MATH 4281 Risk Theory-Ruin and Credibility

Start Module 2: Ruin Theory

Feb 2, 2021

Recap and Motivation

- Stochastic Processes
 - Intro
 - Poisson Process
 - The compound Poisson process

Recap and Motivation

The Story so Far

 As it stands now- the models we have studied have assumed a short time frame.

 We have tried to model aggregate claims over say a week/month/year.

 Assumed no Time Value of Money or rigorous model for Premiums.

Some Questions

- Q1 What happens if we can't pay all the claims?
- Q2 How do we set premiums to guarantee that we can?
- Q3 How does Time factor in to this?

These are the questions that we will explore in this module

itro oisson Process he compound Poisson process

Stochastic Processes

What is a Stochastic Process

- Stochastic from the Greek for "to aim" or "to guess". Generally adjective denoting "randomness" e.g:
 - stochastic process (mathematics)
 - stochastic resonance (biology)
 - newsworthy "stochastic terrorism" (social sciences)
 - etc...
- Process Latin for "progression"
- Stochastic Process stands to reason this is some progression of random events

What is a Stochastic Process

• A *stochastic process* is any collection of random variables X(t), $t \in T$. This stochastic process is denoted as

$$\{X(t), t \in T\}.$$

- We are interested in modelling the aggregate losses over a given period of time, not necessarily at one point!
- For example: the aggregate loss <u>process</u> denoted by $\{S(t), t \geq 0\}$, where S(t) is the aggregate loss at time t.

Independent Increments

A stochastic process $\{X(t), t \ge 0\}$ has independent increments if:

• For all $t_0 < t_1 < t_2 < \cdots < t_n$ the following RVs¹ are independent:

$$X(t_{1}) - X(t_{0}), X(t_{2}) - X(t_{1}), ..., X(t_{n}) - X(t_{n-1})$$

• That is, future increases are independent of the past.

 $^{^{1}}RV = Random Variable$

Stationary Increments

A stochastic process $\{X(t), t \ge 0\}$ has stationary increments if:

• for all choices of t_1 , t_2 and $\tau > 0$:

$$X(t_2+\tau)-X(t_1+\tau)\stackrel{d}{=}X(t_2)-X(t_1)$$

• Equivalently for s < t

$$X(t) - X(s) \stackrel{d}{=} X(t - s)$$

Counting process

• A stochastic process $\{N(t), t \ge 0\}$ is a *counting process* if it represents the number of events that occur up to time t.

• Q: What is the significance of counting processes?

 A: We will use them to model the number of claims recived during a particular time.

Counting process

A counting process $\{N(t), t \geq 0\}$ must satisfy:

- **1** $N(t) \geq 0$.
- \bigcirc N(t) is integer-valued.
- **3** $N(s) \le N(t)$ for any s < t, i.e. it must be non-decreasing.
- For s < t, N(t) N(s) is the number of events that have occurred in the interval (s, t].

A counting process $\{N(t), t \ge 0\}$ is a *Poisson process* with rate λ , for $\lambda > 0$, if:

- 0 N(0) = 0;
- it has independent increments; and
- **3** the number of events in any interval of length t has a Poisson distribution with mean λt . That is, for all $s, t \geq 0, n = 0, 1, ...$

$$\Pr\left[N\left(t+s\right)-N\left(s\right)=n\right]=e^{-\lambda t}\frac{\left(\lambda t\right)^{n}}{n!}.$$

A path (realization) of the Poisson process

- Counting process
- Step function
- What is the arrival time?

A Noteworthy Characterization

Theorem:

- Consider the time from the i-1th and ith jump W_i .
- That is $t = W_1 + ... + W_{N(t)}$
- Then $N(t+h) N(t) \sim \mathsf{Poi}(\lambda h)$ iff $W_i \sim \mathsf{Exp}(1/\lambda)$

Proof:

Intro
Poisson Process
The compound Poisson process

A Noteworthy Characterization

- Recall also that there is something special about the distribution!
- Exponential waiting times are Memoryless

E.g:

Zooming in on the process

Explain why the following are true:

$$P[N(t+dt) - N(t) = 1 | N(s), 0 \le s \le t] = \lambda dt + o(dt)$$

 $P[N(t+dt) - N(t) = 0 | N(s), 0 \le s \le t] = 1 - \lambda dt + o(dt)$
 $P[N(t+dt) - N(t) \ge 2 | N(s), 0 \le s \le t] = o(dt)$

Intro
Poisson Process
The compound Poisson process

Properties of the Poisson process: Summary

If $\{N(t), t \geq 0\}$ is a *Poisson process* with rate λ , for $\lambda > 0$, then

- 0 N(0) = 0;
- it has independent and stationary increments;
- It can never have more than 1 jump at a time! That is:

$$Pr[N(t+h) - N(t) = 0] = e^{-\lambda h} = 1 - \lambda h + o(h)$$

$$Pr[N(t+h)-N(t)=1] = \lambda he^{-\lambda h} = \lambda h + o(h)$$

and

$$\Pr[N(t+h) - N(t) \ge 2] = o(h)$$

1 The time between two consecutive jumps follows the Exponential(λ) distribution.

Brownian motion as the limit of a shifted Poisson process

$$(\mu = 2, \quad \sigma = 5, \text{ and } \tau = 0.02)$$

Consider the following shifted Poisson process:

$$W(t) = \tau N(t) - ct.$$

Increments have moments

$$E[W(t+h)-W(t)] = (\tau \lambda - c)h \equiv \mu h,$$

$$Var(W(t+h)-W(t)) = (\tau^2\lambda)h \equiv \sigma^2h$$

When $\tau \to 0$ for fixed μ and σ^2 , $\{W(t)\}$ becomes a Brownian motion with parameters μ and σ^2 .

We define a Compound Poisson process $\{S(t), t \geq 0\}$ like so:

$$S(t) = \sum_{i=1}^{N(t)} X_i.$$

Where:

- $\{N(t)\}$ is a Poisson process with parameter λ
- $\{X_i\}$ are iid $\sim P(x)$

A path (realization) of the compound Poisson process

- Now step i has height X_i instead of 1.
- Increments $S(t+h) S(t) \sim$ Compound Poisson $(\lambda h, P(x))$

Mean and Variance of the compound Poisson process:

$$E[S(t)] = \lambda t E[X], \quad Var[S(t)] = \lambda t E[X^2].$$

The MGF of the compound Poisson process:

$$M_{S(t)}(z) = \exp\{\lambda t[M_X(z) - 1]\}.$$