JMP, CALL

- 1. AX=0003 BX=0000 CX=0001 DX=0000. Įvykdžius nurodytą komandą, koks bus sekančios vykdomos komandos efektyvus adresas?
 - FFFA: EB A1 JMP nb (FFFA yra poslinkis kodo segmente)
- 2. Įvykdžius nurodytą komandą, apskaičiuoti sekančios vykdomos komandos absoliutų adresą, kai AX=0003, BX=0002, CX=0001, DX=0000, SF=0000.
 - FFFA: EA 80 90 00 90 90 jmp far ptr label (FFFA yra poslinkis kodo segmente)
- 3. Registrai AX=0001, BX=0002, CX=0003, DX=0004, SF=1111. Apskaičiuoti valdymo perdavimo adresą, kai duota tokia kodo dalis:
 - 71EA: E8 F1 B2 call number (71EA yra poslinkis kodo segmente)
- 4. Registras SS=ABCD, SP=0002, BP=AF00, CX=0010. Kokia bus registro SP reikšmė šešioliktainėje sistemoje įvykdžius išorinę komandą CALL?

Eilutinės komandos

- 5. Registrų SI ir DI reikšmės yra ABCD, registras CX=FFFF, registras SF=0000. Kokia bus registrų SI ir DI reikšmių suma, įvykdžius komandą REP LODSW?
- 6. Registrų reikšmės yra SI=FFFE, DS=1234, DI=FFFC, ES=1234, CX=7FFF, SF=FF00. Duomenų segmento baito su adresu FFFE reikšmė yra 01h, o baito su adresu FFFF reikšmė yra 02h. Kokia bus duomenų segmento visų baitų reikšmių suma, įvykdžius komandą REP MOVSW?

Pertraukimai

- 7. Atminties baitai su adresais nuo 00000 iki 000FF užpildyti reikšmėmis nuo -128 iki 127. Užrašykite INT 1D pertraukimo apdorojimo procedūros absoliutų adresą.
- 8. Atminties žodžiai su adresais 00000 iki 0001FE užpildyti reikšmėmis nuo 255 iki 0. Apskaičiuokite INT 37h pertraukimo apdorojimo procedūros vektoriaus absoliutaus adreso bei tos procedūros IP ir CS reikšmių sumą.

Status Flag

- 9. Registras SF= FFFF. Kokia bus SF reikšmė, atliekant baitų sudėtį dešimtainiams skaičiams 255 ir 1.
- 10. Registras SF= FFFF. Kokia bus SF reikšmė, atliekant baitų sudėtį dešimtainiams skaičiams -128 ir -128

MPL

- 11. Pasiųskite dešimtainę reikšmę -48 į X registrą per dvi mikrokomandas.
- 12. Užrašykite dvi mikrokomandas MPL kalba, kurios į registrą MBR, nenaudodamos konstantinių registrų, užrašo skaičių -4.

Atsakymai

- 1. FF9Dh
- 2. 99080h
- 3. 24DEh
- 4. FFFEh
- 5. 15798h
- 6. 18000h
- 7. 07554h
- 8. 1FDh
- 9. F77Fh
- 10. FF6Fh

```
11.X=15;MBR=LEFT_SHIFT(COM(1)+COM(1);
    MBR=LEFT_SHIFT(COM(X)+MBR);
12.MBR=MBR+COM(MBR);
    MBR=LEFT_SHIFT(MBR+MBR);
```