MANTIK VE ÖNERME

DR. ZEYNEP BANU ÖZGER

- 1. Mantık
- 2. Önerme
- 3. Birleşik Önermeler
- 4. Önerme Denklikleri

MANTIK (LOGIC)

- Mantık; doğru çıkarımı elde etme çalışmasıdır.
- Mantık kuralları matematiksel ifadelerin anlamını belirtir.
 - Örneğin: Her n pozitif tamsayısı için, n'yi aşmayan pozitif tamsayıların toplamı n*(n + 1) / 2' dir
- Mantık; tüm matematiksel ve otomatik akıl yürütmenin temelidir.
- Mantık kuralları matematiksel ifadelere kesin bir anlam vermektedir.
 - Bu kurallar, geçerli ve geçersiz matematiksel bağımsız değişkenleri ayırt etmek için kullanılır.
- Mantığın bilgisayar biliminde çok sayıda uygulaması vardır.
 - Bilgisayar devrelerinin tasarımı
 - Bilgisayar programlarının yapımı
 - Programların doğruluğunun doğrulanması gibi

ÖNERME (PROPOSITIONS)

- Önerme; Sonucu doğru (true/1) veya yanlış (false/0) olan ifadelere denir.
- Mantık önermelerin doğruluğunu kanıtlamak için kullanılır.
- Mantık; önermenin ne olduğu ile ilgilenmek yerine bazı kurallar koyar ve önermenin genel formunun geçerli olup olmadığını sınar.
- Örnek;
 - Ay dünyanın çevresinde döner.
 - Filler uçabilir.
 - 3+8=11
- Beyan edici olmayan cümleler önerme değildir.
 - Saat kaç? Önerme değil, günkü öneri değil

 - X+1=2 > Önerme değil, günkü x'in değerine göre veya yanlıştır.

Önerme Değişkenleri

- Önermeler i göstermek için p, q, r, s gibi küçük harfler kullanılır.
- Bir önermenin sonucu doğru ise T/D, yanlış ise F/Y olarak ifade edilir.
- Önermelerle ilgilenen mantık alanına önerme mantığı (propositional logic) denir.
- Örnek:
 - p=Ay dünyanın çevresinde dönebilir.
- Bir önermenin sonucuna doğruluk değeri (truth value) denir.
- Önermenin doğruluk değerini göstermek için denklik işareti (≡) kullanılır.

BİRLEŞİK ÖNERME

- Mantıksal işleçler (birleştiriciler/bağlaçlar) kullanılarak mevcut önermelerden oluşturulan yeni önermelere birleşik önerme denir.
- En çok kullanılan birleştiriciler;
 - Negation DEĞİL (¬)
 - Conjunction AND VE (Λ)
 - Inclusive Disjunction OR DAHİLİ VEYA (v)
 - Exclusive Disjunktion OR HARİCİ VEYA (
 - Implication (→)
 - Double implication (↔)
- Önerme değişkenlerinin olası bütün değerleri için birleştirme sonucunu veren çizelgeye doğruluk tablosu (truth table) denir.
- n önerme sayısı ise, 2ⁿ tane doğruluk sayısı vardır.

- Bir p önermesinin tersi: ¬p, ~p, p' sembollerinden biri ile gösterilir.
- Mevcut önermenin tersi, değili olarak değerlendirilir.
- Örnek:
 - p=ay dünyanın çevresinde döner
 - ¬p=ay dünyanın çevresinde dönmez

•	q =Vandana'nın	akıllı telefonunun	en az 32 GB	bellek vardır.
---	----------------	--------------------	-------------	----------------

- ¬q=Vandana'nın akıllı telefonunda en az 32GB bellek yoktur.
 - ¬q=Vandana'nın akıllı telefonunda 32 GB'tan az bellek var.

Doğruluk Tablosu			
р	¬р		
D	Υ		
Y	D		

Ve (And) Bağlacı

- p ve q birer önerme olmak üzere; ve (and) bağlacı (p Λ q) veya (p and q) olarak gösterilir.
 - p ve q olarak okunur.
- Önermenin sonucunda 0 yani 'yanlış' sonucu baskındır.
 - Yani önermelerden en az 1'i 'yanlış' ise p ∧ q sonucu da 'yanlış' olur.
- Ancak ve ancak her 2 önerme de doğru ise doğru sonucunu döndürür.
- Örnek
 - p=Güneş parlıyor
 - q=Yağmur yağıyor
 - p Λ q = Güneş parlıyor ve yağmur yağıyor

Doğruluk Tablosu					
р	q	pΛq			
D	Y	Y			
Υ	D	Y			
Υ	Υ	Υ			
D	D	D			

Ve (And) Bağlacı

- p ∧ q ≡ q ∧ p → Değişme Özelliği
- p ∧ p ≡ p →Özdeşlik yasası
- $p \land \neg p \equiv 0$
- p ∧ 1≡ p
- p ∧ 0=0 → Baskınlık yasası

- p ve q birer önerme olmak üzere; veya (or) bağlacı (p v q) veya (p or q) olarak gösterilir.
 - p veya q olarak okunur.
- 1 (doğru) sonucu baskındır.
- Aancak ve ancak her 2 önerme de yanlış ise yanlış sonucunu döndürür.
- Örnek
 - p=Güneş parlıyor
 - q=Yağmur yağıyor
 - p v q = Güneş parlıyor veya yağmur yağıyor
- Veya bağlacının özellikleri
 - p v q ≡ q v p → Değişme özelliği
 - p v p ≡p →Özdeşlik yasası
 - $p \vee \neg p \equiv 1$
 - p v 1 = $1 \rightarrow$ Baskınlık Yasası
 - $p \vee 1 \equiv p$

Doğruluk Tablosu				
р	q	pvq		
D	Υ	D		
Υ	D	D		
Υ	Υ	Υ		
D	D	D		

- $p \Lambda(q \vee r) \equiv (p \Lambda q) \vee (p \Lambda r)$
- $p v(q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
- Parantezi Kaldırma
 - $p \Lambda(q \Lambda r) = p \Lambda q \Lambda r$
 - pv(qvr)≡pvqvr
- De Morgan Kuralları: 'Ve' ve 'Veya' lı bileşik önermelerin olumsuzlarını almak ile ilgilidir.
 - ¬ ∨ ≡ ∧
 - ¬ ∧ ≡ ∨
 - $\neg(p \land q) \equiv \neg p \lor \neg q$
 - $\neg (p \lor q) \equiv \neg p \land \neg q$

Harici Veya Bağlacı (XOR)

- p ve q birer önerme olmak üzere; harici veya (xor) bağlacı (p v q) veya (p xor q) olarak gösterilir.
 - 'p ya da q' şeklinde okunur.
- Önermelerden sadece biri doğru ise doğru sonucunu döndürür.
- Örnek
 - p=Yarın yüzmeye gideceğim
 - q=Yarın golf oynayacağım
 - p v q = Yarın ya yüzmeye gideceğim ya da golf oynayacağım
 - r=Adaylar 25 yaşın üzerinde olmalı
 - s=Adaylar en az 3 yıllık deneyimli olmalı.
 - r v s= Adaylar 25 yaşın üzerinde veya en az 3 yıl deneyimli olmalı.
 - Durumlardan ikisi de sağlanabileceğinden dahili veya. (Durumlar birbirini dışlamıyor)

Doğruluk Tablosu				
р	q	p <u>v</u> q		
D	Υ	D		
Y	D	D		
Y	Υ	Υ		
D	D	Υ		

Harici Veya Bağlacı (XOR)

- Özellikler:
 - $p \underline{v} q \equiv p \underline{v} p$ (Değişme özelliği vardır)
 - $p \underline{v} p \equiv 0$
 - $p \underline{v} \neg p \equiv 1$
 - $p \underline{v} 1 \equiv \neg p$
 - $p \underline{v} 0 \equiv p$

Koşullu Önerme (İse Bağlacı)

- p ve q birer önerme olmak üzere; koşullu önerme bağlacı (p → q) veya (if p then q) olarak gösterilir.
 - p ise q olarak okunur.
- Burada p: öncül, q ise sonuçtur.
- p: önceki, q: sonraki önerme olarak adlandırılır.
- p (ilk önerme): hipotez, q (sonraki önerme): sonuçtur.
- p önermesi q için yeterli şart, q ise p için gerekli şarttır.
- Örnek:
 - p:kahvaltı yaparım
 - q: öğlen yemeği yemem
 - p→q : Eğer kahvaltı yaparsam öğlen yemeği yemem
 - Hipotez (kahvaltı yaparsam) 'doğru' ise sonuç 'doğru' dur.
- Hipotez (ilk önerme) 'doğru' iken, sonucun (ikinci önerme) 'yanlış' olması mümkün olmayacağından
 1→0 birleşik önermesinin sonucu 'yanlış' olur.

Doğruluk Tablosu					
р	q	$p \rightarrow q$			
D	Y	Υ			
Y	D	D			
Υ	Υ	D			
D	D	D			

Koşullu Önerme (İse Bağlacı)

- p→q != q→p (Değişme özelliği yoktur)
- p→q = ¬p ∨ q (ise li bileşik önermelerin olumsuzu alınmak istendiğinde veya ya dönüşür.)
- $p \rightarrow p \equiv 1$
- $p \rightarrow \neg p \equiv \neg p$
- p→1 = 1 (Sonuç önermesi 'doğru' ise hipotez önermesi ne olursa olsun sonuç 'doğru' olur)
- $p \rightarrow 0 \equiv \neg p$

Mantıksal Denklik

• 2 önermenin doğruluk tablosundaki değerleri aynı ise aralarında mantıksal denklik (logical equivalence) vardır denir.

Doğruluk Tablosu					
р	q	$p \rightarrow q$	¬р∨q		
D	Υ	Y	Y		
Υ	D	D	D		
Υ	Υ	D	D		
D	D	D	D		

Koşullu Önermede Yer Değiştirme (Converse)

- p→q nun yer değiştirmiş hali q→p dir.
- Bu 2 önerme için mantıksal denklik yoktur.

Doğruluk Tablosu					
р	q	$p \rightarrow q$	q → p		
D	Υ	Υ	D		
Υ	D	D	Υ		
Υ	Υ	D	D		
D	D	D	D		

Koşullu Önermenin Tersi (Inverse)

- p→q nun tersi ¬p → ¬q 'dur
 - 2 önermenin de olumsuzu alınarak elde edilir.
- ¬p → ¬q önermesi p→q önermesinin olumsuzu değildir.

Koşullu Önermede Devrik Önerme (Karşıt Tersi Contrapositive

- p→q nun devrik hali ¬q→¬p dir.
- İki önerme hem yer değiştirir hem de olumsuzları alınır.
- p→q nun doğruluk değeri ile ¬q→¬p nin doğruluk değeri aynıdır.

Doğruluk Tablosu					
р	q	$p \rightarrow q$	¬q→¬p		
D	Y	Υ	Υ		
Y	D	D	D		
Υ	Υ	D	D		
D	D	D	D		

Bu 2 önerme mantiksal olarak denktir

- p: yağmur yağıyor
- q: Ev sahibi takım kazanır.
- p→q: Eğer yağmur yağıyorsa ev sahibi takım kazanır.
- ¬q→¬p (Contrapositive): Eğer ev sahibi takım kazanmadıysa yağmur yağmıyordur.
- q→p (Converse) : Ev sahibi takım kazanırsa yağmur yağar.
- ¬p→¬q (Inverse): Eğer yağmur yağmıyorsa ev sahibi takım kazanamaz.

Sadece contrapositive ifade orijinal ile mantıksal olarak aynı anlamdadır

Çift Yönlü Önerme (Ancak ve Ancak Bağlacı Biconditionals)

- p ve q birer önerme olmak üzere; çift yönlü önerme bağlacı (p ↔ q) veya (p if and only if q) olarak gösterilir.
- Farklı şekillerde ifade edilebilir.
 - p, q için gerekli ve yeterlidir.
 - p, yalnız ve ancak q ise.
- p ↔ q ifadesi ancak p→q ve q→p ifadeleri doğru ise doğrudur.
 - Çünkü $p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$ veya = $\neg (p \lor q)$

•	Örnek: p:	Ucağa	binebilirsin,	a:	Bilet	al
	Official p.	Oğugu	Siriosiiii oiri,	Ч.	חוטנ	u

- p ↔ q = Ancak ve ancak bilet aldıysan uçağa binebilirsin.
- p ve q 'nun ikisi de doğru veya ikisi de yanlış ise p ↔ q sonucu doğru olur.

Doğruluk Tablosu				
р	q	$p \leftrightarrow q$		
D	Y	Υ		
Y	D	Υ		
Υ	Υ	D		
D	D	D		

Çift Yönlü Önerme (Ancak ve Ancak Bağlacı Biconditionals)

Özellikler

- $p \leftrightarrow q \equiv q \leftrightarrow p$ (Değişme özelliği vardır)
- $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) \equiv (\neg p \lor q) \land (\neg q \lor p)$
- $p \leftrightarrow p \equiv 1$
- $p \leftrightarrow \neg p \equiv 0$
- $p \leftrightarrow 1 \equiv p$
- $p \leftrightarrow 0 \equiv \neg p$

Birleşik Önermeler İçin Doğruluk Tablosu

 Önermelerin bağlaçlar ile birleştirilmesi sonucu oluşan önermelere birleşik önerme denir.

• Örnek: $(p \lor \neg q) \rightarrow (p \land q)$

Doğruluk Tablosu						
р	q	¬q	p∨¬q	pΛq	$(p \lor \neg q) \rightarrow (p \land q)$	
D	D	Y	D	D	D	
D	Y	D	D	Y	Y	
Υ	D	Υ	Υ	Υ	D	
Υ	Υ	D	D	Υ	Υ	

- n tane önerme varsa doğruluk tablosunda 2^n tane satır vardır.
- Örnek: p v (q ∧ r)

Doğruluk Tablosu				
р	q	r	qΛr	p v (q Λ r)
D	D	D	D	D
D	D	Υ	Υ	D
D	Υ	D	Υ	D
D	Υ	Υ	Υ	D
Υ	D	D	D	D
Υ	D	Υ	Υ	Y
Υ	Υ	D	Υ	Y
Υ	Υ	Υ	Υ	Y

Mantıksal Operatörlerde Öncelik

• Operatörlerin işleme önceliği parantez içine alınarak belirlenmemişse, aşağıdaki öncelik tablosuna göre değerlendirilir.

- Örnek:
 - s: Ali gezmeye çıkar
 - t: mehtap var
 - u: kar yağıyor
 - s, t ve u önermelerine göre aşağıdaki birleşik önermeler ne anlama gelir?

•	t	Λ	¬u	\rightarrow	S	?
		, ,	ı u		$\mathbf{\circ}$	

- $t \rightarrow (\neg u \rightarrow s)$?
- $\neg (s \leftrightarrow (u \lor t))$?
- $\neg s \leftrightarrow u \vee t$?

Operatör	Öncelik
7	1
Λ	2
V	3
\rightarrow	4
\leftrightarrow	5

Onerme Mantığı Uygulamaları

- Çeviri:
 - Çevrilecek cümle, mantıksal önermeler ile ifade edilip analiz edilebilir.
 - Örn: İnternete sadece bir bilgisayar bilimi bölümündeyseniz veya birinci sınıftan değilseniz kampüsten erişebilirsiniz.
 - a: İnternete kampüsten erişebilirsiniz.
 - b: Bilgisayar bilimi öğrencisisin.
 - c: Birinci sınıf öğrencisi.

- Aranan ifade: «KSU bilgisayar»
- Mantıksal önerme KSU ve bilgisayar
- 3. Bilgisayar devresi tasarımı
- Bilgisayar programları
- Uzman sistem oluşturulması...

ÖNERME DENKLİKLERİ

- Bir birleşik öneri, kendisiyle aynı doğruluk değerine sahip başka önermeler ile ifade edilebilir.
- Bu işlem aynı problemin farklı şekillerde ifade edilmesini sağladığından önemlidir.
- Aynı doğruluk değerlerine sahip birleşik önermelere mantıksal olarak eşdeğer (logically equivalent) denir.

Totoloji (Tautology) – Tutarlılık

• Bir birleşik önermenin doğruluk değerleri tüm durumlar için «doğru» ise bu birleşik önermeye **totoloji** denir.

• Örnek: $p \land (p \rightarrow q) \rightarrow q$

Doğruluk Tablosu				
р	q	$p \rightarrow q$	$p \land (p \rightarrow q)$	$p \land (p \rightarrow q) \rightarrow q$
D	D	D	D	D
D	Υ	Υ	Υ	D
Υ	D	D	Υ	D
Υ	Υ	D	Υ	D

Çelişki (Contradiction)

- Bir birleşik önermenin doğruluk değerleri tüm durumlar için «yanlış» ise bu birleşik önermeye **çelişki** denir.
- Örnek: $p \wedge (\neg p \wedge q)$

Doğruluk Tablosu				
р	q	¬р	(¬ p ∧ q)	$p \wedge (\neg p \wedge q)$
D	D	Υ	Υ	Y
D	Υ	Υ	Υ	Y
Υ	D	D	D	Y
Υ	Υ	D	Υ	Y

- De Morgan kuralındaki birleşik önermeler birbirlerine mantıksal olarak eşittir.
- De Morgan kuralları bağlaçları ve ayrıştırıcıları nasıl negatif yapacağımızı tanımlar.
- Yasalar
 - 'and' ile bağlanmış birleşik bir önermenin değilinin, önermelerin ayrı ayrı değilinin veya ile bağlanması ile ve
 - veya ile bağlanmış birleşik bir önermenin değilinin, önermelerin ayrı ayrı değilinin and ile bağlanması ile elde edileceğini söyler.

•
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

•
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Mantıksal Eşdeğerlikler			
Eşitlik	Açıklama		
$ \begin{array}{l} \rho \wedge \mathbf{D} \equiv \rho \\ \rho \vee \mathbf{Y} \equiv \rho \end{array} $	Özdeşlik Yasası (Identity laws)		
$ \begin{array}{l} \rho \lor \mathbf{D} \equiv \mathbf{D} \\ \rho \land \mathbf{Y} \equiv \mathbf{Y} \end{array} $	Baskınlık Yasası (Domination laws)		
$ \begin{array}{c} p \lor p \equiv p \\ p \land p \equiv p \end{array} $	Idempotent laws		
$\neg(\neg p) \equiv p$	Çift Olumsuzluk Yasası (Double negation law)		
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Değiştirilebilen Yasalar (Commutative laws)		
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	İlişkisel Yasalar (Associative laws)		
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Dağıtım Yasaları (Distributive laws)		
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws		
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws		
ρ∨¬ρ≡ T ρ∧¬ρ≡ F	Negation laws		

Açık Önerme

- Bir p önermesinin fonksiyon haline getirilmiş biçimine açık önerme denir.
- Bir p önermesi için açık önerme P(x) ile ifade edilir.
- P(x) ifadesi, x'deki öneri fonksiyonunun değeri olarak nitelenir.
- x'e bir değer atandığında, P(x) bir öneri olur ve artık gerçek bir değeri vardır.
- x'in alacağı değere göre P(x) 'doğru' veya 'yanlış' şeklinde doğruluk değerine sahip olur.
- x bir değer almadan P(x) için doğru veya yanlış diye değerlendirilemez.

AÇIK ÖNERME ÖRNEK

- p(x):x+1<5 olsun
 - x=1→1+1<5 olur ve P(1)'in doğruluk değeri 1 olur.
 - P(1)≡1
 - X=5→5+1<5 yanlış bir önerme olduğundan P(5)'in doğruluk değeri 0 olur.
 - P(5)≡0
- Ör: p(x): $x^2 9 = 0$ ise x'in hangi değerleri için p(x)'in doğruluk değeri 1'dir?
 - x=3 veya x=-3 olması halinde P(x) ≡1'dir
- Örnek: p(x): x+3<7 önermesinin olumsuzu nedir?
 - ¬ p(x): x+3≥7 olur.

