

統合データベース講習会: AJACS近江

# CREFIL: JONINE RESOURCE INDEED TO THE PROPERTY OF THE PROPERTY

http://lifesciencedb.jp/ag/

ライフサイエンス統合データベースセンター(DBCLS) 大学共同利用機関法人 情報・システム研究機構(ROIS)

> 藤枝 香 2008年10月31日



## 目次

- アナトモグラフィー(Anatomography)について
- アナトモグラフィーの使い方
- BodyParts3D(アナトモグラフィーを描くデータベース)
- ・ 今後の開発予定
- アナトモグラフィー実習





# アナトモグラフィーとは

Anatomography = Anatomy (解剖学) + - graphy(画法:出力の仕組み)

Anatomogram= アナトモグラフィーを使って出来た画像

- 解剖学用語を選択して自由に人体のモデル図(アナトモグラム)を描くツール
- 任意の視点やズーム、色、透過度など 自由に表示できる

図譜をエディトし、みたい視点から見ることが出来る



肺、心臓、肝臓を アナトモグラフィーを使って描いた図



## アナトモグラフィーの使い方

- 方法1:アナトモグラフィーのエディタで画像を作成 (ユーザーが臓器を選んで画像を作成できる)
- ・方法2:臓器名と数値データ(遺伝子発現量、がんの死亡率など)を入力してヒートマップを作成

ヒートマップ:遺伝子量の大小などを 色別に表した図



# 方法1. アナトモエディタで作成





サーバに新着メッセージはありませんでした。

アナトモグラフィーの便利な機能 画像をURLの形で保存→クリックして再描画





## BodyParts3D(3次元解剖学用語DB)

人体部位の位置や形状を3次元人体モデルで記述したデータベース

(アナトモグラムを描画するためのデータが格納されている) 利用側 Web API ダウンロード ヘルブ その他

| BodyParts3D - | 3次元解剖学用語デー | タベース |
|---------------|------------|------|
|               |            |      |

解剖学用語が示す人体の部品(臓器、器官)の位置と形状を3次元人体モデルで記述したデータベースです。 詳細 >>

解剖学用語(英語、漢字、ひらがな、FMAID(例: FMA7088))入力

4 Lookup

#### BodyParts3D登録解剖学用語一覧

#### 全用語

- 五十音順
- 最終更新日順

#### 嚴器·器官系(Organ System)单位

「用語数」をクリックすると、その臓器・器官系(Organ System)を構成する臓器名が表示されます。

| 漢字がな    | English    | 用語數                      |       |       |     |      |
|---------|------------|--------------------------|-------|-------|-----|------|
|         |            | フェーズ1                    | フェーズ2 | フェーズ3 | 合計  |      |
| 神経系     | しんけいけい     | nervous system           | 43    | 0     | 0   | 43   |
| 感覚器系    | かんかくきけい    | sensory system           | 13    | 0     | 0   | 13   |
| 循環器系    | じゅんかんきけい   | cardiovascular system    | 57    | 67    | 0   | 124  |
| 呼吸器系    | こきゅうきけい    | respiratory system       | 3     | 44    | 0   | - 17 |
| 消化器系    | しょうかきけい    | alimentary system        | 29    | 0     | 0   | 29   |
| 内分泌系    | ないぶんぴつけい   | endocrine system         | 13    | 0     | 0   | 13   |
| 免疫系     | めんえきけい     | immune system            | 3     | 0     | 0   | -    |
| 泌尿器系    | ひにょうきけい    | urinary system           | 9     | 0     | 0   | 19   |
| 生殖系     | せいしょくけい    | genital system           | 16    | 0     | 0   | 16   |
| 骨格系     | こっかくけい     | skeletal system          | 73    | 0     | 0   | 73   |
| 筋肉系     | きんにくけい     | muscular system          | 3     | 0     | 0   | 3    |
| 皮膚/結合組織 | ひふ・けつごうそしき | dermal/connective tissue | 5     | 0     | 0   |      |
| その他     | そのた        | others                   | 4     | 0     | 0   |      |
| 습타      |            | 271                      | 111   | 0     | 382 |      |

- 覧表から選択

#### フェーズの定義

- フェース1: 参数値人体モデルデータベース(独立行政法人情報通信研究機構らが開発)の形状を、ほぼ変えずに細分化したデータ
- フェーズ2: フェーズ1データを、メディカルアーティストが、位置関係や形態を大きく損なうことなく、人体解剖模型・図譜等を参考に作った精密データに臓器器官単位で置換したデータ
- フェーズ3: フェーズ2データを、臨床医学研究者がキュレーションし、臨床医学研究者の解剖学知識と矛盾のないものにしたデータ



**E** 



## BodyParts3Dのエントリ例ー心臓ー





## 「BodyParts3D」データの種類

MRI断面画データ



#### 画像情報から単純分割

ボクセルの解像度や撮影状態などの関係で 再現できない場所や標準的な形状からずれている場合もある

## 解剖学情報を参照して高精度に分割置換

フェーズ2

フェーズ3

データ

#### 参照形状情報

- ·解剖学アトラス(紙ベース)
- ・電子アトラス
- ·模型
- ·統計データ



### 臨床医学研究者による形状確認

| 漢字かな | 4140     | FII-b                 | 用語数   |       |    |     |
|------|----------|-----------------------|-------|-------|----|-----|
|      | English  | フェーズ1                 | フェーズ2 | フェーズ3 | 合計 |     |
| 神経系  | しんけいけい   | nervous system        | 43    | 0     | 0  | 43  |
| 感覚器系 | かんかくきけい  | sensory system        | 13    | 0     | 0  | 13  |
| 循環器系 | じゅんかんきけい | cardiovascular system | 57    | 68    | 0  | 125 |
| 呼吸器系 | こきゅうきけい  | respiratory system    | 3     | 44    | 0  | 47  |



## フェーズ1とフェーズ2の形状比較

例:心臓



フェーズ1

フェーズ2



## 「BodyParts3D」の進捗

MRI断面画データ



#### 画像情報から単純分割

神経、感覚器、呼吸器、循環器、内分泌、 免疫、泌尿器、生殖器、骨格、筋肉、皮膚系

## 解剖学情報を参照して高精度に分割置換

## 呼吸器、循環器



+骨格、消化器、泌尿器、生殖器、中枢神経、筋肉系 →(今年度中、約500パーツ)

+皮膚、血管、末梢神経、免疫→(来年度)

臨床医学研究者による形状確認





## 今後の開発予定

- 1. マーキング機能
  - ・人体の任意の場所にマーカー設定、コメント入力、 保存、検索可能





## マーキング機能(イメージ)





# 今後の開発予定

- 1. マーキング機能
  - 人体の任意の場所にマーカー設定、コメント入力、 保存、検索可能

- 2. マウスによる直感的な画像操作
  - 例: 左クリック: 回転、右クリック: 画像の移動

3. 表示の高速化





## 開発体制



- DBCLS内開発チーム
  - 大久保公策 (開発責任者): 原案、 解剖学監修
  - 三橋 信孝 (専任開発リーダー): 解剖学用語辞書整備、 レンダリングサーバ構築、ホームページ作成
  - 藤枝 香 (専任メディカルアーティスト): 臓器形状データ作成、 データ名称付与、 臓器関係編集
- 外部開発分担企業
  - 株式会社 エムアイシー: ラフモデリング、 計測データ入力
  - 株式会社 ケイズデザインラボ: 3Dエディター指導、 ラフモデリング、 計測データ入力
  - 株式会社 ビッツ: アナトモエディタ画面デザインおよび作成



## アナトモグラフィーを使う

- ・ 方法1:アナトモグラフィーのエディタで画像を作成
  - 心臓を描いてみる

- ・ 方法2: 臓器名と数値データを入力して ヒートマップを作成
  - アクアポリン3という遺伝子が発現している 臓器をアナトモグラフィーで表した図をつくる



# アナトモグラフィーの場所





## 方法2:臓器名と数値データを入力して ヒートマップを作成

- BioGPS(旧名称GNF Symatlas): いろいろな遺伝子の発現をまとめた データベース
- 水を通すトランスポーター タンパク質 AQP3(アクアポリン3)の遺伝子が 発現している臓器をアナトモグラフィ 一で表した図を作る。



AQP3 人体ヒートマップ



## AQP3の発現量(臓器別)



| 臓器名 | 発現量  |
|-----|------|
| 腎臓  | 300  |
| 胸腺  | 2100 |
| 気管  | 1500 |
| 唾液腺 | 1000 |
| 膵臓  | 1200 |
| 前立腺 | 1250 |
| 肺   | 1500 |
| 肝臓  | 250  |
| 舌   | 3300 |
|     |      |



S→Zにすると Zoomされた図になる 腎臓,z,300

胸腺, 2,2100

気管,2,1500

唾液<mark>腺</mark>,s,1000

膵臓, 1200

前立腺,z,1250

肺,z,1500

°,z,250

3300

i,s,-1,-1,-1,0.2

