Math 3500 Exercise Sheet

29 October, 2014

This week's problems involve uniform continuity. First, recall that a function $f: D \to \mathbb{R}$ is **continuous** on D if for every $\epsilon > 0$ and for every $y \in D$ there exists a $\delta > 0$ such that whenever $x \in D$ and $|x - y| < \delta$, we have $|f(x) - f(y)| < \epsilon$.

Note that in this definition our choice of δ depends on both ϵ and the point $y \in D$. A function $f: D \to \mathbb{R}$ is **uniformly continuous** on D if for every $\epsilon > 0$, whenever $x, y \in D$ and $|x-y| < \delta$, we have $|f(x)-f(y)| < \epsilon$. Here, the same δ has to work on all of D, whereas for regular continuity we can choose a different δ at each point.

As practice, make sure that it's clear to you that uniform continuity implies continuity. We proved in class that if D is compact, then continuity implies uniform continuity, so the two definitions coincide in this case.

- 1. Show that if $f: D \to \mathbb{R}$ is uniformly continuous and (x_n) is a Cauchy sequence in D, then $f(x_n)$ is a Cauchy sequence.
- 2. (a) Suppose that f is uniformly continuous on (a, b), and (x_n) is a sequence in (a, b) such that $x_n \to a$. Show that $\lim f(x_n)$ exists.
 - (b) Suppose (x_n) and (y_n) are two sequences in (a,b) that converge to a. Let (z_n) be the sequence given by $(x_1, y_1, x_2, y_2, \ldots)$. Explain why $\lim f(z_n) = \lim f(x_n) = \lim f(y_n)$.
 - Hint: if a sequence (a_n) converges to some limit L, then any subsequence must also converge to L.
 - (c) Explain why (a) and (b) guarantee that $\lim_{x\to a^+} f(x)$ exists.
 - (d) Conclude that if f is uniformly continuous on (a, b), then there exists a continuous function \tilde{f} on [a, b] such that $\tilde{f}(x) = f(x)$ for all $x \in [a, b]$. (Such a function \tilde{f} is called an **extension** of f from (a, b) to [a, b].)
 - (e) Finally, notice that we've proved the following theorem: a function f is uniformly continuous on (a, b) if and only if it can be extended to a continuous function on [a, b].
- 3. Decide whether or not the following functions are uniformly continuous on the given interval. You may use any of the theorems mentioned or proved above on this worksheet.

(a)
$$f(x) = x^{17} \sin x - e^x \cos(3x)$$
 on $[0, \pi]$

- (b) $f(x) = x^3$ on [0, 1]
- (c) $f(x) = x^3$ on (0,1)
- (d) $f(x) = x^3$ on \mathbb{R}
- (e) $f(x) = 1/x^3$ on (0, 1]
- (f) $f(x) = \sin(1/x^2)$ on (0,1]
- (g) $f(x) = x^2 \sin(1/x^2)$ on (0, 1]
- 4. Use the $\epsilon \delta$ definition of uniform continuity to prove that the following functions are uniformly continuous on the given interval:
 - (a) f(x) = 3x + 1 on \mathbb{R}
 - (b) $f(x) = \frac{x}{x+1}$ on [0,2]
- 5. Suppose f is continuous on [a, b], and let $a = x_0 < x_1 < x_2 < \cdots < x_n = b$ be a uniform partition of [a, b].
 - (a) Explain why, for each $i=1,2,\ldots,n$, there exist $m_i,M_i\in\mathbb{R}$ such that $m_i\leq f(x)\leq M_i$ for all $x\in[x_{i-1},x_i]$.
 - (b) Let $U_n = \sum_{i=1}^n M_i \Delta x$ and $L_n = \sum_{i=1}^n m_i \Delta x$, where $\Delta x = (b-a)/n$. Notice that for any $x_i^* \in [x_{i-1}, x_i]$, we have $L_n \leq \sum_{i=1}^n f(x_i^*) \Delta x \leq U_n$. Explain why it follows that if $\lim_{n \to \infty} (U_n L_n) = 0$, then f is intergrable on [a, b] (pretend that we've defined this).
 - (c) Given $\epsilon > 0$, there exists $\delta > 0$ such that if $x, y \in [a, b]$ and $|x y| < \delta$, then $|f(x) f(y)| < \frac{\epsilon}{b a}$, since f is uniformly continuous. Now, suppose we choose $N \in \mathbb{N}$ large enough that $1/N < \delta$. Show that if n > N, then $M_i m_i < \frac{\epsilon}{b a}$ for each $i = 1, 2, \ldots, n$. Conclude that $0 \leq U_n L_n < \epsilon$.
 - (d) Finally, explain why it follows that any continuous function defined on a closed interval is integrable.