Calibração de sensores

Um estudante de engenharia projetou e construiu uma planta que simula parte de um movimento de um helicóptero. Basicamente, em uma ponta da haste tem-se hélices acionadas por motores *brushless* e a outra parte da haste está fixada em um potenciômetro, que é utilizado para fazer medições do ângulo dessa haste. O estudante utilizou o microcontrolador Arduino Uno para fazer a interface do sistema físico com o computador e fazer o tratamento dos sinais a partir de filtros digitais.

A partir de experimentos, o aluno levantou vários pontos de ângulo, tensão e leitura serial para fazer a calibração do sensor. A partir desses dados, a seguinte tabela foi montada:

Ângulo (°)	Tensão (v)
90	4.11
84	4.01
78	3.88
72	3.78
66	3.69
60	3.60
54	3.47
48	3.36
42	3.25
36	3.14
30	3.02
24	2.90
18	2.78
12	2.65
6	2.52
0	2.41

Diante disso, obtenha a equação que representa a calibração do sensor, ou seja, Tensão versus Ângulo. Considerando que o sensor em questão gerou na saída uma tensão de 3.19V, determine uma estimativa para a posição angular correspondente. O que se pode concluir sobre a incerteza da estimativa? Além disso, calcule a sensibilidade e a linearidade do sensor, sendo esta última fornecida em porcentagem em relação ao alcance do instrumento.