Name	Pranay Singhvi
UID no.	2021300126

Experiment 4		
AIM:	The aim of this experiment is to implement computationally Fast Algorithms.	
OBJECTIVE:	1.Develop a program to perform FFT of N point Signal.	
	2.Calculate FFT of a given DT signal and verify the results using mathematical formula.	
	3.Computational efficiency of FFT.	
PROBLEM	(1) Take any four-point sequence x[n].	
DEFINITION:	Find FFT of $x[n]$ and IFFT of $x[k]$.	
	(2) Calculate Real and Complex Additions & Multiplications involved to find X[k].	
INPUT	1. Length of first Signal N	
SPECIFICATIONS	2. DT Signal values	
EXPERIMENTATION AND RESULT ANALYSIS		

EXPERIMENTATION AND RESULT ANALYSIS

CASE 1: To find DFT of 4 point sequence

Input $x[n] = \{ 6,7,8,10 \}$ Length L= 4

Output : x[K] =


```
Enter the length of the signal (N): 4
Enter the value of x[0]: 6
Enter the value of x[1]: 7
Enter the value of x[2]: 8
Enter the value of x[3]: 9
Magnitude of FFT output: [30. 2.82842712 2. 2.82842712]

Operation Counts for FFT:
Complex Additions: 8
Complex Multiplications: 4

Time Comparison:
DFT time: 0.0008487701416015625 seconds
FFT time: 0.0014498233795166016 seconds
```

CASE 2 To find DFT of zero padded signal

Input $x[n] = \{ 6,7,8,10,0,0,0,0 \}$ Length L= 8


```
Enter the length of the signal (N): 8
Enter the value of x[0]: 6
Enter the value of x[1]: 7
Enter the value of x[2]: 8
Enter the value of x[3]: 9
Enter the value of x[4]: 0
Enter the value of x[5]: 0
Enter the value of x[6]: 0
Enter the value of x[7]: 0
Magnitude of FFT output: [30.
                                           19.85066178 2.82842712 8.12103606 2.
                                                                                                   8.12103606
  2.82842712 19.85066178]
Operation Counts for FFT:
Complex Additions: 24
Complex Multiplications: 12
Time Comparison:
DFT time: 0.0009331703186035156 seconds
FFT time: 0.0019440650939941406 seconds
```

CONCLUSION:

- 1. Computational Efficiency in DFT:
- a) Total Real Multiplications = $4N^2$
- b) Total Real Additions = $4N^2-2N$
- 2. Computational Efficiency in FFT:
- a) Total Real Multiplications = 2N*Log2N
- b) Total Real Additions = 3N*Log2N
- 3. FFT produces fast results due to:
- a) Less Computations
- b) Parallel implementations