

Proiect

INGINERIA SISTEMELOR DE PRODUCȚIE

Profesor coordonator: Şef lucrări dr.ing. Magdalena Barbu

> Student: Ion Silvan Grupa: 2LF471

Tema proiect

Să se proiecteze un sistem de producție care validează un produs cu un reper, o familie de repere, o gamă de repere în condițiile unui volum anual de producție dat, ale unui regim de lucru impus la 8 ore/un schimb, 2 schimburi pe zi, 5 zile lucrătoare pe săptămână, 52 de săptămâni lucrătoare pe an și cu un coeficient de utilizare al timpului disponibil de 0,95. Volum producție:

- Silvan 100 000 buc/an din fiecare reper

Cuprins

1. Fișa tennologică ale repereior produsului realizate de sistemul de producție	3
2.Dimensionarea sistemului de fabricație	
2.2. Calculul necesarului de mașini, echipamente, utilaje și posturi de lucru necesare în siste producție	mul de
2.3. Dimensionarea necesarului de spații pentru sistemul de producție	10
Dimensionarea subsistemului	ntru
3.2. Determinarea suprafețelor necesare pentru activitatea de mentenanță	12
 4.Dimensionarea facilităților de manipulare și depozitare ale sistemului de producție	13
5.Dimensionarea serviciilor funcționale	16
6. Dimensionarea serviciilor auxiliare și de sprijin	18
7. Suprafața totală a sistemului de producție	20
8. Calculul costurilor de producție	
8.1. Calculul costurilor directe	24
9. Planul general al sistemului de producție	27
Bibliografie	27

1. Fișa tehnologică ale reperelor produsului realizate de sistemul de producție.

Denumire produs: Cheie cu clichet: - corp antrenor

- corp cap

Caracterizare produse: prelucrare prin turnare

Schițele reperelor:

Fig. 1.1 Corp antrenor

Fig. 1.2 Corp cap

Fig. 1.3 Corp Antrenor semifabricat

Tabelul 1.1 Reperul 1 - Corp antrenor

Nr crt.	Denumirea operației /fazei	Utilaj	NT
			[min/buc]
10	Control semifabricat	MC1	0,7
20	Polizare rest bavuri	PD500	0,93
30	Frezare fețe 19,5	FU1	3,95
40	Găurire Φ20	G25	1,55
50	Strunjire cap	SCN	2,09
60	Îndreptare	BL	0,77
70	Strunjire mâner prin copiere	SC	1,56
80	Strunjire interioară I	SCN	1,61
	Strunjire Φ22,1		
	Strunjire Φ31,2		
	Strunjire Φ34,5		
90	Teşire	G25	0,83

100	Găurire - Lărgire	G16	2,24
	Găurire Φ6,9		
	Lărgire Φ7,4		
110	Strunjire interioară II	SCN	1,87
	Lărgire Φ16		
	Strunjire Ф17,4		
	Strunjire Φ28		
120	Găurire Φ4,3 simultan cu lamare Φ7,5	G16	2,62
130	Găurire Φ5,2	G16	1,12
140	Şlefuire	PB	0,63
150	Ajustare	BL	0,081
160	Marcare	PE100tf	0,52
170	Control final	MC2	0,7

Tabelul 1.2 Reperul 2 - Corp cap

Nr.op.	Denumirea operaţiei	Denumire utilaj	NT[min]
20	Strunjire	SCN	4,26
30	Teşire	SCN	0,82
40	Frezare dantură	FUS25	6,69
50	Presare pătrat	PE100	0,49
60	Ajustare muchii pătrat	PE100	0,35
70	Găurire Φ6,2	G16	1,17
80	Ajustare	BL	1,031

2. Dimensionarea sistemului de fabricație

2.1. Determinarea volumului producției sau operațiilor

Procentul de rebut pentru fiecare UT/PL este trecut in tabelul 2.1.

Tabelul 2.1

Nr. crt.	Utilaj/Prelucrare	p_j
1	Control semifabricat MC1	0
2	Control final MC2	0
3	Polizor PD500	0.001
4	Mașină de frezat FU1	0.003
5	Mașină de găurit G25	0.004
6	Mașină de găurit G16	0.004
7	Strung cu comandă numerică SCN	0.01
8	Ajustare BL	0
9	Strung cu dispozitiv de copiere SC	0
10	Mașină de șlefuit PB	0.001
11	Mașină de frezat FUS25	0.004
12	Presă PE100	0.001

Pentru fiecare reper s-a calculat volumul producției anuale pe operații, aplicând relația 2.1.

$$Q_{ij}=rac{Q_{ej}}{1-p_j}$$
 ; (relația 2.1)

Tabelul 2.2 Calculul volumului producției anuale R1

	Reperul 1- R1 (Corp antrenor)	UT/PL	Q_{ij}	\mathbf{Q}_{ej}
Nr.crt	Q ₁ =100000 [buc/an]		[buc/an]	[buc/an]
	Operația			
1	Control semifabricat	MC1	105 781	105 781
2	Polizare rest bavuri	PD500	105 781	105 675
3	Frezare fete 19.5	FU1	105 675	105 358
4	Gaurire Φ20	G25	105 358	104 936

5	Strunjire cap	SCN	104 936	103 887
6	Îndreptare	BL	103 887	103 887
7	Strunjire maner prin copiere	SC	103 887	103 887
8	Strunjire interioara I	SCN	103 887	102 848
9	Tesire	G25	102 848	102 437
10	Gaurire - Lărgire	G16	102 437	102 027
11	Strunjire interioara II	SCN	102 027	101 007
12	Găurire Φ4,3 simultan cu lamare Φ7,5	G16	101 007	100 603
13	Găurire Φ5,2	G16	100 603	100 200
14	Slefuire	PB	100 200	100 100
15	Ajustare	BL	100 100	100 100
16	Marcare	PE100tf	100 100	100 000
17	Control final	MC2	100 000	100 000

Rebutul R1 = 5 781 buc/an

$$\begin{split} Q_{16} &= \frac{100\,000}{1-\,0.001} = 100\,100; \quad Q_{14} = \frac{100\,100}{1-\,0.001} = 100\,200 \; ; \quad Q_{13} = \frac{100\,200}{1-\,0.004} = 100\,603 \; ; \\ Q_{12} &= \frac{100\,603}{1-\,0.004} = 101\,007 \; ; \quad Q_{11} = \frac{101\,007}{1-\,0.01} = 102\,027 \; ; \quad Q_{10} = \frac{102\,027}{1-\,0.004} = 102\,437 \; ; \\ Q_{9} &= \frac{102\,437}{1-\,0.004} = 102\,848 \; ; \quad Q_{8} = \frac{103\,848}{1-\,0.01} = 103\,887 \; ; \quad Q_{5} = \frac{103\,887}{1-\,0.01} = 104\,936 \; ; \\ Q_{4} &= \frac{104\,936}{1-\,0.004} = 105\,358 \; ; \quad Q_{3} = \frac{104\,358}{1-\,0.003} = 105\,675 \; ; \quad Q_{2} = \frac{105\,675}{1-\,0.001} = 105\,781 \end{split}$$

Tabelul 2.3 Calculul volumului producției anuale R2

	Reperul 2- R2(Corp cap)	UT/PL	Qij	\mathbf{Q}_{ej}
Nr.crt	Q ₂ =150000[buc/an]		[buc/an]	[buc/an]
	Operația			
1	Strunjire	SCN	103058	102027
2	Tesire	SCN	102027	101007
3	Frezare dantura	FUS25	101007	100603
4	Presare patrat	PE100	100603	100502
5	Ajustare muchii patrat	PE100	100502	100402
6	Găurire Φ6,2	G16	100402	100000
7	Ajustare	BL	100000	100000

Rebutul R2 = 3 058 buc/an

$$Q_6 = \frac{100\,000}{1-\,0.004} = 100\,402 \; ; \qquad Q_5 = \frac{100\,402}{1-\,0.001} = 100\,502 \; ; \quad Q_4 = \frac{100\,502}{1-\,0.001} = 100\,603 \; ;$$

$$Q_3 = \frac{100\,603}{1-\,0.004} = 101\,007 \; ; \quad Q_2 = \frac{101\,007}{1-\,0.01} = 102\,027 \; ; \quad Q_1 = \frac{102\,027}{1-\,0.01} = 103\,058$$

2.2. Calculul necesarului de mașini, echipamente, utilaje și posturi de lucru necesare în sistemul de producție

Tabelul 2.4 Necesarul de utilaje

Nr crt	UT/PL	Numărul calculat	Numărul adoptat
1	MC1	0,31	1
2	MC2	0,29	1
3	PD500	0,41	1
4	MFU	1,76	2
5	MG	4,1	5
6	SCN	4,63	5
7	BL	0,8	1
8	SC	0,68	1
9	РВ	0,26	1
10	MFUS25	2,85	3
11	PE100	0,57	1

Td = Nr. h pe schimb × Nr. schimburi × Nr. zile lucr pe săptămână × Nr. săptămâni pe an × Coef. de utilizare

$$Td = 8 \times 2 \times 5 \times 52 \times 0.95 = 3952 \text{ h/an}$$

- Tnec.MC1 = 105 781 * 0,7 = 74 047 [min]
- Tnec.MC2 = 100 000 * 0,7 = 70 000 [min]
- Tnec.PD500 = 105 781 * 0,93 = 98 376 [min]
- Tnec.MFU = 105 675 × 3,95 = 417 416 [min]
- Tnec.MG = (105 358 * 1,55) + (102 848 * 0,83) + (102 437 * 2,24) + (101 007 * 2,62)
- + (100 603 * 1,12) + (100 402 * 1,17) = 972 912 [min]
- Tnec.SCN = $(104\ 936 \times 2,09) + (103\ 887 \times 1,61) + (102\ 027 \times 1,87) + (103\ 058 \times 4,26)$
- + (102 027 × 0,82) = 1 100 054 [min]
- Tnec.BL = $(103.887 \times 0.77) + (100.100 \times 0.081) + (100.000 \times 1.031) = 191.201$ [min]

• Tnec.SC = 103 887 × 1,56 = 162 064 [min]

• Tnec.PB = 100 200 × 0,63 = 63 126 [min]

• Tnec.MFUS25 = 101 007 × 6,69 = 675 737 [min]

• Tnec.PE100 = $(100603 \times 0.49) + (100502 \times 0.35) + (100100 \times 0.52) = 136523$ [min]

Calcul pentru două schimburi:

• NMC1 =
$$\frac{74.047}{3.952*60}$$
 = 0,312

• NMC2 =
$$\frac{70\ 000}{3\ 952*60}$$
 = 0,295

• NPD500 =
$$\frac{98376}{3952*60}$$
 = 0,414

• NMFU =
$$\frac{417416}{3952*60}$$
 = 1,76

• NMG =
$$\frac{972912}{3952*60}$$
 = 4,1

• NSCN =
$$\frac{1\ 100\ 054}{3\ 952*60}$$
 = 4,639

• NBL =
$$\frac{191201}{3952*60} = 0.806$$

• NSC =
$$\frac{162\,064}{3\,952*60} = 0,683$$

• NPB =
$$\frac{63\,126}{3\,952*60} = 0.266$$

• NPE100 =
$$\frac{136523}{3952*60}$$
 = 0,576

• NMFUS25 =
$$\frac{675737}{3952*60}$$
 = 2,85

Gradul de incărcare:

Tabelul 2.5 Gradul de încărcare a utilajelor

	rabelul 2.3 Gradul de incarcare a utilajelor			
	NcUT	NaUT	g {%}	g' {%}
NMC1	0,31	1	31	62
NMC2	0,29	1	29	58
NPD500	0,41	1	41	82
NMFU	1,76	2	88	
NMG	4,1	5	82	
NSCN	4,63	5	93	
NBL	0,8	1	80	
NSC	0,68	1	68	
NPB	0,26	1	26	52
NMFUS25	2,85	3	95	
NPE100	0,57	1	57	
g>50%				
g<50%				

Calculăm gradul de incarcare cu relația: $g = \frac{Tnec}{Tdisp*N_{aUT}} = \frac{N_{cUT}}{N_{aUT}}$ (relația 2.2)

2.3. Dimensionarea necesarului de spații pentru sistemul de producție

Tabelul 2.6

		Dotare SF		
Nr. crt	UT/PL	Numär adoptat	Lxl [mxm]	N _{Is}
1	MC1	1	2x1	1
2	MC2	1	2x1	1
3	PD500	1	1.5x1	1
4	MFU	2	1.5x1	2
5	MG	5	1.5x1.5	1
6	SCN	5	4x3	1
7	BL	1	1.5x1.5	1
8	SC	1	4x2	1
9	РВ	1	2x1	1
10	MFUS25	3	1.5x1	2
11	PE100	1	2x1	1

Tabelul 2.7

Nr.crt	UT/PL	Nls	Ss [m2]	Sg[m2]	Se[m2]	Stj[m2]	NaUT	STj[m2]
1	MC1	1	2	2	8	12	1	12
2	MC2	1	2	2	8	12	1	12
3	PD500	1	1.5	1.5	6	9	1	9
4	MFU	2	1.5	3	9	13.5	2	27
5	MG	1	2.25	2.25	9	13.5	5	67.5
6	SCN	1	12	12	48	72	5	360
7	BL	1	2.25	2.25	9	13.5	1	13.5
8	SC	1	8	8	34	40	1	40
9	PB	1	2	2	8	12	1	12
10	MFUS25	2	1.5	3	9	13.5	3	40.5
11	PE100	1	2	2	8	12	1	12
							Total	605,5

Pentru tabelul 2.3.2 se vor folosi următoarele formule:

- $Ss = L \times l \ [m2] \ (Relația 2.3.1)$
- $Sg = Nls \times Ss$ [m2] (Relația 2.3.2)
- $Se = (Ss + Sg) \times k \ [m2] \ (Relația 2.3.3)$
- Stj = Ss + Sg + Se [m2] (Relația 2.3.4)

• $STj = Stj \times NaUT$ [m2] (Relația 2.3.4)

Suprafața căilor de acces : $Sca = k1 * \sum STj$ (Relația 2.3.5)

Tabelul 2.8 Valorile coeficientului k1

Suprafaţă ocupată de semifabricat	k1
sub 0,6 m2	0,050,1
0,61,2 m2	0,10,2
1,21,8 m2	0,20,3
peste 1,8 m2	0,30,4

Suprafața semifabricatului = 258,5 * 45 = 11 632,5 mm 2 = 0,01 m 2

Suprafața ocupată de semfabricat este sub 0.6 [m2] (0.01 m2), deci k1=0.06.

 $Sca = 0.06 \times 605.5 = 36.33 [m2]$

 $SSF = 605.5 + 36.33 = 641.83 [m2] \approx 642 [m2]$

2.4. Stabilirea necesarului de personal pentru sistemul de producție

Tabelul 2.9

Nr.crt	UT/PL	Număr adoptat	Nr.schimburi	Nr.operatori
1	MC1	1	1	1
2	MC2	1	1	1
3	PD500	1	1	1
4	MFU	2	2	4
5	MG	5	2	10
6	SCN	5	2	10
7	BL	1	2	2
8	SC	1	2	2
9	PB	1	1	1
10	MFUS25	3	2	6
11	PE100	1	2	2

40 operatori
4 maiștrii
2 ing șef secție
46 angajați SF

3. Dimensionarea subsistemului

3.1. Stabilirea numarului necesar de mașini, echipamente, dispozitive. Numărul necesar pentru subsistemul de mentenanță.

$$n_{tm} = p_m \times N_t$$

$$p_{\rm m} = \frac{7}{100} = 0.07$$

 $N_t = 23$ de utilaje direct productive

 $n_{tm} = 0.07 \times 23 = 1.61 \cong 2$ mașini unelte

Se vor adopta 2 mașini unelte necesare (SN, MF).

La aceste mașini se vor adăuga 4 echipamente specifice atelierelor de reparații:, 1 mașină de găurit montată pe banc și 1 presă hidraulică, 1 mașină de centrat, 1 mașină de debitat, precum și 1 aparat de sudură și 1 polizor.

3.2. Determinarea suprafețelor necesare pentru activitatea de mentenanță

$$S_{tm} = \sum_{i=1}^{n_{tm}} S_{mi} + S_{tus}$$

$$S_{At prel} = St_m + St_{es}$$

$$S_{At prel} = 2 \times 20 + 4 \times 7 = 68 \text{ m}^2$$

Tabel 3.2

Nr. Crt.	Tip de mașină	Pondere (%)	S (m²)
1	Atelier de demontare	8	5.44
2	Atelier de lăcătușărie și asamblare	63	42.84
3	Atelier de pregătire și depozit semifabricate	7	4.76
4	Depozite intermediare	7	4.76
5	Depozite pentru piese de schimb	7	4.76
6	Atelier de ascuțire scule	6	4.08
7	Cabinete pentru maiștrii	2	1.36

- $S_{AD} = 0.08 \times 68 = 5.44 \text{ m}^2$
- $S_{ASA} = 0.63 \times 68 = 42.84 \text{ m}^2$
- $S_{PDS} = 0.07 \times 68 = 4.76 \text{ m}^2$
- $S_{DI} = 0.07 \times 68 = 4.76 \text{ m}^2$
- $S_{DPS} = 0.07 \times 68 = 4.76 \text{ m}^2$
- $S_{AS} = 0.06 \times 68 = 4.08 \text{ m}^2$
- $S_{CM} = 0.02 \times 68 = 1.36 \text{ m}^2$

$$S_{Ment} = S_{At \, prel} + S_{AD} + S_{ASA} + S_{PDS} + S_{DI} + S_{DPS} + S_{AS} + S_{CM}$$

$$S_{Ment} = 68 + 7,48 + 42,84 + 4,08 + 4,76 + 4,08 + 3,4 + 1,36 = 136 \, m^2$$
 Se adoptă $S_{Ment} = 140 \, m^2$

3.3. Numărul de angajați necesar pentru activitățile de întreținere și reparații

- 2 muncitori pe mașini universale
- 4 muncitori pe masini specifice
- Pentru 23 de utilaje se alocă 2 lăcătuși/schimb și 1 electrician/schimb
- Ingineri și tehnicieni 1 ingineri specialitatea mașini-unelte
- Personal administrativ și de birou 1

 $N_{ang\;ment}=11\;{
m angaja}$ ți

4.Dimensionarea facilităților de manipulare și depozitare ale sistemului de producție

4.1. Determinarea necesarului de spații pentru depozitare

$$S_{TD} = S_{SSF} + S_{SPF} + S_{SEM} + S_{CA} + S_{B}$$

• Piesa finita are următoarele dimensiuni:

Ø= 50 mm

L = 258,5 mm

Semifabricat R1 (Corp antrenor):

H = 23 mm

I = 50 mm

L = 263 mm

Semifabricat R2 (Corp Cap):

Ø= 34,5 mm

L = 38 mm

Suprafața de stocare a semifabricatelor:

Pentru R1:

Se depozitează în cutii de 550x300x310, în care încap 10x1x13 = 130 buc

Nr cutii necesare pentru 1 an de zile =105 781/130 = 814 cutii/an

Aprovizionarea se face saptamanal.

Neccutii l= 814/52 = 16 cutii/saptămână

SSsf R1= nr cutii I * I * L = 16*0,5*0,3 ≈ 3 m² suprafața desfășurată

Cutiile se pun pe rafturi. Rezultă suprafața de stocare: SSsf R1 = 18/2 = 6 m²

Pentru R2:

Aceste semifabricate sunt primite in cutii de 260x200x180, în care încap 7x5x5 = 175 buc

Nr cutii necesare pentru 1 an de zile = 103 058/175 = 589 cutii/an

Nec cutii I = 589/52 = 12 cutii/săpt.

SSsf R2= nr cutii $I * I * L = 12*0.26*0.2 \approx 0.7 \text{ m}^2$

Cutiile se pun pe rafturi. Rezultă suprafața stivuită: $SSsf_{R2} = 0.7/2 = 0.35 \text{ m}^2$

Suprafața totală de stocare a semifabricatelor: SSsf = 6 + 0.35 = 6.35 m²

Dimensiuni raft:

- înălțime 2000
- lățime 2370
- adâncime 600

Număr polițe: 3

Încap 7 cutii R1 pe poliță sau 44 cutii R2

Suprafața de stocare a pieselor finite

- Tipul Şi dimensiunea Pf:

R1: Cheie cu clichet - 258,5x45x19,6

R2: Ø34, L=35

- Numărul semifabricatelor depozitate (stocate)

R1 = 105 781 semifabricate = 208 839 semifabricate R2 = 103 058 semifabricate

- Numărul pieselor finite:

R1-100 000 buc = 200 000 piese finite

- Modul de depozitare: În cutii de carton, pe lapeți de lemn.

Livrarea se face săptămânal:

• Reperul 1

NPf livrate = 100 000/52 = 1 923 piese/săptămână Piesele finite se ambalează în cutii și se paletizează

Dimensiunea unei cutii: 550x300x310 Capacitatea unei cutii: 12x1x15 = 180 piese Nr cutii necesare: 1923/180 = 10.6 ≈ 11 cutii

Suprafață palet 1200x800

Nr paleti: 3

Raftul din dreapta are urmatoarele dimensiuni: Înăltime 2500, 2100 lățime, adâncime 800

• Reperul 2

NPf livrate = 100 000/52 = 1 923 piese/săptămână

Piesele finite se ambalează în cutii și se paletizează

Dimensiunea unei cutii: 260x200x180 cm Capacitatea unei cutii: 10x10x10 = 175 piese Nr cutii necesare: 1923/175 = 10,98 ≈ 11 cutii

Dimensiune palet: 1200x800

Număr paleți: 1

Se depoziteaza cei 4 paleți pe acelasi raft.

$$SSPf = 0.8x2.1 = 5 \text{ m}^2$$

Suprafața de stocare a echipamentelor de manipulare

Tabelul 4.1

Echipamente manipulare	Nr	Dimensiuni (mm)	Suprafața
Cărucior	4	1500*1000	6
Motostivuitor	1	4680*1995	9.33

Ssem= 6+9.33= 15.33 m²

Suprafața de manevră a echipamentelor de manipulare și a căilor de acces

Spațiile de manevră pentru fiecare tip de echipament este dat în tabelul 4.2.

Tabelul 4.2

Nr. Crt.	Tipul de echipament	Lungime minimă [m]
1.	Tractor	4,5
2.	Platformă mobilă a trasportorului	3,5
3.	Stivuitor	3,5

4.	Electrocar	3
5.	Elevator manual sau transpalet	2,5
6.	Cărucior cu 4 roți	1,8
7.	Manipulare manuală	1,5

- Sca este *suprafața căilor de acces*. Căile de acces din interiorul sistemului de produc ție trebuie să respecte următoarele criterii:
- căile bidirecționale de acces au cel puțin 7 m lățime;
- căile de acces cu sens unic vor avea cel puţin 3,5 m lăţime;
- porțile de acces cu trafic în ambele sensuri vor avea o deschidere de cel puțin 8,5 m, iar cele pentru un singur sens 4 m;
- porțile pentru accesul pietonal vor avea o deschidere de cel puțin 1,8 m;
- intersecțiile în unghi drept vor avea o rază de cel puțin 15 m;
- traficul va avea loc cu prioritate în sensul invers acelor de ceasornic pentru că întoarcerea la stânga se realizează mai ușor și mai sigur la automobile cu volanul pe stânga;
- În dreptul rampelor, suprafețele de staționare pentru camioane vor fi suficient de mari pentru un număr maxim de camioane În orice moment.

$$S_{CA} = 35 \text{ m}^2$$

 S_B = se aloca 6 m² pentru fiecare persoana ce operează pe lina de înregistrare si prelucrare informațională. (4 persoane- 2 operatori gestiune informațională, 2 operatori/schimb manipulare)

$$S_B = 6 \times 4 = 24 \text{ m}^2$$

$$S_{TD} = S_{SSF} + S_{SPF} + S_{SEM} + S_{CA} + S_B$$

$$S_{TD} = 6.35 + 5 + 15.33 + 35 + 24 = 85.68 \text{ m}^2 \approx 86 \text{ m}^2$$

$$STD = 86 \text{ m}^2$$

4.2. Stabilirea numărului de angajați pentru subsistemul logistic

N ang logistică = 6 operatori+1 ing sef = 7 angajați logistică

5.Dimensionarea serviciilor funcționale

5.1. Stabilirea numărului de angajați din serviciile funcționale

Numărul total de angajați Nt ang. se obține cu relația:

$$N_{\tan g} = \frac{1}{a}(N_{aSF} + N_{aSL} + N_{aSIR})$$

a = 0.7.

$$N_{t_{ang}} = \frac{1}{a}(N_{aSF} + N_{aSL} + N_{aSIR}) = \frac{1}{0.7}(46 + 11 + 7) = 91,4 \cong 92$$
 angajați SP

Tabelul 5.1

Nr. Crt.	Subsistem (compartiment)	Pondere p [%]	Nr angajaţi compartiment
1	Subsistem cercetare – dezvoltare	p=5	0.05*98=5
2	Subsistem control calitate	p=3	0.03*98=3
3	Subsistem aprovizionare – desfacere	p=4	0.04*98=4
4	Subsistem financiar – contabil	p=2	0.02*98=2
5	Subsistem marketing	p=2	0.02*98=2
6	Subsistem resurse umane	p=2	0.02*98=2
7	Subsistem energetic	p=4	0.04*98=4
8	Compartiment producție	p=4	0.05*98=4
9	Compartiment administrativ	p=4	0.04*98=4
10	Conducere	p=2	0.02*98=2

5.2. Calculul suprafețelor necesare pentru serviciile funcționale

În tabelul 5.2 sunt introduse valorile suprafețelor pentru fiecare angajat, în diferite compartimente. Tot în acest tabel se trec numerele de angajați și rezultatele calculelor suprafețelor pentru fiecare subsistem funcțional. Suprafața poate varia în intervalul 5...12 m2/angajat.

Tabelul 5.2

Nr. Crt.	Subsistem (compartiment)	S _{ang} [m2/ang.]	Nr. angajați	S _{com/dep} [m2]
1	Cercetare-dezvoltare	10	5	50
2	Control calitate	10	3	30
3	Aprovizionare desfacere	6	4	24
4	Financiar contabil	8	2	16
5	Marketing	10	2	20
6	Resurse umane	8	2	16
7	Energetic	6	4	24
8	Compartiment producție	6	3	18
9	Compartiment administrativ	5	4	20
10	Conducere	20	1	20

6. Dimensionarea serviciilor auxiliare și de sprijin

Dimensionarea facilităților pentru deservirea personalului

Facilitățile pentru deservirea personalului conțin parcările și vestiarele angajaților, grupurile sanitare și de odihnă, spațiile pentru servirea mesei, pentru serviciile de sănătate și spatii pentru persoane cu handicap.

Spații pentru parcarea autoturismelor angajaților.

În vecinătatea sistemului circulă puține mijloace de transport în comun si se alege un loc de parcare la 1,25 angajați. Persoanelor cu handicap le sunt rezervate 2 spații la 78 de locuri de parcare.

Dintre care 3 locuri sunt rezervate persoanelor cu handicap.

Suprafaţa de parcare necesară pentru un autoturism poate varia între 9,45 m2 (2,1X4,5 m) şi 16,25 m2 (2,85X5,7 m) şi depinde de tipul autoturismului (mic litraj, standard, putere mare) şi de zonele libere adiacente. Am ales să fac o medie între autoturismele mici si mari. Cele de mic litraj reprezintă 35% din total.

În figura 6 este reprezentat locurile de amplasare ale autoturismelor într-o parcare, funcție de existența unor unor linii convenționale.

Între pasul de parcare pp și lățimea de parcare lp există relația pp=lp/sin α . Voi alege α = 45°.

lp [m]	pp [m]	Trotuar [m]
3,36	3.34	1

$$lp = (2,85-2,1)*0.35 = 0,2625$$

 $pp = lp / sin 45 = 0,2625 / 0,707 = 3,341 m$

Suprafaţa căilor de acces din interiorul parcării reprezintă 70...75% din suprafaţa ocupată. Intrările şi ieşirile din parcare trebuie securizate la un nivel acceptat al societăţilor de asigurare.

Suprafață parcare = 2346 m²

Fig. 6 Parcare

Spaţii pentru schimbarea ţinutei vestimentare a angajaţilor şi pentru grupuri sanitare.

La intrarea şi ieşirea din sistemul de producţie angajaţii îşi schimbă parţial ţinuta vestimentară, bunurile personale fiind păstrate în facilităţi special amenajate. La locurile de muncă se prevăd numai cuiere, umeraşe şi rafturi de depozitare.

Pentru proiectarea acestor facilități se recomandă:

- zone separate pentru fiecare sex;
- amplasarea lor, în principal, la etaj, deasupra ariei de lucru;
- construcții descentralizate, uniform distribuite în sistem;
- prevederea unor facilități pentru persoane cu handicap în grupurile sanitare aflate la parter.

În grupurile sanitare se prevăd scaune WC, chiuvete şi oglinzi, iar pentru bărbaţi şi urinale. Spaţiile acordate, recomandate pentru diversele facilităţi din grupurile sanitare, sunt:

- scaun WC 1,5 m2;
- chiuvetă 0,6 m2;
- urinal 0,6 m2 şi 2,3 m2 liberi în faţa urinalului;
- între două chiuvete vecine o distanță de 0,6 m.

Se stabilește un loc sanitar la 25 de angajați.

98/25 = 3,92 ≈ 4 grupuri sanitare

Pereţii şi pardoseala se plachează cu faianţă şi gresie în culori odihnitoare, agreate statistic de către angajaţi. Se prevăd sisteme eficiente pentru evacuarea aerului şi apei, iar curăţenia se asigură permanent.

Spaţii pentru servirea mesei

La numărul de 98 angajați se alege varianta cu autoservire și cafetărie. De la automate angajații pot servi mâncare caldă sau rece, băuturi calde sau răcoritoare, dulciuri, își pot încălzi gustările. Suprafața necesară pentru automate este de 0,1 m²/o persoană utilizatoare.

Suprafață automate: $0.1 \times 98 = 9.8 \text{ m}^2$ Suprafață cofetărie: $1.4 \times 25 = 35 \text{ m}^2$ $S_{\text{servirea mesei}} = 9.8 + 35 = 45 \text{ m}^2$

Spaţii pentru servicii de sănătate şi persoane cu handicap.

Sistemul de producție trebuie prevăzut cu o cameră pentru acordarea primului ajutor, dotată cu echipament medical specific, un pat și două scaune, suprafața minimă necesară fiind de 9 m².

Se angajează o infirmieră si camera de prim ajutor ajunge la o suprafață de 22 m^2 , la care se adăugă și o cameră de așteptare de 7 m^2 .

Amplasarea acestor spaţii se va face în zone cu grad ridicat de periculozitate, zone liniştite sau în vecinătatea vestiarelor.

Se impune ca toate intrările, uşile, holurile să permită accesul simultan al unui cărucior pe rotile şi a unei persoane mergând în picioare (lăţime de 1,1...1,2 m).

 $S_{serv\;aux} = S_{parc\check{a}ri} + S_{vestiare} + S_{grup\;sanitar} + S_{serv\;medicale}$

Sparcari = $2 186 \text{ m}^2$

Svestiare = $0.2 \times 98 = 19.6 \approx 20 \text{ m}^2$

Sgrup sanitar = $4 \times (1.5 \times 3 + 0.6 \times 2 + 0.6 + 2.3 + 0.6) = 4 \times 9.2 = 37 \text{ m}^2$

S servirea mesei = 45 m²

S serv medicale = 29 m²

 $S_{\text{serv aux}} = 2186 + 20 + 37 + 10 + 29 = 2282 \text{ m}^2$

7. Suprafața totală a sistemului de producție

SconstrSP = SSF + SIR + SDT + Sserv functionale + S serv aux = 642 + 140 + 86 + 240 + 2282

SconstrSP = 3 390 m²

SSP=5*Sconstr SP = 5 * 3390 = 16 950

Plant layout-software

8. Calculul costurilor de producție

Relaţia generală de calcul a oricărui cost C este:

$$C_{an} = C_u * Q [um/an]$$
 (1)

Din punct de vedere al relaţiei nemijlocite pe care pe care o au cu produsele întreprinderii, costurile de producţie sunt:

- costuri directe;
- costuri indirecte.

Din punct de vedere al dependenței de volumul producției, costurile sunt:

- costuri fixe;
- costuri variabile.

8.1. Calculul costurilor directe

Costurile directe au mai multe componente. Acestea sunt:

8.1.1. Costul materialelor, materiei prime și a elementelor componente în procesul de asamblare

Costul de achiziție de pe piață al materialelor necesare pentru realizarea unei unități de produs se obtine cu relatia:

$$C_{mk} = n_{ck} \cdot p_{mk} \text{ [um/buc]}$$
 (2)
 $C_{m1} = 0.577 \cdot 4.26 = 2.45 \text{ um/buc}$
 $C_{m2} = 0.11 \cdot 4.26 = 0.47 \text{ um/buc}$

$$n_{ck} = m_{Pfk} = V*\rho [(m^3/buc)*(kg/m^3) = kg/buc]$$

 $n_{c1} = m_{Pf1} = 0.0000734*7860 = 0.577 kg/buc$
 $n_{c2} = m_{Pf2} = 0.00001605*7860 = 0.110 kg/buc$

Masa piesei este extrasă din Catia.

Pentru producția anuală planificată Q costurile materiale anuale vor fi:

$$C_{Mat \, an} = C_{mat} * Q [um/an]$$
 (3)
 $C_{mat \, an \, R1} = 2.45 * 105781 = 259761.23 \, um/an$
 $C_{mat \, an \, R2} = 0.47 * 103058 = 48246.44 \, um/an$

8.1.2. Costul materialelor recuperabile

Costul deșeurilor pe unitatea de produs va fi:

$$C_{des} = 5\% * m_{SF} * p_{mk} \quad \text{[um/buc]}$$

$$C_{des\,R1} = 5\% * m_{SF} * p_{mk} = 0.05 * 0.577 * \underline{0.1} = 0.0029 \text{ um/buc}$$

$$C_{des\,R2} = 5\% * m_{SF} * p_{mk} = 0.05 * 0.11 * \underline{0.1} = 0.0006 \text{ um/buc}$$

Costul total anual al deseurilor este:

$$C_{\text{Des tot}} = C_{\text{des}} \cdot Q (1 + pr) [um/an]$$

$$C_{\text{Des tot R1}} = 0.0029 * 105781*(1 + 5\%) = 322.82 \text{ um/an}$$

$$C_{\text{Des tot R2}} = 0.0006 * 103058*(1 + 3\%) = 58.42 \text{ um/an}$$

$$C_{\text{reb}} = m_{\text{reb}} * p_{\text{m reb}} [um/buc]$$

$$C_{\text{reb R1}} = 0.577 * 0.9 = 0.52 \text{ um/buc}$$

$$C_{\text{reb R2}} = 0.11 * 0.9 = 0.10 \text{ um/buc}$$

$$C_{\text{reb an}} = 5781*0.52 + 3058*0.1 = 3002.07 + 302.74 = 3304.82 \text{ um/an}$$

În privința rebuturilor, voi alege valorificare ca deșeu. Costul total annual al deșeurilor va rezulta:

$$C_{des tot} = C_{reb an} + C_{Des tot R1} + C_{Des tot R2} = 3304.82 + 322.82 + 58.42 = 3686.05 \text{ um/an}$$

8.1.3. Costurile cu personalul direct productiv

Cheltuielile de producție legate de realizarea efectivă a produsului, sau manopera directă, se obțin cu relația:

$$S_d = n_t \cdot S_{bh}$$
, [um/buc] (6)
 $S_{d R1} = 23.771 * 31.76 = 12.58 \text{ um/buc}$
 $S_{d R2} = 14.811 * 31.76 = 7.84 \text{ um/buc}$

Sbh= Sbl/ore lucrătoare pe lună S_{bl} aproximativ 5400 lei/lună 170 ore lucrătoare/ lună

Manoperă directă anuală:

$$S_{d \, an} = S_d \cdot Q \quad [um/an] \tag{7}$$

$$S_{d \, an \, R1} = 12.58 * 105781 = 1331217 \ um/an$$

$$S_{d \, an \, R1} = 7.84 * 103058 = 808090 \ um/an$$

$$S_{d \, an} = 1331217 + 808090 = 2139306.45 \ um/an$$

8.1.4. Costul energiei și combustibilului tehnologic

Pentru mașinile, utilajele și echipamentele din subsistemul de fabricație puterea totală este N_{TSF} [Kw], iar timpul efectiv de funcționare, în unul, două sau trei schimburi, este Tef [ore].

Cantitatea de energie folosită de subsistemul de fabricație se determină cu relația:

$$W_{ESF} = N_{TSF} \cdot T_{ef}, \qquad [Kw/h]$$
 (8)

Tabel 8.1.4 Reperul 1

Tip utilaj	Putere utilaj KW/h	Timp necesar/utilaj	Cantitatea de energie/utilaj KW/an
PD500	0.38	1234	469
MFU	7.5	6957	52177
MG	2.6	14257	37069
SCN	0.75	9623	7217
<u>SC</u>	1.5	2701	4052
<u>PB</u>	0.24	1052	253
<u>PE100</u>	7.5	868	6507
Total W _{ESF}			107742.77

Costul energiei electrice la un tarif unitar pUE [um/kWh], pentru reperul 1, este:

$$C_{Eean} = W_{ESF} \cdot p_{UE}$$
, [um/an] (9)
 $C_{Eean} = 107742 \cdot 0.35 = 38038.59$ um/an
 $C_{Eebuc} = C_{Eean}/Q$ [um/buc]
 $C_{Eebuc} = 38038 / 100000 = 0.38$ um/buc

Tabel 8.1.5 Reperul 2

- · .·. ·	D	Timp necesar/utilaj	Cantitatea de
Tip utilaj	Putere utilaj KW/h		energie/utilaj KW/an
MG	2.6	1958	5090
SCN	0.75	8711	6534
MFUS25	2.2	11262	24777
<u>PE100</u>	7.5	1408	10559
Total W _{ESF}			46959.91

Costul energiei electrice la un tarif unitar pUE [um/kWh], pentru reperul 2, este:

$$C_{Eean} = W_{ESF} \cdot p_{UE}$$
, [um/an] (10)
 $C_{Eean} = 46959 \cdot 0.35 = 16579.20$ um/an
 $C_{Eebuc} = C_{Eean}/Q$ [um/buc]
 $C_{Eebuc} = 16579 / 100000 = 0.165$ um/buc

În cazul în care cantitatea de apă industrială folosită într-un an este VAI [m3] și prețul unitar pUAI [um/m3] Costul anual al apei industriale este:

CAI = VAI * pUAI [um/an] (11)
CAI =
$$700 * 5.51 = 3857 \text{ um/an}$$

8.1.5. Costuri totale directe

Aceste costuri se obțin însumând cheltuielile făcute cu materialul, cu personalul direct productiv, energia, combustibilul și apa industrială. Astfel, costurile directe pentru o unitate de produs sunt:

$$C_{dbuc} = C_{Matbuc} - C_{desbuc} + C_{pers/buc} + C_{EeBuc}$$

$$C_{dbuc R1} = 2.45 - (0.0029 + 0.52) + 12.58 + 0.38 = 14.87 \text{ um/buc}$$

$$C_{dbuc R2} = 0.47 - (0.0006 + 0.10) + 7.84 + 0.165 = 8.37 \text{ um/buc}$$

Costurile directe pe un an:

$$C_{dan} = C_{Matan} - C_{deşan} + C_{pers/an} + C_{Eean} = Q* C_{dbuc}$$
 (13)
$$C_{dan R1} = 259761.23 - (322.82 + 3002.07) + 1331216.55 + 38038.59 = 1625691.47 \text{ um/an}$$

$$C_{dan R1} = 48246.44 - (58.42 + 302.74) + 808089.90 + 16579.20 = 872554.38 \text{ um/an}$$

8.2. Calculul costurilor indirecte

În cadrul costurilor indirecte sunt cuprinse cheltuielile următoare:

a. - cheltuielile materiale pentru întreținere și reparații curente, C_{IR} [um/an];

$$C_{IR} = 4000 \text{ um/an}$$

b. - cheltuieli materiale cu SDV-urile normale şi speciale C_{SDV} [um/an];

$$C_{SDV} = 20\,000 \, \text{um/an}$$

c. - cheltuieli cu energia electrică necesară funcționării mașinilor și echipamentelor, altele decât cele utilizate în procesul tehnologic, inclusiv iluminarea sistemului de producție:

$$C_{EE2} = (N_{TSP} - N_{TSF}) \cdot T_{ef} \cdot p_{UE} \quad [um]$$

$$C_{EE2} = (70 - 53,67) \cdot 2000 \cdot 0,35 = 11 \, 431 \, um/an$$
(14)

d. - cheltuieli cu combustibilul utilizat pentru încălzire și apă caldă:

$$C_{\text{GM2}} = (N_{\text{GMI}} + N_{\text{GMA}}) \cdot p_{\text{UG}}$$
 (15)
$$C_{\text{GM2}} = (11 + 1) \cdot 8090,9 = 97090,8 \text{ um/an}$$

$$p_{\text{UG}} = 89 \text{ um/MWh} = 8090.9 \text{ um/m}^3; \quad 1 \text{ m}^3 = 0.011 \text{ MWh}; \quad N_{\text{GMI}} = 1000 \text{ MWh} = 11 \text{ m}^3$$

e. - cheltuieli pentru amortizarea mijloacelor fixe CA:

$$C_{A} = \sum_{i=1}^{q} \frac{C_{MFi}}{T_{Ai}}$$
 [um/an] (16)

Tip utilaj	Costul de achiziție lei	Durata de amortizare	Costul anual cu amortizarea
PD500	2922	10	292.2
MFU	14612	10	1461.2
MG	29220	10	2922
SCN	148545.8	10	14854.58
SC	2455	10	245.5
PB	229	10	22.9
MFUS25	84015	10	8401.5
PE100	56741	10	5674.1

$$C_A = \frac{q*C_{mMF}}{T_{Am}} \quad \text{um/an}$$

$$C_A = \frac{2922}{10} + \frac{2*7306}{10} + \frac{5*5844}{10} + \frac{5*29709}{10} + \frac{2455}{10} + \frac{229}{10} + \frac{3*28005}{10} + \frac{56741}{10}$$

$$C_A = 33873.98 \text{ um/an}$$

f. - cheltuieli cu impozite și taxe, C_{IT} [um/an];

C_{IT} = 3000 um/an

g. - cheltuieli cu personalul indirect productiv și cel din serviciile funcționale, CpIPSP;

$$C_{\text{pIPSP}} = 12 \cdot n_{\text{pIPSP}} \cdot C_{\text{pIPSPm}} \quad [\text{um/an}]$$

$$C_{\text{pIPSP}} = 12 \cdot 6 \cdot 6000 = 432\,000\,\text{um/an}$$
(17)

i. Costurile indirecte totale sunt:

$$C_{indan} = C_{IR} + C_{SDV} + C_{EE2} + C_{GM2} + C_A + C_{IT} + C_{pIPSF} \quad [um/an]$$
(18)

 $C_{indan} = 4000+20000+11431+97090+33874+3000+360000 = 529395 \text{ um/an}$

Aceste costuri determină regia de funcționare a sistemului de producție. Aceasta se definește ca raport între cheltuielile indirecte Cind și cheltuielile cu personalul direct productiv CperDP:

$$r_{SP} = \frac{C_{ind}}{C_{perDP}}$$

$$r_{SP} = \frac{529395}{2139306} = 25\%$$
(20)

Costurile indirecte raportate la o unitate de produs sunt:

$$C_{\rm indbuc} = \frac{C_{\rm ind}}{Q} \qquad [um/buc]$$
 (21)
$$C_{\rm indbuc} = \frac{C_{\rm ind}}{Q} = \frac{529395}{100000} = 5,294 \text{ um/buc din care:}$$

$$C_{\rm indbuc R1} = 4,1 \text{ um/buc}$$

$$C_{\rm indbuc R2} = 1,19 \text{ um/buc}$$

8.3. Calculul costurilor totale și a prețului critic. Prețul de vânzare

Costurilor totale se includ costurile directe și indirecte, și se calculează cu relația:

$$C_{Tan} = C_{dan} + C_{indan}$$
 (22)
 $C_{Tan R1} = 1625691 + 444691 = 2070383 \text{ um/an}$
 $C_{Tan R2} = 872554 + 84703 = 957258 \text{ um/an}$

Costul total al unei unități de produs este :

$$C_{Tbuc} = \frac{C_{Tan}}{Q} \quad [um/buc]$$

$$C_{Tbuc R1} = \frac{2070383}{100000} = 20.7 \text{ um/buc}$$

$$C_{Tbuc R2} = \frac{957258}{100000} = 9.57 \text{ um/buc}$$

Pretul critic:

$$p_{f} = C_{Tbuc} \cdot (1+p_{r}) \quad [um]$$

$$p_{fR1} = 20.7 \cdot (1+0.15) = 23.81 \text{ um}$$

$$p_{fR1} = 9.57 \cdot (1+0.15) = 11.01 \text{ um}$$

Profitul brut anual:

$$p_{ban} = p_f \cdot Q \quad [um] \tag{25}$$

$$p_{ban R1} = 23.81 \cdot 100000 = 2380941 \text{ um}$$

$$p_{ban R1} = 11.01 \cdot 100000 = 1100846 \text{ um}$$

Prețul țintă de vânzare Ptv rezultă prin adăugarea TVA la prețul de fabricație:

$$p_{tv} = p_f \cdot (1+TVA)$$
 [um] (26)
 $p_{tv R1} = 23.81 \cdot (1+0.19) = 28.33 \text{ um}$
 $p_{tv R2} = 11.01 \cdot (1+0.19) = 13.10 \text{ um}$

La ora actuală TVA = 19 %.

Prețul țintă de vânzare este prețul minim la care produsul poate fi vândut pe piață, astfel încât sistemul de producție să-și atingă obiectivele (să realizeze cel puțin profitul minim pe ramură).

Prețul de vânzare pvz este suma de bani pe care cumpărătorul o oferă și vânzătorul o acceptă în cadrul tranzacțiilor comerciale. În economia liberă acesta se stabilește pe piață. Este prețul efectiv la care se produce procesul de vânzare-cumpărare prin voința liberă a părților.

Legea interzice valorificarea produselor la prețuri mai mici decât costurile de fabricație (dumping).

Analiza pragului de rentabilitate

$$V = CT \rightarrow p^*Q_{cr} = Cf + CV = Cf + cv^*Q_{cr} \rightarrow Q_{cr} = CF/(p-cv)$$

$$CT = C_{Tan R1} + C_{Tan R2} = 2070383 + 957258 = 3027641 \text{ um/an}$$

$$V = CT = 3027641$$

$$R1: p^*Q_{cr} = 28.33*100000 = 2833320 \text{ um/an}$$

$$R2: p^*Q_{cr} = 13.10*100000 = 1310007 \text{ um/an}$$

$$R1 + R2 = 2833320 + 1310007 = 4143327 \text{ um/an}$$

$$Q_{cr} = CF/(p-cv) = \frac{26.1}{23.81 + 13.10 - 4.41} = 70,44 \% \rightarrow \text{Rentabilitatea este } 70\%$$

V-venituri totale anuale
CT- costuri totale anuale
p-preț unitar de vânzare
CF-costuri fixe anual
CV- costuri variabile anuale
cv-costuri variabile unitare
Qcr-producția critică (pragul de rentabilitate)

9. Planul general al sistemului de producție

Bibliografie