Система линейных уравнений $A\vec{x}=\vec{f}$ задаётся текстовым файлом следующего формата:

$$N$$
 a_{11} a_{12} ... a_{1N} f_1
 a_{21} a_{22} ... a_{2N} f_2
...
 a_{N1} a_{N2} ... a_{NN} f_N ,

где N — размерность системы.

Написать программу, которая вычисляет решение системы методом простых итераций с точностью $\varepsilon=0.001.$ В качестве начального приближения брать вектор правых частей \vec{f} , итерационный параметр $\tau=0.01.$

Вариант 2

Система линейных уравнений $A\vec{x}=\vec{f}$ задаётся текстовым файлом следующего формата:

$$N$$
 a_{11} a_{12} ... a_{1N} f_1
 a_{21} a_{22} ... a_{2N} f_2
...
 a_{N1} a_{N2} ... a_{NN} f_N ,

где N — размерность системы.

Написать программу, которая вычисляет решение системы методом Гаусса с выбором главного элемента по строке.

Система линейных уравнений $A\vec{x}=\vec{f}$ задаётся текстовым файлом следующего формата:

$$N$$
 a_{11} a_{12} ... a_{1N} f_1
 a_{21} a_{22} ... a_{2N} f_2
...
 a_{N1} a_{N2} ... a_{NN} f_N ,

где N — размерность системы.

Написать программу, которая вычисляет решение системы методом Гаусса с выбором главного элемента по столбцу.

Вариант 4

Система линейных уравнений $A\vec{x}=\vec{f}$ задаётся текстовым файлом следующего формата:

$$N$$
 a_{11} a_{12} ... a_{1N} f_1
 a_{21} a_{22} ... a_{2N} f_2
...
 a_{N1} a_{N2} ... a_{NN} f_N ,

где N — размерность системы.

Написать программу, которая вычисляет решение системы методом Гаусса без выбора главного элемента.

Система линейных уравнений $A\vec{x} = \vec{f}$ задаётся текстовым файлом следующего формата:

$$N$$
 a_{11} a_{12} ... a_{1N} f_1
 a_{21} a_{22} ... a_{2N} f_2
...
 a_{N1} a_{N2} ... a_{NN} f_N ,

где N — размерность системы.

Написать программу, которая вычисляет решение системы с использованием правила Крамера (через вычисление обратной матрицы).

Вариант 6

Система линейных уравнений $A\vec{x} = \vec{f}$ задаётся текстовым файлом следующего формата:

$$N$$
 a_{11} a_{12} ... a_{1N} f_1
 a_{21} a_{22} ... a_{2N} f_2
...
 a_{N1} a_{N2} ... a_{NN} f_N ,

где N — размерность системы.

Написать программу, которая вычисляет решение системы методом Якоби с точностью $\varepsilon=0.001.$ В качестве начального приближения брать вектор правых частей \vec{f} .

Система линейных уравнений $A\vec{x} = \vec{f}$ задаётся текстовым файлом следующего формата:

$$N$$
 a_{11} a_{12} ... a_{1N} f_1
 a_{21} a_{22} ... a_{2N} f_2
...
 a_{N1} a_{N2} ... a_{NN} f_N ,

где N — размерность системы.

Написать программу, которая вычисляет решение системы методом Зейделя с точностью $\varepsilon = 0.001$. В качестве начального приближения брать вектор правых частей \vec{f} .

Вариант 8

Система линейных уравнений $A\vec{x}=\vec{f}$ задаётся текстовым файлом следующего формата:

$$N$$
 a_{11} a_{12} ... a_{1N} f_1
 a_{21} a_{22} ... a_{2N} f_2
...
 a_{N1} a_{N2} ... a_{NN} f_N ,

где N — размерность системы.

Написать программу, которая вычисляет решение системы методом наискорейшего спуска с точностью $\varepsilon=0.001.$ В качестве начального приближения брать вектор правых частей \vec{f}

Система линейных уравнений $A\vec{x}=\vec{f}$ задаётся текстовым файлом следующего формата:

$$N$$
 a_{11} a_{12} ... a_{1N} f_1
 a_{21} a_{22} ... a_{2N} f_2
...
 a_{N1} a_{N2} ... a_{NN} f_N ,

где N — размерность системы.

Написать программу, которая вычисляет решение системы методом минимальных невязок с точностью $\varepsilon=0.001.$ В качестве начального приближения брать вектор правых частей \vec{f} .

Вариант 10

Система линейных уравнений $A\vec{x} = \vec{f}$ задаётся текстовым файлом следующего формата:

$$N$$
 a_{11} a_{12} ... a_{1N} f_1
 a_{21} a_{22} ... a_{2N} f_2
...
 a_{N1} a_{N2} ... a_{NN} f_N ,

где N — размерность системы.

Известно, что матрица — трёхдиагональная. Написать программу, которая вычисляет решение системы методом трёхточечной прогонки.