THOMAS MODEL EQUATION

$$\frac{C_t}{C_0} = \frac{1}{1 + \exp[K_T q_0 m/Q - K_T C_0 t]}$$

BH = 4 cm C0 = 100

YOON-NELSON MODEL EQUATION

$$q = \frac{C0 * EXP[Kyn * (t - 2)]}{1 + EXP[Kyn * (t - 2) * C0]}$$

Q= 8 mL/min C0 =100mg/l

BH Kyn T

4 0.0352738 236.88009

8 0.0299557 355.09164

12 0.0367358 442.1088

BH= 4 cm, Co = 100mg/l

Q kyn T

4 0.0275173 410.67131

8 0.0352738 236.88009

12 0.0725263 107.69923

BH=4 cm, Q = 8 ml/min

C0 Kyn T

50 0.0203881 404.89838

100 0.0352738 236.88009

150 0.0891755 98.342058

DOSE-RESPONSE MODEL EQUATION

$$q=1-\big[\frac{1}{1+\big(\frac{CoQt}{q0m}\big)^{\wedge}\alpha}$$

Q= 8 mL/min C0 =100mg/l

BH α q0 or No R2

4 3.4077957 20143.275 #REF!

8 5.8835702 19802.404 #REF!

12 11.761802 21020.969 #DIV/0!

BH= 4 cm, Co = 100mg/l

Q α q0 or No R2

4 6.9259379 24068.914 #DIV/0!

8 3.4077957 20143.275 #REF!

12 2.6444962 12377.18 **#VALUE!**

BH=4 cm, Q = 8 ml/min

C0 α q0 or No R2

50 3.9674517 20251.858 #DIV/0!

100 3.4077957 20143.275 #REF!

150 3.3466101 11897.86 0.9961

pollutant	sorbent	bed hieght Co (mg	ı/L)	Ct (mg/L)	bed mass	t (min)	рН	$V_{ ext{eff}}$	
Cd2+	NCF	2	25	0			0		0
		2	25	0.3			5	1	15
		2	25	0.6			10	3	30
		2	25	1.1			15	4	1 5
		2	25	1.8			20	6	50
		2	25	2.3			30	9	90
		2	25	3.3			40	12	20
		2	25	3.9			50	15	50
		2	25	5.1			60	18	30
		2	25	6.3			70	21	0
		2	25	6.5			80	24	10
		2	25	6.6			90	27	70
		2	25	6.6		1	00	30	00
		2	25	6.7		1	40	42	20

Ni2+

U ZU 4U 0U 8U 1UU 1ZU 14U 10U

Ct/ Co	Q	(ml/min) CR	
()	3	25
0.012	2	3	24.7
0.024	1	3	24.4
0.044	1	3	23.9
0.072	2	3	23.2
0.092	2	3	22.7
0.132	2	3	21.7
0.156	5	3	21.1
0.204	1	3	19.9
0.252	2	3	18.7
0.26	5	3	18.5
0.264	1	3	18.4
0.264	1	3	18.4
0.268	3	3	18.3

Effect of bed height variations on Co(II) ions adsorption by the synthesized nanocellulosic adsorbents

BH=12 cm				BH=8 cm					
t (min)	qexp	A	AUC	t (min)	qexp	AUC		BH=4 cm	
	0	0	0	0	0	0	t (min)	qexp	AUC
	20	0	0	20	0	0	0	0	0
	30	0	0	30	0	0	10	0	0
	40	0	0	40	0	0	15	0	0
	50	0	0	50	0	0	20	0	0
	60	0	0	60	0	0	25	0	0.075
	80	0	0	70	0	0	40	0.01	3.75
1	00	0	0	80	0	0.175	70	0.24	7.37
1	40	0	0	115	0.01	1.125	92	0.43	8.91
1	80	0	0.5	140	0.08	5.7	110	0.56	12.6
2	230	0.02	1.25	170	0.3	9.875	130	0.7	23.25
2	255	0.08	3.625	195	0.49	8.175	160	0.85	17.3
2	280	0.21	3.315	210	0.6	13.1	180	0.88	8.85
2	293	0.3	2.275	230	0.71	15.1	190	0.89	8.95
3	800	0.35	6.3	250	0.8	16.5	200	0.9	18.1
3	315	0.49	12.87	270	0.85	12.9	220	0.91	
3	37	0.68	12.58	285	0.87	13.275			
3	354	8.0	6.56	300	0.9	18.1			109.155
3	862	0.84	6.84	320	0.91		AOC=70.84	15; qt=0.566	8;
3	370	0.87	4.4				qe=0.1416	9; mt=1.552;	R=36.52%
3	375	0.89	4.475			114.025			
3	880	0.9	18.1		AOC=155.9	8, qt=1.248			
4	100	0.91			qe=0.1560;	mt=2.328			
					R=53.61%				
			00.00						

83.09 AOC=258.9, qt=2.0712, qe=0.2589, mt=2.949; R=70.23%

Effect of different flow rates on Co(II) ion adsorption

	fr4ml/	min/		fr8ml/min				fr12ml/min		
t (min)	qexp	AUC	t (min)	qex	p AUC	t (min)	qexp	A	AUC	
	0	0	0	0	0	0	0	0	0	
	20	0	0	10	0	0	10	0	0.4	
	30	0	0	15	0	0	20	0.08	2	
	40	0	0	20	0	0	30	0.32	8.46	
	50	0	0	25	0	0.075	48	0.62	8.16	
	60	0	0	40	0.01	3.75	60	0.74	20	
	90	0	0.6	70	0.24	7.37	85	0.86	13.125	
	150	0.02	9.3	92	0.43	8.91	100	0.89	17.9	
	210	0.29	9.25	110	0.56	12.6	120	0.9	9.05	

0 0.91	130	23.25	0.7	130	13.5	0.45	235
		17.3	0.85	160	13.7	0.63	260
		8.85	0.88	180	7.65	0.74	280
905; qt=0.3467	40C=28.905	8.95	0.89	190	8.1	0.79	290
mt=1.397; R	r	18.1	0.9	200	12.75	0.83	300
			0.91	220	4.375	0.87	315
					8.85	0.88	320
		109.155			8.95	0.89	330
					18.1	0.9	340
	3;	5; qt=0.566	AOC=70.84	A		0.91	360
qe=0.14169; mt=1.552;							
			R=36 52%		115 125		

115.125 R=36.52%

AOC=190.875; qt=0.7635; qe=0.1909; mt=1.3192; R=58%

Effect of different initial concentrations for Co(II) ion adsorption

BH=4g	50mg	/			100mg/l			150mg/l	
t (min)	qexp		AUC	t (min)	qexp	AUC	t (min)	qexp	AUC
	0	0	0	0	0	0	0	0	0
	10	0	0	10	0	0	10	0	0.025
	22	0	0	15	0	0	15	0.01	1.05
	30	0	0	20	0	0	25	0.2	5.1
	41	0	0	25	0	0.075	40	0.48	5.85
	50	0	0	40	0.01	3.75	50	0.69	7.6
	60	0	0.1	70	0.24	7.37	60	0.83	8.55
	80	0.01	0.6	92	0.43	8.91	70	0.88	4.425
1	00	0.05	8.525	110	0.56	12.6	75	0.89	17.9
1	55	0.26	22	130	0.7	23.25	95	0.9	13.575
2	10	0.54	18	160	0.85	17.3	110	0.91	
2	40	0.66	29	180	0.88	8.85			64.075
2	.80	0.79	16.2	190	0.89	8.95	AOC=21.42	25; qt=0.171	4; qe=0.042
3	00	0.83	16.9	200	0.9	18.1	mt=0.988;	R=17.34	
3	20	0.86	17.4	220	0.91				
3	40	0.88	26.7						
3	70	0.9	18.1			109.155			
3	90	0.91							
			170 505		400 70 04	F 0 FCC	0.		

AOC=70.845; qt=0.5668; 173.525

AOC=159.475; qt=1.2758; qe=0.3190; qe=0.14169; mt=1.552;

mt=2.2792; R=56% R=36.52%

t (min)	qexp		AUC	t (min)	qexp	AUC	t (min)	qexp	AUC
	0	0	0	0	0	0	0	0	0
	20	0	0	20	0	0	10	0	0.4
	40	0	0	30	0	0	20	0.08	2
	50	0	0	40	0	0.05	30	0.32	8.46
	60	0	0	50	0.01	0.6	48	0.62	8.16
	70	0	0.05	60	0.11	4.3	60	0.74	20
	80	0.01	1	80	0.32	6.72	85	0.86	13.125
1	00	0.09	2.25	96	0.52	5.13	100	0.89	17.9
1	15	0.21	4.275	105	0.62	12.155	120	0.9	9.05
1	30	0.36	4.1	122	0.81	8.35	130	0.91	
1	40	0.46	14.75	132	0.86	5.22			79.095
1	65	0.72	12	138	0.88	4.425			
1	80	0.88	4.425	143	0.89	6.265	AOC=28.90	5; qt=0.346	7; qe=0.087
1	85	0.89	4.475	150	0.9	22.625		mt=1.397; F	R=24.82%
1	90	0.9	4.525	175	0.91				
1	95	0.91	51.85			75.84			

AOC=119.1;

AOC=59.16 qt=0.71, qe=0.1775, mt= 1.746, R=41%

qt= 1.43, qe=0.3573, mt=2.1534; R= 66.41%

Summary of fixed bed adsorption parameters for Co(II) ion removal by raw NFC, MNFC and MF/MNFC @ C0 (mg/L) tb (min) te (min) Adsorbent tym (g) H (cm) Q (ml/min) $q_{total}(mg)$ $q_{e}(mg/g)$ C-NFC 4 4 8 100 40 200 0.5668 0.1416 C-NFC 8 8 8 100 300 1.248 115 0.156 12 12 8 C-NFC 100 220 380 2.0712 0.2589 C-NFC 4 4 4 100 340 0.7635 0.1909 135 C-NFC 4 4 12 100 15 120 0.3467 0.0872 C-NFC 4 4 8 150 15 95 0.1714 0.0426 C-NFC 4 4 8 80 370 1.2758 50 0.319 4 MF-NFC 4 12 100 20 130 0.4764 0.1191 **CMNFC** 4 4 12 100 150 0.71 0.1775 50 MF-MNFC 4 4 12 100 80 185 1.43 0.3573

:6

t (min)	qexp		AUC
()	0	0
10)	0	0.15
25	5	0.02	6.25
50)	0.48	15.375
75	5	0.75	15.9
95	5	0.84	12.825
110)	0.87	8.8
120)	0.89	8.95
130)	0.9	9.05
140)	0.91	
			77.3
	qt=0.	4764;	qe=0.1191
2	R=31	.16%	mt=1.5288

different operating conditions

m _{total} (mg)	%R (mass%)
1.522	36.52
2.328	53.61
2.949	70.23
1.3192	58
1.397	28.84
0.988	17.34
2.279	56
1.5288	31.16
1.746	41
2.1534	66.41

THOMAS MODEL PARAMETERS FOR $\operatorname{Co}(II)$ ION ADSORPTION AT DIFFERENT BED HEIGHTS

	BH=4g			
t (min)	qexp	qcalc	SSE	SSEA
0	0	0.022966334	0.000527453	0.172759
10	0	0.032365735	0.001047541	0.172759
15	5 0	0.038368852	0.001472169	0.172759
20	0	0.045433133	0.00206417	0.172759
25	5 0	0.053725388	0.002886417	0.172759
40	0.01	0.087900754	0.006068528	0.1645461
70	0.24	0.217324429	0.000514182	0.0308504
92	0.43	0.376295075	0.002884219	0.0002061
110	0.56	0.532360777	0.000763927	0.020839
130	0.7	0.697432204	6.59358E-06	0.080859
160	0.85	0.86913286	0.000366066	0.1886662
180	0.88	0.930783603	0.002578974	0.2156276
190	0.89	0.950335602	0.003640385	0.2250147
200	0.9	0.964574824	0.004169908	0.2346019
		0.415642827	0.028990531	2.0250058

t (min)	qexp	q	calc	SSE	SSEA
()	0	0.00239556	5.73871E-06	0.1063609
20)	0 (0.004352523	1.89445E-05	0.1063609
30)	0 (0.005863742	3.43835E-05	0.1063609
40)	0 (0.007895504	6.2339E-05	0.1063609
50)	0 (0.010623738	0.000112864	0.1063609
60)	0 (0.014281125	0.000203951	0.1063609
70)	0 (0.019173223	0.000367612	0.1063609
80)	0 (0.025697454	0.000660359	0.1063609
115	5 0.0	1	0.06998625	0.00359835	0.0999383
140	0.0	8 (0.137285343	0.003281611	0.0605801
170	0.	3 (0.281027885	0.000359941	0.0006828
19	5 0.4	.9	0.45252085	0.001404687	0.0268533
210	0.	6 (0.564350218	0.001270907	0.0750047
230	0.7	'1 (0.702229842	6.03754E-05	0.147356
250	0.	8 (0.811079742	0.000122761	0.2245526
270	0.8	5 (0.886566952	0.001337142	0.2744395
28	5 0.8	7 (0.924524451	0.002972916	0.2957943
300	0.	9 (0.950489749	0.002549215	0.3293265
		(0.326130231	0.018424096	2.3854155

BH=12 cm

t (min)	qexp	(qcalc	SSE	SSEA
()	0	8.84121E-06	7.8167E-11	0.086618
20)	0	1.84328E-05	3.39768E-10	0.086618
30)	0	2.66152E-05	7.0837E-10	0.086618
40)	0	3.84297E-05	1.47684E-09	0.086618
50)	0	5.54883E-05	3.07895E-09	0.086618
60)	0	8.01185E-05	6.41897E-09	0.086618
80)	0	0.000167024	2.7897E-08	0.086618
100)	0	0.000348164	1.21218E-07	0.086618
140)	0	0.001511633	2.28503E-06	0.086618
180)	0	0.006537665	4.27411E-05	0.086618
230	0.	02	0.039664688	0.0003867	0.0752456
255	5 0.	80	0.093772077	0.00018967	0.0459285
280	0.	21	0.205866082	1.70893E-05	0.0071081
293	3 (0.3	0.294742778	2.76384E-05	3.238E-05
300	0.	35	0.350849266	7.21252E-07	0.0031015
315	5 0.	49	0.483938085	3.67468E-05	0.0382949
337	7 0.	68	0.677852458	4.61194E-06	0.1487573
354	1 (9.8	0.797126425	8.25743E-06	0.2557231
362	2 0.	84	0.840548852	3.01239E-07	0.2977784
370	0.	87	0.876121624	3.74743E-05	0.3314198
375	5 0.	89	0.8947197	2.22756E-05	0.3548474
380) (0.9	0.91080986	0.000116853	0.3668612
			0.294309287	0.000893527	2.7912776

THOMAS MODEL PARAMETERS FOR Co(II) ADSORPTION AT DIFFERENT FLOW RATES Sum of the fr4ml/min

t (min)	qexp	(qcalc	SSE	SSEA
	0	0	0.001235154	1.52561E-06	0.1695126
2	20	0	0.002139623	4.57798E-06	0.1695126
3	30	0	0.002815449	7.92675E-06	0.1695126
4	10	0	0.00370395	1.37192E-05	0.1695126
į	50	0	0.004871477	2.37313E-05	0.1695126
(50	0	0.006404654	4.10196E-05	0.1695126
Ġ	90	0	0.014502923	0.000210335	0.1695126
15	50	0.02	0.071241205	0.002625661	0.1534439
2	10	0.29	0.285618646	1.91963E-05	0.0148155
23	35	0.45	0.443039564	4.84477E-05	0.0014654
26	50	0.63	0.612798074	0.000295906	0.0476466

280	0.74	0.732908305	5.02921E-05 0.1077684
290	0.79	0.78323149	4.58127E-05 0.1430964
300	0.83	0.826320059	1.3542E-05 0.1749589
315	0.87	0.877881804	6.21228E-05 0.2100214
320	0.88	0.891881692	0.000141175 0.219287
330	0.89	0.915697699	0.000660372 0.2287526
340	0.9	0.934651964	0.001200759 0.2384182
		0.411719096	0.005466121 2.7262626

fr12ml/min

t (min)	qexp	(qcalc	SSE	SSEA
	0	0	0.034695062	0.001203747	0.0012037
	10	0	0.070735885	0.005003565	0.0012037
	20	0.08	0.138831013	0.003461088	0.0020525
	30	0.32	0.254524227	0.004287077	0.0813989
	48	0.62	0.56859116	0.002642869	0.3425819
	60	0.74	0.764334744	0.00059218	0.4974551
	85	0.86	0.954895081	0.009005076	0.6811282
1	00	0.89	0.984905573	0.009007068	0.7315465
1	20	0.9	0.996594776	0.009330551	0.7487526
			0.529789725	0.044533221	3.0873233

	50mg/	1			
t (min)	qexp	(qcalc	SSE	SSEA
()	0	0.012148493	0.000147586	0.6462267
10)	0	0.014907654	0.000222238	0.6462267
22	2	0	0.019041662	0.000362585	0.6462267
30)	0	0.022402458	0.00050187	0.6462267
4	1	0	0.027984686	0.000783143	0.6462267
50)	0	0.033536985	0.001124729	0.6462267
60)	0	0.040952507	0.001677108	0.6462267
80) (0.01	0.060734039	0.002573943	0.6302491
100) (0.05	0.089182222	0.001535247	0.5683385
15	5	0.26	0.23458597	0.000645873	0.295808
210) (0.54	0.489619387	0.002538206	0.0696339
240) (0.66	0.641267894	0.000350892	0.0207021
280) (0.79	0.803882297	0.000192718	0.0001927
300) (0.83	0.861245221	0.000976264	0.0006821
320) (0.86	0.903836994	0.001921682	0.0031492
340) (0.88	0.934351473	0.002954083	0.0057939

370	C).9	0.963664128	0.004053121	0.0092386
			0.361961416	0.001327135	0.3604338
	150mg/	/			
t (min)	qexp	(qcalc	SSE	SSEA
0		0	0.022776533	0.00051877	0.2652827
10		0	0.053796489	0.002894062	0.2652827
15	0.	01	0.081556686	0.005120359	0.2550816
25	C	0.2	0.178045381	0.000482005	0.0992603
40	0.	48	0.45213602	0.000776401	0.0012289
50	0.	69	0.668119299	0.000478765	0.0306054
60	0.	83	0.830816684	6.66973E-07	0.0991897
70	0.	88	0.922952915	0.001844953	0.1331841
75	0.	89	0.949262933	0.003512095	0.140583
95	C).9	0.991097664	0.008298784	0.1481818
			0.51505606	0.023926863	1.4378803

THOMAS MODEL PARAMETERS FOR Co(II) ADSORPTION WITH MODIFIED NANOCELLULOSE ADSOR MNFC

t (min)	qexp	qcalo	C	SSE	SSEA
C)	0.0	05307722	2.81719E-05	0.1917853
20) (0.0	15532577	0.000241261	0.1917853
30) (0.0	26413624	0.00069768	0.1917853
40) (0.0	44572068	0.001986669	0.1917853
50	0.0	1 0.0	74261629	0.004129557	0.1831267
60	0.1	1 0.13	21218391	0.000125852	0.1075401
80	0.3	2 0.2	89701695	0.000917987	0.0139082
96	0.5	2 0.4	92614085	0.000749988	0.006735
105	0.6	2 0.6	12611616	5.45882E-05	0.0331484
122	2 0.8	1 0.7	98958287	0.000121919	0.1384339
132	0.8	6 0.8	72344701	0.000152392	0.1781406
138	0.8	8 0.9	04398692	0.000595296	0.1954232
143	0.8	9 0.9	25401764	0.001253285	0.2043646
150	0.9	9 0.9	47725162	0.002277691	0.2135059
		0.4	37933001	0.013332338	3 2.0414677

MF-MNFC

t (min) qexp qcalc SSE SSEA 0 0 0.000773343 5.98059E-07 0.0942707

0	0.00209887	4.40526E-06 0.0942707
0	0.00568346	3.23017E-05 0.0942707
0	0.009334906	8.71405E-05 0.0942707
0	0.015296206	0.000233974 0.0942707
0	0.02496846	0.000623424 0.0942707
0.01	0.040505194	0.000930567 0.08823
0.09	0.102917763	0.000166869 0.0471044
0.21	0.195384086	0.000213625 0.0094159
0.36	0.339487663	0.000420756 0.0028052
0.46	0.458669896	1.76918E-06 0.0233982
0.72	0.747250341	0.000742581 0.1705398
0.88	0.862216204	0.000316263 0.3282884
0.89	0.889314702	4.69634E-07 0.3398477
0.9	0.911629866	0.000135254 0.351607
	0.307035397	0.003909997 1.926861
	0 0 0 0 0.01 0.09 0.21 0.36 0.46 0.72 0.88 0.89	0 0.00568346 0 0.009334906 0 0.015296206 0 0.02496846 0.01 0.040505194 0.09 0.102917763 0.21 0.195384086 0.36 0.339487663 0.46 0.458669896 0.72 0.747250341 0.88 0.862216204 0.89 0.889314702 0.9 0.911629866

KTH q0	0.000353 21265.04
R^2	0.985684
m	4
C0	100
n	14
p	2
Q	8

KTH q0	0.0003 20135.92
R^2	0.992276
m	8
C0	100
n	18
Q	8
p	2

KTH q0	0.000367 21116.63
R^2	0.99968
m	12
C0	100
Q	8
n	23
n	2

KTH	0.000275
q0	24331.61
R^2	0.997995
m	4
C0	100
Q	4
р	2
n	18

KTH q0	0.00075 13296.18
R^2	0.985575
m	4
C0	100
Q	12
n	9
р	2

KTH q0	0.000415 21200.17 0
R^2	0.996318
11 2	0.7700.10
m	4
C0	50
Q	8
n	12
p	2

KTH q0	0.000594 12646.08
R^2	0.98336
m	4
Q	8
C0	150
n	10
р	2

≀BENTS

KTH q0	0.000542 28963.52
R^2	0.993469
m Q CO	4 12 100 14
p	2

q0	42994.43
R^2	0.997971
m	4
C0	100
Q	12
n	15
р	2

300 350 400

е				
			•	
				qexp qcalc
0	80	90	100	

THOMAS MODEL EQUATION

$$\frac{C_t}{C_0} = \frac{1}{1 + \exp[K_T q_0 m/Q - K_T C_0 t]}$$

BH = 4 cm C0 = 100

BH=4 cm Q= 8 mg/L

C-MNFC AND MF-MNFC

C-MNFC

BH = 4 cm, C0 = 100mg/L, Flow rate = 12 mL/min
$$K_T$$
 q0 0.0005421 28963.521

MF-MNFC

BH = 4 cm, C0 = 100mg/L, Flow rate = 12 mL/min
$$K_T$$
 q0 0.0005 42994.43

ERROR FUNCTIONS

Sum of the Squares of the Errors (ERRSQ /SSE)

t (min)	qexp	qcalc	SSE	SSEA	
	0	0 0.0229277	0.000525678	0.000525678	
	10	0 0.03231	0.001043935	0.000525678	
	15	0 0.0383021	0.001467052	0.000525678	
	20	0 0.0453535	0.002056936	0.000525678	
	25	0 0.0536305	0.002876234	0.000525678	SSE
	40	0.01 0.0877443	0.006044172	0.000167125	
	70	0.24 0.2169632	0.000530696	0.047120393	
	92	0.43 0.3757669	0.002941231	0.165707876	
•	110	0.56 0.5317746	0.000796672	0.28844668	
•	130	0.7 0.696911	9.54207E-06	0.45842693	
	160	0.85 0.8688322	0.000354652	0.684048627	
	180	0.88 0.9306059	0.002560956	0.734572966	
	190	0.89 0.9502027	0.003624364	0.751814413	
:	200	0.9 0.9644766	0.004157236	0.769255859	
		0.4154144	0.028989356	3.90218926	

Marquardt's Percent Standard Deviation (MPSD)

t (min)	qexp	qcalc	qex-qca/qex	error		
	0	0 0.0229277	0	0.000525678		
	10	0 0.03231	0	0.001043935		
	15	0 0.0383021	0	0.001467052		
	20	0 0.0453535	0	0.002056936	MPSD	0.9001938
	25	0 0.0536305	0	0.002876234		
	40	0.01 0.0877443	60.44172404	0.006044172		
	70	0.24 0.2169632	0.009213464	0.000530696		
	92	0.43 0.3757669	0.015907146	0.002941231		
•	110	0.56 0.5317746	0.002540407	0.000796672		
•	130	0.7 0.696911	1.94736E-05	9.54207E-06 0.0009724		
	160	0.85 0.8688322	0.000490868	0.000354652		
	180	0.88 0.9306059	0.003307019	0.002560956		
	190	0.89 0.9502027	0.004575639	0.003624364		
:	200	0.9 0.9644766	0.00513239	0.004157236		
		5.46	60.48291044	0.028989356		

The Sum of Absolute Errors (SAE)

t (min)	qexp	qcalc	abs(qex-qca)	error	
	0	0 0.0293675	0.029367464	0.000862448	
	10	0 0.0405509	0.040550863	0.001644373	
	15	0 0.0475764	0.0475764	0.002263514	
	20	0 0.0557484	0.055748403	0.003107884	
	25	0 0.0652279	0.065227945	0.004254685	SAE (ObF
	40	0.01 0.1033053	0.093305259	0.008705871	
	70	0.24 0.238985	0.001014981	1.03019E-06	
	92	0.43 0.3958269	0.034173117	0.001167802	
	110	0.56 0.5445766	0.015423371	0.00023788	
	130	0.7 0.7	3.43781E-09	1.18185E-17	
	160	0.85 0.8641357	0.014135663	0.000199817	
	180	0.88 0.9254348	0.045434787	0.00206432	
	190	0.89 0.9454657	0.055465709	0.003076445	
:	200	0.9 0.9603462	0.06034617	0.00364166	
			0.557770137		

Hybrid Fractional Error Function (HYBRID)

t (min)	qexp	qcalc	qex-qca/qex	er	ror
. ,	0	0 0.0033817	(0	1.14356E-05
	10	0 0.0058293	(0	3.39804E-05
	15	0 0.0076488	(0	5.85046E-05
	20	0 0.0100306	(0 (0.000100613
	25	0 0.0131442	(0 (0.000172771
	40	0.01 0.0293674	0.037509587	7 (0.000375096
	70	0.24 0.1350403	0.045902223	3 (0.011016534
	92	0.43 0.3421465	0.017949408	8 (0.007718246
	110	0.56 0.581961	0.000861224	4 (0.000482286
	130	0.7 0.8060895	0.016078534	4 (0.011254973
	160	0.85 0.9554577	0.013083916	6 (0.011121329
	180	0.88 0.9846281	0.012439809	9 (0.010947032
	190	0.89 0.9910464	0.01147233	3 (0.010210374
	200	0.9 0.994799	0.009985389	9	0.00898685
			0.16528242	1	

Average Relative Error (ARE)

t (min)	qexp	qcalc	qex-qca/qex	errors		
` ,	0	0 0.0345143		0.00119124		
	10	0 0.0469067	0	0.00220024		
	15	0 0.0545935	0	0.002980454	AR	E 0.109531
	20	0 0.0634561	0	0.004026683		
	25	0 0.0736454	0	0.005423649		
	40	0.01 0.1138063	0	0.010775739		
	70	0.24 0.2509928	0.002097946	0.000120842		
	92	0.43 0.4037235	0.003734205	0.000690455		
	110	0.56 0.546241	0.000603669	0.00018931		
	130	0.7 0.6952762	4.55403E-05	2.23147E-05		
	160	0.85 0.8561922	5.30698E-05	3.83429E-05		
	180	0.88 0.9185963	0.00192365	0.001489675		
	190	0.89 0.9395242	0.003096387	0.002452648		
	200	0.9 0.9553334	0.003779987	0.003061789		
			0.015334454	•		

BH=8g Sum of the Squares of the Errors (ERRSQ /SSE)

qexp	qcalc	SSE	·		
0	0 0.0023941	5.7318E-06			
20	0 0.0043499	1.89215E-05			
30	0 0.0058602	3.43417E-05			
40	0 0.0078907	6.22631E-05		SSE	0.018424
50	0 0.0106173	0.000112726			
60	0 0.0142724	0.000203702			
70	0 0.0191615	0.000367165			
80	0 0.0256818	0.000659557			
115	0.01 0.0699451	0.003593416			
140	0.08 0.1372098	0.003272956			
170	0.3 0.2808974	0.000364909			
195	0.49 0.4523593	0.00141682			
210	0.6 0.564189	0.001282427			
230	0.71 0.7020917	6.25414E-05			
250	0.8 0.8109777	0.000120511			
270	0.85 0.8864995	0.001332214			
	0 20 30 40 50 60 70	0 0 0.0023941 20 0 0.0043499 30 0 0.0058602 40 0 0.0078907 50 0 0.0106173 60 0 0.0142724 70 0 0.0191615 80 0 0.0256818 115 0.01 0.0699451 140 0.08 0.1372098 170 0.3 0.2808974 195 0.49 0.4523593 210 0.6 0.564189 230 0.71 0.7020917 250 0.8 0.8109777	0 0 0.0023941 5.7318E-06 20 0 0.0043499 1.89215E-05 30 0 0.0058602 3.43417E-05 40 0 0.0078907 6.22631E-05 50 0 0.0106173 0.000112726 60 0 0.0142724 0.000203702 70 0 0.0191615 0.000367165 80 0 0.0256818 0.000659557 115 0.01 0.0699451 0.003593416 140 0.08 0.1372098 0.003272956 170 0.3 0.2808974 0.000364909 195 0.49 0.4523593 0.00141682 210 0.6 0.564189 0.001282427 230 0.71 0.7020917 6.25414E-05 250 0.8 0.8109777 0.000120511	0 0 0.0023941 5.7318E-06 20 0 0.0043499 1.89215E-05 30 0 0.0058602 3.43417E-05 40 0 0.0078907 6.22631E-05 50 0 0.0106173 0.000112726 60 0 0.0142724 0.000203702 70 0 0.0191615 0.000367165 80 0 0.0256818 0.000659557 115 0.01 0.0699451 0.003593416 140 0.08 0.1372098 0.003272956 170 0.3 0.2808974 0.000364909 195 0.49 0.4523593 0.00141682 210 0.6 0.564189 0.001282427 230 0.71 0.7020917 6.25414E-05 250 0.8 0.8109777 0.000120511	0 0 0.0023941 5.7318E-06 20 0 0.0043499 1.89215E-05 30 0 0.0058602 3.43417E-05 40 0 0.0078907 6.22631E-05 50 0 0.0106173 0.000112726 60 0 0.0142724 0.000203702 70 0 0.0191615 0.000367165 80 0 0.0256818 0.000659557 115 0.01 0.0699451 0.003593416 140 0.08 0.1372098 0.003272956 170 0.3 0.2808974 0.000364909 195 0.49 0.4523593 0.00141682 210 0.6 0.564189 0.001282427 230 0.71 0.7020917 6.25414E-05 250 0.8 0.8109777 0.000120511

285	0.87 0.9244774	0.002967786
300	0.9 0.9504578	0.002545993
		0.018423982

The Sum of Absolute Errors (SAE)

THE SU	IIII OI AD	solute Ellois (S	AC)		
t (min)	qexp	qcalc	abs-errors		
	0	0 0.0030371	0.003037085		
	20	0 0.0054204	0.005420424		
	30	0 0.0072368	0.007236813		
	40	0 0.009656	0.009655966	SAE	0.4469254
	50	0 0.0128733	0.012873317		
	60	0 0.0171441	0.017144126		
	70	0 0.0227991	0.02279908		
	80	0 0.0302619	0.030261877		
1	115	0.01 0.0794959	0.069495931		
1	140	0.08 0.1515972	0.071597185		
1	170	0.3 0.2995117	0.000488324		
1	195	0.49 0.4694039	0.020596061		
2	210	0.6 0.5777917	0.022208252		
2	230	0.71 0.7100001	7.0192E-08		
2	250	0.8 0.8141272	0.014127185		
2	270	0.85 0.8868261	0.036826117		
2	285	0.87 0.9237888	0.053788845		
3	300	0.9 0.9493687	0.049368728		
			0.446925385		

Hybrid Fractional Error Function (HYBRID)

t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0002229	4.96905E-08		0	
	20	0 0.000515	2.65188E-07		0	
	30	0 0.0007826	6.12475E-07		0 HYBRID	0.9324437
	40	0 0.0011892	1.41417E-06		0	
	50	0 0.0018066	3.26386E-06		0	
	60	0 0.0027437	7.52806E-06		0	
	70	0 0.0041649	1.73465E-05		0	
	80	0 0.0063176	3.99116E-05		0	
•	115	0.01 0.0267977	0.000282162	0.02821624	43	

140	0.08 0.0727449	5.2637E-05	0.000657963
170	0.3 0.2160452	0.007048404	0.023494679
195	0.49 0.4398286	0.002517171	0.005137084
210	0.6 0.5954027	2.11353E-05	3.52255E-05
230	0.71 0.772758	0.003938564	0.005547273
250	0.8 0.88711	0.007588149	0.009485186
270	0.85 0.9478049	0.009565793	0.011253875
285	0.87 0.9714564	0.010293397	0.011831491
300	0.9 0.9845651	0.00715125	0.007945833
			0.103604853

Marquardt's Percent Standard Deviation (MPSD)

t (min)	qexp		qcalc	qex-qca/qex		error		
	0	0	1.926E-05		0	3.71054E-10		
	20	0	5.917E-05		0	3.50096E-09		
	30	0	0.0001037		0	1.07533E-08		
	40	0	0.0001817		0	3.30266E-08	MPSD	0.3914455
	50	0	0.0003185		0	1.01423E-07		
	60	0	0.000558		0	3.11402E-07		
	70	0	0.0009776		0	9.5576E-07		
	80	0	0.0017122		0	2.93158E-06		
1	15	0.01	0.0120769	0.04313410)3	4.31341E-06		
1	40	0.08	0.0473588	0.1664760)3	0.001065447		
1	70	0.3	0.2111358	0.08774271	8	0.007896845	0.0039227	
1	95	0.49	0.521171	0.00404677	71	0.00097163		
2	210	0.6	0.7163506	0.03760407	79	0.013537468		
2	230	0.71	0.8858154	0.06131932	26	0.030911072		
2	250	0.8	0.9597265	0.03986336	51	0.025512551		
2	270	0.85	0.9865232	0.02579734	13	0.01863858		
2	285	0.87	0.9941469	0.02036259	9	0.015412451		
3	800	0.9	0.997469	0.01172865	51	0.009500207		
		5.61		0.4980749	8	0.123454912		

Average Relative Error (ARE)

	fr4ml	/min					
t (min)	qexp	qcalc	error		qex-qca/qex		
	0	0	0.5	0.25	0		
	20	0	0.5	0.25	0		
	30	0	0.5	0.25	0	ARE	154.8353
	40	0	0.5	0.25	0		
	50	0	0.5	0.25	0		
	60	0	0.5	0.25	0		
	90	0	0.5	0.25	0		
1	50	0.02	0.5	0.2304	24		
2	210	0.29	0.5	0.0441	0.724137931		
2	235	0.45	0.5	0.0025	0.111111111		
2	260	0.63	0.5	0.0169	0.206349206		
2	280	0.74	0.5	0.0576	0.324324324		
2	290	0.79	0.5	0.0841	0.367088608		
3	300	0.83	0.5	0.1089	0.397590361		
3	315	0.87	0.5	0.1369	0.425287356		
3	320	0.88	0.5	0.1444	0.431818182		
3	30	0.89	0.5	0.1521	0.438202247		
3	340	0.9	0.5	0.16	0.44444444		
					27.87035377		

Sum of the Squares of the Errors (ERRSQ /SSE)

	-		•	•	
	fr4ml	/min			
t (min)	qexp	qcalc	SSE	SSEA	
	0	0 0.0012351	1.52554E-06	0.004026683	
	20	0 0.0021396	4.57774E-06	0.004026683	
	30	0 0.0028154	7.92629E-06	0.004026683	SSE
	40	0 0.0037038	1.37184E-05	0.004026683	
	50	0 0.0048713	2.37297E-05	0.004026683	
	60	0 0.0064044	4.10167E-05	0.004026683	
	90	0 0.0145023	0.000210317	0.004026683	
	150	0.02 0.0712376	0.002625289	0.001888437	
:	210	0.29 0.2856048	1.93176E-05	0.051322117	
:	235	0.45 0.4430215	4.86992E-05	0.149416149	
:	260	0.63 0.6127795	0.000296547	0.320971936	
:	280	0.74 0.7328921	5.05222E-05	0.457711583	
:	290	0.79 0.7832171	4.60081E-05	0.527865968	

300	0.83 0.8263076	1.36341E-05	0.587589477
315	0.87 0.8778721	6.19703E-05	0.650512985
320	0.88 0.8918729	0.000140965	0.666743862
330	0.89 0.9156905	0.000660001	0.683174739
340	0.9 0.9346461	0.001200354	0.699805616
		0.005466119	

The Sum of Absolute Errors (SAE)

Sum of the fr4ml/min

Outilion	ti ic iii T i iii,	/ 11 III 1				
t (min)	qexp	qcalc	error	qex-qca		
	0	0 0.0012213	1.49157E-06	0.0012213		
	20	0 0.0021227	4.50605E-06	0.002122746		
	30	0 0.0027979	7.82845E-06	0.002797937	SAE	0.1950069
	40	0 0.0036871	1.35947E-05	0.003687095		
	50	0 0.0048574	2.35948E-05	0.004857443		
	60	0 0.0063969	4.09203E-05	0.006396894		
	90	0 0.0145576	0.000211923	0.014557574		
•	150	0.02 0.0721658	0.002721267	0.052165763		
2	210	0.29 0.2905333	2.84388E-07	0.000533281		
2	235	0.45 0.4499992	6.00863E-13	7.75154E-07		
2	260	0.63 0.6204474	9.12514E-05	0.009552562		
2	280	0.74 0.7398415	2.51107E-08	0.000158464		
2	290	0.79 0.7895132	2.36951E-07	0.000486776		
3	300	0.83 0.8318565	3.44671E-06	0.001856533		
3	315	0.87 0.8822712	0.000150581	0.012271155		
3	320	0.88 0.8959059	0.000252997	0.015905864		
3	330	0.89 0.919041	0.000843382	0.029041035		
3	340	0.9 0.9373937	0.001398287	0.037393674		
				0.195006871		

Marquardt's Percent Standard Deviation (MPSD)

Sum of the fr4ml/min

t (min)	qexp	qcalc	error	qex-qca/qex			
	0	0 0.0259356	0.000672656		0		
	20	0 0.0259356	0.000672657		0		
	30	0 0.0259356	0.000672658		0		
	40	0 0.0259357	0.000672658		0	MPSD	7.9037989
	50	0 0.0259357	0.000672659		0		
	60	0 0.0259357	0.000672659		0		

90	0 0.0259357	0.000672661	0
150	0.02 0.0259358	3.52333E-05	0.088083372
210	0.29 0.0259358	0.069729886	0.829130624
235	0.45 0.0259359	0.179830398	0.888051347
260	0.63 0.0259359	0.364893458	0.919358675
280	0.74 0.0259359	0.509887534	0.931131363
290	0.79 0.0259359	0.583793928	0.935417286 0.0999521
300	0.83 0.0259359	0.646519039	0.938480242
315	0.87 0.0259359	0.712444138	0.941265872
320	0.88 0.0259359	0.729425411	0.941923309
330	0.89 0.025936	0.746606674	0.942566184
340	0.9 0.025936	0.763987937	0.943194984
	7.29	5.311862244	9.298603258

Sum of the fr4ml/min

t (min)	qexp	(qcalc	err0r		qex-qca/qex			
	0	0	0.0002496	6.2282	6E-08	0)		
	20	0	0.0004902	2.4033	6E-07	0)		
	30	0	0.0006871	4.7204	1E-07	0)		
	40	0	0.0009628	9.2698	31E-07	0)	HYBRID	0.2911593
	50	0	0.0013491	1.8199	8E-06	0)		
	60	0	0.00189	3.5721	2E-06	0)		
	90	0	0.0051883	2.6918	31E-05	0)		
1	50	0.02	0.0380561	0.0003	26024	0.016301182	<u> </u>		
2	10	0.29	0.2308293	0.0035	01176	0.012073022	<u> </u>		
2	35	0.45	0.4111145	0.001	51208	0.003360178	3		
2	:60	0.63	0.6189078	0.0001	23038	0.000195298	3		
2	.80	0.74	0.7613935	0.0004	57683	0.00061849)		
2	90	0.79	0.8172826	0.0007	44343	0.000942206	ò		
3	00	0.83	0.8624458	0.0010	52731	0.001268351			
3	15	0.87	0.9123218	0.0017	91134	0.002058774			
3	20	0.88	0.9249215	0.0020	17939	0.002293112	<u>)</u>		
3	30	0.89	0.945261	0.0030	53775	0.003431208	3		
3	40	0.9	0.9603267	0.0036	39306	0.004043673	}		
				0.018	25324	0.046585495	5		

flow rate = 12ml/l

Sum of the Squares of the Errors (ERRSQ /SSE)

•	-	\sim				•	
tr	• 1	٠,	m	11/	m	۱ır	١.
11	- 1	2		11/		ш	

	—	,			
t (min)	qexp	qcalc	error		
	0	0 0.0387664	0.001502834		
	10	0 0.0768157	0.005900657		
	20	0.08 0.1465181	0.00442466		
	30	0.32 0.2615494	0.003416472	SSE	0.0443
	48	0.62 0.5660391	0.002911784		
	60	0.74 0.7567239	0.00027969		
	85	0.86 0.9500462	0.008108318		
•	100	0.89 0.9825666	0.008568569		
•	120	0.9 0.9958491	0.009187047		
			0.044300031		

The Sum of Absolute Errors (SAE)

fr12ml/min

t (min)	qexp	qcalc	error	qex-qca		
	0	0 0.0338707	0.001147224	0.033870701		
	10	0 0.0679914	0.004622826	0.067991368		
	20	0.08 0.1317956	0.002682779	0.051795554	SAE	0.5860851
	30	0.32 0.2400529	0.006391534	0.079947068		
	48	0.62 0.5415603	0.006152794	0.078439748		
	60	0.74 0.74	3.40901E-16	1.84635E-08		
	85	0.86 0.9467448	0.007524656	0.086744776		
•	100	0.89 0.981605	0.008391484	0.091605046		
•	120	0.9 0.9956908	0.009156729	0.095690801		
			0.046070028	0.58608508		

Marquardt's Percent Standard Deviation (MPSD)

fr12ml/min

t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0120172	0.000144413	0		
	10	0 0.0334539	0.001119162	0		
	20	0.08 0.0896597	9.33103E-05	0.014579733	MPSD	2.207333
	30	0.32 0.2189096	0.010219271	0.099797568		

48	0.62 0.6480194	0.000785084	0.002042362
60	0.74 0.8659091	0.015853101	0.028950148
85	0.86 0.98879	0.016586858	0.022426796
100	0.89 0.9976437	0.011587175	0.014628424 0.0034106
120	0.9 0.9997084	0.009941766	0.012273785
	4.41	0.06633014	0.194698816

fr12ml/min

	11 1 211	11/ 1 1 111 1				
t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0227118	0.000515828	0		
	10	0 0.0519378	0.002697537	0		
	20	0.08 0.114371	0.001181366	0.014767072		
	30	0.32 0.2333791	0.007503179	0.023447433	ŀ	HYBRID
	48	0.62 0.5876386	0.001047259	0.001689127		
	60	0.74 0.7995107	0.003541521	0.004785839		
	85	0.86 0.9714476	0.012420558	0.014442509		
	100	0.89 0.9919446	0.010392708	0.0116772		
	120	0.9 0.9985408	0.00971028	0.0107892		
			0.049010234	0.08159838		

Marquardt's Percent Standard Deviation (MPSD

50mg/l

	001119	<i>,</i> .				
t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0001338	1.78966E-08	0		
	10	0 0.0002311	5.33974E-08	0		
	20	0 0.0003991	1.59297E-07	0		
	35	0 0.0009058	8.2039E-07	0	MPSD	1.7744145
	55	0 0.0026981	7.27998E-06	0		
	80	0 0.0105002	0.000110254	0		
•	100	0.03 0.0306956	4.83903E-07	0.00053767		
•	160	0.53 0.4570023	0.005328666	0.018969974		
•	180	0.66 0.7152317	0.003050537	0.007003069		
2	210	0.8 0.9283058	0.016462377	0.025722465 0.0031485		
2	240	0.88 0.9852401	0.011075481	0.014302016		
2	270	0.9 0.9971025	0.009428889	0.011640603		
		3.8	0.045465019	0.078175797		

The sum of the squares of the errors (SSE)

	50mg/l				
t (min)	qexp (qcalc	error		
0	0 (0.0032216	1.03786E-05		
10	0 (0.0045697	2.08822E-05		
20	0 (0.0064783	4.19682E-05		
35	0 (0.0109175	0.000119192	SSE	0.0221608
55	0	0.021784	0.000474543		
80	0 (0.0508235	0.002583028		
100	0.03 (0.0974943	0.004555478		
160	0.53 (0.4700813	0.003590245		
180	0.66 (0.6415359	0.000340922		
210	0.8 (0.8368287	0.001356351		
240	0.88	0.936291	0.003168676		
270	0.9 (0.9768057	0.005899119		
			0.022160783		

Sum of Absolute Errors (EABS/SAE)

	50mg/l			
t (min)	qexp	qcalc	error	qex-qca
	0	0 0.0006807	4.6342E-07	0.000680749
	10	0 0.0010587	1.12075E-06	0.001058657
	20	0 0.001646	2.70935E-06	0.001646009

35	0 0.003189	1.01699E-05	0.003189032	SAE	0.4005954
55	0 0.0076835	5.90367E-05	0.007683534		
80	0 0.0228406	0.000521692	0.022840577		
100	0.03 0.0535435	0.000554298	0.023543528		
160	0.53 0.4450758	0.007212112	0.084924157		
180	0.66 0.66	8.68279E-16	2.94666E-08		
210	0.8 0.8796496	0.006344056	0.079649583		
240	0.88 0.9649377	0.007214416	0.08493772		
270	0.9 0.9904419	0.008179732	0.090441872		
		0.030099807	0.400595448		

50	mg/l

	50mg	/I				
t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0003419	1.16909E-07	0		
	10	0 0.0005557	3.08756E-07	0		
	20	0 0.0009029	8.15206E-07	0		
	35	0 0.0018693	3.49428E-06	0	HYBRID	0.5153213
	55	0 0.0049238	2.4244E-05	0		
	80	0 0.0163949	0.000268793	0		
	100	0.03 0.0421819	0.000148398	0.004946597		
	160	0.53 0.4482087	0.006689821	0.012622304		
	180	0.66 0.682151	0.000490665	0.000743432		
2	210	0.8 0.9021242	0.010429348	0.013036685		
2	240	0.88 0.9753599	0.009093508	0.010333532		
2	270	0.9 0.9941521	0.00886462	0.009849577		
			0.036014133	0.051532128		

Sum of the Squares of the Errors (ERRSQ /SSE)

150mg/l

		9, .			
t (min)	qexp	qcalc	error		
()	0 0.0227378	0.000517009		
10)	0 0.0536953	0.002883184		
15	5	0.01 0.0813984	0.005097734	SSE	0.0239256

25	0.2 0.1776996	0.000497307
40	0.48 0.4514577	0.000814665
50	0.69 0.6674563	0.000508218
60	0.83 0.830361	1.30347E-07
70	0.88 0.9227045	0.001823677
75	0.89 0.9490887	0.003491469
95	0.9 0.9910613	0.008292162
	0.0227378	0.023925556

Sum of Absolute Errors (EABS/SAE)

150mg/l

	1 301	119/1		
t (min)	qexp	qcalc	error	qex-qca
	0	0 0.0277961	0.000772621	0.027796062
	10	0 0.0637257	0.004060965	0.063725704
	15	0.01 0.0950355	0.007231038	0.085035509
	25	0.2 0.2	1.90237E-17	4.36162E-09
	40	0.48 0.4786959	1.70078E-06	0.001304139
	50	0.69 0.6861288	1.49863E-05	0.003871214
	60	0.83 0.8388145	7.76946E-05	0.008814452
	70	0.88 0.9253101	0.002053006	0.045310105
	75	0.89 0.9502852	0.003634306	0.060285202
	95	0.9 0.9908532	0.008254302	0.090853189
		0.0277961	0.026100619	0.38699558

Hybrid Fractional Error Function (HYBRID)

150mg/l

		9					
t (min)	qexp	qcalc	error	qex-qca/qex			
	0	0 0.0037797	1.42859E-05	(0		
	10	0 0.0140601	0.000197686	(0		
	15	0.01 0.0269038	0.000285737	0.02857372	5		
	25	0.2 0.0941367	0.011207041	0.05603520	5	HYBRID	1.3382706

40	0.48 0.4309377	0.002407108	0.005014807
50	0.69 0.7400156	0.002501565	0.003625456
60	0.83 0.9145207	0.007143751	0.008606929
70	0.88 0.9757361	0.0091654	0.010415227
75	0.89 0.9873359	0.00947428	0.010645259
95	0.9 0.9990929	0.00981941	0.010910456
		0.052216264	0.133827065

Marquardt's Percent Standard Deviation (MPSD)

4	-	ma/l	ı
- 1	511	ma/i	ı
- 1	JU	i i iu/ i	ı

		<i>3</i> ,				
t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.000804	6.46417E-07	0		
	10	0 0.0046949	2.20418E-05	0		
	15	0.01 0.0112919	1.66893E-06	0.016689266	MPSD	0.0006024
	25	0.2 0.0627501	0.018837532	0.470938296		
	40	0.48 0.4872529	5.2604E-05	0.000228316		
	50	0.69 0.84781	0.024904005	0.05230835		
	60	0.83 0.9702883	0.019680818	0.028568469		
	70	0.88 0.9948036	0.013179868	0.017019457 0.0041277		
	75	0.89 0.9978472	0.011631024	0.014683783		
	95	0.9 0.9999372	0.009987449	0.012330184		
		4.88	0.098297658	0.612766121		

Sum of the Squares of the Errors (ERRSQ /SSE)

MNFC					
t (min)	qexp	qcalc	error		
	0	0 0.0053056	2.81494E-05		
	20	0 0.0155258	0.00024105		
	30	0 0.0264016	0.000697046		
	40	0 0.0445513	0.001984817	SSE	0.0133323
	50	0.01 0.0742266	0.004125055		
	60	0.11 0.1211618	0.000124586		
	80	0.32 0.2895835	0.000925163		
	96	0.52 0.4924619	0.000758348		
•	105	0.62 0.6124625	5.68141E-05		
	122	0.81 0.7988515	0.00012429		
	132	0.86 0.8722682	0.000150509		

138	0.88 0.9043382	0.000592348
143	0.89 0.9253527	0.001249815
150	0.9 0.9476892	0.002274261
		0.013332251

Sum of Absolute Errors (EABS/SAE)

			•	•		
MNFC						
t (min)	qexp		qcalc	error	(qex-qca
	0	0	0.0050511	2.55132E	-05	0.005051062
	20	0	0.0150155	0.0002254	466	0.015015511
	30	0	0.0257366	0.0006623	374	0.02573662
	40	0	0.0437724	0.0019160)27	0.043772443
	50	0.01	0.073494	0.0040314	194	0.063494044
	60	0.11	0.1208462	0.0001176	541	0.010846245
	80	0.32	0.2921655	0.0007747	762	0.02783454
	96	0.52	0.4986876	0.0004542	218	0.02131238
	105	0.62	0.62	1.54794E	-16	1.24416E-08
	122	0.81	0.8059907	1.60742E	-05	0.00400926
	132	0.86	0.8780339	0.00032	522	0.018033861
	138	0.88	0.9091918	0.000852	163	0.029191835
	143	0.89	0.9294777	0.0015584	493	0.039477749
	150	0.9	0.9508994	0.002590	075	0.050899414
				0.013550	194	0.354674977

Marquardt's Percent Standard Deviation (MPSD)

iviai que	Marquarut's Fercent Standard Deviation (MF3D)							
MNFC								
t (min)	qexp	qcalc	error	qex-qca/qex				
	0	0 7.251E-05	5.25708E-09	0				
	20	0 0.0005631	3.17109E-07	0				
	30	0 0.0015682	2.45912E-06	0				
	40	0 0.0043591	1.90017E-05	0		MPSD	1.6362988	
	50	0.01 0.0120572	4.23222E-06	0.042322243				
	60	0.11 0.032901	0.005944252	0.491260514				
	80	0.32 0.2090813	0.012302953	0.120146021				
	96	0.52 0.5768336	0.003230057	0.011945477				
1	05	0.62 0.7742444	0.023791339	0.061892142				
1	22	0.81 0.9514416	0.020005726	0.030491886	0.003213			
1	32	0.86 0.9820204	0.014888976	0.020131119				

138	0.88 0.9901995	0.012143926	0.015681723
143	0.89 0.9941068	0.010838234	0.013682912
150	0.9 0.9971159	0.009431505	0.011643833
	5.92	0.112602984	0.81919787

FC

IVIIVI						
t (min)	qexp	qcalc	error	qex-qac/qex		
	0	0 0.0007236	5.23598E-07	0		
	20	0 0.0032307	1.04376E-05	0		
	30	0 0.0068106	4.63843E-05	0		
	40	0 0.0143003	0.000204498	0	HYBRID	1.0436266
	50	0.01 0.0297795	0.000391228	0.039122831		
	60	0.11 0.0609775	0.002403206	0.021847331		
	80	0.32 0.2252033	0.008986417	0.028082553		
	96	0.52 0.4908492	0.000849768	0.00163417		
	105	0.62 0.6542615	0.001173854	0.001893312		
	122	0.81 0.8712158	0.003747373	0.004626386		
	132	0.86 0.9346931	0.005579056	0.006487274		
	138	0.88 0.9573337	0.005980493	0.006796015		
	143	0.89 0.9702702	0.00644331	0.007239674		
	150	0.9 0.9821893	0.006755079	0.007505643		
			0.042571629	0.125235192		

Sum of the Squares of the Errors (ERRSQ /SSE)

MF-MNFC

IVIT-IVIINEC	,						
t (min)	qexp	q	calc	error			
	0	0 0	.0007733	5.97924E-0	07		
2	0	0 0	.0020986	4.40431E-0	06		
4	0	0 0	.0056829	3.22951E-0	05		
5	0	0	0.009334	8.71233E-0	05	SSE	0.00391
6	0	0 0	.0152947	0.00023392	29		
7	0	0 0	.0249662	0.0006233	31		
8	0	0.01 0	.0405016	0.0009303	35		
10	0	0.09 0	.1029098	0.00016666	54		
11	5	0.21 0	.1953712	0.00021400	01		
13	0	0.36 0	.3394703	0.0004214	1 7		
14	0	0.46 0	.4586513	1.81896E-0	06		
16	5	0.72 0	.7472375	0.00074188	32		

180	0.88 0.8622086	0.000316533
185	0.89 0.8893086	4.78096E-07
190	0.9 0.9116249	0.000135139
		0.003909996

Sum of Absolute Errors (EABS/SAE)

MF-MNFC

IVII IVII N	1 0						
t (min)	qexp		qcalc	error	qex-qca		
	0	0	0.000773	6 5.98417E	-07 0.000773	3574	
	20	0	0.00210	1 4.41425E	E-06 0.002101	1011	
	40	0	0.005693	3 3.24139E	E-05 0.005693	3324	
	50	0	0.009354	4 8.75047E	E-05 0.009354	1395	SAE
	60	0	0.015333	4 0.000235	113 0.0153	3334	
	70	0	0.025037	4 0.000626	871 0.025037	7391	
	80	0.01	0.040629	3 0.000938	154 0.030629	9307	
•	100	0.09	0.103279	4 0.000176	343 0.013279	9429	
•	115	0.21	0.196085	0.000193	625 0.013914	1911	
•	130	0.36	0.340608	6 0.000376	028 0.019391	1429	
•	140	0.46	0.4	6 1.31493E	-15 3.6262	E-08	
•	165	0.72	0.748430	6 0.000808	301 0.028430	0628	
•	180	0.88	0.863022	1 0.000288	248 0.016977	7855	
•	185	0.89	0.8	9 1.75012E	-15 4.18344	E-08	
•	190	0.9	0.912205	0.000148	966 0.012205	5142	
					0.193121	1876	
			SSE =	0.003916	<mark>579</mark>		

Marquardt's Percent Standard Deviation (MPSD

MF-MNFC

	. •					
t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 2.561E-05	6.55901E-10	0		
	20	0 0.0001195	1.42916E-08	0		
	40	0 0.0005578	3.11187E-07	0		
	50	0 0.0012045	1.45085E-06	0		
	60	0 0.0025989	6.75413E-06	0	MPSD	1.5657952
	70	0 0.0055983	3.13412E-05	0		
	80	0.01 0.0120178	4.07158E-06	0.040715818		
•	100	0.09 0.0537342	0.001315205	0.16237101		
•	115	0.21 0.1527916	0.003272803	0.074213212		
•	130	0.36 0.3641792	1.74655E-05	0.000134764		

140	0.46 0.5530817	0.008664201	0.04094613
165	0.72 0.8946488	0.030502203	0.058839126 0.0031872
180	0.88 0.9642477	0.00709767	0.00916538
185	0.89 0.975396	0.007292471	0.009206503
190	0.9 0.9831288	0.006910401	0.00853136
	4.52		0.404123302
	SUM =	0.065116363	

	_		N I	_	\sim
IVI	F-	IVI	IИ	Г	U

t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0002275	5.17775E-08	0		
	20	0 0.0007386	5.45501E-07	0		
	40	0 0.0023946	5.73393E-06	0	HYBRID	0.3947974
	50	0 0.0043069	1.85496E-05	0		
	60	0 0.0077347	5.98258E-05	0		
	70	0 0.0138527	0.000191896	0		
	80	0.01 0.0246893	0.000215775	0.021577515		
1	00	0.09 0.0759633	0.000197029	0.002189213		
1	15	0.21 0.1658834	0.00194627	0.009267954		
1	30	0.36 0.3248275	0.001237104	0.003436401		
1	40	0.46 0.4643776	1.91635E-05	4.16598E-05		SUM ERR
1	65	0.72 0.7907786	0.00500961	0.006957792		
1	80	0.88 0.9014143	0.000458573	0.000521105		
1	85	0.89 0.9246666	0.001201775	0.00135031		
1	90	0.9 0.9427828	0.001830368	0.002033742		
				0.047375693		
			0.012392272			

Summary of Thomas parameters for Co (II) ion adsorption at Bed height of 4 cm.

rror functic/(mg.min)N0 (mg/L))jective function

SSE	0.000353 21278.27	0.028989
HYB	0.000547 20790.35	1.377354
MPSD	0.000353 21265.04	4.915058
ARE	0.00032 20839.59	0.109532
SAE	0.000334 20930.28	0.55777
R2	0.0004 21265.04	0.9857

at bed height of 8 cm

rror function	ر(mg.min)	N0 (mg/L)ɔj	ective function
SSE	0.0003	20138.1	0.018424
HYB	0.000419	20077.5	0.932444
MPSD	0.000561	19348.99	17.64361
ARE	0.00042	20077.5	2.9071
SAE	0.000291	19921.33	0.446925
R2	0.0003	20135.92	0.9923
R2/12cm	0.0004	2116.63	0.9997

at flow rate of 4 mL/min

rror funct	tic/(mg.min)N0 (mg/L)ɔje	ective function
SSE	0.000275 24331.89	0.005466
HYB	0.000338 24564.11	0.291159
MPSD	0.000202 17913.63	70.23403
ARE	0.00034 24564.1	15.8353
SAE	0.000277 24224.85	0.195007
R2	0.0003 24331.61	0.998

at flow rate of 12 mL/min

rror functic/(mg.min)N0 (mg/L))jective function			
SSE	0.000724	13299.37	0.0443
HYB	0.000858	13160.81	1.165691
MPSD	0.001046	12649.1	16.67756
ARE	0.00086	13160.8	0.9769
SAE	0.000733	13717.84	0.586085
R2	0.0008	13296.16	0.9856

at 50 mg/L initial concentration

rror functic/(mg.min)N0 (mg/L))jective function		
SSE	0.000702 16341.43	3 0.022161
HYB	0.000972 16427.98	3 0.515321
MPSD	0.001093 16315.39	8.841708
ARE	0.00097 16428	3.9134
SAE	0.000884 16499.13	0.400595
R2	0.0007 16336.79	0.9873

at 150 mg/L initial concentration

rror functic/(mg.min)N0 (mg/L))jective function

SSE	0.000594 12655.48	0.023926
HYB	0.000883 12629.93	1.338271
MPSD	0.001179 12086.51	13.2753
ARE	0.00088 12629.9	4.2009
SAE	0.000578 12294.93	0.387
R2	0.0006 12646.08	0.9834

For C-MNFC adsorbent [4 cm, 12 mL/min, 100mg/L]

rror functic/(mg.min)N0 (mg/L))jective function

noi ramou	, ,	. , , , , , , , , , , , , , , , , , , ,	sourc ramouon
SSE	0.000542	28966.9	0.013332
HYB	0.000749	28946.55	1.043627
MPSD	0.001025	27893.45	26.12786
ARE	0.00075	28946.6	8.9811
SAE	0.00055	28828.65	0.354675
R	0.000542	28963.52	

for MF-MNFC adsorbent [4 cm, 12 mL/min, 100mg/L]

rror functic/(mg.min)N0 (mg/L))jective function

SSE	0.0005 42994.87	0.00391
HYB	0.000589 42727.06	0.394797
MPSD	0.00077 41170.06	17.63134
ARE	0.00059 42727.1	0.8768
SAE	0.0005 42961.59	0.193122

KTH 0.0003527 q0 21278.27

0.0289894

m 4 C0 100 n 14 p 2 Q 8

KTH 0.0003527 q0 21265.039

m 4 C0 100 n 14 p 2 Q 8

KTH	0.0003343
q0	20930.281

0.5577701

m	4
C0	100
n	14
p	2
Q	8

KTH	0.000547
q 0	20790.354

m	4
C0	100
n	14
p	2
Q	8

KTH	0.0003197
a0	20839.591

m	4
C0	100
n	14
p	2
Q	8

KTH	0.0002995
q0	20138.101

m	8
C0	100
n	18
Q	8
p	2

KTH	0.0002908
a 0	19921.33

m	8
C0	100
n	18
Q	8
p	2

KTH	0.0004188
q0	20077.499

8
100
18
8

p 2

KTH	0.0005611
q0	19348.993

m 8 C0 100 n 18 Q 8 p 2

KTH	0
q0	40582.466
m	4
C0	100
Q	4
p	2
n	18

KIH	0.0002/52
q0	24331.887
m	4
C0	100
Q	4
p	2
n	18

KTH	0.0002768
q0	24224.85

m	4
C0	100
Q	4
p	2
n	18

KTH	0.0002024
q0	17913.626

m	4
C0	100

Q	4
p	2
n	18

KTH	0.0003377
q0	24564.108

m	4
C0	100
Q	4
p	2
n	18

KTH	0.0007242
q0	13299.369

m	4
C0	100
Q	12
n	9
p	2

KTH	0.0007328
q0	13717.841
R^2	0.9213936
m	4
C0	100
Q	12
n	9
р	2

KTH	0.0010458
q0	12649.096
R^2	0.6593192

m	4
C0	100
Q	12
n	9
p	2

KTH	0.0008575
q0	13160.806

m	4
C0	100
Q	12
n	9
p	2

KTH	0.0010933
q0	16315.392

m	4
C0	50
Q	8
n	12
р	2

KTH	0.0007019
a0	16341.432

m	4
C0	50
Q	8
n	12
р	2

KTH 0.0008839 q0 16499.132

m	4
C0	50
Q	8
n	12
D	2

KTH	0.0009716
a0	16427.983

m	4
C0	50
Q	8
n	12
p	2

KTH 0.0005943 q0 12655.477

m	4
Q	8
CC	150
n	10
р	2

KTH q0	0.0005782 12294.926
R^2	0.9325558
m	4
Q	8
C0	150
n	10
p	2

KTH	0.0008827
q0	12629.933

m	4
Q	8
C0	150
n	10
p	2

KTH	0.001179
q 0	12086.512

m	4	
Q	8	
C0	150	
n	10	
p	2	

KTH	0.000542
q0	28966.898

m	4
Q	12
C0	100
n	14
р	2

KTH	0.0005498
a 0	28828.646

m	4	
Q	12	
C0	100	
n	14	
р	2	

KTH	0.0010252
q0	27893.446

m	4
Q	12
C0	100
n	14
p	2

KTH	0.0007494
a0	28946.552

m	4
Q	12
C0	100
n	14
р	2

KTH	0.0004999
q0	42994.874

4	
100	
12	
15	
2	
	100 12 15

KTH	0.0005002
q0	42961.592
R^2	1
m	4
C0	100
Q	12
n	15
р	2

KTH	0.0007704
q0	41170.056

m	4
C0	100
Q	12
n	15
D	2

KTH	0.0005889
q0	42727.056
R^2	1
m	4
C0	100
Q	12
n	15
р	2

0.0123923

YOON NELSON KINETIC MODEL PARAMETERS FOR Co(II) ION ADSORPTION AT DIFFERENT BED-F

	BH=4g			
t (min)	qexp	qcalc	SSE	SSEA
0	0	0.02296639	0.000527455	0.1727593
10	0	0.03236582	0.001047546	0.1727593
15	0	0.03836895	0.001472176	0.1727593
20	0	0.04543325	0.00206418	0.1727593
25	0	0.05372553	0.002886432	0.1727593
40	0.01	0.08790099	0.006068564	0.1645464
70	0.24	0.21732499	0.000514156	0.0308505
92	0.43	0.37629591	0.00288413	0.0002061
110	0.56	0.53236171	0.000763875	0.0208389
130	0.7	0.69743305	6.58924E-06	0.0808588
160	0.85	0.86913336	0.000366085	0.1886658
180	0.88	0.9307839	0.002579004	0.2156272
190	0.89	0.95033582	0.003640412	0.2250144
200	0.9	0.96457499	0.004169929	0.2346015
		0.41564319	0.028990534	2.025006

	BH=8g				
t (min)	qexp	qcalc	SSE		SSEA
() (0.00239	529 5.7	73743E-06	0.1063612
20) (0.00435	5209 1.8	39407E-05	0.1063612
30) (0.00586	319 3	.4377E-05	0.1063612
40) (0.00789	481 6.2	23281E-05	0.1063612
50) (0.01062	2287 0.0	00112845	0.1063612
60) (0.01428	8005 0.	00020392	0.1063612
70) (0.01917	'189 O.O	00367561	0.1063612
80) (0.02569	583 0.0	00660276	0.1063612
115	0.0°	1 0.06998	335 0.0	03598002	0.0999386
140	0.0	3 0.1372	2818 0.0	03281204	0.0605803
170	0.3	3 0.28102	2537 0.0	00360036	0.0006828
195	0.49	9 0.45252	2139 0.0	01404646	0.0268531
210	0.0	5 0.5643	3529 0.0	01270716	0.0750044
230	0.7	1 0.70223	3457 6.0)3019E-05	0.1473556
250	0.8	3 0.81108	3499 0.0	00122877	0.2245521
270	0.8	5 0.88657	'157 O.	00133748	0.274439
285	0.8	7 0.92452	2827 0.0	02973332	0.2957938
300	0.9	9 0.95049	274 0.0	02549516	0.3293259
		0.32613	0.0	18424098	2.3854158

	BH=12g			
t (min)	qexp	qcalc	SSE	SSEA
0	0	8.8413E-06	7.81694E-11	0.0866176
20	0	1.8433E-05	3.39778E-10	0.0866176
30	0	2.6616E-05	7.08388E-10	0.0866176
40	0	3.843E-05	1.47688E-09	0.0866176
50	0	5.5489E-05	3.07902E-09	0.0866176
60	0	8.0119E-05	6.41911E-09	0.0866176
80	0	0.00016703	2.78975E-08	0.0866176
100	0	0.00034817	1.2122E-07	0.0866176
140	0	0.00151164	2.28506E-06	0.0866176
180	0	0.00653768	4.27413E-05	0.0866176
230	0.02	0.03966464	0.000386698	0.0752452
255	0.08	0.09377183	0.000189663	0.0459282
280	0.21	0.20586532	1.70956E-05	0.007108
293	0.3	0.29474161	2.76506E-05	3.239E-05
300	0.35	0.35084788	7.18894E-07	0.0031015
315	0.49	0.4839363	3.67685E-05	0.0382951
337	0.68	0.67785055	4.62012E-06	0.1487578
354	0.8	0.79712482	8.26666E-06	0.2557237
362	0.84	0.84054745	2.99697E-07	0.297779
370	0.87	0.87612042	3.74596E-05	0.3314205
375	0.89	0.89471863	2.22654E-05	0.3548482
380	0.9	0.9108089	0.000116832	0.366862
		0.29430867	0.000893527	2.7912776

YOON NELSON KINETIC MODEL PARAMETER FOR $\operatorname{Co}(II)$ ION ADSORPTION AT DIFFERENT FLOW FLOW RATES

t (min)	qexp		qcalc	SSE	SSEA
	0	0	0.00123507	1.52541E-06	0.1695139
	20	0	0.0021395	4.57745E-06	0.1695139
	30	0	0.00281529	7.92587E-06	0.1695139
	40	0	0.00370376	1.37178E-05	0.1695139
	50	0	0.00487124	2.37289E-05	0.1695139
	60	0	0.00640436	4.10158E-05	0.1695139
	90	0	0.01450239	0.000210319	0.1695139
1	50	0.02	0.07123998	0.002625536	0.1534451
2	10	0.29	0.2856187	1.91958E-05	0.0148159
2	35	0.45	0.44304156	4.84199E-05	0.0014653
2	60	0.63	0.61280184	0.000295777	0.0476459
2	.80	0.74	0.73291264	5.02307E-05	0.1077673
2	90	0.79	0.78323577	4.57547E-05	0.1430953
3	00	0.83	0.82632413	1.3512E-05	0.1749576

315	0.87 0.87788535	6.21787E-05	0.21002
320	0.88 0.89188503	0.000141254	0.2192856
330	0.89 0.91570061	0.000660521	0.2287511
340	0.9 0.93465446	0.001200932	0.2384167
	0.41172065	0.005466122	2.726263

	fr12m	nl/min			
t (min)	qexp		qcalc	SSE	SSEA
	0	0	0.03894574	0.001516771	0.2824557
	10	0	0.07722958	0.005964409	0.2824557
	20	0.08	0.14737564	0.004539477	0.2038212
	30	0.32	0.26307036	0.003240984	0.0447177
	48	0.62	0.56841894	0.002660606	0.0078383
	60	0.74	0.75872821	0.000350746	0.0434866
	85	0.86	0.95068143	0.008223121	0.1079349
	100	0.89	0.98282158	0.008615845	0.1285469
	120	0.9	0.9959189	0.009200436	0.1358176
			0.5314656	0.044312394	1.2370746

 $YOON\,\,NELSON\,KINETIC\,MODEL\,\,PARAMETERS\,FOR\,\,Co(II)\,ION\,\,ADSORPTION\,\,AT\,\,DIFFERENT\,\,INITI,$

BH=4g	50mg/l			
t (min)	qexp	qcalc	SSE	SSEA
C) (0.01282938	0.000164593	0.1298294
10) (0.01568527	0.000246028	0.1298294
22	2 (0.01994626	0.000397853	0.1298294
30) (0.02339727	0.000547432	0.1298294
41	(0.02910832	0.000847294	0.1298294
50) (0.03476711	0.001208752	0.1298294
60) (0.04229722	0.001789055	0.1298294
80	0.01	0.06226587	0.002731721	0.122723
100	0.05	0.09076828	0.001662053	0.0962976
155	0.26	0.23452363	0.000649045	0.0100638
210	0.54	0.4846064	0.003068451	0.0322855
240	0.66	0.63414732	0.000668361	0.089809
280	0.79	0.79666453	4.44159E-05	0.1846262
300	0.83	0.85487247	0.00061864	0.2206007
320	0.86	0.89853962	0.001485302	0.2496816
340	0.88	0.93014152	0.002514172	0.2700689
370	0.9	0.96085346	0.003703143	0.2912562
		0.36031847	0.022346312	2.4762183

150mg/l SSE t (min) **SSEA** qexp qcalc 0 10 15 25 40 0.48 0.45213477 0.000776471 0.0012289 50 0.69 0.66812266 0.000478618 0.0306054 60 0.83 0.83082166 6.75119E-07 0.0991896 70 0.88 0.92295687 0.001845292 0.133184 75 0.89 0.9492661 0.00351247 0.1405829 95 0.9 0.9910986 0.008298955 0.1481818 0.51505612 0.023926864 1.4378803

YOON-NELSON MODEL PARAMETERS FOR Co(II) ION ADSORPTION FOR THE MODIFIED NANOCE

	MNFC			
t (min)	qexp	qcalc	SSE	SSEA
() (0.00530721	2.81665E-05	0.1917847
20) (0.01553137	0.000241223	0.1917847
30) (0.02641183	0.000697585	0.1917847
40) (0.04456949	0.001986439	0.1917847
50	0.0	1 0.07425809	0.004129102	0.183126
60	0.1	1 0.12121388	0.000125751	0.1075396
80	0.3	2 0.28969672	0.000918289	0.013908
96	0.5	2 0.49261169	0.00075012	0.0067351
105	0.6	2 0.61261129	5.45931E-05	0.0331487
122	0.8	1 0.79896055	0.000121869	0.1384344
132	0.80	5 0.87234729	0.000152455	0.1781412
138	0.88	8 0.90440117	0.000595417	0.1954239
143	0.89	9 0.92540406	0.001253447	0.2043652
150	0.9	9 0.94772712	0.002277878	0.2135066
		0.43793227	0.013332336	2.0414673

MF+MNFC

t (min) qexp qcalc SSE SSEA

0 0.00077321	5.97847E-07 0.0942713
0 0.00209855	4.40393E-06 0.0942713
0 0.00568276	3.22937E-05 0.0942713
0 0.00933388	8.71214E-05 0.0942713
0 0.01529474	0.000233929 0.0942713
0 0.02496641	0.000623322 0.0942713
0.01 0.04050244	0.000930399 0.0882306
0.09 0.10291369	0.000166763 0.0471048
0.21 0.1953803	0.000213736 0.009416
0.36 0.33948674	0.000420794 0.0028052
0.46 0.45867219	1.76308E-06 0.0233979
0.72 0.74725838	0.000743019 0.170539
0.88 0.86222364	0.000315999 0.3282874
0.89 0.88932152	4.60341E-07 0.3398467
0.9 0.91163598	0.000135396 0.351606
0.3070363	0.003909997 1.9268612
	0 0.00209855 0 0.00568276 0 0.00933388 0 0.01529474 0 0.02496641 0.01 0.04050244 0.09 0.10291369 0.21 0.1953803 0.36 0.33948674 0.46 0.45867219 0.72 0.74725838 0.88 0.86222364 0.89 0.88932152 0.9 0.91163598

HEIGHTS

KYN	0.0352738
τ	236.88009
R^2	0.9856837
C0	100
m	4
Q	8
n	14
р	2

KYN τ	0.0299557 355.09164
R^2	0.9922764
CO m Q n	100 8 8 18 2
۲	_

KYN τ	0.0367358 442.1088
R^2	0.9996799
C0	100
m	12
Q	8
n	23
р	2

RATES

KYN τ	0.027517 410.6713
R^2	0.997995
m	4
Q	4
C0	100
n	19
p	2

KYN τ	0.072526 107.6992
R^2	0.9641797
CO	100
Q	12
m	4

AL SOLUTE CONCENTRATION

KYN τ	0.020388 404.8984
R^2	0.9909756
C0	50
Q	8
m	4
р	2
n	17

KYN τ	0.089176 98.34206
R^2	0.9833596
C0 Q	150 8
m	4
p	2
n	10

LLULOSIC ADSORBENTS

KYN τ	0.054206 181.5015
R^2	0.9934692
CO Q	100 12
m	4
n	14
p	2

KYN τ	0.049989 235.4376
R^2	0.9979708
CO Q	100 12
m	4
n	15
p	2

200 300 400 t (min)

YOON-NELSON MODEL EQUATION

$$q = \frac{C0 * EXP[Kyn * (t - 2)]}{1 + EXP[Kyn * (t - 2) * C0]}$$

Q= 8 mL/min C0 =100mg/l

BH Kyn T

4 0.0352738 236.88009

8 0.0299557 355.09164

12 0.0367358 442.1088

BH= 4 cm, Co = 100mg/l

Q kyn T

4 0.0275173 410.67131

8 0.0352738 236.88009

12 0.0725263 107.69923

BH=4 cm, Q = 8 ml/min

C0 Kyn T

50 0.0203881 404.89838

100 0.0352738 236.88009

150 0.0891755 98.342058

YOON-NELSON ERROR FUNCTIONS

Sum of the Squares of the Errors (ERRSQ /SSE)

	BH=4	g					
t (min)	qexp	(qcalc	error			
	0	0	0.022966389	0.0005275			
	10	0	0.032365816	0.0010475			
	15	0	0.038368949	0.0014722	SSE	0.0289905	
	20	0	0.04543325	0.0020642			
	25	0	0.053725528	0.0028864			
	40	0.01	0.087900989	0.0060686			
	70	0.24	0.217324988	0.0005142			
	92	0.43	0.376295908	0.0028841			
•	110	0.56	0.532361713	0.0007639			
•	130	0.7	0.697433048	6.589E-06			
•	160	0.85	0.869133356	0.0003661		SUM	0.0289905
•	180	0.88	0.930783899	0.002579			
•	190	0.89	0.950335824	0.0036404			
2	200	0.9	0.96457499	0.0041699			
			0.415643189	0.0289905			

Sum of Absolute Errors (EABS/SAE)

Guill	JI Absolu	C LII	OIS (LADO/O	~-)			
	BH=4	g					
t (min)	qexp		qcalc	error	qex-qca		
	0	0	0.022966389	0.0005275	0.022966389		
	10	0	0.032365816	0.0010475	0.032365816		
	15	0	0.038368949	0.0014722	0.038368949	SA	AE
	20	0	0.04543325	0.0020642	0.04543325		
	25	0	0.053725528	0.0028864	0.053725528		
	40	0.01	0.087900989	0.0060686	0.077900989		
	70	0.24	0.217324988	0.0005142	0.022675012		
	92	0.43	0.376295908	0.0028841	0.053704092		
	110	0.56	0.532361713	0.0007639	0.027638287		
	130	0.7	0.697433048	6.589E-06	0.002566952		
	160	0.85	0.869133356	0.0003661	0.019133356		
	180	0.88	0.930783899	0.002579	0.050783899		
	190	0.89	0.950335824	0.0036404	0.060335824		
	200	0.9	0.96457499	0.0041699	0.06457499		
				0.0289905	0.572173332		

Marquardt's Percent Standard Deviation (MPSD

BH=4g t (min) qexp qcalc error qex-qca/qex 0 0 0.000544503 2.965E-07 0 10 0 0.001166414 1.361E-06 0 15 0 0.001706786 2.913E-06 0 **MPSD** 2.0162675 0 0.002496874 6.234E-06 20 0 25 0 0.003651364 1.333E-05 0 40 0.01 0.011370032 1.877E-06 0.018769877 70 0.24 0.101741361 0.0191155 0.331865475 92 0.43 0.377385602 0.0027683 0.014971741 110 0.56 0.705105343 0.0210556 0.067141456 130 0.7 0.916568096 0.0469017 0.095717837 0.0048784 160 0.85 0.990841938 0.0198365 0.027455296 180 0.88 0.997992383 0.0139222 0.017978051 190 0.89 0.999062387 0.0118946 0.015016544 $0.9 \ \ 0.999562359 \ 0.0099127 \ \ 0.012237856$ 200 5.46 **0.145433 0.601154132**

Hybrid Fractional Error Function (HYBRID)

•	BH=4	a	`	•			
+ (min)		y	goolo	orror	gov good/gov		
t (min)	qexp		qcalc	error	qex-qeca/qex		
	0	0	0.022966389	0.0005275	0		
	10	0	0.032365816	0.0010475	0		
	15	0	0.038368949	0.0014722	0	HYBRID	0.0081038
	20	0	0.04543325	0.0020642	0		
	25	0	0.053725528	0.0028864	0		
	40	0.01	0.087900989	0.0060686	0.606856408		
	70	0.24	0.217324988	0.0005142	0.002142317		
	92	0.43	0.376295908	0.0028841	0.006707278		
1	10	0.56	0.532361713	0.0007639	0.001364062		
1	30	0.7	0.697433048	6.589E-06	9.4132E-06		
1	60	0.85	0.869133356	0.0003661	0.000430689 0.0009725		
1	80	0.88	0.930783899	0.002579	0.002930687		
1	90	0.89	0.950335824	0.0036404	0.00409035		
2	200	0.9	0.96457499	0.0041699	0.004633255		
		5.46	SUM ERR=	0.0289905	0.629164459		

AVERAGE RELATIVE ERROR

BH=4 cm

t (min)	qexp	(qcalc	qex-qcal/qex		
	0	0	0.022966389	0		
	10	0	0.032365816	0		
	15	0	0.038368949	0		
:	20	0	0.04543325	0		
:	25	0	0.053725528	0	ARE	0.5124999
4	40	0.01	0.087900989	7.7900989		
-	70	0.24	0.217324988	0.0944792		
(92	0.43	0.376295908	0.1248932		
1	10	0.56	0.532361713	0.0493541		
1:	30	0.7	0.697433048	0.0036671		
10	60	0.85	0.869133356	0.0225098		
18	80	0.88	0.930783899	0.057709		
19	90	0.89	0.950335824	0.0677931		
20	00	0.9	0.96457499	0.07175		

Sum of the Squares of the Errors (ERRSQ /SSE) BH=8q

250	0.8	0.811084993	0.0001229
270	0.85	0.886571573	0.0013375
285	0.87	0.924528269	0.0029733
300	0.9	0.950492735	0.0025495
	,	SUM ERR=	0.0184241

Sum of Absolute Errors (EABS/SAE)

	BH=8	a	•	•	
t (min)		•	goolo	orror	gov goo
t (min)	qexp		qcalc	error	qex-qca
	0	0	0.00306178		0.00306178
	20	0	0.005460558		
	30	0	0.007287744		0.007287744
	40	0	0.009720358	9.449E-05	0.009720358
	50	0	0.012954371	0.0001678	0.012954371
	60	0	0.017245618	0.0002974	0.017245618
	70	0	0.022925362	0.0005256	0.022925362
	80	0	0.030417799	0.0009252	0.030417799
	115	0.01	0.079793893	0.0048712	0.069793893
	140	0.08	0.152006979	0.005185	0.072006979
	170	0.3	0.299957494	1.807E-09	4.25064E-05
	195	0.49	0.469713239	0.0004116	0.020286761
4	210	0.6	0.577965546	0.0004855	0.022034454
:	230	0.71	0.710001451	2.106E-12	1.45134E-06
:	250	0.8	0.814021377	0.0001966	0.014021377
	270	0.85	0.886685044	0.0013458	0.036685044
	285	0.87	0.923652563	0.0028786	0.053652563
;	300	0.9	0.949250182	0.0024256	0.049250182
				0.0199027	0.4468488

Marquardt's Percent Standard Deviation (MPSD)

	BH=8g							
t (min)	qexp	(qcalc	error	qex-qca/qex			
	0	0	1.92589E-05	3.709E-10		0		
	20	0	5.91589E-05	3.5E-09		0		
	30	0	0.000103682	1.075E-08		0	MPSD	1.5658928
	40	n	0.000181708	3 302F-08		0		

50	0	0.000318433	1.014E-07	0	
60	0	0.000557978	3.113E-07	0	
70	0	0.000977548	9.556E-07	0	
80	0	0.001712073	2.931E-06	0	
115	0.01	0.012076788	4.313E-06	0.043130486	
140	0.08	0.047360397	0.0010653	0.166459948	
170	0.3	0.211150072	0.0078943	0.087714552	
195	0.49	0.521202889	0.0009736	0.004055062	0.0039232
210	0.6	0.716381761	0.0135447	0.037624206	
230	0.71	0.885834364	0.0309177	0.06133252	
250	0.8	0.959735023	0.0255153	0.039867621	
270	0.85	0.986526571	0.0186395	0.025798622	
285	0.87	0.994148522	0.0154129	0.020363133	
300	0.9	0.997469776	0.0095004	0.011728836	
	5.61	SUM ERR=	0.1234724	0.498074987	

Hybrid Fractional Error Function (HYBRID)

BH=8g

t (min)	qexp		qcalc	error	qex-qca/qex		
	0	0	0.000222908	4.969E-08	0		
	20	0	0.000514954	2.652E-07	0		
	30	0	0.000782594	6.125E-07	0	HYBII	D 0.6475303
	40	0	0.001189172	1.414E-06	0		
	50	0	0.001806595	3.264E-06	0		
	60	0	0.002743707	7.528E-06	0		
	70	0	0.004164886	1.735E-05	0		
	80	0	0.006317542	3.991E-05	0		
	115	0.01	0.026797872	0.0002822	0.02821685		
	140	0.08	0.072745816	5.262E-05	0.00065779		
	170	0.3	0.21604909	0.0070478	0.023492518		
	195	0.49	0.439835975	0.0025164	0.00513557		
	210	0.6	0.59541096	2.106E-05	3.50988E-05		
	230	0.71	0.772765025	0.0039394	0.005548519		
	250	0.8	0.887114577	0.0075889	0.009486187		
	270	0.85	0.947807429	0.0095663	0.011254463		
:	285	0.87	0.971457934	0.0102937	0.011831853		
;	300	0.9	0.98456598	0.0071514	0.007946006		
			SUM ERR=	0.0485302	0.103604854		

	BH=8	g					
t (min)	qexp		qcalc	error	qex-qca/qex		
	0	0	0.000222908	4.969E-08	0		
	20	0	0.000514954	2.652E-07	0		
	30	0	0.000782594	6.125E-07	0	ARE	0.5906783
	40	0	0.001189172	1.414E-06	0		
	50	0	0.001806595	3.264E-06	0		
	60	0	0.002743707	7.528E-06	0		
	70	0	0.004164886	1.735E-05	0		
	80	0	0.006317542	3.991E-05	0		
•	115	0.01	0.026797872	0.0002822	0.016797872		
•	140	0.08	0.072745816	5.262E-05	0.007254184		
•	170	0.3	0.21604909	0.0070478	0.08395091		
•	195	0.49	0.439835975	0.0025164	0.050164025 0.1063221		
2	210	0.6	0.59541096	2.106E-05	0.00458904		
2	230	0.71	0.772765025	0.0039394	0.062765025		
2	250	8.0	0.887114577	0.0075889	0.087114577		
2	270	0.85	0.947807429	0.0095663	0.097807429		
2	285	0.87	0.971457934	0.0102937	0.101457934		
3	300	0.9	0.98456598	0.0071514	0.08456598		
		5.61			0.596466977		

Sum of Absolute Errors (EABS/SAE)

t (min)	qexp	(qcalc	error	qex-qca		
	0	0	1.00013E-05	1E-10	1.00013E-05		
	20	0	2.07057E-05	4.287E-10	2.07057E-05		
	30	0	2.97924E-05	8.876E-10	2.97924E-05		
	40	0	4.28666E-05	1.838E-09	4.28666E-05	SAE	0.0796647
	50	0	6.16779E-05	3.804E-09	6.16779E-05		
	60	0	8.87435E-05	7.875E-09	8.87435E-05		
	80	0	0.00018371	3.375E-08	0.00018371		
•	100	0	0.000380265	1.446E-07	0.000380265		
•	140	0	0.00162787	2.65E-06	0.00162787		
•	180	0	0.006940306	4.817E-05	0.006940306		
2	230	0.02	0.041321055	0.0004546	0.021321055		
2	255	0.08	0.096690193	0.0002786	0.016690193		

280	0.21	0.210000376	1.413E-13	3.7596E-07
293	0.3	0.299031232	9.385E-07	0.000968768
300	0.35	0.35498025	2.48E-05	0.00498025
315	0.49	0.487142708	8.164E-06	0.002857292
337	0.68	0.67896824	1.065E-06	0.00103176
354	0.8	0.79698937	9.064E-06	0.00301063
362	0.84	0.84005868	3.443E-09	5.86799E-05
370	0.87	0.875418997	2.937E-05	0.005418997
375	0.89	0.893943688	1.555E-05	0.003943688
380	0.9	0.909997031	9.994E-05	0.009997031
		SUM ERR =	0.0009731	0.079664657

Marquardt's Percent Standard Deviation (MPSD)

t (min)	qexp	(qcalc	error	qex-qca/qex		
	0	0	7.38404E-07	5.452E-13	0		
	20	0	1.8182E-06	3.306E-12	0		
	30	0	2.8531E-06	8.14E-12	0	MPSD	0.5052398
	40	0	4.47703E-06	2.004E-11	0		
	50	0	7.02528E-06	4.935E-11	0		
	60	0	1.10239E-05	1.215E-10	0		
	80	0	2.71443E-05	7.368E-10	0		
1	00	0	6.6836E-05	4.467E-09	0		
1	40	0	0.000405099	1.641E-07	0		
1	80	0	0.002451149	6.008E-06	0		
2	30	0.02	0.022844001	8.088E-06	0.020220851		
2	55	0.08	0.067259758	0.0001623	0.025361527		
2	.80	0.21	0.18195298	0.0007866	0.017837536		
2	.93	0.3	0.285478353	0.0002109	0.002343091 0.0005361		
3	00	0.35	0.353873223	1.5E-05	0.000122464		
3	15	0.49	0.518436355	0.0008086	0.003367873		
3	37	0.68	0.743645811	0.0040508	0.008760358		
3	54	8.0	0.861875116	0.0038285	0.005982078		
3	62	0.84	0.89947438	0.0035372	0.005013041		
3	70	0.87	0.927697282	0.003329	0.004398172		
3	75	0.89	0.941426968	0.0026447	0.003338888		
3	80	0.9	0.952682479	0.0027754	0.003426474		
		6.43	SUM ERROR=	0.0221634	0.100172352		

Hybrid Fractional Error Function (HYBRID)

t (min)	qexp		qcalc	error	qex-qca/qex		
0		0	3.61713E-06	1.308E-11	0		
20		0	7.98362E-06	6.374E-11	0		
30		0	1.18609E-05	1.407E-10	0		
40		0	1.76211E-05	3.105E-10	0	HYBRID	0.0585091
50		0	2.61787E-05	6.853E-10	0		
60		0	3.88921E-05	1.513E-09	0		
80		0	8.58379E-05	7.368E-09	0		
100		0	0.00018944	3.589E-08	0		
140		0	0.000922208	8.505E-07	0		
180		0	0.004476687	2.004E-05	0		
230		0.02	0.03152029	0.0001327	0.006635854		
255		80.0	0.080508989	2.591E-07	3.23838E-06		
280		0.21	0.190647748	0.0003745	0.001783379		
293		0.3	0.282683038	0.0002999	0.000999591		
300		0.35	0.342068224	6.291E-05	0.000179752		
315		0.49	0.484928505	2.572E-05	5.24899E-05		
337		0.68	0.692233734	0.0001497	0.000220094		
354		8.0	0.815106894	0.0002282	0.000285273		
362		0.84	0.858176651	0.0003304	0.000393322		
370		0.87	0.892536293	0.0005079	0.000583775		
375		0.89	0.910098886	0.000404	0.000453893		
380		0.9	0.925032338	0.0006266	0.000696242		
			SUM ERROR=	0.0031637	0.012286904		

t (min)	qexp	C	qcalc	error	qex-qca/qex			
	0	0	3.61713E-06	1.308E-11		0		
	20	0	7.98362E-06	6.374E-11		0		
	30	0	1.18609E-05	1.407E-10		0		
	40	0	1.76211E-05	3.105E-10		0	ARE	0.7603764
	50	0	2.61787E-05	6.853E-10		0		
	60	0	3.88921E-05	1.513E-09		0		
	80	0	8.58379E-05	7.368E-09		0 0.0271985		
1	100	0	0.00018944	3.589E-08		0		
1	140	0	0.000922208	8.505E-07		0		
1	180	0	0.004476687	2.004E-05		0		
2	230	0.02	0.03152029	0.0001327	0.0115202	29		

255	0.08	0.080508989 2.591E-07	0.000508989
280	0.21	0.190647748 0.0003745	0.019352252
293	0.3	0.282683038 0.0002999	0.017316962
300	0.35	0.342068224 6.291E-05	0.007931776
315	0.49	0.484928505 2.572E-05	0.005071495
337	0.68	0.692233734 0.0001497	0.012233734
354	0.8	0.815106894 0.0002282	0.015106894
362	0.84	0.858176651 0.0003304	0.018176651
370	0.87	0.892536293 0.0005079	0.022536293
375	0.89	0.910098886 0.000404	0.020098886
380	0.9	0.925032338 0.0006266	0.025032338
	6.43		0.174886561

Sum of Absolute Errors (EABS/SAE)

FLOW RATES

	0 11 20						
t (min)	qexp		qcalc	error	qex-qca		
	0	0	0.001270499	1.614E-06	0.001270499		
	20	0	0.002200776	4.843E-06	0.002200776		
	30	0	0.002895852	8.386E-06	0.002895852	SAE	
	40	0	0.003809616	1.451E-05	0.003809616		
	50	0	0.005010264	2.51E-05	0.005010264		
	60	0	0.006586809	4.339E-05	0.006586809		
	90	0	0.014911784	0.0002224	0.014911784		
,	150	0.02	0.073129445	0.0028227	0.053129445		
:	210	0.29	0.29140166	1.965E-06	0.00140166		
	235	0.45	0.449999919	6.562E-15	8.10071E-08		
	260	0.63	0.619457025	0.0001112	0.010542975		
:	280	0.74	0.738382101	2.618E-06	0.001617899		
:	290	0.79	0.787971714	4.114E-06	0.002028286		
;	300	0.83	0.830321654	1.035E-07	0.000321654		
;	315	0.87	0.880866119	0.0001181	0.010866119		
;	320	0.88	0.894564799	0.0002121	0.014564799		
,	330	0.89	0.917843949	0.0007753	0.027843949		
,	340	0.9	0.936348985	0.0013212	0.036348985		
			SUM ERROR=	0.0056896	0.195351451		

Marquardt's Percent Standard Deviation (MPSD)

FLOW RATES

t (min) qexp qcalc error qex-qca/qex

0	0	0.000249542 6	.227E-08	0		
20	0	0.000490201 2	2.403E-07	0		
30	0	0.000686998	4.72E-07	0	MPSD	0.449504
40	0	0.000962726 9	.268E-07	0		
50	0	0.001348969	1.82E-06	0		
60	0	0.001889878 3	3.572E-06	0		
90	0	0.005187973 2	2.692E-05	0		
150	0.02	0.038054823	0.000326	0.016298832		
210	0.29	0.230826799 0.	.0035015	0.012074026		
235	0.45	0.411113354 0.	.0015122	0.003360381 0.00034	35	
260	0.63	0.618908763	0.000123	0.000195263		
280	0.74	0.761395595 0.	.0004578	0.00061861		
290	0.79	0.817284895 0.	.0007445	0.000942361		
300	0.83	0.862448035 0.	.0010529	0.001268524		
315	0.87	0.912323713 0.	.0017913	0.002058962		
320	0.88	0.924923272 0.	.0020181	0.002293296		
330	0.89	0.945262502 0.	.0030539	0.003431398		
340	0.9	0.960327922 0.	.0036395	0.004043842		
	7.29	SSE = 0.	0182546	0.046585495		

Hybrid Fractional Error Function (HYBRID) FLOW RATES

t (min)	qexp	(qcalc	error	qex-qca/qex		
	0	0	0.000249547	6.227E-08	0		
	20	0	0.000490209	2.403E-07	0		
	30	0	0.000687009	4.72E-07	0		
	40	0	0.000962741	9.269E-07	0	HYBRID	0.2740323
	50	0	0.001348988	1.82E-06			
	60	0	0.001889903	3.572E-06	0		
	90	0	0.005188029	2.692E-05	0		
•	150	0.02	0.03805503	0.000326	0.016299205		
2	210	0.29	0.23082689	0.0035015	0.012073989		
2	235	0.45	0.411112959	0.0015122	0.003360449		
2	260	0.63	0.618907873	0.000123	0.000195294		
2	280	0.74	0.761394598	0.0004577	0.000618552		
2	290	0.79	0.817283948	0.0007444	0.000942296		
3	300	0.83	0.862447181	0.0010528	0.001268457		
3	315	0.87	0.912323034	0.0017912	0.002058896		
3	320	0.88	0.924922653	0.002018	0.002293233		

330	0.89	0.945261996	0.0030539	0.003431335
340	0.9	0.960327517	0.0036394	0.004043788
			0.0182542	0.046585495

FLOW RATES

t (min)	qexp	(qcalc	error	qex-qca/qex		
	0	0	0.000249547	6.227E-08	0		
	20	0	0.000490209	2.403E-07	0		
	30	0	0.000687009	4.72E-07	0		
	40	0	0.000962741	9.269E-07	0	ARE	0.2451868
	50	0	0.001348988	1.82E-06	0		
	60	0	0.001889903	3.572E-06	0		
	90	0	0.005188029	2.692E-05	0		
•	150	0.02	0.03805503	0.000326	0.016299205		
2	210	0.29	0.23082689	0.0035015	0.012073989		
2	235	0.45	0.411112959	0.0015122	0.003360449		
2	260	0.63	0.618907873	0.000123	0.000195294		
2	280	0.74	0.761394598	0.0004577	0.000618552		
2	290	0.79	0.817283948	0.0007444	0.000942296		
;	300	0.83	0.862447181	0.0010528	0.001268457		
;	315	0.87	0.912323034	0.0017912	0.002058896		
;	320	0.88	0.924922653	0.002018	0.002293233		
;	330	0.89	0.945261996	0.0030539	0.003431335		
;	340	0.9	0.960327517	0.0036394	0.004043788		
					0.046585495		

t (min)	govn		goolo	orror	gov goo		
t (min)	qexp	'	qcalc	error	qex-qca		
	0	0	0.034815264	0.0012121	0.034815264		
	10	0	0.069511072	0.0048318	0.069511072		
	20	80.0	0.13398381	0.0029143	0.05398381		
	30	0.32	0.242661077	0.0059813	0.077338923	SAE	0.5856444
	48	0.62	0.542975187	0.0059328	0.077024813		
	60	0.74	0.740000918	8.429E-13	9.18095E-07		
	85	0.86	0.946143546	0.0074207	0.086143546		
•	100	0.89	0.981259156	0.0083282	0.091259156		
•	120	0.9	0.995566887	0.009133	0.095566887		
				0.0457542	0 585644388		

Marquardt's Percent Standard Deviation (MPSD

fr12ml/min

t (min)	qexp	(qcalc	error	qex-qca/qex		
	0	0	0.012017322	0.0001444	0		
	10	0	0.033454199	0.0011192	0		
	20	0.08	0.089660547	9.333E-05	0.014582214		
	30	0.32	0.218911309	0.0102189	0.099794175	MPSD	2.2073354
	48	0.62	0.648021636	0.0007852	0.002042695		
	60	0.74	0.865910259	0.0158534	0.028950682		
	85	0.86	0.988790088	0.0165869	0.022426834 0.0034106		
•	100	0.89	0.997643764	0.0115872	0.014628431		
•	120	0.9	0.999708407	0.0099418	0.012273786		
		4.41		0.0663303	0.194698816		

Hybrid Fractional Error Function (HYBRID)

fr12ml/min

11 1 21111/111111						
t (min)	qexp	(qcalc	error	SSEA	
	0	0	0.02271128	0.0005158	0	
	10	0	0.051936883	0.0026974	0	
	20	0.08	0.114369705	0.0011813	0.014765958	
	30	0.32	0.233377919	0.0075034	0.023448078	
	48	0.62	0.587639691	0.0010472	0.001689016	HYBRID
	60	0.74	0.79951257	0.0035417	0.004786143	
	85	0.86	0.971448312	0.0124207	0.014442705	
•	100	0.89	0.991944921	0.0103928	0.011677266	
•	120	0.9	0.998540822	0.0097103	0.010789215	
				0.0490106	0.08159838	

fr12ml/min

t (min)	qexp	(qcalc	error	SSEA	
	0	0	0.02271128	0.0005158	0	
	10	0	0.051936883	0.0026974	0	
	20	0.08	0 114369705	0.0011813	0 429621311	

30	0.32	0.233377919 0.0075034	0.270694003		
48	0.62	0.587639691 0.0010472	0.052194047	ARE	13.183972
60	0.74	0.79951257 0.0035417	0.080422392		
85	0.86	0.971448312 0.0124207	0.12959106		
100	0.89	0.991944921 0.0103928	0.114544855		
120	0.9	0.998540822 0.0097103	0.109489802		
		0.0490106	1.186557471		

SUM ERROR = 0.094808 2.373114942

Marquardt's Percent Standard Deviation (MPSD)

BH=4g	50mg	/l					
t (min)	qexp		qcalc	error	qex-qca/qex		
	0	0	0.000672188	4.518E-07	0		
	10	0	0.000970065	9.41E-07	0		
	22	0	0.001506243	2.269E-06	0		
	30	0	0.002019404	4.078E-06	0	MPSD	1.5782969
	41	0	0.003021136	9.127E-06	0		
	50	0	0.004199062	1.763E-05	0		
	60	0	0.006050392	3.661E-05	0		
	80	0.01	0.012526316	6.382E-06	0.063822704		
1	00	0.05	0.025754026	0.0005879	0.23514691		
1	55	0.26	0.166048093	0.008827	0.130576345		
2	210	0.54	0.599954689	0.0035946	0.012327039 0.0037365		
2	240	0.66	0.818563356	0.0251423	0.057718865		
2	280	0.79	0.951438078	0.0260623	0.041759739		
3	300	0.83	0.976092851	0.0213431	0.03098145		
3	320	0.86	0.988383284	0.0164823	0.022285381		
3	340	0.88	0.994391629	0.0130854	0.016897527		
3	370	0.9	0.998128681	0.0096292	0.011887948		
		5.78		0.1248315	0.623403909		

Hybrid Fractional Error Function (HYBRID)

BH=4g	50mg	/ l					
t (min)	qexp		qcalc	error	qex-qca/qex		
	0	0	0.00319652	1.022E-05	0		
	10	0	0.004183097	1.75E-05	0		
	22	0	0.005774362	3.334E-05	0		
	30	0	0.007156494	5.122E-05	0	HYBRID	0.7024178
	41	0	0.009607327	9.23E-05	0		
	50	0	0.01221749	0.0001493	0		
	60	0	0.015943775	0.0002542	0		
	80	0.01	0.027049735	0.0002907	0.029069345		
1	00	0.05	0.045533816	1.995E-05	0.000398936		
1	55	0.26	0.17396109	0.0074027	0.0284719		
2	210	0.54	0.4817772	0.0033899	0.006277582		
2	240	0.66	0.676342712	0.0002671	0.000404673		
2	280	0.79	0.860197625	0.0049277	0.006237603		
3	300	0.83	0.913480416	0.006969	0.008396361		
3	320	0.86	0.947690499	0.0076896	0.008941423		
3	340	0.88	0.968835306	0.0078917	0.008967854		
3	370	0.9	0.985891196	0.0073773	0.008196997		
				0.0468337	0.105362676		

Sum of the Squares of the Errors (ERRSQ /SSE)

BH=4g	50mg/	/l				
t (min)	qexp	(qcalc	SSE	qex-qcal/qex	
	0	0	0.012829382	0.0001646	0	
1	0	0	0.015685274	0.000246	0	
2	22	0	0.019946263	0.0003979	0	
3	30	0	0.023397274	0.0005474	0	ARE
4	11	0	0.029108322	0.0008473	0	
5	50	0	0.034767114	0.0012088	0	
6	50	0	0.042297225	0.0017891	0	
8	30	0.01	0.062265869	0.0027317	5.226586877	
10	00	0.05	0.09076828	0.0016621	0.815365602	
15	55	0.26	0.234523633	0.000649	0.097986025	

210	0.54	0.484606401 0.0030685	0.102580739
240	0.66	0.634147323 0.0006684	0.039170723
280	0.79	0.796664525 4.442E-05	0.008436108
300	0.83	0.854872469 0.0006186	0.02996683
320	0.86	0.898539615 0.0014853	0.044813506
340	0.88	0.930141524 0.0025142	0.056979004
370	0.9	0.960853455 0.0037031	0.067614951
		0.0223463	6.489500365

BH=4g	50mg	/I				
t (min)	qexp	(qcalc	SSE		
	0	0	0.012829382	0.0001646		
•	10	0	0.015685274	0.000246		
2	22	0	0.019946263	0.0003979		
;	30	0	0.023397274	0.0005474	SSE	0
4	41	0	0.029108322	0.0008473		
į.	50	0	0.034767114	0.0012088		
(60	0	0.042297225	0.0017891		
8	80	0.01	0.062265869	0.0027317		
10	00	0.05	0.09076828	0.0016621		
1	55	0.26	0.234523633	0.000649		
2	10	0.54	0.484606401	0.0030685		
24	40	0.66	0.634147323	0.0006684		
28	80	0.79	0.796664525	4.442E-05		
30	00	0.83	0.854872469	0.0006186		
32	20	0.86	0.898539615	0.0014853		
34	40	0.88	0.930141524	0.0025142		
37	70	0.9	0.960853455	0.0037031		

Sum of Absolute Errors (EABS/SAE)

150mg/l

		9, .				
t (min)	qexp	(qcalc	SSE	qex-qca	
	0	0	0.027565091	0.0007598	0.027565091	
	10	0	0.063420312	0.0040221	0.063420312	
	15	0.01	0.094743153	0.0071814	0.084743153	
	25	0.2	0.200007647	5.848E-11	7.64736E-06	
	40	0.48	0.48	3.055E-21	5.52726E-11	
	50	0.69	0.687994465	4.022E-06	0.002005535	
	60	0.83	0.84044763	0.0001092	0.01044763	
	70	0.88	0.92637981	0.0021511	0.04637981	

75	0.89	0.951096488 0.0037328	0.061096488
95	0.9	0.991070024 0.0082937	0.091070024
		0.0262542	0.38673569

Marquardt's Percent Standard Deviation (MPSD)

50	m	a /	ı
เอบ	m	ıa/	ı

t (min)	qexp		qcalc	error	qex-qca/qex			
	0	0	0.000803964	6.464E-07	0			
	10	0	0.004694834	2.204E-05	0			
	15	0.01	0.011292001	1.669E-06	0.01669266		MPSD	2.2715533
	25	0.2	0.062753032	0.0188367	0.470918256			
	40	0.48	0.487279463	5.299E-05	0.000229994			
	50	0.69	0.847828655	0.0249099	0.052320698			
	60	0.83	0.970293592	0.0196823	0.028570608			
	70	0.88	0.994804743	0.0131801	0.017019795			
	75	0.89	0.997847741	0.0116311	0.014683923	0.004128		
	95	0.9	0.999937245	0.0099875	0.012330189			
		4.88		0.098305	0.612766124			

150mg/l

t (min)	qexp	(qcalc	error	qex-qca/qex		
	0	0	0.000803964	6.464E-07	0		
	10	0	0.004694834	2.204E-05	0		
	15	0.01	0.011292001	1.669E-06	0.001292001	ARE	1.570759
	25	0.2	0.062753032	0.0188367	0.137246968		
	40	0.48	0.487279463	5.299E-05	0.007279463		
	50	0.69	0.847828655	0.0249099	0.157828655		
	60	0.83	0.970293592	0.0196823	0.140293592 0.1570759		
	70	0.88	0.994804743	0.0131801	0.114804743		
	75	0.89	0.997847741	0.0116311	0.107847741		
	95	0.9	0.999937245	0.0099875	0.099937245		
		4.88			0.766530409		

MNFC AND MF-MNFC

Sum of the Squares of the Errors (ERRSQ /SSE)

N	A	NI	_	\sim
IV.	/11	N	_	ι.

	MNFC	<i>;</i>			
t (min)	qexp	(qcalc	SSE	
	0	0	0.00530721	2.817E-05	
	20	0	0.015531371	0.0002412	
	30	0	0.026411831	0.0006976	
	40	0	0.044569487	0.0019864	SSE
	50	0.01	0.074258088	0.0041291	
	60	0.11	0.121213875	0.0001258	
	80	0.32	0.289696721	0.0009183	
	96	0.52	0.492611688	0.0007501	
	105	0.62	0.612611287	5.459E-05	
	122	0.81	0.798960553	0.0001219	
	132	0.86	0.872347287	0.0001525	
	138	0.88	0.904401172	0.0005954	
	143	0.89	0.925404059	0.0012534	
	150	0.9	0.947727124	0.0022779	
				0.0133323	

Sum of Absolute Errors (EABS/SAE)

MNFC

	IVIIVI	,				
t (min)	qexp		qcalc	error	qex-qca	
	0	0	0.005249576	2.756E-05	0.005249576	
	20	0	0.015486569	0.0002398	0.015486569	
	30	0	0.026439796	0.0006991	0.026439796	
	40	0	0.044787518	0.0020059	0.044787518	
	50	0.01	0.07488813	0.0042105	0.06488813	
	60	0.11	0.122621704	0.0001593	0.012621704	
	80	0.32	0.294077085	0.000672	0.025922915	
	96	0.52	0.49951799	0.0004195	0.02048201	
-	105	0.62	0.620000065	4.224E-15	6.49922E-08	
-	122	0.81	0.805007906	2.492E-05	0.004992094	
-	132	0.86	0.876962833	0.0002877	0.016962833	
•	138	0.88	0.908181393	0.0007942	0.028181393	

143	0.89	0.928553009 0.0014863	0.038553009
150	0.9	0.950118249 0.0025118	0.050118249
		0.0135387	0.354685863

Marquardt's Percent Standard Deviation (MPSD)

	MNFC						
t (min)	qexp	(qcalc	error	qex-qca/qex		
	0	0	7.24988E-05	5.256E-09	0		
	20	0	0.000563089	3.171E-07	0		
	30	0	0.001568086	2.459E-06	0		
	40	0	0.004358971	1.9E-05	0	MPSD	1.6363518
	50	0.01	0.0120571	4.232E-06	0.042316602		
	60	0.11	0.032901194	0.0059442	0.491258341		
	80	0.32	0.20908779	0.0123015	0.120132016		
	96	0.52	0.576849722	0.0032319	0.011952259		
•	105	0.62	0.774258619	0.0237957	0.061903542 0.0032132		
•	122	0.81	0.951446679	0.0200072	0.030494076		
•	132	0.86	0.982022629	0.0148895	0.020131858		
•	138	0.88	0.990200812	0.0121442	0.015682101		
•	143	0.89	0.994107693	0.0108384	0.013683136		
•	150	0.9	0.997116387	0.0094316	0.011643942		
		5.92		0.1126103	0.819197871		

Hybrid Fractional Error Function (HYBRID) MNFC

MINEC	
qexp	

	•						
qexp		qcalc	error	qex-qca/qex			
0	0	0.00072354	5.235E-07	0			
20	0	0.003230539	1.044E-05	0			
30	0	0.006810271	4.638E-05	0		HYBRID	1.0436266
40	0	0.014299764	0.0002045	0			
50	0.01	0.029778762	0.0003912	0.039119944			
60	0.11	0.060976722	0.0024033	0.021848017			
80	0.32	0.225205074	0.0089861	0.028081494			
96	0.52	0.490856507	0.0008493	0.001633352			
105	0.62	0.654270559	0.0011745	0.001894308			
122	0.81	0.871222515	0.0037482	0.004627403			
132	0.86	0.934697461	0.0055797	0.006488036			
138	0.88	0.957336873	0.005981	0.006796582			
143	0.89	0.970272679	0.0064437	0.007240116			
	0 20 30 40 50 60 80 96 105 122 132	0 0 20 0 30 0 40 0 50 0.01 60 0.11 80 0.32 96 0.52 105 0.62 122 0.81 132 0.86 138 0.88	0 0 0.00072354 20 0 0.003230539 30 0 0.006810271 40 0 0.014299764 50 0.01 0.029778762 60 0.11 0.060976722 80 0.32 0.225205074 96 0.52 0.490856507 105 0.62 0.654270559 122 0.81 0.871222515 132 0.86 0.934697461 138 0.88 0.957336873	0 0 0.00072354 5.235E-07 20 0 0.003230539 1.044E-05 30 0 0.006810271 4.638E-05 40 0 0.014299764 0.0002045 50 0.01 0.029778762 0.0003912 60 0.11 0.060976722 0.0024033 80 0.32 0.225205074 0.0089861 96 0.52 0.490856507 0.0008493 105 0.62 0.654270559 0.0011745 122 0.81 0.871222515 0.0037482 132 0.86 0.934697461 0.0055797 138 0.88 0.957336873 0.005981	0 0 0.00072354 5.235E-07 0 20 0 0.003230539 1.044E-05 0 30 0 0.006810271 4.638E-05 0 40 0 0.014299764 0.0002045 0 50 0.01 0.029778762 0.0003912 0.039119944 60 0.11 0.060976722 0.0024033 0.021848017 80 0.32 0.225205074 0.0089861 0.028081494 96 0.52 0.490856507 0.0008493 0.001633352 105 0.62 0.654270559 0.0011745 0.001894308 122 0.81 0.871222515 0.0037482 0.004627403 132 0.86 0.934697461 0.0055797 0.006488036 138 0.88 0.957336873 0.005981 0.006796582	0 0 0.00072354 5.235E-07 0 20 0 0.003230539 1.044E-05 0 30 0 0.006810271 4.638E-05 0 40 0 0.014299764 0.0002045 0 50 0.01 0.029778762 0.0003912 0.039119944 60 0.11 0.060976722 0.0024033 0.021848017 80 0.32 0.225205074 0.0089861 0.028081494 96 0.52 0.490856507 0.0008493 0.001633352 105 0.62 0.654270559 0.0011745 0.001894308 122 0.81 0.871222515 0.0037482 0.004627403 132 0.86 0.934697461 0.0055797 0.006488036 138 0.88 0.957336873 0.005981 0.006796582	0 0 0.00072354 5.235E-07 0 0 20 0.003230539 1.044E-05 0 30 0.006810271 4.638E-05 0 HYBRID 40 0 0.014299764 0.0002045 0 50 0.01 0.029778762 0.0003912 0.039119944 60 0.11 0.060976722 0.0024033 0.021848017 80 0.32 0.225205074 0.0089861 0.028081494 96 0.52 0.490856507 0.0008493 0.001633352 105 0.62 0.654270559 0.0011745 0.001894308 122 0.81 0.871222515 0.0037482 0.004627403 132 0.86 0.934697461 0.0055797 0.006488036 138 0.88 0.957336873 0.005981 0.006796582

_	_	_
7	h	11
- 1	·J	u

	MNFO						
t (min)	qexp		qcalc	error	qex-qca/qex		
	0	0	0.00072354	5.235E-07	0		
	20	0	0.003230539	1.044E-05	0		
	30	0	0.006810271	4.638E-05	0	ARE	1.9778762
	40	0	0.014299764	0.0002045	0		
	50	0.01	0.029778762	0.0003912	1.977876231		
	60	0.11	0.060976722	0.0024033	0.445666168		
	80	0.32	0.225205074	0.0089861	0.296234145		
	96	0.52	0.490856507	0.0008493	0.056045179		
1	105	0.62	0.654270559	0.0011745	0.055275096		
1	122	0.81	0.871222515	0.0037482	0.075583352		
1	132	0.86	0.934697461	0.0055797	0.086857513		
1	138	0.88	0.957336873	0.005981	0.08788281		
1	143	0.89	0.970272679	0.0064437	0.090194021		
1	150	0.9	0.982190916	0.0067553	0.091323239		
					3.262937756		

MF+MNFC

	1411 - 14						
t (min)	qexp	(qcalc	error	qex-qex		
	0	0	0.000773489	5.983E-07	0.000773489		
	20	0	0.002100812	4.413E-06	0.002100812		
	40	0	0.005692875	3.241E-05	0.005692875		
	50	0	0.009353734	8.749E-05	0.009353734	SAE	0.1931249
	60	0	0.015332443	0.0002351	0.015332443		
	70	0	0.025036036	0.0006268	0.025036036		
	80	0.01	0.040627453	0.000938	0.030627453		
•	100	0.09	0.103276486	0.0001763	0.013276486		
•	115	0.21	0.19608195	0.0001937	0.01391805		
•	130	0.36	0.340606763	0.0003761	0.019393237		
•	140	0.46	0.460000001	3.109E-19	5.57562E-10		

165	0.72	0.748434323	0.0008085	0.028434323
180	0.88	0.863025866	0.0002881	0.016974134
185	0.89	0.890003511	1.233E-11	3.51121E-06
190	0.9	0.912208297	0.000149	0.012208297
			0.0039166	0.193124881

Marquardt's Percent Standard Deviation (MPSD)

MF+MNFC

t (min)	qexp	(qcalc	error	qex-qca/qex		
	0	0	2.56075E-05	6.557E-10	0		
	20	0	0.000119536	1.429E-08	0		
	40	0	0.000557799	3.111E-07	0	MPSD	1.5658493
	50	0	0.001204432	1.451E-06	0		
	60	0	0.00259873	6.753E-06	0		
	70	0	0.005598075	3.134E-05	0		
	80	0.01	0.012017428	4.07E-06	0.040700162 0.0031874		
•	100	0.09	0.053733689	0.0013152	0.162375961		
•	115	0.21	0.152792295	0.0032727	0.074211373		
•	130	0.36	0.364184224	1.751E-05	0.000135091		
•	140	0.46	0.553089779	0.0086657	0.040953247		
•	165	0.72	0.894654451	0.0305042	0.058842935		
•	180	0.88	0.964250302	0.0070981	0.009165952		
•	185	0.89	0.975397929	0.0072928	0.009206926		
•	190	0.9	0.98313027	0.0069106	0.008531656		
		4.52		0.0651209	0.404123304		

MF+MNFC

t (min)	qexp	(qcalc	error	qex-qca/qex			
	0	0	2.56075E-05	6.557E-10	0			
	20	0	0.000119536	1.429E-08	0			
	40	0	0.000557799	3.111E-07	0		ARE	0.8330366
	50	0	0.001204432	1.451E-06	0			
	60	0	0.00259873	6.753E-06	0			
	70	0	0.005598075	3.134E-05	0			
	80	0.01	0.012017428	4.07E-06	0.002017428			
•	100	0.09	0.053733689	0.0013152	0.036266311			
	115	0.21	0.152792295	0.0032727	0.057207705 0.	1249555		

130	0.36	0.364184224	1.751E-05	0.004184224
140	0.46	0.553089779	0.0086657	0.093089779
165	0.72	0.894654451	0.0305042	0.174654451
180	0.88	0.964250302	0.0070981	0.084250302
185	0.89	0.975397929	0.0072928	0.085397929
190	0.9	0.98313027	0.0069106	0.08313027
		4.963354547	0.0651209	0.6201984

Error FuncK\	/N(L/miπ (ι	Objective function	
SSE	0.0353	236.8801	0.022899
HYB	0.0353	236.8801	5.243037
MPSD	0.0762	158.9671	22.38218
ARE	0.0353	236.8801	0.5125
SAE	0.0353	236.8801	0.5722
R2	0.0353	236.8801	0.9857

at Bed height of 8 cm.

From Funck VN(L/mix (min) Objective function

Error Fund	cKYN(L/mir	τ (min)	Objective f	unction
SSE	0.03	355.0916	0.018424	
HYB	0.0419	310.734	0.64753	
MPSD	0.0561	275.5547	17.64361	
ARE	0.0419	310.734	14.907	
SAE	0.0291	357.7112	0.446849	
R2	0.029956	355.091638	0.9923	

at Bed height of 12 cm.

Error Fund	:KYN(L/miπ (Objective funct	ion	
SSE	0.036736	442.1088	0.000894	
HYB	0.039586	432.8573	0.058509	
MPSD	0.045056	415.573	6.9066	
ARE	0.03959	432.8573	3.9134	
SAE	0.036385	442.9808	0.079665	
	0.03673644	2.1088021	0.9997	

Error Fun	cKYN(L/miπ	Objective function	
SSE	0.027517	410.6713	0.0055
HYB	0.033771	382.0048	0.274
MPSD	0.033771	382.0043	5.2348
ARE	0.03377	382.0048	0.2452
SAE	0.027517	409.6524	0.1954
R2	0.027517	410.6713	0.998

at the flow rate of 12 mL/min

Error Fu	ncKYN(L/miπ	(min)	Objective function
SSE	0.072526	107.0992	0.044312
HYB	0.085753	97.5722	1.165691
MPSD	0.104576	86.2	16.67756
ARE	0.08575	97.5722	13.184
SAE	0.072804	108.8874	0.585644
R2	0.072526	107.6992	0.9642

at the initial adsobate concentration of 50mg/L Frror FuncKYN(L/mirt (min) Objective function

Error Fund	:KYN(L/miπ (r	nın)	Objective function	on
SSE	0.020388	404.8984	0.022346	
HYB	0.026998	357.6019	0.702418	
MPSD	0.036712	305.5198	20.38633	
ARE	0.027	357.6019	0.7024	
SAE	0.020692	405.0316	0.552907	
R2	0.020388404	1.8983768	0.991	

at the initial adsobate concentration of 150mg/L

Error FuncKYN(L/miιτ (min) Objective function				
SSE	0.089176	98.34206	0.023927	
HYB	0.132409	79.94181	1.672838	
MPSD	0.1769	68.61942	27.67594	
ARE	0.1769	68.6194	15.9104	
SAE	0.08708	98.45961	0.386736	
R2	0.0891769	8.34205808	0.9834	

Yoon-Nelson Parameters for C-MNFC adsorbent [4 cm, 12 mL/min, 100mg/L]

Error Fu	ıncKYN(L/miπ	(min)	Objective function
005	0.054006	101 501	F 0 010000

SSE	0.054206	181.5015 0.013332
HYB	0.074938	157.9411 1.043627

MPSD	0.102518	137.8982	26.12786
ARE	0.07494	157.4911	1.9779
SAE	0.054609	180.3659	0.354686
R2	0.05420618	1.5014808	0.9935

Yoon-Nelson Parameters for MF-MNFC adsorbent [4 cm, 12 mL/min, 100mg/L]

Error FuncKYN(L/mir τ (min) Objective function SSE 0.049989 235.4376 0.00391

HYB 220.6157 0.364428 0.058895 0.077041 197.0086 17.63134 MPSD 0.07704 197.0086 10.785 ARE 235.2629 0.193125 SAE 0.050025 0.049989235.4376069 R2 0.998

KYN	0.0352738
τ	236.88009

C0	100
m	4
Q	8
n	14
p	2

KYN	0.0352738
τ	236.88009

C0	100
m	4
Q	8
n	14
р	2

KYN	0.0762438
τ	158.96713

C0	100
m	4
Q	8
n	14
р	2

KYN	0.0352738
τ	236.88009
R^2	0.9539222
C0	100
m	4
Q	8
n	14
p	2

KYN	0.0352738
τ	236.88009

R^2	#DIV/0!

C0	100
m	4
Q	8
n	14
p	2

KYN	0.0299557
τ	355.09164

C0	100
m	8
Q	8
n	18
p	2

KYN	0.0290482
т	357,7112

C0	100
m	8
Q	8
n	18
p	2

KYN	0.0561148
τ	275.55468

R^2 0.7521008

CO	100	
m	8	
Q	8	
n	18	
р	2	

KYN	0.0418805
τ	310.73395

C0	100
m	8
Q	8
n	18
p	2

KYN	0.0418805
τ	310.73395

C0	100
m	8
Q	8
n	18
p	2

KYN	0.0363852
т	442 98084

C0	100
m	12
Q	8
n	23
p	2

KYN	0.0450557
т	415,57304

C0	100
m	12
Q	8
n	23
p	2

KYN	0.0395858
τ	432.85731

C0	100
m	12
Q	8
n	23
p	2

KYN	0.0395858
т	432,85731

C0	100
m	12
Q	8
n	23
p	2

KYN	0.0275166
т	409 65238

m	4
Q	4
C0	100
n	19
p	2

KYN	0.0337714
τ	382.00433

m	4
Q	4
C0	100
n	19
р	2

KYN	0.0337713
τ	382.00475

m	4
Q	4
C0	100
n	19
р	2

KYN	0.0337713
τ	382.00475

m	4
Q	4
C0	100
n	19
р	2

KYN	0.0728039
τ	108.88741

C0	100
Q	12
m	4

KYN	0.1045765
τ	86.19995

C0	100
Q	12
m	4

KYN	0.0857529
τ	97.572156

	C0	100
	Q	12
	m	4
SSE		0.0490106

KYN	0.0857529
τ	97.572156

	C0	100
	Q	12
	m	4
SSE		0.0490106

KYN	0.0367123
τ	305.51976

CO	50	
Q	8	
m	4	
р	2	
n	17	

KYN	0.0269979
τ	357.60187

C0	50
Q	8
m	4
p	2
n	17

KYN	0.0203881
τ	404.89838

38.173532

C0	50
Q	8
m	4
p	2
n	17

KYN	0.0203881
т	404 89838

C0	50
Q	8
m	4
p	2
n	17

KYN	0.0870803
τ	98.459611

C0	150
Q	8
m	4

p	2
n	10

KYN	0.1768565
τ	68.619416

CO	150	
Q	8	
m	4	
p	2	
n	10	

KYN	0.1768565
τ	68.619416

C0	150	
Q	8	
m	4	
p	2	
n	10	

KYN	0.0542064
τ	181.50148

C0	100
Q	12
m	4
n	14
р	2

KYN	0.0546085
τ	180.36595

C0	100
Q	12
m	4
n	14
p	2

KYN	0.1025179
τ	137.89818

C0	100
Q	12
m	4
n	14
р	2

KYN	0.0749381
τ	157.94113

C0	100
Q	12
m	4
n	14
p	2

KYN	0.0749381
τ	157.94113

C0	100
Q	12
m	4
n	14
p	2

KYN	0.0500249		
τ	235.26285		

C0	100
Q	12
m	4
n	15
р	2

KYN	0.0770412
т	197 00858

C0	100
Q	12
m	4
n	15
p	2

KYN	0.0770412
τ	197.00858

C0	100
Q	12
m	4
n	15

p 2

WOLBORSKA KINETIC MODEL PARAMETERS FOR Co(II) ION ADSORPTION AT DIFFERENT BED-HEIGH

	BH=4g				
t (min)	qexp	qca	lc	SSE	SSEA
()	0 0	.116166222	0.013494591	0.1760125
10)	0 0	.129773102	0.016841058	0.1760125
1	5	0 0	.137163038	0.018813699	0.1760125
20)	0 0	.144973794	0.021017401	0.1760125
2	5	0 0	.153229335	0.023479229	0.1760125
40	0.0	01 0.	.180925235	0.029215436	0.1677218
70	0.2	24 0.	.252239794	0.000149813	0.0322341
92	2 0.4	43 0.	.321843102	0.011697915	0.0001094
110	0.9	56 0.	.392855539	0.027937271	0.0197294
130) 0	.7 0	.490278129	0.043983263	0.0786587
160	0.8	35 0.	.683529052	0.027712577	0.1852971
180	0.8	38 0.	.853034541	0.000727136	0.2120248
190	0.8	39 0.	.952952901	0.003963068	0.221334
200) 0	.9 1	.064574982	0.027084925	0.2308433
		0.	.419538483	0.26611738	2.0280153

	BH=8g			
t (min)	qexp	qcalc	SSE	SSEA
() (0.052731121	0.002780571	0.1170648
20) (0.064491262	0.004159123	0.1170648
30) (0.071321064	0.005086694	0.1170648
40) (0.078874161	0.006221133	0.1170648
50) (0.087227151	0.007608576	0.1170648
60) (0.096464746	0.009305447	0.1170648
70) (0.106680627	0.011380756	0.1170648
80) (0.117978398	0.013918902	0.1170648
115	0.01	0.167807657	0.024903256	0.1103219
140	0.08	3 0.215826174	0.01844875	0.0687213
170	0.3	3 0.291913998	6.53834E-05	0.0017764
195	0.49	0.37544581	0.013122662	0.0218604
210	0.6	0.436639143	0.02668677	0.066488
230	0.71	0.53401879	0.030969386	0.1353155
250	0.8	3 0.653116132	0.021574871	0.209629
270	0.85	0.798774668	0.002624035	0.2579143
285	0.87	7 0.928965718	0.003476956	0.2786284
300	0.9	9 1.080376407	0.032535648	0.3111995
		0.34214739	0.234868921	2.3983733

	BH=12g				
t (min)	qexp	qcalc		SSE	SSEA
() (0.0	0566285	3.20679E-05	0.0928226
20) (0.00	7437421	5.53152E-05	0.0928226
30) (0.00	8523463	7.26494E-05	0.0928226
40) (0.00	9768092	9.54156E-05	0.0928226
50) (0.01	1194467	0.000125316	0.0928226
60) (0.01	2829126	0.000164586	0.0928226
80) (0.01	6849399	0.000283902	0.0928226
100) (0.02	2129509	0.000489715	0.0928226
140) (0.03	8172137	0.001457112	0.0928226
180) (0.06	5844752	0.004335531	0.0928226
230	0.02	0.13	0163595	0.012136018	0.0810359
255	0.08	0.18	3009536	0.010610964	0.0504757
280	0.21	0.25	7310735	0.002238306	0.008962
293	3 0.3	0.30	7191844	5.17226E-05	2.179E-05
300	0.35	0.33	7944399	0.000145338	0.002055
315	0.49	0.41	4606173	0.005684229	0.034348
337	7 0.68	0.55	9579565	0.014501081	0.1408741
354	1 0.8	0.70	5490374	0.008932069	0.2453538
362	0.84	0.78	6766811	0.002833772	0.2865803
370	0.87	0.87	7406749	5.48599E-05	0.3196003
375	0.89	0.9	3928591	0.002429101	0.3426135
380	0.9	1.00	5529102	0.011136391	0.3544202
		(0.304668	0.077865464	2.7945665

WOLBORSKA MODEL PARAMETERS FOR CO(II) ION ADSORPTION AT DIFFERENT FLOW RATES

	fr4ml/min				
t (min)	qexp	qcalc		SSE	SSEA
C	0	0.047	589732	0.002264	783 0.183798
20	0	0.057	127656	0.003263	569 0.183798
30	0	0.062	591157	0.003917	653 0.183798
40	0	0.068	577168	0.004702	828 0.183798
50	0	0.075	135663	0.005645	368 0.183798
60	0	0.08	232139	0.006776	811 0.183798
90	0	0.108	271065	0.011722	624 0.183798
150	0.02	0.187	288814	0.027985	547 0.167049
210	0.29	0.32	397483	0.001154	289 0.019242
235	0.45	0.407	078064	0.001842	293 0.000452
260	0.63	0.511	498224	0.014042	671 0.040514

280	0.74	0.614012587	0.015872828 0.0968969
290	0.79	0.672734726	0.013751145 0.1305251
300	0.83	0.737072856	0.008635454 0.1610277
315	0.87	0.845298845	0.000610147 0.1947303
320	0.88	0.884796837	2.30096E-05 0.203656
330	0.89	0.969415888	0.006306883 0.2127816
340	0.9	1.062127626	0.026285367 0.2221073
		0.428717396	0.154803269 2.7355753

fr12ml/min

t (min)	qexp	q	calc	SSE	SSEA
	0	0	0.223763482	0.050070096	0.2667423
	10	0	0.255443456	0.065251359	0.2667423
:	20	80.0	0.291608615	0.044778206	0.190507
;	30	0.32	0.332893963	0.000166254	0.0386009
4	48	0.62	0.422489524	0.039010388	0.0107182
(60	0.74	0.495247883	0.059903599	0.0499652
;	85	0.86	0.689583007	0.029041952	0.1180121
10	00	0.89	0.841094716	0.002391727	0.1395239
1:	20	0.9	1.096114803	0.038461016	0.1470945
			0.51647105	0.329074597	1.2279064

WOLBORSKA PARAMETERS FOR Co(II) ION ADSORPTION AT DIFFERENT INITIAL SOLUTE CONCENTF

BH=4g	5	0mg/l				
t (min)	q	ехр	q	calc	SSE	SSEA
	0		0	0.089617797	0.00803135	0.1404082
	10		0	0.095968511	0.009209955	0.1404082
	22		0	0.104186188	0.010854762	0.1404082
	30		0	0.11005195	0.012111432	0.1404082
	41		0	0.118660365	0.014080282	0.1404082
	50		0	0.126202141	0.01592698	0.1404082
	60		0	0.135145384	0.018264275	0.1404082
	80	0.0	1	0.154978052	0.021018636	0.133014
•	100	0.0	5	0.177721177	0.016312699	0.1054372
-	155	0.2	6	0.258987549	1.02506E-06	0.0131586

210	0.54	0.377414506	0.026434043 0.0273205
240	0.66	0.463470465	0.038623858 0.0813899
280	0.79	0.609480801	0.032587181 0.172465
300	0.83	0.698922486	0.017181315 0.2072882
320	0.86	0.801489793	0.003423444 0.2355055
340	0.88	0.919108916	0.001529507 0.2553171
370	0.9	1.128679023	0.052294096 0.2759287
		0.374710888	0.29788484 2.4896824

	150	mg/l			
t (min)	qexp	q	ıcalc :	SSE	SSEA
	0	0	0.197976608	0.039194737	0.2707415
	10	0	0.238308065	0.056790734	0.2707415
	15	0.01	0.26145754	0.063230895	0.260435
	25	0.2	0.314721225	0.01316096	0.1026102
	40	0.48	0.415636163	0.004142704	0.0016264
	50	0.69	0.500308854	0.035982731	0.0287885
	60	0.83	0.602230922	0.051878753	0.0958966
	70	0.88	0.72491638	0.024050929	0.1293637
	75	0.89	0.795335457	0.008961376	0.1366572
	95	0.9	1.152391559	0.063701499	0.1441506
			0.520328277	0.361095316	1.4410112

WOLBORSKA MODEL PARAMETERS FOR MODIFIED NANOCELLULOSE ADSORBENTS IN Co(II) ADSOF

	MNFC			
t (min)	qexp	qcalc	SSE	SSEA
0	0	0.06972146	4 0.004861083	3 0.2009647
20	0	0.10035545	8 0.010071218	3 0.2009647
30	0	0.12040048	9 0.014496278	3 0.2009647
40	0	0.1444493	2 0.02086560	0.2009647
50	0.01	0.17330167	2 0.026667436	0.1920988
60	0.11	0.20791700	2 0.009587739	0.1144407
80	0.32	0.29927091	1 0.00042969	0.0164585
96	0.52	0.40050146	4 0.0142799	0.0051422
105	0.62	0.4718268	3 0.021955288	0.029484
122	0.81	0.64302959	3 0.027879117	7 0.1308335
132	0.86	0.77146852	4 0.007837822	2 0.1695045
138	0.88	0.86053900	9 0.00037873	3 0.1863728

143	0.89	0.942571247	0.002763736	0.195107
150	0.9	1.070718394	0.02914477	0.2040412
		0.448290813	0.191218418	2.0473419

	MF+MNFC			
t (min)	qexp	qcalc	SSE	SSEA
0	0	0.021233266	0.000450852	0.1032918
20	0	0.031878492	0.001016238	0.1032918
40	0	0.047860667	0.002290643	0.1032918
50	0	0.058643413	0.00343905	0.1032918
60	0	0.071855452	0.005163206	0.1032918
70	0	0.088044092	0.007751762	0.1032918
80	0.01	0.107879943	0.009580483	0.096964
100	0.09	0.16196519	0.005178989	0.0535415
115	0.21	0.219675902	9.36231E-05	0.0124078
130	0.36	0.297949837	0.003850223	0.0014907
140	0.46	0.365076301	0.009010509	0.0192126
165	0.72	0.606715184	0.012833449	0.1588896
180	0.88	0.822897225	0.003260727	0.3120447
185	0.89	0.910889808	0.000436384	0.3233169
190	0.9	1.008291456	0.011727039	0.3347891
		0.321390415	0.076083177	1.9324076

β N0	0.1553735 1402.7256
R^2	0.8687794
Н	4
٧	0.2887
C0	100
Q	8
n	15
p	2

β N0	0.106189 1054.909
R^2	0.902072
Н	8
V	0.2887
C0	100
Q	8
n	19
p	2

β N0	0.124474 913.2434
R^2	0.972137
Н	12
V	0.2887
Q	8
C0	100
n	23
p	2

β N0	0.109853 1202.743	
R^2	0.943411	
H v Q C0 n	4 0.1443 4 100 18	

p 2

β N0	0.162143 1224.539
R^2	0.732004
V	0.4332
Н	4
Q	12
C0	100
n	9
p	2

RATIONS

β N0	0.174101 1271.435
R^2	0.880352
C0	50
Н	4
٧	0.2887
n	17

p	2
Q	8

0.116895 945.6749
0.749415
150
0.2887
10
2

RPTION

β	0.28843
N0	1583.863
R^2	0.906602
٧	0.4332
Н	4
C0	100
n	14
р	2
0	12

β N0	0.417192 2053.299
R^2	0.960628
Q H n	12 4
V	0.4332
p	2
C0	100

βββββ ννννν ٧

WOLBOSKA ERROR FUNCTIONS Sum of the Squares of the Errors (ERRSQ /SSE)

BED-HIEIGHTS

BH=40

	BH=4g			
t (min)	qexp	qcalc	error	
0	(0.116166222	0.0134946	
10) C	0.129773102	0.0168411	
15	5 0	0.137163038	0.0188137	
20) C	0.144973794	0.0210174	SSE
25	5 0	0.153229335	0.0234792	
40	0.01	0.180925235	0.0292154	
70	0.24	0.252239794	0.0001498	
92	0.43	3 0.321843102	0.0116979	
110	0.56	0.392855539	0.0279373	
130	0.7	0.490278129	0.0439833	
160	0.85	0.683529052	0.0277126	
180	0.88	0.853034541	0.0007271	
190	0.89	0.952952901	0.0039631	
200	0.9	1.064574982	0.0270849	
		0.419538483	0.2661174	

0.2661174

Sum of Absolute Errors (EABS/SAE) BH=4a

	BH=4	·g				
t (min)	qexp	qcalc	error	qex-qca		
	0	0 0.110645055	0.0122423	0.1106451		
•	10	0 0.123586746	0.0152737	0.1235867		
•	15	0 0.130614636	0.0170602	0.1306146		
2	20	0 0.138042173	0.0190556	0.1380422	SAE	1.7514823
2	25	0 0.145892086	0.0212845	0.1458921		
4	1 0	0.01 0.172223166	0.0263164	0.1622232		
-	70	0.24 0.239999997	6.345E-18	2.519E-09		
Ç	92	0.43 0.306125138	0.015345	0.1238749		
11	10	0.56 0.373568971	0.0347565	0.186431		
13	30	0.7 0.466069385	0.0547235	0.2339306		
16	50	0.85 0.649486674	0.0402056	0.2005133		
18	30	0.88 0.810307809	0.004857	0.0696922		
19	90	0.89 0.905086139	0.0002276	0.0150861		
20	00	0.9 1.010950296	0.01231	0.1109503		
			0.2736579	1.7514823		

Marquardt's Percent Standard Deviation (MPSD) BH=4g

	bп− 4 у					
t (min)	qexp	qcalc	error	qex-qca/qex		
()	0 0.004210456	1.773E-05	0		
10)	0 0.005593543	3.129E-05	0		
15	5	0 0.006447123	4.157E-05	0		
20)	0 0.00743096	5.522E-05	0	MPSE	50.668063
25	5	0 0.008564932	7.336E-05	0		
40	0.0	1 0.013114773	9.702E-06	0.0970181		
70	0.2	4 0.030749251	0.0437859	0.7601715		
92	0.4	3 0.057440998	0.1388002	0.7506772		
110	0.5	6 0.095778104	0.215502	0.6871874		
130	0.	7 0.169037117	0.2819216	0.5753502		
160	0.8	5 0.396328992	0.2058174	0.2848684		
180	0.8	8 0.699474177	0.0325896	0.0420836		
190	0.8	9 0.929243663	0.0015401	0.0019443		
200	0.	9 1.234489867	0.1118835	0.1381277		
			1.032069	3.3374283		

		9					
t (min)	qexp		qcalc	error	qex-qca/qex		
	0	0	0.0296666	0.0008801	0		
	10	0	0.035631338	0.0012696	0		
	15	0	0.039049394	0.0015249	0		
	20	0	0.042795339	0.0018314	0	HYBF	RID
	25	0	0.046900627	0.0021997	0		
	40	0.01	0.061734106	0.0026764	0.2676418		
	70	0.24	0.106959214	0.0176999	0.0737494		
	92	0.43	0.160051505	0.0728722	0.1694702		
1	110	0.56	0.222574592	0.1138559	0.2033141		
1	130	0.7	0.321073363	0.1435854	0.205122		
1	160	0.85	0.556284955	0.0862685	0.1014924		
1	180	0.88	0.802464828	0.0060117	0.0068315		
1	190	0.89	0.963807612	0.0054476	0.0061209		
2	200	0.9	1.157589818	0.0663525	0.073725		

Sum of the Squares of the Errors (ERRSQ /SSE)

					•	
	BH=8	g				
t (min)	qexp		qcalc		error	
	0	0	0.0527	31121	0.002	7806
	20	0	0.0644	91262	0.004	1591
	30	0	0.0713	21064	0.005	0867
	40	0	0.0788	74161	0.006	2211
	50	0	0.0872	27151	0.007	6086
	60	0	0.0964	64746	0.009	3054
	70	0	0.1066	80627	0.011	3808
	80	0	0.1179	78398	0.013	9189
1	15	0.01	0.1678	07657	0.024	9033
1	40	0.08	0.2158	26174	0.018	34487

SSE 0.2348689

230 0.71 0.53401879 0.0309694 250 0.8 0.653116132 0.0215749 270 0.85 0.798774668 0.002624 285 0.87 0.928965718 0.003477 300 0.9 1.080376407 0.0325356 0.2348689

0.3 0.291913998 6.538E-05

0.49 0.37544581 0.0131227

0.6 0.436639143 0.0266868

Sum of Absolute Errors (EABS/SAE)

D	ш	_	О	~
D	п	_	8	u

170

195

210

	BH=80)				
t (min)	qexp	qcalc	SSE	qex-qca		
	0	0 0.05081212	2 0.0025819	9 0.0508121		
2	20	0 0.06260274	5 0.0039191	0.0626027		
3	30	0 0.06948745	3 0.004828	5 0.0694875		
4	40	0 0.07712930	5 0.0059489	0.0771293	SAE	1.8547916
į	50	0 0.08561156	6 0.0073293	3 0.0856116		
(50	0 0.09502665	9 0.0090301	1 0.0950267		
7	70	0 0.10547717	4 0.0111254	4 0.1054772		
8	30	0 0.11707697	9 0.013707	7 0.117077		
11	15	0.01 0.16868135	6 0.0251798	3 0.1586814		
14	40	0 08 0 21895236	4 0 0193078	3 0 1389524		

170	0.3 0.299425445 3.301E-07 0.0005746
195	0.49 0.388661265 0.0102695 0.1013387
210	0.6 0.454507226 0.0211681 0.1454928
230	0.71 0.559972677 0.0225082 0.1500273
250	0.8 0.6899107 0.0121197 0.1100893
270	0.85 0.849999998 5.213E-18 2.283E-09
285	0.87 0.994004745 0.0153772 0.1240047
300	0.9 1.162406395 0.0688571 0.2624064
	0.253258 1.8547916

Marquardt's Percent Standard Deviation (MPSD)

BH=8a

	вп-оу					
t (min)	qexp	q	ıcalc		error	qex-qca/qex
()	0 0	.0008841	66	7.818E-07	0
20)	0 0	.0014388	397	2.07E-06	0
30)	0 0	.0018355	598	3.369E-06	0
40)	0 0	.0023416	69	5.483E-06	0
50)	0 0	.0029872	262	8.924E-06	0
60)	0 0	.0038108	345	1.452E-05	0
70)	0 0	.0048614	187	2.363E-05	0
80)	0 0	.0062017	789	3.846E-05	0
115	5 0.0	0 10	.0145423	347	2.063E-05	0.2063292
140	0.0	0 80	.0267303	321	0.0028377	0.4433842
170) 0	.3 0	.0554942	222	0.0597831	0.6642564
195	5 0.4	49 O	.1020040)55	0.1505409	0.6269923
210) 0	.6 0	.1469735	67	0.2052329	0.5700915
230	0.7	71 0	.2391855	66	0.2216662	0.4397267
250) 0	.8 0	.3892518	363	0.168714	0.2636157
270	0.8	35 0	.6334705	553	0.046885	0.0648927
285	5.0.8	37 0	.9127424	111	0.0018269	0.0024137
300) 0	.9 1	.3151340	73	0.1723363	0.2127609
					1.0299409	3.4944632

MPSD 45.338357

Hybrid Fractional Error Function (HYBRID)

BH=8g

t (min)	qexp	qcalc	error	qex-qca/qex
	0	0 0.009494	437 9.014E-	05 0

0 0.013108681 0.0001718	0		
0 0.015402949 0.0002373	0		
0 0.018098757 0.0003276	0	HYBRID	5.9267378
0 0.021266383 0.0004523	0		
0 0.024988404 0.0006244	0		
0 0.02936185 0.0008621	0		
0 0.034500731 0.0011903	0		
0.01 0.060671592 0.0025676	0.256761		
0.08 0.090802457 0.0001167 0	.0014587		
0.3 0.147310009 0.0233142 0	.0777141		
0.49 0.220467445 0.0726478 0	.1482608		
0.6 0.2808095 0.1018826 0	.1698043		
0.71 0.387705146 0.103874 0	.1463014		
0.8 0.535292718 0.0700699 0	.0875874		
0.85 0.739062394 0.0123072	0.014479		
0.87 0.941344158	.0058506		
0.9 1.198990547 <u>0.0893953</u> 0	.0993282		
<mark>0.4852212</mark> 1	.0075454		
	0 0.015402949 0.0002373 0 0.018098757 0.0003276 0 0.021266383 0.0004523 0 0.024988404 0.0006244 0 0.02936185 0.0008621 0 0.034500731 0.0011903 0.01 0.060671592 0.0025676 0.08 0.090802457 0.0001167 0 0.3 0.147310009 0.0233142 0 0.49 0.220467445 0.0726478 0 0.6 0.2808095 0.1018826 0 0.71 0.387705146 0.103874 0 0.8 0.535292718 0.0700699 0 0.85 0.739062394 0.0123072 0.87 0.941344158 0.00509 0 0.9 1.198990547 0.0893953 0	0 0.015402949 0.0002373 0 0 0.018098757 0.0003276 0 0 0.021266383 0.0004523 0 0 0.024988404 0.0006244 0 0 0.02936185 0.0008621 0 0 0.034500731 0.0011903 0 0.01 0.060671592 0.0025676 0.256761 0.08 0.090802457 0.0001167 0.0014587 0.3 0.147310009 0.0233142 0.0777141 0.49 0.220467445 0.0726478 0.1482608 0.6 0.2808095 0.1018826 0.1698043 0.71 0.387705146 0.103874 0.1463014 0.8 0.535292718 0.0700699 0.0875874 0.85 0.739062394 0.0123072 0.014479	0 0.015402949 0.0002373

Sum of the	he Squares	of the Errors	(ERRSQ/SSE))	
	BH=12g				
t (min)	qexp	qcalc	error		
() (0.00566285	3.207E-05		
20) (0.007437421	5.532E-05		
30) (0.008523463	7.265E-05		
40) (0.009768092	9.542E-05	SSE	0.0778655
50) (0.011194467	0.0001253		
60) (0.012829126	0.0001646		
80) (0.016849399	0.0002839		
100) (0.022129509	0.0004897		
140) (0.038172137	0.0014571		
180) (0.065844752	0.0043355		
230	0.02	2 0.130163595	0.012136		
255	5 0.08	3 0.183009536	0.010611		
280	0.21	0.257310735	0.0022383		
293	3 0.3	3 0.307191844	5.172E-05		
300	0.35	0.337944399	0.0001453		
315	5 0.49	0.414606173	0.0056842		
337	7 0.68	0.559579565	0.0145011		

354	0.8 0.705490374 0.0089321
362	0.84 0.786766811 0.0028338
370	0.87 0.877406749 5.486E-05
375	0.89 0.93928591 0.0024291
380	0.9 1.005529102 0.0111364
	0.0778655

Sum of Absolute Errors (EABS/SAE)

BH=12a

	рп= ι.	2g					
t (min)	qexp	qcalc	error	qex-qca			
	0	0 0.005219099	2.724E-05	0.0052191			
2	0	0 0.00688176	4.736E-05	0.0068818			
3	0	0 0.007902264	6.245E-05	0.0079023			
4	0	0 0.009074099	8.234E-05	0.0090741			
5	0	0 0.010419707	0.0001086	0.0104197	SA	E 0.9673366	5
6	0	0 0.011964857	0.0001432	0.0119649			
8	0	0 0.01577653	0.0002489	0.0157765			
10	0	0 0.020802497	0.0004327	0.0208025			
14	_	0 0.036167913	0.0013081	0.0361679			
18	0	0 0.062882734	0.0039542	0.0628827			
23		0.02 0.125542674					
25		0.08 0.177386823					
28		0.21 0.250640551					
29	3	0.3 0.299998391	2.589E-12	1.609E-06			
30	0	0.35 0.330487715	0.0003807	0.0195123			
31	5	0.49 0.406661734	0.0069453	0.0833383			
33	7	0.68 0.551248843	0.0165769	0.1287512			
35	4	0.8 0.697326353	0.0105419	0.1026736			
36	2	0.84 0.778892769	0.0037341	0.0611072			
37	0	0.87 0.870000026	6.644E-16	2.578E-08			
37	5	0.89 0.932277626	0.0017874	0.0422776			
38	0	0.9 0.999013271	0.0098036	0.0990133			
			0.0784601	0.9673366			

Marquardt's Percent Standard Deviation (MPSD

г	וכ	1-	1	\sim
	ΣГ	1=	П	2c

	DI 1- 129					
t (min)	qexp	qcalc	error	qex-qca/qex		
0		0 0.000107489	1.155E-08	0		
20		0 0.000175709	3.087E-08	0		
30		0 0.000224652	5.047E-08	0		
40		0 0.000287228	8.25E-08	0	MPSD	28.970374
50		0 0.000367234	1.349E-07	0		
60		0 0.000469525	2.205E-07	0		
80		0 0.000767522	5.891E-07	0		
100		0 0.00125465	1.574E-06	0		
140		0 0.003352636	1.124E-05	0		
180		0 0.008958806	8.026E-05	0		
230	0.0	02 0.030607645	0.0001125	0.2813053		
255	0.0	08 0.056574379	0.0005488	0.0857437		
280	0.2	21 0.104570618	0.0111154	0.2520489		
293	0	.3 0.143926384	0.024359	0.2706553		
300	0.3	35 0.170939166	0.0320628	0.261737		
315	0.4	19 0.247124332	0.0589886	0.2456834		
337	0.6	58 0.424317167	0.0653737	0.1413791		
354	0	.8 0.644329064	0.0242334	0.0378648		
362	0.8	34 0.784296873	0.0031028	0.0043974		
370	0.8	37 0.954669934	0.007169	0.0094715		
375	0.8	39 1.079471601	0.0358995	0.0453219		
380	0	.9 1.220588285	0.1027768	0.126885		
			0.3658365	1.7624933		

Hybrid Fractional Error Function (HYBRID)

BH=12g

t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.000995036	9.901E-07	0		
	20	0 0.001437807	2.067E-06	0		
	30	0 0.00172835	2.987E-06	0		
	40	0 0.002077604	4.316E-06	0		
	50	0 0.002497433	6.237E-06	0	HYBRID	1.7493928
	60	0 0.003002098	9.013E-06	0		

80	0 0.004337973 1.882E-05 C
100	0 0.006268287 3.929E-05
140	0 0.013087991 0.0001713
180	0 0.027327323 0.0007468
230	0.02 0.068588644 0.0023609 0.1180428
255	0.08 0.108662521 0.0008215 0.0102693
280	0.21 0.172150122 0.0014326 0.006822
293	0.3 0.218684331 0.0066122 0.0220408
300	0.35 0.248753605 0.0102508 0.0292881
315	0.49 0.327843003 0.0262949 0.053663
337	0.68 0.491489419 0.0355362 0.0522592
354	0.8 0.67204277 0.0163731 0.0204663
362	0.84 0.778649003 0.0037639 0.0044809
370	0.87 0.902166198 0.0010347 0.0011893
375	0.89 0.989127014 0.0098262 0.0110406
380	0.9 1.084470082 0.0340292 0.0378102
	0.149338 0.3673725

Sum of the Squares of the Errors (ERRSQ /SSE) fr4ml/min

t (min)	qexp	qcalc	error
0	0	0.047589732	0.0022648
20	0	0.057127656	0.0032636
30	0	0.062591157	0.0039177
40	0	0.068577168	0.0047028
50	0	0.075135663	0.0056454
60	0	0.08232139	0.0067768
90	0	0.108271065	0.0117226
150	0.02	0.187288814	0.0279855
210	0.29	0.32397483	0.0011543
235	0.45	0.407078064	0.0018423
260	0.63	0.511498224	0.0140427
280	0.74	0.614012587	0.0158728
290	0.79	0.672734726	0.0137511
300	0.83	0.737072856	0.0086355
315	0.87	0.845298845	0.0006101
320	0.88	0.884796837	2.301E-05
330	0.89	0.969415888	0.0063069
300 315 320	0.83 0.87 0.88	0.737072856 0.845298845 0.884796837	0.0086355 0.0006101 2.301E-05

SSE 0.1548033

Sum of Absolute Errors (EABS/SAE)

tr/Im	l/min
fr4m	. /

	11	, , , , , , , , , , , , , , , , , , , ,					
t (min)	qexp	qcalc		error	qex-qca		
	0	0 0.034	771901	0.0012091	0.0347719		
2	.0	0 0.042	555813	0.001811	0.0425558		
3	0	0 0.047	078663	0.0022164	0.0470787		
4	0	0 0.052	082203	0.0027126	0.0520822	SAE	1.4459888
5	0	0 0.057	617522	0.0033198	0.0576175		
6	0	0 0.063	741136	0.0040629	0.0637411		
9	0	0 0.086	300932	0.0074479	0.0863009		
15	0	0.02 0.158	200134	0.0190993	0.1382001		
21	0	0.29 0.290	000143	2.046E-14	1.43E-07		
23	5	0.45 0.373	302828	0.0058825	0.0766972		
26	0	0.63 0.480	534252	0.02234	0.1494657		
28	0	0.74 0.588	104907	0.0230721	0.1518951		
29	0	0.79 0.650	608946	0.0194299	0.1393911		
30	0	0.83 0.719	755941	0.0121538	0.1102441		
31	5	0.87 0.83	749669	0.0010565	0.0325033		
32	.0	0.88 0.880	877897	7.707E-07	0.0008779		
33	0	0.89 0.974	497973	0.0071399	0.084498		
34	.0	0.9 1.07	806803	0.0317082	0.178068		
				0.1646624	1.4459888		

Marquardt's Percent Standard Deviation (MPSD)

fr4ml/min

t (min)	qexp	qcalc	error	qex-qca/qex
	0	0 0.001344982	1.809E-06	0
	20	0 0.002016277	4.065E-06	0
	30	0 0.002468692	6.094E-06	0
	40	0 0.003022621	9.136E-06	0

MPSD 83.348941

50	0 0.003700842 1.37E-05 0
60	0 0.004531243 2.053E-05 9
90	0 0.008317021 6.917E-05 0
150	0.02 0.028020034 6.432E-05 0.1608024
210	0.29 0.094399464 0.0382596 0.4549295
235	0.45 0.156589111 0.0860899 0.4251356
260	0.63 0.259748822 0.1370859 0.3453916
280	0.74 0.389392165 0.1229259 0.2244811
290	0.79 0.47676462 0.0981164 0.1572126
300	0.83 0.583741851 0.0606431 0.0880289
315	0.87 0.790853513 0.0062642 0.0082761
320	0.88 0.875093491 2.407E-05 3.109E-05
330	0.89 1.07144841 0.0329235 0.0415649
340	0.9 1.311861769 <mark>0.1696301</mark> 0.2094199
	<mark>0.7521515</mark> 11.115274

Hybrid Fractional Error Function (HYBRID)

fr4ml/min

qexp		error	qex-qca/qca
	•		0
Ü	0.0141624//	0.0002006	0
0	0.016258184	0.0002643	0
0	0.018664006	0.0003483	0
0	0.021425831	0.0004591	0
0	0.02459634	0.000605	0
0	0.037210795	0.0013846	0
0.02	0.085165921	0.0042466	0.2123299
0.29	0.194922848	0.0090397	0.0311713
0.45	0.275229379	0.0305448	0.0678773
0.63	0.388621508	0.0582636	0.0924819
0.74	0.512144445	0.0519182	0.0701597
0.79	0.587929543	0.0408325	0.0516867
0.83	0.674929018	0.024047	0.0289723
0.87	0.830151441	0.0015879	0.0018252
0.88	0.889454496	8.939E-05	0.0001016
0.89	1.021072434	0.01718	0.0193034
0.9	1.172166671	0.0740747	0.0823052
		0.3152016	0.6582142
	0.02 0.02 0.45 0.63 0.74 0.79 0.83 0.87 0.88	0 0.010746662 0 0.014162477 0 0.016258184 0 0.018664006 0 0.021425831 0 0.02459634 0 0.037210795 0.02 0.085165921 0.29 0.194922848 0.45 0.275229379 0.63 0.388621508 0.74 0.512144445 0.79 0.587929543 0.83 0.674929018 0.87 0.830151441 0.88 0.889454496 0.89 1.021072434	0 0.010746662 0.0001155 0 0.014162477 0.0002006 0 0.016258184 0.0002643 0 0.018664006 0.0003483 0 0.021425831 0.0004591 0 0.02459634 0.000605 0 0.037210795 0.0013846 0.02 0.085165921 0.0042466 0.29 0.194922848 0.0090397 0.45 0.275229379 0.0305448 0.63 0.388621508 0.0582636 0.74 0.512144445 0.0519182 0.79 0.587929543 0.0408325 0.83 0.674929018 0.024047 0.87 0.830151441 0.0015879 0.88 0.889454496 8.939E-05 0.89 1.021072434 0.01718 0.9 1.172166671 0.0740747

HYBRID 4.1138389

Sum of the Squares of the Errors (ERRSQ /SSE) fr12ml/min

		-			
t (min)	qexp	qcalc	error		
	0	0 0.223763482	2 0.0500701		
	10	0 0.255443456	5 0.0652514		
	20	0.08 0.29160861	5 0.0447782		
	30	0.32 0.332893963	3 0.0001663	SSE	0.3290746
	48	0.62 0.422489524	4 0.0390104		
	60	0.74 0.495247883	3 0.0599036		
	85	0.86 0.689583007	7 0.029042		
•	100	0.89 0.841094710	5 0.0023917		
•	120	0.9 1.096114803	3 0.038461		
			0.3290746		

Sum of Absolute Errors (EABS/SAE)

fr12ml/min

	11 1 211	11/111111				
t (min)	qexp	qcalc	error	qex-qca		
	0	0 0.219214669	0.0480551	0.2192147		
	10	0 0.252186394	0.063598	0.2521864		
	20	0.08 0.290117344	0.0441493	0.2101173		
	30	0.32 0.333753426	0.0001892	0.0137534	SAE	1.5342051
	48	0.62 0.429496278	0.0362917	0.1905037		
	60	0.74 0.508138208	0.0537599	0.2318618		
	85	0.86 0.721293389	0.0192395	0.1387066		
1	00	0.89 0.890000011	1.105E-16	1.051E-08		
1	20	0.9 1.177861134	0.0772068	0.2778611		
			0.3424894	1.5342051		

Marquardt's Percent Standard Deviation (MPSD)

fr12ml/min

t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.072361569	0.0052362	0		
	10	0 0.09144147	0.0083615	0		
	20	0.08 0.115552254	0.001264	0.1974942		
	30	0.32 0.146020438	0.0302689	0.2955946		
	48	0.62 0.222513851	0.1579952	0.4110178	MPSD	47.052239
	60	0.74 0.294658734	0.1983288	0.3621783		
	85	0.86 0.528941177	0.1095999	0.1481881		
•	100	0.89 0.751381007	0.0192152	0.0242586		
•	120	0.9 1.199860236	0.0899162	0.1110076		
			0.620186	1.5497392		

Hybrid Fractional Error Function (HYBRID)

fr12ml/min

		,					
t (min)	qexp		qcalc	error	qex-qca/qex	X	
	0	0	0.150494804	0.0226487	0		
	10	0	0.178045417	0.0317002	0		
	20	0.08	0.210639634	0.0170667	0.2133339		
	30	0.32	0.249200772	0.0050125	0.0156642		
	48	0.62	0.33726099	0.0799413	0.1289377	HYBRID	9.0318226
	60	0.74	0.412645642	0.1071609	0.144812		
	85	0.86	0.628203707	0.0537295	0.0624762		
1	00	0.89	0.808377905	0.0066622	0.0074856		
1	20	0.9	1.131443887	0.0535663	0.0595181		
				0.3774883	0.6322276		

BH=4g	50mg/l				
t (min)	qexp	qcalc	error		
C) 0	0.089617797	0.0080313		
10) 0	0.095968511	0.00921		
22	2 0	0.104186188	0.0108548		
30) 0	0.11005195	0.0121114		
41	0	0.118660365	0.0140803	SSE	0.2978848
50) 0	0.126202141	0.015927		
60) 0	0.135145384	0.0182643		
80	0.01	0.154978052	0.0210186		
100	0.05	0.177721177	0.0163127		
155	0.26	0.258987549	1.025E-06		
210	0.54	0.377414506	0.026434		
240	0.66	0.463470465	0.0386239		
280	0.79	0.609480801	0.0325872		
300	0.83	0.698922486	0.0171813		
320	0.86	0.801489793	0.0034234		
340	0.88	0.919108916	0.0015295		
370	0.9	1.128679023	0.0522941		
			0.2978848		

Sum of Absolute Errors (EABS/SAE)

BH=4g	50mg	/l		/			
t (min)	qexp		qcalc	error	qex-qca		
	0	0	0.084558623	0.0071502	0.0845586		
	10	0	0.090915367	0.0082656	0.0909154		
	22	0	0.099177365	0.0098361	0.0991774		
	30	0	0.105098394	0.0110457	0.1050984		
	41	0	0.113821266	0.0129553	0.1138213	SAE	2.0246181
	50	0	0.121494009	0.0147608	0.121494		
	60	0	0.130627392	0.0170635	0.1306274		
	80	0.01	0.151005595	0.0198826	0.1410056		
1	00	0.05	0.17456285	0.0155159	0.1245628		
1	55	0.26	0.260068935	4.752E-09	6.894E-05		
2	210	0.54	0.387458449	0.0232689	0.1525416		
2	240	0.66	0.481574311	0.0318357	0.1784257		
2	280	0.79	0.643547903	0.0214482	0.1464521		
3	300	0.83	0.743943003	0.0074058	0.086057		
3	320	0.86	0.859999993	4.857E-17	6.97E-09		
3	340	0.88	0.994162167	0.013033	0.1141622		
3	370	0.9	1.235649813	0.1126608	0.3356498		
				0.3261281	2.0246181		

BH=4g	50mg/l					
t (min)	qexp	qcalc	error	qex-qca/qe	ex	
()	0 0.00420	2746 1.766E	-05 0		
10)	0 0.00491	3774 2.415E	-05 0		
22	2	0 0.00592	7529 3.514E	-05 0		
30)	0 0.00671	7062 4.512E	-05 0		
41	1	0 0.00797	7185 6.364E	-05 0	MPSD	46.780452
50)	0 0.00918	2132 8.431E	-05 0		
60)	0 0.01073	5583 0.0001	153 0		
80	0	.01 0.01467	5395 2.186E	-05 0.2185931		
100	0	.05 0.02006	1063 0.00089	963 0.358536		
155	5 0	.26 0.04739	2039 0.0452	021 0.6686708		
210	0	.54 0.11195	8439 0.1832 ⁻	196 0.628325		
240	0	.66 0.17893	8205 0.2314	205 0.5312683		
280	0	.79 0.33437	3153 0.2075	958 0.3326323		
300	0	.83 0.45708	3518 0.1390	667 0.2018678		
320	0	.86 0.62482	6907 0.0553	064 0.0747788		
340	0 0	.88 0.8541	2982 0.0006	693 0.0008642		
370)	0.9 1.36511	7791 0.2163	346 0.2670797		
			1.0801°	<mark>184</mark> 3.282616		

BH=4g	50mg	/l				
t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0249473	6 0.0006224	. 0		
	10	0 0.02773011	9 0.000769	0		
	22	0 0.03148214	5 0.0009911	0		
	30	0 0.03426147	3 0.0011738	0		
	41	0 0.03848804	8 0.0014813	0	HYBRID	6.7041046
	50	0 0.04233117	4 0.0017919	0		
	60	0 0.04705301	5 0.002214	. 0		
	80	0.01 0.05813554	5 0.002317	0.2317031		
1	00	0.05 0.07182837	4 0.0004765	0.0095296		
1	55	0.26 0.12849769	1 0.0172929	0.066511		
2	10	0.54 0.22987652	1 0.0961766	0.1781048		
2	40	0.66 0.31570106	6 0.1185418	0.1796087		

280	0.79 0.481930734 0.0949067 0.120135
300	0.83 0.595441241 0.0550178 0.0662865
320	0.86 0.735687199 0.0154537 0.0179694
340	0.88 0.908965683 0.000839 0.0009534
370	0.9 1.248328595 0.1213328 0.1348142
	<mark>0.5313982</mark> 1.0056157

Sum of the Squares of the Errors (ERRSQ /SSE)

150ma/l

	1301	119/1			
t (min)	qexp	qcalc	error		
	0	0 0.192831367	0.0371839		
	10	0 0.232575151	0.0540912		
	15	0.01 0.255420721	0.0602313	SSE	0.3604907
	25	0.2 0.308064573	0.011678		
	40	0.48 0.408056409	0.0051759		
	50	0.69 0.492159456	0.0391409		
	60	0.83 0.593596682	0.0558865		
	70	0.88 0.715940771	0.0269154		
	75	0.89 0.78626675	0.0107606		
	95	0.9 1.143776507	0.059427		
			0.3604907		

Sum of Absolute Errors (EABS/SAE)

150mg/l

	1 301	ng/i					
t (min)	qexp		qcalc	error	qex-qca		
	0	0	0.225934916	0.0510466	0.2259349		
	10	0	0.271250725	0.073577	0.2712507		
	15	0.01	0.297210867	0.0824901	0.2872109		
	25	0.2	0.356822506	0.0245933	0.1568225	SAE	1.6822864
	40	0.48	0.469389717	0.0001126	0.0106103		
	50	0.69	0.5635353	0.0159933	0.1264647		
	60	0.83	0.676563681	0.0235427	0.1534363		
	70	0.88	0.812262185	0.0045884	0.0677378		
	75	0.89	0.890000012	1.532E-16	1.238E-08		
	95	0.9	1.282818228	0.1465498	0.3828182		

Marquardt's Percent Standard Deviation (MPSD

150mg/l

		3					
t (min)	qexp	qcalc	error	qex-qca/qex			
	0	0 0.005655533	3.199E-05	0			
	10	0 0.009978289	9.957E-05	0			
	15	0.01 0.013254012	1.059E-05	0.1058859			
	25	0.2 0.023384597	0.031193	0.779825	MF	PSD	70.033749
	40	0.48 0.054802917	0.1807926	0.7846899			
	50	0.69 0.096691034	0.3520155	0.7393731			
	60	0.83 0.170595955	0.4348137	0.631171			
	70	0.88 0.300989439	0.3352532	0.43292			
	75	0.89 0.399799753	0.2402963	0.3033661			
	95	0.9 1.244536324	0.1187053	0.1465497			
			1.6932117	3.9237808			

Hybrid Fractional Error Function (HYBRID)

150mg/l

	1 301	ng/i						
t (min)	qexp		qcalc	error	qex-qca/q	ex		
	0	0	0.197976608	0.0391947	()		
	10	0	0.238308065	0.0567907	()		
	15	0.01	0.26145754	0.0632309	5.2526023	3		
	25	0.2	0.314721225	0.013161	0.0076775	5	HYBRID	94.049227
	40	0.48	0.415636163	0.0041427	0.1208158	3		
	50	0.69	0.500308854	0.0359827	0.2945415	5		
	60	0.83	0.602230922	0.0518788	0.4205563	3		
	70	0.88	0.72491638	0.0240509	0.4666399	9		
	75	0.89	0.795335457	0.0089614	0.475909	5		
	95	0.9	1.152391559	0.0637015	0.4851952	2		
				0.3610953	7.5239381	1		

FOR THE MODIFIED NANOCELLULOSE ADSORBENTS

Sum of the Squares of the Errors (ERRSQ /SSE)

	•		•	•	•		
	MNFC						
t (min)	qexp	qcalc	error				
C	0	0.068759874	0.00472	279			
20	0	0.099127653	0.00982	263			
30	0	0.119021304	0.0141	661			
40	0	0.142907355	0.02042	225		SSE	0.1911 <mark>5</mark>
50	0.01	0.17158703	0.0261	104			
60	0.11	0.206022349	0.00922	203			
80	0.32	0.297012064	0.00052	284			
96	0.52	0.397980593	0.01488	887			
105	0.62	0.46919004	0.02274	436			
122	0.81	0.640294213	0.02880	001			
132	0.86	0.76879306	0.0083	187			
138	0.88	0.857960672	0.00048	857			
143	0.89	0.940117895	0.0025	118			
150	0.9	1.068521424	0.02839	995			
			0.19	115			

Sum of Absolute Errors (EABS/SAE)

	MNFC)					
t (min)	qexp		qcalc	error	qex-qca		
(0	0	0.07549114	7 0.0056989	0.0754911		
20	0	0	0.10776402	4 0.0116131	0.107764		
30	0	0	0.1287545	8 0.0165777	7 0.1287546		
40	0	0	0.15383373	1 0.0236648	3 0.1538337	SAE	1.4684607
50	0	0.01	0.18379786	5 0.0302057	7 0.1737979		
60	0	0.11	0.2195984	9 0.0120118	3 0.1095985		
80	0	0.32	0.31347804	1 4.254E-05	0.006522		
90	6	0.52	0.41674398	9 0.0106618	0.103256		
10	5	0.62	0.4891356	8 0.0171255	0.1308643		
122	2	0.81	0.66194278	4 0.0219209	0.1480572		
132	2	0.86	0.79087771	7 0.0047779	0.0691223		
138	8	0.88	0.8	8 9.786E-21	9.892E-11		
143	3	0.89	0.96189377	9 0.0051687	7 0.0718938		
150	0	0.9	1.08950527	5 <u>0.0359122</u>	0.1895053		
				0.1953817	<mark>7</mark> 1.4684607		

Marquardt's Percent Standard Deviation (MPSD

NANIE	•

IVIIVI						
qexp	qcalc	error	qex-qca/qex			
	0 0.001435323	2.06E-06	0			
	0 0.003559018	1.267E-05	0			
	0 0.00560429	3.141E-05	0			
	0 0.008824924	7.788E-05	0		MPSD	57.123704
0.0	01 0.013896368	1.518E-05	0.1518169			
0.1	11 0.021882235	0.0077647	0.6417141			
0.3	32 0.054259077	0.0706182	0.6896312			
0.5	52 0.112195898	0.1663042	0.6150303			
0.6	62 0.168829488	0.2035548	0.5295391			
0.8	81 0.36531871	0.1977414	0.3013892			
0.8	86 0.575257483	0.0810783	0.1096245			
0.8	88 0.755399152	0.0155254	0.0200483			
0.8	89 0.947919971	0.0033547	0.0042352			
0	0.9 1.30258156	0.1620719	0.2000888			
		0.9081529	3.2631176			
	qexp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	qexp qcalc 0 0.001435323 0 0.003559018 0 0.00560429 0 0.008824924 0.01 0.013896368 0.11 0.021882235 0.32 0.054259077 0.52 0.112195898 0.62 0.168829488 0.81 0.36531871 0.86 0.575257483 0.88 0.755399152 0.89 0.947919971	qexp qcalc error 0 0.001435323 2.06E-06 0 0.003559018 1.267E-05 0 0.00560429 3.141E-05 0 0.008824924 7.788E-05 0.01 0.013896368 1.518E-05 0.11 0.021882235 0.0077647 0.32 0.054259077 0.0706182 0.52 0.112195898 0.1663042 0.62 0.168829488 0.2035548 0.81 0.36531871 0.1977414 0.86 0.575257483 0.0810783 0.88 0.755399152 0.0155254 0.89 0.947919971 0.0033547 0.9 1.30258156 0.1620719	qexp qcalc error qex-qca/qex 0 0.001435323 2.06E-06 0 0 0.003559018 1.267E-05 0 0 0.00560429 3.141E-05 0 0 0.008824924 7.788E-05 0 0.01 0.013896368 1.518E-05 0.1518169 0.11 0.021882235 0.0077647 0.6417141 0.32 0.054259077 0.0706182 0.6896312 0.52 0.112195898 0.1663042 0.6150303 0.62 0.168829488 0.2035548 0.5295391 0.81 0.36531871 0.1977414 0.3013892 0.86 0.575257483 0.0810783 0.1096245 0.88 0.755399152 0.0155254 0.0200483 0.89 0.947919971 0.0033547 0.0042352	qexp qcalc error qex-qca/qex 0 0.001435323 2.06E-06 0 0 0.003559018 1.267E-05 0 0 0.00560429 3.141E-05 0 0 0.008824924 7.788E-05 0 0.01 0.013896368 1.518E-05 0.1518169 0.11 0.021882235 0.0077647 0.6417141 0.32 0.054259077 0.0706182 0.6896312 0.52 0.112195898 0.1663042 0.6150303 0.62 0.168829488 0.2035548 0.5295391 0.81 0.36531871 0.1977414 0.3013892 0.86 0.575257483 0.0810783 0.1096245 0.88 0.755399152 0.0155254 0.0200483 0.89 0.947919971 0.0033547 0.0042352 0.9 1.30258156 0.1620719 0.2000888	qexp qcalc error qex-qca/qex 0 0.001435323 2.06E-06 0 0 0.003559018 1.267E-05 0 0 0.00560429 3.141E-05 0 0 0.008824924 7.788E-05 0 MPSD 0.01 0.013896368 1.518E-05 0.1518169 0.11 0.021882235 0.0077647 0.6417141 0.32 0.054259077 0.0706182 0.6896312 0.52 0.112195898 0.1663042 0.6150303 0.62 0.168829488 0.2035548 0.5295391 0.81 0.36531871 0.1977414 0.3013892 0.86 0.575257483 0.0810783 0.1096245 0.88 0.755399152 0.0155254 0.0200483 0.89 0.947919971 0.0033547 0.0042352 0.9 1.30258156 0.1620719 0.2000888

Hybrid Fractional Error Function (HYBRID)

MNFC

	IVIIVI	,				
t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0132103	86 0.0001745	0		
	20	0 0.0240720	99 0.0005795	0		
	30	0 0.032494	75 0.0010559	0		
	40	0 0.0438644	24 0.0019241	0	HYBRID	9.0091315
	50	0.01 0.0592122	63 0.0024218	0.2421847		
	60	0.11 0.0799301	99 0.0009042	0.0082199		
	80	0.32 0.1456496	22 0.0303981	0.0949939		
	96	0.52 0.2353900	69 0.0810028	0.1557746		
1	05	0.62 0.3083595	81 0.0971198	0.1566448		
1	22	0.81 0.5135303	83 0.0878942	0.1085114		
1	32	0.86 0.693210	89 0.0278186	0.0323472		

138	0.88 0.829936599 0.0025063 0.0028481
143	0.89 0.964260849 0.0055147 0.0061963
150	0.9 1.189608331 0.083873 0.0931922
	0.4231875 0.9009131

Sum of the Squares of the Errors (ERRSQ /SSE)

N 4	г.	N /	N I	_	\neg
IVI	F+	·IVI	IN	н	

	MIL+MINI	-C				
t (min)	qexp	C	qcalc	error		
C)	0 0	0.021233266	0.0004509		
20)	0 0	0.031878492	0.0010162		
40)	0 0	0.047860667	0.0022906		
50)	0 0	0.058643413	0.003439		
60)	0 0	0.071855452	0.0051632	SSE	0.0760832
70)	0 0	0.088044092	0.0077518		
80	0.	01 0	0.107879943	0.0095805		
100	0.	09	0.16196519	0.005179		
115	5 0.	21 (0.219675902	9.362E-05		
130	0.	36 C	0.297949837	0.0038502		
140	0.	46 C	0.365076301	0.0090105		
165	0.	72 C	0.606715184	0.0128334		
180	0.	88 0	0.822897225	0.0032607		
185	0 .	89 C	0.910889808	0.0004364		
190) ().9 1	1.008291456	0.011727		
				0.0760832		

Sum of Absolute Errors (EABS/SAE)

MF+MNFC

t (min)	qexp	qcalc	error	qex-qca		
	0	0 0.018936225	0.0003586	0.0189362		
	20	0 0.028775286	0.000828	0.0287753		
	40	0 0.043726618	0.001912	0.0437266		
	50	0 0.053902513	0.0029055	0.0539025	SAE	0.9373712
	60	0 0.066446503	0.0044151	0.0664465		
	70	0 0.081909683	0.0067092	0.0819097		
	80	0.01 0.100971397	0.0082758	0.0909714		

100	0.09 0.153435058 0.004024 0.0634351
115	0.21 0.209999993 4.508E-17 6.715E-09
130	0.36 0.287417997 0.0052681 0.072582
140	0.46 0.354304834 0.0111715 0.1056952
165	0.72 0.597771044 0.0149399 0.122229
180	0.88 0.818143627 0.0038262 0.0618564
185	0.89 0.908366504 0.0003373 0.0183665
190	0.9 1.008538939 0.0117807 0.1085389
	0.076752 0.9373712

Marquardt's Percent Standard Deviation (MPSD)

MF+MNFC

		•						
t (min)	qexp		qcalc	error	qex-qca/qex	(
	0	0	0.000560603	3.143E-07	0			
2	0	0	0.00125768	1.582E-06	0			
4	0	0	0.00282153	7.961E-06	0			
5	0	0	0.00422612	1.786E-05	0		MPSD	42.249959
6	0	0	0.006329933	4.007E-05	0			
7	0	0	0.009481047	8.989E-05	0			
8	0	0.01	0.014200824	1.765E-05	0.1764692			
10	0	0.09	0.031858694	0.0033804	0.4173347			
11	5	0.21	0.058400129	0.0229825	0.5211456			
13	0	0.36	0.107053196	0.0639821	0.4936889			
14	0	0.46	0.16034553	0.0897928	0.4243516			
16	5	0.72	0.440250555	0.0782598	0.150964			
18	0	0.88	0.807022687	0.0053257	0.0068772			
18	5	0.89	0.987675667	0.0095405	0.0120446			
19	0	0.9	1.20876803	0.0953377	0.1177009			
				0.3687768	2.3205767			

Hybrid Fractional Error Function (HYBRID)

MF+MNFC

t (min) qexp qcalc error qex-qca/qex

0	0 0.021233266 0.0004509 0		
20	0 0.031878492 0.0010162 0		
40	0 0.047860667 0.0022906 0		
50	0 0.058643413 0.003439 0	HYBRID	33.659241
60	0 0.071855452 0.0051632 0		
70	0 0.088044092 0.0077518 0		
80	0.01 0.107879943 0.0095805 0.000218		
100	0.09 0.16196519 0.005179 0.0737603		
115	0.21 0.219675902 9.362E-05 0.193299		
130	0.36 0.297949837 0.0038502 0.3431549		
140	0.46 0.365076301 0.0090105 0.443111		
165	0.72 0.606715184 0.0128334 0.703054		
180	0.88 0.822897225 0.0032607 0.8630356		
185	0.89 0.910889808 0.0004364 0.8730347		
190	0.9 1.008291456 0.011727 0.8830338		
	<mark>0.0760832</mark> 4.3757013		

Summary of Wolborska model parameters for Co(II) ion adsorption Wolborska parameters at BH=4cm

Error Func β (min-1) N0 (mg/L) Objective function

SSE	0.155374	1402.726	0.2661
HYB	0.253892	1385.848	8.519
MPSD	0.394811	1389.972	50.66806
ARE	0.25367	1387.978	2.0676
SAE	0.158888	1436.394	1.7515
R2	0.1557	1402.73	0.8688

Wolborska parameters at BH= 8 cm

Error Func β (min-1) N0 (mg/L) Objective function SSE 0.1062 1054.909 0.2347 HYB 0.1681 1042.019 5.926738

MPSD 0.2537 1042.025 45.33836 ARE 0.1681 1042.019 2.7832 SAE 0.1075 1030.574 1.8548

R2 0.106189 1054.9094 0.9021

Wolborska parameters a BH= 12 cm

Error Func β (min-1) N0 (mg/L) Objective function

SSE	0.124474	913.2434	0.077865	
HYB	0.166309	903.6166	1.749393	
MPSD	0.129848	894.7003	28.97037	
ARE	0.12593	913.4037	0.7592	
SAE	0.126437	914.3884	0.967337	
R2	0.124474 91	13.243401	0.9721	

Wolborska parameters at flow rate of 4 mL/min

Error Funcβ (min-1) N0 (mg/L) Objective function

SSE	0.1098	1202.743	0.154803	
HYB	0.1635	1185.024	4.1138	
MPSD	0.2385	1178.177	83.34894	
ARE	0.1635	1178.177	9.6103	
SAE	0.1211	1199.702	1.446	
R2	0.1098531	202.74344	0.9434	

Wolborska parameters at flow rate of 12 mL/min

Error Func β (min-1) N0 (mg/L) Objective function

SSE	0.162143	1224.539	0.3295	
HYB	0.205101	1220.042	9.0313	
MPSD	0.284404	1215.28	47.0224	
ARE	0.2051	1220.042	3.3007	
SAE	0.164367	1173.072	1.5345	
R2	0.1621431	224.53928	0.732	

Wolborska parameters at initial concentration of 50 mg/L

Error Funcβ (min-1) N0 (mg/L) Objective function

SSE	0.174101	1271.435	0.2978
HYB	0.266397	1259.547	0.704105
MPSD	0.3949	1263.378	46.78045
ARE	0.1789	1259.547	0.9874
SAE	0.178295	1229.89	2.0248
R2	0.1741011	271.43495	0.8804

Wolborska parameters at initial concentration of 150 mg/L

Error Funcβ (min-1) N0 (mg/L) Objective function

SSE	0.118796	950.8859	0.3604
HYB	0.116895	945.6749	94.04923
MPSD	0.373514	986.7805	70.03375
ARE	0.1171	945.6747	8.5613
SAE	0.107361	880.9867	1.6822
R2	0.1168959	45.674889	0.7494

Wolborska parameters for C-MNFC

[at 4 cm, 12 mL/min and 100 mg/L]

Error Funcβ (min-1) N0 (mg/L) Objective function

SSE	0.2899	1585.255	0.19115
HYB	0.4685	1561.827	9.009131
MPSD	0.709	1561.447	57.1237
ARE	0.709	1561.447	7.0673
SAE	0.2798	1572.333	1.468461
R2	0.288431	583.86348	0.9066

Wolborska parameters for MF-MNFC

[at 4 cm, 12 mL/min and 100 mg/L]

Error Funcβ (min-1) N0 (mg/L) Objective function

SSE	0.417192	2053.299	0.076083
HYB	0.417192	2053.299	33.65924
MPSD	0.81079	2006.874	42.24996
ARE	0.41719	2006.874	0.7957
SAE	0.429591	2053.299	0.937371
R2	0.417192	2053.2987	0.9606

β	0.1553735
N0	1402.7256

Н	4
V	0.2887
C0	100
Q	8
n	15
p	2

β	0.1588881
N0	1436.394

Н	4
V	0.2887
C0	100
Q	8
n	15
p	2

β	0.3948106
N0	1389.9719

Н	4
V	0.2887
C0	100
Q	8
n	15
p	2

β	0.2538924
N0	1385.8478

Н	4
V	0.2887
C0	100
Q	8
n	15
р	2

β	0.1061893
N0	1054,9094

Н	8
V	0.2887
C0	100
Q	8
n	19
p	2

β	0.107527 1030.5736	
N0		

Н	8 0.2887	
v C0	100	
Q	8	
n	19	

2 p

β	0.2537263
N0	1042.0253

Н 8 0.2887 ٧ 100 C0 8 Q 19 n 2 p

N0	1042.0187	
R^2	0.5184126	
Н	8	
V	0.2887	
C0	100	
Q	8	
n	19	
p	2	

	β	0.1244737
ı	N0	913.2434
ĺ	Н	12
,	٧	0.2887
(v Q	8
	CO	100
	n	23
ı	p	2

β N0	0.1264369 914.38843	
H V Q CO n	12 0.2887 8 100 23 2	

β	0.219848	
N0	894.70027	
Н	12	
v Q C0	0.2887 8	
CO	100	
n	23	
р	2	
β	0.1663088	
N0	903.61658	
DAG	0.500.4045	
R^2	0.5934969	

	0.000	
V	0.2887	
Q	8	
Q C0	100	
n	23	
р	2	

β	0.1098534	
NO	1202 7434	

β N0	0.121174 1199.7016
R^2	0.8861247
Н	4
٧	0.1443
Q	4
C0	100
n	18
p	2

β	0.2385053
N0	1178.1769

Н	4
V	0.1443
Q	4
C0	100
n	18
р	2

β N0	0.1635338 1185.0236
R^2	0.521126
H v Q C0	4 0.1443 4 100 18 2

β	0.162143
N0	1224.5393

٧	0.4332
Н	4
Q	12
C0	100
n	9
p	2

β	0.1643673
N0	1173.0719

V	0.4332
Н	4
Q	12
C0	100
n	9
p	2

β	0.2844045
N0	1215.2803

0.4332
4
12
100
9
2

β	0.2051014
N0	1220.0422

V	0.4332
Н	4
Q	12
C0	100
n	9
p	2

β	0.1741006
N0	1271.435

C0	50
Н	4
V	0.2887
n	17
p	2
Q	8

β	0.1782946
N0	1229.89

β	0.3949428
N0	1263,3783

C0	50
Н	4
V	0.2887
n	17
p	2
Q	8

β	0.266397
N0	1259.5465

C0	50
Н	4
V	0.2887
n	17
p	2
Q	8

β	<mark>0.1187957</mark>
N0	950.88593
Н	4
C0	150
V	0.2887
n	10
p	2

β	0.1073609
N0	880.98667

Н	4
C0	150
V	0.2887
n	10
р	2

986.7805

Н	4
C0	150
V	0.2887
n	10
p	2

β	0.1168951
N0	945.67489

Н	4
C0	150
V	0.2887
n	10
p	2

β	0.2899337
N0	1585.255

V	0.4332
Н	4
C0	100
n	14
p	2
Q	12

β	0.279819
N0	1572.3329

V	0.4332
Н	4
C0	100
n	14
p	2
Q	12

β	0.7089714
N0	1561.4474

V	0.4332
Н	4
C0	100
n	14
p	2
Q	12

β	0.4685872
N0	1561.8269
R^2	0.5302683
V	0.4332
Н	4
C0	100
n	14
p	2
Q	12

β	0.4171918
N0	2053.2987

Q	12
Н	4
n	
٧	0.4332
p	2
C0	100

β	0.4295913
N0	2053.2987

Q 12 H 4

n	
٧	0.4332
p	2
C0	100

β	0.8107876
N0	2006.8743

Q	12
Н	4
n	
V	0.4332
p	2
C0	100

.4171918
053.2987

Q H	12 4
n v	0.4332
p	2
C0	100

BOHART-ADAMS PARAMETERS FOR Co(II) ION BASED ON ADSORPTION BED HEIGHT VARIATIONS

	BH=4g			
t (min)	qexp	qcalc	SSE	SSEA
(0	0.11616678	0.013494721	0.176013156
10	0	0.129773697	0.016841212	0.176013156
15	5 0	0.137163652	0.018813867	0.176013156
20	0	0.144974427	0.021017585	0.176013156
25	5 0	0.153229987	0.023479429	0.176013156
40	0.01	0.180925946	0.029215679	0.167722372
70	0.24	0.252240623	0.000149833	0.032234331
92	0.43	0.321844007	0.011697719	0.000109428
110	0.56	0.392856491	0.027936953	0.019729231
130	0.7	0.490279105	0.043982854	0.07865825
160	0.85	0.683529971	0.027712271	0.185296484
180	0.88	0.853035319	0.000727094	0.212024131
190	0.89	0.952953565	0.003963151	0.221333347
200	0.9	1.064575494	0.027085093	0.230842562
		0.419539219	0.26611746	2.028015916

	BH=8g			
t (min)	qexp	qcalc	SSE	SSEA
0	0	0.052730955	0.002780554	0.117064748
20	0	0.064491075	0.004159099	0.117064748
30	0	0.071320865	0.005086666	0.117064748
40	0	0.07887395	0.0062211	0.117064748
50	0	0.087226929	0.007608537	0.117064748
60	0	0.096464512	0.009305402	0.117064748
70	0	0.106680382	0.011380704	0.117064748
80	0	0.117978142	0.013918842	0.117064748
115	0.01	0.167807364	0.024903164	0.110321802
140	0.08	0.215825865	0.018448666	0.068721186
170	0.3	0.291913688	6.53884E-05	0.001776392
195	0.49	0.375445526	0.013122727	0.021860433
210	0.6	0.436638894	0.026686851	0.066488035
230	0.71	0.534018617	0.030969447	0.135315638
250	0.8	0.653116081	0.021574886	0.209629131
270	0.85	0.798774803	0.002624021	0.257914405
285	0.87	0.928966047	0.003476995	0.278628515
300	0.9	1.08037699	0.032535858	0.311199679

0.34214726 0.234868907 2.398373198

	BH=12g			
t (min)	qexp	qcalc	SSE	SSEA
0	0	0.005662753	3.20668E-05	0.092822357
20	0	0.007437301	5.53134E-05	0.092822357
30	0	0.008523329	7.26471E-05	0.092822357
40	0	0.009767943	9.54127E-05	0.092822357
50	0	0.011194301	0.000125312	0.092822357
60	0	0.012828943	0.000164582	0.092822357
80	0	0.016849174	0.000283895	0.092822357
100	0	0.022129234	0.000489703	0.092822357
140	0	0.038171733	0.001457081	0.092822357
180	0	0.065844179	0.004335456	0.092822357
230	0.02	0.130162766	0.012135835	0.081035652
255	0.08	0.183008584	0.010610768	0.050475538
280	0.21	0.257309697	0.002238207	0.008961958
293	0.3	0.307190791	5.17075E-05	2.17866E-05
300	0.35	0.337943351	0.000145363	0.002055025
315	0.49	0.414605177	0.005684379	0.034348092
337	0.68	0.559578796	0.014501266	0.140874398
354	0.8	0.705489963	0.008932147	0.24535417
362	0.84	0.786766647	0.00283379	0.28658076
370	0.87	0.877406893	5.48621E-05	0.319600703
375	0.89	0.939286284	0.002429138	0.342613998
380	0.9	1.005529737	0.011136525	0.354420646
		0.304667617	0.077865458	2.794566296

BOHART-ADAMS KINETIC MODEL PARAMETERS FOR Co(II) ION ADSORPTION BASED ON FLOW RATE VA

	fr4ml/n	nin			
t (min)	qexp	(qcalc	SSE	SSEA
	0	0	0.047589792	0.002264788	0.18379867
	20	0	0.057127724	0.003263577	0.18379867
	30	0	0.062591229	0.003917662	0.18379867
	40	0	0.068577245	0.004702838	0.18379867
	50	0	0.075135743	0.00564538	0.18379867
	60	0	0.082321475	0.006776825	0.18379867
	90	0	0.108271164	0.011722645	0.18379867

150	0.02	0.187288942	0.02798559	0.167049971
210	0.29	0.323974976	0.001154299	0.019242537
235	0.45	0.407078207	0.00184228	0.000452946
260	0.63	0.511498355	0.01404264	0.040514657
280	0.74	0.614012696	0.015872801	0.096896813
290	0.79	0.672734819	0.013751123	0.130525066
300	0.83	0.737072929	0.00863544	0.161027668
315	0.87	0.84529888	0.000610145	0.194730271
320	0.88	0.884796856	2.30098E-05	0.203655921
330	0.89	0.969415872	0.006306881	0.212781572
340	0.9	1.062127567	0.026285348	0.222107223
		0.42871747	0.154803273	2.735575331

	fr12m	nl/min			
t (min)	qexp	(qcalc	SSE	SSEA
	0	0	0.223763968	0.050070313	0.266742836
	10	0	0.255443967	0.06525162	0.266742836
	20	80.0	0.291609149	0.044778432	0.190507392
	30	0.32	0.332894517	0.000166269	0.03860106
	48	0.62	0.422490097	0.039010162	0.010718145
	60	0.74	0.495248454	0.059903319	0.049964979
	85	0.86	0.689583509	0.02904178	0.118011813
-	100	0.89	0.841095115	0.002391688	0.139523521
-	120	0.9	1.096114952	0.038461074	0.147094091
			0.516471525	0.329074658	1.227906675

BOHART-ADAMS KINETIC PARAMETERS FOR Co(II) BASED ON INITIAL SOLUTE CONCENTRATION VARIA

BH=4g	50mg/l				
t (min)	qexp		qcalc	SSE	SSEA
	0	0	0.089618087	0.008031402	0.140408494
	10	0	0.095968813	0.009210013	0.140408494
	22	0	0.104186504	0.010854828	0.140408494
	30	0	0.110052275	0.012111503	0.140408494
	41	0	0.118660705	0.014080363	0.140408494

50	0	0.126202492	0.015927069	0.140408494
60	0	0.135145747	0.018264373	0.140408494
80	0.01	0.15497844	0.021018748	0.13301427
100	0.05	0.17772159	0.016312805	0.105437372
155	0.26	0.25898802	1.0241E-06	0.013158663
210	0.54	0.377415005	0.026433881	0.027320383
240	0.66	0.46347095	0.038623667	0.081389691
280	0.79	0.609481217	0.032587031	0.172464776
300	0.83	0.698922835	0.017181223	0.207287879
320	0.86	0.801490048	0.003423414	0.235505206
340	0.88	0.919109041	0.001529517	0.255316757
370	0.9	1.128678869	0.052294025	0.275928309
		0.374711214	0.297884886	2.489682762

	1	50mg/l			
t (min)	qe	хр (qcalc	SSE	SSEA
	0	0	0.1979771	0.039194932	0.270742049
	10	0	0.238308598	0.056790988	0.270742049
	15	0.01	0.261458092	0.063231172	0.260435474
	25	0.2	0.314721811	0.013161094	0.102610534
	40	0.48	0.41563678	0.004142624	0.001626411
	50	0.69	0.500309471	0.035982497	0.02878832
	60	0.83	0.602231514	0.051878483	0.095896258
	70	0.88	0.724916911	0.024050765	0.12936338
	75	0.89	0.795335939	0.008961284	0.136656804
	95	0.9	1.15239168	0.06370156	0.144150228
			0.52032879	0.361095399	1.441011506

BOHART-ADAMS KINETIC PARAMETERS Pb(II) ION ADSORPTION USING MNFC

	MNFC				
t (min)	qexp	(qcalc	SSE	SSEA
	0	0	0.069721373	0.00486107	0.200965572
	20	0	0.100355389	0.010071204	0.200965572
	30	0	0.120400442	0.014496266	0.200965572

40	0	0.144449308	0.020865603	0.200965572
50	0.01	0.17330171	0.026667449	0.192099735
60	0.11	0.207917111	0.009587761	0.114441367
80	0.32	0.299271251	0.000429681	0.016458796
96	0.52	0.400502114	0.014279745	0.005142061
105	0.62	0.471827726	0.021955023	0.029483693
122	0.81	0.643031147	0.027878598	0.130832795
132	0.86	0.771470623	0.007837451	0.169503611
138	0.88	0.860541508	0.000378633	0.186371937
143	0.89	0.942574129	0.002764039	0.195106101
150	0.9	1.070721895	0.029145966	0.204040264
		0.448291838	0.191218486	2.047342646

	MNFC)			
t (min)	qexp	(qcalc	SSE	SSEA
	0	0	0.06972182	0.004861132	0.200965234
2	0	0	0.100355909	0.010071308	0.200965234
3	0	0	0.120400992	0.014496399	0.200965234
4	0	0	0.144449879	0.020865767	0.200965234
5	0	0.01	0.173302288	0.026667637	0.192099405
6	0	0.11	0.207917676	0.009587871	0.114441113
8	0	0.32	0.299271696	0.000429663	0.016458699
9	6	0.52	0.400502314	0.014279697	0.005142114
10	5	0.62	0.471827701	0.02195503	0.029483822
12:	2	0.81	0.643030439	0.027878834	0.130833067
13:	2	0.86	0.771469298	0.007837685	0.169503921
13	8	0.88	0.860539712	0.000378703	0.186372262
143	3	0.89	0.94257187	0.002763802	0.195106433
15	0	0.9	1.070718868	0.029144932	0.204040604
			0.448291462	0.191218461	2.047342378

40	0	0.041285285	0.001704475	0.077462075
50	0	0.051361845	0.002638039	0.077462075
60	0	0.063897807	0.00408293	0.077462075
70	0	0.079493439	0.006319207	0.077462075
80	0.01	0.09889552	0.007902413	0.071995673
100	0.09	0.153061965	0.003976811	0.035464458
115	0.21	0.212390596	5.71495E-06	0.004667635
130	0.36	0.294715707	0.004262039	0.006671607
140	0.46	0.366647405	0.008714707	0.033007588
165	0.72	0.632939134	0.007579594	0.195081139
180	0.88	0.878273842	2.97962E-06	0.362018709
185	0.9	0.979608657	0.006337538	0.386485905
		0.278320094	0.054535053	1.560165164

KBA N0	0.000110765 701.1196538
R^2	0.868779403
C0 H	100 4
V	0.1443
n	14
p	2

KBA N0	0.000100662 1054.909241
R^2	0.902071576
C0 H	100 8
V	0.2887
n	18
р	2

KBA N0	0.0001363 913.24329
R^2	0.9721368
C0	100
Н	12
V	0.2887
n	23
n	2

ARIATIONS

KBA	9.13356E-05
N0	2406.320405
R^2	0.943411073
K'Z	0.943411073
C0	100
Н	4

٧	0.2887
n	18
р	2

KBA N0	0.000132411 816.0767088
R^2	0.732003527
CO	100
Н	4
V	0.2887
n	9
	^

ATIONS

KBA	0.000136932
N0	1271.434942
R^2	0.880352272

CO	50
Н	4
V	0.2887
n	18
p	2
Q	8

KBA N0	0.00012361 945.674715
R^2	0.749415326
CO	150
Н	4
V	0.2887
n	10
p	2
0	8

KBA 0.000182105 N0 1055.542113

R^2	0.90660162
C0	100
Н	4
V	0.2887
n	14
p	2

KBA	0.000182105
N0	1583.863143
R^2	0.90660162
CO	100
Н	4
V	0.4332
n	17
p	2

0.965045333	R^2
100	CO
4	Н
0.4332	V
17	n
2	р

Sum of the Squares of the Errors (ERRSQ /SSE) BH=4a

	BH=4g				
t (min)	qexp	qcalc	SSE		
C) (0.1161668	0.0134947		
10) (0.1297737	0.0168412		
15	5 (0.1371637	0.0188139		
20) (0.1449744	0.0210176	SSE	0.2661175
25	5 (0.15323	0.0234794		
40	0.0	1 0.1809259	0.0292157		
70	0.24	4 0.2522406	0.0001498		
92	0.43	3 0.321844	0.0116977		
110	0.56	5 0.3928565	0.027937		
130	0.7	7 0.4902791	0.0439829		
160	0.85	5 0.68353	0.0277123		
180	0.88	3 0.8530353	0.0007271		
190	0.89	9 0.9529536	0.0039632		
200	0.9	9 1.0645755	0.0270851		
			0.2661175		

Sum of Absolute Errors (EABS/SAE) BH=4a

	BH=4g			
t (min)	qexp	qcalc	error	qex-qex
0	0	0.1113514	0.0123991	0.1113514
10	0	0.1242627	0.0154412	0.1242627
15	0	0.1312694	0.0172316	0.1312694
20	0	0.1386711	0.0192297	0.1386711
25	0	0.1464902	0.0214594	0.1464902
40	0.01	0.1726935	0.0264692	0.1626935
70	0.24	0.24	3.275E-20	1.81E-10
92	0.43	0.3055135	0.0154969	0.1244865
110	0.56	0.372213	0.035264	0.187787
130	0.7	0.463534	0.0559161	0.236466
160	0.85	0.6441942	0.042356	0.2058058
180	0.88	0.8022449	0.0060459	0.0777551
190	0.89	0.8952659	2.773E-05	0.0052659
200	0.9	0.9990727	0.0098154	0.0990727
			0.2771522	1.7513772

SAE 1.7513772

Hybrid Fractional Error Function (HYBRID)

BH=4q

	D	9					
t (min)	qexp		qcalc	error	qex-qca/qex	(
	0	0	0.0296663	0.0008801	0		
1	0	0	0.035631	0.0012696	0		
1	5	0	0.0390491	0.0015248	0		
2	20	0	0.042795	0.0018314	0	HYBRIG	D 9.2288934
2	25	0	0.0469003	0.0021996	0		
4	10	0.01	0.0617337	0.0026764	0.2676372		
7	70	0.24	0.1069586	0.0177	0.0737501		
ç	92	0.43	0.1600507	0.0728726	0.1694712		
11	0	0.56	0.2225737	0.1138565	0.2033152		
13	30	0.7	0.3210724	0.1435861	0.2051231		
16	50	0.85	0.556284	0.0862691	0.101493		
18	30	0.88	0.8024642	0.0060118	0.0068316		
19	90	0.89	0.9638073	0.0054475	0.0061208		
20	00	0.9	1.1575899	0.0663526	0.0737251		
				0.5224781	1.1074672		

Marquardt's Percent Standard Deviation (MPSD BH=4g

3	Н	1=	4	q

	ד-ווט	ry				
t (min)	qexp	qcalc	error	qex-qca/qex	(
	0	0 0.0042105	1.773E-05	0		
1	0	0 0.0055936	3.129E-05	0		
1	5	0 0.0064472	4.157E-05	0		
2	.0	0 0.007431	5.522E-05	0	MPSD	52.736992
2	.5	0 0.008565	7.336E-05	0		
4	0	0.01 0.0131148	9.702E-06	0.0970223		
7	0	0.24 0.0307494	0.0437858	0.7601705		
9	2	0.43 0.0574412	0.1388	0.7506763		
11	0	0.56 0.0957785	0.2155016	0.6871864		
13	0	0.7 0.1690377	0.281921	0.575349		
16	0	0.85 0.39633	0.2058165	0.2848671		
18	0	0.88 0.6994757	0.032589	0.0420829		
19	0	0.89 0.9292455	0.0015402	0.0019445		
20	0	0.9 1.234492	0.1118849	0.1381295		
			1.032068	3.3374283		

BH=8g

t (min) qexp qcalc qex-qca error

0	0 0.0417991 0.0017472 0.0417991	
20	0 0.0522486 0.0027299 0.0522486	
30	0 0.0584156 0.0034124 0.0584156	
40	0 0.0653104 0.0042655 0.0653104	SAE
50	0 0.0730191 0.0053318 0.0730191	
60	0 0.0816376 0.0066647 0.0816376	
70	0 0.0912733 0.0083308 0.0912733	
80	0 0.1020464 0.0104135 0.1020464	
115	0.01 0.1507946 0.0198231 0.1407946	
140	0.08 0.1993058 0.0142339 0.1193058	
170	0.3 0.278536 0.0004607 0.021464	
195	0.49 0.3681423 0.0148493 0.1218577	
210	0.6 0.4352075 0.0271566 0.1647925	
230	0.71 0.5440062 0.0275539 0.1659938	
250	0.8 0.6800039 0.0143991 0.1199961	
270	0.85 0.8499999 3.017E-15 5.493E-08	
285	0.87 1.0048461 0.0181835 0.1348461	
300	0.9 1.1879008 <mark>0.0828869</mark> 0.2879008	
	<mark>0.2624426</mark> 1.8427015	

Marquardt's Percent Standard Deviation (MPSD

The second	BH=8g			(1111 02)
t (min)	qexp	qcalc	error	qex-qca/qex
C		0.0008842	7.818E-07	0
20		0 0.0014389	2.07E-06	0
30		0 0.0018356	3.369E-06	0
40		0 0.0023417	5.483E-06	0
50		0 0.0029873	8.924E-06	0
60		0.0038109	1.452E-05	0
70		0 0.0048615	2.363E-05	0
80		0.0062018	3.846E-05	0
115	0.0	1 0.0145424	2.063E-05	0.2063312
140	0.0	8 0.0267304	0.0028377	0.4433835
170	0.	3 0.0554943	0.059783	0.6642559
195	0.4	9 0.1020042	0.1505407	0.6269918
210	0.	6 0.1469738	0.2052327	0.5700909
230	0.7	1 0.239186	0.2216659	0.439726
250	0.	8 0.3892525	0.1687135	0.2636148
270	0.8	5 0.6334716	0.0468845	0.0648921
285	0.8	7 0.912744	0.001827	0.0024139
300	0.	9 1.3151364	0.1723382	0.2127632
			1.0299412	3.4944632

MPSD 46.733709

Sum of the Squares of the Errors (ERRSQ /SSE)

	BH=8	a		,	·		
+ (:)		_					
t (min)	qexp	_	qcalc	error			
	0	0		0.0027806			
	20	0 (0.0644911	0.0041591			
	30	0 (0.0713209	0.0050867			
	40	0	0.078874	0.0062211		SSE	0.2348689
	50	0 (0.0872269	0.0076085			
	60	0 (0.0964645	0.0093054			
	70	0 (0.1066804	0.0113807			
	80	0 (0.1179781	0.0139188			
1	15	0.01 (0.1678074	0.0249032			
1	40	0.08 (0.2158259	0.0184487			
1	70	0.3 (0.2919137	6.539E-05			
1	95	0.49 (0.3754455	0.0131227			
2	10	0.6 (0.4366389	0.0266869			
2	30	0.71 (0.5340186	0.0309694			
2	50	0.8 (0.6531161	0.0215749			
2	70	0.85 (0.7987748	0.002624			
2	85	0.87	0.928966	0.003477			
3	00	0.9	1.080377	0.0325359			
				0.2348689			

Hybrid Fractional Error Function (HYBRID)

	BH=8g			
t (min)	qexp	qcalc	error	qex-qca/qex
	0	0 0.0094945	9.015E-05	0
2	0	0 0.0131088	0.0001718	0
3	0	0 0.015403	0.0002373	0
4	0	0 0.0180989	0.0003276	0
5	0	0 0.0212665	0.0004523	0
6	0	0 0.0249885	0.0006244	0
7	0	0 0.029362	0.0008621	0
8	0	0 0.0345009	0.0011903	0
11	5 0	.01 0.0606719	0.0025676	0.256764
14	0 0	.08 0.0908029	0.0001167	0.0014588

HYBRID 1.0075454

170	0.3 0.1473106 0.023314 0.0777135
195	0.49 0.2204683 0.0726473 0.1482598
210	0.6 0.2808106 0.1018819 0.1698031
230	0.71 0.3877066 0.103873 0.1463
250	0.8 0.5352947 0.0700689 0.0875861
270	0.85 0.7390649 0.0123066 0.0144783
285	0.87 0.9413473 0.0050904 0.0058511
300	0.9 1.1989944 0.0893976 0.0993307
	<mark>0.4852201</mark> 1.0075454

check Turkey ournal

check 1	Turkey our	rnal	
	BH=1	12g	
t (min)	qexp	o qcalc error	
	0	0 0.0056375 3.178E-05	
	20	0 0.0074058 5.485E-05	
	30	0 0.0084881 7.205E-05	
	40	0 0.0097287 9.465E-05 SSE 0.0717284	
	50	0 0.0111506 0.0001243	
	60	0 0.0127802 0.0001633	
	80	0 0.0167889 0.0002819	
	100	0 0.0220549 0.0004864	
	140	0 0.0380603 0.0014486	
	180	0 0.0656808	
	230	0.02 0.1299114 0.0120805	
	255	0.08 0.1827055 0.0105484	
	280	0.21 0.2569543 0.0022047	
	293	0.3 0.3068105 4.638E-05	
	300	0.35 0.337551 0.000155	
	315	0.49 0.4141923 0.0057468	
	337	0.68 0.559157 0.014603	
	354	0.8 0.7050902 0.0090079	
	362	0.84 0.7863901 0.002874	
	370	0.87 0.8770643 4.99E-05	
	375	0.89 0.9389713 0.0023982	
	380	0.9 1.0052479 0.0110771	
		6.43 6.6978215 0.0778638	
	DI L	10	
* (:- \	BH=1		
t (min)	qexp		
	0	0 0.0052193	
	20	0 0.006882 4.736E-05 0.006882	

30	0 0.0079026 6.245E-05 0.0079026		
40	0 0.0090744 8.235E-05 0.0090744	SAE	0.0311747
50	0 0.0104201 0.0001086 0.0104201		
60	0 0.0119653 0.0001432 0.0119653		
80	0 0.015777 0.0002489 0.015777		
100	0 0.0208031 0.0004328 0.0208031		
140	0 0.0361688 0.0013082 0.0361688		
180	0 0.062884 0.0039544 0.062884		
230	0.02 0.1255444 0.0111396 0.1055444		
255	0.08 0.1773886 0.0094845 0.0973886		
280	0.21 0.2506423 0.0016518 0.0406423		
293	0.3 0.3 1.446E-19 3.802E-10		
300	0.35 0.3304892 0.0003807 0.0195108		
315	0.49 0.4066628 0.0069451 0.0833372		
337	0.68 0.5512487 0.0165769 0.1287513		
354	0.8 0.6973246 0.0105422 0.1026754		
362	0.84 0.77889 0.0037344 0.06111		
370	0.87 0.869996 1.571E-11 3.963E-06		
375	0.89 0.9322727 0.001787 0.0422727		
380	0.9 0.9990074 0.0098025 0.0990074		
	6.43 6.6065635 0.0784602 0.967341		

	BH=12	g					
t (min)	qexp	qcalc	SSE	qex-qca/qex	(
	0	0 0.0001075	1.155E-08	0			
2	20	0 0.0001757	3.087E-08	0			
;	30	0 0.0002247	5.047E-08	0			
4	40	0 0.0002872	8.25E-08	0	MPSE	1.9216595	
	50	0 0.0003672	1.349E-07	0			
(50	0 0.0004695	2.205E-07	0			
3	30	0 0.0007675	5.891E-07	0			
10	00	0 0.0012546	1.574E-06	0			
14	40	0 0.0033526	1.124E-05	0			
18	30	0 0.0089588	8.026E-05	0			
23	30 (0.02 0.0306076	0.0001125	0.2813053			
2	55 (0.08 0.0565744	0.0005488	0.0857433			
28	30 (0.21 0.1045708	0.0111153	0.2520479			
29	93	0.3 0.1439267	0.0243589	0.270654			

300	0.35 0.1709396 0.0320626 0.2617356	
315	0.49 0.2471252 0.0589882 0.2456817	
337	0.68 0.424319 0.0653728 0.1413771	
354	0.8 0.6443322 0.0242324 0.0378632	
362	0.84 0.784301 0.0031024 0.0043968	
370	0.87 0.9546753 0.0071699 0.0094727	
375	0.89 1.0794778 0.0359019 0.0453249	
380	0.9 1.2205956 0.1027815 0.1268908	
	6.43 5.8774108 0.3658413 1.7624933	

	BH=1	12g				
t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.00099	9.901E-07	0		
	20	0 0.0014378	3 2.067E-06	0		
	30	0 0.0017284	4 2.987E-06	0		
	40	0 0.0020776	4.316E-06	0	HYBRID	0.0721327
	50	0 0.0024974	4 6.237E-06	0		
	60	0 0.0030021	9.013E-06	0		
	80	0 0.004338	3 1.882E-05	0		
1	00	0 0.0062683	3.929E-05	0		
1	40	0 0.0130881	0.0001713	0		
1	80	0 0.0273275	5 0.0007468	0		
2	30	0.02 0.068589	0.0023609	0.1180447		
2	55	0.08 0.1086632	2 0.0008216	0.0102697		
2	80	0.21 0.1721512	2 0.0014325	0.0068216		
2	93	0.3 0.2186858	3 0.006612	0.02204		
	00	0.35 0.2487552	2 0.0102505	0.0292871		
3	15	0.49 0.3278452	2 0.0262942	0.0536616		
3	37	0.68 0.4914929	0.0355349	0.0522573		
3	54	0.8 0.6720476	5 0.0163718	0.0204648		
	62	0.84 0.7786547				
	70	0.87 0.9021729				
3	75	0.89 0.9891344	1 0.0098276	0.0110423		
3	80	0.9 1.0844782	2 0.0340322	0.0378136		
		6.43 6.1254305	5 0.1493384	0.3673725		

fr4ml/min

	11 -11111,	,				
t (min)	qexp		qcalc	error		
	0	0	0.0475898	0.0022648		
2	.0	0	0.0571277	0.0032636		
3	0	0	0.0625912	0.0039177	SSE	0.1548033
4	-0	0	0.0685772	0.0047028		
5	0	0	0.0751357	0.0056454		
6	0	0	0.0823215	0.0067768		
9	0	0	0.1082712	0.0117226		
15	0	0.02	0.1872889	0.0279856		
21	0	0.29	0.323975	0.0011543		
23	5	0.45	0.4070782	0.0018423		
26	0	0.63	0.5114984	0.0140426		
28	0	0.74	0.6140127	0.0158728		
29	0	0.79	0.6727348	0.0137511		
30	0	0.83	0.7370729	0.0086354		
31	5	0.87	0.8452989	0.0006101		
32	.0	0.88	0.8847969	2.301E-05		
33	0	0.89	0.9694159	0.0063069		
34	-0	0.9	1.0621276	0.0262853		
				0.1548033		

fr4ml/min

	1141111/	/					
t (min)	qexp		qcalc	error	qex-qca		
(0	0	0.0346719	0.0012021	0.0346719		
2	0	0	0.0424451	0.0018016	0.0424451		
3	0	0	0.0469626	0.0022055	0.0469626		
4	0	0	0.0519609	0.0026999	0.0519609	SAE	1.4460376
5	0	0	0.0574912	0.0033052	0.0574912		
6	0	0	0.0636101	0.0040462	0.0636101		
9	0	0	0.086159	0.0074234	0.086159		
15	0	0.02	0.15807	0.0190633	0.13807		
21	0	0.29	0.2900001	7.385E-15	8.594E-08		
23	5	0.45	0.3734308	0.0058628	0.0765692		
26	0	0.63	0.4808638	0.0222416	0.1491362		
28	0	0.74	0.5886696	0.0229009	0.1513304		
29	0	0.79	0.651323	0.0192313	0.138677		
30	0	0.83	0.7206447	0.0119586	0.1093553		
31	5	0.87	0.8387033	0.0009795	0.0312967		

320	0.88 0.8822075	4.873E-06	0.0022075
330	0.89 0.9761028	0.0074137	0.0861028
340	0.9 1.0799915	0.0323969	0.1799915
		0.1647376	1.4460376

fr4ml/min

	11	1111111						
t (min)	qexp		qcalc	error	qex-qca/qex	K		
()	0	0.0475898	0.0022648	0			
20)	0	0.0571277	0.0032636	0			
30)	0	0.0625912	0.0039177	0			
40)	0	0.0685772	0.0047028	0		MPSD	170.44129
50)	0	0.0751357	0.0056454	0			
60)	0	0.0823215	0.0067768	0			
90)	0	0.1082712	0.0117226	0			
150)	0.02	0.1872889	0.0279856	42.768036			
210)	0.29	0.323975	0.0011543	0.0193782			
235	5	0.45	0.4070782	0.0018423	0.0895239			
260)	0.63	0.5114984	0.0140426	0.2296379			
280)	0.74	0.6140127	0.0158728	0.3471631			
290)	0.79	0.6727348	0.0137511	0.4085836			
300)	0.83	0.7370729	0.0086354	0.46132			
315	5	0.87	0.8452989	0.0006101	0.5172565			
320)	88.0	0.8847969	2.301E-05	0.5317406			
330)	0.89	0.9694159	0.0063069	0.5464247			
340)	0.9	1.0621276	0.0262853	0.5613088			
				0.1548033	46.480374			

fr4ml/min

t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0475898	0.0022648	0		
	20	0 0.0571277	0.0032636	0		
	30	0 0.0625912	0.0039177	0		
	40	0 0.0685772	0.0047028	0	HYBRID	34.151279

50	0 0.0751357 0.0056454	0
60	0 0.0823215 0.0067768	0
90	0 0.1082712 0.0117226	0
150	0.02 0.1872889 0.0279856	0.8553607
210	0.29 0.323975 0.0011543	0.0668212
235	0.45 0.4070782 0.0018423	0.198942
260	0.63 0.5114984 0.0140426	0.3645045
280	0.74 0.6140127 0.0158728	0.4691393
290	0.79 0.6727348 0.0137511	0.5171944
300	0.83 0.7370729 0.0086354	0.5558073
315	0.87 0.8452989 0.0006101	0.5945477
320	0.88 0.8847969 2.301E-05	0.6042507
330	0.89 0.9694159 0.0063069	0.6139603
340	0.9 1.0621276 0.0262853	0.6236764
	<mark>0.1548033</mark>	5.4642046

Sum of the Squares of the Errors (ERRSQ /SSE)

fr12ml/min

	11 1 211	11/11/11/1				
t (min)	qexp		qcalc	error		
	0	0	0.223764	0.0500703		
	10	0	0.255444	0.0652516		
	20	0.08	0.2916091	0.0447784	SSE	
	30	0.32	0.3328945	0.0001663		
	48	0.62	0.4224901	0.0390102		
	60	0.74	0.4952485	0.0599033		
	85	0.86	0.6895835	0.0290418		
•	100	0.89	0.8410951	0.0023917		
•	120	0.9	1.096115	0.0384611		
				0.3290747		

Sum of Absolute Errors (EABS/SAE)

fr12ml/min

t (min)	qexp	qcalc error qex-qca	
	0	0 0.2305366 0.0531471 0.2305366	
	10	0 0.263879 0.0696321 0.263879	
	20	0.08.0.3020438.0.0493034.0.2220438	

SAE 1.5421136

30	0.32 0.3457283 0.0006619 0.0257283
48	0.62 0.4408917 0.0320798 0.1791083
60	0.74 0.5184775 0.0490722 0.2215225
85	0.86 0.7267624 0.0177522 0.1332376
100	0.89 0.89 4.195E-22 2.048E-11
120	0.9 1.1660577 0.0707867 0.2660577
	0.3424356 1.5421136

Marquardt's Percent Standard Deviation (MPSD)

fr12ml/min

	Tr I 2n	ni/min			
t (min)	qexp	qcalc	error	qex-qca/qex	
	0	0 0.0723617	7 0.0052362	. 0	
	10	0 0.0914416	0.0083616	0	
	20	0.08 0.1155524	0.001264	0.1974956	MPSD
	30	0.32 0.1460206	0.0302688	0.2955941	
	48	0.62 0.222514	10.1579951	0.4110174	
	60	0.74 0.2946589	0.1983287	0.362178	
	85	0.86 0.5289413	3 0.1095998	0.148188	
•	100	0.89 0.7513811	0.0192152	0.0242586	
•	120	0.9 1.1998601	0.0899161	0.1110075	
			0.6201855	1.5497392	

Hybrid Fractional Error Function (HYBRID)

fr12ml/min

	11 1211	,						
t (min)	qexp		qcalc	error	qex-qca/qex			
	0	0	0.223764	0.0500703	0			
	10	0	0.255444	0.0652516	0			
	20	0.08	0.2916091	0.0447784	0.0771481	H	/BRID	<mark>62.71287</mark>
	30	0.32	0.3328945	0.0001663	0.3171287			
	48	0.62	0.4224901	0.0390102	0.6171255			
	60	0.74	0.4952485	0.0599033	0.737125			
	85	0.86	0.6895835	0.0290418	0.8571246			
1	00	0.89	0.8410951	0.0023917	0.8871245			

Sum of the Squares of the Errors (ERRSQ /SSE)

Sulli Oi ti	ne oquare	3 OF THE LIFE		(/33L)		
BH=4g	50mg/l					
t (min)	qexp	qcalc	error			
()	0 0.0896181	0.0080314			
10)	0 0.0959688	0.00921			
22	2	0 0.1041865	0.0108548			
30)	0 0.1100523	0.0121115			
4	1	0 0.1186607	0.0140804		SSE	0.2978849
50)	0 0.1262025	0.0159271			
60)	0 0.1351457	0.0182644			
80	0.0	1 0.1549784	0.0210187			
100	0.0	5 0.1777216	0.0163128			
155	5 0.2	26 0.258988	1.024E-06			
210	0.5	64 0.377415	0.0264339			
240	0.6	6 0.4634709	0.0386237			
280	0.7	9 0.6094812	0.032587			
300	0.8	3 0.6989228	0.0171812			
320	0.8	6 0.80149	0.0034234			
340	0.8	8 0.919109	0.0015295			
370	0.	.9 1.1286789	0.052294			
			0.2978849			

Sum of Absolute Errors (EABS/SAE)

		•	•		
BH=4g	50mg	J/I			
t (min)	qexp	qcalc	error	qex-qca	
	0	0 0.0762847	0.0058194	0.0762847	
	10	0 0.0822838	0.0067706	0.0822838	
	22	0 0.0901086	0.0081196	0.0901086	
	30	0 0.0957344	0.0091651	0.0957344	
	41	0 0.1040477	0.0108259	0.1040477	SAE
	50	0 0.1113837	0.0124063	0.1113837	
	60	0 0.1201431	0.0144344	0.1201431	
	80	0.01 0.1397824	0.0168435	0.1297824	
1	100	0.05 0.1626321	0.012686	0.1126321	
1	155	0.26 0.2466206	0.000179	0.0133794	
2	210	0.54 0.3739834	0.0275615	0.1660166	

240	0.66 0.4693351 0.0363531 0.1906649
280	0.79 0.6353173 0.0239267 0.1546827
300	0.83 0.7391703
320	0.86 0.8599997 9.136E-14 3.023E-07
340	0.88 1.0005807 0.0145397 0.1205807
370	0.9 1.2556912 0.1265162 0.3556912
	0.334397 2.0142461

Marquardt's Percent Standard Deviation (MPSD)

DU=4a	50ma	/I		(02)		
BH=4g	50mg					
t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0042027	1.766E-05	0		
	10	0 0.0049138	2.414E-05	0		
	22	0 0.0059275	3.514E-05	0		
	30	0 0.006717	4.512E-05	0	MPSE	45.294977
	41	0 0.0079772	6.363E-05	0		
	50	0 0.0091821	8.431E-05	0		
	60	0 0.0107355	0.0001153	0		
	80	0.01 0.0146753	2.186E-05	0.2185886		
1	100	0.05 0.020061	0.0008963	0.3585374		
1	155	0.26 0.0473919	0.0452022	0.6686715		
2	210	0.54 0.1119583	0.1832197	0.6283255		
2	240	0.66 0.178938	0.2314206	0.5312687		
2	280	0.79 0.334373	0.207596	0.3326326		
3	300	0.83 0.4570834	0.1390668	0.2018679		
3	320	0.86 0.6248269	0.0553064	0.0747788		
3	340	0.88 0.8541301	0.0006693	0.0008642		
3	370	0.9 1.3651188	0.2163355	0.2670809		
			1.0801199	3.282616		

Hybrid Fractional Error Function (HYBRID)

BH=4g	50mg/l					
t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0249471	0.0006224	0		
	10	0 0.0277299	0.0007689	0		
	22	0 0.0314819	0.0009911	0		
	30	0 0.0342612	0.0011738	0	HYBRID	2.5070098

41	0 0.0384877 0.0014813	0
50	0 0.0423308 0.0017919	0
60	0 0.0470527 0.002214	0
80	0.01 0.0581351 0.002317	0.2316991
100	0.05 0.0718279 0.0004765	0.0095291
155	0.26 0.128497 0.017293	0.0665117
210	0.54 0.2298756 0.0961771	0.1781058
240	0.66 0.3157 0.1185425	0.1796098
280	0.79 0.4819296 0.0949074	0.1201359
300	0.83 0.5954401 0.0550183	0.0662872
320	0.86 0.7356861 0.0154539	0.0179697
340	0.88 0.9089648 0.000839	0.0009534
370	0.9 1.2483283 0.1213326	0.134814
	0.5314007	1.0056157

Sum of the Squares of the Errors (ERRSQ /SSE) 150mg/l

	1 301	119/1			
t (min)	qexp	qcalc	error		
	0	0 0.1979771	0.0391949		
	10	0 0.2383086	0.056791		
	15	0.01 0.2614581	0.0632312		
	25	0.2 0.3147218	0.0131611	SSE	0.3610954
	40	0.48 0.4156368	0.0041426		
	50	0.69 0.5003095	0.0359825		
	60	0.83 0.6022315	0.0518785		
	70	0.88 0.7249169	0.0240508		
	75	0.89 0.7953359	0.0089613		
	95	0.9 1.1523917	0.0637016		
			0.3610954		

Sum of Absolute Errors (EABS/SAE)

150mg/l

	1001	119/1				
t (min)	qexp	qcalc	error	qex-qca		
	0	0 0.1979771	0.0391949	0.1979771		
	10	0 0.2383086	0.056791	0.2383086		
	15	0.01 0.2614581	0.0632312	0.2514581	SAE	1.78
	25	0.2 0.3147218	0.0131611	0.1147218		
	40	0.48 0.4156368	0.0041426	0.0643632		
	50	0.69 0.5003095	0.0359825	0.1896905		
	60	0.83 0.6022315	0.0518785	0.2277685		
	70	0.88 0.7249169	0.0240508	0.1550831		
	75	0.89 0.7953359	0.0089613	0.0946641		
	95	0.9 1.1523917	0.0637016	0.2523917		
			0.3610954	1.7864267		

Marquardt's Percent Standard Deviation (MPSD)

150mg/l

		9					
t (min)	qexp	qcalc	error	qex-qca/qex			
	0	0 0.00565	55 3.199E-0	5 0			
	10	0 0.009978	33 9.957E-0	5 0			
	15	0.01 0.0132	54 1.059E-0	5 0.1058876	N	MPSD	<mark>70.033749</mark>
	25	0.2 0.023384	46 0.03119	3 0.7798246			
	40	0.48 0.05480	03 0.180792	4 0.7846894			
	50	0.69 0.09669	13 0.352015	2 0.7393725			
	60	0.83 0.170590	54 0.434813 ⁻	1 0.6311701			
	70	0.88 0.300990	04 0.335252	2 0.4329186			
	75	0.89 0.39980	0.24029	5 0.3033645			
	95	0.9 1.244540	0.118708	3 0.1465535			
			1.6932114	<mark>4</mark> 3.9237808			

Hybrid Fractional Error Function (HYBRID

150mg/l

t (min)	qexp	qcalc	error	qex-qcq/qex
	0	0 0.0402754	0.0016221	0
	10	0 0.0578979	0.0033522	0

15	0.01 0.0694184 0.0035305 0.353054	HYBRID	19.329727
25	0.2 0.0997924 0.0100416 0.0502078		
40	0.48 0.1720015 0.0948631 0.1976314		
50	0.69 0.2472608 0.196018 0.284084		
60	0.83		
70	0.88 0.5109773 0.1361777 0.1547474		
75	0.89 0.6126511 0.0769224 0.0864297		
95	0.9 1.2660753 <mark>0.1340111</mark> 0.1489012		
	<mark>0.8817364</mark> 1.5463782		

Sum of the Squares of the Errors (ERRSQ /SSE)

	MNFC				
t (min)	qexp	qcalc	error		
0	0	0.0697214	0.0048611		
20	0	0.1003554	0.0100712		
30	0	0.1204004	0.0144963		
40	0	0.1444493	0.0208656	SSE	0.1912185
50	0.01	0.1733017	0.0266674		
60	0.11	0.2079171	0.0095878		
80	0.32	0.2992713	0.0004297		
96	0.52	0.4005021	0.0142797		
105	0.62	0.4718277	0.021955		
122	0.81	0.6430311	0.0278786		
132	0.86	0.7714706	0.0078375		
138	0.88	0.8605415	0.0003786		
143	0.89	0.9425741	0.002764		
150	0.9	1.0707219	0.029146		
			0.1912185		

Sum of Absolute Errors (EABS/SAE)

	MNFC					
t (min)	qexp	qcalc	error	qex-qca		
	0	0 0.0732651	0.0053678	0.0732651		
	20	0 0.105041	0.0110336	0.105041		
	30	0 0.1257737	0.015819	0.1257737		
	40	0 0.1505985	0.0226799	0.1505985	SAE	1.4685278
	50	0.01 0.1803231	0.02901	0.1703231		
	60	0.11 0.2159147	0.0112179	0.1059147		
	80	0.32 0.3095594	0.000109	0.0104406		
	96	0.52 0.412965	0.0114565	0.107035		

105	0.62 0.4856473 0.0180506 0.1343527
122	0.81 0.6596497 0.0226052 0.1503503
132	0.86 0.7898492 0.0049211 0.0701508
138	0.88 0.88 9.184E-20 3.031E-10
143	0.89 0.9629375 0.0053199 0.0729375
150	0.9 1.0923446 <mark>0.0369964</mark> 0.1923446
	0.194587 1.4685278

Marquardt's Percent Standard Deviation (MPSD)

	MINEC			
t (min)	qexp	qcalc	error	qex-qca/qex
0	0	0.0014353	2.06E-06	0
20	0	0.003559	1.267E-05	0
30	0	0.0056043	3.141E-05	0
40	0	0.0088249	7.788E-05	0
50	0.01	0.0138964	1.518E-05	0.1518168
60	0.11	0.0218822	0.0077647	0.6417142
80	0.32	0.054259	0.0706183	0.6896314
96	0.52	0.1121958	0.1663043	0.6150306
105	0.62	0.1688293	0.203555	0.5295395
122	0.81	0.3653182	0.1977419	0.3013898
132	0.86	0.5752566	0.0810788	0.1096252

0.88 0.755398 0.0155257 0.0200486

0.89 0.9479184 0.0033545 0.004235

0.9 1.3025793 0.1620701 0.2000865

MPSD 52.146569

Hybrid Fractional Error Function (HYBRID) MNFC

138

143

150

	MINEC	,					
t (min)	qexp		qcalc	error	qex-qca/qex		
	0	0	0.0132104	0.0001745			
	20	0	0.0240722	0.0005795			
	30	0	0.0324949	0.0010559			
	40	0	0.0438646	0.0019241		HYBRID	7.5076096
	50	0.01	0.0592125	0.0024219	0.2421867		
	60	0.11	0.0799305	0.0009042	0.0082198		
	80	0.32	0.14565	0.0303979	0.0949935		
	96	0.52	0.2353906	0.0810025	0.1557741		
1	05	0.62	0.3083602	0.0971194	0.1566442		
1	22	0.81	0.5135312	0.0878938	0.1085108		

0.9081524 3.2631176

132	0.86 0.6932117 0.0278183 0.0323469
138	0.88 0.8299375 0.0025063 0.002848
143	0.89 0.9642617 0.0055148 0.0061964
150	0.9 1.1896092 0.0838735 0.0931928
	0.4231865 0.9009131

Sum of the Squares of the Errors (ERRSQ /SSE) MF-MNFC

	IVIT-IV	INFC	
t (min)	qexp	qcalc error	
()	0 0.0172351 0.0002	97
20)	0 0.026675 0.00071	16
40)	0 0.0412853 0.00170	45
50)	0 0.0513618 0.0026	38
60)	0 0.0638978 0.00408	29
70)	0 0.0794934 0.00631	92
80)	0.01 0.0988955 0.00790	24
100)	0.09 0.153062 0.00397	68
115	5	0.21 0.2123906 5.715E-	06
130)	0.36 0.2947157 0.0042	62
140)	0.46 0.3666474 0.00871	47
16	5	0.72 0.6329391 0.00757	96
180)	0.88 0.8782738 2.98E-	06
18	5	0.9 0.9796087 0.00633	75
		0.05453	51

Sum of Absolute Errors (EABS/SAE)

MF-MNFC

t (min) qexp	qcalc error	qex-qca	
0	0 0.0172588 0.000	2979 0.0172588	
20	0 0.0267134 0.000	7136 0.0267134	
40	0 0.0413474 0.001	7096 0.0413474	
50	0 0.0514408 0.002	.6462 0.0514408 SAI	E 0.7603546
60	0 0.0639982 0.004	0958 0.0639982	
70	0 0.0796209 0.006	3395 0.0796209	
80	0.01 0.0990574 0.007	9312 0.0890574	
100	0.09 0.1533225 0.004	0097 0.0633225	
115	0.21 0.2127627 7.632	2E-06 0.0027627	
130	0.36 0.2952466 0.00	4193 0.0647534	
140	0.46 0.3673199 0.008	5896 0.0926801	
165	0.72 0.6341522 0.007	3698 0.0858478	
180	0.88 0.8800005 2.653	3E-13 5.151E-07	

SSE 0.0545351

Marquardt's Percent Standard Deviation (MPSD

	_			_	$\overline{}$
М	⊢-	IVI	IΝ	H١	l,

	IVIL-IV	IINEC						
t (min)	qexp		qcalc	error	qex-qca/qex	(
	0	0	0.0004804	2.308E-07	0			
2	.0	0	0.001118	1.25E-06	0			
4	0	0	0.0026018	6.769E-06	0			
5	0	0	0.0039691	1.575E-05	0			
6	0	0	0.0060551	3.666E-05	0	<mark>1</mark>	MPSD	<mark>37.416042</mark>
7	0	0	0.0092372	8.533E-05	0			
8	0	0.01	0.0140918	1.674E-05	0.1674259			
10	0	0.09	0.0327954	0.0032724	0.4039956			
11	5	0.21	0.0617944	0.0219649	0.4980706			
13	0	0.36	0.1164352	0.0593238	0.4577453			
14	.0	0.46	0.1776267	0.0797347	0.376818			
16	5	0.72	0.5105845	0.0438549	0.0845966			
18	0	0.88	0.9620625	0.0067342	0.0086961			
18	5	0.9	1.1882701	0.0830996	0.1025921			
				0.2981472	2.0999403			

Hybrid Fractional Error Function (HYBRID)

MF-MNFC

t (min)	qexp	qcalc	error	qex-qca/qex		
	0	0 0.0172351	0.000297	0		
	20	0 0.026675	0.0007116	0		
	40	0 0.0412853	0.0017045	0		
	50	0 0.0513618	0.002638	0	HYBRID	31.387765
	60	0 0.0638978	0.0040829	0		
	70	0 0.0794934	0.0063192	0		
	80	0.01 0.0988955	0.0079024	2.8018958		
•	100	0.09 0.153062	0.0039768	0.0848531		
•	115	0.21 0.2123906	5.715E-06	0.0050643		
•	130	0.36 0.2947157	0.004262	0.0926303		
	140	0.46 0.3666474	0.0087147	0.1736286		

165	0.72 0.6329391	0.0075796	0.4089265
180	0.88 0.8782738	2.98E-06	0.5609804
185	0.9 0.9796087	0.0063375	0.5801857
		0.0545351	4.7081647

Summary of Bohart-Adams model parameters for Co (II) ion adsorption Bohart-Adams parameter at Bed height of 4 cm.

Error FuncKBA(L/(m/N0 (mg/L)Objective function

SSE 0.000111 701.1197 0.2661 HYB 0.000183 692.6839 9.2289 MPSD 0.000284 694.745 52.73699 ARE 0.00011 692.864 13.184 SAE 0.00011 721.8051 1.7514

Bohart-Adams parameter at Bed height of 8 cm.

Error FuncKBA(L/(m/N0 (mg/L)Objective function

SSE 0.000101 1054.909 0.2348 HYB 0.000161 1042.018 1.0075 MPSD 0.000243 1042.025 46.73371 ARE 0.000161 1042.018 3.0075 SAE 0.000112 1026.93 1.842702

Bohart-Adams parameter at Bed height of 12 cm.

Error FuncKBA(L/(m_iN0 (mg/L)Objective function

SSE 0.000136 913.2935 0.0778 HYB 0.000184 903.6156 1.7493 MPSD 0.000246 894.6997 28.97037 ARE 0.000184 903.6156 70,837 SAE 0.000138 914.3895 0.9673

Bohart-Adams parameter at flow rate of 4 mL/min Error FuncKBA(L/(m/N0 (mg/L`Objective function

SSE 9.13E - 05 2406.32 0.154803 HYB 9.13E - 05 2406.32 34.1518 MPSD 9.13E - 05 2406.32 170.4413 ARE 9.13E - 05 2406.32 7.0408 SAE 0.000101 2399.035 1.446038

Bohart-Adams parameter at flow rate of 12 mL/min

Error FuncKBA(L/(m_iN0 (mg/L)Objective function

SSE 0.000132 816.0767 0.3291 1111

HYB 0.000132 816.0767 92.71287

MPSD 0.000234 809.9063 47.05224

ARE 0.000132 816.0767 1.7008

SAE 0.000135 784.015 1.5421

Bohart-Adams parameter at 50mg/L initial adsorbent concentration

Error FuncKBA(L/(m/N0 (mg/L)Objective function

0.000137 1271.435 0.2978 SSE 0.000212 1259.547 2.507 HYB 0.000313 1263.378 45.29498 MPSD ARE 0.000212 1259.547 0.7831 SAE 0.000151 1226.698 2.0142 0.000137 1271.435 R2 0.8804

Bohart-Adams parameter at 150mg/L initial adsorbent concentration

Error FuncKBA(L/(m_iN0 (mg/L)Objective function

SSE 0.000124 945.6747 0.361095 HYB 0.000242 958.1201 19.32973 MPSD 0.000379 986.7798 70.03375 ARE 0.000242 958.1201 3.9003 SAE 0.000124 945.6747 1.786427 0.000124 945.6747 0.7494

Bohart-Adams parameter for C-MNFC

Error FuncKBA(L/(m/N0 (mg/L)Objective function

SSE 0.0002 1055.54 0.1912 HYB 0.0003 1040.86 7.5076 MPSD 0.0004 1040.61 52.1466 ARE 0.0002 1040.86 0.9641 SAE 0.0002 1047.24 1.4685 R2 0.0002 1055.542 0.9066

Bohart-Adams parameter for MF-MNFC

Error FuncKBA(L/(m/N0 (mg/L)Objective function

SSE 0.000218 2013.767 0.054535 HYB 0.000218 2013.767 31.38776 MPSD 0.000422 1959.317 37.41604 ARE 0.000218 2013.767 3.0516 SAE 0.000218 2012.783 0.760355 0.0002184 2013.7667 0.965

KBA	0.0001108
N0	701.11965

C0	100
Н	4
V	0.1443
n	14
p	2

KBA	0.0001097
N0	721.80507
R^2	0.8417518

C0 100 H 4 v 0.1443 n 14 p 2

KBA	0.0001832
N0	692.68393

C0	100
Н	4
٧	0.1443
n	14
p	2

KBA	0.000284
N0	694.74499

KBA	0.0001116
N0	1026.9301

C0	100
Н	8
٧	0.2887
n	18
p	2

KBA	0.0002435
N0	1042.025

KBA	0.0001007	
N0	1054,9092	

C0	100
Н	8
V	0.2887
n	18
р	2

KBA	0.0001613
N0	1042.018

C0	100
Н	8
٧	0.2887
n	18
p	2

KBA N0	0.000136 913.2935
CO H v n	10 1 0.288 2

KBA

N0

0.0001383

914.38946

R^2	0.9188909
C0 H	100 12
v n	0.2887 23
p	2
KBA N0	0.0002457 894.69972
C0 H	100 12
v n	0.2887 23
p	2

KBA N0	0.000184 903.6156
C0	100
Н	12
V	0.2887
n	23
р	2

KBA	9.134E-05
N0	2406.3204

C0	100
Н	4
٧	0.2887
n	18
р	2

KBA N0	0.0001011 2399.0354
R^2	0.8860766
C0 H	100 4
V	0.2887
n	18
p	2

KBA	9.134E-05
N0	2406 3204

100
4
0.2887
18
2

KBA 9.134E-05 N0 2406.3204

C0	100
Н	4
٧	0.2887
n	18
р	2

KBA	0.0001324
N0	816.07671

C0	100
Н	4
V	0.2887
n	9
р	2

KBA	0.0001351
N0	784.01498

R^2 0.777944

C0	100
Н	4
V	0.2887
n	9
p	2

KBA	0.000234
N0	809.90635

100
4
0.2887
9
2

KBA	0.0001324
N0	816.07671

C0	100	
Н	4	
V	0.2887	
n	9	

p 2

KBA	0.0001369
N0	1271.4349
R^2	#DIV/0!
C0	50
H	4
V	0.2887
n	18
p	2
O	8
p Q	_

KBA	0.0001514
N0	1226.6983

Q 8

KBA	0.0003126
N0	1263.3782

C0	50
Н	4
V	0.2887
n	18
p	2
Q	8

KBA 0.0002115 N0 1259.5468

C0	50
Н	4
V	0.2887
n	18
p	2
Q	8

KBA	0.0001236
N0	945,67472

C0	150
Н	4
٧	0.2887
n	10
р	2
Q	8

KBA	0.0001236
N0	945.67472

C0	150
Н	4
V	0.2887
n	10
p	2
Q	8

KBA	0.0003785
N0	986.77984

KBA 0.000242 N0 958.12005

R^2	0.4298055
C0	150
Н	4
V	0.2887
n	10
p	2
Q	8

KBA	0.0001821
N0	1055,5421

100
4
0.2887
14
2

KBA	0.0001801
N0	1047.2348

C0	100	
Н	4	
٧	0.2887	

n 14 p 2

KBA 0.000454 N0 1040.6047

C0 100 H 4 v 0.2887 n 14 p 2

KBA 0.0003 N0 1040.8572

C0 100 H 4 v 0.2887 n 14 p 2

KBA	0.0002184
N0	2013.7667

C0	100	
Н	4	
٧	0.4332	
n	17	
р	2	

KBA	0.0002184
N0	2012,7831

C0	100
Н	4
V	0.4332
n	17
p	2

KBA	0.0004223
N0	1959.3174

C0	100	
Н	4	
٧	0.4332	
n	17	
p	2	

KBA	0.0002184
N0	2013.7667

C0	100
Н	4
V	0.4332
n	17
p	2

for

DOSE-RESPONSE MODEL PARAMETERS FOR Co(II) ION BASED ON ADSORPTION BED HEIGHT VARIATION

							` '	
	BH=4	g						
t (min)	qexp		qcalc		SSE		SSEA	
()	0		0		0	0.1542	2895
10)	0	0.000	3815	1.455E	-07	0.1542	2895
15	5	0	0.001	5173	2.302E	-06	0.1542	2895
20)	0	0.00	4034	1.627E	-05	0.1542	2895
25	5	0	0.0	0859	7.379E	-05	0.1542	2895
40)	0.01	0.041	2153	0.0009	744	0.146	5335
70)	0.24	0.224	4706	0.0002	412	0.0233	3469
92	2	0.43	0.423	4875	4.241E	E-05	0.0013	3841
110)	0.56	0.574	15579	0.0002	119	0.0279	9568
130)	0.7	0.704	6954	2.205E	E-05	0.0943	3737
160)	0.85	0.82	8829	0.0004	482	0.2090	0346
180)	0.88	0.878	35459	2.115E	E-06	0.2373	3668
190)	0.89	0.896	8756	4.727E	E-05	0.2472	2108
200)	0.9	0.911	9579	0.000	143	0.2572	2549
			0.39	2797	0.002	225	2.0159	9095

	BH=8g			
t (min)	qexp	qcalc	SSE	SSEA
C) () 0	0	0.1001266
20) (1.386E-06	1.921E-12	0.1001266
30) (1.506E-05	2.268E-10	0.1001266
40) (8.183E-05	6.696E-09	0.1001266
50) (0.0003041	9.246E-08	0.1001266
60) (0.0008884	7.892E-07	0.1001266
70) (0.0021974	4.829E-06	0.1001266
80) (0.0048081	2.312E-05	0.1001266
115	0.01	0.0392613	0.0008562	0.093898
140	0.08	3 0.1150561	0.0012289	0.0558981
170	0.3	3 0.2895082	0.0001101	0.0002699
195	0.49	0.4773801	0.0001593	0.0301273
210	0.6	0.5855206	0.0002097	0.0804132
230	0.71	0.7069707	9.176E-06	0.154899
250	0.8	3 0.7975898	5.809E-06	0.233842
270	0.85	0.8610578	0.0001223	0.2846992

285	0.87 0.8949388 0.0006219 0.3064421
300	0.9 0.9201216 0.0004049 0.3405565
	0.3164278.0.0037571 2.382058

	BH=1	2g				
t (min)	qexp		qcalc		SSE	SSEA
()	0		0	0	0.0851798
20)	0	7.994	E-15	6.39E-29	0.0851798
30)	0	9.63	E-13	9.274E-25	0.0851798
40)	0	2.84	E-11	8.068E-22	0.0851798
50)	0	3.919	E-10	1.536E-19	0.0851798
60)	0	3.346	E-09	1.12E-17	0.0851798
80)	0	9.864	E-08	9.729E-15	0.0851798
100)	0	1.361	E-06	1.852E-12	0.0851798
140)	0	7.121	E-05	5.072E-09	0.0851798
180)	0	0.0013	3669	1.868E-06	0.0851798
230)	0.02	0.0238	3753	1.502E-05	0.0739056
255	5	0.08	0.0760	0607	1.552E-05	0.0448829
280)	0.21	0.19	828	0.0001374	0.0067004
293	}	0.3	0.2966	5517	1.121E-05	6.633E-05
300)	0.35	0.3576	5453	5.845E-05	0.0033807
315	5	0.49	0.4970	654	4.992E-05	0.0392611
337	7	0.68	0.6861	765	3.815E-05	0.1506559
354	ļ	0.8	0.7959	9464	1.643E-05	0.2582105
362	<u> </u>	0.84	0.8353	3452	2.167E-05	0.300462
370)	0.87	0.8677	7366	5.123E-06	0.3342507
375	5	0.89	0.8848	3285	2.674E-05	0.3577764
380)	0.9	0.8997	7779	4.934E-08	0.3698393
			0.2918	3559	0.0003975	2.7911902

 ${\tt DOSE\text{-}RESPONSE\ MODEL\ PARAMETERS\ FOR\ CO(II)\ ION\ ADSORPTION\ AT\ DIFFERENT\ FLOW\ RATES}$

t (min)	qexp		qcalc		SSE	SSEA
()	0		0	C	0.1649985
20)	0	3.289E-0	80	1.082E-15	0.1649985
30)	0	5.453E-0	07	2.973E-13	0.1649985
40)	0	3.999E-0	06	1.599E-11	0.1649985
50)	0	1.876E-0	05	3.518E-10	0.1649985
60)	0	6.63E-0	05	4.396E-09	0.1649985
90)	0	0.001098	82	1.206E-06	0.1649985
150)	0.02	0.03643	62	0.0002701	0.1491505
210)	0.29	0.27995	42	0.0001009	0.0135025
235	5	0.45	0.45867	61	7.527E-05	0.0019184
260)	0.63	0.630534	48	2.86E-07	0.0500864
280)	0.74	0.740348	82	1.212E-07	0.1114224
290)	0.79	0.78428	59	3.265E-05	0.1473024
300)	0.83	0.821364	45	7.457E-05	0.1796064
315	5	0.87	0.865708	87	1.842E-05	0.2151104
320)	0.88	0.87789	11	4.447E-06	0.2244864
330)	0.89	0.898960	09	8.03E-05	0.2340624
340)	0.9	0.9162	53	0.0002642	0.2438384
			0.406200	01	0.0009225	2.7254759

fr12ml/min

t (min)	qexp		qcalc		SSE		SSEA
	0	0		0		0	0.2508597
1	0	0	0.0230	248	0.00053	01	0.2508597
2	20	0.08	0.1284	351	0.0023	46	0.1771223
3	80	0.32	0.3009	842	0.00036	16	0.03271
4	8	0.62	0.5987	615	0.00045	11	0.0141946
6	0	0.74	0.7291	688	0.00011	73	0.0571884
8	35	0.86	0.8711	882	0.00012	52	0.1289823
10	0	0.89	0.9122	391	0.00049	46	0.1514307
12	20	0.9	0.9439	291	0.00192	98	0.1593135
			0.500	859	0.00635	56	1.2226613

DOSE-RESPONSE KINETIC MODEL PARAMETERS FOR VARIOUS INITIAL SOLUTE CONCENTRATIONS

BH=4g	50mg	/				
t (min)	qexp		qcalc		SSE	SSEA
C)	0		0	0	0.1173529
10)	0	6.556E-0)6	4.299E-11	0.1173529
22	<u>)</u>	0	0.000149	7	2.24E-08	0.1173529
30)	0	0.000512	21	2.623E-07	0.1173529
41		0	0.001766	54	3.12E-06	0.1173529
50)	0	0.003873	35	1.5E-05	0.1173529
60)	0	0.00795	52	6.323E-05	0.1173529
80)	0.01	0.02448	3	0.0002098	0.1106015
100)	0.05	0.057341	6	5.39E-05	0.0855961
155	5	0.26	0.257133	32	8.219E-06	0.0068175
210)	0.54	0.535918	37	1.666E-05	0.0389794
240)	0.66	0.662331	6	5.437E-06	0.100763
280)	0.79	0.783348	35	4.424E-05	0.2001953
300)	0.83	0.826211	7	1.435E-05	0.2375899
320)	0.86	0.859973	31	7.217E-10	0.2677358
340)	0.88	0.886511	5	4.24E-05	0.2888331
370)	0.9	0.916143	8	0.0002606	0.3107304
			0.342568	31	0.0007372	2.4693121

	150r	ng/l		
t (min)	qexp	qcalc	SSE	SSEA
	0	0 0	0	0.2428231
	10	0 0.0098462	9.695E-05	0.2428231
	15	0.01 0.0371889	0.0007392	0.2330677
	25	0.2 0.1759094	0.0005804	0.0857147
	40	0.48 0.5071513	0.0007372	0.0001631
	50	0.69 0.6846839	2.826E-05	0.0388994
	60	0.83 0.7998794	0.0009073	0.1137235
	70	0.88 0.8700525	9.895E-05	0.1499464
	75	0.89 0.8940046	1.604E-05	0.157791
	95	0.9 0.9489919	0.0024002	0.1658356

0.4927708 0.0056044 1.4307876

DOSE-RESPONSE MODEL PARAMETERS FOR Co(II) ADSORPTION WITH MODIFIED NANOADSORBENT TO MF-MNFC

t (min)	qexp		qcalc		SSE		SSEA	
()	0		0		0	0.06	6637
20)	0	9.017	7E-07	8.131	E-13	0.06	6637
40)	0	0.000	1254	1.574	E-08	0.06	6637
50)	0	0.000	6142	3.772	E-07	0.06	6637
60)	0	0.002	2459	5.044	E-06	0.0	6637
70)	0	0.006	7008	4.49	E-05	0.06	6637
80)	0.01	0.017	1576	5.123	E-05	0.0613	3175
100)	0.09	0.078	7726	0.000	1261	0.0280	3977
115	5	0.21	0.187	8589	0.0004	4902	0.002	2268
130)	0.36	0.356	4037	1.293	E-05	0.0104	4809
140)	0.46	0.484	1726	0.000	5843	0.0409	9562
165	5	0.72	0.75	1489	0.0009	9916	0.2137	7919
180)	0.88	0.848	9159	0.0009	9662	0.3873	3523
185	5	0.9	0.872	2738	0.0007	7687	0.4126	5474
			0.257	6237	0.0040	0416	1.555	1315

	MN	FC						
t (min)	qex	р	qcalc		SSE		SSEA	
	0	0)	0		0	0.1805	177
	20	0	0.0003	3889	1.512E	-07	0.1805	177
	30	0	0.0030	0391	9.236E	-06	0.1805	177
	40	0	0.012	2965	0.0001	681	0.1805	177
	50	0.01	0.039	1864	0.0008	518	0.1721	202
	60	0.11	0.0933	3226	0.0002	781	0.0991	455
	80	0.32	0.3072	2442	0.0001	627	0.0109	985
	96	0.52	0.528	1434	6.632E	-05	0.009	049
•	105	0.62	0.6382	2308	0.0003	324	0.0380	742

$$q=1-\big[\frac{1}{1+(\frac{CoQt}{q0m})^{\wedge}\alpha}$$

t (min)	qexp		qcalc		SSE		SSEA	
	0	0		0		0	0.070	7603
2	0	0	1.336	5E-06	1.786	E-12	0.070	7603
4	0	0	0.000	1607	2.584	E-08	0.070	7603
5	0	0	0.000	7509	5.638	E-07	0.070	7603
6	0	0	0.00	2642	6.98	E-06	0.070	7603
7	0	0	0.007	6276	5.818	E-05	0.070	7603
8	0	0.01	0.018	9737	8.053	E-05	0.065	5402
10	0	0.09	0.082	9061	5.032	E-05	0.030	9789
11	5	0.21	0.191	9066	0.0003	3274	0.003	31369
13	0	0.36	0.356	5387	1.198	E-05	0.008	8345
14	0	0.46	0.48	0437	0.0004	1177	0.037	6328
16	5	0.72	0.742	1422	0.0004	1903	0.206	1086
18	0	0.88	0.840	0271	0.0015	5978	0.37	6986
18	5	0.9		1		0.01	0.401	9457
			0.266	0081	0.0130)417	1.555	7255

ONS

α	3.407796
q0	20143.28

R^2	Λ	aa	ΩQ	96
Γ	Ο.	י כי	$^{\circ}$	20

m	4
Q	8
C0	100
V	0.2887
n	14

 $\begin{array}{ccc} \alpha & & 5.88357 \\ q0 & & 19802.4 \end{array}$

R^2 0.998423

m 8 Q 8 C0 100 v 0.2887 n 18

 $\begin{array}{ccc} \alpha & & 11.7618 \\ q0 & & 21020.97 \end{array}$

R^2 0.999858

m 12 Q 8 C0 100 v 0.2887 n 23

α	6.925938
q0	24068.91

11 2 0.555002	R^2	0.	9	9	9	6	62	2
---------------	-----	----	---	---	---	---	----	---

m	4
Q	4
C0	100
v	0.1443
n	18

R^2 0.994802

m	4
Q	12
CO	100
V	0.4332
n	9

α	3.967452
q0	20251.86

m	4
Q	8
C0	50
V	0.2887
n	17

m	4
Q	8
C0	150
V	0.2887
n	10

YPES

α	7.120381
q0	42375.23

R^2	0.997401
Γ	0.777 T U I

m	4
Q	12
C0	100
V	0.4332
n	14

m	4
Q	12
C0	100

V	0.4332		
n	14		

α	6.910552		
q0	42478.54		

R^2	0.991617
1 \	0.221017

m	4
Q	12
C0	100
٧	0.4332
n	14

DOSE-RESPONSE MODEL ERRORS

Sum of the Squares of the Errors (ERRSQ /SSE)

	BH=4	-g			
t (min)	qexp	qca	lc	error	
	0	0	0)	0
	10	0 0.00	03815	1.45	5E-07
	15	0 0.00)15173	2.302	2E-06
	20	0 0.0	04034	1.627	7E-05
	25	0 0	.00859	7.379	9E-05
	40	0.01 0.04	112153	0.000	9744
	70	0.24 0.22	244706	0.000	2412
	92	0.43 0.42	234875	4.24	1E-05
	110	0.56 0.57	745579	0.000	2119
	130	0.7 0.70)46954	2.20	5E-05
	160	0.85 0.8	328829	0.000	4482
	180	0.88 0.87	785459	2.11	5E-06
	190	0.89 0.89	968756	4.727	7E-05
:	200	0.9 0.91	19579	0.00	0143
				0.00	2225

0.002225

Sum of Absolute Errors (EABS/SAE)

	BH=4	g					
t (min)	qexp	q	calc	error	qex-qca		
	0	0	0	0		0	
	10	0 0	.0005301	2.81E-07	0.000530	1	
	15	0 0	.0019943	3.977E-06	0.001994	3	
	20	0 0	.0050954	2.596E-05	0.005095	4 SAI	E 0.11713
	25	0 0	.0105158	0.0001106	0.010515	8	
	40	0.01 0	.0471243	0.0013782	0.037124	3	
	70	0.24 0	.2357858	1.776E-05	0.004214	2	
	92	0.43	0.43	3.044E-20	1.745E-1	0	
1	110	0.56	0.575111	0.0002283	0.01511	1	
1	130	0.70	.7004095	1.677E-07	0.000409	5	
1	160	0.850	.8217921	0.0007957	0.028207	9	
1	180	0.88 0	.8714523	7.306E-05	0.008547	7	
1	190	0.89	0.89	1.071E-15	3.273E-0	8	
2	200	0.9 0	.9053851	2.9E-05	0.005385	1	
				0.002663	0.117135	5	

BH=4g

t (min)	qexp	qcalc	error	S	SSEA			
	0	0	0	0	0			
	10	0 1.067E	-05 1.1391	E-10	0			
	15	0 8.135E	-05 6.6171	E-09	0			
	20	0 0.00034	436 1.1811	E-07	0		MPSD	1.1221098
	25	0 0.0010	501 1.1031	E-06	0			
	40	0.01 0.01094	192 9.0091	E-07 0	0.0090089			
	70	0.24 0.15443	347 0.0073	214 0).1271079			
	92	0.43 0.41793	385 0.0001	455 0	0.0007868			
•	110	0.56 0.63734	471 0.0059	826 0	0.0190771			
•	130	0.7 0.80229	921 0.0104	637 0	0.0213545			
•	160	0.85 0.91988	359 0.004	884 0	0.0067599	0.001510956		
•	180	0.88 0.95394	464 0.0054	681	0.007061			
•	190	0.89 0.96448	349 0.005	548 0	0.0070042			
2	200	0.9 0.97230	093 0.0052	286 0	0.0064551			
		5.46	0.045	044 0).2046154			

Hybrid Fractional Error Function (HYBRID)

BH=4g

	BH=4	g					
t (min)	qexp	qcalo		error	qex-qca/qex		
	0	0	0	0	0		
	10	0 8.0	2E-05	6.432E-09	0		
	15	0 0.00	04171	1.74E-07	0		
	20	0 0.00	13429	1.803E-06	0		
	25	0 0.00	33216	1.103E-05	0	HYBRID	0.3194241
	40	0.01 0.02	20465	0.0001451	0.0145118		
	70	0.24 0.18	00302	0.0035964	0.0149849		
	92	0.43 0.40	02179	0.000887	0.0020627		
•	110	0.56 0.579	98722	0.0003949	0.0007052		
•	130	0.7 0.73	13966	0.0009857	0.0014082		
•	160	0.85 0.86	36882	0.0001874	0.0002204		
-	180	0.88 0.91	09536	0.0009581	0.0010888		
•	190	0.89 0.92	72535	0.0013878	0.0015593		
2	200	0.9 0.94	01318	0.0016106	0.0017895		
				0.010166	0.0383309		

Sum of the Squares of the Errors (ERRSQ /SSE)

BH=8g

t (min) qexp qcalc error

0	0 0	0		
20	0 1.386E-06	1.921E-12		
30	0 1.506E-05	2.268E-10		
40	0 8.183E-05	6.695E-09		
50	0 0.0003041	9.246E-08		
60	0 0.0008883	7.892E-07	SSE	0.0037571
70	0 0.0021973	4.828E-06		
80	0 0.0048079	2.312E-05		
115	0.01 0.0392601	0.0008562		
140	0.08 0.1150525	0.0012287		
170	0.3 0.2895003	0.0001102		
195	0.49 0.47737	0.0001595		
210	0.6 0.5855105	0.0002099		
230	0.71 0.7069619	9.23E-06		
250	0.8 0.7975827	5.843E-06		
270	0.85 0.8610524	0.0001222		
285	0.87 0.8949345	0.0006217		
300	0.9 0.9201181	0.0004047		
		0.0037571		

0.0040927 0.1529176

SAE 0.1529176

Sum of Absolute Errors (EABS/SAE)

	BH=8g			
t (min)	qexp	qcalc	error	qex-qca
0	0	0	0	0
20	0	1.861E-06	3.465E-12	1.861E-06
30	0	1.931E-05	3.728E-10	1.931E-05
40	0	0.0001015	1.031E-08	0.0001015
50	0	0.0003677	1.352E-07	0.0003677
60	0	0.0010522	1.107E-06	0.0010522
70	0	0.0025566	6.536E-06	0.0025566
80	0	0.0055076	3.033E-05	0.0055076
115	0.01	0.04301	0.0010897	0.03301
140	0.08	0.122662	0.00182	0.042662
170	0.3	0.3000003	1.166E-13	3.415E-07
195	0.49	0.4860716	1.543E-05	0.0039284
210	0.6	0.5919012	6.559E-05	0.0080988
230	0.71	0.7102674	7.151E-08	0.0002674
250	0.8	0.7986286	1.881E-06	0.0013714
270	0.85	0.8607777	0.0001162	0.0107777
285	0.87	0.8941357	0.0005825	0.0241357
300	0.9	0.9190591	0.0003632	0.0190591
270 285	0.85 0.87	0.8607777 0.8941357	0.0001162 0.0005825	0.0107777 0.0241357

	BH=8	g						
t (min)	qexp		qcalc	error	qex-qca/qex	(
	0	0	0	0	0			
	20	0	3.942E-09	1.554E-17	0			
	30	0	1.247E-07	1.555E-14	0			
	40	0	1.446E-06	2.091E-12	0			
	50	0	9.676E-06	9.362E-11	0			
	60	0	4.573E-05	2.091E-09	0		MPSD	1.0048216
	70	0	0.00017	2.89E-08	0			
	80	0	0.00053	2.809E-07	0			
•	115	0.01	0.0115366	2.361E-06	0.0236129			
•	140	0.08	0.058695	0.0004539	0.0709223			
•	170	0.3	0.245833	0.0029341	0.0326007			
•	195	0.49	0.5119502	0.0004818	0.0020067			
,	210	0.6	0.6635403	0.0040374	0.0112149			
,	230	0.71	0.810624	0.0101252	0.0200857	0.001615466		
,	250	0.8	0.897004	0.0094098	0.0147028			
2	270	0.85	0.9437458	0.0087883	0.0121637			
2	285	0.87	0.9637557	0.0087901	0.0116133			
;	300	0.9	0.9762818	0.0058189	0.0071838			
		5.61		0.0508421	0.2061069			

Hybrid Fractional Error Function (HYBRID)

,			`	,			
	BH=8	g					
t (min)	qexp	qcalc	error	qe	x-qca/qca		
	0	0	0	0	0		
	20	0 9.735E	-08 9.476	E-15	0		
	30	0 1.684E	-06 2.834	E-12	0		
	40	0 1.272E	-05 1.618	E-10	0		
	50	0 6.106E	-05 3.728	E-09	0		
	60	0 0.0002	199 4.838	E-08	0	HYBRID	0.20303
	70	0 0.0006	498 4.222	E-07	0		
	80	0 0.0016	595 2.754	E-06	0		
1	15	0.01 0.0208	694 0.0001	181 0.0)118143		
1	40	0.08 0.0783	095 2.858	E-06 3.	572E-05		
1	70	0.3 0.2496	173 0.0025	384 0.0	084614		
1	95	0.49 0.4660	145 0.0005	753 0.0	011741		

210	0.6 0.	.595034	2.466E-05	4.11E-05
230	0.71 0.7	358157	0.0006665	0.0009387
250	0.8 0.8	334797	0.0011209	0.0014011
270	0.85 0.8	958104	0.0020986	0.0024689
285	0.87 0.9	263276	0.0031728	0.0036469
300	0.9 0.9	474587	0.0022523	0.0025026
			0.0125737	0.0324848

	BH=1	∠y			
t (min)	qexp		qcalc	err0ı	•
	0	0		0	0
2	20	0	7.994E-	15 6.3	39E-29
3	30	0	9.63E-	13 9.27	74E-25
4	40	0	2.84E-	11 8.06	58E-22
Ę	50	0	3.919E-	10 1.53	36E-19
6	50	0	3.346E-0	09 1.1	12E-17
8	30	0	9.864E-0	08 9.72	29E-15
10	00	0	1.361E-0	06 1.85	52E-12
14	40	0	7.121E-0	05 5.07	72E-09
18	30	0	0.001366	69 1.86	68E-06
23	30	0.02	0.02387	53 1.50)2E-05
25	55	0.08	0.076060	07 1.55	52E-05
28	30	0.21	0.1982	28 0.00	01374
29	93	0.3	0.29665 ²	17 1.12	21E-05
30	00	0.35	0.35764	53 5.84	15E-05
31	15	0.49	0.49706	54 4.99	92E-05
33	37	0.68	0.686176	65 3.81	5E-05
35	54	0.8	0.795946	64 1.64	13E-05
36	52	0.84	0.83534	52 2.16	57E-05
37		0.87	0.867736	66 5.12	23E-06
37	75	0.89	0.884828	85 2.67	74E-05
38			0.89977		
				0.00	03975

Sum of Absolute Errors (EABS/SAE)

BH=12g

t (min) qexp qcalc error qex-qca/qex

0 0	0	0			
0 8.993E-15	8.087E-29	8.993E-15			
0 1.021E-12	1.042E-24	1.021E-12			
0 2.995E-11	8.969E-22	2.995E-11			
0 4.116E-10	1.694E-19	4.116E-10			
0 3.502E-09	1.226E-17	3.502E-09			
0 1.027E-07	1.054E-14	1.027E-07		SAE	0.0592567
0 1.411E-06	1.991E-12	1.411E-06			
0 7.336E-05	5.382E-09	7.336E-05			
0 0.0014015	1.964E-06	0.0014015			
0.02 0.0243575	1.899E-05	0.0043575			
0.08 0.0773765	6.883E-06	0.0026235			
0.21 0.2009704	8.153E-05	0.0090296			
0.3 0.3000001	1.358E-14	1.165E-07			
0.35 0.3612273	0.0001261	0.0112273			
0.49 0.5007283	0.0001151	0.0107283			
0.68 0.6890543	8.198E-05	0.0090543			
0.8 0.7979665	4.135E-06	0.0020335			
0.84 0.8369985	9.009E-06	0.0030015			
0.87 0.8690694	8.66E-07	0.0009306			
0.89 0.8859865	1.611E-05	0.0040135			
0.9 0.9007805	6.092E-07	0.0007805			
	0.0004632	0.0592567			
	0 8.993E-15 0 1.021E-12 0 2.995E-11 0 4.116E-10 0 3.502E-09 0 1.027E-07 0 1.411E-06 0 7.336E-05 0 0.0014015 0.02 0.0243575 0.08 0.0773765 0.21 0.2009704 0.3 0.3000001 0.35 0.3612273 0.49 0.5007283 0.68 0.6890543 0.8 0.7979665 0.84 0.8369985 0.87 0.8690694 0.89 0.8859865	0 8.993E-15 8.087E-29 0 1.021E-12 1.042E-24 0 2.995E-11 8.969E-22 0 4.116E-10 1.694E-19 0 3.502E-09 1.226E-17 0 1.027E-07 1.054E-14 0 1.411E-06 1.991E-12 0 7.336E-05 5.382E-09 0 0.0014015 1.964E-06 0.02 0.0243575 1.899E-05 0.08 0.0773765 6.883E-06 0.21 0.2009704 8.153E-05 0.3 0.3000001 1.358E-14 0.35 0.3612273 0.0001261 0.49 0.5007283 0.0001151 0.68 0.6890543 8.198E-05 0.8 0.7979665 4.135E-06 0.84 0.8369985 9.009E-06 0.87 0.8690694 8.66E-07 0.89 0.8859865 1.611E-05 0.9 0.9007805 6.092E-07	0 8.993E-15 8.087E-29 8.993E-15 0 1.021E-12 1.042E-24 1.021E-12 0 2.995E-11 8.969E-22 2.995E-11 0 4.116E-10 1.694E-19 4.116E-10 0 3.502E-09 1.226E-17 3.502E-09 0 1.027E-07 1.054E-14 1.027E-07 0 1.411E-06 1.991E-12 1.411E-06 0 7.336E-05 5.382E-09 7.336E-05 0 0.0014015 1.964E-06 0.0014015 0.02 0.0243575 1.899E-05 0.0043575 0.08 0.0773765 6.883E-06 0.0026235 0.21 0.2009704 8.153E-05 0.0090296 0.3 0.3000001 1.358E-14 1.165E-07 0.35 0.3612273 0.0001261 0.0112273 0.49 0.5007283 0.0001151 0.0107283 0.68 0.6890543 8.198E-05 0.0090543 0.8 0.7979665 4.135E-06 0.0020335 0.84 0.8369985 9.009E-06 0.0030015	0 8.993E-15 8.087E-29 8.993E-15 0 1.021E-12 1.042E-24 1.021E-12 0 2.995E-11 8.969E-22 2.995E-11 0 4.116E-10 1.694E-19 4.116E-10 0 3.502E-09 1.226E-17 3.502E-09 0 1.027E-07 1.054E-14 1.027E-07 0 1.411E-06 1.991E-12 1.411E-06 0 7.336E-05 5.382E-09 7.336E-05 0 0.0014015 1.964E-06 0.0014015 0.02 0.0243575 1.899E-05 0.0043575 0.08 0.0773765 6.883E-06 0.0026235 0.21 0.2009704 8.153E-05 0.0090296 0.3 0.3000001 1.358E-14 1.165E-07 0.35 0.3612273 0.0001261 0.0112273 0.49 0.5007283 0.0001151 0.0107283 0.68 0.6890543 8.198E-05 0.0090543 0.8 0.7979665 4.135E-06 0.0020335 0.84 0.8369985 9.009E-06 0.0030015 0.87 0.8690694 8.66E-07 0.0009306 0.89 0.8859865 1.611E-05 0.0040135 0.9 0.9007805 6.092E-07 0.0007805	0 8.993E-15 8.087E-29 8.993E-15 0 1.021E-12 1.042E-24 1.021E-12 0 2.995E-11 8.969E-22 2.995E-11 0 4.116E-10 1.694E-19 4.116E-10 0 3.502E-09 1.226E-17 3.502E-09 0 1.027E-07 1.054E-14 1.027E-07 SAE 0 1.411E-06 1.991E-12 1.411E-06 0 7.336E-05 5.382E-09 7.336E-05 0 0.0014015 1.964E-06 0.0014015 0.02 0.0243575 1.899E-05 0.0043575 0.08 0.0773765 6.883E-06 0.0026235 0.21 0.2009704 8.153E-05 0.0090296 0.3 0.3000001 1.358E-14 1.165E-07 0.35 0.3612273 0.0001261 0.0112273 0.49 0.5007283 0.0001151 0.0107283 0.68 0.6890543 8.198E-05 0.0090543 0.8 0.7979665 4.135E-06 0.0020335 0.84 0.8369985 9.009E-06 0.0030015 0.87 0.8690694 8.66E-07 0.0009306 0.89 0.8859865 1.611E-05 0.0040135 0.9 0.9007805 6.092E-07 0.0007805

Hybrid Fractional Error Function (HYBRID)

BH=12g

	D	- 9				
t (min)	qexp	qcalc	error	qex-qca/qca	l	
	0	0 () 0	0		
	20	0 7.994E-1	6.39E-29	0		
	30	0 9.56E-13	9.14E-25	0		
	40	0 2.823E-1	7.969E-22	. 0		
	50	0 3.899E-10) 1.52E-19	0	HYBRID	0.0097051
	60	0 3.331E-09) 1.11E-17	0		
	80	0 9.833E-08	9.668E-15	0		
•	100	0 1.358E-0	5 1.844E-12	. 0		
•	140	0 7.116E-0	5.064E-09	0		
•	180	0 0.0013674	1.87E-06	0		
2	230	0.02 0.0239089	1.528E-05	0.000764		
2	255	0.08 0.0761937	7 1.449E-05	0.0001811		
2	280	0.21 0.1986456	0.0001289	0.0006139		
2	293	0.3 0.297172	7.993E-06	2.664E-05		
3	300	0.35 0.358242	6.794E-05	0.0001941		
3	315	0.49 0.497768	6.034E-05	0.0001231		
3	337	0.68 0.6868447	4.685E-05	6.89E-05		
3	354	0.8 0.7964849	9 1.236E-05	1.544E-05		

362	0.84 0.8358145 1.752E-05	2.086E-05
370	0.87 0.8681391 3.463E-06	3.981E-06
375	0.89 0.8851918 2.312E-05	2.598E-05
380	0.9 0.9001045 1.093E-08	1.214E-08
	0.0004002	0.0020381

	BH=1	2g						
t (min)	qexp	(qcalc	error	qex-qca/qex			
	0	0	0	0	0			
	20	0	1.998E-15	3.994E-30	0			
	30	0	3.26E-13	1.063E-25	0			
	40	0	1.102E-11	1.215E-22	. 0			
	50	0	1.692E-10	2.864E-20	0			
	60	0	1.577E-09	2.486E-18	0	M	1PSD	0.1412012
	80	0	5.336E-08	2.847E-15	0			
1	00	0	8.194E-07	6.714E-13	0			
1	40	0	5.038E-05	2.538E-09	0			
1	80	0	0.0010911	1.19E-06	0			
2	230	0.02	0.0214799	2.19E-06	0.005475			
2	255	0.08	0.072036	6.343E-05	0.0099102			
2	280	0.21	0.1960834	0.0001937	0.0043917	4.18693E-05		
2	293	0.3	0.2982985	2.895E-06	3.217E-05			
3	300	0.35	0.3620679	0.0001456	0.0011888			
3	315	0.49	0.5077119	0.0003137	0.0013066			
3	337	0.68	0.7020872	0.0004878	0.001055			
3	354	8.0	0.8114861	0.0001319	0.0002061			
3	362	0.84	0.849828	9.659E-05	0.0001369			
3	370	0.87	0.8808843	0.0001185	0.0001565			
3	375	0.89	0.8970755	5.006E-05	6.32E-05			
3	880	0.9	0.9111115	0.0001235	0.0001524			

6.43 0.0017311 0.0240746

fr4ml/min

qexp	qcalc	error	
0	0	0	0
20	0 3.289E-	08 1.082	2E-15
30	0 5.453E-	07 2.973	3E-13
40	0 3.999E-	06 1.599	9E-11
50	0 1.876E-	05 3.518	3E-10
60	0 6.63E-	05 4.396	5E-09
90	0 0.00109	82 1.206	5E-06
150	0.02 0.03643	62 0.000	2701
210	0.29 0.27995	42 0.000	1009
235	0.45 0.45867	61 7.527	7E-05
260	0.63 0.63053	48 2.86	5E-07
280	0.74 0.74034	82 1.212	2E-07
290	0.79 0.78428	59 3.265	5E-05
300	0.83 0.82136	45 7.457	7E-05
315	0.87 0.86570	87 1.842	2E-05
320	0.88 0.87789	11 4.447	7E-06
330	0.89 0.89896	09 8.03	3E-05
340	0.9 0.9162	53 0.000	2642
		0.000	9225
	0 20 30 40 50 60 90 150 210 235 260 280 290 300 315 320	0 0 20 0 3.289E- 30 0 5.453E- 40 0 3.999E- 50 0 1.876E- 60 0 6.63E- 90 0 0.00109 150 0.02 0.03643 210 0.29 0.27995 235 0.45 0.45867 260 0.63 0.63053 280 0.74 0.74034 290 0.79 0.78428 300 0.83 0.82136 315 0.87 0.86570 320 0.88 0.87789 330 0.89 0.89896	0 0 0 20 0 3.289E-08 1.082 30 0 5.453E-07 2.973 40 0 3.999E-06 1.599 50 0 1.876E-05 3.518 60 0 6.63E-05 4.396 90 0 0.0010982 1.206 210 0.29 0.2799542 0.000 235 0.45 0.4586761 7.527 260 0.63 0.6305348 2.86 280 0.74 0.7403482 1.212 290 0.79 0.7842859 3.265 300 0.83 0.8213645 7.457 315 0.87 0.8657087 1.842 320 0.88 0.8778911 4.447 330 0.89 0.8989609 8.03 340 0.9 0.916253 0.000

Sum of Absolute Errors (EABS/SAE)

fr4ml/min

	117111/	111111				
t (min)	qexp	qcalc	error	qe	x-qca	
	0	0	0	0	0	
	20	0 2.213E-	08 4.8991	E-16 2.	213E-08	
	30	0 3.906E-	07 1.525	E-13 3.	906E-07	
	40	0 2.994E-	06 8.9611	E-12 2.	994E-06	
	50	0 1.453E-	05 2.1111	Ξ-10 1.	453E-05	SAE
	60	0 5.282E-	05 2.791	E-09 5.	282E-05	
	90	0 0.00093	12 8.6711	E-07 0.0	0009312	
	150	0.02 0.03351	13 0.0001	826 0.0	0135113	
2	210	0.29 0.27293	89 0.0002	911 0.0	0170611	
2	235	0.45 0.45425	72 1.812	E-05 0.0	0042572	
2	260	0.63 0.	63 1.186I	Ξ-20 1.	089E-10	
2	280	0.74 0.74208	96 4.366I	E-06 0.0	0020896	
2	290	0.79 0.78672	29 1.074	E-05 0.0	0032771	
;	300	0.83 0.8242	32 3.3271	E-05 0	.005768	
;	315	0.87 0.86883	45 1.358I	E-06 0.0	0011655	
;	320	0.88 0.88102	59 1.0531	E-06 0.0	0010259	
;	330	0.89 0.90203	36 0.0001	448 0.0	0120336	

Marquardt's Percent Standard Deviation (MPSD) fr4ml/min

1141111/	/ TT 11[T]						
qexp	(qcalc	error	qex-qca/qex	X		
)	0	0	C	0			
)	0	1.638E-09	2.683E-18	0			
)	0	4.427E-08	1.96E-15	0			
)	0	4.591E-07	2.108E-13	0			
)	0	2.817E-06	7.937E-12	. 0			
)	0	1.241E-05	1.539E-10	0		MPSD	0.3431783
)	0 (0.0003351	1.123E-07	0			
)	0.02	0.0208909	7.938E-07	0.0019844			
)	0.29	0.2475722	0.0018001	0.0214045			
5	0.45	0.4508869	7.866E-07	3.885E-06			
)	0.63	0.6513289	0.0004549	0.0011462			
)	0.74	0.7733682	0.0011134	0.0020333			
)	0.79	0.8194673	0.0008683	0.0013913			
)	0.83	0.8567289	0.0007144	0.0010371			
5	0.87	0.8989014	0.0008353	0.0011036	0.000188434		
)	0.88	0.9099579	0.0008975	0.0011589			
)	0.89	0.9284628	0.0014794	0.0018677			
)	0.9	0.9430011	0.0018491	0.0022828			
	7.29		0.0100142	0.0354136			
	qexp () () () () () () () () () () () () ()	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	qexp qcalc 0 0 0 0 0 1.638E-09 0 0 4.427E-08 0 0 4.591E-07 0 0 2.817E-06 0 0 1.241E-05 0 0 0.0003351 0 0 0.29 0.2475722 0 0.45 0.4508869 0 0.63 0.6513289 0 0.74 0.7733682 0 0.79 0.8194673 0 0.83 0.8567289 0 0.87 0.8989014 0 0.88 0.9099579 0 0.9284628 0 0.9430011	qexp qcalc error 0 0 0 0 0 0 1.638E-09 2.683E-18 0 0 4.427E-08 1.96E-15 0 0 4.591E-07 2.108E-13 0 0 2.817E-06 7.937E-12 0 0 1.241E-05 1.539E-10 0 0 0.0003351 1.123E-07 0 0 0.0208909 7.938E-07 0 0.29 0.2475722 0.0018001 0 0.45 0.4508869 7.866E-07 0 0.63 0.6513289 0.0004549 0 0.74 0.7733682 0.0011134 0 0.79 0.8194673 0.0008683 0 0.83 0.8567289 0.0007144 0 0.89 0.9284628 0.0014794 0 0.9430011 0.0018491	qexp qcalc error qex-qca/qex 0 0 0 0 0 0 1.638E-09 2.683E-18 0 0 0 4.427E-08 1.96E-15 0 0 0 4.591E-07 2.108E-13 0 0 0 2.817E-06 7.937E-12 0 0 0 1.241E-05 1.539E-10 0 0 0 0.0003351 1.123E-07 0 0 0.02 0.0208909 7.938E-07 0.0019844 0 0.29 0.2475722 0.0018001 0.0214045 0 0.45 0.4508869 7.866E-07 3.885E-06 0 0.63 0.6513289 0.0004549 0.0011462 0 0.74 0.7733682 0.0011134 0.0020333 0 0.79 0.8194673 0.0008683 0.001371 0 0.83 0.8567289 0.0007144 0.0010371 0 0.89 0.9284	qexp qcalc error qex-qca/qex 0 0 0 0 0 0 1.638E-09 2.683E-18 0 0 0 4.427E-08 1.96E-15 0 0 0 4.591E-07 2.108E-13 0 0 0 2.817E-06 7.937E-12 0 0 0 1.241E-05 1.539E-10 0 0 0 0.00003351 1.123E-07 0 0 0.02 0.0208909 7.938E-07 0.0019844 0 0.29 0.2475722 0.0018001 0.0214045 0 0.45 0.4508869 7.866E-07 3.885E-06 0 0.63 0.6513289 0.0004549 0.0011462 0 0.74 0.7733682 0.0011134 0.0020333 0 0.79 0.8194673 0.0008683 0.0013913 0 0.87 0.8989014 0.0008353 0.0011036 0.000188434 0 <	qexp qcalc error qex-qca/qex 0 0 0 0 0 0 1.638E-09 2.683E-18 0 0 0 4.427E-08 1.96E-15 0 0 0 4.591E-07 2.108E-13 0 0 0 2.817E-06 7.937E-12 0 0 0 1.241E-05 1.539E-10 0 MPSD 0 0 0.0003351 1.123E-07 0 0 MPSD 0 0 0.0208909 7.938E-07 0.0019844 0 0.029 0.2475722 0.0018001 0.0214045 0 0.45 0.4508869 7.866E-07 3.885E-06 0 0.63 0.6513289 0.0004549 0.0011462 0 0.74 0.7733682 0.0011134 0.0020333 0 0.79 0.8194673 0.0008683 0.0013913 0 0.83 0.8567289 0.0007144 0.0010371 0 0.00188434

Hybrid Fractional Error Function (HYBRID)

fr4ml/min

	,						
t (min)	qexp	qcalo	erro	r qe	ex-qca/qex		
	0	0	0	0	0		
	20	0 9.13	1E-09 8.3	38E-17	0		
	30	0 1.85	6E-07 3.4	44E-14	0		
	40	0 1.57	3E-06 2.4	73E-12	0		
	50	0 8.2	5E-06 6.8	06E-11	0	HYBRID	0.0491679
	60	0 3.19	6E-05 1.0	21E-09	0		
	90	0 0.000	06492 4.2	14E-07	0		
•	150	0.02 0.028	80659 6.50	06E-05 0.	0032529		
2	210	0.29 0.2	26011 0.00	08934 0.	0030807		
2	235	0.45 0.44	77159 5.2°	17E-06 1	.159E-05		

260	0.63 0.6320553 4.224E-06 6.705E-06
280	0.74 0.7486683 7.514E-05 0.0001015
290	0.79 0.7944863 2.013E-05 2.548E-05
300	0.83 0.8325775 6.643E-06 8.004E-06
315	0.87 0.8772263 5.222E-05 6.002E-05
320	0.88 0.8892794 8.611E-05 9.785E-05
330	0.89 0.909864 0.0003946 0.0004433
340	0.9 0.9264725 0.0007008 0.0007787
	0.0023039 0.0078669

fr12ml/min

		,					
t (min)	qexp	(qcalc	error			
	0	0	0		0		
	10	0 (0.0230248	0.000	5301		
	20	0.08	0.1284351	0.00	2346	SSE	0.0063556
	30	0.32 (0.3009842	0.000	3616		
	48	0.62 (0.5987615	0.000	4511		
	60	0.74 (0.7291688	0.000	1173		
	85	0.86	0.8711882	0.000	1252		
•	100	0.89 (0.9122391	0.000	4946		
•	120	0.9 (0.9439291	0.001	9298		
				0.006	3556		

Sum of Absolute Errors (EABS/SAE)

fr12ml/min

t (min)	qexp	qcalc		error	qex-qca			
	0	0	0	0		0		
	10	0 0.023	0248	0.0005301	0.02302	48		
	20	0.08 0.128	4351	0.002346	0.04843	51	SAE	0.1999017
	30	0.32 0.300	9842	0.0003616	0.01901	58		
	48	0.62 0.598	7615	0.0004511	0.02123	85		
	60	0.74 0.729	1688	0.0001173	0.01083	12		
	85	0.86 0.871	1882	0.0001252	0.01118	82		

100	0.89 0.9122391 0.0004946 0.0222391
120	0.9 0.9439291 0.0019298 0.0439291
	0.0063556 0.1999017

fr12ml/min

t (min)	qexp	qca	lc	error	qex-qca/qex	<		
	0	0	0	0	0			
	10	0 0.00	091744	8.417E-05	0			
	20	0.08 0.08	355846	3.119E-05	0.0048731			
	30	0.32 0.26	558931	0.0029276	0.0285894			
	48	0.62 0.63	348437	0.0002203	0.0005732		MPSD	1.164128
	60	0.74 0.78	354618	0.0020668	0.0037742			
	85	0.86 0.92	213071	0.0037586	0.0050819			
	100	0.89 0.9	526932	0.0039304	0.004962			
	120	0.9 0.97	736896	0.0054302	0.0067039	0.000948636		
		4.41		0.0184492	0.0545577			

Hybrid Fractional Error Function (HYBRID) fr12ml/min

		•			
t (min)	qexp		qcalc	error	Sqex-qca/qexA
	0	0	0	0	0
	10	0	0.0140074	0.0001962	0
	20	0.08	0.10091	0.0004372	0.0054654
	30	0.32	0.2732707	0.0021836	0.0068238
	48	0.62	0.6043013	0.0002464	0.0003975
	60	0.74	0.7481585	6.656E-05	8.995E-05
	85	0.86	0.8935414	0.001125	0.0013082
•	100	0.89	0.9316333	0.0017333	0.0019476
	120	0.9	0.9591336	0.0034968	0.0038853
				0.0094852	0.0199177

ouiii oi u	10 0 9 4 4 4 1 0 0	01 1110 1110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 552)		
BH=4g	50mg/l					
t (min)	qexp	qcalc				
(0	0	0			
10	0	6.556E-06	4.299E-11			
22	2 0	0.0001497	2.24E-08			
30	0 0	0.0005121	2.623E-07			
4	1 0	0.0017664	3.12E-06			
50	0 0	0.0038735	1.5E-05		SSE	0.0007372
60	0 0	0.007952	6.323E-05			
80	0.01	0.024483	0.0002098			
100	0.05	0.0573416	5.39E-05			
15	5 0.26	0.2571332	8.219E-06			
210	0.54	0.5359187	1.666E-05			
240	0.66	0.6623316	5.437E-06			
280	0.79	0.7833485	4.424E-05			
300	0.83	0.8262117	1.435E-05			
320	0.86	0.8599731	7.217E-10			
340	0.88	0.8865115	4.24E-05			
370	0.9	0.9161438	0.0002606			
			0.0007372			

Sum of Absolute Errors (EABS/SAE)

BH=4g	50mg	/I					
t (min)	qexp	qcalc	error	qe	x-qca		
	0	0	0	0	0		
	10	0 6.556	E-06 4.299	E-11 6.	556E-06		
	22	0 0.0001	497 2.24	E-08 0.0	001497		
	30	0 0.0005	121 2.623	E-07 0.0	0005121		
	41	0 0.0017	664 3.12	E-06 0.0	017664		
	50	0 0.0038	735 1.5	E-05 0.0	038735	SAE	0.0784864
	60	0 0.007	952 6.323	E-05 0	.007952		
	80	0.01 0.024	483 0.0002	2098 0	.014483		
1	00	0.05 0.0573	416 5.39	E-05 0.0	073416		
1	55	0.26 0.2571	332 8.219	E-06 0.0	028668		
2	210	0.54 0.5359	187 1.666	E-05 0.0	040813		
2	240	0.66 0.6623	316 5.437	E-06 0.0	023316		
2	280	0.79 0.7833	485 4.424	E-05 0.0	066515		
3	300	0.83 0.8262	117 1.435	E-05 0.0	037883		
3	320	0.86 0.8599	731 7.217	E-10 2.	686E-05		
3	340	0.88 0.8865	115 4.24	E-05 0.0	065115		
3	370	0.9 0.9161	438 0.0002	2606 0.0	161438		

0.0007372 0.0784864

Marquardt's Percent Standard Deviation (MPSD)

BH=4g	50mg	/ l						
t (min)	qexp		qcalc	error	qex-qca/qex	(
	0	0	0	C	0			
	10	0	4.601E-07	2.117E-13	0			
	22	0	2.166E-05	4.691E-10	0			
	30	0	9.854E-05	9.711E-09	0			
	41	0	0.0004531	2.053E-07	0			
	50	0	0.0011938	1.425E-06	0		MPSD	0.6251726
	60	0	0.002904	8.433E-06	0			
	80	0.01	0.0117352	3.011E-06	0.0301104			
1	00	0.05	0.0341169	0.0002523	0.1009096			
1	55	0.26	0.2310695	0.000837	0.0123813			
2	210	0.54	0.5698578	0.0008915	0.0030572			
2	240	0.66	0.7178051	0.0033414	0.0076709			
2	280	0.79	0.8437843	0.0028928	0.0046351	0.000586261		
3	800	0.83	0.8832635	0.002837	0.0041182			
3	20	0.86	0.912055	0.0027097	0.0036638			
3	340	0.88	0.93309	0.0028185	0.0036397			
3	370	0.9	0.9547062	0.0029928	0.0036948			
		5.78		0.019586	0.1738808			

Hybrid Fractional Error Function (HYBRID) BH=4g 50mg/l

50mg,	/l			
qexp	qcalc	error	qex-qca/qex	
0	0 (0	0	
10	0 2.36E-06	5.567E-12	0	
22	0 6.99E-05	4.886E-09	0	
30	0 0.0002651	7.025E-08	0	
41	0 0.0010141	1.028E-06	0	
50	0 0.0023763	3 5.647E-06	0	HYBRID
60	0 0.0051879	2.691E-05	0	
80	0.01 0.01764	1 5.837E-05	0.005837	
100	0.05 0.0447563	3 2.75E-05	0.0005499	
155	0.26 0.2355647	7 0.0005971	0.0022965	
	qexp 0 10 22 30 41 50 60 80	0 0 0 0 10 0 2.36E-06 22 0 6.99E-05 30 0 0.0002651 41 0 0.0010141 50 0 0.0023763 60 0 0.0051879 80 0.01 0.01764	qexp qcalc error 0 0 0 0 10 0 2.36E-06 5.567E-12 22 0 6.99E-05 4.886E-09 30 0 0.0002651 7.025E-08 41 0 0.0010141 1.028E-06 50 0 0.0023763 5.647E-06 60 0 0.0051879 2.691E-05 80 0.01 0.01764 5.837E-05 100 0.05 0.0447563 2.75E-05	qexp qcalc error qex-qca/qex 0 0 0 0 0 10 0 2.36E-06 5.567E-12 0 22 0 6.99E-05 4.886E-09 0 30 0 0.0002651 7.025E-08 0 41 0 0.0010141 1.028E-06 0 50 0 0.0023763 5.647E-06 0 60 0 0.0051879 2.691E-05 0 80 0.01 0.01764 5.837E-05 0.005837 100 0.05 0.0447563 2.75E-05 0.0005499

210	0.54 0.531969 6.45E-05 0.0001194
240	0.66 0.6686216 7.433E-05 0.0001126
280	0.79 0.7964876 4.209E-05 5.328E-05
300	0.83 0.8403736 0.0001076 0.0001297
320	0.86 0.8741753 0.0002009 0.0002337
340	0.88 0.9001553 0.0004062 0.0004616
370	0.9 0.9284003 0.0008066 0.0008962
	0.0024189 0.0106899

1	-c	۱	/	ı
	ירי	ım	ıa/I	ı
	v	<i>,</i> , , ,	ıu,	ı

		J.					
t (min)	qexp	(qcalc	error			
	0	0	0		0		
	10	0 (0.0098462	9.695	E-05		
	15	0.01 (0.0371889	0.000	7392	SSE	0.0056044
	25	0.2 (0.1759094	0.000	5804		
	40	0.48 (0.5071513	0.000	7372		
	50	0.69 (0.6846839	2.826	E-05		
	60	0.83 (0.7998794	0.000	9073		
	70	0.88	0.8700525	9.895	E-05		
	75	0.89 (0.8940046	1.604	E-05		
	95	0.9 (0.9489919	0.002	4002		
				0.005	6044		

Sum of Absolute Errors (EABS/SAE)

150mg/l

	1001	119/1			
t (min)	qexp	qcalc	error	qe	x-qca
	0	0	0	0	0
	10	0 0.0073	86 5.455E	-05 0	.007386
	15	0.01 0.03033	83 0.00041	136 0.0	0203383
	25	0.2 0.1604	19 0.00156	67 0	.039581
	40	0.48 0.50242	78 0.0005	503 0.0	0224278
	50	0.69 0.69000	02 5.289E	-14	2.3E-07
	60	0.83 0.80937	15 0 00042	255.0 (1206285

70	0.88 0.87995 2.497E-09 4.997E-05
75	0.89 0.9034658 0.0001813 0.0134658
95	0.9 0.9557933 0.0031129 0.0557933
	0.0062576 0.1796709

150mg/l

t (min)	qexp	qcalc	error	qex-qca/d	qex	
	0	0	0	0	0	
	10	0 0.001667	79 2.782E-	06	0	
	15	0.01 0.011103	38 1.218E-	06 0.01218	3	MPSD
	25	0.2 0.110170	06 0.00806	93 0.20173	3	
	40	0.48 0.529836	56 0.00248	37 0.010779	9	
	50	0.69 0.76278	54 0.00529	77 0.011127	'3	
	60	0.83 0.883367	79 0.00284	81 0.004134	3	
	70	0.88 0.939859	98 0.00358	32 0.004627	'1	
	75	0.89 0.95577	54 0.00432	64 0.005461	9 0.00142082	
	95	0.9 0.98499	13 0.00722	35 0.008917	'9	
		4.88	0.0338	36 0.258964	-5	

Hybrid Fractional Error Function (HYBRID)

150mg/l

t (min)	qexp	qca	ılc	error	qex-qca/qex	
	0	0	0	C	0	
	10	0.0	044383	1.97E-05	0	
	15	0.01 0.0	210862	0.0001229	0.0122904	HYBRII
	25	0.2 0.1	354881	0.0041618	0.0208089	
	40	0.48 0.4	931678	0.0001734	0.0003612	
	50	0.69 0.6	983759	7.016E-05	0.0001017	
	60	0.83 0.8	246088	2.906E-05	3.502E-05	
	70	0.88 0.8	953657	0.0002361	0.0002683	
	75	0.89 0.9	179487	0.0007811	0.0008777	
	95	0.9 0.9	655491	0.0042967	0.0047741	

	MNFC)						
t (min)	qexp		qcalc		error			
	0	0		0		0		
2	0	0	0.00038	89	1.512	E-07		
3	0	0	0.00303	91	9.236	E-06		
4	0	0	0.0129	65	0.000	1681	SSE	
5	0	0.01	0.03918	64	0.0008	3518		
6	0	0.11	0.09332	26	0.0002	2781		
8	0	0.32	0.30724	42	0.000	1627		
9	6	0.52	0.52814	34	6.632	E-05		
10	5	0.62	0.63823	808	0.0003	3324		
12	2	0.81	0.79077	74	0.0003	3695		
13	2	0.86	0.84936	42	0.000	1131		
13	8	0.88	0.87602	61	1.579	E-05		
14	3	0.89	0.89435	66	1.898	E-05		
15	0	0.9	0.91518	78	0.0002	2307		
					0.002	5169		

Sum of Absolute Errors (EABS/SAE)

	MNFO	ì	,			
t (min)	qexp	qcalc	error	qe	ex-qca	
	0	0	0	0		0
	20	0 0.0003	987 1.59	E-07 0.0	000398	7
	30	0 0.0030	711 9.432	E-06 0.0	003071	1
	40	0 0.0129	678 0.0001	1682 0.0	012967	8
	50	0.01 0.0388	954 0.0008	3349 0.0	028895	4
	60	0.11 0.0921	223 0.0003	3196 0.0	017877	7
	80	0.32 0.3020	446 0.0003	3224 0.0	017955	4
	96	0.52 0.5203	971 1.577	E-07 0.0	000397	1
	105	0.62 0.6302	835 0.0001	1057 0.0	010283	5
	122	0.81 0.7841	467 0.0006	6684 0.0	025853	3
	132	0.86 0.843	854 0.0002	2607 0	0.01614	-6
	138	0.88 0.8711	653 7.805	E-05 0.0	008834	7
	143	0.89	0.89 1.731	E-19 4	4.16E-1	0
	150	0.9 0.9114	677 0.0001	1315 0.0	011467	7
			0.0028	3993 O.	154148	3

٨	Λ	N	ᄕ	\sim

t (min)	qexp	qcalc	error	qex-qca/qex	X		
	0	0 () 0	0			
	20	0 1.624E-05	2.637E-10	0			
	30	0 0.0003016	9.099E-08	0			
	40	0 0.0023932	2 5.727E-06	0		MPSD	1.0173457
	50	0.01 0.0118371	3.375E-06	0.0337506			
	60	0.11 0.0426694	0.0045334	0.3746624			
	80	0.32 0.2616469	0.0034051	0.0332528			
	96	0.52 0.5686909	0.0023708	0.0087678			
	105	0.62 0.7155147	0.0091231	0.0237333			
	122	0.81 0.8811918	3 0.0050683	0.0077248			
	132	0.86 0.9290057	0.0047618	0.0064383	0.001241991		
	138	0.88 0.9474429	0.0045485	0.0058736			
	143	0.89 0.9588441	0.0047395	0.0059835			
	150	0.9 0.9704815	0.0049676	0.0061329			
		5.92	0.0435273	0.5063199			

Hybrid Fractional Error Function (HYBRID)

MNFC

		3					
t (min)	qexp	qcalc		error	qex-qca/qex	(
	0	0	0	0	0		
	20	0 0.0001	186	1.406E-08	0		
	30	0 0.0012	534	1.571E-06	0		
	40	0 0.0066	483	4.42E-05	0	HYBRID	0.3975802
	50	0.01 0.02393	318	0.0001941	0.0194095		
	60	0.11 0.066	146	0.0019232	0.0174834		
	80	0.32 0.2741	772	0.0020997	0.0065616		
	96	0.52 0.52182	203	3.313E-06	6.372E-06		
•	105	0.62 0.6476	578	0.000765	0.0012338		
•	122	0.81 0.81486	512	2.363E-05	2.917E-05		

132	0.86 0.8743863 0.000207 0.0002407
138	0.88 0.9001562 0.0004063 0.0004617
143	0.89 0.9172877 0.0007446 0.0008367
150	0.9 0.9360837 0.001302 0.0014467
	0.0077146 0.0477096

М	F-	М	N	FC

t (min)	qexp		qcalc		SSE			
	0	0		0		0		
2	20	0	9.017E	-07	8.131E-	13		
4	ŀO	0	0.00012	254	1.574E-	80		
5	50	0	0.00061	42	3.772E-	07		
6	0	0	0.00224	159	5.044E-	06	SSE	0.004041
7	' 0	0	0.00670	800	4.49E-	05		
8	80	0.01	0.01715	576	5.123E-	05		
10	00	0.09	0.07877	726	0.00012	61		
11	5	0.21	0.18785	589	0.00049	02		
13	80	0.36	0.35640	37	1.293E-	05		
14	10	0.46	0.48417	726	0.00058	43		
16	55	0.72	0.7514	189	0.00099	16		
18	80	0.88	0.84891	59	0.00096	62		
18	35	0.9	0.87227	738	0.00076	87		
					0.00404	16		

Sum of Absolute Errors (EABS/SAE)

MF-MNFC

t (min)	qexp	qcalc	error	qex-qca		
	0	0 0	0	0		
	20	0 1.554E-06	2.415E-12	1.554E-06		
	40	0 0.0001778	3.16E-08	0.0001778		
	50	0 0.000817	6.675E-07	0.000817		
	60	0 0.0028364	8.045E-06	0.0028364		
	70	0 0.0080957	6.554E-05	0.0080957		
	80	0.01 0.0199334	9.867E-05	0.0099334	SAE	0.1637485
1	100	0.09 0.0855371	1.992E-05	0.0044629		

115	0.21	0.19565	0.0002059	0.01435
130	0.36	0.3600001	1.702E-14	1.305E-07
140	0.46	0.4828518	0.0005222	0.0228518
165	0.72	0.741709	0.0004713	0.021709
180	0.88	0.8388702	0.0016917	0.0411298
185	0.9	0.862617	0.0013975	0.037383
			0.0044814	0.1637485

MF-MNFC

t (min)	qexp	C	ıcalc	error	qex-qca/qex	(
	0	0	0	0	0			
	20	0	1.421E-07	2.019E-14	0			
	40	0 4	4.036E-05	1.629E-09	0			
	50	0 0	0.0002487	6.186E-08	0			
	60	0.0	0.0010982	1.206E-06	0			
	70	0.0	0.0038469	1.48E-05	0			
	80	0.01 0	0.0113366	1.786E-06	0.0178647		MPSD	0.9297599
•	100	0.09 0	0.0660104	0.0005755	0.0710498			
•	115	0.21	0.180855	0.0008494	0.0192615			
•	130	0.36 0).3748813	0.0002215	0.0017087			
•	140	0.46 0).5231491	0.0039878	0.018846			
	165	0.72 0	0.8071763	0.0075997	0.0146599	0.001037344		
•	180	0.88 0).8948178	0.0002196	0.0002835			
•	185	0.90	0.9140589	0.0001977	0.000244			
		3.63		0.013669	0.1439182			

Hybrid Fractional Error Function (HYBRID)

MF-MNFC

t (min)	qexp	qcalc	erre	or	qex-qca/qex		
	0	0	0	0	0		
	20	0 8.073	BE-07 6.	517E-13	0		
	40	0 0.000	1172 1.3	374E-08	0		
	50	0 0.000	5819 3.3	386E-07	0		
	60	0 0.00	2152 4.6	531E-06	0		
	70	0 0.00	6483 4.2	203E-05	0		
	80	0.01 0.016	7406 4.	544E-05	0.0045436	HYBRID	0.11171

100	0.09 0.0779599 0.000145 0.0016107
115	0.21 0.1874589 0.0005081 0.0024195
130	0.36 0.3575388 6.058E-06 1.683E-05
140	0.46 0.4865506 0.0007049 0.0015325
165	0.72 0.7551431 0.001235 0.0017153
180	0.88 0.8520989 0.0007785 0.0008846
185	0.9 0.875222 0.0006139 0.0006822
	0.004084 0.0134052

Summary of Dose-Response model parameters for Co (II) ion adsorption Dose-Response parameter at Bed height of 4 cm.

Error fund	eta	N0 (mg/g)Objective function			
SSE	3.407796	20143.28	0.0022		
HYB	4.067372	20324.25	0.3194		
MPSD	5.00924	19957.85	13.05806		
ARE	3.7701	201731.6	1.005		
SAE	3.271478	20055.53	0.1171		
R2	3.407796	20143.28	0.9989		

Dose-Response parameter at Bed height of 8 cm.

Dooc recopo	nee parameter at bearinging of 6 cm.
Error functa	N0 (mg/g)Objective function
SSE	5.8836 19802.54 0.0038
HYB	7.0298 198881.4 0.203
MPSD	8.5187 19390.87 11.34975
ARE	5.7901 19855.2 0.6251
SAE	5.7694 19689.27 0.1529
R2	5.8838 19802.4 0.9984

Dose-Response parameter at Bed height of 12 cm.

Error functa N0 (mg/a) Objective function

Little ratio	iu	110 (1119/9)	Objective
SSE	11.7618	21020.97	0.000398
HYB	11.76615	21015.94	0.0097
MPSD	12.2412	20947.14	3.3859
ARE	11.7666	21064	0.0739
SAE	11.74323	20994.79	0.0593
R2	11.7618	21020.97	0.9999

Error functa N0 (mg/g)Objective function

SSE 6.925938 24068.91 0.000923 HYB 7.428059 24173.54 0.049168 MPSD 8.130612 24076.61 4.704628 ARE 7.428059 24173.54 0.0198 SAE 7.079413 24117.04 0.080379 R2 6.925938 24068.91 0.9997

Dose-Response parameter for flow rate of 12 mL/min

Error functa N0 (mg/g)Objective function

SSE 2.644496 12377.18 0.0064 HYB 2.9819 12493.8 0.2846 MPSD 3.3375 12200.99 8.8283 ARE 2.9819 12493.8 0.1793 SAE 2.644496 12377.18 0.199902 R2 2.644496 12377.18 0.9948

Dose-Response parameter at 50 mg/L initial concentration

Error functa N0 (mg/g)Objective function

SSE 3.967452 20251.86 0.000737 HYB 4.297918 20383.56 0.071266 MPSD 4.885213 19825.05 10.76664 ARE 4.297918 20383.56 0.0341 SAE 3.967452 20251.86 0.078486 R2 3.967452 20251.86 0.9997

Dose-Response parameter at 150 mg/L initial concentration

Error functa N0 (mg/g)Objective function

SSE 3.34661 11897.86 0.005604 HYB 3.884972 12084.72 0.493966 MPSD 4.698874 11698.7 17.99182 ARE 3.884972 12084.72 0.0897 SAE 3.542155 11957.14 0.179671 R2 3.34661 11897.86 0.9961

Dose-Response parameter for C-MNFC

Error functa N0 (mg/g)Objective function

 SSE
 5.077443 28167.83 0.002617

 HYB
 5.818663 28370.4 0.39758

 MPSD
 7.206709 27715.91 20.54101

 ARE
 5.818663 28370.4 0.0994

SAE 5.04172 28337.44 0.154148 R2 5.077443 28167.83 0.9987

Dose-Response parameter for MF-MNFC

Error funct	α	N0 (mg/g)	Objective fund	tion
SSE	7.1204	42375.23	0.004	
HYB	7.1821	42315.86	0.1117	
MPSD	8.150201	41525.19	10.95134	
ARE	7.1821	42315.86	0.1097	
SAE	6.8379	42423.6	0.1637	
R2	7.120381	42375.23	0.9974	

α	3.4077957
q0	20143.275

m	4
Q	8
C0	100
V	0.2887
n	14

$$\begin{array}{ll} \alpha & 3.2714779 \\ q0 & 20055.526 \end{array}$$

α	5.0092402
q0	19657.851

m	4
Q	8
C0	100
V	0.2887
n	14

$$\begin{array}{ll} \alpha & \quad \ \, 4.0673725 \\ q0 & \quad \ \, 20324.248 \end{array}$$

α	5.8835547
q0	19802.54

m	8
Q	8
C0	100
V	0.2887
n	18

$$\begin{array}{ccc} \alpha & & 5.7694003 \\ q0 & & 19689.268 \end{array}$$

α	8.5186709
q0	19390.866
R^2	0.7533216
m	8
Q	8
C0	100
٧	0.2887

α	7.0298429
αN	10881 352

m	8
Q	8
C0	100
٧	0.2887

α	11.761802
q0	21020.969

m	12
Q	8
C0	100
V	0.2887
n	23

α	11.743232
q0	20994.791
R^2	0.9921826
m	12
Q	8
C0	100
٧	0.2887

α	11.766155
q0	21015.94
R^2	0.803658
m	12
Q	8
C0	100
V	0.2887
n	23

 $\begin{array}{ccc} \alpha & & 12.2412 \\ q0 & & 20947.143 \end{array}$

m 12 Q 8 C0 100 v 0.2887 n 23

α	6.9259379
q0	24068.914

m	4
Q	4
C0	100
٧	0.1443
n	18

$$\begin{array}{ccc} \alpha & & 7.0794131 \\ q0 & & 24117.035 \end{array}$$

α 8.1306117 q0 24076.605

m 4 Q 4 C0 100 v 0.1443 n 18

 $\begin{array}{ccc} \alpha & & 7.4280592 \\ q0 & & 24173.54 \end{array}$

 $\begin{array}{ccc} m & & 4 \\ Q & & 4 \end{array}$

C0	100
V	0.1443
n	18

α	2.6444962
q0	12377.18

m	4
Q	12
C0	100
V	0.4332
n	9

α	3.3374498
q0	12200.987

m	4
Q	12
C0	100
V	0.4332
n	9

$$\begin{array}{ll} \alpha & 2.9819158 \\ q0 & 12493.797 \end{array}$$

0.2845384

m	4
Q	12
C0	100
٧	0.4332

α q0	3.9674517 20251.858
R^2	#DIV/0!
m	4
Q	8
C0	50
٧	0.2887
n	17

α	3.9674517
q0	20251.858

 $\begin{array}{ccc} \alpha & & 4.8852132 \\ q0 & & 19825.053 \end{array}$

m 4 Q 8 C0 50 v 0.2887 n 17

 $\begin{array}{ccc} \alpha & & 4.2979181 \\ q0 & & 20383.562 \end{array}$

0.0712657

m 4 Q 8

C0	50
V	0.2887
n	17

α	3.3466101
q0	11897.86

α 3.5421545q0 11967.145

0.1796709

m 4 Q 8

C0	150
V	0.2887
n	10

α 4.6988741q0 11698.698

1.3326758

m 4 Q 8 C0 150 v 0.2887 n 10

α 3.884972q0 12084.716

0.4939664

m 4 Q 8 C0 150 v 0.2887 n 10

α	5.077443
q0	28167.832

m	4
Q	12
C0	100
V	0.4332
n	14

α	5.0417198
0p	28337.436

m	4
Q	12
C0	100
V	0.4332
n	14

α	7.2067095
a0	27715.912

m	4
Q	12
C0	100
V	0.4332
n	14

α	5.8186629
q0	28370.948

R^2 0.8383016

m 4 Q 12 C0 100 v 0.4332

α	7.1203806
q0	42375.227

m	4
Q	12
C0	100
V	0.4332
n	14

 $\begin{array}{ccc} \alpha & & 6.8379117 \\ q0 & & 42423.6 \end{array}$

R^2 0.9726322

m	4
Q	12
C0	100
V	0.4332
n	14

α	8.1502014
q0	41525.19

$$\begin{array}{ll} \alpha & \quad \ \, 7.1821171 \\ q0 & \quad \ \, 42315.858 \end{array}$$

R^2 0.6953452

m	4
Q	12
C0	100
V	0.4332
n	14