Introduction to the Course

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant
Consultant, Quantopian

Quantopian: Business built on python for analyzing backlog of data & quantitative data strategies. Quantopian is also a community where code is shared and questions are asked/answered.

Example of Time Series: Google Trends

Example of Time Series: Climate Data

Example of Time Series: Quarterly Earnings Data

Example of Multiple Series: Natural Gas and Heating Oil

Goals of Course

- Learn about time series models
- Fit data to a times series model
- Use the models to make forecasts of the future
- Learn how to use the relevant statistical packages in Python
- Provide concrete examples of how these models are used

Many of the models and data will be applicable in the field of finance.

Some Useful Pandas Tools

Changing an index to datetime

```
df.index = pd.to_datetime(df.index)
```

Plotting data

```
df.plot()
```

Slicing data

```
df['2012']
```

Some Useful Pandas Tools

• Join two DataFrames Say, if one dataframe contains stock prices while another one contains bond prices.

```
df1.join(df2)
```

Resample data (e.g. from daily to weekly)

```
df = df.resample(rule='W', how='last')
```

More pandas Functions

• Computing percent changes and differences of a time series

```
\label{eq:df(col')} $$ df('col').pct\_change() $$ Say, if you wanted to convert prices to returns. $$ df('col').diff() $$
```

pandas correlation method of Series

```
df['ABC'].corr(df['XYZ'])
```

pandas autocorrelation

```
df['ABC'].autocorr()
```

```
# From previous step
diet.index = pd.to_datetime(diet.index)

# Slice the dataset to keep only 2012
diet2012 = diet['2012']

# Plot 2012 data
diet2012.plot(grid = True)
plt.show()
```

```
# Import pandas
import pandas as pd

# Convert the stock index and bond index into sets
set_stock_dates = set(stocks.index)
set_bond_dates = set(bonds.index)

# Take the difference between the sets and print
print(set_stock_dates - set_bond_dates)

# Merge stocks and bonds DataFrames using join()
stocks_and_bonds = stocks.join(bonds, how = 'inner')
```

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Correlation of Two Time Series

TIME SERIES ANALYSIS IN PYTHON

Rob Reider

Adjunct Professor, NYU-Courant Consultant, Quantopian

Correlation of Two Time Series

Plot of S&P500 and JPMorgan stock

Correlation of Two Time Series

Scatter plot of S&P500 and JP Morgan returns

More Scatter Plots

• Correlation = 0.9

Correlation = -0.9

• Correlation = 0.4

• Corelation = 1.0

Common Mistake: Correlation of Two Trending Series

Dow Jones Industrial Average and UFO Sightings

(www.nuforc.org)

Correlation of levels: 0.94

Example: Correlation of Large Cap and Small Cap Stocks

- Start with stock prices of SPX (large cap) and R2000 (small cap)
- First step: Compute percentage changes of both series

```
df['SPX_Ret'] = df['SPX_Prices'].pct_change()
df['R2000_Ret'] = df['R2000_Prices'].pct_change()
```

Example: Correlation of Large Cap and Small Cap Stocks

Visualize correlation with scattter plot

```
plt.scatter(df['SPX_Ret'], df['R2000_Ret'])
plt.show()
```


Example: Correlation of Large Cap and Small Cap Stocks

Use pandas correlation method for Series

```
correlation = df['SPX_Ret'].corr(df['R2000_Ret'])
print("Correlation is: ", correlation)
```

Correlation is: 0.868

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Simple Linear Regressions

TIME SERIES ANALYSIS IN PYTHON

Rob Reider
Adjunct Profes

Adjunct Professor, NYU-Courant Consultant, Quantopian

What is a Regression?

• Simple linear regression: $y_t = lpha + eta x_t + \epsilon_t$

What is a Regression?

Ordinary Least Squares (OLS)

Python Packages to Perform Regressions

In statsmodels:

```
import statsmodels.api as sm
sm.OLS(y, x).fit()
```

• In numpy:

```
np.polyfit(x, y, deg=1)
```

In pandas:

```
pd.ols(y, x)
```

• In scipy:

```
from scipy import stats
stats.linregress(x, y)
```

Warning: the order of x and y is not consistent across packages

Example: Regression of Small Cap Returns on Large Cap

• Import the statsmodels module

```
import statsmodels.api as sm
```

As before, compute percentage changes in both series

```
df['SPX_Ret'] = df['SPX_Prices'].pct_change()
df['R2000_Ret'] = df['R2000_Prices'].pct_change()
```

Add a constant to the DataFrame for the regression intercept

```
df = sm.add_constant(df)
```

Regression Example (continued)

Notice that the first row of returns is NaN

```
SPX_Price R2000_Price SPX_Ret R2000_Ret

Date
2012-11-01 1427.589966 827.849976 NaN NaN
2012-11-02 1414.199951 814.369995 -0.009379 -0.016283
```

Delete the row of NaN

```
df = df.dropna()
```

Run the regression

```
results = sm.OLS(df['R2000_Ret'],df[['const','SPX_Ret']]).fit()
print(results.summary())
```

Regression Example (continued)

Regression output

```
OLS Regression Results
Dep. Variable:
                                                                            0.753
                                         R-squared:
Model:
                                        Adj. R-squared:
                                                                            0.753
Method:
                         Least Squares F-statistic:
                                                                            3829.
                     Fri, 26 Jan 2018 Prob (F-statistic):
                                                                             0.00
Date:
                              13:29:55 Log-Likelihood:
Time:
                                                                           4882.4
No. Observations:
                                  1257 AIC:
                                                                           -9761.
Df Residuals:
                                  1255
                                         BIC:
                                                                           -9751.
Df Model:
Covariance Type:
                 coef
                                                   P>|t|
                                                               [95.0% Conf. Int.]
            -4.964e-05
                            0.000
                                       -0.353
                                                   0.724
                                                                            0.000
const
SPX Ret
               1.1412
                            0.018
                                                   0.000
                                                                 1.105
                                                                            1.177
Omnibus:
                                61.950
                                         Durbin-Watson:
                                                                            1.991
Prob(Omnibus):
                                                                          148.100
                                 0.000
                                         Jarque-Bera (JB):
                                         Prob(JB):
                                                                         6.93e-33
Skew:
                                 0.266
Kurtosis:
                                 4.595
                                         Cond. No.
                                                                             131.
```

- Intercept in results.params[0]
- Slope in results.params[1]

Regression Example (continued)

Regression output

OLS Regression Results			
Dep. Variable:	R2000_Ret	R-squared:	0.753
Model:	OLS	Adj. R-squared:	0.753
Method:	Least Squares	F-statistic:	3829.
Date:	Fri, 26 Jan 2018	Prob (F-statistic):	0.00
Time:	13:29:55	Log-Likelihood:	4882.4
No. Observations:	1257	AIC:	-9761.
Df Residuals:	1255	BIC:	-9751.
Df Model:	1		
Covariance Type:	nonrobust		
=======================================	============		
coe	f stderr	t P> t	[95.0% Conf. Int.]
const -4.964e-0	5 0.000 -	0.353 0.724	-0.000 0.000
SPX_Ret 1.141	2 0.018 6	1.877 0.000	1.105 1.177
Omnibus:	61.950	Durbin-Watson:	1.991
Prob(Omnibus):	0.000	Jarque-Bera (JB):	148.100
Skew:	0.266	Prob(JB):	6.93e-33
Kurtosis:	4.595	Cond. No.	131.

Relationship Between R-Squared and Correlation

- $[\operatorname{corr}(x,y)]^2=R^2$ (or R-squared)
- sign(corr) = sign(regression slope)
- In last example:
 - \circ R-Squared = 0.753
 - Slope is positive
 - \circ correlation = $+\sqrt{0.753}=0.868$

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

Autocorrelation

TIME SERIES ANALYSIS IN PYTHON

Rob Reider
Adjunct Professor

Adjunct Professor, NYU-Courant Consultant, Quantopian

What is Autocorrelation?

Correlation of a time series with a lagged copy of itself

Series	Lagged Series	
5		
10	5	
15	10	
20	15	
25	20	

- Lag-one autocorrelation
- Also called **serial correlation**

Interpretation of Autocorrelation

Mean Reversion - Negative autocorrelation

Interpretation of Autocorrelation

• Momentum, or Trend Following - Positive autocorrelation

Traders Use Autocorrelation to Make Money

- Individual stocks
 - Historically have negative autocorrelation
 - Measured over short horizons (days)
 - Trading strategy: Buy losers and sell winners
- Commodities and currencies
 - Historically have positive autocorrelation
 - Measured over longer horizons (months)
 - Trading strategy: Buy winners and sell losers

Example of Positive Autocorrelation: Exchange Rates

- Use daily \(\frac{\pmathbf{\frac{4}}{2}}{2}\) exchange rates in DataFrame df from FRED
- Convert index to datetime

```
# Convert index to datetime
df.index = pd.to_datetime(df.index)
# Downsample from daily to monthly data
df = df.resample(rule='M', how='last')
# Compute returns from prices
df['Return'] = df['Price'].pct_change()
# Compute autocorrelation
autocorrelation = df['Return'].autocorr()
print("The autocorrelation is: ",autocorrelation)
```

The autocorrelation is: 0.0567

Let's practice!

TIME SERIES ANALYSIS IN PYTHON

