Отчет по лабораторной работе №2

Продвинутые методы

Аксенова Валерия, Коваленко Александр, Шустров Андрей

Описание методов:

Всем методам по умолчанию установлены ограничения на максимальное количество итераций (1000) и точность определения сходимости (1e-6)

- 1. Метод Ньютона со стратегией выбора шага: использован базовый алгоритм без оптимизаций, который принимает в виде параметра функцию вычисления размера шага. Реализованы 4 подхода:
 - -Постоянный шаг
 - -Фиксированное уменьшение размера шага
 - -Экспоненциальное уменьшение размера шага
 - -Изменение размера шага по косинусной кривой
- 2. Метод Ньютона, реализованный на методе золотого сечения: использован базовый алгоритм без оптимизаций, в котором с помощью метода золотого сечения находится оптимальный размер шага на каждой итерации.
- 3. Memod Newton-CG из SciPy Optimize.
- 4. Квазиньютоновский метод SR1 из SciPy Optimize.
- 5. Квазиньютоновский метод BFGS из SciPy Optimize.
- 6. Квазиньютоновский метод Бройдена, использующий backtracking для определения размера шага.

Графики:

$$2(x + 2)^2 + 4xy + 3(y - 4)^2$$

Rosenbrock

Himmelblau

Bukin N 6

Rastrigin

Результаты:

$$2(x + 2)^2 + 4xy + 3(y - 4)^2$$

Рассмотрим повернутую эллиптическую функцию. Оси симметрии не совпадают с осями координат. Все методы запускались из начальной точки (-3, -25).

Метод	Кол-во итераций	Кол-во	Ошибка
		вычислений	
1.1) NM	135	2431	0.007855
const decay			
1.2) NM	140	2521	12.122692
step decay			
1.3) NM	271	4879	0.126756
exp decay			
1.4) NM	229	4123	0.015240
cos annealing			
2) NM golden	20	701	0.000001
3) NCG	3	18	0.000000
4) BFGS scipy	6	16	0.000000
5) SR1 scipy	4	8	0.000000
6) Broyden	5	17	0.000000

Rosenbrock

Функция Розенброка для бенчмаркинга методов оптимизации. Все методы запускались из начальной точки (-5, 3).

Метод	Кол-во итераций	Кол-во	Ошибка
		вычислений	
1.1) NM	1000	18001	-
const decay			
1.2) NM	1000	18001	-
step decay			
1.3) NM	1000	18001	-
exp decay			
1.4) NM	1000	18001	-
cos annealing			
2) NM golden	15	766	0.000000
3) NCG	494	2320	0.000000
4) BFGS scipy	69	180	0.000000
5) SR1 scipy	100	200	0.000000
6) Broyden	35	173	0.000001

Himmelblau

Функция Химмельблау для бенчмаркинга методов оптимизации. Все методы запускались из начальной точки (-5, 3).

Метод	Кол-во итераций	Кол-во	Ошибка
		вычислений	
1.1) NM	1000	18001	inf
const decay			
1.2) NM	1000	18001	inf
step decay			
1.3) NM	1000	18001	inf
exp decay			
1.4) NM	1000	18001	inf
cos annealing			
2) NM golden	37	1888	0.000001
3) NCG	2	87	1.150250
4) BFGS scipy	2	112	1.404479
5) SR1 scipy	23	46	0.000001
6) Broyden	4	50	1.178204

Bukin N 6

Функция Букина №6 для бенчмаркинга методов оптимизации. Все методы запускались из начальной точки *(4, 4).*

Метод	Кол-во итераций	Кол-во	Ошибка
		вычислений	
1.1) NM	1000	18001	6467.887197
const decay			
1.2) NM	139	2503	130.682655
step decay			
1.3) NM	716	12889	675.264016
exp decay			
1.4) NM	1000	18001	3738.563164
cos annealing			
2) NM golden	12	613	4.746855
3) NCG	1	113	2.525218
4) BFGS scipy	1	124	1.189732
5) SR1 scipy	37	74	3.624291
6) Broyden	1000	22976	1.634617

Rastrigin

Функция Растригина для бенчмаркинга методов оптимизации. Все методы запускались из начальной точки (4,4).

Метод	Кол-во итераций	Кол-во	Ошибка
		вычислений	
1.1) NM	99	1783	2.121897
const decay			
1.2) NM	131	2359	2.143657
step decay			
1.3) NM	39	703	3.991428
exp decay			
1.4) NM	78	1405	3.400581
cos annealing			
2) NM golden	9	460	1.896830
3) NCG	7	37	1.344989
4) BFGS scipy	5	20	0.000000
5) SR1 scipy	8	16	2.682523
6) Broyden	3	3	0.000000

Optuna

ROTATED	Кол-во	Кол-во	Ошибка
ELLIPTICAL	итераций	вычислений	
1.1) GS	20	701	0.000001
1.2) OPT GS	23	806	0.000001
2.1) PIS	21	1516	0.000001
2.2) OPT PIS	25	1737	0.000000
3.1) Newton	34	1735	0.000002
3.2) OPT Newton	15	766	0.033780
4.1) Broyden	5	17	0.000000
4.2) OPT Broyden	5	17	0.000000

ROSENBROCK	Кол-во	Кол-во	Ошибка
	итераций	вычислений	
1.3) GS	764	26741	0.000053
1.4) OPT GS	111	3886	4.669265
2.1) PIS	1000	115401	0.461862
2.2) OPT PIS	133	13419	3.448397
3.1) Newton	15	766	0.000000
3.2) OPT Newton	15	716	0.000000
4.1) Broyden	35	173	0.000001
4.2) OPT Broyden	34	173	0.000001

Himmelblau	Кол-во	Кол-во	Ошибка
	итераций	вычислений	
1.5) GS	2	71	0.060986
1.6) OPT GS	111	3886	0.061040
2.1) PIS	1000	142968	0.062073
2.2) OPT PIS	133	15003	0.065053
3.1) Newton	37	1888	0.000001
3.2) OPT Newton	25	1276	0.000173
4.1) Broyden	4	50	1.178204
4.2) OPT Broyden	4	50	1.178204

Bukin N 6	Кол-во	Кол-во	Ошибка
	итераций	вычислений	
1.7) GS	1000	35001	1.483760
1.8) OPT GS	111	3886	1.486606
2.1) PIS	1000	148956	1.490182

2.2)	OPT PIS	133	15000	1.627216
3.1)	Newton	12	613	4.746855
3.2)	OPT Newton	5	256	1.697239
4.1)	Broyden	1000	22976	1.634617
4.2)	OPT Broyden	3	45	1.615376

Rastrigin	Кол-во	Кол-во	Ошибка
	итераций	вычислений	
1.9) GS	3	72	0.000000
1.10) OPT GS	3	72	0.000000
2.1) PIS	3	165	0.000000
2.2) OPT PIS	2	152	0.000000
3.1) Newton	9	460	1.896830
3.2) OPT Newton	8	409	1.896830
4.1) Broyden	3	8	0.000000
4.2) OPT Broyden	3	8	0.000000