INVESTING IN WATERSHED SERVICES WITH RIOS

March 27, 2014

natural capital

RIOS IN CONTEXT

RIOS IN CONTEXT

GOALS

- Invest in watershed services with limited budget
- Maximize improvement in multiple services

QUESTIONS

- Which activities are most costeffective?
- Where should I do them?

IMPROVING INVESTMENT OPTIONS WITH RIOS

 Must address physical realities, feasibility, and cost effectiveness

 Know where you can get best results for multiple goals AND where it is practical to work

Need a method that is robust and replicable with local capacity

RIOS INPUTS

natural capital

Biophysical effectiveness

Feasible activities

Stakeholder preferences

Cost data Budget

Investment Portfolio

TYPES OF DATA

Land use/Land cover

Vegetation retention, land practice and management

Topography

Digital elevation model, slope threshold

Erosivity

Based on intensity and kinetic energy of rainfall

Erodibility

Soil detachment and transport potential due to rainfall

Watershed Areas

Catchment areas, beneficiaries

TYPES OF DATA

Biophysical effectiveness **Feasibility** and preferences Cost data Budget Investment portfolio Protection Reforestation Silvopasture Fencing Enrichment — streams

Stakeholder preferences

Legal and logistical restrictions

Opportunity cost

Feasible locations

TYPES OF DATA

How much do activities cost?

Implementation, maintenance, payments

Total budget \$

natural capital PROJECT

Biophysical effectiveness <

Feasible activities

Stakeholder preferences

Cost data Budget

Investment portfolio

- Fencing
- Enrichment
- streams

OVERVIEW OF RIOS WORKFLOW

CHOOSE OBJECTIVES

SERVICES

- Erosion Control
- Nitrogen Regulation
- Phosphorus Regulation
- Groundwater Recharge
- Flood Mitigation
- Dry Season Baseflow
- Biodiversity
- "Other"

DIAGNOSTIC SCREENING

KEY FACTORS

 Factors determined through literature review

Compromise between process representation and data availability

 Determine effectiveness of transitions for meeting objectives, in a specific place

Q: How do landscape characteristics compare to the ideal for each transition?

NatCap Annual N SCOre

iining • March 26 - 28, 2014

NatCap Annual N

Q: Are some factors more important for determining the effectiveness of a transition? Factor 1 score Trans/Obj 1 factors Factor 2 O weight f weights score **Biophysical** Factor 1 **Transition** score Trans/Obj 2 Score Map Factor 2 f weights O weight score Factor 1 Trans/Obj 1 score O weight Factor 2 f weights Biophysical score **Transition** Factor 1 Score Map Trans/Obj 2 factors score f weights O weight Factor 2 score

7

RIOS Steps

RIOS Steps

RIOS Steps

WHAT activities to invest in and WHERE

PROJECT

Objectives

- Desired outcomes
- Feasibility & baseline studies

Phase 1: Design Investments Available

- Stakeholder input
- Financial & economic studies

Diagnosti Screening

- Biophysical data
- Information from other scientific studies

Priority Areas

- Feasbility and socio-economic data
- Select where and in what to invest

Phase 2: Evaluation, monitoring and adaptive management

- Design monitoring plan
- Begin baseline & impact data collection

Estimate **Benefits**

- Model development (HEC-HMS or others)
- Economic valuation

natural capital

PROJECT

Choose Objectives

- Desired outcomes
- Feasibility & baseline studies

Phase 1: Design Investments Available Budget

- Stakeholder input
- Financial & economic studies

Diagnostic Screening RIOS

other scientific studies

Select Priority Areas resource investment optimization system

io-economic data in what to invest

Phase 2: Evaluation, monitoring and adaptive management

Design monitoring plan

• Begin baseline & impact data collection

Estimate Benefits

- Model development (HEC-HMS or others)
- Economic valuation

natural capital

ACKNOWLEDGEMENTS

Development of the RIOS tool was funded by the Gordon & Betty Moore Foundation.

Special thanks to the Water Funds Working Group and the Latin American Water Funds Platform

March 27, 2014

Stacie Wolny swolny@stanford.edu

DATA SOURCES

The best data is as local as you can get, as detailed as you need

- National, local governments and agencies, NGOs...
- Literature search LULC coefficients

GLOBAL SOURCES

- Land cover: MODIS, GlobCover
- DEM: NASA, USGS, WWF HydroSheds
- Soils: FAO Harmonized World Soil Database, SOTER

CLIMATE DATA

Weather stations: >= 10 year average; Interpolation

WorldClim: Monthly precipitation

CGIAR: Monthly precipitation, potential and actual evapotranspiration

NCAR: Climate change scenarios (precip only)

Erosivity: Can be derived from annual precipitation

AET: From InVEST Water Yield model, or CGIAR

BUDGET DATA

- Talk with water fund managers and/or stakeholders
- Costs can include implementation, maintenance, PES payments ...

If you don't have well-defined budget info:

- Look at existing PES programs for costs
- WOCAT may have sample costs from particular projects around the world
- For multiple watersheds, can allocate based on area, number of beneficiaries...
- Within a watershed, can allocate based on area of each LULC where activities can be done

COMMON DATA ISSUES

Projections: All GIS layers must have the same projected coordinate system

Clipping:

- Rasters should completely cover watershed
- Use watershed boundary as a mask
- Can resample coarse layers or buffer,

DEM: Fill in missing data, fill sinks, check hydrology

Check for correct units on all inputs

PRE-PROCESSING

ArcGIS tool

Creates several required inputs to RIOS:

- Upslope source
- Downslope retention
- Riparian continuity
- Slope index

Let's check it out...

Objectives

Erosion control

Flood mitigation

Base flow

Landuses and activities

Uso del suelo	Protección	Restauración	Agricultura sostenible	Ganadería sostenible	Aislamientos
Arbustal y matorral denso de tierra firme	0				0
Areas naturales desnudas		0			0
Bosque natural de galeria	0				0
Bosque natural denso de tierra firme	0				0
Cacao			0		0
Cafe			0		0
Cultivos asociados			0		0
Herbazal natural abierto mesofilo	0				0
Maiz			0		0
Otros Arboles frutales			0		0
Otros cultivos arbustivos plantados abiertos			0		0
Otros cultivos arbustivos plantados densos			0		0
Otros cultivos herbaceos plantados abiertos			0		0
Otros cultivos herbaceos plantados densos			0		0
Pasto cultivado		0		0	0
Sorgo			0		0

Activities

- Protection: conservation schemes in ecosystems in good condition. Rangers, PES, conservation agreements.
- Sustainable agriculture: modification of agriculture to make it more sustainable. Hedges, vegetation to avoid soil loss, reduction of agrochemicals.

- Sustainable cattleranching: silvopastoral systems.
- Fencing: areas in good condition to guarantee its conservation or in degraded areas to favour succession processes.
 Preferable in areas adjacent to rivers.

Activities

 Restoration: repair of stable ecological conditions through the introduction of native vegetation, preventing soil loss and reducing human pressure.

Prevent/prefer

Prevent

- All activities BUT "restoration" inside the National Park Farallones de Cali.
- "Protection", "Agriculture" and "Cattle ranching" inside forest reserves.
- "Agriculture" and "Cattle ranching" in a 50 meters buffer from a river.

Prevent/prefer

Prefer

- "Restoration" in forest reserves
- "Restoration" and "Fencing" in a 50 meters buffer from a river.

Costs

Activity	Cost (USD\$/year)
Protection	200
Restoration	1070
Sustainable agriculture	2930
Sustainable cattle ranching	2930
Fencing	643

Portfolios

Budget 1. USD\$500.000

Actividad	Costo (USD\$/ha)	Presupuesto asignado USD\$500K	Área esperada USD\$500K (Ha)	Área modelada USD\$500K (Ha)
Protección	200	30,000	150.0	149.94
Restauración	1070	100,000	93.5	93.42
Agricultura sostenible	2930	150,000	51.2	51.12
Ganadería sostenible	2930	150,000	51.2	51.12
Aislamientos	643	70,000	108.9	108.81

Budget 2. USD\$1.000.000

Actividad	Costo (USD\$/ha)	Presupuesto asignado USD\$1M	Área esperada USD\$1M (Ha)	Área modelada USD\$1M (Ha)
Protección	200	60,000	300.0	299.97
Restauración	1070	200,000	186.9	186.84
Agricultura sostenible	2930	300,000	102.4	102.33
Ganadería sostenible	2930	300,000	102.4	102.33
Aislamientos	643	140,000	217.7	217.71

Budget 3. USD\$5.000.000

Actividad	Costo (USD\$/ha)	Presupuesto asignado USD\$5M	Área esperada USD\$5M (Ha)	Área modelada USD\$5M (Ha)
Protección	200	300,000	1,500	1,499.94
Restauración	1070	1,000,000	935	934.56
Agricultura sostenible	2930	1,500,000	512	511.92
Ganadería sostenible	2930	1,500,000	512	511.92
Aislamientos	643	700,000	1,089	1,088.64

MONITORING AND IMPACT EVALUATION

March 27, 2014

Leah Bremer |bremer@stanford.edu

WHY MONITOR?

AND WHAT DOES RIOS HAVE TO DO WITH IT?

- Measure "success"
- Improve RIOS inputs

MONITORING ON THE GROUND

EXAMPLES FROM WATER FUNDS

1. MEASURING 'SUCCESS'

Are we achieving what we say we are?

AGUA POR LA VIDA

VALLE DE CAUCA, COLOMBIA

FOREST & WATER PRODUCERS

GUANDU, BRAZIL

2.IMPROVING RIOS INPUTS

IMPROVING RIOS INPUTS

WHAT INFORMATION DO WE NEED?

- Land use coefficient table (e.g. sediment export, sediment retention, rooting depth).
- Transition weights (e.g. reforestation vs. pasture management for erosion control)
- Transition effectiveness (e.g. park guards, education, fencing → maintain existing vegetation)

CONSERVADOR DAS AGUAS

capital PROJECT

natural

EXTREMA, BRAZIL

- Land use coefficients?
- How effective are different land uses in erosion control?
- How effective are different activities related to assisted revegetation?

AGUA POR LA VIDA

VALLE DE CAUCA, COLOMBIA

 What are the impacts at the site and microwatershed scales?

WHAT ARE THE SOCIAL IMPACTS?

WHO ARE THE BENEFICIARIES AND HOW ARE THEY IMPACTED?

Agua por La Vida

AquaFondo

