Homework 1

Deadline: Apr 16th, 2024

1. For any $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{R}^d$, we define

$$\mathcal{X} + \mathcal{Y} = \{ \mathbf{x} + \mathbf{y} : \mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y} \}.$$

Suppose sets $\mathcal{A}, \mathcal{B}, \mathcal{C} \subseteq \mathbb{R}^d$ satisfy

$$A + C \subseteq B + C$$
.

- (a) If \mathcal{A} and \mathcal{B} are convex, \mathcal{B} is closed, and \mathcal{C} is bounded, prove $\mathbf{A} \subseteq \mathbf{B}$.
- (b) Show above result can fail if \mathcal{B} is not convex.

(Hint: Observe that $2A + C = \mathbf{A} + (\mathbf{A} + C) \subseteq 2B + C$.)

- 2. Suppose a convex function $g:[0,1]\to\mathbb{R}$ satisfies g(0)=0.
 - (a) Prove the function h(t) = g(t)/t is non-decreasing on $t \in (0,1]$.
 - (b) Prove that for a convex function $f: \mathcal{C} \to \mathbb{R}$ and points $\mathbf{x}_0, \mathbf{x} \in \mathcal{C} \subseteq \mathbb{R}^d$, the quotient

$$\frac{f(\mathbf{x}_0 + t(\mathbf{x} - \mathbf{x}_0)) - f(\mathbf{x}_0)}{t}$$

is non-decreasing as a function of t in (0,1].

3. Suppose C is a nonempty, closed and convex subset of \mathbb{R}^d and define the projection for any $\mathbf{y} \in \mathbb{R}^d$ onto C as

$$\operatorname{proj}_{\mathcal{C}}(\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{C}} \|\mathbf{y} - \mathbf{x}\|_{2}^{2}.$$

Prove that $\|\operatorname{proj}_{\mathcal{C}}(\mathbf{y}_1) - \operatorname{proj}_{\mathcal{C}}(\mathbf{y}_2)\|_2 \le \|\mathbf{y}_1 - \mathbf{y}_2\|_2$.

4. Suppose that function $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable. Prove f is convex if and ony if

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge 0$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.