TFB2093 Internet-of-Things

Practical 04: Interfacing with Digital Sensors & Actuators (PIR + Buzzer + LEDs + Buttons)

Objectives

- Read a PIR motion sensor with digitalRead().
- Drive a buzzer / LED / relay with digitalWrite().
- Build a mini alarm system with Arm/Disarm and Silent Mode toggles.
- Log status to Serial Monitor.

0) Do this in Tinkercad

- Create → Circuits → New Circuit.
- Add parts: Arduino UNO, PIR sensor, Piezo buzzer, 2x pushbuttons, 2x LEDs, 2x 220Ω resistors, wires.
- Set the PIR to "Digital" mode (default in Tinkercad PIR).

Suggested Pin Map (easy wiring)

Device	Pin on UNO	Notes
PIR OUT	D2	5V and GND to PIR VCC/GND
Buzzer +	D9	Buzzer – to GND
ARM LED (status)	D10 (via 220Ω)	LED – to GND
Motion LED	D11 (via 220Ω)	LED – to GND
Arm/Disarm Button	D4	Other leg to GND (INPUT_PULLUP)
Silent Mode Button	D5	Other leg to GND (INPUT_PULLUP)

Why INPUT_PULLUP? It removes external resistors. Button released = HIGH, pressed = LOW.

1) Activity: Read a PIR (Digital In)

Wiring (minimum): PIR VCC \rightarrow 5V, GND \rightarrow GND, OUT \rightarrow D2

```
// Step-1: PIR read demo
const int PIR = 2;

void setup() {
   pinMode(PIR, INPUT);
   Serial.begin(9600);
}

void loop() {
   int motion = digitalRead(PIR); // HIGH = motion
   if (motion == HIGH) {
      Serial.println("Motion Detected");
   } else {
      Serial.println("No Motion");
   }
   delay(300);
}
```

Expected: Serial Monitor prints "Motion Detected" / "No Motion".

2) Activity: Digital Out (Buzzer / LED / Relay)

Wiring: Buzzer $+ \rightarrow D9$, $- \rightarrow GND$; Motion LED Anode $\rightarrow D11$ via 220Ω , Cathode $\rightarrow GND$

```
// Step-2: PIR activates buzzer/LED
const int PIR = 2;
const int BUZ = 9;
const int LEDM = 11;
void setup() {
 pinMode(PIR, INPUT);
 pinMode(BUZ, OUTPUT);
 pinMode(LEDM, OUTPUT);
void loop() {
  int motion = digitalRead(PIR);
  if (motion == HIGH) {
    digitalWrite(LEDM, HIGH);
                      // simple alarm tone
    tone(BUZ, 2000);
  } else {
    digitalWrite(LEDM, LOW);
    noTone(BUZ);
  delay(50);
```

3) Activity: Add Arm/Disarm Status LED + Button

Wiring: ARM LED Anode \rightarrow D10 via 220 Ω , Cathode \rightarrow GND; Arm Button: one leg \rightarrow D4, other \rightarrow GND (INPUT_PULLUP).

```
// Step-3: Arm/Disarm with a button (toggle)
const int PIR = 2;
const int BUZ = 9;
const int LEDM = 11; // motion LED
const int LEDA = 10; // armed LED
const int BTN_ARM = 4;
bool armed = false;
int prevArm = HIGH;
                    // because INPUT_PULLUP -> idle HIGH
unsigned long lastDebounce = 0;
void setup() {
 pinMode(PIR, INPUT);
 pinMode(BUZ, OUTPUT);
 pinMode(LEDM, OUTPUT);
 pinMode(LEDA, OUTPUT);
 pinMode(BTN_ARM, INPUT_PULLUP);
 Serial.begin(9600);
}
void loop() {
  // --- button toggle with simple debounce ---
  int readArm = digitalRead(BTN_ARM);
  if (readArm != prevArm && (millis() - lastDebounce) > 30) {
   lastDebounce = millis();
    if (readArm == LOW) {
                                // pressed
     armed = !armed;
     Serial.println(armed ? "System ARMED" : "System DISARMED");
   prevArm = readArm;
  digitalWrite(LEDA, armed ? HIGH : LOW); // show armed status
  // --- alarm logic ---
```

```
int motion = digitalRead(PIR);
if (motion == HIGH) {
    digitalWrite(LEDM, HIGH);
    if (armed) tone(BUZ, 2000); else noTone(BUZ);
} else {
    digitalWrite(LEDM, LOW);
    noTone(BUZ);
}
```

4) Activity: Silent Mode Toggle (log motion, no sound)

Wiring: Silent Button: one leg \rightarrow D5, other leg \rightarrow GND (INPUT_PULLUP).

Final Combined Sketch (Arm/Disarm + Silent Mode)

```
// Practical 04 - Mini Alarm System (Tinkercad-ready)
// PIR + Buzzer + LEDs + Arm/Disarm + Silent Mode
// Pins
const int PIR = 2; // PIR OUT
const int BUZ = 9; // Buzzer +
const int LED_M = 11; // Motion LED
const int LED_A = 10; // Armed LED
const int BTN_ARM = 4;  // Arm/Disarm (to GND)
const int BTN_SIL = 5;  // Silent Mode (to GND)
// States
bool armed = false;
bool silentMode = false;
// For simple debounce / edge detect
int prevArm = HIGH;
int prevSil = HIGH;
unsigned long lastDebounceArm = 0;
unsigned long lastDebounceSil = 0;
void setup() {
 pinMode(PIR, INPUT);
 pinMode(BUZ, OUTPUT);
 pinMode(LED_M, OUTPUT);
 pinMode(LED_A, OUTPUT);
 pinMode(BTN_ARM, INPUT_PULLUP);
 pinMode(BTN_SIL, INPUT_PULLUP);
 Serial.begin(9600);
  Serial.println("Boot OK. System DISARMED. Silent=OFF");
}
void loop() {
  // --- Toggle Arm ---
  int readArm = digitalRead(BTN_ARM);
  if (readArm != prevArm && (millis() - lastDebounceArm) > 30) {
    lastDebounceArm = millis();
    if (readArm == LOW) {
     armed = !armed;
      Serial.println(armed ? "System ARMED" : "System DISARMED");
    prevArm = readArm;
  digitalWrite(LED_A, armed ? HIGH : LOW);
  // --- Toggle Silent Mode ---
  int readSil = digitalRead(BTN_SIL);
  if (readSil != prevSil && (millis() - lastDebounceSil) > 30) {
   lastDebounceSil = millis();
    if (readSil == LOW) {
      silentMode = !silentMode;
     Serial.println(silentMode ? "Silent Mode: ON" : "Silent Mode: OFF");
    }
    prevSil = readSil;
  // --- Motion handling ---
  if (motion == HIGH) {
    digitalWrite(LED_M, HIGH);
    Serial.println("Motion Detected");
```

```
if (armed && !silentMode) {
    tone(BUZ, 2000);
} else {
    noTone(BUZ);
}
else {
    digitalWrite(LED_M, LOW);
    noTone(BUZ);
}

delay(40); // gentle pacing
```

Lab Tasks (Demo Checklist)

- PIR only: Serial logs change with movement.
- Actuator: PIR lights motion LED and drives buzzer.
- Arm/Disarm: Toggle with the Arm button; status LED + Serial message.
- Silent Mode: Toggle; motion still logs, buzzer stays off.

Quick Troubleshooting (Tinkercad)

- If the PIR never changes, run simulation at fast speed and allow 5–10 s warm ∎up.
- INPUT_PULLUP logic: released=HIGH, pressed=LOW.
- Check GND connections for LEDs and buzzer.

Extension Ideas (still Tinkercad■only)

- Replace buzzer with a relay to simulate a siren.
- Add a blink pattern on the armed LED when Silent Mode is ON.
- Log timestamps (millis) to measure detection latency.