18.100B Problem Set 8

Due Thursday November 9, 2006 by 3 PM

Problems:

1) Let $f:[0,\infty)\to\mathbb{R}$ be continuous, and suppose

$$f(x^2) = f(x)$$

holds for every $x \geq 0$. Prove that f has to be a constant function.

Hint: Show that f(0) = f(x) if $0 \le x < 1$, and f(1) = f(x) if $x \ge 1$.

- 2) Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.
- 3) If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,$$

where C_0, \ldots, C_n are real constants, prove that the equation

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

- 4) Suppose f is a real function defined on \mathbb{R} . We call $x \in \mathbb{R}$ a fixed point of f if f(x) = x.
 - a) If f is differentiable and $f'(t) \neq 1$ for every real t, prove that f has at most one fixed point.
 - b) Show that the function f defined by

$$f(t) = t + (1 + e^t)^{-1}$$

has no fixed point, although 0 < f'(t) < 1 for all real t.

c) However, if there is a constant A < 1 such that $|f'(t)| \le A$ for all real t, prove that a fixed point x of f exists, and that $x = \lim x_n$, where x_1 is an arbitrary real number and

$$x_{n+1} = f(x_n)$$

for $n = 1, 2, 3, \dots$

- 5) Let f be a continuous real function on \mathbb{R} , of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \to 3$ as $x \to 0$. Does it follow that f'(0) exists?
- 6) Let f be a real function on [a, b] and suppose $n \ge 2$ is an integer, $f^{(n-1)}$ is continuous on [a, b], and $f^{(n)}(x)$ exists for all $x \in (a, b)$. Moreover, assume there exists $x_0 \in (a, b)$ such that

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, \quad f^{(n)}(x_0) = A \neq 0.$$

Prove the following criteria: If n is even, then f has a local minimum at x_0 when A > 0, and f has a local maximum at x_0 when A < 0. If n is odd, then f does not have a local minimum or maximum at x_0 . Hint: Use Taylor's theorem.

7) For $f(x) = |x|^3$, compute f'(x), f''(x) for all real x, and show that $f^{(3)}(0)$ does not exist.

Extra problems:

1) Let $I \subseteq \mathbb{R}$ be an open interval. A function $f: I \to \mathbb{R}$ is called *Hölder continuous* of order $\alpha > 0$ if there is constant C > 0 such that

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

holds for all $x, y \in I$.

- a) Show that any Hölder continuous function is uniformly continuous.
- b) Prove that $f(x) = \sqrt{|x|}$ defined on $I = \mathbb{R}$ is Hölder continuous of order $\alpha = 1/2$.
- c) Prove that Hölder continuity of order α implies Hölder continuity of order $0 < \beta \le \alpha$, provided that I is bounded. What happens if I is unbounded?
- d) Show that if f is Hölder continuous of order $\alpha > 1$, then f has to be constant.
- 2) Let $a \in \mathbb{R}$, and suppose $f:(a,\infty) \to \mathbb{R}$ is a twice-differentiable. Define

$$M_0 = \sup_{a < x < \infty} |f(x)|, \quad M_1 = \sup_{a < x < \infty} |f'(x)|, \quad M_2 = \sup_{a < x < \infty} |f''(x)|,$$

which we assume to be finite numbers. Prove the inequality

$$M_1^2 \leq 4M_0M_2$$
.

Hint: If h > 0, Taylor's theorem shows that

$$f'(x) = \frac{1}{2h}[f(x+2h) - f(x)] - hf''(\xi)$$

for some $\xi \in (x, x+2h)$. Hence

$$|f'(x)| \le hM_2 + \frac{M_0}{h}.$$

To show that
$$M_1^2 = 4M_0M_2$$
 can actually happen, take $a = -1$, define
$$f(x) = \begin{cases} 2x^2 - 1 & \text{if } -1 < x < 0, \\ \frac{x^2 - 1}{x^2 + 1} & \text{if } 0 \le x < \infty. \end{cases}$$

and show that $M_0 = 1$, $M_1 = 4$, $M_2 = 4$.

3) Suppose f is a real, three times differentiable function on [-1,1], such that

$$f(-1) = 0$$
, $f(0) = 0$, $f(1) = 1$, $f'(0) = 0$.

Prove that $f^{(3)}(x) \geq 3$ for some $x \in (-1, 1)$.

Hint: Use Taylor's theorem, to show that there exist $s \in (0,1)$ and $t \in (-1,0)$ such that

$$f^{(3)}(s) + f^{(3)}(t) = 6.$$