MITx: Statistics, Computation & Applications

Statistics Refresher

Lecture 2: Hypothesis Testing

2 / 13

patient	1	2	3	4	5	6	7	8	9	10	mean
drug	6.1	7.0	8.2	7.6	6.5	7.8	6.9	6.7	7.4	5.8	7.00
placebo	5.2	7.9	3.9	4.7	5.3	4.8	4.2	6.1	3.8	6.3	5.22

Question: Does the drug increase hours of sleep enough to matter?

patient	1	2	3	4	5	6	7	8	9	10	mean
drug	6.1	7.0	8.2	7.6	6.5	7.8	6.9	6.7	7.4	5.8	7.00
placebo	5.2	7.9	3.9	4.7	5.3	4.8	4.2	6.1	3.8	6.3	5.22

Question: Does the drug increase hours of sleep enough to matter?

Model: Difference of hours of sleep between drug and placebo

$$X_1,\ldots,X_{10}\sim\mathcal{N}(\mu,\sigma^2)$$

patient	1	2	3	4	5	6	7	8	9	10	mean
drug	6.1	7.0	8.2	7.6	6.5	7.8	6.9	6.7	7.4	5.8	7.00
placebo	5.2	7.9	3.9	4.7	5.3	4.8	4.2	6.1	3.8	6.3	5.22

Question: Does the drug increase hours of sleep enough to matter?

• Model: Difference of hours of sleep between drug and placebo

$$X_1,\ldots,X_{10}\sim\mathcal{N}(\mu,\sigma^2)$$

• Null hypothesis (H_0): $\mu = 0$; Alternative (H_A): $\mu > 0$

patient	1	2	3	4	5	6	7	8	9	10	mean
drug	6.1	7.0	8.2	7.6	6.5	7.8	6.9	6.7	7.4	5.8	7.00
placebo	5.2	7.9	3.9	4.7	5.3	4.8	4.2	6.1	3.8	6.3	5.22

Question: Does the drug increase hours of sleep enough to matter?

Model: Difference of hours of sleep between drug and placebo

$$X_1,\ldots,X_{10}\sim\mathcal{N}(\mu,\sigma^2)$$

- Null hypothesis (H_0): $\mu = 0$; Alternative (H_A): $\mu > 0$
- Test statistic: standardized average difference $\frac{X_n \mu}{\sigma/\sqrt{n}}$; under H_0 :

$$\frac{\bar{X}_n}{\sqrt[]{g}/\sqrt{n}} \sim \mathcal{N}(0,1)$$

patient	1	2	3	4	5	6	7	8	9	10	mean
drug											
placebo	5.2	7.9	3.9	4.7	5.3	4.8	4.2	6.1	3.8	6.3	5.22

Question: Does the drug increase hours of sleep enough to matter?

Model: Difference of hours of sleep between drug and placebo

$$X_1,\ldots,X_{10}\sim\mathcal{N}(\mu,\sigma^2)$$

- Null hypothesis (H_0): $\mu = 0$; Alternative (H_A): $\mu > 0$
- Test statistic: standardized average difference $\frac{X_n \mu}{\sigma / \sqrt{n}}$; under H_0 :

$$rac{ar{X}_n}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

Note: Shortcoming of this test (**z-test**): assumes σ is known

t-test

- Doesn't assume that the true σ is known
- Uses estimate of σ instead: $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$
- ullet Test statistic: $T=rac{ar{X}_n-\mu}{\hat{\sigma}/\sqrt{n}}$; under the null hypothesis:

$$\frac{\bar{X}_n}{\hat{\sigma}/\sqrt{n}} \sim t_{n-1}$$
 (see handout for a derivaton)

t-test

- Doesn't assume that the true σ is known
- Uses estimate of σ instead: $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$
- Test statistic: $T = \frac{X_n \mu}{\hat{\sigma}/\sqrt{n}}$; under the null hypothesis:

$$\frac{\bar{X}_n}{\hat{\sigma}/\sqrt{n}} \sim t_{n-1}$$
 (see handout for a derivation)

t-distribution: Let $T \sim t_n$. Then

- $X_1, \ldots, X_n \sim \mathcal{N}(0,1)$, then $\sum_{i=1}^n X_i^2 \sim \chi_n^2$; $t_n \sim \frac{\mathcal{N}(0,1)}{\sqrt{\chi^2/n}}$
- $t_n \xrightarrow{n \to \infty} \mathcal{N}(0,1)$
- $\mathbb{E}(T) = 0$, $Var(T) = \frac{n}{n-2} > 1$

 \Rightarrow estimating σ introduces uncertainty; more weight in tails

Notes on the t-statistic

t-statistic: $T_n := \frac{X_n - \mu}{G^2/n^2}$

where $\bar{X}_{\Lambda} := \frac{1}{\Lambda} \sum_{i=1}^{\kappa} X_i$ and $\hat{F}^2 := \frac{1}{\Lambda-\Lambda} \sum_{i=1}^{\kappa} (X_i - \bar{X}_{\Lambda})^2$

and X. - X, 22 N(O,1)

 χ^2 -distribution, $\sum_{i=1}^2 \chi^2 \sim \chi^2$, where $\chi_i \sim \mathcal{N}(0_1 1)$ and χ^2 deg. of freedom $=\sum_{i=1}^2 Z_i$, where $Z_i \sim \chi^2$

t distribution, $\frac{y}{12/n}$ n th, where $\frac{y}{2} \sim \chi_n^2$ and $\frac{z}{2} \sim \chi_n^2$

froof: <u>x-m</u> ~ N(0, M) X-M ~ N(0,1) $(\frac{1}{n-n})^2 \left(\frac{1}{r^2} \sum_{i=n}^{n} (x_i - \overline{x}_n)^2\right)$

We need to show:
$$\frac{\Lambda}{\sigma^2} \stackrel{\circ}{\underset{i=\Lambda}{\sum}} (X_i - \overline{X}_{\Lambda})^2 \sim \chi^2_{\Lambda-\Lambda}$$

$$\stackrel{\circ}{\stackrel{\circ}{\sum}} \left(\frac{X_i - \mu}{\sigma}\right)^2 = \frac{\Lambda}{\sigma^2} \stackrel{\circ}{\underset{i=\Lambda}{\sum}} (X_i - \overline{X}_{\Lambda} + \overline{X}_{\Lambda} - \mu)^2$$

$$\stackrel{\circ}{\stackrel{\circ}{\sum}} (X_i - \overline{X}_{\Lambda})^2 + \frac{\Lambda}{\Gamma^2} (\overline{X}_{\Lambda} - \mu)^2$$

$$\stackrel{\circ}{\stackrel{\circ}{\sum}} (X_i - \overline{X}_{\Lambda})^2 + \frac{\Lambda}{\Gamma^2} (\overline{X}_{\Lambda} - \mu)^2$$

$$\stackrel{\circ}{\stackrel{\circ}{\sum}} (X_i - \overline{X}_{\Lambda})^2 + \frac{\Lambda}{\Gamma^2} (\overline{X}_{\Lambda} - \mu)^2$$

$$\stackrel{\circ}{\stackrel{\circ}{\sum}} (X_i - \overline{X}_{\Lambda})^2 = \chi^2_{\Lambda-\Lambda}$$

$$\frac{\chi_{n}^{2}-\chi_{n}^{2}}{\Rightarrow}\frac{\chi_{n}^{$$

patient	1	2	3	4	5	6	7	8	9	10
drug	6.1	7.0	8.2	7.6	6.5	7.8	6.9	6.7	7.4	5.8
placebo	5.2	7.9	3.9	4.7	5.3	4.8	4.2	6.1	3.8	6.3

Question: Does the drug increase the length of sleep enough to matter?

Model: Difference of sleeping time between drug and placebo

$$X_1,\ldots,X_{10}\stackrel{iid}{\sim}\mathcal{N}(\mu,\sigma^2)$$

- Null hypothesis (H_0): $\mu = 0$; Alternative (H_A): $\mu > 0$
- ~~そのでが) • z-statistic: $\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$; assumes σ is known
- t-statistic: $\frac{X_n-\mu}{\hat{\sigma}/\sqrt{n}} \sim t_{n-1}$, where $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$

Comparison of normal versus t-distribution

Remarks

- When using a *t*-test, check assumption of normality!
 - E.g. using a qq-plot (quantile-quantile plot) or a Kolmogorov-Smirnov

Remarks

- When using a t-test, check assumption of normality!
 - E.g. using a qq-plot (quantile-quantile plot) or a Kolmogorov-Smirnov test
- Alternative: Wilcoxon signed rank test
 - Model: $X_1, \dots X_n \sim F$ symmetric around a mean μ
 - Test statistic: $W = \sum_{i=1}^{n} \operatorname{sgn}(X_i \mu) R_i$, where R_i is rank of $|X_i \mu|$
 - ullet One can show that this test statistic is asymptotically $(n o \infty)$ normally distributed
 - \Rightarrow build hypothesis test based on asymptotic distribution

Remarks

- When using a t-test, check assumption of normality!
 - E.g. using a qq-plot (quantile-quantile plot) or a Kolmogorov-Smirnov test
- Alternative: Wilcoxon signed rank test
 - Model: $X_1, \dots X_n \sim F$ symmetric around a mean μ
 - Test statistic: $W = \sum_{i=1}^{n} \operatorname{sgn}(X_i \mu) R_i$, where R_i is rank of $|X_i \mu|$
 - One can show that this test statistic is asymptotically $(n \to \infty)$ normally distributed
 - ⇒ build hypothesis test based on asymptotic distribution
- Sometimes you might not have paired data: all hypothesis tests discussed in this lecture have unpaired version; as to be expected, unpaired tests are usually less powerful

The **confidence interval at level** $1-\alpha$ is defined as

$$I(X) = \{ \mu \mid H_0 \text{ is not rejected at significance level } \alpha \}$$

The **confidence interval at level** $1-\alpha$ is defined as

$$I(X) = \{ \mu \mid H_0 \text{ is not rejected at significance level } \alpha \}$$

- I(X) is a random quantity; it depends on the observations
- Often computed based on 2-sided testing and normal approximation

Example: For the sleeping drug example the confidence interval is

$$\frac{\bar{X}_n}{\sigma/\sqrt{n}} \pm \Phi^{-1}(1-\alpha/2)$$

The **confidence interval at level** $1-\alpha$ is defined as

$$I(X) = \{ \mu \mid H_0 \text{ is not rejected at significance level } \alpha \}$$

- I(X) is a random quantity; it depends on the observations
- Often computed based on 2-sided testing and normal approximation

Example: For the sleeping drug example the confidence interval is

$$\frac{\bar{X}_n}{\sigma/\sqrt{n}} \pm \Phi^{-1}(1 - \alpha/2)$$

Alternative interpretation of confidence interval: Confidence interval contains true parameter μ with probability $1-\alpha$, i.e.

$$\mathbb{P}_{\mu}(\mu \in I(X)) = 1 - \alpha$$

Confidence interval illustration

- Model: $X \sim p(x, \theta)$, e.g. $X \sim \text{Binomial}(31'000, \pi)$
- Test: $H_0: \theta \in \Theta_0$ versus $H_A: \theta \in \Theta_A$, where $\Theta_0 \cap \Theta_A = \emptyset$
 - Ex: H_0 : $\pi_{\mathrm{treatment}} = \pi_{\mathrm{control}}$ versus H_A : $\pi_{\mathrm{treatment}} \neq \pi_{\mathrm{control}}$

- Model: $X \sim p(x, \theta)$, e.g. $X \sim \text{Binomial}(31'000, \pi)$
- Test: $H_0: \theta \in \Theta_0$ versus $H_A: \theta \in \Theta_A$, where $\Theta_0 \cap \Theta_A = \emptyset$
 - Ex: H_0 : $\pi_{\text{treatment}} = \pi_{\text{control}}$ versus H_A : $\pi_{\text{treatment}} \neq \pi_{\text{control}}$
- Likelihood ratio: $L(x) = \frac{\max_{\theta \in \Theta_0} p(x;\theta)}{\max_{\theta \in \Theta} p(x;\theta)}$, where $\Theta = \Theta_0 \cup \Theta_A$
 - $p(x;\theta)$ is the probability / density of observing the data x
 - the parameter $\hat{\theta}$ that maximizes $p(x; \theta)$ is called the maximum likelihood estimator (MLE)

- Model: $X \sim p(x, \theta)$, e.g. $X \sim \text{Binomial}(31'000, \pi)$
- Test: $H_0: \theta \in \Theta_0$ versus $H_A: \theta \in \Theta_A$, where $\Theta_0 \cap \Theta_A = \emptyset$
 - Ex: H_0 : $\pi_{\text{treatment}} = \pi_{\text{control}}$ versus H_A : $\pi_{\text{treatment}} \neq \pi_{\text{control}}$
- Likelihood ratio: $L(x) = \frac{\max_{\theta \in \Theta_0} p(x;\theta)}{\max_{\theta \in \Theta} p(x;\theta)}$, where $\Theta = \Theta_0 \cup \Theta_A$
 - $p(x;\theta)$ is the probability / density of observing the data x
 - the parameter $\hat{\theta}$ that maximizes $p(x; \theta)$ is called the maximum likelihood estimator (MLE)
 - 0 < L(x) < 1; $L(x) \ll 1$ if $\theta \in \Theta_A$; $L(x) \approx 1$ if $\theta \in \Theta_0$;

- Model: $X \sim p(x, \theta)$, e.g. $X \sim \text{Binomial}(31'000, \pi)$
- Test: $H_0: \theta \in \Theta_0$ versus $H_A: \theta \in \Theta_A$, where $\Theta_0 \cap \Theta_A = \emptyset$
 - Ex: H_0 : $\pi_{\text{treatment}} = \pi_{\text{control}}$ versus H_A : $\pi_{\text{treatment}} \neq \pi_{\text{control}}$
- Likelihood ratio: $L(x) = \frac{\max_{\theta \in \Theta_0} p(x;\theta)}{\max_{\theta \in \Theta} p(x;\theta)}$, where $\Theta = \Theta_0 \cup \Theta_A$
 - $p(x;\theta)$ is the probability / density of observing the data x
 - the parameter $\hat{\theta}$ that maximizes $p(x; \theta)$ is called the maximum likelihood estimator (MLE)
 - 0 < L(x) < 1; $L(x) \ll 1$ if $\theta \in \Theta_A$; $L(x) \approx 1$ if $\theta \in \Theta_0$;
- Likelihood ratio test: Reject H_0 if $L(x) < \eta$, where η is chosen such that $\mathbb{P}_{H_0}(L(x) \leq \eta) = \alpha$

- Model: $X \sim p(x, \theta)$, e.g. $X \sim \text{Binomial}(31'000, \pi)$
- Test: $H_0: \theta \in \Theta_0$ versus $H_A: \theta \in \Theta_A$, where $\Theta_0 \cap \Theta_A = \emptyset$
 - Ex: H_0 : $\pi_{\text{treatment}} = \pi_{\text{control}}$ versus H_A : $\pi_{\text{treatment}} \neq \pi_{\text{control}}$
- Likelihood ratio: $L(x) = \frac{\max_{\theta \in \Theta_0} p(x;\theta)}{\max_{\theta \in \Theta} p(x;\theta)}$, where $\Theta = \Theta_0 \cup \Theta_A$
 - $p(x;\theta)$ is the probability / density of observing the data x
 - the parameter $\hat{\theta}$ that maximizes $p(x; \theta)$ is called the maximum likelihood estimator (MLE)
 - 0 < L(x) < 1; $L(x) \ll 1$ if $\theta \in \Theta_A$; $L(x) \approx 1$ if $\theta \in \Theta_0$;
- Likelihood ratio test: Reject H_0 if $L(x) < \eta$, where η is chosen such that $\mathbb{P}_{H_0}(L(x) \leq \eta) = \alpha$
 - Neyman-Pearson Lemma: Likelihood ratio test is the most powerful among all level α tests for testing $H_0: \theta = \theta_0$ versus $H_A: \theta = \theta_A$

Asymptotic likelihood ratio test

• In general L(x) does not have an easily computable null distribution, i.e., it is difficult to determine η

Asymptotic likelihood ratio test

• In general L(x) does not have an easily computable null distribution, i.e., it is difficult to determine η

• Likelihood ratio statistic:
$$\Lambda(x) := -2 \log(\underline{L(x)}) = -2 \log \frac{\max_{\theta \in \Theta_0} p(x;\theta)}{\max_{\theta \in \Theta} p(x;\theta)}$$

• $0 \le \Lambda(x) < \infty$

- reject H_0 if $\Lambda(x)$ is too large
- Wilks Theorem: Under H₀,

where
$$d = \underbrace{\dim(\Theta)}_{\mathbf{Z}} - \underbrace{\dim(\Theta_0)}_{\mathbf{Z}} > 0$$

Asymptotic likelihood ratio test for HIP study

	breast cancer deaths	alive	total
treatment	39 (0.0013)	30'961	31'000
control	63 (0.0020)	30'937	31'000
total	102	61'898	62'000

•
$$H_0$$
: $\pi_{\mathrm{treatment}} = \pi_{\mathrm{control}}$ versus H_A : $\pi_{\mathrm{treatment}} \neq \pi_{\mathrm{control}}$

•
$$\Lambda(x) = -2 \log \frac{\max p(x; \pi)}{\max p(x; \pi_{\text{treatment}}, \pi_{\text{control}})}$$

Asymptotic likelihood ratio test for HIP study

	breast cancer deaths	alive	total
treatment	39 (0.0013)	30'961	31'000
control	63 (0.0020)	30'937	31'000
total	102	61'898	62'000

- H_0 : $\pi_{\text{treatment}} = \pi_{\text{control}}$ versus H_A : $\pi_{\text{treatment}} \neq \pi_{\text{control}}$
- $\Lambda(x) = -2 \log \frac{\max p(x; \pi)}{\max p(x; \pi_{\text{treatment}}, \pi_{\text{control}})}$
- Under H_0 the MLE is $\hat{\pi} = \frac{102}{62'000}$
- Under H_A the MLEs are $\hat{\pi}_{\text{treatment}} = \frac{39}{31'000}$ and $\hat{\pi}_{\text{control}} = \frac{63}{31'000}$
- Then $\Lambda(x) = -2 \log \frac{p(x; \hat{\pi})}{p(x; \hat{\pi}_{\text{treatment}}, \hat{\pi}_{\text{control}})} = \cdots = 5.71$

Asymptotic likelihood ratio test for HIP study

	breast cancer deaths	alive	total
treatment	39 (0.0013)	30'961	31'000
control	63 (0.0020)	30'937	31'000
total	102	61'898	62'000

- H_0 : $\pi_{\mathrm{treatment}} = \pi_{\mathrm{control}}$ versus $H_{\mathcal{A}}$: $\pi_{\mathrm{treatment}} \neq \pi_{\mathrm{control}}$
- $\Lambda(x) = -2 \log \frac{\max p(x; \pi)}{\max p(x; \pi_{\text{treatment}}, \pi_{\text{control}})}$
- Under H_0 the MLE is $\hat{\pi} = \frac{102}{62'000}$
- Under H_A the MLEs are $\hat{\pi}_{\mathrm{treatment}} = \frac{39}{31'000}$ and $\hat{\pi}_{\mathrm{control}} = \frac{63}{31'000}$
- Then $\Lambda(x) = -2\log\frac{p(x;\hat{\pi})}{p(x;\hat{\pi}_{\text{treatment}},\hat{\pi}_{\text{control}})} = \cdots = 5.71$
- Under H_0 : $\Lambda(x) \stackrel{n \to \infty}{\to} \chi_1^2$

χ^2 -distribution

chi-square(1) with 0.95-quantile and observed likelihood ratio statistic

References

- For a statistics review, including hypothesis testing (chapter 26-29):
 - D. Freedman, R. Pisani, R. Purves. Statistics. 2007.

- For how to perform hypothesis testing in R (chapter 4):
 - P. Dalgaard. Introductory Statistics with R. 2002.