KUPC2018 – H カラフル数列 ^{解説}

suibaka

問題概要

以下の条件をすべて満たすような N 個の整数からなる数列として考えられるものは何通りあるか?

- 条件 $i:a_{l_i},a_{l_i+1},\ldots,a_{r_i}$ の中に b_i と異なるものが少なくとも 1 つ存在する $(1 \leq i \leq M)$
- ullet すべての要素の値は1以上S以下
- 制約
 - $1 \le N, M \le 2 \times 10^5$
 - $1 \le S \le 10^5$

- 3 2 2
- 1 2 1
- 2 3 2
 - すべての値が 1 以上 2 以下である長さ 3 の数列
 - a_1, a_2 の中に 1 と異なるものが少なくとも 1 つ存在
 - a_2, a_3 の中に 2 と異なるものが少なくとも 1 つ存在
 - (1,2,1),(2,1,1),(2,1,2),(2,2,1) の4つが答え

考察1-余事象を考える

以下の M 個の条件をすべて満たすような N 個の整数からなる数列として考えられるものは何通りあるか?

- ullet $a_{l_i}, a_{l_i+1}, \ldots, a_{r_i}$ の中に b_i と異なるものが少なくとも 1 つ存在する
- 条件が複雑で直接数えるのは大変
 - ⇒ 余事象を考えてみるのは鉄則

以下の M 個の条件のうち、条件を満たすものが少なくとも 1 つ存在するような数列は何通りあるか?

• $a_{l_i}, a_{l_i+1}, \ldots, a_{r_i}$ はすべて b_i に等しい

考察 2 – 重複の除去について

- ullet 1 つの条件 i について注目すれば、その条件を満たすような数列の個数は簡単に求まる
 - \bullet [$l_i..r_i$] を b_i で塗りつぶしてほかを適当に塗る
- こうして数えた中には他の条件をも満たす数列が含まれるため、 独立に足し合わせることはできない
- 重複して数えている数列を取り除くにはどうすればよいか?
 - ⇒ 包除 DP

考察 2 - 包除 DP

- ullet ひとまず簡単のため、すべての b_i は異なる値を取ると仮定
- $dp1[i] := a_1, \ldots, a_i$ だけを考えたときに、余事象を取る前の条件がまだ崩れていないような長さ i の数列の個数
- $dp2[i] := a_1, \ldots, a_i$ だけを考えたときに、はじめてそこで(余事象版の)ある条件を満たすような長さ i の数列の個数
- 真に求めたい値の DP テーブルと余事象版の DP テーブルを同時に求めていく

考察 2 – DP 遷移(b_i がすべて異なる時)

● 遷移 1

$$i = l_k - 1$$
 を満たすすべての条件 k について

$$dp2[r_k] = dp2[r_k] + dp1[i]$$

- ullet dp1[i] 通りの数列について、 $[l_k..r_k]$ を b_k で一色に塗る
- ullet b_i が全て異なるので、このとき r_k で初めて条件が満たされる
- 遷移 2

$$dp1[i+1] = dp1[i] \times S - dp2[i+1]$$

dp1,dp2 の定義から明らか

3 2 2

1 2 1

i	0	1	2	3
dp1	1			
dp2	0	0	0	0

3 2 2

1 2 1

i	0	1	2	3
dp1	1 -	2		
dp2	0	0	> 1	0

- dp2[2] = dp2[2] + dp1[0] = 1
- $dp1[1] = dp1[0] \times 2 dp2[1] = 2$

3 2 2

1 2 1

i	0	1	2	3
dp1	1	2 -	2 3	
dp2	0	0	1	72

•
$$dp2[3] = dp2[3] + dp1[1] = 2$$

•
$$dp1[2] = dp1[1] \times 2 - dp2[2] = 3$$

3 2 2

1 2 1

i	0	1	2	3
dp1	1	2	3 -	+4
dp2	0	0	1	2

•
$$dp1[3] = dp1[2] \times 2 - dp2[3] = 4$$

考察 $3 - b_i$ が等しい条件間の処理

- ある条件 i, j について $b_i = b_j$ となる場合、これだけでは不十分(入力例 2)
- 以下の2つの場合についてそれぞれ考えていく
 - 場合 1:一方の区間がもう一方の区間を完全に含む場合
 - 場合 2:場合 1 ではないが、区間同士が交差するような場合
- 互いに交わらない区間同士はそもそも問題になっていないので 気にしなくて良い

考察 3 - 場合 1

- 一方の区間がもう一方の区間を完全に含む場合、大きい方の区間の条件は無視しなければならない
- なぜなら、大きいほうの区間が条件を満たすとき、小さい方の 区間は当然条件を満たすため
- 無視しないと、包除 DP における「はじめてその位置で条件を満たす~」の部分に反する

考察 3 - 場合 2

- $l_i < l_j, r_i < r_j$ とする
- ullet $b_i=b_j$ のとき、 a_{l_j},\ldots,a_{r_j} を b_j で塗りつぶすと先に 条件 i が満たされてしまう
- \emptyset : $(l_1, r_1, b_1) = (1, 3, 1), (l_2, r_2, b_2) = (2, 4, 1)$
 - a_1 まで考えているとき、 $a_1=1$ となる数列に対して $a_2=a_3=a_4=1$ とすると 1 つ目の条件が満たされてしまう
 - dp2 の条件に反する

考察 3 - 場合 2

- dp2 の計算のときに、 b_j で塗りつぶすと先に条件 i が満たされてしまう場合の数を引いてしまえばよい
- 引くべき値は、 b_j と等しい値を持つ条件が $dp2[l_j],\ dp2[l_j+1],\ \dots,\ dp2[r_j]$ に寄与している値の総和
- ullet b_i の値ごとにセグメントツリーや deque で管理すればよい

解法 - DP 遷移

- dp2 に対する $b_i = x$ の寄与を $dp2_x$ とする
- 遷移 1 $i=l_k-1$ を満たすすべての条件 k について

$$dp2[r_k] = dp2[r_k] + dp1[i] - \sum_{j=l_k}^{r_k} dp2_{b_k}[j]$$

● 遷移 2

$$dp1[i+1] = dp1[i] \times S - dp2[i+1]$$

まとめ

- 余事象で考える。
- 区間をソートしておく。 $O(M \log M)$
- 同じ b_i の値をもつ条件間で、一方の区間がもう一方に完全に含まれるようなら、大きい方を除去する。O(M)
- 包除 DP により先頭の要素から数え上げ。 O(N) (座圧すれば $O(M\log N)$ だが本質ではない)
- 同じ b_i を持つ区間は、セグメントツリーや deque で dp2 に対する寄与を管理し、重複がないようにカウント。 $O(M\log M)$ または O(M)
- 結局 $O(M \log M + N)$ でとけた。

おまけ – 入力例 5 の DP テーブルの様子

i	0	1	2	3	4	5	6	7	8
dp1	1								
dp2	0	0	0	0	0	0	0	0	0
$dp2_1$									
$dp2_2$									
$dp2_3$									

i	0	1	2	3	4	5	6	7	8
dp1	1	3							
dp2	0	0	0	1	0	1	0	0	0
$ dp2_1 dp2_2 dp2_3 $						1			
$dp2_2$									
$dp2_3$				1					

•
$$dp2_1[5] = dp2_1[5] + dp1[0] - \sum_{i=1}^{5} dp2_1[i] = 1$$

•
$$dp2_3[3] = dp2_3[3] + dp1[0] - \sum_{i=1}^{3} dp2_3[i] = 1$$

•
$$dp1[1] = dp1[0] \times 3 - dp2[1] = 3$$

i	0	1	2	3	4	5	6	7	8
dp1	1	3	9						
dp2	0	0	0	1	0	1	3	0	0
$dp2_1$						1			
$ dp2_1 dp2_2 dp2_3 $							3		
$dp2_3$				1					

•
$$dp2_2[6] = dp2_2[6] + dp[1] - \sum_{i=2}^{6} dp2_2[i] = 3$$

•
$$dp1[2] = dp1[1] \times 3 - dp2[2] = 9$$

i	0	1	2	3	4	5	6	7	8
dp1	1	3	9	26					
dp2	0	0	0	1	0	1	3	14	0
$dp2_1$						1		8	
$dp2_1$ $dp2_2$ $dp2_3$							3	6	
$dp2_3$				1					

•
$$dp2_1[7] = dp2_1[7] + dp1[2] - \sum_{i=3}^{r} dp2_1[i] = 8$$

•
$$dp2_2[7] = dp2_2[7] + dp1[2] - \sum_{i=3}^{7} dp2_2[i] = 6$$

•
$$dp1[3] = dp1[2] \times 3 - dp2[3] = 26$$

i	0	1	2	3	4	5	6	7	8
dp1	1	3	9	26	78				
dp2	0	0	0	1	0	1	3	14	17
$dp2_1$						1		8	17
$dp2_2$							3	6	
$dp2_3$				1					

•
$$dp2_1[8] = dp2_1[8] + dp1[3] - \sum_{i=4}^{8} dp2_1[i] = 17$$

•
$$dp1[4] = dp1[3] \times 3 - dp2[4] = 78$$

i	0	1	2	3	4	5	6	7	8
dp1	1	3	9	26	78	233			
dp2	0	0	0	1	0	1	81	14	17
$dp2_1$						1		8	17
$dp2_2$							3	6	
$dp2_3$				1			78		

•
$$dp2_3[6] = dp2_3[6] + dp1[4] - \sum_{i=5}^{6} dp2_3[i] = 78$$

•
$$dp1[5] = dp1[4] \times 3 - dp2[5] = 233$$

i	0	1	2	3	4	5	6	7	8
dp1	1	3	9	26	78	233	618		
dp2	0	0	0	1	0	1	81	14	241
$dp2_1$						1		8	17
$dp2_2$							3	6	224
$dp2_3$				1			78		

•
$$dp2_2[8] = dp2_2[8] + dp1[5] - \sum_{i=6}^{8} dp2_2[i] = 224$$

•
$$dp1[6] = dp1[5] \times 3 - dp2[6] = 618$$

i	0	1	2	3	4	5	6	7	8
dp1	1	3	9	26	78	233	618	1840	
dp2	0	0	0	1	0	1	81	14	241
$dp2_1$						1		8	17
$dp2_2$							3	6	224
$dp2_3$				1			78		

•
$$dp1[7] = dp1[6] \times 3 - dp2[7] = 1840$$

i	0	1	2	3	4	5	6	7	8
dp1	1	3	9	26	78	233	618	1840	3439
dp2	0	0	0	1	0	1	81	14	2081
$dp2_1$						1		8	17
$dp2_2$							3	6	224
$dp2_3$				1			78		1840

•
$$dp2_3[8] = dp2_3[8] + dp3[7] - \sum_{i=8}^{8} dp2_3[i] = 1840$$

•
$$dp1[8] = dp1[7] \times 3 - dp2[8] = 3439$$