Lecture 9

ARIMA Models

2/15/2018

MA(q)

From last time,

$$MA(q): \qquad y_t = \delta + w_t + \theta_1 \, w_{t-1} + \theta_2 \, w_{t-2} + \dots + \theta_q \, w_{t-q} \label{eq:mass}$$

Properties:

$$E(y_t) = \delta$$

$$\gamma(0) = Var(y_t) = \left(1 + \theta_1^2 + \theta_2 + \dots + \theta_q^2\right)\sigma_w^2$$

$$\gamma(h) = \begin{cases} \theta_h + \theta_1 \, \theta_{1+h} + \theta_2 \, \theta_{2+h} + \dots + \theta_{q-h} \, \theta_q & \text{if } h \in \{1, \dots, q\} \\ 0 & \text{otherwise} \end{cases}$$

and is stationary for any values of $(\theta_1,\ldots,\theta_q)$

$MA(\infty)$

If we let $q\to\infty$ then process will be stationary if and only if the moving average coefficients (θ 's) are square summable, i.e.

$$\sum_{i=1}^{\infty} \theta_i^2 < \infty$$

since necessary for $Var(y_t) < \infty$ to achieve weak stationarity.

Sometimes, a slightly stronger condition known as absolute summability, $\sum_{i=1}^\infty |\theta_i| < \infty$, is necessary (e.g. for some CLT related asymptotic results) .

Invertibility

If an MA(q) process, $y_t=\delta+\theta_q(L)w_t$, can be rewritten as a stationary AR process then the process is said to be invertible.

MA(1) w/ $\delta=0$ example:

Invertibility vs Stationarity

A MA(q) process is invertible if $y_t=\delta+\theta_q(L)\,w_t$ can be rewritten as an exclusively AR process (of possibly infinite order), i.e. $\phi(L)\,y_t=\alpha+w_t$.

Invertibility vs Stationarity

A MA(q) process is invertible if $y_t=\delta+\theta_q(L)\,w_t$ can be rewritten as an exclusively AR process (of possibly infinite order), i.e. $\phi(L)\,y_t=\alpha+w_t$.

Conversely, an AR(p) process is stationary if $\phi_p(L)$ $y_t=\delta+w_t$ can be rewritten as an exclusively MA process (of possibly infinite order), i.e. $y_t=\delta+\theta(L)\,w_t.$

Invertibility vs Stationarity

A MA(q) process is invertible if $y_t=\delta+\theta_q(L)\,w_t$ can be rewritten as an exclusively AR process (of possibly infinite order), i.e. $\phi(L)\,y_t=\alpha+w_t$.

Conversely, an AR(p) process is stationary if $\phi_p(L)$ $y_t=\delta+w_t$ can be rewritten as an exclusively MA process (of possibly infinite order), i.e. $y_t=\delta+\theta(L)\,w_t.$

So using our results w.r.t. $\phi(L)$ it follows that if all of the roots of $\theta_q(L)$ are outside the complex unit circle then the moving average is invertible.

Differencing

Difference operator

We will need to define one more notational tool for indicating differencing

$$\Delta y_t = y_t - y_{t-1}$$

just like the lag operator we will indicate repeated applications of this operator using exponents

$$\begin{split} \Delta^2 y_t &= \Delta(\Delta y_t) \\ &= (\Delta y_t) - (\Delta y_{t-1}) \\ &= (y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) \\ &= y_t - 2y_{t-1} + y_{t-2} \end{split}$$

 Δ can also be expressed in terms of the lag operator L,

$$\Delta^d = (1 - L)^d$$

Differencing and Stocastic Trend

Using the two component time series model

$$y_t = \mu_t + x_t$$

where μ_t is a non-stationary trend component and x_t is a mean zero stationary component.

We have already shown that differencing can address deterministic trend (e.g. $\mu_t=\beta_0+\beta_1\,t$). In fact, if μ_t is any k-th order polynomial of t then $\Delta^k y_t$ is stationary.

Differencing can also address stochastic trend such as in the case where μ_t follows a random walk.

Stochastic trend - Example 1

Let $y_t = \mu_t + w_t$ where w_t is white noise and $\mu_t = \mu_{t-1} + v_t$ with v_t stationary as well.

Differenced stochastic trend

forecast::ggtsdisplay(diff(d\$y))

Stationary?

Is y_t stationary?

Difference Stationary?

Is Δy_t stationary?

Stochastic trend - Example 2

Let $y_t=\mu_t+w_t$ where w_t is white noise and $\mu_t=\mu_{t-1}+v_t$ but now $v_t=v_{t-1}+e_t$ with e_t being stationary.

Differenced stochastic trend

forecast::ggtsdisplay(diff(d\$y))

Twice differenced stochastic trend

forecast::ggtsdisplay(diff(d\$y,differences = 2))

Difference stationary?

Is Δy_t stationary?

2nd order difference stationary?

What about $\Delta^2 y_t$, is it stationary?

ARIMA

ARIMA Models

Autoregressive integrated moving average are just an extension of an ARMA model to include differencing of degree d to y_t before including the autoregressive and moving average components.

$$ARIMA(p,d,q): \qquad \phi_p(L) \; \Delta^d \, y_t = \delta + \theta_q(L) w_t$$

ARIMA Models

Autoregressive integrated moving average are just an extension of an ARMA model to include differencing of degree d to y_t before including the autoregressive and moving average components.

$$ARIMA(p,d,q): \qquad \phi_p(L) \; \Delta^d \, y_t = \delta + \theta_q(L) w_t$$

Box-Jenkins approach:

- 1. Transform data if necessary to stabilize variance
- 2. Choose order (p,d,q) of ARIMA model
- 3. Estimate model parameters (δ , ϕ s, and θ s)
- 4. Diagnostics

Using forecast - random walk with drift

Some of R's base timeseries handling is a bit wonky, the **forecast** package offers some useful alternatives and additional functionality.

```
rwd = arima.sim(n=500, model=list(order=c(0,1,0)), mean=0.1)
forecast::Arima(rwd, order = c(0,1,0), include.constant = TRUE)
## Series: rwd
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 0.0807
## s.e. 0.0447
##
## sigma^2 estimated as 1.003: log likelihood=-709.61
## AIC=1423.22 AICc=1423.25 BIC=1431.65
```


Over differencing

${\sf ts1}$ - Finding d

${\tt ts2}$ - ${\tt Finding}\,d$

ts1 - Models

bic	aicc	aic	q	d	р
792.36	788.86	788.84	0	1	0
754.29	747.30	747.25	0	1	1
759.81	749.34	749.24	0	1	2
764.52	757.52	757.47	1	1	0
759.81	749.34	749.25	1	1	1
761.80	747.87	747.71	1	1	2
737.42	726.95	726.85	2	1	0
742.89	728.97	728.80	2	1	1
737.71	720.35	720.10	2	1	2

ts2 - Models

р	d	q	aic	aicc	bic
0	1	0	1036.55	1036.56	1040.07
1	1	0	765.76	765.81	772.81
2	1	0	732.12	732.22	742.68
0	1	1	913.04	913.09	920.08
1	1	1	735.97	736.07	746.54
2	1	1	733.99	734.16	748.08
0	1	2	839.93	840.02	850.49
1	1	2	734.65	734.82	748.74
2	1	2	735.94	736.19	753.55

ts1 - final model

```
Fitted:
```

```
forecast::Arima(ts1, order = c(0,1,2))
## Series: ts1
## ARIMA(0,1,2)
##
## Coefficients:
        ma1
                   ma2
##
## 0.4106 0.4380
## s.e. 0.0536 0.0643
##
## sigma^2 estimated as 1.053: log likelihood=-360.43
## AIC=726.85 AICc=726.95 BIC=737.42
Truth:
ts1 = arima.sim(n=250, model=list(order=c(0,1,2), ma=c(0.4,0.5)))
```

ts2 - final model

Fitted:

```
forecast::Arima(ts2, order = c(2,1,0))
## Series: ts2
## ARIMA(2,1,0)
##
## Coefficients:
           ar1
                 ar2
##
## 0.5112 0.3683
## s.e. 0.0592 0.0594
##
## sigma^2 estimated as 1.072: log likelihood=-363.06
## AIC=732.12 AICc=732.22 BIC=742.68
Truth:
ts2 = arima.sim(n=250, model=list(order=c(2,1,0), ar=c(0.4,0.5)))
```

Residuals

ts1 Residuals

ts2 Residuals

Automatic model selection

forecast::auto.arima(ts1)

ts1:

```
## Series: ts1
## ARIMA(2,1,2)
##
## Coefficients:
##
          ar1 ar2
                           ma1 ma2
## 0.8913 -0.7098 -0.4937 0.6244
## s.e. 0.1066 0.1000 0.1299 0.0870
##
## sigma^2 estimated as 1.016: log likelihood=-355.05
## ATC=720.1 ATCc=720.35 BTC=737.71
ts2.
forecast::auto.arima(ts2)
## Series: ts2
## ARIMA(1,2,0)
##
## Coefficients:
##
           ar1
## -0.4287
## s.e. 0.0580
##
## sigma^2 estimated as 1.116: log likelihood=-366.62
## AIC=737.24 AICc=737.28 BIC=744.27
```

Electrical Equipment Sales

1st order differencing

2nd order differencing


```
forecast::Arima(elec_sales, order = c(3,1,0))
## Series: elec_sales
## ARIMA(3,1,0)
##
## Coefficients:
## ar1 ar2 ar3
## -0.3488 -0.0386 0.3139
## s.e. 0.0690 0.0736 0.0694
##
## sigma^2 estimated as 9.853: log likelihood=-485.67
## AIC=979.33 AICc=979.55 BIC=992.32
```

Residuals

forecast::Arima(elec_sales, order = c(3,1,0)) %>% residuals() %>%
 forecast::tsdisplay(points=FALSE)

Model Comparison

Model choices:

```
forecast::Arima(elec_sales, order = c(3,1,0))$aicc
## [1] 979.5477
forecast::Arima(elec sales, order = c(3,1,1))$aicc
## [1] 978.4925
forecast::Arima(elec sales, order = c(4,1,0))$aicc
## [1] 979.2309
forecast::Arima(elec sales, order = c(2,1,0))$aicc
## [1] 996.8085
Automatic selection:
forecast::auto.arima(elec sales)
## Series: elec_sales
## ARIMA(3,1,1)
##
## Coefficients:
##
           ar1
                   ar2 ar3
                                   ma1
## 0.0519 0.1191 0.3730 -0.4542
## s.e. 0.1840 0.0888 0.0679 0.1993
##
## sigma^2 estimated as 9.737: log likelihood=-484.08
## AIC=978.17 AICc=978.49 BIC=994.4
```


Model forecast

```
forecast::Arima(elec_sales, order = c(3,1,0)) %>%
  forecast::forecast() %>% autoplot()
```


Model forecast - Zoom

```
forecast::Arima(elec_sales, order = c(3,1,0)) %>%
  forecast::forecast() %>% autoplot() + xlim(2009,2014)
```


General Guidance

- Positive autocorrelations out to a large number of lags usually indicates a need for differencing
- 2. Slightly too much or slightly too little differencing can be corrected by adding AR or MA terms respectively.
- A model with no differencing usually includes a constant term, a model with two or more orders (rare) differencing usually does not include a constant term.
- 4. After differencing, if the PACF has a sharp cutoff then consider adding AR terms to the model.
- 5. After differencing, if the ACF has a sharp cutoff then consider adding an MA term to the model.
- It is possible for an AR term and an MA term to cancel each other's effects, so try models with one fewer AR term and one fewer MA term.