точно часто встречаются случаи, когда летом можно использовать антинакипин с минимальной концентрацией; в осенний период используется пониженная концентрация реагента и максимальное количество – в зимний период. Таким образом, при определении концентрации антинакипина необходимо оценивать ее применительно к различным температурам нагрева. Нельзя ориентироваться на среднегодовую температуру при изменении нагрева воды от 70 °С летом и до 130-150 °С зимой. Для небольших котельных с температурой нагрева до 115 °С возможно имеет смысл поддерживать постоянную концентрацию антинакипина.

В результате подготовительных работ и экспериментов ВТИ было предложено:

- 1. Проводить проверку антинакипинов при температурах, соответствующих реальным, отдельно для различных сезонных температур;
- 2. Для предотвращения кипения проводить испытания антинакипинов для систем теплоснабжения в автоклаве под давлением азота;
- 3. Кристаллы накапливать на находящихся в растворе в наклонном положении стеклянных пластинках.

Опробование метода с микроскопами различного увеличения показали, что оптимальным является увеличение в 50-100 раз и наличие у микроскопа размерной сетки.

Одним из важных элементов методики является учет влияния температурных разверок. Про-

мышленные исследования пиковых водогрейных котлов, проведенные ОРГРЭС и ВТИ, показали наличие очень больших температурных разверок в трубах котлов. На базе этих данных ОРГРЭС было выдвинуто требование, чтобы метод водоподготовки для этих котлов выбирался исходя из температуры 175 °C, а не 150 °C (как было принято в соответствии с проектом) [14, 15].

Необходимость этого подтвердилась в одном из первых промышленных внедрений, проведенных ВТИ в 1994 г. На ТЭЦ, где использовали антинакипин ОЭДФК на трех котлах ПТВМ, в первую же зиму на двух котлах «сгорело» по одной трубе в наиболее теплонапряженной нижней части конвективного пакета. Трубы вырезали. Очевидно, что это были разверенные трубы, потому что в дальнейшем никаких разрушений в поверхностях нагрева всех трех котлов не было. Поэтому в методике, разработанной ВТИ, температура испытаний принята на 20 °С выше, чем температура воды на выходе из котла.

Одним из недостатков данной методики является то, что при испытаниях нагреву подвергается вода, а не сама пластинка, на которой откладываются кристаллы. Другим недостатком является то, что испытания проводятся в статических условиях, в отличие от реальных, где идет постоянный проток воды через трубу. Чтобы эти условия не влияли на правильность результатов, методика рекомендуется строго как сравнительная. То есть выводы делаются на основании

IV КОНФЕРЕНЦИЯ

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ВОДОПОДГОТОВКИ И ЗАЩИТЫ ОБОРУДОВАНИЯ ОТ КОРРОЗИИ И НАКИПЕОБРАЗОВАНИЯ

25—26 октября 2011 года в "Экспоцентре" на Красной Пресне (Москва)

Организаторы: НП "РОСХИМРЕАКТИВ", ООО "НПФ Траверс", ЗАО "Экспоцентр". При поддержке: НП "Российское теплоснабжение", ФГУП "ИРЕА Цель проведения конференции — обмен практическим опытом, обсуждение актуальных вопросов в области промышленной водоподготовки и защиты оборудования от коррозии и накипеобразования.

Основные вопросы, которые планируется осветить

- Нормативно-правовое и нормативно-техническое обеспечение теплоснабжения в РФ.
- Обзор современных технологий стабилизационной и антикоррозионной обработки воды в теплосетях, оборотных системах и системах кондиционирования.
- Применение биоцидов нового поколения для предотвращения биологических обрастаний в системах оборотного водоснабжения.
- Предотвращение коррозии пароконденсатных трактов паровых котлов.
- Технологии регенерации ионообменных смол, работающих в условиях повышенного содержания железа.
- Технологии химической очистки теплотехнического оборудования.
- Использование ингибирующих и отмывочных композиций при эксплуатации обратно-осмотических установок очистки воды.

Также будет организован круглый стол в формате "Вопрос – Ответ"

Практика расчета эффективных коррекционных водно-химических режимов систем теплоснабжения, энергооборудования низкого и среднего давления. Подбор ингибирующих и моющих реагентов. Консультации ведущих специалистов.

По вопросам участия в конференции обращаться в Оргкомитет: НП «РОСХИМРЕАКТИВ», т./ф. +7 (495) 223–61–01 доб. 110 и 115. Эл. почта: office@arhr.ru. Сайт конференции: www.promvoda.arhr.ru Руководитель — Ефимова Валерия Петровна