Grover on Sparkle

Yujin Yang, Kyoungbae Jang, Hyunji Kim, Gyeongju Song, and Hwajeong Seo
Hansung University
yujin.yang34@gmail.com

Introduction (Motivation, Contribution)

Background (Quantum Gates, Grover's Algorithm for key search)

Body (Sparkle SCHWAEMM 128-128, Cost estimation)

Conclusion

Motivation (Introduction)

- Quantum computers develop and Grover search algorithm appeared
 - Grover search algorithm can reduce the complexity of searching for a secret key by as much as square root($\sqrt{}$) in a symmetric cryptosystem.
 - The safety of ciphers based on these hard problems is threatened.
- Studies are underway to analyze threats to the Grover algorithm for symmetric cryptosystem
 - The field of research has expanded to lightweight ciphers in recent years.
- KNOT is the only quantum implementation of AEAD
 - Implementation of AEAD of SPARKLE(NIST LWC final candidate) as a quantum circuit

Contribution (Introduction)

- Reported first quantum implementation of all parameters of SCHWAEMM
 - SCHWAEMM is AEAD of lightweight block cipher SPARKLE
- Optimized the quantum circuit by reducing the depth and the number of qubits
 - Used inverse operations and fake padding
 - Implemented quantum additions in parallel
- Estimated the quantum resources & evaluated the post-quantum security level
 - Based on NIST security requirements
 - Applied Grover's search algorithm to proposed quantum circuit

Quantum Gates (Background)

Fig. 1: Quantum gates

Grover's Algorithm for key search (Background)

 Through the use of Hadamard gates, n-qubit key has the same amplitude at all state of the qubits

$$|\psi\rangle = H^{\otimes n} |0\rangle^{\otimes n} = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = \frac{1}{2^{n/2}} \sum_{x=0}^{2^{n-1}} |x\rangle$$

2. f(x) = 1, sign of the solution key is changed to negative

Oracle
$$f(x) = \begin{cases} 1 \text{ if } Enc(key) = c \\ 0 \text{ if } Enc(key) \neq c \end{cases}$$
 known ciphertext ciphertext — comparison

3. Amplify the amplitude of the negative sign state

$$U_f(|\psi\rangle |-\rangle) = \frac{1}{2^{n/2}} \sum_{x=0}^{2^n-1} (-1)^{f(x)} |x\rangle |-\rangle$$

SPARKLE Permutation 1) Alzette

Algorithm 3 Quantum implementation of SPAKRLE256 $_r$.

```
Input: 128-qubit x_{0\sim3}, and y_{0\sim3}, Adder carry ac_{0\sim3}, Constant c_{0\sim7}
Output: x, y
1: for i = 0 to r do
2: y_0 \leftarrow AddConstant(y_0, c_{(i\%8)})
3: y_1 \leftarrow AddConstant(y_1, i)
```

```
4:  // Parallel Azlettes

5:  (x_0, y_0) \leftarrow \text{Alzette}(x_0, y_0, c_0, ac_0)

6:  (x_1, y_1) \leftarrow \text{Alzette}(x_1, y_0, c_1, ac_1)

7:  (x_2, y_2) \leftarrow \text{Alzette}(x_2, y_0, c_2, ac_2)

8:  (x_3, y_3) \leftarrow \text{Alzette}(x_3, y_0, c_3, ac_3)

9:  // Linear Diffusion Layer
```

```
10: (x_{0\sim 3}, y_{0\sim 3}) \leftarrow \mathcal{L}_4(x_{0\sim 3}, y_{0\sim 3})
11: end for
12: return x, y
```

allocate 4 carry qubits → reduce depth

Algorithm 1 Quantum implementation of Alzette.

Input: 32-qubit x and y, Constant c, Adder carry ac

Output: x, y

```
1: x \leftarrow ADD((y \gg 31), x, ac)

2: y \leftarrow \text{CNOT32}((x \gg 24), y)

3: x \leftarrow AddConstant(x, c)

4: x \leftarrow ADD((y \gg 17), x, ac)

5: y \leftarrow \text{CNOT32}((x \gg 17), y)

6: x \leftarrow AddConstant(x, c)
```

7: $x \leftarrow ADD(y, x, ac)$

8: $y \leftarrow \text{CNOT32}((x \gg 31), y)$

9: $x \leftarrow AddConstant(x, c)$

10: $x \leftarrow ADD((y \gg 24), x, ac)$

11: $y \leftarrow \text{CNOT32}((x \gg 16), y)$

12: $x \leftarrow AddConstant(x, c)$

13: return x, y

1-branch
$$x \leftarrow x + (y \gg 31)$$

 $y \leftarrow y \oplus (x \gg 24)$
 $x \leftarrow x \oplus c$

Addition – CDKM ripple-carry adder Rotation – logical Swap XOR – CNOT gate

SPARKLE Permutation 2) Diffusion operator

```
Algorithm 2 Quantum implementation of \mathcal{L}_4.
Algorithm 3 Quantum implementation of SPAKRLE2
                                                                                            Input: 128-qubit x_{0\sim3}, and y_{0\sim3}
Input: 128-qubit x_{0\sim3}, and y_{0\sim3}, Adder carry ac_{0\sim3}, Const
                                                                                            Output: x, y
                                                                                                                                          |t_x \leftarrow (t_x \oplus (t_x \ll 16) \ll 16)|
Output: x, y
 1: for i = 0 to r do
                                                                                             1: // Feistel round
                                                                                             2: Transform x_0:
                                                                                                                                                                                       ▷ Compute()
           y_0 \leftarrow AddConstant(y_0, c_{(i\%8)})
                                                                                             3: x_0 \leftarrow \text{CNOT32}(x_1, x_0)
 3:
           y_1 \leftarrow AddConstant(y_1, i)
                                                                                             4: x_{0L} \leftarrow \text{CNOT16}(x_{0R}, x_{0L})
                                                                                             5: y_{2R} \leftarrow \text{CNOT16}(x_{0L}, y_{2R})
           // Parallel Azlettes
                                                                                             6: y_{2L} \leftarrow \text{CNOT16}(x_{0R}, y_{2L})
           (x_0, y_0) \leftarrow \text{Alzette}(x_0, y_0, c_0, ac_0)
                                                                                             7: y_2 \leftarrow \text{CNOT32}(y_0, y_2)
                                                                                                                                          → save CNOT gates
 5:
                                                                                             8: y_{3R} \leftarrow \text{CNOT16}(x_{0L}, y_{3R})
           (x_1, y_1) \leftarrow \text{Alzette}(x_1, y_0, c_1, ac_1)
                                                                                             9: y_{3L} \leftarrow \text{CNOT16}(x_{0R}, y_{3L})
           (x_2, y_2) \leftarrow \text{Alzette}(x_2, y_0, c_2, ac_2)
                                                                                             10: y_3 \leftarrow \text{CNOT32}(y_1, y_3)
           (x_3, y_3) \leftarrow \text{Alzette}(x_3, y_0, c_3, ac_3)
                                                                                            11: Reverse(transform x_0)
                                                                                                                                                                                   ▶ Uncompute()
                                                                                            12: Transform y_0:
           // Linear Diffusion Layer
                                                                                             13: y_0 \leftarrow \text{CNOT32}(y_1, y_0)
           (x_{0\sim3}, y_{0\sim3}) \leftarrow \mathcal{L}_4(x_{0\sim3}, y_{0\sim3})
10:
                                                                                            14: y_{0L} \leftarrow \text{CNOT16}(y_{0R}, y_{0L})
11: end for
                                                                                            15: x_{2R} \leftarrow \text{CNOT16}(y_{0L}, x_{2R})
12: return x, y
                                                                                             16: x_{2L} \leftarrow \text{CNOT16}(y_{0R}, x_{2L})
                                                                                            17: x_2 \leftarrow \text{CNOT32}(x_0, x_2)
                                                                                            18: x_{3R} \leftarrow \text{CNOT16}(y_{0L}, x_{3R})
                                                                                            19: x_{3L} \leftarrow \text{CNOT16}(y_{0R}, x_{3L})
                                                                                            20: x_3 \leftarrow \text{CNOT32}(x_1, x_3)
                                                                                            21: Reverse(transform y_0)
                                                                                                                                                                                   ▷ Uncompute()
                                                                                            22: // Branch permutation
                                                                                            23: (x_0, x_2) \leftarrow \text{SWAP32}(x_0, x_2)
                                                                                            24: (x_1, x_3) \leftarrow \text{SWAP32}(x_1, x_3)
                                                                                            25: (y_0, y_2) \leftarrow \text{SWAP32}(y_0, y_2)
                                                                                                                                       SWAP gate
                                                                                            26: (y_1, y_3) \leftarrow \text{SWAP32}(y_1, y_3)
                                                                                            27: (x_0, x_1) \leftarrow \text{SWAP32}(x_0, x_1)
```

28: $(y_0, y_1) \leftarrow \text{SWAP32}(y_0, y_1)$

29: return x, y

calculate only necessary gates

▷ Compute()

Inverse operator \rightarrow save 2 qubits

 $t_x = x_0, t_y = y_0$

SCHWAEMM128-128

Fig. 2: Process of SCHWAEMM128-128

Padding Data Processing of associated data Finalization

State Initialization Encrypting

Padding Data & State Initialization

Padding Data

```
r: length of block (i = -|M| - 1 \mod r)
Pad_r(M) = M||00000001||0^i
```

- The padded Associated data/Message are only used in ho_1 function ightharpoonup "fake padding"
- Don't allocate padding qubits to compute only useful data in $ho_1 \longrightarrow {\sf save 32~CNOT~gates}$

State Initialization

Inner state S, Nonce N, Key K

- use CNOT gates

$$S = N||K|$$

<i>S</i>					
N	K				

Processing of associated data

Processing of associated data

Encrypting & Finalization

Encrypting

Algorithm 5 Quantum implementation of encrypting and finalization.

Input: State S, Message M, Constant of M $const_M$, Key K, Ciphertext C **Output:** $C||S_R$

```
1: Encrypting:
```

- 2: $//C \leftarrow trunc_t(\rho_2(S_L, M))$
- 3: $C \leftarrow \text{Allocate new qubits of length } |M|$
- 4: AddConstant(M(classical), C) [copy M(classical) to C] use X gates instead of CNOT gates
- 5: $C \leftarrow \text{CNOT}32(S_L, C)$ \rightarrow save gate resources

Finalization

- 6: Finalization:
- 7: $S_R \leftarrow AddConstant(const_M, S_R)$ calculate only corresponding point (CNOT gates \rightarrow X gate) \rightarrow save gate resources & qubits
- 8: $// \rho_1(S_L, M)$
- 9: $S_L \leftarrow \text{SWAP64}(S_{L1}, S_{L2})$
- 10: $S_{L1} \leftarrow \text{CNOT64}(S_{L2}, S_{L1})$
- 11: $S_L \leftarrow \text{CNOT32}(M, S_L)$
- 12: $S_L \leftarrow X(S_L)$
- 13: $S_L \leftarrow \text{CNOT128}(S_R, S_L)$
- 14: //SPARKLE Permutation
- 15: $S \leftarrow \text{SPARKLE256}_{10}(S)$
- 16: $//S_R \oplus K$
- 17: $S_R \leftarrow \text{CNOT128}(K, S_R)$
- 18: **return** $C||S_R$

<Oracle operation>

Fig. 3: Grover's oracle on SCHWAEMM

Encryption operation → **Reverse operation**

⇒ SCHWAEMM quantum circuit works X 2

Table 1: Quantum resources required for **SCHWAEMM quantum circuits** in detail.

Cipher	#CNOT	#1qCliff	#T	T-depth	#qubits	Full depth
SCHWAEMM-128/128	278,656	94,511	204,960	9,760	612	59,687
SCHWAEMM-256/128	460,744	156,497	338,184	10,736	870	65,783
SCHWAEMM-192/192	460,680	156,497	338,184	10,736	870	65,783
SCHWAEMM-256/256	670,688	227,606	491,904	11,712	1,128	71,906

Table 2: Quantum resources required for Grover's oracle on SCHWAEMM

Cipher	#CNOT	#1qCliff	#T	T-depth	#qubits	Full depth
SCHWAEMM-128/128	557,312	189,022	409,920	19,520	613	119,374
SCHWAEMM-256/128	921,488	312,994	676,368	21,472	871	131,566
SCHWAEMM-192/192	921,360	312,994	676,368	21,472	871	131,566
SCHWAEMM-256/256	1,341,376	455,212	983,808	23,424	1,129	143,812

X 2

Table 3: Quantum resources required for Grover's key search on SCHWAEMM

Cipher	Total gates	Total depth	Cost	NIST security	
SCHWAEMM-128/128	$1.732 \cdot 2^{83}$	$1.431 \cdot 2^{80}$	$1.239 \cdot 2^{164}$	2^{170}	AES-128
SCHWAEMM-256/128	$1.431 \cdot 2^{84}$	$1.577\cdot 2^{80}$	$1.128 \cdot 2^{165}$	2^{170}	1.20 1.20
SCHWAEMM-192/192	$1.431 \cdot 2^{116}$	$1.577 \cdot 2^{112}$	$1.128 \cdot 2^{229}$	2^{233}	AES-192
SCHWAEMM-256/256	$1.041 \cdot 2^{149}$	$1.723 \cdot 2^{144}$	$1.795 \cdot 2^{293}$	2^{298}	AES-256

Attack cost = Total gates X Total depth

[NIST's post-quantum security requirements]

Ciphers should be comparable to or higher than the Grover attack cost for AES

Table 3: Quantum resources required for Grover's key search on SCHWAEMM

Cipher	Total gates	Total depth	Cost	NIST security	
SCHWAEMM-128/128	$1.732 \cdot 2^{83}$	$1.431\cdot 2^{80}$	$1.239\cdot 2^{164}$	$<$ 2^{170}	AES-128
SCHWAEMM-256/128	$1.431 \cdot 2^{84}$	$1.577\cdot 2^{80}$	$1.128 \cdot 2^{165}$	$<$ 2^{170}	7120 120
SCHWAEMM-192/192	$1.431 \cdot 2^{116}$	$1.577\cdot2^{112}$	$1.128 \cdot 2^{229}$	$<$ 2^{233}	AES-192
SCHWAEMM-256/256	$1.041 \cdot 2^{149}$	$1.723 \cdot 2^{144}$	$1.795 \cdot 2^{293}$	$<$ 2^{298}	AES-256

Attack is possible with fewer quantum resources

⇒ Appropriate security level cannot be achieved

SCHWAEMM is exposed to attack at a lower cost than AES with same key size.

<Table 3> NIST security

- AES attack cost estimated by NIST is the result of 2016
- If the results of significantly reducing the quantum attack cost are presented, the estimated cost in post-quantum security requirements should be conservatively evaluated.
- Recently, Implementations for optimizing quantum circuits for AES have been proposed.
- Compared with the attack cost for Jaques et al's AES estimated,
 SCHWAEMM achieves an appropriate.

Conclusion

Conclusion

- Our implementation has been optimized by applying various techniques to minimize the cost
- Focused on reducing the depth complexity as well as the qubit complexity.

Future work

- Analyzing the cost of Grover's attack for other final candidate algorithms of NIST LWC
- Evaluating the post-quantum security strength for other final candidate algorithms of NIST LWC

yujin.yang34@gmail.com

Q&A