Weiterbildungs-Lehrgang in Angewandter Statistik ETHZ 2009/2011

23.11.09

Angewandte Regression — Musterlösungen zur Serie 9 (Aufgabe 2)

a) Daten einlesen und erste Plots:

d.runoff <- read.table("http://stat.ethz.ch/Teaching/Datasets/WBL/RunOff.dat",sep=",",header=TRUE)

plot(~AccYear+DevYear+log(Payments),data=d.runoff)

Log-Transformationen für Payments scheint sehr sinnvoll zu sein. Eine Transformation für DevYear und AccYear sind nicht nötig, was der obige, rechte Plot bestätigt:

— Angewandte Regression — Musterlösungen zur Serie 9 (Aufgabe 2)

b) Für die folgenden Zusammenfassungen der Ergebnisse benützen wir die Abkürzungen F=Faktor, N=Numerisch

Modell 1:

• Ergebnisse der Regressionen:

```
d.runoff$DevYear.f <- as.factor(d.runoff$DevYear)</pre>
r.lognorm1 <- regr(Payments~AccYear.f+DevYear.f,data=d.runoff)</pre>
```

r.lognorm2 <- regr(Payments~AccYear.f*DevYear,data=d.runoff)</pre> r.lognorm3 <- regr(Payments~AccYear*DevYear.f,data=d.runoff)</pre>

r.lognorm4 <- regr(Payments~AccYear*DevYear,data=d.runoff)</pre>

d.runoff\$AccYear.f <- as.factor(d.runoff\$AccYear)</pre>

r.lognorm1.1 <- regr(log10(Payments)~AccYear.f+DevYear.f,data=d.runoff)</pre>

r.lognorm2.1 <- regr(log10(Payments)~AccYear.f*DevYear,data=d.runoff)</pre>

r.lognorm3.1 <- regr(log10(Payments)~AccYear*DevYear.f,data=d.runoff) r.lognorm4.1 <- regr(log10(Payments)~AccYear*DevYear,data=d.runoff)</pre>

		AccYear		DevYear		Interaction
\log -Transf	Regression	F/N	Signf	F/N	Signf	
N	Lognormal1	F	***	F	***	nicht moeglich
N	Lognormal2	F		N	**	
N	Lognormal3	N	***	F	***	**
N	Lognormal4	N	***	N		***
J	Lognormal1.l	F		F	***	nicht moeglich
J	Lognormal2.1	F		N	***	
J	Lognormal3.1	N		F	***	*
J	Lognormal4.1	N		N	***	**
D. D.				1		

Die Eingangsvariable DevYear erscheint immer als signifikant.

• Ergebnisse der Residuenanalyse:

			AccYear	DevYear	
log-Transf	Regression	TA	QQ	Part.Res	Part. Resid
N	Lognormal1	nicht so io	nicht so io		
N	Lognormal2	trichterförmig	nicht so io		schlecht
N	Lognormal3	scheint io	nicht io	akzeptabel	
N	Lognormal4	trichterförmig	io	io	schlecht
J	Lognormal1.l	io	io		
J	Lognormal2.l	io	io		schlecht
J	Lognormal3.1	io	schlecht	akzeptabel	
J	Lognormal4.l	schlecht	io	io	schlecht

Wir benützen predict() für die Vorhersagen der Zahlungen der restlichen Developement Years für das Accident Year = 9:

Die berechnet Vorhersagen sind in einer Tabelle zusammengefasst:

formiert				log-tra	nsformie	rt	
(F,F)	(F,N)	(N,F)	(N,N)	(F,F)	(F,N)	(N,F)	(N,N)
2711495	5164502	2219126	3252763	2776560	2755866	2279826	2081542
456091	4653435	408987	1380465	647506	1338157	450438	682785
-70924	4142369	275992	-491832	203780	649764	285278	223966
-171727	3631302	141615	-2364130	127010	315504	141552	73465
-260205	3120236	168103	-4236428	60929	153198	260873	24098
-300555	2609169	3865	-6108725	49956	74388	21034	7905
-380694	2098103	-12051	-7981023	10624	36120	1487	2593
-391089	1587036	15774	-9853320	10794	17539	16735	851
-413559	1075970	-809029	-11725618	12902	8516	13711	279
	(F,F) 2711495 456091 -70924 -171727 -260205 -300555 -380694 -391089	(F,F) (F,N) 2711495 5164502 456091 4653435 -70924 4142369 -171727 3631302 -260205 3120236 -300555 2609169 -380694 2098103 -391089 1587036	(F,F) (F,N) (N,F) 2711495 5164502 2219126 456091 4653435 408987 -70924 4142369 275992 -171727 3631302 141615 -260205 3120236 168103 -300555 2609169 3865 -380694 2098103 -12051 -391089 1587036 15774	(F,F) (F,N) (N,F) (N,N) 2711495 5164502 2219126 3252763 456091 4653435 408987 1380465 -70924 4142369 275992 -491832 -171727 3631302 141615 -2364130 -260205 3120236 168103 -4236428 -300555 2609169 3865 -6108725 -380694 2098103 -12051 -7981023	(F,F) (F,N) (N,F) (N,N) (F,F) 2711495 5164502 2219126 3252763 2776560 456091 4653435 408987 1380465 647506 -70924 4142369 275992 -491832 203780 -171727 3631302 141615 -2364130 127010 -260205 3120236 168103 -4236428 60929 -300555 2609169 3865 -6108725 49956 -380694 2098103 -12051 -7981023 10624 -391089 1587036 15774 -9853320 10794	(F,F) (F,N) (N,F) (N,N) (F,F) (F,N) 2711495 5164502 2219126 3252763 2776560 2755866 456091 4653435 408987 1380465 647506 1338157 -70924 4142369 275992 -491832 203780 649764 -171727 3631302 141615 -2364130 127010 315504 -260205 3120236 168103 -4236428 60929 153198 -300555 2609169 3865 -6108725 49956 74388 -380694 2098103 -12051 -7981023 10624 36120 -391089 1587036 15774 -9853320 10794 17539	(F,F) (F,N) (N,F) (N,N) (F,F) (F,N) (N,F) 2711495 5164502 2219126 3252763 2776560 2755866 2279826 456091 4653435 408987 1380465 647506 1338157 450438 -70924 4142369 275992 -491832 203780 649764 285278 -171727 3631302 141615 -2364130 127010 315504 141552 -260205 3120236 168103 -4236428 60929 153198 260873 -300555 2609169 3865 -6108725 49956 74388 21034 -380694 2098103 -12051 -7981023 10624 36120 1487 -391089 1587036 15774 -9853320 10794 17539 16735

Zusammenfassung: Wir haben aus der Residuenanalyse gesehen, dass das additive Modell (nicht transformiete) Modell nicht zu gebrauchen ist. Zum gleichen Ergebnis kommen wir mit dem Prediction - negative Zahlungen machen einfach keinen Sinn. Beim multiplikativen (log transformiertem) Modell kommen die Residuenanalyse und die Vorhersagen zum gleichen Ergebnis: das beste Modell ist das mit den Faktoren.

Modell 2: Gamma-Modell

• Da bei regr() die Linkfunktion nicht funktioniert, machen wir die GLM's mit glm:

```
r.gamma1.c <- glm(Payments~AccYear.f+DevYear.f,data=d.runoff, family=Gamma)
...
r.gamma1.c.l <- glm(log10(Payments)~AccYear.f+DevYear.f,data=d.runoff,
family=Gamma)
...
r.gamma1.l <- glm(Payments~AccYear.f+DevYear.f,data=d.runoff,</pre>
```

(23.11.09) — Angewandte Regression — Musterlösungen zur Serie 9 (Aufgabe 2) —

```
family=Gamma(link=log))
...
r.gamma1.1.1 <- glm(log10(Payments)~AccYear.f+DevYear.f,data=d.runoff,
family=Gamma(link=log))
...
r.gamma1.i <- glm(Payments~AccYear.f+DevYear.f,data=d.runoff, family=Gamma(link=i...
r.gamma1.i <- glm(log10(Payments)~AccYear.f+DevYear.f,data=d.runoff,
family=Gamma(link=identity))
...
und benützen drop1() zum Untersuchen der Signifikanz:
drop1(r.gamma1.c,scope=c("AccYear.f","DevYear.f"),test="F")
drop1(r.gamma2.c,scope=c("AccYear.f","DevYear","AccYear.f:DevYear"),test="F")
drop1(r.gamma3.c,scope=c("AccYear.f","DevYear.f","AccYear.f"),test="F")</pre>
```

Wir tragen die Ergebnisse der GLM's in einer Tabelle zusammen:

			AccYear		DevYear		Interaction
Linkf	\log -Transf	Modell	F / N	Signif	F / N	Signif	
kanon.	N	r.gamma1.c	F		F	***	keine
kanon.	N	r.gamma2.c	F		N	***	
kanon.	N	r.gamma3.c	N		F	***	*
kanon.	N	r.gamma4.c	N		N	***	*
kanon.	J	r.gamma1.c.l	F		F	***	keine
kanon.	J	r.gamma2.c.l	F		N	***	
kanon.	J	r.gamma3.c.l	N		F	***	*
kanon.	J	r.gamma4.c.l	N		N	***	
log	N	r.gamma1.l	F		F	***	keine
\log	N	r.gamma2.l	F		N	***	
\log	N	r.gamma3.l	N		F	***	*
log	N	r.gamma4.l	N		N	***	**
log	J	r.gamma1.l.l	F		F	***	keine
log	J	r.gamma2.l.l	F		N	***	
log	J	r.gamma3.l.l	N		F	***	
log	J	r.gamma4.l.l	N		N	***	*
ident.	N	r.gamma1.i	F		F	***	keine
ident.	N	r.gamma3.i	N		F	***	*
ident.	J	r.gamma1.i.l	F		F	***	keine
ident.	J	r.gamma3.i.l	N		F	***	*
ident.	J	r.gamma4.i.l	N		N	***	**

Bemerkung: bei der glm()-Procedure für das Modell r.gamma4.i erhalten wir eine Fehlermeldung; beim Ausführen von drop1() erhalten wir Fehlermeldungen bei den Modellen r.gamma2.i.l - deshalb keine Eintr|"ag in der Tabelle.

Zusammenfassung: man sieht, dass im Gamma-Modell für verschiedene Links nur das Developement Year signifikant ist.

• Für die Residuenanalyse machen wir die TA und die Partial Residual-Plots:

```
par(mfrow=c(4,3))
TA.plot(r.gamma1.c, main="Gamma1 - canonical Link")
termplot(r.gamma1.c,main="Gamma1 - canonical Link", terms=c("AccYear.f","DevYear.f"), partial=T)
TA.plot(r.gamma2.c,main="Gamma2 - canonical Link")
termplot(r.gamma2.c,main="Gamma2 - canonical Link", terms=c("AccYear.f","DevYear"), partial=T)
TA.plot(r.gamma3.c,main="Gamma3 - canonical Link")
termplot(r.gamma3.c,main="Gamma3 - canonical Link", terms=c("AccYear","DevYear.f"),partial=T)
```

(23.11.09) — Angewandte Regression — Musterlösungen zur Serie 9 (Aufgabe 2) —

TA.plot(r.gamma4.c,main="Gamma4 - canonical Link")
termplot(r.gamma4.c,main="Gamma4 - canonical Link", terms=c("AccYear","DevYear"),partial=T)

Für die Plots der anderen GLM's analog.

Die Ergebnisse der Residuenanalyse fassen wir in einer Tabelle zusammen:

		AccYear	DevYear
Modell	TA	Residuals	Residuals
r.gamma1.c	io	io	io
r.gamma2.c	nicht io	io	nicht io
r.gamma3.c	io	io	io
r.gamma4.c	nicht io	io	nicht io
r.gamma1.c.l	io	io	io
r.gamma2.c.l	nicht so io	io	io
r.gamma3.c.l	io	io	io
r.gamma4.c.l	io	io	io
r.gamma1.l	io	io	io
r.gamma2.l	nicht so io	io	io
r.gamma3.l	io	io	io
r.gamma4.l	nicht so io	io	io
r.gamma1.l	io	io	io
r.gamma 2.l.l	nicht so io	io	io
r.gamma3.l.l	io	io	io
r.gamma4.l.l	nicht so io	io	io
r.gamma1.i	io	io	io
r.gamma2.i	nicht io	io	io
r.gamma3.i	io	io	nicht io
r.gamma1.i.l	io	io	io
r.gamma2.i.l	nicht io	io	io
r.gamma3.i.l	io	io	io
r.gamma4.i.l	nicht io	io	io

Bemerkung: aus der Residuenanalyse sehen wir, dass DevYear ein Faktor sein muss.

• Für die Berechnung der Vorhersagen gehen wir gleich wie oben vor, wobei man auf die Link-Funktion und die Log-Transformation achten muss.

```
predict <- NULL
predict <- cbind(... ,1/predict.glm(r.gamma1.c,</pre>
           newdata=data.frame(AccYear.f="9",DevYear.f=as.factor(c(1:9)))))
predict <- cbind(...,10^(1/predict.glm(r.gamma1.c.l,</pre>
           newdata=data.frame(AccYear.f="9",DevYear.f=as.factor(c(1:9))))))
predict <- cbind(...,exp(predict.glm(r.gamma1.1,</pre>
           newdata=data.frame(AccYear.f="9",DevYear.f=as.factor(c(1:9))))))
predict <- cbind(...,10^exp(predict.glm(r.gamma1.l.l,</pre>
           newdata=data.frame(AccYear.f="9",DevYear.f=as.factor(c(1:9))))))
predict <- cbind(... ,predict.glm(r.gamma1.i,</pre>
           newdata=data.frame(AccYear.f="9".DevYear.f=as.factor(c(1:9)))))
predict <- cbind(..., 10^predict.glm(r.gamma1.i.l,</pre>
           newdata=data.frame(AccYear.f="9".DevYear.f=as.factor(c(1:9)))))
Ergebnisse der Vorhersagen:
 Gamma - kanon. Link - untransformiert
                                             Gamma - kanon. Link - log-transformiert
 DevYear (F,F) (F,N) (N,F) (N,N)
                                              (F,F) (F,N) (N,F) (N,N)
      1 2843658 790309 2313799 2575218
                                            2783428 1816931 2285406 1807554
       2 685118 424725 478854 1677343
                                             654747 679490 454951 648607
```

```
(23.11.09)
            — Angewandte Regression — Musterlösungen zur Serie 9 (Aufgabe 2) —
            3 221842 290394 290681 1243710
                                                208799 288140 286772
                                                                     266682
            4 148937 220618 141961 988230
                                                131067 135447 141560 122485
               71471 177877 -234373 819824
                                                 63643
                                                        69355 312169
                                                                       61630
            5
                53809 149009 27564
                                    700457
                                                 51681
                                                        38155
                                                                       33461
             6
                                                               22595
                11650 128203
                              3730
                                    611432
                                                        22307
                                                                2134
                                                                       19370
                                                 11115
                             18512 542485
               11385 112495
                                                 11205
                                                        13737
                                                                17014
                                                                       11841
                15806 100216
                              15807
                                    487512
                                                 14187
                                                                14972
                                                                        7585
       Gamma - log-Link - untransformiert
                                               Gamma - log-Link - log-transformiert
       DevYear (F,F) (F,N) (N,F) (N,N)
                                                 (F,F) (F,N)
                                                                (N,F) (N,N)
            1 2778441 2792158 2282363 2061303
                                               2778771 2304712 2283262 1966305
            2 649449 1373632 449814 673960
                                                650625 986064
                                                              452647
                                                                      658429
            3 204403 675773 284535 220357
                                                206092 443159
                                                              286190
                                                                      239463
            4 131185 332454 141995
                                      72048
                                                128617 208614 141549
                                                                       94001
            5
               62754 163554
                              240751
                                       23557
                                                 62175
                                                       102586 279007
                                                                       39599
            6
                49801
                        80462
                               21053
                                       7702
                                                 51145
                                                        52565
                                                                21845
                                                                       17807
            7
                10670
                        39584
                                1487
                                       2518
                                                 10981
                                                        27999
                                                                1828
                                                                        8505
                10724
                        19474
                               16735
                                                        15468
                                                                16870
                                                                        4295
            8
                                        823
                                                 11106
            9
                12822
                        9580
                               13717
                                        269
                                                 13588
                                                         8844
                                                                14479
                                                                        2284
       Gamma - identity-Link - untransformiert
                                               Gamma - identity-Link - log-transformiert
       DevYear (F,F) (F,N) (N,F)
                                                (F,F) (F,N) (N,F) (N,N)
                                               2774798 2873422 2281098 2214571
            1 2710913 5521115 2245954
            2 463678 5366662 412505
                                                646445 1454754 450300 722585
            3 -27679 5212209 279146
                                                203024 736512 285615
                                                                      235770
            4 -108979 5057757 141990
                                                125793 372881 141538
                                                                       76929
            5 -187278 4903304 146763
                                                 60378 188782 253701
                                                                       25101
             6 -194824 4748851
                                                 50402
                                                        95576
                                                                21039
                                                                        8190
            7 -236461 4594398 -11162
                                                 10782
                                                        48388
                                                                1493
                                                                        2672
             8 -237239 4439945 15774
                                                 10929
                                                        24498
                                                                16735
                                                                         872
            9 -234534 4285492 -812446
                                                 12963
                                                       12403
                                                               13710
                                                                         285
```

Zusammenfassung: Wieder bemerken wir, dass aus den Residuenanalysen und Vorhersagen, das log-Link Modell resp die log-transformierte Zielvariable sinnvoll sind.

Modell 3: Poisson-Modell

 Als Transformation der Zielvariable nehmen wir die Wurzelfunktion statt den Logaritmus. Wir tragen die Ergebnisse der GLM's in einer Tabelle zusammen:

(23.11.09) — Angewandte Regression — Musterlösungen zur Serie 9 (Aufgabe 2) —

			AccYear		DevYear		Interaktion
Linkf	Wurzel-Transf	Modell	F / N	Signif	F / N	Signif	
kanon.	N	r.poisson1.c	F	***	F	***	keine
kanon.	N	r.poisson2.c	F		N	***	***
kanon.	N	r.poisson3.c	N	**	F	***	*
kanon.	N	r.poisson4.c	N	***	N	***	***
kanon.	J	r.poisson1.c.s	F		F	***	keine
kanon.	J	r.poisson 2.c.s	F		N	***	
kanon.	J	r.poisson 3.c.s	N		F	***	*
kanon.	J	r.poisson4.c.s	N	*	N	***	***
sqrt	N	r.poisson1.s	F	**	F	***	keine
sqrt	J	r.poisson1.s.s	F	**	F	***	keine
sqrt	J	r.poisson 3.s.s	N		F	***	*
sqrt	J	r.poisson 4.s.s	N	***	N	***	***
ident.	N	r.poisson1.i	F	*	F	***	keine
ident.	N	r.poisson3.i	N	***	F	**	***
ident.	J	r.poisson1.i.s	F	*	F	***	keine
ident.	J	r.poisson3.i.s	N		F	***	**

Bemerkung: bei den Modellen r.poisson2.s, r.poisson4.s, r.poisson2.i, r.poisson4.i sind Fehlermeldungen aufgetreten. Bemerkung: bei der glm()-Procedure für die Modelle r.poisson2.s, r.poisson4.s, r.poisson4.i erhalten wir Fehlermeldungen; beim Ausführen von drop1() erhalten wir Fehlermeldungen bei den Modellen r.poisson3.s und r.poisson2.s.s - deshalb keine Eintr|"ag in der Tabelle.

• Für die Residuenanalyse machen wir die TA und die Partial Residual-Plots:

(23.11.09) — Angewandte Regression — Musterlösungen zur Serie 9 (Aufgabe 2) —

Die Ergebnisse der Residuenanalyse fassen wir in einer Tabelle zusammen:

M. J.11	TA	AccYear	DevYear Residuals
Modell		Residuals	Residuais
r.poisson1.c	io	io	io
r.poisson2.c	nicht io	io	nicht io
r.poisson3.c	io	io	io
r.poisson4.c	nicht io	io	nicht io
r.poisson1.c.s	io	io	io
r.poisson2.c.s	nicht io	io	nicht so io
r.poisson3.c.s	io	io	io
r.poisson4.c.s	nicht io	io	nicht so io
r.poisson1.l	io	io	io
r.poisson1.l r.poisson3.s	io io	io io	io io
*	-		
r.poisson3.s	io	io	io
r.poisson3.s r.poisson1.s.s	io io	io io	io io
r.poisson3.s r.poisson1.s.s r.poisson2.s.s	io io nicht so io	io io io	io io io
r.poisson3.s r.poisson1.s.s r.poisson2.s.s r.poisson3.s.s	io io nicht so io io	io io io io	io io io io
r.poisson3.s r.poisson1.s.s r.poisson2.s.s r.poisson3.s.s r.poisson4.s.s	io io nicht so io io nicht so io	io io io io io	io io io io io
r.poisson3.s r.poisson1.s.s r.poisson2.s.s r.poisson3.s.s r.poisson4.s.s r.poisson1.i	io io nicht so io io nicht so io io nicht so io	io io io io io io	io io io io io io io

Bemerkung: aus der Residuenanalyse sehen wir, dass für ein gutes Modell die EingangsvariableDevYear ein Faktor sein muss.

(23.11.09) — Angewandte Regression — Musterlösungen zur Serie 9 (Aufgabe 2) — 11

• Für die Berechnung der Vorhersagen gehen wir gleich wie oben vor, wobei man auf die Link-Funktion und die Wurzel-Transformation achten muss.

Poiss	on -	canonic	al-Link ·	- untrans	sformiert	Poisson	- canon:	ical-Link	- Wurzel	L-transformiert
DevYe	ar	(F,F)	(F,N)	(N,F)	(N,N)	(F,F)	(F,N)	(N,F)	(N,N)	
1	1	2795421	2375007	2271443	1986597	2785839	2472365	2275922	1925781	
2	2	658706	993849	451053	716004	653120	1077000	450673	647971	
3	3	208825	415888	282179	258060	206466	469158	283751	218024	
4	4	138592	174033	141793	93009	132906	204373	140740	73359	
5	5	66092	72826	271545	33522	63580	89028	267269	24683	
6	6	49107	30475	20999	12082	49001	38782	21020	8305	
7	7	10363	12753	1458	4355	10312	16894	1473	2794	
8	8	10052	5336	16735	1569	10222	7359	16735	940	
9	9	13654	2233	13724	566	13191	3206	13717	316	
Poiss	on -	Wurzel-	Link - uı	ntransfo	rmiert	Poisson - N	/urzel-L	ink - Wur	zel-trans	sformiert
DevY	ear	(F,F)	(N,F))		(F,F)	(F,N)	(N,F)	(N,N)	
	1	2760000	2250000			2767771	3988000	2267496	2430000	
	2	603000	432000			631826	2708078	442087	800000	
	3	163000	280000			190699	1764178	282331	171000	
	4	940000	142000			118314	1091600	140752	13500	
	5	34300	192000			53718	632570	217003	2.14	
	6	21900	15300			42096	336240	18547	4880	
	7	214	4.85			7701	158687	660	103000	
	8	264	16200			7915	62911	16447	571000	
	9	23	2070			8523	18841	8032	1890000	
Poiss	on -	Identit	y-Link -	untrans	formiert	Poisson ·	- Identi	ty-Link -	- Wurzel-t	transformiert
DevY		(F,F)				(F,F)	(N,1	F)		
		2711072				2750539	226000	00		
	2	463843	410565			601132	43300	00		
	3	-38005	277618			161807	28100	00		
	4	-123710	141817			91578	14100	00		
	5	-205441	156795			33344	18700	00		
	6	-215417	4223			26116	1540	00		
	7	-257153	-11585			1397	1.9	96		
	8	-256238	15774			1631	1620	00		
	9	-260221	-811079			1362	21:	10		

Zusammenfassung: Poisson-Modell mit dem kanonischen Link scheint ein plausibles Modell zu sein. Die restlichen Links hingegen sind nicht vernünftig.

Modell 4: Tweedie-Modell

• Wir tragen die Ergebnisse der GLM's in einer Tabelle zusammen:

(23.11.09) — Angewandte Regression — Musterlösungen zur Serie 9 (Aufgabe 2) —

			AccYear		DevYear		Interaktion
p	Log-Transf	Modell	F/N	Signif	F / N	Signif	
1.5	N	r.tweedie1.c	F		F	***	keine
1.5	N	r.tweedie2.c	F		N	***	
1.5	N	r.tweedie3.c	N		F	***	*
1.5	N	r.tweedie 4.c	N		N	***	
1.5	J	r.tweedie1.c.l	F		F	***	keine
1.5	J	r.tweedie 2.c.l	F		N	***	
1.5	J	r.tweedie3.c.l	N		F	***	*
1.5	J	r.tweedie 4.c.l	N		N	***	
1.2	N	r.tweedie5.c	F		F	***	keine
1.2	N	r.tweedie6.c	F		N	***	
1.2	N	r.tweedie7.c	N	*	F	***	*
1.2	N	${\rm r.tweedie 8.c}$	N		N	***	
1.2	J	r.tweedie5.c.l	F		F	***	keine
1.2	J	r.tweedie6.c.l	F		N	***	
1.2	J	r.tweedie7.c.l	N		F	***	*
1.2	J	${\it r.tweedie 8.c.l}$	N		N	***	

12

• Für die Residuenanalyse machen wir die TA und die Partial Residual-Plots:

Die Ergebnisse der Residuenanalyse fassen wir in einer Tabelle zusammen:

		AccYear	DevYear
Modell	TA	Residuals	Residuals
r.tweedie1.c	io	io	io
r.tweedie2.c	nicht io	io	nicht io
r.tweedie 3.c	io	io	io
r.tweedie 4.c	nicht io	io	nicht io
r.tweedie1.c.l	io	io	io
r.tweedie 2.c.l	akzeptabel	io	io
r.tweedie 3.c.l	io	io	io
r.tweedie4.c.l	akzeptabel	io	io
r.tweedie5.c	io	io	io
r.tweedie7.c	io	io	io
r.tweedie5.c.l	io	io	io
r.tweedie6.c.l	akzeptabel	io	io
r.tweedie 7.c.l	io	io	io
r.tweedie8.c.l	akzeptabel	io	io

• Für die Berechnung der Vorhersagen gehen wir gleich wie oben vor, wobei man auf die Link-Funktion und die Wurzel-Transformation achten muss.

Tweedie -	- p=1.5 -	- untrans	sformiert	;	Tweedie	- p=1.5	- log-ti	ansformiert	
DevYear	(F,F)	(F,N)	(N,F)	(N,N)	(F,F)	(F,N)	(N,F)	(N,N)	
1	2823213	1367200	2293638	1915130	2781678	2036827	2284024	1862869	
2	678450	600265	466151	962049	653063	806274	453847	647185	
3	219609	335602	286056	577010	207703	347801	286391	251491	
4	147401	214005	141878	384168	130200	161816	141558	107653	
5	70889	148255	620475	274024	63084	80489	296740	50119	
6	53351	108734	24787	205257	51348	42480	22225	25106	
7	11586	83141	2772	159467	11031	23634	1983	13410	
8	11319	65626	17462	127451	11138	13783	16941	7579	
9	15679	53114	15697	104191	13921	8384	14753	4503	
Tweedie -	- p=1.2 -	- untrans	sformiert	;	Tweedie	- p=1.2	- log-ti	ansformiert	
			sformiert (N,F)			-	- log-ti (N,F)		
DevYear	(F,F)	(F,N)		(N,N)	(F,F)	(F,N)	_	(N,N)	
DevYear	(F,F) 2807464	(F,N) 1931847	(N,F)	(N,N) 1904255	(F,F)	(F,N) 2174951	(N,F)	(N,N) 1900850	
DevYear 1	(F,F) 2807464 669144	(F,N) 1931847 796426	(N,F) 2280590	(N,N) 1904255 792252	(F,F) 2780645	(F,N) 2174951 894011	(N,F) 2283191	(N,N) 1900850 649546	
DevYear 1 2	(F,F) 2807464 669144 215152	(F,N) 1931847 796426	(N,F) 2280590 457432 283653	(N,N) 1904255 792252	(F,F) 2780645 652017	(F,N) 2174951 894011 391853	(N,F) 2283191 453177	(N,N) 1900850 649546 243906	
DevYear 1 2 3	(F,F) 2807464 669144 215152 143924	(F,N) 1931847 796426 375284	(N,F) 2280590 457432 283653 141828	(N,N) 1904255 792252 375785 196392	(F,F) 2780645 652017 206999 129637	(F,N) 2174951 894011 391853	(N,F) 2283191 453177 286164 141557	(N,N) 1900850 649546 243906	
DevYear 1 2 3 4	(F,F) 2807464 669144 215152 143924 69184	(F,N) 1931847 796426 375284 195156	(N,F) 2280590 457432 283653 141828 335350	(N,N) 1904255 792252 375785 196392	(F,F) 2780645 652017 206999 129637	(F,N) 2174951 894011 391853 182166 89387	(N,F) 2283191 453177 286164 141557	(N,N) 1900850 649546 243906 99690 43978	
DevYear 1 2 3 4 5	(F,F) 2807464 669144 215152 143924 69184 51890	(F,N) 1931847 796426 375284 195156 109466 65198	(N,F) 2280590 457432 283653 141828 335350	(N,N) 1904255 792252 375785 196392 110590 66073	(F,F) 2780645 652017 206999 129637 62713	(F,N) 2174951 894011 391853 182166 89387 46093	(N,F) 2283191 453177 286164 141557 288447	(N,N) 1900850 649546 243906 99690 43978 20783	
DevYear 1 2 3 4 5	(F,F) 2807464 669144 215152 143924 69184 51890 11249	(F,N) 1931847 796426 375284 195156 109466 65198	(N,F) 2280590 457432 283653 141828 335350 22675 2037	(N,N) 1904255 792252 375785 196392 110590 66073 41423	(F,F) 2780645 652017 206999 129637 62713 51121	(F,N) 2174951 894011 391853 182166 89387 46093 24878	(N,F) 2283191 453177 286164 141557 288447 21997 1889	(N,N) 1900850 649546 243906 99690 43978 20783 10452	
DevYear 1 2 3 4 5 6 7	(F,F) 2807464 669144 215152 143924 69184 51890 11249	(F,N) 1931847 796426 375284 195156 109466 65198 40769	(N,F) 2280590 457432 283653 141828 335350 22675 2037 16998	(N,N) 1904255 792252 375785 196392 110590 66073 41423 27026	(F,F) 2780645 652017 206999 129637 62713 51121 10970 11089	(F,N) 2174951 894011 391853 182166 89387 46093 24878	(N,F) 2283191 453177 286164 141557 288447 21997 1889 16898	(N,N) 1900850 649546 243906 99690 43978 20783 10452 5560	

Schlussbemerkung:

- Der Log-Link hat zwei Vorteile:
 - ergibt eine multiplikative Struktur für den Erwartungswert ist leichter zu verstehen
 - bringt immer positive Werte für den Erwartungswert
- \bullet Tweedie: man könnte zusätzlich den optimalen Parameter p bestimmen.
- Einige der obigen Modelle sind für das finale Modell nicht geeignet. Die Besten scheinen aber diejenigen mit nur Faktoren zu sein. Welche man jetzt nun als das Beste Modell wählt, hängt nicht nur von den Residuen, Vorhersagen ab, sondern auch von der Wahl der Modellstruktur: möchte man Faktoren oder numerische Werte? Zb, wie steht es mit dem Developement Year 10, 11, resp 12 aus für diese Fragestellung brauchen wir numerische Werte, da die Jahre 10 bis 12 nicht als Faktoren existieren.