Algoritmos Genéticos

Roteiro

- Inspiração biológica
- Histórico
- Motivação
- Representação individual
- Avaliação de sucesso
- Operadores
- Funcionamento
- Considerações

Inspiração biológica

- Seleção natural (adaptação ao ambiente)
 - Mais aptos têm mais chances de sobreviver e reproduzir
- Mutações aleatórias nos indivíduos

Histórico

- 1859 Charles Darwin publica o livro "A Origem das Espécies": "As espécies evoluem pelo principio da seleção natural e sobrevivência do mais apto."
- 1948 A. Turing propõe a "busca evolucionária"
- 1975 J. Holland publica o livro "Adaption in Natural and Artificial Systems"
- 1985 International Conference on Genetic Algorithms

Motivação

Otimização de funções

Motivação

- Otimização combinatória
 - Bin packing
 - Oito rainhas
 - Caixeiro viajante
 - Timetabling problem
- Otimização com várias dimensões
- Otimização Multiobjetivo

Definição

"Algoritmos genéticos são modelos computacionais que imitam o mecanismo de 'evolução natural' para resolver problemas de otimização."

John Holland

Componentes de um Algoritmo genético

- Problema a ser resolvido
- Método de codificação de soluções
- Função de avaliação (medir sucesso)
- Método para criar um população inicial
- Operadores (exploration e exploitation)
- Conjunto de parâmetros

Representação individual

- Importante escolher uma representação adequada para o problema
 - Binário
 - Inteiro
 - Real
 - Permutação
- Cromossomo
- Genes
- Aptidão individual

Avaliação de sucesso

Função de fitness ou de aptidão

$$f(cromossomo) = aptid < o$$

Exemplo:

$$f(x) = x^2$$

	Cromossomo	х	f(x)
G1	0001	1	1
G2	0101	5	25

OPERADORES

- Mecanismo de para gerar diversidade
- Reduz a possibilidade de convergência prematura
- Para representação binária:

- Mecanismo de para gerar diversidade
- Reduz a possibilidade de convergência prematura
- Para representação inteira:

Modificados aleatoriamente

- Mecanismo de para gerar diversidade
- Reduz a possibilidade de convergência prematura
- Para representação real:

Adicionado +0,3 2,7 1,9 5,1 4,0 9,5 3,7 7,4 0,3 1,9 4,0 9,5 3,7 7,4 0,3 2

- Mecanismo de para gerar diversidade
- Reduz a possibilidade de convergência prematura
- Para representação por permutação:

Símbolos que serão trocados

Um ponto

Dois pontos

Uniforme ou multiponto

 Crossover aritimético (média do valor dos genes)

2,7	1,9	5,1	4,0	9,5	3,7	7,4	0,3

5,3	1,0 5	3,0 5	5,7	6,3	5,5	4,8	2,7 5
-----	----------	----------	-----	-----	-----	-----	----------

7,9	1,2	1,0	7,4	3,1	7,3	2,2	5,2
-----	-----	-----	-----	-----	-----	-----	-----

Operadores: Seleção

Seleção de pais

Seleção de sobrevivência

Operadores: Seleção de pais

Roleta (escolha proporcional à aptidão)

Operadores: Seleção de sobrevivência

- Por idade
- Baseado na aptidão
 - Substituição dos piores
 - Elitismo

Critérios de parada

- Número de gerações
- Encontrou a solução (quando esta é conhecida)
- Convergência
 - nas últimas k gerações houve melhora na aptidão?

FUNCIONAMENTO

Parâmetros

- Taxa de mutação
- Taxa de recombinação
- Tamanho da população
- Número de gerações

Funcionamento

Requisitos para uso do AG

- Representação adequada das possíveis soluções do problema
- População inicial diversificada
- Existência de um método de avaliação de sucesso
- Um procedimento para introduzir diversidade
- Um procedimento de combinação de soluções para gerar novos indivíduos na população
- Um critério de escolha das soluções que permanecerão na população ou que serão retirados desta
- Um critério de parada

ESTUDO DE CASO

 Utilização de Algoritmos Genéticos para resolução de problema de carregamento de paletes

- Representação Individual
 - Cromossomo dos indivíduos depende da quantidade máxima de caixas

- Avaliação de sucesso
 - Aptidão do indivíduo (F)
 - Calculo de sobreposição (Sp)
 - Percentual de área ocupada (P_A)

$$F = \frac{Sp}{P_A}$$

- Teste de convergência
 - 30 simulações
 - 2000 gerações

Considerações

- São fáceis de serem implementados em computadores
- Técnica que pode ser paralelizada
- São facilmente hibridizados com outras técnicas
- Convergência geralmente é lenta
- Funcionam com dados contínuos ou discretos
- Custo compujtacional dependente da função de aptidão

Algoritmos Genéticos

