relatively straightforward.

Q2. $y' = 3x \cos y$ y(0) = 3(a) $f = 3x \cos y$ $\frac{\partial f}{\partial y} = -3x \sin y$

So both f, af/dy are ats functions

(for all x,y, including near initial

point) so by Picard's theorem

expect unique solution near initial

point.

(b) $y_{n+1} = y_0 + \int_0^x f(x', y(z')) dx'$

 $y_0 = 3$ constat $y_1 = y_0 + \int_0^{\infty} 3x' \cos y_0 dx'$

 $= y_0 + 3\cos 3 \times \frac{2}{2}$

(c) If 1 = 31x1/cosy1 ≤ 3 and (cosy) < 1. since 0 < x < 1 Let by derote change in y ove So 17/1 < 3 So $\left|\frac{\Delta y}{\Lambda \times}\right| \leq 3$ $So |\Delta y| \leq 3 \Delta x \leq 3$ y(x) = 3, so $|y(x) - y(0)| \le 3$ => $0 \le y(x) \le 6$. Part (a) is a standard type of Connects question used previously.

Part (b) is similar to tutoral sheet TLO 2 problems part (c) is non standard and designed to test undestanding of one of the criteric in Pirand! Theorem

 $x^2y'' + xy' - y = 8(x - \frac{1}{2})$ 03 hongeron problen 27 y" + 2 y - y = 0 seguidiners coal. Let je 22 =) d(x-1) + x - 1 = 0So & = ±1 V, = 2 V2 = 2-1 y, = & U, + BU2 y, (0) = 0 50 B = 0 and x=1 w/g. 80 y = x y22 dV, + BV2 92 (1) =0 So 2.1 + B1 =0 So $\beta = -\alpha$ ($\alpha = 1 \omega \log$) y2 = x - x-1

G= { $A \propto x < s$ (b) Hence B (x-x-1) x>5 36/3x = 2 $3(1+3c^{-2})$ x < 5Where A = A(5), B = B(5) $As = B(s - s^{-1})$ x=s =) $=) A = B(1-5^{-2})$ Step condition $B(1+S^{-2})-A=\frac{1}{S^2}$ $\Rightarrow B(1+s^{-2}) - B(1-s^{-2}) = s^{-2}$ $G = \frac{1}{2} \begin{cases} (1-s^{-2}) \chi \\ \chi - \chi^{-1} \end{cases}$ $\chi < S$ x 75 $y = G(x, \frac{1}{2}) = \frac{1}{2} \left\{ -3x - x^{-1} \right\}$ $X < \frac{1}{2}$ X 7 - 2 $X < \frac{1}{2}$ $X > \frac{1}{2}$ $= -\frac{3}{2} \left\{ \begin{array}{c} \chi \\ \chi^{-1} - \chi \end{array} \right.$ Common type St questien. Comment New example but similar on problem sets 1L0 3

Q4
$$S(x) = \sum_{-\infty}^{\infty} C_n e^{inx}$$
 on $-\pi \le x < \pi$

(a) If $m = n$, $\int_{-\infty}^{\pi} e^{ih-m} \times dx = \int_{-\pi}^{\pi} I dx = 2\pi$

and if $m \ne n$, $\int_{-\pi}^{\pi} e^{ih-m} \times dx = \frac{1}{i(n-m)} \left[e^{i(n-m)x} - e^{i(n-m)x} \right]$

$$= \frac{1}{i(n-m)} \left[e^{inx} - e^{inx} - e^{inx} \right]$$

So if $S(x) = f(x)$, then
$$\int_{-\pi}^{\pi} e^{inx} f(x) = \sum_{-\pi}^{\infty} C_n \left[e^{inx} - e^{inx} \right] dx$$

$$= 2 C_m$$
ie (relabelling) $C_n = \frac{1}{2} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$

$$= 2 C_m$$

$$= 2 C$$

$$c_{n} = \frac{1}{2} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} e^{-inx} dx$$

$$= \frac$$

(QS)
$$U_{H} = C^2 U_{XX}$$

(a) Hyperbolic

(b) $u = X(x)T(t)$

$$= X^{-1} = C^2 X^{-1}T$$

$$= X^{-1} = X^{-1} = X^{-1}$$

furth furth of so both constant X equal to $-\lambda$, say.

(c) $X'' = -\lambda$ or $-X'' = \lambda X$ (sSL form X)

 $U_{X} = 0$ at $X = 0$ so $X'(0) = 0$
 $U_{X} = 0$ at $X = \pi$ so $X(\pi) = 0$

If $X \le 0$, there are no solutions that satisfy the boundary conditions

that satisfy the boundary conditions

 $X = V^2 \times Y = X = X = A\omega s(V_{X}) + B\sin(V_{X})$

X' = -v A sin(vx) + v B cos(vx)

So X (10) = 0 => B = 0

So
$$X = A (\omega)(vx)$$

and $X(\pi) = 0 \Rightarrow (\omega)(v\pi) = 0$
So $v = \frac{1}{2}(2k+1) = k = 1, 2, 3, -\cdots$
and $X = (\omega)(\frac{1}{2}(2k+1)x) = (A = 1 \cup 1)$
 $T'' = \lambda = v^2$
 c^2T
Let $\omega = vc$
Then $T = A \cos(\omega t) + B \sin(\omega t)$
But $u_t = 0 \Rightarrow T'(0) = 0$
So $B = 0$
So $T = A \cos(ut)$
 $= A \cos(\frac{1}{2}(2k+1)ct)$
 $= A \cos(\frac{1}{2}(2k+1)ct)$

Question is on a familier Con nexts PDE but with novel ILO 4. and somewhat tricky boundary conditions to provide a test.

Q6
$$(x-yu)uy - (y+xu)ux = 1+u^2$$
 $\frac{dx}{ds} = -y-xu$
 $\frac{dy}{ds} = x - yu$
 $\frac{dy}{ds} = 1+u^2$
 $\frac{dy}{ds} = 1+$

(b) If u = 1 on x = 1A = y - 1B = y + 1 So B-A = 2 But B, A constat along characteristies so x + yu - (y - ux) = 2u(y+z) = 2 - x + yn = 2-2 + y
2+ y A significant hint is Connects provided in pot (a), otherwise 140 3 would be tricky to spot (but still more tricky than a 'Show that' question. (b) is straight forward but relies on (c).

Q7 b= 2 (y-2) C = - xy $\frac{dy}{dx} = \frac{b \pm \sqrt{b^2 - ac}}{a}$ $= \frac{1}{2} (y-2) \pm \sqrt{\frac{1}{4} (y-2)^2 + 2y}$ $=\frac{1}{2}(y-x)\pm\frac{1}{2}(y+x)$ $+ \cot \cdot dy = y \rightarrow y = 3e^{2c}$ dx = 3 constat.(b) Domain of dependence of (1,1) $3 = e^{-1}$ and $\eta = 3/2$ So $y = e^{2-1}$ and $y = \frac{3}{2} - \frac{2^2}{2}$ go through this point.

This is unseen but with relatively simple algebra The final parts are offer Connect ILO 6. found tricky.