Wiederholung: Kondition Vorlesung vom 13.11.15

Relative Kondition der Grundrechenarten:

Addition, Multiplikation und Division liefern beruhigende Resultate.

Die Subtraktion ist hingegen beliebig schlecht konditioniert (Auslöschung).

Deshalb: Subtraktion fast gleich großer Zahlen vermeiden.

Absolute Kondition von Funktionsauswertungen:

Die absolute Kondition κ_{abs} ist die kleinste Zahl mit der Eigenschaft

$$|f(x_0) - f(x)| < \kappa_{\text{abs}}|x_0 - x| + o(|x_0 - x|)$$
.

Sätze zur absoluten Kondition:

Ist f differenzierbar in x_0 , so gilt $\kappa_{abs} = |f'(x_0)|$.

Ist f Lipschitz-stetig mit Lipschitz-Konstante L, so gilt $\kappa_{\rm abs} \leq L$.

Für geschachtelte Funktionen f(x)=g(h(x)) gilt $\kappa_{\rm abs} \leq \kappa_{\rm abs}(g,y_0) \; \kappa_{\rm abs}(h,x_0)$.

Relative Kondition von Funktionsauswertungen

gegeben: Intervall $I \subset \mathbb{R}$, $f: I \to \mathbb{R}$, $0 \neq x_0 \in I$, $f(x_0) \neq 0$

Problem: (*)

Auswertung von f an der Stelle x_0

Definition 3.6 (Relative Kondition)

Die relative Kondition $\kappa_{\rm rel}$ von (*) ist die kleinste Zahl mit der Eigenschaft

$$\frac{|f(x_0) - f(x)|}{|f(x_0)|} \le \kappa_{\text{rel}} \frac{|x_0 - x|}{|x_0|} + o(|x_0 - x|).$$

Liegt dies für keine reelle Zahl $\kappa_{\rm rel}$ vor, so wird $\kappa_{\rm rel}=\infty$ gesetzt.

Relative versus absolute Kondition

absolute Kondition

$$|f(x_0) - f(x)| \le \kappa_{\text{abs}} |x_0 - x| + o(|x_0 - x|)$$

relative Kondition

$$\frac{|f(x_0) - f(x)|}{|f(x_0)|} \le \kappa_{\text{rel}} \frac{|x_0 - x|}{|x_0|} + o(|x_0 - x|)$$

Relative versus absolute Kondition

absolute Kondition

$$|f(x_0) - f(x)| \le \kappa_{\text{abs}} |x_0 - x| + o(|x_0 - x|)$$

relative Kondition

$$\frac{|f(x_0) - f(x)|}{|f(x_0)|} \le \kappa_{\text{rel}} \frac{|x_0 - x|}{|x_0|} + o(|x_0 - x|)$$

Satz: Es gilt

$$\kappa_{\rm rel} = \frac{|x_0|}{|f(x_0)|} \kappa_{\rm abs}.$$

Nichtlineare Gleichungen

gegeben: Intervall $I=(a,b)\subset\mathbb{R}$, $g:I\mapsto\mathbb{R}$, $y^*\in\mathbb{R}$

Problem: (*)

Finde $x^* \in I$ so dass $g(x^*) = y^*$

Definition 6.16: (Absolute Kondition nichtlinearer Gleichungen) Die absolute Kondition κ_{abs} von (*) ist die kleinste Zahl mit der Eigenschaft

$$|x^* - x| \le \kappa_{\text{abs}}|y^* - y| + o(|y^* - y|)$$

für alle rechten Seiten $y \neq y^*$ mit genügend kleinem Abstand $|y^* - y| > 0$ zu y^* und den zugehörigen Lösungen x des gestörten Problems

$$x \in I:$$
 $g(x) = y$.

Existiert keine solche reelle Zahl κ_{abs} , so wird $\kappa_{abs} = \infty$ gesetzt.

Existenz und Eindeutigkeit gestörter Lösungen

Lemma 6.17:

Sei g stetig differenzierbar in (a,b), $x^* \in (a,b)$: $g(x^*) = y^*$ sowie

$$g'(x^*) \neq 0.$$

Dann gibt es α , $\beta \in \mathbb{R}$ mit $a < \alpha < x^* < \beta < b$, so daß das gestörte Problem x: g(x) = y für jedes $y \in V = (g(\alpha), g(\beta))$ eine eindeutig bestimmte Lösung $x \in U = (\alpha, \beta)$ besitzt.

Existenz und Eindeutigkeit gestörter Lösungen

Lemma 6.17:

Sei g stetig differenzierbar in (a,b), $g(x^*)=y^*$ sowie

$$g'(x^*) \neq 0.$$

Dann gibt es α , $\beta \in \mathbb{R}$ mit $a < \alpha < x^* < \beta < b$, so daß das gestörte Problem x: g(x) = y für jedes $y \in V = (g(\alpha), g(\beta))$ eine eindeutig bestimmte Lösung $x \in U = (\alpha, \beta)$ besitzt.

Folgerung:

Falls $g'(x^*) \neq 0$ existiert eine Umkehrfunktion $g^{-1}: V \to U$ so dass

$$g(g^{-1}(y)) = y, \quad \forall y \in V.$$

Äquivalentes Problem

gegeben: Intervall $I=(a,b)\subset\mathbb{R}$, $g:I\mapsto\mathbb{R}$, $y^*\in V$ mit $g'(x^*)\neq 0$

Problem:

Auswertung von $g^{-1}:V\to\mathbb{R}$ an der Stelle $y^*\in V$

Absolute Kondition der Umkehrfunktion

Lemma 6.18.

Es sei $g \in C^1(a,b)$, $g(x) = y \in V$ und $g'(x) \neq 0$.

Dann ist g^{-1} differenzierbar in y und es gilt

$$(g^{-1})'(y) = \frac{1}{g'(x)} \quad \forall y \in V .$$

Satz 6.19

Es sei $g \in C^1(a,b)$, $g(x^*) = y^*$ und $g'(x^*) \neq 0$. Dann ist die absolute Kondition κ_{abs} der Lösung von

$$x^* \in I: \quad g(x^*) = y^*$$

bei Störung der rechten Seite y^* gegeben durch

$$\kappa_{\rm abs} = \frac{1}{|g'(x^*)|}.$$

Satz 6.19

Es sei $g \in C^1(a,b)$, $g(x^*) = y^*$ und $g'(x^*) \neq 0$. Dann ist die absolute Kondition κ_{abs} der Lösung von

$$x^* \in I: \quad g(x^*) = y^*$$

bei Störung der rechten Seite y^* gegeben durch

$$\kappa_{\rm abs} = \frac{1}{|g'(x^*)|}.$$

Beispiel: y = g(x) = ax, $a \neq 0$,

Satz 6.19

Es sei $g \in C^1(a,b)$, $g(x^*) = y^*$ und $g'(x^*) \neq 0$. Dann ist die absolute Kondition κ_{abs} der Lösung von

$$x^* \in I: \quad g(x^*) = y^*$$

bei Störung der rechten Seite y^* gegeben durch

$$\kappa_{\rm abs} = \frac{1}{|g'(x^*)|}.$$

Beispiel:
$$y = g(x) = ax$$
, $a \neq 0$, $x = g^{-1}(y) = \frac{1}{a}y$,

Satz 6.19

Es sei $g \in C^1(a,b)$, $g(x^*) = y^*$ und $g'(x^*) \neq 0$. Dann ist die absolute Kondition κ_{abs} der Lösung von

$$x^* \in I: \quad g(x^*) = y^*$$

bei Störung der rechten Seite y^* gegeben durch

$$\kappa_{\rm abs} = \frac{1}{|g'(x^*)|}.$$

Beispiel:
$$y = g(x) = ax$$
, $a \neq 0$, $x = g^{-1}(y) = \frac{1}{a}y$, $\kappa_{abs} = \frac{1}{|a|}$

Relative Kondition

Definition 6.16: (Relative Kondition nichtlinearer Gleichungen) Die relative Kondition $\kappa_{\rm rel}$ von (*) ist die kleinste Zahl mit der Eigenschaft

$$\frac{|x^* - x|}{|x^*|} \le \frac{\kappa_{\text{rel}}|y^* - y|}{|y^*|} + o(|y^* - y|)$$

für alle rechten Seiten $y \neq y^*$ mit genügend kleinem Abstand $|y^* - y| > 0$ zu y^* und den zugehörigen Lösungen x des gestörten Problems

$$x \in I: \qquad g(x) = y$$
.

Existiert keine solche reelle Zahl $\kappa_{\rm rel}$, so wird $\kappa_{\rm rel} = \infty$ gesetzt.

Relative Kondition nichtlinearer Gleichungen

Satz 6.21

Es sei $g \in C^1(a,b)$, $a^* \neq 0$, $g(x^*) = y^* \neq 0$ und $g'(x^*) \neq 0$. Dann ist die relative Kondition κ_{abs} der Lösung von

$$x^* \in I: \quad g(x^*) = y^*$$

bei Störung der rechten Seite y^* gegeben durch

$$\kappa_{\text{rel}} = \frac{|g(x^*)|}{|x^*||g'(x^*)|}.$$

Beispiel:
$$g(x) = ax$$
, $a \neq 0$, $g^{-1}(y) = \frac{1}{a}y$, $\kappa_{rel} = \frac{|ax^*|}{|x^*||a|} = 1$

Grenzen der Genauigkeit?

geforderte relative Genauigkeit:
$$err := \frac{|x-x^*|}{|x^*|} < Tol$$

$$err \approx \kappa_{\rm rel} eps < Tol \implies \kappa_{\rm rel} < Tol/eps$$

Grenzen der Genauigkeit?

geforderte relative Genauigkeit:
$$err := \frac{|x-x^*|}{|x^*|} < Tol$$
 $err \approx \kappa_{\rm rel} eps < Tol \implies \kappa_{\rm rel} < Tol/eps$

"schlecht konditioniert": $\kappa_{\rm rel} \geq Tol/eps$

Problem:

$$x^* \in (0, \pi): \quad g(x^*) = y^*, \quad g(x) = \exp(10^{-9}\tan(x-1)), \quad y^* = 1$$

Problem:

$$x^* \in (0, \pi): \quad g(x^*) = y^*, \quad g(x) = \exp(10^{-9}\tan(x-1)), \quad y^* = 1$$

Lösung: $x^* = 1$

Problem:

$$x^* \in (0,\pi): \quad g(x^*) = y^*, \quad g(x) = \exp(10^{-9}\tan(x-1)), \quad y^* = 1$$

Lösung: $x^* = 1$

Kondition: $\kappa_{\rm rel} = 1/g'(x^*) = 10^9$, Genauigkeitsschranke: $\kappa_{\rm rel} eps \approx 10^{-7}$

Problem:

$$x^* \in (0, \pi): \quad g(x^*) = y^*, \quad g(x) = \exp(10^{-9}\tan(x-1)), \quad y^* = 1$$

Lösung: $x^* = 1$

Kondition: $\kappa_{\rm rel} = 1/g'(x^*) = 10^9$, Genauigkeitsschranke: $\kappa_{\rm rel} eps \approx 10^{-7}$

Auswirkung von Eingabefehlern auf das Ergebnis

Die Kondition ist eine Eigenschaft des Problems!

Ronaldinho und die Kondition

Mathematisches Modell: Überflughöhe

Flughöhe und zurückgelegter Weg in Abhängigkeit von Zeit t, Abschussgeschwindigkeit v und -winkel α

$$h(t) = vt\sin\alpha - \frac{1}{2}gt^2$$

$$x(t) = vt \cos \alpha$$

g: Fallbeschleunigung = $9.81m/s^2$

Mathematisches Modell: Flugkurve

Überflughöhe über der Torlinie in Abhängigkeit von Abschussgeschwindigkeit v und -winkel α

$$H(v,\alpha) = x_0 \tan \alpha - \frac{1}{2} g \frac{x_0^2}{v^2 \cos^2 \alpha}$$

g: Fallbeschleunigung = $9.81m/s^2$

Lattentreffer mit zurückspringendem Ball

Überflughöhe abhängig von Abschussgeschwindigkeit v und -winkel α

$$H(v_0 + \Delta v, \alpha_0 + \Delta \alpha) = h_0 + \Delta h \in (2.50 \ m \pm 0.04 \ m)$$

Torhöhe: $h_0 = 2.50 m$, Lattenbreite: 12 cm

Überflughöhe abhängig von Abschussgeschwindigkeit v und -winkel α

$$H(v_0 + \Delta v, \alpha_0 + \Delta \alpha) = h_0 + \Delta h \in (2.50m \pm 0.04m)$$

Erlaubter "Eingabefehler": Δv und $\Delta \alpha$, so dass $|\Delta h| \leq 0.04~m$

Überflughöhe abhängig von Abschussgeschwindigkeit v und -winkel α

$$H(v_0 + \Delta v, \alpha_0 + \Delta \alpha) = h_0 + \Delta h \in (2.50m \pm 0.04m)$$

Erlaubter "Eingabefehler": Δv und $\Delta \alpha$, so dass $|\Delta h| \leq 0.04$

Vereinfachung: fester Abschusswinkel $\Delta \alpha = 0$ ($\Delta \alpha \neq 0$ siehe Skript 6.6)

$$|\Delta h(\Delta v)| = |H(v_0 + \Delta v, \alpha_0) - H(v_0, \alpha_0)| \le 0.04m$$

Uberflughöhe abhängig von Abschussgeschwindigkeit v und -winkel α

$$H(v_0 + \Delta v, \alpha_0 + \Delta \alpha) = h_0 + \Delta h \in (2.50m \pm 0.04m)$$

Erlaubter "Eingabefehler": Δv und $\Delta \alpha$, so dass $|\Delta h| \leq 0.04$

Vereinfachung: fester Abschusswinkel $\Delta \alpha = 0$ ($\Delta \alpha \neq 0$ siehe Skript 6.6)

$$|\Delta h(\Delta v)| = |H(v_0 + \Delta v, \alpha_0) - H(v_0, \alpha_0)| \le 0.04m$$

Kondition: (bei festem $\alpha \equiv \alpha_0$)

$$|H(v_0 + \Delta v, \alpha_0) - H(v_0, \alpha_0)| \leq \kappa_{abs}(H, v_0) \cdot |\Delta v| + o(\Delta v)$$

$$\kappa_{abs}(H, v_0) = \left| \frac{dH}{dv}(v_0, \alpha_0) \right|$$

Vereinfachung: fester Abschusswinkel $\alpha_0 = 45^o$

$$H(v, \alpha_0) = x_0 - g \frac{x_0^2}{v^2}$$

Vereinfachung: fester Abschusswinkel $\alpha_0 = 45^o$

$$H(v, \alpha_0) = x_0 - g \frac{x_0^2}{v^2}$$

$$\kappa_{\text{abs}}(H, v_0) = \left| \frac{dH}{dv}(v_0, \alpha_0) \right| = 2g \frac{x_0^2}{v_0^3}$$

Vereinfachung: fester Abschusswinkel $\alpha_0 = 45^{\circ}$

$$H(v, \alpha_0) = x_0 - g \frac{x_0^2}{v^2}$$

$$\kappa_{\text{abs}}(H, v_0) = \left| \frac{dH}{dv}(v_0, \alpha_0) \right| = 2g \frac{x_0^2}{v_0^3}$$

$$v_0 = \frac{|x_0|\sqrt{g}}{\sqrt{x_0 - h_0}} = 49 \text{ km/h}$$

Vereinfachung: fester Abschusswinkel $\alpha_0 = 45^{\circ}$

$$H(v, \alpha_0) = x_0 - g \frac{x_0^2}{v^2}$$

$$\kappa_{\text{abs}}(H, v_0) = \left| \frac{dH}{dv}(v_0, \alpha_0) \right| = 2g \frac{x_0^2}{v_0^3}$$

$$v_0 = \frac{|x_0|\sqrt{g}}{\sqrt{x_0 - h_0}} = 49 \text{ km/h}$$

$$\kappa_{\text{abs}}(H, v_0) = \frac{2}{\sqrt{g}} \frac{(x_0 - h_0)^{3/2}}{x_0} = 1.98 \text{ s}$$

Relative Kondition

Vereinfachung: fester Abschusswinkel $\alpha_0 = 45^{\circ}$

$$H(v, \alpha_0) = x_0 - g \frac{x_0^2}{v^2}$$

$$\kappa_{\rm abs}(H, v_0) = \frac{2}{\sqrt{g}} \frac{(x_0 - h_0)^{3/2}}{x_0} = 1.98 \text{ s}$$

$$\kappa_{\rm rel}(H, v_0) = \kappa_{\rm abs}(H, v_0) \frac{v_0}{H(v_0, \alpha_0)}$$

$$\kappa_{\rm rel}(H, v_0) = 2 \frac{|x_0 - h_0|}{h_0} = 10.8$$

Eingabefehler: $\Delta \alpha = 0$ (Abschusswinkel), Δv (Abschussgeschwindigkeit)

Auswirkung: $\Delta h = \kappa_{\rm abs} \Delta v + o(|\Delta v|)$

Eingabefehler: $\Delta \alpha = 0$ (Abschusswinkel), Δv (Abschussgeschwindigkeit)

Auswirkung: $\Delta h = \kappa_{\rm abs} \Delta v + o(|\Delta v|)$

Eingabefehler: $\Delta \alpha = 0$ (Abschusswinkel), Δv (Abschussgeschwindigkeit)

Auswirkung: $\Delta h = \kappa_{\rm abs} \Delta v + o(|\Delta v|)$

Anforderung: Abschussgeschwindigkeit von 49 km/h bis auf

$$\Delta h \le 0.04m$$
: $\Delta v \le 0.073 \text{ km/h}$

treffen, also etwa auf ein Promille genau.

Eingabefehler: $\Delta \alpha = 0$ (Abschusswinkel), Δv (Abschussgeschwindigkeit)

Auswirkung: $\Delta h = \kappa_{\rm abs} \Delta v + o(|\Delta v|)$

Anforderung: Abschussgeschwindigkeit von 49 km/h bis auf

$$\Delta h \le 0.04m$$
: $\Delta v \le 0.073 \text{ km/h}$

treffen, also etwa auf ein Promille genau.

Experimente:

Streuung von $\Delta v = 0.28 \ m/s \approx 1 \ km/h$ kann nicht unterschritten werden.