Logica elementare 1

Argomenti: logica elementare Difficoltà: ★

Prerequisiti: buon senso, concetto di "necessario" e "sufficiente"

Nei punti successivi viene presentata un'affermazione, che si assume vera (un assioma). Stabilire, sulla base di questa affermazione, se le deduzioni successive sono corrette oppure no.

1. Assioma: "tutti gli studenti di matematica sono strani".

Alberto studia matematica, quindi è strano	
Barbara studia fisica, quindi non è strana	
Clara non è strana, quindi non studia matematica	
Dario è strano, quindi studia matematica	
Elena è strana, quindi non studia fisica	
Esiste almeno uno studente di informatica che non è strano	

2. Assioma: "per superare Analisi 1 è necessario studiare tutti i giorni".

Alberto studia tutti i giorni, quindi supererà Analisi 1	
Barbara ha superato Analisi 1, quindi ha studiato tutti i giorni	
Clara non studia tutti i giorni, quindi non supererà Analisi 1	
Dario non ha superato Analisi 1, quindi non ha studiato tutti i giorni	

3. Assioma: "per superare il test, è sufficiente copiare dal vicino".

Alberto ha superato il test, quindi ha copiato dal vicino	
Barbara non ha superato il test, quindi non ha copiato dal vicino	
Clara ha copiato dal vicino, quindi ha superato il test	
Dario non ha copiato dal vicino, quindi non ha superato il test	
Qualcuno ha superato il test senza copiare dal vicino	
Nessuno ha copiato dal vicino senza superare il test	

4. Assioma: "per laurearsi è necessario e sufficiente pagare una tangente".

Alberto ha pagato la tangente, quindi si laureerà	
Barbara non è disposta a pagare la tangente, quindi non si laureerà	
Clara si è laurata, quindi ha pagato la tangente	
Dario non si è laurato, quindi non ha pagato la tangente	

Logica elementare 2

Argomenti: logica elementare Difficoltà: $\star \star$

Prerequisiti: buon senso, concetto di "and" e "vel"

Nei punti successivi viene presentata un'affermazione, che si assume vera (un assioma). Stabilire, sulla base di questa affermazione, se le deduzioni successive sono corrette oppure no.

1. Assioma: "tutti i docenti di matematica sono antipatici e incapaci".

Alberto insegna matematica, quindi è incapace	
Barbara è simpatica, quindi non insegna matematica	
Clara è antipatica e incapace, quindi insegna matematica	
Dario non insegna matematica, quindi è simpatico	
Elena non insegna matematica, quindi è simpatica o capace	
Fabio è simpatico e incapace, quindi non insegna matematica	
Esistono persone antipatiche che non insegnano matematica	
L'antipatia è condizione necessaria per insegnare matematica	

2. Assioma: "tutti gli studenti di matematica amano la musica o lo sport".

Alberto studia matematica, quindi ama lo sport	
Barbara non studia matematica, quindi non ama né la musica, né lo sport	
Clara non ama lo sport, quindi non studia matematica	
Dario ama lo sport, ma non la musica, quindi non studia matematica	
Elena ama lo sport e la musica, quindi non studia matematica	
Fabio non ama né la musica, né lo sport, quindi non studia matematica	
Giovanni studia matematica e ama lo sport, quindi non ama la musica	
Ilaria studia matematica e non ama lo sport, quindi ama la musica	

3. Tutti gli studenti di matematica che amano la Geometria odiano l'Analisi.

Alberto studia matematica e odia l'Analisi, quindi ama la Geometria	1
Barbara ama l'Analisi e la Geometria, quindi non studia matematica	
Clara odia l'Analisi e la Geometria, quindi non studia matematica	
Dario ama l'Analisi, quindi odia la Geometria o non studia matematica	
Elisabetta studia matematica e odia la Geometria, quindi ama l'Analisi	
Fabio ama la Geometria e odia l'Analisi, quindi studia matematica	
Giovanni odia l'Analisi e la Geometria, quindi studia matematica	
Ilaria studia matematica e ama l'Analisi, quindi non ama la Geometria	

Logica elementare 3

Argomenti: logica elementare Difficoltà: $\star \star$

Prerequisiti: buon senso, concetto di "and" e "vel"

Nei punti successivi viene presentata un'affermazione, che si assume vera (un assioma). Stabilire se le affermazioni successive sono *compatibili* oppure no con quella iniziale.

1. Assioma: "i giovani sono tutti bamboccioni".

Alberto è giovane e bamboccione	
Barbara è vecchia e bambocciona	
Clara è giovane ma non bambocciona	
Dario è vecchio ma non bamboccione	
Esistono dei bamboccioni che sono giovani	
Esistono dei bamboccioni che non sono giovani	

2. Assioma: "tutti gli studenti di matematica amano la musica o lo sport".

Alberto studia matematica, ama lo sport, non ama la musica	
Barbara studia matematica e non ama lo sport	
Clara studia matematica, ama lo sport e ama la musica	
Dario studia fisica e non ama la musica	
Elena studia fisica e ama sia lo sport sia la musica	
Fabio studia matematica, non ama lo sport e non ama la musica	
Tutti gli studenti di matematica odiano lo sport	
Tutti gli studenti che odiano la musica studiano matematica	

3. Assioma: "Alberto studia matematica, è simpatico, odia l'Analisi ma ama l'Aritmetica".

Tutti gli studenti di matematica che sono simpatici odiano l'Analisi	
Tutti gli studenti di matematica che sono antipatici odiano l'Analisi	
Tutti gli studenti di matematica che odiano l'Analisi sono simpatici	
Tutti gli studenti di matematica che odiano l'Analisi sono antipatici	
Tutti gli studenti simpatici amano l'Analisi	
Tutti gli studenti di matematica che odiano l'Aritmetica sono simpatici	
Tutti gli studenti di matematica che odiano l'Aritmetica sono antipatici	
Esistono studenti simpatici che odiano l'Aritmetica	
Esistono studenti simpatici che amano l'Aritmetica	

Logica elementare 4

Argomenti: logica elementare Difficoltà: $\star \star \star \star$

Prerequisiti: buon senso, concetto di "and" e "vel", implicazioni

Consideriamo le seguenti quattro affermazioni (assiomi):

A_1	"chi ama l'Analisi o la Geometria è grasso o antipatico"
A_2	"chi ama l'Analisi o la Geometria è grasso e antipatico"
A_3	"chi ama l'Analisi e la Geometria è grasso o antipatico"
A_4	"chi ama l'Analisi e la Geometria è grasso e antipatico"

Nella seguente tabella vengono presentate varie affermazioni. Per ciascuna di esse si chiede di stabilire se, rispetto a ciascuno dei quattro assiomi, sono deducibili (cioè seguono necessariamente), oppure sono indipendenti (cioè possono essere vere o false senza contraddire l'assioma), oppure sono in contraddizione (cioè sono necessariamente false se l'assioma è supposto vero).

	A_1	A_2	A_3	A_4
Tutti quelli che amano l'Analisi sono grassi				
Nessun grasso ama la Geometria				
Tutti i magri odiano l'Analisi				
Tutti i simpatici odiano l'Analisi o la Geometria				
Tutti i magri odiano l'Analisi e la Geometria				
Esiste un simpatico che ama la Geometria				
Tutti i magri simpatici amano l'Analisi				
Chi odia l'Analisi è antipatico				
Marco ama l'Analisi e la Geometria ed è simpatico				
Marina è magra, ama l'Analisi e odia la Geometria				
I magri che amano la Geometria odiano tutti l'Analisi				
Almeno un simpatico odia Analisi e Geometria				

Stabilire quali implicazioni sussistono certamente tra i quattro assiomi (nella tabella le implicazioni sono pensate $P \Rightarrow Q$ con le P rappresentate dalle intestazioni delle righe e le Q dalle intestazioni delle colonne).

	A_1	A_2	A_3	A_4
A_1				
A_2				
A_3				
A_4				

Quantificatori 1

Argomenti: uso dei quantificatori **Difficoltà**: $\star \star$

Prerequisiti: proposizioni, predicati, "per ogni", "esiste almeno un"

Nella seguente tabella vengono presentati dei predicati e due modi di quantificare il parametro n in essi presente. Stabilire se le proposizioni risultanti sono vere o false.

Predicato	$\exists n \in \mathbb{N}$	$\forall n \in \mathbb{N}$	Predicato	$\exists n \in \mathbb{N}$	$\forall n \in \mathbb{N}$
$n^2 \ge 100$			$n^2 \le 100$		
$n^2 \ge -100$			$n^2 \le -100$		
$(n+1)^2 = n^2 + 1$			$2^n \ge n^2 + 100$		
$2^n + 3^n = 5^n$			$n^5 \ge n$		

Nella seguente tabella vengono presentati dei predicati che dipendono da due parametri a e b, un insieme numerico dove si intende che questi parametri variano, e sei possibili modi di quantificare i due parametri (supposti appartenenti all'insieme precedente). Stabilire se le proposizioni risultanti sono vere o false.

Predicato	Ambiente	$\exists a \; \exists b$	$\forall a \ \forall b$	$\forall a \; \exists b$	$\forall b \; \exists a$	$\exists a \ \forall b$	$\exists b \ \forall a$
$a \ge b$	N						
$a \ge b$	\mathbb{Z}						
$a^2 \ge b$	N						
$a+b \ge 0$	N						
$a+b \ge 2014$	\mathbb{Z}						
$a+b \ge 2014$	N						

Nella seguente tabella vengono presentati dei predicati che dipendono da tre parametri a, b e c, che si pensano appartenenti a \mathbb{Z} , ed alcuni possibili modi di quantificare i parametri. Determinare se le proposizioni ottenute con tali quantificazioni sono vere o false.

Predicato	Quantif.	V/F	Quantif.	V/F	Quantif.	V/F	Quantif.	V/F
$a \ge b + c$	$\forall b \ \forall c \ \exists a$		$\exists b \ \forall c \ \forall a$		$\exists b \ \exists c \ \exists a$		$\forall b \; \exists c \; \forall a$	
$(a+b)^2 \ge c$	$\exists c \ \forall a \ \forall b$		$\forall a \; \exists b \; \forall c$		$\forall a \ \forall b \ \exists c$		$\forall a \; \exists c \; \forall b$	
$2^a + 2^b = 2^c$	$\forall a \ \forall b \ \exists c$		$\exists a \; \exists b \; \exists c$		$\forall a \; \exists b \; \exists c$		$\forall c \; \exists a \; \exists b$	
$a^2 \ge b - c$	$\forall b \ \exists c \ \forall a$		$\forall a \ \forall b \ \exists c$		$\exists a \ \forall b \ \exists c$		$\forall b \ \forall c \ \exists a$	

Quantificatori 2

Argomenti: linguaggio naturale vs linguaggio matematico **Difficoltà**: ***

Prerequisiti: proposizioni, predicati, quantificatori

Un corso è frequentato da un gruppo B di ragazzi ed un gruppo G di ragazze. Sia P(b,g) il predicato "al ragazzo b piace la ragazza g". Nelle seguenti due tabelle sono riportate sei affermazioni in linguaggio comune e sei proposizioni formali. Stabilire l'esatta corrispondenza tra le une e le altre.

Ad ogni ragazzo piace almeno una ragazza
C'è una ragazza che piace a tutti i ragazzi
C'è un ragazzo a cui piacciono tutte le ragazze
A tutti i ragazzi piacciono tutte le ragazze
C'è un ragazzo a cui piace almeno una ragazza
Ogni ragazza piace ad almeno un ragazzo

$\forall b \in B \ \forall g \in G$	P(b,g)
$\exists b \in B \ \exists g \in G$	P(b,g)
$\forall b \in B \ \exists g \in G$	P(b,g)
$\forall g \in G \ \exists b \in B$	P(b,g)
$\exists b \in B \ \forall g \in G$	P(b,g)
$\exists g \in G \ \forall b \in B$	P(b,g)

Nelle tabelle seguenti sono descritti quattro insiemi, sia in linguaggio comune sia in termini matematici (facendo riferimento al predicato precedente). Stabilire l'esatta corrispondenza tra le definizioni.

I ragazzi a cui piacciono tutte le ragazze
I ragazzi a cui piace almeno una ragazza
Le ragazze che piacciono a tutti i ragazzi
Le ragazze che piaccio ad almeno un ragazzo

$\{b \in B : \exists g \in G$	P(b,g)
$\{g \in G : \exists b \in B$	P(b,g)
$\{g \in G : \forall b \in B$	P(b,g)
$\{b \in B : \forall g \in G$	P(b,g)

Una gruppo S di studenti sta preparando un insieme M di materie in un insieme G di giorni. Sia P(s, m, g) il predicato "lo studente s sta preparando la materia m nel giorno g". Tradurre in linguaggio matematico le seguenti affermazioni.

Linguaggio naturale	Matematichese
Ogni giorno almeno uno studente prepara tutte le materie	
Ogni studente prepara almeno una materia al giorno	
C'è un giorno in cui la stessa materia è preparata da tutti gli studenti	
Tutti gli studenti preparano almeno una materia tutti i giorni	
C'è una materia che ogni studente prepara tutti i giorni	
Ogni studente ha una materia che prepara tutti i giorni	
Ogni materia viene preparata almeno un giorno da ogni studente	
Ogni studente dedica almeno un giorno ad ogni materia	

Logica elementare 5

Argomenti: negazione di proposizioni **Difficoltà**: $\star \star \star \star$

Prerequisiti: proposizioni, predicati, quantificatori, implicazione, negazione

Nella tabella seguente sono riportate sei affermazioni in linguaggio naturale, relative ad un concorso cinematografico. Determinare la negazione delle affermazioni, scrivendo la risposta in linguaggio naturale. Prestare la massima attenzione ad evitare ogni possibile ambiguità (il che equivale sostanzialmente ad esprimersi in linguaggio matematico!).

Affermazione	Negazione
Almeno un giudice ha visto almeno un film	
Tutti i giudici hanno visto tutti i film	
Ogni giudice ha visto almeno un film	
Tutti i film sono stati visti da almeno un giudice	
Almeno un giudice ha visto tutti i film	
Un film è stato visto da tutti i giudici	

Nella seguente tabella compaiono 5+3 affermazioni e le loro negazioni. Stabilire l'esatta corrispondenza tra ogni affermazione e la sua negazione.

P_1	Almeno un matematico ama la musica, ma non lo sport
P_2	Tutti i matematici non amano né la musica, né lo sport
P_3	Tutti i matematici che amano lo sport non amano la musica
P_4	Tutti i matematici che non amano lo sport non amano nemmeno la musica
P_5	Almeno un matematico ama la musica oppure lo sport
P_6	Almeno un matematico ama la musica o non ama lo sport
P_7	Ogni matematico ama la musica o lo sport
P_8	Tutti i matematici amano lo sport, ma non la musica
P_9	Almeno un matematico non ama né la musica, né lo sport
P_{10}	Almeno un matematico ama la musica e lo sport
P_{11}	Almeno uno studente non ha superato alcun esame in almeno un anno
P_{12}	Esiste un anno in cui tutti gli studenti non hanno superato lo stesso esame
P_{13}	Ogni anno almeno uno studente ha superato tutti gli esami
P_{14}	Ogni studente ha superato almeno un esame all'anno
P_{15}	Ogni esame è stato superato ogni anno da almeno uno studente
P_{16}	Esiste un anno in cui nessuno studente ha superato tutti gli esami

Insiemi 1

Argomenti: insiemi e operazioni tra insiemi

Difficoltà: *

Prerequisiti: notazioni insiemistiche, prodotto cartesiano, insieme delle parti

Consideriamo i seguenti insiemi:

$$A = \{2,4,g,\diamondsuit\}, \qquad B = \{2,g,7,h,\heartsuit\}, \qquad C = \{\diamondsuit,7,g\}.$$

Elencare gli elementi dei seguenti insiemi:

Insieme	Elementi	Insieme	Elementi	Insieme	Elementi
$A \cup B$		$C \cup B$		$A \cup B \cup C$	
$A \cap B$		$C \cap A$		$B \cap C$	
$A \cap B \cap C$		$C \cap (A \cup B)$		$A \cup (B \cap C)$	
$A \setminus B$		$B \setminus A$		$A \triangle B$	
$B \setminus C$		$C \setminus A$		$C \setminus (A \cup B)$	
$(A \cup B) \triangle C$		$(A \cap B) \setminus C$		$(A \cup C) \setminus (A \cap C)$	
$(C \setminus A) \setminus B$		$C \setminus (A \setminus B)$		$C \triangle (A \triangle B)$	

Stabilire se le seguenti affermazioni (proposizioni) sono vere o false.

Prop.	V/F	Prop.	V/F	Prop.	V/F
$2 \in A$		$7 \not\in A$		$2 \subseteq A$	
$\{2\} \subseteq A$		$\{2\} \in A$		$\{7,7,g\}\subseteq C$	
$C \subseteq B$		$C \subseteq C$		$C \setminus C \subseteq A$	
$A \subseteq A \cup B$		$A \subseteq A \cap B$		$B \cap C \subseteq C$	
$(2,2) \in A \times B$		$(2,7) \in A \times B$		$(7,2) \in B \times A$	
$(7,2) \in A \times B$		$(\diamondsuit,\diamondsuit) \in A \times A$		$(\diamondsuit,2) \not\in A^2$	
$(\heartsuit, \heartsuit) \in B \times B$		$(\diamondsuit,\diamondsuit) \not\in A \times C$		$(\diamondsuit,\diamondsuit)\in A^2\cap C^2$	
$\{2,2\} \in \mathcal{P}(A)$		$\{4,g\}\subseteq\mathcal{P}(A)$		$\{4,g\} \in \mathcal{P}(A)$	
$\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A)$		$A \in \mathcal{P}(A)$		$A \subseteq \mathcal{P}(A)$	
$(2,g) \in \mathcal{P}(A^2)$		$\{2,g\} \in \mathcal{P}(A^2)$		$\{(2,g)\} \in \mathcal{P}(A^2)$	
$\emptyset \in A$		$\emptyset \in \mathcal{P}(A)$		$\emptyset \subseteq \mathcal{P}(A)$	

Capire come sono fatti i seguenti insiemi:

$$A = \{2x : x \in \mathbb{N}\}, \qquad B_1 = \{x^2 : x \in \mathbb{N}\}, \qquad B_2 = \{x^2 : x \in \mathbb{Z}\}, \qquad B_3 = \{x^2 : x \in \mathbb{R}\},$$

$$C_1 = \{3x + 1 : x \in \mathbb{N}\}, \qquad C_2 = \{3x + 1 : x \in \mathbb{R}\}, \qquad C_3 = \{3x + 1 : x \in \{2, 4, 7\}\},$$

$$D_1 = \{n \in \mathbb{N} : \exists m \in \mathbb{N} \quad n = m^2\}, \qquad D_2 = \{n \in \mathbb{N} : \forall m \in \mathbb{N} \quad n = m^2\}.$$