Explainable AI is Dead, Long Live Explainable AI!

Hypothesis-driven Decision Support using Evaluative AI

Tim Miller (2023) - Conference FAccT

Charles Vin

Sorbonne Université - 21216136

Quick summary

Arg for a Paradigm Shift in (X)AI for Decision Support

→ Evaluative AI Concept
Goals:

- Human-centered Approach
- Going Beyond Recommendations
- Mitigating Over-Reliance
- Support for Hypothesis Evaluation
- Machine-in-the-Loop Paradigm

Over/Under-reliance

Definitions

- **Over-reliance**: Decision makers accept a machine recommendations, even when it is wrong, but would be rejected if coming from a human.
 - o The machine "must be right" because it's a machine
- **Under-reliance**: Machine outputs are consistently rejected, even when it is correct, but would be accepted if coming from a human.

See "Automation bias" \Rightarrow Problems after deployement: AI systems ignored OR over-reliance related problems.

Over/Under-reliance

Causes

- Over-reliance: lack of cognitive engagement;
- Under-reliance: Algorithmic aversion.

When adding current XAI tools for more explaination \Rightarrow Confirmation bias (called *fixation* in the paper).

Over/Under-reliance

Solutions

- 1. Cognitive forcing
 - Eg. forcing people to give a decision before seeing a recommendation;
 - Slightly mitigated overreliance, but not enought to lead to a statistically significant differences;
 - Least prefered method by participant: people not wanting to exert mental energy.
- 2. Changing the XAI framework 😏 😲 🔎 💡

What makes a good decisions?

In a simple way:

- Identify options
- Compare options
- Choose an option

In a less simple way: the 10 "cardinal decision issue" outlined by Yates and Potworowski (2012)

• Needs, mode, Investment, Options, Possibilities, Judgements, Value, Trade-offs, Acceptability, Implementation

What makes a good decisions support system? Summed up

- Options: Help to identify options, well as help to narrow down the list of feasible or realistic options
- Judgement & Possibilities: Help to judge which outcomes are most likely and what will be the positive and negative impacts
- Trade-offs: Help to make trade-offs on the above criteria for each options
- Understandable: Help to understand how and why the tools works as it does, and when it fails

Does current decision support align with those criteria?

Giving recommendations with no explanatory information

Figure: A model of giving recommendations for decision support.

Decision makers can carefully consider recommendations:

- \rightarrow Leading to better decisions;
 - × empirical evidence suggests this is not the case.

- × Options
- ¹/_n Possibilities & Judgement
 - × Trade-offs
- × Understandable

Giving recommendations with explanatory information

Figure: A model of XAI for decision support.

Giving reasons or explanations for decisions

- \rightarrow Mitigates the problem of distrust;
- \rightarrow Leading to better decisions ;
 - Empirical evidence suggests people do not pay careful attention to the reasons/explanations.

- × Options
- ¹/_n Possibilities & Judgement
- √/× Trade-offs
 - ✓ Understandable

Giving recommendations with cognitive forcing

Figure: A model of cognitive forcing.

Withholding recommendations & giving an explanation;

- \rightarrow forces people to engage;
- \rightarrow limit over-reliance;
- \rightarrow Better decisions;
 - × still a "recommend and defend" approach.
 - × Least prefered method by participants

√/x Options

¹/n Possibilities & Judgement

√/× Trade-offs

✓ Understandable

Figure: A model of Evaluative AI.

- Align with decision making processes
- Keep the decision maker in control
- Ask users to rely on evidence instead of recommendations.

Figure: A simple prototype of a diagnostic interface using evaluative AI.

Properties

- ✓ Options
- ✓ Possibilities & Judgement
- ✓ Trade-offs
- ✓ Understandable

Zoom on properties

- ✓ Options
 - Show the most likely options (with or without probabilities);
 - \rightarrow Not a single recommendation.
- ✓ Possibilities & Judgement
 - o The machine provide feedback on humain jugement only.
- ✓ Trade-offs
 - o Offer real trade-offs between any set of two options;
 - Evaluative AI provides evidence both for and against each option, irrelevant of the judged likelihood of that option;
 - \rightarrow *Option awareness* in the literature.

Differences with cognitive forcing

- **Control** Permit to explore hypothesis, not a single recommendation;
- ightarrow Built on the way we makes decision (identify, compare, choose)

Long live XAI

- Evaluative AI is designed only toward decision making, Evaluative AI ⊂ XAI;
- XAI is still needed and more adapted to many situation (eg. making decision at scale);
- Recommendation based models: base of any XAI techniques;
- Many existing XAI tools are already adapted to Evaluative AI
 - Constrastive explanation;
 - o Feature importance (eg. SHAP).

Limitation

- Why would people pay attention to evidence this time?
 - → Evaluative AI
 - · Better control;
 - · Process built on the way we makes naturally decision
 - \rightarrow people would naturally follow
 - \neq Contrary to recommendation-driven approches;
 - x Proof?
- Cognitive load remain a problem
 - → Evaluative AI still reduce the quantity of information the decision maker needs (only revelant information are presented)
 - × Still the less prefered solution by decision makers

Limitation

• More introduction around automation bias needed;

Bibliography

- Tim Miller. Explainable ai is dead, long live explainable ai! hypothesis-driven decision support using evaluative ai. In *Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency*, FAccT '23, pages 333–342, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701924. doi: 10.1145/3593013.3594001. URL https://doi.org/10.1145/3593013.3594001.
- J. Frank Yates and Georges A. Potworowski. 198 Evidence-Based Decision Management. In The Oxford Handbook of Evidence-Based Management. Oxford University Press, 06 2012. ISBN 9780199763986. doi: 10.1093/oxfordhb/9780199763986.013.0012. URL https://doi.org/10.1093/oxfordhb/9780199763986.013.0012.

Beamer template from here 😱