Üzleti Intelligencia

11. Előadás: Transzformáló architektúrák

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 1.félév

Transzformáló architektúrák

Transzformáló architektúrák

Visszacsatolasos	neuralis	nalozatok	атарјат
Alkalmazás		Input	

Output

Beszédfelismerés

"Milyen szép időnk van ma!"

"Ez egy rossz film volt."

Tegnap Józsi letörölte a

termelési adatházist

Futás

Nevek felismerése

Tegnap Józsi letörölte a

termelési adatházist

AGCCCTGTACTAG

Szavak reprezentálása 1-hot vektorokkal

Input: A kedvenc sportom a foci.

Reprezentáció: $X = [x_1, x_2, x_3, x_4, x_5,]$

Szókincs: $\begin{bmatrix} a, \ foci, \ kedvenc, \ sportom \\ 1 \ 2 \ 3 \ 4 \end{bmatrix}$

Problémák:

- Ha van egy 10.000 szóból álló szövegtörzs, minden szava egy 10.000 elemű vektorként lesz reprezentálva, aminek csak egyetlen eleme 1, a többi 0. Ez nem egy skálázható megoldás.
- Nincs kapcsolat a szavak között. A szavak külön-külön vannak kezelve, hasonló jelentésű szavak reprezentációja nagyban eltérhet.

Szavak reprezentálása beágyazóvektorokkal

Beágyazás

Egy szó beágyazása egy magas dimenziójú vektortérben való numerikus reprezentáció. Ezek a vektorok tartalmazzák a szavak struktúráját, szemantikáját, és szintaktikai szerkezetét.

Ezáltal képesek a mélytanuló modellek elsajátítani a szavak közötti hasonlóságokat és az egyes szavak jelentését.

	Férfi	Nő	Király	Királynő	Alma
Nem	-1	1	-0.95	0.97	0.0
Előkelő	0.01	0.02	0.93	0.95	-0.01
Kor	0.03	0.02	0.7	0.68	0.03
Étel	0.04	0.01	0.02	0.01	0.96

Tehát ebben az esetben például a férfi szó beágyazóvektora:

$$e_{f\acute{e}rfi} = [-1, 0.01, 0.03, 0.04]$$

A beágyazóvektorok használatával lehetőség nyílik a szavak hasonlóságának kiszámítására.

Az egymáshoz jelentés tartalmilag közelebb álló szavak beágyazóvektorainak matematikai távolsága alacsonyabb lesz, mint az egymástól távolabb eső szavaké.

Ezáltal továbbá lehetséges analógiák kiszámítása is. A férfi és a király olyanok egymásnak, mint a nő és a királynő.

Beágyazások vizualizálása

Dimenziócsökkentő algoritmusok segítségével lehetőség nyílik a magasabb dimenziós vektorok alacsonyabb térben való reprezentációjára. Az egyik ilyen algoritmus a T-SNE, ami jól használható komplex input adatok esetén.

Ez hasznos a következő problémák esetén:

- Vizualizáció
- Klaszterezés
- Adatminőség mérése
- Szemantikai kapcsolatok elemzése
- Hiperparaméter hangolás

Transzformáló architektúrák

Hagyományos visszacsatolásos architektúrák

A visszacsatolásos neurális hálózatok (RNN) olyan mesterséges neurális hálózatok, amelyek képesek kezelni időbeli szekvenciákat és más időfüggő adatokat.

Ezek a hálózatok olyan struktúrával rendelkeznek, amely lehetővé teszi a korábbi lépések eredményeinek visszacsatolását az aktuális lépésbe. Ennek eredményeként képesek tartani az emlékezetüket korábbi állapotokról, és ezáltal kezelni a szekvenciális adatokat

Önkódoló architektúrák

Az önkódoló neurális hálózatok feladata az inputot átmásolni az outputba úgy, hogy közben megismeri az adatok alacsony szintű struktúráját:

- Kódoló: A bemeneti adatokat tömöríti egy rövidebb, alacsony dimenziójú reprezentációba.
- Látens tér: Az az alacsony dimenziójú tér, amelyben a kódoló reprezentália a bemeneti adatokat. Ez a tér tartalmazza az információkat a bemenetről kompakt formában.
- Dekódoló: Feladata a látens térben. lévő reprezentációt visszaalakítani eredeti vagy közelítőleges formájára.

Transzformáló architektúrák

A transzformáló architektúrák rendkívül sokoldalúak és hatékonyak a mesterséges mélytanulásban. A transzformálók feladata két szekvencia közötti leképezés megtanulása. Rendkívül jól teljesítenek olyan területeken mint a természetes nyelvfeldolgozás, képfelismerés, hangfeldolgozás, megerősítéses tanulás.

Gépi fordítás

A transzformáló architektúrák **jól képesek teljesíteni a gépi fordítás területén**. Hasonlóan az önkódoló architektúrákhoz a fő részei a **kódoló** az input feldolgozására, a **látens** tér az input reprezentálására és a **dekódoló** az output előállítására.

Kódoló

A transzformáló architektúrákban a kódoló feladata az input adatok feldolgozása és egy **értelmes, kontextusban gazdag reprezentáció létrehozása**. Az kódolónak alapvető szerepe van az input sorozat megértésében és az alatta rejlő információk megragadásában. Az általa feldolgozott információ a z kontextus vektorban kerül átadásra a dekódolónak, ami megfelel az utolsó cella rejtett állapotának.

A dekódoló feladata a transzformáló architektúrákban az output sorozat létrehozása az input sorozat kontextualizált reprezentációjának felhasználásával. Dekódolás a legelső cella null inputot kap, és utána minden cella az előző cella outputját kapja meg inputként: $x_0 = null$, $x_i = y_i$, i > 0.

A transzformálók problémája

Ha hosszú szekvenciákat kell generálniuk, a transzformálók gradiensei nagyon alacsonvak lesznek hiba visszaáramoltatás közben. Ez az eltűnő gradiensek problémája, és ahhoz vezet, hogy a hálózat elfelejti a korábbi információkat.

Továbbá a modellnek minden fontos információt egyetlen kontextus vektorba kell besűrítenie. Ezzel a z vektor lesz a tanulás szűk keresztmetszete

Transzformáló architektúrák