Расчетно-графическая работа по математическому анализу Вариант 6

Егор Федоров Даниил Горляков

Университет ИТМО

Декабрь 2023

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Поток векторного поля

Задание 3. Конформные этображения.

Дано векторное поле $\mathbf{H} = (e^x; -e^y)$. План.

- ▶ Убедитесь, что поле потенциально
- Найдите уравнения векторных линий
- Изобразите векторные линии на рисунке
- Изобразите линии уровня потенциала (эквипотенциальные линии). Проиллюстрируйте ортогональность линий уровня и векторных линий.
- ightharpoons Зафиксируйте точки A и B на какой-либо векторной линии. Вычислите работу поля вдоль этой линии.

матанализу

Убедимся, что поле потенциально.

 Δ ля этого найдем rot $m{H}=\operatorname{grad}m{H} imesm{H}$.

$$\operatorname{grad} \boldsymbol{H} = \left(\frac{\partial \boldsymbol{H}}{\partial x}; \frac{\partial \boldsymbol{H}}{\partial y} \right) = \left(e^x; -e^y \right)$$

$$\operatorname{rot} \boldsymbol{H} = \operatorname{grad} \boldsymbol{H} \times \boldsymbol{H} = (e^{x}; -e^{y}; 0) \times (e^{x}; -e^{y}; 0) = \\ = (0, 0, e^{x} \cdot (-e^{y}) - (-e^{y}) \cdot e^{x}) = \mathbf{o}$$

Таким образом, так как rot $H = \mathbf{o}$, поле H -потенциально.

Проинтегрируем полученное уравнение:

Интегрируя в уме, получаем:

уравнение:

Потенциал

(1)

(2)

Для нахождения уравнений векторных линий решим дифференциальное

 $\int e^{-x} dx = \int -e^{-y} dy$

 $-e^{-x} + C = e^{-y} + C$

 $e^{-y} + e^{-x} = C$

Перенесем e^{-x} в правую часть и прологарифмируем:

 $y = \ln(C - e^{-x})$

4□▶ 4団▶ 4団▶ 4団▶ 豆 9000

Вывод по задаче

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

Поток

Дано тело T, ограниченное следующими поверхностями:

$$z + \sqrt{4 - x^2 - y^2} = 0$$
 $x^2 + z^2 = 1$ $x^2 + y + z^2 = 2$

На рисунке предоставлено сечение тела T координатной плоскостью Oyz.

- ightharpoonup Изобразите тело T на графике в пространстве.
- Вычислите поток поля

$$a = (\sin zy^2)i + \sqrt{2}xj + (\sqrt{2+y} - 3k)k$$

через боковую поверхность тела T, образованную вращением дуги AFEDC вокруг оси Oy, в направлении внешней нормали поверхности тела T.

Вывод по задаче

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного пол:

Задание 2. Поток векторного поля

Задание 3. Конформные отображения

План выполнения работы:

- 1. Рассмотреть конформное отображение. Определить особые точки отображения (при наличии) и указать их вид.
- 2. Изобразить на комплексной плоскости отображение области виртуального пространства в область физического пространства с помощью заданного преобразования.
- 3. Выделить действительную и мнимую части отображения для построения искривленной координатной сетки в физическом пространстве.
- 4. Взять обратное преобразование к заданному и проанализировать его
- 5. Расчитать профиль показателя преломления используя конформное отображение

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного поля

Задание 3. Конформные отображения.

Вывод по задаче

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Поток векторного поля

Задание 3. Конформные отображения.

Вывод

РГР по матанализу

Федоров, Горляков

Задание 1. Потенциал векторного поля

Задание 2. Поток векторного пол:

Задание 3. Конформные отображения