NUMERICAL METHODS (EM 215)

Solutions to system of linear equations

Assignment 1(SLE)

Wijerathne E.S.G

E/18/397

1) a) Gaussian elimination with pivoting

By backward substitution,
$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 33957 & | 5275 \\ -12764 & | 8275 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4.1034 \\ -1.5351 \\ 1.0805 \\ 4.5666 \end{pmatrix}$$

b) LU decomposition with pivoting.

Using forward substitution $ \begin{array}{c c} & y_1 & f_9 \\ & y_2 & = -20.5 \end{array} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\overline{D}^{X} $\overline{O}X = \overline{\Lambda}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
tosing backward substitution,
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$

2) a) Jacobi method

The given system of linear eg
 57, +16x2 + 3n3+ n4 = 6.7
6x, +7x2 + 26x3 - x4 = 8.8
 12n, + 2n2 + 323 - 30ng = 4.3
151, -x2 + x3 +x4 = 21
This is not diagonally dominant, Theretore
rearranget syste of linear eggs
$15n_1 - n_2 + n_3 + n_4 = 2.1$
5x1 + 10x2 + 3x3 + x4 = 6,7
$6x_1 + 7x_2 + 20x_3 - x_4 = 5.8$
12k1 + 2k2 + 3k3 - 30x4 = 4.3

Python code: -

```
jaccobi.py > ...
     import math as m
    # Defining equations to be solved
   f1 = lambda \times 1, x2, x3, x4
                                   : (2.1+x2-x3-x4)/15
     f2 = lambda x1 , x2, x3, x4 : (6.7-5*x1-3*x3-x4)/10
     f3 = lambda x1, x2, x3, x4 : (5.8-6*x1-7*x2+x4)/20
     f4 = lambda x1, x2, x3, x4 : (4.3-12*x1-2*x2-3*x3)/(-30)
11 x1_0 = 0
12 x2 0 = 0
13 x3 0 = 0
     x4_0 = 0
     count = 1
     # Reading tolerable error
     tolerance = float(input('Enter tolerable error: '))
     print('\nCount\tx1\t\tx2\t\tx3\t\tx4\n')
     condition = True
     while condition:
         x1new = f1(x1_0,x2_0,x3_0,x4_0)
         x2new = f2(x1_0,x2_0,x3_0,x4_0)
         x3new = f3(x1_0,x2_0,x3_0,x4_0)
         x4new = f4(x1_0,x2_0,x3_0,x4_0)
         print('%d\t%0.6f\t%0.6f\t%0.6f\t%0.6f\n' %(count, x1new,x2new, x3new, x4new))
33
         # norm of solutions
         e1 = m.pow((x1new-x1_0), 2)
         e2 = m.pow((x2new-x2_0),2)
         e3 = m.pow((x3new-x3_0),2)
         e4 = m.pow((x4new-x4_0),2)
         count += 1
         x1_0 = x1new
         x2_0 = x2new
         x3_0 = x3new
         x4_0 = x4new
          calculated_tolerance = m.sqrt(e1+e2+e3+e4)
          condition = calculated_tolerance > tolerance
     print('\nSolution: x1=%0.3f, x2=%0.3f, x3 = %0.3f and x4 =%0.3f\n'% (x1new,x2new,x3new, x4new))
```

Result of the python code: -

Count	x1	x2	x 3	x4				
1	0.140000	0.670000	0.290000	-0.143333				
2	0.174889	0.527333	0.006333	-0.013667				
3	0.175644	0.582022	0.052283	-0.037589				
4	0.177822	0.570252	0.031719	-0.029046				
5	0.177839	0.574478	0.035613	-0.031016				
6	0.177992	0.573498	0.034030	-0.030338				
7	0.177987	0.573829	0.034361	-0.030500				
8	0.177998	0.573748	0.034239	-0.030447				
9	0.177997	0.573774	0.034266	-0.030460				
10	0.177998	0.573768	0.034257	-0.030456				
11	0.177998	0.573770	0.034259	-0.030457				
Solutio	Solution: x1=0.178, x2=0.574, x3 = 0.034 and x4 =-0.030							

PS D:\my files\Semester 4\EM314 Numerical Methods\Part 2- Solutions to Systems of Linear Equations>

Values converges to,

x1 = 0.177998

x2 = 0.573770

x3 = 0.034259

x4 = -0.030457

b) Gauss-Seidel method

Python code: -

```
😭 gauss.py > ...
     import math as m
     # Defining equations to be solved
    f1 = lambda x1 , x2, x3, x4
                                 : (2.1+x2-x3-x4)/15
     f2 = lambda x1 , x2, x3, x4 : (6.7-5*x1-3*x3-x4)/10
     f3 = lambda x1, x2, x3, x4 : (5.8-6*x1-7*x2+x4)/20
     f4 = lambda x1 , x2, x3, x4 : (4.3-12*x1-2*x2-3*x3)/(-30)
    # Initial setup
    x1_0 = 0
    x2_0 = 0
    x3 0 = 0
    x4 0 = 0
     count = 1
     # Reading tolerable error
     tolerance = float(input('Enter tolerable error: '))
     print('\nCount\tx1\t\tx2\t\tx3\t\tx4\n')
     condition = True
     while condition:
         x1new = f1(x1_0,x2_0,x3_0,x4_0)
         x2new = f2(x1new, x2_0, x3_0, x4_0)
         x3new = f3(x1new, x2new, x3_0, x4_0)
          x4new = f4(x1new,x2new,x3new,x4_0)
          print('%d\t%0.6f\t%0.6f\t%0.6f\t%0.6f\n' %(count, x1new,x2new, x3new, x4new))
         # norm of solutions
         e1 = m.pow((x1new-x1_0),2)
         e2 = m.pow((x2new-x2_0),2)
          e3 = m.pow((x3new-x3_0),2)
          e4 = m.pow((x4new-x4_0),2)
          count += 1
         x1_0 = x1new
          x2_0 = x2new
          x3 0 = x3new
          x4_0 = x4new
          calculated_tolerance = m.sqrt(e1+e2+e3+e4)
          condition = calculated_tolerance > tolerance
      print('\nSolution: x1=%0.3f, x2=%0.3f, x3 = %0.3f and x4 =%0.3f\n'% (x1new,x2new,x3new, x4new))
50
```

Result of the python code: -

PS D:\my files\Semester 4\EM314 Numerical Methods\Part 2- Solutions to Systems of Linear Equations> & C:/Use rs/ASUS/AppData/Local/Programs/Python/Python39/python.exe "d:/my files/Semester 4/EM314 Numerical Methods/Pa rt 2- Solutions to Systems of Linear Equations/gauss.py"
Enter tolerable error: 0.00001

Count	x1	x2	x 3	x4
1	0.140000	0.600000	0.038000	-0.043533
2	0.180369	0.572769	0.033244	-0.029677
3	0.177947	0.574021	0.034225	-0.030464
4	0.178017	0.573770	0.034252	-0.030450
5	0.177998	0.573770	0.034258	-0.030457
6	0.177998	0.573769	0.034259	-0.030457

Solution: x1=0.178, x2=0.574, x3 = 0.034 and x4 =-0.030

Values converges to,

x1 = 0.177998

x2 = 0.573769

x3 = 0.034259

x4 = -0.030457