- 5

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-322821

(43)Date of publication of application: 10.12.1996

(51)Int.CI.

A61B 5/14 G01N 21/35

(21)Application number: 07-158668

(71)Applicant: SHIMADZU CORP

(22)Date of filing:

31.05.1995

(72)Inventor: TSUNEISHI SHOICHI

(54) OPTICAL MEASUREMENT INSTRUMENT FOR LIGHT ABSORBER

(57)Abstract:

PURPOSE: To make it possible to measure the absorption coefft. distribution in the depth direction of a examinee with a simple constitution by calculating the absorption coeffts. in the depth direction of the examinee from the absorbancy measured with the respective sets of the light feeding points and light receiving points in a measuring optical system and the contribution function at the distances between the incident and exit points stored in a contribution function storage section.

CONSTITUTION: The light feeding part 16 irradiates the examinee 14 with the measuring light sent by an optical fiber 12 from the light source of an optical measuring instrument 10. Plural light receiving parts 18-1 to 18-4 are arranged at the different distances from the light feeding part 16. The light receiving parts 18-1 to 18-4 are solid-state detecting elements, have preamplifiers as an integral unit and transmit the amplified signals by cables 20 to the optical measuring instrument 10. The contribution functions are separately measured and are given to the contribution function storage section. The absorption coeffts, in the depth direction of the examinee are calculated from the absorbancy measured with the respective sets of the light feeding points and light receiving points in the measuring optical system and the contribution function at the distances between the incident and exit points stored in the contribution function storage section.

LEGAL STATUS

[Date of request for examination]

12.03.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-322821

(43)公開日 平成8年(1996)12月10日

(51) Int.Cl.⁶ A61B 5/14 設別記号 广内整理番号 310 7638-2J

FI A 6 1 B 5/14

技術表示箇所

G01N 21/35

G01N 21/35

310

審査請求 未請求 請求項の数2 FD (全 7 頁)

(21)出願番号

特願平7-158668

(22)出願日

平成7年(1995) 5月31日

(71)出願人 000001993

株式会社島津製作所

京都府京都市中京区西ノ京桑原町1番地

(72)発明者 常石 召一

京都府京都市中京区西ノ京桑原町1番地

株式会社島津製作所三条工場内

(74)代理人 弁理士 野口 繁雄

(54) 【発明の名称】 光吸収体の光学的測定装置

(57)【要約】

【目的】 簡単な構成により、被検体の深さ方向の吸収 係数分布、さらには酸素飽和度分布を得る。

【構成】 各入・出射点間距離 p での吸光度 A,, A,, ……Anを測定する。最も短かい入・出射点間距離 p, で の吸光度A,は深さがx,までの情報が殆ど全てであるの で、その吸光度A,と寄与関数f,とから吸収係数μa, を求めることができる。つぎに、2番目の入・出射点間 距離ρ₁での吸光度測定値A₁と寄与関数f₁、及び先に 求まった $0 \sim x_1$ の範囲の吸収係数から、 $x_1 \sim x_2$ の範 囲での吸収係数μa,が求まる。同様にしてx,~x,の 吸収係数 μa , x, $\sim x$, の吸収係数 μa , ……を求める ことができる。さらに、それらの吸収係数から深さ方向 の酸素飽和度分布を得ることができる。

.

【特許請求の範囲】

【請求項1】 光吸収体である被検体の一部に測定光を照射し、その被検体上で前記測定光の入射点から離れた出射点より測定光を受光するとともに、入射点と出射点との距離を複数種類に異ならせるように被検体への送光点と被検体からの出射光を受光する受光点のうちの一方が複数個設けられている測定光学系と、

入射点と出射点の各組における入・出射点間の距離について、別途測定されて与えられた、被検体の深さ方向と吸光度との関係を示す寄与関数を記憶している寄与関数 10 記憶部と

前記測定光学系での送光点と受光点の各組について測定した吸光度と前記寄与関数記憶部に記憶されている対応する入・出射点間距離での寄与関数とから被検体の深さ方向の吸収係数を算出する吸収係数算出手段と、を少なくとも備えたことを特徴とする光学的測定装置。

【請求項2】 被検体が生体であり、前記測定光学系は 複数波長の測定光について測定するものであり、前記吸 収係数算出手段はその複数波長の測定光についての深さ 方向の吸収係数を算出するものであり、

その複数波長での深さ方向の吸収係数から深さ方向の血 液の酸素化状態を算出する酸素化状態算出手段をさらに 備えている請求項1 に記載の光学的測定装置。

【発明の詳細な説明】

[0001]

 $\triangle A(\lambda_1) = e_1 \triangle (HbO_1) + b_1 \triangle (Hb) + S$ $\triangle A(\lambda_1) = e_1 \triangle (HbO_1) + b_1 \triangle (Hb) + S$

 $\Delta A(\lambda_1) = e_1 \Delta (HbO_1) + b_2 \Delta (Hb) + S$

とかける。これを Δ $\{HbO, \}$ 、 Δ $\{Hb\}$ 、S を未 % % 知数とする連立方程式として解けば、

 $\Delta (HbO_1) = k_{11}\Delta A(\lambda_1) + k_{12}\Delta A(\lambda_2) + k_{13}\Delta A(\lambda_3)$

の形の解が得られる。

[0004]

【発明が解決しようとする課題】光を生体に照射し、生体からのその光の反射光を受光する反射型プローブを備えた測定装置では、光は生体中で著しく散乱されるため、広範囲の領域からの情報を測定していることになる。深さ方向を限定するために、時間分解測定法が試みられているが、実現できたとしても装置が高価で複雑なものとなる。現在、臨床モニタ装置としては、深さ方向の吸収係数の分布や酸素状態の分布を測定できる装置は存在していない。本発明は簡単な構成により、被検体の深さ方向の吸収係数分布、さらにはそれを元にした酸素状態分布などを測定できるようにすることを目的とするものである。

Δ(Hb)

[0005]

【課題を解決するための手段】図1に本発明を示す。図 1には表わされていないが、光吸収体である被検体の一 部に測定光を照射し、その被検体上で測定光の入射点か ら離れた出射点より測定光を受光するとともに、入射点 50

*【産業上の利用分野】本発明は光を用いて生体内の酸素 代謝を測定する生体酸素モニタなどの光学的測定装置に 関するものである。

[0002]

【従来の技術】700~1000nmの近赤外光は他の 被長域に比べて生体に対する透過性が高く、しかもこの 被長域にヘモグロビン、ミオグロビン、チトクロムオキシダーゼなどの酸素化状態を示す物質の吸収帯が存在する。これを利用し、脳や筋肉などの生体組織の状態を無 侵襲に測定できる無侵襲酸素モニタや光C T などが開発されつつある(特公昭61-11614号公報などを参照)。

【0003】生体酸素モニタでは被検体の一部に測定光を照射し、その被検体の他の部分から出射してくる光を検出し、複数の波長で測定した吸光度変化量の重みつき一次結合として目的成分の変化量を求めている。その方法を具体的に示すと、酸素化ヘモグロビン、脱酸素化ヘモグロビンの濃度変化量をそれぞれ Δ [H b] とし、散乱成分等による平行移動量をS と表わし、異なる測定波長 λ_1 、 λ_2 、 λ_3 、k 対する酸素化ヘモグロビンの分子吸光度をそれぞれ e_1 , e_2 , e_3 、 脱酸素化ヘモグロビンの分子吸光度をそれぞれ e_1 , e_2 , e_3 、 脱酸度と吸光度の線形性を仮定して、対応する吸光度変化 Δ Δ (λ_3)、 Δ Δ (λ_4)、 Δ (λ_4)、 Δ (λ_4) (

 $= k_{11} \Delta A(\lambda_1) + k_{12} \Delta A(\lambda_2) + k_{13} \Delta A(\lambda_3) \cdots (2)$ と出射点との距離を複数種類に異ならせるように被検体 への送光点と被検体からの出射光を受光する受光点のう ちの一方が複数個設けられている測定光学系が設けられ ている。測定光として複数の波長λι、λι、λιο光を 切り換えて照射できるものとすれば、その測定光学系か らは、波長 λ,の測定光に関し送光点と受光点の各組に ついて吸光度 $A_1(\lambda_1)$, $A_2(\lambda_1)$, $A_3(\lambda_1)$,が得 られ、波長入,の測定光に関し送光点と受光点の各組に ついて吸光度A₁(λ₁), A₁(λ₁), A₁(λ₁), ……が得 られ、波長 入, の測定光に関し送光点と受光点の各組に ついて吸光度Α1(λ1), Α1(λ1), Α1(λ1), ……が得 られる。寄与関数記憶部2は入射点と出射点の各組にお ける入・出射点間の距離について、別途測定されて与え られた、被検体の深さ方向と吸光度との関係を示す寄与 関数を記憶している。吸収係数算出手段4は測定光学系 での送光点と受光点の各組について測定した吸光度と寄 与関数記憶部2 に記憶されている対応する入・出射点間 距離での寄与関数とから被検体の深さ方向の吸収係数を 算出する。算出される吸収係数は、液長λ、の測定光に

関し異なる深さ方向について $\mu a_1(\lambda_1)$, $\mu a_2(\lambda_1)$, μ a,(λ ,), ……として得られ、波長 λ ,の測定光に関 し異なる深さ方向について μ a₁(λ ₁), μ a₂(λ ₂), μ $a_1(\lambda_1)$, …… として得られ、波長 λ_1 の測定光に関し 異なる深さ方向について $\mu a_1(\lambda_1)$, $\mu a_2(\lambda_1)$, $\mu a_3(\lambda_1)$ 」(λ」), ……として得られる。

【0006】被検体が生体である場合には、吸収係数は 酸素化状態を反映したものであるので、深さ方向酸素化 状態算出手段6により、複数波長での深さ方向の吸収係 数分布から、後述の(13)式に基づいて深さ方向の酸 10 累化状態を導きだすことができる。表示部8は深さ方向 の吸収係数分布や深さ方向の酸素化状態分布を表示す る。

[0007]

【実施例】図2は測定光学系の一例を示したものであ る。(A)は1個の送光点に対し距離の異なる複数の受 光点をもつプローブを備えた例であり、光測定装置10 の半導体レーザなどの光源から光ファイバ12によって 送られた測定光を被検体14に照射する送光部16と、 送光部16から異なる距離に配置された複数個(との場 合4個)の受光部18-1~18-4が設けられてい る。受光部18-1~18-4はフォトダイオードなど の固体検出索子で前置増幅器を一体として備え、その前 置増幅器で増幅された信号をそれぞれのケーブル20 に よって光測定装置10へ送信するようにしたものが好ま しい。送光部16にLEDなどの光源を備えてもよい。 受光部18-1~18-4としては光ファイバへの光入 射端としてもよく、その場合はケーブル20が光ファイ バになる。送光部16の位置が被検体14への測定光の 入射点となり、受光部18-1~18-4の位置が被検 30 体14からの測定光の出射点となる。

【0008】(B)は1個の受光部18に対し、異なる 距離の位置に複数個の送光部16-1~16-4を配置 した例である。(A)及び(B)のプローブは、例えば (C) のように、1個の送光部16 (又は受光部18) と、それから異なる距離に配置された複数個の受光部1 8-1~18-4 (又は送光部16-1~16-4) が プロープ本体15により一体化されている。送光部1 *

 $f(\rho, \mu a(d)) \equiv (1/m) f(\rho, \mu a(d))$

となって、任意の実数 $_{
m L}$ に関する恒等式の成立している 40stならせた図 $_{
m S}$ の測定結果から、入・出射点間距離 $_{
m C}$ と $_{
m C}$ ことが実験的にわかる。また、入・出射点間距離 ρ を異%

 $f(\rho, \mu a(d)) \equiv f(n\rho, \mu a(d \cdot n)) \times (1/n)$

となって、任意の実数nに関する恒等式の成立している ことが実験的にわかる。

【0012】被検体の深さ方向の吸収係数分布を求め、 さらにそれをもとに酸素化状態を求める方法を図6と図 7により説明する。被検体での測定光の入・出射点間距 離ρを、小さいものから順にρ1.ρ2.……ρηとす る。各波長での各入・出射点間距離 p での吸光度 A,, A₁, ……Anを測定する。

* 6. 16-1~16-4には光測定装置10から測定光 として複数波長のレーザ光が順次切り換えて送られ、複 数波長での測定がなされる。

【0009】本発明では寄与関数は別途測定して寄与関 数記憶部に与えておく。そのような寄与関数を求めるた めのファントムの一例を図3に示す。生体に対応した光 散乱体モデルとして、白色ポリアセタール樹脂板 (大き さが110mm×110mm、厚さが1.0mm)30 を110mmの高さになるように重ねて散乱体を構成 し、吸収層のモデルとして色セロファンシート (厚さが 0.09mm) 32を所定の深さの位置に挟み込んでフ ァントムとした。ポリアセタール樹脂板30は等価散乱 係数μs = 1.110、吸収係数μa = 0.0007/ mmであり、吸収をもたない散乱体であると仮定すると とができる。一方、色セロファンシート32は等価散乱 係数 μ s'=0、吸収係数 μ a=5/mmであり、散乱 のない吸収体である。ととで、 $\mu s' = (1 - g)\mu s$ で、µsは散乱係数、gは散乱の非等方性パラメータで

【0010】とのファントムへのレーザ光の入射点とフ ァントムからの散乱光の測定点(出射点)との距離ρを 30mmとし、色セロファンシート32を挿入する深さ dと枚数を異ならせて測定した結果を図4に示す。ま た、入・出射点間距離 ρ と 1 枚の色セロファンシート 3 2を挿入する深さdとを異ならせて測定した結果を図5 に示す。光源として出力100mΨ、波長805nmの 半導体レーザを用いた。図4の結果によれば、色セロフ ァンシート32の枚数に比例して吸光度が増加してい る。

【0011】ファントムからの散乱光の出射光検出値 を、色セロファンシート32を挟んだときのものが1。 色セロファンシート32を挟まなかったときのものをⅠ o (図4, 図5では I without Abs と表現している) と する。寄与関数fとして、

とおくと、色セロファンシート32の枚数を異ならせた 図4の測定結果から、

(3)

 $f = -\log(I/I_0)$

 $= f(\rho, \mu a(d))$

【0013】第1の波長入,で最も短かい入・出射点間 距離 ρ_1 での吸光度 A_1 は、図7(A)からわかるよう に、深さがx₁までの情報が殆ど全てであるので、

の関係は、

$$\int_{0}^{\infty} f_{1} dx = \int_{0}^{\infty} f_{1} dx \qquad (5)$$

と表現することができる。その寄与関数 f,は図 4 に示 50 された寄与関数 f ((4)式)を図7(B)のように0~

x,の範囲の関数としたものである。このときの測定吸 光度A,から、

【数2】

$$A_1 - A_{10} = \mu a_1 \times \int_0^{x_1} f_1 dx$$
 (6)

となる。ここで、A10は吸収が全くない場合の吸光度で あり、拡散方程式から導かれる以下の(7)式

$$A_0 = -\ln \left\{ \frac{1}{2\pi} (\rho^2 + 1)^{-s/2} \right\} \tag{7}$$

から推定することができる(Applied Optics, 28, 2331 (1989)参照)。 との結果から、0~x,の領域に吸収 * * 係数が均一に存在すると仮定して、その吸収係数 μ a 、 を求めることができる。

【0014】つぎに、被検体での2番目の入・出射点間 距離 ρ, での吸光度測定値Α, を用いる。このときの寄与 関数f,は(4)式の寄与関数を0~x,の範囲に納まる ように変形したものであり、図7(C)に示されるよう になる。入・出射点間距離ρ,でのデータは被検体での 深さが0~x,の範囲の情報が殆ど全てであるので、 【数4】

$$\int_{0}^{\infty} f_{2} dx = \begin{pmatrix} \chi_{2} \\ f_{2} dx \end{pmatrix}$$
 (8)

となり、吸光度A.から

 $\times x_{1} = 0.8 \rho_{1}$

 $x_{3} = 0.8 \rho_{3}$

$$A_2 - A_{20} = \mu \, a_1 \times \int_0^{\chi_1} f_2 \, dx + \mu \, a_2 \times \int_{\chi_1}^{\chi_2} f_2 \, dx \qquad (9)$$

となる。ととでAzoは吸収が全くない場合の吸光度あ り、(7)式で与えられたものである。0~x,の範囲 の吸収係数は先に求まっているので、(9)式の結果か $5x_1 \sim x_2$ の範囲での吸収係数 μa_2 が求まる。同様に して $x_1 \sim x_3$ の吸収係数 $\mu a_1, x_1 \sim x_4$ の吸収係数 μ a.……を求めることができる。

【0015】 ここで、深さx1, x2, x1, ……は、例 えば、図5の測定結果で寄与関数f (=-log(I/I o)) がほぼ0 になる深さと考えることができ、入・出 射点間距離ρで表現して次のように与えることができ

$$x_1 = 0.8 \rho_1$$

【0016】予定の複数の波長、例えば780nm、8 05nm、830nmというような波長について、各深 さの領域での吸収係数が求まると、それをもとにして各 深さ領域での酸素化状態を次のように求めることができ る。生体は強散乱体であり、光の伝播は散乱係数μsと 吸収係数μαとで表わされる。このうち、吸収はヘモグ ロビンのみに依存すると考えられるので、酸素化ヘモグ ロビン濃度〔Hb〇、〕と脱酸素化ヘモグロビン濃度

[Hb] によって、吸収係数μaは、

 $\mu a = a (Hb) + b (HbO₂)$ と記述することができる。吸収係数μαを多波長で測定★30★すれば、次の連立方程式を得ることができる。

$$\mu a(\lambda_1) = a_1 (Hb) + b_1 (HbO_1)$$

 $\mu a(\lambda_2) = a_1 (Hb) + b_2 (HbO_2)$ (11)

酸素化へモグロビン濃度〔Hb〇,〕と脱酸素化ヘモグ ロビン濃度〔Hb〕は、吸収係数μaを2.波長で測定す れば求めるととができ、3波長以上で測定して最小二乗☆

☆法で算出することもできる。2波長測定であれば、(1 1) 式から、

$$\begin{pmatrix} (H b) \\ (H b O_2) \end{pmatrix} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}^{-1} \begin{pmatrix} \mu & a (\lambda_1) \\ \mu & a (\lambda_2) \end{pmatrix}$$
 (12)

として求めるととができる。 【0017】酸素飽和度は

 (HbO_i) / $((Hb) + (HbO_i))$

◆として求めることができ、次の(13)式の形になる。 【数7】

[HbO₂]
$$k_{11} \mu_a(l_1) + k_{12} \mu_a(l_2) + k_{13} \mu_a(l_3)$$

[HbO₂]+[Hb]
$$(k_{11}+k_{21}) \mu a(l_1) + (k_{12}+k_{22}) \mu a(l_2) + (k_{13}+k_{23}) \mu a(l_3)$$

(13)

とのような酸素化状態を定期的に測定し、その時間変化 に血液の酸素飽和度が生体の深さ方向でどのように変化 を表示装置により表示すれば、例えば図7 (D) のよう 50 したかを捉えることができる。図7 (D) において、○ のデータは時刻 t での酸素飽和度、 \bullet のデータは時刻 $(t+\Delta t)$ での酸素飽和度を表わしている。 $\{0018\}$

【発明の効果】本発明では深さ方向の吸収係数分布を測定することができる。そしてそれをもとに、例えば生体の深さ方向の酸素化状態の分布を容易に知ることができるようになる。例えば「表層部分の酸素化状態が多少悪くなっているが、脳内部などの深層は変化していないから、しばらく様子を見るだけにしておこう」とか、逆に「顔色はあまり変化していないが、深層部で悪化してい 10 るから至急対処しよう」というような判断ができるようになる。

【図面の簡単な説明】

【図1】本発明のデータ処理を行う部分を示すブロック 図である。

【図2】本発明における測定光学系の例を示す図であ

- り、(A)は送光部が1つで受光部が複数の場合の斜視
- 図、(B)は送光部が複数で受光部が1つの場合の斜視
- 図、(C)はプローブの一例を示す底面図である。

【図3】本発明で寄与関数を求めるファントムの一例を 20 示す斜視図である。 *

*【図4】そのファントムを用い、入・出射点間を30mmとし、色セロファンシートを挿入する深さと枚数を異ならせて測定した寄与関数の例を示す図である。

【図5】そのファントムを用い、入・出射点間距離と色セロファンシートを挿入する深さとを異ならせて測定した寄与関数の例を示す図である。

【図6】一実施例の動作を示すフローチャート図である。

【図7】動作を示す図であり、(A)は入・出射点間距) 離と被検体の内部情報との関係を示す断面図、(B)

- (C)は入・出射点間距離と寄与関数の関係を示す図、
 - (D) は求められた酸素化状態を表示する例を示す図である。

【符号の説明】

- 2 寄与関数記憶部
- 4 吸収係数算出手段
- 10 光測定装置

12, 12-1~12-4 光ファイバ

14 被検体

16, 16-1~16-4 送光部

18, 18-1~18-4 受光部

[図1]

【図3】

[図5]

[図7]

