I Les inégalités

Remarque n°1.

Les propriétés énoncées restent valables avec les symboles < ; ≥ et ≤

Propriété n°1.

Soient a et b deux nombres réels.

$$a > b \Leftrightarrow a-b > 0$$

preuve:

Immédiat car, par définition, $a > b \Leftrightarrow a-b \in \mathbb{R}_+^*$

Propriété n°2.

preuve:

$$a > b \Leftrightarrow a - b > 0 \Leftrightarrow a + c - c - b > 0 \Leftrightarrow (a + c) - (b + c) > 0 \Leftrightarrow a + c > b + c$$

• Si
$$d>0$$

 $a>b \Leftrightarrow a-b>0 \Leftrightarrow d(a-b)>0 \Leftrightarrow ad-bd>0 \Leftrightarrow ad>bd$
règle des signes

• Les autres équivalences se démontrent de la même manière que ces deux là Elles sont laissées à titre d'exercice.

Propriété n°3.

Soient a, b, c et d quatre nombres réels.

Si a < b et c < d alors a + c < b + d

preuve:

Si
$$a < b$$
 et $c < d$ alors $a - b < 0$ et $c - d < 0$ donc $(a - b) + (c - d) < 0$ (somme de deux nombres négatifs) Or $(a - b) + (c - d) < 0 \Leftrightarrow a + c - b - d < 0 \Leftrightarrow (a + c) - (b + d) < 0 \Leftrightarrow a + c < b + d$

Exemple n°1.

Si
$$x \ge 3$$
 et $y \ge 12$ alors $x+y \ge 3+12$

Remarque n°2. Attention

Cette propriété ne fonctionne pas avec la soustraction, voici un contreexemple :

1 < 2 et 3 < 10 alors que 1 - 3 > 2 - 10

EXERCICE N°1

Soit x et y deux réels tels que x < -5 et y < 7. Que peut-on en déduire pour les expressions suivantes?

1) 2*x*

2) -3y

3) x+y

EXERCICE N°2

Soit x un nombre réel tel que $x \le 2$ et y un nombre réel tel que $y \le -6$ Que peut-on en déduire pour les expressions suivantes ?

1) 3*x*

2) -4y

3) x+y

4) 2x+3y

5) -x-2y

EXERCICE N°3

Un triangle ABC est tel que AB=4, AC<5,2 et BC<6Que peut-on dire du périmètre du triangle ABC?

EXERCICE N°4

Donner tous les nombres entiers relatifs n tels que :

1)
$$-1,2 \le n < 3$$

2)
$$-4 \le n < 3.7$$

EXERCICE N°5

Pour chaque implication, dire si elle vraie au fausse.

$$1) \qquad x > 6 \implies x > 5$$

2)
$$x \le 3 \Rightarrow x > 2$$

3)
$$x \leq 4 \Rightarrow x < 4$$

4)
$$x > -1 \implies x \ge -1$$

$$5) \qquad -2 \leqslant x \leqslant 0 \implies x \leqslant 0$$

6)
$$2 \le x \le 5 \implies 0 \le x \le 7$$

II Les intervalles

L'ensemble des nombres réels, noté \mathbb{R} est l'ensemble des abscisses des points d'une droite graduée.

Définition n°2. Intervalles

Soit a et b deux nombre réels, les intervalles de $\mathbb R$ sont les parties de $\mathbb R$ définies par :

Intervalle	Ensemble des réels <i>x</i> tels que :	Représentation graphique
[a; b]	$a \leq x \leq b$	$\begin{array}{c c} \hline \\ \hline a & b \\ \hline \end{array} $
]a ; b[a < x < b	$\frac{}{a} \qquad \qquad b \boxed{}$
[a ; b[$a \leq x < b$	
]a; b]	$a < x \leq b$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$[a ; +\infty[$	$a \leq x$ on peut aussi écrire $x \geq a$	${a}$
]a ; +∞[a < x on peut aussi écrire $x > a$	$\frac{}{a}$
]-∞ ; b]	$x \leq b$	$\xrightarrow{\hspace*{1cm}b}$
]-∞ ; b[x < b	<u>−</u> − − − − − − − − − − − − − − − − − −

Remarque n°3.

- Les intervalles [a;b],]a;b[, [a;b[et]a;b[sont des intervalles bornés et a et b sont appelés les bornes.
- \rightarrow L'amplitude de l'intervalle vaut b-a
- \rightarrow [a; b] est un intervalle fermé et]a; b[est un intervalle ouvert.
- $\rightarrow \mathbb{R} =]-\infty ; +\infty[$

EXERCICE N°1

1) Dire si les propositions suivantes sont vraies au fausses.

1.a)
$$5 \in]-\infty; 4]$$

1.b)
$$-2.5 \in [-2; 5]$$

1.c)
$$10^{-15} \in]0; 1[$$

1.d)
$$10^{-15} \in [0 ; +\infty[$$

1.e)
$$3,72 \in]3,719 ; 3,721[$$

1.f)
$$3,4 \in [3,3;3,4]$$

2) Représenter les intervalles suivants sur une droite graduée.

2.a)
$$]-3;4]$$

2.b)
$$]-\infty$$
; 2

2.a)]-3;4] **2.b)**]-
$$\infty$$
; 2[**2.c)** $\left[-\frac{1}{2}; +\infty\right[$

EXERCICE N°2

Recopier en complétant les pointillés par le symbole \in ou \notin .

1)
$$-\pi$$
 ... $[-5; -2[$

2) 0,33 ...
$$\left[\frac{1}{3}; 8\right[$$

EXERCICE N°3

Représenter sur une droite graduée les intervalles suivants :

3)
$$]-\infty;-3]$$

4)
$$[-1; +\infty[$$

EXERCICE N°4

Parmi les intervalles suivants, lequel a la plus grande amplitude?

1)
$$I_1 =]-1; 1]$$

2)
$$I_2 = \left] \frac{3}{4} ; \frac{5}{2} \right[$$

3)
$$I_3 = \left[\frac{1}{2}; 10\right[$$

4)
$$I_4 = [-1,54 ; 0,54]$$

EXERCICE N°5

On donne l'intervalle I =]-1; 7].

Citer tous les nombres entiers relatifs qui appartiennent à l'intervalle $\ I$.

EXERCICE N°6

Compléter par le symbole ⊂ ou ⊄ (se lit « est inclus dans » ou « n'est pas inclus dans »).

4)
$$[-10; 10] \dots \mathbb{R}$$

III Les inéquations

Définition n°3.

Une inéquation d'inconnue x est une inégalité qui peut être vraie pour certaines valeurs de x qu'on appelle alors solutions. Résoudre cette inéquation dans \mathbb{R} c'est trouver toutes les solutions réelles.

Exemple n°2. Décrire les solutions d'une inéquation

Énoncé:

Résoudre l'inéquation $-3x+7 \ge 11$ et écrire l'ensemble des solutions sous forme d'intervalle puis le représenter graphiquement.

Réponse : $-3x+7 \ge 11 \Leftrightarrow -3x \ge 4 \Leftrightarrow x \le -\frac{4}{3} \Leftrightarrow x \in \left] -\infty ; -\frac{4}{3} \right]$

Réviser pour IE01

Remarque n°4.

On garde en tête la propriété n°2 :

Lorsqu'on résout une inéquation,

- additionner ou soustraire un même nombre réel à chaque membre ne change pas l'ordre,
- multiplier ou diviser les membres par un même nombre positif ne change pas l'ordre,
- multiplier ou diviser les membres par un même nombre négatif change l'ordre.

EXERCICE N°1

Résoudre dans \mathbb{R} les inéquations suivantes :

1)
$$3x+2>7$$

2)
$$-x+9 \ge -2$$

3)
$$\frac{3x}{2} \le 9$$

EXERCICE N°2

Dans chaque cas, le nombre a est-il une solution de l'inéquation proposée ?

1)
$$x+4>5x-7$$

$$a=-3$$

2)
$$3x - \frac{2}{3} \le \frac{1}{2}x + 4$$

$$a=2$$

3)
$$x+4<10x-7$$

$$a=8$$

EXERCICE N°3

Résoudre dans $\ \mathbb{R}$ les inéquations suivantes et représenter l'ensemble des solutions sur une droite graduée.

1)
$$4x-3 \ge 2x+5$$

3)
$$5+x>3+x$$

2)
$$2+x<3-x$$

4)
$$3-4x \le 5+6x$$

EXERCICE N°4

Le périmètre d'un rectangle est inférieur à 24 cm et sa longueur vaut le double de sa largeur. Déterminer sa largeur.

EXERCICE N°5

Un photographe propose deux formules pour tirer sur papier de photos numériques.

Avec la formule f, on paie $0.15 \in$ chaque tirage.

Avec la formule g , on paie d'abord un forfait de 12 \in et chaque tirage ne vaut que 0,09 \in .

À partir de combien de tirages a-t-on intérêt à choisir la formule avec forfait ?

IV Sens de variation et signe d'une fonction affine

Dans tout le paragraphe, $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto mx + p \end{cases}$ avec m et p des réels, est une fonction affine.

Propriété n°4. Rappel

Pour toute fonction affine, l'accroissement de la fonction est proportionnel à celui de la variable :

 $a \neq b$ alors

$$\boxed{m = \frac{f(b) - f(a)}{b - a}}$$

preuve:

Comme f est affine, pour tout $x \in \mathbb{R}$, f(x) = mx + p avec $p \in \mathbb{R}$.

Pour
$$a \neq b$$
, on peut écrire:
$$\frac{f(b) - f(a)}{b - a} = \frac{mb + p - (ma + p)}{b - a} = \frac{mb - ma + p - p}{b - a} = \frac{m(b - a)}{b - a} = m$$

Remarque n°5. Sens de variation d'une fonction affine

La propriété précédente nous indique que si m>0 alors les images sont rangées dans le même ordre que les abscisses (on dit que la fonction est croissante) et que si m<0 alors les images sont rangées dans l'ordre contraire à celui des abscisses (on dit que la fonction est décroissante).

Tableaux de variations

Déterminer le sens de variations des fonctions affines définies par les expressions suivantes.

1)
$$f(x)=2x+3$$

2)
$$f(x) = -4x + 5$$

3)
$$f(x)=x+7$$

4)
$$f(x) = 8 - x$$

5)
$$f(x) = \sqrt{3}(x-2)$$

4)
$$f(x)=8-x$$

6) $f(x)=\frac{3-2x}{7}$

EXERCICE N°2

Pour chacune des fonctions affines suivantes, déterminer le coefficient directeur de leur représentation graphique et en déduire le sens de variation de la fonction.

1)
$$f(x) = -2x + 1$$

2)
$$g(x)=3-x$$

3)
$$h(x)=2+\frac{x}{3}$$

4)
$$l(x) = \frac{x\sqrt{2}-1}{3}$$

EXERCICE N°3

- 1) La fonction affine f vérifie f(2)=5 et f(6)=3. f est-elle croissante ou décroissante? Justifier
- 2) La fonction affine g vérifie g(-1)=3 et g(2)=6. g est-elle croissante ou décroissante? Justifier.

EXERCICE N°4

Répondre par vrai ou faux en justifiant la réponse.

- 1) On considère une fonction affine f croissante et telle que l'ordonnée à l'origine de sa représentation graphique soit 3. On peut alors avoir f(2)=1.
- 2) On considère une fonction affine g décroissante et telle que l'ordonnée à l'origine de sa représentation graphique soit 1. On peut alors avoir g(2)=0.
- 3) On considère une fonction affine h croissante et telle que h(5)=12. On peut alors avoir h(7)=15.

Définition n°4. Racine d'une fonction affine

On suppose $m \neq 0$. On appelle racine de f le réel x_0 tel que $f(x_0)=0$

Propriété n°5.

$$x_0 = \frac{-p}{m}$$

Remarque n°6.

Le point de coordonnées $(x_0; 0)$ est le point d'intersection de la courbe représentative de f avec l'axe des abscisses.

Propriété n°6.

Signe d'une fonction affine

Tableaux de signes

Réviser pour IE02

Exemple n°3.

Pour
$$g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -2x+3 \end{cases}$$
, $m=-2$ et $p=3$
• Comme $m < 0$, on a le tableau de variations suivant :

	, 511 0 10 10 10 00
x	$-\infty$ $+\infty$
g(x)	+ \omega - \omega

 $x_0 = \frac{-p}{m} = \frac{-3}{-2} = 1.5$, on sait alors que la droite représentant la Posons fonction g coupe l'axe des abscisses au point (1,5;0) et on a le tableau de signe suivant :

$oxed{x}$	$-\infty$		1,5		$+\infty$
g(x)		+	•	_	

EXERCICE N°1

1) Déterminer le tableau de signes des fonctions affines définies ci-dessous.

1.a)
$$f(x)=2x+3$$

1.b)
$$g(x) = -4x + 5$$

1.c)
$$h(x) = x + 7$$

1.d)
$$j(x) = 8 - x$$

2) Pour chacune des fonctions précédentes, donner un nombre réel x_1 dont l'image est positive et un nombre réel x_2 dont l'image est négative.

EXERCICE N°2

Construire le tableau de signes de chaque expression.

1)
$$f(x)=3x-6$$

2)
$$g(x) = -4x + 8$$

3)
$$h(x) = -2x + \frac{1}{2}$$

4)
$$l(x) = \frac{x+3}{-4}$$

EXERCICE N°3

1) En utilisant le graphique suivant, écrire le tableau de signes de chaque fonction affine représentée ci-dessous.

2) Chaque droite est la représentation graphique d'une des fonctions définies par les expressions suivantes.

$$f(x)=-1$$

$$g(x) = -\frac{4}{3}x + \frac{8}{3}$$

$$h(x) = \frac{1}{3}x + 2$$

Associer chaque droite à la fonction qu'elle représente.

EXERCICE N°4 Des tableaux signes plus complexes

Construire le tableau de signes de chaque expression.

1)
$$f(x)=(x+3)(x-5)$$

2)
$$g(x)=(-4x+8)(3x+2)$$

3)
$$h(x)=7(-2x+5)(6x-3)$$

4)
$$l(x)=-5(4x-7)(6x+2)$$

EXERCICE N°1

Résoudre dans \mathbb{R} les inéquations suivantes.

1)
$$4x-6 \ge 3-(6-5x)$$

$$2) \qquad \frac{1-x}{4} + \frac{5x}{6} < 3$$

EXERCICE N°2

Résoudre dans \mathbb{R} les inéquations suivantes.

1)
$$x^2+1 > (x+1)^2$$

$$2) 3-4x \le 6(x-2)-10x$$

3)
$$3(1-2x) \ge -6x+2$$

EXERCICE N°3

x est un nombre réel supérieur ou égal à 2 .

Existe-t-il une ou des valeurs de x pour la(les)quelle(s) le triangle ABC est rectangle en A?

EXERCICE N°1

Un musée propose deux tarifs.

- tarif A: chaque entrée coûte 6€.
- tarif B: on paye un abonnement à l'année de 16 € et chaque entrée coûte alors 4€.

La variable x désigne le nombre de fois où un visiteur a fréquenté le musée.

- 1) Donner l'expression de la fonction f qui modélise le budget annuel pour le musée avec le tarif A, et celle de g pour le tarif B.
- 2) Représenter ces deux fonctions dans un repère approprié (attention au choix des unités). Résoudre graphiquement f(x) > g(x);
- 3) Résoudre par le calcul f(x) > g(x).
- 4) Que peut faire le visiteur de ces solutions quand il veut déterminer lequel des deux tarifs est le plus avantageux?

EXERCICE N°2

Sur la figure ci-contre, AB=9.

Le point K est mobile sur le segment [AB] . On note x la longueur AK .

1) Calculer l'aire du domaine hachuré lorsque x=2.

Même question lorsque x=7.

- 2) A(x) désigne l'aire du domaine hachuré lorsque K est à x de A .
- **2.a)** Donner l'expression de A(x) lorsque x décrit l'intervalle [0;3].
- **2.b)** Même question pour les intervalles [3;5], [5;8] puis [8;9].

