Soutenance mi-parcours Evaluation topologique de diverses transformations d'images

Sarah Brood & Heithem Dridi

15/12/2021

L'École des INGÉNIEURS Scientifiques

Sommaire

- Présentation du projet
- Avancée
- Gestion de projet
- Perspectives

Problématique

- Transformations abîment les objets (2D & 3D)

Rotation de 45° d'un cercle de rayon 10px avec diverses interpolations sur GIMP

Présentation du projet Problématique

Quantifier les erreurs de topologies dues à ces transformations

Rotation de 45° d'un cercle de rayon 10px

Parties

- 1. Transformations et interpolations
- 2. Topologie discrète
- 3. Homologie persistante

Documentation

Transformations affines

- Translation

- Rotation

- Reflection

- Cisaillement

- Mise à l'échelle

images par M. W. Toews - Own work, CC BY-SA 4.0, Wikipedia

Interpolations

- Plus proches voisins

- Bilinéaire

- Sinus Cardinal

- Bicubique

 Bicubique avec fenêtre de Lanczos

- ..

Source: Pascal Getreuer, Linear Methods for Image Interpolation, Image Processing On Line, 1 (2011), pp. 238–259

Topologie discrète

- Quantifier les nombres de Betti selon les adjacences :
 - BO: Nombre de composantes connexes
 - B1: Nombre de trous circulaires
 - B2 : Nombre de cavités

n nombres de Betti en n Dimensions

ou en 3D:

- 6-26
- 26-6

Homologie persistante

Source: Mattia G. Bergomi, Patrizio Frosini, Daniela Giorgi and Nicola Quercioli, *Towards a topological*—geometrical theory of group equivariant non-expansive operators for data analysis and machine learning

Technologies

C++

Bien documentées et exemples

Geometry Understanding in Higher Dimensions

Architecture 1

Architecture 2

Avancée

- Transformations implémentées en 2D et 3D
- Architecture
- Topologie 2D et 3D
- Affichages 3D et 2D
- Affichage topologie 2D

Plus proche voisin

Bilinéaire

Bicubique

Rotation de 45° d'un anneau de rayon 20px

Avancée

BO: 8 B1: 2 BO: 9 B1: 2

Rotation de 45° et affichage des composantes topologiques

Avancée

Rotation de 45° en 3D

Problèmes rencontrés

- Interpolation bicubique

- Intégration en C++

- Passage 2D vers 3D

Bicubique

Gestion de Projet

ENSI CAEN ÉCOLE PUBLIQUE D'INGÉNIEURS CENTRE DE RECHERCHE

- Réunions hebdomadaires
 - retour sur ce qui a été fait
 - échanges sur les problèmes
 - explications notions
 - Comptes rendus

- Gestion sur Gitlab:
 - 1 Issue par tâche

- Répartition des tâches par préférences

Perspectives

- finir une implémentation propre de l'existant
- documenter le plus possible
- se renseigner sur l'homologie persistante
- intégrer des outils pour l'homologie

Conclusion

Projet très intéressant

Contents de l'avancée

Beaucoup de nouvelles connaissances

MERCI

L'École des INGÉNIEURS Scientifiques