Quiz Assignment 2: Solutions

1. Refer to the expression for the representation of a general qubit state on the Bloch sphere mentioned in the lecture. The values of θ and ϕ for a state $|\psi\rangle=\frac{i\sqrt{3}}{2}|1\rangle+\frac{1}{2}e^{i\pi/4}|0\rangle$ are

	θ	φ
Α	$\frac{2\pi}{3}$	$\frac{\pi}{4}$
В	$-\frac{\pi}{4}$	$\frac{2\pi}{3}$
С	$\frac{\pi}{3}$	$-\frac{\pi}{4}$
D	$\frac{\pi}{4}$	$\frac{\pi}{3}$

Solution: A

The expression for a general single-qubit state on the Bloch sphere is $|\psi\rangle=\cos\left(\frac{\theta}{2}\right)|0\rangle+e^{i\phi}\sin\left(\frac{\theta}{2}\right)|0\rangle$. Removing the global phase from the state provided, we get

$$|\psi\rangle = e^{\frac{i\pi}{4}} \left(\frac{1}{2}|0\rangle + e^{-\frac{i\pi}{4}} \frac{i\sqrt{3}}{2}|1\rangle\right) \approx \left(\frac{1}{2}|0\rangle + e^{i\left(\frac{\pi}{2} - \frac{\pi}{4}\right)} \frac{\sqrt{3}}{2}|1\rangle\right) = \left(\frac{1}{2}|0\rangle + e^{\frac{i\pi}{4}} \frac{\sqrt{3}}{2}|1\rangle\right)$$

$$\cos\left(\frac{\theta}{2}\right) = \frac{1}{2}, \sin\left(\frac{\theta}{2}\right) = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{2\pi}{3}$$

$$\phi = \frac{\pi}{2}$$

2. The transformation Y can be written as (according to the convention used in the slides)

A.
$$-|1\rangle\langle 1| + |0\rangle\langle 0|$$

B.
$$|0\rangle\langle 1| + |1\rangle\langle 0|$$

$$\mathbf{C.} \quad -|\mathbf{1}\rangle\langle\mathbf{0}|+|\mathbf{0}\rangle\langle\mathbf{1}|$$

D.
$$-|0\rangle\langle 1| + |1\rangle\langle 1|$$

Solution: C

$$Y: \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = -|1\rangle\langle 0| + |0\rangle\langle 1|$$
 (from lecture slides)

3. The transformation X can be written as

A.
$$-|1\rangle\langle 1| + |0\rangle\langle 0|$$

B.
$$|0\rangle\langle 1| + |1\rangle\langle 0|$$

C.
$$-|1\rangle\langle 0| + |0\rangle\langle 1|$$

D.
$$-|0\rangle\langle 1| + |1\rangle\langle 1|$$

Solution: B

$$X: \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = |1\rangle\langle 0| + |0\rangle\langle 1|$$
 (from lecture slides)

4. If we apply the Hadamard transform on $|0\rangle$ the result is

B.
$$\frac{1}{2}(|0\rangle + |1\rangle)$$

C.
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

D.
$$|0\rangle + |1\rangle$$

Solution: C

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
 by definition

5. Starting from $|0\rangle$, If we apply the Hadamard transform and then apply the Z transform, the resulting single-qubit quantum state is

A.
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$B. \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

C.
$$\frac{\sqrt{3}}{2}(|0\rangle - |1\rangle)$$

C.
$$\frac{\sqrt{3}}{2}(|0\rangle - |1\rangle)$$

D.
$$\frac{1}{\sqrt{2}}(|+\rangle - |-\rangle)$$

Solution: B

$$ZH|0\rangle = Z\left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right] = \frac{1}{\sqrt{2}}(Z|0\rangle + Z|1\rangle) = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

6. Starting from $|1\rangle$, if we apply the Hadamard transform and then apply the X transform, the resulting single-qubit quantum state is

A.
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$B. \ \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

C.
$$\frac{\sqrt{3}}{2}(|0\rangle - |1\rangle)$$

D.
$$\frac{1}{\sqrt{2}}(|+\rangle - |-\rangle)$$

Solution: B

$$XH|1\rangle = X[\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)] = \frac{1}{\sqrt{2}}(X|0\rangle - X|1\rangle) = \frac{1}{\sqrt{2}}(|1\rangle - |0\rangle) = \frac{-1}{\sqrt{2}}(|0\rangle - |1\rangle) \approx \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$
 (The last two expressions are the same state as they differ only by a global phase.)

For each pair consisting of a state and a measurement basis, describe the possible measurement outcomes and give the probability for each outcome.

7. Qubit state: $|\psi\rangle = \frac{\sqrt{3}}{2}|0\rangle - \frac{1}{2}|1\rangle$, Measurement basis $\{|0\rangle, |1\rangle\}$. Choices:

	Probability of $ 0\rangle$	Probability of $ 1\rangle$	
Α	3/4	1/4	
В	1/4	3/4	
С	1/2	1/2	
D	$\sqrt{3}/2$	1/4	

Solution: A

$$P_0 = |\langle 0|\psi \rangle|^2 = \left|\frac{\sqrt{3}}{2}\right|^2 = \frac{3}{4}$$

$$P_1 = |\langle 1|\psi \rangle|^2 = \left|\frac{1}{2}\right|^2 = \frac{1}{4}$$

8. Qubit state: $|\psi\rangle = \frac{\sqrt{3}}{2}|1\rangle - \frac{1}{2}|0\rangle$, Measurement basis $\{|0\rangle, |1\rangle\}$. Choices:

	Probability of 0 Probability	
Α	1/4	3/4
В	1/2	1/2
С	$\sqrt{3}/2$	1/4
D	3/4	1/4

Solution: A

$$P_0 = |\langle 0|\psi \rangle|^2 = \left|\frac{1}{2}\right|^2 = \frac{1}{4}$$

$$P_1 = |\langle 1|\psi \rangle|^2 = \left|\frac{\sqrt{3}}{2}\right|^2 = \frac{3}{4}$$

9. Qubit state: $|\psi\rangle = \frac{\sqrt{3}}{2}|0\rangle - \frac{1}{2}|1\rangle$, Measurement basis $\{|+\rangle, |-\rangle\}$. Choices:

	Outcome	Probability	Outcome	Probability
Α	0>	$\frac{2-\sqrt{3}}{4}$	1>	$\frac{2+\sqrt{3}}{4}$
В	0>	$\frac{2+\sqrt{3}}{4}$	1>	$\frac{2-\sqrt{3}}{4}$
С	+>	$\frac{2-\sqrt{3}}{4}$	->	$\frac{2+\sqrt{3}}{4}$
D	+>	$\frac{2+\sqrt{3}}{4}$	->	$\frac{2-\sqrt{3}}{4}$

Solution: C

$$|\psi\rangle = \frac{\sqrt{3}}{2}|0\rangle - \frac{1}{2}|1\rangle = \frac{\sqrt{3}}{2\sqrt{2}}(|+\rangle + |-\rangle) - \frac{1}{2\sqrt{2}}(|+\rangle - |-\rangle)$$

$$= \frac{\sqrt{3} - 1}{2\sqrt{2}}|+\rangle + \frac{\sqrt{3} + 1}{2\sqrt{2}}|-\rangle)$$

$$P_{+} = |\langle +|\psi\rangle|^{2} = \left|\frac{\sqrt{3} - 1}{2\sqrt{2}}\right|^{2} = \frac{2 - \sqrt{3}}{4}$$

$$P_{-} = |\langle -|\psi\rangle|^{2} = \left|\frac{\sqrt{3} + 1}{2\sqrt{2}}\right|^{2} = \frac{2 + \sqrt{3}}{4}$$

10. Qubit state: $|\psi\rangle=|-{\bf i}\rangle$, Measurement basis $\{|0\rangle,|1\rangle\}$.

	Outcome	Probability	Outcome	Probability
Α	0>	$\frac{1+\mathbf{i}}{2}$	1>	$\frac{1-\mathbf{i}}{2}$
В	i <i>\</i>	$\frac{1-\mathbf{i}}{2}$	− i ⟩	$\frac{1-\mathbf{i}}{2}$
С	i>	$\frac{1}{2}$	-i>	$\frac{1}{2}$
D	0 }	$\frac{1}{2}$	 1 >	$\frac{1}{2}$

Solution: D

$$|\psi\rangle = |-\mathbf{i}\rangle = \frac{1}{\sqrt{2}}(|0\rangle - \mathbf{i}|1\rangle)$$

$$|\psi\rangle = |-\mathbf{i}\rangle = \frac{1}{\sqrt{2}}(|0\rangle - \mathbf{i}|1\rangle)$$

$$P_0 = |\langle 0|\psi\rangle|^2 = \left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$$

$$P_1 = |\langle 1|\psi\rangle|^2 = \left|\frac{-\mathbf{i}}{\sqrt{2}}\right|^2 = \frac{1}{2}$$

$$P_1 = |\langle 1|\psi\rangle|^2 = \left|\frac{-\mathbf{i}}{\sqrt{2}}\right|^{\frac{1}{2}} = \frac{1}{2}$$