

Chapter 3 Arithmetic for computers Computer Architecture and Organization School of CSEE

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

- 1. Addition and Subtraction
- 2. Multiplication
- 3. Division
- 4. Floating point number arithmetic

Integer Addition

• Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and -ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

+7: 0000 0000 ... 0000 0111

–6: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001

- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Detecting Overflow

- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - MIPS addu (add unsigned), addiu, subu (subtract unsigned) instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - On overflow, invoke exception handler

Exercise

1. Build the logic circuit that checks overflow.

- 1. Addition and Subtraction
- 2. Multiplication
- 3. Division
- 4. Floating point number arithmetic

Introduction

- In many cases ALU does not have capability of multiplying two positive integers.
- In this section we will find out how to multiply two integers with just 'add' and 'shift' operation.
- Also multiplying negative integers will be discussed.

 We can build multiplier as discussed in logic design course.

Ex) Multiplying 3-bit numbers : a2 a1 a0 X b2 b1 b0 construct truth table

b2 b1 b0	c5 c4 c3 c2 c1 c0
0 0 0	0 0 0 0 0
0 0 1	0 0 0 0 0 0
0 0 0	0 0 0 0 0 0
0 0 1	0 0 0 0 1 1
1 1 0	1 0 1 0 1 0
1 1 1	1 1 0 0 0 1
	0 0 0 0 0 1 0 0 0 0 0 1 1 1 0

- We can multiply two numbers with adder and shift registers.
- Let's think about the multiplication algorithm in grade school.

 If we multiply binary numbers, only 'add' and 'shift' operation is necessary

- More complicated than addition
 - accomplished via shifting and addition
- Multiplying two binary numbers

Check multiplier bit

if 0, don't add, shift if 1, add multiplicand and shift


```
0010 (multiplicand)
x 1001 (multiplier)

0000000
0000000
0000000
00010000
```

00010010

(product)

Multiplication: Implementation

Multiplication: Implementation

Version 1

Multiplicand: Shift Left

Product: doesn't move

Version 2

Multiplicand: doesn't move

Product: Shift Right

→ We can save spaces with version 2 implementation.

Second Version

Final Version

Version 3: Multiplier is saved at Product register.

Final Version

Multiplicand 0 0 1 0

Product

0 0 1 0 1 0 0 1

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 (1)

0 0 1 0 0 1 0 1

0 0 0 1 0 0 1 0

Add

Shift

Shift

Shift

Add

Shift

Exercise

• 10101 X 01110 = 21 X 14

0 0 0 0 0 0 1 1 1 0 shift

0 0 0 0 0 0 0 1 1 1 add

+ 10101

1010100111 shift

Multiplication of negative numbers

- What about the multiplication of negative number(s)?
 - 1) Negate negative number(s).
 - 2) Perform unsigned multiplication
 - 3) If multiplier and multiplicand have different sign, negate the result.

Or use Booth algorithm

Exercise

Perform (-7) X 3 with add-and-shift method. Assume multiplicand and multiplier are 4-bit number.

Summary

- In this section, we have discussed multiplying two integers.
- We can multiply two integers without dedicated multiplying unit.
- We can multiply negative integers by considering their sign bit only.

- 1. Addition and Subtraction
- 2. Multiplication
- 3. Division
- 4. Floating point number arithmetic

Introduction

- In this section, we will learn how to divide integers with same MIPS ALU which does not have division capability.
- The division algorithm is based on the division method in elementary school.
- Also dividing negative integers will be discussed.

Division

- We can build divider using truth table
- Or we can do division with adder (subtracter) and shifter registers.
- Grade school algorithm example

	0001001	Quotient
Divisor 1000	1001010 -1000	Dividend
	10	
	101	
	1010	
	-1000	
	10	Remainder

Division

Algorithm

```
If partial remainder ≥ divisor then
   quotient bit = 1;
   remainder = remainder - divisor;
else
   quotient bit = 0;
shift down next dividend bit
```


Division Hardware

 Same Hardware as Multiplication: just need ALU to add or subtract

- Hi and Lo registers in MIPS combine to act as 64-bit register for multiplication and division.
 - register Hi : stores Remainder
 - register Lo: stores Quotient
 - storing results at registers : mfhi \$t0, mflo \$t1
 - * For multiplication, Hi stores higher 32bits of result and Lo stores lower 32 bits of result.

Division Hardware

64-bit Divisor reg, 64 -bit ALU, 64-bit Remainder reg,
 (32-bit Quotient reg)

Division Hardware – improved version IV 학동대

- 32-bit Divisor reg, 32 -bit ALU,
- 32-bit Remainder reg, 32-bit Quotient reg

Example

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: Rem = Rem - Div	0000	0010 0000	①110 0111
	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	①111 0111
2	2b: Rem $< 0 \implies$ +Div, sII Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	①111 1111
	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	@000 0011
4	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	@000 0001
	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

FIGURE 3.12 Division example using the algorithm in Figure 3.11. The bit examined to determine the next step is circled in color.

Example: 7/2

TA A CONTROL		
00000111	SLL	
00001110	SUB	
- 0010		
11101110	Put 0	Remainder: 0001
+0010	Restore	Remander . 0001
00001110	SLL	Quotient: 0011
00011100	SUB	Q 0.0010110
- 0010		
11111100	Put 0	
+0010	Restore	Note:
00011100	SLL	Above implementation is a
00111000	SUB	Above implementation is a
- 0010		little different from the one
00011001	Put 1	in the textbook
00110010	SLL	III the textbook
- 0010	SUB	
00010010	Put 1	
0.0010011		

Division Hardware – improved version IV 발동대

- 32-bit Divisor reg, 32 -bit ALU,
- 32-bit Remainder reg, 32-bit Quotient reg)

Division of signed number

Example)

- The magnitude of quotient and remainder depends on the magnitude of the dividend and divisor.
- The sign of quotient and remainder depends on the sign of dividend and divisor.

Exercise

Perform (-7) / 3 with MIPS ALU.

Summary

- In this section, we have discussed dividing two integers.
- We can divide two integers without dedicated dividing unit.
- We can divide negative integers by considering their sign bit only.
 - The magnitude of quotient and remainder depends on the magnitude of the dividend and divisor.
 - The sign of quotient and remainder depends on the sign of dividend and divisor.

- 1. Addition and Subtraction
- 2. Multiplication
- 3. Division
- 4. Floating point number arithmetic

Introduction

- In this section, we will learn how to represent floating point number and its arithmetic.
- IEEE (Institute of Electrical and Electronics Engineers)
 has its own standard form of representing floating
 point numbers.

Floating Point Number

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .00000001
 - very large numbers, e.g., 3.15576 X 10⁹
 - **→** solution : floating point number representation

Normalized Scientific Notation

Scientific notation

coefficient X (base number) exponent

coefficient : a single digit to the left of the decimal point ex) 7.15576×10^4 , 0.314×10^1

Normalized scientific notation

1 ≤ coefficient < 10

ex) 7.15576×10^4 , 3.14×10^0

- For binary number,

1.yyyy... x 2^z

Normalized Scientific Notation

- Representation: Normalized scientific notation
 - sign, exponent, significand:

```
(-1)<sup>sign</sup> x significand x 2<sup>exponent</sup>
```

- more bits for significand gives more accuracy
- more bits for exponent increases range
- IEEE 754 floating point standard:

single precision (32bits): 8 bit exponent, 23 bit fraction

1	8	23
_		

- double precision (64bits): 11 bit exponent, 52 bit fraction

IEEE 754 floating-point standard

- Leading "1" bit of fraction is implicit
- Exponent is "biased" to make sorting easier
 - bias of 127 for single precision and 1023 for double precision
 - all 0s : smallest exponentexponent value = 0-127 = -127
 - all 1s : largest exponentexponent value = 255-127 = 128
- Summary: (-1)^{sign} X (1+faction) X 2^{exponent bias}

S Exponent Fraction

IEEE 754 floating-point standard

Example:

- decimal: $-0.75 = -3/4 = -3/2^2$
- binary: $-.11 = -1.1 \times 2^{-1}$
- floating point: exponent = -1 + 127 = 126 = 011111110
- IEEE single precision:

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 ⇒ actual exponent = 1 127 = -126
 - Fraction: 000...00 ⇒ significand = 1.0
 - $-\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 111111110
 ⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $-\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001
 ⇒ actual exponent = 1 1023 = -1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $-\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110
 ⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $-\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating Point Complexities

If digits are all zero... → It represents 0, not 1.0 x 2⁻¹²⁷

In addition to overflow there is "underflow"

0.5 x 2⁻¹²⁹ ??

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 \times $\log_{10}2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

• Represent –3.3125

1 m 101m 3

Floating-Point Example

 What number is represented by the single-precision float?

11000000101000...00

Denormalized Numbers

Exponent = 000...0 ⇒ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

Smaller than normalized numbers

Denormalized # with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$
Two representations

of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1-2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Basic Addition Algorithm

 Operations are somewhat more complicated than addition of integer.

Addition of 9.999 x 10¹ to 1.610 x 10⁻¹

Step 1 : Align the decimal point (denormalize smaller number)

 $9.999 \times 10^{1} + 0.016 \times 10^{1}$

Step 2 : Add significand part

 10.015×10^{1}

Step 3 : Normalize result & check for over/underflow

 1.0015×10^{2}

* IEEE 754 keeps two extra bits, guard bit and round bit.

Step 4: Round and renormalize if necessary

 1.002×10^{2}

Guard bit and Round bit

$$2.56 \times 10^{0} + 2.34 \times 10^{2}$$

1) Without them

2) With them

Floating-Point Addition

- Now consider a 4-digit binary example
 - * $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - * Shift number with smaller exponent
 - * $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - * $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - * $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - * $1.000_2 \times 2^{-4}$ (no change) = 0.0625

Exercise

 $1.0110 \times 2^3 + 1.1000 \times 2^2$

Exercise

 $1.0110 \times 2^3 + 1.1001 \times 2^2$

Basic Multiplication Algorithm

1. Compute exponents

• Exp = Exp(X) + Exp(Y) - bias

2. Multiply significands

• $Sig = Sig(X) \times Sig(Y)$

3. Normalize the product

- Shift Sig right until leading bit is 1; incrementing Exp.
- Check for overflow in Exp
- Round
- Repeat step 3 if not still normalized

4. Set sign

• positive if two number have same sign; negative otherwise

Multiplication example

$$(1.0110 \times 2^3) \times (1.1100 \times 2^2)$$

 $= 0 10000010 0110000... \times 0 10000001 110000...$

1. Compute exponents

•
$$Exp = Exp(X) + Exp(Y) - bias$$

= $10000010 + 10000001 - 01111111 = 10000100$

2. Multiply significands

• $Sig = Sig(X) \times Sig(Y) = 1.011000... \times 1.110000... = 10.01101000...$

3. Normalize the product

• Shift Sig right until leading bit is 1; incrementing Exp $10.01101000... \times 2^{10000100} = 1.00110100... \times 2^{10000101}$

4. Set sign

• Sign = 0

Result : 0 10000101 00110100... = 1.001101 x $2^{133-127}$

Exercise

- 1. Represent -12.75 with IEEE 754 floating-point single precision standard representation.
- 2. Add 1.01010 X 2⁴ to 1.00111 X 2⁶

 Do we need guard / round bit? Assume significand is 5-bits long.

3. Multiply 1.010 X 2⁴ to 1.001 X 2⁶

Summary

- We have learned IEEE 754 standard form of representing floating point numbers.
- We need three fields sign bit, fraction, and exponent
 to represent floating point numbers.
- We use 'bias' representation for exponent field.
- We have to shift and align significand when adding two floating point numbers.
- Checking overflow and having precise result is also important, so we keep 'guard' bit and 'round' bit.