第四讲子群、生成子群

陈建文

October 7, 2022

定义1. 设S为群G的非空子集,如果G的乘法在S中封闭且S对此乘法也构成一个群,则称S为G的一个子群。如果 $S \neq G$,则称S为G的真子群。

定理1. 设 G_1 为G的子群,则 G_1 的单位元必为G的单位元; G_1 的元素a在 G_1 中的 逆元素也是a在G中的逆元素。

定理2. 群G的任意多个子群的交还是G的子群。

定理3. 任一群不能是其两个真子群的并。

定理4. 群G的非空子集S为G的子群的充分必要条件是

- (1) ∀ $a, b \in S, ab \in S$ ∄.
- (2) $\forall a \in S, a^{-1} \in S$.

定理5. 群G的非空子集S为G的子群的充分必要条件是 $\forall a,b \in S,ab^{-1} \in S$ 。

定理6. 群G的有限非空子集F为G的子群的充分必要条件是 $\forall a,b \in F,ab \in F$ 。

定义2. 群G的元素a称为G的中心元素,如果a与G的每个元素可交换,即 $\forall x \in G, ax = xa \cdot G$ 的所有中心元素构成的集合C称为G的中心。

定理7. 群G的中心C是G的可交换子群。

例. 设G为一个群, $a \in G$, $\{\cdots, a^{-2}, a^{-1}, e, a, a^2, \cdots\}$ 为G的一个子群。

例. 设G为一个有限群, $a \in G$, $\{e, a, a^2, \dots\}$ 为G的一个子群。

例. 设G为一个交换群, $a,b \in G$,则 $\{a^mb^n|m,n \in Z\}$ 为G的一个子群。

定义3. 设M为G的一个子集,G的包含M的所有子群的交称为由M生成的子群,记为(M)。

课后作业题:

练习1. 举例说明两个子群的并可以不是子群。

练习2. 设 G_1 和 G_2 为群G的两个真子群,证明: $G_1 \cup G_2$ 为G的子群的充分必要条件是 $G_1 \subseteq G_2$ 并且 $G_2 \subseteq G_1$ 。

练习3. 设 (G_1,\circ) 和 $(G_2,*)$ 都是群, $\phi:G_1\to G_2,\ \forall a,b\in G_1,\ \phi(a\circ b)=\phi(a)*\phi(b)$,证明: $\phi^{-1}(e_2)$ 为 G_1 的子群,其中 e_2 为 G_2 的单位元素。

练习4. 找出3次对称群的所有子群。

练习5. $\Diamond P = \{(12), (123)\} \subseteq S_3$ 。写出由P生成的 S_3 的子群(P)。