

Introdução ao Cálculo Diferencial e Integral

Função Exponencial

Prof. Dani Prestini

DEFINIÇÃO Funções exponenciais

Sendo a e b constantes reais, uma **função exponencial** em x é a função que pode ser escrita na forma $f(x) = a \cdot b^x$, onde a é diferente de zero, b é positivo e $b \ne 1$. A constante a é o valor de f quando x = 0 e b é a **base**.

EXEMPLO 1 Identificação de funções exponenciais

- (a) $f(x) = 3^x$ é uma função exponencial, com um valor a igual a 1 e base igual a 3.
- **(b)** $g(x) = 6x^{-4} n\tilde{a}o$ é uma função exponencial porque a base x é uma variável, e o expoente é uma constante; portanto, g é uma função potência.
- (c) $h(x) = -2 \cdot 1,5^x$ é uma função exponencial, com um valor a igual a -2 e base igual a 1,5.
- (d) $k(x) = 7 \cdot 2^{-x}$ é uma função exponencial, com um valor a igual a 7 e base igual a $\frac{1}{2}$, pois $2^{-x} = (2^{-1})^x = \left(\frac{1}{2}\right)^x$.
- (e) $q(x) = 5 \cdot 6^{\pi} n\tilde{a}o$ é uma função exponencial porque o expoente π é uma constante; portanto, q é uma função constante.

EXEMPLO 2 Cálculo dos valores de uma função exponencial para alguns números racionais

Para $f(x) = 2^x$, temos:

(a)
$$f(4) = 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$$

(b)
$$f(0) = 2^0 = 1$$

(c)
$$f(-3) = 2^{-3} = \frac{1}{2^3} = \frac{1}{8} = 0.125$$

(d)
$$f\left(\frac{1}{2}\right) = 2^{1/2} = \sqrt{2} = 1,4142...$$

(e)
$$f\left(-\frac{3}{2}\right) = 2^{-3/2} = \frac{1}{2^{3/2}} = \frac{1}{\sqrt{2^3}} = \frac{1}{\sqrt{8}} = 0,35355...$$

$$f(x) = 16 \quad \Rightarrow \quad f(x) = 2^{x} \quad \left(f(x) = 18\right) X$$

$$\frac{16}{2^{x}} = 2^{x}$$

$$\frac{16}{2^{x}} = 2^{x}$$

$$\frac{16}{2^{x}} = 2^{x}$$

EXEMPLO 3 Identificação da lei de uma função exponencial a partir de alguns valores tabelados

Determine fórmulas para as funções exponenciais g e h, cujos valores são dados na Tabela 11.2.

Tabela 11.2	Alguns valores para duas funções exponenciais	
x	g(x)	h(x)
-2	$\frac{4}{9}$ \times 3	128 $\times \frac{1}{}$
-1	$\frac{4}{3}$ \times 3	32 $\times \frac{1}{1}$
0	$4 \stackrel{\checkmark}{\searrow} \times 2$	$8 \stackrel{\checkmark}{\searrow} \frac{4}{1}$
1	$12\sqrt{\frac{2}{3}}$	2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2	36 $\times 3$	$\frac{1}{2} \bigvee \times \overline{4}$

SOLUÇÃO

Como g é uma função exponencial, então $g(x) = a \cdot b^x$. Como g(0) = 4, então o valor de a é igual a 4. Como $g(1) = 4 \cdot b^1 = 12$, então a base b é igual a 3. Assim:

$$g(x) = 4 \cdot 3^x$$

Como h é uma função exponencial, então $h(x) = a \cdot b^x$. Como h(0) = 8, então o valor de a é igual a a. Como $h(1) = 8 \cdot b^1 = 2$, então a base b é igual a $\frac{1}{4}$. Assim:

$$h(x) = 8 \cdot \left(\frac{1}{4}\right)^x$$

[-2,5; 2,5] por [-10, 50] (a)

[-2,5; 2,5] por [-25, 150] (b)

Crescimento e decrescimento exponencial

Para qualquer função exponencial $f(x) = a \cdot b^x$ e qualquer número real x,

$$f(x+1) = b \cdot f(x).$$

Se a > 0 e b > 1, então a função f é crescente, sendo uma **função de crescimento exponencial**. A base b é o seu **fator de crescimento**.

Se a > 0 e b < 1, então a função f é decrescente, sendo uma **função de decaimento exponencial**. A base b é o seu **fator de decaimento**.

Função exponencial $f(x) = b^x$

Domínio: conjunto de todos os números reais.

Imagem: $]0, +\infty[$.

É contínua.

Não é simétrica: não é função par, não é função ímpar.

Limitada inferiormente, mas não superiormente.

Não tem extremos locais.

Assíntota horizontal: y = 0.

Não tem assíntotas verticais.

Se b > 1 (veja a Figura 11.3(a)), então:

- f é uma função crescente
- $\lim_{x \to -\infty} f(x) = 0$ e $\lim_{x \to +\infty} f(x) = +\infty$

Se 0 < b < 1 (veja a Figura 11.3(b)), então:

- f é uma função decrescente
- $\lim_{x \to -\infty} f(x) = +\infty$ e $\lim_{x \to +\infty} f(x) = 0$

EXEMPLO 4 Transformação de funções exponenciais

Descreva como transformar o gráfico de $f(x) = 2^x$ no gráfico da função dada.

(a)
$$g(x) = 2^{x-1}$$

(b)
$$h(x) = 2^{-x}$$

(b)
$$h(x) = 2^{-x}$$
 (c) $k(x) = 3 \cdot 2^{x}$

SOLUÇÃO

- (a) O gráfico de $g(x) = 2^{x-1}$ é obtido deslocando o gráfico de $f(x) = 2^x$ uma unidade para a direita (Figura 11.4(a)).
- **(b)** Podemos obter o gráfico de $h(x) = 2^{-x}$ refletindo o gráfico de $f(x) = 2^{x}$ com relação ao eixo vertical y (Figura 11.4(b)). Como $2^{-x} = (2^{-1})^x = \left(\frac{1}{2}\right)^x$, então podemos pensar em h como uma função exponencial com um valor de a igual a 1 e uma base igual a $\frac{1}{a}$.
- (c) Podemos obter o gráfico de $k(x) = 3 \cdot 2^x$ esticando verticalmente o gráfico de $f(x) = 2^x$ pelo fator 3 (Figura 11.4(c)).

Função exponencial $f(x) = e^x$

Domínio: conjunto de todos os números reais.

Imagem: $]0, +\infty[$.

É contínua.

É crescente para todo valor de x do domínio.

Não é simétrica.

Limitada inferiormente, mas não superiormente.

Não tem extremos locais.

Assíntota horizontal: y = 0.

Não tem assíntotas verticais.

Comportamento nos extremos do domínio: $\lim_{x \to -\infty} e^x = 0$ e $\lim_{x \to +\infty} e^x = +\infty$.

TEOREMA Funções exponenciais e a base e

Qualquer função exponencial $f(x) = a \cdot b^x$ pode ser reescrita como

$$f(x) = a \cdot e^{kx}$$

para uma constante k, sendo um número real apropriadamente escolhido.

Se a > 0 e k > 0, então $f(x) = a \cdot e^{kx}$ é uma função de crescimento exponencial (veja a Figura 11.6(a)). Se a > 0 e k < 0, então $f(x) = a \cdot e^{kx}$ é uma função de decaimento exponencial (veja a Figura 11.6(b)).

EXEMPLO 5 Transformação de funções exponenciais

Descreva como transformar o gráfico de $f(x) = e^x$ no gráfico da função dada.

(a)
$$g(x) = e^{2x}$$

(b)
$$h(x) = e^{-x}$$

(c)
$$k(x) = 3e^x$$

SOLUÇÃO

- (a) O gráfico de $g(x) = e^{2x}$ é obtido encolhendo horizontalmente o gráfico de $f(x) = e^{x}$ por meio do fator 2 (Figura 11.7(a)).
- **(b)** Podemos obter o gráfico de $h(x) = e^{-x}$ refletindo o gráfico de $f(x) = e^{x}$ com relação ao eixo vertical y (Figura 11.7(b)).
- (c) Podemos obter o gráfico de $k(x) = 3 \cdot e^x$ esticando verticalmente o gráfico de $f(x) = e^x$ pelo fator 3 (Figura 11.7(c)).

[-4, 4] por [-2, 8]

[-4, 4] por [-2, 8]

(b)

$$[-4, 4]$$
 por $[-2, 8]$

(c)

DEFINIÇÃO Funções de crescimento logístico

Sejam a, b, c e k constantes positivas, com b < 1. Uma **função de crescimento logístico** em x é uma função que pode ser escrita na forma

$$f(x) = \frac{c}{1 + a \cdot b^x}$$
 ou $f(x) = \frac{c}{1 + a \cdot e^{-kx}}$,

onde a constante c é o **limite de crescimento**.

Se b > 1 ou k < 0, então as fórmulas serão de **funções de decaimento logístico**.

Modelo de crescimento exponencial de uma população

Se uma população P está se modificando a uma taxa percentual constante r a cada ano, então:

$$P(t) = P_0(1 + r)^t$$
,

onde P_0 é a população inicial, r é expresso como um número decimal e t é o tempo em anos.

Por um lado, se r > 0, então P(t) é uma função de crescimento exponencial, e seu *fator de crescimento* é a base da função exponencial, dada por 1 + r.

Por outro lado, se r < 0, então a base 1 + r < 1, P(t) é uma função de decaimento exponencial, e 1 + r é o *fator de decaimento* para a população.

EXEMPLO 6 Verificação das taxas de crescimento e decaimento

Conclua se o modelo da população é uma função de crescimento ou decaimento exponencial e encontre a taxa percentual constante de crescimento ou decaimento.

- (a) São José: $P(t) = 782.248 \cdot 1,0136^t$
- **(b)** Detroit: $P(t) = 1.203.368 \cdot 0.9858^t$

SOLUÇÃO

- (a) Como 1 + r = 1,0136, então r = 0,0136 > 0. Assim, P é uma função de crescimento exponencial com a taxa de crescimento de 1,36%.
- (b) Como 1 + r = 0.9858, então r = -0.0142 < 0. Assim, P é uma função de decaimento exponencial com a taxa de decaimento de 1.42%.

EXEMPLO 7 Identificação da lei de função exponencial

Determine a função exponencial com valor inicial igual a 12 e taxa de crescimento de 8% ao ano.

SOLUÇÃO

Como $P_0 = 12$ e r = 8% = 0.08, então $P(t) = 12(1 + 0.08)^t$ ou $P(t) = 12 \cdot 1.08^t$. Poderíamos escrever essa função como $f(x) = 12 \cdot 1.08^x$, onde x representa o tempo.

EXEMPLO 8 Modelagem do crescimento de bactérias

Suponha que há uma cultura de 100 bactérias localizadas em um objeto, de modo que o número de bactérias dobra a cada hora. Conclua quando esse número chegará em 350.000 unidades.

SOLUÇÃO

Modelo

$200 = 100 \cdot 2$	Total de bactérias após 1 hora
$400 = 100 \cdot 2^2$	Total de bactérias após 2 horas
$800 = 100 \cdot 2^3$	Total de bactérias após 3 horas
:	
$P(t) = 100 \cdot 2^t$	Total de bactérias após t horas

Assim, a função $P(t) = 100 \cdot 2^t$ representa a população de bactérias t horas após a verificação inicial no objeto.

Solução gráfica

A Figura 11.8 mostra que a função da população intersecciona y = 350.000 quando $t \approx 11,77$.

Figura 11.8 Crescimento exponencial de uma população de bactérias.

INTERPRETAÇÃO

A população de bactérias será de 350.000 em, aproximadamente, 11 horas e 46 minutos.

EXEMPLO 9 Modelagem do decaimento radioativo

Suponha que a meia-vida de certa substância radioativa é de 20 dias e que existem 5 gramas presentes inicialmente. Encontre o tempo até existir 1 grama da substância.

SOLUÇÃO

Modelo

Se t é o tempo em dias, o tempo de meias-vidas será $\frac{t}{20}$.

$$\frac{5}{2} = 5\left(\frac{1}{2}\right)^{20/20}$$
 Gramas após 20 dias
$$\frac{5}{4} = 5\left(\frac{1}{2}\right)^{40/20}$$
 Gramas após 2 · 20 = 40 dias
$$\vdots$$

$$f(t) = 5\left(\frac{1}{2}\right)^{t/20}$$
 Gramas após t dias

Assim, a função $f(t) = 5 \cdot 0.5^{t/20}$ modela a massa, em gramas, da substância radioativa no tempo t.

Solução gráfica

A Figura 11.9 mostra que o gráfico de $f(t) = 5 \cdot 0.5^{t/20}$ intersecciona y = 1 quando $t \approx 46.44$.

Figura 11.9 Decaimento radioativo.

INTERPRETAÇÃO

Existirá 1 grama da substância radioativa após, aproximadamente, 46,44 dias, ou seja, 46 dias e 11 horas.

Exercícios

1) Livro Texto: páginas 151 à 155 — Exercícios do 1 ao 34

Exercícios do 45 ao 97

Obrigado