February 13, 2021 Jiaming Zhang

The Baltic Seminar Notes #4 Lecturer: Prof. Grigor Sargsyan

In the last lectures we have showed that:

Theorem 1. The following statements are equivalent:

- 1. E is a countably complete extender;
- 2. Ult(V; E) is well-founded;
- 3. Whenever $\pi: M \to V$ is a "countable hull" of V such that $E \in ran(\pi)$, then letting $F = \pi^{-1}(E)$, there exists $k: Ult(M; F) \to V$ such that $\pi = k \circ j_F$;
- 4. There is some $\pi: M \to V$ that is elementary and countable, such that there exists $k: Ult(M; F) \to V$ with $F = \pi^{-1}(E)$ and $\pi = k \circ j_F$.

Here, j_F is the canonical elementary embedding $j_F(x) = [\{\kappa\}, c_x]$ whenever $\kappa = crit(E)$ and $x \in M$.

Definition. Suppose $\pi: M \to V$ is an elementary embedding, and F is an M-extender. Say F is π -realizable iff there exists $k: Ult(M; F) \to V$ such that $\pi = k \circ j_F$.

Our previous results implies that E is countable complete iff all countable hulls of E are realizable. We shall now work towards a new realizing lemma and a copying lemma, which are useful in building iteration trees. For the realizing lemma, we showed in previous lectures that:

Theorem 2. Suppose $\pi: M \to V$ is an elementary embedding and $F \in M$ is a countably complete extender. Then there is some elementary embedding $k: Ult(M; F) \to V$ such that the following diagram commutes:

$$V$$

$$\pi \uparrow \qquad k$$

$$M \xrightarrow{j_F} Ult(M; F)$$

For the copying lemma, we mean the following statement:

Theorem 3. Suppose $\pi: M \to N$ is an elementary embedding and $F \in M$ is a countably complete extender. Then there is some elementary embedding $h: Ult(M; F) \to Ult(N; G)$ such that the following diagram commutes:

$$\begin{array}{ccc} (N;\pi(F)=G) & N & \xrightarrow{j_G} Ult(N;G) \\ & & \uparrow & & \uparrow \\ & (M;F) & M & \xrightarrow{j_F} Ult(M;F) \end{array}$$

^{*}Which means, M is a countable elementary substructure of V and π is the elementary embedding.

February 13, 2021 Jiaming Zhang

and $\pi \upharpoonright lh(F) = k \upharpoonright lh(F)^{\dagger}$.

Proof. Set
$$k([a, f]) = [\pi(a), \pi(f)]$$
 and all details are easy to check.

Now we prove the new realizing lemma:

Theorem 4. Suppose that:

a. $W_i^{\omega} \subset W_i$ and $Ord \subset W_i$;

b. $\sigma_i: M_i \to W_i$ is elementary;

c. $M_1 \models F$ is a countably complete (κ, λ) -extender;

d. $M_0 \sim_{\kappa+1} M_1$ and M_i is countable;

 $e. \ \sigma_0 \upharpoonright V_{\kappa+1}^{M_0} = \sigma_1 \upharpoonright V_{\kappa+1}^{M_1}.$

$$\begin{array}{c|cccc} & W_0 & W_1 \\ & & \uparrow^{\sigma_0} & \sigma_1 \\ \hline & & & & \\ Ult(M_0;F) & \longleftarrow & M_0 & \overbrace{\kappa+1} & M_1 \ni F \end{array}$$

Then F is σ_0 -realizable, where i=0,1 and $M \sim_{\delta} N$ means $V_{\delta}^M = V_{\delta}^N$.

Remark. Since the relation between M_0 and M_1 is not clearly stated in the theorem, we shall narrate a possible situation of this theorem.

Here, $E \in M_0$ is a (η, ν) -extender and $F \in M_0$ is a (ν, κ) -extender. By doing ultrapower with E, λ' grows much larger, possibly larger than $Ord \cap M_0$. In this case, $F = j_E(F')$ is no longer an extender existing in M_0 ; however it lives as a proper class outside of M_0 and its extender properties are still preserved. Thus we can still construct $Ult(M_0; F)$ outside of M_0 .

[†]Recall that F is a (κ, λ) -extender, and we denote $crit(F) = \kappa$ and $lh(F) = \lambda$.

February 13, 2021 Jiaming Zhang

Comment. We shall first show that the ultrapower $Ult(M_0; F)$ is well-defined and well-founded.

Well-definedness: Since $M_0 \sim_{\kappa+1} M_1$, it is obvious that each element in F is a κ -complete ultrafilter on $[\kappa]^n$ for some n. Therefore, although F may not be an element of M_0 (or even, $\lambda > Ord \cap M$), it is still vaild to construct $Ult(M_0, F)$ by adding the F as a predicate.

Well-foundedness: For each $a \in \lambda^{<\omega}$, we let $A_a = \bigcap \sigma_1 "F_a = \bigcap \sigma_0 "F_a$. By the completeness of each $\sigma_1(F_a)$, $A_a \in \sigma_1(F_a)$. Then by the countably completeness of $\sigma_1(F)$, we pick $g: \lambda \to Ord$ such that $g"a \in A_a$ for all $a \in \lambda^{<\omega}$. Since $g \in V$, we proved that F is countably complete with respect to M_0 , which means $Ult(M_0; F)$ is well-founded by our previous statements.

We shall now define the realizability embedding $k: Ult(M_0; F) \to W_0$. Let $x \in Ult(M_0; F_0)$ and $x = [a, f]_F^{M_0} = j_F^{M_0}(f)(a)$. Set

$$k(x) = k(j_F^{M_0}(f)(a)) = \sigma_0(f)(g^n a),$$

where g is the previously defined fiber through each $A_a = \bigcup \sigma_1 F_a$. We claim that k is elementary and $\sigma_0(x) = k \circ j_F(x)$ for all $x \in M_0$.

Proof. Elementarity:

$$Ult(M_0; F) \vDash \phi[[a, f]_F^{M_0}]$$

$$\iff \{s : M_0 \vDash \phi[f(s)]\} = C \in F_a$$

$$\iff \sigma_1(C) \in \sigma_1"F_a$$

$$\iff g"a \in \sigma_1(C)$$

$$\iff g"a \in \sigma_0(C)$$

$$\iff W_0 \vDash \phi[\sigma_0(f)(g"a)]$$

$$\iff W_0 \vDash \phi[k(x)].$$

Commutativity:

$$k([\{\kappa\}, c_x]) = \sigma_0(c_x)(g^*\{\kappa\}) = c_{\sigma_0(x)}(g^*\{\kappa\}) = \sigma_0(x).$$

Remark. Prof. Boban Velickovic mentioned that there is a method of constructing extender ultrapowers by a lifting argument. Readers interested in this topic can refers to [1].

Next we show the new copying lemma:

Theorem 5. Suppose that:

a.
$$W_i^{\omega} \subset W_i$$
;

b. $\sigma_i: M_i \to W_i, F \in M_1 \text{ and } \sigma_1(F) = G;$

c.
$$W_0 \sim_{\sigma_1(\kappa)+1} W_1$$
 and $W_0 \sim_{\kappa+1} M_1$,

Then:

- 1. $Ult(W_0; G)$ is well-founded;
- 2. The embedding $k: Ult(M_0; F) \to Ult(W_0; G)$ defined as $k([a, f]_F) = [\sigma_1(a), \sigma_0(f)]$ is commutative and elementary. Moreover, $k \upharpoonright lh(F) = \sigma_1 \upharpoonright lh(F)$.

$$Ult(W_0, G) \xleftarrow{j_G} W_0 \underbrace{\sigma_1(\kappa) + 1}_{\sigma_1(\kappa) + 1} W_1 \ni G$$

$$k \uparrow \qquad \qquad \uparrow \sigma_0 \qquad \uparrow \sigma_1$$

$$Ult(M_0, F) \xleftarrow{j_F} M_0 \underbrace{\kappa + 1}_{\kappa + 1} M_1 \ni F$$

Proof. Clause 1: We shall need the realizability and collapse the whole picture to a countable size:

Here h is the realizability embedding. This embedding also shows that the ultrapower is well-founded.

Clause 2: The commutativity is easy to check. Let $x = [a, f]_F^{M_0} \in Ult(M_0; F)$. Then

$$Ult(W_0; G) \vDash \phi[k([a, f]_F^{M_0})]$$

$$\iff \{s : W_0 \vDash \phi[\sigma_0(f)(s)]\} \in G_{\sigma_1(a)};$$

$$\iff \sigma_0(\{s : M_0 \vDash \phi[f(s)]\}) \in G_{\sigma_1(a)};$$

$$\iff \sigma_1(\{s : M_0 \vDash \phi[f(s)]\}) \in G_{\sigma_1(a)};$$

$$\iff \{s : M_0 \vDash \phi[f(s)]\} \in F_a;$$

$$\iff Ult(M_0; F) \vDash \phi[[a, f]_F^{M_0}].$$

References

[1] Ronald Jensen. Subcomplete forcing and \mathcal{L} -forcing. In *E-recursion*, forcing and C^* -algebras, pages 83–182. World Scientific, 2014.

4