Segundo parcial de Matemática Discreta 1

Martes 29 de noviembre de 2016.

N ^o Parcial	Nombre y apellido	Cédula

MÚLTIPLE OPCIÓN						
1	2	3	4	5		

Ejercicio de desarrollo 1 (15 puntos)

Se considera en $A\subseteq \mathbb{N}\times \mathbb{N}$ la siguiente relación:

$$(a,b)\mathcal{R}(c,d) \iff$$
 a divide a c y b \leq d

- 1. Demostrar que \mathcal{R} es una relación de orden parcial.
- 2. Si $A = \{(2,3), (2,7), (4,1), (4,9), (8,5), (8,6)\}$. Dibujar el diagrama de Hasse y determinar (en caso de existir) elementos maximales, elementos minimales, elemento máximo y elemento mínimo.
- 3. Agregar a lo sumo 3 elementos a la relación para que $\mathcal R$ sea retículo.

Ejercicio de desarrollo 2 (15 puntos)

Sean los siguientes grafos G_1 y G_2 respectivamente:

- 1. Definir el concepto de homeomorfismo.
- 2. Probar que si un grafo H_1 es euleriano y H_2 es homeomorfo a H_1 , entonces H_2 también es euleriano.
- 3. Probar que G_1 y G_2 son homeomorfos.
- 4. Probar que G_2 es euleriano

Los problemas del 1 al 5 son de múltiple opción (total 30 puntos). Correcta: 6 puntos, Incorrecta: -1 punto, sin responder: 0 punto.

1. Dado el grafo G:

El polinomio cromático $P(G, \lambda)$ es:

- (A) $[\lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)][\lambda(\lambda-1)^3(\lambda-4)]$
- (B) $[\lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)] + [\lambda(\lambda-4)]$ $(1)^3(\lambda - 2)^2(\lambda - 4)$
- (C) $[\lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)] + [\lambda(\lambda-1)(\lambda-3)(\lambda-4)]$ $(1)^3(\lambda - 2)^3$
- (D) $[\lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)][\lambda(\lambda-1)^3(\lambda-4)]$ $(2)^{2}(\lambda - 4)$
- (E) $[\lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)][\lambda(\lambda-1)^3(\lambda-4)]$ $2)^{3}$
- **2.** Sea A={101, 1077, 2, 305, 800, 11, 2805, 1001, 708, 6540, 611, 44000 $\}$ y \mathcal{R} una relación definida sobre A tal que xRy si la suma de los dígitos de x es igual a la suma de los dígitos de y. Entonces:
- (A) \mathcal{R} es de equivalencia y hay 4 clases de equivalencia.
- (B) \mathcal{R} es un orden parcial pero no total.
- (C) \mathcal{R} es de equivalencia y hay 3 clases de equivalencia.
- (D) \mathcal{R} es un orden y la cadena más larga es de
- (E) \mathcal{R} es un orden y la anticadena más larga es de largo 3.
- 3. La menor cantidad de aristas que se debe agregar a cualquier árbol, que tenga al menos un camino simple de longitud 5, para que deje de ser plano es:

- (A) 3 (B) 4 (C) 5 (D) 6 (E) 7
- **4.** Se consideran los grafos G_1 , G_2 y G_3 Respectivamente. Indicar cuál de las siguentes afirmaciones es correcta:
- (A) G_1 y G_2 son isomorfos y G_3 tiene un ciclo Hamiltoniano.
- (B) G_2 y G_3 son isomorfos y G_1 se puede colorear con 3 colores.
- (C) G_1 y G_3 son isomorfos y G_1 se puede colorear con 4 colores.
- (D) G_2 y G_3 son isomorfos y G_1 no se puede colorear con 3 colores.
- (E) G_1 y G_2 son isomorfos y G_3 se puede colorear con 3 colores.

5. En el siguiente grafo de n+1 vértices (asumir n par), el vértice 1 está unido por una arista con cada vértice par.

Halle la cantidad de ciclos (tamaño ≥ 3) en el grafo.

- (A) $\frac{n}{2}(\frac{n}{2}-1)+1$ (B) $\frac{n}{2}(\frac{n}{2}-2)+1$
- (C) $n(\frac{n}{2}-1)+1$ (D) $n(\frac{n}{2}-2)+1$
- (E) $n(\frac{n}{2}) + 1$