Graphs and Directed Graphs (Digraphs)

Instructor: Meng-Fen Chiang

COMPCSI220: WEEK 9

OUTLINE

Graphs and Di-Graphs

• Preliminaries

• Basic operations

Graphs are Everywhere ...

Knowledge graphs: Commonsense reasoning

Yago

10M nodes

120M facts

DBPedia

4.58M nodes

3B facts

ConceptNet

300K nodes

1.6M facts

Graphs are Everywhere ...

• Social networks: community detection, advertisement

Monthly Active Users (MAU)

Twitter

300 millions

Facebook

2.6 billions

Tiktok

800 millions

Graphs are Everywhere ...

- Web as a graph (4.2 billion webpages) information retrieval
- Nodes: Webpages, Edges: Hyperlinks

Graphs

- A graph G consists of two sets V and E.
- *V* is the set of vertices (also called nodes). A vertex (not "vertice"!) is often graphically displayed as a point or junction point (like the seven little circles here).
- E is the set of edges. Each edge connects two vertices u and v in V. Edges have no direction they equally go from u to v and from v to u. We denote an edge as (u, v) with the understanding that (u, v) = (v, u). The graph here contains eight edges (the black lines).

Graphs (Contd.)

- If two vertices u and v are connected by an edge, they are said to be adjacent. We also say that u is a neighbour of v.
- It is not uncommon to number the vertices or otherwise label them uniquely. This is then called a labelled graph.

Graphs (Contd.)

• We also write G(V, E) for the graph itself, or E(G) for the edges, or V(G) for the vertices.

Note

- not every vertex of a graph needs to have an edge attached;
- not every pair of vertices needs to be connected by an edge, and it's perfectly fine to have a graph with many vertices but no edges at all!

This is one graph, and it is a disconnected graph.

Example: Graph

• Road network does not connect North island cities with South island cities. We have a disconnected graph.

Graph: Order and Size

• The order of a graph G is the number of its vertices: |V(G)|

• The size of a graph G is the number of its edges: $\mid E(G) \mid$

Remember that | X | denotes the number of elements of a set X.

Graph: Order and Size (Contd.)

• The order of a graph G is the number of its vertices: |V(G)|

• The size of a graph G is the number of its edges: |E(G)|

• Remember that $\mid X \mid$ denotes the number of elements of a set X.

In this example:

$$|V(G)| = ?$$

 $|E(G)| = ?$

How many edges can a graph have?

- Observation 1: At most one edge per pair of different vertices.
- Observation 2: There are |V(G)|(|V(G)|-1) possible such vertex pairs (u, v), but there can be only one such edge for (u,v) and (v,u).
- So we need to divide this number by two:
- $0 \le |E(G)| \le |V(G)| (|V(G)| -1)/2$.

Sparse and Dense Graphs

- If |E(G)| approaches the high end of the scale $0 \le |E(G)| \le |V(G)|(|V(G)|-1)/2$, we say that the graph is dense
- If |E(G)| approaches the low end of the scale $0 \le |E(G)| \le |V(G)|(|V(G)| 1)/2$, we say that the graph is sparse
- Knowing whether a graph that we are dealing with is dense or sparse makes a difference in how it is best stored when space efficiency is important.
- There is no defined boundary between when we would call a graph sparse or dense but the criterion of storage could help us decide if we wanted such a boundary.

Sparse and Dense Graphs

A sparse graph (2 out of 21 possible edges)

Generally more efficient to store edges by recording between which vertices they occur

A dense graph (16 out of 21 possible edges)

Generally more efficient to store edges by listing vertex pairs and recording between which pairs there are edges

Degree of a Node in a Graph

- The degree of a vertex v is the number of edges that terminate in this vertex
- Observation 1: The number of edges is the sum of the degrees of all vertices divide by 2
- Observation 2: In sparse graphs, the nodes tend to have a lower degree than in dense graphs.

Node 1: degree 5

Node 2: degree 4

Node 3: degree 5

Node 4: degree 4

Node 5: degree 4

Node 6: degree 5

Node 7: degree 5

OUTLINE

Graphs and Di-Graphs

• Preliminaries

• Basic operations

Directed Graphs

- The set E of edges is replaced by a set E of arcs.
- An arc has a direction. An edge runs between two vertices u and v, an arc runs from a vertex u to a vertex v
- Draws the arcs curved allows it to have them between two vertices in both directions. We use double-headed arrows here to indicate that two vertices are connected by arcs in both directions

 This also requires us to extend and amend our previous definitions and terminology (next slide).

Neighborhood

- There are two sorts of neighbours
 - A neighbour v of u is an out-neighbour of u if there is an arc from u to v.
 - A neighbour v of u is an in-neighbour of u if there is an arc from v to u.
- There are two sorts of degrees
 - The out-degree (number of out-neighbours) and
 - The in-degree (number of in-neighbours).
- Obviously, now $(u, v) \neq (v, u)$.
- Size of a digraph = number of arcs

- 1 is an out-neighbour of 5
- 2 is an in-neighbour of 6
- 2 is an in-neighbour and out-neighbour of 4 (and vice versa)
- 7 has in-degree 0 and out-degree 3
- 4 has in-degree 3 and out-degree 3
- Size is 10

Sources and Sinks

- A vertex with in-degree 0 is called a source (all arcs "flow out" from the vertex).
- A vertex with out-degree 0 is called a sink (all arcs "flow into" the vertex).
- Q: Is it possible to have a node that is both a source as well as sink?

- 1 and 6 are sinks
- 5 and 7 are sources
- The other nodes are neither sinks nor sources

Walk, Path, Cycle

• A walk is a sequence of vertices $v_0, v_1, ..., v_n$, such that (v_i, v_{i+1}) is an arc in E for $0 \le i < n$

• The length of the walk is n. This is the number of arcs involved.

"45643123172" is a walk

Walk, Path, Cycle (Contd.)

- A path is a walk in which no vertex is repeated
- A cycle is a walk of length 3 or more on a graph or any walk on a digraph where $v_0=v_n$,
 - A walk that ends in the same vertex that it started in. No vertex is repeated other than the vertex at the start and end.

Exercise: This is NOT a Cycle

(1,5,6,8,5,1)

Example: Walks, Paths, and Cycles in a Digraph

Sequence	Walk	Path?	Cycle?
0 2 3	no	no	no
3 1 2	yes	yes	no
1 2 6 5 3 1	yes	no	yes
4 5 6 5	yes	no	no
4 3 5	no	no	no

Example: Walks, Paths, and Cycles in a Digraph

Sequence	Walk	Path?	Cycle?
abc	yes	yes	no
e g e	yes	no	no
d b c d	yes	no	yes
dadf	yes	no	no
a b d f h	yes	yes	no

Subgraphs and Subdigraphs

• A sub(di)graph G' = (V', E') of a (di)graph G = (V, E) is a (di)graph for which $V' \subseteq V$ and $E' \subseteq E$.

$$G = \begin{pmatrix} V = \{0,1,2,3,4\} \\ (0,2), (1,0), (1,2), \\ (1,3), (3,1), (4,2), \\ (3,4) \end{pmatrix}$$

$$G' = \begin{pmatrix} V' = \{1,2,3\} \\ E' = \{(1,2), (3,1)\} \end{pmatrix}$$

Exercise: Subdigraph or not?

Exercise: Subdigraph or not?

Induced Sub(di)graphs

• A subdigraph induced by a subset V' of V is the digraph G' = (V', E') where $E' = \{(u, v) \in E | u \in V' \text{ and } v \in V'\}$.

$$G = \begin{pmatrix} V = \{0,1,2,3,4\} \\ (0,2), (1,0), (1,2), \\ (1,3), (3,1), (4,2), \\ (3,4) \end{pmatrix}$$

$$G' = \begin{pmatrix} V' = \{1,2,3\} \\ E' = \{(1,2), (1,3), \\ (3,1) \} \end{pmatrix}$$

Example: An Induced Subdigraph

G'

E.g., $V' = \{1, 2, 3, 4, 6\}$

Spanning Sub(di)graphs

• A spanning subdigraph contains all nodes, that is, V'=V.

$$G = \begin{pmatrix} V = \{0,1,2,3,4\} \\ (0,2), (1,0), (1,2), \\ (1,3), (3,1), (4,2), \\ (3,4) \end{pmatrix}$$

$$G' = \begin{pmatrix} V' = \{0,1,2,3,4\} \\ E' = \{0,2,2,3,4\} \\ (3,4) \end{pmatrix}$$

Reverse Digraph

• The reverse digraph of the digraph G=(V,E), is the digraph $G_r=(V,E')$ where $(u,v)\in E'$ if and only if $(v,u)\in E$.

Underlying Graph of a Digraph

• The underlying graph of a digraph G=(V,E) is the graph G'=(V,E') where $E^{\prime}=\{\{u,v\}\mid (u,v)\in E\}$.

G

G'

SUMMARY

- Definition of Graphs and Di-Graphs
- Preliminaries on terminology and properties (e.g., size, order, degree)
- Basic operations
 - walking and sub-graphing

