Data Structure: Hashing

hashing

- hashing is a technique used for performing insertion, deletion, and finding in constant time
- tree operations such as FindMin, FindMax, and the printing all elements in sorted order are not supported
- hash table is an array of fixed size, containing the keys
- hash function maps each key to some cell in the hash table
 - should be easy to compute
 - should minimize the number of collision
 - uniform hash function, the probability of h(k) = i is 1/b for all i (b is bucket size)
- collision occurs when different keys are mapped to the same cell

Hashing

Hash functions

- adding all characters (alphabets) in the key
 - \blacksquare for example, h(abc) = h(bca) = 1+2+3 = 6 (a=1, b=2, c=3)
 - all ordering information is lost
 - the number of hash function value is too small, considering the number of possible keys
 - for example, length(key) = 8
 - the number of hash function value H(key) = 26 * 8 = 208
 - the number of possible keys = 26^8
- polynomial function (using horner's rule)

 - number gets easily too big
- division
 - \blacksquare h(k) = k mod m, where m is the size of hash table
 - good choice for m is a prime number

resolving collision

separate chaining:
put keys that collide in a list associated with index

open addressing: when a new key collides, find next empty slot and put it there

resolving collision: separate chaining (open hashing)

- keep a list of all elements that hash to the same value
- operations
 - Find: use hash function to determine which list to traverse
 - Insert: traverse down the list to check whether the element is in the list if not, it is inserted at the front (or at the end)

resolving collision: separate chaining (open hashing)

resolving collision: separate chaining (open hashing)


```
typedef struct ListNode* Position;
typedef Position List;

struct ListNode {
        ElementType Element;
        Position Next;
}

struct HashTbl{
    int TableSize;
        List* TheLists;
}
```

Position Find (ElementType Key, HashTable H){

```
Position P;
     List L;
     L = H -> TheLists [ Hash(key, H->TableSize)];
     P = L \rightarrow Next;
     while (P != NULL && P->Element != Key)
           P = P -> Next;
                                      0
     return P;
                                                                            81
}
                                      2
                                      3
                                      4
                                      5
                                                               36
                                      6
                                                                            26
                                      8
                                      9
```

```
void Insert (ElementType Key, HashTable H){
     Position Pos, newCell;
     List L;
     Pos = Find(Key, H);
     if (Pos == NULL){
          NewCell = malloc(sizeof (struct ListNode));
          NewCell ->Element = Key;
          L = H->TheLists[Hash(Key, H->TableSize)];
          NewCell ->Next = L->Next;
          L->Next = NewCell:
```

load factor: the ratio of the number of elements in the hash table to the table size

$$\lambda$$
 = n / m $\,$ n is the number of keys in the table, m is the size of the table

- successful search (i.e. no clustering): I (hash function) + $(\lambda/2) = O(1)$
- unsuccessful search: $I + \lambda = O(I)$
- needs extra space and operation for pointers and new nodes

resolving collision: open addressing (closed hashing)

- all the keys are stored in the table without pointers
- use special value Del to determine which entries have keys & which don't.
- if a collision occurs, alternative cells are tried until an empty cell is found
- \blacksquare try $h_0(\text{key}), h_1(\text{key}), h_2(\text{key}), \dots$
 - where $h_i(key) = (Hash(key) + F(i)) \mod m$
 - F(i) is the collision resolution strategy
 - linear probing: F(i) is a linear function, F(i) = i

```
for example, h_1(key) = (Hash(key) + I), h_2(key) = (Hash(key) + 2), ...
```

• quadratic probing: F(i) is a quadratic function, $F(i) = i^2$

```
for example, h_1(key) = (Hash(key) + I), h_2(key) = (Hash(key) + 4), ...
```

resolving collision: linear probing

■ F(i) is a linear function. for example, F(i) = i inserting keys: 89, 18, 49, 58, 69

0		0	49	0	49	0	49
I		I		I	58	I	58
2		2		2		2	69
3		3		3		3	
4		4		4		4	
5		5		5		5	
6		6		6		6	
7		7		7		7	
8	18	8	18	8	18	8	18
9	89	9	89	9	89	9	89

resolving collision: linear probing

- primary clustering: any key that hashes into the cluster will require several attempts to resolve the collision and then it will add to the cluster
- secondary clustering: keys with different hash values have nearly the same probe sequence.
- expected number of probes

successful search
$$S = \frac{1}{2}(1 + \frac{1}{1 - \lambda})$$

unsuccessful search
$$U = \frac{1}{2} \left(1 + \left(\frac{1}{1 - \lambda} \right)^2 \right)$$

- \blacksquare as λ approaches to I, the search time grows to infinity
- linear probing does well if the table is less than 75% full

resolving collision: linear probing

number of probes

---- linear probing

random strategy

U: unsuccessful search

I: insertion

S: successful search

Deletions in closed hashing

 Use special value Del to distinguish deleted and empty locations delete(42), find(31)

0	10	0	10
I	50	I	50
2	42	2	Del
3	92	3	92
4	31	4	31
5		5	
6		6	
7		7	
8		8	18
9		9	89

If we see Del during probing

- find(): keep searching until empty
- Insert(): reuse the Del location for placing a new key

resolving collision: quadratic probing

- a collision resolution method that eliminates the primary clustering problem of linear probing
- collision function $F(i) = i^{2}$, $h_i(key) = (Hash(key) + F(i)) mod m$

inserting keys: 89, 18, 49, 58, 69

0		0	49	0	49	0	49
I		1		I		1	
2		2		2	58	2	58
3		3		3		3	69
4		4		4		4	
5		5		5		5	
6		6		6		6	
7		7		7		7	
8	18	8	18	8	18	8	18
9	89	9	89	9	89	9	89

resolving collision: quadratic probing

One tricky question

- In linear probing, it is guaranteed that as long as there is one free location in the table, we will eventually find it without repeating any probe locations
- Is this also true for quadratic probing?

Fortunately, quadratic probing does a good job of visiting different locations => It can be formally proved that if m is prime, the first m/2 locations that quadratic probing visits will be distinct.

resolving collision: quadratic probing

Theorem. If quadratic probing is used and the table size m is prime, then an element can always be inserted if the table is at least half empty.

Proof:

Prove the first m/2 locations that quadratic probing visits will be distinct. Let us use contradiction.

For
$$0 \le i < j \le \left\lfloor \frac{m}{2} \right\rfloor$$
 $h(x) + i^2 \equiv h(x) + j^2 \pmod{m}$ $i^2 \equiv j^2 \pmod{m}$ $i^2 - j^2 \equiv 0 \pmod{m}$ $(i - j)(i + j) \equiv 0 \pmod{m}$

This means that (i-j)(i+j) is a multiple of m. Since m is a prime, either (i-j) or (i+j) must be a multiple of m. Since $i \neq j$ and $i,j \leq \left\lfloor \frac{m}{2} \right\rfloor$, neither (i-j) nor (i+j) can be a multiple of m.

resolving collision: double hashing

- use other hash function for random probing
- for example, $(h_i(key) = (Hash(key) + F(i)) \mod m)$

Hash(key) = key mod m

 $F(i)=i*Hash_2(key)$, $Hash_2(key)=R$ - (key mod R)

R=7 inserting keys: 89, 18, 49, 58, 69

0		0		0		0
I		1		I		ı
2		2		2		2
3		3		3	58	3
4		4		4		4
5		5		5		5
6		6	49	6	49	6
7		7		7		7
8	18	8	18	8	18	8
9	89	9	89	9	89	9

49:	$Hash_2(49) = 7 - 0 = 7$
58:	$Hash_2(58) = 7 - 2 = 5$
69:	$Hash_2(69) = 7 - 6 = 1$

69

58

49

18

rehashing

- if the table gets too full, the running time for the operations start taking too long
- build another table that is about twice as big

- what if the hash table is too large to fit in main memory?
 - locality is important for large data structure since disk access is costly but memory access is cheap
 - efficient probing is the lack of locality
 - need a method to reduce the number of disk access

- The hash table is broken into a number of smaller hash tables, each is called a bucket.
- The maximum size of each bucket is the size of a disk page.
- To find which bucket to search for, we store a data structure called *directory* in main memory, and each entry in the directory holds a disk address of the corresponding bucket.
- Each bucket can hold as many records that can be fit in one page, and we will try to keep each bucket at least half full.

D: the number of bits used by the root D = 2 d_L : the number of leading bits that all elements of some leaf L have in common $d_L = 2$

insert 101110

insert 100100

