

Nutshell Review and Preview of ORGANIC REAGENTS

1.	Acetic Anhydride	Dehydrating Reagent
2.	Acetic Anhydride + Sodium Salt of acetic acid	PhCH=O \rightarrow PhCH=CH—CO ₂ H Aldehyde (Aromatic) $\rightarrow \alpha$, β unsaturated acid Perkin Reaction
3.	Alcoholic KOH	R — $X \rightarrow Alkene$; Elimination
4.	Alkyl Lithium 1, 1-elimination	CH_3 — CD_2 – CH_2 – $X \rightarrow CH_3$ – CD = CHD
5.	Aluminium tert-butoxide $[Al(OBu^t)_3]$ + $Me_2C=O$	$R_2CHOH \rightarrow R_2C = O$ $2^{\circ} / 1^{\circ}$ Alcohol \rightarrow Ketone / Aldehyde oppeneuer oxidation
6.	Aluminium Ethoxide	RCH=O \longrightarrow R-C-O-CH ₂ R $\stackrel{ }{O}$ Aldehyde \rightarrow Ester (Tischenko Reaction)
7.	Aluminium Isopropoxide / Isopropanol	$R_2C=O \rightarrow R_2CHOH$ Ketone \rightarrow 2° Alcohol M.P.V. Reduction
8.	Aqueous KOH/NaOH	R — $X \rightarrow ROH$ Nucleophilic substitution S_N reaction Also used for Cannizaro reaction
9.	$AlPO_4$	Dehydrating Reagent
10.	Baryta Water	Ba(OH) ₂ also having same purpose as that of NaOH
11.	Baeyer's Reagent	RCH=CHR' RCH—CHR' OH OH
10	(Alkaline cold dilute KMnO ₄)	alkene \rightarrow 1, 2 diol (used to detect unsaturation)
12.	Bromine water	used to detect unsaturation; NH ₂ Br Br Br Br 2,4,6-tribromoaniline 2,4,6-tribromophenol
13.	Benedict's solution	Used to detect aldehyde group $RCHO \rightarrow RCO_2^-$ [ketone gives -ve test]
14.	Brosyl Chloride	${ m ROH} ightarrow { m ROBs}$ bad leaving group- OH becoming good leaving group.
15.	$Cu_2Cl_2 + NH_4OH$	Used to Detected Terminal Alkyne Red Precipitate observed
16.	${\rm CrO_2Cl_2}$	CH=O Etard reaction

		Path to Success KOTA (RAJASTHAN)
17.	CrO ₃	$RCH_2OH \rightarrow RCHO, R_2CHOH \rightarrow R_2C=O$ $R_3COH \rightarrow no reaction$
18.	Cu ₂ Cl ₂ + NH ₄ Cl	Linear polymerization of alkyne
19.	CCl₄ + ŌH	OH OH + p- product CO ₂
		Reimer Tiemann Reaction
20.	CO + HCl + AlCl ₃	OH OH + p- product CH=O Gatterman koch reaction
21.	CHCl ₃ + KOH	OH OH CH=O Reimer Tiemann reaction
		${\rm RNH_2} ightarrow {\rm RNC}$ Carbyl amine Test (used to detect 1° Amine; obnoxious small of RNC)
22.	CO ₂ + OH [—] (high temp. + pressure)	OH OH CO ₂ + p- product Kolbes Schimdt reaction
23.	Ca(OCI)CI+ X ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
24.	Cu/A	$RCH_{2}OH \rightarrow RCHO, R_{2}CHOH \rightarrow R_{2}C=O$ $CH_{3} \qquad CH_{3}$ $H_{3}C-C-OH \longrightarrow H_{2}C=C$ $CH_{3} \qquad CH_{3}$ $Polymerisation of alkyne$ $H-C=C-H \longrightarrow C \qquad ; H_{3}C-C=CH \longrightarrow C$
25.	2,4, D.N.P.	used to detect carbonyl group (orange ppt observed)
26.	D.N.F.B.	used to detect N terminal residue of amino acid
27.	DHP + H+ O	Protection of alcohol from base
28.	Diazomethane	Used to convert $-OH \rightarrow OCH_3$ group; Source of carbine $R-C-CI \longrightarrow R-C-CHN_2 \xrightarrow{H_2O} R-CH_2-CO_2H$ $O O$ $R-C-OH/G \longrightarrow RCHO, RCN \longrightarrow RCHO$
29.	DIBALH	R−C−OH/G → RCHO, RCN → RCHO

30.	Diborane	Reducing agent; It can not reduce $ \begin{array}{c} -\text{C}-\text{Cl};\; \text{RNO}_2;\; \text{ArNO}_2;\; \text{RX};\; \text{ArX but can reduce} \\ \text{O} \\ -\text{CH}=\text{O}, -\text{C}-\text{R}, -\text{C}-\text{OH}, -\text{C}-\text{OR}, -\text{CN} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \end{array} $
31.	Diene & Dinophile	diels alder reaction (Addition of 2π & 4 electrons)
32 .	DMSO	Aprotic solvent: favour S _N 2 mechanism
33.	Fe+ Br ₂ /FeBr ₃	□ → □ Br
34.	Fe + HCl	
35.	Fehling solution	used to identify – CH=O group. PhCHO gives –ve test Observation: red ppt of Cu ₂ O formed
36.	Fenton Reagent	OH; α hydroxy acid \rightarrow Aldehyde
37.	Grignard Reagent	$ \begin{array}{l} \mbox{Universal reagent;} \\ \mbox{Alkane; All types of alcohol; acids can be prepared} \\ \mbox{Towards RMgX}: \mbox{Acid Base}: \mbox{Reaction} > \mbox{Nu addition} > \mbox{S}_{\mbox{\tiny N}} \\ \end{array} $
38.	H ₂ (Pd/CaCO ₃)	Lindlar catalyst : $R-C=C-R\rightarrow R-CH=CH-R$ (cis)
39.	H_3PO_2	(Sodium stannite also can be used for this purpose)
40.	$HN_3 + H_2SO_4$	$\begin{array}{c} R-C-OH \longrightarrow RNH_2 \\ O \\ (Schmidt Reaction) \end{array}$
41.	H_3PO_4/Δ	$H_3PO_4 \Rightarrow Same as H_2SO_4/\Delta$
42.	H_2O_2	R' having more migrating tendency than R. H_2O_2 gives antimarkownikoff pdt in presence of HBr / RSH/ CHCl $_3$
43.	H ₂ O	$\begin{array}{c} \text{RX} \rightarrow \text{R-OH}; \ \text{R-C-G} \longrightarrow \text{R-C-OH} \\ \text{O} \qquad \text{O} \\ \text{-CHCl}_2 \rightarrow \text{-CH=O}; \text{CCl}_3 \rightarrow \text{CO}_2\text{H} \\ \text{CH=NH} \rightarrow \text{CH=O} \end{array}$
44.	H_2SO_4/Δ	RCH−CH ₃ → RCH=CH ₂ OH Saytzeff product; C ⁺ mechanism; Rearranged alkene can be formed
45.	HNO ₂ (NaNO ₂ + HCl)	$RNH_2 \rightarrow R$ — OH ; $PhNH_2 \rightarrow PhN_2^+$ (O — 5 °C) $PhNH_2 \rightarrow PhOH$ (high temperature) N=O

		Path to Success KOTA (RAJASTHAN)
46.	HCN + Base	RCH=O → RCH CN
47.	HIO ₄	RCH—CH—R' → RCH=O + R'CH=O OH OH Oxidative cleavage of diol
48.	H ₂ (Ni)	$\begin{array}{c} \text{H}_2(\text{Ni}) \text{ can reduce}) \\ \text{R-C-R} & \longrightarrow \text{R}_2\text{CHOH} & \text{R-C-G} & \longrightarrow \text{RCH}_2\text{OH} \\ \text{O} & ; & \text{O} \\ \\ \text{RCN} & \to \text{RCH}_2\text{NH}_2; & -\text{C=C-} & \to \text{CH}_2\text{CH}_2 \\ \\ -\text{HC=CH-} & \to -\text{CH}_2\text{CH}_2 \end{array}$
49 .	H ₂ (C+Ru)	Only $RCO_2H \rightarrow RCH_2OH$
50.	H ₂ (Pd/BaSO ₄)	R−C−Cl → RCH=O OI
51.	I ₂ + HNO ₃	
52.	ICI	$RCH=CH_2 \longrightarrow RCH-CH_2I; \qquad \qquad I$
53.	Jones Reagent	$RCH_2OH \rightarrow RCH=O; R_2CHOH \rightarrow R_2C=O$
54.	KCN(Alcoholic)	PhCHO→ PhCH(OH)—C—Ph
55.	KHSO ₄	Dehydrating Reagent CH ₂ -CH-CH ₂ -OH → CH ₂ -CH-CH=O OH OH
56.	KI + acetone	$S_{\rm N}2$ mechanism favour
57.	KMnO ₄ /H+	$RCH_2OH \rightarrow RCO_2H$; $RCHOH \rightarrow R_2C=O$ on prolong heating it is converted into mixture of acid. $ \begin{array}{c} CH_3 \\ H_3C-C-CH_2-CH_3 \longrightarrow Me_2C-O + MeCO_2H \\ OH \end{array} $ $Me_3CH \rightarrow Me_3COH$
58.	KNO ₂ , Cu powder	N_2^+ NO_2
59.	KI (Cu Powder)	${\longrightarrow} { } { } { }$

	KOTA (RAJASTHAN)	
60.	K ₂ Cr ₂ O ₇ /H ⁺	$\begin{array}{c} {\rm RCH_2OH} \rightarrow {\rm RCO_2H}; \ {\rm R_2CHOH} \rightarrow {\rm R_2C} \\ {\rm on \ prolong \ heating \ it \ is \ converted \ into \ mixture \ of \ acid.} \\ {\rm CH_3} \\ {\rm H_3C-C-C-CH_2-CH_3} \longrightarrow {\rm Me_2C=O} + {\rm MeCO_2H} \\ {\rm OH} \end{array}$
61.	K ₃ [Cu(CN) ₄]	N_2^+ CN
62 .	Ketene	Source of carbene
63.	Lithium Diisopropyl Amide	LDA is used for direct aldol
64.	Li	$R - X \rightarrow RLi \qquad F - F - F - F - F - F - F - F - F - F$
65.	Lithium aluminium Hydride	LAH reduce all except double & triple bond; LAH in AlCl ₃ can reduce triple bond
66.	Lead Tetra acetate	RCH−CH−R' → R−CH=O + R'CH=O
67.	$LiAlH(O'Bu)_3$ at $-78^{\circ}C$	$ \begin{array}{c} R-C-R' \longrightarrow RCH=O \\ \parallel \\ O \end{array} $
68.	Mercuric Acetate + NaBH ₄	Used for OMDM process
69.	MnO ₂	CH_3 — CH = CH — CH_2 — OH \rightarrow CH_3 — CH = CH — CH = O Ph CH_2 OH \rightarrow Ph CH = O To oxidise allylic / benzylic hydroxyl group into corresponding carbonyl.
70.	$\mathrm{NaN_3/\Delta}$	$ \begin{array}{c c} R-C-CI \longrightarrow R-C-N_3 \longrightarrow R-N=C=O \\ \parallel & \parallel \\ O & O \end{array} $
71.	NaHCO ₃	$RCO_2H \xrightarrow{14}_{NaHCO_3} RCO_2^-Na^+ + \overset{14}{C}O_2 \uparrow$
72.	NaHSO ₃	OH R-C-R RC SO ₃ Na ⁺ [White crystals, soluble in water] Used to separate carbonyl from noncarbonyl system

		Pagé to Success KOTA (RAJASTHAN)
73 .	Na ₂ CO ₃ (aq)	Na ₂ CO ₃ also having same purpose as that of NaOH;
		It gives $ar{O}H$ also.
		0 0.1.
74.	NaOH(aq)	$R-X \rightarrow R-OH; R-C-OR' \xrightarrow{NaOH} R-C-O-R'OH$
		Basic hydrolysis of ester
		$HCHO \xrightarrow{O\overline{H}} HCO_2^- + CH_3OH \text{ (cannizaro)}$
		$H_3C - CH = O \xrightarrow{OH^-} H_3C - CH = CH - CH = O$ (Aldol condensation)
75 .	Nihydrin	Detection of amino acid
		Observation : Purple coloured ion
76.	NaOR	Strong base : RCH-CH ₂ -R → RCH=CH-R
		X
		(Saytzeff Product : E ₂ elimination)
		H C-C-OFt II C-C-CII-C-OFt
		$\begin{array}{c c} H_3C-C-OEt \longrightarrow H_3C-C-CH_2-C-OEt \\ \parallel & \parallel & \parallel \\ O & O \end{array}$
		(claisen condensation) (β keto ester)
77.	Na_2S	NO_2 NO_2
		Na ₂ S
		NO ₂ NH ₂
		(Partial Reduction)
		Other reagents used for this purpose are
		NaHS/(NH ₄) ₂ S/NH ₄ HS
78.	NaOH + X ₂	
	1.66.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	$RC-CH_3 \xrightarrow{-CHI_3} RCO_2^{-}; RC-CH_3 \xrightarrow{-CHI_3} RCO_2^{-}$
		0
		(Haloform reaction)
		$R-C-NH_2 \longrightarrow RNH_2$ (Hoffman Degradation)
79.	NaOH + CaO	RCO ₂ H → RH
80.	NaOX	Same as NaOH + X ₂
01	NDC	
81.	NBS	
82.	NaNO ₂ + HCl	$RNH_{2} \rightarrow R-OH$
83.	$N_2H_4 + H_2O_2$	$RCH=CHR \rightarrow RCH_2$ — CH_2R syn. addition
84.	$N_2N_4 + N_2 = 2$ $NaNH_2$ in paraffin	Non-terminal Alkyne → Terminal Alkyne
	Z • -	(2 Butyne \rightarrow 1 butyne)
Ь		

89. Na(Hg) + dil. H₂SO₄ RCH-CH(OH)—CH(OH)—C RCH-CH(OH)—CH(OH)—C RCH-CH(OH)—CH(OH)—CH=O OH RCH-CH(OH)—CH(OH)—CH=O OH RCH-CH(OH)—CH(OH)—CH=O OH RCH-CH(OH)—CH(OH)—CH=O OH RCH-CH(OH)—CH=O OH RCH-CH(OH)—CH(OH)—CH=O OH RCH-CH(OH)—CH=O OH RCH-CH(OH)—CH=O OH RCH-CH(OH)—CH=O OH RCH-CH(OH)—CH=O RCH-CH=OH RCH-CH-CH RCH-CH=OH RCH-CH-CH RCH-CH RCH RCH-CH RCH RCH-CH RCH RCH-CH RCH RCH RCH RCH-CH RCH RCH RCH RCH RCH RCH RCH RCH RCH R		KOTA (RAJASTHAN)	
87. NaBH₄ + ROH Selective reducing agent RC_C CI → RCH₂OH, RCH=O → RCH₂OH RCH_C OH, RCH=O → RCH₂OH RCH_C OH, RCH=O → RCH₂OH RCH_C OH RCH_C OH, RCH=O → RCH₂OH RCH_C CH_C OH	85.	$N_2H_4 + \overline{O}H/\Delta$ or $N_2H_4 + \overline{O}Et/\Delta$	$ \begin{array}{c} R - C - R \longrightarrow R - CH_{2} - R \\ 0 \end{array} $
87. NaBH₄ + ROH Selective reducing agent RC_C CI → RCH₂OH, RCH=O → RCH₂OH RCH_C OH, RCH=O → RCH₂OH RCH_C OH, RCH=O → RCH₂OH RCH_C OH RCH_C OH, RCH=O → RCH₂OH RCH_C CH_C OH	86.	NH ₃	$R-X \rightarrow RNH_2$, $R-C-Cl \longrightarrow R-C-NH_2$
88. N ₂ O ₅ ; HNO ₃ + AC ₂ O 89. Na(Hg) + dil. H ₂ SO ₄ RCH-CH(OH)—CH(OH)—CH(OH)—CH OH 90. Na/EtOH 91. Na(Hg) + HCl → RCH=CHR → RCH=CHR (trans alkene) 92. Na in Liq. NH ₃ RCH=CHR → RCH=CHR (syn addition) OH OH 94. O ₂ followed by H ⁺ 87. RCH=CHR → RCH=CHR 95. O ₃ RCH=CHR → RCH=CHR	87.	NaBH ₄ + ROH	Selective reducing agent
89. Na(Hg) + dil. H₂SO₄ RCH-CH(OH)—CH(OH)—C RCH-CH(OH)—CH(OH)—C RCH-CH(OH)—CH(OH)—CH=O OH RCH-CH(OH)—CH(OH)—CH=O OH RCH-CH(OH)—CH(OH)—CH=O OH RCH-CH(OH)—CH(OH)—CH=O OH RCH-CH(OH)—CH=O OH RCH-CH(OH)—CH=O OH RCH-CH(OH)—CH=O OH RCH-CH(OH)—CH=O OH RCH-CH(OH)—CH=O OH RCH-CHCHCH RCH-CHCHCH RCH-CHCHC RCH-CHC RCH-CHCHC RCHCHC RCH-CHCHC RCHC			$ \begin{array}{c} R-C-R \longrightarrow R_2CH \\ O OH \end{array} $
90. Na/EtOH reduce all except double & triple bond 91. Na(Hg) + HCl → RCH=CHR → RCH=CH=R (syn addition) OH OH 93. OsO ₄ + H ₂ O → RCH=CHR → RCH=CHR → RCH=O + I 94. O ₂ followed by H+ RMgX → ROH 95. O ₃ RCH=CHR → RCH-CHR → RCH-CHR → RCH=O + I 96. Oxirane followed by H+ RMgX → RCH ₂ OH → R ₂ C = O R ₃ COH → no reaction (Mild oxidizing reagent) 98. PCC(H ₂ O) RCH ₂ OH → RCO ₂ H, R ₂ CHOH → R ₂ C = O R ₃ COH → no reaction 99. P(red) + Br ₂ CH ₃ CO ₂ H → H ₂ C=CO ₂ H (HVZ reaction) Br ROH → R — CH=ORI ROH → R — CH	88.	N_2O_5 ; $HNO_3 + AC_2O$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
90. Na/EtOH reduce all except double & triple bond 91. Na(Hg) + HCl \rightarrow P2. Na in Liq. NH ₃ P3. OsO ₄ + H ₂ O \rightarrow RCH=CHR \rightarrow RCH-CH-R (syn addition) OH OH 94. O ₂ followed by H* RCH-CHR \rightarrow RCH-CHR' \rightarrow RCH-CHR' \rightarrow RCH=O+1 (Ozenolysis process) 96. Oxirane followed by H* RMgX \rightarrow RCH RCH ₂ OH \rightarrow RCHO, R ₂ CHOH \rightarrow R ₂ C = O R ₃ COH \rightarrow no reaction (Mild oxidizing reagent) 98. PCC(H ₂ O) RCH ₂ OH \rightarrow RCO ₂ H, R ₂ CHOH \rightarrow R ₂ C = O R ₃ COH \rightarrow no reaction 99. P(red) + Br ₂ CH ₃ CO ₂ H \rightarrow H ₂ C-CO ₂ H (HVZ reaction) Br ROH \rightarrow R \rightarrow R ROH \rightarrow	89.	Na(Hg) + dil. H ₂ SO ₄	O
91. $Na(Hg) + HCl \rightarrow$ $R-C-R \rightarrow R-CH_2-R$ 92. $Na \text{ in Liq. } NH_3$ $R-C=CR \rightarrow C=C$ H R $(trans alkene)$ 93. $OsO_4 + H_2O \rightarrow$ $RCH=CHR \rightarrow RCH-CH-R$ $(syn addition)$ 94. $O_2 \text{ followed by } H^+$ $RMgX \rightarrow ROH$ 95. O_3 $RCH-CHR \rightarrow RCH-CHR' \rightarrow RCH' CHR' \rightarrow RCH-CHR' \rightarrow $			
92. Na in Liq. NH ₃ $R-C \equiv CR \xrightarrow{R} C = C$ $H \xrightarrow{R} R$ $(trans alkene)$ 93. $OsO_4 + H_2O \rightarrow RCH = CHR \xrightarrow{RCH} RCH - CHR \xrightarrow{RCH}$	90.	Na/EtOH	reduce all except double & triple bond
93. $OsO_4 + H_2O \rightarrow$ RCH=CHR → RCH-CH-R (syn addition) OH OH 94. O_2 followed by H+ RMgX → ROH 95. O_3 RCH-CHR → RCH-CHR' → RCH-CHR' → RCH=O+1 O_2 (Ozonolysis process) 96. Oxirane followed by H+ RMgX → RCH2—CH2—OH 97. PCC(CH2Cl2) RCH2OH → RCHO, R2CHOH → R2C = O R3COH → no reaction (Mild oxidizing reagent) 98. PCC(H2O) RCH2OH → RCO2H, R2CHOH → R2C = O R3COH → no reaction 99. P(red) + Br2 CH3CO2H → H2C-CO2H (HVZ reaction) Br ROH → R —Br ROH → R —Br ROH → R —Br ROH → R —COR' O O	91.	Na(Hg) + HCl →	$ \begin{array}{c} R-C-R \longrightarrow R-CH_2-R \\ 0 \end{array} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	92.	Na in Liq. NH ₃	пп
95. O_3 RCH-CHR \longrightarrow RCH-CHR' \longrightarrow RCH-CHR' \longrightarrow RCH=O + 1 96. Oxirane followed by H* RMgX \rightarrow RCH ₂ —CH ₂ —OH 97. PCC(CH ₂ Cl ₂) RCH ₂ OH \rightarrow RCHO, R ₂ CHOH \rightarrow R ₂ C = O R ₃ COH \rightarrow no reaction (Mild oxidizing reagent) 98. PCC(H ₂ O) RCH ₂ OH \rightarrow RCO ₂ H, R ₂ CHOH \rightarrow R ₂ C = O R ₃ COH \rightarrow no reaction 99. P(red) + Br ₂ CH ₃ CO ₂ H \rightarrow H ₂ C-CO ₂ H (HVZ reaction) Br ROH \rightarrow R —Br ROH \rightarrow R —Br ROH \rightarrow R —CO ₂ H ROH \rightarrow R —CO ₂ H	93.	$OsO_4 + H_2O \rightarrow$	
96.Oxirane followed by H+RMgX \rightarrow RCH2—CH2—OH97.PCC(CH2Cl2)RCH2OH \rightarrow RCHO, R2CHOH \rightarrow R2C = O R3COH \rightarrow no reaction (Mild oxidizing reagent)98.PCC(H2O)RCH2OH \rightarrow RCO2H, R2CHOH \rightarrow R2C = O R3COH \rightarrow no reaction99.P(red) + Br2CH3CO2H \rightarrow H2C—CO2H (HVZ reaction)100.PeracidR-C-R' \rightarrow R-C-OR' \rightarrow R-C-OR' \rightarrow R-C-OR' \rightarrow R-C-OR' \rightarrow \rightarrow R-C-OR' \rightarrow \rightarrow R-C-OR' \rightarrow	94.	O ₂ followed by H+	RMgX → ROH
97. $PCC(CH_2Cl_2)$ $RCH_2OH \rightarrow RCHO, R_2CHOH \rightarrow R_2C = O$ $R_3COH \rightarrow no reaction (Mild oxidizing reagent)$ 98. $PCC(H_2O)$ $RCH_2OH \rightarrow RCO_2H, R_2CHOH \rightarrow R_2C = O$ $R_3COH \rightarrow no reaction$ 99. $P(red) + Br_2$ $CH_3CO_2H \rightarrow H_2C^-CO_2H (HVZ reaction)$ Br $ROH \rightarrow R - Br$ $ROH \rightarrow R - Br$ $R-C-R' \longrightarrow R-C-OR'$ O	95.	O_3	$RCH-CHR \longrightarrow RCH-CHR' \longrightarrow RCH CHR' \longrightarrow RCH=O + R'CHO$ $O \qquad O \qquad O \qquad (Ozonolysis process)$
$R_{3}COH \rightarrow \text{no reaction (Mild oxidizing reagent)}$ $98. PCC(H_{2}O)$ $RCH_{2}OH \rightarrow RCO_{2}H, R_{2}CHOH \rightarrow R_{2}C = O$ $R_{3}COH \rightarrow \text{no reaction}$ $99. P(\text{red}) + Br_{2}$ $CH_{3}CO_{2}H \rightarrow H_{2}C^{-}CO_{2}H \text{ (HVZ reaction)}$ Br $ROH \rightarrow R - Br$ $ROH \rightarrow R - Br$ $R^{-}C^{-}R^{-} \rightarrow R^{-}C^{-}OR^{\prime}$ O	96.	Oxirane followed by H+	$RMgX \rightarrow RCH_2 -\!$
98. $PCC(H_2O)$ $RCH_2OH \rightarrow RCO_2H$, $R_2CHOH \rightarrow R_2C = O$ $R_3COH \rightarrow no reaction$ 99. $P(red) + Br_2$ $CH_3CO_2H \rightarrow H_2C-CO_2H$ (HVZ reaction) Br $ROH \rightarrow R - Br$ $R-C-R' \rightarrow R-C-OR'$ O	97.	PCC(CH ₂ Cl ₂)	
100. Peracid $ \begin{array}{c} ROH \rightarrow R - Br \\ R-C-R' \longrightarrow R-C-OR' \\ O & O \end{array} $	98.	PCC(H ₂ O)	$RCH_2OH \rightarrow RCO_2H, R_2CHOH \rightarrow R_2C = O$
$\begin{array}{c c} \textbf{100.} & \text{Peracid} & & R-C-R' \longrightarrow R-C-OR' \\ & O & O \end{array}$	99.	P(red) + Br ₂	$CH_3CO_2H \rightarrow H_2C-CO_2H$ (HVZ reaction) Br
I R' having more migrating tendency than R	100.	Peracid	

		Path to Success (KOTA (RAJASTHAN)
101.	P (red) + HI	$CH_3CO_2H \rightarrow CH_3$ — CH_3 (one of the strongest reducing agent) or $CH_3CH=O \rightarrow CH_3$ — CH_3 (one of the strongest reducing agent) or $CH_3CH_2OH \rightarrow CH_3$ — CH_3 (one of the strongest reducing agent)
102.	Perbenzoic acid	R-C-R' → R-C-OR' O O R' having more migrating tendency than R
103.	P_4O_{10}	Dehydrating Reagent, Beckmann Rearrangement
104.	PCl ₅	Dehydrating Reagent, Beckmann Rearrangement
105.	Ph ₃ P + RLi	$ \begin{array}{c} R \\ C=O \xrightarrow{CH_3CH_2^X} R \\ R \\ R \\ \text{[alkyl halide should not be 3°R]} \end{array} $
106.	Ph ₃ SnH	R — $X \rightarrow R$ — H all alkyl halides converted with alkane
107.		RCH−CH−R' → RCH=O + R'CH=O
		Oxidative cleavage of diol
108.	3	Dehydrating Reagent, Beckmann Rearrangement
109.	Quaternary ammonium salt	Phase transfer catalyst to accelerate $nC_4H_9OBs + C\overline{N} \rightarrow nC_4H_9CN + O\overline{B}s$
110.	R ₂ O	Used as solvent in reaction of grignard; Wurtz reaction
111.	RCI + AlCl ₃	\bigcap^{R}
112.	RCOCl + AlCl ₃	C-R Ö
113.	RO ⁻ + R'Cl	Ether formation; ROR' Williamson synthesis : Reactivity of RX (1° > 2° > 3°)
114.	$RX + NH_3(XS)$	Preparation of 1° / 2° / 3° Amine
115.	$RO_2Ag + Br_2$	$RCO_2Ag + Br_2 \rightarrow RBr$
116.	$RCO_2Ag + I_2$	$RCO_2Ag + I_2 \rightarrow RCO_2R$
117.	RLi	used for 1, 1-elimination
118.	$ m R_{_2}Cd$	Used for preparation of pure carbonyl from used impure carbonyl $R-C-Cl \longrightarrow R-C-R$ O
119.	R ₂ CuLi	R_2 CuLi is formed as intermediate in Corey house method $R' - + R_2$ CuLi $\rightarrow R' - R$, $R' - X$ should not be 3° $R - X$ $R - C - CI \longrightarrow R - C - R$

Path to Succe	KOTA (RAJASTHAN)	•
120.	ROH+R—C-OH	Ester formed
121.	Selenium Dioxide (SeO ₂)	$CH_{3}-CH=CH-CH_{2}-OH\rightarrow CH_{3}-CH=CH-CH=O$ $PhCH_{2}OH\rightarrow PhCH=O$ $H_{3}C-C-CH_{3} \longrightarrow H_{3}C-C-CH=O$ O $H_{3}C-C-CH_{2}-CH_{3} \longrightarrow H_{3}C-C-C-CI$ O
122.	Sodium Borchydride	It reduce only $-CH=O$, $-C-R$, $-C-Cl$ group $ \begin{array}{cccc} O & & & & & & & & & \\ O & & & & & & & & \\ & & & & & & & & & \\ & & & & $
123.	Sodamide	NaNH ₂ strong Base; Used for elimination purpose; Strong base : $RCH-CH_{\overline{2}}-R \longrightarrow RCH=CH-R$ X (Saytzeff Product : E_2 elimination) $CH_3 - C \equiv C - CH_3 \xrightarrow{NaNH_2 \atop Paraffin} CH_3 - CH_2 - C \equiv CH$ Non – ter minal alkyne
124.	SnCl ₂ + HCl	$R-N=N-R' \rightarrow RNH_2 + R'NH_2$ $NO_2 \qquad NH_2$ $RCN \rightarrow RCH = O \text{ Stephen reduction}$
125 .	Sn + HCl	NO_2 NH_2 , $RCN \rightarrow R-CH_2NH_2$
126.	Silver salt RCOOAg	$Br_2/CCl_4/\Delta \rightarrow RBr + CO_2 + AgBr$
127.	AgNO ₃ NH ₄ OH	Same as Tollen's Reagent
128.	$AgBF_4$	It abstract halide ion
129.	AgOH/moist Ag ₂ O	$R_4 \stackrel{+}{N} \overline{X} \rightarrow R_4 \stackrel{+}{N} \overline{O}H$; RCH=CHR \longrightarrow RCH-CH-R (Anti addition) OH OH Used in Arndt Eistest reaction as one of the reagent
		to convert $RCO_2H \rightarrow RCH_2CO_2H$
130.	SO ₃	SO ₃ H
131.	SOCl ₂	$ \begin{array}{ccc} R-C-OH/R-OH \longrightarrow R-C-Cl/R-Cl\\ 0 & 0 \end{array} $
132.	SO ₂ Cl ₂	R—H → RCl

		Park to Succeed KOTA (RAJASTHAN)
133.	Swern Reagent	R — $CH_2OH \rightarrow RCH=O, R_2CHOH \rightarrow R_2C=O$
134.	Tollens Reagent	—CH=O → —CO ₂ ⁻ + Ag (Shining silver mirror) ketone gives -ve test; α - hydroxy ketone gives +ve test also PhNOH, HCO ₂ H gives positive test & it is used to distinguish
		(i) —CH=O vs —C-R (ii) HCO ₂ H vs other acid
135.	Tosyl Chloride	—OH → —OTs bad L.G. converted into good L.G. (L.G. = leaving group) Also it used to protect the ring from oxidation towards $HNO_3 + H_2SO_4$
136.	Benzene sulfonyl chloride	It is used to detect all types of amine group ref : Hinsberg Test Also it is used to separate RNH ₂ , R ₂ NH & R ₃ N
137.	Tetra ethyl lead	Used as antiknowk compound
138.	Trifluoroperacetic acid	RCH=CHR \longrightarrow RCH-CHR, R-C-R' \longrightarrow R-C-O-R' $ \stackrel{NH_2}{\longrightarrow} \stackrel{NO_2}{\longrightarrow} $
139.	V_2O_5	$\begin{array}{c c} & V_2O_5 \\ \hline & V_2O_5 $
140.	Wilkinson Catalyst	Hydrogenation of alkene
141.	Zn + α-haloester	RCH=O \longrightarrow RCH-CH ₂ -CO ₂ Et OH Aldehyde \longrightarrow β -hydroxyl ester
142.	Zn (dil. ACOH)	$ \begin{array}{c} HC=O \\ CH=O \end{array} \xrightarrow{CH_2OH} C=O $
143.	Zn (Hg) + conc. HCl	reducing aldehyde not ketone >C = O \rightarrow > CH ₂ > C=O system should not contain (—OH; C=C group)
144.	Zeigler Nalta Catalyst	Polymerisation of alkene
145.	Zn dust + NH ₄ Cl (Aq.)	NO ₂ NHOH Mulliken Barker Test
146.	Zn + NaOH	NO ₂ NH-NH-Ph