Chapitre

Régime sinuosidal forcé

Les solutions sont de la forme une exponetielle qui tend vers o et une expression sinusodiale que l'on va chercher à trouver

Pour un temps sufisament grand devant au, toutes les quantités deviennent sinusoidales et sont caractérsiées par une aplitude et un décalage de phase.

6. Notation complexes

6.1. Définitions

Soit $u(t)=u_m\cos(\omega t+\varphi_u)$. On définit $\underline{U(t)}=U_me^{j(\omega t+\varphi_u)}=\underline{U_m}e^{j\omega t}$ avec $\underline{U_m}=U_me^{j\varphi_u}$.

Le module de $\underline{U_m}$ est l'amplitude et son argument est la phase à l'origine.

Cela ne fonctionne que pour des circuits linéaires.

6.1. Dérivées de grandeurs complexes

La partie réelle de la dérivée de U complexe vaut la dérivée de nu réel.

On peut montrer que dériver par rapport au temps c'est multiplier par $j\omega$, intégrer c'est diviser par cette quantité.

6. Impédance des dipoles classiques

6.2. Définition de l'impédance

En régime sinusoidal forcé, on pourra toujours trouver une relation de type loi d'ohm pour tout les dipoles, c'est à dire $\underline{U}=\underline{zi}$. \underline{z} est l'impédance du dipole.

6.2. Propriétés

L'impédance vérifie les mêmes propriétés d'association que les résistances.

6.2. Impédance des dipoles élémentaires

Résistance

L'impédance d'une résistance est sa résistance.

Condensateur

L'impédance vaut $\frac{1}{jc\omega}$

Bobine

Elle vaut $jL\omega$

6.2. Pont diviseur de tension/de courant

On applique les mêmes propriétés que pour les grandeurs réelles.

6. Puissance en régime sinusoidal forcé

6.3. Définition

 $i = I\cos(\omega t - \varphi) = I_e\sqrt{2}\cos(\omega t - \varphi)$ et $u = U\cos(\omega t) = U_e\sqrt{2}\cos(\omega t)$.

ÉLECTROCINÉTIQUE & Régime sinuosidal forcé, Adaptation d'impédance

La puissance instantannée : $p = u(t) \times i(t)$.

La puissance moyenne $p_m = \frac{1}{T} = \int_0^T p(t) \mathrm{d}t$ avec $T = \frac{2\pi}{\omega}$.

On résout l'intégrale : $\frac{1}{T}\in 2I_eU_e\cos(\omega t-\varphi)\cos(\omega t)\mathrm{d}t=I_eU_e(\cos(\varphi)+\cos(2\omega t-\varphi))$. Donc $P_m=U_eI_e\cos(\varphi)$ avec le cosinus appelé facteur de puissance.

L'impédance est telle que $\underline{U}=\underline{zi}$. On obtient $\underline{z}=\frac{U_e}{I_e}e^{j\varphi}$

 $\cos(\varphi)=\frac{R}{|z|}.$ La puissance consommée est celle consommée par la partie résistive (réelle) de $\underline{z}.$

6.3. Adaptation d'impédance

 $P_m=R imes I_e^2$ qui est la puissance moyenne consommée par R+jX.

Donc $P_m=R\frac{E_e^2}{(r+R)^2+(x+X)^2}$. Pour que Pm soit maximal, il faut que $(x+X)^2=0 \Rightarrow x=-X$. De plus, comme la dérivée de Pm est nulle, r=R.

Il faut donc adapter l'impédance.