Dixon Q-Test for Outliers

Use the Dixon Q-Test to determine whether or not there is an outlier value present in this data set.

Use a 5% significance level.

19, 36, 33, 25, 30, 28, 31, 36, 29, 37

(i) Arrange the data set into ascending order.

$$19, 25, 28, 29, 30, 31, 33, 36, 36, 36, 37\\$$

(ii) Here the potential outlier is the lowest value, i.e. 19

(iii) We can formally state the null and alternative hypothesis as follows

 \mathbf{H}_0 There are no outliers present in the data.

 \mathbf{H}_1 There is one outlier present (i.e. the lowest value 19)

(iv) The test statistic for this procedure is as follows:

$$Q_{TS} = \frac{\text{Gap}}{\text{Range}}$$

(v) The gap is the difference of the outlier from the next value. In this case, the next value is 25, so the gap is

$$Gap = 25 - 19 = 6$$

(vi) The range is simply the difference between the maximum and minimum value.

Range =
$$37 - 19 = 18$$

(vii)

$$Q_{TS} = \frac{\text{Gap}}{\text{Range}} = \frac{6}{18} = 0.333$$

- (viii) Before we look at the critical value, we confirm the size of the data set is n = 10.
 - (ix) The critical value can be determined from the following table.
 - \bullet The column to chose is the significance level (here 5% or 0.05).
 - \bullet The row to use is n, the number of items in the data set.

n	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.01$
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568
11	0.392	0.444	0.542
12	0.376	0.426	0.522
13	0.361	0.410	0.503
14	0.349	0.396	0.488
15	0.338	0.384	0.475

(x) Rule of Thumb

• If the Test Statistic is greater than the Critical value, reject the null hypothesis

$$Q_{TS} > Q_{CV}$$

• Otherwise we fail to reject the null hypothesis

$$\text{Expected Value} = \frac{\text{Column Total} \times \text{Row Total}}{\text{Overall Total}}$$

• If the Test Statistic is greater than the Critical value, reject the null hypothesis

$$\chi^2_{TS} > \chi^2_{CV}$$

• Otherwise we fail to reject the null hypothesis