

Name:

KIT-Fakultät für Informatik

Prof. Dr. Mehdi Tahoori, Prof. Dr. Wolfgang Karl

Lösungsblätter zur Klausur

Digitaltechnik und Entwurfsverfahren (TI-1)

und

Rechnerorganisation (TI-2)

am 25. Februar 2019, 13:30 - 15:30 Uhr

Matrikelnummer:

Vorname:

Digitaltechnik und Er	ntwurfsverfahren (TI-1)
Aufgabe 1	von 11 Punkten
Aufgabe 2	von 12 Punkten
Aufgabe 3	von 11 Punkten
Aufgabe 4	von 6 Punkten
Aufgabe 5	von 5 Punkten
Rechnerorganisation Aufgabe 6	(TI-2) von 6 Punkten
Aufgabe 7	von 11 Punkten
Aufgabe 8	von 10 Punkten
Aufgabe 9	von 14 Punkten
Aufgabe 10	von 4 Punkten
Gesamtpunktzahl:	
	Note:

${\bf Aufgabe\ 1} \quad \textit{Schaltfunktionen}$

1. DMF:

2. KMF:

Name:

Vorname:

Matr.-Nr.:

3

3.

Produktterm	X	Erklärung
$\overline{d} \; \overline{c} \; b$		
$car{b}$		
$d\ \overline{b}\ a$		
$c\ b\ \overline{a}$		

4. PLA:

Aufgabe 2 Minimierungsverfahren

1. KMF von f(c, b, a):

2.

Nr.	gebildet aus	Würfel	gestrichen wegen		
		c b a			

3. (a) Ist h(d, c, b, a) vollständig oder unvollständig definiert?

Begründung:

(b) DMF von h(d, c, b, a)

	4	5	6	8	9	10	13
A	×						
В				×			
С				×	×		
D				×		×	
Е					×		×
F	×	×	×				
G		×					×

Aufgabe 3 Spezielle Bausteine

1. CMOS-Transistor-Schaltbild von f(c, b, a):

7

2. Schaltnetz von p = odd(w,x,y,z):

3. 3-Bit Schieberegister:

Aufgabe 4 Laufzeiteffekte

1. Zeitdiagramm:

2. Hasardfehler (falls ja, Analyse):

Aufgabe 5 Schaltwerke

1. Automatengraph:

Aufgabe 6 Mikroprozessor

Aufgabe 7 C, MIPS-Assembler & MIMA

1. MIPS-Programmstücke in C-Sprache

(a)

(b)

(c)

- 2. Mikroprogamm der Addition bei der MIMA in Register-Transfer-Schreibweise:
 - ${\rm 1.~Takt:} \quad \mathsf{IAR} \to \mathsf{SAR}; \quad \mathsf{IAR} \to \mathsf{X}; \quad \mathsf{R} = 1$
 - 2. Takt: $Eins \rightarrow Y$; R = 1
 - 3. Takt:
 - 4. Takt:

. . .

Aufgabe 8 Pipelining

1. Datenabhängigkeiten:

2. Pipelinekonflikte:

3. Beseitigung der Konflikte:

4. Problem:

Aufgabe 9 Cache-Speicher

- 1. (a) Größe eines Cache-Blocks in Byte:
 - (b) Kapazität des Cache-Speichers:

(c) Der insgesamt erforderliche Speicherbedarf:

(d) Zugriff auf die Adresse 0x00EF1A34:

2.

Adresse	0x44	0xA0	0xC3	0x9E	0x66	0x2D	0x6B	0x49
read/write	w	r	w	r	r	W	r	W
Hit/Miss								
write back?								

Name:	Vorname:	MatrNr.:	16
Turio.	v or marrie.	iviaci. ivii.	10

3. Beweis oder Widerlegung der Behauptung:

Aufgabe 10 Allgemeines

1. Arithmetisches Pipelining:

2. Zwei Eigenschaften einer superskalaren Pipeline:

•

•

3. Mooresches Gesetz: