

Class G 126

Book, T 1824

INTRODUCTORY GEOGRAPHY

Sisson Fish Hatchery. Mt. Shasta in the background.

CALIFORNIA STATE SERIES

INTRODUCTORY GEOGRAPHY

TARR AND McMURRY

"

REVISED BY

THE STATE TEXT-BOOK COMMITTEE

AND APPROVED BY

THE STATE BOARD OF EDUCATION

A NATIVE DAUGHTER

SACRAMENTO

W. W. SHANNON, SUPERINTENDENT OF STATE PRINTING

1910

G 7192 X

5

COPYRIGHT, 1904, 1910,

BY

THE PEOPLE OF THE STATE OF CALIFORNIA.

COPYRIGHT, 1900, 1907,

BY

THE MACMILLAN COMPANY.

In the compilation of this work, certain matter from the Elementary Geography by Ralph S. Tarr and Frank McMurry has been used. All such matter is protected by the copyright entries noted above.

APR 15 1911

B. L. B.

• • •
• • •

1 E—50 M—3 '10

© Cl.A265250

PREFACE

THIS is the first of a series of geographies; the more advanced treatment deals at greater length with the world and its inhabitants. Since Part I of the present volume is a radical innovation, it perhaps needs an explanatory foreword.

NECESSITY OF HOME GEOGRAPHY.—The final basis for all study of geography is actual experience. Yet text-books on that subject rarely treat Home Geography at all, and those that do, devote but few pages to it. This subject should, we think, receive far more careful attention.

NECESSITY OF OTHER BASAL NOTIONS.—Home experience alone, however, cannot offer a complete basis for the later study of geography, because no one locality presents all the features required. From this it happens that the best books have contained some definitions and illustrations, as of mountain, river, valley, harbor, and factory, and have planned to build the later text with the ideas these gave as a foundation. Such conceptions are certainly necessary in the early part of geography; but mere definitions fail to produce vivid, accurate pictures. The average pupil who has pursued geography for a year has little notion of the great importance of soil, of what a mountain or a river really is, of the value of good trade routes, and why a vessel cannot find a harbor wherever it will cast anchor along the coast.

Yet such ideas are the proper basis for the study of geography in the higher grades. The fact that they are so often wanting is proof that our geography still lacks foundation.

HOW THESE NEEDS ARE MET. — The first 110 pages of this volume attempt to supply this foundation by treating first, such common things as soil, hills, valleys, industries, climate, and government, which are part of every child's environment; and secondly, other features, as mountains, rivers, lakes, and the ocean, which, though absent from many localities, are still necessary as a preparation for later study. Definitions, however, are not relied upon for giving the child this extra knowledge, but detailed descriptions and discussions instead. This by no means involves neglect of the child's own environment from the time the unfamiliar matter is introduced, for throughout the geographies home experiences are frequently used. We believe that our plan gives a fuller guarantee of fitness for advanced study than has heretofore been furnished.

RELATIONSHIP TO MANKIND. — According to the definition of geography,— which treats of the relation between man and the earth,— a hill or a lake is worthy of mention only because it bears a relation to us, the men upon the earth; considered by itself it is not a part of geography. Therefore each chapter which takes up one of the above subjects, either closes with the bearing of the given topic upon mankind, or it deals with the human relationship throughout.

EARTH AS A WHOLE. — The most difficult portion of our task has been that which presents the Earth as a Whole. That a bird's-eye view should be given at an

early period in the child's instruction is not questioned; but it is not easy, in limited space, to support the principal facts with sufficient detail to produce vivid and interesting pictures. The authors have found that some topics commonly included in the early study, such, for instance, as latitude and longitude, should be postponed. They have also found that many other minor subjects usually presented are comparatively irrelevant to the geographical knowledge necessary to a pupil. By setting these aside for the time, space has been secured for a physiographic basis, and for a fairly close sequence in tracing the effects of physical conditions upon plants and animals, and also upon mankind. Throughout each chapter much care has been taken to present a closely related chain of thought, and at the same time to keep the leading facts in their proper foreground.

SUGGESTIONS FOR FURTHER HOME STUDY. — A study of books alone can never furnish an adequate knowledge of geography. Therefore it has been thought expedient to add numerous suggestions at the end of each section, in order to remind both teacher and pupil of suitable excursions, experiments, etc., and to show at the same time the breadth of the subject. In this way physical activity — the love of exercise — may be employed in the service of the study, and a habit of investigating the home environment encouraged.

FREQUENT REVIEWS. — Believing in the value of frequent reviews, the authors have suggested review material in frequent comparisons and contrasts, and in introducing new topics through others that have already been presented. This method has been used throughout this book, and in the more advanced treatment.

MAPS.—Contrary to the usual custom, the political maps include the principal physical features, so that any place is always seen in connection with its physiographic surroundings. The colors have been so selected as to secure harmony, and at the same time to show the boundaries clearly. Unimportant names are excluded, even where space might have permitted their introduction; and, to an unusual degree, the size of print is proportionate to the importance of places, so that the names of leading divisions, cities, etc., can be distinguished at a glance.

ILLUSTRATIONS.—The illustrations have been selected with great care to illustrate specific points; and for the sake of accuracy, photographs have in most cases been employed. They are not inserted merely for the purpose of entertainment, but in every case bear a direct relationship to the text. They are not intended as mere *pictures*, but as *illustrations*; and being numbered and referred to frequently, they pay for their space by contributing materially to the book's fund of instruction.

ACKNOWLEDGMENTS.—The photographs have been obtained from many sources; the globe drawings were made by Mr. Murray of the Matthews-Northrup Company; and the other drawings were mostly prepared by Mr. C. W. Furlong, instructor in Cornell University. The maps have been prepared by the Matthews-Northrup Company of Buffalo, who have obtained an enviable reputation as map engravers for the Century Atlas.

The authors of this book are responsible for any shortcomings that it may prove to have. They have had the benefit of much criticism of the best sort. Space does not permit them to refer to each one who has kindly extended aid; yet mention should be made of the ex-

ceedingly valuable criticisms and suggestions of Mr. Philip Emerson of the Cobbet School, Lynn, Mass.

The State Text-book Committee is under obligations to the following parties for photographs: S. P. Co.; S. F. O. & S. J. Ry.; P. C. Steamship Co.; State Fish Commission; California Promotion Committee; Standard Oil Company; South Africa British Company; Holt Mfg. Company; Superintendents J. G. O'Neill, E. B. Wright, H. F. Pinnell, James E. Reynolds, Belle S. Gribi, Florence Boggs, Hettie Irwin; Maud A. Minthorn; D. A. Munger; L. E. Chenoweth; George E. Knox; Major J. A. Drifill; Lewis E. Aubury; Senators E. S. Birdsall, W. F. Price; Warden W. H. Reilly; also to Chambers of Commerce of Sacramento, Stockton, San José, Fresno, Oakland, San Diego, and the Sacramento Valley Development Association.

Entrance to the Campus of the University of California.

Atlantic Fleet entering San Francisco Bay through the "Golden Gate," May, 1908.

TABLE OF CONTENTS

PART I. HOME GEOGRAPHY

	PAGE
SECTION I. THE SOIL	1
SECTION II. HILLS	10
SECTION III. MOUNTAINS	18
SECTION IV. VALLEYS	30
SECTION V. RIVERS	42
SECTION VI. PONDS AND LAKES	57
SECTION VII. THE OCEAN	67
SECTION VIII. THE AIR	77
SECTION IX. INDUSTRY AND COMMERCE	87
SECTION X. GOVERNMENT	99
SECTION XI. MAPS	109
REFERENCES TO BOOKS, ETC.	115

PART II. THE EARTH AS A WHOLE

SECTION I. FORM AND SIZE OF THE EARTH	119
ITS FORM, 119. SIZE OF THE EARTH, 121.	
SECTION II. DAILY MOTION OF THE EARTH AND ITS RESULTS . . .	123
THE AXIS AND POLES, 123. THE EQUATOR, 124. GRAVITY,	
124. SUNRISE AND SUNSET, 125. DAY AND NIGHT, 125.	
SECTION III. THE ZONES	128
BOUNDARIES OF THE ZONES, 128. TORRID ZONE, 129. TEM-	
PERATE ZONES, 129. FRIGID ZONES, 130. HEMISPHERES, 131.	
SECTION IV. HEAT WITHIN THE EARTH AND ITS EFFECTS . . .	132
HEAT IN MINES, 132. MELTED ROCK, 133. THE EARTH'S	
CRUST, 133. CAUSE OF MOUNTAINS, 134. CAUSE OF CONTI-	

	PAGE
MENTS AND OCEAN BASINS, 134. CHANGE IN THE LEVEL OF THE LAND, 135.	
SECTION V. THE CONTINENTS AND OCEANS	137
LAND AND WATER, 137. The Continents , 137. NORTH AMER- ICA, 138. SOUTH AMERICA, 138. EURASIA, 139. AFRICA, 142. AUSTRALIA, 143. The Oceans , 143. THE ARCTIC AND ANTARCTIC, 143. THE ATLANTIC, 144. THE PACIFIC, 144. THE INDIAN, 144. THE OCEAN BOTTOM, 144. MOUN- TAINS IN THE OCEANS, 145. CORAL ISLANDS, 145.	
SECTION VI. MAPS	149
SECTION VII. NORTH AMERICA	151
PHYSICAL GEOGRAPHY, 151. POLITICAL DIVISIONS, 152.	
SECTION VIII. THE UNITED STATES	153
SECTION IX. NEW ENGLAND	154
NAMES, 154. SEAPORTS, 154. FISHING, 155. FARMING, 155. QUARRYING, 156. LUMBERING, 157. MANUFACTURING, 158. COMMERCE, 159.	
SECTION X. MIDDLE ATLANTIC STATES	161
THE COAST LINE, 161. THE SEAPORTS, 161. Reasons for the Great Size of New York City , 161. CITIES NEAR BY, 161. WATER ROUTE TO THE INTERIOR, 162. LUMBERING, 163. FARMING, 163. SALT, 164. MANUFACTURING, 164. COMMERCE, 165. Reasons why Philadelphia has become a Great City , 165. CITIES NEAR BY, 165. FARMING, 165. IRON, 166. COAL, 166. OIL AND GAS, 168. COMMERCE, 168. Other Cities , 168. BALTIMORE, 168. WASHINGTON, 168. VIRGINIA AND WEST VIRGINIA, 169.	
SECTION XI. SOUTHERN STATES	171
RELIEF, 171. COAL AND IRON, 172. COTTON, 172. RANCH- ING, 173. SUGAR AND RICE, 174. FRUITS, 174. LUMBER- ING, 175. MANUFACTURING, 175. NEW ORLEANS, 176. OTHER SEAPORTS, 177. OKLAHOMA, 177. CLIMATE, 177.	
SECTION XII. CENTRAL STATES	180
RAW PRODUCTS, 180. THE MANUFACTURING AND TRADE CEN- TERS, 183. REVIEW AND COMPARISONS, 188.	
SECTION XIII. WESTERN STATES	190
REASONS WHY THERE ARE SO FEW PEOPLE, 190. WONDERFUL	

TABLE OF CONTENTS

xiii

PAGE

SCENERY, 192. MINING, 193. RANCHING, 196. THE DESERT, 196. IRRIGATION, 197. FRUIT RAISING, 198. INDUSTRIES ALONG THE PACIFIC COAST, 198. THE CITIES OF THE PACIFIC SLOPE, 200.	203
SECTION XIV. ALASKA	203
SECTION XV. CANADA AND OTHER COUNTRIES NORTH OF THE UNITED STATES	205
Canada and Newfoundland, 205. INDUSTRIES, 205. CITIES, 207. THE FAR NORTH, 208. Islands North of North America, 209.	205
SECTION XVI. COUNTRIES SOUTH OF THE UNITED STATES	211
MEXICO AND CENTRAL AMERICA, 211. THE WEST INDIES AND BERMUDA, 218.	211
SECTION XVII. SOUTH AMERICA	216
RELIEF, 216. CLIMATE, 216. HISTORY, 218. BRAZIL, 218. VENEZUELA AND GUIANA, 220. LA PLATA COUNTRIES, 221. ANDEAN COUNTRIES, 222.	216
SECTION XVIII. EUROPE	225
THE BRITISH ISLES, 225. NORSE COUNTRIES, 229. RUSSIA, 231. GERMANY, 233. HOLLAND, 234. BELGIUM, 236. FRANCE, 236. SPAIN AND PORTUGAL, 238. ITALY, 240. SWITZERLAND, 241. AUSTRIA-HUNGARY, 242. GREECE, 243. TURKEY, 244.	225
SECTION XIX. ASIA	250
PHYSICAL GEOGRAPHY, 250. SOUTHWESTERN ASIA, 251. SIBERIA, 254. THE CHINESE EMPIRE AND KOREA, 255. JAPAN, 257. INDIA AND INDO-CHINA, 258.	250
SECTION XX. AFRICA	263
THE DARK CONTINENT, 263. NORTHERN AFRICA, 264. CENTRAL AFRICA, 267. SOUTH AFRICA, 269.	263
SECTION XXI. AUSTRALIA, THE EAST INDIES, PHILIPPINES, AND OTHER ISLANDS OF THE PACIFIC	271
AUSTRALIA, 271. THE EAST INDIES, 274. THE PHILIPPINE ISLANDS, 275. ISLANDS OF THE PACIFIC, 276.	271
SECTION XXII. CALIFORNIA SUPPLEMENT	279
MAP QUESTIONS, 282. EXTENT, 285. RELIEF, 285. DRAINAGE, 287. CLIMATE, 288. INDUSTRIAL DEVELOPMENT, 291.	279

TABLE OF CONTENTS

	PAGE
AGRICULTURE, 294. FRUIT RAISING, 297. STOCK RAISING, 301. MANUFACTURING, 305. MINING, 308. LUMBERING, 310. FISHERIES, 311. COMMERCE, 312. CITIES, 313. RE- VIEW QUESTIONS, 319. APPENDIX TO SUPPLEMENT, 321. INDEX TO SUPPLEMENT, 323.	
BOOKS OF REFERENCE	327
APPENDIX—TABLES OF AREA, POPULATION, ETC.	333

Public Playgrounds near Lincoln School, Santa Barbara.

LIST OF MAPS

FIGURE	FACING PAGE
91. TO ILLUSTRATE THE MEANING OF MAPS	114
119. THE HEMISPHERES	149
120. MERCATOR MAP OF THE WORLD	149
121. RELIEF MAP OF NORTH AMERICA	<i>On page</i> 150
123. NORTH AMERICA	152
124. UNITED STATES	153
126. NEW ENGLAND	154
132. MIDDLE ATLANTIC STATES	161
140. SOUTHERN STATES	171
149. CENTRAL STATES	180
157. WESTERN STATES	190
177. SOUTH AMERICA	216
183. EUROPE	225
203. ASIA	250
214. AFRICA	263
221. AUSTRALIA, EAST INDIES, PHILIPPINE ISLANDS, AND ISLANDS OF THE PACIFIC	271
225. RAILROAD MAP OF CALIFORNIA	278
227. CALIFORNIA (NORTHERN SECTION)	280
228. CALIFORNIA (SOUTHERN SECTION)	281
229. RELIEF MAP OF CALIFORNIA	283
230. SAN FRANCISCO AND VICINITY	284
244. LOS ANGELES, SAN DIEGO, SANTA BARBARA AND VICINITY .	299

Mariposa "big trees"; on the road to Yosemite Valley. Notice that the four-horse stagecoach is driven through a hole cut in the trunk of the tree.

PART I

HOME GEOGRAPHY

I. THE SOIL

You have often played in the dirt. Did you ever stop to think what it is made of? It was not always what it now is. You know that the wood in your desk was not always a part of the desk; it used to be part of a tree, and has a long story to tell about itself before it was brought to your school. So all the dirt or *soil* that you have ever seen has a long story to tell about how it became what it is now. Let us see what that story is.

When mud dries upon your hands and you rub them together, you can notice an unpleasant, gritty feeling. This is caused by the scraping together of hard bits of something in the soil. If you rub some of this dirt against a smooth piece of glass, you can often hear it scratch the glass. This shows that these little bits must be very hard, for if they were not, they could not scratch anything so hard as glass. They must be even harder than a pin, for you cannot scratch glass with a pin.

It will help you to find out what these bits are if you examine some sand. The grains in it are tiny bits of rock, large enough to be clearly seen. When they are

rubbled against glass, they scratch it, because they are hard and sharp.

Sand is made of rock that has been broken up into very fine pieces. Soil is also made of rock, but the pieces are finer still. The soil that you have seen, such as that in the school yard, or by the side of the walk, was once rock.

Soil has been made from rock.

Since soil is found almost everywhere, you may wonder how so much rock has been changed to it. The answer is not hard to find. Did you ever pound a brick up into bits until you made brick dust? You can change a stone to dust in the same way. Break one into small bits and see how much it resembles dirt.

Sometimes one sees men drilling holes into stone; the tiny pieces that are broken off collect in and round the hole, and look much like dirt. When a grindstone is used to sharpen tools, small pieces of the stone are ground off, and if water is poured upon it, this dust makes the water muddy, just as soil would.

Much rock has been changed to dirt by the rubbing of pieces of stone against one another. In this way tiny bits have been worn off, as chalk is worn away when rubbed against the blackboard, or slate pencils against the slate. Perhaps some of the dirt that you have seen has been made in this manner. Later you will learn about the glaciers which have caused much of this rubbing.

The grinding of rocks together has made much soil.

But this is not the only way in which rock has been changed into soil. Much of it has decayed and fallen to pieces as wood does. You know that, after a long time, stumps of trees, and the boards in sidewalks, grow so soft that they fall to pieces. Perhaps you have called

it *rotting*, but this means the same as *decaying*. The picture (Fig. 1) shows such a stump.

Other things even harder than wood decay in much the same way, although perhaps more slowly. Hard nails, at first bright and shiny, decay until they become a soft, yellow rust. Iron pipes and tin pails rust until holes appear in them and they leak.

You may not have thought that stones also decay, but they do. The headstones in old graveyards are often so crumbled that the letters can scarcely be read, and sometimes the stones have even fallen apart.

FIG. 1.
A decaying stump of a tree.

The decay of rock may also be seen in old stone buildings, boulders, and rock cliffs. Have you ever noticed this?

Soil has been formed, also, by the decay of rocks.

FIG. 2.

A rocky cliff containing many cracks.
Point to some of them.

that they can be plainly seen; but there are many others so tiny that they cannot be seen without a magnifying glass. When it rains, the

There are several things that help to cause this decay. All rocks have cracks in them (Fig. 2). Usually some of these are so large

water steals into them, and by eating and rotting the rock, very slowly changes it to a powder.

The water may also freeze in these cracks and pry the stone apart. If you have seen iron water pipes, or water pitchers, burst in cold weather, you know how this is done. Some of the pieces of rock pried off in this way are very small, others quite large (Fig. 3).

FIG. 3.

Pieces of rock broken from a cliff by the weather. Can you also see the cracks in the rock of the cliff? Find some broken pieces in Fig. 2.

Plants help the water in this work. In search of food they push their hair-like roots into the cracks, and there remain until they grow so large that they also pry off pieces.

The earthworms that you may often see after a heavy rain also help in crumbling the rock. In order to get food, they take soil into their bodies and grind the coarse bits together until they become very fine.

Water stealing into the cracks causes rock to decay and crumble. Plants and earthworms also help to break it up.

Rock changes to soil most rapidly near the surface ; for the rain, roots of plants, and earthworms can reach it more easily there than elsewhere. So the deeper into the earth one goes, the less the rock is changed (Fig. 4) ; and, no matter where you live, if you should dig deep enough, you would come to solid rock.

FIG. 4.

A section, as if the earth were sliced through, like a loaf of bread, so that the part below the surface is seen. Tell what you see in this picture. Notice the roots of the tree on the left side.

Figure 5 shows soil about one and one half feet deep. Sometimes there is much more than this, and men may even dig deep wells without finding rock ; but in many places there are only a few inches of soil, or, sometimes, not even enough to hide the rock.

One reason for such differences in the depth of soil is that some rocks decay more easily than others. Another reason is that in some places the rain washes the bits away as fast as the rocks crumble. This may leave the rock quite bare in one place and make the soil very deep in another.

There is solid rock beneath all soil.

How different it would be if no rock had ever changed into soil! There could then be no grass, flowers, or trees around your home, because they grow by means of the food that they get from the soil.

Without grass there could be no cattle, horses, or sheep; in fact, few animals such as are found upon the land could live; for what would they eat? What, then, could you yourself find to eat? There would be no vegetables, no

FIG. 5.

A picture showing solid rock beneath the soil. Notice the cracks in the rock.

bread, butter, and milk, and no meat. You see that, if there were no soil, few people could live; so that the dirt under our feet is a very valuable substance.

Without soil, few plants, animals, or people could live on the land.

Soil is needed by plants because it holds water. They become thirsty as well as you. Where the dirt is only a few inches deep, it may dry out on hot summer days, and then the plants die; but where it is deep, the roots may reach down several feet till they find damp earth.

It is surprising how long the roots of some small plants are (Fig. 6). For example, the clover in the picture is less than a foot high, but its roots are longer than you are tall. They reach so deep down that even in dry weather the clover is green while other plants, with shorter roots, are withered and dry. Some trees push their roots down a greater distance still. Can you find out how long the roots of any weeds are?

The soil holds food, as well as water, for plants. In it is found something which plants need, and which they take up through their roots; it is a part of the soil itself, and is called *plant food*. Each blade of grass and each limb of a tree contains some of it; and when a piece of wood is burned, some of this food is left behind in the ashes.

Every person even has a quantity of it in his body; your bones and teeth are partly made of it. But you did not take it directly from the soil; the plants took it for you, and you received it from them in flour and other foods that you have eaten.

Soil furnishes water and food to plants.

All plants do not need the same kind of food any more than all animals do. Horses eat hay and grain, while dogs eat meat; so some plants need one kind of food,

FIG. 6.

Some of the roots of the clover that the boy is picking have reached out into the air through the side of the bank. They are seeking water.

others another. These different kinds of plant food are found in the different kinds of soil, of which there are very many.

For example, some soils are fine, while others are coarse, because some rocks have crumbled to finer bits than others. Then, too, there are many kinds of rock, such as granite, marble, and sandstone; and when they decay they make different kinds of soil.

In some places great numbers of plants have grown up and died. During their growth they took substances from the air, as well as from the soil, and when they died and decayed they returned some of these to the soil. These plant remains have become mingled with the soil, making it dark and sometimes almost black. In some places this dark-colored layer may be several feet deep, as in forests, or in swamps, where plants have been growing and decaying for hundreds of years. This is an excellent soil for farming, because it produces large crops.

There are many different kinds of soil.

Soil that has much plant food in it is said to be rich or *fertile*; if it has little, it is said to be poor or *sterile*. The plants are taking away some of this food; they are really robbing the soil. But when weeds and trees fall and decay on the spot where they grew, they pay back what they took away. In fact, some of this food is returned to the earth every autumn when the leaves fall from the trees.

But if plants are carried away from the spot where they grew, there is danger lest fertile land shall be robbed of so much plant food that it will become sterile. Now this often happens; for farmers send away their wheat to make flour, and haul their corn, hay, and oats to market. Some farmers have done this for so many years that they are no longer able to support their families on their land, but have been obliged to move away to find other farms where the soil has not been robbed of its plant food.

The wise farmer takes care to put some plant food back upon the soil to pay for what he has taken, so that he may continue to raise good crops. That which he puts back upon the soil is called a *fertilizer*, because it keeps the soil fertile. People in the city often use a fertilizer to feed the grass of their lawns and keep it green.

Fertile soil may be robbed of its food and become sterile.

REVIEW QUESTIONS.—(1) Of what is the soil made? (2) How can you show that the little bits in it are hard like rock? (3) What happens when rocks are rubbed together? (4) If you have ever seen rocks that were decaying and crumbling, tell about it. (5) How does water enter rocks? (6) What happens when water freezes in the cracks? (7) What else helps to crumble the rocks and soil? (8) What is beneath the soil? (9) Make a drawing, like Fig. 4, showing the rock beneath the soil. (10) Tell about the depth of the soil. (11) Why is there no soil in some places?

(12) Why is the soil worth studying? (13) Name two things that plants take from it. (14) Of what advantage is a deep soil? (15) Do all plants want the same kind of food? (16) What causes the different kinds of soil? (17) What has made some soils so black? (18) What is fertile soil? (19) Sterile soil? (20) How are some soils robbed of their plant food? (21) What is used to make them fertile once more? (22) Tell what you see in Figs. 1, 2, 3, 4, 5, and 6.

SUGGESTIONS FOR STUDY AT HOME AND OUT OF DOORS.—
Here are things, some of which, at least, you will be able to see or do for yourselves: (1) Find a place where men are digging a ditch or cellar, to see how the dirt looks below the surface. (2) Find a boulder, cliff, old stone wall, or an old headstone in a graveyard, and see if the stone is crumbling. (3) Break some pebbles open to see whether or not they are decayed on the outside and fresh within. (4) Change a stone to dust. (5) Collect several different kinds of soil. (6) Plant beans in each kind, at the same time, and see in which one they grow best. (7) See what the effect would be if no water were given to some of them. (8) Find out what trees and vegetables grow best near your home. (9) What do the farmers prefer to raise? (10) Go to a hot-house to find out what kind of soil is used there, and what is done to keep it fertile. (11) Write a short story about the soil.

For REFERENCES, see page 115.

II. HILLS

THE soil that has been formed from rock has not been left smooth and level like a floor. The surface of the land is usually uneven or rolling; and even those places which at first sight appear level, are really sloping (Fig. 7). Besides such gentle slopes, there are many

FIG. 7.

A very level plain; but since a stream is flowing through it, there must be slope.

others steep enough to allow coasting in winter, and others still that are much too steep for this purpose. In other words, *hills*, some gently sloping, some steep, are found almost everywhere upon the surface of the earth (Fig. 8).

These hills have not always been here. Even the ones you may have seen and climbed have been slowly made. Let us see what has caused them.

When it rains slightly, the water soaks into the ground and disappears ; but when there is a heavy rain, all of

FIG. 8.

A picture in a hilly country. The surface of the lake is level; but the hills, some steep, others gently sloping, are very irregular.

the water cannot sink into the soil as rapidly as it falls. Some then begins to flow away. One little stream, perhaps hardly an inch wide, begins at one point ; another joins it ; quickly several of them unite, and soon a good-sized brook or creek is formed. Have you not noticed this flowing water in the school yard, in the roads, and on the sides of hills ?

But did the water flow off without taking something

with it? Was it not muddy? This means that soil had become mixed with the water and was being borne away. Every heavy rain bears along much soil, cutting out little channels, washing out roads, and perhaps even destroying the beds of railways, so that trains must stop running for a time.

During such a rain little channels, or *valleys*, and tiny

FIG. 9.

Little hills and valleys cut in the soil by heavy rains. Point to some of them.

hills and *ridges* are carved in the soil (Fig. 9). No doubt you have seen these formed very many times. If not, you can easily make them by pouring water from a sprinkler upon a pile of loose dirt.

During many hundreds of years the water has washed away an enormous amount of soil and rock which the large streams and rivers have carried away to the sea.

By this means deep valleys have been formed, with hills between them, much as the tiny channels in the school yard are cut in the dirt by the rain water.

Then, also, some rocks are not so hard as others, and the softer ones, as they break up, are naturally carried away faster than those that are harder. This leaves high ground where the rocks are hardest.

What a change water must have made in the appearance of the surface of the earth ! No doubt, in the very beginning there were hills and valleys ; but every year, for thousands of years, these have been slowly changing, so that they are now very different from what they were long ago. And after many more years they will be very different from what they now are, for they are even now changing.

Most hills have been carved out by running water.

In every neighborhood there are hills, although they may not be very high. The picture shows one with a somewhat gentle slope

FIG. 10.

To show the difference between the slope of a hill and its height.

(Fig. 10). If a person were to walk up this hill, going from its *base* to the top, or *summit*, he would walk more than a mile; but this, of course, does not mean that the hill is a mile high.

For example, in Fig. 11 you see a board ten feet long, with one end resting on the ground and the other on a fence four feet above the ground. If a person starts at the lower end and walks to the upper end, he travels ten feet; but he is then only four feet above the ground.

The height of a hill is much less than the length of its slope.

FIG. 11.

Perhaps you have heard that it is colder on the *summit*, or *crest*, of a high hill than at its base. If one takes a thermometer with him when going to the top of the Washington Monument (Fig. 85), which is 550 feet high, he finds that it is about two degrees colder at the top than at the base.

People who live where there are high hills often observe that it snows upon them while it rains upon the lower ground at their base (Fig. 12). Explain why this is so.

It is colder at the crest of the hill than at its base.

Many people prefer to build their houses upon hills, partly because the air is cooler and fresher in summer; but another and more important reason is, that it is more healthful to live on this high ground. Where the land is low, the slope is often so gentle that the water cannot flow off readily, so it stands, sometimes making wet places

FIG. 12.

Do you see any reason for thinking that it is colder near the summit of this high mountain than at its base? This is Mt. Chimborazo in South America, where it is very hot in the lowlands.

called *swamps* (Fig. 33). Houses in such places often have cellars and foundation walls that are damp, and the people who live in them are in danger of fever, and of other kinds of sickness caused by this dampness.

But the water usually runs quickly away from a hill, so that even after a heavy rain the ground soon becomes dry. In large cities, where land is very expensive, people build almost anywhere; but in these cities there are so

many drain pipes, or *sewers*, to carry off the water, that even the low places are quite dry.

In times past some men were in the habit of building great castles, with thick walls, on the crests of hills (Fig. 13). From these they could look out over the country for a long distance and spy approaching enemies in time to prepare for them. Then, too, the steep sides of the hills were difficult for the enemy to climb, so that the people living in castles on hilltops were quite safe.

Some of the Pueblo Indians built their towns upon the tops of

FIG. 13.

A castle built upon the brow of a high hill. Describe the view from there.

steep hills in order to be safe from the more savage Indians who attacked them. For much the same reason the Puritans, many years ago, were in the habit of building their churches upon the hilltops.

Hills at present are little needed for such a purpose; but there is another reason why people like to live upon them. From their tops they can look out over the fields for long distances and enjoy the beautiful views. Have you yourself ever enjoyed such a view?

People like to build their houses upon hills, because it is healthful there and the views are beautiful.

REVIEW QUESTIONS. — (1) Is there much land that is really level? (2) What do you understand by rolling land? (3) Were the hills that you know always there? (4) Have you seen water carrying away soil? If so, tell about it. (5) Explain how hills have been made.

(6) What is the base of a hill? (7) The summit? (8) Tell what you learn from Fig. 10. (9) From Fig. 11. (10) Make a drawing somewhat like Fig. 11. (11) On what part of a hill is it coolest? (12) How could you prove it? (13) Why does it often snow on hills while it rains on lower land near by?

(14) What is a swamp? (15) Why should not houses be built on swampy ground? (16) Why are hills liable to be dry? (17) Why is the lowland in cities usually so dry? (18) Why have castles often been built on hills? (19) Why did the earlier settlers place their churches on hills? (20) What other reasons can people have for wishing to look far out over the country?

SUGGESTIONS FOR STUDY AT HOME AND OUT OF DOORS. — (1) Find some ground about your home that seems nearly level. Is it really level? (2) Where is the longest slope in your neighborhood? The steepest one? (3) Watch the water carrying off soil after a rain. Where does the soil go? (4) Write a story about it. (5) Hunt for a washout after a heavy rain. (6) Where is your highest hill? (7) In what season of the year is it especially pleasant to live on a hill? Why?

(8) Can you find any houses built on low, wet soil? (9) Are their cellars ever very damp? (10) Ask some doctor why one should not live in such places. (11) Find some pictures of castles, showing their location. (12) Is your schoolhouse upon a hill? (13) Name any houses in your neighborhood that stand on a hill. (14) Where is your most beautiful view? (15) Do your friends agree with you that it is the most beautiful one?

For REFERENCES, see page 115.

III. MOUNTAINS

You may never have seen mountains, but you have certainly seen something that looks much like them. Often, on a summer evening, the sun sets behind great

FIG. 14.

A park, or broad, open mountain valley in the Rocky Mountains. Sultan Mountain is in the distance.

banks of clouds that reach far up into the sky. Some of them have rough, steep sides and great, rugged peaks, while others have more gentle slopes and rounder tops.

Oftentimes there are many of them together, and they are so real that it seems as if one might climb their sides if he could only reach them.

This is very much the way snow-covered mountains appear in the distance; in fact, the resemblance is so close that, when one is at a distance from mountains, he must often look carefully to note whether he is looking at real mountains, or only at clouds in the sky.

The mountains in Fig. 14 are much like hills, except that they are larger. Hills are seldom more than a few hundred feet high, while mountains rise several thousand feet in height. Some mountain *peaks* rise above the clouds (Fig. 71) and are often wholly hidden by them.

Usually where there is one mountain peak there are others near by. They often extend a long distance, perhaps hundreds of miles, forming what is called a *mountain chain*, or a *mountain range* (Fig. 16).

FIG. 15.

A snowdrift near Lundy schoolhouse, Mono County, California, March, 1909. The children have just reached the school on their skis. Describe what you see in this picture.

FIG. 16.

A spur of the Sierra Nevada Ranges, on trail in Kern River Canōn.

Such great ranges have been formed in different ways. They may be due to volcanic action, to earthquake movements, to slow folding, as in Fig. 17, or wholly to erosion.

You can imitate mountain folding by crumpling a number of sheets of paper. The reason for this folding of the rock layers will be found stated on page 133.

*Mountains
are like hills
only they are
higher and more
rugged.*

FIG. 17.

This is a drawing of a mountain range sliced through so as to show the layers of rock that have been pushed upward.

Men often climb to the tops of mountains. It might

seem that this would not take a very long time, nor be very difficult; but to go to the crest of even a low mountain is often quite a task. Upon a level road one can easily walk a mile in less than half an hour. But it might require a whole day of steady climbing to reach the summit of a mountain only one mile high.

It would be a long journey even if one could go in a straight line to the top. It has already been stated (p. 14) that to climb a hill two or three hundred feet high it is necessary to walk a longer distance than this. The same is true of mountains.

Most mountains are so steep that one would grow very tired climbing directly up their slopes; so a

much longer, zigzag path is usually followed. Then, too, there are often steep *cliffs*, or *precipices*, that could not be climbed (Fig. 18), and one must travel round these to find a place where the slope is gentle. This makes the path still longer, so that to climb a mountain one mile high it might be necessary to walk ten miles, or even more.

FIG. 18.

A mountain precipice in the Yosemite Park among the Sierra Nevada Mountains of California. No one could possibly climb the face of this steep rock cliff.

If the air is colder at the crest of a hill than at its base, one might expect that it would be *very much colder* on the top of a high mountain, and this is true (Fig. 12, p. 15). In fact, it grows so much colder near the summit of the higher mountains that it *never* rains there, but snows instead; and it may even be so cold that trees cannot grow there.

It is a long distance to the top of a high mountain, and the air is cold there.

FIG. 19.

Mt. Shasta from Sisson, showing the timber line.

Many people visit Mt. Shasta, Fig. 19; but while they enjoy climbing about on the sides, and looking at the beautiful views, very few reach the summit of the higher peaks. It is the best-known mountain of California, and is over two and one half miles in height.

Suppose we make an imaginary trip up a high mountain. We start early in the morning so as to have a long day. Each of us carries a few light articles, but the guides carry most, for they are strong and used to climbing.

At first we walk along a pleasant path in a beautiful wood.

A house is occasionally passed and perhaps a green field. But soon there are no more houses and fields, and the trees become smaller and smaller until the line is reached above which it is so cold that no trees can grow. This is called the tree line or *timber line* (Fig. 19).

From this point on, no plants larger than bushes are seen, and after a while even these disappear. Meanwhile the soil and the grass have become more scarce, while here and there banks of snow are found in the shady hollows. Soon we have climbed to the *snow line*. This is the line above which snow is found all the year round. Now, no matter in what direction we look, rock and snow are everywhere to be seen, the latter often being many feet deep.

What a beautiful view before us! It repays us for all the hard work. We look down upon the woods through which we have just passed; then, over beyond them, to the deep valleys, with the green fields, pretty houses, and villages far below us; and, beyond these, to the other steep mountains upon the opposite side of the valley.

The guide takes his place in front of us, and often tells us to stop while he goes ahead to examine the way. It may be that the snow has bridged over and hidden a deep and narrow chasm, so that if one were to step upon this snow he might fall through.

As we advance higher and higher, it is often necessary to take a narrow path on the steep side of the mountain. On the right you can look hundreds of feet almost directly downward; on the left are great stones and masses of snow almost directly overhead.

The snow sometimes falls, forming snow slides or *avalanches*, which are very dangerous. You have seen the same thing, on a much smaller scale, when snow has slid from the roofs of houses on warm winter days.

After much hard work we reach the summit. Here, in spite of our wraps, we are all shivering; for upon high mountain summits there are winds which seem to go through even the thickest cloth.

On this barren mountain top there are no birds, no trees, no grass: nothing but snow and rock; but if it is a clear day, and there are no clouds clinging to the mountain sides below, we may be able to look down into the beautiful green valleys, only a few miles away. There the birds are singing, flowers are blossoming, and men, working in the fields, are complaining of the heat.

It is a difficult and dangerous journey to the top of a high mountain. Why?

FIG. 20.

Foot of the Echo Mountain incline, Mt. Lowe Railway, Los Angeles County. Length of incline, 3000 feet; direct ascent, 1325 feet. At the end of this inclined railway is an electric line which carries passengers around and up the mountain five miles to Alpine Tavern, Fig. 21.

It is by no means so difficult to reach the summits of all mountains. Many of them are so low that there is no snow upon them in summer, and trees live and thrive even at the top. Roads or car lines (Fig. 20) may have been built to the summit, so that one may ride up instead of walking.

FIG. 21.

Alpine Tavern, Echo Mountain, Los Angeles County. A noted summer resort.

Among some of these mountains hotels are built (Fig. 21) to which people go in summer to escape the hot weather. There they may walk through the woods, and climb to many interesting places, where fine views are to be had.

Mountains are important summer resorts.

Perhaps you already know that the rocks inside the mountains sometimes contain gold and silver (Figs. 22 and 23). Iron, lead, and other metals are also found there. When

FIG. 22.

In these buildings metal is obtained from the ore that is mined in the mountain rocks far below the surfaces.

FIG. 23.

Mule hauling gold ore on 2200-foot level, Empire Mine, Nevada County, California. This mule has been in the mine for five years and will not be taken to the surface until his days of usefulness are over.

they are dug out from the rocks they are *ores*, which do not look much like these metals as we know them. But the metal in the rings, watches, and silver dollars that you have seen, and even the iron parts of your school desk, may have come from the rocks of some mountain.

FIG. 24.

"Mossbrae Falls," Shasta Springs, California. Fed by the melting snow of Mt. Shasta.

The trees in the mountain forests are also valuable. The most common kinds are evergreens, such as the pine, hemlock, and spruce, which are green even through the winter, and which can live on the cold mountain sides as far up as the timber line.

Mountains are covered for miles and miles with dense forests. This is fortunate, for the trees may be cut down and sawed into lumber, from which all sorts of wooden articles are made. Possibly

the very seat in which you are sitting was once a part of a tree that grew on the side of a mountain.

Mountains are of further use because of the abundance of water they supply. We have already seen that there is much ice and snow upon some of them; in fact, there is so much upon the higher ones that it can never all melt away, no matter how hot the summer may be.

During hot weather many streams dry up; but at such times the ice and snow of the mountains only melt the faster, so that the streams which flow forth from these mountains are even more swollen than usual (Fig. 24). This water may run along for many miles until it finally reaches towns and cities where people need it to drink. Do you know of any city that gets its drinking water from such a river?

Mountains furnish metals, lumber, and water.

REVIEW QUESTIONS.—(1) What can you say about the height of mountains? (2) How have they been made? (3) What is a mountain chain or range? (4) How long might it take to climb a mountain a mile high? (5) Why so long? (6) What can you tell about the cold at the summit? (7) How do the trees change in appearance as one mounts higher and higher?

(8) What would you need for a journey up Mt. Shasta? (9) Describe the first part of the journey. (10) What is the timber line? (11) What is the snow line? (12) What are avalanches? (13) Describe the view from the top of the mountain.

(14) Mention some reasons why mountains are favorite summer resorts. (15) What kinds of mines are found in mountains? (16) Why is it fortunate that trees grow so well on mountain sides? (17) What is done with them? (18) Tell what you can about the streams that flow from mountains.

SUGGESTIONS.—(1) Watch for clouds that resemble mountains. Make a drawing of them. (2) Find pictures of mountains; note the timber line, the snow line, and other points of interest. (3) Represent a mountain in sand. Show the tree line; the snow line; steep and gentle slopes. (4) Represent a mountain range in sand. (5) In what direction are the nearest mountains? What are they called? How far away are they? Find out an interesting fact about them.

(6) Ask some one who has climbed a mountain to tell you about it. (7) Would you care to climb one yourself? Why? (8) Write a

story relating the adventures you would expect in mountain climbing. Describe some of the views you would expect to find. (9) Why do few people live high up on the mountain sides?

For REFERENCES, see page 115.

U. S. Forest Service, camp and party. Calaveras Grove. Big tree "Alexander Von Humboldt."

IV. VALLEYS-

WE have seen how water is always washing away soil, making hills and changing their appearance. Wherever

hills are found there are always low places or hollows, and these are called *valleys*.

FIG. 25.

A beautiful stream in the Yosemite Valley.

ridges between them are only a few inches high.

Every stream of water, whether great or small, when flowing over soft earth, is carrying some of it away and forming valleys. Even when flowing over hard rock, the water is doing the same thing, but more slowly. It grinds the rock away by dragging pebbles and grains of sand over it, thus scouring it out. This work of the water is never finished, for every rain is slightly changing the valleys.

Are there any valleys in your neighborhood? Do you live in one? If you have traveled on the railway, you have certainly seen many of them. Figures 11, 14, and 25

show valleys. Can you find others in the book? In Fig. 25 is shown a small stream with the land on either side gently sloping toward it.

Since there are very few places without slopes and hills of some kind, there must be few places without valleys. Although some of these are narrow, others are so wide that one cannot see across them.

Wherever two downward slopes come together, a valley is formed, whether the slopes be long or short. In those that you can find, notice the difference in the slopes. If in one of the valleys there is a stream, notice the direction in which it flows. Why does the water flow at all? Which way is *down the valley?* Point up the valley.

You see, of course, that valleys have not only width, but length. Perhaps your home is in a valley that is many miles in length. Find out if this is true.

Most valleys have been cut out of the land by running water.

In the picture (Fig. 26) you see several valleys. Rain falls into each of these, some of it sinking into the soil and some running off down the slopes. Into which valley will the water flow that falls on the top of the ridge?

When it rains upon the roof of a house (Fig. 27), the water is divided along the highest part, some flowing down one side, some down the other. The same thing happens when water falls on the land. Because the water parts, or divides, at the highest place between two valleys,

FIG. 26.

The dotted lines show the divides between the valleys. Trace them. What else do you see in the picture?

this place is called a *divide* or *water parting*, or sometimes a

watershed. The dotted lines in the picture (Fig. 26) show some divides. How irregular the lines are!

A divide sometimes stands out sharply, as on the roof of a house; but in many places it is difficult to find, for the land there may appear to be

FIG. 27.

A house roof, to show that the water is divided along the highest part.

flat. Can you point out such a place in Fig. 26?

If you wish to know how wide one of these valleys is, where would you begin to measure? Would it not be from the divide on one side to the divide directly across on the other side? Of course it would, for the divides form the boundaries of the valley (Fig. 28).

A divide or watershed is the highest ground separating two valleys.

FIG. 28.

The line *A-B* shows the width of this valley. Observe that the valley is much wider than the stream.

While the valleys that one usually sees are both narrow and short, there are some so long and wide that one could not travel their whole length or width, even if he were to spend all day and all night upon a fast train (Fig. 29). In our own country there is such a one, called the Mississippi Valley, which is over three thousand miles long and many hundred miles wide.

FIG. 29.

Picture of a river winding through a broad and very long valley.

When valleys are as large as this, their slopes must be very gentle. On that account many people who live in the Mississippi Valley scarcely know that they are in a valley. The river flows through the lowest part, and the homes of these people may be so far away that they have never seen it. All about them the land appears so level that it does not seem to form a part of a slope. It is

FIG. 30.

A valley sliced through to illustrate how valleys may be formed by the folding of the rock layers.

therefore called a *plain*. But when rain falls there, it immediately flows toward the river, thus proving that the plain is a part of the great Mississippi Valley slopes.

Such an immense valley was not cut out by running water. You have learned that hills are made in that way, but that mountains are formed by the rising of great

FIG. 31.

Truckee, California, a mining town among the Sierra Nevada Mountains.

masses of rock. Some of the great valleys, like the Mississippi, have also been made by changes in the level of the land. But even the valleys that have been formed in this way have generally been greatly changed by the water that has run through them.

Some great valleys have been formed by the rising or sinking of the land.

People generally choose the valleys for their homes. Even among high mountains, where it is impossible to live on the steep and cold sides, they often dwell in the bottom of the valleys. Here they are surrounded by lofty peaks which appear to shut them in almost entirely (Fig. 31).

Hills are often too cool, or else have too shallow

a soil for farming. The rains have washed the dirt down the steep slopes into the lower part of the valleys, making a deep and fertile soil there. In the valleys, therefore, the best farms are found, with their great fields of corn, oats, wheat, and grass. Here, also, cattle and horses are raised

FIG. 32.

A "prize winner" grazing on alfalfa growing in the deep, rich soil in a valley bottom of Kern County, California.

(Fig. 32), many large cities have sprung up, and railways have been built.

Most of the land is really made up of slopes, and we are living upon them. It may not seem that your home is upon one, but it probably is. Your house may even be upon a hilltop, and yet you may be living in a broad valley.

Most people live in some part of a valley.

The soil is all the more valuable because of the slopes of valleys. Were it not for them the water, after a heavy rain, would stand in a thin sheet upon the ground. But where there are slopes down which the water can freely run, it quickly flows off and does not drown the crops or make the region unhealthful for man and animals.

The great importance of this matter is shown when farmers buy land. One of the first things that they inquire about is *drainage*, that is, the slopes, which allow the water to run off quickly.

If the water does not freely flow away, they even dig ditches in order to carry it off (Fig. 33). Sometimes these ditches are left open, as in the picture; but, more often, tiles are placed in the bottom, forming a kind of pipe, and then the earth is thrown back again. The water finds its way into the pipes, through small openings that are left for this purpose, and flows away. Good drainage is so important that men are often willing to incur great expense in order to secure it.

In some places the land is so nearly level that the standing water produces *swamps*. There are thousands of swamps in this country, and great sums of money are spent in digging ditches to drain them. This makes the swamp dry; and since the soil in such places is very fertile, a great deal of land that was once of little value is now changed to rich farms.

The slopes of valleys are valuable for drainage.

Valleys have had a great influence upon the roads of a country. For instance, in going across mountains men generally follow a valley, going higher and higher until

FIG. 33.
A ditch dug to drain a swamp.

they come to what is called a *mountain pass* (Fig. 34), which is nothing more than a valley between mountain peaks. After crossing this, they go down another valley on the other side of the mountain.

Railroads also cross mountains through the valleys and over the lower passes; they wind in and out, often making sharp curves in order to avoid cutting directly through the rock.

Even in hilly regions it is usually easier to get from one place to another by traveling in the valleys. In the lower parts, near the streams, the land is most nearly level; but as soon as one attempts to go directly across the country, the roads become rough and hilly.

FIG. 34.

Inspiration Point on White Pass Route—the old-time route to the gold fields of the Klondike.

On that account, when white men first came to this country, and settled among the hills and mountains, they built their roads in the valleys, often quite near the streams. Men do the same thing still.

Where the country is more level, as upon a plain, it is not so difficult to travel directly forward; but even in such places both the wagon roads and the railways are often built round a small hill rather than over it.

The location of wagon roads and railways depends on the valleys.

We have seen that hills and mountains afford many beautiful views. But it is not necessary to go to the mountains to see fine views. You may see them in almost any valley or plain. Those living in cities, or even small towns, may see roadways well graded and shaded by beautiful evergreen trees (Fig. 35). The advent of the automobile has been the means of securing better roads. Why?

FIG. 35.

A beautiful tree-lined roadway for automobiles and carriages.

In the country, also, there are many beautiful sights, such as the variously colored fields, the waving grain, the graceful trees, and the shady roads.

In the spring the plants are fresh and bright; in the autumn they are prettily colored; in the winter the damp snow clings to the trees, bushes, fences, and houses until everything is robed in white (Fig. 36). Again, the rain freezes to the trees, and when the sun appears, every-

thing sparkles in the bright light as if it were covered with a thousand jewels.

It is not necessary, then, to travel far in order to find beautiful views; they are to be found everywhere, not only among the mountains, but on the hills, in the valleys, in the country, and in the city.

The hills, mountains, and valleys are very beautiful.

FIG. 36.

A scene in a city park after a heavy fall of damp snow.

REVIEW QUESTIONS.—(1) What makes the little valleys? (2) Tell why they must change from year to year. (3) Describe some of those that you have crossed on the railway. (4) How many slopes are necessary to make a valley? (5) What is a divide? (6) Tell how large some of the largest valleys may be. (7) How have these very large valleys been formed? (8) What is a plain?

(9) In what parts of mountains do most people live? Why? (10) What is meant by drainage? (11) How do farmers sometimes provide drainage? (12) What is a swamp? (13) Why do roads and railways among the mountains follow the valleys? (14) What

is a mountain pass? (15) Where is the most level land usually found? (16) What fields or yards near you are beautiful? (17) Are there any walks or drives that you greatly enjoy? (18) How do the views change from time to time?

SUGGESTIONS.—(1) Find a tiny valley and watch to see if it is changed in any way by a heavy rain. (2) Find a still larger valley in your neighborhood. (3) Find the divide on each side of it. (4) Show that streets and roads are so made that they have a watershed. (5) Make some valleys in clay or sand and show the divides. (6) Where is the largest valley in your neighborhood? (7) Is your home in one of the very large valleys, or in a small one? (8) Show by a drawing like Fig. 30 how the largest valleys have been made. (9) Can you show it in any other way? (10) Why should swamp land that has been drained raise uncommonly good crops? (11) Do you know of any roads or railways that follow valleys and wind about the hills? Tell about them. (12) Find some beautiful views in your neighborhood. (13) Make a collection of pictures of valleys. (14) Write a story telling how valleys have been formed.

For REFERENCES, see page 116.

A beautiful home in the Sacramento Valley, Colusa, California.

V. RIVERS

EVERY heavy rain causes the water to collect, here and there, and flow down the slopes. At first only tiny rills are formed; but these unite to form the little streams and brooks.

FIG. 37.

A noisy brook in the Adirondacks of New York, tumbling over its rocky bed.

In some places a brook is narrow and deep, in others broad and shallow; here it flows swiftly and there slowly. Place a chip or a boat in such a brook, and it floats quietly in some places, and then, coming to a *rapid*, it is whirled along swiftly and perhaps upset (Fig. 37). Or it may float to a *waterfall*, where the water tumbles down from the top of a ledge, and then it is surely overturned (Fig. 38).

FIG. 38.

Pitt River Falls, Shasta County, California.

There are large rivers in the world much like these little brooks, the main difference being in their size. But even such rivers are generally small at their beginning or *source*. Some of the largest have their sources far up the mountains, where they are so small that a person can easily step across them.

The water of these rivers may come from the melting snows ; and, as it dashes along, beating itself into foam by striking against the rocks, it is joined by other streams like itself. Often the water must rush round or leap over large boulders which lie in its path ; and often it falls directly downward for many feet with a great roar (Fig. 75).

Great rivers at their source are usually no larger than a brook.

The water of a mountain stream seems to be quite helpless, with the great, hard rocks all about it ; but it never gives up its struggle with them. Rocky cliffs may reach far up into the sky on either side, and the slopes may be so steep that loose pieces of stones often fall into the water. But the torrent dashes these against one another, and grinds them against its rocky bed, until they are worn into pebbles. These pebbles are borne downstream and are slowly ground up into grains of sand and bits of clay.

If we should travel down such a stream, starting near its source among the wild mountains, we should find it constantly changing. In the first place, it gradually grows larger, because other streams, called *branches* or *tributaries*, enter it (Fig. 39). The *banks* become lower and the river grows broader and deeper. In places there may still be rapids and falls, but the country on either side is not so steep and rocky as it was among the mountains. Now, houses, farms, and men are seen, and horses and cattle are grazing in the fields near the banks.

At first, the slope of the *stream bed* was so great that the river hurried along faster than you could run. Now the water no longer flows rapidly enough to drag boulders

or even pebbles; but it can still carry the sand and mud brought by the rain from the soil of the hillsides.

FIG. 39.

Two streams, the Allegheny and Monongahela, uniting at the great city of Pittsburgh in Pennsylvania.

It has now been many days since this water left the mountains. The river has become so wide that a long bridge is needed to cross it (Fig. 40), and so deep that boats navigate it, carrying freight and passengers (Fig. 41).

At last, perhaps weeks after

FIG. 40.

The long bridge across the Mississippi River at St. Louis.

FIG. 41.

Sacramento River at Sacramento, California. It flows through a splendid farming country.

it started, the water approaches the ocean ; and now the downward slope of the river bed is so gentle that the *current* cannot drag even grains of sand ; but it still carries fine bits of rock-mud with it. These bits may be so tiny that if you were to place some of the muddy water in a glass, it would take hours for all of them to settle and leave the water clear. When the river enters the quiet waters of the ocean, even this mud, or *sediment*, settles.

We have followed the river from the source to the *mouth*, where it empties its waters into the great ocean. At first it was a little stream, but by the addition of water from many tributaries, it has grown larger and larger, until at its mouth it may be more than a mile in width.

A great river is broad and deep at its mouth, and its current is very slow; but it carries sediment even to the ocean.

Where does so much water come from ? Taken up from the ocean, it falls from the sky in the form of rain

or snow. But we all know that small streams dry up and disappear soon after a rain. Even large streams may become quite dry in summer (Fig. 42). Why, then, do not great rivers also dry up?

One reason is that many rivers have a constant supply at their source. That this is true of a stream starting in a high mountain is clear, because we have seen (p. 28)

FIG. 42.

Paso Robles, California. Notice in the foreground the Salinas River bed, which is filled with water when the rain falls or the snow in the mountains melts, but dry during the summer.

that the snow in such places never entirely melts away. It is also true of streams that have their sources in lakes and swamps.

Then, again, not all of the rain water flows off, but some sinks down into the ground. There is a great deal of water in the ground, and it is this which men find when they dig wells. This underground water trickles through the soil, and through crevices in the rocks, often bubbling

forth as a *spring*, weeks after it has fallen as rain somewhere else. Most large rivers are supplied with water from hundreds and even thousands of such springs.

It is to be remembered, too, that a great river, with its many tributaries, flows through a very large tract of country, so that when it is not raining in one part, the rain may be falling in another. Thus, while one tributary carries little water, heavy rain may keep others full, and this flows into the main stream, preventing it from drying up.

FIG. 43.

Photograph of a river flood on the Ohio, which has forced the people out of their home. Tell what you see in this picture.

If a heavy rain falls, or if the snow melts rapidly, so much water may flow into a river that it rises and overflows its banks (Fig. 43). Those who live near such streams are in danger of being drowned by the floods, and in some places men have built banks of earth,

called *levees*, to keep the water from overflowing the towns and farms.

The supply of river water comes from rain or melting snow, from lakes and swamps; and from underground.

FIG. 44.

A small river basin drained by a valley stream. Tell what you see in this picture.

Every one has seen muddy water flowing in gutters, or in rills on the hillsides. Great quantities of soil are washed away in this manner, as has been shown (p. 12). But what becomes of it all?

If you have seen a sidewalk or a field flooded with water, you perhaps remember that when the flood disappeared, a thin layer of fine mud was left. This mud was carried along by the current until it reached a place where the water stood almost still, then it slowly settled. The same thing will happen if some muddy water is allowed to stand in a glass for a time. Try it.

In much the same way, when there is a river flood (Fig. 43), the water spreads out on either side of the river in a great, thin sheet, flowing slowly along and depositing a thin layer of mud. Each flood adds a layer, making the land higher, until, after many years, it is lifted considerably above the usual level of the river. Such land is generally a level plain; and since it is made by river floods, it is called a *flood plain*.

Some of the sediment carried by rivers forms flood plains.

Much of the sediment is carried on until it reaches a lake or the ocean. Here, opposite the river mouth, the water is generally quiet, so that the mud sinks to the bottom.

FIG. 45.

This picture shows a river delta. What else do you see in the picture?

At first only enough sediment is collected to form low, swampy land; but this is gradually lifted higher and higher, by layers of mud from each flood, until it becomes high enough to make dry land.

These plains

at the mouths of rivers form what are called *deltas* (Fig. 45). Many streams have such wide deltas that one cannot see across them, most of the sediment having come from fields, hills, and mountains, perhaps hundreds of miles away. The surface of the delta is a plain, because it cannot be built any higher than the floods themselves have reached.

From year to year more sediment is brought down, and the land is built farther and farther into the water, so that deltas are constantly growing. The slope of the river bed is usually so gentle that all of the water cannot flow out in a single channel. For this reason it enters the sea through several arms, cutting the delta into several parts.

Some of the sediment carried by rivers builds deltas at their mouths.

A river entering the sea may receive water brought by hundreds of tributaries. Thus the rain that falls in places even hundreds of miles apart may at last be brought together in a single main stream. Such a main stream with all of its tributaries is called a *river system* (Fig. 46). For instance, we speak of the Mississippi River system, meaning the Mississippi and its many tributaries.

All the country which is drained by a single main stream is called a *river basin*. Thus all the land drained by the Mississippi River is included in the Mississippi basin.

One should not think of this as a true basin. A real basin, as a wash-basin, has a rim extending all around it. The rim of a river basin is the divide; but there is no divide, or rim, near the mouth of a river, since the water runs out into the sea. If it were a true basin, with a rim all around it, the water would collect and form a lake.

All the land whose waters are drained by a single river is called a river basin, and all these streams together form a river system.

FIG. 46.

Picture of a river system and river basin. Point to some of the tributaries; to their source; to the mouth; to the delta.

Some ways have already been suggested in which rivers are of much use. They build flood plains and deltas, thus making some of the most fertile land in the world. Rivers also furnish water to plants, animals, and man.

On page 6 it was shown that plants sometimes wither during hot weather, because the soil is dry. But near rivers the soil is usually kept so moist that plants grow well even in dry weather.

There are some places in the world where there is not enough rain for crops to grow. The people in such regions sometimes lead the water out of the rivers into ditches, through which it flows for long distances. Then it is spread out over the thirsty soil, so that plants can thrive. This is called *irrigation*, and in some places no crops can be raised without it.

Many animals and people depend on rivers for all the water they use. Even whole cities obtain their drinking water solely from rivers (Fig. 49).

Streams not only bring water that is needed, but they also carry away that which is not wanted. A river is really a great ditch for draining the land, so that whenever the snow melts rapidly, or a heavy rain falls, the rivers quickly remove the water. They also carry off the filthy water, or sewage, of many towns and cities.

Rivers supply water that is needed, and remove that which is not wanted.

The water of rivers is also used for turning wheels to help make many articles, such as cloth and flour.

You have perhaps noticed how windmills work (Fig. 68). The *wind* blows the large wheel round and round, and it is so connected with other wheels that it can pump water, or turn a saw for sawing wood, or grind corn. Likewise *steam* is used to turn the wheels of a railway engine, so that it drags the heavy cars along.

River water is made to do work in much the same man-

ner. The water, racing rapidly along, strikes a wheel and makes it whirl round. This wheel, being connected with others, causes them to turn also, much as one wheel in a clock causes others to revolve.

FIG. 47.

Old mill and wheel covered with moss. Saint Helena, California.

Thus machinery is set in motion by which logs are sawed into lumber, grain is ground into flour, cotton is made into cloth, and many other kinds of work are done.

The water that furnishes the power to turn the wheels is called the *water power*, and the buildings in which such manufacturing is carried on are called *factories* or *mills*.

In many places the river water does not flow fast enough to strike a wheel with much force; water power is found

mainly in rivers with swift currents, and especially near rapids and falls. Here mills have been built, and then great cities have often sprung up (Fig. 75, p. 91).

Rivers also supply water power for manufacturing.

There is still another way in which rivers are extremely valuable. It has always been difficult to find a convenient means for carrying goods from one place to another. In some places there are no roads; and even where there are, they are often hilly, rough, and muddy.

Yet most of the articles that we use every day, like sugar, flour, oil, meat, coal, lumber, and clothing, have been carried long distances, sometimes thousands of miles. Even if the roads were excellent, it would take a great deal of time, and cost much money, to bring these things in wagons. To carry them by railway takes less time, but is expensive.

A broad, deep river is really one of the finest roads in the world. To be sure, no wagons or cars can be drawn over it, but boats move there with ease. A river boat can carry as much as scores of wagons or cars (Fig. 48), and many may be going and coming at the same time, so that a large river is equal to several railroads; it costs little, too, to keep it in repair.

For these reasons carrying goods by boat upon rivers, or *river navigation*, is a very important business. Indeed, it is so important that in many places broad ditches, called *canals*, have been cut in the soil and rock in order to carry goods by boat.

Before the railways were built,—which is no longer ago than when your grandfathers were boys,—boats were used for carrying all sorts of articles from place to place.

Even to-day, when there are so many good wagon roads and railways, it is cheaper to carry crops and other products on boats than in cars, and this is often done.

We see, then, why many people have preferred to build their homes near rivers. A farmer prefers to live near a good wagon road, or near the railway station, so that he may easily send his crops away ; and, for the same reason,

FIG. 48.

A view across the broad Mississippi at New Orleans. The other bank is seen dimly in the distance. A loaded river boat is just coming in, and others are tied up to the levee.

people have always liked to live near a river, which is a good road or *waterway*. It is partly on this account that many of the large cities of the world stand on the banks of large rivers. Do you know of any such cities ?

Rivers are also of value for navigation.

REVIEW QUESTIONS.—(1) Describe a stream that you have seen. (2) What are rapids and falls? (3) Describe a small stream in the mountains. (4) What does it do with the rocks in its way? (5) What are tributaries? (6) Does the current grow more or less

swift as one goes farther downstream? (7) How does the country change in appearance? (8) What becomes of the pebbles? Why? (9) What is meant by the source of a river? By its mouth? (10) Where do rivers obtain their water? (11) What is a spring? (12) What effect has a heavy rain upon a stream? (13) Why do not large rivers dry up in summer? (14) Why does not sediment sink where the current is swift? (15) What is a flood plain? Why is it level? (16) Explain how a delta is made. (17) What is a river basin? (18) A river system? (19) Why do plants grow well on the banks of a river? (20) What is irrigation? (21) How are rivers useful for drainage? (22) What is water power? (23) In what ways is a river a fine road? (24) Give some of the reasons why many cities have sprung up near great rivers.

SUGGESTIONS.—(1) After a heavy rain, follow a small stream from its source to its mouth. (2) Throw a chip into the water, and follow it as far as you can. (3) Why are the rocks in river beds usually so smooth and round? (4) If there is a brook or river near you, examine its banks. Is it a tributary of another stream? (5) How deep and how wide is it? (6) Trace a brook to its source, if possible. Find several tributaries. (7) What large river is nearest your home? What are its largest tributaries? (8) What is meant by "up a river"? By "down a river"? By right bank? By left bank? By river channel? By river bed? (9) Find a spring. Why is its water cool? (10) Watch a well that is being dug, to see if underground water is found. (11) Find a flood plain along the side of a stream. (12) Find a delta. (13) Do you know of a city that gets its water from a river? (14) Make a small water wheel, and arrange for a stream of water to turn it round. (15) Visit a mill that is run by water power. (16) Find out more about canals. (17) Make a collection of pictures of rivers, and notice as many things as you can about them. (18) Find some poems describing brooks and rivers. (19) Write a story of a journey from the source to the mouth of a river.

For REFERENCES, see page 116.

VI. PONDS AND LAKES

RIVERS supply towns and cities with water, and also turn the wheels of factories; but some streams become so low in summer that they lack water for these purposes. To prevent this difficulty men often build dams

FIG. 49.

Meredith Falls, California. Water supply for domestic use and for irrigation.

of wood, earth, or stone across the rivers, and in this way collect sufficient water to make ponds (Fig. 49). When the rivers are high, these ponds are filled, and enough water gathers to last through the dry season.

Lakes may be made in a similar manner, for they are like ponds, only larger. Sometimes they are several hundred miles in length, and perhaps one hundred miles in width. Some of the largest in the

world, the Great Lakes in the northern United States, were made by dams formed ages ago across parts of the great St. Lawrence River system.

But in most cases these dams have not been built by men. Beavers have made a few of them. There used to be a great many of these little animals in this country, and some are still left. Since they prefer quiet, shallow ponds in which to live, they gnaw down trees and build dams with the logs; then they build their homes in the water thus collected.

In other places, where the sides of a valley are steep, great masses of rock and earth have sometimes fallen, in the form of avalanches, and blocked or dammed the streams.

Also it was stated (p. 20) that the earth has been warped or bent upward in some places, forming low ridges, or even lofty mountain ranges. In this way the ground has sometimes slowly risen across river valleys, making high dams; in such cases large lakes have been formed.

There are many other ways in which dams have been built, especially by means of glaciers, which you will study about later.

Most ponds and lakes have been formed by dams across valleys.

Since a lake is generally a part of a stream, it is evident that water must flow into it. The river that flows into a lake is called the *inlet*, and that which flows out is called the *outlet*. There are also many streams entering from the sides. Each of these brings sediment, which settles in the lake, slowly filling it. At first deltas are built opposite to the stream mouths; then, in time, the whole lake is filled and changed to a swamp. Many a swamp is really the last stage in the life of a lake.

The surface of a lake appears to be level; but one part is really slightly higher than the other, otherwise the water would not flow out of it. The higher part of the lake, near the inlet, is called the *head of the lake*, the lower part, near

the outlet, the *foot of the lake*. It is correct, then, to speak of going up or down a lake, just as we speak of going up or down a river.

Some lakes have no outlets, because there is so little water that the basin cannot fill up and overflow. This has a very peculiar effect upon the water, for in time it becomes salt. Probably you have heard of the Dead Sea and the Great Salt Lake of Utah. These are salt lakes of this kind, and no one would drink their water, even if he were dying of thirst.

FIG. 50.

A mountain stream. An outlet to a lake.

But why do such lakes become salt? There is some salt in all water, even in that which we drink, although so little that we do not notice it. When water flows into a lake, the salt is carried with it. If there is no outlet, the salt can go no farther; but each day some of the water is changed to vapor and carried away in the air. As the bits of salt cannot go off in this way, they remain, and increase in number, until, in time, the water becomes so salt that we have a *salt lake*.

Most lakes have inlets and outlets; but some, having no outlets, become salt.

The land at the margin of a river is called the *bank*, but that along the margin of a lake is called the *shore*. Sometimes the lake shore is low and wet, being overgrown with swamp plants. Again, it is pleasant to walk upon, being made of sand and pebbles brought there by the waves. This kind of shore is called a *beach* (Fig. 51).

FIG. 51.
Lake shore. Clear Lake, California.

Many lake shores are regular, but many more are irregular. In some places points of land, called *headlands*, extend into the water (Fig. 52). If small, these are called *points* or *capes*; if large, *peninsulas*. A narrow neck of land joining two larger pieces is an *isthmus*. Bodies of land entirely surrounded by water are known as *islands*.

FIG. 52.

A view of Moosehead Lake in Maine. Learn what each of the names means.

The water that is partly shut in between two headlands is called a *bay*. When a bay has deep water, and is so nearly surrounded by land that vessels can enter it and be protected from the wind and waves, it is called a *harbor*. A narrow strip of water connecting two larger bodies of water is known as a *strait*.

When the water gathers behind a dam to form a lake, it enters many valleys, forming bays and harbors, with capes, and perhaps islands between. This is the chief reason for the irregular shores of many lakes. If you will make a little valley in clay, with two or three tributaries entering, then put a dam across it and fill it with water, you will see just how this is done.

The shores of lakes are often irregular, producing bodies of land and water of many shapes.

Ponds and lakes are useful in many of the same ways as rivers. They help to keep the ground moist; they

FIG. 53.

How many of the features just mentioned can you find in this picture? Find some also on Fig. 60.

furnish water to cities, and they supply water to turn the wheels of factories. Besides this, many valuable fish are caught in lakes, and much ice is cut from their surface.

Again, like rivers, lakes are important waterways. Upon large lakes, like the Great Lakes, hundreds of vessels are going and coming, carrying men, grain, coal, lumber, and countless other things. On this account many people have settled on the shores of large lakes ; and, as a result, many towns and cities have been built there. Do you know of any ?

The shores of lakes are often very beautiful, and many persons go to them in summer to hunt, fish, and canoe. There are hotels there, too (Fig. 52), and some lakes are important summer resorts.

Lakes supply drinking water, water power, fish, and ice. They are also useful for navigation and for summer resorts.

How are vessels loaded with goods? And again, how can these cargoes be unloaded? Wagons may be driven beside a railway car, and be filled or emptied speedily. But a large boat sinks down many feet into the water (Fig. 54), so that if it came near the shore, it might strike the bottom and be wrecked.

FIG. 54.

Fortunately, here and there along the lake shore, there are small bays with deep water. The opening is large enough for vessels to enter easily, but small enough to keep out the fierce waves. Here we have a fine *harbor* (Fig. 55).

From the shores of the harbor men build piers of wood or stone, called *wharves*. These reach into the deeper water, where ships may be fastened or *moored* to them.

Large cities are sometimes found on parts of a lake shore where there are no such natural harbors. In that case harbors have to be *made*, even though it is expensive to do so. Walls of rock, or of posts driven deep into the ground, are built in such a way as nearly to inclose a body of water, very much as capes inclose the water of a natural harbor. Such a wall is called a *breakwater* (Fig. 56), because it breaks the force of the waves, and prevents them from entering the space behind.

When a harbor is not deep enough for vessels to enter, it is necessary to dig out the dirt and rock from the bottom. This is quite often done in the inlet and outlet streams at the ends of a lake.

FIG. 55.

Avalon, Catalina Island, California. A noted resort.

Harbors are places where vessels find safety from storms and where cargoes are loaded and unloaded with ease.

FIG. 56.

Breakwater at San Pedro, where the coast has no natural harbor.
Built by U. S. Government.

REVIEW QUESTIONS.—(1) Why are dams built in rivers? (2) Explain how ponds are made. (3) How do lakes differ from ponds? (4) How are lakes made? (5) Tell what you can about beaver dams. (6) In what other ways may lake dams be made? (7) What is the inlet of a lake? The outlet? The head? The foot? (8) How does it happen that some lakes have no outlet? (9) What about the water then? Why?

(10) What is meant by shore? By beach? (11) What do you understand by a *regular* lake shore? (12) Make a drawing of a cape; peninsula; isthmus; island; bay; strait. (13) Tell in words what each of these is. (14) What is the cause of these irregularities? (15) Mention a few uses of ponds and lakes. (16) What is a harbor? (17) Why must the water be deep? (18) How can a harbor protect ships from storms? (19) What is a wharf? (20) How are harbors often made? (21) What is a breakwater?

SUGGESTIONS.—(1) Build a dam in some small stream and note how rapidly the water collects. (2) Find out more about beavers. (3) Look for a pond or lake and examine the dam that caused it. (4) See if there are both an inlet and an outlet. (5) Walk up the lake; walk down the lake. (6) Examine the shore and notice the different forms of land and water. (7) Find a small harbor. Would every bay make a good harbor? (8) Make a small, irregular hollow in clay and fill it with water to form capes, harbors, and islands. (9) Find some of these in the pictures and maps of this book.

(10) How do men get ice from a lake? (11) In what ways do men catch fish? What kinds of fish have you seen caught? (12) Find pictures of good harbors. Look for the wharves and the breakwater. (13) Build a breakwater to form a little harbor in a small stream or pond. (14) Find just how many feet some of our largest ships sink into the water.

(15) Walk toward the nearest large lake. What are some of its tributaries? Where is the inlet stream? The outlet? What are their names? (16) Name some cities that are on lake harbors. (17) Write a story telling what you would expect to see along a lake shore.

For REFERENCES, see page 116.

Matchless Lake Tahoe, California.

Stowe Lake, Golden Gate Park, San Francisco.

VII. THE OCEAN

THE great rivers, starting as tiny brooks, grow into larger and still larger streams, until, after days and perhaps weeks, they reach the mighty ocean. No doubt much of the rain falling in your neighborhood finally reaches the sea in this way ; and if you could float along upon it in a light boat, in time you too would reach the ocean.

We can see across most lakes, and can sail across even the largest in a day or two ; but the ocean is far larger. One could sail upon it in the same direction for many days without coming to land (Fig. 57). It is so great that it surrounds all the land on which people live, and no matter in which direction you might travel, if you went far enough you would come to it.

If you were to start out to reach the ocean, the journey might last many days. It might be necessary to go up hills and across valleys, to pass around lakes, and possibly over great ranges of mountains. You would be surprised to find how much land there is, and how many farms, villages, towns, and cities there are.

But there is far more water than land. In fact, the water covers about three fourths of the earth's surface and the land only one fourth. If one were to travel entirely around the earth, he would probably spend much more than one half of his time upon the ocean.

The ocean is so immense that the great rivers in all parts of the earth pour their water into it. Their mouths may be thousands of miles apart, yet the sea stretches far enough to reach them all.

The water of the ocean is too salt to drink; but river water is fresh. Since there are many thousands of rivers entering the sea, would you not expect that their water would make the ocean less salt? It does do so near the mouths of great rivers; but soon it becomes mixed and swallowed up in the salt water. This is another way of showing the size of the ocean, for all the river water that enters it is not enough to make it fresh.

The salt water of the ocean surrounds all the land.

FIG. 57.
A view of the great ocean.

Different parts of the ocean have different names. For instance, the *Atlantic* Ocean is the part lying between the United States and the land called Europe, where the English, German, and other peoples live. We buy many articles from these countries, such as woolen cloth, knives, oranges, and olives; and they likewise purchase other

articles from us, such as wheat, cotton, and meat. The way to reach these people is to cross the Atlantic Ocean. The fastest steamers need five or six days for the voyage.

In all parts of the earth the ocean is a great highway. It is so large that thousands of ships are traveling upon it in all directions, carrying people, cattle, grain, fruit, iron, different kinds of machines, and many other things. Although there are so many ships, the ocean is so large that one ship may sail for days without seeing another.

FIG. 58.
Ocean steamer, about to leave for the Orient.

Ocean navigation is therefore a great business, and many thousands of men are engaged in it. Most of the ships used are larger than the vessels upon lakes, and they sink deeper into the water (Fig. 58). Very large ones, when loaded, reach down about thirty feet below the surface.

Of course the ships meet with storms upon the ocean, as upon lakes. In fact, the ocean waves are at times so high that they sweep over and almost cover up the largest vessels (Fig. 59).

FIG. 59.
Ocean waves during a storm.

The coast of the ocean resembles the lake shore in having capes, peninsulas, islands, isthmuses, straits, and bays (Fig. 60). We have learned (p. 35) that the land in places has been raised or lowered. When it is lowered near the seacoast, the water enters the valleys and partly

FIG. 60.
A picture of Castine harbor on the irregular coast of Maine. Here the land has been lowered so that the salt water of the ocean has entered the valleys, covering their bottoms, but leaving the hilltops as islands, capes, etc.

drowns the land, as it does in lakes (p. 61). This, of course, makes an irregular coast.

Naturally, on such an irregular coast there are harbors which large vessels enter, and in which they are safe from storms. For example, New York harbor is so broad and deep that hundreds of ships (Fig. 61) are found in it at all times, either loading or unloading their cargoes, or waiting for storms to pass.

FIG. 61.

A view among the ships along the wharves of New York harbor. The great Brooklyn Bridge is seen behind the masts.

Goods are brought to New York, not only from Europe, but also from China and Australia, and, in fact, from all parts of the world. It is quite possible that the tea and coffee which are used on your table, and the bananas and pineapples which you have eaten, were brought over the ocean and unloaded in this harbor. If not, they were unloaded in some other fine harbor, such as Boston, San Francisco, Philadelphia, Baltimore, or New Orleans.

Since the ocean easily connects such harbors with all parts of the world, it is natural that great cities should spring up where the best ocean harbors are found. It is partly on this account that New York, Philadelphia, Boston, and San Francisco have become such large cities.

Vessels come toward these *seaports* from all parts of the world; but it is often difficult to tell just where to enter the harbors, especially at night. Ships are in danger of going out of the way, and of running upon rocks, or *reefs*, in the shallow water near the coast.

FIG. 62.

A vessel wrecked by running aground upon a shallow reef.

(Fig. 62): On that account, tall lighthouses are built on many islands and capes, so that captains may know by their lights which way to go in order to enter the harbors (Fig. 63).

The ocean is a great waterway connecting different parts of the world.

Not only are goods carried on vessels, but many men go out in them, often out of sight of land, in order to catch the fish which live in such great numbers in the sea. Instead of hooks and lines, long nets are often used, and in them so many fish are caught that the vessel is loaded down with fish. No doubt some of the mackerel that you have eaten have been caught in this way. Picture 67, page 79, shows a vessel that is used to catch ocean fish.

In summer the ocean shore is cooler than the land far away from the sea. This is because the air is cooled as

it passes over the water. Many people therefore go to the seashore to avoid the hot weather, just as others go to the mountains. Here they spend day after day climbing about over the rocks or walking upon the clean, sandy beach, breathing the fresh air, enjoying the beautiful scenery, and bathing in the cool salt water (Fig. 64).

FIG. 63.

Point Loma Lighthouse, California. A bright light is placed at the top of the tower so that it may be seen far away.

On this account many houses, and even towns, have been built at those places along the seashore where people wish to spend their vacations. There are large hotels to accommodate the visitors (p. 76); and in the summer these places are crowded; but very few people remain at *summer resorts* during the winter.

There is another way in which the ocean is even more useful to man. It is the sea water which supplies us with moisture, so that there can be rain. If it were not for the

great ocean, very little rain would fall. So every one is deeply indebted to the ocean, even though he may live thousands of miles from it. Soon you will learn (p. 80) how its water reaches us in the form of rain.

The seashore is a popular summer resort; the ocean water supplies food and makes rain possible.

FIG. 64.
Bath House, Ocean Park, California.

Rivers, lakes, and the ocean present many beautiful views. You may have observed that in cities, where people plan for fine parks, they arrange, if possible, to have a lake or stream as part of the scenery. A body of water, even if but a brook, greatly improves a view.

A brook is a beautiful object (Fig. 65). How pleasant to see its green banks, to listen to its rippling waters, and to watch its tiny rapids, whirlpools, and falls, as it travels onward to the ocean!

Rivers are not less attractive; like the brooks, their rushing waters seem to tell a story, and one loves to linger by them, to listen and to look. At times, when swollen by floods, they are wild and savage; again, they are quiet, peaceful, and beautiful. They wind in and out among the steep and wooded hills; now they flow along noiselessly, then they rush over rapids and falls with a roar; here their banks are low and green, there they are high, steep, and rocky.

The lakes and the ocean are sparkling sheets of silvery water, often dotted here and there with white sails. Sometimes the color is green,

FIG. 65.

A quaint bridge across a beautiful brook in New York State.

again it is blue; and when the clouds hang over it, it is dark and gloomy. There are beautiful sunrises and sunsets to watch; and one can see the storms come and go, with the waves dashing into the whitest of foam. In fact, the water, the sky, and the coast are always changing in appearance, so that the lake shore and the seashore are among the most attractive of places.

The land and the water together furnish many beautiful views.

REVIEW QUESTIONS.—(1) What place does the water of brooks and rivers finally reach? (2) How much of the earth's surface is water? (3) What other facts show that the ocean is very large? (4) Tell about ocean navigation. (5) What is the cause for irregular ocean shores? (6) Tell what you can about New York harbor. (7) Why are large cities found on the fine ocean harbors? (8) Of what use are lighthouses? (9) Name some foods obtained from the ocean. (10) Why do many people go to the seashore in summer?

(11) Do you know of any park or meadow with a stream or lake in it? If so, describe it. (12) Did you ever enjoy watching the water?

Where was it? (13) How does the surface of a lake or ocean change at different times?

SUGGESTIONS.—(1) In what direction would you go to reach the ocean? How far is it? (2) Find pictures of large harbors with ships in them. (3) Name several seaport cities. (4) Have some one tell you about a journey across the ocean. (5) Name as many articles as you can that come from over the ocean. (6) How does the captain of a vessel know in what direction he is going, after losing sight of land? (7) How are ships made to move through the water? (8) What use is made of whales? (9) Find out how fish are caught. (10) Ask some one who has visited a summer resort on the seashore to tell you about it. (11) Is there any brook or river that you enjoy visiting? Where is it most beautiful? (12) Tell about some of the storms on the ocean described in Robinson Crusoe. (13) Do you know of any views that are made more beautiful by the presence of water? If so, where are they? Describe them. (14) Collect, from magazines, pictures of beautiful views with water in them. (15) Write a story, telling what you would expect to see in crossing the ocean. (16) Make a drawing of a ship.

For REFERENCES, see page 116.

Coronado Beach, San Diego, California. Coronado Hotel in the distance.

VIII. THE AIR

SINCE air cannot be seen, people often forget that it really is something; but a fire will not burn without it, and plants, animals, and men must have it to breathe. In fact, drowning means nothing more than sinking under water, where there is not enough air to breathe.

This is proof that the air is really something, even though it cannot be seen; and you can prove the same thing in other ways. For instance, if you stand with your face to a breeze, you feel the air moving. Sometimes this movement of the air, which we call *wind*, is so rapid that it blows down trees and houses.

Here is an experiment to prove that the air is something and that it fills space.

Find an empty bottle without a cork and sink it in water with the open end up. Notice the gurgling noise as the bubbles of air rise to the surface, while the bottle slowly fills. Where does this air come from? And why does not the bottle fill more quickly? You see that although we called the bottle *empty*, it was really filled with air which could not be seen. The water could not enter the bottle until it pushed the air out, because the bottle could not be filled with two substances at the same time. So, as the air was leaving, the water was entering.

If the bottle is turned bottom upward, and pushed perfectly straight into water, the air will be given no chance to slip out, and then the bottle cannot be filled with water.

Air is something real and occupies space.

There is air all around the earth, and it extends many miles above us. This air, often called the *atmosphere*, is

usually in motion, now in one direction, now in another, and it often moves fast enough to cause a breeze, or wind.

Even when the wind is not blowing near the ground, it may be doing so far above, where the clouds are. You can see that this is so if you watch the clouds as they are driven along by the winds.

Let us see what causes the air to move. Heat has much to do with it. If you watch smoke in a room where there

is a lighted lamp, you will see that it moves toward the lamp, and then rises above it (Fig. 66). Hot air also rises above a stove, or above a furnace through the registers; and during the winter, when there is a hot fire, the air near the ceiling of a room is much warmer than that near the floor.

The reason for all this is, that when air is warmed, it is expanded and made lighter. Light objects, such as wood, will rise and float in water. So, also, when air is warmed and made light near a lamp, the cooler, heavy air all

around flows toward the lamp and the warm air is forced to rise. It is, in fact, pushed up by the current of heavy, cool air.

Now we can understand the cause of winds. The atmosphere in one place, perhaps to the north of you, is

FIG. 66.

Smoke rising from the table above the lighted lamp.

colder than that where you are. This cold air, being denser and heavier than the warm air, begins to push it away, and thus moves toward you, forming a cold north wind.

People on the sea or lake shore often have such winds in summer, when, during a hot day, the air over the land becomes heated, while that over the water remains cool. The cool air then commences to move landward, and a cool sea breeze begins to blow.

Whenever the air is heavy in one place, and light in another, winds will blow toward the place where it is light. Since this lightness of the air is *usually* caused by heat, we say that

Most winds are caused by differences in the temperature of the air.

Winds are useful in many ways. They drive sailing vessels through the water, and they turn windmills (Fig. 68), which are often used to pump water from wells. But what is most important, they carry water all over the earth. At all times there is enough water in the atmosphere to fill many large lakes.

FIG. 67.

A sailing vessel driven through the water by the force of the wind. This is the picture of a fishing schooner going out of the harbor after a load of fish.

You know that there must be some water in the air, for wet clothes hung out on a line become dry as the water passes off into the air.

Some of the water in the atmosphere enters it after every rainstorm, when the muddy roads and wet fields are drying; but most of it comes from rivers, lakes, and the ocean. We have already learned (p. 67) that the ocean covers about three fourths of the surface of the earth. The air is taking water from all parts of it, so that each minute enough water to fill thousands and thousands of barrels is leaving the ocean and floating away in the atmosphere.

FIG. 68.
A windmill.

Another reason why we know that there must be much water in the air, is that much comes out of it in the form of rain, snow, hail, dew, and frost.

The air takes up water from one place and holds it, perhaps for many days, during which time the winds may have carried it hundreds of miles; it may then be allowed to fall. Thus it is by the help of the wind that rocks are wet and caused to change to soil, plants are made to grow, rivers are furnished with water, and animals and people are given water to drink.

Persons living where there is plenty of rain perhaps do not realize how important it is; but there are some parts of the earth where the air is so dry that very little rain can fall from it. In these places, called *deserts* (Fig. 69), only a few kinds of plants and animals can live, while men generally avoid them.

The air obtains water from the ocean, and the winds carry it about.

What causes water to rise into the air? And why can we not see it there? If you watch a boiling kettle, you will see that "steam" rises from it. In a short time all the water will be boiled out of the kettle, passing into the air, where you can no longer see it.

The water in the kettle was a *liquid*, which could be seen; but heat has changed it to a *gas*, which, like air, is colorless and cannot be seen. Then, too, it is so light that it floats round in the air. This water gas is called *water vapor*, and the change from liquid water to vapor is called *evaporation*.

FIG. 69.

A Caravan on the Desert of Persia.

It is not necessary to boil water to make it evaporate; for all over the earth, where there is water, vapor is rising from it into the air. You can prove this for yourself by placing a pan of water on a table and leaving it for some days, and then noticing how much of it has evaporated. It is in this way that the great amount of water, which every moment is rising from the ocean, is able to pass into the atmosphere.

Water vapor is obtained by evaporation.

When it falls from the sky as rain, the water vapor has changed back to liquid water. What causes it to do this?

Have you ever noticed a glass or pitcher of ice water "sweat" on a hot summer day (Fig. 70)? The water that collects on the glass has not leaked through, for there are no holes in the glass. What has really happened is

that the air near the dish has been cooled so that the vapor in the air has collected in drops on the cold surface of the glass. Drops would gather there just the same, even if no water were in the glass, provided the surface remained just as cold.

FIG. 70.

Little drops of water condensed from the vapor of the air on the outside of a glass of cold water.

On wash day, when a great deal of water vapor rises from the boiler, the windows are often covered with drops of water, because the vapor has been changed back to liquid, or *condensed*, on the cold window pane. Your own breath contains vapor, and you can change it to water by breathing on a cold window pane. So you see that if

air loaded with vapor is cooled, some of the vapor gas is changed back to water.

There are several ways in which air may be cooled. You know that mountains are colder than the lower lands (p. 22); so that winds blowing over them are often chilled, and their vapor condensed. It is evident from this that mountains are an important help in causing rain.

Vapor may also be condensed when a cold wind blows against a warm one. Again, during summer the sun may shine down so hot that the air near the earth becomes warm. This makes it so light that it often rises high into the sky, where the air is so cold that the vapor condenses into rain. The summer thunder showers, which often come on hot afternoons, are caused in this way.

Vapor is condensed by the cooling of the air.

FIG. 71.
Mt. St. Helena, California.

There are several different forms of condensed vapor. When you breath into the air on a cold, frosty morning, your breath forms a little *fog* or cloud. The cold air has made the vapor change to tiny particles of water, so small that you cannot see a single one, though many of them together make a thin mist. You have no doubt seen fogs in valleys, on lakes, or over the ocean. These are always made of tiny drops of water condensed from vapor in the air.

Most *clouds* are also made of tiny fog and mist particles. These, too, are caused by the cooling of the air, sometimes when it moves against mountain slopes (Fig. 71), sometimes when cold winds blow against warm ones,

and sometimes when warm air rises high in the heavens and becomes cool (Fig. 72).

Another form of condensed vapor is the *raindrop* which falls from the clouds.

FIG. 72.

A summer cloud, often called a "thunder head," formed by the rising of warm air to such a height that the vapor is condensed.

in a temperature below 32° , or the freezing point. Then *snow* or *hail* is formed instead of rain (Fig. 73).

At night, drops of water often collect on the cold ground, on grass and leaves, somewhat as it does on an ice pitcher or the window pane. This is *dew*, which gathers because the ground cools quickly after the sun sets,

FIG. 73.

Photographs of snowflakes. Sometime, when light, feathery snow is falling, notice what beautiful forms it takes.

so that the warm, vapor-laden air is chilled until the vapor is condensed.

If the temperature is below the freezing point, *frost* is formed instead.

You will notice that raindrops, fog particles, and snow-flakes form in the air, while dew gathers on grass and the drops of water on window panes. Really the raindrops and fog particles also gather on solid substances; for there are many tiny, solid particles of dust floating in the air, which you can often see dancing in a beam of sunlight, and it is around these that the rain, fog, and snow form.

It is condensed vapor that forms fog, mist, rain, snow, hail, dew, and frost.

Usually winds from certain directions, as from the ocean, are liable to bring rain, while others indicate fair weather. By keeping a daily record of the direction of the wind, and of the kind of weather it brings, you will be able to find out for yourself which of your winds cause fair weather and which rainy. You might also look at the thermometer at the same time and note the temperature. By these means you can learn something about the weather around your home. A record of this kind, which would be called a *weather record*, might be kept somewhat as follows:¹—

DATE AND TIME OF DAY.	DIRECTION OF WIND.	KIND OF WEATHER.	TEMP.
Aug. 17, 1899, 8 A.M.	Southeast.	Cloudy.	70°
Aug. 17, 1899, 8 P.M.	Calm.	Gentle Rain.	72°
Aug. 18, 1899, 8 A.M.	West.	Clear.	68°

¹ If it is practicable, the teacher should at this point introduce an elementary study of weather maps and have the pupils read them each day.

REVIEW QUESTIONS.—(1) Of what use is air? (2) How can you prove that air is something? (3) Describe the experiments with the bottle. (4) What do they prove? (5) What are winds? (6) Prove that there are winds high above the ground. (7) Why does the air rise over a lighted lamp? (8) What causes winds? (9) In what ways are winds useful? (10) How can you prove that there is water in the air? (11) Where does most of it come from? (12) What do the winds do with this water? (13) Of what service is the rain? (14) What becomes of water as it boils? (15) What is water vapor? (16) What is evaporation?

(17) What happens to vapor when cooled? (18) Tell some ways in which you can see condensed vapor. (19) In what ways can the vapor in the air be condensed? (20) Why can you "see your breath" on cold mornings? (21) How are clouds formed? (22) How cold must it be to form snow? (23) How is dew caused? Frost? (24) Of what importance are the dust particles in the air? (25) Tell how you would keep a weather record.

SUGGESTIONS.—(1) Why are stoves made so as to let in air for the fire? (2) What becomes of the air after it enters? (3) How does air reach the wick of a lamp? (4) Try a common drinking glass, instead of a bottle, to show that air takes up space. (5) Heat some muddy water and watch its movement. (6) Why does smoke go up, and not down, the chimney? (7) Show how a hot stove causes a movement, or circulation, of the air in a room. (8) Find out how your schoolhouse is ventilated. (9) How many examples can you give of evaporation of water? (10) Cool a piece of glass or iron and notice the vapor condense upon it, when the air is "muggy" or when steam is passing into the air. (11) Why do clouds frequently surround mountain tops? (12) See how early in the evening the dew begins to collect upon the ground. (13) What causes fogs to disappear? (14) Which winds usually bring rain to you? (15) How far have they probably carried the vapor? How long would it take them to do this, if they traveled at the rate of eight miles per hour? (16) Write a story, giving the history of a raindrop.

For REFERENCES, see page 116.

IX. INDUSTRY AND COMMERCE

EVERY man is expected to engage in some kind of work, or *industry*, in order to earn a living. For instance, farmers raise stock and grain, while gardeners produce vegetables and fruit. The crops they raise vary with the locality.

Some men, instead of working in the soil, are engaged in manufacturing such articles as shoes, cloth, and materials used in building and furnishing houses. Are there any of these men in your vicinity? If so, what do they make? You can at least find a blacksmith shop, or a tin shop, or a house that is being built. Notice how many different materials are used by the workmen.

Storekeepers do neither of these two kinds of work. What, then, do they do? Notice how many articles the grocer keeps in his store, also the dry-goods merchant, and others whose stores you visit. Where do they get them all?

At the present time it is easy, where most of us live, to buy almost anything, and to find men who can do almost any kind of work. We are so accustomed to all this that we are apt to forget that it has not always been so.

Not many hundred years ago there were no stores or houses in this country; and each family, as it settled here, was obliged to find its own food, make its own clothing, and build its own house.

Let us study more fully how people lived in those days, and how changes have gradually been made until the present manner of living was reached.

The first persons who left Europe, and crossed the Atlantic Ocean to live in this country, naturally settled along the coast, because that was the first place reached.

But soon men began to push into the wilderness farther west. Often several families settled together, miles away from other people. Sometimes a single

family would go off alone, and make a home ten or twelve miles from the nearest neighbor. Most of the United States was first settled by these scattered *pioneer* families.

Of course when a man started out he took some articles with him, as a gun, with powder and bullets, some clothing, and

FIG. 74.
A log house, such as the pioneers used to build in the forests.

some blankets; but upon arriving at his new home he was obliged, like Robinson Crusoe, to rely upon himself.

In 1816, when Abraham Lincoln was seven years of age, his father moved to Indiana. He had to cut down trees in order to make room for a house, which he built of logs with mud between the cracks (Fig. 74). It had no floor except the earth, and only one room. Abraham slept in the loft, climbing up each night by pegs fastened in the logs. The beds were some posts driven into the ground with crosspieces, the chairs were three-legged stools, and the table was a part of a log supported upon four legs. When a young boy, Abraham wore trousers

of deerskin, and when he was not barefooted he probably used moccasins for shoes.

His father raised enough corn for corn bread ; their tea was often made from roots in the forest, and meat was obtained by shooting wild game. Abraham was very fond of books ; but at night he read by the light of burning wood, for he had neither candle nor lamp. He wrote with ink made from brier root, and with a pen made from the quill of a large feather. Almost everything that the family used was raised or made by the father and mother, so that they had to do many kinds of work.

Such was the life of the early frontier settlers. Usually they raised their grain and wheat for bread. They kept sheep and made the wool into yarn, blankets, and cloth. If a boy needed a new suit of clothes, his mother would make the cloth, cut it, and sew it. They were obliged to do nearly everything for themselves.

As a rule, each man raised more of some things than his own family could use, as wheat, wool, or hogs ; but there were others that he had to buy, as powder, sugar, salt, pepper, and coffee.

It was the custom, therefore, to drive two or three times a year to the nearest large town, perhaps a hundred miles away, taking the products of the farm and exchanging them for necessary articles.

These trips had to be few, for the roads were often rough, muddy, and dangerous. It might require two weeks or more to haul a load of grain to town and bring back the coffee and other materials the family wanted. In parts of the world, where there are few settlers, people are still living in this manner.

But one family did not usually live long alone, for soon others came and settled near them. Perhaps several built their houses near together, forming a little village.

Now that there were more people, the kind of work that each did began to change. Perhaps one of them built a sawmill, and sawed lumber for the others when they needed it. Another spent part of his time at carpentry work for his neighbors. A third built a gristmill, and occasionally ground grain into flour. A fourth made shoes, or clothes, a part of his time, or he doctored the sick, or preached, or taught school.

Perhaps the blacksmith spent all of his time in his shop, shoeing horses, making plows, etc., while the storekeeper did nothing but buy and sell goods. He went to the city and bought the supplies that he thought his neighbors would need, such as matches, boots, shovels, calico, and drugs, and these he kept in his store for sale.

It was not then necessary for the farmer to go to the distant town, because he could usually find what he wanted at the store; and if he raised more potatoes than he needed, he could take them to the storekeeper and get coffee in return. Or he would receive money for them, and with this pay the blacksmith who had shod his horses, or the doctor, or teacher. In many of the less settled parts of the country this is the way people are still living.

Each year more people took up land, until most of it was carefully cultivated, and towns and cities grew up (Fig. 75). Then they began to live in the way that is now so common. That is, each man now confines himself to one or a very few kinds of work, and depends upon other men for the other things that he needs. Those who live in the country are chiefly farmers, and raise the food that we eat. Others work in mines, digging coal, iron, lead, copper, silver, or gold out of the ground.

Many, instead of raising crops or working in mines, are employed in mills and factories. One saws logs into

lumber, or makes doors; another manufactures cloth, another needles, another shoes. Others follow the industry of tailoring, tanning hides for leather, making clocks, etc.

Still others are engaged in a third kind of work. They do nothing but buy and sell such articles, and among these are all the merchants that we see in the stores.

Under these conditions the work that one man does is not only of one kind, but it may be of a very narrow kind. For example, a man may do nothing but drive a team. Or he may make shingles, or drive nails, or tie up sacks of flour, or put in the heads of barrels. How different this is from the work of the pioneers!

As a rule, each town or city is specially interested in one or a few kinds of business. For example, a town surrounded by extensive woods is likely to have an important lumbering industry. Another, in the midst of mountains, may make mining its especial work; or another, near great wheat fields, may have immense flour mills.

Thus each town, like each man, is apt to be interested in the production of few things; what they raise or manu-

FIG. 75.

The city of Rochester, in New York, has grown up near these beautiful falls on the Genesee River. Some of the factories that use the water power are seen in the picture.

facture is sent away in all directions, and the other articles, that the people in the town want, are brought to them from the many places in which they are produced. Find out what is made in your own town, and some of the substances that are brought to it.

When people are so dependent upon others for most of the materials that they use, it is clear that roadways become of great importance. For if the best wheat for flour is raised in Dakota, if the best shoes and cloth are made in New England, and if the best cotton, corn, and tobacco are grown in the South, what good will they do us if they cannot be brought to us?

The pioneers had no roads at first. The early settlers who crossed the Alleghany Mountains into the region

from which has been formed the present states of Tennessee, Kentucky, Ohio, Indiana, and Illinois had to find their way through the dense forests.

FIG. 76.

A pack train on a mountain road, carrying supplies to a mine on the mountain side.

trail, or narrow path, and, instead of using a wagon, to carry goods strapped upon one's own back, or else upon horses or mules. A number of horses carrying packs formed a *pack train* (Fig. 76). Pack trains are still common in some places.

One of the early customs was to follow a

A great deal of labor has been spent in making good roads. Not only must trees be cut down and stumps and stones be removed, but steep places must often be leveled. Bridges are also necessary, and much work must be done to keep the roads in repair. In some places where there is much travel, as in eastern Massachusetts, great sums of money are spent in making excellent roads.

There is so much carting in cities that their streets must be paved. Bricks are often used; or stones larger

FIG. 77.

Train load of sugar-beets on way to factory. California.

than bricks are laid down side by side; and in many cities, asphalt pavements are common. What kind of streets have you seen, and how were they built?

We have already (p. 54) considered the importance of rivers as roadways. For a long time the Mississippi River with its chief tributaries, such as the Ohio, the Arkansas, and the Missouri, was the only roadway to the great city of New Orleans, and to-day these rivers are the commercial highways of parts of sixteen states situated in the Mississippi basin. Between New Orleans and cities

on these rivers numerous boats constantly ply, carrying grain and cotton, and goods of all kinds.

Even with the finest of wagon roads, people and goods cannot usually be carried more than twenty to forty miles in a day. Boats are somewhat faster ; but railway trains travel from four hundred to a thousand miles per day,

FIG. 78.

A view in a freight depot at St. Paul, Minnesota.

and they take both passengers and freight much more cheaply than they can be carried in wagons.

As we ourselves travel on passenger trains, we are inclined to think that the chief business of railways is to carry people ; but this is not generally the case. Their main business is to carry freight, such as grain, cattle, groceries, and machinery; and by doing this they have had a great influence upon the development of the country.

For example, a few years ago it would have done little good to raise sheep, wheat, and fruit in the far West, because they could not be sent to the great cities to be sold; but since the railways were built, these industries, and many others, have become of great importance. There is therefore much more buying, selling, and carrying—that is, much more *commerce*—than before the railways were built.

Letters, newspapers, and express packages

are now carried very rapidly on the trains. Formerly they were sent in stagecoaches or on horseback; but now many passenger trains have one or two cars used for these purposes alone.

It is clear that good roadways, whether made of soil, water, or iron, are a great help to trade. In fact, without them there could be very little commerce. The wagon roads in the country and city are of great value in carrying goods for short distances as, for instance, to the river wharf or the railway station. Then boats and trains are used to carry them farther.

Not only is there commerce on the land, but, as we have already seen (p. 69), thousands of vessels are engaged in carrying freight on the ocean. They are constantly pass-

FIG. 79.

A freight yard with many freight cars.

ing up and down the coast of the United States, going from one city to another (Fig. 80) with loads of cloth, iron, grain, lumber, and hundreds of other articles.

FIG. 80.

A view in New York harbor, showing the vessels coming and going.

Vessels are also going and coming at all times between the United States and foreign countries (Fig. 58), bringing materials which we need and taking back some of our products. This is known as *foreign commerce*.

REVIEW QUESTIONS. — (1) What do merchants do? (2) Who are pioneers? (3) Describe a house such as the early pioneer was commonly accustomed to live in. (4) Tell what you can of the life and the dress of the early settler. (5) Tell about the trips to the nearest large town.

(6) How did the work of each man change when the people began to live in villages? (7) Give some examples. (8) What would you expect to see in a general store? (9) Make a list of articles that are

manufactured. (10) Name several industries. (11) How has the work of each man changed as great numbers of them have settled together? (12) In what ways have men become dependent upon one another? Give examples.

(13) Show that roads are of great importance. (14) What kind of roads did the early pioneers have? (15) How did they cross the streams? (16) Why must streets in cities be paved? (17) In what respects are railways better than other roads? (18) Tell how railways have helped to develop our country. (19) What is meant by commerce? (20) By foreign commerce?

SUGGESTIONS.—(1) Make a list of the crops grown in your neighborhood. How is the work done? (2) Do the same for manufactured articles. (3) Tell something of the life of Daniel Boone or that of

Electric Train, Los Angeles. A network of these electric lines radiates from Los Angeles to the beaches and adjacent cities and towns.

Lincoln. (4) What were some of the things Robinson Crusoe had to do for himself? (5) Write a story describing an early pioneer's journey to the nearest large town.

(6) Visit a general store in the country. (7) Visit a factory, a blacksmith shop, or a mill. Describe the visit. (8) Make a list of articles that you use which were probably brought from a distance on the railroad or on water. (9) Find out where some of them came from.

(10) Name as many substances as you can that come from over

the ocean. (11) Write a story giving the history of the material of your dress or coat; of your shoes. (12) How has the use of electricity influenced commercial life? For REFERENCES, see page 117.

"Key Route Ferry System" operating between Oakland, Berkeley, and San Francisco, California. Upper, Claremont Ferryboat; Middle, Pier and Station; Lower, Electric Train. Thousands of passengers are carried daily back and forth over this system.

X. GOVERNMENT

EVERY boy and girl has heard men talk about *voting*, and has noticed how interested they often become as election time approaches.

But do you know what voting is for? Do you know why the day for voting is called *election day*? Find out what you can about voting and election.

Laws and *officers* are frequently mentioned when men are talking about election. Can you name some laws; and do you know any officers? You have certainly seen a policeman: what does he do? You have heard of judges, and of the President: can you state anything about them? Can you mention any other officers?

In our study of commerce we saw that it required a long time to reach our present way of living and carrying on trade. So it is with our government. At present we have many laws and officers, while long ago there were very few of each. Let us see why this is so.

The farmer manages his farm nearly as he pleases. He puts up fences, sells his grain, or feeds it to stock, as seems to him best; and when repairs are needed, he looks after them himself. The miller builds a large or small mill, uses old or new machinery, grinds much or little corn, and makes repairs, as he chooses. In each case, one man owns and uses the property.

But there are some things that no one man owns and that all wish to use. This is true, for instance, of roads. All people drive or walk over them, yet they belong to no

one person. Who, then, should build roads in the first place, and who should decide upon and make necessary repairs on them?

Again, there are public schools which no one man owns and which many wish to use. Large yards, good buildings, and good teachers are all desirable, but who should provide for them? This and many other questions arose in early days (and still arise) and had early to be dealt with in some way. The organization which any community has for dealing with these public questions is called its *government*.

The first permanent English settlement in America was at Jamestown, in Virginia, and its government was managed by seven men appointed by the King of England. At first the people had no right to vote, but later, when Virginia came to have a number of settlements, a body called the House of Burgesses, composed of two men from each settlement, was elected to make the rules or *laws* for all parts of the colony.

In the New England settlements, government was introduced in a different way. The people lived in *towns* and each town governed itself. *Town meetings* were held which adopted rules or laws regarding roads and schools and *elected officers* to enforce them. The same meetings passed laws to punish persons who committed crimes, and elected officers called *constables* to arrest offenders. All the people in the small towns (Fig. 81), therefore, had a voice in making the laws by which they were to be governed.

When towns became more numerous, there were many things which concerned more than one town to be decided. For example, in early days questions arose as to the highways which joined these towns, just as to-day there is the question of regulating railway companies which charge too much for carrying passengers and freight. In such cases laws may need to be passed, compelling them to charge reasonable rates. But as these railways are scores,

or even hundreds, of miles long, the people of a single town could do very little with them. In that case it would be necessary for those living perhaps hundreds of miles apart to unite in some way in order to make laws.

FIG. 81.

Auburn, nestled in a valley among the hills, fields, and forests of California.

Again, it is important that there be buildings in which blind people may be properly cared for, in which the deaf and dumb may be educated, and insane people confined (p. 108). There must also be strong prisons where criminals must be sent (Fig. 82).

Therefore, while there must be a *town government*, there must be also a *state government*. Virginia started with the state government and worked down to the town, or rather *county*, government, while New England began with the town and worked up to the state.

All the men of a state cannot assemble at one point,

from a distance of one or two hundred miles, in order to attend to such matters. Even if they could make the journey at the time appointed, there would be so many of them that they could not hear one another speak, and little business could be carried on.

For these reasons it is necessary for one man to be elected to *represent* many others. Where there are a great number of people, he may represent many thousands.

FIG. 82.

State Prison, Folsom, California.

Such men, being chosen to represent the others, are often called *representatives*; and because they *legislate* (which means "make laws"), they are together called the *legislature*.

The legislature meets at the *capital* (*capital* means head city) of the state. This is a city, often near the center of the state, in which there is a fine building, called the *state capitol* (Fig. 226), where the representatives hold their meetings.

We saw that in the town the people not only made laws, but elected men to see that they were enforced. Such men are necessary for the state also. The leading officer, chosen to enforce or *execute* the laws, is the *governor*, sometimes called the *chief executive*.

In large cities (Fig. 83) there are so many people that they must also be governed by representatives, as the people of the whole state are governed. The men who make the laws are often called *aldermen* and *councilors*, and the highest officer, elected to execute the laws, is known as the *mayor*. The building in which these representatives meet, and in which the mayor has his office, is the *City Hall* (Fig. 84). While a city is governed by its own officers in some matters, it is still a part of a state, and elects representatives to the state legislature.

FIG. 83.

Market Street, San Francisco. "Call" Building in the center. Many officers are needed in such a large city. Indeed, there are more officers in San Francisco than there are men, women, and children in some towns.

In our country there are many states, and there are some matters that no one state can decide alone, because all the others are equally interested in them. For instance, it would be a great hindrance to travel and trade if each state made its own money; for then each one might have a different kind, with coins of different names

and weights, and travelers passing from one state to another might be obliged to exchange their money for a new kind.

Again, in case of war it would be impossible to make much progress if each state acted independently. Perhaps you can give some of the reasons why. Mail is another matter that concerns all the states, and there are still others besides. Can you mention some?

So it is evident that we need a *United States Government*, as well as state, city, and town governments. The

reason for calling it the United States Government is also plain; for the states have really *united* in order to have one central government for some of their most important affairs.

If the people of a single state cannot meet in a body to make laws, certainly those of the entire United States cannot do so. Representatives are elected and sent, from all the states of the Union, to one place where they consider the affairs of the whole nation. The place where they

meet is the city of Washington, and it is on that account the *capital of the United States*. Here is a magnificent *capitol* building (Fig. 85) in which the meetings are held; and there are many other great government buildings besides. (See Fig. 85.)

The representatives from all the forty-six states of the Union form what is known as *Congress*. This corre-

FIG. 84.

City Hall, Petaluma,
California.

FIG. 85.
A group of government buildings at Washington.

sponds to the legislature of the states, the congressmen making laws for the nation, as the legislators do for the state. The members of Congress are called *senators* and *representatives*. The executive officer of the United States, corresponding to the mayor of a city and the governor of a state, is called the *President*. He lives in Washington, and his residence is called the Executive Mansion, or the White House, since it is painted white (Fig. 85).

Besides these officers who are elected by the people, there are a great many others appointed by the President to carry on the government work. Many live in Washington, but some, as postmasters, live in other places.

We have seen how the people in small towns arrange for their home government, and how, uniting with those in other towns, they elect some men to represent them at the state capital and others to represent them at the national capital. These representatives are elected by means of votes that are cast for them.

Because the people make their own laws, our government is called a *democracy*. The first part of this word means "people," and the last part "government," so that the whole word means "government by the people." Because the people do not make all the laws themselves, but allow their representatives to make them, it is often called a representative government or a *republic*.

It is often said that our form of government makes us free and equal. People are by no means so free and equal in all countries. Under some governments, in Europe and Asia, the people have very little to say about the laws that shall govern them. Nor do the laws protect them all equally, for the high officers say freely what they think, while others do not dare to do this. They must obey

their rulers blindly, just as little children are expected to obey their parents.

Such a government cannot be called a democracy or a republic; it is indeed a *despotism*, or an *absolute monarchy*. This means that the ruler is a *despot*, or a *monarch*, having complete or absolute power to do what he chooses. For instance, he puts men to death without any trial, a thing that the laws of our country do not allow. China and Turkey are examples of this kind of government.

There are other nations in which the people have more freedom than this, but not so much as we have. They are allowed freedom to do some things which they wish, while in other matters they are compelled to obey, without even asking any questions. Spain has a government of this kind. Since the people have *some* rights by which the monarch's power is checked or limited, this government is called a *limited monarchy*. Some limited monarchies, however, like England, allow a very considerable freedom.

REVIEW QUESTIONS. — (1) Name a few things that no one person owns and that all wish to use. (2) How did the pioneers arrange for roads? (3) Why was a constable necessary? (4) What are laws? (5) Why must a great many towns and villages unite in order to make laws? (6) Name some of the objects for which they must unite. (7) What is a state? (8) How are laws made in states? (9) Why are the men that are elected called representatives? (10) What is a legislature? (11) Where does it meet? In what building? (12) Where does the governor live? (13) Why must large cities also be governed by representatives? (14) Name some of the city officers. Where do they meet?

(15) Why should not each state make its own money? (16) Why are these states called the United States? (17) Where do the representatives of the United States meet? In what building? (18) What is Congress? (19) What is the White House? (20) What does the

word democracy mean? (21) Why is this government called a republic? (22) How are people in many other countries less free and equal than we are? (23) What is a despotism? An absolute monarchy? A limited monarchy? Give examples.

SUGGESTIONS.—(1) What persons repair the roads or streets where you live? (2) How are they chosen? (3) What officers look after the schools? (4) Attend a trial to see how it is conducted. (5) What are taxes? (6) In what state do you live? (7) What is the name of your state capital? (8) How far is it from your home, and in what direction? (9) Who is the governor of your state? (10) If you live in a city, who is the mayor? Where is the City Hall? (11) What does U. S. stand for?

For REFERENCES, see page 117.

Upper picture, Institution for the Deaf and the Blind, Berkeley, California.
Lower picture, State Hospital for the Insane, Napa, California.

XI. MAPS

WE often wish to represent a country upon a map so as to tell, at a glance, its shape, and where the mountains, rivers, and cities are located. Such a drawing can be made of any place, no matter how large or small it is.

Suppose we desire to draw only a schoolroom (Fig. 86), which is perhaps 32 feet long and 32 feet wide. It would not be easy to find a piece of paper so large as that, and it would

not be necessary to do so. A small piece would do, because 1 inch upon it could be allowed to represent several feet in the room.

In this case let an inch stand for 16 feet. Since the room is 32 feet on each side, and there are two 16's in 32, the drawing will be just two inches long and two wide. To place the desks and aisles properly, we will need to use a ruler divided into sixteenths, for one foot in the room represents $\frac{1}{16}$ of an inch on the ruler.

The ends and sides are marked (Fig. 87) north, east, south, and west. The teacher's desk is $3\frac{1}{2}$ feet in front of the north wall. There is a row of desks about 4 feet from the west wall. The desks are just

FIG. 86.
Picture of a schoolroom which is 32 feet long and 32 feet wide.

2 feet long, with eight in a row $1\frac{1}{4}$ feet apart. There are seven rows; and the aisles between them are each $1\frac{1}{4}$ feet wide. Here is a map of the schoolroom (Fig. 87). Measure each part to see if it has been drawn correctly, using a foot rule that shows the sixteenths of inches. How large is the desk? The piano?

FIG. 87.

A map of the schoolroom shown in Fig. 86. schoolroom just described (Fig. 87), the scale is 1 inch to 16 feet.

In the next drawing (Fig. 88), one inch represents 140 feet. According to this scale, find out how large the yard and the school building are. Find how far the trees are from each other, from the nearest fence, and from the building.

Can you not make a map of your own schoolroom? What scale will you use? Put in your own desk, but omit the others, if you wish.

You might also draw a map of your school yard. If you prefer to do so, find its size by stepping or *pacing* it off, making each of your steps about two feet long. Measure the building in the same way. After having finished these two maps, draw a third one, including in

When a person draws in this way, letting a certain distance on the paper represent a much greater one, he is said to use a *scale*, or to make a map *according to a scale*. In the

it not only the school yard, but also a few of the neighboring streets and houses. The scale for this might perhaps be 1 inch for every 500 steps.

All maps are drawn to a scale in this way, whether they represent a school yard, a state, the United States, or even something still larger. Opposite page 152 you will find a map of North America. On what scale is it drawn? Look at some other maps to find out the scale.

FIG. 88.

Maps are used a great deal to show the direction of one place from another. But a person must first understand what is meant by north, south, east, and west. Probably you already know that.

FIG. 89.

A typical rural school of one teacher. California.

One of the easiest ways to find the direction is by a *compass* (Fig. 90). This is simply a piece of steel, called a needle, that swings about easily and always points to the north. It is magnetized, like the horseshoe magnets

FIG. 90.

A compass. The letter N means north. What do the other letters stand for? In California the needle points a little east of north.

in winter? In summer? Which direction is on his right and left when a man faces the east? The west? The south? The north?

Northeast means halfway between north and east. Southeast means halfway between south and east. What, then, do northwest and southwest mean?

Point north, east, west, south, southwest, northeast, northwest. Walk a few feet in each direction. What direction is your desk from that of your teacher? From the desks of your friends? From the door? What direction is your home from the schoolhouse? From other houses? In what directions do some of the streets extend?

Now let us tell directions on the map. Lay your drawing of the schoolroom upon your desk, so that the line

that you have seen, and it points northward, because something draws it in that direction; but no one knows certainly what this "something" is.

When the stars are shining, one can tell which direction is north by the help of the Great Dipper. The two stars on the edge of the Dipper point toward the North Star. It is so bright that it can be easily picked out, and it is always to the north of us.

One can also find direction by the help of the sun; for twice a year, about March twenty-first and September twenty-first, it rises exactly in the east and sets exactly in the west. Where does it rise

representing the north side of the room is toward the north. Also place yourself so that you are facing directly north as you look at the map. If your desk faces the wrong way for this, turn round, or put your map upon the floor. Now, north on the map is also north in the room, and the other directions on the map correspond with those in the room. In which direction, on the map, is the door from your desk? From the teacher's desk? Place your map of the school yard in the same position and give the directions.

You see that the north side of this map is the side furthest from you; the east side is on your right, the south next to you, and the west is on your left. When a map is lying before us, we usually look at it from this position.

But it is not always convenient to have a map lying down, especially in the schoolroom, where it must be hung up so that the whole class may see it.

Let us hang up one of these maps and take particular pains to put it upon the north wall. Which direction on the map is north now? It is evident that the north side must be *up*, while east is *on the right*, south is *down*, and west is *on the left*. Certain lines, called lines of longitude, extend due north and south, and others, called lines of latitude, east and west. You should drill yourself to understand directions on maps.

Give the directions of objects from one another while the map is hanging up. Put up the map of the school yard, and any others that you have, and tell the directions from one place to another.¹

¹ After the children are quite at home in using the map when it is hung on the north wall, hang it on other sides of the room and have them give the directions. This is easy work if properly graded; but many children are confused in regard to directions on the map. At the proper time show that toward the top of the map is not always north. See Fig. 203.

It is clear now what a map is. It is a drawing telling something about a country, just as a letter may be some writing telling something concerning a friend. When you read such a letter, you think of your friend, how he looks, what he has been doing, etc. So when you look at a map, you should think about the country, how it looks, how far apart the places are, etc.

The maps that you have been drawing are flat maps, representing the country as if it were a flat surface. In Fig. 91 you will see the way in which these maps are made to represent the land and water. No attempt is made on the flat maps to show just what the country looks like. They represent the position and direction of towns, rivers, lakes, etc., just as if the country were perfectly flat.

Later on you will study *relief* maps. These show the mountains and valleys. They are pictures of the land as it might appear if one were to look down upon it from some point far above.

For REFERENCES, see page 117.

The Diamond Match Factory, Chico, California.

FIG. 91.

To show what maps mean. The left-hand figures show the country as if you were looking down upon it; the right-hand figures represent the same country on maps. Tell what you see in each of these.

Looking across "Golden Gate," San Francisco Bay, California. United States Presidio in the foreground, Alcatraz Island and Angel Island in the distance.

REFERENCES TO DESCRIPTIONS, IN PROSE AND POETRY, OF TOPICS TREATED IN HOME GEOGRAPHY. FOR TEACHER AND PUPIL

McM. means The Macmillan Co., New York ; Ginn, Ginn & Co., Boston, Mass.; A. B. C., The American Book Co., New York ; S. B. C., Silver, Burdett & Co., New York ; Heath, D. C. Heath & Co., Boston, Mass.

Section I. The Soil.—King, "The Soil" (McM., \$0.75); Tarr, "Elementary Geology," Chapters VI, XI, and pp. 475-487 (McM., \$1.40); Shaler, "First Book in Geology," pp. 24-29 (Heath, \$0.60). Also other geologies. *Nature Study Quarterly*, No. 2, October, 1899 (Cornell University, College of Agriculture, Ithaca, N.Y. Free on application); Kingsley, "Madam How and Lady Why," Chapter IV, "The Transformation of a Grain of Soil" (McM., \$0.50); Wilson, "Nature Study in Elementary Schools. Teacher's Manual," p. 177 (McM., \$0.90); Frye, "Brooks and Brook Basins," section on "How Soil is made and carried" (Ginn, \$0.58); Strong, "All the Year Round," Part II, sections 7 and 8 (Ginn, \$0.30).

Section II. Hills.—Whittier, "Among the Hills" (poem); Whittier, "The Hilltop" (poem); Hutchinson, "The Story of the Hills" (McM., \$1.50).

Section III. Mountains.—Lubbock, "The Beauties of Nature," Chapters V and VI (the former on forests) (McM., \$1.50); Jordan, "Science Sketches," section on "The Ascent of the Matterhorn" (A. C. McClurg & Co., Chicago, \$1.50); Whymper, "Chamonix and Mont Blanc" (Scribner, New York, \$1.20); Whymper, "Travels amongst the Great Andes" (Scribner, New York, \$2.50); Tarr, "Elementary Geology," Chapter XVII (McM., \$1.40); Tarr, "Elementary Physical Geography," Chapter XIX (McM., \$1.40); Shaler, "First Book in Geology," Chapter V (Heath, \$0.60); Kingsley, "Madam How and Lady Why," Chapter V, "The Ice Plough" (McM., \$0.50).

Sections IV and V. Valleys and Rivers.—Tarr, "Elementary Geology," Chapters VI–X; "Elementary Physical Geography," Chapters XV and XVI (each, McM., \$1.40); Shaler, "First Book in Geology," Chapter VI (Heath, \$0.60); Payne, "Geographical Nature Studies," sections on "Valleys," "Plants of the Valleys," and "Animals of the Valleys" (A. B. C., \$0.25); Kingsley, "Madam How and Lady Why," Chapter I, "The Glen" (McM., \$0.50); Frye, "Brooks and Brook Basins" (Ginn, \$0.58); Lubbock, "The Beauties of Nature," Chapters VII and VIII (McM., \$1.50). Poems: "The Brook," Tennyson; "The River," Samuel G. Goodrich; "The Mad River," Longfellow; "The Falls of Lodore," Southey; "The Brook and the Wave," Longfellow; "A Water Song," E. G. W. Rowe; "The Endless Story," A. K. Eggleston; "The Impatient River," E. G. W. Rowe; The last three sections in Payne, "Geographical Nature Studies" (A. B. C., \$0.25).

Section VI. Ponds and Lakes.—Shaler, "First Book in Geology," pp. 125–129 (Heath, \$0.60); Tarr, "Elementary Geology," pp. 188–193, and "Elementary Physical Geography," pp. 298–304 (each, McM., \$1.40); Lubbock, "The Beauties of Nature," Chapter VIII (McM., \$1.50); Payne, "Geographical Nature Studies," section on "Pools, Ponds, and Lakes" (A. B. C., \$0.25); "The Lakeside," poem, by Whittier.

Section VII. The Ocean.—Shaler, "Sea and Land" (Scribner, New York, \$2.50); Tarr, "First Book of Physical Geography," Part III (McM., \$1.10); Lubbock, "The Beauties of Nature," Chapter IX (McM., \$1.50); Andrews, "Stories Mother Nature Told Her Children," section on "Sea Life" (Ginn, \$0.50); Holland, "The Sea Voyage," in "Arthur Bonnicastle"; Dickens, "David Copperfield," Chapter V; "Robinson Crusoe," Chapter III; Taylor, "The Waves," "Wind and Sea," in Marble's "Nature Pictures by American Poets" (McM., \$1.25); Coleridge, "The Ancient Mariner."

Section VIII. The Air.—Tarr, "First Book of Physical Geography," Part II (McM., \$1.10); "A Summer Shower," "Cornell Nature Study Bulletin," No. 1, June, 1899 (free on application to Cornell University, Ithaca, N.Y.); Murché, "Science Reader," Book III, sections on "Air," "Vapor in the Air," "Vapor: What becomes of It?" "What the Atmosphere Is," "Ice, Hail, and Snow" (McM., \$0.40); Frye, "Brooks and Brook Basins," sections on "Forms of Water" and "The Atmosphere in Motion" (Ginn, \$0.58); Strong,

"All the Year Round," Part II, sections 33-39 (Ginn, \$0.30); Andrews, "Stories Mother Nature Told Her Children," section on "The Frost Giants" (Ginn, \$0.50); Payne, "Geographical Nature Studies," many excellent stories and poems (A. B. C., \$0.25); "Nature Pictures by American Poets": "Summer Shower," Dickinson; "Rain," De Land; "Song of the Snowflakes," Cheney; "Cloudland," Cheney (McM., \$1.25); Wilson, "Nature Study in Elementary Schools," Second Reader, the following poems: "The Rain Shower," "The Wind Song," "The Bag of Winds," "The Sunbeams," "Snowflakes," "Signs of Rain," "The Rainbow" (McM., \$0.35); Lovejoy, "Nature in Verse," the following poems: "Merry Rain," "The Clouds," "The Dew," "The Fog," "The Rain," "The Snow," "The Frost," "Jack Frost," "Little Snowflakes" (S. B. C., \$0.60); Shelley, "The Cloud"; Whittier, "The Frost Spirit"; Bryant, "The Hurricane"; Whittier, "Snow-Bound"; Irving, "The Thunderstorm" (prose).

Section IX. Industry and Commerce.—Payne, "Geographical Nature Studies," sections on "Occupations," "Trade or Commerce," "Transportation by Land," "Transportation by Water" (A. B. C., \$0.25); Andrews, "The Stories Mother Nature Told Her Children," section on "The Carrying Trade" (Ginn, \$0.50); Whittier, "Songs of Labor."

Section X. The Government.—Brooks, "Century Book for Young Americans" (Century Co., New York, \$1.50); Brooks, "The Story of the United States" (The Lothrop Publishing Co., Boston, \$1.50); Payne, "Geographical Nature Studies," section on "Government" (A. B. C., \$0.25).

Section XI. Maps.—Excellent outline maps of states and continents, costing $1\frac{1}{2}$ to 2 cents each, can be purchased from D. C. Heath & Co., Boston, Rand, McNally, & Co., Chicago, and other publishers. Maltby, "Map Modeling" (A. S. Barnes and Co., New York, \$1.00); Kellogg, "Geography by Map Drawing" (same publishers, \$0.30); Redway, "The Reproduction of Geographical Forms" (\$0.30), and "Teacher's Manual of Geography" (\$0.65) (both by Heath); Frye, "The Child and Nature" (Ginn, \$0.80); Frye, "Sand and Clay Modeling" (American Book Co., New York, \$0.10); Frye, "Teacher's Manual of Methods in Geography" (Ginn, \$0.50); Kellogg, "How to Teach Clay Modeling" (A. S. Barnes & Co., New York, \$0.25); King, "The Picturesque Geographical Readers," First Book, Lesson XIII (Lee & Shepard, Boston, \$0.50).

Oakland, California. Looking north from Thirteenth Street and Broadway.

PART II

THE EARTH AS A WHOLE

I. FORM AND SIZE OF THE EARTH¹

Its Form. — Hundreds of years ago, before America was discovered, men thought the earth was flat. They traveled so little that they had no idea of its form or of its size.

A few men who had studied the matter believed that the earth was a round ball, and that if one traveled straight on in any direction, he would in time return to the place from which he started. You can understand this by pushing your finger around on the outside of an orange, until it comes back to the starting point.

Christopher Columbus believed this, and went to Spain, hoping to obtain money to secure ships for a long voyage to prove it.

Men were at that time in the habit of going to a land called India, for spices, silks, and jewels. To reach India from Spain they traveled thousands of miles *eastward*; but Columbus said that if the earth were round, like a ball, India might be reached by going *westward* across the ocean, and the distance would be much less. He therefore asked the king of Spain for ships and men to make such a journey.

The king refused the request, because the idea seemed ridiculous; but the queen came to his aid, and, at last, on August 3, 1492, he

¹ The use of a globe in this study is very important. Small globes may be obtained from dealers in school supplies at a very slight cost.

sailed westward on a voyage from which many thought he would never return; but, after a journey of several weeks, land was reached on October 12th.

Thinking he had reached India, he called the natives Indians; but instead of that he had discovered Cuba and other islands near the coast of North America; a continent and large ocean still lay between him and India. These newly discovered lands became known as the *New World*, to distinguish them from the *Old World*, where all white men then lived.

FIG. 92.

Columbus landing in America and taking possession of it in the name of the king of Spain.

After Columbus returned in safety, other men dared to explore the New World. One of them, named Magellan, started to sail around the earth; and though he was killed when he had reached the Philippine Islands, his ships went on and completed the journey. Since then many people have made the voyage in various directions, and the earth has been studied so carefully that every one now knows it is round.

The great, round earth is also called the *globe* or *sphere*.

The reason that it does not seem round to us, is that we see so little of it at a time.

If you see very little of an orange, it will not look round either. To prove this, place upon an orange a piece of paper with a small hole in it, so that none of the surface is seen excepting that which shows through the hole. This part does not appear round, but flat.

If we could get far enough away from the earth to see a large part of it at once, as we are when looking at an orange, or at the moon, we would easily be able to observe its roundness (Fig. 93).

Size of the Earth. — Our sphere is so large that even the highest mountains, when compared to the whole earth,

are no larger than a speck of dust when compared to an apple. Lofty mountains are rarely more than three or four miles high; but the *diameter* of the earth, or the distance from one side to the other, through the *center of the earth*, is nearly eight thousand miles.

The *circumference* of the earth, or the distance around the outside of it, is about twenty-five thousand miles. This is a little more than three times the diameter, and you will find that the circumference of any sphere is always a little more than three times its diameter. Prove this with an orange.

FIG. 93.
The sphere.

FIG. 94.

Figure of the earth cut in two, to show the diameter, the line passing through the center (c.).

REVIEW QUESTIONS. — (1) What did people formerly know about the shape of the earth? (2) What is its form? (3) Tell the story of Columbus. (4) Why did he call the savages Indians? (5) Why was the land he discovered called the New World? (6) Tell about Magellan's voyage. (7) Explain why the earth does not appear to us to be a sphere. (8) What is the diameter of the earth? The circumference? (9) The latter is how many times the former?

SUGGESTIONS. — (1) Read something about the life of Columbus. (2) Read about Magellan. (3) Find the names of some other early explorers and read about them. (4) Trace Columbus's journey on a globe to see where he actually went. Find India in order to see where he thought he had gone, and notice how one can go to India by traveling eastward as well as westward. (5) Make a sphere in clay. Measure its diameter with a needle. (6) How many proofs can you find that the earth is round? Find out how we know that it is like a ball and not like a cylinder. (7) Write a story about Columbus.

For REFERENCES, see page 328.

El Carmel Mission, near Monterey. Within the walls of this Mission lies buried the body of Father Junipero Serra, California's premier missionary.

II. DAILY MOTION OF THE EARTH, AND ITS RESULTS

The Axis and Poles.—The earth seems to us to be motionless, while *the sun appears to move* round it each day, rising in the east and setting in the west. But in reality neither of these things happens.

Instead of being without motion, the earth is turning round at a uniform rate of speed. You have perhaps watched a wheel spin about on a rod or pin, and have noticed that the outside goes rapidly, while the part near the pin moves much more slowly. It is the same with the earth; and just as we speak of the wheel turning upon a pin, so we speak of the earth turning upon its *axis*.

But the axis of a wheel is something real, while the axis of the earth is merely *a line that we think of* as reaching through the earth's center and extending to the surface in both directions.

The two ends of this axis are called the *poles of the earth*, one end being the *north pole*, the other the *south pole*.

Allowing an apple to represent the earth, a knitting needle or a stick pushed through its center would represent its axis, and the two

FIG. 95.

A drawing of the earth cut through to show the axis and poles.

ends on the surface, the two poles. You can then spin the apple, very much as the earth spins (Fig. 97).

If you were to go directly north from the place where you live, you would in time come to the north pole; or, if far enough south, to the south pole. Many men have tried to cross the icy seas (Fig. 100) that surround the north pole. If one ever reaches that point, he will not find a pole; but the north star, toward which the axis points, will be almost directly overhead.

The Equator. — Midway between these poles, we think of another line drawn around the earth on the outside.

FIG. 96.

A drawing of that half of the sphere containing the New World,—to show the position of the poles and the equator.

is! It is at the rate of over one thousand miles an hour, while the fastest trains run little more than sixty miles an hour.

Why do not places considerably north or south of the equator move as rapidly as those at the equator?

Gravity. — What, then, is to hinder our flying away from the earth, just as, when a stone is whirled about on a string, it flies away the moment the string breaks? And why is not all the water hurled from the ocean?

This is called the *equator*, because all parts of it are *equally* distant from each of the poles. On page 121 the distance around the earth was given; what, then, is the length of the equator?

As the earth spins on its axis, all points on the surface must go with it, as every part of the skin of an apple turns with it. Since the earth makes one complete turn each day, a man at the equator travels twenty-five thousand miles every twenty-four hours. What a whirling motion that

The reason is that the earth draws everything toward it. If you push a book from your desk, it falls to the floor; and when you spring into the air, you quickly return to the ground. All objects are drawn *downward*, because the earth is pulling upon them. It attracts them much as a horseshoe magnet attracts pieces of iron.

The force with which the earth draws all objects toward it is called *gravity*; and it is because of gravity that the water, trees, houses, and we ourselves, do not fly off when the earth is turning at such a tremendous speed.

Sunrise and Sunset.—The sun *seems* to rise in the east and set in the west. This could not be the case if the earth did not turn or *rotate* toward the east; for all heavenly bodies must first appear in the direction toward which the earth turns. This eastward rotation of the earth, therefore, explains why the sun seems to rise and set as it does.

Hundreds of years ago people thought that the sun actually rose, and, after moving across the heavens, set in the west. We still use the words "sunrise" and "sunset" which they used, although we know that the sun *appears* to rise only because the earth rotates.

Day and Night.—It is this rotation that causes day and night. A lamp can light only one half of a ball at a time, as you know. So the sun can light only half of the great earth ball at one time. This being the case, if our globe stood perfectly still, there would always be day on the half next to the sun, and night on the other half.

But since the earth rotates, the place where it is day is constantly changing; and while the sun is setting for people far to the east of us, it is rising for those far to the west. When it is noon where you live, it is midnight on the other side of the earth. Thus each place has its

period of daylight and darkness ; and as the earth makes one complete rotation every twenty-four hours, the day and night together must last just that length of time.

FIG. 97.

An apple lighted by a candle on one side, to illustrate the cause of day and night.

REVIEW QUESTIONS. — (1) What motion has the earth ? (2) What is the axis of the earth ? (3) The north pole ? The south pole ? (4) Represent the axis and poles by using an apple. (5) Walk toward the north pole. Toward the south pole. (6) What is the equator ? (7) How long does it require for the earth to turn completely around once? (8) What rate of travel is that, for a point upon the equator ? (9) Why are we not thrown away from the earth ? (10) Give several examples showing what is meant by gravity. (11) In what direction is the earth rotating ? (12) How does that explain sunrise and sunset ? (13) What causes night ? (14) What would be the result if the earth did not rotate ? (15) When it is noon here, what time is it on the other side of the earth ? (16) How long must the day and night together last ? Why ?

SUGGESTIONS.—(1) Point out the axis of a wheel; of a top; of a rotating ball; of a spinning globe. (2) Mark the two poles on an apple or ball, and then draw a line for the equator. (3) Mold a sphere in clay, and show the poles and the equator. Cut it in half, and mark a line for the axis. (4) Find exactly how many miles a point on the equator moves each hour. (5) Use a horseshoe magnet to attract pieces of iron. (6) Use a globe, or apple, and a lamp to show why the sun appears to rise and set, and why it is day on one side while it is night on the other. (7) Watch the stars in the east some night, to see which way they appear to move. (8) Why do not the clouds appear to move westward also? (9) Is the sun always shining during the day? Why, then, do we not always see it? (10) Who was Atlas? Who was Aurora? (11) Find out what the ancients supposed became of the sun each night. (12) When it is noon here, what time is it one fourth of the distance around the earth to the east? To the west?

For REFERENCES, see page 328.

Sunset at Fort Wrangel, Alaska, 10.15 o'clock, P.M.

III. THE ZONES

Boundaries of the Zones. — The sun's rays feel warmer at noon than toward evening because the sun is more

nearly overhead at noon, and the rays then reach us nearly vertically.

For the same reason the sun seems hotter in summer than in winter, and in some parts of the earth than in others.

The hottest part of the earth is near the equator, for in that region the sun at midday is directly over the heads of the people. That is the case, for a part of the year, as far north as

the line on the map (Fig. 98) marked *tropic of Cancer*, and as far south as the one marked *tropic of Capricorn*. Point to them on Figs. 119 and 120. These lines are more than three thousand miles apart, a distance greater than that across the United States from Boston to San Francisco; and over that vast area the heat is intense, or *torrid*. Those who live there wear only the very lightest clothing, and the savages have almost none (Fig. 99).

But farther north and south the heat becomes less and

FIG. 98.

A map of the zones.

less intense, because the rays of the sun, even at noon, approach the earth at a greater slant. There is a region, then, on each side of this broad hot belt, where it is neither very hot nor very cold, but *temperate*.

Finally, near the poles, the rays are very slanting, as they are in our early morning or late afternoon. There it is so cold, or *frigid*, that the ground never thaws out, the ice never entirely disappears, and very little vegetation can grow.

Torrid Zone.—Thus one part of the earth has a hot climate. There the noonday sun is always so directly over the heads of the inhabitants that they never have winter.

This hot region extends entirely around the earth, like a great belt, and the equator is in the middle of it. This is called the *tropical belt*, or the *tropical or torrid zone*, and sometimes the *equatorial belt*. Why the latter name?

Temperate Zones.—On the north and south sides of this are the two temperate zones. People living in the *north temperate zone* find the sun to the south of them at noon, even in summer; and their shadows always fall toward

FIG. 99.

Philippine savages hunting; their home is in the torrid zone, and they need almost no clothing.

the north. But in the *south temperate zone* the midday sun is always in the north. Which way must the shadows fall in that zone?

Notice the position of the sun at midday where you live, and also the direction and length of your shadow at that time. In which of the temperate zones do you live?

FIG. 100.

Cape York Eskimos, Greenland, in their summer dress, standing by their sleds on the ice-covered sea.

Frigid Zones. — North of the north temperate zone, and south of the south temperate, are the *frigid zones*, where the sun is never high in the heavens, but even at midday is near the *horizon*. There the shadows are very long, as they are with us in the late afternoon. In consequence, while at the equator there is never any winter, near the poles there is never any real summer weather.

The northern of these zones is called the *north frigid*

zone (Fig. 100); the southern, the *south frigid zone*. They are also known as the *polar zones*, since they surround the poles.

It is so cold that no one has ever been able to reach either of the poles. These are surrounded by miles and miles of snow and ice, and vessels hundreds of miles away from them are in danger of being crushed by ice, or held by it so that they cannot move.

Hemispheres.—The half of our sphere north of the equator is called the *northern hemisphere* (or half sphere), the southern half, the *southern hemisphere*. The earth is also divided into halves by a circle running north and south through both poles, the western half, containing the New World, being called the *western hemisphere*, and the eastern half, containing the Old World, the *eastern hemisphere*.

REVIEW QUESTIONS.—(1) What is the cause for the great heat in the torrid zone? (2) What are its boundaries? (3) What other zones are there? What are their boundaries? (4) In which direction does the midday sun lie in each zone? (5) In which direction do the shadows then fall? (6) Why should the heat grow less, the farther one travels from the equator? (7) Why has no one ever been able to reach either pole? (8) Which part of the earth has no cold weather? (9) Which part has no hot weather? (10) Point out the zones in Fig. 98. (11) Represent them in a drawing of your own. (12) Name the hemispheres and tell where each is.

SUGGESTIONS.—(1) Find out more about the reason why the sun's rays are hotter when the sun is overhead than when it is low in the heavens. (2) Write a story telling about the changes in clothing you would need to make in passing from the north to the south pole. (3) In which direction would you look to see the sun at noon on such a journey? (4) How might the changes in heat affect the growth of trees and other plants? (5) How would the direction of your shadow change? Its length? (6) If there were no watches or clocks, how could you tell the time of day from the sun? (7) Find out about some of the men who have tried to reach the north pole. (8) In which zone would you prefer to live? Why? (9) Explain how some places in the temperate zone are warmer than some in the torrid zone.

For **REFERENCES**, see page 328.

IV. HEAT WITHIN THE EARTH, AND ITS EFFECTS

Heat in Mines. — While much is known about the surface of the earth, very little is certain about its interior. The reason for this is that people cannot go far down below the surface in order to see what is there.

In some places there are mines reaching fully a mile below the surface. This may seem a great depth ; but when it is remembered that it would be necessary to go four

FIG. 101.

Melted rock, from a volcano in the Hawaiian Islands, flowing over the face of a precipice into the water.

thousand times as far to reach the center, it is plain that this is really a short distance. A mile below the surface of the earth is not so much as the thickness of the skin of an apple, compared with the thickness of the apple itself.

In all of these mines, and in many deep wells, men find solid rock, usually covered at the surface with soil; but no one has ever gone beyond this rock.

It is interesting to note that the farther miners have dug down into the earth, the warmer they have found it. The thermometer rises about one degree for every fifty or sixty feet, and some mines, as they have been deepened, have become so hot that men could no longer work in them.

Melted Rock.—This has led to the belief that, if it were possible to go still deeper, the earth would be found to grow hotter and hotter, until, several miles below the surface, it might be hot enough to melt rocks.

Another fact leading to the same belief is that, in some regions, melted rock, called *lava*, actually flows out of the earth, and then cools to form solid rock (Fig. 101). In some places so much lava has flowed forth at different times, and collected about the opening called the *crater*, that a mountain peak has been built. Such peaks are called *volcanoes* (Fig. 102), and some of them are many thousand feet high.

The Earth's Crust.

—From a study of the earth it seems certain that, although the outside is now cold, it was once hot, and that

FIG. 102.
Vesuvius, in Italy, sending out lava, ashes, and steam during an eruption some years ago.

the mass within is still hot. It may be compared to a biscuit that is still hot inside, although its crust has become cool. In fact, this cold outside part of the earth is generally called the *earth's crust*.

Cause of Mountains.—It was stated on page 20 that some parts of the earth have been raised to form mountain ranges, while others have been lowered to form valleys. We are now ready to explain how this has happened.

FIG. 103.

An apple wrinkled through drying.

You have, perhaps, seen a blacksmith put a tire upon a wheel. He heats the tire so hot that it expands, and it is then easily placed over the wheel. But when the iron cools it shrinks, so that the tire then fits the wheel tightly.

The hot interior of the earth is undergoing a similar change, since every year it is slowly growing cooler, and, therefore, shrinking or *contracting*. This allows the cool crust to settle ; but, being too large, it wrinkles, or puckers, causing the rocks to bend and break, and forming great mountain ranges and valleys.

One sees something of the same kind in an apple that has become dry and wrinkled (Fig. 103). It has dried because some of the water beneath the tough skin has gone into the air as vapor ; thus the inside has been made smaller. The skin of the apple, like the crust of the earth, has then settled down and become wrinkled.

Cause of Continents and Ocean Basins.—The mountains and valleys are not the largest wrinkles on the earth's surface. As the crust has settled, some portions have been lowered several miles further than others,

and in these great depressions the waters have collected, forming the *oceans*, which in places are four or five miles deep.

Those great portions of the earth's crust which rise above the ocean are called *continents*; and the highest mountain peak upon them is fully eleven miles above the deepest part of the ocean.

Change in the Level of the Land.—The contracting of the earth has caused many changes, and is still causing them. Some parts of the land have risen out of the ocean, and other parts have sunk beneath it. Perhaps the place where you live, even though it be among the mountains, was once below the ocean. This can be proved, in some places, by finding certain shells, called *fossils*, in the rocks.

Ages ago these shells were parts of animals living in the ocean; but on the death of their owners they became buried in the mud and lay there for centuries until the layers of mud became slowly hardened into rock. This was later lifted above the water, and then frost, rain, and rivers wore the upper layers away, bringing the fossils to light.

We have already seen (p. 2) how rock is changing to soil and being washed from the land into the ocean. We now learn that this settles upon the ocean bottom, hardens into rock, and then, perhaps, is lifted into the air. These changes are very slow, but they are going on all the time. Places once inhabited by men are now beneath the sea, and others where they now live have risen above it.

REVIEW QUESTIONS.—(1) What is known about the temperature of the earth below the surface? (2) What does that suggest? (3) What other proof of this conclusion is there? (4) What is a volcano? (5) What is the crust of the earth? (6) What happens as the interior cools? (7) Compare this with the drying of an apple.

FIG. 104.
A rock containing many fossil shells.

(8) How have the ocean basins and continents been formed? (9) What do fossils in the rocks prove?

SUGGESTIONS. — (1) Collect pictures of volcanoes. Of earthquakes. Read about some volcanic eruption. (2) Make a drawing of a volcano. (3) Dry an apple and notice the change. (4) Not all rocks contain fossils; but examine those in your section to find if they do. (5) If you live near a beach, notice how shells are covered by the sands. (6) If a mine were a mile deep, what would be the temperature at the bottom, if the average temperature at the surface is 45° ?

For REFERENCES, see page 328.

Whitney Domes, Kern River Cañon, California.

V. THE CONTINENTS AND OCEANS

Land and Water. — The greater part of the land is found in the northern hemisphere, the greater part of the water in the southern (Figs. 106 and 114).

FIG. 105.

Land (on left-hand side) and water (on right-hand side) hemispheres. *Hemisphere* means half sphere; that is, half the earth.

It is possible to divide the earth into halves, in one of which — the *land hemisphere* — nearly all the land is situated, while in the other — the *water hemisphere* — there is very little land. This is shown in Fig. 105.

THE CONTINENTS

In Fig. 106, or, better, on a globe, notice that two great masses of land extend from the north polar zone. One of these lies in the western hemisphere, and is the land on which we live; the other is in the eastern hemisphere.

North America. — The western land, which is better shown in Fig. 107, is broad near the north pole, and tapers down nearly to a point just north of the equator, having the form of a triangle. What is the name of this part?

FIG. 106.

The northern hemisphere, showing the land about the north pole, Eurasia in the eastern hemisphere, and America in the western.

Show where New York, Washington, and Chicago should be on this map. (See the map, Fig. 120.) Point also to your home. Find some rivers, mountains, peninsulas, gulfs, and other forms of land and water.

South America. — South of North America, and connected with it by a long neck of land, the Isthmus of Panama, lies the continent of *South America*. The two

continents together are called the two Americas, forming the New World which Columbus discovered (p. 119). Notice how much alike they are in shape; draw triangles to show this.

Through what zones does North America extend? (See Fig. 98, p. 128.) South America? Point to the places where there is snow all the time; to the part where there is never any snow. Where must the Eskimo girl, Agoonack, one of the Seven Little Sisters, have lived? Read about the Eskimos on page 208.

Tell how the climate would change if you were to travel from the northern end of North America to the southern end of South America. What changes would you expect to find in the plants? In the clothing of people? Write a story about such a journey.

On page 141 are pictures of some of the wild animals of South America (Fig. 109). What wild animals live in North America? Collect pictures of them. Have you ever seen any of them?

Eurasia.—East of us, across the Atlantic Ocean, is the Old World (Figs. 108 and 115). More land is found there than in the New World, and the largest mass of it is called *Eurasia*.

FIG. 107.

The half of the sphere containing the New World.

The northern part of Eurasia is in the North Frigid zone, on the opposite side of the north pole from North America (Fig. 106), and extends a great distance east and west. Find for yourself how far south it reaches, and through what zones it passes.

FIG. 108.

A hemisphere, showing a part of Eurasia and Africa.

Long ago, before Columbus made his voyage to the New World, the most civilized people lived in *Europe*, the western part of that great continent.

The homes of Jeannette and Louise, two of the Seven Little Sisters, were in that country. If you have read the story, can you not tell something about each of them?

FIG. 109.
Some of the animals of South America.

FIG. 110.

The home of Jeannette among the Swiss mountains.

You can see from the maps, especially Fig. 106, they are not so clearly separated as the other continents are. For this reason Europe and Asia are often called one continent, Eurasia, the name being made up of "Eur," from Europe, and "Asia."

Point toward this continent. Walk toward it. Which is probably its warmest part?

Africa. — South of Europe is the continent of Africa.

Here lived the little dark girl, Manenko, one of the Seven Sisters, and this is the place the negroes came from.

In what zones does Africa lie? How does it compare with South America in temperature? In shape? In what direction would you start in order to go directly to Africa?

The eastern part of the continent is called *Asia*.

Read in the "Seven Little Sisters" about Gemila, the child of the desert, and of Pen-se, the Chinese girl, whose homes were in Asia.

Europe is usually considered one continent and Asia another, although, as you

FIG. 111.

The tiger, one of the wild animals of Africa and Asia.

Australia. — South of Asia are many large islands called the East India Islands (Fig. 120). Find the zone in which they lie. Southeast of these is a large island known as the continent of *Australia* (Fig. 119). In what zones is it?

THE OCEANS

The Arctic and Antarctic. — There seems to be a great deal of land ; but, as we have learned (p. 67), three fourths of the earth is covered by ocean water. The water around the north pole (Fig. 106) is called the *Arctic Ocean*. Find it on a globe.

There are many islands in this ocean, and the water between them is covered with ice. The climate is so cold that there are very few people, and no crops of any kind can be raised. Here the Eskimos live, hunting the polar bear, seal, and walrus to obtain meat for food, fur for clothing, and oil for fuel and light (see p. 208).

Much less is known about the *Antarctic Ocean* (Fig. 114), which surrounds the south pole, and in which there is also a great deal of floating ice.

The Atlantic. — Extending from the Arctic to the Antarctic is the *Atlantic Ocean*, having the Old World on the east and the New World on the west. This is the water that we cross in going to Europe, and many of the things we eat and wear are brought across it. Can you name some of them? Find what continents the Atlantic bathes.

The Pacific. — The water west of North America is called the *Pacific Ocean*, which is the largest of all oceans, occupying more than one third of the earth's surface. What continents does it bathe? Walk toward it.

The Indian. — There is still another great body of water called the *Indian Ocean* (Fig. 108). It lies south of India in Asia, and between Africa on one side and Australia and the East Indies on the other.

The Ocean Bottom. — The depth of the ocean water varies considerably; on the average it is a little over two miles, but in some places it is more than four miles deep.

FIG. 112.

One of the deep-sea fish.

In this immense body of water are millions of animals, some of them, as the whale, shark, codfish, and seal, being of use to man.

The bed of the ocean is mainly a great plain, where it is as dark as our darkest night, because the sunlight cannot pass through so much water. In consequence, the fish living there have little use for eyes, and some have none.

The mud which covers the bottom is in many places made up of the shells of tiny animals, many of them even smaller than a pinhead. Some of the chalk used in schools was just such mud before it was raised to form rock layers on the dry land.

Mountains in the Oceans.— While most of the bottom of the sea is a plain, some parts are not so level. Here and there are mountain peaks, and chains of islands, extending above the sea far away from the continents. Many of these are portions of mountain chains rising above the water; but many, like the Hawaiian Islands, are volcanoes which have been built up by lava flowing from the interior of the earth (p. 133).

Coral Islands.—

In the open ocean there is another interesting kind

of island known as the *coral island* (Fig. 113). Some very tiny creatures, called *coral polyps*, build hard, limy

FIG. 113.

A ring-like coral island, called an *atoll*, in the open ocean.

FIG. 114.

The southern hemisphere, showing the water surrounding the south pole. Notice that the Antarctic is not separated by land from the other oceans.

FIG. 115.
The Atlantic Ocean.

NORTH POLE

NORTH POLE

SOUTH POLE

SOUTH POLE

FIG. 116.

The eastern part of the Pacific Ocean.

FIG. 117.

A part of the globe. What continents and oceans are shown?

coral, such as you have no doubt seen. Where the ocean water is warm, as in the torrid zone, these little animals live in immense numbers, millions of them around a single island.

Each polyp resembles a fully blossomed flower; and they vary greatly in color, being white, pink, purple, red, yellow, brown, and many other colors. It is a truly beautiful sight to see them spread out in the water, looking like a flower garden in the sea (Fig. 118).

FIG. 118.

A piece of coral, with the polyps projecting from the hard coral like a bunch of flowers.

surface of the water is reached and coral islands are formed.

REVIEW QUESTIONS.—(1) Name the five continents, counting Eurasia as one. (2) Write their names. (3) Walk toward each of them. (4) Tell what you can about each. (5) Where is the Arctic Ocean? The Antarctic? (6) Tell something about the people and animals of the Arctic region. (7) What oceans touch North America? (8) Name five oceans. Which is the largest? (9) What are the conditions on the ocean bottom? (10) In what ways are islands in the open ocean formed? (11) How are coral islands made?

SUGGESTIONS.—(1) Make an outline drawing of each of the continents. (2) Of each ocean. (3) Collect pictures of the animals, people, and scenery of the continents. (4) Write a story about one of the pictures. (5) Obtain pieces of coral for the school collection.

For REFERENCES, see page 329.

Firemen fighting a fire in a large city. Write a description of this scene.

FIG. 119.

Market Street, San Francisco, 1909. New "Palace Hotel" on the right.

Looking down Spring Street, near Fourth, Los Angeles, California.

FIG. 120.

VI. MAPS

THE maps that have been thus far used are all hemispheres, and represent the earth as it would appear if we looked down upon it from above. Such maps are especially desirable because they call attention to the roundness of the earth; but they are so difficult to make that it is customary to represent the earth on flat maps instead.

In Fig. 119 you can see the difference between the two. While the lower ones show the roundness of the earth, the upper two represent it as quite flat. Although they are unlike, the latter show the position of the land and the water quite as plainly as the former. Since this is true, and since it is much easier to make the flat maps, these will be the ones chiefly used hereafter in this book. But in studying flat maps one should always remember to think of the earth as round, and not as a flat surface.¹ It should also be noticed that on flat maps it is impossible to show correctly both the shape and the size of countries. Compare Greenland and South America in Fig. 119 with the same countries in Fig. 120. If you should draw a picture on half of a toy balloon made of rubber, and then stretch the rubber flat, would the picture look the same? Examine Fig. 120 also.²

¹ The teacher should see that this is done by frequent use of a globe. It is advisable to have one large globe and several small ones, so that each pupil may have one for frequent use.

² These maps (Figs. 119 and 120) should be carefully studied, the pupil following map questions given by the teacher to cover form, location, etc., of continents, oceans, and important places.

FIG. 121.
Relief map of North America.

(Modeled by E. E. Howell.)

VII. NORTH AMERICA

Physical Geography.—Here is a relief map of the continent on which we live. What great highland do you find in the west? In the east? In what direction does each extend? Which is the broader and higher? Where is the lowest land between these two highlands? Trace the Mississippi River. Name some of its largest tributaries. (You will find these rivers on the map, Fig. 123.) Find the Rio Grande River in the south; the St. Lawrence River in the northeast; the Yukon in the northwest. What two great rivers flow westward from the Rocky Mountains to the Pacific Ocean?

Notice the slope east of the Appalachian Mountains. Is it longer or shorter than that west of the Rockies? What, then, are the main slopes in North America? Upon which of these slopes do you live? Point as nearly as you can to the place where your home is.

FIG. 122.

Section across United States, from east to west, to show mountains, plains, and principal slopes.

Find New York and San Francisco on Fig. 123. If you were to go westward from the former to the latter, you would travel over many hills, valleys, and mountains. Some of the slopes would be short and gentle; others would be very long, and sometimes gentle, sometimes steep. Here is a drawing showing the chief slopes you would cross in making that journey. Point on Fig. 121 to the slopes *A, B, C, D, E*, and *F*, of the drawing. Draw a section like this.

Political Divisions. — You will remember that Spain was the nation that helped Columbus make his discovery of America. The Spaniards afterward settled in the southern part of the continent, and introduced the Spanish language there. That is still the chief language spoken in *Mexico*, in the southern part of North America. Mexico became independent of Spain many years ago.

Other nations also sent explorers and made settlements. Among these were the English, who settled chiefly along the Atlantic coast, and finally came to own the greater part of the continent north of Mexico.

In time the English who lived in the central portion of eastern North America waged war against England, and chose George Washington as their leader. On the 4th of July, 1776, they declared their independence of England, and finally won it completely. This part became known as the *United States*; but the region to the north, which England was able to keep, and which she still possesses, is called *Canada*. Find each of these countries on the map (Fig. 123). Point toward Canada and Mexico.

Besides these three large nations, several smaller ones occupy *Central America*, which lies south of Mexico.

Of course there must be some place where one country ends and another begins. Such a place is called a *boundary*, and the boundary lines between the different nations are shown on this map by heavy lines. Point them out.

In some parts you see that a *natural boundary* has been chosen, such as a river or a chain of lakes; but it is often only a straight line, cutting across rivers, lakes, and mountains. Examine the boundary of the United States to determine how much of it is natural.

Where the boundary is only a straight line, it is marked by a row of posts or stone pillars a few rods apart, and if you were to cross from one country to another you could easily see them.

K Street, Sacramento. United States Post Office Building on right,
with tower.

One of the principal business streets of Stockton.

A business street in San José.

One of the main business streets of Fresno. County Court House in the distance.

FIG. 124.

FIG. 124.

Street scene in San Bernardino, California. Courthouse on the left.

Fifth Street, San Diego.

VIII. THE UNITED STATES

MAP QUESTIONS.—(1) What waters border the United States? (2) What countries? (3) What is the greatest distance across the United States, east and west? (Notice the scale of miles on the map.) North and south? (4) Where are the main divides? (5) Do you see any part that has very few streams? What does that suggest to you? (6) Find New York, Philadelphia, Boston, Baltimore, Washington, Chicago, New Orleans, St. Louis, Denver, and San Francisco, and tell where each is.

When our war for independence began there were thirteen large groups of settlements, each of which was absolutely independent of the others, called *colonies*, which at the close of the war became known as *states*. Our flag still has its thirteen red and white stripes to remind us of them.

There were at first only thirteen stars in the blue field of the flag; but one has been added for each new state until now there are many more. Count the stars on a flag to see how many states there are.

For a long time after the war for independence, the interior and western parts of what is now the United States formed an unknown wilderness belonging to other nations, and inhabited chiefly by Indians. The United States has obtained part of this land by war, and part of it by purchase, so that the country is now several times as large as it was at first. Many large states have been added; but there are still some parts, called *territories*, which have not yet been made into states.

In order that they may be more easily studied, the states are usually divided into groups. Let us take first the northeastern group called the *New England States*; and afterwards, others.

IX. NEW ENGLAND

MAP QUESTIONS.—(1) Name the six states included in New England. (2) Which is largest? (3) Which smallest? (4) Which has no seacoast? (5) What mountains are found in these states? What rivers? (6) Remembering what was said on pages 72 and 96, where would you expect to find the largest cities? (7) What is the capital of each state? (8) Point to Cambridge in Massachusetts, where Longfellow lived. (9) To Boston. Walk toward Boston. (10) In what direction would one sail from there to reach England? (See Fig. 120.)

FIG. 125.

A view of Boston, the largest city in New England, showing its harbor and some of the ships in it.

Names.—The settlers who came to this part of North America called it New England. Several names on the map also commence with *New*, as New Hampshire and New Haven. Find others. What reason can you give for their using that word so often?

Seaports.—If you examine the map, you will notice that the coast is very irregular, with many small bays, promon-

FIG. 126.

New England midwinter scene.

tories, and fine harbors. Draw the coast line, showing some of these.

The excellent harbors have determined the places where great cities should grow up. The largest of all is BOSTON, and two others are PORTLAND and PROVIDENCE. Point them out. What direction is each from the others, and in what state is each?

Fishing. — Some of the towns are located on the coast because the men who live in them are fishermen, and must have their homes near the water. In the early days, cod, mackerel, and halibut were easily caught near the shore; but now it is often necessary to sail far from land, the men being gone perhaps for weeks before filling their vessels (Fig. 67, p. 79) with fish.

PORTLAND, BOSTON, and GLOUCESTER¹ are important fish markets, the latter being the largest fishing port in the country. Fish is sent from there to all parts of the United States, and even to foreign countries.

Farming. — A fine harbor by itself cannot make a great city. As you remember (p. 63), this is important simply because it renders the loading and unloading of vessels both easy and safe. But unless there were many people

FIG. 127.

Fishermen hoisting halibut from a fishing vessel at Gloucester. Notice that these fish are as large as a man.

¹ Whenever cities, rivers, etc., are mentioned in the text, the pupils should be required to locate them on the map, giving state and position.

supplying and needing materials, there would be little need of using these harbors.

One might expect that there would be much farming here ; but there are so many hills and mountains, and the soil is often so thin and stony, that the farms are usually small, supplying only vegetables, milk, butter, and other products to be used in the cities near by. Some of them, far from the cities, have been abandoned because the land is so hilly and the soil so poor.

Quarrying. — But while the rocky hills and mountains hinder farming, they often furnish excellent *granite*, which is used for buildings and street pavements. White *marble*, used in monuments, is also found among the mountains near RUTLAND, Vermont ; and *slate*, for roofs of houses, and for writing slates, is obtained both in Vermont and Maine.

FIG. 128.

Lumbermen engaged in floating logs downstream from the forest.

Lumbering.—Since many of the hills and mountains are still covered with forests, much lumber is obtained from them, especially from the mountainous part of northern Maine. As you can see from the map (Fig. 126), there are very few towns in this section, most of the country being wooded.

During spring freshets, when the winter snows are melting, the logs are floated downstream, often to a place where ocean steamers

FIG. 129.

Map showing the regions from which considerable timber is now being obtained.

FIG. 130.

An outing on skis over the snow in New England during winter.

can reach them. Here they are sawed into lumber and loaded upon vessels to be carried in all directions. BANGOR, on the Penobscot River, has become a large city, chiefly because of its lumber industry. Other towns on the Kennebec and the Androscoggin rivers have grown in the same way.

Manufacturing: — But we have not yet come to the most important occupation of the New England people. The short rivers, having their sources in the uplands, flow with swift course to the sea, and are often interrupted by rapids

FIG. 131.

Great cotton-mills on the Merrimac River at Manchester, New Hampshire.

and falls. In one way this is a disadvantage, because vessels cannot go far upstream ; but in another way it is a great advantage. Can you see how ?

On page 53 you learned that streams with swift currents and waterfalls furnish the best water power. Where such power is abundant, wheels can be turned and great factories be run. This makes it clear why the chief industry of New England is manufacturing. In fact, the New England states are among the most important manufacturing states in the Union.

The principal rivers that furnish water power are the Merrimac, Connecticut, and the three in Maine already

mentioned (p. 158). Find each of these, and trace its course from source to mouth. Make a drawing to represent each one, and locate upon it some of the large cities.

There is so much manufacturing in New England, by the use of water power and steam, that shiploads of cotton are sent there to be made into cloth at such cities as MANCHESTER (Fig. 131), LOWELL, NEW BEDFORD, and FALL RIVER. Great quantities of wool are brought to be made into woolen goods at LAWRENCE and PROVIDENCE, which also manufacture cotton goods ; and thousand of hides of cattle and other animals to be made into boots, shoes, gloves, and leather of all kinds at LYNN and other cities. Iron and other metals are also brought to be made into knives, needles, watches, firearms, machines, and hundreds of other articles at WORCESTER, BRIDGEPORT, SPRINGFIELD, NEW HAVEN, and HARTFORD. In Boston itself there is also a vast amount of manufacturing of different kinds.

Find each of these cities ; tell in what state it is and upon what river, if the name is given on the map. All of the other cities marked on the map are also engaged in some kind of manufacturing. Perhaps the shoes or some of the clothing that you wear were made in one of these places.

Commerce. — Some of the manufactured articles are shipped to all parts of the United States, and even to other countries. It is to a considerable extent this immense amount of manufacturing that furnishes employment to the people along the coast, and has caused the large cities to grow about the best harbors.

Not only do the persons living in the interior produce great quantities of goods to be shipped away, but they require others to be shipped in. Much of their food and

also the cotton, wool, and hides must be brought to them. The amount of shipping is therefore very great, and this is one of the chief reasons why BOSTON, PORTLAND, and PROVIDENCE have become large cities. To the first two goods are sent by rail from the far West to be shipped abroad.

REVIEW QUESTIONS. — (1) Why is it an advantage to New England that its coast is so irregular? (2) Mention some of the larger seaports. (3) Name the principal fishing port in the country. (4) Tell what you can about the farming. (5) What kinds of stones are found, and for what are they used? Where are they found? (6) Describe the lumbering. Which state produces the most lumber? (7) Explain how the lumber trade has determined the location of Bangor. On what river is it situated? (8) Why cannot vessels go far up the New England rivers? (9) How are the rivers useful for manufacturing? Name several that furnish water power. (10) What goods are manufactured there? In what cities? (11) What articles must be shipped to this section? Why? (12) Tell how such commerce affects the size of the coast cities.

SUGGESTIONS. — (1) What stories of New England do you know? (2) Read about the Puritans. (3) Go into a fish store to see a cod-fish, mackerel, halibut, etc. (4) Examine some granite so that you will know it the next time you see it. (5) Find a monument made of white marble. (6) Find a house whose roof is covered with slate. (7) Start a collection for the school by bringing specimens of useful stones. (8) Try to find out more about lumbering in Maine. Hunt for pictures illustrating this work. (9) Start a school collection of pictures from magazines, etc. (10) How many articles can you mention that are made of wood? (11) Get some friend to take you through some kind of a factory, and tell the class what you saw. (12) Draw a sketch-map of New England, locating the rivers, capital cities, and principal towns.

For REFERENCES, see page 329.

A VIEW OF NIAGARA FALLS.

MIDDLE ATLANTIC STATES

Scale of Miles

Capitals of Countries: ☉
Capitals of States: ◉
Other Cities: •
Canals: —

FIG. 132.

X. MIDDLE ATLANTIC STATES

MAP QUESTIONS.—(1) Which of the Middle Atlantic states border on the Atlantic Ocean? (2) Which does not? (3) Which is smallest? (4) How does Pennsylvania compare in size with New England? (You will find the scale on each map.) (5) Name the chief rivers and tell where they are. (6) Which state extends farthest east? Which farthest west? (7) What natural boundaries do you find between them? (8) What are the names of the mountain ranges? (9) Which state has no mountains?

The Coast Line.—Observe that, as in New England, the coast line of the Middle Atlantic states is very irregular. At three places the sinking of the land has caused the ocean water to reach far into the land, forming Chesapeake, Delaware, and New York bays. Find each; also draw the coast line to show these bays.

The Seaports.—The largest cities in New England were found along the coast on bays similar to these, though smaller. The same is true here. NEW YORK, on the last-named bay, is the largest city in the United States and next to the largest in the world. Southwest of it is PHILADELPHIA on the Delaware, just as far up the river as large ocean vessels can go. Farther south, near the head of Chesapeake Bay, is a third great city, named BALTIMORE, in the state of Maryland.

REASONS FOR THE GREAT SIZE OF NEW YORK CITY

Cities near by.—Near New York harbor we find not only NEW YORK, but JERSEY CITY, NEWARK, and BROOKLYN, which has lately become a part of GREATER NEW YORK. Other cities like PATERSON are not far

away. That is, not only one, but several great cities have grown up here very near together. Let us see why more people should have crowded together here than in any other part of the New World.

One reason is that from New York harbor, where hundreds of vessels

may anchor at one time, goods can be shipped over the Atlantic Ocean to various parts of the world.

Water Route to the Interior.

—A second reason is that goods may also

FIG. 133.
The broad Hudson River at Poughkeepsie where a railway bridge crosses it.

be shipped westward by water. Looking at the map, you see that New York Bay is at the mouth of the Hudson River. The sinking of the land has caused the ocean water to enter this river, and thereby to make it so broad and deep that large vessels can ascend it as far as ALBANY.

Long ago people saw that if they could construct a waterway from the Hudson River to BUFFALO, they could go by water all the way from New York to Buffalo; and then, since the Great Lakes are connected with one another, they could go all the way to the western end of Lake Superior. Use the scale of the map (Fig. 124) to find how many miles that is. Through what lakes would the route lead?

The scheme was finally carried out by building the *Erie*

Canal from BUFFALO, on Lake Erie, to the Mohawk Valley, then down that valley to ALBANY. (See map, Fig. 132.)

As the Western country became settled, more and more goods were shipped to and from New York. When railways began to be built, many of them also led there. In this way New York has become a great city, and the chief shipping point for a large part of the United States. Let us see what some of the goods are that are sent to New York.

Lumbering.—

On the map (Fig. 132) you will find the Adirondack Mountains north of the Mohawk, and the Catskill Mountains south of it. Among these there are still forests, as in Maine, so that lumbering is an important industry there.

Farming. — These mountains do not cover all of the state; most of it is more level, and has a rich soil upon it. Farming is therefore much more important than in New England. Besides butter and cheese, considerable hay and grain are produced, and an abundance of fruit, such as apples, pears, peaches, plums, and grapes.

FIG. 134.

In a salt mine, a thousand feet beneath the surface, in central New York. The walls and sides of these tunnels are glistening white salt.

Salt.—An extensive bed of salt is found deep down in the earth, in the central part of the state. Salt is taken from it in many places, and it was the important salt industry that determined the location, and much of the early growth, of SYRACUSE.

Manufacturing.—Again, in this state, as in New England, there are many streams with waterfalls. Manufacturing has therefore become extensive.

FIG. 135.

Niagara Falls, the greatest cataract on the western hemisphere.

In ROCHESTER, at the falls of the Genesee River (Fig. 75, p. 91), are many flour mills. The cities on the Mohawk are also engaged in manufacturing. What are their names? In BUFFALO, the second city in size in New York State, much use is made of power from the Niagara Falls, twenty miles away. TROY, near ALBANY, makes shirts, collars, and cuffs. These cities, as you see, are situated along the water route already mentioned. Why? What others do you find along this route?

In NEW YORK CITY itself there is a vast amount of manufacturing, steam being used for power. In fact, in many places, even where there is water power, factories now often use steam; but when the manufacturing began, people could not use steam because they did not know how, and the first manufacturing towns were built where there was water power.

Commerce.—So much manufacturing, together with the farming and other industries of the state, helps to explain the great amount of commerce. People are continually sending goods to New York and receiving others in exchange. It should be remembered, too, that cities hundreds of miles farther west, in the neighborhood of the Great Lakes, are connected with New York by water and rail, and are engaged in trade with it.

From this it is plain why the largest city in America is situated where it is, and why other cities have grown up about New York harbor.

REASONS WHY PHILADELPHIA HAS BECOME A GREAT CITY

Cities near by.—PHILADELPHIA, like New York, has other important cities near by. Directly across the Delaware is CAMDEN in New Jersey; and to the northeast, also in New Jersey, is TRENTON, where a clay is found that is made into dishes and earthenware. To the southwest is WILMINGTON in Delaware, where many ships and railway cars are built.

Farming.—The soil and climate in this neighborhood are well adapted to growing such fruits as peaches, pears, apples, grapes, and berries. On this account there are many factories for canning fruit in some of these cities.

To the northwest of Philadelphia are the Appalachian Mountains. Note the direction in which they extend across the state. The valleys among the mountains, and the plateaus and lowlands east and west of them, are fertile enough for good farming, especially wheat raising, sheep raising, and dairying; but lumbering is still carried on among the mountains.

FIG. 136.

Rotary snow plow clearing the railroad tracks in New York. It is pushed through the snow drifts by two or more locomotives, and whirls the snow off to one side in a great arch as high as a telegraph pole.

Iron.—Several substances found beneath the soil in Pennsylvania are its most important products.

In the first place, a great amount of iron ore is found there. When dug out of the ground this often resembles reddish earth, and it never looks exactly like iron ; but by melting the ore, iron is obtained from it, and is then shipped to many places to be made into stoves, engines, guns, ships, knives, and a thousand other things. PITTSBURG and ALLEGHENY are noted for such manufacturing ; also READING and HARRISBURG, the capital, as well as Philadelphia and its neighboring cities. See how long a list you can make of articles made of iron and steel.

Coal.—It requires an immense amount of fuel to produce the heat necessary to obtain iron from the ore and to make it into the many articles mentioned. Fortunately great quantities of coal are also found in this state, soft

FIG. 137.
Panorama of Schuylkill Coal Regions.

coal being mined in the western part near PITTSBURG and ALLEGHENY, and hard or *anthracite* coal in the eastern part near SCRANTON and WILKESBARRE.

Much coal is needed for stoves and furnaces in houses, and also for producing steam for factories. There is, therefore, a great demand for it, and every year it is shipped by thousands of car loads to New York, Philadelphia, and else-

FIG. 138.

where, often to be loaded upon ships to be sent to Boston and many other cities.

Oil and Gas.—Gas, much like that used in lighting houses, and *petroleum*, the oil from which kerosene is made, are also found beneath the soil in the western part of Pennsylvania and New York. There is so much gas in some places that it is burned as a fuel in manufacturing glass and other articles, as at Pittsburg and elsewhere.

Commerce.—The products of Pennsylvania, New Jersey, and Delaware, principally fruit, grain, lumber, iron, coal, gas, and oil, together with the manufacture of iron goods, have helped to make Philadelphia a great city. As in the case of New York, many of these substances are sent to Philadelphia to be manufactured; and, like New York, Philadelphia is one of the great manufacturing cities of the country. Many other materials are sent there to be shipped away by water; and many shiploads of goods, for people living in other cities farther west, are unloaded at Philadelphia.

OTHER CITIES

Baltimore.—BALTIMORE has grown in much the same way. Its harbor is excellent, and both coal and iron can easily reach it from Pennsylvania. Like Philadelphia, Boston, and New York, it has an important commerce and much manufacturing.

Oysters abound in the shallow waters of Chesapeake Bay, and are shipped from NORFOLK, ANNAPOLIS, and BALTIMORE.

Washington.—Another large city in this section is WASHINGTON, on the Potomac River in the District of Columbia. Although large vessels are able to reach it, it owes its importance not to commerce, but to the fact that it is the *National Capital*, where there are many great government buildings (Fig. 85, p. 105), and thousands of

men and women employed in the service of the government. Can you describe some of the work which they are required to do?

Virginia and West Virginia. — RICHMOND, on the James River, is the capital and most important city of Virginia, the state in which Washington and Jefferson lived. The western part of the state is mountainous, as is the eastern

FIG. 139.

Pennsylvania Avenue from the Treasury.

part of West Virginia, the mountains furnishing lumber and iron. Also in West Virginia, as in Pennsylvania, there is a great amount of coal, oil, and gas. This leads to extensive manufacturing, especially at WHEELING, on the Ohio River.

Farming is the chief work in Virginia. The climate is so mild that tobacco can be raised much more profitably than in the states farther north. The tobacco plant, which white men found the Indians smoking, has a large leaf that is picked and dried, and then made into cigars and

other forms in which tobacco is used. Factories are needed for such work, and they represent one of the main industries of RICHMOND, which is a great tobacco market.

REVIEW QUESTIONS.—(1) Name the chief seaports. Walk toward each as you name it. (2) What reasons can you give for the great size of New York City? (3) Make a drawing of the Hudson and Mohawk rivers. (4) What cities do you find on the Erie Canal? (5) What can you say about the farming in New York State? (6) Where is the salt found? (7) What about manufacturing in New York? (8) What are the chief farm products near Philadelphia and Wilmington? (9) Why is iron manufacture so important in Pennsylvania? (10) Tell why Philadelphia has become a great city. (11) Where are Pittsburg, Allegheny, Scranton, and Wilkesbarre? (12) For what is Baltimore noted? (13) Washington? (14) For what industry is Richmond noted? (15) Where are Richmond and Wheeling? (16) In which state is each of the cities mentioned?

SUGGESTIONS.—(1) Make a list of all the cities named. (2) Are any of them not situated either upon the seashore, on rivers, or lakes? (3) Which is farther north, Buffalo or Boston? (See Fig. 124, opposite p. 153.) (4) Find what some of the chief difficulties are in building canals. (5) Examine some iron ore and add it to the school collection. (6) Visit a factory where iron goods are manufactured. (7) Why does Buffalo promise to be a growing city? (8) Why have Pittsburg and Allegheny a good location? (9) Give two reasons why Wilmington is a good place for shipbuilding. (10) Collect some pieces of anthracite or hard, and bituminous or soft, coal, and compare them. (11) Read the story of Rip Van Winkle. The mountains described are the Catskills. (12) Draw an outline map of these states and include the capitals. (13) Draw each of the states from memory. (14) Find out some facts about Washington,—its buildings, the people who live there, and what they do. (15) On the map (Fig. 124, United States) the word Delaware is not spelled out because there is not room, but Del. is put in its place. Find out the abbreviation for each state in this group and in New England. Also for the other states as you study about them.

For REFERENCES, see page 330.

A scene on a large cattle ranch. Describe what you see.

FIG. 140.

FIG. 140.

A typical home of a negro family of the Southern States.

XI. SOUTHERN STATES

MAP QUESTIONS.—(1) Where are the mountains in this group of states? (2) Where are the plains? (See map, Fig. 140.) (3) Notice the direction in which the land slopes. (4) Name the gulf on the south side. (5) How is Texas separated from Mexico? (6) What large peninsula do you find on this map? (7) Which is the largest state? (8) How does it seem to compare with South Carolina in size? With Pennsylvania? (9) About how many miles is it by sea from New Orleans to Boston? (See map, Fig. 124, United States.) (10) Notice how near these states are to the Tropic of Cancer. (See map, Fig. 123, opposite p. 152.) What does that tell you about their climate?

Relief.—The Appalachian Mountains extend into Alabama, passing across several of the Southern states. Name them. There are also some low mountains in western Arkansas and Missouri, and a portion of the Rocky Mountains in western Texas.

But this part of the country is mainly a great region of plains. Near the mountains, the plains are quite high above the sea; but near the coast there is a strip of low, level land known as the *coastal plains*.

Other low land is found along the Mississippi River, where there are broad flood plains protected from the river floods by banks, called *levees*. Notice especially the Mississippi delta, and explain how it happens that the land projects so far into the gulf. (See pp. 50 and 51.)

We observe, then, that in this group of states are some mountains; between these and the coast are high plains or *plateaus*; then along the coast are low plains. Let us see what these three sections produce.

Coal and Iron. — Coal and iron are found among the Appalachian Mountains here, as in Pennsylvania. You would

expect from this to find manufacturing centers near the mountains ; and BIRMINGHAM, ATLANTA, CHATTANOOGA, and KNOXVILLE are engaged in manufacturing of many kinds. Find each and tell what state it is in.

FIG. 141.

Children playing on a bag of cotton, just picked.

Cotton. — On the plains the soil is usually fertile, the climate is warm, and there is plenty of rain everywhere excepting in western Texas and Oklahoma. For these reasons farming is the chief occupation. The southern farms are commonly called *plantations*, and the principal crop on the higher plains, away from the coast, is cotton.

FIG. 142.

A small cotton field and a negro home. The cotton bolls look like white flowers.

The cotton plant grows to an average height of two to eight feet. It has a white blossom, and after the flower is gone a small pod, called the *boll*, grows. This boll enlarges until it ripens, when it bursts, revealing a mass of fluffy white fibers, called *cotton*.

The cotton is picked in the autumn by men, women, and children, and then placed in a machine called the *cotton gin*; this separates or combs the cotton from the seeds. The cotton is then packed in bales like hay, and shipped away to be made into thread, cotton cloth, and other goods. Name more of them.

Corn and wheat are also grown upon these higher plains, and tobacco, especially in the northern part of this section.

FIG. 143.

Cattle on the Great Plains.

Ranching.—The drier plains of western Texas are covered with grass, which furnishes food for herds of horses, cattle, and sheep. The work of raising these animals is, therefore, one of the most important industries of this state. The section of land over which a man's cattle roam is not called a farm or plantation, but a *cattle ranch*, and the business is known as *ranching*.

Since a few men can look after several thousand horses, cattle, or sheep, few people are needed to carry on ranching. On that account there are not many towns in the western part of Texas, as you can see on the map. DALLAS and FT. WORTH are the principal centers of trade for this region.

FIG. 144.
Cutting sugar cane in Louisiana.

FIG. 145.
A pineapple field in Florida.

Sugar and Rice. — On the low, swampy plains near the coast and along the lower Mississippi River, rice and sugar cane are raised. Rice seeds grow on a grasslike plant in wet soil. Sugar cane looks much like corn; but the juice of the stalk is so sweet that it can be made into sugar and molasses.

Fruits. — Besides the crops mentioned, the low

plain of Florida produces fruits. It is so far south that its climate is warm enough for oranges, lemons, and pineapples; probably your grocery store has such fruits from Florida and California.

Lumbering.—Some of these plains, both the high and the low ones, are still wooded. It is from them that the hard or *Georgia* pine, so often used in floors, is obtained. There are forests also in the mountains, so that there is an abundance of timber in this region. Which Northern state already studied has a large amount of timber? In what section would you expect the climate to prevent the growth of forests?

Manufacturing.—Knowing what is produced in the Southern states, we naturally expect much manufacturing. There are coal, iron ore, corn, wheat, sugar cane, cattle, sheep, cotton, and lumber, from each of which useful articles can be made. Tell what they are. There is also water power in many places.

For a long time most of the manufacturing in the United States was done in New England. Great quantities of cotton and other *raw products* were sent there from the South to be manufactured. Then some of the finished articles were brought back for use in the South.

This condition has now greatly changed. The Southern states still ship much cotton to New England and Europe, but much is retained for manufacture at home. No other part of the country has shown such rapid progress in manufacturing as the Southern states. They are one of the greatest cotton-manufacturing regions in the world.

Near the coal fields important iron and steel manufacturing industries have arisen; near the forest regions are many lumber mills. The abundance of coal, iron, and lumber has made possible the manufacture of farm implements and other articles of iron and wood. Each year the importance of manufacturing in the South is rapidly increasing.

The variety of manufactures is far too great to list. Besides articles of iron, wood, and cotton, tobacco is made into many forms; wool into cloth and other woolen goods; hides into leather; cotton seed into cotton-seed oil; sugar cane into sugar and molasses; the sap of the pine tree into turpentine, tar, and rosin.

FIG. 146.

Loading and unloading goods on the levee at New Orleans. Notice the mules, one of the most common draft animals of the South.

New Orleans.—The principal cities in the South are those that have grown up at the best shipping points, that is, on the ocean harbors, on the rivers, or some of the great railways.

The greatest city in this entire section is NEW ORLEANS, in Louisiana, on the Mississippi River about one hundred miles from its mouth.

Like New York it can be reached not only by railway, but also by vessels from across the Atlantic Ocean, and by others from distant inland cities. Ocean ships are able to pass up the river from the Gulf; and river boats can reach it from cities far up the Mississippi and its tributaries.

These facts help to explain why New Orleans is a great cotton-shipping port. Quantities of cotton-seed oil, sugar, molasses, and rice are also sent from there. Manufactured goods, as cloth and shoes, and foods, as meat and corn, are brought to this center, and there distributed in all directions. Further up the river are VICKSBURG and MEMPHIS, which are important river ports.

Other Seaports. — Not many large cities are found on the Gulf coast. One reason is that the entrances to the harbors are often blocked by sand bars.

The largest seaport west of New Orleans is GALVESTON. What goods are probably shipped from this harbor? Remember the low coastal plains and the high dry plains to the west.

Along the coast east of New Orleans are MOBILE, a great cotton port, TAMPA, and PENSACOLA, a lumber port. Why lumber? On the Atlantic coast are JACKSONVILLE, the chief shipping port for Florida oranges, SAVANNAH, CHARLESTON, and WILMINGTON. Find each of these and tell what state it is in. In the interior are ATLANTA, COLUMBUS, and AUGUSTA.

Oklahoma. — A few years ago the section north of Texas, now called Oklahoma, was known under the name of Indian Territory, a place set aside by our government as a home for some of the tribes of Indians. But later, these Indians were collected in the eastern part of Indian Territory. The western part was called Oklahoma Territory and was opened up to white people for settlement. Later the two territories were united in the new state of Oklahoma.

Climate. — The climate of the Southern states is so mild that many

Northern people go South in winter to escape the cold. In the Southern part it rarely snows, and flowers are in blossom in midwinter. Do you know why the song birds of the North go there in winter?

FIG. 147.

Some of the Indians who live in Indian Territory.

REVIEW QUESTIONS. — (1) In which Southern and Northern states are the Appalachian Mountains found? (2) Tell what you can about the Southern plains. (3) Near what cities are coal and iron ore mined? (4) Name and describe the chief crop on the higher plains. (5) What is done with the cotton after it is picked? (6) What is the occupation of the people in western Texas? Why? Why so few towns there? (7) What two products are raised on the warm coastal plains and flood plains? Describe each. (8) What fruits are raised in Florida? Why raised there? (9) What about the lumber industry? (10) Why should one expect to find much manufacturing there? (11) What kinds are there? (12) Why not more? (13) Why are there so few large cities? (14) Which is the largest of all? Why? (15) What goods reach this port? Why? (16) Name and locate the principal seaports. (17) Make a list of the Southern cities studied, and locate each. (18) Tell the direction of each from New Orleans. (19) Tell something about Oklahoma.

SUGGESTIONS. — (1) Draw the coast line of these states. Add the rivers, the state boundaries, and principal cities. Put in the capitals.

(2) Represent the group in sand, showing the mountains and plains.
(3) Examine some cotton. Make a collection of articles made from cotton and add them to the school collection. (4) Inquire of your groceryman where his oranges and other fruits were grown.
(5) Examine some rice. (6) You can plant and grow not only wheat, but rice, cotton, sugar cane, and other plants in the schoolroom, especially if you can induce some one who has a hothouse to allow you to start them there. (7) Why is not New Orleans as large as New York? (8) How are the people of New England and those of the Southern states dependent upon each other in the work that they do? (9) Beginning with the New England states, name those thus far studied that have mountains in them. (10) Name and locate the chief cities in all these states. (11) Draw the entire Eastern coast line, and put in the larger cities and rivers.

For REFERENCES, see page 330.

A river swamp in Mississippi.

XII. CENTRAL STATES

MAP QUESTIONS.—(1) Name the states in this group. (2) Which ones border on the Great Lakes? How can goods be shipped from them by water to New York? (3) Name the Great Lakes. Which is highest above the level of the ocean? Which is lowest? (4) Into what do they empty? (See Fig. 123.) (5) What are the chief rivers in this group? (6) Into what do their waters empty? (See Fig. 124, United States). (7) Which states drain mainly into the Missouri River? (8) Into the Mississippi? (9) Into the Ohio? (10) Which one into the Great Lakes? (11) Find Chicago. Can you think of any reason why it should be a great city—the greatest in this section? (12) In which of these states did Abraham Lincoln live?

Raw Products.—This group of states has four cities larger than New Orleans, and several others that are not very much smaller.

FIG. 148.

A “bunch” of cattle on a farm in Western Kansas.

Pillsbury Flour Mill, Minneapolis, Minnesota.

CENTRAL STATES
WESTERN SECTION

Scale of Miles

0 25 50 75 100 200

101° Longitude

West

97°

from

Greenwich

93°

L. E. PLATES ENGRG CO., N.Y.

FIG. 149.

FIG. 149.

The lower picture shows the "Life Saving Crew" at drill on the lake in the lifeboat. With the exception of the captain, in the rear of the boat, the crew is composed entirely of students of the University, who by this means help pay their way through college.

U. S. Life Saving Station, Evanston, Illinois, on the shore of Lake Michigan. The station is on the campus of the Northwestern University. "Fisk Hall," one of the University buildings, is shown in the background.

The entire section is mainly a great plain, whose soil is favorable to farming.

In the western part of Kansas, Nebraska, and the two Dakotas this plain is dry, like the western part of Texas.

The reason for this is that the winds from the Pacific Ocean lose their moisture as they pass eastward over the mountains, while those from the Gulf of Mexico and Atlantic rarely reach so far as this region. On that account the men of this section, as in western Texas, are principally engaged in raising cattle (Fig. 156), sheep, and horses.

FIG. 150.

Harvesting wheat on one of the great wheat fields of the Red River Valley of North Dakota.

The eastern part of the states from North Dakota to Texas has more rain ; and since the soil and climate are favorable, it is a great wheat region, the best in the entire country.

In Kentucky, as in Virginia, tobacco is one of the most important products ; but in the Central states perhaps the most valuable farm crop is corn. A great deal of that grain is raised in every one of these states, although Iowa and Illinois produce the largest amounts. In many

localities so much is raised that the cornfields extend as far as the eye can reach.

In all of these states there is much stock, each farmer usually keeping a few horses, cattle, sheep, or hogs. Each state, likewise, produces wheat and other kinds of grain, as well as wool, hay, fruit, vegetables, and other crops. Ohio is especially noted for its sheep and wheat.

FIG. 151.
An Iron Mine.

Underneath the soil in several of the states, especially in Illinois, Ohio, and Indiana, coal is mined. Look on the map (p. 167) to see in what states coal occurs. In Ohio and Indiana, petroleum and natural gas are found.

On the northwestern shore of Lake Superior, in Minnesota, and also on the southern side, in Wisconsin and

Michigan, iron ore is mined, as in Pennsylvania and Alabama. In fact, that region produces more iron ore than any other in the world. A great quantity of copper is also mined in Michigan.

The northern parts of Minnesota, Wisconsin, and Michigan also have large forests, so that many kinds of lumber are secured from them.

Now we know the principal raw products of the soil and mines of this region. We find cattle and sheep in the dry western section, wheat in the northwest and in Ohio, copper

and iron ore along the shores of Lake Superior, lumber in the north, tobacco in the south, corn in the center, and a vast amount of coal in several of the states. Many of the people of these states are engaged in obtaining these raw products.

The Manufacturing and Trade Centers. — From this it is easy to see the reason for so many people and great cities in this region. The statement was made at the beginning of this section that four cities here were larger than New Orleans, and several others about as large. Where should they be located? Heretofore we have found the *great* cities where goods can be shipped by water; accordingly we would expect to find them either on the shores of

FIG. 152.
Make a list of the wheat-producing states.

the Great Lakes or along the Mississippi River and its tributaries.

Let us study about some of these cities, starting first with CHICAGO. It is next to New York in size, and is situated on the southwestern end of Lake Michigan in Illinois. It has water connections with New York City, as you know, and also with the cities along the St. Lawrence River; for there is a canal leading from Lake Erie to Lake Ontario in order to avoid the Niagara Falls. What physical features tend to make Chicago a great railroad center?

MILWAUKEE, farther north on the lake shore, is much smaller than Chicago, but it is one of the two cities nearly

as large as New Orleans.

What, now, are likely to be the industries of these two cities and the others along the Great Lakes? Quantities of the raw products named are sent to Chicago. It is the greatest meat market in the world; and cattle and sheep from the Western plains, and hogs from all over the Central states, are

FIG. 153.

Market Street in the great city of Chicago.

FIG. 154.
Cattle in the Chicago stock yards.

shipped to the Chicago stock yards (Fig. 154), where thousands of men are employed in preparing them for food. The business of packing, canning, and shipping the meat requires a great number of workmen, and the tanning of the hides to make leather, which is done in Milwaukee, also keeps many men busy.

Some of the wheat of the Dakotas and Minnesota is sent to Chicago and Milwaukee to be shipped or to be ground into flour for bread. The latter city has long been noted for its flour mills. In southeastern Minnesota are falls in the Mississippi River (Fig. 155) which furnish excellent water power, so that flour mills have been built there and the city of MINNEAPOLIS has grown up about them.

Only a few miles away, at the head of navigation on the Mississippi, is ST. PAUL, which owes its growth partly to the fact that it is

a center for the sale of machinery, clothing, and other articles needed by the farmers who raise the wheat. Name some of the articles they need to buy.

While much flour is made in the West, a great deal of the wheat is sent to DULUTH, on the western end of Lake Superior, and there shipped over the Great Lakes, whence it goes to New York and even to Europe. Why should Duluth be selected?

Chicago has no water power for manufacturing, but it is the nearest lake port to the Illinois coal fields, and draws

FIG. 155.

The power for running the large flour mills of Minneapolis is furnished by St. Anthony Falls, of the Mississippi River. The growth of Minneapolis is due largely to these natural advantages.

upon them for fuel to produce steam for factories. Thus it is made a great center for the manufacture of iron goods and furniture, receiving both iron ore and lumber in lake vessels. But the other lake ports share in this work, especially the great cities of CLEVELAND, DETROIT, and TOLEDO, which are within easy reach of the raw products.

Another important product that reaches Chicago is corn. There it is ground into corn meal or made into hominy, starch, and other substances. So much corn and wheat are carried there that Chicago is a great grain as well as meat market.

Locate the principal cities along the Great Lakes. Named in order of size they are Chicago, Cleveland, Detroit, Milwaukee, Toledo, and Duluth. In what state is each of these? Also find SAGINAW and GRAND RAPIDS, two important lumber-manufacturing cities.

We said that the other great cities should be looked for upon the waterways formed by the Mississippi River and its largest tributaries. The greatest of these tributaries is the Missouri River, and a very large city, St. Louis, is situated near where it enters the Mississippi.

St. Louis is connected with the country far to the northwest by the Missouri River; with Minneapolis by the Mississippi; with Pittsburg by the Ohio; and on the south with Memphis, New Orleans, and the ocean. Naturally, as people settled here, railways were built, until, like Chicago, it has become one of the great railway centers in the country. Like Chicago, also, it draws to itself all the products that have been named.

Although a great many cattle and sheep reach St. Louis and Chicago, making them important meat markets, many of these animals are slaughtered near the plains on which they are raised, and that fact explains the importance of

OMAHA and **KANSAS CITY**. Both these noted meat markets are on the Missouri River. Horses and wool are also shipped from these cities.

Much wheat and corn are brought to St. Louis, making it an impor-

FIG. 156.

tant grain market. A great deal of tobacco also goes to St. Louis; but since Kentucky is the chief tobacco raising state in the Mississippi Valley, its leading city, LOUISVILLE, is the great tobacco market of that section, as Richmond is for Virginia. It is also an important manufacturing center.

The manufacture of clothing is an important industry in CINCINNATI on the Ohio River, and much machinery is made there from iron ore sent from Pennsylvania and West Virginia. Why from these states rather than from Lake Superior?

One of the largest cities in these Central states, INDIANAPOLIS, the capital and largest city in Indiana, is located away from the great waterways. But it is in a rich farming country, and as railways enter it from all directions, it has become the chief trade center of that state. COLUMBUS, the capital of Ohio, is another great trade center.

Locate the principal cities on the large rivers and tell for what they are important. Ranked in order of size they are St. Louis, Cincinnati, Louisville, Minneapolis, Kansas City, and St. Paul. In which state is each of these?

Review and Comparisons.—We have seen that the farm products and manufactures of the Central states are quite different from those of the Southern states. Make a list of these for each of the groups and compare them. Compare them in the same way with those of New England. With those of the Middle Atlantic states. Make a list of the six largest cities in each of these four groups of states.

REVIEW QUESTIONS.—(1) Describe the surface of the Central states. (2) What four states are dry in the western part? Why? (3) Compare the products of these with those of western Texas. (4) Where is our greatest wheat region? (5) Where in this group of states are copper and iron ore mined? (6) Where is lumber found? (7) Tobacco? (8) Corn? (9) Coal? (10) For what products is Ohio noted? (11) Give some reasons why Chicago has become so great a city. (12) Also St. Louis. Name and locate the chief cities

along the Great Lakes, giving the main industries of each. (13) Do the same with the cities along the great rivers. (14) What was said about Indianapolis and Columbus?

SUGGESTIONS.—(1) Draw the Mississippi River with its two main tributaries. Add to the drawing the Great Lakes and the Atlantic and Gulf coasts. Make a cross where each of the large cities is located, and write its name. (2) Do the lakes affect the climate of cities on or near their shore? Why? (3) Add some wheat and corn to the school collection. (4) Grow some of each in the school. (5) Tell from what animals wool, beef, pork, mutton, lard, and leather come. (6) Find out about the buffalo and Indians that used to live on the plains. (7) Read about the early French explorers. About the pioneers who first settled these plains. (8) According to the scale of the map (Fig. 124) how does Kansas compare in size with Connecticut? (9) With the whole of New England? (10) Draw a map of the Central states similar to that of New England, and put in the capitals.

For REFERENCES, see page 330.

Marysville, California.

XIII. WESTERN STATES

MAP QUESTIONS.—(1) In what directions do the mountains extend? (2) Name the principal ranges. (3) Which are the chief rivers? (4) Make a drawing of them. (5) In what sections do there seem to be few rivers? (6) What does that suggest about rainfall? (7) Some rivers empty into lakes that have no outlet. What does that suggest? (See p. 59.) (8) How far is it across the United States from the northern to the southern boundary? (9) Measure the length of California. Compare its size with Pennsylvania; with Texas; with Massachusetts. (10) Compare the coast line with that of New England. What does that suggest about harbors and cities? (11) Locate the capital and the chief city in each state.

Reasons why there are so Few People.—This group of states is much larger than either of the other four, forming about one third of the entire United States. But they are thinly settled, having only about one fourth as many people as the Southern states alone. Two divisions, Arizona and New Mexico, are still territories.

One reason why they have so few people is that most of the early settlers came from Europe, and naturally located in the Eastern and Southern states. It was only after these parts were fairly well occupied that many people moved farther westward.

Another important reason is the mountainous condition of the country. Much of this section is a vast, dry plateau, usually more than a mile above the level of the sea. Extending across the plateau from north to south are several great mountain ranges. The mountains along the Pacific coast are called the *Coast Ranges*, those in eastern California the *Sierra Nevada*, and those farther north, in

FIG. 157.

FIG. 158.

Mirror Lake, Yosemite Valley. Mt. Watkins in the distance.

Oregon and Washington, the *Cascade Ranges*. Far east of these long chains are others called the *Rocky Mountains*. All of these mountains together are known as the *Western Cordilleras*.

The Cordilleras are far higher and steeper than the Appalachians in the East, and they are very rocky, so that farm-

FIG. 159.

A geyser in eruption in Yellowstone National Park.

ing is impossible on much of the land. Indeed, in many parts they are so rough that it is difficult to travel among them ; this is indicated by the name Rocky Mountains.

Still another reason why there are so few people is that, even where the soil is fertile, the climate is usually too dry for farming, because the winds that reach it do not carry much vapor.

FIG. 160.
Grand Canyon of the Colorado.

Wonderful Scenery. — Some of the places in this section are among the most interesting in the world. For example, in northwestern Wyoming are hundreds of springs where the water is so hot that it boils. At some points boiling water and steam occasionally shoot upward with a roar, from holes in the ground, and rise frequently to a height of one or two hundred feet. These are called *geysers* (Fig. 159), and there are scores of them in this region.

Here, too, is the Yellowstone River, whose waters tumble 308 feet in a single fall; which is nearly twice as high as the Niagara Falls in New York. In the deep gorge that the river has cut below the falls, the rocky banks are in places fully one fourth of a mile high and beautifully col-

ored. Our nation has set aside this wonderful region as a park, naming it the *Yellowstone National Park*; and each year hundreds of people travel there to see it.

Away in the heart of the Sierra Nevada mountains in central eastern California, is the Yosemite Valley (Fig. 158), ground out by glaciers of long ago.

Tourists the world over come here to see its lofty peaks and domes, its great cliffs and mighty waterfalls. Whether seen in winter with its tall pine trees mantled in snow, or in early summer when the thunder of its waterfalls can be heard up and down the entire length of the valley, it is ever and always California's most famous natural wonderland.

There are many other interesting places to visit in this western country; but none are more wonderful than the Colorado Canyon (Fig. 160), cut in the rocks of the plateau, in places to a depth of over a mile. Trace its course on the map.

Mining.—Although so rocky and so arid in places, there are important industries in the Western states; and in order to find out what they are, let us first study the mountains. You remember that iron ore and coal are

FIG. 161.

A miner washing, or "panning," gravel to see if there is any gold in it.

found in the Appalachians; do you remember in what states? Some coal and iron ore are also mined in the Cordilleras; but even more valuable minerals than these are found in the mountain rocks.

In 1848 gold was discovered in California. Bits of this heavy metal lay in some of the stream beds, and could be obtained by carefully washing the lighter dirt away (Fig. 161). News of the discovery quickly spread throughout the world, and men hastened to the gold fields by thousands. Ever since then California has been one of the leading states in the production of gold.

There were no railways then in the West, so that some of the people from the East crossed the plains and mountains in wagons, and were in danger of being attacked by savage Indians; others made the long journey in vessels. What route must they have taken? The best harbor on the Pacific coast was San Francisco Bay, where a small Spanish town had existed for years. Soon people crowded in so rapidly that the town of SAN FRANCISCO became a great city and the chief trade center in the West.

Gold was also found in veins in the solid rock. Rock with gold in it is called gold *ore*, and must be crushed into fine bits before the gold can be collected. This requires much machinery, and is one of the important parts of mining (Fig. 22, p. 26).

Gold is also found in Colorado, and many men have been attracted to that state, as formerly to California. Indeed more gold now comes from Colorado than from California. DENVER, the largest city in Colorado, and PUEBLO, owe their growth partly to the gold mines near them. Find these cities on the map.

Silver is another precious metal mined in the West, and

Colorado produces more of it than any other state. Without doubt some of the gold and silver that you have seen came from the mountain rocks of California or Colorado. For what purposes are these metals used?

Large quantities of both metals are also mined in the other states and territories of this section, especially in the Black Hills of South Dakota, in Montana, Nevada, and Utah.

FIG. 162.

Placer mining in Montana.—Two alluvial fans being built of gravel dropped at the end of sluices in the process of washing gold from the gravels. Notice the numerous branches of the stream on the farther fan. These are so rapidly depositing and building up the fan that they must frequently change positions.

Much copper is mined in the West, especially at BUTTE, Montana, where the greatest copper mines in the world are situated, and in the territory of Arizona. Lead is a fourth important metal obtained from these Western states.

Cities have grown up near some of these mines ; but there are many mines in the mountains far away from the cities. In some parts of the country travelers may see,

from the car windows, scores of little tunnels dug into the sides of the mountains, by men who were hunting for ore. It is a hard, lonely life, and many find little ore ; but one occasionally makes a discovery that brings him a fortune.

Ranching. — The mountains, therefore, are chiefly valuable for their ores ; but the high plains and plateaus also

have some worth. There is little rain upon them ; but, as in the western part of the two Dakotas, Nebraska, Kansas, and Texas, there is often grass enough for raising cattle, sheep, and horses. Many of the animals raised are finally shipped eastward to furnish meat, leather, and wool. In these states the cowboys live, spending most of their days upon their horses (Fig. 163).

FIG. 163.
A western cowboy.

The Desert. — In some parts of this dry, or *arid*, region there is so little rain that they are true *deserts*. One can travel for scores of miles and see scarcely any vegetation excepting cactus, a little grass, and such plants as grow in arid regions. There are no trees ; there is no water ; in fact, there is little but sand and rock to be seen ! No

wonder that many a family, with their horses or oxen, died of thirst and hunger in attempting to cross this desert waste in search of California gold sixty years ago.

Irrigation.—However, by irrigation parts of these deserts are changed into gardens. To irrigate the thirsty soil, which is usually fertile, men dig ditches and lead the

FIG. 164.

Mormon Temple, Salt Lake City, Utah.

water from streams that are fed by the rain and melting snow of the high mountains (Figs. 165–166).

The Mormons of Utah, a people who were driven out of the Eastern states many years ago, and who settled in that barren region, have changed the desert to a garden by means of irrigation. They have also built the beautiful SALT LAKE CITY (Fig. 164) near Salt Lake; and not far away from this is OGDEN, a busy railway center, where there are not so many Mormons. Find these places on the map.

Near Denver is a great irrigation ditch leading from the mountains; and while the land just above the level of the ditch is fit for nothing but grazing, that below it, which can be flooded with the water, produces excellent crops.

Irrigation is growing more common every year, and by the aid of it people often raise food for stock, as well as for themselves. They even build great reservoirs to collect the water for use in the summer (Fig. 49, p. 57).

Fruit Raising.—We have been studying the mountains, high plains, and plateaus, finding mining and grazing to be the chief industries, with farming where the soil is irrigated.

Let us now examine the land nearer the coast. Southern California also has an arid climate, where much of the farming is carried on by means of irrigation. But since the climate of the region is warm, as in Florida, the fruits that grow in southern countries, such as oranges, lemons, peaches, olives, and figs, are easily raised.

In the midst of this beautiful fruit country, where the climate is so fine, is the beautiful city of LOS ANGELES, an important railway center, surrounded by thriving towns and orange groves.

Everywhere in that vicinity the main work is fruit raising by aid of irrigation (Figs. 165-166). Without it a piece of land produces only scanty crops, while a well-irrigated orchard by its side thrives wonderfully well. Visitors are usually surprised to see such a striking difference.

Industries along the Pacific Coast.—Farther north, toward San Francisco and beyond it, the rainfall is heavier; but irrigation is necessary in many places. The most common fruits are grapes, prunes, peaches, and apricots.

FIG. 165.

A dam and ditch, built for irrigation purposes. Tell what you can of all you see in this picture.

FIG. 166.

The plan of irrigating a fruit orchard. Notice the main ditch and how the water is let into the furrows made between the rows of trees.

cots. Much wheat is also raised, and sheep are numerous. This is the country of "big trees," too (p. xvi), the largest in the world being found in the vast forests among the mountains.

Still farther north, between Oregon and Washington, you will find a large river on the map. What is its name? Here the moist winds from the ocean cause heavy rainfall, so that irrigation near the coast is unnecessary. On the mountain slopes are extensive forests, and there are large lumber mills, especially in Washington along Puget Sound. Find this sound (Fig. 124).

The raising of such fruits as peaches and apples is an important industry. Salmon are abundant in the Columbia River, so that the fishing industry is important there, as at Gloucester, Massachusetts. What kinds are caught there? (See p. 155.)

The Cities of the Pacific Slope. — The largest city north of San Francisco is PORTLAND, on a small branch of the Columbia River. The other cities are TACOMA and SEATTLE on Puget Sound, and SPOKANE, a manufacturing center, at the falls in the Spokane River.

Comparing the Pacific with the Atlantic coast, one sees some striking differences. The Atlantic coast is low and extremely irregular, having many bays and fine harbors, with numerous great cities about them. But the Pacific coast has steep mountains in many places, and, except in the very north, is regular, having few fine harbors and large cities. San Francisco, Oakland, Berkeley, and Alameda are the most important cities situated on San Francisco Bay, one of the best harbors in the world.

San José in the Santa Clara Valley, and Sacramento, Stockton, Fresno, and Bakersfield in the Sacramento-San

Joaquin Valley, are important cities. Los Angeles, San Diego, Pasadena, and Santa Barbara are the largest cities in the southern part of the state.

From the coast and bay cities, and from the interior, California products are shipped over the Pacific Ocean to Japan, China, Australia, and even around South America to the Atlantic coast. This is an important trade, but it is not so extensive as the ocean commerce of the Atlantic coast cities. The fact that we now control the Philippine and Hawaiian islands will cause this trade to increase; and when the Panama canal connecting the Atlantic and Pacific oceans is finished, there will be still more ocean commerce. Why? A cable has recently been laid from San Francisco to Manila by way of Honolulu. Of what benefit is it?

At present the greater part of the products of the Western states, even of the coast cities, instead of being shipped by water, are sent eastward by rail. There are railway lines connecting each of the large Western cities with all portions of the Eastern states.

REVIEW QUESTIONS.—(1) Compare the size of this group of states with that of the other groups. (2) What about the number of people there? (3) Give three reasons why there are so few. (4) Name each of the mountain ranges, finding each on the map, Fig. 124. (5) Tell what a visitor may see in the Yellowstone Park; in Yosemite Valley. Locate each. (6) Where is San Francisco? What caused its early rapid growth? (7) Where is Denver? Give a reason for its importance. (8) What metals are obtained in the West? (9) Where is each found? (10) Tell what you can about each. (11) What is the principal industry on the high plains and plateaus? Why? (12) Why cannot the whole desert be irrigated? (13) What city have the Mormons built? Where is it? (14) Where is Los Angeles? (15) What is raised near there? Why? (16) What is raised in other parts of California? (17) Name the products of Oregon and Washington.

(18) Where is the chief city in Oregon? Why there? (19) What are the chief cities in Washington? (20) Name the cities on the Pacific coast having excellent harbors. Name several on the Atlantic. (21) How do the two coasts differ? (22) Where are the products of the Pacific coast sent? How?

(23) Make a list of the principal cities in California. (24) In what direction is each from San Francisco? (25) Make a map of the United States, placing on it each of the states with their names. Put on the map the names of the capitals. (26) Which states have a seacoast?

SUGGESTIONS.—(1) Write a story describing a journey across the plains and mountains to California in the early days. (2) Make a list of articles made of gold; of silver; of copper; of lead. Collect some ores of these for the school. (3) What stories have you read about the life of cowboys? About the Western Indians? (4) Find out something about the Yosemité Valley. (5) Find out what products of your county are shipped to other states or countries. (6) Visit a fish market to see some salmon. Find a picture of one in the dictionary. (7) Add together the population of the five largest cities on the Pacific coast. Compare that number with the population of the five largest on the Atlantic coast. You will find a table giving population of cities on page 336. (8) Make a drawing of the Pacific coast, showing the cities. Add the rivers. (9) Find out what large animals live among the mountains. (10) What is the distance from San Francisco to New York? (11) Past what cities must the waters of the Yellowstone River run, in flowing to the Gulf of Mexico? Through what states? (12) Ask the railroad agent in your town for illustrated circulars descriptive of western scenery, or write to San Francisco to the general offices of the different roads.

For REFERENCES, see page 330.

XIV. ALASKA

ALASKA, which you see on the map (Fig. 123, opposite p. 152), although a part of the United States, is a great distance from us. Our country purchased this cold northern land from Russia. It is so far north that it is partly in the arctic zone, and many people thought that our government wasted the \$7,200,000 that was paid for it.

FIG. 167.

On the way to Klondike gold mines, Alaska.

But Alaska has proved valuable in several ways. During the last few years thousands of men have gone there in search of gold, just as years ago thousands rushed to California. You have probably heard of the famous Klondike region (Fig. 167), where so much gold has been found. The Klondike is a stream flowing into the Yukon River

just east of the boundary line between Alaska and Canada. Find it. The Klondike region itself is in Canada.

FIG. 168.

Face of Muir Glacier, Alaska. Notice the icebergs broken off the glacier and lying in the foreground.

A few hundred miles southwest of the mouth of the Yukon River are the small Pribilof Islands, to which thousands of seals come every spring to rear their young. Seal hunters are allowed by the government to capture some of these for their fur, which is warm and beautiful, but very expensive because the animals are not abundant.

There are great forests in some parts of Alaska. The fishing industry is also important. Not only is Alaska valuable at present, but it will probably be even more valuable in the future.

REVIEW QUESTIONS.—(1) Where is Alaska? (2) In what zones? (3) How did we obtain it? (4) What is done there?

SUGGESTIONS.—(1) Draw the Yukon River. (2) Measure its length and compare it with that of the Mississippi. (3) How does the coast compare with that of California? Of Maine? (4) Read something about the fur seal. Examine some fur. (5) Find out something about a journey to the Klondike.

For REFERENCES, see page 331.

XV. CANADA AND OTHER COUNTRIES NORTH OF THE UNITED STATES

MAP QUESTIONS. — (1) How far are Detroit, Buffalo, and Chicago from Canada? (Figs. 132-148.) (2) What falls in the river which connects Lakes Ontario and Erie? (3) What effect have they upon shipping? (4) In what part of Canada would you expect to find most of the people? Why? (5) What large bay in northeastern Canada? (See map opposite p. 152.) (6) What can you say about the climate of the country north of this? (7) Which of the Great Lakes is entirely within the United States? (8) Into what large river do the Great Lakes empty?

CANADA AND NEWFOUNDLAND

Industries. — Canada is a British colony ; and Newfoundland and Labrador also belong to England, but are separate from Canada.

In the north this region is cold and bleak ; but the southern part resembles the northern United States in climate and soil, so that the products on the two sides of the boundary may be expected to correspond.

Fishing was found to be an important industry along the New England coast (p. 155) ; so it is, also, in Nova Scotia and Newfoundland.

Maine in the East and Washington in the West are covered with vast forests. Forests extend into Canada, covering a large part of it, and in fact they reach northward for several hundred miles, until the climate becomes so cold that trees can no longer grow.

New York and Ohio are noted for their fruit, dairying, and farming. Ontario, or that part of Canada just north of these states, has the same products.

The best wheat fields in the United States are in Minnesota and the two Dakotas; so Manitoba is the best wheat region in Canada. And since the dry plains of the Far West also extend into Canada, cattle and sheep raising are important industries on the plains of western Canada, even to the base of the Rocky Mountains.

The western mountains of the United States contain much gold, silver, and other metals; it is the same with the mountains of Canada. The Klondike region should be remembered as a part of Canada, although it was mentioned in connection with Alaska. (See p. 203.)

Since we know the principal products, let us locate the chief lines of transportation and cities.

Canada, like the United States, has a water route to the ocean. This is partly along the Great Lakes and partly along the St. Lawrence River, one of the great rivers of the continent; but in

FIG. 169.

The Lachine Rapids, on the St. Lawrence, just above Montreal. There is one place down which a steamer can come; but no vessel can go up the rapids. Do you see how this has helped to determine the location of Montreal?

some places, as at Niagara, it is necessary to pass for short distances through canals. One of the largest of these is the Welland Canal, which connects Lakes Erie and Ontario. Point it out on Fig. 132.

Cities.—The eastern part of Canada is most thickly settled, like the eastern part of the United States, and for the same reasons. What are they? Along the water route just mentioned are some very large cities, as in the United States. The largest is MONTREAL, which is nearly as large as New Orleans. Like that city, Montreal is sit-

FIG. 170.

Waterfall at Ottawa. The city is seen beyond the fall. How has the fall helped to determine the location of Ottawa?

uated on a river at a point where ocean vessels can reach it. Farther down the St. Lawrence is the old city of QUEBEC, founded many years ago by the French. OTTAWA, the capital, is west of Quebec, on Ottawa River, and TORONTO is across Lake Ontario from Niagara Falls. Find all these (Fig. 123).

As there is much water power and coal in eastern Canada, there is a great deal of manufacturing in the cities, especially in Montreal and Toronto.

The cities not on this water route are smaller. HALIFAX, in Nova Scotia, has an excellent harbor. WINNIPEG, the main city in the wheat region of Manitoba, is connected with the Pacific coast at VANCOUVER and the Atlantic at ST. JOHN by the great Canadian Pacific Railway. From Vancouver and VICTORIA, as from Seattle, Tacoma, Portland, and San Francisco, goods are shipped to Australia and Asia.

FIG. 171.
A whaling vessel ice-bound in the Far North.

The Far North.—In the vast forests of northern Canada live few other people than hunters, trappers, and Indians.

Along the northern coast are found scattered groups of Eskimos, who get their living almost entirely from the sea. Their food is obtained from the seal, walrus, polar bear, and reindeer; their clothes, summer tents, and boats are made from the skins of these animals; and their oil for light and heat during the long winter night also comes from them. Their winter houses are snow huts, and long journeys over the ice-covered seas are made on sledges drawn by wolf-like dogs.

ISLANDS NORTH OF NORTH AMERICA

The islands north of North America are desolate lands. In winter the sea is frozen ; and even in summer floating ice is usually in sight. Some of the ice is that which has frozen on the surface of the sea during the winter ; but rising above this are many great blocks of ice, or *icebergs*, sometimes two hundred or three hundred feet in height. They have broken off from the streams of ice, called *glaciers*, that

FIG. 172.

An iceberg from the great glaciers of the Arctic region.

move down from the land and enter the sea. The immense island of Greenland is almost all covered by such glaciers. No land can be seen excepting near the coast, where some Eskimos live and a few Europeans, called Danes, from Denmark. The island belongs to the Danes, who purchase skins, oil, etc., from the Eskimos.

REVIEW QUESTIONS. — (1) Show how the products of Canada correspond with those of northern United States. (2) Where is the St. Lawrence River? Walk in the direction in which it flows. (3) Where does the water come from? (4) Through what waters must a vessel pass in going from Duluth to the Gulf of St. Lawrence

and the ocean? (5) Name and locate the chief cities along this route. (6) Where is the largest city? Why there? (7) Where is Ottawa? Halifax? (8) Name two cities on the western coast. (9) Tell about the people living in northern Canada. (10) How are icebergs caused? (11) Make a drawing of the Great Lakes and St. Lawrence River, putting in the cities.

FIG. 173.

Cutting ice from the St. Lawrence River opposite Montreal. What effect should you think this thick ice would have on the commerce of Montreal?

SUGGESTIONS.—(1) What difficulty do you see in building the Welland Canal? How is it overcome? (2) What difficulties should you think the Canadian Pacific Railway would have in running trains in winter? (3) Why is not Hudson Bay an important outlet for goods by water from Canada? (4) How can you explain the fact that there are no large cities along the great Mackenzie River? (5) Find out something about Quebec. (6) Write a story about the Eskimos. (7) Collect pictures of scenes in Canada. (8) Read Longfellow's poem, "Evangeline"; the land of Evangeline is in Nova Scotia.

For REFERENCES, see page 331.

XVI. COUNTRIES SOUTH OF THE UNITED STATES

MAP QUESTIONS.—(1) What does the map (Fig. 123, opposite p. 152) tell you about the highlands and lowlands in Mexico? (Notice the rivers.) (2) Find the capital of Mexico. (3) Why is Central America a fitting name for the region southeast of Mexico? (4) Point toward Cuba. (5) How far is Havana from Florida? From New Orleans? (6) What large islands in the West Indies? In what zone are they? (7) What large peninsulas are in Mexico?

Mexico and Central America.—As Canada is colder than the United States, so the countries south of us may be expected to be warmer.

FIG. 174.

Popocatepetl, an extinct volcano, not far from Mexico City, and one of the highest mountain peaks on the continent. Notice that the top is white with snow, although in the torrid zone.

Near the seacoast of Mexico the land is low and the climate hot; but in the interior are many mountains and broad, arid plateaus. They are a continuation of those in our Western states, and are so high that the climate is cool.

Some of the highest mountain peaks are old volcanoes made of lava that has poured forth from the earth. These peaks are so high that they are always covered with snow, in spite of the fact that they are in the torrid zone.

With such a variety of climate we shall of course find a variety of products. Much of the mountain region is too

cold and rocky for farming; but, as in Colorado, these mountains yield valuable metals, especially silver.

Part of the Mexican plateau is dry, like western Texas and some of the other Western states.

Name some of them. Like these, its value consists largely in wild grass, on which great herds of cattle, sheep, and horses feed. Of what use are these animals? In other parts of the plateau there is enough rainfall for farming; but in most places crops can be raised by the aid of irrigation only.

Along the lowlands of the coast, the rainfall is heavy,

FIG. 175.

A street in a Mexican town.

and the products are much the same as on the low, damp plains of our own Southern states. What are they? (See pp. 172 and 174.) Besides these, much coffee is grown on the slopes between the coastal plain and the high plateau. Have we found that product before in North America?

There is very little manufacturing in these countries, for two reasons. One is that coal is lacking. Why is that a good reason? The other is that many of the people are too ignorant to manage machinery.

The Spaniards once owned this part of North America, and their language is still spoken there. Most of the people living in Mexico and Central America are either pure Indians, or else Spaniards with Indian blood in their veins, called *half-breeds*. Only about one man in six is a full-blooded Spaniard.

Mexico is now a republic, like the United States, and its capital is the city of MEXICO. The coast on the east is regular, as you can see, so that there are few harbors. VERA CRUZ is the chief port, but the harbor is poor.

Central America is made up of several republics, each having a capital of its own. Many of the people are very ignorant, and there are frequent revolutions, when ambitious generals try to overthrow the government.

At the present time Central America and the Isthmus of Panama are of interest because a canal is being dug there, to save vessels the long journey around South America. Examine the map (Fig. 120, opposite p. 149) to see how much distance will be saved in this way between New York and San Francisco. In Central America are dense tropical forests from which hard woods, dyes, rubber, and other valuable products are obtained.

The West Indies and Bermuda. — Besides the countries on the mainland of the continent there are numerous islands, some of which form an *archipelago* called the West Indies. They are really the highest parts of mountain ranges pro-

jecting above the sea and so arranged as to separate the Caribbean Sea from the Gulf of Mexico and from the Atlantic Ocean. All of them have a tropical climate.

FIG. 176.

A field of Easter lilies in the Bermuda Islands, where these lilies are raised for export to the United States at Easter.

The largest island is Cuba, where sugar, tobacco, and tropical fruits, such as bananas, are raised. HAVANA is its capital and largest seaport. Cuba belonged to Spain until our recent war with Spain, and so did Porto Rico, which now belongs to the United States.

The other large islands are Jamaica, belonging to England, and Haiti, where there are two negro republics. The large islands are called the Greater Antilles; and the small islands, extending in a chain from near Porto Rico to the South American coast, are called the Lesser Antilles. These belong to England, France, and other European nations.

REVIEW QUESTIONS.—(1) Tell about the climate and relief of Mexico. (2) About the industries. (3) About the inhabitants. (4) What cities are there? (5) For what is Central America especially important at present? (6) Tell what you can about the West Indies.

SUGGESTIONS.—(1) What country is digging the Panama Canal? (2) Find out what you can about the Panama Canal. (3) Why are there no large rivers in Mexico? (4) Tell some of the events that happened in Cuba during our war against Spain. (5) Find out what you can about Cuba; about Porto Rico.

For REFERENCES, see page 331.

U. S. Government Experimental Station, Chico, California.

XVII. SOUTH AMERICA

MAP QUESTIONS.—(1) Compare the shape of South America with that of North America. (2) What great mountain ranges are there along the western side? (3) Which part of South America has no cold winter? (4) What is the name of the longest river?

Relief.—In South America there are high mountains on the western side, called the Andes. Many of the peaks are higher than those in the United States, and there are many active volcanoes among them (Fig. 12).

Besides the Andes, the map shows a highland region in eastern Brazil and a smaller one between the Amazon and Orinoco rivers, forming the divide between them.

The remainder of South America is mainly lowland, drained by three mighty rivers. What are their names? Where does each rise? In what direction does each flow? Which drains the longest slope?

Climate.—The products of the three valleys greatly depend upon their climate; let us, therefore, see how much heat and moisture they have.

Where does the equator cross the continent? Where does the tropic of Capricorn cross it? How much of the continent, then, is in the torrid zone? Where is the coldest part? In which zone?

From this we see that much more than half the continent must have a warm climate; but that the southern part has a temperate climate more like our own. In which months does summer come to this region?

As for the moisture in the torrid or tropical part of South America the rains are very heavy. The reason

FIG. 177.

Thoroughbred stock raised in Tehama County, California.

Sheep feeding in a valley pasture. Tehama County, California.

Cattle and sheep raising are important industries in South America as well as in North America.

for this is that the air becomes heated and is thus made very light ; it is then forced to rise to such a height that the vapor is condensed, causing heavy showers. (See p. 83.)

There is less rainfall in the south temperate zone, and still less in the narrow strip west of the central part of

FIG. 178.

Two tunnels on a railway line that crosses the high Andes of Peru.

the Andes, in Chile and Peru. There the climate is quite arid because the principal winds are from the south and east, so that the air loses its vapor in passing over the mountains and descends upon the Pacific slope as dry, parching winds.

History.—Knowing now the chief facts about the relief and climate, let us look at the countries themselves. After the discovery of South America by Columbus the Spaniards settled in many parts, obtaining great quantities of gold and silver, especially in the Andes. Nearly all of South America once belonged to Spain, excepting Brazil, which was settled and for a long time owned by the Portuguese. Although the South American countries are now independent nations, the Spanish language is still spoken nearly everywhere excepting in Brazil.

Brazil.—This is the largest country, being even larger than the United States without Alaska ; but it has only about one fourth as many inhabitants. Much of the great Amazon valley consists of forest-covered plains, called *silvas*, in which the trees are so close together, and there is such a mat of vines and underbrush, that it is extremely difficult for one to make his way through. From what was just said about the climate, you may be able to give the reason for such rank growth.

You will find pictures of some of the wild forest animals in Fig. 109, page 141. What are their names?

Of course this forest is not a good home for men, especially since much of the land is frequently flooded ; in fact, Indians are almost the only people living there. They make a living by hunting, fishing, and selling rubber from the rubber tree that grows in the woods.

Rubber is obtained by cutting a hole in the bark, and catching the milky fluid that flows forth. After being warmed over a fire to make it more solid, it is sent down the river in boats to PARA and then shipped to many parts of the world. Bicycle tires and overshoes are made from it. See how long a list of other rubber articles you can name.

Another common tree is the cocoa tree, on which grow the beans from which cocoa and chocolate are made. It is difficult to travel in this great wilderness, where the rivers are almost the only roadways.

FIG. 179.
A view in a tropical forest.

Most of the inhabitants of Brazil live in the eastern part along the coast. Some of them are white people, but many are either Indians or negroes, or of mixed blood, as in Mexico. You will notice several cities on the coast, of which RIO DE JANEIRO, the capital, is the largest, having over half a million people. It has a splendid harbor.

There must certainly be some important industries in this region to cause a city to become so large. Besides the raising of cattle upon the plateau of eastern Brazil, farming is an important industry there. The principal crops are the same as those already found in warm countries; namely, cotton, sugar, tobacco, and coffee. The

FIG. 180.

Native Indian women washing clothes in Venezuela. Do you see in the picture any reason for thinking it is warm there?

last is most important, and Rio de Janeiro is one of the chief export towns, which is the reason why some of our coffee is called Rio coffee.

Venezuela and Guiana. — North of Brazil is Venezuela, which includes most of the Orinoco valley. Here are broad plains, called *llanos*, which produce excellent grass, so that cattle raising is one of the important industries.

Coffee and cocoa are also raised. The capital and largest city is CARACAS, which is located several miles from the coast upon land more than half a mile above the sea.

Just north of the mouth of the Orinoco River is Trinidad Island, on which is a great pitch lake, supplying much of the asphalt used in our street pavements.

All of the countries of South America are republics excepting Guiana, which belongs to three European nations. What are their names?

FIG. 181.

A scene on the pampas of Argentina.

La Plata Countries.—The country south of Brazil, drained by the Plata River and its tributaries, is one of the most productive parts of South America. Here, at the mouth of the Plata River in Argentina, is BUENOS AIRES, the largest city on the continent. Across the wide river mouth is MONTEVIDEO, another large city, in Uruguay. What other small country lies between Argentina and Brazil?

The plains in this section of the country are called *pampas*; and because of their excellent grass one of the

chief industries is ranching. Since most of the country is in the temperate zone, corn and wheat are important farm products ; and in the warm northern part, near the tropics, tobacco and sugar cane are raised. This is the part of South America that most nearly corresponds in climate and products to the United States.

Goods are still carried upon the rivers in Argentina, but there are also many railways in that country,—more, in fact, than in any other part of South America.

Andean Countries. — The countries in the western part of South America are very mountainous, since each of them includes a part of the Andean chain. As you might expect, then, one of the principal industries is mining ; and immense quantities of gold and silver have been found there. What are the names of these countries ?

Observe that most of the cities are not upon the coast. This is partly because they have grown up in the mining districts among the mountains, and partly because there are so few good harbors. Many of the cities away from the coast have seaports, as CALLAO in Peru, the seaport of LIMA. Find others.

VALPARAISO, in Chile, is the largest port on the Pacific coast ; but SANTIAGO, the capital, situated fifty miles inland, and about one half mile above the sea, is more than twice as large. Notice how long and narrow Chile is ; what reason can you give for that ?

Farming is possible in the northern part of the western coast, where the rainfall is heavy ; but farther south, as in Peru and northern Chile, agriculture is impossible without irrigation. In southern Chile, however, the rainfall is moderate, and many people have settled there because the farming and grazing are excellent.

FIG. 182.

A scene among the lofty mountains of Chile.

Which of the Andean countries has no seacoast? Is that a disadvantage? Ecuador is the Spanish word for equator. Why is that a fitting name for the country? Colombia and Panama have seacoasts on two oceans, and the latter includes the Isthmus of Panama. What cities do you find on the two sides of the Isthmus? They are connected by a railway. Why is this important?

REVIEW QUESTIONS. — (1) Describe the highland regions of South America. (2) What three great valleys are there? (3) In what zones are the different parts of the continent? (4) Which is the rainiest region? Why? (5) What about the rainfall elsewhere? (6) Compare Brazil with the United States in size and number of inhabitants. (7) Tell about the silvas and the valuable products obtained from them. (8) Where are the chief cities in Brazil? Which is the largest? (9) Name the main industries in that section. (10) Where is Venezuela? (11) Tell about the industries there. (12) Where is Caracas? (13) For what is Trinidad noted? (14) Which is the

most productive part of South America? What are the products? (15) Name and locate the largest city on the continent. (16) Name the countries along the western side of South America. (17) Why are most of the cities not directly on the coast? (18) Which is the largest port? (19) What are the five products of these countries?

SUGGESTIONS.—(1) Draw the outline of South America. Put in the drawing the mountains, chief rivers, and cities. (2) What large cities were found in the interior of North America? How about South America in that respect? What are the causes for the difference? (3) Brazil is in the torrid zone, while the United States is in the temperate zone. Which country has the advantage in temperature? Why? (4) Write a story telling of a journey by land and river from the mouth of the Orinoco to the mouth of the Plata. (5) Read something about coffee raising. (6) From the table on page 339 find the five largest cities in South America. Add the populations together and compare the result with the total of the five largest cities in North America (see p. 335).

For REFERENCES, see page 331.

Raising mules for market. Tehama County, California.

Digging peat in Ireland.

Shetland ponies, so protected by a heavy coat of hair that they thrive in the raw climate of the Shetland Islands.

FIG. 183.

XVIII. EUROPE

MAP QUESTIONS.—(1) On page 142 it was stated that Eurasia consisted of two continents, Europe and Asia. Trace the boundary line between them, naming the mountains and waters that form it. (2) One of the seas has no outlet; which is it? What kind of water would you expect to find in that sea? (3) How does the coast line of Europe compare with that of South America? Of North America? (4) Would you expect to find many good harbors? (5) Name the largest peninsulas and draw an outline map to show them. (6) Where are the highest mountains? (7) One of the Alpine peaks is Mt. Blanc. (8) Where are the plains? Which very large country is made up mainly of plains? Find Sicily and Sardinia. (9) In what zones is Europe? (10) How do you think its climate would compare with that of the United States? (11) With what European country have we recently been at war? (12) What other countries in Europe do you know something about? (13) By what route would you go from New York to one of them? (See Fig. 120.)

Europe is only a little larger than the United States with Alaska, but contains more than five times as many inhabitants, who are separated into a score of nations, with a different language for nearly every one.

I. The British Isles.—The people in Europe to whom we are most closely related live on the small group of islands, called the BRITISH ISLES, which lie just west of the mainland. This is often called our “mother country.” Can you tell why?

There are two islands, Ireland and Great Britain; what are the names of the three parts of Great Britain?

On these islands are fine harbors and many great cities, LONDON, in the southern part of England, on the Thames River, being the largest city in the world. Let us see what the people do.

Judging from their position one might expect these islands to be too cold for agriculture, for they are farther north than the mouth of the St. Lawrence River; but the climate is no colder than that of the northern United States. The reason for this is that the western coast

FIG. 184.

London bridge, across the Thames, over which a busy throng is almost constantly passing.

of Europe is warmed by a broad current, or *drift*, of warm ocean water, known as the Gulf Stream, which flows northeast in the Atlantic Ocean from the warm southern seas. The air over it becomes warmed; and, since the winds of Europe blow chiefly from the west, they carry this warmth with them and produce a climate much milder than one would otherwise expect.

Wales and most of Scotland are too hilly to be well suited to agriculture; but many sheep and cattle are

raised. In England there is much more farming, and hay is one of the chief crops, since the damp air and the rain cause the grass to grow well. This is a reason, also, why sheep are raised in great numbers.

But agriculture and stock raising are not the chief occupations. Having much wool, the people long ago learned to make woolen cloth. In addition to that, they purchased cotton from distant countries,—as New England does to-day from the Southern states,—and made cotton goods. Thus extensive manufacturing industries have been developed, which have been made possible because of the vast beds of coal found there, as in Pennsylvania, Illinois, and neighboring states.

The center for this manufacturing is MANCHESTER, and the nearest port is LIVERPOOL, thirty-five miles away. Recently a ship canal, called the Manchester Canal, has been built, connecting these two cities. Find them.

The coal has helped to make another great industry possible. Beds of iron ore occur in England, and by the use of coal it is made into iron and steel, especially at BIRMINGHAM, which is the greatest center for iron manufacturing in Great Britain. Where else have we found a city called Birmingham? What can you tell about it?

The lowland portion of Scotland, about EDINBURGH and GLASGOW, is likewise noted for its cotton and woolen factories, and for its iron manufacturing. Glasgow is the greatest center for steel shipbuilding in the world. What city in the United States is noted for shipbuilding?

Great numbers of people are employed in all this work, so that enough cloth, knives, needles, engines, and so forth are made to supply many parts of the world.

Ireland is not so much interested in manufacturing, al-

though linen is an important product, being manufactured especially at BELFAST. It is really to a great extent a farm for the English, furnishing them butter, eggs, potatoes, and also meat. The air is so moist that the grass is kept fresh and green, and on that account Ireland is often called the Emerald (or Green) Isle. The two largest

cities are naturally on the side next to England. What are their names?

So many manufactured goods must be shipped away from Great Britain, and so much food imported, that the shipping business is very important. For this reason there are

FIG. 185.

Thatched cottages in Ireland.

many skillful sailors in Great Britain, and that nation has more ships upon the sea than any other in the world.

Having so many ships, the British have been led to explore countries in all parts of the world. Whenever they discovered new lands, they laid claim to them in the name of their government, and in that way England has come into possession of Canada, Australia, India, several large countries in Africa, and scores of islands. These are called *colonies*, and the British have more of them than any other nation in the world. Indeed, these colonies cover one hundred times as much surface as the British Isles and have ten times as many inhabitants.

LONDON, the capital and the central port for vessels, has an excellent harbor on the Thames River, where hundreds of ships can be accommodated at one time.

Great Britain and Ireland, together with their many colonies, form the *British Empire*. Its government, unlike our own, is a monarchy ; but it is very liberal, and as in our own country, the people have an important share in the making of laws.

FIG. 186.

The Thames River and Windsor Castle, where the King of England resides.

II. NORSE COUNTRIES.—SWEDEN AND NORWAY. These two countries together occupy the Scandinavian peninsula, and are about as far north as southern Greenland. Were it not for the Gulf Stream, which flows past Norway, this, like Greenland, might be a barren, frozen country.

As in Scotland, most of the country is too hilly and rocky for farming, although some grain, cattle, and sheep

are raised, especially on the lower land of southern Sweden along the Baltic. Few people live in the highlands, and

about one fourth of Norway is covered by forests.

FIG. 187.

One of the deep, narrow fjords of Norway.

Fishing for cod and herring is now one of their important industries.

The principal cities are STOCKHOLM and CHRISTIANIA. Find each. They are the capitals of Sweden and Norway, two prosperous kingdoms which until recently were under one king.

DENMARK, just south of Norway and Sweden, is inhabited by people similar to those in Scandinavia; in fact, these three are often called the *Norse* nations, or the nations of the Northmen.

FIG. 188.

Danish women selling fish.

The Danes, also, have been great sailors, and now have possession of Iceland and the west coast of Greenland. Their country presents a very different appearance from Norway and Sweden, for the land is low and level, and farming is the occupation of about one half the people. Fishing is also an important industry.

The government is a monarchy, the capital and largest city being COPENHAGEN, situated on an island.

III. Russia. — The Russian Empire not only includes great plains in Europe, but extends several thousand miles beyond the Ural Mountains to the eastern coast of Asia ; it is larger than the whole of the continent of North America and contains a greater number of inhabitants.

Most of Russia in Europe is a level country. The northern part, like northern Norway, is in the frigid zone, and so far away from the Gulf Stream that the climate is extremely cold. The plains there, called *tundras*, are too cold for trees, and the frost never leaves the ground except at the very surface in summer. Nevertheless, a moss flourishes and supports numbers of reindeer, which are used as draft animals by the natives.

The southeastern plains, called *steppes*, are so far from the ocean that the west winds can bring them little rain. They are therefore dry like the arid region in our Western states. But the central and western parts are well suited to farming, and there most of the people live. As in the northern United States, one of their main crops is grain, especially wheat ; and vast numbers of cattle and sheep roam over the broad, grassy steppes.

The rivers are excellent waterways, the largest of all being the Volga, the greatest river in Europe. What others do you find ?

Since the Caspian Sea has no outlet, and the Arctic Ocean on the north side is frozen much of the time, the chief ports for foreign commerce must be either on the

Baltic or the Black Sea. This explains the location of ST. PETERSBURG, the capital and largest city, which is about the size of Philadelphia. ODESSA, on the Black Sea, contains many flour mills and is an important port for the export of wheat. With what two cities northwest of Chicago may it be compared?

The chief railway center and second city in size is Moscow in the interior.

FIG. 189.
A family of Russian peasants.

The great mass of the people, called *peasants*, are allowed to take little part in the government, and, unlike most of the Europeans, are kept in ignorance and subjection. They are ruled by a man called the *Czar*, who makes and executes laws very much as he pleases. That kind of government is called an absolute monarchy, or despotism, and is very different from the limited monarchies thus far studied.

IV. Germany. — The general slope of the land in Germany is shown by the rivers ; in what direction do most of them flow ? The southern part of the country consists of mountains and highlands, but the northern part is a great plain, a continuation of the plains of Russia.

As in Russia, there is much agriculture, one of the chief products being grain. Much of their bread is made from a grain called rye, and is so dark that it is called "black bread." Beets are grown in enormous quantities, and sugar is manufactured from them as it is from sugar cane in Louisiana. Grapes flourish along the upper Rhine River, and from these wine is made ; and more hops for making beer are raised in Germany than in any other country of the world.

Both coal and iron ore are mined in abundance ; and many articles are manufactured, such as the famous Krupp guns and many kinds of machinery. Germany is noted also for its manufacture of cotton, woolen, and linen goods, ranking next to England as a manufacturing country of Europe.

The chief seaport is HAMBURG on the Elbe River, a rapidly growing city. Why should the chief port be at this point rather than farther east on the Baltic Sea ?

FIG. 190.
A castle on the Rhine.

The schools, universities, and museums of Germany are among the best that exist, and many Americans go to Germany each year to study music, painting, and other subjects. The largest university is in BERLIN; LEIPZIG also has one, and there are many others. MUNICH and DRESDEN are noted for their fine picture galleries, and so is BERLIN, which also has other large museums. Find these cities.

FIG. 191.
The Royal Museum at Berlin.

BERLIN, the capital of Germany, is the largest city. The government is a limited monarchy, and the present ruler is Emperor William II.

V. Holland; or the Netherlands (a word that means *lowlands*), is a low, flat country, much of it being lower than the neighboring sea.

The inhabitants have built embankments, called *dikes*, to keep the sea out, and have dug canals across the country to drain it. The water that collects inside the embankments is pumped out by windmills, or by steam, into the canals, and these canals are the chief roads, being used in summer by boats and in winter by people on skates or on sleds.

The damp soil furnishes excellent grass, so that cattle raising and dairying are the principal occupations.

The Hollanders, or Dutchmen, living so near the sea, have become great sailors and explorers, like the Englishmen. For this reason they have come into possession of some of the richest islands in the East Indies, from which are obtained valuable products, such as coffee, spices, and precious stones. On the map, Fig. 221, facing

FIG. 192.
A canal in Holland.

page 271, find the names of some of the Dutch East Indies. Find out about the early Dutch settlements in America. What great city did they settle?

The chief city is AMSTERDAM, with a population of half a million people. The government is a monarchy, and the laws are made at THE HAGUE, on the coast.

VI. **Belgium**, like Holland, has some land that is lower than the sea and protected by dikes; but the eastern part is much higher.

FIG. 193.

A windmill, in Belgium, like those so common in Holland.

turing. **BRUSSELS**, the largest city, is famous for its fine laces, linens, and Brussels carpets, the latter being made of wool on a mat of linen.

There is a great amount of coal and iron in this little kingdom, so that the iron industry is extensive, as in Germany.

The government is a monarchy with **BRUSSELS** for its capital. **ANTWERP** is the chief seaport.

VII. **France**. —The slope of the land in France you see by the course of its rivers. What are their names? Where do they rise and in what direction do they flow?

In the cool northern part the crops are similar to those of Germany; but in the southern portion the climate is warmer and the crops somewhat different. Besides grapes, which are grown in great quantities in the region of **BORDEAUX**, and made into wine that is sold in many parts of the world, much silk is also produced.

The people are crowded together more closely than in any other country of Europe. Many live on farms and raise much the same products as those of Holland and Germany. What are these?

Flax is an important farm product. It is a plant about two feet high, whose fiber is used in making linen and fine laces. The Belgians have long been skillful in such work, and it was from them that the English received some of their knowledge about manufac-

Silk is manufactured from cocoons spun by a caterpillar called the *silkworm*. Each one of the cocoons is made of a fine thread several thousand yards long, looking somewhat like the thread of a spider's web.

After the cocoons have been softened in hot water the threads are unwound and then wound upon spools. They are later made into thread and woven into silk cloth, ribbons, handkerchiefs, and other silk goods.

LYON, the center for the silk industry, is the greatest silk market in the world.

FIG. 194.
A view of the great city of Paris.

PARIS, the largest city in France, is the third in size in the world, and probably the most beautiful. Like several cities in Germany, it has fine picture galleries and museums, and many foreigners go there to study painting, music, and other subjects. It is situated upon the Seine River, and its chief port is HAVRE, at the mouth of the Seine.

FIG. 195.
The harbor of Marseille.

BORDEAUX is an important shipping port for wine, and MARSEILLE is the principal port upon the Mediterranean coast.

The French government is a republic with PARIS as its capital.

VIII. Spain and Portugal. — The Pyrenees Mountains form the boundary between France and Spain, rising like a great wall to separate the two countries.

You remember that Magellan was a Portuguese and that it was to Spain that Columbus went for help. These were once among the most powerful nations in the world, and they once ruled much of North America and most of South America. Little by little they have lost their colonies in the New World, the last to be taken being Cuba and Porto Rico.

Like Mexico, which was settled and for a long time owned by the Spanish, Spain has a dry, mountainous plateau or table-land in the interior, with low land along the coast.

Being so much like a desert, one would expect few people to make their homes in the interior; and this is the case, although, strange to say, the greatest city, MADRID, is found in the center of this table-land. Its importance is due to the fact that it is the capital of Spain.

FIG. 196.

A view of part of Madrid and the great plateau on which it is situated.

As upon our dry Western plains and plateaus, cattle and sheep raising are important industries on this high-land. But the rocks of this region contain its chief wealth, for Spain produces more quicksilver and lead than any other nation, and more copper and iron than most others.

Farming is carried on in the mountain valleys and on the low lands along the coast. One of the most valuable crops is grapes.

BARCELONA, on the eastern side, is the chief port of Spain; and the principal city of Portugal is LISBON, the capital.

Both governments are limited monarchies, like those of most European countries.

IX. Italy was once the most powerful country in the world. Its principal city was ROME, and the Romans ruled nearly all the other countries then known. But, like Spain, it has lost much of its importance.

FIG. 197.

St. Peter's Cathedral on the left, and the Vatican, the residence of the Pope, on the right.

ROME is still the capital and the residence of the king ; also of the Pope, who is the head of the Roman Catholic Church. The city is especially noted for its many ruins of buildings erected hundreds of years ago.

VENICE, at the head of the Adriatic Sea, is another interesting city. It is built upon many islands joined by hundreds of bridges, and its chief streets are canals, where boats, called *gondolas*, are used in place of wagons and carriages.

NAPLES, which is on the coast southeast of Rome, and near Mt. Vesuvius, is the largest city in Italy. The steam rising from the crater of Vesuvius is easily seen from the city (Fig. 102). Volcanic ash from Mt. Vesuvius has entirely buried some of the towns near by, such as the ancient city of Pompeii, from which the ashes have been dug away so as to bring to light the buried buildings and streets.

FIG. 198.

One of the canals of Venice, with a gondola floating upon it.

The best farm land is in the valley of the Po River in the northern part, where wheat, and other grains, and mulberry trees for silk-worms are raised. MILAN, like Lyon in France, is a great center for silk.

The climate is mild enough to produce the same fruits that are grown in Florida and Southern California. Name some of them.

X. Switzerland. — Any one who has heard the story of William Tell, or who has read about the St. Bernard

dogs kept by the monks, has some idea of how Switzerland looks. Here are the snow-capped Alps, with many lakes and fertile valleys between them, and views so

FIG. 199.

The snow-capped Matterhorn, one of the Alpine peaks.

food for cattle and goats, so that butter and cheese are made, as in Holland. Probably you have heard of Swiss and Dutch cheese.

Wood carving is also an important industry. During the long winters the wood grown upon the mountains is carved into toys, clocks, and many other articles. Have you ever seen a Swiss clock?

Name the countries on each side of Switzerland, and notice that it is surrounded by people who speak German, French, and Italian. In consequence, instead of having one language of their own, the Swiss have these three, those living in each part speaking the language of the foreign country nearest to them.

The Swiss government has long been a republic, like our own, and BERNE is the capital. Find the chief cities, ZÜRICH and GENEVA.

XI. Austria-Hungary.—Austria and Hungary are united under one monarchy, although they have different customs and languages. Many of the Austrians are closely related to the Germans; but the Hungarians are

beautiful that thousands of people go every year to enjoy them. One of the occupations of the Swiss is to provide for these visitors in hotels and restaurants.

The green grass in the low-lying valleys and on the mountain sides provides excellent

a very different race. The capital and largest city is VIENNA, the fourth in size in Europe. It is situated on the Danube River, so that it has water connection with many other places.

BUDAPEST is next to Vienna in importance. Like Minneapolis, it is in the midst of a great wheat region, and is a flour-milling center. The cultivation of flax leads to another manufacturing industry. What is it?

FIG. 200.

A view in Austria.

XII. Greece. — The country in Europe which has perhaps had the greatest influence upon the rest of the world is Greece. The Romans received many of their beliefs and customs from the Greeks; and since many of ours come from the Romans, we also are greatly in debt to the Greeks.

The center of this influence was ATHENS, once the most famous city in the world. Many years later, at the time of Christ, it was still an important place. Both Athens and Corinth, near by, are mentioned in the Bible.

The country is mountainous, producing raisins and other fruits, and much grass for grazing. But there is little mining and manufacturing.

At one time the Greeks were conquered by the Turks and very cruelly treated by them; but they obtained their independence, and their government is now a monarchy with ATHENS for its capital.

FIG. 201.

The Acropolis with its ruins on top, and the ruins of the Temple of Jupiter on the right, both in ancient Athens.

XIII. Turkey.—The largest city in southeastern Europe is CONSTANTINOPLE, which has over one million inhabitants. Notice what an excellent location it has. It is the capital of Turkey, which, like Russia, is a country partly in Europe and partly in Asia.

The Turkish government is the worst in Europe. The ruler, called the *Sultan*, is an absolute despot, who governs his people so badly that they are kept extremely ignorant and poor. In all the other nations of Europe the Christian religion, either Catholic or Protestant, is followed; but the Turks are Mohammedans, followers of Mohammed, like many other people in Asia

and Africa. They are religious fanatics, and dislike Christians very much.

One proof that the Turkish government is bad, is the fact that the people in many parts of the Empire have rebelled against it and fought for their freedom. For example, Roumania, east of Austria, used to belong to Turkey, but it is now an independent kingdom. The same is true of Bulgaria, Servia, and Montenegro; Greece has already been mentioned.

The people in all these countries are largely engaged in farming and herding, the Danube Valley being especially fertile. Grain, wine, and raisins are important products.

FIG. 202.

A mosque, or Mohammedan church, in Constantinople.

REVIEW QUESTIONS AND SUGGESTIONS

I. The British Isles. QUESTIONS.—(1) What are the divisions of the British Isles? Where is each? (2) Why have not the British Isles a colder climate? (3) Tell about the agriculture. (4) What kinds of cloth are manufactured? Where? (5) Where is the iron manufacturing carried on? (6) Of what value are the coal beds? (7) Tell about Ireland. (8) Explain how Great Britain has come to have so many ships. (9) So many colonies. Name some of them, including several islands near North America. (10) What is the British Empire? What kind of government has it? (11) Locate all the cities mentioned.

SUGGESTIONS.—(12) What books have you read whose authors lived in Great Britain? (13) Examine pocket-knives and table-knives to see if you can find some made in England. (14) The iron manufactories of England remind you of what states in this country? (15) When did our country cease to be a colony of Great Britain? (16) What

are the people from the four divisions of the British Isles called ?
(17) Make a drawing of the British Isles.

II. Norse Countries. QUESTIONS.—(18) What about the climate of Norway and Sweden ? (19) Tell about the agriculture ; the other industries. (20) What are the Norse nations ? (21) What colonies have the Danes ? (22) Name the chief industries of Denmark. (23) What kind of government have these Norse countries ? and what is the capital of each ?

SUGGESTIONS.—(24) Find out something about Iceland. (25) In what other section that you have studied is fishing important ? (26) Find out about the length of days and nights in Norway. (27) Draw a map of the Scandinavian peninsula.

III. Russia. QUESTIONS.—(28) Tell about the size of Russia. (29) What parts of Russia in Europe are not fitted for farming ? Why ? (30) What is the main occupation of the people ? Name the important products. (31) What are the tundras ? The steppes ? (32) Which is the largest river in Europe ? (33) Where are the leading Russian ports ? (34) Locate three of the largest cities, and state why each is important. (35) Tell about the government.

SUGGESTIONS.—(36) Why would you not expect Russian sailors to be as numerous as the English sailors ? (37) Name some city of the United States which is about as far north as Odessa. (38) How does the northern location of St. Petersburg interfere with its commerce by sea ? (39) What city on the St. Lawrence has the same difficulty ? (40) Show the route a vessel would take in going from Odessa to London. From Odessa to St. Petersburg.

IV. Germany. QUESTIONS.—(41) Where is the highest land in Germany ? The great plains ? (42) Tell about the chief farm products. (43) What are the principal manufactures in Germany ? (44) Where is Hamburg ? (45) For what is Berlin noted ? Leipzig ? Munich ? Dresden ? Locate each. (46) Tell about the government.

SUGGESTIONS.—(47) Do you know any songs or stories about the Rhine River ? (48) Make a drawing showing the course of this river. (49) Do you know of any German paintings ? Of any music written by Germans ? (50) Make a collection of German pictures.

V. Holland. QUESTIONS.—(51) Tell about the dikes and canals of Holland. (52) What is the principal industry ? Why ? (53) What important colonies has Holland ? (54) What are the main cities ?

SUGGESTIONS.—(55) Write a story telling what you think might result if a dike were to give way. (56) Find a picture of a Dutch windmill. (57) Tell what you would expect to see in crossing Holland on a railway train.

VI. Belgium. QUESTIONS.—(58) What are the farm products of Belgium? (59) Tell what you can about flax. (60) Name and locate the two principal cities. (61) What about coal and iron?

SUGGESTIONS.—(62) Examine a piece of Brussels carpet; a piece of lace also.

VII. France. QUESTIONS.—(63) Describe the chief slopes of France. (64) What are the products in the northern part? In the southern part? (65) Tell about the silk industry. (66) What can you say about the capital? (67) About each of the other cities? (68) What kind of government has France?

SUGGESTIONS.—(69) Examine a cocoon and a piece of silk. Obtain a caterpillar, if possible the silkworm, and raise it in the school to see how the silkworm forms silk and what happens to the "worm." (70) Why would the value of a cocoon be destroyed if the chrysalis inside were to break through in order to get out? (71) Can you find any pictures of Paris?

VIII. Spain and Portugal. QUESTIONS.—(72) Where are the Pyrenees Mountains? (73) Tell about the former power of these countries. (74) Describe the relief and climate. (75) What are the industries on the plateau? (76) What minerals are found there? (77) Where is most of the farming? What are the chief products? (78) Name and locate the most important coast cities. The two capitals.

SUGGESTIONS.—(79) Would you expect the rivers to be navigable for any considerable distance from the Spanish coast? Why? (80) Make a sand map of Spain, showing the high and low land. (81) Examine some quicksilver. For what is it used? (82) Can you find out anything about the Moors and the Alhambra in southern Spain? Perhaps you can find pictures from there. Washington Irving has written some beautiful stories about the Alhambra.

IX. Italy. QUESTIONS.—(83) Where is Rome? Venice? Naples? Mt. Vesuvius? Milan? (84) Tell something about each of these. (85) Where are the mountains? (86) Where is the Po Valley? (87) What is raised in Italy?

SUGGESTIONS.—(88) Find pictures of some of the ruins in Rome. (89) Of some of the buildings in Venice. (90) Look on a globe to see in which direction Rome is from New York. (91) Draw a map of Italy.

X. Switzerland. QUESTIONS.—(92) What are some of the industries of the Swiss? (93) What languages are spoken? (94) Name the principal cities. (95) What is the kind of government?

SUGGESTIONS.—(96) Read the story of William Tell. (97) Find other stories about Switzerland. (98) What disadvantages do you see in having so many languages? (99) What large rivers rise in Switzerland? (100) Write a story describing the St. Bernard dogs of Switzerland.

XI. Austria-Hungary. QUESTIONS.—(101) Name four leading cities in Austria-Hungary. (102) Tell why each is important.

SUGGESTIONS.—(103) Trace the Danube River from its source to its mouth. (104) How far is Trieste from Venice? (105) Through what waters would a vessel pass in sailing from New York to Trieste? (106) By using the scale on the map, find out how far Vienna is from Munich. From Leipzig. From Berlin. From Paris. From St. Petersburg. (107) In what direction is it from each of these?

XII. Greece. QUESTIONS.—(108) What can you say about the influence of Greece upon the world? (109) Find Athens. (110) Tell about the climate and products.

SUGGESTIONS.—(111) Where can you read about Ulysses? (112) Have some one tell you the story of the Trojan War. (113) Find some other stories about the ancient Greeks.

XIII. Turkey. QUESTIONS.—(114) Where is Turkey? What is its capital? (115) Tell about its government. (116) What is the chief occupation of the people? (117) What countries have gained their independence from Turkey?

SUGGESTIONS.—(118) What is the boundary line between Turkey in Europe and Turkey in Asia? (119) Examine a Turkish rug. (120) What reasons can you give why Russia would like to own Constantinople?

GENERAL SUGGESTIONS

(121) Do you know of any persons who have come from one of these countries of Europe? If so, ask them to tell you about them.

Also have them speak in their native language. (122) Ask a merchant to show you some goods from Europe. (123) What difficulties would you expect to meet if you were to travel through Europe without knowing any foreign languages? (124) Bound each of the countries of Europe. (125) Draw an outline map of Europe, putting in these boundaries and the principal rivers. (126) Make a dot to represent Berlin; also locate the other large cities. Mark the capitals with stars. (127) Collect pictures of Europe for the school collection. (128) Cut out scraps, from the magazines and papers, relating to the people, animals, plants, cities, etc., of different parts of Europe and present them to the school to be kept for use in the geography class. They can be arranged by countries and will be very useful.

For REFERENCES, see page 331.

Modern means of travel in Europe, America, and other countries.

XIX. ASIA

MAP QUESTIONS.—(1) Through what zones does Asia extend? (2) What climate would you expect to find? (3) Where are the highest mountains and plateaus? (4) What rivers have their sources in that region? (5) What large inland seas do you find? (6) What three large peninsulas on the southern side? (7) What three were found on the south side of Europe? (8) How does Asia compare in size with Europe? (9) Find Asia on a globe. (10) How could you reach it, if you wished to go there? (11) On the map, which way is north from the British Isles? From Kamchatka?

Physical Geography.—Like Europe, the coast of Asia is very irregular, with many peninsulas and islands. Draw an outline map of it, showing these, with the larger bays and seas inclosed by them.

Note the direction in which the many mountain ranges extend. The loftiest among them, and in fact the highest in the world, are the Himalaya Mountains, the highest peak, Mt. Everest, being over twenty-nine thousand feet, or about five and one half miles above the sea. Where is it? How does it compare in height with Mt. Blanc? (See p. 341.)

North of the Himalayas are lofty plateaus, one of them, the plateau of Tibet, being about three miles in height. How does that compare with the Spanish plateau (see p. 342) and with our western plateau (see p. 342)? It is so high that the winter climate is very cold; and since the winds from the ocean have lost their moisture in passing over the mountains, these plateaus are also

FIG. 203.

Picking Tea in India.

Asiatic buffalo, used as a work animal in southern and western Asia, eastern Europe, and northwestern Africa.

dry. Farther north it is drier still, and we find there the great desert of Gobi.

These mountains and plateaus form the watershed of the continent. Find three great rivers that flow northward from the watershed through the vast plain of Siberia. Name three that flow eastward into the Pacific Ocean. What others flow southward?

FIG. 204.

A native village near Calcutta — notice the bamboo on the right.

From what has been said about the climate it is plain that the inhabitants of this continent must be found chiefly in the eastern and southern parts. There they live in vast numbers along the coast and the large rivers; in fact, nearly one half of all the people in the world are found in these regions.

I. Southwestern Asia. — Rome and Athens have been mentioned as cities that have had a great influence upon other countries. But the part of the world which has probably had the greatest influence of all is that at the

eastern end of the Mediterranean Sea. Here is the land that used to be called Palestine, the home of the Jews ; and here is still the city of JERUSALEM (Fig. 205), near which Christ was born about nineteen hundred years ago, and in which He was crucified. The Christian churches and Christmas are in His memory. The home of Christ, where the Christian religion was founded, is now a part of the Turkish empire which extends into Asia.

Turkey extends down the western coast of the Arabian peninsula, and includes another famous city called MECCA. The Turks are not Christians but Mohammedans, or followers of Mohammed, who was

FIG. 205.
A picture of a part of Jerusalem.

born at Mecca nearly fourteen hundred years ago. The Mohammedans believe in God, and their holy book is called the Koran. A great many other people in Asia and northern Africa are followers of Mohammed.

The western part of Asia, including Turkey, Arabia, and Persia, has a very dry or arid climate. This is particularly true of Arabia, which is mainly a desert plateau much more arid than Spain.

In this desert country agriculture is not a very impor-

tant industry; but dates and coffee are raised there, especially near the rivers and along the coast. You have perhaps heard of MOCHA coffee, and if you look on the map you can find the place from which it gets its name.

Although so much of this region is desert, there are places, called *oases*, where water is found. As these are usually too small to furnish water and grass for large herds during a long time, the Arabs are forced to wander from place to place, having no fixed homes. On

FIG. 206.

A group of Persian natives on the desert of eastern Asia.

that account they are called *nomads* or wanderers (Fig. 206). They take special pride in raising horses, which have become famous throughout the world. They also keep cattle, sheep, goats, and camels.

Much of Persia is also a desert; but some parts are well suited to grazing, and the climate is warm enough for such fruits as figs and dates. What is the capital? The ruler of the Persians is a despot called the *Shah*.

The people of these countries are not civilized enough to carry on much manufacturing, although beautiful carpets, rugs, and shawls are made in great numbers, especially in Persia and Turkey. The

work is done by hand, and though it is well done, it requires a great deal of time, while in our great factories carpets are quickly made by machinery. Railways are almost unknown, and even carriage roads are usually lacking. Goods are carried upon camels in groups, called *caravans*, and men travel upon the backs of horses and camels.

II. Siberia. — Siberia belongs to Russia. It is a region of extensive plains and is much larger than the whole of Russia in Europe. Like northern Canada, much of it is

FIG. 207.
A village in Siberia.

so cold that few people can live there, and it has been made a prison for many Russians who have committed crime, or who have offended their despotic rulers.

A large portion of southwestern Siberia is a desert having numerous lakes without outlets. Would you expect them to be salt or fresh? Between this arid section and the bleak northern plains, or tundras, which resemble those of northern Europe, is a region where there are extensive forests, and broad plains suited for grazing and farming.

One of the chief sources of wealth of Siberia is in the gold mines of the Ural Mountains. Graphite, from which the "lead" in lead pencils is made, is also found there. Many of the prisoners from Russia are compelled to work in these mines.

The Russian government has built a great railway all the way from St. Petersburg eastward to Vladivostok on the Pacific coast. How far is that?

III. The Chinese Empire and Korea. — Some of the most important arts that we have ever learned first came from the Chinese. For instance, they made porcelain dishes long before Europeans knew how, and on that account

FIG. 208.
Houseboats on the Tientsin River of China.

those dishes are still called *Chinaware*, even though manufactured in the United States. They invented gunpowder, and our firecrackers for the Fourth of July used to come from China. They also discovered how to make silk and paper, and they invented the art of printing.

But while this strange-looking, yellow race was once among the foremost nations of the earth, it is now very much behind. This is explained partly by the fact that their religion causes them to worship their ancestors, so that whatever their fathers did, they must do. Since their fathers had no railways, telegraphs, or telephones, none are wanted now. Owing to their fear of new things, they have neither traveled abroad much nor allowed foreigners to visit them.

But recently many Chinese have come to this country, working as servants, especially on the Pacific coast, and as laundrymen in all

parts of our country. Besides that, they now allow foreigners to live in some of their coast cities and trade with the people.

CANTON in the southern part is especially noted for its silk. It is the largest city in China. SHANGHAI is another large city. Both are important ports for trade with Americans. HONGKONG is a British port.

Much of the northern and western portions of the Chinese Empire are so high and dry that few persons can live there. Find the names of those parts. But the lower plains near the coast, especially the fertile flood plains and deltas of the great rivers, support a vast population, because the soil is fertile, and abundant rainfall is supplied by the damp winds from the Pacific. Here live nearly one fourth of all the inhabitants of the globe, crowded together so closely that many thousands dwell in boats on the rivers.

In the northern part a great deal of wheat is raised; but farther south rice, millet, tea, and silk are important products.

China produces more raw silk than any other country in the world. What other regions are noted for these same products?

The government is an absolute monarchy, with the capital at PEKING, situated some distance in

FIG. 209.
Temple in Peking.

the interior. PEKING and TIENTSIN, its seaport, have about three quarters of a million inhabitants each.

Korea is also a very unprogressive nation which, until recently, would not permit foreigners to enter.

IV. Japan.—The Japanese live upon islands east of Asia, as the British do west of Europe. Their territory is but slightly larger than the British Isles, and there are not many more inhabitants. Many of the islands are small, but there are five large ones, the southernmost being Formosa. They are really the crest of a mountain range rising above the sea, and some of the mountain peaks are volcanoes.

FIG. 210.

A Japanese woman being carried in a traveling chair by two Japanese men.

The Japanese used to be much like their neighbors, the Chinese; that is, they believed foreigners inferior, and wanted nothing to do with them. But in 1853 an American naval officer, with several warships, entered the harbor of Yokohama and persuaded the Japanese to allow us to trade with them.

Before many years had passed the Japanese not only allowed foreigners to enter, but they invited them to come as teachers, and even sent some of their own young men abroad to study. There have been many Japanese students in the colleges and universities of the United States during the last twenty years.

The great war between Russia and Japan (1904-05) was fought for the control of Korea and proved that Japan had learned much from the western nations in the arts of war and peace. Japan is now far in advance of all other countries of Asia. Railways, telephones, and newspapers are common, and there are many good schools, while rapid progress has been made in manufacturing.

That the Japanese are very skillful in many kinds of handiwork is suggested by the Japanese fans, parasols,

napkins, dolls, and screens so often seen in this country. Whatever they make they try to make beautiful, being one of the most artistic races in the world.

Japan, like China, produces a great amount of silk, rice, and tea. There is also some mining.

The principal city and capital is TOKIO, one of the large cities of the world, and the

FIG. 211.
The way Japanese babies are carried by the young girls. The baby leaning back is asleep.

home of the emperor, called the *Mikado*. Its seaport is YOKOHAMA, at the entrance of Tokio Bay.

V. India and Indo-China.—India, the central one of the three peninsulas on the southern side of Asia, is the country that Columbus thought he had reached when he discovered America. Hence the name “Indians” for the savages whom he met.

The damp winds from the Indian Ocean furnish the plains and mountains of India with so much rain that in places the forests form a perfect tangle or *jungle* of luxuriant vegetation, in which live tigers, elephants, and many other wild animals.

Several very large rivers rise in the Himalayas and flow across the plains. One is the Indus, from which the word India comes, and also the word Hindoos, as the inhabitants are sometimes called. The river flowing southeast is the Ganges, on which is the capital and largest city, CALCUTTA.

One of the chief reasons why England holds India is for the important crops raised there. Cotton, one of the

FIG. 212.
Idols in a cave near Bombay.

principal products, is shipped to England to be made into cloth, and then some of this cloth is shipped back to India and sold. Where else have we found a similar situation?

Wheat is another great product, and since England cannot raise enough of that food for herself, she secures some of it from India. Other crops are poppies, from which opium is made, silk, rice, tea, coffee, and sugar.

FIG. 213.

A view in the palace grounds at Bangkok, Siam.

The peninsula east of India, called Indo-China, and the East Indian Islands south of it, are other places that Columbus wished to reach. Here are found precious stones, such spices as pepper, nutmeg, and cinnamon, and other valuable products, which were carried by caravans to Europe long before the time of Columbus. Many of these products are now shipped from SINGAPORE, an English city on an island at the southern end of the Malay peninsula. The greatest city in Indo-China is BANGKOK, the chief seaport and the capital of the kingdom of Siam.

REVIEW QUESTIONS AND SUGGESTIONS

I. Southwestern Asia. QUESTIONS.—(1) What part of Asia has had the greatest influence upon the civilized world? Tell about it. (2) To what nation does Palestine belong? (3) What other parts of Asia belong to it? (4) Tell about Mecca. (5) Describe Arabia. (6) How do the Arabians live? (7) What do you know about Persia? (8) How do people travel in those countries?

SUGGESTIONS.—(9) What is meant by the date 1900? (10) What buildings in your neighborhood have been erected in the memory of

Christ? (11) What stories in the Bible have you read that tell about places mentioned in this book or on the map? (12) What reasons can you suggest why the Turks have not taken possession of the interior of Arabia, as well as of the coast? (13) Does your grocer sell Mocha coffee? (14) Examine a Persian or Turkish rug. (15) Learn how camels are especially fitted to live in desert countries.

II. Siberia. QUESTIONS.—(16) Point toward Siberia. (17) Tell about the climate. (18) In what occupations are the people engaged? (19) How does Siberia compare in size with Russia?

SUGGESTIONS.—(20) What advantage will the railway be to Russia? (21) How does that railway compare in length with those reaching across the United States? (22) What object do you see in having the eastern terminus, Port Arthur, so far south?

III. Chinese Empire and Korea. QUESTIONS.—(23) Name some of the arts that we have learned from the Chinese. (24) What has made them so backward? (25) What special ports are open to American traders? (26) In what part of China do most of the people live? Why there? (27) What are the principal products? (28) What kind of a government has China? (29) Tell about Korea.

SUGGESTIONS.—(30) How can you distinguish a Chinaman from other men? (31) How does the number of people in China compare with the number in the whole of Europe? (See the table on p. 333.) (32) Write a story telling some of the differences between life in America and in China. (33) Draw the two chief rivers in China. (34) How might railways in China help to prevent the awful famines that they have there? (35) Find out about Confucius. About the Great Wall of China.

IV. Japan. QUESTIONS.—(36) Where is Japan? (37) In what way have the Japanese been like the Chinese? (38) How have they differed? (39) Why are they called an artistic race? (40) What are their chief products? (41) Name and locate the chief cities.

SUGGESTIONS.—(42) Make a collection of Japanese articles, as paper napkins, fans, etc. (43) Examine them to see in what respect they are artistic. (44) Collect pictures of Japanese houses and people.

V. India and Indo-China. QUESTIONS.—(45) What nation owns India? (46) What rivers in northern India? (47) Locate the chief

cities. (48) What are the products? (49). What advantages does England enjoy in owning India? (50) Name the peninsula east of India. (51) What comes from there? (52) Find Singapore.

SUGGESTIONS.—(53) How far was Columbus from India when he discovered America? (54) What route should he have taken if he had continued his voyage to India? (55) What is the shortest route, from Bombay to London? Through what waters would a vessel pass?

VI. REVIEW. —(56) Draw an outline map of Asia and put in the boundary lines of the principal countries; also the rivers, mountains, and cities. (57) Find out about foreign missions to Asia.

For REFERENCES, see page 381.

U. S. Barracks, "Goat Island," San Francisco Bay.

Victoria Falls, Africa.

FIG. 214.

XX. AFRICA

MAP QUESTIONS.—(1) What continent does Africa most resemble in shape? (2) In what parts are the chief mountain ranges? (3) Find the main slopes on the continent by a study of the rivers. (4) Name and trace the three largest rivers. (5) About how much of Africa lies in the torrid zone? (6) How does its coast line compare with that of Europe as to regularity? (7) What influence must that have upon the harbors?

The Dark Continent.—Although Africa is so near Europe that they almost join at the Strait of Gibraltar, and although it is one of the oldest continents that history tells about, it is the least known of them all.

There are several reasons for this. In the first place, south of the Mediterranean Sea is a broad desert, extending entirely across the continent. This, a part of which is called the Sahara Desert (Fig. 69), is about a thousand miles wide, and very difficult to cross.

Far south of this desert, for more than a thousand miles, the country is covered with a forest where the rainfall is heavy; and near the equator the vegetation is so rank that an almost impenetrable jungle is formed, like the Amazon jungle. It is inhabited by large and fierce animals, such as the elephant, rhinoceros, and lion.

The rivers offer further obstacles to travel. The continent is mainly a plateau, varying from one fourth to one and one half miles in height; and its rivers on approaching the ocean have numerous rapids and falls, so that boats cannot make their way upstream.

Not only are there deserts, unnavigable rivers, and dense forests with fierce animals, but there are hordes of savages belonging to the black race. It was from Africa that *negroes* were first brought to our country as slaves, and on that account those now here are often called Africans.

Copyright by Underwood and Underwood, N. Y.

FIG. 215.

The Great Pyramid and the Sphinx. What animals are those standing on the desert sands near the Sphinx?

Here, then, are several reasons why we know so little about Africa, which, because of this, and because so many blacks live there, is sometimes called the "dark continent."

Northern Africa.—The African side of the Mediterranean Sea, being so close to Asia and Europe, has long been settled by the white race. Many of the inhabitants are Arabs, who, being believers in Mohammed, still make

pilgrimages to Mecca in Arabia, like other followers of that prophet.

The best-known country in this section is Egypt, and CAIRO, its capital, is the largest city in Africa, having more than half a million people. ALEXANDRIA is the chief Egyptian port.

This is the country over which the Pharaohs, the kings of Egypt, used to rule; and the ruins of the immense pyramids and monuments that they built thousands of years ago may still be seen. Here, the Bible tells, Moses once lived; and Joseph also. What stories do you remember about them?

FIG. 216.

A family camped on an oasis in the desert of Morocco.

Most of Egypt is a desert country, like Arabia on the one side and the Sahara Desert on the other. The Nile River flows through this desert, and every year the heavy floods, from the mountains of Abyssinia and the forest country near the equator, cause it to rise higher and higher until it

overflows its banks. These floods, spreading out over the flood plain and level delta of the Nile, irrigate the land.

As in other rivers, the water carries with it an abundance of mud, which settles in a thin layer of rich soil upon the flood plain, making it so fertile that excellent crops of cotton, sugar cane, and grain can be raised after the water is gone. By this means millions of people obtain food, although they live in a desert region.

FIG. 217.
The Suez Canal at Port Said.

The eastern part of Egypt includes the Isthmus of Suez, which connects Africa with Asia. Because of this narrow neck of land, ships sailing from Europe to Asia were compelled to go all the way round Africa; but in 1869 a canal one hundred miles long (Fig. 217) was completed across the isthmus, so that vessels can now make a short cut. Estimate how many miles are saved by the Suez Canal in going from London to Calcutta.

Name the countries west of Egypt along the Mediterranean coast. What are their capitals? Most of them,

like Egypt itself, are controlled by countries of Europe. Their products are similar to those on the northern side of the Mediterranean. What are some of them?

On the desert of Sahara few people are able to live. Some parts are sandy plains, while others are rocky and hilly, and in places even

Copyright by Underwood and Underwood, N. Y.

FIG. 218.

Kaffirs, South African savages.

mountainous. But here and there, as in Arabia, are oases where water comes from underground, so that grass and date palms are able to grow. Sometimes these oases are so large that villages are built upon them ; and the caravans that cross the desert to bring ivory and other products from the south, make their stops at these places. Some of these caravans consist of hundreds of camels, so that there is need of much food and water.

Central Africa. — Until a few years ago this was a wilderness that no civilized man had ever visited; but now much of it has been explored. The natives are mainly savage blacks; and the Arabs, who go there to purchase ivory, still carry large numbers of them away as slaves.

FIG. 219.

A pair of ostriches in South Africa.

of the forest woods are valuable, and the rubber tree flourishes there.

The two great rivers of this region are the Niger, north of the equator, and the Kongo, south of it. They are the main roads leading inland, although their falls and rapids greatly interfere with

The northern part is called the Sudan. Near the borders of the Sahara the country is a desert ; but this condition gradually changes until, farther south, the land is covered with a dense tropical forest, for the rains are heavy near the equator. In this region live the lion, rhinoceros, giraffe, and elephant, the latter being killed for the sake of its ivory tusks. Some

travel. Throughout that entire region there are almost no wagon roads, so that goods must be carried either on the rivers or over paths or trails in pack trains. But this situation is improving as the nations of Europe obtain more and more control. At the present time, several European countries claim parts of Africa.

South Africa. — Southern Africa is the best-developed section of the continent. It was originally settled by the Dutch, though England has taken possession of a portion of it. Part of it is a high plateau, with a warm temperate

FIG. 220
A diamond mine at Kimberley.

climate, having many of the same products as our own country. Most of the people are engaged in farming and ranching, producing grain, wool, and hides. Ostrich farming is an important industry in Cape Colony, the beautiful feathers of the male bird being very valuable.

JOHANNESBURG is the center of the richest gold-mining

region in the world, and more diamonds are obtained from near KIMBERLEY than from any other part of the globe. Portions of southern Africa have long been settled by Europeans and much of it is now owned by England, the oldest colony being Cape Colony, the capital of which is CAPE TOWN. Consequently many railways and good wagon roads have been built, and many other advances have been made.

REVIEW QUESTIONS.—(1) Why is so little known about Africa? (2) Why is it called the "dark continent"? (3) Which is the best-known country in northern Africa? (4) Name and locate its two chief cities. (5) Tell about the Nile River. (6) About the Suez Canal. (7) About the Sahara Desert. (8) Where is the Sudan? What animals live there? (9) What two great rivers are in Central Africa? (10) How are goods carried from place to place? (11) What influence are the nations of Europe having upon Africa? (12) What climate has Southern Africa? What are the occupations of the people?

SUGGESTIONS.—(1) What reasons can you give why Timbuktu should be an important trade center? (2) The caravans composed of camels travel at the rate of about sixteen miles per day. How long would it probably take for a caravan to travel from Timbuktu to Tripoli on the Mediterranean coast? (3) One camel can carry about four hundred pounds. How many tons could a caravan of six hundred camels carry? (4) What are some of the dangers of a journey across the desert? (5) Beginning with the western Sahara, trace the desert country that extends across Africa and Asia. (6) Why should the two largest cities in Africa be located at or near the mouth of the Nile River? (7) Find some object made of ivory and show it to the class. (8) Examine an ostrich feather and a diamond. (9) Why are there no tributaries to the northern half of the Nile? What part of the river, then, probably has most water? (10) Find out about the war between the Boers (those living in the South African Republic and Orange Free State) and the British. (11) Draw an outline map of Africa and put in the main rivers and cities.

For REFERENCES, see page 332.

A pineapple field in the Hawaiian Islands.

Native Kanaka boys with surf boards and canoe, Hawaiian Islands. Kanaka boys and girls are expert swimmers.

FIG. 221.

XXI. AUSTRALIA, THE EAST INDIES, PHILIPINES, AND THE OTHER ISLANDS OF THE PACIFIC

MAP QUESTIONS.—(1) Find Australia on a globe and show how you would reach it from New York in a vessel. Through what waters would you pass? (See Fig. 120.) (2) From San Francisco? From London? (3) In what part are most of the mountains? (4) The rivers? (5) The cities? (6) In what zones is Australia? (7) Will there be any cold winter on this continent? (8) Look on a globe to see what other continents are in the same zones.

(9) What are the principal islands of the East Indies? Find Batavia. (10) In what direction are the Philippine Islands from Australia? (11) Estimate the distance. (12) Find the Hawaiian Islands.

I. Australia.—The names of the three eastern divisions of Australia,—Victoria, New South Wales, and Queensland—suggest the country to which this continent belongs. Which is it? The various sections of Australia have been joined into one confederation similar to Canada and our own confederation of states.

Australia is the smallest of the continents, being about the size of the United States, not including Alaska. It is a low plateau, with the chief mountain range on the eastern side. These mountains have much influence on the climate; for, since the prevailing winds are from the southeast, as they reach this range, and rise to pass over it, they grow cooler and lose most of their moisture. If the mountains were on the western side, as the Andes are in South America, nearly the whole country might be well watered, like the Amazon Valley. As it is, however,

the eastern coast of Australia has abundant rain, while farther westward it becomes drier, until, at a distance of one hundred and fifty miles from the coast, farming is almost impossible.

What about the country farther west? With what part of Africa should it be compared? Where must the

FIG. 222.

A sheep run in Australia. The water in this artesian well rises from a layer of porous rock over six hundred feet below the surface.

chief rivers be? Where might we expect to find salt lakes? The best farm land? The principal cities and most of the people?

Now examine the map to see if you are right. Where is the large desert? (It is dotted.) What is the name of the main river? There is often so little rain, even on the lower part of the Murray River Basin, that the river grows

smaller toward its mouth, and its chief tributary, the Darling, dries up almost entirely.

When the English began to colonize this country, they found it inhabited by a very low class of savages; and the plants and animals were found to be different from those elsewhere. A great part of the interior was covered with a low bush, called "scrub," having hard, prickly leaves and often growing so dense that it was difficult for one to make his way through it. It caused the country to look desolate indeed.

There were none of the fierce animals common to other countries, the largest being the kangaroo, which is furnished with a sack or pouch for carrying its young. Instead of running on all fours, it jumps along on its hind legs, using its tail for support.

Finding the plants and animals of little use, the English began to import some.

Sheep were taken there and found to thrive; for the temperature is so mild that they are not exposed to cold, and some of the plants furnish excellent food. Consequently, great sheep ranches or *sheep runs*, as they are called there, have been established. The best sections for this purpose are Victoria and New South Wales, where wool has become one of the chief exports. Indeed, Australian wool is the best in the world.

The imported cattle have likewise multiplied, so that hides and meat are produced in abundance. Wheat and corn also flourish, and many fruits, such as we know, are now plentiful in that region.

FIG. 223.
An Australian kangaroo.

The presence of mountains suggests that metals might exist there, which is the case. For many years Australia has ranked as one of the most important gold-producing countries of the world.

Since these industries have become very extensive, especially in the rainy southeastern part, we see why several great cities have grown up in that section. The largest is MELBOURNE, the capital of Victoria, which has about a half million people. The next is SYDNEY, the capital of New South Wales, nearly as large ; and the third is ADELAIDE, the capital of South Australia.

An island, Tasmania, just south of Australia, is owned by the British, and has almost the same industries as Victoria.

The New Zealand Islands are also British, and in the climate and the customs of the people they resemble Australia. What is the capital? What other city is found there? Do you remember the geysers for which the Yellowstone National Park is noted (p. 193)? New Zealand and Iceland are the only two other parts of the world where geysers are found.

Manufacturing is not yet greatly developed, so that quantities of wool, hides, metals, etc., are exported, going mainly to England, since these are colonies of Great Britain. Some of the imports that must be received in return you can probably name.

II. The East Indies.—Between Australia and Asia are a large number of islands, many of them too small to place upon the map. What are the names of some of the largest of this group, or archipelago, known as the East Indies ? The one that you have probably heard about most often is Java, from which the Java coffee comes. Among the

forests of these islands are many different kinds of valuable tropical woods. Sugar, tobacco, pepper, spices, and precious stones are other valuable products.

These islands, like those of the Japanese Empire, are the crests of mountains in the sea. Among them are many very active volcanoes, some of them having caused terrible destruction by their frightful eruptions. The islands belong to European countries, and you will find the names of these countries marked on the map.

III. The Philippine Islands. — The principal city on the Philippine Islands is MANILA, on Luzon Island, where Admiral Dewey destroyed the Spanish fleet.

Notice (Fig. 203) that they lie between the Japanese Islands and the East Indies, both of which were said to be mountain ranges in the sea. The Philippines are also mountains, forming a part of the same chain.

There are valuable kinds of wood in the forests, and many mineral deposits; but these were never much used by the Spaniards. The chief products have been sugar, tobacco, and hemp, which is used in making ropes. Now that the United States is in control of the islands, it is probable that their mineral and other resources will be developed.

FIG. 224.

A native house in Manila. In order to be well above the damp ground, the people live in the upper part. Notice the bamboo fence.

On these islands dwell several different races. There are still many savages there, especially in the dense forests of the interior (Fig. 99). Some of them are called Negritos or little negroes. On the Sulu Islands are Mohammedans called Moros. The Tagalogs belong to the more advanced tribes, who have learned the arts of civilization from the Spaniards.

IV. Islands of the Pacific. — There are many hundreds of islands in the Pacific Ocean, some of them being tiny coral islands, others large and mountainous. They are all located where mountain ranges or volcanic peaks rise from the great plain of the ocean floor.

Find the Fiji Islands. They are also British. What other group of small islands do you see in that region? Find the Samoan Islands. One of these belongs to the United States. What large island is just north of Australia? In what zone does it lie? One part is British, one part Dutch, and one part German. All of its products are tropical, and it is covered with a dense forest and inhabited by fierce savages. Very few Europeans live there.

Among the islands of the Pacific we must not forget to mention the HAWAIIAN ISLANDS, for they now form a part of our own country. They are situated in the mid-Pacific on the way from San Francisco to Australia, and consist of a number of islands, the largest being Hawaii. All of them are volcanic, and on Hawaii are two of the largest volcanoes in the world (Fig. 101). Being in the torrid zone, their climate is warm enough for sugar raising, and this is one of the principal industries of the islands. Where else have we found this industry? HONOLULU is the capital and largest city.

REVIEW QUESTIONS AND SUGGESTIONS

I. Australia. QUESTIONS.—(1) To what country does Australia belong? (2) How does it compare in size with the United States? (3) How does the mountain range on the east affect the climate? (4) Which, then, is the most valuable part of the country? (5) Tell about the native plants and animals. (6) What animals and plants have been imported? (7) What industries have resulted? (8) Name the principal exports. (9) Locate the chief cities.

SUGGESTIONS.—(10) Sketch Australia, putting in the Murray River and the principal cities. (11) What other places in the world are noted for sheep and cattle raising? (12) For gold mining? (13) Read about the great trouble the imported rabbits have caused in Australia. (14) Where are the desert countries of the world? Make a sketch map to show them.

II. East Indies. QUESTIONS.—(15) Name several of the larger islands of the East Indies. (16) What are the products?

SUGGESTIONS.—(17) Why were they named the East Indies? (18) Find what spices are used in cooking at your home. (19) Make a collection of spices, trying to find where each kind came from. (20) See on the map (Fig. 221) to what European countries each of the larger islands belongs. (21) Find where the tea and coffee used at your home came from. By what route are they probably brought?

III. Philippine Islands. QUESTIONS.—(22) Where are the Philippine Islands? (23) Name the principal city. (24) What has recently made it famous? (25) What are the names of the largest islands? (26) How far is Manila from China? (27) What races occupy these islands?

SUGGESTIONS.—(28) Collect some Manila hemp rope. (29) Find out about the battle of Manila Bay and also about the war with the Filipinos. (30) Collect pictures from the Philippines.

IV. Islands of the Pacific. QUESTIONS.—(31) Find Tasmania; New Zealand; the Fiji Islands. (32) What large island lies north of Australia? Tell about it. (33) Tell about the Hawaiian Islands.

SUGGESTIONS.—(34) Find out something about the Fiji Islands. (35) How are the Hawaiian Islands governed? (36) Find out some events that have happened on the Samoan Islands.

For REFERENCES, see page 332.

FIG. 225.

C A L I F O R N I A

"THE LAND OF SUNSHINE
FRUIT AND FLOWERS"

FIG. 226.
The State Capitol and Grounds, Sacramento.

A SUPPLEMENT

BY

JAMES A. BARR AND EDWARD HUGHES

REVISED BY

THE STATE TEXT-BOOK COMMITTEE

1910

FIG. 227.

FIG. 228.

MAP QUESTIONS

Refer to the maps and (1) Compare the size of California with that of Texas; New York; Massachusetts. (2) Find points on the Atlantic coast that have the same latitude as the northern and southern boundaries of California. (3) What states are included between these points? (4) Give the boundaries of California. (5) What mountains in the eastern part? (6) In what direction do they extend? (7) Find Mt. Whitney. (8) What direction is it from San Francisco? (9) What ranges in the western part? (10) Compare their direction with that of the coast. (11) What is the highest mountain peak in the northern part of the state? (12) What great lowland region between the Sierra Nevada and Coast Range Mountains? (13) What river drains its northern part? (14) Describe it. (15) What river drains the southern part? (16) Describe it. (17) What river on the southeastern boundary of the state? (18) Describe the Klamath River; the Eel; the Russian. (19) In what direction are these rivers from San Francisco Bay? (20) Describe the Salinas River; the Santa Maria; the Santa Clara. (21) What direction are these from San Francisco Bay? (22) Where is San Diego Bay? Monterey Bay? (23) Find a harbor in the northern part of the state. (24) What is the entrance to San Francisco Bay called? (25) Locate Lake Tahoe; Clear Lake; Honey Lake; Goose Lake; Salton Sea. (26) Give location of the following cities: San Francisco, Los Angeles, Oakland, Sacramento, San José, San Diego, Stockton, Alameda, Berkeley, Fresno, Santa Barbara. (27) Locate three principal cities of the northern coast region. (28) Locate six important cities of the southern coast region. (29) Locate four cities in the San Joaquin Valley; four in the Sacramento Valley. (30) Name the leading commercial cities of California. Why commercial? (31) Name some of the natural resources of the state. Where found?

FIG. 229.

FIG. 230.

XXII. CALIFORNIA SUPPLEMENT

Extent.—In size California ranks second among the states of the Union (Fig. 229). Its greatest length is about 775 miles ; its average width, about 200 miles.

Relief.—California contains the lowest, and, with the exception of Alaska, the highest lands in the United States, ranging from depressions 263 feet below the sea level (Fig. 233) in the extreme southern part, to mountain peaks nearly 15,000 feet in height (Fig. 19). The great interior valley is the most extensive lowland region in the state. This fertile valley is about 400 miles long, with an average width of 40 miles. Except for a narrow break at San Francisco Bay (Fig. 230), it is completely inclosed by the Sierra Nevada Mountains on the east and the Coast Ranges on the west. The northern part of this great plain is known as the Sacramento Valley, while the southern part is called the San Joaquin Valley.

FIG. A.

Not a "Bad man from Bodie" but a young snow-shoer, two years old, of the high Sierras near Bodie, Mono County.

There are many smaller valleys in both the Sierra Nevada and Coast ranges and in the southern part of the state. Among the most important are the Russian River,

Napa, Santa Clara, and Salinas valleys and the plain of Los Angeles. On the western slope of the Sierras is the famous Yosemite Valley (Fig. 234).

The coast line is more than a thousand miles long, with few good harbors. However, San Francisco Bay (Fig. 230) is one of the largest and best harbors in the world. San Diego Bay (Fig.

FIG. 231.

Armstrong Grove of Redwoods, Sonoma County.

261) in the south and Humboldt Bay on the north coast are also excellent harbors. The scenic features of the state, whether of the coast and islands or of the mountains, are unsurpassed and are visited by tourists from all over the world.

Drainage.—The most important rivers of the state are the Sacramento and the San Joaquin, which drain the great interior valley. Both rise in the Sierra Nevada Mountains. The San Joaquin, flowing from the south, is about 350 miles long, while the Sacramento, from the

FIG. 232.

At the base of Mt. Whitney, California.

north, is about 400 miles in length. The two rivers unite about 60 miles northeast of San Francisco and flow into San Francisco Bay through the strait of Carquinez (Fig. 230). Both rivers have many important tributaries from the Sierras. The western slope of the coast region drains directly into the Pacific by numerous smaller rivers, among which are the Russian and Eel, north of San Francisco Bay, and the Salinas, Santa Clara and Santa Maria,

south of it. The Klamath in the extreme north breaks through the Coast Range on its way to the sea. In the southern part of the state the streams are small.

The Sacramento and San Joaquin rivers are navigable (Fig. 236). Most of the streams of the state are of great importance in furnishing water for irrigation (Fig.

239), for mining, and as sources of electric power. The principal lake region is in the northeastern part. Lake Tahoe (p. 66), on the border line between California and Nevada, is a noted resort.

FIG. 233.

Plowing salt near Salton in the Colorado Desert, 263 feet below the level.

Climate.—

California has

every kind of climate to be found in North America. In the desert regions the summers are extremely hot, while above the snow limit on the mountains the climate resembles that of arctic countries (Fig. A, p. 285). At ordinary altitudes, however, the state enjoys a mild climate without great summer heat or winter cold. The principal reason for this is the fact that it is a coast state in a region of prevailing westerly winds.

The temperature of the waters of the Pacific is nearly the same summer and winter, and the winds that cross the state from this great ocean equalize temperatures for

both seasons (Fig. 238). For the reasons given, there are no marked seasonal changes except in the mountains. The year naturally divides itself into two parts: a season of rainfall corresponding to winter; and the summer season, in which there is no rainfall except local thunderstorms in the high mountains.

FIG. 234.
A view from the Yosemite Valley.

The storms which bring rain to California form in the north Pacific and drift easterly over the state or over the states immediately to the north. Storms that are central as far north as Puget Sound produce abundant rainfall over a large part of California. As the moist winds from the ocean rise to pass over the Coast Ranges much of their moisture is condensed and falls as rain. Naturally

this region, especially north of San Francisco Bay, is one of heavy rainfall. At San Francisco the yearly average is 23 inches, and at Eureka 46 inches, while at places near

FIG. 235.

Irrigating a California orange grove.

The head ditch or flume lies along the higher side of the orchard. It is made of cement and lets out the water into the furrows through holes as large as broomsticks.

The water should run about forty-eight hours continuously. During the hot weather a grove is irrigated about once a month, in the winter time not at all.

Eureka, but at greater altitudes, 80 to 100 inches are not unusual.

South of San Francisco the rainfall is much less, ranging as low as 10 inches at San Diego. In the great

interior valley, the rainfall also increases from south to north. At Visalia, in the southern part, the annual average is 10 inches, at Sacramento 19 inches, and at Red Bluff 25 inches. On the western slope of the Sierras and

FIG. 236.

Passenger and freight steamer on the San Joaquin River, plying between Stockton and San Francisco.

at their summit, the rainfall is about equal to that of the northern coast counties. Much of the precipitation here is in the form of snow, which remains on the ground, slowly melting until late in the summer, keeping the streams and irrigating ditches well filled.

Industrial Development.—During the time of Spanish occupation, owing to distance from markets and lack of

means of transportation, little was done to develop agriculture. Cattle were raised, driven to the seaboard, and slaughtered for their hides, horns, and tallow, the only

Orange orchard
of Riverside
County.

Orange orchard
of Sacramento
County, six hun-
dred miles far-
ther north.

FIG. 237.
Orange Groves.

products that could be shipped long distances in slow sailing vessels. The grape, the olive, the fig, and other fruits were planted about the Missions, and enough grain and fruit were grown to supply the needs of the padres and their followers; but the work of agriculture went no further.

The discovery of gold and the rapid increase of population that followed, brought new needs and American energy to supply them. Provisions of all kinds reached high prices. Some of those who came West to make their fortunes soon saw that farming and the plying of trades

FIG. 238.
Under the Oaks at Monterey in mid-winter.

to meet local demands would be quite as profitable as mining. The soil, which had at first been considered almost worthless, was found to be enormously productive, and where water could be supplied, suited to almost every form of agriculture.

Labor-saving machinery for use in mining, in farming, in fruit raising was introduced. Railroads were built

connecting the state with the older states on the Atlantic Coast and in the Mississippi Valley. With the increase of exports steamship lines were extended. As the demand for California fruits, wines, produce, and grains increased, more and more people came to the state to make their homes. With the increase in population, an excellent public school system was established (Figs. 240, 266). In all

FIG. 239.

La Grange Dam, source of supply of the Modesto-Turlock Irrigation Districts.

ways, California is now one of the most prosperous states in the Union.

Agriculture. — Formerly, in California, agriculture meant grain farming almost exclusively. In the great interior valley, wheat was the principal crop because it could be grown without irrigation and shipped by sailing vessels to foreign markets at small cost. It is still one of the most important crops; but the building of extensive irrigation systems, the cutting up of the great land grants into smaller farms, and the rapid improvement in the means of transportation, have led to the introduction of many more profitable kinds of farming. All cereals, except rice, are grown in the great valley and the bordering

Grammar School, Modesto.

High School, San Diego.

FIG. 240.

Typical school buildings.

foothills. The annual value of the wheat, hay, and barley crops of the state is more than \$50,000,000,—more than

three times the value of the annual output of its gold mines. A trip through the grain region at any time is full of interest. In the plowing

season, one sees huge traction engines dragging long lines of gang-plows, turning up the rich soil (Fig. 241), where six months later will wave the ripening grain. Then the same engines may be seen drawing the combined harvesters, which cut, thresh, and sack the grain, ready for delivery at the warehouses.

In the rich reclaimed lands in the delta region of the San Joaquin and Sacramento rivers, along the shores of

FIG. 241.
From seedtime to harvest in the grain region of the great valley.

San Francisco Bay, and in the productive irrigated region near Los Angeles, truck farming and gardening are important industries. In these parts of the state may be seen thousands of acres of potatoes, beans, and asparagus, fields of onions, celery (Fig. 242), and other miscellaneous

FIG. 242.
Growing celery; Orange County.

vegetable crops, which not only supply the near-by cities, but are shipped in large quantities to eastern markets.

The state excels in the production of sugar beets (Fig. 251). Among other important farm crops are oats, hops, alfalfa, rye, corn, and garden and flower seeds. Flax, hemp, broom-corn, chicory, and peanuts are among the minor crops.

Fruit Raising.—Fruit raising in California began to grow in importance after the completion of the first over-

land railroad in 1869. The invention and improvement of the refrigerator car, by which fresh fruits can be sent in perfect condition to such distant cities as New York and Boston, have opened the markets of the Eastern states to California fresh fruits. The fruits, fruit products, and vegetables exported from the state increased from 100 car

FIG. 243.

One man plowing with "gang" plow and fourteen-horse team.

loads in 1871 to nearly 85,000 car loads in 1901. Year by year, irrigation is increasing the area devoted to fruit raising.

California is now the leading state in the production of fruit. It produces¹ nine tenths of the oranges (Figs. 237, 245), four fifths of the figs, more than half of the peaches, prunes (Fig. 265), plums, and grapes, and practically all the olives, lemons, apricots, raisins, English walnuts, and almonds grown in the United States. Fruits

¹ Census of 1900.

FIG. 244.

FIG. 245.
Redlands orange groves, San Bernardino Mountains covered with snow, in the background.

succeed at all altitudes, from the sea level up to 4000 or 5000 feet. Such semitropical fruits as the orange and the fig are grown in the warm belt on the eastern side of the great valley as far north as Redding,—600 miles north of Los Angeles, the center of the orange industry. The variety

FIG. 246.

Vacation at home on the farm. Write a composition on what this picture reveals to you of home and farm life.

and quality of small fruits are unexcelled. Strawberries may be had in the city markets eleven months in the year.

Stock Raising.—Recent years have witnessed many important changes in the methods and results of breeding and rearing domestic animals. Formerly the state contained vast areas of uninclosed range lands, and the methods still followed in many of the Western states were the methods of California. The results were a great number of half-wild animals, hardy, and able to take care of

FIG. 247.

A chicken ranch. Describe all you see in this picture.

themselves during favorable seasons, but suffering almost to the extinction of entire herds in times of drought and during heavy snowstorms in the mountains. When ready

FIG. 248.

Creamery, Merced.

Tell the story of butter-making.

for the market such animals in favorable seasons were worth only half what stock carefully bred and cared for should bring.

The extending of irrigation on a large scale in many parts of the state has resulted in bringing much of the former cattle-range land under cultivation. Stock raising

FIG. 249.

A dairy ranch. Milking the cows out of doors in a corral.

is now becoming more and more a part of real farm work, as it is in the Eastern states. Enterprising stockmen are at work improving their herds by the importation of blooded animals from the older states and from Europe, with the result of greatly increasing the value of the stock products.

Cattle raising is the most important division of the stock industry. In 1899 there were in California nearly 1,500,000 head of cattle, including dairy herds. The greater number of these are raised on the larger ranges,

being driven into the mountains in summer and pastured on the pasture-lands and stubble-fields of the lowlands during winter. Smaller herds are found on most of the farms of the state. Dairying (Fig. 249) is an important and

FIG. 250.

View in the Los Angeles Oil District. Oil is a cheap and convenient fuel, and its discovery in large quantities has been of the greatest importance in manufacturing.

growing industry. This is especially true near the larger cities, in the plateau counties of the northeastern part of the state, and throughout the coast region.

The breeding of fine horses and mules (p. 224) is another important branch of the animal industry, and California thoroughbreds now command good prices in eastern mar-

kets. More than 2,500,000 sheep share, with the other animals mentioned, the pasturage of the state, producing annually, besides other valuable products, more than 13,000,000 pounds of wool. Swine in large numbers are raised in many parts of the state. Poultry and poultry

FIG. 251.
Sugar factory at Oxnard.

products are rapidly increasing in importance (Fig. 247). Ostriches are raised for their feathers on the celebrated ostrich farms near Los Angeles and at San José and Sacramento.

Manufacturing. — Although California is principally an agricultural state, manufactures are of growing importance. The state produces a great amount of raw materials of many kinds, and is well supplied with steam and electric railroads and steamship lines for shipping products. The position of the state on the west coast of the

United States gives control of much of the growing trade with countries bordering on the Pacific Ocean. Manufacturing in California has been kept back for many years because of the high price of fuel used for running machinery.

FIG. 252.

Standard oil refinery—Point Richmond.

This need for cheap fuel has been met during the last few years, however, by the finding of great quantities of petroleum, which is even better than coal for many uses. Natural gas has also been found in considerable quantities, and the use of electricity has further helped to solve the question of cheap power. Now electricity can be cheaply generated by water power in the mountains. By

means of wires it is taken to cities a hundred miles or more away to run street cars, light the streets and houses, and furnish power for manufacturing. One of the longest electric power lines in the world runs from Colgate in the Sierras to San Francisco, a distance of 212 miles.

FIG. 253.

Miners ready to go down into a deep mine. Tesla mine near Stockton.
Notice each miner has a candle in his hand.

Among the more important manufactures which depend upon agriculture are flour, canned and dried fruits and vegetables, wines and raisins from grapes, malt liquors from barley, dairy products such as butter, cheese, and condensed milk, refined sugar, and agri-

cultural implements. In addition to these the manufacture of lumber, ships, boats, and barges, mining machinery, railway and street cars, explosives, furniture, clothing, woolen goods, leather, and glassware is impor-

FIG. 254.

Miners at work in a gold mine hundreds of feet below the surface. Describe what you see in this picture.

tant. Large manufacturing interests are generally found in the larger cities and towns, especially those that have cheap power and good railroad or water connections.

Mining.—The discovery of gold in 1848 first drew the attention of the world to California. The gravel along the streams of the gold-producing sections has practically all been turned over in search of the precious metal.

When the supply from this source began to fail, quartz mining began, and it is still one of the most important industries. Gold is found in most parts of the state, but the most important gold deposits are in the Sierra region and in the northern Coast Range. Silver is found in the

FIG. 255.
Gold dredger, on the American River, near Folsom.

eastern slope of the Sierra Nevada Mountains, in the Shasta region, and in the southern part of the state.

Copper mining is very important. The most valuable copper mines are in the Shasta country. Quicksilver is found throughout the Coast Ranges. Other important minerals are coal, soda, asphaltum, salt, pottery clays, and borax. Of special importance is petroleum, found in

great quantities in the southern part of the San Joaquin Valley and in the southern part of the state. Building stone, including granite, sandstone, limestone, onyx, and marble, is quarried in many places.

Lumbering.—In the regions of heavy rainfall in the Coast Ranges and in the Sierras are some of the grandest

FIG. 256.
Lumber scene.

forests of cone-bearing trees in the world. The largest of these are the giant sequoias, found on the western slopes of the Sierras. Some of these measure more than 30 feet in diameter and 325 feet in height. John Muir estimates the age of some of the largest of these trees at 5000 years. The redwood found in the coast region, from near the

Oregon line south to Santa Cruz, is another sequoia of wonderful size and beauty and is the most important lumber tree of the state. Besides these the yellow pine, sugar-pine, silver fir, Douglas spruce, and incense cedar are valuable lumber trees. The sawmills are usually located in the high mountains. The lumber is floated down to the railroad or coast in long flumes or hauled by teams or traction engines.

FIG. 257.

Hauling logs from the forest to the sawmill, Humboldt County.

Fisheries. — The number and variety of fine food fishes found in California are almost without limit. With the present population of the state the supply far exceeds the demand. The more important salt-water fishes include the salmon, halibut, cod, rock-cod, sea-bass, tuna, yellow-tail, flounder, smelt, tomcod, herring, and many others. The native fishes taken in fresh waters are the salmon, steelhead, and several varieties of trout. Many valuable food fishes have been transplanted from eastern waters. Among these are the striped bass, shad, black bass, and two kinds of catfish.

The shellfish of importance are the native oyster, abalone, mussel, and clams of several varieties. Eastern oysters are planted in San Francisco Bay and do well. Crabs of several species, the shrimp, and a large lobster-like crawfish are also found in the waters of the ocean and

FIG. 258.
Shipping scene, Brooklyn Basin, Oakland Harbor.

bays. San Francisco is the leading whaling port of the world.

Commerce.—The extensive commerce of the state depends upon its railroads, steamship lines (Fig. 225), and navigable inland waters, and the very great number and importance of its products. Through railroads it is connected with the eastern United States, to which it ships large quantities of fresh, dried, and canned fruits, wine, vegetables, nuts, sugar, and wool, and from which it receives many manufactures. The steamship lines connect it with the Hawaiian Islands, Japan, China, the Philippines, Australia, New Zealand, and Pacific ports from

Alaska to Chile. Throughout the year steamers ply the San Joaquin River between San Francisco and Stockton ; the Sacramento between San Francisco and the capital city of the state. The leading foreign exports are wheat,

FIG. 259.

Ferry Building, San Francisco, from the bay, showing ferryboats.

flour, fruits, and wine. The chief imports are tea, coffee, sugar, rice, coal, and manufactured articles.

Cities. — SAN FRANCISCO is the largest city and principal seaport of the Pacific coast. It is situated on a peninsula south of the Golden Gate, and its hilltops overlook the busy harbor. It is the key to the foreign commerce not only of California, but to much of that of the Eastern states as well. Its manufactures are of great and growing importance. Its shipyards rank with those of the Atlantic seaboard. Some of the great battleships and cruisers of the United States navy were built here. Among its important manufactures are mining machin-

ery, flour, refined sugar, malt liquors, leather, canned and preserved fruits, soap and candles, boots, shoes, and clothing. Among its points of interest are the United States Mint, the Presidio and other military posts, the State Mining Bureau, Hopkins Art Gallery, the Museum of the Academy of Sciences, and the Park Museum. Golden Gate Park (p. 66) has an area of nearly two square miles, and contains a very large collection of trees and other plants from all parts of the world.

LOS ANGELES, the second city in size and importance, is the county seat of Los Angeles County, and the center of the great orange industry of the southern part of the state. Its fine climate and orange groves make it a favorite resort for tourists during all seasons of the year. Although twenty-five miles from the coast, good railway (p. 97) connections make it an important port of entry. Other things that contribute to the growth and wealth of Los Angeles are its olives, deciduous fruits, and truck farm and vineyard products. Its manufacturing interests have increased since the discovery of petroleum (Fig. 250) in and near the city.

OAKLAND (p. 118), the county seat of Alameda County, is closely connected with San Francisco by means of ferries and local trains (Fig. 259 and p. 98). Many people living in Oakland have their business in San Francisco, and great ferryboats run between the two cities at intervals of fifteen minutes for the greater part of the day. The city has a very pleasant climate, good schools, and other features which make it a favorite place of residence. Its commercial and manufacturing interests are important. Oakland has grown rapidly in recent years.

SACRAMENTO is the capital of California and the county seat of Sacramento County. It is an important railroad center and is located on the navigable Sacramento River. It is the center of the early fruit district and a shipping point for grains, produce, and orchard fruits. Flour and

FIG. 260.

Curing prunes in the sun near San José, in the Santa Clara Valley.

agricultural implements are important manufactures, and railway cars are built and repaired. The capitol is a building of great beauty and is surrounded by a large and beautiful park of about thirty-five acres.

SAN JOSÉ is the county seat of Santa Clara County, and the chief city of the rich Santa Clara Valley (Figs. 260-5).

It owes its importance to the immense fruit product of the surrounding region. Its natural beauty of surroundings and fine climate make it popular as a place of residence. The famous Lick Observatory is near by, on the summit of Mt. Hamilton, and can be plainly seen and easily reached from San José. The Leland Stanford Junior University is at PALO ALTO, eighteen miles northwest.

FIG. 261.
San Diego Harbor.

SAN DIEGO, in the extreme south, is located on San Diego Bay (Fig. 261), one of the best harbors on the coast. The city is important as a shipping point for oranges, lemons, apples, and honey. Its particularly fine climate makes it a noted winter resort.

STOCKTON is situated at the head of tide-water navigation, on the San Joaquin River. Near the city are the rich reclaimed peat lands of the San Joaquin delta. It is the center of an important truck farming, grain, dairying, vineyard, and orchard region. By reason of its excellent railroad and water connections, it is an important shipping point. Its manufactures are important, including com-

bined harvesters, traction engines, dredging machinery, flour, window glass, coal briquettes, leather, and woolen goods. The Tesla mines of coal, clay, manganese, glass sand, and limestone in the Coast Range are connected with the city by rail. (Figs. 236, 241, 253.)

FIG. 262.
Harvesting the grape crop.

ALAMEDA is situated on the eastern side of San Francisco Bay, and like Oakland has good ferry connections with San Francisco. It is chiefly a residence city for San Francisco business men.

BERKELEY, on the bay shore north of Oakland, is the seat of the University of California, and also of the State

Institution for the Deaf, Dumb, and Blind (p. 108). It is an attractive residence town and has important manufactures.

FRESNO, the county seat of Fresno County, in the south-central part of the San Joaquin Valley, is an important

FIG. 263.

Upper picture — University of California, Berkeley.

Lower picture — Leland Stanford Jr. University.

fruit center. It is especially noted for the quantity of fine raisins annually produced. (Fig. 262.)

Other important and growing towns are PASADENA, a residence town and health resort in the southern orange belt; RIVERSIDE, the county seat of Riverside County, where oranges were first grown in considerable quantities;

VALLEJO, in Solano County, with the United States Navy-yard and manufactures of importance; EUREKA, on Humboldt Bay, the outlet of the northern redwood belt; SANTA ROSA, Sonoma County, the principal city of the Russian River region; SANTA BARBARA, a famous coast resort, the county seat of Santa Barbara County; SAN BERNARDINO, noted for its artesian wells, vineyards, and orange groves; SANTA CRUZ, at the entrance of Monterey Bay, a summer resort.

Review Questions.—(1) Is California principally lowland or mountainous? (2) Where are the principal mountains? (3) Name and locate the principal lowland regions. (4) What is said of the different kinds of climate in California? (5) Is rainfall heavier in the northern or southern portion? (6) Is it heavier in the lowlands or mountains? Why? (7) What kind of climate is required for oranges, figs, and olives? (8) Name the navigable rivers of the state. (9) Why are smaller streams important? (10) What are the chief industries of the state? (11) Name the principal field crop. (12) Name other important field crops. (13) Name the principal fruit crops. (14) Tell about stock raising. (15) What has prevented extensive manufacturing in California? (16) What recent discoveries have helped manufacturing? (17) Name the principal manufacturers that depend upon agriculture. (18) What is the most important mineral product of the state? (19) Name other important mineral products. (20) In what regions is each found? (21) Where are the forest regions of the state? (22) Where is the redwood found? The giant sequoia? (23) What are other important lumber trees? (24) Tell about the fisheries of California. (25) Which of the fishes mentioned have you seen? (26) What are some of the things that help commerce? (27) Name important exports of California; imports. (28) Name, in order of size, the ten largest cities of California. (29) For what is each noted?

General Questions.—(1) Where does the water of California rivers come from? (2) What keeps water in the largest streams in dry seasons? (3) From where did the deep rich soil of the lowlands come? (4) How was it brought? (5) Can you think of a reason

why the San Joaquin and Sacramento rivers are nearer to the Coast Range than to the Sierra Nevada Mountains? (6) Why are there few bays on the coast? (7) Give reasons why San Francisco became the most important city. (8) How are fresh fruits shipped to Eastern states? (9) Why are there no great forests in the lowland region of the state? (10) How is water power in the mountains made useful in the valley and coast regions?

SUGGESTIONS.—Discuss with classes the importance of irrigation. How does it increase the number, size, and variety of crops?

Irrigation from streams; from artesian wells; from deep wells by engines or windmills; through flood gates in levees. Discuss also the native plants and animals, especially those of local interest and those which are noted outside of the state. Read and discuss selections from John Muir's "Mountains of California" and "Our National Parks" on such subjects as the Yosemite, giant sequoias, redwoods, mountain storms, deer, bear, Douglas squirrel, etc. Make a study with children of some of the wild flowers and trees and shrubs of the immediate neighborhood of the school.

FIG. 264.
Interior of Sutter's Fort, Sacramento.

CALIFORNIA SUPPLEMENT APPENDIX

AREA AND POPULATION

Area, 158,360 square miles.

Population (1900), 1,485,053.

AGRICULTURAL PRODUCTS

(California State Board of Trade Report, 1909)

Orchard Products :—

Fresh deciduous fruits	\$12,306,400
Citrus fruits	23,545,400
Dried fruits other than prunes and raisins	11,973,060
Prunes	2,500,000
Canned fruits	15,624,387
Olives and olive oil	1,850,000
Nuts	2,360,000

Vineyard products :—

Table grapes	3,816,000
Raisins	3,600,000
Wine	15,687,500
Brandy	1,750,000

Farm products :—

Barley	26,841,394
Wheat	18,894,961
Oats	6,527,140
Corn	1,146,449
Rye and other grain	448,180

Other field crops :—

Beet sugar	7,460,975
Potatoes, Irish and sweet	5,779,145
Beans	6,493,650
Onions	980,000
Hops	1,052,280
Seeds, Melons, etc.	1,600,000

Other products :—

Vegetables, fresh and canned	8,257,912
Butter, cheese, etc.	25,224,150
Poultry and eggs	12,559,738
Fish and game	5,500,000
Forest products	23,775,027
Petroleum	28,980,454
Gold	16,727,928
Copper	6,341,387
Cement and others	15,844,691
Farm animals and products, wool, hides, etc.	30,762,150

Grand total \$346,210,358

FIG. 265.
A typical fruit farm, Santa Clara Valley. Prune orchard in bloom, near San José.

INDEX TO CALIFORNIA SUPPLEMENT

Almonds, 298.
Agriculture, 294-297.
Alameda, 317.
Alaska, 313.
Alfalfa, 297.
American River, 309, Fig. 255.
Apricots, 298.
Area, 285.
Asparagus, 297.
Asphaltum, 309.
Atlantic Coast, 294.
Australia, 312.

Barley, 296, 307.
Beans, 297.
Beets, 297.
Berkeley, 317, Fig. 263.
Bodie, 285, Fig. A.
Borax, 309.
Boston, 298.
Broom-corn, 297.
Building materials, 310.
Butter, 307.

California—extent, 285; relief, 285; drainage, 287; climate, 288; industrial development, 291; agriculture, 294; fruit raising, 297; stock raising, 301; manufacturing, 305; mining, 308; lumbering, 310; fisheries, 311; commerce, 312; cities, 313.
Capitol, 279, Fig. 226.
Carquinez, Strait of, 287.
Cattle, 292.
Cedar, 311.
Celery, 297, Fig. 242.
Cheese, 307.
Chicken ranch, 302, Fig. 247.
Chicory, 297.
Chile, 313.
China, 312.
Cities, 313-319.
Clays, pottery, 309.
Climate, 288-291.
Coal, 309, Fig. 253.
Coast ranges, 285, 286, 288, 289, 309, 310.

Colgate, 307.
Colorado Desert, 288, Fig. 233.
Commerce, 312-313.
Condensed milk, 307.
Copper, 309.
Corn, 297.
Creamery, 302, Fig. 248.

Dairying, 304, Fig. 249.
Dairy products, 307.
Douglas spruce, 311.
Drainage, 287-288.

Eel (river), 287.
Electricity, 306.
Elevation of surface, 285.
English walnuts, 298.
Eureka (rainfall), 290.
Exports, 298, 312-313.

Factories—creamery, 302, Fig. 248; oil refinery, 306, Fig. 252; sawmill, 311, Fig. 257; sugar refinery, 305, Fig. 251.

Farm animals, 301.
Farm life, 301, Figs. 243, 246.
Farm products, 297.
Ferries, 313, Fig. 259; 317.
Figs, 292, 298.
Fir, 311.
Fisheries, 311, 312.
Flax, 297.
Flour, 307.
Folsom, 309, Fig. 255.
Forests, 310.
Forts, 320, Fig. 264.
Fresno, 318.
Fruit farm, 322, Figs. 235, 237, 245, 260, 265.
Fruit raising, 297.
Fruits, 298, 307, 312.
Fuels, 306.

Gold, 293, 308, 309, Fig. 255.
Golden Gate, 313.
Grains, 294, 296, Fig. 241.
Granite, 310.

Grapes, 292, 298, 307, Fig. 262.

Harbors, 286, 316, Fig. 261.

Harvesting, 296, Fig. 241.

Hawaiian Islands, 312.

Hay, 296.

Health resorts—San Diego, 316; Pasadena, 318; Santa Barbara, 319; Santa Cruz, 319.

Hemp, 297.

Hopkins Art Gallery, 314.

Hops, 297.

Horses, 304.

Humboldt Bay, 286.

Imports, 313.

Incense cedar, 311.

Indians, 350, Fig. 268.

Industrial development, 291-294.

Industrial education, 326, Fig. 266.

Industries, 291.

Institution for the Deaf, Dumb, and Blind, 318.

Irrigation, 294, 297, 303.

Japan, 312.

Klamath (river), 288.

La Grange Dam, 294, Fig. 239.

Lake Tahoe, 288.

Leland Stanford Junior University, 316, 318, Fig. 263.

Lemons, 298.

Lick Observatory, 316.

Limestone, 310.

Los Angeles, 286, 297, 301, Fig. 250, 314.

Lumbering, 310, 311, Figs. 256-7.

Malt liquors, 307.

Manufacturing, 305-308.

Marble, 310.

Merced, 302, Fig. 248.

Mineral products, 308-310.

Mines — coal, clay, manganese, glass sand, limestone, 317.

Mining, 308, Figs. 253-254.

Mississippi Valley, 294.

Modesto Grammar School, 295, Fig. 240.

Modesto-Turlock Irrigation Districts, 294, Fig. 239.

Mono County, 285, Fig. A.

Monterey, 293, Fig. 238.

Mountains, 285, Fig. 232.

Mt. Hamilton, 316.

Muir, John, 310.

Museum of the Academy of Sciences, 314.

Napa Valley, 286.

Natural gas, 306.

Nevada, 288.

New York, 298.

New Zealand, 312.

Oakland, 314, 317, Fig. 258.

Oak trees, 293, Fig. 238.

Oats, 297.

Oil, 304, Fig. 250; 306, Fig. 252.

Olives, 292, 298.

Onions, 297.

Onyx, 310.

Orange groves, 290, Fig. 235; 292, Fig. 237, 300, Fig. 245.

Oranges, 298, 301.

Ostriches, 305.

Oxnard, 305, Fig. 251.

Pacific Ocean, 287, 288, 289, 306.

Palo Alto, 316.

Park Museum, 314.

Pasadena, 318.

Peaches, 298.

Peanuts, 297.

Petroleum, 306, 309.

Philippines, 312.

Pine, 311.

Pioneers, 332, Fig. 267.

Plums, 298.

Point Richmond, 306, Fig. 252.

Potatoes, 297.

Poultry, 305, Fig. 247.

Products of the soil, 296-301.

Prunes, 298, 315, Fig. 260; (orchard) 322, Fig. 265.

Puget Sound, 289.

Quartz, 300.
 Quicksilver, 309.

Railroads, 208, Fig. 225.
 Rainfall, 289-291.
 Raisins, 298, 307, Fig. 262.
 Red Bluff (rainfall), 291.
 Redding, 301.
 Redlands, 300, Fig. 245.
 Redwood, 310.
 Redwoods (trees), 286, Fig. 231; 319.
 Refineries—oil, 304, Fig. 250; sugar, 305, Fig. 251; 306, Fig. 252.
 Rice, 294.
 Richmond, 306, Fig. 252.
 Rivers, 286-288.
 Riverside, 318, Fig. 237.
 Russian River, 286, 319.
 Rye, 297.

Sacramento (city), 305, 315; (rainfall), 291; (river), 287, 288, 313; (valley), 285, Fig. 264.
 Salinas (river), 287; (valley), 286.
 Salt, 309, Fig. 233.
 Salton, 288, Fig. 233.
 San Bernardino (mountains), 300, Fig. 245; (city), 319.
 San Diego (bay), 286, 316; (city), 316; (harbor), 316, Fig. 261; (rainfall), 290; (school), 295, Figs. 240, 266.
 Sandstone, 310.
 San Francisco (bay), 286; 287, 290, 297, 312; (city), 287, 307, 313; (port), 312; (rainfall), 290, Fig. 259.
 San Joaquin (river), 287, 288, 296, 313, 316; (valley), 285, 310.
 San José, 305, 315, Figs. 260, 265.
 Santa Barbara, 319.
 Santa Clara (river), 287; (valley), 286, 315, Figs. 260, 265.
 Santa Cruz, 311, 319.
 Santa Maria (river), 287.

Santa Rosa, 319.
 Sawmills, 311.
 Schools, 294, 295, Fig. 240; (special), 326, Fig. 266.
 Seeds, 297.
 Sequoias, 310, 311.
 Shasta, 309.
 Sheep, 305.
 Sierra Nevada Mountains, 285, 286, 287, Fig. 232; 291, 307, 309, 310.
 Silver, 309.
 Silver fir, 311.
 Soda, 309.
 Sonoma County, 286, Fig. 231.
 Spruce, 311.
 State institutions—capitol, Fig. 226; Institution for Deaf, Dumb, and Blind, 318; Military, 314; Mining Bureau, 314; State Normal School, 326, Fig. 266; University of California, 317, 318, Fig. 263.
 Stock farm, 303, Fig. 249.
 Stock raising, 301-304.
 Stockton, 313, 316, Figs. 236, 253.
 Strawberries, 301.
 Sugar, 305, Fig. 251; 307.
 Sugar beets, 297.
 Sugar pine, 311.
 Swine, 305.

Tahoe, Lake, 288.
 Trees, 311.

United States institutions—mint, 314; navy yard, 319.
 University of California, 317, 318, Fig. 263.

Vallejo, 319.
 Valleys, 285, 286, 291, 294.
 Vegetables, 307.
 Visalia (rainfall), 291.
 Walnuts, English, 298.
 Wheat, 294, 296.
 Wines, 294, 307.
 Yellow pine, 311.
 Yosemite Valley, 289, Fig. 234.

Home economics — Santa Barbara schools.

Davis University farm.

Cooking school — San Diego State Normal.

FIG 266.
Industrial Education.

BOOKS OF REFERENCE¹

McM. means The Macmillan Co., New York; Ginn, Ginn & Co., Boston, Mass.; A. B. C., American Book Co., New York; S. B. C., Silver, Burdett & Co., New York; Heath, D. C. Heath & Co., Boston, Mass.; E. P. C., Educational Publishing Co., Boston, Mass.; Scribner, Charles Scribner's Sons, New York.

METHODS, AIDS, ETC.

Geikie, "The Teaching of Geography" (McM., \$0.60); King, "Methods and Aids in Geography" (Lee & Shepard, Boston, \$1.20); Parker, "How to study Geography" (D. Appleton & Co., New York, \$1.50); Nichols, "Topics in Geography" (Heath, \$0.65); Trotter, "Lessons in the New Geography" (Heath, \$1.00); McMurry, "Special Method in Geography" (Public School Publishing Co., Bloomington, Ill., \$0.50); McCormick, "Suggestions on Teaching Geography" (same publisher, \$0.50); Frye, "The Child and Nature" (Ginn, \$0.80); Frye, "Teacher's Manual of Methods in Geography" (Ginn, \$0.50); Redway, "Manual of Geography" (Heath, \$0.65); McCormick, "Practical Work in Geography" (A. Flanagan, Chicago, Ill., \$0.80).

Journal of School Geography (R. E. Dodge, Teachers College, Columbia University, New York City, \$1.00 per year); "The Statesman's Year Book," published each year, gives latest statistics, etc. (McM., \$3.00); Ritter, "Comparative Geography" (A. B. C., \$1.00);

¹ These references are not intended to be exhaustive, but, rather, suggestive. Most, if not all, are to first-class sources. The attempt has been to make few references, assuming that the teacher will have others in mind. While there may seem to be many here, a careful examination will reveal the fact that really few books are referred to. Some of those mentioned at the end of Part I will be found useful for Part II also.

Shaler, "Nature and Man in America" (Scribner, \$1.50); Guyot, "Earth and Man" (Scribner, \$1.75); Champlin, "Cyclopedia of Common Things" (H. Holt & Co., New York, \$2.50); Champlin, "Cyclopedia of Persons and Places" (same publisher, \$2.50); Murché, "Science Readers" (McM., I and II, \$0.25 each, III and IV, \$0.40, each, V and VI, \$0.50 each); Lange, "Handbook of Nature Study" (McM., \$1.00); Yonge, "Little Lucy's Wonderful Globe" (McM., \$0.50); Strong, "All the Year Round" (Ginn, three volumes, \$0.30 each); Carpenter, "Geographical Readers" (A. B. C., Vol. II, Asia, \$0.60; volume on North America, \$0.60); Guyot, "Geographical Reader" (A. B. C., \$0.60); Chisholm, "Commercial Geography" (Longmans, Green & Co., New York, \$1.00); Mill, "General Geography" (McM., \$0.90); Lyde, "Man and His Markets" (McM., \$0.50); Herbertson, "Man and His Work" (McM., \$0.60); Pratt, "American History Stories" (E. P. C., four volumes, \$0.36 each); Pratt, "Stories of Colonial Children" (E. P. C., \$0.40); Shaler, "First Book in Geology" (Heath, \$9.60); Davis, "Physical Geography" (Ginn, \$1.25); Tarr, "Elementary Physical Geography" (McM., \$1.40).

Section I. Form and Size of the Earth.—Andrews, "Seven Little Sisters," section on "The Ball Itself" (Ginn, \$0.50); Irving, "Life and Voyages of Christopher Columbus" (G. P. Putnam's Sons, New York, \$1.75); "Columbus," by Tennyson D'Anvers, "Science Ladders," Vol. I (E. P. C., \$0.40); Gee, "Short Studies in Nature Knowledge," section on "The Great Globe Itself" (McM., \$1.10); Ritter, "Comparative Geography," First Part (A. B. C., \$1.00).

Section II. Daily Motion of the Earth and its Results.—Redway, "Manual of Geography," Chapter VI (Heath, \$0.65); "Daybreak" (poem), Longfellow.

Section III. The Zones.—Egglesston, "Stories of American Life and Adventure," section on "Adventures in Alaska" (A. B. C., \$0.50); Andrews, "Seven Little Sisters," sections on "The Little Brown Baby," "Agoonack, the Esquimau Sister," and "How Agoonack Lives" (Ginn, \$0.50); Schwatka, "The Children of the Cold" (E. P. C., \$1.25); Ballou, "Footprints of Travel," Chapters XXIX and XXX (Ginn, \$1.00); King, "The Picturesque Geographical Readers," First Book, Part 2 (Lee & Shepard, Boston, \$0.50).

Section IV. Heat within the Earth and its Results.—Tarr, "First Book of Physical Geography," Chapters I (p. 8), XIX, and XX

(McM., \$1.10); Trotter, "Lessons in the New Geography," pp. 16-17 (Heath, \$1.00); Redway, "Manual of Geography," Chapter VII (Heath, \$0.65); Kingsley, "Madam How and Lady Why," section on "Volcanoes" (McM., \$0.50); Gee, "Short Studies in Nature Knowledge," Chapter XI (McM., \$1.10); Kelly, "Leaves from Nature's Story Book," Vol. III, "The Records of the Rocks" (E. P. C., \$0.40).

Section V. The Continents and Oceans. — Andrews, "Seven Little Sisters" (Ginn, \$0.50); Ballou, "Footprints of Travel" (Ginn, \$1.00); Gee, "Short Studies in Nature Knowledge," Chapter IV, "The Sea" (McM., \$1.10); Kelly, "Leaves from Nature's Story Book," Vol. III, "A Visit to the Bottom of the Ocean" (E. P. C., \$0.40); Shaler, "The Story of our Continent," section on "Coral Reefs" (Ginn, \$0.75); Tarr, "Elementary Geology," p. 251 (McM., \$1.40); D'Anvers, "Science Ladders," Vol. III, Lesson VIII (E. P. C., \$0.40). Poems: Shelley, "A Vision of the Sea"; Longfellow, "The Secret of the Sea"; Longfellow, "The Wreck of the Hesperus"; Holmes, "The Chambered Nautilus"; Byron, "The Ocean."

Section VI. Maps.—For References, see bottom of page 117.

Section VII. North America.—Shaler, "The Story of Our Continent" (Ginn, \$0.75); Lyde, "North America" (McM., \$0.50); King, "The Picturesque Geographical Readers," Second Book (Lee & Shepard, Boston, \$0.72).

Section VIII. The United States.—Brooks, "Century Book for Young Americans" (The Century Co., New York, \$1.50); Brooks, "The Story of the United States" (The Lothrop Publishing Co., Boston, \$1.50); Channing, "Students' History of the United States" (McM., \$1.40); Ballou, "Footprints of Travel," Chapters I and XXV (Ginn, \$1.00); Gannet, "The United States," Stanford's Compendium of Geography (Scribner, \$4.50); King, "The Picturesque Geographical Readers," Second Book (Lee & Shepard, Boston, \$0.72); "Our Country" (poem), Holmes.

turing," "Fisheries," and "Whaling" (E. P. C., each \$0.40); King, "The Picturesque Geographical Readers," Third and Fourth Books (Lee & Shepard, Boston, each \$0.56); Wilson, "Nature Study in Elementary Schools," Second Reader, "The Tree," by Björnson (McM., \$0.35). Poems: Whittier, "Mogg Megone"; "Pentucket"; "The Bridal of Pennacook"; "The Merrimack"; "The Norsemen"; Longfellow, "The Woods in Winter"; "The Building of the Ship"; "The River Charles"; Emerson, "Boston."

Section X. Middle Atlantic States. — Chase and Clow, "Stories of Industry," Vol. I and Vol. II, various stories on Iron, Coal, Mining, Manufacturing, Farming, etc. (E. P. C., each \$0.40); Rocheleau, "Great American Industries," Book I, sections on "Coal Mining," "Natural Gas," "Petroleum," and "Iron" (A. Flanagan, Chicago, \$0.50); Eggleston, "Stories of American Life and Adventure," section on "A Story of Niagara" (A. B. C., \$0.50); King, "The Picturesque Geographical Readers," Third and Fourth Books (Lee & Shepard, Boston, each \$0.56).

Section XI. The Southern States. — Rocheleau, "Great American Industries," Book II, section on "Cotton and Sugar" (A. Flanagan, Chicago, \$0.50); King, "The Picturesque Geographical Readers," Fourth Book (Lee & Shepard, Boston, \$0.56).

Section XII. The Central States. — Garland, "Boy Life on the Prairie" (McM., \$1.50); McMurry, "Pioneer Stories of the Mississippi Valley" (Public School Publishing Co., Bloomington, Ill., \$0.50); Rocheleau, "Great American Industries," Book II, sections on "Grain Raising," "Wheat Raising," and "Milling" (A. Flanagan, Chicago, \$0.50); King, "The Picturesque Geographical Readers," Fourth Book (Lee & Shepard, Boston, \$0.56). Poems: "When the Frost is on the Punkin," Riley; "Knee Deep in June," Riley; "The Prairies," Bryant; "The Hunter of the Prairies," Bryant.

Section XIII. The Western States. — Ballou, "Footprints of Travel," Chapter XXV (Ginn, \$1.00); Eggleston, "Stories of American Life and Adventure," sections on "How Frémont Crossed the Mountains," "The Finding of Gold in California," "Descending the Grand Cañon," and several Indian stories (A. B. C., \$0.50); Chase and Clow, "Stories of Industry," Vol. I, several sections on "Mines and Mining" (E. P. C., \$0.40); King, "The Picturesque Geographical Readers," Fifth Book (Lee & Shepard, Boston, \$0.56); "The Pass of

the Sierra" (poem), Whittier; "In the Yosemite Valley," Joaquin Miller.

Section XIV. Alaska. — Ballou, "Footprints of Travel," Chapter XXVI (Ginn, \$1.00); Eggleston, "Stories of American Life and Adventure," "Adventures in Alaska" (A. B. C., \$0.50).

Section XV. Countries North of the United States. — Coe, "Our American Neighbors," Chapters I-XII (S. B. C., \$0.60); Lyde, "A Geography of North America" (McM., \$0.50); Dawson, "Canada and Newfoundland," Stanford's Compendium (Scribner, \$0.50); Andrews, "Seven Little Sisters," the two sections on Agoonack (Ginn, \$0.50); Schwatka, "The Children of the Cold" (E. P. C., \$1.25); Gee, "Short Studies in Nature Knowledge" (McM., \$1.10); King, "The Picturesque Geographical Readers," Second Book (Lee and Shepard, Boston, \$0.72); "An Arctic Vision," Bret Harte; "Evangeline," Longfellow.

Section XVI. Countries South of the United States. — Coe, "Our American Neighbors," Chapters XIII-XVII (S. B. C., \$0.60); Conklin, "Guide to Mexico" (D. Appleton & Co., New York, \$1.50); Lyde, "A Geography of North America" (McM., \$0.50); Ballou, "Footprints of Travel," Chapters XXIII, XXIV, XXV, XXVII, and XXVIII (Ginn, \$1.00); King, "The Picturesque Geographical Readers," Second Book (Lee & Shepard, Boston, \$0.72).

Section XVII. South America. — Ballou, "Footprints of Travel," Chapters XXIX-XXXI (Ginn, \$1.00); Coe, "Our American Neighbors" (S. B. C., \$0.60).

Section XVIII. Europe. — Lyde, "A Geography of Europe" (McM., \$0.50); Ballou, "Footprints of Travel," Chapters X-XXII (Ginn, \$1.00); Coe, "Northern Europe" (S. B. C., \$0.60); Pratt, "Northern Europe" (E. P. C., \$0.40); Lyde, "A Geography of the British Isles" (McM., \$0.50); King, "The Picturesque Geographical Readers," Sixth Book (Lee & Shepard, Boston, \$0.60); Pratt, "Stories of England" (E. P. C., \$0.40); Andrews, "Seven Little Sisters," "The Little Mountain Maiden," and "Louise" (Ginn, \$0.50). Poems: Alice Carey, "The Leak in the Dike"; Longfellow, "Venice"; Joaquin Miller, "Sunrise in Venice"; "In a Gondola."

Section XIX. Asia. — Ballou, "Footprints of Travel," Chapters III, VIII, and IX (Ginn, \$1.00); Andrews, "Seven Little Sisters," "The Story of Pen-se," also "Gemila" (Ginn, \$0.50); Smith, "Life

in Asia" (S. B. C., \$0.60); Pratt, "Stories of India" (E. P. C., \$0.40); Pratt, "Stories of China" (E. P. C., \$0.40). Poems by Whittier: "The Holy Land"; "Palestine"; "The Pipes of Lucknow."

Section XX. Africa.—Lyde, "A Geography of Africa" (McM., \$0.50); Ballou, "Footprints of Travel," Chapters IX and X (Ginn, \$1.00); Badlam, "Views in Africa" (S. B. C., \$0.72); Andrews, "Seven Little Sisters," section on "The Little Dark Girl" and "Gemila" (Ginn, \$0.59).

Section XXI. Australia, etc.—Ballou, "Footprints of Travel," Chapters II, IV, VI, V, VII (Ginn, \$1.00); Kellogg, "Australia and the Islands of the Sea" (S. B. C., \$0.68); Pratt, "Stories of Australasia" (E. P. C., \$0.40). Poem, "Western Australia," O'Reilly.

FIG. 267.

Pioneers on their way to California in "the days of old, the days of gold, the days of '49."

APPENDIX

CONTINENTS AND PRINCIPAL COUNTRIES

NOTE.—The figures 1897, 1901, etc., refer to the year in which the estimate was made. Most of the figures are obtained from the "Statesman's Year Book" for 1909, or from the "Century Atlas."

	Area in Square Miles		Population
NORTH AMERICA	8,614,658	1906	100,913,840
United States (with Alaska)	3,624,122	1900	84,216,433
Mexico	767,005	1900	13,607,259
Canada	3,745,570	1906	5,983,560
Central America	169,365	1906	11,659,770
Cuba	45,883	1899	1,722,953
SOUTH AMERICA	7,960,733	1908	46,879,001
Brazil	3,218,130	1908	19,910,646
Argentina	1,135,840	1908	5,974,771
Peru	697,640	1908	2,971,814
Chile	291,544	1908	5,000,000
EUROPE	3,233,916	1907	401,590,739
Russia	1,862,524	1906	109,354,600
German Empire	208,730	1905	60,641,278
Austria-Hungary	241,330	1906	45,405,307
France	207,054	1906	39,252,245
British Isles	121,390	1901	41,609,091
Italy	96,500	1907	33,640,000
Spain	190,050	1900	18,618,086
Turkey in Europe	65,350	1907	6,130,200
ASIA (with East Indies)	16,631,559	1906	886,427,255
Chinese Empire	4,277,170	1907	438,214,000
India	1,097,901	1901	232,072,832
Japan	147,655	1903	46,732,138
Turkey in Asia	693,610	1901	17,683,500
Siberia	4,786,730	1906	6,740,600
AFRICA	11,514,000	1906	127,000,000
Kongo State	900,000	1901	30,000,000
Egypt	400,000	1901	9,734,405
Cape Colony	276,909	1907	2,487,882
Transvaal Colony	117,730	1906	1,355,440

		Area in Square Miles		Population
AUSTRALIA		3,065,120	1906	4,479,840
New South Wales		310,370	1906	1,533,000
Victoria		87,884	1906	1,238,000
Queensland		670,500	1906	535,100
South Australia		903,690	1906	383,830
Tasmania		26,220	1906	180,160
Western Australia		975,920	1906	261,750

SIZE OF THE EARTH

LENGTH OF THE EARTH'S DIAMETER at equator (miles)		7,926
LENGTH OF THE EQUATOR (miles)		24,903
THE EARTH'S SURFACE (square miles)		196,971,984
Pacific Ocean (square miles)		55,660,000
Atlantic Ocean (square miles)		33,720,000
Antarctic Ocean and the great southern sea sur- rounding the south pole (square miles)		30,605,000
Indian Ocean (square miles)		16,720,000
Arctic Ocean (square miles)		4,781,000
The sea (square miles)		141,486,000

AREA AND POPULATION OF THE UNITED STATES

		Area in Square Miles		Population, est., 1906
Alabama		52,250		2,017,877
Alaska		590,884		82,516
Arizona		113,020		143,745
Arkansas		53,850		1,421,574
California		158,360		1,648,049
Colorado		103,925		615,570
Connecticut		4,990		1,005,716
Delaware		2,050		194,479
District of Columbia		70		307,716
Florida		58,680		629,341
Georgia		59,475		2,443,719
Guam		180		9,698
Hawaiian Islands		6,449		192,407
Idaho		84,800		205,704
Illinois		56,650		5,418,670
Indiana		36,350		2,710,898
Iowa		56,025		2,205,690
Kansas		82,080		1,612,471
Kentucky		4,400		2,320,298
Louisiana		48,720		1,539,449

	Area in Square Miles		Population, est., 1906
Maine	83,040	714,494
Maryland	12,210	1,275,434
Massachusetts	8,315	3,043,346
Michigan	58,915	2,584,533
Minnesota	83,365	2,025,615
Mississippi	46,810	1,708,272
Missouri	69,415	3,363,153
Montana	146,080	303,575
Nebraska	77,510	1,068,484
Nevada	110,700	42,335
New Hampshire	9,305	432,624
New Jersey	7,815	2,196,237
New Mexico	122,580	216,828
New York	49,170	8,226,990
North Carolina	52,250	2,059,326
North Dakota	70,795	463,784
Ohio	41,060	4,448,677
Oklahoma	39,030	590,247
Oregon	96,030	474,738
Pennsylvania	45,215	6,928,515
Philippine Islands	114,326	7,912,243
Porto Rico	3,550	1,037,028
Rhode Island	1,250	490,387
South Carolina	30,570	1,453,818
South Dakota	77,650	465,908
Tennessee	42,050	2,172,476
Texas	265,780	3,536,618
Tutuila	55	3,800
Utah	84,970	316,331
Vermont	9,565	350,373
Virginia	42,450	1,973,104
Washington	69,180	614,625
West Virginia	24,780	1,076,406
Wisconsin	56,040	2,260,930
Wyoming	97,890	103,673

TWENTY-FIVE LARGEST CITIES OF THE UNITED STATES

NOTE. — The great increase in size of New York is due to the joining of Brooklyn and other cities to it, making Greater New York.

	Population, est., 1906		Population, Census of 1900
1. New York, N.Y.	4,113,043	3,437,202
2. Chicago, Ill.	2,049,185	1,698,575

APPENDIX

			Population, est., 1906		Population, Census of 1900
3.	Philadelphia, Pa.	.	1,441,735	.	1,293,697
4.	St. Louis, Mo.	.	649,320	.	575,238
5.	Boston, Mass.	.	602,278	.	560,892
6.	Baltimore, Md.	.	553,669	.	508,957
7.	Cleveland, Ohio	.	460,327	.	381,768
8.	Buffalo, N.Y.	.	381,819	.	352,387
9.	San Francisco, Cal.	.	450,100	.	342,782
10.	Pittsburg, Pa.	.	375,082	.	321,616
11.	Detroit, Mich.	.	353,535	.	285,704
12.	Cincinnati, Ohio	.	345,230	.	325,902
13.	Milwaukee, Wis.	.	317,903	.	285,315
14.	New Orleans, La.	.	314,146	.	287,104
15.	Washington, D.C.	.	307,716	.	278,718
16.	Newark, N.J.	.	289,634	.	246,070
17.	Minneapolis, Minn.	.	273,825	.	202,718
18.	Jersey City, N.J.	.	237,952	.	206,433
19.	Louisville, Ky.	.	226,129	.	204,731
20.	Indianapolis, Ind.	.	219,154	.	169,164
21.	St. Paul, Minn.	.	203,815	.	163,065
22.	Providence, R.I.	.	203,243	.	175,597
23.	Rochester, N.Y.	.	185,703	.	162,608
24.	Kansas City, Mo.	.	182,376	.	163,752
25.	Toledo, Ohio	.	159,980	.	131,822

CITIES OF THE UNITED STATES AND ITS DEPENDENCIES MENTIONED IN THIS BOOK

			Population, est., 1906		Population, Census of 1900
Albany, N.Y.	.	.	170,609	.	94,151
Allegheny, Pa.	.	.	145,240	.	129,896
Annapolis, Md.	.	.	9,077	.	8,402
Atlanta, Ga.	.	.	109,984	.	89,872
Baltimore, Md.	.	.	553,669	.	508,957
Bangor, Me.	.	.	23,500	.	21,850
Birmingham, Ala.	.	.	45,864	.	38,415
Boston, Mass.	.	.	602,278	.	560,892
Bridgeport, Conn.	.	.	84,274	.	70,996
Buffalo, N.Y.	.	.	381,819	.	352,387
Butte, Mont.	.	.	43,624	.	30,470
Cambridge, Mass.	.	.	98,544	.	91,886
Camden, N.J.	.	.	84,849	.	75,935
Charleston, S.C.	.	.	56,317	.	55,807
Chattanooga, Tenn.	.	.	34,297	.	32,490

	Population, est., 1906	Population, Census of 1900
Chicago, Ill.	2,049,185	1,698,575
Cincinnati, O.	345,230	325,902
Cleveland, O.	460,327	381,768
Columbus, O.	145,414	125,560
Dallas, Tex.	52,793	42,638
Denver, Col.	151,920	133,859
Detroit, Mich.	353,535	285,704
Duluth, Minn.	67,387	52,969
Fall River, Mass.	105,942	104,863
Galveston, Tex.	34,355	37,789
Gloucester, Mass.	25,989	26,121
Grand Rapids, Mich.	99,794	87,565
Harrisburg, Pa.	55,735	50,167
Hartford, Conn.	95,822	79,850
Havana, Cuba	202,395	(1899) 235,981
Honolulu	39,306	39,306
Indianapolis, Ind.	219,154	169,164
Jacksonville, Fla.	36,675	28,429
Jersey City, N.J.	237,952	206,433
Kansas City, Mo.	77,912	163,752
Knoxville, Tenn.	36,051	32,637
Lawrence, Mass.	71,548	62,559
Los Angeles, Cal.	250,000	102,479
Louisville, Ky.	226,129	204,731
Lowell, Mass.	95,173	94,969
Lynn, Mass.	78,748	68,513
Manchester, N.H.	64,703	56,987
Manila, Philippines	219,928	(1901) 350,000
Memphis, Tenn.	125,018	102,320
Milwaukee, Wis.	317,903	285,315
Minneapolis, Minn.	273,825	202,718
Mobile, Ala.	42,903	38,469
Newark, N.J.	289,634	246,070
New Bedford, Mass.	76,746	62,442
New Haven, Conn.	121,227	108,027
New Orleans, La.	314,146	287,104
New York, N.Y.	4,113,043	3,437,202
Norfolk, Va.	66,931	46,624
Oakland, Cal.	200,000	66,960
Ogden, Utah	17,165	16,313
Omaha, Neb.	124,167	102,555
Paterson, N.J.	112,801	105,171
Pensacola, Fla.	22,256	17,747
Philadelphia, Pa.	1,441,735	1,293,697
Pittsburg, Pa.	375,082	321,616

APPENDIX

	Population, est., 1906	Population, Census of 1900
Portland, Me.	55,167	50,145
Portland, Ore.	109,884	90,426
Providence, R.I.	203,243	175,597
Pueblo, Col.	30,824	28,157
Reading, Pa.	91,141	78,961
Richmond, Va.	87,246	85,050
Rochester, N.Y.	185,703	162,608
Rutland, Vt.	11,961	11,499
Saginaw, Mich.	48,742	42,345
St. Louis, Mo.	614,320	575,238
St. Paul, Minn.	203,815	163,065
Salt Lake City, Utah	61,202	53,531
San Francisco, Cal.	450,000	342,782
Savannah, Ga.	68,596	54,244
Scranton, Pa.	118,692	102,026
Seattle, Wash.	104,169	80,671
Sitka, Alaska	1,396	1,396
Spokane, Wash.	47,006	36,848
Springfield, Mass.	75,836	62,059
Syracuse, N.Y.	118,880	108,374
Tacoma, Wash.	55,392	37,714
Tampa, Fla.	24,220	15,839
Toledo, O.	159,980	131,822
Trenton, N.J.	86,355	73,307
Troy, N.Y.	76,513	60,651
Vicksburg, Miss.	14,834	14,834
Washington, D.C.	307,716	278,718
Wheeling, West Va.	41,494	38,878
Wilkesbarre, Pa.	60,121	51,721
Wilmington, Del.	85,140	76,508
Wilmington, N.C.	21,528	20,976
Worcester, Mass.	130,078	118,421

TWENTY-FIVE LARGEST CITIES OF THE WORLD

	Population
1. London, England, est., 1907	4,758,218
Greater London, est., 1907	7,217,941
2. New York, United States, est., 1906	4,113,043
3. Paris, France, 1906	2,763,393
4. Chicago, United States, est., 1906	2,049,185
5. Berlin, Germany, 1905	2,040,148
6. Vienna, Austria-Hungary, 1907	1,999,912
7. Tokio, Japan, 1903	1,818,655

		Population
8.	Philadelphia, United States, est., 1906	1,441,735
9.	St. Petersburg, Russia, 1905	1,429,000
10.	Moscow, Russia, 1907	1,359,254
11.	Constantinople, Turkey (recent)	1,106,000
12.	Calcutta, India, 1901	1,026,987
13.	Buenos Aires, Argentina, est., 1905	1,025,653
14.	Osaka, Japan, 1903	995,945
15.	Canton, China, est., 1906	900,000
16.	Glasgow, Scotland, est., 1907	847,584
17.	Tientsin, China, est.	750,000-900,000
18.	Rio de Janeiro, Brazil, 1906	811,265
19.	Hamburg, Germany, 1905	802,793
20.	Bombay, India, est., 1901	776,006
21.	Warsaw, Russia, 1901	756,426
22.	Liverpool, England, est., 1907	746,144
23.	Budapest, Austria-Hungary, 1900	732,322
24.	Peking, China, est.	700,000
25.	St. Louis, United States, est., 1906	649,320

IMPORTANT FOREIGN CITIES

		Population
Adelaide, South Australia, 1906	.	174,438
Alexandria, Egypt, 1897	.	319,766
Amsterdam, Netherlands, 1906	.	564,186
Antwerp, Belgium, 1906	.	304,032
Athens, Greece, 1906	.	170,000
Bangkok, Siam, 1906	.	400,000-600,000
Barcelona, Spain, 1900	.	533,000
Belfast, Ireland, 1901	.	349,180
Berlin, Germany, 1905	.	2,040,148
Berne, Switzerland, 1907	.	73,185
Birmingham, England, 1907	.	553,155
Bombay, India, 1901	.	776,006
Bordeaux, France, 1906	.	251,917
Brussels, Belgium, 1906	.	623,041
Budapest, Austria-Hungary, 1900	.	732,322
Buenos Aires, Argentina, 1905	.	1,025,653
Cairo, Egypt, 1897	.	570,062
Calcutta, India, 1901	.	1,026,987
Callao, Peru, 1906	.	31,000
Canton, China, 1906	.	900,000
Cape Town, Cape Colony, 1904	.	77,668
Caracas, Venezuela, 1894	.	72,429

				Population
Christania, Norway, 1900	.	.	.	227,626
Constantinople, Turkey, 1906	.	.	.	1,106,000
Copenhagen, Denmark, 1906	.	.	.	426,450
Dresden, Germany, 1905	.	.	.	516,996
Dublin, Ireland, 1901	.	.	.	290,636
Edinburgh, Scotland, 1907	.	.	.	345,479
Geneva, Switzerland, 1907	.	.	.	116,387
Glasgow, Scotland, 1907	.	.	.	847,584
Hague, The, Netherlands, 1906	.	.	.	248,995
Halifax, Nova Scotia, 1901	.	.	.	40,832
Hamburg, Germany, 1905	.	.	.	802,793
Havre, France, 1906	.	.	.	132,430
Hongkong, China, 1906	.	.	.	319,803
Jerusalem, Turkey in Asia, 1906	.	.	.	70,000
Johannesburg, Transvaal, 1904	.	.	.	158,850
Kimberley, Cape Colony, 1904	.	.	.	77,668
Leipzig, Germany, 1905	.	.	.	503,672
Lima, Peru, 1906	.	.	.	130,000
Lisbon, Portugal, 1900	.	.	.	356,009
Liverpool, England, 1907	.	.	.	746,144
London, England, 1907	.	.	.	4,758,218
London, Greater, 1907	.	.	.	7,217,914
Lyon, France, 1906	.	.	.	472,114
Madras, India, 1901	.	.	.	509,346
Madrid, Spain, 1900	.	.	.	539,835
Malaga, Spain, 1900	.	.	.	130,109
Manchester, England, 1907	.	.	.	643,148
Marseille, France, 1906	.	.	.	517,498
Mecca, Turkey in Asia, 1907	.	.	.	60,000
Melbourne, Victoria, 1906	.	.	.	526,400
Mexico, Mexico, 1900	.	.	.	344,721
Milan, Italy, 1901	.	.	.	493,241
Mocha, Turkey in Asia, 1900	.	.	.	5,000
Montevideo, Uruguay, 1907	.	.	.	309,390
Montreal, Canada, 1901	.	.	.	267,730
Moscow, Russia, 1907	.	.	.	1,359,254
Munich, Germany, 1905	.	.	.	538,983
Naples, Italy, 1901	.	.	.	563,540
Odessa, Russia, 1900	.	.	.	449,673
Ottawa, Canada, 1901	.	.	.	59,928
Para, Brazil, 1900	.	.	.	100,000
Paris, France, 1906	.	.	.	2,763,393
Peking, China, 1906	.	.	.	700,000-800,000
Prague, Austria-Hungary, 1907	.	.	.	228,645
Quebec, Canada, 1901	.	.	.	68,840
Rio de Janeiro, Brazil, 1906	.	.	.	811,265

	Population
Rome, Italy, 1901	462,743
St. John, New Brunswick, 1901	40,711
St. Petersburg, Russia, 1905	1,429,000
Santiago, Chile, 1905	378,000
Shanghai, China, 1906	651,000
Singapore, Malay Peninsula, 1901	228,555
Stockholm, Sweden, 1906	332,738
Sydney, New South Wales, 1901	487,900
Teheran, Persia, 1906	280,000
Tientsin, China, 1906	750,000-900,000
Tokio, Japan, 1905	1,818,655
Toronto, Canada, 1901	208,040
Trieste, Austria-Hungary, 1907	205,136
Valparaiso, Chile, 1907	175,000
Vancouver, Canada, 1901	26,133
Venice, Italy, 1901	151,840
Vera Cruz, Mexico, 1900	29,164
Victoria, Canada, 1901	20,816
Vienna, Austria-Hungary, 1907	1,999,912
Warsaw, Poland, 1901	756,426
Winnepeg, Canada, 1906	90,153
Yokohama, Japan, 1903	326,035
Zürich, Switzerland, 1907	186,846

HEIGHT OF A FEW MOUNTAIN PEAKS

	Feet
Mt. Everest, Himalaya Mountains, Asia	29,002
Aconcagua, Andes Mountains, Chile	22,860
Mt. McKinley, Alaskan Mountains, Alaska	20,464
Mt. Logan, Coast Ranges, Canada	19,539
Mt. Elburz, Caucasus Mountains, Russia	18,200
Orizaba, Sierra Madre, Mexico	18,314
Mt. St. Elias, Coast Ranges, Alaska	18,025
Mt. Blanc, Alps Mountains, France	15,781
Mt. Whitney, Sierra Nevada Mountains, California	14,502
Mt. Rainier, Cascade Mountains, Washington	14,363
Mt. Shasta, Cascade Mountains, California	14,380
Pikes Peak, Rocky Mountains, Colorado	14,108
Mauna Loa, Hawaiian Islands	13,675
Fremont Peak, Rocky Mountains, Wyoming	13,790
Fujiyama, Japan	12,365
Mt. Mitchell, Appalachian Mountains, North Carolina	6,711
Mt. Washington, White Mountains, New Hampshire	6,279
Mt. Marcy, Adirondacks, New York	5,344

SOME OF THE LARGEST RIVERS OF THE WORLD

Name	Country	Length in Miles	Basin Area	Ocean
Missouri-Mississippi	United States .	4,300	1,257,000	Atlantic
Nile . . .	Africa . . .	3,400	1,273,000	Atlantic
Amazon . . .	South America .	3,300	2,500,000	Atlantic
Ob . . .	Siberia . . .	3,200	1,000,000	Arctic
Yangtse Kiang .	China . . .	3,200	548,000	Pacific
Kongo . . .	Africa . . .	2,900	1,200,000	Atlantic
Lena . . .	Siberia . . .	2,800	950,000	Arctic
Hoang-Ho . . .	China . . .	2,700	570,000	Pacific
Niger . . .	Africa . . .	2,600	563,300	Atlantic
Plata . . .	South America .	2,580	1,200,000	Atlantic
Mackenzie . . .	Canada . . .	2,000	590,000	Arctic
Volga . . .	Russia . . .	2,400	563,300	Caspian
St. Lawrence . . .	North America .	2,200	519,000	Atlantic
Yukon . . .	Alaska . . .	2,000	440,000	Pacific
Indus . . .	India . . .	1,800	372,700	Indian
Danube . . .	Europe . . .	1,770	300,000	Atlantic

TEN OF THE GREAT LAKES OF THE WORLD

Name	Length in Miles	Breadth in Miles	Area in Square Miles	Country
Caspian	680	270	169,000	Russia
Superior	390	160	31,200	U. S. and Canada
Victoria Nyanza	230	220	30,000	Africa
Aral	225	185	26,900	Asiatic Russia
Huron	250	100	17,400	U. S. and Canada
Michigan	335	85	20,000	United States
Tanganyika	420	50	12,650	Africa
Baikal	397	45	12,500	Siberia
Erie	250	58	10,000	U. S. and Canada
Chad (a shallow lake which grows very large in the rainy season and shrinks in the dry season)			about 10,000	Africa

APPROXIMATE AVERAGE HEIGHT OF SOME PLATEAUS

	Feet
Tibet	10,000-15,000
Bolivia	10,000-13,000
Spain	2,000-3,000
Mexico	5,000-6,000
Western United States Plateau . . .	5,000-6,000
Brazil	2,000-2,500

INDEX OF PLACES AND PRONOUNCING VOCABULARY

KEY TO PRONUNCIATION

Vowel Sounds: *ă*, as in *fate*; *â*, as in *senate*; *ă*, as in *fat*; *g*, as in *final*; *ă*, as in *far*; *ă*, as in *last*; *g*, as in *fall*; *â*, as in *care*; *ĕ*, as in *mete*; *ĕ*, as in *évent*; *ĕ*, as in *pen*; *g*, as in *recent*; *ĕ*, as in *term*; *ĭ*, as in *pine*; *i*, as in *pin*; *i*, as in *basin*; *ō*, as in *note*; *ō*, as in *obey*; *ō*, as in *not*; *g*, as in *beckon*; *ō*, as in *for*; *ū*, as in *mute*; *ū*, as in *tub*; *yy*, as in *rule*; *ū*, as in *furl*; *ōō*, as in *food*; *ōō*, as in *foot*; *oi*, as in *oil*; *ou*, as in *house*.

Consonant Sounds: *ch*, as in *chin*; *g*, as in *get*; *n*, as in *linger*, *link*; *ng*, as in *sing*; *N*, similar in sound to *ng*; *th*, as in *thin*; *fh*, as in *thine*; *G* and *K*, like the German *ch*; *H*, strongly aspirated, as in *hiss*.

The sign ' tells upon which syllable the accent is placed. The numbers refer to pages in the book excepting where Fig. is before them, when they refer to figures in the book.

Abyssinia (ăb'is-sin'ī-ă), 265.	Algeria (ăl-jē'rī-ă), Fig. 214.
Aconcagua (ă-kōn-kă'gwā), Fig. 177.	Allegheny (ăl'ĕ-gă-nī), 45, 166, 167.
Acropolis (ă-krōp'ō-lis), Fig. 201.	Amazon (ăm'ă-zōn), 216, 218.
Adelaide (ăd'ĕ-lăd'), 274.	Amsterdam (ăm'ster-dăm), 235.
Adirondacks (ăd-i-rōn'dăks), 163.	Amur (ă-mōōr'), Fig. 203.
Adriatic (ăd-rĕ-ăt'ik), 240.	Andes (ăn'dēz), 216, 222.
Afghanistan (ăf-găñ-is-tān'), Fig. 203.	Androscoggin (ăn-dros-kōg'In), 158.
Africa (ăf/rī-kă), 142, 263.	Annapolis (ăn-năp'ō-lis), 168.
Alabama (ăl-ă-bă'mă), 171.	Antarctic (ăn-tärk'tik), 143.
Alameda, 200.	Antilles (ăn-til'lez), 215.
Alaska (ă-lăs'kă), 203, Fig. 167-8.	Antwerp (ănt/werp), 236.
Albany (al'bă-nī), 162.	Appalachians (ăp-pă-lă/chī-ănz), 151, 165, 171, 172.
Aleutian (ă-lū'shă-ăn), Fig. 203.	Arabia (ă-ră/bi-ă), 252.
Alexandria (ăl-ĕgă-ăn'dri-ă), 265.	Aral (ăl'ăl), Fig. 203.
	Ararat (ăr'ă-răt), Fig. 203.

Arctic (ärk'^tīk), 143, Figs. 171-2.
 Argentina (är-jén-tē'nyä), 221.
 Arizona (är-lzō'nyä), 190.
 Arkansas (är'kān-sä), 171.
 Asia (ä'shi-ä), 142, 250.
 Athabasca (äth-ä-bäs'kä), Fig. 123.
 Athens (äth'ēnz), 244.
 Atlanta (ät-län'tä), 172.
 Atlantic (ät-län'tik), 68, 141.
 Auburn, Fig. 81.
 Augusta (ä-güs'tä), Fig. 125.
 Australia (äs-trä'lī-ä), 143, 271.
 Austria (äs'trī-ä), 242.
 Azores (ä-zörz'), Fig. 214.

Baikal (bī'käl), Fig. 203.
 Baltic (bäl'tik), 230, 232.
 Baltimore (bäl'ti-mōr or -mōr), 161, 168.
 Bangkok (bān-kök'), 260.
 Bangor (bān'gōr), 158.
 Bakersfield, 200.
 Barcelona (bär-sé-lö'nä), 239.
 Baton Rouge (bät'ün rōōzh), Fig. 140.
 Belfast (bēl-fäst'), 228.
 Belgium (bēl'jí-yün), 236.
 Bengal (bēn'gäl'), Fig. 203.
 Bering Sea (bē'rīng), Fig. 203.
 Berlin (bēr'līn), 234.
 Bermuda (bēr-mū'dä), 214.
 Berne (bērn), 242.
 Berkeley, 200.
 Birmingham (bēr'mīng-yüm), 172.
 Big Trees, XVI.
 Birmingham, Eng., 227.
 Black Hills, 195.
 Bogota (bō-gō-tä'), Fig. 177.
 Boise (boi'zä), Fig. 157.
 Bokhara (bōk-ä'rä), Fig. 203.
 Bolivia (bō-liv'ī-ä), Fig. 177.
 Bombay (bōm-bā'), 259.
 Bordeaux (bōr-dō'), 236, 238.

Borneo (bōr'nē-ō), Fig. 221.
 Boston (bōs'tōn), 71, 154, 155, 159.
 Brahmaputra (brä-mä-pōō'trä), Fig. 203.
 Brazil (brä-zil'), 216.
 Bridgeport (brij'pōrt), 159.
 British Isles (brít'ish), 225.
 Brooklyn (brōōk'līn), 161.
 Brussels (brūs'selz), 238.
 Budapest (bōō'dō-pěst), 243.
 Buenos Aires (bōō'nüs ä'rīz), 221.
 Buffalo (būf'ä-lō), 162, 163, 164.
 Bulgaria (bōōl-gä'rī-ä), 245.
 Butte (büt), 195.

Cairo (kī'rō), Egypt, 265.
 Calcutta (käl-küt'tä), 259.
 California (käl-ä-fōr'nī-ä), 193.
 Callao (käl-lä'ō or käl-yä'ō), 222.
 Cambridge (kām'brij), 154.
 Camden (kām'dēn), 165.
 Canada (kān'ä-dä), 152, 205.
 Cancer (kān'sēr), Tropic, 128.
 Canton (kān-tōn'), 256.
 Cape Town, 270.
 Cape Verde Islands (vērd), Fig. 214.
 Capricorn (kāp'rī-kōrn), Tropic, 128.
 Caracas (kä-rä/käś), 221.
 Caribbean (kär-ib-bē'än), 214.
 Cascade Range (kās-kād'), 101.
 Caspian (kās'pī-än), 231.
 Castine (kās-tēn'), 70.
 Catalina Island, Fig. 55.
 Catskills (kāts'kilz), 163.
 Caucasus (kā'kā-süs), Fig. 183.
 Cayenne (kā-yēn' or ki-ēn'), Fig. 177.
 Celebes (sēl'ē-běz), Fig. 221.
 Central America (ä-mēr'ī-kä), 152, 213.
 Ceylon (sē-lōn' or sī-lōn'), Fig. 203.
 Chad (chād), Fig. 214.
 Champlain (shām-plān'), Fig. 132.

Charleston (chärlz'tən), 177.
 Chattanooga (chät-tä-noo'gä), 172.
 Chesapeake (chës'päk'), 161.
 Cheyenne (shé'en'), Fig. 157.
 Chicago (shë-kä'gō), 184, 185.
 Chico, 114, 215.
 Chile (chë'lä), 222, 223.
 Chimborazo (chim-bôrä'zō), 15.
 China (chi'nä), 107, 255.
 Christiania (kris-të-ä'në-ä), 230.
 Cincinnati (sëns-sën-nä'të), 188.
 Cleveland (klëv'länd), 186.
 Coast Ranges, 190.
 Colombia (kôl-löm'bë-ä), 223.
 Colorado (kôl-ô-rä'dô), 194.
 Colorado Canyon, 193.
 Columbia (kô-lüm'bë-ä), Dist., 168.
 Columbia River, 200.
 Columbus (kô-lüm'büs), 188.
 Colusa, 41.
 Connecticut (kön-nët'i-küt), 158.
 Constantinople (kön-stän-tî-nô'pl),
 244.
 Copenhagen (kô-pen-hä'gën), 231.
 Cordilleras (kôr-dîl'îr-äz), 191, 194.
 Coronado, 76.
 Corinth (kôr'înth), 243.
 Corsica (kôr'sî-kä), Fig. 183.
 Crete (krêt), Fig. 183.
 Cuba (kü'bä), 120, 214.

Dallas (däl'as), 173.
 Danube (dän'üb), 243, 245.
 Darling River, 273.
 Dead Sea, 59.
 Delaware (dél'a-wâr), 161.
 Denmark (dĕn'märk), 230.
 Denver (dĕn'ver), 194.
 Des Moines (dĕ moin'), Fig. 148.
 Detroit (dĕ-troït'), 186.
 Dnieper (nē'pér), Fig. 183.
 Dniester (nës'tér), Fig. 183.
 Dresden (dréz'dĕn), 234.

Dublin (düb'lín), Fig. 183.
 Duluth (dû-looth'), 186.

East India (în'dî-ä), 143, 274.
 Echo Mt., Figs. 20, 21.
 Ecuador (ék-wä-dôr'), 223.
 Edinburgh (éd'in-bür-rô), 227.
 Egypt (éjípt), 265.
 Elbe (élb), 233.
 Elburz (él-boôrz'), Fig. 183.
 England (în'gländ), 107, 227.
 Erie (é'rî), Lake, 163.
 Eskimos (ës'ki-môz), 130, 209.
 Eurasia (ü-rä'shë-ä), 139.
 Europe (ü'rüp), 140, 225.
 Everest (ëv'er-ëst), Mt., 250.

Fall River, 159.
 Fiji (fë'jë), 276.
 Florida (flôr'î-dä), 175.
 Formosa (fôr-mô'sä), 257.
 France (frâns), 236.
 Fresno, 200, bet. pp. 152, 153.

Galveston (gäl'ves-ton), 177.
 Ganges (gân'jëz), 259.
 Genesee (jĕn-e-së'), 164.
 Geneva (jë-në'vë), 242.
 Georgia (jôr'jë-ä), 175.
 Germany (jér'ma-nî), 233.
 Gibraltar (jî-brâl'tär), 263.
 Glasgow (gläs'gô), 227.
 Gloucester (glös'tér), 155, 200.
 Gobi (gô'bë), 251.
 Golden Gate, X, op. 118, Park 66.
 Grand Rapids, 187.
 Great Britain (brit'ën), 225.
 Great Lakes, 58, 62.
 Great Salt Lake, 59, 197.
 Greece (grës), 243.
 Greenland (grën'länd), 209.
 Guam (gwäm), Fig. 221.
 Guiana (gë-ä'nä), 221.

Guthrie (gū'th're), Fig. 140.

Haiti (hā'tī), 215.

Halifax (hāl'ē-fäks), 208.

Hamburg (häm'bûrg), 233.

Harrisburg (här'is-bûrg), 166.

Hartford (härt'ford), 159.

Havana (hā-vän'ä), 214.

Havre (hā'ver), 237.

Hawaii (hā-wî'ë), 276.

Hawaiian (hā-wî'yân) Islands, 132, 145, 201, 276.

Helena (hél'ē-nâ), Fig. 157.

Himalaya (him-ä'lâ-yâ), 250.

Hoangho (ho-äng-hô'), Fig. 203.

Holland (hôl'lând), 234.

Hongkong (höng-köng'), 256.

Honolulu (hō-nō-lōo'lōo), 276.

Hudson (hûd'sôn) River, 162.

Hungary (hün'gä-rî), 242.

Huron (hü'rōn), Lake, Fig. 148.

Iceland (ís'lând), 231.

Idaho (i'dâ-hô), Fig. 157.

Illinois (il-li-noi' or -noiz'), 181, 182.

Iloilo (é-lô-é'lô), Fig. 221.

India (in'dî-a), 258.

Indian, 144, Fig. 268.

Indiana (in-dî-äñ'ä), 182.

Indianapolis (in-dî-äñ-äp'ô-lîs), 188.

Indian Territory, 177.

Indo-China (in'dô chî'nâ), 260.

Indus (in'dûs), 259.

Iowa (i'ô-wä), 181.

Ireland (îr'lând), 225.

Irkutsk (îr-kôôtsk'), Fig. 203.

Italy (ît'ä-lî), 240.

Jacksonville (jäk'sôn-vîl), 177.

Jamaica (ja-mâ'kä), 215.

Japan (ja-pän'), 257.

Java (jä'vâ), 274.

Jersey (jér'zî) City, 161.

Jerusalem (je-rû'sâ-lêm), 252.

Johannesburg (yô-hän'nës-bûrg), 269.

Kamchatka (käm-chät'kâ), Fig. 203.

Kansas (kän'sâs), 181.

Kansas City, 188.

Katahdin (kä-tä'dîn), Fig. 125.

Kennebec (kĕn-ë-bĕk'), 158.

Kentucky (kĕn-tük'î), 181.

Key Route, 98.

Kimberley (kim'bér-li), 270.

Klondike (klön'dîk), 203, 206, Fig. 34.

Knoxville (nôks'vîl), 172.

Kongo (kön'gô), 268.

Korea (kô-rê'ë), 257.

Labrador (lăb-ră-dôr'), 205.

Lachine (lă-shén') Rapids, 206.

Ladrone (lă-drôñ'), Fig. 221.

Lawrence (lär'ens), 159.

Leipzig (lip'tsîg), 234.

Lena (lē'nâ), Fig. 203.

Lima (lē'mâ), 222.

Lisbon (lîz'bôñ), 239.

Liverpool (liv'er-pôôl), 227.

Loire (lwär'), Fig. 183.

London (lün'dün), 226, 228.

Los Angeles (lös än'gél-ës), bet. pp. 148, 149, 201, Fig. 244.

Louisiana (lōô-ä-zâ-ä'nâ), Fig. 140.

Louisville (lôô'is-vîl or lôô'l-vîl), 188.

Lowell (lô'el), 159.

Luzon (lôô-zôñ'), 275.

Lynn (lin), 159.

Lyon (li'yon), 237.

Madagascar (măd-ä-găs'kăr), Fig. 214.

Madeira (mă-dë'ră), Fig. 214.

Madrid (mă-drîd'), 239.

Maine (män), 156, 157.

Malay (mă-lâ'), Fig. 203.

Manchester (măñ'ches-ter), Eng., 227.

Manchester, N. H., 158, 159.

Manchuria (măñ-choo'rë-ä), Fig. 203.

Manila (măñ-nil'ë), 275.

Manitoba (măñ-i-tō-bä'), 206.

Marseille (mär-säl'), 238.

Maryland (mĕr'l-länd or mă'rī-länd), 161.

Marysville, 189.

Massachusetts (măs-a-chū'sëts), Fig. 125.

Matterhorn (mät'tér-hörn), 212.

Mecca (mĕk'ë), 252.

Mediterranean (mĕd-i-tér-rä'né-an), 252, 263.

Mekong (mă-köng!), Fig. 203.

Melbourne (mĕl'bürn), 274.

Memphis (mĕm'fis), 177.

Merced Falls, Cal., Fig. 49.

Merrimac (mĕr'l-măk), 158.

Mexico (mĕks'i-kō), 152, 211.

Mexico City, 213.

Michigan (mĕsh'i-gän), 183.

Michigan, Lake, 184.

Milan (mĭl'an or mi-lăñ'), 241.

Milwaukee (mĭl-wă'kē), 184.

Mindanao (mĕn-dă-nă'ō), Fig. 221.

Mindoro (mĕn-dō'rō), Fig. 221.

Minneapolis (mĭn-ĕ-ăp'o-lis), 185.

Minnesota (mĭn-ĕ-so'tă), 182, 183.

Mississippi (mĭs-ĕs'-ip'i), 185.

Mississippi River, 33, 45, 51, 55, 151, 171, 174.

Missouri (mis-oō'rī), 171, 187.

Mobile (mō-bĕl'), 177.

Mocha (mō'kă), 253.

Mohammedan (mō-hăm'mĕd-ăñ), 244, 252.

Mohawk (mō'hăk), 163, 164.

Mongolia (mōñ-ĕg'd'l-ă), Fig. 203.

Monongahela (mō-nōñ-ĕgă-hē'lă), 45.

Montana (mōñ-tă'na), 195.

Montenegro (mōñ-tă-nă'grō), 245.

Montevideo (mōñ-tă-vĕ'dă-ō), 221.

Montpelier (mōñ-pĕ'lă-er), Fig. 125.

Montreal (mōñt-re-ă'l'), 207, 208.

Mt. Shasta (shăs'ta), Figs. 19, 24.

Mt. Whitney Range, 287.

Mt. Lowe Ry., Fig. 20.

Moosehead (mōos'hĕd) Lake, 61.

Morocco (mō-rōk'ō), Fig. 214.

Moros (mō'rōz), 276.

Moscow (mōs'kō), 232.

Munich (mū'nik), 234.

Murray (mūr'rī) River, 272.

Nantucket (năñ-tük'ët), Fig. 125.

Naples (nă'plz), 241.

Nashville (năsh'vĭl), Fig. 140.

Nebraska (nĕ-brăs'kă), 181.

Negritos (nĕ-ĕgrī'tōz), 276.

Netherlands (nĕf'h'er-landz), 234.

Nevada (nĕ-vă'dă), 195.

Newark (nū'ärk), 161.

New Bedford (bĕd'fōrd), 159.

New Caledonia (kăl-ĕ-dō'nă-ă), Fig. 221.

New England (in'glănd), 100, 154.

Newfoundland (nū'fond-lănd), 205.

New Guinea (gīn'ë), Fig. 221.

New Hampshire (hămp'shir), 154.

New Haven, 154, 159.

New Hebrides (hĕb'rī-dĕz), Fig. 221.

New Jersey (jĕr'zī), 165.

New Mexico (mĕks'i-kō), 190.

New Orleans (ôr'lĕ-ănz), 55, 93, 176, 177.

New South Wales (wālz), 271.

New York (yōrk), 71, 72, 96, 161, 164.

New Zealand (zĕ'lănd), 274.

Niagara (nī-ăg'ă-ră) Falls, 164.

Nicaragua (nē-kă-ră'gă-wă), Fig. 123.

Niger (nī'jĕr), 268.

Nile (nīl), 265, 266.

Norfolk (nōr'fōk), 168.

North America (nôr'äm'ikä), 138, 151.
 North Carolina (kär-ö-li'na), Fig. 140.
 North Dakota (da-kö'tä), Fig. 148.
 Norway (nôr'vä), 229.
 Nova Scotia (nô'vä skö'shi-ä), 205.
 Oakland, 98, 118, 200.
 Ocean Park, Cal., Fig. 64.
 Odessa (ö-dës'sä), 232.
 Ogden (ög'dëñ), 197.
 Ohio (ö-hi'ö), 48, 182, 183.
 Oklahoma (ök-lä-hö'mä), 172, 177.
 Olympia (ö-lím'pí-ä), Fig. 157.
 Omaha (ö'mä-hä), 187.
 Ontario (öñ-tä'rë-ö), Lake, Fig. 132,
 Oregon (ör'ë-gön), 200.
 Orinoco (ö-ri-nö'kö), 216, 220.
 Ottawa (öt'tä-wä), 207.
 Pacific (pä-sïf'ik), 144.
 Palawan (pä-lä-wän'), Fig. 221.
 Palestine (päl'ës-tïn), 252.
 Panama (pän-ä-mä') Canal, 201.
 Panama Isthmus (ës'müs), 138, 213,
 223.
 Panay (pä-nä'), Fig. 221.
 Para (pä-rä'), 218.
 Paramaribo (pär-ä-mär'ë-bö), Fig.
 177.
 Paris (pär'ës), 237.
 Pasadena, 201.
 Paso Robles, Fig. 42.
 Patagonia (pät-ä-pö'në-ä), Fig. 177.
 Paterson (pät'ër-söñ), 161.
 Peking (pë-kïng'), 256.
 Pennsylvania (pën-sil-vä'në-ä), 161,
 165-168.
 Penobscot (pë-nöb'scot), 158.
 Pensacola (pén-sä-kö'lä), 177.
 Persia (pér'shi-ä), 252.
 Peru (pë-röö'), 222.
 Petchora (pët-chö'rä), Fig. 183.
 Petaluma, Fig. 84.
 Philadelphia (fil-ä-dël/fi-ä), 71, 161,
 165, 168.
 Philippine (fil'ip-in), 129, 201, 275.
 Phoenix (fë'niks), Fig. 157..
 Pierre (pë-r), Fig. 148.
 Pittsburgh (pëts'bûrg), 45, 166, 167,
 168.
 Pitt River Falls, Fig. 38.
 Plata (plä'tä), 221.
 Popocatepetl (pö-pö'kät-ä-pä-tl), 211.
 Playgrounds, XIV.
 Portland (pört'länd), Me., 155, 160.
 Portland, Oregon, 200.
 Porto Rico (pö'rëtö rë'kö), 215.
 Portugal (pö'rëtü'-gäl), 238.
 Potomac (pö-tö'mäk), 168.
 Poughkeepsie (pö-këp'së), 162.
 Pribilof (prë-bë-löv') Islands, 204.
 Providence (pröv'i-dëns), 155, 159.
 Pueblo (pwëb'lö), 194.
 Puget (pü'jet) Sound, 200.
 Pyrenees (pë're-nëz), 238.
 Quebec (kwë-bëk'), 207.
 Queensland (kwënz'länd), 271.
 Quito (kë'tö), Fig. 177.
 Rainier (rä'uër), Fig. 157.
 Raleigh (rä'lä), Fig. 140.
 Reading (rëd'ëng), 166.
 Rhine (rëñ), 233.
 Rhode (röd) Island, Fig. 125.
 Richmond (rich'mönd), 169.
 Rio de Janeiro (rë'ë dä zhë-nä'ë-rö),
 220.
 Rio Grande (rë'ë grän'dä), 151.
 Rochester (röch'ës-ter), 91, 164.
 Rocky Mountains, 151, 191.
 Rome (röm), 240.
 Roumania (rōo-mä'ni-ä), 245.
 Russia (rush'ä), 281.
 Rutland (rüt'länd), 156.

Sacramento (säk-rä-měn'tō), 200, Figs. 41, 157.

Saginaw (säg'in-ä), 187.

Sahara (sä-här'ä), 263.

St. Anthony (än'thō-nī) Falls, 186.

St. Helena (Mt.), Fig. 71.

St. Lawrence (lä'regn̄s), 58, 151, 207.

St. Louis (lōō'is or lōō'i), 45, 187.

St. Paul, 94, 185.

St. Petersburg (pē'terz-bûrḡ), 232.

Salinas River, Fig. 42.

Salt Lake City, 197.

Samar (sä-mär'), Fig. 221.

Samoa (sä-möō'ä), 276.

San Bernardino, op. p. 153.

San Diego, 201, op. p. 153.

San Francisco (sän frän-sis'kō), 72, 194, 200, 201, op. p. 118, Fig. 83.

San José, 200, bet. pp. 152, 153.

San Pedro, Fig. 56.

Santa Barbara, 201.

Santa Fe (sän'tä fä), Fig. 157.

Santiago (sän-tē-ä'gō), 222.

Sardinia (sär-din'ī-ä), Fig. 183.

Savannah (sa-vän'ä), 177.

Scotland (sköt'länd), 226.

Scranton (skrän'tōn), 167.

Seattle (sé-ät'l), 200.

Shanghai (shäng-hä'i), 256.

Shasta (shä'stä), Figs. 19, 124.

Siam (sí-äm' or së-äm'), 260.

Siberia (sí-bé'rī-ä), 254.

Sierra Madre, Fig. 123.

Sierra Nevada (nē-vä'dä), 21, 190. Fig. 16.

Singapore (síng-gä-pôr'), 260.

South America (ä-mër'ī-kä), 138, 216.

South Dakota (dä-kö'tä), Fig. 148.

Spain (spän), 107, 238.

Spokane (spō-kän'), 200.

Springfield (sprīng'fēld), 159.

State Inst., Fig. 82, p. 108.

Stockholm (stök'hölm), 230.

Stockton, 200, bet. pp. 152, 153.

Sucre (süō'krē), Fig. 177.

Sudan (süō-dän'), 268.

Suez (süō-ĕz'), 266.

Sulu (süō-löō'), 276.

Sumatra (süō-mä'trä), Fig. 221.

Superior (sü-pē'rī-ér), Lake, 162, 182.

Sweden (swé'dēn), 229.

Switzerland (swit'zer-land), 142, 241.

Sydney (süd'nī), 274.

Syracuse (sür'ā-küs), 164.

Tacoma (tä-kö'mä), 200.

Tagalogs (tä-gä'lögz), 276.

Tahoe (Lake), 66.

Tallahassee (täl-ä-hä'së), Fig. 140.

Tampa (täm'pä), 177.

Tanganyika (tän-ğän-yē'kä), Fig. 214.

Tasmania (täz-mä'nī-ä), 274.

Tennessee (tēn-nes-sē'), Fig. 140.

Texas (tëks'äs), 171, 173.

Thames (tëmz), 226.

The Hague (häg), 235.

Tibet (tí-bët'), or tib'ët'), Fig. 203.

Tientsin (të-ĕn'tsēn), 256.

Tierra del Fuego (të-ĕr'rä dël fwä/gö), Fig. 177.

Timbuktu (tëm-böök'too), Fig. 214.

Titicaca (tit-ë-kä'kä), Fig. 177.

Tokio (tö'kë-ö), 258.

Toledo (tö-le'dö), 187.

Topeka (tö-pë'kä), Fig. 148.

Toronto (tö-rön'tö), 208.

Trenton (trë'n'ton), 165.

Trieste (trë-ĕst'), Fig. 183.

Trinidad (trïñ-ĕ-dăd'), 221.

Tripoli (trîp'o-lî), Fig. 214.

Troy, 164.

Truckee, Cal., Fig. 31.

Tunis (tü'nîs), Fig. 214.

Turkestan (töör'kis-tän'), Fig. 203.

Turkey (tûr'kî), 107, 244.

United States, 29, 104, 136, 152, 153, 262, op. p. 179, Fig. 124.

Ural (ū'räl) Mountains, 231, 254.
 Uruguay (oo-rōo-gwī' or ū'rōo-gwā'), 221.
 Utah (ū'tā or ū'tā), 195, Fig. 164.
 Valparaiso (väl-pä-rī'sō), 222.
 Venezuela (vēn-ē-zwē'lā), 220.
 Venice (vēn'īs), 240.
 Vera Cruz (vā'rā kroōs), 213.
 Vermont (vēr-mönt'), 156.
 Vesuvius (vē-sū/vī'-ūs), 133, 241.
 Vicksburg, 177.
 Victoria (vīk-tō/rī-ä), Australia, 271.
 Victoria, Canada, 208.
 Victoria Nyanza (nī-ān'zā), Fig. 214.
 Vienna (vē-ēn'ä), 243.
 Virginia (vēr-jin'/i-ä), 169.
 Vistula (vīs-tū-lā), Fig. 183.
 Volga (vōl/gä), 231.
 Wales (wālz), 226.
 Warsaw (war'sā), Fig. 183.
 Washington (wōsh'ing-tōn) (city), 104, 105, 106, 168, 169.
 Washington (state), 200.
 West Indies (īn'dēz), 213.
 West Virginia (ver-jīn'i-ä), 169.
 Wheeling (hwēl'īng), 169.
 Wilkes Barre (wilks'bär-i), 167.
 Wilmington (wil'mīng-tōn), Del., 165.
 Wilmington, N.C., 177.
 Winnipeg (wīn'ī-pēg), 208.
 Wisconsin (wī-s-kōn'sīn), 182.
 Worcester (wōos'ter), 159.
 Wyoming (wī-o'mīng), Fig. 157.
 Yang-tse-Kiang (yāng-tsē-kī-āng'), Fig. 203.
 Yellowstone (yēl'ō-stōn), 193, Fig. 159.
 Yenesei (yēn-ē-sā'ē), Fig. 203.
 Yokohama (yō-kō-hä/mä), 258.
 Yosemite (yō-sēm'i-tē), 21, 193, Figs. 18, 25, 158.
 Yucatan (yōō-kä-tän'), Fig. 123.
 Yukon (yōō/kōn), 151, 203.
 Zurich (tsū'rīk), 242.

FIG. 268.

The home of a typical Piute Indian family.

MAY 27 1910

LIBRARY OF CONGRESS

0 029 708 039 8