Due: 12 September 2016

Homework #3: Proof

Dario A Lencina-Talarico

INSTRUCTIONS: before completing your homework, make sure you have considered the following:

- You are allowed to use only primitive inference rules.
- Remember to include vertical lines to represent the scope any assumptions.
- Remember that all assumptions in your proofs must be discharged.
- Double-check that your line references are correct when applying inference rules.

I. Proof: Propositional Logic

In this section use only the primitive inference rules of propositional calculus.

1

1. Provide derivations for each of the following, using natural deduction:

a.
$$(p \wedge q) \wedge r \vdash p \wedge (q \wedge r)$$

b.
$$p \land q, p \Rightarrow s, q \Rightarrow t \vdash s \land t$$

- c. $q \Rightarrow \neg p, p \land q \vdash r$
 - 1. $q \Rightarrow \neg p$ premise
 - 2. $p \wedge q$ premise
 - 3. $p \wedge -elim, 2$
 - 4. $\neg p$ modusponens, 1,
 - $5, \neg p \Rightarrow -elim$
 - 6. $\neg r$ assumption 1
 - 7. p Copy from 3
 - 8. $\neg p$ Copy from 4
 - 4. r elim, 6-8
- d. $p \land q \vdash p \Rightarrow q$
 - 1. $p \wedge q$ premise
 - 2. $p \wedge -elim, 1$
 - 3. $q \wedge -elim, 1$
 - 4. $p \Rightarrow q \Rightarrow -intro, 2, 3$
- e. $\neg \neg q \vdash q \lor r$
 - 1. $\neg \neg q$ premise
 - 2. $\neg q$ $\neg elim, 1$
 - 3. q elim, 2
 - 4. $q \vee r \vee -intro, 3$

f.
$$p \Rightarrow (q \land r), \neg p \Rightarrow r, p \lor \neg p \vdash r$$

II. Proof: Predicate Logic

In this section use only the primitive inference rules of predicate calculus.

2. Show using natural deduction:

```
a. \forall x: T \bullet P(x) \land Q(x) \dashv \vdash (\forall x: T \bullet P(x)) \land (\forall y: T \bullet Q(y))
b. \exists x: T \bullet P(x) \lor Q(x) \dashv \vdash (\exists x: T \bullet P(x)) \lor (\exists x: T \bullet Q(x))
```

(Note: $p \dashv \vdash q$ is a shorthand for " $p \vdash q$ and $q \vdash p$." That is, for $p \dashv \vdash q$ you need to show two separate derivations: one for $p \vdash q$ and another for $q \vdash p$.)