

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA

Programação Web e SGC

Tecnologias Web

Docentes: Ruben Manhiça

Maputo, 26 de fevereiro de 2024

Conteúdo da Aula

- 1. Sites e Aplicações WEB;
- 2. Internet
- 3. Navegadores e Dispositivos;
- 4. Protocolos de Internet;
- 5. Web Servers e HTTP;
- 6. Domínio e endereços IP;
- 7. DNS (Domain Name System).

Internet

- A Internet nasceu em 1969, nos Estados Unidos Interligava originalmente laboratórios de pesquisa e se chamava ARPAnet (ARPA: Advanced Research Projects Agency), uma rede do Departamento de Defesa norte-americano. Era o auge da Guerra Fria, e os cientistas queriam uma rede que continuasse de pé em caso de um bombardeio. Surgiu então o conceito central da Internet: é uma rede em que todos os pontos se eqüivalem e não há um comando central. Assim, se B deixa de funcionar, A e C continuam a poder se comunicar.
- O nome Internet propriamente dito surgiu bem mais tarde, quando a tecnologia da ARPAnet passou a ser usada para conectar universidades e laboratórios, primeiro nos EUA e depois em outros países.

Internet

 Por isso que não há um único lugar que "governa" a Internet. Hoje ela é um conjunto de mais de 40 mil redes no mundo inteiro. O que essas redes têm em comum é o protocolo TCP/IP (Transmission Control Protocol/Internet Protocol), que permite que elas se comuniquem umas com as outras. Esse protocolo é a língua comum dos computadores que integram a Internet.

Sites e Aplicações WEB

Os sites e aplicações podem ser comparados segundo a alguns critérios, nomeadamente:

Finalidade: O termo **Site** é utilizado quando se refere a Blogs, sites de noticias, Portais, lojas virtuais, etc. Enquanto a denominação **Aplicação WEB** é utilizado para sistemas de gestão empresariais que são acessados através de navegadores (browsers).

Sites e Aplicações WEB

Interatividade: O termo Site é menos interativo com usuário e Aplicação WEB é mais interativo.

Sites são *read-only* (apenas de leitura) e as Aplicações WEB são *read-write* (leitura e escrita).

Os Sites fornecem conteúdo, enquanto que as aplicações WEB podem fornecer e/ou receber conteúdo.

Sites e Aplicações WEB

Propósito: O termo **Site** é mais para o propósito de divulgação de informação de uma empresa, dados de um produto, noticias de um determinado assunto.

Aplicação WEB é com o propósito de criar uma ferramenta para controlar as atividades administrativa de uma determinada organização.

Site precisa de interface mais atrativa e Aplicação WEB precisa de interface fácil de usar.

As pessoas acedem aos Sites e Aplicações WEB através de navegadores (browsers) como Chrome, Firefox, Internet Explorer e Safari.

Um dos problemas de Sites e Aplicações WEB é da compatibilidade com as telas dos dispositivos.

Os desenvolvedores web devem considerar essa diferença (design responsivo).

Web Servers e HTTP

- Os sites e as aplicações web são implementados em computadores conectados à Internet ou a uma rede privada qualquer (Intranet).
- Servidores web de Sites Normalmente s\u00e3o conectados a Internet;
- Servidores web de Aplicações WEB normalmente são conectados em intranet.

Internet

Web Servers e HTTP

- Quando acedemos a uma página web através de um navegador, ele realiza uma requisição ao Web Server onde essa página está armazenada.
- Ao receber a resposta do Web Server com a página web solicitada, o navegador a exibe para nós. As mensagens de requisição e resposta trocadas entre o navegador e o web server são definidas pelo protocolo HTTP (Hypertext Transfer Protocol).

Domínios e Endereços IP

- Os dispositivos conectados a uma rede são identificados através de endereços formados por sequências de números. Esses endereços são chamados de endereços IP.
- Os endereços IP são únicos. Por motivo de ser difícil fixar os endereços IP, surge o DNS que serve para conversão de Ips em nomes fácil de fixar. Ex: www.uem.mz = 196.3.96.21

Protocolos

"Protocolo é um conjunto de regras e convenções divididas em camadas que operam coletivamente para proporcionar transparência na troca de informações e serviços, entre máquinas de um ambiente de rede". Tanenbaum, 2005.

"É um conjunto de regras, ou um acordo, que determina o formato e a transmissão de dados. A camada n em um computador se comunica com a camada n em outro computador. As regras e convenções usadas nessa comunicação são conhecidas coletivamente como o protocolo da camada n" Cisco Academy, 2000.

Protocolos

Um protocolo humano e um protocolo de rede de computador:

22

Protocolos e Padronização:

- Com a padronização é possível que diferentes computadores se comuniquem, a partir do uso de um protocolo padrão entre eles; e facilita o mercado de produtos (periféricos e softwares);
- Existem diversas organizações internacionais de padronização, como exemplo, podemos citar:
 - IEEE (Institute of Electrical and eletronic Engineers) padrão Ethernet
 802
 - ITU-T (International Telecommunication Union Telecommunication Standardization Sector)
 - ISO (International Organization for Standardization)

Protocolos e Padronização

- A ISO é uma organização internacional fundada em 1946 e tem por objetivo elaborar padrões internacionais.
- A ISO desenvolveu um modelo de referencia para fabricação de protocolo, sendo este identificado como modelo OSI (Open System Interconnection).

OSI - Open Systems Interconnections

As sete camadas do modelo OSI

Modelo OSI é dividido em sete camadas hierárquicas, onde cada camada é responsável por algum tipo de tarefa, e que cada camada apenas se comunica com a camada imediatamente inferior ou superior. Desta forma camada 6 só poderá comunicar com as camadas 7 e 5. e nunca directamente com a camada 1.

Adaptado de Cisco Academy - 2000

Protocolo TCP/IP - Transmission Control Protocol - Internet Protocol

O *modelo de referência TCP/IP* tornou possível a comunicação de dados entre dois computadores quaisquer, em qualquer parte do mundo, independente da arquitetura e sistema operacional que estes estejam utilizando.

Protocolo TCP/IP - Transmission Control Protocol - Internet Protocol

26/02/24

O protocolo Http

- HTTP: Utiliza o TCP como protocolo de transporte
- Cliente utiliza conexão via socket no servidor. Porta padrão 80.
- O protocolo http é sem estado (stateless).
 - Servidor não mantém histórico de outras conexões do cliente.
 - Servidores que mantêm estado são complexos.

O protocolo Http

• Exemplo de conexão

1. Cliente pede conexão em servidor http (processo) na porta 80 do servidor

tempo

3. Cliente envia mensagem de pedido de http (que contém a URL) através de socket

de conexão tcp

2.Servidor aceita a conexão e avisa o cliente

4. Servidor recebe mensagem pedido e formula a mensagem de resposta contendo os objetos solicitados. Envia mensagem via socket.

O protocolo Http

Exemplo de conexão (continuação)

5. Servidor encerra a conexão

6.Cliente http recebe mensagem do servidor, contendo arquivo html. Visualiza o arquivo html. Verifica que o arquivo Html referencia outros 10 objetos.

7. Passos de 1 a 5 repetidos para cada objeto

tempo

Com a evolução e a disseminação da Internet, aplicações direcionadas para a web passaram de simples "paginas estáticas" para grandes aplicações corporativas, tornando um padrão no mercado de desenvolvimento de aplicativos. Com isso, o modelo de aplicações Cliente/Servidor desktop "FAT CLIENT" antigamente predominante foi substituído pelo modelo web dinâmico "THIN CLIENT". Segue os principais motivos:

- Acessibilidade Qualquer lugar no mundo (sem fronteiras),
 disponível a 24 Hs e 7 dias por semana, o ano inteiro etc...
- Cliente Magro Não precisam de capacidade de processamento e nem instalação local.
- Execução Distribuída Diferentes partes da aplicação são executadas em diferentes maquinas.
- Escalabilidade infra-estrutura escalável para suportar números crescentes de acessos simultâneos.

- Manutenção e Actualização Novas versões de sistemas são actualizados nos servidores propagando-se para o mundo, sem a necessidade de actualização em maquinas de usuários.
- Multiplataforma Comunicação e apresentação baseado padrão de conteúdo da web (HTTP, HTML, XHTML, CSS e JavaScript) independente de plataforma de execução, podendo ser acedida em qualquer dispositivo que possui um navegador padrão.

- Estes e inúmeros outros motivos resultam em menores custos no desenvolvimento, manutenção e utilização dos sistemas por parte da área de T.I. e utilizadores finais.
- Por isso que actualmente não se discute mais as vantagens entre os modelos, uma vez que o modelo web é superior e vantajoso em todos os aspectos. Entretanto, o modelo desktop não morreu totalmente. Existem alguns casos especiais de requisitos que o modelo desktop pode ser preferível ao da web:

1. Ambientes Visuais Complexos

Algum aplicações precisaram apresentar recursos visuais bem apurados e complexos no qual o modelo web usando HTML, JavaScript e CSS ainda possui grandes limitadores, mesmo com as novas versões. Exemplo: AUTOCAD.

2. Comunicação com Periféricos

Algumas aplicações precisaram se comunicar diretamente com a o porta COM, SERIAL, etc podendo consumir algum tipo de protocolo proprietários. As paginas HTML são renderizadas dentro de uma SAND-BOX de segurança dos navegadores no qual elas não tem permissão de fazer nada da maquina do utilizador final.

3. Alto tráfego de Informações

Algumas aplicações poderão apresentar um alto volume de trafego de dados dependendo de sua forma de utilização. Mesmo o modelo web possuindo as requisições AJAX usadas para resolver estes casos, ainda sim é perfeitamente aceitável considerar a o modelo FAT que pode evitar inúmeros complicadores arquiteturais.

TPC

- Trazer para aula pratica exemplos de aplicações que Migraram de Desktop para Web; apresentar os principais ganhos com a mudança;
- Trazer exemplos reais das diferenças entre Cliente Gordo e Magro;
- Estudar e Enviar por email os conceitos de:
 - TCP
 - UDP
 - Diferenças entre HTTP e HTTPs

FIM!!!

Duvidas e Questões?

