

TERAZİ DOĞRULAMA TALİMATI

Dok.No: KY.TL.**6.5/TD** Yayın Tarihi: 28.08.2009 Rev.No/Tarih: 05/01.11.2018 Sayfa No: 1/6

1. AMAÇ

Analiz/Testlerde kullanılan "Otomatik Olmayan Tartım Cihazlarının" doğrulama işlemlerinin nasıl yapılacağını açıklamaktır.

2. KAPSAM

Kalibrasyonları yapılan terazilerin sonraki süreçte kalibrasyondan ne kadar saptığını görmek ve terazinin ölçüm doğruluğunun kontrolünü sağlamak için yapılan işlemlerin tümünü kapsar.

3. İLGİLİ DOKÜMANLAR

EURAMET/cg-18 Otomatik Olmayan Tartı Aletlerinin Kalibrasyonu Hakkında Yönergeler (Guidelines On The Calibration Of Non-Automatic Weighing Instruments)
OIML R 111-1 E1, E2, F1, F2, M1, M2, M3 Sınıfı Ağırlıklar
(Weights Of Classes E1, E2, F1, F2, M1, M2, M3)

OIML R 76-1 Otomatik Olmayan Tartı Aletleri Bölüm 1. Metrolojik Ve Teknik Gereksinimler (Testler-Non-Automatic Weighing İnstruments Part 1. Metrological & Technical Requirements – Tests)

KY.FR.6.5/TD Terazi Doğrulama Formu

4. KISALTMALAR VE TANIMLAR

d : Çözünürlük (g)

MHS : Kullanılan kütlelerin maksimum hata sınırı

Max : Terazinin maksimum kapasitesi (g) Terazi : Otomatik Olmayan Tartım Cihazı

5. UYGULAMALAR

- 5.1 Terazinin yerleşik olduğu konumla, düzlemde paralel pozisyonda olduğundan emin olmak için su terazisini kontrol ediniz ve terazi kefesini fırçayla temizleyiniz.
- 5.2 Çalışabilirlik kontrolünü (ekran bilgilerinin kontrolünü) yapınız. Terazi açıldığı zaman kısa bir süre ekran bilgileri dijital olarak görünmesi gerektiğinden bütün elemanların eksiksiz görünüp görünmediğini kontrol ediniz.
- 5.3 Teraziyi ilk açtığınız zaman, kullanma kılavuzunda yazan ısınma süresi kadar bekleyiniz. Kullanma kılavuzunda bu bilgi eksikse Tablo 1'den yararlanınız.

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı

TERAZİ DOĞRULAMA TALİMATI

Dok.No: KY.TL.**6.5/TD** Yayın Tarihi: 28.08.2009 | Rev.No/Tarih: 05/01.11.2018 | Sayfa No: 2/6

Tablo 1. Terazi Isınma Süresi

Max / d ≥ 1 000 000	En az 12 saat beklenilmelidir.
$1\ 000\ 000 > Max \ / \ d \ge 300\ 000$	En az 4 saat beklenilmelidir.
$300\ 000 > \text{Max} / \text{d} \ge 30\ 000$	En az 2 saat beklenilmelidir.
$30\ 000 > \text{Max} / \text{d} \ge 6000$	En az 30 dakika beklenilmelidir.
6000 < Max / d	En az 10 dakika beklenilmelidir.

5.4 Isı kararlılığı açısından, terazi doğrulamasında referans olarak kullanılacak olan kütlelerin sıcaklığının terazinin bulunduğu ortamla aynı sıcaklıkta olması gerekir. Termometre ile referans kütlelerin sıcaklığını ve terazinin bulunduğu ortamın sıcaklığını ölçünüz. Arada sıcaklık farkı var ise referans kütlelerin ortama adaptasyonu için beklenmesi gereken süreyi Tablo 2'ye göre hesaplayıp terazi doğrulamasına başlamadan önce o kadar süre bekleyiniz.

ΔT = Referans kütle sıcaklığı ve laboratuvar sıcaklığı arasındaki ön fark

K = Kelvin olarak sıcaklık (hesaplamada sıcaklık farkı önemli olduğundan °C olarak da kullanılabilir)

Tablo 2. Sıcaklık Farklılıklarının Basamaklarında Azalma İçin Zaman Aralıkları (dakika olarak)

				ΔT	7 / K			
m/kg	20	15	10	7	5	3	2	1
50		149,9	225,3	212,4	231,1	347,9	298,0	555,8
20		96,2	144,0	135,2	135,0	219,2	186,6	345,5
10		68,3	101,9	95,3	94,8	153,3	129,9	239,1
5		48,1	71,6	66,7	66,1	106,5	89,7	164,2
2		30,0	44,4	41,2	40,6	65,0	54,4	98,8
1		20,8	30,7	28,3	27,8	44,3	37,0	66,7
0,5		14,3	21,0	19,3	18,9	30,0	24,9	44,7
0,2		8,6	12,6	11,6	11,3	17,8	14,6	26,1
0,1		5,8	8,5	7,8	7,5	11,8	9,7	17,2
0,05		3,9	5,7	5,2	5,0	7,8	6,4	11,3
0,02		2,3	3,3	3,0	2,9	4,5	3,7	6,4
0,01		1,5	2,2	2,0	1,9	2,9	2,4	4,2

Örnek:

1 kg etalon kütle için;

ΔT'nin 20 K'dan 15 K'ya indirilmesi 20,8 dakika alır.

ΔT'nin 15 K'dan 10 K'ya indirilmesi 30,7 dakika alır.

 Δ T'nin 10 K'dan 5 K'ya indirilmesi 28,3 dakika + 27,8 dakika = 56,1 dakika alır.

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı

TERAZİ DOĞRULAMA TALİMATI

Dok.No: KY.TL.**6.5/TD** Yayın Tarihi: 28.08.2009 | Rev.No/Tarih: 05/01.11.2018 | Sayfa No: 3/6

- 5.5 Terazi Doğrulama Formunun A-Kayıt Bilgileri kısmını doldurunuz.
- 5.6 Terazi kullanım kılavuzuna göre dahili/harici ayar yapmak gerekiyorsa, günlük kontrole başlamadan önce dahili/harici ayar yapınız.
- 5.7 Maksimum Hata Sınırı (MHS) Hesaplama
- 5.7.1 d \geq 0,1 mg için MHS ve Min. Yük değeri hesaplama;

Örnek: Maksimum Kapasite (Max) =1000 g, d=0,01g, e=0,1g

a) Terazi Doğruluk Sınıfı ve Minimum Kapasite

$$n = \frac{\text{max}}{e}$$
 (n: Taksimat Sayısı), $n = \frac{1000g}{0.1g} = 10\ 000$

Tablo 3. Terazi Doğruluk Sınıfı Tablosu

Terazi Doğruluk Sınıfı	Muayene Sabiti (e)	Taksimat Sayısı (n)	Minimum Kapasite (Min)
Özel (I.Sınıf)	$0.001 \text{ g} \leq \text{e}$	≥ 50 000	100 d
Yüksek (II.Sınıf)	$0.001 \text{ g} \le \text{e} \le 0.05 \text{ g}$	100100 000	20 d
	$0.1 \text{ g} \leq \text{e}$	5 000100 000	50 d
Orta (III.Sınıf)	$0.1 g \le e \le 2 g$	10010 000	20 d
	5 g ≤ e	50010 000	20 d
Kaba (IV.Sınıf)	5 g ≤ e	1001 000	10 d

Tablo 3'de (n) ve (e) değerlerini yerine konduğunda II.Sınıf terazi olduğu görülür. Min = 0,5 g bulunur.

b) Maksimum Hata Sınırı (MHS)

Tablo 4. Maksimum Hata Sınırları Tablosu

MHS	Uygulanan Yük, L Değeri			
	Terazi Doğruluk Sınıfları			
	I.Sınıf	II.Sınıf	III.Sınıf	IV.Sınıf
±0,5e	$0 \le L \le 50\ 000\ e$	$0 \le L \le 5000 e$	$0 \le L \le 500 e$	$0 \le L \le 50 e$
±1,0e	$50\ 000\ e < L \le 200\ 000\ e$	$5\ 000\ e < L \le 20\ 000\ e$	$500 \text{ e} < L \le 2000 \text{ e}$	$50 \text{ e} < L \le 200 \text{ e}$
±1,5e	200 000 e < L	$20\ 000\ e < L \le 100\ 000\ e$	$2\ 000\ e < L \le 10\ 000\ e$	$200 \text{ e} < L \le 12\ 000 \text{ e}$

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı

TERAZİ DOĞRULAMA TALİMATI

Düzenlersek,
$$\pm 0.05 \text{ g}$$
 $0 \le L \le 500 \text{ g}$ $\pm 0.1 \text{ g}$ $500 \text{ g} < L \le 2000 \text{ g}$ $\pm 0.15 \text{ g}$ $2 000 \text{ g} < L \le 10 000 \text{ g}$

Ancak kullanımda maksimum hata sınırları 2 ile çarpılır. O halde MHS aşağıdaki şekilde bulunur:

Örneğin, uyguladığımız yük L=100 g seçilirse, yukarıda bulduğumuz sınırlar göz önüne alınarak MHS ± 0.1 g dır. L=1 kg seçilirse, MHS ± 0.2 g dır.

5.7.2 d<0,1 mg için MHS ve Min. Yük değeri hesaplama;

Örnek : Maksimum Kapasite (Max) = 5 g, d = 0.000001 g, e = 0.00001 g

a) Terazi Doğruluk Sınıfı ve Minimum Kapasite

$$n = \frac{\text{max}}{e}$$
 (n: Taksimat Sayısı), $n = \frac{5g}{0,00001g} = 500\ 000$

Tablo 3'de (n) ve (e) değerlerini yerine konduğunda I.Sınıf terazi olduğu görülür. d<0,1 mg olduğundan Min. Yük değerini aşağıdaki gibi hesaplayınız.

- Minimum ağırlık = $1000 \times d$
- Belirlenen minimum ağırlığı tartım cihazında 10 kez ölçünüz.
- Ölçülen ağırlığın ortalama değeri ve standart sapmasını hesaplayınız.
- Bağıl ölçüm belirsizliğini (3 × standart sapma/nominal değer) hesaplayınız ve bu değeri 0,001' ile kontrol ediniz.(Bağıl ölçüm belirsizliği ≤ 0,001)
- Eğer hesaplanan değer 0,001'i geçerse, bir üst ağırlık belirlenerek aynı işlemleri tekrar ediniz.

$$d = 0.001 \text{ mg}$$
 $e = 10 \times d = 0.01 \text{ mg}$

Minimum ağırlık = $1000 \times 0,001 \text{ mg} = 1 \text{ mg}$

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı

TERAZİ DOĞRULAMA TALİMATI

Dok.No: KY.TL.**6.5/TD** Yayın Tarihi: 28.08.2009 | Rev.No/Tarih: 05/01.11.2018 | Sayfa No: 5/6

Nominal ağırlık = 1 mg		
Ölçüm Sayısı	Gösterge Değeri (g)	
1	0,001001	
2	0,001000	
3	0,001000	
4	0,001000	
5	0,001001	
6	0,001000	
7	0,001002	
8	0,001002	
9	0,001001	
10	0,001003	
Ortalama Değer	0,001001	
Standart Sapma	1,05409E-06	

Bağıl Ölçüm Belirsizliği = $3 \times 0.00000105409 / 0.001 = 0.003162 \ge 0.001$

Hesaplanan değer 0,001'den büyük olduğundan, bu terazi 1 mg numune tartımı için uygun değildir. Sırayla üst bir yük değeri belirlenerek Bağıl Ölçüm Belirsizliği ≤ 0,001 olana kadar işleme devam ediniz.

Nominal ağırlık = 20 mg		
Ölçüm sayısı	Gösterge Değeri (g)	
1	0,019993	
2	0,020005	
3	0,020004	
4	0,020004	
5	0,020006	
6	0,020005	
7	0,020003	
8	0,020001	
9	0,020000	
10	0,020005	
Ortalama Değer	0,020003	
Standart Sapma	3,86437E-06	

Bağıl Ölçüm Belirsizliği = $3 \times 0.00000386437/0.02 = 0.000580 \le 0.001$

Hesaplanan değer 0,001'den büyük olmadığı için bu terazinin minimum kapasitesi 20 mg'dır.

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı

TERAZİ DOĞRULAMA TALİMATI

Dok.No: KY.TL.**6.5/TD** Yayın Tarihi: 28.08.2009 Rev.No/Tarih: 05/01.11.2018 Sayfa No: 6/6

b) Maksimum Hata Sınırı (MHS)

- L=2 g seçildiğinde Tablo 4'e göre MHS = $\pm 0,00001$ g bulunur. Ancak uygulamada maksimum hata sınırları genişletilmiş olarak kullanılır ve 2 ile çarpılır. O halde, MHS = $\pm 0,00002$ g olarak tespit edilir.
- 5.8 Doğrulama için, terazide en sık kullandığınız yükleri belirleyiniz. Belirlenen bu yüklerin tartımı sonucunda elde edilen gösterge değerlerini ve aşağıdaki eşitliğe göre hesaplanan hata değerlerini Terazi Doğrulama Formuna kaydediniz. Seçilen ağırlığın belirleyici işareti varsa formda uygulanan yük (L) kısmına bunu not ediniz. Tartım sonucuna göre hesaplanan hata değerlerinin MHS'nı aşıp aşmadığını kontrol ediniz. MHS'nı aşması halinde, teraziyi açık bırakarak, 1 gün sonra aynı ortam şartlarında, aynı kullanıcı olmak şartıyla doğrulama işlemini tekrar ediniz. Sonuçlar yine MHS içinde değilse Yönetim Sistemleri ve Kalibrasyon Hizmetleri Birimine haber veriniz.

Hata = |Uygulanan Yük (L) - Gösterge Değeri (I)|

- 5.9 Terazi Doğrulama Sıklığını, terazinin kullanım sıklığına göre günlük/haftalık/2 haftalık/aylık veya 3 aylık olmak üzere belirleyiniz.
- 5.10 Doğrulama çalışmasının yapıldığı her formu bir dosya içerisinde muhafaza ediniz.

6. ARŞİV VE KAYITLAR

Tüm kayıtların Kontrolü Prosedürüne uygun olarak tutunuz.

7. REVİZYONLAR

Revizyon No/Tarih	Sayfa No	Revizyon Nedeni
01/ 30.09.2010	1, 2, 3	Akreditasyon Denetimi Sonrası
02/ 20.04.2011	Tümü	Yeniden Yayınlandı (Kaynak Revizyon)
03/ 18.02.2015	Tümü	Yeniden Yayınlandı (Birim değişikliği, yazım dili ve madde sıraları)
04/ 15.03.2018	1	Madde 3.İlgili Dokümanların Güncellenmesi
05/ 01.11.2018	Tümü	Doküman numarasında değişiklik yapıldı.

HAZIRLAYAN	ONAYLAYAN
Aydan ÇALIK	Akan GÜLMEZ
Kalite Yöneticisi	Daire Başkanı