DLP Lab2 - Backpropagation Report

• Student name: 林浩君

• Student ID: 0816124

1. Introduction

- This lab require we make a hand-craft neuron network from scratch, and implement backpropagation algorithm when doing gradient descent.
- Since tasks in this lab are classification problems, i choose cross entropy as loss function.

$$L(heta) = \sum \; \hat{y} \; log \; y_i \; + \; (1 - \hat{y}) \; log (1 - y_i)$$

2. Experiment setups

A. Sigmoid functions

- ullet $\sigma(x)=rac{1}{1+e^{-x}}$
- $\sigma'(x) = \sigma(x)(1 \sigma(x))$

B. Neural network

- 4 layers in total, including input and output layer and 2 hidden layers.
- input size: 2
- output size: 1

C. Backpropagation

- For the specific weight between two layers, denote
 - 1. w as the target weight
 - 2. z and z' as the value **before sigmoid function** in two sides of w
 - from z to z'
- ullet the gradient of w can be written as below using chain rule

$$\frac{\partial L}{\partial w} = \frac{\partial z'}{\partial w} \frac{\partial L}{\partial z'}$$

 \circ Then we called $\frac{\partial z'}{\partial w}$ as forward pass, $\frac{\partial L}{\partial z'}$ as backward pass

I. FORWARD PASS

- Let value of z' comes from $z_1, z_2, z_3 \ldots$ with weights $w_1, w_2, w_3 \ldots$ in previous layer
- z' can be written as

$$z'=\sigma(z_1)w_1+\sigma(z_1)w_2\ +\ \dots\ +\sigma(z_n)w_n \ =\sum_{i=0}^n\sigma(z_i)w_j$$

• Then calculate partial derivative using result above

$$rac{\partial z'}{\partial w_i} = \sigma(z_i)$$

- Therefore, value of forward pass is equal to input value, we can just run throught the whole network to get values in forward pass, when implementation, i store z_i instead of $\sigma(z_i)$.
- Matrix form

$$F_0 = x$$
, where x is input

$$F_{i+1} = \sigma(F_i)W$$

II. BACKWARD PASS

- ullet case 1: z is in output layer
 - $\circ \ z$ after sigmoid function should be our model ouput y

$$\sigma(z) = y$$

 \circ Then conbime z and loss function L

$$L(heta) = \sum \; \hat{y} \; log \; \sigma(z) \; + \; (1 - \hat{y}) \; log (1 - \sigma(z))$$

Then calculate partial derivative using result above

$$rac{\partial L}{\partial z} = \sigma'(z) \left[rac{\hat{y}}{\sigma(z)} + rac{(1-\hat{y})}{(1-\sigma(z))}
ight]$$

- case 2: z is in input layer or hidden layer
 - \circ Let value of z connect to z_1', z_2', z_3', \ldots with weight w_1, w_2, w_3, \ldots in next layer
 - \circ z contribute its value to $z_1', z_2', z_3' \ldots$, so partial derivative can be written as

$$egin{aligned} rac{\partial L}{\partial z} &= \sigma'(z) \left[w_1 rac{\partial L}{\partial z_1'} + w_2 rac{\partial L}{\partial z_2'} + \ \ldots
ight] \ &= \sigma'(z) \sum_{i=1}^n w_i rac{\partial L}{\partial z_i'} \end{aligned}$$

Matrix form

$$B_4 = \sigma'(z) \left[rac{\hat{y}}{\sigma(z)} + rac{(1-\hat{y})}{(1-\sigma(z))}
ight]$$

$$B_{i-1} = \sigma'(F_{i-1}) \cdot B_i W^T$$

 $\circ~$ where dot sign \cdot means element wise multiplication

3. Results of your testing

A. Screenshot and comparison figure

Linear case

XOR case

B. Show the accuracy of your prediction

• Linear case

accuracy: 99.0%

XOR case

accuracy: 100.0%

C. Learning curve (loss, epoch curve)

• Linear case

• XOR case

4. Discussion

A. Try different learning rates

- I choose Ir=1e-2 in linear case and Ir=2e-2 in xor case.
- If choose smaller learning rate, loss will converge too slow.
 - Set Ir=1e-3 in linear case, loss is about 20 after 3000 epoch while loss is getting 0 when we choose Ir=1e-2 after same amount of epoch.

• If choose larger learning rate, loss will change rapidly and will be hard to converge, or even diverge to infinite.

○ Set Ir=1e-1 in linear case

B. Try different numbers of hidden units

- I choose number of neurons as 10 in linear case and 100 in xor case.
- Linear dataset is easier to fit, a few number of neurons can lead to good performance.
- XOR dataset is harder to fit, need more number of neurons to get good performance, if there's too few neurons, loss will not converge or need more epochs.

C. Try without activation functions

- Set a global boolean variable wo_activation
- In linear case, network still have good performance and get accuracy 100%

• In xor case, netwrok can't fit well since linear model can't fit xor problem.

