

Program	B. Tech. (SoCS)	Semester	IV
Course	Linear Algebra	Course	MATH 2059
		Code	
Session	Jan-May 2025	Topic(s)	Eigenvectors,
			Diagonalization and
			Quadratic forms

- 1. For each matrix, find all eigenvalues and linearly independent eigenvectors:
 - a) $\begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$
 - b) $\begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$
 - c) $\begin{pmatrix} 5 & -1 \\ 1 & 3 \end{pmatrix}$
- 2. For each matrix, find a polynomial for which the matrix is a root:
 - a) $\begin{pmatrix} 3 & -7 \\ 4 & 5 \end{pmatrix}$
 - b) $\begin{pmatrix} 5 & -1 \\ 8 & 3 \end{pmatrix}$
 - c) $\begin{pmatrix} 2 & 3 & -2 \\ 0 & 5 & 4 \\ 1 & 0 & -1 \end{pmatrix}$
- **3.** For each of the following matrices, find all the eigenvalues:

a)
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

4. For each of the matrices in **Q. No. 3**, find invertible matrices P_1 , P_2 and P_3 (if possible) such that $P_1^{-1}AP_1$, $P_2^{-1}BP_2$ and $P_3^{-1}CP_3$ are diagonal matrices.

5. Suppose

$$A = \begin{pmatrix} 8 & 12 & 0 \\ 0 & 8 & 12 \\ 0 & 0 & 8 \end{pmatrix}$$

Find a real matrix A such that $B = A^3$.

- **6.** Let $A = \begin{pmatrix} 1 & 0 & -4 \\ 0 & 5 & 4 \\ -4 & 4 & 3 \end{pmatrix}$. If $aA^{-1} = bA^2 + cA + dI$ where $a, b, c, d \in \mathbb{R}$, then determine the value of ab + cd.
- 7. Let A be a 3×3 real matrix such that det(A) = 18 and trace(A) = -2. If det(A + 3I) = 0 (where I is the identity matrix of order 3), then find the value of $trace(A^2 - 2A)$.
- **8.** Let the characteristic polynomial of a matrix A be $(x-2)(x+1)^2(x+3)^2$. If A is diagonalizable, then find the rank of (A+3I) (where I is the identity matrix of order 5).
- 9. Let $A = \begin{pmatrix} 1 & -3 \\ 0 & 2 \end{pmatrix}$, $B = I + A + \dots + A^{10}$ and $P^{-1}AP = diag(1, 2)$. If $trace(P^{-1}BP) = \alpha + \beta 2^{11}$, then determine the values of α and β .
- **10.** For the following matrices (say A), find the orthogonal matrix P such that $P^TAP = D$ where D is a diagonal matrix having diagonal entries as eigenvalues of A.

a)
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

d)
$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

11. Reduce the matrix $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$ to diagonal form by an orthogonal transformation and hence find A^3 .

- **12.** Find the 3×3 symmetric matrix A having eigenvalues 2, 3, 6 and corresponding eigen vectors $(1\ 0\ -1)^T$, $(1\ 1\ 1)^T$, and $(1\ -2\ 1)^T$.
- 13. Verify Cayley-Hamilton theorem for the matrix A and hence, find A^{-1} and A^{4} .

a)
$$\begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{pmatrix}$$

c)
$$\begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

d)
$$\begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

- **14.** Find the characteristic equation of the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$ and hence, find the matrix represented by $A^8 5A^7 + 7A^6 3A^5 + A^4 5A^3 + 8A^2 2A + I$.
- **15.** Find the characteristic roots of the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ and verify Cayley-Hamilton theorem for this matrix. Find A^{-1} and, also express $2A^4 5A^3 7A + 6I$ as a linear polynomial in A and I.