Using "imgaug" Python Library for Image Augmentation

Alex Williamson (<u>alswilli@ucsc.edu</u>) UC Santa Cruz CMPS 184 - Spring 2019

What is imgaug?

- Python library that allows for easy image augmentation
- Provides a wide variety of different augmentations that are commonly used when attempting to improve the task accuracy of AI being trained with images

Summary of Tutorial

Goal of Tutorial

 Demonstrate how to use imgaug to improve classification accuracy of Deep Learning-based Image Classifier for two Chihuahuas

Tutorial Process

- Stores 26 images of a black Chihuahua (Scarlett) and 34 images of a white
 Chihuahua (Pistachio) for a total of 60 images
- Two Experiments
 - Exp. 1 trains with 48 randomly selected non-augmented images and validated with the remaining 12 images
 - Exp. 2 trains with 48 randomly selected non-augmented images + 96 images from applying 2 augmentations to non-augmented images
 - Validation set gets same treatment (12 non-aug + 24 aug images)
 - Both models in the experiments are the same and trained for 50 epochs

Results of Tutorial

- Validation accuracy for Experiment 1 -> 63%
- Validation accuracy for Experiment 2 -> 100%

Python Libraries Used

Main Libraries

- o imgaug
- tensorflow
- keras

Additional Libraries

- sklearn
- matplotlib
- o pandas
- o numpy
- o os, glob, pickle

Key Commands during Tutorial

- img = image.load_img(imagePath)
 - Uses keras.preprocessing to load an image from a path on computer
- plt.imshow(img)
 - Uses matplotlib.pyplot to display image to jupyter notebook cell
- aug_img = aug.augment_image(img)
 - Uses imgaug to apply an augmentation to img and save the new augmented image
- seq = iaa.Sequential([aug1, aug2, aug3])
 - Uses imgaug to allow multiple augmentations to be applied to one image at once
- x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2)
 - Uses sklearn.model_selection to randomly split image data into train and testing variables
- model.compile(), model.fit(), and model.predict()
 - Use keras to execute Deep Learning training process with train and testing variables

Link to Tutorial!

https://nbviewer.jupyter.org/github/alswilli/CMPS-184-ImgAug-Presentation/blob/master/C MPS%20184%20Presentation%20-%20imgaug%20Python%20library%20with%20Deep%20Learning.ipynb