```
import pandas as pd
df=pd.read_csv(r'C:\Users\DELL\Desktop\Mall_Customers.csv')
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
df
```

Out[1]:		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	•••					
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows × 5 columns

In [2]: df.head()

```
Out[2]:
           CustomerID Genre Age Annual Income (k$) Spending Score (1-100)
                        Male
                               19
                                                15
        0
                                                                     39
        1
                        Male
                               21
                                                 15
                                                                     81
                                                 16
        2
                               20
                                                                      6
                    3 Female
                                                 16
        3
                    4 Female
                               23
                                                                     77
                                                                     40
        4
                    5 Female
                               31
                                                 17
        df.isnull().sum()
In [3]:
                                   0
        CustomerID
Out[3]:
                                   0
        Genre
        Age
                                   0
        Annual Income (k$)
                                   0
        Spending Score (1-100)
                                   0
        dtype: int64
        df.info()
In [4]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 5 columns):
             Column
                                      Non-Null Count Dtype
             CustomerID
                                      200 non-null
                                                      int64
         1
             Genre
                                      200 non-null
                                                      object
                                      200 non-null
         2
             Age
                                                      int64
             Annual Income (k$)
                                      200 non-null
                                                      int64
             Spending Score (1-100) 200 non-null
                                                      int64
        dtypes: int64(4), object(1)
        memory usage: 7.9+ KB
In [5]:
        df.corr()
```

Out[5]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	-0.026763	0.977548	0.013835
Age	-0.026763	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000

In [6]: from sklearn.model_selection import train_test_split x=df

y=df

x_train,x_test,y_train,y_test = train_test_split(x,y, test_size=0.25, random_state=42)

x_train

Out[6]:

,		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	114	115	Female	18	65	48
	173	174	Male	36	87	92
	5	6	Female	22	17	76
	126	127	Male	43	71	35
	117	118	Female	49	65	59
	•••					
	106	107	Female	66	63	50
	14	15	Male	37	20	13
	92	93	Male	48	60	49
	179	180	Male	35	93	90
	102	103	Male	67	62	59

150 rows × 5 columns

In [7]: y_test

Out[7]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
9	5 96	Male	24	60	52
1	5 16	Male	22	20	79
3	0 31	Male	60	30	4
15	8 159	Male	34	78	1
12	8 129	Male	59	71	11
11	5 116	Female	19	65	50
6	9 70	Female	32	48	47
17	17 1	Male	40	87	13
17	'4 175	Female	52	88	13
4	.5 46	Female	24	39	65
6	6 67	Female	43	48	50
18	183	Male	46	98	15
16	5 166	Female	36	85	75
7	78 79	Female	23	54	52
18	6 187	Female	54	101	24
17	7 178	Male	27	88	69
5	6 57	Female	51	44	50
15	2 153	Female	44	78	20
8	2 83	Male	67	54	41
6	8 69	Male	19	48	59
12	4 125	Female	23	70	29
1	6 17	Female	35	21	35
14	8 149	Female	34	78	22
9	94	Female	40	60	40

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
65	66	Male	18	48	59
60	61	Male	70	46	56
84	85	Female	21	54	57
67	68	Female	68	48	48
125	126	Female	31	70	77
132	133	Female	25	72	34
9	10	Female	30	19	72
18	19	Male	52	23	29
55	56	Male	47	43	41
75	76	Male	26	54	54
150	151	Male	43	78	17
104	105	Male	49	62	56
135	136	Female	29	73	88
137	138	Male	32	73	73
164	165	Male	50	85	26
76	77	Female	45	54	53
79	80	Female	49	54	42
197	198	Male	32	126	74
38	39	Female	36	37	26
24	25	Female	54	28	14
122	123	Female	40	69	58
195	196	Female	35	120	79
29	30	Female	23	29	87
19	20	Female	35	23	98

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
143	144	Female	32	76	87
86	87	Female	55	57	58

In [8]: x=df.iloc[:,[3,4]].values
x

```
Out[8]: array([[ 15, 39],
               [ 15, 81],
                [ 16,
                       6],
                [ 16,
                      77],
                [ 17,
                      40],
                [ 17, 76],
                [ 18,
                       6],
                [ 18,
                      94],
                [ 19,
                       3],
                [ 19, 72],
                [ 19,
                      14],
                [ 19, 99],
                [ 20,
                      15],
                [ 20,
                     77],
                [ 20,
                      13],
                [ 20, 79],
                [ 21,
                      35],
                [ 21, 66],
                [ 23,
                      29],
                [ 23,
                      98],
                [ 24,
                      35],
                [ 24, 73],
                [ 25,
                       5],
                [ 25,
                      73],
                [ 28,
                      14],
                [ 28,
                      82],
                [ 28,
                      32],
                [ 28,
                      61],
                [ 29,
                      31],
                [ 29,
                      87],
                [ 30,
                       4],
                [ 30,
                      73],
                [ 33,
                       4],
                [ 33, 92],
                [ 33, 14],
                [ 33,
                      81],
                [ 34, 17],
                [ 34, 73],
                [ 37,
                      26],
                [ 37, 75],
                [ 38,
                      35],
                [ 38, 92],
                [ 39, 36],
               [ 39, 61],
```

[40, 55], [40, 47], 42], [40, [40, 42], [42, 52], [42, 60], [43, 54], [43, 60], [43, 45], [43, 41], [44, 50], [44, 46], [46, 51], [46, 46], 56], [46, [46, 55], [47, 52], [47, 59], [48, 51], [48, 59], [48, 50], [48, 48], [48, 59], 47], [48, [49, 55], 42], [49, [50, 49], [50, 56], ^{[54}, 47], [54, 54], [54, 53], [54, 48], [54, 52], 42], [54, [54, 51], [54, 55], [54, 41], [54, 44], [54, 57], [54, 46], [57, 58], [57, 55],

[39, 28], [39,

65],

[58, 60], [58, 46], [59, 55], [59, 41], [60, 49], [60, 40], [60, 42], [60, 52], [60, 47], [60, 50], [61, 42], [61, 49], [62, 41], [62, 48], [62, 59], [62, 55], [62, 56], [62, 42], [63, 50], [63, 46], [63, 43], [63, 48], [63, 52], [63, 54], 42], 64, 64, 46], [65, 48], 50], [65, [65, 43], 59], [65, [67, 43], [67, 57], [67, 56], [67, 40], [69, 58], [69, 91], [70, 29], [70, 77], [71, 35], [71, 95], [71, 11], [71, 75], [71, 9], [71, 75],

[72, 34], [72, 71], [73, 5], [73, 88], [73, 7], [73, 73], [74, 10], [74, 72], [75, 5], ⁷⁵, 93], [[] 76, 40], [76, 87], [77, 12], [77, 97], [77, 36], [77, 74], [78, 22], [78, 90], [78, 17], [78, 88], [78, 20], [78, 76], [78, 16], [78, 89], [78, 1], [78, 78], [78, 1], [78, 73], [79, 35], [79, 83], [81, 5], [81, 93], [85, 26], [85, 75], [86, 20], [86, 95], [87, 27], [87, 63], [87, 13], [87, 75], [87, 10], [87, 92], [88, 13], [88, 86],

```
[ 88, 15],
               [88, 69],
               [ 93, 14],
               [ 93, 90],
               [ 97, 32],
               [ 97, 86],
               [ 98, 15],
               [ 98, 88],
               [ 99, 39],
               [ 99, 97],
               [101, 24],
               [101, 68],
               [103, 17],
               [103, 85],
               [103, 23],
               [103, 69],
               [113, 8],
               [113, 91],
               [120, 16],
               [120, 79],
               [126, 28],
               [126, 74],
               [137, 18],
               [137, 83]], dtype=int64)
In [9]: from sklearn.cluster import KMeans
        wcss = []
        for i in range(1,11):
            kmeans = KMeans(n clusters=i, init='k-means++',random state = 0)
            kmeans.fit(x)
            wcss.append(kmeans.inertia )
        WCSS
        C:\Users\DELL\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:1036: UserWarning: KMeans is known to have a memory leak on
        Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NU
        M THREADS=1.
          warnings.warn(
```

```
[269981.28,
 Out[9]:
           181363.59595959593,
           106348.37306211118,
           73679.78903948836,
           44448.45544793371,
           37265.86520484347,
           30259.65720728547,
           25095.703209997548,
           21830.041978049438,
           20736.679938924124]
In [10]:
          plt.plot(range(1,11),wcss)
          plt.xlabel("NO. of Clusters")
          plt.ylabel("wcss values")
          plt.show()
            250000
            200000
          wcss values
            100000
             50000
                                                       8
                                                                10
                         2
                                     NO. of Clusters
          kmeans= KMeans(n_clusters=5, init='k-means++', random_state=0)
In [11]:
          y_means = kmeans.fit_predict(x)
          y_means
```

array([4, 3, 4, 3,

Out[12]: <matplotlib.collections.PathCollection at 0x23f1660fd00>


```
In [13]: from sklearn.model_selection import KFold
    kfs = KFold(n_splits=5,shuffle=False,random_state=None)
    for train_data_index, test_data_index in kfs.split(df):
        print(train_data_index, test_data_index)
```

```
[ 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199  [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2
0 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39]
                        7 8 9 10 11 12 13 14 15 16 17
[ 0 1 2 3 4 5 6
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 36 37 38 39 80 81 82 83 84 85 86 87 88 89 90 91 92 93
 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199] [40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 6
0 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79]
        2 3 4 5 6
                         7 8
                               9 10 11 12 13 14 15 16 17
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 72 73 74 75 76 77 78 79 120 121 122 123 124 125 126 127 128 129
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
95 96 97
 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
116 117 118 119]
                   5
[ 0 1 2 3
                               9 10 11 12 13 14 15 16 17
               4
                      6
                        7
                             8
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
108 109 110 111 112 113 114 115 116 117 118 119 160 161 162 163 164 165
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199] [120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 1
35 136 137
```

```
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
156 157 158 159]
[ 0 1 2 3
                4
                    5
                       6
                                 9 10 11 12 13 14 15 16 17
                          7 8
                          25 26 27 28
                                        29
                                            30 31 32 33 34 35
        20 21 22
                  23 24
 36 37 38 39
               40 41 42 43 44 45 46 47 48 49 50
                                                      51 52 53
 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
                                                      69
                                                          70 71
 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159] [160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 1
75 176 177
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
196 197 198 199]
```