MATHEMATIQUES - 2 IC INSA TD 6 - TRANSFORMATION de LAPLACE

Exercice 1

Résoudre les équations causales suivantes par transformation de Laplace.

(1)
$$y'' - 3y' + 2y = e^t$$
, $y(0) = 1$, $y'(0) = 0$

Comparer avec la méthode usuelle.

(2)
$$y'' + 3y' + 2y = v(t)$$
, $y(0) = y'(0) = 0$, $v(t) = 1$ si $t \in [0, 1]$, $v(t) = 0$ si $t > 1$.

On exprimera v à l'aide de la fonction H de Heaviside.

Exercice 2

- 1. On s'intéresse aux transformées de Laplace de $\cos \omega t$, $\sin \omega t$ ($\omega > 0$).
- 1.1. Déterminer ces transformées à l'aide des formules d'Euler.
- 1.2. Retrouver le résultat à partir d'équations différentielles linéaires vérifiées par $\cos \omega t$, $\sin \omega t$.
- **2.** On revient à l'équation $x'' + x = \sin^2 t$, x(0) = x'(0) = 0 (cf. **TD 2, Exercice 6**), dans le cadre causal. Trouver sa solution par transformation de Laplace.

Exercice 3

La concentration C(t) de polluant présent dans un lac à l'instant t satisfait l'équation différentielle d'ordre 1:

$$V C'(t) = kQ - Q C(t), t \ge 0$$

V est le volume d'eau

Q la quantité d'eau par unité de temps qui alimente le lac

k une constante positive.

La concentration de polluant à l'instant initial est $C(0) = C_0 > 0$.

- 1. Déterminer l'expression de C(t) en utilisant la transformation de Laplace.
- 2. Si l'eau qui entre dans le lac n'est pas polluée, alors k=0. Pour quelle valeur de t la concentration de polluant aura-t-elle diminué de moitié par rapport à C_0 ?

Exercice 4

1. Résoudre $\begin{cases} x' = x + y \\ y' = x - y \end{cases}$ avec la condition initiale $x(0) = 1, \ y(0) = 0.$

On notera $X = \mathcal{L}x$, $Y = \mathcal{L}y$.

2. Soit le circuit à deux boucles :

2.1. Ecrire le système différentiel d'ordre 2 satisfait par le vecteur de charge $\begin{pmatrix} q_1(t) \\ q_2(t) \end{pmatrix}$. On se place dans les conditions de repos initial. Ecrire le système d'équations linéaires en $\begin{pmatrix} Q_1(z) \\ Q_2(z) \end{pmatrix}$, $Q_i = \mathcal{L}q_i$, i = 1, 2.

2.2. Effectuer le changement de fonction inconnue $q=q_1'$ et écrire le système différentiel d'ordre 1 satisfait par $\begin{pmatrix} q(t) \\ q_2(t) \end{pmatrix}$. Le résoudre pour $C=L=1, R=\frac{1}{2}, V(t)=1, t\geq 0$.