Correction TD2

September 25, 2018

1 Rappels

1.1 Définition

- f est une application d'un ensemble de départ E vers un ensemble d'arrivée F si et seulement si, $\forall x \in E, \exists ! \ y \in F \mid y = f(x)$
- f est une application injective d'un ensemble de départ E vers un ensemble d'arrivée F si et seulement si, f est une application et si $f(x_1) = f(x_2) \implies x_1 = x_2$
- f est une application surjective si et seulement si, f est une application et si $\forall y \in F, \exists x \in E \mid y = f(x)$
- f est une application bijective si et seulement si f est injective et surjective. $\forall y \in F, \exists ! \ x \in E \mid y = f(x)$

2 Exercice 1

Je vous propose de commencer par les exercices 2 à 5 qui sont plus inutif puis de revenir sur l'exercice 1.

2.1 Question 1

 $f:\mathbb{R} \to \mathbb{R}$. f est un endomorphisme car son ensemble d'arrivée est le même que son ensemble de départ.

$$f(x) = \begin{cases} x & \text{si } x > 0 \\ -x & \text{si } x \le 0 \end{cases}$$

1. Il faut montrer que $\forall x \in \mathbb{R}$, l'ensemble de départ, $\exists ! y \in \mathbb{R}$, l'ensemble d'arrivée tel que y = f(x)

soit
$$x \in \mathbb{R}$$

si $x < 0, f(x) = -x$
si $x > 0, f(x) = x$

Donc $\forall x \in \mathbb{R}$, l'ensemble de départ, $\exists ! y \in \mathbb{R}$, l'ensemble d'arrivée tel que y = f(x), f est une application.

- 2. f n'est pas une application injective car f(1) = 1 et f(-1) = 1, et $1 \neq -1$
- 3. f est une application surjective si $\forall y \in \mathbb{R}, \exists x \in R_+ | y = f(x)$. Or $-2 \in R$ mais $\nexists x \in R_+ | -2 = f(x)$. Donc f n'est pas surjective.

4. f n'est pas bijective car f n'est pas surjective ou injective.

2.2 Question 2

 $h: \mathbb{R}_+ \to \mathbb{R}$

$$g(x) = x$$

1. g est une application même démarche que dans l'exercice 1.

2. g est pas injective car g est une application et $\forall x_1, x_2 \in \mathbb{R}_+, g(x_1) \neq g(x_2) \implies x_1 \neq x_2$. Ici il suffit de remplacer g(x) par sa définition. Nous pouvons aussi dire que g est injective car g est une application et g est strictement monotone (croissante ou décroissante) sur son domaine de définition.

3. g est une application surjective si $\forall y \in \mathbb{R}, \exists x \in R_+ | y = g(x)$. Or $-2 \in R$ mais $\nexists x \in R_+ | -2 = g(x)$. Donc g n'est pas surjective.

4. g n'est pas bijective car g n'est pas surjective.

2.3 Question 3

 $h: \mathbb{R} \to \mathbb{R}_+$

$$h(x) = \begin{cases} x & \text{si } x > 0 \\ -x & \text{si } x \le 0 \end{cases}$$

1.

soit
$$x \in \mathbb{R}$$

si $x < 0, f(x) = -x$
si $x > 0, f(x) = x$

Donc $\forall x \in \mathbb{R}$, l'ensemble de départ, $\exists ! y \in \mathbb{R}_+$, l'ensemble d'arrivée tel que y = h(x), Donc h est une application.

- 2. h n'est pas injective car h(1) = 1 et h(-1) = 1, et $1 \neq -1$
- 3.

soit
$$y \in \mathbb{R}_+$$
, $|x| = y$
cas 1: $x > 0$
 $x = y$
cas 2: $x < 0$
 $x = -y$

Dans tous les cas $x \in \mathbb{R}$, donc $\forall y \in \mathbb{R}_+, \exists x \in \mathbb{R} | y = h(x), h$ est surjective.

1. h n'est pas bijective car h n'est pas injective.

2.4 Question 4

$$f: \mathbb{R}_+ \to \mathbb{R}_+$$

$$\sigma(x) = x$$

- 1. σ est une application, même démarche que la question 1.
- 2. σ est une application injective car σ est une application et $\forall x_1, x_2 \in \mathbb{R}_+, \sigma(x_1) = \sigma(x_2) \implies x_1 = x_2$. On utilise la définition de σ .
- 3. σ est une application surjective car σ est une application et $\forall y \in \mathbb{R}_+, \exists x \in R_+ | y = \sigma(x)$. (même démarche que la question 3).
- 4. σ est bijective car σ est injective et surjective.

3 Exercice 2

Soit $E = \{a, b, c\}$ et $F = \{1, 2, 3\}$

3.1 Question 1

- 1. f n'est pas une application car $c \in E$ mais il n'existe pas f(c) dans F. Ou plus formellement $\exists x \in E | y \neq f(x)$
- 2. f n'est pas une application donc elle est ni surjective, ni injective et ni bijective.

3.2 Question 2

- g n'est pas une application car $a \in E$ mais a a deux images dans F. C'est à dire $\nexists! y \in F | g = f(a)$
- q n'est pas une application donc elle n'est pas surjective, injective ou bijective

3.3 Question 3

- h est une application car $\forall x \in E, \exists ! y \in F | y = h(x)$
- $3 \in F | \forall x \in E, 3 \neq f(x)$ donc h n'est pas surjective.
- h(a) = 2 et h(c) = 2, or $a \neq c$ donc h n'est pas injective.
- $\bullet\,$ hn'est ni injective ni surjective donc h
 n'est pas bijective.

4 Exercice 3

- f est une application car $\forall x \in E, \exists ! y \in F \mid y = f(x)$.
- f est injective car $2 \neq 1 \iff f(a) \neq f(b) \implies a \neq b$
- f n'est surjective car 3 n'admet pas d'antécédent dans E ou $\nexists x \in E | f(x) = 3$
- $\bullet\,$ fn'est pas surjective, fn'est pas bijective.

5 Exercice 4

- f(a) = 2, f(b) = 1, f(c) = 2, donc $\forall x \in E, \exists ! y \in F \mid y = f(x), f$ est une application.
- h(a) = 2 et h(c) = 2, or $a \neq c$ donc h n'est pas injective.
- $\bullet \ f$ est surjective car tout $y \in F$ a un antécédent dans E ou $\forall y \in F, \exists x \in E \mid f(x) = y$
- \bullet f n'est pas injective, f
 n'est pas bijective.

6 Exercice 5

Ref exercices 2 à 4

7 Exercice 6

E est fini si il existe une application <u>bijective</u> f
 de l'ensemble $\{1,2,\dots,n\}$ vers l'ensemble E

Remarque: si f est bijective, card(E) = card(F).

7.1 Question 1

Montrons que $card(\bar{A}) = card(E) - card(A)$ On sait que $A \cap \bar{A} = \emptyset$ et que A est un sous-ensemble de E \$A. Donc $\cup \bar{A} = E$. (ref rappels de cour dans la correction du TD1). Donc A et \bar{A} sont disjoints. $card(A \cup \bar{A}) = card(A) + card(\bar{A})$ d'après le rappel de l'énoncé. Il ne nous reste plus qu'à conclure.

$$\begin{aligned} & card(A \cup \bar{A}) = card(A) + card(\bar{A}) \\ & \iff card(\bar{A}) = card(A \cup \bar{A}) - card(A) \\ & \text{Or } card(A \cup \bar{A}) = E \\ & \text{Donc } card(\bar{A}) = card(E) - card(A) \end{aligned}$$

7.2 Question 2

Montrons que $card(B) = card(B \setminus A) + card(B \cap A)$. Pour le faire avec les informations de l'énoncé, il nous faut montrer que $B \setminus A \cap (B \cap A) = \emptyset$. ça nous permettra d'écrire que $card(B \setminus A \cup (B \cap A)) = card(B \setminus A) + card(B \cap A)$. Il nous faut aussi montrer que $B \setminus A \cup (B \cap A) = B$.

7.2.1 Question 2.1

1. Question 2.1 partie 1

Montrons d'abord que $B = B \setminus A \cup (B \cap A)$.

$$B = [x \in B] \iff [(x \in B \text{ et } x \in A) \text{ ou } (x \in B \text{ et } x \notin A)]$$

$$\iff [(x \in B \cap A) \text{ ou } (x \in B \cap \bar{A})]$$

$$\iff [x \in (B \cap A) \cup (B \cap \bar{A})]$$

$$\iff [x \in (B \cap A) \cup (B \setminus A)]$$

$$\iff (B \cap A) \cup (B \setminus A)$$

nous avons vu dans le TD1 que $(B \cap \overline{A}) = B \setminus A$. Il nous reste à montrer que $(B \cap A) \cap (B \setminus A)$ est vide.

2. Question 2.1 partie 2

$$(B \cap A) \cap (B \setminus A) = [(x \in B \text{ et } x \in A) \text{ et } (x \in B \text{ et } x \notin A)]$$

$$\iff [x \in B \text{ et } x \in A \text{ et } x \notin A]$$

$$\iff [x \in B \text{ et } x \in A \cap \overline{A}]$$

$$\iff [x \in B \text{ et } x \in \emptyset]$$

$$\iff [x \in B \cap \emptyset]$$

$$\iff \emptyset$$

 $\operatorname{car} A \cap \bar{A} = \emptyset$

Donc à partir des deux résultats précédents, nous pouvons dire que.

$$card(B \setminus A \cup (B \cap A)) = card(B \setminus A) + card(B \cap A)$$

 $\iff card(B) = card(B \setminus A) + card(B \cap A)$

7.2.2 Question 2.2

Nous avons vu que $B = B \setminus A \cup (B \cap A)$. De la même manière nous pouvons écrire que:

$$(A \cup B) = ((A \cup B) \setminus A \cap B) \cup ((A \cup B) \cap (A \cap B))$$

souvenez-vous que $(A \cup B) \setminus A \cap B$ est la différence symétrique vue dans le TD1. Donc

$$(A \cup B) = (A \setminus B) \cup (B \setminus A) \cup ((A \cup B) \cap (A \cap B))$$

$$\iff (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$

$$\operatorname{car}(A \cap B) \subset (A \cup B).$$

Nous avons déjà établi $(B \cap A) \cap (B \setminus A) = \emptyset$ de la même manière on peut montrer que $(A \cap B) \cap (A \setminus B) = \emptyset$ et $(A \setminus B) \cap (B \setminus A) = \emptyset$. Ceci nous permet d'écrire que

$$card(A \cup B) = card((A \setminus B)) + card(B \setminus A) + card(A \cap B)$$

$$\iff card(A) - card(B \cap A) + card(B) - card(B \cap A) + card(A \cap B)$$

$$\iff card(A) + card(B) - card(B \cap A)$$

7.3 Question 3

En utilisant le résultat de la question précédente nous pouvons écrire que

$$card(A \cup B \cup C) = card((A \cup B) \cup C)$$

$$\iff card((A \cup B)) + card(C) - card((A \cup B) \cap C)$$

$$\iff card(A) + card(B) - card(A \cap B) + card(C) - card((A \cup B) \cap C)$$

$$\iff card(A) + card(B) - card(A \cap B) + card(C) -$$

$$card((A \cap C) \cup (B \cap C))$$

$$\iff card(A) + card(B) - card(A \cap B) + card(C) -$$

$$(card(A \cap C) + card(B \cup C) - card(A \cap B \cap C))$$

$$\iff card(A) + card(B) - card(A \cap B) + card(C) -$$

$$card(A \cap C) - card(B \cup C) +$$

$$card(A \cap B \cap C)$$

8 Points de Réflexion

- Exercice 1
 - Soit E, l'ensemble d'applications; et A, B, et C les sous-ensembles d'applications injectives, surjectives et bijectives respectivement. Représentez ces ensembles.
 - Déterminez l'ensemble contenant f(x) = |x| à partir des sous-ensembles A, B, et C. (au moins 2 possibilités)
 - Est-ce qu'un endomorphisme est toujours bijectif?

www.economie-gestion.com

- Exercice 2
 - Soit $f: \mathbb{R} : \to 4$. f est-elle une application bijective?
 - Construisez une application bijective. Laissez libre cours à votre imagination. ;-)