Exam

Linear Algebra

DSAI.

Question 1:

Question 1:

$$\frac{\text{Question 1}:}{\text{det } A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & p & 3 \\ 5 & 3 & p \end{bmatrix}} = 2 \cdot \begin{bmatrix} p & 3 \\ 3 & p \end{bmatrix} + 5 \cdot \begin{bmatrix} 1 & 1 \\ p & 3 \end{bmatrix} = 2 \cdot \begin{bmatrix} p^2 - q \end{bmatrix} + 5 \cdot (3 - p)$$

$$= 2p^2 - 10^2 + 15 - 5p = 2p^2 - 5p - 3 = 0.$$
A is not invertible (=) det $A = 0$ (=) $p = 5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot -3}$ (=) $p = 3$ or $p = 5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot -3}$ (=) $p = 3$ or $p = 3$

A is not invertible (=) det A = 0 (=) $p = 5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot 3}$ (=) p = 3 or $p = -\frac{1}{2}$.

Question 2:

False. Consider $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. A is symmetric because $A = A^T$. However $det(A) = 1 \cdot 1 - 1 \cdot 1 = 0$ and thus A is not invertible.

Question 3:

 $|V_2|$ $|V_3|$ | = $|V_2|V_2|$ - $|V_3|V_3|$ = 2-3=-1 \neq 0. Hence, the vectors \underline{u} and \underline{v} do form a basis for \mathbb{R}^2 .

Question 4:

A is upper triangular, so $l_1 = 1$ (with mult. 2) and $l_2 = -1$ eigenspace of $\lambda_1 = 1: A - \lambda_1 T = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -2 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ So, dem $(Nul(A - \lambda_1 T)) = 1 < 2 = mult. of \lambda_1$. Mence, A is not diagonalizable.

Question 5:

Denote
$$V = \begin{bmatrix} 1 \\ 0 \\ -2 \\ 3 \end{bmatrix}$$
. Then, $\| \underline{V} \| = \sqrt{1^2 + 0^2 + (-2)^2 + 3^2} = \sqrt{14^7}$.
So, $\begin{bmatrix} 1/\sqrt{14} \\ 0 \\ -2/\sqrt{14} \\ 3/\sqrt{14} \end{bmatrix}$ and $\begin{bmatrix} -1/\sqrt{14} \\ 0 \\ 2/\sqrt{14} \\ -3/\sqrt{14} \end{bmatrix}$.

Question 6:

6 A-(-2)T =
$$\begin{bmatrix} 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$
 $\begin{bmatrix} R_2: R_2 - R_1 \\ R_3: R_3 + R_1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$
So, basis for the eigenspure is $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$

V2 and V3 are not orthogonal

Projection of
$$V_3$$
 onto V_2 is $\frac{V_3 \cdot V_2}{V_2 \cdot V_2} = \frac{-1}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/2 \\ -1/2 \end{bmatrix}$.

And the component of v_3 orthogonal to \underline{v}_2 is $\underline{v}_3 - \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$. Normalizing these vectors results in $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$.

Mence,
$$D=\begin{cases} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{cases}$$
 and $P=\begin{cases} -1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/ \end{cases}$

Question 7:

(a) 2A+3C cannot be performed because A is a 2x2 matrix and C is a 2x3 matrix. So, the answer is C

So, the answer is [

$$\begin{bmatrix}
1 \\
2 \\
0 \\
0
\end{bmatrix} = C_1 \cdot \begin{bmatrix} 1 \\
1 \\
3 \\
1
\end{bmatrix} + C_2 \cdot \begin{bmatrix} 1 \\
0 \\
5 \\
-1
\end{bmatrix}$$

From the secondrow it follows that $2 = (1 + (2 \cdot 0) =) \cdot (3 = 2 \cdot 1 + (2 \cdot 1) =) \cdot (3 = 2 \cdot 1 + (2 \cdot 1) =) \cdot (3 + (2 \cdot 1) + (2 \cdot 1) =) \cdot (2 = 1 - 2 = -1 \cdot 1 + (2 \cdot 1) + (3 \cdot$

Hence, the standard matrix is $\begin{bmatrix} -1 & 2 \\ 1 & -1 \\ 0 & 0 \end{bmatrix} \stackrel{\sim}{R_2}: R_2 + R_1 \begin{bmatrix} -1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

There is a pivot in every column => T is injective. There is not a pivot in every row => T is not surjective.

- Note that $Nul(\underline{u}) = \{ \underline{x} \in \mathbb{R}^3 : \underline{u} = 0 \} = \{ \underline{x} \in \mathbb{R}^3 : \underline{z} \cdot \underline{u} = 0 \}$ Since $Nul(\underline{u})$ is a subspace of \mathbb{R}^3 , $\{ \underline{x} \in \mathbb{R}^3 : \underline{x} \cdot \underline{u} = 0 \}$ is also a subspace of \mathbb{R}^3 . Hence, the solution is \boxed{b} .
- If a polynomial has the property p(o)=0, then we know $a_o=0$. Fince, it consists of all polynomials of the form $p(t)=a_1t+a_2t^2+a_3t^3$. As a result, $[t,t^2,t^3]$ is a basis for the form $p(t)=a_1t+a_2t^2+a_3t^3$. Hence, the solution is a.

Mence, the answer is [

$$\begin{array}{lll}
\text{(i)} & A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix} \underset{R_3: R_3 - R_1}{\sim} & \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{bmatrix} \underset{R_3: R_3 - R_2}{\sim} & \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \\
\text{Hence, } & \text{(a)} & (A) = \text{Span} & \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 \end{bmatrix} \underset{R_3: R_3 - R_2}{\sim} & \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \\
& = \begin{bmatrix} C_1 & \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 & \begin{bmatrix} 0 \\ 0 \end{bmatrix} ; & C_1, & C_2 \in \mathbb{R} \end{bmatrix}$$

[1]
$$\in$$
 Col(A)? 1st row implies $C_1 = 1$
 2^{nd} row implies $C_2 = 2$
Then, the 3^{nd} row becomes $4+C_2=1+2=3$...

So,
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 and thus $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in Gl(A)$.

Hence, the answer is a.