

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code : PC-ME301 Thermodynamics UPID : 003491

Time Allotted: 3 Hours

Full Marks:70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very S	hort Answer Ty	ype Question)
-----------------	----------------	---------------

. An	nswer any ten of the following:	$[1 \times 10 = 10]$
	Define saturation temperature.	
	Define 1st law of thermodyamics.	
	What is a thermal energy reservoir?	
	(W) Can entropy ever decrease?	
	What are the processes involved in Brayton Cycle?	
	(VI) What is the definition of Pressure?	
	() ⁴⁽⁾ What is pyrometer ?	
	What is sublimation?	
	Does the amount of mass entering a control volume have to be equal to the amount of mass le unsteady-flow process?	aving during an
	What is adiabatic process?	
	Write down three characteristics of Entropy.	
	What are the methods to improve the efficiency of Rankine Cycle?	
	Group-B (Short Answer Type Question)	
	Answer any three of the following:	[5 x 3 = 15]
χ.	How do the energies of a flowing fluid and a fluid at rest compare? Name the specific forms of energy associated with each case.	gy [5]
<i>3</i> .	Establish the relation between COP of Refrigerator and Heat Pump.	[5]
4.	Entropy of a saturated liquid at 227 degree Celsius is 2.6KJ/KG.K and its latent heat of vaporization is 1800KJ/KG, then the entropy of saturated vapor at 227 degree Celsius would be	s [5]
5.	During a regeneration process, some steam is extracted from the turbine and is used to heat the liq water leaving the pump. This does not seem like a smart thing to do since the extracted steam could produce some more work in the turbine. How do you justify this action?	
6.	A cylinder contains 0.92kg of steam at 1.5mpa. If the volume of steam 0.1 $\rm m^3$, determine enthalpy internal energy of steam per kg.	and [5]
	Group-C (Long Answer Type Question)	
	Answer any three of the following:	[15 x 3 = 45]
7.	(a) What is the physical significance of h _{fg} ? Can it be obtained from a knowledge of h _f and h _g ? How	
	(b) What is quality? Does it have any meaning in the superheated vapor region?	[5]
	(c) Can quality be expressed as the ratio of the volume occupied by the vapor phase to the volume? Explain.	
8.	(a) Would you expect the temperature of air to drop as it undergoes a steady-flow throttling proc Explain.	cess? [5]
	(b) Would you expect the temperature of a liquid to change as it is throttled? Explain.	[5]
,	(c) Helium is contained in a 2m ³ rigid volume at 50 degree Celsius and 200Kpa. Calculate the transfer needed to increase the pressure to 800kpa.	heat [5]
/9 .	(a) The drinking water needs are met by cooling tap water in a refrigerated water fountain from 3 degree Celsius at an average rate of 10 kg/h. if the COP of the refrigerant is 3.1, the requipower input to this refrigerator is	

	(b)	Is it possible for a heat engine to operate without rejecting any waste heat to a low-temperature reservoir? Explain.	[5]
	(c)	Consider a pan of water being heated (a) by placing it on an electric range and (b) by placing a heating element in the water. Which method is a more efficient way of heating water? Explain.	[5]
<i>J</i> 16.	(a)	A lump of steel weighing 30kg at a temperature of 427 degree Celsius is dropped in 150kg of oll at 27 degree Celsius. The specific heats of steel and oil are 0.46kj/kg.k and 2.5 KJ/KG.K respectively. Estimate the entropy change of steel, the oil and the system containing oil and lump of steel in KJ/K.	[8]
	(b)	Is an isothermal process necessarily internally reversible? Explain your answer with an example.	[5]
	(c)	Is it possible to create entropy? Is it possible to destroy It?	[2]
11.	(a)	Two different fuels can be used in a heat engine operating between the fuel burning temperature and a low temperature of 350K. Fuel A burns at 2500K delivering 52000KJ/KG and costs 1.75 per Kg. Fuel B burns at 1700K delivering 40000KJ/KG and costs 1.50 per kg. Which fuel do you use and why?	[7]
	(b)	A mechanic claims to have developed a car engine that runs on water instead of gasoline. What is your response to this claim?	[4]
	(c)	Describe an imaginary process that satisfies the first law but violates the second law of thermodynamics.	[4]

*** END OF PAPER ***