MOSFET

Yuri Kaszubowski Lopes

UDESC

YKL (UDESC)	MOSFET	1/26

MOSFETs

- Metal-Oxide-Semiconductor (MOS)

 - Semicondutor com óxido metálico
 São transistores de efeito de Campo
 Field-Effect Transistor (MOSFET)
- A porta (gate) que fica separada do resto do transistor por um isolante
 - ► O campo elétrico gerado na porta controla a resistência do substrato

Anotações

Anotações

MOSFETs

Isolante. Resistência tipicamente de $10^{12}\,\Omega$

Brews ohare - CC BY-SA 3.0, commons.wikimedia.org/w/index.php?curid=18796795

Anotações	

MOSFETs

- Quando comparados aos transistores bipolares
- Os MOSFETs requerem uma corrente muito baixa para controlar a corrente entre o dreno e a fonte
 - ► Consomem pouca potência
- MOSFETs são relativamente simples e baratos de se fabricar
 - Aproximadamente 1/3 da complexidade de fabricação de um TTL, de acordo com Widmer e Tocci (2016)
- Ocupam menos espaço do que transistores bipolares
 - ▶ Não precisam de muitos dos resistores necessários nas lógica TTL
- Comumente utilizados em Cls de integração alta, larga e ultra-larga (LSI, VLSI, ULSI)
 - Exemplos de Uso: microprocessores e chips de memória

MOSE

4/26

MOSFETs: Símbolos esquemáticos

 Tensão aplicada na porta (Gate) controla o fluxo entre o dreno (Drain) e a fonte (Source)

(Tocci, Widmer; 2016)

Anotações

Anotações

YKL (UDESC

MOSFET

5/26

N-MOS

- A condutividade no canal (entre o dreno e a fonte) é controlada por uma diferença de potencial dentre a porta (G) e a fonte (S)
 - ► V_{GS}

YKL (UDES

MOSFE

6/26

N-MOS

- Quando $V_{\rm GS}=0\,V$, a resistência entre o dreno e a fonte é muito alta (e.g., $10^{10}\,\Omega$)
- Podemos considerar que o transistor está "desligado" (não está conduzindo)

YKL (UDESC) MOSFET 7/2

Anotações

N-MOS

- Quando $V_{GS} \geq V_T$,(i.e., quando V_{GS} é maior ou igual que uma tensão limiar V_T , tipicamente 1,5 Volts) a resistência entre o dreno e a fonte é reduzida (e.g., 10^3) Ω
- Podemos considerar que o transistor está "ligado" (está conduzindo)
- ullet Quanto maior V_{GS} , menor é a resistência entre o dreno e a fonte

YKL (UDESC)

MOSFE1

8/26

Anotações

P-MOS

- O P-MOS opera de forma similar, mas com polaridades trocadas

-		
-		

YKL (UDESC) MOSFET

P-MOS

- O P-MOS opera de forma similar, mas com polaridades trocadas
- ullet O transistor conduz se uma tensão menor que V_T é aplicada na porta V_{GS}

Anotações

P-MOS

- O P-MOS opera de forma similar, mas com polaridades trocadas
- ullet O transistor conduz se uma tensão menor que V_T é aplicada na porta V_{GS}

Anotações			

CMOS

- Complementary MOS Logic (CMOS)
- Utiliza transistores N-MOS e P-MOS no mesmo CI
- Vantagens e desvantagens:
 - Mais difícil produzir

 - + Mais rápido+ Dissipam menos potência

Anolações			

Notação

• Para simplificar, a seguinte notação será utilizada

Anotações

NOT CMOS

NOT CMOS Saída 1 Lógico

Anotações			
-			
-			

NOT CMOS

Saída 0 Lógico

Anotações

YKL (UDESC)

MOSFET

16/26

NANDS e NORS

• Qual é o NAND, qual é o NOR?

YKL (UDESC)

MOSFET

17/26

Anotações

NANDS e NORS

• Qual é o NAND, qual é o NOR?

Anotações

Circuitos integrados

- Assim como em TTL, existem circuitos integrados CMOS a venda
 Exemplos: famílias 74HC/HCT (High-Speed CMOS)
 - - * Compatíveis com a famíla 74 TTL
- O seu Intel i7, AMD Ryzen, Snapdragon, ... são construídos utilizando a tecnologia CMOS

Anotaçoes	

Potência

- Quando os circuitos CMOS não estão trocando de estado

 - A potência dissipada é mínima
 Nunca existe um caminho direto entre Vdd e o terra
 - ▶ Sempre há um transistor MOS "desligado" com uma alta resistência

Anotações

Potência

- Circuitos CMOS (como todo circuito) geram capacitâncias internas

 O circuito se torna um capacitor pequeno (e.g., 5pF)

 Ao trocar de estado (alto para baixo, ou vice-versa) essa carga armazenada precisa ser dissipada

 Energia é dissipada

 Atraso

 Exemplo: Uma porta NAND CMOS pode dissipar apenas 10⁻⁸ W quando estática, e 10⁻³ W quando trocando de estado a 1MHz.

Anotações			

Potência

- Além disso, assim como nos circuitos TTL, durante uma troca de estado, ambos os transistores (P e N) ficam semiabertos por um curto período
 - ightharpoonup Caminho quase direto entre V_{DD} e o GND (Terra)

Entradas flutuantes

- Considere a seguinte porta AND
 - Considere que ligamos 5 Volts em A

 - Ligamos B no terra
 Deixamos C desconectado
 - O que será enviado em C? 0 lógico ou 1 lógico?
 - Qual a saída do AND?

- Entradas desconectadas são ditas flutuantes
- Não sabemos o que está sendo enviado
- Isso é especialmente perigoso em circuitos CMOS
- Qualquer ruído captado pela entrada pode ser interpretado como 0 ou 1
- A entrada se torna "aleatória"
- Se a entrada trocar de estado com uma frequência grande o suficiente, o circuito pode superaquecer e se destruir
- Entradas flutuantes são sempre uma péssima ideia, independentemente da tecnologia que você está usando

Anotações

Anotações

Exercícios

- Utilizando portas NAND, NOR e NOT CMOS, mostre o diagrama para a função a seguir, onde A, B e C são entradas: F = A.B + B.C
 - ► Monte o circuito lógico com AND e OR
 - Monte o circuito lógico com portas NAND, NOR e NOT

 - Faça simplificações
 mostre o diagrama CMOS usando P-MOS e N-MOS

Anotações		

Referências

•	TOCCI, R.J.; MOSS, G.L.; WIDMER, N.S.	Digital Systems: Principles
	and Applications. 12a ed, Prentice-Hall.	, 2016.

• MELO, M. Eletrônica Digital. Makron Books.2003.

Anotações				
Anotações	Anotações			
Anotações				
	Anotações			
	3 -			