$\begin{array}{c} {\rm SoSe~2025} \\ \\ {\rm \ddot{U}bungsblatt~6} \\ \\ {\rm Ausgabe:~19.06.2025} \end{array}$

Übungen zur Vorlesung "Logik" 6. Übungsblatt

H 6-1. Normalformen

a) Kreuzen Sie in der Tabelle an, ob die betreffende Formel in Negationsnormalform (NNF), Bereinigter Form (BF), Pränexnormalform (PNF) oder Skolemnormalform (SNF) vorliegt. (4 Pkt.)

Formel	NNF	\mathbf{BF}	PNF	SNF
$\neg \forall x \exists y (P(x,y) \land \neg Q(y))$				
$\forall x \neg P(x) \lor (\exists y R(x,y) \land \forall z \neg R(z,y))$				
$\exists y \forall x \neg (P(x,y) \vee B(z))$				
$\forall x \forall y (\neg P(x,y) \vee \neg Q(y))$				

b) Forme in nachvollziehbaren Schritten die nachfolgende Formel in eine semantisch äquivalente PNF um: (2 Pkt.)

$$\forall x \,\exists y \,\neg \forall z \, P(f(x,y),z) \ \wedge \ \neg \forall x \,\exists z \, Q(x,z,y)$$

c) Erstellen Sie eine Skolemnormalform der nachfolgenden Formel: (2 Pkt.)

$$\exists x \, \forall y \, \forall z \, \exists u \, \exists v \, (P(y,z,u) \land Q(x,u,v))$$

H 6-2. Herbrand-Strukturen

- a) Gegeben sei die Formel $\varphi_1 = P(f(x), z) \wedge Q(g(z, x))$. Geben Sie sechs verschiedene Elemente des Herbrand-Universums $D(\varphi_1)$ an. (1 Pkt.)
- **b)** Gegeben sei die Formel $\varphi_2 = \forall x \forall y \forall z (P(x,c) \land (Q(d) \rightarrow P(y,z))).$ (4 Pkt.)
 - i) Wie viele verschiedene Herbrand-Strukturen gibt es für φ_2 ?
 - ii) Spezifizieren Sie ein Herbrand-Modell $\mathfrak A$ von φ_2 . Es reicht, $P^{\mathfrak A}$ und $Q^{\mathfrak A}$ anzugeben, wobei $P^{\mathfrak A} \neq U^{\mathfrak A} \times U^{\mathfrak A}$ und $Q^{\mathfrak A} \neq \emptyset$ erfüllt sein soll.
 - iii) Spezifizieren Sie eine Herbrand-Struktur \mathfrak{B} für φ_2 , welche eine Widerlegung von φ_2 ist. Es reicht, $P^{\mathfrak{B}}$ und $Q^{\mathfrak{B}}$ anzugeben, wobei $\{(c,c),(d,c)\}\subseteq P^{\mathfrak{B}}$ erfüllt sein soll.
- c) Gegeben sei die Formel $\varphi_3 = \forall x P(x, f(x))$. Sei des Weiteren \mathfrak{C} Herbrand-Struktur mit folgender Prädikatinterpretation: Für alle $t_1, t_2 \in D(\varphi_3)$ gilt, (1 Pkt.)

$$(t_1, t_2) \in P^{\mathfrak{C}}$$
 gdw. $f^{\mathfrak{C}}(t_1) = t_2$

Ist \mathfrak{C} Herbrand-Modell von φ_3 ? Kurze Begründung.

d) Gegeben sei die Formel $\varphi_4 = \forall x \forall y \forall z (P(f(x), y, g(z, z)) \rightarrow Q(y, g(z, z)))$. Sei des Weiteren \mathfrak{D} Herbrand-Struktur mit folgender Prädikatinterpretation: Für alle $t_1, t_2, t_3 \in D(\varphi_4)$ und $s_1, s_2 \in D(\varphi_4)$ gilt, (2 Pkt.)

$$(t_1, t_2, t_3) \in P^{\mathfrak{D}}$$
 gdw. $g^{\mathfrak{D}}(t_1, t_1) = g(g(t_3, t_3), t_2),$
 $(s_1, s_2) \in Q^{\mathfrak{D}}$ gdw. $f^{\mathfrak{D}}(s_1) = f(g(s_2, s_2))$

Ist ${\mathfrak D}$ Herbrand-Modell von $\varphi_4?$ Kurze Begründung.

H 6-3. Algorithmus von Gilmore

- a) Gegeben sei die Formel $\varphi = \forall x \, \forall y \, (\neg R(x, y) \land R(c, f(c))).$ (2 Pkt.)
 - i) Geben Sie vier verschiedene Elemente des Herbrand-Expansion $E(\varphi)$ an.
 - ii) Terminiert der Algorithmus von Gilmore für φ ? Ohne Begründung.
- b) Gegeben sei eine gleichheitsfreie Formel ψ . Erläutern Sie in wenigen Sätzen, wie die Allgemeingültigkeit von ψ algorithmisch nachgewiesen werden kann. (2 Pkt.)

Termine:

- Abgabe der Aufgaben bis spätestens 29.06.2025 via moodle.
- Besprechung der Aufgaben ab Montag, dem 30.06.2025 (A-Woche).