IT Fundamentals Hoofdstuk 2

Jens Buysse, Karine Van Driessche, Koen Mertens, Lieven Smits 31 augustus 2020

Inhoud. I

PROP

De taal van PROP

Proposities

Logische operatoren

Waarheidstabellen

Tautologieën en contradicties

Logische implicatie en logische equivalentie

Vervangingswetten

PROP

Definitie

Een **logica** of **formele theorie** bevat twee belangrijke delen, nl. de **taal** en de **regels**.

Definitie

Een **logica** of **formele theorie** bevat twee belangrijke delen, nl. de **taal** en de **regels**.

- 1. De **taal** wordt verder opgedeeld in: het alfabet en de syntaxregels.
 - (i) Het **alfabet** is een verzameling met als elementen alle symbolen die mogen gebruikt worden binnen de theorie.
 - (ii) De **syntaxregels** geven aan hoe met de symbolen uit het alfabet geldige formules kunnen opgebouwd worden.

Definitie

Een **logica** of **formele theorie** bevat twee belangrijke delen, nl. de **taal** en de **regels**.

- 1. De **taal** wordt verder opgedeeld in: het alfabet en de syntaxregels.
 - (i) Het **alfabet** is een verzameling met als elementen alle symbolen die mogen gebruikt worden binnen de theorie.
 - (ii) De **syntaxregels** geven aan hoe met de symbolen uit het alfabet geldige formules kunnen opgebouwd worden.
- 2. De **regels** laten toe de formules te manipuleren volgens de toegestane redeneringsvormen.

• Propositionele variabelen of propositieletters: $p, q, r, p_1, p_2, ..., p_n$.

- Propositionele variabelen of propositieletters: $p, q, r, p_1, p_2, ..., p_n$.
- Logische of propositionele constanten: W en O.

- Propositionele variabelen of propositieletters: $p, q, r, p_1, p_2, ..., p_n$.
- Logische of propositionele constanten: W en O.
- Logische operatoren of connectieven: ¬, ∧, ∨, →, ↔.

- Propositionele variabelen of propositieletters: $p, q, r, p_1, p_2, \dots, p_n$.
- Logische of propositionele constanten: W en O.
- Logische operatoren of connectieven: ¬, ∧, ∨, →, ↔.
- Hulpsymbolen: (en).

Een geldige formule is een propositionele vorm.

• Een propositieletter is een propositionele vorm.

- Een propositieletter is een propositionele vorm.
- De propositionele constanten W en O zijn propositionele vormen.

- Een propositieletter is een propositionele vorm.
- De propositionele constanten W en O zijn propositionele vormen.
- Stel dat p en q propositionele vormen zijn, dan zijn $\neg p$, (p), $p \lor q$, $p \land q$, $p \rightarrow q$ en $p \leftrightarrow q$ ook propositionele vormen.

- Een propositieletter is een propositionele vorm.
- De propositionele constanten W en O zijn propositionele vormen.
- Stel dat p en q propositionele vormen zijn, dan zijn $\neg p$, (p), $p \lor q$, $p \land q$, $p \rightarrow q$ en $p \leftrightarrow q$ ook propositionele vormen.

Een geldige formule is een **propositionele vorm**.

- Een propositieletter is een propositionele vorm.
- De propositionele constanten W en O zijn propositionele vormen.
- Stel dat p en q propositionele vormen zijn, dan zijn $\neg p$, (p), $p \lor q$, $p \land q$, $p \rightarrow q$ en $p \leftrightarrow q$ ook propositionele vormen.

Opmerking De voorrangsregels: eerst ¬, vervolgens Λ , V, \rightarrow en als laatste \leftrightarrow .

Definitie

Een **propositie** stelt een uitdrukking voor die waar (W) of onwaar (O) is.

Definitie

Een **propositie** stelt een uitdrukking voor die waar (W) of onwaar (O) is.

Definitie

Een propositie stelt een uitdrukking voor die waar (W) of onwaar (O) is.

Opmerkingen

• Een propositionele variabele stelt een willekeurige propositie voor.

Definitie

Een **propositie** stelt een uitdrukking voor die waar (W) of onwaar (O) is.

- Een propositionele variabele stelt een willekeurige propositie voor.
- De propositionele constanten W en O zijn proposities.

Definitie

Een **propositie** stelt een uitdrukking voor die waar (W) of onwaar (O) is.

- Een propositionele variabele stelt een willekeurige propositie voor.
- De propositionele constanten W en O zijn proposities.

Definitie

Een propositie stelt een uitdrukking voor die waar (W) of onwaar (O) is.

- Een propositionele variabele stelt een willekeurige propositie voor.
- De propositionele constanten W en O zijn proposities.
 - De propositie W is steeds waar.
 - De propositie 0 is steeds onwaar.

Eigenschappen

Eigenschappen

Eigenschap

Het principe van de niet-tegenstrijdigheid:

Een propositie kan niet terzelfdertijd W en O zijn.

Eigenschappen

Eigenschap

Het principe van de niet-tegenstrijdigheid:

Een propositie kan niet terzelfdertijd W en 0 zijn.

Eigenschap

Het principe van het uitgesloten derde:

Een propositie kan enkel W of O zijn.

HO GENT

• 5 > 2

- 5 > 2
- $3 \in \{1, 2, 3, 4\}$

- 5 > 2
- $3 \in \{1, 2, 3, 4\}$
- Er bestaat geen reëel getal x zodat x^2 + 1 = 0.

-6 ≤ -567

- -6 ≤ -567
- Het getal π is een natuurlijk getal.

• 1000 is een groot getal.

- 1000 is een groot getal.
- x > 7

- 1000 is een groot getal.
- x > 7
- De sterrenhemel van het noordelijk halfrond.

- 1000 is een groot getal.
- x > 7
- De sterrenhemel van het noordelijk halfrond.
- Wiskunde is moeilijk.

Zijn de volgende uitspraken proposities?

1. De verzameling A is eindig.

- 1. De verzameling A is eindig.
- 2. 's Avonds als het donker is.

- 1. De verzameling A is eindig.
- 2. 's Avonds als het donker is.
- 3. Voor elk koppel $(x,y) \in \mathbb{N} \times \mathbb{N}$ geldt: x > y of $x \le y$.

- 1. De verzameling A is eindig.
- 2. 's Avonds als het donker is.
- 3. Voor elk koppel $(x,y) \in \mathbb{N} \times \mathbb{N}$ geldt: x > y of $x \le y$.
- 4. $1 = 2 \leftrightarrow 13$ is deelbaar door 4.

- 1. De verzameling A is eindig.
- 2. 's Avonds als het donker is.
- 3. Voor elk koppel $(x,y) \in \mathbb{N} \times \mathbb{N}$ geldt: x > y of $x \le y$.
- 4. $1 = 2 \leftrightarrow 13$ is deelbaar door 4.
- 5. $3x^2 5x + 1 = 0$.

Notatie

Notatie

symbool	uitspraak	benaming
7	niet	negatie of ontkenning
٨	en	conjunctie
V	of	disjunctie
\rightarrow	alsdan	materiële implicatie
\leftrightarrow	als en slechts als	materiële equivalentie

De negatie

De negatie

De conjunctie

De conjunctie

р	q	$p \wedge q$
W	W	W
W	0	0
0	W	0
0	0	0

De disjunctie

De disjunctie

р	q	$p \vee q$
W	W	W
W	0	W
0	W	W
0	0	0

De implicatie

De implicatie

$$\begin{array}{c|ccc} p & q & p \rightarrow q \\ \hline W & W & W \\ W & O & O \\ O & W & W \\ O & O & W \\ \end{array}$$

De equivalentie

De equivalentie

р	q	$p \leftrightarrow q$
W	W	W
W	0	0
0	W	0
0	0	W

• $\neg (7 \in \{5, 3, 1\})$

- $\neg (7 \in \{5, 3, 1\})$
- $(2 \in \{2, 4, 6, ...\}) \lor (1 + 1 = 7)$

- $\neg (7 \in \{5, 3, 1\})$
- $(2 \in \{2, 4, 6, ...\}) \lor (1 + 1 = 7)$
- $(6 < 7) \land (8 \in \{0, 1\})$

- $\neg (7 \in \{5, 3, 1\})$
- $(2 \in \{2, 4, 6, ...\}) \lor (1 + 1 = 7)$
- $(6 < 7) \land (8 \in \{0, 1\})$
- $(1 = 2) \rightarrow (5 > 100)$

- $\neg (7 \in \{5, 3, 1\})$
- $(2 \in \{2, 4, 6, ...\}) \lor (1 + 1 = 7)$
- $(6 < 7) \land (8 \in \{0, 1\})$
- $(1 = 2) \rightarrow (5 > 100)$
- $(1 = 2) \leftrightarrow (5 > 100)$

1 Zijn de volgende proposities waar of onwaar?

1 Zijn de volgende proposities waar of onwaar? a) ¬(6 > 45)

1 Zijn de volgende proposities waar of onwaar?

- a) $\neg (6 > 45)$
- b) $(2 + 2 = 4) \wedge (3 \text{ is een priemgetal})$

- 1 Zijn de volgende proposities waar of onwaar?
 - a) $\neg (6 > 45)$
 - b) $(2 + 2 = 4) \wedge (3 \text{ is een priemgetal})$
 - c) (4 is een reëel getal) v (3 > 100)

1 Zijn de volgende proposities waar of onwaar?

- a) $\neg (6 > 45)$
- b) $(2 + 2 = 4) \wedge (3 \text{ is een priemgetal})$
- c) (4 is een reëel getal) v (3 > 100)
- d) $(100 > 30) \rightarrow (100 > 2)$

1 Zijn de volgende proposities waar of onwaar?

- a) $\neg (6 > 45)$
- b) $(2 + 2 = 4) \wedge (3 \text{ is een priemgetal})$
- c) (4 is een reëel getal) v (3 > 100)
- d) $(100 > 30) \rightarrow (100 > 2)$
- e) Als 1 = 2, dan ben ik Napoleon.

1 Zijn de volgende proposities waar of onwaar?

- a) $\neg (6 > 45)$
- b) $(2 + 2 = 4) \wedge (3 \text{ is een priemgetal})$
- c) (4 is een reëel getal) v (3 > 100)
- d) $(100 > 30) \rightarrow (100 > 2)$
- e) Als 1 = 2, dan ben ik Napoleon.
- f) (1 = 2) ↔ (Gent ligt in West-Vlaanderen)

2 Gegeven zijn de volgende proposities:

p :='ik voel mij gelukkig'.

q :='ik ben rijk'.

Schrijf de volgende proposities symbolisch:

a) 'Als ik rijk ben, voel ik mij gelukkig'.

2 Gegeven zijn de volgende proposities:

p :='ik voel mij gelukkig'.

q := 'ik ben rijk'.

- a) 'Als ik rijk ben, voel ik mij gelukkig'.
- b) 'Als ik mij gelukkig voel, ben ik rijk'.

2 Gegeven zijn de volgende proposities:

p :='ik voel mij gelukkig'.

q := 'ik ben rijk'.

- a) 'Als ik rijk ben, voel ik mij gelukkig'.
- b) 'Als ik mij gelukkig voel, ben ik rijk'.
- c) 'Als ik niet rijk ben, voel ik mij niet gelukkig'.

- 2 Gegeven zijn de volgende proposities:
 - p := 'ik voel mij gelukkig'.
 - q := 'ik ben rijk'.

- a) 'Als ik rijk ben, voel ik mij gelukkig'.
- b) 'Als ik mij gelukkig voel, ben ik rijk'.
- c) 'Als ik niet rijk ben, voel ik mij niet gelukkig'.
- d) 'Het is niet waar dat ik mij niet gelukkig voel als ik niet rijk ben'.

- 2 Gegeven zijn de volgende proposities:
 - p := 'ik voel mij gelukkig'.
 - q := 'ik ben rijk'.

- a) 'Als ik rijk ben, voel ik mij gelukkig'.
- b) 'Als ik mij gelukkig voel, ben ik rijk'.
- c) 'Als ik niet rijk ben, voel ik mij niet gelukkig'.
- d) 'Het is niet waar dat ik mij niet gelukkig voel als ik niet rijk ben'.

- 2 Gegeven zijn de volgende proposities:
 - p :='ik voel mij gelukkig'.
 - q := 'ik ben rijk'.

Schrijf de volgende proposities symbolisch:

- a) 'Als ik rijk ben, voel ik mij gelukkig'.
- b) 'Als ik mij gelukkig voel, ben ik rijk'.
- c) 'Als ik niet rijk ben, voel ik mij niet gelukkig'.
- d) 'Het is niet waar dat ik mij niet gelukkig voel als ik niet rijk ben'.
- 3 Het nand-connectief (symbolisch |) wordt gedefinieerd door

$$(p|q) := \neg (p \land q).$$

Stel een waarheidstabel op voor de propositionele vorm p|q

р	q	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \land (q \rightarrow p)$
W	W	W	W	W
W	0	0	W	0
0	W	W	0	0
0	0	W	W	W

		$p \vee q$	$p \wedge q$	$(p \lor q) \to (p \land q)$
		W	W	W
		W	0	0
0	W	W	0	0
0	0	0	0	W

1. Als $p \rightarrow q$, $\neg p \rightarrow r$ en $r \rightarrow (p \lor q)$ alle waar zijn, wat is dan de waarheidswaarde van q?

- 1. Als $p \rightarrow q$, $\neg p \rightarrow r$ en $r \rightarrow (p \lor q)$ alle waar zijn, wat is dan de waarheidswaarde van q?
- 2. Stel de waarheidstabel op voor de volgende propositionele vormen:

- 1. Als $p \rightarrow q$, $\neg p \rightarrow r$ en $r \rightarrow (p \lor q)$ alle waar zijn, wat is dan de waarheidswaarde van q?
- 2. Stel de waarheidstabel op voor de volgende propositionele vormen: a) $(p \rightarrow q) \land (\neg q \lor r)$.

- 1. Als $p \rightarrow q$, $\neg p \rightarrow r$ en $r \rightarrow (p \lor q)$ alle waar zijn, wat is dan de waarheidswaarde van q?
- 2. Stel de waarheidstabel op voor de volgende propositionele vormen:
 - a) $(p \rightarrow q) \land (\neg q \lor r)$.
 - b) $(O \lor p) \rightarrow (q \land O)$.

- 1. Als $p \rightarrow q$, $\neg p \rightarrow r$ en $r \rightarrow (p \lor q)$ alle waar zijn, wat is dan de waarheidswaarde van q?
- 2. Stel de waarheidstabel op voor de volgende propositionele vormen:
 - a) $(p \rightarrow q) \land (\neg q \lor r)$.
 - b) $(O \lor p) \to (q \land O)$.
 - c) $((p \leftrightarrow r) \land (r \leftrightarrow q)) \rightarrow (p \leftrightarrow q)$.

 Een tautologie is een propositionele vorm waarvoor de waarheidswaarde steeds W is, ongeacht de waarden van de propositionele variabelen die erin voorkomen.
 Is p een tautologie dan zeggen we: p is geldig.

- Een tautologie is een propositionele vorm waarvoor de waarheidswaarde steeds W is, ongeacht de waarden van de propositionele variabelen die erin voorkomen.
 Is p een tautologie dan zeggen we: p is geldig.
- Een contradictie is een propositionele vorm waarvoor de waarheidswaarde steeds 0 is, ongeacht de waarden van de propositionele variabelen die erin voorkomen.
 Is p een contradictie dan zeggen we: p is ongeldig.

- Een tautologie is een propositionele vorm waarvoor de waarheidswaarde steeds W is, ongeacht de waarden van de propositionele variabelen die erin voorkomen.
 Is p een tautologie dan zeggen we: p is geldig.
- Een contradictie is een propositionele vorm waarvoor de waarheidswaarde steeds 0 is, ongeacht de waarden van de propositionele variabelen die erin voorkomen.
 Is p een contradictie dan zeggen we: p is ongeldig.
- Een propositionele vorm die een tautologie noch een contradictie is, is een **contingentie**.

$p q p \rightarrow q \neg p \neg p \lor q (p \rightarrow q) \rightarrow (\neg p \lor q)$	•
W W W O W W	
$W \circ O \circ O \circ W$	
$O W \mid W \mid W \mid W$	
$O O \mid W \mid W \mid W \mid$	

р	q	$p \rightarrow q$	$\neg p$	$\neg p \lor q$	$(p \to q) \to (\neg p \lor q)$
W	W	W	0	W	W
W	0	0	0	0	W
0	W	W	W	W	W
0	0	W	W	W	W

Besluit:

 $(p \rightarrow q) \rightarrow (\neg p \lor q)$ is een tautologie.

Toon aan de hand van een waarheidstabel aan dat de volgende propositionele vormen tautologieën zijn.

1.
$$\neg((s \to t) \land (p \lor q)) \leftrightarrow (\neg(s \to t) \lor \neg(p \lor q))$$

Toon aan de hand van een waarheidstabel aan dat de volgende propositionele vormen tautologieën zijn.

1.
$$\neg((s \to t) \land (p \lor q)) \leftrightarrow (\neg(s \to t) \lor \neg(p \lor q))$$

2.
$$(p \land (r \lor \neg r)) \rightarrow ((q \land q) \lor \neg q)$$

Twee bijzondere proposities

Twee bijzondere proposities

Definitie

De propositionele vorm q is een logisch gevolg van de propositionele vorm p als de propositionele vorm $p \rightarrow q$ een tautologie is. We noteren:

$$p \Rightarrow q$$

met ⇒ een logische implicatie.

Twee bijzondere proposities

Definitie

De propositionele vorm q is een logisch gevolg van de propositionele vorm p als de propositionele vorm $p \rightarrow q$ een tautologie is. We noteren:

$$p \Rightarrow q$$

 $met \Rightarrow een logische implicatie.$

Definitie

De propositionele vorm p is logisch equivalent met de propositionele vorm q als de propositionele vorm $p \leftrightarrow q$ een tautologie is.

We noteren:

$$p \Leftrightarrow q$$

met ⇔ een logische equivalentie.

Is q een logisch gevolg van $p \land (p \rightarrow q) \Rightarrow q$?

р	q	$p \rightarrow q$	$p \wedge (p \rightarrow q)$	$[p \land (p \rightarrow q)] \rightarrow q$
W	W	W	W	W
W	0	0	0	W
0	W	W	0	W
0	0	W	0	W

Is q een logisch gevolg van $p \land (p \rightarrow q) \Rightarrow q$?

р	q	$p \rightarrow q$	$p \wedge (p \rightarrow q)$	$[p \land (p \rightarrow q)] \rightarrow q$
W	W	W	W	W
W	0	0	0	W
0	W	W	0	W
0	0	W	0	W

Besluit $p \land (p \rightarrow q) \Rightarrow q$ is waar.

1	2	3	4	5	6	7	8
р	q	r	$p \rightarrow q$	<i>p</i> → <i>r</i>	$(p \rightarrow q) \land (p \rightarrow r)$	q n r	$p \rightarrow (q \wedge r)$
W	W	W	W	W	W	W	W
W	W	0	W	0	0	0	0
W	0	W	0	W	0	0	0
W	0	0	0	0	0	0	0
0	W	W	W	W	W	W	W
0	W	0	W	W	W	0	W
0	0	W	W	W	W	0	W
0	0	0	W	W	W	0	W

1	2	3	4	5	6	7	8
р	q	r	$p \rightarrow q$	$p \rightarrow r$	$(p \rightarrow q) \land (p \rightarrow r)$	q n r	$p \rightarrow (q \wedge r)$
W	W	W	W	W	W	W	W
W	W	0	W	0	0	0	0
W	0	W	0	W	0	0	0
W	0	0	0	0	0	0	0
0	W	W	W	W	W	W	W
0	W	0	W	W	W	0	W
0	0	W	W	W	W	0	W
0	0	0	W	W	W	0	W

Besluit

$$((p \to q) \land (p \to r)) \Leftrightarrow (p \to (q \land r))$$

is waar.

Oefeningen

Oefeningen

Bewijs met behulp van een waarheidstabel de juistheid van de volgende logische equivalentie en logische implicatie.

1.
$$((p \land q) \rightarrow r) \Leftrightarrow ((p \rightarrow r) \lor (q \rightarrow r))$$

Oefeningen

Bewijs met behulp van een waarheidstabel de juistheid van de volgende logische equivalentie en logische implicatie.

1.
$$((p \land q) \rightarrow r) \Leftrightarrow ((p \rightarrow r) \lor (q \rightarrow r))$$

2.
$$((p \lor q) \to r) \Rightarrow ((p \land q) \to r)$$

Stelling

1. $(p \land W) \Leftrightarrow p$

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$
- 3. $(p \lor W) \Leftrightarrow W$

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$
- 3. $(p \lor W) \Leftrightarrow W$
- 4. $(p \lor 0) \Leftrightarrow p$

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$
- 3. $(p \lor W) \Leftrightarrow W$
- 4. $(p \lor 0) \Leftrightarrow p$
- 5. $(p \rightarrow W) \Leftrightarrow W$

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$
- 3. $(p \lor W) \Leftrightarrow W$
- 4. $(p \lor 0) \Leftrightarrow p$
- 5. $(p \rightarrow W) \Leftrightarrow W$
- 6. $(O \rightarrow p) \Leftrightarrow W$

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$
- 3. $(p \lor W) \Leftrightarrow W$
- 4. $(p \lor 0) \Leftrightarrow p$
- 5. $(p \rightarrow W) \Leftrightarrow W$
- 6. $(O \rightarrow p) \Leftrightarrow W$
- 7. $(p \leftrightarrow W) \Leftrightarrow p$

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$
- 3. $(p \lor W) \Leftrightarrow W$
- 4. $(p \lor 0) \Leftrightarrow p$
- 5. $(p \rightarrow W) \Leftrightarrow W$
- 6. $(O \rightarrow p) \Leftrightarrow W$
- 7. $(p \leftrightarrow W) \Leftrightarrow p$
- 8. $(p \leftrightarrow 0) \Leftrightarrow \neg p$

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$
- 3. $(p \lor W) \Leftrightarrow W$
- 4. $(p \lor 0) \Leftrightarrow p$
- 5. $(p \rightarrow W) \Leftrightarrow W$
- 6. $(O \rightarrow p) \Leftrightarrow W$
- 7. $(p \leftrightarrow W) \Leftrightarrow p$
- 8. $(p \leftrightarrow 0) \Leftrightarrow \neg p$
- 9. $(p \lor \neg p) \Leftrightarrow W$

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$
- 3. $(p \lor W) \Leftrightarrow W$
- 4. $(p \lor 0) \Leftrightarrow p$
- 5. $(p \rightarrow W) \Leftrightarrow W$
- 6. $(O \rightarrow p) \Leftrightarrow W$
- 7. $(p \leftrightarrow W) \Leftrightarrow p$
- 8. $(p \leftrightarrow 0) \Leftrightarrow \neg p$
- 9. $(p \lor \neg p) \Leftrightarrow W$
- 10. $(p \land \neg p) \Leftrightarrow 0$

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$
- 3. $(p \lor W) \Leftrightarrow W$
- 4. $(p \lor 0) \Leftrightarrow p$
- 5. $(p \rightarrow W) \Leftrightarrow W$
- 6. $(O \rightarrow p) \Leftrightarrow W$
- 7. $(p \leftrightarrow W) \Leftrightarrow p$
- 8. $(p \leftrightarrow 0) \Leftrightarrow \neg p$
- 9. $(p \lor \neg p) \Leftrightarrow W$
- 10. $(p \land \neg p) \Leftrightarrow 0$
- 11. $(p \rightarrow p) \Leftrightarrow W$

Stelling

- 1. $(p \land W) \Leftrightarrow p$
- 2. $(p \land 0) \Leftrightarrow 0$
- 3. $(p \lor W) \Leftrightarrow W$
- 4. $(p \lor 0) \Leftrightarrow p$
- 5. $(p \rightarrow W) \Leftrightarrow W$
- 6. $(O \rightarrow p) \Leftrightarrow W$
- 7. $(p \leftrightarrow W) \Leftrightarrow p$
- 8. $(p \leftrightarrow 0) \Leftrightarrow \neg p$
- 9. (p ∨ ¬p) ⇔ W
- 10. $(p \land \neg p) \Leftrightarrow 0$
- 11. $(p \rightarrow p) \Leftrightarrow W$

HO GENT

Oefening

Toon a.d.h.v. een waarheidstabel dat de W/O-wetten gelden.

