Midterm "Take home"-exam FYS3110

Unable to see candidate no

October 7, 2016

1 Spin-1/2 systems

The following is given:

$$\begin{split} \hat{S}^2 &= \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2, \quad \hat{S}^\pm = \hat{S}_x \pm i \hat{S}_y \\ |\uparrow\rangle &\equiv \left|s = \frac{1}{2}, m_s = \frac{1}{2}\right\rangle, \quad |\downarrow\rangle \equiv \left|s = \frac{1}{2}, m_s = -\frac{1}{2}\right\rangle \\ \hat{S}^2 |\uparrow\rangle &= \hbar^2 \frac{1}{2} \left(\frac{1}{2} + 1\right) |\uparrow\rangle, \quad \hat{S}^2 |\downarrow\rangle = \hbar^2 \frac{1}{2} \left(\frac{1}{2} + 1\right) |\downarrow\rangle \\ \hat{S}_z |\uparrow\rangle &= \frac{\hbar}{2} |\uparrow\rangle, \quad \hat{S}_z |\downarrow\rangle = -\frac{\hbar}{2} |\downarrow\rangle \\ [\hat{S}_x, \hat{S}_y] &= i\hbar \hat{S}_z, \quad [\hat{S}_y, \hat{S}_z] = i\hbar \hat{S}_x, \quad [\hat{S}_z, \hat{S}_x] = i\hbar \hat{S}_y \end{split}$$

1.1

$$\hat{S}_z \hat{S}^+ |\downarrow\rangle = \hat{S}_z \hat{S}_x |\downarrow\rangle + i \hat{S}_z \hat{S}_y |\downarrow\rangle$$

rewriting commutation relations

$$\begin{aligned} [\hat{S}_{z}, \hat{S}_{x}] &= \hat{S}_{z} \hat{S}_{x} - \hat{S}_{x} \hat{S}_{z} = i\hbar \hat{S}_{y} \to \hat{S}_{z} \hat{S}_{x} = i\hbar \hat{S}_{y} + \hat{S}_{x} \hat{S}_{z} \\ [\hat{S}_{y}, \hat{S}_{z}] &= \hat{S}_{y} \hat{S}_{z} - \hat{S}_{z} \hat{S}_{y} = i\hbar \hat{S}_{x} \to \hat{S}_{z} \hat{S}_{y} = \hat{S}_{y} \hat{S}_{z} - i\hbar \hat{S}_{x}, \end{aligned}$$

gives

$$\begin{split} \hat{S}_z \hat{S}^+ \left| \downarrow \right\rangle &= \left(i \hbar \hat{S}_y + \hat{S}_x \hat{S}_z + i \hat{S}_y \hat{S}_z + \hbar \hat{S}_x \right) \left| \downarrow \right\rangle \\ &= \left(i \hbar \hat{S}_y - \frac{\hbar}{2} \hat{S}_x - i \frac{\hbar}{2} \hat{S}_y + \hbar \hat{S}_x \right) \left| \downarrow \right\rangle \\ &= \left(\frac{\hbar}{2} \hat{S}_x + i \frac{\hbar}{2} \hat{S}_y \right) \left| \downarrow \right\rangle = \frac{\hbar}{2} \hat{S}^+ \left| \downarrow \right\rangle. \end{split}$$

This means that $\hat{S}^+ |\downarrow\rangle$ is an eigenstate of \hat{S}_z with eigenvalue $\hbar/2$.

1.2

$$\begin{split} \hat{S}^{-}\hat{S}^{+} &= (\hat{S}_{x} - i\hat{S}_{y})(\hat{S}_{x} + i\hat{S}_{y}) \\ &= \hat{S}_{x}^{2} + i\hat{S}_{x}\hat{S}_{y} - i\hat{S}_{y}\hat{S}_{x} + \hat{S}_{y}^{2} \\ &= \hat{S}_{x}^{2} + \hat{S}_{y}^{2} + i[\hat{S}_{x}, \hat{S}_{y}] \\ &= \hat{S}^{2} - \hat{S}_{z}^{2} - i\hbar\hat{S}_{x} \end{split}$$

This can be uses to compute the norm of $|\psi_1\rangle = \hat{S}^+ |\uparrow\rangle$ and $|\psi_2\rangle = \hat{S}^+ |\uparrow\rangle$.

$$\begin{split} \langle \psi_1 | \psi_1 \rangle &= \langle \downarrow | \, \hat{S}^- \hat{S}^+ \, | \downarrow \rangle = \langle \downarrow | \, (\hat{S}^2 - \hat{S}_z^2 - \hbar \hat{S}_z) \, | \downarrow \rangle \\ &= \langle \downarrow | \, \hbar^2 \frac{1}{2} \left(\frac{1}{2} + 1 \right) | \downarrow \rangle - \langle \downarrow | \, \frac{\hbar^2}{4} \, | \downarrow \rangle + \langle \downarrow | \, \frac{2\hbar^2}{4} \, | \downarrow \rangle \\ &= \frac{3\hbar^2}{4} - \frac{\hbar^2}{4} + \frac{2\hbar}{4} = \hbar^2 \end{split}$$

which means that $||\psi_1\rangle|| = \hbar$.

$$\begin{split} \langle \psi_2 | \psi_2 \rangle &= \langle \uparrow | \, \hat{S}^- \hat{S}^+ \, | \uparrow \rangle = \langle \uparrow | \, (\hat{S}^2 - \hat{S}_z^2 - \hbar \hat{S}_z) \, | \uparrow \rangle \\ &= \langle \uparrow | \, \hbar^2 \frac{1}{2} \left(\frac{1}{2} + 1 \right) | \uparrow \rangle - \langle \uparrow | \, \frac{\hbar^2}{4} \, | \uparrow \rangle - \langle \uparrow | \, \frac{2\hbar^2}{4} \, | \uparrow \rangle \\ &= \frac{3\hbar^2}{4} - \frac{\hbar^2}{4} - \frac{2\hbar^2}{4} = 0 \end{split}$$

which measn that $||\psi_2\rangle|| = 0$.