

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS INGENIERÍA EN COMPUTACIÓN

PERÍODO ACADÉMICO: 2025-A

ASIGNATURA: ICCD412 Métodos Numéricos GRUPO: GR2

TIPO DE INSTRUMENTO: Práctica 3

FECHA DE ENTREGA LÍMITE: 04/05/2025

ALUMNO: Murillo Tobar Juan

TEMA

Método de la bisección

OBJETIVOS

- Comprender la utilidad del método de bisección para la búsqueda de ceros(soluciones) dentro de un intervalo en donde la función es continua.
- Practicar mediante la resolución de ejercicios aplicados el método de bisección.

MARCO TEÓRICO

Confinamiento de una raíz

Dentro del método de bisección, uno de los pasos importantes es el confinamiento de la raíz. Como se menciona en [1], el confinamiento se encarga de encontrar un intervalo [a, b] que cumpla con un teorema del valor intermedio. Dicho teorema se resume a que

si se tiene una funcion f que es continua en el intervalo [a, b] y que satisface f(a)(b) < 0. Entonces existe una raíz r dentro de dicho intervalo.

DESARROLLO

EJERCICIOS APLICADOS

1. Un abrevadero de longitud L tiene una sección transversal en forma de semicírculo con radio r. (Consulte la figura adjunta.) Cuando se llena con agua hasta una distancia h a partir de la parte superior, el volumen V de

Suponga que L = 10 cm, r = 1 cm y $V = 12.4 \text{ cm}^3$. Encuentre la profundidad del agua en el abrevadero dentro de 0.01 cm.

Primero obtenemos la función $f = 5\pi - 10 \arcsin(x) - 10x\sqrt{1-x^2} - 12,4$.

Ademas este problema confinamos el intervalo a [0, 1] porque el radio es de 1cm y la tolerancia es de 10^{-2}

a	b	р	f(a)	f(b)	f(p)	E_{est}
0	1	0.5	3,30796	-12,4	-6,25815	0,5
0	0.5	0.25	3,30796	-6,25815	-1,63945	$0,\!25$
0	0.25	0.125	3,30796	-1,63945	0,814489	0,125
0.125	0.25	0.1875	0,814489	-1,63945	-0,419947	0,0625
0.125	0.1875	0.15625	0,814489	-0,419947	0,195726	0,03125
0.15625	0.1875	0.171875	0,195726	-0,419947	-0,112536	0,015625

Por lo tanto la profundidad estaría dada por $h \approx 0.171875$ cm.

Un objeto que cae verticalmente a través del aire está sujeto a una resistencia viscosa, así como a la fuerza de gravedad. Suponga que un objeto con masa m cae desde una altura s_0 y que la altura del objeto después de t segundos es

$$s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}(1 - e^{-kt/m}),$$

 $s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}\left(1 - e^{-kt/m}\right),$ donde $g = 9.81 \ \frac{m}{s^2}$ y k representa el coeficiente de la resistencia del aire en $\frac{Ns}{m}$. Suponga $s_0 = 300 \ m$, $m=0.25~kg~{\rm y}~k=0.1^{NS}/m$. Encuentre, dentro de 0.01~segundos, el tiempo que tarda un cuarto de kg en golpear el piso.

Para empezar a delimitar sabemos que el tiempo empieza desde 0, asi que evaluamos valores al azar hasta obtener uno positivo y uno negativo. la función $f = 300 - \frac{981}{40}x +$ $\frac{981}{16} \left(1 - e^{\frac{-2}{5}x} \right) - 0.$

Al final s(t) es 0 porque debe llegar al suelo, y el intervalo será entre [14, 15]

a	b	р	f(a)	f(b)	f(p)	E_{est}
14	15	14.5	17,7358	-6,71448	5,51437	0,5
14.5	15	14.75	5,51437	-6,25815	-0,599212	0,25
14.5	14.75	14.625	5,51437	-0,599212	2,45780	0,125
14.625	14.75	14.6875	2,45780	-0,599212	0,929348	0,0625
14.6875	14.75	14.7188	0,929348	-0,599212	0,163858	0,03125
14.7188	14.75	14.7344	0,163858	-0,599212	-0,217674	0,0156

Por lo tanto el tiempo cuando llegue al suelo estaría dado por $t\approx 14{,}7344$ s.

1. Use el teorema 2.1 para encontrar una cota para el número de iteraciones necesarias para lograr una aproximación con precisión de 10^{-4} para la solución de $x^3 - x - 1 = 0$ que se encuentra dentro del intervalo [1,2]. Encuentre una aproximación para la raíz con este grado de precisión.

Como sabemos que $\frac{b-a}{2^n}<10^{-4}$ entonces deducimos que:

$$\frac{1}{2^n} < 10^{-4}$$

$$2^{-n} < 10^{-4}$$

$$\log(2^{-n}) < \log(10^{-4})$$

$$-n\log(2) < -4 \times \log(10)$$

$$-n < -4 \times \frac{1}{\log(2)}$$

$$n > \frac{4}{\log(2)}$$

Por lo tanto n > 13,2877 o $n \approx 14$.

a	b	р	f(a)	f(b)	f(p)	E_{est}
1	2	1.5	-1	5	0,875	0,5
1	1.5	1.25	-1	0,875	-0,296875	0,25
1.25	1.5	1.375	-0,296875	0,875	0,224609	0,125
1.25	1.375	1.3125	-0,296875	0,224609	-0,0515136	0,0625
1.3125	1.375	1.34375	-0,0515136	0,224609	0,0826111	0,03125
1.3125	1.34375	1.32813	-0,0515136	0,0826111	0,0145974	0,015625
1.3125	1.32813	1.32032	-0,0515136	0,0145974	-0.0186789	$7,815*10^{-3}$
1.32032	1.32813	1.32423	-0,0186789	0,0145974	$-2,08001*10^{-3}$	$3,905*10^{-3}$
1.32423	1.32813	1.32618	$-2,08001*10^{-3}$	0,0145974	$6,24357 * 10^{-3}$	$1,95*10^{-3}$
1.32423	1.32618	1.32521	$-2,08001*10^{-3}$	$6,24357 * 10^{-3}$	$2,09934*10^{-3}$	$9,75*10^{-4}$
1.32423	1.32521	1.32472	$-2,08001*10^{-3}$	$2,09934*10^{-3}$	$8,71162*10^{-6}$	$4.9 * 10^{-4}$
1.32423	1.32472	1.32448	$-2,08001*10^{-3}$	$8,71162*10^{-6}$	$-1,01458*10^{-3}$	$2,45*10^{-4}$
1.32448	1.32472	1.3246	$-1,01458 * 10^{-3}$	$8,19138*10^{-4}$	$-5,02989*10^{-4}$	$1,2*10^{-4}$

La aproximación es 1.3246.

La función definida por $f(x) = \sin \pi x$ tiene ceros en cada entero. Muestre cuando -1 < a < 0 y 2 < b < 13, el método de bisección converge a

a. 0, si a + b < 2

b. 2, si a + b > 2 c. 1, si a + b = 2

a)

Tendrías el intervalo $(-1, 0) \cup (-2, 3)$. En este caso si convergería porque tenemos varias raíces dentro como el 0. En este caso debería darse que la parte decimal de a sea mayor a la de b, es decir

$$a < 2 - b$$

b)

Tendrías el intervalo $(-1, 0) \cup (-2, 3)$. En este caso si convergería porque tenemos varias raíces dentro como el 2. En este caso debería darse que la parte decimal de b sea mayor a la de a, es decir

$$a > 2 - b$$

c)

Tomamos un ejemplo como a=-0.5 y b=2.5, es decir el valor decimal de a debe ser igual al de b para que converja en esta situación.

$$2 - b = a$$

CONCLUSIONES

- El método de bisección nos permite encontrar valores aproximados a incógnitas envueltas en ecuaciones sumamente difíciles de despejar.
- Al realizar los ejercicios se logro relacionar problemas de la vida real con el método de bisección.

RECOMENDACIONES

• El confinamiento de la raíz es fundamental para la aplicación del método de bisección. Nos podría ahorrar algunos cálculos.

REFERENCIAS

[1] T. Sauer and J. E. M. Murrieta, $Análisis\ num{\'e}rico.$ Pearson Educación México, 2013.