PSALTer results panel S ==

 $\iiint \left(\frac{1}{6}\left(2\left(t_{1}-2\,t_{3}\right)\mathcal{R}^{\alpha_{1}}_{\alpha}\mathcal{R}^{\theta}+6\,\mathcal{R}^{\alpha\beta\chi}\,\sigma_{\alpha\beta\chi}+6\,f^{\alpha\beta}\,\tau_{(\Delta+\mathcal{K})}_{\alpha\beta}-4\,t_{1}\,\mathcal{R}^{\theta}_{\alpha}\,\partial_{i}f^{\alpha_{1}}+8\,t_{3}\,\mathcal{R}^{\theta}_{\alpha}\,\partial_{i}f^{\alpha_{1}}+4\,t_{1}\,\mathcal{R}^{\theta}_{i}\,\partial_{i}f^{\alpha_{2}}-8\,t_{3}\,\mathcal{R}^{\theta}_{i}\,\partial_{i}f^{\alpha_{3}}-2\,t_{1}\,\partial_{i}f^{\theta}_{\alpha}\,\partial_{i}f^{\alpha_{4}}+4\,t_{3}\,\partial_{i}f^{\theta}_{\alpha}\,\partial_{i}f^{\alpha_{4}}-2\,t_{1}\,\partial_{i}f^{\alpha}_{\alpha}-2\,t_{1}\,\partial_{i}f^{\alpha}_{\alpha}-2\,t_{1}\,\partial_{i}f^{\alpha}_{\alpha}-2\,t_{1}\,\partial_{i}f^{\alpha_{4}}-2\,t_{1}\,\partial_{i}f^{\alpha_$

Wave operator

	$^{0^{+}}\!\mathcal{A}^{\parallel}$	⁰ ⁺ <i>f</i> ∥	⁰ ⁺ f [⊥]	${}^{0}_{\mathscr{F}}^{\parallel}$										
^{0⁺} Æ [∥] †	<i>t</i> . 3	$-i\sqrt{2}kt$. 0	0										
^{0⁺} f [∥] †		$2 k^2 t.$	0	0										
${\stackrel{0^+}{\scriptstyle{\bullet}}} f^\perp \dagger$	Θ	0	0	0										
[⊙] -̂ ℋ [∥] †	0	Θ	0	-t. 1	${}^{1^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\mathcal{A}^{\parallel}{}_{lphaeta}$	${}^{1^{+}}_{\bullet}\mathcal{H}^{\perp}{}_{\alpha\beta}$	$\ f\ _{\alpha\beta}$	${}^{1^{-}}_{\bullet}\mathcal{A}^{\parallel}{}_{\alpha}$	${\stackrel{1}{\cdot}}\mathcal{H}^{^{\perp}}{}_{\alpha}$	$\frac{1}{\bullet}f^{\parallel}_{\alpha}$	${}^{1}_{ullet}f^{\perp}_{\alpha}$	_		
				${}^{1^{\cdot}}_{\bullet}\mathcal{A}^{\parallel}$ † $^{\alpha\beta}$	$k^2 r_{.5} - \frac{t_{.1}}{2}$	$-\frac{t_{1}}{\sqrt{2}}$	$-\frac{ikt_{\frac{1}{2}}}{\sqrt{2}}$	0	Θ	0	Θ			
				$^{1^{+}}_{\bullet}\mathcal{A}^{\perp}$ † $^{\alpha\beta}$	$-\frac{t_{\dot{1}}}{\sqrt{2}}$	0	0	0	0	0	Θ			
				$f^{\dagger}f^{\dagger}$	$\frac{i k t}{\sqrt{2}}$	0	0	0	0	0	0			
				${}^{1^{-}}_{\bullet}\mathcal{A}^{\parallel}$ \dagger^{lpha}	0	Θ	0	$\frac{1}{6} \left(6 k^2 r_{.} + t_{.} + 4 t_{.} \right)$	$\frac{t_1-2t_3}{3}$	0	$\frac{1}{3} i k \left(t_1 - 2 t_3 \right)$			
				1 \mathcal{A}^{\perp} \dagger^{α}	0	0	Θ	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t.+t.}{\frac{1}{3}}$	0	$\frac{1}{3} i \sqrt{2} k \left(t_1 + t_3 \right)$			
				$^{1} \cdot f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	Θ	0			
				$f^{\perp}f^{\perp}$	0	0	0	$-\frac{1}{3} i k \left(t_1 - 2 t_3\right)$	$-\frac{1}{3} i \sqrt{2} k \left(t_{1} + t_{3}\right)$	0	$\frac{2}{3} k^2 \left(t_{\cdot 1} + t_{\cdot 3}\right)$	$\mathcal{A}^{+}_{\alpha\beta}$	$ f _{\alpha\beta}^{2^+}$	$\left\ \mathcal{A} \right\ _{lphaeta\chi}$
											$\mathcal{A}^{2^{+}}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta}$	$\frac{t}{\frac{1}{2}}$ -	$-\frac{i kt_{\frac{1}{2}}}{\sqrt{2}}$	0
											$2^+f^{\parallel} \uparrow^{\alpha\beta}$	٧Z	$k^2 t$	0
											${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}$ † ${}^{\alpha\beta\chi}$	0	0	$\frac{t}{\frac{1}{2}}$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities	
⁰⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1	
$-2 i k^{0^+} \sigma^{\parallel} + 0^+ \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1	
$\frac{1}{2 i k \cdot 1^{-} \sigma^{\perp}^{\alpha} + \cdot 1^{-} \tau^{\perp}^{\alpha} = 0}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
1- ₇ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3	
$i k \cdot 1^+_{\bullet} \sigma^{\perp}^{\alpha\beta} + \cdot 1^+_{\bullet} \tau^{\parallel}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3	
$-2 i k \frac{2^{+}}{2^{+}} \sigma^{\parallel}^{\alpha\beta} + \frac{2^{+}}{2^{+}} \tau^{\parallel}^{\alpha\beta} = 0 -i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^$			
	$3\ \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}{}_{\tau}\ (\Delta+\mathcal{K})^{\chi\alpha} + 3\ \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}\ (\Delta+\mathcal{K})^{\beta\alpha} + 4\ i\ k^{\chi}\ \partial_{\varepsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}{}_{\delta}{}^{\varepsilon} - 6\ i\ k^{\chi}\ \partial_{\varepsilon}\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\varepsilon} - 6\ i\ k^{\chi}\ \partial_{\varepsilon}\partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\varepsilon} +$		
	$ 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi\tau} (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} (\Delta + \mathcal{K})^{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}) = 0 $		
Total expected gauge generators:			

Massive spectrum

Massive particle

Pole residue:	$\left \frac{6t.t.(t.+t.)-3r.(t.^{2}+2t.^{2})}{2r.(t.+t.)(-3t.t.+r.(t.+t.))} > 0 \right $
Square mass:	$-\frac{\frac{3t.t.}{13}}{\frac{2r.t.+2r.t.}{51} \frac{1}{53}} > 0$
Spin:	1
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

 $\left(t_{1}<0\,\&\&\,0< t_{3}< -t_{1}\,\&\&\,r_{5}<0\right)||\left(t_{1}>0\,\&\&\left(\left(t_{3}< -t_{1}\,\&\&\,r_{5}<0\right)||\left(t_{3}>0\,\&\&\,r_{5}<0\right)\right)|\right)$