Model	Architecture Type	Dataset Used	Metric Used	Reported Accuracy / Score	Reference
U-Net	CNN	ISIC 2018	Dice Coefficient	85.2%	Ali et al., 2022
Attention U-Net	CNN + Attention	ISIC 2018	Dice Score	86.5%	Jabbar & Khan, 2022
TransUNet	CNN + ViT Hybrid	ISIC 2018, 2017	Dice Score	88.1%	Chen et al., 2021
Swin-Unet	Pure Transformer	ISIC 2018, Synapse	Dice Score	88.9%	Cao et al., 2021
MedT	Pure Transformer	ISIC 2018	Dice Score	87.8%	Valanarasu et al., 2021
GS-TransUNet	ViT + Gaussian Splatting	ISIC 2018	Dice Score	89.3%	Zhao et al., 2024
ScaleFusionNet	Swin Transformer + DeformConv	ISIC 2018	Dice Score	89.5%	Shao et al., 2024
SUTrans-NET	Dual Encoder (CNN + Transformer)	ISIC 2018	Accuracy	90.1%	Wang et al., 2023
Attention Swin U-Net	Swin Transformer + Cross-Attn	ISIC 2018	Dice Score	90.6%	Kim et al., 2024
ViT-UNet (Our Project)	CNN + ViT Hybrid	ISIC 2018 (assumed)	Dice Score / Accuracy	~ 91.2% (as reported)	Our Project

Model / Study	Architecture Type	Dataset(s)	Key Features	Performance Metrics	Reference
Hybrid Deep Learning Framework	U-Net + Inception- ResNet-v2 + ViT	ISIC 2020, HAM10000	Combines U- Net for segmentation, Inception- ResNet-v2 for feature extraction, and Vision Transformer for feature refinement	Accuracy: 98.65%; Sensitivity: 99.20%; Specificity: 98.03%	PubMed, 2024
Advanced Deep Learning Models	Context Aggregation- based DNN	ISIC 2020	Utilizes morphological operations and context aggregation for preprocessing and segmentation	Classification Accuracy: 93.40%	MDPI Sensors, 2025
Skin Lesion Classification via Ensemble Method	Modified Inception ResNet v2 + EfficientNet-B4	ISIC 2018	Incorporates Soft-Attention mechanism to enhance feature extraction	Specific performance metrics not provided	Springer, 2024
Boundary- Aware Segmentation Network (BASNet)	CNN + Transformer	ISIC 2016/2017/201 8, HAM10000	Applies hybrid loss and residual refinements to handle occlusion and poor contrast images	Specific performance metrics not provided	Frontiers in Medicine, 2025

Skin Lesion Segmentation Model Based on Improved U2Net	Improved U2Net	ISIC 2018	Enhances U2Net architecture for better segmentation performance	Specific performance metrics not provided	ACM ISAIMS, 2023
Skin Cancer Segmentation and Classification Using ViT	Vision Transformer	HAM10000	Utilizes pre- trained ViT for segmentation and classification	Classification Accuracy: 96.15%	ResearchGate, 2024
Deep Learning- based Skin Lesion Segmentation and Classification	U-Net + CNN + ViT	HAM10000	Employs U-Net for segmentation followed by CNN and ViT for classification	Specific performance metrics not provided	ResearchGate, 2024
Health of Things Melanoma Detection System	Deep Learning + Fine-Tuning Models	Not specified	Applies deep learning and fine-tuning models in edge computing environments	Detection Accuracy: 96.39%; Segmentation Accuracy: 96.50%	Frontiers in Communicatio ns and Networks, 2024