FERIENKURS ANALYSIS 2 FÜR PHYSIKER

JOHANNES R. KAGER UND JULIAN SIEBER

Aufgabenblatt 3

Aufgabe 1 (*). Bestimmen Sie die Länge des Graphen der Funktion $f: [-2,2] \to \mathbb{R}$,

$$f(x) = \frac{1}{2}\cosh(2x).$$

Aufgabe 2 (*). Bestimmen Sie die Länge der durch $\gamma:[0,1]\to\mathbb{R}^2$,

$$\gamma(t) = \begin{pmatrix} t^3 - 3t \\ 3t^2 - 4 \end{pmatrix},$$

gegebenen Kurve.

Aufgabe 3 (*). Berechnen Sie die Kurvenintegrale 2.Art $\int_{\mathcal{S}} v(x) \cdot dx$ für

- (i) $v(x,y) = (x^2 + y, 2xy)$ und γ der Einheitskreis, durchlaufen in der mathematisch positiven Richtung;
- (ii) v(x,y) = (x+y,2x-y) und γ der Bogen beschrieben durch $y=x^3$ von (-2,-8) bis (1,1).

Aufgabe 4 (*). Sei $\gamma:[0,1]\to\mathbb{R}^3$,

$$\gamma(t) = \begin{pmatrix} t^3 \\ t^2 + t \\ t \end{pmatrix}.$$

Berechnen Sie $\int_{\gamma} v(x) \cdot dx$ für

(i)
$$v(x,y,z) = \begin{pmatrix} 2xy^3 \\ 3x^2y^2 + 2yz \\ y^2 \end{pmatrix};$$
(ii)
$$v(x,y,z) = \begin{pmatrix} x+z \\ x+y+z \\ x+z \end{pmatrix}.$$

(ii)
$$v(x, y, z) = \begin{pmatrix} x + z \\ x + y + z \\ x + z \end{pmatrix}$$

Aufgabe 5 (**). Sei $v: \mathbb{R}^3 \to \mathbb{R}^3$ definiert durch

$$v(x, y, z) = \begin{pmatrix} y \\ xz \\ x^2 \end{pmatrix}$$

- (i) Ist v ein Gradientenfeld?
- (ii) Berechnen Sie $\int_{\gamma} v(x) \cdot dx$, wobei γ den Rand des Dreiecks mit Eckpunkten (1,0,0), (0,1,0) und (0,0,1) in der Reihenfolge $(1,0,0) \to (0,1,0) \to (0,0,1) \to (1,0,0)$ durchläuft.

Aufgabe 6 $(\star\star)$. Sei $g:(0,\infty)\to\mathbb{R}$ stetig differenzierbar und sei $v:\mathbb{R}^n\setminus\{0\}\to\mathbb{R}^n$ definiert durch v(x) = g(|x|)x.

(i) Seien $\gamma:[0,1]\to\mathbb{R}^n\setminus\{0\}$ eine stetig differenzierbare Kurve und c>0 so, dass $|\gamma(t)|=c$ für alle $t \in [0,1]$. Zeigen Sie, dass

$$\int_{\gamma} v(x) \cdot dx = 0.$$

(ii) Zeigen Sie, dass $\frac{\partial v_i}{\partial x_j}(x) = \frac{\partial v_j}{\partial x_i}(x)$ für alle $i \neq j$ und $x \in \mathbb{R}^n \setminus \{0\}$.

Aufgabe 7 (*). Ist das Vektorfeld $v: \mathbb{R}^3 \to \mathbb{R}^3$,

$$v(x, y, z) = \begin{pmatrix} y \\ z\cos(yz) + z \\ y\cos(yz) \end{pmatrix}$$

konservativ?

Berechnen Sie die Divergenz von v.

Aufgabe 8 (*). Bestimmen Sie ein Potential für das Vektorfeld $v: \mathbb{R}^2 \to \mathbb{R}^2$,

$$v(x,y) = e^{-x} \begin{pmatrix} 2x - x^2 - y^2 \\ 2y \end{pmatrix}.$$

Aufgabe 9 (**). Seien $v, w : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2$ definiert durch

$$v(x,y) = \begin{pmatrix} \frac{-y}{x^2 + y^2} \\ \frac{x}{x^2 + y^2} \end{pmatrix}, \qquad w(x,y) = \begin{pmatrix} \frac{x}{x^2 + y^2} \\ \frac{y}{x^2 + y^2} \end{pmatrix}.$$

- (i) Berechnen Sie für v und w die Rotation.
- (ii) Geben Sie für v und w jeweils ein Potential an.
- (iii) Bestimmen Sie für $\gamma:[0,2\pi]\to\mathbb{R}^2, \gamma(t)=(\cos(t),\sin(t)), \int_{\gamma}v(x)\cdot dx$ und $\int_{\gamma}w(x)\cdot dx$. Interpretieren Sie das Ergebnis im Hinblick auf das Lemma von Poincaré.

Aufgabe 10 (**). Sei $\gamma:[0,2\pi]\to\mathbb{R}^3$, $\gamma(t)=(\cos(t),\sin(t),\cos(t))$ und $v_\alpha:\mathbb{R}^3\to\mathbb{R}^3$,

$$v_{\alpha}(x, y, z) = \begin{pmatrix} 2xy \\ 3y^2z + \alpha x^2 \\ y^3 + z \end{pmatrix},$$

mit dem Parameter $\alpha \in \mathbb{R}$.

- (i) Für welches $\alpha \in \mathbb{R}$ ist v_{α} konservativ? Finden Sie für diese α eine Potentialfunktion von v_{α} .
- (ii) Berechnen Sie

$$\int_{\gamma} v_{\alpha} \cdot dx$$

für alle $\alpha \in \mathbb{R}$.

Aufgabe 11 (*). Ist die Menge $M = \{A \in \mathbb{R}^{n \times n} \mid A^T = -A\} \subset \mathbb{R}^{n \times n}$ eine Untermannigfaltigkeit? Falls ja, was ist die Dimension?

Aufgabe 12 (***). Sei $n \in \mathbb{N}$. Zeigen Sie, dass die Gruppe der symplektischen Matrizen (Die Gruppeneigenschaft dürfen Sie ohne Beweis verwenden; es schadet aber auch nicht sie nachzurechnen.) $\mathsf{SP}(2n;\mathbb{R}) = \{S \in \mathbb{R}^{2n \times 2n} \mid S^T \Omega S = \Omega\}$, wobei $\Omega = \begin{pmatrix} 0 & \mathbb{1}_n \\ -\mathbb{1}_n & 0 \end{pmatrix}$ ist, eine Untermannigfaltigkeit des $\mathbb{R}^{2n \times 2n}$ ist. Welche Dimension hat die Untermannigfaltigkeit?

Bestimmen Sie den Tangentialraum $T_1(\mathsf{SP}(2n;\mathbb{R}))$.

Aufgabe 13 (*). Wir betrachten die spezielle lineare Gruppe $\mathsf{SL}(n) = \{A \in \mathbb{R}^{n \times n} \mid \det A = 1\} \subset \mathbb{R}^{n \times n}$. Zeigen Sie:

- (i) $\mathsf{SL}(n)$ ist eine Untermannigfaltigkeit des $\mathbb{R}^{n\times n}$ und bestimmen Sie die Dimension.
- (ii) Bestimmen Sie $T_1(SL(n))$.

Hinweis: Sie dürfen ohne Beweis benutzen, dass $\det'_A(H) = \det(A) \operatorname{tr}(A^{-1}H)$ für $A \in \mathbb{R}^{n \times n}$ invertierbar. Ferner ist die Gruppe der invertierbaren Matrizen $\operatorname{\mathsf{GL}}(n;\mathbb{R})$ offen.

Aufgabe 14 (*). Seien $f_1, f_2 : \mathbb{R}^3 \to \mathbb{R}$ definiert durch

$$f_1(x, y, z) = x^2 + xy - y - z,$$

 $f_2(x, y, z) = 2x^2 + 3xy - 2y - 3z.$

Zeigen Sie, dass

$$T = \{(x, y, z) \in \mathbb{R}^3 \mid f_1(x, y, z) = f_2(x, y, z) = 0\}$$

eine \mathcal{C}^{∞} -Untermannigfaltigkeit des \mathbb{R}^3 der Dimension 1 ist.

Aufgabe 15 (\star). Seien a > 0 und

$$S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1, x_2, x_3 > 0 \text{ und } \sqrt{x_1} + \sqrt{x_2} + \sqrt{x_3} = \sqrt{a}\}.$$

- (i) Zeigen Sie, dass S eine \mathcal{C}^{∞} -Untermannigfaltigkeit des \mathbb{R}^3 mit Dimension 2 ist.
- (ii) Bestimmen Sie $T_p(S)$ für alle $p \in S$.

Aufgabe 16 (\star) .

(i) Fixiere $B \in \mathbb{R}^{n \times n}$ und definiere $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$,

$$f(A) = A^T B A.$$

Bestimmen Sie die Ableitung von f.

(ii) Seien nun zusätzlich $x,y\in\mathbb{R}^n$ und betrachte $g:\mathbb{R}^{n\times n}\to\mathbb{R},$

$$g(A) = x^T A^T B A y.$$

Bestimmen Sie die Ableitung von g.

Aufgabe 17 (*). Seien $B, C, D \in \mathbb{R}^{n \times n}$ vorgelegt. Wir definieren $f : \mathbb{R}^{n \times n} \to \mathbb{R}$,

$$f(A) = \operatorname{tr}(BACA^TD).$$

Bestimmen Sie die Ableitung von f.

Aufgabe 18 (**). Sei $f: \mathbb{R} \times \mathbb{R}^{n \times n}$, f(t, A) = tA. Bestimmen Sie die Ableitung von f.

Aufgabe 19 (*). Fixiere $X \in \mathbb{R}^{n \times n}$ und sei $f: U \to \mathbb{R}$, $U = \{A \in \mathbb{R}^{n \times n} \mid \det(A + X) \neq 0\}$, definiert durch

$$f(A) = tr((A + X)^{-1}).$$

Bestimmen Sie die Ableitung von f.

Aufgabe 20 (*). Fixiere $B, C \in \mathbb{R}^{n \times n}$ und definiere $f : \mathsf{GL}(n; \mathbb{R}) \to \mathbb{R}$ durch

$$f(A) = \operatorname{tr}(BA^{-1}C)$$

Bestimmen Sie die Ableitung von f.

Aufgabe 21 (\star) . Sei $F: \mathbb{R} \to \mathbb{R}$ definiert durch

$$F(x) = \int_0^1 \frac{e^{tx}}{1+t} dt.$$

- (i) Zeigen Sie, dass F differenzierbar ist.
- (ii) Zeigen Sie, dass

$$F(x) + F'(x) = \frac{e^x - 1}{r}$$

für alle $x \in \mathbb{R} \setminus \{0\}$ gilt.

Aufgabe 22 (**). Sei $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{xy^3}{(x^2 + y^2)^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

Zeigen Sie, dass $F: \mathbb{R} \to \mathbb{R}$, $F(y) = \int_0^1 f(x, y) dx$, differenzierbar ist, aber

$$F'(0) \neq \int_0^1 \frac{\partial}{\partial u} f(x,0) dx.$$

Kommentieren Sie dieses Ergebnis in Hinblick auf den Satz über parameterabhängige Integrale.