Tryb matematyczny

Warsztaty LATEX 2024

Dominik Piasecki

Dzisiaj

Po co to wszystko?

33

oscillate so rapidly that there will arise little contribution to the integral. We are therefore led to expand f(x,y,y') in a Taylor series around y=o, obtaining, after rearranging the integral,

$$F(gt+e) = \frac{e^{-\frac{r}{4}(m)}}{A} \int e^{\frac{1}{4}\frac{m}{2}n} \int_{\mathbb{R}^{2}} \frac{4\pi n^{2}}{2\pi} + \frac{n^{2}}{2\pi} \frac{2^{2}\pi n^{2}}{2\pi} + \frac{n^{2}}{2\pi} \frac{2^{2}\pi n^{2}}{2\pi} + \dots \int_{\mathbb{R}^{2}} d\eta$$

$$\text{Now, } \int_{-\infty}^{\infty} e^{\frac{1}{4}\frac{m^{2}}{2\pi}n^{2}} \cdot d\eta = \int_{\mathbb{R}^{2}} \frac{r^{2}\pi n^{2}}{m^{2}} \quad \text{(see Pierces integral tables 487)},$$

and by differentiating both sides with respect to m, one may show $\int_{-\infty}^{\infty} \eta^{\pm} e^{\frac{i\pi n}{4\pi L}} d\gamma = \int_{-\infty}^{\infty} \frac{\partial dei}{\partial r} \frac{\partial e^{i}}{\partial r}$

The integral with
$$\gamma$$
 in the integrand is zero since it is the integral of an odd function. Therefore,

$$\psi(x, e+e) = \frac{\sqrt{\frac{10\pi e e}{mv}}}{\frac{10\pi}{m}} e^{-\frac{i\pi}{N} \psi(x)} \left\{ \psi(x, e) + \frac{\pi e e}{m} \frac{2^{1}\psi}{2^{2}} + \text{ terms in Cetc.} \right\} A$$

The left hand side of this, for very small ϵ approaches $\frac{1}{2}(3,t)$ so that for the equality to hold we must choose,

Expanding the both sides of (35./) in powers of & up to the first, we find,

$$\psi(x,t)+\varepsilon \frac{2\psi(x,t)}{2\varepsilon}=\psi(x,t)-\frac{\varepsilon\varepsilon}{\varepsilon}\gamma(x)\psi(x,t)+\frac{\varepsilon\varepsilon}{2m}\frac{2^{n\psi}}{2\kappa}$$

and therefore,
$$-\frac{1}{2}\frac{\partial V}{\partial x} = -\frac{1}{2}\frac{\partial V}{\partial x} + V(x)V$$

which is just Schrodinger's equation for the system in question.

- Aby nie pisać prac, które wyglądają tak
- Przenoszenie wzorów z obliczeń (np. Mathematica) do dokumentów
- System zapisu stosowany w notacji matematycznej na Wikipedii

Jak zacząć używać trybu matematycznego?

- Pakiety, które należy załączyć w preambule: \include{amsmath, amsfonts, amssymb}
- Tryb inline wstawianie równań do tekstu równanie ograniczone znakami \$...\$ lub \(... \)
- Tryb blokowy równania wstawiane oddzielnie, na szerokość całej linii. Automatyczna numeracja równań, możliwość odwołania do równania w teście, podpisu, wiele opcji środkowania

```
\begin{equation*}
    [tutaj kod równania]
\end{equation*}
```

Dużą część znaków wyświetla się tak samo jak w kodzie:

$$(a + b)c = ab + bc$$
 $(a + b)c = ab + bc$ $|x + 3| = 7$

Ćwiczenie 1 - pierwsze równanie

Zaimportuj do dokumentu pakiety amsmath, amsfonts, amssymb. Zapisz poniższe równania, jedno w trybie inline (\$ treść równania \$) a drugie w blokowym (\begin{equation} ... \end{equation})

$$|x+y| < |x| + |y| \tag{1}$$

$$(a+b)c = ac + bc (2)$$

Ćwiczenie 1 - pierwsze równanie

Examples

```
| x + y | < |x| + |y|
```

```
\begin{equation}
    (a + b) c = ac + bc
\end{equation}
```

Tryb inline i blokowy - różnice

- Miejsce generowania równania w tekście albo w osobnej linii
- Wygląd i skala niektórych wyrażeń:

inline blokowy
$$\frac{1}{2}$$
 $\frac{1}{2}$

Pozycja wskaźników sumacyjnych

inline blokowy
$$\sum_{n=1}^{\infty} \frac{1}{2n} = 1 \qquad \sum_{n=1}^{\infty} \frac{1}{2n} = 1$$

- W trybie blokowym możliwość tworzenia odwołań do równań, automatyczna numeracja (\begin{equation})
- Uproszony tryb blokowy bez numeracji, brak możliwości odwołania, podpisu - \begin{equation*}

Indeksy

 Po każdym wyrażeniu (znaku) można wprowadzić osobno górny i dolny indeks

```
[wyrażenie]^ {[górny indeks]}
   _{[dolny indeks]}
```

[wyrażenie] [górny indeks] [dolny indeks]

Jedno wyrażenie nie może mieć dwóch indeksów dolnych

$$[wyr]_{a}_{n}$$

Błąd kompilacji

Aby uzyskać indeksowany indeks należy wstawić całe wyrażenie jako indeks

 $[wyr]_{a_n}$

Pojedyncze znaki nie potrzebują nawiasów klamrowych

[wyr]_a

[wyr]_g rawitacji

Ćwiczenie 2- indeksy

[wyrażenie]^ {[górny indeks]} _{[dolny indeks]}

Examples

$$F_{grawitacji} = mg$$

(3)

Examples

$$e_{ii}^{2^{2^{2^2}}}$$

(4)

Example

(*) A_{ijk}^{klm}

(5)

Ćwiczenie 2 - indeksy - rozwiązania

[wyrażenie] ^ {[górny indeks]} _{[dolny indeks]}

Examples

$$F_{grawitacji} = m g$$

Examples

```
e^{2^{2^{2^{2}}}}_{ij}
```

```
A_{ijk} {}^{klm}
```

Ułamki

Składnia

\frac{licznik}{mianownik}

licznik mianownik

Ułamki piętrowe - do licznika/mianownika należy wstawić ułamek

<u>Ćwiczenie</u> 3- ułamki

\frac{licznik}{mianownik}

Examples

$$\frac{\frac{a}{2}+\frac{b}{2}}{2}\tag{6}$$

$$x_1 = \frac{-b - (b^2 - 4ac)^{\frac{1}{2}}}{2} \tag{7}$$

Ćwiczenie 3 - ułamki - rozwiązania

Examples

```
\frac{a}{2} + \frac{b}{2}}{2}
```

```
x_1 = \frac{0}{2} - b - (b^2 - 4ac)^{\frac{1}{2}}
```

Znaki specjalne

- Klawiatura ma tylko ileś (mało) symboli
- Chcemy pisać litery greckie ε, ξ, π , operatory matematyczne: $\nabla, \partial, \otimes$, inne śmieszne znaczki \triangleq
- Litery greckie i hebrajskie \litera np:

\pi
$$\pi$$
 \aleph \aleph

• Wyróżnienia za najlepszą nazwę:

\wedge \vee	\wedge \vee
\in \ni	$\in \ni$
\cap \cup	nu

Jak znaleźć nazwę znaku?

LATEX Mathematical Symbols

1 Greek and Hebrew letters

α	\alpha	K	\kappa	Ú	\psi	F	\digamma	Δ	\Delta	Θ	\Theta	
β	\beta	λ	\lambda	ρ	\rho	ε	\varepsilon	Γ	\Gamma	Υ	\Upsilon	
x	\chi	μ	\mu	ď	\nigna	30	\varkappa	Λ	\Lanbda	Ξ	\Xi	
δ	\delta	w	\mu	τ	\tau	φ	\varphi	Ω	\Onega			
	\epsilon	0	0	θ	\theta	507	\varpi	Φ	\Phi	ĸ	\aleph	
η	\eta	w	\omega	107	\upsilon	0	\varrho	п	\Pi		\beth	
7	\ganna	ó	\phi	ε	\xi	ç	\varsigma	Ψ	\Psi	7	\daleth	

2 LaTeX math constructs

ebr.	\frac{abc}{xyz}	abc	\overline{abc}	abc	\overrightarrow{abc}
f'	f'	abc	\underline{abc}	abc	\overleftarrow{abc}
\sqrt{abc}	\sqrt{abc}	\widehat{abc}	\widehat{abc}	abc	\overbrace{abc}
$\sqrt[n]{abc}$	\mqrt[n]{abc}	abc	\widetilde{abc}	abc	\underbrace{abc}

3 Delimiters

	-{	VC.	L	\lfloor	/	/	1	\Uparrow	L	\llcorner
\vert	- }	V	ij	\rfloor	1	\backslash	1	\uparrow		\lrcorner
M	(\langle	ı	\lceil	- (E	4	\Downarrow	г	\ulcorner
\Vert)	\rangle	- 1	\rceil	- 1]	1	\downarrow	7	\urcorner

Use the pair \lefts1 and \rights2 to match height of delimiters s1 and s2 to the height of their contents, e.g., \left| cmr \right| \left\(emr \right\) \left\Vert cmr \right

Variable-sized symbols (displayed formulae show larger version)

Σ	\sum \prod \coprod] }	\int \oint \iint	0	\biguplus \bigcap \bigcup	⊕⊗⊙	\bigoplus \bigotimes \bigodot	Ň	\bigve \bigsq

on names	should appear	Correct: Incorrect:		$\tan(at-n\pi) \longrightarrow tan(at-n\pi)$ $tan(at-n\pi) \longrightarrow tan(at-n\pi)$				
arccos	\arccos	arcsin	\arcsin	arctan	\arcta	ın	arg	\arg
cos	\cos	cosh	\cosh	cot	\cot		coth	\coth
csc	\csc	deg	\deg	det	\det		dim	\dim
exp	\exp	ged	\gcd	hom	\hom		inf	\inf
ker	\ker	lg	\1g	lim	\lim		lim inf	\liminf
lim sup	\limsup	ln	\ln	log	\log		max	\max
min	\min	Pr	\Pr	800	\sec		sin	\min
sinh	\sinh	sup	\sup	tan	\tan		tanh	\tanh

- Wyszukać LateX math symbols i wejść w pierwsze lepsze
- Strony, które rozpoznają znak na podstawie rysunku - np. detexify.kirelabs.org

Oznaczenia funkcji

 Funkcje mają zdefiniowane symbole i należy je razciachować (slashować)

Przykłady zdefiniowanych funkcji i innych symboli wieloznakowych:

```
sin
    \sin
          exp
               \exp
                          max
                                 \max
    \cos
         log
               \log
                          min
                                 \min
COS
tg
    \tan | lim \lim
                         lim sup \limsup
          arccos \arccos
                                 \ker
ctg
    \ctg
                          ker
```

Użycie funkcji razciachowanej w kodzie

\sin (x + 2k\pi)
$$\sin(x + 2k\pi)$$

<u>Ćwiczenie 4</u> - znaki specjalne

Wstawiane znaku - \nazwa Nazwy znaków - detexify.kirelabs.org

(8)

 $\varepsilon_{iik}\varepsilon_{klm} = \delta_{il}\delta_{km} - \delta_{kl}\delta_{im}$

Examples

$$x \times y = (x \wedge y)^*$$

 $\sinh(x) = \frac{e^x - e^{-x}}{2}$

(10)

(11)

$$\mathsf{sin}^2(arphi) + \mathsf{cos}^2(arphi) = 1$$

Ćwiczenie 4 - znaki specjalne - rozwiązania

Wstawiane znaku - \nazwa
Graficzne wyszukiwanie znaków - detexify.kirelabs.org

```
Examples
```

```
\varepsilon_{ijk} \varepsilon_{klm}
= \delta_{jl}\delta_{km} - \delta_{kl}\delta_{jm}
```

Examples

```
\sin^2 (\operatorname{varphi}) + \cos^2 (\operatorname{varphi}) = 1
```

Examples

```
x \neq y = (x \neq y)^*
```

```
\sinh(x) = \frac{e^x - e^{-x}}{2}
```

Znaki używające szczególnego indeksowania

Znak sumy, całki:

Granice

$$\lim{n \rightarrow \inf{y}}$$

Pierwiastek (n - tego stopnia)\sqrt[n] {x}

$$\lim_{n\to\infty}$$

$$\sqrt[n]{X}$$

Ćwiczenie 5 - wszystkie znaki specjalne

Graficzne wyszukiwanie znaków - detexify.kirelabs.org

Examples

$$e^{x} = \sum_{k=0}^{\infty} \frac{1}{k!} x^{k} \tag{12}$$

Examples

$$\int_{x_1}^{x_2} \sec(x) dx = \int_{x_1}^{x_2} \frac{\sec^2(x) + \lg(x) \sec(x)}{\sec(x) + \lg(x)} dx$$

Examples

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \int_{0}^{\infty} \left(\frac{1}{|x|} - \frac{1}{x} \right) dx$$

(14)

(13)

Ćwiczenie 5 - wszystkie znaki specjalne - rozwiązania

Examples

```
e^x = \sum_{k=0}^{\inf y \int x^k}
```

```
\int_{x_1}^{x_2} \sec (x) dx = \int_{x_1}^{x_2} \frac {\sec^2(x) + \tan(x)\sec(x)} {\sec(x) + \tg(x)}dx
```

Ćwiczenie 5 - wszystkie znaki specjalne rozwiązania

```
\gamma =
\lim_{n \rightarrow \infty}
( \sum_{k=1}^{n} \frac{1}{k} - \ln n ) =
\int_0^\infty
(\frac{1}{|x|} - \frac{1}{x})dx
```

Dekoratory

 Akcenty - symbole, które wywołane przed wyrażeniem będą wyświetlały się nad nim

```
\vec x \vec{x} \dot \varphi \dot{\varphi} \tilde{xy} \tilde{xy}
```

Strzałki

$$\begin{tabular}{ll} \leftarrow \\ Leftarrow & \Leftarrow \\ leftrightarrow & \Leftrightarrow \\ Leftrightarrow & \Leftrightarrow \\ \\ mapsto & \mapsto \\ \end{tabular}$$

Wielokropki

\cdot · np.
$$\vec{x} \cdot \vec{y}$$
 \ldots ... np. $i_1, ..., i_s$

Nawiasy

• Nawiasy - automatyczne dostosowanie wielkości

Możliwość zmiany typu nawiasu przez zamianę znaku '('

\left[\ldots \right]
$$\left| \frac{0}{\infty} \right|$$

• Środowisko wymaga zawsze domknięcia nawiasów. Jeżeli nie chcemy tego robić, należy nawias sztucznie domknąć - \right.

```
\left{\ldots\right. \quad \frac{-\infty}{\infty} \quad \qq \quad \quad \quad \quad \quad \quad \quad \quad \quad
```

Macierze

- Czyli po prostu tabelki w trybie matematycznym
- Składnia

\beggin{array}{kolumny} rząd 1 \\ rząd 2 \\ ... \end{array}

```
\begin{array}{c c}
    1 & 0 \\
    0 & 1 \\
end{array}
```

Klasyczna macierz - należy otoczyć macierz nawiasami

Macierze - inne zastosowania

 Macierzy można też używać w innych kontekstach, na przykład rozpisując przypadki

```
 \begin{split} |x^2 - 1| &= \\ & \text{ $$ \left( \frac{x^2 - 1}{x^2 - 1 \& x \leq -1} \right) } \\ & x^2 - 1 \& x \leq -1 \\ & 1 - x^2 \& -1 < x < 1 \\ & x^2 - 1 \& 1 \leq x \\ & x^2 - 1 & 1 \leq x \\ & x \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ 1 - x^2, & -1 < x < 1 \\ x^2 - 1, & 1 \leq x \\ & x^2 - 1, & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ 1 - x^2, & -1 < x < 1 \\ x^2 - 1, & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ 1 - x^2, & -1 < x < 1 \\ x^2 - 1, & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ 1 - x^2, & -1 < x < 1 \\ x^2 - 1, & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ 1 - x^2, & -1 < x < 1 \\ x^2 - 1, & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ 1 - x^2, & -1 < x < 1 \\ x^2 - 1, & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & 1 \leq x \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1 \\ \end{cases}   \begin{cases} |x^2 - 1| & x \leq -1 \\ |x^2 - 1| & x \leq -1
```

• Klamra - użycie tylko nawiasu otwierającego (zamknięcie \right.)

Ćwiczenie 6 - macierze i nawiasy klamrowe

Examples

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \tag{15}$$

$$f(x) = \begin{cases} x^2 + 3x + 2 & x \le 0\\ \sin(x) + 2\ln(x) & 0 < x \end{cases}$$
 (16)

Ćwiczenie 6 - rozwiązania (15)

```
\det
\left(
    \begin{array}{cc}
        a & b \\
        c & d
    \end{array}
\right)
= ad - bc
```

Ćwiczenie 6 - rozwiązania (16)

```
f(x) =
  \left\{
  \begin{array}{11}
     x^2 + 3x +2 & x \leq 0 \\
     \sin(x) + 2 \ln(x) & 0 < x
  \end{array}
  \right.</pre>
```

Co robić jak coś się nie razciachuje - fonty

- Wybrane fonty dostępne w środowisku matematycznym: Kaligraficzne \mathcal{...} $\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \dots$ Mathbb \mathbb{...} $\mathbb{N} \mathbb{Z} \mathbb{Q} \mathbb{R} \mathbb{C} \dots$ Zmienne (domyślny tekst) \mathrm{...} $\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F}$
- Symbole, które nie są zdefiniowane Zbiory liczbowe \mathbb{N, \ R} \mathbb{N} , \mathbb{R} Funkcje własne \mathrm{err} err

$$dx \neq dx$$

• Głupi sposób pisania pochodnych

Wyrównywanie równań - równania równe i równiejsze

- Środowisko \begin{align} lub \begin{align*}
- Znak '&' symbolizuje miejsce, w którym równania mają zostać wyrównane
- Znak '\\' oznacza miejsce, w którym ma nastąpić przejście do nowej linii
- Możliwość wstawienia wielu znaków '&' zachowanie analogiczne do tabeli

```
\begin{align} x^2 + 10 x + 3 &= -18 \setminus x^2 + 10x + 3 = -18  (1) x^2 + 10 x + 21 &= 0 \setminus x^2 + 10x + 21 = 0  (2) (x + 3)(x + 7) &= 0  (2) \end{align}
```

Problemy z długimi wzorami - Split

- Środowisko \begin{split}
- Split pozwala na interpretację znaku nowej linii '\\'. Obie linie wyrównane do lewej

Problemy z długimi wzorami - Multline

- Środowisko \begin{multline}
- Pozwala użyć znaku nowej linii, układając kolejne linie "schodkowo".
 Dla dwóch linii pierwsza będzie wyrównana do lewej, a druga do prawej

```
\begin{multline*} g(x,x) = g(x,x) = x_1^2 + 2x_1 x_2 + 7x_3 x_4 + x_4^2  \end{multline*}  g(x,x) = x_1^2 + 2x_1 x_2 + 7x_3 x_4 + x_4^2
```

Komentowanie równań

ullet Po prawej stronie - komenda $\text{text}\{\}$ + środowisko align

```
\label{eq:localign*} $$ U \&= U(x,y,z) $$ &\text{text{Potencjalna}} $$ U = U(x,y,z)$ Potencjalna $$ T \&= \frac{1}{2}(x^2+y^2+z^2) $$ &\text{Kinetyczna} $$ T = \frac{1}{2}(x^2+y^2+z^2)$ Kinetyczna $$ \end{align*}
```

- Pod równaniami \underbrace{...}_\text{opis}
- Nad równaniami \overbrace{...}^\text{opis}

$$L = \underbrace{\frac{1}{2}(x^2 + y^2 + z^2)}_{\text{Kinetvczna}} + \underbrace{\frac{Potencjalna}{U(x, y, z)}}_{\text{Potencjalna}}$$

```
 L = \underbrace{\{1\}\{2\}(x^2+y^2+z^2)\}_\text{Kinetyczna}} \\ + \underbrace{\{U(x,y,z)\}^\text{Lext}\{Potencjalna\}} \\ 33/39
```

Ćwiczenie - 7 - formatowanie równań

Środowiska \begin{align}, \begin{split}, \begin{multline} Znaki '&' - miejsce do wyrównania (align), '\\' - nowa linia

$$p(x) = 3x^{6} + 14x^{5}y + 590x^{4}y^{2} + 19x^{3}y^{3} - 12x^{2}y^{4} - 12xy^{5} + 2y^{6} - a^{3}b^{3}$$
 (17)

Ćwiczenie - 7 - formatowanie równań

Środowiska \begin{align}, \begin{split}, \begin{multline} Znaki '&' - miejsce do wyrównania (align), '\\' - nowa linia

$$\mathcal{L} = T - U$$

$$T = \frac{1}{2}ml^2\dot{\varphi}^2 + \frac{1}{2}(M+m)\dot{x}^2$$

$$U = -ml\cos(\varphi) + \frac{1}{2}mx^2$$

$$\mathcal{L} = \frac{1}{2}ml^2\dot{\varphi}^2 + \frac{1}{2}(M+m)\dot{x}^2 + ml\cos(\varphi)\dot{\varphi}\dot{x} + ml\cos(\varphi) - \frac{1}{2}mx^2 \quad (18)$$

Ćwiczenie - 7 - rozwiązania (17)

Środowiska \begin{align}, \begin{split}, \begin{multline} Znaki '&' - miejsce do wyrównania (align), '\\' - nowa linia

$$p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3$$
\\
- $12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3$

Ćwiczenie - 7 - rozwiązania (18)

Środowiska \begin{align}, \begin{split}, \begin{multline} Znaki '&' - miejsce do wyrównania (align), '\\' - nowa linia

```
\mathcal{L} &= T - U\\
T &= \frac{1}{2}m1^2 \dot{\varphi} ^2 +
\frac{1}{2}(M + m)\dot x^2 \\
U &= - ml\cos (\varphi) + \frac{1}{2}mx^2\\
\mathcal{L} &= \frac{1}{2}ml^2 \dot{\varphi} ^2 +
\frac{1}{2}(M + m)\dot x^2 +ml\cos( \varphi) \dot\varphi
\dot x + ml\cos (\varphi) - \frac{1}{2}mx^2
```

Co robić jak coś się nie razciachuje - pakiet physics

- Osobny pakiet do dodania w preambule \usepackage{physics}
- Skrócona notacja wielu operatorów

- Ułatwione wprowadzanie macierzy \matrixquantity

Dziękuję za uwagę!!