

Introduction to linear programing

Aleksandra Szymczak

Decision Variables
Objective function
Constraints

	X	Y	Z
value	3	4	11
weight	1	3	5

Problem formulation

MAX 3X + 4Y + 11Z

$$X + 3Y + 5Z \leq 7$$

Simplex

Solved in two iterations!

D (0, 0, 1.4)							
Table 2	Cj	3	4	11	0	0	
Сь	Base	X ₁	X_2	X ₃	S ₁	S ₂	R
11	X ₃	1/5	3/5	1	1/5	0	7/5
0	S ₂	1	0	0	0	1	1
	Z	-4/5	13/5	0	11/5	0	77/5

A (1, 0, <u>1.2</u>)							
Table 3	Cj	3	4	11	0	0	
Сь	Base	X ₁	X ₂	X ₃	S ₁	S ₂	R
11	X ₃	0	3/5	1	1/5	-1/5	6/5
3	X ₁	1	0	0	0	1	1
	Z	0	13/5	0	11/5	4/5	81/5

Problem formulation

$$MIN7x + y$$

Fractional Knapsack Problem

Bounded Knapsack Problem

From linear programming to integer linear programming

Problem relaxation

Simplex, Graphical method

From integer linear programming to mixed integer linear programming

