Olivier Fercoq Bruno Costacèque

Novembre 2022

1 Exercises

Exercise 1. (Banach-Picard's fixed point theorem)

Let E be a complete metric space and $f: E \to E$ a contracting mapping, that is:

$$\exists \rho \in [0,1[, \ \forall x,y \in E, \ \mathrm{d}\big(f(x),f(y)\big) \leq \rho \mathrm{d}(x,y).$$

Prove that f admits **one unique** fixed point x^* , and that the sequence defined by:

$$\begin{cases} x_0 \in E \\ x_{n+1} = f(x_n), \ \forall n \in \mathbb{N}. \end{cases}$$

converges to x^* with rate of convergence ρ^n , i.e.:

$$\forall n \in \mathbb{N}, \ d(x_n, x^*) < \rho^n d(x_0, x^*).$$

Exercise 2. (Gradient calculus)

1. Calculate the gradient of the following functions. A, M and Q are fixed matrices, and \mathbf{b} is a fixed vector. More precisely, M belongs to $\mathcal{M}_{m,n}(\mathbb{R})$ and Q to $\mathcal{M}_{p,n}(\mathbb{R})$.

(a)
$$f_1 : \mathbb{R}^n \to \mathbb{R}$$
$$\mathbf{x} \mapsto \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||_2^2$$

(b)
$$f_2 : \mathbb{R}^n \to \mathbb{R}$$

$$\mathbf{x} \mapsto \sum_{i=1}^n \log(1 + \exp(x_i))$$

(c)
$$f_3 : \mathcal{M}_{m,p}(\mathbb{R}) \to \mathbb{R}$$

$$P \mapsto \frac{1}{2} ||M - PQ||_F^2$$

2. Let g_1, g_2 and g_3 be functions such that $g_1: \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}, g_2: \mathbb{R}^{n_2} \to \mathbb{R}^{n_3}$ and $g_3: \mathbb{R}^{n_3} \to \mathbb{R}$. Let:

$$f_4 = g_3 \circ g_2 \circ g_1.$$

Compute the gradient of f_4 using the Jacobian matrices of g_i for $i \in [1,3]$.

¹A point such that $f(x^*) = x^*$.

- 3. Suppose that computing one element of the Jacobian matrices costs C_J and that multiplying two numbers costs C_M . How much does it cost to compute $\nabla f_4(x)$?
 - **Exercise 3.** Let f be a \mathcal{C}^2 function from \mathbb{R}^d to \mathbb{R} . Assume there exist $\mu, L \in \mathbb{R}_+$ such that

$$\mu I_d \preceq \nabla^2 f(\mathbf{x}) \preceq L I_d$$
.

- 1. Let $M \in \mathcal{S}(\mathbb{R}^d)$ be a real symmetric matrix satisfying the previous assumption and note $\|\cdot\|_2$ its operator matrix with respect to the Euclidean norm on \mathbb{R}^d .
 - (a) Let λ_1 be the greatest eigenvalue of M. Show that

$$||M||_2 = |\lambda_1|.$$

(b) Prove that:

$$\mu \leq ||M||_2 \leq L$$
.

- 2. Show that the fixed point operator $F: \mathbf{x} \mapsto \mathbf{x} \gamma \nabla f(\mathbf{x})$ is contractant for every γ in]0, 2/L[.
- 3. Show that the gradient method converges linearly 3 to some x^{*} .
- 4. How many iterations are necessary to ensure that $||x_k x^*|| \le \varepsilon$?

$$\exists \rho \in]0,1[, \lim_{n \to \infty} (d(x_{n+1}, x^*))^{\frac{1}{n}} \le \rho.$$

²Where \leq denotes the partial order known as *Loewner order*: if M, N are positive semi-definite matrices, $M \leq N$ if N-M is positive semi-definite.

³That is:

Exercise 1 • Assume first we have proved that the sequence $(x_n)_n$ converges to some limit x^* . Then by continuity of f (which is ρ -Lipschitz by assumption), we have:

$$f(x^*) = f\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x^*,$$

and so x^* would be a fixed point. It is unique since if there were another one, say y^* , we would have:

$$d(x^*, y^*) = d(f(x^*), f(y^*)) \le \rho d(x^*, y^*) < d(x^*, y^*),$$

a contradiction.

• Now let us prove that $(x_n)_n$ indeed converges. So far we have no real clue about the value of its limit. But we know E is a complete metric space, and so Cauchy sequences always converge in E to some limit⁴. So we have to prove that (x_n) is a Cauchy sequence. Let $n, m \in \mathbb{N}$. We have:

$$d(x_{n+m}, x_n) = d(f^{\circ n}(x_m), f^{\circ n}(x_0)) \le \rho^n d(x_m, x_0).$$

Letting n go to infinity, we get that $(x_n)_n$ is indeed a Cauchy sequence in the complete space E. Using that x^* is a fixed point of f, the same reasoning yields:

$$\forall n \in \mathbb{N}, \ d(x^*, x_n) < \rho^n d(x^*, x_0).$$

- Remarque 1. \blacktriangleright The proof of this theorem is very simple in comparison to its usefulness. For example it is the main argument behind the proof of Cauchy-Lipschitz, another powerful theorem which ensures the existence and the uniqueness of a solution for a very large class of ODEs⁵.
 - ▶ All the hypotheses of the statement of this theorem are important. For example, if ρ is not strictly lesser than 1, troubles may appear. In particular, it is not enough to ask that

$$\forall x, y \in E, \ d(f(x), f(y)) < d(x, y),$$

unless E is compact (and metric, so complete). It is a good exercise to try and prove this result.

Exercise 2 1. (a) The function f_1 can be decomposed as $f_1 = N \circ \varphi$, where $N(\mathbf{x}) = \|\mathbf{x}\|_2^2/2$ et $\varphi(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$. The latter is a linear map, so its Jacobian matrix is A since:

$$\varphi(\mathbf{x} + \mathbf{h}) = A(\mathbf{x} + \mathbf{h}) = \varphi(\mathbf{x}) + A\mathbf{h}.$$

As for the Euclidean norm function, its differential can be computed directly too:

$$N(\mathbf{x} + \mathbf{h}) = N(\mathbf{x}) + \langle \mathbf{x}, \mathbf{h} \rangle + N(\mathbf{h}),$$

and so $dN(\mathbf{x}).\mathbf{h} = \langle \mathbf{x}, \mathbf{h} \rangle$, thus its gradient is just $2\mathbf{x}$. Thus the chain rule gives:

$$df_1(\mathbf{x}).\mathbf{h} = dN(A\mathbf{x} + \mathbf{b}).(A\mathbf{h}) = \langle A\mathbf{x} + \mathbf{b}, A\mathbf{h} \rangle = \langle A^{\top}(A\mathbf{x} + \mathbf{b}), \mathbf{h} \rangle,$$

which implies that:

$$\nabla f_1(\mathbf{x}) = A^{\top} (A\mathbf{x} + \mathbf{b}).$$

⁴The original purpose of Cauchy sequences and complete spaces is precisely to show that a given sequence converges, even without knowing a candidate for its limit! It is extremely useful to prove very general and powerful existence theorems, as you will soon see.

⁵Unfortunately this kind of result does not exist for PDEs, which is a huge source of troubles...

(b) The easiest way to explicit this gradient is to compute the partial derivatives of f_2 . We find:

$$\forall i \in \mathbb{R}^n, \forall \mathbf{x} \in \mathbb{R}^n, \ \partial_i f_2(\mathbf{x}) = \frac{e^{x_i}}{1 + e^{x_i}} = \frac{1}{1 + e^{-x_i}} =: \sigma(x_i),$$

so the *i*-th partial derivative of f_2 is the **logistic function**, which is often used as an activation function for neural networks, especially in classification. Thus the gradient is:

$$\nabla f_2(\mathbf{x}) = \begin{pmatrix} \sigma(x_1) \\ \vdots \\ \sigma(x_n) \end{pmatrix}.$$

(c) Formally speaking, this computation looks exactly the same as in the first question, but this time, the argument P is on the left of the parameter matrix Q (while the argument \mathbf{x} was on the right of the parameter matrix A). This time, we will develop the squared norm of M - (P + H)Q divided by two to find directly the differential of f_3 at P taken in $H \in \mathcal{M}_{m,p}(\mathbb{R})$:

$$f_3(P+H) = \frac{1}{2} ||M - PQ||_F^2 - \langle M - PQ, HQ \rangle_F + \frac{1}{2} ||HQ||_F^2,$$

and so

$$df_3(P).H = -\langle M - PQ, HQ \rangle_F = -\text{Tr}((M - PQ)Q^\top H^\top) = \langle (M - PQ)Q^\top, H \rangle_F.$$

Therefore, we get the following gradient (don't forget the minus sign!):

$$\nabla f_3(\mathbf{x}) = -(M - PQ)Q^{\top}.$$

Remarque 2. When dealing with this kind of tedious (but important) computation, it is essential to do as many sanity-checks as possible. Here, you could verify that your result is well-defined by looking at the dimensions of the matrices involved: M - PQ belongs to $\mathcal{M}_{m,n}(\mathbb{R})$ and Q^{\top} belongs to $\mathcal{M}_{n,p}(\mathbb{R})$, so our gradient lives in $\mathcal{M}_{m,p}(\mathbb{R})$, which is consistent with the definition of f_3 . Plus its expression bears a lot of similarities with the gradient of f_1 !

2. Applying the chain rule two times, first to $g_3 \circ g_2$ and g_1 , and then to g_3 and g_2 , we find:

$$\forall \mathbf{x}, \mathbf{h} \in \mathbb{R}^{n_1}, \ df_4(\mathbf{x}) = d(g_3 \circ g_2)(g_1(\mathbf{x})). (dg_1(\mathbf{x}).\mathbf{h})$$

$$= dg_3(g_2(g_1(\mathbf{x}))). (dg_2(g_1(\mathbf{x})).dg_1(\mathbf{x}).\mathbf{h})$$

$$= dg_3((g_2 \circ g_1)(\mathbf{x})). (dg_2(g_1(\mathbf{x})).dg_1(\mathbf{x}).\mathbf{h})$$

$$= dg_3((g_2 \circ g_1)(\mathbf{x})). (dg_2(g_1(\mathbf{x})) \circ dg_1(\mathbf{x})).\mathbf{h}$$

$$= \langle Jg_1(\mathbf{x})^{\top} Jg_2(g_1(\mathbf{x}))^{\top} \nabla g_3((g_2 \circ g_1)(\mathbf{x})), \mathbf{h} \rangle,$$

and this horrible expressions reads as 'the differential of g_3 computed at point $(g_2 \circ g_1)(\mathbf{x})$ taken⁶ in the differential of g_2 at $g_1(\mathbf{x})$ composed with the differential of g_1 at \mathbf{x} in \mathbf{h} '. Notice the different organization of the parentheses between the third and the fourth lines! Finally we find:

$$\nabla f_4(\mathbf{x}) = Jg_1(\mathbf{x})^{\top} Jg_2(g_1(\mathbf{x}))^{\top} \nabla g_3((g_2 \circ g_1)(\mathbf{x})).$$

⁶As a linear mapping.

3. This question looks simple but there is a huge subtlety here. First, let's compute the cost $C_{m,n,p}$ of multiplying two matrices $A \in \mathcal{M}_{m,n}(\mathbb{R})$ and $B \in \mathcal{M}_{n,p}(\mathbb{R})$. The (i,j)-th coefficient of AB is the scalar product of the i-th line of A and the j-th column of B, so it requires mnp operations to compute all the coefficients AB and:

$$C_{m,n,p} = mnpC_M$$
.

Now, if we compute the gradient of f_4 by multiplying matrices from left to right in the formula of the previous question, we must compute the product of two matrices, then multiply the result with a vector, so the multiplication cost is $C_{n_1,n_2,n_3} + C_{n_1,n_3,1} = (n_1n_2n_3 + n_1n_3)C_M$. But if we multiply from right to left, we **always** manipulate vectors and so we find instead $C_{n_2,n_3,1} + C_{n_1,n_2,1} = (n_2n_3 + n_1n_2)C_M$. This approach is much more efficient than the 'natural' way of multiplying matrices! It accounts a lot for the success of modern deep learning algorithms, even though it looks terribly simple!

Finally, using the backpropagation approach rather than the naive one, we find a total cost equal to $(n_1n_2 + n_2n_3 + n_3)C_J + (n_1n_2 + n_2n_3)C_M$.

Remarque 3. f_1 is useful for least squares and regression problems while f_2 is useful for logistic regression and binary classification, and f_3 is useful for nonnegative matrix factorization.

Exercise 3 1. (a) Since M is a real symmetric matrix, it is diagonalizable in an orthonormal basis:

$$\exists P \in \mathbf{O}(d), \ M = P \operatorname{diag}(\lambda_1, \dots, \lambda_d) P^{\top} =: P D P^{\top}.$$

Let \mathbf{x} a unit norm vector. We have:

$$||M\mathbf{x}||^2 = ||PDP^{\top}\mathbf{x}||^2 = ||DP^{\top}\mathbf{x}||^2 = \sum_{i=1} \lambda_i^2 x_i \le \lambda_1^2 ||\mathbf{x}||^2 = \lambda_1^2.$$

Thus $||M||_2 \leq |\lambda_1||$. The equality case is attained by taking **x** the unit norm eigenvector associated with λ_1 .

(b) Since the eigenvalues of $M - \mu I_d$ are the eigenvalues of M minus μ , and since the eigenvalues of a semi-definite positive matrix are positive, we have that:

$$\operatorname{Sp}(M - \mu I_d) \subseteq \mathbb{R}_+.$$

In particular, all the eigenvalues of M are greater⁷ than $\mu \geq 0$, and thus:

$$\mu \le \lambda_1 = |\lambda_1| = ||M||_2.$$

The same line of reasoning yields $||M||_2 \leq L$, thus proving the desired result.

2. The gradient of $\mathbf{x} \mapsto \mathbf{x} - \gamma \nabla f(\mathbf{x})$ is $F : \mathbf{x} \mapsto I_d - \gamma \nabla^2 f(\mathbf{x})$. We must prove that its operator norm is strictly less than 1 for all \mathbf{x} . Since:

$$\forall \mathbf{x} \in \mathbb{R}^d, \operatorname{Sp}(F(\mathbf{x})) = 1 - \gamma \operatorname{Sp}(F(\mathbf{x})),$$

we know that the greatest eigenvalue λ_1 of $F(\mathbf{x})$ belongs to $[1 - \gamma L, 1 - \gamma \mu]$ by assumption. As a result:

$$\forall \mathbf{x} \in \mathbb{R}^d, -1 < 1 - \gamma L \le ||F(\mathbf{x})||_2 \le 1 - \gamma \mu < 1.$$

⁷ And so, the hypothesis on f implies that $\nabla^2 f(\mathbf{x})$ is semi-definite positive for all \mathbf{x} , i.e. f is convex on \mathbb{R}^d .

In particular⁸

$$\rho := \sup_{\mathbf{x} \in \mathbb{R}^d} ||F(\mathbf{x})||_2 < 1,$$

and so $\mathbf{x} \mapsto \mathbf{x} - \gamma \nabla f(\mathbf{x})$ is contractant.

- 3. It suffices to apply the Banach-Picard's fixed point theorem to the contracting map $\mathbf{x} \mapsto \mathbf{x} \gamma \nabla f(\mathbf{x})$.
- 4. Thanks to the first exercise, we have the estimate:

$$\forall n \in \mathbb{N}, \|\mathbf{x}_n - \mathbf{x}^*\| \le \rho^n \|\mathbf{x}_0 - \mathbf{x}^*\|,$$

where $(x_n)_n$ is defined by the gradient method with starting point \mathbf{x}_0 . Since:

$$\rho^{n} \|\mathbf{x}_{0} - \mathbf{x}^{*}\| \leq \varepsilon \iff n \log(\rho) + \log(|\mathbf{x}_{0} - \mathbf{x}^{*}\|) \leq \log(\varepsilon)$$
$$\iff n \geq \frac{1}{\log(\rho)} \left[\log(\varepsilon) - \log(\|\mathbf{x}_{0} - \mathbf{x}^{*}\|)\right] =: \eta$$

we need at least $\lceil \eta \rceil = \lfloor \eta \rfloor + 1$ iterations before we get an estimate of \mathbf{x}^* with an error less than ε . Of course this result is not very useful in practice since we do not know \mathbf{x}^* . But it underlies the importance of choosing our initial guess \mathbf{x}_0 as closely as possible from \mathbf{x}^* .

⁸The terms $1-\gamma L$ and $1-\gamma \mu$ are essential, as strict inequalities become large inequalities when taking the supremum, and so we would have lost the very contraction property we have been trying to prove! For example, $1-n^{-1}<1$, but $\sup_{n\geq 0}(1-n^{-1})=1...$

Olivier Fercoq Bruno Costacèque

Novembre 2022

1 Exercises

Exercise 1. (Proximal operator) Let $f: \mathbb{R}^n \to \mathbb{R} \cup +\infty$ be a convex lower-semicontinuous function such that $\text{dom } f \neq \emptyset$.

- 1. Recall the definition of the domain of a convex function.
- 2. It is possible to prove (but we do not ask you to do it) that $\exists \mathbf{x}_0 \in \text{dom} f$ such that $\partial f(\mathbf{x}_0) \neq \emptyset$. Using this information, show that there exists $\alpha \in \mathbb{R}$ and $\mathbf{w} \in \mathbb{R}^n$ such that for all \mathbf{x} we have $f(\mathbf{x}) \geq \alpha + \langle \mathbf{w}, \mathbf{x} \rangle$.
- 3. Let us fix $\mathbf{x} \in \mathbb{R}^n$. Let us define $g: \mathbf{y} \mapsto f(\mathbf{y}) + \frac{1}{2} ||\mathbf{x} \mathbf{y}||^2$. Show that g is strongly convex.
- 4. Show that $\lim_{\|\mathbf{y}\| \to \infty} g(\mathbf{y}) = +\infty$.
- 5. Show that g has a minimizer and that it is unique. We will denote this minimizer as $\operatorname{prox}_f(\mathbf{x})$. The function $\operatorname{prox}_f: \mathbb{R}^n \to \mathbb{R}^n$ is called the *proximal operator* of f.

Exercise 2. Let us denote:

$$\operatorname{prox}_g(\mathbf{y}) = \operatorname*{arg\ min}_{\mathbf{x} \in \mathcal{X}} \left\{ g(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 \right\}$$

the proximal operator of g at \mathbf{y} . Fix $\gamma > 0$. Show that if f and g are convex, and f differentiable, then the fixed points of the nonlinear equation

$$\mathbf{x} = \operatorname{prox}_{\gamma g} (\mathbf{x} - \gamma \nabla f(\mathbf{x})) \tag{1}$$

are the minimizers of the function F = f + g.

Exercise 3. (Taylor-Lagrange inequality) The goal of this exercise is to prove Taylor-Lagrange inequality. This is a fundamental inequality for the study of gradient descent and related methods.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function whose gradient is L-Lipschitz i.e. $\|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\| \le L\|\mathbf{y} - \mathbf{x}\|$ for all \mathbf{x}, \mathbf{y} .

- 1. Prove that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\langle \nabla f(\mathbf{y}) \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle \leq L \|\mathbf{y} \mathbf{x}\|^2$.
- 2. Set $\varphi(t) = f(\mathbf{x} + t(\mathbf{y} \mathbf{x}))$ for all $t \in [0, 1]$. Prove that:

$$f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle = \varphi(1) - \varphi(0) - \varphi'(0).$$

3. Deduce that:

$$f(\mathbf{y}) - f(\mathbf{x}) - \left\langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \right\rangle = \int_0^1 \left\langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \right\rangle dt$$

4. Using the first question, conclude that

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \left\langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \right\rangle + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

Exercise 1 1. The domain of the function f is the set of points $\mathbf{x} \in \mathbb{R}^n$ such that $f(\mathbf{x}) \neq +\infty$.

2. By definition of the sub-differential, we have for $\mathbf{q}_0 \in \partial f(\mathbf{x}_0)$:

$$\forall \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) \ge f(\mathbf{x}_0) + \langle \mathbf{q}_0, \mathbf{x} - \mathbf{x}_0 \rangle = \left[f(\mathbf{x}_0) - \langle \mathbf{q}_0, \mathbf{x}_0 \rangle \right] + \langle \mathbf{q}_0, \mathbf{x} \rangle.$$

Setting $\alpha := f(\mathbf{x}_0) - \langle \mathbf{q}_0, \mathbf{x}_0 \rangle$ and $\mathbf{w} = \mathbf{q}_0$, we obtain the desired result.

3. By definition, a function h is strongly convex if $\mathbf{y} \mapsto h(\mathbf{y}) - \frac{\mu}{2} ||\mathbf{y}||^2$ is convex for some $\mu \geq 0$. Since

$$g(\mathbf{y}) = \left[f(\mathbf{y}) - \langle \mathbf{x}, \mathbf{y} \rangle + \frac{1}{2} ||\mathbf{x}||^2 \right] + \frac{1}{2} ||\mathbf{y}||^2,$$

and the function f is convex, as well as the affine function $\mathbf{y} \mapsto -\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{x}\|^2/2$, it is clear that g is 1-strongly convex.

4. By definition of g, and by using question 2, we have:

$$g(\mathbf{y}) \ge \alpha + \langle \mathbf{w}, \mathbf{y} \rangle + \frac{1}{2} ||\mathbf{x} - \mathbf{y}||^2.$$

This inequality proves that g converges to $+\infty$ when ||y|| goes to infinity (since $\langle \mathbf{w}, \mathbf{y} \rangle \ge -||\mathbf{w}|| ||\mathbf{y}||$ by Cauchy-Schwarz inequality).

- 5. (Existence) The existence of a minimizer \mathbf{x}^* of the l.s.c. and coercive function g is a consequence of the results seen during the lecture.
 - (Unicity) We will prove a general and important result which is useful to keep in mind: a strongly convex function h admits at most one minimizer. Assume the converse. There exist distinct $\mathbf{x}^*, \mathbf{x}^{**}$ such that:

$$h(\mathbf{x}^*) = h(\mathbf{x}^{**}) = \min_{\mathbf{x} \in \mathcal{X}} h(\mathbf{x}).$$

Let $t \in]0,1[$ (any t in this interval will do, you can assume t=1/2 will do if you wish¹). Since h is μ -strongly convex for some $\mu > 0$, we have by the very definition of the convexity of $\mathbf{x} \mapsto h(\mathbf{x}) - \mu ||\mathbf{x}||^2/2$:

$$h(t\mathbf{x}^* + (1-t)\mathbf{x}^{**}) \le th(\mathbf{x}^*) + (1-t)h(\mathbf{x}^{**}) - \frac{\mu}{2} \Big[\|t\mathbf{x}^* + (1-t)\mathbf{x}^{**}\|^2 - t\|\mathbf{x}^*\|^2 - (1-t)\|\mathbf{x}^{**}\|^2 \Big]$$

$$= h(\mathbf{x}^*) - \frac{\mu}{2} \Big[\|t\mathbf{x}^* + (1-t)\mathbf{x}^{**}\|^2 - t\|\mathbf{x}^*\|^2 - (1-t)\|\mathbf{x}^{**}\|^2 \Big]$$

$$< h(\mathbf{x}^*)$$

$$\le h(t\mathbf{x}^*) + (1-t)\mathbf{x}^{**},$$

since the term within the brackets is positive by (strict) convexity of the squared Euclidean norm function. The last inequality stems from the fact \mathbf{x}^{**} is a minimizer of h. But it is absurd! So h can only have one minimizer at most. This result proves that g admits exactly one minimizer.

This minimizer depends on \mathbf{x} and since it is unique, it defines a function of \mathbf{x} : the proximal operator of f at point \mathbf{x} .

¹But it's more annoying to write!

Exercise 2 By assumption, $\mathbf{x} = \text{prox}_{\gamma q}(\mathbf{x} - \gamma \nabla f(\mathbf{x}))$, so it minimizes the function:

$$\varphi: \mathbf{y} \mapsto \gamma g(\mathbf{y}) + \frac{1}{2} \left\| \mathbf{y} - \left(\mathbf{x} - \gamma \nabla f(\mathbf{x}) \right) \right\|^2$$

By Fermat's rule, this implies that $\mathbf{0} \in \partial \varphi(\mathbf{x})$. Let's compute this sub-gradient.

$$\partial \varphi(\mathbf{x}) = \partial (\gamma g)(\mathbf{x}) + \left\{ \mathbf{x} - \left(\mathbf{x} - \gamma \nabla f(\mathbf{x}) \right) \right\}$$
$$= \partial (\gamma g)(\mathbf{x}) + \left\{ \gamma \nabla f(\mathbf{x}) \right\}$$
$$= \gamma \left(\partial g(\mathbf{x}) + \left\{ \nabla f(\mathbf{x}) \right\} \right)$$
$$= \gamma \partial (f + g)(\mathbf{x}),$$

since $\gamma \geq 0$ (this justifies that $\partial(\gamma g)(\mathbf{x}) = \gamma \partial g(\mathbf{x})$). And so

$$\mathbf{0} \in \partial (f+g)(\mathbf{x}).$$

Therefore, the reciprocal of Fermat's rule ensures that \mathbf{x} is a minimizer of f + g.

Exercise 3 1. Cauchy-Schwarz inequality and the assumption on f give the desired inequality:

$$\langle \nabla f(\mathbf{y}) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\| \|\mathbf{y} - \mathbf{x}\| \le L \|\mathbf{y} - \mathbf{x}\|^2.$$

2. It is clear that, by definition, $\varphi(0) = f(\mathbf{x})$ and $\varphi(1) = f(\mathbf{y})$. We must now compute the derivative of φ at t = 0. Notice that $\varphi = f \circ A$, where A is the affine map from [0,1] to \mathbb{R}^n defined by $A(t) = \mathbf{x} + t(\mathbf{y} - \mathbf{x})$. The chain rule gives:

$$\forall h \in \mathbb{R}, \ \varphi'(t)h = d\varphi(t).h$$

$$= df(A(t)).(dA(t).h)$$

$$= df(\mathbf{x} + t(\mathbf{y} - \mathbf{x})).(h(\mathbf{y} - \mathbf{x}))$$

$$= hdf(\mathbf{x} + t(\mathbf{y} - \mathbf{x})).(\mathbf{y} - \mathbf{x})$$

$$= h\langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle,$$

by linearity of the differential. Simplifying by h and taking t = 0, we get $\varphi'(0) = \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$ as expected.

3. By the fundamental theorem of calculus applied to φ , we have:

$$\varphi(1) - \varphi(0) = \int_0^1 \varphi'(t) dt = \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt.$$

Since $\varphi'(0) = \int_0^1 \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$ thanks to the previous question, we get the result.

4. It suffices to use the inequality of the first question in the integral of the previous question to obtain that

$$f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le L \|\mathbf{y} - \mathbf{x}\|^2 \int_0^1 \frac{t^2}{t} dt = \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

4

Olivier Fercoq Bruno Costacèque

January 2022

1 Exercises

Exercise 1. (Proximal gradient for logistic regression)

We consider a classification problem defined by observations $(\mathbf{x}_i, y_i)_{1 \leq i \leq n}$ where for all $i, \mathbf{x}_i \in \mathbb{R}^p$ and $y_i \in \{-1, 1\}$. The coordinates of \mathbf{x}_i are the explanatory variables of the model. We note $x_{i,j}$ the *i*-th observation of the *j*-th explanatory variable, so that $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,p})$.

We propose the following linear model for the generation of the data. Each observation is supposed to be independent and there exists a vector $\mathbf{w} \in \mathbb{R}^p$ and $w_0 \in \mathbb{R}$ such that for all $i, (y_i, \mathbf{x}_i)$ is a realization of the random variable (Y, \mathbf{X}) whose law satisfies

$$\mathbb{P}_{w_0,\mathbf{w}}(Y=1|\mathbf{X}) = \frac{\exp(\mathbf{X}^\top \mathbf{w} + w_0)}{1 + \exp(\mathbf{X}^\top \mathbf{w} + w_0)}.$$

- 1. In this model, what are the explanatory variables? The observed outcomes? The parameters? Can you think of a real-life situation to which you could apply this model?
- 2. We set $\sigma := x \mapsto (1 + \exp(-x))^{-1}$; this function is known as the *logistic function*.

Show that
$$\forall i \in [1, n], \mathbb{P}_{w_0, \mathbf{w}}(Y_i = y_i | \mathbf{x}_i) = \frac{1}{1 + \exp(-y_i(\mathbf{x}_i^\top \mathbf{w} + w_0))} = \sigma(y_i(\mathbf{x}_i^\top \mathbf{w} + w_0)).$$

3. Show that the maximum likelihood estimator is

$$(\widehat{w_0}, \widehat{\mathbf{w}}) = \arg\min_{w_0, \mathbf{w}} \sum_{i=1}^n \log \left(1 + \exp\left(-y_i(\mathbf{x}_i^\top \mathbf{w} + w_0) \right) \right)$$

- 4. Denote $f(w_0, \mathbf{w}) = \sum_{i=1}^n \log \left(1 + \exp\left(-y_i(\mathbf{x}_i^\top \mathbf{w} + w_0) \right) \right)$. Compute $\nabla f(w_0, \mathbf{w})$.
- 5. Compute the proximal operator of $\mathbf{x} \mapsto \frac{\lambda}{2} ||\mathbf{x}||^2$.
- 6. Write the proximal gradient method for the logistic regression problem with ridge regularizer

$$(\widehat{w_0}^{\lambda}, \widehat{\mathbf{w}}^{\lambda}) = \arg\min_{w_0, \mathbf{w}} \sum_{i=1}^n \log \left(1 + \exp\left(-y_i(\mathbf{x}_i^{\top} \mathbf{w} + w_0) \right) \right) + \frac{\lambda}{2} ||\mathbf{w}||^2.$$

7. Compute the Hessian matrix and write Newton's method for the same problem.

Exercise 2. (LASSO)

We consider the problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||_2^2 + \lambda ||\mathbf{x}||_1.$$

1. Prove that the solution is $\{0\}$ for large λ .

- 2. For an arbitrary λ , provide the expression of the proximal gradient algorithm, using the step size $\gamma_k := 1/L$.
- 3. Assume that the initial point is at distance D from a minimizer. How many iterations are needed (at most) to achieve an ε -minimizer?

- **Exercise 1** 1. The explanatory variables are the \mathbf{x}_i , and the observations are the y_i . The parameters are \mathbf{w} and w_0 . This model is usually applied to solve binary prediction problems. For example, to predict if a patient will have diabetes (y=1) or not (y=-1) according to explanatory variables $\mathbf{x}=(x^1,\cdots,x^p)$, like his weight, his age, his job, etc. It could also be used to predict if someone will vote for a certain party or not, according to various social and economic indicators. This model is closer from classification methods than true regression.
 - 2. Assume first $y_i = 1$. By multiplying the numerator and the denominator of $\mathbb{P}_{w_0,\mathbf{w}}(Y = y_i|\mathbf{X})$ by $\exp(-(\mathbf{X}^{\top}\mathbf{w} + w_0))$, we get:

$$\mathbb{P}_{w_0, \mathbf{w}}(Y = y_i | \mathbf{X}) = \frac{\exp(\mathbf{X}^\top \mathbf{w} + w_0)}{1 + \exp(\mathbf{X}^\top \mathbf{w} + w_0)} = \frac{1}{1 + \exp(-(\mathbf{X}^\top \mathbf{w} + w_0))} = \frac{1}{1 + \exp(-y_i(\mathbf{X}^\top \mathbf{w} + w_0))}.$$

• Assume now that $y_i = -1$. Then:

$$\mathbb{P}_{w_0, \mathbf{w}}(Y = y_i | \mathbf{X}) = 1 - \mathbb{P}_{w_0, \mathbf{w}}(Y = 1 | \mathbf{X}) = \frac{1}{1 + \exp(\mathbf{X}^\top \mathbf{w} + w_0)} = \frac{1}{1 + \exp(-y_i(\mathbf{X}^\top \mathbf{w} + w_0))}.$$

3. Remember that the likelihood L of a discrete probability distribution μ_{θ} in the observations $\mathbf{y}_1, \dots, \mathbf{y}_n$ and with parameter θ is the probability of observing all these observations at the same time, assuming they are independent:

$$L(\theta, \mathbf{y}_1, \dots, \mathbf{y}_n) = \mathbb{P}(Y_1 = y_1, \dots, Y_n = y_n) = \prod_{i=1}^n \mathbb{P}(Y_1 = y_i) = \prod_{i=1}^n \mu_{\theta}(\{y_i\}),$$

where the Y_i are i.i.d. random vectors with distribution μ_{θ} . In particular they have the same distribution as Y_1 . Furthermore the maximizers of a positive function f are the same as those of $\log \circ f$, so we will focus on the log-likelihood ℓ rather than on the likelihood itself, since it is easier to deal with. Here $\theta = (w_0, \mathbf{w})$ and we want to find $(\widehat{\mathbf{w}}, \widehat{w}_0)$ which are the likeliest parameters of the model, owing to the available data (observations + explanatory variables), that is, those which maximize:

$$\ell(\widehat{\mathbf{w}}, \widehat{w}_0, \mathbf{x}_1, \cdots, \mathbf{x}_n) = -\sum_{i=1}^n \log \left(1 + \exp\left(-y_i(\mathbf{x}_i^{\top} \widehat{\mathbf{w}} + \widehat{w}_0)\right)\right).$$

Because of the minus sign, this means finding the minimizers of:

$$f: (w_0, \mathbf{w}) \mapsto \sum_{i=1}^n \log \left(1 + \exp \left(-y_i(\mathbf{x}_i^\top \mathbf{w} + w_0) \right) \right),$$

and so the maximum likelihood estimator(s) of (w_0, \mathbf{w}) are the points $(\widehat{\mathbf{w}}, \widehat{w}_0)$ which minimize this function.

4. It suffices to compute the partial derivatives with respect to the p+1 variables w_0, w_1, \dots, w_p . We find:

$$\nabla f(w_0, \mathbf{w}) = \begin{pmatrix} -\sum_{i=1}^n y_i \sigma(-y_i(\mathbf{x}_i^\top \mathbf{w} + w_0)) \\ -\sum_{i=1}^n x_{i1} y_i \sigma(-y_i(\mathbf{x}_i^\top \mathbf{w} + w_0)) \\ \vdots \\ -\sum_{i=1}^n x_{ip} y_i \sigma(-y_i(\mathbf{x}_i^\top \mathbf{w} + w_0)) \end{pmatrix},$$

5. By definition, computing the proximal operator of $g = \mathbf{x} \mapsto \frac{\lambda}{2} ||\mathbf{x}||^2$ means to find the minimizer¹ of:

$$h(\mathbf{x}) := \frac{\lambda}{2} \|\mathbf{x}\|^2 + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 = \frac{\lambda + 1}{2} \|\mathbf{x}\|^2 - \langle \mathbf{x}, \mathbf{y} \rangle + \frac{1}{2} \|\mathbf{y}\|^2.$$

This function is convex (as a sum of such functions) and its gradient is:

$$\nabla h(\mathbf{x}) = (\lambda + 1)\mathbf{x} - \mathbf{y}.$$

As a result, its unique minimizer, i.e. the proximal operator of g, is

$$\operatorname{prox}_g(\mathbf{y}) = \frac{1}{\lambda + 1} \mathbf{y}.$$

6. By definition, the recurrence relation given by the proximal gradient method for the logistic regression problem with given step sequence $(\gamma_k)_k$ is:

$$\begin{split} (w_0^{k+1}, \mathbf{w}^{k+1}) &= \operatorname{prox}_{\gamma_k g} \left((w_0^k, \mathbf{w}^k) - \gamma_k \nabla f(w_0^k, \mathbf{w}^k) \right) \\ &= \frac{1}{\lambda + 1} \left((w_0^k, \mathbf{w}^k) - \gamma_k \nabla f(w_0^k, \mathbf{w}^k) \right). \end{split}$$

This result is consistent with the definition of the ridge regularization: when $\lambda = 0$, the penalization term vanishes and we find the usual gradient descent algorithm. And when $\lambda = +\infty$, the only value of $(\widehat{w_0}, \widehat{\mathbf{w}})$ which solves the logistic regression problem with ridge regularizer is $(\widehat{w_0}, \widehat{\mathbf{w}}) = (\mathbf{0}_{\mathbb{R}^p}, 0)$.

7. We must compute the cross partial derivatives $\partial_{i,j}f$ of the \mathcal{C}^2 -class function $f:\mathbb{R}^{p+1}\to\mathbb{R}$. We set:

$$z_k := y_k(\mathbf{x}_k^\top \mathbf{w} + w_0).$$

Remember that the y_k are numbers equal to ± 1 , so $y_k^2 = 1$. Also notice that $\sigma'(x) = e^{-x}\sigma(x)$, so that:

$$\frac{\mathrm{d}}{\mathrm{d}x}\sigma(-x) = -e^x\sigma(-x)^2.$$

• When i = j = 1, we differentiate the first term of the gradient with respect to the first variable. We find:

$$\partial_{1,1} f(w_0, \mathbf{w}) = \sum_{k=1}^n e^{z_k} \sigma(-z_k)^2.$$

¹Which is unique, since g satisfies the hypotheses of the exercise 1 of the previous tutorial: g is convex and lower-semicontinuous with a nonempty domain.

• When $i \in [2, p+1]$ and j=1, we differentiate the *i*-th term of the gradient with respect to the first variable. We find:

$$\forall i \in [2, p+1], \ \partial_{i,1} f(\mathbf{x}) = \sum_{k=1}^{n} x_{k,i} e^{z_k} \sigma(-z_k)^2.$$

• For $i, j \in [2, p+1]$, we find:

$$\forall i, j \in [2, p+1], \ \partial_{i,j} f(\mathbf{x}) = \sum_{k=1}^{n} x_{k,i} x_{k,j} e^{z_k} \sigma(-z_k)^2$$

Once the Hessian matrix is known, we must compute for each k the vector $(\nabla^2 f(\mathbf{x}_k))^{-1} \nabla f(\mathbf{x}_k)$. This means solving the system $\nabla^2 f(\mathbf{x}_k)\mathbf{x} = \nabla f(\mathbf{x}_k)$. In the present case there does not seem to exist a closed expression for the solution, so we have to resort to numerical solvers to find the solution $(\widehat{w_0}^{\lambda}, \widehat{\mathbf{w}}^{\lambda})$ of the logistic regression problem with ridge regularizer by using Newton's algorithm.

Exercise 2 1. We set:

$$f(\lambda, \mathbf{x}) = \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||_2^2 + \lambda ||\mathbf{x}||_1.$$

It is clear that:

$$\lim_{\lambda \to \infty} f(\lambda, \mathbf{x}) = \frac{1}{2} \|\mathbf{b}\|^2 + \iota_{\{\mathbf{0}\}}(\mathbf{x}) = \begin{cases} \frac{1}{2} \|\mathbf{b}\|^2 & \text{if } \mathbf{x} = \mathbf{0} \\ +\infty & \text{if } \mathbf{x} \neq \mathbf{0} \end{cases}$$

But $f(\lambda, \mathbf{0}) = \frac{1}{2} \|\mathbf{b}\|_2^2$ for all $\lambda \geq 0$, so intuitively, as soon as λ is large enough, the minimum of $f(\lambda, \cdot)$ should be reached in $\mathbf{0}$, since $f(\lambda, \mathbf{x})$ tends to infinity when λ goes to infinity if \mathbf{x} is not zero. The trouble is that for each fixed λ , the minimizer of $f(\lambda, \cdot)$ depends on λ , so it is not clear how it will behave when λ goes to infinity.

To understand that, we need a uniform control on the minimizer (as a function of λ). It will be provided by the norm of $A^{\top}b$. First notice that we work in finite dimension, so that all norms are equivalent. In particular, there exists c > 0 such that $\|\mathbf{x}\|_1 \ge c\|\mathbf{x}\|_2$. Thus:

$$f(\lambda, \mathbf{x}) - f(\lambda, \mathbf{0}) = \frac{1}{2} \|A\mathbf{x} - b\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1} - \frac{1}{2} \|\mathbf{b}\|_{2}^{2}$$

$$= \frac{1}{2} \|A\mathbf{x}\|_{2}^{2} - \langle A\mathbf{x}, \mathbf{b} \rangle + \lambda \|\mathbf{x}\|_{1}$$

$$\geq -\langle A\mathbf{x}, \mathbf{b} \rangle + \lambda \|\mathbf{x}\|_{1}$$

$$\geq -\langle A\mathbf{x}, \mathbf{b} \rangle + c\lambda \|\mathbf{x}\|_{2}$$

$$= \|\mathbf{x}\|_{2} \left(-\frac{\langle A\mathbf{x}, \mathbf{b} \rangle}{\|\mathbf{x}\|_{2}} + c\lambda \right)$$

$$= \|\mathbf{x}\|_{2} \left(-\frac{\langle \mathbf{x}, A^{T}\mathbf{b} \rangle}{\|\mathbf{x}\|_{2}} + c\lambda \right)$$

$$\geq \|\mathbf{x}\|_{2} \left(-\|A^{T}\mathbf{b}\|_{2} + c\lambda \right)$$

$$(1)$$

and the term between parentheses is positive as soon as $\lambda \geq \|A^{\top}\mathbf{b}\|_2/c$. For such λ , $\mathbf{0}$ is always a minimizer of $f(\lambda, \cdot)$. It is the unique possible minimizer thanks to equation (1) (if \mathbf{x} is a minimizer of $f(\lambda, \cdot)$ and is not null, then so is its norm and $f(\lambda, \mathbf{x}) - f(\lambda, \mathbf{0}) > 0$. Absurd.

2. Using the notations of the lecture notes, we take $f = \mathbf{x} \mapsto ||A\mathbf{x} - \mathbf{b}||_2$ and $g = \mathbf{x} \mapsto ||\mathbf{x}||_1$. It is clear that both functions are convex, and that f is differentiable, with a Lipschitz gradient:

$$\nabla f(\mathbf{x}) = A^{\top} (A\mathbf{x} - \mathbf{b})$$

(see the first lecture!). In that particular case, we can take the matrix norm of $A^{\top}A$ as a Lipschitz constant, since:

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 = \|A^{\top} A \mathbf{x} - A^{\top} A \mathbf{y}\|_2$$

$$\leq \sup_{\mathbf{z} \neq 0} \frac{\|A^{\top} A \mathbf{z}\|_2}{\|\mathbf{z}\|_2} \|\mathbf{x} - \mathbf{y}\|_2$$

$$= \|A^{\top} A\|_{2,2} \|\mathbf{x} - \mathbf{y}\|_2.$$

Here the proximal operator is a bit more complicated to compute than usual, since we must solve the optimization problem:

For all
$$\mathbf{y} \in \mathbb{R}^d$$
, find $\underset{\mathbf{x} \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \right\}$.

Notice that the proximal operator will be a function from \mathbb{R}^n to \mathbb{R}^n . Notice also that:

$$\lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 = \sum_{i=1}^n (\lambda |x_i| + \frac{1}{2} (x_i - y_i)^2) = \sum_{i=1}^n f_i(\lambda, x_i),$$

with obvious notations. This means that we have to minimize a sum of functions with separate variables. In that case, it is obvious we just have to minimize each function separately, *i.e.* the solution $\mathbf{x} = (x_1, \dots, x_n)$ will have coordinates x_i which minimize f_i for each *i*. So it is enough to compute the proximal operator of $x \mapsto |x|$. This is not hard, but the computation itself is a bit tedious because of the numerous cases to distinguish... Set $g: x \mapsto \lambda |x| + (x-y)^2/2$. We know that x minimizes g iff $0 \in \partial g(x)$. Since:

$$\partial g(x) = \begin{cases} \operatorname{sign}(x)\lambda + x - y & \text{if } x \neq 0 \\ [-\lambda, \lambda] - y & \text{if } x = 0. \end{cases}$$

we must distinguish two cases (I gladly acknowledge that it is not obvious at all just by looking at that expression of the subgradient!):

• If $|y| > \lambda$: then 0 cannot belong to $\partial g(0)$, so the minimizer of g must be some $x \neq 0$. If $x \in \mathbb{R}_+^*$, we have that

$$0 \in \partial q(x) \iff x = y - \lambda$$
.

which is possible only if $y > \lambda$. Otherwise $y < -\lambda$, and we find for $x \in \mathbb{R}_{+}^{*}$:

$$0 \in \partial g(x) \iff x = y + \lambda,$$

so, by reuniting those two cases:

$$x = y + \operatorname{sign}(y)\lambda.$$

• If $|y| \leq \lambda$, then $0 \in [-\lambda, \lambda] - y = \partial g(x)$, and 0 is a minimizer of g.

Once more we can reunite all previous cases in one expression, just by factorising by sign(y):

$$x = \operatorname{sign}(y)(|y| - \lambda)_{+},$$

where $y_{+} = \max(y, 0)$ is the positive part of y. This function is called soft thresholding operator (in one dimension). More generally, the proximal operator of $\mathbf{x} \mapsto \lambda ||\mathbf{x}||_1$ is just:

$$\operatorname{prox}_{\lambda\|\cdot\|_1}(\mathbf{y}) = \left(\operatorname{sign}(y_1)(|y_1| - \lambda)_+, \dots, \operatorname{sign}(y_n)(|y_n| - \lambda)_+\right).$$

Knowing this, it is an easy matter to write the proximal gradient algorithm for $f(\lambda, \cdot)$ (be careful: it is necessary to replace λ by λ/L in the previous expression!).

3. Using the course, we know that:

$$f(\lambda, \mathbf{x}_k) - f(\lambda, \mathbf{x}^*) \le \frac{L \|\mathbf{x}_k - \mathbf{x}^*\|_2^2}{2k} = \frac{LD^2}{2k},$$

where $L = ||A||_{2,2}$. By definition, an ε -minimizer of $f(\lambda, \cdot)$ is a point \mathbf{x} such that $f(\lambda, \mathbf{x})$ is at distance at most ε from the minimum $f(\lambda, \mathbf{x}^*)$. So we just need to find k such that:

$$\frac{LD^2}{2k} \le \varepsilon.$$

With the bound provided by the course, we find that we need at least $k = LD^2/(2\varepsilon) + 1$ iterations to be sure that \mathbf{x}_k is an ε -minimizer for the LASSO problem.

- **Remarque 1.** This is a sufficient condition, not a necessary one: we may have already an ε -minimizer with less iterations, hence the need to get bounds as sharp as possible to avoid redundant iterations!
 - It does not mean that \mathbf{x}_k is actually close from \mathbf{x}^* ! To determine that, stronger assumptions may be required (for example, strong convexity (see your lecture notes)).

Olivier Fercoq Bruno Costacèque

January 2022

1 Exercises

Exercise 1. (Projected stochastic gradient)

We consider the following optimization problem

$$\min_{\mathbf{x} \in C} \sum_{i=1}^{n} f_i(\mathbf{x}) \tag{1}$$

where $C = [0, 1]^d$ and for all $i, f_i : \mathbb{R}^d \to \mathbb{R}$ is differentiable.

- 1. We define the convex indicator function of the set C as $\iota_C(x) = \begin{cases} 0 & \text{if } \mathbf{x} \in C \\ +\infty & \text{if } \mathbf{x} \notin C \end{cases}$. Show that (1) is equivalent to $\min_{\mathbf{x} \in \mathbb{R}^d} \sum_{i=1}^n f_i(\mathbf{x}) + \iota_C(\mathbf{x})$.
- 2. Compute the proximal operator of ι_C
- 3. Write the proximal stochastic gradient method for the resolution of (1).

Exercise 2. (Optimisation with explicit constraints)

We consider the following optimization problem

$$\min_{\mathbf{x} \in C} f(\mathbf{x}) \tag{2}$$

where $C \subset \mathbb{R}^d$ is a convex set and $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable and convex.

1. We define the convex indicator function of the set C as

$$\iota_C(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in C \\ +\infty & \text{if } \mathbf{x} \notin C \end{cases}$$

Show that (2) is equivalent to

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) + \iota_C(\mathbf{x}) \tag{3}$$

- 2. Show that for all $\mathbf{x} \in C$, $\partial \iota_C(\mathbf{x}) = \{\mathbf{q} \in \mathbb{R}^n : \forall \mathbf{y} \in C, \langle \mathbf{q}, \mathbf{y} \mathbf{x} \rangle \leq 0\}$ and that $\partial \iota_C(\mathbf{x})$ is a cone (it is called the *normal cone* to C at \mathbf{x}). Show that for all $\mathbf{x} \notin C$, $\partial \iota_C(\mathbf{x}) = \emptyset$.
- 3. Show that \mathbf{x}^* is a solution to (3) if and only if $-\nabla f(\mathbf{x}^*) \in \partial \iota_c(\mathbf{x}^*)$.
- 4. Denote $\mathcal{H}_{\mathbf{w},b} = \{\mathbf{x} \in \mathcal{X} : \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}$. Compute $\partial \iota_{\mathcal{H}_{\mathbf{w},b}}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^d$.

(Hint: Show that we can assume b=0 without loss of generality, and use the fact that $\mathcal{H}_{\mathbf{w},0}$ is a vector space.)

5. Prove that the distance of a point \mathbf{z} to \mathcal{H} is equal to

$$d(\mathbf{z}, \mathcal{H}_{\mathbf{w}, b}) = \min_{\mathbf{x} \in \mathcal{H}_{\mathbf{w}, b}} \|\mathbf{x} - \mathbf{z}\|_2 = \frac{|\langle \mathbf{w}, \mathbf{z} \rangle + b|}{\|\mathbf{w}\|_2}.$$

Exercise 1 1. It is obvious that $\mathbf{x} \mapsto \sum_{i=1}^n f_i(\mathbf{x}) + \iota_C(\mathbf{x})$ can admit a minimum only on C (the f_i are differentiable, so in particular they take finite values). On the other hand, if $\mathbf{x} \in C$, this function is the same as $\mathbf{x} \mapsto \sum_{i=1}^n f_i(\mathbf{x})$. Thus the constrained minimization problem is the same as the unconstrained one with the convex indicator function.

2. It is clear that:

$$\operatorname{prox}_{\iota_C}(\mathbf{x}) = \underset{\mathbf{y} \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \iota_C(\mathbf{y}) + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 \right\} = \underset{\mathbf{y} \in C}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{y}\|^2.$$

And it is well known that the point minimizing this distance (to the closed convex set $C = [0, 1]^d$) is the projection of \mathbf{x} on C:

$$\operatorname{prox}_{\iota_C}(\mathbf{x}) = \operatorname{proj}_C(\mathbf{x}).$$

3. Notice that:

$$\sum_{i=1}^{n} f_i(\mathbf{x}) = n\mathbb{E}[f_I(\mathbf{x})] = \mathbb{E}[nf_I(\mathbf{x})],$$

where I is a random variable with uniform distribution on [1, n]. In other words, we choose at random function among the n functions f_i , we evaluate it at \mathbf{x} , and thus define a random function. Then (1) is equivalent to minimizing n times the expectation of this random function with respect to \mathbf{x} .

In this context, the ξ_k (using the notations of the lecture) will have the uniform distribution $\mathcal{U}_{\llbracket 1,n\rrbracket}$. So we will apply the stochastic proximal gradient method to $(\mathbf{x},\xi_k)\mapsto nf_{\xi_k}(\mathbf{x})+\iota_C(\mathbf{x})$. It is just the usual proximal gradient algorithm, but applied to a uniformly chosen function nf_i , with a penalization function given by $g=\iota_C$. Finally we find the following algorithm:

$$\mathbf{x}_{k+1} = \operatorname{proj}_C(\mathbf{x}_k - \gamma_k n \nabla f_{\xi_k}(\mathbf{x}_k)),$$

where γ_k is a sequence of step sizes.

Exercise 2 1. It is the same line of reasoning as in the first question of the previous exercise.

2. • For each $\mathbf{x} \in \mathbb{R}^d$, we must find all vectors $\mathbf{q} \in \mathbb{R}^d$ such that:

$$\forall \mathbf{y} \in \mathbb{R}^d, \ \iota_C(\mathbf{y}) \ge \iota_C(\mathbf{x}) + \langle \mathbf{q}, \mathbf{y} - \mathbf{x} \rangle. \tag{4}$$

If $\mathbf{x} \in C$, then the only non-trivial case is when $\mathbf{y} \in C$ too. So \mathbf{q} must satisfy:

$$0 > 0 + \langle \mathbf{q}, \mathbf{y} - \mathbf{x} \rangle = \langle \mathbf{q}, \mathbf{y} - \mathbf{x} \rangle.$$

This condition is clearly both necessary and sufficient, so:

$$\partial \iota_C(\mathbf{x}) = {\mathbf{q} \in \mathbb{R}^d | \langle \mathbf{q}, \mathbf{y} - \mathbf{x} \rangle \le 0}.$$

Furthermore this set is indeed a cone: if $q \in \partial \iota_C(\mathbf{x})$, then it is evident that $\lambda \mathbf{q} \in C$ if $\lambda \geq 0$.

¹Notice that g is convex (because C is convex) and l.s.c. (because C is closed). Also $\forall \gamma > 0, \ \gamma g = g!$

- And if $\mathbf{x} \notin C$, (4) is obviously impossible since $\iota_C(\mathbf{y}) = 0$ if $\mathbf{y} \in C$, while $\iota_C(\mathbf{y}) = +\infty$. Thus, for $\mathbf{x} \notin C$, $\partial \iota_C(\mathbf{x}) = \emptyset$.
- 3. A solution \mathbf{x}^* necessarily belongs to C thanks to the first question. Thus the subgradient of ι_C at \mathbf{x}^* exists. And since f is differentiable, Fermat's rule gives that:

$$\mathbf{x}^*$$
 is a solution of (3) $\iff \mathbf{0}_{\mathbb{R}^d} \in \partial(f + \iota_C)(\mathbf{x}^*) = \{\nabla f(\mathbf{x}^*)\} + \{\mathbf{q} \in \mathbb{R}^d \mid \langle \mathbf{q}, \mathbf{y} - \mathbf{x} \rangle \leq 0\}.$

Hence, there is $\mathbf{q} \in \partial \iota_C(\mathbf{x}^*)$ such that:

$$\mathbf{0}_{\mathbb{R}^d} = \nabla f(\mathbf{x}^*) + \mathbf{q},$$

and so $-\nabla f(\mathbf{x}^*) \in \partial \iota_C(\mathbf{x}^*)$.

4. For each $\mathbf{x} \in \mathcal{H}_{\mathbf{w},b}$, we want to find all $\mathbf{q} \in \mathbb{R}^d$ such that:

$$\forall \mathbf{y} \in \mathcal{H}_{\mathbf{w},b}, \ \langle \mathbf{q}, \mathbf{y} - \mathbf{x} \rangle \le 0. \tag{5}$$

Let $\mathbf{x}_0 \in \mathcal{H}_{\mathbf{w},b}$ and notice that:

$$\langle \mathbf{q}, \mathbf{y} - \mathbf{x} \rangle = \langle \mathbf{q}, (\mathbf{y} - \mathbf{x}_0) - (\mathbf{x}_0 - \mathbf{x}) \rangle.$$

Since $\mathbf{y} - \mathbf{x}_0$ and $\mathbf{x}_0 - \mathbf{x}$ belong to $\mathcal{H}_{\mathbf{w},b}$, we may assume that \mathbf{x} and \mathbf{y} belong to the vector space $\mathcal{H}_{\mathbf{w},0} = \operatorname{Span}(\mathbf{w})^{\perp}$. But then $\lambda \mathbf{y} \in \mathcal{H}_{\mathbf{w},0}$ too for all $\lambda \in \mathbb{R}$. In particular the inequality (5) reads:

$$\forall \mathbf{y} \in \mathcal{H}_{\mathbf{w},b}, \ \forall \lambda \in \mathbb{R}, \ \lambda \langle \mathbf{q}, \mathbf{y} \rangle \leq \langle \mathbf{q}, \mathbf{x} \rangle,$$

which is possible only if $\langle \mathbf{q}, \mathbf{y} \rangle = 0$ for all $\mathbf{y} \in \mathcal{H}_{\mathbf{w},0}$. On the other hand, it is easy to see that $\lambda \mathbf{w} \in \partial \iota_{\mathcal{H}_{\mathbf{w},b}}$ for all $\lambda \in \mathbb{R}$. As a result:

$$\partial \iota_{\mathcal{H}_{\mathbf{w},b}} = \partial \iota_{\mathcal{H}_{\mathbf{w},0}} = \operatorname{Span}(\mathbf{w})^{\perp \perp} = \operatorname{Span}(\mathbf{w}).$$

5. Here the function to minimize² is $f_{\mathbf{z}} : \mathbf{x} \mapsto \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$, and the constraint is that \mathbf{x} must belong to the convex set $\mathcal{H}_{\mathbf{w},b}$. So we can apply question 3 to find the minimizer. We must find a point \mathbf{x}^{*} such that $-\nabla f(\mathbf{x}^{*}) = -2(\mathbf{x}^{*} - \mathbf{z}) \in \partial \iota_{C}(\mathbf{x}^{*}) = \operatorname{Span}(\mathbf{w})$. That is, for some $\lambda \in \mathbb{R}$,

$$\mathbf{x}^* = \mathbf{z} - \frac{\lambda}{2}\mathbf{w}.$$

To find λ , remember that \mathbf{x}^* must belong to $C = \mathcal{H}_{\mathbf{w},b}$, so we must have:

$$-b = \langle \mathbf{w}, \mathbf{x}^* \rangle = \langle \mathbf{w}, \mathbf{z} \rangle - \frac{\lambda}{2} ||\mathbf{w}||_2^2,$$

and so $\lambda = 2(b + \langle \mathbf{w}, \mathbf{x}^* \rangle) / ||\mathbf{w}||_2^2$. Thus:

$$\mathbf{x}^* = \mathbf{z} - \frac{b + \langle \mathbf{w}, \mathbf{x}^* \rangle}{\|\mathbf{w}\|_2^2} \mathbf{w}.$$

Evaluating $\mathbf{x} \mapsto \|\mathbf{x} - \mathbf{z}\|$ in \mathbf{x}^* , we find the desired result.

²Notice the square! Without it, this function is not differentiable at z...

Olivier Fercoq Bruno Costacèque

January 2022

1 Exercises

Exercise 1. (Support vector machine)

Consider a training set formed by couples (\mathbf{x}_i, y_i) for $i \in \{1, ..., n\}$ where \mathbf{x}_i is a feature vector in \mathcal{X} and $y_i \in \{-1, +1\}$ for all i. The (affine) hyperplane $\mathcal{H}_{\mathbf{w},b} := \{\mathbf{x} \in \mathbb{R}^d, \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}$ is called separating if

$$\forall i, \ y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) > 0.$$

In the sequel, we assume that a separating hyperplane exists. Among all separating hyperplanes, we seek to find the one which maximizes the minimum distance

$$f(\mathbf{w}, b) = \min_{i=1,\dots,n} d(\mathbf{x}_i, \mathcal{H}_{\mathbf{w},b}).$$

1. Show that if (\mathbf{w}, b) defines a separating hyperplane, then $f(\mathbf{w}, b) = c(\mathbf{w}, b) / \|\mathbf{w}\|$ where $c(\mathbf{w}, b) = \min_i y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b)$.

Thus, we are interested in solving the problem

$$\max_{\mathbf{w},b} \frac{c(\mathbf{w},b)}{\|\mathbf{w}\|} \text{ such that } \forall i, \ y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 0.$$
 (1)

Let (\mathbf{w}^*, b^*) be a solution and define

$$\mathbf{v}^* = \frac{\mathbf{w}^*}{c(\mathbf{w}^*, b^*)}$$
 and $a^* = \frac{b^*}{c(\mathbf{w}^*, b^*)}$

- 2. Justify that (\mathbf{w}^*, b^*) and (\mathbf{v}^*, a^*) define the same separating hyperplane.
- 3. Prove that (\mathbf{v}^*, a^*) solves the optimization problem

$$\max_{\mathbf{v},a} \frac{1}{\|\mathbf{v}\|} \text{ such that } \forall i, \ y_i(\langle \mathbf{v}, \mathbf{x}_i \rangle + a) \ge 1.$$

4. Deduce that (\mathbf{v}^*, a^*) solves the optimization problem

$$\min_{\mathbf{v},a} \frac{\|\mathbf{v}\|^2}{2} \text{ such that } \forall i, 1 - y_i(\langle \mathbf{v}, \mathbf{x}_i \rangle + a) \le 0.$$
 (2)

What is the purpose of this question? (in comparison to the previous one for example)

5. Write the Lagrangian $L(\mathbf{v}, a; \phi)$.

$$d(\mathbf{z}, \mathcal{H}_{\mathbf{w}, b}) = \min_{\mathbf{x} \in \mathcal{H}_{\mathbf{w}, b}} \|\mathbf{x} - \mathbf{z}\| = \frac{|\langle \mathbf{w}, \mathbf{z} \rangle + b|}{\|\mathbf{w}\|}.$$

¹Remember the previous tutorial where we proved (or not) that:

²Notice the ';' which separates the primal variables (\mathbf{v}, a) from the dual variable ϕ .

- 6. Write the KKT conditions.
- 7. Let $(\mathbf{v}, a; \phi)$ be a saddle point of the Lagrangian. Show that ϕ_i is non-zero only if $y_i(\langle \mathbf{v}, \mathbf{x}_i \rangle + a) = 1$.

The training points (\mathbf{x}_i, y_i) satisfying the above property are the closest to the hyperplane $\mathcal{H}_{\mathbf{v},a}$. The corresponding \mathbf{x}_i 's are often called *support vectors*.

8. If one is given a dual solution ϕ^* , how to recover a primal solution (\mathbf{v}^*, a^*) from ϕ^* ?

Define the $n \times n$ matrices $K = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle)_{i,j=1...n}, D = \text{diag}(y_1 \dots y_n)$ and $\mathbf{1}^T = (1, \dots, 1)$.

9. Prove that the dual problem reduces to

$$\min_{\substack{\phi \geq 0 \\ \langle \mathbf{y}, \phi \rangle = 0}} \frac{1}{2} \langle KD\phi, D\phi \rangle - \langle \mathbf{1}, \phi \rangle \,.$$

- 10. Assume that this algorithm has identified a dual solution ϕ^* . Write explicitly the classifier as a function of ϕ^* .
- 11. What part of the training data do you need in order to implement the above classifier?

Exercise 1 1. Using the recalled identity in the footnote, we get that:

$$f(\mathbf{w}, b) = \min_{i=1,\dots,n} \frac{|\langle \mathbf{w}, \mathbf{x}_i \rangle + b|}{\|\mathbf{w}\|} = \min_{i=1,\dots,n} \frac{|y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b)|}{\|\mathbf{w}\|} = \min_{i=1,\dots,n} y_i \frac{\langle \mathbf{w}, \mathbf{x}_i \rangle + b}{\|\mathbf{w}\|},$$

since we know that all $y_i\langle \mathbf{w}, \mathbf{x}_i \rangle + b$ are positive and $y_i = \pm 1$.

2. We have to prove that $\mathcal{H}_{\mathbf{v}^*,a^*} = \mathcal{H}_{\mathbf{w}^*,b^*}$. But if $\mathbf{x} \in \mathcal{H}_{\mathbf{w}^*,b^*}$, then:

$$\langle \mathbf{v}^*, \mathbf{x} \rangle + a^* = \frac{\langle \mathbf{w}^*, \mathbf{x} \rangle}{c(\mathbf{w}^*, b^*)} + \frac{b^*}{c(\mathbf{w}^*, b^*)} = 0$$

by definition of $\mathcal{H}_{\mathbf{w}^*,b^*}$, and so $\mathcal{H}_{\mathbf{w}^*,b^*} \subset \mathcal{H}_{\mathbf{v}^*,a^*}$. The reciprocal is obvious, so we get the desired result.

3. Since (\mathbf{w}^*, b^*) is a solution of (1), and:

$$\frac{c(\mathbf{w}, b)}{\|\mathbf{w}\|} = \frac{1}{\left\|\frac{\mathbf{w}}{c(\mathbf{w}, b)}\right\|},$$

we see that replacing \mathbf{w}^* by $\mathbf{v}^* = \mathbf{w}^*/c(\mathbf{w}^*, b^*)$ and b^* by $a^* = b^*/c(\mathbf{w}^*, b^*)$ yields that (\mathbf{v}^*, a^*) satisfies:

$$\frac{1}{\|\mathbf{v}^*\|} = \max_{\mathbf{v}, a} \frac{1}{\|\mathbf{v}\|},$$

with the constraint that

$$\forall j, \ y_j(\langle \mathbf{v}^*, \mathbf{x}_j \rangle + a^*) = \frac{1}{c(\mathbf{w}^*, b^*)} y_j(\langle \mathbf{w}^*, \mathbf{x}_j \rangle + b^*) \ge \frac{1}{c(\mathbf{w}^*, b^*)} \min_i \ y_j(\langle \mathbf{w}^*, \mathbf{x}_j \rangle + b^*) = 1.$$

4. It suffices to notice that $h: x \mapsto 1/(2x^2)$ is a non-increasing function which turns $1/\|\mathbf{v}\|$ in $\|\mathbf{v}\|^2/2$, and the maximization problem into a minimization one:

$$\min_{\mathbf{v},a} \frac{\|\mathbf{v}\|^2}{2} = h\left(\max_{\mathbf{v},a} \frac{1}{\|\mathbf{v}\|}\right)$$

The constraint does not change. The main purpose of this question is to replace the non-differentiable function $\mathbf{v} \mapsto 1/\|\mathbf{v}\|$ by $\mathbf{v} \mapsto \|\mathbf{v}\|^2/2$, which will be much more pleasant to work with. Notice also that normalizing by $c(\mathbf{w}^*, b^*)$ allows us to replace the strict inequalities $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 0$ by $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + a) \geq 1$.

5. With the notations of the lecture, the function f is $\mathbf{v} \mapsto ||\mathbf{v}||^2/2$ while g is:

$$\mathbf{x} \mapsto (g_1(\mathbf{x}), \dots, g_n(\mathbf{x})), \text{ where } g_i(\mathbf{x}) = 1 - y_i(\langle \mathbf{v}, \mathbf{x}_i \rangle + a),$$

and the associated Laplacian equals:

$$L(\mathbf{v}, a; \phi) = \frac{1}{2} \|\mathbf{v}\|^2 + \langle \phi, g(\mathbf{x}) \rangle - \iota_{\mathbb{R}^n_+}(\phi).$$

3

- 6. There are four conditions which together are known as the KKT conditions and must be satisfied by $(\mathbf{v}^*, a^*, \phi^*)$ to be a saddle point of the Lagrangian. First we give them as they are formulated in the lecture notes (see theorem 6.3.2. page 35), and then we rewrite them in a more useful way. Let $\mathbf{y} := (y_1, \ldots, y_n)$. Remember that in the course x denotes the primal variable(s). Here $x = (\mathbf{v}, a)$. Also remember that for fixed ϕ such that $\phi_i \leq 0$ for all i (and so $\iota_{\mathbb{R}^n}(\phi) = 0$), we know that $L(\cdot, \cdot; \phi)$ is differentiable, so we can use the usual gradient instead of the subdifferential.
 - Primal feasibility: $g(\mathbf{v}^*, a^*) \leq \mathbf{0}_{\mathbf{R}^n}$, that is, $\forall i \in [1, n], g_i(\mathbf{v}^*, a^*) \leq 0$.
 - Dual feasibility: $\phi^* \succeq \mathbf{0}_{\mathbb{R}^n}$, that is, $\forall i \in [1, n], \ \phi_i^* \leq 0$.
 - Complementary slackness: $\langle \phi^*, g(\mathbf{v}^*, a^*) \rangle = 0$.
 - First order primal feasibility:

$$\nabla_{(\mathbf{v},a)} L(\mathbf{v}^*, a^*; \phi^*) = \mathbf{0}_{\mathbb{R}^{n+1}}.$$

In the sequel, it will be more convenient to work with those expressions, which are exactly the previous conditions, but formulated differently:

- Primal feasibility: $\forall i \in [1, n], \ y_i(\langle \mathbf{v}^*, \mathbf{x}_i \rangle + a^*) \ge 1.$
- Dual feasibility: $\forall i \in [1, n], \ \phi_i^* \ge 0$.
- Complementary slackness: $\forall i \in [1, n], \ g_i(\mathbf{v}^*) = 1 y_i(\langle \mathbf{v}^*, \mathbf{x}_i \rangle + a^*) = 0 \text{ or } \phi_i^* = 0.$
- First order primal feasibility:

$$\nabla_{\mathbf{v}} L(\mathbf{v}^*, a^*; \phi^*) = \mathbf{v}^* - \sum_{i=1}^n y_i \phi_i^* \mathbf{x}_i^* = \mathbf{0}_{\mathbb{R}^n},$$

$$\partial_a L(\mathbf{v}^*, a^*; \phi^*) = -\langle \mathbf{y}, \phi^* \rangle = 0.$$

The notation $\nabla_{(\mathbf{v},a)}L(\mathbf{v},a;\phi)$ denotes the gradient of the Lagrangian with respect to \mathbf{v} and a. It outputs a vector of \mathbb{R}^{n+1} which formally reads as:

$$\nabla_{(\mathbf{v},a)} L(\mathbf{v},a;\phi) = \begin{pmatrix} \nabla_{\mathbf{v}} L(\mathbf{v},a,\phi) \\ \partial_a L(\mathbf{v},a) \end{pmatrix}$$

The reformulated third condition is a consequence of the original complementary slackness condition, the original primal feasibility condition, as well as of the dual feasibility condition: we know that $\langle \phi^*, g(\mathbf{v}^*, a^*) \rangle = 0$, that $\forall i \in [1, n], g_i(\mathbf{v}^*, a^*) \leq 0$ and $\phi_i \leq 0$. So we get that a sum of nonnegative terms vanishes. Thus all terms must be equal to zero, which gives the reformulated complementary slackness condition.

7. This is a direct consequence of the complementary slackness condition: $\phi^* \neq 0$ so

$$\forall i \in [1, n], \ y_i(\langle \mathbf{v}^*, \mathbf{x}_i \rangle + a^*) = 1.$$

8. Let us explain what this question means exactly: assume that you want to solve a complicated optimization problem. Maybe the dual problem is easier, so you manage to find its solution ϕ^* . Now you want to deduce from that $\mathbf{x}^* = (\mathbf{v}^*, a^*)$ the solution of your original problem, the primal problem. But you know that $(\mathbf{v}^*, a^*; \phi^*)$ is a saddle point of your Lagrangian. So KKT conditions will help you express the unknown (\mathbf{v}^*, a^*) in terms of what you know, that is, ϕ^* .

The first equation of the first order primal feasibility condition yields:

$$\mathbf{v}^* = \sum_{i=1}^n y_i \phi_i^* \mathbf{x}_i^*$$

(and the right-hand side does not depend on \mathbf{v}^* nor a^* !). And using the previous question and the fact that $y_i^2 = 1$, we can recover a^* as well:

$$\forall i \in [1, n]$$
 such that $\phi_i^* \neq 0$, $a^* = y_i - \langle \mathbf{v}^*, \mathbf{x}_i \rangle$,

If this condition is never satisfied, that is, if all $\phi_i^* = 0$, then $\mathbf{v}^* = \mathbf{0}_{\mathbb{R}^n}$ and by the primal feasibility condition we have:

$$\forall i \in [1, n], \ y_i a^* \ge 1,$$

which is possible only if every $y_i = 1$ or $y_i = -1$ for all i. Thus as long the two classes of the classification problem have at least one element each, we can find one index i_0 such that $\phi_{i_0} \neq 0$. As a result, using the previous expression of \mathbf{v}^* , we can take:

$$a^* = y_{i_0} - \langle \mathbf{v}^*, \mathbf{x}_{i_0} \rangle = y_{i_0} - \sum_{i=1}^n y_i \phi_i^* \langle \mathbf{x}_i, \mathbf{x}_{i_0}^* \rangle.$$

9. The dual problem is found by keeping the dual variables feasible³ and minimizing the Lagrangian with respect to the primal variables. As before, the first-order conditions are:

$$\nabla_v L(\mathbf{v}^*, a^*; \phi) = \mathbf{v}^* - \sum_{i=1}^n y_i \phi_i \mathbf{x}_i^* = \mathbf{0}_{\mathbb{R}^n},$$

$$\partial_a L(\mathbf{v}^*, a^*; \phi) = -\langle \mathbf{y}, \phi \rangle = 0.$$

Substituting this expression of \mathbf{v}^* in the definition of L, we get:

$$L(\mathbf{v}^*, a^*; \phi) = \frac{1}{2} \|\mathbf{v}^*\|^2 + \langle \phi, g(\mathbf{x}) \rangle + \iota_{\mathbb{R}^n_+}(\phi)$$

$$= \frac{1}{2} \langle \mathbf{v}^*, \mathbf{v}^* \rangle + \langle \phi, g(\mathbf{x}) \rangle$$

$$= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \phi_i \phi_j^* \langle \mathbf{x}_i^*, \mathbf{x}_j^* \rangle + \langle \phi, g(\mathbf{x}) \rangle$$

$$= \frac{1}{2} \langle KD\phi, D\phi \rangle + \sum_{i=1}^n \phi_i (1 - y_i (\langle \mathbf{v}^*, \mathbf{x}_i \rangle + a^*))$$

$$= \frac{1}{2} \langle KD\phi, D\phi \rangle + \langle \phi, \mathbf{1} \rangle - \sum_{i=1}^n \phi_i y_i (\langle \mathbf{v}^*, \mathbf{x}_i \rangle + a^*)$$

$$= \frac{1}{2} \langle KD\phi, D\phi \rangle + \langle \phi, \mathbf{1} \rangle - \sum_{i=1}^n \phi_i y_i \langle \mathbf{v}^*, \mathbf{x}_i \rangle - a^* \langle \phi, \mathbf{y} \rangle$$

$$= \frac{1}{2} \langle KD\phi, D\phi \rangle + \langle \phi, \mathbf{1} \rangle - \langle KD\phi, D\phi \rangle$$

$$= -\frac{1}{2} \langle KD\phi, D\phi \rangle + \langle \phi, \mathbf{1} \rangle,$$

and so the dual problem consists in maximizing $-\frac{1}{2}\langle KD\phi, D\phi \rangle + \langle \phi, \mathbf{1} \rangle$ under the constraints that $\phi_i \geq 0$ for all i and $\langle \phi, \mathbf{y} \rangle = 0$.

³That is, $\forall i \in [1, n], \phi_i \ge 0$.

10. The classifier takes the following form, where a^* has been defined in the previous questions:

$$C: \mathbf{x} \mapsto \operatorname{sign}(\langle \mathbf{v}^*, \mathbf{x} \rangle + a^*).$$

11. The only necessary data is the support vectors, that is the vectors \mathbf{x}_i such that $\phi_i > 0$.