STAT 8054 notes on Markov Chain Monte Carlo

Spring 2014

May 4, 2014

Contents

1	Introduction			1
2	Review of \mathcal{X} -valued random variables			2
3	Dis	crete t	$\mathcal X$ -valued random variables 2 me homogeneous Markov chains 3 ce of Markov Chains used in MCMC 5 olis-Hastings 5 n walk Metropolis 7 Example: approximately sample from $N(\mu, \sigma^2)$ 8	
4	Convergence of Markov Chains used in MCMC		5	
5	Alg	Algorithms		
	5.1	Metro	polis-Hastings	5
	5.2		om walk Metropolis	7
		5.2.1	Example: approximately sample from $N(\mu, \sigma^2)$	8
		5.2.2	Example: approximately sample from a bivariate posterior	8
	5.3 Independence sampler		9	
5.4 Variable at a time Metropolis–Hastings and the Gibbs san		Varial	ole at a time Metropolis–Hastings and the Gibbs sampler	9
		5.4.1	Example: approximately sample from a bivariate posterior	11
		5.4.2	Example: fit a linear random effects model	12
		5.4.3	Example: Bayesian ridge regression	14
6	Infe	erence	for $E\{h(X)\}$, where X has the target distribution	15

1 Introduction

In ordinary Monte Carlo, we studied methods to generate a realization of X_1, \ldots, X_n , which are iid with some distribution of interest. Our goal is to still sample from this distribution, but we are willing to relax the requirement that X_1, \ldots, X_n are iid: we will allow X_1, \ldots, X_n to be dependent and have different distributions, but the distribution of X_k will converge to the distribution of interest as k increases.

2 Review of \mathcal{X} -valued random variables

The following review is based on Chapter 2 of Keener (2005). Suppose that (Ω, \mathcal{F}, P) is a probability space and $(\mathcal{X}, \mathcal{B})$ is a measurable space. An \mathcal{X} -valued random variable X is function $X : \Omega \to \mathcal{X}$ such that $\{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$ for every $B \in \mathcal{B}$. The probability measure $P_X : \mathcal{B} \to [0, 1]$ defined by

$$P_X(A) = P(X \in A) \equiv P(\{\omega \in \Omega : X(\omega) \in A\}),$$

is called the distribution of X. We indicate this by writing $X \sim P_X$.

Let $h: \mathcal{X} \to \mathbb{R}$ be a measurable function, i.e. $\{x \in \mathcal{X} : h(x) \in B\} \in \mathcal{B}$ for every $B \in \mathcal{B}_{\mathbb{R}}$. We define the integral of h against the probability measure P_X by

$$\int h(x)P_X(dx) = E\{h(X)\}.$$

In particular, when $h(x) = 1 (x \in A)$ and $A \in \mathcal{B}$,

$$P_X(A) = \int 1(x \in A)P_X(dx).$$

If ν is a sigma-finite measure on \mathcal{B} such that $P_X(A) = 0$ whenever $\nu(A) = 0$, then we say that P_X is absolutely continuous with respect to ν . In this case, there exits a non-negative measurable function f called the density of P_X with respect to ν such that

$$P_X(A) = \int 1(x \in A) f(x) \nu(dx).$$

Also for $X \sim P_X$ we have that

$$E\{h(X)\} = \int h(x)P_X(dx) = \int h(x)f(x)\nu(dx).$$

Example 1.

Suppose that $(\mathcal{X}, \mathcal{B}) = (\mathbb{R}^p, \mathcal{B}_{\mathbb{R}^p})$, and X is an \mathbb{R}^p -valued random variable (typically called a random vector) with distribution P_X with density f with respect to Lebesgue measure ν . Then

$$E\{h(X)\} = \int h(x)P_X(dx) = \int h(x)f(x)\nu(dx)$$
$$= \int \cdots \int h(x_1, \dots, x_p)f(x_1, \dots, x_p)dx_1, \dots, dx_p.$$

Example 2.

Suppose that \mathcal{X} is countable so our measurable space is $(\mathcal{X}, 2^{\mathcal{X}})$. Let X be an \mathcal{X} -valued random variable with distribution P_X with density f (called a probability mass function) with respect to counting measure ν . Then

$$E\{h(X)\} = \int h(x)P_X(dx) = \sum_{x \in \mathcal{X}} h(x)f(x).$$

3 Discrete time homogeneous Markov chains

This section is based on Atchade (2008) and Jones (2013).

Definition 1. A transition kernel Q on a measurable space $(\mathcal{X}, \mathcal{B})$ is a function $Q : \mathcal{X} \times \mathcal{B} \to [0, 1]$ such that $Q(x, \cdot) : \mathcal{B} \to [0, 1]$ is a probability measure on \mathcal{B} (a distribution) for all $x \in \mathcal{X}$ and $Q(\cdot, A) : \mathcal{X} \to [0, 1]$ is a measurable function for all $A \in \mathcal{B}$.

Example 3.

Take $\mathcal{X} = \mathbb{R}^p$ and $\mathcal{B} = \mathcal{B}_{\mathbb{R}^p}$. Let ν be Lebesgue measure on \mathbb{R}^p and suppose that $\Sigma \in \mathbb{S}_+^p$. Define

$$Q(x,A) = \int 1(y \in A)(2\pi)^{-p/2} \{\det(\Sigma^{-1})\}^{1/2} \exp\{0.5(y-x)'\Sigma^{-1}(y-x)\} \nu(dy),$$

for all $x \in \mathbb{R}^p$ and $A \in \mathcal{B}$. Then Q is a transition kernel: $Q(x, \cdot)$ is a probability measure on \mathcal{B} (it's the $N_p(x, \Sigma)$ distribution) and $\{x \in \mathbb{R}^p : Q(x, A) \in B\} \in \mathcal{B}_{\mathbb{R}^p}$ for every $B \in \mathcal{B}_{\mathbb{R}}$.

Definition 2. A sequence of \mathcal{X} -valued random variables X_0, X_1, \ldots , is a (time-homogeneous) Markov chain with transition kernel Q if

$$(X_{n+1}|X_0=x_0,\ldots,X_n=x_n)\sim (X_{n+1}|X_n=x_n)\sim Q(x_n,\cdot),$$

for each non-negative integer n. Here $P(X_{n+1} \in A | X_n = x_n) = Q(x_n, A)$ for all $A \in \mathcal{B}$.

To generate a realization of a Markov chain where X_0 has initial distribution P_{X_0} and the chain has transition kernel Q, we

- 1. generate a realization x_0 of $X_0 \sim P_{X_0}$
- 2. generate a realization x_1 of $(X_1|X_0=x_0) \sim Q(x_0,\cdot)$
- 3. generate a realization x_2 of $(X_2|X_1=x_1) \sim Q(x_1,\cdot)$
- 4. ...

the sequence x_0, x_1, \ldots is a realization of the Markov chain. Let $X_0 \sim P_{X_0}$, then the marginal distribution/probability measure for X_1 at $A \in \mathcal{B}$ is

$$P(X_1 \in A) = E[E\{1(X_1 \in A)|X_0\}]$$

$$= \int \left\{ \int 1(x_1 \in A)Q(x_0, dx_1) \right\} P_{X_0}(dx_0)$$

$$= \int Q(x_0, A)P_{X_0}(dx_0)$$

$$\equiv P_{X_0}Q(A).$$

We write this as $X_1 \sim P_{X_0}Q$. We also have that $(X_2|X_0=x_0) \sim QQ(x_0,\cdot)$:

$$P(X_2 \in A | X_0 = x_0) = E[E\{1(X_2 \in A) | X_1, X_0 = x_0\} | X_0 = x_0]$$

$$= \int \left\{ \int 1(x_2 \in A) Q(x_1, dx_2) \right\} Q(x_0, dx_1)$$

$$= \int Q(x_1, A) Q(x_0, dx_1)$$

$$\equiv QQ(x_0, A)$$

So $X_2 \sim P_{X_0}QQ = P_{X_0}Q^{(2)}$, In general, $X_n \sim P_{X_0}Q^{(n)}$ and $(X_n|X_0 = x) \sim Q^{(n)}(x,\cdot)$.

Suppose that $h: \mathcal{X} \to \mathbb{R}$ is measurable, i.e. $\{x \in \mathcal{X} : h(x) \in B\} \in \mathcal{B}$ for every Borel set $B \in \mathcal{B}_{\mathbb{R}}$. Then

$$E\{h(X_{n+1})|X_n = x_n\} = \int h(x_{n+1})Q(x_n, dx_{n+1}) \equiv Qh(x_n),$$

for each $x_n \in \mathcal{X}$.

If $X_0 \sim P_X$ implies that $X_1 \sim P_X$, then P_X is an *invariant distribution* for the transition kernel Q, i.e.

$$P_X(A) = \int Q(x, A) P_X(dx),$$

for all $A \in \mathcal{B}$. We write this as $P_X = P_X Q$. If the initial distribution is P_X , then $X_k \sim P_X$ for all k. We say that Q is reversible with respect to P_X if

$$\iint h(x,y)Q(x,dy)P_X(dx) = \iint h(x,y)Q(y,dx)P_X(dy), \tag{1}$$

for any h such that both sides of (1) exist. If the chain is reversible, then the distribution of $(X_i, X_{i+1}, \ldots, X_{i+k})$ is the same as the distribution of (X_{i+k}, \ldots, X_i) for all i and k. Reversible implies invariance:

$$P_X Q(A) = \int Q(x, A) P_X(dx)$$

$$= \iint 1(y \in A) Q(x, dy) P_X(dx)$$

$$= \iint 1(y \in A) Q(y, dx) P_X(dy)$$

$$= \int 1(y \in A) P_X(dy) \left(\int Q(y, dx) \right)$$

$$= P_X(A).$$

Suppose that $q(x, \cdot)$ is a density for $Q(x, \cdot)$ and f is a density for P_X . If the *detailed balance* condition holds, i.e.

$$f(x)q(x,y) = f(y)q(y,x),$$

then P_X is invariant for Q.

4 Convergence of Markov Chains used in MCMC

Let $(\mathcal{X}, \mathcal{B})$ be a measurable space and let X_0, X_1, \ldots be an \mathcal{X} -valued Markov Chain with transition kernel Q and invariant distribution P_X .

- 1. The chain is *aperiodic* if there does not exist a $d \geq 2$ and disjoint subsets $\mathcal{X}_1, \ldots, \mathcal{X}_d$ of \mathcal{X} such that $Q(x, \mathcal{X}_1) = 1$ for all $x \in \mathcal{X}_d$ and $Q(x, \mathcal{X}_i) = 1$ for all $x \in \mathcal{X}_{i-1}$ $(i = 2, \ldots, d)$.
- 2. The chain is P_X -irreducible if for any $A \in \mathcal{B}$ with $P_X(A) > 0$ implies that $P(t_A < \infty | X_0 = x) > 0$ for $x \in \mathcal{X}$, where $t_A = \min(n > 0 : X_n \in A)$.
- 3. The chain is *Harris* if for any $A \in \mathcal{B}$ with $P_X(A) > 0$ implies that $P(t_A < \infty | X_0 = x) = 1$ for all $x \in \mathcal{X}$, where $t_A = \min(n > 0 : X_n \in A)$.

Define the total variation distance between measures P_X and P_Y by

$$||P_X - P_Y||_{\text{TV}} = \sup_{A \in \mathcal{B}} |P_X(A) - P_Y(A)|$$

The norm is $||P_Z||_{TV} = \sup_{A \in \mathcal{B}} P_Z(A) - \inf_{A \in \mathcal{B}} P_Z(A)$.

Theorem 1. If the \mathcal{X} -valued Markov Chain X_0, X_1, \ldots with invariant distribution P_X and transition kernel Q is P_X -irreducible, then P_X is the unique invariant distribution. Furthermore, if the chain is aperiodic, then there exists a set N with $P_X(N) = 0$ such that for all $x \notin N$,

$$||Q^{(n)}(x,\cdot) - P_X(\cdot)||_{TV} \to 0,$$

as $n \to \infty$. This holds for all $x \in \mathcal{X}$ if the chain is Harris. This result is taken from "Convegence of Markov chains from all starting points with applications to Metropolis–Hastings algorithms" by R. L. Tweedie in 1999.

5 Algorithms

5.1 Metropolis-Hastings

Let $(\mathcal{X}, \mathcal{B})$ be a measurable space. Our goal is to approximately sample from the distribution P_X . We will create an \mathcal{X} -valued Markov chain X_0, X_1, \ldots with transition kernel Q so that the target distribution P_X is invariant for Q. Let P_X have density f with respect to the sigma-finite measure ν : $P_X(dx) = f(x)\nu(dx)$. Let G be a proposal kernel where $G(x, dy) = g(x, y)\nu(dy)$, so $g(x, \cdot)$ is the density for $G(x, \cdot)$ with respect to ν . Define

$$\alpha(x,y) = \min\left\{1, \frac{f(y)g(y,x)}{f(x)g(x,y)}\right\}. \tag{2}$$

The denominator of the *Hastings ratio* in (2) is always positive provided that we started the chain at a point $x \in \mathcal{X}$ such that f(x) > 0. Of course, g(x, y) > 0 because y is generated from the distribution with density $g(x, \cdot)$. In (2), we only need to know unnormalized densities $\tilde{f}(x) = K_f f(x)$ and $\tilde{g}(x, y) = K_g g(x, y)$, because these constants cancel in the Hastings ratio.

Algorithm 1. Pick or generate $X_0 \in \mathcal{X}$ with $f(X_0) > 0$ and set n = 0

- 1. Given $X_n = x_n$, generate $Z \sim G(x_n, \cdot)$ and independently generate $U \sim \text{Unif}(0, 1)$.
- 2. If $U \leq \alpha(x_n, Z)$ then set $X_{n+1} = Z$. Otherwise set $X_{n+1} = X_n$.
- 3. Replace n by n + 1 and go to step 1.

We can express the transition kernel Q by

$$Q(x,A) = \int 1(y \in A)\alpha(x,y)g(x,y)\nu(dy) + \left\{1 - \int \alpha(x,y)g(x,y)\nu(dy)\right\}I(x,A)$$
$$= \int 1(y \in A)\alpha(x,y)g(x,y)\nu(dy) + r(x)I(x,A), \tag{3}$$

where I is the identity kernel and $r(x) = 1 - \int \alpha(x,y)g(x,y)\nu(dy)$ is the marginal probability that the chain remains at x. We typically define $Q^{(0)}(x,A) \equiv I(x,A) = 1(x \in A)$. The measure $I(x,\cdot)$ does not have a density with respect to ν . To derive (3), do the following decomposition:

$$P(X_{n+1} \in A | X_n = x) = P(X_{n+1} \in A, U \le \alpha(x, Z) | X_n = x) + P(X_{n+1} \in A, U > \alpha(x, Z) | X_n = x) = T_1 + T_2.$$

Then

$$T_1 = E\left[E\left\{1(Z \in A, U \leq \alpha(x, Z) | Z, X_n = x\right\} | X_n = x\right]$$

$$= E\left[\int 1(Z \in A)1(u \leq \alpha(x, Z))du \middle| X_n = x\right]$$

$$= E\left[1(Z \in A)\alpha(x, Z) \middle| X_n = x\right]$$

$$= \int 1(z \in A)\alpha(x, z)g(x, z)\nu(dz)$$

and

$$T_{2} = E[E\{1(x \in A, U > \alpha(x, Z) | Z, X_{n} = x\} | X_{n} = x]$$

$$= E[\int 1(x \in A)1(u > \alpha(x, Z))du | X_{n} = x]$$

$$= E[1(x \in A)(1 - \alpha(x, Z)) | X_{n} = x]$$

$$= 1(x \in A) - 1(x \in A) \int \alpha(x, z)g(x, z)\nu(dz).$$

Given the transition kernel expression in (3), we will show the chain is reversible with respect to P_X , i.e.

$$\iint h(x,y)Q(x,dy)P_X(dx) = \iint h(x,y)Q(y,dx)P_X(dy). \tag{4}$$

for all h such that both sides of (4) exist. Recall that $r(x) = \{1 - \int \alpha(x, z)g(x, z)\nu(dz)\}$. Starting with the left hand side of (4),

$$\iint h(x,y)Q(x,dy)P_X(dx) = \iint h(x,y)\alpha(x,y)g(x,y)\nu(dy)f(x)\nu(dx)$$

$$+ \iint h(x,y)I(x,dy)r(x)f(x)\nu(dx)$$

$$= \iint h(x,y)\min\{g(x,y)f(x),f(y)g(y,x)\}\nu(dy)\nu(dx)$$

$$+ \int h(x,x)r(x)f(x)\nu(dx)$$

$$= \iint h(x,y)\min\{g(y,x)f(y),f(x)g(x,y)\}\nu(dx)\nu(dy)$$

$$+ \int h(y,y)r(y)f(y)\nu(dy)$$

$$= \iint h(x,y)\alpha(y,x)g(y,x)\nu(dx)f(y)\nu(dy)$$

$$+ \int h(y,y)r(y)f(y)\nu(dy)$$

$$= \iint h(x,y)Q(y,dx)P_X(dy).$$

So we have shown that the chain is reversible with respect to P_X , which implies that P_X is the invariant distribution. We also have that if P_X is positive on \mathcal{X} and there exist $\epsilon, R > 0$ such that

$$\inf_{y \in B(x,R)} \min(g(x,y), g(y,x)) > \epsilon,$$

for all $x \in \mathcal{X}$, then Q is P_X -irreducible and aperiodic, so P_X is the unique invariant distribution and we have convergence in the TV norm.

5.2 Random walk Metropolis

If the density of our proposal kernel $g(x,\cdot)$ is of the form $g(x,y)=g^*(y-x)$, where g^* is a density, then we call the resulting MH algorithm a random walk Metropolis algorithm. In this case we can write the Hastings ratio in (2) as

$$\frac{f(y)g(y,x)}{f(x)g(x,y)} = \frac{f(y)g^{*}(x-y)}{f(x)g^{*}(y-x)}.$$

If g^* is symmetric, i.e. $g^*(-u) = g^*(u)$, then the Hastings ratio simplifies:

$$\frac{f(y)g(y,x)}{f(x)g(x,y)} = \frac{f(y)g^*(y-x)}{f(x)g^*(y-x)} = \frac{f(y)}{f(x)}.$$

e.g. $\mathcal{X} = \mathbb{R}^p$ and $G(x,\cdot) = N_p(x,\Sigma)$; $\mathcal{X} = \mathbb{R}$ and $G(x,\cdot) = \mathrm{Unif}(x-b,x+b)$.

5.2.1 Example: approximately sample from $N(\mu, \sigma^2)$

We give a simple univariate illustration of the random walk Metropolis algorithm to approximately sample from $N(\mu, \sigma^2)$. We will use the symmetric kernel $G(x, \cdot) \sim \text{Unif}(x - b, x + b)$. Then $g(x, y) \propto 1\{y \in (x - b, x + b)\} = 1\{y - x \in (-b, b)\}$ and $f(x) \propto \exp\{-(x - \mu)^2/(2\sigma^2)\}$. Then

$$\alpha(x,y) = \min\left\{1, \frac{f(y)}{f(x)}\right\} = \min\left\{1, \exp\left[\frac{1}{2\sigma^2}\left\{(x-\mu)^2 + (y-\mu)^2\right\}\right]\right\}.$$

We pick $X_0 \in \mathbb{R}$, set n = 0, and perform the following steps:

- 1. Given $X_n = x_n$, generate $Z \sim \text{Unif}(x_n b, x_n + b)$ and independently generate $U \sim \text{Unif}(0, 1)$.
- 2. If $U \leq \alpha(x_n, Z)$ then set $X_{n+1} = Z$. Otherwise set $X_{n+1} = X_n$.
- 3. Replace n by n+1 and go to step 1.

5.2.2 Example: approximately sample from a bivariate posterior

Suppose we measured heights $x_1, \ldots x_n$. Assume that $x = (x_1, \ldots, x_n)'$ is a realization of Z, where

$$(X|M = \mu, V = v) \sim N_n(\mu 1_n, v I_n)$$
$$(M|V = v) \sim N(\mu_M, v_M)$$
$$V \sim \text{InvGam}(\alpha, \beta)$$

The density for $\operatorname{InvGam}(\alpha, \beta)$ evaluated at v is proportional to $v^{-(\alpha+1)}e^{-\beta/v}$. Our posterior is

$$f(\mu, v|x) \propto v^{-(\alpha+1)} e^{-\beta/v} v^{-n/2} \exp\left\{-\frac{1}{2v} \sum_{i=1}^{n} (x_i - \mu)^2\right\} \exp\left\{-\frac{1}{2v_M} (\mu - \mu_M)^2\right\}$$
$$= v^{-(\alpha+1+n/2)} \exp\left\{-\frac{\beta}{v} - \frac{1}{2v} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{1}{2v_M} (\mu - \mu_M)^2\right\}.$$

For illustration, we will use a random walk Metropolis algorithm with a $N_2\{(m_n, v_n)', D\}$ trial distribution to approximately sample from (M, V|X = x). This is an inefficient approach. The covariance matrix will be diagonal: $D = \text{diag}(s_1^2, s_2^2)$. Also,

$$\log \alpha \{(\mu_x, v_x), (\mu_y, v_y)\} = \min \{0, \log f(\mu_y, v_y) - \log f(\mu_x, v_x)\},\,$$

where

$$\log f(\mu_y, v_y) = -(\alpha + 1 + n/2) \log v_y - \frac{1}{2v_y} \sum_{i=1}^n (x_i - \mu_y)^2 - \frac{1}{2v_M} (\mu_y - \mu_M)^2 - \beta/v_y,$$

provided that $v_y > 0$, otherwise we define $\log f(\mu_y, v_y) = -\infty$. To summarize the algorithm, we pick $(\mu_0, v_0) \in \mathbb{R}^2$ and $D = \operatorname{diag}(s_1^2, s_2^2)$; set n = 0; and perform the following steps:

- 1. Generate $Z \sim N_2\{(\mu_n, v_n)', D\}$ and independently generate $U \sim \text{Unif}(0, 1)$.
- 2. If $\log U \leq \log \alpha \{(\mu_n, v_n), Z\}$ then set $(\mu_{n+1}, v_{n+1})' = Z$. Otherwise set $(\mu_{n+1}, v_{n+1})' = (\mu_n, v_n)'$.
- 3. Replace n by n+1 and go to step 1.

5.3 Independence sampler

If the density of our proposal kernel $g(x,\cdot)$ is of the form $g(x,y)=g^*(y)$, where g^* is a density, then we call the resulting MH algorithm an *independence sampler*. In this case we can write the ratio in (2) as

$$\frac{f(y)g(y,x)}{f(x)g(x,y)} = \frac{f(y)g^*(x)}{f(x)g^*(y)}.$$

We need to select g^* carefully to ensure that the Markov chain converges to the target distribution.

5.4 Variable at a time Metropolis–Hastings and the Gibbs sampler

Suppose that there are intermediate \mathcal{X} -valued random variables in the Markov chain:

$$\ldots, X_n, X_{n,b}, X_{n+1}, X_{n+1,b}, X_{n+1}, \ldots$$

From X_n to $X_{n,b}$ we use kernel Q_1 and from $X_{n,b}$ to X_{n+1} we use kernel Q_2 . The kernel Q for the combination/composition of Q_1 and Q_2 is

$$Q(x_n, A) = P(X_{n+1} \in A | X_n = x_n)$$

$$= E[E\{1(X_{n+1} \in A) | X_{n,b}, X_n = x_n\} | X_n = x_n]$$

$$= \int \left\{ \int 1(x_{n+1} \in A) Q_2(x_{n,b}, dx_{n+1}) \right\} Q_1(x_n, dx_{n,b})$$

$$= \int Q_2(x_{n,b}, A) Q_1(x_n, dx_{n,b})$$

$$\equiv Q_1 Q_2(x_n, A)$$

Some algorithms for MCMC involve creating a transition kernel Q from sub-transition kernels Q_1, \ldots, Q_p . So long has each Q_j has invariant distribution P_X , i.e. $P_XQ_j = P_X$, then $P_XQ_1 \cdots Q_j = P_XQ = P_X$ because $(P_XQ_1)Q_2 = P_XQ_2 = P_X$, so $((P_XQ_1)Q_2)Q_3 = P_XQ_3 = P_X$, and so on.

Suppose that $X_n = (X_{n1}, \dots, X_{np})$. In variable at a time Metropolis-Hastings, we update X_{nj} with the proposal density $g_j(x, \cdot)$ for $j = 1, \dots, p$. Define

$$\alpha_j(x,y) = \min\left(1, \frac{f(x^{(y,j)})g_j(x^{(y,j)}, x_j)}{f(x)g_j(x,y)}\right),\tag{5}$$

where $x^{(y,j)} = (x_1, \dots, x_{j-1}, y, x_{j+1}, \dots, x_p)$. This denominator is always positive if we start the chain at x with f(x) > 0.

Algorithm 2 (Variable at a time Metropolis–Hastings). Pick or generate $X_0 \in \mathcal{X}$ with $f(X_0) > 0$ and set n = 0

- 1. Set $Y = (Y_1, \dots, Y_p) = X_n = (X_{n1}, \dots, X_{np}).$
- 2. Generate $Z \sim G_1(Y, \cdot)$ and independently generate $U \sim \text{Unif}(0, 1)$. If $U \leq \alpha_1(Y, Z)$ then set $Y_1 = Z$ Otherwise set $Y_1 = X_{n1}$.
- 3. Generate $Z \sim G_2(Y, \cdot)$ and independently generate $U \sim \text{Unif}(0, 1)$. If $U \leq \alpha_2(Y, Z)$ then set $Y_2 = Z$ Otherwise set $Y_2 = X_{n2}$.
- 4. ...
- 5. Generate $Z \sim G_p(Y, \cdot)$ and independently generate $U \sim \text{Unif}(0, 1)$. If $U \leq \alpha_p(Y, Z)$ then set $Y_p = Z$ Otherwise set $Y_p = X_{np}$.
- 6. Set $X_{n+1} = Y$, replace n by n+1 and go to step 1.

The Gibbs sampler is a special case of Algorithm 2. Let x_{-j} be the vector x with its jth entry removed Take $g_j(x,y) = f_j(y|x_{-j})$, where f_j is the density for the conditional distribution of the jth variable in $X \sim f$ given the others. In this case $\alpha_j(x,y) = 1$ because the ratio in (5) is

$$\frac{f(x^{(y,j)})g_j(x^{(y,j)},x_j)}{f(x)g_j(x,y)} = \frac{f(x^{(y,j)})f_j(x_j|x_{-j})}{f(x)f_j(y|x_{-j})} = \frac{f(x^{(y,j)})K_jf(x)}{f(x)K_jf(x^{(y,j)})} = 1.$$

So the Gibbs sampler always accepts. Let $Y = (Y_1, \ldots, Y_p)$ be a random vector with the target distribution (with density f). The Gibbs sampler (with a fixed scan) simplifies to the following:

Algorithm 3 (Gibbs sampler). Pick or generate $x_0 = (x_{01}, \ldots, x_{0p}) \in \mathcal{X}$ with $f(x_0) > 0$ and set n = 0

- 1. Generate a realization $x_{n+1,1}$ of $(Y_1|Y_2 = x_{n2},...,Y_p = x_{np})$.
- 2. Generate a realization $x_{n+1,2}$ of $(Y_2|Y_1 = x_{n+1,1}, Y_3 = x_{n,3}, \dots, Y_p = x_{np})$.
- *3. ...*
- 4. Generate a realization $x_{n+1,p}$ of $(Y_p|Y_1 = x_{n+1,1}, \dots, Y_{p-1} = x_{n+1,p-1})$.
- 5. Replace n by n + 1 and go to step 1.

It is important that the steps in Algorithm 3 are performed sequentially and not in parallel. We can modify the order of this sequence.

5.4.1 Example: approximately sample from a bivariate posterior

Let $x = (x_1, \ldots, x_n)$ be measurements of some numerical characteristic on n subjects. Suppose that x is a realization of X, where

$$(X|M = \mu, V = v) \sim N_n(\mu 1_n, v I_n),$$

$$(M|V = v) \sim N(\mu_M, v_M),$$

$$V \sim \text{InvGam}(\alpha, \beta),$$

where $\mu_M, v_M, \alpha, \beta$ are user-specified prior parameters. The density for InvGam (α, β) evaluated at v is proportional to $v^{-(\alpha+1)}e^{-\beta/v}$. The joint density is defined by

$$f(\mu, v, x) \propto v^{-(\alpha+1)} e^{-\beta/v} v^{-n/2} \exp\left\{-\frac{1}{2v} \sum_{i=1}^{n} (x_i - \mu)^2\right\} \exp\left\{-\frac{1}{2v_M} (\mu - \mu_M)^2\right\}.$$

Then

$$f(v|\mu, x) \propto v^{-n/2} e^{-\beta/v} \exp\left\{-\frac{1}{2v} \sum_{i=1}^{n} (x_i - \mu)^2\right\} v^{-(\alpha+1)}$$
$$= v^{-(\alpha+1+n/2)} \exp\left[-\left\{\beta + \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2\right\} / v\right].$$

Thus

$$(V|M=\mu, X=x) \sim \text{InvGam}\left(\alpha + \frac{n}{2}, \quad \beta + \frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^2\right)$$

We also have that

$$f(\mu|v,x) \propto \exp\left\{-\frac{1}{2v}\sum_{i=1}^{n}(x_i-\mu)^2\right\} \exp\left\{-\frac{1}{2v_M}(\mu-\mu_M)^2\right\}$$

$$\propto \exp\left(-0.5v^{-1}\sum_{i=1}^{n}x_i^2 + \mu v^{-1}\sum_{i=1}^{n}x_i - 0.5v^{-1}n\mu^2 - 0.5v_M^{-1}\mu^2 + \mu v_M^{-1}\mu_M\right)$$

$$\propto \exp\left\{-0.5\mu^2(nv^{-1} + v_M^{-1}) + \mu\left(v^{-1}n\bar{x} + v_M^{-1}\mu_M\right)\right\}$$

The density for N(m, w) is proportional in y to $\exp\{-0.5y^2v^{-1} + ymw^{-1}\}$, so

$$(M|V=v,X=x) \sim N\left(\frac{n\bar{x} + vv_M^{-1}\mu_M}{n + vv_M^{-1}}, \frac{1}{nv^{-1} + v_M^{-1}}\right)$$

To summarize, we pick (v_0, m_0) and set n = 0.

- 1. Generate v_{n+1} from $(V|M=m_n, X=x)$.
- 2. Generate m_{n+1} from $(M|V = v_{n+1}, X = x)$.
- 3. Replace n by n+1 and go to step 1.

5.4.2 Example: fit a linear random effects model

Let y_{it} be the observed response for the *i*th subject at time *t*. Suppose that y_{it} is a realization of Y_{it} , where

$$(Y_{it}|M=m, A=a, V_E=v_E, V_A=v_A) \sim_{\text{ind}} N(m+a_i, v_E),$$

$$i=1, \dots, n, \quad t=1, \dots, T_i$$

$$(M|A=a, V_E=v_e, V_A=v_a) \sim N(0, v_M)$$

$$(A|V_E=v_E, V_A=v_A) \sim N_n(0, v_A I_n)$$

$$(V_E|V_A=v_A) \sim \text{InvGam}(\alpha_E, \beta_E)$$

$$V_A \sim \text{InvGam}(\alpha_A, \beta_A)$$

Let y be a realization of $Y=(Y_{11},\ldots,Y_{nT_n})$. Recall that the density for $\operatorname{InvGam}(\alpha,\beta)$ evaluated at v is proportional to $v^{-(\alpha+1)}e^{-\beta/v}$. The joint density is defined by

$$f(y,a,m,v_E,v_A) \propto v_A^{-(\alpha_A+1)} e^{-\beta_A/v_A} v_E^{-(\alpha_E+1)} e^{-\beta_E/v_E} * v_A^{-n/2} \exp\left(-\frac{1}{2v_A} \sum_{i=1}^n a_i^2\right) v_M^{-1/2} \exp\left(-\frac{1}{2v_M} m^2\right) * v_E^{-\sum_{i=1}^n T_i/2} \exp\left\{-\frac{1}{2v_E} \sum_{i=1}^n \sum_{t=1}^{T_i} (y_{it} - m - a_i)^2\right\}.$$

So we have that

$$f(v_A|a, m, v_E, y) \propto v_A^{-(\alpha_A + 1 + n/2)} \exp\left\{-\frac{1}{v_A} \left(\beta_A + \frac{1}{2} \sum_{i=1}^n a_i^2\right)\right\}$$

$$f(v_E|a, m, v_A, y) \propto v_E^{-(\alpha_E + 1 + \frac{1}{2} \sum_{i=1}^n T_i)} \exp\left[-\frac{1}{v_E} \left\{\beta_E + \frac{1}{2} \sum_{i=1}^n \sum_{t=1}^{T_i} (y_{it} - m - a_i)^2\right\}\right]$$

Thus

$$(V_A|A = a, M = m, V_E = v_E, Y = y) \sim \text{InvGam}\left(\alpha_A + n/2, \quad \beta_A + \frac{1}{2}\sum_{i=1}^n a_i^2\right)$$

 $(V_E|A = a, M = m, V_A = v_A, Y = y) \sim \text{InvGam}\left(\alpha_E + \frac{1}{2}\sum_{i=1}^n T_i, \quad \beta_E + \frac{1}{2}\sum_{i=1}^n \sum_{t=1}^{T_i} (y_{it} - m - a_i)^2\right)$

We also have that

$$f(m|a, v_A, v_E, y) \propto \exp\left\{-\frac{1}{2v_E} \sum_{i=1}^n \sum_{t=1}^{T_i} (y_{it} - a_i - m)^2\right\} \exp\left(-\frac{1}{2v_M} m^2\right)$$

$$\propto \exp\left[-\frac{1}{2v_E} \sum_{i=1}^n \sum_{t=1}^{T_i} \left\{ (y_{it} - a_i)^2 - 2(y_{it} - a_i)m + m^2 \right\} - \frac{1}{2v_M} m^2 \right]$$

$$\propto \exp\left\{-0.5m^2 \left(\sum_{i=1}^n T_i / v_E + 1 / v_M\right) + m \sum_{i=1}^n \sum_{t=1}^{T_i} (y_{it} - a_i) / v_E \right\}$$

This implies that

$$(M|A = a, V_E = v_E, V_A = v_A, Y = y) \sim N\left(\frac{\sum_{i=1}^n \sum_{t=1}^{T_i} (y_{it} - a_i)}{\sum_{i=1}^n T_i + v_E/v_M}, \frac{1}{\sum_{i=1}^n T_i/v_E + 1/v_M}\right)$$

Let a_{-i} be the vector a with its ith entry removed. We also have that

$$f(a_i|a_{-i}, m, v_A, v_E, y) \propto \exp\left\{-\frac{1}{2v_E} \sum_{t=1}^{T_i} (y_{it} - m - a_i)^2\right\} \exp\left(-\frac{1}{2v_A} a_i^2\right)$$

$$\propto \exp\left[-\frac{1}{2v_E} \sum_{t=1}^{T_i} \{(y_{it} - m)^2 - 2a_i(y_{it} - m) + a_i^2\} - \frac{1}{2v_A} a_i^2\right]$$

$$\propto \exp\left\{-0.5a_i^2 (T_i/v_E + 1/v_A) + a_i \sum_{t=1}^{T_i} (y_{it} - m)/v_E\right\}$$

This implies that

$$(A_i|M=m, A_{-i}=a_{-i}, V_E=v_E, V_A=v_A, Y=y) \sim N\left(\frac{\sum_{t=1}^{T_i}(y_{it}-m)}{T_i+v_E/v_A}, \frac{1}{T_i/v_E+1/v_A}\right),$$

for i = 1, ..., n.

To summarize, we pick $(m_0, a_0, v_{A,0}, v_{E,0})$ and set n = 0.

- 1. Generate m_{n+1} from $(M|A = a_n, V_E = v_{E,n}, V_A = v_{A,n}, Y = y)$.
- 2. Generate $a_{n+1,i}$ from $(A_i|M=m_{n+1},V_E=v_{E,n},V_A=v_{A,n},Y=y)$ for $i=1,\ldots,n$ in parallel.
- 3. Generate $v_{A,n+1}$ from $(V_A|A=a_{n+1},M=m_{n+1},V_E=v_{E,n},Y=y)$.
- 4. Generate $v_{E,n+1}$ from $(V_E|A=a_{n+1},M=m_{n+1},V_A=v_{A,n+1},Y=y)$
- 5. Replace n by n+1 and go to step 1.

5.4.3 Example: Bayesian ridge regression

Let y_i be the measured response for the *i*th case and let $x_i = (1, x_{i2}, \dots, x_{ip})' \in \mathbb{R}^p$ be the values of the predictors for the *i*th case. Define $X \in \mathbb{R}^{n \times p}$ to have *i*th row x_i . Assume that $(y_1, \dots, y_n)'$ is a realization of Y, where

$$(Y|B = \beta, V = v, L = \lambda) \sim N_n(X\beta, vI_n)$$

$$(B|V = v, L = \lambda) \sim N_p\left(\tilde{\beta}, \frac{v}{\lambda}I_p\right)$$

$$(V|L = \lambda) \sim \text{InvGam}(a_V, b_V)$$

$$L \sim \text{Gamma}(a_L, b_L)$$

The Gamma(a,b) distribution has density at λ proportional to $\lambda^{a-1}e^{-b\lambda}$. Then

$$f(\beta, v, \lambda | y) \propto v^{-a_V + 1} e^{-b_V/v} \lambda^{a_L - 1} e^{-b_L \lambda} \lambda^{p/2} v^{-p/2} \exp\left\{-\frac{\lambda}{2v} (\beta - \tilde{\beta})'(\beta - \tilde{\beta})\right\}$$

$$* v^{-n/2} \exp\left\{-\frac{1}{2v} (y - X\beta)'(y - X\beta)\right\}$$

$$= \lambda^{a_L - 1 + p/2} v^{-(a_V + 1 + p/2 + n/2)}$$

$$* \exp\left\{-\frac{1}{2v} (y - X\beta)'(y - X\beta) - \frac{\lambda}{2v} (\beta - \tilde{\beta})'(\beta - \tilde{\beta}) - b_L \lambda - \frac{b_V}{v}\right\}$$

We will use the fact that $\phi(x,\mu,\Sigma) \propto_x \exp(-0.5x'\Sigma^{-1}x + x'\Sigma^{-1}\mu)$. We have that

$$f(\beta|v,\lambda,y) \propto \exp\left\{-\frac{1}{2v}(y-X\beta)'(y-X\beta) - \frac{\lambda}{2v}(\beta-\tilde{\beta})'(\beta-\tilde{\beta}) - b_L\lambda - \frac{b_V}{v}\right\}$$
$$\propto \exp\left\{-\frac{1}{2}\beta'\left(\frac{1}{v}X'X + \frac{\lambda}{v}I_p\right)\beta + \beta'\left(\frac{1}{v}X'y + \frac{\lambda}{v}\tilde{\beta}\right)\right\},$$

which implies that

$$(B|V=v, L=\lambda, Y=y) \sim N\left((X'X+\lambda I_p)^{-1}(X'y+\lambda \tilde{\beta}), \quad v(X'X+\lambda I_p)^{-1}\right).$$

Let
$$\mu_B = (X'X + \lambda I_p)^{-1}(X'y + \lambda \tilde{\beta})$$
. Then

$$f(\beta|v,\lambda,y) \propto_{\beta,v} v^{-p/2} \exp\left\{-\frac{1}{2v}(\beta-\mu_B)'(X'X+\lambda I_p)(\beta-\mu_B)\right\}$$

$$\propto_{\beta,v} v^{-p/2} \exp\left[-\frac{1}{2v}\left\{\beta'(X'X+\lambda I_p)\beta-2\beta'(X'X+\lambda I_p)\mu_B+\mu_B'(X'X+\lambda I_p)\mu_B\right\}\right]$$

$$\propto_{\beta,v} v^{-p/2} \exp\left[-\frac{1}{2v}\left\{\beta'(X'X+\lambda I_p)\beta-2\beta'(X'y+\lambda\tilde{\beta})+\mu_B'(X'X+\lambda I_p)\mu_B\right\}\right]$$

We can write

$$f(\beta, v | \lambda, y) \propto v^{-(a_V + 1 + n/2)} v^{-p/2}$$

$$* \exp \left[-\frac{1}{2v} \left\{ y'y - 2\beta'X'y + \beta'X'X\beta + \lambda\beta'\beta - 2\lambda\beta'\tilde{\beta} + \lambda\tilde{\beta}'\tilde{\beta} + 2b_V \right\} \right]$$

$$= f(\beta | v, \lambda, y) v^{-(a_V + 1 + n/2)} \exp \left[-\frac{1}{2v} \left\{ y'y - \mu_B'(X'X + \lambda I_p)\mu_B + \lambda\tilde{\beta}'\tilde{\beta} + 2b_V \right\} \right]$$

$$\propto f(\beta | v, \lambda, y) f(v | \lambda, y)$$

which implies that

$$(V|L=\lambda, Y=y) \sim \text{InvGam}\left(a_V + \frac{n}{2}, b_V + \frac{1}{2}\left\{y'y - \mu_B'(X'X + \lambda I_p)\mu_B + \lambda\tilde{\beta}'\tilde{\beta}\right\}\right)$$

We have that

$$f(\lambda|\beta, v, y) \propto \lambda^{a_L - 1 + p/2} \exp\left\{-\lambda \left(\frac{1}{2v} \|\beta - \tilde{\beta}\|^2 + b_L\right)\right\},$$

which implies that

$$(L|B=\beta, V=v, Y=y) \sim \operatorname{Gamma}\left(a_L + \frac{p}{2}, \frac{1}{2v} \|\beta - \tilde{\beta}\|^2 + b_L\right).$$

To summarize, we pick $(\beta_0, v_0, \lambda_0)$ and set n = 0.

- 1. Generate (β_{n+1}, v_{n+1}) from $(B, V|L = \lambda_n, Y = y)$ with the following two steps:
 - (a) Generate v_{n+1} from $(V|L = \lambda_n, Y = y)$.
 - (b) Generate β_{n+1} from $(B|V=v_{n+1}, L=\lambda_n, Y=y)$
- 2. Generate λ_{n+1} from $(L|B=\beta_{n+1},V=v_{n+1},Y=y)$.
- 3. Replace n by n+1 and go to step 1.

6 Inference for $E\{h(X)\}$, where X has the target distribution

This section is based on Atchade (2008) and Jones (2013). Suppose our goal is to estimate $E\{h(X)\}$ where $X \sim P_X$ (the target distribution with density f). Using the Markov chain X_0, X_1, \ldots with invariant distribution P_X (from our sampling algorithm), we estimate $E\{h(X)\}$ with

$$\widehat{E}\{h(X)\} = \frac{1}{n} \sum_{i=1}^{n} h(X_i).$$

If the chain is P_X -irreducible and aperiodic, then $\widehat{E}\{h(X)\} \to E\{h(X)\}$ almost surely as $n \to \infty$. A Markov chain with transition kernel Q is geometrically ergodic if there exists a $\rho \in (0,1)$ and a function $M: \mathcal{X} \to [0,\infty)$ such that

$$||Q^{(n)}(x,\cdot) - P_X||_{TV} \le M(x)\rho^n,$$

for all $x \in \mathcal{X}$ and all non-negative integers n. Here are two selected results (Jones et al., 2006; Jones, 2013):

• If the Harris chain is geometrically ergodic and $E\{|h(X)|^{2+\delta}\}<\infty$ for some $\delta>0$, then

 $\sqrt{n}\left[\widehat{E}\{h(X)\} - E\{h(X)\}\right] \stackrel{L}{\to} N(0, v_h).$

• If the Harris chain is geometrically ergodic, reversible, and $E\{h^2(X)\}<\infty$, then

$$\sqrt{n}\left[\widehat{E}\{h(X)\} - E\{h(X)\}\right] \stackrel{L}{\to} N(0, v_h).$$

In general, var $\left[\widehat{E}\{h(X)\}\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}\{h(X_i), h(X_j)\}$. Without giving details on how to simplify this formula, we will estimate the asymptotic variance v_h using the Batch means method. Suppose we have b batches of size k. Let

$$Y_j = \frac{1}{k} \sum_{i=(j-1)k+1}^{jk} h(X_i), \quad j = 1, \dots, b.$$

The batch means estimator of v_h is

$$\hat{v}_h = \frac{k}{b-1} \sum_{j=1}^b \left[Y_j - \widehat{E} \{ h(X) \} \right]^2.$$

This estimator is inconsistent in general, but is consistent if we let k and b increase with n and assume that other regularity conditions hold (Jones, 2013). Jones suggested that $k = \sqrt{n}$ and b = n/k are sensible choices. Assuming that $\widehat{E}\{h(X)\}$ is approximately Normal, a $100(1-\alpha)\%$ approximate confidence interval for $E\{h(X)\}$ is

$$\widehat{E}\{h(X)\} \pm \mathtt{qnorm}(1-\alpha/2)\sqrt{\frac{\widehat{v}_h}{n}}.$$

References

Atchade, Y. F. (2008). Course notes for Statistics 606. Lecture notes.

Jones, G. L. (2013). Course notes for STAT 8701: Computational statistical methods. Lecture notes.

- Jones, G. L., Haran, M., Caffo, B. S., and Neath, R. (2006). Fixed-width output analysis for markov chain monte carlo. *Journal of the American Statistical Association*, 101:1537–1547.
- Keener, R. W. (2005). Statistical theory: A medley of core topics. Notes for a course in theoretical statistics.