CS 357 - 03 Errors and big-O notation

Boyang Li (boyangl3)

Absolute and relative error:

- Approximate result = True value + error
- Absolute error: $e_a = |x \hat{x}|$
- Relative error: $e_r = \frac{|x \hat{x}|}{|x|}$

While x is the true value and \hat{x} is the approximated value.

Significant digits: For "true" value (x) the number of significant digits begins from the leftmost non-zero digit and ends with the rightmost digit. For example:

- The number 3.14159 has six significant digits.
- The number 0.000350 has three significant digits.

For an approximate result (\hat{x}) , the number of significant digits can be determined in the following process:

- 1. Evaluate absolute error $e_a = |x \hat{x}|$
- 2. Count first n digits from the first decimal places to the digits following by a number from 0 to 4. Here are 2 examples.
 - $\hat{x} = 3.14159 \rightarrow |x \hat{x}| = 0.000002653 \rightarrow 6$ sig-fig
 - $\hat{x} = 3.1415 \rightarrow |x \hat{x}| = 0.000092653 \rightarrow 4 \text{ sig-fig}$

The number of accurate significant digits can be estimated by the relative error:

$$\frac{|x - \hat{x}|}{|x|} \ge 10^{-n+1}$$

then \hat{x} has at most n significant digits.

We can use the rule-of-thumb to calculate the upper bound of relative error, if we have n significant digits, then the relative error

$$\frac{|x - \hat{x}|}{|x|} \le 10^{-n+1}$$

Error for vectors: We are calculating absolute and relative errors for vectors in a similar way, by taking the difference and calculate the norm.

1

- Absolute error: $e_a = \|\mathbf{x} \hat{\mathbf{x}}\|$
- Relative error: $e_r = \frac{\|\mathbf{x} \hat{\mathbf{x}}\|}{\|\mathbf{x}\|}$

Rounding and truncation error:

- Rounding error: Occurs from rounding values in a computation. For example, store the fraction $1/3 \approx 0.3333$ into the computer.
- Truncation error: Occurs when using an approximate algorithm in place of an exact mathematical procedure of function. For example, using finite Taylor Series to approximate a function.

Big-O Notation: Used to describe asymptotic behavior. The definition in the cases of approaching 0 or ∞ are as follows:

- "\infty" Condition: $f(x) = \mathcal{O}(g(x))$ as $x \to \infty$ if and only if there exists a value M and some x_0 such that $|f(x)| \le M|g(x)|$ for $\forall x$ where $x \ge x_0$.
- "0" Condition: $f(h) = \mathcal{O}(g(h))$ as $h \to 0$ if and only if there exists a value M and some h_0 such that $|f(h)| \le M|g(h)|$ for $\forall h$ where $0 \le h \le h_0$.
- Arbitrary "a" Condition: $f(x) = \mathcal{O}(g(x))$ as $x \to a$ if and only if there exists a value M and some δ such that $|f(x)| \leq M|g(x)|$ for $\forall x$ where $0 \leq |x a| \leq \delta$.

Here are some examples of big-O notation:

- **Time complexity:** The time complexity for matrix multiplication (each size is $n \times n$) is $\mathcal{O}(n^3)$.
- Truncation errors: A numerical method is called *n*-th order accurate if its truncation error E(h) obeys $\mathcal{O}(h^n)$.