

Übungsblatt 9: Knicken

Kleine Verständnisfragen - formulieren Sie selber!

- 1. Warum werden bei druckbelasteten Stäben mit Knickgefahr hohe Sicherheiten verlangt?.
- 2. Was ist zu verändern, wenn sich bei der Dimensionierung eines schlanken Stabs aus Baustahl eine zu geringe Knicksicherheit ergibt?
- 3. Was kennzeichnet die Knickung nach Tetmajer?

1. Aufgabe: Knicklänge

Eine Stütze der Länge L_{θ} mit dem Durchmesser d wird wie skizziert aus der spannungsfreien Stellung (Winkel $\alpha \neq 0$) durch Verschieben des unteren Lagers in eine senkrechte Lage ($\alpha = 0$) gebracht..

gegeben:

$$d; L = 30 d; E$$

gesucht:

Wie groß darf die Länge L_0 höchstens sein, damit die Stütze in der senkrechten Stellung nicht ausknickt?

2. Aufgabe: Knicklast:

Ein beidseitig gelenkig an die festen Punkte A und B angeschlossener Stab mit Rechteckquerschnitt (Höhe h, Breite b) soll gleichmäßig erwärmt werden, bis ein Ausknicken des Stabes eintritt.

gegeben:

l = 6 m; h = 300 mm; b = 150 mm; $E = 2,1 \text{ } 10^5 \text{ N/mm}^2$; $\alpha = 1,2 \text{ } 10^{-5} \text{ K}^{-1}$

gesucht: Welche Temperaturerhöhung $\Delta\vartheta$ ist hierfür erforderlich?.