Klasyfikator rodzajów guzów mózgu na podstawie zdjęć MRI – działający model sieci neuronowej

Mateusz Woźniak Marcin Zub Krzysztof Czechowicz

Zbiór danych

Zbiór danych to zestaw pogrupowanych w klasy obrazów z rezonansu magnetycznego przedstawiających skany ludzkiego mózgu z obecnym guzem. Rozkład ilości zdjęć w klasach jest przedstawiony poniżej

Proponowania sieć neuronowa –

0.5

0.4

0.0

2.5

5.0

7.5

10.0

Epochs

12.5

15.0

17.5

DenseNet169 Accuracy Train Accuracy 0.9 Validation Accuracy 2.0 0.8 1.5 0.7 Loss 1.0

Jak wspomnieliśmy podczas ostatnich zajęć, chcieliśmy wypróbować sieć neuronowa DenseNet169. Jest to sieć z rodziny sieci DenseNet, która jest często stosowania do komputerowego widzenia medycznego. Okazuje się, że ta sieć daje bardzo dobre rezultaty. Ważona miara F1 wynosi 0.78.

Macierz pomyłek

Miary F1 dla poszczególnych klas

	Classification Report:				
		precision	recall	f1-score	support
h	Astrocitoma	0.8261	0.8879	0.8559	107
	Carcinoma	0.9677	0.7895	0.8696	38
	Ependimoma	0.8261	0.5278	0.6441	36
	Ganglioglioma	0.6667	1.0000	0.8000	10
	Germinoma	1.0000	0.6190	0.7647	21
	Glioblastoma	0.7708	0.8222	0.7957	45
	Granuloma	0.6667	0.7273	0.6957	11
	Meduloblastoma	0.7778	0.8235	0.8000	17
	Meningioma	0.8333	0.8491	0.8411	159
	Neurocitoma	0.9167	0.9277	0.9222	83
	Oligodendroglioma	1.0000	0.8929	0.9434	56
	Papiloma	0.9535	0.7593	0.8454	54
	Schwannoma	0.7239	0.9898	0.8362	98
	Tuberculoma	0.8710	0.8438	0.8571	32
	_NORMAL	0.9333	0.8235	0.8750	102
	accuracy			0.8481	869
	macro avg	0.8489	0.8189	0.8231	869
	weighted avg	0.8606	0.8481	0.8473	869

Weighted F1 Score: 0.8473

Implementacja

Skorzystaliśmy z biblioteki **TensorFlow** do zbudowania sieci neuronowej.

Do prezentacji danych takich jak metryki i wykresy skorzystaliśmy z biblioteki *matplotlib* oraz *seaborn*. Do wyliczenia ważonej miary F1 użyliśmy funkcji **f1_score** z *scikit-learn*.

Projekt uruchomiliśmy na platformie <u>Kaggle</u>. Platforma oferuje **bezpłatne 30 godzin obliczeń** miesięcznie z użyciem *NVIDIA P100*.

Bibliografia

- 1. N. Çınar, B. Kaya and M. Kaya, "Comparison of deep learning models for brain tumor classification using MRI images," 2022 International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 2022
- 2. Kalpana, R., Bennet, M. Anto, Rahmani, Abdul Wahab, [Retracted] Metaheuristic Optimization-Driven Novel Deep Learning Approach for Brain Tumor Segmentation, *BioMed Research International*, 2022, 2980691, 15 pages, 2022.
- 3. Ojha, B., Maharjan, R., & Acharya, T. (2023). Brain Tumor Detection Using Convolutional Neural Networks: A Comparative Study. *International Journal on Engineering Technology*, 1(1), 11–26.

Dziękujemy za uwagę