Application of Derivatives Part One by: Joshua Bautista

1 Application of Derivatives Part One

3

- 1.1 Sketching
- 1.2 Velocity and Acceleration
- 1.3 Other Applications

Condition	Event		
s<0	Object to the left (below) of the origin		
s=0	Object at the origin		
s>0	Object to the right (above) of the origin		
v<0	Moving to the left (downward)		
v=0	At rest		
v>0	Moving to the right (upward)		
a<0	Acceleration directed to the left (downward)		
a=0	Constant velocity		
a>0	5-t graph concers stragen speed of		

Acceleration directed to the right (upward)

Condition	Event	
s· v < 0	Object moving toward the origin	
5·V > 0	Object moving away from the origin	
s·a < 0	Acceleration is directed toward the origin	
s•a > 0	Acceleration is directed away from the origin	
v ⋅ a < 0	Object is slowing down	
v ⋅ a > 0	Object is speeding up	

1. Application of Derivatives Part One

1.1 Sketching

It is important to sketch out the function in the question to reveal all of its qualities (increasing/decreasing intervals, concave up/down, inflection points, etc). There is an algorithm to determine all of the details of the graph.

- 1. From the original graph:
 - You must first **factor** to check if any **holes** are in the graph.
 - State VA's and Domain.
 - Find the x and y intercepts.
 - Find the end behaviour.
 - Look at the behaviour near **zeros** (x-intercepts) and **VA's**. (Remember do this by looking at multiplicities of zeros)
 - *CAN BE SKIPPED* Find **positive and negative intervals** between zeros and VA's.
- 2. From the first derivative:
 - Find **critical points**.
 - *CAN BE SKIPPED* Find increasing/decreasing intervals.
- 3. From the second derivative:
 - Find possible inflection points.
 - Find concave up/down intervals.
 - Decide if the possible inflection points found are actual inflection points and classify the critical points using the 2nd derivative test.

Example 1:

Sketch and label all intercepts, asymtotes, crticial points and inflection points. Show all justifying steps.

$$y = (x^{\frac{1}{3}})(x-4)$$

- **1.** Cannot be factored any further. \therefore no holes, or VA's. Domain $x \in \Re$
- **1.** Find x and y intercepts:

$$\frac{\text{x-intercept}}{0 = (x^{\frac{1}{3}})(x-4)} \qquad \frac{\text{y-intercept}}{y = ((0)^{\frac{1}{3}})((0)-4)}$$
by property of zeros:
$$y = (0)(-4)$$

$$y = 0$$

$$\therefore (0,0)$$

- **1.** Find end behaviour: The function is not rational/exponential. : no HA/OA.
- **2.** Find critical points: Find y' (first derivative) and find when it is equal to 0 or DNE.

$$y = (x^{\frac{1}{3}})(x-4)$$

$$y' = (x^{\frac{1}{3}})(1) + (x-4)(\frac{1}{3})(x^{\frac{-2}{3}})$$

$$= (x^{\frac{-2}{3}})[x + \frac{1}{3}(x-4)]$$

$$= (x^{\frac{-2}{3}})[x + \frac{(x-4)}{3}]$$

$$= (x^{\frac{-2}{3}})(\frac{3x+x-4}{3})$$

$$= \frac{4(x-1)}{3x^{\frac{2}{3}}}$$

$$0 = \frac{4(x-1)}{3x^{\frac{2}{3}}}$$
$$0 = 4(x-1)$$
$$\therefore \text{ critical pt. } x = 1$$

DNE when denominator = 0

$$0 = 3x^{\frac{2}{3}}$$

$$\therefore \text{ critical pt. } x = 0$$

1.2 Velocity and Acceleration

Condition	Event		
s<0	Object to the left (below) of the origin		
s=0	Object at the origin		
s>0	Object to the right (above) of the origin		
v<0	Moving to the left (downward)		
v=0	At rest		
V>0	Moving to the right (upward)		
a<0	5-t graph concave stotur spectup		
	Acceleration directed to the left (downward)		
a=0	Constant velocity		
a>0	5-t graph concer tongen speed it		
	Acceleration directed to the right (upward)		

Condition	Event	
s· v < 0	Object moving toward the origin	
5·V > 0	Object moving away from the origin	
s-a < 0	Acceleration is directed toward the origin	
s·a > 0	Acceleration is directed away from the origin	
v·a < 0	Object is slowing down	
v ⋅ a > 0	Object is speeding up	

Before we start doing problems involving velocity and acceleration, we must make sure we know these key definitions:

Displacement

Displacement is the **change in position** of an object. It is concerned with the initial position of an object to its final position.

$$Displacement = s(t)$$

Velocity

Velocity is speed over time.

$$Velocity = v(t) = \frac{ds}{dt} = \frac{\Delta s}{\Delta t}$$

Acceleration

Acceleration is concerned

negative acceleration \rightarrow decreasing velocity. position acceleration \rightarrow increasing velocity.

$$Acceleration = a(t) = \frac{d^2v}{dt^2}$$

Jerk/Turbulence:

$$Jerk/Turbulence = j(t) = \frac{da}{dt} = \frac{d^2v}{dt^2} = \frac{d^3s}{dt^3}$$

1.3 Other Applications