4Byte 16Mx32 SIMM

(16Mx4 base)

www.DataSheet.in

Revision 0.0

JUNE 1998

Revision History

Version 0.0 (JUNE 1999)

• The 4th. generation of 64Mb DRAM components are applied for this module.

www.DataSheet.in

KMM53216000CK/CKG Fast Page Mode

16M x 32 DRAM SIMM Using 16Mx4, 4K Refresh, 5V

GENERAL DESCRIPTION

The Samsung KMM53216000C is a 16Mx32bits Dynamic RAM high density memory module. The Samsung KMM53216000C consists of eight CMOS 16Mx4bits DRAMs in SOJ packages mounted on a 72-pin glass-epoxy substrate. A 0.1 or 0.22uF decoupling capacitor is mounted on the printed circuit board for each DRAM. The KMM53216000C is a Single In-line Memory Module with edge connections and is intended for mounting into 72 pin edge connector sockets.

PERFORMANCE RANGE

Speed	trac	tcac	trc	t PC
-5	50ns	13ns	90ns	35ns
-6	60ns	15ns	110ns	40ns

FEATURES

- · Part Identification
 - KMM53216000CK(4K cycles/64ms Ref, SOJ, Solder)
 - KMM53216000CKG(4K cycles/64ms Ref, SOJ, Gold)
- Fast Page Mode Operation
- CAS-before-RAS & Hidden Refresh capability
- RAS-only refresh capability
- TTL compatible inputs and outputs
- Single +5V±10% power supply
- · JEDEC standard PDpin & pinout
- PCB : Height(1250mil), double sided component

PIN CONFIGURATIONS

Pin	Symbol	Pin	Symbol
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36	Vss DQ0 DQ18 DQ19 DQ2 DQ20 DQ3 DQ21 Vcc NC A0 A1 A2 A3 A4 A5 A6 A10 DQ4 DQ22 DQ5 DQ23 DQ23 DQ24 DQ7 DQ25 A7 A11 Vcc A8 A9 NC RAS2 NC NC	37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 67 68 69 70 71 72	NC NC Vss CAS0 CAS2 CAS3 CAS1 RAS0 NC NC W NC DQ9 DQ27 DQ10 DQ28 DQ11 DQ29 DQ12 DQ30 DQ13 DQ31 Vcc DQ32 DQ14 DQ33 DQ31 Vcc DQ32 DQ14 DQ33 DQ15 DQ34 DQ16 NC PD1 PD2 PD3 PD4 NC Vss

PIN NAMES

Pin Name	Function
A0 - A11	Address Inputs
DQ0-7, DQ9-16 DQ18-25, DQ27-34	Data In/Out
W	Read/Write Enable
RAS0, RAS2	Row Address Strobe
CAS0 - CAS3	Column Address Strobe
PD1 -PD4	Presence Detect
Vcc	Power(+5V)
Vss	Ground
NC	No Connection

PRESENCE DETECT PINS (Optional)

Pin	50NS	60NS
PD1	Vss	Vss
PD2	NC	NC
PD3	Vss	NC
PD4	Vss	NC

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

FUNCTIONAL BLOCK DIAGRAM

DRAM MODULE

ABSOLUTE MAXIMUM RATINGS *

Item	Symbol	Rating	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-1 to +7.0	V
Voltage on Vcc supply relative to Vss	Vcc	-1 to +7.0	V
Storage Temperature	Tstg	-55 to +125	°C
Power Dissipation	Pd	8	W
Short Circuit Output Current	los	50	mA

^{*} Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for intended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to Vss, TA = 0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	Vih	2.4	-	Vcc*1	V
Input Low Voltage	VIL	-1.0 ^{*2}	-	0.8	V

^{*1 :} Vcc+2.0V at pulse width ≤ 20ns, which is measured at Vcc.

DC AND OPERATING CHARACTERISTICS (Recommended operating conditions unless otherwise noted)

0	KMM532160		00CK/CKG	1114	
Symbol	Speed	Min	Max	Unit	
ICC1	-5 -6	-	960 880	mA mA	
ICC2	Don't care	-	16	mA	
Іссз	-5 -6	-	960 880	mA mA	
ICC4	-5 -6	-	560 480	mA mA	
ICC5	Don't care	-	8	mA	
Icc6	-5 -6	-	960 880	mA mA	
lı(L) lo(L)	Don't care	-10 -5	10 5	uA uA	
Voн Vol	Don't care	2.4	0.4	V V	

ICC1 : Operating Current * (RAS, CAS, Address cycling @trc=min)

ICC2 : Standby Current (RAS=CAS=W=VIH)

ICC3: RAS Only Refresh Current * (CAS=VIH, RAS cycling @trc=min)

ICC4 : Fast Page Mode Current * (RAS=VIL, CAS cycling : tpc=min)

Iccs : Standby Current (RAS=CAS=W=Vcc-0.2V)

Icc6: CAS-Before-RAS Refresh Current * (RAS and CAS cycling @trc=min)

I(IL) : Input Leakage Current (Any input 0≤VIN≤Vcc+0.5V, all other pins not under test=0 V)

I(OL): Output Leakage Current(Data Out is disabled, 0V≤Vo∪T≤Vcc)

VOH: Output High Voltage Level (IOH = -5mA)

Vol.: Output Low Voltage Level (IoL = 4.2mA)

* NOTE: lcc1, lcc3, lcc4 and lcc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. lcc is specified as an average current. In lcc1 and lcc3, address can be changed maximum once while RAS=VIL. In lcc4, address can be changed maximum once within one Fast page mode cycle time, tpc.

^{*2 : -2.0}V at pulse width ≤ 20ns, which is measured at Vss.

DRAM MODULE

CAPACITANCE (TA = 25°C, VCC=5V, f = 1MHz)

Item	Symbol	Min	Max	Unit
Input capacitance[A0-A11]	CIN1	_	50	pF
Input capacitance[W]	CIN2	-	66	pF
Input capacitance[RAS0, RAS2]	Сімз	-	38	pF
Input capacitance[CAS0 - CAS3]	CIN4	-	24	pF
Input/Output capacitance[DQ0-7, 9-16,18-25, 27-34]	CDQ	-	17	pF

AC CHARACTERISTICS (0°C≤TA≤70°C, Vcc=5.0V±10%. See notes 1,2.)

 $Test\ condition: Vih/Vil=2.4/0.8V,\ Voh/Vol=2.4/0.4V,\ output\ loading\ CL=100pF$

Parameter	Symbol	-	5	_	6	Unit	Note
Faranietei	Syllibol	Min	Max	Min	Max		
Random read or write cycle time	trc	90		110		ns	
Access time from RAS	trac		50		60	ns	3,4,10
Access time from CAS	tcac		13		15	ns	3,4,5
Access time from column address	taa		25		30	ns	3,10
CAS to output in Low-Z	tcLz	0		0		ns	3
Output buffer turn-off delay	toff	0	13	0	15	ns	6
Transition time(rise and fall)	tτ	1	50	1	50	ns	2
RAS precharge time	t RP	30		40		ns	
RAS pulse width	tras	50	10K	60	10K	ns	
RAS hold time	trsh	13		15		ns	
CAS hold time	tсsн	50		60		ns	
CAS pulse width	tcas	13	10K	15	10K	ns	
RAS to CAS delay time	trcd	20	37	20	45	ns	4
RAS to column address delay time	trad	15	25	15	30	ns	10
CAS to RAS precharge time	tCRP	5		5		ns	
Row address set-up time	tasr	0		0		ns	
Row address hold time	trah	10		10		ns	
Column address set-up time	tasc	0		0		ns	
Column address hold time	tcah	10		10		ns	
Column address to RAS lead time	tral	25		30		ns	
Read command set-up time	trcs	0		0		ns	
Read command hold referenced to CAS	trch	0		0		ns	8
Read command hold referenced to RAS	trrh	0		0		ns	8
Write command hold time	twch	10		10		ns	
Write command pulse width	twp	10		10		ns	
Write command to RAS lead time	trwL	15		15		ns	
Write command to CAS lead time	tcwL	13		15		ns	
Data set-up time	tos	0		0		ns	9
Data hold time	tон	10		10		ns	9
Refresh period	tref		64		64	ms	
Write command set-up time	twcs	0		0		ns	7
CAS setup time(CAS-before-RAS refresh)	tcsr	5		5		ns	
CAS hold time(CAS-before-RAS refresh)	tchr	10		10		ns	
RAS to CAS precharge time	trpc	5		5		ns	
Access time from CAS precharge	t CPA		30		35	ns	3

DRAM MODULE

AC CHARACTERISTICS (0°C≤TA≤70°C, Vcc=5.0V±10%. See notes 1,2.)

Test condition: Vih/Vil=2.4/0.8V, Voh/Vol=2.4/0.4V, output loading CL=100pF

Parameter	Cumbal	-5		-6		Unit	Note
Farameter	Symbol	Min	Max	Min	Max	Onit	Note
Fast page mode cycle time	tpc	35		40		ns	
CAS precharge time(Fast page cycle)	tcp	10		10		ns	
RAS pulse width(Fast page cycle)	trasp	50	200K	60	200K	ns	
W to RAS precharge time(C-B-R refresh)	twrp	10		10		ns	
W to RAS hold time(C-B-R refresh)	twrh	10		10		ns	

NOTES

- An initial <u>pause</u> of 200<u>us</u> is required after power-up followed by any 8 RAS-only or CAS-before-RAS refresh cycles before proper device operation is achieved.
- Input voltage levels are Vih/Vil. VIH(min) and VIL(max) are reference levels for measuring timing of input signals. Transition times are measured between VIH(min) and VIL(max) and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the tRCD(max) limit insures that tRAC(max) can be met. tRCD(max) is specified as a reference point only. If tRCD is greater than the specified tRCD(max) limit, then access time is controlled exclusively by tCAC.
- 5. Assumes that tRCD≥tRCD(max).

- This parameter defines the time at which the output achieves the open circuit condition and is not referenced to VoH or VoL.
- 7. twcs is non-restrictive operating parameter. It is included in the data sheet as electrical characteristics only. If twcs≥twcs(min), the cycle is an early write cycle and the data out pin will remain high impedance for the duration of the cycle.
- 8. Either tRCH or tRRH must be satisfied for a read cycle.
- 9. These parameters are referenced to the CAS leading edge in early write cycles.
- 10. Operation within the tRAD(max) limit insures that tRAC(max) can be met. tRAD(max) is specified as reference point only. If tRAD is greater than the specified tRAD(max) limit, then access time is controlled by tAA.

READ CYCLE

WRITE CYCLE (EARLY WRITE)

NOTE: Dout = OPEN

WRITE CYCLE (OE CONTROLLED WRITE)

NOTE : DOUT = OPEN

READ - MODIFY - WRTIE CYCLE

FAST PAGE READ CYCLE

NOTE: Dout = OPEN

FAST PAGE WRITE CYCLE (EARLY WRITE)

NOTE: DOUT = OPEN

FAST PAGE READ - MODIFY - WRITE CYCLE

RAS - ONLY REFRESH CYCLE

NOTE : \overline{W} , \overline{OE} , DIN = Don't care

Dout = OPEN

CAS - BEFORE - RAS REFRESH CYCLE

NOTE : \overline{OE} , A = Don't care

HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

NOTE : DOUT = OPEN

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

CAS - BEFORE - RAS SELF REFRESH CYCLE

NOTE: OE, A = Don't care

TEST MODE IN CYCLE

NOTE : OE, A = Don't care

PACKAGE DIMENSIONS

Units: Inches (millimeters)

Gold/Solder Plating Lead

Tolerances: $\pm .005(.13)$ unless otherwise specified

NOTE: The used device is 16Mx4 DRAM, SOJ

DRAM Part No.: KMM53216000CK/CKG -- KM44C16100CK

