1.4: Average Rate of Change

Problem 1. What is the average rate of change (A.R.o.C) and how do you calculate it?

Problem 2. How is the average rate of change related to secant and tangent lines?

Problem 3. Find the average rate of change of $y = \sqrt{x-3}$ between x = 4 and x = 7.

Problem 4. Find the average rate of change of $f(x) = \sin x + 3$ on the interval $[\pi/6, \pi/3]$.

Problem 5. A climber is on a hike. After 1 hour, he is at an altitude of 200 feet. After 5 hours, he is at an altitude of 600 feet. Find his average rate of change.

Problem 6. Use the table given below to calculate the average rate of change over the interval [2,6].

Time (s)	0	2	6	9	15
Distance (ft)	3	8	20	10	10

Problem 7. Let $f(x) = x^2 - 6x + 5$.

(a) Find the average rate of change of f(x) over the interval [3,5].

- (b) Sketch a graph of part (a) using the top graph.
- (c) Find slope of the secant line joining P(4, f(4)) and Q(4 + h, f(4 + h)).

- (d) What is the slope of the secant line if h = 1? h = -1?
- (e) Sketch a graph of part (d) using the bottom graph.
- (f) What is the slope of the secant line if h is very close to 0?
- (g) Write an equation of the tangent line at x = 4.

1.5: Limits and Vertical Asymptotes

Problem 8. Consider the graph of f(x) below. Evaluate the following:

- (a) $\lim_{x \to 1} f(x) =$
- (b) $\lim_{x \to 2} f(x) =$
- (c) $\lim_{x \to 3} f(x) =$
- (d) $\lim_{x \to 4} f(x) =$
- (e) $\lim_{x \to 3^{-}} f(x) =$

Problem 9. Describe the function f(x) shown below using at least 3 one-sided and 3 two-sided limit statements.

Problem 10. Sketch the graph of the following function and find $\lim_{x\to 3} g(x)$.

$$g(x) = \begin{cases} -x &, \quad x < 3 \\ -1 &, \quad x = 3 \\ x^2 - 13 &, \quad x > 3 \end{cases}$$
 What is $g(3)$? Does that value matter when finding $\lim_{x \to 3} g(x)$?

Problem 11. How do you find the vertical asymptotes of a rational function?

Problem 12. Find the vertical asymptotes of the following functions:

(a)
$$f(x) = \frac{1}{(x-1)(x+3)}$$

(b)
$$g(x) = \frac{x-1}{(x-1)(x+3)}$$

(c)
$$h(x) = \frac{x^2 + 3x + 2}{x^2 - 4}$$

Problem 13. Graph $f(x) = \frac{1}{x^2}$.

(a)
$$\lim_{x\to 0^-} \frac{1}{x^2} =$$

(b)
$$\lim_{x \to 0^+} \frac{1}{x^2} =$$

(c)
$$\lim_{x\to 0} \frac{1}{x^2} =$$

Problem 14. Graph $f(x) = \frac{1}{x-5}$.

(a)
$$\lim_{x\to 5^-} \frac{1}{x-5} =$$

(b)
$$\lim_{x \to 5^+} \frac{1}{x^2} =$$

(c)
$$\lim_{x \to 5} \frac{1}{x - 5} =$$

Problem 15. Webwork Help! 1.5 #12: Consider the function $f(x) = x^3 \sec x$ on the interval $[0, \pi]$.

(a) When does f have a vertical asymptote?

(b) Evaluate $\lim_{x \to \frac{\pi}{2}^-} x^3 \sec x$ and $\lim_{x \to \frac{\pi}{2}^+} x^3 \sec x$.