Question number	Scheme	Marks
-	$\log_4 a + 2\log_4 b = \frac{5}{2}$	M1
	$\log_4 a + 2\log_4 b = \frac{5}{2}$ $\log_4 (ab^2) = \frac{5}{2}$	M1
	$32 = ab^2$	A1
	$32 = ab^{2}$ $2^{a} = \frac{2^{16}}{2^{2b^{2}}}$ $a = 16 - 2b^{2} \text{or} b^{2} = 8 - \frac{1}{2}a$	M1
	$a = 16 - 2b^2$ or $b^2 = 8 - \frac{1}{2}a$	A1
	$32 = a(8 - \frac{1}{2}a)$ or $32 = (16 - 2b^2)b^2$	M1
	$a^2 - 16a + 64 = 0$ or $2b^4 - 16b^2 + 32 = 0$	A1
	a=8 $b=2$	A1
Total 8 marks		ıl 8 marks

Mark	Guidance		
Log equation Method 1 – Works in base 4			
M1	For an attempt to change the base of $3\log_8 b$ to base 4 using $\log_a x = \frac{\log_b x}{\log_b a}$ $3\log_8 b = \frac{3\log_4 b}{\log_4 8} = \frac{3\log_4 b}{\frac{3}{2}} = 2\log_4 b \text{[accept } p\log_4 b \text{ where } p \neq 3\text{]}$		
M1	Uses $n \log A = \log A^n$ and $\log A + \log B = \log AB$ to combine the logs correctly $\log_4(ab^2) = \frac{5}{2}$ [ft their p provided $p \neq 1$]		
A1	For removing the logs in the equation to obtain $32 = ab^2$ o.e. e.g. $a^2b^4 = 1024$		
Method 2 – Works in base 8			
M1	For an attempt to change the base of $\log_4 a$ to base 8 using $\log_a x = \frac{\log_b x}{\log_b a}$ $\log_4 a = \frac{\log_8 a}{\frac{2}{3}} = \frac{3\log_8 a}{2}$ [accept $q \log_8 a$ where $q \ne 1$]		
M1	Uses $n \log A = \log A^n$ and $\log A + \log B = \log AB$ correctly to combine the logs $\log_8(a^{\frac{3}{2}}b^3) = \frac{5}{2}$ [ft their q]		
A1	For removing the logs in the equation to obtain $a^{\frac{3}{2}}b^3 = 8^{\frac{5}{2}}$ and rearranges (raises both sides to the power of $\frac{2}{3}$) to obtain $32 = ab^2$		
Second	Second equation		
	For attempting to change the second equation to powers of 2 or 4: $2^{a} = \frac{2^{16}}{2^{2b^{2}}} \Rightarrow \left[2^{a} = 2^{\left(16-2b^{2}\right)}\right] \text{ or } 4^{\frac{a}{2}} = \frac{4^{8}}{4^{b^{2}}} = \left(4^{\frac{a}{2}} = 4^{8-b^{2}}\right)$ At least one correct change of term e.g either 2^{16} or $2^{2b^{2}}$ OR either $4^{\frac{a}{2}}$ or 4^{8}		
A1	Combines the powers to achieve $a = 16 - 2b^2$ or $\frac{a}{2} = 8 - b^2$ oe		
Attemp	t to solve the simultaneous equations		
M1	For an attempt to solve their equations simultaneously, both of which must be in terms of a and b^2 , to obtain a 3TQ in either a or b^2 . $32 = a(8 - \frac{1}{2}a) \Rightarrow a^2 - 16a + 64 = 0 \text{or} 32 = (16 - 2b^2)b^2 \Rightarrow 2b^4 - 16b^2 + 32 = 0$		
M1	For an attempt to solve their 3TQ in either a or b^2 by any method. See General Guidance for the definition of an attempt For example: $a^2 - 16a + 64 = 0 \Rightarrow (a - 8)(a - 8) = 0 \Rightarrow a =$ $2b^4 - 16b^2 + 32 = 0 \Rightarrow b^4 - 8b^2 + 16 = 0 \Rightarrow (b^2 - 4)(b^2 - 4) = 0 \Rightarrow b =$		
A1	For $a = 8$ and $b = 2$ [If $b = \pm 2$ is given as the final answer, withhold this mark].		