Orthogonality Notes on Linear Algebra

Chia-Ping Chen

Department of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan ROC

Introduction

- What is a basis?
 - By definition, it is a set of linearly independent vectors that spans a vector space.
 - Geometrically, it is a set of coordinate axes.
- A basis is implicit when we represent a vector by an array of numbers.
- The numbers represent a linear combination for the vector.

Orthonormal Basis

- A basis B is said to be orthonormal if the vectors are
 - mutually orthogonal,
 - of unit length.
- An orthonormal basis makes the task of turning geometric properties into algebraic calculations simple.

Vector Length

With an orthonormal basis $\{e_1, \ldots, e_n\}$ for a vector space S, every vector $x \in S$ can be written as

$$x = x_1 e_1 + \dots + x_n e_n.$$

- **The** x_i 's are called coordinates or components.
- We can write

$$x = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$$
.

The length of x, denoted by |x|, is defined by

$$|x|^2 = x_1^2 + x_2^2 + \dots + x_n^2$$
.

Inner Product

The inner product of vectors x, y is defined by

$$x^T y = x_1 y_1 + \dots + x_n y_n.$$

- $\mathbf{z}^T y$ is linear in the vectors x, y.
- $x^T y$ is only defined when x and y have the same number of components.

Orthogonality

(Pythagoras) Vectors x and y are perpendicular if

$$|x|^2 + |y|^2 = |x - y|^2$$
.

Using the formula for vector length, two vectors x and y are perpendicular if

$$(x_1^2 + \dots + x_n^2) + (y_1^2 + \dots + y_n^2) = (x_1 - y_1)^2 + \dots + (x_n - y_n)^2.$$

It follows, after cancelling some terms, that

$$x^T y = 0.$$

Orthogonality to Independence

- (theorem) If nonzero vectors v_1, \ldots, v_k are mutually orthogonal, then they are linearly independent.
- (proof) Suppose that

$$c_1v_1 + \dots + c_kv_k = 0.$$

Taking the inner product of both sides with v_1 ,

$$|c_1|v_1|^2 = 0 \implies c_1 = 0.$$

Similarly for other c_i 's. So v_1, \ldots, v_k are linearly independent.

Orthogonality from Independence

- (converse) From a linearly independent set of vectors, we can construct an orthonormal set with the same number of vectors.
- This is proved by construction by the famous Gram-Schmidt process.
- There exists an orthonormal basis for every vector space!

Orthogonal Subspaces

Two subspaces U and V of a space S are said to be orthogonal if

$$u^T v = 0$$
 for every $u \in U$ and $v \in V$.

- This is denoted by $U \perp V$.
- Are the plane containing the floor and the plane containing the wall of the classroom orthogonal?
- Only need to check whether the basis vectors of V and U are mutually orthogonal (why?)

Orthogonality of Matrix Subspaces

(theorem) Of the four fundamental subspaces of a matrix

$$\mathcal{C}(A^T) \perp \mathcal{N}(A),$$

 $\mathcal{C}(A) \perp \mathcal{N}(A^T).$

(proof) Let $x \in \mathcal{N}(A)$ and $v \in \mathcal{C}(A^T)$

$$v = A^T z \implies v^T x = z^T A x = 0.$$

Similarly, let $y \in \mathcal{N}(A^T)$ and $u \in \mathcal{C}(A)$,

$$u = Aw \Rightarrow u^T y = w^T A^T y = 0.$$

Orthogonal Complement

- A vector x is orthogonal to a set of vectors S if x is orthogonal to every vector in S.
- The orthogonal complement of a vector subspace V is the set of vectors orthogonal to V, and is denoted by V^{\perp} .
- Using inner product, it can be shown that V^{\perp} is a subspace. (exercise)
- By this definition, every subspace orthogonal to V is a subset of V^{\perp} .

Complement of Matrix Subspaces

- (theorem) $\mathcal{N}(A) = (\mathcal{C}(A^T))^{\perp}$.
- (proof) Ax = 0 means x is perpendicular to every row of A, and therefore to $\mathcal{C}(A^T)$.
- (theorem) $\mathcal{C}(A^T) = (\mathcal{N}(A))^{\perp}$.
- (proof) $\mathcal{C}(A^T) \perp \mathcal{N}(A)$, so $\mathcal{C}(A^T) \subset (\mathcal{N}(A))^{\perp}$. Suppose there is a vector z orthogonal to $\mathcal{N}(A)$ but not in $\mathcal{C}(A^T)$. Then adding z in A as an extra row will not change $\mathcal{N}(A)$ but will enlarge $\mathcal{C}(A^T)$. The sum of dimensions of row space and nullspace will exceed the number of variables, which is not possible.

Fundamental Theorem Part 2

- Given an $m \times n$ matrix,
 - the row space is the orthogonal complement of the nullspace.
 - the column space is the orthogonal complement of the left nullspace.
- (corollary) The equation Ax = b is solvable if and only if $b^Ty = 0$ whenever $A^Ty = 0$.

More on Orthogonal Complement

Two subspaces V, W of a vector space S can be orthogonal without being complements.

$$\dim V + \dim W \le \dim S.$$

Orthogonal complement implies equality in the above equation

$$W = V^{\perp} \Rightarrow V = W^{\perp} \Rightarrow \dim V + \dim W = \dim S$$

Decomposition

Given orthogonal complements V and W of a vector space S, every vector $x \in S$ can be written as a sum of two vectors

$$x = v + w,$$

with $v \in V$ and $w \in W$.

- $lue{v}$ is called the projection (of x) onto V and w is the projection onto W.
- v, w are unique.

Using Fundamental Spaces

- A matrix multiplication Av maps v to the column space of A.
- Suppose A is $m \times n$, a vector $x \in \mathbb{R}^n$ can be decomposed by

$$x = x_r + x_n, \ x_r \in \mathcal{C}(A^T), x_n \in \mathcal{N}(A).$$

With this decomposition, we have

$$Ax = A(x_r + x_n) = Ax_r.$$

Note that x_r is in row space, Ax_r is in column space.

1-1 Mapping

- The mapping from the row space to the column space by A is invertible.
- That is, if $b \in \mathcal{C}(A)$, then there is a unique $x_r \in \mathcal{C}(A^T)$ such that $Ax_r = b$.
- proof) Suppose $Ax_r^{(1)} = b = Ax_r^{(2)}$.

$$A(x_r^{(1)} - x_r^{(2)}) = b - b = 0 \implies x_r^{(1)} - x_r^{(2)} \in \mathcal{N}(A).$$

Combined with the fact that $x_r^{(1)} - x_r^{(2)} \in \mathcal{C}(A^T)$, we have $x_r^{(1)} - x_r^{(2)} = 0$.

Every matrix maps its row space *onto* its column space.

Projection

- Suppose we are given a point (vector) b in space and we want to know its distance to a given line, say in the direction of a.
- We need to find a point p closest to b on that line.
- $\blacksquare p$ satisfies the condition that \overline{bp} is perpendicular to a.
- More generally, the projection point of b on a subspace S is the point $p \in S$ that is closest to b. \overline{bp} is orthogonal to S.

On Projection

- Projection is the key to the least-squares solution to an over-determined system of linear equations Ax = b: we find the projection of b to the column space of A.
- Given a subspace S, we can construct a projection matrix P for S. Then the projection point of an arbitrary vector b on S is simply Pb.
- luell Can be constructed easily if an orthogonal basis for S is available.

Case: a Line

- The projection point p of b onto the line defined by direction a has two properties.
 - p is in the direction of a, say $p = \overline{x}a$.
 - \overline{bp} is perpendicular to a.
- It follows

$$a^{T}(b - \overline{x}a) = 0 \implies p = \overline{x}a = \frac{a^{T}b}{a^{T}a}a = Pb.$$

The projection matrix only depends on a,

$$P = \frac{aa^T}{a^T a}.$$

A Side: Schwarz Inequality

Since a distance is non-negative,

$$|b-p|^2 = |b - \frac{a^T b}{a^T a} a|^2 \ge 0.$$

(Schwartz inequality) From above,

$$(b - \frac{a^T b}{a^T a}a)^T (b - \frac{a^T b}{a^T a}a) \ge 0 \Rightarrow |a^T b|^2 \le |a|^2 |b|^2.$$

The angle between vectors a and b can be defined by

$$\cos \theta = \frac{a^T b}{|a||b|}, \quad -1 \le \cos \theta \le 1.$$

Properties of Projection Matrices

- Let $P = \frac{aa^T}{a^Ta}$ be the matrix for a projection onto a line.
 - ightharpoonup P is symmetric,
 - $P^2 = P$,
 - P is a matrix of rank 1.
- If |a| = 1, then $P = aa^T$. Can you use this result to construct the projection matrix onto the θ -direction in the xy-plane?

Over-Determined Systems

- Suppose there are more equations than variables in a system, say Ax = b.
- The right-hand side b is a vector in \mathbb{R}^m and the column space is of dimension $r \leq n < m$.
- Often b is not in the column space of A and there is no exact solution.
- To illustrate, suppose that we want to solve

$$\begin{cases} a_1 x = b_1, \\ a_2 x = b_2. \end{cases}$$

A solution does not exist unless b is a multiple of a.

Least-Squares: Single Variable

- A least-squares solution is \overline{x} that minimizes the sum of squares of $a_i\overline{x} b_i$.
- We define the error function

$$E^{2}(x) = |ax - b|^{2} = \sum_{i=1}^{m} (a_{i}x - b_{i})^{2}.$$

Setting the first derivative of E^2 with respect to x to 0, one gets the least-squares solution

$$\overline{x} = \frac{a^T b}{a^T a}.$$

Note its relation to the projection matrix.

Least-Squares: Several Variables

- With several variables, we minimize $E^2 = |Ax b|^2$ for Ax = b.
- This is indeed a projection problem from the following perspective: Ax is a vector in C(A), and we are looking for a point in C(A) that is closest to b.
- E^2 is minimized when $A\overline{x}$ is the projection point of b on $\mathcal{C}(A)$.

Normal Equation

It follows that $b - A\overline{x}$ is perpendicular to $\mathcal{C}(A)$.

$$A^{T}(b - A\overline{x}) = 0 \implies A^{T}A\overline{x} = A^{T}b$$

- This is called the normal equation.
- If A^TA is invertible then

$$\overline{x} = (A^T A)^{-1} A^T b \Rightarrow p = A \overline{x} = A (A^T A)^{-1} A^T b.$$

Properties of A^TA

- $\blacksquare A^T A$ is symmetric.
- $\blacksquare A^T A$ has the same nullspace as A.

$$Ax = 0 \Rightarrow A^T Ax = 0;$$

 $A^T Ax = 0 \Rightarrow x^T A^T Ax = 0 \Rightarrow |Ax|^2 = 0.$

- If A has linearly independent columns, then
 - A^TA is invertible, since the nullspace is $\{0\}$;
 - The projection point of b onto $\mathcal{C}(A)$ is

$$p = A\overline{x} = A(A^TA)^{-1}A^T b$$

An Example

Suppose

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}.$$

Since A^TA is invertible,

$$\overline{x} = (A^T A)^{-1} A^T b = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Rightarrow p = A \overline{x} = \begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix}.$$

Apparently p is in the column space of A.

Projection Matrice P

 \blacksquare The projection matrix P to the column space of A is

$$P = A(A^T A)^{-1} A^T \text{ since } p = A(A^T A)^{-1} A^T b = P b.$$

- Clearly, $P^2 = P$ and $P^T = P$.
- Conversely, if $P^T = P$ and $P^2 = P$, then P is a projection matrix to C(P), since b Pb is perpendicular to Pa for any a, b, as

$$(b - Pb)^T Pa = b^T Pa - b^T P^T Pa = 0.$$

Least-Squares Fitting of Data

Suppose we are fitting data $(t_i, b_i)_{i=1}^m$ to a line

$$b = C + Dt$$
.

This can be written as

$$\begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}, \text{ or } Ax = b.$$

Again we have a least-squares problem.

Theorem of Linear Fitting

Define the squared error

$$E^{2} = \sum (b_{i} - C - Dt_{i})^{2} = |b - Ax|^{2}.$$

The line $b = \overline{C} + \overline{D}t$ which minimizes the squared error satisfies

$$A^T A \begin{bmatrix} \overline{C} \\ \overline{D} \end{bmatrix} = A^T b \Rightarrow \begin{bmatrix} m & \sum t_i \\ \sum t_i & \sum t_i^2 \end{bmatrix} \begin{bmatrix} \overline{C} \\ \overline{D} \end{bmatrix} = \begin{bmatrix} \sum b_i \\ \sum t_i b_i \end{bmatrix}.$$

Orthonormal

Vectors q_1, \ldots, q_k are said to be orthonormal if they are of unit length and perpendicular to each other, or

$$q_i^T q_j = \delta_{ij}.$$

- As an important example, the standard basis is an orthonormal one.
- Given a set of linearly independent vectors, one can construct an orthonormal set spanning the same space.
- The Gram-Schmidt process does this.

Orthogonal Matrices

- An orthogonal matrix is a square matrix whose column vectors are orthonormal.
- We use Q to denote an orthogonal matrix and q_1, \ldots, q_n to denote columns in Q.
- For an orthogonal matrix Q,

$$Q^TQ = I \Rightarrow Q^T = Q^{-1} \Rightarrow QQ^T = I.$$

If the columns of a square matrix are orthonormal, so are the rows!

Invariance under Orthogonal Matrix

The length of a vector is preserved by an orthogonal transformation, i.e. multiplication by an orthogonal matrix,

$$|Qx|^2 = |x^T Q^T Qx| = |x^T x| = |x|^2.$$

The inner product is also preserved,

$$(Qx)^T(Qy) = x^T Q^T Qy = x^T y.$$

Examples of Orthogonal Matrix

rotation matrix

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

reflection matrix

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Orthonormal Basis

- The columns of an $n \times n$ orthogonal matrix Q is an orthonormal basis for R^n .
- We can write any vector b as a linear combination of column vectors of Q,

$$b = Qc$$
.

It is easy to get the combination coefficients: multiplying both sides by Q^T ,

$$c = Q^T b.$$

Projection via Orthonormal Basis

We now have

$$b = \sum q_i c_i = \sum q_i(q_i^T b).$$

The component in the direction of q_i is precisely the projection of b on q_i ,

$$\frac{q_i q_i^T}{q_i^T q_i} b = (q_i q_i^T) b.$$

One can see that the projection of b onto a space, e.g. \mathbb{R}^n , is the sum of projections on each of the vectors in an orthonormal basis of that space.

Rectangular Cases

- If Q is square, the projection matrix is the identity matrix I, which equals to QQ^T .
- \blacksquare What if Q is rectangular with orthonormal columns?
- $lacksq Q^T$ is still a left inverse of Q, since $Q^TQ=I$.
- The least-squares solution to Qx = b is

$$Q^T Q \overline{x} = Q^T b \implies \overline{x} = Q^T b.$$

 \blacksquare The projection matrix P is

$$P = Q(Q^T Q)^{-1} Q^T = QQ^T,$$

which has the same form as the square case.

Gram-Schmidt Process

- This process constructs an orthonormal basis $\{q_1, \ldots, q_n\}$ from a basis $\{a_1, \ldots, a_n\}$.
- The idea is to subtract from a_j the components in the directions that have been settled and then normalize.
 - orthogonalization

$$a'_{j} = a_{j} - \sum_{i=1}^{j-1} (q_{i}^{T} a_{j}) q_{i}$$

normaliza<u>tion</u>

$$q_j = \frac{a_j'}{|a_j'|}$$

Example

Given

$$a = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, c = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$$

By Gram-Schmidt

$$q_1 = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, q_2 = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}, q_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

QR Factorization

Let $A = [a_1 \ldots a_n]$ and $Q = [q_1 \ldots q_n]$. Then

$$A = QR$$
, or $a_j = \sum R_{ij}q_i$.

Since q_i 's are orthonormal,

$$R_{ij} = q_i^T a_j.$$

As q_i is constructed to be orthogonal to the earlier a_i 's,

$$R_{ij} = q_i^T a_j = 0, \ i > j.$$

 $\blacksquare R$ is an upper-triangular matrix.

Example

For the previous example,

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 1/\sqrt{2} & \sqrt{2} \\ 0 & 1/\sqrt{2} & \sqrt{2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$= QR$$

Least-Squares with QR

- \blacksquare A least-squares problem is simplified by QR.
 - Substituting A = QR in the normal equation,

$$A^{T}A\bar{x} = A^{T}b \Rightarrow R^{T}Q^{T}QR\bar{x} = R^{T}Q^{T}b$$
$$\Rightarrow R^{T}R\bar{x} = R^{T}Q^{T}b$$
$$\Rightarrow R\bar{x} = Q^{T}b$$

Since R is upper-triangular, \bar{x} can be solved easily by the back substitution.

Hilbert Space

A Hilbert space is the set of vectors with an infinite sequence of components and a finite length,

$$\{(v_1, v_2, \dots) \mid \sum v_i^2 < \infty\}.$$

The inner product is well-defined in a Hilbert space since

$$|v^T w| \le |v| |w|.$$

- Two vectors in a Hilbert space are said to be orthogonal if $v^Tw=0$.
- Hilbert space generalizes the notion of vector spaces to (countably) infinite dimension.

Function Space

- A function space is a space containing functions as vectors.
- The inner product is defined by an integral

$$(f,g) = \int f(x)g(x)dx.$$

Length is defined by the inner product

$$|f| = (f, f).$$

So is orthogonality

$$(f,g) = 0.$$

Fourier Series

The Fourier series of a function f(x) defined on $(0, 2\pi)$ is an expansion into sines and cosines,

$$f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx.$$

- The cosines and sines consist a basis.
- Since the sines and cosines are mutually orthogonal, the coefficients are determined by projection. For example,

$$a_k = \frac{(f, \cos kx)}{(\cos kx, \cos kx)}.$$

Legendre Polynomials

- How about using the polynomials as basis vectors? Note, while $1, x, x^2, \ldots$ are independent, they are not orthogonal.
- We can construct an orthogonal basis from the powers of x via an orthogonalization process.
 - Let the interval be [-1,1]. Start with $v_1(x)=1$.
 - $v_2(x) = x$ is orthogonal to $v_1(x)$.
 - For the second-order polynomial,

$$v_3(x) = x^2 - \frac{(v_1, x^2)}{(v_1, v_1)} v_1(x) - \frac{(v_2, x^2)}{(v_2, v_2)} v_2(x) = x^2 - \frac{1}{3}.$$

 $v_i(x)$ are the Legendre polynomials.

Approximation by Polynomial

Suppose we want to approximate $y = x^5$ by a straight line

$$\hat{y} = c + dx$$

in the interval (0,1) in the sense of least-squares.

That is, we want to minimize

$$|\hat{y} - y|^2.$$

We describe a number of ways to find c, d.

Via Normal Equation

Least-squares solution via normal equation.

$$A^{T}A\bar{x} = A^{T}b \Rightarrow \begin{bmatrix} (1,1) & (1,x) \\ (x,1) & (x,x) \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} (1,x^{5}) \\ (x,x^{5}) \end{bmatrix}$$

It's a matter of integration to solve for c and d.

Direct Minimization

We can minimize $E^2 = \int_0^1 (x^5 - c - dx)^2 dx$.

Via Gram-Schmidt

We first find an orthonormal basis based on polynomials

$$q_1 = 1, \quad q_2 = x - \frac{1}{2}.$$

The projection is given by

$$c + dx = \frac{(x^5, 1)}{(1, 1)} 1 + \frac{(x^5, x - \frac{1}{2})}{(x - \frac{1}{2}, x - \frac{1}{2})} (x - \frac{1}{2}).$$

Discrete Fourier Transform

- While the Fourier series deals with functions defined on an interval, the discrete Fourier transform (DFT) deals with functions defined on an integer set.
- For DFT, the input is a sequence of numbers y_0, \ldots, y_{n-1} and the output is another sequence c_0, \ldots, c_{n-1} of the same length.
- The input-output relation can be represented by a matrix F, called the Fourier matrix, that

$$y = Fc \Leftrightarrow c = F^{-1}y.$$

Fourier Matrix I

- We require the function values y's to agree with the sequence at n discrete points x's, giving n equations.
- As an example, suppose the values of y at $x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$ are 2, 4, 6, 8. Then

$$c_0 + c_1 e^{ix} + c_2 e^{i2x} + c_3 e^{3ix} = \begin{cases} 2, & x = 0\\ 4, & x = \frac{\pi}{2}\\ 6, & x = \pi\\ 8, & x = \frac{3\pi}{2}. \end{cases}$$

Fourier Matrix II

The previous equation can be written as

$$\begin{cases} c_0 + i^0 c_1 + i^0 c_2 + i^0 c_3 = 2 \\ c_0 + i^1 c_1 + i^2 c_2 + i^3 c_3 = 4 \\ c_0 + i^2 c_1 + i^4 c_2 + i^6 c_3 = 6 \\ c_0 + i^3 c_1 + i^6 c_2 + i^9 c_3 = 8 \end{cases} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$

$$F = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix} \Rightarrow F^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & (-i) & (-i)^2 & (-i)^3 \\ 1 & (-i)^2 & (-i)^4 & (-i)^6 \\ 1 & (-i)^3 & (-i)^6 & (-i)^9 \end{bmatrix}$$

Fourier Matrix III

For *n*-point DFT, F and F^{-1} has entries

$$F_{jk} = w_n^{jk}, \quad F_{jk}^{-1} = \frac{1}{n} w_n^{-jk}$$

where $w_n = e^{i\frac{2\pi}{n}}$.

 \blacksquare Note that the columns of F are orthogonal, since

$$1 + w_n^l + \dots + w_n^{l(n-1)} = 0, \ \forall \ 1 \le l \le n-1.$$

Fast Fourier Transform

- DFT is important in digital signal processing.
- The brute-force n-point DFT requires $O(n^2)$ floating-point multiplications.
- The cost can be reduced to $O(n \log n)$.
- We show the relation between n-point and m-point $(m = \frac{n}{2})$ DFTs. Split c into the even components c' and the odd components c''. With $y' = F_m c'$ and $y'' = F_m c''$,

$$\begin{cases} y_j = y'_j + w_n^j y''_j, & j = 0, 1, \dots, m - 1 \\ y_{j+m} = y'_j - w_n^j y''_j, & j = 0, 1, \dots, m - 1 \end{cases}$$

Time Complexity

We first verify the previous formula.

$$y_{j} = \sum_{k=0}^{n-1} w_{n}^{jk} c_{k} = \sum_{k=0}^{m-1} w_{n}^{2jk} c_{2k} + \sum_{k=0}^{m-1} w_{n}^{j(2k+1)} c_{2k+1}$$
$$= \sum_{k=0}^{m-1} w_{\frac{n}{2}}^{jk} c'_{k} + w_{n}^{j} \sum_{k=0}^{m-1} w_{\frac{n}{2}}^{jk} c''_{k}.$$

Recursively, an n-point DFT requires twice the number of multiplications of $\frac{n}{2}$ -point DFT plus $\frac{n}{2}$.

$$\begin{cases} T(1) = 0 \\ T(n) = 2 * T(\frac{n}{2}) + \frac{n}{2} \end{cases} \Rightarrow T(n) = \frac{1}{2}n \log n.$$

Example

The steps for n=4 is

$$egin{bmatrix} c_0 \ c_1 \ c_2 \ c_3 \end{bmatrix}
ightarrow egin{bmatrix} c_0 \ c_2 \ c_3 \end{bmatrix}
ightarrow egin{bmatrix} F_2c' \ F_2c' \ \end{bmatrix}
ightarrow egin{bmatrix} y_0 \ y_1 \ y_2 \ y_3 \end{bmatrix}$$

This is equivalent to

Summary for Linear Equations

- $\blacksquare Ax = b.$
- When A is invertible, the solution can be found by Gaussian elimination.
- When A is rectangular, b must be in the column space of A for a solution to exist.
- If b is not in the column space of A, there is no exact solution for Ax = b. In this case, we look for the least-squares solution by solving the normal equation

$$A^T A \overline{x} = A^T b.$$