Fall 2019

CS6501: Topics in Human-Computer Interaction

http://seongkookheo.com/cs6501_fall2019

Lecture 6: Quantitative Evaluation 2

Seongkook Heo

September 12, 2019

What You Learned Last Class

- Setting an experimental task
- Independent and Dependent Variables
- With-in and Between Subjects Designs
 - Counterbalancing
 - Trials and Blocks

Now Design Yours

Find a research question

Set independent variables

Set dependent variables

Set an experimental task

Set the number of trials and blocks

Within-subject or Between-subject design

Estimate total time

Pair up with a partner

Experiments involve humans need IRB (Institutional review board) approval

Reviews research protocols and materials, such as

- Research methodology
 - The risks or benefits
- The rights of the participants
- Anonymity and confidentiality

Participants can be recruited in various ways

- Flyers
- Online Forums
- Crowdworkers

But carefully consider how you can get the right participants: specify the conditions in detail in the recruitment ad.

Always run a pilot study

- Greet the participant
- Introduce the experiment, get a consent form signed
 - Get demographic information and experience
 - Give instructions to completing tasks
 - should be consistent across all participants
 Be polite, professional, and neutral.

- Check if data are valid
- Analyze data using proper analysis methods, as you initially defined in the experiment design
- Do not only report the numbers and test results, discuss findings
- you are the most knowledgeable person for that experiment

Analyzing Results

- Observation:
 - How did the independent variables (IV) affect the dependent variables (DV)?
 - What type of trends occurred?
- Analysis:
 - What conclusions can be made?
 - How can future results be predicted?

Conveying Results

- What are the most important findings?
 - Based on fundamental questions
- How can the results be illustrated?
 - Graphs, charts, etc.

Research Hypotheses

- An experiment normally starts with a research hypothesis.
- A hypothesis is a precise problem statement that can be directly tested through an empirical investigation.

Null hypothesis

Typically states that there is no difference between experimental treatments

Alternative hypothesis

A statement that is mutually exclusive with the null hypothesis

Goal of experiment

Typically to find statistical evidence to reject the null hypothesis in order to support the alternative hypothesis

Null hypothesis

The chance of drawing a red card and a black card is equal

Null hypothesis

The chance of drawing a red card and a black card is equal

Alternative hypothesis

Something fishy is going on...

Null hypothesis

The chance of drawing a red card and a black card is equal

Alternative hypothesis

Something fishy is going on...

Statistical evidence and conclusion

The probability of obtaining the result that we did (10 blk in a row) was 0.001.

Null hypothesis

The chance of drawing a red card and a black card is equal

Alternative hypothesis

Something fishy is going on...

Statistical evidence and conclusion

The probability of obtaining the result that we did (10 blk in a row) was 0.001.

→ Therefore, reject the null hypothesis

Null hypothesis

The chance of drawing a red card and a black card is equal

Alternative hypothesis

Something fishy is going on...

Statistical evidence and conclusion

The probability of obtaining the result that we did (10 blk in a row) was 0.001.

- → Therefore, reject the null hypothesis
- → Professor is a trickster!

What is Hypothesis Testing?

- The use of statistical procedures to answer research questions
- Typical research question (generic):

Is the time to complete a task less using Method A than using Method B?

• For hypothesis testing, we instead use a statement:

There is no difference in the mean time to complete a task using Method A vs. Method B.

- This is the null hypothesis (assumption of "no difference")
- Statistical procedures can be used to reject the null hypothesis

Type I and Type II Errors

- All significance tests are subject to the risk of Type I and Type II errors
- Type I error (also called a "false positive"):
 - Rejecting the null hypothesis when it is true
- Type II error (also called a "false negative"):
 - Not rejecting the null hypothesis when it is false
- It is generally believed that Type I errors are worse than Type II errors
 - A Type I error may result in a condition worse than the current state
 - A Type II error can cost the opportunity to improve the current state

Type I and Type II Errors

Traditional ATM or Touchscreen ATM easier to use?

- It is generally believed that Type I errors are worse than Type II errors
 - A Type I error may result in a condition worse than the current state
 - A Type II error can cost the opportunity to improve the current state

Preparing Data for Analysis

- Record the data
 - Be thorough (if possible: be able to recreate the study)
 - Small file that summarizes each trial + Large log that records everything with time stamp
 - Check for bugs!
- Clean the data
 - Detect errors
 - Formatting
- Remove the outliers
 - Follow guidelines
 - Be consistent

Descriptive Statistics

- Measures of central tendency
 - Mean
 - Median
 - Mode
- Measures of spread
 - Range
 - Variance
 - Standard deviations

Descriptive Statistics

- Measures of central tendency
 - Mean
 - Median
 - Mode
- Measures of spread
 - Range
 - Variance
 - Standard deviations

Statistical Significance

- Null Hypothesis:
 - IV x has no effect on DV y
- "P-Value":
 - Probability of obtaining your results, assuming the null hypothesis is true
- When p < .05
 - Reject the null hypothesis
 - IV x does have an effect on DV y

Analysis of Variance

- The analysis of variance (ANOVA) is the most widely used statistical test for hypothesis testing in factorial experiments
- Determine if an IV has a significant effect on a DV
 - e.g., one of the test conditions is faster/slower than the other
- Remember, an IV has at least two levels

Why Analyse the Variance?

• Seems odd that we analyze the variance, when the research question is concerned with the overall means:

Is the time to complete a task less using Method A than using Method B?

• Let's explain through the t-test...

- Test if means are statistically different
- Equation produces t value
- t value maps to a probability

$$t=rac{\overline{x}_1-\overline{x}_2}{s_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}}$$

• Independent-samples t test: between-group design

Group	Participants	Task completion time	Coding
No prediction	Participant 1 _a	245	0
No prediction	Participant 2a	236	0
No prediction	Participant 3 _a	321	0
No prediction	Participant 4a	212	0
No prediction	Participant 5 _a	267	0
No prediction	Participant 6a	334	0
No prediction	Participant 7 _a	287	0
No prediction	Participant 8a	259	0
With prediction	Participant 1 _b	246	1
With prediction	Participant 2 _b	213	1
With prediction	Participant 3 _b	265	1
With prediction	Participant 4 _b	189	1
With prediction	Participant 5 _b	201	1
With prediction	Participant 6 _b	197	1
With prediction	Participant 7 _b	289	1
With prediction	Participant 8 _b	224	1

• Paired-sample t test: within-group design

Participants	No prediction	With prediction
Participant 1	245	246
Participant 2	236	213
Participant 3	321	265
Participant 4	212	189
Participant 5	267	201
Participant 6	334	197
Participant 7	287	289
Participant 8	259	224

- Test if means are statistically different
- Equation produces t value
- t value maps to a probability
 - Lower variance -> Higher t value -> Lower probability
- Only compares two groups

Soylent

A Word Processor with a Crowd Inside

Michael S. Bernstein msbernst@csail.mit.edu

Assignment #1: Quantitative Evaluation

- Use GoFitts software (http://www.yorku.ca/mack/FittsLawSoftware/doc/index.html?GoFitts.html)
- Choose two pointing devices of your choice: e.g., Touchpad and Mouse
- Run an experiment with four participants
- Measure the throughput for each device
- Report should include:
 - Experiment design (1 paragraph)
 - Experiment results (1 paragraph) + Graphs
 - Your reflections on the study

Due Sep 23 (Mon) 23:59 pm

Assignment instruction will be on the course webpage

Design Project Team Up

- Team of 3 (or 4)
- Team up based on the interest on which usability problem to solve
- Most liked problems + problems you want to solve

Acknowledgements

- Some of the materials are based on materials by
 - Tovi Grossman, Univ. of Toronto
 - Juho Kim, KAIST
 - Scott MacKenzie, Human-Computer Interaction: An Empirical Research Perspective

Thank you!