

CHEMISTRY Chapter 14

ESTADO GASEOSO

HELICOMOTIVATION

ESTADO GASEOSO

- Estado de agregación molecular de la materia.
- Es un fluido, ocupa totalmente el recipiente que lo contiene.
- Las moléculas en su interior están en constante movimiento
- > Manifiesta repulsión intermolecular.
- > Presenta volumen y forma variable.

PROPIEDADES GENERALES DE LOS GASES

Expansibilidad

El gas ocupa el mayor espacio posible debido a la alta energía que poseen las moléculas.

Compresibilida

El volumen de un gas disminuye al reducir las distancias intermoleculares por aumento de la presión externa.

DIFUSIBILIDAD

Es el desplazamiento de las moléculas gaseosas a través de algún medio gaseoso o líquido, debido a la alta energía cinética de las moléculas.

EFUSIBILIDAD

Proceso mediante el cual un gas bajo presión se escapa de un compartimiento a otro atravesando por un pequeño orificio.

VARIABLES DEL ESTADO GASEOSO

CONDICIÓN NORMAL

Presión = 1 atm T = 0 °C = 273 K

ECUACIÓN UNIVERSAL DE LOS GASES IDEALES

Donde:

n: número de moles

P: presión absoluta

V: volumen

T: temperatura absoluta

D: densidad(g/L)

m: masa(g)

N°: partículas

 N_A :número de Avogadro

Valores de la constante universal (R)

 $R = 0.082 atm \cdot L / (mol \cdot K) (Si P : atm)$

 $R = 62,4 \text{ mmHg} \cdot L/(\text{mol} \cdot K) \text{ (Si P : mmHg)}$

 $R = 8,3 \text{ kPa} \cdot L/(\text{mol} \cdot K) \text{ (Si P : kilopascal)}$

¿Qué volumen presentan 4 moles de gas a 127 °C y 4,1 atm de presión? (R = 0,082 atm \cdot L/mol \cdot K)

Resolución

V=?

- n= 4 moles
- P=4,1 atm
- T=127°C+273=400 K

Ecuación universal de los gases ideales

$$PV = RTn$$

(P:atm)
$$4.1xV = 0.082x400x4$$

$$\frac{1}{10}xV = \frac{2}{1000}x400x4$$

$$V = 2x4x4$$

$$V = 32$$

V = 32L

¿Cuántos moles contiene una muestra de 800 L de un gas a 127 °C y 0,082 atm de presión? (R = 0,082 atm \cdot L/mol \cdot K)

Resolución

- n=?
- V= 800L
- P=0,082
- T=127°C+273=400 K

Ecuación universal de los gases ideales

$$PV = RTn$$

(P:atm)

$$0.082x800 = 0.082x400xn$$

$$\frac{1}{1000}x800 = \frac{1}{1000}x400xn$$

$$n = 8/4$$

$$n = 2$$

n = 2 moles

Determine el volumen que ocuparían 4 moles de un gas a 27 $^{\circ}$ C y 124,8 mmHg de presión. (R = 62,4 mm Hg · L/mol · K)

Ecuación universal de los gases ideales

Resolución

- V=?
- n= 4moles
- P=124,8mmHg
- T=27°C+273=300K

$$PV = RTn$$
(P:mmHg) 124,8xV = 62,4x300x4
$$\frac{1248}{10}xV = \frac{624}{10}x300x4$$

$$V = 300x2$$
$$V = 600$$

V = 600L

Tres moles de gas a 127 °C ocupan un volumen de 624 litros. Determine la presión en mmHg. ($R = 62,4 \text{ mm Hg} \cdot L/\text{mol} \cdot K$)

Resolución

- P=?
- n= 3moles
- V=624 L
- T=127°C+273=400 K

Ecuación universal de los gases ideales

$$PV = RTn$$

(P:mmHg)

$$Px624 = 62.4x400x3$$

$$Px624 = \frac{1}{624}x400x3$$

$$P = 40x3$$

$$P = 120$$

P = 120mmHg

Cinco moles de un gas se encuentran ocupando 800 L sometido a 1248 mmHg de presión. Determine la temperatura de dicho gas.

 $(R = 62,4 mmHg\cdot L/mo!\cdot K)$

Resolución

- T=?
- n= 5 moles
- V=800 L
- P=1248 mmHg

Ecuación universal de los gases ideales

$$PV = RTn$$

(P:mmHg)
$$1248x800 = 62.4xTx5$$

$$\frac{2}{160} = \frac{624}{10}xTx5$$

$$1248x800 = \frac{624}{10}xTx5$$

$$T = 2x160x10$$
$$T = 3200$$

T = 3200 K

¿Cuántos gramos de gas metano (CH₄) se encuentran a la presión de 16,4 atm y a la temperatura de 127 °C, ocupando un volumen de 8 litros?

Datos: (\overline{M}_{CH_4} = 16), (R = 0,082 atm · L/mol · K) Ecuación universal de los gases ideales

Resolución

- m=?
- V=8 L
- P=16,4 atm
- T=127°C+273=400 K

$$PV = RT \frac{m}{\overline{M}}$$

(P:atm)
$$16,4x8 = 0,082x400x \frac{m}{16}$$
 $\frac{2}{164}x8 = \frac{82}{1000}x400x \frac{m}{16}$ $\frac{m}{16}x8 = \frac{2}{1000}x400x \frac{m}{16}$ $\frac{m}{16}x8 = \frac{2}{1000}x800x \frac{m}{16}$ $\frac{m}{16}x8 = \frac{2}{1000}x800x \frac{m}{16}$ $\frac{m}{16}x8 = \frac{2}{1000}x800x \frac{m}{16}$ $\frac{m}{16}x8 = \frac{2}{1000}x800x \frac{m}{16}$

m = 64g

¿Cuál es la densidad del gas etano (C_2H_6) a 624 mmHg de presión y 27°C? (R = 62,4 mmHg·L/mol·K), ($\overline{M}_{C_2H_6}$ = 30)

Ecuación universal de los gases ideales

Resolución

• D=?

- P=624 mmHg
- T=27°C+273=300K

$$P\overline{M} = RTD$$

(P:mmHg)

$$624x30 = 62,4x300xD$$

$$\frac{1}{624x30} = \frac{624}{10}x300xD$$

$$D=1$$

D = 1g/L

El estado gaseoso suele presentar las siguientes características:

- Apenas existe cohesión entre las moléculas.
- Las fuerzas de atracción son muy pequeñas entre las moléculas.
- No tienen una forma fija definida.
- Su volumen es variable.
- Son expansibles y compresibles.
- Poseen una densidad muy baja.
- Las moléculas se mueven a alta velocidad de manera libre y desordenada.
- Al aumentar la temperatura las partículas se mueven más deprisa por lo que además se aumentará la presión.

Acerca de las funciones del estado gaseoso, ¿qué proposiciones son correctas?

- I. La temperatura absoluta del gas es proporcional a su energía cinética promedio.
- II. El volumen del gas está definido por la capacidad del recipiente que lo contiene.
- III. Si los valores de presión, volumen y temperatura son conocidos entonces se determinan un estado termodinámico del gas.

Resolución

I. La temperatura absoluta del gas es proporcional a su energía cinética promedio.

II. El volumen del gas está definido por la capacidad del recipiente que lo contiene.

III. Si los valores de presión, volumen y temperatura son conocidos entonces se determinan un estado termodinámico del gas.

I. <u>verdadero</u>

La temperatura está relacionada con la velocidad de las moléculas y a su vez con la energía cinética.

II. <u>verdadero</u>

Está determinado por el volumen del recipiente que lo contiene

III. <u>verdader</u>o

El comportamiento de un gas ideal esta determinado por los parámetros de estado termodinámico donde describen las características del los gases.

¡MUCHAS GRACIAS!

