Advanced Machine Learning CIS550 Spring '24

Lab Homework 2

Submitted by:

Name: Manas Vishal (01971464)

Email: mvishal@umassd.edu

Title: Homework on exploring datasets and its

analysis

Exploring the data

The goal is to explore the dataset and its classification. We also aim to study the data by their correlation values. The data was recorded by Dr. Henrique da Mota during a medical residence period in the Group of Applied Research in Orthopedics (GARO) of the Centre Médico-Chirurgical de Réadaptation des Massues, Lyon, France. The data has been organized in two different, but related, classification tasks.

The features of the data are:

- Pelvic incidence
- Pelvic tilt
- Lumbar lordosis angle
- Sacral slope
- Pelvic radius
- Grade of spondylolisthesis

Importing the data

In this part we first import the data and the modules needed to analyze the various features of it.

```
1 import warnings, requests, zipfile, io
       2 warnings.simplefilter('ignore')
       3 import pandas as pd
       4 from scipy.io import arff
     √ 1.2s
                                                                                Python
       1 f zip = 'https://archive.ics.uci.edu/static/public/212/vertebral+column.zip'
       2 r = requests.get(f_zip, stream=True)
       3 Vertebral_zip = zipfile.ZipFile(io.BytesIO(r.content))
       4 Vertebral zip.extractall()
[8] \( \square 0.6s
                                                                                Python
       1 data = arff.loadarff('column_2C_weka.arff')
       2 df = pd.DataFrame(data[0])
```

Fig1. Importing the data

Exploring the data

We explore the data in this section. We first load the data in arff and then see the shape and print out the column indentifiers.

```
1 data = arff.loadarff('column_2C_weka.arff')
        2 df = pd.DataFrame(data[0])
[9]
      ✓ 0.0s
                                                                                         Python
        1 df.shape
[11]
      ✓ 0.0s
                                                                                          Python
    (310, 7)
        1 df.columns
     ✓ 0.0s
[12]
                                                                                         Python
    Index(['pelvic\_incidence', 'pelvic\_tilt', 'lumbar\_lordosis\_angle',\\
            'sacral_slope', 'pelvic_radius', 'degree_spondylolisthesis', 'class'],
           dtype='object')
```

Fig 2. Exploring the data

Fig 3. Datatypes

We see the data types of the associated column field.

✓ 0.0	S					Pytho
ı	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle	sacral_slope	pelvic_radius	degree
0	63.027817	22.552586	39.609117	40.475232	98.672917	
1	39.056951	10.060991	25.015378	28.995960	114.405425	
2	68.832021	22.218482	50.092194	46.613539	105.985135	
3	69.297008	24.652878	44.311238	44.644130	101.868495	degree 17 25 35 95 62 45 25 42
4	49.712859	9.652075	28.317406	40.060784	108.168725	
305	47.903565	13.616688	36.000000	34.286877	117.449062	
306	53.936748	20.721496	29.220534	33.215251	114.365845	
307	61.446597	22.694968	46.170347	38.751628	125.670725	
308	45.252792	8.693157	41.583126	36.559635	118.545842	
309	33.841641	5.073991	36.641233	28.767649	123.945244	

Fig. 4 The dataset

We print the dataset to screen.

We can use the describe function to get a quick statistic on the full data or the subset of it.

```
1 df['pelvic incidence'].describe()
[15] \checkmark 0.0s
                                                                                     Python
    count
             310.000000
          60.496653
    mean
             17.236520
    std
    min
              26.147921
    25%
             46.430294
    50%
             58.691038
    75%
              72.877696
             129.834041
    Name: pelvic_incidence, dtype: float64
```

Fig. 5 Describe function on a Column

1 df.describe() ✓ 0.0s							
	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle	sacral_slope	pelvic_radius	degr	
count	310.000000	310.000000	310.000000	310.000000	310.000000		
mean	60.496653	17.542822	51.930930	42.953831	117.920655		
std	17.236520	10.008330	18.554064	13.423102	13.317377		
min	26.147921	-6.554948	14.000000	13.366931	70.082575		
25%	46.430294	10.667069	37.000000	33.347122	110.709196		
50%	58.691038	16.357689	49.562398	42.404912	118.268178		
75%	72.877696	22.120395	63.000000	52.695888	125.467674		
max	129.834041	49.431864	125.742385	121.429566	163.071041		

Fig. 6 Describe function on full data

Since we don't see any anomaly by eye hence we now rely on the metrics and plots.

```
1 import matplotlib.pyplot as plt
        2 %matplotlib inline
        3 df.plot()
      ✓ 0.5s
                                                                                         Python
[18]
     <Axes: >
                                                      pelvic_incidence
       400
                                                      pelvic_tilt
                                                      lumbar_lordosis_angle
                                                      sacral_slope
                                                      pelvic_radius
       300
                                                      degree_spondylolisthesis
       200
       100
                                 100
                                           150
                                                     200
                                                               250
               0
                        50
                                                                         300
```

Fig. 7 Plot of data

We can also use the density plot to visualize the distribution of each column/field/feature.

Fig. 8 Density plot of data

```
1 df['degree_spondylolisthesis'].plot.density()
[20]
                                                                                    Python
    <Axes: ylabel='Density'>
         0.0175
         0.0150
         0.0125
         0.0100
      0.0075
         0.0050
         0.0025
         0.0000
                                  0
                                              200
                   -200
                                                            400
                                                                          600
```

Fig. 9 Density plot of the Spondylolisthesis feature

We also plot histogram to see the skewness of the distribution

Fig. 10 Histogram plot of the feature

We then use the whisker box plot to see any outlier(s). From the box plot we can see that there seems to be quite a big value near 400.

Fig. 11 Box plot of data

Analyzing the target

We check the number of abnormal and normal values. We cannot use strings for analysis, hence we convert abnormal to 1 and normal to 0.

```
1 df['class'].value counts()
class
b'Abnormal'
                210
b'Normal'
                100
Name: count, dtype: int64
      class_mapper = {b'Abnormal':1,b'Normal':0}
      df['class']=df['class'].replace(class_mapper)
      pelvic_incidence
                        pelvic_tilt
                                   lumbar_lordosis_angle
                                                           sacral_slope pelvic_radius
                                                                                      degree\_spondylolisthesis
             63.027817
                        22.552586
                                               39.609117
                                                             40.475232
                                                                           98.672917
                                                                                                     -0.254400
             39.056951
                        10.060991
                                               25.015378
                                                             28.995960
                                                                          114.405425
                                                                                                      4.564259
             68.832021
                        22.218482
                                               50.092194
                                                             46.613539
                                                                          105.985135
                                                                                                     -3.530317
             69.297008
                        24.652878
                                               44.311238
                                                             44.644130
                                                                          101.868495
                                                                                                     11.211523
             49.712859
                         9.652075
                                               28.317406
                                                             40.060784
                                                                          108.168725
                                                                                                      7.918501
 305
            47.903565
                        13.616688
                                               36.000000
                                                             34.286877
                                                                          117.449062
                                                                                                     -4.245395
                                                                                                                    0
             53.936748
                                                                                                                    0
 306
                        20.721496
                                               29.220534
                                                             33.215251
                                                                          114.365845
                                                                                                      -0.421010
 307
             61.446597
                        22.694968
                                               46.170347
                                                             38.751628
                                                                          125.670725
                                                                                                      -2.707880
                                                                                                                    0
 308
             45.252792
                         8.693157
                                               41.583126
                                                             36.559635
                                                                          118.545842
                                                                                                      0.214750
 309
             33.841641
                         5.073991
                                               36.641233
                                                             28.767649
                                                                          123.945244
                                                                                                     -0.199249
310 rows × 7 columns
```

Fig. 12 Updated class values according to number

We then make a scatter plot of the data according to class map we did earlier

Fig. 13 Scatter Plot of abnormal and normal class

class

0.6

0.8

1.0

0.4

0.2

(Challenge Task)

0.0

For other classes we do the same by just changing the string

```
df.plot.scatter(y='pelvic_incidence',x='class')
    0.1s
<Axes: xlabel='class', ylabel='pelvic_incidence'>
     120
     100
  pelvic_incidence
       80
       60
       40
                          0.2
                                       0.4
                                                                  0.8
            0.0
                                                     0.6
                                                                                1.0
                                             class
```

Fig. 14 Scatter plot for different class

To analyze multiple features at once we use the boxplot

Fig. 15 Boxplot for all variable

.corr function gives us the correlation value beetween each features

```
1 corr_matrix = df.corr()
       2 corr_matrix["class"].sort_values(ascending=False)
[29] 		 0.0s
                                                                              Python
    class
                             1.000000
    degree_spondylolisthesis 0.443687
    pelvic_incidence
                             0.353336
    pelvic_tilt
                            0.326063
    lumbar_lordosis_angle
                           0.312484
    sacral slope
                            0.210602
                   -0.309857
    pelvic radius
    Name: class, dtype: float64
```

Fig. 16 Correlation matrix and values

We make a scatter plot to visualize the correlation matrix and then followup with heatmap of correlation matrix.

Fig. 17 Scatterplot for correlation matrix

My laptop did not have seaborn installed so I install seaborn in my conda environment with the conda install command.

```
1 import seaborn as sns
        2 ## Plot figsize
        3 fig, ax = plt.subplots(figsize=(10, 10))
        4 # Generate Color Map
     Python
[32]
     ModuleNotFoundError
                                                Traceback (most recent call last)
    Cell In [32], <u>line 1</u>
     ---> <u>1</u> import seaborn as sns
           2 ## Plot figsize
          3 fig, ax = plt.subplots(figsize=(10, 10))
    ModuleNotFoundError: No module named 'seaborn'
        1 !conda install seaborn -y
     ✓ 23.0s
                                                                                       Python
    Collecting package metadata (current_repodata.json): done
     Solving environment: done
```

Fig. 18 Seaborn installation

Fig. 19 Heatmap of correlation matrix

(Challenge Task)

Working on a different dataset.

I chose the Rice dataset [Rice (Cammeo and Osmancik)] from

Rice (Cammeo and Osmancik) - UCI Machine Learning Repository

```
1 import warnings, requests, zipfile, io
      2 warnings.simplefilter('ignore')
      3 import pandas as pd
      4 from scipy.io import arff
[21] 			 0.0s
      1 f_zip = 'https://archive.ics.uci.edu/static/public/545/rice+cammeo+and+osmancik.zip'
      2 r = requests.get(f_zip, stream=True)
      3 Vertebral_zip = zipfile.ZipFile(io.BytesIO(r.content))
      4 Vertebral_zip.extractall()
[22] 		0.8s
                                                                                                Python
      1 data = arff.loadarff('Rice_Cammeo_Osmancik.arff')
      2 df = pd.DataFrame(data[0])
[31] V 0.0s
                                                                                                Python
                                                                                 Python
   dtype='object')
     1 df.dtypes
··· Area
                     float64
    Perimeter
                    float64
    Major_Axis_Length float64
    Minor_Axis_Length float64
    Eccentricity
                    float64
                   float64
    Convex_Area
    Extent
                    float64
                     object
    dtype: object
```

Fig. 20 Importing New Dataset

Fig. 21 Printing the dataset on screen

+ Code + Markdown								
1 df.describe()								
✓ 0.0s								
	Area	Perimeter	Major_Axis_Length	Minor_Axis_Length	Eccentricity	Convex_Area	Extent	
count	3810.000000	3810.000000	3810.000000	3810.000000	3810.000000	3810.000000	3810.000000	
mean	12667.727559	454.239180	188.776222	86.313750	0.886871	12952.496850	0.661934	
std	1732.367706	35.597081	17.448679	5.729817	0.020818	1776.972042	0.077239	
min	7551.000000	359.100006	145.264465	59.532406	0.777233	7723.000000	0.497413	
25%	11370.500000	426.144753	174.353855	82.731695	0.872402	11626.250000	0.598862	
50%	12421.500000	448.852493	185.810059	86.434647	0.889050	12706.500000	0.645361	
75%	13950.000000	483.683746	203.550438	90.143677	0.902588	14284.000000	0.726562	
max	18913.000000	548.445984	239.010498	107.542450	0.948007	19099.000000	0.861050	

Fig. 22 Find a simple statistic of the data

We now visualize the dataset by plotting the density plot

Fig. 23 Density plot of the data

I chose class by using Cammeo as 1 Osmancik as 0

Fig. 24 Replacing with target class

Fig. 25 Boxplots sorted by class

Fig. 26 Scatter Matrix of the new data set

Fig. 27 Heat Map of the new correlation matrix

Conclusion

From this homework, we learn a lot of new techniques in data analysis and visualization. To start with importing and exploring the dataset, we first learnt how to download data in python using the pandas module. We learnt how to visualize the several features by using various statistical tools and techniques. Going forward in this machine learning class, these tools are going to be very helpful in determining the model chosen for the dataset. I look forward to next lectures and assignments.