

Fundamentos de Redes de Computadores Prática de Laboratório 02

Prof. Tiago Alves

Depuração de Problemas na Camada de Transporte

Introdução

Uma vez devidamente configurado, um equipamento que se comunica através de uma rede de computadores como a Internet se faz útil ao interagir com outros equipamentos para o provimento de serviços a usuários.

Ao longo dos encontros em que foi discutida a Camada de Transporte, foram introduzidos vários protocolos que tipicamente dão suporte às aplicações em rede, que, por sua vez, provêem os serviços que usamos diariamente.

Discutiu-se que o estabelecimento de uma conexão por meio de um canal de transmissão confiável depende de uma série de mecanismos que protegem a comunicação quanto a efeitos adversos do meio de transmissão: corrupção de dados; congestionamentos e perdas de pacote.

Antes de serem introduzidas ferramentas de inspeção de protocolos de diferentes camadas, faz-se necessário apresentar ao estudante um conjunto mínimo de ferramentas que permitirão a execução de um diagnóstico preciso ao se encarar uma situação de interrupção ou instabilidade de serviço típico de camada de transporte.

Objetivos

- 1) Exercitar as configurações básicas para navegabilidade em uma rede de computadores bem como como usar ferramentas de diagnóstico para validar configurações
- 2) Exercitar uma comunicação típica TCP por meio de ferramentas de diagnóstico (telnet, netcat, netstat e nmap)

Referências Teóricas

Funcionamento básico de uma rede TCP/IP.

Protocolos de Camada de Transporte.

Material Necessário

- Interfaces de rede (NIC's)
- Máquinas i386 com sistema GNU/Linux
- Cabos de rede par trançado normal
- Switches ou HUBs
- Software nas máquinas: ambiente GNU/Linux básico
- Acesso à Internet NÃO é necessário
- Servidores HTTP, DNS e SMTP devidamente configurados.
- Ferramentas de diagnóstico: telnet, nmap, netcat e netstat

Roteiro

1) Montagem de rede interconectada para o experimento

Os alunos receberão uma topologia com 2 ou mais máquinas e informações sobre intervalo de endereços IP dos equipamentos e máscara de rede.

Além dessa topologia, haverá equipamentos que proverão os serviços necessários às práticas da aula: DNS, HTTP e SMTP.

2) Configurar os clientes na rede de testes e validar as configurações.

Certifique-se que eventuais serviços de suporte às configurações de rede estejam desativados. Lembrem-se das etapas que foram percorridas na **Atividade Extra 00**.

3) Abertura de um *socket* servidor.

Usando um dos computadores disponíveis para o experimento e **usando privilégios administrativos**, habilite um *socket* TCP em estado de escuta. Como ferramenta de apoio, use a aplicação **netcat**. Para tanto execute:

nc -1 numero_da_porta

Para validar a abertura do *socket* servidor, utilize, no sistema operacional Linux o seguinte comando:

netstat -1ptn

Esse comando irá exibir todos os processos (-p) em estado de escuta (-l) e que abriram portas com transporte TCP (-t). Execute os próximos passos apenas se for possível identificar o processo da aplicação **netcat** vinculado à porta indicada.

4) Interações com o *socket* servidor

Na prática sobre camada de aplicação, usamos a aplicação **telnet**. Essa ferramenta é capaz de abrir *sockets TCP* cliente a servidores.

Partindo do princípio que há um equipamento em que está aberta uma porta em estado de escuta, ou seja, há um *socket* servidor de uma aplicação, utilize a ferramenta **telnet** para se conectar a esse servidor. Apenas relembrando a sintaxe esperada para execuções do **telnet**:

telnet nome_do_host numero_da_porta

Uma vez aberto o *socket*, envie bytes através da digitação de caracteres do teclado. Para demandar o envido, pressione a tecla **ENTER** após as digitações.

5) Identificação de serviços disponíveis em um host

As vezes, faz-se necessário verificar se há serviços em execução em determinado host conectado à rede. Porém, diferentemente do cenário apresentado na **Etapa 3**, há situações em que não se terá acesso administrativo (ou físico) ao equipamento a ser analisado.

Nesse contexto, será necessário empreender um teste do tipo **caixa-preta** para verificar se determinados serviços estão ativos. Na verdade, no contexto da camada de transporte, o teste verificará se determinadas portas estão abertas e em estado de escuta no equipamento sobre testes.

As ferramentas até então estudadas são capazes de auxiliar o técnico nessa atividade de identificação de serviços ativos, porém demandarão uma série de interações do operador ou mesmo a programação de *scripts* que serão executados para varrer determinados conjuntos de parâmetros de interesse.

Como as redes TCP/IP já estão em produção há algumas décadas, é natural que algumas ferramentas mais maduras e integradas estejam disponíveis para a identificação mais imediata dos serviços disponíveis. Uma dessas ferramentas é o **nmap**.

Para varrer quais são os serviços ativos em determinado host, executa-se o seguinte comando:

nmap nome_do_host

É possível demandar uma varredura de um conjunto de equipamentos, por exemplo, todos os equipamentos pertencentes a uma rede. Basta alterar o comando acima da seguinte maneira:

nmap faixa_de_ip

onde faixa_de_ip pode ser uma faixa por intervalos (como 192.168.133.**1-20**, o que contemplaria todos os IPs entre 192.168.133.1 e 192.168.133.20) ou mesmo a indicação de uma subrede usando notação CIDR.

Questões para Estudo

- 1) A porta de um servidor que provê aplicações sobre TCP pode se encontrar em diferentes estados. Quais são esses estados e como evolui a comunicação entre um cliente e um servidor TCP quando a porta se apresenta em cada um dos estados possíveis?
- 2) Que tipo de informações o arquivo /etc/services provê?
- 3) Que tipo de ferramentas você recomendaria para a repetição dos mesmos procedimentos sobre UDP?
- 4) Em relação à **Etapa 4** do presente roteiro, descreva o que se observou durante as interações com o *socket* servidor.
- 5) Como você implementaria um transmissor básico de arquivos usando apenas as ferramentas executadas nesse experimento?
- 6) O **nmap** é considerado uma ferramenta extremamente poderosa. Como você a utilizaria para identificar quais são os equipamentos que estão ativos e em execução em uma rede?