

Traitement et Analyse d'Images

Réseaux de neurones Stratégies d'optimisation

Stratégies d'optimisation

Descente de gradient par mini-batch

Mini-batch gradient descent

└ Mini-batch

Descente de gradient par mini-batch

- La taille de la base de données peut dépasser plusieurs millions
- ▶ Dans ce cas, il est impossible de charger la matrice X en mémoire CPU ou GPU
- On organise l'ensemble de la base de données en plusieurs « mini-batch » de taille plus petite (que l'on peut charger en mémoire)

└ Mini-batch

Création de mini-batch $\{X^{\{t\}}, y^{\{t\}}\}$

$$X = [x^{(1)} \ x^{(2)} \ x^{(3)} \ \cdots \ x^{(5.000.000)}]$$
 avec $X \in \mathbb{R}^{[n_x \times n_y \times m]}$
 $y = [y^{(1)} \ y^{(2)} \ y^{(3)} \ \cdots \ y^{(5.000.000)}]$ avec $y \in \mathbb{R}^{[1 \times m]}$

$$X = [x^{(1)} \ x^{(2)} \ x^{(3)} \cdots x^{(1000)}] \cdots | \cdots | x^{(5.000.000)}]$$

$$X^{\{1\}} \in \mathbb{R}^{[n_x \times n_y \times 1000]} \qquad X^{\{5000\}} \in \mathbb{R}^{[n_x \times n_y \times 1000]}$$

$$y = [y^{(1)} \ y^{(2)} \ y^{(3)} \cdots y^{(1000)}] \cdots | \cdots | \cdots | y^{(5.000.000)}]$$

$$y^{\{1\}} \in \mathbb{R}^{[1 \times 1000]} \qquad y^{\{5000\}} \in \mathbb{R}^{[1 \times 1000]}$$

Descente de gradient par mini-batch

```
Répéter jusqu'à convergence {
               Pour t=1,\cdots,5000 {  | propagation avant à partir de X^{\{t\}}   | calcul de l'énergie J^{\{t\}} = \frac{1}{1000} \sum_{i=1}^{1000} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) 
        \left\{ \begin{array}{l} \textit{propagation arrière à partir de } J^{\{t\}} \textit{ (via } \left( X^{\{t\}}, y^{\{t\}} \right) \textit{)} \\ W^{[l]} \coloneqq W^{[l]} - \alpha \textit{ d} W^{[l]} \\ b^{[l]} \coloneqq b^{[l]} - \alpha \textit{ d} b^{[l]} \\ \end{array} \right\}
```

└ Mini-batch

Descente de gradient par mini-batch

- ▶ 1 epoch = une passe au travers de l'ensemble de la base de données
- Dans l'exemple précédent, 1 epoch = 5000 itérations
- Lorsque l'on utilise une grande base de données, l'entrainement sur des mini-batch est beaucoup plus rapide

Entrainement par mini-batch

└ Mini-batch

Choix de la taille des mini-batch

- Taille = m descente de gradient classique $(X^{\{1\}}, y^{\{1\}}) = (X, y)$
- Taille = 1 descente de gradient stochastique $(X^{\{1\}}, y^{\{1\}}) = (x^{(1)}, y^{(1)})$
- Taille = s avec 1 < s < m willisée en pratique $(X^{\{1\}}, y^{\{1\}}) = ([x^{(1)} \cdots x^{(s)}], [y^{(1)} \cdots y^{(s)}])$

L Mini-batch

Choix de la taille des mini-batch

Minimum de la fonction d'énergie

Ligne de niveau de la fonction d'énergie

└ Mini-batch

Choix de la taille des mini-batch

L Mini-batch

Choix de la taille des mini-batch

- ► Taille de la base de données est relativement petite
 - implémenter une descente de gradient classique
- Sinon, taille typique de mini-batch
 - 16, 32, 64, 128, 256
 - Vérifier que la mémoire CPU/GPU n'est pas saturée

Optimisation de l'algorithme de descente de gradient

Motivations

L Motivations

Motivations

- Oscillations de haut en bas ralentissent la convergence de l'algorithme de descente de gradient
- Force l'utilisation d'un taux d'apprentissage α petit pour ne pas diverger apprentissage plus lent

└ Motivations

Motivations

Idéalement nous voulons

Apprentissage plus faible

Apprentissage plus rapide

L'introduction d'inertie permettrait de converger plus rapidement!

Moyenne pondérée exponentielle

Outil permettant d'exploiter des propriétés d'inertie pour le suivi de mesures

Mesures

$y_1, y_2, y_3, \cdots, y_t$

Valeurs associées calculées

$$\begin{cases} v_0 = 0 \\ v_t = \beta \ v_{t-1} + (1 - \beta) \ y_t \end{cases}$$

Moyenne les mesures autour de $\approx \frac{1}{1-\beta}$

Moyenne pondérée exponentielle

Outil permettant d'exploiter des propriétés d'inertie pour le suivi de mesures

Descente de gradient avec élan

Gradient descent with momentumMomentum

Le Descente de gradient avec élan

Descente de gradient classique

```
Répéter jusqu'à convergence \{ \\ propagation avant \\ propagation arrière \\ W^{[l]} \coloneqq W^{[l]} - \alpha \ dW \\ b^{[l]} \coloneqq b^{[l]} - \alpha \ db \\ \}
```

Descente de gradient avec élan

```
V_{dw} = 0 et V_{db} = 0
Répéter jusqu'à convergence
  propagation avant
  propagation arrière
  V_{dw} \coloneqq \beta V_{dW} + (1 - \beta)dW
  V_{db} \coloneqq \beta V_{db} + (1 - \beta)db
  W^{[l]} \coloneqq W^{[l]} - \alpha V_{dw}
   b^{[l]} \coloneqq b^{[l]} - \alpha V_{dh}
```

Le Descente de gradient avec élan

Descente de gradient avec élan

- Descente de gradient classique
- Descente de gradient classique avec élan

ightharpoonup Classiquement on choisit $\beta = 0.9$

Moyenne avec ≈ 10 dernières valeurs de gradient

Descente de gradient RMSprop

RMSprop

L Descente de gradient « RMSprop »

Descente de gradient « RMSprop »

- Même idée que pour la descente de gradient avec élan
- Introduction de phénomène d'inertie lors de la descente de gradient

Legislation Descente de gradient « RMSprop »

Descente de gradient classique

```
Répéter jusqu'à convergence \{ propagation \ avant \\ propagation \ arrière \\ W^{[l]} \coloneqq W^{[l]} - \alpha \ dW \\ b^{[l]} \coloneqq b^{[l]} - \alpha \ db \\ \}
```

Descente de gradient « RMSprop »

```
S_{dw} = 0 et S_{db} = 0
Répéter jusqu'à convergence
  propagation avant
  propagation arrière
  S_{dw} \coloneqq \beta S_{dW} + (1 - \beta)dW^2
  S_{db} := \beta S_{db} + (1 - \beta)db^2
  W^{[l]} \coloneqq W^{[l]} - \alpha \ dw / \sqrt{S_{dw}} + \varepsilon
  b^{[l]} \coloneqq b^{[l]} - \alpha \, db / \sqrt{S_{db} + \varepsilon}
```

Optimisation ADAM

ADAptive Moment estimation

Optimisation ADAM

Utilisation de l'algorithme Momentum et RMSprop

```
V_{dw} = 0, V_{dh} = 0, S_{dW} = 0 et S_{dh} = 0
Répéter jusqu'à convergence
  propagation avant
  propagation arrière
  V_{dw} \coloneqq \beta V_{dW} + (1 - \beta) dW, V_{db} \coloneqq \beta V_{db} + (1 - \beta) db
  S_{dw} := \beta S_{dW} + (1 - \beta) dW^2, S_{dh} := \beta S_{dh} + (1 - \beta) db^2
  W^{[l]} \coloneqq W^{[l]} - \alpha \frac{V_{dW}}{\sqrt{S_{dw} + \epsilon}} , b^{[l]} \coloneqq b^{[l]} - \alpha \frac{V_{db}}{\sqrt{S_{db} + \epsilon}}
```

└ Optimisation ADAM

Optimisation ADAM

Hyperparamètres

```
\alpha: Nécessité de le fixer à la main \beta_1: 0.9 \longrightarrow (dw) \beta_2: 0.98 \longrightarrow (dw^2) \varepsilon: 10 -8
```

Normalisation par batch

Batch normalization

► Normalisation par batch

Normalisation par batch

- Normalisation de la sortie d'une couche via la moyenne et l'écart type de chaque batch
- ightharpoonup Déplacement eta et échelle γ optimaux appris par le réseau

Stabilise le processus d'apprentissage

Permet une convergence plus rapide

Normalisation par batch

Entrées Valeurs de $x^{(i)}$ d'un mini-batch $X^{\{t\}} = \{x^{(1)} \cdots x^{(T)}\}$

Paramètres γ et β à apprendre

Sortie
$$\left\{\widetilde{x^{(i)}} = BN_{\gamma,\beta}(x^{(i)})\right\}$$

$$\mu_{X^{\{t\}}} = \frac{1}{T} \sum_{i=1}^{T} x^{(i)} \qquad \sigma_{X^{(t)}}^2 = \frac{1}{T} \sum_{i=1}^{T} (x^{(i)} - \mu_{X^{\{t\}}})^2$$

Mini-batch mean and variance

$$\widehat{x^{(i)}} = \frac{x^{(i)} - \mu_{X^{\{t\}}}}{\sqrt{\sigma_{X^{(t)}}^2 + \epsilon}}$$

Normalize

$$\widetilde{x^{(i)}} = \gamma \widehat{x^{(i)}} + \beta \equiv BN_{\gamma,\beta}(x^{(i)})$$

Scale and shift

Dropout

L Dropout

Dropout

Pendant l'entrainement, éteindre des neurones de façon aléatoire avec une probabilité p

Meilleure distribution de l'information extraite de la couche précédente

Apprentissage implicite d'un ensemble de réseaux

Réseau de neurones profond standard

Réseau de neurones profond avec dropout

Gestion d'une base de données

Entrainement / validation / test

Tout est question de distribution!

Motivation

L'entrainement doit permettre la généralisation de l'algorithme sur des nouvelles bases de données

Comment caractériser la distribution d'une base de données ?

$$p_{\theta}(x) = ?$$

☐ Entrainement / validation / test

Tout est question de distribution!

- Estimation de la distribution au travers de critères plus simples
 - Age, genre, couleur de peau, ...
- Création de 3 bases de données en respectant la (les) distribution(s)

Base d'entrainement	60%			
Base de validation	20%			© © ©
Base de test	20%	Entrainement	Validation	Test

Apprentissage d'un modèle

Sur-apprentissage

☐ Entrainement / validation / test

Validation croisée

Découpage de l'ensemble de la base de données en (5) sousgroupes ayant les même distributions

Ensemble de la base de données

└ Entrainement / validation / test

Validation croisée

Apprentissage de (5) modèles: l'ensemble de la bd sera testée !

└ Entrainement / validation / test

Validation croisée

Apprentissage de (5) modèles: l'ensemble de la bd sera testée !

☐ Entrainement / validation / test

Validation croisée

Apprentissage de (5) modèles: l'ensemble de la bd sera testée !

L'ensemble de la base de données est vue en tant que base de test au travers des (5) modèles

Calcul des performances moyennes

That's all folks