Your Food Friends: Food Plate Segmentation and Classification

Winston Li, John Ryan Byers, Nathan DePiero

CSCI 1430

Summary

YourFoodFriends is a segmentation and multi-class classification ensemble for detecting foods on a plate.

Masks of potential food candidates were generated via MetaAl's Segment-Anything-Model. With the masks, cropped images were inputted to a fine-tuned InceptionResNet V2 convolutional neural network for labeling.

From these outputs, the original food plate image is labeled with predicted food names.

Problem Statement

Millions of Americans are visually impaired and might have trouble identifying food placed in front of them. Tourists in new countries might not know a dish and are too embarrassed to ask what it is.

With a simple picture, YourFoodFriends offers an aid to accurately identify the foods on a plate or tray. Trained on 101 foods ranging from all cultures and cuisines, our classification ensemble seeks to help the visually impaired and tourists in need.

Data Used For Classification

Food-101 (Bossard et al.)

- Contains 101 different labels with 1000 images each
- Pre-split into 75,750 training and 25,250 validation samples
- Training samples contain deliberate mis-labelings

Dumplings

Pancakes

Ice Cream

Algorithm Specifications

lightweight mask decoder image encoder prompt image MetaAl's SAM Architecture

Architecture

Input RGB image of food tray

Segmented images

Output

food labels

Results

Original Ratty plate of food

SAM mask unfiltered output

Output classified food tray

Classifier Accuracy

Gray: Training Accuracy
Orange: Validation Accuracy

Various Classification Model Performances

Model #	Base	Head	Train Acc	Test Acc
1	VGG16	f,4096,d05,4096,d05	0.4645	0.5023
2	Xcept	g	0.7007	0.6727
3	FT MNv2	g	0.9999	0.7895
4	FT ENB3	g	0.9998	0.8265
5	FT IRNv2	g,2048,d05	0.9997	0.8713

Key: f=flatten; g=GlobalAveragePooling2D(); # = Dense(#) d05 = dropout(0.5); FT = fine-tuning

References

- [1] Martin Abadi et al. TensorFlow: Large-scale machine learn-ing on heterogeneous systems, 2015. Software available from tensorflow.org
 [2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 mining discriminative components with random forests. In European Conference on Computer Vision, 2014
- [3] Alexander Kirillov et al. Segment anything. arXiv:2304.02643, 2023
- [4] Karen Simonyan and Andrew Zisserman. Very deep convolu-tional networks for large-scale image recognition, 2015
 [5] Christian Szegedy, Sergey loffe, and Vincent Vanhoucke. Inception-v4, inception-resnet and the impact of residual con-nections on learning. CoRR, abs/1602.07261, 201

Acknowledgements

We would like to thank: Professor Tompkin, our mentor TA Anh Duong, Oscar CCV, and Brown Grid Engine