					0	
	Α	В	С	D	Poprawna	MetaInfo
W przeszukiwaniu grafów niech h(n) będzie heurystycznym oszacowaniem dokładnego kosztu dotarcia do węzła celu. Załóżmy, że istnieją trzy różne dopuszczalne heurystyki: h1(n), h2(n) i h3(n). Najlepszym rozwiązaniem jest użycie następującej funkcji jako funkcji heurystycznej:	h1(n) + h2(n) + h3(n)	min(h1(n), h2(n), h3(n))	max(h1(n), h2(n), h3(n))	[h1(n) + h2(n) + h3(n)] / 3	С	https://ai.ia.agh.edu.pl/_media/en:dydaktyka:krr:master. pdf#page=30
Rozważ klasyczną definicję Entropii podaną przez Σpi log(pi) gdzie pi jest prawdopodobieństwem i-tego wyniku jakiegoś eksperymentu. Dla intuicji entropia może być interpretowana jako miara niepewności, brakująca informacje w celu uzyskania odpowiedzi deterministycznej. Która z poniższych właściwości NIE JEST PRAWDĄ w odniesieniu do entropii:	Równomierny rozkład prawdopodobieństwa daje minimalną niepewność, a zatem minimalną entropię	Wartość entropii 0 oznacza w rzeczywistości, że wynik (system) jest deterministyczny	Wartość entropii jest zawsze nieujemna	Wartość entropii może być wyższa niż 1	А	Na podstawie Wikipedii C, D są prawdą, więc A lub B https://pl.wikipedia.org/wiki/Entropia_(teoria_informacji) dosłownie z tej strony: Własności entropii: jest maksymalna, gdy prawdopodobieństwa zajść zdarzeń są takie same; imo a
Z poniższej listy wybierz sąsiedztwo, w którym sąsiedzi dopuszczalnego rozwiązania mogą okazać się niedopuszczalni:	2-swap (problem komiwojażera)	2-opt (problem komiwojażera)	zmiana koloru losowego węzła (kolorowanie grafu)	łańcuch kempa (kolorowanie grafu)	С	imo c
Który element systemu eksperckiego kontroluje sposób stosowania reguł wobec faktów:	mechanizm wyjaśnień	silnik wnioskowania (mechanizm wnioskowania)	edytor bazy wiedzy	interfejs użytkownika	В	chyba B + 1 +1 +1 https://wblog.wiki/pl/Inference_engine
Etykietowanie danych to proces, który	polega na wyróżnianiu grup etykiet z wstepnego drzewa kodowego	polega na dodawaniu etykiet (ang. labels) do pierwotnych danych	wymaga udziału człowieka przez cały czas	zawsze wykonywany jest automatycznie	В	
Który algorytm klasteryzacji jest odporny na wpływ obserwacji odstających (szumu):	algorytm k-medoids	algorytm k-średnich	algorytm k-means++	algorytm DBSCAN	D	B albo D, imo D
Wskaż, który z poniższych problemów można rozwiązać poprzez zastosowanie algorytmów przeszukiwania przestrzeni stanów, poznanych na zajęciach.	sterowanie ramieniem robota, np. ustawienie ramienia w zadanej pozycji	generowanie kodu mającego zrealizować zadane obliczenie	sprawdzenie, czy dwa grafy stanów opisują ten sam problem	wybór optymalnego ruchu w szachach	D	chyba D +1
Przewidywanie jednego ulubionego koloru danej osoby (z 5 możliwych: (źółty, różowy, niebieski, zielony, czerwony)) to:	regularyzacja	walidacja	klasyfikacja	regresja	С	
Rozważmy Regułę Rezolucji dla wnioskowania w rachunku zdań. Jest ona praktycznie równoważna:	Regule wprowadzania dysjunkcji	regule przechodniości	regule modus ponens (regule odrywania)	regule eliminacji dysjunkcji	В	Czy czasem nie A? Chyba C
Zaznacz zdanie FAŁSZYWE:	Predykaty służą do opisywania relacji między termami	Fakt jest rodzajem klauzuli	Termy służą do opisywania relacji między predykatami	Predykat jest określony poprzez nazwę i arność	С	
Dobrze znany algorytm Dijkstry ma co najwyżej kwadratową złożoność obliczeniową. Algorytmy przeszukiwania grafów w AI mają w większości złożoność wykładniczą. Zatem, dlaczego algorytm Dijkstry nie jest uważany za uniwersalne, najbardziej wydajne rozwiązanie do wyszukiwania grafów w AI:	Grafy rozwiązane algorytmem Dijkstry nie mogą mieć pętli	Algorytm Dijkstry można zastosować tylko do grafów planarnych	Mówimy o złożoności obliczeniowej, ale definiowanej inaczej	W rzeczywistości w problemach Al definicja grafu jest inna	D	na pewno nie a, ani b - imo d
Spośród wymienionych po cech, wybierz jedną cechę niepożądaną dla heurystyki Legenda do odpowiedzi: s - stan h(s) - wartość heurystyki dla stanu s d(s) - długość najkrótszej ścieżki między s a stanem końcowym<= - mniejsze bądź równe	spójność - heurystyka powinna być monotoniczna względem odległości, tj. jeżeli d(s) się zmniejsza, to h(s) nie powinna rosnąć	pesymizm, czyli: h(s) > d (s)	optymizm, czyli: h(s) <= d (s)	spójność - heurystyka spełnia nierówność trójkąta	В	b\c https://ai.ia.agh.edu.pl/_media/en:dydaktyka:krr:master. pdf#page=5 imo b
W przeszukiwaniu grafów niech h*(n) będzie dokładnym minimalnym kosztem dotarcia z węzła n do celu, a h(n) będzie heurystycznym oszacowaniem dokładnego kosztu. Funkcja heurystyczna h(n) jest zdefiniowana jako dopuszczalna, jeśli:	h(n) =< h*(n) (mniejsze lub równe)	h(n) >= h*(n) (większe lub równe)	h(n) < h*(n)	$h^*(n) = h(n) + d$, gdzie d > 0.	Α	raczej A http://smurf.mimuw.edu.pl/sites/default/files/ai-wyklad2.pdf (slajd 8)
Niech a^b oznacza a do potęgi b. W problemach Tree-Search, jeśli szacowany współczynnik rozgałęzenia wynosi b, a głębokość wyszukiwania wynosi d, to liczba eksplorowanych węzłów wynosi:	b^d	1 + d + d^2 + d^b	d^b	1 + b + b^2 + b^d	D	chyba D, a czemu nie A czy to nie tak ze z kazdym poziomem masz liczbe wezlow*b bo na tyle sie rozgaleziaja?
Który z poniższych parametrów nie może mieć zastosowania w algorytmie Symulowanego Wyżarzania	prawdopodobieństwo restartu z losowego rozwiązania	harmonogram obniżania temperatury	temperatura początkowa	strategia wyboru kolejnych sąsiadów z sąsiedztwa	Α	na podstawie labu01, D, bo są parametry: cooling_step, escape_probability i initial_temperature - imo wlasnie dlatego A // IMO nie a Tylko właśnie D bo tego nie ma
W metodzie przeszukiwania wgłąb, przy próbie wyszukiwania wszystkich rozwiązań, nawroty nie są wymuszane przez:	przekroczenie współczynnika gałęzienia	porażkę (failure) - brak możliwości dalszego szukania na danej ścieżce	znalezienie pojedynczego rozwiązania	osiągnięcie predefiniowanego limitu głębokości	С	imo a

					0	
	Α	В	С	D	Poprawna	MetaInfo
Niech będzie dana Baza Wiedzy (KB) oraz obserwacja lub Hipoteza (H) do udowodnienia. Poszukiwanie potencjalnego wyjaśnienia D dla H takiego, że D logicznie implikuje H w świetle danej KB, i takie, że ogólna spójność jest zachowana, znane jest pod nazwą:	specjalizacji	dedukcji	indukcji	abdukcji	D	Chyba D https://en.wikipedia.org/wiki/Abductive_reasoning#Deduction, _induction,_and_abduction
Zaznacz fałszywe zdanie na temat relacji między grafem reprezentującym przestrzeń stanów a drzewem przeszukiwania reprezentującym proces rozwiązywania problemu przez dowolny z poznanych algorytmów:	Drzewo przeszukiwania może być nieskończone, nawet gdy graf stanów jest skończony	Zdarzają się przypadki, że istnieje takie węzeł w grafie, że zadane drzewo przeszukiwania (którego korzeń nie odpowiada temu węzłowi) nie będzie zawierać odpowiadającego mu węzła, niezależnie od użytego algorytmu przeszukiwania.	Węzeł grafu stanów odpowiada zawsze dokładnie jednemu węzłowi w drzewie przeszukiwania	Węzeł grafu stanów może odpowiadać wielu różnym węzłom drzewa przeszukiwania	С	c bo bartek umie w abdukcje, jaki kurwa bartek?
Jakie zadanie rozwiązuje poniższy program (w szczególności predykat secret_predicate)? a(Something, 10). b(Something, 20). secret_predicate (X, Y):- a(X, D), b(X, S), Y is D*S.	Porównuje zmienne a i b i zwraca Y, jeżeli a jest większe niż b.	Sprawdza, jaki jest największy wspólny dzielnik liczb podanych predykatom a i b i zwraca go jako Y.	Mnoży podane liczby i dostaje wynik do listy.	Liczy pole powierzchni prostokąta o długościach boków okreslonych za pomocą predykatów a i b.	D	To nie ma sensu
Generalnie łatwiej jest przeszukiwać drzewa niż grafy (w drzewach nie ma pętli). Można zastosować metodę przeszukiwania drzewa do grafu, co zazwyczaj upraszcza implementację. Główny problem takiego podejścia polega na:	Wyszukiwanie jest wielokrotnie powtarzane w tych samych węzłach	Wszystkie odwiedzone węzły muszą być przechowywane w pamięci	Współczynnik rozgałęzienia może znacznie wzrosnąć	Algorytm zużywa więcej pamięci	С	B i D się w sobie zawierają, więc raczej żadne z nich, skolei roziwązaniem na A jest własnie B i D, więc imo C
Zazwyczaj implementacje RETE nie używają:	Alpha Nodes/węzły alpha	Gamma Nodes/węzły gamma	Gamma Nodes/węzły gamma	Type Nodes/węzły typu	В	
Funkcja aktywacji to:	Funkcja, zgodnie z którą obliczane są wyjścia neuronów w sieci neuronowej	Funkcja aktywująca ścieżki w drzewach decyzyjnych	Funkcja rozdzielająca, której poszukuje SVM	Funkcja, zgodznie z którą przebiega głosowanie w metodach ensemble	А	
Które stwierdzenie jest nieprawdziwe w odniesieniu do wykonania algorytmu k-średnich przy określonym k:	zawsze zwróci te same klastry dla podanego zbioru danych	zawsze podzieli zbiór danych na k klastrów	wybiera losowo początkowe centroidy	zazwyczaj będzie wolniejsze niż algorytmu MeanShift	Α	
K w algorytmie k-średnich oznacza:	liczbę sąsiednich przykładów uwzględnianych w procesie głosowania	liczbę rozpoznawanych klas	liczbę klastrów	odległość pomiędzy punktami	С	
W metodach heurystycznych w przeszukiwaniu grafów niech g(n) będzie dokładnym kosztem przejścia od węzła początkowego do węzła n, a h(n) będzie dopuszczalną funkcją heurystyczną; całkowita funkcja estymacji węzła n w algorytmie A^{\star} jest dana wzorem f(n) = g(n) + h(n). Prawdą jest, że	f(n) zawsze rośnie wzdłuż danej ścieżki szukania	f(n) jej wartość jest zawsze większa od g(n)	f(n) może czasem zmaleć przy szukaniu wzdłuż wybranej ścieżki	f(n) zawsze maleje w ramach postępu szukania	С	
Która z technik - jeśli ma zastosowanie - jest zazwyczaj najbardziej efektywna w programowaniu z ograniczeniami:	wymuszanie nawrotów	dekompozycja problemu	szukanie heurystyczne	propagacja ograniczeń	В	imo b https://en.wikipedia. org/wiki/Constraint_programming#Constraint_solving https: //ai.ia.agh.edu.pl/_media/en:dydaktyka:krr:master-clp-est. pdf#page=36
Metoda leave-one-out	To metoda doboru parametrów tylko w regresji logistycznej	To metoda doboru parametrów tylko w sieciach neuronowych	To metoda walidacji, w której zbiór testowy jest jednoelementowy	To metoda walidacji, w której zbiór uczący jest jednoelementowy	С	
Rozwiązaniem dopuszczalnym w Programowaniu z Ograniczeniami jest:	Rozwiązanie spełniające przynajmniej niektóre ograniczenia	Rozwiązania spełniające wszystkie ograniczenia	Rozwiązanie spełniające wszystkie ograniczenia i maksymalizujące lub minimalizujące kryterium optymalności	Spałniające wymaganie, że wartościwszystkich zmiennych muszą należeć do odpowiednich domen zmiennych	В	

					0	
	Α	В	С	D	Poprawna	MetaInfo
Przeszukanie wykresów AND-OR jest popularnym i potężnym narzędziem AI stosowanym w symbolicznym rozwiązywaniu problemów. Nie ma jednak bezpośredniego zastosowania w:	grze w szachy	generowaniu częściowo uporządkowanych planów	całkowaniu symbolicznym	automatycznym dowodzeniu twierdzeń	a	imo a imo D (No ja coś takiego znalazłem "Dla wielu problemów, które mogą być sformalizowane w modelu modelu przestzukiwania przestrzeni stanów, nie ma sensu, aby rozwiązanie zawierające pętle. Na przykład, pętla w rozwiązaniu problemu rozwiązywania twierdzeń reprezentuje rozumowanie okrężne. Pętla w rozwiązaniu problemu redukcji problemu reprezentuje niepowodzenie w redukcji problemu do prymitywnych podproblemów. Istnieją jednak pewne problemy, dla których sensowne jest, by rozwiązanie" https://www.aaai.org/Papers/AAAI/1998/AAAI98-058.pdf)
Algorytm ID3 bazuje na koncepcji:	wykorzystania sieci Rete	redukcji entropii	wnioskowaniu wstecz	wnioskowaniu wprzód	В	
Rozważ punkty 1 i 2 z odpowiednio współrzędnymi (x1, y1) i (x2, y2). Która z poniższych miar odległości nie jest heurystyką dopuszczalną w przeszukiwaniu grafów stosowanym do wyszukiwania tras na realistycznych mapach:	Manhattan distance - metryka uliczna	max(y2 - y1 , x2 - x1)	Odległość euklidesowa	min(y2 - y1 , x2 - x1)	D	D -bo heurytstyka powinna rozróżniać stan końcowy, jeśli jesteśmy na tym samym równoleżniku to nasza odległość będzie 0 a nie osiągneliśmy celu
W algorytmie DBSCAN, punkt p, który jest w ustalonej odległości epsilon od punktu rdzeniowego, ale nie spełnia kryterium minimalnej liczby punktów jest punktem:	granicznym	odstającym	rdzeniowym (centralnym)	szumu	Α	chybva a, na pewno: https://upel2.cel.agh.edu. pl/weaiib/pluginfile.php/122976/mod_resource/content/1/PSI- clustering.pdf 36slajd
Wybierz zdanie prawdziwe odnośnie do k w kNN.	k oznacza key, sam algorytm nosi nazwę key Neural Networks	k to liczba sąsiednich przykładów uwzględniających w procesie głosowania	zwiększając k, zwiększamy precyzję obliczeń	k oznacza liczbę rozpoznawalnych klas	В	b?
Jak oznaczyć, że mamy do czynienia z niewiadomą (zmienną logiczną) w Prologu?	przed nazwą zadeklarować jej typ, np. numeryczny, znakowy	zapisać jej nazwę wielką literą	zadeklarować ją na początku programu w sekcji dla zmiennych	zainicjalizować ją domyślną lub określoną wartością	В	
Podstawowa metoda poszukiwania rozwiązania w programowaniu z ograniczeniami to:	przeszukiwanie wszerz z nawrotami	przeszukiwanie wgłąb z nawrotami	heurystyczne przeszukiwanie wgłąb	przeszukiwanie wgłąb z ograniczeniem głębokości szukania	В	imo B strona 16 w wykładzie Constraint Programming
Jedna z podstawowych technik propagacji ograniczeń w Programowaniu z Ograniczeniami polega na zmniejszaniu dziedziny zmiennych przez usuwanie wartości, tak aby ich użycie prowadziło do niespójności; nazwa tej techniki to	Forward Checking (Sprawdzanie w przód)	Forward Chaining (Łańcuch do przodu)	Forward Chasing (Pogoń do przodu)	Forward Reduction (Redukcja do przodu)	Α	https://ai.ia.agh.edu.pl/_media/en:dydaktyka:krr:master-clp- est.pdf
Zaznacz falszywe zdanie o relacjach między algorytmami poznanymi w czasie zajęć	Algorytm Dijkstry jest w stanie obsłużyć więcej niż jeden stan końcowy (ang. Goal State) w grafie	A* znajduje optymalne rozwiązanie, o ile heurystyka spełnia pewne intuicyjne warunki	A* wymaga, żeby w grafie stanów był tylko jeden stan końcowy	Algorytm Dijkstry to szczególny przypadek A*	Α	chyba a
Epoka odnosi się do	jednego z mniej istotnych parametrów w drzewach decyzyjnych	jednego z głównych parametrów w lesie losowym	jednego cyklu, w którym pokazujemy sieci neuronowej wszystkie dane ze zbioru testowego	jednego cyklu, w którym pokazujemy sieci neuronowej wszystkie dane ze zbioru uczącego	D	
Jakiej struktury danych brakuje w MiniZinc:	Lista	Typy wyliczeniowy	Zbiór	Tablica	Α	są enum, array i set https://www.minizinc.org/doc-2.4.3 /en/spec.html#spec-identifiers list nie jest typem danych w minizinc
Wybierz prawdziwe zdanie:	Macierz pomyłek używana jest do obliczania nagrody w uczeniu ze wzmocnieniem	Macierz pomyłek ma zawsze rozmiar NxN, gdzie N to liczba instancji w zbiorze danych	Macierz pomyłek zawsze ma rozmiar 2x2	Macierz pomyłek używana jest do sprawdzenia jakości klasyfikacji	D	https://pl.wikipedia.org/wiki/Tablica_pomy%C5%82ek
Zaznacz fałszywe zdanie na temat algorytmów przeszukiwania lokalnego	wymagają podania na wejściu pierwszego dopuszczalnego rozwiązania, które będzie podlegało iteracyjnej poprawie	nie narzucają żadnych matematycznych wymagań na ograniczenia, tj. ograniczenia nie muszą być liniowe, etc.	nie gwarantują znalezienia optymalnego rozwiązania	wymagają sprecyzowania funkcji celu	А	
Co wspólnego ma Sherlock Holmes z rozumowaniem diagnostycznym opartym na sztucznej inteligencji?	Stosował on metodę wnioskowania logicznego o nazwie dedukcja	Stosował on metodę wnioskowania logicznego o nazwie indukcja	Stosował on metodę wnioskowania logicznego opartą na modelu	Stosował on metodę wnioskowania logicznego o nazwie abdukcja	D	Ligeza podobno mówił, że abdukcja https://oxford.universitypressscholarship.com/view/10.1093/acprof.oso/9780199551330-chapter-14

					0	
	Α	В	С	D	Poprawna	MetaInfo
Wybierz zdanie nieprawdziwe o algorytmie DBSCAN	DBSCAN wymaga zdefiniowania liczby powstałych klastrów	DBSCAN wymaga zdefiniowania minimalnej liczby punktów potrzebnych do zbudowania klastra	DBSCAN wymaga zdefiniowania maksymalnej odległości epsilon, która definiuje sąsiada	DBSCAN wymaga zdefiniowania miary odległości	А	
W przeszukiwaniu grafów niech c(n1,n2) będzie dokładnym minimalnym kosztem dotarcia z węzła n1 do węzła n2, a h(n) będzie heurystycznym oszacowaniem dokładnego kosztu dojścia do celu. Funkcja heurystyczna h (n), h(cel) = 0, jest zdefiniowana jako spójna (consistent), jeśli:	h(n2) =< h(n1) + c(n1,n2)	h(n1) + c(n1,n2) = h(n2)	h(n1) = c(n1,n2) + h(n2)	h(n1) =< c(n1,n2) + h(n2)	D	Consistent Heuristic [Artificial Intelligence PTF] (omgwiki.org) ps://ai.ia.agh.edu.pl/_media/en:dydaktyka:krr:master.pdf#page
Który z poniższych problemów byłby odpowiednim kandydatem do zastosowania algorytmu przeszukiwania lokalnego	Dobranie materiałow i odpowiedniej struktury do budowy skrzydła samolotu	Nawigacja autonomicznego samochodu	Wybór optymalnego ruchu w szachach	Uczenie sieci neuronowej	Α	imo c
GPT3 jest uważany za jedno z najważniejszych osiągnięć w dziedzinie Al roku 2020; jego nazwa to Generative Pre-trained Transformer 3 (GPT-3). Która z technologii Al najprawdopodobniej NIE przyczynia się do sukcesu GPT3:	uczenie głębokie	Przetwarzanie języka naturalnego	Sztuczne sieci neuronowe	Programowanie z ograniczeniami (Constraint Programming)	D	https://en.wikipedia.org/wiki/GPT-3
Która ze ślepych metod przeszukiwania grafów jest niekompletna w tym sensie, że nie zapewnia znalezienia ścieżki rozwiązania nawet jeśli taka istnieje:	iteracyjne pogłębianie (Iterative-Deepening Search)	sz	przeszukiwanie wgłąb (Depth-First Search)	algorytm jednolitego kosztu (Uniform-Cost Search)	С	może być D ()()()() +10
Rete to:	algorytm wnioskowania	metoda reprezentacji wiedzy	architektura systemu ekspertowego	strategia rozwiazywania konfliktów (wybór reguły)	D	napewniej A, niech ktoś potwierdzi: https://en.wikipedia. org/wiki/Rete_algorithm / według mnie D https://pl.hrvwiki. net/wiki/Rete_algorithm#Conflict_resolution
Jakiej techniki programowania brakuje w MiniZinc:	iteracji	skrótów list	rekurencji	wyrażeń warunkowych	С	"Note: No direct iteration over sets is admissible!" ~ https://ai ia.agh.edu.pl/_media/en:dydaktyka:krr:krr-2017-intro-minizinc 2.pdf#page=30 ale jest coś takiego jak forall
lle różnych zdań można wygenerować z użyciem poniższych faktów i reguly? word(article,a).word(article,every). word(noun,criminal). word(noun,'big kahuna burger'). word(verb,eats). word(verb,likes). sentence(Word1,Word2,Word3,Word4,Word5):- word(article,Word1), word(noun,Word2), word(verb,Word3), word(article,Word4), word(noun,Word5).	16	2	32	1	С	Sprawdziłem w SWISHu +1 5 słów każde ma dwie możliwości, więc 2^5 = 32