Sub Code: BAST-105 ROLL NO......

EVEN SEMESTER EXAMINATION, 2022 – 23 1st Year, B.Tech MATHEMATICS-II

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1.	Answer any four parts of the following.	5x4=20
	a) Solve $x \frac{dy}{dx} + coty = 0$ given that $y = \frac{\pi}{4}$, where $x = \sqrt{2}$.	
	b) Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = \cos 2x$.	
	c) Solve $p^2 + 2pycotx - y^2 = 0$.	
	d) Solve $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10(x + \frac{1}{x})$.	
	e) Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x e^x Cosx$.	
	f) Solve $(1 + y^2)dx = (tan^{-1}y - x)dy$.	
Q 2.	Answer any four parts of the following.	5x4=20
	a) Solve $\frac{d^2y}{dx^2} - \frac{2}{x}\frac{dy}{dx} + (n^2 + \frac{2}{x^2})y = 0.$	
	b) Solve $\frac{d^2y}{dx^2} - \frac{1}{x}\frac{dy}{dx} + 4x^2y = x^4$.	
	c) Express $f(x) = x^3 - 5x^2 + x + 2$ in terms of Legendre's polynomials.	
	d) Prove that $\int_{-1}^{1} [P_n(x)]^2 dx = \frac{2}{2n+1}$.	
	e) For Bessel's functions, show that $\frac{d}{dx}[x J_n(x)J_{n+1}(x)] = x[\{J_n(x)\}^2 - \{J_{n+1}(x)\}^2].$	
	f) Apply the method of variation of parameter to solve $\frac{d^2y}{dx^2} - y = \frac{2}{1+e^x}$.	
Q 3.	Answer any two parts of the following.	10x2 = 20
	a) Solve $(D^3 - 7DD'^2 - 6D'^3)z = \sin(x + 2y) + e^{2x+y}$.	
	b) (i) Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = y \cos x$.	
	(ii) Form the partial differential equation from $z = f_1(y + 2x) + f_2(y - 3x)$.	
	c) (i) Solve the partial differential equation $p^2 + q^2 = n p q$.	
	(ii) Solve the partial differential equation $p^2 + q^2 = x + y$.	
Q 4.	Answer any two parts of the following.	10x2 = 20
	a) (i) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n} Sin \frac{1}{n}$.	
	(ii) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{3^n}{n^3}$.	
	b) Discuss the convergence of the series	
	$x + \frac{2^2x^2}{2!} + \frac{3^3x^3}{3!} + \frac{4^4x^4}{4!} + \cdots \dots \dots$	
1		

	c) Find the half range cosine series to represent the function $f(x)$ given by $f(x) = x$, $0 \le x \le \pi$.	
Q 5.	Answer any two parts of the following.	10x2 = 20
	a) Using contour integration method, evaluate $\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4 \cos \theta} d\theta$.	
	b) Evaluate the integrals using Cauchy integral formula	
	(i) $\int_C \frac{4-3z}{z(z-1)(z-2)} dz$ where $ z = \frac{3}{2}$. (ii) $\int_C \frac{z-1}{(z+1)^2 (z-2)} dz$ where $ z-i = 2$.	
	c) Find the values of a and b such that the function $f(z) = x^2 + ay^2 - 2xy + i(bx^2 - y^2 + 2xy)$ is analytic.	
