Learning from Causation Fundamental of Casual Inference and its Applications

Huang Xiao

Chair of IT Security (I20) Department of Informatics Technische Universität München

November 7, 2012

- Fundamental of Causal Inference
 - Motivation
 - Causal Graphical Model

What is Causality?

Fundamental of Causal Inference

A definition from Wikipedia

Causality (also referred to as causation) is the relationship between an event (the cause) and a second event (the effect), where the second event is understood as a consequence of the first.

What is Causality?

Fundamental of Causal Inference

A definition from Wikipedia

Causality (also referred to as causation) is the relationship between an event (the cause) and a second event (the effect), where the second event is understood as a consequence of the first.

An example in real life: Does smoking cause lung cancer?

What is Causality?

Fundamental of Causal Inference

A definition from Wikipedia

Causality (also referred to as causation) is the relationship between an event (*the cause*) and a second event (*the effect*), where the second event is understood as a consequence of the first.

An example in real life: Does smoking cause lung cancer?

Yes, it might be!

Motivation

From Probabilistic View

Problem: Does smoking cause lung cancer?

From Probabilistic View

Problem: Does smoking cause lung cancer?

• Smoking does increase the probability of getting lung cancer.

Statistical Inference Overview

- Approximate an estimate of X given evidence e, namely, $Pr(X \mid e)$. E.g., Regression or Classification problems.
- Rejection of hypothesis, i.e., assert wether samples are from a certain distribution.
- Confidence interval, i.e., construct an interval based on dataset

Causal Inference Overview

• What if P has shifted itself to P*?

Causal Inference Overview

- What if P has shifted itself to P*?
- Key factors: Causes, Changes, and Invariants.
- Inference of P^* and reasoning of changes.

What makes Causal Inference interesting?

- Human understands the world in terms of causes and effects.
- Empirical science is about establishing causes.
- Causal inference gives a mathematical language for causal statements, and tools to solve causal problems formally.
- Alternative exercising to decision making, reasoning, etc.

Association

Now we want to find out what causes lung cancer

Causal Graphical Model

.00

Association

Now we want to find out what causes lung cancer

		Lung cancer	
smoking	yellow teeth	yes	no
yes	yes	100	400
yes	no	100	400
no	yes	1	450
no	no	9	8540

lung cancer

association?

yellow teeth

smoking

Table: Data observations from

10000 people

Measurements of Association

To find out associations among variables

- Mutual information (Information theory)
- Pearson (linear) correlation
- Spearman's rho (rank correlation)
- Effect size between two variables
- Many others

Observations from Data

Obviously

• yellow teeth and lung cancer are associated.

000

Observations from Data

Obviously

• yellow teeth and lung cancer are associated.

But...

 Bleaching the teeth does not help reduce the probability of getting lung cancer. Causal Graphical Model

Observations from Data

Obviously

yellow teeth and lung cancer are associated.

But...

 Bleaching the teeth does not help reduce the probability of getting lung cancer.

Caution!

Correlation does not imply Causation

History

- Motivation
- Causal Graphical Model
- 2 History
- Representation
- Methods
- Solution
- 6 Conclusion
- References

- Discuss the history of the problem.
- Describe context for the problem.
- Outline prior work on the problem.

- - Motivation
 - Causal Graphical Model
- Representation

Represent the problem in symbolic, graphic, or numeric format.

Mathematical formulas may be typeset:

$$\int_0^{\frac{\pi}{2}} \frac{1+\cos 2x}{2} \ dx$$

ШП

- Fundamental of Causal Inference
 - Motivation
 - Causal Graphical Model
- 2 History
- Representation
- 4 Methods
- Solution
- Conclusion
- References

Discuss technical methods or tools required to formulate and solve the problem mathematically.

Theorem

If f is continuous on [a, b], then

$$\int_a^b f(x) \ dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, a function such that F' = f.

- - Motivation
 - Causal Graphical Model

- Solution

Solution of the Problem

Present a solution of the problem, perhaps for a simple case, and indicate how the solution may be achieved in other cases.

Example

$$\int_0^{\frac{\pi}{2}} \frac{1 + \cos 2x}{2} \, dx = \frac{\pi}{4}$$

- - Motivation
 - Causal Graphical Model

- 6 Conclusion

Conclusion

Summarize the information presented in the talk.

- Problem statement
- Relevance
- Mathematical tools
- Solution

Overview

- Fundamental of Causal Inference
 - Motivation
 - Causal Graphical Model
- 2 History
- Representation
- Methods
- Solution
- 6 Conclusion
- References

References

- R. P. Boas, Can we make mathematics intelligible? *Amer.* Math. Monthly, **88** (1981), 727–731.
- M. E. Page, A Brief Citation Guide for Internet Sources in History and the Humanities (Version 2.1), http://h-net.msu.edu/~africa/citation.html.