ANSWER KEY (AIPMT-2005)

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	3	2	3	2	3	3	1	1	2	2	3	4	3	2	1	4	4	3	1	4
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	1	3	3	4	4	4	3	4	1	3	2	3	4	2	1	4	2	2	2	2
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	1	1	3	2	2	4	2	2	3	3	4	2	1	3	4	4	3	3	3	3
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	2	3	3	1	3	2	2	2	2	3	2	3	2	2	2	4	4	2	2	2
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	2	1	1	1	4	2	1	2	1	2	2	2	1	2	1	4	4	4	1	4
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	3	3	1	4	3	1	3	2	4	1	4	4	4	2	2	2	1	3	3	3
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	4	4	1	3	2	1	2	3	2	2	2	1	2	4	1	2	1	1	1	4
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	4	1	1	1	4	3	2	1	1	4	1	4	1	1	2	2	3	1	2	4
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	2	1	2	2	4	1	2	2	3	2	4	1	4	2	4	1	3	4	2	1
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	2	4	1	4	2	3	4	2	1	4	3	2	4	2	1	3	4	3	3	3

HINTS & SOLUTIONS

1. Energy of photon =
$$\frac{12400}{4100} \approx 3 \text{ eV}$$

3. Energy released in given reaction = BE of products – BE of reactants =
$$C - (a+b) = C - a - b$$

4. Here
$$X_C - X_L = R$$

$$\Rightarrow \frac{1}{2\pi fc} = (R + 2\pi fL)$$

$$\Rightarrow \qquad C = \frac{1}{2\pi(2\pi f L + R)}$$

6. Reading of voltmeter =
$$\frac{\frac{E_1}{r_1} + \frac{E_2}{r_2}}{\frac{1}{r_1} + \frac{1}{r_2}} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$$
$$= 14 \text{ volt}$$

$$U_{i} = \frac{1}{4\pi \in_{0}} \left[\frac{q_{1}q_{3}}{(0.4)} + \frac{q_{1}q_{2}}{(0.3)} + \frac{q_{2}q_{3}}{(0.5)} \right]$$

$$U_{i} = \frac{1}{4\pi \in_{0}} \left[\frac{q_{1}q_{3}}{(0.4)} + \frac{q_{1}q_{2}}{(0.3)} + \frac{q_{2}q_{3}}{(0.1)} \right]$$

Therefore
$$\Delta U = U_f - U_i = \frac{1}{4\pi \epsilon_0} q_2 q_3 \left(\frac{1}{0.1} - \frac{1}{0.5} \right)$$

$$= \frac{q_2 q_3}{\pi \epsilon_0} (10^{-2}) = \frac{q_3}{4\pi \epsilon_0} (8q_2)$$

$$\Rightarrow$$
 K = 8q₂

8.
$$B = \frac{\mu_0 I}{2R} = \frac{\mu_0}{2R} \left(\frac{e}{T}\right) = \frac{\mu_0}{2R} \left(\frac{ev}{2\pi R}\right)$$

$$\Rightarrow R^2 = \frac{\mu_0 e v}{4\pi B} \Rightarrow R \propto \sqrt{\frac{v}{B}}$$

9.
$$P = I^2 R \Rightarrow R = \frac{P}{I^2} = \frac{1}{25} = 0.04 \Omega$$

10. Work done =
$$\frac{1}{4\pi \in Q} \left(\frac{(-qQ)}{a} - \frac{(-qQ)}{a} \right) = 0$$

11.
$$\overrightarrow{F} = q(\overrightarrow{v} \times \overrightarrow{B}) = qvB(\widehat{i} \times (-\widehat{k})) = qvB\widehat{j} \implies \text{force on}$$

the charge is along OY

12.
$$\mu_p \neq 0$$
, $\mu_f \neq 0$ & $\mu_d = 0$

13. Number of beats per second =
$$n_2 - n_1 = 3$$

(: $n_1 = 250$, $n_2 = 253$)

$$\Rightarrow$$
 Number of beats produced per minute
= $3 \times 60 = 180$

14.
$$R \longrightarrow A \longrightarrow R$$

$$\Rightarrow R_{AB} = \left(\frac{R/2}{2}\right) = \frac{R}{4}$$

15.
$$V_{max} = a\omega \Rightarrow f = \frac{\omega}{2\pi} = \frac{V_{max}}{2\pi a} = \frac{31.4}{2\pi \times 5}$$
$$= \frac{31.4}{10\pi} = 1 \text{ Hz}$$

16. Let
$$e = \alpha (\theta - \theta_C) + \beta (\theta^2 - \theta_C^2)$$

where θ_C = temperature of cold junction. at inversion temperature $e = 0 \Rightarrow \theta_i = -\theta_C - \frac{\alpha}{\beta}$ at neutral temperature $\frac{de}{d\theta} = 0$

$$\Rightarrow \theta_n = -\frac{\alpha}{2\beta}$$

$$\Rightarrow \theta_i = -\frac{\alpha}{\beta} - \theta_C = 2\theta_n - \theta_C \Rightarrow \boxed{\theta_n = \frac{\theta_i + \theta_C}{2}}$$

$$\Rightarrow 300 = \frac{620 + \theta_C}{2} \Rightarrow \theta_C = -20^{\circ}C$$

17.
$$\frac{h}{I} = \frac{J - \sec}{K_B - m^2} = \frac{ML^2T^{-1}}{ML^2} = \frac{1}{T} = \text{frequency}$$

18.
$$KE = \frac{P^2}{2m} = \frac{(18 \times 6)^2}{2 \times 12} = 486 J$$

19. Isotones
$$\rightarrow$$
 Number of neutrons are same.

20.
$$2hv_0 = hv_0 + \frac{1}{2} m(4 \times 10^6)^2$$
$$5hv_0 = hv_0 + \frac{1}{2} mv^2 \Rightarrow 4 \times \frac{1}{2} m(4 \times 10^6)$$
$$= \frac{1}{2} mv^2 \Rightarrow v = 8 \times 10^6 \text{ m/s}$$

22.

26.

But
$$Q \overrightarrow{E} = \overrightarrow{F} & \overrightarrow{F} \cdot d \overrightarrow{\ell} = dW \implies \overline{W = QV}$$

$$\eta = \frac{W}{Q} = 1 - \frac{T_2}{T_1} \Rightarrow W = Q \left(1 - \frac{T_2}{T_1}\right)$$

$$= 1.2 \times 10^4 \text{ cals}$$

23.
$$\tau = MB = (IA) B = I \frac{\sqrt{3}}{4} l^2 B \Rightarrow l = 2 \left(\frac{\tau}{\sqrt{3}BI}\right)^{1/2}$$

Here $\frac{4}{6} = \frac{2}{3}$ \Rightarrow Balanced wheat stone Bridge Therefore given ckt. can be reduced to

27.
$$I = I_{cm} + Md^2 = \frac{MR^2}{2} + MR^2 = \frac{3}{2} MR^2$$

29. For FCC 4r = a
$$\sqrt{2}$$
 but 2r = 2.54 Å
so a = $(\sqrt{2})$ (2.54) = 3.59 Å

31. use
$$\theta \sim \lambda / a \simeq 10^{-6}$$
 rad. 32.

$$C_2 = 2C$$
 $3C$
 C
 $4C = C_4$
 V
 $Q_4 = 4 V; Q_2 =$

$$Q_4 = 4 \text{ V}; \ Q_2 = \left(\frac{6}{11}\text{ C}\right)\text{V} = \frac{6\text{CV}}{11}$$

 $\Rightarrow \frac{Q_2}{Q_4} = \frac{6\text{CV}}{11} \times \frac{1}{4\text{CV}} = \frac{3}{22}$

34.
$$a_r = \omega^2 r = (2\pi n)^2 r = \left(2\pi \times \frac{1}{2}\right)^2 (1) = \pi^2$$

 $a_T = 0 \Rightarrow option (2)$ is correct

37. K.E. =
$$-$$
 T.E. = $+$ 3.4 eV

39. Use
$$R_{Heat} = \frac{\ell}{K\Delta} = \frac{\ell}{V_{cor}^2}$$

40.
$$(2\hat{i}+3\hat{j}+8\hat{k}).(4\hat{j}-4\hat{i}+\alpha\hat{k})=0 \Rightarrow \alpha=\frac{1}{2}$$

41. use
$$g = \frac{GM}{R^2} = \frac{G\frac{4}{3}\pi R^3 \rho}{R^2} = \frac{4}{3}\pi G \rho R$$

42.
$$(\overrightarrow{B} \times \overrightarrow{A}) \cdot \overrightarrow{A} = (BA \sin \theta) \cdot (\overrightarrow{n} \cdot \overrightarrow{A}) = 0$$

since \hat{n} is perpendicular to both $\overrightarrow{A} \cdot \overrightarrow{A} \cdot \overrightarrow{B}$

43. Use
$$I \propto \frac{1}{r^2}$$

44. W =
$$\int F$$
. dx = Area under the curve
= $(3 \times 3) + \frac{1}{2} \times (3) (3) = 13.5 \text{ J}$

$$\begin{array}{c|c} & E_c \\ \hline \lambda_1 & E_B \\ \hline \lambda_2 & \lambda_3 & E_B \end{array}$$

$$: (E_C - E_B) + (E_B - E_A) = (E_C - E_A)$$

$$\Rightarrow \boxed{\frac{hc}{\lambda_3} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2}} \Rightarrow \lambda_3 = \left(\frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}\right)$$

$$47. x = ae^{-\alpha t} + be^{\beta t}$$

$$v = \frac{dx}{dt} = -a \propto e^{-\alpha t} + .b\beta e^{\beta t}$$

$$\frac{dv}{dt} = a \alpha^2 e^{-\alpha t} + b\beta^2 e^{\beta t}$$

$$\therefore \frac{dv}{dt} > 0$$
 (Always)

 \Rightarrow v is increasing function of t

$$\Rightarrow$$
 option (2) is correct

$$Ac = vt, BC = v_1t$$

$$\therefore AB = \sqrt{AC^2 - BC^2}$$

$$\therefore a = \sqrt{v^2 t^2 - v_1^2 t^2} \implies t = \frac{a}{\sqrt{v^2 - v_1^2}}$$

49.
$$\frac{L_1^2}{2I_1} = \frac{L_2^2}{2I_1} \Rightarrow \frac{L_1^2}{2(I)} = \frac{L_2^2}{2(2I)} \Rightarrow \frac{L_1}{L_2} = \frac{1}{\sqrt{2}}$$

48.

