

Modelo térmico de un satélite con ESATAN-TMS

1. Introducción

 Ejercicio práctico: Modelo térmico de un satélite en fase de diseño preliminar.

Como ejemplo de geometría y misión para este ejercicio:

Sentinel-2 (ESA).

2. Creación del modelo

Software: ESATAN-TMS. Hay que iniciar la licencia siempre que se vaya a utilizar (y cerrarla al terminar).

 Crear un modelo nuevo y asignarle un nombre (Sin espacios en blanco, por ejemplo Sentinel).

3. Definición de materiales y propiedades termoópticas

Definir los materiales (Bulk): introduciendo nombre, densidad, calor específico y conductividad en unidades del S.I.

Bulk	Density (kg/m³)	Specific Heat (J/kgK)	Conductivity (W/mK)
Al_6061	2700	900	160
MLI_foil	300	900	0
GaAs	5300	1000	55

3. Definición de materiales y propiedades termoópticas

Definir propiedades ópticas (Optical Set): α y ε

Optical	3	α
Black	0.84	0.97
White	0.8	0.2
Low_e	0.1	0.2

Optical	3	α
Solar_Cells	0.84	0.75
Kapton	0.61	0.36

4. Construcción de la geometría

Se construyen los tres elementos básicos de la figura con distintas estrategias

Body_a

Definición de la geometría

Property	Value
Geometry Name	Body_a
Shape	Box
Defined By	Parameters
height (m)	1.2
xmax (m)	1.5
ymax (m)	2.0

Body_a

Se introduce el mallado, las propiedades de cada cara, el material y el espesor

Property	Value
Nº of faces direction 1	2
Nº of faces direction 2	2
Nº of faces direction 3	2
Surface 1	
Label	Body_a_MLI
Base node number	100
Optical	Low_e
Surface 2	
Label	Body_a_int
Base node number	200
Optical	Black

Property	Value
Composition	DUAL
S1 – Material	MLI_Foil
S1 – Thickness	0.0005
S2 – Material	Al_6061
S2 – Thickness	0.002
Through Conductance	
Calculation Type	EFFECTIVE
Emittance	0.01

Body_b

Definición de la geometría

Property	Value
Geometry Name	Body_b
Shape	Box
Defined By	Parameters
height (m)	1.2
xmax (m)	1.0
ymax (m)	1.0
Tansformation	
X Distance (m)	0.25
Y Distance (m)	2.001

Body_b

Se introduce el mallado, las propiedades de cada cara, el material y el espesor

Property	Value
N° of faces direction 1	2
N° of faces direction 2	2
N° of faces direction 3	2
Surface 1	
Label	Body_b_MLI
Base node number	125
Optical	Low_e
Surface 2	
Label	Body_b_int
Base node number	225
Optical	Black

Property	Value
Composition	DUAL
S1 – Material	MLI_Foil
S1 – Thickness	0.0005
S2 – Material	Al_6061
S2 – Thickness	0.002
Through Conductance	
Calculation Type	EFFECTIVE
Emittance	0.01

Solar Panel

Property	Value
Geometry Name	Solar_Panel
Shape	Rectangle
xmax (m)	4.65
ymax (m)	1.55
Tansformation	
X Angle (deg)	90
Z Angle (deg)	-37.5
X Distance (m)	-4.5
Y Distance (m)	2.5
Z Distance (m)	-0.775

Definición de la geometría

Solar Panel

Property	Value
N° of faces direction 1	8
N° of faces direction 2	2
Surface 1	
Label	Solar_Panel_Cells
Base node number	150
Optical	Solar_Cells
Surface 2	
Label	Solar_Panel_Support
Base node number	250
Optical	White

Property	
Composition	DUAL
S1 – Material	GaAs
S1 – Thickness	0.0004
S2 – Material	Al_6061
S2 – Thickness	0.001
Through Conductance	
Calculation Type	EFFECTIVE
Conductance (W/m ² K)	50.0

$$\dot{Q} = h_{eff}.A.\Delta T$$

Radiador: Geometría

Property	Value
Geometry Name	Radiator
Shape	Rectangle
xmax (m)	1
ymax (m)	0.8
Tansformation	
Y Angle (deg)	-90
X Distance (m)	1.505
Y Distance (m)	1.1
Z Distance (m)	0.1

Radiador : Propiedades

Property	Value
N° of faces direction 1	1
N° of faces direction 2	1
Surface 1	
Label	Radiator
Activity	Conductive
Base node number	300
Optical	White
Surface 2	
Label	Radiator
Base node number	300
Optical	White

Property	Value
Composition	SINGLE
Material	Al_6061
Thickness	0.002

Nodos no geométricos

Simulan carga de pago en cuanto a masa y/o disipación

Payload 1

Property	
Origin	[0.75, 0.65, 0.6]
Radius (m)	0.2
Node number	1000
Capacitance	
Method	VALUE
Value	20000

Payload 2

Property	Value
Origin	[0.75, 2.5, 0.6]
Radius (m)	0.2
Node number	2000
Capacitance	
Method	VALUE
Value	10000

Agrupación y cinemática

Agrupar shells para formar estructura jerárquica del modelo

De Cinemática del panel solar: siempre perpendicular a la

dirección satélite-sol.

Como referencia se selecciona la agrupación 'fixed' y como componentes móviles el panel solar.

7. Generación de interfaces conductivas

Se generan aquellas que ESATAN detecta automáticamente.

Se cambian todas las interfaces a tipo 'Fused' (por defecto)

Conductores no geométricos

Se crean desde la opción User Defined Conductor

Es más sencillo visualizar los nodos de origen y destino activando el plano de corte

Nodos interiores - radiador

Nodos interiores - estructura

Estructura - radiador

Contacto entre Body_a y Body_b

Se define un contacto térmico entre las dos superficies con un valor de $h_c = 200 W/m^2 K$.

Condiciones de contorno

Introducir las potencias disipadas por los equipos mediante

interfaz gráfica

Se reparten 400W entre los dos nodos interiores: 250W en el Payload_1 y 150W en Payload_2.

Comprobación del modelo

Propiedades termo-ópticas

Materiales

Caso radiativo

Se define una órbita circular heliosíncrona (SSO).

Instituto Universitario de Microgravedad 'Ignacio da Riva'

Model Tree Radiative Case Dialog	
■ Overview • Environment ††† Orbit © Pointing	
Radiative Case: SSO	Y
Pointing Method: Vectors 8	& Directions 🔻
▼ Primary Pointing	
Pointing Vector	[0.0, 1.0, 0.0]
Pointing Direction	VELOCITY
General Direction	[1.0, 0.0, 0.0]
▼ Secondary Pointing	
Pointing Vector	[0.0, 0.0, -1.0]
Pointing Direction	NADIR
General Direction	[0.0, -1.0, 0.0]
▼ LOCS Orientation	
Orientation	PLANET_ORIENTED
▼ User Defined Moveme	
Phi (deg)	0.0
Psi (deg)	0.0
Omega (deg)	0.0
Phi Rotation Rate (deg/s)	0
Psi Rotation Rate (deg/s)	0
Omega Rotation Rate (deg/s)	0
Application Order	phi, psi, omega

Se ejecuta para obtener los factores de vista, GRs y las cargas del Sol (QS), Albedo (QA) e infrarrojo terrestre (QE).

Instituto Universitario de Microgravedad 'Ignacio da Riva'

Caso de análisis

▶ Se selecciona el radiative case deseado: SS0

Se define el esquema de solución (transitorio en este caso) y se añade al bloque de ejecución.

> Se seleccionan las condiciones de contorno, que en este caso son las potencias disipadas.

Se pide que incluya los los flujos solar, albedo e infrarrojo y se pone número a los nodos de contorno (ambiente e inactivo).

11. Resultados Control Térmico Espacial

Ejecutando el caso de análisis (Run Analysis) el programa calcula las temperaturas y flujos en cada posición orbital.

Visualización de resultados

Los resultados se guardan en un archivo TMD y se configura su visualización haciendo doble click en el archivo.

Visualización de resultados

AI. Cáculo de GLs

Las conductancias térmicas lineales (GLs) se definen como:

$$\dot{Q} = k \frac{A (T_1 - T_2)}{l}$$

$$GL = k \frac{A}{l}$$

$$\dot{Q} = GL(T_1 - T_2)$$

Siendo k la conductividad térmica del material, A el área transversal y x la distancia entre los dos nodos.

A2. MLIs

> 23 Layer VDA MLI

1 x 1 mil ITO/Kapton/VDA, perf.

19 x 0.3 mil VDA/Kapton/VDA, perf., emb

1 x 1 mil VDA/Kapton/VDA, perf.

MI	IF1
IVIL	\mathbf{JLI}

$T(^{\circ}C)$	Cond. ideal
-75	0.00393
	0 0 1 0 1

GL (ext-int)=
Factor*A*INTRP(Tav(Text,Tint),MLIE1)

A2. MLIs

22 Layer VDA MLI

GL (ext-int)=
Factor*A*INTRP(Tav(Text,Tint),MLIE1)

MLI: Varias shells recubriendo las caras exteriores de

ambos cuerpos (a 2 mm de distancia)

Para evitar huecos las MLIs tienen que medir 2 mm más por cada lado que el cuerpo del satélite

MLI : Propiedades. Comunes a todas las shells (cambiando siempre el número de nodo).

$$\dot{Q} = \sigma. A. \, \varepsilon_{eff}. \, (T_e^4 - T_i^4)$$

MLI: Las MLIs superiores e inferiores se definen del mismo modo, cambiando el número de nodo

Primero hay que mostrar los puntos en el modelo

MLIs laterales a

Después seleccionar definición por puntos y pinchar en ellos