α - β swap move

```
    Start with an arbitrary labeling f
    Set success := 0
    For each pair of labels {α,β} ⊂ L
    Find f̂ = arg min E(f') among f' within one α-β swap of f (Section 3)
    If E(f̂) < E(f), set f := f̂ and success := 1</li>
    If success = 1 goto 2
    Return f
```

α - β swap move

α-expansion Algorithm

```
1. Start with an arbitrary labeling f
2. Set success := 0
3. For each label \alpha \in \mathcal{L}
3.1. Find \hat{f} = \arg\min E(f') among f' within one \alpha-expansion of f (Section 4)
3.2. If E(\hat{f}) < E(f), set f := \hat{f} and success := 1
4. If success = 1 goto 2
5. Return f
```

α -expansion Move

Basic idea: break multi-way cut computation into a sequence of binary s-t cuts

α -expansion Algorithm

edge	weight	for
1"	Э.	$p \in P_n$
t''	$D_p(f_p)$	$p \notin \mathcal{P}_n$
t_p^{α}	$D_r(\alpha)$	$p \in \mathcal{P}$
r(ps)	$V(f_p, \alpha)$	
C(+q)	$V(\alpha, f_q)$	$\{p,q\} \in \mathcal{N}, f_p \neq f_q$
I_4^α	$V(f_p, f_q)$	
C(p q)	$V(f_p, \alpha)$	$\{p,q\} \in \mathcal{N}, f_p = f_q$

α -expansion Algorithm

edge	weight	for $p \in P_0$	
1;;	∞		
t_P^{α}	$D_p(f_p)$	$p \notin \mathcal{P}_{\alpha}$	
t_p^α	$D_p(\alpha)$	$p \in \mathcal{P}$	
$e_{\{p,a\}}$	$V(f_p, \alpha)$		
$v_{\{a,g\}}$	$V(\alpha, f_q)$	$\{p,q\} \in \mathcal{N}, f_p \neq f_q$	
t",	$V(f_p, f_q)$		
Clust	$V(f_p, \alpha)$	$\{p,q\} \in \mathcal{N}, f_p = f_q$	

α -expansion Algorithm

edge	weight	for	
I_p^{α}	∞	$p \in \mathcal{P}_{\alpha}$	
$I_P^{\hat{\alpha}}$	$D_p(f_p)$	$p ot \in \mathcal{P}_n$	
t_p^{α}	$D_p(\alpha)$	$p \in \mathcal{P}$	
C(pa)	$V(f_{\rho}, \alpha)$		
C (a.q)	$V(\alpha, f_q)$	$\{p,q\} \in \mathcal{N}, f_p \neq f_q$	
t_{a}^{α}	$V(f_p, f_g)$		
$C\{p,g\}$	$V(f_p, \alpha)$	$\{p,q\}\in\mathcal{N},\ f_p=f_q$	

α -expansion Move

In each $\alpha\text{-expansion}$ a given label " α " grabs space from other labels

Image Segmentation

Status: Initialize with Tree

In each $\alpha\text{-expansion}$ a given label " α " grabs space from other labels

Image Segmentation

Status: Expand Ground

α -expansion Move

In each $\alpha\text{-expansion}$ a given label " α " grabs space from other labels

In each $\alpha\text{-expansion}$ a given label " α " grabs space from other labels

In each $\alpha\text{-expansion}$ a given label " α " grabs space from other labels

Stereo

For each move we choose expansion that gives the largest decrease in the energy: binary optimization problem

In each α -expansion a given label " α " grabs space from other labels

Stereo

For each move we choose expansion that gives the largest decrease in the energy: binary optimization problem

Ink-Bleed Removal

Yi Huang Michael S. Brown Dong Xu
"A Framework for Reducing Ink-Bleed in Old Documents",
Proc. CVPR, June 2008, Anchorage, AK, USA.

What is Ink-Bleed?

Ink bloats through paper and appears on the reverse side

What is Ink-Bleed?

 Ink bloats through paper and appears on the reverse side

What is Ink-Bleed?

 Ink bloats through paper and appears on the reverse side

Recto and Verso Images

Recto and Verso Images

Recto (front) Side \Leftrightarrow Verso (back) Side

Recto and Verso Images

Recto (front) Side ⇔ Verso (back) Side

· Treat the two restoration problems together

Local Alignment

- Compute correlations at a set of grid points: 60x60 patch; [-10,10] displacement
- Smoothen the local displacements using thinplate-spline (TPS) interpolation
- Warp the verso image

Dual Layer MRF

- Consider two sets of nodes, one for recto and one for verso
- The pixels/nodes of the images are aligned
- Connect corresponding pixels from either side.

Features and Training Input

- · Intensity Features $\ C_p$ and $\ C_{p'}$
- · Ratio Features $ho_p = rac{C_p}{C_{p'}}$
- · Training Input

- Data Cost Energy Modeling
 - · Ratio feature is normalized (zero mean with and unit standard deviation)
 - These normalised features are clustered with K means to obtain cluster centres for each of the three classes as:

$$\{\rho_i^{\mathcal{F}}\}|_{i=1}^L, \{\rho_j^{\mathcal{I}}\}|_{j=1}^M \text{ and } \{\rho_k^{\mathcal{B}}\}|_{k=1}^N$$

- For each pixel p, we compute the Euclidean distances (L2-norm) between ρ_P and all the L + M + N cluster centres and then select top-K closest ones.
- These top-K centers are denoted as $\{\rho_m\}_{m=1}^K$ and are further divided into three index sets π^F , π^I and π^B according to their labels.
- The distance between ρ_{a} and the m-th cluster center pm is computed by:

$$d_{pm} = ||\rho_p - \rho_m||$$

$$S_{\mathcal{F}} = \sum_{m \in \pi^{\mathcal{F}}} \exp(-d_{pm}^2/d_p^2)$$
• Class Similarity:
$$S_{\mathcal{I}} = \sum_{m \in \pi^{\mathcal{I}}} \exp(-d_{pm}^2/d_p^2)$$

$$S_{\mathcal{B}} = \sum_{m \in \pi^{\mathcal{B}}} \exp(-d_{pm}^2/d_p^2).$$
• Unary:
$$E_d(l_p = \mathcal{F}) = \frac{S_{\mathcal{I}} + S_{\mathcal{B}}}{2 \times (S_{\mathcal{F}} + S_{\mathcal{I}} + S_{\mathcal{B}})}$$
• Unary:
$$E_d(l_p = \mathcal{I}) = \frac{S_{\mathcal{F}} + S_{\mathcal{B}}}{2 \times (S_{\mathcal{F}} + S_{\mathcal{I}} + S_{\mathcal{B}})}$$
• $E_d(l_p = \mathcal{B}) = \frac{S_{\mathcal{F}} + S_{\mathcal{I}}}{2 \times (S_{\mathcal{F}} + S_{\mathcal{I}} + S_{\mathcal{B}})}.$

· Pairwise:

$$E_s = \sum_{p,q \in \mathcal{N}} V_1(l_p, l_q) + \sum_{p,p' \in \mathcal{M}} V_2(l_p, l_{p'})$$

Intra-Layer:

$$E_s = \sum_{p,q \in \mathcal{N}} V_1(l_p, l_q) + \sum_{p,p' \in \mathcal{M}} V_2(l_p, l_{p'})$$

$$V_1(l_p, l_q) = \frac{1}{1 + (\xi_{pq})^2} \qquad d_{pq}^{\rho} = ||\rho_p - \rho_q||$$

	l _y		
l_p	Foreground	Ink-Bleed	Background
Foreground	∞	d_{pq}^{ρ}	d_{pq}^c
Ink-Bleed	d_{pq}^{ρ}	∞	d_{pq}^{ρ}
Background	d_{pq}^c	d_{pq}^{ρ}	∞

Pairwise:

$$E_s = \sum_{p,q \in \mathcal{N}} V_1(l_p, l_q) + \sum_{p,p' \in \mathcal{M}} V_2(l_p, l_{p'})$$

· Intra-Layer:

$$V_1(l_p, l_q) = \frac{1}{1 + (\xi_{pq})^2}$$
 $d_{pq}^{\rho} = ||\rho_p - \rho_q||$

	L _u		
l_p	Foreground	Ink-Bleed	Background
Foreground	∞	d_{pg}^{ρ}	d_{pq}^c
Ink-Bleed	$d_{pq}^{ ho}$	∞	d_{pq}^{ρ}
Background	d_{nq}^c	d_{pq}^{ρ}	∞

· Inter-Layer:

$$V_2(l_p, l_{p'})$$

	$l_{p'}$		
l_{p}	Foreground	Ink-Bleed	Background
Foreground	0	0	0
Ink-Bleed	0	∞	∞
Background	0	∞	2ω

Results: Comparison

	Comparison 1	Comparison 2	Comparison 3
Original	The Marie Marie	to it baffithe	water from Ed
Adaptive [5]	the kind of	Board in Blagat	
Wavelet [15]	Handle Sheller	So the flory the	the the world
Single Layer MRF		Board in Odnigal	in telements a
Dual Layer MRF		Board in Bangal	Enero (and the

A Closer Look

