Math 111C HW8

Zih-Yu Hsieh

June 3, 2025

1

Question 1 Show that every finite separable extension K/F has only finitely many sub-extensions.

Question 2 Let $L \subseteq \mathbb{C}$ be the splitting field of $f(x) = x^3 - 3x + 1$ over \mathbb{Q} . Let $\alpha, \beta, \gamma \in L$ be roots of f(x).

- (a) Calculate $Gal(L/\mathbb{Q})$ as a group of permutations of $\{\alpha, \beta, \gamma\}$.
- (b) Is there an automorphism of L that acts on $\{\alpha, \beta, \gamma\}$ as the transposition (α, β) ?

(Hint:- For a polynomial $f(x) = x^3 + ax^2 + bx + c \in \mathbb{Q}[x]$ with roots $\alpha, \beta, \gamma \in \mathbb{C}$, the discriminant of f(x), D is defined as

$$D = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2$$

It is known that $D = 18abc + a^2b^2 - 4b^3 - 4a^3c - 27c^2$.

3

Question 3 Repeat the above question with $f(x) = x^3 - 4x + 1$.

4

Question 4 Let $L \subseteq \mathbb{C}$ be the splitting field of $f(x) = (x^3 - 2)(x^2 - 3)$ over \mathbb{Q} .

- (a) Show that $L = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ and $[L : \mathbb{Q}] = 4$.
- (b) Find $\operatorname{Gal}(L/\mathbb{Q})$ as a group of permutations of the roots of f.
- (c) Which elements of your ansewr to (b) belong to the subgroup $\operatorname{Gal}(L/\mathbb{Q}(\sqrt{6}))$?

Question 5 The Galois group of a polynomial f(x) over a perfect field F is defined as Gal(K/F) where K is a splitting field of f(x). Find the Galois groups of $x^6 - 1$ over \mathbb{F}_5 , \mathbb{F}_{5^2} , and \mathbb{F}_{5^3} .