Module 3 Lab Exercise: Machine Learning Workflow and Types of Learning

Learning Objectives

By the end of this lab, you will be able to:

- · Distinguish between supervised, unsupervised, and reinforcement learning
- Understand the complete machine learning workflow
- Build and evaluate your first classification model
- · Work with different types of data (numerical, categorical, text, images)
- Apply the end-to-end ML process: data \rightarrow model \rightarrow evaluation \rightarrow insights

Prerequisites

- Completed Module 2 (familiar with Python libraries and Jupyter/Colab)
- · Understanding of basic data operations and visualization
- · Access to your GitHub repository for saving work

Part 1: Understanding Types of Machine Learning

Machine learning can be categorized into three main types. Let's explore each with practical examples.

1. Supervised Learning

Definition: Learning from labeled examples to make predictions on new, unseen data.

Examples:

- Classification: Predicting categories (spam/not spam, disease/healthy)
- Regression: Predicting continuous values (house prices, temperature)

Key Characteristic: We have both input features (X) and correct answers (y) during training.

2. Unsupervised Learning

Definition: Finding hidden patterns in data without labeled examples.

Examples:

- Clustering: Grouping similar customers for marketing
- Dimensionality Reduction: Simplifying complex data while keeping important information

Key Characteristic: We only have input features (X), no correct answers during training.

3. Reinforcement Learning

Definition: Learning through trial and error by receiving rewards or penalties.

Examples:

- · Game playing (chess, Go)
- Autonomous vehicles
- Recommendation systems that learn from user feedback

Key Characteristic: Agent learns by interacting with an environment and receiving feedback.

For this course, we'll focus primarily on supervised learning, with some unsupervised learning in later modules.

Part 2: Setting Up Our Machine Learning Environment

Let's start by importing our libraries and loading a dataset that will help us understand the ML workflow.

```
# Import essential libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_wine, make_classification
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
```

```
from sklearn.preprocessing import StandardScaler import warnings warnings.filterwarnings('ignore')

# Set style for better-looking plots plt.style.use('default') sns.set_palette("husl")

print(" All libraries imported successfully!") print(" Ready to start our machine learning journey!")

All libraries imported successfully!

Ready to start our machine learning journey!
```

Part 3: Loading and Exploring Our Dataset

We'll use the Wine dataset - a classic dataset for classification. It contains chemical analysis of wines from three different cultivars (types) grown in Italy.

```
# Load the Wine dataset
wine_data = load_wine()
# Convert to DataFrame for easier handling
df = pd.DataFrame(wine_data.data, columns=wine_data.feature_names)
df['wine_class'] = wine_data.target
df['wine_class_name'] = [wine_data.target_names[i] for i in wine_data.target]
print("Dataset Information:")
print(f"Shape: {df.shape}")
print(f"Features: {len(wine_data.feature_names)}")
print(f"Classes: {wine_data.target_names}")
print(f"\nFirst 5 rows:")
print(df.head())
Dataset Information:
Shape: (178, 15)
Features: 13
Classes: ['class_0' 'class_1' 'class_2']
First 5 rows:
  alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \
            1.71 2.43
1.78 2.14
    14.23
                                                    127.0
                                          15.6
                                          11.2
                                                                    2.65
     13.16
                 2.36 2.67
                                          18.6
                                                    101.0
                                                                    2.80
                1.95 2.50
3
    14.37
                                          16.8
                                                    113.0
                                                                    3.85
                                                    118.0
    13.24
                 2.59 2.87
                                          21.0
                                                                    2.80
   flavanoids nonflavanoid_phenols proanthocyanins color_intensity
                                                                      hue
                                                       5.64 1.04
a
        3.06
                              0.28
                                              2.29
1
         2.76
                              0.26
                                               1.28
                                                                4.38 1.05
2
        3.24
                              0.30
                                               2.81
                                                               5.68 1.03
3
        3.49
                              0.24
                                               2.18
                                                                7.80 0.86
4
         2.69
                              0.39
                                               1.82
                                                                4.32 1.04
  od280/od315_of_diluted_wines proline wine_class wine_class_name 3.92 1065.0 0 class_0
                                 1050.0
                                                  0
1
                          3.40
                                                            class 0
2
                          3.17
                                 1185.0
                                                 0
                                                            class 0
                          3.45 1480.0
3
                                                 0
                                                            class_0
4
                          2.93
                                  735.0
                                                 0
                                                            class_0
```

```
# Explore the dataset structure
print("Dataset Overview:")
print("=" * 50)
print(f"Total samples: {len(df)}")
print(f"Features (input variables): {len(df.columns) - 2}") # -2 for target columns
print(f"Target classes: {df['wine_class_name'].unique()}")
print(f"\nClass distribution:")
print(df['wine_class_name'].value_counts())
# Check for missing values
print(f"\nMissing values: {df.isnull().sum().sum()}")
print("☑ No missing values - this is a clean dataset!")
Dataset Overview:
______
Total samples: 178
Features (input variables): 13
Target classes: [np.str_('class_0') np.str_('class_1') np.str_('class_2')]
Class distribution:
wine_class_name
```

```
class_1 71
class_0 59
class_2 48
Name: count, dtype: int64

Missing values: 0

☑ No missing values - this is a clean dataset!
```

Part 4: Exploratory Data Analysis (EDA)

Before building models, we need to understand our data. This is a crucial step in the ML workflow.

Part 5: The Complete Machine Learning Workflow

Now let's implement the standard ML workflow step by step:

The 6-Step ML Workflow:

- 1. Data Preparation: Clean and prepare the data
- 2. Feature Selection: Choose relevant input variables
- 3. Data Splitting: Separate training and testing data
- 4. Model Training: Teach the algorithm using training data
- 5. Model Evaluation: Test performance on unseen data
- 6. Model Interpretation: Understand what the model learned

```
# Step 1: Data Preparation
print("Step 1: Data Preparation")
print("=" * 30)
# Select features (X) and target (y)
# For simplicity, let's use the first 4 features
feature_names = ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash']
X = df[feature_names]
y = df['wine_class']
print(f"Selected features: {feature_names}")
print(f"Feature matrix shape: {X.shape}")
print(f"Target vector shape: {y.shape}")
# Display first few rows
print("\nFirst 5 samples:")
print(X.head())
Step 1: Data Preparation
Selected features: ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash']
Feature matrix shape: (178, 4)
Target vector shape: (178,)
First 5 samples:
  alcohol malic_acid ash alcalinity_of_ash
           1.71 2.43
   14.23
                                         15.6
1
    13.20
                1.78 2.14
                                         11.2
              2.36 2.67
                                        18.6
    13.16
    14.37
                1.95 2.50
                                         16.8
               2.59 2.87
   13.24
                                        21.0
```

```
# Step 2: Data Splitting
print("Step 2: Data Splitting")
print("=" * 30)
# Split data into training (80%) and testing (20%) sets
X_train, X_test, y_train, y_test = train_test_split(
   Х, у,
    test_size=0.2,
                       # 20% for testing
    random_state=42,  # For reproducible results
    stratify=y
                      # Maintain class proportions
print(f"Training set: {X_train.shape[0]} samples")
print(f"Testing set: {X_test.shape[0]} samples")
print(f"Training classes: {np.bincount(y_train)}")
print(f"Testing classes: {np.bincount(y_test)}")
print("\n@ Why split data?")
print("- Training set: Teach the model")
print("- Testing set: Evaluate performance on unseen data")
print("- This prevents overfitting (memorizing vs. learning)")
Step 2: Data Splitting
Training set: 142 samples
Testing set: 36 samples
Training classes: [47 57 38]
Testing classes: [12 14 10]
- Training set: Teach the model
- Testing set: Evaluate performance on unseen data
- This prevents overfitting (memorizing vs. learning)
```

```
# Step 3: Model Training
print("Step 3: Model Training")
print("=" * 30)

# Create and train two different models
models = {
    'Logistic Regression': LogisticRegression(random_state=42),
    'Decision Tree': DecisionTreeClassifier(random_state=42, max_depth=3)
}

trained_models = {}

for name, model in models.items():
    print(f"\nTraining {name}...")
```

```
print("\n  What happened during training?")
print("- Models learned patterns from training data")
print("- They found relationships between features and wine classes")
print("- Now they can make predictions on new data!")
Step 3: Model Training
-
Training Logistic Regression...
✓ Logistic Regression training completed!
Training Decision Tree...
☑ Decision Tree training completed!
What happened during training?
- Models learned patterns from training data
- They found relationships between features and wine classes
- Now they can make predictions on new data!
# Step 4: Model Evaluation
print("Step 4: Model Evaluation")
print("=" * 30)
results = {}
for name, model in trained_models.items():
    # Make predictions
    y_pred = model.predict(X_test)
    # Calculate accuracy
    accuracy = accuracy_score(y_test, y_pred)
    results[name] = accuracy
    print(f"\n{name} Results:")
    print(f"Accuracy: {accuracy:.3f} ({accuracy*100:.1f}%)")
    # Detailed classification report
    print("\nDetailed Performance:")
    print(classification_report(y_test, y_pred, target_names=wine_data.target_names))
# Compare models
print("\n ii Model Comparison:")
for name, accuracy in results.items():
   print(f"{name}: {accuracy:.3f}")
best_model = max(results, key=results.get)
print(f"\n \ge Best performing model: {best\_model}")
Step 4: Model Evaluation
Logistic Regression Results:
Accuracy: 0.889 (88.9%)
Detailed Performance:
                        recall f1-score support
             precision
    class_0
                  1.00
                            1.00
                                     1.00
                                                  12
    class_1
                  0.81
                            0.93
                                      0.87
                                                 14
    class_2
                  0.88
                            0.70
                                      0.78
                                                 10
                                      0.89
                                                  36
   accuracy
                  0.90
                            0.88
                                      0.88
  macro avg
                                                 36
weighted avg
                 0.89
                            0.89
                                     0.89
                                                 36
Decision Tree Results:
Accuracy: 0.833 (83.3%)
Detailed Performance:
                        recall f1-score
             precision
                                            support
    class_0
                  0.86
                            1.00
                                      0.92
                  0.91
                            0.71
                                      0.80
                                                  14
    class 1
                  0.73
                            0.80
                                      0.76
                                                 10
    class_2
   accuracv
                                      0.83
                                                  36
                  0.83
                            0.84
   macro avg
                                      0.83
                                                  36
weighted avg
                  0.84
                            0.83
                                      0.83
                                                  36
```

Train the model

model.fit(X_train, y_train)
trained_models[name] = model

print(f" < {name} training completed!")</pre>

```
Model Comparison:
Logistic Regression: 0.889
Decision Tree: 0.833
Best performing model: Logistic Regression
# Step 5: Model Interpretation
print("Step 5: Model Interpretation")
print("=" * 30)
# Visualize confusion matrix for the best model
best_model_obj = trained_models[best_model]
y_pred_best = best_model_obj.predict(X_test)
plt.figure(figsize=(8, 6))
cm = confusion_matrix(y_test, y_pred_best)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
            xticklabels=wine_data.target_names,
            yticklabels=wine_data.target_names)
plt.title(f'Confusion Matrix - {best_model}')
plt.xlabel('Predicted Class')
plt.ylabel('True Class')
plt.show()
print(f"\n 	☐ Interpreting the Confusion Matrix:")
print("- Diagonal values: Correct predictions")
print("- Off-diagonal values: Misclassifications")
print("- Perfect model would have all values on diagonal")
Step 5: Model Interpretation
                  Confusion Matrix - Logistic Regression
                12
                                       0
                                                             0
                                                                                10
True Class
class_1
                 0
                                      13
                                                             1
                 0
                                       3
                                                                                - 0
              class_0
                                    class 1
                                                          class 2
                                Predicted Class
Interpreting the Confusion Matrix:
- Diagonal values: Correct predictions
- Off-diagonal values: Misclassifications
- Perfect model would have all values on diagonal
```

Part 6: Understanding Different Data Types in ML

Machine learning works with various types of data. Let's explore the main categories:

```
# Understanding Different Data Types in ML
print("Understanding Data Types in Machine Learning")
print("=" * 45)

# Create examples of different data types
data_examples = {
    'Numerical (Continuous)': [23.5, 45.2, 67.8, 12.1, 89.3],
    'Numerical (Discrete)': [1, 5, 3, 8, 2],
```

```
'Categorical (Nominal)': ['Red', 'Blue', 'Green', 'Red', 'Blue'],
    'Categorical (Ordinal)': ['Low', 'Medium', 'High', 'Medium', 'Low'],
'Text': ['Hello world', 'Machine learning', 'Data science', 'Python programming', 'AI revolution'],
    'Boolean': [True, False, True, True, False]
}
for data_type, examples in data_examples.items():
    print(f"\n{data_type}:")
    print(f" Examples: {examples}")
    print(f" Use case: ", end="")
    if 'Continuous' in data_type:
        print("Regression problems (predicting prices, temperatures)")
    elif 'Discrete' in data_type:
       print("Counting problems (number of items, ratings)")
    elif 'Nominal' in data_type:
        print("Classification without order (colors, categories)")
    elif 'Ordinal' in data_type:
        print("Classification with order (ratings, sizes)")
    elif 'Text' in data_type:
        print("Natural language processing (sentiment analysis, translation)")
    elif 'Boolean' in data_type:
        print("Binary classification (yes/no, spam/not spam)")
print("\n P Key Insight: Different data types require different preprocessing and algorithms!")
Understanding Data Types in Machine Learning
Numerical (Continuous):
  Examples: [23.5, 45.2, 67.8, 12.1, 89.3]
 Use case: Regression problems (predicting prices, temperatures)
Numerical (Discrete):
  Examples: [1, 5, 3, 8, 2]
 Use case: Counting problems (number of items, ratings)
Categorical (Nominal):
  Examples: ['Red', 'Blue', 'Green', 'Red', 'Blue']
  Use case: Classification without order (colors, categories)
Categorical (Ordinal):
  Examples: ['Low', 'Medium', 'High', 'Medium', 'Low']
 Use case: Classification with order (ratings, sizes)
  Examples: ['Hello world', 'Machine learning', 'Data science', 'Python programming', 'AI revolution']
 Use case: Natural language processing (sentiment analysis, translation)
Boolean:
  Examples: [True, False, True, True, False]
 Use case: Binary classification (yes/no, spam/not spam)
🢡 Key Insight: Different data types require different preprocessing and algorithms!
```

Part 7: Hands-On Practice - Build Your Own Model

Now it's your turn! Complete the following tasks to reinforce your learning.

```
# Task 1: Try different features
print("Task 1: Experiment with Different Features")
print("=" * 40)
# Your task: Select 3 different features and build a model
# Available features:
print("Available features:")
for i, feature in enumerate(wine_data.feature_names):
   print(f"{i+1:2d}. {feature}")
# TODO: Replace these with your chosen features
your_features = ['alcohol', 'color_intensity', 'proline'] # Modify this list
# Build model with your features
X_your = df[your_features]
X_train_your, X_test_your, y_train_your, y_test_your = train_test_split(
   X_your, y, test_size=0.2, random_state=42, stratify=y
# Train a logistic regression model
your model = LogisticRegression(random state=42)
your_model.fit(X_train_your, y_train_your)
```

```
# Evaluate
y pred your = your model.predict(X test your)
your_accuracy = accuracy_score(y_test_your, y_pred_your)
print(f"\nYour model features: {your_features}")
print(f"Your model accuracy: {your_accuracy:.3f} ({your_accuracy*100:.1f}%)")
# Compare with original model
print(f"Original model accuracy: {results['Logistic Regression']:.3f}")
if your_accuracy > results['Logistic Regression']:
    print("  Great job! Your feature selection improved the model!")
   print("S Try different features to see if you can improve performance!")
Task 1: Experiment with Different Features
Available features:
1. alcohol
2. malic_acid
3. ash
4. alcalinity_of_ash
5. magnesium
6. total_phenols
7. flavanoids
8. nonflavanoid_phenols
9. proanthocyanins
10. color_intensity
11. hue
12. od280/od315_of_diluted_wines
13. proline
Your model features: ['alcohol', 'color_intensity', 'proline']
Your model accuracy: 0.833 (83.3%)
Original model accuracy: 0.889
Try different features to see if you can improve performance!
```

Part 8: Assessment - Understanding ML Concepts

Answer the following questions to demonstrate your understanding:

```
# Assessment Task 1: Identify the ML type
print("Assessment Task 1: Identify Machine Learning Types")
print("=" * 50)
# For each scenario, identify if it's Supervised, Unsupervised, or Reinforcement Learning
scenarios = [
    "Predicting house prices based on size, location, and age",
    "Grouping customers by purchasing behavior without knowing groups beforehand",
    "Teaching a robot to play chess by playing many games",
    "Classifying emails as spam or not spam using labeled examples",
    "Finding hidden topics in news articles without predefined categories"
# Your answers (replace 'TYPE' with Supervised, Unsupervised, or Reinforcement)
your_answers = [
    "Supervised",
                      # Scenario 1
    "Unsupervised",
                      # Scenario 2
    "Reinforcement", # Scenario 3
    "Supervised",
                     # Scenario 4
                    # Scenario 5
    "Unsupervised"
# Check answers
correct_answers = ["Supervised", "Unsupervised", "Reinforcement", "Supervised", "Unsupervised"]
print("Scenario Analysis:")
score = 0
for i, (scenario, your_answer, correct) in enumerate(zip(scenarios, your_answers, correct_answers)):
   is_correct = your_answer == correct
    score += is_correct
    status = "\rightarrow" if is_correct else "\rightarrow"
    print(f"{status} {i+1}. {scenario}")
   print(f"
              Your answer: {your_answer} | Correct: {correct}")
   print()
print(f"Score: {score}/{len(scenarios)} ({score/len(scenarios)*100:.0f}%)")
Assessment Task 1: Identify Machine Learning Types
_____
Scenario Analysis:
✓ 1. Predicting house prices based on size, location, and age
```

```
Your answer: Supervised | Correct: Supervised

✓ 2. Grouping customers by purchasing behavior without knowing groups beforehand Your answer: Unsupervised | Correct: Unsupervised

✓ 3. Teaching a robot to play chess by playing many games Your answer: Reinforcement | Correct: Reinforcement

✓ 4. Classifying emails as spam or not spam using labeled examples Your answer: Supervised | Correct: Supervised

✓ 5. Finding hidden topics in news articles without predefined categories Your answer: Unsupervised | Correct: Unsupervised

Score: 5/5 (100%)
```

Part 9: Real-World Applications and Case Studies

Let's explore how the concepts we've learned apply to real-world scenarios.

Case Study 1: Recommendation Systems (Netflix, Amazon)

Problem: Suggest movies/products users might like **ML Type**: Hybrid (Supervised + Unsupervised + Reinforcement) **Data**: User ratings, viewing history, product features **Workflow**: Collect data → Build user profiles → Train models → Make recommendations → Learn from feedback

Case Study 2: Fraud Detection (Banks, Credit Cards)

Problem: Identify fraudulent transactions **ML Type**: Supervised Learning (Classification) **Data**: Transaction amounts, locations, times, merchant types **Workflow**: Historical fraud data → Feature engineering → Train classifier → Real-time scoring → Continuous monitoring

Case Study 3: Medical Diagnosis (Healthcare)

Problem: Assist doctors in diagnosing diseases **ML Type**: Supervised Learning (Classification) **Data**: Medical images, patient symptoms, lab results **Workflow**: Labeled medical data → Image processing → Train deep learning models → Clinical validation → Deployment with human oversight

Your Turn: Think of Applications

Consider these industries and think about how ML could be applied:

- Transportation: Autonomous vehicles, route optimization
- Agriculture: Crop monitoring, yield prediction
- Education: Personalized learning, automated grading
- Entertainment: Content creation, game Al

Part 10: Complete ML Workflow Summary

Let's summarize the complete machine learning workflow we've learned:

The Machine Learning Lifecycle

Checklist for Every ML Project:

Data Phase:

- $\bullet \quad \Box$ Understand the problem and define success metrics
- $\bullet \quad \square$ Collect and explore the dataset
- $\bullet \quad \square$ Check for missing values, outliers, and data quality issues

• Usualize data to understand patterns and relationships

Modeling Phase:

- Split data into training and testing sets
- Select appropriate algorithms for the problem type
- Train multiple models and compare performance
- Evaluate using appropriate metrics (accuracy, precision, recall, etc.)

Deployment Phase:

- Ualidate model performance on new data
- Document the model and its limitations
- Deploy responsibly with monitoring systems
- Plan for model updates and maintenance

o Key Takeaways:

- 1. Start Simple: Begin with basic models before trying complex ones
- 2. Understand Your Data: EDA is crucial for success
- 3. Validate Properly: Always test on unseen data
- 4. Iterate: ML is an iterative process of improvement
- 5. Document Everything: Keep track of experiments and results

Your Reflection and Analysis

Instructions: Complete the reflection below by editing this markdown cell.

My Understanding of Machine Learning Types

Supervised Learning: Learning from labeled data where the algorithm is taught what the correct output should be.

Unsupervised Learning: Finding patterns and relationships in unlabeled data without predefined outputs.

Reinforcement Learning: Learning through trial and error with rewards and penalties in an environment.

My Analysis of the Wine Classification Project

Best performing model: Logical Regression

Why do you think this model performed better?: Logistic Regression is a linear model that works well when the classes are linearly separable, or close to it. The Wine dataset, with the selected features, likely has a structure where a linear boundary can effectively separate the classes. Decision Trees, while powerful, can sometimes overfit or create overly complex boundaries if not carefully tuned like setting max depth. In this specific case and with these features, the simplicity of Logistic Regression may have been an advantage.

What would you try next to improve performance?: Create new features or transform existing ones to better represent the data.

Explore other classification algorithms that might be a better fit for the dataset. If possible, gather more data to provide the model with more examples to learn from and combining multiple models to create a more powerful and robust predictor.

Real-World Application Ideas

Industry of Interest: Transportation and logistics.

ML Problem: Predicting Estimated Time of Arrival (ETA) for Deliveries.

Type of ML: Reinforcement Learning.

Data Needed: Real-time data covering routes, traffic, weather, vehicle, driver, and operational records.

Key Learnings

Most important concept learned: Machine learning type and data workflow.

Most challenging part: How to design workflow data for the machine learning problem.

Questions for further exploration: How do you decide which type of machine learning (supervised, unsupervised, reinforcement) is most suitable for a given real world problem?

Lab Summary and Next Steps

- @ What You've Accomplished:
- ✓ Understood ML Types: Supervised, Unsupervised, and Reinforcement Learning
- Mastered ML Workflow: Data → Model → Evaluation → Insights

- Built Classification Models: Logistic Regression and Decision Trees
- Evaluated Model Performance: Accuracy, Confusion Matrix, Classification Report
- Worked with Real Data: Wine dataset analysis and modeling
- Applied Best Practices: Data splitting, model comparison, interpretation
- 🚀 Preparation for Module 4:

In the next lab, you'll dive deeper into:

- Exploratory Data Analysis (EDA): Advanced visualization techniques
- Data Quality Assessment: Handling missing values, outliers, and duplicates
- Statistical Analysis: Understanding distributions and relationships
- Data Storytelling: Communicating insights effectively

Action Items:

- 1. Upload this notebook to your GitHub repository
- 2. Experiment with different features in the wine dataset
- 3. Try other datasets from sklearn.datasets (digits, breast_cancer, boston)
- 4. Practice the 6-step ML workflow on a new problem
- 5. Document your experiments and findings

- Scikit-learn User Guide
- Machine Learning Mastery
- Kaggle Learn Free micro-courses
- Google's Machine Learning Crash Course

Reflection Questions:

- 1. Which type of machine learning (supervised/unsupervised/reinforcement) interests you most and why?
- 2. What was the most challenging part of the ML workflow for you?
- 3. How might you apply these concepts to a problem in your field of interest?
- 4. What questions do you have about machine learning that you'd like to explore further?

Congratulations on completing Module 3! You've taken a significant step in your machine learning journey. 🎉

Remember: Machine learning is a skill that improves with practice. Keep experimenting, stay curious, and don't be afraid to make mistakes - they're part of the learning process!