FCC RF Test Report

APPLICANT : TCL Communication Ltd.

EQUIPMENT: GSM Quad-band / UMTS Quad-band / LTE hexa-band

mobile phone

BRAND NAME : alcatel MODEL NAME : 6055U

FCC ID : 2ACCJA018

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION : (NII) Unlicensed National Information Infrastructure

The product testing was completed on May 24, 2016. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Prepared by: James Huang / Manager

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (KUNSHAN) INC.

No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China

Report Template No.: BU5-FR15EWLB4 AC Version 1.2

Report Issued Date: May 27, 2016

Page Number

Report Version

Testing Laboratory 2627

: 1 of 34

: Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1		ERAL DESCRIPTION	
	1.1 1.2 1.3	Applicant Manufacturer Feature of Equipment Under Test	5
	1.4 1.5	Product Specification of Equipment Under Test	6 6
	1.6 1.7 1.8	Modification of EUT Testing Location Applicable Standards	7
2		Γ CONFIGURATION OF EQUIPMENT UNDER TEST	
	2.1 2.2 2.3	Carrier Frequency and Channel Pre-Scanned RF Power Test Mode	9 10
	2.42.52.62.7	Connection Diagram of Test System	13 13
3	TEST	T RESULT	14
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	6dB and 26dB and 99% Occupied Bandwidth Measurement Maximum Conducted Output Power Measurement Power Spectral Density Measurement Unwanted Emissions Measurement AC Conducted Emission Measurement Frequency Stability Measurement Automatically Discontinue Transmission Antenna Requirements	
4		OF MEASURING EQUIPMENT	
	PEND	ERTAINTY OF EVALUATION	
ΑP	PEND	DIX C. DUTY CYCLE PLOTS	
ΑP	PEND	DIX D. SETUP PHOTOGRAPHS	

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Report Issued Date: May 27, 2016
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC Version 1.2

: 2 of 34

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR642504F	Rev. 01	Initial issue of report	May 27, 2016

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 3 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.403(i)	6dB, 26dB and 99% Occupied Bandwidth	> 500kHz	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 30 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	≤ 30 dBm/500kHz	Pass	-
3.4	15.407(b)	Unwanted Emissions	≤15.407(b)(4)(i) &15.209(a)	Pass	Under limit 4.50 dB at 11589.000 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 7.55 dB at 1.460 MHz
3.6	15.407(g)	Frequency Stability	Within Operation Band	Pass	-
3.7	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.8	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 4 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

1 General Description

1.1 Applicant

TCL Communication Ltd.

5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Shanghai, P.R. China. 201203

Report No.: FR642504F

1.2 Manufacturer

TCL Communication Ltd.

5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Shanghai, P.R. China. 201203

1.3 Feature of Equipment Under Test

reature of Equipment Under Test							
Product I	Feature & Specification						
Equipment	GSM Quad-band / UMTS Quad-band / LTE hexa-band mobile phone						
Brand Name	alcatel						
Model Name	6055U						
FCC ID	2ACCJA018						
EUT supports Radios application	GSM/GPRS/EGPRS/WCDMA/HSPA/ HSPA+(16QAM uplink is not supported)/LTE/NFC/ WLAN 2.4GHz 802.11b/g/n HT20/HT40/ WLAN 5GHz 802.11a/n HT20/HT40/ WLAN 5GHz 802.11ac VHT20/VHT40/VHT80/ Bluetooth v3.0+EDR/ Bluetooth v4.0 LE/ Bluetooth v4.2 LE						
IMEI Code	Conducted: 014658000006832 Radiation: 014658000006832 Conduction: 014658000003722						
HW Version	PIO						
SW Version	010 01						
EUT Stage	Identical Prototype						

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

 SPORTON INTERNATIONAL (KUNSHAN) INC.
 Page Number
 : 5 of 34

 TEL: 86-0512-5790-0158
 Report Issued Date
 : May 27, 2016

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : 2ACCJA018 Report Template No.: BU5-FR15EWLB4 AC Version 1.2

1.4 Product Specification of Equipment Under Test

Froduct Specification of Equipment officer rest							
Product Sp	ecification subjective to this standard						
Tx/Rx Channel Frequency Range	5745 MHz ~ 5805 MHz						
	802.11a : 12.15 dBm / 0.0164 W						
	802.11n HT20 : 12.05 dBm / 0.0160 W						
Maximum Output Power	802.11n HT40 : 11.91 dBm / 0.0155 W						
Maximum Output Power	802.11ac VHT20: 12.14 dBm / 0.0164 W						
	802.11ac VHT40: 12.14 dBm / 0.0164 W						
	802.11ac VHT80: 12.07 dBm / 0.0161 W						
	802.11a : 19.08 MHz						
	802.11n HT20 : 19.43 MHz						
90% Occupied Bandwidth	802.11n HT40 : 36.96 MHz						
99% Occupied Bandwidth	802.11ac VHT20: 19.33 MHz						
	802.11ac VHT40: 36.86 MHz						
	802.11ac VHT80: 75.04 MHz						
Antenna Type / Gain	IFA Antenna with gain -3.70 dBi						
Type of Madulation	802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)						
Type of Modulation	802.11ac : OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)						

1.5 Specification of Accessory

<u> </u>	ion of Accessory										
	Specification of Accessory										
	Brand Name	alcatel	Model Name	UC13US							
AC Adapter	Power Rating	I/P: 100-240Vac, 500n	I/P: 100-240Vac, 500mA, O/P: 5Vdc, 2000mA								
	P/N	CBA0059AG8C1									
Battery 1	Brand Name	ALCATEL onetouch	Model Name	TLp026EJ							
1	Power Rating	3.85Vdc, 2610mAh									
Battery 2	Brand Name	ALCATEL onetouch	Model Name	TLp026E2							
	Power Rating	3.84Vdc, 2610mAh									
USB Cable	Brand Name	N/A	Model Name	CDA0000049C2							
OSD Cable	Signal Line Type	1.0m shielded without	core								

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018

Page Number Report Issued Date: May 27, 2016 Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC Version 1.2

: 6 of 34

1.6 Modification of EUT

No modifications are made to the EUT during all test items.

1.7 Testing Location

Test Site	SPORTON INT	SPORTON INTERNATIONAL (KUNSHAN) INC.								
	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China									
Test Site Location	TEL: +86-0512-5790-0158									
	FAX: +86-0512	-5790-0958								
Took Oite No		Sporton Site No.		FCC Registration No.						
Test Site No.	TH01-KS	CO01-KS	03CH03-KS	306251						

Note: The test site complies with ANSI C63.4 2014 requirement.

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 7 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y/Z plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5745-5805 MHz Band 4	151	5755	159	5795
(U-NII-3)	153	5765	161	5805
(0 1411 0)	155	5775		

Note: The above Frequency and Channel in boldface were 802.11n HT40.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Report Issued Date: May 27, 2016
Report Version: Rev. 01

: 8 of 34

Page Number

Report No.: FR642504F

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test in the following tables.

WLAN 5GHz 802.11a Average Power (dBm)										
Po	ower vs. Chani	nel			P	ower vs.	Data Ra	te		
Channel	Channel Frequency Data Rate		Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
	(MHz)	6Mbps								
CH 149	5745	12.15								
CH 157	5785	11.44	CH 149	12.03	12.04	12.11	11.98	12.13	12.09	12.08
CH 161	5805	11.60								

WLAN 5GHz 802.11n-HT20 Average Power (dBm)										
Po	ower vs. Chan			P	ower vs.	Data Ra	te			
Channel	Frequency (MHz)	MCS Index MCS0	Channel MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS					MCS7		
CH 149	5745	11.51								
CH 157	5785	11.44	CH 161	11.88	12.02	11.99	12.01	11.97	11.98	12.03
CH 161	5805	<mark>12.05</mark>								

	WLAN 5GHz 802.11n-HT40 Average Power (dBm)										
Po	ower vs. Chani			Р	ower vs.	Data Ra	te				
Channel Frequency (MHz) MCS Index			Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
	(IVITZ)	MCS0									
CH 151	5755	11.42	CH 159	11.81	11.84	11.79	9 11.77	11.85	11.89	11.83	
CH 159	5795	<mark>11.91</mark>	CH 139	11.01	11.04	11.79	11.77	11.65	11.09	11.03	

WLAN 5GHz 802.11ac VHT20 Average Power (dBm)											
Power vs. Channel						Power	vs. Dat	ta Rate			
Channel	Frequency (MHz)	MCS Index	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8
	(IVITIZ)	MCS0									
CH 149	5745	11.73									
CH 157	5785	11.56	CH 161	12.08	12.13	12.12	12.11	12.10	12.09	12.05	12.07
CH 161	5805	<mark>12.14</mark>									

	WLAN 5GHz 802.11ac VHT40 Average Power (dBm)											
Powe	r vs. Chann	el	Power vs. Data Rate									
Channel	Frequency (MHz)	MCS Index MCS0		nannel MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7 MCS8 MCS							MCS9	
CH 151		11.50		12 11	12 12	12 10	12.09	12.13	12.08	12.04	12 07	12 04
CH 159	5795	<mark>12.14</mark>	011 109	12.11	12.12	12.10	12.03	12.13	12.00	12.07	12.07	12.07

WLAN 5GHz 802.11n-HT80 Average Power (dBm)												
Power vs. Channel Power vs. Data Rate												
Channel	Frequency (MHz)	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9
CH 155	5775		CH 155	11.95	11.91	11.98	11.96	12.03	11.94	11.92	11.99	12.05

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 9 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

Report No.: FR642504F

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

	Test Cases
AC	Mode 1 : GSM850 Idle + Bluetooth Link + WLAN (5GHz) Link + Earphone + USB Cable (Charging
Conducted	from Adapter) + Battery 1
Emission	Mode 2 : GSM850 Idle + Bluetooth Link + WLAN (5GHz) Link + Earphone + USB Cable (Charging from
Ellission	Adapter) + Battery 2

Remark:

- 1. For Radiated TCs, the tests were performed with Adapter, Earphone, Battery 1 and USB Cable, only the worst mode need to verify Battery 2.
- 2. The worst case of conducted emission is mode 1; only the test data of it was reported.

	Ch. #		Band IV:5745 ~ 5805 MHz								
	802.11a		802.11n HT20	802.11n HT40							
L	Low	149	149	151							
M	Middle	157	157	-							
Н	High	161	161	159							

	Ch #		Band IV:5745~5805MHz								
Ch. # 802.11ac VHT20		802.11ac VHT20	802.11ac VHT40	802.11ac VHT80							
L	Low	149	151	-							
M	Middle	157	-	155							
Н	High	161	159	-							

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 10 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

2.4 Connection Diagram of Test System

<WLAN Tx Mode>
For WLAN 5GHz 802.11n HT40/802.11ac VHT20/VHT80

For WLAN 5GHz 802.11a/802.11n HT20/802.11ac VHT40

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 11 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

<AC Conducted Emission Mode>

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 12 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	G480	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
2.	WLAN AP	LINKSYS	WRT600N	Q87-WRT600NV11	N/A	Unshielded, 1.8 m
3.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
4.	Bluetooth Earphone	Nokia	BH-102	PYAHS-107W	N/A	N/A
5.	DC Power Supply	GW INSTEK	GPD-2303S	N/A	N/A	Unshielded, 1.8 m
6.	Earphone	Lenovo	SH100	N/A	Unshielded,1.0m	N/A

2.6 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuously transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the Notebook under large package sizes transmission.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 7.0 dB.

Offset (dB) = RF cable loss(dB).

= 7.0 (dB)

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Report Issued Date: May 27, 2016
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC Version 1.2

: 13 of 34

3 Test Result

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02.
 Section C) Emission bandwidth for the band 5.725-5.85GHz
- 2. Set RBW = 100kHz.
- Set the VBW ≥ 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup

SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 14 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 15 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 16 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, 10 log(1/x), where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 17 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

Report No.: FR642504F

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- 1. The testing follows Method SA-2 of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02.
 - Measure the duty cycle.
 - Set span to encompass the entire emission bandwidth (EBW) of the signal.
 - Set RBW = 300 kHz.
 - Set VBW ≥ 1 MHz.
 - Number of points in sweep ≥ 2 Span / RBW.
 - Sweep time = auto.
 - Detector = RMS
 - Trace average at least 100 traces in power averaging mode.
 - Add 10 log(500kHz/RBW) to the test result.
 - Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.

Report Issued Date: May 27, 2016
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC Version 1.2

: 18 of 34

- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

3.3.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 19 of 34

Report Issued Date : May 27, 2016

Report Version : Rev. 01

Report No.: FR642504F

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 20 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

3.4 Unwanted Emissions Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5.725-5.85 GHz band: 15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

(3) KDB 789033 D02 General UNII Test Procedures New Rules v01r02 G)2)c) As specified in 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in 15.407(b)(4)). However, an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak emission limit.

SPORTON INTERNATIONAL (KUNSHAN) INC.
TEL: 86-0512-5790-0158

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 21 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02.
 Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Report Issued Date : May 27, 2016
Report Version : Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC Version 1.2

: 22 of 34

2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR642504F

- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 23 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 24 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.4.6 Test Result of Radiated Band Edges

Please refer to Appendix B.

3.4.7 Duty Cycle

Please refer to Appendix C.

3.4.8 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 25 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of emission (MUz)	Conducted	limit (dΒμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 26 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

3.5.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 27 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

3.5.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	I			Temp	erature	:	22~24	$^{\circ}\!\mathbb{C}$		
Test Engineer :	Amos 2	Zhang			Relati	ve Hun	nidity :	43~46	%		
Test Voltage :	120Va	c / 60H	Z		Phase: Line			Line			
Function Type :	GSM85	50 Idle	+ Blue	etooth I	_ink +	ink + WLAN (5GHz) Link + Earphone + USB Cab					
Function Type :	(Charg	ing froi	m Adap	ter) + E	Battery	1					
80 Leve	l (dBuV)									_	
70.0											
60.0									FCC PART 15E		
50.0					. daylord				FCC PART 15E(AVG)		
50.0		A du	MAL	MANA NAMA	14315	1 1/4 4/3	ю		1/ 1/4 /n		
40.0	wakalarahana ^a	JAN JUST	N ₂ V ₄ W ₁	10 1	2 ¹⁴¹⁶ 18	M.A.	\/ ^ \	Jana Marana	N. J. MANNEY		
30.0	Lat. Just							V TYP	Manday 1/1/		
20.0											
10.0											
0.15	.2		5	1		2 ency (MHz)	5		10 20	30	
Site Condition		: CO01-K		N I 2015							
Condition											
			KI IJE LIS	SN-L-2015	IUZ4 LINI	i					
							Cable				
	Freq		Over Limit	Limit Line	Read		Cable Loss	Remark			
_	Freq MHz		0ver	Limit	Read	LISN		Remark	_		
1	MHz	Level dBuV	Over Limit dB	Limit Line	Read Level dBuV	LISN Factor dB	Loss I		_		
2	MHz 0.54 0.54	dBuV 44.59 36.69	Over Limit dB -11.41 -9.31	Limit Line dBuV 56.00 46.00	Read Level dBuV 34.20 26.30	LISN Factor dB 0.23 0.23	dB 10.16 (QP Average	_		
2 3	MHz 0.54 0.54 0.64	dBuV 44.59 36.69 43.59	Over Limit dB -11.41 -9.31 -12.41	Limit Line dBuV 56.00 46.00 56.00	Read Level dBuV 34.20 26.30 33.19	LISN Factor dB 0.23 0.23 0.24	dB 10.16 (10.16	QP Average QP	_		
2	MHz 0.54 0.54 0.64 0.64	dBuV 44.59 36.69 43.59 36.29	Over Limit dB -11.41 -9.31 -12.41 -9.71	Limit Line dBuV 56.00 46.00	Read Level dBuV 34.20 26.30 33.19 25.89	LISN Factor dB 0.23 0.23 0.24 0.24	dB 10.16 (10.16	QP Average QP Average			
2 3 4 5 6	MHz 0.54 0.54 0.64 0.64 0.77 0.77	dBuV 44.59 36.69 43.59 36.29 41.99 34.69	Over Limit dB -11.41 -9.31 -12.41 -9.71 -14.01 -11.31	Limit Line dBuV 56.00 46.00 56.00 46.00 46.00	Read Level dBuV 34.20 26.30 33.19 25.89 31.60 24.30	LISN Factor dB 0.23 0.23 0.24 0.24 0.24 0.24 0.24	Loss dB	QP Average QP Average QP Average			
2 3 4 5 6 7	MHz 0.54 0.54 0.64 0.64 0.77 0.77	dBuV 44.59 36.69 43.59 36.29 41.99 34.69 41.89	Over Limit dB -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00	Read Level 34.20 26.30 33.19 25.89 31.60 24.30 31.50	LISN Factor dB 0.23 0.23 0.24 0.24 0.24 0.24 0.24 0.25	Loss dB	QP Average QP Average QP Average QP	_		
2 3 4 5 6 7 8	MHz 0.54 0.54 0.64 0.64 0.77 0.77 0.91 0.91	dBuV 44.59 36.69 43.59 36.29 41.99 34.69 41.89 34.69	Over Limit dB -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11 -11.31	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00 46.00	Read Level 34.20 26.30 33.19 25.89 31.60 24.30 31.50 24.30	LISN Factor dB 0.23 0.23 0.24 0.24 0.24 0.24 0.25 0.25	10.16 (10.16 (10.16 (10.15 (10	QP Average QP Average QP Average QP			
2 3 4 5 6 7	MHz 0.54 0.54 0.64 0.64 0.77 0.77 0.91 0.91	dBuV 44.59 36.69 43.59 36.29 41.99 34.69 41.89 34.69 43.58	Over Limit dB -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11 -11.31 -12.42	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00	Read Level 34.20 26.30 33.19 25.89 31.60 24.30 31.50 24.30 33.20	LISN Factor dB 0.23 0.23 0.24 0.24 0.24 0.25 0.25 0.25	Loss dB	QP Average QP Average QP Average QP Average			
2 3 4 5 6 7 8 9	MHz 0.54 0.54 0.64 0.64 0.77 0.77 0.91 0.91 1.08	dBuV 44.59 36.69 43.59 36.29 41.99 34.69 41.89 34.69 43.58 36.18	Over Limit dB -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11 -11.31 -12.42 -9.82	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level 34.20 26.30 33.19 25.89 31.60 24.30 31.50 24.30 33.20 25.80	LISN Factor dB 0.23 0.23 0.24 0.24 0.24 0.25 0.25 0.25 0.24 0.24	10.16 (10.16 (10.16 (10.15 (10	QP Average QP Average QP Average QP Average QP Average QP Average			
2 3 4 5 6 7 8 9 10 11	MHz 0.54 0.54 0.64 0.64 0.77 0.77 0.91 0.91 1.08 1.08 1.26 1.26	Level 44.59 36.69 43.59 36.29 41.99 34.69 41.89 34.69 43.58 36.18 44.96 37.56	Over Limit dB -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11 -11.31 -12.42 -9.82 -11.04 -8.44	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 34.20 26.30 33.19 25.89 31.60 24.30 31.50 24.30 33.20 25.80 34.59 27.19	LISN Factor dB 0.23 0.24 0.24 0.24 0.25 0.25 0.25 0.24 0.23 0.23	Loss dB 10.16 10.16 10.15 10.15 10.14 10	QP Average			
2 3 4 5 6 7 8 9 10 11 12	MHz 0.54 0.54 0.64 0.64 0.77 0.77 0.91 1.08 1.08 1.26 1.26 1.46	dBuV 44.59 36.69 43.59 36.29 41.99 34.69 41.89 34.69 43.58 36.18 44.96 37.56 45.65	Over Limit -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11 -11.31 -12.42 -9.82 -11.04 -8.44 -10.35	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level 34.20 26.30 33.19 25.89 31.60 24.30 31.50 24.30 33.20 25.80 34.59 27.19 35.30	LISN Factor dB 0.23 0.24 0.24 0.24 0.25 0.25 0.25 0.24 0.23 0.23 0.23	Loss dB	QP Average			
2 3 4 5 6 7 8 9 10 11 12 13 14 *	MHz 0.54 0.64 0.64 0.77 0.77 0.91 1.08 1.08 1.26 1.46 1.46	Level 44.59 36.69 43.59 36.29 41.99 34.69 41.89 34.69 43.58 36.18 44.96 37.56 45.65 38.45	Over Limit -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11 -11.31 -12.42 -9.82 -11.04 -8.44 -10.35 -7.55	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level 34.20 26.30 33.19 25.89 31.60 24.30 31.50 24.30 33.20 25.80 34.59 27.19 35.30 28.10	LISN Factor dB 0.23 0.24 0.24 0.24 0.25 0.25 0.24 0.24 0.23 0.23 0.21 0.21	Loss dB	QP Average			
2 3 4 5 6 7 8 9 10 11 12	MHz 0.54 0.54 0.64 0.64 0.77 0.77 0.91 1.08 1.08 1.26 1.46 1.46 1.59	Level 44.59 36.69 43.59 36.29 41.99 34.69 41.89 34.69 43.58 36.18 44.96 37.56 45.65 38.45 45.64	Over Limit dB -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11 -11.31 -12.42 -9.82 -11.04 -8.44 -10.35 -7.55 -10.36	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level 34.20 26.30 33.19 25.89 31.60 24.30 33.20 25.80 34.59 27.19 35.30 28.10 35.30	LISN Factor dB 0.23 0.24 0.24 0.24 0.25 0.25 0.24 0.23 0.23 0.21 0.21 0.20	10.16 (10.16 (10.15 (10.15 (10.14 (10	QP Average QP			
2 3 4 5 6 7 8 9 10 11 12 13 14 *	MHz 0.54 0.64 0.64 0.77 0.77 0.91 1.08 1.08 1.26 1.46 1.46 1.59 1.59	dBuV 44.59 36.69 43.59 36.29 41.99 34.69 41.89 34.69 43.58 36.18 44.96 37.56 45.65 38.45 45.64 38.44	Over Limit -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11 -11.31 -12.42 -9.82 -11.04 -8.44 -10.35 -7.55 -10.36 -7.56	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level 34.20 26.30 33.19 25.89 31.60 24.30 31.50 24.30 33.20 25.80 34.59 27.19 35.30 28.10 35.30 28.10	LISN Factor dB 0.23 0.24 0.24 0.24 0.25 0.25 0.25 0.24 0.23 0.21 0.21 0.20 0.20	Loss dB	QP Average			
2 3 4 5 6 7 8 9 10 11 12 13 14 * 15 16 17	MHz 0.54 0.54 0.64 0.64 0.77 0.77 0.91 1.08 1.08 1.26 1.46 1.46 1.59 1.59 1.86 1.86	Level 44.59 36.69 43.59 36.29 41.99 34.69 41.89 34.69 43.58 36.18 44.96 37.56 45.65 38.45 45.64 38.44 44.53 36.93	Over Limit -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11 -11.31 -12.42 -9.82 -11.04 -8.44 -10.35 -7.55 -10.36 -7.56 -11.47 -9.07	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Read Level 34.20 26.30 33.19 25.89 31.60 24.30 33.20 25.80 34.59 27.19 35.30 28.10 35.30 28.10 34.20 26.60	LISN Factor dB 0.23 0.24 0.24 0.24 0.25 0.25 0.24 0.23 0.21 0.20 0.20 0.19 0.19	Loss dB	QP Average			
2 3 4 5 6 7 8 9 10 11 12 13 14 * 15	MHz 0.54 0.64 0.64 0.77 0.77 0.91 1.08 1.26 1.46 1.46 1.59 1.86 1.86 3.11	dBuV 44.59 36.69 43.59 36.29 41.99 34.69 43.58 36.18 44.96 37.56 45.65 38.45 45.64 38.44 44.53 36.93 41.64	Over Limit -11.41 -9.31 -12.41 -9.71 -14.01 -11.31 -14.11 -11.31 -12.42 -9.82 -11.04 -8.44 -10.35 -7.55 -10.36 -7.56 -11.47 -9.07 -14.36	Limit Line dBuV 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level 34.20 26.30 33.19 25.89 31.60 24.30 33.20 25.80 34.59 27.19 35.30 28.10 35.30 28.10 34.20 26.60 31.30	LISN Factor dB 0.23 0.24 0.24 0.24 0.25 0.25 0.24 0.23 0.21 0.20 0.19 0.19 0.18	Loss dB	QP Average			

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 28 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC Version 1.2

22~24°C Test Mode: Mode 1 Temperature: 43~46% Test Engineer: Amos Zhang **Relative Humidity:** Test Voltage: 120Vac / 60Hz Phase: Neutral GSM850 Idle + Bluetooth Link + WLAN (5GHz) Link + Earphone + USB Cable Function Type: (Charging from Adapter) + Battery 1 80 Level (dBuV) 70.0 FCC PART 15E 60.0 FCC PART 15E(AVG) 50.0 40.0 30.0 20.0 10.0 0.15 .2 .5 5 10 20 30 Frequency (MHz) Site : CO01-KS Condition : FCC PART 15E LISN-N-20151024 NEUTRAL LISN Cable 0ver Limit Read Freq Level Limit Line Level Factor Loss Remark MHz dBuV dBuV dBuV dB dB 1 * 0.56 41.29 -14.71 56.00 30.80 0.33 10.16 QP 0.56 31.09 -14.91 46.00 20.60 0.33 10.16 Average 3 0.97 37.10 -18.90 56.00 26.59 0.37 10.14 QP 4 0.97 26.10 -19.90 46.00 15.59 0.37 10.14 Average 5 1.16 38.71 -17.29 56.00 28.20 0.37 10.14 QP 0.37 10.14 Average 26.81 -19.19 46.00 16.30 6 1.16 39.81 -16.19 56.00 29.30 0.37 10.14 QP 1.36 8 1.36 27.11 -18.89 46.00 16.60 0.37 10.14 Average 9 1.54 40.82 -15.18 56.00 30.30 0.38 10.14 QP 10 1.54 27.32 -18.68 46.00 16.80 0.38 10.14 Average 1.78 40.82 -15.18 56.00 30.30 11 0.38 10.14 QP 1.78 25.72 -20.28 46.00 15.20 0.38 10.14 Average 12 13 2.01 37.12 -18.88 56.00 26.60 0.38 10.14 QP 23.82 -22.18 46.00 13.30 0.38 10.14 Average 2.01

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 29 of 34

Report Issued Date : May 27, 2016

Report Version : Rev. 01

Report No.: FR642504F

3.6 Frequency Stability Measurement

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- To ensure emission at the band edge is maintained within the authorized band, those values shall
 be measured by radiation emissions at upper and lower frequency points, and finally
 compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Please refer to Appendix A.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 30 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

3.7 Automatically Discontinue Transmission

3.7.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

Report Issued Date: May 27, 2016
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC Version 1.2

: 31 of 34

3.8 Antenna Requirements

3.8.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2) ,if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR642504F

3.8.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.8.3 Antenna Gain

The antenna gain is less than 6 dBi. Therefore, it is not necessary to reduce maximum output power limit

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Report Issued Date: May 27, 2016
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWLB4 AC Version 1.2

: 32 of 34

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration	Test Date	Due Date	Remark
				23.2.2.2.0.1.0.1.00	Date		230 2410	
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Sep. 10, 2015	Apr. 22, 2016~ May 24, 2016	Sep. 09, 2016	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	30MHz~40GHz	Jan. 20, 2016	Apr. 22, 2016~ May 24, 2016	Jan. 19, 2017	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 20, 2016	Apr. 22, 2016~ May 24, 2016	Jan. 19, 2017	Conducted (TH01-KS)
Thermal Chamber	Ten Billion	TTC-B3S	TBN-960502	-40~+150°C	Oct. 24, 2015	Apr. 22, 2016~ May 24, 2016	Oct. 23, 2016	Conducted (TH01-KS)
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz; Max 30dBm	Sep. 10, 2015	Apr. 22, 2016~ May 19, 2016	Sep. 09, 2016	Radiation (03CH03-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55150244	10Hz-44GHz	Apr. 22, 2016	Apr. 22, 2016~ May 19, 2016	Apr. 21, 2017	Radiation (03CH03-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 07, 2015	Apr. 22, 2016~ May 19, 2016	Nov. 06, 2016	Radiation (03CH03-KS)
Bilog Antenna	TeseQ	CBL6112D	23182	25MHz-2GHz	Mar. 12, 2016	Apr. 22, 2016~ May 19, 2016	Mar. 11, 2017	Radiation (03CH03-KS)
Horn Antenna	Schwarzbeck	BBHA9120 D	9120D-1356	1GHz~18GHz	Apr. 16, 2016	Apr. 22, 2016~ May 19, 2016	Apr. 15, 2017	Radiation (03CH03-KS)
SHF-EHF Horn	com-power	AH-840	101070	18Ghz-40Ghz	Oct. 10, 2015	Apr. 22, 2016~ May 19, 2016	Oct. 09, 2016	Radiation (03CH03-KS)
Amplifier	Burgeon	BPA-530	102212	0.01MHz-3000M Hz	Aug. 10, 2015	Apr. 22, 2016~ May 19, 2016	Aug. 09, 2016	Radiation (03CH03-KS)
Amplifier	Agilent	8449B	3008A02370	1GHz~26.5GHz	Oct. 24, 2015	Apr. 22, 2016~ May 19, 2016	Oct. 23, 2016	Radiation (03CH03-KS)
Amplifier	MITEQ	TTA1840-3 5-HG	1887435	18GHz~40GHz	Aug. 27, 2015	Apr. 22, 2016~ May 19, 2016	Aug. 26, 2016	Radiation (03CH03-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Apr. 22, 2016~ May 19, 2016	NCR	Radiation (03CH03-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Apr. 22, 2016~ May 19, 2016	NCR	Radiation (03CH03-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Apr. 22, 2016~ May 19, 2016	NCR	Radiation (03CH03-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 29, 2016	May 12, 2016	Apr. 28, 2017	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 24, 2015	May 12, 2016	Oct. 23, 2016	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 24, 2015	May 12, 2016	Oct. 23, 2016	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP000000811	AC 0V~300V, 45Hz~1000Hz	Oct. 24, 2015	May 12, 2016	Oct. 23, 2016	Conduction (CO01-KS)

NCR: No Calibration Required

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 33 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.3 dB
of 95% (U = 2Uc(y))	2.3 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.5 dB
of 95% (U = 2Uc(y))	

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : 34 of 34
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : A1 of A1
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15EWLB4 AC Version 1.2

Report Number : FR642504F

Test Engineer:	Issac Song	Temperature:	24~25	°C
Test Date:	2016/4/22~2016/5/24	Relative Humidity:	49~51	%

TEST RESULTS DATA 6dB and 26dB EBW and 99% OBW

						Band IV			
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)	6 dB Bandwidth (MHz)	6dB Bandwidth min. Limit (MHz)	Pass/Fail
11a	6M bps	1	149	5745	18.43	23.33	16.32	0.5	Pass
11a	6Mbps	1	157	5785	18.38	23.28	16.32	0.5	Pass
11a	6Mbps	1	161	5805	19.08	23.63	16.32	0.5	Pass
HT20	MCS 0	1	149	5745	19.18	23.78	17.52	0.5	Pass
HT20	MCS 0	1	157	5785	19.23	23.78	17.56	0.5	Pass
HT20	MCS 0	1	161	5805	19.43	24.13	17.56	0.5	Pass
HT40	MCS 0	1	151	5755	36.96	44.42	35.33	0.5	Pass
HT40	MCS 0	1	159	5795	36.56	43.79	35.09	0.5	Pass
VHT20	MCS 0	1	149	5745	19.13	23.93	17.30	0.5	Pass
VHT20	MCS 0	1	157	5785	19.18	23.83	17.56	0.5	Pass
VHT20	MCS 0	1	161	5805	19.33	23.98	17.56	0.5	Pass
VHT40	MCS 0	1	151	5755	36.86	44.96	35.33	0.5	Pass
VHT40	MCS 0	1	159	5795	36.76	45.14	35.13	0.5	Pass
VHT80	MCS 0	1	155	5775	75.04	83.92	75.05	0.5	Pass

TEST RESULTS DATA Average Power Table

						Band	IV		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	Pass/Fail
11a	6M bps	1	149	5745	0.58	12.15	30.00	-3.70	Pass
11a	6Mbps	1	157	5785	0.58	11.44	30.00	-3.70	Pass
11a	6Mbps	1	161	5805	0.58	11.60	30.00	-3.70	Pass
HT20	MCS 0	1	149	5745	0.63	11.51	30.00	-3.70	Pass
HT20	MCS 0	1	157	5785	0.63	11.44	30.00	-3.70	Pass
HT20	MCS 0	1	161	5805	0.63	12.05	30.00	-3.70	Pass
HT40	MCS 0	1	151	5755	1.19	11.42	30.00	-3.70	Pass
HT40	MCS 0	1	159	5795	1.19	11.91	30.00	-3.70	Pass
VHT20	MCS 0	1	149	5745	0.78	11.73	30.00	-3.70	Pass
VHT20	MCS 0	1	157	5785	0.78	11.56	30.00	-3.70	Pass
VHT20	MCS 0	1	161	5805	0.78	12.14	30.00	-3.70	Pass
VHT40	MCS 0	1	151	5755	1.47	11.50	30.00	-3.70	Pass
VHT40	MCS 0	1	159	5795	1.47	12.14	30.00	-3.70	Pass
VHT80	MCS 0	1	155	5775	2.58	12.07	30.00	-3.70	Pass

TEST RESULTS DATA Power Spectral Density

						Band	IV			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	10log (500kHz /RBW) Factor (dB)	Average Power Density (dBm/500kHz)	Average PSD Limit (dBm/500kHz)	DG (dBi)	Pass/Fail
11a	6M bps	1	149	5745	0.58	2.22	-1.53	30.00	-3.70	Pass
11a	6Mbps	1	157	5785	0.58	2.22	-1.89	30.00	-3.70	Pass
11a	6Mbps	1	161	5805	0.58	2.22	-1.40	30.00	-3.70	Pass
HT20	MCS 0	1	149	5745	0.63	2.22	-1.93	30.00	-3.70	Pass
HT20	MCS 0	1	157	5785	0.63	2.22	-1.72	30.00	-3.70	Pass
HT20	MCS 0	1	161	5805	0.63	2.22	-1.68	30.00	-3.70	Pass
HT40	MCS 0	1	151	5755	1.19	2.22	-4.63	30.00	-3.70	Pass
HT40	MCS 0	1	159	5795	1.19	2.22	-4.57	30.00	-3.70	Pass
VHT20	MCS 0	1	149	5745	0.78	2.22	-1.78	30.00	-3.70	Pass
VHT20	MCS 0	1	157	5785	0.78	2.22	-1.97	30.00	-3.70	Pass
VHT20	MCS 0	1	161	5805	0.78	2.22	-1.86	30.00	-3.70	Pass
VHT40	MCS 0	1	151	5755	1.47	2.22	-3.83	30.00	-3.70	Pass
VHT40	MCS 0	1	159	5795	1.47	2.22	-3.42	30.00	-3.70	Pass
VHT80	MCS 0	1	155	5775	2.58	2.22	-7.07	30.00	-3.70	Pass

TEST RESULTS DATA Frequency Stability

						Band	IV			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Center Frequency (MHz)	Frequency Deviation (MHz)	Frequency Stablility (ppm)	Temperature (°C)	Voltage (V)	Note
11a	6M bps	1	149	5745	5745.050	0.050	8.70	20	3.55	
11a	6M bps	1	149	5745	5745.050	0.050	8.70	20	4.35	
11a	6M bps	1	149	5745	5745.050	0.050	8.70	20	3.9	
11a	6M bps	1	149	5745	5745.050	0.050	8.70	-30	3.9	
11a	6M bps	1	149	5745	5745.025	0.025	4.35	50	3.9	

Appendix B. Radiated Spurious Emission

Band 4 - 5725~5850MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
	*	5748	98.72	-	-	94.38	32.05	8.58	36.29	236	310	Р	Н
	*	5750	91.76	-	-	87.42	32.05	8.58	36.29	236	310	Α	Н
		5699.56	52.42	-52.56	104.98	48.11	32.02	8.54	36.25	236	310	Р	Н
000 44-		5718.92	60.36	-50.24	110.6	56.03	32.04	8.57	36.28	236	310	Р	Н
802.11a CH 149		5723.64	70.83	-48.37	119.2	66.5	32.04	8.57	36.28	236	310	Р	Н
5745MHz	*	5750	97.91	-	-	93.57	32.05	8.58	36.29	132	339	Р	V
3743WITIZ	*	5750	90.66	-	-	86.32	32.05	8.58	36.29	132	339	Α	V
		5698.68	51.65	-52.68	104.33	47.34	32.02	8.54	36.25	132	339	Р	V
		5715.8	60.39	-49.34	109.73	56.08	32.03	8.55	36.27	132	339	Р	V
		5723.64	70.53	-48.67	119.2	66.2	32.04	8.57	36.28	132	339	Р	V
	*	5788	95.01	-	-	90.64	32.07	8.62	36.32	187	344	Р	Н
802.11a	*	5790	87.42	-	-	83.05	32.07	8.62	36.32	187	344	Α	Н
CH 157	*	5780	93.86	-	-	89.51	32.06	8.6	36.31	137	347	Р	V
5785MHz	*	5778	86.64	-	-	82.29	32.06	8.6	36.31	137	347	Α	V
	*	5798	93.77	-	-	89.4	32.07	8.62	36.32	141	350	Р	Н
	*	5800	86.78	-	-	82.41	32.07	8.62	36.32	141	350	Α	Н
		5851.44	47.06	-71.96	119.02	42.68	32.09	8.65	36.36	141	350	Р	Н
		5860.24	47.62	-61.81	109.43	43.23	32.1	8.66	36.37	141	350	Р	Н
802.11a		5878.32	46.86	-55.97	102.83	42.47	32.1	8.67	36.38	141	350	Р	Н
CH 161	*	5800	94.22	-	-	89.85	32.07	8.62	36.32	136	343	Р	V
5805MHz	*	5800	87.04	-	-	82.67	32.07	8.62	36.32	136	343	Α	V
		5851.04	45.84	-74.09	119.93	41.46	32.09	8.65	36.36	136	343	Р	V
		5857.04	46.75	-63.58	110.33	42.36	32.1	8.66	36.37	136	343	P P A P A P A P A P A	V
		5883.68	46.23	-52.62	98.85	41.84	32.1	8.67	36.38	136	343	Р	V

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018

Page Number : B1 of B15 Report Issued Date: May 27, 2016 Report Version : Rev. 01

Report No.: FR642504F

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	ï
802.11a		11490	47.26	-26.74	74	55.01	38.59	14.2	60.54	100	0	P	Η
CH 149 5745MHz		11490	49.67	-24.33	74	57.42	38.59	14.2	60.54	100	0	Р	V
802.11a		11571	48.41	-25.59	74	55.91	38.75	14.25	60.5	100	0	Р	Н
CH 157 5785MHz		11571	49.55	-24.45	74	57.05	38.75	14.25	60.5	100	0	Р	V
802.11a		11610	49.76	-24.24	74	57.14	38.83	14.27	60.48	100	0	Р	Н
CH 161 5805MHz		11610	50.01	-23.99	74	57.39	38.83	14.27	60.48	100	0	Р	V
				ı	1		1				I		

Remark

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : B2 of B15
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11n HT20 (Band Edge @ 3m)

					_							_	
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	i i
		5690.12	46.43	-51.58	98.01	42.12	32.02	8.54	36.25	324	315	Р	Н
		5716.68	52.4	-57.57	109.97	48.09	32.03	8.55	36.27	324	315	Р	Н
		5721.08	55.9	-57.46	113.36	51.57	32.04	8.57	36.28	324	315	Р	Н
802.11n	*	5752	93.11	-	-	88.77	32.05	8.59	36.3	324	315	Р	Н
HT20	*	5752	85.79	-	-	81.45	32.05	8.59	36.3	324	315	Α	Н
CH 149		5692.6	46.77	-53.07	99.84	42.46	32.02	8.54	36.25	136	341	Р	V
5745MHz		5719.72	50.51	-60.31	110.82	46.18	32.04	8.57	36.28	136	341	Р	V
		5724.52	57.74	-63.47	121.21	53.41	32.04	8.57	36.28	136	341	Р	V
	*	5742	93.24	-	-	88.9	32.05	8.58	36.29	136	341	Р	V
	*	5742	86.09	-	-	81.75	32.05	8.58	36.29	136	341	Α	V
802.11n	*	5792	92.88	-	-	88.51	32.07	8.62	36.32	316	347	Р	Н
HT20	*	5792	85.58	-	-	81.21	32.07	8.62	36.32	316	347	Α	Н
CH 157	*	5790	93.36	-	-	88.99	32.07	8.62	36.32	124	337	Р	V
5785MHz	*	5778	86.22	-	-	81.87	32.06	8.6	36.31	124	337	Α	V
	*	5830	94.11	-	-	89.74	32.08	8.64	36.35	102	347	Р	Н
	*	5830	86.61	-	-	82.24	32.08	8.64	36.35	102	347	Α	Н
		5850.88	52.31	-67.98	120.29	47.93	32.09	8.65	36.36	102	347	Р	Н
802.11n		5860.72	49.78	-59.52	109.3	45.39	32.1	8.66	36.37	102	347	Р	Н
HT20		5876.48	46.89	-57.31	104.2	42.5	32.1	8.67	36.38	102	347	Р	Н
CH 161	*	5820	93.53	-	-	89.16	32.08	8.64	36.35	126	332	Р	V
5805MHz	*	5820	86.13	-	-	81.76	32.08	8.64	36.35	126	332	Α	V
		5850.8	52.99	-67.49	120.48	48.61	32.09	8.65	36.36	126	332	Р	٧
		5855.2	49.95	-60.89	110.84	45.56	32.1	8.66	36.37	126	332	Р	٧
		5889.68	48.42	-45.98	94.4	44.03	32.11	8.68	36.4	126	332	Р	V

Remark

. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : B3 of B15
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI Ant.	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	ļ
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11490	47.7	-26.3	74	55.45	38.59	14.2	60.54	100	0	Р	Н
HT20													
CH 149		11490	48.85	-25.15	74	56.6	38.59	14.2	60.54	100	0	Р	٧
5745MHz													
802.11n		11571	49.28	-24.72	74	56.78	38.75	14.25	60.5	100	0	Р	Н
HT20													
CH 157		11571	49.57	-24.43	74	57.07	38.75	14.25	60.5	100	0	Р	V
5785MHz													
802.11n		11649	49.26	-24.74	74	56.54	38.9	14.29	60.47	100	360	Р	Н
HT20													
CH 161		11649	50.14	-23.86	74	57.42	38.9	14.29	60.47	100	0	Р	V
5805MHz													

No other spurious found.

All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018

Page Number : B4 of B15 Report Issued Date: May 27, 2016 : Rev. 01

Report No.: FR642504F

Report Version

Band 4 5725~5850MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5690.28	50.26	-47.87	98.13	45.95	32.02	8.54	36.25	148	341	Р	Н
		5717.56	57.69	-52.53	110.22	53.36	32.04	8.57	36.28	148	341	Р	Н
		5721.48	57.56	-56.72	114.28	53.23	32.04	8.57	36.28	148	341	Р	Н
802.11n	*	5742	90.25	-	-	85.91	32.05	8.58	36.29	148	341	Р	Н
HT40	*	5744	83.53	-	-	79.19	32.05	8.58	36.29	148	341	Α	Н
CH 151		5696.44	52.03	-50.65	102.68	47.72	32.02	8.54	36.25	117	331	Р	٧
5755MHz		5717.4	56.51	-53.66	110.17	52.2	32.03	8.55	36.27	117	331	Р	V
		5722.52	59.17	-57.48	116.65	54.84	32.04	8.57	36.28	117	331	Р	V
	*	5746	90.71	-	-	86.37	32.05	8.58	36.29	117	331	Р	V
	*	5744	83.88	-	-	79.54	32.05	8.58	36.29	117	331	Α	V
	*	5810	92.5	-	-	88.12	32.08	8.63	36.33	155	346	Р	Н
	*	5784	84.24	-	-	79.89	32.06	8.6	36.31	155	346	Α	Н
		5851.36	48.85	-70.35	119.2	44.47	32.09	8.65	36.36	155	346	Р	Н
802.11n		5855.28	47.79	-63.03	110.82	43.4	32.1	8.66	36.37	155	346	Р	Н
HT40		5887.2	47.23	-49.01	96.24	42.84	32.1	8.67	36.38	155	346	Р	Н
CH 159	*	5806	91.35	-	-	86.97	32.08	8.63	36.33	104	336	Р	V
5795MHz	*	5784	84.22	-	-	79.87	32.06	8.6	36.31	104	336	Α	V
		5852.64	47.95	-68.33	116.28	43.57	32.09	8.65	36.36	104	336	Р	V
		5859.36	48.03	-61.65	109.68	43.64	32.1	8.66	36.37	104	336	Р	V
		5886.88	46.15	-50.33	96.48	41.76	32.1	8.67	36.38	104	336	Р	V

Romark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : B5 of B15
Report Issued Date : May 27, 2016

Report No.: FR642504F

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11511	47.94	-26.06	74	55.67	38.6	14.21	60.54	100	0	Р	Н
HT40													
CH 151		11511	49.01	-24.99	74	56.74	38.6	14.21	60.54	100	0	Р	V
5755MHz													
802.11n		11589	47.9	-26.1	74	55.34	38.79	14.26	60.49	100	0	Р	Н
HT40													
CH 159		11589	48.35	-25.65	74	55.79	38.79	14.26	60.49	100	0	Р	V
5795MHz													
									1			1	

Remark 2.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : B6 of B15
Report Issued Date : May 27, 2016

Report No.: FR642504F

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11ac VHT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
	*	5738	92.74	-	-	88.4	32.05	8.58	36.29	100	344	Р	Н
	*	5740	86.1	-	-	81.76	32.05	8.58	36.29	100	344	Α	Н
		5693.08	48.63	-51.57	100.2	44.32	32.02	8.54	36.25	100	344	Р	Н
802.11ac		5709.08	51.79	-56.05	107.84	47.48	32.03	8.55	36.27	100	344	Р	Н
VHT20		5722.36	57.67	-58.61	116.28	53.34	32.04	8.57	36.28	100	344	Р	Н
CH 149	*	5744	92.74	-	-	88.4	32.05	8.58	36.29	100	336	Р	V
5745MHz	*	5740	86.2	-	-	81.86	32.05	8.58	36.29	100	336	Α	V
		5692.68	47.75	-52.15	99.9	43.44	32.02	8.54	36.25	100	336	Р	V
		5719.64	50.96	-59.84	110.8	46.63	32.04	8.57	36.28	100	336	Р	V
		5722.84	58.58	-58.8	117.38	54.25	32.04	8.57	36.28	100	336	Р	V
802.11ac	*	5792	92.96	-	-	88.59	32.07	8.62	36.32	100	347	Р	Н
VHT20	*	5778	86.37	-	-	82.02	32.06	8.6	36.31	100	347	Α	Н
CH 157	*	5780	93.65	-	-	89.3	32.06	8.6	36.31	100	336	Р	V
5785MHz	*	5792	86.66	-	-	82.29	32.07	8.62	36.32	100	336	Α	V
	*	5798	92.69	-	-	88.32	32.07	8.62	36.32	109	342	Р	Н
	*	5800	85.94	-	-	81.57	32.07	8.62	36.32	109	342	Α	Н
		5853.44	46.05	-68.41	114.46	41.67	32.09	8.65	36.36	109	342	Р	Н
802.11ac		5856.96	47.17	-63.18	110.35	42.78	32.1	8.66	36.37	109	342	Р	Н
VHT20		5888.08	46.62	-48.97	95.59	42.23	32.11	8.68	36.4	109	342	Р	Н
CH 161	*	5800	93.19	-	-	88.82	32.07	8.62	36.32	100	329	Р	V
5805MHz	*	5800	86.45	-	-	82.08	32.07	8.62	36.32	100	329	Α	V
		5854.4	46.74	-65.53	112.27	42.35	32.1	8.66	36.37	100	329	Р	V
		5858.24	48.42	-61.57	109.99	44.03	32.1	8.66	36.37	100	329	Р	V
		5880.56	46.46	-54.71	101.17	42.07	32.1	8.67	36.38	100	329	Р	V

Remark

. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : B7 of B15
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

WIFI 802.11ac VHT20 (Harmonic @ 3m)

WIFI Ant. 1	Note	Frequency	Level (dBµV/m)	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Avg.	ļ
802.11ac		11490	47.38	-26.62	74	55.13	38.59	14.2	60.54	100	0	Р	Н
VHT20 CH 149 5745MHz		11490	48.47	-25.53	74	56.22	38.59	14.2	60.54	100	0	Р	V
802.11ac		11571	46.89	-27.11	74	54.39	38.75	14.25	60.5	100	0	Р	Н
VHT20 CH 157 5785MHz		11571	50.65	-23.35	74	58.15	38.75	14.25	60.5	100	0	Р	V
802.11ac		11610	48.36	-25.64	74	55.74	38.83	14.27	60.48	100	0	Р	Н
VHT20 CH 161 5805MHz		11610	49.66	-24.34	74	57.04	38.83	14.27	60.48	100	0	Р	V

Remark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : B8 of B15
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11ac VHT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	5752	91.43	-	-	87.09	32.05	8.59	36.3	100	325	Р	Н
	*	5744	83.52	-	-	79.18	32.05	8.58	36.29	100	325	Α	Н
		5698.44	50.4	-53.75	104.15	46.09	32.02	8.54	36.25	100	325	Р	Н
802.11ac		5717.48	56.27	-53.93	110.2	51.96	32.03	8.55	36.27	100	325	Р	Н
VHT40		5723.24	56.71	-61.58	118.29	52.38	32.04	8.57	36.28	100	325	Р	Н
CH 151	*	5766	90.81	-	-	86.47	32.05	8.59	36.3	132	336	Р	٧
5755MHz	*	5766	83.97	-	-	79.63	32.05	8.59	36.3	132	336	Α	٧
		5698.28	52.23	-51.8	104.03	47.92	32.02	8.54	36.25	132	336	Р	٧
		5719.16	56.39	-54.28	110.67	52.06	32.04	8.57	36.28	132	336	Р	٧
		5723.88	58.36	-61.39	119.75	54.03	32.04	8.57	36.28	132	336	Р	٧
	*	5786	90.14	-	-	85.77	32.07	8.62	36.32	100	323	Р	Н
	*	5784	83.2	-	-	78.85	32.06	8.6	36.31	100	323	Α	Н
		5851.36	48.97	-70.23	119.2	44.59	32.09	8.65	36.36	100	323	Р	Н
802.11ac		5855.92	48.71	-61.93	110.64	44.32	32.1	8.66	36.37	100	323	Р	Н
VHT40		5878.56	47.62	-55.04	102.66	43.23	32.1	8.67	36.38	100	323	Р	Н
CH 159	*	5792	90.41	-	-	86.04	32.07	8.62	36.32	100	344	Р	٧
5795MHz	*	5792	83.36	-	-	78.99	32.07	8.62	36.32	100	344	Α	٧
		5851.92	48.87	-69.05	117.92	44.49	32.09	8.65	36.36	100	344	Р	٧
		5857.2	48.36	-61.92	110.28	43.97	32.1	8.66	36.37	100	344	Р	V
		5876.48	46.01	-58.19	104.2	41.62	32.1	8.67	36.38	100	344	Р	٧

Romark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : B9 of B15
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11ac VHT40 (Harmonic @ 3m)

Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	11511	47.73	-26.27	74	55.46	38.6	14.21	60.54	100	0	Р	Н
	11511	48.17	-25.83	74	55.9	38.6	14.21	60.54	100	0	Р	٧
	11589	48.68	-25.32	74	56.12	38.79	14.26	60.49	100	0	Р	Н
	11589	53.38	-20.62	74	60.82	38.79	14.26	60.49	100	0	Р	٧
										_		
!	11589	49.5	-4.5	54	56.94	38.79	14.26	60.49	100	0	Α	V
	Note !	(MHz) 11511 11511 11589	(MHz) (dBμV/m) 11511 47.73 11511 48.17 11589 48.68 11589 53.38	(MHz) (dBμV/m) (dB) 11511 47.73 -26.27 11511 48.17 -25.83 11589 48.68 -25.32 11589 53.38 -20.62	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) 11511 47.73 -26.27 74 11511 48.17 -25.83 74 11589 48.68 -25.32 74 11589 53.38 -20.62 74	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV/m) 11511 47.73 -26.27 74 55.46 11511 48.17 -25.83 74 55.9 11589 48.68 -25.32 74 56.12 11589 53.38 -20.62 74 60.82	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) 11511 47.73 -26.27 74 55.46 38.6 11511 48.17 -25.83 74 55.9 38.6 11589 48.68 -25.32 74 56.12 38.79 11589 53.38 -20.62 74 60.82 38.79	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) 11511 47.73 -26.27 74 55.46 38.6 14.21 11511 48.17 -25.83 74 55.9 38.6 14.21 11589 48.68 -25.32 74 56.12 38.79 14.26 11589 53.38 -20.62 74 60.82 38.79 14.26	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) 11511 47.73 -26.27 74 55.46 38.6 14.21 60.54 11511 48.17 -25.83 74 55.9 38.6 14.21 60.54 11589 48.68 -25.32 74 56.12 38.79 14.26 60.49 11589 53.38 -20.62 74 60.82 38.79 14.26 60.49	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) 11511 47.73 -26.27 74 55.46 38.6 14.21 60.54 100 11511 48.17 -25.83 74 55.9 38.6 14.21 60.54 100 11589 48.68 -25.32 74 56.12 38.79 14.26 60.49 100 11589 53.38 -20.62 74 60.82 38.79 14.26 60.49 100	(MHz) Limit (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	(MHz) Limit (dB μV/m) Line (dB μV/m) Level (dB μV) Factor (dB/m) Loss (dB) Factor (dB) Pos (deg) Avg. (P/A) 11511 47.73 -26.27 74 55.46 38.6 14.21 60.54 100 0 P 11511 48.17 -25.83 74 55.9 38.6 14.21 60.54 100 0 P 11589 48.68 -25.32 74 56.12 38.79 14.26 60.49 100 0 P 11589 53.38 -20.62 74 60.82 38.79 14.26 60.49 100 0 P

Remark

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : B10 of B15
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5694.84	59.49	-42.01	101.5	55.18	32.02	8.54	36.25	328	357	Р	Н
		5701.16	59.62	-46.01	105.63	55.31	32.03	8.55	36.27	328	357	Р	Н
		5721.56	59.13	-55.33	114.46	54.8	32.04	8.57	36.28	328	357	Р	Н
	*	5756	88.45	-	-	84.11	32.05	8.59	36.3	328	357	Р	Н
	*	5768	82.23	-	-	77.89	32.05	8.59	36.3	328	357	Α	Н
		5850.4	53.85	-67.54	121.39	49.47	32.09	8.65	36.36	328	357	Р	Н
802.11ac		5855.92	52.7	-57.94	110.64	48.31	32.1	8.66	36.37	328	357	Р	Н
VHT80		5878.32	47.97	-54.86	102.83	43.58	32.1	8.67	36.38	328	357	Р	Н
CH 155		5692.2	58.9	-40.65	99.55	54.59	32.02	8.54	36.25	100	359	Р	V
5775MHz		5701.32	60.41	-45.26	105.67	56.1	32.03	8.55	36.27	100	359	Р	٧
	*	5721.32	59.64	-54.27	113.91	55.31	32.04	8.57	36.28	100	359	Р	٧
	*	5778	88.67	-	-	84.32	32.06	8.6	36.31	100	359	Р	٧
		5780	82.38	-	-	78.03	32.06	8.6	36.31	100	359	Α	٧
		5851.52	52.52	-66.31	118.83	48.14	32.09	8.65	36.36	100	359	Р	V
		5856.08	51.81	-58.79	110.6	47.42	32.1	8.66	36.37	100	359	Р	V
		5879.76	47.38	-54.38	101.76	42.99	32.1	8.67	36.38	100	359	Р	V

Remark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : B11 of B15
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
802.11ac		11550	48.08	-25.92	74	34	38.71	12.39	37.02	100	0	Р	Н
VHT80													
CH 155		11550	45.08	-28.92	74	31	38.71	12.39	37.02	100	0	Р	V
5775MHz													
	1 N/	o other spurio	us found										
Remark	I. INC	otilei spullo	us iouiiu.										

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018

Page Number : B12 of B15 Report Issued Date: May 27, 2016 : Rev. 01 Report Version

Report No.: FR642504F

Emission below 1GHz

5GHz WIFI 802.11n HT40 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		36.79	20.47	-19.53	40	35.82	16.42	0.73	32.5	-	-	Р	Н
		48.43	19.65	-20.35	40	40.87	10.47	0.84	32.53	-	-	Р	Н
		56.19	25.45	-14.55	40	49.69	7.44	0.9	32.58	100	24	Р	Н
		77.53	18.6	-21.4	40	40.86	9.2	1.07	32.53	-	-	Р	Н
5GHz		323.91	19.99	-26.01	46	34.69	15.33	2.21	32.24	-	-	Р	Н
802.11ac		756.53	22.66	-23.34	46	30.07	20.92	3.49	31.82	-	-	Р	Н
VHT80		36.79	26.97	-13.03	40	42.32	16.42	0.73	32.5	-	-	Р	٧
LF		48.43	28.13	-11.87	40	49.35	10.47	0.84	32.53	-	-	Р	٧
		58.13	28.38	-11.62	40	52.89	7.12	0.91	32.54	100	214	Р	٧
		77.53	18.33	-21.67	40	40.59	9.2	1.07	32.53	-	-	Р	٧
		288.02	21.38	-24.62	46	37.04	14.5	2.04	32.2	-	-	Р	٧
		552.83	21.91	-24.09	46	32.1	18.52	2.94	31.65	-	-	Р	V
Remark		o other spurio I results are P		st limit li	ine.								

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018

Page Number : B13 of B15 Report Issued Date: May 27, 2016

Report No.: FR642504F

Report Version : Rev. 01

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any							
	unwanted emissions shall not exceed the level of the fundamental frequency.							
!	Test result is over limit line.							
P/A	Peak or Average							
H/V	Horizontal or Vertical							

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : B14 of B15
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

A calculation example for radiated spurious emission is shown as below:

Report No.: FR642504F

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 SPORTON INTERNATIONAL (KUNSHAN) INC.
 Page Number
 : B15 of B15

 TEL: 86-0512-5790-0158
 Report Issued Date
 : May 27, 2016

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : 2ACCJA018 Report Template No.: BU5-FR15EWLB4 AC Version 1.2

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11a	87.500	1.370	0.730	1kHz
802.11n HT20	86.516	1.274	0.785	1kHz
802.11n HT40	75.951	0.636	1.572	3kHz
802.11ac VHT20	83.560	0.980	1.021	3kHz
802.11ac VHT40	71.217	0.491	2.035	3kHz
802.11ac VHT80	55.162	0.248	4.035	10kHz

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : C1 of C4
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

FCC RF Test Report

Report No.: FR642504F

802.11n HT20

Date: 22.APR.2016 22:09:38

802.11n HT40

Date: 22.APR.2016 22:15:33

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : C2 of C4
Report Issued Date : May 27, 2016
Report Version : Rev. 01

Report No.: FR642504F

802.11ac VHT20

Date: 22.APR.2016 22:20:11

802.11ac VHT40

Date: 22.APR.2016 22:25:44

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : C3 of C4
Report Issued Date : May 27, 2016
Report Version : Rev. 01

FCC RF Test Report

Report No.: FR642504F

802.11ac VHT80

Date: 22.APR.2016 22:31:36

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: 2ACCJA018 Page Number : C4 of C4
Report Issued Date : May 27, 2016
Report Version : Rev. 01