Университет ИТМО, факультет программной инженерии и компьютерной техники Двухнедельная отчётная работа по «Информатике»: аннотация к статье

Дата прошедшей лекции: 27.09.20	22 Ном	ер прошедшей лекции: 2	Дата сдачи:	11.10.2022

Выполнил _	Бардин П.А.	, № группы	P3119 ,	оценка	
	Фамилия И.О. студента	. 13			не заполнять

Название статьи Building the future of quantum error correction ФИО автора статьи Дата публикации Размер статьи

Drew Vandeth, Sarah Sheldon, Antonio Córcoles, Andrew Cross

04.10.2022 2704 слов

Прямая полная ссылка на источник или сокращённая ссылка

https://research.ibm.com/blog/future-quantum-error-correction

Теги, ключевые слова или словосочетания

Quantum computing, Quantum Error Correction, fault-tolerant computing, qLDPC

Перечень фактов, упомянутых в статье

- 1. Ошибки в кубитах в квантовых компьтерах возникают много чаще, чем в классических и имеют различные вариации, например сдвиги по фазе. Классические коды, требуют измерения кубитов, выводя их из суперпизиции, а значит не применимы.
- 2. В основном применяются коды на основе qLDPC(Low-Density Parity Check), например двумерные поверхностные и цветные коды. Преимущеетво заключается в малом количестве кубитов подверженных изменению при возникновении ощибки во время вычисления.
- 3. Ведутся запуски различных QEC алгоритмов на существующих компьютерах, для изучения физических аспектов возникновения ошибок.
- 4. Крайние разработки основываются на heavy-hex кодах на 2D решетках, в них информационные и проверочные кубиты распределены в шестиугольниках в чередующейся последовательности.
- 5. За последние 2 года разработчиками из Google, IBM и ETH-Zurich были реализованы на практике схемы коррекции с кодовым расстоянием от 2 до 5.
- 6. Для работы QEC во время вычислений недостаточно применять операции только на информационном кубите, поэтому требуется разработка новых вентилей под каждую новую технологию, способных обрабатывать и дополнительные кубиты. Исследователям из Quantinuum удалось с использованием цветных кодов создать CNOT вентиль, необходимый для создания запутанных состояний.
- 7. Разрабатываются трехмерные "фрактальные поверхностные коды", для которых появляются эффективные возможности реализации универсальных вентилей
- 8. В одной из последних разработкок рассчитано число в 7000 проверочных кубит на один информационный с частотой ошибок один на триллион
- 9. Декодирование QEC ведется на классических компьютерах, и текущий момент производительности алгоритмов и железа может быть недостаточно.

Позитивные следствия и достоинства описанной в статье технологии

- 1. Описываемые в статье технологии доказали свою технологическую исполнимость на реальных квантовых компьютерах и теперь могут далее улучшаться.
- 2. Учеными из МГУ год назад было математически доказано существование эффективных по количеству дополнительных кубит qLDPC кодов, осталость только технически их выполнить
- 3. Уже появляются новые решения, способные исправлять недостатки текущих, но их внедрение потребует технологического скачка, сейчас это дорого или неэффективно

Недостатки описанной в статье технологии

- 1. Даже теоретические решения найденные в этой области для квантовых компьютров все еще отличаются на многие порядки по частоты воникновения ошибок от классических компьютерах
- 2. Существующие коды имеют столь большой коэффициент избыточности, что для получения достаточно хороших результатов нет аппаратного обеспечения с необходимым числом кубитов.
- 3. Методы обработки закодированных куюитов пока дорогостоящие и имеют накладные расходы.
- 4. Пока нет возможности свести к единому методу применение кодов коррекции, это сразу целая вычислительная архитектура.