Skolornas Matematiktävling

Svenska Matematikersamfundet

Kvalificeringstävling den 4 oktober 1995

1. Är det möjligt att något av heltalen x och y är delbart med 3 om

$$x^2 - y^2 = 1995$$
?

2. Beräkna summan av talen i det kvadratiska schemat:

1	2	3	• • •	99	100
2	3	4		100	101
3	4	5		101	102
:	•	:		•	:
100	101	102		198	199

- 3. I den spetsvinkliga triangeln ABC är |AB| < |AC| < |BC| och P är den punkt i triangeln från vilken man ser de tre sidorna under lika stora vinklar. Visa att |PA| < |PB| < |PC|.
- 4. Bestäm alla reella lösningar till ekvationen

$$\left(\sqrt{2+\sqrt{3}}\right)^x + \left(\sqrt{2-\sqrt{3}}\right)^x = 2^x.$$

5. Bestäm alla polynom P sådana att

$$xP(x-1) = (x-26)P(x)$$

för alla reella tal x.

6. Talet n är ett givet positivt ensiffrigt heltal. Heltalet a är sådant att a och a^n tillsammans har 361 siffror. Bestäm n.