RELACIONES DE ORDEN

■ <u>Def</u>

Sea $R \subseteq A \times A$ una relación binaria

1. R es antisimétrica \iff

$$\forall x, y \in A, xRy, yRx \Longrightarrow x = y$$

Ej. A = $\{1, 2, 3, 4\}$ R1 = $\{(1, 1), (1, 2), (1, 3), (2, 2)\}$ no es simétrica pero sí es antisimétrica.

 $R2 = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$ es simétrica pero no es antisimétrica.

 $R3 = \emptyset$ es simétrica y antisimétrica.

2. R es antirreflexiva $\iff \forall x \in A, x \not Rx$

Ej. A = $\{1, 2, 3, 4\}$ R1 = $\{(1, 2), (1, 3), (3, 1)\}$ es antirreflexiva.

 $R2 = \{(1, 1), (2, 2), (2, 1), (3, 3)\}$ no es reflexiva ni antirreflexiva.

 $R1 = \{(1, 1), (1, 3), (2, 2), (3, 3), (4, 4)\}$ es reflexiva pero no es antirreflexiva

3. R es **conexa** $\iff \forall x, y \in A, x \neq y \implies xRy$ o yRx.

Ej. A = $\{1, 2, 3, 4\}$ R1 = $\{(1, 2), (1, 3), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ es conexa.

 $R2 = \{(1, 1), (2, 2), (2, 1), (3, 3)\}$ no es conexa.

Reflexiva: $\forall x \in A, xRx$

No reflexiva: $\exists x \in A, x \not R x$

Antirreflexiva: $\forall x \in A, x \not R x$

En general: No reflexiva \neq antirreflexiva.

■ <u>Def</u>

Sea $R \subseteq A \times A$ una relación binaria.

R es un **orden parcial** \iff R es reflexiva, antisimétrica y transitiva.

Ej. A = $\{1, 2, 3\}$ R1 = $\{(1, 1), (1, 3), (2, 2), (3, 2), (1, 2), (3, 3)\}$ es un orden parcial.

R es un **orden estricto** \iff R es antirreflexiva y transitiva.

Ej. A = $\{1, 2, 3\}$ R1 = $\{(1, 3), (3, 2), (1, 2)\}$ es un orden estricto.

Un conjunto A + orden parcial $R \Longrightarrow \mathbf{conjunto}$ parcialmente ordenado (conj.p.o.) y lo denotamos por (A,R).

Normalmente escribimos $a\sqsubseteq b$ y (A,\sqsubseteq)

orden estricto - (A, \sqsubset)

■ <u>Ej.</u>

- 1. $R_1 \subseteq \mathbb{N} \times \mathbb{N}$ $xR_1y \iff x \leq y$.
 - Reflexiva: $\forall x \in \mathbb{N}, x \leq x$
 - Antisimétrica: $\forall x, y \in \mathbb{N}, x \leq y, y \leq x \Longrightarrow x = y$
 - Transitiva: $\forall x, y, z \in \mathbb{N}, x \leq y, y \leq z \Longrightarrow x \leq z$
 - También podemos definirlo en \mathbb{Z} , \mathbb{Q} , \mathbb{R} .
- 2. $R_2 \subseteq \mathbb{N}_+ \times \mathbb{N}_+ \quad xR_2y \iff x/y$.
 - Reflexiva: $\forall x \in \mathbb{N}_+, x / x$
 - Antisimétrica: $\forall x, y \in \mathbb{N}_+, x \mid y, y \mid x \Longrightarrow x = y \text{ (porque } x, y > 0)$
 - Transitiva: $\forall x, y, z \in \mathbb{N}_+, x \ / \ y, y \ / \ z \Longrightarrow x \ / \ z$
- 3. $R_3 \subseteq \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A}) \ XR_3Y \iff X \subseteq Y$.
 - Reflexiva: $\forall X \in \mathcal{P}(\mathcal{A}), \mathcal{X} \subseteq \mathcal{X}$
 - Antisimétrica: $\forall X, Y \in \mathcal{P}(\mathcal{A}), \mathcal{X} \subseteq \mathcal{Y}, \mathcal{Y} \subseteq \mathcal{X} \Longrightarrow \mathcal{X} = \mathcal{Y}$
 - Transitiva: $\forall X, Y, Z \in \mathcal{P}(\mathcal{A}), \mathcal{X} \subseteq \mathcal{Y}, \mathcal{Y} \subseteq \mathcal{Z} \Longrightarrow \mathcal{X} \subseteq \mathcal{Z}$
- 4. $R_4 \subseteq N^2 \times N^2$
 - $(x,y)R_4(x',y') \iff x \le x', y \le y'.$
 - Reflexiva: $\forall (x,y) \in N^2, (x,y)R_4(x,y) \iff x \leq x, y \leq y$
 - Antisimétrica: $\forall (x, y), (x', y') \in N^2, (x, y)R_4(x', y'), (x', y')R_4(x, y) \iff (x, y) = (x', y') \text{ (porque } x \leq x' \ x' \leq x \ y \ y \leq y' \ y \leq y')$
 - Transitiva: $\forall (x, y), (x', y'), (x'', y'') \in N^2, (x, y)R_4(x', y'), (x', y')R_4(x'', y'') \iff$
 - $(x,y)R_4(x'',y'')$ (porque $x \le x'$ $x' \le x''$ y $y \le y'$ $y' \le y''$)
- $N = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}.$

Ordenes estrictos.

- 1. $S_1 \subseteq \mathbb{N} \times \mathbb{N} \ xS_1y \iff x < y$.
 - También podemos definirlo en \mathbb{Z} , \mathbb{Q} , \mathbb{R} .
- $2. S_2 \subseteq N^2 \times N^2$
 - $(x,y)S_2(x',y') \iff x < x', y < y'.$
 - $N = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}.$
- 3. $S_3 \subseteq \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A}) \quad XS_3Y \iff X \subset Y$.
- 4. $S_4 \subseteq \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A})$ $XS_4Y \iff X \cap Y \neq \emptyset$. no es reflexiva \Longrightarrow no es un orden
 - $\emptyset R \emptyset$ ya que $\emptyset \cap \emptyset = \emptyset$

Proposición

1. Sea (A, \sqsubseteq) un conj. p.o., entonces

$$\forall x, y \in A, \ x \sqsubseteq y \iff x \sqsubseteq y, \ x \neq y$$

es un orden estricto.

2. Sea (A, \square) un orden estricto, entonces

$$\forall x, y \in A, \quad x \sqsubseteq y \iff x \sqsubseteq y \text{ o } x = y$$

es un orden.

Dem.

1) Antirreflexiva: $\forall x \in A, x \not\sqsubset x$ se cumple porque no es cierto $x \neq x$

Transitiva: $\forall x, y, z \in A, x \sqsubseteq y, y \sqsubseteq z \Longrightarrow x \sqsubseteq z \Longleftrightarrow \forall x, y, z \in A, x \sqsubseteq y, x \neq y, y \sqsubseteq z, y \neq z, \Longrightarrow x \sqsubseteq z, x \neq z$

No es evidente $x \neq z$. Supongamos x = z entonces tendremos $x \sqsubseteq y, y \sqsubseteq z = x \Longrightarrow x = y$ porque \sqsubseteq es antisimétrica al ser un orden parcial. Contradicción.

2) Reflexiva: $\forall x \in A, x \sqsubseteq x \iff x \sqsubset x \text{ ó } x = x \text{ que se cumple ya que evidentemente } x = x.$

Antisimétrica: $\forall x,y \in A, x \sqsubseteq y, y \sqsubseteq x \Longrightarrow x = y \Longleftrightarrow \forall x,y \in A, x \sqsubseteq y$ ó $x = y, y \sqsubseteq x$ ó $y = x \Longrightarrow x = y$

Supongamos que $x \neq y$ entonces $x \sqsubset y \ y \sqsubset x \Longrightarrow x \sqsubset x$ por ser \sqsubset transitiva pero $x \sqsubset x$ no puede darse por ser antirreflexiva. $(\forall x \in A, x \not\sqsubset x)$

Transitiva: $\forall x,y \in A, x \sqsubseteq y, y \sqsubseteq z \Longrightarrow x \sqsubseteq z \Longleftrightarrow \forall x,y,z \in A, x \sqsubseteq y$ ó $x=y,y \sqsubseteq z$ ó $y=z\Longrightarrow x \sqsubseteq z$ óx=z

Proposición

La relación inversa de un orden es también un orden.

1. Sea (A, \sqsubseteq) un conj.p.o., definimos

$$\forall x,y \in A, \quad x \sqsubseteq y \iff y \sqsubseteq x$$

Entonces (A, \supseteq) es un conj.p.o.

2. Sea (A, \sqsubset) un orden estricto, definimos

$$\forall x, y \in A, \ x \supset y \iff y \sqsubset x$$

 (A, \Box) es un orden estricto.

Dem.

Reflexiva: $\forall x \in A, x \supseteq x \iff \forall x \in A, x \sqsubseteq x$ que se verifica porque \sqsubseteq es reflexiva.

Antisimétrica: $\forall x,y \in A, x \supseteq y, y \supseteq x \Longrightarrow x = y \Longleftrightarrow \forall x,y \in A, y \sqsubseteq x, x \sqsubseteq y \Longrightarrow x = y \text{ porque } \Box \text{ es antisimétrica.}$

Transitiva: $\forall x,y,z\in A,x\supseteq y,y\supseteq z\Longrightarrow x\supseteq z\Longleftrightarrow \forall x,y,z\in A,y\sqsubseteq x,z\sqsubseteq y\Longrightarrow z\sqsubseteq x\Longrightarrow z\supseteq z$

3

- $\underline{\mathrm{Def.}}$ (A, \sqsubseteq) conj.p.o. $+ \sqsubseteq$ conexo $\Longrightarrow (A, \sqsubseteq)$ orden total u orden lineal. $(A, \sqsubseteq) + \sqsubseteq$ conexo $\iff (A, \sqsubseteq)$ orden estricto lineal u orden estricto total.
- $\frac{\text{Ej.1}}{R_1} \subseteq \mathbb{N} \times \mathbb{N}$ $xR_1y \iff x \leq y$ orden total.
- $\underline{\text{Ej.2}}_{R_2} \subseteq \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A}) \quad XR_2Y \iff X \subseteq Y \text{ no es un orden total } \{0,1\} \not\subseteq \{1,2\}$ $\{1,2\} \not\subseteq \{0,1\}$

 $\{0,1\}$ y $\{1,2\}$ son **incomparables**. En otro caso decimos que son **comparables**.

Sea (A, \sqsubseteq) un conj.p.o. Podemos representarlo gr'aficamente mediante lo que se conoce como **Diagrama de Hasse** Consiste en un conjunto de puntos conectados por segmentos. Los puntos son los elementos del conjunto y cada segmento ascendente entre x e y se interpreta que representa $x \sqsubseteq y$. Los segmentos que se deducen por transitividad no se dibujan.

■ Ej. Sea (A, \sqsubseteq) un conj.p.o. $A = \{2, 3, 4, 6, 8, 12\}$ $x \sqsubseteq y \iff x \mid y$

Diagrama de Hasse

Proposición

Sea $R \subseteq A \times A$ un orden parcial y sea $S \subseteq A$. La **restricción** de R a S se define como

$$R \upharpoonright S = R \cap (S \times S)$$

 $(S, R \upharpoonright S)$ es un conj.p.o.

Ej. Sea (A, \sqsubseteq) un conj.p.o. A = {2, 3, 4, 6, 8, 12} y sea S = {2, 3, 4, 12} $x \sqsubseteq y \iff x \mid y$

$$R \upharpoonright S = R \cap (S \times S) = \{(2,2), (3,3), (4,4), (12,12), (2,4), (2,12), (3,12), (4,12)\}$$

■ <u>Def.</u>

Sean (A, \sqsubseteq_A) y (B, \sqsubseteq_B) conj.p.o. y sea $f: A \longrightarrow B$ una función

1. f es monótona \iff $\forall x, y \in A, \ x \sqsubseteq_A y \implies f(x) \sqsubseteq_B f(y)$

- 2. f preserva el orden \iff $\forall x, y \in A, \ x \sqsubseteq_A y \iff f(x) \sqsubseteq_B f(y)$
- 3. f es un **isomorfismo de orden** \iff f es biyectiva y preserva el orden.

 $((A, \sqsubseteq_A) \simeq (B, \sqsubseteq_B))$ (isomorfos). Si $(B, \sqsubseteq_B) = (A, \sqsubseteq_A)$ (automorfismo).

■ Ej.

1. Sea $f: \mathcal{P}(\mathbb{Z}) \longrightarrow \mathcal{P}(\mathbb{Z})$ $f(X) = \{x^2 | x \in X\}$

f es monotona.

$$X\subseteq Y\implies f(X)\subseteq f(Y)$$

Pero $f(X) \subseteq f(Y)$ no implica $X \subseteq Y$.

$$X = \{-2,3\} \quad Y = \{-4,2,3\}$$

$$f(X) = \{4,9\} \subseteq f(Y) = \{16,4,9\} \ \text{pero} \ X \not\subseteq Y$$

2. Sea $A = \{2n|n \in \mathbb{N}\}$ $B = \{2n+1|n \in \mathbb{N}\}$

$$f: A \longrightarrow B$$
$$2n \longrightarrow 2n+1$$

$$(A, \leq) \simeq (B, \leq)$$

 $x \leq y \iff 2x + 1 \leq 2y + 1$

ELEMENTOS EXTREMOS Y EXTREMALES

■ Def.

Sea (A, \sqsubseteq_A) un conj.p.o. y $S \subseteq A$. Decimos que un elemento $x \in S$ es

- 1. **maximal** en $S \iff \nexists y \in S$ tal que $x \sqsubset y$.
- 2. el **máximo** de S $(max(S)) \iff y \sqsubseteq x, \ \forall y \in S$.
- 3. **minimal** en $S \iff \nexists y \in S$ tal que $y \sqsubset x$.
- 4. el **mínimo** de S $(min(S)) \iff x \sqsubseteq y, \ \forall y \in S$.

- 2, 3 elementos minimales
- 8, 12 elementos maximales.

No hay máximo ni mínimo.

 $\overline{\mathrm{Sea}}(A,\sqsubseteq_A)$ un conj.p.o. y $S\subseteq A$.

- 1. **máximo** de $S \Longrightarrow$ maximal en S pero maximal en $S \not\Longrightarrow$ máximo de S.
- 2. si S tiene un elemento máximo es único.
- 3. **mínimo** de $S \Longrightarrow$ minimal en S pero minimal en $S \not\Longrightarrow$ mínimo de S.
- 4. si S tiene un elemento mínimo es único.

Dem.

- 1. Sea $x \in S$ máximo $\implies y \sqsubseteq x, \ \forall y \in S$. Supongamos x no es un elemento maximal, entonces existe $y_0 \in S$ tal que $x \sqsubset y_0$ como $y_0 \sqsubseteq x \implies x = y_0$ por la propiedad antisimétrica. Contradicción. En el ejemplo, 8, 12 son maximales pero ni 8 ni 12 son máximos. (8 $\not\sqsubseteq$ 12 12 $\not\sqsubseteq$ 8)
- 2. Supongamos x, y son ambos máximos de S, entonces $x \sqsubseteq y$ ya que y es máximo y $y \sqsubseteq x$ ya que x es máximo, luego x = y por la propiedad antisimétrica.

Análogamente 3) y 4).

■ Teorema

Sean (A, \sqsubseteq_A) y (B, \sqsubseteq_B) conj.p.o. y sea f un isomorfismo de orden. $\forall x \in A$

- 1. $x = max(A) \iff f(x) = max(B)$
- 2. x es maximal en $A \iff f(x)$ es maximal en B.
- 3. $x = min(A) \iff f(x) = min(B)$
- 4. x es minimal en $A \iff f(x)$ es minimal en B.

Dem.

2)

 \Longrightarrow)

Supongamos x maximal en A. Supongamos f(x) no es maximal en B, entonces existe $z \in B$ tal que $f(x) \sqsubset z$. z = f(y) para algún $y \in A$ ya que f es suprayectiva, luego $x \sqsubset y$ pues f preserva el orden, luego x no es maximal. Contradicción.

$$\iff$$

Supongamos ahora que f(x) es maximal en B. Supongamos x no es maximal en A, entonces existe $y \in A$ tal que $x \sqsubset y$, y como f es inyectiva $f(x) \neq f(y)$ y $f(x) \sqsubset f(y)$ ya que f preserva el orden, luego f(x) no es maximal en B. Contradicción.

■ Ej.1

 $\overline{(\mathbb{Z},\leq)}$ y (\mathbb{N},\leq) no son isomorfos.

 \mathbb{N} tiene elemento mínimo, el 0 y \mathbb{Z} no.

■ Ej.2

$$\overline{A} = \{1, 2, 3, 4, 6, 8, 12\} \ B = \{2, 3, 4, 6, 8, 12, 24\}$$

$$x \sqsubseteq_A y \iff x/y \qquad x \sqsubseteq_B y \iff x/y$$

 $min(A) \not\equiv max(A) \quad max(B) \not\equiv min(B).$

 $(A, \sqsubseteq_A) \not\simeq (B, \sqsubseteq_B)$

COTAS: INFIMOS Y SUPREMOS

■ Def.

Sea (A, \sqsubseteq_A) un conj.p.o. y $S \subseteq A$.

1. $x \in A$ es una **cota superior** de $S \iff \forall u \in S, \ u \sqsubseteq x$.

 $Sup(S) = \{x \in A | x \text{ cota superior de } S\}.$

- 2. Si $\exists min(Sup(S))$ en A se llama **supremo** de S. $(sup(S) = \sqcup S.)$ Tiene que cumplir:
 - a) $\forall y \in S, y \sqsubseteq_A x \ (x \text{ es cota superior de } S)$
 - b) $x \sqsubseteq_A z$ si z es cota superior de S (la menor de las cotas superiores).
- 3. $x \in A$ es una **cota inferior** de $S \iff \forall u \in S, \ x \sqsubseteq u$.

 $Inf(S) = \{x \in A | x \text{ es cota inferior de } S\}.$

- 4. Si $\exists max(Inf(S))$ en A se llama **ínfimo** de S. $(inf(S) = \Box S.)$ Cumple:
 - a) $\forall y \in S, x \sqsubseteq_A y \ (x \text{ es cota inferior de } S)$
 - b) $z \sqsubseteq_A x$ si z es cota inferior de S (la mayor de las cotas inferiores).

Let
$$S = \{4, 6\}$$
 $\sqcup S = 12 \not\in S$ $\sqcap S = 2 \not\in S$

S no tiene máximo ni mínimo.

Sea $S = \{8, 12\}$ $\nexists \sqcup S$ $\sqcap S = 4 \not\in S$

■ Ej. Sea $S = \{s_n | n \in \mathbb{N}\}$ donde s_n es una aproximación de π y s_n tiene n decimales.

$$s_0 = 3$$

$$s_1 = 3,1 \qquad \qquad \sqcup S = \pi \qquad \sqcap S = 3$$

 $s_2 = 3.14$

■ $\frac{\text{Prop.}}{\text{Sea}(A, \sqsubseteq_A)}$ un conj.p.o. y $S \subseteq A$.

- 1. Si S tiene máximo x, $\Box S = x$
- 2. Si S tiene mínimo y, $\Box S = y$

Dem.

1.
$$y \sqsubseteq x, \ \forall y \in S$$

Sea z una cota superior de S, como $x \in S, x \sqsubseteq z$. Luego $x = \sqcup S$

2. Análogo.

Cadenas en un conj.p.o.

Sea (A, \sqsubseteq_A) un conj. p.o. y $S \subseteq A$.

Ses una cadena si la restricción de \sqsubseteq a S ($\sqsubseteq \cap S \times S)$ es un orden lineal.

$$\forall x, y \in S, \ x \sqsubseteq y \circ y \sqsubseteq x$$

■ Ej.1

 $A = \{1, 2, 3, 4, 6, 8, 12, 24\}$

$$S_1 = \{1, 2, 4, 12, 24\}$$

$$S_1 = \{1, 2, 4, 12, 24\}$$
 $S_2 = \{1, 2, 6, 12, 24\}$ son cadenas.

 $S = \{P_n | n \in \mathbb{N}\}$ es una cadena en $(\mathcal{P}(\mathbb{N}), \subseteq)$

$$\{0\} \subseteq \{0,2\} \subseteq \{0,2,4\} \subseteq \cdots$$

$$P_0 \qquad P_1 \qquad P_2$$

$$P_0$$
 P_1 P_2

S es una cadena infinita.

Extensión de un orden parcial

■ <u>Def.</u> Sea (A, \sqsubseteq_A) un conj. p.o., un orden \leq sobre A se dice que es una **extensión total** de \sqsubseteq si cumple:

 $1. \le es un orden lineal$

$$2. \ \forall x, y \in A, \ x \sqsubseteq y \implies x \le y$$

Construir una extensión total \leq de un orden parcial \sqsubseteq dado, sobre un conjunto finito A, se conoce como **ordenación topológica** de A.

• Algoritmo de Ordenación Topológica.

$$(A, \sqsubseteq_A)$$
 conj. finito p.o. $A = \langle a_0, a_1, \dots, a_{n-1} \rangle$

(0) a_0 es cualquier elemento minimal de A.

(1) a_1 es cualquier elemento minimal de $A - \{a_0\}$.

(i) a_i es un elem. minimal de $A - \{a_0, a_1, \dots a_{i-1}\}$. \vdots

El proceso termina cuando todo elemento de A ha sido elegido. orden total: $a_0 \le a_1 \le \cdots \le a_{n-1}$.

■ Ej.

 $\langle 3, 2, 6, 4, 12, 8 \rangle$, $\langle 2, 4, 8, 3, 6, 12 \rangle$ también es posible.