Representation of FSMs in RNNs

- A Mealy machine $\mathcal{M} = (I, O, S, q_0, \delta, \eta)$ is a six-tuple, where
- I is an alphabet of m input symbols,
- O is an alphabet of p output symbols,
- S is a set of n states,
- q_0 is a start state,
- $\delta:I \times S \Longrightarrow S$ is a state transition function,
- $\eta: I \times S \Longrightarrow O$ is an output function.
- In a Moore machine $\mathcal{M} = (I, O, S, q_0, \delta, \eta)$, the output function only depends on the states, $\eta: S \simeq O$.
- DFAs and DUFAs are particular cases of Moore machines.

Kepresentation of transition function

- Given an input encoding and a state encoding, the state transition function δ can be represented as a linear system $A_{\delta}W_{\delta}=B_{\delta}$,
- A_{δ} (D x E) is a matrix of neuron inputs,
- W_{δ} (E x N) is a (transposed) matrix of neuron weights,
- B_{δ} (D x N) is a matrix of neuron net-inputs,
- D = mn is the number of transitions of the FSM \mathcal{M} , and
- E is the number of weights of each neuron.
- \Rightarrow first-order SLRNNs cannot implement all δ 's In a first-order SLRNN \mathcal{N}_{i} , $rank(A_{\delta}) <= m+n-l$
- $rank(A_{\delta})=mn \implies second-order SLRNNs can implement all \delta$'s In a second-order SLRNN \mathcal{N} with local encoding (N=n),

$$\delta('0', q_1) \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ \delta('0', q_2) \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix} W = \begin{pmatrix} H & -H & q_1 \\ -H & H & q_2 \\ -H & H & q_2 \\ H & -H & q_1 \\ \end{pmatrix} q_1$$

First-order SLRNN system

$$\delta('0', q_1) \begin{pmatrix} 1 & 0 & 0 & 0 \\ \delta('0', q_2) & 0 & 1 & 0 & 0 \\ \delta('1', q_1) & 0 & 0 & 1 & 0 \\ \delta('1', q_2) & 0 & 0 & 1 & 0 \\ \delta('1', q_2) & 0 & 0 & 0 & 1 \end{pmatrix} W = \begin{pmatrix} H & -H & q_1 \\ -H & H & q_2 \\ H & -H & q_1 \\ H & -H & q_1 \\ H & -H \end{pmatrix} q_1$$

Second-order SLRNN system of odd-parity recognizer

First-order SLRNN system of maximally split odd-parity recognizer

Representation of output function

- Given also an output encoding, the output function η can be represented in
- a second-order SLRNN as a linear system $A_{\eta}W_{\eta}=B_{\eta}$ where
- $A_{\eta} = A_{\delta}$
- W_{η} is a submatrix of W_{δ} (with only P columns)
- B_{η} is a submatrix of B_{δ} (with only P columns)
- the output layer of a first-order 2L-ASLRNN as an additional linear system $A_{\eta}W_{\eta}=B_{\eta}$ where
- $A_n (D x (N+I))$ is a matrix of output unit inputs,
- W_{η} ((N+I) x P) is a matrix of output unit weights, and
- B_{η} (D x P) is a matrix of output unit net-inputs.
- Both systems can be solved using a local encoding.

Representation of FSMs in RNNs -

- A second-order SLRNN or 2L-ASLRNN with M=m, N=n, and P=p can represent any Mealy machine.
- can represent an equivalent FSM (with state split) to any A first-order 2L-ASLRNN with M=m, N=mn, and P=pMealy machine.
- DFAs, DUFAs, and stochastic DFAs can be inserted in the above RNN architectures with different activation functions through linear system solving.
- subsequent training by means of a constrained learning The inserted symbolic rules can be preserved during algorithm.

FSA (and UFSA) Insertion into 2L-ASLRNNS

- δ and η functions of the *inserted FSA*, using a 2L-ASLRNN with more hidden units than required to $A_{\delta}W_{\delta} = B_{\delta}$ and $A_{\eta}W_{\eta} = B_{\eta}$, that represent the (1) Establish underdetermined linear systems solve the systems (N > n).
- (2) Initialize the weights of the hidden and output units to result from solving the two underdetermined systems. any of the solutions W_{δ} and W_{η} , respectively, that

Constrained neural learning method

- relations given by system solution (search in a linear Adjust independent weights by gradient-descent and update the dependent weights to keep linear subspace of weights).
- Independent weights are changed according to

$$\Delta w_{kl}(t) = -\alpha \left(\frac{\partial E(t)}{\partial w_{kl}} + \sum_{w_{ka} \in D(W_k)} \frac{\partial E(t)}{\partial w_{ka}} \frac{\partial w_{ka}}{\partial w_{kl}} \right)$$

where $D(W_k)$ is the subset of dependent weights of unit k

and $\frac{\partial \mathcal{W}_{ka}}{\partial \mathcal{W}_{kl}}$ are known constants.