ŭ	ations! You passed! 1 100% To pass 80% or higher	Go to next item
heta rotated about the	I frame [d] relative to a frame (c) can be represented by a unit rotation axis $\hat{\omega}$ and the axis. If we rotate the frame (c) by θ about the axis $\hat{\omega}$ expressed in the (c) frame, we et as 2 numbers and θ 1 numbers, but we only need 3 numbers, the exponential coorditive to (c), because	nd up at
	3 numbers to represent $\hat{\omega},\hat{\omega}$ actually only represents a point in a 2-dimensional sparsphere of unit 3-vectors.	ce, the
\bigcirc the choice of $ heta$	is not independent of $\hat{\omega}$.	
good global represe	3x3 rotation matrices (an implicit representation) to represent orientation is because entation: there is a unique orientation for each rotation matrix, and vice-versa, and the presentation. In what way does the 3-vector of exponential coordinates fail these or //	ere are no
There could be	more than one set of exponential coordinates representing the same orientation.	
a different sei coordinate ve outer surface	resentation of the orientation, then we could change θ by any integral multiple of 02π for feroponential coordinates representing the same orientation. If we restrict the expector to have a magnitude of π or less is asolid sphere in 3-space, then opposite point of the sphere correspond to the same orientation (one corresponding to rotation aborother corresponding to ortation aborother corresponding to ortation aborother corresponding to totation aborother corresponding to totation about the negative of the axis by π ?.	onential is on the
☐ Some orientati	ons cannot be represented by exponential coordinates.	
	fferential equation $\dot{x}(t)=Bx(t)$, where x is a vector and B is a constant square $a^Btx(0)$, where the matrix exponential e^Bt is defined as	natrix, is 1/1 poir
the sum of an in	nfinite series of matrices of the form $(Bt)^0+Bt+(Bt)^2/2!+(Bt)^3/3!\ldots$	
O the sum of an i	nfinite series of matrices of the form $Bt+Bt/2+Bt/3+\ldots$	