## TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Deep Graphical Models

aka, Energy Based Models

#### Distributions on Exponentially Large Sets

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{(x,y) \sim \operatorname{Pop}} - \ln P(y|x)$$

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} - \ln P(y)$$

The structured case:  $y \in \mathcal{Y}$  where  $\mathcal{Y}$  is discrete but iteration over  $\hat{y} \in \mathcal{Y}$  is infeasible.

# Semantic Segmentation



We want to assign each pixel to one of Y semantic classes.

For example "person", "car", "building", "sky" or "other".

### Constructing a Graph

We construct a graph whose nodes are the pixels and where there is an edges between each pixel and its four nearest neighboring pixels.



#### Labeling the Nodes of a Graph



 $\hat{y}$  assigns a semantic class  $\hat{y}[n]$  to each node (pixel) n.

We assign a score to  $\hat{y}$  by assigning a score to each node and each edge of the graph.

$$s(\hat{y}) = \sum_{n \in \text{Nodes}} s^{N}[n, \hat{y}[n]] + \sum_{n \in \text{Nodes}} s^{E}[\langle n, m \rangle, \hat{y}[n], \hat{y}[m]]$$
Node Scores

Edge Scores

### Using Deep Networks

For input x we use a network to compute the score tensors.

$$s^N[N,Y] = f_{\Phi}^N(x)$$

$$s^{E}[E, Y, Y] = f_{\Phi}^{E}(x)$$

## **Exponential Softmax**

for 
$$\hat{y}$$
  $s(\hat{y}) = \sum_{n} s^{N}[n, \hat{y}[n]] + \sum_{\langle n, m \rangle \in \text{Edges}} s^{E}[\langle n, m \rangle, \hat{y}[n], \hat{y}[m]]$   
for  $\hat{y}$   $P_{s}(\hat{y}) = \text{softmax}_{\hat{y}} s(\hat{y})$  all possible  $\hat{y}$ 

$$\mathcal{L} = -\ln P_{s}(y) \qquad \text{gold label (training label) } y$$

### Exponential Softmax is Typically Intractable



 $\hat{y}$  assigns a label  $\hat{y}[n]$  to each node n.

 $s(\hat{y})$  is defined by a sum over node and edge tensor scores.

 $P_s(\hat{y})$  is defined by an exponential softmax over  $s(\hat{y})$ .

Computing Z in general is #P hard (there is an easy direct reduction from SAT).

# Compactly Representing Scores on Exponentially Many Labels

The tensor  $s^N[N, Y]$  holds NY scores.

The tensor  $s^{E}[E, Y, Y]$  holds  $EY^{2}$  scores where e ranges over edges  $\langle n, m \rangle \in \text{Edges}$ .

#### Back-Propagation Through Exponential Softmax

$$s^{N}[I,Y] = f_{\Phi}^{N}(x)$$
  
$$s^{E}[E,Y,Y] = f_{\Phi}^{E}(x)$$

$$\frac{s(\hat{y})}{s} = \sum_{n} s^{N}[n, \hat{y}[n]] + \sum_{\langle n, m \rangle \in \text{Edges}} s^{E}[\langle n, m \rangle, \hat{y}[n], \hat{y}[m]]$$

$$P_s(\hat{y}) = \operatorname{softmax} \ s(\hat{y}) \ \text{all possible } \hat{y}$$

$$\mathcal{L} = -\ln P_s(y)$$
 gold label  $y$ 

We want the gradients  $s^N$ .grad[N, Y] and  $s^E$ .grad[E, Y, Y].

# $\mathbf{END}$