# ЛЕКЦИИ

# Безопасность жизнедеятельности

| 1. Введение                                           |               |
|-------------------------------------------------------|---------------|
| 1.1. Содержание и цель изучения БЖД                   |               |
| 1.1.1. Основные положения БЖД                         |               |
| 1.1.2. Цель БЖД                                       | 4             |
| 1.1.3. Аксиома о потенциальной опасности              | 5             |
| 1.2. Правовые и нормативно-технические основы обест   | течения БЖД 5 |
| 1.2.1. Организация службы охраны труда и природы      |               |
| 1.2.2. Функции отдела охраны труда:                   |               |
| 1.2.3. Трехступенчатый контроль за охраной труда      |               |
| 1.2.4. Обучение работающих безопасности труда         |               |
| 1.2.5. Госты, Нормы и правила по охране труда и пр    |               |
| структура                                             |               |
| 1.3. Опасные и вредные факторы среды                  |               |
| 1.3.1. Группы опасных и вредных производственных      |               |
| 1.4. Травматизм и профзаболевания                     |               |
| 1.4.1. Отчетность по производственному травмат        |               |
| 1.5. Учет и расследование несчастных случаев          |               |
| 1.5.1. Виды расследования:                            |               |
| 1.6. Методы исследования причин травматизма           |               |
| 2. Оздоровление воздушной среды                       |               |
| 2.1. Нормативные содержания вредных веществ и микр    |               |
| 2.1.1. Нормирование параметров микроклимата           |               |
| 2.2. Методы и средства контроля защиты воздушной ср   |               |
| 2.2.1. Системы вентиляции                             |               |
| 2.2.2. Классификация систем вентиляции                |               |
| 2.2.3. Приточная система вентиляции                   |               |
| 2.2.4. Система вытяжной вентиляции                    |               |
| 2.2.5. Достоинства и недостатки систем естестве       |               |
| механической вентиляций                               |               |
| 2.3. Система очистки воздуха                          |               |
| 2.3.1. Способы очистки воздуха                        |               |
| 2.3.2. Контроль параметров воздушной среды            |               |
| 3. Электробезопасность                                |               |
| 3.1. Воздействие электрического тока на организм чело |               |
|                                                       |               |
| 3.1.1. Причины эл. травм                              |               |
| 3.1.2. Местные электрические травмы                   |               |
| 3.1.2. Местные электрические травмы                   |               |
| 3.1.2. Местные электрические травмы                   |               |

|    | 3.2.1. Факторы, влияющие на исход поражения электрическим                            |    |
|----|--------------------------------------------------------------------------------------|----|
|    | током:                                                                               |    |
|    | 3.2.2                                                                                |    |
|    | 3.2.3                                                                                | 10 |
|    | 5.2.4. Ларактер возоеиствия постоянного и переменного токов на<br>организм человека: | 16 |
|    |                                                                                      | 10 |
|    | 3.2.5. Предельно-допустимые уровни (ПДУ) напряжений                                  | 16 |
|    | прикосновения и сила тока при аварийном режиме эл. установок                         |    |
|    | 3.2.6. Сопротивление тела человека                                                   |    |
|    | 3.3. Классификация помещений по опасности поражения эл. током (ПУ 85).               |    |
|    | ,                                                                                    |    |
|    | 3.4. Методы и средства защиты: заземление, зануление, отключение и др                |    |
|    | 3.4.1. Общетехнические средства защиты                                               |    |
|    | 3.4.2. Специальные средства защиты                                                   |    |
|    | 3.4.3. Принцип действия заземления                                                   |    |
|    | 3.4.4. Принцип действия зануления                                                    |    |
|    | 3.4.5. Принцип действия защитного отключения                                         | 19 |
|    | 3.4.6. Требования эл. безопасности к установкам ЭТИ                                  | 10 |
|    | (электротехнических изделий)                                                         |    |
| 4. | . Производственное освещение                                                         |    |
|    | 4.1. Физиологические характеристики зрения                                           |    |
|    | 4.2. Светотехнические величины                                                       |    |
|    | 4.3. Естественное освещение                                                          |    |
|    | 4.3.1. Системы естественного освещения                                               |    |
|    | 4.4. Искусственное освещение                                                         |    |
|    | 4.4.1. Системы искусственного освещения                                              | 21 |
|    | 4.4.2. Факторы, учитываемые при нормировании искусственного                          |    |
|    | освещения:                                                                           |    |
|    | 4.4.3. Методика расчета естественного освещения                                      |    |
|    | 4.4.4. Медодика расчета искусственного освещения                                     |    |
|    | 4.4.5. Приборы конроля                                                               | 23 |
| 5. | . Производственный шум                                                               | 23 |
|    | 5.1.1. Вредное воздействие шума:                                                     |    |
|    | 5.1.2. Физические характеристики шума                                                |    |
|    | 5.2. Звуковое восприятие человеком                                                   |    |
|    | 5.3. Нормирование шума                                                               |    |
|    | 5.3.1. Нормы шума для помещений лабораторий                                          | 25 |
|    | 5.4. Мероприятия по борьбе с шумом                                                   | 25 |
| 6  | . Инфразвук                                                                          |    |
| ٠, | 6.1. Опасность для человека                                                          |    |
|    | 6.2. Нормирование инфразвука                                                         |    |
|    | 6.3. Защитные мероприятия                                                            |    |
|    | 6.4. Приборы контроля                                                                |    |
|    |                                                                                      |    |

| 7. Ультразвук                                                                | 27       |
|------------------------------------------------------------------------------|----------|
| 7.1. Нормирование ультразвука                                                | 27       |
| 7.2. Меры защиты                                                             | 27       |
| 8. Вибрация                                                                  | 27       |
| 8.1. Основные характеристики                                                 |          |
| 8.2. Нормирование вибрации                                                   |          |
| 8.3. Методы снижения вибрации                                                |          |
| 8.4. Спектр электромагнитного излучения                                      |          |
| 9. Лазерное излучение                                                        |          |
| 9.1. Опасные и вредные факторы при эксплуатации лазеров                      |          |
| 9.1. Опасные и вредные факторы при эксплуатации лазеров                      |          |
| 9.2. Бредные воздействия лазерного излучения.                                |          |
| 9.4. Меры защиты от воздействия лазерного излучения                          |          |
|                                                                              |          |
| 10. Электромагнитное поле                                                    |          |
| 10.1. Характеристики эл.магнитного поля:                                     |          |
| 10.2. Вредное воздействие эл. магнитных полей                                |          |
| 10.3. Нормирование эл. магн. полей                                           |          |
| 10.4. Мероприятия по защите от воздействия электромагнитных полей            |          |
| 11. Инфракрасное излучение                                                   | 33       |
| 11.1. Нормирование ИФ излучения.                                             |          |
| 11.2. Защита от воздействия ИФ излучения                                     |          |
| Приборы контроля ИФ                                                          |          |
| Актинометр (1 — 500) Вт/м <sup>2</sup> .Радиометры. Спектрорадиометр. Радиом |          |
| оптического излучения .Дозиметр оптического излучения                        | 33       |
| 12. Ультрафиолетовое излучение                                               | 33       |
| 12.1. Нормирование УФ излучения                                              |          |
| 12.2. Меры защиты                                                            |          |
| 12.3. Средства индивидуальной защиты                                         |          |
| 13. Ионизирующее излучение                                                   |          |
| 13.1. Характеристики ионизирующего излучения                                 |          |
| Виды и источники ИИ в бытовой, произв. и окружающей среде:                   |          |
| 13.2. Биологическое действие ионизирующих излучений                          |          |
| 13.2.1. Изменения на клеточном уровне различают:                             |          |
| 13.3. Нормирование ИИ                                                        |          |
| 13.3.1. Основные санитарные правила (ОСП) работы с источникал                |          |
| ионизирующих излучений                                                       |          |
| 13.4. Методы защиты от ионизирующих излучений                                |          |
| Приборы радиационного контроля:                                              |          |
| 14. Пожарная безопасность                                                    |          |
| 14.1. Классификация помещений и зданий по степени                            | 38       |
| 14.1. Классификация помещении и здании по степени взрывопожарноопасности     | 20       |
| 14.2. Причины возникновения пожаров, связанные со специальностью             |          |
| студентов                                                                    |          |
| V1 J ДV111 ∪D                                                                | ····· J) |

| 14.2.1. Статистические данные о пожарах                               |
|-----------------------------------------------------------------------|
| 14.2.2. Причины возникновения короткого замыкания:                    |
| 14.3. Классификация взрыво- и пожароопасных зон помещения в соотв-    |
| вии с ПУЭ40                                                           |
| 14.4. Меры по пожарной профилактики41                                 |
| 14.5. Способы и средства тушения пожаров                              |
| 14.5.1. Классификация пожаров и рекомендуемые огнегасительные         |
| вещества                                                              |
| 14.5.2. Организация пожарной охраны на предприятии43                  |
| 15. Безопасность оборудования и производственные процессы             |
| 15.1. Требования безопасности при проектировании машин и механизмов43 |
| 15.2. Опасные зоны оборудования и средства защиты от них              |
| 16. Основные положения теории чрезвычайных ситуаций45                 |
| 16.1. Аксиома о потенциальной опасности деятельности человека 46      |
| 16.1.1. Задачи БЖД:                                                   |
| 16.2. Классификация и общие характеристики чрезвычайных ситуаций 46   |
| 16.2.1. Условия возникновения ЧС                                      |
| 16.2.2. Стадии развития ЧС                                            |
| 16.2.3. Принципы обеспечения БЖД в ЧС47                               |
| 16.3. Гражданская оборона                                             |
| 16.3.1. Ударная волна, параметры, единицы измерения, особенности      |
| воздействия, способы защиты                                           |
| 16.3.2. Особенности воздействия ударной волны                         |
| 1. Введение                                                           |

# 1.1. Содержание и цель изучения БЖД.

### 1.1.1. Основные положения БЖД.

**БЖД** — система знаний, направленных на обеспечение безопасности в производственной и непроизводственной среде с учетом влияния человека на среду обитания.

#### 1.1.2. Цель БЖД

 $\coprod$ ель = БС +  $\Pi$ T + C3 +  $\Pi$ P + KT

БС — достижение безаварийных ситуаций

ПТ — предупреждение травматизма

СЗ — сохранение здоровья

ПР — повышение работоспособности

КТ — повышение качества труда

Для достижения поставленной цели необходимо решить две группы задач:

1. Научные (мат. модели в системах человек-машина; Среда обитаниячеловек-опасные (вредные) производственные факторы; человек-ПК и т.д.) 2. Практические (обеспечение безопасных условий труда при обслуживании оборудования)

#### 1.1.3. Аксиома о потенциальной опасности

Любая деятельность потенциально опасна.

Количественная оценка опасности — риск (R).

$$R = \frac{n}{N}$$
, где  $n$  - число случаев,  $N$  - общее количество людей.

По статистике n = 500 тыс. чел. ( погибают неестественной гибелью на производстве за год)

N = 160 млн. чел.

Существует понятие нормируемого риска (приемлемый риск) R=10<sup>-6</sup>.

# 1.2. Правовые и нормативно-технические основы обеспечения БЖЛ.

Основные положения изложены в Конституции (дек. 1994г) в законе по охране труда и охране природы (1992-93) в КЗоТе.

В качестве подзаконных актов выступают ГОСТы, Нормы и Правила.

Взаимодействие государственного надзора, ведомственного и общественного контроля.

- I. <u>Высший надзор</u> по соблюдению законности осуществляет ген. прокурор.
- II. <u>Государственный надзор</u> в соответствии со 107 ст. КЗоТ за соблюдением норм и правил по охране труда осуществляется:
- 1. специально уполномоченными инспекциями, независящие в своей деятельности от деятельности предприятия (Роскомгидромет, Госгортехнадзор, Госатомнадзор и т.д.);
- 2. профсоюзами в лице правовой и технической инспекцией труда.
- III. <u>Ведомственный контроль</u> осуществляется министерствами и ведомствами в соответствии с подчиненностью.
- IV. <u>Общественный контроль</u> ФНП в лице профсоюзных комитетах, находящихся на каждом предприятии.

# 1.2.1. Организация службы охраны труда и природы на предприятии

Директор несет основную ответственность за охрану труда и природы.

Организационными работами, связанные с обеспечением охраны труда и природы занимается <u>главный инженер</u>.

<u>Отдел охраны труда</u> (подчиняется гл. инженеру) решает текущие вопросы, связанные с обеспечением безопасности труда.

#### 1.2.2. Функции отдела охраны труда:

- 1. контрольная (соблюдение приказов)
- 2. обучающая
- 3. представители отдела выступают в качестве экспертов при разработке тех. решений
- 4. отчетность по вопросам травматизма и проф. заболеваниям.

#### 1.2.3. Трехступенчатый контроль за охраной труда на предприятии

- 1 этап. Контроль на рабочем месте (за цехом контроль осуществляет мастер, за лабораторией рук. группой). Ежедневный контроль.
- 2 этап. Уровень цеха, лаборатории (периодичность еженедельная).
- 3 этап. Уровень предприятия (один из цехов выборочно проверяется комиссией, в состав которой входят:
  - гл. инженер;
  - начальник отдела охраны труда;
  - представитель мед. сан. части;
  - гл. специалист (технолог или энергетик)

#### 1.2.4. Обучение работающих безопасности труда

Система стандартов безопасности труда — ГОСТ 12.0.004-90 ССБТ

#### Виды инструктажа

- 1. <u>Вводный</u> ознакомление с общими вопросами безопасности труда, проводит инженер безопасности труда.
- 2. <u>Первичный</u> ознакомление с конкретными видами безопасности труда на данном предприятии на данном раб. месте, проводит руководитель работ.
- 3. <u>Повторный</u> повторить информацию первичного инструктажа, периодичностью 1 раз в полгода, проводит рук. работ.
- 4. <u>Внеплановый</u> проводится рук. работ в том случае, когда имеют место изменения в технологическом процессе при поступлении нового оборудования, после того как произошел несчастный случай и при перерывах в работе, превышающие установленные.
- 5. <u>Целевой</u> при выполнении работ, не связанных с основной специальностью, проводит рук. работ.

### 1.2.5. Госты, Нормы и правила по охране труда и природы, их структура

Система стандартов БТ — комплекс мер, направленных на обеспечение БТ. Структура Госта:



# Код группировки:

- 0: основополагающий стандарт;
- 1 : перечень по группам опасных и вредных производственных факторов;
- 2 : требование безопасности к производственному оборудованию;
- 3 : требования безопасности, предъявляемые к технологическому процессу;
- 4 : требования безопасности, предъявляемые к средствам индивидуальной защиты.

**Нормы** — перечень требований безопасности по производственной санитарии и гигиене труда.

CH 245-71 Санитарные нормы проектирования промышленных предприятий.

Правила — перечень мер по технике безопасности.

ПУЭ-85 Правила устройств электроустановки.

СН и ПІІ-4-79

# 1.3. Опасные и вредные факторы среды

<u>Опасный фактор</u> — фактор, воздействие которого на работающего, потенциально может привести к травме.

<u>Вредный производственный фактор</u> — фактор, воздействие которого на работающего может привести к заболеванию.

ГОСТ 12-0-003-74 ССБТ - Опасные и вредные производственные факторы. Классификация).

#### 1.3.1. Группы опасных и вредных производственных факторов:

- 1 Физические:
  - перемещающиеся изделия заготовки, незащищенные подвижные элементы производственного оборудования;
  - 1.2 загазованность, запыленность раб. зоны;
  - 1.3 повышенный уровень шума;
  - 1.4 повышенный уровень напряжения в электрической сети, замыкание которого может произойти в теле человека;
  - 1.5 повышенный уровень ионизирующего излучения;
  - 1.6 повышенный уровень электромагнитных полей;
  - 1.7 повышенный уровень ультрафиолетового излучения;
  - 1.8 недостаточная освещенность раб. зоны.
- 2 Химические:
  - 2.1 раздражающие вещества
- 3 Биологические:
  - 3.1 макро- и микроорганизмы
- 4 Психо-физиологические:
  - 4.1 физические перегрузки:
    - 4.1.1 статические нагрузки;
    - 4.1.2 динамические нагрузки;
    - 4.1.3 гиподинамия
  - 4.2 нервно-эмоциональные нагрузки:
    - 4.2.1 умственное перенапряжение;
    - 4.2.2 переутомление;
    - 4.2.3 перенапряжение анализаторов (кожные, зрит., слуховые и т.д.)
    - 4.2.4 монотонность труда;
    - 4.2.5 эмоциональные перегрузки

# 1.4. Травматизм и профзаболевания

**Травма** — внешнее повреждение организма человека, которое произошло в результате действия опасного производственного фактора.

**Проф.** заболевание — заболевание, при котором происходит внутреннее изменение в организме человека в результате действия вредного производственного фактора.

Несчастные случаи подразделяются:

- легкие;
- средней тяжести;
- групповые;
- с инвалидным исходом;
- со смертельным исходом.

Проф. заболевания подразделяются:

- хронические;
- внезапные

Совокупность производственных травм называется травматизмом.

#### 1.4.1. Отчетность по производственному травматизму:

I. <u>Коэффициент тяжести травматизма</u> (средняя продолжительность одной травмы)

 $K_{T} = Д/T$ , где

Д - кол-во (общее число) дней нетрудоспособности за отчетный период Т - кол-во травм за отчетный период

II. Коэффициент частоты травматизма (количество травм, приходящихся на 1000 раб.)

 $K_{\rm q} = (T/P)1000$ , где

Р - ср. списочное кол-во рабочих за отчетный период

# 1.5. Учет и расследование несчастных случаев

#### 1.5.1. Виды расследования:

- 1. <u>Обычные</u> (используется для несчастных случаев с временной потерей нетрудоспособности)
- 2. Специальные (используется для несчастных случаев со смертельным исходом)

Для обычного расследования в состав комиссии по расследованию причин несчастного случая входят:

- представители администрации где произошел несчастный случай;
- начальник отдела охраны труда (или инженер этого отдела);
- общественный инспектор по охране труда или другой представитель общественной организации)

В течение 24 часов с момента происшествия несчастного случая проводят расследование, причем результаты расследования заносятся в акт по форме H-1 (4 экз.).

Акт направляется к гл. инженеру (в течение 3-х дней акт должен быть заверен).

1-ый экз. - отдается на руки пострадавшему (хранится 45 лет);

2-ой экз. - в подразделении, где произошел несчастный случай;

3-ий экз. - в отделе охраны труда предприятия;

4-ый экз. - в министерство по его затребованию.

Администрация несет ответственность:

- 1. Дисциплинарную;
- 2. Материальную;
- 3. Административную;
- 4. Уголовную

Причины несчастных случаев:

- организационные (объективные);
- технические (субъективные).

# 1.6. Методы исследования причин травматизма

Объект исследования:

- человек;
- производственная обстановка;
- технологические процессы;
- оборудование
- 1. Монографический (изучение одного из объектов причин травматизма);
- 2. Статистический ( $K_T$ , $K_C$ );
- 3. Топографический (нанести опасные раб. места на план цеха и оценить обстановку);
- 4. Экономический (анализ затрат на травматизм по б/л);
- 5. Комбинированный (системный).

# 2. Оздоровление воздушной среды

На рабочих местах большое значение отводится созданию комфортных условий труда, которые обеспечиваются параметрами микроклимата и степенью запыленности воздуха.

Терморегуляция организма человека — способность человеческого тела поддерживать постоянную температуру.

# 2.1. Нормативные содержания вредных веществ и микроклимата.

При наличии вредных веществ их концентрация регламентируется величиной предельно допустимой концентрации (ПДК).

 $\Pi$ ДК =  $[M\Gamma/M^3]$ 

ГОСТ 12.1.005-88 ССБТ Общие санитарно-гигиенические требования к воздуху раб. зоны.

ПДК в воздухе рабочей зоны — такая концентрация вредных веществ, которая в течение 8-ми часового раб. дня или раб. дня другой продолжительности, но не более 41-го часа в неделю не вызывает отклонений в состоянии здоровья работающих, а также не влияет на настоящее и будущее поколения.

В воздухе населенных мест содержание вредных веществ регламентируется в соответствии с СН 245-71.

- ПДК<sub>СС</sub> (средне суточная) такая концентрация, которая не вызывает отклонений при прямом или косвенном воздействии на человека в воздухе населенного пункта в течение сколь угодно долгого дыхания.
- **ПДК**<sub>мР</sub> (тах разовое) такая концентрация, которая не вызывает со стороны организма человека рефлекторных реакций (ощущение запаха. изменение световой чувствительности, биоэлектрической активности мозга и т.д.)

Эти величины определены для ≈1203 веществ, для остальных ОБУВ (ориентировочно-безопасный уровень воздействия) сроком ≈ 3 года.

В соответствии с ГОСТ 12.1.007-76 все вредные вещества подразделяются на 4 класса по величине ПДК:

```
I класс <0,1 мг/м^3 — чрезвычайно- опасные вредные вещества; II класс 0,1-1 мг/м^3 — высоко опасные III класс 1-10 мг/м^3 — умеренно опасные IV класс >10 мг/м^3 — мало опасные
```

Эффект суммации — при нахождении в воздухе нескольких вполне определенных веществ, они обладают свойством усиливать действие друг друга.

Для того, чтобы оценить действие веществ, обладающих эффектом суммации используется формула:

```
C_1/\Pi J K_1 + C_2/\Pi J K_2 + \dots + C_N/\Pi J K_N, где
```

 $C_1,\,C_2\,...\,\,C_N$  - фактические концентрации вредных веществ в воздухе

### 2.1.1. Нормирование параметров микроклимата

Микроклимат на раб. месте характеризуется:

- температура, t, °С;
- относительная влажность, ф, %;
- скорость движения воздуха на раб. месте, V, м/с;
- интенсивность теплового излучения W, Bт/м<sup>2</sup>;
- барометрическое давление, р, мм рт. ст. (не нормируется)

В соответствии с ГОСТ 12.1.005-88 нормируемые параметры микроклимата подразделяются на оптимальные и допустимые.

Оптимальные параметры микроклимата — такое сочетание температуры, относит. влажности и скорости воздуха, которое при длительном и систематическом воздействии не вызывает отклонений в состоянии человека.

```
t = 22 - 24, °C

\phi = 40 - 60, %

V \le 0.2 m/c
```

Допустимые параметры микроклимата — такое сочетание параметров микроклимата, которое при длительном воздействии вызывает

приходящее и быстро нормализующееся изменение в состоянии работающего.

$$t = 22 - 27$$
, °C,  $\phi \le 75$ , %,  $V = 0.2-0.5$  m/c

**Рабочая зона** — пространство над уровнем горизонтальной поверхности, где выполняется работа, высотой 2 метра.

**Рабочее место** — (м.б. постоянным или непостоянным), где выполняется технологическая операция.

Для определения нормы микроклимата на рабочем месте, необходимо знать 2 фактора:

- 1. Период года (теплый, холодный). + 10 °C граница
- 2. Категория выполняемой работы, которая подразделяется в зависимости от энергозатрат:

легкую (Іа — до 148 Вт, Іб — 150-174 Вт);
 средней тяжести (ІІа — 174-232 Вт, ІІб — 232-292 Вт);
 тяжелая (ІІІ — свыше 292 Вт).

# 2.2. Методы и средства контроля защиты воздушной среды

#### 2.2.1. Системы вентиляции

Вентиляция — организованный воздухообмен, который обеспечивает удаление из помещения воздуха, загрязненного избыточным теплом и вредными веществами и тем самым нормализует воздушную среду в помещении.

Работоспособность системы вентиляции определяется показателем кратности воздухообмена (K).

 $K = V/V_{\pi}$ , где

V -кол-во воздуха, удаляемого из помещения в течение часа [м $^3$ /ч]

 $V_{II}$  - объем помещения, м<sup>3</sup>

*К*=[1/ч]

Для определения объема воздуха, удаляемого из помещения необходимо знать:

 $V_{I}$  - объем воздуха с учетом тепловых выделений;

 $V_2\,$  - объем воздуха с учетом выделения вредных веществ тех или иных процессов

$$V_1 = Q_{\text{изб}} / (C \; \rho(t_{\text{уд}} - t_{\text{пр}})), \; \text{где}$$

 $Q_{\it И3Б}$  - общее кол-во тепла [кДж/ч]

C - теплоемкость воздуха [кДж/кг·°С]=1

- плотность воздуха [кг/м³]

*tуд* - температура удаляемого воздуха

 $t_{\Pi P}$  - температура приточного воздуха

 $V_2 = (K_{np} - K_{yд})/K$ , где

K - общее кол-во загрязняющих веществ при работе разных источников в течение года [гр/ч]

 $K_{\it V\!J\!\!\!\!/},\,K_{\it I\!I\!P}$  - концентрация вредных веществ в удаляемом и приточном воздухе [гр/м³]  $V_2$  -[м3/ч]

#### 2.2.2. Классификация систем вентиляции

- 1 По принципу организации воздухообмена
- 2 По способу подачи воздуха
  - 2.1 Естественная
  - ветровой напор;
  - тепловой напор
  - 2.2 Механическая
  - приточная;
  - вытяжная;
  - приточно-вытяжная
  - 2.3 Смешанная
  - естественная + механическая
- 3 По принципу организации воздухообмена
  - 3.1 Обшеобменная
  - 3.2 Местная

Для обеспечения естественной вентиляции в лабораториях используются устройство, называемое дифлектором (ветровой напор).

#### 2.2.3. Приточная система вентиляции



- 1. Устройство забора
- 2. Устройство очистки
- 3. Система воздуховодов
- 4. Вентилятор
- 5. Устройство подачи на раб. место

#### 2.2.4. Система вытяжной вентиляции



- 6. Устройство для удаления воздуха
- 7. Вентилятор
- 8. Система возуховодов
- 9. Пыле- и газоулавливающие устройства
- 10. Фильтры
- 11. Устройство для выброса воздуха

Система механической вентиляции должна обеспечивать допустимые параметры микроклимата на раб. местах в производственных помещениях.

Оптимальные параметры микроклимата обеспечивает система кондиционирования.

2.2.5. Достоинства и недостатки систем естественной и механической вентиляний

|            | Естественная                 | Механическая                 |  |  |
|------------|------------------------------|------------------------------|--|--|
| Достоин-   | 1. Не требует затрат на со-  | 1. Независимость от погодных |  |  |
| ства       | здание                       | условий                      |  |  |
|            | 2. Простота в эксплуатации   | 2. Наличие систем очистки    |  |  |
| Недостатки | 1. Отсутствие систем очистки | 1. Затраты при проектирова-  |  |  |
|            | 2. Зависимость от погодных   | нии                          |  |  |
|            | условий                      |                              |  |  |

### 2.3. Система очистки воздуха

Для системы вытяжной вентиляции. В системе приточной вентиляции обеспечивает защиту работающих и создание условий для эксплуатации ВТ, а в системе вытяжной вентиляции устройство обеспечивает защиту воздуха населенных мест от вредных воздействий.

В зависимости от использования средств, очистку подразделяют на:

- грубую (концентрация более 100 мг/м<sup>3</sup> вредных в-в);
- среднюю (концентрация 100 1 мг/м<sup>3</sup> вредных в-в);
- тонкую (концентрация менее 1 мг/м $^3$  вредных в-в).

Очистку воздуха от пыли и создание оптимальных параметров микроклимата на PM, обеспечивает система кондиционирования.



- камера смешения воздуха
- II промывная камера
- III камера второго подогрева
- 1. воздуховод наружного воздуха;
- 2. воздуховод воздуха для осуществления рециркуляции;
- 3. первый фильтр для очистки воздуха;
- 4. калорифер;
- 5. второй фильтр для очистки воздуха;
- 6. устройство для увлажнения/сушки воздуха;
- 7. воздуховод высушенного, очищенного или увлажненного воздуха.

Очистка воздуха, удаляемого из помещения, осуществляется с помощью 2-х типов устройств:

- пылеуловители; - фильтры.

Очистка воздуха при использовании пылеуловителя осуществляется за счет действия сил тяжести и сил инерции.

По конструктивным особенностям пылеуловители бывают:

- циклонные;
- инерционные;
- пылеосадительные камеры.

**Фильтры** — устройства, в которых для очистки воздуха используются материалы (пр-во), способные осаживать или задерживать пыль.

 бумажные; тканевые; электрические; ультрозвуковые; масляные; гидравлические; комбинированные

#### 2.3.1. Способы очистки воздуха

- 1 Механические (пыли, туманов, масел, газообразных примесей)
  - 1.1 Пылеуловители;
  - 1.2 Фильтры
- 2 Физико-химические (очистка от газообразных примесей)
  - 2.1 Сорбция
    - 2.1.1 адсорбция (актив. уголь);
    - 2.1.2 абсорбция (жидкость)
  - Каталитические (обезвреживание газообразных примесей в присутствии катализатора)

#### 2.3.2. Контроль параметров воздушной среды

Осуществляется с помощью приборов:

- Термометр (температура);
- Психрометр (относительная влажность);
- Анемометр (скорость движения воздуха);
- Актинометр (интенсивность теплового излучения);
- Газоанализатор (концентрация вредных веществ).

# 3. Электробезопасность

# 3.1. Воздействие электрического тока на организм человека

Кол-во эл. травм в общем числе невелико, до 1,5%. Для эл. установок напряжением до 1000 V кол-во эл. травм достигает 80%.

#### 3.1.1. Причины эл. травм

Человек дистанционно не может определить находится ли установка под напряжением или нет.

Ток, который протекает через тело человека, действует на организм не только в местах контакта и по пути протекания тока, но и на такие системы как кровеносная, дыхательная и сердечно-сосудистая.

Возможность получения эл. травм имеет место не только при прикосновении, но и через напряжение шага и через эл. дугу.

Эл. ток, проходя через тело человека оказывает **термическое** воздействие, которое приводит к отекам (от покраснения, до обугливания), электролитическое (**химическое**), **механическое**, которое может привести к разрыву тканей и мышц; поэтому все эл. травмы делятся на:

- местные;
- общие (электроудары).

#### 3.1.2. Местные электрические травмы

- эл. ожоги (под действием эл. тока);
- эл. знаки (пятна бледно-желтого цвета);
- металлизация пов-ти кожи (попадание расплавленных частиц металла эл. дуги на кожу);
- электроофтальмия (ожог слизистой оболочки глаз).

#### 3.1.3. Общие эл. травмы (электроудары):

1 степень: без потери сознания

2 степень: с потерей

3 степень: без поражения работы сердца

4 степень: с поражением работы сердца и органов дыхания

Крайний случай состояние клинической смерти (остановка работы

сердца и нарушение снабжения кислородом клеток мозга. В состоянии клинической смерти находятся до

6-8 мин.)

# 3.2. Причины поражения эл. током (напряжение прикосновения и шаговое напряжение):

- 1 Прикосновение к токоведущим частям, находящимся под напряжением;
- 2 Прикосновение к отключенным частям, на которых напряжение может иметь место:
  - 2.1 в случае остаточного заряда;
  - 2.2 в случае ошибочного включения эл. установки или несогласованных действий обслуживающего персонала;
  - 2.3 в случае разряда молнии в эл. установку или вблизи;
  - 2.4 прикосновение к металлическим не токоведущим частям или связанного с ними эл. оборудования (корпуса, кожухи, ограждения) после перехода напряжения на них с токоведущих частей (возникновение аварийной ситуации пробой на корпусе).
- 3 Поражение напряжением шага или пребывание человека в поле растекания эл. тока, в случае замыкания на землю.
- 4 Поражение через эл. дугу при напряжении эл. установки выше 1кВ, при приближении на недопустимо-малое расстояние.
- 5 Действие атмосферного электричества при газовых разрядах.
- 6 Освобождение человека, находящегося под напряжением.

#### 3.2.1. Факторы, влияющие на исход поражения электрическим током:

- 1. Род тока (постоянный или переменный, частота 50Гц наиболее опасна)
- 2. Величина силы тока и напряжения.
- 3. Время прохождения тока через организм человека.
- 4. Путь или петля прохождения тока.
- 5. Состояние организма человека.
- 6. Условия внешней среды.

#### Количественные оценки

- 1. В интервале напряжения 450-500 В, вне зависимости от рода тока, действие одинаково
- меньше 450 В опаснее переменный ток,
- меньше 500 B опаснее постоянный ток.
- Кардиологические заболевания, заболевания нервной системы и наличие алкоголя в крови, снижают сопротивление тела человека.
- 3. Наиболее опасным является путь прохождения тока через сердечную мышцу и дыхательную систему.

3.2.2.

#### 3.2.3.

# 3.2.4. Характер воздействия постоянного и переменного токов на организм человека:

| I, MA   | Переменный (50 Гц)                  | Постоянный                  |  |  |
|---------|-------------------------------------|-----------------------------|--|--|
| 0,5-1,5 | Ощутимый. Легкое дрожание пальцев.  | Ощущений нет.               |  |  |
| 2-3     | Сильное дрожание пальцев.           | Ощущений нет.               |  |  |
| 5-7     | Судороги в руках.                   | Ощутимый ток. Легкое дрожа- |  |  |
|         |                                     | ние пальцев.                |  |  |
| 8-10    | Не отпускающий ток. Руки с трудом   | Усиление нагрева рук.       |  |  |
|         | отрываются от поверхности, при этом |                             |  |  |
|         | сильная боль.                       |                             |  |  |
| 20-25   | Паралич мышечной системы (невоз-    | Незначительное сокращение   |  |  |
|         | можно оторвать руки).               | мыщц рук.                   |  |  |
| 50-80   | Паралич дыхания.                    | При 50мА неотпускающий ток. |  |  |
| 90-100  | Паралич сердца.                     | Паралич дыхания.            |  |  |
| 100     | Фибриляция (разновременное, хаоти-  | 300 мА фибриляция.          |  |  |
|         | ческое сокращение сердечной         |                             |  |  |
|         | мышцы)                              |                             |  |  |

# 3.2.5. Предельно-допустимые уровни (ПДУ) напряжений прикосновения и сила тока при аварийном режиме эл. установок

по ГОСТ 12.1.038-82

| Род и частота тока Нормируемая |          | ПДУ, при t, c |
|--------------------------------|----------|---------------|
|                                | величина |               |

|                    |                            | 0,01 - 0,08 | свыше 1 |
|--------------------|----------------------------|-------------|---------|
| Переменный         | Uд                         | 650 B       | 36 B    |
| $f = 50 \Gamma$ ц  | $\mathbf{I}_{\mathcal{A}}$ |             | 6 мА    |
| Переменный         | Uд                         | 650 B       | 36 B    |
| $f = 400 \Gamma ц$ | $\mathbf{I}_{\mathcal{I}}$ |             | 6 мА    |
| Постоянный         | Uд                         | 650 B       | 40 B    |
|                    | $I_{ m J}$                 |             | 15 мА   |

#### 3.2.6. Сопротивление тела человека

Факторы, приводящие к уменьшению сопротивления тела человека:

- увлажнение поверхности кожи;
- увеличение площади контакта;
- время воздействия.

Сопротивление рогового (верхнего слоя кожи) от 10 до 100 кОм. Сопротивление внутренних тканей 800-1000 Ом. Расчетная величина  $R_{\text{ЧЕЛ}} = 1000$  Ом.

# 3.3. Классификация помещений по опасности поражения эл. током (ПУЭ-85).

**Помещения I класса**. Особо опасные помещения.

- 1. 100 % влажность:
- 2. наличие активной среды

**Помещения II класса**. Помещения повышенной опасности поражения эл. током.

- 1. повышенная температура воздуха (t = +35 °C);
- повышенная влажность (> 75 %);
- 3. наличие токопроводящей пыли;
- 4. наличие токопроводящих полов;
- 5. наличие эл. установок (заземленных) возможности прикосновения одновременно и к эл. установке и к заземлению или к двум эл. установкам одновременно.

**Помещения III класса**. Мало опасные помещения. Отсутствуют признаки, характерные для двух предыдущих классов.

Распределение потенциала по поверхности земли осуществляется по закону гиперболы.

**Напряжение прикосновения** — это разность потенциалов точек эл. цепи, которых человек касается одновременно, обычно в точках расположения рук и ног.

Напряжение шага — это разность потенциалов  $\phi 1$  и  $\phi 2$  в поле растекания тока по поверхности земли между точками, расположенными на расстоянии шага ( $\approx 0.8$  м).

# 3.4. Методы и средства защиты: заземление, зануление, отключение и др.

Выбор средств защиты зависит от:

- 1. режима эл. сети;
- 2. вида эл. сети;
- 3. условий эксплуатации

Средства электробезопасности:

- 1. общетехнические;
- 2. специальные;
- 3. средства индивидуальной защиты

### 3.4.1. Общетехнические средства защиты

1) Рабочая изоляция

Для оценки изоляции используют следующие критерии:

- сопротивление фаз эл. проводки без подключенной нагрузки R<sub>1</sub>≥0,05;
- сопротивление фаз эл. проводки с подключенной нагрузкой R<sub>2</sub>≥0,08 МОм.
- 2) Двойная изоляция
- 3) Недоступность токоведущих частей (используются осадительные ср-ва кожух, корпус, эл. шкаф, использование блочных схем и т.д.)
- 4) Блокировки безопасности (механические, электрические)
- 5) Малое напряжение

Для локальных светильников (36 В), для особоопасных помещений и внепомещений.

- 12 В используется во взрывоопасных помещениях.
- Меры ориентации (использование маркировок отдельных частей эл. оборудования, надписи, предупредительные знаки, разноцветовая изоляция, световая сигнализация).

#### 3.4.2. Специальные средства защиты

- 1. заземление:
- 2. зануление;
- 3. защитное отключение

#### 3.4.3. Принцип действия заземления

Снижение напряжения между корпусом, оказавшимся под напряжением (в случае аварийной ситуации) и землей, до безопасной величины.

Заземление используется в 3-х фазных 3-х проводных сетях с изолированной нейтралью. Эта система заземления работает в том случае, если

 $RH \le 4 O_M$ ; V < 1000 B;  $RH \le 0.5 O_M$ ; V > 1000 B (ПУЭ-85)

#### 3.4.4. Принцип действия зануления

Преднамеренное соединение корпусов эл. установок с многократно заземленной нейтралью трансформатора или генератора.

Превращение замыкания на корпус в однофазное короткое замыкание за счет срабатывания токовой защиты, которая отключает систему питания и тем самым отключается поврежденное устройство.

#### 3.4.5. Принцип действия защитного отключения

Это преднамереное автоматическое отключение эл. установки от питающей сети в случае опасности поражения эл. током.

Условия, при которых выполняется заземление или зануление в соответствии с требованиями ПУЭ-85.

- 1. В малоопасных помещениях 380 В и выше переменного тока 440 В и выше постоянного тока
- 2. В особо опасных помещениях, помещениях с повышенной опасностью и вне помещений 42 В и выше переменного тока

110 В и вышепостоянного тока

3. При всех напряжениях во взрывоопасных помещения.

Заземляющие устройства бывают естественными (используются конструкции зданий) в этом случае нельзя использовать те элементы, которые при попадании искры приводят к аварии (взрывоопасные).

Искусственные — контурное и выносное защитное заземляющее устройство.

Пример. Контурное заземляющее устройство.



- эл. установка;
- 2. внешний контур;
- 3. шина заземления;
- 4. внутренний контур

# 3.4.6. Требования эл. безопасности к установкам ЭТИ (электротехнических изделий)

ЭТИ должны быть сконструированы таким образом, чтобы обеспечивалась эл. безопасность. Если такие условия создать нельзя, они должны быть перечислены в инструкции.

ГОСТ 12.2.007.0-75 ССБТ

В соответствии с этим ГОСТом оговариваются классы безопасности.

Многообразие средств защиты и условий эксплуатации привели к унификации средств защиты. В условиях экспорта-импорта ЭТИ, была создана IP.

 IP-30
 3 - степень защиты
 0 - степень защиты

 IP-44
 4 - от попадания внутрь
 4 - — " —

 IP-5x
 5 - оболочки тв. тел
 x - влаги

 IP-54
 5
 4

IP-54 (эксплуатация светильников вне помещений)

# 4. Производственное освещение

Вся информация подается через зрительный анализатор. Вредное воздействие на глаза человека оказывают следующие опасные и вредны производственные факторы:

- 1. Недостаточное освещение раб. зоны;
- 2. Отсутствие/недостаток естественного света;
- 3. Повышенная яркость;
- 4. Перенапряжение анализаторов (в т.ч. зрительных)

По данным ВОЗ на зрение влияет

- УФИ;
- яркий видимый свет;
- мерцание;
- блики и отраженный свет

## 4.1. Физиологические характеристики зрения

- 1. острота зрения;
- устойчивость ясного видения (различие предметов в течение длительного времени);
- 3. контрастная чувствительность (разные по яркости);
- 4. скорость зрительного восприятия (временной фактор);
- 5. адаптация зрения;
- 6. аккомодация (различие предметов при изменении расстояния)

### 4.2. Светотехнические величины

Это понятие связано с той или иной осветительной установкой

- 1. <u>Световой поток</u> F, [лм] люмен
- 2. <u>Сила света</u> J, [кд] кандела

 $J=F/\omega\,$ 

3. Освещенность Е, [лк] - люкс

E = F/S

4. <u>Яркость</u> L, [кд/м²]

L=J/S

5. Контраст К

$$K = (L_0 - L_\Phi)/L_0$$

Контраст бывает: - большой (К>0,5); - средний (К = 0,2 - 0,5); - малый (К<0,2).

6.  $\underline{\Phi o n}$  — поверхность, которая прилегает к объекту различения.

Наименьший размер объекта различения с фоном.

7. Коэффициент отражения р

$$\rho = F_{\text{ПАД}}/F_{\text{ОТР}}$$

В зависимости от коэф. отражения фон бывает:

- светлый  $\rho = 0.2$  - 0.4;

# 4.3. Естественное освещение

При естественном освещении к-либо точки горизонтальной плоскости, за основу при нормировании принимается манимально допустимая величина коэффициента естественной освещенности.

Коэф. естеств. освещ. (KEO) =  $E = E_{BH}/E_{CH} \cdot 100\%$ , где

 $E_{BH}$  - освещенность к-либо точки горизонтальной пов-ти, находящейся внутри помещения [лк];

 $E_{CH}$  - освещенность к-либо точки, находящейся снаружи помещения на расстоянии 1 м от здания [лк];

#### 4.3.1. Системы естественного освещения

- 1. Боковое освещение
- 2. Верхнее освещение
- 3. Комбинированное освещение

Эти величины в соответствии со СНиП II-4-79 (Строительные нормы и правила. Естественное и искусственное освещение. Нормы проектирования -М, Стройиздат, 1980) нормируются.

Для выбора естественного освещения необходимо учитывать следующие факторы:

- 1. Характеристика зрительной работы;
- 2. Минимальный размер объекта различения с фоном;
- 3. Разряд зрительной работы;
- 4. Система освещения.

В зависимости от величины объекта различения с фоном все зрительные работы подразделяются на 8 разрядов.

Разряд зрительной работы — отношение минимального размера объекта различения с фоном к расстоянию от органов зрения до объекта различения.

# 4.4. Искусственное освещение

**Искусственное освещение** — освещение помещений прямым или отраженным светом искусственного источника света

За основу при нормировании принимается минимально допустимая величина освещенности какой-либо точки.

## 4.4.1. Системы искусственного освещения

- 1. общее;
- 2. местное (локальное);
- 3. комбинированное

Может быть использовано в производственных помещениях общее и комбинированное, а одно местное использовать нельзя.

Имеет место также освещение: - аварийное; - дежурное; - эвакуационное. СНиП II-4-79

# 4.4.2. Факторы, учитываемые при нормировании искусственного освещения:

- 1. Характеристика зрительной работы;
- 2. Минимальный размер объекта различения с фоном;
- 3. Разряд зрительной работы;
- 4. Контраст объекта с фоном;
- 5. Светлость фона (характеристика фона);
- 6. Система освещения:
- 7. Тип источника света.

Подразряд зрительной работы определяется сочетанием п.4 и п.5.

#### 4.4.3. Методика расчета естественного освещения

Используется метод А.Д.Данилюка. Определяется площадь поверхности оконных премов.

#### 4.4.4. Медодика расчета искусственного освещения

- 1. Метод светового потока
- 2. Метод удельной мощности
- 3. Точечный метол

#### Метод светового потока

Задача. Определить освещенность на раб. месте

$$E_{PM} = (0.9 - 1.2) E_{H}$$

Для этого необходимо выбрать:

- 1. систему освещения;
- 2. источник света;
- 3. светильник.

#### Формула для определения светового потока лампы или группы ламп

$$F = \frac{E \cdot S \cdot K}{N \cdot \eta \cdot Z}$$
, где

- Е нормируемая величина освещенности [лк];
- S площадь производственного помещения  $[M^2]$ ;
- К коэф. запаса;
- N кол-во светильников [шт];
- Z поправочный коэф-т, зависит от типа лампы
- η коэф-т использования светового потока, для выбора которого необходимо знать:
- коэф. отражения от стен и потолка ( $\rho_C$ ,  $\rho_\Pi$ );
- индекс помешения і
- H<sub>P</sub> высота подвеса светильников над раб. поверхностью;
- (А+В) полупериметр помещения

Для ЛЛ ламп, зная групповой световой поток F и кол-во ламп в сетильнике n (2 или 4), определим световой поток одной лампы.

 $F_{PACH} = (0.9 - 1.2) F_{TABJI}$ 

Распределение светильников по площади производственного помещения.

Для ЛЛ — вдоль длинной стороны помещения, вдоль окон, параллельно стенам с окнами.

Для ЛН, ДРЛ — в шахматном порядке.

| ЛЛ лампы                        |                                     |  |  |  |
|---------------------------------|-------------------------------------|--|--|--|
| Достоинства                     | Недостатки                          |  |  |  |
| - высокий КПД;                  | - наличие дополнительных устройств; |  |  |  |
| - экономичность;                | - грозкость;                        |  |  |  |
| - свет, близкий к естественному | - инерционность                     |  |  |  |
| Лампы накаливания               |                                     |  |  |  |
| - не инерционные;               | - желтая область спектра;           |  |  |  |
| - компактные                    | - малая светоотдача;                |  |  |  |
| - малый срок эксплуатации       |                                     |  |  |  |

#### 4.4.5. Приборы конроля

Люксметр Ю-16, Ю-116

# 5. Производственный шум

Шум — сочетание различных по частоте и силе звуков

**Звук** — колебания частиц воздушной среды, которые воспринимаются органами слуха человека, в направлении их распространения.

Слышимый шум —  $20 - 20000 \, \Gamma$ ц, ультразвуковой диапазон — свыше  $20 \, \kappa \Gamma$ ц, инфразвук — меньше  $20 \, \Gamma$ ц, устойчивый слышимый звук —  $1000 \, \Gamma$ ц -  $3000 \, \Gamma$ ц

#### 5.1.1. Вредное воздействие шума:

- сердечно-сосудистая система;
- неравная система;
- органы слуха (барабанная перепонка)

#### 5.1.2. Физические характеристики шума

интенсивность звука
 звуковое давление
 частота
 Д, [Вт/м²];
 Р, [Па];
 Г[Гц]

**Интенсивность** — кол-во энергии, переносимое звуковой волной за 1 с через площадь в 1 м $^2$ , перпендикулярно распространению звуковой волны.

**Звуковое давление** — дополнительное давление воздуха, которое возникает при прохождении через него звуковой волны.

Учитывая протяженный частотный диапазон (20-20000 Гц) при оценки источника шума, используется логарифмический показатель, который называется **уровнем интенсивности**.

$$L_J = 10 \lg \frac{J}{J_0}$$
 [дБ]

- J интенсивность в точке измерения [ $B\tau/m^2$ ]
- $J_0~$  величина, которая равна порогу слышимости  $10^{\text{-}12} \ [\text{Bt/m}^2]$

При расчетах и нормировании используется показатель — уровень **звуко**вого давления.

$$L_P = 20 \lg \frac{P}{P_0}$$
 [дБ]

Р - звуковое давление в точке измерения [Па];

 $P_0$  - пороговое значение  $2 \cdot 10^{-5}$  [Па]

При оценке источника шума и нормировании используется **логарифмиче**ский уровень звука.

$$L_{PA} = 20 \lg \frac{P_A}{P_0}$$
 [дБА]

Ра - звуковое давление в точке измерения по шкале A прибора шумомера, т.е. на шкале 1000 Гц.

Спектр шума — зависимость уровня звукового давления от частоты.

Спектры бывают: - дискретные; - сплошные; - тональный.

В производственном помещении обычно бывают несколько источников шума.

Для оценки источника шума одинаковых по своему уровню:

$$L_{\Sigma} = L_i + 10 \, lgn$$

 $L_i$  - уровень звукового давления одного из источников [дБ];

n - кол-во источников шума

Если кол-во источников меняется от 1-100, а  $L_i = 80$  дБ

$$n = 1$$
  $L = 80$  дБ  
 $n = 10$   $L = 90$  дБ

$$n = 100$$
  $L = 100$  дБ

Для оценки источников шума различных по своему уровню:

$$L_{\Sigma} = L_{max} + \Delta L$$

 $L_{max}$  - максимальный уровень звукового давления одного из 2-х источников;

 $\Delta L$  - поправка, зависящая от разности между тах и тіп уровнем давления

| $L_{max}$ - $L_{min}$ | 1   | 10  | 20 |
|-----------------------|-----|-----|----|
| $\Delta L$            | 2,5 | 0,4 | 0  |

# 5.2. Звуковое восприятие человеком



Т.к. органы слуха человека обладают неодинаковой чувствительностью к звуковым колебаниям различной частоты, весь диапазон частот на практике разбит на октавные полосы.

**Октава** — полоса частот с границами  $f_1$  -  $f_2$ , где  $f_2/f_1=2$ .

Среднегеометрическая частота — 
$$f_{CT} = \sqrt{f_1 \cdot f_2}$$

Весь спектр разбит на 8 октавных полос:

45-90; 90-180; 180-360 ... 5600-11200.

Среднегеометрические частоты октавных

250 8000 полос: 63 125 Звуковой комфорт — 20 дБ; шум проезжей части улицы — 60 дБ; — 80 дБ; интенсивное движение — 75-80 дБ; работа пылесоса — 90-100 дБ; шум в метро — 120 дБ; концерт — 145-150 дБ; взлет самолета — 200 дБ взрыв атомной бомбы

# 5.3. Нормирование шума

Нормативным документом является ГОСТ 12.1.003-90 ССБТ.

1 метод. Нормирование по уровню звукового давления.

2 метод. Нормирование по уровню звука.

По 1 методу дополнительный уровень звукового давления на раб. местах (смена 8 ч) устанавливается для октавных полос со средними геом. частотами, т.е. нормируется с учетом спектра.

По 2 методу дополнительный уровень звука на раб. местах устанавливается по общему уровню звука, определенного по шкале A шумометра, т.е. на частоте  $1000~\Gamma u$ .

5.3.1. Нормы шума для помещений лабораторий

| Уровень зв. давления [дБ]      |                                                  |  |  |  |  |            | Уровень |  |
|--------------------------------|--------------------------------------------------|--|--|--|--|------------|---------|--|
| окт. со среднегеом. част. [Гц] |                                                  |  |  |  |  | звука, дБА |         |  |
| 63                             | 63   125   250   500   1000   2000   4000   8000 |  |  |  |  |            |         |  |
| 91                             | 91 83 77 73 70 68 66 44                          |  |  |  |  |            |         |  |

Доп. уровень звука в жилой застройке с  $7^{00}$ - $2\overline{3}^{00}$  не более 40 дБА, с  $23^{00}$ - $7^{00}$  — 30 дБА.

### 5.4. Мероприятия по борьбе с шумом

I группа - Строительно-планировочная

II группа - Конструктивная

III группа - Снижение шума в источнике его возникновения

IV группа - Организационные мероприятия

*I группа. Строительно-планировочная* 

Использование определенных строительных материалов связано с этом проектирования. В ИВЦ — акустическая обработка помещения (облицовка пористыми акустическими панелями). Для защиты окружающей среды от шума используются лесные насаждения. Снижается уровень звука от 5-40 дБА.

ІІ группа. Конструктивная

1. Установка звукоизолирующих преград (экранов). Реализация метода звукоизоляции (отражение энергии звуковой волны). Используются материалы с гладкой поверхностью (стекло, пластик, металл).

Акустическая обработка помещения (звукопоглощение).

Можно снизить уровень звука до 45 дБА.

2. Использование объемных звукопоглотителей (звукоизолятор + звукопоглотитель). Устанавливается над значительными источниками звука.

Можно снизить уровень звука до 30-50 дБА.

III группа. Снижение шума в источнике его возникновения

Самый эффективный метод, возможен на этапе проектирования. Используются композитные материалы 2-х слойные. Снижение: 20-60 дБА.

IV группа. Организационные мероприятия

- 1. Определение режима труда и отдыха персонала.
- 2. Планирование раб. времени.
- Планирование работы значительных источников шума в разных источниках.

Снижение: 5-10 дБА.

Если уровень шума не снижается в пределах нормы, используются индивидуальные средства защиты (наушники, шлемофоны).

Приборы контроля: - шумомеры; - виброаккустический комплекс — RFT, BIIIB.

# 6. Инфразвук

**Инфразвук** — колебание звуковой волны  $> 20~\Gamma$ ц.

Природа возникновения инфразвуковых колебаний такая же как и у слышимого звука. Подчиняется тем же закономерностям. Используется такой же математический аппарат, кроме понятия, связанного с уровнем звука.

Особенности: малое поглощение эн., значит распространяется на значительные расстояния.

Источники инфразвука: оборудование, которое работает с частотой циклов менее 20 в секунду.

Вредное воздействие: действует на центр. нервную систему (страх, тревога, покачивание, т.д.)

#### 6.1. Опасность для человека

Диапазон инфразвуковых колебаний совпадает с внутренней частотой отдельных органов человека (6-8 Гц), следовательно, из-за резонанса могут возникнуть тяжелые последствия.

Увеличение звукового давления до 150 дБА приводит к изменению пищеварительных функций и сердечному ритму. Возможна потеря слуха и зрения.

# 6.2. Нормирование инфразвука

CH 22-74-80. Нормативным параметром являются логарифмические уровни звукового давления в октавных полосах со ср. геом. частотой:

 $2, 4, 8, 16 \Gamma \mu$   $\leq 105 дБА$   $32 \Gamma \mu$   $\leq 102 дБА$ 

# 6.3. Защитные мероприятия

- 1. Снижение ин. звука в источнике возникновения.
- 2. Средства индивидуальной защиты.
- 3. Поглощение.

# 6.4. Приборы контроля

Шумомеры типа ШВК с фильтром  $\Phi$ Э-2. Виброаккустическая аппаратура типа RFT.

# 7. Ультразвук

**Ультразвук** — колебание звуковой волны  $< \kappa \Gamma$ ц.

Используется в оптике (для обезжиривания, ...)

- Низкочастотные ультразвуковые колебания распространяются воздушным и контактным путем.
  - Высокочастотные контактным путем.

Вредное воздействие — на сердечно-сосудистую систему; нервную систему; эндокринную систему; нарушение терморегуляции и обмена веществ. Местное воздействие может привести к онемению.

### 7.1. Нормирование ультразвука

ГОСТ 12.1.001-89. Нормируются логарифмические уровни звукового давления в октавных полосах:

| 12,5 кГц      | не более | 80 дБА  |
|---------------|----------|---------|
| 20 кГц        |          | 90 дБА  |
| 25 кГц        |          | 105 дБА |
| от 31-100 кГц |          | 110 дБА |

# 7.2. Меры защиты

- 1. Использование блокировок.
- 2. Звукоизоляция (экранирование).
- 3. Дистанционное управление.
- 4. Противошумы.

Приборы контроля: виброаккустическая система типа RFT.

# 8. Вибрация

Вибрация — механические колебания материальных точек или тел.

Источники вибраций: разное производственное оборудование.

Причина появления вибрации: неуравновешенное силовое воздействие.

Вредные воздействия: повреждения различных органов и тканей; влияние на центральную нервную систему; влияние на органы слуха и зрения; повышение утомляемости.

Более вредная вибрация, близкая к собственной частоте человеческого тела (6-8  $\Gamma$ ц) и рук (30-80  $\Gamma$ ц).

# 8.1. Основные характеристики

- 1. Колебательная скорость: V, м/с
- 2. Частота колебаний: f. Ги
- 3. Ср. квадратичное значение колебательной скорости в соответствии полосе частот:  $V_C$ , m/c
- 4. Логарифм. уровень виброскорости при расчетах и нормировании:  $L_V=20$  lg  $V_C/V_0$  [дБ]

 $V_0$  - пороговое значение колебательной скорости ( $V_0 = 5.10^{-8}$  м/с)

По *способу передачи* вибрации на человека: - общая; - локальная (ноги или руки).

По источнику возникновения: - транспортная; - технологическая; - транспортно-технологическая.

# 8.2. Нормирование вибрации

I направление. Санитарно-гигиеническое.

II направление. Техническое (защита оборудования).

ГОСТ 12.1.012-90 ССБТ Вибрационная безопасность.

Октава 
$$f_1 \leftarrow \rightarrow f_2$$
,  $f_2/f_1 = 2$ ,  $f_{CP} = \sqrt{f_1 f_2}$ 

При санитарно-гигиеническом нормировании разных видов вибрации используется логарифмический уровень виброскорости в октавных полосах ср. геом. частот.

Граничные частоты октавных полос:

# 8.3. Методы снижения вибрации

- 1. Снижение вибрации в источнике ее возникновения.
- 2. Конструктивные методы (виброгашение, виброденфирование подбор опр. видов материалов, виброизоляция).
- 3. Организационные меры. Организация режима труда и отдыха.
- 4. Использование ср-в инд. защиты (защита опорных пов-тей)

# 8.4. Спектр электромагнитного излучения



# 9. Лазерное излучение

Лазерное излучение:  $\lambda = 0.2 - 1000$  мкм.

Основной источник - оптический квантовый генератор (лазер).

Особенности лазерного излучения - монохроматичность; острая направленность пучка; когерентность.

Свойства лазерного излучения: высокая плотность энергии:  $10^{10}$ - $10^{12}$  Дж/см², высокая плотность мощности :  $10^{20}$ - $10^{22}$  Вт/см².

По виду излучение лазерное излучение подразделяется:

— прямое излучение; рассеянное; зеркально-отраженное; диффузное.

По степени опасности:

- I. Класс. К лазерам первого класса относятся такие, выходное излучение которых не представляет опасности для глаз и кожи.
- II. Класс. К лазерам второго класса относятся такие лазеры, эксплуатация которых связана с воздействием прямого и зеркально-отраженного излучения только на глаза.
- III. Класс. Лазеры характеризуются опасностью воздействия на глаза прямого, и зеркально и диффузно отраженного излучения на расстоянии 10 см от диффузно отражающей поверхности на глаза, а также прямого и зеркально отраженного излучения на кожу.
- IV. Класс. Лазеры характеризуются опасностью воздействия на кожу на расстоянии 10 см от диффузно отражающей поверхности.

Биологические действия лазерного излучения зависит от длины волны и интенсивности излучения, поэтому весь диапазон длин волн делится на области:

- ультрафиолетовая 0.2-0.4 мкм
- видимая 0.4-0.75 мкм
- инфракрасная:
- а) ближняя 0.75-1
- b) дальняя свыше 1.0

### 9.1. Опасные и вредные факторы при эксплуатации лазеров.

| №  | ОПФ и ВПФ                                                    | класс опасности |     |      |      |
|----|--------------------------------------------------------------|-----------------|-----|------|------|
|    |                                                              | I.              | II. | III. | IV.  |
| 1. | Лазерное излучение                                           |                 |     |      |      |
|    | прямые                                                       | -               | +   | +    | +    |
|    | диф. отраженные                                              | -               | -   | +    | +    |
| 2. | Повышенная напряженность эл.поля                             | -(+)            | +   | +    | +    |
| 3. | Повышенная запыленность, загазованность воздуха рабочей зоны | -               | -   | -(+) | +    |
| 4. | Повышенный уровень ультрафиолетовой радиации                 | -               | -   | -(+) | +    |
| 5. | Повышенная яркость света                                     | -               | -   | -(+) | +    |
| 6. | Повышенный уровень шума и вибраций                           | -               | -   | -(+) | +    |
| 7. | Поваышенный уровень ионизирующих излучений                   | -               | -   | -    | +    |
| 8. | Повышенный уровень элевтромагнитного излучения               |                 |     |      |      |
|    | СВЧ и ВЧ диапазонов                                          | -               | -   | -    | -(+) |
| 9. | Повышенный уровень инфракрасной радиации                     | -               | -   | -(+) | +    |
| 10 | Повышенная температура поверхности оборудования              | -               | -   | -(+) | +    |

### 9.2. Вредные воздействия лазерного излучения.

- 1) термические воздействия
- 2) энергетические воздействия (+ мощность)
- 3) фотохимические воздействия
- 4) механическое воздействие(колебания типа ультразвуковых в облученном организме)
- 5) электрострикция (деформация молекул в поле лазерного излучения)
- б) образование в пределах клетках микроволнового электромагнитного поля Вредные воздействия оказывает на органы зрения, а также имеют место биологические эффекты при облучении кожи.

### 9.3. Нормирование лазерного излучения.

CH 23- 92- 81

**Нормируемый параметр** — предельно - допустимый уровень(ПДУ) лазерного излучения при  $\lambda$ =0.2-20 мкм и кроме этого регламентируется ПДУ на роговице, сетчатке, коже.

**ПДУ** — отношение энергии излучения, падающей на определенные участки поверхности к площади этого участка [Дж/см²]

ПДУ зависит от:

- длины волны лазерного излучения [мкм]
- продолжительности импульса [сек]
- частоты повторения импульса [Гц]
- длительности воздействия [сек]

### 9.4. Меры защиты от воздействия лазерного излучения

I. Организационные

II. Технические снижение плотности потока

III. Планировочные на рабочих местах

IV. Санитарно-гигиенические

Наиболее распространенным из технических мер является:

- экранирование(рабочее место, лазерное излучение)
- блокировка, с помощью которых, лазер приводится в рабочее положение если экран на месте.

Аппаратура контроля: лазерные дозиметры.

# 10. Электромагнитное поле

Источник возникновения — промышленные установки, радиотехнические объекты, мед. аппаратура, установки пищевой промышленности.

# 10.1. Характеристики эл.магнитного поля:

- 1. длина волны, [м]
- 2. частота колебаний [Гц]
- $\lambda = V_C/f$ , где  $V_C = 3.10$  м/с

Номенклатура диапазонов частот (длин волн) по регламенту радиосвязи:

| Номер     | Диапазон частот f, | Диапазон длин | Соотв. метрическое  |
|-----------|--------------------|---------------|---------------------|
| диапазона | Гц                 | волн          | подразд.            |
| 5         | 30-300 кГц         | $10^4 - 10^3$ | НЧ                  |
| 6         | 300-3000 кГц       | $10^3 - 10^2$ | СЧ (гектометровые)  |
| 7         | 3-30 МГц           | $10^2$ -10    | ВЧ (декометровые)   |
| 8         | 30-300 МГц         | 10-1          | метровые            |
| 9         | 300-3000 МГц       | 1-0,1         | УВЧ (дециметровые)  |
| 10        | 3-30 ГГц           | 10-1 см       | СВЧ (сантиметровые) |
| 11        | 30-300 ГГц         | 1-0,1 см      | КВЧ (милиметровые)  |

Эл. магн. поля НЧ часто используются в промышленном производстве (установках) - термическая обработка.

ВЧ — радиосвязь, медицина, ТВ, радиовещание.

УВЧ — радиолокация, навигация, медицина, пищевая промышленность.

Пространство вокруг источника эл. поля условно подразделяется на зоны:

- ближнего (зону индукции);
- дальнего (зону излучения).

Граница между зонами является величина:  $R = \lambda/2\pi$ .

В зависимости от расположения зоны, характеристиками эл.магн. поля является:

- в ближней зоне  $\rightarrow$  составляющая вектора напряженности эл. поля [B/м] составляющая вектора напряженности магнитного поля [A/м]
- в дальней зоне  $\rightarrow$  используется энергетическая характеристика: интенсивность плотности потока энергии [ $Bt/m^2$ ],[ $mkBt/cm^2$ ].

### 10.2. Вредное воздействие эл. магнитных полей

Эл. магн. поле **большой** интенсивности приводит к перегреву тканей, воздействует на органы зрения и органы половой сферы. **Умеренной** интенсивности: нарушение д-ти центральной нервной системы; сердечнососудистой; нарушаются биологические процессы в тканях и клетках. **Малой** интенсивности: повышение утомляемости, головные боли; выпадение волос.

# 10.3. Нормирование эл. магн. полей

#### ΓΟCT 12.1.006-84

Нормируемым параметром эл. магн. поля в диапазоне частот 60 кГц-300 МГц является предельно-допустимое значение составляющих напряженностей эл. и магнитных полей.

Нормируемым параметром эл. магн. поля в диапазоне частот 300 МГц-300 ГГц является предельно-допустимое значение плотности потока энергии.

 $\Pi\Pi \Im_{\Pi \mathcal{I}}$  — предельное значение плотности потока энергии [Bt/м²],[мкВт/см²] Пред. величина  $\Pi\Pi \Im_{\Pi \mathcal{I}}$  не более 10 Bt/м² ; 1000 мкВт/см² в производственном помещении.

В жилой застройке при круглосуточном облучении в соответствии с  ${\rm CH} \Rightarrow \Pi\Pi \Theta_{\rm ng}$  не более 5 мкВт/см².

# 10.4. Мероприятия по защите от воздействия электромагнит-

- 1. Уменьшение составляющих напряженностей электрического и магнитного полей в зоне индукции, в зоне излучения уменьшение плотности потока энергии, если позволяет данный технологический процесс или оборудование.
- 2. Защита временем (ограничение время пребывания в зоне источника эл. магн. поля).
- 3. Защита расстоянием (60 80 мм от экрана).
- Метод экранирования рабочего места или источника излучения электромагнитного поля.
- Рациональная планировка рабочего места относительно истинного излучения эл. магн. поля.
- 6. Применение средств предупредительной сигнализации.
- 7. Применение средств индивидуальной защиты.

# 11. Инфракрасное излучение.

Истинным ИФ излучением являются нагретые поверхности (>  $0^{\circ}$ C).

ИФ излучения играют важную роль в теплообмене человека с окружающей средой ⇒ терморегуляции организма человека.

В области А ИФ излучение обладает следующими вредными воздействиями:

- 1. Большая проникающая способность через поверхность кожи.
- 2. Поглощение кровью и подкожной жировой клетчаткой.
- На органызрения (хрусталик → помутнение).

# 11.1. Нормирование ИФ излучения.

Воздействие ИФ излучения оценивается плотностью потока энергии на рабочем месте. ГОСТ 12.1.005 - 88 Общие санитарно-гигиенические требования в области рабочей зоны.

Область ИФ излучения.

| Область  | λ           | Доп. АПЭ    | Доп. Интер.      | Примечание           |
|----------|-------------|-------------|------------------|----------------------|
| ИФ излу- |             | $Bт/м^2$ не | ППЭ, $Bт/м^2$ не |                      |
| чения    |             | более       | более            |                      |
| A        | 760 — 1500  | 100         | 35               | С учетом облучения   |
|          |             |             |                  | поверхности тела не  |
|          |             |             |                  | более S ≥ 50 %       |
| В        | 1500 — 3000 | 120         | 70               | 25 < S < 50 %        |
| С        | 3000 — 4500 | 150         | 100              | S ≤ 25 %             |
|          | 4500 — 1000 | 120         | 140              | от открытых ист. S ≤ |
|          |             |             |                  | 25 %                 |

# 11.2. Защита от воздействия ИФ излучения.

Снижение ИФ в источнике. Ограничение по времени пребывания. Защита расстоянием. Индивидуальная защита. Экранирование (теплоизомерные матениалы).Воздушное душирование. Вентиляция.

# Приборы контроля ИФ

Актинометр (1 — 500)  $Bт/м^2$ . Радиометры. Спектрорадиометр. Радиометр оптического излучения. Дозиметр оптического излучения.

# 12. Ультрафиолетовое излучение

 $\lambda = 1 - 400$  нм.

#### Особенности:

По способу генерации относятся к тепловым излучениям, и по характеру воздействия на вещества к ионизирующим излучениям. Диапазон разбивается на 3 области:

1. УФ — A (400 — 315 нм)

- 2. УФ В (315 280 нм)
- 3. УФ C (280 200 нм)
- УФ А приводит к флюаресценции.
- УФ В вызывает изменения в составе крови, кожи, воздействует на нервную систему.
- УФ С действует на клетки. Вызывает коагуляцию белков.

Действуя на слизистую оболочку глаз, приводит к электро-офтамии. Может вызвать помутнее хрусталика.

Источники УФ излучения:

- лазерные установки;
- лампы газоразрядные, ртутные;
- ртутные выпрямители.

# 12.1. Нормирование УФ излучения

С учетом оптико-физиологических свойств глаза, а также областей УФ излучений (волновые) установлены: допустимая плотность потока энергии, которой обеспечивают защиту поверхностей кожи и органов зрения.

УФ-А не более 10; УФ-В не более 0,005; УФ-С не более 0,001 [ $BT/M^2$ ]

# 12.2. Меры защиты

- 1. Экранирование источника УФИ.
- 2. Экранирование рабочих.
- 3. Специальная окраска помещений (серый, желтый,...)
- 4. Рациональное расположение раб. мест.

# 12.3. Средства индивидуальной защиты

- 1. ткани: хлопок, лен
- 2. специальные мази для защиты кожи
- 3. очки с содержанием свинца

Приборы контроля: радиометры, дозиметры.

# 13. Ионизирующее излучение

**Ионизирующее излучение** — излучение, взаимодействие которого со средой приводит к возникновению ионов различных знаков.

# 13.1. Характеристики ионизирующего излучения

- Экспозиционная доза отношение заряда вещества к его массе [Кл/кг];
- Мощность экспозиционной дозы [Кл/кг-с];
- Поглощенная доза средняя энергия в элементарном объеме на массу вещества в этом объеме [Гр=Грей], внесистемная единица [Рад];
- Мощность поглощенной дозы [Гр/с], [Рад/с];
- Эквивалентность вводится для оценки заряда радиационной опасности при хроническом воздействии излучения произвольным составом [Зв=Зиверт], внесистемная единица [бэр].

1 3в=1Гр/Q, где Q - коэффициент качества (зависит от биологического эффекта ИИ).

Радиоактивность — самопроизвольное превращение неустойчивого нуклида в другой нуклид, сопровождающееся испусканием ионизирующего излучения

Активностью радионуклида называется величина, которая характеризуется числом распада радионуклидов в ед. времени или числом радиопревращений в ед. времени.

[Беккерель — Бк]

# Виды и источники ИИ в бытовой, произв. и окружающей среде:

- корпускулярная (α, β нейтроны);
- (у,лент,электромагн.)

По ионизирующей способности наиболее опасно  $\alpha$  излучение, особенно для внутреннего излучения (внутр. органы, проникая с воздухом и пищей).

Внешнее излучение действует на весь организм человека.

Фоновое облучение организма человека создается космическим излучением, искусственными и естественными радиоактивными веществами, которые содержатся в теле человека и окружающей среде.

Фоновое облучение включает:

- 1) Доза от космического облучения;
- 2) Доза от природных источников;
- 3) Доза от источников, испускающих в окружающую среду и в быту;
- 4) Технологически повышенный радиационный фон;
- 5) Доза облучения от испытания ядерного оружия;
- 6) Доза облучения от выбросов АЭС;
- 7) Доза облучения, получаемая при медицинских обследованиях и радиотерапии;

Эквивалентная доза — от космического облучения — 300 мкЗв/год.

В биосфере Земли находится примерно 60 радиоактивных нуклидов. Эффективность дозы облучения ТЭЦ в 5 - 10 раз выше, чем АЭС в увеличении фона.

При полете в самолете на высоте 8 км дополнительное облучение составляет 1,35 мкЗв/год.

Цветной телевизор на расстоянии 2,5 метра от экрана 0,0025 мкЗв/час, 5 см. от экрана — 100 мкЗв/час.

Ср. эквивалентная доза облучения при медицинских исследованиях 25 - 40 мкЗв/год. Дополнительные дозы облучения 0,5 млБэр/час на расст. 5 м. от бытовой аппаратуры 28 млРент/час.

# 13.2. Биологическое действие ионизирующих излучений

- 1. Первичные (возникают в молекулах ткани и живых клеток)
- 2. Нарушение функций всего организма

Наиболее ралиочувствительными органами являются:

- костный мозг;
- половая сфера;
- селезенка

#### 13.2.1. Изменения на клеточном уровне различают:

- 1. Соматические или телесные эффекты, последствия которых сказываются на человеке, но не на потомстве.
- 2. Стохастические (вероятностные): лучевая болезнь, лейкозы, опухоли.
- 3. Нестохастические поражения, вероятность которых растет по мере увеличения дозы облучения. Существует дозовый порог облучения.
- 4. Генетические. 100%-я доза летальности при облучении всего тела 6  $\Gamma$ р, доза 50% выживания 2,4-4,2  $\Gamma$ р. Лучевая болезнь более одного  $\Gamma$ р. У большинства кажущиеся клиническое улучшение длится 14 20 суток.

Период восстановления продолжается 3-4 месяца. Повышенной опасностью обладают радионуклиды, попавшие внутрь (с пищей, воздухом, водой).

Наиболее опасен воздушный путь (за 6 ч. вдыхает 9 м  $^3$  воздуха, 2,2 л воды).

Биологические периоды выведения радионуклидов из внутренних органов колеблется от нескольких десятков суток до бесконечности.

∞ Стронций — 90; Несколько десятков суток  $\rightarrow$  С<sub>14</sub>,Na<sub>24</sub>

# 13.3. Нормирование ИИ

Нормы радиационной безопасности (НРБ — 76/87)

Регламентируются 3 категории облучаемых лиц:

- А персонал, связей с источником ИИ;
- $\mathsf{F}$  персонал (ограниченная часть населения), находящихся вблизи источника ИИ;
  - В население района, края, области, республики.

Группа критических органов (по мере уменьшения чувствительности):

- 1. Все тело, половая сфера, красный костный мозг
- 2. Мышцы, щитовидная железа, жировая ткань и др. органы за исключением тех, которые относятся к 1 и 3 группам
- 3. кожный покров, костная ткань, кисти, предплечья, стопы.

Основные дозовые пределы, допустимые и контрольные уровни, которые приводятся в HPE - 76/87 установлены для лиц категории A и E.

Нормы радиационной безопасности для категории В не установлены, а ограничение облучений осуществляются регламентацией или контролем радиоактивных объектов окр. среды.

А дозовый предел — ПДД - наибольшее значение индивидуальной эквивалентной дозы за календарный год, которое при равномерном воздействии в течении 50 лет не вызывает отклонении в состоянии здоровья обслуживающего персонала, обнаруживаемые современными методами исследования.

**Б** дозовый предел — ПД - основной дозовый предел, который при равномерном облучении в течение 70 лет не вызывает отклонений у обслуживающего персонала, обнаруживаемые современными методами исследования.

Основные дозовые пределы для категорий А и Б:

| Категории | гр | уппы критических о | рганов |
|-----------|----|--------------------|--------|
|           | I  | II                 | III    |

| A | 50 | 150 | 300 |
|---|----|-----|-----|
| Б | 5  | 15  | 30  |

### 13.3.1. Основные санитарные правила (ОСП) работы с источниками ионизирующих излучений

ОСП 72/78 — нормативный документ

Включает:

- 1. Требования к размещению установок с радиоактивными веществами и источниками ионизирующих излучений.
- 2. Требования к организации работ с ними.
- 3. Требования к поставке, учету и перевозке.
- 4. Требования к работе с закрытыми источниками.
- Требования к отоплению, вентиляции и пыле-, газоочистки при работе с источниками.
- 6. Требования к водоснабжению и канализации.
- 7. Требования к сбору, удалению и обезвреживанию отходов.
- 8. Требования к содержанию и дезактивации раб. помещений и оборудования.
- 9. Требования по индивидуальной защите и в личной гигиене.
- 10. Требования к проведению радиационного контроля.
- 11. Требования к предупреждению радиац. аварий и ликвидаций их последствий.

Проектированние защиты от внешнего ионизирующего излучения, рассчитанные по мощности экспозиционной дозы, коэф. защиты равен 2.

Все работы с открытыми источниками радиокт. веществ подразделяются на три класса:

I. (самый опасный). Работа осуществляется дистанционно.

Работа с ист. III-го класса осуществляется при использовании систем местной вентиляции (вытяжные шкафы).

Работа с источником II-го класса осуществляется в отдельно расположенных помещениях, которые имеют специально оборудованный вход (душевой и средства проведения радиоционного контроля).

При выполнении работ с веществами I, II и III классов проведение радиационного контроля обязательно.

### 13.4. Методы защиты от ионизирующих излучений

Основные методы:

1) Метод защиты количеством, т.е. по возможности снижение нормы дозы облучения, 2) Защита временем , 3) Экранирование (свинец, бетон),4) Защита расстоянием

### Приборы радиационного контроля:

1. дозиметры, 2. радиометры, 3. спектрометры, 4. сигнализаторы, 5. универсальные приборы (дозиметры + другие), 6. устройство детектирования.

### 14. Пожарная безопасность.

**Горение** — химическая реакция, которая сопровождается выделением тепла и света.

Для осуществления горения необходимо:

- окислитель (кислород);
- источник возгорания;
- источник пламени.

Если речь идёт о горючих веществах, то степень пожарной опасности горючих веществ характеризуется:

- температурой вспышки;
- температурой воспламенения;
- температурой самовоспламенением.

По температуре вспышке горючие вещества делятся на:

- легковоспламеняющиеся жидкости (до 45°) температура вспышки;
- горючие (более 45°).

**Температура вспышки** — минимальная температура, при которой над поверхностью жидкости образуется смесь паров этой жидкости с воздухом, способная гореть при поднесении открытого источника огня. Процесс горения прекращается после удаления этого источника.

**Температура воспламенения** — минимальная температура, при которой вещество загорается от открытого источника огня и продолжает гореть после его удаления.

**Температура самовоспламенения** — минимальная температура, при которой происходит его воспламенение на воздухе за счет тепла химической реакции без поднесения открытого источника огня.

Горючие газы и пыль имеют концентрационные пределы взрываемости.

### 14.1. Классификация помещений и зданий по степени взрывопожарноопасности.

### OHTΠ 24-85

Все помещения и здания подразделяются на 5 категорий:

 А - взрывопожароопасные. Та категория, в которой осуществляются технологические процессы, связанные с выделением горючих газов, легковоспламеняющихся жидкостей с температурой вспышки паров до 28 °C,

 $t_{BC\Pi}$  ≤ 28 °C; Р - свыше 5 кПа.

Б - помещения, где осуществляются технологические процессы с использованием ЛВЖ с температурой вспышки свыше 28 °C, способные образовывать взрывоопасные и пожароопасные смеси при воспламенении которых образуется избыточное расчетное давление взрыва свыше 5 кПа.

 $t_{\rm BC\Pi} > 28$  °C; P - свыше 5 кПа.

В - помещения и здания, где обращаются технологические процессы с использованием горючих и трудногорючих жидкостей, твердых горючих веществ, которые при взаимодействии друг с другом или кислородом воздуха способны только гореть. При условии, что эти вещества не относятся ни к А, ни к Б.

Эта категория — пожароопасная.

- Г помещения и здания, где обращаются технологические процессы с использованием негорючих веществ и материалов в горячем, раскаленном или расплавленном состоянии (например, стекловаренные печи).
- Д помещения и здания, где обращаются технологические процессы с использованием твердых негорючих веществ и материалов в холодном состоянии (механическая обработка металлов).

# 14.2. Причины возникновения пожаров, связанные со специальностью студентов

При эксплуатации ЭВМ возможны возникновения следующих аварийных ситуаций:

- короткие замыкания;
- перегрузки;
- повышение переходных сопротивлений в эл. контактах;
- перенапряжение;
- возникновение токов утечки.

При возникновении аварийных ситуаций происходит резкое выделение тепловой энергии, которая может явиться причиной возникновения пожара.

На долю пожаров, возникающих в эл. установках приходится 20%.

### 14.2.1. Статистические данные о пожарах

| Основные причины:                      | %  |
|----------------------------------------|----|
| - короткое замыкание                   | 43 |
| - перегрузки проводов/кабелей          | 13 |
| - образование переходных сопротивлений | 5  |

**Режим короткого замыкания** — появление в результате резкого возрастания силы тока, эл. искр, частиц расплавленного металла, эл. дуги, открытого огня, воспламенившейся изоляции.

### 14.2.2. Причины возникновения короткого замыкания:

- ошибки при проектировании;
- старение изоляции;
- увлажнение изоляции;
- механические перегрузки.

**Пожарная опасность при перегрузках** — чрезмерное нагревание отдельных элементов, которое может происходить при ошибках

проектирования в случае длительного прохождения тока, превышающего номинальное значение.

При 1,5 кратном превышении мощности резисторы нагреваются до 200-300 °C.

**Пожарная опасность переходных сопротивлений** — возможность воспламенения изоляции или других близлежащих горючих материалов от тепла, возникающего в месте аварийного сопротивления (в переходных клеммах, переключателях и др.).

**Пожарная опасность перенапряжения** — нагревание токоведущих частей за счет увеличения токов, проходящих через них, за счет увеличения перенапряжения между отдельными элементами электроустановок. Возникает при выходе из строя или изменении параметров отдельных элементов.

**Пожарная опасность токов утечки** — локальный нагрев изоляции между отдельными токоведущими элементами и заземленными конструкциями.

# 14.3. Классификация взрыво- и пожароопасных зон помещения в соотв-вии с ПУЭ

Для обеспечения конструктивного соответствия эл. технических изделий правила устройства эл. установок — ПУЭ-85 выделяется пожаро- и врывоопасные зоны.

**Пожароопасные зоны** — пространства в помещении или вне его, в котором находятся горючие вещества как при нормальном осуществлении технологического процесса, так и в результате его нарушения.

### Зоны:

- П-I помещения, в которых обращаются горючие жидкости с температурой вспышки паров свыше 61 °C.
- П-II помещения, в которых выделяются горючие пыли с нижних концентрационных пределах возгораемости  $> 65 \text{ г/м}^3$ .
- П-Па помещения, в которых обращаются твердые горючие вещества.
- П-III пожароопасная зона вне помещения, к которой выделяются горючие жидкости с температурой вспышки более 61 °C или горючие пыли с нижним концентрационным пределом возгораемости более  $65 \, \text{г/m}^3$ .

Взрывоопасные зоны — помещения или часть его или вне помещения, где образуются взрывоопасные смеси как при нормальном протекании технологического процесса, так и в аварийных ситуациях.

#### Для газов:

 В-I - помещения, в которых образуются горючие газы или пары ЛВЖ, способные образовывать взрывоопасные смеси в нормальном режиме работы.

- В-Іа помещения, в которых образуются горючие газы или пары ЛВЖ, способные образовывать взрывоопасные смеси в аварийном режиме работы.
- B-Iб зоны, аналогичные B-Ia, но процесс образования взрывоопасных смесей в небольших колическтвах и работа с ними осуществляется без открытого источника огня.
- B-Iв зоны, аналогичные B-I, только процесс образования взрывоопасных смесе в небольших колическтвах и работа с ними осуществляется без открытого источника огня.
- В-Іг зоны вне помещения (вокруг наружных эл. установок), в которых образуются горючие газы или пары ЛВЖ, способные образовывать взрывоопасные смеси в аварийном режиме работы.

### Для паров:

- В-II взрывоопасная зона, которая имеет место при осуществлении операций технологического процесса при выделении горючих смесей при нормальном режиме работы.
- В-Па взрывоопасная зона, которая имеет место при осуществлении операций технологического процесса при выделении горючих смесей при аврийном режиме работы.

### 14.4. Меры по пожарной профилактики

- строительно-планировочные;
- технические;
- способы и средства тушения пожаров;
- организационныё

Строительно-планировочные определяются огнестойкостью зданий и сооружений (выбор материалов конструкций: сгораемые, несгораемые, трудносгораемые) и предел огнестойкости — это количество времениЁ в течение которого под воздействием огня не нарушается несущая способность строительных конструкций вплоть до появления первой трещины.

Все строительные конструкции по пределу огнестойкости подразделяются на 8 степеней от 1/7 ч до 2ч.

Для помещений ВЦ используются материалы с пределом стойкости от 1-5 степеней. В зависимости от степени огнестойкости опрё наибольшие дополнительные расстояния от выходов для эвакуации при пожарах (5 степень — 50 м).

**Технические меры** — это соблюдение противопожарных норм при эвакуации систем вентиляции, отопления, освещения, эл. обеспечения и т.д.

- использование разнообразных защитных систем;
- соблюдение параметров технологических процессов и режимов работы оборудования.

**Организационные меры** — проведение обучения по пожарной безопасности, соблюдение мер по пожарной безопасности.

### 14.5. Способы и средства тушения пожаров

- 1. Снижение концентрации кислорода в воздуче;
- Понижение температуры горючего вещества, ниже температуры воспламенения.
- 3. Изоляция горючего вещества от окислителя.

Огнегасительные вещества: вода, песок, пена, порошок, газообразные вещества не поддерживающие горение (хладон), инертные газы, пар.

Средства пожаротушения:

### 1 Ручные

- 1.1 огнетушители химической пены;
- 1.2 огнетушитель пенный;
- 1.3 огнетушитель порошковый;
- 1.4 огнетушитель углекислотный, бромэтиловый
- 2 Противопожарные системы
  - 2.1 система водоснабжения;
  - 2.2 пеногенератор
- 3 Системы автоматического пожаротушения с использованием средствв автоматической сигнализации
  - 3.1 пожарный извещатель (тепловой, световой, дымовой, радиационный) Для ВЦ используются тепловые датчики-извещатели типа ДТЛ, дымовые радиоизотопные типа РИЛ.
- 4 Система пожаротушения ручного действия (кнопочный извещатель).

Для ВЦ используются огнетушители углекислотные ОУ, ОА (создают струю распыленного бром этила) и системы автоматического газового пожаротушения, в которой используется хладон или фреон как огнегасительное средство.

Для осуществления тушения загорания водой в системе автоматического пожаротушения используются устройства **спринклеры и дренкеры**. Их недостаток — распыление происходит на площади до 15 м<sup>2</sup>.

Способ соединения датчиков в системе эл. пожарной сигнализации с приемной станцией м.б. — параллельным (лучевым); — последовательным (шлейфным).

14.5.1. Классификация пожаров и рекомендуемые огнегасительные вещества

| Класс  | Характеристика гор. Среды,    | Огнегасительные средства        |
|--------|-------------------------------|---------------------------------|
| пожара | объекта                       |                                 |
| A      | обычные твердые и горючие ма- | все виды                        |
|        | териалы (дерево, бумага)      |                                 |
| Б      | горючие жидкости, плавящиеся  | распыленная вода, все виды пен, |
|        | при нагревании материала (ма- | порошки, составы на основе СО2  |
|        | зут, спирты, бензин)          | и бромэтила                     |

| С | горючие газы (водород, ацети-       | газ. составы, в состав которых                  |
|---|-------------------------------------|-------------------------------------------------|
|   | лен, углеводороды)                  | входят инертные разбавители                     |
|   |                                     | (азот, порошки, вода)                           |
| Д | металлы и их сплавы (Na, K, Al, Mg) | порошки                                         |
| Е | эл. установки под напряжением       | порошки, двуокись азота, оксид                  |
|   |                                     | азота, углекислый газ, составы бромэтил $+CO_2$ |

### 14.5.2. Организация пожарной охраны на предприятии

Военизированная структура, которая подчиняется МВД. Ответственный директор, гл. инженер. В ведении гл. инженера находится пожаро-техническая комиссия, которую он возглавляет.

# 15. Безопасность оборудования и производственные процессы

Эксплуатация любого вида оборудования связана потенциально с наличием тех или иных опасных или вредных производственных факторов.



**Цели механизации**: создание безопасных и безвредных условий труда при выполнении определенной операции.

Исключение человека из сферы труда обеспечивается при использовании РТК, создание которых требует высоко научно-технического потенциала на этапе как проектирования, так и на этапе изготовления и обслуживания, отсюда значительные капитальные затраты.

# 15.1. Требования безопасности при проектировании машин и механизмов

FOCT 12.2 CCFT

Требования направлены на обеспечение безопасности, надежности, удобства в эксплуатации.

**Безопасность машин** определяется отсутствием возможности изменения переметров технологического процесса или конструктивных параметров машин, что позволяет исключить возможность возникновения опасных факторов.

Надежность определяется вероятностью нарушения нормальной работы, что приводит к возникновению опасных факторов и чрезвычайных (аврийных) ситуаций. На этапе проектирования, надежность определяется правильным выбором конструктивных параметров, а также устройств автоматического управления и регулирования.

Удобства эксплуатации определяются психо-физиологическим состоянием обслуживающего персонала.

На этапе проектирования удобства в эксплуатации определяются правильным выбором дизайна машин и правильно-спроектированным раб. местом оператора (пользователя).

ГОСТ 12.2.032-78 ССБТ. Рабочее место при выполнении работ сидя. Общие эргономические требования.

ГОСТ 12.2.033-78 ССБТ. Рабочее место при выполнении работ стоя. Общие эргономические требования.



### 15.2. Опасные зоны оборудования и средства защиты от них

Опасная зона оборудования — производство, в котором потенциально возможно действие на работающего опасных и вредных факторов и как следствие - действие вредных факторов, приводящих к заболеванию.

Опасность локализована вокруг перемещающихся частей оборудования или вблизи действия источников различных видов излучения.

Размеры опасных зон могут быть постоянные, когда стабильны расстояния между рабочими органами машины и переменно.

Средства защиты от воздействия опасных зон оборудования подразделяется на: коллективные и индивидуальные.

- 1 Коллективные
  - 1.1 Оградительные
    - 1.1.1 стационарные (несъемные);
    - 1.1.2 подвижные (съемные);
    - 1.1.3 переносные (временные)

Оградительные средства предназначены для исключения возможности попадания работника в опасную зону: зону ведущих частей, зону тепловых излучений, зону лазерного излучения и т.д.

- 2 Предохранительные
  - 2.1 наличие слабого звена (плавкая вставка в предохранитель);
  - 2.2 с автоматическим восстановлением кинематической цепи
- 3 Блокировочные
  - 3.1 механические;
  - 3.2 электрические;
  - 3.3 фото-электрические;
  - 3.4 радиационные;
  - 3.5 гидравлические;
  - 3.6 пневматические;
  - 3.7 пневматические
- 4 Сигнализирующие
  - 4.1 по назначению (оперативные, предупредительные, опознавательные средства);
  - 4.2 по способу передачи информации
    - 4.2.1 световая;
    - 4.2.2 звуковая;
    - 4.2.3 комбинированная

Сигнализирующие средства предназначены для предупреждения и подачи сигнала об опасности в случае попадания работающего в опасную зону оборудования.

- 5 Средства защиты дистанционного управления
  - 5.1 визуальная;
  - 5.2 дистанционная

Предназначены для удаления рабочего места персонала, работающего с органами, обеспечивающими наблюдение за процессами или осуществление управления за пределами опасной зоны.

6 Средства специальной защиты, которые обеспечивают защиту систем вентиляции, отопления, освещения в опасных зонах оборудования.

## 16. Основные положения теории чрезвычайных ситуаций

Техносфера, которая создана человеком для защиты от внешних опасностей по мере эволюции производства, сама становится источником опасности. Необходимо предусматривать ряд мер для защиты от них, а также научится прогнозировать появление такого рода опасностей.

Переход от примитивного оборудования, безопасность при эксплуатации которого решалась в рамках охраны труда, к автоматизированным системам управления производственными процессами предусматривает создание теории безопасности, которое базируется на дисциплинах: экология, охрана труда, математика, физика, специальные дисциплины.

В решении вопросов теории чрезвычайных ситуаций в свое время находилась космонавтика.

### 16.1. Аксиома о потенциальной опасности деятельности человека

Всякая деятельность потенциально опасна!

Критерием (колическтвенной оценкой) опасности является понятие риска.

**Риск** — отношение числа тех неблагоприятных событий или проявлений опасности к возможному числу за определенный период времени.

Риск гибели вследствии аварий, несчастных случаев и т.д.  $1,5\cdot 10^{-3}$ , у летчиков —  $10^{-2}$ .

Под **безопасностью** понимается такое состояние деятельности, при котором с некоторй вероятностью (риском) исключается реализация потенциальной опасности. Поэтому возникают вопросы, связанные с реглпментированием риска.

Нормированный (приемлемый) риск равен 10-6.

Фактический риск в 100 и 1000 раз превышает приемлемый. Нормативный показатель приемлевого риска не остается постоянным.

БЖД можно определить как область знаний, изучающая безопасности и защиту от них.

### 16.1.1. Задачи БЖД:

1.Идентификация (распознавание) опасностей с указанием их количественных характеристик и координат в 3-х мерном пространстве. 2.Определение средств защиты от опасностей на основе сопоставления затрат с выгодами, т.е. с т.з. экономической целесообразности. 3.Ликвидация отрицательных последствий (опасностей).

# 16.2. Классификация и общие характеристики чрезвычайных ситуаций

**Чрезвычайная ситуация** — внешне неожиданная, внезапно возникающая обстановка, которая характеризуется резким нарушением установившегося процесса, оказывающая значительное отрицательное влияние на жизнедеятельность людей, функционирование экономики, социальную сферу и окружающую среду.

### Классификация:

- 1. По принципам возникновения (стихийные бедствия, техногенные катастрофы, антропогенные катастрофы, социально-политические конфликты).
- 2. По масштабу распространения с учетом последствий.
  - местные (локальные);
  - объектные;
  - региональные;
  - национальные;
  - глобальные.
- 3. По скорости распространения событий
  - внезапные;

- умеренные;
- плавные (ползучие);
- быстрораспространяющиеся.

Последствия чрезвычайных ситуаций разнообразны: затопления, разрушения, радиоактивное заражения, и т.д.

### 16.2.1. Условия возникновения ЧС.

- 1. Наличие потенциальных опасных и вредных производственных факторов при развитии тех или иных процессов.
- 2. Действие факторов риска
  - высвобождение энергии в тех или иных процессах;
  - наличие токсичных, биологически активных компонентов в процессах и т.л.
- 3. Размещение населения, а также среды обитания.

### 16.2.2. Стадии развития ЧС.

- 1 этап. Стадия накопления тех или иных видов дефекта. Продолжительность: несколько секунд десятки лет.
- 2 этап. Инициирование ЧС.
- 3 этап. Процесс развития ЧС, в результате которого происходит высвобождение факторов риска.
- 4 этап. Стадия затухания. Продолжительность: несколько секунд десятки лет.

### 16.2.3. Принципы обеспечения БЖД в ЧС.

- Заблаговременная подготовка и осуществление защитных мер на территории всей страны. Предполагает накопление средств защиты для обеспечения безопасности.
- 2. Дифференцированный подход в определении характера, объема и сроков исполнения такого рода мер.
- 3. Комплексный подход к проведению защитных мер для создания безопасных и безвредных условий во всех сферах деятельности.

Безопасность обеспечивается тремя способами защиты: эвакуация; использование средств индивидуальной защиты; использование средств коллективной защиты.

Затраты на снижение риска аварий могут быть распределены:

- 1. На проектирование и изготовление систем безопасности.
- 2. На подготовку персонала.
- 3. На совершенствование управления в ЧС.

### 16.3. Гражданская оборона.

## 16.3.1. Ударная волна, параметры, единицы измерения, особенности воздействия, способы защиты.

Очаг поражения — территории, которые подвергаются воздействию взрыва. В пределах очага поражения — полное, сильное, частичное и слабое разрушения; за пределами возникают пожары и незначительные разрушения.

Основные поражающие факторы ядерного взрыва:

- ударная волна;
- световое излучение;
- проникающая радиация;
- электромагнитный импульс.

Основная характеристика ударной волны — это избыточное давление взрыва [ $\Pi a$ ].

Т.к. распространение ударной волны сопровождается движением воздушных масс, то динамическое воздействие, под которым оказываются вертикальные конструкции, носит название давление скоростного напора [Па].

Помимо давления скоростного напора на наземные конструкции действует давление отражения (основная причина нарушения жестких конструкций).

Степень возможных разрушений подземных сооружений оцениваются избыточным давлением на поверхность земли. Масштабы разрушения связаны с мощностью боеприпасов — тротиловый эквивалент [кг].

На масштабы разрушения оказывают влияния: расстояния от центра взрыва; характер и прочность разрушения; рельеф местности и др.

### 16.3.2. Особенности воздействия ударной волны.

- 1. Относительно большая продолжительность действия (несколько секунд).
- 2. Разряжение следующее вслед за областью сжатия (способность затекать в здания).
- 3. Проникающая радиация потоки γ-излучения и нейтронов при ядерном взрыве. По мере воздействия на людей радиация изменяет свойство материалла (пластик превращается в твердое вещество).
- Радиактивное заражение (приземное заражение атмосферного слоя воздуха, воды).

Форма следа радиактивного облака — элепс. Через один час после взрыва а местности, которая подверглась взрыву, мощность экспоненциальной дозы равняется 100 Р/ч, через 8 часов она снижается в 10 раз.

Зараженность воздуха и воды оценивается активностью радионуклидов.

Электромагнитный импульс — поражающий фактор, который воздействует на электронную и электро аппаратуру. Это связао с тем, что в результате ядерного взрыва появляется электромагнитный импульс, который охватывает весь диаппазон частот электромагнитных колебаний, в том числе диапазон связи, радиолакации и электроснабжения

Для защиты от эл.магн. импулсов используют экранирование линий электроснабжения.

Травмы при ударной волне делятся на: легкие (при избыточном давлении взрыва 20-40 кПа) средние и тяжелые (от 50 кПа и выше).

Характер разрушений, объем спасательных работ, условия их выполнения в очаге поражения зависят от давления ударной волны, рельефа местности, метеоусловий, расположения населенных пунктов.

Зона разрушений подразделяется: сильная, средняя (завалы), слабые.

Зоны пожаров: сплошных, в завалах, отдельных пожаров.