PRINCIPLES OF ANALYSIS LECTURE 17 - CONNECTED AND COMPACT SETS

PAUL L. BAILEY

1. Goal

We wish to prove the the continuous image of a connected set is connected, and that the continuous image of a compact set is compact.

Remark 1. Let *X* and *Y* be sets and let $f: X \to Y$ be a function. Let $A, B \subset X$ and $C, D \subset Y$. Then

- (a) $f^{-1}(f(A)) \supset A$ and equality holds if f is injective;
- (b) $f(f^{-1}(C)) \subset C$ and equality holds if f is surjective;
- (c) $f(A \cup B) = f(A) \cup f(B)$;
- (d) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- (e) $f(A \cap B) \subset f(A) \cap f(B)$ (give and example where equality fails);
- (f) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

2. Connected Sets

A subset $A \subset \mathbb{R}$ is disconnected if there exist disjoint open sets $U_1, U_2 \subset \mathbb{R}$ with $A \cap U_1 \neq \emptyset$ and $A \cap U_2 \neq \emptyset$ such that $A \subset (U_1 \cup U_2)$. Otherwise, we say that A is connected.

Proposition 1. Let $A \subset \mathbb{R}$. The following conditions on A are equivalent:

- (a) there exist $a_1, a_2 \in A$ and $c \notin A$ such that $a_1 < c < a_2$;
- **(b)** $(\inf(A), \sup(A)) \subset A$;
- (c) A is an interval;
- (d) A is connected.

Proof. Exercise.

Proposition 2. Let $f: E \to \mathbb{R}$ be a continuous function, and let $A \subset E$ be connected. Then f(A) is connected.

Proof. It suffices to show that if f(A) is disconnected, then A is disconnected. Thus assume that f(A) is disconnected, and let V_1 and V_2 be open subsets of \mathbb{R} such that $f(A) \cap V_1 \neq \emptyset$, $f(A) \cap V_2 \neq \emptyset$, but $f(A) \subset (V_1 \cup V_2)$. Let $U_1 = f^{-1}(V_1)$ and $U_2 = f^{-1}(V_2)$. Then $A \cap U_1 \neq \emptyset$, $A \cap U_2 \neq \emptyset$, but $A \subset (U_1 \cup U_2)$. Moreover, since f is continuous, U_1 and U_2 are open. Thus, A is disconnected. \square

Date: October 15, 2003.

3. Compact Sets

Let $A \subset \mathbb{R}$. A *cover* of A is a collection $\mathcal{C} \subset \mathcal{P}(\mathbb{R})$ of subsets of \mathbb{R} such that $A \subset \cup \mathcal{C}$.

Let \mathcal{C} be a cover of $A \subset \mathbb{R}$. We say that \mathcal{C} is an *open cover* if every member $U \in \mathcal{C}$ is an open subset of \mathbb{R} . We say that \mathcal{C} is a *finite cover* if \mathcal{C} is a finite set.

Note that the modifier open refers to the sets inside C, whereas the modifier finite refers to the collection C itself.

A subcover of \mathcal{C} is a subset $\mathcal{D} \subset \mathcal{C}$ such that $A \subset \cup \mathcal{D}$.

We say that A is *compact* if every open cover of A has a finite subcover.

Example 1. Let $A = \mathbb{Z}$. Let $I_n = (n - \frac{1}{3}, n + \frac{1}{3})$. Let $\mathfrak{C} = \{I_n \mid n \in \mathbb{Z}\}$. Then \mathfrak{C} is an open cover of \mathbb{Z} with no finite subcover. Thus \mathbb{Z} is not compact.

Example 2. Let A = (0,1). Let $I_n = (0,1-\frac{1}{n})$. Let $\mathfrak{C} = \{I_n \mid n \in \mathbb{Z}^+\}$. Then \mathfrak{C} is an open cover of (0,1) with no finite subcover. Thus (0,1) is not compact.

Proposition 3. Let $A = \{a_1, \ldots, a_n\}$ be a finite set. Then A is compact.

Proof. Let \mathcal{C} be an open cover of A. Then for each $a_i \in A$, there exists and open set $U_i \in \mathcal{C}$ such that $a_i \in U_i$. Then $A \subset \bigcup_{i=1}^n U_i$, and $\{U_1, \ldots, U_n\}$ is a finite subcover of \mathcal{C} . Thus A is compact.

Proposition 4. Let $a, b \in \mathbb{R}$ with a < b. Then the closed interval $[a, b] \subset \mathbb{R}$ is compact.

Proof. Let \mathcal{C} be an open cover of [a, b].

Let $x \in [a, b]$ and let $U_x \in \mathcal{C}$ be an open set which contains x. Then there exists $\epsilon_x > 0$ such that $(x - \epsilon_x, x + \epsilon_x) \subset U_x$. Let

 $B = \{x \in [a, b] \mid [a, x] \text{ can be covered by a finite subcover of } \mathcal{C}\}.$

Note that B is nonempty, since the closed interval $[a, a + \frac{\epsilon_a}{2}] \subset U_a$, and $\{U_a\}$ is a finite subcover of \mathcal{C} , so for example $a + \frac{\epsilon_a}{2} \in B$.

Let $z = \sup B$; clearly $a + \frac{\epsilon_a}{2} \le z \le b$. We claim that $z \in B$, and that z = b. To see this, let $\epsilon = \min\{\epsilon_z, z - a\}$. Then $z - \frac{\epsilon}{2} \in B$. Let \mathcal{D} be a finite subcover of \mathcal{C} which covers $[a, z - \frac{\epsilon}{2}]$. Then $\mathcal{D} \cup \{U_z\}$ covers [a, z], so $z \in B$. Now suppose that z < b, and set $\delta = \min\{\epsilon, z - b\}$. Then $z < z + \frac{\delta}{2} < b$, and $\mathcal{D} \cup \{U_z\}$ covers $[a, z + \frac{\delta}{2}]$; since $z + \frac{\delta}{2} \in [a, b]$, this contradicts the definition of z. Thus z = b. This completes the proof.

Proposition 5. Let $f: E \to \mathbb{R}$ be a continuous function, and let $A \subset E$ be a compact set. Then f(A) is compact.

Proof. Let \mathcal{C} be an open cover of f(A). Define

$$\mathcal{B} = \{ f^{-1}(V) \mid V \in \mathcal{C} \}.$$

Since A is compact, there exists a finite subset of \mathfrak{B} , say $\mathfrak{U} = \{U_1, \ldots, U_n\}$, such that $A \subset \bigcup_{i=1}^n U_i$. Each U_i is the preimage of an open subset, say $U_i = f^{-1}(V_i)$. Then $f(U_i) \subset V_i$, and

$$f(A) \subset f(\bigcup_{i=1}^n U_i) = \bigcup_{i=1}^n f(U_i) \subset \bigcup_{i=1}^n V_i;$$

now $\mathcal{V} = \{V_1, \dots, V_n\}$ is a finite subcover of \mathcal{C} . This shows that f(A) is compact.

Proposition 6. Let $A \subset \mathbb{R}$ be compact and let $F \subset A$ be closed. Then F is compact.

Proof. Let \mathcal{C} be an open cover of F. Let $U = \mathbb{R} \setminus F$; since F is closed, U is open. Let $\mathcal{B} = \mathcal{C} \cup \{U\}$. Now \mathcal{B} is an open cover of A. Since A is compact, let \mathcal{U} be a finite subcover of A. Since $F \subset A$, then \mathcal{U} is also a finite open cover of F. Let $\mathcal{V} = \mathcal{U} \setminus \{U\}$; now \mathcal{V} is still a finite open cover of F, and \mathcal{V} is a subcover of \mathcal{C} . Thus F is compact.

Theorem 1 (Heine-Borel Theorem). Let $A \subset \mathbb{R}$. Then A is compact if and only if A is closed and bounded.

Proof. We prove both directions.

 (\Rightarrow) Suppose that A is compact; we wish to show that A is closed and bounded. Cover A with sets of the form (-n,n), for $n\in\mathbb{Z}^+$. Since A is compact, there exists a finite subcover. This subcover contains an interval of maximum length, say (-M,M), and clearly $A\subset (-M,M)$. Thus $A\subset [-M,M]$, and A is bounded.

To show that A is closed, we show that its complement is open. Let $B = \mathbb{R} \setminus A$. Let $b \in B$. For each point $a \in A$, set $\epsilon_a = |b-a|/2$, $I_a = (a-\epsilon, a+\epsilon)$, and $J_a = (b-\epsilon, b+\epsilon)$. Let $\mathfrak{I} = \{I_a \mid a \in A\}$. Then \mathfrak{I} is an open cover of A, and so it has a finite subcover $\{I_{a_1}, \ldots, I_{a_n}\}$. The open set $\bigcup_{i=1}^n I_{a_i}$ contains A and is disjoint from the set $\bigcap_{i=1}^n J_{a_i}$, which is also open and contains b. Thus B is open.

(⇐) Suppose that A is closed and bounded; we wish to show that A is compact. Since A is bounded, there exists M>0 such that $A\subset [-M,M]$. The set [-M,M] is a closed interval, and so it is compact by Proposition 4. Thus A is a closed subset of a compact set, and therefore is compact by Proposition 6.

Proposition 7. Let K be a compact set. Then inf $K \in K$ and sup $K \in K$.

Proof. Since K is bounded, then $\sup K$ exists as a real number, say $b = \sup K$. Suppose $b \notin K$; then $\{(-\infty, b - \frac{1}{n}) \mid n \in \mathbb{Z}^+\}$ is an open cover of K with no finite subcover, contradicting that K is compact. Thus $b \in K$. Similarly, $\inf K \in K$.

Department of Mathematics and CSCI, Southern Arkansas University $E\text{-}mail\ address$: plbailey@saumag.edu