21-484 Notes JD Nir jnir@andrew.cmu.edu March 29, 2012

Tutte's Thm:

 $k_o(G-S)$, G contains a perfect matching iff $k_o(G-S) \leq |S| \ \forall S \subseteq V(G)$. * Proof:

- Induction on number of vertices in G.
- Assume that G has (*).
- \rightarrow Let S be a maximal set of verties having $k_o(G-S) = |S|$.
 - \rightarrow S is not empty.
 - \rightarrow Let G_1, \ldots, G_k be the components of G S, then $|G_i|$ is odd $\forall 1 \leq i \leq k$.
 - \rightarrow Let S_i be the set of neighbors of G_i in S.
 - \rightarrow S_i is not empty. (G_i is odd and all the connected components of G are even).

- \rightarrow **) For every $1 \le t \le k$ and every t of the S_i 's, the union of these S_i 's is of size at least t.
- \rightarrow Otherwise, let T be the union of the S_i 's.

$$k_o(G-T) \ge t > |T| \$$

- \rightarrow Consider the bipartite graph with sides $\{S_1, \ldots, S_k\}$ and $S = \{v_1, \ldots, v_k\}$. There is an edge in H between S_j and v_i iff $\forall v_i \in S_j$
- \rightarrow by (**)+Hall's Theorem, there is a perfect matching in H.
- \rightarrow Let u_i be the neighbor of v_i in G_i (assuming without loss of generality that the perfect matching matched v_i to S_i).

 \rightarrow Need to show that $\forall 1 \leq i \leq k$ and $\forall W \subseteq V(G_i - u_i)$

$$k_o(G_i - u_i - W) \le |W|$$

- \rightarrow Assume otherwise: $|W| < k_o(G_i u_i W)$ for some i and W.
- \rightarrow Since $G_i u_i$ is eve, the parity of |W| and $k_o(G_i u_i W)$ is the same.
- → Consider $S' = S \cup W \cup \{u_i\}$ $|S'| \ge k_o(G - S') = k_o(G - S) + k_o(G_i - u_i - W) - 1 \ge |S| + |W| + 2 - 1 = |S'|$ 4 maximality of S. by (*)

 \rightarrow By the induction hypothesis, there is a perfect matching M_i in G_i .

$$M = \left(\bigcup_{i=1}^k M_i\right) \cup \{v_i u_i\}$$
 is a perfect matching in G

Theorem (Tutte-Berge formula): For every graph G, the size of a maximum matching is

$$\min_{S \subseteq V(G)} \frac{(|S| - k_o(G - S) + |V|)}{2}$$

<u>Def:</u> Let k be a positive integer. A k-factor in a graph G is a spanning subgraph which is k-regular.

Example: A perfect matching is a 1-factor.

Theorem (Petersen): A graph G can be decomposed into 2-factors F_1, \ldots, F_k if and only if G is 2k-regular. $G = \bigcup_{i=1}^k F_i$

<u>Proof's idea:</u> one direction is easy (decomposition \implies 2k-regular).

- \rightarrow Assume that G is 2k-regular. By Euler's Theorem, there is an Eulerian circuit C.
- \rightarrow (Def. H)
- $\rightarrow H$ is k-regular
- → By Hall's Theorem and counting every regular bipartite graph contains a perfect matching.
- \rightarrow Every perfect matching in H corresponds to a 2-factor of G.
- \rightarrow repeat.