コンパクト集合と閉集合の距離と共通部分について

1

記号 1.1. (X,d) を距離空間とする. $A,B \subset X$ に対して,

$$d(A, B) := \inf\{d(a, b) \mid a \in A, b \in B\}, \quad d(A, b) := \inf\{d(a, b) \mid a \in A\}$$

という記号を用いる.

命題 1.2. (X,d) を距離空間とする. $A \subset X$ をコンパクト集合, $B \subset X$ を閉集合とする.

$$d(A,B) > 0 \Leftrightarrow A \cap B = \emptyset$$

が成り立つ.

証明・⇒. $A \cap B \neq \emptyset$ と仮定する (背理法). $c \in A \cap B$ ととると, $d(A,B) \leq d(c,c) = 0$ となるので矛盾する. \Leftarrow . 任意の $a,a' \in A$ に対して,

$$d(B, a) = \inf\{d(b, a) \mid b \in A\} \le \inf\{d(b, a) + d(a, a') \mid b \in A\}$$

が成り立つので,

$$|d(B, a) - d(B, a')| \le d(a, a')$$

 $d(B,\cdot)$ は A 上の連続関数である. A はコンパクト集合であるので, $d(B,\cdot)$ の最小値を実現する点 $a\in A$ が とれる.

$$d(B, a) = 0$$

であるので, $a\in \overline{B}$ である. B が閉集合であることから $\overline{B}=B$ であるので, $a\in B$ である. 従って $A\cap B\neq\varnothing$ が成り立つ.

注意 1.3. $\tanh: \mathbb{R} \to \mathbb{R}$ は連続関数なので, $A \coloneqq \left\{ (x, f(x)) \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\}$ は (\mathbb{R}^2, d) の閉集合である. 閉集合 $B \coloneqq \left\{ (x, y) \in \mathbb{R}^2 \mid y = 1 \right\}$ との共通部分を考えると, $\tanh x < 1 \quad (x \in \mathbb{R})$ であるので,

$$A \cap B = \emptyset$$

である一方で, $\lim_{x\to\infty} \tanh(x) = 1$ であるので,

$$d(A,B) = 0$$

が成り立つ.