8.3. Задания на обработку двумерных массивов

- 1. Для вещественной квадратной матрицы порядка *n*:
- а) сформировать одномерный массив элементов $A_1, A_2, ..., A_n$ по правилу: если в i-й строке матрицы элемент, принадлежащий главной диагонали, положителен, то A_i равно сумме элементов i-й строки, предшествующих первому положительному элементу, иначе A_i равно сумме последних элементов i-й строки, начиная с первого по порядку неположительного элемента;
- б) вычислить сумму и число положительных элементов, находящихся на главной диагонали и под ней;
- в) вычислить сумму и число элементов матрицы, находящихся над главной диагональю.
 - 2. Для матрицы A размера $n \times m$ выполнить следующие действия:
- а) сформировать вектор ${\bf B}$, элементы которого равны произведениям элементов строк матрицы;
- б) сформировать вектор С, элементы которого равны суммам элементов столбцов матрицы;
- в) найти наибольший элемент в каждой строке матрицы и затем определить наименьший из них;
- г) найти в каждом столбце матрицы максимальный и минимальный элементы и поместить их на место первого и последнего элементов соответственно;
 - д) подсчитать число столбцов матрицы, в которых есть неотрицательные элементы;
- е) найти все строки с наибольшим и наименьшим произведениями элементов. Вывести эти строки и произведения их элементов;
- ж) найти в каждой строке наибольший элемент и поменять его местами с элементом главной диагонали;
- з) найти наименьший элемент в каждом столбце матрицы и затем определить наибольший из них.
- 3. Вычислить сумму и число положительных элементов каждой строки матрицы. Результаты отпечатать в виде двух столбцов.
- 4. Найти в каждой строке матрицы максимальный и минимальный элементы и поместить их на место первого и последнего элемента строки соответственно.
- 5. Для каждой строки целочисленной матрицы найти число элементов, кратных g, и наибольший из полученных результатов.
- 6. Даны две матрицы A и B размера $n \times n$. Написать программу нахождения суммы диагональных элементов произведения этих матриц.
- 7. Дана матрица A размера $n \times m$. Заменить наименьший элемент каждой строки, начиная со второй, наибольшим элементом предыдущей строки.

- 8. Найти все различные элементы матрицы размера $n \times n$.
- 9. Дана вещественная матрица размера $n \times n$. Вычислить сумму тех ее элементов, расположенных на главной диагонали и ниже нее, которые превосходят по значению все элементы, расположенные выше главной диагонали. Если в матрице нет таких элементов, то необходимо сообщить об этом.
 - 10. Дана матрица размера $n \times n$. Вычислить max S_k , где $S_k = \sum_{i=1}^n a_{ki}^2$.
- 11. Дана матрица A целых чисел размера $n \times m$. Переставить в ней элементы так, чтобы сначала следовали четные элементы, а затем нечетные.
- 12. Дана матрица размера $n \times n$. Определить, является ли она магическим квадратом, т. е. сумма элементов в строках, столбцах и на главных диагоналях равна.
- 13. На клеточном листе бумаги размером $n \times m$ расположены прямоугольники. Задана матрица размера $n \times m$, в которой элемент $a_{ij} = 1$, если клетка листа (i, j) является частью прямоугольника, и $a_{ij} = 0$, если это пустая клетка. Напечатать число прямоугольников и координаты их вершин.
- 14. Матрица является ортонормированной, если скалярное произведение каждой пары различных строк равно 0, а скалярное произведение каждой строки на себя равно 1. Определить, является ли заданная матрица A размера $N \times M$ ортонормированной.
- 15. Задана квадратная таблица размера $N \times N$. Преобразовать ее, осуществив поворот элементов вокруг ее центра на 90° по часовой стрелке.
- 16. Элемент матрицы A размера $N \times M$ называют седловой точкой, если он является наименьшим в своей строке и одновременно наибольшим в своем столбце или является наибольшим в своей строке и одновременно наименьшим в своем столбце. Найти индексы всех седловых точек матрицы.
- 17. Найти сумму элементов заштрихованной области таблицы A размера $N \times N$ (рис. 8. 1).

X				X	1	X	X	X	X	X	1	X		
	X		X		2		X	X	X		2	X	X	
		X			3			X			3	X	X	X
	X		X		4		X	X	X		4	X	X	
X				X	5	X	X	X	X	X	5	X		
1	2	3	4	5	•	1	2	3	4	5		1	2	3

- 18. Дана матрица A размера $N \times M$. Переставляя ее строки и столбцы, добиться того, чтобы наибольший элемент (какой-либо) оказался в левом верхнем углу.
- 19. Имеется таблица размера $N \times N$ с именем Табл результатов некоторого спортивного турнира, в котором участвовало N команд (N > 2). Элемент таблицы Табл[i, j] = 2, если i-я команда выиграла у j-й. Если i-я команда проиграла j-й, то Табл[i, j] = 0. Если i-я и j-я команды сыграли вничью, то Табл[i, j] = 1. Кроме того, Табл[i, i] = 0. Перечислить команды в порядке невозрастания набранной ими суммы очков.

(рис. 8. 2). б) Γ) a) mkk в) mmk m mX X X X XXXX XXX XXXX XXX XXXX XXXXXX XX k X XN/2km3) e) ж) д) mm m X | X | X | X | X | X | X | kkX | X | X | X | XX m*N*/2 X X X X X X X kXXXXXX *N*/2 k й) mu)mK) m л) X m XXXXX km*N*/2 X X X X X k *N*/2 kmн) o) п) MmmX X X X m X | X | X | X kXXXX XX $X \mid X \mid X$ $k \mid X$ mN/2 XXXX $X \mid X \mid X$ X|X|X|X $X \mid X$ kX *N*/2 T) kmy) mc) p) m $X \mid X \mid X$ $X \mid X$ m X | X | X | X $X \mid X$ kmN/2 X X X X X X X X X XXXXXXX k $X \mid X \mid X \mid X$

20. Найти наибольший элемент заштрихованной области таблицы A размера $N \times N$

Рис. 8. 2