K-Means Clustering on Images

Applied the K-Means Clustering for Image Compression on Koala.jpg and Penguins.jpg images. Using the KMeans.java as a template implemented the KMeanJava.py. The KMeansJava.py is taking huge amount of time processing the Image Compression. Used the NumPy implementation of the RGB cluster map in KMeans.py and its better than the raw implementation. Using the convergence of Means and iterations limit for KMeansJava.py whereas only the convergence of means in KMeans.py

For each image tabulated the Compression Ratios for different values of K (No. of Clusters). Repeated the Experiment with different initializations using the following seeds for the random number generators. Using the **Compression Ratio** as per the below Wikipedia link https://en.wikipedia.org/wiki/Data compression ratio

$$\label{eq:compressed_Size} \begin{aligned} \text{Compression Ratio} &= \frac{\text{Uncompressed Size}}{\text{Compressed Size}} \end{aligned}$$

K = [2, 5, 10, 15, 20] & Seeds = [8191, 131071, 524287, 6700417, 2147483647].

Koala.jpg Image:

K	2	5	10	15	20
seed1(8191)	7.494587	4.489728	4.577587	4.739231	4.398577
seed2(131071)	15.42352	4.430071	4.15497	4.718098	4.984781
seed3(524287)	51.5298	4.453443	4.407441	4.569015	4.931045
seed4(6700417)	10.69954	4.321337	4.508835	4.608086	4.670489
seed5(2147483647)	13.24475	4.410578	4.372395	4.588832	4.644928
Avg. Comp. Ratio	19.67844	4.421031	4.404246	4.644652	4.725964
Var. Comp. Ratio	325.7681	0.003975	0.026037	0.006128	0.056468
Avg. Run Time	19.9872	40.4052	74.0838	106.7062	142.0876

The better K value is K = 15 as the Variance Compression Ratio is very less for that.

Penguins.jpg Image:

К	2	5	10	15	20
seed1(8191)	13.05772	9.123415	6.74326	6.413124	6.647481
seed2(131071)	11.66607	7.815316	6.492346	6.31539	6.881547
seed3(524287)	38.13664	7.558107	7.031404	6.859276	6.699814
seed4(6700417)	14.31897	6.462517	6.15595	6.550631	6.522233
seed5(2147483647)	14.4292	7.222238	6.49853	6.641975	6.698833
Avg. Comp. Ratio	18.32172	7.636319	6.584298	6.556079	6.689982
Var. Comp. Ratio	99.16248	0.759777	0.084893	0.035541	0.013364
Avg. Run Time	19.9034	40.886	74.7394	108.8438	140.6488

The better K value is K = 20 as the Variance Compression Ratio is low compared to other values.

Yes, there is a tradeoff between image quality and degree of compression. As the degree of compression increases to large values the Color image is degrading to Grey Scale image. However, it still able to retain the Image Segmentation features.