Análisis Matemático II - Tarea 2

Fecha límite: domingo 3 de octubre a las 23:59 horas

Andrés Casillas García de Presno

1. Demuestra las siguientes afirmaciones.

- a) $|\Theta(x) \Theta(y)| \le n||x y||_{\infty} \quad \forall x, y \in \mathbb{R}^n$.
- b) Para todo $\delta > 0$ y todo $\zeta \in \mathbb{R}^n$,

$$|(\mathrm{T}_{\zeta}\Theta_{\delta})(x) - (\mathrm{T}_{\zeta}\Theta_{\delta})(y)| \leq \frac{n}{\delta} \|x - y\|_{\infty} \quad \forall x, y \in \mathbb{R}^{n},$$

donde $T_{\zeta}\Theta_{\delta}$ denota a la traslación de Θ_{δ} por ζ .

Solución:

(a) Demostrémoslo por inducción sobre n:

Caso base: n = 1

Sean $x, y \in \mathbb{R}$.

Caso 1: |x| > 1, |y| > 1

 $|\Theta(x) - \Theta(y)| = |0 - 0| = 0 \le |x - y|$ por propiedades de valor absoluto.

Caso 2: $|x| \le 1, |y| > 1$

Si $x \in [0, 1]$ sabemos que $|x - y| \ge |x - 1| \ge 0$ por lo que $|\Theta(x) - \Theta(y)| = |\Theta(x)| = 1 - x \le 1 - x = |1 - x| \le |x - y|$.

Si $x \in [-1,0)$ entonces $|x-y| \ge |x-(-1)| = |x+1|$ de forma que $|\Theta(x) - \Theta(y)| = |\Theta(x)| = 1 + x \le 1 + x = |1+x| \le |x-y|$.

Caso 3: $|y| \le 1, |x| > 1$ Es completamente análogo al caso anterior.

Caso 4: $|x| \le 1, |y| \le 1$

Si $x \ge 0, y \ge 0$ entonces $|\Theta(x) - \Theta(y)| = |1 - x - (1 - y)| = |y - x| = |x - y|$.

Si
$$x<0,y<0$$
entonces $|\Theta(x)-\Theta(y)|=|1+x-(1+y)|=|x-y|$

Si
$$x \ge 0, y < 0$$
 entonces $|\Theta(x) - \Theta(y)| = |1 - x - (1 + y)| = |-y - x| = |y + x| \le |y - x| = |x - y|$ pues $|y - (-y)| = |x - y| + |x - (-y)|$.

Si $x < 0, y \ge 0$ es completamente análogo al anterior.

Hipótesis de inducción:

Supongámos que $|\Theta(x) - \Theta(y)| \le n||x - y||_{\infty} \quad \forall x, y \in \mathbb{R}^{n-1}$

Paso inductivo

Sean $(x_1, ..., x_n), (y_1, ..., y_n) \in \mathbb{R}^n$

Por definición, $\Theta(x) = \theta(x_1)...\theta(x_n)$. Así, sea $\overline{x} = (x_1, ..., x_{n-1}), \overline{y} = (y_1, ..., y_{n-1}), \Theta(\overline{x}) = \theta(x_1)...\theta(x_{n-1})$ de forma que $\Theta(x) = \Theta(\overline{x})\theta(x_n)$. Así,

$$\begin{aligned} |\Theta(x) - \Theta(y)| &= |\Theta(\overline{x})\theta(x_n) - \Theta(\overline{y})\theta(y_n)| \\ &= |\Theta(\overline{x})\theta(x_n) - \Theta(\overline{y})\theta(x_n) + \Theta(\overline{y})\theta(x_n) - \Theta(\overline{y})\theta(y_n)| \\ &= |[\Theta(\overline{x}) - \Theta(\overline{y})]\theta(x_n) + \Theta(\overline{y})\theta(x_n) - \Theta(\overline{y})\theta(y_n)| \\ &\leq |[\Theta(\overline{x}) - \Theta(\overline{y})]\theta(x_n)| + |\Theta(\overline{y})\theta(x_n) - \Theta(\overline{y})\theta(y_n)| \\ &= |\Theta(\overline{x}) - \Theta(\overline{y})||\theta(x_n)| + |\Theta(\overline{y})\theta(x_n) - \Theta(\overline{y})\theta(y_n)| \end{aligned}$$

que, por hipótesis de inducción,

$$\leq (n-1)\|\overline{x} - \overline{y}\|_{\infty} |\theta(x_n)| + |\Theta(\overline{y})| |\theta(x_n) - \theta(y_n)|$$

y como $|\theta(x_n)| \in [0,1]$

$$\leq (n-1)\|\overline{x} - \overline{y}\|_{\infty} + |\Theta(\overline{y})||\theta(x_n) - \theta(y_n)|$$

Ahora bien, por el caso base sabemos que $|\theta(x_n) - \theta(y_n)| \le |x_n - y_n|$, por lo que

$$\leq (n-1)\|\overline{x} - \overline{y}\|_{\infty} + |\Theta(\overline{y})||x_n - y_n||$$

y como $|\Theta(\overline{y})| \in [0,1]$ (pues $|\theta(y_i)| \in [0,1]$ para toda $i \in \{1,...,n\})$

$$\leq (n-1)\|\overline{x} - \overline{y}\|_{\infty} + |x_n - y_n|$$

y como $\|\overline{x} - \overline{y}\|_{\infty} \le \|(x_1, ..., x_n) - (y_1, ..., y_n)\|_{\infty}$ por definición de norma infinito y como $|x_n - y_n| \le \|(x_1, ..., x_n) - (y_1, ..., y_n)\|_{\infty}$ entonces

$$\leq (n-1)\|(x_1,...,x_n) - (y_1,...,y_n)\|_{\infty} + \|(x_1,...,x_n) - (y_1,...,y_n)\|_{\infty}$$
$$= n\|(x_1,...,x_n) - (y_1,...,y_n)\|_{\infty}$$

(b) Sea $\delta > 0$, $x, y \in \mathbb{R}^n$ y $\zeta \in \mathbb{R}^n$

Por definición de T_{ζ} , tenemos que:

 $|(\mathbf{T}_{\zeta}\Theta_{\delta})(x) - (\mathbf{T}_{\zeta}\Theta_{\delta})(y)| = |(\mathbf{T}_{\zeta}(\Theta(\frac{x}{\delta})) - (\mathbf{T}_{\zeta}(\Theta(\frac{y}{\delta})))| = |\Theta(\frac{x}{\delta} - \zeta) - \Theta(\frac{y}{\delta} - \zeta)| \text{ donde } (\frac{x}{\delta} - \zeta), (\frac{y}{\delta} - \zeta) \in \mathbb{R}^n, \text{ de forma que, por el ejercicio (a), tenemos que}$

$$|\Theta(\frac{x}{\delta} - \zeta) - \Theta(\frac{y}{\delta} - \zeta)| \le n||(\frac{x}{\delta} - \zeta) - (\frac{y}{\delta} - \zeta)||_{\infty} = n||(\frac{x}{\delta}) - (\frac{y}{\delta})||_{\infty} = \frac{n}{\delta}||x - y||_{\infty} \text{ pues } \delta > 0.$$

2. Sea Ω un subconjunto abierto de \mathbb{R}^n . Definimos

$$\mathcal{C}_c^k(\Omega) := \mathcal{C}_c^0(\Omega) \cap \mathcal{C}^k(\Omega),$$

i.e., $C_c^k(\Omega)$ es el conjunto de las funciones $f:\Omega\to\mathbb{R}$ de clase C^k con soporte compacto contenido en Ω .

Demuestra las siguientes afirmaciones.

a) Si $f \in \mathcal{C}_c^1(\Omega)$, entonces $\frac{\partial f}{\partial x_i} \in \mathcal{C}_c^0(\Omega)$ y

$$\int_{\Omega} \frac{\partial f}{\partial x_i} = 0 \qquad \forall i = 1, \dots, n.$$

Aclaración:

Supongamos que $f: \Omega \to \mathbb{R}, f \in \mathcal{C}^k_c(\Omega)$ para alguna $k \in \mathbb{N}$. Entonces el conjunto $\Omega \setminus \{x \in \Omega | f(x) \neq 0\} = \emptyset$ si y solo si $\{x \in \Omega | f(x) \neq 0\} = \Omega$. Ahora bien, si $\{x \in \Omega | f(x) \neq 0\} = \Omega$, entonces $sop(f) = \{x \in \Omega | f(x) \neq 0\} = \overline{\Omega}$, en cuyo caso $\overline{\Omega} \not\subset \Omega$ pues Ω es abierto. Así, en dado caso, $sop(f) \not\subset \Omega$, lo cual contradice la hipótesis. Así, en las demostraciones del ejercicio 2, puedo suponer que $\Omega \setminus \{x \in \Omega | f(x) \neq 0\} \neq \emptyset$.

Solución:

Primero que nada es claro que, como $f: \Omega \to \mathbb{R}$, entonces $\frac{\partial f}{\partial x_i}: \Omega \to \mathbb{R}$ para toda $i \in \{1, ..., n\}$.

Como $f \in \mathcal{C}_c^1(\Omega)$ en particular es continuamente diferenciable, por lo que, por análisis 1, $\frac{\partial f}{\partial x_i}$ es cotinua en Ω para toda $i \in \{1, ..., n\}$.

Ahora bien, veamos que el soporte de $\frac{\partial f}{\partial x_i}$ es compacto. Sea $x \in \Omega$ tal que f(x) = 0. Es claro entonces que $\frac{\partial f}{\partial x_i}(x) = 0$, pues existe $\epsilon > 0$ tal que para toda $y \in B_{\epsilon}(x) \subseteq \Omega, f(y) = 0$ (pues f es continua en Ω), lo cual implica que $\frac{\partial f}{\partial x_i}(x) = \lim_{h \to 0} \frac{0}{h} = 0$ para toda $i \in \{1, ..., n\}$. Así, sabemos que $\frac{\partial f}{\partial x_i}$, en particular, se anula en $\Omega \setminus \{x \in \Omega | f(x) = 0\}$, para toda $i \in \{1, ..., n\}$. Esto implica que $\{x \in \Omega | \frac{\partial f}{\partial x_i} \neq 0\} \subseteq \Omega \setminus (\Omega \setminus \{x \in \Omega | f(x) = 0\}) = \{x \in \Omega | f(x) = 0\}$, de forma que $\{x \in \Omega | \frac{\partial f}{\partial x_i} \neq 0\} \subseteq \overline{\{x \in \Omega | f(x) = 0\}} = sop(f)$. Así las cosas, $sop(\frac{\partial}{\partial x_i}) \subseteq sop(f) \subset \Omega$, es decir $sop(\frac{\partial f}{\partial x_i})$ es un subconjunto cerrado de un subconjunto compacto en \mathbb{R}^n , por lo que es un conjunto compacto para toda $i \in \{1, ..., n\}$.

Luego entonces $\frac{\partial f}{\partial x_i} \in \mathcal{C}_c^0(\Omega)$ para toda $i \in \{1, ..., n\}$.

Veamos, por inducción, que

$$\int_{\Omega} \frac{\partial f}{\partial x_i} = 0 \qquad \forall i = 1, \dots, n.$$

Caso base: n = 1

Sea Ω un subconjunto abierto de \mathbb{R} , y sea $f:\Omega\to\mathbb{R}$, $f\in\mathcal{C}^1_c(\Omega)$. Sea $[a,b]\subseteq\Omega$ un intervalo cerrado tal que $a,b\in\Omega\setminus sop(f)$ y tal que $sop(f')\subseteq sop(f)\subset [a,b]$, . Luego entonces $\frac{\partial f}{\partial x_1}=f'(x)$. Sea $\overline{f'}$ la extensión trivial de f', tal que f'(x)=0 para toda $x\in\mathbb{R}\setminus sop(f')$. Como ya probamos que $f'(x)\in\mathcal{C}^0_c(\Omega)$, por ser una función continua definida en un abierto contenido en \mathbb{R} , sabemos que f'(x) es integrable. Por el teorema fundamental del cálculo sabemos que:

$$\int_{\Omega} f' = \int_{\mathbb{R}} \overline{f'} = \int_{[a,b]} \overline{f'} = \int_{a}^{b} \overline{f'} = f(b) - f(a) = 0 - 0 = 0.$$

pues $a, b \in \Omega \setminus sop(f)$.

Hipótesis de inducción:

Sea Ω un subconjunto abierto de \mathbb{R}^{n-1} , y sea $f:\Omega\to\mathbb{R},\,f\in\mathcal{C}^1_c(\Omega)$. Supongamos entonces que

$$\int_{\Omega} \frac{\partial f}{\partial x_i} = 0 \qquad \forall i = 1, \dots, (n-1).$$

Paso inductivo:

Sean Ω un subconjunto abierto de \mathbb{R}^n , $f:\Omega\to\mathbb{R}$, $f\in\mathcal{C}^1_c(\Omega)$, $i\in\{1,...,n\}$. Como sop(f) es compacto, existe un rectángulo $Q:=[a_1,b_1]\times...\times[a_n,b_n]\subset\Omega$ tal que $sop(f)\subset Q$, $a_i,b_i\not\in sop(f)$ para toda $i\in\{1,...,n\}$. $\frac{\partial f}{\partial x_i}$ es una función continua definida en un abierto, por lo que es integrable, y denotemos por $\overline{\frac{\partial f}{\partial x_i}}$ a su extensión trivial en \mathbb{R}^n (también integrable por las mismas razones). Como no importa el orden de integración podemos suponer, sin pérdida de generalidad, que i = 1. Veamos que:

$$\int_{\Omega} \frac{\partial f}{\partial x_1} = \int_{Q} \overline{\frac{\partial f}{\partial x_1}}$$

Ahora bien sea $\Omega' = \mathbb{R}^{n-1}$,y, dada $y \in \mathbb{R}$ sea $h_y : \Omega' \to R$ dada por $h(x_1, ..., x_{n-1}) = \overline{f}(x_1, ..., x_{n-1}, y)$. Es claro que $\frac{\partial h_y}{\partial x_1} = \frac{\partial f}{\partial x_1}$ para toda $y \in \mathbb{R}$, por lo que $\frac{\overline{\partial h_y}}{\partial x_1} = \frac{\overline{\partial f}}{\overline{\partial x_1}}$ para toda $y \in \mathbb{R}$. Nótese que si $i \neq i$, siempre es posible construir h_y , por lo que no se pierde generalidad. Además, como $f \in \mathcal{C}_c^1(\Omega)$ entonces $h_y \in C^1(\Omega')$. Veamos que el soporte de h_y es compacto.

Caso 1: si y es tal que $(x_1, ..., x_{n-1}, y) \notin sop(f)$ para ningunas $x_1, ..., x_n \in \mathbb{R}$.

En dado caso, h_y es la constante 0 por lo que $sop(h_y) = \emptyset$ que es compacto.

Caso 2: si y es tal que existen $x_1, ..., x_{n-1} \in \mathbb{R}$ tal que $(x_1, ..., x_{n-1}, y) \in Int(sop(f))$.

En dado caso, $h_y(x_1, ..., x_{n-1}) = \bar{f}(x_1, ..., y) \neq 0$ por lo que $(x_1, ..., x_{n-1}) \in Int(sop(h_y))$.

Ahora bien, si $h_y(x_1,...,x_{n-1}) \neq 0$ es porque $\bar{f}(x_1,...,y) \neq 0$ i.e. porque $(x_1,...,y) \in Int(sop(f))$. Así, $Int(sop(h_y)) = \Pi_n(Int(sop(f)) \cap (\mathbb{R}^{n-1} \times \{y\}))$ donde Π_n denota a la proyección en la n-ésima coordenada. Como $\overline{Int(sop(f)) \cap (\mathbb{R}^{n-1} \times \{y\})} \subseteq \overline{Int(sop(f))} \cap$

 $\overline{(\mathbb{R}^{n-1}\times\{y\}))}=sop(f)\cap(\mathbb{R}^{n-1}\times\{y\})$ y $\Pi_n(x)$ respeta contenciones, entonces $sop(h_y) \subseteq \Pi_n(sop(f) \cap (\mathbb{R}^{n-1} \times \{y\}))$ que es un conjunto compacto, pues Π_n es continua y $sop(f) \cap (\mathbb{R}^{n-1} \times \{y\})$ es compacta por ser intersección finita de compactos. Así, $sop(h_y)$ es cerrado y está contenido en un comapacto, por lo que es compacto. As'i, $sop(h_y)$ es compacto y por lo tanto $h_y \in \mathcal{C}^1_c(\Omega')$, de forma que cumple con las hipótesis de inducción. Sea $Q' := [a_2, b_2] \times ... \times$ $[a_n, b_n]$ la proyección de Q, que por lo tanto contiene a $sop(h_y)$ (pues las proyecciones respetan contenciones). Ahora bien,

$$\int_{\Omega} \frac{\partial f}{\partial x_1} = \int_{Q} \frac{\overline{\partial f}}{\partial x_1} = \int_{a_n}^{b_n} \int_{Q'} \frac{\overline{\partial f}}{\partial x_1} = \int_{a_n}^{b_n} \int_{Q'} \frac{\overline{\partial h_y}}{\partial x_1}$$

donde, por hipótesis de inducción,

$$\int_{Q'} \frac{\overline{\partial h_y}}{\partial x_1} = 0$$

de forma que

$$\int_{\Omega} \frac{\partial f}{\partial x_1} = \int_{a_n}^{b_n} 0 = 0$$

lo cual prueba el resultado.

b) (Integración por partes). Si $f \in C^1(\Omega)$, $g \in C^1_c(\Omega)$, entonces $\frac{\partial f}{\partial x_i}g$, $f\frac{\partial g}{\partial x_i} \in C^0_c(\Omega)$ y

$$\int_{\Omega} \frac{\partial f}{\partial x_i} g = -\int_{\Omega} f \frac{\partial g}{\partial x_i} \qquad \forall i = 1, \dots, n.$$

Solución:

Veamos que $\frac{\partial f}{\partial x_i}g \in \mathcal{C}_c^0(\Omega)$. Como f es continuamente diferenciable en Ω entonces $\frac{\partial f}{\partial x_i}$ es continua en Ω para toda $i \in \{1, ..., n\}$. Como $g \in \mathcal{C}_c^1(\Omega)$, en particular es continua en Ω . Como el producto de funciones continuas de \mathbb{R}^n a \mathbb{R} es una función continua, entonces $\frac{\partial f}{\partial x_i}g$ es continua en Ω . Ahora bien, sea $x \in \Omega \setminus \{x \in \Omega \}$ $\Omega|g(x) \neq 0$. Por definición de $\{x \in \Omega|g(x) \neq 0\}$, sabemos que g(x)=0, por lo que $\frac{\partial f}{\partial x_i}(x)*g(x)=\frac{\partial f}{\partial x_i}(x)*(0)=0$, de forma que $x\in\Omega\setminus\{x\in\Omega|\frac{\partial f}{\partial x_i}(x)*g(x)\neq0\}$, es decir, $(\Omega\setminus\{x\in\Omega|g(x)\neq0\})\subseteq(\Omega\setminus\frac{\partial f}{\partial x_i}(x)*g(x)\neq0)$. Esto es lo mismo que decir que $\{x\in\Omega|\frac{\partial f}{\partial x_i}(x)*g(x)\neq0\}\subseteq\{x\in\Omega|g(x)\neq0\}$, de forma que $\{x\in\Omega|\frac{\partial f}{\partial x_i}(x)*g(x)\neq0\}\subseteq\{x\in\Omega|g(x)\neq0\}$, i.e. $sop(\frac{\partial f}{\partial x_i}g)\subseteq sop(g)\subset\Omega$, por lo que $sop(\frac{\partial f}{\partial x_i}g)$ es un subconjunto cerrado contenido en un compacto en \mathbb{R}^n , por lo que $sop(\frac{\partial f}{\partial x_i}g)$ es compacto y contenido en Ω . Así, $\frac{\partial f}{\partial x_i}g\in\mathcal{C}_c^0(\Omega)$

Ahora veamos que $f \frac{\partial g}{\partial x_i} \in \mathcal{C}^0_c(\Omega)$. Sabemos, por la primera parte de la demostración del ejercicio 2, que si $g \in \mathcal{C}^1_c(\Omega)$, entonces $\frac{\partial g}{\partial x_i} \in \mathcal{C}^0_c(\Omega)$. Como tanto f como $\frac{\partial g}{\partial x_i}$ son continuas en Ω , entonces $f \frac{\partial g}{\partial x_i}$ es continua en Ω . Ahora bien, sea $x \in \Omega \setminus \{x \in \Omega | \frac{\partial g}{\partial x_i}(x) \neq 0\}$. Por definición, sabemos que $\frac{\partial g}{\partial x_i}(x) = 0$, por lo que $f(x) * \frac{\partial g}{\partial x_i}(x) = 0$, de forma que $x \in \Omega \setminus \{x \in \Omega | f(x) * \frac{\partial g}{\partial x_i}(x) \neq 0\}$, es decir, $(\Omega \setminus \{x \in \Omega | \frac{\partial g}{\partial x_i} \neq 0\}) \subseteq (\Omega \setminus f(x) * \frac{\partial g}{\partial x_i}(x) \neq 0)$. Esto es lo mismo que decir que $\{x \in \Omega | f(x) * \frac{\partial g}{\partial x_i}(x) \neq 0\} \subseteq \{x \in \Omega | \frac{\partial g}{\partial x_i}(x) \neq 0\}$, de forma que $\{x \in \Omega | f(x) * \frac{\partial g}{\partial x_i}(x) \neq 0\} \subseteq \{x \in \Omega | \frac{\partial g}{\partial x_i}(x) \neq 0\}$, i.e. $sop(f \frac{\partial g}{\partial x_i}) \subseteq sop(\frac{\partial g}{\partial x_i}) \subset \Omega$, por lo que $sop(f \frac{\partial g}{\partial x_i})$ es un subconjunto cerrado contenido en un compacto en \mathbb{R}^n , por lo que $sop(f \frac{\partial g}{\partial x_i})$ es compacto y contenido en Ω . Así, $f \frac{\partial g}{\partial x_i} \in \mathcal{C}^0_c(\Omega)$

Ahora bien, por el ejercicio 2 sabemos que

$$\int_{\Omega} \frac{\partial (fg)}{\partial x_i} = 0 \qquad \forall i = 1, \dots, n.$$

donde

$$\frac{\partial (fg)}{\partial x_i} = \frac{\partial f}{\partial x_i}g + f\frac{\partial g}{\partial x_i} \qquad \forall i = 1, \dots, n.$$

de forma que

$$\int_{\Omega} \frac{\partial f}{\partial x_i} g + f \frac{\partial g}{\partial x_i} = 0 \qquad \forall i = 1, \dots, n.$$

que, por linealidad de la integral, tenemos que

$$\int_{\Omega} \frac{\partial f}{\partial x_i} g = -\int_{\Omega} f \frac{\partial g}{\partial x_i} \qquad \forall i = 1, \dots, n.$$

c) (Fórmula de Green). Si $f \in C^2(\Omega)$, el laplaciano de f es la función

$$\Delta f := \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}.$$

Prueba que, si $f \in \mathcal{C}^2(\Omega)$ y $g \in \mathcal{C}^2_c(\Omega)$, entonces $(\Delta f)g$, $\nabla f \cdot \nabla g$, $f(\Delta g) \in \mathcal{C}^0_c(\Omega)$ y

$$\int_{\Omega} (\Delta f) g = -\int_{\Omega} \nabla f \cdot \nabla g = \int_{\Omega} f(\Delta g).$$

<u>Lemita</u>: $\mathcal{C}_c^k(\Omega)$ es cerrado bajo sumas finitas para cualquier $k \in \mathbb{N}$.

Sean $f_1, ..., f_n \in \mathcal{C}_c^0(\Omega)$, $k \in \mathbb{N}$. Sabemos que la clase $C^k(\Omega)$ es cerrada bajo sumas finitas (análisis 1), por lo que basta con probar que $sop(\sum_{i=1}^n f_i)$ es compacto y está contenido en Ω .

Sea $x \in \Omega \setminus \{x \in \Omega | x \in \bigcup_{i=1}^n Int(sop(f_i))\}$. Entonces $f(x_1) = \ldots = f(x_n) = 0$ pues $Int(sop(f_i)) = \{x \in \Omega | f_i(x) \neq 0\}$. Así, $x \in \Omega \setminus Int(sop(\sum_{i=1}^n f_i))$, de forma que $Int(sop(\sum_{i=1}^n f_i)) \subseteq \bigcup_{i=1}^n Int(sop(f_i)) \subseteq Int(\bigcup_{i=1}^n sop(f_i))$ (esta última igualdad es de topología). Así, $Int(sop(\sum_{i=1}^n f_i)) \subseteq Int(\bigcup_{i=1}^n sop(f_i))$, de forma que $sop(\sum_{i=1}^n f_i) \subseteq \bigcup_{i=1}^n sop(f_i)$ donde $\bigcup_{i=1}^n sop(f_i)$ es union finita de compactos y por lo tanto es compacto. Así, $sop(\sum_{i=1}^n f_i)$ es un cerrado contenido en un compacto, por lo que es compacto. Además, como $sop(f_i) \subseteq \Omega$ para toda $i \in \{1, ..., n\}$, entonces $\bigcup_{i=1}^n sop(f_i) \subseteq \Omega$ y en consecuencia $sop(\sum_{i=1}^n f_i) \subseteq \Omega$.

Solución:

Veamos que $(\Delta f)g \in \mathcal{C}_c^0(\Omega)$.

Sea $i \in \{1, ..., n\}$.

Como $f \in \mathcal{C}^2(\Omega)$, sabemos que $\frac{\partial f}{\partial x_i}$ es continuamente diferenciable. Ahora bien, tomando a $f' = \frac{\partial f}{\partial x_i}$, tenemos que $\frac{\partial f'}{\partial x_i}$ es continua en Ω . Así, por el inciso (b), sabemos que $(\frac{\partial}{\partial x_i}(\frac{\partial f}{\partial x_i}))g \in \mathcal{C}^0_c(\Omega)$, donde $\frac{\partial}{\partial x_i}(\frac{\partial f}{\partial x_i}) = \frac{\partial^2 f}{\partial x_i^2}$, de forma que $\frac{\partial^2 f}{\partial x_i^2}g \in \mathcal{C}^0_c(\Omega)$. Así, como $\mathcal{C}^0_c(\Omega)$ es cerrado bajo sumas finitas, tenemos que $\sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}g \in \mathcal{C}^0_c(\Omega)$ i.e. $(\Delta f)g \in \mathcal{C}^0_c(\Omega)$.

Veamos ahora que $f(\Delta g) \in \mathcal{C}_c^0(\Omega)$.

Como $g \in \mathcal{C}^2_c(\Omega)$ (en particular $g \in \mathcal{C}^1_c(\Omega)$), sabemos, por la demostración del ejercicio (a), que $\frac{\partial g}{\partial x_i} \in \mathcal{C}^0_c(\Omega)$, pero como además $g \in \mathcal{C}^2_c(\Omega)$ entonces $\frac{\partial g}{\partial x_i} \in C^1(\Omega)$, de forma que podemos concluir que $\frac{\partial g}{\partial x_i} \in \mathcal{C}^1_c(\Omega)$. Aplicando de nuevo ese resultado a la función $\frac{\partial g}{\partial x_i}$ llegamos a que $\frac{\partial^2 g}{\partial x_i^2} \in \mathcal{C}^0_c(\Omega)$. Como $\mathcal{C}^0_c(\Omega)$ es cerrado bajo sumas finitas, entonces $(\Delta g) \in \mathcal{C}^0_c(\Omega)$. Como $f \in C^2(\Omega)$, en particular $f \in C^0(\Omega)$ por lo que $f(\Delta g) \in C^0(\Omega)$. Veamos ahora que tiene soporte compacto. Sea $x \in \Omega \setminus Int(sop(\Delta g))$. Por definición de $sop(\Delta g)$, $\Delta g(x) = 0$, por lo que $f(\Delta g)(x) = f(x) * \Delta g(x) = 0$, es decir, $x \in \Omega \setminus Int(sop(f(\Delta g)))$. Así, $\Omega \setminus Int(sop(\Delta g)) \subseteq \Omega \setminus Int(sop(f(\Delta g)))$ i.e. $Int(sop(f(\Delta g))) \subseteq Int(sop(\Delta g))$, de forma que $sop(f(\Delta g)) \subseteq sop(\Delta g)$ (resultado de topología). Así, $sop(f(\Delta g))$ es un cerrado contenido en un compacto contenido en Ω , por lo que $sop(f(\Delta g))$ es compacto y $f(\Delta g) \in \mathcal{C}^0_c(\Omega)$.

Veamos, por último, que $\nabla f \cdot \nabla g \in \mathcal{C}_c^0(\Omega)$.

Como $f \in C^2(\Omega)$ entonces $\frac{\partial f}{\partial x_i} \in C^1(\Omega)$. Como $g \in \mathcal{C}^2_c(\Omega)$ en particular $g \in \mathcal{C}^1_c(\Omega)$. Por el ejercicio (b), sabemos entonces que $\frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_i} \in \mathcal{C}^0_c(\Omega)$. Como i es arbitraria y la clase $\mathcal{C}^0_c(\Omega)$ es cerrada bajo sumas finitas, se sigue que $\nabla f \cdot \nabla g \in \mathcal{C}^0_c(\Omega)$.

Ahora sí, a probar la fórmula de Green...

Por linealidad de la integral, tenemos que

$$\int_{\Omega} (\Delta f) g = \sum_{i=1}^{n} \int_{\Omega} \frac{\partial^{2} f}{\partial x_{i}^{2}} g$$

Sea $f' = \frac{\partial f}{\partial x_i}$. Entonces $\frac{\partial f'}{\partial x_i} = \frac{\partial^2 f}{\partial x_i^2}$, de forma que

$$= \sum_{i=1}^{n} \int_{\Omega} \frac{\partial f'}{\partial x_i} g$$

donde claramente $\frac{\partial f'}{\partial x_i}$ y g cumplen las hipótesis del ejercicio (b), por lo que $\int_{\Omega} \frac{\partial f'}{\partial x_i} g = -\int_{\Omega} f' \frac{\partial g}{\partial x_i}$, de forma que

$$=-\sum_{i=1}^n\int_{\Omega}f'\frac{\partial g}{\partial x_i}=-\sum_{i=1}^n\int_{\Omega}\frac{\partial f}{\partial x_i}\frac{\partial g}{\partial x_i}=-\int_{\Omega}\sum_{i=1}^n\frac{\partial f}{\partial x_i}\frac{\partial g}{\partial x_i}=-\int_{\Omega}\nabla f\cdot\nabla g$$

Por otro lado, si $g' = \frac{\partial g}{\partial x_i}$ entonces, como claramente $\frac{\partial f}{\partial x_i}$ y g' cumplen las hipótesis del ejercicio (b), entonces $\int_{\Omega} \frac{\partial f}{\partial x_i} g' = -\int_{\Omega} f \frac{\partial g'}{\partial x_i}$, de forma que

$$-\int_{\Omega} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{i}} = -\sum_{i=1}^{n} \int_{\Omega} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{i}} = \sum_{i=1}^{n} \int_{\Omega} f \frac{\partial g'}{\partial x_{i}}$$
$$= \sum_{i=1}^{n} \int_{\Omega} f \frac{\partial^{2} g}{\partial x_{i}^{2}} = \int_{\Omega} \sum_{i=1}^{n} f \frac{\partial^{2} g}{\partial x_{i}^{2}} = \int_{\Omega} f(\Delta g).$$

3. Sean

$$\mathcal{S}_*(\mathbb{R}^n) = \left\{ f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\} : f \text{ es s.c.i. y} \right.$$
existe un compacto $K \subset \mathbb{R}^n$ tal que $f(x) \ge 0 \ \forall x \in \mathbb{R}^n \setminus K \right\},$

$$\mathcal{S}^*(\mathbb{R}^n) = \left\{ f : \mathbb{R}^n \to \mathbb{R} \cup \{-\infty\} : f \text{ es s.c.s. y} \right.$$
existe un compacto $K \subset \mathbb{R}^n$ tal que $f(x) \le 0 \ \forall x \in \mathbb{R}^n \setminus K \right\}.$

Si $X \subset \mathbb{R}^n$, $f: X \to \mathbb{R}$ es continua y $f \ge 0$ prueba que

- a) si X es abierto, entonces $\bar{f} \in \mathcal{S}_*(\mathbb{R}^n)$,
- b) si X es compacto, entonces $\bar{f} \in \mathcal{S}^*(\mathbb{R}^n)$,

donde $\bar{f}: \mathbb{R}^n \to \mathbb{R}$ es la extensión trivial de f, i.e.,

$$\bar{f}(x) := \begin{cases} f(x) & \text{si } x \in X, \\ 0 & \text{si } x \notin X. \end{cases}$$

Solución

(a) Por hipótesis $f \geq 0$, por lo que $\bar{f} \geq 0$ en todo \mathbb{R}^n , de forma que propongo a $K = \emptyset \subset \mathbb{R}^n$ como un compacto tal que $\bar{f}(x) \geq 0$ para toda

 $x \in \mathbb{R}^n \setminus K$. Es claro que K es compacto (cerrado y acotado en \mathbb{R}^n) y que cumple con lo deseado.

Veamos ahora que \bar{f} es s.c.i. Como f es continua por hipótesis, en particular es s.c.i (análisis 1) entonces \bar{f} es s.c.i en X. Como $\bar{f}(x)=0$ para toda $x\notin X$, entonces \bar{f} es continua en $Int(\mathbb{R}^n\setminus X)$, por lo que en particular es s.c.i. en dicho dominio. Ahora bien, falta ver que \bar{f} sea s.c.i. en ∂X . Sea $x\in \partial X$. Como X es abierto, entonces $\partial X\notin X$, de forma que $x\in \mathbb{R}^n\setminus X$, por lo que $\bar{f}(x)=0$. Así, sea c< f(x)=0 y propongo $\delta=1$. Veamos que para toda $y\in \mathbb{R}^n$ tal que ||x-y||<1 se cumple que $|\bar{f}(x)-\bar{f}(y)|=|\bar{f}(y)|\geq 0>c$ donde sabemos que $|\bar{f}(y)|\geq 0$ pues $\bar{f}(x)\geq 0$ para toda $x\in \mathbb{R}^n$, en particular para y. Por lo tanto $\bar{f}\in \mathcal{S}_*(\mathbb{R}^n)$.

(b) Propongo K=X como el compacto deseado. K es compacto por hipótesis y sabemos que $\bar{f}(x)=0$ para toda $x\in\mathbb{R}^n\setminus K$ por definición de \bar{f} , por lo que en particular se cumple que $\bar{f}(x)\leq 0$ para toda $x\in\mathbb{R}^n\setminus K$.

Veamos ahora que \bar{f} es s.c.s. Sabemos que $\bar{f}(x)=0$ para toda $x\in\mathbb{R}^n\setminus X$, por lo que en dicho dominio \bar{f} es continua, en particular es s.c.s. Además, $\bar{f}=f$ en Int(X), por lo que en dicho dominio \bar{f} es continua, en particular es s.c.s. Ahora bien, veamos que pasa en ∂X . Sea $x\in\partial X$. Como $X\subseteq\mathbb{R}^n$ es compacto, en particular es cerrado y acotado, por lo que $\partial X\subseteq X$ de forma que $\bar{f}(x)\geq 0$ por definición e hipótesis. Así, sea $c>\bar{f}(x)\geq 0$. Ahora bien, como f es continua en X, entonces para $\epsilon=c-\bar{f}(x)>0$ existe una δ' tal que para toda $x\in X$, si $||x-y||<\delta'$ se cumple que $|f(x)-f(y)|<\delta'$. Así, sea $\delta=\delta'$ y veamos que si $||x-y||<\delta$ entonces

Caso 1: $y \in \mathbb{R}^n \setminus X |\bar{f}(x) - \bar{f}(y)| = |\bar{f}(x)| = \bar{f}(x) < c$.

Caso 2: $y \in \mathbb{R}^n X$ Por elección de δ sabemos que $|\bar{f}(x) - \bar{f}(y)| = |f(x) - f(y)| < c - \bar{f}(x)$, es decir,

$$-(c - \bar{f}(x)) < f(y) - f(x) < (c - \bar{f}(x))$$
$$-(c - \bar{f}(x)) + f(x) < f(y) < (c - \bar{f}(x)) + f(x)$$
$$-c + 2f(x) < f(y) < c$$

en particular $\bar{f}(y) = f(y) < c$, de forma que \bar{f} es s.c.s en ∂X . Como sabemos que $\mathbb{R}^n = Int(X) \cup \partial X \cup (\mathbb{R}^n \setminus X)$, entonces $\bar{f} \in \mathcal{S}^*(\mathbb{R}^n)$.