Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba¹

2013

¹Uniwersytet im. Adama Mickiewicza, kalmar@amu.edu.pl

Wykład 8

Krzywizna Gaussa I

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

role powierzciini

owtorka z algebry liniowej ii

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa Krzywizna Gaussa - Idea Pole powierzchni Powtórka z algebry liniowej II

Flementarna Geometria Różniczkowa

Krzywizna Gaussa I

Jednak dla celów dalszego wykładu chcielibyśmy, aby był funkcją gładką określoną *na powierzchni*. Stąd następująca definicja:

Definicia

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Odwzorowaniem Gaussa** nazywamy odwzorowanie $\widehat{n}: x(U) \to S^2$ zadane wzorem

$$\widehat{n}(p) \stackrel{\text{def.}}{=} n \circ x^{-1}(p),$$

$$gdzie n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa - Idea

Pole powierzchni

Powtórka z algebr

Tak jak został zdefiniowany wektor normalny (jako $\frac{x_1 \times x_2}{\|x_1 \times x_2\|}$, definicja ??), jest on raczej funkcją z $\mathbb{R}^2 \to \mathbb{R}^3$ (lub $\mathbb{R}^2 \to S^2$). Jednak dla celów dalszego wykładu chcielibyśmy, aby był funkcją gładką określoną *na powierzchni*. Stąd następująca definicja:

Definicia

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x \colon U \to M$ będzie lokalnym układem współrzędnych. **Odwzorowaniem Gaussa** nazywamy odwzorowanie $\widehat{n} \colon x(U) \to S^2$ zadane wzorem

 $\widehat{n}(p) \stackrel{\text{def.}}{=} n \circ x^{-1}(p),$

 $gdzie n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|}$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa

...,

TOIC POWICIZ

Powtórka z algebi

Powtórka z algebry liniowej l

Tak jak został zdefiniowany wektor normalny (jako $\frac{x_1 \times x_2}{\|x_1 \times x_2\|}$, definicja ??), jest on raczej funkcją z $\mathbb{R}^2 \to \mathbb{R}^3$ (lub $\mathbb{R}^2 \to S^2$). Jednak dla celów dalszego wykładu chcielibyśmy, aby był funkcją gładką określoną *na powierzchni*. Stąd następująca definicja:

Definicja

Niech $M \subset R^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Odwzorowaniem Gaussa** nazywamy odwzorowanie $\widehat{n}: x(U) \to S^2$ zadane wzorem

$$\widehat{n}(p) \stackrel{\text{def.}}{=} n \circ x^{-1}(p),$$

$$gdzie n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|}.$$

Odwzorowanie Gaussa

Uwaga

- Odwzorowanie Gaussa zależy od tego w jaki sposób

Dla różnych lokalnych układów współrzędnych dobrze określony jest tylko kierunek normalny, (a więc $\pm n$, znak zależy od wyboru kolejności zmiennych u i v).

- Przyjmujemy że wybieramy kierunek "zewnętrzny" (o ile ma to sens).
- ▶ Odwzorowanie Gaussa zależy od tego w jaki sposób powierzchnia M jest umieszczona w \mathbb{R}^3 (od lokalnego układu współrzędnych).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzchni

 Odwzorowanie Gaussa zależy od tego w jaki sposób powierzchnia M jest umieszczona w \mathbb{R}^3 (od lokalnego układu współrzędnych).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Odwzorowanie Gaussa

Aby zdefiniować krzywiznę potrzebujemy funkcji *K* o następujących własnościach:

1. $K:M \to \mathbb{R}$ jest funkcją gładką;

- krzywizna K(p) jest niezależna od wyboru lokalnego układu współrzędnych, zależy tylko od kształtu powierzchni;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Pole powierzchni

Aby zdefiniować krzywiznę potrzebujemy funkcji *K* o następujących własnościach:

- 1. $K:M \to \mathbb{R}$ jest funkcją gładką;
- 2. krzywizna K(p) jest niezależna od wyboru lokalnego układu współrzędnych, zależy tylko od kształtu powierzchni;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Pole powierzchni

Aby zdefiniować krzywiznę potrzebujemy funkcji *K* o następujących własnościach:

- 1. $K:M \to \mathbb{R}$ jest funkcją gładką;
- krzywizna K(p) jest niezależna od wyboru lokalnego układu współrzędnych, zależy tylko od kształtu powierzchni;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

...,

Pole powierzchni

- 1. $K:M \to \mathbb{R}$ jest funkcją gładką;
- krzywizna K(p) jest niezależna od wyboru lokalnego układu współrzędnych, zależy tylko od kształtu powierzchni;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Kizywiziia Gaussa – i

Pole powierzchni

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwienowanie

Krzywizna Gaussa – Idea

Pole powierzchni

- ▶ Ustalmy punkt $p \in M$ i lokalny układ współrzędnych $x: U \rightarrow M$ wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $V \subset x(U)$ zawierające punkt p.
- ► Kiedy punkt p należy do zbioru V, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(V) \subset S^2$,
- zbadajmy więc stosunek pól powierzchni

$$\frac{A(\widehat{n}(V)), \ \widehat{n}(V) \subset S^2}{A(V), \ V \subset M}$$

Gauss definiował krzywiznę jako

$$K_{\mathcal{G}}(p) \stackrel{\text{def.}}{=} \varinjlim_{V \to p} \frac{A(\widehat{n}(V))}{A(V)}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzchni

Powtórka z algebry

Spróbujmy zdefiniować krzywiznę w punkcie $p \in M$ następująco:

- ▶ Ustalmy punkt $p \in M$ i lokalny układ współrzędnych $x: U \rightarrow M$ wokół p.
- ► Wybierzmy niewielkie otoczenie otwarte V ⊂ x(U) zawierające punkt p.
- ▶ Kiedy punkt p należy do zbioru V, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(V) \subset S^2$,
- zbadajmy więc stosunek pól powierzchni

$$\frac{A(\widehat{n}(V)), \ \widehat{n}(V) \subset S^2}{A(V), \ V \subset M}$$

Gauss definiował krzywiznę jako

$$K_{\mathcal{G}}(p) \stackrel{\text{def.}}{=} \varinjlim_{V \to p} \frac{A(\widehat{n}(V))}{A(V)}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Pole powierzchni

Spróbujmy zdefiniować krzywiznę w punkcie $p \in M$ następująco:

- ▶ Ustalmy punkt $p \in M$ i lokalny układ współrzędnych $x: U \rightarrow M$ wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $V \subset x(U)$ zawierające punkt p.
- ▶ Kiedy punkt p należy do zbioru V, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(V) \subset S^2$,
- zbadajmy więc stosunek pól powierzchni

$$\frac{A(\widehat{n}(V)), \ \widehat{n}(V) \subset S^2}{A(V), \ V \subset M}$$

Gauss definiował krzywiznę jako

$$K_{\mathcal{G}}(p) \stackrel{\text{def.}}{=} \varinjlim_{V \to p} \frac{A(\widehat{n}(V))}{A(V)}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

roie powierzo

- ▶ Ustalmy punkt $p \in M$ i lokalny układ współrzędnych $x: U \rightarrow M$ wokół p.
- ► Wybierzmy niewielkie otoczenie otwarte V ⊂ x(U) zawierające punkt p.
- ▶ Kiedy punkt p należy do zbioru V, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(V) \subset S^2$,
- zbadajmy więc stosunek pól powierzchni

$$\frac{A(\widehat{n}(V)), \ \widehat{n}(V) \subset S^2}{A(V), \ V \subset M};$$

Gauss definiował krzywiznę jako

$$K_{\mathcal{G}}(p) \stackrel{\text{def.}}{=} \varinjlim_{V \to p} \frac{A(\widehat{n}(V))}{A(V)}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwie Orowanie Or

Krzywizna Gaussa – Idea

Pole powierz

- Ustalmy punkt p ∈ M i lokalny układ współrzędnych x: U → M wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $V \subset x(U)$ zawierające punkt p.
- ▶ Kiedy punkt p należy do zbioru V, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(V) \subset S^2$,
- zbadajmy więc stosunek pól powierzchni

$$\frac{A(\widehat{n}(V)), \ \widehat{n}(V) \subset S^2}{A(V), \ V \subset M};$$

Gauss definiował krzywiznę jako

$$K_{\mathfrak{G}}(p) \stackrel{\text{def.}}{=} \varinjlim_{V \to p} \frac{A(\widehat{n}(V))}{A(V)}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Pole powierzcl

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa - Idea

Problemy:

- 1. Czy ta granica jest niezależna od wyboru otoczeń *V*? Jak to formalnie zdefiniować?
- 2. Jak zdefiniować pole wyznaczone przez $\widehat{n}(V)$ kiedy \widehat{n} nie jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar V? Czy wtedy należałoby brać pole $A(\widehat{n}(V))$ ze znakiem ujemnym?

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa i

Krzywizna Gaussa – Idea

....,

Pole powierzchni

Powtórka z algebry linio

Problemy:

- 1. Czy ta granica jest niezależna od wyboru otoczeń *V*? Jak to formalnie zdefiniować?
- 2. Jak zdefiniować pole wyznaczone przez $\widehat{n}(V)$ kiedy \widehat{n} nie jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar V? Czy wtedy należałoby brać pole $A(\widehat{n}(V))$ ze znakiem ujemnym?

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Krzywizna Gaussa – i

Pole powierzchni

Problemy:

- 1. Czy ta granica jest niezależna od wyboru otoczeń *V*? Jak to formalnie zdefiniować?
- 2. Jak zdefiniować pole wyznaczone przez $\widehat{n}(V)$ kiedy \widehat{n} nie jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar V? Czy wtedy należałoby brać pole $A(\widehat{n}(V))$ ze znakiem ujemnym?

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Krzywizna Gaussa

Pole powierz

Krzywizna Gaussa - Idea

Niech $S^2 \subset \mathbb{R}^3$ oznacza sferę o promieniu R i środku w punkcie (0, 0, 0) i niech

$$x(\phi, \psi) = (R\cos\phi\cos\psi, R\sin\phi\cos\psi, R\sin\psi)$$

będzie na niej lokalnym układem współrzędnych. Mamy

$$\begin{split} x_{\varphi} &= R(-\sin\varphi\cos\psi,\cos\varphi\cos\psi,0), \\ x_{\psi} &= R(-\cos\varphi\sin\psi,-\sin\varphi\sin\psi,\cos\psi) \end{split}$$

$$\widehat{n}(p) = \frac{x_{\Phi} \times x_{\Psi}}{\|x_{\Phi} \times x_{\Psi}\|} = \frac{p}{R}$$

Pole powierzch

Powtórka z algebry liniowej I

Niech $S^2 \subset \mathbb{R}^3$ oznacza sferę o promieniu R i środku w punkcie (0,0,0) i niech

$$x(\phi, \psi) = (R\cos\phi\cos\psi, R\sin\phi\cos\psi, R\sin\psi)$$

będzie na niej lokalnym układem współrzędnych. Mamy

$$\begin{split} x_{\varphi} &= R(-\sin\varphi\cos\psi,\cos\varphi\cos\psi,0), \\ x_{\psi} &= R(-\cos\varphi\sin\psi,-\sin\varphi\sin\psi,\cos\psi), \end{split}$$

więc jeśli wybierzemy (zgodnie z konwencją) wektor normalny *n* wskazujący na zewnątrz, wtedy

$$\widehat{n}(p) = \frac{x_{\Phi} \times x_{\Psi}}{\|x_{\Phi} \times x_{\Psi}\|} = \frac{p}{R}$$

dla całej sfery.

Widzimy więc, że odwzorowanie Gaussa zmiejsza obszar o czynnik $\frac{1}{D^2}$ i nie ma żadnych problemów z definicją.

Sfera o promieniu R

Sfera o promieniu 1

$$K_{\mathfrak{G}}(p) = \frac{A(\widehat{n}(V))}{A(V)} = \frac{2\pi\cos(\alpha)}{2\pi R^2\cos(\alpha)} = \frac{1}{R^2}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie

Krzywizna Gaussa – Idea

Pole powierzch

Powtórka z algebry lini

- ► Rozważmy okrąg $S = \{u^2 + v^2 = \varepsilon\}$, oraz jego obraz x(S) leżący na powierzchni siodłowej.
- ightharpoonup Obcięcie odwzorowania Gaussa do x(S) jest również okręgiem (leżącym teraz na sferze).
- ▶ Jeśli obiegamy okrąg S (lub x(S)) w lewo, okrąg $\widehat{n}(x(S))$ jest obiegany w prawo.
- ► Zatem chcemy nadać znak ujemny polu $A(\widehat{n}(V))$ gdzie V jest ograniczony przez x(S).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzc

Powtórka z algebr

- ► Rozważmy okrąg $S = \{u^2 + v^2 = \varepsilon\}$, oraz jego obraz x(S) leżący na powierzchni siodłowej.
- ▶ Obcięcie odwzorowania Gaussa do *x*(*S*) jest również okręgiem (leżącym teraz na sferze).
- ▶ Jeśli obiegamy okrąg S (lub x(S)) w lewo, okrąg $\widehat{n}(x(S))$ jest obiegany w prawo.
- ▶ Zatem chcemy nadać znak ujemny polu $A(\widehat{n}(V))$ gdzie V jest ograniczony przez x(S).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Krzywizna Gaussa – idea

owtórka z algebry linio

- ► Rozważmy okrąg $S = \{u^2 + v^2 = \varepsilon\}$, oraz jego obraz x(S) leżący na powierzchni siodłowej.
- ▶ Obcięcie odwzorowania Gaussa do *x*(*S*) jest również okręgiem (leżącym teraz na sferze).
- ▶ Jeśli obiegamy okrąg S (lub x(S)) w lewo, okrąg $\widehat{n}(x(S))$ jest obiegany w prawo.
- ▶ Zatem chcemy nadać znak ujemny polu $A(\widehat{n}(V))$ gdzie V jest ograniczony przez x(S).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Krzywizna Gaussa – Idea

wtórka z algebry liniow

- ► Rozważmy okrąg $S = \{u^2 + v^2 = \varepsilon\}$, oraz jego obraz x(S) leżący na powierzchni siodłowej.
- ▶ Obcięcie odwzorowania Gaussa do *x*(*S*) jest również okręgiem (leżącym teraz na sferze).
- ▶ Jeśli obiegamy okrąg S (lub x(S)) w lewo, okrąg $\widehat{n}(x(S))$ jest obiegany w prawo.
- ► Zatem chcemy nadać znak ujemny polu $A(\widehat{n}(V))$ gdzie V jest ograniczony przez x(S).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Krzywizna Gaussa – Idea

Pole powierzci

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Pole podzbioru** $S \subset x(U)$ wyraża się wzorem

$$A(S) \stackrel{\text{def.}}{=} \iint_{x^{-1}(S)} \sqrt{|\det(g_{ij})|} \, ds \, dt.$$

Motywacją geometryczną jest to, że $\sqrt{|\det(g_{ij})|}$ jest równe polu równoległoboku rozpiętego przez x_1 i x_2 , który jest styczny do powierzchni w tym punkcie.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Ides

Pole powierzchni

owtórka z algebry linic

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Pole podzbioru $S \subset x(U)$ wyraża się wzorem

$$A(S) \stackrel{\text{def.}}{=} \iint_{x^{-1}(S)} \sqrt{|\det(g_{ij})|} \, ds \, dt.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Pole powierzchni

Powtórka z algebry liniowej II

Podobnie jak wcześniej wyraziliśmy długość, teraz wyrazimy pole powierzchni w języku współczynników metrycznych.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Pole podzbioru** $S \subset x(U)$ wyraża się wzorem

$$A(S) \stackrel{\text{def.}}{=} \iint_{x^{-1}(S)} \sqrt{|\det(g_{ij})|} \, ds \, dt.$$

Motywacją geometryczną jest to, że $\sqrt{|\det(g_{ij})|}$ jest równe polu równoległoboku rozpiętego przez x_1 i x_2 , który jest styczny do powierzchni w tym punkcie.

Lemat

Załóżmy, że $S \subset x(U) \cap y(V)$ dla dwóch lokalnych układów współrzędnych x, y na M. Niech (g_{ij}) , [odpowiednio $(\overline{g_{ij}})$] oznacza macierz współczynników metrycznych dla x[odpowiednio y]. Wtedy

$$\iint_{x^{-1}(S)} \sqrt{|\det(g_{ij})|} ds dt = \iint_{y^{-1}(S)} \sqrt{|\det(\overline{g_{ij}})|} ds dt.$$

Dowód pomijamy.

Elementarna Geometria

Krzywizna Gaussa – Idea

Pole powierzchni

Powtórka z algebry liniowej II

$$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{|\det(g_{ij})|},$$

zatem mamy

$$A(V) = \iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt.$$

Analogicznie możemy zdefiniować pole $\widehat{n}(V)$ jako

$$A(\widehat{n}(V)) = \iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt$$

gdzie *n*₁, *n*₂ są pochodnymi cząstkowymi *n* po zmiennych odpowiednio *s* i *t*.

To rozwiązuje problemy (2) i (3) powyżej, jednak problem (1) (niezależności definicji od wyboru otoczeń V) pozostaje.

Pole powierzchni

$$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{|\det(g_{ij})|},$$

zatem mamy

$$A(V) = \iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt.$$

$$A(\widehat{n}(V)) = \iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt$$

Pole powierzchni

$$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{|\det(g_{ij})|},$$

zatem mamy

$$A(V) = \iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt.$$

Analogicznie możemy zdefiniować pole $\widehat{n}(V)$ jako

$$A(\widehat{n}(V)) = \iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt,$$

gdzie n_1 , n_2 są pochodnymi cząstkowymi n po zmiennych odpowiednio *s* i *t*.

$$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{|\det(g_{ij})|},$$

zatem mamy

$$A(V) = \iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt.$$

Analogicznie możemy zdefiniować pole $\widehat{n}(V)$ jako

$$A(\widehat{n}(V)) = \iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt,$$

gdzie n_1 , n_2 są pochodnymi cząstkowymi n po zmiennych odpowiednio s i t.

To rozwiązuje problemy (2) i (3) powyżej, jednak problem (1) (niezależności definicji od wyboru otoczeń V) pozostaje.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzchni

Niech W będzie rzeczywistą przestrzenią wektorową i niech \langle , \rangle będzie iloczynem skalarnym na W.

$$\mathcal{B}_F(v, w) = \langle F(v), w \rangle.$$

$$F(v_1, v_2) = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (v_1 + 2v_2, -v_2)$$

Definicja

Rozważmy odwzorowanie liniowe $F: W \rightarrow W$.

Odwzorowaniem dwuliniowym **indukowanym przez** F nazywamy odwzorowanie $\mathcal{B}_F \colon W \times W \to \mathbb{R}$ zadane przez

$$\mathcal{B}_{F}(v, w) = \langle F(v), w \rangle.$$

Przykład

Niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadane wzorem (w bazie standardowej!)

$$F(v_1, v_2) = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (v_1 + 2v_2, -v_2).$$

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Ide

Pole powierzchni

Niech W będzie rzeczywistą przestrzenią wektorową i niech \langle , \rangle będzie iloczynem skalarnym na W.

Definicja

Rozważmy odwzorowanie liniowe $F: W \rightarrow W$.

Odwzorowaniem dwuliniowym **indukowanym przez** *F* nazywamy odwzorowanie $\mathcal{B}_F: W \times W \to \mathbb{R}$ zadane przez

$$\mathfrak{B}_{F}(v, w) = \langle F(v), w \rangle.$$

Przykład

Niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadane wzorem (w bazie standardowej!)

$$F(v_1, v_2) = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (v_1 + 2v_2, -v_2).$$

Pole powierzchni

Powtórka z algebry liniowej II

Odwzorowanie ${\mathbb B}_F{:}{\mathbb R}^2 o{\mathbb R}$ indukowane przez Fjest równe

$$\mathcal{B}_{F}((v_{1}, v_{2}), (w_{1}, w_{2})) = \langle F(v_{1}, v_{2}), (w_{1}, w_{2}) \rangle =$$

$$= \left\langle \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}, (w_{1}, w_{2}) \right\rangle =$$

$$= \langle (v_{1} + 2v_{2}, -v_{2}), (w_{1}, w_{2}) \rangle = (v_{1} + 2v_{2})w_{1} - v_{2}w_{2}.$$

Odwzorowanie $\mathfrak{B}_F:\mathbb{R}^2\to\mathbb{R}$ indukowane przez F jest równe

$$\mathcal{B}_{F}((v_{1}, v_{2}), (w_{1}, w_{2})) = \langle F(v_{1}, v_{2}), (w_{1}, w_{2}) \rangle =$$

$$= \left\langle \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}, (w_{1}, w_{2}) \right\rangle =$$

$$= \langle (v_{1} + 2v_{2}, -v_{2}), (w_{1}, w_{2}) \rangle = (v_{1} + 2v_{2})w_{1} - v_{2}w_{2}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa i

Odw2010waiile Gauss

Krzywizna Gaussa – idea

Niech (W, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech $F: W \to W$ będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- Niech M oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie).

Wtedy $M = A^tG$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa Krzywizna Gaussa – Idea

Pole powierzchni

Niech (W, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech $F: W \rightarrow W$ będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- ► Niech M oznacza macierz odwzorowania B_F indukowanego

Wtedv $M = A^tG$.

Powtórka z algebry liniowej II

Niech $(W, \langle \, , \, \rangle)$ będzie przestrzenią wektorową z iloczynem

- skalarnym. Ustalmy bazę tej przestrzeni.
 - Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
 - Niech F: W → W będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
 - ► Niech M oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie).

Wtedy $M = A^tG$.

Niech (W, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech F: W → W będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- ► Niech **M** oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie).

Wtedy $M = A^tG$.

Niech (W, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech F: W → W będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- ▶ Niech **M** oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie).

Wtedy $\mathbf{M} = \mathbf{A}^t \mathbf{G}$.

Niech F będzie tak jak z poprzedniego przykładu. Na $W = \mathbb{R}^2$ wybierzmy standardową bazę $\{e_1, e_2\}$. Naturalny iloczyn skalarny na \mathbb{R}^2 ma w tej bazie macierz $\mathbf{G} = \operatorname{Id}$. Zatem macierzą odwzorowania \mathcal{B}_F jest macierz

$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}^t \cdot Id = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \cdot Id,$$

zatem

$$\mathcal{B}_{F}((v_{1}, v_{2}), (w_{1}, w_{2})) = [v_{1}, v_{2}] \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \cdot \operatorname{Id} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Niech W będzie przestrzenią wektorową i B formą dwuliniową na W.

- B jest formą symetryczną wtedy i tylko wtedy, gdy macierz odwzorowania B w dowolnej bazie W jest macierzą symetryczną.
- Niech $F: W \to W$ będzie odwzorowaniem liniowym. Następujące warunki są równoważne:
 - macierz A odwzorowania F jest symetryczna w każde, bazie ortonormalnej przestrzeni W,
 - forma dwuliniowa B_F indukowana przez F jest symetryczna.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Niech W będzie przestrzenią wektorową i $\mathbb B$ formą dwuliniową na W.

- ▶ B jest formą symetryczną wtedy i tylko wtedy, gdy macierz odwzorowania B w dowolnej bazie W jest macierzą symetryczną.
- Niech $F: W \to W$ będzie odwzorowaniem liniowym. Następujące warunki są równoważne:
 - macierz A odwzorowania F jest symetryczna w każdej
 bazie ortonormalnej przestrzeni W
 - 2. forma dwuliniowa B_F indukowana przez F jest

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Udwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzchni

Niech W będzie przestrzenią wektorową i $\mathbb B$ formą dwuliniową na W.

- ▶ B jest formą symetryczną wtedy i tylko wtedy, gdy macierz odwzorowania B w dowolnej bazie W jest macierzą symetryczną.
- Niech F: W → W będzie odwzorowaniem liniowym. Następujące warunki są równoważne:
 - 1. macierz **A** odwzorowania F jest symetryczna w każdej bazie ortonormalnej przestrzeni W,
 - 2. forma dwuliniowa B_F indukowana przez F jest symetryczna.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa i

Odwzorowanie Gaussa Krzywizna Gaussa – Idea

Pole powierzchni

Niech W będzie przestrzenią wektorową i B formą dwuliniową na W.

- ▶ B jest formą symetryczną wtedy i tylko wtedy, gdy macierz odwzorowania B w dowolnej bazie W jest macierzą symetryczną.
- Niech F: W → W będzie odwzorowaniem liniowym. Następujące warunki są równoważne:
 - macierz A odwzorowania F jest symetryczna w każdej bazie ortonormalnej przestrzeni W,
 - 2. $forma dwuliniowa B_F indukowana przez F jest symetryczna.$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa Krzywizna Gaussa – Idea

r oic powierzemii

Niech W będzie przestrzenią wektorową i $\mathbb B$ formą dwuliniową na W.

- ▶ B jest formą symetryczną wtedy i tylko wtedy, gdy macierz odwzorowania B w dowolnej bazie W jest macierzą symetryczną.
- Niech F: W → W będzie odwzorowaniem liniowym. Następujące warunki są równoważne:
 - 1. macierz **A** odwzorowania F jest symetryczna w każdej bazie ortonormalnej przestrzeni W,
 - 2. forma dwuliniowa \mathbb{B}_F indukowana przez F jest symetryczna.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa

Pole powierzchni

$$\mathcal{B}(\mathbf{v},\mathbf{w})=\mathcal{B}(\mathbf{w},\mathbf{v}).$$

$$A = A^t$$
.

- Jeśli A jest symetryczna w każdej bazie, możemy wybrać taką, w której macierz G = Id (macierz iloczynu skalarnego na W).
- Zatem

$$\mathcal{B}_F(v, w) = v\mathbf{A}^t \cdot \mathbf{G}w = w^t (\mathbf{A}^t)^t v^t = \mathcal{B}_F(w, v).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

$$\mathcal{B}(\mathbf{v},\mathbf{w})=\mathcal{B}(\mathbf{w},\mathbf{v}).$$

$$\mathbf{A} = \mathbf{A}^t$$

- Jeśli A jest symetryczna w każdej bazie, możemy wybrać taką, w której macierz G = Id (macierz iloczynu skalarnego na W).
- Zatem

$$\mathcal{B}_F(v, w) = v\mathbf{A}^t \cdot \mathbf{G}w = w^t (\mathbf{A}^t)^t v^t = \mathcal{B}_F(w, v).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

$$\mathcal{B}(v, w) = \mathcal{B}(w, v).$$

$$\mathbf{A} = \mathbf{A}^t$$

- Jeśli A jest symetryczna w każdej bazie, możemy wybrać taką, w której macierz G = Id (macierz iloczynu skalarnego na W).
- Zatem

$$\mathcal{B}_F(v, w) = v\mathbf{A}^t \cdot \mathbf{G}w = w^t (\mathbf{A}^t)^t v^t = \mathcal{B}_F(w, v).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gauss Krzywizna Gaussa – I

Pole powierzchni

$$\mathcal{B}(v, w) = \mathcal{B}(w, v).$$

$$\mathbf{A} = \mathbf{A}^t$$

- Jeśli A jest symetryczna w każdej bazie, możemy wybrać taką, w której macierz G = Id (macierz iloczynu skalarnego na W).
- Zatem

$$\mathcal{B}_F(v, w) = v\mathbf{A}^t \cdot \mathbf{G}w = w^t (\mathbf{A}^t)^t v^t = \mathcal{B}_F(w, v).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – I

r ole powierzciiiii

- F ma rzeczywiste wartości własne k_i.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det \mathbf{A} = \prod_{i} k_{i}$$
 oraz $\operatorname{tr} \mathbf{A} = \sum_{i} k_{i}$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

- F ma rzeczywiste wartości własne k_i.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det \mathbf{A} = \prod_{i} k_{i}$$
 oraz $\operatorname{tr} \mathbf{A} = \sum_{i} k_{i}$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Niech $F: W \rightarrow W$ będzie odwzorowaniem liniowym. Załóżmy, że macierz **A** formy F jest symetryczna w każdej bazie ortonormalnej W. Wtedy

- F ma rzeczywiste wartości własne k_i.
- wektory odpowiadające wartościom własnym F są ortogonalne.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det \mathbf{A} = \prod_{i} k_{i}$$
 oraz $\operatorname{tr} \mathbf{A} = \sum_{i} k_{i}$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

F ma rzeczywiste wartości własne k_i.

ortonormalnej W. Wtedy

- wektory odpowiadające wartościom własnym F są ortogonalne.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det \mathbf{A} = \prod_{i} k_{i}$$
 oraz $\operatorname{tr} \mathbf{A} = \sum_{i} k_{i}$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – i

role powier

Niech $W = \mathbb{R}^2$ i niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadane przez symetryczną macierz rzeczywistą

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right].$$

Wielomian charakterystyczny A:

$$f_{\mathbf{A}}(t) = \det \begin{bmatrix} a-t & b \\ b & c-t \end{bmatrix} = t^2 - (a+c)t - (b^2 - ac)t$$

posiada deltę nieujemną $\Delta = (a-c)^2 + 4b^2$, więc ma dwa pierwiastki rzeczywiste (są to wartości własne **A**).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa –

Pole powierzchni

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right].$$

Wielomian charakterystyczny A:

$$f_{A}(t) = \det \begin{bmatrix} a-t & b \\ b & c-t \end{bmatrix} = t^{2} - (a+c)t - (b^{2} - ac)$$

posiada deltę nieujemną $\Delta = (a-c)^2 + 4b^2$, więc ma dwa pierwiastki rzeczywiste (są to wartości własne **A**).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Krzywizna Gaussa – Id

Pole powierzchni

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right].$$

Wielomian charakterystyczny A:

$$f_{A}(t) = \det \begin{bmatrix} a-t & b \\ b & c-t \end{bmatrix} = t^{2} - (a+c)t - (b^{2} - ac)$$

posiada deltę nieujemną $\Delta=(a-c)^2+4b^2$, więc ma dwa pierwiastki rzeczywiste (są to wartości własne **A**).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Kizywiziia Gaussa -

Pole powierze

Niech $W = \mathbb{R}^2$ i niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadana (w standardowej bazie) przez macierz

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

Mamy wtedy

$$f_A(t) = (1-t)t - 1 = t^2 - t - 1$$

•
$$k_1 = \frac{1+\sqrt{5}}{2}$$
, oraz $k_2 = \frac{1-\sqrt{5}}{2}$.

$$k_1 k_2 = \frac{1 - \sqrt{5}^2}{4} = -1 = \det \mathbf{A}$$
, oraz $k_1 + k_2 = 1 = \operatorname{tr} \mathbf{A}$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Kizywiziia Gaussa i

Odwiorowanie Oddooi

D.L.

Pole powierzchn

Niech $W = \mathbb{R}^2$ i niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadana (w standardowej bazie) przez macierz

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

Mamy wtedy

$$f_{A}(t) = (1-t)t - 1 = t^{2} - t - 1$$

•
$$k_1 = \frac{1+\sqrt{5}}{2}$$
, oraz $k_2 = \frac{1-\sqrt{5}}{2}$.

$$k_1 k_2 = \frac{1 - \sqrt{5}^2}{4} = -1 = \det \mathbf{A}$$
, oraz $k_1 + k_2 = 1 = \operatorname{tr} \mathbf{A}$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa i

Odwiorowanie Oddooi

D.L.

Niech $W = \mathbb{R}^2$ i niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadana (w standardowej bazie) przez macierz

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

Mamy wtedy

$$f_{\mathbf{A}}(t) = (1-t)t - 1 = t^2 - t - 1$$

•
$$k_1 = \frac{1+\sqrt{5}}{2}$$
, oraz $k_2 = \frac{1-\sqrt{5}}{2}$.

$$k_1k_2 = \frac{1-\sqrt{5}^2}{4} = -1 = \det \mathbf{A}$$
, oraz $k_1 + k_2 = 1 = \operatorname{tr} \mathbf{A}$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa i

Kizywiziia Gaussa – i

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

Mamy wtedy

$$f_{\mathbf{A}}(t) = (1-t)t-1 = t^2-t-1$$

•
$$k_1 = \frac{1+\sqrt{5}}{2}$$
, oraz $k_2 = \frac{1-\sqrt{5}}{2}$.

$$k_1k_2 = \frac{1-\sqrt{5}^2}{4} = -1 = \det \mathbf{A}$$
, oraz $k_1 + k_2 = 1 = \operatorname{tr} \mathbf{A}$.

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Zadanie

Oswoić wszystkie nieznane definicje pojawiające się w powyższej powtórce z algebry liniowej i zrozumieć sformułowania powyższych twierdzeń (niekoniecznie z dowodami!)

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Ouwzorowanie Oaussa

Krzywizna Gaussa -

Pole powie

