

## Designnotat

Tittel: Op-AMP

Forfattere: Eirik Mathias Silnes

Versjon: 1.0 Dato: 2. oktober 2023

## Innhold

| 3 Realisering 4 Konklusjon 5 Takk Referanser | 1  | Problembeskrivelse       | 2 |
|----------------------------------------------|----|--------------------------|---|
| 4 Konklusjon  5 Takk  Referanser             | 2  | Prinsipiell løsning      | 3 |
| 5 Takk 4 Referanser                          | 3  | Realisering              | 4 |
| Referanser                                   | 4  | Konklusjon               | 4 |
|                                              | 5  | Takk                     | 4 |
| A Fullstendige utregninger                   | Re | Referanser               |   |
|                                              | A  | Fullstendige utregninger | 6 |

## 1 Problembeskrivelse

I dette designnotatet skal det designes en operasjonsforsterker på transistor nivå. En ideell operasjonsforsterkar har følgene egenskaper og modell som vist i fig 1.

- Inngangsimpedansen til  $R_i = \infty$
- Utgangsimpedansen til  $R_o = 0$
- Utgangen er gitt som

$$V_{out} = f(V_{+} - V_{-}) = \begin{cases} min\{V, A(v^{+} - v^{-})\} & for \ v^{+} - v^{-} > 0\\ max\{V, A(v^{+} - v^{-})\} & for \ v^{+} - v^{-} < 0 \end{cases}$$
(1)

Spesielt i dette designnotatet skal de følgene egenskapene undersøkest nærmere:

- forsterkningen A ved sinuspåtrykk med frkvens f = 1kHz og
- Total harmonisk distorsjon (THD) ved sinuspåtrykk med frekvens f = 1kHz

De to pungtene skal undersøkest med to forskjellige lastmotstander  $R_L = 100k\Omega$  og  $R_L = 100\Omega$ . Det skal også undersøkest hvor godt kretsløsningen virker som en opamp i en inverterende forsterker med forsterkning A = -10 og  $R_L = 1k\Omega$ . Sammenlign dette med ved både åpen løkke forsterkning og negativ tilbakekobling.



Figur 1: Ideell opamp modell

2 Prinsipiell løsning

- 3 Realisering
- 4 Konklusjon
- 5 Takk

## Referanser

- $[1]\,$  L. Lundheim, Design prosjekt~6, Institutt for elektronisk systemdesign NTNU 2023.
- [2] P. Horowitz, W. Hill, *The Art of Electronics*, Cambridge University Press, 3. utgave, 2016.

A Fullstendige utregninger