Name	(printed	legibly):			-	
Stude	nt # (prir	nted legib	ly):			
Q1:	Q2:	Q3:	Q4:	Q5:	Q6:	
Total:						

UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

ESC103F – Engineering Mathematics and Computation

Term Test

November 2, 2015

Instructor – Professor W.R. Cluett

Closed book.

Allowable calculators:

Casio FX-991EX or FX-991ES PLUS or FX-991MS or Sharp EL-520X or EL-520W

All questions of equal value.

All work to be marked <u>must</u> appear on front of page. Use back of page for rough work only.

Given information:

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}; \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \times \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$$

$$proj_{\overrightarrow{d}}\overrightarrow{u} = \frac{\overrightarrow{u} \cdot \overrightarrow{d}}{\|\overrightarrow{d}\|^2}\overrightarrow{d}$$
; $det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$

Q1: Consider the following system of linear equations:

$$2x_1 - x_2 = 1$$

$$-x_1 + 2x_2 - x_3 = 0$$

$$-x_2 + 2x_3 = 0$$

a) Write the augmented matrix associated with this system.

3

b) Solve this system by using the Gaussian elimination algorithm to take the augmented matrix to its reduced normal form.

c) Using your solution in part (b), express the vector $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ as a linear combination of

three vectors
$$\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$.

Q2: Pick any three numbers (x, y, z) such that x + y + z = 0 (except for the case x = y = z = 0).

a) Find the angle between your vector $\vec{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and your vector $\vec{v} = \begin{bmatrix} z \\ x \\ y \end{bmatrix}$.

b) Show that for any two non-zero vectors \vec{u} and \vec{v} as defined in part (a) where x + y + z = 0, $\vec{u} \cdot \vec{v} / (\|\vec{u}\| \|\vec{v}\|) = -0.5$.

Q3: Consider the vector
$$\vec{c} = \begin{bmatrix} 3 \\ 4 \\ 4 \end{bmatrix}$$
 and the points $a = (2,2,1)$ and $b = (1,0,0)$.

a) Project the vector \vec{c} onto the plane that contains the origin, point a and point b.

8

b) Find a vector whose projection onto the plane in part (a) is the zero vector.

c) Find the 3x3 matrix that maps any vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ to the projection of this vector onto the plane in part (a).

Q4: Consider the matrix $\begin{bmatrix} 0 & 1 \\ c & d \end{bmatrix}$ where c and d are unknowns.

a) Find values for c and d to give eigenvalues for the matrix equal to 4 and 7.

b)	From part (a), find the eigenvectors associated with the eigenvalue equal to 4.

Q5: Consider these two parts as separate, unrelated questions.

a) If $\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, draw all vectors $\vec{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ in the x-y plane with $\vec{u} \cdot \vec{v} = 5$.

b) Consider vectors \vec{w} and \vec{z} in R^3 where $\|\vec{w}\| = 5$ and $\|\vec{z}\| = 3$. What are the smallest and largest values of $\vec{w} \cdot \vec{z}$? What are the smallest and largest values of $\|\vec{w} - \vec{z}\|$? Show how you arrive at your answers.

Q6: The "cyclic" transformation T is defined by:

$$\begin{bmatrix} y \\ z \\ x \end{bmatrix} = T(\begin{bmatrix} x \\ y \\ z \end{bmatrix}).$$

a) What is the matrix that summarizes this linear transformation T?

b) With $\vec{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, what is the vector produced by $T(T(\vec{u}))$? What is the matrix that

summarizes this composition of two linear transformations?

c) Examine the vector produced by applying T three times (i.e. $T(T(T(\vec{u})))$). What would be the vector produced by applying T 100 times to \vec{u} ?