УДК 621.9.06

В.Л. Зубенко

канд. техн. наук, доцент, кафедра «Автоматизированные станочные комплексы», ФГБОУ ВПО «Самарский государственный технический университет»

И.В. Емельянова

канд. техн. наук, доцент, кафедра «Инженерная графика», ФГБОУ ВПО «Самарский государственный технический университет»

Н.В. Емельянов

ст. преподаватель, кафедра «Инженерная графика», ФГБОУ ВПО «Самарский государственный технический университет»

МЕТОДИКА ПРИМЕНЕНИЯ CAD/CAM/CAE – CИСТЕМ В НАУЧНЫХ ИССЛЕДОВАНИЯХ

Аннотация. В работе изложена методика обучения инженеров, магистров и бакалавров на основе CAD/CAM/CAE-технологий в учебном процессе и научных исследованиях.

Ключевые слова: компьютерные технологии, CAD-CAE технологии, автоматизированные системы.

V.L. Sybenko, Samara state technical University

I.V. Emelyanova, Samara state technical University

N.V. Emelyanov, Samara state technical University

THE TECHNIGUE OF APPLICATION OF CAD/CAM/CAE – SYSTEMS IN SCIENTIFIC RESEARCH

Abstract. The following paper introduces the methods of teaching students for Bachelor's Degree, Master's Degree and Engineering Specialties on the basis of CAD/ CAM/CAE/ technologies during the teaching process and scientific research.

Keywords: computer technologies, CAD-CAE technologies, automated systems.

Современные машиностроительные и станкостроительные предприятия, производящие сложную наукоемкую продукцию, применяют информационные технологии – один из инструментов повышения эффективности процесса проектирования и производства продукции.

Жизненный цикл изделия – совокупность взаимосвязанных процессов (стадий) создания и последовательного изменения состояния от обработки сырья для его изготовления до эксплуатации и утилизации продукта, предполагает применение программных продуктов CAD/CAM/CAE/GIS/PDM/PLM технологий.

В процессе конструкторской и технологической подготовки производства используют системы автоматизированного проектирования. В зарубежной технической литературе они известны как CAD/CAM/CAE технологии [1].

Как известно, комплексы CAD делятся на легкие (CADAM, VersaCAD), средние (Solid Designer, Inventor, Mechanical Desktop) и тяжелые (интегрированные системы Pro/ENGINEER, Unigraphics, CATIA, I-DEAS, I/EMS, EUCLID).

Самыми известными из них в вузе (на начальных курсах обучения) являются

18 № 2 (18) – 2013

AutoCAD и его приложения; КОМПАС 3D, ArchiCAD, Solid Edge, CADdy и др. [1, 2, 3].

Персональный компьютер (ПК) является современным (прогрессивным) техническим средством обучения, позволяющим в наиболее полной мере использовать преимущества активных методов обучения: развитие творческого мышления, выработка практических навыков при изучении того или иного предмета и др.

Традиционные методы формируют, как правило, лишь информационную базу (в случае преобладания пассивной позиции студента в ходе учебного процесса).

Современные задачи высшей школы могут быть достигнуты посредством программированного обучения при организации непрерывной компьютерной подготовки инженеров, бакалавров и магистров, начиная с общеобразовательных и технических дисциплин І-го курса и заканчивая дипломным проектом по специальности на специализированных кафедрах.

При подготовке инженеров технических специальностей, магистров и бакалавров изучаются в первую очередь «Машиностроительное черчение», «Компьютерная графика», «Начертательная геометрия», а в дальнейшем на базе полученных знаний – специальные дисциплины проектирования, технологии, эксплуатации и ремонта с широким использованием вычислительной техники.

Для успешного проведения обучения необходимо: создать нужное количество рабочих мест, провести подготовку компьютеров, настройку аппаратного, программного обеспечения и иметь в наличии достаточный объем учебно-методического материала.

Непременным условием при этом является наличие отдельного рабочего места для каждого учащегося. Если студент оказывается в роли простого зрителя, то он просто теряет время, не приобретая необходимых практических навыков.

Как показывает практика, для освоения программного продукта в объеме курса, необходимо предоставление ПК и времени для самостоятельной работы.

При этом средством решения проблемы большого объема изучаемого материала является методика его изложения, заключающаяся в том, что пользователь начинает работать с компьютером, а необходимый минимум теоретической информации приводится непосредственно в ходе занятий. Это обеспечивается заранее подготовленными методическими указаниями и материалами, комплект которых выдается каждому учащемуся на лабораторной работе или практическом занятии. В комплект входят рисунки с описанием элементов интерфейса, систем координат, списки наиболее часто используемых клавиатурных команд, основные термины и определения, таблицы параметров объектов чертежа и так далее [4].

Лабораторные и практические занятия построены таким образом, что пользователь учится не просто построению абстрактных отрезков, окружностей, прямоугольников и так далее, а именно решению конкретных задач, которые встречаются на практике [4, 5].

Графическая часть задания обычно состоит из двух частей. Одна из них приведена как образец, на котором изображено то, что пользователь должен получить в результате выполнения задания. На второй студент выполняет все построения [2, 4, 5].

Порядок выполнения задания дается в виде последовательных шагов (алгоритма решения). Следуя указаниям преподавателя, учащийся выполняет предлагаемое задание. Поскольку при выполнении чертежей одно и то же построение можно выпол-

№ 2 (18) – 2013

нить несколькими способами и предлагаемый порядок действий является далеко не единственным, то в разных заданиях по возможности используются различные приемы выполнения типовых действий. При этом пользователь постепенно учится самостоятельно определять наиболее оптимальный из них. Такой порядок изложения материала упрощает и ускоряет его усвоение [4, 5].

Из-за большого объема изучаемого материала невозможно полностью познакомить студента со всеми возможностями изучаемой системы. Поэтому важно привить навыки самостоятельной работы, чтобы он смог в дальнейшем самостоятельно продолжить изучение и позднее постепенно разобраться с материалом, не вошедшим в учебный курс; научиться использованию системы для решения конкретных задач на последующих курсах.

На заключительном этапе обучения студентами 1-го курса выполняются типовые (машиностроительные) чертежи деталей, сборочные чертежи, спецификации, схемы и др., с выполнением требований ЕСКД.

В процессе обучения студенты при выполнении самостоятельной работы, курсовых проектов, учебно-исследовательской работы студентов и др., сталкиваются с рядом задач, решение которых существенно упрощается с использованием компьютерных технологий.

В этом большую помощь могут оказать учебно-методические пособия кафедр, ориентированные на выполнение конкретных прикладных задач.

Особенностью технических специальностей является необходимость работы с большим объемом графического материала в виде сложных машиностроительных чертежей, необходимостью оценки многовариантности предлагаемых проектных и конструкторских решений, широкого использования расчетных численных и оптимизационных методов.

В связи с этим реализация процесса обучения по этим специальностям требует не эпизодического использования компьютерной техники, а планомерной работы в рамках непрерывной компьютерной подготовки.

С этой целью на общеинженерных и специализированных кафедрах разработаны программы практического использования ПК при проведении лабораторных работ, курсовых проектов, самостоятельной работы по изучаемым дисциплинам и дипломном проектировании.

Занятия на ПК проводятся согласно учебному плану с использованием такого программного обеспечения как: Компас, ANSYS, Word, Excel, ACAD, MathCAD, и др., обеспечивая преемственность обучения (работы с данными пакетами) на первом и последующих курсах на кафедрах родственных специальностей.

При этом для углубленного изучения указанных программных продуктов широко используются мультимедийные средства обучения в частности, в виде CD-ROM дисков типа «32 урока по изучению КОМПАС» и др.

Эффективность непрерывной компьютерной подготовки может быть существенно усилена при организации использования компьютеров в учебном процессе в разнообразных формах в зависимости от конкретных решаемых задач:

- Демонстрационная. Компьютер используется как средство для сопровождения объяснения педагога. В этом случае незаменим мультимедийный проектор,

20 Nº 2 (18) − 2013

позволяющий передать информацию с дисплея на большой экран.

- Синхронная. Студенты одновременно выполняют за компьютером одни и те же действия (набирают одни и те же команды, наблюдают одинаковые результаты). Целью такой работы является либо освоение программных пакетов, либо демонстрация решения какой-либо задачи.
- Индивидуальная. За каждым компьютером работает один студент. Это форма используется при проведении тестового контроля по различным дисциплинам. Индивидуально студенты работают при выполнении разделов курсового и дипломного проектирования. В индивидуальном режиме проходят практические (лабораторные) занятия по информатике, численным методам, компьютерной графике, расчету и конструированию станков, основам автоматизированного проектирования станочного оборудования, конструированию и моделированию технологических систем и др.
- Совместная, коллективная. Когда каждая группа выполняет свою часть задачи с последующим анализом полученных конкретных результатов и разработкой мероприятий, направленных на повышение технических показателей решаемой задачи.

В рамках учебной научно-исследовательской работы студентов осуществляется расширенное изучение «Компас» и ряда программных продуктов типа Pspise, Design Lab, MicroCAP, VisSim – комплекс программного обеспечения, применяемого в электронике и электротехнике.

В сочетании с другими приложениями типа ACAD, T-Flex, системами конечноэлементного анализа CAE (Nastran, Cosmos, ANSYS, MathCAD и др.) выполняются инженерные расчеты и аналитические исследования проектируемых объектов.

Их более глубокое изучение проводится на инженерных и профилирующих кафедрах, а также при обучении в аспирантуре.

В ряде случаев создание модели 3D при ее последующем расчете методом конечных элементов средствами CAE-технологий (ANSYS; WinMachine и др.) является более трудоемкой операцией, чем создание данной модели средствами CAD (Компас, ACAD, LMC Virtual Lab и т.д.) с последующей передачей в расчетную программу [3].

Например, система трехмерного твердотельного моделирования Компас-3D, предназначенная для создания трехмерных параметрических моделей деталей и сборочных единиц, содержащих как типичные, так и нестандартные конструктивные элементы, позволяет решить данную задачу применительно к программному обеспечению WinMachine следующим образом.

Рисунок 1 – Импорт Step-модели

Возможными путями передачи модели 3D в WinMachine являются:

1) передача из Компас-3D, используя стандартный метод подключения библиотек;

№ 2 (18) – 2013 21

- 2) непосредственно в модуль APM Studio (если модель открыта в Компас-3D);
- 3) из APM Studio в результате импорта (если модель была ранее сохранена в формате Компас-3D).

Рисунок 2 – Пространственная деформация корпуса опоры шарикового винта привода продольной подачи токарного станка с ЧПУ

Рисунок 3 – Жёсткость привода продольной подачи станка модели 1716ПФ3
В первом случае импорт Step-модели для последующего расчета производится

22 Nº 2 (18) − 2013

в последовательности согласно рис. 1.

Дальнейшими этапами расчета являются: задание силовых нагрузок, начальных и граничных условий; разбиение на объемные конечные элементы твердотельной модели с последующим получением результатов расчета упругих деформаций.

По данной методике, в частности, были проведены расчеты корпусных деталей привода подачи токарного станка с числовым программным управлением (рис. 2), с целью выявления степени влияния пространственных деформаций на жесткость привода (рис. 3) и величину зоны нечувствительности при реверсе, являющиеся одними из важнейших эксплуатационных характеристик при обработке деталей сложного контура [6].

Вывод. Изложена методика обучения инженеров, магистров и бакалавров на основе CAD/CAM/CAE-технологий, заключающаяся в том, что пользователь начинает работать с компьютером, а необходимый минимум теоретической информации приводится непосредственно в ходе занятий в процессе решения конкретных задач, которые встречаются на практике.

В рамках учебной научно-исследовательской работы студентов осуществляется расширенное изучение ряда программных продуктов, на основе которых выполняются инженерные расчеты и аналитические исследования проектируемых объектов.

Использование разработанной методики позволяет значительно сократить время на освоение компьютерной техники и информационных технологий; способствует совершенствованию форм и методов обучения, интенсификации учебного процесса.

Применение в вузе инновационных технологий в учебном процессе и научной деятельности студентов и аспирантов позволяют подготовить высококвалифицированных специалистов и молодых ученых.

Список литературы:

- 1. Ли К. Основы CAПР (CAD/CAM/CAE). СПб.:Питер, 2004. 560 с.
- 2. Кидрук М.И. КОМПАС-3D V9. СПб.: Питер, 2007. 496с.
- 3. Басов К.А. ANSYS и Virtual Lab. Геометрическое моделирование. М.: ДМК Пресс, 2006. 240 с.
- 4. Потемкин А. Внедрение САПР: начинаем с обучения персонала // САПР и Графика №3, 1998. URL: http://gas67.narod.ru/train.htm.
 - 5. Компас-График 5. х Практическое руководство. Часть 1. АО АСКОН 2000 г.
- 6. Емельянова И.В., Емельянов Н.В. CAD-CAE технологии при проектировании автоматизированных станочных систем // Компьютерные технологии в науке, практике и образовании. Труды Всерос. межвуз. научн.-практ. конф. Самара, СамГТУ. 2005. С. 139-143.

List of references:

- 1. Lee K. Basics of SAPR (CAD/CAM/CAE)- S-P.-Piter, 2004.- 560p.
- 2. Kidruk M.I. Compas-3DV9. SPb: 2007 496p.
- 3. Basov K.A.- ANSYS and Virtual lab. Geometry modeling. M., DMK Press, 2006p.
- 4. Alexander Potemkin. Introduction CAD: we begin with learning the personnel // CAD and Graphics N 3, 1998. URL: http://gas67.narod.ru/train.htm.
 - 5. The Compass-Graph 5. x. Practical managament. Part 1. JC ASKON 2000.
- 6. Emelianova I.V., Emelianov N.V. CAD-CAE technologies at designing of automated systems. / Computer technologies in science, practice and education. All- Russian scientific and practical conference. Samara, SamGTU, 2005. P. 139-143.

№ 2 (18) – 2013 23