ALGO QCM

- 1. Un graphe peut être?
 - (a) Orienté
 - (b) Non orienté
 - (c) A moitié orienté
 - (d) Désorienté
- 2. Dans un graphe orienté, le sommet x est adjacent au sommet y si?
 - (a) Il existe un arc (x,y)
 - (b) Il existe un arc (y,x)
 - (c) Il existe un chemin (x,..,y)
 - (d) Il existe un chemin (y,..,x)
- 3. Dans un graphe orienté, un sommet de degré zéro est appelé?
 - (a) sommet unique
 - (b) sommet isolé
 - (c) sommet nul
 - (d) sommet perdu
- 4. Un graphe orienté G défini par le triplet G=<S,A,C> est?
 - (a) etiqueté
 - (b) valué
 - (c) valorisé
 - (d) numéroté
- 5. Dans un graphe orienté, on dit que l'arc $U = y \rightarrow x$ est?
 - (a) incident à x vers l'extérieur
 - (b) accident à x vers l'extérieur
 - (c) incident à x vers l'intérieur
 - (d) accident à x vers l'intérieur
- 6. Dans un graphe orienté, le nombre d'arcs ayant le sommet x pour extrémité terminale est appelé?
 - (a) le demi-degré extérieur de x
 - (b) le degré de x
 - (c) le demi-degré intérieur de x

- 7. Dans un graphe orienté, s'il existe un arc $U=y\to x$ pour tout couple de sommet $\{x,y\}$ le graphe est?
 - (a) complet
 - (b) partiel
 - (c) parfait
- 8. Deux arcs d'un graphe orienté sont dits adjacents si?
 - (a) il existe deux arcs les joignant
 - (b) le graphe est complet
 - (c) ils ont au moins une extrémité commune
- 9. L'ordre d'un graphe orienté est?
 - (a) Le nombre d'arcs du graphe
 - (b) Le nombre de sommets du graphe
 - (c) Le coût du graphe
 - (d) La liste triée des arcs du graphe
- 10. Dans un graphe orienté valué G=<S,A,C>, les coûts sont portés par?
 - (a) les arcs
 - (b) les sommets

QCM N°3

Lundi 16 octobre 2023

Question 11

Considérons une suite (u_n) telle que, au voisinage de $+\infty$, $u_n \sim \frac{(-1)^n}{n}$.

- a. $\sum u_n$ converge absolument
- b. $\sum u_n$ converge, mais pas absolument
- c. $\sum u_n$ diverge
- d. On ne peut rien dire de la nature de $\sum u_n$

Question 12

La série $\sum \frac{(-1)^n}{n^2}$:

- a. converge absolument
- b. converge, mais pas absolument
- c. diverge

Question 13

Soit une variable aléatoire X telle que :

$$X(\Omega) = \{1, 2, 4\},$$
 $P(X=1) = 0.5,$ $P(X=2) = 0.3$ et $P(X=4) = 0.2$

$$P(X=1) = 0.5.$$

$$P(X=2) = 0.3$$

$$P(X=4) = 0.$$

La fonction génératrice de X est définie pour tout $t \in \mathbb{R}$ par :

a.
$$G_X(t) = 0.5 + 0.3t + 0.2t^2$$

b.
$$G_X(t) = 0.5t + 0.3t^2 + 0.2t^3$$

c.
$$G_X(t) = 0.5t + 0.3t^3 + 0.2t^4$$

d. Aucun des autres choix

Question 14

Soit une variable aléatoire finie entière X admettant une fonction génératrice G_X . On a alors :

a.
$$E(X) = G'_{X}(t)$$

b.
$$Var(X) = G_X''(t) + G_X'(t) - (G_X'(t))^2$$

c.
$$Var(X) = G_X''(1) + G_X'(1) - (G_X'(1))^2$$

d.
$$Var(X) = G_X''(1) - G_X'(1) + (G_X'(1))^2$$

e. Aucun des autres choix

Question 15

Soient X et Y deux variables aléatoires finies entières indépendantes, admettant la même fonction génératrice définie pour tout $t \in \mathbb{R}$ par

$$G_X(t) = G_Y(t) = \frac{2+t}{3}$$

Considérons la variable aléatoire Z = X + Y. Alors :

a.
$$X = Y$$

b.
$$G_Z(t) = G_X(t) + G_Y(t)$$

c.
$$G_Z(t) = G_X(t) \times G_Y(t)$$

d.
$$P(Z=1) = \frac{4}{9}$$

e. Aucun des autres choix

Question 16

Cocher la(les) bonne(s) réponse(s)

a.
$$\sum \frac{1}{n}$$
 est une série entière

b.
$$\sum \frac{x}{n}$$
 est une série entière

c.
$$\sum \frac{x^n}{n}$$
 est une série entière

d.
$$\sum \frac{\sin(nx)}{n}$$
 est une série entière

e. Aucun des autres choix

Question 17

Soit (a_n) une suite réelle et considérons la série entière $\sum a_n x^n$. Son rayon de convergence est l'unique réel $R \in \mathbb{R}^+ \cup \{+\infty\}$ qui vérifie :

a.
$$\forall x \in \mathbb{R}, \ \left(x \leqslant R \Longrightarrow \sum a_n x^n \text{ converge absolument}\right)$$

b.
$$\forall x \in \mathbb{R}, (|x| \leqslant R \Longrightarrow \sum a_n x^n \text{ converge absolument}) \text{ et } (|x| > R \Longrightarrow \sum a_n x^n \text{ diverge})$$

c.
$$\forall x \in \mathbb{R}, \ \left(|x| < R \Longrightarrow \sum a_n x^n \text{ converge absolument}\right) \text{ et } \left(|x| \geqslant R \Longrightarrow \sum a_n x^n \text{ diverge}\right)$$

d.
$$\forall x \in \mathbb{R}, (|x| < R \Longrightarrow \sum a_n x^n \text{ converge absolument}) \text{ et } (|x| > R \Longrightarrow \sum a_n x^n \text{ diverge})$$

e. Aucun des autres choix

Question 18

Soit une suite (a_n) de termes tous non nuls telle que $\frac{a_{n+1}}{a_n} \xrightarrow[n \to +\infty]{} -2$.

Alors le rayon de convergence de la série entière $\sum a_n x^n$ est :

a.
$$R = \frac{1}{2}$$

b.
$$R = -\frac{1}{2}$$

c.
$$R = 2$$

d.
$$R = -2$$

Question 19

Soit une série entière $\sum a_n x^n$ admettant un rayon de convergence R > 0. On note f sa fonction somme, définie sur son domaine de convergence par

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

- a. La fonction f est continue sur]-R,R[
- b. La fonction f est dérivable sur]-R,R[et pour tout $x\in]-R,R[$, $f'(x)=\sum_{n=1}^{+\infty}n\,a_nx^{n-1}$
- c. La rayon de convergence de la série entière $\sum n a_n x^{n-1}$ est R
- d. Aucun des autres choix

Question 20

Considérons la série entière $\sum \frac{x^n}{n!}$. Notons R son rayon de convergence et f sa fonction somme, définie sur son domaine de convergence par

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

a.
$$R = 1$$

b.
$$R = +\infty$$

c. Pour tout
$$x \in]-R, R[, f(x) = e^x$$

d. Pour tout
$$x \in]-R, R[, f(x) = \frac{1}{1-x}$$

e. Aucun des autres choix

QCM 4 bis - Adjec Claus, punctu pp.289,290 fall 23

The sentences provided (21-24) are not punctuated. Choose the **one** sentence that is punctuated correctly.

- 21. The engineer I told you about will call you tomorrow.
- A. No change needed. Correctly punctuated as is.
- B. The engineer, I told you about will call you tomorrow.
- C. The engineer I told you about will, call you tomorrow.
- D. The engineer, I told you about, will call you tomorrow.
- 22. The music which I listened to was very loud.
- A. The music, which I listened to was very loud.
- B. The music which, I listened to was very loud.
- C. The music which I listened to, was very loud.
- D. No change needed. Correctly punctuated as is.
- 23. The Eastpak backpack which Lolita had bought on sale was already falling apart.
- A. The Eastpak backpack which, Lolita had bought on sale was already falling apart.
- B. The Eastpak backpack, which Lolita had bought on sale, was already falling apart.
- C. The Eastpak backpack which Lolita had bought on sale, was already falling apart.
- D. None of the above is correct.
- 24. The director Bennet Miller who has never made an action movie never works with a big budget.
- A. The director Bennet Miller, who has never made an action movie never works with a big budget.
- B. The director Bennet Miller, who has never made an action movie, never works with a big budget.
- C. The director Bennet Miller who has never made an action movie never works with a big budget.
 - D. No change needed. Correctly punctuated as is.

New question: Which of the following sentence(s) is/are RIGHT? More than one response is possible. (25 to 30)

25.

- A. The man which Stacy was arguing with was angry.
- B. The man with whom Stacy was arguing with was angry.
- C. The man with whom Stacy was arguing was angry.
- D. The man with who Stacy was arguing was angry.

26.

- A. The grant he is applying requires an essay.
- B. The grant for which he is applying requires an essay.
- C. The grant he is applying for requires an essay.
- D. The grant of which he is applying to requires an essay.

- A. I donated to the fundraiser that he is supporting.
- B. I donated the fundraiser that he is supporting.
- C. I donated to the fundraiser who he is supporting.
- D. I donated to the fundraiser he is supporting.

28.

- A. I don't like to hang out with people whom drink too much.
- B. I don't like to hang out with people who drink too much.
- C. I don't like to hang out with people which drink too much.
- D. I don't like to hang out with people drink too much.

29.

- A. I must thank the president from whom I received the award.
- B. I must thank the president to whom I received the award.
- C. I must thank the president who I received the award from.
- D. I must thank the president I received the award from.

30.

- A. A man who I was talking to fell down the stairs.
- B. A man to who I was talking fell down the stairs.
- C. A man to whom I was talking fell down the stairs.
- D. A man which I was talking to fell down the stairs.

QCM 4 – OC S3 2023/24 (Week 16 October)

- 31. [Class article] In the 'Riding the Waves of Culture' article, which of these is **NOT** one of the four levels of cross cultural competences Trompenaars distinguishes?
- a) Recognition
- b) Resignation
- c) Respect
- d) Reconciliation
- **32.** In the article which two dimensions does Trompenaars use to explain the differences between the Swedes and Americans? *Choose all that apply*
- a) Individualism vs Communitarianism
- b) Neutral vs Affective
- c) Universalism vs Particularism
- d) Specific vs Diffuse
- 33. In the article Trompenaars states that subjects like politics and religion are easily and freely discussed publicly in American culture. True or False?
- a) True
- b) False
- **34.** In the article, what position did the Swedes have in a study about establishing social relationships?
- a) Lowest ranking
- b) Middle ranking
- c) Highest ranking
- d) None of the above did not rank
- 35. Which of these in **NOT** one of Trompenaars 7 dimensions of culture?
- a) Achievement vs Ascription
- b) Sequential vs Synchronous time
- c) Short vs Long term orientation
- d) Internal direction vs External direction
- **36.** Which of these dimensions measures a culture's tendance to separate work and professional life?
- a) Individualism vs Communitarianism
- b) Specific vs Diffuse
- c) Neutral vs Affective
- d) Universalism vs Particularism

37.	Which of these dimensions measures a culture's tendance to follow rules?
a)	Individualism vs Communitarianism
b)	Specific vs Diffuse
c)	Neutral vs Affective
d)	Universalism vs Particularism
38.	In the video interview, Trompenaars describes the French as?
a)	Individualistic
b)	Communitarian
39.	In the video interview, Trompenaars states that we can look at culture like an onion with layers. The external layer being Artifacts and Behaviours and the second layer is?
a)	Norms and Values
b)	Material culture
c)	Language
d)	Symbols
40.	In the video interview, Trompenaars states that the French are particularistic. True or False?
a)	True
b)	False

QCM Physique – InfoS3 – 16.10

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Q41. Un élément de longueur dl d'un cercle de rayon R a pour expression :

a.
$$dl = R.\theta$$

b.
$$dl = \theta$$
, dR

$$c. dl = dR. d\theta$$

$$d. dl = R. d\theta$$

Q42. Dans la situation suivante, où l'on étudie $\overrightarrow{E(O)}$ le champ électrique créé en O par un arc de cercle de charge linéique constante positive λ, on peut dire que :

- a. (O, $\overrightarrow{u_x}$, $\overrightarrow{u_y}$) est un plan de symétrie de la distribution de charges
- b. (O, $\overrightarrow{u_y}$, $\overrightarrow{u_z}$) est un plan de symétrie de la distribution
- c. $(0, \overrightarrow{u_x}, \overrightarrow{u_z})$ est un plan de symétrie de la distribution de charges
- d. $\overline{E(0)}$ est sur l'axe (Ox) dans le sens des x croissants

Q43. Le champ magnétique \vec{B} peut être créé par :

- a. Une charge fixe
- b. Un ensemble de charges fixes
- c. Une ou plusieurs charges en mouvement
- d. Un courant électrique

Q44. L'unité d'un champ magnétique est le :

- a. Volt par mètre V.m⁻¹
- b. Volt V
- c. Coulomb par mètre C.m⁻¹
- d. Tesla T

Q45. La loi de Biot et Savart pour le champ magnétique élémentaire créé en M par un élément P de longueur di traversé par un courant d'intensité I peut s'écrire :

a.
$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I.\overrightarrow{dl} \wedge \overrightarrow{PM}}{PM^3}$$

b.
$$\overrightarrow{dB} = \frac{\mu_0}{A\pi} \frac{I.\overrightarrow{dl} \wedge \overrightarrow{PM}}{PM^2}$$

c.
$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I.\overrightarrow{PM} \wedge \overrightarrow{di}}{PM^3}$$

a.
$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I.\overrightarrow{dl} \wedge \overrightarrow{PM}}{PM^3}$$

b. $\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I.\overrightarrow{dl} \wedge \overrightarrow{PM}}{PM^2}$
c. $\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I.\overrightarrow{PM} \wedge \overrightarrow{dl}}{PM^3}$
d. $\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I.\overrightarrow{PM} \wedge \overrightarrow{dl}}{PM^2}$

Q46. La loi de Biot et Savart permet de connaître :

- a. Les symétries d'une distribution de courants
- b. La direction du champ magnétique infinitésimal créé par un élément de la distribution
- c. Le sens du champ magnétique infinitésimal créé par un élément de la distribution
- d. La norme du champ magnétique infinitésimal créé par un élément de la distribution

Q47. Soit une distribution de courants et un plan π passant par un point M.

- a. Si π est un plan de symétrie, alors $\overrightarrow{B(M)} \in \pi$
- b. Si π est un plan de symétrie, alors $\overline{B(M)} \perp \pi$
- c. Si π est un plan d'antisymétrie, alors $\overline{B(M)} \in \pi$
- d. Si π est un plan d'antisymétrie, alors $\overline{B(M)} \perp \pi$

Q48&49. On considère la distribution de courants suivante : un fil infini parcouru par un courant d'intensité l.

Q48. Soit z > 0. On peut dire que le champ magnétique total en M(z) vérifie :

- a. $\overrightarrow{B(M)}$ est selon l'axe (Oz), dans le sens des z croissants
- b. $\overrightarrow{B(M)}$ est selon l'axe (Oz), dans le sens des z décroissants
- c. $\overrightarrow{B(M)}$ est selon l'axe (Ox), dans le sens des x croissants
- d. $\overrightarrow{B(M)}$ est selon l'axe (Ox), dans le sens des x décroissants

Q49. On désigne par $\overline{B(z)}$ le champ magnétostatique total créé au point M situé à la distance z du fil. Concernant ce champ, on peut dire:

a.
$$\overrightarrow{B(-z)} = -\overrightarrow{B(z)}$$

b. $\overrightarrow{B(-z)} = \overrightarrow{B(z)}$

b.
$$\overrightarrow{B(-z)} = \overrightarrow{B(z)}$$

c.
$$\|\overrightarrow{B(-z)}\| = \|\overrightarrow{B(z)}\|$$

d.
$$\|\overline{B(-z)}\| \neq \|\overline{B(z)}\|$$

Q50. On considère un fil infini parcouru par un courant d'intensité constante I. Soit un point M situé à la distance r du fil. On désigne par $(M, \overrightarrow{u_r}, \overrightarrow{u_\theta})$ le plan passant par M et formé par les vecteurs $\overrightarrow{u_r}$ et $\overrightarrow{u_\theta}$. On peut dire que :

c.

- a. $(\mathsf{M},\overrightarrow{u_r},\overrightarrow{u_\theta})$ est un plan de symétrie de la distribution de charge
- b. $(M, \overrightarrow{u_r}, \overrightarrow{u_\theta})$ est un plan d'antisymétrie de la distribution de charge
 - $(M, \overrightarrow{u_r}, \overrightarrow{u_z})$ est un plan de symétrie de la distribution de charge
- d. $(M, \overrightarrow{u_{\theta}}, \overrightarrow{u_{z}})$ est un plan de symétrie de la distribution de charge

QCM 4 Architecture des ordinateurs

Lundi 16 octobre 2023

Pour toutes les questions, une ou plusieurs réponses sont possibles.

- 51. Soit l'instruction suivante: MOVE.W -(A0),D0
 - A. A0 ne change pas.
 - B. A0 est décrémenté de 2.
 - C. A0 est décrémenté de 4.
 - D. A0 est décrémenté de 1.
- 52. Soit l'instruction suivante: MOVE.L -1(A0), D0
 - A. A0 est décrémenté de 1.
 - B. A0 est décrémenté de 2.
 - C. A0 est décrémenté de 4.
 - D. A0 ne change pas.
- 53. Quelles sont les deux instructions de branchements inconditionels?
 - A. JMP et JSR
 - B. BSR et JSR
 - C. BRA et BSR
 - D. BRA et JMP
- 54. L'instruction BMI effectue un branchement si :
 - A. V = 1
 - B. N=1
 - C. None of these answers.
 - D. Z = 1
- 55. Soient les deux instructions suivantes :

CMP.L D0,D1

BHI NEXT

L'instruction BHI effectue le branchement si :

- A. D1.L > D0.L (comparaison signée)
- B. D1.L < D0.L (comparaison signée)
- C. D1.L < D0.L (comparaison non signée)
- D. D1.L > D0.L (comparaison non signée)

56. Choisir les réponses correctes.

- A. Un nouvel élément est toujours ajouté au sommet de la pile.
- B. Un nouvel élément est toujours ajouté au bas de la pile.
- C. Un élément est toujours retiré du sommet de la pile.
- D. Un élément est toujours retiré du bas de la pile.

57. Le registre A7:

- A. Pointe le sommet de la pile.
- B. Pointe le bas de la pile.
- C. Pointe le milieu de la pile.
- D. Aucune de ces réponses.

58. Choisir les réponses correctes.

- A. Un octet peut être empilé.
- B. Un mot de 16 bits peut être empilé.
- C. Un mot de 32 bits peut être empilé.
- D. Aucune de ces réponses.

59. Pour empiler une donnée :

- A. On décrémente A7 d'abord.
- B. On incrémente A7 d'abord.
- C. On ne change pas A7.
- D. Aucune de ces réponses.

60. Soit l'instruction suivante : MOVEM.L D1-D3/A4/A5,-(A7)

Quelle instruction est équivalente?

- A. MOVEM.L D1/D3/A4-A5,-(A7)
- B. MOVEM.L D1/D3/A4/A5,-(A7)
- C. MOVEM.L A4/A5/D1/D2/D3,-(A7)
- D. Aucune de ces réponses.

		K Quic												m/EAS		·	t © 2004-2007 By: Chuck Kelly
Opcode	SIZE BWL		XNZVC	On		(An)	Asktrus (An)+							placemen (i.PC,Ro)		Operation	Description
ABCD		s,d Dy,Ox	*U*U*	B	PU1	(MII)	Value	-(2411)	(CARL)	(LAULTUI)	BUS.VI	-	(LFL)	/ILP/IGA	-	$Dy_0 + Dx_0 + X \rightarrow Dx_0$	Add BCO source and eXtend bit to
		-(Ay),-(Ax)		-	-	-	-	8	-	-	-	-	-		-	$-(Ay)_{ij} + -(Ax)_{ij} + X \rightarrow -(Ax)_{ij}$	
ADD ⁴	BWL	s,On On,d	****	8	8 8	S d	8	9 2	g d	g S	s d	S d	S	2 -	S	s+On → On On+d → d	Add binary (ADDI or ADDI is used when source is #n. Prevent ADDI with #n.L)
ADDA 4	WL	s.An		2	В	2	\$	8	8	8	s	s	S	2	2	s+An → An	Add address (.W sign-extended to .L)
ADDI *	BWL	#n,d	****	d	-	d	đ	d	d	d	d	ď	-	-	2	#n+d→d	Add immediate to destination
		#n,d	****	q	đ	d	d	d	d	đ	ď	d	-	-	2	#n+d→d	Add quick immediate (#n range: 1 to 8)
ADDX	BMT	Dy,Dx -{Ay),-(Ax)	****	9	-	-	-	- 8	-	-		-	-	-	-	$Dy + Dx + X \rightarrow Dx$ $-(Ay) + -(Ax) + X \rightarrow -(Ax)$	Add source and eXtend bit to destination
AND 4	BWL	s,0n	~**00	е	-	S	E	8	5	*	8	2	2	2	84	s AND Dn → Dn	Logical AND source to destination
		Dn,d		8	-	4	đ	d	4	đ	đ	đ	-	-	-	On AND d → d	(ANDI is used when source is #n)
AND! *		#n,d	-**00	d	-	4	ď	q	ų	d	d	d	-	-		#n AND d → d	Logical AND immediate to destination
ANDI 1	B	#n.CCR	自然会共享	-	-		-	-	-	-	-	-		-		#n AND CCR → CCR	Logical ANO immediate to CCR
ANDI 4	W	#nSR	****	-			<u> </u>		<u> </u>			-	-		2		Logical AND immediate to SR (Privileged)
ASL ASR	BWL	Ox,Dy #n,Dy		9	-	-	-	_	:	<u>-</u>	-	-	-	_	- 5	ř. T. T. B	Arithmetic shift Dy by Ox bits left/right Arithmetic shift Dy #n bits L/R (#n: I to 8
ADA.	쇎	d		-	-	d	ď	d	ď	d	d	d	-	-	-	\$\$ \$	Arithmetic shift ds I bit left/right (W only)
Bec	BW3	address ²		-	-	-	-	-	-	-	-	-	-		-	if cc true then	Brench conditionally (cc table on back)
									<u> </u>							address → PC	(8 or 16-bit ± offset to address)
BCH6	8 L	On,d	*	6	-	d	ď	d	d	d	đ	đ	-	-	-	NOT(bit number of d) \rightarrow Z	Set I with state of specified bit in d then
mero	R L	#n,d On,d	+	ď	-	d	d	d	d	d	d	d		-	\$	NOT(bit n of d)→ bit n of d NOT(bit number of d) → Z	invert the bit in d Set Z with state of specified bit in d then
BCLR	ğ r	#n.d		e		d	d	d	d	a d	d	đ	•	-		nu (for number of d) → Z	Set Awan state of specified but in a then clear the bit in d
BRA	8M8	eddress ²		-	-	Ë	-	-	1	-	-	-	-	•	-	address → PC	Brench always (8 or 16-bit ± offset to addr
BSET	8 L	On,d	*	Į.	-	ď	d	d	4	d	d	d	-	-	-	NOT(bit n of d) \rightarrow Z	Set Z with state of specified bit in d then
		#n,d		ď	-	d	d	d	d	d	d	d	-		8	l → bit nafd	set the bit in d
BSR	BW3	address ²	*	-	Ŀ	-	<u> </u>	<u> </u>	ļ <u>-</u>	<u> </u>	<u> </u>	-	<u> </u>	-	_	$PC \rightarrow -(SP)$; eddress $\rightarrow PC$	Branch to subroutine (8 or 16-bit ± offset)
BIST	BL	On.d #n.d		n "	-	d	q	d	9	d	d d	d	q q	d	-	NDT(bit On of d) → Z NDT(bit #n of d) → Z	Set I with state of specified bit in d Leave the bit in d unchanged
CHK	W	8.Dn	-*000	B	-	5	2	2	<u>"</u>	<u> </u>	5	2	S	5	3	If OneO or Ones then TRAP	Compare On with D and upper bound [s]
CLR	BWL		-0100	4	-	å	ď	lä	ti	1	ď	4	-	-	٠	D → d	Clear destination to zero
CMP 1		s.On	***	E	8	\$	8	8	8	S	Z	2	\$	2	84	set CCR with On - s	Compare On to source
CMPA 4		s.Ån		8	В	8	2	ε	2	5	2	Š	Z	2	s	set CCR with An — s	Compare An to source
CMPI 1		#n,d	****	d	<u>:</u>	ď	d	d	d	d	d	d	-	<u> </u>	2	set CCR with d - #n	Compare destination to #n
CMPM *	BWL	(Ay)+,(Ax)+	-****	-	-	<u> </u> -	В	1-	<u> </u>	-	 -	-	<u> </u>	<u>-</u>	<u> -</u>	set CCR with (Ax) - (Ay)	Compare (Ax) to (Ay); Increment Ax and Ay
Dece	W	Do,addres ²		-	-	-	-	-	-	-	-	-	7	*	-	if cc false then { Dn-l → Dn if Dn ↔ -l then addr → PC }	Test condition, decrement and branch (16-bit ± offset to address)
DIVS	W	nO,z	***0	e	-	8	\$	8	2	8	\$	2	2	s	\$	±32bit On / ±16bit s → ±On	On= [G-bit remainder, G-bit quotient]
DINI	W	8,0 n	-***0	B	٠	8	8	8	E	8	8	8	8	ε	8	32bit On / 16bit s → On	On= (B-bit remainder. 16-bit quotient)
EDR *	BWL	On.d	-**00	B	Ŀ	ď	d	d	ď	d	d	d	<u> </u>	-		On XOR d → d	Logical exclusive OR On to destination
EORI ⁴	BWL	#n.d #n.CCR	**00	d	1-	<u>d</u>	<u>d</u>	d	ď	<u> </u>	4	d	<u> </u>	-		#n XOR d → d #n XOR ECR → ECR	Logical exclusive OR #n to destination Logical exclusive OR #n to CCR
EDRI 4		#n.sr		Ė	÷	-	├	<u>├</u> -	H	 -	╁	Ë	<u> </u>			#n XOR SR -> SR	Lagical exclusive DR #n to SR (Privileged)
EXG	٣	Rx.Ry		8	B	-	-	 -	 -	╁┈╌	 -	-	-	 -	†	register ← → register	Exchange registers (32-bit only)
EXT	WL	Dn	-+*00	ď	Ť	-	-	-	-	-	-	-	-	-	-	Dn.B -> Dn.W Dn.W -> On.L	Sign extend (change .8 to .W or .W to .1)
LLEGAL				-	<u> </u>	-	-	-	-	-	-	-	-	-	-	PC→-(SSP); SR→-(SSP)	Generate (liegal Instruction exception
TMb		d		-	-	8	-	<u> </u>	d	d	d	d	đ	d	-	Îd → PC	Jump to effective address of destination
JSR	ļ	q		-	1-	d	-	<u> -</u>	d	d	d	d	d	d	-	PC → -(SP): Td → PC	push PC, jump to subroutine at address d
LEA	<u> </u>	g,An		-	E	8	1-	 -	2	<u> </u>	8	2	8	2	1	Ts -> An	Load effective address of s to An
LINK		An.#n		-	-	-	-	-	-	-	-	-	-	-	-	An → -(SP); SP → An; SP + #n → SP	Create local workspace on stack (negative n to allocate space)
IZI	BWL	0x.Dy	***0*	5	-	1-	1 -	1 -	-	-	-	-	-	-	1-	ř .	Logical shift Dy, Dx bits left/right
LSR	,	#n.Dy		ď	-	-	-	-	1:	-	1 :	-	-	-	2		Logical shift Dy, #n bits L/R (#n: 1 to 8)
MUNT 4	W	d d	-**00	<u> </u>	1	<u> d</u>	d	d	1	<u>d</u>	4	d	1	-	-	<u> </u>	Engical shift d I bit left/right (W only)
MOVE *	BWL	s,CCR	- ベベリリ	E S	\$	8	8	8	E .	B	B	8	8	\$		s → d s → CCR	Move data from source to destination Move source to Condition Code Register
MOVE		s.CR	22222	8	t	8	\$	8	8	8	2 2	S	S .	8		3 → 2K	Move source to Status Register (Privileged
MOVE		2K4	 	å	†=	l å	i i	l å	ð	1 3	1	å	† •	 	-	SR → d	Move Status Register to destination
MDVE	Ī	USP,An		Ť	7	T-	† -	† -	Ť	 	1-	Ť	 -	-		USP → An	Move User Stack Pointer to An (Privileged,
		An,USP		<u> -</u>	s	<u> </u>	<u> </u>				1 -	-	-	-	<u> </u>	An → USP	Move An to User Stack Pointer (Privileged
	BWL	3,0	XNZVC	On	An	(An)	(An)+	-(An)	(i,An)	(i,An,Rn)	abs.W	ebs.L	GPC)	(LPC.Rn)	#0		

QCM 4 – Annexes 3/4

Architecture des ordinateurs - EPITA - S3 - 2023/2024

Opcode	Sizz	Operand	CCR	1	Effee	ctive	Addres	S 5=5	ource,	d=destina	tion, e	=elthe	r. i=dis	placemen	ıŧ	Operation	Description
	BWL	s,d	XNZVC	Dn	Ап	(An)	(Ån)+	-(Án)	(i.An)	(i.An.Rn)	ebs.W	abs.L	(iPC)	(i.PC.Rn)	加		
MDVEA*	WL	nAz		S	8	8	2	S	S	8	2	8	8	s	2	s→An	Move source to An (MDVE s.An use HDVEA)
MOVEM	WL	Rn-Rn,d		-	-	d	-	d	q	d	р	d	-	-	-	Registers → d	Nove specified registers to/from memory
		s,Rn-Rn		-	Ŀ	2	5	-	8	2	8	8	8	\$	-	s → Registars	(.W source is sign-extended to .L for Rn)
MOYEP	WL	Dn.(i,An)		δ	-	-	-	-	4	-	-	-	-	-	-		Move On to/from alternate memory bytes
		(i,An),Dn		d	-		-		8	-	-	-	-	-	-		(Access only even or odd addresses)
MOAED,	<u> </u>	#n,On	-**00	ď	-			-	-	-	-	-		<u> </u>		#n → On	Move sign extended 8-bit #s to On
MULS	W	s,On	-**00	В	Ŀ	2	2	8	S	8	2	S	8	2	2	±16bit s * ±16bit On → ±On	Multiply signed lä-bit result signed 32-bit
MULU	W	s.On	-**00	8	-	5	8	S	8	8	2	8	\$	2	3	läbit s * 16bit Dn → Dn	Multiply unsig'd 16-bit: result: unsig'd 32-bit
NBCO	B	d	*U*U*	đ	-	d	ď	d	q	ď	d	đ	-	-		D - dg - X → d	Negate BCC with eXtend, BCO result
NEG	BWL	d	****	ţ	-	ď	d	d	d	d	d	d	-	~	٠	Ü-d-≯d	Negate destination (2's complement)
NEGX	BWL	d	*****	ą	Ŀ	ď	q	q	4	đ	d	О.	-	-	-	0-q-x→q	Negate destination with eXtend
NOP	enta be		00	-	•	÷	-	-	-	-	-	-	•		,	None	No operation occurs
NOT DR 4	9WL	q	-**00	ď	-	d	d	d	q	d	ď	q	-	-	-	NDI(q) → q	Logical NDT destination (I's complement)
טאי.	BWL			ŧ	-	.i.	S	2	2	2	8	8	2	S	s*	s DR On → On	Logical OR
DRI 4	RWL	On,d #n,d	-**00	8	1	<u>d</u>	d	d	ď	ď	d	q		-		Bn DR d → d	(DRI is used when source is #n)
ORI 4	BALL			d	-	ď	ď	d	<u>d</u>	d -	d	4	-	-		#n DR d → d	Logical DR #n to destination
DRI 4		#n,CCR #n,SR		_	-		-				-			ļ	S	#n DR CCR → CCR	Logical DR #n to CCR
PEA	W			Ţ	-				-	-	-	-	-	-	ĺ	#n DR SR → SR	Logical OR #n to SR (Privileged)
	<u>t</u>	8		-	-	5	-	-	8	Z	8	2	8	§ .	-	Ts → -(SP)	Push effective address of a onto stack
RESET	COAFE	D., D.,		-	-		-		-	•	-	-		•	-	Assert RESET Line	Issue a hardware RESET (Privileged)
ROR	GML	Dx,Dy #n,Dv		g G	-	•	-	-		-	-	-	-	-	•		Rotate Dy, Dx bits left/right (without X)
IL CATA	W	q *******		u]	ď	d	d	d	d	ď	ď	-	-	8		Rotate Dy, #n bits left/right (#n: I to 8) Rotate d I-bit left/right (W only)
ROXL		Dx.Dy	***0*	Ð	-		-	-	-	-	-	-	_				Rotate Dy, Dx bits L/R, X used then updated
RDXR		#n.Dy		ď	-		_	-	_		_	_	_	_	z		Rotate Dy, #n bits left/right (#n: 1 to 8)
,,,,,,	W	d d		-	_	d	d	al	ę ·	d	d	d	-		_		Rotate destination I-bit left/right (.W only)
RTE		T	- 日本日本年	-	-	-	-	-	-	-	-	-	-	-	-	(SP)+ → SR; (SP)+ → PC	Return from exception (Privileged)
RTR			西巴斯森森	-	-	-	-		-	-	-	-	-	-	-	$(SP)+ \rightarrow CCR, (SP)+ \rightarrow PC$	Return from subroutine and restore CCR
RTS		***************************************		-	-		-	-	-	•	-	-	-	-	-	(SP)+ → PC	Return from subroutine
SBCD	В	Dy.Ox	*U*U*	8	-	-	-	-	-	-	-	-	-	-	-	$0x_0 - 0y_0 - X \rightarrow 0x_0$	Subtract BCO source and eXtend bit from
		-(Ay),-(Ax)		-	-)	•	В	-	-	-	-	-	-	-	$-(Ax)_{10}(Ay)_{10} - X \rightarrow -(Ax)_{10}$	destination, 6CD result
Scc	B	d		q	-	ď	d	d	ď	đ	d	d	-	•		If cc is true then i's → d	If co true then d.8 = 11111111
								- 1								ekse D's → d	00000000 = B.b sals
STOP		#n	2000	-	•		•	-	-		-	-	-	-	8	#n → SR; STOP	Move #n to SR, stop processor (Privileged)
SUB 4	BWL	g,Bn	****	E	2	8	2	s	\$	2	S	s	8	3	s	Dn-a→ Dn	Subtract binary (SUBI or SUBI) used when
		On.d		8	ď	d	ď	d	ď	d	d	đ	-	-	-	d-Dn → d	source is #n. Prevent SUBU with #n.L)
SUBA 4		s.Án		2	8	8	2	S	8	8	8	8	2	Z.	2	An - s → An	Subtract address (.W.sign-extended to .L)
20814	BWL	#n,d	****	d	-	d	đ	d	٤	q	Ь	d	-	-	2	d-#n → d	Subtract immediate from destination
2080,		#n.d	*****	q	ď	ď	d	d	đ	d	d	ď	-	-	2	d-#r→q	Subtract quick immediate (#n range: 1 to 8)
ZUBX	BWL	Dy.Ox	****	8	-	-	-	-	-	-	•	-	-	-	1	$0x - 0y - X \rightarrow 0x$	Subtrect source and eXtend bit from
		-(Ay)(Ax)		-	-	•	-	8	-	-	-		-		-	$-(Ax)(Ay) - X \rightarrow -(Ax)$	destination
ZWAP		0a	-**00	ď	-	-	-	-	-	-	-	-	-	-	-	$bits[3H6] \leftarrow \rightarrow bits[i5:0]$	Exchange the 16-bit halves of On
	B	ď	-**00	ď	-	d	d	d	d	d	d	d	-	-	-	test $d \rightarrow CCR$; $I \rightarrow bit 7$ of d	N and Z set to reflect d, bit7 of d set to 1
TRAP		#n		-	-	-	-	-	-	•	-	-	-	-	2	PC→-(SSP);SR→-(SSP);	Push PC and SR, PC sat by vector table #n
					Ш											(vector table entry) \rightarrow PC	(#n range: 0 to 15)
TRAPY	MALA SA		***	-	-	-	-		-	-		-				If V then TRAP #7	H courflow, execute an Overflow TRAP
TST		d	-**00	9	-	ď	q	d	đ	d	d	d		-	٠	test d → CCR	N and 2 set to reflect destination
UNLK		An		<u>:</u>	q	-			-	-			-		-	$An \rightarrow SP$; $(SP) \rightarrow An$	Remova local workspace from stack
	BWL	8.d	XNZVC	ÜП	Alt	(Art)	(An)+	(An)	(i,An)	(i,An,Rn)	abs.W	aps.r	(i,PG)	(i.PC,Rn)	₽n		•

EC	Condition	Tast	CC	Candition	Test		
T	true	1	AC.	overflow clear	17		
F	false	0	AZ	overflow set	Y		
HP	higher than	1(C + Z)	PL	plus	TN		
LS"	lower or same	C+Z	MI	minus	N		
HS", CC"	higher or same	IC	GE	greater or equal	(N ⊕ V)		
LD°, CS°	lower than	C	LT	less than	(N ⊕ V)		
NE	not equal	12	GT	greater than	((N ⊕ V) + Z		
EU	equal	Z	LE	less or equal	(N ⊕ V) + Z		

Revised by Peter Csaszar, Lawrence Tech University - 2004-2006

- An Address register (16/32-bit, n=0-7) On Data register (8/16/32-bit, n=0-7)
- Rn any data or address register
- s Source, d Destination
- Either source or destination
- #n Immediate data, 1 Displacement
- BCD Binary Coded Decimal
- Effective address
- Long only: all others are byte only
- Assembler calculates offset
- USP User Stack Pointer (32-bit)
- SP Active Stack Pointer (same as A7)

SSP Supervisor Stack Pointer (32-bit)

- PC Program Counter (24-bit)
- SR Status Register (16-bit)
- CCR Condition Code Register (lower B-bits of SR) N negetive, Zzero, V overflow, C carry, X extend
 - * set according to operation's result, = set directly - not effected, O cleared, I set, U undefined
- Branch sizes: \mathbf{B} or \mathbf{S} -IZB to +IZ7 bytes. W or $\mathbf{1}$ -32768 to +32767 bytes Assembler automatically uses A. I. D. or M form if possible. Use #n.1 to prevent Duick optimization

Distributed under the GNU general public use license.