Heavy quark transport coefficient from a Bayesian analysis

Yingru Xu

Duke University

yx59@phy.duke.edu

July 13, 2017

In collaboration with: Marlene Nahrgang Jonah E. Bernhard Shanshan Cao Steffen A. Bass

Introduction

HQ diffusion coefficients (D_s, \hat{q}) in heavy-ion collision

• Not directly measurable — A modeling problem

- Inputs: model parameters \vec{x} HQ diffusion coefficients
- Output: observables R_{AA} , v_2 , ...
- Mapping: $\vec{x} \rightarrow \vec{y}^* = \text{Model}(\vec{x}^*)$
- What if we have 10 parameters? Or 100 observables? How to increase precision?
- ⇒ Bayesian inference

$$P(\vec{x}|\vec{y}) = \frac{P(\vec{y}|\vec{x}) \cdot P(\vec{x})}{\int P(\vec{y}|\vec{x}) \cdot P(\vec{x}) d\vec{x}} \propto P(\vec{y}|\vec{x}) \cdot P(\vec{x})$$
(1)

Yingru Xu 1/18

Yingru Xu 2/18

HQ in heavy-ion collisions

Initial condition: Spatial IC: - T_RENTo

Momentum IC: - FONLL In-medium evol: HQ transport: Langevin (col + rad) Medium: hydrodynamic

Hadronization: fragmentation + recombination

after-burner: UrQMD

Initial condition

Position space: T_RENTo (A parametric IC model)

• Entropy deposition proportional to eikonal parameterization

$$\left. rac{ds}{dy} \right|_{ au = au_0} \propto \left(rac{T_A^p + T_B^p}{2}
ight)^{1/p}$$

J.S.Moreland, J.Bernhard, and S.A.Bass, Phys.Rev.C 92, 011901(2015)

- $p = 0 \Rightarrow ds/dy \propto \sqrt{T_A T_B}$ (mimic the behavior of IP-Glasma)
- ullet Heavy quark initial production probability: $\left.rac{dN}{dy}
 ight|_{ au= au_0} \propto T_{
 m AA}$

Momentum space: FONLL

Parton distribution function: CTEQ6

M.Cacciari, S.Frixione, and P.Nason,

• Nuclear shadowing effect: EPS09 NLO^{arxiv:hep-ph/0102134}

Calibration of the medium

(2+1)D viscous hydro: iEbE-VISHNU

H.Song and U.W.Heinz, Phys.Rev.C 77, 064901(2008)

- Equation of state from lattice QCD (HotQCD collaboration)
- Temperature-dependent shear + bulk vis correction

$$(\eta/s)(T) = (\eta/s)_{\min} + (\eta/s)_{\text{slope}}(T - T_c), T_c = 154 \text{MeV}$$

 $(\zeta/s)(T) = (\zeta/s)_{\text{norm}} \times f(T)$

• All the initial/medium related parameters (norm, $p, \eta/s$ etc.) are calibrated by Bayesian analysis with experimental data

HQ in-medium evolution

Improved Langevin transport model

S.Cao, G.Qin, and S.A.Bass, Phys.Rev.C 92, 024907(2015)

$$\frac{d\vec{p}}{dt} = -\eta_D(p)\vec{p} + \vec{\xi} + \vec{f_g}$$
 (2)

- Drag force: $\eta_D(p) = \kappa/(2TE)$
- Thermal random force: $\langle \xi^i(t)\xi^j(t') = \kappa \delta^{ij}\delta(t-t') \rangle$
- Recoil force from gluon radiation: $\vec{f_g} = -d\vec{p_g}/dt$
- Gluon emission probability:

$$\frac{dN_g}{dxdk_{\perp}^2 dt} = \frac{2\alpha_s P(x)\hat{q}_g}{\pi k_{\perp}^4} \sin^2(\frac{t - t_i}{2\tau_f}) (\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 M^2})^4$$
 (3)

- $\hat{q}_g = \hat{q}C_A/C_F = 2\kappa C_A/C_F$, $D_s = 2T^2/\kappa$
- Diffusion coefficient D_s=?

a parametrization of $D_s 2\pi T$

A combination of linear temperature dependence and pQCD calculation:

$$D_{s}2\pi T(T,p) = \frac{1}{1 + (\gamma^{2}p)^{2}} \frac{D2\pi T^{\text{linear}}}{1 + (\gamma^{2}p)^{2}} + \frac{(\gamma^{2}p)^{2}}{1 + (\gamma^{2}p)^{2}} D2\pi T^{\text{pQCD}}$$
(4)

• $D_s 2\pi T^{\text{linear}}$: the linear component, defined as:

$$D2\pi T = \alpha \cdot (1 + \beta \cdot (\frac{T}{T_c} - 1)) \tag{5}$$

• $D_s 2\pi T^{\mathrm{pQCD}} = 4\pi T^3/\kappa$: the pQCD component

$$\kappa_{//} = \kappa_{\perp} = \left\langle p_{\perp}^{2} \right\rangle - \left\langle p_{\perp} \right\rangle^{2}$$
(6)

where

$$\langle X \rangle = \frac{\gamma_q}{2E_Q} \int \frac{d^3p_q}{(2\pi)^3 2E_q} \frac{d^3p_{q'}}{(2\pi)^3 2E_{q'}} \frac{d^3p_Q'}{(2\pi)^3 2E_{q'}'} f_q(p_q) (2\pi)^4 \delta(p_Q + p_q - p_Q' - p_q') |\mathcal{M}|^2_{Q+q \to Q'+q'}$$

a parametrization of $D_s 2\pi T$

$$D_{s}2\pi T(T,p) = \frac{1}{1+(\gamma^{2}p)^{2}} \frac{D2\pi T^{\text{linear}}}{1+(\gamma^{2}p)^{2}} D2\pi T^{\text{PQCD}}$$

- $D_s 2\pi T(p=0) = D_s 2\pi T^{\text{linear}}, D_s 2\pi T(p>>0) = D_s 2\pi T^{\text{pQCD}}$
- $p < 1/\gamma^2$: linear component contributes more $p > 1/\gamma^2$: pQCD component contributes more $p = 1/\gamma^2$: contributes equally
- An example of varying parameter γ : (with α, β fixed)

Prior calculation

HQ spatial diffusion coefficients:

$$D_s 2\pi T(T, p; \alpha, \beta, \gamma) = \frac{1}{1 + (\gamma^2 p)^2} D2\pi T^{\mathrm{linear}}(\alpha, \beta) + \frac{(\gamma^2 p)^2}{1 + (\gamma^2 p)^2} D2\pi T^{\mathrm{pQCD}}$$

Inputs: $X_{60\times3}$	
Parameters	Range
α	0.1-7.0
β	0-5.0
γ	0.0-0.6

Outputs: Y _{60×69}		
Experiment	variables	cut
AuAu@200 Ge	$R_{AA}(p_T)$	0-10%
	$v_2(EP)(p_T)$	0-80%,10-40%
PbPb@2.76 Te	$V R_{AA}(n_{part})$	$p_T\sim$ 5-8, 8-16 GeV/c
	$v_2(EP)(p_T)$	30-50%
PbPb@5.02 Te	$V R_{AA}(p_T)$	30-50%
	$v_2\{2\}(p_T)$	10-30%, 30-50%

Prior & training data

GP emulator

Difficulties

Full Langevin framework run \propto 8hrs for 100 events produced

5000 events needed for an event-by-event study

 $O(10^3)$ CPU hours to evaluate one parameter point \vec{x}

GP emulator: a mapping from $\vec{x} \rightarrow y = \mathcal{N}(\mu(\vec{z}), \Sigma(\vec{x}))$

Bayes' Theorem & MCMC

Bayes' Theorem:

posterior \propto likelihood \times prior (7)

- Posterior: $P(\vec{x}|\vec{y}_{\text{exp}})$ the distribution for parameter \vec{x} given the observation of \vec{y}_{exp}
- Prior: $P(\vec{x})$ flat (uniform) distribution
- Likelihood: $P(\vec{y}_{\text{exp}}|\vec{x}) \propto \exp[(\vec{y} - \vec{y}_{\text{exp}})\Sigma^{-1}(\vec{y} - \vec{y}_{\text{exp}})^{T}]$
- Covariance matrix: $\Sigma = \operatorname{diag}(\sigma_{stat}^2) + \operatorname{diag}(\sigma_{sys}^2)$

MCMC

- Random walk weighted by likelihood $P(\vec{y}_{exp}|\vec{x})$
- Each step is accepted or rejected according to the relative likelihood
- Acceptance rate for this study: 40-50%
- When reach equilibrium → posterior distribution

Prior & training data

Posterior results: calibated observables

Posterior results: parameter distributions

Yingru Xu

Results

Posterior results: $D_s 2\pi T$

Posterior results: $D_s 2\pi T(p=0) \& \hat{q}$

- Compatible with lattice QCD calculation
- $D_s 2\pi T(p=0)$ best constrained around $T\sim 200-250$ MeV, with the value (1-3) near T_c , and positive slope for temperature dependence above T_c

Yingru Xu Results 16/18

Prediction beyond the calibration

D-meson v₃ in PbPb collisions at 5.02 TeV:

Summary

- Bayesian analysis can be utilized to systematically and quantitatively estimate the heavy flavor diffusion coefficients; the improved Langevin model is able to simultaneously describe D-meson $R_{\rm AA}$, v_2 , v_3
- $D_s 2\pi T(p=0)$ compatible with IQCD calculation, with the value in the range of (1-3) near T_c , and a positive slope for temperature dependence above T_c
- Non-perturbative contribution ($D_2\pi T^{\rm linear}$) still plays a role at $p\sim 10-20$ GeV. Higher momentum region compatible with pQCD calculation.
- Future work:
 - application of Bayesian analysis to comparative study of Boltzmann vs. Langevin transport
 - * application to other rare probes and observables
 - * simultaneously calibration on soft and hard sector