Sistemas Digitais

ET46B

Prof. Eduardo Vinicius Kuhn

kuhn@utfpr.edu.br Curso de Engenharia Eletrônica Universidade Tecnológica Federal do Paraná

Capítulo 2 Sistemas de numeração e códigos

- 2.1 Conversões de binário para decimal
- 2.2 Conversões de decimal para binário
- 2.3 Sistema de numeração hexadecimal
- 2.4 Código BCD
- 2.5 Código Gray
- 2.6 Relações entre as representações numéricas
- 2.7 Bytes, nibbles e palavras
- 2.8 Códigos alfanuméricos

Jniversidade Tecnológica Federal do

- Converter um número de um sistema de numeração (e.g., decimal, binário ou hexadecimal) para outro.
- Abordar o sistema de numeração hexadecimal e destacar as suas vantagens.
- Tratar da representação de números decimais usando o código BCD e explicitar a diferença para a representação binária.
- Introduzir o código Gray, código Johnson, codificação one-hot e um exemplo de código alfanumérico (i.e., o ASCII).
- Definir o conceito de bytes, nibbles e palavras.

Universidade Tecnológica Federal do Paraná

$$x = (d_n \dots d_0, d_{-1} \dots d_{-m})_B, \quad n, m \in \mathbb{Z}$$

 $x=(d_n\dots d_0,\, d_{-1}\dots d_{-m})_B,\quad n,m\in\mathbb{Z}$ representado em um sistema de numeração de base B (e.g., 2, 8, 10, 16), com D dígitos d_n .

A partir disso, é possível mostrar que x pode ser expresso como

artir disso, é possível mostrar que
$$x$$
 pode ser expresso co
$$x=d_nB^n+\ldots+d_0B^0+d_{-1}B^{-1}+\ldots+d_{-m}B^{-m}$$

Vale destacar que essa representação é também válida para outros sistemas de numeração posicionais.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Revisitando o sistema de numeração decimal

- O sistema decimal é composto por 10 símbolos dígitos.
- Base 10 por ter dez dígitos, i.e., 0-9.
- É um sistema posicional.
- MSD (dígito mais a esquerda) e LSD (dígito mais a direita).
- A palavra dígito é derivada da palavra 'dedo' em latim.

Exemplo: Como representar o número 2745,214₁₀?

attes.cnpq.br/245665406438018(

Revisitando o sistema de numeração decimal

- O sistema decimal é composto por 10 símbolos/dígitos.
- Base 10 por ter dez dígitos, i.e., 0-9.
- É um sistema posicional.

Universidade Tecnológica Federal do

- MSD (dígito mais a esquerda) e LSD (dígito mais a direita).
- A palavra dígito é derivada da palavra 'dedo' em latim.

Exemplo: Como representar o número $2745,214_{10}$?

$$(2\times10^3)+(7\times10^2)+(4\times10^1)+(5\times10^0)+(2\times10^{-1})+(1\times10^{-2})+(4\times10^{-3})$$

lattes.cnpq.br/2456654064380180

Com D dígitos decimais, quantos números diferentes podem ser representados?

Com D dígitos decimais, quantos números diferentes podem ser representados?

 10^D números diferentes

$$\{0, \dots, 10^D - 1\}$$

Sistema de numeração binário

- O sistema binário é composto por 2 símbolos/dígitos.
- Base 2 por ter 2 dígitos, i.e., 0 e 1.
- É um sistema posicional.

Universidade Tecnológica Federal do Paraná

- MSB (bit mais a esquerda) e LSB (bit mais a direita).
- O termo dígito binário (binary digit) é abreviado para 'bit'.

Exemplo: Como representar o número 1011,101₂?

Sistema de numeração binário

- O sistema binário é composto por 2 símbolos/dígitos.
- Base 2 por ter 2 dígitos, i.e., 0 e 1.
- É um sistema posicional.

Jniversidade Tecnológica Federal do

- MSB (bit mais a esquerda) e LSB (bit mais a direita).
- O termo dígito binário (binary digit) é abreviado para 'bit'.

Exemplo: Como representar o número $1011,101_2$?

$$(1\times2^3) + (0\times2^2) + (1\times2^1) + (1\times2^0) + (1\times2^{-1}) + (0\times2^{-2}) + (1\times2^{-3})$$

Contagem em um sistema de numeração binário

Universidade Tecnológica Federal do

Com D bits, quantos números diferentes podem ser representados?

Com D bits, quantos números diferentes podem ser representados?

 2^D números diferentes $\{0, \dots, 2^D - 1\}$

Jniversidade Tecnológica Federal do Paraná

- **Exemplo:** Considerando a representação binária, determine:
 - a) Qual é o número decimal equivalente a 11010112?
 - b) Qual é o número binário seguinte a 101112 em uma sequência de contagem?

c) Qual o maior número decimal que pode ser representado usando 8 bits?

d) Qual é o menor número decimal que pode ser representado usando 12 bits?

Sistema de numeração binário

Exemplo: Considerando a representação binária, determine:

- a) Qual é o número decimal equivalente a 1101011_2 ? **R**: 107_{10}
- b) Qual é o número binário seguinte a $10111_2\ \mathrm{em}$ uma sequência de contagem?

R: 11000₂

Tecnológica Federal do Paraná

Universidade

- c) Qual o maior número decimal que pode ser representado usando 8 bits?
 - R: $2^8 1 = 255_{10}$
- d) Qual é o menor número decimal que pode ser representado usando 12 bits?
 - $R: 0_{10}$

Universidade Tecnológica Federal do Paraná

Existem 2 maneiras de converter um número decimal inteiro em seu equivalente binário, a saber:

1) Expressar o número decimal como uma soma de potências de 2; então, 1s e 0s são colocados nas posições apropriadas, e.g.,

$$45_{10} = 32 + 8 + 4 + 1$$

$$= 2^{5} + 0 + 2^{3} + 2^{2} + 0 + 2^{0}$$

$$= 101101_{2}$$

2) Utilizar divisões sucessivas por 2; então, o resto de cada divisão constitui a representação binária (do LSB ao MSB) até que um quociente 0 seja obtido, e.g.,

Jniversidade Tecnológica Federal do

Universidade Tecnológica Federal do Paraná

Exemplo: Converta 37_{10} para a representação binária.

Exemplo: Converta 37_{10} para a representação binária.

R:

Universidade Tecnológica Federal do Paraná

$$37_{10} = 32 + 4 + 1$$

$$= 2^{5} + 0 + 0 + 2^{2} + 0 + 2^{0}$$

$$= 100101_{2}.$$

$$\frac{37}{2} = 185 \rightarrow \text{o resto } 1 \text{ (I)}$$

$$\frac{18}{2} = 9.0 \longrightarrow 0$$

$$\frac{9}{2} = 4.5 \longrightarrow 1$$

$$\frac{4}{2} = 2.0 \longrightarrow 0$$

$$\frac{2}{2} = 1.0 \longrightarrow 0$$

$$\frac{1}{2} = 0.5 \longrightarrow 1 \text{ (A)}$$

E, como lidar com números "não inteiros" (fracionários)?

- [PI] ⇒ Usando divisões sucessivas por 2.
- [PF] ⇒ Multiplica-se as partes fracionárias sucessivamente por 2, pegando as partes inteiras como resultados.
- O separador 'X se mantém.

Universidade Tecnológica Federal do Paraná

Exemplo: Converta 3,25₁₀ para a representação binária.

Exemplo: Converta $3,25_{10}$ para a representação binária.

R: A conversão da parte inteira segue por divisões sucessivas, i.e.,

$$3_{10} = 11_2$$

Por sua vez, a parte fracionária, é determinada multiplicando sucessivamente por 2 e pegando as partes inteiras, i.e.,

$$0.25_{10} \times 2 \Rightarrow 0 + \text{resto } 0.5$$

 $0.5_{10} \times 2 \Rightarrow 1 + \text{resto } 0$

o que implica

Paraná

Jniversidade Tecnológica Federal do

$$0.25_{10} = 0.01_2$$

Portanto,

- O sistema hexadecimal contém 16 símbolos/dígitos.
- Base 16, i.e., 0-9 e A-F.
- É um sistema posicional.

Universidade Tecnológica Federal do Paraná

- Os dígitos A-F equivalem aos valores decimais de 10-15.
- 1 dígito hexa corresponde a 4 hits

Hexadecimal	Decimal	Binário	Hexadecimal	Decimal	Binário
0	0	0000	8	8	1000
1	1 /	0001	9	9	1001
2	2	0010	Α	10	1010
3	3	0011	В	11	1011
4	, (4)	0100	C	12	1100
5	5	0101	D	13	1101
6	6	0110	E	14	1110
7	7	0111	F	15	1111

Jinicius Kuhn **Exemplo:** Converta $2AF_{16}$ para decimal.

Exemplo: Converta 214₁₀ para hexadecimal.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Exemplo: Converta $2AF_{16}$ para decimal.

R: Usando agora potências de 16,

Paraná

Jniversidade Tecnológica Federal do

agora potências de 16,
$$2 A F_{16} = 2 \times 16^2 + 10 \times 16^1 + 15 \times 16^0$$

$$= 512 + 160 + 15$$

$$= 687_{10}$$

Exemplo: Converta 214₁₀ para hexadecimal.

R: Realizando divisões sucessivas,

$$214_{10} = D6_{16}$$

(Os restos das divisões sucessivas formam os dígitos do número hexa, sendo restos mafores do loue 9 representados pelas detras de l'ArF7.)

Exemplo: Converta 423₁₀ para hexadecimal.

Hexadecimal	Decimal	Binário	Hexadecimal	Decimal	Binário
0	0	0000	8	8	1000
1	1	0001	9	S 9	1001
2	2	0010	Α	10	1010
3	3	0011	В	11	1011
4	4	0100	C	12	1100
5	5	0101	D	13	1101
6	6	0110	E	14	1110
7	7	0111	F	15	1111

Universidade Tecnológica Federal do Paraná

Exemplo: Converta 423_{10} para hexadecimal.

Hexadecimal	Decimal	Binário	Hexadecimal	Decimal	Binário
0	0	0000	8	8	1000
1	1	0001	9	S 9	1001
2	2	0010	Α	10	1010
3	3	0011	В	11	1011
4	4	0100	C	12	1100
5	5	0101	D	13	1101
6	6	0110	E	14	1110
7	7	0111	F	15	1111

R: Realizando divisões sucessivas,

Universidade Tecnológica Federal do Paraná

Paraná

Universidade Tecnológica Federal do

Conversão de binário em hexa: consiste, simplesmente, em dispor o número binário em grupos de quatro bits e converter cada grupo no dígito hexa equivalente, e.g.,

$$1110100110_{2} = \underbrace{0011}_{3} \underbrace{1010}_{A} \underbrace{0110}_{6}$$

$$= 3A\delta_{16}$$

(Zeros podem ser acrescentados para completar um grupo de 4 bits.)

Conversão de hexa em binário: consiste em converter cada dígito hexa no equivalente binário de 4 bits.

A conversão de binário em hexa (e vice-versa) é simples, o que justifica a utilização do sistema hexadecimal.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Contagem em um sistema de numeração hexadecimal

Quando contamos em hexa, cada dígito pode ser incrementado (acrescido de 1) de 0-F, e.g.,

- 38, 39, 3A, 3B, 3C, 3D, 3E, 3F, 40, 41, 42
- 6F8, 6F9, 6FA, 6FB, 6FC, 6FD, 6FE, 6FF, 700

(Note que, um digito 9 quando incrementado, torna-se A.)

Com D dígitos hexa, quantos números diferentes podem ser representados?

Com *D* dígitos hexa, quantos números diferentes podem ser representados?

 16^D números diferentes

$$\{0, \dots, 16^D - 1\}$$

Vantagens do sistema de numeração hexadecimal

- O sistema hexadecimal é usado como uma representação compacta de sequências binárias.
- Sequências binárias longas (de até 64 bits) são comuns (em computadores).
- A escrita em hexadecimal é-mais conveniente e menos propensa a erros do que a representação binária.

Humanos operam com números decimais, sistemas digitais com números binários, e a numeração hexadecimal facilita aos humanos lidarem com números binários.

attes.cnpg.br/2456654064380180

Utilização do sistema de numeração hexadecimal

Exemplo: Converta 378₁₀ em um número binário de 16 bits por meio do sistema de numeração hexadecimal.

Universidade Tecnológica Federal do Paraná

Utilização do sistema de numeração hexadecimal

Exemplo: Converta 378₁₀ em um número binário de 16 bits por meio do sistema de numeração hexadecimal.

R: Realizando a divisão sucessiva por 16 e coletando o resto, obtém-se

$$378_{10} = 17A_{16}.$$

Então, levando em conta que cada dígito hexa pode ser representado por 4 bits,

$$17A_{16} = 0001\ 0111\ 1010_2.$$

Portanto,

Jniversidade Tecnológica Federal do Paraná

$$378_{10} = 0001\ 0111\ 1010_2.$$

Paraná

Universidade Tecnológica Federal do

- Binário/Hexa ⇒ Decimal: Utilize a soma dos pesos de cada dígito.
- Decimal ⇒ Binário/Hexa: Realize divisões sucessivas por 2 (binário) ou 16 (hexa), reunindo os restos da divisão.

- Binário ⇒ Hexa: Agrupe os bits em grupos de 4 e converta cada grupo no dígito hexa equivalente.
- Hexa > Binário: Represente cada dígito hexa em 4 bits equivalentes.

Diferença entre sistemas de numeração e código

Um sistema de numeração possui uma base numérica e uma estrutura posicional que permite representar quantidades numéricas de forma única, e.g.,

- Decimal (base 10)
- Binário (base 2)
- Hexadecimal (base 16)

Um código é uma atribuição (mapeamento) de símbolos para representar informações sem necessitar de estrutura posicional ou base numérica, e.g.,

- BCD
- **ASCII**

- Quando cada dígito de um número decimal é representado por seu equivalente binário, tem-se como resultado um código decimal codificado em binário (binary-coded-decimal).
- Um dígito decimal tem valor máximo igual a 9; logo, 4 bits são necessários para codificar cada dígito (e.g., $9_{10} = 1001_2$).
- Pouco eficiente já que requer mais bits para representar um dado número decimal.

Exemplo: Converta 874₁₀ para BCD.

- Quando cada dígito de um número decimal é representado por seu equivalente binário, tem-se como resultado um código decimal codificado em binário (binary-coded-decimal).
- Um dígito decimal tem valor máximo igual a 9; logo, 4 bits são necessários para codificar cada dígito (e.g., $9_{10} = 1001_2$).
- Pouco eficiente já que requer mais bits para representar um dado número decimal.

Exemplo: Converta 874₁₀ para BCD.

R:

Universidade Tecnológica Federal do

BCD é um código em que cada dígito é codificado em seu equivalente binário (não é

um sistema de numeração).

Exemplo: Converta 110 1000 0011 1001_(BCD) em seu equivalente decimal.

Exemplo: Converta $110\,1000\,0011\,1001_{\rm (BCD)}$ em seu equivalente decimal.

R: Separando em grupos de 4 bits,

0110 1000 0011 1001_(BCD)

e convertendo cada grupo, obtém-se

Portanto,

Fortanto, $0110100000111001_{\mathrm{(BCD)}} = 6839_{10}.$

(O código BCD não usa os números 1010 até 1111; logo, o aparecimento kuhn@asses números 'projbides bé indicative de de erro dans 1

- Desenvolvido para reduzir erros, dado que somente um bit muda entre números sucessivos.
- No sistema binário, vários bits podem mudar de estado simultaneamente (e.g., de $3_{10}=011$) para $4_{10}=100_2$).
- Aplicações envolvem, e.g., i) sistemas de comunicação (16-QAM); ii) codificadores de posição (encoders);
 iii) algoritmos genéticos (codificação de cromossomos)...

	- 0				
B ₂	В	B ₀	G ₂	G ₁	G ₀
0	0	0	0	0	0
0	0	1	0	0	1
. 0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
			1		

kuhn@utfpr.edu.br | voutube.com/@eduardokuhn87

Comparativo entre as representações

Decimal	Binário	Hexadecimal	BCD	Gray
0	0000	0	0000	0000
1	0001	1	0001	0001
2	0010	2	0010	0011
3	0011	3	0011	0010
4	0100	4	0100	0110
5	0101	5	0101	0111
6	0110	6	0110	0101
7	0111	7	0111	0100
8	1000	8	1000	1100
9	1001	9	1001	1101
10	1010	Α	0001 0000	1111
11	1011	В	0001 0001	1110
12	1100	С	0001 0010	1010
13	1101	D	0001 0011	1011
14	1110	Е	0001 0100	1001
15	1111	F	0001 0101	1000

Universidade Tecnológica Federal do Paraná

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Código Johnson

- Frequentemente usado em máquinas de estado finito.
- Fornece uma sequência de estados com padrões únicos.
- Pode ser útil em circuitos lógicos sequenciais simples.

Decimal	Código Johnson	Codificação one-hot
0	00000	000000001
1	00001	000000010
2	00011	000000100
3	00111	000001000
4	01111	0000010000
5	11111	0000100000
6	* 11110	0001000000
7	11100	0010000000
8	11000	0100000000
9	10000	1000000000

Codificação one-hot

Universidade Tecnológica Federal do Paraná

- Representa variáveis como vetores binários.
- Apenas um bit está ativo (hot) por vez.
- Comumente usada em aprendizado de máquina.

Decimal	Código Johnson	Codificação one-hot					
0	00000	000000001					
1	00001	000000010					
2	00011	000000100					
3	00111	000001000					
4	01111	0000010000					
5 🕻	11111	0000100000					
6.0	11110	0001000000					
7	11100	0010000000					
8	11000	0100000000					
9	10000	1000000000					

Códigos alfanuméricos

Federal do

Tecnológica

Universidade

- Códigos alfanuméricos: Incluem letras, dígitos numéricos, sinais de pontuação e caracteres especiais, simbolizando todos os caracteres de um teclado.
 - 26 letras minúsculas, 26 maiúsculas
 - 10 dígitos numéricos
 - 7 sinais de pontuação
 - 20 a 40 caracteres especiais (como +, /, #, %, *, etc.)
- ASCII (American Standard Code for Information Interchange):
 - Código de 7 bits, 128 representações codificadas
 - Inclui caracteres de um teclado padrão e funções como (RETURN) e (LINEFEED)
 - Usado para a transferência de informação alfanumérica entre um computador e dispositivos externos
 - Basta realizar a conversão do valor hexadecimal em binário
 para obter o código binário de 7 bits
 kuhn@utfpr.edu.br youtube.com/@eduardokuhn87

Caractere	HEX	Decimal	Caractere	HEX	Decimal	Caractere	HEX	Decimal	Caractere	HEX	Decimal
NUL (null)	0	0	Space	20	32	@	40	64	ļ. ,	60	96
Start Heading	1	1	1	21	33	A	41	65	a	61	97
Start Text	2	2		22	34	В	42	66	b	62	98
End Text	3	3	#	23	35	С	43	67	c	63	99
End Transmit	4	4	S	24	36	D	44	68	d	64	100
Enquiry	5	5	%	25	37	E	45	69	е	65	101
Acknowlege	6	6	&	26	38	F	46	C 70	f	66	102
Bell	7	7	,	27	39	G	47	71	g	67	103
Backspace	8	8	(28	40	н	48	72	h	68	104
Horiz.Tab	9	9)	29	41	1	_49	73	i	69	105
Line Feed	Α	10	*	2A	42	١.	4A	74	j	6A	106
Vert.Tab	В	11	+	2B	43	K	4B	75	k	6B	107
Form Feed	С	12	,	2C	44	7	4C	76	1	6C	108
Carriage Return	D	13	-	2D	45	M	4D	77	m	6D	109
Shift Out	Е	14		2E	46	N	4E	78	n	6E	110
Shift In	F	15	1	2F	47	0	4F	79	0	6F	111
Data Link Esc	10	16	0	30	48	Р	50	80	р	70	112
Direct Control 1	11	17	1	31	49	Q	51	81	q	71	113
Direct Control 2	12	18	2	32	50	R	52	82	г	72	114
Direct Control 3	13	19	3	33	51	S	53	83	s	73	115
Direct Control 4	14	20	4	34	52	Т	54	84	t	74	116
Negative ACK	15	21	5	35	53	U	55	85	u	75	117
Synch Idle	16	22	6	36	54	V	56	86	v	76	118
End Trans Block	17	23	7	37	55	w	57	87	w	77	119
Cancel	18	24	8	38	56	х	58	88	x	78	120
End of Medium	19	25	9	39	57	Υ	59	89	у	79	121
Substitue	1A	26	:	ЗА	58	z	5A	90	z	7A	122
Escape	1B	27	;	3B	59	[5B	91	{	7B	123
Form separator	1C	28	<	3C	60	٨	5C	92	1	7C	124
Group separator	1D	29	=	3D	61	1	5D	93	}	7D	125
Record Separator	1E	30	>	3E	62	Α	5E ,	94	~	7E	126
Unit Separator []	tfp	r.eadu	.br	3F \	/0 l68t U	be.co	175F/	@ed u	ælete⊖ K	uhi	18127

Exemplo: Considere que a seguinte mensagem, codificada em ASCII, é armazenada em posições sucessivas de memória:

01010011 01010100 01001111 01010000 nsagem?

Qual é a mensagem?

(O acrescimot de undubit extra Edenominado/precheminanto pos.)

Código ASCII

Universidade Tecnológica Federal do Paraná

Exemplo: Considere que a seguinte mensagem, codificada em ASCII, é armazenada em posições sucessivas de memória:

01010011 01010100 01001111 01010000

Qual é a mensagem?

R: Usando a tabela.

$$\begin{cases} 0101\ 0011 & \Rightarrow & 53 & \Rightarrow & S \\ 0101\ 0100 & \Rightarrow & 54 & \Rightarrow & T \\ 0100\ 1111 & \Rightarrow & 4F & \Rightarrow & O \\ 0101\ 0000 & \Rightarrow & 50 & \Rightarrow & P \end{cases}$$

(O acresciment der und ubit extra & denominado/prechenimento com Os.)

Universidade Tecnológica Federal do

- Bytes: Grupo de 8 bits; geralmente, microcontroladores manipulam e armazenam informações em grupos de 8 bits.
- Nibbles: Usado para nomear grupos de 4 bits (e.g., em códigos BCD ou sistema de numeração hexadecimal).
- Palavras: Uma palavra (word) é um grupo de bits que representa uma unidade de informação, cujo comprimento depende da largura do barramento de dados (pathway).
 - Exemplo: um µC pode lidar com palavras de 8 bits enquanto um PC com 8 bytes (64 bits) de cada vez.

O termo 'nibble' ('mordiscar') é usado para representar a metade do tamanho de um 'byte' (soa como 'bite', 'mordida').

Jniversidade Tecnológica Federal do Paraná

a) Quantos bytes são necessários para representar 235₁₀ em binário?

b) Qual é o maior valor decimal que pode ser representado em BCD, usando 2 bytes?

c) Um nibble representa quantos dígitos hexadecimais?

Quantos nibbles existem em um dígito BCD?

Tecnológica Federal do

Universidade

a) Quantos bytes são necessários para representar 235_{10} em binário?

R: Como $2^8 = 256$, é necessário apenas 1 byte.

- b) Qual é o maior valor decimal que pode ser representado em BCD, usando 2 bytes?
 - R: Com dois bytes (16 bits), o maior valor em BCD é 9999_{10} .
- c) Um nibble representa quantos dígitos hexadecimais?
 R: Um nibble (4 bits) pode representar 1 dígito hexadecimal.
- d) Quantos nibbles existem em um dígito BCD?
 R: Um dígito BCD é representado por 4 bits, i.e., 1 nibble.

Tecnológica Federal

Universidade

- Com D dígitos em um sistema de numeração de base B, pode-se representar valores decimais de {0, ..., B^D - 1}.
- Hexa versus binário: 1 dígito hexa corresponde a 4 bits.
- Código BCD para um número decimal é formado convertendo cada dígito decimal no equivalente binário de 4 bits.
- Código Gray define uma sequência de padrões de bits em que apenas um bit varia entre padrões de sequência sucessivos.
- Um código alfanumérico usa grupos de bits para representar caracteres e funções de um teclado típico.
- Byte: 8 bits, Nibble: 4 bits e Palavra: depende do sistema. kuhn@utfpr.edu.br | 4 bits e Palavra: depende do sistema.

Considerações finais

Exercícios sugeridos:

2.1-2.7, 2.10, 2.15, 2.16, 2.19-2.22, 2.37 e 2.40

de R.J. Tocci, N.S. Widmer, G.L. Moss, Sistemas digitais: princípios e aplicações, 12a ed., São Paulo: Pearson, 2019. → (Capítulo 2)

Para a próxima aula:

R.J. Tocci, N.S. Widmer, G.L. Moss, Sistemas digitais: princípios e aplicações, 12a ed., São Paulo: Pearson, 2019. — (Capítulo 3)

Até a próxima aula... =)

attes.cnpq.br/2456654064380180