

UNIK 4690 – Maskinsyn Introduction

18.01.2018

Trym Vegard Haavardsholm (trym.haavardsholm@its.uio.no)

Idar Dyrdal (idar.dyrdal@its.uio.no)

Thomas Opsahl (thomas Opsahl (thomasoo@its.uio.no)

Ragnar Smestad (<u>ragnar.smestad@ffi.no</u>)

Computer vision

 The study of how a machine can be made to gain high-level understanding from images

"Teaching computers how to see"!

Important for humans and machines

- For humans
 - Find, interpret, fuse

- For robots
 - Understand its own situation!

Quick round of introductions

- Name
- Field of study
- Previous relevant courses
- Motivation for taking this course

Today

- Overview of the course
 - Curriculum
 - Practical information
- Processing live images using OpenCV

Learning outcome

- After completing UNIK4690
 - you have a basic understanding of the field of computer vision
 - you know basic methods and tools within the field and you are able to put them into use
 - you understand how some of the important methods and tools work in detail
 - you are able to implement algorithms
 that solve simple computer vision problems
 - you are able to create computer vision applications using the software library OpenCV

Learning outcome

- After completing UNIK9690
 - you have a basic understanding of the field of computer vision
 - you know basic methods and tools within the field and you are able to put them into use
 - you understand how some of the important methods and tools work in detail
 - you are able to implement algorithms
 that solve simple computer vision problems
 - you are able to create computer vision applications using the software library OpenCV
 - you have a deeper understanding of the methods and you are able to pass this on to other students

«Flipped classroom»

- Purpose
 - To make the most out of your 3 hours at Kjeller per week
- Online
 - Prerecorded video lectures each week
- At Kjeller
 - ~20 minutes summary and Q&A
 - ~2.5 hours programming lab
- Mandatory student project (60%)
 - Large project of your own choosing, preferably in groups of 2-3 students
- Individual oral exam (40%)

Part	Part I: Image formation, processing and features	
25.01	 1. Image formation Light, cameras, optics and colour Pose in 2D and 3D Basic projective geometry The perspective camera model 	
01.02	 2. Image Processing Image filtering Image pyramids Laplace blending 	
08.02	 3. Feature detection Line features Local keypoint features Robust estimation with RANSAC 	
15.02	 4. Feature matching From keypoints to feature correspondences Feature descriptors Feature matching Estimating homographies from feature correspondences 	

$$\widetilde{\boldsymbol{u}} = \begin{bmatrix} f_u & s & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix} W \widetilde{\boldsymbol{X}}$$

Part I: Image formation, processing and features 25.01 1. Image formation • Light, cameras, optics and colour Pose in 2D and 3D Basic projective geometry • The perspective camera model 01.02 2. Image Processing Image filtering Image pyramids Laplace blending 3. Feature detection Line features Local keypoint features Robust estimation with RANSAC 15.02 4. Feature matching • From keypoints to feature correspondences Feature descriptors Feature matching • Estimating homographies from feature

Part	Part I: Image formation, processing and features	
25.01	 1. Image formation Light, cameras, optics and colour Pose in 2D and 3D Basic projective geometry The perspective camera model 	
01.02	 2. Image Processing Image filtering Image pyramids Laplace blending 	
08.02	 3. Feature detection Line features Local keypoint features Robust estimation with RANSAC 	
15.02	 4. Feature matching From keypoints to feature correspondences Feature descriptors Feature matching Estimating homographies from feature correspondences 	

Part	Part I: Image formation, processing and features	
25.01	 1. Image formation Light, cameras, optics and colour Pose in 2D and 3D Basic projective geometry The perspective camera model 	
01.02	 2. Image Processing Image filtering Image pyramids Laplace blending 	
08.02	 3. Feature detection Line features Local keypoint features Robust estimation with RANSAC 	
15.02	 4. Feature matching From keypoints to feature correspondences Feature descriptors Feature matching Estimating homographies from feature correspondences 	

Part II: World geometry and 3D	
22.02	 5. Single-view geometry The camera matrix P Pose from known 3D points Camera calibration
01.03	 6. Stereo imaging Basic epipolar geometry Stereo imaging Stereo processing
08.03	 7. Two-view geometry Epipolar geometry Triangulation Pose from epipolar geometry
15.03	 8. Multiple-view geometry Multiple-view geometry Structure from motion Multiple-view stereo

Part II: World geometry and 3D	
22.02	 5. Single-view geometry The camera matrix P Pose from known 3D points Camera calibration
01.03	Stereo imaging Basic epipolar geometry Stereo imaging Stereo processing
08.03	 7. Two-view geometry Epipolar geometry Triangulation Pose from epipolar geometry
15.03	 8. Multiple-view geometry Multiple-view geometry Structure from motion Multiple-view stereo

	Part II: World geometry and 3D
22.02	 5. Single-view geometry The camera matrix P Pose from known 3D points Camera calibration
01.03	 6. Stereo imaging Basic epipolar geometry Stereo imaging Stereo processing
08.03	 7. Two-view geometry Epipolar geometry Triangulation Pose from epipolar geometry
15.03	 8. Multiple-view geometry Multiple-view geometry Structure from motion Multiple-view stereo

	Part II: World geometry and 3D	
22.02	 5. Single-view geometry The camera matrix P Pose from known 3D points Camera calibration 	
01.03	 6. Stereo imaging Basic epipolar geometry Stereo imaging Stereo processing 	
08.03	 7. Two-view geometry Epipolar geometry Triangulation Pose from epipolar geometry 	
15.03	 8. Multiple-view geometry Multiple-view geometry Structure from motion Multiple-view stereo 	

Part III: Scene analysis	
22.03	 9. Image analysis Image segmentation Image feature extraction Introduction to machine learning
05.04	 10. Object detection Descriptor-based detection Introduction to deep learning with CNNs
12.04	 11. Image retrieval and place recognition Image retrieval Visual place recognition

	Part III: Scene analysis
22.03	 9. Image analysis Image segmentation Image feature extraction Introduction to machine learning
05.04	 10. Object detection Descriptor-based detection Introduction to deep learning with CNNs
12.04	11. Image retrieval and place recognitionImage retrievalVisual place recognition

	Part III: Scene analysis
22.03	 9. Image analysis Image segmentation Image feature extraction Introduction to machine learning
05.04	 10. Object detection Descriptor-based detection Introduction to deep learning with CNNs
12.04	11. Image retrieval and place recognitionImage retrievalVisual place recognition

Part IV: Student project	
12.04	Student project proposals
19.04	Student project feedback
26.04	Teachers available for support 9:15-12:00
03.05	Teachers available for support 9:15-12:00
10.05	Holiday
17.05	Holiday
24.05	Teachers available for support 9:15-12:00
27.05	Project report deadline
31.05	Project presentations

Textbook

Computer Vision: Algorithms and Applications

© 2010 Richard Szeliski, Microsoft Research

Free version online: http://szeliski.org/Book/

Supplementary resources

Lecture weeks

- Friday afternoon/evening the week before
 - Lectures are made available online
 - 3-4 videos (~20 minutes each)
- Read the chapters in the textbook
- Q&A, discussions on Piazza
- Thursdays 09:15
 - Brief summary with room for questions
- Thursdays ~09:35-12:00
 - Programming lab
 - Supervised by lecturers and lab assistant

The student project

- Develop a functioning computer vision system that does something interesting
 - Large: More than a month
 - Mandatory: 60% of the grade
- Students propose their own projects
- Preferably groups of 2-3 students

The student project

- Develop a functioning computer vision system that does something interesting
 - Large: More than a month
 - Mandatory: 60% of the grade
- Students propose their own projects
- Preferably groups of 2-3 students

The student project

- Freedom of choice
 - Platform, programing language, tools,...
- Important dates
 - 12.04: Hand in written project proposal
 - 19.04: Oral feedback on the project proposals
 - 28.05: Hand in project report
 - 31.05: Project presentations
- During the project period we will be available for project support here at Kjeller on Thursdays 09:15-12:00
- The lab will in general be available to you (at least within office hours)

Webpage

- http://www.uio.no/studier/emner/matnat/its/UNIK4690/v18/timeplan/index.html
- Schedule
- Resources
 - Lectures as video
 - Lectures as pdf
 - Lab tutorials and exercises

Piazza

- https://piazza.com/uio.no/spring2018/unik4690/home
- Messages
- Questions
 - Open or private
- Discussions

Feedback

- We encourage feedback during the course
 - We are open for making adjustments
- We encourage you to participate in the course evaluation

Any questions?

