

*REMARKS**Discussion of Claim Amendments*

Claim 16 has been rewritten as an independent claim including a reference to a dissolution inhibitor. Claims 21-24 and 26 have amended to further sharpen the claim preamble and adjust the claim dependencies in view of the cancellation of claims 2-3 and 5. Claims 25 and 28 have been made to depend from claim 16. Claims 30-33 have been amended to remove obvious typographical errors. New claim 38 has been added and is directed to an embodiment of the invention. No new matter has been added.

Discussion of Rejections

Claims 1-6, 9-12, 14-15, 19, 21-28 and 31-37 stand rejected under 35 U.S.C. § 103(a) as allegedly unpatentable over Kunita et al. (US 2001/0009129) in view of Kinsho et al. (US 5,837,785) and Ding et al. (US 5,994,430). Claims 16 and 17 are rejected as allegedly unpatentable over Kunita et al., Kinsho et al., and Ding et al., and further in view of the alleged AAPA. Claims 7, 8, 13, 29, and 30 are rejected as allegedly unpatentable over Kunita et al., Kinsho et al., and Ding et al., and further in view of Umeda et al. (JP 05-127402 A).

Applicants have amended the claims as discussed. Applicants respectfully submit that the present claims are patentable over the cited references. The Office Action states (at last paragraph, page 2 and first paragraph, page 3) that Kunita et al. discloses a polymer comprising a group having the structure $-S-(L)_k-Q$ wherein ... Q comprises a heterocyclic group, but fails to disclose that the polymer comprises a phenolic monomeric unit wherein the phenyl group of the phenolic monomeric unit is substituted by the specified group and that wherein S is covalently bound to a carbon atom of the phenyl group. The Office Action goes on to argue that “the main polymer chain should be selected based upon availability and economical efficiency, specifically suggesting polyvinyl polymers (last sentence of paragraph [0197]), and having ordinary skill in the art would recognize that poly(vinylphenols) are widely available, economical polyvinyl polymers.”

Applicants respectfully disagree with the Office Action. Those of ordinary skill in the art would not read a polyvinylphenol to be a polyvinyl polymer. See, for example, the

indices of "Polymer Handbook", Brandrup et al. (Exhibit 1) and "Organic Polymer Chemistry", K.A. Saunders (Exhibit 2). Poly(vinylphenol) is not mentioned in the index tables in these well-known handbook or textbook. In the index tables of these books the most cited polyvinyl polymers are polyvinyl acetate, polyvinyl alcohol and, specially, polyvinylchloride, and there is no mentioning of poly(vinylphenol). See also Kunita et al., which defines "polyvinyl" by formula (3) at col. 2, line 41 and the description of Q¹ in formula (3) at col. 4, lines 3-9. Thus, Q¹ in formula (3) "includes hydrogen: alkyl such as methyl, ethyl, etc.; aryl such as phenyl, tolyl, etc.; haloalkyl such as chloromethyl, chloroethyl, etc.; haloaryl such as chloromethylphenyl, chloroethylphenyl, 2,4,6-trichlorophenyl, 2,4,6-tribromophenyl, etc.; alkoxy carbonyl such as methoxycarbonyl, ethoxycarbonyl, butoxycarbonyl, etc.; acetoxy; and --X--Z, among others." In addition, Kunita et al. describes, in the same paragraph at column 2, line 41 plus, describing polyvinyl polymers, the novolac resins as a separate category of polymers than "polyvinyl" polymers by specifically reciting a formula (9) for the novolacs. If novolacs were to be a species of polyvinyl polymers, as the Office Action argues, why would Kunita et al. represent the two classes separately? Thus, there is clear evidence that a polyvinyl polymer should not be read to cover a polyvinyl phenol or novolac resin.

The Office Action has failed to provide sufficient evidence to reach the broad assertion that polyvinylphenol would be suggested by a disclosure of a polyvinyl polymer. While the Office Action may employ a broadest reasonable interpretation of terms during examination, it cannot ignore what those of ordinary skill in the art would consider to be a fair reading of the prior art. The cited reference is written to those of ordinary skill in the art, and they should be interpreted as an artisan of ordinary skill would read. The Office Action failed in this respect. Accordingly, applicants respectfully submit that the Office Action would not make a *prima facie* case for obviousness of the present claims.

Further, Kinsho et al. fails to disclose substituting on the carbon atom of the novolac resin. On the contrary, Kinsho et al. teaches that the substitution is on the oxygen atom. The Office Action cites Ding et al. for teaching the substitution on the carbon atom of the aromatic ring. However, the Office Action's reliance on Ding et al. is erroneous. Ding et al. fails to disclose or suggest to those of ordinary skill in the art covalently attaching a sulfur-containing group to a carbon atom of the aromatic ring. Ding et al. merely discloses the

following groups: $-N=N-$, $-R'C=CR'$ -, $-R'C=N-$ or $-N=CR'$ -(Col. 4 lines 41-65). Such a disclosure cannot suggest a sulfur-containing group to those of ordinary skill in the art. For example, at column 4, lines 30-31, Ding et al. states that the polymer "strongly absorbs ultraviolet light having a wavelength in the range of 180 nm to about 450 nm." Ding et al. describes the dyed monomeric units at column 4, lines 41-65, wherein X, i.e., the group attached to the carbon atom of the phenyl ring is $-N=N-$, $-R'C=CR'$ -, $-R'C=N-$ or $-N=CR'$ -. There is no disclosure of S-containing groups. Ding et al. also states that "the chemical structure of the dye chromophore is *critical* to provide the appropriate absorption etch characteristics and solubility in the solvents that are of low toxicity, particularly aqueous solubility. In this invention the particularly good absorption characteristics of the dye unit are provided through the X and Y groups being *conjugatively* attached to the phenolic moiety. X can be selected from the following groups, $-N=N-$, $-R'C=CR'$ -, $-R'C=N-$ and $-N=CR'$ -, where R' is H or alkyl." (Emphasis added). Clearly, those of ordinary skill in the art, in the face of the teaching that the chromophore is *critical* and that it should be *conjugatively* attached, i.e., through a double or triple bond containing group that will facilitate electronic conjugation, would not be prompted to use a sulfur containing group such as $-S-(L)_k-Q$, where S does not and cannot provide electronic conjugation. To proceed so, as applicants have done here, would be counter or contrary to the express teachings of the reference. Accordingly, Ding et al. cannot suggest the presently claimed invention, either by itself or in combination with one or more of other cited references.

In addition, none of the cited references teaches a method of covalently linking the group $-S-(L)_k-Q$ to a carbon atom of the phenyl ring. The method taught in Ding et al. (Examples 1-12) is diazotization followed by coupling of the diazonium (N_2^+) halide to the phenol. The Office Action has failed to show that those of ordinary skill in the art can follow this methodology and covalently link the $-S-(L)_k-Q$ group to a carbon atom of the phenyl ring in a phenol. See, for example, *In re Hoeksema*, 399 F.2d 269, 158 USPQ 596 (CCPA 1968), which requires that the prior art must teach a method of making structurally similar compounds to sustain an obviousness rejection of the claimed compounds. Accordingly, applicants respectfully submit that a *prima facie* case for obviousness cannot be made on the present claims.

The present claims are also patentable in view of the U.S. Supreme Court's opinion in *KSR Int'l Co. v. Teleflex Inc.*, 127 S. Ct. 1727, 1731 (2007). The presently claimed invention does not represent a combination of familiar elements where each element performed their known function. The placement of the sulfur atom on the carbon atom of the novolac resin is not a familiar element. Further, the *KSR* Court acknowledged "the importance of identifying a reason that would have prompted a person of ordinary skill in the relevant field to combine the elements in the way the claimed invention does in an obviousness determination". See *Takeda Chemical Industries, Ltd. v. Alphapharm Pty., Ltd.*, 83 USPQ2d, 1169, 1174 (Fed. Cir. June 28, 2007) (*quoting KSR*, 127 S.Ct. at 1731). Moreover, the Court indicated that "there is no necessary inconsistency between the idea underlying the TSM test and the Graham analysis." *Takeda* at 1174. "As long as the test is not applied as a rigid and mandatory formula, that test can provide helpful insight to an obviousness inquiry." *Id.* "Thus, in new chemical compounds, it remains necessary to identify for some reason that would have led a chemist to modify a known compound in a particular manner to establish *prima facie* obviousness of a new claimed compound." *Id.* In the present application, which relates to new polymers (which are like new chemical compounds), there remains a need for some reason that would have led those of ordinary skill in the art to covalently link the sulfur atom to the carbon atom of the phenyl ring. Here, there is no reason in the prior art that would motivate those of ordinary skill in the art to do so, especially in view of Ding et al.'s teaching that the group that is attached to the ring carbon must be a conjugatable group. Accordingly, the present claims are non-obvious.

Applicants respectfully submit that if the Office continues to reject the claims, such a rejection would be based on an unmistakable case of hindsight reconstruction and a strained effort to arrive at the claimed invention by picking and choosing the required components from the prior art using the presently claimed invention as a roadmap and then adding some of its own imagination. It is well established that such hindsight reconstruction is impermissible. Using the applicants' disclosure as a blueprint to reconstruct the claimed invention from isolated pieces of the prior art contravenes the statutory mandate of Section 103 which requires judging obviousness at the point in time when the invention was made. See *Grain Processing Corp. v. American Maize-Prod. Co.*, 840 F.2d 902, 907, 5 USPQ2d 1788, 1792 (Fed. Cir. 1988).

Conclusion

A favorable decision is solicited. If, in the opinion of the Examiner, a telephone conference would expedite the prosecution of the subject application, the Examiner is invited to call the undersigned attorney.

Respectfully submitted,

Xavier Pillai, Ph.D., Reg. No. 39,799
LEYDIG, VOIT & MAYER, LTD.
Two Prudential Plaza, Suite 4900
180 North Stetson Avenue
Chicago, Illinois 60601-6731
(312) 616-5600 (telephone)
(312) 616-5700 (facsimile)

Date: October 26, 2007

POLYMER HANDBOOK

FOURTH EDITION

Editors

J. BRANDRUP, E. H. IMMERGUT, and E. A. GRULKE

Associate Editors

**A. ABE
D. R. BLOCH**

**AGFA-GEVAERT N.V.
Bedrijfsbibliotheek RDM/ln 3018
Septestraat 27
B-2640 MORTSEL / België**

**A WILEY-INTERSCIENCE PUBLICATION
JOHN WILEY & SONS, INC.**

New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

214

This book is printed on acid-free paper. ☺

Copyright © 1999 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

Library of Congress Cataloging-in-Publication Data:

Polymer Handbook / Editors: J. Brandrup, E. H. Immergut, and
E. A. Grulke;

Associate Editors, A. Abe, D. R. Bloch. — 4th ed.

p. cm.

"A Wiley-Interscience Publication."

Includes index.

ISBN 0-471-16628-6 (cloth : alk. paper)

1. Polymers—Tables. 2. Polymerization—Tables. I. Brandrup, J.
II. Immergut, E. H. III. Grulke, Eric A.
QD388.P65 1999

547.7—dc21

98-37261

Printed in the United States of America.

10 9 8 7 6 5 4 3 2

- Poly(phosphazenes):
 bulk crystallization rates, VI/384–VI/385
 fractionation systems, VII/422–VII/423
 glass transition temperature, VI/242–VI/243
 segmental anisotropy, VII/755–VII/756
 solvent-nonsolvent tables, VII/522
- Poly(phthalazines), glass transition temperature, VI/248
- Poly(phthalides), glass transition temperature, VI/248
- Poly(piperazines):
 glass transition temperature, VI/248–VI/249
 solvent-nonsolvent tables, VII/526–VII/527
- Poly(piperidines), glass transition temperature, VI/249
- Poly(propylene), V/160
 diffusion of various compounds through high-density, VI/564
 heat capacity, VI/489–VI/490
 physical constants, V/21–V/28
- Poly(pyrazinoquinoxalines), glass transition temperature, VI/249
- Poly(pyrazoles), glass transition temperature, VI/249
- Poly(pyridazines), glass transition temperature, VI/249
- Poly(pyridines), glass transition temperature, VI/249
- Poly(pyromellitimides):
 glass transition temperature, VI/249–VI/250
 segmental anisotropy, VII/756–VII/757
 solvent-nonsolvent tables, VII/525
- Poly(pyrrolidines), glass transition temperature, VI/250
- Poly(quinones), glass transition temperature, VI/250
- Poly(quinoxalines):
 glass transition temperature, VI/250–VI/252
 segmental anisotropy, VII/757
 solvent-nonsolvent tables, VII/526
- Poly(saccharides):
 crystallographic data, VI/59–VI/64
 diffusion coefficients, VII/144–VII/157
 fractionation systems, VII/431–VII/438
 frictional ratios, VII/144–VII/157
 glass transition temperature, VI/243–VI/244
 Huggins constant, VII/282–VII/284
 partial specific volumes, VII/144–VII/157
 second virial coefficients, VII/194–VII/196
 sedimentation coefficients, VII/144–VII/157
 segmental anisotropy, VII/758–VII/760
 solvent-nonsolvent tables, VII/531–VII/532
 specific refractive index increments, VII/611–VII/615
 theta solvents, VII/316–VII/317
 unperturbed dimensions of linear chains, VII/66–VII/68
 viscosity-molecular weight relationship, VII/43–VII/46
- Poly(silanes):
 fractionation systems, VII/418–VII/422
 glass transition temperature, VI/243
 solvent-nonsolvent tables, VII/522–VII/523
 specific refractive index increments, VII/606–VII/608
- Poly(silazanes):
 glass transition temperature, VI/243
 solvent-nonsolvent tables, VII/522–VII/523
 specific refractive index increments, VII/606–VII/608
- Poly(silmethylenes), unperturbed dimensions of linear chains, VII/64
- Poly(siloxanes):
 bulk crystallization rates, VI/384
 diffusion coefficients, VI/558–VI/559
 fractionation systems, VII/418–VII/422
 glass transition temperature, VI/231–VI/233
 heat, entropy, and volume change of solution, VII/661–VII/662
 interfacial tension with other polymers, VII/539–VI/540
 permeability coefficients, VI/558–VI/559
 radiation chemical yield, II/487
 segmental anisotropy, VII/756
 solubility coefficients, VI/558–VI/559
 solvent-nonsolvent tables, VII/515–VII/516
 spherulite growth rates, VI/334–VI/336
 surface properties, VI/531–VI/532
 thermal degradation, II/471
 unperturbed dimensions of linear chains, VII/64
 viscosity-molecular weight relationship, VII/40–VII/41
- Poly(silsesquioxanes):
 unperturbed dimensions of linear chains, VII/64
 viscosity-molecular weight relationship, VII/40–VII/41
- Poly(styrene), V/160–V/161
 diffusion coefficients, VI/547–VI/548, VII/109–VII/134
 fractionation systems, VII/356–VII/363
 frictional ratios, VII/109–VII/134
 glass transition temperature, VI/209–VI/212
 heat, entropy, and volume change of solution, VII/655–VII/657
 heat capacity, VI/485, VI/499–VI/500
 interfacial tension with other polymers, VI/537
 optically active, VII/719–VII/720, VII/735
 partial specific volumes, VII/109–VII/134
 permeability coefficients, VI/547–VI/548
 physical constants, V/91–V/95, V/166–V/168
 propagation/termination constants, II/88–II/90
 radiation chemical yield, II/485–II/486
 second virial coefficients, VII/179–VII/188
 sedimentation coefficients, VII/109–VII/134
 solubility coefficients, VI/547–VI/548
 solvent-nonsolvent tables, VII/507–VII/508
 specific refractive index increments, VII/574–VII/588
 surface properties, VI/525
 thermal degradation, II/461–II/464
 theta solvents, VII/300–VII/305
 unperturbed dimensions of linear chains, VII/54–VII/56
- Poly(sulfides):
 crystallographic data, VI/57–VI/58
 dipole moments in solution, VII/639–VII/640
 fractionation systems, VII/416–VII/418
 glass transition temperature, VI/233–VI/234
 nomenclature, VI/4
 optically active, VII/725, VII/737–VII/738
 solvent-nonsolvent tables, VII/516–VII/517
 thermal degradation, II/468–II/469
 unperturbed dimensions of linear chains, VII/63–VII/64
 viscosity-molecular weight relationship, VII/39
- Poly(sulfonamides):
 fractionation systems, VII/416–VII/418
 glass transition temperature, VI/234–VI/235
- Poly(sulfonates):
 glass transition temperature, VI/233
 solvent-nonsolvent tables, VII/515–VII/516
- Poly(sulfones):
 crystallographic data, VI/57–VI/58
 diffusion coefficients, VI/560–VI/561
 fractionation systems, VII/416–VII/418
 glass transition temperature, VI/234–VI/235
 permeability coefficients, VI/560–VI/561
 radiation chemical yield, II/488
 solubility coefficients, VI/560–VI/561
 solvent-nonsolvent tables, VII/517–VII/518
 specific refractive index increments, VII/599–VII/600
 surface properties, VI/530
 thermal degradation, II/468–II/469
- Poly(tetrafluoroethylene), V/160
 heat capacity, VI/493
 physical constants, V/31–V/39
- Poly(tetrafluoroethylene-*co*-hexafluoropropylene) (FEP), physical constants, V/41–V/45
- Poly[tetrafluoroethylene-*co*-perfluoro(alkoxy vinyl ether)] (PFA), physical constants, V/41–V/45
- Poly(thioesters):
 glass transition temperature, VI/235
 optically active, VII/725
- Poly(thioethers), dipole moments in solution, VII/639–VII/640
- Poly(thiophenes), solvent-nonsolvent tables, VII/527
- Poly(triazines), glass transition temperature, VI/252
- Poly(triazoles), glass transition temperature, VI/252
- Poly(trifluoroethylene), heat capacity, VI/495–VI/496
- Poly(ureas):
 crystallographic data, VI/49–VI/51
 diffusion coefficients, VII/137–VII/140
 fractionation systems, VII/410–VII/411
 frictional ratios, VII/137–VII/140
 glass transition temperature, VI/242
 optically active, VII/725–VII/726
 partial specific volumes, VII/137–VII/140
 second virial coefficients, VII/191–VII/192
 sedimentation coefficients, VII/137–VII/140
 solvent-nonsolvent tables, VII/521
 theta solvents, VII/316
 viscosity-molecular weight relationship, VII/39
- Poly(urethane) elastomers, V/161
- Poly(urethanes):
 bulk crystallization rates, VI/383–VI/384
 crystallographic data, VI/49–VI/51
 diffusion coefficients, VI/560, VII/137–VII/140
 fractionation systems, VII/410–VII/411
 frictional ratios, VII/137–VII/140
 glass transition temperature, VI/229–VI/231
 nomenclature, VI/4
 optically active, VII/725–VII/726
 partial specific volumes, VII/137–VII/140
 permeability coefficients, VI/560
 second virial coefficients, VII/191–VII/192
 sedimentation coefficients, VII/137–VII/140

- 44
- solubility coefficients, VI/560
 solvent-nonsolvent tables, VII/515
 specific refractive index increments,
 VII/600–VII/604
 surface properties, VI/531
 thermal degradation, II/471–II/472
 theta solvents, VII/316
 unperturbed dimensions of linear chains,
 VII/63
 viscosity-molecular weight relationship,
 VII/39
Poly(vinyl acetate):
 heat capacity, VI/498–VI/499
 physical constants, V/77–V/83
Poly(vinyl alcohol):
 fractionation systems, VII/353–VII/355
 glass transition temperature, VI/212–VI/213
 heat capacity, VI/498
 solvent-nonsolvent tables, VII/504–VII/505
 unperturbed dimensions of linear chains,
 VII/53–VII/54
Poly(vinyl benzoate), heat capacity,
 VI/500–VI/501
Poly(vinyl chloride), V/159
 heat capacity, VI/496
 physical constants, V/67–V/74
Poly(vinyl esters):
 fractionation systems, VII/355–VII/356
 glass transition temperature, VI/213–VI/214
 optically active, VII/718–VII/719
 solvent-nonsolvent tables, VII/506–VII/507
 surface properties, VI/526
 unperturbed dimensions of linear chains,
 VII/53–VII/54
Poly(vinyl ethers):
 fractionation systems, VII/353
 glass transition temperature, VI/214–VI/215
 optically active, VII/718–VII/719, VII/735
 solvent-nonsolvent tables, VII/503–VII/504
 thermal degradation, II/461
 unperturbed dimensions of linear chains,
 VII/53–VII/54
Poly(vinyl fluoride), heat capacity, VI/494
Poly(vinyl halides):
 glass transition temperature, VI/215–VI/216
 solvent-nonsolvent tables, VII/505–VII/506
 unperturbed dimensions of linear chains,
 VII/53–VII/54
Poly(vinylidene chloride), heat capacity,
 VI/496–VI/497
Poly(vinylidene fluoride):
 heat capacity, VI/494
 physical constants, V/48–V/52
Poly(vinylidenes):
 crystallographic data, VI/13–VI/15
 heat capacity, VI/494, VI/496–VI/497
 physical constants, V/48–V/52
Poly(vinyl ketones):
 fractionation systems, VII/353–VII/355
 glass transition temperature, VI/212–VI/213
 optically active, VII/718–VII/719
 solvent-nonsolvent tables, VII/504–VII/505
 thermal degradation, II/461
Poly(vinyl nitriles):
 fractionation systems, VII/353–VII/355
 glass transition temperature, VI/215–VI/216
 solvent-nonsolvent tables, VII/506
Poly(vinyls):
 bulk crystallization rates, VI/341–VI/365
 crystal growth rates, VI/291–VI/300
- crystallographic data, VI/13–VI/15
 diffusion coefficients, VI/549–VI/552
 VII/105–VII/109
 dipole moments in solution, VII/642–VII/643
 frictional ratios, VII/105–VII/109
 heat, entropy, and volume change of
 solution, VII/655–VII/657
 Huggins constant, VII/272–VII/277
 interfacial tension with other polymers,
 VI/37–VI/538
 nomenclature, VI/2
 partial specific volumes, VII/105–VII/109
 permeability coefficients, VI/549–VI/552
 radiation chemical yield, II/486–II/487
 second virial coefficients, VII/177–VII/179
 sedimentation coefficients, VII/105–VII/109
 segmental anisotropy, VII/750–VII/751
 solubility coefficients, VI/549–VI/552
 spherulite growth rates, VI/304–VI/315
 surface properties, VI/526
 thermal degradation, II/459–II/461
 theta solvents, VII/305–VII/307
- Poly(vinyl thioethers),** glass transition
 temperature, VI/214–VI/215
- Poly(xylylenes),** permeability, diffusion, and
 solubility coefficients, VI/555
- Power:**
 conversion factors, I/16
 SI units, I/13
- Precipitation chromatography,** VII/330
- Pressure:**
 conversion factors, I/15
 and glass transition temperature, VI/197
 SI units, I/13
- Pressure-induced crystallization,** VI/288
- Propagation activation energy,** II/415
 acrylic derivatives, II/417–II/418
 dienes, II/416
 methacrylic derivatives, II/418–II/420
 miscellaneous compounds, II/423–II/424
 olefins, II/416–II/417
 styrene derivatives, II/421–II/424
 vinyl esters, II/421
 vinyl ethers, II/421
 vinyl halogens, II/420–II/421
 vinyl heteroaromatics, II/422–II/423
- Propagation constants,** II/77–II/79
 acrylic derivatives, II/80–II/82
 aldehydes, II/90
 dienes, II/79
 fumaryl derivatives, II/87
 itaconic derivatives, II/85–II/86
 methacrylic derivatives, II/82–II/85
 miscellaneous compounds, II/90–II/91
 olefins, II/79
 styrene derivatives, II/88–II/90
 vinyl esters, II/87–II/88
 vinyl ethers, II/88
 vinyl halides, II/87
 vinyl heteroaromatics, II/90
- Propene monomers, physical properties,**
 III/32–III/34
- Proteins:**
 diffusion coefficients, VII/157–VII/163
 fibers, VIII/22–VIII/23
 frictional ratios, VII/157–VII/163
 partial specific volumes, VII/157–VII/163
 second virial coefficients, VII/196–VII/198
 sedimentation coefficients,
 VII/157–VII/163
- Pulse laser polymerization (PLP) method,**
 II/78
- PVT relationship,** VI/591–VI/593. *See also*
 Equations of state
 miscellaneous polymers, VI/597
 polymer liquids, VI/596–VI/597
 and second virial coefficients, VII/164
 zero pressure volume and bulk modulus,
 VI/593, VI/595–VI/596
- Q-e scheme,** II/309, II/321
- Quasi-lattice models,** VI/593–VI/594
- Quasi-single-strand coordination polymer**
 nomenclature, I/7
- Quenching rate constants.**
 photopolymerization, II/170–II/172,
 II/177–II/178
- Q values:**
 monomers, II/310–II/314
 monomers by Q values, II/314–II/316
 pressure effects, II/440
 telogens, II/314
- Radial spherulite growth rates:**
 miscellaneous polymers, VI/336–VI/341
 poly(alkenes), VI/304–VI/315
 poly(amides), VI/331–VI/334
 poly(carbonates), VI/326–VI/327
 poly(dienes), VI/304–VI/315
 poly(esters), VI/327–VI/331
 poly(oxides), VI/315–VI/326
 poly(siloxanes), VI/334–VI/336
 poly(vinyls), VI/304–VI/315
- Radiation chemical yield,** II/481
 blends, II/493
 cellulose and derivatives, II/487
 composites, II/493
 copolymers, II/490–II/493
 fluoropolymers, II/488–II/489
 poly(acrylamides), II/486–II/487
 poly(acrylates), II/483–II/484
 poly(amino acids), II/487–II/488
 poly(dienes), II/482
 poly(esters), II/488
 poly(ketones), II/488
 poly(methacrylates), II/484–II/485
 poly(nitriles), II/486–II/487
 poly(olefins), II/482–II/483
 poly(siloxanes), II/487
 poly(styrenes), II/485–II/486
 poly(sulfones), II/488
 poly(vinyls), II/486–II/487
 vinyl monomers, II/486–II/487
- Radiation resistance,** VI/583–VI/585
 composites, VI/588
 elastomers, VI/586
 poly(aromatics), VI/587
 thermoplastics, VI/585
- Random copolymers, fractionation systems,**
 VII/366–VII/382, VII/425–VII/427
- Rayleigh scattering,** VII/629–VII/635
- Reactivity pattern scheme,** II/321–II/322
 monomer parameters, II/323–II/326
 transfer agent parameters, II/326–II/327
 transfer constant prediction,
 II/322–II/323
- Reactivity ratios,** II/182–II/288
 Quick Basic program for calculating,
 II/288–II/290
 terpolymerization, II/438–II/439

Organic Polymer Chemistry

*An Introduction to the Organic Chemistry of
Adhesives, Fibres, Paints, Plastics, and Rubbers*

K. J. SAUNDERS

Department of Chemical and Metallurgical Technology
Ryerson Polytechnical Institute, Toronto

**CHAPMAN AND HALL
LONDON**

(21)

First published 1973
by Chapman and Hall Ltd
11 New Fetter Lane, London EC4P 4EE

© 1973 K. J. Saunders

Set by
Santype Limited (Coldtype Division)

Salisbury, Wiltshire

Printed in Great Britain by

Redwood Press Limited

Trowbridge, Wiltshire

SBN 412 10580 2

All rights reserved. No part of this book may be reprinted, or
reproduced or utilized in any form or by any electronic,
mechanical or other means, now known or hereafter invented,
including photocopying and recording, or in any
information storage and retrieval system,
without permission in writing from the Publisher.

Distributed in the U.S.A.
by Halsted Press, a Division
of John Wiley & Sons, Inc.
New York

- Polystyrene 8, 71, 174, 259
 development 71
 expanded 79
 isotactic 75
 preparation 72
 properties 75
 raw materials 71
 rubber-modified 78
 structure 74
- Polysulphide elastomers 6, 394
 curing processes 399
 development 394
 dispersions 398
 liquid 399, 401
 preparation 396
 properties 401
 raw materials 394
 solid 398, 401
- Polysulphones 403
 preparation 404
 properties 404
- Polytetrafluoroethylene 8, 137, 140
 preparation 140
 properties 140
- Polytetrahydrofuran *see* Poly(oxytetramethylene) glycol
- Polythene *see* Polyethylene
- Polyurethane adhesives 345
- Polyurethane elastomers 335
 cast 335
 millable 337, 345
 thermoplastic 340
- Polyurethane fibres 341
- Polyurethane foams 318, 329
 flexible 329
 rigid 333
 semi-rigid 334
- Polyurethane moulding compounds 341
- Polyurethane surface coatings 342
 one-component systems 342
 two-component systems 343
- Polyurethanes 7, 28, 29, 318
 development 318
 pre-polymers 331, 335, 337, 342, 344
 quasi pre-polymers 331, 334
 raw materials 319
- Poly(vinyl acetal)s 22, 104, 113
- Poly(vinyl acetate) 21, 27, 28, 104, 109, 113
 alcoholysis 109
 preparation 106
 properties 108
 raw materials 104
 structure 106, 110
- Poly(vinyl alcohol) 22, 26, 87, 104, 108, 109, 113, 114
 degree of alcoholysis 110
- preparation 109
 properties 111
 structure 110
- Poly(vinyl butyral) 113, 114
- Poly(vinyl carbazole) 452
- Poly(vinyl chloride) 8, 84, 391
 chlorination 98
 degradation 91, 92
 development 84
 plasticizers 91
 preparation 87
 properties 90
 raw materials 85
 stabilization 91, 92, 97
 structure 89
 syndiotactic 90
- Poly(vinyl ether)s 453
- Poly(vinyl ethyl ether) 453
- Poly(vinyl fluoride) 143
- Poly(vinyl formal) 113
- Poly(vinylidene chloride) 8, 102
- Poly(vinylidene fluoride) 144
- Poly(vinyl isobutyl ether) 453
- Poly(vinyl ketal)s 113
- Poly(vinyl methyl ether) 453
- Polyvinylpyrrolidone 453
- Poly-*p*-xylylene 454
- Potassium amide 10
- Potassium persulphate 81, 106, 123, 436
- Priestley 406
- Propylene 45, 47, 117, 120, 160, 222, 223, 428
 copolymers 61, 100
- Propylene glycol 204, 207, 214, 224, 324
- Propylene oxide 40, 159, 160, 204, 380
- Propylene oxide-ethylene oxide copolymers 325
- Proteins 175, 195
- Pyromellitic dianhydride 192, 381, 384
- Quebrachitol 407, 408
- p*-Quinone dioxime 400
- Rank 395
- Rayon
 acetate 259, 262
 cuprammonium 250
 high tenacity 253
 saponified acetate 251
 viscose 250, 263
- Redistribution 353
- Redox initiators 436
- Reforming 46
- Rennet 199
- Resin 1, 43
- Resitols 295
- Resits 295