameras.
Knife_kinect.exe	Knife application dedicated to run with Microsoft Kinect cameras.
Knife_openNI2.exe	Knife application dedicated to run with OpenNI2 support (Supports a variety of depth cameras).
Kniview.ini	User editable settings for Kniview.
KniView.txt	Help file for using KniView.
Juggler.kni (located under the media sub directory)	Example .Kni media file.

Using Kniview

KniView is a VX application for live streaming or playing back pre-recorded depth camera footage. To live stream depth camera footage, a compatible depth camera is required.

KniView can operate in three modes:

- 1) Playback live depth camera footage. (it can't record capture)
- 2) Playing back pre-recorded depth camera footage (.kni files)
- 3) Streaming a live depth camera through a network with other *KniView* applications Via TCP or UDP network connections.

The *KniView.txt* included in the *KniView* folder details more instructions on how to use *KniView*.

Up to 4 cameras can be streamed at once.

The .kni file type is made up of the following elements:

- Calibration parameters stored in camera's firmware (reverse-engineered from the libraries)
- Custom-written lossless compression for depth buffer (approximately 3:1 ratio)
- JPEG-compliant writer for Infrared (qual=80) and RGB frames (qual=50)
- audio uncompressed

Launching KniView via command line

KniView is a command line application. Running just KniView without any parameters will launch KniView as a Windows app in live capture mode.

To access most of *KniView's* features, command line parameters needed to be defined when the program launches. Many settings including playback recorded captures, load onto the volumetric display, set which camera type and many other settings are all enabled via the command line.

To launch *KniView* with command line parameters, open a windows command line (press 'Start' on Windows and type 'cmd') and navigate to the *KniView* directory (by default C:\Voxon\Software\Kniview). **Typing in 'KniView media/juggler.kni' will play the juggler example video as a standard Windows application**

Figure 22 Command line for running KniView in playback mode as a Windows application

If you are running on Voxon hardware and want KniView to run as a VX app and on the volumetric display, the /v parameter is needed. Typing in 'KniView media/juggler.kni /v' will play the juggler example video as a VX application on the volumetric display.

Figure 23 Command line for running KniView in playback mode as a VX application

Note: If no .kni media file is specified, *KniView* will run live footage from the connected camera.

Here is a list of all the parameters for KniView

Parameter	Description
/o	select input device: OpenNI2 library
/k	select input device: Microsoft Kinect v2
/r	RealSense 2 (SR300, D415,)
/z	select input device: Microsoft Azure
/w	select output device: render in a 2d window (default)
/v	select output device: enable Voxiebox mode (render onto volumetric hardware
/3	select output device: enable Nvidia 3DVision mode
/ir	select infrared instead of RGB color (for live OpenNI2)
/a	specify WAV/FLAC file to play
/b	specify brightness offset (0 10)
/t	specify number of CPU threads to use
/d#x#(x#)	specify depth buffer resolution and fps (optional). Examples: /d1280x720x30 or /d512x424
/c#x#(x#)	specify color buffer resolution and fps (optional). Examples: /c1920x1080x30 or /c640x480
/H	host TCP connection
/J	[ip address or server name of TCP host]: connect to TCP host (must specify ip). Examples: /J:192.168.1.100 or /J:localhost
/h	host UDP connection
/j	[ip address or server name of UDP host]: connect to UDP host (must specify ip). Examples: /j:192.168.1.100 or /j:localhost
/p	override TCP or UDP port. Example /p:32123

Live Depth Camera

By Default, running *KniView.exe* with no parameters will put *KniView* in live depth camera view and display what the connected depth camera is viewing if it is outputting on the volumetric display (/v parameter). The transform of the footage can be adjusted (in a similar fashion to any other media type). The keyboard, mouse and space mouse can be used to rotate, move and scale the footage.

Note: When you first run KniView the camera's output footage may not be within the volume. You may need to move and adjust the transform to fit the volume. Enabling head tracking can be a quick way to see something on the volume.

Playing pre-recorded KNI format depth camera footage

Playing pre-recorded .kni media can be done via the command line. The .kni file needs to be specified when launching *KniView*.

Running "KniView.exe exampleCapture.kni /v" will play back the *exampleCapture.kni* file onto the volumetric display.

The pre-recorded media will loop once it is finished. The footage can be adjusted (in a similar fashion to any other media type). The keyboard, mouse and space mouse can be used to rotate, move and scale the footage.

The pos&ori values can be saved by pressing the Left Ctrl + S key. The pos&ori values are stored within the *KniView.ini* file.

Networking KniView

KniView supports TCP or UDP connections. One instance of KniView.exe needs to be the host, the other instances need to join the hosts connection. The host specifies an IP address and port number. When a connection network has been established there are some connection stats written on the secondary (touch) screen. Press 1 – 4 on the keyboard to select which camera feed to edit.

Connection types, ports and IP settings can be changed within the application or set in *kniView.ini*. Inside the KniView settings file are more settings which can tweak the connection speed and quality. Make sure a firewall isn't stopping the connection and the port you nominate is valid.

In-app controls

Here is a list of valid In-app controls when using KniView

Keyboard or input	Description
ESC	quit
1-4	select camera
`	select all cameras
Arrows Key	Mode media forward/back/left/right
RCtrl	Move media up
Mouse	rotate camera (VX app mode: spin camera & walk forward)
LMB+Mouse	rotate camera free direction (VX app mode only)
RMB+Mouse	zoom camera (VX app mode only)
, and .	rotate around model horizontally
PGUP/PGDN	rotate around model vertically
/	reset camera
Numpad / and Numpad *	change zoom
A or Z	change zoom
Numpad 5	Reset zoom
L.Shift	hold for 16x slower movement
R.Shift	hold for 16x faster
Н	toggle head tracking mode for current camera
P	pause video
M	mute audio
Numpad – or Numpad +	adjust maximum depth to crop (default:8192)
R	toggle raw video
Spacebar	toggle Color vs. IR (always uses Depth)

X	mirror image (VX app only)
Ctrl+S	save current pos&ori and update default settings to KNIVIEW.INI.

In-app menu options for KniView

Figure 24 KniView's VoxieMenu tab.

There isn't much that the *KniView.ini* offers that can't be done and adjusted in the in app menu.

A description of each option is as follows

Option	Description
RGB / IR	Switch between the RGB and Infrared view
Show Frame	If enabled a wireframe is drawn around the outside of the volume
Reset View	Resets the current view to default values
Pause	Pauses the playback of the footage
Head Track	Attempts to find the 'head' of a person in
	the image and centres places the image in the centre of the volume.
Crop Max Dist (m)	Crops out the max distance. To trim the depth of the image.
Mirror X	Mirrors the output of the footage
Hide view	If enabled the captured footage will be hidden

Brightness	Brightness setting for the capture footage.
	Lower value less voxels and darker Higher
	value more voxels and brighter
Proto TCP / UDP	selecting networking protocol to use
Host -	Enable this button to host the network
	session
Port	For networking the port number to attempt
	to connect through
Name/IP to join	For networking the IP address to attempt to
·	join (the host's IP address)
Join	Press to join a hosted networking session
	using the nominated port and IP address

KniView.ini contents and options

KniView stores various settings within *KniView.ini*. Most of these settings can be adjusted in the app, but there are a few networking settings which can be used to optimise the connection.

Note: *KniView.ini* also stores the pos&ori values for its media files. These are amended onto the end of the file.

Option (and default value)	Description
Input=k	Default input type (o=OpenNI2 (Kinect 1.0),
	k=Kinect 2.0, r=RealSense 2.0
	(SR300/D415) a=Azure)
output=w;	Selects output mode (w= 2D window, 3=
	3DVison, v=Volumetric (VX app))
infrared=0;	Launch in RGB or infrared display mode (0
	for RGB and 1 for Infrared)
brightness=4;	Brightness setting for footage value
	between (0 10). Higher value brighter
showframe=1;	If enabled a wireframe border is presented
	around the display.
proto=1;	Select which network protocol to use
	0=TCP, 1=UDP
port=32123	Set which port to connect to
join=192.168.201.53	Set Host's IP address to join
limitfps=15;	Limit the FPS to be sent and received
	through a network connection
	//use 1.0 for WIFI; 15.0 for fast connection
muteit=0;	If enabled play no sound
udp_bylimit=1500;	UDP connection byte limitation
udp_boxskip=1;	UDP connection setting
	obiniodion dotting
depmax=2.0;	Capture's depth max value

qualcol=15;	jpeg quality for RGB (1 (fewest bytes) 100 (most bytes)) for compression over network
qualdep=99;	depth quality (1 (fewest bytes 100 (most bytes)) for compression over network
qualinf=50;	jpeg quality for infrared (1 (fewest bytes) 100 (most bytes)) for compression over network

Using Knife

Unlike *KniView*, *Knife* can only be a Windows app. It can record, edit and playback recorded .kni media. *Knife* is the only way to record depth camera footage.

Similar to *KniView*, *Knife* is a command line application. Running *Knife* with no command line parameters will assume it is in live capture mode. To load a .kni file for playback it needs to be specified in the command line. For example:

KNIFE.EXE command line:

knife <-- run live video from Kinect v2/Senz3D knife rec0000.kni <-- play looped video from specified file

The *Knife.txt* file within the *KniView* folder has more detailed instructions on how to use the *Knife* application.

Using Knife to record a new KNI video

To record a new .kni video. Run *Knife* in live capture mode (without any extra parameters) and once you are happy with the setup, press the record button on the screen. The new Kni file will be written to the same directory that *knife.exe* is in and will be labeled as *REC###.KNI* and number sequentially from low to high.

Using Knife to playback an existing KNI video

To playback an existing .kni video, use the command prompt to type out the .kni file you wish to load. You can use relative or full paths to load in your file.

Knife C:\Voxon\Videos\MyCapture.kni

Knife MyCapture.kni

Knife \Media\MyCapture.kni

Are all valid ways to launch a .kni file (assuming the filename exists).

Knife GUI options

Figure 25 Knife's GUI

Knife's main display shows the view type. Raw type shows the depth, infrared and color layers. Other view types show a dot based or poly view of infrared or color views.

Underneath the display is the timeline. This shows the starting and ending marker, the current frame, the length in seconds of the recorded footage, and the frame number.

The bottom right shows various stats about the filetype, how much data is being captured by each data layer (D = depth, I = infrared, C = color, S = sound) and both the encode and decode speeds.

A description of the the various buttons at the bottom of the screen are as follows

Button	Description
Raw View	Switch to Raw view of the 3 layers (depth,
	infrared and colour)
Dots Infra	Show the Infrared image in a dot view
Dots Color	Show the colour image in a dot view
Poly Infra	Show the Infrared image as a poly / mesh view
Poly Color	Show the colour image as a poly / mesh view
Mute	Mute / Unmute the sound
Speed /2	Playback footage at half speed
Pause (II button)	Pause the playback of footage
Speed *2	Playback footage at double speed
Run Live	Switch to live capture
Mark Start	Set start marker to where the current
	position is
Mark Stop	Set stop marker to where the current position is
Load KNI	Load an existing KNI recording
Save KNI	Save current KNI file trimed to be between the start and stop markers
Import Wav	Import audio wav file to replace current audio
Export Wav	Export audio file as a way file from Kni
Save KNI; Outside Marks	Save the whole KNI file ignoring the start
	and stop markers.
Save Dep	Export the depth image as a PNG file
Save Inf	Export the Infrared image as JPG file
Save Col	Export the colour image as a JPG file

Using Knife to edit an existing KNI video

Any KNI that has been loaded though Knife can be edited.

Editing a .kni file is limited. A .kni file can be top and tailed. That is the start and end points can be adjusted. This is done by moving the two blue '[' and ']' bracket markers on each side of the timeline on the *Knife* GUI and then choosing the 'Save KNI'. Choosing 'Save KNI: outside marks' will save the whole capture and discard the start and ending markers.

Figure 26 Knife's timeline revealing the blue markers.

It is important to note a more advanced editing suite for KNI is possible. If you are interested in exploring this use case, please contact Voxon Photonics directly.

Keyboard controls for Knife

Keyboard Command	Description
ESC	quit
1-5	set render mode: 1:2D, 2:IR dots, 3:RGB dots, 4:IR poly, 5:RGB poly
Space Bar or P	pause (/play if playing KNI)
M	Toggle mute
R	record video & audio to next REC###.KNI file (start/stop)
/	reset pos & ori for 3D view
Arrows/RCtrl/Numpad 0	move 3D camera
, or.	rotate view left/right around center
L.Shift	fly 16x faster
R.Shift	fly 16x slower
- or =	adjust max depth (3D view) in steps of 250 (5008000)
Q/W/E	toggle head track mode (Q=off, W=show circle, E=full debug)
F12	screen capture to: depth:KIND####.PNG, IR:KINI####.PNG, RGB:KINC####.PNG

Replacing the audio of an existing KNI video

Audio files within the .kni file are uncompressed 44.1 KPS 16 bit .wav files.

Knife can export out the embedded audio file within a .kni file, and a new wav file can be imported into a .kni file.

Importing a new audio file can be done through *Knife* or via the standalone command line application. *kninew_wav.exe* which is located in the *KniView* directory. Syntax is as follows:

"Kni_newwav KniFileToEdit.kni wavefiletoEncode.wav 0 (the offset in seconds to encode the wave)"

The output will always be called *temp.kni* so make sure you rename your new .kni file appropriately.

Voxon Media Creation Guide

Matthew Vecchio for Voxon Photonics Last Updated: 24/11/2021

