Monday, February 3, 2025 8:15 AM Convex Body K Xo+ 1B" = K = RB" Problem. Compute vol(K). Easy for $\Delta \square O$ #P-had, even fr a polyhedron. Find V s.b. $Vol(K) \leq V \leq (1+\epsilon) Vol(K)$ Ans? - Divide & Congres? too many prices. The [BF'87] For any algorithm that was na oracle averies and outputs A, B s.t. $A \le \mu L(K) \le B$, $\frac{B}{\Delta} \gg \left(\frac{c}{a \log n}\right)^{\frac{1}{2}}$ 习K st. $(1+E)^n$ even rueds $(\frac{1}{E})^n$ gravies. Th [8F'88] m grenes $\Rightarrow \frac{2}{\pi}$ with PF [E'86: xi e 3(0, 1) / YES xm3 = k = B(0,1)

/covr{x1-.xm3 & k & 16(0,1)

Lena. $vol(cov \{x_1...x_m\}) \leq \frac{m}{2^m}$

 $B_i = B(\underbrace{x_i}_{2}, \underbrace{\|x_i\|}_{2})$

 $B_i \subseteq B$. $UB_i \subseteq B$.

Vol (UBi) < m vol(Bi) < m vol(B).

clain Corréx...xm3 = UBi.

Suppose nut. Jy E Con Ex... xm3 ti y & Bi

 $|y-x_i| > |x_i| \Rightarrow |y|^2 > \langle y, x_i >$

i.e. the plane $\langle y, x \rangle \leq |y|^2$ separates y from all => y & corr {Xi-Xmy,

No efficient volue algorithm?

The [DFK'89]. I Randonized Algorithm that estimates vol(K) to with (HE) for ay E>0 wip 1-8 using boly $(n, log \frac{R}{5}, \frac{1}{4}, log \frac{1}{8})$ averies and time.

 $psy(n, log \frac{R}{r}, \frac{1}{\epsilon}, log \frac{1}{8})$ grevies and rune.

Volume -> centrond.

volvre can le computed using $O(n log \frac{R^n}{r})$ centroid computations of convex brdies.

z(k) = centrand of k. V=1.

Whie Fi width (k) along ei > r

Set $v = e_i \cdot n - e_i$ s.t. $H = \{x : v^T x \leq v^T z^{(\ell)} \}$

contains o.

$$k^{(\ell+1)} = k^{(e)} \cap H$$
 $k^{(\ell+1)} = \text{centionid}(k^{(\ell+1)})$
 $k^{(\ell+1)} = \text{centroid}(k^{(\ell+1)})$

V < V. || 2- 2(2+1)|| || 2 - Z(l)| 11. Thindh (K(1))

Lama- width along ei gors from $\leq R$ to $\geq \frac{r}{n+1}$

Lena. k s.t. support along e_1 is [a,b] 0 = central(k).

Then $|a| \ge \frac{b}{n}$.

Lena. $\frac{Vel(K_R)}{Vel(K)} = \frac{\|Z_L - Z_I\|}{\|Z_L - Z_R\|}.$

Pf.(Th). Each cut reduces width along some e_i by $(\frac{N}{n+i})$. $\Longrightarrow O(n^2 \log \frac{R^n}{r})$ iterations?

Volue? dups by (1-1/e) each iteration

iterations = log (R)

... # iterations =
$$\log_{\frac{1}{2}} \left(\frac{K}{(V_{n+1})^n} \right)$$

= $O(n \log_{\frac{1}{2}} R^n)$.

min c^TX XEK Sarple $x \sim e^{-\alpha c^T x} 1_k$ for α large enough!

Lema. $\mathbb{E}_{x \sim e^{dc^T x} \mathbf{1}_k} (c^T x) \leq \min_{x \sim e^{dc^T x} \mathbf{1}_k} c^T x + \frac{n}{\alpha}$.

Setting $\alpha = \frac{n}{\epsilon} \Rightarrow 0PT + \epsilon$.

PF. Assume $C = e_1$. $O = argmin e^T x = x_1$.

Now
$$E(C^{T}x) = \int_{0}^{\infty} e^{-\alpha t} t^{n-1} dt$$

$$\int_{0}^{\infty} e^{-\alpha t} t^{n} dt$$

$$\int_{0}^{\infty} e^{-\alpha t} t^{n} dt$$

$$= \int_{0}^{\infty} e^{-\alpha t} t^{n} dt$$

Q. How to Sarple Efficiently??!