ESERCIZI TUTORATO ALGEBRA 2 11 OTTOBRE 2019 - LEZIONE 1

MARCO ABBADINI

Di seguito si trovano le soluzioni degli esercizi svolti in classe. Non sono soluzioni complete, ma solo dei veloci riassunti.

Esercizio 1. Si scriva il ciclo $\sigma = (1\ 2\ 3\ 4)$ appartenente al gruppo simmetrico S_4 come prodotto di scambi. Soluzione. $\sigma = (1\ 2)(1\ 3)(1\ 4)$, per esempio.

Esercizio 2. Nel gruppo simmetrico S_7 , si consideri la permutazione

$$\sigma \colon \{1, \dots, 7\} \to \{1, \dots, 7\}$$

$$1 \mapsto 5$$

$$2 \mapsto 7$$

$$3 \mapsto 3$$

$$4 \mapsto 1$$

$$5 \mapsto 4$$

$$6 \mapsto 6$$

$$7 \mapsto 2$$

- (a) Si scriva la decomposizione in cicli disgiunti di $\sigma,~\sigma^2$ e $\sigma^3.$
- (b) Si determini il periodo di σ in S_7 .

Soluzione. (a) $\sigma = (1 \ 5 \ 4)(2 \ 7)$. $\sigma^2 = (1 \ 4 \ 5)$. $\sigma^3 = (2 \ 7)$.

(b) Periodo=mcm(3, 2) = 6.

Esercizio 3 (Prova scritta, 28 Aprile 2017, eserc. 2). Provare che $\operatorname{Sym}(\Omega)$ è un gruppo abeliano se e solo se $|\Omega| \leq 2$.

Soluzione. Proviamo che se $|\Omega| \geq 3$ allora $\operatorname{Sym}(\Omega)$ non è abeliano. Siano $x,y,z \in \Omega$ distinti. Sia $\sigma \in \operatorname{Sym}(\Omega)$ che lascia fissi tutti gli elementi eccetto x e y, che vengono scambiati. Sia $\rho \in \operatorname{Sym}(\Omega)$ che lascia fissi tutti gli elementi eccetto y e z, che vengono scambiati. Allora $\sigma \tau \neq \tau \sigma$, poichè $\sigma \tau$ manda x in z, mentre $\tau \sigma$ manda x in y. L'altra direzione si risolve per casi.

Esercizio 4. Definiamo

$$H \coloneqq \left\{ \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right) \ : \ a,b,d \in \mathbb{R}, \ ad \neq 0 \right\},$$

$$\begin{split} M &\coloneqq \left\{ \left(\begin{array}{c} 1 & b \\ 0 & 1 \end{array} \right) \; : \; b \in \mathbb{Z} \right\}, \\ L &\coloneqq \left\{ \left(\begin{array}{c} a & b \\ 0 & 1 \end{array} \right) \; : \; a,b \in \mathbb{Z}_3, a \neq 0 \right\} \end{split}$$

- (a) Provare che H, M ed L sono sottogruppi di $GL(2,\mathbb{R})$, $GL(2,\mathbb{R})$ e $GL(2,\mathbb{Z}_3)$, rispettivamente.
- (b) Stabilire se H, M ed L sono ciclici.

Soluzione. (a) Si mostri che contengono la matrice identica, che sono chiusi per prodotto e per inversi.

(b) H non è ciclico perchè ha cardinalità strettamente più grande del numerabile. M è ciclico: è generato da $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. L non è ciclico, poichè $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ e $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ non commutano.

Esercizio 5 (Primo compitino, 19 Novembre 2015, eserc. 3). Sia n un intero positivo, e sia $\sigma \in S_n$ un ciclo di lunghezza k. Determinare il tipo di σ^2 .

Soluzione. Se k è dispari, σ^2 è un k-ciclo. Se k è pari, σ^2 è un prodotto di due $\frac{k}{2}$ -cicli disgiunti.

Cosa ricordare

- Il periodo di un elemento di S_n di tipo (m_1,\ldots,m_k) è $\operatorname{mcm}(m_1,\ldots,m_k)$. (Esercizio 2.)
- Se $|\Omega| \geq 3$, allora Sym (Ω) non è abeliano. (Esercizio 3.)
- \bullet Per verificare che H è un sottogruppo di G bisogna far vedere
 - (1) $H \subseteq G$ (in alcuni casi ciò è scontato e non è necessario verificarlo).
 - (2) H è non vuoto (una scelta sicura è far vedere che l'elemento neutro appartiene ad H).
 - (3) H è chiuso per prodotto.
 - (4) H è chiuso per inversi (se H è finito, questa verifica non è necessaria). (Esercizio 4.)