ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Autovalores e autovetores de matrizes tridiagonais simétricas: O algoritmo QR

Métodos Numéricos e Aplicações - MAP 3121

Gabriel Lujan Bonassi 11256816 (T02) Gabriel Praça 11316969 (T09)

SUMÁRIO

1. Introdução	3
2. Metodologia	4
2.1 Questão A	4
2.2 Questão B	5
2.3 Questão C	5
3. Discussão	6
3.1 Questão A	6
3.2 Questão B	10
3.3 Questão C	12
4. Conclusão	14
5. Bibliografia	15
6. Apêndice	16

1. Introdução

O método QR a ser implementado no EP 1 é uma maneira simples de computar a fatoração das matrizes QR, no entanto, para entendê-lo é preciso abordar as Rotações de Givens e, para sua aplicação nesse exercício, abordar também os modos de vibração de um sistema massa-mola.

As Rotações de Givens são transformações lineares ortogonais, ou seja, $Q^TQ = QQ^T = I$. Durante esse processo, temos que $y_k = x_k$ para $k \neq i$ e $k \neq j$, em que $y_i = cos\theta x_i - sin\theta x_j$ e $y_j = sin\theta x_i + cos\theta x_j$. Dessa forma, a transformação acontece apenas nos planos i e j da matriz e, se considerarmos $c = cos\theta$ e $s = sen\theta$, temos que a transformação das linhas i e j da matriz é dada por:

$$b_{i,k} = ca_{i,k} - sa_{j,k}$$

 $b_{i,k} = sa_{i,k} + ca_{i,k}$

em que k = 1,..., n. Devemos lembrar que para uma matriz $B = q(i, j, \theta)A$, A é simétrica se as diagonais exatamente acima e abaixo da sua diagonal principal são iguais e todas as outras entradas da matriz, sem contar a diagonal principal, são nulas. Para aplicar as sucessivas rotações é necessário que seja escolhido um θ conveniente para que a posição β_1 seja zerada. O resultado é uma matriz triangular superior e diagonal diferente da matriz original nas posições (k, k+2) para k=1,..., n-2. Por fim, para designar os valores de s_k e c_k utilizamos os seguintes preceitos:

$$c_k = \alpha_k / raiz(\alpha_k^2 + \beta_k^2)$$
 e $s_k = -\beta_k / raiz(\alpha_k^2 + \beta_k^2)$

Dando início à explicação sobre o algoritmo QR propriamente dito, ele pode ser desenvolvido de maneira simples ou com deslocamentos. Para que o algoritmo funcione, é preciso armazenar os valores de c_k e s_k das Rotações de Givens a cada nova iteração por meio de vetores.

Para que o algoritmo QR convirja cubicamente, quando aplicado a matrizes reais e simétricas, é necessário implantar os deslocamentos da seguinte maneira: $A^{(k)} - \mu^{(k)}I$, em que $A^{(k)}$ é a matriz a ser fatorada, $\mu^{(k)}$ é um valor que vai variar a cada iteração (k) e I é a matriz identidade. Logo, a cada iteração iremos realizar $A^{(k)} - \mu^{(k)}I$ antes do algoritmo QR e $A^{(k+1)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$ depois do algoritmo QR. Esse

algoritmo deslocado apresenta taxa de convergência proporcional a $|\lambda_j - \mu^{(k)}/\lambda_{j-1} - \mu^{(k)}|$.

$$d_{k} = (\alpha^{(k)}_{n-1} - \alpha^{(k)}_{n})/2$$

$$\mu^{(k)} = \alpha^{(k)}_{n} + d_{k} - sgn(d_{k})\sqrt{(d_{k}^{2} + \beta_{n-1}^{k})^{2}}$$

$$sgn(d) = 1 \text{ se } d \ge 0$$

$$sgn(d) = -1 \text{ caso contrário.}$$

Quando $|\beta^{(k)}_{n-1}| < \varepsilon$, ou seja, β_{n-1} se aproxima de 0, β_{n-1} converge e $\alpha_n^{(k)}$ é autovalor de A. Dessa forma, podemos determinar os autovalores.

Para esse EP, utilizamos amplamente as bibliotecas numpy e matplotlib.

2. Metodologia

2.1 Questão A

A questão A é calcular os autovalores e autovetores a partir do método QR com deslocamentos. Consideramos que as matrizes têm diagonal principal α_k = 2 e subdiagonal β_k = -1. Os autovalores e autovetores são conhecidos como:

$$\lambda_j = 2(1 - \cos\left(\frac{j\pi}{n+1}\right), \quad j = 1, ..., n$$

$$v_j = \sin\left(\frac{j\pi}{n+1}\right), \sin\left(\frac{2j\pi}{n+1}\right), \dots, \sin\left(\frac{nj\pi}{n+1}\right)$$

para n=4, 8, 16 e 32 e $\varepsilon=10^{-6}$ no critério de paradas do esquema. Devemos comparar o número de iterações necessárias para a convergência por meio do método QR sem deslocamentos, ou seja, tendo $\mu_k=0$ para todo k.

Para armazenar os valores, em todas as questões, utilizamos arrays do numpy ao invés de simples listas e tuples do python, pois isso facilitaria tanto a nossa visualização da execução do programa quanto a utilização de outros métodos da biblioteca numpy.

2.2 Questão B

A questão B consiste em analisar um sistema massa-mola por gráficos da evolução da solução, conforme os deslocamentos das molas relativo à sua posição inicial e determinar as frequências e modos de vibração. Assim, consideramos que o sistema apresenta 5 massas de 2 kg, constante elástica k_i , velocidade inicial nula e que o sistema vibra por 10 segundos com os deslocamento indicados abaixo.

$$k_i = 40 + 2i \ N/m$$
, $i = 1, ..., 6$

$$X(0) = -2, -3, -1, -3, -1$$

$$X(0) = 1, 10, -4, 3, -2$$

X(0) correspondente ao modo de maior frequência

2.3 Questão C

A questão C consiste em analisar um sistema massa-mola por gráficos da evolução da solução, conforme os deslocamentos das molas relativo à sua posição inicial e determinar as frequências e modos de vibração. Assim, consideramos que o sistema apresenta 10 massas de 2 kg, constante elástica k_i , velocidade inicial nula e que o sistema vibra por 10 segundos com os deslocamento indicados abaixo.

$$k_i = 40 + 2(-1)^i \ N/m, \qquad i = 1, ..., 11$$

$$X(0) \to x_{i+5} = x_i, \quad i = 1, ..., 5$$

3. Discussão

3.1 Questão A

Valores dos autovalores para as matrizes 4x4, 8x8, 16x16 e 32x32:

```
Auto-valor [1]:
3.618033988749299
Auto-valor [2]:
2.6180339887504913
Auto-valor [3]:
1.3819660112504037
Auto-valor [4]:
0.3819660112502085
```

Autovalores da matriz 4x4.

```
Auto-valor [1]:
3.879385241569071
Auto-valor [2]:
3.532088886240718
Auto-valor [3]:
3.0000000000014686
Auto-valor [4]:
2.347296355335134
Auto-valor [5]:
1.652703644667378
Auto-valor [6]:
1.0000000000010278
Auto-valor [7]:
0.46791111376385564
Auto-valor [8]:
0.1206147584302414
```

Autovalores da matriz 8x8.

```
Auto-valor [1]:
3.965946199357954
Auto-valor [2]:
3.8649444588185444
Auto-valor [3]:
3.700434271464821
Auto-valor [4]:
3.4780178344454025
Auto-valor [5]:
3.2052692727616727
Auto-valor [6]:
2.8914767115558253
Auto-valor [7]:
2.5473259801464416
Auto-valor [8]:
2.184536718928674
Auto-valor [9]:
1.8154632810757514
Auto-valor [10]:
1.4526740198581294
Auto-valor [11]:
1.108523288448933
Auto-valor [12]:
0.7947307272435689
Auto-valor [13]:
0.5219821655609093
Auto-valor [14]:
0.29956572854273195
Auto-valor [15]:
0.1350555411954518
Auto-valor [16]:
0.034053800638822115
```

Autovalores da matriz 16x16.

```
Auto-valor [1]:
3.9909438451092982
Auto-valor [2]:
3.963857394562256
Auto-valor [3]:
3.9189859472510946
Auto-valor [4]:
3.856735866047682
Auto-valor [5]:
3.777670897322072
Auto-valor [6]:
3.6825070656725862
Auto-valor [7]:
3.5721061894944275
Auto-valor [8]:
3.447468076217499
Auto-valor [9]:
3.309721467897248
Auto-valor [10]:
3.160113819148809
Auto-valor [11]:
3.000000000005748
Auto-valor [12]:
2.8308300260093615
Auto-valor [13]:
2.6541359266400524
Auto-valor [14]:
2.471517871023618
Auto-valor [15]:
2.284629676551103
Auto-valor [16]:
2.0951638316524543
Auto-valor [17]:
1.9048361683567485
Auto-valor [18]:
1.7153703234580149
Auto-valor [19]:
1.5284821289852546
Auto-valor [20]:
1.3458640733697167
```

```
Auto-valor [21]:
1.1691699740010955
Auto-valor [22]:
1.0000000000047824
Auto-valor [23]:
0.8398861808633253
Auto-valor [24]:
0.6902785321153319
Auto-valor [25]:
0.5525319237946468
Auto-valor [26]:
0.4278938105218489
Auto-valor [27]:
0.3174929343426245
Auto-valor [28]:
0.22232910269747713
Auto-valor [29]:
0.14326413397479046
Auto-valor [30]:
0.0810140527797837
Auto-valor [31]:
0.03614260549596596
Auto-valor [32]:
0.00905615487975266
```

Autovalores da matriz 32x32.

Vale lembrar que os autovalores são iguais para ambos os métodos (com ou sem deslocamento).

Como as matrizes dos autovetores são grandes demais, colocaremos aqui apenas a matriz de autovetores da matriz 4x4, para não poluir o texto. As matrizes dos autovetores saíram invertidas, ou seja: as colunas devem ser lidas de trás para frente.

```
Auto-vetores:

[[0.993228 -0.001368 0.116065 -0.005114]

[-0.116185 -0.011698 0.992196 -0.043720]

[0.000000 -0.999931 -0.011766 0.000518]

[0.000000 0.000000 0.044021 0.999031]]
```

Autovetores da matriz 4x4.

Já o número de iterações para cada matriz varia com os métodos, obviamente. Tivemos os seguintes resultados:

Matriz 4x4:

Sem deslocamento: 45 iterações;

Com deslocamento: 7 iterações;

Matriz 8x8:

Sem deslocamento: 143 iterações;

Com deslocamento: 15 iterações;

Matriz 16x16:

Sem deslocamento: 473 iterações;

Com deslocamento: 31 iterações;

Matriz 32x32:

Sem deslocamento: 1600 iterações;

o Com deslocamento: 59 iterações.

Como podemos observar, o número de iterações diminui drasticamente quando utilizamos o método de deslocamento espectral, ainda assim mantendo a precisão nos autovalores. Os valores dos autovalores foram verificados utilizando as fórmulas descritas no enunciado e estão corretos.

Já nos autovetores, infelizmente os autovetores saíram corretos apenas no método com deslocamento (o que não afetou as questões B e C, visto que para elas utilizamos o método QR com deslocamento).

3.2 Questão B

Para a questão b, foram utilizados duas listas de valores de x(0):

```
Quais valores de x(0) você deseja utilizar?
1: [-2 -3 -1 -3 -1]
2: [ 1 10 -4 3 -2]
```

Valores de x(0) para a situação 1 e 2.

Para a situação 1, temos os seguintes autovalores e autovetores:

```
Auto-valor [1]:
87.94500562036654
Auto-valor [2]:
44.97919784540778
Auto-valor [3]:
44.97243072079503
Auto-valor [4]:
22.89850701286163
Auto-valor [5]:
5.769343754503711
Auto-Vetores:
[[0.988988 0.002453 -0.011244 0.147416 -0.006294]
 [-0.147999 0.016389 -0.075139 0.985095 -0.042062]
 [0.000000 -0.999863 -0.001259 0.016509 -0.000705]
 [0.000000 0.000000 -0.997109 -0.075917 0.003242]
 [0.000000 0.000000 0.000000 0.042660 0.999090]]
Número de iteracoes com deslocamento espectral: 9.0
```

Autovalores, autovetores e número de iterações para a situação 1.

E o gráfico gerado para essa situação é:

Gráfico da situação 1.

Para a situação dois, temos os mesmos autovalores e autovetores da situação 1, mas com o seguinte gráfico:

Gráfico da situação 2.

Para ambas as situações, podemos ver que os gráficos das equações x3 e x4 são bem parecidos.

3.3 Questão C

Para a questão c, também utilizamos duas listas de valores, baseadas nas listas de valores da questão b:

```
Quais valores de x(0) você deseja utilizar?
1: [-2 -3 -1 -3 -1 -2 -3 -1 -3 -1]
2: [ 1 10 -4 3 -2 1 10 -4 3 -2]
```

Valores de x(0) para as situações 1 e 2.

Para ambas a situações, temos os seguintes autovalores e autovetores:

Auto-valor [1]: 78.95079773410863 Auto-valor [2]: 52.42244076025746 Auto-valor [3]: 47.88016464228658 Auto-valor [4]: 47.85495521033221 Auto-valor [5]: 47.781392052980756 Auto-valor [6]: 2.3336838889045417 Auto-valor [7]: 4.160678228561107 Auto-valor [8]: 2.921190684739077 Auto-valor [9]: 2.0573625385796923 Auto-valor [10]: 2.049202265891331

Autovalores do item c.

Auto-Vetores:

```
 \begin{bmatrix} [0.993099 \ 0.048640 \ -0.105588 \ 0.010001 \ -0.011357 \ 0.003320 \ -0.000694 \ -0.000051 \ 0.000005 \ -0.000000] \\ [-0.117283 \ 0.411863 \ -0.894074 \ 0.084686 \ -0.096167 \ 0.028114 \ -0.005874 \ -0.000435 \ 0.000041 \ -0.000000] \\ [0.000000 \ -0.909947 \ -0.410323 \ 0.038866 \ -0.044135 \ 0.012903 \ -0.002696 \ -0.000200 \ 0.000200 \ 0.000019 \ -0.000000] \\ [0.000000 \ 0.000000 \ -0.145319 \ -0.638037 \ 0.724538 \ -0.211816 \ 0.044254 \ 0.003277 \ -0.000305 \ 0.000002] \\ [0.000000 \ 0.000000 \ 0.000000 \ -0.764281 \ -0.617908 \ 0.180643 \ -0.037741 \ -0.002795 \ 0.000260 \ -0.000001] \\ [0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ -0.286200 \ -0.937810 \ 0.195932 \ 0.014509 \ -0.001352 \ 0.000007] \\ [0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.074169 \ -0.992943 \ 0.092536 \ -0.000499] \\ [0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ -0.005392 \ -0.999985]]
```

Autovetores do item c.

Para a situação 1, teremos o seguinte gráfico:

Gráfico da situação 1.

Já para a situação 2, teremos o seguinte gráfico:

Gráfico da situação 2.

Dessa vez pudemos notar mais diferenças entre os gráficos de cada função, e também diferenças entre os gráficos das duas situações.

4. Conclusão

Através desse trabalho, pudemos estudar de perto a criação e a aplicação de um método numérico utilizando ferramentas computacionais, o que consideramos fundamental para o bom aprendizado da disciplina. Durante a confecção do código, encontramos diversas dificuldades, relacionadas tanto ao entendimento do enunciado e da teoria quanto à erros de programação, mas no final das contas atingimos um resultado que consideramos satisfatório. Também pudemos aproveitar a oportunidade para ampliar nosso conhecimento quanto à utilização das bibliotecas numpy e matplotlib do python, que foram amplamente utilizadas no nosso EP.

5. Bibliografia

- 1. BURDEN, Richard L.; FAIRES, J. Douglas; BURDEN, Annette M. Numerical Analysis. Estados Unidos: Cengage Learning, 2015.
- 2. TREFETHEN, Lloyd. A.; BAU, David. Numerical linear algebra. Tailândia: Society for Industrial and Applied Mathematics, 1997.
- 3. RAO, Singiresu S. Vibrações mecânicas. Brasil: PRENTICE HALL BRASIL, 2009.

6. APÊNDICE

Autovetores da matriz 4x4.

Autovetores da matriz 8x8.

Autovetores da matriz 16x16.

						5		
	0.99146	-0.00000	0.00000	-0.00000	0.00000	-0.00001	0.00000	-0.00000
	-0.13040	-0.00000	0.00000	-0.00000	0.00002	-0.00005	0.00002	-0.00003
	0.00000	-1.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000
	0.00000	0.00000	-1.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000
	0.00000	0.00000	0.00000	-1.00000	-0.00000	0.00000	-0.00000	0.00000
5	0.00000	0.00000	0.00000	0.00000	-1.00000	-0.00000	0.00000	-0.00000
	0.00000	0.00000	0.00000	0.00000	0.00000	-1.00000	-0.00000	0.00000
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-1.00000	-0.00000
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-1.00000
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
10	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
11	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
12	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
13	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
14	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
15	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
16	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
17	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
18	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
19	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
20	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
21	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
22	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
23	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
24	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
25	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
26	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
27	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
28	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
29	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
30	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
31	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Autovetores da matriz 32x32 (parte 1).

	8	9	10	11	12	13	14	15
	0.00003	-0.00017	0.00021	-0.00043	0.00055	-0.00101	0.00128	-0.00267
	0.00025	-0.00132	0.00163	-0.00328	0.00421	-0.00770	0.00975	-0.02033
	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000
	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000
	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000
5	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000
	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000
	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000
	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000
	-1.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00001
10	0.00000	-1.00000	-0.00000	0.00000	-0.00001	0.00001	-0.00001	0.00003
11	0.00000	0.00000	-1.00000	-0.00001	0.00001	-0.00001	0.00002	-0.00003
12	0.00000	0.00000	0.00000	-0.99999	-0.00001	0.00003	-0.00003	0.00007
13	0.00000	0.00000	0.00000	0.00000	-0.99999	-0.00003	0.00004	-0.00009
14	0.00000	0.00000	0.00000	0.00000	0.00000	-0.99997	-0.00008	0.00016
15	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.99995	-0.00020
16	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.99979
17	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
18	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
19	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
20	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
21	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
22	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
23	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
24	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
25	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
26	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
27	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
28	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
29	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
30	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
31	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Autovetores da matriz 32x32 (parte 2).

	16	17	18	19	20	21	22	23
	0.00476	-0.01060	0.01006	-0.01659	0.04090	-0.04719	0.06006	-0.08335
	0.03622	-0.08059	0.07645	-0.12616	0.31099	-0.35878	0.45667	-0.63376
	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000
	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000
	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000
5	0.00000	-0.00000	0.00000	-0.00000	0.00001	-0.00001	0.00001	-0.00001
	-0.00000	0.00000	-0.00000	0.00001	-0.00002	0.00002	-0.00002	0.00003
	0.00000	-0.00000	0.00000	-0.00000	0.00001	-0.00001	0.00001	-0.00002
	-0.00000	0.00000	-0.00000	0.00000	-0.00001	0.00001	-0.00001	0.00002
	0.00001	-0.00002	0.00002	-0.00003	0.00008	-0.00009	0.00012	-0.00016
	-0.00005	0.00011	-0.00010	0.00017	-0.00042	0.00048	-0.00061	0.00085
11	0.00006	-0.00013	0.00013	-0.00021	0.00051	-0.00059	0.00076	-0.00105
12	-0.00012	0.00027	-0.00026	0.00042	-0.00104	0.00120	-0.00153	0.00212
13	0.00016	-0.00035	0.00033	-0.00054	0.00133	-0.00154	0.00196	-0.00272
14	-0.00028	0.00063	-0.00060	0.00099	-0.00244	0.00281	-0.00358	0.00497
15	0.00036	-0.00080	0.00076	-0.00125	0.00308	-0.00356	0.00453	-0.00629
16	-0.00075	0.00167	-0.00158	0.00261	-0.00644	0.00742	-0.00945	0.01312
17	-0.99933	-0.00297	0.00282	-0.00465	0.01147	-0.01324	0.01685	-0.02338
18	0.00000	-0.99668	-0.00630	0.01040	-0.02563	0.02957	-0.03764	0.05223
19	0.00000	0.00000	-0.99700	-0.00993	0.02447	-0.02823	0.03593	-0.04987
20	0.00000	0.00000	0.00000	-0.99175	-0.04084	0.04711	-0.05997	0.08322
21	0.00000	0.00000	0.00000	0.00000	-0.94789	-0.12354	0.15725	-0.21822
22	0.00000	0.00000	0.00000	0.00000	0.00000	-0.92176	-0.20763	0.28814
23	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.84457	-0.47111
24	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.47526
25	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
26	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
27	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
28	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
29	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
30	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
31	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Autovetores da matriz 32x32 (parte 3).

	24	25	26	27	28	29	30	31
	0.03021	-0.02464	0.02198	-0.00484	0.00069	-0.00024	0.00001	-0.00000
	0.22973	-0.18734	0.16714	-0.03683	0.00524	-0.00179	0.00007	-0.00000
	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000
	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000
	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000
5	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000
	-0.00001	0.00001	-0.00001	0.00000	-0.00000	0.00000	-0.00000	0.00000
	0.00001	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000
	-0.00001	0.00000	-0.00000	0.00000	-0.00000	0.00000	-0.00000	0.00000
	0.00006	-0.00005	0.00004	-0.00001	0.00000	-0.00000	0.00000	-0.00000
10	-0.00031	0.00025	-0.00022	0.00005	-0.00001	0.00000	-0.00000	0.00000
11	0.00038	-0.00031	0.00028	-0.00006	0.00001	-0.00000	0.00000	-0.00000
12	-0.00077	0.00063	-0.00056	0.00012	-0.00002	0.00001	-0.00000	0.00000
13	0.00098	-0.00080	0.00072	-0.00016	0.00002	-0.00001	0.00000	-0.00000
14	-0.00180	0.00147	-0.00131	0.00029	-0.00004	0.00001	-0.00000	0.00000
15	0.00228	-0.00186	0.00166	-0.00037	0.00005	-0.00002	0.00000	-0.00000
16	-0.00475	0.00388	-0.00346	0.00076	-0.00011	0.00004	-0.00000	0.00000
17	0.00848	-0.00691	0.00617	-0.00136	0.00019	-0.00007	0.00000	-0.00000
18	-0.01893	0.01544	-0.01378	0.00304	-0.00043	0.00015	-0.00001	0.00000
19	0.01808	-0.01474	0.01315	-0.00290	0.00041	-0.00014	0.00001	-0.00000
20	-0.03017	0.02460	-0.02195	0.00484	-0.00069	0.00024	-0.00001	0.00000
21	0.07910	-0.06451	0.05755	-0.01268	0.00181	-0.00062	0.00003	-0.00000
22	-0.10445	0.08517	-0.07599	0.01675	-0.00238	0.00082	-0.00003	0.00000
23	0.17077	-0.13926	0.12424	-0.02738	0.00390	-0.00133	0.00005	-0.00000
24	-0.59044	0.48148	-0.42957	0.09466	-0.01348	0.00461	-0.00019	0.00000
25	-0.74140	-0.49532	0.44191	-0.09738	0.01387	-0.00475	0.00019	-0.00000
26	0.00000	-0.67468	-0.72044	0.15876	-0.02261	0.00774	-0.00032	0.00000
27	0.00000	0.00000	-0.21752	-0.96519	0.13743	-0.04703	0.00193	-0.00002
28	0.00000	0.00000	0.00000	-0.14883	-0.93551	0.32016	-0.01311	0.00011
29	0.00000	0.00000	0.00000	0.00000	-0.32404	-0.94525	0.03870	-0.00033
30	0.00000	0.00000	0.00000	0.00000	0.00000	-0.04090	-0.99913	0.00840
31	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00840	0.99996

Autovetores da matriz 32x32 (parte 4).

Vendo essas imagens fica fácil perceber porquê optamos por colocá-las no apêndice.