Table of Contents

Sum	nmar <u>y</u>	3
١.	Descriptive analytic <u>s</u>	3
a. b.	BasicSta*s*csVisualiza*on graphs	3 12
۲.	Classification	
a b	Naïve Bayes K-Nearest Neighbor SVM	17
۳. · C a. b.	Regression Linear regression Regression Tree	18
٤.	Association rule mining	
٥.	Clustering	20

Summary

This report analyzes the YOU UK census data to highlight key population trends, aiming to offer a concise overview of observed patterns.

Descriptiveanalytics

a. Basic Sta*s*cs

Figure 1.1: Distribution of population in the Regions

Among the 1. distinct regions in the UK, the Southeast boasts the largest population, with approximately AA. AE residents, constituting around 10.0% of the total population. In contrast, the North East exhibits the lowest population, accounting for approximately £.٦٢%.

Figure 1. Y: Trends on No. of hours worked

Figure 1.7: Distribution of Residence Type

The population is categorized into two types of residences, with ٩٨٪ of individuals living outside communal establishments and only ١.٨٧٪ residing in such establishments.

Figure 1. 8: Distribution of Family Composition

There are seven different groups that describe the makeup of families. The predominant group is Married/Same-Sex Civil Partnership, with or.A/. of the population in either a marriage or in a registered same-sex civil partnership.

Figure 1.0: Population Base

The population base has three different categories. The most common one being Usual Resident, with 9.0% of the population reporting to be usual residents and 9% indicating that they are students living away during term time.

Figure 1.7: Sex

The gender for the population is divided into two distinct categories . Females account for $\delta \cdot . \Delta \%$ of the population while male account for $\xi \cdot . \Delta \%$.

Figure v.v. Age

The population's age distribution is segmented into eight distinct categories, with the most prevalent category being • to ١٦، constituting ١٨.٨٪ of the population. In contrast, the age group of vo and over represents the smallest proportion, accounting for v. ٦٧٪.

Figure Y.A: Marital Status

The relationship statuses of UK residents are distributed among five distinct categories. Notably, the most prominent category is "single," comprising £v. 1% of the population, while only 1.1% are either separated or still legally married.

Figure ۱.4: Student

In the UK, vv. A; of individuals are non-students, while vv. vv; are students.

Figure 1:10: Country of Birth

Residence in the UK are categorized into three groups based on their place of birth. Approximately Ao. Y. were born in the UK, while AF. were born outside the UK. Figure A.A. Health

There are six distinct health statuses, with £7.0% of individuals reporting very good health, and only 1.77% indicating very bad health.

Figure 1.17: Ethnic Group

There are six distinct ethnic groups in the UK. The most common one is white as A&. 4% of individuals in the UK identify as being white while A% are of Chinese ethnic group.

Figure ۱.۱۳: Religion

There are ten distinct religious affiliations in the UK. Christianity stands out as the most prevalent religion, with oh. o//. of individuals identifying as Christians, while only . . so//. and . . st//. follow Buddhism and other religions, respectively.

Figure 1.18: Economic Activity

Individuals participate in 10° diverse economic activities in the UK. The predominant economic activity reported is employment, with πv . 4% of the population being employed.

Figure 1.10: Occupation

Among the 1. occupation categories, the one most identified with by people is "Never worked/under 173/Students," representing 17.7% of the population. Conversely, 17% reported working in the process /plant/machine operatives sector.

Figure 1.17: Industry

The industries are categorized into wunique sectors. The sector with the highest number of people employed is the retail and motor repair industry, encompassing with of the population. In contrast, only . 19% of individuals work in the agriculture /forestry /fishing industry.

Figure 1.1V: Hours worked per week

The weekly working hours are segmented into four distinct categories. Just over half (or%) of the overall population indicated that they are not working. The smallest proportion, at ϵ . o%, corresponds to individuals working part-time, specifically to hours or less.

Figure: ۱. ۱۸: Approximate Social Grade

There are five diverse groups representing approximations of social grades. The prevalent category is Supervisory/Clerical Professions, with YAY. of the population engaged in supervisory or clerical professions, while skilled manual work comprises YEY. of the total.

b. Visualiza*on graphs

Figure Y. N: Trends between approximated Social Grade and No. of hours.

Students and individuals under the age of 13 exhibit a diverse range of working hours spanning from a minimum of 10 hours to a maximum of approximately 10 hours. The distribution appears to be skewed towards fewer working hours.

In contrast, skilled manual occupations and higher managerial positions display a more

homogeneous

distribution with less variation in the hours worked. Both groups demonstrate a relatively hovering between approximately rr and $\epsilon \Lambda$ hours. The average hours worked for these groups align

with their means, indicating an equal distribution of individuals working fewer or more than hours. Overall, this suggests distinct patterns in working hours distributions based on demographic and occupational factors.

Figure Y. Y: Trends between health status and geographic regions

Overall, a substantial majority of residents in all ten regions reported being in very go London and the Southeast exhibit the highest number of inhabitants in this category, while

the Northeast

region has comparatively fewer individuals reporting very good health.

To delve into specifics. London and the Southeast regions stand out with approximately 6.7/

and £A%

respectively declaring very good health. In these regions, approximately rr% and ro% of respectively, report being in good health.

Figure v.v.Table representing correlation betweenstry and Hours worked per week

Hours worked per week	Full time(31 to 48 hrs)	Full time(49 or more hrs)	Part time(15 or less hrs)	Part-time(16 to 30 hrs)	Under16s/Not working
Industry					
Accomodation and food services	21.670034	7.689618	11.466428	17.687286	41.486634
Agriculture/Forestry/Fishing	22.289613	27.192317	5.231236	7.985848	37.300986
Community Services and Domestic Employment	31.610387	7.010269	10.461098	16.839455	34.078791
Construction	44.553359	12.876543	3.126323	6.018172	33.425603
Education	30.036982	8.353057	10.086292	17.122781	34.400888
Fianancial/Insurance	46.638054	12.082737	2.592990	8.243920	30.442299
Human health/social work	37.270240	4.586078	5.757422	20.348566	32.037694
Industrial Sectors	38.661501	7.064922	1.884603	4.136021	48.252952
Public admin and defence	46.137787	6.411595	2.633692	9.153686	35.663241
Retail and Motor Repair	31.020064	6.738001	8.814135	14.968495	38.459305
Transport and Storage/Information and Communication	43.467650	12.412032	3.393871	8.166856	32.559591
real Estate	40.356285	10.166133	6.489191	11,927542	31.060849

Overall, the financial and insurance sectors, as well as public administration and defense, showed the highest proportion of individuals working full time (r_1 to $\epsilon \Lambda$ hours) both accounting for $\epsilon \tau \chi$ of all hours worked across those industries. Notably, the industrial sectors had the highest percentage of individuals indicating they were not working, as $\epsilon \Lambda \chi$ of individuals reported to be not working. This percentage was also the highest relative to individuals in other industries that indicated they are not working.

Figure Y. E: Table showing correlation between Sex and hours worked per week

Hours worked per week	Full time(31 to 48 hrs)	Full time(49 or more hrs)	Not working	Part time(15 or less hrs)	Part-time(16 to 30 hrs)
Sex					
Female	21.403870	2.871647	56.495096	6.027900	13.201486
Male	32.805951	9.719212	49.525605	2.974324	4.974908

The data reveals distinctive patterns in the distribution of working hours among women and men. Notably, or.of of women are not working relative to $\mathfrak{tq.of}$, of men, while $\mathfrak{rq.af}$ of men work full time between \mathfrak{rq} and \mathfrak{ta} hours per week compared with $\mathfrak{rq.tf}$ of women in the same category. Additionally, approximately \mathfrak{rq} of women are engaged in part-time employment, specifically working between \mathfrak{rq} to \mathfrak{rq} hours per week, compared with $\mathfrak{tq.qf}$ of men in the same category.

Figure Y. O: Trends between Religion and Ethnic group.

Hinduism and Sikhism are primarily associated with the Asian and Asian British ethnic groups, while Christianity, Judaism, and other religions prevail within the white ethnic group. A comparable trend is observed among those professing no religion, with a predominant presence in the white ethnic group. Sikhs, Hindus, Christians, and those with no religious affiliation collectively constitute a significant majority within specific ethnic groups.

In contrast, the Muslim community displays a diverse composition, incorporating

individuals from

Marious ethnic backgrounds en his diversity dederscores the multicultural aspect of the differing from Judaism where adherence is predominantly tied to a single ethnic group.

Age	0 to 16	16 to 24	25 to 34	35 to 44	45 to 54	55 to 64	65 to 74	75 and over
Region								
East Midlands	18.509458	12.710235	11.596261	13.531519	14.433620	12.336726	8.981696	7.900485
East of England	18.658161	11.911936	12.332733	13.962061	13.778593	11.869856	9.215465	8.271196
London	19.838003	13.120050	19.946879	15.400445	12.259817	8.525759	5.715345	5.193702
North East	18.106949	12.998596	12.072564	12.956848	14.600175	12.755702	8.588561	7.920604
North West	18.570469	13.073240	12.597290	13.392407	13.805364	11.995352	8.959068	7.606809
South East	18.896735	12.505109	12.187230	13.976432	13.826575	11.709278	8.666727	8.231915
South West	17.354112	12.290326	11.423736	12.974672	13.744561	12.870532	10.082940	9.259122
Wales	18.220558	13.200542	11.715522	12.819602	13.578254	12.558110	9.623580	8.283833
West Midlands	19.507692	12.803516	12.701538	13.584176	13.214945	11.479560	8.910769	7.797802
Yorkshire and the Humber	18.587646	13.397917	12.584392	13.676572	13.738288	11.697930	8.686952	7.630304

Clearly, a significant majority of the population in various regions falls within the -17 age bracket. However, when analysing age distribution by region, London notably stands out with the highest concentration of individuals aged 10 to 12, making up 14.4% compared to the average of 17% for this age group in other regions. Conversely, London exhibits the lowest percentage of people aged 10 and over, accounting for 10.7% in contrast to the average of 10 in other regions. This suggests a distinctive demographic trend, indicating a higher proportion of young professionals, around 10-12 years old, residing in London compared to other regions.

- r. Classification
- a. Naïve Bayes

[[1	8939	88	540	1332	0]
[2	1862	8561	4376	5066	14]
[1382	15	13042	5527	0]
[990	31	10188	19750	0]
[0	17473	0	5955	7304]]

Mean Absolute Error: 0.8528521781865412 Mean Squared Error: 1.7858531961947555 Root Mean Squared Error: 1.3363581840939036

	precision	recall	f1-score	support
0	0.44	0.91	0.59	20899
1	0.33	0.21	0.26	39879
2	0.46	0.65	0.54	19966
3	0.52	0.64	0.58	30959
4	1.00	0.24	0.38	30732
accuracy			0.47	142435
macro avg	0.55	0.53	0.47	142435
weighted avg	0.55	0.47	0.44	142435

Accuracy: 0.4745743672552392

The Naïve Bayes model encounters difficulties in precisely forecasting classes v_i , v_i and v_i as indicated by lowprecision, recall, and F_1 -score values. Notably, while class v_i exhibits a precision of v_i , its recallismerely v_i , indicating adeptness in identifying true positives but overlooking a significant number of actual instances. In summary, the Naïve Bayes algorithm achieves an accuracy of only v_i , fallingbelow the level of chance or random guessing.

b. K-Nearest Neighbor

```
8
[[121 82
               3
                    01
 [ 94 243
          30
               23
                    4]
  8
     38 103
               44
                    0]
[ 13 46 42 196
                    2]
       3
           0
               1 320]]
```

Mean Absolute Error: 0.40421052631578946 Mean Squared Error: 0.6287719298245614 Root Mean Squared Error: 0.7929514044533633

	precision	recall	f1-score	support
0	0.51	0.57	0.54	214
1	0.59	0.62	0.60	394
2	0.56	0.53	0.55	193
3	0.73	0.66	0.69	299
4	0.98	0.98	0.98	325
accuracy			0.69	1425
macro avg	0.68	0.67	0.67	1425
weighted avg	0.69	0.69	0.69	1425

Accuracy: 0.6898245614035088

The K-Nearest Neighbor model shows moderate performance with a $\pi\pi$ /accuracy. It exhibits sensible precision, recall, and F_1 -score for class τ and π and an average score forclass τ . Notably, it performs well for class τ achieving high performance score of $\pi\pi$ / in all performance metrics, indicating accurate predictions for that category. The model, though not perfect (approximately $\pi\pi$ / accuracy), demonstrates a reasonable understanding of patterns in the data, as it accurately predicts over two-thirds of the predictions.

c. SVM

[[:	123	78	1	12	0]
[56	285	21	31	1]
[2	20	112	59	0]
[4	17	24	254	0]
ſ	0	0	0	1	32411

Mean Absolute Error: 0.28912280701754384 Mean Squared Error: 0.432280701754386 Root Mean Squared Error: 0.6574805713892891

	precision	recall	f1-score	support
0	0.66	0.57	0.62	214
1	0.71	0.72	0.72	394
2	0.71	0.58	0.64	193
3	0.71	0.85	0.77	299
4	1.00	1.00	1.00	325
accuracy			0.77	1425
macro avg	0.76	0.74	0.75	1425
weighted avg	0.77	0.77	0.77	1425

Accuracy: 0.7705263157894737 AUC: 0.9400998346023561

The SVM model performs well with an accuracy of vv% indicating that it makes correct predictions over v*% of the time. It shows a perfect performance metrics (1), for class ϵ . It also performs well in

classes v_i v_i and v_i with an average of v_i across all performance metrices. In general, the model is effective at understanding patterns.

Figure Y. 1 Performance evaluation of the models

Clasification model	Accuracy Score	Macro-avg : Precision	Macro-avg : Recall	Macro-avg : F- \ score
Naïve Bayes	٤٧٪.	٠.٥	٠.٥	٠.٤
K-Nearest Neighbor	٦٩٪.	٥	٣	V
Support Vector Machhine	VV'/.	٢٧, •	٤٧٠. •	٥٧٠. •
		Α	V	V

In summary, the Support Vector Machine (SVM) algorithm performs better than Naïve Bayes and K-NN as it achieves higher accuracy, which means it makes fewer mistakes in its predictions and scores best in the performance metrics of precision, recall and F₁ score as illustrated in table Y₁ Y₂.

۳. Regression

a. Linear regression

Mean Absolute Error: 8.24206755475771 Mean Squared Error: 122.39226340877438 Root Mean Squared Error: 11.063103696918617

R2 score: 0.6906151090434259

Adjusted R2 score: 0.6905803510896891

With a Mean Absolute Error (MAE) of A. YE, the model's predictions for hours worked per week, on average, deviate by approximately ±A hours. Given a mean of Yo hours, this difference represents an entire working day, significantly deviating from typical work hours. The RY score of A. YA indicates the model correctly predicts YAX. of attempts, suggesting accuracy slightly above two-thirds. Overall, the model performs poorly and is ineffective in predicting the number of hours.

b. Regression Tree

Mean Absolute Error: 4.413205061566468 Mean Squared Error: 66.30522298223876 Root Mean Squared Error: 8.142801912255926

R2 score: 0.832392721477029

Adjusted R2 score: 0.8323738915787271

The regression tree model typically deviates by approximately $\pm\epsilon$ hours when predicting work hours. With an R₇ score of around \cdot . Ar (out of 1), the model accurately predicts about Ar% of the hours worked, indicating a small error. Overall, it demonstrates effectiveness in predicting the number of hours worked.

Figure **r. 1:** Linear regression and regression tree comparison

Linear regression struggles to accurately predict the number of hours worked ι with an λ -hour deviation while the regression tree model performs relatively better ι with only a ι -hour deviation .

Association rule mining

1.

```
Row 21116 - Items: {'UK', 'Employee', 'Very good health', 'White', 'No', 'Usual resident'}
Row 21116 - Antecedent: {'UK', 'Employee', 'White', 'No', 'Usual resident'}
Row 21116 - Consequent: {'Very good health'}
Row 21116 - Lift: 1.0528090048138043
Row 21116 - Confidence: 0.48727984344422703
```

People who were born in the UK, are employed, are of white ethnicity, not students ("No") and are usual residents are associated with being in very good health.

```
Row 12389 - Confidence: 0.5068738792588166

Row 12390 - Items: {'UK', 'Christian', 'Female', 'White'}
Row 12390 - Antecedent: {'UK', 'Christian'}
Row 12390 - Consequent: {'Female', 'White'}
Row 12390 - Lift: 1.208185469155715
Row 12390 - Confidence: 0.5068738792588166
```

If someone has the UK as their country of birth and they ascribe to the Christian religion, they are likely to be a female and of white ethnicity.

```
٣.
```

```
Row 11602 - Items: {'Retired', 'No', 'Usual resident', 'Not in communal estab.'}
Row 11602 - Antecedent: {'Usual resident', 'No', 'Not in communal estab.'}
Row 11602 - Consequent: {'Retired'}
Row 11602 - Lift: 1.263658940093687
Row 11602 - Confidence: 0.21151539384246298
```

If someone is a usual resident, not a student and not in a communal establishment, they are likely to be retired.

٤.

```
Row 11363 - Items: {'UK', 'Employee', 'Married/registred same-sex partnership', 'Usual resident'} Row 11363 - Antecedent: {'UK', 'Employee', 'Usual resident'} Row 11363 - Consequent: {'Married/registred same-sex partnership'} Row 11363 - Lift: 1.2723423793746351 Row 11363 - Confidence: 0.4810360777058279
```

If somebody's country of birth is the UK, are employed and a usual resident, they are likely to be married or in a registered same sex partnership.

Row 12020 - Items: {'Christian', 'Employee', 'White', 'No', 'Usual resident'}
Row 12020 - Antecedent: {'Christian', 'No', 'Usual resident', 'White'}
Row 12020 - Consequent: {'Employee'}
Row 12020 - Lift: 1.2389315671502537

If an individual's religion is Christianity, and they are not a student ("No"), are a usual resident and are of white ethnicity, they are likely to be employed.

o. Clustering

Figure v. v.: K-means clustering

Row 12020 - Confidence: 0.4714484679665738

K-means		
Data point Age	Cluster	Cluster
Economic	• to > 1, m { to { { { { { { { { { { { { { { { { {	Older people (۱۵ and over، ۱۵ to ۷٤)
Activity	Employed. Retired	Unemployed ، long term sick /disabl
Occuaption	Proffessional alemenatary	Sales ، caring and machine operative
Industry	Retail and motor repair. Industrial sectors and real estate	Agricuature . finance and communit s ervice
	Size: (٤٢٤٥٧٢) ٧٥٪	Size: (١٤٥١٦٨)٢٥%

Cluster γ comprises a larger portion ($\gamma \circ \chi$) compared to Cluster γ ($\gamma \circ \chi$), revealing an uneven distribution. This implies that Cluster γ has substantial coverage, and a significant proportion of the dataset aligns with the characteristics of Cluster γ .

The clustering demonstrates significance by effectively segregating groups according to anticipated patterns. For instance, employees are distinctly grouped apart from the unemployed, and a similar pattern is evident in age groups. Also, a silhouette score of ...s is okay because it means the clusters are somewhat separated from each other.

Figure w. v: Hierarchical clustering

Hierarchical			
Data point	Cluster	Cluster	Cluster
Age	•to \7, roto {{\2}	Olderpeople(% and over)	Yotome, 17 to YE
Economic Activity	Unemployed، Long term sick /disabled،	Looking after family, full time stud	e Bi mployee، Retired
Occuaption	Proffessional elemenatary	Machine operatives ، caring sales	Skilled traders . Associate /proffessiona
Industry	Retail and motor repair. Industrial sectors and real estate	human health، education	Agriculture ، Finance ، community service
	Size: (vv\£) vv/.	Size:(1889A) 01%	Size: (٦٢٧٥) ٢٢%

Cluster Υ constitutes a larger proportion (a)() compared to both cluster Υ ($\Upsilon\Upsilon$)) and cluster Υ ($\Upsilon\Upsilon$)) emphasizing an uneven distribution. This clustering is considerable as it efficiently segments and distinguishes groups based on anticipated patterns. For instance, self-employed, unemployed, and employed individuals are allocated to three distinct clusters each.

Both clustering methods show resemblances in how attributes are organized into identical

clusters e.g. ،

in age data point, similar age groups are grouped together (• to ١٦, ٣٤ to ٤٤), and older over, ٦٥ to ٧٤). A similar pattern is evident in the industry and occupation data points.