學號: T05902136 系級: 資工一 姓名:張臻凝(Jenny Zhang)

1. (1%)請比較有無normalize(rating)的差別。並說明如何normalize.

Normalized?	Kaggle Score
Yes	0.91386
No	0.91856

From the above results, we can see that normalization does improve the score. The rating is normalized using the following formula:

$$\frac{X-\mu}{\sigma}$$
 (standard score)

2. (1%)比較不同的latent dimension的結果。

Latent Dimension	Kaggle Score
168	0.91856
666	0.91857

The two latent dimensions that I chose barely affected the results. Perhaps it is because the difference between these two numbers is not big.

3. (1%)比較有無bias的結果。

Bias?	Kaggle Score
Yes	0.91862
No	0.91856

Surprisingly, with bias, my kaggle ascore actually worsen by a little. For user bias and item bias, I picked keras default random normal initializer.

4. (1%)請試著用DNN來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF和NN的結果,討論結果的差異。

Method	Kaggle Score
MF	0.91856
DNN	0.87488

As we can see, DNN is significantly better than MF. The DNN model that I used is the one provided by TA, where the hidden layers are: Dense(150, activation = 'relu'), Dense(50, activation = 'relu'). In my opinion, the reason that MF did not do so well is because rating is based on people's opinions and is scale-free. For example, many people might love Toy Story, but there will always be some people who do not and give it a low rating. However, it is hard to predict that since everyone thinks differently. To get a better result, I think that more features are needed, such as user preferences and movie categories. Unfortunately, I did not have the time to implement it.

5. (1%)請試著將movie的embedding用tsne降維後,將movie category當作label來作圖。