Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра теоретических основ электротехники

Типовой расчет №2 по курсу: «Теория электрических цепей» Шифр студента №950501-6

Проверил: Батюков С. В. Выполнил: ст. гр. 950501

Деркач А. В.

1. Чертеж исходной схемы

Исходные данные приведены в таблице 1.

Таблица	1 _	Исходные	ланные
таолица	1 -	- исходные	данные

Номер І	Начало-	Сопротивления			Источник ЭДС		Источник тока	
ветви	конец	R	X_L	X_C	мод.	арг.	мод.	арг.
1	15	0	16	18	0	0	0	0
2	53	14	0	0	0	0	0	0
3	34	0	11	0	0	0	0	0
4	46	16	0	0	0	0	0	0
5	62	58	0	17	0	0	0	0
6	21	0	34	0	64	241	0	0
7	56	58	0	74	0	0	0	0
8	31	0	29	95	0	0	0	0

Начертим схему согласно заданному варианту (рис. 1):

Рисунок 1 – Исходная схема

2. Нахождение комплексных сопротивлений

Найдем комплексные сопротивления каждой ветви схемы (рис. 1)

$$Z_1 = jX_{L_1} - jX_{C_1} = -j2 \text{ Om}$$

 $Z_2 = R_2 = 14 \text{ Om}$

$$\begin{split} Z_3 &= j X_{L_3} = j 11 \text{ Om} \\ Z_4 &= R_4 = 16 \text{ Om} \\ Z_5 &= R_5 - j X_{C_5} = 58 - j 17 \text{ Om} \\ Z_6 &= j X_{L_6} = j 34 \text{ Om} \\ Z_7 &= R_7 - j X_{C_7} = 58 - j 74 \text{ Om} \\ Z_8 &= j X_{L_8} - j X_{C_8} = -j 66 \text{ Om} \end{split}$$

Объединим последовательно включенные комплексные сопротивления Z_3 и Z_4 , Z_5 и Z_6 в эквивалентные комплексные сопротивления и получим схему (рис. 2):

$$Z_{34} = Z_3 + Z_4 = 16 + j11 \text{ Om}$$

 $Z_{56} = Z_5 + Z_6 = 58 + j17 \text{ Om}$

Преобразуем треугольник Z_2 - Z_{34} - Z_7 в эквивалентную звезду (рис. 3):

$$Z_{27} = \frac{Z_2 \cdot Z_7}{Z_2 + Z_{34} + Z_7} = 11,673 - j3,416 \text{ Om}$$

$$Z_{234} = \frac{Z_2 \cdot Z_{34}}{Z_2 + Z_{34} + Z_7} = 0,855 + j2,362 \text{ Om}$$

$$Z_{347} = \frac{Z_{34} \cdot Z_7}{Z_2 + Z_{34} + Z_7} = 16,024 + j5,267 \text{ Om}$$

Рисунок 3

После всех преобразований получаем схему (рис. 4):

Рисунок 4

Объединим последовательно включенные комплексные сопротивления Z_8 и Z_{234} , Z_1 и Z_{27} , Z_{56} и Z_{347} в эквивалентные комплексные сопротивления (рис. 5):

Рисунок 5

$$Z_{2348}=Z_8+Z_{234}=0,855-j63,638 \ {\rm Om}$$

$$Z_{127}=Z_1+Z_{27}=11,673-j5,416 \ {\rm Om}$$

$$Z_{34567}=Z_{347}+Z_{56}=74,024+j22,267 \ {\rm Om}$$

Найдём общее сопротивление цепи, изображенной на рисунке 5:

$$Z_{oби} = \frac{Z_{2348} \cdot Z_{127}}{Z_{2348} + Z_{127}} + Z_{34567} = 83,653 + j15,674 \text{ Om}$$

Найдем общий ток цепи:

$$\dot{I}_{o \delta u u} = \frac{\dot{E}_6}{Z_{o \delta u u}} = -0,479 - j0,579 \text{ A}$$

Теперь найдем токи в схеме, постепенно разворачивая цепь:

$$\dot{I}_6 = \dot{I}_{o \delta u u} = -0,479 - j0,579 \text{ A}$$

 $\dot{I}_5 = \dot{I}_6 = -0,479 - j0,579 \text{ A}$

Для нахождения токов \dot{I}_{127} и \dot{I}_{2348} воспользуемся правилом плеч:

$$\begin{split} \dot{I}_{127} &= \dot{I}_{o \delta u u} \cdot \frac{Z_{2348}}{Z_{127} + Z_{2348}} = -0,516 - j0,446 \text{ A} \\ \dot{I}_{2348} &= -\dot{I}_{o \delta u u} \cdot \frac{Z_{127}}{Z_{127} + Z_{2348}} = 0,036 - j0,133 \text{ A} \end{split}$$

Поэтому:

$$\dot{I}_1 = \dot{I}_{127} = -0.516 - j0.446 \text{ A}$$

 $\dot{I}_8 = \dot{I}_{2348} = -0.036 + j0.133 \text{ A}$

Для нахождения оставшихся токов найдем напряжение между узлами 5 и 3:

$$\dot{U}_{53} = -\dot{I}_8 \cdot Z_8 - \dot{I}_1 \cdot Z_1 = -7,889 - j3,419 \text{ B}$$

Находим сами токи:

$$\dot{I}_2 = \frac{\dot{U}_{53}}{Z_2} = -0.563 - j0.244 \text{ A}$$

$$\dot{I}_7 = \dot{I}_1 - \dot{I}_2 = 0.048 - j0.202 \text{ A}$$

$$\dot{I}_3 = \dot{I}_2 - \dot{I}_8 = -0.527 - j0.377 \text{ A}$$

$$\dot{I}_4 = \dot{I}_3 = -0.527 - j0.377 \text{ A}$$

По найденным действующим значениям токов записываем их мгновенные значения:

$$i_1 = \sqrt{2} \cdot 0,682 \sin(\omega t - 139,125^\circ) \text{ A}$$

 $i_2 = \sqrt{2} \cdot 0,614 \sin(\omega t - 156,565^\circ) \text{ A}$
 $i_3 = \sqrt{2} \cdot 0,648 \sin(\omega t - 144,415^\circ) \text{ A}$
 $i_4 = \sqrt{2} \cdot 0,648 \sin(\omega t - 144,415^\circ) \text{ A}$
 $i_5 = \sqrt{2} \cdot 0,752 \sin(\omega t - 129,612^\circ) \text{ A}$
 $i_6 = \sqrt{2} \cdot 0,752 \sin(\omega t - 129,612^\circ) \text{ A}$
 $i_7 = \sqrt{2} \cdot 0,208 \sin(\omega t - 76,680^\circ) \text{ A}$
 $i_8 = \sqrt{2} \cdot 0,138 \sin(\omega t + 105,215^\circ) \text{ A}$

3. Баланс мощностей

Составим баланс мощностей:

Определяем полную комплексную мощность, отдаваемую источником ЭДС:

$$S = E_6 \cdot \overline{I}_6 = 47,304 + j8,863 \text{ BA}.$$

Найдём активную мощность приёмников энергии:

$$P_{\text{потр.}} = \left| \dot{I}_2 \right|^2 \cdot R_2 + \left| \dot{I}_4 \right|^2 \cdot R_4 + \left| \dot{I}_5 \right|^2 \cdot R_5 + \left| \dot{I}_7 \right|^2 \cdot R_7 = 47,304 \text{ Bt}$$

Найдём реактивную мощность приёмников энергии:

$$P_{\text{потр.}} = \left| \dot{I}_{1} \right|^{2} \cdot (X_{L_{1}} - X_{C_{1}}) + \left| \dot{I}_{3} \right|^{2} \cdot X_{L_{3}} - \left| \dot{I}_{5} \right|^{2} \cdot X_{C_{5}} + \left| \dot{I}_{6} \right|^{2} \cdot X_{L_{6}} - \left| \dot{I}_{7} \right|^{2} \cdot X_{C_{7}} + \left| \dot{I}_{8} \right|^{2} \cdot (X_{L_{8}} - X_{C_{8}}) = 8,863 \text{ BAp}$$

Поскольку активные и реактивные мощности источника ЭДС равны активной и реактивной мощности приемников энергии, то баланс мощностей выполняется.

4. Векторная диаграмма

Для построения топографической векторной диаграммы добавим в схему дополнительные точки (рис. 6):

Рассчитаем потенциалы точек каждого замкнутого контура, приняв потенциал точки 5 равным 0.

Контур 1:
$$\dot{\varphi}_5 = 0 \text{ B}$$

$$\dot{\varphi}_{56} = \dot{\varphi}_5 + \dot{I}_7 \cdot R_7 = 2,774 - j11,717 \text{ B}$$

$$\dot{\varphi}_6 = \dot{\varphi}_{56} - jX_{C_7} \cdot \dot{I}_7 = -12,175 - j15,256 \text{ B}$$

$$\dot{\varphi}_{26} = \dot{\varphi}_6 + \dot{I}_5 \cdot R_5 = -39,983 - j48,856 \text{ B}$$

$$\dot{\varphi}_2 = \dot{\varphi}_{26} - jX_{C_5} \cdot \dot{I}_5 = -49,832 - j40,705 \text{ B}$$

$$\dot{\varphi}_{12} = \dot{\varphi}_2 + jX_{L_6} \cdot \dot{I}_6 = -30,135 - j57,007 \text{ B}$$

$$\dot{\varphi}_{12} = \dot{\varphi}_{12} - \dot{E}_6 = 0,893 - j1,031 \text{ B}$$

$$\dot{\varphi}_{15} = \dot{\varphi}_1 - jX_{C_1} \cdot \dot{I}_1 = -7,140 + j8,250 \text{ B}$$

$$\dot{\varphi}_5 = \dot{\varphi}_{15} + jX_{L_1} \cdot \dot{I}_1 = 0 \text{ B}$$

Контур 2:
$$\dot{\varphi}_5 = 0$$
 В
$$\dot{\varphi}_3 = \dot{\varphi}_5 + \dot{I}_2 \cdot R_2 = -7,889 - j3,419 \text{ B}$$

$$\dot{\varphi}_4 = \dot{\varphi}_3 + jX_{L_3} \cdot \dot{I}_3 = -3,738 - j9,220 \text{ B}$$

$$\dot{\varphi}_6 = \dot{\varphi}_4 + \dot{I}_4 \cdot R_4 = -12,175 - j15,256 \text{ B}$$

$$\dot{\varphi}_{56} = \dot{\varphi}_6 + jX_{C_7} \cdot \dot{I}_7 = 2,774 - j11,717 \text{ B}$$

$$\dot{\varphi}_5 = \dot{\varphi}_{56} - \dot{I}_7 \cdot R_7 = 0 \text{ B}$$
 Контур 3:
$$\dot{\varphi}_5 = 0 \text{ B}$$

$$\dot{\varphi}_{13} = \dot{\varphi}_3 + jX_{L_8} \cdot \dot{I}_8 = -11,747 - j4,469 \text{ B}$$

$$\dot{\varphi}_{13} = \dot{\varphi}_{13} - jX_{C_8} \cdot \dot{I}_8 = 0,893 - j1,031 \text{ B}$$

$$\dot{\varphi}_{15} = \dot{\varphi}_{1} - jX_{C_1} \cdot \dot{I}_1 = -7,140 + j8,250 \text{ B}$$

$$\dot{\varphi}_5 = \dot{\varphi}_{15} + jX_{L_1} \cdot \dot{I}_1 = 0 \text{ B}$$

Векторная диаграмма токов и совмещенная с ней топографическая векторная диаграмма напряжений представлена в приложении А.

5. Уравнения по законам Кирхгофа при наличии индуктивной связи между любыми двумя индуктивностями

По условию полагаем, что существует индуктивная связь между индуктивностями L_3 и L_8 . Наличие индуктивной связи обозначим на рисунке 7 двусторонней стрелкой, возле которой обозначаем взаимную индуктивность M. Одноименные зажимы индуктивно связанных катушек обозначим точками. Так как токи относительно одноименных зажимов направлены одинаково, то имеет место согласное включение индуктивностей.

Число уравнений для законов Кирхгофа определяем по формулам:

$$N_{\text{yp. y}_3} = N_{\text{y}_3} - 1 = 6 - 1 = 5$$

 $N_{\text{yp. K}} = N_{\text{B}} - N_{\text{y}_3} + 1 - N_{\text{J}} = 8 - 6 + 1 - 0 = 3$

Составим систему уравнений:

$$\begin{cases} \dot{I}_1 = \dot{I}_6 + \dot{I}_8 - 1 \text{ узел} \\ \dot{I}_5 = \dot{I}_6 - 2 \text{ узел} \\ \dot{I}_2 = \dot{I}_8 + \dot{I}_3 - 3 \text{ узел} \\ \dot{I}_3 = \dot{I}_4 - 4 \text{ узел} \\ \dot{I}_1 = \dot{I}_2 + \dot{I}_7 - 5 \text{ узел} \\ \dot{I}_6 \cdot Z_6 + \dot{I}_1 \cdot Z_1 + \dot{I}_7 \cdot Z_7 + \dot{I}_5 \cdot Z_5 = \dot{E}_6 - \text{I контур} \\ \dot{I}_2 \cdot Z_2 + \dot{I}_3 \cdot Z_3 + \dot{I}_8 \cdot j X_M + \dot{I}_4 \cdot Z_4 - \dot{I}_7 \cdot Z_7 = 0 - \text{II контур} \\ -\dot{I}_8 \cdot Z_8 - \dot{I}_3 \cdot j X_M - \dot{I}_1 \cdot Z_1 - \dot{I}_2 \cdot Z_2 = 0 - \text{III контур} \end{cases}$$

6. Метод законов Кирхгофа

Число уравнений для законов Кирхгофа определяем по формулам:

$$N_{\text{yp. y}_3} = N_{\text{y}_3} - 1 = 6 - 1 = 5$$

 $N_{\text{yp. K}} = N_{\text{B}} - N_{\text{y}_3} + 1 - N_{\text{J}} = 8 - 6 + 1 - 0 = 3$

Выбор контуров указан на рисунке 8:

Составляем систему уравнений:

$$\begin{cases} \dot{I}_1 = \dot{I}_6 + \dot{I}_8 - 1 \text{ узел} \\ \dot{I}_5 = \dot{I}_6 - 2 \text{ узел} \\ \dot{I}_2 = \dot{I}_8 + \dot{I}_3 - 3 \text{ узел} \\ \dot{I}_3 = \dot{I}_4 - 4 \text{ узел} \\ \dot{I}_1 = \dot{I}_2 + \dot{I}_7 - 5 \text{ узел} \\ \dot{I}_6 \cdot Z_6 + \dot{I}_1 \cdot Z_1 + \dot{I}_7 \cdot Z_7 + \dot{I}_5 \cdot Z_5 = \dot{E}_6 - \text{I контур} \\ \dot{I}_2 \cdot Z_2 + \dot{I}_3 \cdot Z_3 + \dot{I}_4 \cdot Z_4 - \dot{I}_7 \cdot Z_7 = 0 - \text{II контур} \\ -\dot{I}_8 \cdot Z_8 - \dot{I}_1 \cdot Z_1 - \dot{I}_2 \cdot Z_2 = 0 - \text{III контур} \end{cases}$$

Решение системы уравнений приведено в приложении Б:

$$\begin{split} \dot{I}_1 &= -0,516 - j0,446 \text{ A} \\ \dot{I}_2 &= -0,563 - j0,244 \text{ A} \\ \dot{I}_3 &= -0,527 - j0,377 \text{ A} \\ \dot{I}_4 &= -0,527 - j0,377 \text{ A} \\ \dot{I}_5 &= -0,479 - j0,579 \text{ A} \\ \dot{I}_6 &= -0,479 - j0,579 \text{ A} \\ \dot{I}_7 &= 0,048 - j0,202 \text{ A} \\ \dot{I}_8 &= -0,036 + j0,133 \text{ A} \end{split}$$

7. Метод контурных токов

Число уравнений находим по данной формуле:

$$N_{\text{yp. K}} = N_{\text{B}} - N_{\text{y3}} + 1 - N_{\text{J}} = 6 - 4 + 1 - 0 = 3.$$

Выбор контуров указан на рисунке 9.

Составляем систему уравнений:

$$\begin{cases} \dot{I}_{11} \cdot (Z_1 + Z_7 + Z_{56}) - \dot{I}_{22} \cdot Z_7 - \dot{I}_{33} \cdot Z_1 = \dot{E}_6 \\ \dot{I}_{22} \cdot (Z_2 + Z_{34} + Z_7) - \dot{I}_{11} \cdot Z_7 - \dot{I}_{33} \cdot Z_2 = 0 \\ \dot{I}_{33} \cdot (Z_1 + Z_2 + Z_8) - \dot{I}_{11} \cdot Z_1 - \dot{I}_{22} \cdot Z_2 = 0 \end{cases}$$

Решение системы уравнений приведено в приложении В:

$$\dot{I}_{11} = -0.479 - j0.579 \text{ A}$$

$$\dot{I}_{22} = -0.527 - j0.377 \text{ A}$$

$$\dot{I}_{33} = 0.036 - j0.133 \text{ A}$$

Токи в цепи находим следующим образом:

$$\begin{split} \dot{I}_1 &= \dot{I}_{11} - \dot{I}_{33} = -0,516 - j0,446 \text{ A} \\ \dot{I}_2 &= \dot{I}_{22} - \dot{I}_{33} = -0,563 - j0,244 \text{ A} \\ \dot{I}_3 &= \dot{I}_{22} = -0,527 - j0,377 \text{ A} \\ \dot{I}_4 &= \dot{I}_{22} = -0,527 - j0,377 \text{ A} \\ \dot{I}_5 &= \dot{I}_{11} = -0,479 - j0,579 \text{ A} \\ \dot{I}_6 &= \dot{I}_{11} = -0,479 - j0,579 \text{ A} \\ \dot{I}_7 &= \dot{I}_{11} - \dot{I}_{22} = 0,048 - j0,202 \text{ A} \\ \dot{I}_8 &= -\dot{I}_{33} = -0,036 + j0,133 \text{ A} \end{split}$$

8. Метод узловых напряжений

Число уравнений, составляемых по методу узловых напряжений, равно:

$$N_{yp} = N_y - 1 - N_{\mathcal{I}} = 4 - 1 - 0 = 3$$

Базисный узел $\phi_5=0$ В, искомые узловые напряжения – $\dot{U}_{_{15}}$, $\dot{U}_{_{35}}$, $\dot{U}_{_{65}}$.

Схема для решения методом узловых напряжений представлена на рисунке 10:

Составим систему уравнений для неизвестных узловых напряжений:

$$\begin{cases} \dot{U}_{15} \cdot (\frac{1}{Z_{1}} + \frac{1}{Z_{8}} + \frac{1}{Z_{56}}) - \dot{U}_{35} \cdot \frac{1}{Z_{8}} - \dot{U}_{65} \cdot \frac{1}{Z_{56}} = \frac{\dot{E}_{6}}{R_{56}} \\ - \dot{U}_{15} \cdot \frac{1}{Z_{8}} + \dot{U}_{35} \cdot (\frac{1}{Z_{8}} + \frac{1}{Z_{2}} + \frac{1}{Z_{34}}) - \dot{U}_{65} \cdot \frac{1}{Z_{34}} = 0 \\ - \dot{U}_{15} \cdot \frac{1}{Z_{56}} - \dot{U}_{35} \cdot \frac{1}{Z_{34}} + \dot{U}_{65} \cdot (\frac{1}{Z_{34}} + \frac{1}{Z_{7}} + \frac{1}{Z_{56}}) = -\frac{\dot{E}_{6}}{Z_{56}} \end{cases}$$

Решение системы уравнений приведено в приложении Г.

Решив систему уравнений, получили следующие значения узловых напряжений:

$$\dot{U}_{15} = -0.893 + j1.031 \text{ B}$$
 $\dot{U}_{35} = 7.889 + j3.419 \text{ B}$
 $\dot{U}_{65} = 12.175 + j15.256 \text{ B}$

Находим токи в узлах с помощью закона Ома:

$$\begin{split} \dot{I}_1 &= \frac{\dot{U}_{15}}{Z_1} = -0,516 - j0,446 \text{ A} \\ \dot{I}_2 &= \frac{-\dot{U}_{35}}{Z_2} = -0,563 - j0,244 \text{ A} \\ \dot{I}_3 &= \frac{\dot{U}_{35} - \dot{U}_{65}}{Z_{34}} = -0,527 - j0,377 \text{ A} \\ \dot{I}_4 &= \dot{I}_3 = -0,527 - j0,377 \text{ A} \\ \dot{I}_5 &= \frac{\dot{U}_{65} - \dot{U}_{15} + \dot{E}_6}{Z_{56}} = -0,479 - j0,579 \text{ A} \\ \dot{I}_6 &= \dot{I}_5 = -0,479 - j0,579 \text{ A} \\ \dot{I}_7 &= \frac{-\dot{U}_{65}}{Z_7} = 0,048 - j0,202 \text{ A} \\ \dot{I}_8 &= \frac{\dot{U}_{35} - \dot{U}_{15}}{Z_8} = -0,036 + 0,133 \text{ A} \end{split}$$

9. Метод эквивалентного генератора

Делаем разрыв ветви 8 и получаем следующую цепь (рис. 11):

Находим токи с помощью метода контурных токов. Для этого выберем контуры, которые показаны на рисунке 12.

Составляем систему уравнений:

$$\begin{cases} \dot{I}_{11} \cdot (Z_1 + Z_{56} + Z_7) - \dot{I}_{22} \cdot Z_7 = \dot{E}_6 \\ \dot{I}_{22} \cdot (Z_2 + Z_{34} + Z_7) - \dot{I}_{11} \cdot Z_7 = 0 \end{cases}$$

Решение системы уравнений:

$$\dot{I}_{11} = -0,472 - j0,560 \text{ A}$$

 $\dot{I}_{22} = -0,530 - j0,352 \text{ A}$

Находим напряжение холостого хода (см. рис. 11):

$$\dot{U}_{xx} = \dot{I}_{22} \cdot Z_{34} + \dot{I}_{11} \cdot Z_{56} - \dot{E}_{6} = 8,547 + j3,983 \text{ B}$$

Найдем $Z_{_{9KB}}$, для этого преобразуем схему в пассивную (рис. 13).

Преобразуем треугольник Z_2 - Z_7 - Z_{34} в эквивалентную звезду (рис. 14).

$$\begin{split} Z_{27} &= \frac{Z_2 \cdot Z_7}{Z_2 + Z_{34} + Z_7} = 11,673 - j3,416 \text{ Om} \\ Z_{234} &= \frac{Z_2 \cdot Z_{34}}{Z_2 + Z_{34} + Z_7} = 0,855 + j2,362 \text{ Om} \\ Z_{347} &= \frac{Z_{34} \cdot Z_7}{Z_2 + Z_{34} + Z_7} = 16,024 + j5,267 \text{ Om} \end{split}$$

Объединим последовательно включенные комплексные сопротивления Z_1 и Z_{27} , Z_{56} и Z_{347} в эквивалентные комплексные сопротивления (рис. 15).

$$Z_{34567} = Z_{347} + Z_{56} = 74,024 + j22,267$$
 Ом $Z_{127} = Z_1 + Z_{27} = 11,673 - j5,416$ Ом

Рассчитаем Zэкв:

$$Z_{_{9K6}} = \frac{Z_{127} \cdot Z_{34567}}{Z_{127} + Z_{34567}} + Z_{234} = 11,606 - j1,397 \text{ Om}$$

Находим \dot{I}_8 по формуле:

$$\dot{I}_8 = \frac{\dot{U}_{xx}}{Z_{3\kappa\theta} + Z_8} = -0.036 + j0.133 \text{ A}$$

Результаты расчета занесены в таблицу 2:

Таблица 2 – Результаты расчета

	Алгебраиче	еская форма	Показательная форма		
	Re	Im	модуль	Ф, град	
ток \dot{I}_1	-0,516	-0,446	0,682	-139,125	
ток \dot{I}_2	-0,563	-0,244	0,614	-156,565	
ток \dot{I}_3	-0,527	-0,377	0,648	-144,415	
ток \dot{I}_4	-0,527	-0,377	0,648	-144,415	
ток \dot{I}_5	-0,479	-0,579	0,752	-129,612	
ток \dot{I}_6	-0,479	-0,579	0,752	-129,612	
ток \dot{I}_7	0,048	-0,202	0,208	-76,68	
ток \dot{I}_8	-0,036	0,133	0,138	105,215	
Мощность S_{ucm}	47,304	8,863	48,127	10,612	
Мощность S_{nomp}	47,304	8,863	48,127	10,612	
\dot{U}_{xx}	8,547	3,983	9,430	24,985	
$Z_{{\it reh}}$	11,606	-1,397	11,689	-6,866	

ПРИЛОЖЕНИЕ А

Векторная диаграмма токов и совмещенная с ней топографическая векторная диаграмма напряжений

Масштаб: $\dot{I} : 100$ мм = 1 А

 $\dot{\varphi}: 1_{\text{MM}} = 1_{\text{B}}$

ПРИЛОЖЕНИЕ Б

Определение токов методом законов Кирхгофа (расчеты MATHCAD)

XL_1	:=16	$XC_1 = 18$	$R_2 = 14$	$j := \sqrt{-1}$		
XL_3	;:= 11	$XC_5 = 17$	$R_4 = 16$			
XL_{ϵ}	;≔34	$XC_7 = 74$	$R_5 = 58$			
XL_8	ş:=29	$XC_8 = 95$	$R_7 = 58$			
E ₆ ::		$14788745 - j \cdot I_{1} - j \cdot XC_{1} = -i$		0477		
	$Z_2 := R_2 =$:14 Z ₆ :	$= j \cdot XL_6 = 34i$	$Z_5 = R_5 - j \cdot XC_5 =$	58 – 17i	
	$Z_{34} = j \cdot \lambda$	$KL_3 + R_4 = 16 +$	11i	$Z_3 = j \cdot XL_3 = 11i$	$Z_4 = R_4 = 16$	
	$Z_{56} := R_5$	$-j \cdot XC_5 + j \cdot X$	$L_6 = 58 + 17i$			
	$Z_7 := R_7 -$	j•XC ₇ =58-	74i			
	$Z_8 = j \cdot X$	$L_8 - j \cdot XC_8 = -$	-66i			
жения	$I_1 := 0$ $I_2 := 0$	$I_5 := 0$ $I_6 := 0$				
Ограничениячальные приолижения	$I_3 = 0$	$I_7 := 0$ $I_8 := 0$				
PHPIP	-4					
TEMP 43/	$I_8 + I_6 = I_6$ $I_5 = I_6$			$\cdot Z_7 + I_5 \cdot Z_5 = E_6$ $\cdot Z_4 - I_7 \cdot Z_7 = 0$		
HZ 76	$I_2 = I_8 + I$		$\cdot Z_8 - I_1 \cdot Z_1 - I_1$			
5	$I_3 = I_4$ $I_1 = I_2 + I$	7				
	$\begin{bmatrix} I_1 \end{bmatrix}$					
۵	$egin{array}{c} I_2 \\ I_3 \end{array}$					
мещатель	$\begin{vmatrix} I_4 \\ I_5 \end{vmatrix} := \text{find} \left(I_1, I_2, I_3, I_4, I_5, I_6, I_7, I_8 \right)$					
2	I_6					
	$egin{bmatrix} I_7 \ I_8 \end{bmatrix}$					
	1=-0.516		$I_5 = -0.479$			
	$a_2 = -0.563$ $a_3 = -0.527$		$I_6 = -0.479$ $I_7 = 0.048$			
	$_{4}=-0.527$		$I_7 = 0.048 - 1_8 = -0.036$			

ПРИЛОЖЕНИЕ В

Определение токов методом контурных токов (расчеты MATHCAD)

	$XL_1 := 16$	XC₁:=18	$R_2 = 14$	$j := \sqrt{-1}$		
	$XL_3 := 11$	$XC_5 := 17$	$R_4 = 16$			
	$XL_6 := 34$	$XC_7 = 74$	$R_5 = 58$			
	$XL_8 = 29$	$XC_8 = 95$	$R_7 = 58$			
	$E_6 := -31.02771$	4788745-j•55.9	75717119047	7		
	$Z_1 := j \cdot XL_1 - j \cdot$	$XC_1 = -2i$		+		
	$Z_2 := R_2 = 14$	$Z_6 := j \cdot XL_6 =$	34i Z ₅ := <i>E</i>	$Q_5 - j \cdot XC_5 = 58$	3—17i	
	$Z_{34} := j \cdot XL_3 + R$	R ₄ =16+11i	$Z_3 := j$	$\cdot XL_3 = 11i$	$Z_4 := R_4 = 16$	
	$Z_{56} := R_5 - j \cdot XC$	$C_5 + j \cdot XL_6 = 58 +$	17i			
	$Z_7 := R_7 - j \cdot XC$	7=58-74i				
	$Z_8 := j \cdot XL_8 - j \cdot$	<i>XC</i> ₈ =−66i				
		, , , , , , , , , , , , , , , , , , ,				
жения	$I_{11} = 0$ $I_{22} = 0$					
прибли	I ₃₃ :=0					
Belief		$+Z_{56}$) $-I_{22} \cdot Z_7 - I_{11} \cdot Z_7 - I_{12} \cdot Z_7 - I_{13} \cdot Z_7 - I_{14} \cdot Z_7 - I_{15} $				
О фанальвые приближения		$+Z_8$) $-I_{11} \cdot Z_1 - I_2$				
	[1]					
шатель	$\begin{bmatrix} I_{11} \\ I_{22} \\ I_{33} \end{bmatrix} := \text{find} ($	(I_{11}, I_{22}, I_{33})				
Pem	$\lfloor I_{33} \rfloor$					
	I ₁₁ =-0.479	-0.579i I ₂₂ =	-0.527-0.3	77i $I_{33} = 0$.036 – 0.133i	
	$I_1 := I_{11} - I_{33}$	=-0.516-0.446i	$I_5 := I_1$	$_{1}$ =-0.479-0.	579i	
	$I_2\!\coloneqq\!I_{22}\!-\!I_{33}$	=-0.563-0.244i	$I_6 := I_1$	₁ =-0.479-0.	579i	
	$I_3 := I_{22} = -0.$.527 – 0.377i	$I_7 := I_1$	$_{1}-I_{22}=0.048$	-0.202i	
	$I_4 := I_{22} = -0.$.527 – 0.377i	$I_8 := -$	$I_{33} = -0.036 + 0.036$	0.133i	

ПРИЛОЖЕНИЕ Г

Определение токов методом узловых напряжений (расчеты MATHCAD)

$XL_1 = 16$	$XC_1 = 18$	$R_2 = 14$	$j = \sqrt{-1}$	
$XL_3 = 11$	$XC_5 = 17$	$R_4 = 16$		
$XL_6 = 34$	$XC_7 = 74$	$R_5 = 58$		
$XL_8 = 29$ $E_6 = -31.027$	$XC_8\!:=\!95$ $714788745\!-\!j\! \cdot \!55$	$R_7 = 58$ 6.9757171190	477	
$Z_1 = j \cdot I$	$XL_1 - j \cdot XC_1 = -2$	2i		
$Z_2 = R_2$	=14 Z ₆ :=	$j \cdot XL_6 = 34i$	$Z_5 = R_5 - j \cdot XC_5 =$	=58 – 17i
$Z_{34}\!\coloneqq\! j$.	$XL_3 + R_4 = 16 + 1$	1i	$Z_3 = j \cdot XL_3 = 11i$	$Z_4 \! \coloneqq \! R_4 \! = \! 16$
$Z_{56} := R_{5}$	$_{5}-j \cdot XC_{5}+j \cdot XL$	₆ =58+17i		
$Z_7 := R_7$	$-j \cdot XC_7 = 58 - 76$	4i	+	
$Z_8 = j \cdot I$	$XL_8-j \cdot XC_8 = -6$	66i		
$-U_{15} \cdot Z_{15} \cdot $	$\left(\frac{1}{1} + \frac{1}{Z_8} + \frac{1}{Z_{56}}\right) - U$ $\left(\frac{1}{Z_8} + U_{35} \cdot \left(\frac{1}{Z_8} + \frac{1}{Z_{56}}\right)\right)$ $\left(\frac{1}{Z_{56}} - U_{35} \cdot \frac{1}{Z_{34}} + U\right)$ $\left(\frac{1}{Z_{56}} - U_{35} \cdot \frac{1}{Z_{34}} + U\right)$ $\left(\frac{1}{Z_{56}} - U_{35} \cdot \frac{1}{Z_{34}} + U\right)$	$\left(\frac{1}{2} + \frac{1}{Z_{34}}\right) - U_{62}$ $\left(\frac{1}{Z_{34}} + \frac{1}{Z_{7}}\right)$	$\frac{1}{Z_{34}} = 0$	
	$0.893 + 1.031i$ U_5 $-0.516 - 0.446i$ $= -0.563 - 0.244i$ $U_{65} = -0.527 - 0.525$	410	$egin{array}{ll} 419\mathrm{i} & U_{68} = 1 \\ rac{65-U_{15}+E_6}{Z_{56}} = -0.4 \\ = -0.479-0.579\mathrm{i} \\ U_{68} = 0.048-0.202\mathrm{i} \\ Z_7 \\ 35-U_{15} = -0.036+0.0000 \end{array}$	12.175 + 15.256i 79 – 0.579i
$I_4 = I_3 = -0$	0.527 – 0.377i	$I_8 = U_8$	$\frac{Z_0}{Z_0} = -0.036 + 0$	0.133i