CPSC 420 Lecture 10: Today's announcements:

- ► HW2 is on Gradescope, due Feb 9, 23:59
- ► Examlet 2 on Feb 17 in class. Closed book & no notes
- ▶ Reading: Maximum Flows & Minimum Cuts [Algorithms by Erickson Ch. 10]

Today's Plan

- Network Flow
 - Maximum matching in bipartite graphs
 - Pennant Race Problem
 - Open Pit Mining

Maximum Matching in Bipartite Graphs

A **matching** in a graph G is a subset M of its edges with no vertex the endpoint of more than one edge in M.

A **maximum matching** is a matching with the maximum number of edges.

A **maximal matching** is a matching to which another edge cannot be added to form a new matching.

A **bipartite graph** is a graph G = (V, E) where V can be partitioned into A and B such that $\forall (u, v) \in E$, either $u \in A$ and $v \in B$ or $u \in B$ and $v \in A$.

Given bipartite graph G = (V, E) with partitions A and B find maximum matching in G.

Maximum Matching in Bipartite Graphs Algorithm

Given bipartite graph G = (V, E) with partitions A and B:

1. Create a flow network F = (V', E')

$$V' = V \cup \{s, t\}$$
 add source and sink $E' = E \cup \{(s, u) | u \in A\} \cup \{(v, t) | v \in B\}$

Set all capacities to 1.

- 2. Find maximum flow f in F
- 3. Output edges $(u, v) \in E$ such that f(u, v) = 1

Claim If M is a matching in G then \exists flow f in F with size(f) = |M|.

Claim If f is an integer valued flow in F then there exists

Claim If f is an integer-valued flow in F then there exists a matching M in G with |M| = size(f).

Pennant Race Problem Input Given team A (your favorite team) list of teams T_1, T_2, \ldots, T_n #wins for each team this season list of games remaining to be played $A : T_1 : T_2 : T_3 : T_4 : T_4 : T_4 : T_4 : T_5 : T_4 : T_5 : T_5 : T_6 : T_6$

Determine if it is possible for team A to win at least as many games as any other team by the end of the season.

- 1. Assume A wins all remaining games (it's possible) This removes some games.
- 2. Let w be number of A's wins. Let w_i be number of T_i 's wins.
- 3. If $w < w_i$ for some i then return NO.
- 4. Create a flow network

Pennant Race Problem

Input	Example			
Given team A (your favorite team)	Α			
list of teams T_1, T_2, \ldots, T_n	A T_1	T_2	T_3	T_4
#wins for each team this season	6 4	6	5	4
list of games remaining to be played				
$(T_1, T_3),$	$(T_2,T_4),($	T_1, T_2	$, (T_{2},$	T_3)

Determine if it is possible for team A to win at least as many games as any other team by the end of the season.

Open Pit Mining

Imagine the earth is a lattice of cubes.

Every cube has a value (think "gold" minus "cost" to process)

Constraint: must remove some cubes before others (think cave-in)

Input: Directed acyclic graph G = (V, E). V =set of cubes

 $E = \{(u, v) | u \text{ must be removed before } v\}$

w(v) = value of cube vNOT GOOD

-1 A +1

Find most profitable set of cubes to process but obey constraints.

Maximum Value Initial Set

Convert the vertex-valued directed graph G = (V, E) into a flow network so that

- A. Any finite capacity cut corresponds to an initial set.
- B. A min capacity cut corresponds to a max value initial set.
- 1. Add source s and sink t
- 2. Set capacity $c(u, v) = \infty$ for $(u, v) \in E$
- 3. Create an edge (s, v) or (v, t) for every $v \in V$ with finite capacity (to be determined)

Maximum Value Initial Set

Claim: In this network any finite capacity cut (S, T) defines an initial set T - t (and vice-versa).

Proof: If cut (S, T) has finite capacity then no original edges are directed into T from S so T - t is an initial set.

If $U \subseteq V$ is initial then cut (S = (V - U) + s, T = U + t) has finite capacity. Only edges $(s, u)|u \in T$ and $(v, t)|v \in S$ cross the cut from S to T (and they have finite capacity).

Maximum Value Initial Set

Idea If w(u) > 0, increase cut capacity if we **don't** take u ($u \notin T$). If w(v) < 0, increase cut capacity if we **do** take v ($v \in T$).

Final flow network

Maximum Value Initial Set.

For any initial set U, the capacity of the corresponding cut (S = (V - U) + s, T = U + t) is

$$c(S,T) = \sum_{\substack{u \notin U \\ w(u) > 0}} w(u) + \sum_{\substack{v \in U \\ w(v) < 0}} -w(v)$$

profit
$$= \sum_{\substack{u \in U \\ w(u) > 0}} w(u) + \sum_{\substack{v \in U \\ w(v) < 0}} w(v)$$

To maximize profit, minimize (over cuts (S, T), which define U)

$$\sum_{\substack{u \in U \\ w(u) > 0}} w(u) - \text{profit} = \sum_{\substack{u \notin U \\ w(u) > 0}} w(u) - \sum_{\substack{v \in U \\ w(v) < 0}} w(v) = c(S, T)$$