EDA - Part 1 - Data Exploration

A glimpse on "classic" insurance data.

This study shows different steps to analyze the data before diving into the modeling part.

```
# Usual libraries
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
##
library(rlang)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(ggplot2)
library(tidyr)
library(broom) # convert statistical object into tidy table
# Load the data
df<-read.csv("C:\\Users\\William\\Documents\\Data Science - ML\\Pricing Proje</pre>
ct GLM vs GBM\\data.csv")
# Replace the NA by 0 for severity
df <- df %>% mutate(ClaimAmount = ifelse(is.na(ClaimAmount), 0, ClaimAmount))
dim(df)
## [1] 413960
                 11
glimpse(df)
## Rows: 413,960
## Columns: 11
## $ PolicyID
                <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17,...
## $ ClaimNb
                0, 0...
```

```
## $ Exposure <dbl> 0.09, 0.84, 0.52, 0.45, 0.15, 0.75, 0.81, 0.05, 0.76,
0.34...
## $ Power
               <chr> "g", "g", "f", "f", "g", "g", "d", "d", "d", "i", "f",
"f"...
## $ CarAge
               <int> 0, 0, 2, 2, 0, 0, 1, 0, 9, 0, 2, 2, 0, 0, 0, 0, 0, 0,
0, 0...
              <int> 46, 46, 38, 38, 41, 41, 27, 27, 23, 44, 32, 32, 33, 33
## $ DriverAge
, 33...
## $ Brand
               <chr> "Japanese (except Nissan) or Korean", "Japanese (excep
t Ni...
               <chr> "Diesel", "Diesel", "Regular", "Regular", "Diesel", "D
## $ Gas
iese…
               <chr> "Aquitaine", "Aquitaine", "Nord-Pas-de-Calais", "Nord-
## $ Region
Pas-...
## $ Density
             <int> 76, 76, 3003, 3003, 60, 60, 695, 695, 7887, 27000, 23,
0, 0...
```

Basic Charts

A bar chart showing the claims count split:

```
couleur <- "blue"
g <- ggplot(df, aes(ClaimNb )) + theme_bw() +
geom_bar(aes(weight = Exposure), col = "black",
fill = couleur) +
labs(y = "Abs freq (in exposure)") +
ggtitle("Claims Number split")
g</pre>
```


Claims severity density, with its right-skewed shate distribution. Gamma or Negative log-Normal are often the most usual candidates to model the severity of a claim.

```
g_dens <- df%>% filter(ClaimAmount %in% c(1:10000)) %>% ggplot( aes(x = Claim
Amount)) +
geom_density(data = df%>% filter(ClaimAmount %in% c(1:10000)), col = 'black',
fill = couleur, alpha = 0.8) +
ggtitle("Car Insurance Data - Claim Severity")
g_dens
```

Car Insurance Data - Claim Severity

We can visualize the age distribution with a histogram:

```
driver.age_hist <-ggplot(df, aes(x=DriverAge)) + theme_bw() +
geom_histogram(binwidth = 1, data=df, col = "black", fill = couleur, alpha =
0.5) +
labs(y = "Count") +
ggtitle("Driver age distribution")
driver.age_hist</pre>
```


Basic Interpretation

Null model

We start with the model with no parameters, only the intercept.

```
# Training a model for claims frequency #
# Split train / test
# index <- createDataPartition(df$ClaimNb, p = 0.7, list = FALSE)</pre>
# head(index)
# train <- df[index,]</pre>
# test <- df[-index,]</pre>
set.seed(564738291)
u \leftarrow runif(dim(df)[1], min = 0, max = 1)
df$train <- u < 0.7
df$test <- !(df$train)</pre>
#mis.vars <- c(mis.vars, "train", "test")</pre>
# Step 1:
# Null Model
null_model <- glm(formula = ClaimNb ~ 1,</pre>
```

```
family = poisson(link = "log"),
                  data = df,
                  subset = train, offset = log(Exposure))
summary(null_model)
##
## Call:
## glm(formula = ClaimNb ~ 1, family = poisson(link = "log"), data = df,
       subset = train, offset = log(Exposure))
##
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.572821 0.008979 -286.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 80222 on 289487 degrees of freedom
## Residual deviance: 80222 on 289487 degrees of freedom
## AIC: 103429
##
## Number of Fisher Scoring iterations: 6
coefficients(null_model)
## (Intercept)
    -2.572821
##
# Verification if the exp of the intercept is equal to the
# empirical frequency (mean)
exp(null model$coefficients) #ok mean of the number of claims per year.
## (Intercept)
## 0.07631992
emp_freq <- sum(df$ClaimNb)/sum(df$Exposure)</pre>
predict(null_model, newdata=data.frame(Exposure=1))
##
## -2.572821
predict(null model,type="response", newdata=data.frame(Exposure=1)) # takes t
he exponential of the coefficient
##
## 0.07631992
```

We verify that the null model is only composed by the intercept which is equal to the empirical frequency shown by the dataset.

Coefficient interpretations

```
# Step 2:
# Exploration variable per variable
with(df,table(Gas, ClaimNb)) # we don't have the same exposition
##
            ClaimNb
## Gas
                         1
                                2
                                       3
                                              4
                  a
##
     Diesel 197904
                      7655
                              738
                                      45
                                              8
     Regular 199875
                      6978
                              714
                                      39
##
# the exposure avoids to make easy conclusion
# With gas
m1 <- glm(formula = ClaimNb ~ Gas,
          family = poisson(link = "log"),
          data = df,
          subset = train, offset = log(Exposure))
summary(m1)
##
## Call:
## glm(formula = ClaimNb ~ Gas, family = poisson(link = "log"),
##
       data = df, subset = train, offset = log(Exposure))
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.50360 0.01243 -201.398 < 2e-16 ***
                                    -7.768 7.97e-15 ***
## GasRegular -0.13963
                           0.01798
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
       Null deviance: 80222 on 289487 degrees of freedom
##
## Residual deviance: 80162 on 289486 degrees of freedom
## AIC: 103370
##
## Number of Fisher Scoring iterations: 6
```

Interpretation: The variable "regular" is significantly different from "diesel". We should be - 14% less high in term of claim frequency for the regular car.

```
## (Intercept)
## -2.503604
exp(m1$coefficients[1])
## (Intercept)
## 0.08178971
# Regular level coefficent
m1$coefficients[2]
## GasRegular
## -0.139632
exp(m1$coefficients[2])
## GasRegular
## 0.8696783
# We can verify the results:
# A frequency of 7%,
print(0.08178971 * 0.8696783)
## [1] 0.07113074
# Which represent ~13% less than the average claim frequency for Diesel drive
r, everything else constant.
print((0.07113074-0.08178971)/0.08178971)
## [1] -0.1303217
```

We find the results given by the prediction.

AIC and Deviance graph

A representation to get a feel of what would be the most "interesting" predictors in terms of AIC and Deviance reduction:

```
covariates
                AIC Deviance
 1
           103428.7 80222.18
 Power
           103414.5 80185.95
 CarAge
           103344.6 80136.04
DriverAge 103086.7 79878.10
 Brand
           103346.0 80127.47
 Gas
           103370.3 80161.77
           103171.5 79946.95
Region
Density
           103269.6 80060.99
#clipr::write_clip(result_grid)
# Graph AIC & Deviance
scatter <- ggplot(result_grid, aes(x=AIC, y=Deviance)) +</pre>
  geom_point() + # Show dots
  geom_text(
    label=result grid$covariates,
    nudge_x = 0.25, nudge_y = 0.25,
    check overlap = T
  ) +
  labs(
   title = "AIC by variable")
# Final result
print(scatter)
```


Driver age and Region are two strong candidates to be included in a claims frequency model. Power looks to have less impact.

Exploration of Region

It appears that some Region can be grouped together. We will keep that observation in mind when training the model.

```
# Another variable: Region
with(df, table(Region, ClaimNb))
##
                        ClaimNb
## Region
                              0
                                      1
                                             2
                                                     3
                                                            4
                                                    12
                                                            0
##
     Aquitaine
                          30344
                                    919
                                           124
##
     Basse-Normandie
                          10464
                                    406
                                            46
                                                     0
                                                            0
                                                     9
                                                            0
##
     Bretagne
                          40329
                                   1718
                                           144
                                                     6
                                                            4
##
     Centre
                                   6053
                                           412
                         154339
##
     Haute-Normandie
                                    198
                                            22
                                                     0
                                                            0
                           8575
##
     Ile-de-France
                          67398
                                   2205
                                           358
                                                    24
                                                            4
##
     Limousin
                           4383
                                    172
                                            22
                                                     3
                                                            0
##
     Nord-Pas-de-Calais 26413
                                    806
                                           122
                                                    12
                                                            4
                                                            0
##
     Pays-de-la-Loire
                          37253
                                   1422
                                           148
                                                     6
     Poitou-Charentes
                                                            0
##
                          18281
                                    734
                                            54
                                                    12
m2 <- glm(formula = ClaimNb ~ Region,
          family = poisson(link = "log"),
          data = df,
```

```
subset = train, offset = log(Exposure))
summary(m2)
##
## Call:
## glm(formula = ClaimNb ~ Region, family = poisson(link = "log"),
##
       data = df, subset = train, offset = log(Exposure))
##
## Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
##
                                       0.03488 -71.569 < 2e-16 ***
## (Intercept)
                            -2.49619
## RegionBasse-Normandie
                           -0.08024
                                       0.06351 -1.263 0.20643
## RegionBretagne
                           -0.11403
                                       0.04378 -2.605 0.00920 **
## RegionCentre
                           -0.21578
                                       0.03776 -5.715 1.10e-08 ***
## RegionHaute-Normandie
                           -0.09080 0.08508 -1.067 0.28590
                            0.18308
## RegionIle-de-France
                                       0.04113 4.451 8.54e-06 ***
## RegionLimousin
                            0.13843
                                       0.08641 1.602 0.10916
## RegionNord-Pas-de-Calais 0.13750
                                                 2.740 0.00615 **
                                       0.05018
## RegionPays-de-la-Loire -0.05041
                                       0.04521 -1.115 0.26489
## RegionPoitou-Charentes -0.04529
                                       0.05329 -0.850 0.39543
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 80222 on 289487
                                       degrees of freedom
## Residual deviance: 79947 on 289478 degrees of freedom
## AIC: 103172
##
## Number of Fisher Scoring iterations: 6
# Some region are not significant
# Isolate the region's name
region name <- df %>% group by(Region) %>% summarise(count=n())
# Run a prediction for each of the Region
# We retrieve 10 avg frequency
y=predict(m2, newdata=
            data.frame(Region=region_name$Region,
                       Exposure=1), type="response",
          se.fit =TRUE) # we add the CI
# Predictions and CI
pred_values <- y$fit</pre>
lower CI <- y$fit-y$se.fit</pre>
upper_CI <- y$fit+y$se.fit</pre>
# Definition of the region for each prediction
vec_Region <-c("Centre", "Aquitaine", "Basse-Normandie", "Bretagne", "Haute-N</pre>
```

```
ormandie", "Ile-de-France", "Limousin", "Nord-Pas-de-Calais", "Pays-de-la-Loi
re", "Poitou-Charentes")
# Create the data frame
predicted_df <- data.frame(predicted_value=pred_values, Region = vec_Region,</pre>
upper = upper_CI, lower = lower_CI)
#print(predicted_df)
# Load the ggplot2 package
library(ggplot2)
# Create a bar plot
ggplot(predicted_df, aes(x = Region, y = predicted_value)) +
  geom_bar(stat = "identity",fill = "skyblue", color = "black") +
   geom_errorbar(aes(ymin = lower, ymax = upper),
                width = 0.2, color = "red") +
  labs(title = "Claims frequency by Region", x = "Region", y = "Predicted val
ue") +
 theme_minimal() + theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


Exploration of Driver's age

```
library(ggplot2)
library(dplyr)
```

```
# Creation of the data frame
graph data <- df %>% group by(DriverAge) %>% summarise(Sum Expo = sum(Exposur
e),
Number of Claims = sum(ClaimNb),
Emp_freq = sum(ClaimNb)/sum(Exposure))
# Bar plot overlapping with bar chart
# A few constants
freqColor <- "red"</pre>
expoColor \leftarrow rgb(0.2, 0.6, 0.9, 1)
# For the different scales,
# Set the following two values to values close to the limits of the data
# you can play around with these to adjust the positions of the graphs;
# the axes will still be correct)
ylim.prim <- c(0, 1) # for claim frequency
ylim.sec <- c(0, 7500) # for Exposure --> need to go way above the max to let
# the data appearing in the chart
# For explanation:
# https://stackoverflow.com/questions/32505298/explain-ggplot2-warning-remove
d-k-rows-containing-missing-values
# The following makes the necessary calculations based on these limits,
# and makes the plot itself:
b <- diff(ylim.prim)/diff(ylim.sec)</pre>
a <- ylim.prim[1] - b*ylim.sec[1]</pre>
# Building the graph
graph freq <- ggplot(graph data, aes(x=DriverAge, Emp freq)) +</pre>
geom_line( aes(y=Emp_freq), size=1, color=freqColor) +
geom bar( aes(y=a+Sum Expo*b), stat="identity", size=.1, fill=expoColor, colo
r="black", alpha=.4) +
scale_y_continuous(
# Features of the first axis
name = "Empirical Frequency", limits = c(0, 1.0),
# Add a second axis and specify its features
sec.axis = sec_axis(~ (. - a)/b, name = "Exposure")) +
#theme ipsum() +
theme(
axis.title.y = element text(color = freqColor, size = 13),
axis.title.y.right = element text(color = expoColor, size = 13)
) +
ggtitle("Empirical Claims Frequency by Driver Age")
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last lifecycle warnings()` to see where this warning was
## generated.
graph freq
```


The frequency decreases as the driver is more experienced, with a noticeable drop between 18 and 25 years old. The rate becomes more volatile after 75 years old.