Seminar 5

- 1. Determine the following generated subspaces:
- $(i) < 1, X, X^2 >$ in the real vector space $\mathbb{R}[X]$

(i)
$$\langle 1, A, A \rangle$$
 in the real vector space $\mathbb{R}[A]$.
(ii) $\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \rangle$ in the real vector space $M_2(\mathbb{R})$.

- **2.** Consider the following subspaces of the real vector space \mathbb{R}^3 :
- (i) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\};$
- (ii) $B = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\};$ (iii) $C = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}.$

Write A, B, C as generated subspaces with a minimal number of generators.

3. Consider the following vectors in the real vector space \mathbb{R}^3 :

$$a = (-2, 1, 3), b = (3, -2, -1), c = (1, -1, 2), d = (-5, 3, 4), e = (-9, 5, 10).$$

Show that $\langle a, b \rangle = \langle c, d, e \rangle$.

4. Let

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$$
$$T = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}.$$

Prove that S and T are subspaces of the real vector space \mathbb{R}^3 and $\mathbb{R}^3 = S \oplus T$.

- **5.** Let S and T be the set of all even functions and of all odd functions in $\mathbb{R}^{\mathbb{R}}$ respectively. Prove that S and T are subspaces of the real vector space $\mathbb{R}^{\mathbb{R}}$ and $\mathbb{R}^{\mathbb{R}} = S \oplus T$.
 - **6.** Let $f, g: \mathbb{R}^2 \to \mathbb{R}^2$ and $h: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$f(x,y) = (x+y, x-y),$$

$$g(x,y) = (2x - y, 4x - 2y),$$

$$h(x, y, z) = (x - y, y - z, z - x).$$

Show that $f, g \in End_{\mathbb{R}}(\mathbb{R}^2)$ and $h \in End_{\mathbb{R}}(\mathbb{R}^3)$.

- 7. Which ones of the following functions are endomorphisms of the real vector space \mathbb{R}^2 :
- (i) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (ax + by, cx + dy), where $a, b, c, d \in \mathbb{R}$; (ii) $g: \mathbb{R}^2 \to \mathbb{R}^2$, g(x,y) = (a+x,b+y), where $a,b \in \mathbb{R}$?

(ii)
$$g: \mathbb{R}^2 \to \mathbb{R}^2$$
, $g(x,y) = (a+x,b+y)$, where $a,b \in \mathbb{R}^2$

8. Let $a \in \mathbb{R}$ and let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = (x\cos a - y\sin a, x\sin a + y\cos a).$$

Prove that $f \in End_{\mathbb{R}}(\mathbb{R}^2)$.

- 9. Determine the kernel and the image of the endomorphisms from Exercise 6.
- **10.** Let V be a vector space over K and $f \in End_K(V)$. Show that the set

$$S = \{ x \in V \mid f(x) = x \}$$

of fixed points of f is a subspace of V.