

Teknik Informatika - Fakultas Informatika

Pertemuan 7 – Hash Table

Author: Wahyu Andi Saputra [WAA]

Outline

Hash Table

Hash Function

Collision

- Bayangkan kita sedang mencari sebuah item di list,
- Kalo belum tersusun secara alfabet: O(n) time
- Kalo sudah tersusun secara alfabet: O(log n) time

Bayangkan kita sedang mencari sebuah item di list,

a alfabet: O(n) time

a alfa
$$\frac{\# \text{ of ITEMS}}{1000}$$
 $O(h)$ $O(\log h)$
 $\frac{100^h}{1000}$ $\frac{10 \text{ sec}}{1.66 \text{ min}}$ $\frac{1 \text{ sec}}{1 \text{ sec}}$ $\frac{1 \text{ sec}}{\log_2 100} = 7 \text{ lines}$
 $\frac{10000}{1000}$ $\frac{16.6 \text{ min}}{16.6 \text{ min}}$ $\frac{1 \text{ sec}}{2 \text{ sec}}$ $\frac{\log_2 1000}{1000} = 10 \text{ lines}$
 $= 2 \text{ sec}$

- Meskipun sudah terurut, namun masih tetap merepotkan kalau harus mencari item di list bahkan Ketika sudah urut abjad
- Akan lebih enak kalo semisal kita sudah punya partner yang menghafal seluruh keterangan item (nama dan harga)

• Struktur data utama: array (random akses) dan linked list (sequential akses)

- Kita coba gunakan pendekatan array
- Misal, disini kita punya 3 slot array dengan 2 informasi (ex: nama dan harga)

 Sekarang setiap array memiliki 2 informasi, yaitu nama dan harga item

- Artinya, item bisa kita urutkan berdasar nama
- Lalu kita gunakan Binary Search Tree untuk mencari info di dalam array

- Ingat, hash table selalu memetakan string ke angka
- Misalkan kita memiliki peta "apple" ke angka 3,
- Maka bisa kita arahkan agar "apple" ke array index 3 dan isi array tersebut dengan harga apple

• Misal seluruh array sudah terisi

Misalkan kita meminta data harga "avocado", maka

ILUSTRASI 2:

- Linear searching: mencari kata kunci/item, satu persatu, dari yang paling kiri.
- Misalkan, kita sedang mencari kata kunci "Ada"

ILUSTRASI 2:

 Bahkan dengan menggunakan array, saat kita tahu lokasi item dan indexnya, maka akan mudah memanggil item tersebut

ILUSTRASI 2:

- Dari nilai indeks tadi lalu digunakan untuk memanggil karakter yang ingin dicari
- Setiap indeks dan array juga bisa digunakan untuk menyimpan beberapa informasi lain di dalamnya

• ILUSTRASI 3:

- Dianalogikan, seseorang bernama "Laura Basuki Situmorang".
- Kalau kita menghafalkan nama panjang "Laura Basuki Situmorang", maka akan sulit diingat
- Tetapi, kalau kita menggunakan nama "Laura" saja, maka akan lebih mudah dan cepat diingat

- Hash function sangat membantu kita karena tidak perlu melakukan pencarian sama sekali
- Hal ini karena:
 - 1. HF pasti memetakan secara konsisten string ke index yang pasti
 - 2. HF selalu memetakan string ke index/angka yang berbeda
 - 3. HF selalu tahu kapasitas array kita. Jadi kalau array kita 5 slot, HF tersebut tidak akan mengembalikan nilai 100 karena tidak valid
- Array dan list langsung dipetakan ke memori secara langsung, sedangkan HT menggunakan HF untuk menentukan posisi nilai yang akan disimpan

- Hash Function + Array = Hash Table
- Array dan list langsung dipetakan ke memori secara langsung, sedangkan HT menggunakan HF untuk menentukan posisi nilai yang akan disimpan

HASH FUNCTION

Hash Function

- Hash function adalah fungsi dimana kita bisa menginputkan suatu string, diinputkan ke hash function, dan outputnya suatu angka
- Cara mentransformasi suatu karakter, dari string menjadi angka

Hash Function

- Kegunaan hashing: mengamankan tulisan. Contoh: password
- Pada hash yang modern, output dapat berupa perpaduan angka dan alphabet

Hash Function: Cara Konversi

 Dalam mengubah string menjadi number, bisa menggunakan penomoran sesuai urutan abjad atau menggunakan kode ASCII

A = 1	H = 8	O = 15	V = 22
B = 2	I = 9	P = 16	W = 23
C = 3	J = 10	Q = 17	X = 24
D = 4	K = 11	R = 18	Y = 25
E = 5	L = 12	S = 19	Z = 26
F = 6	M = 13	T = 20	
G = 7	N = 14	U = 21	

Character	Decimal Value	Character	Decimal Value		
A	65	a	97		
В	66	b	98		
С	67	С	99		
D	68	d	100		
Е	69	е	101		
F	70	f	102		
G	71	g	103		
Н	72	h	104		
I	73	i	105		
J	74	j	106		
K	75	k	107		
L	76	1	108		
M	77	m	109		
N	78	n	110		
0	79	О	111		
P	80	р	112		
Q	81	q	113		
R	82	r	114		
S	83	s	115		
T	84	t	116		
U	85	u	117		
V	86	v	118		
W	87	w	119		
X	88	х	120		
Y	89	У	121		
Z	90	Z	122		

Hash Function: Cara Konversi

 Dalam mengubah string menjadi number, bisa menggunakan penomoran sesuai urutan abjad atau menggunakan kode ASCII

Karakter		SUM					
Leo	L	76	е	101	0	111	288
Sam	S	83	а	97	m	109	289

Character	Decimal Value	Character	Decimal Value
Α	65	a	97
В	66	b	98
С	67	С	99
D	68	d	100
Е	69	e	101
F	70	f	102
G	71	g	103
Н	72	h	104
I	73	i	105
J	74	j	106
K	75	k	107
L	76	1	108
M	77	m	109
N	78	n	110
0	79	О	111
P	80	p	112
Q	81	q	113
R	82	r	114
S	83	s	115
T	84	t	116
U	85	u	117
V	86	v	118
W	87	w	119
X	88	х	120
Y	89	У	121
Z	90	Z	122

Teknik 1: Mid Square

- Mid square:
 - Jumlahkan semua angka, Pangkatkan key, ambil 2 nilai tengah

Teknik 2: Division

- Division
 - Lakukan pembagian modulus dengan angka yang dipilih
 - 20 diperoleh dari kapasitas hash yang kita gunakan

Contoh 1: Menggunakan angka sesuai nomor urut abjad

Teknik 2: Division

 Ambil kode ASCII dari tiap karakter, jumlahkan, lalu bagi dengan total angka, dan ambil modulo nya

Index number = sum ASCII codes Mod size of array

Contoh 2: Menggunakan angka sesuai KODE ASCII

Karakter		Perhitungan								Modulo
Mia		M	77	i	105	а	97		279	4
Tim		Т	84	i	105	m	109		298	1
Bea		В	66	е	101	а	97		264	0
Zoe		Z	90	0	111	е	101		302	5
Jan		J	74	а	97	n	110		281	6
Ada		Α	65	d	100	а	97		262	9
Leo		L	76	е	101	0	111		288	2
Sam		S	83	а	97	m	109		289	3
Lou		L	76	0	111	u	117		304	7
Max		M	77	а	97	X	120		294	8
Ted		Т	84	е	101	d	100		285	10
Bea	Tim	Leo	Sam	Mia	Zoe	Jan	Lou	Max	Ada	Ted
0	1	2	3	4	5	6	7	8	9	10

*modulo:

279 % 11 = 4

298 % 11 = 1

→ 11 adalah banyaknya slot array yang dideklarasikan

Teknik 3: Folding

- Folding
 - Membagikan key menjadi jumlah digit yang sama, lalu jumlahkan
 - Bisa dibalik, dihilangkan suatu angka, dan ditambahkan suatu angka agar jumlah key menjadi sama
 - Angka yang dipilih sesuai dengan keinginan programmer

Teknik 4: Digit Extraction

- Digit Extraction
 - Mengambil digit digit tertentu dari sebuah key
 - Angka yang dipilih sesuai dengan keinginan programmer

Teknik 5: Rotating Hash

- Rotating Hash
 - membalik urutan key

Teknik 6: Truncation

- Truncation
 - Mengambil sebagian key dengan cara memenggal
 - Urutan pemenggalan sesuai dengan keinginan programmer

- Akan ada suatu kondisi dimana indeks hasil hash function memiliki nilai yang kembar dan mengakibatkan tubrukan indeks (COLLISION). Hal ini akan mengakibatkan pemetaan indeks menjadi kacau.
- Jika terdapat nilai indeks yang kembar, bisa dilakukan teknik untuk mengatasi indeks yang saling bertubrukan, Hal ini dinamakan dengan teknik COLLISION RESOLUTION
- Terdapat 2 teknik yang kerap digunakan, yakni Open Addressing dan Closed Addressing

Contoh

- Dari ilustrasi di samping, hasil dari hash function, "Mia" memiliki nilai indeks 4
- "Sue" juga memiliki nilai indeks 4
- Agar tidak mengalami tubrukan, Sue dialihkan ke slot yang kosong setelah Mia.
- "Sue" sekarang menempati indeks 6

Mia	M	77	i	105	а	97	279	4
Tim	Т	84	i	105	m	109	298	1
Bea	В	66	е	101	а	97	264	0
Zoe	Z	90	0	111	е	101	302	5
Sue	S	83	u	117	е	101	301	4

Bea	Tim			Mia	Zoe	Sue				
0	1	2	3	4	5	6	7	8	9	10

CHALLENGE

- Buatlah rangkuman mengenai teknik collision resolution berikut:
 - a. (closed hashing) Linear probing
 - b. (closed hashing) Double hashing
 - c. (Open hashing) Chaining

TERIMA KASIH

SOURCE:

https://www.youtube.com/watch?v=KyUTuwz_b7Q&t=48s