

■ Definición.

Una señal se define como una **cantidad física** que **varía** con el tiempo, el espacio, o cualquier otro conjunto de variables independientes.

 Los valores de la cantidad física (variable dependiente) pueden ser reales, complejos o vectores.

■ Representación.

Se representan mediante funciones matemáticas, conjunto de datos, reglas, o gráficas.

$$P = \frac{RT}{v - b} - \frac{a}{v^2}$$

Total	CAPV		Alava		Bizkaia		Gipuzkoa	
	24.333	100	4.943	100	12.406	100	6.984	100
Europa	5.623	23,1	1.089	22,0	2.518	20,3	2.016	28,9
Varones	2.990	53,2	607	55,7	1.290	51,2	1.093	54,2
Mujeres	2.633	46,8	482	44,3	1.228	48,8	923	45,8
América	12.339	50,7	2.055	41,6	6.847	55,2	3.437	49,2
Varones	4.931	40,0	827	40,2	2.661	38,9	1.443	42,0
Mujeres	7.408	0,00	1.228	59,8	4.186	61,1	1.994	58,0
Asia	1.305	5,4	266	5,4	695	5,6	344	4,9
Varones	822	63,0	186	69,9	398	57,3	238	69,2
Mujeres	483	37,0	80	30,1	297	42,7	106	30,8
Africa	5.030	20,7	1.530	31,0	2.330	18,8	1.170	16,8
Varones	3.549	70,6	1.030	67,3	1.706	73,2	813	69,5
Mujeres	1.481	29,4	500	32,7	624	26,8	357	30,5
Oceanía	26	0,1	2	0,0	11	0,1	13	0,2
Varones	20	76,9	1	50,0	10	90,9	9	69,2
Mujeres	6	23,1	1	50,0	1	9,1	4	30,8
Apátridas	2	0,0	0	0,0	1	0,0	1	0,0
Varones	1	50,0	0	0,0	0	0,0	1	100
Mujeres	1	50,0	0	0,0	1	100	0	0,0

■ Señales Aleatorias y Deterministas

- **Señal Aleatoria**: Señal que no puede describirse con un grado de precisión razonable mediante fórmulas matemáticas explícitas o cuya descripción es demasiado complicada para ser de utilidad práctica.
 - La falta de tal relación supone que dichas señales evolucionan con el tiempo de forma impredecible.

Ejemplo: Señal sísmica; Señal eléctrica generada por un rayo.

- Señales Aleatorias y Deterministas ...
 - Señal Determinista: Señal que puede ser definida explícitamente por una ecuación matemática, un conjunto de datos, o una regla bien definida.

Ejemplo: Señal de reloj de un PC; Señal de voltaje senoidal.

Señales Multidimensional y Unidimensional

Percepción y Sistemas Inteligentes

- **Señal Unidimensional:** señal función de una sola variable independiente.
- **Ejemplo.** Señal de voltaje: $x(t) = A \cos(2\pi f t + \theta)$
- **Señal Multidimensional:** señal función de M variables independientes.
- \bullet **Ejemplo.** Imagen: I(x,y)

Señal Multicanal y Monocanal

PSI Percepción y Sistemas Inteligentes

Señal Multicanal: Señal generada por múltiples fuentes o sensores.

Ejemplo. Imagen de televisión en colores; Aceleración en la superficie terrestre durante un terremoto.

$$\mathbf{S}_{ter}(t) = \begin{bmatrix} s_1(t) \\ s_2(t) \\ s_3(t) \end{bmatrix} \qquad \text{donde } \begin{cases} s_1(t) \Rightarrow \text{ onda longitudin al interior de la roca} \\ s_2(t) \Rightarrow \text{ onda transversal interior de la roca} \\ s_2(t) \Rightarrow \text{ onda superficial elástica cerca de la superficie} \end{cases}$$

Componentes de la aceleración en tierra de un terremoto

1 de Ingeniería

Escuela de Ingeniería Eléctrica y Electrónica

- Introducción. Las señales pueden clasificarse en cuatro categorías dependiendo de la variable independiente y los valores (V. dependiente) que la señal pueda tomar.
- ♦ Señales en tiempo continuo (analógicas).

Definidas para todos los valores del tiempo y toman cualquier valor en el intervalo continuo (\mathbf{a},\mathbf{b}) , donde \mathbf{a} puede ser $-\infty$ y \mathbf{b} puede ser ∞ .

Ejemplo. $x(t)=cos(\pi t)$; Una onda de voz.

Señales en tiempo discreto. Están definidas sólo para determinados valores del tiempo. Estos instantes pueden o no ser equidistantes.

Ejemplo. $x(n)=sen~(wn)~n=0,\pm 1,\pm 2,\ldots$; El número de manchas solares de Wölfer.

▶ Pueden originarse de dos maneras:

versidad del Valle

- ▶ Muestreando valores de una señal analógica en determinados instantes de tiempo.
- ▶ Acumulando valores de una variable a lo largo de un determinado periodo.

PSI Percepción y Sistemas Inteligentes

◆ Señales de valor continuo. Señal que toma todos los valores posibles en un intervalo tanto finito como infinito.

 $x_{a}(t) = A \cos(2\pi F t + \theta)$ $T_{p} = 1/F$ $A \cos \theta$

- ◆ Señales de valor discreto. Señal que toma valores de un conjunto finito de valores.
 - Los valores pueden ser equidistantes y pueden expresarse como un múltiplo de la distancia entre dos valores sucesivos.

♦ Señal digital

Señal en tiempo discreto que toma valores de un conjunto discreto.

(a) Infinite duration

(b) Finite duration

Sistemas

♦ Definición.

Matemáticamente un sistema es una relación funcional entre la entrada $\mathbf{x}(\mathbf{t})$ y la salida $\mathbf{y}(\mathbf{t})$, que puede expresarse como:

$$y(t_0) = f[x(t); -\infty < t < \infty], -\infty < t_0 < \infty$$

Sistemas

>> Fuente de Señal

- ▶ Un sistema puede definirse como un dispositivo físico que realiza una operación sobre una señal.
- La **forma** en la que se **generan** las señales se encuentra **asociada** con un **sistema** que responde ante un estímulo o fuerza.
- **▶** El estímulo en **combinación** con el sistema se llama **Fuente de Señal**.

Sistemas

■ Ejemplo:

■ Generador de voz humana

Entrada: Aire

SISTEMA:
Pulmones,
Cuerdas vocales
Tracto bucal

Salida: Voz

■ Sistemas Lineales y No Lineales

■ Sistema Lineal

- Aquel que satisface el Teorema de Superposición
 - Propiedad de *Aditividad*

•
$$x_1(n) \to y_1(n); x_2(n) \to y_2(n)$$

•
$$x_3(n) = x_1(n) + x_2(n) \rightarrow y_3(n) = y_1(n) + y_2(n)$$

- Propiedad de *Homogenidad*
 - $x_1(n) \rightarrow y_1(n)$;
 - $a x_1(n) \rightarrow a y_1(n)$;

■ Sistemas Lineales y No Lineales

- Sistema Lineal ...
 - Aquel que satisface el Teorema de Superposición
 - Teorema de Superposición= Aditividad + Homogenidad
 - $x_1(n) \rightarrow y_1(n)$
 - $x_2(n) \rightarrow y_2(n)$
 - $x_3(n) = a_1 x_1(n) + a_2 x_2(n) \rightarrow y_3(n) = a_1 y_1(n) + a_2 y_2(n)$
- Sistema No Lineal:
 - Aquel que no satisface el teorema de superposición.

Sistemas (suite)

- Sistemas Variantes e Invariantes con el Tiempo
 - Sistema *In* variante con el Tiempo.
 - Aquel que ante un desplazamiento temporal en la señal de entrada produce el mismo desplazamiento de tiempo en la señal de salida.

$$si\ y(n) = f[x(n)] \ \to \ y(n - n_0) = f[x(n - n_0)], \quad -\infty < n, \quad n_0 < \infty$$

- Sistema Variante con el Tiempo.
 - Cualquier sistema que no cumpla el requerimiento anterior.

■ Sistemas Causales y No-Causales

Sistema Causal

- Aquel cuya respuesta no empieza antes de que sea aplicada la señal de entrada.
- El valor de y(n) en el instante $n = n_0$ depende sólo de los valores de la entrada x(n) para $n = n_0$, esto es:

$$y(n_0) = f[x(n); n \le n_0]; -\infty < n,$$

$$n_0 < \infty$$

Sistemas (suite)

■ Sistemas Causales y No-Causales

- Sistema Anti-Causal
 - Son todos los sistemas que no satisfagan la condición precedente.
 - No existen en el mundo real.
 - Pueden ser simulados utilizando retardos de tiempo.

Sistemas (suite)

Procesamiento de Señal

- **Sistema:** dispositivo (hardware + software) que realiza una operación o transformación sobre una señal.
- El paso de la señal por el sistema, implica un **procesamiento de señal.**

Ejemplo.

Los filtros selectivos en frecuencia
 ⇒ Reducir el ruido e interferencias de una señal.

Procesamiento de Señales

- PSI Percepción y Sistemas Inteligentes
- Estructura Básica de un Sistema de Procesamiento de Señal
 - >> Procesamiento Analógico

>> Procesamiento Digital

■ Reconfiguración

- **P.D.S.**
 - Permite realizar fácilmente cambios de programas (software)
 - Permite utilizar métodos más complejos

■ P.A.S.

- Cambios de procesamiento implica cambios de hardware
- Se implementan métodos poco sofisticados
- FPGAs están evolucionando

Control de la Precisión

■ P.D.S.

- Se determina fácilmente
- Se establece por la precisión de los conversores (A/D y D/A) y las características arquitectónicas del procesador.

■ P.A.S.

- Difícil de determinar
- Depende de la tolerancia de los componentes y de la variación de sus parámetros con el tiempo

Almacenamieto

■ P.D.S.

- No se presenta deterioro o pérdida en la fidelidad de la señal
- Facilidad de transporte + Compresión
- Permite el análisis en tiempo no-real

■ P.A.S.

- Puede presentarse deterioro o pérdidas en la fidelidad
- No permite fácil análisis en tiempo no-real

Costo

- **P.D.S.**
 - Generalmente más barato
 - Soluciones generales
- **P.A.S**.
 - Más costoso
 - Soluciones particulares

Limitaciones

■ P.D.S.

- La velocidad de operación limitada de los conversores y de los procesadores
- Imposibilidad de utilizar P.D.S. para señales con ancho de banda extremadamente grandes.

■ P.A.S.

Trabajan sin problemas con señales de amplio ancho de banda.

Señales en Tiempo Discreto

Representaciones

■ R. Gráfica

R. Funcional

$$x(n) = \begin{cases} 1, & \text{para } n = 1,3 \\ 4, & \text{para } n = 2,5 \\ 0, & \text{en otro caso} \end{cases}$$

Señales en Tiempo Discreto

■ Representaciones

R. Tabular

$$\frac{n}{x(n)} \begin{vmatrix} \ddots & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & \dots \\ 0 & 0 & 0 & 1 & 4 & 1 & 0 & 0 & \dots \end{vmatrix}$$

R. Secuencial

$$x(n) = \{..., 0, 0, \underline{1}, 4, 8, 3, 0, 0, ...\}$$
 duración infinita $x(n) = \{2, 0, 0, \underline{1}, 4, 8, 3, 0, 0\}$ duración finita

Señales Típicas en Tiempo Discreto

$$\delta(n) \equiv \begin{cases} 1, & \text{para } n = 0 \\ 0, & \text{para } n \neq 0 \end{cases}$$

$$u(n) \equiv \begin{cases} 1, & \text{para } n \ge 0 \\ 0, & \text{para } n < 0 \end{cases}$$

iversidad del Valle

Señales Típicas en Tiempo Discreto

$$x(n) = a^n$$
 para todo n

a real

Señales Típicas en Tiempo Discreto...

Señal exponencial

Percepción y Sistemas Inteligentes

$$a \text{ complejo} \rightarrow a \equiv r e^{j \theta} \rightarrow$$

a complejo
$$\rightarrow$$
 $a \equiv \mathbf{r} e^{\mathbf{j} \theta} \rightarrow x(n) = r^n e^{j\theta n} = r^n \left[cos(\theta n) + j sen(\theta n) \right]$

(b) Gráfica de $\phi(n) = \frac{\pi}{10} n$, módulo 2π dibujada en el intervalo $(-\pi, \pi)$

Señales de Energía y de Potencia

En muchas aplicaciones las señales están directamente relacionadas con cantidades físicas que capturan potencia y energía de un sistema físico.

Definiciones

La energía E de una señal x(n) se define como

$$E = \sum_{n = -\infty}^{\infty} |x(n)|^2$$

- Válido para todo tipo de señal real o compleja
- La energía puede ser finita o infinita
- La energía E_N en un intervalo finito $-N \le n \le N$ se obtiene como:

$$E_N = \sum_{n=-N}^{N} |x(n)|^2$$

Definiciones

La **potencia media** P de una señal x(n) se define como:

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2$$

■ La **energía** y la **potencia** pueden reescribirse como:

$$E = \lim_{N \to \infty} E_N$$

$$P = \lim_{N \to \infty} \frac{1}{2N + 1} E_N$$

Señal de Energía

■ Señal con energía finita y potencia media cero.

Si
$$E < \infty \land P = 0 \Rightarrow$$
 Señal de Energía

Ejemplo: Determinar si la señal x(n) es de *Energía*

$$x(n) = \begin{cases} \frac{1}{n} & n \ge 1\\ 0 & n \le 0 \end{cases}$$

Respuesta:

$$E = \sum_{n=1}^{\infty} (1/n)^2 = \frac{\pi^2}{6}$$

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left| \frac{1}{n} \right|^2 = 0$$

Señal de Energía!!

Señal de Potencia

■ Señal con energía infinita y potencia media finita.

Si
$$E \to \infty$$
 y $0 < P < \infty \Rightarrow$ Señal de Potencia

Ejemplo: Determinar si la señal x(n) es de *Potencia*

$$x(n) = \begin{cases} 3(-1)^n & n \ge 0 \\ 0 & n < 0 \end{cases}$$

■ Respuesta:

$$E = \sum_{n=0}^{\infty} (3|(-1)^n|)^2 \to \infty$$

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \, 9 \sum_{n=0}^{N} 1 = 4.5$$

■ Señal de Potencia!!

- Señales Periódicas y Aperiódicas
 - Una señal es **Periódica** con periodo N > 0 si y sólo si:

$$x(n+N) = x(n), \forall N \in \mathbb{Z}$$

- El valor más pequeño de *N* que cumple la condición anterior corresponde al *periodo fundamental*.
- Una señal es **Aperiódica** si no existe un valor de *N*.
- La potencia para una señal periódica se calcula sobre un periodo:

$$P = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2$$

Las señales periódicas son señales de potencia.

Características de las Señales en T.D

- Señales Periódicas y Aperiódicas...
 - Caso 1: La suma de dos o más señales periódicas es una señal periódica.
 - Sean dos señales periódicas $x_1(n)$ y $x_2(n)$ con periodos fundamentales N_1 y N_2 respectivamente.
 - Luego, la señal $x(n) = x_1(n) + x_2(n)$ será periódica con periodo fundamental N dado por:

$$N = \frac{N_1 N_2}{MCD(N_1, N_2)}$$

Donde, MCD es el máximo común divisor

Características de las Señales en T.D

- Señales Periódicas y Aperiódicas ...
 - Caso 2: El producto de dos o más señales periódicas es una señal periódica.
 - Sean dos señales periódicas $x_1(n)$ y $x_2(n)$ con periodos fundamentales N_1 y N_2 respectivamente.
 - Luego, la señal $x(n) = x_1(n) x_2(n)$ será periódica con periodo fundamental N dado por:

$$N \le \frac{N_1 N_2}{MCD(N_1, N_2)}$$

Características de las Señales en T.D

- Señales Periódicas y Aperiódicas ...
 - Caso especial:
 - La señal sinusoidal $x(n) = A sen (2\pi f_0 n)$ es periódica cuando f_0 es racional, es decir, si puede expresarse como:

$$f_0 = \frac{K}{N}$$

■ Cuando K y N son primos relativos (tienen divisor común a ± 1 ó el máximo divisor común es 1), N es el periodo fundamental.

Señales Simétricas y Antisimétricas

PSI Percepción y Sistemas Inteligentes

♦ Señal Simétrica (par):

$$x(-n) = x(n)$$
 para todo n

♦ Señal antisimétrica (impar):

$$x(-n) = -x(n)$$
 para todo n.

Se cumple:
$$x(0) = 0$$

◆ Descomposición: Cualquier señal puede expresarse como la suma de dos componentes, una par y otra impar:

$$x_{par}(n) = \frac{1}{2} [x(n) + x(-n)]$$
 y $x_{impar}(n) = \frac{1}{2} [x(n) - x(-n)]$
 $x(n) = x_{par}(n) + x_{impar}(n)$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■ Programa Matlab

■ Descomposición de señal en componentes par e impar

```
clc; clear all; close all;
                                                               Señal Original
                                                                                           Señal Par
%Señal de entrada
x=[10 \ 9 \ 8 \ 7 \ 7]
                                   -2 1 4
                                               31:
[nf,nc]=size(x);
n=0:nc-1;
% Descomposición parte par e impar
                                                       -10
                                                                                 -10
xpar=(x+fliplr(x))/2;
                                                                 5
                                                                         10
                                                                                            5
                                                                                                    10
ximpar=(x-fliplr(x))/2;
                                                             Señal Reconstruida
                                                                                          Señal Impar
% Reconstrucción
                                                       100
xrecons=xpar+ximpar;
%Graficación
subplot(2,2,1); stem(n,x); grid on; title('Señal Original')
subplot(2,2,2); stem(n,xpar);grid on; title('Señal_Par');
subplot(2,2,3); stem(n,xrecons); grid on; title('Senat
                                                                                 -10
                                                                         10
                                                                                                    10
Reconstruida');
subplot(2,2,4); stem(n,ximpar); grid on;title('Señal
Impar');
```


PSI Percepción y Sistemas Inteligentes

Manipulación en el Tiempo

Desplazamiento en el tiempo

$$y(n) = x(n \pm k)$$

• siendo *k* un entero positivo

• Retardo:
$$y(n) = x(n - k)$$

• Adelanto: y(n) = x(n + k)

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

- Manipulación en el tiempo ...
 - Reflexión Temporal
 - y(n) = x(-n)

- Manipulación en el tiempo ...
 - **Desplazamiento+ Reflexión**

$$y(n) = x(-n + k)$$

Manipulación en el tiempo ...

Escalamiento temporal

Submuestreo

$$y(n) = x(dn)$$

- siendo d un entero.
- Interpolación

$$y(n) = x\left(\frac{n}{d}\right)$$

- siendo d un entero.
- Utiliza funciones de interpolación

(b)

Manipulación en Amplitud

■ Escalamiento:
$$y(n) = A x(n)$$
 $-\infty < n < \infty$

■ Suma/Resta:
$$y(n) = x_1(n) \pm x_2(n)$$
 $-\infty < n < \infty$

■ Multiplicación:
$$y(n) = x_1(n) \cdot x_2(n)$$
 $-\infty < n < \infty$

División:
$$y(n) = x_1(n) . / x_2(n)$$
 $-\infty < n < \infty$

Exponenciación:
$$y(n) = x_1(n) \hat{x}_2(n) - \infty < n < \infty$$

■ Logaritmo:
$$y(n) = \ln[x_1(n)] - [x_2(n)]^2 - \infty < n < \infty$$

■ Son posibles Todas las operaciones matemáticas

■ Ejercicio

■ Programa en Matlab para aplicar operaciones matemáticas a dos señales.

■ Solución

```
clc; clear all; close all;
Señales x1(n) y x2(n)
x1=[2 \ 4 \ 3 \ 3 \ 4 \ 5 \ 9 \ 5.6 \ 3.2];
x2 = [2 \ 1 \ 10 \ -2 \ 5 \ 6 \ 7.1 \ 2.3 \ 1.8];
n=0:8;
%Operaciones Matemáticas
x3=3*x1+4*x2; %Suma
x4=x1.*x2; %Multiplicación
x5=x1./x2; %División
x6=x1.^x2; % Exponenciación
x7=log(x1)-x2.^2; %Logaritmo
x8=exp(x1)+x2; %Exponenciación
% Visualización
subplot(2,4,1); stem(n,x1); title('x1(n)'); grid on
subplot (2,4,2); stem (n,x2); title ('x2(n)'); grid on
subplot(2,4,3); stem(n,x3); title('Suma'); grid on
subplot(2,4,4); stem(n,x4); title('Multiplicación';grid on)
subplot(2,4,5); stem(n,x5); title('Division'); grid on
subplot(2,4,6); stem(n,x6); title('Exponenciación'); grid on
subplot(2,4,7); stem(n,x7); title('Logaritmo - Resta') ; grid on
subplot(2,4,8); stem(n,x3); title('Exponencial - Suma'); grid on
```


Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

PSI Percepción y Sistemas Inteligentes

■ Solución ...

Sistemas con memoria y sin memoria

■ Sistema sin memoria o estático

- La salida para cada valor de la variable independiente en un tiempo dado sólo depende de la entrada en ese mismo instante.
- **Ejemplos**:

$$y(n) = [x(n)]^2$$
$$y(n) = \frac{1}{5}x(n)$$

Sistemas con memoria y sin memoria

■ Sistema con memoria o dinámico

■ La salida depende de valores de la señal de entrada en el instante actual y de tiempos pasados.

Ejemplos:

$$y(n) = x(n) + 3x(n-1)$$

$$y(n) = \sum_{k=0}^{9} x(n-k) \text{ memoria finita}$$

$$y(n) = \sum_{k=-\infty}^{0} x^{2}(n+k) \text{ memoria infinita}$$

Sistema Recursivo y No-Recursivo

■ Sistema Recursivo

■ La salida para cada valor de la variable independiente en un tiempo dado también depende de los valores pasados de la salida.

■ Ejemplo.

$$y(n) = 5x(n) + 0.8y(n-1)$$

Sistema Recursivo y No-Recursivo

■ Sistema No-Recursivo

La salida depende de valores de la señal de entrada en tiempos presente y/o pasados.

Ejemplos.

$$y(n) = 0.5 x(n) + \sqrt{2} x(n-2)$$

$$y(n) = \frac{1}{3}x(n+1) + \frac{1}{3}x(n) + \frac{1}{3}x(n-1)$$

>> Sistema Invertible

 Aquel que presenta una correspondencia biunívoca entre sus señales de entrada y salida.

• Correspondencia biunívoca es una correspondencia unívoca cuya correspondencia inversa también es unívoca.

>> Sistema Inverso:

• Si un sistema es invertible existe un **sistema inverso** que al conectarlo en cascada con el sistema original, produce una salida w(n) igual a la entrada x(n) del primer sistema.

- Sistema Inverso ...
 - **Ejemplo 1**: Sistema de codificación y decodificación de mensajes.

- Sistema Inverso ...
 - **Ejemplo 2**: Sistema de codificación y decodificación de vídeo y audio sobre WEB

- Sistema Inverso ...
 - **Ejemplos:**

■ Sistema Estable

■ Un sistema es **estable** si y solo si estando reposo y ante una entrada acotada en amplitud produce una salida acotada en amplitud (**BIBO**, **Bounded Input -Bounded Output**)

■ Sistema Inestable

■ Un sistema es **inestable** si para alguna entrada acotada x(n) la salida no está acotada.

Ejemplo

Determinar si el siguiente sistema es estable

$$y(n) = y^{2}(n-1) + x(n); y(-1) = 0$$

Cuando la entrada es $x(n) = C \delta(n)$; $C \in \mathbb{R}$, constante

Solución

- \blacksquare Calcular iterativamente y(n) para distintos valores de n.
- $y(n) = y^2(n-1) + C \delta(n);$
- y(0) = C; $y(1) = C^2;$

$$y(1)=C^2;$$

$$y(2) = C^4$$

$$y(n) = C^{2^n}$$

■ Solución

```
clc; clear all; close all;
Ns=12; % Definición número de muestras
% Entrada x(n) = c d(n)
c=0.9;
x = c*[1 zeros(1,Ns-1)];
yi=0; %condición inicial y(-1)=0
y=zeros(1,Ns);
y(1) = yi^2 + x(1); % evaluando para y(n=0)
for n=1:Ns-1
   y(n+1) = y(n)^2 + x(n+1);
end
n=0:Ns-1;
subplot(2,1,1);
stem(n,x,'LineWidth',2);xlabel('n');ylabel('x(n)');
title(['Entrada x(n); c=' num2str(c)]); grid on;
subplot (2,1,2);
stem(n,y,'LineWidth',2);xlabel('n');ylabel('y(n)');title('Salida y(n)');grid on;
```


PSO Percepción y Sistemas Inteligentes

Solución

■ Para
$$C = 0.9$$

Para
$$C = 1.001$$

PSI Percepción y Sistemas Inteligentes

