Please replace the current version of the claims with the following rewritten version:

Listing of Claims:

1. (Currently Amended) An LCD apparatus comprising:

an LCD panel including gate lines receiving a gate driving signal and an output instruction signal line transmitting an output instruction signal and receiving an image data externally provided, and displaying an image;

a data driver outputting the image data to the LCD panel;

a gate driver outputting a gate driving signal to the LCD panel; and

a timing controller providing a first control signal to the gate driver so as to control an output of the gate driving signal and providing the output instruction signal to the data driver via the output instruction signal line so as to control an output of the image data according to a delay of the gate driving signal,

wherein the gate lines and the output instruction signal line are disposed substantially parallel to each other on the same substrate, and

wherein the output instruction signal line is substantially a same length as the gate lines.

- 2. (Previously presented) The LCD apparatus of claim 1, wherein the output instruction signal line is formed on an area adjacent to the data driver.
- 3. (Previously presented) The LCD apparatus of claim 2, further comprising a plurality of signal transmission members electrically connecting the data driver with the LCD panel,

wherein the output instruction signal line receives the output instruction signal from the timing controller via one of the signal transmission members.

4. (Previously Presented) The LCD apparatus of claim 3, wherein the LCD panel comprises:

Application No. 10/756,939

Response dated: November 26, 2007

Reply to Non-Final Office Action dated: July 24, 2007

the gate lines receiving the gate driving signal via the gate driver, the gate lines disposed on the LCD panel, extended in a first direction and arranged in a second direction substantially perpendicular to the first direction; and

a plurality of data lines receiving the image data via the data driver, the data lines disposed on the LCD panel, extended in the second direction and arranged in the first direction.

- 5. (Currently Amended) The LCD apparatus of claim 4, wherein the <u>output instruction</u> signal line is extended in the first direction and is substantially parallel to the gate lines.
- 6. (Original) The LCD apparatus of claim 4, wherein the LCD panel comprises a plurality of pixel areas defined by the gate and data lines, and the gate driving signal is provided to a corresponding pixel area at a same time as that of the image data provided to the corresponding pixel area.
 - 7. (Currently Amended) An LCD apparatus comprising:

an LCD panel including gate lines receiving a gate driving signal and an output instruction signal line transmitting an output instruction signal and receiving an image data, and displaying an image;

a data driver outputting the image data to the LCD panel;

a gate driver outputting a gate driving signal to the LCD panel;

a timing controller providing a first control signal to the gate driver so as to control an output timing of the gate driving signal and providing the output instruction signal to the data driver so as to control an output timing of the image data according to a delay of the gate driving signal; and

a plurality of signal transmission members electrically connecting the data driver with the LCD panel;

wherein the output instruction signal line provides the output instruction signal to the data driver via one of the signal transmission members; [[and]]

wherein the gate lines and the output instruction line are disposed substantially parallel to each other on the same substrate; and

Application No. 10/756,939

Response dated: November 26, 2007

Reply to Non-Final Office Action dated: July 24, 2007

wherein the output instruction signal line is substantially the same length as the gate lines.

8. (Previously Presented) The LCD apparatus of claim 7, wherein the LCD panel comprises:

the gate lines extended in a first direction and arranged in a second direction substantially perpendicular to the first direction; and

a plurality of data lines extended in the second direction and arranged in the first direction.

- 9. (Previously presented) The LCD apparatus of claim 8, wherein the output instruction signal line is extended in the first direction.
- 10. (Original) The LCD apparatus of claim 9, wherein the LCD panel comprises a plurality of pixel areas defined by the gate and data lines, and the gate driving signal and the image data are substantially simultaneously provided to a corresponding pixel area.
- 11. (Currently Amended) The LCD apparatus of claim 7, wherein the <u>output instruction</u> signal line is formed on the LCD panel and adjacent to the data driver.
 - 12. (Currently amended) An LCD apparatus comprising:
 - an LCD panel including gate lines receiving a gate driving signal;
 - a data driver coupled to the LCD panel;
 - a gate driver coupled to the LCD panel;
 - a timing controller coupled to the gate driver and to the data driver; and
- an output instruction signal line formed on the LCD panel, the output instruction signal line electrically connecting the timing controller with the data and gate drivers;

wherein the gate lines and the output instruction signal line are disposed substantially parallel to each other on the same substrate; and

wherein the output instruction signal line is substantially a same length as the gate lines.

Application No. 10/756,939

Response dated: November 26, 2007

Reply to Non-Final Office Action dated: July 24, 2007

13. (Previously presented) The LCD apparatus of claim 12, wherein the output instruction signal line is formed on an area adjacent to the data driver.

14. (Previously presented) The LCD apparatus of claim 13, further comprising a plurality of signal transmission members electrically connecting the data driver with the LCD panel,

wherein the output instruction signal line receives a control signal from the timing controller via one of the signal transmission members so as to control an output of an image data from the data driver according to a delay of the gate driving signal.