Prosimy wypełnić poniższe pola DRUKOWANYMI literami:

											Im	nię	i 1	ıaz	wi	sk	O										
	·													·													
]	E-1	ma	il												
									ľ	٧r	tel	lefo	nı	u					K	las	sa						
					+	- 4	1 8	8																			

Test kwalifikacyjny na Warsztaty Matematyczne 2022

Klasy pierwsze i drugie

Test składa się z uporządkowanych w kolejności <u>losowej</u> 30 zestawów po 3 pytania. Na pytania odpowiada się "tak" lub "nie" poprzez wpisanie odpowiednio " \mathbf{T} " bądź " \mathbf{N} " w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja odpowiedzi "tak" i "nie". W zestawach zaznaczonych gwiazdką (gwiazdka wygląda tak: *) prócz udzielenia odpowiedzi należy je uzasadnić. Test trwa 180 minut.

Zasady punktacji

- Za pojedynczą poprawną odpowiedź: 1 punkt.
- Za pojedynczą niepoprawną odpowiedź: -1 punkt.
- Za brak odpowiedzi: **0** punktów.
- Za zadanie zrobione w całości dobrze dodatkowe 2 punkty.
- Za poprawne uzasadnienie pojedynczej odpowiedzi: 1 punkt.
- Za niepoprawne uzasadnienie pojedynczej odpowiedzi bądź brak takowego: 0 pkt.

Powodzenia!

Uwaga! Przez zbiór liczb naturalnych w zadaniach rozumiemy zbiór liczb całkowitych większych lub równych 0.

1.	Dana jest kwadratowa kartka $ABCD$, niech E, F, G, H będą środkami odcinków AB, BC, CD, DA odpowiednio. Zginamy kartkę wzdłuż prostej FH , tak aby punkt
	A przeszedł na punkt D , następnie wzdłuż prostej EG tak aby punkt D przeszedł na punkt C , następnie wzdłuż prostej FG , tak aby środek $ABCD$ przeszedł na punkt C . Tak złożoną kartkę tniemy równolegle do CD przechodząc przez środek CF .
	Czy dostaniemy 4 kawałki papieru?
	Czy dokładnie 2 kawałki papieru będą prostokątami?
	Czy dokładnie 4 kawałki papieru będą trójkątami?

2*.	Dany jest trójkąt ABC o bokach: $ AB =13, BC =12, AC =5$. D - spodek wysokości z C , niech E będzie punktem przecięcia kwadratu $ABFG$ (zawierającego w sobie punkt C) z półprostą DC . Jaki jest stosunek $\frac{[ACEG]}{[CBFE]}$?
	$ \begin{array}{c} $
o de	
3*.	Martyna i Oliwia grają w grę. Zaczyna Martyna, na początku mając na tablicy liczbę 2. Dziewczyny wykonują ruchy na przemian, w każdym ruchu muszą dodać jakiś dzielnik właściwy aktualnej liczby do zapisanej liczby. Wygrywa ta z dziewczyn, która napisze liczbę większą lub równą x . Dzielniki właściwe liczby 10 to: 1, 2, 5. Czy Martyna ma strategię wygrywającą dla x równego:
	☐ 4? ☐ 9? ☐ 1237?

4.	Czy
	\square nwd(8649, 8789) > 100
	\square nwd(8917, 7471) > 100
5.	Ile cyfr ma najmniejsza liczba, która kończy się na 6 i jeśli się jej ostatnią cyfrę (6) przeniesie na początek, to otrzymana liczba jest 4 razy większa od liczby początkowej?
	□ 6 □ 8 □ 10
6.	Liczba 139:
	☐ Jest pierwsza.
	☐ Może być przedstawiona jako suma dwóch kwadratów liczb całkowitych.
	☐ Może być przedstawiona jako suma dwóch sześcianów liczb całkowitych.
7.	Dany jest trójkąt równoboczny o boku 1 i prostokątny o przyprostokątnej 1.
	trójkąt równoboczny ma większy promień okręgu wpisanego.
	trójkąt równoboczny ma większy promień okręgu opisanego
	istnieje dokładnie jeden wielościan, którego wszystkie ściany to trójkąty rów-
	noboczne.
8.	Na boku BC trójkąta ABC, spełniającego kąt $ACB=170^\circ$, obrano taki punkt D , że $BD=AC$. Niech P i M będą odpowiednio środkami odcinków CD i AB . Miara kąta BPM wynosi:
	■ 85°
	□ 90°
	□ _{95°}
9.	Mamy dany ciąg liczb naturalnych od 1 do 16.
	Możemy podzielić te liczby w pary, tak aby suma każdej z nich była kwadratem liczby całkowitej.
	Możemy ustawić je w szeregu, tak aby suma każdych dwóch kolejnych była kwadratem liczby całkowitej.
	Możemy ustawić je w kole, tak aby suma każdych dwóch kolejnych była kwadratem liczby całkowitej.

10*. Oceń prawdziwość podanych relacji:

 $\hfill \square$ Dla dowolnego $n \colon \sum_{i=1}^n \frac{i}{1+i^2+i^4} < \frac{1}{2}$

11. Dane są takie liczby całkowite dodatnie a, b, x, że:

 $x \mid a + 5b$

 $x \mid 3a + b$

Czy z tych warunków wynika, że:

12*. Każdy punkt płaszczyzny pomalowano na pewien z k różnych kolorów (każdy kolor został użyty). Prawdą jest, że;

 $\hfill \Box$ jeśli k=3 to zawsze istnieją dwa punkty tego samego koloru odległe o 1.

 \square jeśli k=4to zawsze istnieją dwa punkty tego samego koloru odległe o 1 lub $\sqrt{3}.$

 $\hfill \Box$ jeśli k=4to istnieje takie kolorowanie, że każda prosta jest jednokolorową lub dwukolorowa.

13. Dany jest turniej - każdy zawodnik rozgrywa dokładnie jeden mecz z każdym innym i nie ma remisów. Mistrzem turnieju nazwiemy zawodnika, który dla każdego zawodnika A, wygrał z nim lub kimś kto wygrał z A. Czy:

w turnieju może być dokładnie 2 mistrzów.

w turnieju może być dokładnie 3 mistrzów.

u czteroosobowym turnieju może zdarzyć się, że każdy jest mistrzem.

14. Niech d_1, d_2, \ldots, d_m oznaczają wszystkie dodatnie dzielniki n oraz niech $\sigma(n) = d_1 + d_2 + \ldots + d_m$. Czy:

 \Box istnieją dokładnie 2 takie liczby parzyste n, że $\sigma(n)=2n$ orazn<1000

15*. Na pewnej wyspie żyją dwa typy mieszkańców: prawdomówni - którzy zawsze mówią prawdę i kłamcy, którzy zawsze kłamią. Po przybyciu na wyspę podróżnik spotkał dwóch mieszkańców: wysokiego i niskiego. Zapytał wysokiego, czy obaj są prawdomówni, ale z jego wypowiedzi nie można było wywnioskować, kim oni byli. Wówczas zapytał niskiego, czy wysoki jest prawdomówny, a gdy ten odpowiedział, podróżnik wiedział, do jakiego typu należał każdy z nich. Czy napotkani mieszkańcy mogli być:

☐ obaj prawdomówni

obaj kłamcami

niski prawdomówny, zaś wysoki kłamcą

16. W tym zadaniu d oznacza długość średnicy podstawy stożka, zaś l - długość jego tworzącej. Czy można zbudować stożek, gdy:

 $\Box d = 6, l = 5$

 \Box d = 22, l = 12

17*. Niech A = (0,0), B = (1,0), C = (2,0), D = (3,0), E = (0,1). Czy

18.	Czy liczba $3^{105} + 4^{105}$ jest podzielna przez:
	☐ 5?☐ 11?☐ 13?
19.	Pewien pijak spacerując po nadmorskich klifach znalazł się trzy kroki od przepaści (trzeci już wpada w przepaść). Jest on pijany, dlatego wykonuje losowe ruchy przybliżając się o krok do przepaści z prawdopodobieństwem $\frac{2}{5}$ oraz oddalając się o krok od przepaści z prawdopodobieństwem $\frac{3}{5}$. Zakładamy, że pijak może odejść od przepaści dowolnie daleko oraz nie kończy spaceru za wyjątkiem upadku w przepaść.
	Prawdopodobieństo pozostania żywym po pięciu krokach wynosi więcej niż 0.9.
	☐ Pijak może spaść w 24 kroku.
	\square Po nieskończenie długim czasie szansa na przeżycie pijaka wynosi $\frac{4}{5}$.
20.	Codziennie zaraz po wyjściu ze szkoły Jaś idzie na stację metra i wsiada w pierwszy pociąg, który nadjedzie, niezależnie od kierunki jazdy. Na Kabatach mieszka babcia Jasia, a niedaleko Młocin jego dziewczyna. Jaś zawsze korzysta z okazji i odwiedza osobę, w pobliżu której się znalazł. Zakładamy, że pociągi metra kursują w stałych odstępach czasu, z równą częstotliwością w każdym z dwóch kierunków.
	\square Jaś zawsze z prawdopodobieństwem $\frac{1}{2}$ pojedzie do babci.
	Czy może się zdarzyć, że Jaś bez celowego działania będzie jeździł do dziewczyny 5 razy częściej, niż do babci?
	Czy możliwe jest, że gdyby Jaś zmienił strategię i przepuszczał zawsze pierwszy napotkany pociąg metra i wsiadał do drugiego to zmieniłby częstotliwość widzenia babci?
21.	Dane są dwie liczby niewymierne. Czy możliwe jest, aby:
	☐ Ich suma była liczbą wymierną
	Zarówno ich iloczyn, jak i iloraz były wymierne
	Występowało między nimi nieskończenie wiele liczb wymiernych
	występowaro iniędzy inim meskończenie wiele uczo wymiernych
22.	Które z poniższych planszy można pokryć klockami 6×1 ?
	\square 19 × 19 bez środkowego pola
	$\hfill 13\times13$ bez środkowego pola

23.	Zdanie "Dla dowolnych n kolejnych liczb naturalnych, można wybrać dwie z nich (niekoniecznie różne), tak że ich iloczyn daje resztę 1 w dzieleniu przez m " jest prawdziwe dla:
24.	Dane są: $f(x) = x^2 + ax + b$, $g(x) = x^2 + cx + d$, takie, że: $a \neq c$, $b \neq d$, Spełniony jest warunek: $f(17) + f(105) = g(17) + g(105)$. Ile rozwiązań ma równanie $f(x) = g(x)$?
	$ \begin{array}{c} \square \ 0 \\ \square \ 1 \\ \square \ 2 \end{array} $
25.	W kwadracie $ABCD$ wybrano 2 losowe punkty na boku $CD\colon M, N.$ Trójkąty ABM, ABN na pewno:
	są podobne. mają równe obwody. mają równe pola.
26.	Mając pierścień z dwóch okręgów o wspólnym środku, cięciwa większego okręgu styczna do mniejszego ma długość k. Pole między okręgami wyraża się przez:

27*.	Liczba $\sqrt{12 + 2\sqrt{27}} - \sqrt{19 - 4\sqrt{12}}$ jest:
	□ ujemna.
	alkowita.
	niewymierna.
28.	Liczba $a^3b^5c^2$ jest siódmą potęgą pewnej liczby całkowitej, gdzie a,b i c są liczbami całkowitymi. Czy z tego wynika, że siódmą potęgą jest również liczba:
	$\Box a^2bc$?
29.	Mamy daną liczbę naturalną k . Ile uporządkowanych rozwiązań (m,n) może mieć równanie $2^m+2^n=k$, gdzie m i n są liczbami całkowitymi.
	\square 1
	\square 2

30. Czy istnieje 100 kolejnych liczb naturalnych wśród których:

Dokładnie 7 jest potęgami dwójki o całkowitym wykładniku?

Dokładnie 12 jest liczbami Fibbonacciego?

Dokładnie 7 jest liczbami pierwszymi?