The Determinant

Textbook: Sections 3.1, 3.2 & 3.3

Observation (3.1.6)

When is a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ invertible?

Definition

We define the determinant funtion $\operatorname{Mat}_2(\mathbb{R}) \xrightarrow{det} \mathbb{R}$ to be $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$

Remark

- 1. As we observed above, a 2×2 matrix is invertible if and only if $det(A) \neq 0$.
- 2. It is helpful to think about $A = [\vec{x} \ \vec{y}]$ to to consist of column vectors $\vec{x}, \vec{y} \in \mathbb{R}^2$.

Proposition (3.1.1)

The area of the parallelogram spanned by vectors \vec{x} and \vec{y} in \mathbb{R}^2 is equal to the determinant of the matrix $A = [\vec{x} \ \vec{y}]$.

From this it is clear that the area is nonzero if and only if the vectors spanning the parallelogram are linearly independent, that is, not parallel.

Observation

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 be a 2×2 matrix and denote its columns as $\vec{x} = \begin{pmatrix} a \\ c \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} b \\ d \end{pmatrix}$.

We can think of A as the matrix of a linear transformation

$$\mathbb{R}^2 \to \mathbb{R}^2$$

sending

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} a \\ c \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} a \\ c \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} b \\ d \end{pmatrix}$$

Discussion

Compute the determinant, draw the parallelogram and decide if the corresponding transformation is invertible for the following matrices.

1.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$$

2.

$$A = \begin{pmatrix} 4 & 2 \\ -2 & -1 \end{pmatrix}$$

Remark

- 1. Let again $A = [\vec{x} \ \vec{y}]$ be a 2×2 matrix with columns \vec{x} and \vec{y} . The determinant function as a funtion of the columns $det(\vec{x}, \vec{y})$ has the following properties
 - (a) linear in both arguments
 - (b) alternating
 - (c) normalized
- 2. The book calls this the area function $Area(\vec{x}, \vec{y})$ of the vectors spanning the parallelogram.

Proposition (3.1.4)

The determinant funtion is the unique funtion satisfying all properties above.

Proof. In the book

Discussion

Can you show that

$$\det([\ \vec{x}\ \ \vec{y}\])=0$$

if $\{\vec{x}, \vec{y}\}$ is linearly dependent by only using the properties above?

Determinant of n x n matrices

Textbook: Sections 3.2

Goal

Generalize the det function to all $n \times n$ matrices as a function of n vectors $\vec{x}_1, \dots, \vec{x}_n$ with an equivalent set of properties.

- 1. multilinear
- 2. alternating
- 3. normalized

Definition (3.2.4)

Let $A \in \operatorname{Mat}_n(\mathbb{R})$ be a $n \times n$ matrix. Define the ij-minor A_{ij} to be the $(n-1) \times (n-1)$ matrix obtained by deleting the i-th row and jth column.

Discussion

Compute for the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ the minor A_{23}

Proposition (3.2.5, 3.2.6)

There exists a unique multilinear and alternating function f on the columns of 3×3 matrices that is normalized such that $f(I_n) = 1$.

Definition (3.2.7)

We define the determinant of a 3×3 matrix to be this unique function.

$$det(A) = a_{11}det(A_{11}) - a_{12}det(A_{12}) + a_{13}det(A_{13})$$

Discussion

Compute the determinant of the matrix

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 1 \\ 0 & 3 & 2 \end{pmatrix}$$

Remarks

- 1. The formula through which we defined the determinant function is called the *cofactor expansion*.
- 2. It is also common to call

$$a_{ij}det(A_{ij})$$

the ij-cofactor of a matrix A.

3. There is nothing special about the first row, we can expand the det(A) along any row or column.

Example

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 1 \\ 0 & 3 & 2 \end{pmatrix}$$

Definition We define for an $n \times n$ matrix the determinant function

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$

as the cofactor expansion along any row i or likewise along any column.

Theorem 3.2.8

- 1. There is exactly one alternating multilinear function $\operatorname{Mat}_n(\mathbb{R}) \xrightarrow{f} \mathbb{R}$ such that $f(I_n) = 1$, which is the determinant function defined above.
- 2. Any other alternating multilinear function f on square $n \times n$ matrices satisfies

$$f(A) = det(A) \cdot f(I_n)$$

Discussion

Write the first line of the cofactor expansion of the determinant for the matrix

$$A = \begin{pmatrix} 1 & -3 & 1 & 4 \\ 8 & -4 & 2 & -2 \\ 3 & -7 & 5 & 3 \\ 0 & 3 & -2 & 4 \end{pmatrix}$$

Exercise: Read Example 3.2.9 in the book and practice computing determinants.

Theorem (3.2.14)

An $n \times n$ matrix A is invertible if and only if $det(A) \neq 0$.

Proof. In the book

Remark

Notice that this agrees perfectly with the discussion above in the 2×2 case.

Further properties of determinants

Textbook: Sections 3.3

Proposition (3.3.7)

If A and B are $n \times n$ matrices, then

- 1. det(AB) = det(A)det(B)
- 2. If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$

Proof.

This is very useful for transformations, because their matrix representative depends on a choice of basis

Corollary (3.3.8)

For a linear transformation $V \xrightarrow{T} V$ on a vector space of finite dimensional vector space V

$$det([T]^{\alpha}_{\alpha}) = det([T^{\beta}_{\beta})$$

for any two bases α and β .

Proof.

So we can define independently of the choses basis

Definition (3.3.9)

The determinant det(T) of a linear transformation $V \xrightarrow{T} V$ on a vector space of finite dimension is the determinant of $[T]^{\alpha}_{\alpha}$ for any choice of basis α .

Proposition (3.3.11)

A linear transformation $V \xrightarrow{T} V$ on a vector space of finite dimension is invertible if and only if $det(T) \neq 0$. *Proof.*

Proposition (3.3.12)

For two linear transformations $V \xrightarrow{S} V$ and $V \xrightarrow{S} V$ on a vector space of finite dimension, then

- 1. $det(ST) = det(S) \cdot det(T)$
- 2. if T is an isomorphism, then $det(T^{-1}) = \frac{1}{det(T)}$

Proof.

Eigenvalues Pt I

Textbook: Section 4.1

Observation

A transformation $T \in \mathcal{L}(V)$ can both stretch and rotate vectors $\vec{v} \in V$. Can we find nonzero vectors which are only stretched? (since $T(\vec{0}) = \vec{0}$ is always true...)

Definition (4.1.2)

Given a linear transformation $V \xrightarrow{T} V$.

1. A nonzero vector $\vec{v} \in V$ is called an eigenvector of T if for some scalar $\lambda \in \mathbb{R}$

$$T(\vec{v}) = \lambda \vec{v}$$

That is, \vec{v} is only stretched by T.

2. If a nonzero vector $\vec{v} \in V$ such that $T(\vec{v}) = \lambda \vec{v}$ exists, we call λ an eigenvale of T corresponding to \vec{v} .

One also says: ' \vec{v} is an eigenvector of T with eigenvalue λ '

Examples

1. The projection onto the line of slope m in \mathbb{R}^2 .

2. (4.1.1 in the book)

The transformation $\mathbb{R}^2 \xrightarrow{T_A} \mathbb{R}^2$ represented by the matrix

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

has an eigenvector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ with eigenvalue $\lambda_1 = 3$ and another eigenvector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ with eigenvalue $\lambda_2 = 1$.

Question

How do we find eigenvectors and eigenvalues of a transformation $T \in \mathcal{L}(\mathcal{V})$ in general?

This observation proves the following

Proposition (4.1.5)

A nonzero vector $\vec{v} \in V$ is an eigenvector of T with eigenvalue λ if and only if

$$\vec{v} \in \ker(T - \lambda \cdot \mathrm{id}_V)$$

Question

But for which $\lambda \in \mathbb{R}$ can we expect to find eigenvectors?

Proposition (4.1.9)

 $\lambda \in \mathbb{R}$ is an eigenvalue of $T \in \mathcal{L}(\mathcal{V})$ if and only if

$$\det\left(T - \lambda \cdot \mathrm{id}_V\right) = 0$$

That is, there are eigenvectors $\vec{v} \in V$ with eigenvalue λ .

Proof.

Proposition (4.1.6)

For a given eigenvalue λ of $T \in \mathcal{L}(\mathcal{V})$ the set of all eigenvectors

$$E_{\lambda} = \{ \vec{v} \in V \mid T(\vec{v}) = \lambda \vec{v} \}$$

is a subspace of V called the λ -eigenspace of T.

Proof.

Example (4.1.1)

Let's have another look at example (4.1.1) from the book, Let $\mathbb{R}^2 \xrightarrow{T_A} \mathbb{R}^2$ be the linear transformation represented by the matrix

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Compute its eigenvalues and the corresponding eigenspaces with the theory introduced above.