WHAT IS CLAIMED IS:

1. A photopolymerizable composition comprising a polymerizable compound having an ethylenically unsaturated bond, a compound represented by the following general formula (1), and an organoboron compound represented by the following general formula (A):

General formula (1)

$$Z^1$$
 Q^1
 R^1
 Z^2
 Q^2
 R^2

wherein Q^1 to Q^3 each independently represents an oxygen atom or a sulfur atom; R^1 and R^2 each independently represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group; and Z^1 and Z^2 each independently represents a substituent necessary for the compound represented by the general formula (1) to become a dye;

General formula (A)

wherein $R_a^{\ 1}$, $R_a^{\ 2}$, and $R_a^{\ 3}$ each independently represents an aliphatic group, an aromatic group, a heterocyclic group, or $-\mathrm{Si}R_a^{\ 5}R_a^{\ 6}R_a^{\ 7}$ where $R_a^{\ 5}$, $R_a^{\ 6}$, and $R_a^{\ 7}$ each independently represents

BIL

an aliphatic group or an aromatic group; R_a^4 represents an aliphatic group, and Y^* represents a group capable of forming a cation.

2. A photopolymerizable composition according to claim 1, wherein the compound represented by the general formula (1) is represented by the following general formula (4):

General formula (4)

$$G^1$$
 G^2
 $(L^2-L^1)_m$
 Q^3

wherein L^1 and L^2 each independently represents a methine group which may be substituted; m represents an integer of 0 to 3; and G^1 and G^2 each independently represents an electron-withdrawing group, or G^1 and G^2 join together to form an aromatic ring or a heterocycle.

3. A photopolymerizable composition comprising a polymerizable compound having an ethylenically unsaturated bond, a compound represented by the following general formula (2), and a compound capable of interacting with the compound represented by the following general formula (2) to generate a radical:

General formula (2)

wherein X^1 represents NR^{12} , a sulfur atom, a selenium atom, or an oxygen atom; R^4 , R^5 , and R^{12} each independently represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group; and R^6 , R^7 , R^8 , R^9 , R^{10} , and R^{11} each independently represents a hydrogen atom or a monovalent substituent, with the proviso that two or more selected from R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , and R^{12} may join together to form a ring.

4. A photopolymerizable composition according to claim 3, wherein the compound capable of interacting with the compound represented by the general formula (2) to generate a radical is an organoboron compound represented by the following general formula (A):

General formula (A)

wherein $R_a^{\ 1}$, $R_a^{\ 2}$, and $R_a^{\ 3}$ each independently represents an aliphatic group, an aromatic group, a heterocyclic group, or $-\mathrm{SiR_a}^5 R_a^{\ 6} R_a^{\ 7}$ where $R_a^{\ 5}$, $R_a^{\ 6}$, and $R_a^{\ 7}$ each independently represents

an aliphatic group or an aromatic group; R_a^4 represents an aliphatic group; and Y^* represents a group capable of forming a cation.

5. A photopolymerizable composition comprising a polymerizable compound having an ethylenically unsaturated bond, a compound represented by the following general formula (3), and a compound capable of interacting with the compound represented by the following general formula (3) to generate a radical:

General formula (3)

wherein R^{13} and R^{14} each independently represents a hydrogen atom or a monovalent substituent; and Z^3 and Z^4 each independently represents a substituent necessary for the compound represented by the general formula (3) to become a dye.

6. A photopolymerizable composition according to claim 5, wherein the compound represented by the general formula (3) is represented by the following general formula (5):

General formula (5)

$$G^{1}$$
 G^{2} $(L^{2}-L^{1})_{m}$ S R^{13} R^{14}

wherein L^1 and L^2 each independently represents a methine group which may be substituted; m represents an integer of 0 to 3; and G^1 and G^2 each independently represents an electron-withdrawing group substituent or G^1 and G^2 join together to form an aromatic ring or a heterocycle.

7. A photopolymerizable composition according to claim 5, wherein the compound capable of interacting with the compound represented by the general formula (3) to generate a radical is an organoboron compound represented by the following general formula (A):

General formula (A)

wherein $R_a^{\ 1}$, $R_a^{\ 2}$, and $R_a^{\ 3}$ each independently represents an aliphatic group, an aromatic group, a heterocyclic group, or $-\operatorname{SiR}_a^{\ 5}R_a^{\ 6}R_a^{\ 7}$ where $R_a^{\ 5}$, $R_a^{\ 6}$, and $R_a^{\ 7}$ each independently represents an aliphatic group or an aromatic group; $R_a^{\ 4}$ represents an aliphatic group; and Y represents a group capable of forming

a cation.

8. A photopolymerizable composition according to claim 7, wherein the compound represented by the general formula (3) is represented by the following general formula (5):

General formula (5)

$$G^1$$
 $(L^2-L^1)_m$ S R^{13} R^{14}

wherein L^1 and L^2 each independently represents a methine group which may be substituted; m represents an integer of 0 to 3; and G^1 and G^2 each independently represents an electron-withdrawing group or G^1 and G^2 join together to form an aromatic ring or a heterocycle.

- 9. A recording material comprising a support having disposed thereon a recording layer containing at least microcapsules enclosing a color-forming component and the photopolymerizable composition described in claim 1, wherein the polymerizable compound having an ethylenically unsaturated bond is a compound having a site which reacts with the color-forming component and causes the color-forming component to develop a color.
- 10. A recording material according to claim 9 having a multilayer structure produced by laminating at least three recording layers to one another, each recording layer being

sensitive to light of a different wave length, and each recording layer developing a different color when used for recording.

- 11. A recording material comprising a support having disposed thereon a recording layer containing at least microcapsules enclosing a color-forming component, a color-forming compound which reacts with the color-forming component to develop a color, and the photopolymerizable composition according to claim 1, wherein the polymerizable compound having an ethylenically unsaturated bond is a color formation inhibiting compound having a site which inhibits the reaction between the color-forming component and the color-forming compound.
- 12. A recording material according to claim 11 having a multilayer structure produced by laminating at least three recording layers to one another, each recording layer being sensitive to light of a different wave length, and each recording layer developing a different color when used for recording.
- 13. A recording material comprising a support having disposed thereon a recording layer containing at least microcapsules enclosing a color-forming component and the photopolymerizable composition according to claim 3, wherein the polymerizable compound having an ethylenically unsaturated bond is a compound having a site which reacts with the color-forming component and causes the color-forming component to develop a color.

- 14. A recording material according to claim 13 having a multilayer structure produced by laminating at least three recording layers to one another, each recording layer being sensitive to light of a different wave length, and each recording layer developing a different color when used for recording.
- 15. A recording material comprising a support having disposed thereon a recording layer containing at least microcapsules enclosing a color-forming component, a color-forming compound which reacts with the color-forming component and causes the color-forming component to develop a color, and the photopolymerizable composition according to claim 3, wherein the polymerizable compound having an ethylenically unsaturated bond is a color formation inhibiting compound having a site which inhibits the reaction between the color-forming component and the color-forming compound.
- 16. A recording material according to claim 15 having a multilayer structure produced by laminating at least three recording layers to one another, each recording layer being sensitive to light of a different wave length, and each recording layer developing a different color when used for recording.
- 17. A recording material comprising a support having disposed thereon a recording layer containing at least microcapsules enclosing a color-forming component and the photopolymerizable composition according to claim 5, wherein

the polymerizable compound having an ethylenically unsaturated bond is a compound having a site which reacts with the color-forming component and causes the color-forming component to develop a color.

- 18. A recording material according to claim 17 having a multilayer structure produced by laminating at least three recording layers to one another, each recording layer being sensitive to light of a different wave length, and each recording layer developing a different color when used for recording.
- 19. A recording material comprising a support having disposed thereon a recording layer containing at least microcapsules enclosing a color-forming component, a color-forming compound which reacts with the color-forming component to develop a color, and the photopolymerizable composition according to claim 5, wherein the polymerizable compound having an ethylenically unsaturated bond is a color formation inhibiting compound having a site which inhibits the reaction between the color-forming component and the color-forming compound.
- 20. A recording material according to claim 19 having a multilayer structure produced by laminating at least three recording layers to one another, each recording layer being sensitive to light of a different wave length, and each recording layer developing a different color when used for recording.

all