Regression Analysis (MATH 1312) Final Project

"What's driving the health insurance up, in the US?"

Name: Vamika Pardeshi

Student IDs: s3701024

Date: 9th June 2019

Table of Contents

Introduction	3
Dataset	3
Target Feature	3
Descriptive Features (Predictors)	3
Data-Preprocessing	3
Data Exploration	4
Methodology	6
Linear Regression	6
Ridge Regression	7
Lasso Regression (Least absolute shrinkage selector operator)	8
Model Selection	8
Predictors Selection	9
Model Building	11
First Model	11
Model diagnostic for first model	
Prediction for first model	12
Second Model	12
Model diagnostic for second model	12
Prediction for second model	
Third model	
Model diagnostic for third model	
Prediction for Third model	15
Results	15
Evaluating Interpretation	15
Discussion	17
References	17
Appendix	

Introduction

As per the saying- "A sound mind lives in a healthy body". With the increase in health-related problems, People have become more aware about maintaining an insured life to avoid any financial risks. But the fact that getting a health insurance comes at a high cost, is one of the concerns. I have come across an article about the same, published by CNBC in 2018, addressing the concern over high health care costs for the individuals in the United States and factors involved. The United States is one of those countries that overspends on an average ~\$9,500 Mn on its healthcare expenditure. This report will scrutinize all those parameters that are responsible for the variation in the costs of health-insurance.

During my proposal I will try and answer the following two questions:

- Within the United States, is it true that the insurance premium cost is high based on the location?
- If not, then what are the key variables apart from the regions explaining higher insurance costs?

Dataset

To support my idea, I have searched related datasets on various public data sites and found "Medical cost personal dataset" to be the most suitable according to my requirements for further analysis. The data is sourced from <u>Kaggle</u>. The dataset comprises 7 variables (predictors) and 1338 observations. All the further actions will be taken out on this dataset. The variables in this dataset are sex, BMI, children, smoker, region, and target variable charges.

Target Feature

The target feature for this dataset is 'Charges' variable. 'Charges' has chosen as a response variable because it is the medical cost for an individual, that is dependent on other features/predictors. It varies based on the factors affecting the cost of insurance.

Descriptive Features (Predictors)

The description of the attributes that has been chosen for descriptive features are readily comprehensible and are as follows-

Age- age of primary beneficiary

Sex- gender of the insurer, female, male

bmi - Body mass index, providing an understanding of body, weights that are relatively high or low relative to height, objective index of body weight (kg / m ^ 2) using the ratio of height to weight, ideally 18.5 to 24.9.

children: Number of children covered by health insurance / Number of dependents

smoker: Smoking

region: the beneficiary's residential area in the US, northeast, southwest, northwest.

Data-Preprocessing

Data has been imported to R, using read.csv() function and named it as "US_health". The size of the data is confirmed using 'dim()' function. The structure of the data is viewed by using 'str()' function, in order to display list contents compactly. To scan the data quickly on the basis of statistics, summary() function is used.

It is very important that the dataset should not contain any missing and NA values. A miss map is created to check the missing values in the data. The map shows that there is no missing value present in the data. Also, colSums(is.na()) is used to check for the NA values, and the result shows that there is no NA value as well.

Data Exploration

To support the hypothesis and to apprehend the dataset statistically, it is always better to visualize the data. So, histograms are used for "Univariate Visualization", whereas, "Box plot", "Double bar graph" and "scatter plot" are used for "Multi-variate Visualizations".

1.) Univariate Visualization

From the above histogram for BMI, it can be seen that it is normally distributed. Although, it is rightly skewed for the medical charges, showing that in this dataset, the observations with high medical costs are lesser.

2.) Multivariate Visualization

The above boxplots for gender and region are having more outliers for that of high charges than comparatively lower charges. The medians for region and genders are almost the same. The most expected point to note here is medical costs are very high for the people who smoke.

From the above double bar graph, it can be observed that both male and female equal smokers in almost all the 4 regions. Although, in southeast male smokers are more than that of female.

The above scatter plot is showing that higher charges are directly proportional to old-aged smokers. In other words, as the age increases for the smokers so do their health-related issues, that eventually results in higher medical costs.

Based on the above plot, it is found out that those smokers who have higher BMI tend to pay higher for the insurance premiums. In other words, the higher bmi smokers are more vulnerable to diseases, and hence will pay higher medical costs.

The above boxplot is giving an idea that people having 2 or 3 children are paying higher insurance charges than those having lesser or a greater number of children. Again, all the medians are almost at the same level.

Using correlation plot, it can be figured out that medical cost is highly correlated with 'age'. In other words, as the age increase the medical cost also increases. With the help of visualisation it can be concluded that 'charges' is highly dependent on 'customer related data'.

Methodology

In order to understand the relationship between independent variables and dependent variable 'target'. Regression analysis on data set is performed using Linear regression, Lasso Regression (Least absolute shrinkage selector operator), and Ridge regression.

Linear Regression

Linear regression is among the simplest and most widely used technique for predictive modeling. Linear regression model looks for statistical relationship and not for deterministic relationship^[1], where the main objective is to obtain a line of best fit for the data. The line of best is a diagonal line for which the prediction errors are very small as possible.

Figure 1, Linear regression model type

The closer the data point are closer to the line of best fit, the better is the model with less variation which is explained by adjusted R² value. A scatterplot shown above determines the strength of the relationship between two variables, and numerical measurement of association between two variables is generally explained by coefficient of correlations, between -1 and 1.

Linear regression equation is: Y = a + bX. Where, a is the intercept, Y is the dependent variable, slope is b and X is the explanatory variable.

Ridge Regression

Multiple regression data which has multicollinearity, ridge regression is a technique that is commonly used. If there is multicollinearity present then there is an unbiasedness in their least square estimates, but they might be placed far away from their actual values which is explained by higher variation. As it is known that multicollinearity creates inaccurate estimates for the coefficients by inflating the standard errors. Therefore, by adding a parameter or a degree of bias to the estimates, the standard errors explained by higher variance is minimized.

Figure 2, Ridge regression model type

Ridge Regression equation is: $Y = a + b\underline{e}$. Where, a is the intercept, Y is the dependent variable, slope is b and \underline{e} represents the errors are residuals.

Lasso Regression (Least absolute shrinkage selector operator)

Lasso regression is very similar to the ridge analysis, where Lasso selects only the best features while reducing the coefficients of less important features to 0, generally this practice is known as feature selection. Lasso uses L1 regression technique and is generally preferred when there are large number of variable present in the dataset. However, one of the challenge during the Lasso regression is that even if there are variables with smaller correlation, the lasso model will set the value for that feature to 0. As a result, it will lead to loss of information which further would lead to poor model performance.

Model Selection

For model building, the first step is to split the data into 70-30 train and test.

```
```{r}
set.seed(10)
Ind <- sample(2,nrow(US_health),replace= TRUE,prob=c(0.7,0.3))
train_health <- US_health[Ind==1,]
test_health <- US_health[Ind==2,]</pre>
```

A linear regression model is then built based on this split. The summary statistics for the same is below for the train set.

```
lm(formula = train health$charges ~ .. data = train health)
Residuals:
 1Q Median
 3Q
 Max
-11090.8 -3115.8
 -951.6 1525.4 30446.4
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 1223.49 -10.199
 -12478.26
 < 2e-16 ***
(Intercept)
 14.74
 17.265
 < 2e-16 ***
 254.56
sexmale
 413.98
 -0.414 0.67931
 -171.20
 369.80
 10.458
children
 428.85
 169.92
 2.524
 0.01178 *
 23777.71
 510.49 46.578
 < 2e-16 ***
smokeryes
regionnorthwest
 -633.69
 592.50 -1.070
 0.28512
regionnorthwest -633.69
regionsoutheast -1664.15
 0.00486 **
 589.47
 -2.823
regionsouthwest -1027.20
 598.50 -1.716 0.08645 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6244 on 913 degrees of freedom
Multiple R-squared: 0.743,
 Adjusted R-squared: 0.7408
 330 on 8 and 913 DF, p-value: < 2.2e-16
F-statistic:
```

A sample data is the created, in which, the 'x' is containing all the variables but the target variable and the 'y' is containing only the target variable. The sample train set is then divided into half and the sample test set is made to consist everything but the sample train set. Linear and ridge models were then tried to fit, and the differences came out to be nominal. Hence, ridge model was used to check whether it can improve the OLS estimations. After checking the ridge model for the coefficients, it turned out to be not significant as the coefficients estimates were coming out to be conservative. So, lasso model then tried to fit and check for the coefficients again. Lasso model, as expected, set the unimportant variables to zero and gave preferences to the three most important predictors, i.e., age, bmi and smokers. Lasso can be chosen as the best model, but it needs to have the lowest MSE value. Post checking the MSE values for the three models, linear regression model came out to be with least MSE score, hence, it is selected as the best model among the three.

```
#Checking MSE for linear model
mean((lm_predict-y_test)^2)
...

[1] 36825120

```{r}

#Checking MSE for ridge model
mean((ridge_predict-y_test)^2)

[1] 39616462

```{r}

#Checking MSE for Lasso Model
mean((lasso_predict-y_test)^2)
...

[1] 43500867
```

#### **Predictors Selection**

Summary() function is used to get the descriptive statistics and the coefficients estimates in order to get the equation of the best fit for linear model. The equation came out to be-

```
y=-11544.86+(236.65*age)+(477.06*sexmale)+(354.18*bmi)+(500.36*children)+(22107.37*smokeryes)-(1101.03*regionnorthwest)-(1409.71*regionsoutheast)-(1363.39*regionsouthwest)
```

To select the best predictors among all the predictors, 5 methods are used, and those are, ANOVA, All possible subset regression, Forward regression, Backward regression and Stepwise regression. According to ANOVA statistics, age, BMI and smoker variables are the most significant ones. Stepwise and backward regression returned the same results, i.e., age, BMI, smoker and children are the best predictors. And, Forward and all possible subset regression gave the same results, i.e., all the predictors but sex are the best ones. So, to summarize, it can be said that, 3 possible models can be built, and those are-

MODEL 1- Based on ANOVA- age, bmi and smoker

```
Anova Table (Type II tests)
Response: US_health$charges
 Sum Sq Df
 F value Pr(>F)
 184.5342 < 2e-16 ***
age
 7.0698e+09
 1
 0.9724 0.32443
sex
 3.7256e+07
 1
 71.8364 < 2e-16 ***
bmi
 2.7522e+09
 1
 6.1675 0.01326 *
children 2.3629e+08
 1
 1 1433.8560 < 2e-16 ***
 5.4934e+10
smoker
 3
 1.8489 0.13698
region
 2.1251e+08
Residuals 2.5286e+10 660
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

#### 2. MODEL 2- Based on Stepwise and backward- age, bmi, smoker and children

```
Step: AIC=11689.46
US_health$charges ~ age + bmi + children + smoker
 Df Sum of Sq R55 000
2.5549e+10 11690
<none>
- children 1 2.3349e+08 2.5783e+10 11694
- bmi
 1 2.7725e+09 2.8322e+10 11756
- age
 1 7.1431e+09 3.2692e+10 11852
- smoker
 1 5.5639e+10 8.1189e+10 12461
call:
lm(formula = US_health$charges ~ age + bmi + children + smoker,
 data = US_health, subset = train_new)
Residuals:
 Min
 1Q Median
 3Q
-10032 -3246 -1064 1246 31329
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -11845.57
 1364.71 -8.680
 <2e-16 ***
 17.42 13.625
 <2e-16 ***
 237.40
age
 8.488
2.463
bmi
 338.98
 39.93
 <2e-16 ***
children
 495.71
 201.23
 0.014 *
smokeryes
 22134.76
 582.09 38.026
 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6203 on 664 degrees of freedom
Multiple R-squared: 0.7124, Adjusted R-squared: 0.7
F-statistic: 411.2 on 4 and 664 DF, p-value: < 2.2e-16
 Adjusted R-squared: 0.7107
```

#### 3. MODEL 3- Based on Forward and all possible subset regression- age, bmi, smoker, children and region

			Subsets Regression Summary					
		Adj.	Pred					
Model	R-Square			C(p)	AIC	SBIC	SBC	MSEP
FPE	HSP	APC						
1	0.6198	0.6195	0.618	611.9889	27667.4636	23868.9391	27683.0604	55887669.4102
5588754	4.4451 41	800.8466	0.3814					
2	0.7214	0.7210	0.7196	93.8304	27253.3244	23455.8677	27274.1201	41010413.6993
4101018	4.4505 30	673.4926	0.2799					
3	0.7475	0.7469	0.7455	-37.6245	27123.8359	23327.0363	27149.8306	37227691.7503
3722731	7.1643 27	844.2284	0.2540					
4	0.7497	0.7489	0.7474	-46.9727	27114.0352	23317.3965	27145.2288	36956206.6446
3695562	8.2045 27	641.1727	0.2522					
5	0.7509	0.7496	0.7475	-51.0596	27113.6624	23313.1716	27160.4528	36891265.6918
3689044	0.8009 27	592.6006	0.2514					
6	0.7509	0.7494	0.7471	-49.2088	27115.5058	23315.1156	27167.4951	36942459.0871
3694134	3.9390 27	630.8903	0.2517					

```
US_health$charges ~ age + sex + bmi + children + smoker + region
lm(formula = US_health$charges ~ age + sex + bmi + children +
smoker + region, data = US_health, subset = train_new)
Residuals:
 Min 1Q Median 3Q Max
-9872 -3015 -1107 1305 31561
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
-11544.86 1416.98 -8.148 1.86e-15 ***
(Intercept)
age
sexmale
 236.65
477.06
 17.42 13.584
483.77 0.986
 < 2e-16 ***
 0.3244
 < 2e-16 ***
bmi
 354.18
 41.79
 8.476
children
 201.48
 0.0133 *
 < 2e-16 ***
smokeryes
 22107.37
 583.83 37.866
regionnorthwest -1101.03
regionsoutheast -1409.71
regionsouthwest -1363.39
 688.29 -1.600
686.01 -2.055
686.14 -1.987
 0.0403
 0.0473 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 6190 on 660 degrees of freedom
Multiple R-squared: 0.7154, Adjusted R-squared: 0.7119
F-statistic: 207.4 on 8 and 660 DF, p-value: < 2.2e-16
```

### **Model Building**

#### First Model

First model is built on the basis of ANOVA results with three of the best predictors, i.e., age, bmi, smoker. On the basis of summary the equation came out to be-

```
y= -12037.77 +(256.42*age) +(338.80*bmi) + (23670.40*smoker)
```

#### Model diagnostic for first model

Firstly, the multicollinearity was diagnosed using VIF scores. There are no major differences noticed in the results, and all the values are closed to 1. Hence, it can be said that Multicollinearity is not present among the variables.

```
Checking the Multicollinearity
car::vif(bestmodel_anova)
...
 age bmi smoker
1.012844 1.012897 1.000052
```

Residuals assumptions are applied to this model, and 6 graphs are plotted. It can be noticed that all the variables are independent with zero mean and are mostly normally distributed. Therefore, residuals assumptions are fulfilled.



With the 'Non-constant variance score test', the p-value is less than alpha 0.05, therefore the null hypothesis is rejected stating that the residuals variance is constant.

```
car::ncvTest(bestmodel_anova)
...

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 151.619, Df = 1, p = < 2.22e-16</pre>
```

Next, is the durbin Watson test for testing the autocorrelated errors. With p-value greater than 0.05, the null hypothesis is not rejected, confirming that NO autocorrelation is present in the model.

```
durbinWatsonTest(bestmodel_anova)

lag Autocorrelation D-W Statistic p-value
1 0.006906446 1.98215 0.778
Alternative hypothesis: rho != 0
```

Although by shapiro wilk normality test, the p-value is less than 0.05, hence rejecting the null hypothesis, which states that the data is normally distributed. Hence, for this model the data is not normally distributed.

```
shapiro.test(bestmodel_anova$residuals)
...
Shapiro-wilk normality test
data: bestmodel_anova$residuals
w = 0.89898, p-value < 2.2e-16</pre>
```

#### Prediction for first model

The prediction for the models are done by using predict() function. In order to solve probabilities of prediction, type is set to "response". Residual is set with this predict result subtracted from the target variable. A prediction is then made by setting actual and predicted parameters, and accuracy is calculated.

```
ME RMSE MAE MPE MAPE
Test set 60.4786 5667.741 4005.492 -19.5216 45.08702
```

#### Second Model

Second model is built on the basis of stepwise and backward regression results with four of the best predictors, i.e., age, bmi, smoker and children. On the basis of summary the equation came out to be-

```
y= -12565.34 +(255.28*age) +(341.87*bmi) + (23675.65*smokeryes) +(421.95*children)
```

#### Model diagnostic for second model

Again, There are no major differences noticed in the VIF score results, and all the values are closed to 1. Hence, it can be said that Multicollinearity is not present among the variables.

```
car::vif(bestmodel_StepBAck)

age bmi smoker children
1.013816 1.014245 1.000070 1.002078
```

Residuals assumptions are applied to this model, and 6 graphs are plotted. It can be noticed that all the variables are independent with zero mean and are mostly normally distributed. Therefore, residuals assumptions are fulfilled.



With the 'Non-constant variance score test', the p-value is less than alpha 0.05, therefore the null hypothesis is rejected stating that the residuals variance is constant.

```
car::ncvTest(bestmodel_StepBAck)

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 156.9308, Df = 1, p = < 2.22e-16</pre>
```

With p-value greater than 0.05, the null hypothesis is not rejected, confirming that NO autocorrelation is present in the model, by durbin Watson test for testing the autocorrelated errors.

```
durbinWatsonTest(bestmodel_StepBAck)

lag Autocorrelation D-W Statistic p-value
1 0.002167906 1.992042 0.882
Alternative hypothesis: rho != 0
```

Although by shapiro wilk normality test, the p-value is less than 0.05, hence rejecting the null hypothesis, which states that the data is normally distributed. Hence, for this model the data is not normally distributed.

```
shapiro.test(bestmodel_StepBAck$residuals)
...
Shapiro-Wilk normality test
data: bestmodel_StepBAck$residuals
W = 0.89561, p-value < 2.2e-16</pre>
```

#### Prediction for second model

The prediction for the second model is done by the same process. The statistics that came out from this prediction is-

```
ME RMSE MAE MPE MAPE
Test set 107.7915 5628.947 3972.476 -16.4929 43.83209
```

#### Third model

Third model is built on the basis of forward and all possible subset regression results with five of the best predictors, i.e., age, bmi, smoker, region and children. On the basis of summary the equation came out to be-

y= -12546.15 +(254.74\*age) +(369.25\*bmi) + (23756.57\*smokeryes) +(428.42\*children) -(638.41\*regionnorthwest) - (1668.87\*regionsoutheast) -(1030.88\*regionsouthwest)

#### Model diagnostic for third model

Yet again, There are no major differences noticed in the VIF score results, and all the values are closed to 1. Hence, it can be said that Multicollinearity is not present among the variables.

```
car::vif(bestmodel_fwd)

...

GVIF Df GVIF^(1/(2*Df))
age 1.015301 1 1.007622
bmi 1.102430 1 1.049967
smoker 1.005959 1 1.002975
children 1.005435 1 1.002714
region 1.097810 3 1.015674
```

Residuals assumptions are applied to this model, and 6 graphs are plotted. It can be noticed that all the variables are independent with zero mean and are mostly normally distributed. Therefore, residuals assumptions are fulfilled.



With the 'Non-constant variance score test', the p-value is less than alpha 0.05, therefore the null hypothesis is rejected stating that the residuals variance is constant.

```
car::ncvTest(bestmodel_fwd)
...

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 153.8316, Df = 1, p = < 2.22e-16</pre>
```

With p-value greater than 0.05, the null hypothesis is not rejected, confirming that NO autocorrelation is present in the model, by durbin Watson test for testing the autocorrelated errors.

```
durbinWatsonTest(bestmodel_fwd)
...

lag Autocorrelation D-W Statistic p-value
 1 -0.0008177996 1.997969 0.942
Alternative hypothesis: rho != 0
```

Although by shapiro wilk normality test, the p-value is less than 0.05, hence rejecting the null hypothesis, which states that the data is normally distributed. Hence, for this model the data is not normally distributed.

```
shapiro.test(bestmodel_fwd$residuals)

Shapiro-Wilk normality test

data: bestmodel_fwd$residuals

W = 0.89578, p-value < 2.2e-16
```

#### Prediction for Third model

The prediction for the second model is done by the same process. The statistics that came out from this prediction is-

```
ME RMSE MAE MPE MAPE
Test set 102.2186 5665.428 4017.834 -14.77523 43.3282
```

#### Results

The test assumptions for all the three models are almost the same for 'Non-constant variance score test', 'durbin Watson test', 'shapiro wilk normality test', residual analysis and VIF scores.

Hence, on this basis the best model can't be selected. Summary statistics will come into the picture now.

#### **Evaluating Interpretation**

From the summary statistics for the three models, the 3 key evaluators are-

```
summary(bestmodel_anova)
lm(formula = train_health$charges ~ age + bmi + smoker, data = train_health)
Residuals:
Min 1Q Median 3Q Max
-12095 -3184 -1032 1515 29136
 .
Estimate Std. Error t value Pr(>|t|)
(Intercept) -12037.77
age 256.42
 1164.32 -10.34
14.80 17.33
 <2e-16 ***
<2e-16 ***
 bmi
 338.80
 34.05
 9.95
 <2e-16
 46.49
 23670.40
 509.11
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6277 on 918 degrees of freedom
Multiple R-squared: 0.7389, Adjusted R-squared: 0.7589, Adjusted R-squared: 0.7589, P-value: < 2.2e-16
summary(bestmodel_fwd)
 lm(formula = train_health$charges
 ~ age + bmi + smoker + children +
 region, data = train_health)
Residuals:
Min 1Q
-11165.7 -3111.7
 Median 3Q Max
-979.4 1507.6 30377.4
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept)
 -12546.15
 1211.88 -10.353
 14.73
35.32
 254 74
 17.294
 2e-16 ***
smokeryes
 23756.57
 507.70
 46.793
 2e-16
children.
 428.42
 169.84
 2.522
 0.01182 *
 -638.41
-1668.87
 -1.078
-2.833
 egionnorthwest
 regionsoutheast
regionsouthwest -1030.88
 598.17
 -1.723
 0.08516 .
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6241 on 914 degrees of freedom
Multiple R-squared: 0.743, Adjusted R-squared: 0.7
F-statistic: 377.4 on 7 and 914 DF, p-value: < 2.2e-16
```

```
summary(bestmodel StepBAck)
 lm(formula = train_health$charges ~ age + bmi + smoker + children,
 data = train_health)
Residuals:
Min 1Q Median
-11588 -3122 -1026
 1491 29616
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 1180.38 -10.645
14.76 17.292
33.98 10.062
(Intercept) -12565.34
 255.28
341.87
 <2e-16 ***
<2e-16 ***
smokeryes
children
 507.69
170.06
 <2e-16
0.0133
 421.95
 2.481
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6259 on 917 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7
F-statistic: 654.6 on 4 and 917 DF, p-value: < 2.2e-16
```

**Residuals**- Residuals are actuals negatively predicted. The lowest the "max error", the better it is. Among the three models, the lowest max errors are for ANOVA based model and Stepwise/Backward regression-based model, and those are 29136 and 29616, respectively. In other words, approximately \$29136 and \$29616 max errors are substantial, as per the model underprediction.

**p-value**- The smallest the p-value, the better relationship with the response variable "charges" and also the non-zero coefficient. The p-value is less than 0.05 for all the three models, according to the summary. But, the coefficients are the highest significant for ANOVA based best model and next for Stepwise/Backward regression-based model.

**Multiple R-squared value**- It explains the measurement of variation can be explained by the data. All the three models are having close to 74%, i.e., approximately 74% of the variance can be explained by the model. Hence, ANOVA based model can still be chosen according to this.

So, the results are narrowed down to two of the models that are better than the third, and those are, ANOVA based model and Stepwise/Backward regression-based model.

The **deciding factor** can be the **Root mean squared error (RMSE)** values that came from the prediction and accuracy results of the three models. The lowest the RMSE value the better the model is. The lowest RMSE value is noticed from the Stepwise/Backward regression-based model with 5628.947.

Hence, **Stepwise/Backward regression-based model**, i.e., **the second model** can be concluded as the best model among the three models. So, the best regressors/predictors are **age**, **bmi**, **smoker and children**.

The equation of best fit for the best model is-

```
y= -12565.34 +(255.28*age) +(341.87*bmi) + (23675.65*smokeryes) +(421.95*children)
```

#### Discussion

Based on the regression results, it can be well concluded that the insurance charges tends to be on the higher side if an individual is a smoker, whether is underweight, overweight or obese, and is directly proportional to the age, which means as age increases the insurance charges tend to increase as well. However, based on all the linear regression analysis techniques, it can be concluded that "smoker" has the most significance as compared to other predictors in determining insurance charges for an individual in the US.

#### References

[1] Linear Regression — Detailed View

Towards Data Science. (2018). Linear Regression — Detailed View.

Available at: https://towardsdatascience.com/linear-regression-detailed-view-ea73175f6e86

# **Appendix**

# Regression Analysis-Final Project

Code ▼

Vamika Pardeshi-s3701024 June 5, 2019

## DATA IMPORT

Hide

```
setwd("C:\\Regression Analysis")
US_health <- read.csv("US_healthinsurance.csv")
head(US_health, n=10)</pre>
```

	•	sex <fctr></fctr>	<b>bmi</b> <dbl></dbl>	children <int></int>	smoker <fctr></fctr>	region <fctr></fctr>	charges <dbl></dbl>
1	19	female	27.900	0	yes	southwest	16884.924
2	18	male	33.770	1	no	southeast	1725.552
3	28	male	33.000	3	no	southeast	4449.462
4	33	male	22.705	0	no	northwest	21984.471
5	32	male	28.880	0	no	northwest	3866.855
6	31	female	25.740	0	no	southeast	3756.622
7	46	female	33.440	1	no	southeast	8240.590
8	37	female	27.740	3	no	northwest	7281.506
9	37	male	29.830	2	no	northeast	6406.411
10	60	female	25.840	0	no	northwest	28923.137
1-10 c	of 10 row	'S					

Hide

```
checking the data size
dim(US_health)
```

```
[1] 1338 7
```

Hide

#checking the data structure
str(US\_health)

Hide

```
summary(US_health)
```

```
bmi
 children
 smoker
 region
 charges
 age
 sex
 :15.96
 Min. : 1122
 :18.00
 female:662
 :0.000
 no:1064
 northeast:324
Min.
 Min.
1st Qu.:27.00
 1st Qu.:26.30
 male :676
 1st Qu.:0.000
 yes: 274
 northwest:325
 1st Qu.: 4740
Median :39.00
 Median :30.40
 Median :1.000
 southeast:364
 Median: 9382
 southwest:325
 :39.21
 :1.095
 :13270
Mean
 :30.66
 Mean
 Mean
 Mean
3rd Qu.:51.00
 3rd Qu.:34.69
 3rd Qu.:16640
 3rd Qu.:2.000
 :64.00
 :53.13
 :5.000
 Max.
 :63770
Max.
 Max.
 Max.
```

missmap(US\_health, main = "Check for Missing values")

# **Check for Missing values**



# checking for NA values
colSums(is.na(US\_health))

age sex bmi children smoker region charges 0 0 0 0 0 0 0

Hide

par(mfrow=c(1,2))
hist(US\_health\$bmi, xlab = "BMI",
 main = "Histogram-Body Mass Index")
hist(US\_health\$charges, xlab = "Medical Charges",
 main = "Histogram-Medical Charges")

**Histogram-Body Mass Index** 

# Frequency 300 .

30

40

BMI

# **Histogram-Medical Charges**



Hide

#plotting of charges against other factors like sex and smoker and region
par(mfrow=c(1,3))
with(US\_health, plot(charges ~ smoker + sex + region))

50

20



Hide

US\_health %>% group\_by(sex,region) %>% summarise(smokers=sum(smoker=="yes")) %>% ggplot(aes(x=region,y=smokers,fill=sex))+ge om\_bar(stat = "identity",position = "dodge")



```
ggplot(US_health, aes(x = age, y = charges)) +
 geom_point(aes(color = smoker))
```



ggplot(US\_health, aes(x = bmi, y = charges)) +
 geom\_point(aes(color = smoker))



Hide

Hide

ggplot(data = US\_health,aes(x=as.factor(children),y=charges))+geom\_boxplot(aes(fill=children))



Hide

numeric\_Var <- which(sapply(US\_health, is.numeric)) #index vector numeric variables
numeric\_VarNames <- names(numeric\_Var) #saving names vector for use later on
cat('There are', length(numeric\_Var), 'numeric variables')</pre>

There are 4 numeric variables

Hide

```
US_health_numVar <- US_health[, numeric_Var]
cor_health <- cor(US_health_numVar, use="pairwise.complete.obs") #correlations of all numeric variables
#sorting on decreasing correlations with SalePrice
cor_sorted_health <- as.matrix(sort(cor_health[,'charges'], decreasing = TRUE))
#selecting only high corelations
Cor_High <- names(which(apply(cor_sorted_health, 1, function(x) abs(x)>0)))
cor_health <- cor_health[Cor_High, Cor_High]
corrplot.mixed(cor_health, tl.col="dark green", tl.pos = "lt")</pre>
```



• Conversions

```
US_health$age<-as.numeric(US_health$age)</pre>
US_health$children<-as.numeric(US_health$children)</pre>
US_health$sex<-as.factor(US_health$sex)</pre>
US_health$smoker<-as.factor(US_health$smoker)</pre>
US_health$region<-as.factor(US_health$region)</pre>
```

# Creating train and test data

```
Hide
```

```
set.seed(10)
Ind <- sample(2,nrow(US_health),replace= TRUE,prob=c(0.7,0.3))</pre>
train_health <- US_health[Ind==1,]</pre>
test_health <- US_health[Ind==2,]</pre>
```

# Linear, Ridge and Lasso Models

```
Hide
```

```
Linear regression
lm_health <- lm(train_health$charges~., data =train_health)</pre>
```

Hide

```
summary(lm_health)
```

```
Call:
lm(formula = train_health$charges ~ ., data = train_health)
Residuals:
 Min
 1Q Median
 3Q
 Max
-11090.8 -3115.8 -951.6 1525.4 30446.4
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept)
 -12478.26
 1223.49 -10.199 < 2e-16 ***
 254.56
 14.74 17.265 < 2e-16 ***
age
 -171.20
 413.98 -0.414 0.67931
sexmale
bmi
 369.80
 35.36 10.458 < 2e-16 ***
children
 428.85
 169.92 2.524 0.01178 *
smokeryes
 23777.71
 510.49 46.578 < 2e-16 ***
 592.50 -1.070 0.28512
regionnorthwest
 -633.69
 589.47 -2.823 0.00486 **
regionsoutheast -1664.15
regionsouthwest -1027.20
 598.50 -1.716 0.08645 .
Signif. codes: 0 \square^{***}\square 0.001 \square^{**}\square 0.01 \square^{*}\square 0.05 \square.\square 0.1 \square 1
Residual standard error: 6244 on 913 degrees of freedom
Multiple R-squared: 0.743, Adjusted R-squared: 0.7408
F-statistic: 330 on 8 and 913 DF, p-value: < 2.2e-16
```

Hide

```
#making predictions
predict_lm <-predict(lm_health, test_health, type = "response")</pre>
residual <- test health$charges - predict lm
predict_linreg <- data.frame("Predicted"= predict_lm, "Actual" =test_health$charges, "Residuals" = residual)</pre>
accuracy(predict_lm, test_health$charges)
```

```
ME
 RMSE
 MAE
 MPE
 MAPE
Test set 104.9532 5665.485 4012.258 -14.62795 43.18357
```

```
Hide
```

```
x <- model.matrix(US_health$charges~., US_health)[,-1]</pre>
y <- US_health$charges</pre>
lambda_val <-10^seq(10, -2, length = 100)</pre>
```

```
set.seed(489)
train_new = sample(1:nrow(x), nrow(x)/2)
test_new = (-train_new)
y_test = y[test_new]
```

Fitting the models

Hide

```
linear_RegModel <- lm(US_health$charges~., data= US_health)
coef(linear_RegModel)</pre>
```

```
children
 smokeryes regionnorthwest
 (Intercept)
 age
 sexmale
 bmi
 -11938.5386
 256.8564
 -131.3144
 339.1935
 475.5005
 23848.5345
 -352.9639
regionsoutheast regionsouthwest
 -960.0510
 -1035.0220
```

Hide

```
Ridge model
ridge_model <- glmnet(x, y, alpha = 0, lambda = lambda_val)
coef(ridge_model)</pre>
```

9 x 100 sparse Matrix of class "dgCMatrix"

```
[[suppressing 100 column names <U+393C><U+3E31>s0<U+393C><U+3E32>, <U+393C><U+3E31>s1<U+393C><U+3E32>, <U+393C><U+3E31>s
```

```
(Intercept)
 1.327038e+04 1.327036e+04 1.327034e+04
 1.327032e+04
 1.327028e+04
 1.327039e+04
 4.124261e-04 5.452028e-04 7.207255e-04
 9.527558e-04
 1.259486e-03
 3.119854e-04
age
 1.679238e-03 2.219849e-03 2.934507e-03 3.879241e-03 5.128119e-03
 6.779057e-03
sexmale
bmi
 4.768017e-04 6.303034e-04 8.332235e-04 1.101471e-03 1.456079e-03 1.924847e-03
children
 8.269116e-04 1.093128e-03 1.445050e-03 1.910269e-03 2.525260e-03
 3.338241e-03
smokeryes
 2.858823e-02 3.779195e-02 4.995871e-02 6.604242e-02 8.730412e-02 1.154108e-01
regionnorthwest -1.363637e-03 -1.802645e-03 -2.382988e-03 -3.150164e-03 -4.164321e-03 -5.504971e-03
regionsoutheast 2.436197e-03 3.220505e-03 4.257312e-03 5.627906e-03 7.439742e-03 9.834869e-03
regionsouthwest -1.476582e-03 -1.951953e-03 -2.580365e-03 -3.411086e-03 -4.509248e-03 -5.960947e-03
(Intercept)
 1.327024e+04 1.327018e+04 1.327010e+04 1.327000e+04 1.326986e+04 1.326968e+04
 1.664963e-03 2.200979e-03 2.909556e-03 3.846248e-03 5.084489e-03 6.721352e-03
age
 8.961489e-03 1.184652e-02 1.566032e-02 2.070188e-02 2.736642e-02 3.617638e-02
sexmale
 2.544530e-03 3.363710e-03 4.446610e-03 5.878130e-03 7.770493e-03 1.027205e-02
bmi
children
 4.412949e-03 5.833643e-03 7.711707e-03 1.019438e-02 1.347628e-02 1.781471e-02
 1.525660e-01 2.016829e-01 2.666121e-01 3.524443e-01 4.659083e-01 6.158994e-01
smokeryes
regionnorthwest -7.277217e-03 -9.620001e-03 -1.271698e-02 -1.681095e-02 -2.222280e-02 -2.937675e-02
regionsoutheast 1.300106e-02 1.718654e-02 2.271942e-02 3.003344e-02 3.970192e-02 5.248269e-02
regionsouthwest -7.879997e-03 -1.041685e-02 -1.377039e-02 -1.820352e-02 -2.406377e-02 -3.181050e-02
(Intercept)
 1.326944e+04 1.326913e+04 1.326871e+04 1.326816e+04 1.326743e+04 1.326646e+04
 8.885157e-03 1.174552e-02 1.552666e-02 2.052493e-02 2.713205e-02 3.586576e-02
age
sexmale
 4.782230e-02 6.321697e-02 8.356685e-02 1.104665e-01 1.460233e-01 1.930222e-01
bmi
 1.357890e-02 1.795025e-02 2.372872e-02 3.136719e-02 4.146421e-02
 5.481084e-02
children
 2.354975e-02 3.113094e-02 4.115251e-02 5.439986e-02 7.191108e-02 9.505814e-02
 8.141759e-01 1.076281e+00 1.422759e+00 1.880767e+00
smokeryes
 2.486199e+00 3.286496e+00
regionnorthwest -3.883349e-02 -5.133410e-02 -6.785807e-02 -8.969984e-02 -1.185700e-01 -1.567287e-01
regionsoutheast 6.937743e-02 9.171010e-02 1.212305e-01 1.602511e-01 2.118276e-01 2.799976e-01
regionsouthwest -4.205094e-02 -5.558769e-02 -7.348161e-02 -9.713478e-02 -1.284002e-01 -1.697266e-01
(Intercept)
 1.326519e+04 1.326351e+04 1.326128e+04 13258.3379786 13254.4500899 13249.3124272
 0.1447291
 0.1912886
 4.741028e-02 6.266987e-02 8.283935e-02
 0.1094973
age
sexmale
 2.551428e-01 3.372470e-01 4.457563e-01
 0.5891511
 0.7786265
 1.0289552
 7.245252e-02 9.577065e-02 1.265904e-01
 0.1673227
 0.2922813
bmi
 0.2211517
children
 1.256541e-01 1.660949e-01 2.195460e-01
 0.2901889
 0.3835463
 0.5069097
 4.344359e+00 5.742645e+00 7.590841e+00
 10.0336014
 13.2620066
smokeryes
 17.5284060
regionnorthwest -2.071620e-01 -2.738137e-01 -3.618918e-01
 -0.4782708
 -0.6320206
 -0.8351008
regionsoutheast 3.700950e-01 4.891645e-01 6.465081e-01
 0.8544036
 1.1290484
 1.4917971
regionsouthwest -2.243495e-01 -2.965434e-01 -3.919547e-01
 -0.5180392
 -0.6846394
 -0.9047424
(Intercept)
 13242.5240529 13233.5560069 13221.7129155 13206.0734859 13185.4304440 13158.196213 13122.289322
age
 0.2528115
 0.3340958
 0.4414681
 0.5832707
 0.7704837
 1.017547
 1.343416
 1.3596187
 5.452140
sexmale
 1.7962890
 2.3715131
 3.1312837
 4.1328904
 7.187735
 0.8907604
bmi
 0.3862596
 0.5104046
 0.6743201
 1.1763970
 1.553147
 2.049720
 2.0405305
 2.694159
children
 0.6699023
 0.8852177
 1.1695710
 1.5450189
 3.555764
smokeryes
 23.1659554
 30.6143089
 40.4531668
 53.4469986
 70.6019409
 93.241167
 123.101644
regionnorthwest
 -1.1032674
 -1.4572559
 -1.9240799
 -2.5397732
 -3.3508992
 -4.418316
 -5.820966
regionsoutheast
 1.9707785
 2.6030020
 3.4367976
 4.5362694
 5.9845223
 7.890007
 10.393270
regionsouthwest
 -1.1954737
 -1.5793987
 -2.0862193
 -2.7549756
 -3.6368880
 -4.798992
 -6.328738
(Intercept)
 13074.988008 13012.745783 12930.963093 12823.711554 12683.412902 12500.485945 12262.994539
 2.338475
 4.058811
age
 1.772919
 3.082253
 5.338241
 7.009754
 9.185478
 12.456108
sexmale
 9.467545
 16.363231
 21.453138
 28.052937
 36.557977
 47.429828
 6.172210
bmi
 3.563578
 4.692744
 8.105248
 2.703607
 10.621757
 13.882457
 14.070635
 18.444032
children
 4.690487
 6.183110
 8.143420
 10.712612
 24.113304
 489.162336
 642.330915
 214.282252
 282.437288
 371.922933
 841.704835
 162.458395
smokeryes
{\it region northwest}
 -7.660598
 -10.067258
 -13.205239
 -17.278848
 -22.536601
 -29.271435
 -37.812943
regionsoutheast
 17.966780
 67.241940
 13.675247
 23.558774
 30.811639
 40.161279
 52.116799
regionsouthwest
 -8.339713
 -10.978607
 -14.433408
 -18.942552
 -24.804288
 -32.384688
 -42.121533
(Intercept)
 11956.36133 11563.25834 11063.84443 10436.58011 9659.88054 8714.82196 7588.87936 6280.36190
age
 12.00398
 15.63261
 20.26717
 26.12676
 33.44096
 42.42645
 53.25166
 65.99073
sexmale
 61.18000
 78.32937
 99.33034
 124.43852 153.52734
 185.85694
 219.85020
 252.96212
 18.08186
bmi
 23.44839
 30.23933
 38.72771
 49.17820
 61.81036
 76.75172
 93.98643
 40.75598
 52.57336
children
 31.41794
 67.33678
 85.48304 107.34055 133.02488 162.32629
smokeryes
 1099.98485
 1432.51321 1857.24840
 2394.29966 3064.76806 3888.63531 4881.55493 6050.69209
regionnorthwest
 -48.50575
 -61.66639
 -77.51055
 -96.04658 -116.94202 -139.39357 -162.05491 -183.11601
 203.71191 239.98326 273.96817
regionsoutheast
 86.10821
 109.20348
 136.77757
 168.61107
 300.83254
 -113.15484 -141.37747 -174.21011 -211.28585 -251.80762
regionsouthwest
 -70.13100
 -54.51960
 -89.51275
(Intercept)
 4802.54248 3186.12989 1478.6367
 -260.0970 -1965.6512 -3578.10842 -5049.9191 -6350.5215
 114.0831
 131.9667
 149.7213
 182.3005
age
 80.57454
 96.75251
 166.68272
 196.2001
 281.78433
sexmale
 302.48564
 311.5830
 306.8431
 287.9656
 256.72668
 216.5038
 171.3997
bmi
 134.33142
 156.4539
 178.9706
 201.1302
 222.23197
 241.7037
 259.1504
```

113.31386

				•	an all -	•		
children	194.62222							5927
smokeryes		3878.11422 16						
regionnorthwest							.3444 -214.	
regionsoutheast							7.7787 -190.	
regionsouthwest	-294.64493	-338.58342 -	·382.6653 -4	26.4698 -47	'0.1649 -51 <sup>4</sup>	1.26261 -559	.1882 -604.	8912
(Intercept)	7466 7500	-8401.41371 -	0167 47500	0704 404455	10274 96603	10650 6507	6 100E0 1E0	127
age	208.1990	218.29113	226.59309	233.299398	238.64038			
sexmale	125.3218	81.41197	41.70534	7.235238	-21.73044			
bmi	274.3772	287.33732	298.14103	306.984003	314.09328			
children	418.0355	431.13606	441.43086	449.436892	455.59573			
smokeryes		20177.32061 2			22105.79019			
regionnorthwest		-231.93110		-259.759219	-273.03313			
regionsoutheast		-430.85248		-632.333475	-712.06061			
regionsouthwest		-696.03828		-777.352941	-810.94956			
(Intercept)	-11190.7170	5 -11368.8067	75 -11505.228	2 -11609.740	0 -11689.084	5 -11749.402	7 -11795.214	15
age	248.64992							
sexmale	-79.86839							
bmi	327.71268							
children	466.7482							
smokeryes	23061.16918							
regionnorthwest								
regionsoutheast								
regionsouthwest								
(Intercept)	-11829.9759	-11856.3328	-11876.3059	-11891.4349	-11902.8910	-11911.6778	-11918.2301	-11923.1768
age	255.6625	255.9522	256.1719	256.3382	256.4642	256.5612	256.6331	256.6875
sexmale	-123.5978	-125.4637	-126.8809	-127.9562	-128.7715	-129.3659	-129.8386	-130.1973
bmi	337.4941	337.9058	338.2181	338.4549	338.6344	338.7666	338.8696	338.9482
children	474.2391	474.5458	474.7780	474.9538	475.0869	475.1834	475.2598	475.3182
smokeryes	23733.6381	23761.5163	23782.6492	23798.6608	23810.7874	23819.9703	23826.9207	23832.1809
regionnorthwest	-345.3705	-347.1790	-348.5643	-349.6221	-350.4281	-350.7814	-351.2510	-351.6529
regionsoutheast	-1010.7430	-1016.5910	-1021.0422	-1024.4253	-1026.9936	-1028.7303	-1030.2104	-1031.3687
regionsouthwest	-948.0466	-950.9268	-953.1239	-954.7965	-956.0678	-956.8744	-957.6090	-958.1937
(Intercept)		-11929.7467						
age	256.7286	256.7597	256.7832	256.8010	256.8145	256.8247	256.8324	256.8382
sexmale	-130.4690	-130.6747	-130.8304	-130.9482	-131.0373	-131.1048	-131.1558	-131.1944
bmi	339.0078	339.0530	339.0872	339.1131	339.1326	339.1474	339.1586	339.1671
children	475.3625	475.3961	475.4216	475.4408	475.4553	475.4663	475.4747	475.4810
smokeryes	23836.1615	23839.1736	23841.4527	23843.1770	23844.4815	23845.4684	23846.2151	23846.7799
regionnorthwest		-352.2092	-352.3924	-352.5313	-352.6365	-352.7162	-352.7765	-352.8221
regionsoutheast regionsouthwest		-1032.9269 -958.9849	-1033.4365 -959.2440	-1033.8223 -959.4403	-1034.1143	-1034.3353 -959.7014	-1034.5025 -959.7865	-1034.6290 -959.8509
I EBTOIISOUTIIWEST	-958.6431	- 330.3043	- 939.2440	- 555.4403	-959.5889	- 535.7014	- 222. / 803	- 575.076
(Intercept)	-11937, 2920	-11937.5956	-11937 8252	-11937, 9990	-11938.1304	-11938.2298	-11938.3050	-11938.3619
age	256.8426	256.8460	256.8485	256.8504	256.8519	256.8530	256.8538	256.8544
sexmale	-131.2236	-131.2457	-131.2624	-131.2751	-131.2846	-131.2919	-131.2974	-131.3015
bmi	339.1735	339.1784	339.1821	339.1848	339.1869	339.1885	339.1897	339.1906
children	475.4857	475.4893	475.4921	475.4941	475.4957	475.4969	475.4978	475.4984
smokeryes	23847.2072	23847.5304	23847.7750	23847.9600	23848.0999	23848.2057	23848.2858	23848.3464
regionnorthwest		-352.8827	-352.9025	-352.9174	-352.9288	-352.9373	-352.9438	-352.9487
regionsoutheast		-1034.7971	-1034.8519	-1034.8933	-1034.9247	-1034.9484	-1034.9663	-1034.9799
regionsouthwest	-959.8996	-959.9365	-959.9643	-959.9854	-960.0014	-960.0135	-960.0226	-960.0295
(Intercept)	-11938.4049	-11938.4375	-11938.4621	-11938.4807	-11938.4948	-11938.5055	-11938.5135	-11938.5196
age	256.8549	256.8552	256.8555	256.8557	256.8559	256.8560	256.8561	256.8561
sexmale	-131.3046	-131.3070	-131.3088	-131.3101	-131.3112	-131.3119	-131.3125	-131.3130
bmi	339.1913	339.1918	339.1922	339.1925	339.1928	339.1929	339.1931	339.1932
children	475.4990	475.4993	475.4996	475.4999	475.5000	475.5002	475.5002	475.5003
smokeryes	23848.3922	23848.4269	23848.4531	23848.4729	23848.4879	23848.4993	23848.5079	23848.5144
regionnorthwest		-352.9552	-352.9573	-352.9589	-352.9601	-352.9610	-352.9617	-352.9623
regionsoutheast		-1034.9979	-1035.0038	-1035.0082	-1035.0116	-1035.0141	-1035.0161	-1035.0175
regionsouthwest	-960.0348	-960.0387	-960.0417	-960.0440	-960.0457	-960.0470	-960.0479	-960.0487

• Here, the differences came out to be nominal. Hence, using ridge in order to check whether it can improve the OLS estimation.

```
Creating linear and ridge models based on x and y train/test split
linear_RegModel <- lm(US_health$charges~., data = US_health, subset = train_new)
ridge_model <- glmnet(x[train_new,], y[train_new], alpha = 0, lambda = lambda_val)
#Finding out best lambda value from the list via cross-validation.
CV_out <- cv.glmnet(x[train_new,], y[train_new], alpha =0)
lambda_best <- CV_out$lambda.min</pre>
Hide
```

# Making predictions based on best lambda
# Linear model prediction
lm\_predict <- predict(linear\_RegModel, newdata = US\_health[test\_new,])
# Ridge model prediction
ridge\_predict <- predict(ridge\_model, s= lambda\_best, newx = x[test\_new,])</pre>

# looking for coefficients
out\_ridge <-glmnet(x[train\_new,], y[train\_new], alpha = 0)
predict(ridge\_model, type = "coefficients", s= lambda\_best)[1:6,]</pre>

```
(Intercept) age sexmale bmi children smokeryes
-9585.4564 216.4560 584.9393 318.8245 492.4345 20305.3594
```

- MOst of the coefficients estimates are coming out to be conservative.
- So, trying to fit lasso as it takes absolute values for coefficients estimates.

```
#Lasso Model
lasso_model <- glmnet(x[train_new,],y[train_new], alpha = 1, lambda = lambda_val)
lasso_predict <- predict(lasso_model, s= lambda_best, newx = x[test_new,])</pre>
```

```
lasso_coef <- predict(lasso_model, type= "coefficients", s= lambda_best)[1:6]
lasso_coef</pre>
```

```
[1] -3651.569 171.284 0.000 190.056 0.000 19538.071
```

• As expected, lasso set the value to 0 for unimportant variables and set the values high for the important ones, i.e., age, bmi, smoker. So, lasso model can be chosen. Let's, confirm it with MSE values.

# Selection of best model among linear, ridge and lasso

```
#Checking MSE for linear model
mean((lm_predict-y_test)^2)

[1] 36825120

#Checking MSE for ridge model
mean((ridge_predict-y_test)^2)

[1] 39616462

#Checking MSE for Lasso Model
mean((lasso_predict-y_test)^2)
```

• Since, linear regression model has the least MSE, therefore, it is the best model among the three models.

[1] 43500867

Hide

Hide

# SELECTION OF BEST PREDICTORS BASED ON LINEAR REGRESSION MODEL

Hide summary(linear\_RegModel) Call: lm(formula = US\_health\$charges ~ ., data = US\_health, subset = train\_new) Residuals: Min 1Q Median 3Q Max 1305 31561 -9872 -3015 -1107 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -11544.86 1416.98 -8.148 1.86e-15 \*\*\* 236.65 17.42 13.584 < 2e-16 \*\*\* age sexmale 477.06 483.77 0.986 0.3244 bmi 354.18 41.79 8.476 < 2e-16 \*\*\* children 500.36 201.48 2.483 0.0133 \* 583.83 37.866 < 2e-16 \*\*\* smokeryes 22107.37 regionnorthwest -1101.03 688.29 -1.600 0.1102 regionsoutheast -1409.71 686.01 -2.055 0.0403 \* 686.14 -1.987 0.0473 \* regionsouthwest -1363.39 Signif. codes: 0 □\*\*\*□ 0.001 □\*\*□ 0.01 □\*□ 0.05 □.□ 0.1 □ □ 1 Residual standard error: 6190 on 660 degrees of freedom

• From the above summary(), the equation came out to be:

F-statistic: 207.4 on 8 and 660 DF, p-value: < 2.2e-16

• y= -11544.86 +(236.65*age*) +(477.06sexmale) +(354.18*bmi*) + (500.36children) +(22107.37*smokeryes*) -(1101.03regionnorthwest) - (1409.71*regionsoutheast*) -(1363.39regionsouthwest)

Adjusted R-squared: 0.7119

# Anova

Multiple R-squared: 0.7154,

Hide

```
Anova(linear_RegModel)
Anova Table (Type II tests)
Response: US_health$charges
 Sum Sq Df F value Pr(>F)
 7.0698e+09
 1 184.5342 < 2e-16 ***
age
 3.7256e+07 1
 0.9724 0.32443
sex
bmi
 2.7522e+09 1 71.8364 < 2e-16 ***
children 2.3629e+08 1
 6.1675 0.01326 *
 5.4934e+10
 1 1433.8560 < 2e-16 ***
smoker
 1.8489 0.13698
region
 2.1251e+08
 3
Residuals 2.5286e+10 660
Signif. codes: 0 □***□ 0.001 □**□ 0.01 □*□ 0.05 □.□ 0.1 □ □ 1
```

# All possible subset regression

```
All_subset <- lm(linear_RegModel, data = US_health)
ols_step_best_subset(All_subset)</pre>
```

	Best Sub	sets Regre	ssion							
Model In	dex Predic	ctors								
1	smoker	`								
2	age sn	noker								
3	age br	ni smoker								
4	age bmi children smoker									
5	age bmi children smoker region									
6	age se	ex bmi chil	dren smoker	region						
				s Regression S	egression Summary					
		Adj.	Pred							
Model	•	R-Square	R-Square	C(p)	AIC	SBIC	SBC	MSEP	FP	
HSP 	APC									
1	0.6198	0.6195	0.618	611.9889	27667.4636	23868.9391	27683.0604	55887669.4102	5588754	
4.4451	41800.8466		0.018	011.9889	27007.4030	23808.3331	27083.0004	33887003.4102	JJ007J4	
2	0.7214	0.7210	0.7196	93.8304	27253.3244	23455.8677	27274.1201	41010413.6993	4101018	
4.4505	30673.4926	0.2799	0.7130	J3.0J0+	2,233.3244	25455.0077	2/2/4.1201	41010415.0555	4101010	
3	0.7475	0.7469	0.7455	-37.6245	27123.8359	23327.0363	27149.8306	37227691.7503	3722731	
7.1643	27844.2284		017.00	37.102.13	_,,		2721210300	3711703177303	3722732	
4	0.7497	0.7489	0.7474	-46.9727	27114.0352	23317.3965	27145.2288	36956206.6446	3695562	
8.2045	27641.1727	0.2522								
5	0.7509	0.7496	0.7475	-51.0596	27113.6624	23313.1716	27160.4528	36891265.6918	3689044	
0.8009	27592.6006	0.2514								
6	0.7509	0.7494	0.7471	-49.2088	27115.5058	23315.1156	27167.4951	36942459.0871	3694134	
	27630.8903	0.2517								

# Forward Regression

Hide

Model\_ForwardReg <- step(linear\_RegModel , direction = "forward")

Start: AIC=11690.53

US\_health\$charges ~ age + sex + bmi + children + smoker + region

Hide

summary(Model\_ForwardReg)

```
Call:
lm(formula = US_health$charges ~ age + sex + bmi + children +
 smoker + region, data = US_health, subset = train_new)
Residuals:
 Min
 1Q Median
-9872 -3015 -1107
 1305 31561
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept)
 -11544.86
 1416.98 -8.148 1.86e-15 ***
age
 236.65
 17.42 13.584 < 2e-16 ***
 477.06
 483.77 0.986
sexmale
 0.3244
 41.79 8.476 < 2e-16 ***
bmi
 354.18
 0.0133 *
children
 500.36
 201.48 2.483
 583.83 37.866 < 2e-16 ***
smokeryes
 22107.37
regionnorthwest -1101.03
 688.29 -1.600
 0.1102
 686.01 -2.055
 0.0403 *
regionsoutheast -1409.71
regionsouthwest -1363.39
 686.14 -1.987 0.0473 *
Signif. codes: 0 □***□ 0.001 □**□ 0.01 □*□ 0.05 □.□ 0.1 □ □ 1
Residual standard error: 6190 on 660 degrees of freedom
Multiple R-squared: 0.7154,
 Adjusted R-squared: 0.7119
F-statistic: 207.4 on 8 and 660 DF, p-value: < 2.2e-16
```

# **Backward Regression**

```
Hide
```

```
Model_BackwardReg <- step(linear_RegModel , direction = "backward")</pre>
Start: AIC=11690.53
US_health$charges ~ age + sex + bmi + children + smoker + region
 Df Sum of Sq
 RSS
 AIC
 1 3.7256e+07 2.5323e+10 11690
- sex
 3 2.1251e+08 2.5498e+10 11690
- region
 2.5286e+10 11690
<none>
- children 1 2.3629e+08 2.5522e+10 11695
 1 2.7522e+09 2.8038e+10 11758
- bmi
 1 7.0698e+09 3.2356e+10 11854
- age
 1 5.4934e+10 8.0219e+10 12461
- smoker
Step: AIC=11689.51
US_health$charges ~ age + bmi + children + smoker + region
 Df Sum of Sq
 RSS
 AIC
 3 2.2628e+08 2.5549e+10 11690
- region
 2.5323e+10 11690
<none>
- children 1 2.4049e+08 2.5564e+10 11694
- bmi
 1 2.8350e+09 2.8158e+10 11758
 1 7.0387e+09 3.2362e+10 11852
- age
- smoker
 1 5.5663e+10 8.0986e+10 12465
Step: AIC=11689.46
US_health$charges ~ age + bmi + children + smoker
 Df Sum of Sq
 RSS
 AIC
 2.5549e+10 11690
<none>
- children 1 2.3349e+08 2.5783e+10 11694
 1 2.7725e+09 2.8322e+10 11756
- bmi
 1 7.1431e+09 3.2692e+10 11852
- age
- smoker
 1 5.5639e+10 8.1189e+10 12461
```

```
Hide
```

```
summary(Model_BackwardReg)
```

```
Call:
lm(formula = US_health$charges ~ age + bmi + children + smoker,
 data = US_health, subset = train_new)
Residuals:
 Min
 1Q Median
 Max
-10032 -3246 -1064 1246 31329
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 <2e-16 ***
(Intercept) -11845.57
 1364.71 -8.680
 17.42 13.625 <2e-16 ***
 237.40
 39.93 8.488 <2e-16 ***
bmi
 338.98
 0.014 *
 495.71
 201.23 2.463
children
 22134.76
 582.09 38.026 <2e-16 ***
smokeryes
Signif. codes: 0 □***□ 0.001 □**□ 0.01 □*□ 0.05 □.□ 0.1 □ □ 1
Residual standard error: 6203 on 664 degrees of freedom
Multiple R-squared: 0.7124,
 Adjusted R-squared: 0.7107
F-statistic: 411.2 on 4 and 664 DF, p-value: < 2.2e-16
```

# Stepwise Regression

```
Hide
```

```
Model_StepwiseReg <- step(linear_RegModel , direction = "both")</pre>
Start: AIC=11690.53
US_health$charges ~ age + sex + bmi + children + smoker + region
 Df Sum of Sq
 RSS
 AIC
- sex
 1 3.7256e+07 2.5323e+10 11690
 3 2.1251e+08 2.5498e+10 11690
- region
<none>
 2.5286e+10 11690
- children 1 2.3629e+08 2.5522e+10 11695
 1 2.7522e+09 2.8038e+10 11758
- bmi
 1 7.0698e+09 3.2356e+10 11854
- age
 1 5.4934e+10 8.0219e+10 12461
- smoker
Step: AIC=11689.51
US_health$charges ~ age + bmi + children + smoker + region
 Df Sum of Sq
 RSS
 AIC
- region
 3 2.2628e+08 2.5549e+10 11690
<none>
 2.5323e+10 11690
+ sex
 1 3.7256e+07 2.5286e+10 11690
- children 1 2.4049e+08 2.5564e+10 11694
 1 2.8350e+09 2.8158e+10 11758
- bmi
 1 7.0387e+09 3.2362e+10 11852
- age
 1 5.5663e+10 8.0986e+10 12465
- smoker
Step: AIC=11689.46
US_health$charges ~ age + bmi + children + smoker
 Df Sum of Sq
 RSS
 2.5549e+10 11690
<none>
+ region
 3 2.2628e+08 2.5323e+10 11690
 1 5.1028e+07 2.5498e+10 11690
+ sex
```

```
Hide
```

```
summary(Model_StepwiseReg)
```

- bmi

- age

- smoker

- children 1 2.3349e+08 2.5783e+10 11694

1 2.7725e+09 2.8322e+10 11756 1 7.1431e+09 3.2692e+10 11852

1 5.5639e+10 8.1189e+10 12461

```
Call:
lm(formula = US_health$charges ~ age + bmi + children + smoker,
 data = US_health, subset = train_new)
Residuals:
 Min
 1Q Median
 Max
-10032 -3246 -1064 1246 31329
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 <2e-16 ***
(Intercept) -11845.57
 1364.71 -8.680
age
 237.40
 17.42 13.625 <2e-16 ***
 39.93 8.488 <2e-16 ***
bmi
 338.98
 495.71
 201.23 2.463
children
 0.014 *
 582.09 38.026 <2e-16 ***
 22134.76
smokeryes
Signif. codes: 0 □***□ 0.001 □**□ 0.01 □*□ 0.05 □.□ 0.1 □ □ 1
Residual standard error: 6203 on 664 degrees of freedom
Multiple R-squared: 0.7124,
 Adjusted R-squared: 0.7107
F-statistic: 411.2 on 4 and 664 DF, p-value: < 2.2e-16
```

# BEST MODEL ACCORDING TO ANNOVA

```
bestmodel_anova <- lm(train_health$charges~ age + bmi + smoker, data =train_health)
summary(bestmodel_anova)</pre>
```

```
Call:
lm(formula = train_health$charges ~ age + bmi + smoker, data = train_health)
Residuals:
 Min
 1Q Median
 3Q
 Max
-12095 -3184 -1032
 1515 29136
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -12037.77
 1164.32 -10.34 <2e-16 ***
 256.42
 14.80 17.33 <2e-16 ***
age
 34.05
 338.80
 9.95 <2e-16 ***
bmi
 23670.40
 509.11 46.49 <2e-16 ***
smokeryes
Signif. codes: 0 □***□ 0.001 □**□ 0.01 □*□ 0.05 □.□ 0.1 □ □ 1
Residual standard error: 6277 on 918 degrees of freedom
Multiple R-squared: 0.7389,
 Adjusted R-squared: 0.738
F-statistic: 865.8 on 3 and 918 DF, p-value: < 2.2e-16
```

- From the above summary(), the equation came out to be:
- y= -12037.77 +(256.42*age*) +(338.80bmi) + (23670.40\*smokeryes)

plot(bestmodel\_anova, which=1) #Plotted Residuals v/s fitted graph

plot(bestmodel\_anova, which=2) # Normality plot for residuals

# Model Diagnostic Tests for annova based fit model

```
Checking the Multicollinearity
car::vif(bestmodel_anova)

age bmi smoker
1.012844 1.012897 1.000052

Hide

par(mfrow = c(3, 2))
```

Hide

```
plot(bestmodel_anova, which=3) #Plotted Scale-Location graph
 plot(bestmodel_anova, which=5) #Plotted Residuals v/s Leverage graph
 Hide
 plot(bestmodel_anova, which=4) #Graph for determining Cook's Distance
 plot(bestmodel_anova, which=6) #Plotted Cook's Distance-Leverage graph
 Standardized residuals
 Normal Q-Q
 Residuals vs Fitted
 30000
Residuals
 Ħ
 -10000
 ೦೦
 Ņ
 0
 10000
 20000
 30000
 40000
 3
 Fitted values
 Theoretical Quantiles
ViStandardized residual:
 Standardized residuals
 Scale-Location
 Residuals vs Leverage
 20000
 30000
 40000
 0.000
 0.005
 0.010
 0.015
 0.020
 10000
 Fitted values
 Leverage
 Cook's dist vs Leverage h_{ii}/(1-h_{ii})
 Cook's distance
Cook's distance
 Cook's distance
 0.03
 0.03
 0.0
 0.005
 200
 400
 600
 800
 0
 0.01
 0.015
 0.02
 Leverage hi
 Obs. number
 Hide
 # Non-constant variance score test
 car::ncvTest(bestmodel anova)
 Non-constant Variance Score Test
 Variance formula: ~ fitted.values
 Chisquare = 151.619, Df = 1, p = < 2.22e-16
 Hide
 # Testing for Autocorrelated errors
 durbinWatsonTest(bestmodel_anova)
 lag Autocorrelation D-W Statistic p-value
 0.006906446
 1.98215
 0.778
 Alternative hypothesis: rho != 0
 Hide
 #Test for normal distribution
 shapiro.test(bestmodel_anova$residuals)
 Shapiro-Wilk normality test
```

# Predictions for annova based fit model

Hide

```
predict_Abest <-predict(bestmodel_anova, test_health, type = "response")
residual_Abest <- test_health$charges - predict_Abest
predict_Aregbest <- data.frame("Predicted"= predict_Abest, "Actual" =test_health$charges, "Residuals" = residual_Abest)
accuracy(predict_Abest, test_health$charges)</pre>
```

data: bestmodel\_anova\$residuals
W = 0.89898, p-value < 2.2e-16</pre>

```
ME
 RMSE
 MAE
Test set 60.4786 5667.741 4005.492 -19.5216 45.08702
```

# BEST MODEL ACCORDING TO STEPWISE AND BACKWARD

```
bestmodel_StepBAck <- lm(train_health$charges~ age + bmi + smoker +children, data =train_health)
summary(bestmodel_StepBAck)
```

```
Call:
lm(formula = train_health$charges ~ age + bmi + smoker + children,
 data = train_health)
Residuals:
 Min
 1Q Median
 3Q
 Max
-11588 -3122 -1026
 1491 29616
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -12565.34
 1180.38 -10.645 <2e-16 ***
 255.28
 14.76 17.292 <2e-16 ***
age
 341.87
 33.98 10.062 <2e-16 ***
bmi
smokeryes
 23675.65
 507.69 46.634 <2e-16 ***
 170.06 2.481 0.0133 *
children
 421.95
Signif. codes: 0 □***□ 0.001 □**□ 0.01 □*□ 0.05 □.□ 0.1 □ □ 1
Residual standard error: 6259 on 917 degrees of freedom
Multiple R-squared: 0.7406,
 Adjusted R-squared: 0.7395
F-statistic: 654.6 on 4 and 917 DF, p-value: < 2.2e-16
```

- From the above summary(), the equation came out to be:
- y= -12565.34 +(255.28age) +(341.87bmi) + (23675.65smokeryes) +(421.95children)

# Model Diagnostic Tests for stepwise and backward based fit model

```
Hide
Checking the Multicollinearity
car::vif(bestmodel_StepBAck)
 bmi smoker children
1.013816 1.014245 1.000070 1.002078
 Hide
par(mfrow = c(3, 2))
plot(bestmodel StepBAck, which=1) #Plotted Residuals v/s fitted graph
plot(bestmodel_StepBAck, which=2) # Normality plot for residuals
 Hide
plot(bestmodel_StepBAck, which=3) #Plotted Scale-Location graph
plot(bestmodel_StepBAck, which=5) #Plotted Residuals v/s Leverage graph
 Hide
plot(bestmodel_StepBAck, which=4)
 #Graph for determining Cook's Distance
plot(bestmodel StepBAck, which=6)
```



# Prediction for stepwise and backward based fit model

```
Hide
predict_SBbest <-predict(bestmodel_StepBAck, test_health, type = "response")
residual_SBbest <- test_health$charges - predict_SBbest
predict_SBregbest <- data.frame("Predicted"= predict_SBbest, "Actual" =test_health$charges, "Residuals" = residual_SBbest)
accuracy(predict_SBbest, test_health$charges)</pre>
```

ME RMSE MAE MPE MAPE Test set 107.7915 5628.947 3972.476 -16.4929 43.83209

# BEST MODEL ACCORDING TO FORWARD AND ALL POSSIBLE SUBSET REGRESSION

```
bestmodel_fwd <- lm(train_health$charges~ age + bmi + smoker +children + region, data =train_health)
summary(bestmodel_fwd)</pre>
```

```
Call:
lm(formula = train_health$charges ~ age + bmi + smoker + children +
 region, data = train_health)
Residuals:
 Min
 1Q Median
 3Q
 Max
-11165.7 -3111.7 -979.4 1507.6 30377.4
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 1211.88 -10.353 < 2e-16 ***
(Intercept)
 -12546.15
 14.73 17.294 < 2e-16 ***
 254.74
age
 369.25
 35.32 10.454 < 2e-16 ***
bmi
 23756.57
 507.70 46.793 < 2e-16 ***
smokeryes
children
 428.42
 169.84 2.522 0.01182 *
 592.12 -1.078 0.28124
regionnorthwest
 -638.41
 589.10 -2.833 0.00471 **
regionsoutheast -1668.87
 598.17 -1.723 0.08516 .
regionsouthwest -1030.88
Signif. codes: 0 □***□ 0.001 □**□ 0.01 □*□ 0.05 □.□ 0.1 □ □ 1
Residual standard error: 6241 on 914 degrees of freedom
Multiple R-squared: 0.743, Adjusted R-squared: 0.741
F-statistic: 377.4 on 7 and 914 DF, p-value: < 2.2e-16
```

- From the above summary(), the equation came out to be:
- y= -12546.15 +(254.74*age*) +(369.25bmi) + (23756.57*smokeryes*) +(428.42children) -(638.41*regionnorthwest*) -(1668.87regionsoutheast) (1030.88\*regionsouthwest)

# Model Diagnostic Tests for forward and all possible subset based fit model

```
Hide
Checking the Multicollinearity
car::vif(bestmodel_fwd)
 GVIF Df GVIF^(1/(2*Df))
 1.015301 1
 1.007622
age
 1.102430 1
 1.049967
smoker
 1.005959 1
 1.002975
children 1.005435 1
 1.002714
region
 1.097810 3
 1.015674
 Hide
par(mfrow = c(3, 2))
plot(bestmodel_fwd, which=1) #Plotted Residuals v/s fitted graph
plot(bestmodel_fwd, which=2) # Normality plot for residuals
 Hide
plot(bestmodel fwd, which=3) #Plotted Scale-Location graph
plot(bestmodel_fwd, which=5) #Plotted Residuals v/s Leverage graph
 Hide
plot(bestmodel_fwd, which=4) #Graph for determining Cook's Distance
```

plot(bestmodel\_fwd, which=6)

Shapiro-Wilk normality test

data: bestmodel\_fwd\$residuals
W = 0.89578, p-value < 2.2e-16</pre>

# Prediction for forward and all possible subset based fit model

Hide

```
predict_fwdbest <-predict(bestmodel_fwd, test_health, type = "response")
residual_fwdbest <- test_health$charges - predict_fwdbest
predict_linregbest2 <- data.frame("Predicted"= predict_fwdbest, "Actual" =test_health$charges, "Residuals" = residual_fwdbes
t)
accuracy(predict_fwdbest, test_health$charges)</pre>
```

ME RMSE MAE MPE MAPE
Test set 102.2186 5665.428 4017.834 -14.77523 43.3282