

Blockchain

Nepal

History of Cryptography

Before 1950s'

- Cryptography = encryption, ciphers
- Almost exclusively used in military and diplomacy

After 1950s

- Cryptography is increasingly used in business applications (banking, electronic funds transfer)
- Besides confidentiality, integrity protection, authentication, and non-repudiation

After 2000s'

- Everyday crypto; almost everywhere (although they may be unaware of that)
- » SSL/TLS secure web transactions
- » GSM/3G security
- » WiFi, Bluetooth, smart cards, ...

Basic Model

Historical Ciphers

- Skytale from Sparta
- Caesar cipher
- Vigenère cipher (le chifre indéchiffrable)
- German Enigma from WWII
- ...

Skytale

Used by Spartans in the 3rd century BC

Transposition cipher (mixed letters of the plaintext)

Encoding and Decoding

The key is the diameter of the rod

Key space is small → easy to break

Caesar Cipher

- Used by Julius Caesar
- Substitution cipher (replaces letters of plaintext)
- Each letter is replaced by the letter at some fixed number of positions (eg. 3) down the alphabet

Plain	ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher	DEFGHIJKLMNOPQRSTUVWXYZABC
Example	CRYPTOGRAPHY → FUBSWRJUDSKB

- The key is the value of the shift of the alphabet
- Size of the key space is 26-1 = 25 → easy to break

Monoalphabetic substitution

- Generalization of Caesar cipher
- Letters are replaced based on permutation

Plain	ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher	HTKCUOISJYARGMZNBVFPXDLWQE
Example	CIPHER → KJNSUV

- The key is the permutation
- Key space is huge: $26! = 1.56 \times 2^88$

Breaking monoalphabetic substitutions

- Every language has its own letter statistics
 - There are letters that are more frequently used than others
 - Eg. in English; e → 12.7%, t→ 9.1%
 - And letters that are less frequent
 - Eg. in English; z→ 0.1%, j→ 0.2%
- In case of monoalphabetic substitution, the ciphertext preserves the letter statistics of the original plaintext
 - After decoding the most frequent and least frequent letters, the rest of the text can be figured out much like solving a crossword puzzle

Polyalphabetic Substitution (Vigenere)

```
ABCDEFGHIJKLMN OPORSTUVWXYZ
J K L M N O P O R S T U V W X Y Z A B C D E F G H I
K L M N O P O R S T U V W X Y Z A B C D E F G H I J
UVWXYZABCDEFGH<mark>I</mark>JKLM<mark>N</mark>OPQRST
V W X Y Z A B C D E F G H I J K L M N O P O R S T U
```

coding:

key: RELAT IONSR ELA plaintext: TOBEO RNOTT OBE ciphertext: KSMEH ZBBLK SME

Polyalphabetic Substitution (Vigenere)

```
ABCDEFGHIJKLMN OPORSTUVWXYZ
    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
    D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
    G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
I
    I J K L M N O P O R S T U V W X Y Z A B C D E F G H
    J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
    K L M N O P O R S T U V W X Y Z A B C D E F G H I J
    L M N O P O R S T U V W X Y Z A B C D E F G H I J K
    MNOPORSTUVWXYZABCDEFGHIJKL
N
    N O P O R S T U V W X Y Z A B C D E F G H I J K L M
    OPQRSTUVWXYZAB CDEFGHIJKLMN
    P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
    ORSTUVWXYZABCDEFGHI<mark>J</mark>KLMNOP
    R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
    S T U V W X Y Z A B C D E F G H I J K L M N O P O R
S
    TUVWXYZABCDEFGHIJKLMNOPORS
    U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
    V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
    W X Y Z A B C D E F G H I J K L M N O P O R S T U V
    X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
    YZABCDEFGHIJKLMNOPORSTUVWX
    ZABCDEFGHIJKLMNOPQRSTUVWXY
```

coding:

key: RELAT IONSR ELA
plaintext: TOBEO RNOTT OBE
ciphertext: KSMEH ZBBLK SME

decoding:

key: RELAT IONSR ELA ciphertext: KSMEH ZBBLK SME plaintext: TOBEO RNOTT OBE

Enigma

- First electro-mechanical cipher
- Patented by Arthur Scherbius in 1918
- Adopted by the German Army in 1926

ENIGMA

Modern Cryptography

- Shannon's work on information theoretical characterization of encryption [1948]
- Substitution permutation ciphers & Data Encryption Standard (DES) [1970s]
- Birth of public key cryptography [1976-1978]
- Quantum cryptography [1980s]

Practical applications of modern cryptography

Secure communication over public channels/networks

- www (https/tls)
- WiFi (WPA/WPA2)
- GSM/3G
- Bluetooth

Secure data storage

- disk encryption (TrueCrypt, BitLocker, ...)
- encrypted cloud storage

Authentication

- smart cards (eg. bank cards)
- ignition keys of cars

Software authentication and integrity protection

- digitally signed code(eg. drivers, android apps & packages)
- and so on ...

Exercises

- Implement a Caesar cipher and write proper unit tests for encryption and decryption. Write another program which takes any ciphertext and breaks it to find the plain text.
- 2. Implement monoalphabetic substitution cipher and also write proper unit tests for encryption and decryption.
- 3. Implement Vigenere cipher and also write proper unit tests for encryption and decryption