FYS3120 Classical Mechanics and Electrodynamics

Problem set 11

 $\mathrm{May}\ 3,\ 2019$

Problem 1 KAKER Figure 1 shows a rectangular current loop ABCD. In the loop's rest frame, S, the loop has length a in the x direction and width b in the y direction, the current is I and the charge density is zero. We remind you of the following general definitions of the electric dipole moment \vec{p} , and the magnetic dipole moment \vec{m} , for a given current distribution:

$$\vec{p} = \int \vec{r} \rho(\vec{r}) d^3 r \,, \quad \vec{m} = \frac{1}{2} \int (\vec{r} \times \vec{j}(\vec{r})) d^3 r.$$
 (1)

Figure 1: Illustration of current loop.

a) Show that in the rest frame the loop's electric dipole moment is zero and the magnetic moment is $\vec{m} = I\vec{a} \times \vec{b}$, where $I = j\Delta$ with j as the current density and Δ as the cross section area of the current wire.

In the following we will examine how the loop is observed in a reference frame S', where the loop is moving with velocity \vec{v} to the right $(\beta = v/c)$ and $\gamma = 1/\sqrt{1-\beta^2}$. The Lorentz transformation formulas for charge and current denisities may be useful when solving the problems below.

- b) What is the length and width of the loop in S'?
- c) Show that the parts AB and CD of the loop have charge $\pm aIv/c^2$ in S'.
- d) Show that in S' the loop's electric dipole moment is $\vec{p}' = -\frac{1}{c^2}\vec{m} \times \vec{v}$, and the magnetic dipole moment is $\vec{m}' = (1 \beta^2/2)\vec{m}$.
- e) Show that the current is $I\gamma$ in the AB and CD and I/γ in BC and DA.
- f) Show that the result in e) is consistent with charge conservation.

Problem 2 An electric point charge q is moving with constant velocity \vec{v} along the x-axis of the inertial frame S, as illustrated in Fig. 2. Assume it passes the origin of S at t = 0.

Figure 2: Charge on the move.

- a) Give the expression for the scalar potential ϕ' and the vector potential \vec{A}' set up by the charge in its rest frame S'. In the relativistic description the scalar and vector potentials define the four-potential A'^{μ} , with the time component related to the scalar potential as $A'^0 = \phi'/c$. Make use of the transformation properties of the four-potential to determine its components A^{μ} in reference frame S as functions of the coordinates (ct, x, y, z) in the same frame.
- **b)** Determine (the components of) the electric field \vec{E} in the reference frame S, as functions of (ct, x, y, z).
- c) Determine similarly the magnetic field \vec{B} in reference frame S.

A magnetic dipole, with dipole moment \vec{m} , is at rest in S, at the position (x, y, z) = (0, d, 0). The dipole vector \vec{m} points in the x-direction.

- d) The field from the moving charge acts with a time dependent torque on the dipole, $\vec{M} = \vec{m} \times \vec{B}$. Find the expression for the torque.
- e) Assuming the magnetic dipole can be viewed as a small current loop, the force on the dipole from the field produced by the moving charge is $\vec{F} = \vec{\nabla}(\vec{m} \cdot \vec{B})$. Determine the force.