

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu

Nazwa kwalifikacji: Przeglądy, konserwacja, diagnostyka i naprawa instalacji automatyki przemysłowej

Oznaczenie kwalifikacji: EE.18

Numer zadania: **01** Wersja arkusza: **SG**

Numer PESEL zdającego*	Wypełnia zdający	Miejsce na naklejkę z numerem PESEL i z kodem ośrodka

Czas trwania egzaminu: **150** minut.

EE.18-01-23.06-SG

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE

Rok 2023 CZĘŚĆ PRAKTYCZNA

PODSTAWA PROGRAMOWA 2017

Instrukcja dla zdającego

- 1. Na pierwszej stronie arkusza egzaminacyjnego wpisz w oznaczonym miejscu swój numer PESEL i naklej naklejkę z numerem PESEL i z kodem ośrodka.
- 2. Na KARCIE OCENY w oznaczonym miejscu przyklej naklejke z numerem PESEL oraz wpisz:
 - swój numer PESEL*,
 - oznaczenie kwalifikacji,
 - numer zadania,
 - numer stanowiska.
- 3. Sprawdź, czy arkusz egzaminacyjny zawiera 11 stron i nie zawiera błędów. Ewentualny brak stron lub inne usterki zgłoś przez podniesienie ręki przewodniczącemu zespołu nadzorującego.
- 4. Zapoznaj się z treścią zadania oraz stanowiskiem egzaminacyjnym. Masz na to 10 minut. Czas ten nie jest wliczany do czasu trwania egzaminu.
- 5. Czas rozpoczęcia i zakończenia pracy zapisze w widocznym miejscu przewodniczący zespołu nadzorującego.
- 6. Wykonaj samodzielnie zadanie egzaminacyjne. Przestrzegaj zasad bezpieczeństwa i organizacji pracy.
- Po zakończeniu wykonania zadania pozostaw arkusz egzaminacyjny z rezultatami oraz KARTĘ
 OCENY na swoim stanowisku lub w miejscu wskazanym przez przewodniczącego zespołu
 nadzorującego.
- 8. Po uzyskaniu zgody zespołu nadzorującego możesz opuścić salę/miejsce przeprowadzania egzaminu.

Powodzenia!

* w przypadku braku numeru PESEL – seria i numer paszportu lub innego dokumentu potwierdzającego tożsamość

Układ graficzny © CKE 2020

Zadanie egzaminacyjne

Przedsiębiorstwo specjalizujące się w produkcji części maszyn ma do wykonania kulki stalowe do łożysk tocznych. Przed przystąpieniem do produkcji przeprowadzono przegląd i modernizację automatu do tłoczenia kulek z pręta stalowego. Po wykonaniu przeglądu i modernizacji sprawdzono zgodność połączeń układu sterowania z dokumentacją. Dodatkowo sprawdzono stan zamontowanych elementów.

Przeanalizuj dokumentację techniczną zmodernizowanego automatu do tłoczenia kulek łożyskowych, wybrane dane katalogowe przemiennika częstotliwości oraz wyniki przeprowadzonych pomiarów i na tej podstawie:

- oceń wyniki pomiarów układu sterowania tabela 6.,
- określ usterki lub nieprawidłowości w układzie sterowania oraz sposoby ich naprawy– tabela 7.,
- dobierz przemiennik częstotliwości, przewody siłowe i zabezpieczenie nadmiarowo-prądowe do zastosowania w automacie do tłoczenia kulek – tabela 8.,
- uzupełnij rysunek 4 poprzez dorysowanie do zacisków przemiennika częstotliwości następujących podłączeń:
 - napiecia zasilajacego,
 - silnika napędowego automatu, tak by wirował zgodnie z pierwotnym kierunkiem wirowania,
 - modułu sterownika PLC zawierającego analogowe wyjścia o zakresie prądowym, sterującego prędkością silnika napędowego,
 - zestyku przekaźnika K3, uruchamiającego pracę silnika "w przód",
 - dwóch lampek kontrolnych:
 - lampki H3, sygnalizującej awarię w układzie przemiennika, wykorzystując wyjście przekaźnikowe 230 V przemiennika częstotliwości,
 - lampki H4, sygnalizującej pracę silnika, wykorzystując wyjście przekaźnikowe 230 V NO przemiennika.

Dokumentacja techniczna zmodernizowanego automatu do tłoczenia kulek łożyskowych

W układzie sterowania zastosowano:

- przycisk S1 START,
- przycisk S2 STOP,
- czujniki indukcyjne B1 i B2, reagujące na położenie stalowego pręta,
- enkoder służący do pomiaru prędkości przesuwania na podajniku stalowego pręta,
- przekaźniki uruchamiające:
 - posuw podajnika stalowego pręta K1,
 - mechanizm tnacy K2,
 - mechanizm formowania kulki K3, silnik główny automatu sterowany przy pomocy przemiennika częstotliwości napędza ten mechanizm,
 - mechanizm szlifujący K4,
- lampki sygnalizacyjne H1 oraz H2, sygnalizujące odpowiednio załączenie automatu oraz brak pręta stalowego w podajniku.

Ponadto wyjście analogowe sterownika PLC połączono z wejściem analogowym przemiennika częstotliwości w celu zadawania prędkości silnika głównego.

Jako napęd główny w maszynie zastosowano silnik indukcyjny jednofazowy o mocy 2 kW.

Po chwilowym naciśnięciu przycisku S1 załączone zostają: posuw podajnika oraz lampka sygnalizacyjna H1. Uaktywnienie czujnika B1 uruchamia mechanizm tnący i silnik napędzający mechanizm formowania kulki, a następnie po określonym czasie mechanizm szlifujący. Lampka sygnalizacyjna H2 zapala się, gdy w podajniku nie ma pręta stalowego.

Tabela 1. Parametry wybranych elementów automatu wytwarzającego kulki

Lp.	Nazwa i oznaczenie elementu	Parametry
1.	Przycisk sterowniczy S1	typ przycisku monostabilnyrodzaj zestyku NOmaksymalny prąd zestyku 5 A
2.	Przycisk sterowniczy S2	typ przycisku bistabilnyrodzaj zestyku NCmaksymalny prąd zestyku 5 A
3.	Czujniki zbliżeniowe B1, B2	 napięcie zasilania 24 V DC typ czujnika indukcyjny rodzaj wyjścia PNP, zestyk typu NO maksymalna wartość natężenia prądu wyjścia sygnałowego 0,2 A
4.	Enkoder B3	 napięcie zasilania 5 ÷ 24 V DC typ inkrementalny, rodzaj wyjścia PNP rozdzielczość 1000 imp/obr maksymalna częstotliwość sygnału na wyjściu 100 kHz
5.	Przekaźniki K1, K2, K3, K4	 liczba i rodzaj zestyków 4P napięcie znamionowe cewki 24 V DC znamionowy pobór mocy przez cewkę 0,9 W obciążalność prądowa trwała zestyku 7 A
6.	Lampka sygnalizacyjna H1	- napięcie zasilania 24 V DC - kolor zielony
7.	Lampka sygnalizacyjna H2	- napięcie zasilania 24 V DC - kolor czerwony
8.	Lampka sygnalizacyjna H3	- napięcie zasilania 230 V AC - kolor czerwony
9.	Lampka sygnalizacyjna H4	- napięcie zasilania 230 V AC - kolor zielony

Tabela 2. Dane katalogowe modułu wyjść analogowych

Moduł analogowy LOGO!	AM2 AQ
Napięcie zasilające	24 V DC
Dopuszczalny zakres napięć	20,4 ÷ 28,8 V DC
Wyjścia analogowe	2 wyjścia ustawiane sprzętowo: prądowe lub napięciowe
Zakres wyjściowy	prądowy 4 ÷ 20 mA, napięciowy 0 ÷ 10 V
Rozdzielczość	0 bit (skalowanie 0 ÷ 1000)
Długość przewodów (skrętka w ekranie)	10 m
Straty mocy (24 V DC)	0,6 ÷ 1,2 W
Wymiary (szer. x wys. x głęb.)	36 x 90 x 53 mm

Rysunek 1. Sposób dołączenia obciążeń do modułu wyjść analogowych w trybie napięciowym (R1) i prądowym (R2)

Wybrane dane katalogowe przemiennika częstotliwości

Tabela 3. Dobór przewodów siłowych i zabezpieczeń nadmiarowo-prądowych

Typ przemiennika częstotliwości	Natężenie prądu zasilania przemiennika	Natężenie prądu zasilania silnika	Maksymalna moc silnika	Wartość zabezpieczenia nadmiarowo- prądowego	Przekrój przewodów zasilających
	Α	Α	kW	Α	mm²
FA-1f004	5,0	3,0	0,4	10	1,5
FA-1f007	8,2	4,7	0,7	16	2,5
FA-1f015	12,5	7,5	1,5	20	2,5
FA-1f022	17,2	10	2,2	25	4,0

Tabela 4. Opis zacisków przemiennika częstotliwości

	Zacisk	Funkcja	Uwagi			
	+10 V	Wyjście zasilacza pomocniczego +10 V	Zasilacz pomocniczy przeznaczony głównie do zasilania potencjometru podłączonego do wejścia analogowego falownika Maksymalne dopuszczalne obciążenie zasilacza >< +10 V			
Zasilania	GND		wynosi 10 mA. Przekroczenie prądu maksymalnego może doprowadzić do uszkodzenia zasilacza.			
Zas	СОМ	Styk wspólny (masa) dla wejść i wyjść cyfrowych	Względem poziomu odniesienia COM realizowana jest logika wejść cyfrowych. Jeżeli wejścia wyzwalane są poziomem niskim, to sterowane są potencjałem linii COM. Jeżeli wejścia wyzwalane są poziomem wysokim 12 V, to napięcie to odniesione jest względem potencjału linii COM.			
	FWD	Wejście sterowania pracą silnika – Do przodu	Zaciski wejść wielofunkcyjnych - wejścia separowane galwanicznie (optycznie) dopuszczalne napięcia wejściowe: 12 ÷ 15 VDC			
We	REV	Wejście sterowania pracą silnika – Do tyłu	 impedancja wejściowa 2 kΩ maksymalna częstotliwość 200 Hz 			
Wejścia cyfrowe	DI1	Wielofunkcyjne wejście cyfrowe 1	Funkcje realizowane przez wejścia definiowane są w parametrach: F5.00 – Konfiguracja wejścia DI1			
ścia c	DI2	Wielofunkcyjne wejście cyfrowe 2	F5.01 – Konfiguracja wejścia DI2 F5.02 – Konfiguracja wejścia DI3			
Wejs	DI3	Wielofunkcyjne wejście cyfrowe 3	F5.03 – Konfiguracja wejścia DI4 F5.04 – Konfiguracja wejście DI5			
	DI4	Wielofunkcyjne wejście cyfrowe 4	Wejście DI5 może zostać wykorzystane jako szybkie wejście impulsowe			
	DI5	Wielofunkcyjne wejście cyfrowe 5	(częstotliwość maksymalna 50 kHz). Uwaga: Sposób wyzwalania wejścia (sterowanie poziomem niskim lub wysokim) ustawiane za pomocą przełącznika JP3.			
ia analogowe	CC1	Wielofunkcyjne wejście analogowe CC1	 Tryb pracy (napięciowy lub prądowy) dokonywany jest za pomocą zwory J2. Zwora ustawiona w pozycji V - wejście napięciowe 0÷10 V. Zwora ustawiona w pozycji I - wejście prądowe 4÷20 mA Impedancja wejściowa 70 kΩ dla wejścia napięciowego lub >< 25 Ω dla wejścia prądowego. Rozdzielczość 10-bit (1/1024) 			
Wejścia	VC1	Wielofunkcyjne wejście analogowe VC1	●Wejście napięciowe 0÷10 V ●Impedancja wejściowa 70 kΩ ●Rozdzielczość 10-bit (1/1024)			
Wyjście analogowe	A0	Wielofunkcyjne wyjście analogowe A0	 Wyjście napięciowe (0÷10 V) lub prądowe (4÷20 mA). Tryb pracy wyjścia wybierany za pomocą zwory JP1. Zwora ustawiona w pozycji V (domyślnie) - wyjście napięciowe 0÷10 V. Zwora ustawiona w pozycji I - wyjście prądowe 4÷20 mA. Napięcie/prąd wyjściowe generowane w odniesieniu do potencjału GND. 			
,,,	00	Wielofunkcyjne	 Funkcja wyjścia A0 ustawiana za pomocą parametru F5.17. Styk NO pomiędzy zaciskami OC i OCG 			
ścia	OC, OCG	wyjście przekaźnikowe	●Dopuszczalne obciążenie 250 V/0.5 A ●Funkcja wyjścia OC ustawiana za pomocą parametru F5.10 .			
Wyjścia cyfrowe	DO	Wielofunkcyjne szybkie wyjście cyfrowe	Wyjście impulsowe z sygnałem wyjściowym 12 V Maksymalna częstotliwość 20 kHz (ustawiana parametrem F5.24) Funkcja wyjścia zadawana parametrem F5.23 .			

we	TA	Wyjście przekaźnikowe Awaria - styk NO	Sygnalizacja awarii. Maksymalna obciążalność styków (zarówno NO jak i NC): 2 A/250 V AC (cos φ□= 1)
Wyjście kaźnikowe	ТВ	Wyjście przekaźnikowe Awaria - styk NC	1 A/250 V AC (cos φ□= 0.4) 1 A/30 V DC
Wyjś przekaźr	TC	Wyjście przekaźnikowe Awaria - zacisk COM	

Rysunek 2. Sterowanie przemiennikiem częstotliwości z wykorzystaniem łączników zewnętrznych

Rysunek 3. Sposób podłączenia silnika elektrycznego do przemiennika częstotliwości

Czas na wykonanie zadania wynosi 150 minut.

Ocenie podlegać będą 4 rezultaty:

- ocena zgodności uzyskanych wyników pomiarów z danymi zawartymi w dokumentacji technicznej –
 Tabela 5.,
- wykaz usterek lub nieprawidłowości w układzie sterowania oraz sposoby ich naprawy Tabela 6.,
- dobór przemiennika częstotliwości, przewodów siłowych i zabezpieczeń nadmiarowo-prądowych Tabela 7.,
- uzupełniony schemat zmodernizowanego układu sterowania silnikiem napędowym automatu i jego podłączenia do przemiennika częstotliwości – Rysunek 4.

Tabela 5. Ocena zgodności uzyskanych wyników pomiarów z danymi zawartymi w dokumentacji technicznej - Rysunek 4.

	Wyniki pomia	arów rezysta	ıncji przewodo	ów elektrycznych w układzie sterowania
Lp.	Odcinek przewodu	Rezystancja Ω		Ocena zgodności uzyskanych wyników ze schematem elektrycznym. Wpisz TAK , jeśli zgodne lub NIE , jeśli brak zgodności
1.	+24 V / S1:3		0,1	
2.	+24 V / S2:1		∞	
3.	+24 V / B1:BN		0,1	
4.	+24 V / B2:BN		0,2	
5.	+24 V / B3:BN		0,1	
6.	S1:4 / I1		0,1	
7.	S2:2 / I2		0,2	
8.	B1:BK / I3		∞	
9.	B2:BK / I4		0,1	
10.	B3:BK / I5		0,2	
11.	B1:BU / 0 V		0,1	
12.	B2:BU / 0 V		∞	
13.	B3:BU / 0 V		0,1	
14.	Q1 / K1:A1		0,1	
15.	Q2 / K2:A1		0,2	
16.	Q3 / K3:A1		0,1	
17.	Q4 / K4:A1		0,1	
18.	Q5 / H1:X1		0,1	
19.	Q6 / H2:X1		0,1	
20.	K1:A2 / 0 V		0,3	
21.	K2:A2 / 0 V		0,5	
22.	K3:A2 / 0 V		0,2	
23.	K4:A2 / 0 V		0,3	
24.	H1:X2 / 0 V		0,2	
25.	H2:X2 / 0 V		∞	
		Rezystan	cja zestyków	elementów wejściowych
		Rezy	rstancja	Ocena zgodności uzyskanych wyników pomiarów
	Oznaczenie elementu		Ω	testowego działania przycisków ze schematem
		przycisk zwolniony	przycisk wciśnięty	elektrycznym. Wpisz TAK, jeśli zgodne lub NIE, jeśli brak zgodności
26.	S1	≥woiriioriy ∞	0	TYPICE TYPIC, JOHN ENGINE THE, JOHN DIGIN ENGINEER
27.	S2	∞	0	
		Wyı	niki pomiarów	rezystancji cewek
			-	Ocena zgodności uzyskanych wyników z podanymi
	Oznaczenie cewki Rezystancja Ω			parametrami.
28.	K1		∞	Wpisz TAK, jeśli zgodne lub NIE, jeśli brak zgodności.
29.	K2		640	
30.	K2 K3	<u> </u>	04U 	
31.	K4			
J1.	r\4	640		

Tabela 6. Wykaz usterek lub nieprawidłowości w układzie sterowania oraz sposoby ich naprawy

Lp.	Miejsce i rodzaj usterki/ nieprawidłowości	Sposób naprawy	Wykaz narzędzi niezbędnych do wykonania napraw

Tabela 7. Dobór przemiennika częstotliwości, przewodów siłowych i zabezpieczeńnadmiarowoprądowych

Nazwa/Rodzaj parametru	Oznaczenie/Wartość
Typ przemiennika częstotliwości	
Przekrój przewodów zasilających	
Zabezpieczenie niezbędne do prawidłowego i bezpiecznego działania układu	
Moc silnika napędu automatu sterowanego za pomocą przemiennika częstotliwości	

Rysunek 4. Schemat zmodernizowanego układu sterowania silnikiem napędowym automatu i jego podłączenia do przemiennika częstotliwości