Esquemas paralelos

Metodología de la Programación Paralela Jesús Sánchez Cuadrado (jesusc@um.es) Curso 2020/21

Tipos de esquemas

- Podemos considerar esquemas de distintos tipos:
- Descomposición del trabajo:
 - Paralelismo de datos.
 - Particionado de datos.
 - Algoritmos relajados.
- De paralelismo basado en dependencias de datos:
 - Paralelismo síncrono.
 - Dependencias en árbol o grafo.
 - Pipeline.
- De paralelización de esquemas secuenciales:
 - Divide y Vencerás.
 - Programación Dinámica.
- Recorridos de árboles: Backtracking y Branch and Bound.
- De múltiples tareas o trabajadores:
 - Bolsa de tareas.
 - Granja de procesos.
 - Maestro-Esclavo.

Otras fuentes de patrones

Our pattern language: https://patterns.eecs.berkeley.edu/

Particionado y paralelismo de datos

Paralelismo y particionado de datos

- Aplicable cuando todos los datos se tratan de igual manera
 - Aplicable a GPUs
- Ejemplo:
 - Algoritmos numéricos donde los datos están en vectores o matrices
 - Posible procesamiento vectorial
 - Paralelismo asignando partes distintas del array a distintos elementos de proceso (directivas OpenMP)
- Memoria Compartida (Paralelismo de datos):
 - Distribución del trabajo entre los hilos
 - Paralelización automática o implícita
- Memoria Distribuida (Particionado de datos):
 - Distribución de los datos a los procesos
 - Paralelización explícita

Ejemplo – Suma de N números

Suma de N números

```
int s = 0;
for(int i = 0; < n; i++) {
   s = s + a[i];
}</pre>
```

- Posible vectorización con simd.
- Paralelización automática: con opción de compilación si no hay dependencia de datos o el compilador detecta que se puede resolver

Ejemplo – Suma de N números

- Paralelismo implícito
 - El programador especifica cuáles son los datos
 - El sistema de decide cómo se reparten
- En OpenMP
 - Clausula schedule permite indicar cómo distribuir el trabajo: bloques contiguos, asignación cíclica, dinámica

```
int s = 0;
#pragma omp parallel for private(i) reduction(+:s)
for(int i = 0; < n; i++) {
   s = s + a[i];
}</pre>
```

Ejemplo – Suma de N números

Paralelismo explícito

```
void sumaparcial(double *a, int n, int p) {
  int s=0;
                                                      t(n,p) = \frac{n}{p} + p
  for(j=0; j<n/p; j++)
    s=s+a[j];
  a[0]=s;
void sumatotal(double *a, int n, int p) {
  double s=0;
  for(j=0; j<p; j+=n/p)
    s = s + a[j];
                               #pragma omp parallel for private(i,s)
  return s;
                               for(i=0; i<p; i++)</pre>
                                 sumaparcial(&a[(i*n)/p],n,p);
                               S = sumatotal(a,n,p);
Metodología de la Programación Paralela
```

- · Para cada elemento, contar cuántos hay menores que el
 - El rango nos dice la posición que ocupa el elemento ordenado
 - Coste O(n²)
 - Fácilmente paralelizable

```
for(i=0; i<n; i++)
  for(j=0;j<n;j++)
    if (a[i]>a[j] || ((a[i] == a[j]) && (i > j)))
        r[i]+=1;

for(i = 0; i < n; i++)
  b[r[i]] = a[i];</pre>
```

- Paralelismo implícito
 - Se divide el trabajo de cada bucle

```
#pragma omp parallel for private(i,j)
for(i=0; i<n; i++)
   for(j=0; j<n; j++)
      if (a[i]>a[j] || ((a[i] == a[j]) && (i > j)))
        r[i] += 1;

#pragma omp parallel for private(i)
for(i = 0; i < n; i++)
   b[r[i]] = a[i];</pre>
```

$$t(n,p) = \frac{n^2}{p} + \frac{n}{p}$$

- Paralelismo implícito
 - Se divide el trabajo de cada bucle

```
#pragma omp parallel for private(i,j)
for(i=0; i<n; i++)</pre>
  for(j=0; j<n; j++)
    if (a[i]>a[j] || ((a[i] == a[j]) && (i > j)))
       r[i] += 1;
#pragma omp parallel for private(i)
for(i = 0; i < n; i++)
  b[r[i]] = a[i];
                                                   ¿Es posible colapsar
                                                     los dos bucles?
```

- Paralelismo implícito
 - Se divide el trabajo de cada bucle

```
#pragma omp parallel for private(i,j)
for(i=0; i<n; i++)</pre>
  for(j=0; j<n; j++)</pre>
    if (a[i]>a[j] || ((a[i] == a[j]) && (i > j)))
       r[i] += 1;
  // En este punto la posición del elemento i
  // ya ha sido calculada
  b[r[i]] = a[i];
```

- Paralelismo explícito
 - Asignación manual del trabajo a los hilos

Paralelismo explícito

```
void rangoparcial(int *a, int *r, int *b,
                   int hilo, int n, int p) {
   for(int i = hilo * n / p; i < (hilo + 1) * n / p; i++) {</pre>
     for(j = 0; j < n; j++)
       if (a[i]>a[j] || ((a[i] == a[j]) && (i > j)))
         r[i] += 1;
     b[r[i]] = a[i];
#pragma omp parallel for private(i)
for(i = 0; i < THREADS; i++)</pre>
  rangoparcial(a, r, b, n, i, THREADS)
```

Ejemplo – Multiplicación de matrices

Con paralelismo implícito

```
#pragma parallel for private(i,j,k)
for(i=0; i<n; i++)
  for(j=0; j<n; j++) {
    c[i,j] = 0;
    for(k=0; k<n; k++)
       c[i,j]=c[i,j]+a[i,k]*b[k,j];
}</pre>
```


Ejemplo – Multiplicación de matrices

Con paralelismo explícito

```
#pragma omp parallel for private(i)
for(i=0;i<p;i++)
  multiplicar(c,a,b,i)
void multiplicar(c,a,b,i) {
  for(j=(i*n)/p; j < ((i+1)*n)/p; j++)</pre>
    for(k=0;k<n;k++) {
      c[j,k]=0;
      for(l=0;l<n;l++)
        c[j,k]=c[j,k]+a[j,1]*b[l,k];
```

Otros ejemplos de paralelismo de datos

- Producto escalar de dos vectores x e y de tamaño n:
 - Similar a la suma de n datos.
 - Asignación de bloques de tamaño n/p de x e y a los p hilos.
 - Suma (secuencial o paralela) de los productos parciales.
- Producto matriz-vector:
 - Dos bucles, paralelización del más externo.
 - Posible trabajo por bloques.

Particionado de datos

- Idea similar al paralelismo de datos para Memoria Distribuida
 - Además de dividir el trabajo hay que distribuir los datos
 - Implementación típica usando Paso de Mensajes
- El espacio de datos se divide en regiones adyacentes:
 - Se asignan a procesos distintos
 - Posible intercambio de datos entre regiones adyacentes
 - Más semejante al Paralelismo de Datos explícito
- Para obtener buenas prestaciones hay que intentar que el volumen de computación entre comunicaciones sea grande.
 - Paralelismo de grano grueso, efecto volumen-superficie.

Particionado de datos

- Ejemplo Multiplicación de matrices
 - Volumen de computación n³
 - Volumen de distribución de datos n²
 - Cada hilo realiza el mismo cálculo que en la versión OpenMP

```
void ordenrango(int *a, int n, int *r, int pid, int numprocs) {
  int i, j, k, t1 = n / numprocs; *b = NULL;
  MPI Bcast(a, n, MPI INT, 0, MPI COMM WORLD);
  for(k = 0, i = hilo * n / p; i < (hilo + 1) * n / p; i++, k++) {
   for(j = 0; j < n; j++)
      if (a[i]>a[j] || ((a[i] == a[j]) && (i > j)))
        r[k] += 1;
```

```
void ordenrango(int *a, int n, int *r, int pid, int numprocs) {
  if (pid == 0) {
    for(i = 1; i < numprocs; i++) {</pre>
      MPI_Recv(&r[tl * i], tl, MPI_INT, i, 10, ...);
      b = (int *) malloc(sizeof(int) * n);
      for(i = 0; i < n; i++)
         b[r[i]] = a[i];
      for(i = 0; i < n; i++)
         a[i] = b[i];
      free(b);
  } else {
    MPI Send(r, tl, MPI_INT, 0, 10, MPI_COMM_WORLD);
```

- Coste
 - Volumen de computación n²
 - Volumen de distribución de datos n
 - Todos los procesos necesitan el array que se va a ordenar completo

$$(p-1)(ts+tw\cdot n)+tc\frac{n^2}{p}+(p-1)\cdot (ts+\frac{tw\cdot n}{p})$$
Distribución inicial
Cómputo
Distribución final

Algoritmos relajados

Algoritmos relajados

- Cada elemento de proceso trabaja de manera independiente.
- No hay sincronización ni comunicación, salvo las de distribuir datos y recoger resultados.
- Buenas prestaciones en Memoria Compartida y Paso de Mensajes.
- A veces a costa de no utilizar el mejor algoritmo paralelo.
- Fáciles de programar.
- Difícil encontrar algoritmos que se adecuen estrictamente al esquema.

Ejemplo – Fractales: el conjunto de Mandelbrot

- Algoritmo "embarrassingly parallel"
 - Se crear un número N de tareas, totalmente independientes
 - Particionado estático
- Para cada punto **c** en el plano complejo
 - Calcular la función color(c)

$$\left\{egin{array}{ll} z_0=0\in\mathbb{C} & ext{ (t\'ermino inicial)} \ z_{n+1}=z_n^2+c & ext{ (sucesi\'en recursiva)} \end{array}
ight.$$

Los puntos cuya distancia al origen es superior a 2 (x2 + y2 > 2) no pertenecen al conjunto

^{*} https://es.wikipedia.org/wiki/Conjunto_de_Mandelbrot

^{*} https://www.dais.unive.it/~calpar/

- Memoria Compartida: cada hilo calcula el rango de una parte de los elementos.
- Paso de Mensajes. Primero distribuir en la forma siguiente, y cada proceso calcula el rango de una parte de los elementos.

• Hay duplicación de datos pero se simplifica la programación y se obtienen buenas prestaciones.

Multiplicación de matrices

• Memoria Compartida: cada hilo calcula un bloque de filas de la matriz resultado.

• Paso de Mensajes, con distribución:

- cada procesador calcula las filas de C correspondientes a las filas de A que contiene.
- No es necesaria sincronización ni comunicación
 - salvo la distribución y acumulación (¿qué funciones se utilizarían?),
 - pero es más costoso el envío inicial al repetirse B en cada proceso.

Descomposición geométrica/ Paralelismo síncrono

Características

- Se realizan iteraciones sucesivas:
 - Cada elemento de proceso realiza el mismo trabajo sobre una porción distinta de los datos.
 - Datos de una iteración se utilizan en la siguiente.
 - Tras cada iteración hay sincronización (local o global).
 - La iteración finaliza cuando se cumple algún criterio de convergencia o cuando se alcanza un número fijo de iteración (o tiempo límite).
- Las prestaciones están afectadas por la sincronización:
 - En Memoria Compartida buenas prestaciones.
 - En Paso de Mensajes bajan prestaciones por el coste de las comunicaciones.

Ejemplo – Iteración de Jacobi

- Por ejemplo, f(x, y) el calor de un punto de una placa de metal
 - Dada una placa de metal para la que conocemos la temperatura de los bordes, calcular cuál es la temperatura en los puntos del interior.

Ejemplo – Iteración de Jacobi

Se calcula la ecuación de diferencias:

$$V^{t}(i,j) = \frac{V^{t-1}(i-1,j) + V^{t-1}(i+1,j) + V^{t-1}(i,j-1) + V^{t-1}(i,j+1)}{4}$$

- Converge gradualmente a una solución cada vez más precisa.
- Para obtener una solución más precisa aumentar el número de puntos.
- Una iteración tras otra secuencialmente, pero dentro de cada iteración paralelismo.
- Entre iteraciones se necesita comunicación local.
- Para comprobar condición de fin comunicación global.

Paralelismo implícito

- Entre cada bucle paralelo, la sincronización es implícita
- Hay paralelismo de datos en los bucles
- División del trabajo

Paso de mensajes

- El array de datos *n* filas
- Cada proceso tiene un array con tl = n/p + 2 filas
- Las dos filas extras son para almacenar "los bordes"
 - Filas fantasma
- Los intercambios consisten en comunicarse los resultados del borde

jacobi_mpi.c

Paso de mensajes

Paso de mensajes

• ¿Cómo se puede optimizar introduciendo comunicaciones asíncronas?

Dependencias en árbol o grafo

Grafos de dependencias

- Un Grafo de Dependencias es un grafo dirigido acíclico
- Nodos representan tareas
- Una arista de un origen a un destino representa que para poder realizarse la tarea destino tiene que haberse ejecutado la origen (posiblemente por una dependencia de datos).
- Los nodos pueden etiquetarse con un valor que representa el coste de la tarea. Las aristas pueden etiquetarse con valor que representa el coste de la comunicación

Asignación de tareas

- Hay que asignar las tareas a los elementos de proceso.
- Distintas asignaciones pueden originar tiempos distintos.
- El problema de la asignación óptima es NP.

Asignación de tareas

- Dentro de un elemento de proceso hay que elegir el orden de ejecución de las tareas.
- Desbalanceo de la carga: balancear cálculo y comunicaciones.
- Tiempos de espera: por dependencias entre tareas.
- Si granularidad fina: muchas tareas, lo que posibilita el balanceo pero genera más comunicaciones.
- Si granularidad gruesa menos comunicaciones pero más difícil el balanceo.

Clases de equivalencia

- Relación de equivalencia expresada como árboles
 - Elementos de un conjunto que comparten cierta propiedad

Problema: encontrar el representante de la clase a la que pertenece cada nodo

Nodo	0	1	2	3	4	5	6	7	8	9	10	11
Padre	1	1	4	7	1	11	6	8	10	6	4	6

Clases de equivalencia

- Algoritmo secuencial
 - Sustituir en cada iteración el padre de un nodo por el padre de su padre

```
int cambio = 1;
while (cambio) {
   cambio = 0;
  for(int i = 0; i < n; i++) {</pre>
      if (array[i] != array[array[i]]) {
         array[i] = array[array[i]];
         cambio = 1;
```

Clases de equivalencia

Algoritmo paralelo

```
int cambio = 1;
while (cambio) {
   cambio = 0;
   memcpy(tmp, array, n);
   #pragma omp parallel for private(i)
  for(int i = 0; i < n; i++) {</pre>
      if (array[i] != array[array[i]]) {
        tmp[i] = array[array[i]];
        cambio = 1;
```

Ejemplo

• Procesador de consultas (SQL) paralelo

SELECT nombre, apellidos, teléfono, direccion
FROM persona P JOIN direcciones D ON P.dni = D.dni_persona
WHERE edad < 18</pre>

Computación pipeline

Computación pipeline

- Descomponer un problema en una serie de tareas sucesivas
 - Los datos fluyen por la estructura de tareas
 - Cuando una tarea termina procesando un dato se lo pasa al siguiente

 Cada tarea puede tener un peso diferente y ser preferible dedicar distinto número de procesadores a cada tarea

Computación pipeline

- Útil cuando:
 - No hay un único conjunto de datos a tratar sino una seria de conjuntos de datos, que entran a ser computados uno tras otro
 - Una tarea puede empezar antes que la tarea previa haya terminado. La tarea previa debe enviar los datos necesarios tan pronto como estén disponibles

• El coste es mayor que el de la tarea más costosa

Ejemplo – Divisibilidad por P primos

- Lista de números primos P₀, P₁, ... P_{m-1}
- Secuencia de enteros a₀, a₁, ... a_n
- ¿Qué enteros son múltiplos de todos los primos?

- Estructura de tareas
 - T2 puede comenzar tan pronto como T1 ha procesado a0

Resolución sistema de ecuaciones triangular inferior

• Resolución por sustitución progresiva

$$3x_1 + 2x_2 - 2x_3 + 4x_4 = -5,$$

$$3x_2 - 5x_3 - 3x_4 = 0,$$

$$4x_3 + x_4 = -3,$$

$$2x_4 = 6.$$

$$x_4 = \frac{6}{2} = 3,$$

$$x_3 = \frac{-3 - x_4}{4} = -\frac{3}{2},$$

$$x_2 = \frac{5x_3 + 3x_4}{3} = \frac{1}{2},$$

$$x_1 = \frac{-5 - 2x_2 + 2x_3 - 4x_4}{3} = -7.$$

Resolución sistema de ecuaciones triangular inferior

Resolución por sustitución progresiva

$$a_{00}x_0 = b_0$$
 $a_{10}x_0 + a_{11}x_1 = b_1$
 \dots
 $a_{n-1,0}x_0 + a_{n-1,1}x_1 + \dots + a_{n-1,n-1}x_{n-1} = b_{n-1}$

$$x_i = \frac{b_i - \sum_{j=0}^{i-1} a_{ij} x_j}{a_{jj}}$$

Resolución sistema de ecuaciones triangular inferior

```
if (rank == 0) {
 x = b / a[0];
 MPI_Send(&x, 1, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD);
} else if ( rank == n - 1 ) {
 for(i = 0; i < n - 1; i++) {
   MPI_Recv(&x, 1, MPI_DOUBLE, n - 2, i, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
   r += a[i] * x;
 x = (b - r) / a[n - 1];
} else if ( (rank != 0) && (rank != n - 1) ) {
 for(i = 0; i < rank; i++) {</pre>
   MPI_Recv(&x, 1, MPI_DOUBLE, rank - 1, i, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
   MPI_Send(&x, 1, MPI_DOUBLE, rank + 1, i, MPI_COMM_WORLD);
    r += a[i] * x;
 x = (b - r) / a[n - 1];
 MPI Send(&x, 1, MPI_DOUBLE, rank + 1, rank, MPI_COMM_WORLD);
```

Divide y vencerás

Divide y vencerás

- Esquema algorítmico que consiste en:
 - Resolver un problema dividiéndolo en subproblemas de las mismas características
 - Se resuelven los subproblemas
 - Combinar las soluciones
 - División recursiva en subproblemas

Divide y vencerás – Paralelismo

- La solución de los subproblemas s_i se puede hacer en paralelo.
- La división debe producir subproblemas de coste balanceado.
- La división y la combinación implican comunicaciones y sincronización.
- Si consideramos un árbol de llamadas recursivas, el Grafo de Dependencias viene determinado por el árbol, y podemos considerar que seguimos el paradigma de programación paralela en árbol.

Ordenación por mezcla

Ordenación por mezcla

• OpenMP – con tareas

```
#pragma omp parallel
{
   #pragma omp single
   mergesort(data, n, tmp);
}
```

```
void mergesort(int * X, int n, int * tmp)
  if (n < MAX_SIZE) {</pre>
    mergesort_sec(X, n, tmp);
    return;
  #pragma omp task firstprivate (X, n, tmp)
  mergesort(X, n/2, tmp);
  #pragma omp task firstprivate (X, n, tmp)
  mergesort(X+(n/2), n-(n/2), tmp);
  #pragma omp taskwait
 merge(X, n, tmp);
```

• Se desea aproximar:

$$I = \int_{a}^{b} f(x) dx$$

Cuadratura adaptativa:

- Número variable de intervalos.
- Dividir ([a,b]) en dos mitades con áreas trapezoidales B y C .
- Si A (B + C) < Tolerancia, Aproximación=B + C.
- Sino, aplica el procedimiento recursivamente a cada mitad.


```
void integrar(double a, double b) {
 fa = f(a);
 fb = f(b);
  area = (fa + fb) * (b - a) / 2.0;
  return computa intervalo(a, b, fa, fb, area,);
      void intervalo(double a, double b, double fa, double fb, double aprox) {
        double m = (a + b) / 2;
        double fm = f(m);
        double area_izq = (fa + fm) * (m - a) / 2;
        double area_dcha = (fm + fb) * (b - m) / 2;
        double aprox2 = area_izq + area_dcha;
        if (aprox - aprox2 < umbral)</pre>
           return aprox;
        else {
          return intervalo(a, m, fa, fm, area_izq) +
                 intervalo(m, b, fm, fb, area_dcha);
Metodol }
```

```
void integrar(double a, double b) {
 fa = f(a);
                                                         Crear tarea
 fb = f(b);
  area = (fa + fb) * (b - a) / 2.0;
  return computa intervalo(a, b, fa, fb, area);
      void intervalo(double a, double b, double fa, double/fb, double aprox) {
        double m = (a + b) / 2;
        double fm = f(m);
        double area_izq = (fa + fm) * (m - a) / 2;
        double area_dcha = (fm + fb) * (b - m) / 2;
        double aprox2 = area_izq + area_dcha;
        if (aprox - aprox2 < umbral)</pre>
           return aprox;
        else {
          return intervalo(a, m, fa, fm, area_izq) +/
                 intervalo(m, b, fm, fb, area dcha);
Metodol }
```

Recorridos de árboles

Recorridos de árboles

- Problemas de búsqueda en un espacio de posibles soluciones.
- Problemas de distintos tipos: búsqueda de una única solución, de todas las soluciones, de la solución optima, etc.
- Esquemas típicos de recorrido del árbol:
 - Backtracking, Branch and Bound, etc.
- Se descompone el espacio de búsqueda en subespacios más pequeños y se asignan a distintos componentes computacionales(hilos, procesos).
- La generación de subproblemas puede ser estática o dinámica:
 - Todas las tareas se generan inicialmente, o se generan nuevas tareas durante el recorrido del árbol.
- La asignación de tareas puede ser estática o dinámica:
 - Se decide inicialmente qué subproblemas resuelve cada elemento de proceso, o se asigna trabajo según la velocidad de cada elemento de proceso

Suma de un subconjunto

• Dado un conjunto de números *C* y un entero *v*, se quiere encontrar el subconjunto cuyos valores suman *v*.

Suma de un subconjunto

• ¿De qué maneras podemos paralelizar el recorrido del espacio de soluciones?

Suma de un subconjunto

- Generación secuencial inicial de un número fijo de tareas.
- Distribución de tareas:
 - Estática. Balancear la distribución.
 - Si se sabe el coste de cada tarea se puede calcular distribución óptima (problema NP).
 - Si no se sabe, se pueden generar más tareas que procesos y asignarlas aleatoriamente o cíclicamente.
 - Dinámica. Más difícil la gestión.
 - Memoria Compartida, acceso en exclusiva a descriptores de las tareas.
 - Paso de Mensajes, proceso que gestiona la bolsa de tareas (Maestro), y coste alto de la gestión por comunicaciones.
- Generación dinámica de tareas: se generan tareas y al tratarlas se generan nuevas tareas.
 - Coste de gestión de la bolsa de tareas.
 - La granularidad de las tareas debe ser alta

Maestro/Esclavo y Granja de procesos

Introducción

- Una serie de elementos de proceso que constituyen una Granja de procesos y que pueden ser del mismo tipo (Trabajadores replicados).
- Normalmente trabajan resolviendo tareas que se encuentran en una estructura que contiene la definición de las tareas a realizar: Bolsa de tareas.
- Y la gestión de la bolsa la hace un proceso distinguido (Maestro), que atiende las peticiones y los envíos de otros procesos (Esclavos).
- Se tiene así el paradigma Maestro-Esclavo.

Bolsa de tareas

- Bolsa de tareas: conjunto de descriptores de tareas; cada descriptor especifica una computación.
- En Memoria Compartida:
 - una estructura centralizada de la que los trabajadores toman trabajos y posiblemente depositan otros nuevos.
 - Acceso en exclusión mutua.
- En Paso de Mensajes:
 - la estructura está en la memoria de uno o varios procesos,
 - la petición y depósito de tareas conllevan comunicación.
- Contención:
 - Bolsa centralizada. Cuantos más procesos mayor contención.
- Balanceo:
 - Si se descentraliza la bolsa hay mayor desbalanceo y menor contención ⇒ compromiso entre contención y balanceo.
- Terminación:
 - El test de terminación es global ⇒ sincronización.

Esquema OpenMP

- Bolsa de tareas y variables tareas y acabados son globales.
- Inicialmente 1 tarea y todos los trabajadores inactivos
 - (acabados = trabajadores).
- Los hilos trabajan mientras queden tareas u otros hilos trabajando
 - (pueden generar nuevas tareas).
- No es necesario un Maestro. Todos los hilos hacen el mismo trabajo.
- Es necesario acceder en exclusión mutua a las variables compartidas.

```
omp set num threads(trabajadores );
acabados = trabajadores ;
#pragma omp parallel private(fin,n)
  fin=FALSO;
  Mientras no fin hacer
    #pragma omp critical
      Si tareas = 0 y acabados = trabajadores entonces
         fin=VERDADERO;
      sino Si tareas != 0 entonces
         acabados = acabados - 1;
         tareas = tareas - 1;
         tomar tarea de la bolsa;
      finsi
    Si tomada tarea entonces
      resolver tarea y generar n nuevas tareas;
      #pragma omp critical
         tareas = tareas + n;
         acabados = acabados + 1;
         insertar las n tareas en la bolsa;
    finsi
  finmientras
```

Maestro/Esclavo

- Comunicaciones entre el maestro y los esclavos.
- El maestro conoce la condición de fin y la comunica a los esclavos.

Esquema "MPI"

- Suponemos que inicialmente hay tareas para todos los esclavos.
- El Maestro recibe resultados y envía nuevos trabajos.
- Cuando no le quedan más trabajos manda señales de fin a todos los esclavos.
- Los Esclavos reciben tareas, las resuelven, mandan el resultado y reciben nuevas tareas, hasta que reciben la señal de fin.

```
// Se dispone de p procesos esclavos
// y de t tareas
Si proceso maestro entonces
  asignar un trabajo a cada esclavo;
  t = t - p;
  Mientras t != 0 hacer
    Recibe( resultado );
    Envia( trabajo , esclavo del que ha recibido );
    t = t - 1;
  finmientras
  Mientras p != 0 hacer
    Recibe( resultado );
    Envia(marca de fin, esclavo del que ha recibido);
    p = p - 1;
  finmientras
sino
  Recibe( trabajo , maestro );
  resolver trabajo;
  Envia( resultado , maestro );
  Recibe( trabajo o marca de fin, maestro );
  Mientras no recibida marca de fin hacer
    Resolver trabajo;
    Envia( resultado , maestro );
    Recibe( trabajo o marca de fin, maestro );
  finmientras
finsi
```

Problema de las N reinas

- ¿Cómo colocar *n* reinas en un tablera de *n* x *n* sin que sea maten entre sí?
- Soluciones:
 - Recursiva
 - Iterativa

 q_4

^{*} Visualizador: https://haseebq.com/n-queens-visualizer/

Ejercicios

- Problema de las reinas
 - Versión con tareas
 - Versión asíncrona
 - Programación híbrida
- Mandelbrot en MPI