Девяткин Арсений Р3115

Домашнее задание №4.

Планаризация графа

Вариант 156.

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0				4	3	4	4		3	4	
e2		0		2	1	4	3	2	3	2		
e3			0	5	2	1		4			3	5
e4		2	5	0	2	5	4			5		
e5	4	1	2	2	0				2			1
e6	3	4	1	5		0		4	2	2		
e7	4	3		4			0	1			1	
e8	4	2	4			4	1	0		3		
e9		3			2	2			0	2		
e10	3	2		5		2		3	2	0	3	
e11	4		3				1			3	0	1
e12			5		1						1	0

Нахождение Гамильтонова цикла:

```
S={e1}

S={e1,e5}

S={e1,e5,e2}

S={e1,e5,e2,e4}

S={e1,e5,e2,e4,e3}

S={e1,e5,e2,e4,e3,e12}

S={e1,e5,e2,e4,e3,e12,e11}

S={e1,e5,e2,e4,e3,e12,e11,e7}

S={e1,e5,e2,e4,e3,e12,e11,e7,e8}

S={e1,e5,e2,e4,e3,e12,e11,e7,e8,e6}
```

S={e1,e5,e2,e4,e3,e12,e11,e7,e8,e6,e9}

S={e1,e5,e2,e4,e3,e12,e11,e7,e8,e6,e9,e10}

Гамильтонов цикл найден. Ребро e10 – e1 существует.

Матрица смежности с перенумерованными вершинами

0	1	0	0	0	0	1	1	1	1	0	1
1	0	1	1	1	1	0	0	0	0	1	0
0	1	0	1	0	0	0	1	1	1	1	1
0	1	1	0	1	0	0	1	0	1	0	1
0	1	0	1	0	1	1	0	1	1	0	0
0	1	0	0	1	0	1	0	0	0	0	0
1	0	0	0	1	1	0	1	0	0	0	1
1	0	1	1	0	0	1	0	1	0	0	0
1	0	1	0	1	0	0	1	0	1	0	1
1	0	1	1	1	0	0	0	1	0	1	1
0	1	1	0	0	0	0	0	0	1	0	1
1	0	1	1	0	0	1	0	1	1	1	0

 после перенумерации x1 x2 x3 x4 x5 x6
 x7
 x8 x9 x10 x11 x12

 до перенумерации
 x5 x2 x4 x3 x12 x11 x7 x8 x6
 x9
 x10

Построение графа пересечений

	e1 7	e2 11	e1 8	e1 9	e1 10	e3 12	e2 4	e2 5	e2 6	e3 11	e3 10	e3 9	e3 8	e4 12	e4 10
e1 7	1	1	0	0	0	1	0	0	0	1	1	1	1	1	1
e2 11	1	1	1	1	1	1	0	0	0	0	0	0	0	1	0
e18	0	1	1	0	0	1	0	0	0	1	1	1	0	1	1
e1 9	0	1	0	1	0	1	0	0	0	1	1	0	0	1	1
e1 10	0	1	0	0	1	1	0	0	0	1	0	0	0	1	0
e3 12	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
e2 4	0	0	0	0	0	1	1	0	0	1	1	1	1	0	0

e2 5	0	0	0	0	0	1	0	1	0	1	1	1	1	1	1
e2 6	0	0	0	0	0	1	0	0	1	1	1	1	1	1	1
e3 11	1	0	1	1	1	0	1	1	1	1	0	0	0	1	0
e3 10	1	0	1	1	0	0	1	1	1	0	1	0	0	1	0
e3 9	1	0	1	0	0	0	1	1	1	0	0	1	0	1	1
e3 8	1	0	0	0	0	0	1	1	1	0	0	0	1	1	1
e4 12	1	1	1	1	1	0	0	1	1	1	1	1	1	1	0
e4 10	1	0	1	1	0	0	0	1	1	0	0	1	1	0	1

Построение семейства ψ_G

 M_{13} =111001000111111

 $M_{134} = 1111010001111111$

 $M_{1345} = 11111110001111111$

 $M_{13457} = 1111111100111111$

 M_{134578} =1111111110111111

 $M_{1345789}=1111111111111111$

 $\psi_1 = \{e_1 7, e_1 8, e_1 9, e_1 10, e_2 4, e_2 5, e_2 6\}$

 $M_{13458} = 1111110101111111$

 $M_{13459} = 1111110011111111$

 $M_{1\,3\,4\,7}{=}\,111101100111111$

 $M_{1348} = 1111010101111111$

 $M_{1349} = 1111010011111111$

 $M_{135} = 1110110001111111$

 $M_{137} = 111001100111111$

 $M_{138} = 1110010101111111$

 $M_{139} = 1110010011111111$

 $M_1 = 110101000111111$

 $M_{15} = 1100110001111111$

 $M_1 7 = 1100011001111111$

 $M_{18} = 1100010101111111$

 $M_{19} = 1100010011111111$

M₂ 7= 1111111001111110

 $M_{278} = 1111111111111111111$

 $M_{2789} = 11111111111111111$

 $\psi_2 = \{e_2 \, 11, e_2 \, 4, e_2 \, 5, e_2 \, 6\}$

 $M_{279} = 11111111011111111$

 $M_{2715} = 11111111111111111$

 $\psi_3 = \{e_2 \, 11, e_2 \, 4, e_4 \, 10\}$

 $M_{28} = 11111110101111111$

M₂ 9= 111111001111111

 $M_{2 10} = 1111111111100010$

 $M_{2 10 11} = 11111111111110010$

M₂ 10 11 12= 11111111111111111

M₂ 10 11 12 13= 1111111111111111

ψ4={e2 11,e3 11,e3 10,e3 9,e3 8}

 $M_{2\ 10\ 11\ 13}$ = 1111111111111111111

M2 10 11 15= 1111111111111111 ψ 5={e2 11,e3 11,e3 10,e4 10}

M₂ 10 12= 1111111111101011

M₂ 10 13= 1111111111100111

M₂ 10 15= 1111111111111111111

M_{2 11}= 1111111111010010

M₂ 12= 1111111111001011

M₂ 13= 1111111111000111

M₂ 15= 111111011001111

 $M_3 = 011101000111011$

 $M_{345} = 0111111000111011$

 $M_{3457} = 011111100111111$

M₃ 4 5 8= 011111010111111

 $M_{3459} = 0111110011111111$

M₃ 4 5 ₁₃= 11111111111111111

 $\psi_6 = \{e_1 \text{ 8,e1 9,e1 10,e3 8}\}$

 $M_{347} = 011101100111111$

 $M_{348} = 0111010101111111$

 $M_{349} = 0111010011111111$

M₃ 4₁₃= 111101111111111

M₃ 5= 011011000111011

 $M_{37} = 011001100111111$

M₃ 8= 011001010111111

 $M_3 = 0110010011111111$

M₃ ₁₃= 1110011111111111

 $M_{4} = 010111000110011$

 $M_{457} = 010111100111111$

 $M_{458} = 0101110101111111$

 $M_{459} = 010111001111111$

 $M_{451213} = 11111111111111111$

 $\psi_7 = \{e_1 , e_1 , e_3 , e_3 , e_3 \}$

 $M_{47} = 010101100111111$

M₄ 8= 010101010111111

 $M_{4} = 0101010011111111$

M₄ 13= 1101011111110111

 $M_{57} = 0100111001111110$

M5 7 8= 010011110111111

 $M_{579} = 0100111011111111$

M5 7 15= 111111111111111111

ψ8={e1 10,e2 4,e4 10}

 $M_5 = 0100110101111111$

M₅ 9= 010011001111111

 $M_{511} = 11111111111110010$

M5 11 12 13= 11111111111111111

 $\psi_9 = \{e_1 10, e_3 10, e_3 9, e_3 8\}$

M5 11 15= 11111111111111111

ψ10={e1 10,e3 10,e4 10}

M₅ 12= 1110111111101011

M₅ 13= 110011111100111

M₅ 15= 111111011101111

M6 10= 1111111111100010

M6 10 11= 1111111111110010

M6 10 11 12= 111111111111111111

M6 10 11 12 13= 11111111111111111

 $\psi_{11}=\{e_{3} 12,e_{3} 11,e_{3} 10,e_{3} 9,e_{3} 8\}$

M6 10 11 13= 111111111111111111

M6 10 11 15= 1111111111111111

M6 10 12= 1111111111101011

 $M_{6\ 10\ 13}$ = 11111111111100111

 $M_{6\ 10\ 15}$ = 1111111111111111111

 $M_{6 11} = 111111111111010010$

 $M_{612} = 11111111111001011$

M6 13= 1111111111000111

M₆ 1₄= 1111111111111110

M6 14 15= 1111111111111111111

ψ13={e3 12,e4 12,e4 10}

M₆ 15= 1111111111001101

M₇ 8= 000001110111111

$$\begin{array}{l} \text{M7 9= 000001101111111} \\ \text{M7 14= 11111111111111} \\ \text{M7 14 15= 11111111111111} \\ \psi_{14=\{e_{2}\,4,e_{4}\,12,e_{4}\,10\}} \end{array}$$

Семейство максимальных внутрение устойчивых множеств ψ_G построено. Это: $\psi_1 = \{e_1, e_1, e_1, e_2, e_4, e_2, e_5, e_2, e_5\}$ $\psi_2 = \{e_2 \, 11, e_2 \, 4, e_2 \, 5, e_2 \, 6\}$ $\psi_3 = \{e_2 \, 11, e_2 \, 4, e_4 \, 10\}$ $\psi_4 = \{e_2 \, 11, e_3 \, 11, e_3 \, 10, e_3 \, 9, e_3 \, 8\}$ $\psi_5 = \{e_2 11, e_3 11, e_3 10, e_4 10\}$ $\psi_6 = \{e_1 \text{ 8,e1 9,e1 10,e3 8}\}$ ψ 7={e1 9,e1 10,e3 9,e3 8} ψ 8={e1 10,e2 4,e4 10} $\psi_9 = \{e_1 \ 10, e_3 \ 10, e_3 \ 9, e_3 \ 8\}$ $\psi_{10} = \{e_{1}, e_{3}, e_{4}, e_{4}, e_{10}\}$ $\psi_{11}=\{e_{3} 12,e_{3} 11,e_{3} 10,e_{3} 9,e_{3} 8\}$ $\psi_{12}=\{e_{3}, e_{3}, e_{3}, e_{4}, e_{10}\}$ $\psi_{13}=\{e_{3} 12,e_{4} 12,e_{4} 10\}$ $\psi_{14}=\{e_{24,e_{412,e_{410}}}\}$ $\psi_{15}=\{e_{26}\}$

Выделение из G' максимального двудольного подграфа Н'

-	8	9	12	11	8	9	8	10	9	12	11	10	9	7
-	-	5	8	7	8	8	6	8	7	9	8	7	6	4
-	-	-	7	5	7	7	4	7	5	8	6	5	4	4
-	-	-	-	6	8	7	8	6	7	6	7	8	8	6
-	-	-	-	-	8	8	6	7	5	7	5	6	6	5
-	-	-	-	-	-	5	6	6	6	8	8	7	7	5
-	-	-	-	-	-	-	6	5	6	7	8	7	7	5
-	-	-	-	-	-	-	-	6	4	8	6	5	4	4
_	-	-	-	-	-	_	-	-	5	6	7	7	7	5
_	-	-	-	-	-	-	-	-	-	7	5	5	5	4
-	-	-	-	-	-	-	-	-	-	-	6	7	8	6
_	-	-	-	-	-	_	-	-	-	-	-	5	6	5
-	-	-	-	-	-	-	-	-	-	-	-	-	4	4
-	-	-	-	-	-	-	-	-	-	-	-	-	-	4

Значение 12 даёт множество ψ 1, ψ 11

 $\psi_1 = \{e_1 7, e_1 8, e_1 9, e_1 10, e_2 4, e_2 5, e_2 6\}$

 $\psi_{11}=\{e_{3}, e_{3}, e_{3},$

В суграфе H, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в $\psi 1$, проводим внутри гамильтонова цикла, а в $\psi 11$ — вне его:

Удалим из **ψ**G реализованные ребра :

```
    \psi_{1} = \{ \}

    \psi_{2} = \{ e_{2} 11 \}

    \psi_{3} = \{ e_{2} 11, e_{4} 10 \}

    \psi_{4} = \{ e_{2} 11 \}

    \psi_{5} = \{ e_{2} 11, e_{4} 10 \}

    \psi_{6} = \{ \}

    \psi_{7} = \{ \}
```

$$\psi 8 = \{e4 10\}$$

$$\psi 9 = \{\}$$

$$\psi 10 = \{e4 10\}$$

$$\psi 11 = \{\}$$

$$\psi 12 = \{e4 10\}$$

$$\psi 13 = \{e4 12, e4 10\}$$

$$\psi 14 = \{e4 12, e4 10\}$$

$$\psi 15 = \{\}$$

Нереализованными остались ребра е2 11, е4 10, е4 12. Проведём их:

Все ребра реализованы.