

Advanced Computer Vision

Практический курс

Обучить нейронную сеть Teacher с двумя скрытыми слоями в 1200 нейронов на MNIST (ориентируйтесь на точность 96-97%)

Обучить нейронную сеть Student с двумя скрытыми слоями в 600 нейронов на MNIST (ориентируйтесь на точность 93%)

Данные точности получены с препроцессингом, который состоит только из нормализации со средним 0.5 и стандартным отклонением 0.5, а так при обучении обеих сетей HE использовалась регуляризация с помощью dropout и weight decay.

Реализовать целевую функцию из лекции по Knowledge Distillation:

$$L = L_{cls} + \lambda T^2 C = -\sum_{k=1}^{N} t^{(k)} \log \tilde{q}_k - \lambda T^2 \sum_{k=1}^{N} p_k \log q_k$$

$$\tilde{\mathbf{q}} = Softmax(\mathbf{z}) \qquad \mathbf{q} = Softmax_T(\mathbf{z}, T)$$

Свой градиент писать НЕ нужно!

Используйте уже обученную сеть Teacher, чтобы использовать ее предсказания в целевой функции.
Ориентируйтесь на описание обучения на MNIST в статье:

https://arxiv.org/pdf/1503.02531.pdf

В ходе экспериментов подберите параметры ѝ и ⊤так, чтобы точность сети Student2.0 стала выше и приблизилась к точности сети Teacher (ориентир 96%). Если точность при обучении не растет или даже падает, то параметры подобраны неверно.

Дополнительное задание

Посчитайте количество ошибок на классе «3» для сети Student2.0.

Опираясь на эксперименты статьи, исключите класс «3» из обучающей выборки, и обучите сеть Student2.0(-3).

Посчитайте количество ошибок на классе «3» для сети Student2.0(-3).

Увеличьте bias для последнего полносвязного слоя у выхода, соответствующего классу «3». Увеличьте его так, чтобы это не приводило к неправильной классификации других классов.

Посчитайте количество ошибок на классе «3» для сети Student2.0(-3). Количество ошибок должно уменьшиться и приблизиться к количеству ошибок сети Student2.0.

Дедлайн 20.12.2020 03:00