# PROJECT: MACHIN DOWNTIME

Prepared by:- Biplab Mondal

Role as a Data Analysis



LinkedIn:- https://www.linkedin.com/in/biplabgen

GitHub:- https://github.com/biplabremote





### CONTENTS

- Business Objective
- Business Constraints
- Project Architecture Data Flow Diagram
- Data Collection
- Exploratory Data Analysis
- Data Visualization





# PROJECT ARCHITECTURE







### **Business Problem**

Manufacturing pumps involves various machines and processes, which are critical for the production process. Unplanned machine downtime in a pump manufacturing facility can have significant negative consequences for productivity, cost-efficiency, and overall operations.

#### The main business problem is as follow:

- a. Machine which manufacture pumps
- b. Unplanned Machine Downtime which is leading to loss in productivity
- c. Productivity Impact: Reduced Production Output
- d. Operational Costs: Increased expenses from repair and maintenance
- e. Quality Issues: Defects in machine and its parts





# **Project Overview and Scope**

The project involves working with a leading vehicle fuel pump manufacturer to address a critical business problem. The primary issue at hand is unplanned machine downtime in the manufacturing process, which is adversely affecting productivity. Machine downtime can disrupt the production process, result in loss of output, and increase maintenance costs. The client's business objective is to minimize unplanned machine downtime while also keeping maintenance costs in check.

#### **Scope of the Project:**

- Data Analysis
- Client and Business Problem
- Data Preprocessing
- Data Exploration Correlation Analysis
- Feature Engineering
- Recommendations





# **Data Dictionary**

| Features                        | Data Type | Description                                   |
|---------------------------------|-----------|-----------------------------------------------|
| Date                            | Date      | Date of the record                            |
| Machine_ID                      | String    | Machine Identifier                            |
| Assembly_Line_No                | String    | Assembly line Identifier                      |
| Hydraulic_Pressure(bar)         | Float     | Hydraulic pressure in bar                     |
| Coolant_Pressure(bar)           | Float     | Coolant pressure in bar                       |
| Air_System_Pressure(bar)        | Float     | Air system pressure in bar                    |
| Coolant_Temperature             | Float     | Temperature of the coolant                    |
| Hydraulic_Oil_Temperature(°C)   | Float     | Temperature of the hydraulic oil in Celsius   |
| Spindle_Bearing_Temperature(°C) | Float     | Temperature of the spindle bearing in Celsius |
| Spindle_Vibration(µm)           | Float     | Spindle vibration in micrometers              |
| Tool_Vibration(µm)              | Float     | Tool vibration in micrometers                 |
| Spindle_Speed(RPM)              | Integer   | Spindle speed in revolutions per minute       |
| Voltage(volts)                  | Integer   | Voltage in volts                              |
| Torque(Nm)                      | Float     | Torque in Newton meters                       |
| Cutting(kN)                     | Float     | Cutting force in kilo-Newtons                 |
| Downtime                        | String    | Status of the machine                         |





# **Exploratory Data Analysis [EDA]**

#### **Statistical Insights**

The code calculates the -

1st Business Moment: Measure Of Central Tendency mean, median, mode

2nd Business Moment: Measure Of Dispersion Variance, standard deviation, max, min,

3rd & 4th Moment Business Decision skewness values, kurtosis values

These values provide summary statistics for the dataset. The code is available both in SQL and Python.

Analysis is structured in a way to get a clean insights to the data, comparing values before and after data cleaning.

#### **Business Insights**

The business insight of this project revolves around a leading vehicle fuel pump manufacturer's goal to minimize unplanned machine downtime in their production process while simultaneously minimizing maintenance costs.

The key insights and objectives are as follows:

- Minimize Unplanned Machine Downtime: Cost Saving:
- Data-Driven Decision-Making:
- Machine Health Monitoring:
- Predictive Maintenance
- Correlation Analysis:
- Visualization
- Feature Engineering:





# **Data Preprocessing**

#### Data Reading:-

To begin, the dataset was imported into the analysis environment using pd.read\_csv(), making it accessible for subsequent preprocessing and analysis.

#### **Dataset Information:-**

Started by gaining an understanding of the dataset's structure and characteristics using the data.info() method. This step provided valuable insights into the data's columns, data types, and any missing values.

#### **Descriptive Statistics:**

This utilized the data. Describe() method to generate summary statistics for the dataset. This allowed you to gain insights into the central tendency, dispersion, and distribution of numerical features in the data.

#### **Duplicate Data Identification:**

To ensure data integrity and consistency, identified duplicate records within the dataset using the data. Duplicated() method. This step is crucial in maintaining data quality and can help in detecting and handling redundant information.

#### Visualization Data:

After that we are Visualize Data using proper diagram

























Spindle\_Bearing\_Temperature





























