

Manhattan Distance

Euclidean Distance

Minkowiski Distance

Hamming Distance

Manhattan Distance

Sum of Absolute differences between the two points, across all

dimensions

Sum of Absolute differences between the two points, across all

dimensions

$$d = |p_1 - q_1| + |p_2 - q_2|$$

Sum of Absolute differences between the two points, across all

One d = |p - q|

Two $d = |p_1 - q_1| + |p_2|$

Dimensions: $q = p_1 - q_1 + p_2$

n Dimensions: $D_{m} = \sum_{i=1}^{m} |p_i - q_i|$

n = number of dimensions

 p_i , q_i = data points

Manhattan Distance

Euclidean Distance

The Shortest distance between two

points

$$d = (b^2 + a^2)^{1/2}$$

$$d = (b^{2} + a^{2})^{1/2}$$

$$d = ((p_{1} - q_{1})^{2} + (p_{2} - q_{2})^{2})^{1/2}$$

The Shortest distance between two

Two

painessions:

$$d = ((p_1 - q_1)^2 + (p_2 -$$

$$q_2)^2)^{1/2}$$

Three

Dimensions:

$$d = ((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)^{1/2}$$

The Shortest distance between two

Two $d = ((p_1 - q_1)^2 + (p_2 - q_2)^2)^{1/2}$

Three Dimensions: $d = ((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)^{1/2}$

n Dimensions: $d = ((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2 + ... (p_n q_n)^2)^{1/2}$

The Shortest distance between two

politinensions:
$$d = ((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2 + ... (p_n - q_n)^2)^{1/2}$$

n Dimensions: $D_e = \sum_{i=1}^{n} (p_i - q_i)^2$

$$p_i$$
, q_i = data points

• Manhattan Distance $D_{m} = \sum_{i=1}^{n} |p_{i} - q_{i}|$

• Euclidean Distance
$$D_e = \left(\sum_{i=1}^{n} (p_i - q_i)\right)^{1/2}$$

• Manhattan Distance $D_{m} = \sum_{i=1}^{n} |p_{i} - q_{i}|$

• Euclidean Distance
$$D_e = \sum_{i=1}^{n} (p_i - q_i)^{1/2}$$

• Manhattan Distance $D_{m} = \sum_{i=1}^{m} |p_{i} - q_{i}|$

• Euclidean Distance
$$D_e = \sum_{i=1}^{n} (p_i - q_i)^{1/2}$$

• Minkowiski Distance $D = \left(\sum_{i=1}^{n} |p_i - q_i|^p\right)^{1/p}$

Manhattan Distance

Euclidean Distance

Minkowiski Distance

Hamming Distance

Total number of differences between two strings of identical

length

Пеп	Strings	
Α	Male	0
В	Female	1
С	Male	0

ID	Gender	Marital Status	Employment Status
Α	Male	Married	Self Employed
В	Female	Married	Salaried
С	Male	Unmarried	Unemployed

ID	Gender	Marital Status	Employment Status
Α	Male	Married	Self Employed
В	Female	Married	Salaried
С	Male	Unmarried	Unemployed

ID	Gender	Marital Status	
Α	0	0	1
В	1	0	2
С	0	1	3

ID	Gender	Marital Status	Employment Status
Α	Male	Married	Self Employed
В	Female	Married	Salaried
С	Male	Unmarried	Unemployed

ID	Gender	Marital Status	Employment Status	Strings
Α	0	0	1	001
В	1	0	2	102
С	0	1	3	013

ID	Gender	Marital Status	Employment Status
Α	Male	Married	Self Employed
В	Female	Married	Salaried
С	Male	Unmarried	Unemployed

ID	Gender	Marital Status	Employment Status	Strings
Α	0	0	1	001
В	1	0	2	102
С	0	1	3	013

Manhattan Distance

Euclidean Distance

Minkowiski Distance

Hamming Distance

