(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年8 月23 日 (23.08.2001)

PCT

(10) 国際公開番号 WO 01/60354 A1

(51) 国際特許分類7:

A61K 31/196, 31/215, A61P 35/00

(21) 国際出願番号:

PCT/JP01/01090

(22) 国際出願日:

2001年2月15日(15.02.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-36386 2000年2月15日(15.02.2000) JI

- (71) 出願人 (米国を除く全ての指定国について): 帝人株式会社 (TEIJIN LIMITED) [JP/JP]; 〒541-0054 大阪府大阪市中央区南本町1丁目6番7号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 土屋直樹 (TSUCHIYA, Naoki) [JP/JP]; 〒191-0065 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東京研究センター内 Tokyo (JP). 竹安 巧 (TAKEYASU, Takumi) [JP/JP]; 〒740-0014 山口県岩国市日の出町2番1号 帝人株式会社 岩国事業所内 Yamaguchi (JP). 河村 隆 (KAWAMURA, Takashi) [JP/JP]; 〒100-0011 東京都千代田区内幸町2丁目1番1号 帝人株式会社内 Tokyo (JP). 矢守隆夫 (YAMORI, Takao) [JP/JP]; 〒162-0836 東京都新宿区南町34番地2 南町クイーンヒルズ102

Tokyo (JP). 鶴尾 隆 (TSURUO, Takashi) [JP/JP]; 〒156-0051 東京都世田谷区宮坂3丁目36番6号 Tokyo (JP).

- (74) 代理人: 前田純博(MAEDA, Sumihiro); 〒100-0011 東京都千代田区内幸町2丁目1番1号 帝人株式会社 知的 財産センター内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

- (54) Title: CANCER REMEDY COMPRISING ANTHRANILIC ACID DERIVATIVE AS ACTIVE INGREDIENT
- (54) 発明の名称: アントラニル酸誘導体類を有効成分とする癌治療剤

$$R^{1} \xrightarrow{(II)} R^{2} \xrightarrow{R^{4}} (III)$$

(57) Abstract: A cancer remedy containing a compound represented by the following formula (I) as the active ingredient. In the formula (I), X represents a group represented by either of the following formulae (II) and (III). [R1 and R2 each represents hydrogen, hydroxy, trihalomethyl, C1-12 alkoxy or alkylthio, (substituted) C7-11 aralkyloxy, or (substituted) C3-10 alkenyloxy; R4 and R5 represents hydrogen, halogeno, C1-4 alkyl, or C₁₋₄ alkoxy; A represents -O-, -S-, -S(=O)-, -S(=O)2-, -CH2-, -OCH2-, -SCH2-, -C(=O)-, or -CH(OR6)-; Y represents hydrogen, halogeno, nitro, nitrile, amino, -COOR7, -NHCOR8, or -NHSO₂R9; E represents -C(=O)-, -CR 10 R 11 C(=O)-, CH $_2$ CH $_2$ C(=O)-, or -CH=CHC(=O)-; G represents hydrogen. hydroxy, -SO₂NH₂, -COOR³, -CN, or tetrazol-5-yl; and Z represents hydrogen, halogeno, nitro, or methyl.]

(57) 要約:

下記式で表される化合物を有効成分とする癌治療剤。

ここで、Xは次のいずれかの式で表される基を表す。

$$R^{1}$$
 R^{2}
 R^{2}

(ここで、 R^1 、 R^2 は水素原子、水酸基、トリハロメチル基、 $C_1 - C_{12}$ アルコキシ基もしくはアルキルチオ基、(置換) $C_7 - C_{11}$ アラルキルオキシ基、(置換) $C_3 - C_{10}$ アルケニルオキシ基を、 R^4 、 R^5 は水素原子、ハロゲン原子、 $C_1 - C_4$ アルキル基、 $C_1 - C_4$ アルコキシ基を、Aは $-O-、-S-1 - C_4$ アルキル基、 $C_1 - C_4$ アルコキシ基を、 $C_1 - C_4$ アルロゲー、 $C_1 - C_4$ アルロゲー、 $C_2 - C_4$ ($C_1 - C_4$ ($C_2 - C_4$) $C_3 - C_4$ ($C_4 - C_4$) $C_4 - C_4$ ($C_4 - C_4$) $C_4 - C_4$ ($C_4 - C_4$) $C_5 - C_4$ ($C_5 - C_4$) $C_5 - C_4$) $C_5 - C_4$ ($C_5 - C_4$) $C_5 - C_4$) $C_5 - C_4$ ($C_5 - C_4$) $C_5 - C$

明細書

アントラニル酸誘導体類を有効成分とする癌治療剤

5 技術分野

本発明はアントラニル酸誘導体またはその医薬上許容される塩を有効成分として含有する癌治療剤に関する。さらに詳しくは、アントラニル酸骨格とベンゼン骨格を有し、さらにベンゼン骨格もしくはナフタレン骨格を有するアントラニル酸誘導体またはその医薬上許容される塩を有効成分として含有する癌治療剤に関する。

背景技術

10

15

25

優れた制癌剤の開発には社会からの強い要請があり、強力な細胞毒性を有する新規化合物を創製することは、優れた制癌剤の開発において非常に重要である。一般に化合物の制癌活性と制癌スペクトルはその化学構造に大きく依存している。したがって、新規な構造を有する細胞毒性化合物から、現在実用に供せられている制癌剤より優れた制癌剤が開発される可能性は極めて大きい。

アリール骨格をもつ化合物の細胞毒性作用に基づく制癌活性については、20 例えば置換フェニルスルホニル誘導体(特開平5-9170号公報)、2-アリールキノリノール誘導体(特開平7-33743号公報)、ベンゾイルアセチレン誘導体(特開平7-97350号公報)について知られている。一方、国際公開WO95/32943およびジャーナル・オブ・メディシ

ナルケミストリー (J. Med. Chem) 40巻、4号 395項-40 7項(1997年)には、ナフタレン骨格とアントラニル酸骨格を有し、抗アレルギー活性、IgE抗体産生抑制作用を有する化合物が記載されている。

また国際公開WO97/19910にはベンゼン骨格とアントラニル酸骨格を有し、抗アレルギー活性、IgE抗体産生抑制作用を有する化合物が記載されている。

しかしながらこれらのアリール骨格とアントラニル酸骨格を同時に有する 化合物群に細胞毒性作用や制癌活性があることは知られていない。

発明の開示

5 本発明の目的は、新規な構造の癌治療剤を提供することである。

本願発明者らは、上記の課題のもと、アントラニル酸誘導体に増殖性の高い細胞種に対して細胞毒性作用があることを新たに見出した。また、これがヒト癌細胞に対して強い増殖抑制作用または細胞毒性作用があることを見出した。したがって、これらのアントラニル酸誘導体、その医薬学上許容される塩、またはこれらの医薬学上許容される溶媒和物を有効成分として含有する医薬組成物は、癌治療剤として有用である。

すなわち本発明は、下記式(1)

$$X^{\cdot A}$$
 $E^{\cdot N}$
 G
 Z
 (1)

15

10

【上記式(1)において、Xは下記式(2) -1または式(2) -2より選ばれる基を表し、

$$R^{1}$$
 $(2) -1$, R^{2}
 $(2) -2$

20

(上記式 (2) -1もしくは式 (2) -2において、R ¹およびR ²はそれ

25

ぞれ独立に、水素原子、水酸基、トリハロメチル基、 C_1-C_{12} の鎖状もしくは環状の炭化水素基とオキシ基もしくはチオ基からなるアルコキシ基もしくはアルキルチオ基、アリール基部分がハロゲン原子、メチル基、もしくはメチルオキシ基の1個以上により置換されていてもよい C_7-C_{11} のアラルキルオキシ基、または1個以上のフェニル基で置換されていてもよい C_3-C_{10} のアルケニルオキシ基を表す。 R^4 および R^5 はそれぞれ独立に、水素原子、ハロゲン原子、 C_1-C_4 のアルキル基、または C_1-C_4 のアルコキシ基を表す。)

Yは水素原子、ハロゲン原子、ニトロ基、ニトリル基、アミノ基、 $-COOR^7$ 、 $-NHCOR^8$ 、 $-NHSO_2R^9$ (ここで、 R^7 は水素原子または C_1-C_4 のアルキル基を表し、 R^8 および R^9 はそれぞれ独立に、 C_1-C_4 のアルキル基を表す。)を表し、

Eは結合; -C (=O) -、 $-CR^{10}R^{11}C$ (=O) - (ここで、 R^{10} および R^{11} はそれぞれ独立に、水素原子またはフッ素原子を表す。)、 $-CH_2CH_2C$ (=O) -、または-CH=CHC (=O) -を表し、

20 Gは水素原子、水酸基、 $-SO_2NH_2$ 、 $-COOR^3$ (ここで、 R^3 は水素原子または C_1-C_4 のアルキル基を表す。)、-CN、またはテトラゾール-5-イル基を表し、

Zは水素原子、ハロゲン原子、ニトロ基、またはメチル基を表す。} で表されるアントラニル酸誘導体またはその医薬上許容される塩を有効成分 として含有する癌治療剤を提供する。

また、本発明は上記アントラニル酸誘導体またはその医薬上許容される塩を含有する薬剤を用いた癌の治療方法を提供する。

さらに本発明は、癌治療薬を製造するための上記アントラニル酸誘導体またはその医薬上許容される塩の使用である。

発明を実施するための最良の形態

本発明で用いるアントラニル酸誘導体を表す前記式(1)の中の前記式(2) -1 または(2) -2 において、 R^1 および R^2 はそれぞれ独立に、水素原子、水酸基、トリハロメチル基、 C_1-C_{12} の鎖状もしくは環状の炭化水素基とオキシ基もしくはチオ基からなるアルコキシ基もしくはアルキルチオ基、そのアリール基部分がハロゲン原子、メチル基、もしくはメチルオキシ基の1個以上により置換されていてもよい C_7-C_{11} アラルキルオキシ基、または1個以上のフェニル基により置換されていてもよい C_3-C_{10} アルケニルオキシ基を表す。

R¹もしくはR²が、C₁-C₁₂の鎖状もしくは環状アルキルオキシ基を表す場合、例えばメチルオキシ基、エチルオキシ基、プロピルオキシ基、2ープロピルオキシ基、(1-、または2-)メチルプロピルオキシ基、2,2ージメチルプロピルオキシ基、(n-、または tert-)ブチルオキシ基、2ーエチルブチルオキシ基、(2-、または3-)メチルブチルオキシ基、2ーエチルブチルオキシ基、(2-、または3-)メチルブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロプロピルメチルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘキシルメチルオキシ基、シクロオクチルオキシ基、シクロヘプチルオキシ基、シクロトプテンルオキシ基などから選ぶ
 ことができる。

また R^1 もしくは R^2 が $C_1 - C_{12}$ の鎖状もしくは環状アルキルチオ基を表す場合、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、 $2 - \Im$ ロピルチオ基、($1 - \chi$ または $2 - \chi$ メチルプロピルチオ基、 $2 - \chi$ メチルプロピルチオ基、 $2 - \chi$ メチルプロピルチオ基、 $2 - \chi$ メチルプロピルチオ基、 $2 - \chi$ チルチオ基、 $1 - \chi$ チルチオ基、 $1 - \chi$ ゲデシルチオ基、 $1 - \chi$ カチルチオ基、 $1 - \chi$ カチルチオ基、デシルチオ基、ドデシルチオ基、シクロプロピルチオ基、シクロプロピルメチルチオ基、シクロプロピルメチルチオ基、シクロプロペンチルチオ基、シクロペプチルチオ基、シクロペカチルチオ基、シクロペプチルチオ基、シクロパチャチオ基、シクロペプチルチオ基、シクロド

ら選ぶことができる。

デシルチオ基などから選ぶことができる。

また、 R^1 もしくは R^2 が C_7 - C_{12} のアラルキルオキシ基を表す場合、このアラルキルオキシ基のアリール基部分はハロゲン原子、メチル基、もしくはメチルオキシ基の1個以上により置換されていてもよく、そのような置換基としてはフッ素原子、塩素原子、臭素原子、メチル基、メチルオキシ基などが挙げられる。したがって、 R^1 により表されるアラルキルオキシ基としては、例えばベンジルオキシ基、(2-、3-、または4-) クロロベンジルオキシ基、(2-、3-、または4-) メトキシベンジルオキシ基、(2-、3-、または4-) メチルベンジルオキシ基、(2-、3-、または4-) メチルベンジルオキシ基、(2-、3-、または4-) メチルベンジルオキシ基、(2-、3-、または4-) メチルベンジルオキシ基、(2- フェネチルオキシ基、2-フェニルー2-プロピルオキシ基、2-フェニルー2-プロピルオキシ基、2-フェニルー2-プロピルオキシ基、(2-フェニルー2-プロピルオキシ基、(2-フェニルー2-プロピルオキシ基、(2-フェニルー2-プロピルオキシ基、(2-フェニルシクロプロピル)メチルオキシ基、(2-フェニルシクロペンチル)メチルオキシ基、(2-0、または2-0、ナフチルメチルオキシ基などか

さらに、R¹もしくはR²はC₃-C₁₀のアルケニルオキシ基でもよい。この場合のアルケニルオキシ基としては、例えばアリルオキシ基、メタリルオキシ基、クロチルオキシ基、3ープテニルオキシ基、4ーペンテニルオキシ基基、5ーヘキセニルオキシ基、7ーオクテニルオキシ基、ゲラニルオキシ基、シンナミルオキシ基、2ーシクロヘキセニルオキシ基、(3ーシクロヘキセニル メチルオキシ基、1,4ーペンタジエン-3ーイルオキシ基などから選ぶことができる。

また、R¹およびR²は水素原子、水酸基、あるいはトリハロメチル基でもよい。トリハロメチル基を表す場合のハロゲン原子としては、フッ素原子、塩素原子などが挙げられる。

25 以上挙げたR¹もしくはR²により表される原子または基のなかで、好ましいものとしては水素原子、水酸基、メチルオキシ基、エチルオキシ基、プロピルオキシ基、2-プロピルオキシ基、(1-、または2-)メチルプロピルオキシ基、2,2-ジメチルプロピルオキシ基、(n-、またはtert-)ブチルオキシ基、2-エチルブチルオキシ基、(2-、または3-)メ

10

15

20

25

これらのなかでも R^1 もしくは R^2 基が水素原子、水酸基、 C_1-C_{12} の鎖状もしくは環状の飽和炭化水素からなるアルキルオキシ基、または C_7-C_{12} のアラルキルオキシ基であるものが特に好ましい。さらに好ましくは水素原子、例えばシクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、シクロペンチルオキシ基、シクロドデカニルオキシ基等の C_5-C_{12} の環状飽和アルコキシ基、または C_3-C_8 の分岐鎖状の飽和アルコキシ基である。特に好ましくは酸素原子の隣接炭素から分岐を生じているアルキルオキシ基、例えばイソプロピルオキシ基、3-ペンチルオキシ基、またはベンジルオキシ基である。

前記式(2) -1 または(2) -2 において、 R^1 および R^2 はナフタレン環上ないしベンゼン環上の任意の位置で置換していてもよいが、好ましくは R^1 がナフタレン環上のAが結合している環から数えて 6 位(A は 2 位に位置換している)ないし R^2 がベンゼン環上のAの結合から数えて 4 位に位置しているものである。

前記式(2) -2 において、 R^4 および R^5 はそれぞれ独立に、水素原子、ハロゲン原子、 C_1-C_4 のアルキル基、 C_1-C_4 のアルコキシ基を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられ、

 C_1-C_4 のアルキル基としてはメチル基、エチル基、イソプロピル基、 t-ブチル基などが挙げられる。さらに C_1-C_4 のアルコキシ基としては、メチルオキシ基、エチルオキシ基、イソプロピルオキシ基、t-ブチルオキシ基などが挙げられる。その中でも R^4 もしくは R^5 として好ましくは水素原子、塩素原子、メチル基、メチルオキシ基である。その中でも水素原子が好ましい。なお、 R^4 はベンゼン環上の2位、 R^5 はベンゼン環上の3位に置換されている。

前記式(1)において、Aは結合;-O-、-S-、-S(=O)-、-S(=O) $_2-$ 、 $-CH_2-$ 、 $-OCH_2-$ 、 $-SCH_2-$ 、-C(=O) -、-S(=O) $_2-$ 、 $-CH_2-$ 、 $-OCH_2-$ 、 $-SCH_2-$ 、-C(=O) -C0 または-CH(OR^6) -C0 ここで、 $-SCH_2$ 0 に -C4のアルキル基を表す。)を表す。かかる-C10 でのアルキル基としては、メチル基、エチル基、-C10 に -C4のアルキル基としては、メチル基、エチル基、-C10 に -C4のアルキル基等が挙げられる。-C6 に -C6 に -C7 に -C7 に -C8 に -C9 に

また、前記式(1)において、Yは水素原子、ハロゲン原子、ニトロ基、 15 ニトリル基、アミノ基、-COOR¹(ここで、R¹は水素原子もしくはC₁ -C₄のアルキル基を表す。)、-NHCOR⁸、または-NHSO₂R⁹ (ここで、 R^8 および R^9 はそれぞれ独立に、 $C_1 - C_4$ のアルキル基を表 す。)を表す。Yがハロゲン原子を表す場合、ハロゲン原子としてはフッ素 原子、塩素原子、臭素原子が挙げられ、その中でも塩素原子が好ましい。Y 20 が一COOR⁷を表す場合、R⁷は水素原子またはC₁-C₄のアルキル基を 表し、例えば水素原子、メチル基、エチル基、n-プロピル基、2-プロピ ル基、nープチル基、tertープチル基が挙げられる。好ましい-COOR? としては、-COOHもしくは-COOCH。が挙げられる。Yが-NHC OR®もしくは-NHSO,R®を表す場合、R®もしくはR®はC,-C₄の 25 アルキル基を表す。例えばメチル基、エチル基、n-プロピル基、2-プロ ピル基、n-ブチル基、tert-ブチル基が挙げられる。Yが-NHCOR® もしくは-NHSO2R⁹である場合、好ましくは-NHCOCH3もしくは -NHSO, CH, である。

25

以上挙げたYの中でも、特に好ましくは水素原子、塩素原子、二トロ基、 ニトリル基である。 -

さらに、前記式(1)において、Eは結合;-C(=O)-、 $-CR^{10}$ $R^{11}C$ (=O)- (ここで、 R^{10} および R^{11} はそれぞれ独立に、水素原子 もしくはフッ素原子を表す。)、 $-CH_2CH_2C$ (=O)-、または-C H=CHC(=O)-を表す。これらのなかでも、Eは結合;-C(=O)-もしくは $-CH_2C$ (=O)-であることが好ましく、より好ましくは結合; $-CH_2C$ (=O)-である。

また、前記式(1)において、Gは水素原子、水酸基、 $-SO_2NH_2$ 、 $-COOR^3$ (ここで、 R^3 は水素原子または C_1-C_4 のアルキル基を表す)、-CN、またはテトラゾール-5-イル基を表す。Gが $-COOR^3$ を表す場合、 R^3 により表されるアルキル基としては、メチル基、エチル基、(n-、iso-)プロピル基、(n-、iso-、tert-)プチル基等が挙げられる。かかるGとしては、 $-COOR^3$ (R^3 は水素原子もしくは C_1-C_4 0アルキル基を表す)またはテトラゾール-5-イル基が好ましく、特に R^3 が水素原子、メチル基、またはエチル基であるものが好ましい。Gとしてさらに好ましくは-COOH、テトラゾール-5-イル基である。

さらに、前記式(1)において、Zは水素原子、ハロゲン原子、ニトロ基、またはメチル基を表す。ハロゲン原子としてはフッ素原子、塩素原子、臭素原子が挙げられる。Zとしては水素原子、フッ素原子、塩素原子、メチル基であることが好ましく、特に水素原子が好ましい。

前記式(1)により表されるアントラニル酸誘導体において、 R^1 および R^2 が水素原子、 $C_1 - C_{12}$ アルコキシ基、または $C_7 - C_{12}$ アラルキルオ キシ基を表し、Aが結合;-O-を表し、Eが結合;-C(=O) -または $-CH_2C$ (=O) -を表すものが特に好ましい。このような化合物は増殖 性の強い細胞に対し、特に高い細胞毒性作用を示す。

また、前記式(1)により表されるアントラニル酸誘導体において、 R^1 および R^2 が水素原子、 C_5-C_{12} 環状アルキル基、 C_3-C_8 分岐鎖状アルキル基、またはベンジル基を表し、Aが結合;-O-を表し、Eが結合-C

25

 H_2C (=O) -を表し、Gが-COOHもしくはテトラゾール-5 -イル基を表すものも好ましい。このような化合物は、さらに強い細胞毒性作用を示す。

前記式(1)において、Zがハロゲン原子またはメチル基を表す場合、この置換基は、それが結合しているベンゼン環の、G基に関して4位または5位に位置していることが好ましい。このような4位または5位に位置するZ基は、代謝による前記式(1)で表される化合物の不活性化を阻止し、薬効を持続させるという利点がある。

前記式(1)において、Yが-COOH基である場合、あるいはGが-C OOH基またはテトラゾール-5-イル基である場合(これらは同時であっ 10 てもどちらか片方だけであってもよい。)、このカルボン酸基等は、必要に よりその医薬学的に許容される非毒性塩に変換されていてもよい。このよう な塩における無毒性塩形成カチオンとしては、Na+、K+のようなアルカ リ金属イオン; Mg^{2+} 、 Ca^{2+} のようなアルカリ土類金属イオン; Al^{3+} 、 Zn²⁺のような他の無毒性等価金属イオン;アンモニア;トリエチルアミ 15 ン、エチレンジアミン、プロパンジアミン、ピロリジン、ピペリジン、ピペ ラジン、ピリジン、リシン(Lysine)、コリン、エタノールアミン、N, N ジメチルエタノールアミン、4ーヒドロキシピペリジン、グルコサミン、 Nーメチルグルカミンのような有機塩基が挙げられる。これらの塩形成カチ オンの中でも、 Na^+ 、 Ca^{2+} 、ならびにリシン、コリン、N,N-ジメチ20 ルエタノールアミン、Nーメチルグルカミンなどの有機塩基を用いることが 好ましい。

前記式(1)のアントラニル酸誘導体またはその無毒性塩は、それらの医薬学上許容される溶媒和物を形成していてもよい。このような溶媒和物を形成する溶媒は水、メタノール、エタノール、(n-、および iso-)プロピルアルコール、(n-および tert-)ブタノール、アセトニトリル、アセトン、メチルエチルケトン、クロロホルム、酢酸エチル、ジエチルエーテル、tert-ブチルメチルエーテル、ベンゼン、トルエン、DMF、およびDMSO等から選ぶことができる。これら溶媒の中でも、特に水、メタノール、エ

10

タノール、(n-、および iso-) プロピルアルコール、またはアセトニトリルを用いることが好ましい。

本発明の癌治療剤は、これまで述べてきたアントラニル酸誘導体、その医薬上許容される塩、またはそれらの溶媒和物を有効成分とするものであるが、 必要により製薬学的に許容される担体を加えてもよい。

前記式(1)で表されるアントラニル誘導体の好適な具体例を次表に示す。 なおこれらの化合物構造式中に不斉炭素を有するときは(例えば化合物番号 44)そのすべての光学異性体を含み、炭素-炭素二重結合を有するときは (例えば化合物番号120)その両方の幾何異性体を含む。また、表中の 「tet」はテトラゾール-5-イル基を表す。

化合物番号	· H	R1, R2	位置	۸ 4	R 5	<	>	Ш	E間数	G	2	位置
-	ナフタレン	±				0	Ŧ	8	4位	C00Me	=	1
2	ナフタレン	Ŧ	ı	I	I	0	x	00	4位	C00Et	x	I
က	ナフタレン	Ŧ	ı	I	1	0	I	00	4位	n8,000	x	. 1
4	ナフタレン	Ŧ	t	1	I	0	x	00	4位	Н000	I	1
ហ	ナフタレン	Ŧ	l	I	I	0	x	9	4(1)	Ŧ	I	I
ဖ	ナフタレン	±	1	I	ı	0	I	03	4位	Ж	Ξ	1
7	ナフタレン	±	ı	I	I	0	I	03	4位	SO ₂ NH ₂	Ξ	I
ω	ナフタレン	£	1	ı	ı	0	I	9	4位	N	I	I
6	ナフタレン	Ŧ	l		ı	o	x	03	4位	tet	I	1
					ŀ							

11	化合物番号	otr ×	R1, R2	位岡	Я 4	R S	∢	>	ш	E間換	IJ	7	位置
ナフタレン H - </td <td>2</td> <td>ナフタレン</td> <td>±</td> <td> </td> <td>l</td> <td>1</td> <td>0</td> <td>王</td> <td>00</td> <td>3位</td> <td>СООМе</td> <td>x</td> <td>1</td>	2	ナフタレン	±		l	1	0	王	00	3位	СООМе	x	1
ナフタレン H - - - - 0 NO2 CO 4行 COORe H ナフタレン H - - - - 0 NO2 CO 4行 COORe H ナフタレン H - - - - 0 NN4 CO 4行 COONe H ナフタレン H - - - - 0 NN4 CO 4行 COONe H ナフタレン H - - - - 0 COONe COONe H ナフタレン H - - - 0 COONe COONe H H ナフタレン H - - - - 0 COONe COONe H H	=	ナフタレン	£	I	1	I	0	x	8	347	Н00Э	I	i
$7 > 5 \lor \lor$ H- - - - 0 NO ₂ CO 4 t COOEt H $7 > 5 \lor \lor$ H- - - - 0 NO ₂ CO 4 t COOH H $7 > 5 \lor \lor$ H- - - - 0 NH ₂ CO 4 t COOH H $7 > 5 \lor \lor$ H- - - - 0 NH ₂ CO 4 t COOH H $7 > 5 \lor \lor$ H- - - - 0 NH ₂ CO 4 t COOH H $7 > 5 \lor \lor$ H- - - 0 COOH CO 4 t COOH H $7 > 5 \lor \lor$ H- - - - 0 COOH CO 4 t COOH H $7 > 5 \lor \lor$ H- - - 0 COOH CO 4 t COOH H $7 > 5 \lor \lor$ H- -	12	ナフタレン	Ŧ	I	I	1	0	NO ₂	00	441	СООЖе	Ŧ	1
ナフタレン H- - - - 0 NM2 CO 4位 COOMe H ナフタレン H- - - - 0 NM2 CO 4位 COOMe H ナフタレン H- - - - 0 COOMe COOMe COOMe H ナフタレン H- - - - 0 COOMe COOMe COOMe H	13	ナフタレン	±	i	1	I	0	NO ₂	00	4(‡	C00Et	x	1
ナフタレン H- - - - 0 NH2 CO 4位 COOMe H ナフタレン H- - - 0 NH2 CO 4位 COOMe H ナフタレン H- - - 0 COOMe COOMe H H ナフタレン H- - - 0 COOMe COO 4位 COOMe H	74	ナフタレン	±	I	1	I	0	NO ₂	03	4(1)	H000	±	1
ナフタレン H 0 NH ₂ CO 4位 COOM H ナフタレン H 0 COOM CO 4位 COOM H	15	ナフタレン	±	I	I	I	0	NH ₂	ន	41	СООМе	x	I
ナフタレン H 0 COOMe CO 4位 COOMe H ナフタレン H 0 COOH CO 4位 COOH H	16	ナフタレン	ᆂ	I	l	1	0	NH ₂	99	4(\(\frac{1}{4}\)	H000	I	I
ナフタレン H 0 C00H C0 4位 C00H H	11	ナフタレン	±	١	I	1 .	0	СООМе	8	4位	СООМе	Ξ	. 1
	82	ナフタレン	Ŧ	1	. 1	ı	0	Н00Э		4位	Н000	I	I

化合物番号	导 ×	R1, R2	位置	R 4	R 5	∢	>	Ш	E置換	U	2	位置
19	ナフタレン	±	1		1	0	Ξ	00	4位	СООМе	Z e	3位
20	ナフタレン	눞	I	I	1	0	I	00	4位	Н000	e ≅	3位
21	ナフタレン	Ŧ	1	J	ł	S	x	00	4位	СООМе	Ξ	1
22	ナフタレン	±	I	I	l	ø	×	00	4位	Н000	Ŧ	1
23	ナフタレン	±	I	I	ı	S	I	00	4位	CN	x	ı
24	ナフタレン	±	ı	ł	1	S	I	00	4(<u>t</u>	tet	I	1
52	ナフタレン	±	ı	i	I	S	N02	00	4 (Í	СООМе	æ	1
56	ナフタレン	±	ı	1	I	S	N02	00	4(‡	Н000	I	ı
27	ナフタレン	+	1	ı	1	કેં	±	03	447	СООМе	±	ł

化合物番号	×	R1, R2	位置	Ω 4	R R	∢	>	ш	E間換	G	7	位問
28	ナフタレン	±		1	1	Ğ.	Ξ	00	4位	COOE t	=	1
29	ナフタレン	±	1	1	1	ਤੌ	Ξ	00	4位	Н000	Ŧ	1
30	ナフタレン	±	i	t	1	Ğ.	±	00	41	x	Ξ	1
31	ナフタレン	Ŧ	ı	1	ł	ਤੌ	Ξ	00	4位	픙	I	I
32 7	ナフタレン	±	1	I	1	£	I	. 8	4(1)	SONH2	Ξ	1
33	ナフタレン	±	I	. 1	1	មិ	I	00	4(‡	tet	Ŧ	1
34	ナフタレン	土	ı	I	1	÷	NO ₂	00	4(‡	СООЖе	±	I
35 7	ナフタレン	±	1	ı	1	ж	NO ₂	00	4(‡	Н00Э	Ŧ	ı
36 7	ナフタレン	±	1	. 1	1	OCH2	I	8	4(‡	СООМе	x	t

38	化合物番号	×	R1, R2	位置	R 4	R 5	A	>	ш	E間換	G	7	位置
ナフタレン 計 一 SCH ₂ H CO 4位 COOMe H ナフタレン 計 一 一 一 CO H CO 4位 COOMe H ナフタレン 計 一 一 一 CO H CO 4位 COOMe H ナフタレン 計 一 一 一 CO H CO 4位 COOMe H ナフタレン 計 一 一 一 CO 4位 COOMe H ナフタレン 計 一 CO 4位 COOMe H ナフタレン 計 一 CO 4位 COOMe H ナフタレン 計 一 CO 4位 COOMe H ナフタレン H 一 CO 4位 COOMe H ナフタレン H CO 4位 COOMe H ナフタレン H CO 4位 COOMe H </td <td>37</td> <td>ナフタレン</td> <td>±</td> <td>I</td> <td>I</td> <td>,</td> <td>0СН,</td> <td>Ŧ</td> <td>93</td> <td>4位</td> <td>Н000</td> <td>Ŧ</td> <td>1</td>	37	ナフタレン	±	I	I	,	0СН,	Ŧ	93	4位	Н000	Ŧ	1
ナンタレン H	38	ナフタレン	±	1	ı	í	SCH,	×	9	4位	СООМе	I	I
ナフタレン H- -<		・ナフタレン	±	1	I	l	SCH2	=	9	4位	Н000	I	. 1
ナフタレン H CO H CO 4位 COOM H H ナフタレン H CO H CO 4位 COOM H H T CO 4位 COOM H H CO 4位 COOM H COOM	40	ナフタレン	±	1	1	ı	03	=	9	4位	СООМе	I	I
ナフタレン H-	41	ナフタレン	¥	1	l	I	93	±	8	4位	Н000	I	1
ナフタレン H CO H CO 4位 COOH H ナフタレン H CH(OMe) H CO 4位 COOMe H ナフタレン H CH(OMe) H CO 4位 COOH H	42	ナフタレン	±	1	I	i	00	=	03	4位	СООМе	Ξ	I
ナフタレン H CH(OMe) H CO 4位 COOMe H ナフタレン H CH(OMe) H CO 4位 COOH H	43	ナフタレン	±	1	ı	l	00	= .	00	4位	Н000	Ξ	I
ナフタレン H CH(OMe) H CO 4位 COOH H	44	ナフタレン	±	.1	I	i	CH (OMe)	I	8	4位	сооме	x	I
	45	ナフタレン	±	Í	ı	1	CH (OMe)	Ŧ	9	4位	Н000	x	1

化合物番号	æ. ×	R1, R2	位置	R 4	R 5	∢	>	ш	題	g	7	位置
46	ナフタレン	±	1		1	CH (OMe)	NO2	00	4位	COOMe	Ŧ	1
47	ナフタレン	±	1	ı	1	CH (0Me)	NO ₂	8	4	Н000	I	1
48	ナフタレン	Ŧ	l	1	1	CH (0E t)	x	00	4位	СООМе	x	I
49	ナフタレン	±,	ı	1	t	CH (0Et)	エ	3	4位	Н00Э	Ξ	·
20	ナフタレン	Ŧ	I	1	I	CH (0E t)	0N02	03	4位	СООМе	Ξ	I
51	ナフタレン	±	ı	I	1	CH (0E t)	NO ₂	00	4位	Н000	I	I
52	ナフタレン	±	ı	ı	I	8	Ξ	00	4位	Н000	x	I
53	ナフタレン	£	ı	1	1	00	Ξ	00	4位	Н000	Ŧ	1
54	ナフタレン	±	1	1	1	205	x	03	4位	Н000	I	I

40000000000000000000000000000000000000	允伯汝善中 ×	R1, R2	位置	R 4	R 5	∢	>	ш	E置換	IJ	7	位置
22	ナフタレン	±	I	ı	1	CH ₂ 0	S	8	4位	H000	x	
26	ナフタレン	Ŧ	ı	i	ŧ	0	x	сн,со	4位	СООМе	I	l
57	ナフタレン	£	I	ı	1	0	Ξ	CH2CO	4位	C00Et	x	I
28	ナフタレン	Ŧ	I	I	t	0	=	CH ₂ C0	4位	000 Bu	Ŧ	1
59	ナフタレン	±	I	Į	f	0	I	CH2CO	4位	H000	Ŧ	1
09	ナフタレン	±	ı	1	1	<u>,</u> 0	Ξ	CH ₂ CO	4位	x	I	1
61	ナフタレン	±	1	1	ı	0	Ŧ	02,H3	4位	Н0	Ξ	I
62	ナフタレン	±	t	1	1	0	×	CH2C0	4位	SO ₂ NH ₂	Ξ	I
63	ナフタレン	Ŧ	ı	t	. 1	0	I	CH2CO	4位	S	Ŧ	1

化合物番号	· · ·	R1, R2	台間	R 4	R S	<	>	ш	E置換	Ö	2	位置
64	ナフタレン	Ŧ	1	ı	1	0	Ŧ	CH,CO	4位	tet	=	1
65	ナフタレン	Ŧ	1	1	I	0	I	CH ₂ C0	3位	СООМе	Ŧ	I
99	ナフタレン	±	I	1	I	0	=	CH ₂ C0	347	Н000	I	1
19	ナフタレン	±	1	ı	I	0	NO ₂	CH2CO	4位	СООЖе	x	1
89	ナフタレン	±	I	ı	1	0	NO ₂	ОСН2СО	4(<u>†</u>	COOEt	Ŧ	1
69	+7912	±	1	t	1	0	NO ₂	00²Н)	4(<u>t</u>	Н000	x	I
70	ナフタレン	+	ı	I	1	0	NH ₂	СН,СО	4(1)	СООМе	エ	1
11	ナフタレン	Ŧ	I	I	1	0	NH2	02,H2	4位	Н000	×	1
72	ナフタレン	井	ı	. 1	1.	0	СООЖе	CH2CO	4位	СООЖе	x	1
									İ			

化合物番号	中 ×	R1, R2	位置	R 4	R 5	<	>	ш	E関数	G	2	位置
73	17912	±	ı	ı	1	0	Н000	СН,СО	441	Н000	I	ı
74	ナフタレン	±	ŀ	t	ť	0	r	CH2CO	4(1)	СООМе	NO ₂	4位
75	ナフタレン	£	I	I	ı	0	I	CH2CO	4(1)	Н000	NO ₂	· 4
92	ナフタレン	±	1	1	I	0	æ	CH2CO	417	СООМе	u.	4位
11	ナフタレン	±	I	I	1	0	=	CH2CO	4位	Н000	u.	4位
78	ナフタレン	Ŧ	I	1	1	0	Ξ	CH,CO	4(1)	СООМе	щ	5位
62	ナフタレン	±	l .	1	f	ò	Ξ	CH2CO	4位	H000	u.	5位
80	ナフタレン	±	I	ł	. 1	0	I	CH2CO	4(1)	СООМе	5	5(‡
18	ナフタレン	±	ı		1	0	II.	CH2CO	4位	Н000	5	5位

化合物番号 X	ج ×	R1, R2	位置	4 A	R S	4	>	ш	E間換	G	2	位置
82	ナフタレン	±		1	I	0.	I	CH2C0	4位	сооже	₩ Ke	6位
83	ナフタレン	Ŧ	1		1	0	Ŧ	00 ² H0	4(1)	Н000	H e	4799
84	ナフタレン	Ŧ	1	ı	ı	s	x	00²H)	4(1)	СООМе	Ŧ	I
8	ナフタレン	Ŧ	1	I	I	S	I	CH2CO	4(1)	Н00Э	I	1
98	ナフタレン	Ŧ	I	I	I	S	x	сн,со	4位	S	x	I
87	ナフタレン	±	I	I	ŀ	S	Ŧ	00 ² H0	4位	tet	x	I
88	ナフタレン	±	I	i	1	s	NO ₂	CH,C0	4位	СООМе	I	1
89	ナフタレン	±	I	1	į	so.	NO ₂	CH2C0	4位	Н000	Ξ	I
06	ナフタレン	±	I		1	CH ₂	æ	CH ₂ C0	4177	сооме	æ	1

化合物番	化合物番号 X	R1, R2	位置	R 4	R S	∢	>	ш	E留換	G	2	位置
16	ナフタレン	Ŧ	1	1	1	Н	=	CH ₂ C0	4位	COOEt	=	1
92	ナフタレン	Ŧ	ı	I	1	£,	x	CH2CO	4位	H000	Ξ	i
93	ナフタレン	±	ſ	. 1	. 1	CH2	Ŧ	03°H2	4位	Ŧ	I	1
.94	ナフタレン	¥	I	1	I	cH,	x	СН2СО	4(1)	용	x	1
95	ナフタレン	±	I	i	I	CH,	Ŧ	СН,СО	4(1)	SO2NH2	Ŧ	1
96	ナフタレン	Ŧ	I	i	1	Ğ.	Ŧ	CH2C0	4th	tet	x	I
16	ナフタレン	Ŧ	1	ı	i	ъ,	N0 ₂	CH2CO	4位	СООМе	I	1
86	ナフタレン	Ŧ	1	I	ı	Ж	NO ₂	CH2C0	4th	Н000	Ŧ	1
66	ナフタレン	Ŧ	ľ	I	1	²но0	x	022HO	4位	СООМе	I	ı

100 ナンタレン	化合物番号	×	R1, R2	位置	. X 4	R 5	∢	>	ш	E置換	IJ	7	位間
ナンタレン H - </td <td>100</td> <td>ナフタレン</td> <td>Ŧ</td> <td>l</td> <td>l</td> <td>1</td> <td>0CH2</td> <td>Ŧ</td> <td>00²H0</td> <td>4位</td> <td>Н000</td> <td>=</td> <td>ı</td>	100	ナフタレン	Ŧ	l	l	1	0CH2	Ŧ	00 ² H0	4位	Н000	=	ı
ナフタレン H· 一 COR ₂ H CH ₂ CO 4位 C00H H ナフタレン H· 一 一 COOMe H CH ₂ CO 4位 C00Me H ナフタレン H· 一 一 CH(OMe) H CH ₂ CO 4位 C00Me H ナフタレン H· 一 一 CH(OMe) H CH ₂ CO 4位 C00Me H ナフタレン H· 一 一 CH(OMe) NO ₂ CH ₂ CO 4位 C00Me H ナフタレン H· 一 一 CH(OMe) NO ₂ CH ₂ CO 4位 C00Me H	101	ナフタレン	±	I	1	i	SCH ₂	五	CH ₂ C0	4(#	СООМе	×	1
ナフタレン H- - - - COMe H CH,CO 4柱 C00Me H ナフタレン H- - - - CH(OMe) H CH,CO 4柱 C00Me H ナフタレン H- - - - CH(OMe) H CH,CO 4柱 C00Me H ナフタレン H- - - - CH(OMe) NO ₂ CH ₂ CO 4柱 C00Me H ナフタレン H- - - - CH(OMe) NO ₂ CH ₂ CO 4柱 C00Me H ナフタレン H- - - - CH(OMe) NO ₂ CH ₂ CO 4柱 C00Me H	102	ナフタレン	• ±	ı	I	1	SCH ₂	x	CH2C0	4位	Н000	I	I
ナフタレン H- - - CH (OMe) H CH ₂ CO 4位 C00H H ナフタレン H- - - CH (OMe) H CH ₂ CO 4位 C00Me H ナフタレン H- - - CH (OMe) NO ₂ CH ₂ CO 4位 C00Me H ナフタレン H- - - CH (OMe) NO ₂ CH ₂ CO 4位 C00Me H	103	ナフタレン	土	I	. 1	t	03	x	00 ² H)	400	сооме	x	ı
ナフタレン H- - - CH(OMe) H CH ₂ CO 4位 C00Me H ナフタレン H- - - CH(OMe) NO ₂ CH ₂ CO 4位 C00Me H ナフタレン H- - - - CH(OMe) NO ₂ CH ₂ CO 4位 C00Me H ナフタレン H- - - - CH(OMe) NO ₂ CH ₂ CO 4位 C00H H	104	ナフタレン	±	Ī	. 1	ı	00	I	CH2CO	4th	Н000	I	1
ナフタレン H CH(OMe) H CH ₂ CO 4位 C00H H ナフタレン H CH(OMe) NO ₂ CH ₂ CO 4位 C00Me H ナフタレン H CH(OMe) NO ₂ CH ₂ CO 4位 C00H H	105	ナフタレン	¥	1	ı	1	CH (OMe)	×	00²Н)	4(1)	СООМе	I	ı
ナフタレン H CH(OMe) NO ₂ CH ₂ CO 4位 COOMe H ナフタレン H CH(OMe) NO ₂ CH ₂ CO 4位 COOH H	106	ナフタレン	±	I	1	1	CH (OMe)	x	03²НЭ	4(1)	H000	x	I
ナフタレン H CH(OMe) NO, CH ₂ CO 4位 C00H H	107	ナフタレン	±	I	1	1	CH (OMe)	N02	CH2CO	4(‡	СООМе	±	1
	108	ナフタレン	£	I		1	CH(OMe)	N02	00°Н0	4(1)	Н000	Ŧ	I

109	化合物番号	at. ×	R1, R2	位置	A 4	8 5	<	>	ш	E置換	U	2	位題
ナフタレン 計 一 一 一 一 CH (0Et) MO2 ナフタレン 計 一 一 一 一 H ナフタレン 計 一 一 一 H ナフタレン 計 一 一 H ナフタレン 計 一 一 0 H ナフタレン 計 一 一 0 H ナフタレン 計 一 一 0 H ナフタレン 計 一 0 H	109		Ŧ	1	1	1	CH (0Et)	Ŧ	02 ² H2	4(1)	СООМе	=	1
ナスタレン H - - CH (0Et) NO2 ナスタレン H - - - - H ナスタレン H - - - 0 H ナスタレン H - - - 0 H ナスタレン H - - - S H ナスタレン H - - - S H ナスタレン H - - - S H	110		Ŧ	1	l	I	CH (0E t)	×	02,H2	4位	Н000	Ŧ	1
ナン多レン	Ξ		±	1	I	ł	CH (0E t)	NO2	02°H2	4位	СООЖе	x	. 1
+ 1	112	ナフタレン		I	1	1	CH (0Et)	NO ₂	02°Н2	4位	Н00Э	x	1
+	113	ナフタレン	Ŧ	1	ı	I	0	I	CH,C0	4位	Н000	æ	5位
ナンタレナ	114	ナフタレン	±	I	ı	ţ	0	. =	CH2CH2CO	4位	сооже	Ŧ	1
ナンタレン 干 S H +	115	ナフタレン	±	1	1	1	0	Ŧ	CH2CH2CO	4位	Н00Э	Ŧ	i
ナン多レン H S H	116		±	1	i	1	S	×	сн,сн,со	4(17	СООМе	=	f
	111		±	l	. 1	1	S	I	сн,сн,со	4位	Н00Э	I	ı

	ナフタレンナフタレン											1
	タフン	土	I	1	I	CH,	=	CH,CH,CO	4位	СООМе	=	
		노	I	I	1	2	I	CH2CH2CO	4位	Н000	Ξ	1
120 +7:	ナフタレン	Ŧ	ı	I	ı	0	I	оэнэ=нэ	4(1)	СООМе	x	1
121 +7:	ナフタレン	Ŧ	1	ı	ı	0	x	оэнэ=нэ	4位	Н000	x	1
122 +75	ナフタレン	Ŧ	1	1	1	S	I	0ЭНЭ=НЭ	4位	СООМе	I	1
123 +75	ナフタレン	±	l	1	1	S	I	оэнэ=нэ	4位	Н00Э	I	I
124 ナフタレン	7 7	±	ı	ı	1	CH,	I	оэнэ=нэ	4位	СООМе	±	1
125 ナフタレン	7	±	ı	1	1	.	工	0ЭНЭ≃НЭ	4位	Н000	I	I
126 +79 4 12	7	±	ı		l	0	x	CH (Me) CO	411	СООМе	I	1

128	化合物番号	oft.	R1, R2	位置	A 4	R 5	<	>	ш	E関換	O	Z	位間
ナフタレン H - - - - 0 H C(Me), CO 4拍 ナフタレン H - - - - 0 H C(Me), CO 4拍 ナフタレン T - - - 0 H C(Me), CO 4拍 ナフタレン T - - - 0 H C(Me), CO 4拍 ナフタレン T - - - 0 H CH, CO 4拍 ナフタレン T - - 0 H CH, CO 4拍 ナフタレン T - 0 H CO 4拍 ナフタレン T - 0 MO, 2 CO 4拍 ナフタレン T - 0 MO, 2 CO 4拍	127	ナフタレン	±	1		ı	0	=	СН (ме) СО	442	Н000	=	i
ナフタレン (大)	128	ナフタレン	±	1	I	ı	0	· エ	C (Me) 2CO	44	омоо	I	ı
ナフタレン () 6位 () 一 () H () () 4位 () ナフタレン () 6位 () 一 () H () 4位 () ナフタレン () 6位 () 一 () H () 4位 () ナフタレン () 6位 () 一 () H () 4位 () ナフタレン () 6位 () 一 () H () 4位 () ナフタレン () 6位 () 一 () H () 6位 ()	129	ナフタレン	Ŧ	ı	ı	ı	0	I	C (Me) 2C0	4位	Н000	Ŧ	I
ナンタレン 6位 一 一 0 H CH ₂ CO 4位 ナンタレン 6位 一 一 0 H CO 4位 ナンタレン 6位 一 一 0 H CO 4位 ナンタレン 6位 一 一 0 H CO 4位 ナンタレン 10 0 NO ₂ CO 4位 ナンタレン 6位 一 一 0 NO ₂ CO 4位	130	ナフタレン		6位	f	1	0	Ŧ	02 ² H2	4位	Н000	I	1
ナンタレン 6位 一 一 0 H CO 4位 ナンタレン 6位 一 一 0 H CO 4位 ナンタレン 6位 一 0 NO2 CO 4位 ナンタレン (6位 一 一 0 NO2 CO 4位	131	ナフタレン		6位	1	1	0	±	02,H3	4位	Н000	Ŧ	i
ナンタレン 6位 - - 0 H CO 4位 ナンタレン (6位 - - 0 NO2 CO 4位 ナンタレン (6位 - - 0 NO2 CO 4位	132	ナフタレン〔		6位	1	1	0	<u>.</u>	8	4位	СООМе	x	I
ナフタレン (()) (6位 0 NO ₂ CO 4位 ナフタレン (()) (6位 0 NO ₂ CO 4位	133	ナフタレン(Q(7)	1	1	0	Ξ	8	4位	Н000	I	1
ナフタレン (位 0 NO2 CO 4位	134	ナフタレン〔		647	1	1	0	N02	00	4(1)	СООМе	工	ı
	135	ナフタレン(6(17		1	0	NO ₂	00	4(1)	Н000	Ŧ	I

化合物番号	at. ×	R1, R2	位置	R 4	ж 8	<	>	ш	E間接	G	2	位間
136	ナフタレン		4 99.	1	1	0	五	СН,СО	417	СООМе	Ŧ	1
137	ナフタレン		4	i	ı	0	· ±	сн,со	44	Н00Э	I	I
138	ナフタレン		641	ŀ	I	0	NO ₂	CH2C0	4(1)	СООМе	I	i
139	ナフタレン		6(1)	1	1	0	NO ₂	CH,C0	4(<u>t</u>	Н000	x	t
140	ナフタレン		6位	1	I	0	x	03	4(Ü	СООМе	I	1
141	ナフタレン		£	I	1	0	I	00	4位	Н000	I	ı
142	ナフタレン		£	1	ı	0	NO ₂	00	4(II	COOMe	x	ī
143	ナフタレン		7 39	. 1	l	0	N02	9	4(II	Н00Э	x	ŀ
144	ナフタレン		6 (‡				Ξ	02°H2	4位	СООМе	I	ı

化合物番号	at. ×	R1, R2	位置	R 4	R 5	<	>	ш	E置換	g	7	位間
145	ナフタレン	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6位	1	1	0	I	CH2CO	4位	H000	王	1
146	ナフタレン	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4	1	I	0	NO ₂	ОСН,СО	4(1)	СООМе	x	I
147	ナフタレン	`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	614	i	I	0	NO ₂	CH2CO	4(1)	Н000	Ŧ	. 1
148	ナフタレン	> \	449	1	1	0	NO ₂	00	417	СООМе	I	I
149	ナフタレン	\ \ \ \ \ \	644	ſ	I	0	NO2	23	447	Н000	Ŧ	İ
150	ナフタレン	\ \ \ \ \ \	6位	I	I	0	NO2	CH,C0	441	СООМе	æ	1
121	ナフタレン	\ \ \ \ \ \	6位	1	I	0	N02	CH,CO	4位	Н00Э	x	1
152	ナフタレン	$\stackrel{\triangleright}{\sim}$	6位	.1	1	0	I	03	4(17	Н000	Ŧ	1
153	ナフタレン	$\stackrel{>}{\sim}$	7月9	1.		0	I	CH,CO	4位	Н000	I	I
	!											

化合物番号	与 ×	R 1, R 2	位置	Я 4	R 5	∢	>	ш	E置換	G	7	位置
154	ナフタレン		7位	1	1	0	I	CH ₂ CO	4位	Н000	Ξ	1
155	ナンタレン		ŢJ 9	1	I	0	· =	8	4位	СООМе	±	1
156	ナフタレン	77812 00000	6位	1	1	0	Ξ	8	4位	Н000	Ŧ	ı
157	ナフタレン	+7812 (Johnson	ŢJ.9	I	1	0	N02	8	4位	СООМе	×	I
158	ナフタレン	77812 O	Д 99	1	I	0	N02	8	4位	Н000	I	1
159	ナフタレン	77812 00000	7.19	I	I	0	I	оз'нэ	4位	СООМе	I	I
160	ナフタレン		Ç }9	1	I	0	Ŧ	CH2CO	4位	Н000	Ŧ	i
161	ナフタレン (()		位,	I	I	o ,	N02	CH ₂ CO	4位	СООМе	Ŧ	1
162	+7912		Ţ) 9	1		0	NO ₂	00 ² H0	4位	Н000	I	1

化合物番号	中 ×	R1, R2	位置	Ω 4	ъ С	∢	>	ш	E間換	g	7	位置
163	ナフタレン		£\$9		ı	0	Ξ	8	4位	СООМе	Ŧ	ı
164	ナフタレン		759	ı	ı	0	=	8	40	Н00Э	I	I
165	ナフタレン		位,	I	ŧ	0	NO2	8	4位	СООМе	I	1
166	ナフタレン		6(#	l	1	0	NO2	8	4(1)	Н00Э	エ	1
167	ナフタレン		6位	I	ı	0	=	02,H2	4位	СООМе	I	1
168	ナフタレン	\o_\ \}	7月9	I	ı	0	I	CH2CO	4(1)	Н00Э	I	1
169	ナフタレン		Q	1	ı	0	N02	CH,CO	4 t	C00Me	I	1
170	ナフタレン		Q	1 .	I	0	NO ₂	CH2CO	4位	Н00Э	I	1
171	ナフタレン		功9		ı	0	Œ	8	4位	СООМе	x	1

化合物番号	at. ×	R1, R2	位置	R 4	ج ح	∢	>	ш	E間換	G	2	位置
172	ナフタレン	0	6位	1	ı	0	=	8	4位	Н000	Ŧ	1
173	ナフタレン		6位	i	1	0	NO2	8	4位	СООМе	x	i
174	ナフタレン	\o_\ \ \	位,	I	. 1	.0	NO ₂	00	4位	Н000	Ŧ	ı
175	ナフタレン		641	Į	1	0	I	00 ² H0	440	СООМе	×	i
176	ナフタレン	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ţ) 9	1	t	0	Ŧ	CH,C0	4位	Н000	Ξ	ı
177	ナフタレン		6位	1	. 1	0	NO ₂	02,H3	4位	СООМе	Ξ	1
178	ナフタレン、		6位	1	1	0	NO2	CH,C0	4(1)	Н000	x	I
179	ナフタレン	>	6位	. 1	ı	0	Ξ	CH2CO	4位	H000	=	l .
180	ナフタレン	\prec	6位		I	0	Ŧ	8	4(17	СООМе	Ŧ	ı

化合物群母	×	R 1 R 2	命	4 8	u a	4	>	L	無	٥		1000
				2		۲	-	ı	L (E)X	5	7	
181	181 ナフタレン	$\stackrel{>}{\prec}$	642	i	1	0	I	03	4位	Н000	Ŧ	I
182	ナフタレン	$\stackrel{>}{\prec}$	6位	I	I	0	NO ₂	00	44	C00Me	• •	Ţ
	ナフタレン	$\stackrel{>}{\prec}$	64	1	I	0	NO ₂	03	4位	Н000	I	. 1
184	ナフタレン	$\stackrel{\checkmark}{\sim}$	642	ı	i	0	I	02²НЭ	4th	C00Me	I	I
185	ナフタレン	$\stackrel{>}{\prec}$	6位	1	I	0	I	CH ₂ CO	4位	H000	x	1
186	ナフタレン	$\stackrel{>}{\prec}$	644	·I	I	0	NO ₂	CH2C0	4位	сооме	x	I
187	ナフタレン	\prec	位	1	·	0	NO ₂	02°Н2	4位	Н000	x	I
188	ナフタレン	\o\ \	6位	ı	I.	0	I	00	4位	сооме	I	I
189	189 ナフタレン		6(1)	I	ı	0	±	03	4位	Н000	I	1

190 ナフタレン ~~ 6位 - - 0 NO ₂ CO 4位 COOMe H 191 ナフタレン ~~ 6位 - - 0 NO ₂ CO 4位 COOMe H 193 ナフタレン ~~ 6位 - - 0 H CH ₂ CO 4位 COOMe H 194 ナフタレン ~~ 6位 - - 0 H CH ₂ CO 4位 COOMe H 195 ナフタレン ~~ 6位 - - 0 HO ₂ CH ₂ CO 4位 COOMe H 195 ナフタレン ~~ 6位 - - 0 NO ₂ CH ₂ CO 4位 COOM H 197 ナフタレン ~~ 6位 - - 0 HO ₂ CH ₂ CO 4位 COOM H 197 ナフタレン ~~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 ナフタレン ~~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 ナフタレン ~~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 ナフタレン ~~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 ナフタレン ~~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 - - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 日 - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 日 - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 日 - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 日 - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 日 - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 日 - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 日 - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 日 - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 6位 日 - 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 0 H CH ₂ CO 4位 COOM H 197 トフタレン ~ 0 H CH ₂ CO 4位 COOM H 197 ト 0 H COOM H 197 ト 0 H COOM H 197 ト 0 H COOM H 197 ト 0 H COOM H 197	化合物番号	ait. ×	R1, R2	位置	R 4	R 5	4	>	ш	E間換	U	7	位置
ナフタレン への位 6位 - - 0 NO2 CO 4位 COOH ナフタレン への 6位 - - 0 H CH,CO 4位 COOH ナフタレン への 6位 - - 0 H CH,CO 4位 COOH ナフタレン への 6位 - - 0 H CH,CO 4位 COOH ナフタレン 人。 6位 - - 0 H CH,CO 4位 COOH ナフタレン 人。 6位 - - 0 H CH,CO 4位 COOH ナフタレン 人。 6位 - - 0 H CH,CO 4位 COOH ナフタレン 人。 6位 - - 0 H CH,CO 4位 COOH ナフタレン 人。 - - 0 H CH,CO 4位 COOH ナフタレン -	190	ナフタレン	\ \ \	642	1	ı	0	NO ₂	03	4(1)	СООЖе	±	ı
ナンタレン 6位 - - 0 H CH ₂ CO 4位 C00Me ナフタレン 一 - - 0 H CH ₂ CO 4位 C00Me ナフタレン 一 - - 0 NO ₂ CH ₂ CO 4位 C00Me ナフタレン 一 - - 0 H CH ₂ CO 4位 C00H ナフタレン 6位 - - 0 H CH ₂ CO 4位 C00H ナフタレン 6位 - - 0 H CH ₂ CO 4位 C00H ナフタレン 6位 - - 0 H CH ₂ CO 4位 C00H	191	ナフタレン	\	644	I	I	0	NO2	00	414	Н000	Ξ	ı
ナフタレン 6位 - - 0 H CH ₂ CO 4位 C00H ナフタレン 一 - - 0 NO ₂ CH ₂ CO 4位 C00H ナフタレン 人。 6位 - - 0 H CH ₂ CO 4位 C00H ナフタレン 人。 6位 - - 0 H CH ₂ CO 4位 C00H ナフタレン 人。 6位 - - 0 H CH ₂ CO 4位 C00H ナフタレン 人。 6位 - - 0 H CH ₂ CO 4位 C00H	192	ナフタレン	\\ \ \	£	. 1	ı	0	I	02,Н2	4(1)	СООМе	I	1
ナフタレン 6位 - - 0 NO2 CH2CO 4位 C00Me ナフタレン 人。 6位 - - 0 H CH2CO 4位 C00H ナフタレン 6位 - - 0 H CH2CO 4位 C00H ナフタレン 6位 - - 0 H CO 4位 C00H ナフタレン 6位 - - 0 H CH2CO 4位 C00H	193	ナフタレン		Q	1	I	0	I	CH2C0	4位	Н000	, =	1
ナフタレン NO 6位 - - 0 NO CH2CO 4位 C00H ナフタレン 6位 - - 0 H CH2CO 4位 C00H ナフタレン 6位 - - 0 H CO 4位 C00H ナフタレン 6位 - - 0 H CH2CO 4位 C00H	194	ナフタレン	>	44.	I	1		NO2	CH2C0	4(‡	C00Me	Ŧ	1
ナフタレン 人。 6位 — — 0 H CH ₂ CO 4位 C00H ナフタレン (位 — — 0 H CO 4位 C00H ナフタレン (位 — — 0 H CH ₂ CO 4位 C00H	195	ナフタレン		6位	1	1	0	NO2	CH2C0	4(1)	Н000	x	ı
ナフタレン (位 0 H CO 4位 COOH ナフタレン (位 0 H CH ₂ CO 4位 COOH	196	ナフタレン	$\stackrel{\diamond}{\prec}$	46位	1	1	0	I	CH,C0	4位	Н000	I	1
ナフタレン (位 0 H CH ₂ CO 4位 C00H	197	ナフタレン	\bigcirc	1199	1	I	0	Œ	00	4位	Н000	×	1
	198	ナフタレン		0位		1	0	Ŧ	02,42	4位	Н000	Ξ	1

化合物番	化合物番号 X	R1, R2	位置	R 4	ج 5	∢	>	Ш	E間換	ŋ	2	位置
199	199 ナフタレン	ð	7(t)	l	 	0	x	СН,СО	4(1)	Н000	王	1
200	200 ナフタレン	0 \	647	1	1	0	Ŧ	00²но	4位	Н000	ェ	1
201	ナフタレン	\circlearrowleft	644	1	1	0	I	00	4(1)	СООМе	I	1
202	ナフタレン	ै	0位	1	1	0	x	8	447	Н000	Ŧ	1
203	ナフタレン	\circlearrowleft	6 (t)	ī	1	0	NO ₂	00	4(‡	СООМе	I	ţ
204	ナフタレン	\circlearrowleft	644	ı	1	0	NO ₂	00	4(‡	Н000	I	ł
205	ナフタレン	\circlearrowleft	6位	ı	1	0	I	00²H0	4(1)	СООМе	x	I
206	206 ナフタレン	\circlearrowleft	6位	I	I	0	I	02,HD	4(II	Н000	x	ı
207	207 ナフタレン [Š	6位		I	0	NO ₂	CH2C0	4(1)		x	ı

化合物番号	· · ·	R1, R2	位置	A A	R S	4	>	ш	E 関換	U	7	位置
208	208 ナフタレン	ð	4	1	1	0	NO2	CH2CO	442	Н000	=	1
209	209 ナフタレン	ें	7(17	I	1	0	π	022HO	4 (‡	H000	±	1
210	ナフタレン		7 39	I	I	. 0	I	00	4(1	Н000	±	1
211	ナフタレン	\bigcirc	644	i	1	0	I	CH,CO	4(1)	Н000	I	1
212	ナフタレン	ं	口,	l	I	0	I	CH,CO	4(‡	Н000	=	1
213	ナフタレン	운	6位	I	I	0	Ξ	00	4(፲	СООМе	×	1
214	ナフタレン	-0H	6位	I	I	0	×	00	4(立	Н000	±	i
215	ナフタレン	-0H	6位	I	I	0	NO ₂	03	4位	СООМе	Ξ	1
216	ナフタレン	H0-	Q	. !	I	0	NO ₂	00	4(17	Н000	=	i

化合物番号	×	R1, R2	位置	4	ج ج	<	>	ш	E置換	Ü	7	位置
217	ナフタレン	-0H	6位	1		0	I	00 ² H0	4位	СООМе	Ŧ	1
218	ナフタレン	НО-	₩	1	ı	0	I	00²H)	4位	H000	I	i
219	ナフタレン	-0 2	4	1	ı	0	NO2	03 ² H3	4(1)	СООМе	I	. 1
220	ナフタレン	H0-	4	ŧ	1	0	N02	СН2СО	4位	H000	Ŧ	l
221	ナフタレン		6位	F	1		Ŧ	03	417	СООМе	Ŧ	1
222	ナフタレン		4 99	1	I	0	=	8	4位	H000	I	1
223	ナフタレン		Q	1	 1	0	Ξ	00²н2	414	СООМе	x	1
224	ナフタレン		1 499	· [·	I	0	I	00 ² H0	447	Н00Э	Ŧ	1
225	ナフタレン		641	1	1	0	I	00	4(t)	СООМе	x	1

化合物番号	at. ×	R1, R2	位置	٦. 4	R 5	∢	>.	ш	E置換	g	7	位置
226	ナフタレン		644	1	ı	0	=	8	4位	H000	=	1
227	ナフタレン		6位	1	I	0	I	8	4位	СООМе	Ξ	ŧ
228	ナフタレン		6 <u>(†</u>	ı	ı	0	x	93	4位	H000	±	1
229	ナフタレン		功9	ı	1	0	NO ₂	93	4(<u>t</u>	СООМе	王	1
230	ナフタレン		7 799	1	ı	0	N02	93	4(<u>†</u>	Н000	Ŧ	I
231	ナフタレン		479	1	1	0	N02	00	4(‡	СООМе	x	ı
232	ナフタレン		6位	1	i	0	NO ₂	00	4位	Н000	Ξ	t
233	ナフタレン		6位	i	I	0 .	I	CH,CO	4位	СООМе	×	ı
234	ナフタレン		6位	I	. 1	0	Ŧ	002HO	4位	Н000	±	1

化合物番号	at. ×	R1, R2	位置	R 4	R 5	∢	>	ш	E置換	G	2	位置
235	ナフタレン		6(‡	1	1	0	NO ₂	00 ² H0	4位	СООМе	=	1
236	ナフタレン		6位	I	1	0	NO2	CH ₂ C0	4位	H000	Ξ	1
237	ナフタレン		7位	í	1	0	I	CH2CO	4位	Н000	Ŧ	ı
238	ナフタレン	CH ₁ 0-	6位	I	ı	0	I	03	414	СООМе	I	1
239	ナフタレン	CH30-	7月9	1	ſ	0	x	00	4位	Н00Э	I	1
240	ナフタレン	СН,0-	641	1	ı	0	NO ₂	00	4位	СООМе	Ŧ	ŧ
241	ナフタレン	СН ₃ 0-	7月9	ł	1	0	NO2	00	4位	Н00Э	I	ı
242	ナフタレン	CH ₃ 0-	<i>Ţ</i>),9	I	I	0	Ŧ	CH2CO	4(17	СООМе	x	ı
243	ナフタレン	CH ₃ 0-	6位	1	l ,	0	=	CH2C0	4位	Н000	Ξ	i

2合物番	化合物番号 ×	R1, R2	位置	R 4	R 5	∢	>	ш	E置換	G	7	位置
244	244 ナフタレン CH ₃ 0-	CH ₃ 0-	4	1	ı	0	NO ₂	CH2CO	4位	СООМе	=	1
245	245 ナフタレン CH ₃ 0-	CH ₃ 0-	739	ſ	ı	0	NO ₂	CH2CO	4位	H000	×	I
246	スンカン	Ŧ	I	x	Ŧ	03	x	8	4位	Н000	=	1
247	ンサンス	æ	ı	x	Ŧ	CH (OMe)	x	8	4位	Н000	x	ı
248	ンケイン	Ŧ	ı	Ξ	Ŧ	GF,	±	93	4位	Н000	×	t
249	スンセン	Ŧ	I	I	×		æ	93	4位	H000	±	1
250	スンセン	x	I	Ŧ	Ŧ	0	×	00'Н0	4(1)	Н000	=	1
251	スと古く	I	4位	Σ	Ξ	0	=	CH2CO	4(1)	Н000	=	I
252	252 ベンゼン	<u>></u>	4位	=	æ	0	æ	сн,со	4位	C00Me	=	1

化合物番号	×	R1, R2	位置	R 4	8 S	∢	>	ш	E間換	U	7	位置
253	ペンセン	<u>}</u>	4位	Ŧ	Ŧ	0	=	CH2C0	4位	H000	=	1
254	ペン オン		44	I	x	0	x	CH2CO	4位	H000	I	I
255	スンセン		4(‡	I	π	0	I	CH2CO	4(1)	СООМе	I	. 1
256	スンセン		4位	I	x	0	I	CH2CO	414	Н000	I	ı
257	スンセン		4位	Ŧ	I	0	Ŧ	02 ² H2	4(1	СООМе	x	ł
258	スンセン		4位	Ξ	I	0	Ŧ	ОЗЧЭ	417	H000	x	ı
259	スと枯く	<u>></u>	4位	I	Ŧ	0	Ŧ	CH,CO	4(‡	СООМе	エ	ı
260	スとおく	<u>></u>	4位	I	Ŧ	0	×	сн,со	4(1)	Н000	×	ı
261	スカイン	0	4 <u>(</u>	· ==	Ŧ	0	I	07,HD	4(1)	СООМе	I	ı

ペンセン	化合物番号	×	R1, R2	位面	R 4	R 5	<	>	Ш	E間換	ပ	2	白爾
ペンセン	262	スンセン	,0,	442	Ŧ	Ŧ	0	=	CH2C0	4位	Н000	士	i
スンせい 人。 台 台 インせい 人。 本 台 インせい 人。 一 台 台 インせい 人。 一 台 インサン 人。 一 台 インサン 人。 一 台 インサン 人。 一 台 一 台 インサン 人。 一 台 一 台 一 台 一 台 一 台 一 台 一 一 一 一 白 一 白 一	263	スとせい	$\stackrel{>}{\sim}$	4位	Ŧ	x	0	S	00	4(1)	Н000	I	I
ペンセン くり 台 ないせい くしょく	264	スとおく	\nearrow	4位	I	x	0	±	00	44	Н00Э	x	i
ベンゼン 入。 4位 ペンゼン ベンゼン 人分 4位 ペンゼン 人か 4位 ペンゼン 人かり 4位	265	スンセン	$\stackrel{>}{\sim}$	4(<u>t</u>	I	x	0	×	CH,C0	4位	СООМе	x	ı
ベンゼン 人。 4位 ペンゼン ヘンゼン ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	266	スンセン	$\stackrel{>}{\sim}$	4(‡	x	×	0	Ξ	CH,CO	4(‡	Н000	Ξ	1
ベンゼン ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	267	スンセン	$\stackrel{>}{\sim}$	4位	I	I	0	I	CH2CO	44	Н000	Ξ	1
	268	スンセン	\o\ \ \	4位	I	I	0	I	00	4(1)	Н000	Ŧ	1
スンカン へつく 合	269	スンセン		4(<u>†</u>	I	I	0	I	02,HJ	4位	омос	I	1
270 ベンゼン ~~~~ 4位	270	ベンゼン	\ <u>\</u>	4位	н	×	0	x	02°Н	4(<u>t</u>	Н000	I	I

化合物番号 X	×	R1, R2	位置	R 4	R 5	<	>	ш	E置換	U	2	位置
27.1	スプセン	\ \ \ \	4(1)	Ŧ	±	0	Ŧ	00	4位	Н000	=	,
272	ハヰハソ	$\stackrel{\diamond}{\prec}$	4(1)	Ŧ	I	0	Ŧ	00 ² H2	4位	СООМе	I	ı
273	スとおく	$\searrow^{\!$	4位	I	Ŧ	0	I	00 ² H0	4(17	Н00Э	=	I
274	スンセン	\bigcirc	4位	I	I	0	I	00	44	СООМе	Ŧ	1
275	スンセン	Ö	4位	I	I	0	æ	00	4th	Н000	Ξ	1
276	スンセン	ð	417	=	Ŧ	0	NO ₂	00	4位	СООМе	Ŧ	i
27.7	ンサン	\bigcirc	4(1	I	Ŧ	0	NO ₂	00	4位	H000	Ξ	1
278	メンオン	\bigcirc	4位	I	I	0	±	CH2CO	44	СООМе	Ŧ	ı
279	ベンセン	Š	4位	· 표	x	0	Ŧ	СН,СО	4位	Н000	I	I

化合物番号	×	R1, R2	位置	Д 4	R 5	∢	>	Ш	E置換	U	7	位置
280	、ハヰハソ	ð	4位	Ŧ	I	0	=	CH2CO	4位	Н000	5	· 24
281	くなく	\bigcirc	4位	Ŧ	Ŧ	0	Ŧ	00 ² H0	4位	сооме	₩	5(17
282	くなく	\bigcirc	4位	Ξ	Ŧ	0	I	02,H0	4位	Н000	ë	5位
283	スペイン	\bigcirc	2位	I	= .	0	x	02²Нጋ	4位	СООМе	×	I
284	くなく		2(1)	· =	x	0	×	00²H)	4(1)	H000	x	I
285	ストセン		4位	I	x	0	=	00²НЭ	4(17	СООЖе	I	i
286	ストセン		4位	I	Ŧ	0	I	00,410	4{17	Н000	Ŧ	ı
287	ストオン	Ö	4位	x	I	0	I	00,470	4位	СООМе	x	ı
288	ベルイン	Š	4(<u>†</u>	. · 	I	0	Ξ	CH2CO	4位	Н000	Ŧ	ı

化合物番号 X	×	R1, R2	白	ж 4	R S	∢	>	ш	E價換	G	2	位置
289	ペンセン		4位	Ŧ	=	0	Ŧ	00²H)	4位	Н000	=	,
290	スとせい		4位	I	Ξ	0	=	CH ₂ CO	4位	Н000	Ξ	1
291	スンセン	J°	4th	x	I	0	I	00²H)	4(1)	СООМе	=	. 1
292	メンセン	J°	4位	I	Ι	0	I	00²Н)	4位	Н000	×	1
293	スンセン	CF ₃ -	4位	I	I	0	Ξ	00²Н)	4 (II	H000	I	ſ
294	スンセン	-0Н	4位	Ŧ	x	0	æ	00	4(‡	СООМе	x	ŧ
295	スンセン	H0-	4(<u>†</u>	Ŧ	×	0	x	03	4位	Н000	x	1
296	スンセン	- 9	4Æ	I	I	0	Ŧ	CH2C0	4位	СООМе	Ŧ	ì
297	297 ベンゼン	H0-	4位	· =	Ŧ	0	×	CH2CO	4位	Н00Э	x	1

化合物番号	×	R1, R2	位置	R 4	R 5	<	>	ш	E階換	U	7	位置
298	ハみハン		4位	=	=	0	=	8	4位	Н000	x	I
299	ンとなく		4位	I	I	0	Ŧ	99	4位	Н000	I	1
300	くとなく		4位	I	Ŧ	0	ij	99	4位	H000	Ξ	1
301	スイン		4位	工	I	0	CN	8	4位	Н000	Ξ	I
302	ンサン		4位	Ŧ	I	0	NHCOCH3	8	4位	Н000	エ	ı
303	スとおく		4位	Ŧ	Ξ	0	NHS0 ₂ CH ₃	00	4位	Н000	I	1
304	ハンオン	ò	4 (‡	Ŧ	I	0	Br	93	4位	Н000	I	1
305	ントセン		4位	ij	Ξ	0	I	8	4位	Н00Э	エ	1
306	ベンゼン		44	· =	5	0	I	00	4位	Н000	I	i

化合物番号	ut. ×	R1, R2	位置	R 4	R 5	<	>	ш	E間換	G	2	位置
307	スンセン		4位	0CH3	=	0	×	00	4位	Н000	=	1
308	ントセン		4位	Ξ	осн,	0	I	00	4位	Н000	Ξ	1
309	ンとせい		4位	СН3СО	I	0	Ξ	00	4位	Н000	Ŧ	ł
310	ベオイン		441	Ξ	CH3C0	0	I	9	4位	Н000	Ŧ	i
311	スンセン		4(1)	£	£	0	æ	8	4(1)	Н000	Ŧ	1
312	メンガン		4(1)	Ŧ	Ŧ	0	NO ₂	8	4(t)	Н000	I	1
313	メンガン		4位	x	Ŧ	S	I	CH,CO	4位	СООМе	Ŧ	ı
314	ベンセン		4位	I	Ŧ	S	Ŧ	CH,C0	4位	Н000	æ	1
315	ペンセン		4位	Ŧ	Ξ.	0	æ	CH2C0	4位		Ŧ	1

化合物番号	×	R1, R2	位置	R 4	R 5	∢	>	ш	E間換	G	7	位置
316	ンサンと		4(1)	=	I	0	×	CH,CO	4位	Н000	=	1
317	メソセソ		347	I	I	0	±	CH,CO	4位	9₩000	5	5位
318	スンガン		347	I	Ŧ	0	I	сн,со	4位	H000	ວ	541
319	スンセン		344	Ŧ	I	0	x	CH,CO	4位	СООМе	LL	4(1)
320	スプゼン		341	r	I	0	x	CH2CO	4位	H000	ш	4(1)
321	ンサンス		347	I	=	0	I	CH,CO	4位	СООМе	Me	547
322	スとせく		3位	エ	I		Ŧ	CH2CO	4位	H000	Me	5(17
323	ベンゼン		2位	x	Ŧ	0	×	02,H2	4位	сооме	Ŧ	1
324	イサイソ		2位	Ŧ	=	.0	x	CH,CO	4	H000	x	1

化合物番号	×	R1, R2	位置	A 4	R 5	<	>	ш	E價換	G	7	位置
325	メンセン		344	Ŧ	Ξ	0	Ŧ	CH2CO	4(17	H000	Ŧ	1
326	スとおい		4(17	I	Ŧ	202	Ŧ	CH2CO	4位	Н000	I	ł
327	ンガンス		4(‡	I	Ŧ	80	I	CH2CO	4位	Н000	Ŧ	ı
328	ストオン		4(‡	•H20	I	0	x	00 ² H0	4(17	Н000	Ŧ	ı
329	ストオン		4(1)	x	9СН3	0	±	CH ² CO	4位	Н000	Ŧ	ı
330	ペンセン		447	Ξ	Ŧ	0	I	02,42,42	4(<u>†</u>	Н000	I	I
331	ストガン		4位	I	=	0	I	оэнэ=нэ	4(1)	Нооэ	=	1
332 7	ナフタレン		6位	ţ	1	0	=	02,H2	4(1)	Н000	×	ı

5

10

本発明の癌治療剤の有効成分であるアントラニル酸誘導体は、後の実施例で示す通り、強い細胞毒性活性を有する。具体的には、 LC_{50} もしくはG I_{50} が5 μ M以下であるが、好ましいものは 0.05 n M以上 1 μ M以下であり、 0.05 n M以上 5 0 0 n M以下であるものがより好ましい。

このような優れた細胞毒性活性を有するアントラニル酸誘導体は、癌に対する臨床応用可能な治療剤の有効成分として使用することが可能である。

なお、前記式(1)で示されるアントラニル酸誘導体またはその医薬上許容される塩は、当業者であれば国際公開WO95/32943、国際公開WO97/19910を参考にして製造することができる。すなわち、下記スキームに示すように、ナフタレン骨格を有するカルボン酸 [II] またはベンゼン骨格を有するカルボン酸 [III] をアニリン誘導体 [IV] と縮合させることで、目的とする下記式 [I] で表される化合物を得ることができる。

$$X \stackrel{A}{\longrightarrow} E^{1} - COOH$$
 $+ H_{2}N \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$
 $X \stackrel{A}{\longrightarrow} E^{1} \stackrel{G}{\longrightarrow} Z$

15

20

なお、上記各式中の R^1 、 R^2 、X、A、Y、E、G、およびZは前記定義に同じである。E'は単結合、結合; $-CR^{10}R^{11}-$ 、 $-CH_2CH_2-$ 、または-CH=CH-を表す。ここで、 R^{10} および R^{11} は前記定義に同じである。出発物質である式 [II] 、式 [III] で表される化合物は、公知の方法で得ることができる。縮合法としては、酸ハライドを経由する方法と酸ハライドを経由しない活性化法とに大別され、いずれの手法も基本的には公知である。

酸ハライドを経由する場合、化合物 [II] または [III] をDMF等の添加剤の存在下もしくは非存在下で塩化オキザリル、塩化チオニルなどのハロ

20

ゲン化剤を作用させて[II] または[III] の酸ハライドを生成させ、これを塩基の存在下もしくは非存在下に化合物[IV] と反応させることで、化合物[I] を得ることができる。

一方、酸ハライドを経由しない活性化法では、混合酸無水物類、カルボジイミド類、イミダゾール化剤、ハロリン酸エステル類、シアノリン酸エステル類などさまざまな活性化剤を用いて化合物 [II] または [III] を活性化し、これと化合物 [IV] を反応させることで、化合物 [I] を得ることができる。

このようにして得られた化合物 [I] において、Yが-COOR を表し、10 かつR が低級アルキル基を表す場合;またGが-COOR を表し、かつ R が低級アルキル基を表す場合、必要に応じて酸性もしくは塩基性条件下で加水分解を行い、R またはR が水素原子である化合物に変換することができる。

また、このようにして得られた化合物 [I] において、Gが-CNを表す 15 場合、必要に応じてアジド化合物を反応させる等の処置を行い、Gがテトラ ゾール-5-イル基を表す化合物に変換することができる。

さらに、このようにして得られた化合物 [I] (Yが-COOR⁷を表し、かつR⁷が水素原子を表す場合;Gが-COOR³を表し、かつR³が水素原子を表す場合、またはGがテトラゾール-5-イル基を表す場合)は必要に応じて前述のような医薬上許容される塩に変換することができる。

かくして、本発明の癌治療剤の有効成分である前記式(1)で示されるアントラニル酸誘導体またはその医薬上許容される塩を得ることができる。

本発明の癌治療剤は、経口的にあるいは静脈内、皮下、筋肉内、経皮、直腸内、点眼等の非経口的または吸入によって投与することができる。

25 経口投与の剤型としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁 剤、シロップ剤、カプセル剤などが挙げられる。

錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦 形剤;カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリ ドンなどの結合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル 硫酸ナトリウムなどの崩壊剤等を用いて通常の方法により成型することができる。

丸剤、顆粒剤、散剤も同様に上記の賦形剤等を用いて通常の方法により成型することができる。

5 液剤、懸濁剤、シロップ剤は、例えばトリカプリリン、トリアセチン等の グリセリンエステル類;エタノール等のアルコール類;水;トウモロコシ油、 綿実油、ココナッツ油、アーモンド油、落花生油、オリーブ油等の植物油等 を用いて通常の方法により成型することができる。

カプセル剤は顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセル 10 に充填することによって成型される。

静脈内、皮下、筋肉内投与の剤型としては、無菌の水性あるいは非水性溶液剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油等の植物油、オレイン酸エチル等の注射しうる有15 機エステルなどが用いられる。これらの製剤には必要に応じて等張化剤、防腐剤、湿潤剤、乳化剤、分散剤、安定剤などが添加され、またバクテリア保留フィルターを通す濾過、殺菌剤の配合、加熱、照射等の処置を適宜行うことによって無菌化できる。また、無菌の固形製剤を製造し、使用直前に無菌水または無菌の注射用溶媒に溶解して使用することもできる。

20 経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤はヒマシ油、オリーブ油などの油脂類;ワセリン等を用いて、クリーム剤は脂肪油;ジエチレングリコール;ソルビタンモノ脂肪酸エステルなどの乳化剤等を用いて通常の方法によって成型される。

直腸投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いら 25 れる。

点眼剤の剤型としては、水性あるいは非水性点眼剤がある。水性点眼剤は溶剤に滅菌精製水、生理食塩水、あるいは適当な水性溶剤を用いるもので、溶剤に滅菌精製水のみを用いた水性点眼液;カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ポリビニルピロリドン

5

10

等の粘漿剤を加えた粘性点眼液;界面活性剤や高分子増粘剤等の懸濁剤を加えた水性懸濁点眼液;非イオン性界面活性剤などの可溶化剤を加えた可溶化点眼液等がある。非水性点眼剤は溶剤に注射用非水性溶剤を用いるもので、植物油、流動パラフィン、鉱物油、プロピレングリコール等を用いた非水性点眼液;モノステアリン酸アルミニウムなどの揺変膠質を用いて懸濁した非水性懸濁点眼液等がある。これらの製剤には必要に応じて等張化剤、保存剤、緩衝剤、乳化剤、安定剤などを添加することができる。またバクテリア保留フィルターを通す濾過、殺菌剤の配合、加熱、照射等の処置を適宜行うことによって無菌化できる。また、無菌の固形製剤を製造し、使用直前に適当な無菌溶液に溶解あるいは懸濁して使用することもできる。

また、点眼剤以外で眼に投与する剤型として、ワセリン等を用いて成型した眼軟膏剤;希ヨードチンキ、硫酸亜鉛溶液、塩化メチルロザニリン液等を用いた塗布液剤;有効成分の微粉末を直接投与する散布剤;有効成分を適当な基剤または素材に配合あるいは含浸させ、これを眼瞼内などに挿入して用いるインサート剤などがある。

また吸入のためには、有効成分と慣用の製薬賦形剤との溶液または懸濁液が用いられ、例えば吸入用エアゾルスプレーとして使用される。また乾燥粉末状の有効成分を、肺と直接接触できるようにする吸入器または他の装置によっても投与することができる。

20 本発明の癌治療剤の有効成分の投与量は、疾患の種類、投与経路、患者の 状態、年令、性別、体重等により異なるが、通常成人一人当たり1-100 0 mg/日程度であり、このような条件を満足するように製剤するのが好ま しい。

本発明の癌治療剤の有効成分は、実施例に具体的に示すように、増殖性の 25 強いL929細胞に対して低濃度でその増殖を抑制する。また種々のヒト培 養癌細胞の増殖に対しても同じく低濃度でその増殖を抑制することができる ため制癌剤として非常に有用な化合物である。

実施例

5

10

本発明を以下に示す参考例、実施例によって具体的に説明する。実施した 化合物群は以下に示すが、本発明はこれらの実施例のみに限定されるもので はない。また、カルボン酸、水酸基、アミン、およびアミド由来の¹H-N MRピークは観測されない場合がある。なお、特に記述していないがアミン 体の場合は塩酸塩である場合もある。

以下の参考例、実施例に「同様の方法により、それぞれ対応する基質を用い、下記化合物を合成した。」とある場合、用いた試薬は生成物に対応する基質を用いて合成される。ただし、わかりにくい場合は一部、基質も明記した。これらの反応では、反応温度、反応時間、精製法に多少の相違はあるが、当業者であれば試行により、適切な条件を容易に見出し得ることはいうまでもない。各実施例の化合物一般名の後の番号(化合物No.)は前記表中に記載した「化合物番号」を示す。

15 [実施例1]

2-(4-(2-ナフチルオキシ) 安息香酸アミド) 安息香酸メチル (化合物No. 1) の製造

20

窒素雰囲気下、4-(2-ナフチルオキシ) 安息香酸29.1g(0.1 1mol)を乾燥塩化メチレン500mLに懸濁後、これに塩化オキザリル15.4g(0.121mol)、次いでDMFをピペットで10滴加え、35℃で2時間攪拌した。反応液をエバポレーターで濃縮し、残渣を乾燥塩25 化メチレン300mLに溶解した。窒素雰囲気下、この溶液をアントラニル酸メチル16.6g(0.11mol)とトリエチルアミン12.3g(0.121mol)の乾燥塩化メチレン溶液(250mL)に氷冷下で滴下し、

そのまま 4 時間、さらに室温で終夜攪拌した。反応液に水を加え、塩化メチレンで 2 回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。残渣をイソプロピルアルコール(1.6 L)から再結晶すると、2-(4-(2-t)) 安息香酸アミド)安息香酸メチル 40.26 (収率 92%)が得られた。無色針状晶。

 $^{1}H-NMR(CDCl_{3}) \delta (ppm)$:

3.96 (S, 3H), 7.09-7.17 (m, 3H), 7.27-7.31 (m, 1H), 7.42-7.53 (m, 3H), 7.58-7.64 (m, 1H), 7.76 (d, J=8.5Hz, 1H), 7.84-7.90 (m, 2H), 8.03-8.10 (m, 3H), 8.93 (d, J=8.3Hz, 1H), 12.02 (br. s, 1H).

10

5

[実施例2]

2-(4-(2-) (2-) 安息香酸アミド)安息香酸 (化合物 No. 4) の製造

15

20

25

実施例1で得られた2-(4-(2-ナフチルオキシ) 安息香酸アミド) 安息香酸メチル40.26g(0.101mol)をメタノール/THF (200mL/400mL)の混合溶媒に溶解し、これに4M水酸化リチウム水溶液127mL(0.51mol)を加え、室温で終夜攪拌した。反応液に5M塩酸を加えてpHを約1に調整後、室温で0.5時間攪拌した。反応液に水を加え、酢酸エチルで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。残渣をイソプロピルアルコール(1.3L)から再結晶し、2-(4-(2-ナフチルオキシ)安息香酸アミド)安息香酸31.23g(収率80%)を得た。無色針状晶。 「H-NMR(CDCl₃) δ (ppm):

7.12-7.18 (m, 3H), 7.27-7.30 (m, 1H), 7.43-7.53 (m, 3H), 7.65 (dt, J

= 1.7 and 8.6Hz, 1H), 7.76 (d, J = 7.6Hz, 1H), 7.85-7.91 (m, 2H), 8.03 (dd, J = 2.0 and 6.9Hz, 2H), 8.14 (dd, J = 1.7 and 7.9Hz, 1H), 8.96 (d, J = 7.6Hz, 1H), 11.84 (br. s, 1H).

5 [実施例3-69]

以下の実施例では、本発明で用いる化合物を実施例1または実施例2の方法に準じ、それぞれに対応する出発原料を使用して製造した。次表に製造した化合物の1H-NMRスペクトルデータと反応収率を示す。なお、表中の化合物No. は前記表に示した化合物No. に相当する。また、スペクトルデータのところに「※」が付されているものは、DMSO-d6中での測定データである。その他のものはすべてCDC13中で測定したデータである。

実施例	化合物	¹H-NMR データ (CDCl 3) δ (ppm)	収率
342011	, , , , , , ,		(%)
3	10	3.85 (s, $3H$), 7.11 (t, $J = 8.3Hz$, $1H$), $7.20-$	66
		7.30 (m, 3H), 7.40-7.65 (m, 5H), 7.70-7.90 (m,	
		4H), 8.05 (d, J = 7.3Hz, 1H), 8.88 (d, J =	
		9.2Hz, 1H), 12.00 (s, 1H).	
4	11	(%) 7.01 (t, J = 7.4Hz, 1H), 7.20-7.40 (m,	65
		3H), 7.40-7.55 (m, 3H), 7.58 (t, J = 7.9Hz,	
		1H), 7.69 (s, 1H), 7.85 (d, J = 7.6Hz, 1H),	
		7.92 (d, J = 1.7Hz, 1H), 7.95 (s, 1H), 8.00	
		(d, J = 8.9Hz, 1H), 8.05 (d, J = 8.6Hz, 1H),	
		8.62 (d, J = 7.9Hz, 1H), 12.10 (br.s, 1H).	
5	12	3.95 (s, 3H), 7.05-7.20 (m, 2H), 7.25-7.35 (m,	98
		2 H), 7.45-7.60 (m, 3H), 7.70-7.90 (m, 2H),	
		7.93 (d, $J = 1.3Hz$, 1H), 8.11 (dt, $J = 1.3$ and	
		10.0 Hz, $1 H$), 8.70 (d, $J = 2.3 Hz$, $1 H$), 8.87 (d,	
		J = 7.6Hz, 1H), 12.20 (s, 1H).	

実施例	化合物	¹H-NMR データ (CDCl 3) δ (ppm)	収率
天地 切	10.010	n max y y (object 3)	(%)
6	14	(%) 7.24 (t, J = 7.2Hz, 1H), 7.34 (d, J =	34
	''	8.5Hz, 1H), 7.43 (dd, $J = 2.6$ and 4.5Hz, 1H),	
		7.50-7.60 (m, 2H), 7.60-7.70 (m, 2H), 7.95	l
		(dd, J = 8.1 and 14.6 Hz, 2 H), 8.06 (dd, J =	
		7.6 and 8.0Hz, 2H), 8.20-8.25 (m, 2H), 8.60-	
		8.70 (m, 2H), 12.30 (s, 1H).	
7	18	(%) 6.95 (d, J = 8.6Hz, 1H), 7.16 (t, J =	55
		7.6Hz, 1H), 7.43-7.62 (m, 4H), 7.73 (d, $J =$	
		2.3Hz, 1H), 7.88-8.07 (m, 4H), 8.55 (s, 1H),	
		8.70 (d, J = 7.9Hz, 1H).	
8	56	3.77 (s, 2H), 3.89 (s, 3H), 7.05-7.11 (m, 3H),	65
		7.27-7.57 (m, 7H), 7.69 (d, J = 7.6Hz, 1H),	
		7.82 (d, $J = 8.6$ Hz, 2H), 8.01 (dd, $J = 1.7$ and	
		7.9Hz, 1H), 8.73 (d, J = 8.6Hz, 1H), 11.10	
		(br. s, 1H).	
9	59	3.80 (s, 2H), 7.04 (t, $J = 7.6Hz$, 1H), $7.09-$	81
		7.14 (m, 2H), 7.21-7.29 (m, 2H), 7.34-7.45 (m,	
	'	4H), $7.54-7.65$ (m, 2H), 7.76 (d, $J = 8.6Hz$,	
		2H), 8.07 (dd, $J = 1.7$ and 7.9 Hz, 1 H), 8.76	
		(dd, J = 1.0 and 8.6Hz, 1H), 10.74 (br. s,	
		1H).	0.5
10	120	3.96 (s, $3H$), 6.55 (d, $J = 15.5Hz$, $1H$), $7.04-$	85
		7.13 (m, 3H), 7.25-7.31 (m, 1H), 7.41-7.52 (m,	
		3H), 7.56-7.62 (m, 3H), 7.72-7.78 (m, 2H),	
		7.83-7.89 (m, 2H), 8.06 (dd, $J = 1.7$ and	
	•	7. $9Hz$, $1H$), 8. 88 (dd, $J = 1.0$ and 8. $6Hz$, $1H$),	
		11.35 (br. s, 1H).	

実施例	化合物	¹ H-NMR データ (CDCl 3) δ (ppm)	収率
			(%)
11	114	2. 78 (t, J = 7.3Hz, 2H), 3.09 (t, J = 7.3Hz, 2H), 3.92 (s, 3H), 6.99-7.03 (m, 2H), 7.05-7.12 (m, 1H), 7.22-7.27 (m, 4H), 7.41 (dquint, J = 1.3 and 6.9Hz, 2H), 7.55 (dt, J = 1.7 and 6.9Hz, 1H), 7.67 (d, J = 7.6Hz, 1H), 7.81 (d, J = 8.6Hz, 2H), 8.03 (dd, J = 1.7 and 7.9Hz, 1H), 8.73 (dd, J = 1.0 and 8.6Hz, 1H), 11.09	90
		(br. s, 1H).	
12	115	2.78 (t, J = 7.9Hz, 2H), 3.09 (t, J = 7.9Hz, 2H), 6.97-7.02 (m, 2H), 7.12 (dt, J = 1.0 and 7.3Hz, 1H), 7.20-7.27 (m, 4H), 7.41 (dquint, J = 1.3 and 6.9Hz, 2H), 7.57-7.68 (m, 2H), 7.80 (d, J = 8.9Hz, 2H), 8.10 (dd, J = 1.7 and 7.9Hz, 1H), 8.76 (dd, J = 1.0 and 8.6Hz, 1H), 10.87 (br. s, 1H). 6.54 (d, J = 15.5Hz, 1H), 7.05-7.08 (m, 2H),	69 84
10	(trans)	7.11-7.17 (m, 1H), 7.24-7.29 (m, 1H), 7.40-7.52 (m, 3H), 7.56-7.65 (m, 3H), 7.67-7.88 (m, 4H), 8.15 (dd, J = 1.7 and 8.2Hz, 1H), 8.91 (dd, J = 1.0 and 8.6Hz, 1H), 11.16 (br. s, 1H).	04
14		1.64 (d, J = 7.3Hz, 3H), 3.75-3.83 (m, 1H), 3.89 (s, 3H), 7.03-7.09 (m, 3H), 7.24-7.28 (m, 1H), 7.33-7.56 (m, 6H), 7.69 (dd, J = 1.7 and 7.6Hz, 1H), 7.81 (d, J = 8.9Hz, 2H), 8.00 (dd, J = 1.7 and 7.9Hz, 1H), 8.74 (dd, J = 1.0 and 8.6Hz, 1H), 11.14 (br.s, 1H).	65

実施例	化合物	¹H-NMR データ (CDCl ₃) δ (ppm)	収率
		3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	(%)
15	127	(%) 1.48 (d, J = 6.9Hz, 3H), 3.88 (q, J =	71
		6.9Hz, 1H), 7.04-7.14 (m, 3H), 7.28 (dd, J =	
		2.3 and 8.9Hz, 1H), 7.39-7.59 (m, 6H), 7.80	
		(d, J = 7.6Hz, 1H), 7.90 (dd, J = 1.3 and	
		7.6Hz, 1H), 7.95 (d, J = 8.2Hz, 2H), 8.52 (d,	
		J = 7.6Hz, 1H), 11.28 (br.s, 1H).	
16	128	1.73 (s, 6H), 3.84 (s, 3H), 7.07 (d, J = 8.9	88
		Hz, 3H), 7.25-7.29 (m, 1H), 7.34-7.56 (m, 6H),	
		7.68 (d, $J = 7.9$ Hz, 1H), 7.81 (d, $J = 8.9$ Hz,	
		2H), 7.99 (dd, J = 1.7 and 7.9Hz, 1H), 8.76	
		(dd, J = 1.0 and 7.6 Hz, 1 H), 10.95 (br.s, 1 H).	
17	129	(※) 1.61 (s, 6H), 7.07 (d, J = 8.6Hz, 2H),	85
		7.11 (t, $J = 7.3Hz$, 1H), 7.28 (dd, $J = 1.6$ and	
		8.9Hz, 1H), $7.40-7.52$ (m, 5H), 7.58 (dt, $J = $	
	ļ	1.7 and 6.9Hz, 1H), 7.80 (d, $J = 7.9Hz$, 1H),	
		7.90-7.97 (m, 3H), 8.62 (d, $J = 8.6Hz$, 1H),	
		11.25 (br.s, 1H), 13.62 (br.s, 1H).	
18	19	2.36 (s, 3H), 3.88 (s, 3H), 7.14 (d, J =	50
		8.9Hz, 2H), 7.18-7.24 (m, 1H), 7.27-7.31 (m,	
		1H), $7.42-7.53$ (m, 4H), 7.76 (d, $J = 7.3Hz$,	
		1H), 7.84-7.91 (m, 3H), 8.01-8.04 (m, 2H),	
		10.18 (br.s, 1H).	

cts the fell	11 Ath	¹H-NMR データ (CDCl 3) δ (ppm)	収率
実施例	化合物	II-MMK)) (CDCI 3) ((PDIII)	(%)
		0.00 (0.00) 7.10 (1.10 0.00) 7.01	
19	20	2. 36 (s, 3H), 7. 13 (d, J = 8. 6Hz, 2H), 7. 21-	71
		7.30 (m, 2H), $7.43-7.55$ (m, 4H), 7.76 (d, $J =$	
		7.3Hz, 1H), $7.85-7.94$ (m, 3H), 8.00 (d, $J = $	
		8.9Hz, 2H), 9.98 (br.s, 1H).	
20	74	3.80 (s, 2H), 3.95 (s, 3H), 7.10 (d, J = 6Hz,	53
		2H), 7.26-7.46 (m, 6H), 7.69 (d, J = 9Hz, 1H),	
		7.82 (d, J = 9Hz, 2H), 7.87 (dd, J = 2 and	
		9Hz, $1H$), 8.17 (d, $J = 9Hz$, $1H$), 9.64 (d, $J = 1$	
		2Hz, 1H), 11.12 (br.s, 1H):	
21	75	(%) 3.83 (s, 2H), 7.08 (d, J = 8Hz, 2H),	69
		7.29 (dd, $J = 2$ and $9Hz$, $1H$), $7.39-7.48$ (m,	
		5H), 7.81 (d, $J = 8Hz$, $1H$), 7.89-7.97 (m, $3H$),	
		8.19 (d, $J = 9Hz$, 1H), 9.37 (d, $J = 2Hz$, 1H),	
		11.65 (br.s, 1H).	
22	76	3.77 (s, 2H), 3.88 (s, 3H), 6.77 (td, $J = 2$	62
		and $7Hz$, $1H$), 7.08 (d, $J = 9Hz$, $2H$), $7.31-7.48$	
		(m, 6H), 7.69 (d, J = 8 Hz, 1H), 7.82 (d, J = 1)	
	i	9Hz, $2H$), 8.02 (dd, $J = 6$ and $9Hz$, $1H$), 8.57	
		(dd, J = 3 and 12Hz, 1H), 11.25 (br.s, 1H).	01
23	77	3.78 (s, 2H), 6.68 (m, 1H), 7.11 (d, $J = 9Hz$,	82
		2H), 7.20 (dd, $J = 2$ and 9Hz, 2H), 7.32-7.42	
		(m, 4H), 7.61 (d, J = 8Hz, 1H), 7.75 (d, J = 1.00)	
		9Hz, $2H$), 8.05 (t, $J = 6Hz$, $1H$), 8.56 (dd, $J =$	
		2 and 12Hz, 1H), 10.88 (br.s, 1H).	

実施例	化合物	¹ H-NMR データ (CDCl 3) δ (ppm)	収率
			(%)
24	78	3.76 (s, $2H$), 3.89 (s, $3H$), 7.09 (d, $J = 9Hz$,	60
		2H), $7.26-7.45$ (m, $7H$), 7.68 (dd, $J = 3$ and	
		9Hz, $2H$), 7.82 (d, $J = 9Hz$, $2H$), 8.74 (dd, $J =$	
		5 and 9Hz, 1H), 10.91 (br.s, 1H).	
25	79	(%) 3.75 (s, 2H), 7.07 (d, J = 9Hz, 2H),	85
		7.29 (dd, $J = 3$ and $9Hz$, $1H$), $7.38-7.48$ (m,	į
		6H), 7.54 (dd, $J = 3$ and $9Hz$, $1H$), 7.82 (d, J	
		= 8Hz, 1H), 7.88-7.91 (m, 1H), 7.95 (d, J =	
		9Hz, 1H), 8.52 (d, J = 9Hz, 1H), 11.99 (br.s,	
		1H).	
26	80	3.76 (s, 2H), 3.89 (s, 3H), 7.09 (d, $J = 9Hz$,	95
		2H), $7.25-7.51$ (m, 7H), 7.69 (d, $J = 8Hz$, 1H),	
		7.82 (d, $J = 9Hz$, 2H), 7.98 (d, $J = 3Hz$, 1H),	
		8.73 (d, J = 9Hz, 1H), 10.99 (br.s, 1H).	
27	81	(※) 3.71 (s, 2H), 7.06 (d, J = 9Hz, 2H),	81
		7.29 (dd, $J = 3$ and $9Hz$, $2H$), $7.38-7.50$ (m,	
		5H), 7.67 (dd, $J = 3$ and $10Hz$, $1H$), 7.82 (d, J	
		= 8Hz, 1H), 7.89 (d, J = 8Hz, 1H), 7.95 (d, J	
	ŀ	= 9Hz, 1H), 8.50 (dd, J = 5 and 9Hz, 1H),	
		12.30 (br.s, 1H).	
28	82	2.41 (s, 3H), 3.73 (s, 2H), 3.81 (s, 3H), 6.96	38
		(d, $J = 8Hz$, 1H), 7.10 (d, $J = 9Hz$, 2H), 7.27-	
	1	7.46 (m, 7H), 7.70 (d, J = 7Hz, 1H), 7.82 (dd,	
]	I = 3 and 9Hz, 2H), 8.23 (d, J = 9Hz, 1H),	-
	g	.39 (br.s, 1H).	1

収率
(0/)
(%)
= 75
m,
,
,
), 45
,
),
S,
= 67
, 56
i,
,
,
,

実施例	化合物	¹ H-NMR データ(CDCl ₃) δ(ppm)	収率
			(%)
33	226	(%) 5.23 (s, 2H), 7.17 (d, J = 8.7Hz, 2H),	82
		7.20-7.45 (m, 6H), 7.45-7.60 (m, 4H), 7.65 (t,	
		J = 7.5Hz, 1H, 7.82 (d, $J = 8.9Hz, 1H$), 7.90	
		(d, J = 8.9 Hz, 1 H), 7.98 (d, J = 8.9 Hz, 2 H),	
		8.05 (dd, J = 1.7 and 8.9 Hz, 1 H), 8.72 (d, J = 1.8 (d, 1 det)	
		8.5Hz, 1H), 12.20 (br.s, 1H); 13.70 (br.s,	
		1H).	
34	184	1.40 (s. 9H), 3.76 (s, 2H), 3.88 (s, 3H), 7.06	64
		(d, J = 8.6Hz, 3H), 7.09-7.23 (m, 2H), 7.32-	
		7.38 (m, 4H), 7.53 (t, J = 7.3Hz, 1H), 7.60	
		(d, J = 8.9Hz, 1H), 7.72 (d, J = 8.9Hz, 1H),	
		8.01 (dd, J = 1.7 and 7.9Hz, 1H), 8.73 (dd, J	
		= 1.0 and 8.6Hz, 1H), 11.08 (br.s, 1H).	
35	185	1.40 (s. 9H), 3.79 (s, 2H), 7.03-7.23 (m, 4H),	92
		7.26-7.27 (m, 1H), 7.33-7.36 (m, 4H), 7.56 (t,	
		J = 8.9Hz, 2H), 7.69 (d, $J = 8.9Hz$, 1H), 8.08	1
		(d, $J = 8.3Hz$, 1H), 8.76 (d, $J = 8.2Hz$, 1H),	
		10.79 (br.s, 1H).	

実施例	化合物	¹H-NMR データ (CDCl ₃) δ (ppm)	収率
			(%)
36	205	1.30-1.50 (m, 3H), 1.5-1.65 (m, 3H), 1.75-1.90	71
		(m, 2H), 2.00-2.15 (m, 2H), 3.75 (s, 2H), 3.88	
		(s, 3H), 4.33-4.42 (m, 1H), 7.02-7.15 (m, 5H),	
		7.20-7.24 (m, 1H), 7.31-7.37 (m, 3H), 7.53	
		(dt, J = 1.6 and 8.6Hz, 1H), 7.60 (d, J =	
		8.6Hz, 1H), 7.68 (d, J = 8.9Hz, 1H), 8.00 (dd,	
		J = 1.7 and $8.2Hz$, $1H$, 8.72 (dd, $J = 1.0$ and	
		8.6Hz, 1H), 11.07 (br.s, 1H).	···
37	206	1.25-1.65 (m, 6H), 1.75-1.90 (m, 2H), 2.00-	86
		2.15 (m, 2H), 3.78 (s, 2H), 4.31-4.40 (m, 1H),	
		7.01-7.13 (m, 6H), 7.18 (dd, $J = 1.6$ and	
		8.9Hz, 1H), 7.33 (d, $J = 8.6Hz$, 2H), 7.55 (d,	
		J = 9.9Hz, 2H), 7.63 (d, $J = 8.9Hz$, 1H), 8.06	
		(dd, $J = 1.7$ and 7.9 Hz, 1 H), 8.75 (d, $J =$	
		8.6Hz, 1H), 10.76 (br.s, 1H).	
38	175	0.89 (t, $J = 6.9Hz$, 3H), $1.20-1.45$ (m, 8H),	51
		1.45-1.65 (m, 2H), 1.84 (quint, $J = 6.6Hz$,	
		2H), 3.75 (s, 2H), 3.88 (s, 3H), 4.06 (t, $J = 1$	
		6.6Hz, 2H), 7.03-7.15 (m, 5H), 7.21-7.25 (m,	
		1H), $7.32-7.37$ (m, 3H), 7.53 (t, $J = 7.3Hz$,	
		1H), 7.60 (dd, $J = 2.3$ and 7.6 Hz, 1H), 7.69	
		(d, J = 8.9Hz, 1H), 8.01 (dd, J = 1.7 and)	
		7.9Hz, 1H), 8.73 (dd, $J = 1.0$ and 8.3Hz, 1H),	
		11.08 (br.s, 1H).	_

実施例	化合物	¹ H-NMR データ (CDCl ₃) δ (ppm)	収率
		•	(%)
39	176	(%) 0.85 (t, J = 6.6Hz, 3H), 1.25-1.55 (m,	86
		10H), 1.76 (quint, J = 6.6Hz, 2H), 3.75 (s,	
		2H), 4.05 (t, $J = 6.6Hz$, $2H$), 7.01 (d, $J =$	
		8.6Hz, 2H), 7.10-7.15 (m, 2H), 7.23 (dd, J =	
		2.3 and 8.9Hz, 1H), 7.32-7.38 (m, 4H), 7.57	
		(t, J = 7.3 Hz, 1H), 7.72 (d, J = 9.3 Hz, 1H),	
		7.83 (d, $J = 8.9$ Hz, 1H), 7.95 (dd, $J = 1.7$ and	
		7.9 Hz, 1H), 8.50 (d, $J = 8.6$ Hz, 1H), 11.16	
		(br.s, 1H), 13.57 (br.s, 1H).	
40	159	2.05 (s, 4H), 3.75 (s, 2H), 3.89 (s, 3H), 4.07	70
		(t, J = 5.6Hz, 2H), 4.15 (t, J = 5.6Hz, 2H),	
		6.87-6.97 (m, 3H), 7.02-7.18 (m, 5H), 7.21-	!
		7.37 (m, 6H), 7.50-7.57 (m, 1H), 7.60 (d, $J = $	
		9.6Hz, 1H), 7.69 (d, $J = 8.9Hz$, 1H), 8.01 (dd,	
		J = 1.6 and $7.9Hz$, $1H$), 8.73 (dd, $J = 1.0$ and	
		8.6Hz, 1H), 11.08 (br.s, 1H).	
41	160	(※) 1.80-2.00 (m, 4H), 3.72 (s, 2H), 4.04	77
		(t, J = 5.6Hz, 2H), 4.14 (t, J = 5.6Hz, 2H),	
		6.88-6.94 (m, $3H$), 7.01 (d, $J = 8.6Hz$, $2H$),	
		7.11-7.16 (m, 2H), 7.21-7.30 (m, 3H), 7.35-	
		7.38 (m, 4H), $7.53-7.55$ (m, 1H), 7.73 (d, $J = $.
		8.9Hz, 1H), 7.82 (d, $J = 8.9Hz$, 1H), 7.94 (dd,	
	1	J = 1.7 and 7.9 Hz, 1 H), 8.49 (d, $J = 8.6$ Hz,	
		1H).	

-4-14-5-1	11 A 41.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	atria sobre
実施例	化合物	¹H-NMR データ (CDCl 3) δ (ppm)	収率
			(%)
42	192	3.75 (s, $2H$), 3.89 (s, $3H$), 4.65 (d, $J =$	47
		6.3Hz, 2H), 5.32 (d, J = 10.6Hz, 1H), 5.47 (d,	
		J = 17.5Hz, 1H), 6.05-6.20 (m, 1H), 7.03-7.23	
		(m, 6H), 7.32-7.37 (m, 3H), 7.53 (t, J =	
		7.3Hz, 1H), 7.61 (d, J = 8.6Hz, 1H), 7.70 (d,	
		J = 8.9Hz, 1H), 8.01 (dd, J = 1.3 and 7.9Hz,	
		1H), 8.73 (d, J = 8.6Hz, 1H), 11.08 (br.s,	
		1H).	
43	193	(%) 3.74 (s, 2H), 4.66 (d, J = 5.3Hz, 2H),	62
		5.28 (dd, $J = 1.3$ and $10.6Hz$, $1H$), 5.44 (dd, J	
		= 1.7 and 17.5Hz, 1H), 6.03-6.15 (m, 1H), 7.02	
		(d, J = 8.6 Hz, 2H), 7.09-7.26 (m, 3H), 7.35-	
		7.39 (m, 4H), $7.54-7.59$ (m, 1H), 7.74 (d, $J = $:
		8.9 Hz, $1 H$), 7.83 (d, $J = 8.9 Hz$, $1 H$), 7.95 (dd,	
		J = 1.3 and $8.2Hz$, $1H$), 8.50 (d, $J = 8.6Hz$,	
		1H), 11.15 (br.s, 1H), 13.56 (br.s, 1H).	
44		1.95 (quint, $J = 6.6$ Hz, 2H), 2.28 (q, $J =$	54
		6.9Hz, 2H), 3.75 (s, 2H), 3.88 (s, 3H), 4.08	
		(t, J = 6.6 Hz, 2H), 5.02 (dd, J = 2.0 and)	
		10.3Hz, 1H), 5.09 (dd, $J = 2.0$ and 17.2Hz,	
		1H), 5.81-5.96 (m, 1H), 7.03-7.16 (m, 5H),	
		7.21-7.25 (m, 1H), 7.32-7.38 (m, 3H), 7.53	
	f	(dt, J = 1.7 and 7.3 Hz, 1 H), 7.60 (d, J =	
	- 1	9.6Hz, $1H$), 7.69 (d, $J = 8.9Hz$, $1H$), 8.00 (dd,	
		J = 1.7 and 7.9 Hz, 1H), 8.72 (dd, $J = 1.3$ and	į
		8.6Hz, 1H), 11.08 (br.s, 1H).	

			. hara maka
実施例	化合物	¹H-NMR データ(CDCl 3)δ(ppm)	収率
			(%)
45	168	(※) 1.87 (quint, J = 6.3Hz, 2H), 2.23 (q, J	89
		= 6.6Hz, 2H), 3.76 (s, 2H), 4.08 (t, J =	
		6.6Hz, 2H), 5.01 (d, J = 10.2Hz, 1H), 5.08	
		(dd, J = 2.0 and 17.2Hz, 1H), 5.82-5.97 (m,	
		1H), 7.03 (d, J = 8.6Hz, 2H), 7.11-7.17 (m,	
		2H), 7.25 (dd, J = 2.6 and 8.9Hz, 1H), 7.33-	
		7.40 (m, 4H), 7.58 (t, J = 8.6Hz, 1H), 7.74	
		(d, J = 8.9 Hz, 1 H), 7.85 (d, J = 8.9 Hz, 1 H),	
		7.96 (dd, J = 1.7 and 8.3Hz, 1H), 8.51 (dd, J	
ļ .		= 8.3Hz, 1H), 11.14 (br.s, 1H), 13.54 (br.s,	
		1H).	
46	144	1.61 (s, 3H), 1.67 (s, 3H), 1.78 (s, 3H),	37
		2.08-2.14 (m, 4H), 3.75 (s, 2H), 3.88 (s, 3H),	
		4.64 (d, J = 6.6Hz, 2H), 5.11 (br., 1H), 5.56	
		(t, J = 7.6 Hz, 1 H), 7.03-7.07 (m, 3 H), 7.10-	
		7.17 (m, 2H), 7.21-7.25 (m, 1H), 7.32-7.37 (m,	
		3H), 7.53 (t, $J = 8.6$ Hz, 1H), 7.60 (d, $J =$	
.		9.6Hz, 1H), 7.70 (d, J = 8.9Hz, 1H), 8.01 (dd,	
		J = 1.7 and 7.9Hz, 1H), 8.72 (d, J = 8.3Hz,	
		1H), 11.07 (br.s, 1H).	

\$ the Ini	1VAH	¹H-NMR データ (CDCl ₃) δ (ppm)	収率
実施例	化合物	II MMK) / (CDCI 3) ((ppm)	(%)
	5	(W) 1 57 (97) 1 C1 (97) 1 74 (97)	
47	145	(※) 1.57 (s, 3H), 1.61 (s, 3H), 1.74 (s,	66
		3H), 2.02-2.13 (m, 4H), 3.76 (s, 2H), 4.65 (d,	
		J = 6.3Hz, 2H), 5.08 (br., 1H), 5.49 (t, J =)	
		[6.9Hz, 1H), 7.03 (d, J = 8.6Hz, 2H), 7.11-7.16]	
		(m, 2H), 7.25 (dd, J = 2.3 and 8.9Hz, 1H),	
		7.35-7.40 (m, 4H), 7.58 (t, $J = 8.6$ Hz, 1H),	
		7.73 (d, $J = 8.9$ Hz, 1H), 7.83 (d, $J = 8.9$ Hz,	
		1H), 7.96 (d, $J = 1.7$ and 7.9 Hz, 1 H), 8.51 (d,	
		J = 7.9Hz, 1H), 11.14 (br.s, 1H), 13.50 (br.s,	
		1H).	
48	233	3.75 (s, 2H), 3.88 (s, 3H), 5.17 (s, 2H),	72
		7.02-7.11 (m, 3H), 7.20-7.26 (m, 3H), 7.32-	
		7.56 (m, 9H), 7.62 (d, J = 9.6Hz, 1H), 7.70	
·		(d, J = 8.9 Hz, 1H), 8.01 (dd, J = 1.7 and	
		8. $2Hz$, $1H$), 8.73 (dd, $J = 1.0$ and $8.3Hz$, $1H$),	
		11.08 (br.s, 1H).	
49	234	(%) 3.74 (s, 2H), 5.20 (s, 2H), 7.02 (d, J =	78
	20.	8. 6 Hz, 2 H), 7.12 (t, $J = 7.3$ Hz, 1 H), $7.20-7.27$	
		(m, 2H), 7.30-7.58 (m, 10H), 7.75 (d, J =	
		8.9Hz, $1H$), 7.83 (d, $J = 8.9Hz$, $1H$), 7.95 (dd,	
		J = 1.3 and 7.9 Hz, 1 H $), 8.50 (d, J = 7.9Hz,$	
		1H).	

実施例	化合物	¹H-NMR データ (CDCl 3) δ (ppm)	収率
L			(%)
50	223	2.17 (quint, J = 6.3Hz, 2H), 2.86 (t, J = 7.3Hz, 2H), 3.75 (s, 2H), 3.89 (s, 3H), 4.07 (t, J = 6.3Hz, 2H), 7.03-7.11 (m, 2H), 7.05 (d, J = 8.6Hz, 2H), 7.13-7.38 (m, 10H), 7.54 (dt, J = 1.7 and 7.3Hz, 1H), 7.61 (d, J = 8.9Hz, 1H), 7.67 (d, J = 8.9Hz, 1H), 8.00 (dd, J = 1.7 and 7.9Hz, 1H), 8.73 (dd, J = 1.0 and 8.6Hz, 1H)	59
51	224	8.6Hz, 1H), 11.08 (br.s, 1H). (※) 2.03-2.14 (m, 2H), 2.79 (t, J = 7.3Hz, 2H), 3.76 (s, 2H), 4.07 (t, J = 6.3Hz, 2H), 7.03 (d, J = 8.3Hz, 2H), 7.11-7.40 (m, 12H), 7.52-7.60 (m, 1H), 7.75 (d, J = 8.9Hz, 1H), 7.83 (d, J = 9.2Hz, 1H), 7.96 (dd, J = 1.7 and 7.9Hz, 1H), 8.51 (d, J = 8.6Hz, 1H), 11.18 (br.s, 1H).	86
52		3.75 (s, 2H), 3.88 (s, 3H), 5.34 (s, 2H), 7.03-7.10 (m, 3H), 7.22-7.28 (m, 3H), 7.33- 7.37 (m, 3H), 7.46-7.71 (m, 6H), 7.84-7.90 (m, 3H), 7.94 (s, 1H), 8.00 (dd, J = 1.7 and 7.9Hz, 1H), 8.72 (d, J = 8.6Hz, 1H), 11.07 (br.s, 1H).	23
53		(※) 3.76 (s, 2H), 5.39 (s, 2H), 7.03 (d, J = 8.6Hz, 2H), 7.14 (d, J = 7.9Hz, 1H), 7.24-7.30 (m, 2H), 7.38 (d, J = 8.6Hz, 3H), 7.51-7.66 (m, 5H), 7.78 (d, J = 9.2Hz, 1H), 7.86 (d, J = 8.9Hz, 1H), 7.93-7.98 (m, 4H), 8.05 (s, 1H), 8.51 (d, J = 7.9Hz, 1H), 11.17 (br.s, 1H), 13.56 (br.s, 1H).	30

実施例	化合物	¹ H-NMR データ(CDCl ₃) δ (ppm)	収率
			(%)
54	21	3.94 (s, $3H$), 7.11 (t, $J = 7.3Hz$, $1H$), 7.35	83
		(d, J = 8.3Hz, 2H), 7.49-7.63 (m, 4H), 7.79-	
		7.89 (m, 3H), 7.94 (d, J = 8.6Hz, 2H), 8.04	
		(d, J = 1.3Hz, 1H), 8.07 (dd, J = 1.7 and	
		8.3Hz, 1H), 8.91 (d, J = 7.9Hz, 1H), 12.02	
		(br. s, 1H).	
55	22	7.15 (t, $J = 7.6$ Hz, 1H), 7.34 (d, $J = 8.6$ Hz,	91
		2H), 7.49-7.65 (m, 4H), 7.80-7.92 (m, 5H),	
		8.04 (s, 1H), 8.13 (dd, J = 2.0 and 8.3Hz,	
	I	1H), 8.93 (d, J = 8.3Hz, 1H), 11.84 (br. s,	
	_	1H).	
56	27	3.92 (s, $3H$), 4.20 (s, $2H$), 7.09 (t, $J =$	100
		7.3Hz, 1H), 7.22-7.48 (m, 5H), 7.56-7.64 (m,	
		2H), $7.76-7.82$ (m, 3H), 7.99 (d, $J = 7.9Hz$,	
		2H), 8.06 (dd, J = 1.3 and 8.3Hz, 1H), 8.93	
	_	(d, J = 8.6Hz, 1H), 12.01 (br. s, 1H).	
57	29	4.22 (s, 2H), 7.15 (t, $J = 8.3Hz$, $1H$), $7.24-$	79
		7.50 (m, 5H), 7.63-7.69 (m, 2H), 7.77-7.83 (m,	
	ĺ	3H), 7.96 (d, J = 8.6 Hz, 2H), 8.14 (dd, J =	
		1.7 and 7.9Hz, 1H), 8.96 (d, J = 7.9Hz, 1H),	
		11.80 (br, s. 1 H).	

実施例	化合物	¹H-NMR データ (CDCl 3) δ (ppm)	収率
			(%)
58	36	3.95 (s, 3H), 5.26 (s, 2H), 7.09-7.15 (m, 1H),	60
		7.20-7.27 (m, 2H), 7.34 (dt, J = 1.3 and	
		7.9Hz, 1H), 7.44 (dt, $J = 1.3$ and 7.9Hz, 1H),	
		7.57-7.65 (m, 3H), 7.72 (d, J = 8.3Hz, 1H),	
		7.77 (d, $J = 8.6$ Hz, 2H), $8.06-8.11$ (m, 3H),	
		8.94 (d, J = 8.3Hz, 1H), 12.07 (br. s, 1H).	
59	37	5.28 (s, 2H), 7.17-7.45 (m, 5H), 7.63-7.80 (m,	85
		6H), 8.07 (d, J = 8.6Hz, 2H), 8.15 (dd, J =	j
		1.7 and 7.9Hz, 1H), 8.95-8.99 (m, 1 H), 11.90	
		(s, 1 H).	
60	99	3.78 (s, 2H), 3.85 (s, 3H), 5.18 (s, 2H), 7.06	65
		(t, J = 7.9Hz, 1H), 7.19-7.23 (m, 2H), 7.30-	
		7.36 (m, 1H), 7.40-7.55 (m, 6H), 7.70-7.78 (m,	
		3H), 7.99 (dd, $J = 1.7$ and $8.2Hz$, $1H$), 8.70	}
		(d, J = 8.3Hz, 1H), 11.10 (br. s, 1H).	
61	100	3.81 (s, 2H), 5.19 (s, 2H), 6.98 (t, J =	76
		7.9Hz, 1H), 7.16-7.21 (m, 2H), 7.30-7.45 (m,	
		4H), 7.50-7.56 (m, 3H), 7.65-7.77 (m, 3H),	
		8.03 (dd, $J = 1.7$ and 7.9 Hz, 1 H), 8.74 (dd, J	
1		= 1.0 and 8.6 Hz, 1 H), 10.68 (br. s, 1 H).	

実施例	化合物	¹H-NMR データ (CDCl 3) δ (ppm)	収率
			(%)
62	38	3.96 (s, $3H$), 4.26 (s, $2H$), 7.12 (dt, $J = 1.3$	87
		and 8.3Hz, 1H), 7.38-7.50 (m, 5H), 7.60 (dt, J	
,		= 1.7 and 8.6Hz, 1H), 7.69-7.80 (m, 4H), 7.95	
		(d, J = 2.0Hz, 1H), 7.98 (d, J = 1.7Hz, 1H),	
		8.08 (dd, $J = 1.7$ and 7.9 Hz, 1H), 8.92 (d, $J =$	
		8.6Hz, 1H), 12.01 (br. s, 1H).	
63	39	4.26 (s, 2H), 7.15 (t-like, 1H), 7.29-7.47 (m,	22
		5H), 7.63-7.80 (m, 5H), 7.92-7.95 (m, 2H),	
		8.13 (dd, $J = 1.7$ and $7.9Hz$, $1H$), $8.93-8.96$	
		(m, 1H), 11.84 (s, 1H).	
64	40	3.99 (s, 3H), 7.17 (t, $J = 8.6$ Hz, 1H), $7.55-$	79
		7.68 (m, 3H), $7.92-8.02$ (m, 6H), 8.12 (dd, $J =$	
		1.3 and 7.9Hz, 1H), 8.18-8.28 (m, 3H), 8.96	
		(d, J = 8.6Hz, 1H), 12.21 (br. s, 1H).	
65	41	7.18-7.24 (m, 1H), 7.58-7.70 (m, 3H), 7.92-	79
	į	8.01 (m, 6H), 8.17 (d, $J = 8.6$ Hz, 3H), 8.28	
		(s, 1H), 8.99 (d, $J = 8.3Hz$, 1H), 12.04 (br.	
		s, 1H).	
66	42	3.96 (s, 3H), 7.15 (t, $J = 7.3Hz$, 1H), $7.50-$	90
		7.70 (m, 5H), $7.90-8.20$ (m, 8H), 8.92 (d, $J = $	
		7.6Hz, 1H), 12.10 (s, 1H).	
67	43	(\times) 7.24 (t, J = 7.3Hz, 1H), 7.50-7.70 (m,	69
		5H), 7.95 (d, $J = 8.3Hz$, $2H$), $8.00-8.10$ (m,	ĺ
		5H), 8.11 (d, $J = 1.7Hz$, 1H), 8.68 (d, $J =$	-
		8.3Hz, 1H), 12.30 (s, 1H), 13.80 (br.s, 1H).	

実施例	化合物	¹H-NMR データ (CDCl 3) δ (ppm)	収率
			(%)
68	44	3.45 (s, 3H), 3.94 (s, 3H), 5.47 (s, 1H), 7.11 (t, $J = 7.3Hz$, 1H), 7.41-7.52 (m, 3H), 7.55-	100
		7.64 (m, 3H), 7.73-7.85 (m, 4H), 8.00-8.09 (m, 3H), 8.92 (d, J = 8.3Hz, 1H), 12.01 (br. s, 1H).	
69		3.45 (s, 3H), 5.48 (s, 1H), 7.15 (t, J = 7.3Hz, 1H), 7.40-7.68 (m, 6H), 7.80-7.85 (m, 4H), 8.00 (d, J = 8.2Hz, 2H), 8.14 (d, J = 7.9Hz, 1H), 8.95 (d, J = 8.6Hz, 1H), 11.82 (br. s, 1H).	80

[実施例70]

N-フェニルー(4-(2-ナフチルオキシ)安息香酸アミド(化合物No.

5 5)の製造

窒素雰囲気下、4-(2-ナフチルオキシ)安息香酸53mg(0.20 mmol)を乾燥塩化メチレン5mLに懸濁後、これに塩化オキザリル56 mg(0.44mmol)、次いでDMFをピペットで1滴加え、35℃で1.5時間攪拌した。反応液をエバポレーターで濃縮し、残渣を乾燥塩化メチレン5mLに溶解した。窒素雰囲気下、この溶液をアニリン19mg(0.20mmol)とトリエチルアミン22mg(0.22mmol)の乾燥塩15 化メチレン溶液(5mL)に氷冷下で滴下し、そのまま4時間、さらに室温で終夜攪拌した。反応液に水を加え、塩化メチレンで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:

1) で精製すると、N-フェニルー(4-(2-ナフチルオキシ) 安息香酸 アミド27mg(収率40%) が得られた。無色固体。

 $^{1}H-NMR (CDCl_{3}) \delta (ppm)$:

7.10-7.18 (m, 3H), 7.24-7.29 (m, 2H), 7.34-7.53 (m, 4H), 7.62-7.65 5 (m, 2H), 7.74-7.77 (m, 2H), 7.86-7.90 (m, 3H).

[実施例71]

2-(4-(2-) フェノール(化合物N o. 6)の製造

10

窒素雰囲気下、4-(2-ナフチルオキシ)安息香酸144mg(0.54mmol)を乾燥塩化メチレン5mLに懸濁後、これに塩化オキザリル75mg(0.60mmol)、次いでDMFをピペットで1滴加え、35℃で1.5時間攪拌した。反応液をエパポレーターで濃縮し、残渣を乾燥塩化メチレン9mLに溶解した。窒素雰囲気下、この溶液をローアミノフェノール59mg(0.54mmol)と乾燥ピリジン3mLの乾燥塩化メチレン溶液(6mL)に氷冷下で滴下し、そのまま1.5時間、さらに室温で3日間攪拌した。反応液に水を加え、塩化メチレンで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1-10:1)で精製すると、2-(4-(2-ナフチルオキシ)安息香酸アミド)フェノール147mg(収率76%)が得られた。無色固体。

25 $^{1}H-NMR(CDCl_{3}) \delta (ppm)$:

6.89-6.96 (m, 1H), 7.03-7.23 (m, 5H), 7.28-7.29 (m, 1H), 7.44-7.76 (m, 3H), 7.78-7.79 (d, J = 1.7Hz, 1H), 7.85-7.94 (m, 4H), 8.67 (s,

1H).

[実施例72]

2-(4-(2-ナフチルオキシ) 安息香酸アミド) ベンゼンスルホンアミ 5 ド (化合物No. 7) の製造

窒素雰囲気下、4-(2-ナフチルオキシ)安息香酸132mg(0.5 mmol)を乾燥塩化メチレン5mLに懸濁後、これに塩化オキザリル70mg(0.55mmol)、次いでDMFをピペットで1滴加え、35℃で2時間攪拌した。反応液をエバポレーターで濃縮し、残渣を乾燥塩化メチレン5mLに溶解した。窒素雰囲気下、この溶液をo-アミノベンゼンスルホンアミド86mg(0.5mmol)と乾燥ピリジン2mLの乾燥塩化メチレン溶液(4mL)に沐冷下で滴下し、そのまま4時間、さらに室温で終夜攪拌した。反応液に水を加え、塩化メチレンで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。残渣をベンゼン/酢酸エチル(8mL/3mL)の混合溶媒から再結晶すると、2-(4-(2-ナフチルオキシ)安息香酸アミド)ベンゼンスルホンアミド1

 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm)$:

12mg (収率54%) が得られた。無色粒状晶。

7. 23 (d, J = 8.9Hz, 2H), 7. 26-7. 38 (m, 2H), 7. 46-7. 68 (m, 4H), 7. 90 (d, J = 7.9Hz, 2H), 7. 97 (d, J = 8.6Hz, 3H), 8. 04 (d, J = 9.2Hz, 1H), 8. 46 (dd, J = 1.0 and 8. 6Hz, 1H).

20

7 4

[実施例73]

2-(4-(2-ナフチルオキシ) 安息香酸アミド) ベンゾニトリル (化合物No.8) の製造

窒素雰囲気下、4-(2-ナフチルオキシ) 安息香酸 2 6 4 mg (1.0 mm o 1) を乾燥塩化メチレン5 mLに懸濁後、これに塩化オキザリル140 mg (1.1 mm o 1)、次いでDMFをピペットで1滴加え、35℃で2時間攪拌した。反応液をエバポレーターで濃縮し、残渣を乾燥塩化メチレン7 mLに溶解した。窒素雰囲気下、この溶液をアントラニロニトリル118 mg (1.0 mm o 1)とトリエチルアミン111 mg (1.1 mm o 1)の乾燥塩化メチレン溶液 (5 mL)に氷冷下で滴下し、そのまま4時間、さらに室温で終夜攪拌した。反応液に水を加え、塩化メチレンで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1-5:1)で精製すると、2-(4-(2-ナフチルオキシ)安息香酸アミド)ペンゾニトリル263 mg (収率72%)が得られた。無色固体。

20 $^{1}H-NMR(CDCl_{3}) \delta(ppm)$:

7.15 (d, J = 8.9 Hz, 2H), 7.18-7.30 (m, 2H), 7.46-7.54 (m, 3H), 7.61-7.69 (m, 2H), 7.76-7.79 (m, 1H), 7.85-7.96 (m, 4H), 8.34 (br.s, 1H), 8.61 (d, J = 8.6 Hz, 1H).

25 [実施例74]

2-(4-(2-ナフチルチオ) 安息香酸アミド) ベンゾニトリル (化合物 No. 23) の製造

4-(2-ナフチルチオ) 安息香酸 280 mg (1.0 mm o l) を原料 に用い、実施例 73と同様にして題記化合物 104 mg (収率 27%) を得た。

 $^{1}H-NMR(CDCl_{3}) \delta(ppm)$:

7. 21 (t, J = 8.6Hz, 1H), 7. 33 (d, J = 8.6Hz, 2H), 7. 49-7. 68 (m, 4H), 7. 78-7. 89 (m, 4H), 8.06 (d, J = 1.3Hz, 1H), 8.31 (br.s, 1H), 8.59 (d, J = 8.6Hz, 1H).

[実施例75]

1-(4-(2-ナフチルオキシ) 安息香酸アミド) -2-(テトラゾール-5-イル) ベンゼン(化合物No. 9) の製造

15

実施例73で得られた2-(4-(2-ナフチルオキシ)安息香酸アミド)ベンゾニトリル109mg(0.30mmol)、塩化アンモニウム4208mg(0.9mmol)、アジ化ナトリウム59mg(0.9mmol)を乾燥DMF3mLに懸濁し、この懸濁液を80℃で24時間攪拌した。反応液に水5mLと5M塩酸5mLを加え、酢酸エチルで2回抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。残渣をアセトニトリル15mLから再結晶すると、1-(4-(2-ナフチルオキシ)安息香酸アミド)-2-(テトラゾール-5-イル)ベンゼンが

92mg (収率75%) 得られた。無色針状晶。

 $^{1}H-NMR(CD_{3}OD) \delta (ppm)$:

7.15-7.21 (m, 2H), 7.27-7.35 (m, 2H), 7.43-7.53 (m, 3H), 7.57-7.63 (m, 1H), 7.78-8.01 (m, 4H), 8.14-8.19 (m, 2H), 8.76-8.81 (m, 1H).

5

[実施例76]

10

実施例74で得られた2-(4-(2-t)7チルチオ)安息香酸アミド) ベンゾニトリル50mg(0.13mmol)を原料に用い、実施例75と 同様にして題記化合物が43mg(収率77%)得られた。

15 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm)$:

7. 42 (t, J = 8.6Hz, 1H), 7. 48 (d, J = 8.3Hz, 2H), 7. 57-7. 70 (m, 4H), 8. 00-8.09 (m, 6H), 8. 24 (d, J = 1.7Hz, 1H), 8. 57 (d, J = 7.6Hz, 1H), 11. 56 (br. s, 1H).

20

[実施例77]

2-(3-アミノ-4-(2-ナフチルオキシ) 安息香酸アミド) 安息香酸 メチル (化合物No. 15) の製造

実施例 5 で得られた 2-(4-(2-t)7 + 2) - 3-1 + 1 + 2 香酸アミド)安息香酸メチル $350 \, \mathrm{mg} \, (0.79 \, \mathrm{mmol}) \, (化合物 \, \mathrm{No.12})$ を酢酸エチル $20 \, \mathrm{mL} \, \mathrm{tr} \, \mathrm{mg} \,$

 $^{1}H-NMR (CDCl_{3}) \delta (ppm)$:

3. 95 (s, 3H), 6. 95 (d, J = 8.5Hz, 1H), 7. 11 (t, J = 7.0Hz, 1H), 7. 30 (dd, J = 2.3 and 8.9Hz, 2H), 7. 36 (dd, J = 2.3 and 8.2Hz, 2H), 7. 40-7. 50 (m, 3H), 7. 57 (d, J = 2.0Hz, 1H), 7. 61 (dd, J = 1.4 and 8.6Hz, 1H), 7. 71 (d, J = 7.9Hz, 1H), 7. 84 (t, J = 8.0Hz, 2H), 8. 07 (dd, J = 1.5 and 8.7Hz, 1H), 8. 92 (d, J = 1.3 and 8.3Hz, 1H), 11. 90 (s, 1H).

[実施例78]

2-(3-アミノ-4-(2-ナフチルオキシ) 安息香酸アミド) 安息香酸 (化合物 No. 16) の製造

20

25

5.40 (br.s, 2H), 6.96 (d , J = 7.8Hz, 1H), 7.10-7.30 (m, 2H), 7.30-

7. 35 (m, 2H), 7. 40-7. 50 (m, 3H), 7. 63 (dt, J = 1.5 and 7. 6Hz, 1H), 7. 82 (d, J = 7.8Hz, 1H), 7. 90 (d, J = 7.8Hz, 1H), 7. 96 (d, J = 9.8Hz, 1H), 8. 05 (dd, J = 1.5 and 7. 8Hz, 1H), 8. 73 (d, J = 7.8Hz, 1H), 12. 20 (s, 1H).

5

「実施例79]

2-(4-(2-ナフチルオキシ)安息香酸アミド)安息香酸(化合物No. 4)ナトリウム塩1エタノール和物の製造

10

15

実施例2で得た2-(4-(2-ナフチルオキシ)安息香酸アミド)安息香酸10.35g(27.0mmol)をエタノール250mLに加熱溶解した。この溶液に2Mの水酸化ナトリウム水溶液13.77mL(27.54mmol)を加えて室温で10分間撹拌し、その後、終夜静置した。析出した無色固体を濾取すると、題記化合物が10.15g(収率83%)得られた。

 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm)$:

1.07 (t, J = 6.9Hz, 3H), 3.44-3.47 (m, 2H), 4.30-4.32 (m, 1H), 6.97

20 (t, J = 7.5Hz, 1H), 7.17 (d, J = 7.5Hz, 2H), 7.30 (t, J = 6.9Hz, 1H),

7.35 (d, J = 8.5Hz, 1H), 7.47-7.55 (m, 3H), 7.87 (d, J = 8.0Hz, 1H),

7.94 (d, J = 8.0Hz, 1H), 8.02 (t, J = 8.0Hz, 2H), 8.09 (d, J = 8.5Hz,

2H), 8.69 (d, J = 8.0Hz, 1H), 15.66 (br.s, 1H).

25 [実施例80]

2-(4-(2-ナフチルオキシ) 安息香酸アミド) 安息香酸 (化合物No.4) リシン塩の製造

実施例2で得た2-(4-(2-ナフチルオキシ) 安息香酸アミド) 安息香酸192mg(0.5mmol)をエタノール(6mL)に溶解し、この溶液にリシン(1-Lysine, free base)73mg(0.5mmol)のメタノール溶液(3mL)を加えて室温で5分間撹拌し、その後6時間静置した。析出した無色固体を濾取すると、題記化合物が247mg(収率93%)得られた。

 $^{1}H-NMR$ (CDC1₃-CD₃OD) δ (ppm):

1. 40-1.58 (m, 2H), 1.58-1.73 (m, 2H), 1.78-1.90 (m, 2H), 2.86-2.97 (m, 2H), 3.50-3.60 (m, 1H), 7.03-7.19 (m, 3H), 7.23-7.32 (m, 1H), 7.39-7.53 (m, 4H), 7.75-7.83 (m, 1H), 7.83-7.98 (m, 2H), 8.05-8.17 (m, 3H), 8.65-8.73 (m, 1H).

15 [実施例81]

2-(4-(2-ナフチルオキシ)安息香酸アミド)安息香酸(化合物No. 4) N-メチル-D-グルカミン塩の製造

20

実施例2で得た2-(4-(2-ナフチルオキシ) 安息香酸アミド) 安息香酸383mg(1.0mmol)をエタノール(12mL)に溶解し、この溶液にN-メチル-D-グルカミン195mg(1.0mmol)の水溶

液(1mL)を加え、室温で1時間撹拌した。反応液をガラスフィルターで ろ過して微少の不溶物を除いた後、ろ液を濃縮した。残渣の水飴状物を水2 0mLとメタノール1mLの混合溶媒に溶解し、これを凍結乾燥すると、無 色パウダー状の題記化合物が542mg(収率94%)得られた。

5 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm)$:

2.49-2.51 (m, 5H), 2.89-3.07 (m, 2H), 3.38-3.47 (m, 3H), 3.57-3.61 (m, 1H), 3.66-3.67 (m, 1H), 3.86 (br.s, 1H), 4.40-4.44 (br.s, 1H), 4.58 (br.s, 1H), 5.43 (br.s, 1H), 6.98 (t, J=8.6Hz, 1H), 7.20 (d, J=8.9Hz, 2H), 7.22-7.39 (m, 2H), 7.45-7.57 (m, 3H), 7.87-8.09 (m, 6H), 8.64 (d, J=8.3Hz, 1H).

[実施例82]

1-(4-(2-)ナフチルオキシ)安息香酸アミド)-2-(テトラゾール-5-イル)ベンゼン(化合物No.9)ナトリウム塩の製造

15

10

実施例 7 5 で得た 1 ー (4 ー (2 ー ナフチルオキシ) 安息香酸アミド) ー 2 ー (テトラゾールー5 ー イル) ベンゼン 7 3 2 mg (1.80 mmol) をエタノール 80 mLに加熱溶解し、この溶液に 2 Mの水酸化ナトリウム水溶液 0.897 mL (1.80 mmol) を加え、室温で 2.5時間撹拌した。反応液を濃縮し、残渣の透明フィルムを蒸留水 30 mLに溶解した。この溶液をフィルター (0.45 μm) でろ過した後、ろ液を凍結乾燥すると、無色パウダー状の題記化合物が 767 mg (収率 99%) 得られた。

25 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm)$:

7.15 (td, J = 1.5 and 7.8Hz, 1H), 7.25 (dt, J = 2.9 and 8.8Hz, 2H),

10

7. 31 (td, J = 1.5 and 8.8Hz, IH), 7. 39 (dd, J = 2.5 and 8.8Hz, IH), 7. 47-7. 54 (m, 2H), 7. 60 (d, J = 2.4Hz, IH), 7. 90 (d, J = 7.8Hz, IH), 7. 90 (d, J = 7.8Hz, IH), 7. 96 (d, J = 7.8Hz, IH), 8. 03 (d, J = 9.3Hz, IH), 8. 25-8. 30 (m, 3H), 8. 79 (dd, J = 1.0 and 8. 3Hz, IH), 13. 39 (br. s, IH).

[実施例83]

2-(4-(2-ナフチルオキシ)フェニル酢酸アミド)安息香酸(化合物 No. 59)ナトリウム塩の製造

実施例9で得た2-(4-(2-ナフチルオキシ)フェニル酢酸アミド) 安息香酸9.538g(24.00mmol)(化合物No.59)をエタ ノール100mLに加熱溶解し、この溶液に2Mの水酸化ナトリウム水溶液 11.976mL(24.00mmol)を加え、室温で1.5時間撹拌した。反応液を濃縮し、残渣の透明フィルムを蒸留水200mLに溶解した。この溶液をフィルター(0.45μm)でろ過した後、ろ液を凍結乾燥すると、無色パウダー状の題記化合物が9.97g(収率99%)得られた。

20 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm)$:

3.65 (s, 2H), 6.95 (t, J = 8.2Hz, 1H), 7.10 (d, J = 8.6Hz, 2H), 7.25 (t, J = 7.3Hz, 1H), 7.33-7.36 (m, 1H), 7.37-7.53 (m, 5H), 7.93 (t, J = 7.3Hz, 2H), 7.99 (d, J = 8.9Hz, 2H), 8.46 (d, J = 8.3Hz, 1H), 14.80-14.91 (m, 1H).

[実施例84]

2-(4-(6-ヒドロキシ-2-ナフチルオキシ) 安息香酸アミド) 安息香酸メチル (化合物No. 213) の製造

実施例32で得られた2-(4-(6-ベンジルオキシ-2-ナフチルオキシ) 安息香酸アミド) 安息香酸メチル(化合物No. 225) 1.35g(2.68mmol)をTHF50mLに溶解し、これに10%Pd/Cを630mg加えた。系を水素雰囲気下にし、室温で32時間攪拌した。反応液をセライトでろ過しろ液を濃縮すると、2-(4-(6-ヒドロキシ-2-ナフチルオキシ) 安息香酸アミド) 安息香酸メチル1.04g(収率94%) が得られた。

 $^{1}H-NMR (CDCl_{3}) \delta (ppm)$:

3.88 (s, 3H), 5.26 (br.s, 1H), 6.90-7.20 (m, 6H), 7.35 (br.s, 1H), 7.50-7.70 (m, 3H), 7.90-8.05 (m, 3H), 8.84 (d, J = 7.6Hz, 1H), 11.95 (br.s. 1H).

[実施例85]

20 2-(4-(6-ヒドロキシ-2-ナフチルオキシ) 安息香酸アミド) 安息 香酸(化合物No.214) の製造

25 実施例84で得られた2-(4-(6-ヒドロキシ-2-ナフチルオキシ) 安息香酸アミド) 安息香酸メチル(化合物No.213) 1.04g

(2.52mmol) を原料に用い、実施例2と同様にして、題記化合物を 0.78g(収率78%) 得た。

 $^{1}H-NMR (DMSO-d_{5}) \delta (ppm)$:

WO 01/60354

7.05-7.20 (m, 6H), 7.24 (s, 1H), 7.60 (dt, J = 2.0 and 9.0Hz, 1H),

7.74 (dd, J = 9.0 and 13.0Hz, 2H), 7.95 (d, J = 8.9Hz, 2H), 8.03 (dd, J = 1.7 and 8.0Hz, 1H), 8.28 (d, J = 9.0Hz, 1H), 9.70 (s, 1H), 12.20 (br.s. 1H), 13.70 (br.s, 1H).

[実施例86]

10 2-(4-(6-ヒドロキシ-2-ナフチルオキシ) フェニル酢酸アミド) 安息香酸メチル (化合物No. 217) の製造

15 実施例48で得られた2-(4-(6-ベンジルオキシー2-ナフチルオキシ)フェニル酢酸アミド)安息香酸メチル(化合物No.233)50mg(0.097mmol)を原料に用い、実施例84と同様にして題記化合物22mg(収率53%)を得た。

 $^{1}H-NMR (CDCl_{3}) \delta (ppm)$:

20 3.76 (s, 2H), 3.89 (s, 3H), 5.26 (br.s, 1H), 7.02-7.15 (m, 5H), 7.22 (dd, J = 2.3 and 8.9Hz, 1H), 7.31-7.37 (m, 3H), 7.53 (dt, J = 1.7 and 8.9Hz, 1H), 7.60 (d, J = 9.2Hz, 1H), 7.64 (d, J = 8.9Hz, 1H), 8.01 (dd, J = 1.7 and 8.3Hz, 1H), 8.72 (d, J = 8.3Hz, 1H), 11.10 (br.s, 1H).

25

[実施例87]

2-(4-(6-ヒドロキシ-2-ナフチルオキシ)フェニル酢酸アミド)

安息香酸(化合物No.218)の製造

実施例86で得られた2-(4-(6-ヒドロキシー2-ナフチルオキ 5 シ)フェニル酢酸アミド)安息香酸メチル(化合物No. 217)22mg (0.05mmol)を原料に用い、実施例2と同様にして題記化合物を9 mg(収率42%)得た。

 $^{1}H-NMR$ (DMSO-d₅) δ (ppm):

3.83 (s, 2H), 7.07-7.28 (m, 6H), 7.41-7.46 (m, 3H), 7.65 (d, J =10 7. 6Hz, 1H), 7. 75 (d, J = 8.9Hz, 1H), 7. 81 (d, J = 8.9Hz, 1H), 8. 04 (dd, J = 1.3 and 7.9 Hz, 1H), 8.59 (d, J = 8.3 Hz, 1H), 9.72 (s, 1H),11.24 (br.s. 1H), 13.65 (br.s. 1H).

[参考例1] 15

4- (4-ペンジルオキシフェノキシ)フェニル酢酸の合成

ハイドロキノンモノベンジルエーテル (8.01g、40mmol) にベ 20 ンゼン(100mL)およびメタノール(25mL)を加え、さらに28% ナトリウムメチラート7. 3mL (38mmol) をゆっくり滴下し、室温 で1時間撹拌した。この反応液を濃縮した後、ピリジン(100mL)、4 -プロモフェニル酢酸メチルエステル9.16g(40mmol)、および 塩化第一銅1. 25g(12mmol)を加え、この混合物を120℃で3 25 0時間加熱撹拌した。得られた反応混合物を塩酸で中和し、生成物を酢酸工

チルで抽出し、抽出物を乾燥、濃縮した。得られた濃縮物をシリカゲルクロマトグラフィーで精製して、目的化合物のメチルエステル4.76g(13.7mmol)を得た。収率36%。

このメチルエステル化合物 4.7 6 g (13.7 mmol)を、THF (10 mL)に溶解し、これにメタノール (5 mL)と4 M水酸化リチウム 水溶液 (5 mL)を加え、この反応混合液を室温で4時間撹拌した。反応完了後、得られた反応液を塩酸で中和し、液量が半分になるまで濃縮した。生成した結晶を濾取し、乾燥し、目的化合物 4.3 1 g (12.9 mmol)を得た。収率 9 4 %。

10

5

[実施例88]

2-(4-(4-ベンジルオキシフェノキシ)フェニルアセタミド)安息香酸メチルエステル(化合物No. 315)の製造

15

20

25

窒素ガス雰囲気下、参考例1で得られた 4-(4-ペンジルオキシフェノキシ)フェニル酢酸メチルエステル4.30g($1\cdot2.9mmo1$)に塩化メチレン($7\cdot0mL$)を加え、さらに塩化オキザリル2.13g($1\cdot6.8mmo1$)を加え、この反応混合液を $5\cdot0$ ℃で3時間加熱撹拌した。得られた反応液を濃縮し、濃縮物を乾燥塩化メチレン($6\cdot0mL$)に溶解した。得られた溶液を氷冷し、これに安息香酸メチルエステル1.80g($1\cdot2.3mmo1$)を添加した。さらにトリエチルアミン1.80g($1\cdot8.1mmo1$)を添加して $5\cdot0$ ℃で1時間撹拌し、さらに室温で一夜撹拌した。得られた反応液を水洗し、反応生成物を酢酸エチルで抽出し、抽出液を乾燥、濃

縮した。濃縮物をシリカゲルクロマトグラフィーによって精製して、目的化 合物 4. 29g (9. 2mm o 1) を得た。収率 75%。

 $^{1}H-NMR(CDC1_{3}) \delta (ppm)$:

3.72(s, 2H), 3.87(s, 3H), 5.04(s, 2H), 6.91-7.02(m, 6H), 7.06(td, J = 8.6Hz, 1.6Hz, 1H), 7.24-7.46(m, 7H), 7.52(td, J = 8.0Hz, 1.6Hz, 1H), 7.99(dd, J = 8.2Hz, 1.6Hz, 1H), 8.71(dd, J = 8.6Hz, 1.3Hz, 1H), 11.03(brs, 1H)

[実施例89-93]

10 以下の表に記載した化合物 (化合物 No. 313、317、319、32 1、および324を実施例88と同様の方法によって合成した。表中にこれ らの化合物の収率および NMR 測定結果を示す。

実施例	化合物	¹H-NMR データ (CDCl 3) δ (ppm)	収率
			(%)
89	313	3.74 (2H, s), 3.85 (3H, s), 4.03 (2H, s), 6.91 (2H, d, J = 8.57Hz), 7.00 (2H, d, J = 8.58Hz), 7.06 (1H, ddd, J = 0.99, 7.25, 7.92Hz), 7.19-7.26 (7H, m), 7.34 (2H, d, J=8.25Hz), 7.52 (1H,	63
		ddd, J = 1.32, 7.26, 8.57Hz), 7.99 (1H, dd, J = 1.32, 7.91Hz), 8.72 (1H, d, J = 8.58Hz), 11.05 (1H, br).	
90		3.74 (2H, s), 3.84 (3H, s), 5.02 (2H, s), 6.62-6.74 (3H, m), 7.03 (2H, d, J = 8.6Hz), 7.21 (1H, t, J = 8.2Hz), 7.32 (2H, d, J = 8.6Hz), 7.37-7.40 (5H, m), 7.47 (1H, dd, J = 8.9 and 2.6Hz), 7.95 (1H, d, J = 2.6Hz), 8.72 (1H, d, J = 8.9Hz), 10.95 (1H, sbr).	46
91		3.75 (2H, s), 3.84 (3H, s), 5.02 (2H, s), 6.61-6.78 (4H, m), 7.03 (2H, d, J = 8.6Hz), 7.20 (1H, t, J = 8.2Hz), 7.33 (2H, d, J = 8.3Hz), 7.33-7.38 (5H, m), 7.97-8.03 (1H, m), 8.56 (1H, dd, J = 11.9 and 2.6Hz).	55
92	321	2.31 (3H, s), 3.73 (2H, s), 3.83 (3H, s), 5.01 (2H, s), 6.61-6.73 (3H, m), 7.02 (2H, d, J = 8.6Hz), 7.20 (1H, t, J = 8.2Hz), 7.31-7.41 (8H, m), 7.78 (1H, d, J = 2.0Hz), 8.60 (1H, d, J = 8.6Hz), 10.93 (1H, sbr).	47
93	324	3.72 (2H, s), 3.81 (3H, s), 5.07 (2H, s), 6.88-7.10 (7H, m), 7.14-7.28 (5H, m), 7.31 (2H, d, J = 8.25Hz), 7.50 (1H, ddd, J = 1.65, 7.26, 8.58Hz), 7.97 (1H, dd, J = 1.65, 7.92Hz), 8.72 (1H, d, J = 8.25Hz), 11.04 (1H, s).	89

[実施例94]

2-(4-(4-ベンジルオキシフェノキシ)フェニルアセトアミド) 安息 香酸(化合物No. 316)の製造

実施例88で得られた4-(4-ベンジルオキシフェノキシ)フェニルアセトアミド安息香酸メチルエステル278mg(0.59mmol)をTHF(5mL)に溶解した。この溶液にメタノール(5mL)と4M水酸化リチウム水溶液(2mL)を加え、室温で2時間撹拌した。反応完了後、得られた反応液を塩酸で中和し、その液量が半分になるまで濃縮した。濃縮液中に生成した結晶を濾取し、乾燥した。さらに、この結晶をアセトニトリルより再結晶して目的化合物130mg(0.29mmol)を得た。収率49%。

15 $^{1}H-NMR(CDCl_{3}) \delta (ppm)$:

10

25

3.74 (2H, s), 5.00 (2H, s), 6.87-6.99 (6H, m), 7.08 (1H, t, J = 7.5 Hz), 7.24-7.43 (7H, m), 7.57 (1H, t, J = 7.5Hz), 8.07 (1H, d, J = 8.0Hz), 8.75 (1H, d, J = 8.0Hz), 10.77 (1H, brs).

20 [実施例 9 5]

2-(4-(4-ヒドロキシフェノキシ)フェニルアセトアミド)安息香酸メチルエステル(化合物No. 296)の製造

窒素ガス雰囲気下、実施例88で得られた2-(4-(4-ベンジルオキ

シフェノキシ)フェニルアセトアミド)安息香酸メチルエステル4.20g(9.0 mmol)を酢酸エチル(17 mL)に溶解した。この溶液に1⁻0%パラジウム炭素(800 mg)を加えて反応混合物を調製した。前記窒素ガスを水素ガスにより置換し、反応混合物を室温で32時間撹拌した。得られた反応液をセライト上で濾過し、濃縮した。得られた濃縮物を酢酸エチルより再結晶して目的化合物2.26g(6.0 mmol)を得た。収率66%。

 $^{1}H-NMR (DMSO-d_{6}) \delta (ppm)$:

3.70 (2H, s), 3.78 (3H, s), 6.76 (2H, d, J = 8.9Hz), 6.88 (4H, d-li 10 ke, J = 8.6Hz), 7.18 (1H, t, J = 7.5Hz), 7.30 (2H, d, J = 8.6Hz), 7. 59 (1H, t, J = 7.8Hz), 7.89 (1H, dd, J = 7.9Hz, 1.7Hz), 8.29 (1H, d, J = 7.6Hz), 9.31 (1H, s), 10.61 (1H, brs).

[実施例96]

15 実施例95と同様の方法により、化合物No.294を合成した。収率9 3%。

 $^{1}H-NMR(CDCI_{3}) \delta (ppm)$:

3. 98 (s, 3H), 6. 92 (d, 2H, J = 8. 91Hz), 7. 01-7. 15 (m, 4H), 7. 32 (t, 1H, J = 8. 24Hz), 7. 76 (t, 1H, J = 8. 56Hz), 8. 02 (d, 2H, J = 8. 59H z), 8. 10 (dd, 1H, J = 1. 32, 7. 91Hz), 8. 65 (d, 1H, J = 8. 26Hz), 9. 57 (s, 1H), 11. 63 (s, 1H).

[実施例97]

2-(4-(4-シクロヘキシルオキシフェノキシ)フェニルアセトアミ 25 ド)安息香酸メチルエステル (化合物 No. 287)の製造

窒素ガス雰囲気下、実施例95で得られた2-(4-(4-ヒドロキシフェノキシ)フェニルアセトアミド)安息香酸メチルエステル250mg (0.66mmol)のN-メチルモルホリン(4mL)溶液に、トリフェ5 ニルホスフィン350mg (1.3mmol)、シクロヘキサノール0.13mL (1.3mmol)、およびアゾジカルボン酸ジエチル230mg (1.3mmol)を加え、室温で2時間撹拌した。この混合液に、さらにトリフェニルホスフィン350mg (1.3mmol)、シクロヘキサノール0.13mL (1.3mmol)、およびアゾジカルボン酸ジエチル23100mg (1.3mmol)を加え、得られた混合液を室温で2時間撹拌した。このエーテル化反応の完了後反応混合液中に生成した白色の沈澱物を濾過で除き、濾液をシリカゲルカラムクロマトグラフィーで精製して目的化合物241mg (0.53mmol)を得た。収率81%。「H-NMR(CDC1,)δ(ppm):

15 1.10-1.60 (6H, m), 1.79-1.84 (2H, brm), 1.96-2.04 (2H, brm), 3.72 (2H, s), 3.87 (3H, s), 4.10-4.19 (1H, m), 6.86 (2H, d, J = 9.2Hz), 6.96 (4H, d, J = 8.3Hz), 7.06 (1H, t, J = 8.3Hz), 7.30 (2H, d, J = 8.6Hz), 7.52 (1H, td, J = 8.6Hz, 1.7Hz), 7.99 (1H, dd, J = 8.3Hz, 1.7Hz), 8.71 (1H, dd, J = 8.6Hz, 1.0Hz), 11.03 (1H, brs).

20

25

[実施例98]

2- (4- (4-シクロヘキシルオキシフェノキシ) フェニルアセトアミド) 安息香酸 (化合物 No. 288) の合成

実施例97で得られた2-(4-(4-シクロヘキシルオキシフェノキ

シ)フェニルアセトアミド)安息香酸メチルエステル240mg (0.53 mmol)をTHF (8mL)に溶解した。この溶液にメタノール (5m L)および4M水酸化リチウム水溶液 (2mL)を加え、得られた反応混合液を室温で3時間撹拌した。この加水分解反応完了後、得られた反応液を塩酸で中和し、その液量が半分になるまで濃縮した。この濃縮液から、反応生成物を酢酸エチルで抽出し、抽出液を乾燥、濃縮した。得られた油状濃縮物をアセトニトリルにより再結晶し、目的化合物 (121mg)を得た。収率51%。

 $^{1}H-NMR (DMSO-d_{5}) \delta (ppm)$:

10 1.24-1.55 (6H, m), 1.65-1.75(2H, brm), 1.85-1.95 (2H, brm), 3.72 (2 H, s), 4.20-4.28 (1H, m), 6.89-6.96 (6H, m), 7.13 (1H, t, J = 8.5H z), 7.32 (2H, d, J = 8.6Hz), 7.56 (1H, t, J = 8.0Hz), 7.95 (1H, dd, J = 7.9Hz, 1.7Hz), 8.51 (1H, d, J = 8.3Hz), 11.16 (1H, brs).

15 [実施例 9 9 - 1 1 1]

以下の表に示す化合物を実施例97と同様の方法によって合成した。各化 合物の収率は、それに対応する原料ヒドロキシ体のモル量を基準にして算出 した。

man ben bad	111 0 11		
実施例	化合物	¹H-NMR(CDCl ₃)δ(ppm)	収率
			(%)
99	291	1.56-1.68(m, 2H), 1.76-1.88 (m,6H), 3.72 (s,	94
		2H), 3.87 (s, 3H), 4.70 (brm, 1H), 6.83 (d, 2H,	
		J = 8.9Hz), 6.96 (d, 2H, J = 8.6Hz), 6.97 (d,	
		2H, J = 8.9Hz), 7.05 (ddd, 1H, J = 7.9Hz, 6.9Hz,	
		1.0Hz), 7.30 (d, 2H, J = 8.6Hz), 7.51 (ddd, 1H,	i
		J = 8.6Hz, 6.9Hz, 1.3Hz), 7.98 (dd, 1H, J =	
		7.9Hz, 1.3Hz), 8.72 (dd, 1H, J = 8.6Hz, 1.0Hz),	
		11.03 (brs, 1H).	
100	285	1.28-1.48 (m, 16H), 1.58-1.81 (m, 4H), 2.02-2.14	47
	ļ	(m, 2H), 3.72 (s,2H), 3.86 (s, 3H), 4.34 (m,	
]:	1H), 6.84 (d, $2H$, $J = 9.2Hz$), 6.96 (d, $2H$, $J =$	
	ļ	9.2Hz), 6.97 (d, 2 H, $J = 8.6$ Hz), 7.05 (ddd, 1 H,	•
	j	J = 7.9 Hz, 6.9 Hz, 1.0 Hz, 7.30 (d, 2H, J = 1.0 Hz)	
	8	3.6Hz), 7.51 (ddd, 1H, J = 8.6Hz, 6.9Hz, 1.7Hz),	
	7	7.98 (dd, 1H, J = 7.9Hz, 1.7Hz), 8.72(d, 1H,	
	J	=8.6Hz), 11.03(s, 1H).	

	T		
実施例	化合物	1 H-NMR (CDCl $_{3}$) δ (ppm)	収率
			(%)
101	272	1.32 (d, 6H, $J = 6.3Hz$), 3.72 (s, 2H), 3.87 (s,	72
		3H), 4.47 (sep, 1H, J = 6.3Hz), 6.84 (d, 2H, J =	
		8.9Hz), 6.96 (d, 2H, J = 8.6Hz), 6.97 (d, 2H, J	
		= 8.9Hz), 7.06 (ddd, 1H, J = 8.2Hz, 6.9Hz,	
		1.0Hz), 7.30 (d, 2H, J = 8.6Hz), 7.51 (ddd, 1H,	
		J = 8.6Hz, 6.9Hz, 1.7Hz), 7.98 (dd, 1H, J =	
		8.2Hz, 1.7Hz), 8.72 (dd, 1H, J = 8.6Hz, 1.0Hz),	
		11.03 (s, 1H).	
102	265	0.96 (t, 6H, $J = 7.6$ Hz), 1.67 (dq, 4H, $J =$	50
·		7.6Hz, 5.9Hz), 3.72 (s,2H), 3.86 (s, 3H), 4.03	
		(quint, 1H, J = 5.9Hz), 6.85 (d, 2H, J = 9.2Hz),	
		6.94-6.99 (m, 4H), 7.05 (ddd, 1H, J = 7.9Hz,	
		6.9Hz, 1.0Hz), 7.30 (d, 2H, $J = 8.6$ Hz), 7.51	
	i	(ddd, 1H, J = 8.6Hz, 6.9Hz, 1.7Hz), 7.98 (dd,	
		1H, $J = 7.9Hz$, 1.7Hz), 8.72 (dd, 1H, $J = 8.6Hz$,	İ
		1. OHz), 11.03 (s, 1H).	
103		1.5-1.7 (8H, m), 1.77-1.95 (6H, brm), 3.95 (3H,	82
	1	s), 4.38 (1H, m), 6.88 (2H, d, $J = 8.9Hz$), 6.98-	-
		7.04 (4H, m), 7.11 (1H, t, $J = 7.7Hz$), 7.60 (1H,	
	1	td, $J = 7.6$ Hz, 1.6Hz), 8.00 (2H, d, $J = 8.9$ Hz),	
	ľ	3.07 (1H, dd, $J = 7.9$ Hz, 1.7 Hz), 8.92 (1H, dd, J	
		8. 6Hz, 0.7Hz), 11.98 (1H, br).	
		, , , , , , , , , , , , , , , , , , , ,	

ارجع ميلية وباس	1100 14	1 11 MID (0D01) 2 ()	UTT EN
実施例	化合物	¹H-NMR(CDCl ₃)δ(ppm)	収率
			(%)
104	276	1.51-1.74 (8H, brm), 1.76-2.00 (6H, brm), 3.96	85
		(3H, s), 4.40 (1H, quint, J = 4.0Hz), 6.91 (2H,	
		d, $J = 8.9Hz$), $7.00-7.06$ (3H, m), 7.15 (1H, td,	
		J = 7.6 and 1.3Hz), 7.62 (1H, td, $J = 7.6$ and	
		1.3Hz), 8.07-8.12 (2H, m), 8.63 (1H, d, J =	
		2.3Hz), 8.86 (1H, d, J = 8.0Hz), 12.15 (1H,	
		brs).	
105	281	1.40-1.60 (8H, m), 1.72-1.95 (6H, m), 2.31 (3H,	44
		s), 3.71 (2H, s), 3.86 (3H, s), 4.34 (1H, quint,	
-		J = 4.0Hz), 6.81 (2H, d, $J = 8.9Hz$), 6.94-6.98	
		(4H, m), 7.30 $(2H, d, J = 8.9Hz)$, 7.34 $(1H, m)$,	
		7.79 (1H, d, $J = 1.7Hz$), 8.59 (1H, d, $J =$	
		8.6Hz), 10.90 (1H, brs).	
106	259	1.02 (6H, d, J = 6.6Hz), 2.07 (1H, quint, J =	46
		6.6Hz), 3.69 (2H, d, J = 6.6Hz), 3.72 (2H, s),	
	ļ	3.88 (3H, s), 6.86 (2H, d, J = 9.2Hz), 6.95 (2H,	
	l	d, $J = 7.9$ Hz), 6.98 (2H, d, $J = 8.9$ Hz), 7.06 (1H,	
		td, $J = 7.7$ and $1.0Hz$), 7.29 (2H, t, $J = 8.0Hz$),	
	,	7.52 (1H, td, J = 7.9 and 1.6Hz), 7.99 (1H, dd,	
	1	J = 7.9 and 1.6 Hz, $8.71 (1H, d, J = 7.9 Hz$).	

実施例	化合物	¹H-NMR(CDC1 ₃)δ(ppm)	収率
			(%)
107	284	1.23-1.92 (14H, m), 3.71 (2H, s), 3.87 (3H, s),	69
		4.35 (1H, tt, J = 3.96, 7.92Hz), 6.86-6.97 (4H,	
		m),7.02-7.11 (3H, m), 7.28 (2H, m), 7.51 (1H,	
	:	ddd, J = 1.65, 7.26, 8.57Hz), 7.98 (1H, dd, J =	
		1.65, 7.91Hz), 8.70 (1H, dd, J = 0.99, 8.58Hz),	
		11.30 (1H, s).	
108	257	3.72 (2H, s), 3.87 (3H, s), 4.31 (4H, s), 6.90-	68
		7.02 (10H, m), 7.06 (1H, ddd, J = 8.2Hz, 7.3Hz,	
		and 1.0Hz), 7.25-7.33 (4H, m), 7.52 (1H, ddd, J	
		= 8.6Hz, 7.3Hz and 1.7Hz), 7.99 (1H, dd, J =	
		8.2Hz and 1.7Hz), 8.71 (1H, dd, $J = 8.6$ Hz and	
		1.0Hz), 11.04 (1H, brs).	
109	261	2.52(1H, ddd, J = 6.9Hz, 6.6Hz, and 1.3Hz), 2.55	52
		(1H, ddd, $J = 6.9Hz$, $6.9Hz$, and $1.3Hz$), $3.72(2H$,	
		s), 3.87 (3H, s), 3.99 (2H, t, $J = 6.9Hz$), 5.11	
		(1H, dd , $J = 10.2Hz$, and 1.7Hz), 5.17 (1H, dd , J	
		= 17.1Hz, and 1.7Hz), 5.90 (1H, dddd, J =	
		17.1Hz, 10.2Hz, 6.9Hz, and 6.6Hz), 6.86 (2H, d,	
		J = 8.9Hz), 6.95 (2H, d, $J = 8.6Hz$), 6.98 (2H,	
		d, J = 8.9Hz), 7.06 (1H, ddd, J = 8.2Hz, 7.3Hz,	
		and 1.0Hz), 7.30 (2H, d, J = 8.6Hz), 7.51 (1H,	
		ddd, $J = 8.6Hz$, $7.3Hz$, and $1.3Hz$), 7.98 (1H, dd ,	
		J = 8.2Hz, and 1.3Hz), 8.71 (1H, dd, $J = 8.6Hz$,	
		and 1.0Hz), 11.04 (1H, brs).	

# # [F]	140	1 II MILIT (CDC)	
夫地切	化合物	¹H-NMR(CDCl ₃)δ(ppm)	収率
			(%)
110	255	0.93 (6H, t, $J = 7.3Hz$), $1.34-1.55$ (4H, m),	41
		1.62-1.71 (1H, m), 3.72 (2H, s), 3.82 (2H, d, J	
		= 5.6Hz), 3.87 (3H, s), 6.86 (2H, d, $J = 8.9$ Hz),	
		6.95 (2H, d, J = 8.6Hz), 6.98 (2H, d, J =	
		8.9Hz), 7.06 (1H, ddd, J = 8.2Hz, 6.9Hz, and	
		1.0Hz), 7.30 (2H, d, J = 8.6Hz), 7.52 (1H, ddd,	
		J = 8.6Hz, 6.9Hz, and 1.3Hz), 7.99 (1H, dd, J =	
	٠	8.2Hz, and 1.3Hz), 8.71 (1H, dd, J = 8.6Hz, and	
		1.0Hz), 11.03(1H, brs).	
111	269	0.98 (3H, t, $J = 7.3Hz$), $1.45-1.64$ (2H, m),	95
		1.71-1.82 (2H, m), 3.72 (2H, s), 3.87 (3H, s),	
	ŀ	3.93 (2H, t, $J = 6.6$ Hz), 6.85 (2H, d, $J = 8.9$ Hz),	
	ŀ	6.96 (2H, d, J = 8.6Hz), 6.98 (2H, d, J =	
;	į	8.9Hz), 7.06 (1H,ddd, J = 8.2Hz, 6.9Hz, and	ļ
		1.0Hz), 7.30 (2H, d, J = 8.6Hz), 7.52 (1H, ddd,	
		J = 8.6Hz, 6.9Hz, and 1.7Hz), 7.99 (1H, dd, J=	
		3.2Hz, and 1.3Hz), 8.71 (1H, dd, J = 8.6Hz, and	
	1	.OHz), 11.03 (1H, brs).	

[実施例112-133]

実施例98と同様の方法によって、次表に示す化合物を合成した。各化合 物の収率はそれに対応する原料のメチルエステル化合物のモル量に基いて算 出した。

実施例	化合物	¹H-NMR(DMSO-d ₆)δ(ppm):	収率
			(%)
112	314	3.74 (2H, s), 4.16 (2H, s), 6.93 (2H, d, $J =$	78
		8.91Hz), 6.97 (2H, d, J = 8.58Hz), 7.12 (1H,	
		ddd, J = 1.32, 7.26, 7.92Hz), 7.19-7.38 (9H, m),	
		7.56 (1H, ddd, J = 1.65, 7.26, 8.58Hz), 7.94	
		(1H, dd, J = 1.65, 7.92Hz), 8.50 (1H, dd, J =	
		0.66, 8.25Hz), 11.14 (1H, s), 13.55 (1H, br).	
113	292	1.53-1.85 (m, 6H), 1.86-1.92 (m,2H), 3.72 (s,	66
		2H), 4.76 (br, 1H), 6.88-6.98 (m, 6H), 7.13 (dd,	
		1H, J = 7.9Hz, 7.6Hz), 7.32 (d, 2H, J = 8.6Hz),	
		7.57 (ddd, 1H, J = 8.9Hz, 7.6Hz, 1.3Hz), 7.95	
		(dd, 1H, J = 7.9Hz, 1.3Hz), 8.50 (d, 1H, J =	
		8.9Hz), 11.16 (s, 1H).	
114	279	1.50-1.70 (8H, br), 1.70-1.90 (6H, brm), 3.72	80
		(2H, s), 4.41 (1H, m), 6.87-6.98 (6H, m), 7.13	
		(1H, t, J = 6.9Hz), 7.32 (2H, d, J = 8.6Hz),	
		7.58 (1H, td, J = 7.9Hz, 1.7Hz), 7.95 (1H, dd, J	
		= 7.9Hz, 1.7Hz), 8.50 (1H, d, J = 8.6Hz), 11.10	
		(1H, brs).	

ſ .	-1		T .
実施	別化合物	¹ H-NMR (DMSO-d ₆) δ (ppm):	収率
	ļ		(%)
115	286	1.34-1.72 (m, 22H), 3.72 (s, 2H), 4.37 (br, 1H),	68
		6.91 (d, 2H, $J = 9.2Hz$), 6.92 (d, 2H, $J =$	
		8.6Hz), 6.96 (d, $2H$, $J = 9.2Hz$), 7.13 (dd, $1H$, J	
		= 7.9Hz, 7.3 Hz), 7.33 (d, 2H, $J = 8.6$ Hz), 7.57	
		(ddd, 1H, J = 8.6Hz, 7.3Hz, 1.7Hz), 7.95 (dd,	
		1H, $J = 7.9Hz$, 1.7Hz), 8.51 (d, 1H, $J = 8.6Hz$),	
		11.17 (s, 1H).	
116	273	1.32 (d, 6H, $J = 6.3Hz$), 3.72 (s, 2H), 3.87 (s,	45
		3H), 4.47 (sep, 1H, J = 6.3Hz), 6.84 (d, 2H, J =	
'		8.9Hz), 6.96 (d, 2H, J = 8.6Hz), 6.97 (d, 2H, J	
		= 8.9Hz), 7.06 (ddd, 1H, J = 8.2Hz, 6.9Hz,	
		1.0Hz), 7.51 (ddd, 1H, J = 8.6Hz, 6.9Hz, 1.7Hz),	
		7.98 (dd, 1H, J = 8.2Hz, 1.7Hz), 8.72 (dd, 1H, J	
· .		= 8.6Hz, 1.0Hz), 11.22 (s, 1H), 13.56 (brs, 1H).	
117	266	0.90 (d, $J = 7.3Hz$), 1.60 (dq, 4H, $J = 7.3Hz$,	40
		5.9Hz), 3.72 (s, 2H), 4.14 (quint, 1H, J =	
ļ		5.9Hz), 6.91 (d, 2H, J = 8.6Hz), 6.94 (s, 4H),	
		7.13 (dd, 1H, J = 7.9Hz, 7.6Hz), 7.32 (d, 2H, J	
	1 1	= 8.6Hz), 7.57 (dd, 1H, J = 8.6Hz, 7.9Hz), 7.95	
	1 1	(d, 1H, J = 7.6Hz), 8.50 (d, 1H, J = 8.6Hz),	
	1	11.14 (s, 1H).	ļ
118	275	1.50-1.70(8H, br), 1.71-2.00 (6H, brm), 4.46	78
	}	(1H, m), 6.95 (2H, d, $J = 9.2Hz$), $7.05-7.09$	
		(4H, m), 7.20 $(1H, t, J = 7.7Hz)$, 7.66 $(1H, t, J)$	
	1	J = 8.0 Hz), 7.94 (2H, d, $J = 8.9 Hz$), 8.05 (1H,	
	1 .	dd, J = 7.9Hz, 0.7Hz), 8.70 (1H, d, J = 8.6Hz),	
	1 1	2.13 (1H, brs).	
·			

実施例	化合物	1 H-NMR (DMSO-d ₆) δ (ppm)	収率
		(*)CDCl ₃中で¹H-NMR を測定	(%)
119	297	3.92 (s, $2H$), 6.98 (d, $2H$, $J = 9.23Hz$), $7.11-$	76
		7.00 (m, 4H), 7.34 (t,1H, J = 7.59Hz), 7.51 (d,	
		2H, $J = 8.24Hz$), 7.77 (t, $1H$, $J = 8.24Hz$), 8.16	į
		(dd, 1H, J = 1.32, 7.91Hz), 8.71 (d, 1H, J =	
		8.24Hz), 9.53 (s, 1H), 11.34(s, 1H), 13.77 (br,	
		1H).	
120	295	6.92 (d, 2H, $J = 8.89Hz$), $7.14-7.06$ (m, 4H),	78
		7.28 (t, 1H, $J = 7.59Hz$), 7.74 (t, 1H, $J =$	
		8.26Hz), 8.02 (d, 2H, J = 8.59Hz), 8.14 (dd, 1H,	
		J = 1.32, 7.91Hz, 8.78 (d, 1H, $J = 8.26Hz$),	
		9.56 (s, 1H), 12.20 (s, 1H), 13.86 (br, 1H).	
121		(*) 1.4-1.70 (8H, brm), 1.80-2.00 (6H, brm),	80
		4.48 (1H, m), 6.99 (2H, d, $J = 9.2$ Hz), $7.11-7.17$	1
		(3H, m), 7.23 $(1H, t, J = 7.9Hz)$, 7.67 $(1H, t, J)$	_
		= 8.3 Hz), 8.05 (1H, d, $J = 7.5 Hz$), 8.16 (1H, dd,	
		J _. = 8.9 and 2.3Hz), 8.58-8.63 (2H, m), 12.23	
		(1H, brs).	
122	318	3.76 (2H, s), 5.07 (2H, s), 6.55 (1H, dd, J= 7.7	66
		and 1.8Hz), 6.64 (1H, t, $J = 2.3Hz$), 6.79 (1H,	
		dd, $J = 8.3$ and $1.8Hz$), 6.98 (2H, d , $J = 8.6Hz$),	'
		7.27 (1H, t, $J = 8.3Hz$), $7.31-7.42$ (7H, m), 7.63	
		(1H, dd, J = 8.9 and 2.6Hz), 7.88 (1H, d, J =)	
		2.6Hz), 8.53 (1H, d, $J = (8.9Hz)$, 11.05 (1H,	
		brs), 13.91 (1H, brs).	

WO 01/60354

実施例	化合物	¹ H-NMR(CDCl ₃) δ (ppm)	収率
			(%)
123	280	1.40-1.60 (8H, brm), 1.72-1.96 (6H, m), 3.75	80
		(2H, s), 4.31 (1H, quint, J = 4.0Hz), 6.78 (2H,	
		d, J = 9.0Hz), 6.92 (2H, d, J = 9.0Hz), 6.98	
		(2H, d, J = 8.6Hz), 7.27 (2H, d, J = 8.6Hz), 7.52	
		(1H, dd, J = 9.2 and 2.6Hz), 8.07 (1H, d, J =	
		2.6Hz), 8.75 (1H, d, J = 9.2Hz), 10.70 (1H,	
		brs).	
124	320	3.81 (2H, s), 5.05 (2H, s), 6.64 (1H, dd, J =	76
		8.0 and 2.3Hz), 6.69-6.78 (2H, m), 6.96 (1H, t,	
		J = 2.3Hz), 7.11 (2H, d, $J = 8.3Hz$), 7.23 (1H,	
		t, $J = 8.3Hz$), 7.32 (2H, d, $J = 8.3Hz$), 7.37	
		(5H, s), 7.83 $(1H, dd, J = 8.9 and 7.7Hz)$, 8.59	
		(1H, dd, J = 11.9 and 2.6Hz), 11.01 (1H, brs).	
125	322	2.27 (3H, s), 3.79 (2H, s), 5.05 (2H, s), 6.63	63
·		(1H, dd, J = 8.3 and 2.3Hz), 6.74 (1H, dd, J =	•
		8.3 and 2.3Hz), 6.94 (1H, t, J = 2.3Hz), 7.09	
		(2H, d, J = 8.6Hz), 7.20 (1H, t, J = 8.3Hz),	
		7.24-7.36 (8H, m) 7.65 (1H, s), 8.65 (1H, d, $J = 1$	
		8.6Hz), 10.78 (1H, brs).	
126	282	1.40-1.60 (8H, m), 1.74-1.92 (6H, m), 2.27 (3H,	93
		s), 3.74 (2H, s), 4.29 (1H, m), 6.77 (2H, d, $J =$	
		9. $2Hz$), 6. 92 (2H, d, J = 8. $9Hz$), 6. 97 (2H, d, J	
	ļ	= 8.6 Hz), 7.28 (2H, d, $J = 8.9 Hz$), 7.38 (1H, dd,	
		J = 8.6 and $1.7Hz$), 7.92 (1H, d, $J = 1.7Hz$), 8.63	
		(1H, d, J = 8.6Hz), 10.67 (1H, brs).	

実施例	化合物	¹H-NMR(DMSO-d ₆)δ(ppm)	収率
		(*)CDCl₃中において¹H-NMR 測定	(%)
127	260	(*) 1.01 (6H, d, J = 6.6Hz), 2.05 (1H, quint,	46
		J = 6.6Hz), 3.64 (2H, d,, $J = 6.6Hz$), 3.76 (2H,	
		s), 6.81 (2H, d, $J = 9.2Hz$), 6.93 (2H, d, $J =$	
		9.2Hz), 6.98 (2H, d, $J = 8.6Hz$), 7.09 (1H, t, J	
		= 7.5Hz), 7.28 (2H, t, J = 8.3Hz), 7.59 (1H, td,	
		J = 7.9Hz and 1.6Hz), 8.11 (1H, dd, J = 8.3 and	
		1.6Hz), 8.76 (1H, d, $J = 8.3Hz$), 11.74 (1H,	
		brs).	
128	324	3.71 (2H, s), 5.06 (2H, s), 6.84 (2H, d, J =	68
		8.58Hz), 6.91-7.24 (10H, m), 7.31 (2H, d, J =	
		8.58Hz), 7.56 (1H, dd, $J = 7.26$, 8.25 Hz), 7.94	
		(1H, dd, J = 1.32, 7.92Hz), 8.50 (1H, d, J =	
		8.25Hz), 11.21 (1H, s), 13.55 (1H, br).	
129	284	1.37-1.80 (14H, m), 3.77 (2H, s), 4.48 (1H, tt,	63
	,	J = 3.96, 7.92Hz, 6.88 (2H, d, $J = 8.57Hz$),	
		7.02 (1H, ddd, $J = 1.65$, 6.27, 8.57Hz), 7.12-	
	1	7.26 (4H, m), 7.36 (2H, d, J = 8.25Hz), 7.64	
	i	(1H, ddd, J = 1.65, 7.26, 8.57Hz), 8.03 (1H, dd,	
	ı	J = 1.65, 7.92Hz, 8.57 (1H, d, $J = 8.57Hz$),	
		11.27 (1H, s), 13.66 (1H, br).	

ct++c /GI	/le A Ala	I II NUD (DUCO d) & (nnm)	मार प्रक
実施例	化合物	¹ H-NMR(DMSO-d ₆) δ (ppm)	収率
100	050		(%)
130		3.72 (2H, s), 4.30 (4H, s), 6.91 (2H, d, J = 0.00)	37
		8.6 Hz), $6.92-7.01$ (8H, m), 7.12 (1H, dd, $J =$	
		7.9Hz and 7.3Hz), 7.30 (1H, t, $J = 7.3Hz$), 7.32	
		(2H, d, J = 8.6Hz), 7.56 (1H, ddd, $J = 8.6Hz$,	
		7. $3Hz$, and 1. $7Hz$), 7. 95 (1H, dd, $J = 7.9Hz$ and	
		1.7Hz), 8.50 (1H, d, $J = 8.6Hz$), 11.24 (1H,	
		brs), 13.50-13.60 (1H, br).	100
131		2.52 (1H, ddd, J = 6.9Hz, 6.6Hz, and 1.3Hz),	100
		2.55 (1H, ddd, J = 6. 9Hz, 6.9Hz, and 1.3Hz),	
		3.72 (2H, s), 3.87 (3H, s), 3.99 (2H, t, J =	
	1	6.9Hz), 5.11 (1H, dd, $J = 10.2Hz$, and $1.7Hz$),	
		5.17 (1H, dd, $J = 17.1$ Hz, and 1.7 Hz), $5.86-5.90$	
	i	(1H, m), 6.90 (2H, d, $J = 8.6$ Hz), 6.96 (4H, s),	
		7.13 (1H, dd, $J = 7.6$ Hz, and 7.3Hz), 7.32 (2H,	
		d, $J = 8.6 \text{Hz}$), 7.57 (1H, dd, $J = 8.6 \text{Hz}$, and	
	1	7. $6Hz$), 7. 95 (1H, d, J = 7. $3Hz$), 8. 50 (1H, d, J = 8. $6Hz$), 11. 12. (1H, h=1), 12. 50, 12. 50 (1H, h=1)	
100		= 8.6Hz), 11.13 (1H, brs), 13.50-13.60 (1H, br).	00
132		0.90 (6H, t, $J = 7.3Hz$), 1.33-1.50 (4H, m),	80
		1.57-1.66 (1H, m), 3.72 (2H, s), 3.83 (2H, d, J	
	i	= 5.9Hz), 6.90 (2H, d, $J = 8.6$ Hz), 6.96 (4H, s),	
	j	7.13 (1H, dd, J = 7.6Hz, and 7.3Hz), 7.32 (2H,	
	1	d, $J = 8.6Hz$), 7.57 (1H, dd, $J = 8.6Hz$, and	
	i i	7.6Hz), 7.95 (1H, d, $J = 7.3Hz$), 8.50 (1 H, d, $J = 8.6W - 1.11 + 1.21 + 1.121 + 1.21 + 1$	
İ	1	J = 8.6 Hz, 11.13 (1H, brs), 13.50-13.60 (1H,	
122		OF).	100
133	l l	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100
	- 1	1.71-1.82 (2H, m), 3.72 (2H, s), 3.93 (2H, t, J	
		= 6.6Hz), 6.90 (2H, d, $J = 8.6$ Hz), 6.96 (4H,	
		(2), 7.13 (1H, dd, $J = 7.6$ Hz, and 7.3Hz), 7.32	
	i	(2H, d, J = 8.6Hz), 7.57 (1H, dd, $J = 8.6Hz$, and	
	- 1	7.6Hz), 7.95 (1H, d, J= 7.3Hz), 8.50 (1H, d, J= $\frac{1}{2}$ (1H, d, J= \frac	
		3.6Hz), 11.13 (1H, brs), 13.50-13.60 (1H, br).	

1 0 3

[実施例134]

マウス腫瘍細胞L929を用いた細胞毒性の測定

腫瘍細胞に対する細胞毒性作用はニュートラルレッドアッセイ法 「方法] (ジャーナル・オブ・ティッシュ・カルチャー・メソドロジー、9巻、7ペ ージ(1984)、トキシコロジー・レターズ、24巻、119ページ(1 985) に記載の方法) によった。すなわち、L929細胞(5×10⁴個 /mL、10%FCS/RPM1) を96穴のELISAプレートに各10 0μLずつ加えたもの1夜間培養した後、各測定濃度の被試験化合物をDM S〇溶液に溶かして加えた。さらに3日間培養を続けた後、2.0μLの二 ュートラルレッドを終濃度0.01%になるように加えた。37℃で一時間 10 インキュベートした後、細胞培養上清を取り除き、さらに200μLのPB Sで2度洗浄し、過剰のニュートラルレッドを除去した。その後、50%エ タノール-1%酢酸水 100μLを加え、細胞に取り込まれた色素を抽出 し、色素量を490nmの吸光度を測定することによって求めた。薬物を添 加していない場合を100%として、細胞毒性をそれぞれの被試験化合物濃 15 度で求めた。それぞれの試験化合物に対して、化合物濃度と各濃度での細胞 毒性をプロットすることにより、50%細胞毒性を示す試験化合物の濃度(LD50値)を求めた。なお、これらの測定は同一条件での測定を2組ずつ 行い、平均値より求めた。結果を次表に示した。

化合物番号	LD ₅₀ (μM)
4	> 5
2 2	> 5
2 9	> 5
3 7	> 5
5 9	1. 6
6 6	> 5
1 1 5	> 5
1 2 9	> 5
1 3 0	0.16
1 3 7	0.29
1 4 5	0.30
1 5 3	0. 042
1 5 4	> 5
1 6 0	0.31
1 6 8	0. 22
176	0.40
179	0.170
1 8 5	0.65
197	3. 0
1 9 8	0.052
200	0.46
206	0.039
2 1 1	0.060
2 1 2	0.078

化合物番号	LD ₅₀ (μM)
2 2 4	0.34
2 3 4	0.29
2 3 7	3. 0
2 4 3	1. 2
2 5 0	2. 5
2 5 1	0.340
2 5 4	0.44
2 5 6	0.048
2 5 8	0.75
2 6 0	0.210
2 6 2	0.64
2 6 6	0.25
2 7 0	0.30
2 7 9	0.080
2 8 6	0.15
2 8 8	0.20
2 9 2	0.17
2 9 3	1. 6
2 9 6	> 5
3 1 4	0.25
3 1 6	0.60
3 3 0	7. 5
3 3 1	1 0
3 3 2	0.19

[実施例135]

WO 01/60354

ヒト培養癌細胞に対する制癌作用

[方法] ヒト培養癌細胞(39種類)を96ウェルプレートにまきこみ、翌日被検物質溶液(濃度 10^{-4} Mから 10^{-8} Mまで10倍希釈の5段階濃 度)を添加して2日間培養した。各プレートの細胞増殖数をスルホローダミンBによる比色定量で測定した。コントロール(被検物質非添加)に比べ、細胞増殖を50%抑制した濃度(GI_{50} 値)を算出すると同時に、被検物質を添加する直前の細胞数を基準にして、次の値(濃度)を算出した。

TGI:基準の細胞数にまで増殖を抑制する濃度(見かけ上細胞数の増減が10 ない)

 LC_{50} : 基準の細胞数の50%にまで細胞数を減少させる濃度(殺細胞作用)

被検物質206の化合物について39種類のうち、代表的な9種類の癌細胞種に対する増殖抑制結果を次表にまとめた。

15

化合物	癌細胞種	GI ₅₀	TGI	LC ₅₀
番号		(μM)	(μM)	(μM)
	HBC-4	0.51	2 7	>100
	SF - 539	0.36	2 0	5 1
	HCT-15	0.066	1 7	5 8
	NCI-H460	0.092	1 2	5 3
206	LOX-IMVI	0.27	6.3	44
	O V C A R - 8	0.92	2 9	8 9
	RXF-631L	0.27	1 6	5 1
	MKN-74	0.38	2 2	>100
	P C - 3	1 4	3 0	6 2

20 産業上の利用可能性

本発明の癌治療剤は、増殖性の高い細胞種に対して細胞毒性作用があり、ヒト癌細胞に対しても強い増殖抑制作用ないし細胞毒性作用がある。したがって、本発明の治療剤は癌の治療剤して用いることができる。

WO 01/60354 PCT/JP01/01090

1 0 7

請求の範囲

1. 下記式(1)

5

$$X^{\cdot A}$$
 $E^{\cdot N}$
 G
 Z
 (1)

 $\{ L 記式 (1) において、Xは下記式 (2) - 1 または式 (2) - 2 より選ばれる基を表し、$

$$R^{1}$$
 $(2) - 1$, R^{2}
 $(2) - 2$

(上記式(2) -1もしくは式(2) -2において、 R^1 および R^2 はそれぞれ独立に、水素原子、水酸基、トリハロメチル基、 C_1-C_{12} の鎖状もしくは環状の炭化水素基とオキシ基もしくはチオ基からなるアルコキシ基もしくはアルキルチオ基、アリール基部分がハロゲン原子、メチル基、もしくはメチルオキシ基の1個以上により置換されていてもよい C_7-C_{11} のアラルキルオキシ基、または1個以上のフェニル基で置換されていてもよい C_3-C_{10} のアルケニルオキシ基を表す。 R^4 および R^5 はそれぞれ独立に、水素原子、ハロゲン原子、 C_1-C_4 のアルキル基、または C_1-C_4 のアルコキシ基を表す。)

Aは結合; -O-、-S-、-S (=O) -、-S (=O) $_2-$ 、-CH $_2-$ 、 $-OCH_2-$ 、 $-SCH_2-$ 、-C (=O) -、または-CH (OR

 6) - (ここで、 R^{6} は水素原子または $C_{1}-C_{4}$ のアルキル基を表す。) を表し、

Yは水素原子、ハロゲン原子、ニトロ基、ニトリル基、アミノ基、 $-COOR^7$ 、 $-NHCOR^8$ 、 $-NHSO_2R^9$ (ここで、 R^7 は水素原子または C_1-C_4 のアルキル基を表し、 R^8 および R^9 はそれぞれ独立に、 C_1-C_4 のアルキル基を表す。)を表し、

Eは結合; -C(=O) -、 $-CR^{10}R^{11}C$ (=O) - (ここで、 R^{10} および R^{11} はそれぞれ独立に、水素原子またはフッ素原子を表す。)、 $-CH_2CH_2C$ (=O) -、または-CH=CHC(=O) -を表し、

10 Gは水素原子、水酸基、 $-SO_2NH_2$ 、 $-COOR^3$ (ここで、 R^3 は水素原子または C_1-C_4 のアルキル基を表す。)、-CN、またはテトラ ゾール-5-イル基を表し、

Zは水素原子、ハロゲン原子、ニトロ基、またはメチル基を表す。 で表されるアントラニル酸誘導体またはその医薬上許容される塩を有効成分 15 として含有する癌治療剤。

2. 上記式 (1) において、Gが $-COOR^3$ (ここで、 R^3 は水素原子または C_1-C_4 のアルキル基を表す。)またはテトラゾール-5-イル基である請求項1に記載の癌治療剤。

20

- 3. 上記式(2) -1 において、 R^1 がナフタレン環上、A基(2位) に対して6位に位置している請求項1または請求項2に記載の癌治療剤。
- 4. 上記式(2) 2において、R²がベンゼン環上、A基に対して4位 25 に位置している請求項1または請求項2に記載の癌治療剤。
 - 5. 上記式(2)-2において、R⁴およびR⁵がいずれも水素原子である請求項1から請求項4のいずれかに記載の癌治療剤。

- 6. 上記式 (2) 1 または (2) 2 において、 R^{-1} または R^{2} が水素原子、水酸基、 $C_{1} C_{12}$ の鎖状もしくは環状の炭化水素基とオキシ基からなるアルコキシ基、1 個以上のフェニル基で置換されていてもよい $C_{3} C_{1}$ 。アルケニルオキシ基、ベンジルオキシ基、フェニルプロピルオキシ基、またはナフチルメチルオキシ基である請求項 1 から請求項 5 のいずれかに記載の癌治療剤。
 - 7. 上記式(1)において、Aが-O-または-S-である請求項1から 請求項6のいずれかに記載の癌治療剤。

- 8. 上記式(1)において、Eが-C(=O) -または $-CH_2C$ (=
- 〇) -である請求項1から請求項7のいずれかに記載の癌治療剤。
- 9. 上記式(1)において、結合Aと結合Eが、Y基の置換したベンゼン 15 環においてパラ位に位置している請求項1から請求項8のいずれかに記載の 癌治療剤。
- 10. 上記式(1)において、Yが水素原子、ハロゲン原子、ニトロ基、またはニトリル基である請求項1から請求項9のいずれかに記載の癌治療剤
 20 。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/01090

	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ A61K31/196, 31/215, A61P35/00				
According to	to International Patent Classification (IPC) or to both na	ational classification and IPC			
	S SEARCHED				
Minimum d Int.	ocumentation searched (classification system followed . Cl ⁷ A61K31/196, 31/215, A61P39	5/00			
	tion searched other than minimum documentation to th				
	lata base consulted during the international search (nam LUS (STN), MEDLINE (STN), EMBASE (STN		rch terms used)		
	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.		
х		ERICAN CHEMICAL SOCIETY	1-10		
A	& Database CAPLUS on STN, AMERICAN CHEMICAL SOCIETY (ACS), (Columbus, OH, USA), DN.132:151571 A WO, 95/32943, A1 (TEIJIN LIMITED), 07 December, 1995 (07.12.95) & EP, 763523, A1 & US, 5945450, A & Database CAPLUS on STN, AMERICAN CHEMICAL SOCIETY (ACS), (Columbus, OH, USA), DN.124:232073				
. A	1-10				
Further	r documents are listed in the continuation of Box C.	See patent family annex.			
"A" docume consider date "L" docume cited to special "O" docume means "P" docume than the	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later e priority date claimed actual completion of the international search	"T" later document published after the inter priority date and not in conflict with th understand the principle or theory unde "X" document of particular relevance; the c considered novel or cannot be consider step when the document is taken alone "Y" document of particular relevance; the c considered to involve an inventive step combined with one or more other such combination being obvious to a person "&" document member of the same patent for	e application but cited to erlying the invention claimed invention cannot be red to involve an inventive claimed invention cannot be when the document is documents, such skilled in the art amily		
03 A	03 April, 2001 (03.04.01) 17 April, 2001 (17.04.01)				
	ailing address of the ISA/ nese Patent Office	Authorized officer			
Facsimile No).	Telephone No.			

A. 発明の属する分野の分類(国際特許分類(IPC))					
Int. Cl ⁷ A61K31/196, 31/215, A61P35/00					
	行った分野				
調査を行った	最小限資料(国際特許分類(IPC))	•			
Int. Cl ⁷ A61K	31/196, 31/215, A61P35/00				
最小限資料以外 	外の資料で調査を行った分野に含まれるもの				
		·			
国際調査で使用	用した電子データベース (データベースの名称、	調査に使用した用語)			
	, MEDLINE (STN), EMBASE (STN)				
0.0.000 (0.117)	, 111101110 (0117) 2111100 (0117)				
C. 関連する					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する。	レきけ その関連する第正の表示	関連する 請求の範囲の番号		
X	WO, 00/05198, A1 (TEIJIN LIMITED)	ことは、この内壁)の間がつない	1-10		
•	3.2月.2000(03.02.00), (no family)	•			
	& Database CAPLUS on STN, AMERICA				
	(Columbus, OH, USA), DN. 132:151571				
A	WO, 95/32943, A1 (TEIJIN LIMITED)		1-10		
	07.12月.1995(07.12.95)				
	& EP, 763523, A1 & US, 5945450, A	IN CHEVICAL COCTETY (ACC)			
	& Database CAPLUS on STN, AMERICA (Columbus, OH,USA), DN.124:232073				
	(6014115415), 611, 6511, 511, 121, 20201				
X C欄の続き	きにも文献が列挙されている。	パテントファミリーに関する別	紙を参照。		
* 引用文献の		の日の後に公表された文献			
IA」符に関連 もの	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表さ 出願と矛盾するものではなく、多			
	頭日前の出願または特許であるが、国際出願日 トキャャゥ・の	の理解のために引用するもの	火鉄か替のひが発用		
以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの					
日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに					
「O」口頭による開示、使用、展示等に言及する文献よって進歩性がないと考えられるもの					
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
国際調査を完了した日 03.04.01 国際調査報告の発送日 17.04.01					
	国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4C 9455				
日本国特許庁 (ISA/JP) 森井 隆信 即					
	東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3451				

(続き) 用文献の	関連すると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
テゴリー* A	WO, 97/19910, A1 (TEIJIN LIMITED) 5.6月.1997(05.06.97) & EP, 806412, A1 & US, 5808144, A & Database CAPLUS on STN, AMERICAN CHEMICAL SOCIETY (ACS), (Columbus, OH, USA), DN. 127:81253	1-10	
		·	
·			

TATEITT COULERATION IREALT

Translation

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference T-426	FOR FURTHER ACTION	ACTION SeeNotificationofTransmittalofInternational Prelin Examination Report (Form PCT/IPEA/416)		
International application No.	International filing date (day/n	date (day/month/year) Priority date (day/month/year)		
PCT/JP01/01090	15 February 2001 (15	.02.01)	15 February 2000 (15.02.00)	
International Patent Classification (IPC) or n A61K 31/196, 31/215, A61P 35/	,		<u>'</u>	
Applicant	TEIJIN LIMITE	D		
and is transmitted to the applicant ac	cording to Article 36.		ational Preliminary Examining Authority	
2. This REPORT consists of a total of	3 sheets, including	g this cover s	heet.	
amended and are the basis for 70.16 and Section 607 of the	ed by ANNEXES, i.e., sheets of this report and/or sheets contain Administrative Instructions under tall of sheets.	ning rectifica	on, claims and/or drawings which have been tions made before this Authority (see Rule	
This report contains indications relat	ting to the following items:			
Basis of the report				
II Priority				
III Non-establishment o	of opinion with regard to novelty	, inventive ste	ep and industrial applicability	
IV Lack of unity of inve	ention		•	
V Reasoned statement citations and explana	under Article 35(2) with regard ations supporting such statement	to novelty, in	ventive step or industrial applicability;	
VI Certain documents c	ited			
VII Certain defects in the	e international application			
VIII Certain observations	on the international application			
····			•	
Date of submission of the demand	Date of	completion o	f this report	
17 August 2001 (17.08				
17 August 2001 (17.00	5.01)	10 Ja	nuary 2002 (16.01.2002)	
Name and mailing address of the IPEA/JP	Authori	zed officer		
Facsimile No.	Telepho	Telephone No.		

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

PCT/JP01/01090

—	is of the repor					
1. Wit	h regard to the	elements of the interna	tional application:			
	the internati	ional application as orig	inally filed			
	the descript	ion:		•		
	pages					, as originally filed
						, as originally filed , filed with the demand
	pages				he letter of	,
▎┌┐	the claims:					
_	pages					*-!
	pages		· · · · · · · · · · · · · · · · · · ·		-1-1 (together with	, as originally filed any statement under Article 19
				_		
				filed with th	la latter of	, filed with the demand
				, Illou vrius	ie iener oi	
	the drawings					
						, filed with the demand
_	pages			, filed with th	ie letter of	•
	the sequence li	isting part of the descrip	otion:	,		
	pages			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		, as originally filed
l	pages					, filed with the demand
ı	pages			, filed with th	e letter of	, mos mai are commit
	the language	re available or furnished of a translation furnished of publication of the in	ess otherwise indicated to this Authority in the purposes atternational applicates.	ated under this item. In the following langu To of international sear Tion (under Rule 48.3	guage rch (under Rule 23.1 3(b)).	hority in the language in which is: 1(b)). hination (under Rule 55.2 and/
3. With preli	contained in filed together furnished sub	ny nucleotide and/or nation was carried out or the international applicar with the international apsequently to this Authorsequently	ation in written form application in comp ority in written form	equence listing: m. puter readable form. n.		application, the international
	The stateme	nt that the subsequen	tly furnished writ		o does not go be	eyond the disclosure in the
	mtemational	application as filed has not that the information	been furnished.			written sequence listing has
4	The amendm the de	ed. ents have resulted in the scription, pages aims, Nos awings, sheets/fig	e cancellation of:			
5. 🗌	beyond the dis	sciosure as illed, as indic	cated in the Supplei	mental Box (Rule 70	0.2(c)).**	ey have been considered to go
and 7	0.17).	originally filed and a	ire noi annexea io	o inis report since	they do not conta	der Article 14 are referred to ain amendments (Rule 70.16
'* Any re	placement she?	et containing such amer	ndments must be re	ferred to under item	I and annexed to the	his report.
						,

PCT/JP01/01090

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

 V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement 					
1. Statement					
Novelty (N)	Claims	1-10	YES		
	Claims		МО		
Inventive step (IS)	Claims		YES		
	Claims	1-10	NO		
. Industrial applicability (IA)	Claims	1-10	YES		
	Claims		· NO		

2. Citations and explanations

Documents cited in the ISR

Document 1: WO, 00-5198, A1 (Teijin Ltd.), 3 February, 2000 (03.02.00) Document 2: WO, 95-32943, A1 (Teijin Ltd.), 7 December, 1995 (07.12.95) Document 3: WO, 97-19910, A1 (Teijin Ltd.), 5 June, 1997 (05.06.97)

In the specification of the present application, the applicant merely refers, for example, to documents 2 and 3 corresponding to the prior art of the same applicant, and based on the descriptions of the documents, the applicant describes that though it is known that a group of compounds having both an aryl structure and an anthranylic acid structure has antiallergic activity and IgE antibody production inhibitory action, it is not known that they have cytotoxic action and carcinostatic activity. However, document 1 submitted for a patent application filed by the same applicant after the publication of documents 2 and 3 refers, for example, to documents 2 and 3 corresponding to the prior art, as in the specification of the present application and describes that a group of compounds having both said aryl structure and anthranylic acid structure (1) has cytotoxic activity in addition to IgE antibody production inhibitory action, and (2) is useful as a cancer remedy.

Therefore, in view of the description of document 1, it is considered to be obvious to a person skilled in the art, to use a compound having both an aryl structure and an anthranylic acid structure as an active ingredient of a cancer remedy.

Furthermore, (1) regarding the aryl structure and the anthranylic acid structure as the major structures necessary for exhibiting anticancer activity and (2) changing some substituent groups of them, considering the prior art described, for example, in documents 2 and 3, are a mere matter of design variation, and cannot be considered to give a special effect.

So, the subject matters of claims 1-10 of the present application do not appear to involve an inventive step.

The subject matters of claims 1-10 of the present application appear to be industrially applicable.