STAT 433: HOMEWORK 3

DANIEL PFEFFER

Problem 1. Consider the following transition matrices. Identify the transient and recurrent states, and the irreducible closed sets in the Markov chains.

(a)	1	2	3	4	5			2				
` /		.3				1	.1	0	0	.4	.5	0
		.5				2	.1	.2	.2	0	.5	0
_	-	0	-		-	3	0	.1	.3	0	0	.6
						4	.1	0	0	.9	0	0
_		.5				5	0	0	0	.4	0	.6
5	0	.3	0	.3	.4	6	0	0	0	0	.5	.5

(c)	1	9	2	1	5	(d)	1	2	3	4	5	6
. /						1	.8	0	0	.2	0	0
1	0	0	0	0	1					0		
2	0	.2	0	.8	0	_	-		-	-		-
3	.1	9	3	4	Ω	3	0	0	.3	.4	.3	O
						4	.1	0	0	.9	0	0
4	0	.6	U	.4	U	5	Ο	2	Ω	0	8	Ο
5	.3	0	0	0	.7	_	-		-	-		-
						6	.7	()	()	.3	()	()

(a) Solution. The directed graph representation is

Since $1 \to 2$ but $2 \not\to 1$, state 1 is transient. Since $5 \to 4$ but $4 \not\to 5$, state 5 is transient. Since $3 \to 2$ but $2 \not\to 3$, state 3 is transient. So, states 2 and 4 are recurrent. The closed irreducible set is $\{2,4\}$.

(b) Solution. The directed graph representation is

Since $2 \to 1$ but $1 \not\to 2$, state 2 is transient. Since $3 \to 6$ but $6 \not\to 3$, state 3 is transient. So states 1, 4, 5, and 6 are recurrent. The closed irreducible set is $\{1, 4, 5, 6\}$.

1

(c) Solution. The directed graph representation is

Date: June 2, 2020.

Since $3 \to 1$ but $1 \not\to 3$, state 3 is transient. So state 1, 2, 4, and 5 are recurrent. The closed irreducible sets are $\{1,5\}$ and $\{2,4\}$.

(d) Solution. The directed graph representation is

Since $3 \to 4$ but $4 \not\to 3$, state 3 is transient, and since $6 \to 1$ but $1 \not\to 6$, state 6 is transient. So state 1, 2, 4, and 5 are recurrent. The closed irreducible sets are $\{1,4\}$ and $\{2,5\}$.

Problem 2. Let G be a connected graph. Let X_n be a simple random walk on G. Show that the Markov chain $\{X_n\}$ is irreducible. (Hint: for any two vertices x and y in G, consider a path of consecutive nodes from x to y.)

Solution. Let x and y be any two vertices in G, let $T_y = \min\{n \ge 0 : X_n = y\}$ be the first hitting time of y, and let K be the smallest number of steps it takes to get from x to y. Since G is connected, x and y are connected by with a path of edges by definition, which implies that $p^K(x,y) > 0$. So, for the chain started in x, there exists a sequence $\{y_1, y_2, \ldots, y_{K-1}\}$ such that

$$p(x, y_1) > 0, p(y_1, y_2) > 0, \dots, p(y_{K-1}, y_K) > 0,$$

where $y_i \neq x$ for i = 1, 2, ..., K - 1. Then

$$P_x(T_y < \infty) = p(x, y_1)p(y_1, y_2) \cdots p(y_{K-1}, y_K)p(y_K, y) > 0.$$

By the same logic, for the chain started in y, we see that $\{X_n\}$ on G has exactly one communicating class, and hence is irreducible.

Problem 3. Let G be a graph with two disjoint components G_1 and G_2 . Let X_n be a simple random walk on G.

(i) Prove $\{X_n\}$ is not an irreducible Markov chain.

Solution. Since $G_1 \cap G_2 = \emptyset$, there is no edge between any node in G_1 and any node in G_2 , and hence G_1 and G_2 are disconnected. Then $\{X_n\}$ on G is not irreducible.

If it were the case that G_1 and G_2 are connected, then there would exists a path between any two nodes $x_1, y_1 \in G_1$, i.e., $x_1 \leftrightarrow y_1$, and $x_2, y_2 \in G_2$, i.e., $x_2 \leftrightarrow y_2$. However, G_1 and G_2 are disconnected as previously noted, $x_1, y_1 \not\leftrightarrow x_2, y_2$. But $x_1 \leftrightarrow y_1$ and $x_2 \leftrightarrow y_2$. So, there exists two communicating classes, and hence $\{X_n\}$ on G does not satisfy the definition of an irreducible Markov chain.

(ii) Let P be the transition matrix of X_n . Let P_1 and P_2 be the transition matrices for the SRW on G_1 and G_2 , respectively. Let $V_1 = \{1, \ldots, k\}$ and $V_2 = \{k+1, \ldots, k+l\}$ be the set of vertices in G_1 and G_2 . Show that P is of the following block diagonal form

$$P = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix}. \tag{1}$$

Note a block diagonal matrix is a reducible matrix.

Solution. We have P(i,j) = 0 for all $[i] \neq [j]$ since $V_1 \cap V_2 = \emptyset$. If [i] = [j] and $i \in V_1$, then X_n has transition matrix P_1 , and if $i \in V_2$, X_n has transition matrix P_2 . Hence, P is of the block diagonal form (1).

(iii) Show the the SRW $\{X_n\}$ on G has infinitely many stationary distributions.

Solution. Since the disjoint graphs G_1 and G_2 are finite, P_1 has a stationary distribution, call it π_1 , and P_2 has stationarity distribution, call it π_2 . Note that π_1 has dimension $1 \times k$, π_2 has dimension $1 \times l$. Let

$$\pi = \begin{cases} (\pi_1, 0) & \text{if } X_0 \in G_1\\ (0, \pi_2) & \text{if } X_0 \in G_2 \end{cases}$$

be the stationary distribution for the operators P on G, and note that π has dimension $1 \times k + l$. Note also that P has dimension $(k+l) \times (k+l)$. Now, for the chain started on any vertex in G_1 , let $\pi = (\pi_1, 0)$ where 0 is a $1 \times l$ dimensional vector. Then

$$\begin{pmatrix} \pi_1 & 0 \end{pmatrix} \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix} = \begin{pmatrix} \pi_1 P_1 & 0 \end{pmatrix} = \begin{pmatrix} \pi_1 & 0 \end{pmatrix},$$

where the last equality follows since π_1 was defined to be the stationary distribution for P_1 . For the chain started on any vertex in G_2 , $\pi = (0, \pi_2)$ where here 0 is a $1 \times k$ vector. So

$$\begin{pmatrix} 0 & \pi_2 \end{pmatrix} \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix} = \begin{pmatrix} 0 & \pi_2 P_2 \end{pmatrix} = \begin{pmatrix} 0 & \pi_2 \end{pmatrix}$$

For $0 \le \lambda \le 1$,

$$(\lambda \pi_1 + (1 - \lambda)\pi_2) = (\lambda \pi_1 P + (1 - \lambda)\pi_2 P)$$

is also stationary distribution for P since of the block diagonal form (1). Hence, there exists infinitely stationary for X_n on G.

Problem 4. Consider a Markov chain with state space $S = \{1, 2\}$ and transition matrix

$$P = \begin{pmatrix} 1 - a & a \\ b & 1 - b \end{pmatrix},$$

where 0 < a < 1 and 0 < b < 1.

(i) Find its stationary distribution π .

Solution. Let $\pi = (x, y)$. Then

$$\pi P = \pi \implies \begin{cases} (1-a)x + by = x \\ ax + (1-b)y = y \end{cases} \implies ax = by.$$

Recalling that x + y = 1 gives the unique stationary distribution

$$\pi = \left(\frac{b}{a+b}, \frac{a}{a+b}\right).$$

(ii) Use the Markov property to show that

$$P(X_{n+1} = 1) - \frac{b}{a+b} = (1-a-b) \left[P(X_n = 1) - \frac{b}{a+b} \right].$$

Solution. Start from the left hand side and condition on X_n to obtain

$$P(X_{n+1} = 1) = \sum_{i} P(X_{n+1} = 1 \mid X_n = i) P(X_n = i)$$

$$= (1 - a)P(X_n = 1) + b[1 - P(X_n = 1)]$$

$$= P(X_n = 1) - aP(X_n = 1) + b - bP(X_n = 1)$$

$$= (1 - a - b)P(X_n = 1) + b$$

$$= (1 - a - b)P(X_n = 1) + \frac{b(a + b)}{a + b}$$

$$= (1 - a - b)P(X_n = 1) + \frac{ab}{a + b} + \frac{b^2}{a + b}.$$

Next, subtract b/(a+b) from both sides

$$P(X_{n+1} = 1) - \frac{b}{a+b} = (1-a-b)P(X_n = 1) + \frac{ab}{a+b} + \frac{b^2}{a+b} - \frac{b}{a+b}.$$

Simplifying the above expression gives

$$P(X_{n+1} = 1) - \frac{b}{a+b} = (1-a-b)\left[P(X_n = 1) - \frac{b}{a+b}\right].$$

(iii) Use mathematical induction to show that

$$P(X_n = 1) = \frac{b}{a+b} + (1-a-b)^n \left[P(X_0 = 1) - \frac{b}{a+b} \right]$$

Proof (by induction on n). The base case n = 0 holds since

$$P(X_0 = 1) = \frac{b}{a+b} + (1-a-b)^0 \left[P(X_0 = 1) - \frac{b}{a+b} \right]$$
$$= \frac{b}{a+b} + P(X_0 = 1) - \frac{b}{a+b} = P(X_0 = 1),$$

and the base case n = 1 holds since

$$P(X_1 = 1) = \sum_{i} P(X_1 = 1 \mid X_0 = i) P(X_0 = i)$$

$$= P(X_1 = 1 \mid X_0 = 1) P(X_0 = 1) + P(X_1 = 1 \mid X_0 = 2) P(X_0 = 2)$$

$$= (1 - a) P(X_0 = 1) + b(1 - P(X_0 = 1))$$

$$= \frac{b}{a + b} + (1 - a - b) \left[P(X_0 = 1) - \frac{b}{a + b} \right]$$

where the last equality uses the same logic as in (ii).

Assume the claim is true for any n. We want to show that the result is also true for n+1. From (i), we know that

$$P(X_{n+1} = 1) = \frac{b}{a+b} + (1-a-b) \left[P(X_n = 1) - \frac{b}{a+b} \right].$$

Substituting in for $P(X_n = 1)$ gives

$$P(X_{n+1} = 1) = \frac{b}{a+b} + (1-a-b) \left[\left[(1-a-b)^n \left[P(X_0 = 1) - \frac{b}{a+b} \right] \right] - \frac{b}{a+b} \right] \right]$$
$$= \frac{b}{a+b} + (1-a-b)^{n+1} \left[P(X_0 = 1) - \frac{b}{a+b} \right].$$

Shifting the indices back one period gives

$$P(X_n = 1) = \frac{b}{a+b} + (1-a-b)^n \left[P(X_0 = 1) - \frac{b}{a+b} \right].$$

(iv) Show that $P(X_n = 1)$ converges exponentially fast to $\pi(1)$ for the π you found in (i). Solution. Since 0 < a < 1 and 0 < b < 1, the term |1 - a - b| < 1. Then, noting that $(1 - a - b)^n$ is the only term depending on n, we have

$$\lim_{n \to \infty} P(X_n = 1) = \lim_{n \to \infty} \left[\frac{b}{a+b} + (1-a-b)^n \left[P(X_0 = 1) - \frac{b}{a+b} \right] \right]$$

$$= \frac{b}{a+b} + \lim_{n \to \infty} (1-a-b)^n \left[P(X_0 = 1) - \frac{b}{a+b} \right]$$

$$= \frac{b}{a+b} + O((1-a-b)^n).$$

That is, convergence to the limiting distribution, $P(X_n = 1) \to \pi(1)$ as $n \to \infty$, is exponentially fast.