

Medical Cost Prediction

Presented by Nina Aulia N. Azhary

Presentation Outline

<u>Today's Topics</u>

Problem Formulation	>
Data Understanding	>
Exploratory data analysis	>
Modeling	>
Implementation Model	>
References	>

NEXT

Problem Formulation

Business Problem

 \longrightarrow

During the spread of COVID-19, the number of patients in the hospital has increased in the last two years. Hence, hospitals need technology to predict the cost of health that can give more efficient, helpful, and faster analysis for patients' convenience.

What factors have contributed to the high cost of healthcare?

how to classify patients based on their insurance costs?

Is the 'region' a factor in the high cost of health insurance?

Dataset:

Insurance dataset has 1338 rows and 6 features :

- Age : age of primary beneficiary
- Sex: insurance contractor gender, female, male
- BMI: Body mass index, providing an understanding of body, weights that are relatively high or low relative to height, objective index of body weight (kg / m ^ 2) using the ratio of height to weight, ideally 18.5 to 24.9
- Children: Number of children covered by health insurance / Number of dependents
- Smoker: Smoking, yes / no
- Region: the beneficiary's residential area in the US, northeast, southeast, southwest, northwest.
- Charges: Individual medical costs billed by health insurance

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):

Data	cocumins (cocac	/ Cocumins,	
#	Column	Non-N	Null Count	Dtype
0	age	1338	non-null	int64
1	sex	1338	non-null	object
2	bmi	1338	non-null	float64
3	children	1338	non-null	int64
4	smoker	1338	non-null	object
5	region	1338	non-null	object
6	charges	1338	non-null	float64
dtype	es: float6	4(2),	int64(2),	object(3)
memor	rv usade: 1	73.3+	KR	

Exploratory data analysis

Finding:

- charges and age have the highest correlation.
- Age has no outliers.
- smoker has higher cost.
- our dataset are mostly non smokers but they have higher BMI than smoker.

Finding:

- BMI has a normal distribution with outliers
- most people in our data is obese and they tend to pay more for the medical cost

Finding:

- people with no children has higher medical cost.
- most peoplein each region are non smoker and obese.

Data Preprocessing

Removing outliers using Z score

we using Z score for bmi because bmi follow the normal distribution and Zscore can quantify the unusualness of an observation in our data.

● O Log transformation for data target

Because charges have a right distribution and a lot of the outliers can't be filtered out so we use log transformation for helps reducing skewness.

● ● ■ Label encoding

Implement label encoding for categorical variable like sex, smoker, region and bmi_categories

Log transformation for target.

Modeling

• Separate the data into train and test set:

```
[ ] y= df['charges']
X = df.drop(['charges'], axis = 1)

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size= 0.2, random_state = 42)
X_train.shape, X_test.shape

((1067, 7), (267, 7))
```

• Model implementation :

we use pipelines for modeling and standard scaling for data scale.

- 1. Liniear regression
- 2. Polynomial regression (degree = 4)
- 3. Knn $(n_neighbors = 8)$
- 4. Decision tree (max_depth = 3)

Models comparison

```
score = [['Linear Regression', linreg score, mse linreg, rmse linreg]
         ['Polynomia Regression', poly score, mse poly, rmse poly],
         ['KNN Regression', knn score, mse knn, rmse knn],
         ['DecisionTree Regression', dt score, mse dt, rmse dt]]
models = pd.DataFrame(score)
models.columns = ['model', 'score', 'MSE', 'RMSE']
print (models,'\n')
plt.figure(figsize=(8,6))
sns.barplot(x = 'model',
           y = 'score',
           data = models,
            color = 'salmon',
           order=models.sort values('score').model)
plt.show()
                    model
                                                 RMSE
                            score
        Linear Regression 0.7721 0.037439 0.193491
     Polynomia Regression 0.7552 0.040222 0.200554
           KNN Regression 0.8052 0.031998 0.178879
  DecisionTree Regression 0.8105 0.031124 0.176421
```

Decsion tree has high score with small MSE or RMSESo we'll take decision tree for our model!

Tuning hyperparameters & saving model.

After looking for best hyperparameters with 5 k-fold validation and gridsearch then training the dataset and tsave our model with pickle

```
steps = [('scaler', StandardScaler()),
         ('dt', DecisionTreeRegressor(criterion = 'friedman mse',
                                      max depth = 4,
                                      max features = None,
                                      min samples leaf = 4,
                                      min weight fraction leaf = 0.1,
                                      splitter = 'best'))]
pipe = Pipeline(steps)
pipe.fit(X train, y train)
y pred = pipe.predict(X test)
score = pipe.score(X test, y test)
print('score : ', round(score, 4)*100)
print('MSE :', mean squared error(y test, y pred))
print('RMSE :', np.sqrt(mean squared error(y test,y pred)))
score : 80.4
MSE: 0.03220440783374481
RMSE: 0.17945586597752888
```

```
[ ] #final model
    tuning.best_estimator_.fit(X_train,y_train)
    filename = 'insurance.pkl'
    pickle.dump(tuning.best_estimator_,open(filename,'wb'))
```

Deploying a machine learning model to the web

Contact Information

FULL CODE ON

https://github.com/ninaaulia

EMAIL ADDRESS

ninaaulia6652@gmail.com

WEBSITE

https://nninaulia.medium.com/