Class 07 Lab

Arturo Agramont

Examples of K-mean Clustering

K Means clustering

First step is to make up some data with a known structure, so we know what the answer should be

```
tmp = c(rnorm(30, mean = -3), rnorm(30, mean = 3))
x = cbind(x = tmp, y = rev(tmp))
plot(x)
```


Now we have some structured data in x. :et's see if k-means is able to identify the two groups

```
k = kmeans(x, centers = 2, nstart = 20)
 k
K-means clustering with 2 clusters of sizes 30, 30
Cluster means:
1 3.098563 -3.069292
2 -3.069292 3.098563
Clustering vector:
Within cluster sum of squares by cluster:
[1] 59.96134 59.96134
(between_SS / total_SS = 90.5 %)
Available components:
[1] "cluster"
            "centers"
                      "totss"
                                "withinss"
                                          "tot.withinss"
            "size"
[6] "betweenss"
                      "iter"
                                "ifault"
Let's explore K:
 k$cluster
k$size
[1] 30 30
 k$centers
      X
1 3.098563 -3.069292
2 -3.069292 3.098563
```

```
plot(x, col = k$cluster)
```


Now we can add the cluster centers

```
plot(x, col = k$cluster,)
points(k$centers, col = "aquamarine", pch = 15)
```


k_3 = kmeans(x, centers = 3,nstart = 20)
plot(x, col = k_3\$cluster)

Hierarchical

This will be an example of hierarchical clustering using the hclust() function.

```
clustering = hclust(dist(x))
clustering
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(clustering)

Cluster Dendrogram

dist(x)
hclust (*, "complete")

Let's add a horizontal line

```
plot(clustering)
abline(h = 10, col ="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To get our results (i.e, membership vector) we need to "cut" the tree. The function for doing so is cutree()

```
subgroups = cutree(clustering, h =10)
subgroups
```

```
plot(x, col = subgroups)
```


You can also "cut" your tree with the number of clusters you want

Principal Component Analysis

First obtain the data

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93

Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Now we can generate basic visualizations

```
barplot(as.matrix(x), col = rainbow(nrow(x)))
```


Let's refine our bar plot

```
barplot(as.matrix(x), col = rainbow(nrow(x)), beside = T)
```


Other visualizations that can be useful

```
pairs(x, col = rainbow(nrow(x)), pch = 15)
```


Let's apply PCA(principal components analysis). For that we need to use the command prcomp(). This function expects the transpose of our data.

```
transpose_matrix = t(x) # This is not a necessary step
pca = prcomp(t(x))
summary(pca)
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	4.189e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

Let's plot the PCA results

```
plot(pca)
```


We need to assess the results of the PCA analysis

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

We can explore the pca\$x dataframe

pca\$x

	PC1	PC2	PC3	PC4
England	-144.99315	2.532999	-105.768945	2.842865e-14
Wales	-240.52915	224.646925	56.475555	7.804382e-13
Scotland	-91.86934	-286.081786	44.415495	-9.614462e-13
N.Ireland	477.39164	58.901862	4.877895	1.448078e-13

```
plot(x = pca$x[,1], y = pca$x[,2])
```



```
plot(x = pca$x[,1], y = pca$x[,2])
col_countries = c("orange", "red", "blue", "green")
text(x = pca$x[,1], y = pca$x[,2], colnames(x), col = col_countries)
```


PCA of RNA

Obtain data

```
url2 <- "https://tinyurl.com/expression-CSV"
rna.data <- read.csv(url2, row.names=1)</pre>
```

Q: How many genes and samples are in this data set?

```
dim(rna.data)
```

[1] 100 10

I have 100 genes and 10 samples.

Let's apply PCA

```
pca_rna = prcomp( t(rna.data))
summary(pca_rna)
```

Importance of components:

```
PC1
                                    PC2
                                             PC3
                                                      PC4
                                                               PC5
                                                                        PC6
                      2214.2633 88.9209 84.33908 77.74094 69.66341 67.78516
Standard deviation
Proportion of Variance
                         0.9917 0.0016 0.00144 0.00122
                                                           0.00098
                                                                    0.00093
                                 0.9933
Cumulative Proportion
                         0.9917
                                         0.99471
                                                  0.99593
                                                           0.99691
                                                                    0.99784
                           PC7
                                    PC8
                                             PC9
                                                      PC10
Standard deviation
                      65.29428 59.90981 53.20803 3.142e-13
Proportion of Variance 0.00086
                                0.00073
                                         0.00057 0.000e+00
Cumulative Proportion
                       0.99870
                                0.99943 1.00000 1.000e+00
```

Let's plot the principal component 1 and 2

```
plot(x = pca_rna$x[,1],y = pca_rna$x[,2], xlab = "PC1",ylab = "PC2" )
```



```
colnames(rna.data)
[1] "wt1" "wt2" "wt3" "wt4" "wt5" "ko1" "ko2" "ko3" "ko4" "ko5"

cols_samples = c(rep("blue", 5), rep("red", 5))
cols_samples
```

```
[1] "blue" "blue" "blue" "blue" "red" "red" "red" "red" "red"

plot(x = pca_rna$x[,1],y = pca_rna$x[,2], xlab = "PC1",ylab = "PC2", col = cols_samples )
```


barplot(pca_rna\$rotation[,1])

gene1 gene18 gene36 gene54 gene72 gene90

sort(pca_rna\$rotation[,1])

gene50	gene18	gene3	gene57	gene75	gene79
-0.188796985	-0.185668500	-0.183374164	-0.160771014	-0.153164404	-0.146803635
gene56	gene61	gene27	gene17	gene44	gene13
-0.132330117	-0.124572881	-0.123615228	-0.122536548	-0.117808971	-0.113357525
gene59	gene54	gene53	gene25	gene1	gene39
-0.103935563	-0.102503320	-0.093979884	-0.083761992	-0.081247810	-0.077306742
gene82	gene29	gene58	gene51	gene49	gene86
-0.076658760	-0.075605635	-0.075274651	-0.069855142	-0.069530208	-0.069165267
gene91	gene32	gene19	gene94	gene87	gene11
-0.065288752	-0.064721235	-0.062411218	-0.061938300	-0.059547317	-0.055698801
gene81	gene40	gene31	gene46	gene70	gene77
-0.043780416	-0.037323670	-0.037219970	-0.031990529	-0.030784982	-0.029225446
gene78	gene24	gene12	gene26	gene96	gene80
-0.025639741	-0.025407507	-0.024870802	-0.022868107	-0.022293151	-0.021824860
gene43	gene42	gene65	gene64	gene9	gene84
-0.020617052	-0.014550791	-0.014052839	-0.012639567	-0.007495075	-0.001289937
gene83	gene69	gene4	gene5	gene97	gene37
0.008504287	0.008871890	0.014242602	0.014303808	0.014994546	0.021280555
gene88	gene8	gene89	gene6	gene92	gene35
0.024015925					

gene73	gene74	gene67	gene52	gene71	gene95
0.044581700	0.044286948	0.037840851	0.035802086	0.035589259	0.035342407
gene2	gene22	gene14	gene36	gene15	gene93
0.053465569	0.053013523	0.052004194	0.051765605	0.049090676	0.044940861
gene20	gene33	gene47	gene38	gene7	gene63
0.071571203	0.068437703	0.067141911	0.066665407	0.063389255	0.060529157
gene34	gene55	gene76	gene30	gene16	gene72
0.119604059	0.114988217	0.104435777	0.089150461	0.081254592	0.078551648
gene41	gene100	gene99	gene28	gene68	gene85
0.153077075	0.152877246	0.151678253	0.150812015	0.144227333	0.134907896
gene48	gene62	gene60	gene90	gene66	gene23
0.190495289	0.184203008	0.183139926	0.173156806	0.171311307	0.165155192
		gene98	gene45	gene10	gene21
		0.230633225	0.225149201	0.197905454	0.194884023