# Fehlordnungen in Kristallen

### II.5 Gitterfehler

| II.5.1 | Punktdefekte            | Chemische Verunreinigungen<br>Fehlstellen und Zwischengitteratome |
|--------|-------------------------|-------------------------------------------------------------------|
| II.5.2 | Stapelfehler            |                                                                   |
| II.5.3 | Versetzungen            | Versetzungslinien<br>Stufenversetzungen<br>Schraubenversetzungen  |
| II.5.4 | Kleinwinkel-Korngrenzen |                                                                   |

### II.6 Polykristalline und amorphe Festkörper

### 0 dimensionale Punktdefekte

#### II.5.1.2 Fehlstellen

unbesetzter Gitterplatz durch fehlendes Atom / Ion Schottky-Defekt



in NaCl-Struktur:

- 1. fehlendes Kation
- 2. " Anion
- 3. " Kation-Anion-Paar

unbesetzter Gitterplatz+ Zwischengitteratom /-IonFrenkel-Defekt



Zwischengitteratom oft nur temporär bei Diffusion

Beide Defekte verursachen eine Gitterverzerrung

Diffusion in Kristallen (Bsp: Legierung)

- (i) Wandern von Leerstellen
- (ii) Wandern v. Atomen über Zwischengitterplätze



(iii) direkter Platztausch.



# Punktdefekte (0-dimensional)

Schottky-Defekt



a) Leerstelle

Leerstelle-Zwischengitteratom = Frenkeldefekt



b) Zwischengitteratom

Leerstellenkonzentration ist temperaturabhängig, z.B. Al 10<sup>-4</sup> (500 K), 10<sup>-1</sup> (660 K)

#### Konsequenzen von Fehlstellen

(i) erhöhte Diffusion

(ii) in Ionenkristallen: bei E-Feld

Wanderung der Ionen = Ladungstransport

Ionenleitung



(iii) in Alkali-Halogenid-Kristallen:

statt fehlendes Halogenid-Ion:

e--Ladung

(eigentlich "verteilt" über Kristall wegen quantenmech. Wellenfunktion)

Folge: optische Absorption im Sichtbaren statt Transparenz des reinen Kristalls (siehe FK 2):

Farbzentren (F-Zentren)

**Farbtönung** 

Erzeugung von Fehlstellen:

z.B. "Abschrecken" des Kristalls bei erhöhter Temperatur Bestrahlung mit hochenergetischer Strahlung (Röntgen, Teilchen)

## Farbzentren in Diamant

F Zentrum





Einbau von N-Atom (e-Donor) > gelbe Farbe Einbau von B-Atom (e-Akzeptor) > blaue Farbe

#### II.5.2 Stapelfehler

entstehen durch "Gleiten" von Gitterebenen gegeneinander, oder direkt beim Wachstum der Kristalle.

#### bei dichtesten Kugelpackungen:

einzelne hcp-artige Abfolgen

in fcc-Kristall oder umgekehrt

d.h. ABCABCABABCABC bzw. ABABABCABAB

analog: bei tetraedrischen Kristallen:

unregelmäßiger Wechsel zwischen kubisch Zinkblende und Wurtzit (siehe Beispiel der Nanokristalle)

oder regelmäßiger Wechsel: Silicium-Carbid (SiC):

mehrere Polytypen:

z.B. 3C 4H 6H 15R

ABC ABCB ABCACB ABCACBCABACABCB

### II.5.3 Versetzungen

```
bei äußeren Kräften
(z.B. Scherkräften)

1. Stufe: elastische Verformung (FK1a, Kap. 5)
reversibel

2. Stufe: plastische Verformung
irreversibel → Versetzung

"Ausrasten" und verschobenes
"Einrasten" der Bindungen
= Gleiten der Ebenen gegeneinander

Gleitebenen:
hochsymmetrische Ebenen
```

bei fcc {111}, bei bcc {110}, {112}, {123}

### Versetzungstypen

Versetzungslinie = "offenes Ende"
= Begrenzung von
Halbebene im Gitter



#### II.5.3.1 Stufenversetzungen

Gleitrichtung senkrecht zur Versetzungslinie



#### II.5.3.2 <u>Schrauben</u>versetzungen

Gleitrichtung parallel zur Versetzung

# Stufenversetzungen







# Stufen und Schrauben Versetzungen



# Schraubenversetzung



# Schraubenversetzung



### II.5.4 Kleinwinkelkorngrenzen

Kleinwinkelkorngrenze

= Reihe von Versetzungen

realistische Winkel zwischen den Gittervektoren der Körner:

Bogensekunden bis Bogenminuten

