Tételek

12.14 Az inverz mátrix egyértelműsége

Legyen $A \in \mathbb{K}^{n \times n}$ reguláris mátrix, és tegyük fel, hogy $C \in \mathbb{K}^{n \times n}$ is és $D \in \mathbb{K}^{n \times n}$ is az A inverze, azaz fennáll:

$$AC = CA = I$$
 és $AD = DA = I$

Ekkor C = D

Bizonyítás

$$D = DI = D(AC) = (DA)C = IC = C$$

Tehát egy négyzetes mátrixnak vagy nincs inverze (*szinguláris eset*), vagy pedig egyetlen inverze van (*reguláris eset*).

Az inverz létezésének feltételeivel, kiszámításának módszereivel később foglalkozunk, itt csak egy példát említünk:

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$$

ugyanis:

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{és} \quad \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Ezzel azt is megmutattuk, hogy az $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ mátrix reguláris.

13.3. A 2x2-es mátrix determináns kiszámításának képlete

Egy 2x2-es mátrix determinánsa a következőképpen számítható:

$$\det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = a \cdot (-1)^{1+1} \cdot \det([d]) + b \cdot (-1)^{1+2} \cdot \det([c]) = ad - bc$$

tehát egy 2x2-es mátrix determinánsát megkapjuk, ha a főátlóbeli elemeinek szorzatából levonjuk a mellékátlóbeli eleimeinek szorzatát.

13.4. A jobbinverz létezése

Az $A \in \mathbb{K}^{n \times n}$ mátrixhoz akkor és csak akkor létezik olyan $C \in \mathbb{K}^{n \times n}$ mátrix, amelyre igaz, hogy AC = I, ha $\det(A) \neq 0$. Egy ilyen C mátrixot az A jobbinverzének nevezzük.

13.5 Az inverz létezése

Legyen $A \in \mathbb{K}^{n \times n}$. Ekkor

$$\exists A^{-1} \iff \det(A) \neq 0$$

azaz az A mátrix akkor és csak akkor reguláris, ha $\det(A) \neq 0$. Következtetés: az A mátrix akkor és csak akkor szinguláris, ha $\det(a) = 0$.

Bizonyítás

Tegyük fel először, hogy A reguláris, azaz, hogy $\exists A^{-1}$. Ekkor, $C=A^{-1}$ választással megismételve az előző tétel első felének bizonyítását

$$1 = \det(I) = \det(A \cdot A^{-1}) = \det(A) \cdot \det(A^{-1})$$

amiből azonnal adódik, hogy $\det(A) \neq 0$. Mellesleg az is kiadódott, hogy

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

Megfordítva, tegyük fel, hogy $\det(A) \neq 0$. Ekkor az előző tétel második fele alapján létezik olyan $C \in \mathbb{K}^{n \times n}$ mátrix, melyre fennáll: AC = I. Megmutatjuk, hogy ez a C mátrix lesz az A inverze.

Ehhez már csak az kell igazolni, hogy CA = I.

Ezt a következőképpen igazoljuk: Mivel $\det(A^T) = \det(A) \neq 0$, ezért az előző tétel második felét az A^T mátrixra alkalmazva azt kapjuk, hogy

$$\exists D \in \mathbb{K}^{n \times n} : A^T D = I$$

Az egyenlőség mindkét oldalát transzponáljuk:

$$(A^T D^T) = I^T$$

ahonnan $D^T A = I$ kövevtkezik. Ennek segítségével igazolhatjuk a CA = I egyenlőséget:

$$CA = ICA = D^TACA = D^T(AC)A = D^TIA = D^TA = I.$$

14.12. Tétel

Legyen $W \subseteq V, W \neq \emptyset$. W akkor és csak akkor altere V-nek, ha a következő két feltétel teljesül:

- 1. $\forall x, y \in W : x + y \in W$
- 2. $\forall x \in W \ \forall \lambda \in \mathbb{K} : \lambda x \in W$

Az első feltételt úgy is szoktuk mondani, hogy az összeadás nem vezet ki W-ből vagy, hogy W zárt az összeadásra nézve. Hasonlóképpen, a második feltételt fogalmazhatjuk úgy is, hogy a számmal való szorzás nem vezet ki W-ből vagy, hogy W zárt a számmal való szorzásra nézve.

Bizonyítás

A két feltétel szükségessége nyilvánvaló.

Az elégségesség igazolásához csak a 14.1 definíció I. 4. és I. 5. pontjai szorulnak bizonyításra, hiszen I. 1. és II. 1. fel van téve, a többi axióma pedig azonosság.

Jelöljük 0_V -vel a V nullvektorát és legyen $x \in W$. Ekkor $x \in V$, ezért a 14.4. tétel valamint tételünk második feltétele alapján

$$0_V = 0 \cdot X \in W$$

15.1.2. Generált altér

Legyen $x_1,...,x_k \in V$ egy vektorrendszer. Tekintsük Vkövetkező részhalmazát:

$$W^* := \{\lambda_1 x_1 + \dots + \lambda_k x_k \in V \mid \lambda_1, \dots, \lambda_k \in \mathbb{K}\}\$$

 W^* elemei tehát az $x_1, x_2, ..., x_k$ vektorrendszer összes lehetséges lineáris kombinációi.

15.3. Tétel

- 1. W^* altér V-ben
- 2. W^{\ast} lefedi az $x_{1},...,x_{k}$ vektorrendszert, amint azt értjük, hogy

$$x_i \in W^* \ (i = 1, ..., k)$$

3. Minden olyan $Z\subseteq V$ altér esetén, amely a fenti értelemben lefedi az $x_1,...,x_k$ vektorrendszert, fennáll, hogy $W^*\subseteq Z$

A bizonyítás előtt megjegyezzük, hogy a tétel állítása röviden úgy foglalható össze, hogy W^* az $x_1, x_2, ..., x_k$ vektorrendszert feledő legszűkebb altér.

Bizonyítás

1. Legyen $a=\lambda_1x_1+\ldots+\lambda_kx_k\in W^*$ és $b=\mu_1x_1+\ldots+\mu_kx_k\in W^*$. Ekkor:

$$a+b=\lambda_1x_1+\ldots+\lambda_kx_k+\mu_1x_1+\ldots+\mu_kx_k$$

Továbbá tetszőleges $\beta \in \mathbb{K}$ esetén:

$$\beta a = \beta(\lambda_1 x_1 + \dots + \lambda_k x_k) = (\beta \lambda_1) x_1 + \dots + (\beta \lambda_k) x_k \in W^*$$

Tehát a 14.12-es tétel alapján W^* valóban altér V-ben

2. Bármely rögzített $i \in \{1, ..., k\}$ esetén:

$$x_i = 0x_1 + \dots + 0x_{i-1} + 1x_i + 0x_{i+1} + \dots + 0x_k \in W^*$$

3. Legyen Z egy, a tételben leírt altér, és legyen $a=\lambda_1x_1+\ldots+\lambda_kx_k\in W^*$. Mivel Z lefedi a vektorrendszert, ezért

$$x_i \in Z \ (i = 1, ..., k)$$

Azonban Z altér, ezért zárt a lineáris kombináció képzésére, amiből azonnal adódik, hogy $a \in Z$. Tehát valóban $W^* \subseteq Z$.

<u>Kanonikus egységvektorok definíciója \mathbb{K}^n -ben / Az általuk generált altér</u>

A \mathbb{K}^n -beli i-edik (kanonikus) egységvektort (jelöljuk e_i -vel) úgy értelmezzük, hogy i-edik komponense legyen 1, a többi komponense pedig legyen nulla (i=1,...,n). Ekkor az $e_1,...,e_n$ vektorrendszer generátorrendszer a \mathbb{K}^n térben, ugyanis tetszőleges $x=(x_1,...,x_n)\in\mathbb{K}^n$ esetén

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \cdot 1 + x_2 \cdot 0 + \ldots + x_n \cdot 0 \\ x_1 \cdot 0 + x_2 \cdot 1 + \ldots + x_n \cdot 0 \\ \vdots \\ x_1 \cdot 0 + x_2 \cdot 0 + \ldots + x_n \cdot 1 \end{pmatrix} = x_1 \cdot \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + x_2 \cdot \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \ldots + x_n \cdot \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = x_1 e_1 + \ldots + x_n e_n$$

tehát x valóban felírható az $e_1, ..., e_n$ vektorok lineáris kombinációjaként

16.5. Egyértelmű előállítás tétele

Legyen $x_1,...,x_n \in V$ egy vektorrendszer, továbbá $x \in \mathrm{Span}\ (x_1,...,x_n)$. Ekkor

- a) Ha az $x_1,...,x_n$ vektorrendszer lineárisan független, akkor x egyértelműen (azaz csak egyféleképpen) állítható elő a rendszer tagjainak lineáris kombinációjaként.
- b) Ha az $x_1, ..., x_n$ vektorrendszer lineárisan összefüggő, akkor x végtelen sokféleképpen állítható elő a rendszer tagjainak lineáris kombinációjaként.

Bizonyítás

a) Tegyük fel, hogy

$$x = \lambda_1 x_1 + \ldots + \lambda_n x_n$$

$$x = \mu_1 x_1 + \ldots + \mu_n x_n$$

és rendezzük át a jobb oldali egyenlőséget (0-ra redukálás, közös szumma, kiemelés):

$$\sum_{i=1}^{n} (\lambda_i - \mu_i) x_i = 0$$

Ebből – az $x_1,...x_k$ rendszer függetlenségét felhasználva – azt kapjuk, hogy $\lambda_i - \mu_i = 0$, azaz, hogy $\lambda_i = \mu_i \quad (\exists i \in \{1,...,n\}).$

16.6. Összefüggő rendszer szűkítése

Legyen $x_1,...,x_k \in V$ egy lineárisan összefüggő rendszer. Ekkor

$$\exists i \in \{1, 2, ...k\} : \text{Span } (x_1, ..., x_{i-1}, x_{i+1}, ..., x_k) = \text{Span } (x_1, ..., x_k)$$

Szavakban: Összefüggő rendszerből elhagyható valamely vektor úgy, hogy a generált altér nem változik. Másképpen fogalmazva: összefüggő rendszerben legalább egy vektor felesleges a generált altér szempontjából.

Bizonyítás

A rendszer összefüggősége miatt léteznek $\lambda_1,...,\lambda_k\in\mathbb{K}$ nem mind 0 számok úgy,hogy

$$\lambda_1 x_1 + \dots + \lambda_k x_k = 0$$

Legyen iegy olyan index, amelyre $\lambda_i \neq 0$. Legyen továbbá

$$W_1 := \text{Span } (x_1, ..., x_{i-1}, x_{i+1}, ..., x_k) \text{ és } W_2 := \text{Span } (x_1, ..., x_k)$$

Azt kell igazolnunk, hogy $W_1 = W_2$:

A $W_1\subseteq W_2$ tartalmazás **triviális**, ugyanis:

$$x_1, ..., x_{i-1}, x_{i+1}, ..., x_k \in \text{Span}(x_1, ..., x_k) = W_2$$

miatt a W_2 altér lefedi az $x_1,...,x_{i-1},x_{i+1},...,x_k$ vektorrendszert. Mivel W_1 e rendszer legszűkebb lefedő altere, ezért $W_1\subseteq W_2$. A $W_2\subseteq W_1$ tartalmazás igazolásához induljunk ki abból, hogy **triviálisan**

$$x_1,...,x_{i-1},x_{x+1},...,x_k \in \text{Span } (x_1,...,x_{i-1},x_{x+1},...,x_k) = W_1$$

 $x_i \in W_1$: Ehhez a már felírt

$$\lambda_1 x_1 + \dots + \lambda_k x_k = 0$$

összefüggőségei egyenletből rendezzük ki a x_i -t ($\lambda_i \neq 0$ miatt lehetséges)

$$x_i = \left(-\frac{\lambda_1}{\lambda_i}\right) \cdot x_1 + \ldots + \left(-\frac{\lambda_k}{\lambda_i}\right) \cdot x_k$$

Azt kaptuk, hogy xi kifejezhető az $x_1,...,x_{i-1},x_{x+1},...,x_k$ vektorok lineáris kombinációjaként, tehát x_i valóban benne van a Span $\left(x_1,...,x_{i-1},x_{x+1},...,x_k\right)=W_1$ altérben.

Így tehát a W_1 altér lefedi az $x_1,...,x_k$ vektorrendszert, s mivel W_2 e rendszer legszűkebb lefedő altere, következésképpen $W_2\subseteq W_1$.

A $W_1 \subseteq W_2$ és a $W_2 \subseteq W_1$ tartalmazási relációk pedig együtt azt jelentik, hogy $W_1 = W_2$

Megjegyzés

A bizonyításból az is kiderült, hogy az a vektor biztosan felesleges (vagyis elhagyható), amelyiknek az együtthatója valamelyik összefüggőségi egyenletben nem 0.

16.8 Összefüggő rendszerré bővítés

Legyen $x_1,...,x_k \in V$ egy vektorrendszer, továbbá $x \in V$. Ekkor

$$x \in \text{Span } (x_1, ..., x_k) \Rightarrow x_1, ..., x_k, x \text{ lineárisan összefüggő}$$

Bizonyítás

Mivel $x \in \text{Span }(x_1,...,x_k)$, ezért x felírható a generátorrendszer lineáris kombinációjaként:

$$\exists \lambda_1, ..., \lambda_k \in \mathbb{K} : x = \lambda_1 x_1 + ... + \lambda_k x_k$$

Átrendezés után:

$$\lambda_1 x_1 + \ldots + \lambda_k x_k + (-1) \cdot x = 0$$

Mivel $-1 \neq 0$, ezér a rendszer valóban összefüggő.

16.10. Független rendszer bővítése

Legyen $x_1,...,x_k \in V$ egy lineárisan független rendszer, továbbá legyen $x \in V$. Ekkor

a)
$$x \in \text{Span } (x_1, ..., x_k) \Rightarrow x_1, ..., x_k$$
 lineárisan összefüggő

b)
$$x \notin \text{Span } (x_1, ..., x_k) \Rightarrow x_1, ..., x_k$$
 lineárisan független

16.11. Következmény

Legyen $x_1,...,x_k,x\in V$. Ha $x_1,...,x_k$ lineárisan független és $x_1,...,x_k,x$ lineárisan összefüggő, akkor

$$x \in \text{Span}(x_1, ..., x_k)$$

17.5. Bázis létezése

Bármely véges dimenziós, nem {0} vektortérben van bázis.

Bizonyítás

Legyen $y_1,...,y_m$ a V véges dimenziós, nem $\{0\}$ vektortér véges generátorrendszere. Ha ez lin. független, akkor bázis. Ha összefüggő, akkor az Összefüggő rendszer szűkítése (16.6) tétel szerint elhagyható belőle egy vektor úgy, hogy a visszamaradó m-1 vektorból álló rendszer ugyanazt az alteret alkotja. Innentől ezt a lépést addig alkalmazzuk, míg lineárisan független nem lesz a kapott generátorrendszer, így bázis nem lesz.

17.7. Kicserélési tétel

Legyen $x_1,....,x_k\in V$ egy lineárisan független rendszer, $y_1,...,y_m\in V$ pedig egy gen.rendszer. Ekkor $\forall i\in\{1,...,k\}:\exists j\in\{1,...,m\}\to x_1,...,x_{i-1},y_j,x_{i+1},...,x_k$ – lineárisan független

17.8. Tétel

Bármely (véges) lineárisan független vektorrendszer tagjainak száma nem nagyobb, mint bármely (véges) generátorrendszer tagjainak száma. (Ezzel pontos értelmet nyert az, hogy a független rendszerek a "kis" rendszerek, a generátorrendszerek pedig a "nagy" rendszerek.)

Bizonyítás

Kicserélési-tétel kimondása miatt:

$$-\exists y_{i1}: y_{i1}, x_2, x_3, ..., x_n$$
 lin. független $-\exists y_{i2}: y_{i1}, y_{i2}, x_3, ..., x_n$ lin. független

Mindegyik x_i vektort ki tudjuk cserélni valamelyik y_i vektorral

17.9. Tétel

Legyen V véges dimenzió, nem {0} vektortér. Ekkor V bármely két bázisa azonos elemszámú.

Bizonyítás

Legyen $e_1,...,e_m$ és $f_1,...,f_k$ két bázis V-ben. Mivel $e_1,...,e_m$ lineárisan független, $f_1,...,f_k$ pedig generátorrendszer, ezért az előző tétel szerint $m \leq k$. Szerepcserével kapjuk, hogy $k \leq m$. Így tehát k=m.

17.12. Tétel(ek)

Legyen $1 \le \dim(V) = n < \infty$. Ekkor

1. Ha $x_1,...,x_k \in V$ lineárisan független, akkor $k \leq n$

Bizonyítás

Legyen $e_1,...,e_n$ bázis V-ben. Ekkor generátorrendszer is, tehát a 17.8-as tétel miatt: $k \leq n$

2. Ha $x_1,...,x_k \in V$ generátorrendszer, akkor $k \geq n$

Bizonyítás

Legyen $e_1,...,e_n$ bázis V-ben. Ekkor lineárisan független, tehát a 17.8-as tétel miatt: $k \geq n$

3. Ha $x_1,...,x_n\in V$ lineárisan független rendszer, akkor generátorrendszer is (ergo: bázis)

Bizonyítás

Tegyük fel indirekt, hogy $x_1, ..., x_n$ nem gen.rendszer. Ekkor

$$V \setminus \text{Span}(x_1, ..., x_n) \neq \emptyset$$

Legyen $x \in V \setminus \text{Span }(x_1,...,x_n)$. Ekkor a Független rendszer bővítése (16.10) tétel miatt $x_1,...,x_n,x$ lineárisan független. Ez ellentmondás, mivel ez a rendszer n+1 vektorból áll, többől, mint a tér dimenziója

4. Ha $x_1,...,x_n \in V$ generátorrendszer, akkor lineárisan független is (következésképpen: bázis)

Bizonyítás

Tegyük fel indirekt, hogy $x_1,...,x_n$ lineárisan összefüggő. Ekkor az Összefüggő rendszer szűkítése (16.6) tétel miatt

$$\exists i \in \{1,2,...,n\} : \mathrm{Span}\ (x_1,...,x_{i-1},x_{i+1},...,x_n) = \mathrm{Span}\ (x_1,...,x_n) = V$$

Ez ellentmondás, mivel az $x_1,...,x_{i-1},x_{i+1},...,x_n$ rendszer n-1 vektorból áll, kevesebből, mint a tér dimenziója.

18.6. **Tétel**

Bármely $A \in \mathbb{K}^{m \times n}$ mátrix oszlopvektorterének és sorvektorterének dimenziója megegyezik, azaz

$$\dim O(A) = \dim S(A)$$

18.16. Tétel

Jelölje (nem hivatalosan) ${\cal M}_h$ a komogén rendszer megoldáshalmazát, avagy

$$M_h := \{ x \in \mathbb{K}^n \mid Ax = 0 \} \subseteq \mathbb{K}^n$$

Ekkor M_h altér \mathbb{K}^n -ben.

(Hivatalos, nemzetközi jelölése: $\operatorname{Ker}(A)$ - "kernel" / magtér /)

Bizonyítás

Mivel $0 \in M_h$, ezért $M_h \neq \emptyset$.

 M_h zárt az össze
adásra nézve, mivel ha $x,y\in M_h$, akkor Ax=Ay=0,e
zért

$$A(x + y) = Ax + Ay = 0 + 0 = 0,$$

amiből következik, hogy $x + y \in M_h$.

Továbbá M_h zárt a skalárral való szorzásra nézve is, mivel ha $x \in M_h$ és $\lambda \in \mathbb{K}$, akkor Ax = 0, ezért

$$A(\lambda x) = \lambda Ax = \lambda 0 = 0,$$

amiből $\lambda x \in M_h$ következik.

18.23. Tétel

A lineáris egyenletrendszer együtthatómátrixának rangja egyenlő a Gauss-Jordan módszer alkalmazásakor kapott r számmal, azaz egyenlő a megjelölt elemek számával a leálláskor.