SAS vs SSD各种模式下MySQL TPCC OLTP对比测试结果

By yejr on 10 九月 2012

在各种测试组合方案中,组合10(组合10: SSD*2, RAID 0, XFS,WB,nobarrier,noop)的综合性能最高,因此以它为基准,其他方案与其对比,下表是各组合和组合10的对比:

组合方案₽	8线程	16线程	32线程	64线程	128线程	256 线程
组合 3: SAS *4 + SSD * 2, 裸盘组成 LVM, XFS₽	0.000	0.062	0.059	0.069	0.083	0.101
组合1: SAS * 2, RAID 1, XFS+	0.000	0.076	0.097	0.117	0.138	0.163
组合4: SAS * 4(RAID 0) + SSD * 2(RAID 0) , LVM, XFS+	0.257	0.156	0.160	0.187	0.219	0.257
组合7: SSD * 2, RAID 0, XFS, WI, barrier, cfq-	0.783	0.714	0.725	0.771	0.811	0.833
组合6: SSD * 2, RAID 0, XFS, WI, nobarrier, cfq+	0.822	0.756	0.750	0.785	0.826	0.849
组合5: SSD * 2, RAID 1, XFS+	0.875	0.801	0.797	0.841	0.875	0.889
组合 2: SSD * 2, RAID 0, XFS+	0.933	0.873	0.847	0.875	0.905	0.911
组合8: SSD * 2, RAID 0, XFS, WT, barrier, deadline	0.911	0.853	0.875	0.917	0.938	0.955
组合 9: SSD * 2, RAID 0, XFS, WT, barrier, noop	0.923	0.864	0.883	0.923	0.947	0.962
组合10: SSD * 2, RAID 0, XFS, WB, nobarrier, noop	1.000	1.000	1.000	1.000	1.000	1.000

相应的对比线形图:

测试环境:

测试机	DELL PE R710		
CPU	E5620 @ 2.40GHz(4 core, 8 threads, L3 Cache 12 MB) * 2		
内存	32G(4G * 8)		
RAID+	PERC H700 Integrated, 512MB, BBU, 12.10.1-0001		
系统	Red Hat Enterprise Linux Server release 5.3 (Tikanga)		
内核	2.6.18-194.el5 #1 SMP		
10调度	cfq		
raid级别	raid O		
文件系统	xfs/ext4		
硬盘	阵列1: SAS: 10K RPM, 300G SAS, 6G/s(TOSHIBA MBF2300RC) * 2,条 带: 64K, CACHE策略: WB NORA DIRECT CachedBadBBU 阵列2: SSD: Intel 520系列SSD, 240G * 2,条带: 64K, CACHE策略:		
	Pまが記さい SSB : Intel S20余が3SSB 2400 * 2、元市: 64k, CACAE集時: WB NORA DIRECT CachedBadBBU		
测试工具	TPCC for MySQL(https://code.launchpad.net/~percona-		
	dev/perconatools/tpcc-mysql) TPCC测试参数: WIREHOUSE=1000,WARMUP=120,DURING=3600,使用 InnoDB引擎,tpcc会先准备好数据,进行预热后才开始进行OLTP测试。		

结语

- 1. 在xfs文件系统模式下,SSD设备的性能是SAS设备性能的 $6 \sim 13$ 倍,平均:9倍,在并发16线程时最高(和MySQL的内部机制有关);
- 2. SSD设备使用noop模式的IO调度器效率最高(关于Linux内核IO调度器详
- 见: http://www.redhat.com/magazine/008jun05/features/schedulers/);
- 3. xfs设置为<u>nobarrier</u>相比启用barrier效率高(关于<u>barrier</u>介绍详见: http://xfs.org/index.php/XFS_FAQ#Write_barrier_support);
- 4. 建议仍旧启用阵列卡的WB策略以提高整体阵列随机IO性能:
- 5. 在ext4文件系统模式下,SSD设备的性能是SAS设备性能的4.9~8.6倍,平均:6.6倍,在并发16线程时最高(和MySQL的内部机制有关);
- 6. 在**SSD**设备模式下,**xfs**文件系统的性能是**ext4**文件系统性能的**1.06~1.39**倍,平均: **1.15**倍;
- 7. 在**SSD设备**模式下,<u>OLTP</u>并发<u>32</u>线程时效率最高,相比<u>8</u>线程提升 <u>37.1%,相比16</u>线程提升<u>7.2%</u>,相比128线程提升19.5%,相比256线程提升

41.6%;

- 8. 使用SSD设备时,<u>2</u>块盘组成<u>RAID 0</u>相比<u>RAID 1</u>的性能提升并不明显,提升最高约 9%;
- 9. 需要使用LVM时,也尽量先把硬盘组成物理阵列以提升性能,不要把裸盘直接组成 LVM组,基于硬件阵列的LVM性能最高是基于裸盘的LVM的2.723倍;
- 10. 由于ext3下运行mysql效率较低,没有进行测试。

技术相关:

MySQL优化
MySQL基础知识
*nix相关
硬件相关
运维相关

评论

没有看到测试data大小

By iask on 20 +– β 2012 at about 00:56.

没有看到测试data大小和innodb_buffer_pool_size的大小,perona上Vadim Tkachenko曾经做过sas/ssd/fio的测试,在innodb_buffer_pool_size分配内存等于或超过data时,三者性能相当,对应数据增长不快,但是更新频繁的应用场景,多买内存比采用fio卡划算,当然如果数据增长非常快,用fio成本也不低。之前做了测试,纠结很久最后还是放弃了fio,毕竟贵的不是一星半点。^ ^

多谢提醒,已更新。TP

By yejr on 22 十一月 2012 at about 14:19.

多谢提醒,已更新。<u>TPCC初始化1000</u>个<u>DW</u>后,数据表空间约**80G**。

3