Models of outcome and choice: The logit model

Silje Synnøve Lyder Hermansen

November 12, 2019

Table of Contents

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable. The binomial distribution: successes and failures Individual-level outcomes

Why all the fuzz? Why not OLS?

Back and forth: Logistic and logit transformation

Interpretation: So... what did I find?

Section 1

A latent variable approach to GLMs

Many outcomes are not continuous

OLS assumes a continuous dependent variable. But many phenomena in the social sciences are not like that.

- ➤ Vote choice, civil conflict onset, legislator performance, court rulings, time to compliance, etc.
- ▶ What phenomena are you interested in?
- ⇒ OK. Let's strategize.

All regressions are linear(ized)

The basic formulation in any regression describes a linear relationship between x_i and y_i :

$$y_i = \alpha + \beta x_i + \epsilon_i \tag{1}$$

- ▶ When x_i increases with one unit, y_i increases with β units.
- ▶ If that relationship is not linear, we have to make it so:
 - \triangleright by recoding the x_i
 - **b** by recoding the $y_i \rightarrow$ we *linearize*.

A latent variable

A linear(ized) model requires a continuious dependent variable.

- ▶ Imagine we are interested in unobservable variable, z_i , that describes our propensity towards something.
- Above a certain threshold (τ) of z_i , observability kicks in and we can see y_i .
- ▶ The regression coefficients (β) in GLMs describe that relationship.
- ⇒ The latent variable approach is useful when interpreting the results.

Example: The binomial model

The logit model is a perfect example:

$$y_i = \begin{cases} 1 & \Leftrightarrow & z_i > \tau \\ 0 & \Leftrightarrow & z_i \leqslant \tau \end{cases} \tag{2}$$

- ▶ The probability (z_i) of an outcome y_i is continuous.
- Above a certain probability (τ) , we observe a positive outcome $(y_i = 1)$.
- \Rightarrow but how do we set the value of τ ?

From latent variable to descrete outcomes

Statistical theory helps us describe how z_i leads to y_i .

- ▶ What kind of process generated our data? \rightarrow data generating process (DGP)
- lackbox How can we best describe it? ightarrow choice of *probability distribution* (in GLM)

The three components of GLMs

When fitting the model, we need to make three choices:

- ▶ A linear predictor: βx_i .
- ► A probability distribution: they're all in the exponential family
- A recoding strategy

The three components of GLMs

In R this translates to two additional arguments compared to your usual OLS.

- A linear predictor: → (y ~ x).
- ▶ A probability distribution: → (family =)
- A recoding strategy → (link =).

```
glm(y \sim x, data = data, family = binomial(link = "logit"))
```

Latent variable approach for interpretation

- ▶ The latent variable approach is useful when interpreting results.
- ► That's when we map *from* the latent variable *to* the observed outcome.
- ⇒ When estimating the model, we have to go the other way 'round.

Table of Contents

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable?

The binomial distribution: successes and failures
Individual-level outcomes

Why all the fuzz? Why not OLS?

Back and forth: Logistic and logit transformation

Interpretation: So... what did I find?

Section 2

Recoding: How do we get from a binary to a continuous variable?

Data structure

We can only observe the outcome produced by the latent variable. There are two data structures for binary data:

- classes of observations: e.g.: rats in a cage, coin tosses...
- ► case-based: e.g.: legislator votes, Brexit...

Data structure

We can only observe the outcome produced by the latent variable. There are two data structures for binary data:

- Classes of observations: e.g.: rats in a cage, coin tosses... → the closest to the latent continuous variable.
- case-based: e.g.: legislator votes, Brexit...
- \Rightarrow we know the number of successes and trials in a cage/class/stratum. That's our starting point.

Let's start with the odds

Despite binary outcomes, we want a continuous variable that is unbounded at both ends. We define a stratum and start comparing:

- ▶ Odds: Compare number of successes with number of failures within a stratum→ continuous but highly skewed.
- ightharpoonup Logtransform the odds ightarrow continuous and bell shaped.

Let's examplify with rats

We kept a 1000 rats in a cage and a number of them died (failure) while others are still alive (success). How can we model this?

We calculate the odds

We calculate the odds of surviving in a cage in a 1000 cages

▶ Let's consider a series of 1000 trials where we let the successes go from complete failure (success = 0) to complete success (success = 1000)

```
success = 0:1000
tries = 1000
#remember: failure = tries - success
odds <- success/(tries - success)
hist(odds, breaks = 100, col = "blue")
hist(log(odds), breaks = 101, col = "blue")
plot(log(odds), success, type = "1")
```

Let's start with the odds

We get a continuous but skewed variable.

Now, let's logtransform the odds

We get a nice, bellshaped curve.

Now, let's logtransform the odds

This, we can run regressions on!

The famous S shape

We can plot the logodds of success against the number of successes or their probability (it's the same).

Probability distributions for binary variables

There are two, closely related probability distributions for binary outcomes:

- ▶ The binomial distribution: B(n, p)
 - p is the probability of success tells where on the x-axis (trials) the distribution is placed.
 - n is the number of trials and defines the precision (width) of the distribution.
- ▶ The Bernoulli distribution: Ber(p): when we only have only one trial.

Individual-level outcomes

In the social sciences, we usually look at case-level data

► We rely on the odds (probability) of all cases with identical *x*-values to calculate *y*

Recoding in 3 steps

We can do the same using probabilities:

- Calculate the proportion of successes: probability
- Calculate the odds of success from probability
- Logtransform the odds

Recoding in 3 steps

I'll say that again:

proportion/probability \rightarrow odds \rightarrow logodds

Table of Contents

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable.

The binomial distribution: successes and failures
Individual-level outcomes

Why all the fuzz? Why not OLS?

Back and forth: Logistic and logit transformation

Interpretation: So... what did I find?

Why not OLS?

Section 3

Why all the fuzz? Why not OLS?

Distributions in OLS and maximum likelihood

- ▶ In OLS: The residuals must be normally distributed, but not the y
- In ML: The z must follow a probability distribution, but residuals are fixed.
- ⇒ This is due to how they are estimated

We want reliable standard errors

- In OLS: The residuals must be normally distributed, but not the y
- In ML: The z must follow a probability distribution, but residuals are fixed.

⇒ This is due to how they are estimated

Why not OLS? Back and forth

Subsection 1

Back and forth: Logistic and logit transformation

The logit transformation

When we go from outcomes to latent variable we use the logic transformation.

$$logit(p) = log(\frac{p}{1-p}) \tag{3}$$

⇒ This what R does when estimating our model

The logistic transformation

When we go from the latent variable to outcomes we use the logistic transformation.

$$logit^{-1}(logodds) = \frac{exp(logodds)}{1 + exp(logodds)} = \frac{1}{1 + exp(-logodds)}$$
(4)

⇒ This what we do when interpreting our model

Table of Contents

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable.

The binomial distribution: successes and failures
Individual-level outcomes

Why all the fuzz? Why not OLS?

Back and forth: Logistic and logit transformation

Interpretation: So... what did I find?

Section 4

Interpretation: So... what did I find?