Course Name	Design and Analysis of Algorithms	Course Code	CS2002						
Offered by Department	Computer Science and Engineering	Structure (LTPC)	3	1	0	4			
To be offered for	B.Tech	Course Type		Co	re				
Prerequisite	NIL	Approved In	Senate-44						
Learning Objectives	 To design time or space efficient algorithms using well known paradigms. To understand the limitations of computing machines. To explore tractable vs intractable problems. 								
Learning Outcomes	 To design efficient algorithms using paradigms such as divide and conquer, dynamic programming, greedy method etc. To differentiate easy vs hard problems. To design polynomial-time algorithms with proof of correctness. 								
Course Contents (with approximate breakup of hours for lecture/ tutorial/practice)	 To design polynomial-time algorithms with proof of correctness. Review of time/space complexity – recurrence relations – recurrence tree method – master's theorem (5L,2T) Incremental and decremental strategies – divide and conquer – case studies – lower bounds for sorting (5L,3T) Greedy Method – Container loading – knapsack – scheduling – coin change – proof of correctness (8L,2T) Dynamic programming – matrix chain, optimal binary search tree, travelling salesman, LCS, knapsack, greedy vs dynamic programming – Principle of optimality, overlapping sub problems – Dynamic programming vs Divide and Conquer (8L,2T) Graph algorithms – Topological sort – Shortest path algorithms – Dijskstra's Algorithm, – Bellman-Ford's Algorithm – minimum spanning tree – Principle of optimality (8L,2T) Tractability - Introduction to NP-completeness – NP, NP-hardness, polynomial-time reductions (6L,1T) Coping with intractable problems - Branch and bound – Back tracking – case studies (5L,1T) Solvable vs Unsolvable problems – Halting problem, Reducibility to Halting problem (3L) 								
Essential Reading	 T. H. Cormen, C. E. Leiserson, and R. L. Rivest, "Introduction to Algorithms," Prentice Hall India, 2 nd Edition, 2001. ISBN 978-0-262-53305-8 E. Horowitz, S. Sahni, and S. Rajasekaran, "Computer Algorithms," 2 nd Edition, Galgotia Publications, 2007. ISBN 0-7167-8316-9 								
Supplementary Reading	 Aho, Hopcroft, and Ullmann, "Data Structures & Algorithms," Addison Wesley, 1983. ISBN13: 9780201000238 Algorithm Design, Eva Tardos and Kleinberg, Pearson, 2006, ISBN-13: 978- 0321295354 								

Course Name	Digital System Design Practice	Course Code	CS2003				
Offered by Department	Computer Science and Engineering	Structure	0	0	4	2	
To be offered for	B.Tech	Course Type	Core				