南京大学数学系试卷

2013/2014		学年第二学期期末			考试形式 闭卷		: 课	_ 课程名称_		计算方法	去
班级		学号									_
考试时间_							_ 考试	考试成绩			
题号	_		三	四	五.	六	七	八	九	+	总分
須八											

一. 填空题 (12分)

- 1. 线性 k 步法 $\sum_{j=0}^{k} \alpha_{j} y_{n+j} = h \sum_{j=0}^{k} \beta_{j} f(t_{n+j}, y_{n+j})$ 收敛性、相容性与稳定性的关系 是______。
- 2. 梯形方法解初值问题 y' = -y, y(0) = 1 的数值解为______。
- 3. 假设有一台电子计算机,字长 t=8, 阶码: $-3=-L \le J \le U=3$, 基数 p=2, 则这台计算机的规格化浮点数的个数 N=______。
- 4. 设 $f(x) = x^4$ 则 f(x) 的以 -1,0,1,2 为基点的拉格朗日插值多项式 $P_3(x) =$ 。
- 二. (8分) 用适当的方法导出解初值问题的梯形公式 $y_{n+1} = y_n + \frac{h}{2} [f(t_n, y_n) + f(t_{n+1}, y_{n+1})]$ 。

三. (10分) 证明切比雪夫多项式 $T_n(x) = \cos(n \arccos x)$, $-1 \le x \le 1$ 满足递推关系 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$, $n = 1, \dots$, 其中 $T_0(x) = 1$, $T_1(x) = x$ 。

四. (10分) 将积分 $I = \int_0^2 \frac{x^2-1}{\sqrt{x(2-x)}} dx$ 化为能应用 m 点 Gauss-Chebyshev 求积公式的积分. 当 m 取何值时, 能得到积分的准确值?并计算之。

七. (10分) 设 $f(x) \in C_{[a,b]}$, 证明 f(x) 的 n 次最佳一致逼近多项式 p(x) 为 f(x) 在 [a,b] 上的某一个 n 次插值多项式。

六. (10分) 求差分方程

$$y(n+2) - 3y(n+1) + 2y(n) = 2^n$$

的通解。

八. (10分) 设 $f(x) \in C_{[a,b]}$ 且 f''(x) 在 (a,b) 内不变号,求 f(x) 在 [a,b] 上的一次最佳平方 逼近多项式 $p(x) = a_0 + a_1 x$ (只要求求出 a_0 , a_1 的值)。

九. (10分) 设 $x_j = a + j(b-a)/3$, i = 0,1,2,3, 确定求积公式 $\int_a^b f(x)dx \approx \frac{b-a}{8}[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$ 的代数精确度。

十. (10分) 给出四级四阶经典 Runge-Kutta 方法计算初值问题

$$\left\{ \begin{array}{ll} y' & = f(x,y), & a \leq x \leq b, \\ y(a) & = \eta \end{array} \right.$$

的算法。