English Consonants & Vowels

- Phonetics: a study on speech

articulatory phonetics (from mouth) \rightarrow how to produce speech acoustic phonetics (through air) \rightarrow how to transmit speech auditory phonetics (to ear) \rightarrow how to hear speech

Articulation

- Vocal tract:

- 5 speech organs = constrictors = articulators

Phonation Process in Larynx

- larynx = voicebox: voiced → can feel vibration

ex. v, z, l, m, a, i voiceless \rightarrow can't feel vibration ex. f, s, k, p, h

Oro-nasal Process in Velum

- nasal: when velum lowered ex. m, n, ng

Articulatory Process

- lips / tongue tip / tongue body

Control of Constrictors(Articulators)

- Each constrictor needs to be more specific in geometry constriction location(CL) / constriction degree(CD)
- Constriction location: Lips → bilabial / labiodental

Tongue body → palatal / velar

Tongue tip \rightarrow dental / alveolar / retroflex / palate-alveolar

- Constriction degree: stops > fricatives > approximants > vowels

How to Produce English Consonants and Vowels

```
- constrictors(lips, tongue tip, tongue body) / CD / CL / velum / larynx
```

ex) /p/: lips / bilabial / stop / velum raised / larynx open

/b/: lips / bilabial / stop / velum raised / larynx closed

/d/: tongue tip / alveolar / stop / velum raised / larynx closed

/z/: tongue tip / alveolar / fricative / velum raised / larynx closed

/n/: tongue tip / alveolar / stop / velum lowered / larynx closed

- Phonemes: individual sounds that form words

a combination of speech organs' actions

Acoustics

- Praat: duration > select(click and drag on waveform or spectrogram) →

read a value (sec.) on the top \rightarrow zoom in (if not visible)

intensity \rightarrow show intensity \rightarrow click on green \rightarrow read a value (dB) on the right

pitch > show pitch → pitch setting – pitch range (65-200Hz male / 145-276Hz female)

 \rightarrow click on blue \rightarrow read a value (Hz) on the right

formant > show formants → place the cursor on one of the trajectories

 \rightarrow read a value (Hz) on the left

- the number of occurrences of a repeating event per second (frequency, Hz)

repeating event = vibration of vocal folds / repeating > sine wave = pure wave

- * sine wave: frequency + magnitude(amplitude) (x 축 시간 / y 축 value, voltage)
- 복잡한 신호는 단순한 sine wave 들의 합으로 표현된다. (synthesis)

simplex tone: 단순한 sine wave / complex tone: 복잡한 신호

spectrum: x 축 frequency / y 축 magnitude(amplitude)

spectrogram: spectrum 을 시간으로 visualize 한 것 (x 축 시간 / y 축 frequency)

sine wave→spectrum: spectral analysis

- pure tone→spectral analysis: frequency 가 같은 sine wave 한 개

complex tone→spectral analysis: 일정한 간격의 sine wave 여러 개 (간격=pitch)

(Praat: Spectrum > View Spectrum Slice)

- source: 성대에서 나는 소리

human voice source consists of harmonics

a complex tone = sum of pure tones at integer multiples of the lowest pure tone

the lowest pure tone = fundamental frequency(F0) = rate of vibration of the larynx

= the number of opening-closing cycles of the larynx per second

amplitude of pure tones gradually decreases

- filter: vocal tract 에 의해서 달라지는 소리

filter 의 spectrum → jigjagging with peaks and valleys (amplitude 의 패턴이 사라짐)

peaks/mountains: frequencies VT likes (formants)

valleys: frequencies VT does not like

- Synthesize Source: New > Sound > Create Sound as Pure Tone

> Tone frequency $100\sim1000$ Hz / Amplitude $1.0\sim0.55$ Pa

Combine > Combine to Stereo

Convert > Convert to Mono

반복 주기: frequency 100Hz / Amplitude 1.0Pa 와 일치

음: frequency 100Hz / Amplitude 1.0Pa 와 일치

Spectrum > View Spectral Slice: gradually decrease / 10 개 / 100Hz

- F1: 모음의 height / F2: 모음의 frontness(backness)

F1 and F2 are enough to disambiguate vowels.

(Praat: New > Sound > Create Sound as VowelEditor)