解が無限個ある場合

掃き出し法によって、係数行列を単位行列に変形できない場合もある

かる!使える!線形代数 講義 p101

ref: 行列のヒミツがわ

- 解が一意に定まらない場合 (解が無限個ある場合)
- 解が存在しない場合

まずは、解が一意に定まらない場合を見てみよう

$$\begin{pmatrix} 1 & -1 & -3 & 1 \\ 2 & 1 & 0 & 2 \\ 1 & 0 & -1 & 1 \end{pmatrix} \begin{matrix} R_1 \\ R_2 \\ R_3 \end{matrix} \qquad \begin{cases} x - y - 3z = 1 \\ 2x + y = 2 \\ x - z = 1 \end{cases}$$

(1,1) 成分を要にして第1列を掃き出す:

$$\begin{pmatrix} 1 & -1 & -3 & 1 \\ 0 & 3 & 6 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix} \underset{R_3 - R_1}{R_2 - 2R_1} \begin{cases} x - y - 3z = 1 \\ 3y + 6z = 0 \\ y + 2z = 0 \end{cases}$$

(2,2) 成分を1にする:

$$\begin{pmatrix} 1 & -1 & -3 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix} \frac{1}{3}R_{2} \qquad \begin{cases} x - y - 3z = 1 \\ y + 2z = 0 \\ y + 2z = 0 \end{cases}$$

(2,2) 成分を要にして第2列を掃き出す:

$$\begin{pmatrix} 1 & -1 & -3 & | & 1 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}_{R_3 - R_2} \begin{cases} x - y - 3z & = 1 \\ y + 2z & = 0 \\ 0 = 0 \end{cases}$$

1 を対角成分として持つ列の対角成分以外を 0 にする:

$$\begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} R_1 - R_2 \qquad \begin{cases} x & -z & = 1 \\ y + 2z & = 0 \\ 0 & 0 & 0 \end{cases}$$

この連立方程式は、実質的に2本の方程式しか持たないことがわかる

$$\begin{cases} x & -z = 1 \\ y + 2z = 0 \end{cases}$$

x, y について解くと、

$$\begin{cases} x & = z + 1 \\ y = -2z \end{cases}$$

となるので、z に任意の数 $z = \alpha$ を与えて解が得られる

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha + 1 \\ -2\alpha \\ \alpha \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

解が存在しない場合

次のような連立一次方程式を考える

$$\begin{pmatrix} 1 & -1 & -3 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{R_1} \xrightarrow{R_2} \begin{cases} x - y - 3z = 1 \\ 2x + y = 1 \\ x - z = 1 \end{cases}$$

$$\begin{cases} x - y - 3z = 1 \\ 2x + y = 1 \\ x - z = 1 \end{cases}$$

(1,1) 成分を要にして第1列を掃き出す:

$$\begin{pmatrix} 1 & -1 & -3 & 1 \\ 0 & 3 & 6 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix} \underset{R_3 - R_1}{R_2 - 2R_1} \begin{cases} x - y - 3z = 1 \\ 3y + 6z = -1 \\ y + 2z = 0 \end{cases}$$

(2,2) 成分を 1 にするため、第 2 行と第 3 行を入れ替える:

$$\begin{pmatrix} 1 & -1 & -3 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 3 & 6 & -1 \end{pmatrix}_{R_2} R_3 \begin{cases} x - y - 3z = 1 \\ y + 2z = 0 \\ 3y + 6z = -1 \end{cases}$$

(2,2) 成分を要にして第2列を掃き出す:

ref: 行列のヒミツがわ かる!使える!線形代数 講義 p104

$$\begin{pmatrix}
1 & -1 & -3 & 1 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
\begin{matrix}
R_3 - 3R_2 & x - y - 3z & = 1 \\
y + 2z & = 0 \\
0 = -1
\end{matrix}$$

0 = -1 という式が現れたので、この連立方程式には解が存在しない

掃き出し法の段階ごとに得られる形

ここまで見てきた、掃き出し法による連立方程式の解法をまとめると、大 まかには次のような手順を踏むことになる

- 1. 左の列から順に、対角成分を1にする
- 2. 対角成分が 1 となっている列の対角成分以外を 0 にする

手順 1 で得られる形を行階段行列と呼び、手順 2 で得られる形を<mark>既約行階</mark> 段行列と呼ぶ

ただし、0=-1 が現れたときのように、手順 1(行階段行列への変形) だけで解が存在するかはわかってしまう

解の存在以外にも、行階段行列に変形することで読み取れることが多くある