Learning Biosphere Response

to Climate Drivers Using Echo State Observers

VEGETATION RESPONSE to climate drivers is challenging to model due to the long term trends, nonlinear response to weather stimuli, and stochasticity.

- Can a data driven algorithm trained only on atmospheric observables reproduce the biosphere dynamics?
- Can this model also replicate the vegetation response to extreme events?

ECHO STATE NETWORKS are machine learning models based on recurrent neural networks:

- Trained without backpropagation
- Faster and computationally less expensive
- No vanishing/exploding gradients
- Suited to model chaotic systems¹

States equation²

 $\mathbf{x}(t + \Delta t) = (1 - \alpha)\mathbf{x}(t) + \alpha f(\mathbf{W}\mathbf{x}(t) + \mathbf{W}_{\mathsf{in}}\mathbf{u}(t))$

Training with ridge regression.

$$\mathbf{W}_{\mathsf{out}} = \mathbf{Y}^{\mathsf{target}} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{X}^{\mathsf{T}} + \beta \mathbf{I})^{-1}$$

Prediction: $\mathbf{v}(t) = g(\mathbf{W}_{\text{out}}\mathbf{x}(t))$

OBSERVERS are estimators of the state of a dynamical system:

- Consider u(t) and v(t) from same system
- After time T we only observe to u(t)
- An observer returns a valid estimation of v(t) given u(t)

DATA taken from^{3,4}

- Different forest types
- Different climate zones

RESULTS

- Overall good prediction values
- Some locations show irregular behaviour, harder to predict
- The majority has a strong seasonal component

Download this poster!

GREENNESS ANOMALIES can be defined using the following formula⁵, and checking for values >1

$$A(i) = \frac{NDVI(i) - \overline{NDVI}}{\sigma(NDVI)}$$

Decrease in accuracy measures during anomalies

MAE 30.7%
R² 34.8%
RMSE 66.4%

CONCLUSIONS

- The ESNs are able to replicate vegetation dynamics
- Repercussions of extreme events, defined as anomalies in the NDVI signal, show a decrease in the accuracy of the prediction

REFERENCES

- 1: Chattopadhyay, A et al. (2020) 2: Jaeger, H. (2001)
- 3: Walther, S. et al. (2022)
- 4: Cornes, R. C. .et al. (2018)