

Vv186 Recitation

Week 10

By Yahoo

Outline

- Vector space
- Sequences of Functions
- Series

Vector space

Vector space

- 1. $V = \{(x,y) \in \mathbb{R}^2 : x = y\}$
- 2. $V = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_i \in \mathbb{R}\}$
- **3.** $C^{\infty}(\Omega, \mathbb{R}) = C^{\infty}(\Omega) = \{f : \Omega \to \mathbb{R} : f \in C^k(\Omega, \mathbb{R}) \text{ for all } k \in \mathbb{N}\}$
- 4. The set of all sequences converging to 0.
- 5. $V=\{(x_1, x_2) \in \mathbb{R}^2 : x_1 < 0\}$

Definition

- 1. V is any set;
- 2. $+: V \times V \to V$ is a map (called addition) with the following properties:
 - (u+v)+w=u+(v+w) for all $u,v,w\in V$ (associativity),
 - ▶ u + v = v + u for all $u, v \in V$ (commutativity),
 - ▶ there exists an element $e \in V$ such that v + e = v for all $v \in V$ (existence of a unit element),
 - ▶ for every $v \in V$ there exists an element $-v \in V$ such that v + (-v) = e;
- 3. \cdot : $\mathbb{R} \times V \to V$ is a map (called scalar multiplication) with the following properties:
 - $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$ for all $\lambda \in \mathbb{R}$, $u, v \in V$,
 - $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$ for all $\lambda, \mu \in \mathbb{R}, u \in V$,
 - ▶ $(\lambda \mu) \cdot u = \lambda \cdot (\mu \cdot u)$ for all $\lambda, \mu \in \mathbb{R}$, $u \in V$.

Subspace

Suppose V={ $(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_i \in \mathbb{R}$ }

- 1. $V_1 = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_1 = 0\}$
- 2. $V_2 = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_1 = 1\}$

Q: Are V_1 and V_2 subspaces of vector space V?

Definition

Let $(V, +, \cdot)$ be a real or complex vector space. If U is a subset of V and $(U, +, \cdot)$ is also a vector space, then we say that $(U, +, \cdot)$ is a subspace of $(V, +, \cdot)$.

How to prove a subspace

- 1. By definition: Check all the properties.
- Let (V, +, ·) be a real (complex) vector space and U is a subset of V. If u1 + u2 ∈ U for u1, u2 ∈ U and λu ∈ U for all u ∈ U and λ ∈ R, then (U, +, ·) is a subspace of (V, +, ·).

Normed Vector Spaces

Let V be a real (complex) vector space. Then a map $\|\cdot\|$: V \rightarrow R is called a norm if for all u, v \in V and all $\lambda \in$ R:

- 1. $\|v\|$ 0 for all $v \in V$ and $\|v\| = 0$ if and only if v = 0
- 2. $\|\lambda \cdot \mathbf{v}\| = \|\lambda \| \cdot \|\mathbf{v}\|$,
- 3. $\|u+v\| \le \|u\|+\|v\|$.

Example

- 1. \mathbb{R}^n with $||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}$ for any $p \in \mathbb{N} \setminus \{0\}$,
- $2. \quad \mathbb{R}^n \text{ with } \|x\|_{\infty} = \max_{1 \le k \le n} |x_k|,$

Sequences of Functions

Pointwise V.S. uniform convergence

1. Pointwise convergence: Fix $x \in \Omega$, $|f_n(x)|$

Example

1.
$$f_n(x) = \sqrt{\frac{1}{(n+1)^2} + x^2}$$

2.
$$f_n(x) = \begin{cases} 1 - nx, 0 \le x \le 1/n \\ 0, & otherwise \end{cases}$$

Continuity of uniform convergent functions

Let $[a, b] \in R$ be a closed interval. Let (f_n) be a sequence of continuous functions defined on [a, b] such that $f_n(x)$ converges to some $f(x) \in R$ as $n \to 1$ for every $x \in [a, b]$. If the sequence (f_n) converges uniformly to the thereby defined function $f: [a, b] \in R$, then f is continuous.

Remark

- 1. f_n must be continuous
- 2. $f_n(x)$ must be pointwise continuous
- 3. f_n must be uniformly continuous to f

Complete vector space

A Complete vector space is a vector space in which every Cauchy sequence converges.

Example

The metric space $(C([a, b]), \varrho)$ is complete

with
$$\varrho(f,g) = \|f - g\|_{\infty} = \sup_{x \in [a,b]} |f(x) - g(x)|$$

Series

Summable series

Let (a_n) be a sequence in a normed vector space $(V, \|\cdot\|)$. Then we say that (a_n) is summable with sum $s \in V$ if

$$\lim_{n\to\infty} s_n = s,$$

$$s_n := \sum_{k=0}^n a_k$$

Cauchy Criterion

Let $\sum a_k$ be a series in a complete vector space (V, $\|\cdot\|$). Then $\sum a_k$ converges is equivalent to $\|\sum_{k=n+1}^m a_k\| < \varepsilon$

Cauchy Criterion

- 1. If the series $\sum_{k=0}^{\infty} a_k$ converges, then the sequence $a_k \to 0$ as $k \to +\infty$.
- 2. If the series $\sum_{k=0}^{\infty} a_k$ converges, then the sequence $\sum_{k=n}^{\infty} a_k \to 0$ as $n \to +\infty$.

Caution

If the sequence $a_k \to 0$ as $k \to +\infty$, the series $\sum_{k=0}^{\infty} a_k$ does not necessarily converges.

Counterexample: $a_k = 1/k$.

Absolute Convergence

A series $\sum_{k=0}^{\infty} a_k$ in a normed vector space $(V, \|\cdot\|)$ is called absolutely convergent if $\sum_{k=0}^{\infty} \|a_k\|$ converges.

An absolutely convergent series $\sum_{k=0}^{\infty} a_k$ in a complete vector space (V, $\|\cdot\|$) is convergent.

Example

Show that
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k^2}$$
 converges.

Hint:
$$\sum_{k=0}^{\infty} \left| \frac{(-1)^k}{k^2} \right|$$
 converges.

Infinite Triangle Inequality

Let $(V, \|\cdot\|)$ be a complete normed vector space and $\sum_{k=0}^{\infty} a_k$ an absolutely convergent series. Then

$$\left\| \sum_{k=0}^{\infty} a_k \right\| \le \sum_{k=0}^{\infty} \|a_k\|$$

Comment: bn \rightarrow b implies $\|bn\| \rightarrow \|b\|$.

Tests for convergent series

- 1. $0 \le a_k \le b_k$, then $\sum b_k$ converges \Rightarrow $\sum a_k$ converges
- 2. $\sqrt[k]{a_k} \le q < 1$, then $\sum a_k$ converges
- 3. $\frac{a_{k+1}}{a_k} \le q < 1$, then $\sum a_k$ converges
- 4. $\frac{a_{k+1}}{a_k} \le \frac{b_{k+1}}{b_k}$, then $\sum b_k$ converges \Rightarrow $\sum a_k$ converges

Example

- 1. $\sum \frac{n+3}{2n^3-n}$ converges : $\sum \frac{n+3}{2n^3-n} < \sum \frac{1}{n^2}$ for n>3
- 2. $\sum \frac{x^n}{n}$ absolutely converges when |x| < 1 by Root test.

Weierstrass M-test

Let Ω is a subset of R and (f_k) be a sequence of functions defined on Ω , $f_k:\Omega\to C$, satisfying $\sup_{x\in\Omega}|f_k(x)|\leq M_k$. Suppose that $\sum M_k$ converges, then the sequence (F_n) of partial sums converges uniformly to f.

$$f(x) := \sum_{k=0}^{\infty} f_k(x)$$
 $F_n(x) = \sum_{k=0}^{n} f_k(x)$

Conditionally Convergent Series

A series in a normed vector space $(V, \|\cdot\|)$ is called conditionally convergent if it is convergent, but not absolutely convergent.

Rearrangements of Terms in Series

Assume that $\sum a_k$ is an absolutely convergent series in a complete normed vector space. If the summands of the series are rearranged, the new series $\sum b_j$ converges absolutely with the same sum as $\sum a_k$.

Rearrangements of Terms in Series

Let $\sum a_k$ be a conditionally convergent series of real numbers. Then for any $a \in \mathbb{R}$ there exists a rearrangement b_j of $\sum a_k$ such that $\sum b_i = a$.

The Leibniz Theorem

Let $\sum a_k$ be a complex series whose partial sums are bounded but need not converge. Let (α_k) be a decreasing convergent sequence with limit $\alpha_k = 0$. Then the series $\sum \alpha_k a_k$ converges.

Example: $\sum_{k=0}^{\infty} \frac{(-1)^k}{k}$ converges.

Cauchy Product

Let $\sum a_k$ and $\sum b_k$ be absolutely convergent series. Then the Cauchy product $\sum c_k$ given by $c_k = \sum_{i+j=k} a_i b_j$.

Remark

Given that $\sum a_k$ and $\sum b_k$ be absolutely convergent series, then does the Cauchy product $\sum c_k$ given by $c_k = \sum_{i+j=k} a_i b_j$ converge?

Example: (Hw)

$$\sum a_k = \sum b_k = \sum \frac{(-1)^n}{\sqrt{n}}, \sum c_k = (-1)^{n+1} \sum_{i+j=n+1} \frac{1}{\sqrt{ij}}$$

Thank you for your attention!