Ejercicios

- Creación de redes
 - o Elementos físicos
 - o Direccionamiento IP
- División de redes
- Configuración de routers

Creación de redes

Ejercicio 1.

Crear una red para una empresa compuesta por 20 empleados, 5 directivos y 15 puntos de Internet.

Física	Realizar el esquema de la red física (cableado, hub, switch, routers,)					
Lógica	Conf. Internet: IP: 114.15.74.2/24 PE: 114.15.74.1 DNS: 194.224.52.36					
Configuraciones	Realizar la configuración de los ordenadores (puerta de enlace, DNS,) y de					
	los routers (tabla de enrutado).					

La tabla de enrutamiento del único router que existe en dicha red sería la siguiente:

red #1 -> eth1 red #2 -> eth2 red #3 -> eth3 Internet -> eth4

Interfaz	Origen	Destino	Puerto	Acción
eth1	10.0.0.0/24	0/0	ı	Aceptar
eth2	10.0.1.0/24	0/0	1	Aceptar
eth3	10.0.2.0/24	0/0	1	Aceptar
-	-	0/0	-	Denegar

Ejercicio 2.

Una empresa nos ha solicitado la configuración e implantación de su red de ordenadores. Dicha empresa consta de 3 plantas:

La primera planta está compuesta por 40 ordenadores para los empleados, en la segunda planta se encuentran los 4 servidores (por lo que se requiere la mayor seguridad). Y por último, la tercera planta esta reservada para que los empleados accedan a Internet.

Física	Realizar el esquema de la red física (cableado, hub, switch, routers,)		
Lógica	Conf. Internet: Se disponen de direcciones públicas de clase C		
Configuraciones	Realizar la configuración de los ordenadores (puerta de enlace, DNS,) y de		
	los routers (tabla de enrutado).		

Ejercicio 3.

Una empresa nos ha solicitado la configuración e instalación de su red de la red que conectará los tres edificios de la empresa. Los dos primeros edificios tienen cada uno 20 ordenadores destinados a las oficinas, y en el tercer edificio se encuentran los 5 servidores encargados de guardar toda la información contable.

Además la empresa quiere darle conexión a Internet a los dos edificios de oficinas.

Física	Realizar el esquema de la red física (cableado, hub, switch, routers,)					
Lógica	Conf. Internet: IP: 140.7.12.12/24 PE: 140.7.12.1 DNS: 150.214.156.2					
Configuraciones	Realizar la configuración de los ordenadores (puerta de enlace, DNS,) y de					
	los routers (tabla de enrutado) teniendo en cuenta los siguientes criterios:					
	Los dos edificios de oficinas pueden conectarse a Internet y a la red de					
	servidores.					
	La red de servidores no tiene acceso a Internet					

Ejercicio 4.

Crear la red de un edificio compuesto por los siguientes departamentos:

D1: 2 aulas, 2 PAS, 30 profesores 1 seminario

D2: 4 aulas, 3 PAS, 40 profesores y 2 seminarios.

D3: 1 aula, 1 PAS y 30 profesores.

Las aulas están compuestas por 25 ordenadores y los seminarios por 10. Además, todos los departamentos cuentan con conexión a Internet.

	Física	Realizar el esquema de la red física (cableado, hub, switch, routers,)					
ĺ	Lógica	Conf. Internet: IP: 140.7.12.12/24 PE: 140.7.12.1 DNS: 150.214.156.2					
ĺ	Configuraciones	Realizar la configuración de los ordenadores (puerta de enlace, DNS,) y de					
ı		los routers (tabla de enrutado).					

Ejercicio 5.

Crear la red de un edificio compuesto por los siguientes departamentos:

D1: 2 aulas, 2 PAS, 30 profesores y 1 seminario

D2: 4 aulas, 3 PAS, 40 profesores y 2 seminarios.

D3: 1 aula, 1 PAS y 30 profesores.

Las aulas están compuestas por 25 ordenadores y los seminarios por 10. Además, todos los departamentos cuentan con conexión a Internet.

Además el servicio de informática debe añadir:

- Un servidor de nombres para que sea la autoridad de dominios D1.universidad.es, D2.universidad.es, D3.universidad.es.
- Un servidor de correo.
- Un servidor Web de la facultad.
- 2 salas de usuarios de libre acceso con 25 puestos.

Física	Realizar el esquema de la red física (cableado, hub, switch, routers,)		
Lógica	Conf. Internet: Se disponen de direcciones públicas de clase C		
Configuraciones	Realizar la configuración de los ordenadores (puerta de enlace, DNS,) y de		
	los routers (tabla de enrutado).		

Ejercicio 6.

Una empresa dispone de dos sucursales, una en Madrid y otra en Almería. La sucursal de Madrid es la principal y dispone de un servidor con la información de todos sus clientes y de tres ordenadores utilizados por los empleados. La segunda sucursal dispone de dos ordenadores conectados en red. Ambas sucursales están actualmente conectadas entre si por ADSL.

Se pretende poner un servidor Web en la sucursal para anunciar por Internet las ofertas de la empresa y permitir que los clientes tramiten sus seguros por Internet.

Física	Realizar el esquema de la red física (cableado, hub, switch, routers,)				
Lógica	Conf. Internet: IP: 165.67.32.12/24 PE: 165.67.32.1 DNS: 194.224.52.37				
Configuraciones	Realizar la configuración de los ordenadores (puerta de enlace, DNS,) y de				
	los routers (tabla de enrutado).				

Ejercicio 7.

Una empresa nos ha solicitado la puesta a punto de su red interna. La empresa consta de 3 edificios.

El primer edificio, reservado a las tareas administrativas, tiene 3 plantas: las dos últimas plantas tienen 20 ordenadores cada una y están reservadas para las tareas administrativas. Mientras que en la tercera planta hay un ciber con 20 ordenadores para que los empleados se conecten a Internet.

El segundo edificio tiene 2 plantas: la primera reservado a marketing (5 ordenadores) y la segunda planta es para los directivos (2 ordenadores).

En el tercer edificio está ubicado el almacén por lo que no tienen ningún equipo.

Física		Realizar el esquema de la red física (cableado, hub, switch, routers,)				
Lógic	a	Conf. Internet : Se disponen de direcciones públicas de clase C				
Confi	guraciones	Realizar la configuración de los ordenadores (puerta de enlace, DNS,) y de				
		los routers (tabla de enrutado).				

Ejercicio 8.

Una empresa nos ha solicitado la instalación y configuración de una red local con acceso a Internet en sus instalaciones. La empresa consta de dos edificios que se encuentran a 400 metros. El primer edificio tiene 2 plantas: en la primera planta hay 20 ordenadores destinados a administración y en la segunda planta hay 5 servidores que contienen información muy importante. El segundo edificio consta de dos plantas: la primera planta es una zona de ocio para los empleados (30 ordenadores) mientras que en la segunda planta se encuentran los despachos de dirección (4 ordenadores).

Física	Realizar el esquema de la red física (cableado, hub, switch, routers,) teniendo en cuenta las siguientes restricciones: • Todo el edificio tiene que estar conectado a Internet • La velocidad de comunicación entre los edificios debe ser mayor de 100MB/s.					
Lógica	Conf. Internet: IP: 210.24.56.98/24 PE: 210.24.56.1 DNS: 150.214.156.2					
Configuraciones	 Realizar la configuración de los ordenadores (puerta de enlace, DNS,) y de los routers (tabla de enrutado) teniendo en cuenta los siguientes criterios: Los dos edificios de oficinas pueden conectarse a Internet y a la red de servidores. La red de servidores no tiene acceso a Internet 					

Ejercicio 9.

Una empresa nos ha solicitado la creación y configuración de su red. La empresa consta de tres edificios separados entre sí a una distancia menor de 500m. En el primer edificio se encuentra un servidor de base de datos y dos servidores Web; en el segundo edificio se encuentra el personal de administración y servicios (40 ordenadores) y el tercer edificio está dedicado para que los empleados utilicen Internet (20 ordenadores).

Física	Realizar el esquema de la red física (cableado, hub, switch, routers,) teniendo en cuenta las siguientes restricciones: • La velocidad de comunicación entre los edificios debe ser mayor de 100MB/s.			
Lógica	Conf. Internet : Se disponen de direcciones públicas de clase C			
Configuraciones	Realizar la configuración de los ordenadores (puerta de enlace, DNS,) y de los routers (tabla de enrutado) teniendo en cuenta los siguientes criterios:			
	Permitir sólo el acceso desde Internet a los servidores Web.			
	Permitir el acceso desde la red de administración a la red de servidores.			
	 Permitir que sólo se conecte a Internet la red de empleados 			

Ejercicio 10.

Una empresa nos ha solicitado la puesta a punto de su red. La empresa tiene 5 ordenadores para los directivos, 40 ordenadores para los empleados, 20 para uso exclusivo para internet y 10 servidores. De los servidores, 8 son servidores web externos y 2 son para la intranet de la empresa.

Física	Realizar el esquema de la red física (cableado, hub, switch, routers,)				
Lógica	Conf. Internet: Se disponen de direcciones públicas de clase C				
Configuraciones	Configurar los routers teniendo en cuenta los siguientes factores:				
	 Los empleados se pueden conectar a la intranet y a internet. 				
	 Los equipos de de internet sólo pueden salir a internet. 				
	Los directivos se pueden conectar a cualquier red				

División de redes

Ejercicio 1.

Dividir la dirección de red 193.147.12.25/24 en las siguientes subredes:

• 4 redes de 50 ordenadores

¿Cuántas direcciones IP se pierden?

1. Calculo la dirección de red

193.147.12.0/24

2. Paso a binario

193.147.12.00000000/24

3. Calculo el número de bits que necesito para dividir ($2^n \ge n^o$ de divisiones)

 $2^2 \ge 4 \rightarrow \text{Utilizo 2 bits}$

4. Calculo el número de ordenadores que puede tener cada subred

Nueva máscara de red = 24 + 2 = 26

Número de ordenadores de cada red = $2(^{32-26})=2^6=64$ equipos

Como se pierden 2 equipos por cada red entonces realmente tengo 62 equipos

5. Realizo las divisiones

193.147.12.00000000/24

- 193.147.12.**00**000000/26 = 193.147.12.0/26
- -193.147.12.**01**000000/26 = 193.147.12.64/26
- -193.147.12.**10**000000/26 = 193.147.12.128/26
- 193.147.12.**11**000000/26 = 193.147.12.192/26

6. Calculo el número de equipos que se pierden

Número de redes = 4

Como pierdo 2 IPs por cada red, entonces pierdo 4*2=8 IPs (antes perdía únicamente 2)

Ejercicio 2.

Dividir la dirección de red 193.147.12.25/24 en las siguientes subredes:

- 3 redes de 50 ordenadores
- 4 redes de 12 ordenadores

¿Cuántas direcciones IP se pierden?

La primera división que hago es la de mayor número de ordenadores

1ª DIVISIÓN: 3 redes de 50 ordenadores

1. Calculo la dirección de red

193.147.12.0/24

2. Paso a binario

193.147.12.00000000/24

3. Calculo el número de bits que necesito para dividir ($2^n \ge n^o$ de divisiones)

$$2^2 \ge 4 \rightarrow \text{Utilizo 2 bits}$$

4. Calculo el número de ordenadores que puede tener cada subred

Nueva máscara de red = 24 + 2 = 26

Número de ordenadores de cada red = $2(^{32-26})=2^6=64$ equipos

Como se pierden 2 equipos por cada red entonces realmente tengo 62 equipos

5. Realizo las divisiones

193.147.12.00000000/24

- 193.147.12.**00**000000/26 = 193.147.12.0/26 red de 50 equipos - 193.147.12.**01**000000/26 = 193.147.12.64/26 red de 50 equipos - 193.147.12.1**0**000000/26 = 193.147.12.128/26 red de 50 equipos - 193.147.12.11000000/26 = 193.147.12.192/26

Ahora, voy a seguir dividiendo la dirección de red que queda libre.

2ª DIVISIÓN 4 redes de 12 ordenadores

1. Calculo la dirección de red

193.147.12.192/26

2. Paso a binario

193.147.12.11000000/26

3. Calculo el número de bits que necesito para dividir ($2^n \ge n^o$ de divisiones)

 $2^2 \ge 4 \rightarrow \text{Utilizo 2 bits}$

4. Calculo el número de ordenadores que puede tener cada subred

Nueva máscara de red = 26 + 2 = 28

Número de ordenadores de cada red = $2(^{32-28})=2^4=16$ equipos

Como se pierden 2 equipos por cada red entonces realmente tengo 14 equipos

5. Realizo las divisiones

193.147.12.11000000/26

- -193.147.12.11**00**00000/26 = 193.147.12.192/28
- 193.147.12.11**01**0000/26 = 193.147.12.208/28
- 193.147.12.11**10**0000/26 = 193.147.12.224/28
- 193.147.12.11**11**0000/26 = 193.147.12.240/28

RESULTADO FINAL

193.147.12.**00**0000000/24

- 193.147.12.**00**0000000/26 = 193.147.12.0/26 50 equipos
- 193.147.12.**01**000000/26 = 193.147.12.64/26 50 equipos
- 193.147.12.**10**000000/26 = 193.147.12.128/26 50 equipos
- 193.147.12.**11**000000/26 = 193.147.12.192/26
 - 193.147.12.11**00**0000/26 = 193.147.12.192/28 12 equipos
 - 193.147.12.11**01**0000/26 = 193.147.12.208/28 12 equipos
 - 193.147.12.11**10**0000/26 = 193.147.12.224/28 12 equipos
 - 193.147.12.11**11**0000/26 = 193.147.12.240/28 12 equipos

Calculo el número de equipos que se pierden

Número de redes = 7

Como pierdo 2 IPs por cada red, entonces pierdo 7*2=14 IPs (antes perdía únicamente 2)

Ejercicio 3.

Dividir la dirección de rede 124.12.2.3/16 en las siguientes subredes:

- 5 redes de 12.000 ordenadores
- 2 redes de 2.000 ordenadores

¿Cuántas direcciones IP se pierden?

Ejercicio 4.

Divide la dirección de red 127.0.0.1/24 en las siguientes subredes:

- 2 redes de 100 ordenadores
- 3 redes de 400 ordenadores

¿Cuántas direcciones IP se pierden?

Ejercicio 5.

Dividir la dirección de red 145.35.128.0/18 en las siguientes subredes

- a) 3 redes de 400 ordenadores
- b) 2 redes de 110 ordenadores
- c) 3 redes de 1100 ordenadores

¿Cuántas direcciones IP se pierden?

Ejercicio 6.

Divide la red 135.41.0.0/16 en las siguientes partes: 3 subredes de hasta 16.000 hosts, 1 subred de hasta 8.000 hosts, 7 subredes de 1.000 hosts, 8 subredes de hasta 120 hosts. ¿Cuántas direcciones IP se pierden?

Ejercicio 7.

Dividir la dirección de red 132.12.13.43 /16 en las siguientes subredes:

- a) 1 red de 12.000 ordenadores
- b) 1 red de 5.000 ordenadores
- c) 3 redes de 3.000 ordenadores
- d) 3 redes de 1.000 ordenadores
- e) 8 redes de 100 ordenadores

¿Cuántas direcciones IP se pierden?

Ejercicio 8.

Una compañía telefónica nos ha solicitado dividir su dirección de clase A 24.0.0.0/8 en las siguientes redes:

- 31 redes de 250 ordenadores destinados para almacenar los diferentes servidores de la empresa
- 15 redes de 250.000 ordenadores para las diferentes empresas de acceso a Internet que tiene la compañía.
- 3 redes de 4 millones de ordenadores destinados a los continentes de América, Europa y Asia
- 31 redes 8000 ordenadores para cada una de las sedes que tiene a lo largo del mundo
- 4 redes de 50 ordenadores para permitir el acceso telefónico a los altos ejecutivos de la empresa.

¿Cuántas direcciones IP se pierden?

Configuración de routers

Ejercicio 1.

Completa la siguiente tabla de enrutado

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción
Eth1	150.215.75.0/24	140.168.0.0/24	-	Aceptar
Eth2	140.168.0.0/24	150.215.75.0/24	-	Aceptar
-	0/0	0/0	-	Denegar

Ejercicio 2.

Completa la siguiente tabla de enrutado teniendo en cuenta que se tiene que permitir el acceso desde Internet al servidor web con la dirección IP 140.168.0.5

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción

Ejercicio 3.

Completa la siguiente tabla de enrutado

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción
Eth2	192.168.0.0/24	0/0	-	Aceptar (NAT)
Eth3	192.168.10.0/24	192.168.0.0/24	-	Aceptar
-	0/0	0/0	-	Denegar

Ejercicio 4.

Completa la siguiente tabla de enrutado teniendo en cuenta que se tiene que permitir el acceso desde Internet al servidor 192.168.0.54

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción

Ejercicio 5.

Completa la siguiente tabla de enrutado

Dirección de origen	Dirección de destino	Puerto	Acción
	Dirección de origen	Dirección de origen Dirección de destino	Dirección de origen Dirección de destino Puerto

Ejercicio 6.

Completa las siguientes tablas de enrutado

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción
Eth2	192.168.10.0/24	0/0	-	Aceptar (NAT)
-	0/0	0/0	-	Denegar

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción
Eth2	192.168.10.0/24	0/0	-	Aceptar
-	0/0	0/0	-	Denegar

Ejercicio 7.

Completa las siguientes tablas de enrutado teniendo en cuenta que hay que permitir el acceso desde Internet al servidor de páginas Web (puerto 80) que se encuentra en la dirección 192.168.0.5

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción

		192.168.0.7/24	Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción
	F						
		Eth2					
		192.168.10.1/24					
\prec		. Li					

Ejercicio 8.

Completa las siguientes tablas de enrutado teniendo en cuenta que hay que permitir el acceso desde Internet al servidor de páginas Web (puerto 80) que se encuentra en la dirección 140.168.0.5

Dirección de origen	Dirección de destino	Puerto	Acción
	Dirección de origen	Dirección de origen Dirección de destino	Dirección de origen Dirección de destino Puerto

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción

Ejercicio 9.

Completa las siguientes tablas de enrutado.

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción
Eth1	0/0	140.168.80.0/24	-	Aceptar
Eth2	140.168.80.0/24	0/0	-	Aceptar
-	0/0	0/0	-	Denegar

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción
Eth2	192.168.0.0/24	0/0	-	Aceptar (NAT)
-	0/0	0/0	-	Denegar

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción
Eth1	10.0.0.0/24	192.168.0.0/24	-	Aceptar
Eth2	192.168.0.0/24	10.0.0.0/24	-	Aceptar
-	0/0	0/0	-	Denegar

Ejercicio 10.

Completa la siguiente tabla de enrutado teniendo en cuenta que hay que permitir que desde Internet y desde la zona privada se acceda a los servidores 192.168.80.81/24 y 192.168.80.8/24. Además hay que tener en cuenta que la conexión a Internet de la Zona Privada se realiza a través de la Zona Neutra.

Interfaz	Dirección de origen	Dire desti		Puert	o	Acció	n
Interfaz	Dirección de origen	Dire desti		Puert	0	Acció	n
Interfaz	Dirección de ori	gen	Dirección de destino		P	uerto	Acción

Interfaz	Dirección de origen	Dirección de destino	Puerto	Acción