Краткий конспект лекций по курсу «Игры среднего поля»

Лекция 4

Задача оптимального управления

Пусть $f: \mathbb{R}^d \times A \to \mathbb{R}^d$, где A — подмножество \mathbb{R}^m , является непрерывной по совокупности переменных и удовлетворяет условию

$$|f(y,a) - f(z,a)| \le L_f|y - z|.$$

Назовём измеримое отображение $\alpha \colon [0,T] \to A$ допустимым контролем, если

$$|f(0,\alpha(t))| \in L^1[0,T].$$

В случае ограниченной функции f всякое измеримое отображение α является допустимым контролем. Заметим, что имеет место неравенство

$$|f(y,a)| \le L_f|y| + |f(0,a)|.$$

Пусть $0 \le t < T$ и α — допустимый контроль. Рассмотрим задачу Коши

$$\dot{y}_x(s) = f(y_x(s), \alpha(s)), \quad y_x(t) = x, \quad s \in [t, T], x \in \mathbb{R}^d.$$
(1)

Решением y_x называется абсолютно непрерывное отображение $[t,T] \to \mathbb{R}^d$, для которого верно равенство

$$y_x(s) = x + \int_t^s f(y_x(\tau), \alpha(\tau)) d\tau.$$

Существование и единственность решения можно обосновать с помощью теоремы о сжимающем отображении. Рассмотрим в $L^1[t,t+\Delta t]$ отображение

$$F(z)(s) = x + \int_{t}^{s} f(z(\tau), \alpha(\tau)) d\tau.$$

Так как

$$\int_{t}^{t+\Delta t} \left| F(z_1)(s) - F(z_2(s)) \right| ds \le L_f |\Delta t| \int_{t}^{t+\Delta t} \left| z_1(s) - z_2(s) \right| ds,$$

то при $|\Delta t|L_f < 1$ отображение F сжимающее и у него существует единственная неподвижная точка. Применяя это утверждение к отрезкам $[t,t+\Delta t/2],\ [t+\Delta t/2,t+\Delta t],\ldots$, получаем существование на отрезке [0,T]. Обоснуем теперь единственность. Пусть y_x^1 и y_x^2 — два решение. Множество $E=\{t\in[0,T]\colon y_x^1(t)=y_x^2(t)\}$ замкнуто из-за непрерывности y_x^1 и y_x^2 . С другой стороны для всякой точки t_0 , в которой $y_x^1(t_0)=y_x^2(t_0)$, по доказанному выше существует окрестность, в которой $y_x^1=y_x^2$. Множество E одновременно открыто и замкнуто. Следовательно, E=[0,T].

Заметим, что для двух решений y_x и y_z уравнения с одним и тем же управлением α верна оценка

$$|y_x(s) - y_z(s)| \le |x - z| + L_f \int_t^s |y_x(\tau) - y_z(\tau)| d\tau,$$

из которой следует неравенство

$$\sup_{s \in [0,T]} |y_x(s) - y_z(s)| \le |x - z| e^{L_f T}.$$

Пусть $l: \mathbb{R}^d \times A \times [0,T] \to \mathbb{R}$ — непрерывная и ограниченная снизу функция, причем

$$|l(y, a, s) - l(z, a, s)| \le L_l |y - z|.$$

Пусть также $g: \mathbb{R}^d \to \mathbb{R}$ — ограниченная липшицева функция. Рассмотрим задачу оптимального контроля, которая состоит в минимизации функционала

$$\alpha \to \int_{1}^{T} l(y_x(s), \alpha(s), s) ds + g(y_x(T)).$$

Принципиальную роль в решение этой задачи играет функция значения

$$u(x,t) = \inf_{\alpha} \left\{ \int_{t}^{T} l(y_x(s), \alpha(s), s) \, ds + g(y_x(T)) \right\}.$$

Предложение 1. (i) Существует такое число C > 0, что

$$|u(x,t) - u(z,t)| \le C|x-z|$$

для всех $x, z \in \mathbb{R}^d$, $t \in [0, T]$.

(ii) Если f и l ограничены, то существует такое число C>0, что

$$|u(x,t) - u(z,s)| \le C(|x-z| + |t-s|)$$

для всех $x, z \in \mathbb{R}^d$, $t, s \in [0, T]$. Более того, u(x, T - 0) = g(x).

Доказательство. Обоснуем первую оценку. Для всякого $\varepsilon > 0$ найдем α , при котором

$$-u(z,t) \le \varepsilon - \int_t^T l(y_z(s), \alpha(s), s) \, ds - g(y_z(T)).$$

Имеем

$$u(x,t) - u(z,t) \le \varepsilon + \int_t^T \left| l(y_x(s), \alpha(s), s) - l(y_z(s), \alpha(s), s) \right| ds + |g(y_x(T) - g(y_z(T)))|.$$

Правая часть оценивается выражением

$$(TL_l + L_q)e^{L_fT}|x-z|,$$

где L_q — константа Липшица функции g.

Пусть теперь f и l ограничены. Получим вторую оценку. Для всякого $\varepsilon>0$ найдем $\alpha\colon [s,T]\to A,$ при котором

$$-u(x,s) \le \varepsilon - \int_s^T l(y_x^1(\tau), \alpha(\tau), \tau) d\tau - g(y_x^1(T)).$$

Если t < s, то продолжаем α на [t,s) произвольным значением из A. Пусть y_x^2 — решение уравнения $\dot{y}_x^2(\tau) = f(y_x^2(\tau),\alpha(\tau))$ с начальным условием $y_x^2(t) = x$. Тогда

$$u(x,t) - u(x,s) \le \varepsilon + \int_t^T l(y_x^2(\tau), \alpha(\tau), \tau) d\tau + g(y_x^2(T)) - \int_s^T l(y_x^1(\tau), \alpha(\tau), \tau) d\tau - g(y_x^1(T)).$$

Пусть $|l| \leq M_l$ и $|f| \leq M_f$. Предположим, что s < t. Тогда правая часть оценивается выражением

$$\varepsilon + M_l(t-s) + L_l \int_t^T |y_x^2(\tau) - y_x^1(\tau)| d\tau + L_g |y_x^2(T) - y_x^1(T)|.$$

Заметим, что при $\tau \in [t,T]$ верно неравенство

$$|y_x^2(\tau) - y_x^1(\tau)| \le M_f(t-s) + L_f \int_t^\tau |y_x^2(\tau) - y_x^1(\tau)| d\tau,$$

из которого следует оценка

$$|y_x^2(\tau) - y_x^1(\tau)| \le M_f e^{L_f T} (t - s).$$

Следовательно, приходим к неравенству

$$u(x,t) - u(x,s) \le \varepsilon + M_l(t-s) + TM_f e^{L_f T}(t-s) + L_q M_f e^{L_f T}(t-s).$$

Устремляя ε к нулю получаем

$$u(x,t) - u(x,s) < C|t-s|.$$

Случай t < s исследуется полностью аналогично.

В общем случае, функция значения u не является дифференцируемой.

Принцип динамического программирования

Теорема 1. Для всех $0 \le t \le \tau \le T$ имеет место равенство

$$u(x,t) = \inf_{\alpha} \left\{ \int_{t}^{\tau} l(y_x(s), \alpha(s), s) \, ds + u(y_x(\tau), \tau) \right\}.$$

Доказательство. Обозначим правую часть доказываемого равенства через U(t,x). Для всякого $\varepsilon > 0$ найдется управление α , при котором

$$u(x,t) + \varepsilon \ge \int_t^T l(y_x(s), \alpha(s), s) ds + g(y_x(T)).$$

Правую часть можно записать в виде

$$\int_t^\tau l(y_x(s), \alpha(s), s) \, ds + \int_\tau^T l(y_x(s), \alpha(s), s) \, ds + g(y_x(T))$$

и оценить снизу следующим образом:

$$\int_{t}^{\tau} l(y_x(s), \alpha(s), s) ds + u(y_x(\tau), \tau) \ge U(t, x).$$

В силу произвольности ε получаем неравенство $u(x,t) \geq U(x,t)$. Установим противоположное неравенство. Для всякого $\varepsilon > 0$ найдутся такие α_1 на $[t,\tau]$ и α_2 на $[\tau,T]$, что

$$U(x,t) + \varepsilon \ge \int_t^{\tau} l(y_x^1(s), \alpha_1(s), s) ds + u(y_x^1(\tau), \tau)$$

И

$$u(y_x^1(\tau), \tau) + \varepsilon \ge \int_{\tau}^{T} l(y_z^2(s), \alpha_2(s), s) \, ds + g(y_z^2(T)), \quad z = y_x^1(\tau).$$

Положим $\alpha(s)=\alpha_1(s)$ на $[t,\tau)$ и $\alpha(s)=\alpha_2(s)$ на $[\tau,T]$. Пусть y_x — решение задачи Коши с таким α . Тогда $y_x(s)=y_x^1(s)$ на $[t,\tau]$ и $y_x(s)=y_x^2(s)$ на $[\tau,T]$. Имеем

$$U(x,t) + 2\varepsilon \ge \int_t^T l(y_x(s), \alpha(s), s) ds + g(y_x(T)) \ge u(x,t).$$

Устремляя ε к нулю получаем $U(x,t) \geq u(x,t)$.

Заметим, что для всякого контроля α функция

$$\tau \to \int_t^\tau l(y_x(s), \alpha(s), s) \, ds + u(y_x(\tau), \tau)$$

монотонно не убывает.

Предложение 2. Контроль α является оптимальным тогда и только тогда, когда функция

$$\tau \to \int_t^\tau l(y_x(s), \alpha(s), s) \, ds + u(y_x(\tau), \tau)$$

является константой на [t,T].

Доказательство. Если рассматриваемая функция является константой, то ее значения при au=t и au=T равны и

$$u(x,t) = \int_t^T l(y_x(s), \alpha(s), s) ds + g(y_x(T)).$$

Пусть теперь α — оптимальное управление на [t,T]. Тогда из монотонности по τ следует неравенство

$$\int_{t}^{\tau} l(y_x(s), \alpha(s), s) \, ds + u(y_x(\tau), \tau) \le u(x, t),$$

а из принципа динамического программирования следует неравенство

$$u(x,t) \le \int_t^\tau l(y_x(s),\alpha(s),s) \, ds + u(y_x(\tau),\tau).$$

Следовательно, при каждом au

$$u(x,t) = \int_t^\tau l(y_x(s), \alpha(s), s) \, ds + u(y_x(\tau), \tau).$$

Уравнение Гамильтона-Якоби-Беллмана

Предположим, что функция u непрерывно дифференцируема по x и t. Пусть $\Delta t > 0$. Принцип динамического программирования можно записать в виде

$$\inf_{\alpha} \left\{ \int_{t}^{t+\Delta t} l(y_x(s), \alpha(s), s) \, ds + u(y_x(t+\Delta t), t+\Delta t) - u(x, t) \right\} = 0.$$

Поделим это равенство на Δt и устремим Δt к нулю. Получаем уравнение Гамильтона-Якоби-Беллмана

$$-u_t(x,t) + H(x,t,\nabla u(x,t)) = 0,$$

где

$$H(x,t,p) = \sup_{a \in A} \left\{ -l(x,a,t) - \langle p, f(x,a) \rangle \right\}.$$

Таким образом, функция значения u является решением задачи Коши

$$-u_t(x,t) + H(x,t,\nabla u(x,t)) = 0, \quad u(x,T) = g(x).$$
 (2)

Теорема 2. Если непрерывно дифференцируемая функция v является решением задачи Komu (2). Тогда

- (i) $v(x,t) \le u(x,t)$;
- (ii) если для контроля α выполняется

$$-l(y_x(s), \alpha(s), s) - \langle \nabla v(y_x(s)), f(y_x(s), \alpha(s)) \rangle = H(y_x(s), s, \nabla v(y_x(s))),$$

то α является оптимальным контролем $u \ v = u$.

$$\frac{d}{d\tau}v(y_x(\tau),\tau) = \langle \nabla v(y_x(\tau),\tau), f(y_x(\tau),\alpha(\tau)) \rangle + v_t(y_x(\tau),\tau).$$

Заметим, что

$$\langle \nabla v(y_x(s), s), f(y_x(s), \alpha(s)) \rangle \le -l(y_x(s), \alpha(s), s) - H(y_x(s), s, \nabla v(y_x(s), s)).$$

Так как v является решением уравнения Гамильтона-Якоби-Беллмана, то

$$\frac{d}{d\tau}v(y_x(tau),\tau) \le l(y_x(s),\alpha(s),s).$$

Интегрируя это неравенство по s от t до T получаем

$$v(x,t) \le \int_t^T l(y_x(s), \alpha(s), s) \, ds + g(y_x(T)).$$

В силу произвольности α приходим к оценке $v(x,t) \leq u(x,t)$. Если α удовлеиворяет условию (ii), то получим равенства

$$v(x,t) = \int_{t}^{T} l(y_x(s), \alpha(s), s) ds + g(y_x(T)), \quad v(x,t) = u(x,t).$$

Предположим, что A – компактное множество в \mathbb{R}^d и для всех x,t,p существует единственное a(x,t,p), при котором

$$H(x,t,p) = -l(x,a,t) - \langle p, f(x,a) \rangle.$$

Тогда H дифференцируемо по p и

$$H_n(x,t,p) = -f(x,a(x,t,p)).$$

Это наблюдение является частным случаем следующего более общего утверждения.

Предложение 3. Пусть A — компактное метрическое пространство, Q — открытое множество в \mathbb{R}^d и F(x,a) — непрерывная функция на $A \times Q$, причем существует и непрерывна производная F_x . Если a_z является единственной точкой максимума функции $a \to F(z,a)$, то функция

$$G(x) = \sup_{a \in A} F(x, a)$$

 $G(x) = \sup_{a \in A} F(x,a)$ дифференцируема в точке z и $G_x(z) = F_x(z,a_z).$

Доказательство. Пусть a_x — какая-либо точка максимума функции $a \to F(x,a)$. Из единственности a_z и компактности A следует, что $a_x \to a_z$, если $x \to z$. Имеем

$$G(z) - G(x) = F(z, a_z) - F(x, a_x) \le F(z, a_z) - F(x, a_z) = F_x(\xi, a_z)(z - x),$$

$$G(x) - G(z) \le F_x(\eta, a_x)(x - z),$$

где $\xi, \eta \in [x, z]$. Следовательно,

$$|G(x) - G(z) - F_x(z, a_z)(x - z)| \le$$

$$\le |F_x(\xi, a_z) - F_x(z, a_z)||x - z| + |F_x(\eta, a_x) - F_x(z, a_z)||x - z| = o(|x - z|).$$

Итак, если α — оптимальный контроль, то

$$f(y_x(s), \alpha(s)) = -H_p(y_x(s), s, \nabla v(y_x(s), s)).$$

Следовательно, оптимальное решение y_x является решением задачи Коши

$$\dot{y}_x(s) = -H_p(y_x(s), s, \nabla v(y_x(s), s)), \quad y_x(t) = x,$$

и может быть найдено без предварительного вычисления α .