1

This print-out should have 23 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Which one of the points

$$P(-3, -4, -4), Q(-6, 8, 9), R(-5, 3, -3)$$

in 3-space is closest to the yz-plane?

- 1. P(-3, -4, -4) correct
- **2.** R(-5, 3, -3)
- 3. Q(-6, 8, 9)

Explanation:

The distance of a point (a, b, c) in 3-space from the yz-plane is given by |a|. Consequently, of the three points

$$P(-3, -4, -4), Q(-6, 8, 9), R(-5, 3, -3)$$

the one closest to the yz-plane is

$$P(-3, -4, -4)$$

keywords: plane, distance in 3-space,

002 10.0 points

A rectangular box is constructed in 3-space with one corner at the origin and other vertices at

Find the length of the diagonal of the box.

- 1. length = 49
- 2. length = $\sqrt{22}$
- 3. length = 54
- 4. length = 7 correct

- 5. length = $3\sqrt{6}$
- **6.** length = 22

Explanation:

We have to find the length of BD in the figure

given that

$$OA = 6$$
, $OC = 3$, $OD = 2$.

Now by Pythagoras' theorem,

length
$$OB = \text{length } AC = 3\sqrt{5}$$
.

But then, again by Pythagoras,

length
$$BD = 7$$
.

Consequently,

$$length = 7$$

keywords: length diagonal, rectangular solid, Pythagoras' theorem, ThreeDimSys,

003 10.0 points

When \mathbf{u} , \mathbf{v} are the displacement vectors

$$\mathbf{u} = \overrightarrow{AB}, \quad \mathbf{v} = \overrightarrow{AP},$$

determined by the parallelogram

2

express \overrightarrow{QC} in terms of **u** and **v**, where P, B, D and R are the midpoints of \overline{AQ} , \overline{AC} , \overline{CS} and \overline{SQ} , respectively.

1.
$$\overrightarrow{QC} = 2(\mathbf{u} + \mathbf{v})$$

2.
$$\overrightarrow{QC} = 2(\mathbf{u} - \mathbf{v})$$
 correct

3.
$$\overrightarrow{QC} = \mathbf{u} + 2\mathbf{v}$$

4.
$$\overrightarrow{QC} = 2\mathbf{v} - \mathbf{u}$$

5.
$$\overrightarrow{QC} = 2\mathbf{v}$$

6.
$$\overrightarrow{QC} = 2\mathbf{u}$$

Explanation:

By the parallelogram law for the addition of vectors we see that

$$\overrightarrow{QC} = 2(\mathbf{u} - \mathbf{v})$$
.

keywords: vectors, linear combination, vector sum displacement vector, parallelogram

004 10.0 points

Determine the vector $\mathbf{c} = 2\mathbf{a} + \mathbf{b}$ when

$$\mathbf{a} = \langle 1, 3, 2 \rangle, \quad \mathbf{b} = \langle 2, 1, -1 \rangle.$$

1.
$$\mathbf{c} = \langle 3, 7, 4 \rangle$$

2.
$$\mathbf{c} = \langle 4, 7, 4 \rangle$$

3.
$$\mathbf{c} = \langle 3, 8, 4 \rangle$$

4.
$$\mathbf{c} = \langle 4, 8, 3 \rangle$$

5.
$$\mathbf{c} = \langle 4, 7, 3 \rangle$$
 correct

6.
$$\mathbf{c} = \langle 3, 8, 3 \rangle$$

Explanation:

The sum of vectors

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle, \quad \mathbf{b} = \langle b_1, b_2, b_3 \rangle$$

is defined componentwise:

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle;$$

similarly, multiplication by a scalar λ also is defined componentwise:

$$\lambda \mathbf{a} = \langle \lambda a_1, \lambda a_2, \lambda a_3 \rangle.$$

Consequently, when

$$\mathbf{a} = \langle 1, 3, 2 \rangle, \quad \mathbf{b} = \langle 2, 1, -1 \rangle,$$

we see that

$$\mathbf{c} = \langle 4, 7, 3 \rangle$$

005 10.0 points

Determine the vector $\mathbf{c} = \mathbf{a} + 2\mathbf{b}$ when

$$\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}, \quad \mathbf{b} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}.$$

1.
$$c = 8i - 3i + 5k$$

2.
$$\mathbf{c} = 7\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$$
 correct

3.
$$c = 8i - 3j - 4k$$

4.
$$c = 8i + 4j - 4k$$

5.
$$c = 7i + 4j - 4k$$

6.
$$c = 7i - 3j + 5k$$

Explanation:

The sum of vectors

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
, $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$

is defined componentwise:

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1)\mathbf{i} + (a_2 + b_2)\mathbf{i} + (a_3 + b_3)\mathbf{k}$$
:

similarly, multiplication by a scalar λ also is defined componentwise:

$$\lambda \mathbf{a} = (\lambda a_1)\mathbf{i} + (\lambda a_2)\mathbf{i} + (\lambda a_3)\mathbf{k}$$
.

When

$$\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}, \quad \mathbf{b} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k},$$

therefore, we see that

$$\mathbf{c} = ((1)(3) + (2)(2))\mathbf{i}$$

$$+ ((1)(2) + (2)(1))\mathbf{j}$$

$$+ ((1)(1) + (2)(2))\mathbf{k}.$$

Consequently,

$$\mathbf{c} = 7\mathbf{i} + 4\mathbf{j} + 5\mathbf{k} \ .$$

006 10.0 points

Determine the length of the vector $-2\mathbf{a} + \mathbf{b}$ when

$$\mathbf{a} = \langle 1, 2, -1 \rangle, \quad \mathbf{b} = \langle -3, -1, -2 \rangle.$$

- 1. length = $2\sqrt{11}$
- 2. length = $\sqrt{46}$
- 3. length = $4\sqrt{3}$
- 4. length = $5\sqrt{2}$ correct
- 5. length = $2\sqrt{13}$

Explanation:

The length, $|\mathbf{c}|$, of the vector

$$\mathbf{c} = \langle c_1, c_2, c_3 \rangle$$

is defined by

$$|\mathbf{c}| = \sqrt{c_1^2 + c_2^2 + c_3^2}.$$

Consequently, when

$$\mathbf{a} = \langle 1, 2, -1 \rangle, \quad \mathbf{b} = \langle -3, -1, -2 \rangle,$$

and

$$\mathbf{c} = -2\mathbf{a} + \mathbf{b} = \langle -5, -5, 0 \rangle,$$

we see that

$$|-2\mathbf{a} + \mathbf{b}| = 5\sqrt{2}.$$

007 10.0 points

Find all scalars λ so that $\lambda(\mathbf{a} + 2\mathbf{b})$ is a unit vector when

$$\mathbf{a} = \langle 1, 2 \rangle, \quad \mathbf{b} = \langle 1, -2 \rangle.$$

1.
$$\lambda = -\frac{1}{13}$$

2.
$$\lambda = \frac{1}{13}$$

3.
$$\lambda = -\frac{1}{\sqrt{13}}$$

4.
$$\lambda = \frac{1}{\sqrt{13}}$$

5.
$$\lambda = \pm \frac{1}{13}$$

6.
$$\lambda = \pm \frac{1}{\sqrt{13}}$$
 correct

Explanation:

A vector

$$\mathbf{c} = \langle c_1, c_2 \rangle$$

is said to be a unit vector when

$$|\mathbf{c}| = \sqrt{c_1^2 + c_2^2} = 1.$$

But for the given vectors **a** and **b**,

$$\lambda(\mathbf{a} + 2\mathbf{b}) = \lambda \langle 3, -2 \rangle = \langle 3\lambda, -2\lambda \rangle.$$

Thus

$$|\lambda(\mathbf{a} + 2\mathbf{b})| = \sqrt{\lambda^2((3)^2 + (-2)^2)}$$

= $|\lambda|\sqrt{(3)^2 + (-2)^2} = |\lambda|\sqrt{13}$.

Consequently, $\lambda(\mathbf{a} + 2\mathbf{b})$ will be a unit vector if and only if

$$\lambda = \pm \frac{1}{\sqrt{13}} \ .$$

keywords: vector sum, length, linear combination, unit vector,

008 10.0 points

Find a unit vector \mathbf{n} with the same direction as the vector

$$\mathbf{v} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}.$$

1.
$$\mathbf{n} = \frac{3}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}$$
 correct

2.
$$\mathbf{n} = \frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} + \frac{2}{9}\mathbf{k}$$

3.
$$\mathbf{n} = \frac{1}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{2}{9}\mathbf{k}$$

4.
$$\mathbf{n} = \frac{3}{10}\mathbf{i} - \frac{3}{5}\mathbf{j} + \frac{1}{5}\mathbf{k}$$

5.
$$\mathbf{n} = \frac{3}{7}\mathbf{i} - \frac{6}{7}\mathbf{j} + \frac{2}{7}\mathbf{k}$$

6.
$$\mathbf{n} = \frac{3}{10}\mathbf{i} + \frac{3}{5}\mathbf{j} - \frac{1}{5}\mathbf{k}$$

Explanation:

The vector

$$\mathbf{v} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$$
.

has length

$$\|\mathbf{v}\| = \sqrt{3^2 + 6^2 + 2^2} = \sqrt{49} = 7.$$

Consequently,

$$\mathbf{n} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{3}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}$$

is a unit vector with the same direction as \mathbf{v} .

009 10.0 points

Determine the dot product of the vectors

$$\mathbf{a} = \langle -1, -2, 3 \rangle, \quad \mathbf{b} = \langle 1, -3, 1 \rangle.$$

1.
$$a \cdot b = 6$$

2.
$$a \cdot b = 2$$

3.
$$\mathbf{a} \cdot \mathbf{b} = 8$$
 correct

4.
$$a \cdot b = 4$$

5.
$$\mathbf{a} \cdot \mathbf{b} = 0$$

Explanation:

The dot product, $\mathbf{a} \cdot \mathbf{b}$, of vectors

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle, \quad \mathbf{b} = \langle b_1, b_2, b_3 \rangle$$

is defined by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

Consequently, when

$$\mathbf{a} = \langle -1, -2, 3 \rangle, \quad \mathbf{b} = \langle 1, -3, 1 \rangle,$$

we see that

$$\mathbf{a} \cdot \mathbf{b} = 8$$

010 10.0 points

Determine the dot product of the vectors

$$\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}, \quad \mathbf{b} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}.$$

$$1. \mathbf{a} \cdot \mathbf{b} = 9$$

2.
$$a \cdot b = 13$$

3.
$$a \cdot b = 15$$

4.
$$a \cdot b = 17$$

5.
$$\mathbf{a} \cdot \mathbf{b} = 11 \text{ correct}$$

Explanation:

The dot product, $\mathbf{a} \cdot \mathbf{b}$, of vectors

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}, \quad \mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$$

is defined by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
.

Consequently, when

$$\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}, \quad \mathbf{b} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k},$$

5

we see that

$$\mathbf{a} \cdot \mathbf{b} = 11$$

011 10.0 points

Determine the dot product of vectors \mathbf{a} , \mathbf{b} when

$$|\mathbf{a}| = 3, \qquad |\mathbf{b}| = 6$$

and the angle between **a** and **b** is $\pi/3$.

1.
$$\mathbf{a} \cdot \mathbf{b} = \frac{19}{2}$$

2. $\mathbf{a} \cdot \mathbf{b} = 9 \mathbf{correct}$

3.
$$\mathbf{a} \cdot \mathbf{b} = 10$$

4.
$$\mathbf{a} \cdot \mathbf{b} = \frac{21}{2}$$

5.
$$\mathbf{a} \cdot \mathbf{b} = \frac{17}{2}$$

Explanation:

The dot product of vectors **a**, **b** is defined in coordinate-free form by

$$\mathbf{a} \cdot \mathbf{b} = |a| |b| \cos \theta$$

where θ is the angle between **a** and **b**. For the given vectors, therefore,

$$\mathbf{a} \cdot \mathbf{b} = 18 \cos \frac{\pi}{3} = 9 .$$

012 10.0 points

Find the angle between the vectors

$$\mathbf{a} = \langle -2\sqrt{3}, 1 \rangle, \quad \mathbf{b} = \langle -3\sqrt{3}, -5 \rangle.$$

1. angle =
$$\frac{\pi}{4}$$

2. angle =
$$\frac{5\pi}{6}$$

3. angle
$$=\frac{3\pi}{4}$$

4. angle =
$$\frac{\pi}{6}$$

5. angle =
$$\frac{2\pi}{3}$$

6. angle =
$$\frac{\pi}{3}$$
 correct

Explanation:

Since the dot product of vectors \mathbf{a} and \mathbf{b} can be written as

$$\mathbf{a}.\mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta, \quad 0 \le \theta \le \pi,$$

where θ is the angle between the vectors, we see that

$$\cos \theta = \frac{\mathbf{a.b}}{\|\mathbf{a}\| \|\mathbf{b}\|}, \quad 0 \le \theta \le \pi.$$

But for the given vectors,

$$\mathbf{a} \cdot \mathbf{b} = (-2\sqrt{3})(-3\sqrt{3}) + (1)(-5) = 13,$$

while

$$\|\mathbf{a}\| = \sqrt{13}, \quad \|\mathbf{b}\| = \sqrt{52}.$$

Consequently,

$$\cos\theta = \frac{13}{\sqrt{13} \cdot 2\sqrt{13}} = \frac{1}{2}$$

where $0 \le \theta \le \pi$. Thus

angle =
$$\frac{\pi}{3}$$
.

013 10.0 points

Which, if any, of the following pairs of vectors are perpendicular?

I.
$$\langle 3, 2 \rangle$$
, $\langle 4, -6 \rangle$,

II.
$$\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$$
, $3\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}$.

- 1. both of them
- 2. II only
- 3. I only correct
- 4. neither of them

Since the dot product

$$\langle 3, 2 \rangle \cdot \langle 4, -6 \rangle = (3)(4) + (2)(-6) = 0,$$

the vectors are perpendicular.

II Since the dot product

$$(\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}) \cdot (3\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) = 1$$

the vectors are not perpendicular.

10.0 points

Find the scalar projection of **b** onto **a** when

$$\mathbf{b} = \langle -5, 4 \rangle, \quad \mathbf{a} = \langle 4, -3 \rangle.$$

$$\mathbf{a} = \langle 4, -3 \rangle$$

- 1. scalar projection = $-\frac{31}{5}$
- 2. scalar projection = $-\frac{32}{5}$ correct
- 3. scalar projection = $-\frac{33}{5}$
- 4. scalar projection = $-\frac{29}{5}$
- 5. scalar projection = -6

Explanation:

The scalar projection of **b** onto **a** is given in terms of the dot product by

$$\operatorname{comp}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}.$$

Now when

$$\mathbf{b} = \langle -5, 4 \rangle, \quad \mathbf{a} = \langle 4, -3 \rangle,$$

we see that

$$\mathbf{a} \cdot \mathbf{b} = -32, \quad |\mathbf{a}| = \sqrt{(4)^2 + (-3)^2}.$$

Consequently,

$$\operatorname{comp}_{\mathbf{a}}\mathbf{b} = -\frac{32}{5} \quad .$$

keywords:

015 10.0 points

Find the scalar projection of **b** onto **a** when

$$b = 2i + j + 3k$$
, $a = 2i - 2j - k$.

- 1. scalar projection = $\frac{2}{3}$
- 2. scalar projection = $-\frac{1}{3}$ correct
- **3.** scalar projection = 0
- 4. scalar projection = 1
- 5. scalar projection $=\frac{1}{3}$

Explanation:

The scalar projection of \mathbf{b} onto \mathbf{a} is given in terms of the dot product by

$$\mathrm{comp}_a b \ = \ \frac{a \cdot b}{|a|} \, .$$

Now when

$$\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}, \quad \mathbf{a} = 2\mathbf{i} - 2\mathbf{j} - \mathbf{k},$$

we see that

$$\mathbf{a} \cdot \mathbf{b} = -1, \qquad |\mathbf{a}| = \sqrt{(2)^2 + (-2)^2 + (-1)^2}.$$

Consequently,

$$\operatorname{comp}_{\mathbf{a}}\mathbf{b} = -\frac{1}{3} \ .$$

keywords:

016 10.0 points

Find the vector projection of **b** onto **a** when

$$\mathbf{b} = \langle -2, -1 \rangle, \quad \mathbf{a} = \langle -1, -3 \rangle.$$

1. vector proj. =
$$\frac{7}{10}\langle -1, -3 \rangle$$

2. vector proj. =
$$\frac{1}{2}\langle -2, -1 \rangle$$

3. vector proj. =
$$\frac{7}{\sqrt{10}}\langle -1, -3 \rangle$$

4. vector proj. =
$$\frac{1}{2}\langle -1, -3 \rangle$$
 correct

5. vector proj. =
$$\frac{7}{\sqrt{10}}\langle -2, -1 \rangle$$

6. vector proj.
$$=\frac{5}{\sqrt{10}}\langle -2, -1 \rangle$$

The vector projection of \mathbf{b} onto \mathbf{a} is given in terms of the dot product by

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}|^2}\right)\mathbf{a}.$$

But when

$$\mathbf{b} = \langle -2, -1 \rangle, \quad \mathbf{a} = \langle -1, -3 \rangle,$$

we see that

$$\mathbf{a} \cdot \mathbf{b} = (-1)(-2) + (-3)(-1) = 5$$

while

$$|\mathbf{a}|^2 = (-1)^2 + (-3)^2 = 10.$$

Consequently,

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \frac{1}{2}\langle -1, -3 \rangle$$
.

keywords:

017 10.0 points

Find the vector projection of \mathbf{b} onto \mathbf{a} when

$$\mathbf{b} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}, \quad \mathbf{a} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}.$$

1. vector proj. =
$$\frac{14}{9}(2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$$

2. vector proj. =
$$\frac{2}{3}(2i + 2j + k)$$

3. vector proj. =
$$\frac{2}{3}(3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$$

4. vector proj. =
$$\frac{14}{9}(3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$$

5. vector proj. =
$$\frac{3}{7}(3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$$
 correct

6. vector proj. =
$$\frac{3}{7}(2i + 2j + k)$$

Explanation:

The vector projection of \mathbf{b} onto \mathbf{a} is given in terms of the dot product by

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a}\cdot\mathbf{b}}{\|\mathbf{a}\|^2}\right)\mathbf{a}.$$

Now when

$$b = 2i + 2j + k$$
, $a = 3i - j + 2k$.

we see that

$$\mathbf{a} \cdot \mathbf{b} = (3)(2) + (-1)(2) + (2)(1) = 6$$

while

$$\|\mathbf{a}\|^2 = (3)^2 + (-1)^2 + (2)^2 = 14.$$

Consequently,

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \frac{3}{7}(3\,\mathbf{i} - \mathbf{j} + 2\,\mathbf{k}) .$$

keywords: vector projection, vectors in space,

018 10.0 points

Find the value of the determinant

$$D = \begin{vmatrix} 1 & 2 & -1 \\ -3 & -2 & -2 \\ -1 & 1 & -3 \end{vmatrix}.$$

1.
$$D = -3$$

2.
$$D = -1$$
 correct

3.
$$D = 5$$

4.
$$D = 3$$

5.
$$D = 1$$

For any 3×3 determinant

$$\begin{vmatrix} A & B & C \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = A \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}$$
$$-B \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} + C \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}.$$

Thus

$$D = \begin{vmatrix} 1 & 2 & -1 \\ -3 & -2 & -2 \\ -1 & 1 & -3 \end{vmatrix}$$

$$= \begin{vmatrix} -2 & -2 \\ 1 & -3 \end{vmatrix} - 2 \begin{vmatrix} -3 & -2 \\ -1 & -3 \end{vmatrix} - \begin{vmatrix} -3 & -2 \\ -1 & 1 \end{vmatrix}$$

$$= (-2)(-3) - (1)(-2)$$

$$- 2((-3)(-3) - (-1)(-2))$$

$$- ((-3)(1) - (-1)(-2)).$$

Consequently,

$$D = -1 .$$

keywords: determinant

019 10.0 points

Find the cross product of the vectors

$$\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}, \quad \mathbf{b} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}.$$

1.
$$\mathbf{a} \times \mathbf{b} = -4\mathbf{i} - 5\mathbf{j} + 5\mathbf{k}$$

2.
$$\mathbf{a} \times \mathbf{b} = -3\mathbf{i} - 6\mathbf{j} + 4\mathbf{k}$$

3.
$$\mathbf{a} \times \mathbf{b} = -3\mathbf{i} - 5\mathbf{j} + 4\mathbf{k}$$

4.
$$\mathbf{a} \times \mathbf{b} = -4\mathbf{i} - 6\mathbf{j} + 4\mathbf{k}$$

5.
$$\mathbf{a} \times \mathbf{b} = -3\mathbf{i} - 6\mathbf{j} + 5\mathbf{k}$$

6.
$$\mathbf{a} \times \mathbf{b} = -4\mathbf{i} - 6\mathbf{j} + 5\mathbf{k}$$
 correct

Explanation:

One way of computing the cross product

$$(2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \times (\mathbf{i} + \mathbf{j} + 2\mathbf{k})$$

is to use the fact that

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}, \quad \mathbf{j} \times \mathbf{k} = \mathbf{i}, \quad \mathbf{k} \times \mathbf{i} = \mathbf{j},$$

while

$$\mathbf{i} \times \mathbf{i} = 0$$
, $\mathbf{j} \times \mathbf{j} = 0$, $\mathbf{k} \times \mathbf{k} = 0$.

For then

$$\mathbf{a} \times \mathbf{b} = -4\mathbf{i} - 6\mathbf{j} + 5\mathbf{k} \ .$$

Alternatively, we can use the definition

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & -2 \\ 1 & 1 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -2 \\ 1 & 2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & -2 \\ 1 & 2 \end{vmatrix} \mathbf{j}$$
$$+ \begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix} \mathbf{k}$$

to determine $\mathbf{a} \times \mathbf{b}$.

020 10.0 points

Find the cross product of the vectors

$$\mathbf{a} = \langle -1, 1, 3 \rangle, \quad \mathbf{b} = \langle 1, -3, 1 \rangle.$$

1.
$$\mathbf{a} \times \mathbf{b} = \langle 11, 4, 1 \rangle$$

2.
$$\mathbf{a} \times \mathbf{b} = \langle 11, -7, 1 \rangle$$

3.
$$\mathbf{a} \times \mathbf{b} = \langle 11, 4, 2 \rangle$$

4.
$$\mathbf{a} \times \mathbf{b} = \langle 10, 4, 2 \rangle$$
 correct

5.
$$\mathbf{a} \times \mathbf{b} = \langle 10, -7, 1 \rangle$$

6.
$$\mathbf{a} \times \mathbf{b} = \langle 10, -7, 2 \rangle$$

By definition

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & 3 \\ 1 & -3 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 3 \\ -3 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} -1 & 3 \\ 1 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} -1 & 1 \\ 1 & -3 \end{vmatrix} \mathbf{k}.$$

Consequently,

$$\mathbf{a} \times \mathbf{b} = \langle 10, 4, 2 \rangle$$
.

keywords: vectors, cross product

021 10.0 points

Determine all unit vectors **v** orthogonal to

$$a = i + 4j + 3k$$
, $b = 2i + 6j + 3k$.

1.
$$\mathbf{v} = \pm \left(\frac{3}{7}\mathbf{i} - \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}\right)$$

2.
$$\mathbf{v} = -\frac{6}{7}\mathbf{i} + \frac{3}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}$$

3.
$$\mathbf{v} = -3\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$$

4.
$$\mathbf{v} = -\frac{3}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{2}{7}\mathbf{k}$$

5.
$$\mathbf{v} = \pm \left(\frac{6}{7}\mathbf{i} - \frac{3}{7}\mathbf{j} + \frac{2}{7}\mathbf{k}\right)$$
 correct

6.
$$\mathbf{v} = -6\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$$

Explanation:

The non-zero vectors orthogonal to ${\bf a}$ and ${\bf b}$ are all of the form

$$\mathbf{v} = \lambda(\mathbf{a} \times \mathbf{b}), \quad \lambda \neq 0,$$

with λ a scalar. The only unit vectors orthogonal to ${\bf a},\,{\bf b}$ are thus

$$\mathbf{v} \; = \; \pm \frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|} \, .$$

But for the given vectors **a** and **b**,

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 4 & 3 \\ 2 & 6 & 3 \end{vmatrix}$$
$$= \begin{vmatrix} 4 & 3 \\ 6 & 3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 4 \\ 2 & 6 \end{vmatrix} \mathbf{k}$$
$$= -6\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}.$$

In this case,

$$\|\mathbf{a} \times \mathbf{b}\|^2 = 49.$$

Consequently,

$$\mathbf{v} = \pm \left(\frac{6}{7}\mathbf{i} - \frac{3}{7}\mathbf{j} + \frac{2}{7}\mathbf{k}\right).$$

022 10.0 points

Find the area of the triangle having vertices

$$P(-3, -1), \quad Q(-2, -2), \quad R(3, 3).$$

1. area = 5 correct

2. area =
$$\frac{9}{2}$$

3. area =
$$4$$

4. area =
$$6$$

5. area =
$$\frac{11}{2}$$

Explanation:

To use vectors we shall identify a line segment with the corresponding directed line segment.

Since the area of the parallelogram having adjacent edges \overline{PQ} and \overline{PR} is given by

$$|\overrightarrow{PQ} \times \overrightarrow{PR}|$$
.

 ΔPQR has

area
$$= \frac{1}{2} |\overrightarrow{PQ} \times \overrightarrow{PR}|$$
.

Now

$$\overrightarrow{PQ} = \langle 1, -1, 0 \rangle, \quad \overrightarrow{PR} = \langle 6, 4, 0 \rangle.$$

But then

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 0 \\ 6 & 4 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 6 & 4 \end{vmatrix} \mathbf{k}.$$

Consequently, ΔPQR has

$$area = 5$$
.

keywords: vectors, cross product area, triangle, parallelogram

023 10.0 points

Find a vector \mathbf{v} orthogonal to the plane through the points

1.
$$\mathbf{v} = \langle 8, 5, 20 \rangle$$

2.
$$\mathbf{v} = \langle 8, 2, 20 \rangle$$

3.
$$\mathbf{v} = \langle 4, 10, 20 \rangle$$

4.
$$\mathbf{v} = \langle 8, 10, 20 \rangle$$
 correct

5.
$$\mathbf{v} = \langle 2, 10, 20 \rangle$$

Explanation:

Because the plane through P, Q, R contains the vectors \overrightarrow{PQ} and \overrightarrow{PR} , any vector \mathbf{v} orthogonal to both of these vectors (such as their cross product) must therefore be orthogonal to the plane.

Here

$$\overrightarrow{PQ} = \langle -5, 4, 0 \rangle, \quad \overrightarrow{PR} = \langle -5, 0, 2 \rangle.$$

Consequently,

$$\mathbf{v} = \overrightarrow{PQ} \times \overrightarrow{PR} = \langle 8, 10, 20 \rangle$$

is othogonal to the plane through P, Q and R.