CRD:

Contrastive Representation Distilation

Yonglong Tian, Dilip Krishnan, Phillip Isola MIT CSAIL, Google Research ICLR 2020

Sungman Cho

Contributions

- Contrastive-based objective for transferring knowledge between deep networks.
- Application to model compression, cross-modal transfer, and ensemble distillation.
- New state-of-the-art in many transfer tasks, and sometime even outperforms the teacher network when combined with knowledge distillation.

- Knowledge distillation(KD) originally proposed by minimizes the KL divergence between the teacher and student outputs.
 - → KL divergence makes intuitive sense when the output is a distribution. (probability mass function over classes)

However, often we instead wish to transfer <u>knowledge about a</u>
 <u>representation.</u> → "Cross-modal distillation" (image to sound or depth)

- Representational knowledge is structured.
 (The dimensions exhibit complex interdependencies)
 - Original KD treats all dimensions as independent, conditioned on the input.

$$\psi(\mathbf{y}^S, \mathbf{y}^T) = \sum_i \phi_i(\mathbf{y}_i^S, \mathbf{y}_i^T)^*.$$

<u>Such a factored objective is insufficient for transferring structural knowledge.</u> (i.e. dependencies between output dimensions *i* and *j*)

Similar to L2 objective produces blurry results. (Image generation tasks)

- Captures correlations and higher order output dependencies.
 - → We leverage the family of contrastive objectives.
- Contrastive objectives have been used successfully in representation learning, self-supervised settings

- Our objective <u>maximizes a lower-bound to the mutual information</u> between the teacher and student representations.
- Contrastive objective better transfers all the information in the teacher's representation, rather than <u>only transferring knowledge about</u> <u>conditionally independent output class probabilities.</u>

Related Work

- Hinton et al. (2015): matching output logits
- Bucilua et al. (2006): introduced the idea of temperature in the softmax outputs to better represent smaller probabilities in the output of a single sample.
 - Large temperatures : increase entropy
- Zagoruyko & Komodakis et al. (2016): attention transfer
 - Focuses on the feature maps of the network.
 - Limitation : only with same spatial resolution.

Related Work

- FitNets (Romero et al., 2014): regressions to guide the feature activations
- Zagoruyko & Komodakis (2016): weighted form of this regression.
- CMC (Tian et al., 2019) : contrastive objective
- InfoNCE, NCE (Oord et al., 2018; Gutmann & Hyvarinen., 2010)
 - : use contrastive learning in the context of self-supervised representation learning.
 - : objective maximizes a lower bound on mutual information.

Contrastive Learning

- Positive pairs : close
- Negative pairs : push apart

$$x \sim p_{\text{data}}(x)$$

$$S = f^{S}(x)$$

$$T = f^T(x)$$

data

student's representation

Distribution *q* with latent variable *C*

$$q(T, S|C = 1) = p(T, S), \quad q(T, S|C = 0) = p(T)p(S)$$

Suppose in our data, we are given 1 congruent pair for every N incongruent pairs.

1 congruent pair: drawn from the joint distribution, i.e. the same input provided to T and S **N incongruent pairs**: drawn from the product of marginals; independent randomly drawn inputs provided to T and S

$$q(C=1) = \frac{1}{N+1}, \quad q(C=0) = \frac{N}{N+1}$$

By simple manipulation and Baye's rule

$$q(C = 1|T, S) = \frac{q(T, S|C = 1)q(C = 1)}{q(T, S|C = 0)q(C = 0) + q(x, y|C = 1)q(C = 1)}$$
$$= \frac{p(T, S)}{p(T, S) + Np(T)p(S)}$$

Next, we observe a connection to mutual information as follows:

$$\begin{split} \log q(C = 1 | T, S) &= \log \frac{p(T, S)}{p(T, S) + Np(T)p(S)} \\ &= -\log(1 + N \frac{p(T)p(S)}{p(T, S)}) \le -\log(N) + \log \frac{p(T, S)}{p(T)p(S)} \end{split}$$

$$\log q(C = 1|T, S) = \log \frac{p(T, S)}{p(T, S) + Np(T)p(S)}$$

$$= -\log(1 + N\frac{p(T)p(S)}{p(T, S)}) \le -\log(N) + \log \frac{p(T, S)}{p(T)p(S)}$$

Taking expectation on both sides

$$I(T;S) \ge \log(N) + \mathbb{E}_{q(T,S|C=1)} \log q(C=1|T,S)$$
 \triangleleft MI bound

Fitting data distribution, [0,1]

$$\mathcal{L}_{critic}(h) = \mathbb{E}_{q(T,S|C=1)}[\log h(T,S)] + N\mathbb{E}_{q(T,S|C=0)}[1 - \log(h(T,S))]$$

$$h^* = \arg \max_{L} \mathcal{L}_{critic}(h) \qquad \qquad \text{optimal critic}$$

$$\begin{split} I(T;S) & \geq \log(N) + \mathbb{E}_{q(T,S|C=1)} \log q(C=1|T,S) & \triangleleft & \textbf{MI bound} \\ \mathcal{L}_{critic}(h) & = \mathbb{E}_{q(T,S|C=1)} [\log h(T,S)] + N \mathbb{E}_{q(T,S|C=0)} [1 - \log(h(T,S))] \\ & h^* = \arg\max_{h} \mathcal{L}_{critic}(h) & \triangleleft & \textbf{optimal critic} \\ & h, h^*(T,S) = q(C=1|T,S) & \textbf{Gibb's inequality} \end{split}$$

$$I(T; S) \ge \log(N) + \mathbb{E}_{q(T, S|C=1)}[\log h^*(T, S)]$$

$$f^{S*} = \operatorname*{arg\,max}_{f^S} \mathbb{E}_{q(T,S|C=1)}[\log h^*(T,S)]$$

$$\begin{split} I(T;S) & \geq \log(N) + \mathbb{E}_{q(T,S|C=1)} \log q(C=1|T,S) & \triangleleft & \textbf{MI bound} \\ \mathcal{L}_{critic}(h) & = \mathbb{E}_{q(T,S|C=1)} [\log h(T,S)] + N \mathbb{E}_{q(T,S|C=0)} [1 - \log(h(T,S))] \\ & h^* = \arg\max_{h} \mathcal{L}_{critic}(h) & \triangleleft & \textbf{optimal critic} \\ & h, h^*(T,S) = q(C=1|T,S) & \textbf{Gibb's inequality} \end{split}$$

$$I(T;S) \ge \log(N) + \mathbb{E}_{q(T,S|C=1)}[\log h^*(T,S)]$$

$$f^{S*} = \operatorname*{arg\,max}_{f^S} \mathbb{E}_{q(T,S|C=1)}[\log h^*(T,S)]$$

$$f^{S*} = \operatorname*{arg\,max}_{f^S} \mathbb{E}_{q(T,S|C=1)}[\log h^*(T,S)]$$

Weakening the bound

$$I(T;S) \ge \log(N) + \mathbb{E}_{q(T,S|C=1)}[\log h^*(T,S)] + N\mathbb{E}_{q(T,S|C=0)}[\log(1 - h^*(T,S))]$$

$$= \log(N) + \mathcal{L}_{critic}(h^*) = \log(N) + \max_{h} \mathcal{L}_{critic}(h)$$

$$\ge \log(N) + \mathcal{L}_{critic}(h)$$

$$f^{S*} = \underset{f^{S}}{\arg\max} \max_{h} \mathcal{L}_{critic}(h) \qquad \qquad \text{our final learning problem}$$

$$= \underset{f^{S}}{\arg\max} \max_{h} \mathbb{E}_{q(T,S|C=1)}[\log h(T,S)] + N\mathbb{E}_{q(T,S|C=0)}[\log(1 - h(T,S))]$$

$$f^{S*} = \operatorname*{arg\,max\,max}_{h} \mathcal{L}_{critic}(h) \qquad \qquad \text{our final learning problem}$$

$$= \operatorname*{arg\,max\,max}_{h} \mathbb{E}_{q(T,S|C=1)}[\log h(T,S)] + N\mathbb{E}_{q(T,S|C=0)}[\log (1 - h(T,S))]$$

$$h: \{\mathcal{T}, \mathcal{S}\} \rightarrow [0, 1].$$

Represent:
$$h(T,S) = \frac{e^{g^T(T)'g^S(S)/\tau}}{e^{g^T(T)'g^S(S)/\tau} + \frac{N}{M}}$$

Knowledge Distillation Objective

$$\mathcal{L}_{KD} = (1 - \alpha)H(y, y^S) + \alpha \rho^2 H(\sigma(z^T/\rho), \sigma(z^S/\rho))$$
(20)

where ρ is the temperature, α is a balancing weight, and σ is softmax function. $H(\sigma(z^T/\rho), \sigma(z^S/\rho))$ is further decomposed into $KL(\sigma(z^T/\rho)|\sigma(z^S/\rho))$ and a constant entropy $H(\sigma(z^T/\rho))$.

Cross-Modal Transfer Loss

Features of teacher network are still valuable to help with learning of the student on another domain.

$$\mathcal{L}_{critic}(h) = \mathbb{E}_{q(T,S|C=1)}[\log h(T,S)] + N\mathbb{E}_{q(T,S|C=0)}[1 - \log(h(T,S))]$$

$$h^* = \arg \max \mathcal{L}_{critic}(h)$$
optimal critic

Ensemble Distillation Loss

We have M > 1 teacher networks,

$$\mathcal{L}_{CRD-EN} = H(y, y^S) - \beta \sum_{i} \mathcal{L}_{critic}(T_i, S)$$

Experiments : Accuracy (CIFAR 100)

Teacher Student	WRN-40-2 WRN-16-2	WRN-40-2 WRN-40-1	resnet56 resnet20	resnet110 resnet20	resnet110 resnet32	resnet32x4 resnet8x4	vgg13 vgg8
Teacher	75.61	75.61	72.34	74.31	74.31	79.42	74.64
Student	73.26	71.98	69.06	69.06	71.14	72.50	70.36
KD*	74.92	73.54	70.66	70.67	73.08	73.33	72.98
FitNet*	73.58 (1)	72.24 (1)	69.21 (\1)	68.99 (1)	71.06 (1)	73.50 (1)	71.02 (1)
AT	74.08 (1)	72.77 (1)	70.55 (1)	70.22 (1)	72.31 (1)	73.44 (1)	71.43 (1)
SP	73.83 (1)	72.43 (1)	69.67 (1)	70.04 (1)	72.69 (1)	72.94 (1)	72.68 (1)
CC	73.56 (1)	72.21 (1)	69.63 (1)	69.48 (1)	71.48 (1)	72.97 (1)	70.71 (\(\)
VID	74.11 (\(\)	73.30 (1)	70.38 (1)	70.16 (1)	72.61 (1)	73.09 (1)	71.23 (1)
RKD	73.35 (1)	$72.22(\downarrow)$	69.61 (1)	69.25 (1)	71.82 (1)	71.90 (1)	71.48 (1)
PKT	74.54 (1)	73.45 (1)	70.34 (1)	70.25 (1)	72.61 (1)	73.64 (1)	72.88 (1)
AB	$72.50(\downarrow)$	$72.38(\downarrow)$	69.47 (1)	69.53 (1)	70.98 (1)	73.17 (1)	70.94 (1)
FT*	73.25 (1)	71.59 (1)	69.84 (1)	70.22 (1)	72.37 (1)	72.86 (1)	70.58 (1)
FSP*	72.91 (1)	n/a	69.95 (1)	70.11 (1)	71.89 (1)	72.62 (1)	70.23 (1)
NST*	73.68 (1)	72.24 (1)	69.60 (1)	69.53 (1)	71.96 (1)	73.30 (1)	71.53 (1)
CRD	75.48 (†)	74.14 (†)	71.16 (†)	71.46 (†)	73.48 (†)	75.51 (†)	73.94 (†)
CRD+KD	75.64 (†)	74.38 (†)	71.63 (†)	71.56 (†)	73.75 (†)	75.46 (†)	74.29 (†)

Table 1: Test accuracy (%) of student networks on CIFAR100 of a number of distillation methods (ours is CRD); see Appendix for citations of other methods. ↑ denotes outperformance over KD and ↓ denotes underperformance. We note that CRD is the *only* method to always outperform KD (and also outperforms all other methods). We denote by * methods where we used our reimplementation based on the paper; for all other methods we used author-provided or author-verified code. Average over 5 runs.

Experiments : Accuracy (ImageNet)

	Teacher	Student	AT	KD	SP	CC	Online KD *	CRD	CRD+KD
Top-1	26.69	30.25	29.30	29.34	29.38	30.04	29.45	28.83	28.62
Top-5	8.58	10.93	10.00	10.12	10.20	10.83	10.41	9.87	9.51

Table 3: Top-1 and Top-5 error rates (%) of <u>student network ResNet-18</u> on ImageNet validation set. We use <u>ResNet-34 released by PyTorch team as our teacher network</u>, and follow the standard training practice of ImageNet on PyTorch except that we train for 10 more epochs. We compare our CRD with KD (Hinton et al., 2015), AT (Zagoruyko & Komodakis, 2016a) and Online-KD (Lan et al., 2018). "*" reported by the original paper Lan et al. (2018) using an ensemble of online ResNets as teacher, no pretrained ResNet-34 was used.

Experiments: Correlation (CIFAR 100)

Experiments: Transfer

	Student	KD	AT	FitNet	CRD	CRD+KD	Teacher
CIFAR100→STL-10	69.7	70.9	70.7	70.3	71.6	72.2	68.6
CIFAR100→TinyImageNet	33.7	33.9	34.2	33.5	35.6	35.5	31.5

Table 4: We transfer the representation learned from CIFAR100 to STL-10 and TinyImageNet datasets by freezing the network and training a linear classifier on top of the last feature layer to perform 10-way (STL-10) or 200-way (TinyImageNet) classification. For this experiment, we use the combination of teacher network WRN-40-2 and student network WRN-16-2. Classification accuracies (%) are reported.

Experiments: Transfer

	Student	KD	AT	FitNet	CRD	CRD+KD	Teacher
CIFAR100→STL-10	69.7	70.9	70.7	70.3	71.6	72.2	68.6
CIFAR100→TinyImageNet	33.7	33.9	34.2	33.5	35.6	35.5	31.5

Table 4: We transfer the representation learned from CIFAR100 to STL-10 and TinyImageNet datasets by freezing the network and training a linear classifier on top of the last feature layer to perform 10-way (STL-10) or 200-way (TinyImageNet) classification. For this experiment, we use the combination of teacher network WRN-40-2 and student network WRN-16-2. Classification accuracies (%) are reported.

Experiments: Cross-modal Transfer

Figure 3: Top-1 classification accuracy on <u>STL-10 using chrominance image</u> (ab channel in Lab color space). We initialize the *chrominance* network randomly or by <u>distilling from a luminance network</u>, trained with large-scale labeled images. We evaluate distillation performance by (a) linear probing and (b) fully finetuning.

Experiments: Cross-modal Transfer

ImageNet → NYU-Depth

Metric (%)	Random Init.	KD	KD+AT	FitNet	CRD
Pix. Acc.	56.4	58.9	60.1	60.8	61.6
mIoU	35.8	38.0	39.5	40.7	41.8

Experiments: Ensemble distillation

Figure 4: <u>Distillation from an ensemble of teachers.</u> We vary the number of ensembled teachers and compare KD with our CRD by using (a) WRN-16-2 and (b) ResNet20. Our CRD consistently achieves lower error rate.

Ablation Study

sampling	objective	WRN-40-2 WRN-16-2	resnet110 resnet20	resnet110 resnet32	resnet32x4 resnet8x4	vgg13 vgg8
$i \neq j$	InfoNCE Ours	74.78 74.48	70.56 70.64	72.67 72.64	74.69 74.67	73.24 73.39
$y_i \neq y_j$	InfoNCE Ours	75.15 75.48	71.39 71.46	73.53 73.48	75.22 75.51	73.74 73.94

Table 6: Ablative study of different contrastive objectives and negative sampling policies on CIFAR100. For contrastive objectives, we compare our objective with InfoNCE (Oord et al., 2018); For negative sampling policy, when given an anchor image x_i from the dataset, we consider either randomly sample negative x_j such that (a) $i \neq j$, or (b) $y_i \neq y_j$ where y represents the class label. Average over 5 runs.

Ablation Study

Figure 5: Effects of varying the number of negatives, shown in (a), or the temperature, shown in (b).

Computational Cost:

Original: 2GFLOPs

CRD: 260 MFLOPs (12% of the original)

The memory bank for storing all 128-d features of ImageNet only costs around 600MB

Conclusion

- Developed a novel technique for neural network distillation, using the concept of contrastive objectives, which are usually used for representation learning.
- Experimented with our objective on a number of applications such as model compression,
 cross-modal transfer and ensemble distillation.
- Contrastive learning is a simple and effective objective with practical benefits.