Appunti di Fondamenti di Automatica

Lorenzo Prosseda, a.a. 2017-2018

Indice

Capitol	lo 1. Sistemi LTI a tempo continuo	5
1.1.	Modello matematico	5
1.2.	Comportamento del sistema	12
1.3.	Rappresentazione equivalente	17
1.4.	Movimenti generati dai modi	18
1.5.	Equilibrio di sistemi LTI	24
1.6.	Risposta all'impulso	24
1.7.	Stabilità del sistema	25
1.8.	Sistemi non lineari tempo-invarianti	28
Capitol	lo 2. Sistemi dinamici a tempo discreto	31
$\frac{1}{2.1}$.	Modello matematico nel tempo discreto	31
2.2.	Comportamento nel tempo discreto	34
2.3.	Rappresentazione equivalente discreta	35
2.4.	Movimenti nel tempo discreto	36
2.5.	Stabilità del sistema	38
2.6.	Sistemi non lineari a tempo discreto	40
Capitol	lo 3. Funzione di trasferimento	43
3.1.	Definizione	43
3.2.	Proprietà	44
3.3.	Forme fattorizzate	47
3.4.	Risposta forzata allo scalino	48
3.5.	Approssimazione a poli dominanti	55
3.6.	Realizzazione	55
Capitol	lo 4. Schemi a blocchi	59
-	Elementi costitutivi	59
4.2.	Regole di elaborazione	62
Capitol	lo 5. Risposta in frequenza	65
_	Risposta alla sinusoide	65
5.2.	Analisi della risposta in frequenza	66
5.3.	Diagrammi di Bode	68
5.4.	Diagrammi di Bode del ritardo di tempo	78
5.5.	Diagramma polare	79
5.6.	Sistemi a sfasamento minimo	82
5.7.	Azione filtrante dei sistemi dinamici	83
5.8.	Trasferimento per approssimazione a poli dominanti	85
Capitol	lo 6. Analisi dei sistemi di controllo	87
6.1.	Architetture di sistemi di controllo	87
6.2.	Progettazione e requisiti di un sistema di controllo	91
6.3.	Criterio di Nyquist per l'asintotica stabilità	91
6.4.	Margini di stabilità	95
6.5.	Criterio di Bode	96

4 INDICE

6.6.	Prestazioni statiche	97
6.7.	Prestazioni dinamiche	100
6.8.	Limiti alle prestazioni	104
Capitol	o 7. Progetto e sintesi dei sistemi di controllo	105
7.1.	Progetto: traduzione delle specifiche	105
7.2.	Sintesi: metodo per inversione	107
7.3.	Sintesi: metodo per iterazioni	110
Append	lice A. Richiami di Geometria e Algebra Lineare	113
A.1.	Matrici	113
A.2.	Autovalori e autovettori	116
A.3.	Similitudine e diagonalizzabilità	118
A.4.	Esponenziali di matrici	121
	Numeri nel campo complesso	122
Append	dice B. Trasformata di Laplace	123
B.1.	Definizione	123
B.2.	Proprietà	124
B.3.	Trasformate notevoli	126
B.4.	Antitrasformata	128
Indice a	analitico	133

CAPITOLO 1

Sistemi LTI a tempo continuo

1.1. Modello matematico

1.1.1. Problemi di controllo. Un problema di controllo consiste nell'imporre un funzionamento desiderato a un processo assegnato: il processo è dunque l'oggetto del problema di controllo; il funzionamento desiderato è una funzione che mette in relazione le variabili controllate coi loro segnali di riferimento (il loro valore desiderato).

Si vuole ottenere una evoluzione del sistema nel tempo per cui le variabili controllate abbiano un valore quanto più possibile vicino al segnale di riferimento.

Di un processo bisogna valutare, oltre all'andamento delle variabili controllate, anche due fonti di errore:

Incertezza: I valori delle variabili controllate non possono essere misurati senza *incertezza*; inoltre nel processo possono intervenire variabili non controllate dall'esterno, chiamate *disturbi*.

Tempo: Le variabili di un problema di controllo sono funzioni del tempo ed esso può essere *continuo* o *discreto*; inoltre un componente del sistema potrebbe variare le proprie caratteristiche nel tempo (*non stazionario*).

Un processo è costituito in generale dai seguenti elementi:

- USCITA: chiamata in generale $y(t) \in \mathbb{R}^p$, è la variabile che viene misurata e vogliamo controllare; l'apice p indica la cardinalità dell'uscita (numero di uscite, sono trattate come un vettore) ed essa è chiamata anche variabile controllata.
- TRASDUTTORE: misura le variabili fisiche dell'uscita, restituendo in retroazione una misura dell'uscita o dei disturbi del processo; esso sarà soggetto a un errore di misura.
- CONTROLLORE: sistema che, interagendo col processo, ne controlla le variabili tramite un attuatore; prende in ingresso i valori di misura dei trasduttori e l'andamento desiderato del processo (chiamato variabile di riferimento w(t)).
- ATTUATORE: sistema che influenza il processo agendo sulla variabile manipolabile $u(t) \in \mathbb{R}^m$ anche detta ingresso del processo; l'apice m indica la cardinalità degli ingressi (come per l'uscita).
- DISTURBO: variabili che non possono essere controllate ma possono essere "viste" dal controllore in tempo reale tramite un trasduttore dedicato; si indicano con $d(t) \in \mathbb{R}^{m_d}$ dove l'apice m_d indica la cardinalità dei disturbi (come per ingressi e uscite).

Nel corso vedremo spesso l'attuatore "inglobato" nel controllore

Figura 1.1.1. Anello di controllo in retroazione

Quando m=p il sistema si dice quadrato ed è una minima condizione per ottenere il comportamento desiderato dal sistema, tuttavia non è detto che il numero di ingressi sia sempre pari alle uscite.

In un contesto ideale sarebbe possibile calcolare (tramite un inversione delle sue equazioni) gli ingressi del sistema per ottenere esattamente le uscite desiderate; tuttavia a causa dei disturbi questo non è possibile nel mondo fisico.

Un sistema si dice allora *stabile* quando, accoppiando controllore e processo, l'uscita è stabile nel tempo ed è vicina al valore desiderato anche in presenza dei disturbi.

1.1.2. Processi a tempo continuo. Un processo a tempo continuo presenta una una uscita (y(t)) e due possibili ingressi: manipolabili (u(t)) e non manipolabili (d(t)); un modello per questo sistema è dato dalla Definizione 1.1.

DEFINIZIONE 1.1. Un modello matematico è un insieme di equazioni che descrivono il comportamento del sistema e i legami tra ingressi e uscite.

I sistemi sono classificati tramite caratteristiche dei modelli (delle equazioni) che li rappresentano:

Statico/Dinamico: la presenza del solo ingresso nella funzione di uscita del sistema lo classifica come statico; si dirà invece dinamico se presenta delle variabili di stato (vedi Esempio 1.2).

Lineare: tutte le equazioni del modello sono combinazioni lineari delle variabili di stato e degli ingressi.

Proprio: l'ingresso figura nell'equazione di uscita; altrimenti, se l'ingresso non compare nell'equazione di uscita (la influenza indirettamente) il sistema si dice strettamente proprio.

Stazionario: la variabile tempo non modifica esplicitamente le variabili del sistema (per esempio una variabile che cambia comportamento nel tempo, come un componente che si usura).

SISO/MIMO: sistema con una sola uscita e un solo ingresso o più uscite e più ingressi.

A seguire due esempi riguardanti un sistema statico e uno dinamico:

ESEMPIO 1.1. Sia dato un resistore di valore R di resistenza, ai cui capi è applicata Per sistemi a tempo una tensione v(t) dove $t \in \mathbb{R}$; nel resistore scorrerà una corrente i(t) dipendente dalla tensione applicata. Il modello del processo è il seguente:

$$i\left(t\right) = \frac{v\left(t\right)}{R}$$

Dalla precedente equazione si deduce che, scegliendo di voler misurare la corrente nel resistore, l'uscita sarà y(t) = i(t) mentre l'ingresso sarà u(t) = v(t); inoltre notando che una perturbazione dell'ingresso si ripercuote istantaneamente sull'uscita (y(t)) dipende direttamente da u(t) si può classificare il sistema come statico.

Il sistema ha un solo ingresso e una sola uscita, quindi è quadrato e SISO (single input, single output). \Box

ESEMPIO 1.2. Sia data una serie costituita da un resistore di valore R di resistenza e un condensatore di capacità C; ai capi del circuito è applicata una tensione $v_c(t)$, che causa una tensione $v_c(t)$ ai capi del condensatore e una corrente i(t) nella serie. Sia $v_c(t)$ la variabile da misurare.

Adottando l'equilibrio delle tensioni possiamo scrivere che la somma delle tensioni su resistore e condensatore è pari alla tensione forzata sulla serie:

$$R \cdot i(t) + v_{c}(t) = v(t)$$

Nel caso del condensatore, la tensione ai suoi capi è proporzionale alla carica sulle sue armature e alla capacità come $v_{c}(t) = q(t)/C$, da cui si ottiene derivando

$$\dot{v}_{\mathrm{c}}\left(t\right) = \frac{1}{C} \cdot \overbrace{\frac{\partial q\left(t\right)}{\partial t}}^{\mathrm{corrente}} = \frac{i\left(t\right)}{C}$$

La corrente nella serie sarà la stessa per il condensatore e il resistore, e può essere ricavata dalla legge di Ohm come tensione sul resistore $(v(t) - v_c(t))$ divisa la sua resistenza

$$i(t) = -\frac{1}{R}v_{c}(t) + \frac{1}{R}v(t)$$

Sostituendo i(t) nell'espressione di $\dot{v}_{c}(t)$ si ottiene la seguente

$$\dot{v}_{c}(t) = -\frac{1}{RC}v_{c}(t) + \frac{1}{RC}v(t)$$

Scegliendo di voler misurare la tensione ai capi del condensatore si ha che $y(t) = v_c(t)$, l'ingresso sarà la tensione forzata sulla serie u(t) = v(t). Rispetto all'Esempio 1.1, pur conoscendo la tensione v(t) ai capi della serie non è possibile ottenere la tensione $v_c(t)$ ai capi della capacità (sarebbe necessario integrare l'equazione differenziale $\dot{v}_c(t)$, in cui compaiono delle costanti che rappresentano le condizioni iniziali del sistema, ignote nel contesto di questo esercizio). La presenza di una grandezza simile in uscita classifica questo sistema come dinamico.

DEFINIZIONE 1.2. Si chiamano variabili di stato quelle la cui conoscenza all'istante iniziale è necessaria per determinare l'andamento del sistema a seguito di un ingresso; esse sono indicate come $x(t) \in \mathbb{R}^n$ con apice n la cardinalità del sistema.

Per n > 0 il sistema si dice dinamico, altrimenti statico.

Le variabili di stato in pratica indeboliscono il legame tra ingresso e uscita; il loro numero determina l'*ordine* del sistema (quello dell'Esercizio 1.2 è del primo ordine); i sistemi fisici in generale hanno infinite variabili di stato.

Per sistemi a tempo continuo, trattati in questo capitolo, la variabile tempo è sempre reale $(t \in \mathbb{R})$, ovvero tra due istanti di tempo ne esiste sempre un'altro

Una formulazione generale per le equazioni del modello matematico per processi a tempo continuo è la seguente:

Equazioni di un processo a tempo continuo

(1.1.1)
$$\begin{cases} \dot{x}(t) = f(x(t), u(t), t) & \text{Equazione di stato} \\ y(t) = g(x(t), u(t), t) & \text{Equazione di uscita} \end{cases}$$

Tornando ai precedenti esempi, i sistemi che descrivono possono essere classificati nel modo seguente:

Esempio 1.1 Esempio 1.2
$$\begin{cases} y\left(t\right) = \frac{1}{R}u\left(t\right) \\ \text{stato} \end{cases} \begin{cases} y\left(t\right) = \frac{1}{R}u\left(t\right) \\ \dot{x}\left(t\right) = -\frac{1}{RC}x\left(t\right) + \frac{1}{RC}u\left(t\right) \end{cases} \text{ per } v_{c}(t) = x(t) \\ \dot{x}\left(t\right) = -\frac{1}{RC}x\left(t\right) + \frac{1}{RC}u\left(t\right) \text{ per } v(t) = u(t) \end{cases}$$
 Caratteristiche Stazionario, stazionario, lineare stazionario, lineare

Tabella 1.1.1. Classificazione di due sistemi, esempi 1.1 e 1.2

Nel prossimo esempio si effettuerà una classificazione completa del sistema meccanico di un ammortizzatore MacPherson:

ESEMPIO 1.3. Sia dato un ammortizzatore inserito in una molla: possiamo considerare il sistema (sospensione) come una massa sospesa m (il veicolo) collegata a una molla di coefficiente k (in cui è inclusa anche la rigidità dello pneumatico) e un ammortizzatore con coefficiente di attrito viscoso β . La sospensione in questione è attiva, ovvero è possibile applicare in modo controllato una forza $\vec{F}(t)$ alla massa m (vedi Figura 1.1.2).

Figura 1.1.3

In condizioni statiche la posizione della massa rispetto al suolo è data da p_k (posizione di riposo della molla); la variabile $\bar{p}_m = p_m(t) - p_k$ è la posizione della massa rispetto alla posizione di riposo p_k .

L'ammortizzatore è dotato di fondo corsa, un limite meccanico all'estensione della molla: il coefficiente β di attrito viscoso dipenderà allora dalla posizione \overline{p}_m della massa (che è anche l'elongazione della molla); possiamo scrivere

$$\beta\left(\overline{p}_{m}\right):\begin{cases} \beta_{0} & \text{se } \overline{p}_{m} \in \left[-p_{m}, p_{m}\right] \\ \frac{\beta_{0}\varepsilon}{\varepsilon - \left|\overline{p}_{m}\right| + \left|p_{k}\right|} & \text{se } \overline{p}_{m} \in \left(-p_{m} - \varepsilon, -p_{m}\right) \cup \left(p_{m}, p_{m} + \varepsilon\right) \end{cases}$$

dove i valori di fondo corsa sono indicati da ε , e β_0 è il valore di attrito viscoso in condizioni statiche: l'espressione ha un coefficiente di attrito viscoso prossimo a β_0 finché non si raggiunge uno dei due asintoti verticali $(-p_m - \varepsilon e p_m + \varepsilon)$ dove β tende a diventare infinitamente grande (vedi Figura 1.1.3).

Per quanto riguarda il coefficiente della molla (rigidità della sospensione) esso può variare nel tempo, a causa dell'usura: modellizziamo tale valore con l'espressione

$$k(t) = k_0 - \left(1 - e^{-\lambda t}\right) \Delta k$$

con k_0 il valore iniziale della molla appena costruita e λ un parametro costante: l'espressione decresce esponenzialmente per $t \to \infty$ da k_0 a $k_0 - \Delta k$ (vedi Figura 1.1.4).

Il modello per questo sistema si può scrivere usando le equazioni di Newton, equilibrando la traslazione verticale della massa:

$$\overbrace{m\bar{\bar{p}}_{m}\left(t\right)}^{\text{forza della massa}} + \underbrace{\beta\left(\overline{p}_{m}\left(t\right)\right)\dot{\bar{p}}_{m}\left(t\right)}_{\text{forza dell'attrito viscoso}} + \underbrace{k\left(t\right)\overline{p}_{m}\left(t\right)}_{\text{forza sospensione}} = \underbrace{F\left(t\right) - mg}_{\text{forza sospensione}}$$

Per scrivere la precedente nella forma generale bisogna individuare le variabili di stato $(\bar{p}_m \in \bar{p}_m \text{ pari a } x_1 \in x_2)$, gli ingressi (F(t) pari a u(t)) e i disturbi (-mg nell'espressione della forza sulla sospensione, pari a d(t)); la precedente diventa

$$m\dot{x}_{2}(t) + \beta(x_{1}(t))x_{2}(t) + k(t)x_{1}(t) = u(t) - d(t)$$

dove posizione (x_1) e velocità (x_2) formano il vettore di variabili di stato; bisogna includere nel modello l'equazione che mette in relazione le due variabili di stato $(\dot{x}_1(t) = x_2(t))$ e due funzioni di stato; se vogliamo misurare la posizione della massa imponiamo $x_1(t)$ in uscita:

$$f_{1}(x(t), u(t), t) = x_{2}(t)$$

$$f_{2}(x(t), u(t), t) = \frac{-\beta(x_{1}(t))}{m}x_{2}(t) - \frac{k(t)}{m}x_{1}(t) + \frac{u(t)}{m} - \frac{d(t)}{m}$$

$$g(x(t), u(t), t) = x_{1}(t)$$

Si osserva che il sistema è dinamico del secondo ordine (2 variabili di stato), non è lineare (la seconda equazione di stato non è lineare), è tempo-variante (non stazionario, il coefficiente della molla k(t) cambia nel tempo), è SISO (ha un ingresso e una uscita), è strettamente proprio (l'ingresso non figura nell'equazione di uscita).

Nel prossimo esempio misuriamo il moto di un autoveicolo, tramite i principi della dinamica

ESEMPIO 1.4. Sia dato un autoveicolo in movimento tramite la forza di trazione del motore F(t) attraverso le ruote, a cui si oppongono la massa m, la forza di inerzia $m\dot{v}(t)$ e la resistenza aerodinamica $\beta mv^2(t)$; \checkmark scrivere un modello che abbia come ingresso la forza di trazione e come uscita la velocità.

$$\begin{array}{cccc}
m\dot{v}(t) & & v(t) \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

Figura 1.1.5. Modello per autoveicolo in movimento

L'equazione del sistema sarà l'equilibrio della forza di trazione con quelle che vi si oppongono:

$$m\dot{v}(t) + \beta mv^{2}(t) = F(t)$$

Per scrivere la precedente in modo standard consideriamo che (dalla richiesta dell'esercizio) l'uscita vale y(t) = v(t) e l'ingresso vale u(t) = F(t); inoltre è presente la

Per indicare le derivate di \overline{p}_m è stata usata la notazione puntata: ad ogni punto sulla variabile corrisponde un grado di derivazione; quindi $\overline{p}_m(t)$ è l'accelerazione e $\overline{p}_m(t)$ la velocità

derivata della velocità nell'equazione del sistema: si tratta di una variabile di stato (x(t) = v(t)).

Dopo queste considerazioni l'equazione diventa

$$m\dot{x}\left(t\right)+\beta mx^{2}\left(t\right)=u\left(t\right)$$
 da cui segue
$$\dot{x}\left(t\right)=-\beta x^{2}\left(t\right)+\frac{u\left(t\right)}{m};\quad y\left(t\right)=x\left(t\right)$$

Si tratta di un sistema dinamico del primo ordine (una variabile di stato), stazionario (nessuna equazione dipende dal tempo), non lineare (compare un termine al quadrato nell'equazione di stato), strettamente proprio (non compare l'ingresso nell'equazione di uscita), SISO (un ingresso e una uscita).

Se ora immaginiamo di voler misurare anche la posizione del veicolo, dobbiamo introdurre un nuovo stato coerente con quello presente che riguardi la grandezza spazio p(t). Sapendo che $v(t) = \dot{p}(t)$ e ponendo dunque $x_1(t) = p(t)$ e $x_2(t) = v(t)$ si ottiene

$$\begin{cases} \dot{x}_1\left(t\right) = x_2\left(t\right) \\ \dot{x}_2\left(t\right) = -\beta x_2^2\left(t\right) + \frac{u\left(t\right)}{m} & \text{(nuovo modello per il sistema)} \\ y\left(t\right) = x_2\left(t\right) \end{cases}$$

Rispetto al modello precedente è cambiato l'ordine (secondo) mentre le altre caratteristiche sono immutate. \Box

Nel prossimo esempio un sistema dinamico di ordine IV:

Figura 1.1.6. Sistema di due masse con sospensioni

ESEMPIO 1.5. Sia dato un sistema costituito da due masse m_1 e m_2 ciascuna avente una propria molla di costante k_1 e k_2 e un proprio ammortizzatore di coefficiente di attrito β_1 e β_2 ; le due masse sono collegate in serie a un vincolo - rispettivamente m_1 è collegata al vincolo e m_2 è collegata a m_1 - e la loro posizione rispetto a quella di riposo è data da $p_1(t)$ e $p_2(t)$; si possa esercitare una forza su ciascuna massa in modo longitudinale rispetto al sistema (rispettivamente $F_1(t)$ e $F_2(t)$). \checkmark Si scriva un modello per misurare

la posizione nel tempo delle due masse.

Usando l'equilibrio delle forze (per una massa alla volta) possiamo scrivere un'equazione tra forza d'inerzia, forza dell'ammortizzatore, forza elastica e forze esercitate dall'altra massa in seguito al suo moto relativo, tutto eguagliato alla forza sulla massa considerata

$$m_{1}\ddot{p}_{1}(t) + \beta_{1}\dot{p}_{1}(t) + k_{1}p_{1}(t) + \beta_{2}(\dot{p}_{1}(t) - \dot{p}_{2}(t)) + k_{2}(p_{1}(t) - p_{2}(t)) = F_{1}(t)$$

$$m_{2}\ddot{p}_{2}(t) + \beta_{2}(\dot{p}_{2}(t) - \dot{p}_{1}(t)) + k_{2}(p_{2}(t) + p_{1}(t)) = F_{2}(t)$$

Possiamo scrivere il modello nella sua forma standard usando le seguenti considerazioni (sono presentate direttamente le forme matriciali):

$$u\left(t\right):\begin{bmatrix}u_{1}\left(t\right)\\u_{2}\left(t\right)\end{bmatrix}=\begin{bmatrix}F_{1}\left(t\right)\\F_{2}\left(t\right)\end{bmatrix};\qquad y\left(t\right):\begin{bmatrix}y_{1}\left(t\right)\\y_{2}\left(t\right)\end{bmatrix}=\begin{bmatrix}p_{1}\left(t\right)\\p_{2}\left(t\right)\end{bmatrix}$$

Ingressi e uscite si ricavano dalla richiesta dell'esercizio, mentre gli stati sono determinati dai termini differenziali: dato che sono due per ciascuna equazione, si

In questo esempio viene introdotta in modo diretto la notazione vettoriale per le equazioni del sistema avranno 4 stati; inoltre sarà necessario rispettare la scrittura $\dot{x}(t) = f(x, u, t)$ per ottenere le equazioni standard del sistema:

$$x(t) : \begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \dot{x}_{3}(t) \\ \dot{x}_{4}(t) \end{bmatrix} = \begin{bmatrix} p_{1}(t) \\ \dot{p}_{1}(t) \\ p_{2}(t) \\ \dot{p}_{2}(t) \end{bmatrix}$$

Ora possiamo scrivere le equazioni standard sostituendo nelle equazioni del sistema:

$$\begin{aligned}
(1.1.2) \quad & \begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \dot{x}_{3}(t) \\ \dot{x}_{4}(t) \end{bmatrix} = \begin{bmatrix} x_{2}(t) \\ \frac{1}{m_{1}} \left(-\beta_{1}x_{2}(t) - k_{1}x_{1}(t) - \beta_{2}(x_{2}(t) - x_{4}(t)) - k_{2}(x_{1}(t) - x_{3}(t)) + u(t) \right) \\ x_{4}(t) \\ \frac{1}{m_{2}} \left(-\beta_{2}(x_{4}(t) - x_{2}(t)) - k_{2}(x_{3}(t) - x_{1}(t)) + u_{2}(t) \right) \end{bmatrix} \\ & \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \end{bmatrix} = \begin{bmatrix} x_{1}(t) \\ x_{3}(t) \end{bmatrix}
\end{aligned}$$

Si tratta di un sistema dinamico del quarto ordine, lineare (le equazioni di stato e di uscita non hanno termini quadratici), stazionario, MIMO (due ingressi e due uscite), strettamente proprio (nell'equazione di uscita non compare l'ingresso).

1.1.3. Modello standard per processi LTI. Per i sistemi lineari stazionari (tempo-invarianti), chiamati LTI, la forma matriciale standard del modello è la seguente:

(1.1.3)
$$\begin{bmatrix} \dot{x}(t) = A \cdot x(t) + B \cdot u(t) \\ y(t) = C \cdot x(t) + D \cdot u(t) \end{bmatrix}$$

standard per sistemi LTI forma pio 1.5,

Modello

matriciale

I coefficienti A, B, C, D sono matrici di coefficienti ricavati dalle equazioni in forma matriciale "canonica": per esempio osservando le equazioni (1.1.2) dell'Esempio 1.5, si ha che le quattro matrici varranno rispettivamente:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -k_1 - k_2 & -\beta_1 - \beta_2 & +k_2 & +\beta_2 \\ m_1 & m_1 & m_1 & m_1 \\ 0 & 0 & 0 & 1 \\ \frac{k_2}{m_2} & \frac{\beta_2}{m_2} & -k_2 & -\beta_2 \\ m_2 & m_2 & m_2 & m_2 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 \\ 1/m_1 & 0 \\ 0 & 0 \\ 0 & 1/m_2 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

dove la matrice C ha sulle righe le uscite e sulle colonne gli stati (la prima uscita è pari al primo stato e la seconda pari al terzo stato); la matrice D ha sulle righe le uscite e sulle colonne gli ingressi (ed essendo il sistema nell'esempio strettamente proprio, sarà una matrice nulla); la matrice B ha sulle righe gli stati e sulle colonne gli ingressi; la matrice A ha sulle righe e sulle colonne gli stati.

Si noti che un sistema rimane lineare anche se tempo-variante: infatti se uno dei coefficienti matriciali cambia nel tempo, il modello (1.1.3) rimane una combinazione lineare.

In generale, posto che $u \in \mathbb{R}^m$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^p$, i coefficienti matriciali saranno rispettivamente di dimensione:

$$(1.1.4) A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$$

Ricapitolando, i coefficienti matriciali sono costituiti come $A = \#_{\text{stati}} \times \#_{\text{stati}}$, $B = \#_{\text{stati}} \times \#_{\text{ingressi}}$, $C = \#_{\text{uscite}} \times \#_{\text{stati}}$, $D = \#_{\text{uscite}} \times \#_{\text{ingressi}}$ dove $\#_i$ è la cardinalità della funzione i al pedice nelle equazioni (1.1.1).

Dimensioni dei coefficienti standard per sistemi LTI Un sistema particolare (della categoria LTI) che ha il modello (1.1.3) è il sistema a ritardo di tempo: i ritardi sono presenti in ogni sistema di controllo e rappresentano dei limiti alle prestazioni del sistema; per modellizzare un ritardo pari a τ secondi si scrive l'uscita influenzata come $y(t) = u(t - \tau)$.

Il sistema con questa uscita rimane lineare e ha una traslazione di y(t) lungo l'asse del tempo; per verificare che un sistema sia lineare non ostante la presenta di disturbi si può studiare usando la sovrapposizione degli effetti: se l'ingresso e l'uscita sono combinazioni lineari di due segnali allora il sistema è lineare, ovvero deve valere

Sovrapposizione degli effetti per LTI

(1.1.5)
$$u_{\text{TOT}}(t) = \alpha_1 u_1(t) + \alpha_2 u_2(t)$$

$$y_{\text{TOT}}(t) = \alpha_1 u_1(t - \tau) + \alpha_2 u_2(t - \tau)$$

Vale che $u_i(t-\tau)=y_i(t)$ ovvero l'uscita è pari all'ingresso sfasato del ritardo, da cui $y_{\text{TOT}}(t)=\alpha_1 y_1(t)+\alpha_2 y_2(t)$.

1.2. Comportamento del sistema

1.2.1. Movimenti ed equilibrio. Dato un sistema lineare ad un certo istante iniziale t_0 a cui corrisponde lo stato (condizione) iniziale $x(t_0) = x_0$ e un segnale u(t) per $t \in (t_0, \infty)$, in generale si può dire che:

DEFINIZIONE 1.3. Il movimento di un sistema LTI dinamico sono le funzioni x(t) e y(t) (rispettivamente dello stato e dell'uscita), a fronte di condizioni iniziali $x(t_0)$ e ingresso u(t) per $t > t_0$.

I movimenti di un sistema non lineare non sono calcolabili in forma chiusa ed è necessario applicare metodi di calcolo numerico. Una classe particolare di movimenti sono gli equilibri:

DEFINIZIONE 1.4. Gli equilibri di un sistema dinamico sono una classe di movimenti per cui il valore dell'ingresso, dello stato e dell'uscita sono costanti nel tempo; in termini di equazioni (1.1.1) si deve avere $\dot{x}(t) = 0$ per ottenere un andamento costante.

Un equilibrio è dunque una coppia di valori $(\overline{u}, \overline{x})$ tali che le equazioni di stato siano tutte nulle $(f(\overline{u}, \overline{x}, t) = 0)$ e l'uscita di equilibrio vale $g(\overline{u}, \overline{x}, t) = \overline{y}$.

Uno dei requisiti principali dei sistemi di controllo è la garanzia di stabilità; questo concetto è legato in modo analitico ai movimenti del sistema: si parla infatti di stabilità dei movimenti di un sistema (e non del sistema).

DEFINIZIONE 1.5. Il movimento dello stato ottenuto a partire da condizioni iniziali $x(t_0)$ e applicando l'ingresso $u(t \ge t_0)$ si dice stabile se, comunque preso un ε piccolo a piacere positivo esiste un δ piccolo a piacere positivo tale che, per tutti i valori di \tilde{x}_0 (perturbazioni dei valori iniziali) che soddisfano $\|\tilde{x}_0 - x_0\| \le \delta$ (condizione iniziale perturbata sufficientemente vicina a quella iniziale nominale) risulti $\|\tilde{x}(t) - x(t)\| \le \varepsilon$, dove $\tilde{x}(t)$ è il movimento generato dal sistema con condizione iniziale \tilde{x}_0 (valga $\tilde{x}(t_0) = \tilde{x}_0$) e lo stesso ingresso, con $t > t_0$.

Scrivendo la formula logica si ha che la definizione equivale a

Stabilità di un sistema LTI

$$(1.2.1) \qquad \forall \varepsilon > 0 \,\exists \delta > 0 \,(\forall \tilde{x}_0 \,(\|\tilde{x}_0 - x_0\| \le \delta) \Rightarrow \forall t > t_0 \,(\|\tilde{x} \,(t) - x \,(t)\| \le \varepsilon))$$

La definizione afferma che per ogni $t > t_0$ il segnale perturbato x(t) rimane confinato intorno al movimento nominale per una \tilde{x}_0 entro un intorno della condizione iniziale nominale.

Dalla Definizione 1.5 segue la

DEFINIZIONE 1.6. Un movimento si dice *instabile* se non vale la (1.2.1).

Se anche in presenza di una perturbazione si osserva una convergenza del movimento a quello nominale si parla di

DEFINIZIONE 1.7. Un movimento si dice asintoticamente stabile se soddisfa la Definizione 1.5 e vale

$$\lim_{t \to \infty} \|\tilde{x}(t) - x(t)\| = 0$$

ovvero la perturbazione si smorza nel tempo.

Nei capitoli successivi si vedrà che nel caso di sistemi lineari dinamici tempoinvarianti la stabilità è una proprietà strutturale, ovvero se il sistema ha un movimento stabile allora tutti i suoi movimenti sono stabili (quindi per i sistemi LTI si può anche parlare di stabilità del sistema).

Il prossimo esempio presenta il concetto di equilibrio dei movimenti e di sovrapposizione degli effetti in modo analitico:

ESEMPIO 1.6. Sia dato un circuito costituito da una serie di un resistore di resistenza R e un condensatore di capacità C; è possibile forzare una tensione v(t) ai capi della serie e si vuole misurare la tensione $v_c(t)$ ai capi del condensatore. \checkmark Studiare la condizione di equilibrio e i movimenti del sistema.

In analogia con l'Esempio 1.2, il modello per questo sistema, posto $v_c(t) = x(t)$, è $\dot{x}(t) = -1/RC \cdot x(t) + 1/RC \cdot u(t)$; y(t) = x(t). Applichiamo al circuito una tensione costante $u(t) = \overline{u}$ e controlliamo se si presenta un movimento di equilibrio: dalla Definizione 1.4 segue che dobbiamo cercare \overline{x} tale che $-1/RC \cdot \overline{x} + 1/RC \cdot \overline{u} = 0$; questo si verifica per $\overline{x} = \overline{u}$. Tutte le coppie $(\overline{x}, \overline{u})$ tali che $\overline{x} = \overline{u}$ sono equilibri.

Per capire di che tipo di equilibrio si tratti (stabile, instabile, asintoticamente stabile) si usa di nuovo la Definizione 1.4, assumendo che prendendo un movimento di equilibrio la condizione iniziale sia l'equilibrio stesso: partiamo dunque da $\overline{x} = x(t_0)$ e applichiamo il segnale costante $\overline{u} = u(t > t_0)$ (pari al valore di equilibrio); siccome il sistema è tempo-invariante possiamo considerare il tempo iniziale $t_0 = 0$.

Studiamo in queste condizioni il comportamento di un movimento del sistema a fronte di una perturbazione: ponendo $\tilde{x}(t_0) = \overline{x} + \delta$ scriviamo l'equazione del movimento quando $u(t) = \overline{u}$ come

$$\tilde{x}\left(t\right) = \tilde{x}_0 e^{-1/RCt} + \left(1 - e^{-1/RCt}\right) \overline{u}$$

Si tratta dell'equazione analitica del movimento dello stato in forma chiusa; notando che compaiono degli esponenziali con esponente sempre minore di zero (il tempo t e i valori di R e C sono positivi) possiamo affermare che la precedente tende per $t \to \infty$ a \overline{u} , che è il valore del movimento nominale: il movimento converge a quello nominale in modo asintotico, in particolare (dalla Definizione 1.5)

$$\|x(t) - \tilde{x}(t)\| = \|\overline{x} - \tilde{x}_0 e^{-1/RCt} - (1 - e^{-1/RCt})\overline{u}\|$$

$$\overline{x} \stackrel{\longrightarrow}{=} \overline{u} \|\overline{x} - \tilde{x}_0 e^{-1/RCt} - \overline{x} + e^{-1/RCt}\overline{u}\| = \|(\delta - \overline{x})e^{-1/RCt} + e^{-1/RCt}\overline{u}\|$$

$$\overline{u} \stackrel{\longrightarrow}{=} \|\delta e^{-1/RCt} + (\overline{x} - \overline{x}) e^{-1/RCt}\| = \|\delta e^{-1/RCt}\|$$

Nel passaggio * si è usata la considerazione iniziale per cui $\tilde{x}(t_0) = \overline{x} + \delta = \tilde{x}_0$; si ottiene un'esponenziale decrescente che soddisfa la Definizione 1.7, dunque per questo sistema qualsiasi condizione di equilibrio ha stabilità asintotica.

1.2.2. Formula di Lagrange. Vogliamo calcolare i movimenti di un sistema lineare: consideriamo prima l'equazione di stato (il movimento dell'uscita si ottiene facilmente dal movimento dello stato):

$$\dot{x}\left(\tau\right) = Ax\left(\tau\right) + Bu\left(\tau\right)$$

dove si assume che x ($\tau = t_0$) e u ($\tau > t_0$). Moltiplicando entrambi i membri per l'esponenziale di matrice $e^{A(t-\tau)}$ si ottiene

 $e^{A(t-\tau)}\dot{x}\left(\tau\right) - Ae^{A(t-\tau)}x\left(\tau\right) = e^{A(t-\tau)}Bu\left(\tau\right)$

$$e^{A(t-\tau)}\dot{x}\left(\tau\right) - Ae^{A(t-\tau)}x\left(\tau\right) = \frac{\partial\left(e^{A(t-\tau)}x\left(\tau\right)\right)}{\partial\tau}$$

La seconda uguaglianza mette in risalto che al primo membro è presente una derivata di un prodotto: sostituendo una delle due precedenti equazioni nell'altra e integrando entrambi i membri scriviamo

$$\int_{t_0}^{t} \frac{d}{d\tau} e^{A(t-\tau)} x(\tau) d\tau = \int_{t_0}^{t} e^{A(t-\tau)} Bu(\tau) d\tau$$

Il primo membro può essere ricavato direttamente come $\left[e^{A(t-\tau)}x\left(\tau\right)\right]_{t_0}^t=x\left(t\right)-e^{A(t-t_0)}x\left(t_0\right)$; il secondo membro non può essere manipolato nella sua forma generale: la scrittura risultante è la formula di Lagrange:

Formula di Lagrange

Si ricordi che i coefficienti scritti

quali valgono specifiche proprietà

l'appendice A)

(consultare

in maiuscolo sono matrici, per le

(1.2.2)
$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau) d\tau$$

La (1.2.2) è un integrale di convoluzione che permette di ottenere l'espressione del movimento dello stato di un sistema LTI; essa è la somma di due contributi: un primo contributo chiamato movimento libero (dipendente dalla matrice A e dalle condizioni iniziali), e un secondo contributo chiamato movimento forzato (dipendente dall'effetto dell'ingresso sul sistema).

Verifichiamo ora la proprietà della sovrapposizione degli effetti nei sistemi LTI sui movimenti del sistema:

D'ora in avanti si userà la sigla PSE per riferirsi al principio di sovrapposizione degli effetti OSSERVAZIONE 1.1. Il PSE afferma che, presa una coppia di condizioni iniziali e una di ingressi, il movimento dello stato e dell'uscita del sistema si ottiene come combinazione lineare dei movimenti degli ingressi e degli stati; poniamo per semplicità $t_0 = 0$ e scriviamo in generale le coppie ingresso-stati usando la (1.2.2):

$$\begin{cases} x'(t) = e^{At}x'_0 + \int_0^t e^{A(t-\tau)}Bu'(\tau) d\tau & \text{per } (x'_0, u'(t)) \\ x''(t) = e^{At}x''_0 + \int_0^t e^{A(t-\tau)}Bu''(\tau) d\tau & \text{per } (x''_0, u''(t)) \end{cases}$$

a questo punto si prende una terza coppia $(x_0''', u'''(t))$ come combinazione lineare dei movimenti delle due precedenti:

$$x_0''' = \alpha_1 x_0' + \alpha_2 x_0''$$

$$u'''(t) = \alpha_1 u'(t) + \alpha_2 u''(t)$$

dove i coefficienti α_1 e α_2 sono scalari; dalle due precedenti il movimento dello stato sarà (raccogliendo dalla (1.2.2))

$$x'''(t) = \alpha_1 x'(t) + \alpha_2 x''(t)$$

La (1.2.2) permette anche per calcolare l'espressione del movimento di uscita; nel contesto di questa osservazione vale

(1.2.3)
$$y(t) = Ce^{At}x_0 + C\int_0^t e^{A(t-\tau)}Bu(\tau) d\tau + Du(t)$$

Possiamo dunque calcolare i movimenti dell'uscita rispetto ai movimenti dello stato applicando la precedente e raccogliendo come per il movimento dello stato:

$$y'''(t) = \alpha_1 y'(t) + \alpha_2 y''(t)$$

1.2.3. Movimento libero e forzato. Prendiamo un sistema di ordine uno con a e b scalari: avremo il movimento dello stato $\dot{x}(t) = ax(t) + bu(t)$; consideriamo il movimento libero ponendo u(t) = 0 e supponiamo nota la condizione iniziale $x(t_0) = x_0$, applicando la (1.2.2) scriveremo

$$(1.2.4) x(t) = e^{at}x_0$$

Movimento libero

che è la componente del movimento libero. Questa funzione dipende dal valore di a nel seguente modo

- per a > 0 si ha un andamento esponenziale crescente;
- per a < 0 si ha un andamento esponenziale decrescente;
- per a = 0 si ha un andamento costante.

Considerando il caso a < 0, ci chiediamo quanto velocemente il movimento libero converga a zero, ovvero quando $x(t) = \varepsilon x_0$ con $\varepsilon \in (0,1)$ molto piccolo.

Sostituendo si ha $e^{at_{\varepsilon}}x_0 = x_0\varepsilon \to e^{at_{\varepsilon}} = \varepsilon \to t\varepsilon = \frac{1}{|a|}|\ln(\varepsilon)|$ e ponendo $T = \frac{1}{|a|}$ (chiamata costante di tempo) scriviamo infine

$$t_{\varepsilon} = T \left| \ln \left(\varepsilon \right) \right|$$

Il valore T ci dice quanto velocemente il movimento libero (per moto <u>convergente</u>) converge. Per esempio per $\varepsilon = 5\%$ vale $t_{\varepsilon} \simeq 3T$.

Analizziamo adesso il movimento forzato, ponendo l'ingresso al valore $u\left(t\right)=\overline{u}\cdot\sec\left(t\right)$ dove l'ingresso canonico $\sec\left(t\right): \begin{cases} 1 & \text{per } t\geq 0 \\ 0 & \text{per } t<0 \end{cases}$ viene moltiplicato per il valore costante \overline{u} . Annulliamo le altre condizioni iniziali per studiare solo la parte forzata, ponendo $t_0=0, \ \overline{u}>0, \ x_0=0$. Sono ammissibili due procedimenti:

utilizzano gli
ingressi canonici di
un sistema, segnali
interessanti dal
punto di vista delle
prestazioni del
sistema e del
calcolo del suo
comportamento;

useremo nel seguito lo scalino (sca(t))

Nell'automatica si

(1) FORMULA DI LAGRANGE:

Dall'integrale di convoluzione al secondo addendo di (1.2.2) otteniamo (portando le costanti fuori dall'integrale)

$$x(t) = \int_{0}^{t} e^{a(t-\tau)} b\overline{u}\operatorname{sca}(\tau) d\tau = e^{at} b\overline{u} \int_{0}^{t} e^{-a\tau} \operatorname{sca}(\tau) d\tau$$

Tra gli estremi di integrazione sca (τ) vale 1

$$(1.2.5) \qquad = e^{at}b\overline{u}\int_{0}^{t}e^{-a\tau}d\tau = -\frac{1}{a}e^{at}b\overline{u}\left[e^{-a\tau}\right]_{\tau=0}^{\tau=t} = \boxed{-\frac{b}{a}\overline{u}\left(1 - e^{at}\right)}$$

Movimento forzato

Al variare dello scalare a nell'esponenziale si hanno i seguenti andamenti (supponiamo $b \ge 0$):

- per a > 0 si ha un andamento esponenziale crescente, tendente a $+\infty$;
- per a < 0 si ha un andamento esponenziale decrescente, tendente a $\frac{b}{|a|}\overline{u}$;
- per a = 0 si ha un andamento lineare, tendente a $b\overline{u}$; per ottenerlo bisogna fare un passo indietro rispetto alla (1.2.2): se a si annulla infatti vale che $\dot{x}(t) = b\overline{u}$ che è un segnale costante, dunque la primitiva x(t) ha andamento di una retta divergente.

(2) Sovrapposizione degli effetti:

Calcoliamo per prima cosa la condizione di equilibrio del sistema $(\dot{x}(t) = 0)$ a fronte di un ingresso costante \overline{u}

(1.2.6)
$$\dot{x}(t) = a\overline{x} + b\overline{u} = 0 \to \boxed{\overline{x} = -\frac{b}{a}\overline{u}}$$

Interessiamoci al movimento forzato con ingresso a scalino e condizioni iniziali nulle; possiamo scomporre questo ingresso come una somma di contributi: condizione iniziale \overline{x} e u(t) = sca(t), e condizione iniziale $x_0 - \overline{x}$. Per il primo contributo, essendo il sistema in equilibrio per ipotesi, il movimento vale $x(t) = \overline{x}$. Per il secondo contributo considero

$$\begin{cases} x'_0 = \overline{x}, & u'(t) = \overline{u} \cdot \text{sca}(t) \\ x''_0 = -\overline{x}, & u''(t) = 0 \end{cases}$$

La somma di tali condizioni iniziali e ingressi fornisce il movimento cercato senza usare l'integrale di convoluzione:

$$\begin{cases} x'(t) = \overline{x} & (1) \\ x''(t) = -e^{at}\overline{x} \stackrel{*}{=} \frac{b}{a}e^{at}\overline{u} & (2) \end{cases}$$

dove la (1) rappresenta il movimento a partire da condizioni iniziali di equilibrio con ingresso di equilibrio, mentre (2) con ingresso nullo e condizione iniziale $-\overline{x}$ è la risposta libera del sistema (nell'uguaglianza * si è sostituita la (1.2.6) a \overline{x}).

Il movimento cercato sarà la somma dei due contributi appena calcolati (dalla (1.1.5) usiamo $x_0 = x_0' + x_0''$):

$$x(t) = -\frac{b}{a}\overline{u}\left(1 - e^{at}\right)$$

Otteniamo infine lo stesso risultato dell'integrale di convoluzione.

OSSERVAZIONE 1.2. Ricapitolando, abbiamo scelto una condizione iniziale e un ingresso per facilitare i calcoli: volendo studiare la condizione iniziale nulla $x_0 = 0$, prendiamo una prima condizione iniziale $x_0' = \overline{x}$ perché in sua presenza il movimento sarà costante pari a \overline{x} ; siccome la condizione di interesse è quella nulla, prendiamo un secondo movimento con condizione iniziale opposta al primo $(x_0'' - \overline{x})$ tale che la somma dei due si annulli. Infine abbiamo preso due ingressi tali che u'(t) + u''(t) = u(t).

Proviamo nuovamente a calcolare nel caso a < 0 il tempo che il movimento forzato impiega a raggiungere un valore stazionario (asintotico) di stato:

$$x(t_{\varepsilon}) = \overline{x}(1-\varepsilon) = -\frac{b}{a}\overline{u}(1-\varepsilon) = -\frac{b}{a}\overline{u}(1-e^{at_{\varepsilon}})$$

ottenuta dalle (1.2.6) per il secondo membro e (1.2.5) per il terzo. Dall'equazione precedente si ricava

$$t_{\varepsilon} = \frac{1}{|a|} \left| \ln \left(\varepsilon \right) \right|$$

che è la stessa condizione del (1.2.4); essa implica la presenza di una costante di tempo T = 1/|a| per movimenti convergenti (a < 0).

1.3. Rappresentazione equivalente

Rispetto al precedente paragrafo, dobbiamo generalizzare i conti fatti per ottenere i movimenti a coefficienti matriciali (soprattutto per quanto riguarda la matrice A); per affrontare questa generalizzazione introduciamo il seguente concetto di rappresentazione equivalente, in sistemi LTI.

Riprendendo l'Esempio 1.5, si era scelto come vettore dello stato posizione e velocità delle due masse; nulla ci vieta di scegliere diversamente lo stato. Prendendo distanza e velocità relative tra le due masse otteniamo:

$$x(t) = \begin{bmatrix} p_{1}(t) \\ \dot{p}_{1}(t) \\ p_{2}(t) \\ \dot{p}_{2}(t) \end{bmatrix} \rightarrow \hat{x}(t) = \begin{bmatrix} p_{1}(t) \\ p_{1}(t) - p_{2}(t) \\ \dot{p}_{1}(t) \\ \dot{p}_{1}(t) - \dot{p}_{2}(t) \end{bmatrix}$$

Si noti che è ammissibile qualsiasi scelta che sia una combinazione lineare degli stati di partenza; in questo specifico caso lo stato equivalente può essere espresso come il prodotto di una matrice di trasformazione per il vettore degli stati:

$$\hat{x}(t) = T \cdot x(t) \rightarrow \overbrace{ \begin{bmatrix} p_{1}(t) \\ p_{1}(t) - p_{2}(t) \\ \dot{p}_{1}(t) \\ \dot{p}_{1}(t) - \dot{p}_{2}(t) \end{bmatrix}}^{\hat{x}(t)} = \overbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}}^{T} \cdot \overbrace{ \begin{bmatrix} p_{1}(t) \\ \dot{p}_{1}(t) \\ \dot{p}_{2}(t) \\ \dot{p}_{2}(t) \end{bmatrix}}^{x(t)}$$

Perché l'equivalenza sia valida deve verificarsi che T sia una matrice invertibile (nel contesto di questo esempio det (T) = -1 quindi è invertibile).

Ci chiediamo ora come si possano ottenere le rispettive equazioni della dinamica del sistema: dalla precedente, esplicitando lo stato e supponendo T invertibile si può riscrivere che $x(t) = T^{-1} \cdot \hat{x}(t)$.

Partiamo da (1.1.3) e adottiamo le considerazioni appena fatte:

$$\dot{x}(t) = Ax(t) + Bu(t) \to T^{-1}\dot{\hat{x}}(t) = A \cdot T^{-1}\hat{x}(t) + Bu(t)$$
$$\to \dot{\hat{x}}(t) = T \cdot A \cdot T^{-1}\hat{x}(t) + T \cdot Bu(t)$$

L'equazione di uscita sarà di conseguenza

$$y(t) = C \cdot x(t) + D \cdot u(t) \to y(t) = C \cdot T^{-1}\hat{x}(t) + Du(t)$$

Il sistema che si ottiene è LTI della stessa forma di quello originale (1.1.3) ma con i coefficienti matriciali (la cosiddetta rappresentazione del modello) equivalenti che ridefiniscono le equazioni nel modo seguente:

(1.3.1)
$$\hat{A} = T \cdot A \cdot T^{-1}, \ \hat{B} = T \cdot B, \ \hat{C} = C \cdot T^{-1}, \ \hat{D} = D$$
$$\begin{cases} \dot{\hat{x}}(t) = \hat{A} \cdot \hat{x}(t) + \hat{B} \cdot u(t) \\ y(t) = \hat{C} \cdot \hat{x}(t) + \hat{D} \cdot u(t) \end{cases}$$

Modello equivalente per sistemi LTI A della rappresentazione.

OSSERVAZIONE 1.3. Per il PSE uno stato è combinazione lineare dello stato precedente e questo vale per tutti i movimenti; fissando condizione iniziale e ingresso si ottiene un movimento la cui rappresentazione equivalente è la combinazione lineare dei movimenti originali secondo la matrice T di trasformazione.

Nelle prossime sezioni vedremo che tutte le proprietà di un sistema LTI dipendono dagli autovalori di A, chiamati modi del sistema.

Dall'Osservazione A.10 possiamo risolvere il calcolo dei movimenti di un generico sistema con matrice A quadrata, di cui basta cercare la rappresentazione equivalente più comoda per risolvere le equazioni: se A fosse diagonalizzabile, potremmo adottare una rappresentazione equivalente nella quale \hat{A} è diagonale (quindi composta dai soli autovalori sulla diagonale mentre gli altri elementi sono nulli); questo facilita l'uso della (1.2.2) poiché l'esponenziale di una matrice diagonale si ricava facilmente. Si nota che qualsiasi movimento dello stato di un sistema LTI è combinazione lineare di un numero piccolo di movimenti possibili, tanti quanti gli autovalori della matrice

1.4. Movimenti generati dai modi

1.4.1. Modi e autovalori. Prendiamo in esame il caso in cui la matrice A da (1.1.3) sia diagonalizzabile (autovalori tutti distinti, vedi Osservazione A.9): gli autovettori della matrice saranno soluzione di $(\lambda_i I - A) v_i = 0$, generando una matrice di autospazi per una matrice diagonale di autovalori come

$$A = \underbrace{[v_1, v_2, \dots v_n]}_{T_{\mathrm{D}}} \cdot \underbrace{\operatorname{diag}\left\{\lambda_1, \lambda_2, \dots \lambda_n\right\}}_{A_{\mathrm{D}}} \cdot T_{\mathrm{D}}^{-1}$$

dove T_D è la trasformazione che diagonalizza A in A_D (matrice diagonale con autovalori di A); possiamo riscrivere la relazione tra la matrice e la sua diagonale nei modi seguenti:

$$T_{\mathrm{D}}^{-1} \cdot A_{\mathrm{D}} = A \cdot T_{\mathrm{D}}^{-1} \rightarrow A = T_{\mathrm{D}}^{-1} \cdot A_{\mathrm{D}} \cdot T_{\mathrm{D}} \rightarrow A_{\mathrm{D}} = T_{\mathrm{D}} \cdot A \cdot T_{\mathrm{D}}^{-1}$$

Se scegliamo un nuovo stato $\hat{x}(t) = T_D \cdot x(t)$ ottenuto tramite la matrice di diagonalizzazione, ottengo l'equazione del modello:

$$\begin{cases} \dot{\hat{x}}\left(t\right) = A_{\mathrm{D}} \cdot \hat{x}\left(t\right) + T_{\mathrm{D}} \cdot Bu\left(t\right) \\ y\left(t\right) = C \cdot T_{\mathrm{D}}^{-1} \cdot \hat{x}\left(t\right) + D \cdot u\left(t\right) \end{cases}$$

Notiamo che il nuovo sistema ha per matrice di stato una matrice diagonale (A_D) ; ponendo la condizione iniziale $\hat{x}_0 = T_D \cdot x_0$, il movimento libero (poniamo ingresso u(t) = 0) del sistema si ottiene dalla (1.2.4):

$$\hat{x}\left(t\right) = e^{A_{\rm D} \cdot t} \hat{x}_0$$

dove l'esponenziale di matrice diagonale vale $e^{A_{\rm D} \cdot t} = {\rm diag} \left\{ e^{\lambda_1 t}, \, e^{\lambda_2 t}, \, \dots e^{\lambda_n t} \right\}$, dove gli autovalori sulla diagonale sono chiamati modi del sistema.

OSSERVAZIONE 1.4. Questa è una generalizzazione del caso scalare studiato nella precedente sezione: la matrice A era composta da un singolo elemento e avevamo ottenuto movimenti della forma e^{at} .

Nel caso vettoriale con matrice A diagonalizzabile, troviamo una matrice di trasformazione $T_{\rm D}$ che produce un sistema equivalente il cui stato è combinazione degli stati originali, col vantaggio che la sua matrice di stato $(A_{\rm D})$ è diagonale; a questo punto analizzando il movimento libero con la (1.2.2) si ottiene necessariamente la combinazione lineare dei modi (espressioni della stessa forma $e^{\lambda_i t}$) del nuovo sistema.

Infine, calcoliamo il movimento libero dello stato del sistema originale, tramite la trasformazione inversa

$$x\left(t\right) = T_{\mathrm{D}}^{-1} \cdot \hat{x}\left(t\right)$$

Possiamo affermare che in sistemi LTI qualsiasi movimento libero del sistema è una combinazione dei suoi modi, che sono al più n. Se la matrice di stato ha coefficienti reali, si ottengono autovalori reali oppure complessi coniugati; i casi possibili sono elencati di seguito (viene sottinteso che per λ_i complessi si abbia una coppia di autovalori complessi coniugati):

- $\lambda_i \in \mathbb{R}$
 - $-\lambda_i < 0$: modo convergenti;
 - $-\lambda_i = 0$: modo costanti;
 - $-\lambda_i > 0$: modo divergenti.
- $\lambda_i \in \mathbb{C}$
 - $-\Re(\lambda_i) > 0$: modo oscillante divergente;
 - $-\Re(\lambda_i)=0$: modo oscillante limitato;
 - $-\Re(\lambda_i) < 0$: modo oscillante convergente.

Andamenti asintotici dei modi di sistemi LTI

In particolare, per il caso di autovalori complessi coniugati, avremo $\lambda_{i,1} = \sigma_i + j\omega_i$, $\lambda_{i,2} = \sigma_i - j\omega_i$, si dimostra che anche gli autovettori associati sono complessi coniugati e gli esponenziali $e^{\lambda_i t}$ saranno moltiplicati per coefficienti complessi coniugati; otterremo dei termini del tipo:

$$(a_i + jb_i) e^{(\sigma_i + j\omega_i)t} + (a_i - jb_i) e^{(\sigma_i - j\omega_i)t}$$

Se chiamiamo il modulo del coefficiente complesso $m_p = |a_i \pm jb_i|$ e la sua fase $\varphi_p = \arg(a_i \pm jb_i)$, possiamo riscrivere la precedente come:

$$m_p e^{j\varphi_p} \cdot e^{(\sigma_i + j\omega_i)t} + m_p e^{-j\varphi_p} \cdot e^{(\sigma_i - jw_i)t}$$

$$(1.4.1) = m_p e^{\sigma_i t} \cdot \left(e^{j(\omega_i t + \varphi_p)} + e^{-j(\omega_i t - \varphi_p)} \right) = \boxed{m_p e^{\sigma_i t} \cdot 2\cos(\omega_i t + \varphi_p)}$$

Modo oscillante

dove nella seconda uguaglianza è stata utilizzata la (A.5.1) ottenendo $e^{(\omega_i t \pm \varphi_p)} = \cos(\omega_i t \pm \varphi_p) + j\sin(\omega_i t \pm \varphi_p)$. Chiamiamo modo oscillante l'espressione (1.4.1), anche se in modo improprio dato che si tratta della combinazione lineare di due modi (la coppia di complessi coniugati); esso presenta un andamento reale in funzione del tempo.

ESEMPIO 1.7. Sia dato un circuito formato da una maglia con la serie di resistore di valore R, condensatore di valore C e induttore di valore L, chiusi su un generatore indipendente di tensione u(t), che è l'ingresso del sistema. Nella serie scorre una corrente i(t) e su condensatore e induttore ci sarà rispettivamente una tensione $v_c(t)$ e $v_L(t)$; \checkmark si scriva un modello per questo sistema che abbia come uscita la tensione sul condensatore $v_c(t)$ e \checkmark si analizzi il movimento

Figura 1.4.1. Circuito RLC con generatore controllato in ingresso

condensatore $v_c(t)$ e \checkmark si analizzi il movimento libero del sistema (senza ingresso) al variare dei parametri costruttivi (R, L, C).

Per i due componenti dinamici (condensatore e induttore) si hanno dalla Fisica le seguenti relazioni:

$$\frac{\partial}{\partial t}v_{c}\left(t\right) = \frac{i\left(t\right)}{C}$$

$$\frac{\partial}{\partial t}i\left(t\right) = \frac{v_{L}\left(t\right)}{L} = \frac{1}{L}\left(u\left(t\right) - Ri\left(t\right) - v_{c}\left(t\right)\right)$$

Abbiamo sostituito la tensione sull'induttore nella seconda relazione col bilancio delle tensioni sulla maglia, scrivendo $v_L(t)$ in funzione di $v_c(t)$, con Ri(t) la tensione sul resistore.

Scegliamo le variabili di stato per portare le equazioni in forma standard: abbiamo la derivata della tensione sul condensatore nella prima e la derivata della corrente nella seconda, quindi prendiamo:

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} i(t) \\ v_c(t) \end{bmatrix}$$

da cui segue la seguente scrittura per l'equazione di stato (1.1.3):

$$\dot{x}\left(t\right) = \overbrace{\begin{bmatrix} -R/L & -1/L \\ 1/C & 0 \end{bmatrix}}^{A} \cdot x\left(t\right) + \overbrace{\begin{bmatrix} 1/L \\ 0 \end{bmatrix}}^{B} u\left(t\right)$$

Scegliamo come condizioni iniziali una certa corrente nel circuito e una certa tensione ai capi della capacità al tempo $t=0=t_0$; imponiamo inoltre l'equazione di uscita per ottenere $v_c(t)$:

$$x_0 = \begin{bmatrix} x_{0,1} \\ x_{0,2} \end{bmatrix} = \begin{bmatrix} i(t_0) \\ v_c(t_0) \end{bmatrix}, \quad y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot x(t)$$

Cerchiamo prima di tutto gli autovalori della matrice di stato A:

$$\begin{vmatrix} \lambda + R/L & 1/L \\ -1/C & \lambda \end{vmatrix} = 0 \to \lambda^2 + \frac{R}{L}\lambda + \frac{1}{LC} = 0 \to \lambda_{1,2} = -\frac{R}{2L} \pm \sqrt{\frac{R^2C - 4L}{4L^2C}}$$

Dovremo studiare i casi distinti in cui gli autovalori saranno reali e i casi in cui saranno complessi coniugati, in dipendenza dal numeratore della frazione sotto radice. Dovendo cercare il movimento libero calcoleremo la funzione $e^{A \cdot t}x_0$, dalla (1.2.4).

Autovalori reali e distinti ($R^2C > 4L$):

In questo caso vale λ_1 , $\lambda_2 \in \mathbb{R} \wedge \lambda_1 \neq \lambda_2$ dunque avendo autovalori distinti la matrice A è diagonalizzabile; gli autovettori associati a tali autovalori sono:

$$v_1 = \begin{bmatrix} 1 \\ L\lambda_2 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ L\lambda_1 \end{bmatrix}$$

da cui otteniamo l'inversa della matrice di trasformazione e possiamo ricavare direttamente $T_{\rm D}$:

$$T_{\mathrm{D}}^{-1} = \begin{bmatrix} 1 & 1 \\ L\lambda_2 & L\lambda_1 \end{bmatrix} \to T_{\mathrm{D}} = \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & -1/L \\ -\lambda_2 & 1/L \end{bmatrix}$$

La matrice di stato sarà dunque simile a una matrice diagonale $A_{\rm D}$ con gli stessi autovalori:

$$A = \overbrace{\begin{bmatrix} 1 & 1 \\ L\lambda_2 & L\lambda_1 \end{bmatrix}}^{T_{\rm D}} \cdot \underbrace{\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}}_{A_{\rm D}} \cdot \overbrace{\frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & -1/L \\ -\lambda_2 & 1/L \end{bmatrix}}^{T_{\rm D}}$$

similitudine e diagonalizzabilità L'esponenziale di questa matrice diagonale vale quanto quello della sua diagonalizzabilità zata A_D trasformata da T_D :

$$e^{A \cdot t} = T_{\mathrm{D}}^{-1} \underbrace{\begin{bmatrix} e^{\lambda_{1} t} & 0 \\ 0 & e^{\lambda_{2} t} \end{bmatrix}} \cdot T_{\mathrm{D}}$$

D'ora in avanti si presti molta attenzione al pedice $_D$ alle matrici: le relazioni che seguono sfruttano le proprietà di similitudine e diagonalizzabilità de l'appendice A

La risposta libera del sistema $x(t) = e^{A \cdot t} x_0$ si riscrive dalle precedenti come:

$$x\left(t\right) = T_{\mathrm{D}}^{-1} \cdot e^{A_{\mathrm{D}}t} \cdot T_{\mathrm{D}} \cdot x_{0}$$

$$=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\frac{\left(\lambda_{1}x_{0,1}-\frac{1}{L}x_{0,2}\right)e^{\lambda_{1}t}+\left(\lambda_{2}x_{0,1}+\frac{1}{L}x_{0,2}\right)e^{\lambda_{2}t}}{\left(\lambda_{1}x_{0,1}-\frac{1}{L}x_{0,2}\right)L\lambda_{2}e^{\lambda_{1}t}+\left(-\lambda_{2}x_{0,1}+\frac{1}{L}x_{0,2}\right)L\lambda_{1}e^{\lambda_{2}t}}\right]$$

La precedente ha due componenti siccome lo stato ha due componenti. I suoi coefficienti sono una combinazione lineare dei coefficienti dello stato iniziale e degli elementi della matrice di trasformazione. Il movimento avrà un andamento sempre convergente: dall'espressione degli autovalori ricavata inizialmente si ricava

$$\lambda_{1,2} = -\frac{R}{2L} \left(1 \pm \sqrt{1 - \frac{4L}{R^2 C}} \right) < 0$$

essendoci posti nel caso $R^2C>4L$, quindi gli autovalori reali distinti saranno sempre negativi e ogni possibile modo derivante avrà andamento convergente.

Le costanti di tempo di ciascun modo sono $T_i = \frac{1}{|\lambda_i|}$.

Autovalori complessi coniugati ($R^2C < 4L$):

I due autovalori saranno pari a $\lambda_{1,2} = \sigma \pm j\omega \in \mathbb{C} \wedge \lambda_1 \neq \lambda_2$; essendo sempre distinti la matrice di stato sarà comunque diagonalizzabile. Gli autovettori di A e le relative matrici di trasformazione sono uguali a quelle ottenute nel caso precedente; in particolare vale

$$\sigma = -\frac{R}{2L}, \quad \omega = \sqrt{\frac{|R^2C - 4L|}{4L^2C}}$$

Anche in questo caso è corretta l'espressione per $x(t) = e^{A \cdot t} x_0$ ottenuta nel caso precedente; per facilitare la scrittura del primo stato, definiamo i seguenti:

$$m_p = \left| \frac{x_{0,1}}{2} - \frac{j}{2\omega} \left(\sigma x_{0,1} - \frac{1}{L} x_{0,2} \right) \right|, \quad \varphi_p = \arg \left(\frac{x_{0,1}}{2} - \frac{j}{2\omega} \left(\sigma x_{0,1} - \frac{1}{L} x_{0,2} \right) \right)$$

Dopo aver messo in coordinate polari i coefficienti tramite le due precedenti, si ottiene:

$$x_1(t) = m_p e^{\sigma t} \cdot 2\cos(\omega t + \varphi_p)$$

Viene riconfermato il risultato (1.4.1).

L'andamento è decrescente, determinato dall'esponente $\sigma=-R/2L<0$, dato che le grandezze di resistenza e induttanza sono sempre positive in un sistema reale; la pulsazione ω risulta invece inversamente proporzionale ai valori di resistenza e induttanza: se avessimo un circuito di resistenza R=0 si avrebbe $\omega=\sqrt{1/LC}$, che caratterizza il circuito come risonatore puro.

Autovalori coincidenti ($R^2C=4L$):

I due autovalori saranno pari a $\lambda_{1,2} \in \mathbb{R} \wedge \lambda_1 = \lambda_2 = -R/2L$ (si annulla la radice nell'espressione degli autovalori) e in generale, la matrice di stato potrebbe non essere diagonalizzabile: controlliamo che la molteplicità algebrica dell'autovalore λ (pari a 2 in questo caso) e quella geometrica coincidano:

$$g_1 = n - \text{rango}\left(-\frac{R}{2L}I - A\right) = 2 - \text{rango}\left(\begin{bmatrix} -\frac{R}{2L} + \frac{R}{L} & \frac{1}{L} \\ -\frac{1}{C} & -\frac{R}{2L} \end{bmatrix}\right)$$

Un circuito
oscillante
analogico, come un
risonatore puro, ha
applicazioni nel
campo
dell'elettronica
delle
telecomunicazioni

$$= 2 - \operatorname{rango}\left(\begin{bmatrix} -\frac{R}{2L} & \frac{1}{L} \\ -\frac{R^2}{4L} & -\frac{R}{2L} \end{bmatrix}\right) = 2 - 1 = 1$$

dove nella seconda abbiamo sostituito $C=4L/R^2$ dalla condizione studiata e il rango è 1 poiché la seconda riga è combinazione lineare della prima per -R/2. Essendo $g_1 < n_1$ la matrice di stato non è diagonalizzabile; tuttavia può essere scritta in forma (A.3.2): la matrice A_J ottenuta sarà in relazione con A nel modo seguente:

$$(1.4.2) A = T_{\scriptscriptstyle \rm J}^{-1} \cdot A_{\scriptscriptstyle \rm J} \cdot T_{\scriptscriptstyle \rm J}$$

La matrice in forma di Jordan avrà sulla diagonale i due autovalori coincidenti e un 1 in posizione $a_{1,2}$ mentre la matrice di trasformazione si ottiene calcolando (A.3.1):

$$A_{\mathbf{J}} = \begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{bmatrix}, \quad T_{\mathbf{J}}^{-1} = \begin{bmatrix} 1 & 1 \\ \lambda_1 L & L\left(\lambda_1 - 1\right) \end{bmatrix} \rightarrow T_{\mathbf{J}} = \frac{1}{L} \begin{bmatrix} L\left(\lambda_1 - 1\right) & 1 \\ -\lambda_1 L & 1 \end{bmatrix}$$

Possiamo a questo punto ottenere il movimento libero con (1.2.4) applicato al sistema in forma di Jordan, a cui applichiamo la trasformazione (1.4.2):

(1.4.3)
$$x(t) = T_{J}^{-1} \cdot e^{A_{J}t} \cdot T_{J} \cdot x_{0} = e^{At}x_{0}$$
 dove si ha che $e^{A_{J}t} = \begin{bmatrix} e^{\lambda_{1}t} & te^{\lambda_{1}t} \\ 0 & e^{\lambda_{1}t} \end{bmatrix}$.

OSSERVAZIONE 1.5. Svolgendo il prodotto (1.4.3) otteniamo una risposta libera come combinazione lineare dei modi ottenuti nel caso di autovalori reali distinti, con dei nuovi modi esponenziali (tanti quanti gli autovalori con $g_i < n_i$).

Nel caso di una matrice non diagonalizzabile, gli autovalori con molteplicità algebrica $n_i > 1$ che si ottengono dalla forma di Jordan determinano i seguenti andamenti dei modi:

- $\lambda_i \in \mathbb{R}$ (modi del tipo $te^{\lambda_i t}$):
 - $-\lambda_i > 0$: modo divergente;
 - $-\lambda_i = 0$: modo limitato;
 - $-\lambda_i < 0$: modo convergente.
- $\lambda_i \in \mathbb{C}$ (autovalori complessi coniugati, modi del tipo $te^{\sigma t} (\cos (\omega t + \varphi) + j \sin (\omega t + \varphi))$):
 - $-\Re(\lambda_i) > 0$: modo divergente (esponenziale);
 - $-\Re(\lambda_i) = 0$: modo divergente (lineare);
 - $-\Re(\lambda_i) < 0$: modo convergente.

$$F\left(t\right) \to \boxed{1/m} \stackrel{\ddot{p}(t)}{\to} \left[\int_{0}^{t} \ddot{p}\left(t\right) dt + p_{0} \right] \stackrel{\dot{p}(t)}{\to} \left[\int_{0}^{t} \dot{p}\left(t\right) dt + p_{0} \right] \to p\left(t\right)$$

Figura 1.4.2. Schema a blocchi del doppio integratore in questo sistema

Il sistema
nell'esempio con
due autovalori
coincidenti nulli
appartiene alla
categoria dei doppi
integratori

Esempio 1.8. Consideriamo un carrello di massa m che si muova lungo una superficie priva di attrito con una traiettoria rettilinea; la sua posizione è data da p(t) mentre ad esso è applicata una forza esterna F(t). \checkmark Scrivere un modello per questo sistema in cui si misuri la posizione e \checkmark stabilirne l'andamento dei modi.

Si ricava facilmente l'equazione della dinamica del sistema:

$$m \cdot a(t) = F(t)$$

L'ingresso del sistema sarà la forza (u(t) = F(t)) e l'uscita da misurare la posizione (y(t) = p(t)); come stati scegliamo la posizione (p(t)) e la velocità $(\dot{p}(t))$ in modo da poter scrivere in funzione di essi l'accelerazione $(\ddot{p}(t))$:

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} p(t) \\ \dot{p}(t) \end{bmatrix}$$

Dalla (1.1.3) le equazioni di stato saranno scritte come:

$$\dot{x}\left(t\right) = \overbrace{\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}}^{A} \cdot \overbrace{\begin{bmatrix}p\left(t\right)\\\dot{p}\left(t\right)\end{bmatrix}}^{x\left(t\right)} + \overbrace{\begin{bmatrix}0\\1/m\end{bmatrix}}^{B} \cdot \overbrace{F\left(t\right)}^{u\left(t\right)}$$

Il sistema di questo esempio si chiama appunto doppio integratore poiché presenta due integrazioni in serie dell'ingresso (mostrate in Figura 1.4.2); cerchiamo gli autovalori della matrice di stato per calcolare i movimenti del sistema: essendo una matrice triangolare, gli autovalori sono i coefficienti sulla diagonale principale, ovvero vale:

$$\lambda_1 = \lambda_2 = 0$$

Si osserva inoltre che A è già in forma (A.3.2); posto $x(t_0) = x_0$, il movimento libero (1.2.4) di questo sistema sarà pari a

$$x(t) = e^{A \cdot t} x_0 = \begin{bmatrix} e^{0t} & t e^{0t} \\ 0 & e^{0t} \end{bmatrix} \cdot \begin{bmatrix} x_{0,1} \\ x_{0,2} \end{bmatrix} = \begin{bmatrix} x_{0,1} + t x_{0,2} \\ x_{0,2} \end{bmatrix}$$

dove l'esponenziale si calcola in modo diretto per la matrice di stato di ordine 2 in forma di Jordan.

Il movimento ottenuto rappresenta il fatto che in un sistema di questo tipo, in assenza di forze in ingresso e di disturbi come l'attrito (siamo nel caso dell'esempio) la velocità rimarrà costante nel tempo mentre la posizione (integrale della velocità) aumenterà in modo lineare.

Calcoliamo invece il movimento forzato applicando in ingresso uno scalino (forza costante) come $u(t) = \overline{u} \cdot \text{sca}(t)$; la (1.2.5) assume il seguente valore:

$$x\left(t\right) = \int_{0}^{t} e^{A(t-\tau)} Bu\left(\tau\right) d\tau = \int_{0}^{t} \begin{bmatrix} 1 & t-\tau \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \cdot \overline{u} \cdot \operatorname{sca}\left(\tau\right) d\tau$$

$$= \int_{0}^{t} \left[\frac{t - \tau}{m} \overline{u} \cdot \operatorname{sca}(\tau) \right] d\tau = \left[\frac{\overline{u}}{2m} \left[-(t - \tau)^{2} \right]_{0}^{t} \right] = \left[\frac{\overline{u}}{2m} t^{2} \right]$$

I coefficienti risultanti dal movimento forzato sono una riscrittura delle equazioni della dinamica, rispettivamente $a_{1,1}: v(t) = a(t)t, a_{2,1}: p(t) = \frac{1}{2}a(t)t^2$ ponendo $a(t) = \overline{u}/m$. Notiamo inoltre che il movimento forzato della posizione sarà un esponenziale mentre quello della velocità è lineare, entrambi divergenti.

1.4.2. Modo dominante. Prendiamo in esame i sistemi con autovalori reali negativi: essi generano modi convergenti; la costante di tempo associata a ciascun autovalore dipende inversamente da esso come $T_i = 1/|\lambda_i|$ (esiste solo per modi convergenti).

Se invece abbiamo autovalori complessi coniugati nella forma (1.4.1) possiamo vedere la costante di tempo come il tempo impiegato dall'ampiezza dell'oscillazione a scendere sotto una certa soglia: concettualmente si parla dell'esponente σ nel modo oscillante, e la costante di tempo può essere definita come $T = 1/|\sigma|$.

In generale, in un sistema di ordine n ci saranno al più n autovalori con associate le rispettive costanti di tempo; la risposta complessiva del sistema (la combinazione lineare dei modi) sarà influenzata dal modo più "lento" (quello con costante di tempo maggiore): tale modo si chiama $modo\ dominante$, il quale avrà analiticamente l'autovalore associato con parte reale più piccola degli altri.

1.5. Equilibrio di sistemi LTI

Per portare in equilibrio un sistema LTI a tempo continuo bisogna avere una coppia di condizioni iniziali e ingressi costanti $(\overline{x}, \overline{u})$ tali che il movimento di stato rimanga costante, ovvero $\dot{x}(t): A \cdot \overline{x} + B \cdot \overline{u} = 0$, e l'equazione di uscita segue da (1.1.3) risultando in $\overline{y} = C \cdot \overline{x} + D \cdot \overline{u}$; questa equazione ammette una e una sola soluzione quando A è invertibile:

- Se A è priva di autovalori nulli allora essa è invertibile, e a fronte di qualsiasi ingresso costante troviamo sempre uno e un solo stato di equilibrio; dall'equazione di stato si ottiene $\overline{x} = A^{-1} \cdot B \cdot \overline{u}$.
- Se A non è invertibile almeno un autovalore è nullo e bisogna risolvere $A \cdot \overline{x} = -B \cdot \overline{u}$.

Dalle precedenti considerazioni scriviamo le equazioni di equilibrio del sistema rispetto ai valori iniziali e alle uscite di equilibrio, ammettendo che A sia invertibile:

$$\begin{cases} \overline{x} = A^{-1} \cdot B \cdot \overline{u} \\ \overline{y} = (-C \cdot A^{-1} \cdot B + D) \overline{u} \end{cases}$$

ESEMPIO 1.9. Dall'Esempio 1.8 otteniamo la seguente equazione del sistema (notando che A non è invertibile in questo caso):

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \end{bmatrix} = - \begin{bmatrix} 0 \\ 1/m \end{bmatrix} \cdot \overline{u}$$

L'equazione ammette soluzione solo per ingresso nullo $\overline{u}=0$, mentre la prima equazione impone la velocità $\overline{x}_2=0$; a questo punto la posizione $\overline{x}_1=\alpha, \alpha\in\mathbb{R}$ può assumere qualunque valore reale.

1.6. Risposta all'impulso

L'ingresso canonico chiamato impulso è definito come imp $(t) = \{1 \text{ per } t = 0; 0 \text{ per } t \neq 0\}$ e il suo integrale vale:

$$\int_{-\infty}^{\infty} imp(t) dt = 1$$

Nella realtà non è possibile avere un ingresso istantaneo: per modellizzare l'impulso si forza nel sistema un ingresso molto ampio per un breve periodo di tempo a partire da t=0.

Noto il movimento generato dall'impulso di un sistema LTI, è possibile calcolare il movimento forzato derivante da qualsiasi altro ingresso in condizioni iniziali nulle. In generale il movimento forzato dello stato sarà ottenuto da (1.2.2) come:

$$x_{F}(t) = \int_{0}^{t} e^{A(t-\tau)} B \cdot \operatorname{imp}(\tau) d\tau = e^{A \cdot t} \cdot B \int_{0}^{t} \operatorname{imp}(\tau) d\tau$$

$$= e^{A \cdot t} \cdot B$$
(1.6.1)

Risposta all'impulso

Si ottiene questo risultato osservando che l'impulso vale 1 solo per $\tau=0$ e per qualunque valore di $\tau\neq 0$ il prodotto con l'impulso che si annulla annulla tutto l'integrale; nota la (1.6.1) possiamo calcolare in generale il movimento forzato del sistema come integrale di convoluzione di (1.2.5) in cui l'argomento contiene il termine (1.6.1) per l'ingresso forzato in esame.

Un sistema si dirà stabile se la risposta all'impulso genera modi convergenti: osservando la risposta all'impulso (1.6.1) come la risposta libera (1.2.4) con condizioni iniziai pari a B, si vorranno ottenere combinazioni lineari di modi convergenti per garantire la stabilità del sistema.

1.7. Stabilità del sistema

1.7.1. Condizioni di stabilità in sistemi a tempo continuo. Prendiamo un sistema LTI a tempo continuo e poniamoci in una condizione di equilibrio: il movimento dello stato si ottiene dalla (1.2.2); perturbiamo ora la condizione iniziale applicando lo stesso ingresso di equilibrio e chiamiamo $\tilde{x}_0 = x(t_0) + \delta$ dove δ è una perturbazione iniziale.

Scriviamo il movimento perturbato come:

$$\tilde{x}(t) = e^{A \cdot t} \tilde{x}_0 + \int_0^t e^{A(t-\tau)} B \cdot u(\tau) d\tau$$

La distanza della perturbazione da x(t) sarà definita da $\delta x(t) = \tilde{x}(t) - x(t)$, dove possiamo raccogliere l'esponenziale di matrice e notando che si annulla il termine dovuto all'ingresso (abbiamo ipotizzato una condizione di equilibrio) avremo:

$$(1.7.1) e^{A \cdot t} \left(\tilde{x} - x_0 \right) = e^{A \cdot t} \delta$$

Andamento della perturbazione

Si ottiene questo risultato a prescindere dalle condizioni iniziali.

OSSERVAZIONE 1.6. In un sistema LTI a tempo continuo, presa qualsiasi coppia di movimento e movimento perturbato, la distanza tra i due movimenti è data sempre dalla (1.7.1); da questo deriva il seguente Teorema 1.1.

TEOREMA 1.1. In un sistema LTI un movimento (incluso quello di equilibrio) è stabile, asintoticamente stabile o instabile se e solo se sono rispettivamente stabili, asintoticamente stabili o instabili tutti i movimenti del sistema.

Teorema sulla stabilità del sistema

OSSERVAZIONE 1.7. Si nota che l'equazione (1.7.1) è l'espressione di un movimento libero (1.2.4), dunque è una combinazione lineare dei modi del sistema: si deduce che l'espressione (1.7.1) sarà limitata, convergente o divergente a seconda dell'andamento di questi modi. Possiamo quindi controllare l'andamento di (1.7.1) per conoscere l'andamento di tutto il sistema, per il Teorema 1.1.

Possiamo usare le condizioni (1.4.1) assieme alla precedente osservazione per ottenere le seguenti considerazioni:

Teorema dell'asintotica stabilità TEOREMA 1.2. Un sistema LTI della forma (1.1.3) si dice asintoticamente stabile se e solo se <u>tutti</u> gli autovalori della sua matrice di stato (A) hanno parte reale negativa (ovvero quando (1.7.1) converge a zero).

 $Teorema\ dell'instabilità$

TEOREMA 1.3. Un sistema LTI della forma (1.1.3) si dice instabile se e solo se almeno uno degli autovalori della sua matrice di stato (A) ha parte reale positiva.

Per autovalori con parte reale nulla, bisogna controllare la diagonalizzabilità della matrice di stato $(n_i = g_i)$: se questo si verifica si ottengono solo modi limitati; se la molteplicità geometrica è inferiore a quella algebrica, allora tutti i modi divergeranno (vedi le condizioni a pagina 22). Enunciamo il seguente

TEOREMA 1.4. In un sistema LTI, per autovalori della matrice di stato tali che $\Re(\lambda_i) = 0$, se vale $n_i = g_i$ si ha un sistema stabile (modi limitati); nel caso in cui $g_i < n_i$ allora il sistema è instabile.

Riprendiamo due esempi fatti in precedenza per mostrare un'applicazione dei teoremi appena enunciati:

Dall'Esempio 1.7 si ottenevano due autovalori nella forma $\lambda_{1,2} = -\frac{R}{2L} \pm \sqrt{\frac{R^2C - 4L}{4L^2C}}$; per $R \neq 0$ si ottengono sempre autovalori con parte reale negativa: il sistema risulterà asintoticamente stabile; per R = 0 si ottengono autovalori complessi coniugati (immaginari puri): il sistema risulterà semplicemente stabile.

Dall'Esempio 1.8 si ottenevano autovalori nulli con molteplicità algebrica maggiore della geometrica: dalla matrice di stato in forma di Jordan si ottiene che il sistema è instabile.

Elenchiamo ora alcune proprietà dei sistemi LTI asintoticamente stabili:

- (1) Un movimento per $t \to \infty$ non dipende dalle condizioni iniziali $x(t_0)$;
- (2) La risposta (movimento) a un impulso tende ad annullarsi per $t \to \infty$;
- (3) La risposta (movimento) a qualsiasi ingresso limitato nel tempo tende ad annullarsi per $t \to \infty$;
- (4) Gli stati e le uscite di equilibrio, con ingresso costante nel tempo (\overline{u}) , sono unici e pari a \overline{x} e \overline{y} ;
- (5) Il sistema gode della proprietà di *stabilità esterna*: a fronte di ingressi limitati nel tempo, anche le uscite saranno limitate nel tempo.

1.7.2. Segno degli autovalori. Sappiamo che gli autovalori della matrice di stato sono i valori per cui vale la Definizione A.9 e risolvono (A.2.1); chiamiamo tale polinomio $\varphi(\lambda) = 0$, che in generale ha grado pari all'ordine della matrice da cui deriva (nel nostro caso ha grado pari all'ordine di A).

Possiamo scrivere tale polinomio come

(1.7.2)
$$\varphi(\lambda) = \varphi_0 \lambda^n + \varphi_1 \lambda^{n-1} + \ldots + \varphi_n$$

Studiamo il segno della parte reale delle soluzioni di tale polinomio, osservando i suoi coefficienti; enunciamo su questa base il seguente:

TEOREMA 1.5. Se il sistema della forma (1.1.3) è asintoticamente stabile, allora i coefficienti del suo polinomio caratteristico φ_i , $i \in 0 \dots n$ hanno tutti lo stesso segno.

COROLLARIO 1.1. In un sistema di ordine $n \leq 2$, la condizione del Teorema (1.5) diventa necessaria e sufficiente.

Nel caso di un sistema di ordine maggiore di 2 con segno concorde per tutti gli autovalori della matrice di stato, il sistema potrebbe essere stabile ma bisogna verificarlo col criterio proposto nella sezione successiva.

La proprietà di stabilità esterna è abbreviata come BIBO: bounded input, bounded output 1.7.3. Criterio di Routh. Enunciamo un criterio che fornisce una condizione necessaria e sufficiente per stabilire la stabilità asintotica di un sistema; questo criterio si basa sulla seguente tabella di Routh, costruita a partire dal polinomio caratteristico nella forma (1.7.2):

Questa tabella si compila grazie al seguente algoritmo di Routh che dalle due righe precedenti (h_i, k_i) ottiene la successiva (ℓ_i) :

(1.7.4)
$$\ell_i = -\frac{1}{k_1} \cdot \det \left(\begin{bmatrix} h_1 & h_{i+1} \\ k_1 & k_{i+1} \end{bmatrix} \right) = h_{i+1} - \frac{h_1 k_{i+1}}{k_1}$$

Si osserva che in generale la tabella è triangolare, e inoltre l'algoritmo non si può applicare per il caso $k_1 = 0$ per almeno una riga (in tal caso si dice che la (1.7.3) non è ben definita). L'algoritmo termina quando si otterrebbe uno zero nella prima posizione della riga più in basso.

TEOREMA 1.6. Un sistema LTI della forma (1.1.3) è asintoticamente stabile se e solo se la tabella di Routh (1.7.3) del polinomio caratteristico della matrice di stato (A) del sistema è ben definita, e tutti gli elementi sulla prima colonna della tabella hanno segno concorde.

Criterio di Routh

COROLLARIO 1.2. Il numero di variazioni di segno degli elementi sulla prima colonna della tabella (1.7.3) è pari al numero di autovalori con parte reale positiva (i quali generano modi instabili).

Esempio 1.10. Sia dato il seguente polinomio caratteristico della matrice di stato di un sistema LTI di ordine 5

$$\varphi(\lambda) = \lambda^5 + 15\lambda^4 + 85\lambda^3 + 225\lambda^2 + 274\lambda + 120$$

✓ Verificare la stabilità dei movimenti del sistema.

Il Teorema 1.5 fornisce un indizio sulla possibile stabilità del sistema: usiamo il Teorema 1.6 per sfruttarne la condizione sufficiente; grazie all'algoritmo (1.7.4) compiliamo la seguente tabella:

Il sistema risulta asintoticamente stabile per il Teorema 1.6 poiché tutti gli elementi della prima colonna hanno segno concorde. \Box

ESEMPIO 1.11. Sia dato un sistema LTI con parametri incerti, ovvero gli autovalori sono variabili; è possibile calcolare il polinomio caratteristico rispetto a tali parametri: \checkmark si valuti dunque la stabilità del sistema col seguente polinomio caratteristico di stato

$$\varphi(\lambda) = \lambda^3 + (2+\beta)\lambda^2 + (1+2\beta)\lambda + \alpha + \beta$$

Grazie al Teorema 1.6 possiamo compilare una tabella di Routh e ottenere su di essa le condizioni perché gli autovalori incerti abbiano segno concorde.

Imponiamo che tutti i coefficienti della prima colonna siano maggiori di zero (è presente un 1, che è costante e positivo, esso influenza il segno della colonna):

$$\begin{cases} 2+\beta > 0\\ 2(\beta+1)^2 - \alpha > 0\\ \alpha+\beta > 0 \end{cases}$$

Le coppie (α, β) che soddisfano tutte queste condizioni generano movimenti asintoticamente stabili per il sistema. Quelle che non le soddisfano generano movimenti instabili.

1.8. Sistemi non lineari tempo-invarianti

1.8.1. Linearizzazione. Un sistema si definisce non lineare quando una delle equazioni (1.1.3) non è una combinazione degli stati con gli ingressi; il calcolo dei movimenti per questo tipo di sistemi, a partire da condizioni iniziali ben definite e un certo ingresso non è risolvibile in forma chiusa (l'equazione differenziale dello stato avrà almeno una costante indeterminata).

I movimenti di equilibrio di questi sistemi sono tuttavia ottenibili direttamente usando la Definizione 1.4; per sistemi non lineari si cercano nella pratica degli equilibri di interesse attorno ai quali i movimenti sono stabili. Grazie a una trasformazione chiamata linearizzazione, ovvero tramite uno sviluppo di Taylor al primo ordine (lineare) delle matrici (1.1.4) nel punto di equilibrio, si studia la stabilità dei movimenti del sistema.

Si effettua dunque la seguente approssimazione: sia dato un sistema nella forma (1.1.3), e una sua condizione di equilibrio $(\overline{x}, \overline{u})$; lo sviluppo di Taylor troncato al primo ordine delle equazioni di stato e di uscita vale:

$$\dot{x}\left(t\right) = f\left(\overline{x}, \,\overline{u}, \,t\right) + \left.\frac{\partial f}{\partial x}\right|_{\overline{x}, \overline{u}} \cdot \left(x\left(t\right) - \overline{x}\right) + \left.\frac{\partial f}{\partial u}\right|_{\overline{x}, \overline{u}} \cdot \left(u\left(t\right) - \overline{u}\right)$$

$$y\left(t\right) = g\left(\overline{x}, \,\overline{u}, \,t\right) + \left.\frac{\partial g}{\partial x}\right|_{\overline{x}, \overline{u}} \cdot \left(x\left(t\right) - \overline{x}\right) + \left.\frac{\partial g}{\partial u}\right|_{\overline{x}, \overline{u}} \cdot \left(u\left(t\right) - \overline{u}\right)$$

Se definiamo le quantità $\delta x(t) = x(t) - \overline{x}$ e $\delta u(t) = u(t) - \overline{u}$ per le equazioni di stato, e la quantità $\delta y(t) = y(t) - \overline{y}$ per l'equazione di uscita, le precedenti diventano

(1.8.1)
$$\delta \dot{x}(t) = \dot{x}(t) - \dot{\overline{x}} = \underbrace{\frac{\partial f}{\partial x}\Big|_{\overline{x},\overline{u}}}_{C} \cdot \delta x(t) + \underbrace{\frac{\partial f}{\partial u}\Big|_{\overline{x},\overline{u}}}_{D} \cdot \delta u(t)$$

$$\delta y(t) = y(t) - \overline{y} = \underbrace{\frac{\partial g}{\partial x}\Big|_{--}}_{C} \cdot \delta x(t) + \underbrace{\frac{\partial g}{\partial u}\Big|_{--}}_{D} \cdot \delta u(t)$$

Forma linearizzata tempo-invariante

Ritroviamo le equazioni della forma standard (1.1.3); l'approssimazione fatta vale in un intorno appropriato dell'equilibrio. Come per i sistemi lineari, valgono i risultati sulla stabilità asintotica e sul segno degli autovalori della matrice di stato A. In particolare enunciamo i seguenti teoremi:

TEOREMA 1.7. Lo stato di equilibrio \overline{x} relativo all'ingresso \overline{u} per un sistema non lineare della forma (1.1.3), si dice asintoticamente stabile se tutti gli autovalori della matrice di stato A del sistema (1.8.1) hanno parte reale negativa.

TEOREMA 1.8. Lo stato di equilibrio \overline{x} relativo all'ingresso \overline{u} per un sistema non lineare della forma (1.1.3), si dice instabile se almeno uno degli autovalori della matrice di stato A del sistema (1.8.1) ha parte reale negativa.

Si nota che entrambi i teoremi sono i corrispettivi dei 1.2 e 1.3, ma per i sistemi non lineari le condizioni poste sono solo sufficienti; nel caso di autovalori nulli non è possibile, a partire da un equilibrio di un sistema linearizzato, determinare la sua stabilità.

1.8.2. Metodo grafico per sistemi non lineari. Tale metodo è applicabile solo per sistemi di ordine molto piccolo, nel nostro caso di ordine 1; questo metodo è una alternativa alla linearizzazione che però coinvolge il disegno della funzione di stato su un grafico costruito in un certo modo.

Consideriamo $\dot{x}(t) = f(t)$ costante con $x \in \mathbb{R}$; rappresentiamo sul riferimento $(\dot{x}(t), x(t))$ l'andamento della derivata della funzione di stato, e osserviamo che:

- I punti in cui la funzione f(t) (la derivata dello stato) si annulla rappresentano gli equilibri dello stato;
- La stabilità degli equilibri individuati è determinata dal segno della funzione f(t):
 - se la funzione decresce a destra e cresce a sinistra (riporta lo stato sul valore di equilibrio) l'equilibrio è asintoticamente stabile;
 - se la funzione cresce o decresce sia a destra che a sinistra, l'equilibrio è stabile semplicemente;
 - se la funzione cresce a destra e decresce a sinistra (allontana lo stato dal valore di equilibrio) l'equilibrio è instabile.

Figura 1.8.1. Funzione di stato analizzata col metodo grafico

Esempio 1.12. Sia dato il grafico in figura che indica l'andamento dell'equazione di stato in funzione dello stato, in un sistema di ordine 1: \checkmark determinare la stabilità degli eventuali equilibri.

Notiamo che la funzione di stato (una cosinusoide) si annulla in tre punti, che chiameremo in ordine 1, 2 e 3; osservando il segno della funzione (se si trova al di sopra o al di sotto dell'asse orizzontale) giungiamo alle seguenti conclusioni:

- (1) equilibrio instabile;
- (2) equilibrio asintoticamente stabile;
- (3) equilibrio instabile.

CAPITOLO 2

Sistemi dinamici a tempo discreto

2.1. Modello matematico nel tempo discreto

2.1.1. Processi a tempo discreto. Le considerazioni già fatte per i sistemi lineari a tempo continuo valgono ancora, con degli accorgimenti, per i sistemi a tempo discreto. Questi ultimi presentano la variabile temporale definita in istanti atomici $(k \in \mathbb{Z})$, e la dinamica del sistema evolve per successione di istanti.

La riscrittura del modello matriciale standard per i sistemi a tempo discreto è la seguente:

$$\begin{cases} x\left(k+1\right) = f\left(x\left(k\right),\,u\left(k\right),\,k\right) & \text{Equazione di stato} \\ y\left(k\right) = g\left(x\left(k\right),\,u\left(k\right),\,k\right) & \text{Equazione di uscita} \end{cases}$$

Equazioni di un processo a tempo discreto

In generale lo stato ha n dimensioni e l'ingresso m dimensioni, mentre l'uscita p dimensioni, come secondo (1.1.4).

Definiamo i movimenti generati da questa categoria di sistemi, a fronte di condizione iniziale $x_0 = x(k_0)$ e l'andamento dell'ingresso u(k) per $k \ge 0$, iterando l'equazione (2.1.1) fino al k-esimo istante di interesse; l'istante di tempo discreto può riferirsi sia a eventi periodici (ogni minuto, primo di ogni mese) oppure a eventi che non dipendono dallo scorrere del tempo (auto che entra in un parcheggio, temperatura che supera un certo valore)

Esempio 2.1. Definiamo le seguenti variabili:

Le scorte in un magazzino a inizio mese successivo (con k indice del mese attuale) come

$$s(k+1) = a \cdot s(k) + q(k) - v(k)$$

con a indice di deperimento, $q\left(k\right)$ la quantità prodotta, $v\left(k\right)$ la quantità venduta; l'andamento delle vendite può essere visto come

$$\alpha\left(k\right) - \beta\left(k\right) \cdot p\left(k\right)$$

con $\alpha(k)$ la domanda, $\beta(k)$ il comportamento degli acquirenti, p(k) il prezzo ($\alpha, \beta > 0$); la politica di prezzo è definito da

$$p(k+1) = p(k) + \gamma(k) \cdot (s_0(k) - s(k)) + \delta(k) \cdot v(t)$$

con $\gamma(k)$ le scorte in magazzino, s_0 il valore di riferimento per la quantità da tenere in magazzino, $\delta(k)$ variabile decisionale dell'azienda rispetto alle vendite; vogliamo misurare il profitto mensile definito come

$$g\left(k\right) = p\left(k\right) \cdot v\left(k\right) - \zeta\left(k\right) \cdot q\left(k\right)$$

con $\zeta(k)$ il costo di produzione.

Adoperiamo come stati le variabili di cui è nota l'espressione all'istante successivo (k+1) e come ingressi i seguenti, assegnati:

$$x\left(k\right) = \begin{bmatrix} x_{1}\left(k\right) \\ x_{2}\left(k\right) \end{bmatrix} = \begin{bmatrix} s\left(k\right) \\ p\left(k\right) \end{bmatrix}; \ u\left(k\right) = \begin{bmatrix} u_{1}\left(k\right) \\ u_{2}\left(k\right) \\ u_{3}\left(k\right) \end{bmatrix} = \begin{bmatrix} q\left(k\right) \\ \alpha\left(k\right) \\ s_{0}\left(k\right) \end{bmatrix}$$

31

per quanto riguarda a, $\beta(k)$, $\gamma(k)$, $\delta(k)$, $\zeta(k)$ essi sono <u>parametri</u>; infine poniamo l'uscita y(k) = g(k).

Il modello del sistema con queste premesse sarà il seguente:

$$x(k+1) = ax_1(k) + u_1(k) - u_2(k) + \beta(k)x_2(k)$$

$$x_2(k+1) = x_2(k) + \gamma(k)u_3(k) - \gamma(k)x_1(k) + \delta(k)u_2(k) - \delta(k)\beta(k)x_2(k)$$

$$y(k) = x_2(k)u_2(k) - x_2^2(k)\beta(k) - \zeta(k)u_1(k)$$

Da questo modello osserviamo che (come per i sistemi a tempo continuo, analizzando le equazioni in forma standard) il sistema è classificabile come: dinamico (possiede almeno uno stato) del secondo ordine (due stati in totale), ha più ingressi e una uscita (MISO), tempo-variante (i <u>parametri</u> delle equazioni dipendono da k), non lineare (l'equazione di uscita presenta uno stato al quadrato e un prodotto con uno stato), proprio (almeno un ingresso nell'equazione di uscita).

Nel prossimo esempio viene proposta la discretizzazione di un sistema a tempo continuo, procedimento che riguarda l'acquisizione di dati dal mondo fisico; introduciamo prima il concetto di interazione tra un sistema a tempo continuo e uno a tempo discreto.

Figura 2.1.1. Modello di sistema con discretizzazione

Prendiamo un sistema dinamico a tempo continuo s (vedi figura 2.1.1), dotato di un ingresso u(t) e una uscita y(t);

essa è acquisita a intervalli di tempo regolari da un dispositivo chiamato scheda di acquisizione dati (DAQ), che riporta l'uscita y(k) a un controllore digitale c che stabilisce un valore di ingresso discreto u(k), che infine viene convertito in un valore a tempo continuo u(t) da un componente chiamato filtro di mantenimento.

Esempio 2.2. Sia dato un circuito formato da una maglia con induttore e resistore in serie, e sia controllabile il generatore di tensione in ingresso; \checkmark scrivere un modello che abbia la corrente nella maglia come uscita.

Chiamiamo la corrente che scorre nella maglia i(t): la tensione sul resistore vale Ri(t) e quella sull'induttore $v_L(t) = \partial i(t)/\partial t$; con un bilancio di tensioni rispetto al generatore controllabile, vale $u(t) = Ri(t) + v_L(t)$. Poniamo y(t) = i(i), come richiesto dall'esempio e scriviamo:

Figura 2.1.2. Modello di circuito per elettrovalvo-

$$\dot{x}(t) = -\frac{R}{L}x(t) + \frac{1}{L}u(t)$$

ponendo lo stato x(t) = i(t) (compare la derivata della corrente in $v_L(t)$). Nel passaggio dal mondo analogico a quello digitale discreto c'è l'operazione di campionamento, ovvero l'acquisizione di un segnale a intervalli regolari: questi intervalli di tempo sono chiamati passo di campionamento (T_s) .

Facciamo un'approssimazione a tempo discreto del sistema, considerando per ogni passo di campionamento lo stato del sistema in quell'istante, in cui iniettiamo un ingresso costante fino all'istante successivo; potremo così risolvere il movimento del sistema (per esempio integrando per un passo di campionamento con la (1.2.2)). Partendo da x(k), calcoliamo il movimento del sistema dall'istante successivo k+1

I sistemi che coinvolgono l'interazione tra una componente analogica (tempo continuo) e una digitale (tempo discreto) sono chiamati cyber-physical system (CPS)

come:

$$x(k+1) = e^{-R/LT_s} x(k_0) + \int_0^{T_s} e^{-R/L(T_s - \tau)} \frac{1}{L} u(k) d\tau$$
$$= \underbrace{e^{-R/LT_s}}_{a} x(k) + \underbrace{\frac{1 - e^{-R/LT_s}}{R}}_{b} u(k)$$

Si nota che, essendo il sistema tempo invariante, gli estremi di integrazione possono essere traslati in $0-T_s$ invece di avere $kT_s-(k+1)T_s$ (la distanza tra istanti successivi è costante) e il valore di ingresso u(k) sarà mantenuto costante tra due istanti successivi. Inoltre essendo il sistema scalare abbiamo già l'autovalore a=-R/L. Per quanto riguarda l'equazione di uscita, essa rimane invariata come y(k)=x(k), infatti nella discretizzazione si approssima solo l'operazione di derivazione nelle equazioni di stato.

Il metodo appena visto nell'Esempio 2.2 ha dei vantaggi per i sistemi a tempo continuo asintoticamente stabili: con coefficienti scalari, il sistema deve avere $a < 0 \land a \in \mathbb{R}$; nel caso dell'Esempio 2.2 abbiamo un coefficiente a reale negativo. Se ora iteriamo l'equazione di stato a tempo discreto, otteniamo:

$$x(k+1) = ax(k) \implies x(0) = 1, x(1) = a, x(2) = a^2, \dots$$

Per avere la convergenza a 0 del movimento così definito deve valere |a| < 1; questo approccio garantisce che se abbiamo un sistema a tempo continuo asintoticamente stabile (a < 0), anche nel tempo discreto il nostro sistema sarà stabile (|a| < 1) sicuramente) e i movimenti convergeranno; questo non vale per qualsiasi metodo di discretizzazione.

Un metodo alternativo consiste nell'usare la formula (A.5.1) approssimando la derivata nel tempo continuo come una differenza finita:

$$\dot{x}(t) = \frac{\partial x(t)}{\partial d} \simeq \frac{x(k+1) - x(k)}{T_s}$$

Questa approssimazione è valida nella misura in cui il passo di campionamento ha dimensione adeguata rispetto alla velocità del sistema.

Sostituendo questa equazione in quella a tempo continuo del sistema possiamo ottenere un modello discretizzato; riprendendo l'Esempio 2.2, otteniamo le stesse equazioni di stato e uscita ma i coefficienti avranno forme differenti:

$$a = 1 - \frac{R}{L}T_s, \ b = \frac{1}{L}T_s$$

In questo caso scegliendo un T_s troppo elevato si rischia di avere un valore di a per cui l'andamento simulato del sistema è diverso da quello reale.

2.1.2. Forma dei movimenti. Per sistemi lineari a tempo discreto la forma standard è analoga a (1.1.3):

(2.1.2)
$$\begin{bmatrix} x(k+1) = A \cdot x(k) + B \cdot u(k) \\ y(k) = C \cdot x(k) + D \cdot u(k) \end{bmatrix}$$

Come condizione iniziale per le successive considerazioni possiamo imporre $k_0 = 0$ (condizione iniziale $x_0 = x(t_0)$), essendo il sistema stazionario; in generale a un certo istante conosciamo il valore dello stato e possiamo calcolare i movimenti a fronte di un certo ingresso. Una forma chiusa per il calcolo del movimento di stato e

Modello matriciale per sistemi LTI a tempo discreto uscita è offerta dalla riscrittura della (1.2.2); essa si ricava applicando ricorsivamente l'equazione di stato, dalla quale si ottiene poi l'equazione di uscita:

Formula di Lagrange a tempo discreto

(2.1.3)
$$x(k) = A^{k} \cdot x_{0} + \sum_{i=0}^{k-1} A^{k-i-1} \cdot B \cdot u(i)$$

L'integrale di convoluzione nel tempo discreto diventa la sommatoria appena mostrata; questo risultato intuitivo si ottiene con l'iterazione dell'equazione di stato; prendendo il caso di k = 1, otteniamo da (2.1.2):

$$x(2) = A \cdot x(1) + B \cdot u(1) = A \cdot (A \cdot x(0) + B \cdot u(0)) + B \cdot u(0)$$

da cui la sommatoria nella formula di Lagrange discretizzata.

Distinguiamo dalla (2.1.3) i movimenti libero e forzato:

- movimento libero $x_L(k) = A^k \cdot x_0$: è indipendente dagli ingressi e legato alle condizioni iniziali;
- movimento forzato $x_{\rm F}(k) = \sum_{i=0}^{k-1} A^{k-i-1} \cdot B \cdot u(i)$: è legato agli ingressi.
- **2.1.3.** Sovrapposizione degli effetti. Le equazioni per i sistemi a tempo discreto rimangono lineari, dunque vale la sovrapposizione degli effetti come nel tempo continuo: se abbiamo due condizioni iniziali x'(0) e x''(0), e due andamenti x'(k) e x''(k), posto che l'ingresso $u'''(k) = \alpha u'(k) + \beta u''(k)$ possiamo vedere il movimento dello stato a partire dalle coppie stato-ingresso come combinazione lineare dei movimenti ottenuti separatamente dalle condizioni iniziali e dagli ingressi separatamente:

$$x'(k) = f(x'(0), u'(k)) + x''(k) = f(x''(0), u''(k)) = \begin{cases} x'''(k) = \alpha x'(k) + \beta x''(k) \\ y'''(k) = \alpha y'(k) + \beta y''(k) \end{cases}$$

dove f(x(0), u(k)) rappresenta la (2.1.3) con condizione iniziale x(0)e ingresso u(k).

Si può facilmente verificare questa proprietà per sostituzione; l'equazione di uscita in forma chiusa, dalla (2.1.3), vale allora:

(2.1.4)
$$y(k) = C \cdot A^{k} \cdot x_{0} + C \cdot \sum_{i=0}^{k-1} A^{k-i-1} \cdot B \cdot u(i) + D \cdot u(k)$$

2.2. Comportamento nel tempo discreto

2.2.1. Equilibrio. Un movimento di un sistema a tempo discreto si ottiene iterando l'equazione di stato fino all'istante di interesse. Una coppia di ingressi \overline{x} e uscite \overline{u} è un equilibrio se $\overline{x} = f(\overline{x}, \overline{u}, k)$; l'equazione di stato infatti restituisce lo stato all'istante successivo e se questo è uguale allo stato attuale, si ha un andamento costante dello stato nel tempo. L'uscita di equilibrio è funzione della coppia \overline{x} , \overline{u} ; in breve:

Condizione di equilibrio nel tempo discreto

Nel caso di un sistema a coefficienti scalari dovrà valere $\overline{x}=a\overline{x}+b\overline{u}$, da cui $\overline{x}=\frac{b}{1-a}\overline{u}$; esse sono tutte le coppie ingresso-stato di equilibrio per il sistema in esame.

Il modello del sistema nella forma (2.1.1), nelle condizioni di equilibrio (2.2.1), si scriverà come

$$\begin{cases} \overline{x} = A \cdot \overline{x} + B \cdot \overline{u} \\ \overline{y} = C \cdot \overline{x} + D \cdot \overline{u} \end{cases}$$

Lo stato di equilibrio esiste solo se l'equazione di stato per l'equilibrio ammette una e una sola soluzione; questo si verifica quando $\det(I-A) \neq 0$, e in tal caso possiamo scrivere $\overline{x} = (I-A)^{-1} \cdot B \cdot \overline{u}$ per l'equilibrio dello stato e $\overline{y} = (C \cdot (I-A)^{-1} \cdot B + D) \overline{u}$ per l'equilibrio di uscita, dove la matrice a cui l'uscita è moltiplicata è detta matrice dei guadagni statici (è una relazione statica tra ingressi costanti e uscite costanti).

Se (I - A) non fosse invertibile si potrebbero avere nessuna o infinite soluzioni (non nulle), sempre che per un \overline{u} si riesca a trovare \overline{x} di equilibrio; la coppia ingresso-uscita di equilibrio nulla risolve comunque il sistema.

2.2.2. Stabilità. Nei sistemi a tempo discreto possiamo enunciare le seguenti proprietà e definizioni, analoghe a quelle dei sistemi a tempo continuo (non siamo necessariamente nell'ambito dei sistemi lineari):

DEFINIZIONE 2.1. Un movimento x(k) per $k \geq k_0$, generato da un sistema dinamico a partire da $x(k_0) = x_0$ e con ingresso u(k), si dice stabile se per ogni $\varepsilon > 0$ esiste un $\delta > 0$ tale che, per ogni condizione iniziale perturbata $\tilde{x}(k_0) = \tilde{x}_0$ che sia distante dalla condizione iniziale nominale x_0 di una quantità in norma minore di δ , risulta che la distanza tra la traiettoria nominale x(k) e quella perturbata $\tilde{x}(k)$ rimanga limitata in un intorno minore o uguale a ε per qualunque $k \geq k_0$; chiamiamo $\tilde{x}(k)$ il movimento generato dal sistema a fronte del medesimo ingresso $u(k \geq k_0)$ e condizioni iniziali \tilde{x}_0 . In termini di formula logica deve valere

$$(2.2.2) \qquad \forall \varepsilon > 0 \,\exists \delta > 0 \,\left(\forall \tilde{x}_0 \left(\|\tilde{x}_0 - x_0\| \le \delta \Rightarrow \forall k \ge k_0 \left(\|\tilde{x}(k) - x(k)\| \le \varepsilon\right)\right)\right)$$

DEFINIZIONE 2.2. Un movimento x(k) generato da un sistema a tempo discreto è instabile se non soddisfa la Definizione 2.1.

DEFINIZIONE 2.3. Un movimento generato da un sistema a tempo discreto si dice asintoticamente stabile se soddisfa la Definizione 2.1 e vale inoltre

$$\lim_{k \to \infty} \|x(k) - \tilde{x}(k)\| = 0$$

2.3. Rappresentazione equivalente discreta

Presa una matrice di trasformazione T invertibile, definiamo uno stato equivalente $\hat{x}(k)$ come combinazione lineare dello stato originale x(k); vale la seguente relazione tra stato originale ed equivalente:

$$x(k) = T^{-1} \cdot \hat{x}(k) \iff \hat{x}(k) = T \cdot x(k)$$

Possiamo parlare di rappresentazioni equivalenti di sistemi LTI a tempo discreto, in particolare se il sistema di partenza è della forma (2.1.2), con questa trasformazione otteniamo la rappresentazione equivalente:

(2.3.1)
$$\hat{x}(k+1) = T \cdot A \cdot T^{-1} \cdot \hat{x}(k) + T \cdot B \cdot u(k) y(k) = C \cdot T^{-1} \cdot \hat{x}(k) + D \cdot u(k)$$

2.4. Movimenti nel tempo discreto

2.4.1. Modi e autovalori. Il movimento libero nel tempo discreto di un sistema LTI è definito $x_L(k) = A^k \cdot x_0$ dalla (2.1.3); come nel caso del tempo continuo, sfruttiamo la rappresentazione equivalente (2.3.1) più comoda per calcolare il movimento libero.

Se la matrice di stato è diagonalizzabile esisterà una matrice di trasformazione $T_{\scriptscriptstyle \mathrm{D}}$ che rende A simile ad A_D , quest'ultima una matrice diagonale con gli stessi autovalori z_i di A; tale matrice di trasformazione verifica le seguenti equazioni:

$$A_{\mathrm{D}} = T_{\mathrm{D}} \cdot A \cdot T_{\mathrm{D}}^{-1} \iff A = T_{\mathrm{D}}^{-1} \cdot A_{\mathrm{D}} \cdot T_{\mathrm{D}}$$

Iteriamo la precedente equazione per calcolare A^k dalla matrice diagonale simile, ottenendo:

$$A^k = T_{\mathrm{D}}^{-1} \cdot A_{\mathrm{D}} \cdot \mathcal{T}_{\mathrm{D}} \cdot \mathcal{T}_{\mathrm{D}} \cdot A_{\mathrm{D}} \cdot T_{\mathrm{D}} \dots = T_{\mathrm{D}}^{-1} \cdot A_{\mathrm{D}}^k \cdot T_{\mathrm{D}}$$

dove la potenza di matrice diagonale $A_{\scriptscriptstyle \mathrm{D}}^k$ è una matrice diagonale con elementi sulla

diagonale elevati a
$$k$$
: $A_{\mathrm{D}}^{k} = \begin{bmatrix} z_{1}^{k} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & z_{n}^{k} \end{bmatrix}$.

Ritornando all'equazione del movimento libero, possiamo ora riscriverla come $x_{\text{\tiny L}}\left(k\right)=$ $T_{\rm D}^{-1} \cdot A_{\rm D}^k \cdot T_{\rm D} \cdot x_0$; questo movimento libero generico sarà una combinazione lineare dipendente dal valore iniziale degli stati e dalla matrice di trasformazione, e avrà una scrittura del tipo $\alpha_1 z_1^k + \alpha_2 z_2^k + \ldots + \alpha_n z_n^k$. Al contrario dei movimenti esponenziali, generati dai sistemi a tempo continuo, nel tempo discreto i movimenti assumono forma polinomiale.

Gli autovalori (della matrice di stato A) z_i con $i \in [1, n]$ si dicono modi del sistema a tempo discreto.

- 2.4.2. Segno degli autovalori. Nel caso di autovalori reali, dobbiamo distinguere i seguenti casi:
 - $z_i \in \mathbb{R}, z_i > 0$:

 - $\begin{array}{l} -z_i=1: \text{ vale } z_i^k=\text{costante}\,\forall k\in\mathbb{Z};\\ -z_i>1: \text{ vale } z_i^k=\text{polinomio divergente};\\ -z_i<1: \text{ vale } z_i^k=\text{polinomio convergente}. \end{array}$
 - $z_i \in \mathbb{R}, z_i < 0$:

 - $\begin{array}{l} -\mid\! z_i\!\mid = 1 \text{: vale } z_i^k = \text{limitato tra } [-1,\,1]; \\ -\mid\! z_i\!\mid > 1 \text{: vale } z_i^k = \text{divergente a segni alterni;} \\ -\mid\! z_i\!\mid < 1 \text{: vale } z_i^k = \text{convergente a segni alterni.} \end{array}$

Nel caso di valori complessi coniugati i modi sono sempre $z_{1,2} = (\sigma \pm j\omega)^k$; per la loro analisi adottiamo la rappresentazione polare:

$$\rho = \sqrt{\sigma^2 + \omega^2}, \ \varphi = \arg(z_i)$$

da cui gli autovalori valgono $z_{1,2}=\rho e^{\pm j\varphi}$ e i modi $z_{1,2}^k=\rho^k e^{\pm jk\varphi}$; questi modi saranno sempre combinati, nel movimento complessivo, con dei coefficienti α anch'essi complessi coniugati, in generale nella forma $\alpha = \rho_{\alpha} e^{j\varphi_{\alpha}}$.

La combinazione lineare dei modi associati agli autovalori complessi coniugati è:

$$x_{\rm L}(k) = \alpha z_1 + \alpha^* z_2 = \rho_{\alpha} \rho^k e^{j(k\varphi + \varphi_{\alpha})} + \rho_{\alpha} \rho^k e^{-j(k\varphi + \varphi_{\alpha})}$$

$$(2.4.1) \qquad = \rho_{\alpha} \rho^k \left(e^{j(k\varphi + \varphi_{\alpha})} + e^{-j(k\varphi + \varphi_{\alpha})} \right) \stackrel{\text{Eulero}}{=} 2\rho_{\alpha} \rho^k \cos(k\varphi + \varphi_{\alpha})$$

dove abbiamo usato la (A.5.1) nell'ultima uguaglianza, e i coefficienti in pedice α sono dipendenti dalle condizioni iniziali; la convergenza del movimento è determinata

Con l'apice * si indica il coniugato di un numero complesso, ovvero il corrispettivo con la parte immaginaria di segno opposto

dal segno dominante di ρ^k (in particolare ρ è il modulo dell'autovalore), infatti la funzione coseno è limitata e ρ_{α} è costante. Come per il caso dell'autovalore reale, si osserva il modulo degli autovalori per determinarne l'andamento generato.

Esempio 2.3. Sia dato un sistema LTI a tempo discreto con la seguente matrice di stato:

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

 \checkmark Si calcoli il movimento libero del sistema in generale.

Cominciamo calcolando gli autovalori di A:

$$\det(zI - A) = 0 \to \begin{vmatrix} z - 1 & -1 \\ 1 & z - 1 \end{vmatrix} = 0 \to z^2 - 2z + 2 = 0 \to z_{1,2} = 1 \pm j$$

Per questi due autovalori complessi coniugati abbiamo $\rho = \sqrt{2}$ e $\varphi = \pi/4$. Il movimento associato alla combinazione lineare di questi due modi sarà nella forma (2.4.1):

$$\rho_{\alpha} 2 \left(\sqrt{2}\right)^k \cos\left(k\frac{\pi}{4} + \varphi_{\alpha}\right)$$

Una possibile scelta per la matrice di trasformazione, presi autovettori associati a $z_{1,2}$ con base canonica unitaria, è la seguente:

$$T_{\scriptscriptstyle \mathrm{D}}^{-1} = \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix} o T_{\scriptscriptstyle \mathrm{D}} = \frac{1}{2} \cdot \begin{bmatrix} 1 & -j \\ 1 & j \end{bmatrix}$$

Il generico movimento libero sarà scritto come:

$$x_{\mathrm{L}}(k) = \overbrace{\begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}}^{T_{\mathrm{D}}^{-1}} \cdot \overbrace{\begin{bmatrix} \left(\sqrt{2}e^{j\pi/4}\right)^{k} & 0 \\ 0 & \left(\sqrt{2}e^{-j\pi/4}\right)^{k} \end{bmatrix}}^{A_{\mathrm{D}}} \cdot \underbrace{\frac{T_{\mathrm{D}}}{1} \cdot \begin{bmatrix} 1 & -j \\ 1 & j \end{bmatrix}}^{T_{\mathrm{D}}} \cdot x_{0}$$
$$= \left(\sqrt{2}\right)^{k} \cdot \begin{bmatrix} \cos\left(k^{\pi/4}\right) & -\sin\left(k^{\pi/4}\right) \\ \sin\left(k^{\pi/4}\right) & \cos\left(k^{\pi/4}\right) \end{bmatrix} \cdot x_{0}$$

Da questa scrittura è possibile calcolare qualsiasi movimento del sistema a fronte di condizioni iniziali.

Possiamo distinguere gli andamenti dei modi nel tempo discreto studiando il modulo degli autovalori e considerando se sono complessi coniugati (vedi la tabella 2.4.1)

Per concludere il discorso sui modi nel tempo discreto, esaminiamo il caso di una matrice di stato non diagonalizzabile: cercheremo di scriverla nella forma di Jordan (A.3.2), trovando una matrice di trasformazione $T_{\rm J}$ adeguata. Compariranno dei modi aggiuntivi nella matrice, al di sopra della diagonale principale; si avranno dunque sulla diagonale i modi z_i^k , mentre al di sopra i modi $k^{\eta-1}z^{k-\eta-1}$ dove η dipende dalle molteplicità degli autovalori e i è l'indice di colonna nella matrice.

Le proprietà di convergenza di questi nuovi modi sono determinate sempre dal modulo dell'autovalore z (l'esponenziale di z domina sulla potenza di k costante), quindi sono soggetti alle considerazioni esposte ne la tabella 2.4.1; rispetto ad essa, per $|z_i| = 1$ si hanno modi divergenti, a causa del contributo del coefficiente k.

$_{\rm Insieme}\backslash^{\rm Modulo}$	$ z_i < 1$			
	$z_i>0 ightarrow { m converge}$ as intotico			
$z_i \in \mathbb{R}$	$z_i=0 o$ converge in tempo finito			
	$z_i < 0 ightarrow$ converge a segno alterno			
$z_i \in \mathbb{C}$	converge come inviluppo di cosinusoide			
Insieme\Modulo	$ z_i > 1$			
$z_i \in \mathbb{R}$	$z_i > 1 ightarrow ext{diverge polinomiale}$			
	$z_i < -1 ightarrow ext{diverge polinomiale a segni alterni}$			
$z_i \in \mathbb{C}$	diverge come inviluppo di cosinusoide			
Insieme \ Modulo	$ z_i = 1$			
$z_i \in \mathbb{R}$	$z_i=1 o ext{limitato e costante}$			
	$z_i = -1 ightarrow ext{limitato a segni alterni}$			
$z_i \in \mathbb{C}$	$\Re\left(z_{i}\right)=0,\ \Im\left(z_{i}\right)=\pm1 ightarrow1$ limitato come cosinusoide			

Movimenti nel tempo discreto

Tabella 2.4.1. Classificazione dei movimenti nel tempo discreto

2.5. Stabilità del sistema

2.5.1. Condizioni di stabilità in sistemi a tempo discreto. Se prendiamo un movimento x(k) a partire da x_0 e un movimento perturbato $\tilde{x}(k)$ a partire da $\tilde{x}_0 = x_0 + \delta x_0$, a parità di ingresso u(k) studiamo il comportamento di $\delta x(k) = \tilde{x}(k) - x(k)$; con l'equazione (2.1.3) otteniamo l'andamento della perturbazione:

$$(2.5.1) A^k (\tilde{x}_0 - x_0) = A^k \delta x_0$$

Questo risultato non dipende dall'ingresso né dalla perturbazione: esso è la risposta libera del sistema alla perturbazione considerata.

OSSERVAZIONE 2.1. In un sistema LTI a tempo discreto, presa qualsiasi coppia di movimento e movimento perturbato, la distanza tra i due movimenti è data sempre dalla (2.5.1); da questo deriva il seguente Teorema 2.1.

TEOREMA 2.1. In un sistema LTI a tempo dinamico un movimento (incluso quello di equilibrio) è stabile, asintoticamente stabile o instabile se e solo se sono rispettivamente stabili, asintoticamente stabili o instabili tutti i movimenti del sistema.

OSSERVAZIONE 2.2. Notiamo che essendo (2.5.1) un movimento libero, questa espressione è combinazione lineare dei modi del sistema e il suo andamento dipende dagli autovalori della matrice di stato. Per il Teorema 2.1 possiamo controllare la stabilità del sistema studiando quella dei sui movimenti liberi.

Possiamo usare le condizioni ne la tabella 2.4.1 assieme alla precedente osservazione per ottenere le seguenti considerazioni:

TEOREMA 2.2. Un sistema LTI della forma (2.1.2) si dice asintoticamente stabile se e solo se <u>tutti</u> gli autovalori della sua matrice di stato sono in modulo minori di 1 (ovvero (2.5.1) converge a zero).

TEOREMA 2.3. Un sistema LTI della forma (2.1.2) si dice instabile se <u>almeno uno</u> degli autovalori della sua matrice di stato è in modulo maggiore di 1.

Se il modulo degli autovalori è unitario, distinguiamo i seguenti casi per studiare la stabilità del sistema:

• Con A diagonalizzabile, se $\nexists i \in 0 \dots \eta_n : |z_i| > 1$ allora il sistema è stabile semplicemente;

• Con A non diagonalizzabile, il sistema è instabile.

Elenchiamo ora alcune proprietà dei sistemi LTI a tempo discreto asintoticamente stabili:

- (1) Un movimento per $k \to \infty$ non dipende dalle condizioni iniziali $x(k_0)$;
- (2) La risposta a un impulso tende ad annullarsi per $t \to \infty$;
- (3) La risposta a qualunque ingresso limitato nel tempo tende ad annullarsi per $t \to \infty$;
- (4) Gli stati e le uscite di equilibrio, con ingresso \overline{u} costante nel tempo, sono univocamente definiti e pari a \overline{x} e \overline{y} ;
- (5) Il sistema gode della proprietà di stabilità esterna.
- **2.5.2.** Criterio di Jury. Il polinomio caratteristico di una matrice permette di trovare i suoi autovalori: se definiamo tale polinomio per i sistemi a tempo discreto come $\varphi(z)$, gli autovalori associati si trovano a partire da $\varphi(z) = 0$; scrivendo il polinomio nella forma di combinazione lineare di autovalori z_i e coefficienti φ_i avremo

(2.5.2)
$$\varphi(z) = \varphi_0 z^n + \varphi_1 z^{n-1} + \ldots + \varphi_n$$

Enunciamo un criterio che fornisce una condizione necessaria e sufficiente per stabilire la stabilità asintotica di un sistema a tempo discreto; esso si basa sulla seguente tabella di Jury, costruita a partire dal polinomio caratteristico della matrice di stato, scritto nella forma (2.5.2):

Questa tabella si compila grazie al seguente algoritmo di Jury che dalle riga precedente (h_i) ottiene la successiva (ℓ_i) :

(2.5.4)
$$\ell_i = \frac{1}{h_1} \cdot \det \left(\begin{bmatrix} h_1 & h_{\nu-i+1} \\ h_{\nu} & h_i \end{bmatrix} \right) \to h_i - \frac{h_{\nu} \cdot h_{\nu-i+1}}{h_1}$$

Si osserva che in generale la tabella è triangolare, e inoltre l'algoritmo non si può applicare per il caso $h_1 = 0$ per almeno una riga (in tal caso si dice che la (2.5.3) non è ben definita). L'algoritmo termina quando si otterrebbe uno zero nella prima posizione della riga più in basso.

TEOREMA 2.4. Un sistema LTI a tempo discreto della forma (2.1.2) è asintoticamente stabile se e solo se la tabella di Jury (2.5.3) del polinomio caratteristico della matrice di stato del sistema è ben definita, e tutti gli elementi sulla prima colonna della tabella hanno segno concorde.

Criterio di Jury

Esempio 2.4. Consideriamo un sistema dinamico a tempo discreto, col seguente polinomio caratteristico:

$$\varphi\left(z\right) = z^2 + \alpha z + \beta$$

 \checkmark Studiare per quali valori di α e β il sistema è stabile.

Scegliendo di applicare il criterio di Jury, costruiamo la tabella (2.5.3) nel modo seguente:

$$\begin{array}{c|cccc} & 1 & \alpha & \beta & 0 \\ \hline & 1 - \beta^2 & \alpha (1 - \beta) & 0 & 0 \\ \hline & 1 - \beta^2 - \frac{\alpha^2 (1 - \beta)^2}{1 - \beta^2} & 0 & 0 & 0 \end{array}$$

Applicando il Teorema 2.4 cerchiamo i valori dei coefficienti che rendano concordi i segni dei termini sulla prima colonna; otteniamo dunque le seguenti condizioni, osservando che il termine 1 è positivo:

$$\begin{cases} 1 - \beta^2 > 0 & (1) \\ 1 - \beta^2 - \frac{\alpha^2 (1 - \beta)^2}{1 - \beta^2} & (2) \end{cases} = \begin{cases} \beta \in (-1, 1) \\ 1 + \beta \in (-\alpha, \alpha) \end{cases}$$

Per giungere a questa conclusione si è usata la condizione (1) nella (2), studiando il segno del numeratore $-\alpha^2 (1-\beta)^2$.

2.6. Sistemi non lineari a tempo discreto

Prendiamo un sistema a tempo discreto stazionario e non lineare, nella forma (2.1.2); per risolvere in forma chiusa il calcolo di un movimento, ci concentriamo sugli equilibri di questi sistemi: cerchiamo una coppia stato-ingresso \overline{x} , \overline{u} tale che valga (2.2.1).

Per studiare la stabilità di questi equilibri, possiamo approssimare il modello del sistema, localmente alla condizione di equilibrio, con lo sviluppo di Taylor al primo ordine delle equazioni del sistema; questa approssimazione lineare si ottiene nel modo seguente:

$$f\left(x\left(k\right),\,u\left(k\right)\right)\simeq f\left(\overline{x},\,\overline{u}\right)+\left.\frac{\partial f}{\partial x}\right|_{\overline{x},\overline{u}}\left(x\left(k\right)-\overline{x}\right)+\left.\frac{\partial f}{\partial u}\right|_{\overline{x},\overline{u}}\left(u\left(k\right)-\overline{u}\right)$$
$$g\left(x\left(k\right),\,u\left(k\right)\right)\simeq g\left(\overline{x},\,\overline{u}\right)+\left.\frac{\partial g}{\partial x}\right|_{\overline{x},\overline{u}}\left(x\left(k\right)-\overline{x}\right)+\left.\frac{\partial g}{\partial u}\right|_{\overline{x},\overline{u}}\left(u\left(k\right)-\overline{u}\right)$$

Se definiamo le quantità $\delta x(k) = x(k) - \overline{x}$ per l'equazione di stato e $\delta u(k) = u(k) - \overline{u}$ per l'equazione di uscita, le precedenti diventano

(2.6.1)
$$\delta x (k+1) = f(x(k), u(k)) - f(\overline{x}, \overline{u}) = \underbrace{\frac{\partial f}{\partial x}\Big|_{\overline{x}, \overline{u}}}_{C} \delta x (k) + \underbrace{\frac{\partial f}{\partial u}\Big|_{\overline{x}, \overline{u}}}_{D} \delta u (k)$$

$$\delta y (k) = g(x(k), u(k)) - g(\overline{x}, \overline{u}) = \underbrace{\frac{\partial g}{\partial x}\Big|_{\overline{x}, \overline{u}}}_{C} \delta x (k) + \underbrace{\frac{\partial g}{\partial u}\Big|_{\overline{x}, \overline{u}}}_{D} \delta u (k)$$

Ritroviamo le equazioni della forma standard nel tempo discreto (2.1.2); l'approssimazione fatta vale in un intorno appropriato dell'equilibrio. Come per i sistemi lineari, valgono i risultati sulla stabilità asintotica e sul modulo degli autovalori della matrice di stato A. In particolare enunciamo i seguenti teoremi:

TEOREMA 2.5. Lo stato di equilibrio \overline{x} relativo all'ingresso \overline{u} per un sistema non lineare della forma (2.1.2), si dice asintoticamente stabile se tutti gli autovalori della matrice di stato A del sistema (2.6.1) hanno modulo strettamente minore di 1.

TEOREMA 2.6. Lo stato di equilibrio \overline{x} relativo all'ingresso \overline{u} per un sistema non lineare della forma (2.1.2), si dice instabile se almeno uno degli autovalori della matrice di stato A del sistema (2.6.1) ha modulo maggiore di uno.

Se uno degli autovalori avesse modulo pari a 1, non si potrebbe concludere nulla sulla sua stabilità, con gli strumenti della linearizzazione; si noti che i due teoremi appena enunciati forniscono condizioni solo sufficienti.

Esempio 2.5. Sia dato un sistema non lineare a tempo discreto con la seguente equazione di stato:

$$x_{1}(k+1) = x_{1}^{3}(k) + x_{2}(k) x_{3}(k)$$

$$x_{2}(k+1) = \sin\left(\frac{4}{9}\pi \cdot x_{2}(k)\right) - \frac{1}{8}x_{3}(k)$$

$$x_{3}(k+1) = \alpha x_{3}(k) + u(k)$$

 $con \ \alpha \in \mathbb{R}$; $\checkmark calcolare \ l'ingresso \ di equilibrio \ e \ la terza \ variabile \ di stato, in funzione$

del parametro reale (
$$\overline{u}(\alpha)$$
 e $\overline{x}_3(\alpha)$), tali che $\overline{x} = \begin{bmatrix} 1/2 \\ 3/8 \\ \overline{x}_3 \end{bmatrix}$ sia uno stato di equilibrio.

Facendo un passo indietro, classifichiamo il sistema: esso è un sistema a tempo discreto, non lineare, del 3° ordine, ha un ingresso, stazionario (non abbiamo informazioni sull'uscita nell'ambito dell'esercizio).

Per ottenere le condizioni che determinano l'equilibrio, poniamo ciascuna equazione di stato pari allo stato corrispondente, sfruttando la (2.2.1):

$$\begin{cases}
\frac{1}{2} = \left(\frac{1}{2}\right)^3 + \frac{1}{8} \cdot \overline{x}_3 & \text{(I)} \\
\frac{1}{8} = \sin\left(\frac{4}{9}\pi \cdot \frac{3}{8}\right) - \frac{1}{8} \cdot \overline{x}_3 & \text{(II)}
\end{cases} \rightarrow
\begin{cases}
\overline{x}_3 = 1 & \text{(I)} \\
\frac{1}{2} = \frac{1}{2} & \text{(II)} \\
1 - \alpha = \overline{u}(\alpha) & \text{(III)}
\end{cases}$$

dove abbiamo ricavato dalla (I) il valore numerico di \bar{x}_3 , che abbiamo poi usato nella (II) e nella (III); il fatto che dalla (II) si ricavi una identità ci conferma che stiamo usando una condizione di equilibrio dello stato ammissibile; dalla (III) si ricava infine il valore dell'uscita di equilibrio.

 \checkmark Studiare ora le proprietà di stabilità dell'equilibrio al variare del parametro $\alpha \in \mathbb{R}$. Per approcciare il problema, linearizziamo la matrice di stato intorno all'equilibrio appena ottenuto, e studiamo il modulo degli autovalori corrispondenti:

$$A_{\rm L} = \begin{bmatrix} 3\overline{x}_1^2 & \overline{x}_3 & \overline{x}_2 \\ 0 & 4/9\pi\cos(4/9\pi\overline{x}_2) & -1/8 \\ 0 & 0 & \alpha \end{bmatrix} = \begin{bmatrix} 3/4 & 1 & 3/8 \\ 0 & 2\sqrt{3}/9 & -1/8 \\ 0 & 0 & \alpha \end{bmatrix}$$

La matrice di stato linearizzata è costituita dalle derivate parziali: l'indice di riga rappresenta le funzioni di stato non lineari, l'indice di colonna lo stato rispetto al quale si deriva parzialmente; tutte le derivate parziali sono valutate in \overline{x} , \overline{u} .

La matrice trovata è diagonale, dunque i suoi autovalori sono i termini sulla diagonale principale; scrivendo in modo numerico abbiamo $z_1 = 0.75$, $z_2 \simeq 1.2$, $z_3 = \alpha$: dato che $|z_2| > 1$, l'equilibrio è instabile (vedi la tabella 2.4.1) comunque scelto α .

CAPITOLO 3

Funzione di trasferimento

3.1. Definizione

Richiamiamo la scrittura matriciale di un sistema LTI a tempo continuo (1.1.3); possiamo allora cercare la trasformata di Laplace (B.1.1) per ciascuna equazione del sistema:

$$\mathcal{L}\left[\dot{x}\left(t\right)\right] = sX\left(s\right) - x\left(0\right) = A \cdot X\left(s\right) + B \cdot U\left(s\right)$$

$$\mathcal{L}\left[y\left(t\right)\right] = C \cdot X\left(s\right) + D \cdot U\left(s\right)$$

Dalla trasformata dell'equazione di stato possiamo ricavare il valore di $X\left(s\right)$ invertendo nel modo seguente:

$$(sI - A) \cdot X(s) - (sI - A) \cdot x(0) = B \cdot U(s)$$

$$X(s) = (sI - A)^{-1} x(0) + (sI - A)^{-1} B \cdot U(s)$$

Considerando il termine $(sI - A)^{-1}$ associato a e^{At} , osserviamo un'analogia coi movimenti dello stato, descritti da (1.2.2): si tratta della stessa equazione, vista nel dominio di Laplace; sostituendo nella trasformata dell'equazione di uscita l'espressione ottenuta per X(s), otteniamo:

$$Y(s) = [C \cdot (sI - A)^{-1} \cdot B + D] U(s) + C (sI - A)^{-1} x(0)$$

dove il coefficiente di $U\left(s\right)$ è la trasformata del movimento forzato, mentre il coefficiente di $x\left(0\right)$ è la trasformata del movimento libero dell'uscita; in particolare chiamiamo funzione di trasferimento, e la indichiamo con $G\left(s\right)$, il prodotto di convoluzione

(3.1.1)
$$G(s) = C \cdot (sI - A)^{-1} \cdot B + D$$

Funzione di trasferimento

Essa fornisce informazioni sulla dipendenza dell'uscita forzata dall'ingresso.

Dato che la funzione di trasferimento è la componente forzata dell'uscita nel dominio di Laplace, possiamo scrivere l'uscita in funzione di essa:

$$(3.1.2) Y(s) = G(s) \cdot U(s)$$

Notiamo che, avendo Y(s) grado $p \in U(s)$ grado m, allora G(s) avrà dimensioni $p \times m$; inoltre, se abbiamo un sistema SISO, la funzione di trasferimento è scalare (a 1 dimensione, essendo p = m = 1) e vale la scrittura G(s) = Y(s) / U(s).

Per osservare che il significato della (3.1.1) è quello di trasformata della risposta dell'uscita a un impulso (a partire da condizioni iniziali nulle), prendiamo il caso SISO con u(t) = imp(t): la sua trasformata vale U(s) = 1. Allora l'equazione di uscita assumerà la forma Y(s) = G(s), che eguaglia la funzione di trasferimento con la trasformata dell'uscita.

3.2. Proprietà

3.2.1. Struttura della funzione e cancellazioni. Consideriamo di nuovo per semplicità un sistema LTI SISO; scriveremo la sua funzione di trasferimento (con le rispettive dimensioni per ciascuna matrice) come:

$$G(s) = \overset{1\times n}{C} \cdot (sI - A)^{-1} \cdot \overset{n\times 1}{B} + \underset{1\times 1}{D}$$

Da questa scrittura possiamo ricavare la matrice inversa $(sI - A)^{-1}$ dalla Definizione A.8 come matrice dei complementi algebrici diviso il determinante; quest'ultimo è un polinomio in s di grado al più n che chiamiamo D(s), mentre i complementi algebrici sono determinanti delle sotto-matrici dell'inversa, quindi avranno al più grado n-1. Con queste considerazioni la funzione di trasferimento può essere riscritta come:

$$G(s) = C \cdot \frac{\left[\Delta_{s_i}\right]}{\det(sI - A)} \cdot B + D = \frac{1}{D(s)} \left(C \cdot \left[\Delta_{s_i}\right] \cdot B\right) + D = \frac{N'(s)}{D(s)} + D$$

dove N'(s) è la combinazione lineare derivata dal prodotto della matrice dei coefficienti algebrici con C e B, e D è non nulla.

Se vale D=0 la funzione di trasferimento risulta razionale e *strettamente propria*, dalla precedente osservazione per cui n(N'(s)) < n(D(s)); se D è non nulla si ottiene al più una funzione bi-propria (numeratore e denominatore hanno stesso grado).

Nel prodotto $C \cdot [\Delta_{s_i}] \cdot B$ si possono verificare delle cancellazioni tra zeri e poli; formalizziamo questa eventualità scrivendo (a meno di un guadagno ρ):

$$G(s) = \rho \cdot \frac{\prod_{i=1}^{n-1} (s + z_i)}{\prod_{i=1}^{n} (s + p_i)}$$

Se vi fossero cancellazioni tra termini di $N\left(s\right)$ e $D\left(s\right)$, posto ν il grado del denominatore, varrebbe $\nu < n$; in generale possiamo scrivere la funzione di trasferimento come:

$$G(s) = \frac{N(s)}{D(s)} = \frac{\beta_{\nu} s^{\nu} + \beta_{\nu-1} s^{\nu-1} + \dots + \beta_0}{\alpha_{\nu} s^{\nu} + \alpha_{\nu-1} s^{\nu-1} + \dots + \alpha_0}$$

dove abbiamo $\beta_{\nu} \neq 0 \iff D \neq 0$, ovvero il grado di numeratore e denominatore è uguale solo se la matrice D è non nulla. Ricaviamo da questa scrittura gli zeri come le radici che verificano N(s) = 0 e i poli come le radici che verificano D(s) = 0.

OSSERVAZIONE 3.1. Il polinomio al denominatore della funzione di trasferimento vale $D(s) = \det(sI - A)$, che è proprio il polinomio caratteristico (A.2.1) della matrice di stato A, se eguagliato a zero per trovarne le radici: allora i poli (le radici del denominatore di G(s)) coincidono con alcuni autovalori di A.

Questo è un utile strumento per misurare la stabilità di un sistema, a partire dalla sua funzione di trasferimento: la stabilità asintotica di un sistema infatti dipende dalla parte reale degli autovalori della sua matrice di stato (Definizione 1.7); in un sistema di ordine n, la cui funzione di trasferimento ha un denominatore di ordine n, si ha la certezza che tutti i poli siano tutti gli autovalori della matrice A: se essi hanno parte reale negativa, il sistema risulta asintoticamente stabile.

Avevamo osservato
ne la sezione 1.1.2
che un sistema si
dice strettamente
proprio quando
l'ingresso non
compare
nell'equazione di
uscita; in un
sistema LTI vale

D = 0 e anche la funzione di trasferimento è

strettamente

propria

ESEMPIO 3.1. Sia dato un circuito idraulico consistente in una pompa di portata u(t) che, prelevando liquido da un serbatoio a capacità infinita, viene smistato in due serbatoi cilindrici, con due tubi di portata u(t)/2. Il livello del liquido nei due serbatoi è indicato con $h_{1,2}(t)$ e la sezione di ciascun serbatoio è indicata con $s_{1,2}$. Si voglia misurare il volume complessivo nei due serbatoi (y(t) = $s_1h_1(t) + s_2h_2(t)$). \checkmark Scrivere una funzione di trasferimento per questo sistema.

Figura 3.2.1. Circuito idraulico con serbatoi

Innanzitutto scriviamo la variazione del livello di liquido nel tempo (rispetto all'i-esimo serbatoio) come:

$$\dot{h}_i\left(t\right) = \frac{u\left(t\right)}{2} \cdot \frac{1}{s_i}$$

e scegliamo come stato del sistema il livello istantaneo del liquido nei due serbatoi:

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} h_1(t) \\ h_2(t) \end{bmatrix}$$

Per calcolare la funzione di trasferimento, da qui sono possibili due strade:

FORMULA DELLA FUNZIONE DI TRASFERIMENTO Scriviamo il sistema nella forma (1.1.3):

$$\dot{x}(t) = \overbrace{\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}}^{A} \cdot x(t) + \overbrace{\begin{bmatrix} 1/2s_1 \\ 1/2s_2 \end{bmatrix}}^{B} \cdot u(t)$$

$$y(t) = \overbrace{\begin{bmatrix} s_1 & s_2 \end{bmatrix}}^{C} \cdot x(t) + \overbrace{0}^{D}$$

Sostituiamo i coefficienti nella (3.1.1):

$$G(s) = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \cdot \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1/2s_1 \\ 1/2s_2 \end{bmatrix} + 0 = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \cdot \frac{1}{s^2} \cdot \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} \cdot \begin{bmatrix} 1/2s_1 \\ 1/2s_2 \end{bmatrix}$$
$$= \begin{bmatrix} s_1 & s_2 \end{bmatrix} \cdot \begin{bmatrix} 1/s & 0 \\ 0 & 1/s \end{bmatrix} \cdot \begin{bmatrix} 1/2s_1 \\ 1/2s_2 \end{bmatrix} = \begin{bmatrix} s_1/s & s_2/s \end{bmatrix} \cdot \begin{bmatrix} 1/2s_1 \\ 1/2s_2 \end{bmatrix} = \frac{1}{2s} + \frac{1}{2s} = \boxed{\frac{1}{s}}$$

Si osserva una cancellazione nella funzione di trasferimento (il grado del denominatore non è 2); il sistema in tal caso si dice non controllabile: infatti è impossibile controllare in modo differente i volumi dei due serbatoi

Trasformata di Laplace delle derivate

Scriviamo la trasformata di ciascuna equazione del sistema e sostituiamo nella trasformata dell'equazione di uscita le trasformate delle equazioni di stato:

$$\mathcal{L}\left[\dot{x}_{1}\left(t\right) = \frac{1}{2} \cdot \frac{u\left(t\right)}{s_{1}}\right] \to sX_{1}\left(s\right) = \frac{U\left(s\right)}{2s_{1}} \to X_{1}\left(s\right) = \frac{U\left(s\right)}{2s \cdot s_{1}}$$

$$\mathcal{L}\left[\dot{x}_{2}\left(t\right) = \frac{1}{2} \cdot \frac{u\left(t\right)}{s_{2}}\right] \to sX_{2}\left(s\right) = \frac{U\left(s\right)}{2s_{2}} \to X_{2}\left(s\right) = \frac{U\left(s\right)}{2s \cdot s_{2}}$$

$$\mathcal{L}\left[y\left(t\right) = s_{1}x_{1}\left(t\right) + s_{2}x_{2}\left(t\right)\right] = s_{1}X_{1}\left(s\right) + s_{2}X_{2}\left(s\right)$$

Consideriamo nulle le condizioni iniziali degli stati, per poter ignorare il termine che comparirebbe nella trasformata della derivata (tale termine non influenza la

funzione di trasferimento, dato che essa riguarda ingresso e uscita). Sostituendo nella trasformata dell'uscita otteniamo:

$$Y\left(s\right)=\mathscr{H}\frac{U\left(s\right)}{2s\cdot\mathscr{H}}+\mathscr{H}\frac{U\left(s\right)}{2s\cdot\mathscr{H}}=\frac{1}{s}U\left(s\right)$$

Dal momento che il sistema è strettamente proprio e SISO possiamo ottenere usando (3.1.2):

$$G(s) = \frac{Y(s)}{U(s)} = \boxed{\frac{1}{s}}$$

ESEMPIO 3.2. Sia dato un sistema costituito da un carrello di massa m, in movimento su un piano indefinito con coefficiente di attrito dinamico β , situato in posizione p(t) e sospinto da una forza esterna F(t); si voglia misurare la velocità del carrello $(\dot{p}(t))$. \checkmark Scrivere una funzione di trasferimento per il sistema.

Figura 3.2.2. Carrello su piano con attrito

L'equazione della dinamica del sistema si ottiene come:

$$m\ddot{p}(t) + \beta\dot{p}(t) = F(t)$$

Nel contesto dell'esercizio vale $u\left(t\right)=F\left(t\right),\,y\left(t\right)=\dot{p}\left(t\right);$ scegliamo inoltre gli stati del sistema come $x\left(t\right)=\begin{bmatrix}x_{1}\left(t\right)\\x_{2}\left(t\right)\end{bmatrix}=\begin{bmatrix}p\left(t\right)\\\dot{p}\left(t\right)\end{bmatrix}.$

Procediamo trasformando le equazioni di stato (sempre a meno delle condizioni iniziali):

$$\mathcal{L}\left[\dot{p}\left(t\right)\right] = sP\left(s\right)$$

$$\mathcal{L}\left[\ddot{p}\left(t\right)\right] = s^{2}P\left(s\right)$$

L'equazione della dinamica del sistema diventa $ms^2P(s) + \beta sP(s) = U(s)$, dove possiamo sostituire Y(s) = sP(s) (ottenuta da $\mathcal{L}[y(t)] = \mathcal{L}[\dot{p}(t)]$); avremo la seguente relazione tra U(s) e Y(s), dalla quale si ottiene l'espressione per la trasformata dell'uscita:

$$msY(s) + \beta Y(s) = U(s) \rightarrow Y(s) = \frac{U(s)}{ms + \beta}$$

Ricaviamo infine la funzione di trasferimento da (3.1.2), osservando che il sistema è SISO:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{ms + \beta}$$

OSSERVAZIONE 3.2. Nell'Esempio 3.2 viene dato un sistema del secondo ordine, che possiede infatti due stati, tuttavia la funzione di trasferimento è razionale e propria con denominatore di grado 1: questo è dovuto a una cancellazione provocata dall'uscita, definita come derivata di uno stato. Questo caso ricade sotto il nome di non osservabilità e indica l'impossibilità di ricostruire l'andamento di tutti gli stati a partire dall'uscita.

Dal risultato dell'Esempio 3.2 possiamo dedurre che la funzione di trasferimento di un sistema completamente osservabile avrà denominatore di grado massimo (pari al numero di poli); sfruttando questa osservazione, deduciamo che in un sistema completamente osservabile tutti i poli sono anche gli autovalori della matrice di stato: basta osservare la loro parte reale per studiare l'asintotica stabilità.

3.2.2. Trasferimento nei sistemi con ritardo. Consideriamo un sistema dinamico con ritardo in ingresso $\tau_u > 0$, tale che l'ingresso traslato nel tempo valga $u(t) = u'(t - \tau_u)$; la sua trasformata sarà del tipo esponenziale (a causa della traslazione):

$$\mathscr{L}\left[u\left(t\right)\right] = U\left(s\right) = \mathscr{L}\left[u'\left(t - \tau_u\right)\right] = e^{-\tau_u s} U'\left(s\right)$$

A questo punto ricaviamo anche la trasformata dell'uscita usando (3.1.2):

$$Y(s) = G(s) U(s) = G(s) \cdot e^{-\tau_u s} U'(s)$$

Notiamo che un ritardo comporta la presenza di un coefficiente esponenziale, legato alla traslazione, nella funzione di trasferimento.

Lo stesso ragionamento vale per un ritardo $\tau_y > 0$ in uscita, dove possiamo sostituire l'uscita Y(s) con quella appena ottenuta:

$$Y'(s) = e^{-\tau_y s} Y(s) = e^{-\tau_y s} e^{-\tau_u s} G(s) U'(s) = e^{-(\tau_{u+\tau_y}) s} G(s) U'(s)$$

Il termine esponenziale dipende nuovamente dai ritardi, tuttavia la funzione di trasferimento non è più razionale a coefficienti reali (l'esponenziale ha comunque la variabile s all'esponente).

OSSERVAZIONE 3.3. Dato un sistema LTI con ritardo, supponendo di non avere cancellazioni nella funzione di trasferimento e tutti i poli abbiano parte reale negativa, ovvero il sistema sarà asintoticamente stabile (dall'Osservazione 3.1); si dimostra che, se il sistema interno è asintoticamente stabile, eventuali ritardi su ingressi e uscite non influenzano questa sua proprietà.

Questo non vale per i sistemi retro-azionati (saranno discussi successivamente)

3.3. Forme fattorizzate

Per comodità si usa rappresentare le funzioni di trasferimento, in un sistema SISO, secondo delle scritture standard fattorizzate:

(3.3.1)
$$G(s) = \frac{\rho \cdot \prod_{i} (s + z_{i}) \prod_{i} (s^{2} + 2\zeta_{i}\alpha_{n_{i}}s + \alpha_{n_{i}}^{2})}{s^{g} \cdot \prod_{i} (s + p_{i}) \prod_{i} (s^{2} + 2\xi_{i}\omega_{n_{i}}s + \omega_{n_{i}}^{2})}$$

(3.3.2)
$$G(s) = \frac{\mu \cdot \prod_{i} (1 + \tau_{i} s) \prod_{i} \left(1 + \frac{2\zeta_{i} s}{\alpha_{n_{i}}} + \frac{s^{2}}{\alpha_{n_{i}}^{2}} \right)}{s^{g} \cdot \prod_{i} (1 + T_{i} s) \prod_{i} \left(1 + \frac{2\xi_{i} s}{\omega_{n_{i}}} + \frac{s^{2}}{\omega_{n_{i}}^{2}} \right)}$$

Forma di Bode

I termini delle forme fattorizzate hanno il seguente significato:

• la costante di trasferimento ρ è uno scalare, esso è il valore iniziale del trasferimento; si ottiene applicando (B.2.3) con ingresso un impulso. Risulta che

$$\lim_{s \to +\infty} sG(s) = s\rho \cdot s^{(n_{N} - n_{D})}$$

e si osserva che per una funzione di trasferimento in forma standard vale $n_{\rm N} - n_{\rm D} = -1$, in tal caso il limite appena calcolato tende a ρ ;

- il tipo del sistema g è un intero che indica il numero di poli (g > 0) o zeri (g < 0) nell'origine; se g è positivo si dice che il sistema presenta degli integratori ideali, poiché l'uscita sarà la trasformata dell'integrale dell'ingresso; se g è negativo si dice che il sistema presenta dei derivatori ideali, poiché l'uscita sarà la trasformata della derivata dell'ingresso;
- i poli p_i e gli zeri z_i cambiati di segno sono scalari non nulli;
- le pulsazioni naturali ω_i e α_i delle coppie di poli e zeri complessi coniugati sono scalari strettamente maggiori di 0;

- gli smorzamenti ξ_i e ζ_i delle coppie di poli e zeri complessi coniugati sono scalari con modulo strettamente minore di 1 (se in modulo fossero maggiori di 1 non si otterrebbero radici complesse coniugate dalla seconda produttoria);
- il guadagno statico μ è uno scalare, esso è il valore finale del trasferimento; si ottiene applicando (B.2.4) con uno segnale costante in ingresso, ad esempio lo scalino $\overline{u} \cdot \text{sca}(t)$ di ampiezza \overline{u} , la cui trasformata è \overline{u}/s . In assenza di poli o zeri nell'origine (g=0) risulta che

$$\lim_{s\to 0} s \cdot G\left(s\right) \cdot \frac{\overline{u}}{s} = \overline{u} \cdot \mu$$

dove \overline{u} è l'ampiezza dello scalino in ingresso. Otteniamo in effetti il rapporto tra l'ampiezza dello scalino in ingresso (ingresso di equilibrio) e l'ampiezza dell'uscita (di equilibrio);

• le costanti di tempo $T_i = 1/p_i$ dei poli e $\tau_i = 1/z_i$ degli zeri sono scalari.

Poli complessi coniugati. Se rappresentiamo i poli complessi coniugati sul piano di Gauss, appaiono evidenti alcune proprietà riguardo pulsazioni naturali e smorzamenti: preso un polo stabile, esso avrà (risolvendo le radici) $\Re(p) = -\xi \omega_n$, $\Im(p) = \pm \omega_n \sqrt{1-\xi^2}$; in particolare ω_n è la distanza dall'origine di ciascun polo della coppia coniugata, mentre il coseno dell'angolo ϑ che questa distanza forma con l'asse reale è pari a ξ , dunque vale $\vartheta = \arccos(\xi)$.

Da queste osservazioni segue che, a parità di pulsazione ω_n lo smorzamento ξ è inversamente proporzionale all'angolo ϑ tra le distanze dei due complessi coniugati.

Guadagno generalizzato. Per sistemi che hanno tipo g > 0, la grandezza μ non è ben definita (il limite per ottenerla vale ∞); si definisce allora il guadagno statico generalizzato come:

$$\lim_{s \to +\infty} s^g G(s) \qquad \text{per } g > 0$$

In questo modo si eliminano i poli nell'origine.

3.4. Risposta forzata allo scalino

Consideriamo un sistema dinamico nel dominio del tempo, espresso in forma (1.1.3); se abbiamo un ingresso generico $u\left(t\right)$ è necessario risolvere un'equazione differenziale ordinaria per ottenere l'uscita $y\left(t\right)$. Questi risultati sono riassunti in (1.2.2), che tuttavia non risulta comodo da calcolare; si adotta la seguente strategia:

Figura 3.4.1. Equivalenza risposta nel dominio del tempo con dominio di Laplace

- (1) Trasformiamo il segale di ingresso nel dominio di Laplace;
- (2) Calcoliamo la funzione di trasferimento;
- (3) Otteniamo l'uscita nel dominio di Laplace;
- (4) Antitrasformiamo l'uscita per ottenerla nel dominio del tempo.

Useremo l'ingresso canonico a scalino $u(t) = \overline{u} \cdot \text{sca}(t)$ poiché si tratta di un segnale facilmente realizzabile nella pratica in un sistema dinamico; in particolare ci poniamo nelle condizioni di uno scalino unitario in sistemi asintoticamente stabili del I e del II ordine, quindi sistemi con al più due poli (con parte reale negativa) e al più uno zero, e nessun polo è nell'origine.

3.4.1. Valori iniziale e finale della risposta. Calcoliamo il valore finale della risposta allo scalino a partire dalla trasformata di Laplace dell'uscita, usando la funzione di trasferimento:

$$Y(s) = G(s) \cdot \frac{1}{s}$$

Applicando (B.2.4) otteniamo (scrivendo nella (3.3.2) la funzione di trasferimento):

$$\lim_{s \to 0} s \cdot Y(s) = \lim_{s \to 0} s \cdot G(s) \cdot \frac{1}{s} = \mu$$

Questo vale in assenza di zeri nell'origine, altrimenti si avrebbe un s^{g+1} al numeratore che annulla l'uscita (con uno zero nell'origine g = -1).

Calcoliamo il valore iniziale come l'uscita al tempo t = 0, usando (B.2.3):

$$y\left(t \to 0\right) = \lim_{s \to +\infty} s \cdot Y\left(s\right) = \lim_{s \to +\infty} G\left(s\right)$$

Questo limite vale ρ se numeratore e denominatore sono di pari grado, altrimenti si annulla.

Possiamo calcolare anche il valore iniziale delle derivate dell'uscita nello stesso modo: supponendo che la funzione di trasferimento sia strettamente propria, allora il valore iniziale della derivata prima vale

$$\lim_{s \to +\infty} s \cdot \mathcal{L}\left[\dot{y}\left(t\right)\right] = \lim_{s \to +\infty} s\left[s \cdot Y\left(s\right)\right] = \lim_{s \to +\infty} s^{2} \cdot G\left(s\right) \cdot \frac{1}{\cancel{s}}$$

Osserviamo che l'annullamento del limite dipende dal grado relativo (il numeratore è moltiplicato per s): in generale il valore delle prime $n_{\scriptscriptstyle \rm D}-n_{\scriptscriptstyle \rm N}-1$ derivate è nullo, mentre la successiva vale ρ .

Nel caso di sistemi del I e II ordine c'è un transitorio per la risposta allo scalino, tipicamente una oscillazione convergente; elenchiamo alcuni termini per la nomenclatura e l'analisi di questa risposta:

- Il valore di stato stazionario $y_{\infty} = \mu \cdot \overline{u}$ è il prodotto del guadagno statico per l'ampiezza dello scalino;
- Il massimo valore che raggiunge l'uscita nel transitorio è y_{MAX} ;
- La sovraelongazione $s_{\%} = \frac{y_{\text{MAX}} y_{\infty}}{y_{\infty}}$ è la distanza del picco dal valore asintotico;

Figura 3.4.2. Risposta allo scalino per sistemi con 2 poli complessi

- Il tempo di assestamento $T_{a,\varepsilon}$ è l'istante dopo il quale l'uscita è definitivamente compresa in $(y_{\infty} + \varepsilon, y_{\infty} \varepsilon)$;
- mente compresa in $(y_{\infty} + \varepsilon, y_{\infty} \varepsilon)$; • Il tempo di salita $T_s = y^{-1}(0.9y_{\infty}) - y^{-1}(0.1y_{\infty})$ è l'intervallo di tempo nel quale l'uscita raggiunge il valore stazionario y_{∞} per la prima volta approssimato tra il 10% e il 90%.
- **3.4.2.** Risposta per sistemi del I ordine. Consideriamo solo il caso di sistemi strettamente propri (una funzione di trasferimento bi-propria genera una risposta dell'uscita allo scalino poco interessante): il numeratore della funzione di trasferimento di un sistema del genere sarà una costante e il denominatore avrà un singolo polo; l'uscita si ottiene da (3.1.2):

$$G(s) = \frac{\mu}{1 + Ts}, \qquad Y(s) = \frac{\mu}{s(1 + Ts)}$$

Si tenga a mente che la trasformata dello scalino vale $\mathscr{L}[sca(t)] = 1/s$

Per calcolare l'uscita nel dominio del tempo, antitrasformiamo l'espressione appena ottenuta; per prima cosa usiamo (B.4.4) per scrivere in modo adeguato tale espressione:

$$Y(s) = \frac{a}{s} + \frac{b}{1+Ts} \to a + aTs + bs = \mu \to s (aT+b) + a = \mu$$

$$\begin{cases} a = \mu \\ b = -aT = -\mu T \end{cases}$$

Sostituendo nell'espressione dell'uscita possiamo calcolare la sua antitrasformata:

$$Y(s) = \frac{\mu}{s} - \frac{\mu T}{1 + Ts} = \mu \left(\frac{1}{s} - \frac{1}{s + 1/T}\right)$$

$$(3.4.1)$$

$$\mathcal{L}^{-1}[Y(s)] = \mu \left(1 - e^{-t/T}\right) \operatorname{sca}(t)$$

Le caratteristiche di questa risposta sono le seguenti:

- Valore iniziale nullo al tempo zero (y(0) = 0);
- Valore iniziale della derivata prima pari a $\lim_{s \to +\infty} s^2 \frac{\mu}{1 + Ts} \cdot \frac{1}{s} = \frac{\mu}{T}$ (pendenza nella tangente nell'origine);
- Tempo di assestamento in ε pari a $T_{a,\varepsilon} \Rightarrow y\left(T_{a,\varepsilon}\right) = \mu\left(1-\varepsilon\right) = \mu\left(1-e^{-T_a/T}\right)\operatorname{sca}\left(t\right) \rightarrow e^{-T_a/T} = \varepsilon \rightarrow \boxed{T_a = -T\ln\left(\varepsilon\right)}.$

Figura 3.4.3. Risposta allo scalino in sistemi del I ordine

3.4.3. Risposta per sistemi del II ordine. Scriviamo in forma (3.3.2) la funzione di trasferimento, supponendo che $T_1 > T_2$; la funzione di uscita si ricava moltiplicando direttamente per la trasformata dell'ingresso (1/s):

$$G(s) = \frac{\mu}{(1+T_1s)(1+T_2s)}, \qquad Y(s) = \frac{\mu}{s(1+T_1s)(1+T_2s)}$$

Utilizziamo il metodo di Heaviside (B.4.1) per ottenere l'antitrasformata dell'uscita:

$$Y(s) = \frac{a}{s} + \frac{b}{1 + T_1 s} + \frac{c}{1 + T_2 s}$$

$$a = \frac{\mu}{(1 + T_1 s)(1 + T_2 s)} \Big|_{s=0} = \mu$$

$$b = \frac{\mu}{s(1 + T_2 s)} \Big|_{s=-1/T_1} = \frac{\mu}{-1/T_1 (1 - T_2/T_1)} = \frac{-\mu T_1^2}{T_1 - T_2}$$

$$b = \frac{\mu}{s(1 + T_1 s)} \Big|_{s=-1/T_2} = \frac{\mu}{-1/T_2 (1 - T_1/T_2)} = \frac{\mu T_1^2}{T_1 - T_2}$$

$$Y(s) = \frac{\mu}{s} - \frac{\mu T_1^2}{(T_1 - T_2)(1 + T_1 s)} + \frac{\mu T_2^2}{(T_1 - T_2)(1 + T_2 s)}$$

Riscriviamo infine l'espressione dell'uscita per favorire l'antitrasformazione, racco-gliendo i termini di secondo grado dei numeratori:

$$Y(s) = \mu \left(\frac{1}{s} - \frac{\mu T_1}{(T_1 - T_2)} \cdot \frac{1}{\frac{1}{T_1} + s} + \frac{\mu T_2}{(T_1 - T_2)} \cdot \frac{1}{\frac{1}{T_2} + s} \right)$$

$$(3.4.2) y(t) = \mathcal{L}^{-1}[Y(s)] = \mu \left(1 - \frac{T_1}{T_1 - T_2} e^{-t/T_1} + \frac{T_2}{T_1 - T_2} e^{-t/T_2}\right) \operatorname{sca}(t)$$

OSSERVAZIONE 3.4. Se fosse $T_1 \gg T_2$, il polo associato a T_1 si dice dominante e la risposta si avvicina a quella del primo ordine studiata nella sezione precedente; quando invece $T_1 \sim T_2$, la risposta complessiva risulterà rallentata dalla presenza di un secondo polo rispetto al caso del I ordine.

Calcoliamo ora le derivate nell'origine; se non abbiamo zeri nell'origine, con due poli si avrà la derivata prima nulla e la derivata seconda pari al guadagno statico:

$$\dot{y}(0) = \lim_{s \to +\infty} \frac{s^2 \mu}{(1 + T_1 s)(1 + T_2 s)s} = 0$$

$$\ddot{y}(0) = \lim_{s \to +\infty} \frac{s^3 \mu}{(1 + T_1 s)(1 + T_2 s)s} = \frac{\mu}{T_1 T_2}$$

dove abbiamo usato il teorema (B.2.3).

Nel caso dei poli reali coincidenti avremo $T_1 = T_2 = T$, ovvero la risposta del sistema sarà la più lenta possibile per quanto detto nell'Osservazione 3.4; scriviamo funzione di trasferimento e uscita come:

$$G(s) = \frac{\mu}{(1+Ts)^2}, \qquad Y(s) = \frac{\mu}{s(1+Ts)^2} = \frac{a}{s} + \frac{b}{1+Ts} + \frac{c}{(1+Ts)^2}$$

Scegliamo di usare (B.4.1) per calcolare a, e di ottenere b e c da (B.4.4):

$$a = \frac{\mu}{(1+Ts)^2} \Big|_{s=0} = \mu$$

$$\mu = aT^2s^2 + 2aTs + a + bs(1+Ts) + cs$$

$$= s^2(sT^2 + bT) + s(2aT + b + c) + a$$

$$\begin{cases} aT^2 + bT = 0 \\ 2aT + b + c = 0 \end{cases} \Rightarrow \begin{cases} b = -\mu T \\ c = -\mu T \end{cases}$$

Riscriviamo infine l'uscita sostituendo i coefficienti e troviamo la sua antitrasformata:

$$Y(s) = \frac{\mu}{s} - \frac{\mu T}{1 + Ts} - \frac{\mu T}{(1 + Ts)^2} = \mu \left(\frac{1}{s} - \frac{1}{(1/T + s)} - \frac{1}{T(1/T + s)^2}\right)$$

(3.4.3)
$$y(t) = \mathcal{L}^{-1}[Y(s)] = \mu \left(1 - e^{-t/T} - \frac{t}{T}e^{-t/T}\right) \operatorname{sca}(t)$$

OSSERVAZIONE 3.5. La velocità di risposta, calcolata in maniera analitica tramite le derivate dell'uscita, si ottiene come prima e vale che il tempo di assestamento all'1% è circa 7T, mentre per il sistema a singolo polo questo valore è circa 5T.

3.4.4. Sistemi del II ordine con uno zero. Rimanendo all'interno delle nostre ipotesi, abbiamo due poli reali negativi (sistema asintoticamente stabile) e uno zero (il numeratore avrà grado 1); la forma generale della funzione di trasferimento sarà la seguente:

$$G(s) = \frac{\mu(1+\tau s)}{(1+T_1 s)(1+T_2 s)}$$

L'uscita sarà pari alla trasformata dell'ingresso (scalino) per la funzione di trasferimento:

$$Y(s) = \frac{\mu(1+\tau s)}{s(1+T_1s)(1+T_2s)} = \frac{a}{s} + \frac{b}{1+T_1s} + \frac{c}{1+T_2s}$$

Per calcolare i coefficienti nella riscrittura dell'uscita usiamo il metodo (B.4.1):

$$a = \frac{\mu (1 + \tau s)}{(1 + T_1 s) (1 + T_2 s)} \Big|_{s=0} = \mu$$

$$b = \frac{\mu (1 + \tau s)}{(1 + T_2 s)} \Big|_{s=-1/T_1} = \frac{\mu (1 - \tau/T_1)}{-1/T_1 (1 - T_2/T_1)} = -\frac{\mu T_1 (T_1 - \tau)}{T_1 - T_2}$$

$$c = \frac{\mu (1 + \tau s)}{(1 + T_1 s)} \Big|_{s=-1/T_2} = \frac{\mu (1 - \tau/T_2)}{-1/T_2 (1 - T_1/T_2)} = \frac{\mu T_2 (T_2 - \tau)}{T_1 - T_2}$$

$$Y(s) = \mu \left(\frac{1}{s} - \frac{(T_1 - \tau)}{(T_1 - T_2)(1/T_1 + s)} + \frac{(T_2 - \tau)}{(T_1 - T_2)(1/T_2 + s)} \right)$$

L'antitrasformata presenta uno scalino e due esponenziali:

(3.4.4)
$$y(t) = \mu \left(1 - \frac{T_1 - \tau}{T_1 - T_2} e^{-t/T_1} + \frac{T_2 - \tau}{T_1 - T_2} e^{-t/T_2} \right) \operatorname{sca}(t)$$

Ora la funzione di uscita dipende anche dalla costante di tempo dello zero; assumiamo che $T_1 > T_2$, per avere la quantità al denominatore sempre positiva, e analizziamo il valore dell'uscita rispetto alla variazione di τ .

Figura 3.4.4. Risposta del 2 ordine con zero reale positivo

Figura 3.4.5. Risposta del 2 ordine con zero reale negativo

ZERO POSITIVO

Prendiamo uno zero con parametro $\tau < 0$: la costante di tempo sarà positiva; nel grafico della risposta compare una sottoelongazione (si veda la figura 3.4.4), tanto più marcata quanto più il modulo dello zero tende a 0.

Si può considerare uno zero positivo in prossimità dell'origine come un *derivatore* puro, che dà all'uscita un impulso nella prima fase del transitorio; si dice anche che questo comportamento è in *contro-fase*. Lo stesso comportamento si avrebbe per guadagno negativo.

Possiamo calcolare la pendenza nell'origine della risposta usando il teorema (B.2.3) sull'uscita:

$$\dot{y}(0) = \lim_{s \to +\infty} s^2 Y(s) = \lim_{s \to +\infty} s^2 G(s) \frac{1}{s} = \lim_{s \to +\infty} s \frac{\mu(1+\tau s)}{(1+T_1 s)(1+T_2 s)} = \frac{\mu \tau}{T_1 T_2}$$

Notiamo che un guadagno elevato o in prossimità dell'origine $(-1/\tau \ll 1 \implies |\tau| \gg 0)$ la pendenza aumenta.

Bisogna precisare che la vicinanza con l'origine di cui abbiamo parlato è in realtà da riferirsi alla distanza con i poli negativi, nello specifico con quelli dominanti (discuteremo successivamente l'andamento asintotico dei sistemi).

ZERO NEGATIVO

Prendiamo uno zero con $\tau > 0$: la costante di tempo sarà negativa; se essa è maggiore di $-1/T_1$, si ha il comportamento simmetrico rispetto al caso positivo, col presentarsi di una sovraelongazione (si veda la figura 3.4.5) durante il transitorio, tanto maggiore quanto più lo zero è vicino all'origine (come prima, se lo zero fosse nell'origine si avrebbe un impulso che precede il transitorio); Uno zero reale negativo allora velocizza la risposta del sistema.

ZERO NEI PRESSI DEL POLO

Se si aumenta in modulo τ spostando lo zero sempre più a sinistra, prima o poi esso sarà quasi coincidente col primo polo ($\tau \simeq T_1$): in un primo momento il transitorio procederà senza elongazioni alla velocità μ/T_2 stabilita dal polo rimanente.

A seconda della posizione relativa tra lo zero e il polo dominante, si ha un *effetto coda* durante il transitorio, ovvero la pendenza iniziale è determinata dalla costante di tempo più "veloce", seguita da un lungo transitorio determinato dal polo più "lento".

ZERO CANCELLA UN POLO

Quando vale effettivamente $\tau=T_1$, si verifica una cancellazione zero-polo e la risposta assomiglia a quella di un sistema di ordine 1 senza zeri.

ZERO MOLTO PICCOLO NEGATIVO

Quando vale $|\tau| \gg 0$, la costante di tempo diventa trascurabile e il sistema risponde come se non avesse affatto lo zero.

3.4.5. Sistemi del II ordine con poli complessi coniugati. La forma della funzione di trasferimento in questo caso può essere scritta nella seguente forma:

$$G(s) = \frac{\mu \omega_n^2}{(s^2 + 2\xi \omega_n s + \omega_n^2)} \qquad \omega_n > 0, \, \xi \in (0, 1)$$

In questo modo i poli saranno in

$$p_{1,2} = \overbrace{-\xi\omega_n}^{\sigma} \pm j \overbrace{\sqrt{1-\xi^2}}^{\omega}$$

e per i valori scelti di smorzamento e pulsazione abbiamo due poli complessi coniugati con parte reale negativa. Calcoliamo come al solito la risposta dell'uscita antitrasformando la sua espressione nel dominio di Laplace, dopo averla scritta col metodo di Heaviside:

$$Y(s) = \frac{\mu \omega_n^2}{s(s - \sigma - j\omega)(s - \sigma + j\omega)}$$

$$a = \frac{\mu \omega_n^2}{(s - \sigma - j\omega)(s - \sigma + j\omega)} \bigg|_{s=0} = \mu$$

$$b = \frac{\mu \omega_n^2}{(s - \sigma + j\omega)} \Big|_{s = \sigma + j\omega} = \frac{\mu \omega_n^2}{(\sigma + j\omega)(\sigma + j\omega - \sigma + j\omega)} = \frac{\mu \omega_n^2}{2} \cdot \frac{-\omega^2 - j\sigma\omega}{\omega^4 + \omega^2 \sigma^2}$$
$$= \frac{\mu \omega_n^2}{2\underbrace{(\omega^2 + \sigma^2)}_{\omega_n^2}} \left(-1 - j\frac{\sigma}{\omega}\right) = \frac{\mu}{2\omega}(-\omega - j\sigma)$$

Scriviamo il coefficiente b in forma esponenziale, sostituendo ω e σ con le variabili originali:

$$b = \frac{\mu}{s\sqrt{1-\xi^2}}e^{j\arg(-\omega-j\sigma)}$$

Questo numero si trova nel secondo quadrante sul piano complesso, e il suo argomento vale:

$$\arg(-\omega - j\sigma) = \arctan\left(\frac{\xi\omega_n}{\omega_n\sqrt{1-\xi^2}}\right) + \frac{\pi}{2} \implies b = \frac{\mu}{s\sqrt{1-\xi^2}}e^{j(\arccos(\xi) + \pi/2)}$$

Il coefficiente c è il complesso coniugato di quello appena trovato:

$$c = b^* = \frac{\mu}{s\sqrt{1-\xi^2}}e^{-j(\arccos(\xi)+\pi/2)}$$

Sostituendo nell'espressione dell'uscita si ha

$$Y\left(s\right) = \mu \left[\frac{1}{s} + \frac{1}{2\sqrt{1-\xi^2}} \left(\frac{e^{j(\arccos(\xi) + \pi/2)}}{s - (\sigma + j\omega)} + \frac{e^{-j(\arccos(\xi) + \pi/2)}}{s - (\sigma - j\omega)} \right) \right]$$

Antitrasformiamo l'uscita usando (B.4.3), e otteniamo la seguente espressione:

$$y(t) = \mu \left[1 + \frac{2}{2\sqrt{1-\xi^2}} e^{-\sigma t} \cdot \cos\left(\omega t + \arccos\left(\xi\right) + \frac{\pi}{2}\right) \right] \operatorname{sca}(t)$$

$$(3.4.5) \qquad = \mu \left[1 - \frac{e^{-\xi \omega_n t}}{\sqrt{1 - \xi^2}} \cdot \sin\left(\omega_n \sqrt{1 - \xi^2} t + \arccos\left(\xi\right)\right) \right] \operatorname{sca}\left(t\right)$$

La risposta (mostrata ne la figura 3.4.2) ha valore iniziale e derivata prima nulli nell'origine, poi segue una sovraelongazione e l'uscita segue un andamento oscillante convergente al valore di guadagno, con inviluppo esponenziale $e^{-\xi\omega_n t}$. Nel caso di smorzamento nullo ($\xi=0$) le oscillazioni non si attenuano nel tempo, e si ottiene una risposta oscillante limitata (sinusoidale) nel tempo tra 0 e μ .

Osservazione 3.6. Si può controllare che la sovraelongazione dipende solo dallo smorzamento: vale infatti

$$y_{\text{MAX}} = \mu \left(1 + e^{-\xi \pi / \sqrt{1 - \xi^2}} \right)$$

La sovraelongazione in percentuale vale $s_{\%} = e^{-\xi \pi/\sqrt{1-\xi^2}} \cdot 100$ (abbiamo usato la definizione enunciata ne la sezione 3.4.1); in generale sovraelongazione e smorzamento sono legati da una relazione esponenziale di proporzionalità inversa.

OSSERVAZIONE 3.7. Sia smorzamento che pulsazione naturale influenzano la velocità con cui le pulsazioni tendono a 0: l'inviluppo esponenziale del movimento è analogo a quello di una risposta del primo ordine, con costante di tempo $T = 1/\xi \omega_n$.

Il tempo di assestamento, come nel caso di poli reali, vale $T_{a,\varepsilon} = -\ln(\varepsilon)/\xi\omega_n$.

3.5. Approssimazione a poli dominanti

Consideriamo un sistema asintoticamente stabile di ordine maggiore del secondo, nel quale <u>tutte</u> le singolarità (poli e zeri) abbiano parte reale negativa; nel caso i cui alcuni poli o zeri abbiano la parte reale in modulo molto maggiore di quella degli altri (la costante di tempo associata è molto piccola), possiamo trascurare quelle singolarità nell'espressione della risposta allo scalino del sistema.

In presenza di zeri o poli con parte reale positiva (instabili) non valgono le approssimazioni seguenti

Esempio 3.3. Sia data la sequente funzione di trasferimento:

$$G(s) = \frac{5}{(1+s)(1+10s)(\frac{s^2}{900} + \frac{s}{30} + 1)}$$

✓ Calcolare la risposta allo scalino del sistema.

La consegna richiede di calcolare l'uscita dalla funzione di trasferimento in risposta allo scalino; osserviamo che si tratta di un sistema del IV ordine, e non vi sono state cancellazioni: sono presenti due poli reali $(s_1 = -1, s_2 = -\frac{1}{10})$ e due poli complessi coniugati $(s_{3,4} = -15 \pm 30\sqrt{3/4}, \text{ per quanto osservato ne la sezione } 3.4.5).$

Le costanti di tempo associate a ciascun polo saranno rispettivamente:

$$T_{3,4} = \frac{1}{15} < T_1 = 1 < T_2 = 10$$

Se osserviamo i poli sul piano complesso, il polo più vicino all'origine ha la costante di tempo maggiore, ed è proprio il polo dominante (s_2) ; possiamo trascurare gli altri poli nel calcolo della risposta al sistema, ottenendo la seguente funzione di trasferimento

$$G'(s) = \frac{5}{(1+10s)}$$

la cui funzione di uscita ottenuta antitrasformando è

$$y'(t) = \mu\left(-e^{-10t}\right)\operatorname{sca}(t).$$

Se avessimo degli zeri con parte reale positiva, al contrario dei poli positivi (i quali non possono mai essere trascurati), nel caso essi abbiano costante di tempo molto piccola rispetto ai poli dominanti, possiamo ignorare il loro contributo nella funzione di trasferimento, aspettandoci un andamento qualitativo simile a quelli mostrati ne la figura 3.4.4 e la figura 3.4.5.

Esempio 3.4. Prendiamo la funzione di trasferimento dell'Esercizio 3.3 e ipotizziamo che abbia anche uno zero in $s_z = 1$: \checkmark calcolare la funzione di uscita in questo caso.

Osserviamo che il nuovo zero ha parte reale positiva, e la sua costante di tempo ($\tau_z = 1$) è piccola rispetto a quella del polo dominante ($T_2 = 10$): possiamo approssimare la funzione di trasferimento ignorando lo zero; si avrà un andamento in uscita con una sottoelongazione dovuta allo zero positivo trascurato, poi delle oscillazioni attorno al valore asintotico dovute ai poli complessi coniugati e infine il transitorio si stabilirà attorno al valore finale in circa.

3.6. Realizzazione

La realizzazione è il procedimento analitico che permette di ottenere la descrizione di un sistema nella forma standard (1.1.3) a partire dalla sua funzione di trasferimento; il modello trovato per il sistema dovrà avere la stessa funzione di trasferimento di partenza.

Si sceglie per comodità un sistema nella forma canonica di raggiungibilità (non ci sono cancellazioni polo-zero), dalla quale è possibile arrivare ad equazioni adeguate adottando una sua rappresentazioni equivalente.

Partiamo dalla scrittura generale di una funzione di trasferimento di un sistema SISO, immaginando di aver raccolto il termine di grado massimo al denominatore:

$$G(s) = \frac{\beta_n s^n + \beta_{n-1} s^{n-1} + \ldots + \beta_0}{s^n + \alpha_{n-1} s^{n-1} + \ldots + \alpha_0}$$

Cerchiamo ora delle matrici A, B, C, D tali che valga l'equazione (3.1.1); nel caso più generale $\beta_n \neq 0$ e il sistema sarà proprio (non strettamente), quindi anche la matrice D sarà non nulla. Cerchiamo di scomporre la funzione di trasferimento nella combinazione di β_n con una funzione strettamente propria, ottenendo che $D = \beta_n$:

$$G(s) = \frac{\beta_n \left(s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_0 \right) + \hat{\beta}_{n-1} s^{n-1} + \hat{\beta}_{n-2} s^{n-2} \dots + \hat{\beta}_0}{s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_0}$$

$$= \frac{\beta_n s^n + \left(\beta_n \alpha_{n-1} + \hat{\beta}_{n-1} \right) s^{n-1} + \dots + \left(\beta_n \alpha_0 + \hat{\beta}_0 \right)}{s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_0}$$

Possiamo ricavare in generale da queste relazioni $\hat{\beta}_i$ come

$$\hat{\beta}_i = \beta_i - \beta_{i+1}\alpha_i$$

La funzione di partenza vale allora

$$G(s) = \beta_n + \frac{\hat{\beta}_{n-1}s^{n-1} + \hat{\beta}_{n-2}s^{n-2} + \ldots + \hat{\beta}_0}{s^n + \alpha_{n-1}s^{n-1} + \ldots + \alpha_0}$$

dove si ha la somma di una costante β_n con una frazione propria, il cui denominatore ha dei coefficienti $\hat{\beta}_i$ che sono funzioni dei coefficienti originali; notiamo per confronto con (3.1.1) che $\beta_n = D$.

Nel caso la funzione di trasferimento sia già strettamente propria lo è anche il sistema, e la matrice D risulta nulla.

Per trovare una realizzazione dobbiamo operare una scelta per il vettore degli stati; il sistema derivante avrà n stati, come il grado del denominatore di G(s):

$$x(t) = \begin{bmatrix} x_1(t) \\ \dot{x}_1(t) \\ \vdots \\ \frac{\partial^{n-1}x(t)}{\partial t^{n-1}} \end{bmatrix}$$

Questa è una delle infinite possibili scelte, che comporta il seguente modello:

Forma canonica
$$\dot{x}\left(t\right) = \overbrace{ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1} \end{bmatrix} }^{A} x\left(t\right) + \overbrace{ \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} }^{B} u\left(t\right)$$
raggiungibilità

$$y(t) = \overbrace{\left[\hat{\beta}_{0} \quad \hat{\beta}_{1} \quad \cdots \quad \hat{\beta}_{n-1}\right]}^{C} x(t) + \overbrace{\beta_{n}}^{D} \cdot u(t)$$

Nella matrice A le prime n-1 equazioni di stato sono banali, poiché ogni derivata è pari allo stato successivo; essa è chiamata forma canonica di raggiungibilità poiché

l'ingresso è in grado di influenzare l'ultimo stato, mentre gli stati successivi sono suoi integratori (l'ingresso influenza tutti gli stati).

Verifichiamo che da questa forma canonica si riottiene l'equazione di partenza; applichiamo la trasformata degli stati ottenendo:

$$\mathcal{L}^{-1}[\dot{x}(t)] = \begin{bmatrix} X_1(s) \\ sX_1(s) \\ \vdots \\ s^{n-1}X_1(s) \\ sX_n(s) \end{bmatrix}$$

dove l'ultima equazione di stato vale:

$$sX_n(s) = -\alpha_0 X_1(s) - \alpha_1 sX_1(s) + \dots - \alpha_{n-1} s^{n-1} X_1(s) + U(s)$$

Il termine U(s) è dovuto all'1 in ultima posizione della matrice colonna B; raccogliendo gli $X_i(s)$ a sinistra si ottiene:

$$X_i(s) = \frac{s^{i-1}U(s)}{s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_0}$$

Sostituendo questa espressione dello stato nell'equazione di uscita avremo:

$$Y(s) = C \cdot X(s) + \beta_n U(s) = \frac{\hat{\beta}_{n-1} s^{n-1} + \hat{\beta}_{n-2} s^{n-2} + \dots + \hat{\beta}_0}{s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_0} U(s) + \beta_n \cdot U(s)$$

La matrice C è una riga che moltiplicata per X(s) dà una somma di termini con stesso denominatore in $\hat{\beta}$ e s, tutti moltiplicati per l'uscita; raccogliendo U(s) nella precedente si riottiene la funzione di trasferimento di partenza come $G(s) \cdot U(s)$.

Esempio 3.5. Sia data la sequente funzione di trasferimento:

$$G(s) = \frac{s^2 + 3s + 2}{s^2 + 6s + 12}$$

✓ Si ricavi la realizzazione di un sistema dinamico nella forma canonica di raggiungibilità a cui corrisponde questa funzione di trasferimento.

Il grado di numeratore e denominatore è lo stesso, quindi possiamo affermare che il sistema sarà proprio non strettamente; la funzione di stato inoltre può essere riscritta come la somma di una costante per una funzione razionale propria:

$$G(s) = \frac{s^2 + 6s + 12}{s^2 + 6s + 12} + \frac{0 + (3 - 6)s + (2 - 12)}{s^2 + 6s + 12} = 1 + \frac{-3s - 10}{s^2 + 6s + 12}$$

Possiamo ottenere le matrici della forma canonica direttamente da (3.6.1), osservando la riscrittura appena effettuata:

• Sappiamo che, essendo la funzione di trasferimento propria, vale

$$D = \beta_n = 1$$
;

• Il grado del denominatore è pari a 2, quindi la matrice A avrà ordine 2; essa avrà nulli tutti gli elementi fino alla penultima riga, con degli 1 nella sopra-diagonale principale, mentre nell'ultima riga avremo gli inversi dei coefficienti del denominatore a partire da quello di grado più basso:

$$A = \begin{bmatrix} 0 & 1 \\ -12 & -6 \end{bmatrix};$$

• La matrice B è una colonna di 2 elementi, tutti nulli eccetto l'ultimo;

ullet La matrice C è una riga formata dai coefficienti (non invertiti) del numeratore a partire da quello di grado più basso

$$C = \begin{bmatrix} -10 & -3 \end{bmatrix};$$

La forma (1.1.3) di un sistema con la funzione di trasferimento assegnata risulta:

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -12 & -6 \end{bmatrix} \cdot x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot u(t) \\ y(t) = \begin{bmatrix} -10 & -3 \end{bmatrix} \cdot x(t) + u(t) \end{cases}$$

Usando la relazione (3.1.1) si riottiene la funzione di trasferimento assegnata dall'esercizio. $\hfill\Box$

CAPITOLO 4

Schemi a blocchi

4.1. Elementi costitutivi

Per realizzare delle formalizzazioni matematiche di sistemi interconnessi, che siano comode dal punto di vista analitico, si usa il linguaggio degli schemi a blocchi. I principali elementi che li costituiscono sono:

Rappresentazione

Descrizione

Sistema, dotato di un ingresso u e un'uscita y, associato a una funzione di trasferimento G(s);

Nodo somma, dotato di almeno due ingressi u_1 e u_2 caratterizzati da un segno + o -, e una sola uscita $y = u_1 - u_2$;

Diramazione, consiste nello sdoppiare un segnale: si rappresenta con un ingresso u e almeno due uscita y_1 e y_2 pari all'ingresso.

Tabella 4.1.1. Elementi costitutivi degli schemi a blocchi

Figura 4.1.1. Sistema con più ingressi e uscite rappresentato coi blocchi costitutivi

Per semplicità considereremo i sistemi SISO scalari; in presenza di un sistema con ingressi e uscite multipli, ci si può ricondurre comunque al caso SISO.

OSSERVAZIONE 4.1. Prendiamo un sistema quadrato che in generale potrebbe avere molti ingressi e uscite; nel nostro caso scegliamo un sistema di ordine 2 (nel dominio di Laplace); se è di ordine due e ha due uscite, la matrice di trasferimento ha ordine 2, quindi possiede 4 funzioni di trasferimento (ognuna razionale fratta); le uscite del sistema saranno legati nel modo seguente:

$$Y(s) = \begin{bmatrix} Y_{1}(s) \\ Y_{2}(s) \end{bmatrix} = \begin{bmatrix} G_{1,1}(s) & G_{1,2}(s) \\ G_{2,1}(s) & G_{2,2}(s) \end{bmatrix} \cdot \begin{bmatrix} U_{1}(s) \\ U_{2}(s) \end{bmatrix}$$

Lo schema corrispondente, realizzato usando solo i blocchi SISO, è ne la figura 4.1.1.

Lo schema è stato ottenuto rispettando la scrittura delle equazioni di uscita, effettuando il prodotto righe per colonne della matrice di trasferimento con quella degli

ingressi; infatti vale:

$$\begin{cases} Y_1(s) = U_1(s) G_{1,1}(s) + U_2(s) G_{1,2}(s) \\ Y_2(s) = U_1(s) G_{2,1}(s) + U_2(s) G_{2,2}(s) \end{cases}$$

Per descrivere il modello in esame sarà necessario uno schema per la parte elettrica, uno schema per l'attuatore meccanico e uno schema per l'aeroplano

Vediamo un esempio di analisi tramite schema a blocchi di un meccanismo chiamato equilibratore: negli aeroplani si hanno tre gradi di libertà che interessa controllare, le tre rotazioni attorno agli assi dello spazio (beccheggio, rollio, imbardata); la superficie mobile degli alettoni sulla coda è l'equilibratore.

ESEMPIO 4.1. Sia dato il modello di circuito per un equilibratore dove: v(t) è la tensione di comando (che rappresenta la posizione della cloche); la serie di resistore e induttore rappresentano i parametri interni del motore M il quale, grazie alla corrente i(t), muove un albero meccanico collegato all'equilibratore; \checkmark scrivere uno schema a blocchi che descriva il sistema.

Figura 4.1.2. Modello per equilibratore di un aereo

(1) Sistema Elettrico Cominciamo descrivendo il sistema elettrico, il cui ingresso è la tensione di controllo v(t) e l'uscita la coppia fornita dal motore T(t); in prima approssimazione vale T = ki(t) con k una costante caratteristica del motore.

Quando il motore comincia a girare si crea una differenza di tensione indicata come forza elettro-motrice, pari in prima approssimazione a $\mathscr{E}(t) = k\dot{\delta}(t)$, dove $\delta(t)$ è l'angolo di rotazione del motore e la sua derivata la velocità angolare (per semplicità il motore ha una singola costante caratteristica k).

L'equazione di equilibrio elettrico sarà:

$$v(t) = Ri(t) + L\frac{\partial i(t)}{\partial t} + \mathcal{E}(t)$$

Osserviamo che l'induttanza è l'unico componente dinamico; esplicitiamo la derivata rispetto al tempo della corrente, ottenendo:

$$\frac{\partial i(t)}{\partial t} = \frac{1}{L} \left(v(t) - Ri(t) - k\dot{\delta}(t) \right)$$
 (stato)
$$T(t) = ki(t)$$
 (uscita)

Anche $\dot{\delta}(t)$ è un ingresso per il sistema; ricaviamo la funzione di trasferimento considerando gli ingressi v(t), $\dot{d}(t)$ e l'uscita T(t):

$$sI\left(s\right) = -\frac{R}{L}I\left(s\right) + \frac{1}{L}V\left(s\right) - \frac{k}{L}s\Delta\left(s\right)$$

$$\to I\left(s\right) = \frac{1}{L} \cdot \frac{1}{\left(s + \frac{R}{L}\right)} \cdot V\left(s\right) - \frac{k}{L} \cdot \frac{s}{\left(s + \frac{R}{L}\right)} \cdot \Delta\left(s\right)$$

si ottiene trasformando l'equazione di stato associata a i(t), e considerando che $\mathscr{L}\left[\dot{\delta}\left(t\right)\right]=\Delta\left(s\right)$; la trasformata dell'equazione di uscita si può riscrivere come il prodotto di k per la trasformata appena ottenuta $I\left(s\right)$:

$$(4.1.1) T(s) = kI(s) = \frac{k}{L} \cdot \frac{1}{\left(s + \frac{R}{L}\right)} \cdot V(s) - \frac{k^2}{L} \cdot \frac{s}{\left(s + \frac{R}{L}\right)} \cdot \Delta(s)$$

Osserviamo che abbiamo le equazioni di un sistema del primo ordine, asintoticamente stabile (con polo -R/L).

Analizziamo adesso il sistema meccanico che trasferisce la coppia all'equilibratore dell'aeroplano; un certo coefficiente di attrito β si sviluppa tra i cuscinetti e l'asse del motore, con un angolo di rotazione δ e una coppia applicata T; il sistema ha una sua inerzia alla rotazione J.

(2) Sistema Meccanico

Il sistema ha la seguente equazione di equilibrio:

$$J\ddot{\delta}(t) + \beta\dot{\delta}(t) = T(t)$$

La trasformata di Laplace di questa equazione è:

$$Js^{2}\Delta(s) + \beta s\Delta(s) = T(s)$$

Notiamo che l'ingresso di questo secondo sistema è la coppia (in uscita dal sistema (4.1.1)), mentre l'uscita è l'angolo di rotazione Δ :

(4.1.2)
$$\Delta(s) = \frac{1}{(Js+\beta)s}T(s)$$

Abbiamo ottenuto un sistema del secondo ordine (denominatore di grado 2) con i poli $p_1 = 0$, $p_2 = \beta/J$, semplicemente stabile con un polo nell'origine; intuitivamente l'uscita di questo secondo sistema sarà un ingresso in retroazione per il precedente (4.1.1).

Per concludere, analizziamo la meccanica di volo dell'aeroplano; abbiamo in ingresso l'angolo Δ di rotazione dell'equilibratore, inoltre il velivolo avrà un centro di massa ${\scriptscriptstyle CM}$, la distanza d tra il punto in cui sarà applicata la forza dinamica e il centro di massa; muovendo l'alettone si genera una forza $F_{\scriptscriptstyle D}$ di resistenza aerodinamica e una coppia resistente $M_{\scriptscriptstyle D}$.

(3) Sistema Velivolo

Consideriamo il moto rotativo di beccheggio dell'aereo, orientato con un angolo di rotazione ϑ ; in generale il velivolo avrà un suo momento d'inerzia $J_{\rm A}$, legato a un coefficiente di attrito viscoso $\beta_{\rm A}$.

L'equazione di equilibrio (in modo simile alla precedente) si ottiene come:

$$J_{\mathbf{A}}\ddot{\vartheta}\left(t\right) + \beta_{\mathbf{A}}\dot{\vartheta}\left(t\right) = M_{\mathbf{D}}\left(t\right) + dF_{\mathbf{D}}$$

Approssimiamo la coppia e la forza legate all'aerodinamica con una proporzione con lo spostamento dell'alettone:

$$M_{\mathrm{D}}\left(t\right) = k_{\mathrm{A}}\delta\left(t\right)$$
$$F_{\mathrm{D}}\left(t\right) = k_{\mathrm{B}}\delta\left(t\right)$$

dove le costanti $k_{A,B}$ sono proprie del terzo sistema in esame; sostituendo nella precedente e trasformando otteniamo:

$$J_{A}s^{2}\vartheta\left(s\right) + \beta_{A}s\vartheta\left(s\right) = \left(k_{A} + dk_{B}\right)\Delta\left(s\right)$$

L'uscita di interesse è proprio l'angolo di beccheggio dell'aeroplano, mentre l'ingresso è la posizione dell'alettone; la funzione di trasferimento è:

(4.1.3)
$$\vartheta(s) = \frac{k_A + dk_B}{(J_A s + \beta_A) s} \Delta(s)$$

Abbiamo ottenuto un sistema del secondo ordine con i poli $p_1 = 0$, $p_2 = \beta_A/J_A$, semplicemente stabile con un polo nell'origine.

Lo schema a blocchi del sistema complessivo si ottiene dalle funzioni di trasferimento (4.1.1), (4.1.2) e (4.1.3) in forma fattorizzata:

Figura 4.1.3. Schema a blocchi dei 3 sistemi connessi

Nella sezione successiva vedremo come interpretare la topologia di questo schema, per ottenere una unica funzione di trasferimento tra il primo ingresso e l'ultima uscita.

4.2. Regole di elaborazione

4.2.1. Sistemi in serie. Si tratta di una cascata di due sistemi dinamici $G_1(s)$ con ingresso U e $G_2(s)$ con ingresso U', uscita intermedia del primo sistema; valgono le seguenti regole di elaborazione:

$$\begin{cases} U'(s) = G_1(s) U(s) \\ Y(s) = G_2(s) U'(s) = G_2(s) G_1(s) U(s) \end{cases}$$

Segue che la funzione di trasferimento complessiva della serie dei sistemi è pari al prodotto delle loro funzioni di trasferimento:

(4.2.1)
$$G(s) = G_2(s) G_1(s) = \frac{N_{G_1}(s) \cdot N_{G_2}(s)}{D_{G_1}(s) \cdot D_{G_2}(s)}$$

Nel caso dei sistemi SISO è indifferente scambiare di posto le funzioni di trasferimento nel prodotto, mentre nel caso di sistemi MIMO è necessario rispettare l'ordine dei blocchi, dall'ultimo al primo della cascata (si hanno prodotti di matrici, che non sono commutativi).

Figura 4.2.1. Schema per sistemi in serie

I poli della funzione di trasferimento complessiva sono (a meno di cancellazioni), rispetto alle singole funzioni, l'unione dei poli delle singole funzioni di trasferimento: l'ordine complessivo è infatti la somma degli ordini delle funzioni e gli autovalori rimangono inalterati; se anche uno solo dei sistemi della serie è instabile, il sistema complessivo sarà instabile.

In presenza di cancellazioni critiche (viene cancellato un polo instabile), si ottiene un sistema complessivo apparentemente stabile, che ha tuttavia dei modi interni instabili.

4.2.2. Sistemi in parallelo. Presentano una diramazione in ingresso, che immette lo stesso valore in sistemi con trasferimento differente; le uscite di tali sistemi sono raccolte da un nodo somma; valgono le seguenti regole di elaborazione:

$$Y(s) = G_1(s) U(s) + G_2(s) U(s) = (G_1(s) + G_2(s)) U(s)$$

Segue che la funzione di trasferimento complessiva del parallelo dei sistemi è pari alla somma delle loro funzioni di trasferimento:

$$G(s) = G_1(s) + G_2(s) = \frac{N_{G_1}(s)}{D_{G_1}(s)} + \frac{N_{G_2}(s)}{D_{G_2}(s)} = \frac{N_{G_1}(s) \cdot D_{G_2}(s) + N_{G_2}(s) \cdot D_{G_1}(s)}{D_{G_1}(s) \cdot D_{G_2}(s)}$$

Come nel caso della serie, i poli della funzione di trasferimento complessiva (a meno di cancellazioni) sono l'unione dei poli delle singole funzioni di trasferimento: l'ordine complessivo è la somma degli ordini delle funzioni; se anche uno solo dei sistemi del parallelo è instabile, il sistema complessivo sarà instabile.

In presenza di cancellazioni critiche, si ottiene un sistema complessivo apparentemente stabile, che ha tuttavia dei modi interni instabili.

4.2.3. Sistemi in retroazione. Presentano un nodo somma che riporta l'uscita di un sistema nell'ingresso dell'altro, sommandola all'ingresso esterno; l'uscita del primo sistema è inoltre riportata in ingresso al secondo tramite una diramazione; a seconda del segno del nodo somma si parla di retroazione negativa o positiva; valgono le seguenti regole di elaborazione:

$$\begin{cases} U'(s) = U(s) - G_2(s) Y(s) \\ Y(s) = G_1(s) \cdot U' = G_1(s) \cdot (U(s) - G_2(s) Y(s)) \end{cases}$$

Riscriviamo la funzione di uscita in forma fattorizzata:

$$1 + G_1(s) G_2(s) Y(s) = G_1(s) U(s) \to Y(s) = \frac{G_1(s)}{1 \mp G_1(s) G_2(s)} U(s)$$

dove il \mp dipende dall'opposto del segno della retroazione (nel nostro caso + per retroazione negativa); la regola generale per ricavare il trasferimento complessivo consiste nel fare il rapporto tra il ramo diretto e la funzione di anello, ovvero il prodotto di tutte le funzioni di trasferimento sull'anello di retroazione:

$$(4.2.3) L(s) = G_1(s) \cdot G_2(s)$$

Enunciamo la seguente regola generale, per il calcolo della funzione di trasferimento:

$$(4.2.4) G(s) = \frac{H(s)}{1 \mp L(s)}$$

dove H(s) è il ramo diretto, la serie di sistemi tra l'ingresso e l'uscita di G(s); nel nostro caso abbiamo che il ramo diretto vale $G_1(s)$, con retroazione negativa:

$$G(s) = \frac{G_1(s)}{1 + G_1(s) G_2(s)}$$

I poli della funzione di trasferimento complessiva si ottengono scrivendo la forma fattorizzata rispetto al numeratore e denominatore delle funzioni di trasferimento coinvolte nella retroazione:

$$G(s) = \frac{N_1(s) D_2(s)}{D_1(s) D_2(s) + N_1(s) N_2(s)}$$

In generale non sappiamo se le radici del nuovo denominatore coincidano con quelle dei polinomi di partenza; è infatti possibile ricorrere alla retroazione per spostare i poli instabili del sistema originario. A meno di cancellazioni, l'ordine del sistema complessivo è la somma dei gradi dei singoli sistemi.

Funzione di trasferimento d'anello

Figura 4.2.2. Schema per sistemi in parallelo

Figura 4.2.3. Schema per sistemi in retroazione

4.2.4. Stabilità dei sistemi in retroazione. Consideriamo un caso generale per la stabilità dei sistemi in retroazione (vedi la figura 4.2.3): prendendo due sistemi con trasferimento $G_a(s)$ e $G_b(s)$ chiusi in un anello di retroazione negativa possiamo affermare che, in assenza di cancellazioni tra le due funzioni, presi uscita e ingresso qualsiasi sull'anello chiuso, scriviamo il trasferimento usando (4.2.4):

$$G\left(s\right) = \frac{N_{H}\left(s\right)}{D_{H}\left(s\right)} \cdot \frac{D_{a}\left(s\right)D_{b}\left(s\right)}{D_{a}\left(s\right)D_{b}\left(s\right) + N_{a}\left(s\right)N_{b}\left(s\right)}$$

dove il denominatore sarà di grado massimo, e il denominatore della funzione H(s) avrà al più tutti i poli della funzione G(s).

In caso di cancellazioni critiche, per una opportuna scelta di ingresso e uscita si manifestano dei poli instabili apparenti (la stabilità dipende dalla scelta di ingresso e uscita).

Esempio 4.2. Siano date le seguenti funzioni di trasferimento:

$$G_1(s) = \frac{(s+1)}{(s+2)(s+3)}, \qquad G_2(s) = \frac{1}{(s+1)(s+2)}$$

✓ Calcolare il trasferimento di anello del sistema in retroazione ne la figura 4.2.3 con le due funzioni di trasferimento assegnate.

Calcoliamo la funzione di trasferimento di anello (4.2.3):

$$L(s) = \frac{1}{(s+2)^{2}(s+3)}$$

C'è stata una cancellazione (non critica, è stato cancellato un polo negativo reale pari a -1); questo si deduce dal fatto che il grado del denominatore è inferiore alla somma dei gradi dei denominatori di G_1 e G_2 .

Scriviamo il denominatore della funzione di trasferimento come:

$$1 + L(s) = 1 + \frac{1}{(s+2)^{2}(s+3)} = \frac{1 + (s+2)^{2}(s+3)}{(s+2)^{2}(s+3)}$$

Cerchiamo adesso il ramo diretto H(s), riscrivendo (4.2.4):

$$G(s) = H(s) \cdot \frac{(s+2)^2 (s+3)}{1 + (s+2)^2 (s+3)}$$

Dalla scelta di H(s), quindi di ingresso e uscita, il trasferimento della retroazione cambia, perché è avvenuta una cancellazione:

- Consideriamo H(s) = 1otteniamo il trasferimento $G(s) = \frac{(s+2)^2(s+3)}{1+(s+2)^2(s+3)}$;
- Consideriamo $H(s) = G_2(s)$ otteniamo il trasferimento $G(s) = \frac{(s+2)(s+3)}{1+(s+1)(s+2)^2(s+3)}$.

Notiamo che il grado del denominatore dipende strettamente dalla scelta del ramo diretto, in presenza di cancellazioni.

CAPITOLO 5

Risposta in frequenza

5.1. Risposta alla sinusoide

Consideriamo un sistema LTI, SISO, stazionario e asintoticamente stabile, descritto da (1.1.3), con funzione di trasferimento (3.1.1); determiniamo la risposta del sistema a un ingresso sinusoidale:

$$u(t) = \overline{u} \cdot \sin(\omega t) \cdot \mathrm{sca}(t) \xrightarrow{\mathscr{L}} U(s) = \frac{\omega}{s^2 + \omega^2} \overline{U}$$

Scriviamo la risposta forzata in funzione dei poli della funzione di trasferimento, usando il metodo di Heaviside (B.4.1) per ottenere i termini dei poli complessi coniugati:

$$Y\left(s\right) = G\left(s\right) \frac{\omega}{s^{2} + \omega^{2}} \overline{U} = \sum_{i=1}^{n} \frac{P_{i}}{s + p_{i}} + \frac{G\left(j\omega\right) \omega \overline{U}}{\left(s - j\omega\right) 2j\omega} - \frac{G\left(-j\omega\right) \omega \overline{U}}{\left(s + j\omega\right) 2j\omega}$$

La sua antitrasformata sarà una sommatoria di esponenziali:

$$y(t) = \left(\sum_{i=1}^{n} P_{i} e^{-p_{i}t} + \frac{\overline{U}}{2j} G(j\omega) e^{j\omega t} - \frac{\overline{U}}{2j} G(-j\omega) e^{-j\omega t}\right) \operatorname{sca}(t)$$

Osserviamo che la funzione di trasferimento valutata per $s=\pm j\omega$ è complessa; il suo valore può essere scritto in forma esponenziale:

$$G(\pm j\omega) = |G(j\omega)| \cdot e^{\pm j \arg(G(j\omega))}$$

Scegliamo di valutare la risposta per un tempo $t \to \infty$, che nel sistema asintoticamente stabile considerato fa tendere a zero i movimenti dei poli reali negativi, mettendo in evidenza la somma di termini complessi coniugati:

$$y\left(t\to\infty\right) = \left|G\left(j\omega\right)\right| \overline{U}\left(\frac{e^{j\left(\omega t + \arg\left(G\left(j\omega\right)\right)\right)} - e^{-j\left(\omega t + \arg\left(G\left(j\omega\right)\right)\right)}}{2j}\right) \operatorname{sca}\left(t\right)$$

Applicando le formule di Eulero (A.5.1) al numeratore nella parentesi si ottiene:

(5.1.1)
$$y(t) = |G(j\omega)| \overline{U} \cdot \sin(\omega t + \arg(G(j\omega))) \operatorname{sca}(t)$$

Risposta all'ingresso sinusoidale

Questa uscita ha la stessa pulsazione della sinusoide in ingresso ma un'ampiezza alterata dal termine $|G(j\omega)|$; si osserva anche uno sfasamento di arg $(G(j\omega))$.

Il risultato appena ottenuto si formalizza come il seguente Teorema 5.1:

TEOREMA 5.1. Se si applica a un sistema lineare, stazionario e asintoticamente stabile (con funzione di trasferimento G(s)) un ingresso sinusoidale $u(t) = \overline{u}\sin(\omega t)$, l'uscita a transitorio esaurito assume l'andamento (5.1.1) indipendentemente dallo stato iniziale.

Teorema fondamentale della risposta in frequenza

L'indipendenza dalle condizioni iniziali si ricava dalla sovrapposizione degli effetti: l'uscita sarà la somma di movimento libero e forzato, e l'asintotica stabilità implica l'annullamento della componente libera. La velocità con cui l'uscita assume questa espressione dipende dalle costanti di tempo dominanti del sistema (in termini ingegneristici, si prende 5 volte la costante di tempo più alta, assumendo tutti i transitori esauriti dopo questo tempo).

Il Teorema 5.1 non vale nei casi in cui, tra gli zeri della funzione, è presente il termine $s^2 + \omega^2$: esso si cancella nell'equazione di uscita col denominatore, annullando di fatto l'uscita. Questa caratteristica si chiama proprietà bloccante degli zeri.

Definiamo la risposta in frequenza di un sistema come

Risposta armonica

(5.1.2)
$$G(j\omega) = C(j\omega I - A)^{-1}B + D$$
$$= |G(j\omega)| e^{j\arg(G(j\omega))}$$

chiamata anche funzione di risposta armonica; essa è funzione della pulsazione. Questa definizione viene estesa (purché sia applicata a un sistema LTI) anche per sistemi MIMO, e sistemi instabili - per questi ultimi non valgono più le considerazioni riguardo (5.1.1).

Prendiamo per esempio la risposta in frequenza associata al ritardo di tempo; avremo la funzione di trasferimento $G(s) = e^{-\tau s}$ e l'uscita $y(t) = u(t - \tau)$. Applicando la definizione (5.1.2) si ottiene:

$$G(j\omega) = e^{-\tau j\omega}, \qquad |G(j\omega)| = 1, \qquad \arg(G(j\omega)) = -\tau\omega$$

Osserviamo che la funzione di risposta armonica ha modulo unitario e fase proporzionale alla pulsazione tramite il ritardo di tempo.

In generale, per una data pulsazione possiamo calcolare (5.1.2) e avere la variazione di ampiezza dell'uscita rispetto all'ingresso; per esempio con una sinusoide pura in ingresso al sistema, si valuta la funzione di trasferimento in $s=j\omega$ e possiamo calcolare direttamente l'uscita. Combinazioni lineari di sinusoidi in ingresso corrispondono, per sovrapposizione degli effetti, a una combinazione lineare delle uscite, ottenute nel medesimo modo.

5.2. Analisi della risposta in frequenza

Si faccia attenzione alla notazione per gli ingressi: useremo f(t) al posto di u(t) nel resto del capitolo

5.2.1. Segnali esprimibili come serie di Fourier. Prendiamo un segnale periodico con periodo T, per cui valga quindi f(t+T) = f(t); se ipotizziamo $f(t+M) \neq f(t) \ \forall M \neq T$ e definiamo $\omega_0 = 2\pi/T$, allora possiamo associare alla funzione del tempo f(t) dei coefficienti complessi:

$$F_{n} = \frac{1}{T} \int_{T} f(t) \cdot e^{-jn\omega_{0}t} dt$$

Se la funzione f(t) è reale, allora $F_{-n} = F_n^*$; i coefficienti associati F_n si chiamano coefficienti di Fourier.

Esprimiamo la funzione $f(t) \in \mathbb{R}$ come:

$$f(t) = F_0 + \sum_{n=1}^{\infty} \left(F_n e^{jn\omega_0 t} + F_n^* e^{-jn\omega_0 t} \right)$$

(5.2.1)
$$\stackrel{\text{Eulero}}{=} F_0 + 2\sum_{n=1}^{\infty} |F_n| \cos(n\omega_0 t + \arg(F_n))$$

Questa relazione si chiama scomposizione in serie di Fourier; qualsiasi segnale nel tempo continuo può essere scomposto in una sommatoria in generale infinita ma numerabile di cosinusoidi.

Se un segnale nella forma (5.2.1) l'ingresso di un sistema LTI asintoticamente stabile, l'uscita si scrive:

$$y(t) = Y_0 + 2\sum_{n=1}^{\infty} |Y_n| \cos(n\omega_0 t + \arg(Y_n))$$

dove i coefficienti di Fourier valgono rispettivamente:

$$Y_{0} = |G(0)| F_{0} = \mu F_{0},$$

$$\vdots$$

$$|Y_{n}| = |F_{n}| \cdot |G(j\omega_{0}n)|, \arg(Y_{n}) = \arg(F_{n}) + \arg(G(j\omega_{0}n))$$

Osserviamo che il sistema dinamico non altera il contenuto in frequenza del segnale di ingresso: il segnale di uscita sarà nella stessa banda di frequenze di quello di ingresso; al più saranno alterati modulo e fase dei contributi per ciascuna frequenza.

5.2.2. Segnali dotati di trasformata di Fourier. Possiamo considerare la trasformata di Fourier come la serie di Fourier in cui le componenti in frequenza sono un'infinità non numerabile; se abbiamo un segnale f(t) definito per $t \in (-\infty, +\infty)$, se esiste

(5.2.2)
$$F(j\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt = \mathscr{F}[f(t)]$$

Trasformata di Fourier

essa si dice trasformata di Fourier del segnale; tipicamente essa si indica col nome di *spettro* in frequenza del segnale.

Se la funzione f(t) è definita in \mathbb{R} , si dimostra che $F(-j\omega) = F^*(j\omega)$; inoltre si può esprimere:

$$f(t) = \frac{1}{\pi} \int_{0}^{+\infty} |F(j\omega)| \cos(\omega t + \arg(F(j\omega))) d\omega$$

Esempio 5.1. Sia dato il sequente segnale:

$$f\left(t\right) = imp\left(t\right)$$

✓ Calcolare la trasformata di Fourier del segnale.

Applichiamo direttamente la definizione (5.2.2) e scriviamo:

$$F(j\omega) = \int_{-\infty}^{+\infty} imp(t) e^{-j\omega t} dt = e^{-j\omega 0} = 1$$

Otteniamo questo risultato dalla definizione di impulso, il quale è non nullo solo in t = 0; questo segnale ha un contenuto in frequenza costante su qualsiasi banda.

Se questo segnale f(t) è l'ingresso di un sistema LTI, con funzione di trasferimento G(s), a transitorio esaurito avremo, usando (5.2.1):

$$y(t) = \frac{1}{\pi} \int_{0}^{+\infty} \overline{\left|G(j\omega)\right| \left|F(j\omega)\right|} \cos\left(\omega t + \overline{\arg\left(G(j\omega)\right) + \arg\left(F(j\omega)\right)}\right) d\omega$$

Si osserva un effetto di alterazione del modulo e di sfasamento; a fronte di un segnale limitato in banda (la sua trasformata di Fourier è non nulla solo per un certo intervallo di ω) l'uscita avrà lo stesso contenuto in frequenza, ovvero il sistema dinamico non aggiunge componenti di frequenza in uscita al di fuori della banda imposta dall'ingresso.

OSSERVAZIONE 5.1. Una prima interpretazione che possiamo dare alla funzione di risposta armonica (5.1.2) è il rapporto tra lo spettro (5.2.2) del segnale di ingresso e quello di uscita.

Lo spettro di un segnale e legato alla potenza del segnale stesso: per esempio, un sistema asintoticamente stabile agisce attenuando i modi delle componenti dello spettro alle alte frequenze.

5.2.3. Segnali d'ingresso esponenziali. Immaginiamo di avere l'ingresso $u(t) = e^{\lambda t} \overline{u} \cdot \text{sca}(t)$ con $\lambda > 0$ (esponenziale divergente); la sua trasformata di Laplace vale:

$$\mathscr{L}\left[u\left(t\right)\right] = U\left(s\right) = \frac{\overline{U}}{s - \lambda}$$

e l'uscita sarà pari a Y(s) = G(s)U(s); se il sistema è asintoticamente stabile, possiamo esprimere l'uscita come:

$$Y(s) = \sum_{i=1}^{n} \frac{P_i}{s - p_i} + G(\lambda) \frac{\overline{U}}{s - \lambda}$$

Antitrasformando, dopo aver atteso l'esaurimento dei transitori, avremo:

$$y(t) = G(\lambda) \overline{U} e^{\lambda t}, \quad t \to \infty$$

L'uscita forzata risulta un esponenziale con stesso esponente dell'ingresso e coefficiente $G(\lambda)$; se ci fosse uno zero in λ , si avrebbe una cancellazione e l'annullamento dell'uscita (di nuovo emerge la proprietà bloccante degli zeri). Nel caso di questo esempio, uno zero bloccante permette di avere uscita nulla non ostante l'ingresso esponenziale arrivi a una ampiezza infinita.

5.3. Diagrammi di Bode

I diagrammi di Bode sono strumenti grafici per valutare l'andamento nel tempo della funzione di risposta armonica (5.1.2), in particolare del suo modulo e della sua fase. Entrambi presentano sull'ascissa la pulsazione ω , definita da 0 a $+\infty$; per questo asse si utilizza una scala logaritmica in base 10, in modo che compaiano a distanza costante (decadi) potenze crescenti di 10.

Spostarsi di una decade sull'asse della pulsazione implica aumentare o diminuire la pulsazione di un'ordine di grandezza.

Infine, l'ordinata presenta il modulo o la fase della risposta armonica, a seconda del tipo di diagramma.

5.3.1. Diagrammi del modulo. Esso presenta sull'ordinata il modulo della risposta armonica espresso in decibel, per il quale vale la relazione:

$$\begin{aligned} \left|G\left(j\omega\right)\right|_{^{dB}} &= 20\log_{10}\left|G\left(j\omega\right)\right| \\ \left|G\left(j\omega\right)\right| &= 10^{\frac{\left|G\left(j\omega\right)\right|}{20}} \end{aligned}$$

A meno del fattore 20, anche l'ordinata avrà una scala logaritmica in base 10; in particolare, per le proprietà del logaritmo si verifica che per $|G(j\omega)| = 0 dB$ vale $|G(j\omega)|_{10} = 1$; per avere un modulo nullo sarebbe necessaria una pulsazione di $\omega = -\infty$.

Decimale	Decibel	Decimale	Decibel	Decimale	Decibel
1	$0\mathrm{dB}$	$\sqrt{5}$	$7\mathrm{dB}$	$\sqrt{10}$	$10\mathrm{dB}$
$\sqrt{2}$	$3\mathrm{dB}$	$\sqrt{6}$	$7.8\mathrm{dB}$	$2\sqrt{5}$	$13\mathrm{dB}$
$\sqrt{3}$	$4.8\mathrm{dB}$	$\sqrt{7}$	$8.5\mathrm{dB}$	10	$20\mathrm{dB}$
2	$6\mathrm{dB}$	$2\sqrt{2}$	$9\mathrm{dB}$	$10\sqrt{10}$	$30\mathrm{dB}$

Tabella 5.3.1. Conversioni di ampiezze in scala logaritmica

Usando la tabella 5.3.1 possiamo vedere dei valori notevoli di ampiezze in scala logaritmica e i corrispondenti valori decimali (i valori in decibel sono approssimati).

Per tracciare il diagramma della risposta armonica è necessario conoscere l'andamento di quattro elementi fondamentali; per far emergere questa caratteristica, è necessario scrivere la funzione di trasferimento in forma fattorizzata, in particolare useremo quella di Bode (3.3.2):

$$G(s) = \frac{\mu}{s^{g}} \cdot \frac{\prod_{i} (1 + \tau_{i}s) \cdot \prod_{i} (1 + 2s \cdot \zeta_{i}/\alpha_{ni} + s^{2}/\alpha_{ni}^{2})}{\prod_{i} (1 + T_{i}s) \cdot \prod_{i} (1 + 2s \cdot \xi_{i}/\omega_{ni} + s^{2}/\omega_{ni}^{2})}$$

Valutando questa funzione per $s = j\omega$ (risposta armonica) ed esprimendola in decibel, avremo il logaritmo di una frazione di prodotti, che per le proprietà del logaritmo diventa una combinazione lineare:

$$|G(j\omega)|_{dB} = 20 \log_{10} |\mu| - 20g \log_{10} |j\omega| + \sum_{i} 20 \log_{10} |1 + \tau_{i}j\omega|$$

$$+ \sum_{i} 20 \log_{10} \left| 1 + 2j\omega \frac{\zeta_{i}}{\alpha_{ni}} + \frac{(j\omega)^{2}}{\alpha_{ni}^{2}} \right| - \sum_{i} 20 \log_{10} |1 + T_{i}j\omega|$$

$$- \sum_{i} 20 \log_{10} \left| 1 + 2j\omega \frac{\xi_{i}}{\omega_{ni}} + \frac{(j\omega)^{2}}{\omega_{ni}^{2}} \right|$$

Risposta armonica in forma di Bode

Questa espressione mette in evidenza il fatto che, per ottenere la funzione di risposta armonica in decibel, è necessaria la somma di un numero finito (quattro) di andamenti:

- (1) Guadagno statico: μ ;
- (2) Poli o zeri nell'origine: $1/s^g$;
- (2) Foli o zeri nen origine. $\frac{1}{1+\tau s}$, $\frac{1}{1+\tau s}$; (4) Poli o zeri complessi coniugati: $\frac{1}{1+2s\xi/\omega_n+s^2/\omega_n^2}$, $\frac{1}{1+2s\xi/\omega_n+s^2/\omega_n^2}$.

GUADAGNO STATICO

Il valore di guadagno è indipendente da ω , e rimane costante; il sua andamento è costante e interseca l'asse del modulo in $|\mu|_{dB} = 20 \log_{10} |\mu|$. Il segno è determinato dal segno di μ .

Poli o zeri nell'origine

Prendiamo $G_p(s) = 1/s$ per un polo e $G_z(s) = s$ per uno zero nell'origine; il modulo della risposta armonica vale, rispettivamente:

$$|G_p(j\omega)|_{dB} = 20\log_{10}\left(1/|\omega|\right) = -20\log_{10}|\omega|$$
$$|G_z(j\omega)|_{dB} = 20\log_{10}|\omega|$$

Rappresentiamo sul diagramma di Bode del modulo, in corrispondenza di $\omega = 1$, una retta che interseca l'asse delle pulsazioni in $\omega = 1$, con coefficiente angolare che dipende, in generale, dal numero di poli e di zeri nell'origine (quindi dal tipo q):

$$\left. \frac{\partial}{\partial \omega} \right|_{\omega=1} = -20 \cdot g \, dB/\mathrm{dec}$$

La retta scende di 20 dB per ogni decade, per ogni polo nell'origine; ne la figura 5.3.1 viene riportata la pendenza della retta del modulo rispetto al grado relativo.

Figura 5.3.1. Diagramma di Bode del modulo per singolarità nell'origine

Esempio 5.2. Sia data la seguente funzione di trasferimento:

$$G\left(s\right) = \frac{10}{s}$$

✓ Disegnarne il diagramma di Bode del modulo.

Calcoliamo la risposta armonica:

$$|G\left(j\omega\right)| = 10 \cdot \frac{1}{|j\omega|} \xrightarrow{dB} 20\log_{10}\left(10\right) + 20\log_{10}\left|\frac{1}{j\omega}\right| = 20 - 20\log_{10}\left|j\omega\right|$$

Osserviamo che si ottiene esattamente la somma dei contributi del termine costante (1) e del polo nell'origine (2); anche il diagramma di Bode sarà la somma dei grafici di questi due andamenti: un guadagno positivo si traduce in una traslazione verso l'alto dell'andamento delle singolarità nell'origine.

Figura 5.3.2. Diagramma del modulo per la funzione dell'esercizio

Poli e zeri reali

Prendiamo una funzione di trasferimento del tipo $G_p(s) = \frac{1}{1+Ts}$ per un polo (in s = -1/T) e $G_z(s) = \frac{1}{1+\tau s}$ per uno zero (in $s = -1/\tau$) reali; il modulo della risposta armonica vale, rispettivamente:

$$|G_p(j\omega)|_{dB} = -20 \log_{10} |1 + Tj\omega| = -20 \log_{10} \sqrt{1 + T^2 \omega^2}$$

 $|G_z(j\omega)|_{dB} = 20 \log_{10} \sqrt{1 + \tau^2 \omega^2}$

A prescindere dal segno della parte reale del polo o dello zero, la risposta armonica non cambia (e nemmeno il diagramma di Bode). Se chiamiamo $\omega_p = 1/|T|$ e $\omega_z = 1/|\tau|$ il valore assoluto del polo e dello zero in $G_p(s)$ e $G_z(s)$, possiamo tracciare il diagramma normalizzato rispetto a $\omega/\omega_{p,z}$ in modo che il polo o lo zero si trovino sempre in $\omega/\omega_{p,z} = 1$:

$$\left| G_{p,z} \left(j \frac{\omega}{\omega_{p,z}} \right) \right|_{dB} = \mp 20 \log_{10} \sqrt{1 - \left(\frac{\omega}{\omega_{p,z}} \right)^2}$$

A differenza del diagramma del modulo del guadagno o delle singolarità nell'origine, per poli o zeri reali il diagramma tracciato in modo asintotico non corrisponde con quello effettivo; possiamo comunque conoscere con precisione l'andamento asintotico della risposta armonica:

$$\left| G_p \left(j \frac{\omega}{\omega_p} \right) \right|_{dB} \simeq \begin{cases} -20 \log_{10} (1) = 0 & \text{per } \omega/\omega_p \ll 1 \\ -20 \log_{10} (\omega/\omega_p) & \text{per } \omega/\omega_p \gg 1 \end{cases}$$

$$\left| G_z \left(j \frac{\omega}{\omega_z} \right) \right|_{dB} \simeq \begin{cases} 20 \log_{10} (1) = 0 & \text{per } \omega/\omega_z \ll 1 \\ 20 \log_{10} (\omega/\omega_z) & \text{per } \omega/\omega_z \gg 1 \end{cases}$$

Rispetto alla variabile $\omega/\omega_{p,z}$, abbiamo la somma delle rette (per polo e per zero) $\mp 20 \log_{10} (\omega/\omega_{p,z})$, che risulta nel coefficiente angolare $-20 \cdot g \, \mathrm{dB/dec}$ in dipendenza dal tipo del sistema; mettendo insieme i due asintoti, che si incrociano per $\omega/\omega_{p,z} = 1$, otteniamo il diagramma asintotico.

Il diagramma asintotico avrà errore massimo rispetto a quello effettivo nel punto in cui i due asintoti si congiungono; in quel punto la risposta armonica vale $20 \log_{10} \sqrt{2} = -3 \, \mathrm{dB}$.

Figura 5.3.3. Diagramma del modulo per poli reali

Figura 5.3.4. Diagramma del modulo per zeri reali

Esempio 5.3. Sia data la seguente funzione di trasferimento:

$$G\left(s\right) = \frac{1}{1 + 0.1s}$$

✓ Tracciare il diagramma del modulo.

Notando che la funzione possiede un polo in s=10, e sapendo che esso si troverà in $\omega/\omega_p=1$, possiamo concludere che $\omega_p=10$; il diagramma corrispondente è ne la figura 5.3.5.

Figura 5.3.5. Diagramma del modulo per un polo in s=10

Figura 5.3.6. Diagramma del modulo per due poli in s=10

Se avessimo la funzione $G(s) = \frac{1}{(1+0.1s)^2}$ con due poli coincidenti, dovremmo sommare due grafici come quello appena ottenuto (vedi la figura 5.3.6): in tal caso a sinistra di ω/ω_p il modulo della risposta è nullo, mentre a destra esso è rappresentato da una retta con pendenza $-40\,\mathrm{dB/dec}$.

Se avessimo degli zeri invece dei poli appena analizzati, l'esercizio sarebbe stato risolto invertendo i grafici del modulo rispetto all'asse ω .

Grazie all'uso dei decibel, il prodotto del modulo di due singolarità è scritto come somma dei coefficienti angolari associati

Poli e zeri complessi coniugati

Due poli sono complessi coniugati se vale $\xi \in (-1, 1)$; inoltre assumiamo $\omega > 0$. Se $\xi = 0$ i poli saranno immaginari puri. Avremo una funzione di trasferimento del tipo:

$$G_p(s) = \frac{1}{1 + 2s\frac{\xi}{\omega_{pp}} + \frac{s^2}{\omega^2}}$$

la cui risposta armonica vale in modulo:

$$|G_p(j\omega)| = \left| \frac{1}{1 + 2j\omega\frac{\xi}{\omega_n} - \frac{\omega^2}{\omega_n^2}} \right| \xrightarrow{dB} -20\log_{10} \left| 1 - \left(\frac{\omega}{\omega_n}\right)^2 + j \cdot \frac{2\omega\xi}{\omega_n} \right|$$
$$= -20\log_{10} \sqrt{\left(1 - (\omega/\omega_n)^2\right)^2 + 4\xi^2 (\omega/\omega_n)^2}$$

A prescindere dal segno della parte reale, la risposta armonica non cambia (possiamo analizzare il modulo dello smorzamento $|\xi|$). Se avessimo voluto condurre questa analisi per due zeri complessi coniugati, saremmo giunti allo stesso risultato a meno del segno:

$$|G_z(j\omega)|_{dB} = 20 \log_{10} \sqrt{(1 - (\omega/\alpha_n)^2)^2 + 4\zeta^2 (\omega/\alpha_n)^2}$$

Abbiamo usato la proprietà dei logaritmi $\log_a b^\alpha = \alpha \log_a b$

Se normalizziamo rispetto alla pulsazione propria, otteniamo i seguenti asintoti:

$$\left| G_p \left(j \frac{\omega}{\omega_n} \right) \right|_{dB} \simeq \begin{cases} -20 \log_{10} (1) = 0 & \text{per } \omega/\omega_n \ll 1 \\ -40 \log_{10} (\omega/\omega_n) & \text{per } \omega/\omega_n \gg 1 \end{cases}$$

$$\left| G_z \left(j \frac{\omega}{\alpha_n} \right) \right|_{dB} \simeq \begin{cases} 20 \log_{10} (1) = 0 & \text{per } \omega / \alpha_n \ll 1 \\ 40 \log_{10} (\omega / \alpha_n) & \text{per } \omega / \alpha_n \gg 1 \end{cases}$$

Risulta che il diagramma asintotico è uguale a quello di due poli o due zeri reali coincidenti; il diagramma effettivo dipende dal valore di smorzamento:

- Poli
 - per $|\xi| = 1$ si hanno due poli reali coincidenti, con pulsazione ω_n ; il diagramma effettivo avrà distanza di -6 dB dalla pulsazione $\omega/\omega_n = 1$ (dato che sommiamo gli andamenti dei due poli);
 - per $|\xi| = 0$ si avrebbe un modulo pari a $+\infty$ dB: il diagramma effettivo presenta un asintoto verticale per $\omega/\omega_n = 1$.
- Zeri
 - per $|\zeta| = 1$ si hanno due zeri reali coincidenti, con pulsazione α_n ; il diagramma effettivo avrà distanza di +6 dB dalla pulsazione $\omega/\alpha_n = 1$ (dato che sommiamo gli andamenti dei due zeri);
 - per $|\zeta|$ = 0 si avrebbe un modulo pari a −∞ dB: il diagramma effettivo presenta un asintoto verticale per $\omega/\alpha_n = 1$.
- per $|\xi| \in (0, 1/\sqrt{2})$ il diagramma effettivo presenterà un massimo, chiamato picco di risonanza; esso si trova in corrispondenza della pulsazione di risonanza, definita come $\omega_{\rm R} = \omega_n \sqrt{1 2\xi^2}$; minore è lo smorzamento e più il picco sarà vicino al valore di pulsazione naturale della singolarità.

Ponendoci nel caso $\omega/\omega_n=1$ per poli e $\omega/\alpha_n=1$ per zeri, il modulo della risposta vale:

$$|G_p(j\omega_n)| = \frac{1}{2|\xi|}, \quad |G_z(j\alpha_n)| = 2|\xi|$$

OSSERVAZIONE 5.2. I sistemi con smorzamento sufficientemente piccolo presentano un picco di risonanza, ovvero a fronte di un segnale di ingresso, applicato con componente spettrale su determinate frequenze, l'uscita presenterà un contenuto in frequenza amplificato attorno a quelle pulsazioni.

OSSERVAZIONE 5.3. Per smorzamento nullo ($\zeta = 0$) si hanno due zeri immaginari puri: dal diagramma di Bode si vede l'effetto bloccante degli zeri, poiché due zeri complessi coniugati di pulsazione α_n sono l'inverso della trasformata (di Fourier) di una sinusoide di pulsazione α_n .

In corrispondenza di tale pulsazione, sul diagramma si ha guadagno nullo $(-\infty dB)$, ovvero le frequenze attorno alla pulsazione α_n sono eliminate dall'uscita; infatti fornendo in ingresso una sinusoide pura di pulsazione α_n , l'uscita sarà nulla.

La pulsazione di risonanza è definita anche per zeri complessi coniugati, sostituendo α_n a ω_n nell'enunciato

Figura 5.3.7. Diagramma del modulo per poli complessi coniugati

Figura 5.3.8. Diagramma del modulo per zeri complessi coniugati

Tracciamento del diagramma del modulo. Possiamo tracciare il diagramma di Bode del modulo di una funzione di trasferimento in due modi: il primo consiste nell'isolare guadagno statico e singolarità nell'origine, tracciando i diagrammi del modulo di ciascuna singolarità e poi sommandoli assieme per ciascuna pulsazione (come è stato fatto nell'Esempio 5.2); anche se immediato, esso diventa sconveniente per funzioni con molte singolarità.

Il secondo approccio consiste nei seguenti passi:

- Assumendo $\omega \to 0$, tracciamo l'andamento asintotico di μ/s^g ; questo è sempre possibile, dato che si può scegliere una pulsazione iniziale piccola a piacere per la quale il contributo delle singolarità si annulla; questa sarà in generale una retta con pendenza $-20 \cdot g \, \mathrm{dB/dec}$, che passerebbe (in assenza di altre singolarità) per $\mu|_{dB}$ in corrispondenza di $\omega = 1$.
- Si aumenta la pulsazione, visitando mano a mano ciascuna singolarità, fino a superare l'ultima almeno di una decade:
 - Ogni volta che si incontra un polo la pendenza cambia di $-20 \,\mathrm{dB/dec}$;
 - Ogni volta che si incontra uno zero la pendenza cambia di $+20\,\mathrm{dB/dec};$
 - La pendenza finale, dopo l'ultima singolarità, sarà pari a $-20\,\mathrm{dB/dec}$ per il grado relativo della funzione.

Questo approccio risulta più veloce del precedente, necessita soltanto di individuare tutte le singolarità sull'asse delle pulsazioni.

Esempio 5.4. Sia data la seguente funzione di trasferimento:

$$G(s) = \frac{10(1-s)(1+10s)}{s(1+0.1s)(1-\frac{s}{300}+\frac{s^2}{90000})}$$

✓ Tracciare il diagramma asintotico del modulo della funzione.

Per prima cosa isoliamo il guadagno statico generalizzato, usando la definizione (B.2.3):

$$\mu = \lim_{s \to 0} s^g G(s) = 10 = 20 \, dB$$

Otteniamo questo risultato poiché il tipo del sistema è g=1 (un polo nell'origine); le singolarità si trovano in corrispondenza dei seguenti valori

$$z_1 = 1, z_2 = -1/10,$$
 $p_1 = 0, p_{2,3} = \{\omega_n = 300, \xi = -1/2\}$

Per i poli complessi coniugati $p_{2,3}$ abbiamo considerato smorzamento e pulsazione naturale, dato che sono gli unici valori determinanti sul diagramma del modulo; abbiamo ottenuto la pulsazione dal termine fattorizzato in forma di Bode:

$$1 + 2s\frac{\xi}{\omega_n} + \frac{s^2}{\omega_n^2} = 1 - \frac{s}{300} + \frac{s^2}{90000}$$

Tracciamento del diagramma del modulo da cui si ricava direttamente $\omega_n = \sqrt{90000} = 300$, e impostando $\frac{2\xi}{300} = -\frac{1}{300}$ si ottiene $2\xi = -1 \to \xi = -1/2.$

Indicando sull'ascissa delle pulsazioni una decade precedente (10^{-2}) alla singolarità dalla pulsazione più bassa $(z_2 \to 10^{-1})$, e una decade successiva (10^3) alla singolarità dalla pulsazione più elevata $(p_{2,3} \to 300)$.

Sull'ordinata è comodo segnare multipli interi di 20 dB, mentre sull'ascissa si segnano le decadi intermedie all'intervallo prescelto e la posizione delle singolarità (indicando gli zeri con \bigcirc e i poli con \times).

Figura 5.3.9. Diagramma del modulo della funzione per l'esempio

Usando il metodo proposto, tracciamo il profilo di una retta che passa per $\omega =$ $1, \mu|_{dB} = 20 \,\mathrm{dB}$, con pendenza $-20 \,\mathrm{dB/dec}$; questa retta corrisponde con l'andamento asintotico del modulo fino alla prima singolarità (z_2) : dal momento che si tratta di uno zero, la pendenza cambia di +20 dB/dec, annullandosi; lo zero successivo z_1 , in $\omega = 1$, comporta un ulteriore aumento della pendenza che diventa $20\,\mathrm{dB/dec}$.

Segue il polo p_1 in $\omega = 10$, che abbassa di nuovo la pendenza di $-20\,\mathrm{dB/dec}$, annullandola; infine i poli complessi coniugati $p_{2,3}$ in $\omega = 300$ abbassano la pendenza di $-40\,\mathrm{dB/dec}$; il modulo si azzererà alla decade successiva, in $\omega = 3000$. Questo viene riconfermato dal fatto che il grado relativo è 2 (numeratore del 2° grado e denominatore del 4°).

Il diagramma effettivo differisce per gli errori di ± 3 dB in corrispondenza della pulsazione dei poli e zeri reali (z_1, z_2, p_1) , e di -6 dB in corrispondenza della coppia di poli complessi coniugati $p_{2,3}$, in prossimità della quale è presente un picco di risonanza (lo smorzamento $|\xi| = 0.5$ è minore del limite di sotto-smorzamento $1/\sqrt{2} \simeq 0.7$).

5.3.2. Diagrammi della fase. Una generica funzione di trasferimento valutata come risposta armonica, essa può essere espressa nella forma (5.1.2); se essa è il risultato del prodotto di ciascuna singolarità (anch'esse espresse in forma esponenziale), allora il modulo della risposata armonica sarà il prodotti dei moduli delle singolarità e la fase della risposta armonica sarà la somma delle fasi delle singolarità.

Esempio 5.5. Sia data la seguente funzione di trasferimento:

$$G(s) = \frac{1+s}{1+10s}$$

✓ Scrivere la sua risposta armonica in forma esponenziale.

Scomponiamo la frazione in un prodotto di funzioni, poi le esprimiamo in forma esponenziale:

roprietà della fase
$$\arg (1/a) = -\arg (a)$$

$$G(j\omega) = (1+j\omega) \cdot \frac{1}{1+10j\omega} = |1+j\omega| e^{j\arg(1+j\omega)} \cdot \left| (1+10j\omega)^{-1} \right| e^{j\arg(1+j\omega)^{-1}}$$

Abbiamo usato la proprietà della fase

$$= \left| \frac{1 + j\omega}{1 + 10j\omega} \right| e^{j(\arg(1+j\omega) - \arg(1+10j\omega))}$$

Nei diagrammi di Bode della fase, essa si esprime in gradi; per passare da radianti a gradi richiamiamo la relazione:

$$\arg(s) \operatorname{rad} = \frac{\pi}{180^{\circ}} \arg(s)^{\circ}$$

Esprimendo in forma (3.3.2) la funzione di risposta armonica, otteniamo (come prima) l'andamento (5.3.1); ricaviamo di nuovo quattro elementi, come per i diagrammi del modulo, per tracciare i diagrammi della fase.

GUADAGNO STATICO

Il guadagno μ è un numero reale: se lo rappresentiamo sul piano complesso, esso sarà sull'asse reale ($\Im(\mu) = 0$):

$$\begin{cases} \arg(\mu) = 0 & \text{per } \mu > 0 \\ \arg(\mu) = -180^{\circ} & \text{per } \mu < 0 \end{cases}$$

Il diagramma di Bode risultante avrà andamento costante a 0° o -180° .

Si prende per convenzione l'angolo negativo in senso antiorario

Poli e zeri nell'origine

Prendiamo la funzione di trasferimento $G_p(s) = 1/s$; la fase della risposta armonica vale:

$$\arg [G_p(j\omega)] = \arg (1/j\omega) = -\arg (j\omega)$$

Notiamo che, trattandosi di un polo nell'origine, la fase avrà segno negativo in ogni caso (per uno zero nell'origine si avrebbe segno positivo); se rappresentiamo il numero $j\omega$ sull'asse dei numeri immaginari, dato che nei diagrammi di Bode $\omega > 0$, esso sarà definito solo sul semiasse immaginario positivo.

Segue che la fase associata sarà costante, -90° per un polo e 90° per uno zero (da ricordare il segno meno della fase di un polo). In generale si avrà un contributo che dipende dal numero di poli e zeri nell'origine, ovvero dal tipo del sistema:

$$\arg(1/s^g) = -\arg(s^g) = -90^{\circ} \cdot q$$

Poli e zeri reali

Prendiamo la funzione di trasferimento $G_p(s) = \frac{1}{1+sT}$ con un polo reale e $G_z(s) = 1 + s\tau$ con uno zero reale; la risposta armonica vale:

$$\arg [G_p(j\omega)] = \arg \left(\frac{1}{1+j\omega T}\right) = -\arg (1+j\omega T)$$
$$\arg [G_z(j\omega)] = \arg (1+j\omega \tau)$$

Il numero complesso di cui si cerca la fase ha parte reale pari a 1 e parte immaginaria pari a ωT ; se rappresentiamo questo numero sul piano complesso, esso si troverà sulla retta perpendicolare all'ascissa, passante in $\Re=1$; inoltre a seconda del segno della costante di tempo, esso avrà fase positiva o negativa.

Osserviamo che, per $\omega=\pm 1/|T|$, la fase vale $\pm 45^\circ$, in dipendenza dal segno della singolarità, e dalla presenza di un polo che inverte il segno della fase. Inoltre per $\omega\to +\infty$, il numero sul piano complesso ha parte immaginaria tendente a $\pm\infty$ e la sua fase tende a $\pm 90^\circ$.

Riassumiamo queste considerazioni nelle seguenti approssimazioni asintotiche:

$$\arg \left[G_p \left(j \frac{\omega}{\omega_p} \right) \right] \simeq \begin{cases} -\arg(1) = 0^{\circ} & \text{per } \omega/\omega_p \ll 1 \\ -\arg\left(j \frac{\omega}{\omega_p} \left(\pm T \right) \right) = \mp 90^{\circ} & \text{per } \omega/\omega_p \gg 1 \end{cases}, \text{ per } T \geq 0$$

$$\arg \left[G_z \left(j \frac{\omega}{\omega_z} \right) \right] \simeq \begin{cases} \arg(1) = 0^{\circ} & \text{per } \omega/\omega_z \ll 1 \\ \arg\left(j \frac{\omega}{\omega_p} \left(\pm \tau \right) \right) = \pm 90^{\circ} & \text{per } \omega/\omega_z \gg 1 \end{cases}, \text{ per } \tau \geq 0$$

OSSERVAZIONE 5.4. Si ricordi che il segno dei poli e degli zeri è l'inverso di quello con cui compaiono fattorizzati nella funzione di trasferimento: per esempio la funzione $G(s) = 1 + \tau s$ presenta uno zero reale negativo, in $s = -1/\tau$ (lo stesso vale per i poli).

L'andamento asintotico ha una discontinuità di salto di 90° per $\omega = 1$, mentre l'andamento reale ha la forma di un'arcotangente, passante per la fase 45°.

Figura 5.3.10. Diagramma della fase per poli reali negativi e zeri reali positivi

Figura 5.3.11. Diagramma della fase per zeri reali positivi e zeri reali negativi

Poli e zeri complessi coniugati

Prendiamo la funzione di trasferimento $G_p(s) = \frac{1}{1+2s\xi/\omega_n + s^2/\omega_n^2}$ con due poli complessi coniugati e $G_z(s) = 1 + 2s\zeta/\alpha_n + s^2/\alpha_n^2$ con due zeri complessi coniugati; la fase della risposta armonica vale:

$$\arg [G_p(j\omega)] = -\arg (1 + 2j\xi \cdot \omega/\omega_n - \omega^2/\omega_n^2)$$
$$\arg [G_z(j\omega)] = \arg (1 + 2j\zeta \cdot \omega/\alpha_n - \omega^2/\alpha_n^2)$$

Se rappresentiamo sul piano complesso i numeri immaginari di cui cerchiamo la fase, vediamo che il segno dello smorzamento determina l segno della fase, inoltre il segno della fase di poli complessi coniugati sarà sempre invertito.

Osservando il segno delle singolarità e dello smorzamento giungiamo alle seguenti conclusioni:

$$\arg \left[G_p\left(j\omega\right)\right] \simeq \begin{cases} -\arg\left(1\right) = 0^{\circ} & \operatorname{per} \,\omega/\omega_n \ll 1\\ -\arg\left(2j\left(\pm\xi\right)\right) = \mp 90^{\circ} & \operatorname{per} \,\omega/\omega_n = 1\\ -\arg\left(-\left(\omega/\omega_n\right)^2 \pm 2j\xi\omega/\omega_n\right) = \mp 180^{\circ} & \operatorname{per} \,\omega/\omega_n \gg 1 \end{cases}$$

$$\begin{cases} \arg\left(1\right) = 0^{\circ} & \operatorname{per} \,\omega/\alpha_n \ll 1 \end{cases}$$

$$\left(-\arg\left(-\left(\omega/\omega_{n}\right)^{2} \pm 2j\xi\omega/\omega_{n}\right) = \mp 180^{\circ} \quad \text{per } \omega/\omega_{n} \gg 1$$

$$\arg\left[G_{z}\left(j\omega\right)\right] \simeq \begin{cases}
\arg\left(1\right) = 0^{\circ} & \text{per } \omega/\alpha_{n} \ll 1 \\
\arg\left(2j\left(\pm\zeta\right)\right) = \pm 90^{\circ} & \text{per } \omega/\alpha_{n} = 1 , \text{ per } \zeta \geqslant 0
\end{cases}$$
The same della parts reals dispersely in G_{z} and G_{z} are realisations and G_{z} are realisations and G_{z} .

Il segno della parte reale di un polo è $-\xi\omega_n$: possiamo vedere la fase di due poli complessi coniugati con $\xi>0$ come la somma dei contributi di due poli reali negativi. Il ragionamento analogo vale per gli zeri. In corrispondenza della pulsazione naturale delle singolarità, l'andamento effettivo assume fase $\pm 90^\circ$, in generale comportandosi come un'arcotangente.

La curva effettiva si avvicina a quella asintotica mano a mano che lo smorzamento si avvicina a zero; per smorzamento nullo l'andamento effettivo presenta una discontinuità di salto, di 180°; per smorzamento pari a 1, si ha la somma di due poli reali coincidenti.

Per convenzione si prende per i poli immaginari puri un salto di -180° , e per gli zeri immaginari puri un salto di $+180^{\circ}$.

90 0 10⁻¹ 10⁰ 10¹

Figura 5.3.12. Diagramma della fase per poli complessi coniugati negativi (e zeri positivi)

Figura 5.3.13. Diagramma della fase per poli complessi coniugati positivi (e zeri negativi)

Tracciamento del diagramma della fase. Possiamo tracciare il diagramma di Bode della fase di una funzione di trasferimento in due modi: il primo consiste nell'isolare guadagno statico e singolarità nell'origine, tracciando i diagrammi della fase di ciascuna singolarità e poi sommandoli assieme per ciascuna pulsazione; anche se immediato, esso diventa sconveniente per funzioni con molte singolarità.

Il secondo approccio consiste nei seguenti passi:

• Si parte da una pulsazione molto piccola, tale che sia possibile trascurare tutte le singolarità al di fuori dell'origine; per $\omega \to 0$ il contributo di fase iniziale vale

$$arg(\mu_0) + 90^{\circ} \cdot q$$

ovvero la fase iniziale è determinata dal segno del guadagno statico e dal tipo del sistema.

• Si procede facendo tendere ω a ∞ , visitando la pulsazione di ciascuna singolarità; per ogni polo o zero reale si somma $\mp 90^{\circ}$ e per ogni coppia di poli o zeri complessi coniugati si somma $\pm 180^{\circ}$, a seconda del segno della parte reale.

Esempio 5.6. In riferimento all'Esempio 5.2, \sqrt{tracciare il diagramma della fase della risposta armonica del sistema.

Riportiamo la funzione di trasferimento, e alcuni dati utili:

$$G(s) = \frac{10(1-s)(1+10s)}{s(1+0.1s)(1-\frac{s}{300}+\frac{s^2}{90000})}$$

$$\mu = 10, g = 1, z_1 = 1, z_2 = -0.1, p_1 = -10, p_{2,3} = \{\omega = 300, \xi = -1/2\}$$

Il contenuto di fase iniziale è determinato dal segno positivo del guadagno statico: si avrà un contributo 0° ; inoltre il polo nell'origine (g=1) aggiunge un ulteriore contributo iniziale di -90° .

Per ω crescente incontreremo tutte le singolarità in ordine crescente di pulsazione:

- lo zero z_2 reale negativo, che comporta un guadagno di fase di $+90^{\circ}$ (vedi la figura 5.3.11);
- lo zero z_1 reale positivo, che comporta una perdita di fase di -90° (vedi la figura 5.3.10);

- il polo p_1 reale negativo, che comporta una perdita di fase di -90° (vedi la figura 5.3.10);
- i poli $p_{2,3}$ complessi coniugati, con parte reale positiva, che comportano un guadagno di fase di $+180^{\circ}$ (vedi la figura 5.3.13).

Figura 5.3.14. Diagramma della fase della funzione per l'esempio

5.4. Diagrammi di Bode del ritardo di tempo

Prendiamo un ritardo di tempo positivo $\tau > 0$, e una funzione di trasferimento nella forma della risposta armonica, espressa come esponenziale $G(s) = e^{-\tau s}$:

$$G(j\omega) = e^{-\tau j\omega}$$

Il modulo e la fase di questa espressione valgono:

$$|G(j\omega)| = 1$$
, $\arg(G(j\omega)) = -\tau\omega$

I diagrammi del modulo e della fase del ritardo risultano:

- Il diagramma del modulo costante, di valore 0; esso non influenzerà il modulo della funzione ritardata.
- Il diagramma della fase un esponenziale divergente a $-\infty$; esso passerà per il punto $\omega = \frac{1}{\tau}$, arg $(\circ) = -\frac{180^{\circ}}{\pi}$.

Lo sfasamento causato dal ritardo è lineare, tuttavia sul diagramma di Bode (dotato di scala logaritmica), esso appare come una esponenziale.

Il ritardo è tanto più influente sulla risposta armonica di un sistema quanto più le frequenze su cui agisce sono elevate, rispetto al valore del tempo di ritardo τ (per un valore molto piccolo di ritardo, solo frequenze elevate della risposta armonica saranno influenzate).

5.5. Diagramma polare

5.5.1. Definizione. Il diagramma sul piano complesso del modulo e della fase ricavati dai diagrammi di Bode della risposta armonica si chiama diagramma polare; esso rappresenta l'andamento di $G(j\omega)$ per $\omega \to +\infty$, con dominio il semiasse immaginario positivo. La curva ottenuta è l'immagine della funzione di risposta armonica, in funzione della fase.

Possiamo tracciare questi diagrammi analizzando i diagrammi di Bode del modulo e della fase corrispondente, in modo qualitativo; a seguire degli esempi per mostrare questo concetto.

Esempio 5.7. Sia data la sequente funzione di trasferimento:

$$G\left(s\right) = \frac{5}{\left(1 + \frac{s}{50}\right)}$$

✓ Tracciare il diagramma polare della sua risposta armonica.

Identifichiamo una funzione scritta già nella forma fattorizzata; il suo guadagno statico vale $\mu = 5$, mentre il suo unico polo reale si trova in $p_1 = -50$; tracciamo i diagrammi di Bode della risposta armonica associata:

Nel diagramma del modulo abbiamo usato il valore del guadagno statico in decibel ($\mu|_{dB} = 14 \,\mathrm{dB}$); i diagrammi di Bode si ottengono immediatamente, facendo riferimento ai diagrammi della sezione precedente, associati a un polo reale negativo. Per ω che si muove da 0 a $+\infty$, seguiamo l'andamento del modulo e della fase sui due diagrammi appena tracciati, ottenendo la seguente curva complessa che rappresenta il diagramma polare:

Per $\omega \ll 1$ la fase vale 0° e il modulo $14\,\mathrm{dB} \simeq 5$; il modulo rimane entro $14\,\mathrm{db}$ fino a che $\omega = 50\,\mathrm{rad}$; la fase vale -45° e il modulo decresce a $14\,\mathrm{dB} - 3\,\mathrm{dB} \simeq 5/\sqrt{2}$. asintoticamente il modulo tende ad annullarsi (in $-\infty\,\mathrm{dB}$), dunque la curva si avvicinerà all'origine con pendenza asintotica determinata dal valore finale della fase (-90°) .

Esempio 5.8. Sia data la seguente funzione di trasferimento:

$$G(s) = -\frac{5}{s} \cdot \frac{\left(s+1\right)}{\left(1 + \frac{s}{100}\right)}$$

✓ Tracciare il diagramma polare della sua risposta armonica.

Notiamo la presenza di un polo nell'origine (g = 1), e per il teorema del valore iniziale (B.2.3) il guadagno statico vale $|\mu| = 5 = 14 \,\mathrm{dB}$; le singolarità si trovano, in $z_1 = -1$ e $p_1 = -100$:

Per $\omega \to 0$ il modulo tende a $+\infty$, dato il polo nell'origine (g > 0); si parte dall'infinito sul semiasse immaginario positivo (data la fase asintotica di -270°). C'è un intervallo di valori in cui la fase si avvicina a -180° mentre il modulo tende a 5 (14 dB), dopodiché il modulo tende ad 0 e la fase ritorna a -270° .

Tracceremo infine il seguente diagramma polare:

5.5.2. Diagramma polare del ritardo. Mostriamo la forma del diagramma polare del ritardo con il seguente esempio.

Esempio 5.9. Sia data la seguente funzione di trasferimento:

$$G(s) = \frac{20}{1+s}e^{-s}$$

✓ Tracciare il diagramma polare della risposta armonica associata.

Individuiamo il guadagno statico $\mu=20$ e il tipo g=0; abbiamo un polo reale negativo in $p_1=-1$, e un ritardo $\tau=1$ rad (ricavato osservando l'esponente della funzione esponenziale).

Per ottenere i diagrammi di Bode, basta adottare le considerazioni già fatte ne la sezione §5.4, sommando i diagrammi del ritardo a quelli della risposta armonica; il diagramma del modulo non sarà alterato, mentre il diagramma della fase avrà un contributo aggiuntivo di $-\omega$ fornito dal ritardo di tempo per $\tau = 1$.

Se avessimo solo il polo, la fase iniziale sarebbe 0° ($\mu > 0$) ed esso tenderebbe a -90° come un'arcotangente, con argomento pari a -45° per $\omega = 1$; tuttavia il ritardo somma un ulteriore contributo di $-1 \, \mathrm{rad} \simeq -57.3^\circ$, dunque la fase effettiva in $\omega = 1$ è pari a -102.3° , con andamento esponenziale (dovuto al contributo del ritardo).

5.6. Sistemi a sfasamento minimo

Supponiamo di avere il diagramma di Bode del modulo di una risposta armonica: è possibile tracciare il diagramma della fase?

In generale la risposta è negativa, dal momento che il segno del guadagno e delle singolarità non può essere dedotto dal diagramma modulo; se abbiamo tuttavia un sistema a smorzamento minimo, possiamo tracciarne con certezza il diagramma della fase conoscendo quello del modulo:

DEFINIZIONE 5.1. Chiamiamo a smorzamento minimo un sistema in cui il guadagno è positivo, e tutte le singolarità hanno parte reale positiva.

Analizziamo il seguente esempio per chiarire questo concetto:

Esempio 5.10. Sia dato il seguente diagramma di Bode del modulo:

Figura 5.6.1. Diagramma del modulo

✓ Tracciare il diagramma di Bode della fase della stessa funzione, sapendo che il sistema è a smorzamento minimo.

Assumiamo che il guadagno sia pari a 1 (se fosse diversamente, il grafico del modulo avrebbe una traslazione verticale pari al guadagno); isoliamo i punti in cui il diagramma asintotico si spezza: essi saranno in corrispondenza delle singolarità (già indicate sul bordo inferiore del grafico).

La pendenza iniziale di $-40 \,\mathrm{dB}$ denota la presenza di ben 2 zeri nell'origine (vedi la figura 5.3.1), i quali determinano una fase iniziale di $+180^\circ$; si procede in questo modo, cambiando la fase ogni volta che si incontra un punto in cui sono presenti delle singolarità (la cui natura è determinata osservando come varia la pendenza del diagramma asintotico del modulo). Il grafico risultante per la fase è il seguente:

Figura 5.6.2. Diagramma della fase

5.7. Azione filtrante dei sistemi dinamici

Abbiamo visto che un sistema dinamico LTI, tramite la sua funzione di risposta armonica associata all'uscita, applica una variazione su modulo e fase di ogni componente spettrale in ingresso; possiamo immaginare un processo in cui abbiamo un segnale continuo, iniettato in un sistema dinamico LTI con funzione di trasferimento G(s). Si avrà un certo segnale di uscita, il cui spettro sarà alterato dalla risposta armonica.

In uscita si avrà lo spettro del modulo delle ampiezze del segnale entrante, pesate per il modulo della risposta armonica alla corrispondente pulsazione, e ogni componente della fase sarà sfasata dell'argomento della risposta armonica alla corrispondente pulsazione.

Questa azione di alterazione dello spettro, da parte dei sistemi dinamici, viene definita azione filtrante del sistema; analizzeremo in questa sezione dei modelli rilevanti di filtro.

5.7.1. Filtro passa-basso. Si tratta di un sistema che tende ad annullare le componenti spettrali superiori a una certa pulsazione; un filtro ideale di questo tipo ha diagramma di Bode del modulo nullo fino a una certa pulsazione $\overline{\omega}$, poi esso vale $-\infty$ per qualsiasi altra pulsazione; la fase di un filtro ideale è 0°.

Nella pratica non è possibile realizzare una variazione istantanea del modulo, tuttavia possiamo utilizzare un sistema con un singolo polo reale negativo, con la seguente funzione di trasferimento:

$$G\left(s\right) = \frac{1}{1 + \left(\frac{s}{\overline{\omega}}\right)}$$

Per $\mu=1,\,\overline{\omega}>0$, il polo si troverà in $s=-\overline{\omega}$ e l'andamento del modulo sarà nullo fino al polo, poi decrescente con pendenza $-20\,\mathrm{dB/dec}$; questa è un'approssimazione del I ordine di un filtro passa-basso ideale. Mostriamo un esempio di sistema fisico dotato di questa funzione di trasferimento.

Figura 5.7.1. Circuito RC come filtro passa-basso

ESEMPIO 5.11. Sia dato il seguente circuito, nel quale l'ingresso è la tensione a vuoto u(t) ai capi della serie del resistore R e del condensatore C; l'uscita è la tensione sul condensatore, y(t). \checkmark Scrivere la funzione di trasferimento del sistema.

La tensione ai capi della capacità dipende dalla corrente che vi scorre, secondo la legge:

$$\dot{y}(t) = i(t)/C$$

A sua volta la corrente nel circuito può essere ottenuta dalla legge di Ohm sul resistore:

$$i\left(t\right) = \frac{1}{R}\left(u\left(t\right) - y\left(t\right)\right)$$

Possiamo sostituire nell'espressione della tensione sul condensatore, ottenendo:

$$\dot{y}\left(t\right) = \frac{1}{RC}\left(u\left(t\right) - y\left(t\right)\right)$$

Trasformiamo questa espressione di uscita nel dominio di Laplace:

$$\mathscr{L}\left[\dot{y}\left(t\right)\right] = \frac{U\left(s\right)}{RC} - \frac{Y\left(s\right)}{RC} = sY\left(s\right)$$

Usando (3.1.2) raccogliamo Y(s)/U(s) per scrivere la funzione di trasferimento:

$$G\left(s\right) = \frac{1/RC}{\left(1/RC + s\right)}$$

Il guadagno stazionario vale $\mu = 1$ e si ha un polo in s = -1/RC.

In un filtro reale possiamo individuare l'intervallo di pulsazioni che passano attraverso il filtro, sotto la seguente definizione.

DEFINIZIONE 5.2. Chiamiamo banda passante di un filtro passa-basso reale un intervallo di pulsazioni entro il quale il modulo dista ± 3 dB dal valore statico; in modo analitico deve valere:

$$-3 dB \simeq \frac{1}{\sqrt{2}} \le \frac{|G(j\omega)|}{|G(0)|} \le \sqrt{2} \simeq +3 dB$$

ovvero $\omega \in (-\infty, \overline{\omega}].$

5.7.2. Filtro passa-alto. Al contrario del sistema appena analizzato, un filtro passa-alto si comporta in maniera duale, attenuando le componenti spettrali di bassa frequenza lasciando inalterate quelle maggiori di una certa frequenza $\underline{\omega}$; il suo diagramma del modulo avrà un andamento pari a $-\infty$ dB per $\omega < \underline{\omega}$ e 0 dB per $\omega \geq \underline{\omega}$.

Nella pratica non esistono filtri ideali con questo andamento asintotico, tuttavia si può approssimare al I ordine con un sistema dinamico dotato di uno zero nell'origine e un polo reale negativo.

DEFINIZIONE 5.3. Chiamiamo banda passante di un filtro passa-alto reale un intervallo di pulsazioni entro il quale il modulo dista $\pm 3\,\mathrm{dB}$ dal valore finale; in modo analitico deve valere:

$$-3 \,\mathrm{dB} \simeq \frac{1}{\sqrt{2}} \le \frac{|G(j\omega)|}{|G(\infty)|} \le \sqrt{2} \simeq +3 \,\mathrm{dB}$$

ovvero $\omega \in [\underline{\omega}, +\infty)$.

ESEMPIO 5.12. Sia dato il seguente circuito, nel quale l'ingresso è la tensione a vuoto u(t) ai capi della serie del resistore R e del condensatore C; l'uscita è la tensione sul resistore, y(t). \checkmark Scrivere la funzione di trasferimento del sistema.

Figura 5.7.2. Circuito RC come filtro passa-alto

Scegliamo la tensione sul condensatore come stato $x_{\rm C}(t) = u(t) - y(t)$; la sua derivata vale:

$$\dot{x}_{\rm C}(t) = y(t)/RC$$

che può anche essere scritta come

$$\dot{u}(t) - \dot{y}(t) = y(t)/RC$$

Trasformiamo questa espressione di uscita:

$$\stackrel{\mathscr{L}}{\rightarrow} sU\left(s\right) - sY\left(s\right) = Y\left(s\right)/RC$$

$$G\left(s\right) = \frac{Y\left(s\right)}{U\left(s\right)} = \frac{s}{\left(s + 1/RC\right)}$$

L'estremo inferiore della banda passante in questo caso è la posizione del polo (s=-1/RC); per filtrare frequenze elevate è possibile scegliere valori piccoli di resistenza e capacità.

5.7.3. Filtro passa-banda. Questo sistema lascia inalterate le componenti spettrali del segnale di ingresso entro una determinata banda di frequenza; esso si comporterà come un filtro passa alto, attenuando il segnale a pulsazioni inferiori di $\underline{\omega}$, e come un filtro passa-basso, attenuando il segnale a pulsazioni superiori di $\overline{\omega}$.

Per esempio, il nostro apparato uditivo è un filtro passa-banda tra $20\,\mathrm{Hz}$ e $20\,k\mathrm{Hz}$

DEFINIZIONE 5.4. Chiamiamo banda passante di un filtro passa-banda reale un intervallo di pulsazioni entro il quale il modulo dista ± 3 dB dal valore finale; in modo analitico deve valere $\omega \in [\underline{\omega}, \overline{\omega}]$.

5.8. Trasferimento per approssimazione a poli dominanti

Osserviamo come un'approssimazione al polo dominante influenza i diagrammi di Bode della risposta armonica, attraverso il seguente esempio.

Esempio 5.13. Sia data la seguente funzione di trasferimento:

$$G(s) = \frac{10(1+s)}{(1+\frac{s}{10})(1+\frac{s}{0.1})}$$

 \checkmark Approssimare la funzione al polo dominante, e tracciare i diagrammi di Bode della risposta armonica.

Identifichiamo il guadagno statico $\mu = 10 \simeq 20\,\mathrm{dB}$ e le singolarità in posizione:

$$z_1 = -1, p_1 = -0.1, p_2 = -10$$

La singolarità con maggiore costante di tempo è quella associata al polo p_2 ; approssimiamo al I ordine la funzione di trasferimento nel modo seguente:

$$G(s) \sim \hat{G}(s) = \frac{10}{\left(1 + \frac{s}{0.1}\right)}$$

Il diagramma approssimato è tracciato con una linea spessa, mentre il diagramma effettivo con una linea tratteggiata (non sono raffigurati gli andamenti asintotici):

Figura 5.8.1. Diagramma del modulo

Figura 5.8.2. Diagramma della fase

CAPITOLO 6

Analisi dei sistemi di controllo

Richiamiamo di problema di controllo (vedi la sezione 1.1.1): abbiamo un processo, che consiste in un aspetto fisico di un oggetto di interesse, e un suo andamento desiderato; l'insieme di questi due elementi definisce il problema di controllo.

Il sistema è caratterizzato da un blocco con variabili manipolabili e disturbi (non manipolabili) in ingresso, e variabili controllate in uscita (queste ultime traducono in una grandezza misurabile il funzionamento desiderato).

Risolvere un problema di controllo significa progettare un regolatore, ovvero un'altro sistema dinamico che decide quale altro ingresso fornire al processo per ottenere l'andamento desiderato w(t).

Un sistema di controllo è dunque l'insieme di regolatore e processo controllato.

6.1. Architetture di sistemi di controllo

Vi sono due principali architetture dei sistemi di controllo, classificate in base al fatto che il regolatore sfrutti o meno una stima della variabile y(t); in entrambi i casi analizzeremo sistemi LTI, per i quali vedremo tecniche di progetto model-based, ovvero useremo un modello per il comportamento del sistema (equazioni della Fisica, dati sperimentali, ecc...).

6.1.1. Anello aperto. I sistemi di controllo in anello aperto sono caratterizzati dal regolatore che riceve l'andamento desiderato, e in base alla logica di progettazione definisce l'ingresso da dare al sistema senza conoscere l'andamento effettivo dell'uscita.

Analizziamo il regolatore nel modo seguente: supponiamo che sia data una inversione di un processo P, definita come

$$P^{-1}\left(y\left(t\right) \right) =u\left(t\right)$$

Vorremmo allora la funzione dell'andamento desiderato espressa come $F^*(w(t)) = y(t)$ che indica il comportamento desiderato; allora un metodo di progettazione consiste nel scrivere la funzione del regolatore rispetto all'andamento desiderato:

$$R(w(t)) = u(t) = P^{-1}(F^*(w(t)))$$

da cui riscriviamo y(t) come:

(6.1.1)
$$y(t) = P(u(t)) = P(P^{-1}(F^*(w(t)))) = F^*(w(t))$$

Trasferimento in anello aperto

DEFINIZIONE 6.1. Abbiamo mostrato un tipico approccio di *inversione dinamica*, ovvero partendo da un modello P del processo, se possiamo calcolarne un'inversione P^{-1} tale che $P(P^{-1}(\square))$ restituisca l'argomento \square dell'inversione, allora è lecito utilizzare P^{-1} come regolatore in anello aperto.

In generale i sistemi sono non lineari e multi-variabili, ma in molti casi si può semplificare con una linearizzazione (attorno al punto di funzionamento del sistema) il sistema del problema di controllo per ottenerne uno SISO.

Dopo aver scomposto il problema di controllo in più problemi SISO, è possibile esprimere il processo con una funzione di trasferimento G(s) che indica il rapporto tra uscita e ingresso; se il processo è asintoticamente stabile e non presenta zeri a parte reale positiva, possiamo calcolare la sua inversione come $G^{-1}(s)$ e usarla nel regolatore per cancellare la dinamica del sistema e sostituirla col comportamento desiderato $F^*(s)$:

(6.1.2)
$$R(s) = G^{-1}(s) \cdot F^*(s)$$

Mettendo in cascata questa funzione col sistema, si ottiene esattamente un sistema equivalente per cui il comportamento tra w(t) e y(t) è esattamente $F^*(s)$.

OSSERVAZIONE 6.1. È richiesto che la funzione (6.1.2) così ottenuta sia strettamente propria.

Lo svantaggio del controllo in anello aperto è dato dallo scostamento della realtà fisica dal modello su cui è progettata la logica del regolatore: esso non può reagire a casi imprevisti.

Possiamo notare questo limite dalle equazioni, aggiungendo un margine di correttezza di modello $\Delta(s)$; lo schema a blocchi è indicato ne la figura 6.1.1.

Figura 6.1.1. Problema di controllo in anello aperto

Se applichiamo il regolatore (6.1.2), otteniamo la seguente equazione di uscita:

$$y\left(t\right) = W\left(s\right) \cdot \left[G^{-1}\left(s\right)F^{*}\left(s\right)G\left(s\right)\right] + W\left(s\right) \cdot \left[G^{-1}\left(s\right)F^{*}\left(s\right)\right] \cdot \Delta\left(s\right) + D\left(s\right)$$

Notiamo che l'incertezza è moltiplicata per la funzione del regolatore, dunque è possibile attenuare in parte il suo effetto; tuttavia ciò non può essere fatto senza commettere un errore di approssimazione, inoltre l'effetto del disturbo influenza interamente l'uscita, senza che possa essere attenuato in qualche modo.

6.1.2. Anello chiuso. I sistemi di controllo in anello chiuso sono caratterizzati dal regolatore che preleva l'informazione sull'andamento dell'uscita e la sfrutta per determinare l'ingresso.

Il regolatore in questo caso esprime l'ingresso controllato come $u\left(t\right)=R\left(w\left(t\right),\,y\left(t\right)\right)$: si hanno a disposizione dei sensori (uno degli svantaggi è il doverli predisporre) che informano il regolatore sull'andamento dell'uscita; il regolatore non riceve direttamente in ingresso il valore dell'andamento desiderato ma si tratta di una retroazione negativa, in cui al regolatore arriva la differenza $e\left(t\right)=w\left(t\right)-y\left(t\right)$ chiamata errore di inseguimento.

Figura 6.1.2. Problema di controllo in anello chiuso

Dato il basso costo de sensori accurati, e i vantaggi di questa architettura, oggi quasi tutti i sistemi di controllo sono in anello chiuso Scriviamo la funzione di trasferimento risultante dallo schema a blocchi (vedi la figura 6.1.2):

$$Y\left(s\right) = \frac{R\left(s\right) \cdot \left(G\left(s\right) + \Delta\left(s\right)\right)}{1 + R\left(s\right) \cdot \left(G\left(s\right) + \Delta\left(s\right)\right)} W\left(s\right) + \frac{1}{1 + R\left(s\right) \cdot \left(G\left(s\right) + \Delta\left(s\right)\right)} D\left(s\right)$$

Osserviamo che il regolatore ha un primo vantaggio rispetto al caso dell'anello aperto, infatti può avere un effetto sui disturbi dell'uscita, e la funzione di trasferimento del valore desiderato è disaccoppiata da quella del disturbo (possiamo agire su entrambe indipendentemente).

Se trascuriamo momentaneamente l'incertezza di modello $\Delta(s)$, e definiamo la funzione di trasferimento di anello (4.2.3) come L(s) = R(s)G(s), possiamo scrivere l'uscita come:

(6.1.3)
$$Y(s) = \underbrace{\frac{L(s)}{L(s)}}_{F(s)} W(s) + \underbrace{\frac{S(s)}{1 + L(s)}}_{S(s)} D(s)$$

Trasferimento in anello chiuso

Le funzioni che abbiamo rinominato rispetto al trasferimento di anello sono definite in modo particolare:

- S(s) è la funzione di sensitività dell'uscita, che contiene l'informazione sulla sensitività dell'uscita al disturbo; nel progetto di sistemi di controllo si preferisce mantenere piccola questa funzione.
- F(s) è la funzione di sensitività complementare, dato che F(s) + S(s) = 1; idealmente cerchiamo di ottenere questa funzione il più vicino possibile a 1.

Nella pratica si realizzano queste due funzioni in modo che $F\left(s\right)$ si comporti come un filtro passa-basso, e la funzione $S\left(s\right)$ come un filtro passa-alto; infine, un sistema di controllo in anello chiuso ha un secondo vantaggio, ovvero è possibile alterare la pulsazione dei poli della funzione di trasferimento, in particolare tramite il regolatore è possibile stabilizzare un sistema altrimenti instabile in anello aperto.

Esempio 6.1. Sia data la seguente funzione di trasferimento:

$$G\left(s\right) = \frac{2}{1-s}$$

appartenente al sistema di un problema di controllo in anello chiuso, nel quale utilizziamo un regolatore costante pari a R(s) = -10. \checkmark Calcolare le funzioni di sensitività e di sensitività complementare.

Calcoliamo il valore di $L(s) = R(s) \cdot G(s) = -20/(1-s)$; le due funzioni di sensitività sono dunque pari a:

$$F(s) = \frac{L(s)}{1 + L(s)} = \frac{20}{s + 19} = \frac{20}{19} \cdot \frac{1}{1 + \frac{s}{19}}$$

$$S(s) = 1 - F(s) = \frac{s + 19 - 20}{s + 19} = \frac{s - 1}{s + 19} = -\frac{1}{19} \cdot \frac{1 - s}{1 + \frac{s}{19}}$$

Notiamo che il polo del sistema in anello chiuso, dotato di regolatore, si trova in s=-19, a differenza del polo instabile per s=1 della funzione di trasferimento assegnata in partenza; inoltre si nota che la funzione di sensitività complementare (F(s)) ha guadagno circa unitario. Il modulo delle due funzioni sul diagramma di Bode è ne la figura 6.1.3.

La velocità di risposta del sistema (l'inverso del modulo del polo) può essere determinata dimensionando opportunamente il guadagno del regolatore.

Figura 6.1.3. Diagramma del modulo delle funzioni di sensitività

Vediamo uno schema di riferimento più realistico per lo studio dei problemi di controllo in anello chiuso; il segnale u(t) viene dato in ingresso a un attuatore (blocco indicato con A(s)), che traduce un segnale elettrico in una interazione fisica; all'uscita dell'attuatore si sommano dei disturbi di attuazione $d_{\rm A}$ (tipicamente a bassa frequenza).

In generale l'uscita è misurata tramite un trasduttore, che converte una grandezza fisica in un segnale elettrico, sottoposto a disturbi di misura $d_{\rm T}$ (tipicamente ad alta frequenza).

Figura 6.1.4. Schema a blocchi per problemi di controllo in retroazione

Con l'algebra degli schemi a blocchi, possiamo ricondurci a uno schema semplificato:

- rimuoviamo la funzione del trasduttore dall'anello di retroazione, poi moltiplicandola per R(s) e il suo inverso per $\tilde{w}(t)$;
- accorpiamo attuatore e impianto, spostando il nodo somma a valle dell'impianto (al posto di G(s));
- chiamiamo n la variabile del disturbo di misura;
- ignoriamo il trasduttore, che si comporterà come un guadagno statico (filtro passa basso con banda passante molto più grande di qualsiasi pulsazione associata a singolarità);
- accorpiamo tutti i disturbi additivi sull'uscita come disturbi di processo d(t).

Otteniamo lo schema in figura 6.1.5, che sarà il nostro riferimento per il progetto dei regolatori.

Figura 6.1.5. Schema di riferimento per problemi di controllo

Attenzione a non confondere il disturbo di processo d (agisce sul valore effettivo dell'uscita) e n (viene visto solo dal regolatore), quest'ultimo molto più critico

6.2. Progettazione e requisiti di un sistema di controllo

6.2.1. Progetto di un sistema di controllo. In generale si compiono i seguenti passaggi preliminari alla progettazione di un sistema di controllo:

- (1) Descrivere il problema di controllo, individuando le variabili di interesse (ingressi, uscite, disturbi);
- (2) Ricavare le specifiche da (1), per raggiungere il comportamento desiderato;
- (3) Formalizzare un modello a partire da (1) e (2) (esso dipende dalle specifiche e rappresenta un'approssimazione del problema);
- (4) Progettare un regolatore a partire da (3), che possa soddisfare (2) (problema di *sintesi*), oppure stabilire se un regolatore assegnato soddisfa (2) (problema di *analisi*).

Il risultato del progetto sarà una funzione di trasferimento R(s), che può essere discretizzata per essere implementata su un calcolatore.

6.2.2. Requisiti di un sistema di controllo.

- (1) Stabilità asintotica;
- (2) Prestazioni statiche (riguardano il sistema una volta esauriti i transitori);
- (3) Prestazioni dinamiche (velocità di risposta).

Per quanto riguarda la stabilità, un sistema si dice dotato di *stabilità nominale* quando la sua funzione di trasferimento corrisponde al comportamento del sistema; è necessario inoltre garantire un certo *margine di stabilità*, per esempio prevedendo nell'anello di controllo casi in cui il sistema si comporti diversamente dal modello, rientrando comunque nelle specifiche (idealmente vorremmo un margine di stabilità elevato).

Per quanto riguarda le prestazioni statiche, consideriamo il valore finale dell'uscita al termine di tutti i transitori (t > 5T, con T associata al polo dominante); consideriamo due tipologie di specifiche:

- Precisione di inseguimento di riferimenti polinomiali (scalino, rampa, parabola), ovvero è richiesto $e(t) \ll 1$, si considera inoltre la reiezione di disturbi polinomiali;
- Comportamento a fronte di segnali sinusoidali, rispetto l'ampiezza massima (da amplificare o attenuare) delle oscillazioni di e(t) a fronte di w(t), d(t) o n(t);

Per quanto riguarda le prestazioni dinamiche, si fa riferimento alla *risposta allo scalino* $w(t) = A \cdot sca(t)$, fissando dei valori limite di tempo di assestamento, tempo di salita e sovraelongazione del movimento.

Per quanto riguarda le prestazioni - statiche o dinamiche - definiremo delle *prestazio-ni nominali*, legate all'ipotesi che il sistema effettivo si comporti come il modello; in caso contrario si parla di prestazioni robuste, rispetto allo scostamento del modello dalla realtà.

6.3. Criterio di Nyquist per l'asintotica stabilità

Il criterio permette di capire se, dato un sistema in retroazione, esso è stabile, osservando solo le proprietà del trasferimento di anello aperto.

6.3.1. Stabilità dei sistemi retro-azionati. Consideriamo un sistema dotato di funzione di anello in retroazione negativa e di errore di inseguimento (stiamo semplificando il modello ne la figura 6.1.5). Poniamoci nel caso di un sistema LTI, per il quale la stabilità è una proprietà strutturale: supponiamo (d'ora in avanti) che nella funzione di trasferimento non vi siano state cancellazioni, o al più esse sono state non critiche.

Sotto queste ipotesi, l'asintotica stabilità in anello chiuso si verifica se e solo se i poli della funzione di trasferimento (1/[1+L(s)]) hanno parte reale negativa; esprimendo la funzione come:

$$L\left(s\right) = \frac{N\left(s\right)}{D\left(s\right)} = \frac{1}{1 + \frac{N_{\mathrm{L}}\left(s\right)}{D_{\mathrm{L}}\left(s\right)}} = \frac{D_{\mathrm{L}}\left(s\right)}{N_{\mathrm{L}}\left(s\right) + D_{\mathrm{L}}\left(s\right)}$$

otteniamo i suoi poli come soluzione dell'equazione

Equazione caratteristica

$$(6.3.1) N_{\rm L}(s) + D_{\rm L}(s) = 0 (=1+L(s))$$

Come già studiato (si veda la sezione 1.7.2) è possibile determinare la stabilità asintotica studiando il segno di (6.3.1), applicando per esempio il criterio di Routh (1.6); tuttavia esso non è immediato da applicare per un sistema di ordine elevato e in fase di progetto ogni modifica al trasferimento comporta il dover applicare da capo il criterio.

Dal punto di vista della progettazione, esiste un criterio molto più comodo e diretto (si tratta di un metodo grafico) chiamato *criterio di Nyquist*, che fornisce una condizione necessaria e sufficiente per l'asintotica stabilità di un sistema in anello chiuso.

Per utilizzare il criterio è necessario tracciare prima il diagramma di Nyquist.

6.3.2. Diagramma di Nyquist. Si tratta di un diagramma strettamente legato al diagramma polare (si veda la sezione §5.5): esso è l'immagine, attraverso la funzione di trasferimento L(s), di un percorso chiuso sul piano complesso. Il diagramma consiste in un percorso chiamato cammino di Nyquist, il quale comprende la curva orientata formata dal semiasse immaginario positivo, una chiusura (a semicerchio) verso l'asse immaginario a $-\infty$, e infine il semiasse immaginario negativo.

Se non vi sono singolarità nell'origine si ha anche $\omega=0$ nel diagramma polare, altrimenti per singolarità sull'asse immaginario (poli o zeri nell'origine oppure immaginari puri) il cammino vi passa attorno con semicirconferenze di raggio infinitesimo.

Sostituendo alla variabile s nella funzione di anello i punti del cammino di Nyquist, si ottengono i corrispondenti punti sul diagramma di Nyquist; dato che il cammino è chiuso, anche il diagramma di Nyquist sarà sempre una curva chiusa (se si ha un tratto del diagramma aperto, si tracciano a partire da esso tanti semicerchi da 180° pari al numero di poli nell'origine).

OSSERVAZIONE 6.2. Un tratto del diagramma di Nyquist corrisponde esattamente al diagramma polare, in particolare il tratto immaginario positivo; in aggiunta, vi è la chiusura all'infinito e il tratto per numeri immaginari puri con parte reale negativa ($\omega < 0$). Per quanto riguarda questo ultimo tratto, esso è il simmetrico del primo tratto rispetto alla parte immaginaria, ottenuto come

$$\overbrace{L\left(j\omega\right)}^{\omega>0} = \left(\overbrace{L\left(j\omega^*\right)}^{\omega<0}\right)^*$$

Esempio 6.2. Sia data la seguente funzione di trasferimento:

$$L\left(s\right) = \frac{1}{s\left(1+s\right)}$$

✓ Tracciare il diagramma di Nyquist associato.

Cominciamo ricavando i diagrammi di Bode, osservando prima che il guadagno statico vale $\mu = 1$, e sono presenti due poli $(p_1 = 0, p_2 = -1)$:

Figura 6.3.2. Diagramma di Bode della fase

Figura 6.3.1. Diagramma di Bode del modulo

Il diagramma di Nyquist si ricava direttamente dal diagramma polare, cambiando il segno della parte immaginaria e aggiungendo eventuali semicerchi per chiudere il cammino; infatti il diagramma polare si costruisce partendo con un'angolazione di -90° (parallela rispetto al semiasse immaginario negativo) e poi mano a mano che la pulsazione aumenta, il modulo diventa infinitesimo e la fase decresce asintoticamente a -180° :

Figura 6.3.3. Diagramma di Nyquist

6.3.3. Criterio di Nyquist. Gli autovalori del sistema in anello chiuso sono le soluzioni dell'equazione (6.3.1), ovvero i valori di s tali che L(s) = -1; tale punto è chiamato punto critico sul diagramma di Nyquist.

Se chiamiamo P il numero di poli con parte reale positiva della funzione di trasferimento in anello aperto (corrispondono a modi divergenti), e N il numero di giri orientati che il diagramma di Nyquist compie attorno al punto critico (hanno segno positivo se percorsi in senso antiorario).

Inoltre diremo che N non è ben definito se il diagramma passa per il punto critico.

 $Criterio\ di\\ Nyquist$

TEOREMA 6.1. Una condizione necessaria e sufficiente per l'asintotica stabilità di un sistema LTI in retroazione, è che N sia ben definito e valga N = P.

OSSERVAZIONE 6.3. Se N non è ben definito allora il sistema in anello chiuso presenta uno o più poli nell'origine. Se N < P, allora P - N è il numero di poli con parte reale positiva (instabili) in anello chiuso.

6.3.4. Applicazioni del criterio.

Sistemi con guadagno variabile. Nell'anello di retroazione avremo un blocco k con un guadagno statico scalare e controllabile (possiamo considerarlo un rudimentale regolatore); studiamo la stabilità al variare di k.

Variando il modulo di k, il diagramma di Nyquist viene dilatato o compresso, mentre invertendo il segno di k si ha un a traslazione del diagramma di 180°. Un trucco grafico per ottenere un diagramma qualitativo dilatato o compresso, consiste nel moltiplicare la scala degli assi per lo stesso guadagno k.

Per studiare la stabilità con $k \in \mathbb{R}$, prendiamo il diagramma di Nyquist con k = 1 e consideriamo il punto critico mobile -1/k; individuiamo sull'asse reale degli intervalli contraddistinti dal numero di rotazioni compiute dal diagramma attorno al punto critico mobile.

Dopo aver calcolato il numero di rotazioni N_k per ciascun intervallo e averlo confrontato con P, otteniamo i valori di k associati a ciascun intervallo passando al reciproco.

Prestazioni contro stabilità in retroazione. Consideriamo un sistema di controllo come nel modello di figura 6.1.5, nel quale il regolatore sia un guadagno statico k; la funzione di anello risulta $L(s) = k \cdot G(s)$, mentre le funzioni di sensitività sono rispettivamente

$$F(s) = \frac{Y(s)}{w(s)} = \frac{k \cdot G(s)}{1 + k \cdot G(s)} \xrightarrow{k \to +\infty} 1$$

$$S\left(s\right) = \frac{E\left(s\right)}{D\left(s\right)} = -\frac{1}{1 + k \cdot G\left(s\right)} \stackrel{k \to +\infty}{\longrightarrow} 0$$

Idealmente vorremmo gli andamenti indicati per $k \to +\infty$, ovvero che per un guadagno molto elevato il sistema abbia prestazioni altrettanto elevate, essendo in grado di inseguire qualsiasi riferimento e annullare ogni disturbo.

Applicando tuttavia il criterio di Nyquist, notiamo che a furia di aumentare il guadagno (partiamo da una situazione di asintotica stabilità) vi sarà un valore di k per cui il diagramma di Nyquist passa per il punto critico, rendendo il sistema instabile; per avere un aumento di prestazioni bisogna spingere il sistema al limite della stabilità.

- 6.3.5. Condizioni sufficienti per la stabilità asintotica. Supponiamo che non vi siano poli instabili, con parte reale positiva (P=0):
 - (1) Se vale $|L(j\omega)| < 1 \,\forall \omega \in \mathbb{R}$, allora il diagramma di Nyquist è interamente contenuto nella circonferenza di raggio unitario (non potrà incrociare o girare attorno al punto).
 - (2) Se vale $|\arg(j\omega)| < \pi \,\forall \omega \in \mathbb{R}$, il diagramma di Nyquist non passerà per il punto critico né girerà mai attorno ad esso.

Le precedenti ipotesi, verificandosi, determinano l'asintotica stabilità del sistema, e si dimostrano usando il Teorema 6.1.

Prendiamo un sistema con ritardo di tempo $\tau > 0$; nel dominio di Laplace esso avrà un andamento con coefficiente $e^{-\tau s}$, la cui corrispondente risposta armonica vale $e^{-\tau j\omega}$; il ritardo di fase introdotto è pari a arg $(e^{-\tau j\omega}) = -\tau \omega$.

Possiamo anche in questo caso sfruttare il criterio di Nyquist, e le due ipotesi appena enunciate (tenendo conto dello sfasamento dovuto al ritardo).

6.4. Margini di stabilità

Fino ad ora abbiamo considerato la stabilità di un sistema di controllo nelle cosiddette condizioni nominali, ovvero avendo nota con certezza la funzione di trasferimento. Nella pratica vi è sempre un grado di approssimazione nella costruzione dei modelli, e questo comporta un grado di incertezza nella funzione di trasferimento.

6.4.1. Margine di stabilità vettoriale. Prendiamo il diagramma polare di una funzione di trasferimento; per semplicità ci poniamo nel caso P = 0, e cerchiamo eventuali tratti del diagramma di Nyquist che girano attorno al punto critico.

Rispetto alla risposta in frequenza (nominale), l'andamento effettivo sul diagramma polare si trova all'interno di una certa banda di incertezza (centrata sull'andamento nominale); si hanno condizioni critiche quando la banda di incertezza comprende il punto critico.

DEFINIZIONE 6.2. La distanza tra il punto -1, j0 e la curva $L(j\omega)$ si chiama margine di stabilità vettoriale e si indica con Δn ; questo valore determina la massima ampiezza che la banda di incertezza può assumere.

Per ciascuna pulsazione si ha il valore di incertezza $\Delta(j\omega)$, il quale è rappresentato da un cerchio attorno a ciascun punto del diagramma; il suo raggio non deve mai superare il valore di Δn .

6.4.2. Margine di guadagno. Immaginiamo di avere un diagramma di Nyquist nel quale esiste un valore di ω per cui la fase valga -180° , ovvero $L(j\omega\pi)$, e indichiamo la fase di tale punto

(6.4.1)
$$\omega_{\pi} = \arg\left(L\left(j\omega\pi\right)\right)$$

DEFINIZIONE 6.3. Il valore di guadagno che, moltiplicato per la funzione di trasferimento, fa sì che il punto $L(j\omega\pi)$ si sovrapponga al punto critico si chiama margine di guadagno; in generale possiamo indicarlo come $k_{\rm m}=1/L(j\omega\pi)$, che sarebbe il modulo della distanza dal punto in ω_{π} al punto critico.

Nel caso di una funzione di trasferimento la cui fase non raggiunge mai i 180°, essa avrà margine di guadagno infinito.

6.4.3. Margine di fase. Prendiamo una funzione di trasferimento che abbia diagramma di Nyquist che abbia un punto in comune con la circonferenza di raggio unitario; chiamiamo la pulsazione di tale punto pulsazione critica, definita come:

$$(6.4.2) \omega_{\rm C} := |L(j\omega_{\rm C})| = 1$$

DEFINIZIONE 6.4. La distanza angolare dal punto in $\omega_{\rm C}$ al punto critico si chiama margine di fase; se chiamiamo la fase della funzione di risposta armonica ruotata alla pulsazione critica $\varphi_{\rm C} = \arg(L(j\omega_{\rm C}))$, indichiamo il margine di fase come:

$$\varphi_{\rm m} = 180^{\circ} - \varphi_{\rm C}$$

Se vale che $|L(j\omega)| < 1 \,\forall \omega \in \mathbb{R}$, allora il margine di fase è infinito.

In presenza di un ritardo di tempo, il margine di fase vale $\varphi_{\rm m} = 180^{\circ} - \tau \omega_{\rm c}$, da cui si ricava che il massimo ritardo tollerabile (in radianti) vale $\tau_{\text{MAX}} = \varphi_{\text{m}}/\omega_{\text{C}}$. Possiamo allora interpretare il margine di fase anche come il massimo ritardo ammissibile prima di avere instabilità.

6.4.4. Casi particolari. Possiamo incontrare dei casi nei quali il margine di guadagno o di fase è molto elevato, mentre l'altro è piccolo; allora è necessario usare entrambi i criteri per discutere la stabilità di un sistema. Si noti che esistono anche casi in cui, non ostante entrambi i margini siano elevati, il sistema sia comunque al limite della stabilità (in particolare nel caso di poli risonanti per piccole frequenze).

In presenza di più valori per i quali valgono le condizioni (6.4.1) e/o (6.4.2), dobbiamo scegliere il più critico (quello che sul diagramma di Nyquist sia più prossimo al punto critico).

6.5. Criterio di Bode

Per applicare questo criterio è necessario verificare tre ipotesi preliminari:

- (1) la funzione di trasferimento in anello aperto non abbia poli con parte reale positiva (P=0);
- (2) il diagramma di Bode del modulo della risposta armonica, attraversi una sola volta l'asse a 0 dB;
- (3) la funzione di trasferimento sia strettamente propria (per $\omega \to +\infty$ il modulo tende a zero).

Teorema 6.2. Una volta verificate le tre ipotesi precedenti, si può dire che un Criterio di Bode sistema LTI in retroazione è asintoticamente stabile se e solo se:

- il guadagno statico è positivo $(\mu > 0)$;
- il margine di fase è positivo $(\varphi_m > 0)$.

Questo criterio è un'applicazione in un caso semplificato del criterio di Nyquist che ci solleva dal tracciare il diagramma di Nyquist.

COROLLARIO 6.1. Se il sistema è anche a sfasamento minimo (quadagno sempre positivo e diagramma della fase ottenibile direttamente da quello del modulo, si veda la sezione §5.6), esso è asintoticamente stabile se la sua pendenza finale è maggiore di -60 dB/dec.

6.6. Prestazioni statiche

- **6.6.1.** Risposta degli ingressi di interesse. Mentre la stabilità riguarda le proprietà interne del sistema, le prestazioni riguardano il comportamento degli ingressi e delle uscite; individuiamo ingressi e uscite sul modello di sistema in retroazione (si veda la figura 6.1.5), e analizziamo i rispettivi movimenti con l'algebra degli schemi a blocchi:
 - le uscite di interesse sono l'uscita del sistema Y(s) a valle di disturbi, l'errore di inseguimento E(s) come differenza tra andamento desiderato e uscita, il comando U(s) che il regolatore applica all'impianto;
 - gli ingressi di interesse sono i segnali che arrivano dall'esterno, ovvero l'ingresso desiderato W(s), il disturbo di processo D(s) e il disturbo di misura N(s).

Le funzioni di trasferimento tra ingressi e uscite individuati si ottengono a partire dalle funzioni di sensitività (6.1.3):

(6.6.1)
$$F(s) = \frac{L(s)}{1 + L(s)}, \qquad S(s) = \frac{1}{1 + L(s)}, \qquad Q(s) = \frac{R(s)}{1 + L(s)}$$

dove la funzione Q(s) è la sensitività del comando.

Utilizzando l'algebra degli schemi a blocchi (dalla figura 6.1.5), costruiamo la relazione matriciale che lega i tre ingressi con le uscite che stiamo analizzando, semplificando i risultati tramite le formule (6.6.1):

$$\begin{bmatrix}
Y\left(s\right) \\
E\left(s\right) \\
U\left(s\right)
\end{bmatrix} = \begin{bmatrix}
F\left(s\right) & S\left(s\right) & -F\left(s\right) \\
S\left(s\right) & -S\left(s\right) & F\left(s\right) \\
Q\left(s\right) & -Q\left(s\right) & -Q\left(s\right)
\end{bmatrix} \cdot \begin{bmatrix}
W\left(s\right) \\
D\left(s\right) \\
N\left(s\right)
\end{bmatrix}$$

Tramite le tre funzioni di trasferimento ottenute, studiamo le prestazioni statiche del sistema in base all'influenza che la funzione di anello ha su tali funzioni. Analizziamo ora la risposta in frequenza di tali ingressi per usare gli strumenti appresi (si veda il capitolo 5) e analizzare i loro andamenti:

- l'andamento desiderato W(s) ha una banda limitata a bassa frequenza ($\omega \in [0, \overline{\omega}_w]$), dato che tipicamente si vuole ottenere un certo comportamento dal sistema per un periodo di tempo non infinitesimo;
- il disturbo di processo D(s) ha una banda limitata a bassa frequenza ($\omega \in [0, \overline{\omega}_d]$), dato che questi segnali sono disturbi dovuti al sistema fisico, che agisce filtrando le alte frequenze;
- il disturbo di misura N(s) ha una banda limitata ad alte frequenze ($\omega \in [\underline{\omega}_n, \overline{\omega}_n]$ con $\overline{\omega}_n \to +\infty$); per avere un sistema progettato correttamente $\underline{\omega}_n$ deve essere a frequenze maggiori della più alta pulsazione contenente il segnale di riferimento ($\overline{\omega}_d$).

In assenza ideale di disturbi di misura (F(s) = 1, S(s) = 0) l'uscita vale esattamente come il riferimento e il disturbo non ha effetto su di essa. Nella pratica si progetta il sistema di controllo in anello chiuso in modo che F(s) sia un filtro passa basso, per rigettare i disturbi di misura; invece, la funzione S(s) viene dimensionata come un filtro passa alto (per attenuare il disturbo di processo sulle pulsazioni contenenti il segnale di riferimento), con banda passante vicina a quella di F(s).

OSSERVAZIONE 6.4. Da ora in avanti assumeremo che il sistema in esame sia asintoticamente stabile in anello chiuso (è necessario fare attenzione, dato che i calcoli e le analisi che vedremo possono essere effettuati prescindendo la stabilità del sistema); inoltre, in questa sezione analizzeremo le prestazioni per un tempo molto elevato, a transitori esauriti (condizioni statiche).

La variabile di comando è l'ingresso all'impianto ma potrebbe essere limitata dalla specifica: infatti essa è legata all'energia consumata dal sistema per funzionare **6.6.2.** Ingressi polinomiali nel tempo. Gli ingressi polinomiali in esame sono quelli canonici già visti (scalino, rampa, parabola); le loro trasformate di Laplace sono della forma A/s^n , dove n-1 è il grado del polinomio nel dominio del tempo:

$$A \cdot \operatorname{sca}(s) = A \xrightarrow{\mathscr{L}} \frac{A}{s}, \ A \cdot \operatorname{ram}(s) = At \xrightarrow{\mathscr{L}} \frac{A}{s^2}, \ A \cdot \operatorname{par}(s) = \frac{A}{2}t^2 \xrightarrow{\mathscr{L}} \frac{A}{s^3}$$

A fronte di questi segnali, per definire le prestazioni di accuratezza statica, si fa riferimento al valore dell'errore di inseguimento $e\left(t\right)=w\left(t\right)-y\left(t\right)$; definiamo il seguente:

$$(6.6.3) |e_{\infty}| := \lim_{t \to \infty} |e(t)|$$

Il limite a infinito determina l'analisi in regime stazionario; tipicamente nelle specifiche si chiede che il valore $|e_{\infty}|$ sia minore di una certa soglia, a fronte di un ingresso polinomiale.

Considerando che il sistema è supposto asintoticamente stabile, possiamo analizzare la specifica col teorema del valore finale; consideriamo il valore dell'errore di inseguimento rispetto all'andamento desiderato:

$$E(s) = S(s) \cdot W(s) = \frac{1}{1 + L(s)} \cdot \frac{A}{s^n}$$

applichiamo (B.2.4) sostituendo E(s) con la precedente in (6.6.3):

$$|e_{\infty}| = \lim_{s \to 0} |sE(s)| = \lim_{s \to 0} \left| \frac{sA}{(1 + L(s)) s^n} \right|$$

Semplifichiamo la precedente espressione scrivendo la funzione di anello come $L(s) = \frac{\mu}{s^g} L'(s)$ tale che $L'(s) \underset{s \to 0}{\sim} 1$:

$$= \lim_{s \to 0} \left| \frac{sA}{(1 + \mu/s^g) s^n} \right| = \lim_{s \to 0} \left| \underbrace{\frac{s^g}{s^g + \mu}}_{S(s \to 0)} \cdot \underbrace{s \frac{A}{s^n}}_{W(s \to 0)} \right|$$

La stessa espressione si ottiene osservando l'ingresso del disturbo di misura rispetto all'errore di inseguimento (dalle relazioni (6.6.2)); analizziamo questo limite per gli ingressi polinomiali canonici (facendo variare q da 0 a 3):

$$A/s \quad A/s^2 \quad A/s^3$$

$$g = 0 \quad \left| \frac{A}{1+\mu} \right| \quad +\infty \quad +\infty$$

$$g = 1 \quad 0 \quad \left| \frac{A}{\mu} \right| \quad +\infty$$

$$g = 2 \quad 0 \quad 0 \quad \left| \frac{A}{\mu} \right|$$

$$g = 3 \quad 0 \quad 0 \quad 0$$

Tabella 6.6.1. Prestazioni statiche per ingressi canonici polinomiali

La tabella 6.6.1 presenta 0 nelle celle in cui l'inseguimento dell'andamento desiderato è perfetto, mentre in caso di errore di inseguimento finito si ha una dipendenza inversa dal guadagno; allora conoscendo guadagno e tipo del sistema (che possiamo ottenere osservando la funzione di anello del sistema) possiamo avere una stima dell'errore di inseguimento (che è una prestazione del sistema in anello chiuso).

In effetti, aggiungendo poli nell'origine (aumentando il tipo del sistema) si raggiunge un inseguimento sempre migliore; un gran numero di poli nell'origine provoca tuttavia uno sfasamento in partenza negativo $(-90^{\circ} \text{ per ciascun polo nell'origine})$,

che sarebbe necessario recuperare per avere un margine di fase positivo ed evitare l'instabilità.

6.6.3. Ingressi limitati in banda. In questo tipo di analisi si osserva l'attenuazione in ampiezza che il sistema di controllo opera sull'ingresso: per il teorema della risposta armonica (5.1.2), a fronte di un ingresso limitato in banda (nel caso di asintotica stabilità) si avrà un'uscita anch'essa limitata in banda ma con ampiezza modulata.

Ricaviamo l'ampiezza dell'uscita a transitorio esaurito dalle relazioni (6.6.2):

- (1) $y(t) = A|F(j\omega)|$ per w(t) e n(t), se sono della forma $A\sin(\omega t)$, perché la funzione di trasferimento tra W(s), N(s), Y(s) è la sensitività complementare F(s);
- (2) $y(t) = A |S(j\omega)|$ per d(t), se è della forma $A \sin(\omega t)$.

Se vogliamo conoscere questi valori di modulo, ai quali corrisponde l'uscita per un certo intervallo di frequenze, rispetto alla funzione di anello, dobbiamo studiare il comportamento delle funzioni di trasferimento al variare della funzione di anello.

Figura 6.6.1. Precisione rispetto alla funzione di sensitività comple-

Figura 6.6.2. Precisione rispetto alla funzione di sensitività

Cominciamo da (1), analizzando il suo modulo tramite la figura 6.6.1: per $\omega \to 0$ il modulo della funzione di anello sarà molto elevato, dato che per garantire buone prestazioni con ingressi polinomiali si inseriscono poli nell'origine o si usa un guadagno elevato; per realizzare la funzione di anello, è necessario che essa sia anche strettamente propria (quindi per $\omega \to +\infty$ la funzione di anello tende ad annullarsi).

Rispetto al valore di pulsazione critica $\omega_{\rm C}$ (intersezione tra l'andamento di L(s) e l'asse 0 dB), per valori di pulsazione minori di essa il modulo di L(s) è elevato, mentre è molto piccolo per pulsazioni maggiori di quella critica.

In modo analitico possiamo scrivere, rispetto alla risposta armonica della funzione $F\left(s\right)$:

$$|F(j\omega)| = \left| \frac{L(j\omega)}{1 + L(j\omega)} \right| = \frac{|L(j\omega)|}{1 + |L(j\omega)|} \underset{\omega \ll \omega_{\mathbb{C}}}{\sim} 1$$

dato che il modulo della funzione di anello è molto grande per pulsazioni piccole (rispetto a quella critica); analogamente otteniamo che:

$$|F\left(j\omega\right)|\underset{\omega\gg\omega_{\mathrm{C}}}{\sim}|L\left(j\omega\right)|$$

dato che il modulo della funzione di anello tende a un infinitesimo per pulsazioni grandi (rispetto a quella critica); approssimiamo la funzione di sensitività complementare coi valori asintotici ottenuti rispetto alla pulsazione critica.

Dato che abbiamo interesse a inseguire l'ingresso w(t) dell'andamento desiderato, vorremmo che la rispettiva pulsazione $\overline{\omega}_w$ fosse in corrispondenza di F(s) con modulo circa unitario (quindi cerchiamo di ottenere $\overline{\omega}_w < \omega_c$); per quanto riguarda il

disturbo di misura, vorremmo che avesse una banda di frequenze molto maggiore di ω_{c} , in modo da avere alta attenuazione per tali disturbi.

Consideriamo (2), analizzando il suo modulo tramite la figura 6.6.2: il discorso è analogo al precedente, infatti viene utilizzata la sensitività S(s) mentre il comportamento del modulo della funzione di anello è il medesimo; rispetto alla pulsazione critica otteniamo:

$$|S(j\omega)| = \left| \frac{1}{1 + L(j\omega)} \right| = \frac{1}{1 + |L(j\omega)|} \sim_{\omega \ll \omega_{\mathcal{C}}} \frac{1}{|L(j\omega)|}$$

dato che in tal caso il modulo della funzione di anello è molto grande; analogamente vale che:

$$|S(j\omega)| \underset{\omega \gg \omega_{\rm C}}{\sim} 1$$

dato che in tal caso il modulo di L(s) tende ad annullarsi.

Per attenuare i disturbi di processo d(t), vorremmo che la rispettiva pulsazione $\overline{\omega}_d$ fosse molto minore della pulsazione critica ω_c : in questo modo il modulo di S(s) sarebbe molto piccolo; l'attenuazione in tal caso vale 1/|L(s)|.

6.7. Prestazioni dinamiche

L'analisi delle prestazioni dinamiche riguarda la risposta armonica del sistema a fronte di un ingresso a scalino; prendiamo dunque w(t) = sca(t) e analizziamo il comportamento della funzione di anello.

La funzione di trasferimento che, dato w(t), permette di ottenere il movimento dell'uscita, è F(s); infatti Y(s) = F(s)W(s), e inoltre conosciamo già l'andamento asintotico della funzione F(s) (si veda la figura 6.6.1); tuttavia non conosciamo il suo comportamento nell'intorno della pulsazione critica $\omega_{\rm C}$.

Possiamo ottenere l'andamento di $F(j\omega)$ per $\omega \simeq \omega_c$ adottando un modello della funzione di anello: assumiamo che essa si comporti come una funzione con due poli complessi coniugati (3.4.5), come un modello di filtro passa-basso del secondo ordine:

$$M(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Questo modello di comportamento in anello chiuso è una prima approssimazione, poiché in un sistema di controllo reale l'ordine può essere molto superiore al secondo, tuttavia qualitativamente il suo comportamento è quello di un filtro passa-basso.

Cominciamo la nostra analisi calcolando $F(j\omega_c)$, partendo dalle seguenti riscritture:

$$|F(j\omega_{c})| = \left| \frac{L(j\omega_{c})}{1 + L(\omega_{c})} \right| = \frac{|L(j\omega_{c})|}{|1 + L(j\omega_{c})|} = \dots$$

Dato che alla pulsazione critica corrisponde un guadagno unitario (0 dB), possiamo scrivere $L(j\omega_{\rm C}) = 1 \cdot e^{j\varphi_{\rm C}}$ dove si ha $\varphi_{\rm C} = \arg(L(j\omega_{\rm C}))$:

$$\dots = \frac{|e^{j\varphi_{\mathbf{C}}}|}{|1 + e^{j\varphi_{\mathbf{C}}}|} = \frac{1}{\sqrt{(1 + \cos\varphi_{\mathbf{C}})^2 + (\sin\varphi_{\mathbf{C}})^2}}$$

$$= \frac{1}{\sqrt{1 + 2\cos\varphi_{\mathbf{C}} + \cos\varphi_{\mathbf{C}}^2 + \sin^2\varphi_{\mathbf{C}}}} = \frac{1}{\sqrt{2(1 + \cos\varphi_{\mathbf{C}})}}$$

dove al numeratore il modulo vale proprio 1, e al denominatore abbiamo usato le formule (A.5.1) sviluppando il prodotto.

Consideriamo il piano dei numeri complessi: all'interno delle nostre ipotesi di stabilità (P=0) il margine di fase sarà positivo, e tracciando la congiungente di $L(j\omega_c)$

con l'origine, otteniamo l'angolo opposto pari a φ_m ; osserviamo che, nella nostra costruzione, $\cos \varphi_{\rm C} = -\cos \varphi_m$.

Figura 6.7.1. Costruzione per il margine di fase

Figura 6.7.2. Costruzione per gli angoli interni

Riprendendo l'uguaglianza precedente, scriveremo:

$$|F(j\omega_{c})| = \dots = \frac{1}{\sqrt{2(1+\cos\varphi_{c})}}$$

Questa relazione può ulteriormente essere semplificata costruendo un triangolo nel primo quadrante utilizzando l'angolo φ_m e la circonferenza di raggio unitario; avremo un triangolo isoscele con angoli alla base pari a 90° $-\varphi_m/2$.

Tracciando l'altezza che cadde sull'asse reale positivo nel punto h (vale $\sin \varphi_m$), otteniamo un ulteriore rettangolo con angoli alla base 90° e 90° $-\varphi_m/2$, dunque il suo angolo al vertice vale $\varphi_m/2$; la base del primo rettangolo (da 0 a 1) è suddivisa in due segmenti dall'altezza, nel punto h: il primo (da 0 a h) vale $\cos \varphi_m$.

Il segmento di base (il minore) del triangolo isoscele vale:

$$a = \sqrt{\sin^2 \varphi_m + (1 - \cos \varphi_m)^2} = \sqrt{2(1 - \cos \varphi_m)}$$

Consideriamo adesso il seno dell'angolo al vertice del secondo triangolo ($\varphi_m/2$):

$$\sin\frac{\varphi_m}{2} = \frac{1 - \cos\varphi_m}{\sqrt{2\left(1 - \cos\varphi_m\right)}} = \frac{\sqrt{2}}{2}\sqrt{1 - \cos\varphi_m}$$

Sostituendo nell'espressione del modulo della funzione di sensitività otteniamo:

(6.7.1)
$$|F(j\omega_{\rm c})| = \frac{1}{2\sin\frac{\varphi_m}{2}}$$

Ora confrontiamo questo valore del modulo con quello della risposta del nostro modello in $\omega = \omega_n \simeq \omega_c$:

(6.7.2)
$$|M(j\omega_n)| = \left| \frac{\omega_C^2}{(j\omega_C)^2 + 2j\omega_C^2\xi + \omega_C^2} \right| = \frac{1}{2\xi}$$

Utilizzando (6.7.1) e (6.7.2) otteniamo la seguente relazione:

$$\frac{1}{2\xi} \simeq \frac{1}{2\sin\frac{\varphi_m}{2}} \underset{\varphi_m \ll 1}{\longrightarrow} \xi \simeq \frac{\varphi_m}{2}$$

dove abbiamo ulteriormente semplificato il seno ipotizzando di avere un angolo molto piccolo; supponendo inoltre di esprimere in gradi il margine di fase, la precedente

vale:

Smorzamento in anello chiuso

(6.7.3)
$$\xi \simeq \frac{\varphi_m \left[^{\circ}\right]}{2} \cdot \frac{\pi}{180^{\circ}} \simeq \boxed{\frac{\varphi_m \left[^{\circ}\right]}{100}}$$

La relazione (6.7.3) permette di conoscere lo smorzamento a partire dal margine di fase; grazie ad esso possiamo ottenere la sovraelongazione e la costante di tempo del sistema di partenza in anello chiuso:

(6.7.4)
$$s_{\%} = e^{-\xi \pi / \sqrt{1 - \xi^2}}, \qquad T = 1/\xi \omega_n$$

Si noti che il margine di fase può essere calcolato direttamente dalla funzione di anello aperto L(s).

OSSERVAZIONE 6.5. Dato che per un valore di smorzamento $\xi > 0.65$ l'andamento non ha risonanza (come se ci fosse un singolo polo reale dominante), possiamo affermare che:

$$\varphi_m > 65^\circ \implies s_\% = 0 \land T \sim \frac{1}{\omega_C}$$

Se invece il margine di fase è inferiore ai 65°, il sistema si comporta come un filtro passa basso del secondo ordine, con pulsazione naturale circa pari a quella critica $(\omega_n \simeq \omega_c)$ e il suo smorzamento è dato da (6.7.3). Si ricorda che queste ipotesi valgono solo per condizioni di asintotica stabilità (in particolare $\varphi_m > 0$).

Esempio 6.3. Sia dato il diagramma a blocchi in figura 6.7.3, in cui la funzione di trasferimento vale $L(s) = \frac{8(s+1)}{s(s/10+1)(s/100+1)}$

Figura 6.7.3. Schema a blocchi

Sappiamo che il contenuto in frequenza di d(t) è contenuto nella banda $\omega \in [0, 5]$, mentre il contenuto in frequenza di n(t) è contenuto nella banda $\omega \in [10^3, 10^4]$; \checkmark Analizzare la stabilità e le prestazioni (statiche e dinamiche) del sistema in anello chiuso.

Cominciamo valutando la stabilità asintotica: potremmo utilizzare il criterio di Nyquist, tuttavia è utile provare a controllare le ipotesi del criterio di Bode strada facendo, e nel caso applicarlo.

La funzione di anello ha un guadagno statico pari a $\mu=8\simeq 18\,\mathrm{dB}$, mentre il tipo del sistema vale g=1 (un polo nell'origine); le singolarità si trovano in $z_1=-1,\,p_1=-10,\,p_2=-100$; notiamo che la prima ipotesi per il criterio di Bode è soddisfatta (nessun polo reale negativo in anello aperto, P=0, e la funzione $L\left(s\right)$ è strettamente propria).

Nel diagramma del modulo possiamo individuare la pulsazione critica dove $|M(j\omega)| = 0$ dB, e indichiamo tale punto con ω_c , il suo valore è circa 65; notiamo inoltre che il guadagno statico è positivo (un'altra ipotesi per utilizzare il criterio di Bode). Infine, dal diagramma della fase ricaviamo la fase della pulsazione critica (per calcolare il margine di fase):

$$\varphi_{\rm C} = \arg(L(j\omega_{\rm C})) = \arg(8) + \arg(1 + j65) - \arg(j65)$$

$$-\arg(1 + j0.65) - \arg(1 + j6.5) \simeq 0^{\circ} + 90^{\circ} - 90^{\circ} - 81^{\circ} - 33^{\circ} = 114^{\circ}$$

Segue dalla definizione (6.4.2) che

$$\varphi_m = 180 - |\varphi_{\rm C}| = 66^{\circ}$$

Figura 6.7.4. Diagrammi di Bode

questo risultato verifica anche l'ultima ipotesi per il criterio di Bode ($\varphi_m > 0$), permettendoci di applicarlo (possiamo affermare che il sistema è asintoticamente stabile, si veda il Teorema 6.2).

Per valutare le prestazioni dobbiamo osservare la posizione delle bande dei disturbi rispetto al diagramma del modulo:

- Prestazioni statiche per ingressi limitati in banda
 - il disturbo di processo d(t) ha componenti <u>al più</u> a frequenza $\overline{\omega}_d = 5 \text{ rad}$: esso avrà in corrispondenza di tale valore un'attenuazione di -18 dB;
 - il disturbo di misura n(t) ha componenti <u>almeno</u> a frequenza $\overline{\omega}_n = 10^3$ rad: esso avrà in corrispondenza di tale valore un'attenuazione di $-42 \,\mathrm{dB}$;
- Prestazioni dinamiche per ingressi polinomiali (si ricordi che g=1)
 - con ingressi pari a $A \cdot \text{sca}(t)$ l'errore di inseguimento vale $|e_{\infty}| = 0$;
 - con ingressi pari a $A \cdot \text{ram}(t)$ l'errore di inseguimento vale $|e_{\infty}| = |A|/8$;
 - con ingressi pari a $A \cdot \text{sca}(t)$ l'errore di inseguimento vale $|e_{\infty}| = \infty$;
- Prestazioni dinamiche (a fronte di uno scalino di riferimento di ampiezza $w(\infty)$)
 - col margine di fase ottenuto ($\varphi_m = 66^\circ$) il sistema si comporta come se avesse un polo dominante reale; abbiamo $s_\% = 0$ e $T \simeq 1/65$ s, quindi la risposta raggiungerà il 99% del valore di regime in 5T = 0.075 s.

6.8. Limiti alle prestazioni

6.8.1. Zeri reali positivi. In presenza di zeri a parte reale positiva nella funzione di anello, necessariamente la pulsazione naturale dovrà essere minore della pulsazione di tali singolarità; questo limite strutturale influenza la velocità di risposta del sistema.

Osserviamo per prima cosa che gli zeri della funzione di sensitività complementare coincidono con quelli della funzione di anello, ovvero:

$$L\left(s\right) = \frac{\left[N_{L}\left(s\right)\right]}{D_{L}\left(s\right)}, \quad F\left(s\right) = \frac{N_{L}\left(s\right)/D_{L}\left(s\right)}{1 + N_{L}\left(s\right)/D_{L}\left(s\right)} = \frac{\left[N_{L}\left(s\right)\right]}{N_{L}\left(s\right) + D_{L}\left(s\right)}$$

Se abbiamo uno zero a parte reale positiva nella funzione di anello, esso sarà presente anche nella funzione di sensitività complementare; non è possibile cancellare questo zero (cancellazione critica) nel regolatore, che altrimenti risulterebbe instabile.

Inoltre, nel diagramma del modulo della funzione di anello, lo zero a parte reale positiva fornisce pendenza di $+20\,\mathrm{db/dec}$, quindi per avere qualche attraversamento (in particolare perché esista $\omega_{\rm c}$) è necessario avere almeno 2 poli con parte reale negativa; il contributo di fase dello zero positivo è di -90° , questo provoca un margine di fase negativo, comportando l'instabilità del sistema in anello chiuso.

Ammettiamo un attraversamento al più in un intorno dello zero, dove la perdita di fase vale circa -45° ; in conclusione, uno zero con parte reale positiva impone dei limiti nel progetto del regolatore (bisogna evitare di cancellarlo, e il margine di fase deve rimanere positivo).

6.8.2. Sensitività del comando. Facendo riferimento al modello in figura 6.1.5, otteniamo la trasforma del segnale di controllo u(t) nel dominio di Laplace:

$$U\left(s\right) = \underbrace{\frac{R\left(s\right)}{1 + L\left(s\right)}}_{Q\left(s\right)} W\left(s\right) - \frac{R\left(s\right)}{1 + L\left(s\right)} N\left(s\right) - \frac{R\left(s\right)}{1 + L\left(s\right)} D\left(s\right)$$

dove Q(s) è la funzione sensitività del comando; consideriamo l'effetto dei disturbi di misura sul modulo di questa funzione:

$$|Q(j\omega)| = \frac{|R(j\omega)|}{|1 + R(j\omega)G(j\omega)|}$$

nella precedente abbiamo sostituito L(s) = R(s)G(s) e separato il modulo su numeratore e denominatore.

Se $\omega \ll \omega_{\rm C}$ il modulo di Q(s) vale l'inverso del modulo della risposta armonica dell'impianto $(1/|G(j\omega)|)$; quando invece $\omega \gg \omega_{\rm C}$ il modulo di Q(s) vale come il modulo della risposta della funzione del regolatore $(|R(j\omega)|)$.

Prendendo un disturbo di misura in alta frequenza e un regolatore bi-proprio (stesso numero di poli e zeri, pendenza finale nulla sul diagramma del modulo), è opportuno aggiungere uno o più poli di chiusura (a frequenze elevate, intorno a $\underline{\omega}_n$), rendendo il regolatore strettamente proprio, ovvero in grado di filtrare i disturbi di misura sulla variabile di comando alle alte frequenze.

Si noti che inserire uno zero a parte reale positiva nel regolatore (al di fuori degli zeri dell'impianto) è un grave errore di progetto

CAPITOLO 7

Progetto e sintesi dei sistemi di controllo

Assumendo che la definizione delle specifiche e la modellazione siano già state completate, vedremo come progettare dei regolatori per sistemi SISO; la progettazione consiste in due fasi: nella prima si traducono le specifiche in vincoli sul modulo della risposta della funzione di anello, mentre nella seconda si progetta il regolatore tale che la funzione di anello soddisfi i vincoli stabiliti. Ipotizziamo d'ora in avanti di poter sempre applicare il criterio di Bode almeno al termine della fase di progetto.

7.1. Progetto: traduzione delle specifiche

Se valgono le ipotesi del criterio di Bode, bisogna ottenere (per quanto riguarda la funzione di anello) guadagno statico e margine di fase positivi ($\mu > 0$, $\varphi_m > 0$); per quanto riguarda la precisione statica, ricaviamo vincoli su tipo (per ottenere il valore di errore di inseguimento desiderato) e guadagno della funzione di anello a fronte di ingressi polinomiali specificati (g > g, $\mu > \mu$).

Per ingressi limitati in banda, le specifiche riguardano il livello di attenuazione garantito in una certa banda; esse sono tradotte in vincoli sul modulo della funzione di anello entro certi intervalli di frequenze $(|L(j\overline{\omega}_d)| \geq (\underline{L}_d)^{-1}$ per disturbi di processo, $|L(j\underline{\omega}_n)| \geq (\underline{L}_n)^{-1}$ per disturbi di misura).

Le specifiche per le prestazioni dinamiche riguardano sovraelongazione e velocità di risposta; esse si traducono in vincoli sul margine di fase e pulsazione critica ($\varphi_m \geq \varphi$, $\omega_C \geq \omega_{C,x}$).

Le specifiche tradotte nei vincoli come descritto, possono essere mappate sul diagramma di Bode del modulo della funzione di anello, nel modo seguente (eccetto il margine di fase, che va ricavato dal diagramma della fase in corrispondenza della pulsazione critica): si veda la figura 7.1.1

Figura 7.1.1. Vincoli sulle specifiche del regolatore

Esempio 7.1. Si voglia progettare il sistema Cruise Control per un autoveicolo con le seguenti caratteristiche:

- massa $m = 1500 \,\mathrm{kg}$;
- tempo per accelerare da 0 km/h a 100 km/h $t_{0-100} = 10 \text{ s}$;
- accelerazione (ricavata da t_{0-100}) $a \simeq 2.7 \,\mathrm{m/s}$;
- forza di trazione $F_{\text{T}} = m \cdot a = 4050 \,\text{N};$
- coefficiente di resistenza dinamica $\beta = 29$.

 \checkmark Ricavare il modello del sistema (facoltativo) e \checkmark tradurre le specifiche (elencate successivamente) in vincoli sulla funzione di anello.

 $\checkmark Possiamo ricavare un modello per il sistema impostando l'equazione del moto come segue:$

$$m \cdot \dot{v}(t) + \beta(t) \cdot v(t) = F_{\mathrm{T}}(t)$$

Raccogliendo la trasformata di Laplace della velocità nella precedente, otteniamo:

$$(s \cdot m + \beta) Y(s) = F_{\mathrm{T}}(s) \rightarrow Y(s) = \frac{1}{(s \cdot m + \beta)} F_{\mathrm{T}}(s)$$

Questa modello rappresenta l'interazione tra la forza di trazione e la velocità: introduciamo ora un ulteriore modello per mostrare l'interazione tra l'ingresso di tensione $(u(t) \in [0, 10 \text{ V}])$ alla centralina elettrica e la forza di trazione generata:

$$F_{\text{\tiny T}}(s) = \frac{4050}{10} \cdot \frac{1}{0.2s + 1} U(s)$$

7.1.2 per il trasferimento, da cui possiamo scrivere la funzione di trasferimento: $G\left(s\right) = \frac{405}{\left(0.2s+1\right)\left(1500s+29\right)}$

Otterremo lo schema a blocchi in figura

Figura 7.1.2. Schema a blocchi G(s)

Il sistema di controllo dovrà rispettare le sequenti specifiche:

- (1) Impostando una velocità costante, il veicolo deve raggiungere tale velocità; allora $|e_{\infty}| = 0$ con andamento desiderato w(t) = sca(t).
- (2) Aumentando la velocità desiderata di 5 km/h in un secondo, il veicolo deve seguire l'incremento con errore costante al più di 2 km/h; allora $|e_{\infty}| \leq 2 \text{ km/h}$ con andamento desiderato $w(t) = 5 \cdot \text{ram}(t)$.
- (3) Variazioni dolci di pendenza della strada non devono influenzare la velocità raggiunta; allora l'attenuazione del disturbo di processo deve valere $d(t) \leq -20 \,\mathrm{dB}$ per $\overline{\omega}_d \in [0.001, \, 0]$.
- (4) La velocità misurata da sensori di rotazione delle ruote deve avere un'attenuazione per i disturbi di misura $n(t) \le -20 \,\mathrm{dB}$ per $\underline{\omega}_n \in [10^2, \, 10^3]$.
- (5) La velocità effettiva deve impiegare al più $10 \,\mathrm{s}$ per raggiungere quella desiderata; allora il tempo di assestamento deve valere $T_{0.1\%} < 10 \,\mathrm{s}$.
- (6) Impostando una velocità desiderata di $100 \,\mathrm{km/h}$, la velocità effettiva durante il transitorio dovrà mantenersi inferiore ai $108 \,\mathrm{km/h}$; allora la sovraelongazione percentuale deve valere $s_\% < 8\%$.

 $\sqrt{\text{Traduciamo le precedenti specifiche in vincoli sulla funzione di anello } G(s)$:

- (1) q > 1, si veda la tabella 6.6.1;
- (2) si potrebbe soddisfare la specifica in modo conservativo ponendo $g \geq 2$; tuttavia possiamo porre q = 1 e impostare la relazione

$$|e_{\infty}| = 5/\mu \le 2 \,\mathrm{m/s} \to \mu \ge 5/2;$$

- (3) $|L(j\omega)| \ge 20 \,dB \text{ per } \omega \in [0.001, 0];$
- (4) $|L(j\omega)| \le 20 \,\mathrm{dB} \,\mathrm{per} \,\omega \in [10^2, \,10^3];$
- (5) dato che la sovraelongazione ha un ruolo nella specifica dello smorzamento e lo smorzamento nella specifica della costante di tempo, possiamo risolvere le specifiche (5) e (6) nei due modi seguenti:
 - (a) Immaginiamo che la specifica sia soddisfatta dalla relazione

$$s_\% = e^{-\xi\pi/\sqrt{1-\xi^2}} < 8\% \to \xi > 0.62$$

usando l'approssimazione (6.7.3) possiamo affermare che, data la precedente, il margine di fase vale $\varphi_m \geq 62^{\circ}$.

La costante di tempo, da (6.7.4), deve essere tale che

$$T_{0.1\%} = 5T < 10 \,\mathrm{s} \to \frac{5}{0.62 \cdot \omega_{\mathrm{C}}} < 10 \to \omega_{\mathrm{C}} > \frac{0.5}{0.62} \simeq 0.8 \,\mathrm{rad/s}.$$

(b) In alternativa possiamo assumere che il margine di fase debba valere $\varphi_m > 65^{\circ}$, e il sistema si comporterà come se avesse polo dominante reale: in queste condizioni $T = 1/\omega_{\rm C}$, e applicando gli stessi passaggi del punto precedente si ricava $\omega_{\rm C} > 0.5$.

I vincoli così ottenuti possono essere tracciati sul diagramma di Bode del modulo nel modo seguente:

Figura 7.1.3. Vincoli tradotti sul diagramma del modulo

Notiamo che nel diagramma abbiamo l'attenuazione dei disturbi di processo a bassa frequenza secondo il vincolo (3), e l'attenuazione dei disturbi di misura ad alta frequenza secondo il vincolo (4); questi due vincoli sono rappresentati dalle linee diagonali che cancellano due bande di frequenze dal diagramma.

La linea diagonale tratteggiata e punteggiata che congiunge il punto per $\omega=1$ (modulo 8 dB) con quello per $\omega=10^{-3}$ (modulo 68 dB, non raffigurato) rappresenta il vincolo (1) e (2) sul guadagno statico (è stato convertito $5/2=2.5\simeq 8$ dB, considerando che g=1, ovvero un polo nell'origine); è necessario soddisfare questo vincolo solamente per $\omega\to 0$, in particolare da una decade prima della singolarità a frequenza più bassa.

Il vincolo (5) sulla pulsazione critica è rappresentato dal rettangolo punteggiato attorno all'asse 0 dB fino al punto in $\omega=0.8$; infine per soddisfare il margine di fase dovremo osservare la perdita di fase dovuta alle singolarità, valutando la fase sul relativo diagramma o in modo analitico.

7.2. Sintesi: metodo per inversione

Se prendiamo una funzione di anello desiderata $L^*(s)$ che soddisfi le specifiche, sapendo che essa è la cascata di regolatore e impianto $(L^*(s) = R(s) \cdot G(s)$, si veda la figura 6.1.5), progettiamo il regolatore (definiamo la sua funzione di trasferimento) come:

(7.2.1)
$$R(s) = L^*(s) / G(s)$$

Progetto del regolatore per inversione

Questo metodo si può applicare solo se nella funzione G(s) sono <u>assenti</u> zeri reali positivi: in caso contrario, invertendola i suoi zeri diventano poli del regolatori, portando a cancellazioni critiche (e dunque all'instabilità del regolatore!).

Inoltre è necessario che la funzione di trasferimento desiderata sia realizzabile, ovvero propria o meglio strettamente propria, quindi il suo grado relativo deve essere almeno uguale al grado di G(s).

ESEMPIO 7.2. Facendo riferimento al sistema nell'Esempio 7.1, \sqrt{si} progetti un regolatore che soddisfi le specifiche, utilizzando il metodo per inversione.

La funzione di trasferimento del sistema non presenta zeri, dunque possiamo applicare sicuramente il metodo per inversione, potendo invertire la funzione senza introdurre zeri instabili.

La funzione di trasferimento desiderata sarà costruita nel modo seguente:

$$L^*(s) = \frac{10}{s} \cdot \frac{(1+s/0.1)}{(1+s/0.01)} \frac{1}{(1+s/10)}$$

dove abbiamo usato direttamente $\mu = 10$ per soddisfare il requisito sul guadagno statico; poi inseriamo un polo in $\omega = 10^{-2}$ per attraversare l'asse 0 dB in prossimità del limite per $\omega_{\rm c} \geq 0.8$, ma così facendo la pulsazione di attraversamento si abbassa troppo e il margine di fase in quel punto : è necessario inserire uno zero alla decade successiva ($\omega = 10^{-1}$) per ottenere infine un attraversamento in prossimità di $\omega = 1$.

Invertendo la funzione così strutturata otterremmo più zeri che poli, quindi inseriamo un polo di chiusura una decade dopo la pulsazione critica ($\omega=10^1$) per non compromettere il margine di fase. Il diagramma di Bode del modulo tracciato rispetto ai vincoli risulta soddisfatto:

Figura 7.2.1. Modulo della funzione di anello desiderata

Progettiamo infine il regolatore effettuando l'inversione descritta in (7.2.1), ottenendo la seguente forma fattorizzata:

$$R(s) = \frac{0.7}{s} \cdot \frac{(1+s/0.1)(1+s/5)(1+s/0.02)}{(1+s/0.01)(1+s/10)}$$

Il metodo utilizzato cancella i poli della funzione di anello con gli zeri inseriti dal regolatore, sostituendo alla dinamica quella desiderata; in particolare, abbiamo un regolatore del terzo ordine.

Rimane solo da controllare che il margine di fase soddisfi le specifiche: il metodo analitico prevede di sostituire s=j nella funzione di anello per ottenere $\varphi_{\rm C}$ e poi sottrarlo a 180° ($\varphi_m=180^\circ-\varphi_{\rm C}$); tuttavia osserviamo che il nostro sistema regolatore è a sfasamento minimo (guadagno positivo e singolarità con parte reale negativa, ad almeno una decade di distanza tra loro), quindi il valore della fase può essere dedotto osservando la pendenza del diagramma del modulo. In particolare si vede che nel punto $\omega_{\rm C}\simeq 1$ la pendenza con cui si attraversa l'asse 0 dB è di $-20\,{\rm dB/dec}$, quindi $\varphi_{\rm C}=-90^\circ$ e il margine di fase vale $\varphi_m=90^\circ$ (soddisfacendo la specifica (5)).

Per completezza mostriamo il diagramma della fase associato alla funzione di anello dell'Esempio $7.2\,$

Figura 7.2.2. Diagramma della fase della funzione di anello desiderata

Infine, ecco come appare il diagramma di Bode del modulo del regolatore:

Figura 7.2.3. Diagramma del modulo del regolatore

La funzione di sensitività del comando Q(s) è qualitativamente analoga al modulo della funzione del regolatore R(s) per pulsazioni maggiori di quella critica; notiamo che i disturbi in alta frequenza sul comando sono addirittura amplificati, dato che il modulo del regolatore si stabilizza su un valore maggiore di +1.

Per ovviare a questo problema, è opportuno inserire dei *poli di chiusura*, ovvero dei poli distanti più di una decade dalla pulsazione di attraversamento (per non compromettere il margine di fase) che rendano negativo e molto piccolo il modulo del

regolatore per le alte frequenze. Di nuovo sottolineiamo l'importanza di progettare un regolatore strettamente proprio.

7.3. Sintesi: metodo per iterazioni

Riprendiamo i vincoli dovuti alle specifiche dell'Esempio 7.1; per applicare l'approccio cosiddetto per iterazioni, scomponiamo il regolatore nel modo seguente:

Progetto del regolatore per iterazioni

(7.3.1)
$$R(s) = \overbrace{R_1(s)}^{\text{statico}} \cdot \overbrace{R_2(s)}^{\text{dinamico}}$$

Le due componenti del regolatore serviranno rispettivamente a garantire le prestazioni statiche e dinamiche richieste dalle specifiche; supponendo di stabilizzare il sistema ottenendo il margine di fase desiderato, cerchiamo $R_1(s)$ per soddisfare le specifiche sul tipo (\overline{q}) e sul guadagno $(\overline{\mu})$.

Nello specifico, scriveremo il regolatore statico come $R_1 = \mu_R/s^{g_R}$ (rapporto tra guadagno del regolatore e s elevato al numero di poli nell'origine del regolatore), e valgono le seguenti relazioni:

- rispetto al numero poli $n_{\rm G}$ nell'origine di G(s), il tipo della funzione di anello vale $g = g_{\rm R} + n_{\rm G}$;
- rispetto al guadagno μ_{G} della funzione G(s), il guadagno della funzione di anello vale $\mu = \mu_{R} + \mu_{G}$.

Per progettare il regolatore dinamico, prima di tutto inseriamo il regolatore statico nell'anello, ricavando una prima funzione di anello $L_1(s) = R_1(s) \cdot G(s)$; poi tracciamo il diagramma di Bode del modulo di tale funzione, aggiungendo nel regolatore dinamico $R_2(s)$ le singolarità necessarie a far sì che il modulo di $L_1(s)$ rispetti i vincoli imposti dalle specifiche.

ESEMPIO 7.3. Facendo riferimento al sistema nell'Esempio 7.1, \(\sigma i \) progetti un regolatore che soddisfi le specifiche, utilizzando il metodo per iterazioni.

Individuiamo innanzitutto il tipo della funzione di anello: da specifica vale $g = 1 = g_{\rm R} + n_{\rm G}$; osservando anche che $n_{\rm G} = 0$ (la funzione G(s) non ha poli nell'origine), ricaviamo $g_{\rm R} = 1$.

Il guadagno del regolatore si ottiene da quello dell'impianto tramite la relazione precedente (e il valore ottenuto dal teorema del valore iniziale $\mu_{\rm G}=14$) $\mu=14\mu_{\rm R}\geq 2.5$ da cui $\mu_{\rm R}\simeq 0.17$ (per avere un certo margine useremo il valore $\mu_{\rm R}\simeq 0.25$).

Possiamo scrivere la parte statica del regolatore come $R_1 = \frac{\mu_R}{s^{g_R}} = \frac{0.25}{s}$.

La funzione di anello comprensiva del regolatore statico vale

$$L_1(s) = R_1(s) \cdot G(s) = \frac{0.25}{s} \cdot \frac{14}{(1+s/5)(1+s/0.02)}$$

il guadagno di tale funzione è pari a $\mu_{\rm L_1}=3.5\simeq 11\,{\rm dB}$ e il diagramma di Bode del modulo è in figura 7.3.1.

Figura 7.3.1. Diagramma del modulo della funzione $L_1(s)$

Se raffigurassimo direttamente $|L_1(j\omega)|$ ci accorgeremo che essa non soddisfa il vincolo sulla pulsazione critica ($\omega_{\rm C}$ troppo piccola) e la pendenza di attraversamento è di $-40\,{\rm dB/dec}$, quindi il margine di fase sarà prossimo allo 0; il sistema sarà asintoticamente stabile ma vicino all'instabilità.

Inseriamo delle singolarità costruendo $R_2(s)$ in modo da rendere più stabile la funzione di anello:

- (1) Inseriamo uno zero (z_1) per cancellare il polo in $\omega = 0.02$; la pulsazione critica ricavata da $|L_1(j\omega_c)| = 1$ vale circa $\omega_c \simeq 1.6$, e il margine di fase corrispondente vale circa $\varphi_m \simeq 50^\circ$, che non soddisfa le specifiche (margine di fase almeno 62°).
- (2) Inseriamo uno zero (z_2) per cancellare l'altro polo in $\omega = 5$.
- (3) Inseriamo due poli di chiusura (p_3, p_4) nel regolatore in $\omega = 50$ e $\omega = 100$, per renderlo strettamente proprio, facendo attenzione che la loro distanza dalla pulsazione critica sia tale da garantire che, la diminuzione di fase dovuta ai poli, non faccia decrescere troppo il margine di fase.

Il regolatore dinamico ottenuto è $R_2(s) = \frac{(1+s/0.02)(1+s/5)}{(1+s/50)(1+s/100)}$, dalle 4 singolarità inserite; il regolatore complessivo è dato da:

$$R(s) = \underbrace{\frac{0.25}{s}}_{R_1(s)} \cdot \underbrace{\frac{(1+s/0.02)(1+s/5)}{(1+s/50)(1+s/100)}}_{R_2(s)}$$

Il regolatore ottenuto col metodo per iterazioni ha meno singolarità di quello ottenuto per inversione, anche se questo non è rilevante per un sistema di controllo discreto realizzato su un calcolatore, nel quale le singolarità sono righe di codice, ma ha un peso in termini di componenti ed energia quando ad esempio la funzione del regolatore viene realizzata da un circuito analogico.

Il grosso vantaggio di questo metodo di sintesi è la possibilità di costruire regolatori anche per funzioni di anello con zeri a parte reale positiva: tracciando il modulo della funzione di anello iniziale (nella quale possono essere presenti zeri a parte reale positiva) possiamo cercare di stabilizzarla, considerando che la pulsazione di attraversamento è limitata superiormente dalla fase del primo zero instabile.

П

APPENDICE A

Richiami di Geometria e Algebra Lineare

A.1. Matrici

Richiamiamo le proprietà del prodotto nell'ambito delle matrici; siano date due matrici quadrate di ordine n chiamate $A, B \in \mathbb{R}^{n \times n}$ e uno scalare α ; siano inoltre $a_{i,j}$ e $b_{i,j}$ gli elementi alla riga i e colonna j delle rispettive matrici (indicate con la maiuscola corrispondente).

DEFINIZIONE A.1. Il prodotto per uno scalare di una matrice, indicato con $\alpha \cdot A$, è pari a

$$A' = \begin{bmatrix} \alpha \cdot a_{1,1} & \cdots & \alpha \cdot a_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha \cdot a_{n,1} & \cdots & \alpha \cdot a_{n,n} \end{bmatrix}$$

dove $a'_{i,j} = \alpha \cdot a_{i,j}$; il prodotto per uno scalare gode delle stesse proprietà del prodotto tra due scalari.

DEFINIZIONE A.2. Prese $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{m \times p}$, chiamiamo prodotto righe per colonne la relazione $A \cdot B = C$, dove gli elementi della matrice C valgono

$$c_{i,j} = a_{i,1} \cdot b_{1,i} + a_{i,2} \cdot b_{2,i} + \ldots + a_{i,n} \cdot b_{n,j}$$

Si osserva che l'elemento $c_{i,j}$ è ottenuto dal prodotto termine a termine della *i*-esima riga di A con la j-esima colonna di B; questa operazione non è commutativa.

DEFINIZIONE A.3. Si chiama matrice trasposta di A e si indica con A^T la matrice ottenuta scambiando ordinatamente le righe con le colonne di A.

Il prossimo concetto è essenziale per capire la successiva Definizione A.5:

DEFINIZIONE A.4. Data una matrice quadrata A il complemento algebrico del suo elemento $a_{i,j}$ è il determinante della sotto-matrice che si ottiene eliminando dalla matrice principale la i-esima riga e la j-esima colonna, moltiplicato per $(-1)^{i+j}$; esso è indicato con $\Delta_{i,j}$.

Ora possiamo introdurre il concetto di determinante, utilizzato ricorsivamente nella precedente Definizione A.4:

DEFINIZIONE A.5. Il determinante di una generica matrice quadrata A di ordine n>1 è pari a

$$\det(A) = \sum_{i=1}^{n} (a_{i,j} \cdot \Delta_{i,j}) = \sum_{j=1}^{n} (a_{i,j} \cdot \Delta_{i,j})$$

I teorema di Laplace

o in altri termini il determinante di A è la somma dei prodotti degli elementi di una sua linea (riga o colonna) per i rispettivi complementi algebrici. Se n=1 si ha il caso banale in cui la matrice A ha un solo elemento a e vale det (a)=a.

Inoltre per una matrice con n=2 si ottiene facilmente det $(A)=a_{1,1}\cdot a_{2,2}-a_{2,1}\cdot a_{1,2}$.

determinante di una matrice 3×3

▶ Esercizio: Esercizio A.1. Calcolare il determinante della seguente matrice:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 1 & 5 & 2 \end{bmatrix}$$

SOLUZIONE A.1. Considero la riga 1, la quale presenta uno zero (semplificando un addendo della somma di complementi algebrici): applicando la Definizione A.5 si ottiene che:

• il primo addendo (relativo all'elemento $a_{1,1} = 1$) si ottiene da

$$\begin{bmatrix} \boxed{1} & \emptyset & 2 \\ 2 & -1 & 3 \\ 1 & 5 & 2 \end{bmatrix} \rightarrow 1 \cdot (-1)^{1+1} \cdot \det \left(\begin{bmatrix} -1 & 3 \\ 5 & 2 \end{bmatrix} \right) = -2 - 15 = -17;$$

- il secondo addendo vale 0;
- il terzo addendo (relativo all'elemento $a_{1,3}=2$) si ottiene da

$$\begin{bmatrix} \cancel{1} & \cancel{\emptyset} & \boxed{2} \\ 2 & -1 & \cancel{3} \\ 1 & 5 & \cancel{2} \end{bmatrix} \rightarrow 2 \cdot (-1)^{1+3} \cdot \det \left(\begin{bmatrix} 2 & -1 \\ 1 & 5 \end{bmatrix} \right) = 2 (10+1) = 22;$$

Il determinante di A sarà det (A) = 22 - 17 = 5

A seguire alcune proprietà e osservazioni sul determinante di una matrice:

Osservazione A.1. Una matrice e la sua trasposta hanno lo stesso determinante: $\det(A) = \det(A^{\mathrm{T}}).$

OSSERVAZIONE A.2. Il determinante di un prodotto matrice per scalare è dato da $\det\left(\alpha\cdot A\right) = \alpha^n \det\left(A\right).$

Teorema di **Binet**

TEOREMA A.1. Per due matrici quadrate A e B dello stesso ordine vale $\det(A \cdot B) =$ $\det(A) \cdot \det(B)$.

DEFINIZIONE A.6. Una matrice il cui determinante sia nullo (zero) si dice singolare; una matrice singolare non è invertibile.

Definizione A.7. Il rango di una matrice quadrata è il numero massimo di vettori linearmente indipendenti tra righe e colonne; presi n vettori, essi si dicono linearmente indipendenti se $\sum_{i=1}^{n} \alpha_i v_i \neq 0 \, \forall \alpha_i \in \mathbb{R}, \, \alpha \neq 0.$

Vice versa si parla di vettori linearmente dipendenti se $\exists \alpha_i, i \in 1...n : \sum_{i=1}^{n} \alpha_i v_i = 0.$

DEFINIZIONE A.8. Data una matrice $A \in \mathbb{R}^{n \times n}$ indichiamo con A^{-1} la sua inversa, tale che $A \cdot A^{-1} = I$ (questo è valido solo per matrici non singolari, dalla Definizione A.6).

Attenzione agli indici del scambiati rispetto a quelli dell'elemento bcorrispondente!

complemento algebrico Δ : sono Tale matrice si calcola come $A^{-1} = B = \begin{bmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,n} \end{bmatrix}$ dove l'elemento $b_{i,j} = b_{n,1} + \cdots + b_{n,n}$

$$\frac{\Delta_{j,i}}{\det\left(A\right)}.$$

A.1. MATRICI

TEOREMA A.2. Data una matrice quadrata A, essa è invertibile se e solo se non è singolare; se A non è singolare allora la sua inversa vale $A^{-1} = \frac{1}{\det(A)}A^*$; con $A^* = \begin{bmatrix} a_{i,j}^* \end{bmatrix}$ si indica la matrice aggiunta di A, ovvero quella il cui elemento di posto $a_{i,j}^*$ corrisponde al complemento algebrico di $a_{j,i}$.

Esempio A.1. Si vuole invertire la seguente matrice:

$$A = \begin{bmatrix} 1 & 3 \\ 5 & 2 \end{bmatrix}$$

Usando la Definizione A.8, controlliamo che A sia invertibile: $\det(A) = 1 \cdot 2 - 5 \cdot 3 = 2 - 15 = -13$ che essendo diverso da zero rende la matrice invertibile; scriviamo dunque la matrice inversa come il prodotto dell'inverso del determinante per la matrice dei complementi algebrici di A (dove per $a_{i,j}$ si prende $\Delta_{j,i}$, si rimanda inoltre alla Definizione A.4):

$$A^{-1} = -\frac{1}{13} \cdot \begin{bmatrix} 2 & -3\\ -5 & 1 \end{bmatrix}$$

Esercizio A.2. Calcolare l'inversa (se esiste) della seguente matrice:

 $A = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$

ightharpoonup Esercizio: inversa di una matrice 3×3

SOLUZIONE A.2. Controlliamo che la matrice sia invertibile; calcoliamo dunque il determinante utilizzando la seconda riga (contenente uno zero):

$$\det(A) = 4 \cdot (-1)^{2+1} \cdot \det\left(\begin{bmatrix} -1 & 2\\ 2 & 3 \end{bmatrix}\right) + 0 + 1 \cdot (-1)^{2+3} \cdot \det\left(\begin{bmatrix} 3 & -1\\ 1 & 2 \end{bmatrix}\right)$$
$$= -4 \cdot (-3 - 4) - 1 \cdot (6 + 1) = 28 - 7 = 21$$

che risulta maggiore di zero e la matrice è invertibile.

Procediamo calcolando l'inversa come il prodotto dell'inverso del determinante per la matrice dei complementi algebrici degli elementi speculari $(a_{i,j} = \Delta_{j,i})$:

Per brevità è stata usata la scrittura alternativa |A| per indicare det (A)

$$A^{-1} = \frac{1}{21} \cdot \begin{bmatrix} \Delta_{1,1} & \Delta_{2,1} & \Delta_{3,1} \\ \Delta_{1,2} & \Delta_{2,2} & \Delta_{3,2} \\ \Delta_{1,3} & \Delta_{2,3} & \Delta_{3,3} \end{bmatrix}$$

$$= \frac{1}{21} \cdot \begin{bmatrix} (-1)^{1+1} \cdot \begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} & (-1)^{2+1} \cdot \begin{vmatrix} -1 & 2 \\ 2 & 3 \end{vmatrix} & (-1)^{3+1} \cdot \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} \\ (-1)^{2+1} \cdot \begin{vmatrix} 4 & 1 \\ 1 & 3 \end{vmatrix} & (-1)^{2+2} \cdot \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} & (-1)^{3+2} \cdot \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} \\ (-1)^{3+1} \cdot \begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} & (-1)^{3+2} \cdot \begin{vmatrix} 3 & -1 \\ 1 & 2 \end{vmatrix} & (-1)^{3+3} \cdot \begin{vmatrix} 3 & -1 \\ 4 & 0 \end{vmatrix} \end{bmatrix}$$

$$= \frac{1}{21} \cdot \begin{bmatrix} -2 & (-1) - 7 & -1 \\ (-1) 11 & 7 & (-1) - 5 \\ 8 & (-1) 7 & 4 \end{bmatrix} = \frac{1}{21} \begin{bmatrix} -2 & 7 & -1 \\ -11 & 7 & 5 \\ 8 & -7 & 4 \end{bmatrix}$$

Seguono ora alcune osservazioni sulle proprietà delle matrici inverse:

OSSERVAZIONE A.3. Per l'operazione di inverso sulle matrici sono dimostrate le seguenti proprietà:

- l'inversa di una matrice inversa è la matrice non invertita $(A^{-1})^{-1} = A$;
- l'inverso del prodotto di uno scalare per una matrice è il prodotto del suo inverso per la matrice inversa $(\alpha \cdot A)^{-1} = 1/\alpha \cdot A^{-1}$;
- l'inverso del prodotto di due matrici è uguale al prodotto delle inverse scambiate di posto $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.

OSSERVAZIONE A.4. Sia A una matrice diagonale del tipo $\begin{bmatrix} a_{1,1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{n,n} \end{bmatrix}$, allora

la sua inversa è ancora una matrice diagonale nella forma

$$\begin{bmatrix} \frac{1}{a_{1,1}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{1}{a_{n,n}} \end{bmatrix}$$

Si verifica inoltre che, se una matrice è invertibile, risulta che $\det(A^{-1}) = \frac{1}{\det(A)}$.

A.2. Autovalori e autovettori

DEFINIZIONE A.9. Un numero $\lambda \in \mathbb{C}$ è un *autovalore* per una matrice $A \in \mathbb{C}^{n \times n}$ se vale la seguente:

$$\exists v \in \mathbb{C}^n : A \cdot v = \lambda \cdot v$$

che può essere riscritta come $(\lambda I - A) \cdot v = 0$ per $v \neq 0$; questo si verifica se e solo se

Polinomio caratteristico

$$\det\left(\lambda I - A\right) = 0$$

Il (A.2.1), che indichiamo come $\varphi(\lambda) = 0$, ha per soluzioni $\lambda_i \in \mathbb{C}$ le quali sono gli autovalori della matrice A.

La molteplicità degli autovalori è minore o uguale all'ordine della matrice A ($i \in 1...n$); chiamiamo il numero di autovalori distinti $\mu_n \in 1...n$.

DEFINIZIONE A.10. La molteplicità algebrica di un autovalore λ_i è il numero di volte che esso compare tra gli autovalori di una matrice, e si indica con n_i ; possiamo scrivere le soluzioni di (A.2.1) rispetto alla molteplicità algebrica:

$$\varphi(\lambda) = \prod_{i=1}^{\mu_n} (\lambda - \lambda_i)^{n_i}$$

Si verifica che il numero μ_n di autovalori distinti deve corrispondere al rango della matrice.

DEFINIZIONE A.11. Un autovettore v_i associato all'autovalore λ_i è tale per cui (applicando la Definizione A.9) valga $(\lambda_i I - A) v_i = 0$ posto che $v_i \neq 0$. Gli autovettori associati a un autovalore sono infiniti.

ESERCIZIO A.3. Calcolare gli autovalori e un autovettore per ciascuno di essi, per ▶ Esercizio: la seguente matrice:

autovettori di $matrice\ 2\times 2$

$$A = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$$

SOLUZIONE A.3. Per cominciare calcoliamo (A.2.1) in generale (rispetto a λ):

$$\det(\lambda I - A) = \det\left(\lambda \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}\right) = \begin{vmatrix} \lambda - 1 & -3 \\ 2 & \lambda - 5 \end{vmatrix}$$
$$= (\lambda - 1)(\lambda - 5) + 6 = \lambda^2 - 6\lambda + 11$$

Le soluzioni del determinante (polinomio caratteristico) sono le complesse coniugate $\lambda_i = 3 \pm j \sqrt{2}$ (con j l'unità immaginaria, tale che $j^2 = -1$); calcoliamo gli autovettori associati a entrambi gli autovalori:

- (1) Autovettore v_1 associato a $\lambda_1 = 3 + j\sqrt{2}$: deve valere det $(\lambda_1 I - A) v_1 = 0$ ovvero $\begin{bmatrix} 3 + j\sqrt{2} - 1 & -3 \\ 2 & 3 + j\sqrt{2} - 5 \end{bmatrix} \cdot \begin{bmatrix} v_{1,1} \\ v_{2,1} \end{bmatrix} = 0$ 0; dal prodotto righe per colonne si ottiene l'equazione $(2-j\sqrt{2})v_{1,1}$ $3v_{2,1}=0$. Essa può essere risolta scegliendo una condizione per una delle due componenti del vettore; imponiamo $v_{1,1}=3$: si ottiene $v_{2,1}=2+j\sqrt{2}$ e quindi il vettore v_1 avrà le componenti $\left[\left(3, \, 2 + j\sqrt{2} \right) \right]$
- (2) Autovettore v_2 associato a $\lambda_2 = 3 j\sqrt{2}$: essendo gli autovalori complessi coniugati e la matrice di ordine 2, possiamo assumere che il secondo autovettore abbia la seconda componente complessa coniugata rispetto al primo $\left| \left(3, 2 - j\sqrt{2} \right) \right|$

ESERCIZIO A.4. Calcolare autovalori e autovettori della seguente matrice:

► Esercizio: autovettori di $matrice\ 2\times 2$

$$A = \begin{bmatrix} -1 & -1 \\ -4 & -1 \end{bmatrix}$$

Sol.
$$\lambda_1 = 1, \lambda_2 = -3, v_1 = (-1, 2), v_2 = (1, 2)$$

OSSERVAZIONE A.5. Se scriviamo il determinante (Definizione A.5) in termini di autovalori (Definizione A.10) segue che

$$\det\left(A\right) = \prod_{i=1}^{\mu_n} \left(\lambda_i\right)^{n_i}$$

Per annullare la produttoria deve esistere almeno un $\lambda_i = 0$, per cui una matrice con determinante nullo (singolare) ha almeno un autovalore nullo.

OSSERVAZIONE A.6. Sia A una matrice triangolare (ha solo elementi nulli al di sotto o al di sopra della diagonale principale); allora gli autovalori di A sono esattamente gli elementi sulla diagonale principale ($\lambda_i = a_{i,i}$).

OSSERVAZIONE A.7. Se λ_i è un autovalore di una matrice A allora λ_i^{-1} è un autovalore di A^{-1} (posto che A sia invertibile).

OSSERVAZIONE A.8. la traccia della matrice A (la somma degli elementi sulla diagonale principale) è anche pari alla somma dei suoi autovalori (contati con le rispettive molteplicità algebriche):

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{i,i} = \sum_{i=1}^{n} n_i \lambda_i$$

Definiamo ora alcune proprietà degli autovettori.

DEFINIZIONE A.12. Un autovettore v_i si chiama autospazio per il suo autovalore associato λ_i ; la dimensione di tale autospazio è indicata con $g_i \in [1, n_i]$ e si chiama molteplicità geometrica, relativa a λ_i . Essa si calcola come $g_i = n - \text{rango}(\lambda_i I - A)$ Per autovalori tutti distinti la loro molteplicità geometrica sarà in ogni caso 1.

► Esercizio: molteplicità geometrica di autovalori di matrice 3 × 3

ESERCIZIO A.5. Calcolare la molteplicità geometrica degli autovalori della seguente matrice:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Soluzione A.4. Partiamo cercando gli autovalori di A tramite il (A.2.1):

$$\det(\lambda I - A) = \begin{bmatrix} \lambda & -1 & 0 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 1 \end{bmatrix} = \lambda (-1)^{1+1} \begin{vmatrix} \lambda & 0 \\ 0 & \lambda - 1 \end{vmatrix} - 1 (-1)^{1+2} \begin{vmatrix} -1 & 0 \\ 0 & \lambda - 1 \end{vmatrix}$$

$$= \lambda \left(\lambda \left(\lambda - 1\right)\right) - \left(\lambda - 1\right) = \left(\lambda - 1\right) \left(\lambda^2 - 1\right) = \left(\lambda - 1\right) \left(\lambda + 1\right) \left(\lambda - 1\right)$$

Il gli autovalori risultano essere $\lambda_1 = 1$ con $n_1 = 2$ e $\lambda_2 = -1$ con $n_2 = 1$; calcoliamo quindi la molteplicità geometrica per entrambi gli autovalori:

(1) Per il primo autovalore applichiamo la Definizione A.12:

$$g_1 = 3 - \text{rango}\left(\begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}\right) = 3 - 1 = 2$$

ricordando che per la Definizione A.7 il rango è il numero massimo di righe o colonne linearmente indipendenti; nel caso di A sono al più 1, essendo l'ultima riga e l'ultima colonna costituite da zeri (quindi combinazione lineare di una delle altre righe o colonne per 0) mentre le prima due righe e colonne sono l'una l'opposto dell'altra (quindi combinazione lineare di una delle due per -1).

(2) Per il secondo autovalore, che ha molteplicità algebrica 1, la molteplicità geometrica vale $g_2 = 1$.

In conclusione, abbiamo trovato $g_1 = 1$, $g_2 = 1$

A.3. Similitudine e diagonalizzabilità

La seguente definizione realizza una relazione di equivalenza (riflessiva, simmetrica e transitiva) tra due matrici:

DEFINIZIONE A.13. Siano $A \in B$ matrici quadrate dello stesso ordine; $A \in A$ simile a B se esiste una matrice non singolare T tale che $B = T \cdot A \cdot T^{-1}$.

La matrice di trasformazione T^{-1} ha per colonne autovettori della matrice A: T^{-1} $[v_1, v_2, \ldots, v_{\mu_n}]$ con v_i associato a λ_i per A; ogni v_i inoltre ha un numero di colonne pari alla molteplicità algebrica n_i del λ_i associato.

Teorema A.3. Due matrici simili possiedono lo stesso polinomio caratteristico, quindi gli stessi autovalori.

DEFINIZIONE A.14. Una matrice si dice diagonalizzabile se è simile a una matrice diagonale, ovvero A è diagonalizzabile se

$$\exists T_{\rm D} : A_{\rm D} = T_{\rm D} A T_{\rm D}^{-1}$$

dove $A_{\rm D}$ è una matrice diagonale con gli stessi autovalori di A.

OSSERVAZIONE A.9. Si osserva allora che una matrice A è diagonalizzabile se e solo se ha autovalori tutti distinti (la molteplicità algebrica e geometrica dei suoi autovalori coincidono) $\forall i \in 1 \dots n (n_i = g_i)$.

Esercizio A.6. Ottenere se la seguente matrice è diagonalizzabile, e in tal caso ▶ Esercizio: ottenere la matrice di trasformazione:

 $diagonalizza bilit\`a$ di matrice 3×3

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

SOLUZIONE A.5. Per sapere se A sia diagonalizzabile dobbiamo riuscire a ottenere una matrice invertibile $T_{\rm D}$ che renda A simile a una matrice diagonale; cominciamo quindi usando l'Osservazione A.9 e cerchiamo gli autovalori di A:

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 1)^{2} (\lambda - 2)$$

La precedente è una matrice triangolare, dunque il determinante si ottiene come prodotto degli elementi sulla diagonale principale; otteniamo $\lambda_1 = 1$ con $n_1 = 2$ e $\lambda_2 = 2 \text{ con } n_2 = 1.$

Abbiamo che la $n_2 = 1 = g_2$, rimane da controllare che $g_1 = n_1 = 2$; usando la

$$g_1 = 3 - \text{rango}(\lambda_1 I - A) = 3 - \text{rango}\begin{pmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \end{pmatrix} = 3 - 1 = \boxed{2}$$

Possiamo affermare che A è diagonalizzabile, quindi troviamo la matrice di trasformazione $T_{\rm D}$ cercando gli autospazi associati agli autovalori:

(1) Per $\lambda_1 = 1$ abbiamo $(I - A) v_1 = 0$:

$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} v_{1,1} & v_{1,2} \\ v_{2,1} & v_{2,2} \\ v_{3,1} & v_{3,2} \end{bmatrix} = 0$$

Imponendo $v_{3,1}=0$ possiamo scegliere $v_{1,1}=0$ e $v_{2,1}\neq 0$ per ottenere due autovettori linearmente indipendenti:

$$v_1 = (1,0,0), (0,1,0)$$

(2) Per $\lambda_2 = 2$ abbiamo $(2I - A) v_2 = 0$:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} v_{1,1} \\ v_{2,1} \\ v_{3,1} \end{bmatrix} = 0 \to \begin{cases} v_{1,1} = v_{3,1} & {}_{(1^{\circ}riga \times v_2)} \\ v_{2,1} = 0 & {}_{(2^{\circ}riga \times v_2)} \end{cases}$$

Una possibile scelta per il secondo autospazio è $v_2 = (1, 0, 1)$.

Infine, scriviamo la matrice di trasformazione inversa, le cui righe sono gli autospazi trovati:

$$T_{\mathrm{D}}^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \to T_{\mathrm{D}} = 1 \cdot \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

e grazie ad essa otteniamo la matrice diagonale $A_{\rm D}$ simile ad A:

$$A_{\mathrm{D}} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

che è proprio la matrice diagonale cercata, con gli autovalori di A sulla diagonale principale.

 \blacktriangleright Esercizio: matrice diagonale simile a matrice 2×2

Esercizio A.7. Trova (se esiste) la matrice diagonale simile alla seguente matrice:

$$A = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$$

Sol. $A_{\rm D} = [[3+j\sqrt{2},0], [0,3-j\sqrt{2}]]$

Anche se una matrice non è diagonalizzabile (non vale la Definizione A.9), è possibile metterla comunque in una forma il più simile possibile a una matrice diagonale:

DEFINIZIONE A.15. Una matrice A che non sia diagonalizzabile può comunque essere scritta in una forma diagonale a blocchi, chiamata forma di Jordan.

Si prendono tutti gli autovalori di A tali che $g_i < n_i$ e si trovano gli autovettori generalizzati associati ai λ_i nel modo seguente:

Autovettori generalizzati

(A.3.1)
$$v_{i,1} := (\lambda_i I - A) v_{i,1} = 0 v_{i,2} := (A - \lambda_i I) v_{i,2} = v_{i,1} \vdots v_{i,\mu_n} := (A - \lambda_i I) v_{i,\mu_n} = v_{i,\mu_n-1}$$

La matrice di trasformazione si otterrà come $T_{\mathtt{J}}^{-1} = [v_{i,1}, v_{i,2}, \dots v_{i,\mu_n}]$ in cui le colonne sono costituite dagli autovettori generalizzati.

La matrice A in forma di Jordan si scrive come

Forma di Jordan

$$(A.3.2) A_{J} = T_{J} \cdot A \cdot T_{J}^{-1}$$

La matrice in forma di Jordan ha una struttura diagonale a blocchi, ognuno dei quali è sulla diagonale principale e sono tanti quanti gli autovalori distinti; ciascun blocco ha dimensione pari alla molteplicità algebrica dell'autovalore relativo, e ogni coefficiente sulla diagonale del blocco è l'autovalore a cui appartiene il blocco.

Nei blocchi di ordine maggiore di uno (hanno ordine n_i , relativi ad autovalori con $n_i > 1$) sono presenti gli autovalori λ_i sulla diagonale principale, e tutti gli elementi della sopra-diagonale sono pari a 1;

L'esponenziale di una matrice in forma di Jordan è costituito dall'esponenziale di ogni blocco di Jordan di ordine uno, mentre per i blocchi di ordine maggiore i coefficienti al di sopra della diagonale (quelli sulla diagonale sono

$$A_{\mathbf{J}} = \begin{bmatrix} \lambda_1 & 1 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2 \end{bmatrix}$$

Figura A.3.1. Esempio di matrice in forma di Jordan, per $n_1 = 2$, $g_1 = 1$ e $n_2 = g_2 = 1$

l'esponenziale dei coefficienti sulla diagonale) sono pari al termine $t^h/h!$ con h=i-j la distanza dell'elemento $a'_{\mathtt{J},i,j}$ da quello sulla diagonale $a'_{\mathtt{J},i,i}$ all'interno della stessa riga:

$$e^{A_{J}t} = e^{\lambda_{1}} \cdot \begin{bmatrix} 1 & t & t^{2}/2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{\lambda_{1}} & te^{\lambda_{1}} & t^{2}/2e^{\lambda_{1}} \\ 0 & e^{\lambda_{1}} & te^{\lambda_{1}} \\ 0 & 0 & e^{\lambda_{1}} \end{bmatrix}$$

dove $A_{\rm J}$ è una matrice in forma di Jordan con un unico blocco di Jordan relativo a un autovalore λ_1 con $n_i=3$.

ESERCIZIO A.8. Trova la matrice in forma di Jordan simile alla seguente matrice:

 \blacktriangleright Esercizio: matrice 3×3 in forma di Jordan

$$A = \begin{bmatrix} 1 & -4 & 3 \\ 0 & -2 & 0 \\ -3 & 8 & 1 \end{bmatrix}$$

 $Sol. A_{J} = [[-2,1,0], [0,2,0], [0,0,4]]$

A.4. Esponenziali di matrici

Possiamo definire la funzione esponenziale di una matrice A rispetto a una variabile t come:

DEFINIZIONE A.16. Un esponenziale di matrice è una funzione del tipo $e^{A \cdot t} = \sum_{i=0}^{\infty} \frac{1}{i!} (A \cdot t)^i = I + A \cdot t + \frac{1}{2} (A \cdot t)^2 + \dots$

Se abbiamo una matrice diagonale $A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ allora il suo esponenziale vale $e^{A \cdot t} = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix}$, dove si ha l'esponenziale scalare $e^{\lambda t} = \sum_{i=1}^{\infty} \frac{1}{i!} (\lambda t)^i$.

Se abbiamo una matrice in forma di Jordan, per i blocchi di Jordan con ordine maggiore di 1 vale $A_{\rm J} = \begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{bmatrix} \rightarrow e^{A_{\rm J} \cdot t} = \begin{bmatrix} e^{\lambda_1 t} & t e^{\lambda_1 t} \\ 0 & e^{\lambda_1 t} \end{bmatrix}$; da un blocco di Jordan 2×2 compare un termine lineare, per dimensione n maggiore compariranno termini di grado n-1.

OSSERVAZIONE A.10. Siano A e B due matrici simili $(B = T \cdot A \cdot T^{-1})$, allora vale $e^{B \cdot t} = T \cdot e^{A \cdot t} \cdot T^{-1}$; questo si verifica applicando la Definizione A.16.

OSSERVAZIONE A.11. Sia A una matrice diagonale o in forma di Jordan, allora si ha che $A \cdot e^{A \cdot t} = e^{A \cdot t} \cdot A$; dato che A è diagonale, anche la sua esponenziale sarà una matrice diagonale e il prodotto di due matrici diagonali è commutativo.

Dalla Osservazione A.10 otteniamo che questa uguaglianza vale in generale per una matrice A qualsiasi; infatti $T_{\scriptscriptstyle D}^{-1} \cdot A_{\scriptscriptstyle D} \cdot T_{\scriptscriptstyle D} \cdot T_{\scriptscriptstyle D}^{-1} \cdot e^{A_{\scriptscriptstyle D} \cdot t} \cdot T_{\scriptscriptstyle D} = T_{\scriptscriptstyle D}^{-1} \cdot A_{\scriptscriptstyle D} \cdot e^{A_{\scriptscriptstyle D} \cdot t} \cdot T_{\scriptscriptstyle D} = A$.

OSSERVAZIONE A.12. Sia $A_{\rm D}$ una matrice diagonale, allora la derivata nel tempo del suo esponenziale vale $\frac{\partial}{\partial t}e^{A_{\rm D}\cdot t}=A_{\rm D}\cdot e^{A_{\rm D}\cdot t}$; questo risultato proviene dalla derivata degli elementi sulla diagonale di una matrice esponenziale.

Si ottiene di nuovo che questa uguaglianza vale in generale, per qualsiasi matrice A.

A.5. Numeri nel campo complesso

DEFINIZIONE A.17. Un numero complesso nella forma algebrica è scritto come s = a + jb, dove $a = \Re(s)$ è la parte reale e $b = \Im(s)$ la parte immaginaria; j è l'unità immaginaria tale che $j^2 = -1$.

Ogni numero complesso possiede un complesso coniugato, che ha la stessa parte reale e la parte immaginaria cambiata di segno $(\overline{s} = a - jb)$.

I numero complessi ammettono anche la rappresentazione in forma trigonometrica (modulo e fase) sul piano di Gauss: $s = \rho(\cos(\varphi) + j\sin(\varphi))$, dove ρ è la distanza del numero dall'origine e φ è l'angolo che questa distanza forma con l'asse orizzontale.

OSSERVAZIONE A.13. Per passare da una rappresentazione algebrica a una trigonometrica si usano le seguenti considerazioni:

$$\rho = \sqrt{a^2 + b^2}$$

$$\varphi = \arg(s) := \begin{cases}
\arctan\left(\frac{b}{a}\right) & a > 0 \\
\arctan\left(\frac{b}{a}\right) + \pi & a < 0 \\
\frac{\pi}{2} & a = 0 \land b > 0 \\
-\frac{\pi}{2} & a = 0 \land b < 0
\end{cases}$$

TEOREMA A.4. Consideriamo l'esponenziale di un numero complesso; scriveremo: $e^{a+jb} = e^a \cdot e^{jb}$. La formula di Eulero afferma che

$$(A.5.1) e^{jb} = \cos(b) + j\sin(b)$$

La (A.5.1) è molto utile per eseguire il prodotto di numeri complessi, riconducendolo alle proprietà delle potenze.

APPENDICE B

Trasformata di Laplace

B.1. Definizione

DEFINIZIONE B.1. Sia data una funzione $f: \mathbb{R} \to \mathbb{C}$ e definiamo una variabile complessa $s = \sigma + j\omega \in \mathbb{C}$; se la funzione

(B.1.1)
$$F(s) = \int_{0}^{+\infty} f(t) e^{-st} dt$$

Trasformata di Laplace

esiste per qualche valore di s, essa si dice trasformata di Laplace di f(t) e si indice come $\mathcal{L}[f(t)] = F(s)$.

La definizione appena enunciata implica che f(t) sia almeno definita per $t \geq 0$; i contributi della funzione per t < 0 saranno nulli. Per questo motivo useremo moltiplicare i segnali di cui calcoleremo (B.1.1) per l'ingresso canonico sca (t), che si annulla proprio per t < 0 mentre è costante e unitario per gli altri valori di t.

Inoltre il primo estremo di integrazione di (B.1.1) va inteso come 0^- (avvicinamento da sinistra), ovvero esso comprende i contributi impulsivi della funzione applicati nell'istante t=0.

DEFINIZIONE B.2. Sia $\overline{\sigma} > -\infty$ l'estremo inferiore delle parti reali $\Re(s)$ dei valori s per cui l'integrale (B.1.1) converge; allora la trasformata di Laplace esiste in un semipiano delimitato dalla condizione $\Re(s) > \overline{\sigma}$, per questo motivo $\overline{\sigma}$ si chiama ascissa di convergenza.

DEFINIZIONE B.3. Sia F(s) la trasformata di Laplace di una funzione f(t); se è possibile scrivere

(B.1.2)
$$F(s) = \frac{N(s)}{D(s)}$$

con N(s) e D(s) polinomi primi tra loro, si ha una trasformata razionale.

Per questa categoria di trasformate, le radici dei polinomi al numeratore e denominatore si chiamano $singolarit\grave{a}$ e si classificano in

(B.1.3)
$$\begin{cases} N(s) = 0 & \text{zeri} \\ D(s) = 0 & \text{poli} \end{cases}$$

Quando $f(t) \in \mathbb{R}$ i coefficienti di N(s) e D(s) sono reali e l'ascissa di convergenza è pari alla massima tra le parti reali dei coefficienti dei poli.

DEFINIZIONE B.4. Chiamiamo formula di antitrasformazione la funzione inversa della trasformata di Laplace, definita come

(B.1.4)
$$\mathscr{L}^{-1}[F(s)] = f(t) = \frac{1}{2\pi j} \cdot \lim_{\omega \to +\infty} \int_{\sigma - j\omega}^{\sigma + j\omega} F(s) e^{st} ds$$

Antitrasformata di Laplace dove agli estremi di integrazione si ha $\sigma > \overline{\sigma}$, $\sigma \in \mathbb{R}$ qualsiasi. La corrispondenza tra trasformata e antitrasformata di Laplace è biunivoca nel caso di funzioni nulle per t < 0.

B.2. Proprietà

(I) LINEARITÀ: Prendiamo due funzioni f(t) e g(t), allora $\forall \alpha \in \mathbb{C}, \forall \beta \in \mathbb{C}$ vale

$$\mathscr{L}\left[\alpha f\left(t\right) + \beta g\left(t\right)\right] = \alpha F\left(s\right) + \beta G\left(s\right)$$

ovvero la (B.1.2) è una operazione lineare.

(II) TRASLAZIONE NEL DOMINIO DEL TEMPO: Comunque preso un ritardo $\tau > 0$, si consideri la funzione traslata $f(t-\tau)$; la sua trasformata di Laplace vale

$$\mathcal{L}\left[f\left(t-\tau\right)\right] = \int_{0}^{+\infty} f\left(t-\tau\right) e^{-st} dt = e^{-s\tau} \int_{0}^{+\infty} f\left(t-\tau\right) e^{-st} \cdot e^{s\tau} dt$$
$$= e^{-s\tau} \int_{0}^{+\infty} f\left(t-\tau\right) e^{-s(t-\tau)} d\left(t-\tau\right) = \boxed{e^{-s\tau} F\left(s\right)}$$

dove abbiamo moltiplicato e diviso per $e^{-s\tau}$ e infine abbiamo aggiustato il differenziale dt considerando anche il ritardo (costante).

(III) TRASLAZIONE NEL DOMINIO DI LAPLACE: Comunque preso un valore $\alpha \in \mathbb{C}$, la trasformata della funzione $e^{\alpha t} f(t)$ vale:

$$\mathscr{L}\left[e^{\alpha t}f\left(t\right)\right] = \int_{0}^{+\infty} e^{\alpha t}f\left(t\right)e^{-st}dt = \int_{0}^{+\infty} f\left(t\right)e^{-t(s-\alpha)}dt = \boxed{F\left(s-\alpha\right)}.$$

(IV) DERIVAZIONE NEL DOMINIO DEL TEMPO: La trasformata di Laplace della derivata prima di una funzione f(t) rispetto a t, vale:

$$\mathscr{L}\left[\dot{f}\left(t\right)\right] = \int_{0}^{+\infty} \dot{f}\left(t\right)e^{-st}dt = sF\left(s\right) - f\left(0\right)$$

Questo risultato si ottiene a partire dalla seguente uguaglianza sull'integranda:

$$\frac{\partial}{\partial t} \left(f\left(t\right) e^{-st} \right) = \dot{f}\left(t\right) e^{-st} - sf\left(t\right) e^{-st} \implies \dot{f}\left(t\right) e^{-st} = \frac{\partial}{\partial t} \left(f\left(t\right) e^{-st} \right) + sf\left(t\right) e^{-st}$$

da cui otteniamo

$$\int_{0}^{+\infty} \left(\frac{\partial}{\partial t} \left(f\left(t \right) e^{-st} \right) + s f\left(t \right) e^{-st} \right) dt = \int_{0}^{+\infty} \frac{\partial}{\partial t} \left(f\left(t \right) e^{-st} \right) dt + s \int_{0}^{+\infty} f\left(t \right) e^{-st} dt$$
$$= \left[f\left(0 \right) e^{-st} \right]_{0}^{+\infty} + s F\left(s \right) = \left[s F\left(s \right) - f\left(0 \right) \right]$$

Questa proprietà può essere usata in catena per ottenere la seguente formula, valida per qualsiasi derivata multipla:

(B.2.1)
$$\mathscr{L}\left[\frac{\partial^{n}}{\partial t}f\left(t\right)\right] = s^{n}F\left(s\right) - \sum_{i=1}^{n} s^{n-i} \left.\frac{\partial^{i-1}}{\partial t}f\left(t\right)\right|_{t=0}$$

(V) DERIVAZIONE NEL DOMINIO DI LAPLACE: Supponendo che la trasformata F(s)sia derivabile per ogni s eccetto un numero finito di valori, vale:

$$\mathscr{L}\left[t\cdot f\left(t\right)\right] = \boxed{-\frac{\partial}{\partial s}F\left(s\right)}$$

Questo risultato si ottiene dalla seguente considerazione:

$$\frac{\partial}{\partial s}F(s) = \frac{\partial}{\partial s} \left(\int_{0}^{+\infty} f(t) e^{-st} dt \right) = \int_{0}^{+\infty} \frac{\partial}{\partial s} \left(f(t) e^{-st} \right) dt$$
$$= -t \int_{0}^{+\infty} f(t) e^{-st} dt = -\mathcal{L}\left[t \cdot f(t) \right]$$

(VI) Integrazione nel dominio del Tempo: Con l'intuizione che l'integrazione è l'operazione inversa della derivazione, si dimostra che ciò vale anche per le trasformate; presa f(t) integrabile tra $0 e +\infty$, vale:

$$\mathscr{L}\left[\int_{0}^{+\infty} f(t) dt\right] = \left[\frac{1}{s} \cdot F(s)\right]$$

dal fatto che l'operazione di derivazione nel dominio del tempo (IV) si effettua moltiplicando per s (a meno della condizione iniziale).

(VII) CONVOLUZIONE NEL DOMINIO DEL TEMPO: Prendiamo due segnali $f_1(t)$ e Questa proprietà è $f_{2}\left(t\right)$ e facciamone il prodotto di convoluzione come (B.2.2)

fondamentale nell'analisi in frequenza dei movimenti dei sistemi LTI

$$f_{1}(t) * f_{2}(t) = \int_{-\infty}^{+\infty} f_{1}(\tau) f_{2}(t - \tau) d\tau = \int_{-\infty}^{+\infty} f_{1}(t - \eta) f_{2}(\eta) d\eta = f_{2}(t) * f_{1}(t)$$

Si dimostra che la trasformata di (B.2.2) vale:

$$\mathcal{L}\left[f_{1}\left(t\right)*f_{2}\left(t\right)\right] = \overline{\left[F_{1}\left(s\right)\cdot F_{2}\left(s\right)\right]}$$

(VIII) TEOREMA DEL VALORE INIZIALE: Se la trasformata è razionale nella forma (B.1.2) e vale n(N(s)) < n(D(s)) (con n(P(x)) il grado del polinomio P nella variabile x), allora vale:

(B.2.3)
$$f(0) = \lim_{s \to +\infty} s \cdot F(s).$$

(IX) TEOREMA DEL VALORE FINALE: Se la trasformata è razionale nella forma (B.1.2) e vale n(N(s)) < n(D(s)), e inoltre per ogni suo polo p_i vale $\Re(p_1) < 0$, allora vale:

$$\lim_{t \to +\infty} f(t) = \lim_{s \to 0} s \cdot F(s).$$

B.3. Trasformate notevoli

L'**impulso** è un ingresso canonico il cui integrale è non nullo solo nell'istante t = 0; la sua trasformata di Laplace vale

$$\mathscr{L}\left[\operatorname{imp}\left(t\right)\right] = \int_{0}^{+\infty} e^{-st} \operatorname{imp}\left(t\right) dt = e^{-s \cdot 0} \int_{0}^{+\infty} \operatorname{imp}\left(0\right) dt = 1$$

Lo **scalino** è un ingresso canonico il cui integrale è nullo per istanti di tempo negativi e costante unitario altrimenti; la sua trasformata di Laplace vale:

$$\mathscr{L}\left[\operatorname{sca}\left(t\right)\right] = \int_{0}^{+\infty} e^{-st} \operatorname{sca}\left(t\right) dt = \int_{0}^{+\infty} e^{-st} \cdot 1 dt = \left[-\frac{1}{s}e^{-st}\right]_{0}^{\infty} = \frac{1}{s}$$

L'esponenziale è una funzione ricorrente nei modi dei sistemi LTI, definita strettamente monotona; la sua trasformata di Laplace vale:

$$\mathscr{L}\left[e^{\alpha t} \cdot \mathrm{sca}\left(t\right)\right] = \frac{1}{s - \alpha}$$

per la proprietà (III) e per il risultato ottenuto sulla trasformata dello scalino.

La **cosinusoide** è una funzione limitata, tipica dei movimenti associati a modi complessi coniugati; la sua trasformata di Laplace vale:

$$\mathcal{L}\left[\cos\left(\omega t\right)\cdot\sin\left(t\right)\right] \stackrel{\text{Eulero}}{=} \mathcal{L}\left[\underbrace{\frac{e^{j\omega t} + e^{-j\omega t}}{2}}_{\text{Eulero}} \operatorname{sca}\left(t\right)\right] \stackrel{\text{(I)}}{=} \mathcal{L}\left[\frac{e^{j\omega t}}{2} \operatorname{sca}\left(t\right)\right] + \mathcal{L}\left[\frac{e^{-j\omega t}}{2} \operatorname{sca}\left(t\right)\right]$$

$$\stackrel{\text{(II)}}{=} \frac{1}{2} \cdot \left(\frac{1}{s + j\omega} + \frac{1}{s - j\omega}\right) = \frac{s}{s^2 + \omega^2}$$

La trasformata della sinusoide può essere ottenuta usando la (A.5.1), come per la cosinusoide

La **sinusoide**, come la cosinusoide, è una funzione limitata tipica dei movimenti associati a modi complessi coniugati; facciamo le seguenti considerazioni per calcolare la sua trasformata di Laplace:

$$\frac{\partial}{\partial t} \operatorname{sca}(t) = \operatorname{imp}(t) \implies \frac{\partial}{\partial t} \left(\cos(\omega t) \cdot \operatorname{sca}(t) \right) = -\omega \sin(\omega t) \cdot \operatorname{sca}(t) + \cos(wt) \cdot \operatorname{imp}(t)$$

Dalle precedenti scriviamo (esplicitando la sinusoide) che:

$$\sin(\omega t) \cdot \mathrm{sca}(t) = -\frac{1}{\omega} \frac{\partial}{\partial t} (\cos(\omega t) \cdot \mathrm{sca}(t)) + \frac{1}{\omega} \cos(\omega t) \cdot \mathrm{imp}(t)$$

da cui la trasformata della sinusoide vale:

$$\mathcal{L}\left[\sin\left(\omega t\right)\cdot \mathrm{sca}\left(t\right)\right] \stackrel{\text{\tiny (I)}}{=} \frac{1}{\omega} \left(\mathcal{L}\left[-\frac{\partial}{\partial t}\left(\cos\left(\omega t\right)\cdot \mathrm{sca}\left(t\right)\right)\right] + \mathcal{L}\left[\cos\left(\omega t\right)\cdot \mathrm{imp}\left(t\right)\right]\right)$$

$$\stackrel{\text{\tiny (IV)}}{=} -\frac{1}{\omega} \left(\frac{s^2}{s^2+\omega^2}-1\right) = \frac{\omega}{s^2+\omega^2}$$

dai risultati sulla trasformata della cosinusoide e dell'<u>impulso</u>. Si noti che, anche se la trasformata di una derivata contiene le condizioni <u>iniziali</u> (f(0)), la trasformata della cosinusoide è una funzione discontinua di prima specie nell'origine (a causa dello scalino): in questo caso la condizione iniziale $f(0) \to f(0^-) = 0$ col contributo dello scalino, che vale 0 per t < 0.

La **rampa** è un ingresso canonico definito a partire dallo scalino come ram $(t) = t \cdot \text{sca}(t)$; la sua trasformata di Laplace vale:

$$\mathscr{L}\left[\operatorname{ram}\left(t\right)\right] = \mathscr{L}\left[t \cdot \operatorname{sca}\left(t\right)\right] \stackrel{\text{(v)}}{=} -\frac{\partial}{\partial s} \mathscr{L}\left[\operatorname{sca}\left(t\right)\right] = -\frac{\partial}{\partial s} \cdot \frac{1}{s} = \frac{1}{s^{2}}$$

Un'alternativa per ottenere questo risultato consiste nel vedere la rampa come integrale dello scalino (moltiplicando quindi per 1/s la trasformata dello scalino).

La **parabola** è un ingresso canonico monotono che si annulla nell'istante iniziale, definita a partire dallo scalino come par $(t) = \frac{1}{2}t^2 \operatorname{sca}(t)$; la sua trasformata di Laplace vale:

$$\mathscr{L}\left[\operatorname{par}\left(t\right)\right] = \mathscr{L}\left[\int\limits_{0}^{\infty}\operatorname{ram}\left(t\right)dt\right] \overset{\text{\tiny{(VI)}}}{=} \frac{1}{s}\mathscr{L}\left[\operatorname{ram}\left(t\right)\right] = \frac{1}{s^{3}}$$

Esempio B.1. Sia dato il seguente movimento forzato di un sistema dinamico del I ordine, con coefficiente di stato α :

$$f(t) = e^{\alpha t} \cdot sca(t) * sca(t)$$

✓ Calcolare la trasformata di Laplace di tale movimento.

Utilizziamo le proprietà di traslazione e di convoluzione per ottenere il seguente risultato:

$$\mathscr{L}[f(t)] = \frac{1}{s-\alpha} \cdot \frac{1}{s} = \frac{1}{s(s-\alpha)}$$

 \checkmark Calcolare valore iniziale e finale del movimento f(t).

Essendo f(t) razionale e con più poli che zeri, possiamo applicare il Teorema B.2.3 e il Teorema B.2.4:

$$f(0) \stackrel{\text{(VIII)}}{=} \lim_{s \to +\infty} \frac{s}{s(s-\alpha)} = \lim_{s \to +\infty} \frac{1}{s-\alpha} \to 0$$

$$\lim_{t \to +\infty} f\left(t\right) \stackrel{\text{\tiny (IX)}}{=} \lim_{s \to 0} \frac{s}{s\left(s-\alpha\right)} = \lim_{s \to 0} \frac{1}{s-\alpha} \to \frac{1}{\alpha}$$

dove nella seconda uguaglianza si è posto $\alpha < 0$ come da ipotesi del Teorema B.2.4.

Esercizio B.1. \(\square \) Trovare la trasformata di Laplace dei seguenti segnali:

► Esercizio: trasformata di Laplace

$$t \sin(\omega t) \cdot \sin(t)$$

$$Sol. 2\omega s/(s^{2}+\omega^{2})^{2}$$

$$t \cos(\omega t) \cdot \sin(t)$$

$$Sol. s^{2}-\omega^{2}/(s^{2}+\omega^{2})^{2}$$

$$e^{\alpha t} \cos(\omega t) \cdot \sin(t)$$

$$Sol. (s-\sigma)/((s-\sigma)^{2}+\omega^{2})$$

$$e^{\alpha t} \sin(\omega t) \cdot \sin(t)$$

$$Sol. \omega/((s-\alpha)^{2}+\omega^{2})$$

$$te^{\alpha t} \cos(\omega t) \cdot \sin(t)$$

$$Sol. ((s-\alpha)^{2}-\omega^{2})/((s-\alpha)^{2}-\omega^{2})^{2}$$

$$te^{\alpha t} \sin(\omega t) \cdot \sin(t)$$

$$Sol. (2\omega(s-\alpha)/((s-\alpha)^{2}+\omega^{2})^{2}$$

B.4. Antitrasformata

Poniamoci nel caso di trasformate razionali (B.1.2), con coefficienti reali; scegliamo N(s) e D(s) per cui n(N(s)) < n(D(s)). Nei sistemi LTI, è sempre possibile ricondurre i movimenti a forme razionali come quella in esame; in particolare, utilizzando l'algoritmo per la divisione dei polinomi, è sempre possibile la seguente riscrittura:

$$F(s) = \frac{N(s)}{D(s)} = \frac{\beta_0 s^n + \beta_1 s^{n-1} + \dots + \beta_n}{\alpha_0 s^n + \alpha_1 s^{n-1} + \dots + \alpha_n}$$
$$= \frac{\beta_0}{\alpha_0} + \frac{(\beta_1 - \beta_0 \alpha_1) s^n + (\beta_2 - \beta_1 \alpha_2) s^{n-1} + \dots + (\beta_n - \beta_{n-1} \alpha_n)}{\alpha_0 s^n + \alpha_1 s^{n-1} + \dots + \alpha_n}$$

Vale in generale che una funzione razionale può essere scritta come somma di una costante e di una frazione strettamente propria, e grazie alla proprietà (I) essa è ancora una antitrasformata di Laplace.

L'antitrasformata della precedente riscrittura vale

$$\mathcal{L}^{-1}\left[F\left(s\right)\right] = \frac{\beta_0}{\alpha_0} \cdot \mathrm{imp}\left(t\right)$$

dato che l'antitrasformata di una costante è un impulso di ampiezza la costante.

Analizziamo come antitrasformare una funzione che abbia **poli distinti**; si procede scomponendo F(s) in una sommatoria di termini semplici (con denominatore al più di secondo grado) di cui conosciamo l'antitrasformata e dai quali otterremo l'antitrasformata complessiva per linearità.

Si scrive il polinomio al denominatore nel modo seguente:

$$D(s) = \prod_{i=1}^{n} (s + p_i)$$

con $p_i \in \mathbb{C}$, e la trasformata diventa sviluppabile come

$$F(s) = \frac{N(s)}{\prod_{i=1}^{n} (s+p_i)} = \sum_{i=1}^{n} \frac{P_i}{s+p_i}$$

dove P_i sono i residui che vogliamo calcolare, mentre p_i sono le radici di D(s) (i poli).

D'ora in avanti si procede applicando il metodo di Heaviside, nel quale si moltiplica per uno dei termini $(s + p_i)$ la funzione sviluppata e la si valuta per $s = -p_i$:

$$(s + p_i) F(s) = \left[(s + p_i) \sum_{j=1, j \neq i}^{n} \frac{P_j}{s + p_j} \right] + P_i$$

Metodo di Heaviside

(B.4.1)
$$P_{i} = \frac{N(-p_{i})}{\prod_{i=1}^{n} \sum_{j \neq i} (p_{i} - p_{j})} = \frac{N(-p_{i})}{\partial/\partial s} \frac{N(-p_{i})}{\partial(s)|_{s=-p_{i}}} = [(s + p_{i}) F(s)]|_{s=-p_{i}}$$

Una volta ricavati i residui con (B.4.1) in corrispondenza di ciascun polo, otteniamo l'antitrasformata come:

(B.4.2)
$$f(t) = \mathcal{L}^{-1}[F(s)] = \mathcal{L}^{-1}\left[\sum_{i=1}^{n} \frac{P_i}{s+p_i}\right] = \left(\sum_{i=1}^{n} P_i \cdot e^{-p_i t}\right) \cdot \operatorname{sca}(t)$$

Esempio B.2. Sia data la seguente trasformata di Laplace di un segnale:

$$F(s) = \frac{s - 10}{(s + 2)(s + 5)}$$

✓ Trovare la sua antitrasformata.

Possiamo riscrivere con (B.4.1) la funzione come

$$F(s) = \frac{P_1}{s+2} + \frac{P_2}{s+5}$$

da cui ricaviamo i residui $P_{1,2}$ nel modo seguente:

(1)
$$[(s+2)F(s)]|_{s=-2} = \frac{(s+2)(s-10)}{(s+2)(s+5)}|_{s=-2} = \frac{-12}{3} = -4 = P_1$$

(2)
$$[(s+5) F(s)]|_{s=-5} = \frac{(s+5)(s-10)}{(s+2)(s+5)}\Big|_{s=-5} = \frac{-15}{-3} = 5 = P_2$$

Usando (B.4.2) scriviamo l'antitrasformata come:

$$\mathcal{L}^{-1}\left[F\left(s\right)\right] = \left(-4e^{-2t} + 5e^{-5t}\right) \cdot \mathrm{sca}\left(t\right)$$

Nel caso di **poli complessi coniugati**, abbiamo comunque poli distinti, con residui complessi coniugati; prendiamo due poli tali che $s_i = -p_i$ e $s_j = -p_i^*$, allora il residuo $P_j = P_i^*$. Scriviamo la funzione trasformata come combinazione lineare di termini del tipo:

$$F(s) = \frac{P_i}{(s+p_i)} + \frac{P_i^*}{(s+p_i^*)}$$

Quando questa somma viene antitrasformata, si ottiene con (A.5.1) dalla (B.4.2):

$$P_{i}e^{-p_{i}t} + P_{i}^{*}e^{-p_{i}^{*}t}$$

Se esprimiamo i poli $p_i = \sigma_i + j\omega_i$ e i residui $P_i = |P_i| e^{j \arg(P_i)}$, con calcoli analoghi al caso di poli distinti, otteniamo la scrittura:

(B.4.3)
$$\mathscr{L}^{-1}[F(s)] = 2|P_i|e^{-\sigma_i t}\cos(\omega_i t + \arg(P_i))$$

Esempio B.3. Sia data la seguente trasformata di Laplace:

$$F(s) = \frac{100}{(s+1)(s^2+4s+13)}$$

✓ Calcolare la sua antitrasformata.

Cominciamo calcolando i poli, ricavandoli da D(s) = 0; essi valgono rispettivamente $p_1 = -1$, $p_2 = -2+j3$, $p_3 = -2-j3$, con il secondo e il terzo polo le radici complesse coniugate del polinomio $s^2 + 4s + 13$. Ricaviamo ora i residuo con il (B.4.1), tenendo conto dei poli complessi coniugati:

$$F(s) = \frac{P_1}{s - p_1} + \frac{P_2}{s - p_2} + \frac{P_2^*}{s - p_2^*} = \frac{P_1}{s + 1} + \frac{P_2}{s + 2 - j3} + \frac{P_2^*}{s + 2 - j3}$$

Da questa scrittura applichiamo il metodo di Heaviside e otteniamo i residui $P_{1,2,3}$, moltiplicando a turno la trasformata per ciascun denominatore $s - p_i$:

(1)
$$\frac{(s+1)\cdot 100}{(s+1)(s+2-j3)(s+2+j3)}\bigg|_{s=-1} = \frac{100}{10} = 10;$$

(2)
$$\frac{(s+2-j3)\cdot 100}{(s+1)(s+2-j3)(s+2+j3)} \bigg|_{s=-2+j3} = \frac{100}{2(-9-j3)} = \frac{5}{3}(-3+j) \rightarrow \frac{5}{3}\sqrt{10}e^{j(\arctan(-1/3)+\pi)};$$

(3)
$$P_3 = P_2^* = \frac{5}{3} (-3 - j) \to \frac{5}{3} \sqrt{10} e^{j \arctan(1/3)}$$
.

Possiamo usare le considerazioni fatte per i poli complessi coniugati per affermare (3); sostituendo i residui nella scrittura della trasformata, otteniamo

$$F(s) = \frac{10}{s+1} + \frac{5/3\sqrt{10}e^{j(\arctan(-1/3)+\pi)}}{s+2-j3} + \frac{5/3\sqrt{10}e^{j\arctan(1/3)}}{s+2+j3}$$

dalla quale, usando (B.4.2), si ottiene direttamente

$$\mathcal{L}^{-1}\left[F\left(s\right)\right] = \left(10e^{-t} + \frac{5}{3}\sqrt{10}e^{j(\arctan(-\frac{1}{3}) + \pi) + (-2 + j3)t} + \frac{5}{3}\sqrt{10}e^{j\arctan(\frac{1}{3}) + (-2 - j3)t}\right) \cdot \operatorname{sca}\left(t\right)$$

e sfruttando la formula (B.4.3) possiamo infine scrivere

$$f(t) = \left[10e^{-t} + \frac{5}{3}\sqrt{10}e^{-2t} \cdot 2\cos(3t + \arctan(-\frac{1}{3}) + \pi)\right] \cdot \sec(t)$$

Nel caso di **poli multipli** (radici di grado superiore al primo), il metodo di Heaviside risulta inefficace, poiché esso perde dell'informazione sui residui associati ai poli con molteplicità maggiore di 1; esprimiamo la trasformata con poli multipli nella seguente scrittura:

$$F\left(s\right) = \frac{N\left(s\right)}{\prod_{i=1}^{\mu} \left(s + p_{i}\right)^{n_{i}}}$$

con $\mu < n$ rispettivamente il numero di poli distinti minore stretto del grado del denominatore, $\exists i \in 1 \dots \mu : n_i > 1$ la molteplicità del *i*-esimo polo sia per qualche *i* maggiore di 1, e valga $\sum_{i=1}^{\mu} n_i = n$ (la somma di tutte le molteplicità sia pari al grado del denominatore).

Introduciamo il metodo di cancellazione del denominatore, che in questa situazione permette di ottenere comunque ciascun residuo a prescindere dalla molteplicità del suo polo; esso consiste nel moltiplicare per D(s) la trasformata, in forma di somma di residui pesati sui poli, per ottenere la seguente scrittura:

(B.4.4)
$$N(s) = \sum_{i=1}^{\mu} \sum_{h=1}^{n_i} \left(P_{i,h} \cdot \prod_{i=1}^{\mu} \left[(s+p_i)^{n_i} \cdot \frac{1}{(s+p_i)^h} \right] \right)$$

Da questa uguaglianza si ricavano n equazioni che, risolte in un sistema, forniscono tutti i residui anche in caso di molteplicità (h > 1).

Esempio B.4. Sia data la sequente trasformata di Laplace:

$$F(s) = \frac{s+18}{s(s+3)^2}$$

 \checkmark Calcolarne l'antitrasformata.

I poli della trasformata valgono rispettivamente $p_1 = 0$ con $n_1 = 1$ e $p_2 = -3$ con $n_2 = 2$; riscriviamo la trasformata nella combinazione di residui pesati sui poli:

$$F(s) = \frac{P_{1,1}}{s-0} + \frac{P_{2,1}}{s+3} + \frac{P_{2,2}}{(s+3)^2}$$

Otteniamo quindi i residui nei modi seguenti:

• $P_{1,1}$ può essere di nuovo ottenuto con (B.4.1), dato che ha molteplicità unitaria; in tal caso scriviamo:

$$P_{1,1} = \frac{\cancel{s}(s+18)}{\cancel{s}(s+3)^2}\Big|_{s=0} = \frac{18}{9} = 2$$

• $P_{2,2}$ può anch'esso essere ottenuto con (B.4.1), dato che moltiplicando per il suo denominatore rimane un polo di primo grado:

$$P_{2,2} = \frac{(s+3)^2(s+18)}{s(s+3)^2} \bigg|_{s=-3} = \frac{15}{-3} = -5$$

• $P_{2,1}$ deve essere calcolato con (B.4.4), vale a dire:

$$F(s) \doteq \frac{s+18}{s(s+3)^2} = \frac{P_{1,1}}{s} + \frac{P_{2,1}}{s+3} + \frac{P_{2,2}}{(s+3)^2}$$
$$s+18 = P_{1,1}(s+3)^2 + P_{2,1}s(s+3) + P_{2,2}s$$

A questo punto si raccolgono le s per imporre delle condizioni rispetto ai residui e ai valori già noti dal numeratore, a sinistra dell'uguale:

$$s + 18 = s^{2} (P_{1,1} + P_{2,1}) + s (6P_{1,1} + 3P_{2,1} + P_{2,2}) + 9P_{1}$$

da cui si nota che $s^2 = 0$ dunque $P_{1,1} + P_{2,1} = 0 \rightarrow P_{1,1} = -P_{2,2}$ e, avendo già calcolato il valore di $P_{1,1}$, segue che $P_{2,1} = -2$.

L'espressione generale della trasformata sarà quindi:

$$F(s) = \frac{2}{s} + \frac{-2}{s+3} + \frac{-5}{(s+3)^2}$$

da cui ricaviamo l'antitrasformata

$$\mathscr{L}^{-1}[F(s)] = (2 - 2e^{-3t} - 5te^{-3t}) \cdot sca(t) = f(t)$$

dove il terzo addendo $(-5te^{-3t})$ è ottenuto come prodotto di un esponenziale per una rampa; infatti $\mathcal{L}\left[e^{\alpha t}\cdot\operatorname{ram}\left(t\right)\right]=\frac{1}{\left(s-\alpha\right)^{2}}.$

ESEMPIO B.5. Riprendiamo il testo dell'Esempio B.3; la trasformata assegnata era

$$F(s) = \frac{100}{(s+1)(s^2+4s+13)}$$

Riscriviamola nel modo seguente, per poter sfruttare (B.4.4):

$$F(s) = \frac{100}{(s+1)((s+2)^2+9)} = \frac{P_1}{s+1} + \frac{P_2s + P_3}{(s+2)^2+9}$$

Nel secondo addendo abbiamo posto il denominatore pari a una combinazione lineare di residui con grado inferiore di uno rispetto al polo associato; otteniamo dunque i seguenti valori dei residui:

Si ricorda che il denominatore della trasformata di una sinusoide è del tipo $1/\left(\left(s+\alpha\right)^2+\omega^2\right)$, come in questo caso per il secondo e terzo residuo

- P_1 si ottiene usando il metodo di Heaviside; come nell'Esempio B.3 (per quanto riguardava $P_{1,1}$), esso vale 10;
- Applicando (B.4.4) otteniamo le condizioni necessarie a calcolare P_2 e P_3 :

$$100 = P_1 (s^2 + 4s + 13) + P_2 s (s + 1) + P_3 (s + 1)$$

= $s^2 (P_1 + P_2) + s (4P_1 + P_2 + P_3) + 13P_1 + P_3$

Osservando che nel numeratore non compare la variabile s, imponiamo che $100 = 13P_1 + P_3$ da cui, con la conoscenza di $P_1 = 10$, otteniamo sostituendo nella precedente che $P_2 = -30$.

Infine usiamo il coefficiente di s^2 per imporre che $P_1+P_2=0\to P_2=-P_1=-10$.

La forma generale della trasformata risulta:

$$F(s) = \frac{10}{s+1} + \frac{-10s - 30}{(s+2)^2 + 9} \stackrel{*}{=} \frac{10}{s+1} - 10\left(\frac{s+2}{(s+2)^2 + 9} + \frac{1}{3}\frac{3}{(s+2)^2 + 9}\right)$$

dove nell'uguaglianza * abbiamo raccolto e separato per ottenere dei termini simili alla trasformata di funzioni trigonometriche; grazie a questo raffinamento possiamo scrivere direttamente l'antitrasformata come:

$$\mathcal{L}^{-1}[F(s)] = \left(10e^{-t} - 10e^{-2t}\cos(3t) - \frac{10}{3}e^{-2t}\sin(3t)\right) \cdot sca(t)$$

Indice analitico

Anello aperto, trasferimento, 87 Anello chiuso, trasferimento, 89 asintotica stabilità, Teorema, 26 Autovettori generalizzati, 120

Binet, teorema, 114 Bode, forma di, 47

Criterio di Bode, 96 Criterio di Nyquist, 94

Equazione caratteristica, 92 Eulero, formula di, 122

Forma canonica di raggiungibilità, 56 Fourier, trasformata di, 67 Funzione di trasferimento di anello, 63

Heaviside, metodo di, 128

impulso, risposta al, 25 instabilità, Teorema, 26

Jordan, forma di, 120 Jury, criterio, 39

Lagrange, formula, 14
Lagrange, formula discretizzata, 34
Laplace, antitrasformata continua, 123
Laplace, I teorema, 113
Laplace, trasformata continua, 123
Linearizzazione, 29
Linearizzazione nel tempo discreto, 40
LTI, andamenti asintotici dei modi, 19
LTI, andamento della perturbazione, 25
LTI, dimensioni dei coefficiente standard, 11

LTI, modello equivalente, 17 LTI, modello matriciale discreto, 33 LTI, modello matriciale standard, 11 LTI, sovrapposizione degli effetti, 12 LTI, stabilità, 12

Matrice, polinomio caratteristico, 116 Modo oscillante, 19 Movimento forzato, 15 Movimento libero, 15

Processo a tempo continuo, modello, 8 Progetto del regolatore per inversione, 107 Progetto del regolatore per iterazioni, 110

Risposta all'ingresso sinusoidale, 65 Risposta armonica, 66 Risposta armonica in forma di Bode, 69 Risposta in frequenza, teorema fondamentale, 65 Routh, criterio, 27

Smorzamento in anello chiuso, 102 stabilità del sistema, Teorema, 25

tempo discreto, equazioni di processo, 31
tempo discreto, equilibrio, 34
tempo discreto, movimenti, 38
Tracciamento del diagramma del modulo,
73
Trasferimento nel tempo continuo, funzione,
43