

Effect of GlobalPositionRcd-removal Bug on Muon Alignment

Aysen Tatarinov Vadim Khotilovich *Jim Pivarski* Alexei Safonov

Texas A&M University

8 June, 2010

- We confirm the RPC-hit bias presented by Pablo
 - RPC hits were included in track refits because of a typo
 - \triangleright correcting this fixes sawtooth and residuals vs. q/p_T biases
 - $ho_T > 100 \text{ GeV}/c$ cut was used to limit the effect on alignment (to 1.5 mm, as it turns out); now this cut can be removed, making alignment with collisions possible
 - ► See http://indico.cern.ch/getFile.py/access?contribId=4&resId=0&materiaIId=sIides&confId=88578
- Muon POG discovered a strange feature with the new alignment constants
 - ▶ low- p_T track seeds assigned a default value of 3.0 GeV/c, with a cut to remove them at 3.001 GeV/c
 - muon alignment spread this distribution above the cut
 - not an alignment problem, but discovered by muon alignment
- GlobalPositionRcd-removal bug: this talk

Jim Pivarski

- Andreas discovered and corrected an error in the way GlobalPositionRcds are handled in alignment (not track-reco)
 - ▶ GlobalPositionRcd must be in geometry to calculate residuals
 - it must then be removed from the final results before outputing to TrackerAlignmentRcd/DTAlignmentRcd/CSCAlignmentRcd
 - ▶ rotations (only) were improperly removed

[CMSSW] / CMSSW / Geometry / TrackingGeometryAligner / interface / GeometryAligner.h Repository: CMSSW

Diff of /CMSSW/Geometry /TrackingGeometryAligner/interface /GeometryAligner.h

🖢 Parent Directory | 🗏 Revision Log | 🐉 Revision Graph | 🖺 Patch

	revision 1.10, Fri May 14 13:43:20 2010 UTC	revision 1.11, Fri Jun 4 13:42:46 2010 UTC
#	Line 167	Line 167
167		
168	// Remove global position transformation from alignment	// Remove global position transformation from alignment
169	newPosition = inverseGlobalRotation * ((*iAlign).translation() -	newPosition = inverseGlobalRotation * ((*iAlign).translation() -
	globalShift);	globalShift);
170	newRotation = globalRotation * (*iAlign).rotation();	newRotation = (*iAlign).rotation() * globalRotation;
171		
172	newAlignments->m_align.push_back(AlignTransform(newPosition,	newAlignments->m_align.push_back(AlignTransform(newPosition,
173	newRotation,	newRotation,

▶ Plotting: (alignment fit output) - (change in DTAlignmentRcd) for each chamber; can only be non-zero if \exists error in AlignmentProducer

► After alignment results were sent to AlignmentParameters, ±0.3 mrad artificially added to chamber angles, nothing to chamber positions gamma = 0.3 mrad in muon GlobalPositionRcd entry: clear sign

After Andreas fixed it, the alignment fit results are almost exactly equal to what is found in final DTAlignmentRcd (note smaller scale)

- ▶ This is *similar* to things that the Muon Alignment Quality Browser already checks; it is being added to the suite of automated tests
- Also investigating remaining differences: related to single-precision floats in DataFormats/GeometrySurface/interface/Surface.h?

- ► CRAFT-10 DT alignment
 - $ightharpoonup \pm 0.3$ mrad in ϕ_y , ϕ_z in first alignment pass (iteration)
 - but effects are nearly cumulative when the procedure is iterated (see next pages)
 - ▶ 5 iterations \rightarrow at most 1.5 mrad errors
- CRAFT-10 CSC alignment was not affected
 - ▶ beam-halo step (internal) was performed with GlobalPositionRcd = (0,0,0,0,0,0)
 - disk alignment step uses GlobalPositionRcd, but not in AlignmentProducer
- Tracker alignments should be unaffected because tracker GlobalPositionRcd entry has no rotation

- ▶ Plotting (DTAlignmentRcd entries with bug) (without bug)
- ► Iteration 1

- ► First iteration differences are exactly ±0.3 mrad
- Subsequent iterations mix ϕ_y/ϕ_z and x (spread by 250 microns)
- ϕ_y grows linearly, ϕ_z is roughly constant
- Peaks correspond to different wheels

- ▶ Plotting (DTAlignmentRcd entries with bug) (without bug)
- ▶ Iteration 2

- ► First iteration differences are exactly ±0.3 mrad
- Subsequent iterations mix ϕ_y/ϕ_z and x (spread by 250 microns)
- $lack \phi_y$ grows linearly, ϕ_z is roughly constant
- Peaks correspond to different wheels

- ▶ Plotting (DTAlignmentRcd entries with bug) (without bug)
- ▶ Iteration 3

- ► First iteration differences are exactly ±0.3 mrad
- Subsequent iterations mix ϕ_y/ϕ_z and x (spread by 250 microns)
- ϕ_y grows linearly, ϕ_z is roughly constant
- Peaks correspond to different wheels

- ▶ Plotting (DTAlignmentRcd entries with bug) (without bug)
- ▶ Iteration 4

- ► First iteration differences are exactly ±0.3 mrad
- Subsequent iterations mix ϕ_y/ϕ_z and x (spread by 250 microns)
- ϕ_y grows linearly, ϕ_z is roughly constant
- Peaks correspond to different wheels

- ► Plotting (DTAlignmentRcd entries with bug) (without bug)
- ▶ Iteration 5 (last)

- ► First iteration differences are exactly ±0.3 mrad
- Subsequent iterations mix ϕ_y/ϕ_z and x (spread by 250 microns)
- ϕ_y grows linearly, ϕ_z is roughly constant
- Peaks correspond to different wheels

- GlobalPositionRcd-removal is a necessary part of AlignmentProducer
- It was being performed incorrectly, with $x\sim 0.25$ mm, ϕ_y , $\phi_z\sim 1.5$ mrad effects on CRAFT-10 DT alignment
 - a different effect from RPC-hit bias
- Unrelated to track-based/hardware "twist" discrepancy
 - that was present in raw residuals in the first iteration
 - lacktriangle and is much larger (4 mm between wheels ± 2)
- Does not affect CRAFT-10 CSC alignment
- ► Similar to tests in Muon Alignment Quality Browser (μ AQB)
 - lacktriangledown μ AQB previously only tested x for this kind of divergence
 - adding checks for all alignment parameters