Cours Electronique Analogique

Notion de Quadripôles – Partie 1

Troisième Cycle Universitaire

Plan

- 1. Les Quadripôles
 - 1.1 Définition
 - 1.2 Représentation
 - 1.3 Origine
 - 1.4 Exemples de Quadripôles
 - 1.5 Intérêt de la représentation du quadripôle
 - 1.6 Rappel sur les Matrices 2×2
- 2. Caractéristiques internes d'un quadripôle
 - 2.1 Description matricielle d'un quadripôle
 - 2.1.1 Matrice Impédance
 - 2.1.2 Matrice Admittance
 - 2.1.2 Matrice Hybride
 - 2.1.2 Matrice de Transfert

1.1 Définition:

Un quadripôle est un composant ou circuit (ensemble de composants) quelconque, comportant deux bornes d'entrée et deux bornes de sortie, entre lesquelles il y a transfert d'énergie.

1.2 Representation:

Quatre grandeurs électriques caractérisent le transfert de l'énergie dans le quadripôle, (V1(t), i1(t)) à l'entrée vers (V2(t), i2(t)) à la sortie figure 1.

Fig.1 Schéma d'un quadripôle

Par convention, on donne le sens positif aux courants qui pénètrent dans le quadripôle

1.3 Origine:

 On doit les premières études sur les quadripôles au mathématicien Allemand Franz BREISIG (1868 – 1934) dans les années 1920.

1.4 Exemple de Quadripôles

☐ On peut distinguer deux types de quadripôles:

Quadripôle passif: le réseau ne comporte aucune source d'énergie.

Quadripôle actif: le réseau comporte des sources de tension ou/et courant.

1.4 Intérêt de la représentation du quadripôle

La représentation quadripôle a pour principal intérêt de considérablement simplifier l'étude des circuits électroniques, Figure 3. Cette étude est facilitée par l'usage du calcul matriciel

Figure 3: Exemple d'un filtre sélectif passe bas du 5ème ordre

1.5 Rappel sur les Matrices 2×2

☐ Multiplication

$$\begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}$$

$$\begin{cases} Y_1 = a.X_1 + b.X_2 \\ Y_2 = c.X_1 + d.X_2 \end{cases}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a.e + b.g & a.f + b.h \\ c.e + d.g & c.f + d.h \end{bmatrix}$$
Ce produit n'est pas commutatif.

☐ Inversion

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \frac{1}{a.d-b.c} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \quad \text{avec} \quad a.d-b.c \neq 0$$

Figure 4: Schéma global d'une structure Source-Quadripôle-Charge

2.1 Description Matricielle d'un Quadripôle

Il existent 4 représentations matricielles différentes:

- Matrices Impédances
- Matrices Admittances
- Matrices Hybrides
- Matrices de Transfert

2.1 Description Matricielle d'un Quadripôle

2.1.1 Matrice Impédance

Définition: On exprime les tensions en fonction des courants. Les éléments de la matrice ont la dimension d'impédances (résistances).

☐ Représentation Matricielle et détermination des paramètres Z

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \qquad \begin{cases} V_1 = Z_{11}.I_1 + Z_{12}.I_2 \\ V_2 = Z_{21}.I_1 + Z_{22}.I_2 \end{cases} \qquad Z_{11} = \frac{V_1}{I_1} \Big|_{I1 = 0} \qquad Z_{22} = \frac{V_2}{I_2} \Big|_{I1 = 0}$$

$$Z_{12} = \frac{V_1}{I_2} \Big|_{I1 = 0} \qquad Z_{21} = \frac{V_2}{I_1} \Big|_{I2 = 0}$$

• L'unité des impédances Zij sont les ohms (Ω) . L'indice i est relatif à la tension et indice j est relatif au courant.

2.1 Description Matricielle d'un Quadripôle

2.1.1 Matrice Impédance

Définitions:

1. Impédance d'entrée Z_{11}

$$Z_{11} = \left. rac{v_1}{i_1}
ight|_{i_2 = 0}$$

Définition:

 Z_{11} est l'impédance vue de l'entrée du quadripôle en laissant la sortie en circuit ouvert (c'est-à-dire $i_2=0$).

2. Impédance de sortie Z_{22}

$$Z_{22} = \left. rac{v_2}{i_2}
ight|_{i_1 = 0}$$

Définition:

 Z_{22} est l'impédance vue de la sortie du quadripôle en laissant l'entrée en circuit ouvert (c'est-à-dire $i_1=0$).

2.1 Description Matricielle d'un Quadripôle

2.1.1 Matrice Impédance

Définitions:

4. Impédance de transfert directe Z_{21}

$$Z_{21} = \left. rac{v_2}{i_1}
ight|_{i_2=0}$$

Définition:

 Z_{21} est l'impédance de transfert directe (ou transimpédance directe), obtenue avec la sortie du quadripôle en circuit ouvert ($i_2=0$).

3. Impédance de transfert inverse Z_{12}

$$Z_{12} = \left. rac{v_1}{i_2}
ight|_{i_1 = 0}$$

Définition:

 Z_{12} est l'impédance de transfert inverse (ou transimpédance inverse), obtenue avec l'entrée du quadripôle en circuit ouvert ($i_1=0$).

- 2.1 Description Matricielle d'un Quadripôle
 - 2.1.1 Matrice Impédance

Définitions:

- Un quadripôle est dit linéaire s'il existe une relation linéaire entre V1, V2, I1 et I2.
- Un quadripôle est dit symétrique s'il présente le même aspect vu de l'entrée et vu de la sortie. (Z11=Z22)
- Un quadripôle est dit réciproque si une source de tension placée en entrée conduit à un courant I2 égal au courant I1 obtenu lorsque la source de tension est placée en sortie. (Z12=Z21)
- Un quadripôle est unilatéral si la tension ou courant d'entrée ne dépend pas des paramètres de sortie. (Z12=0)

2.1 Description Matricielle d'un Quadripôle

2.1.1 Matrice Impédance

- a. Rappeler les équations des paramètres Impédances $\mathbf{Z_{ij}}$ d'un quadripôle
- b. Calculer, en utilisant leurs définitions, les paramètres \mathbf{Z}_{ij} du quadripôle ci-dessus.

2.1 Description Matricielle d'un Quadripôle

2.1.1 Matrice Admittance

Définition: On exprime les courants en fonction des tensions. Les éléments de la matrice ont la dimension d'admittances.

☐ Représentation Matricielle et détermination des paramètres Y

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \qquad \longleftrightarrow \qquad \begin{cases} I_1 = Y_{11}.V_1 + Y_{12}.V_2 \\ I_2 = Y_{21}.V_1 + Y_{22}.V_2 \end{cases}$$

• L'unité des impédances Yij sont les ohms (Ω^{-1}) . L'indice i est relatif à la tension et indice j est relatif au courant.

- 2.1 Description Matricielle d'un Quadripôle
 - 2.1.1 Matrice Admittance

- a. Rappeler les équations des paramètres Admittances $\mathbf{Y_{ij}}$ d'un quadripôle
- b. Déterminer, en utilisant leurs définitions, les paramètres \mathbf{Y}_{ij} du quadripôle ci-dessus.

$$Y_{11} = \frac{R_2 + R_3}{R_{1.}R_{2} + R_{1.}R_{3} + R_{2.}R_{3}} \qquad Y_{12} - \frac{-R_2}{R_{1.}R_{2} + R_{1.}R_{3} + R_{2.}R_{3}}$$

$$Y_{21} = \frac{-R_2}{R_{1.}R_{2} + R_{1.}R_{3} + R_{2.}R_{3}} \qquad Y_{22} = \frac{R_1 + R_2}{R_{1.}R_{2} + R_{1.}R_{3} + R_{2.}R_{3}}$$

2.1 Description Matricielle d'un Quadripôle

2.1.1 Matrice Hybride

Définition: On exprime le courant de sortie et la tension d'entrée en fonction du courant d'entrée et de la tension de sortie. C'est une représentation utilisée pour l'étude des transistors.

☐ Représentation Matricielle et détermination des paramètres H

$$\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} \qquad \qquad \begin{cases} V_1 = h_{11}.I_1 + h_{12}.V_2 \\ I_2 = h_{21}.I_1 + h_{22}.V_2 \end{cases}$$

h11 est une impédance, h22 est une admittance, h12 et h21 sont des constantes.

2.1 Description Matricielle d'un Quadripôle

2.1.1 Matrice Hybride

- a. Rappeler les équations des paramètres IHybrides $\mathbf{h_{ij}}$ d'un quadripôle
- b. Calculer, en utilisant leurs définitions, les paramètres \mathbf{h}_{ij} du quadripôle ci-dessus.

2.1 Description Matricielle d'un Quadripôle

2.1.1 Matrice Hybride

Schéma équivalent:

• Le circuit équivalent est composé d'une impédance (h11), d'une admittance (h22), d'une source de tension (h12.V2) et d'une source de courant (h21.I1).

2.1 Description Matricielle d'un Quadripôle

2.1.1 Matrice de Transfert

Définition: On exprime les grandeurs de sortie en fonction des grandeurs d'entrée

☐ Représentation Matricielle et détermination des paramètres T

$$\begin{bmatrix} V_2 \\ I_2 \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ -I_1 \end{bmatrix} \qquad \longleftrightarrow \qquad \begin{cases} V_2 = T_{11}.V_1 - T_{12}.I_1 \\ I_2 = T_{21}.V_1 - T_{22}.I_1 \end{cases}$$

T12 est une impédance, T21 est une admittance, T11 et T22 sont des constantes.

- 2.1 Description Matricielle d'un Quadripôle
 - 2.1.1 Matrice de Transfert

- a. Rappeler les équations des paramètres de Transfert T_{ij} d'un quadripôle
- b. Déterminer, en utilisant leurs définitions, les paramètres $\mathbf{T_{ij}}$ du quadripôle ci-dessus.

Exercice Matrice Z: (dans cet exercice on a bobine, et condensateur)

a. Déterminer les paramètres $\mathbf{Z_{ij}}$ du quadripôle ci-dessus.

Solution

$$[Z] = \begin{bmatrix} j \begin{bmatrix} L\omega & -\frac{1}{C\omega} \end{bmatrix} & \frac{-j}{C\omega} \\ \frac{-j}{C\omega} & \frac{-j}{C\omega} \end{bmatrix}$$