Support Vector Machine

Clasificación

Introducción

SVM de margen duro

SVM de margen suave

Kernel Trick

Métricas de

Support Vector Machine SVM

Dr. Mauricio Toledo-Acosta

Diplomado Ciencia de Datos con Python

Table of Contents

Support Vector

Clasificación

Introducció

SVM de margen durc

SVM de margen suav

Kernel Tricl

Métricas de desempeño

- Introducción
- SVM de margen duro
- 3 SVM de margen suave
- 4 Kernel Trick
- Métricas de desempeño

Introducción

Vector Machine

Clasificación

Introducción

SVM de

SVM de

Karnal Trick

Métricas de desempeño

Introducción

Support Vector Machine

Clasificación

Introducció

SVM de margen duro

SVM de margen suave

Kernel Trick

Métricas de

Support Vector Machine

Modelo supervisado de clasificación binaria que busca encontrar una frontera de decisión óptima que separe las clases de puntos.

Introducción

Support Vector Machine

Clasificación

Introducciór

SVM de margen durc

SVIVI de margen suav

Kernel Trick

Métricas de

En lugar de aprender las caracteristicas que los separan, SVM busca manzanas que son similares a limones y viceversa. Estos son los *vectores de soporte*, sobre estos vectores el algoritmo busca encontrar el mejor hiperplano que los separa.

La distancia de los vectores de soporte a la frontera de decisión es el *margen*.

El modelo lineal de clasificación

Support Vector

Clasificación

Introducción

SVM de margen durc

SVM de margen suave

Kernel Trick

Métricas de desempeño Los puntos x que satisfacen $y(x) = w^T \cdot x + w_0 = 0$ forman la frontera de decisión (FD), la cual divide al espacio de datos en dos regiones.

Table of Contents

Support Vector Machine

Clasificación

Introducción

SVM de margen dure

SVM de margen suave

Kernel Trick

Métricas de

- Introducción
- 2 SVM de margen duro
- 3 SVM de margen suave
- 4 Kernel Trick
- Métricas de desempeño

SVM de margen duro

Suppor Vector Machin

Clasificación

Introducción

SVM de margen durc

SVM de margen suave

Kernel Trick

Métricas de desempeño Analicemos el caso con datos linealmente separables. Cambiaremos ligeramente la notación, FD está definida por $g(x) = w^T \cdot x - t = 0$. Queremos encontrar una FD con margen m = 1.

Support Vector Machine

Clasificación

Introducción

SVM de margen durc

SVM de margen suave

Kernel Trick

Métricas de desempeño ► Nuestro objetivo es:

$$\mathbf{w}^*, t^* = \underset{\mathbf{w}, t}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{w}||^2$$

► Sujeto a las siguientes *N* restricciones:

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle - t) \ge 1, \quad 1 \le i \le N$$

Support Vector Machine

Clasificación

Introducción

SVM de margen duro

SVM de margen suav

Kernel Trick

Métricas de desempeño Definimos el lagrangiano $\mathcal{L}_{P}(\mathbf{w},t,\alpha_{1},\cdots,\alpha_{N}) = \frac{\frac{1}{2}\|\mathbf{w}\|^{2} - \sum_{i=1}^{N}\alpha_{i}(yi(\langle \mathbf{w},\mathbf{x}_{i}\rangle - t) - 1)}{\frac{1}{2}\|\mathbf{w}\|^{2} - \sum_{i=1}^{N}\alpha_{i}y_{i}\langle \mathbf{w},\mathbf{x}_{i}\rangle + \sum_{i=1}^{N}\alpha_{i}y_{i}t + \sum_{i=1}^{N}\alpha_{i}}$

$$= \frac{\frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{N} \alpha_i y_i \langle \mathbf{w}, \mathbf{x}_i \rangle + \sum_{i=1}^{N} \alpha_i y_i t + \sum_{i=1}^{N} \alpha_i }{2}$$

$$= \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle - \langle \mathbf{w}, \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i \rangle + t \left(\sum_{i=1}^{N} \alpha_i y_i \right) + \sum_{i=1}^{N} \alpha_i }{2}$$

- $lackbr{\triangleright}$ Para un t óptimo $\partial_t \mathcal{L}_P = 0 \Longrightarrow \sum_{i=1}^N \alpha_i y_i = 0$
- $lackbox{
 ightharpoonup}$ Para pesos óptimos $\partial_{f w} \mathcal{L}_P = 0 \Longrightarrow {f w} = \sum_{i=1}^N lpha_i y_i {f x}_i$

Vector Machine

Clasificación

Introducción

SVM de margen durc

SVM de

Kernel Trick

Métricas de desempeño • Reinsertando estas expresiones en \mathcal{L}_P obtenemos \mathcal{L}_D el lagrangiano del problema dual:

$$\mathcal{L}_{D}(\alpha_{1}, \cdots, \alpha_{N}) = -\frac{1}{2} \left(\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}, \sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} \right) + \sum_{i=1}^{N} \alpha_{i}$$

$$= -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \, \alpha_j y_i y_j \, \langle \mathbf{x}_i, \mathbf{x}_j \rangle + \sum_{i=1}^{N} \alpha_i$$

Support Vector

Clasificación

Introducció

SVM de margen durc

SVM de

Kernel Trick

Métricas de desempeño • El problema de optimización dual es el siquiente:

$$\alpha_{1}^{*},\cdots,\alpha_{N}^{*} = \underset{\alpha_{1},\cdots,\alpha_{N}}{\operatorname{argmax}} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \, \alpha_{j} y_{i} y_{j} \, \langle \mathbf{x}_{i},\mathbf{x}_{j} \rangle + \sum\nolimits_{i=1}^{N} \alpha_{i}$$

• Sujeto a las restricciones:

$$\alpha_i>0$$
 , $1\leq i\leq N$ y $\sum_{i=1}^N\alpha_iy_i=0$

Ejemplo

Vector Machine

Clasificación

Introducción

SVM de margen durc

SVM de margen suav

Kernel Trick

Métricas de desempeño

► Encuentra W óptimo para este problema: X1=[0,0] X2=[1,0] para la clase (+1) y X3=[2,0] y X4=[0,2] para la clase (-1)

Ejemplo

Suppor Vector Machin

Clasificación

Introducción

SVM de margen durc

SVM de margen suave

Kernel Trick

Métricas de desempeño

$$\begin{split} \mathcal{L}_{D}(\alpha_{1},\cdots,\alpha_{N}) &= \sum\nolimits_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum\limits_{i=1}^{N} \sum\limits_{j=1}^{N} \alpha_{i} \, \alpha_{j} y_{i} y_{j} \left\langle \mathbf{x}_{i}, \mathbf{x}_{j} \right\rangle \\ \mathcal{L}_{D} &= (\alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4}) - \frac{1}{2} \left(\alpha_{2}^{2} - 4\alpha_{2}\alpha_{3} + 4\alpha_{3}^{2} + 4\alpha_{4}^{2}\right) \end{split}$$

Diferenciando con respecto a los α 's y utilizando la restricción $\sum_{i=1}^N \alpha_i y_i = 0$ obtenemos:

$$\left\{ \begin{array}{ll} \alpha_1+\alpha_2-\alpha_3-\alpha_4=0 \\ \alpha_2-2\alpha_3=1 \\ -2\alpha_2+4\alpha_3=1 \\ 4\alpha_4=1 \end{array} \right. \quad \text{de donde: } \alpha_1=0, \; \alpha_2=1, \; \alpha_3=\frac{3}{4}, \; \alpha_4=1/4$$

$$\text{Aplicando: } \mathbf{w}=\sum_{i=1}^N \alpha_i y_i \mathbf{x}_i, \; \text{finalmente obtenemos} \\ \mathbf{w}=\begin{bmatrix} -1/2 \\ -1/2 \end{bmatrix}, \; w_0=3/4 \; \text{y} \; d(x)=3-2\mathbf{x}_1-2\mathbf{x}_2=0$$

Table of Contents

Support Vector

Clasificación

Introducción

SVM de margen durc

SVM de margen suave

Kernel Tricl

Métricas de

- Introducción
- 2 SVM de margen duro
- 3 SVM de margen suave
- 4 Kernel Trick
- Métricas de desempeño

SVM de margen suave

Suppor Vector Machin

Clasificación

Introducción

SVM de margen duro

SVM de margen suave

Kernel Trick

Métricas de desempeño

- La SVM anterior no funciona con datos no-separables
- Introducimos variables de holgura ξ_i para cada dato de entrada, lo que les permite a algunos de ellos estar dentro del margen, o incluso del lado equivocado de la frontera de decision.

SVM de margen suave

Support Vector Machine

Clasificación

Introducción

SVM de margen duro

SVM de margen suave

Kernel Trick

Métricas de desempeño

$$\mathbf{w}^*, t^*, \boldsymbol{\xi}_i^* = \underset{\mathbf{w}, t, \boldsymbol{\xi}_i}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \boldsymbol{\xi}_i$$
sujeto a $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle - t) \ge 1 - \boldsymbol{\xi}_i \ \ \mathbf{y} \ \boldsymbol{\xi}_i \ge 0, 1 \le i \le N$

- ► Ces un parámetro definido por el usuario que balancea la maximización del margen contra la minimización de las variables de holgura:
 - un valor alto de C significa que los errores de margen son altamente costosos,
 - un valor pequeño de C permite más errores de margen con tal de hacer mas grande el margen.
- Si permitimos más errores de margen necesitamos menos vectores de soporte, por lo tanto C controla la 'complejidad' de la SVM y por ello se le denomina el parámetro de complejidad.

SVM de margen suave

Support Vector Machine

Clasificación

Introducción

SVM de margen duro

SVM de margen suave

Kernel Trick

Métricas de desempeño ► Buscamos soluciones mediante el nuevo Lagrangiano:

$$\begin{split} \mathcal{L}(\mathbf{w},t,\xi_{i},\alpha_{i},\beta_{i}) &= \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i} \big(yi \left(\langle \mathbf{w}, \mathbf{x}_{i} \rangle - t \right) - (1 - \xi_{i}) \big) - \sum_{i=1}^{N} \beta_{i} \xi_{i} \\ &= \mathcal{L}(\mathbf{w},t,\alpha_{i}) + \sum_{i=1}^{N} (C - \alpha_{i} - \beta_{i}) \xi_{i} \end{split}$$

- ▶ La solución óptima es tal que $\partial_{\xi_l}\mathcal{L}=0$ ⇒ el término añadido desaparece en el problema dual.
- \blacktriangleright Además, puesto que α_i y β_i son positivos, α_i no puede ser mayor a C:

$$\alpha_1^*, \dots, \alpha_N^* = \underset{\alpha_1, \dots, \alpha_N}{\operatorname{argmax}} - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \, \alpha_j y_i y_j \, \langle \mathbf{x}_i, \mathbf{x}_j \rangle + \sum_{i=1}^N \alpha_i$$

Sujeto a las restricciones: $0 \le \alpha_i \le \mathcal{C}$, $1 \le i \le N$ y $\sum_{i=1}^N \alpha_i y_i = 0$

Table of Contents

Support Vector

Clasificación

Introducción

SVM de margen durc

SVM de margen suave

Kernel Trick

Métricas de desempeño

- Introducción
- SVM de margen duro
- 3 SVM de margen suave
- 4 Kernel Trick
- Métricas de desempeño

El truco del Kernel

Support Vector

Clasificación

Introducción

SVM de

SVM de

Kernel Tricl

Métricas de desempeño

El truco del Kernel

Support Vector

Clasificación

SVM de

SVM de

Kernel Trick

Métricas de desempeño

Tipos de Kernel

Support Vector

Clasificación

Introduccio

margen duro

SVM de margen suave

Kernel Trick

Métricas de desempeño Aunque nuevos kernels aparecen en la literatura, los siguientes cuatro son básicos y ampliamente utilizados:

Lineal:	$\kappa(\mathbf{x}_i,\mathbf{x}_j) = \langle \mathbf{x}_i,\mathbf{x}_j \rangle$	
Polinomial:	$\kappa(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + r)^p, r \ge 0$	
Gaussiano (Radial Basis Function – RBF):	$\kappa(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(\frac{-\ \mathbf{x}_i - \mathbf{x}_j\ ^2}{2\sigma^2}\right) = \exp\left(-\gamma \ \mathbf{x}_i - \mathbf{x}_j\ ^2\right)$	
Sigmoide:	$\kappa(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\gamma(\mathbf{x}_i, \mathbf{x}_j) + r)$	

donde r, p, γ son parámetros de los modelos.

Table of Contents

Support Vector

Clasificación

Introducción

SVM de margen dure

SVM de margen suave

Kernel Trick

Métricas de

- Introducción
 - 2 SVM de margen duro
- 3 SVM de margen suave
- 4 Kernel Trick
- Métricas de desempeño

Matriz de Confusión

Support Vector

Clasificación

Introducción

SVM de

SVM de

Kernel Tricl

Métricas de

		Predicted condition					
	Total population = P + N	Positive (PP)	Negative (PN)				
Actual condition	Positive (P)	True positive (TP)	False negative (FN)				
	Negative (N)	False positive (FP)	True negative (TN)				

Métricas de desempeño

Support Vector Machine

Clasificación

Introducción

SVM de margen duro

SVM de margen suave

Kernel Trick

Métricas de desempeño Accuracy: De todos la población, ¿cuántos predije correctamente?

$$A = \frac{TP + TN}{\text{Total}}.$$

 Recall: De todos la población positiva, ¿cuántos predije correctamente como positivos?

$$R = \frac{TP}{TP + FN}.$$

 Precision: De todos los que predije como positivos, ¿cuántos son realmente positivos?

$$P = \frac{TP}{TP + FP}.$$

• **F1 score**: Media armónica de la precisión y el recall:

$$2\frac{P\cdot R}{P+R}$$

Ejemplo

Suppor Vector Machin

Clasificación

Introducció

SVM de margen durc

SVM de margen suave

Kernel Trick

Métricas de desempeño Tenemos la siguiente población $\{++---\}$:

•	+	+	-	-	-	-
	-	ı	ı	ı	ı	ı

Accuracy: 0.66, Recall: 0, Precision: 0.

Accuracy: 0.33, Recall: 1, Precision: 0.33.