Párhuzamos képstílus átruházás konvolúciós neuronhálókkal

Szilágyi Ervin Témavezető: Dr. Iclanzan Dávid

Sapientia Eredélyi Magyar Tudományegyetem Műszaki és Humántudományok kar Szoftverfejlesztés szak

2017. július 2.

Mi értünk stílusátruházás alatt?

2 / 13

A dolgozat célja

- Grafikus felhasználói felülettel rendelkező alkalmazás fejlesztése
- Gépi tanulást (deep learning) alkalmazó rendszer tervezése és megvalósítása
- Híres magyar festők ismertebb műveinek művészeti stílusát átruházni képekre / mozgóképekre
- Párhuzamos gépi tanítási folyamat ami kihasználja a GPU által biztosított párhuzamosítási lehetőségeket

A Tensorflow könyvtár bemutatása

ábra. Tensorflow számítási gráf

Párhuzamos tanítás a Tensorflow segítségével

Client

(a) Adatpárhuzamos megközelítés

(b) Feladatpárhuzamos megközelítés

Device 3

ábra. Párhuzamos tanítás

A rendszer tanítása

- "Deep learning" tanítási metódus
- Előre betanított neuronháló (VGG19: 16 konvolúciós réteg, 5 pooling réteg)
- Statikus kép esetében külön tanításra kerül a bemeneti kép és a stílus kép is
- Mozgókép esetében minden képkocka tanításra kerül
- Temporális összefüggések a képkockák között

A tanításhoz használt neuronháló

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224 × 224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
FC-4096					
FC-4096					
FC-1000					
		soft-	max		

ábra. VGG-19 háló szerkezete

A bemeneti kép tanítása

- A konvolúciós szűrök tartalmazzák a kép sajátosságait
- Egy adott betanított réteg válasza egy bemeneti képre vizualizálható, ha fehér zaj képre értékeljük ki azt

A bemeneti kép veszteségfüggvénye felírható mint:

$$L_{content}(\vec{x}, \vec{r}, l) = \frac{1}{2} \sum_{ij} R_{ij}^{l} - W_{ij}^{l}$$
 (1)

Ahol:

- \vec{x} a bemeneti képet
- R^I az l-edik réteg válasza a bemeneti képre
- W¹ az l-edik réteg válasza a fehér zaj bemenetre
- \vec{r} pedig azt a kimeneti képet jelenti amit a rendszer generál a rétegek tulajdonságaiból

Kiértékelt réteg: conv4_2

A stílus kép tanítása

A Gramm-matrix ismertetése

- A Gramm mátrix egy szorzatot jelen egy adott vektorhalmaz összes elemei között.
- Hogyha adott egy vektorhalmazunk $v_1...v_n$, akkor a G Gramm mátrixot a következő eljárás szerint határozzuk meg:

$$G_{ij} = v_i \cdot v_j \tag{2}$$

 A Gramm mátrix ij pozíciójában elhelyezkedő elem megadja, hogy egy adott réteg i-dik tulajdonsága mennyire teljesül a j-dik tulajdonság jelenlétében,

A stílus kép tanítása

A veszteségfüggvény meghatározása

Ha az I rétegnek N szűrője van, akkor felírható $G \in R^{N_l * N_l}$ Gramm-mátrix, ahol:

$$G'_{ij} = \sum_{k} F'_{ik} \cdot F'_{jk} \tag{3}$$

A veszteségfüggvény egyetlen rétegre felírható mint a fehér zaj kép Gramm mátrixa és a stílus kép Gramm mátrixának átlagos négyzetes hibájaként:

$$E_{I} = \frac{1}{4N_{I}^{2}M_{I}^{2}} \sum_{i,j} (G_{ij} - A_{lj})^{2}$$
 (4)

A stilizált kép tisztítása

Total Variation Denoising

A stilizált képet és eltoljuk X koordináta mentén egy pixellel, majd az Y koordináta mentén is eltoljuk egy pixellel.

$$L_{tv}(\vec{a}, \vec{x}) = \sum_{i,j} |(X_{ij} - A_{i+1j})| + \sum_{i,j} |(X_{ij} - A_{ij+1})|$$
 (5)

A rendszer tesztelese

Osszefoglalo