Table 1: Examples of configurations of varibles used to tune the algorithm. Lower values of \overline{rank} , shown in the right columns, represent better algorithm performance. The actual validation test, represented by (r^s, r^v) is compared against a lowerbound lb where the ranks of the test set are known, an upperbound ub where the ranks are in reverse order, and (r^s, r^s) , where the training set and test set are equivalent.

		Parameters				$\overline{rank} = MPR(train, test)$	
α	ϵ	λ	f	ub	lb	(r^s,r^v)	(r^s, r^s)
1	10^{-8}	0.01	1	0.0	0.0	0.0	0.0
1	10^{-8}	0.1	5	0.0	0.0	0.0	0.0
20	10^{-8}	0.01	1	0.0	0.0	0.0	0.0
20	10^{-8}	0.1	5	0.0	0.0	0.0	0.0
100	10^{-8}	0.01	1	0.0	0.0	0.0	0.0
100	$10^{-}8$	0.1	5	0.0	0.0	0.0	0.0