Modeling Coherence for Discourse Neural Machine Translation

Hao Xiong, Zhongjun He, Hua Wu and Haifeng Wang xionghao05@baidu.com

Natural Language Processing, Baidu Inc.

Contents

- Backgrounds
- Model Architecture
- Experiments
- Conclusion

Discourse Translation

Source

Sent 1: 我们加入霓虹,我们加入柔和的粉蜡色,我们使用新型材料。

Sent 2: 人们爱死这样的建筑了。

Sent 3: 我们不断地建造。

Reference

Sent 1: We add neon and we add pastels and we use new materials.

Sent 2: And you love it.

Sent 3: And we can't give you enough of it.

Discourse Neural Machine Translation

Reference

Sent 1: We add neon and we add pastels and we use new materials.

Sent 2: And you love it.

Sent 3: And we can't give you enough of it.

Translation

Sent 1: We add the neon, we add soft, flexible crayons, and we use new materials.

Sent 2: [conj]_{miss} People love architecture.

Sent 3: $[conj]_{miss}$ We keep building $[coref]_{miss}$.

Discourse Neural Machine Translation

Reference

Sent 1: We add neon and we add pastels and we use new materials.

Sent 2: And you love it.

Sent 3: And we can't give you enough of it.

Translation

Missing Conjunctions and Coreference

Sent 1: We add the neon, we add soft, flexible crayons, and we use new materials.

Sent 2: [conj]_{miss} People love architecture.

Sent 3: [conj]_{miss} We keep building [coref]_{miss}.

Drawbacks of Traditional DNMT

- Translate each sentence independently
- Lack of Discourse Coherence
- Lack of using Discourse Context

Previous Solutions

Enhance the RNN with discourse context

Longyue Wang et., Exploiting Crosssentence Context for Neural Machine Translation. EMNLP 2018

Previous Solutions

Exploit discourse context

Resolve anaphora

Elena Voita et., Context-aware Neural Machine Translation Learns Anaphora Resolution. ACL 2018

Previous Solutions

Focus on exploiting *discourse context*No work on **discourse coherence** for **DNMT**

Tiedemann, J., and Scherrer, Y. Neural Machine Translation with Extended Context. WDMT 2017

Kuang Shaohui et., Cache-based Document-level Neural Machine Translation. Arxiv 2017 Zhaopeng Tu et., Learning to Remember Translation History with a Continuous Cache. TACL 2018

Maruf, S., and Haffari, G. Document Context Neural Machine Translation with Memory Networks. ACL 2018

First Round: Translate each sentence independently

Sent 1: We add the neon, we add soft, flexible crayons, and we use new materials.

Sent 2: People love architecture.

Sent 3: We keep building.

First Round: Translate each sentence independently

Second Round: Deliberate the first round translation

Sent 1: We add the neon, we add soft, flexible crayons, and we use new materials.

Sent 2: People love it.

Sent 3: We keep building it.

First Round: Translate each sentence independently
Second Round: Deliberate the first round translation

Reward the coherent translation

Sent 1: We add the neon, we add soft, flexible crayons, and we use new materials.

Sent 2: And people love it.

Sent 3: And we keep building it.

First Round: Translate each sentence independently

Second Round: Deliberate the first round translation

Reward the coherent translation

Sent 1: We add the neon, we add soft, flexible crayons, and we use new materials.

Sent 2: And people love it.

Sent 3: And we keep building it.

Not very well but acceptable

Contents

- Backgrounds
- Model Architecture
- Experiments
- Conclusion

Overall Architecture

First Round:

Canonical *Transformer*

Vaswani, Ashish et., Attention is All You Need. NIPS 2017

Overall Architecture

Second Round:

Deliberation Network

Yingce Xia et., Deliberation Networks: Sequence Generation Beyond One-Pass Decoding. NIPS 2017

Overall Architecture

Reward

Discourse Coherent

Translation

Bosselut Antoine et., Discourse-Aware Neural Rewards for Coherent Text Generation. NAACL 2018

Reward Teacher

Reward Teacher

Reward Teacher

$$[-1,1]$$

$$[-1,1]$$

$$S_{1} = \frac{\left\langle f(\vec{s}), f(\overrightarrow{s^{1}}) \right\rangle}{\|f(\vec{s})\| \|f(\overrightarrow{s^{1}})\|} - \frac{\left\langle f(\vec{s}), f(\overrightarrow{s^{1}}) \right\rangle}{\|f(\vec{s})\| \|f(\overrightarrow{s^{1}})\|}$$

 s^1 : translation 1

 s^2 : translation 2

$$S_{2} = \frac{\left\langle f(\vec{s}), f(\overrightarrow{s^{2}}) \right\rangle}{\|f(\vec{s})\| \|f(\overrightarrow{s^{2}})\|} - \frac{\left\langle f(\vec{s}), f(\overrightarrow{s^{2}}) \right\rangle}{\|f(\vec{s})\| \|f(\overrightarrow{s^{2}})\|}$$

If
$$S_1 > S_2$$
 then

 s^1 is more coherent than s^2

Policy Learning

Self-critical Training

greedy search translation y^* sample translation $y^{\hat{}}$

$$L_{rl} = -\sum_{i}^{n} \sum_{t}^{T_{i}} (r(\mathbf{y}^{\hat{}}) - r(\mathbf{y}^{\hat{}})) \cdot logP(y_{t})$$

Rennie Steven J. et., Self-critical Sequence Training for Image Captioning. CVPR 2017

Running Example

First Round Decoding

Deliberation Network

Self-critical Training

Discourse Reward

Two-pass Round Translation

Contents

- Backgrounds
- Model Architecture
- Experiments
- Conclusion

Data Preprocess

- Chinese Segmenter: <u>Jieba</u>
- English Tokenizer: <u>Moses Tokenizer</u>
- BPE size: Chinese(20K), English(18K)
- Data Size

Corpus	Talks	Sentences
Training	14,258	231,266
Dev	48	879
Test	234	3,874

Systems

t2t	tensor2tensor V1.6.5
context-encoder	reimplementation of the work Voita et al.(2018)
first-pass	Train to minimize the first round decoding
first-pass-rl	first-pass with RL training
two-pass	Train to minimize the deliberation network
two-pass-rl	two-pass with RL training
two-pass-bleu	with BLEU as its reward
two-pass-bleu-rl	with BLEU and Reward Teacher as reward

Training Details

- transform-base version of hyperparameters
- batch_size: 320 (tokens)
- Reward Teacher
 - embedding size: 100
 - hidden size: 100
 - dropout: 0.3

Sentence-level BLEU

shuffle by *talk* is better than *sentence*, can be viewed as well-designed *curriculum learning*

Bengio Yoshua et., Curriculum Learning. ICML 2009

Sentence-level BLEU

RL and second-passdecoding improve individualsentence quality

+1.2 BLEU

RL and second-pass
decoding improve
discourse quality
+2.2 BLEU

Pretrain on 25M WMT Corpus

Pretraining significantly improves the performance by **+6** *points*.

Our approach is *robust* and *practical*.

Reward Teacher is better trained with in-domain corpus

Our models significantly improve the discourse coherence

systems	tst-2013	tst-2014	tst-2015
t2t	0.5991	0.5838	0.5939
first-pass	0.5999	0.5845	0.5943
first-pass-rl	0.6008	0.5861	0.5952
two-pass	0.6011	0.5880	0.5962
two-pass-rl	0.6032	0.5913	0.6008
two-pass-bleu-rl	0.6041	0.5938	0.6014
Human translation	0.6066	0.5910	0.6013

Lapata and Barzilay, Automatic Evaluation of Text Coherence: Models and Representations. IJCAI 2005

Our model tends to using more *conjunctions*

systems	t2t	two-pass-bleu-rl
And	519	540
But	186	183
In	114	129
So	174	178
What	55	73

Statistics of top five frequent conjunctions in two systems.

Contents

- Backgrounds
- Model Architecture
- Experiments
- Conclusion

Conclusion

- First work on generating discourse coherent translations
- Two-pass round decoding strategy with Deliberation Network
- RL to encourage generating discourse coherent translations
- Experimental results confirm the effectiveness of our models
- Analysis reveals the contribution of our model to generate discourse coherent translations

THANKS

