

Final Assessment Test (FAT) - June 2022

Programme	B.Tech	Semester	Winter Semester 2021-22	
Course Title	ELECTRONIC MATERIALS AND DEVICES	Course Code	BECE201L	
Faculty Name	Prof. Sathya Sree J	Slot	FI+TFI	
		Class Nbr	CH2021222300532	while .
Time	3 Hours	Max. Marks	100	THE
	Answer all the questions			Com

Part - A (10 X 10 Marks) Answer All questions

- (a) Explain skin effect with neat diagram.
 (b) The hall effect of silicon specimen is 4.55 x 10⁻⁴ m³C⁻¹ and its resistivity is 8.88 x 10⁻³Ω m.
 (c) P)

 Determine the carrier concentration and mobility.
- 2 A new semiconductor has $N_c = 10^{19}$ cm⁻³. $N_v = 5 \times 10^{18}$ cm⁻³, and $E_g = 2$ eV. If it is doped with 10^{17} donors (fully ionized), calculate the electron, hole, and intrinsic carrier concentrations at $(E_g)_1$ (Eq. 1).
- Draw the energy band diagram of n-type and p-type semiconductor and explain how the Fermi [10] Level varies with temperature and doping concentration with an example.
- 4 cm. The electron diffusion coefficient is $D_n = 25 \text{ cm}^2/\text{s}$. Determine the electron diffusion current density at $x = 10^{-4}$ cm.
 - (ii) The required conductivity of a silicon material must be $\sigma = 1.5 \, (\Omega \text{-cm})^{-1}$. If $\mu_n = 1000 \, \text{cm}^2$ V-s and $\mu_p = 375 \, \text{cm}^2/\text{V-s}$. Find the electron concentration.
- ON PN silicon device is fabricated with a phosphorus donor concentration of 5×10¹⁵ cm⁻³. The sample is bombarded with boron acceptors to create a P-type material of 1×10¹⁷ cm⁻³ concentration and a cross sectional area of 1×10¹²cm². Assume complete ionization KT/q = 26mV and intrinsic carrier concentration n_i=1.5×10¹⁰cm⁻³ at operating temperature T=300K. Calculate:
 - (i) The built-in potential at the PN junction.
 - (ii) Total depletion width.
 - (iii) Maximum electric field at the junction. Serv
- Explain the input and output characteristics of Common Emitter (CE) configuration of NPN [10] transistor and draw the corresponding small-signal equivalent model.
- Explain the C-V characteristics of a MOS capacitor with a p-type substrate with the help of energy band diagram.
- If the drain of an n channel MOSFET is shorted to the gate with a threshold voltage (V_T) of MOSFET as 0.5 V, Identify the region of operation. Also, If the drain current (I_D) is specified as 2 mA for V_{GS} = 3 V, then estimate the drain current and transconductance using the appropriate formula for V_{GS} = 5V.
- Suggest a suitable material that has high electrical and thermal conductivity for a semiconductor device along with its working principle and necessity.

ಱಱ