Project २७४ ३०१ रे. १९७३ ७ १.

Announcement

☐ Project 1 has been posted on the course website

* Due: 10/13

□ Individual project!

Students can discuss each other, but must write their own codes

Submission

- All commented source codes
- Makefile
- Report (1-3 pages)

Socket Programming

- What is a socket?
- Using sockets
 - Types (Protocols)
 - Associated functions
 - Styles

- Socket programming reference:
 - TCP/IP 소켓 프로그래밍 C버전, Michael J. Donahoo, (박준철 번역), 사이텍미디어

What is a socket?

- An interface between application and network
 - The application creates a socket
 - The socket type dictates the style of communication
 - · reliable vs. best effort
 - connection-oriented vs. connectionless
- Once configured, the application can
 - pass data to the socket for network transmission
 - receive data from the socket (transmitted through the network by some other host)

Two essential types of sockets

- SOCK_STREAM
 - o a.k.a. TCP
 - o reliable delivery
 - o in-order guaranteed
 - o connection-oriented
 - bidirectional

- SOCK DGRAM
 - o a.k.a. UDP
 - o unreliable delivery
 - o no order guarantees
 - no notion of "connection" app indicates dest. for each packet
 - o can send or receive

Sockets API

- Creation and Setup
- □ Establishing a Connection (TCP)
- Sending and Receiving Data
- □ Tearing Down a Connection (TCP)

Big picture: Socket Functions

(TCP case) TCP Server 37 parameter 3 TCP, UDP socket() **TCP Client** Men 16. bind() Well-known port listen() accept() socket() blocks until connection Alter and . from client connect() TCP three-way handshaking data (request) write() read() process request

Big picture: Socket Functions (TCP case) cont.

TCP Server **TCP Client** data (request) write() read() process request write() data (reply) read() read() close() close()

Sockets API

- Creation and Setup
- □ Establishing a Connection (TCP)
- Sending and Receiving Data
- □ Tearing Down a Connection (TCP)

Socket Creation and Setup

소켓 함들의 영태

- Include file <sys/socket.h>
- Create a socket

- Socket #2 return.
- int socket (int domain, int type, int protocol);
- Returns file descriptor or -1.
- Bind a socket to a local IP address and port number
 - int bind (int sockfd, struct sockaddr* myaddr, int addrlen);
- Put socket into passive state (wait for connections rather than initiate a connection).
 - int listen (int sockfd, int backlog);
- Accept connections
 - int accept (int sockfd, struct sockaddr* cliaddr,
 int* addrlen);
 - Returns file descriptor or -1.

Function: socket

```
int socket (int domain, int type, int
    protocol);
    return = port number
```

□ Create a socket.

- O Returns file descriptor or -1. Also sets errno on failure.
- domain: protocol family (same as address family)
 - PF_INET for IPv4 (typicall used)
- other possibilities: PF_INET6 (IPv6), PF_UNIX or PF_LOCAL (Unix socket), PF_ROUTE (routing)
- type: style of communication
 - SOCK STREAM for TCP (with PF INET)
 - SOCK_DGRAM for UDP (with PF_INET)
- protocol: protocol within family
 - Typically set to 0
 - getprotobyname(), /etc/protocols for list of protocols

Function: bind 如是 勢 put on 點以.

```
int bind (int sockfd, struct sockaddr*
  myaddr, int addrlen);
```

- □ Bind a socket to a local IP address and port number.
 - O Returns 0 on success, -1 and sets errno on failure.
 - sockfd: socket file descriptor (returned from socket)
 - myaddr: includes IP address and port number
 - IP address: set by kernel if value passed is INADDR_ANY, else set by caller
 - port number: set by kernel if value passed is 0, else set by caller
 - addrlen: length of address structure
 - = sizeof (struct sockaddr_in)

Function: listen

```
int listen (int sockfd, int backlog);
```

- □ Put socket into passive state (wait for connections rather than initiate a connection).
 - O Returns 0 on success, -1 and sets errno on failure.
 - sockfd: socket file descriptor (returned from socket)
 - backlog: bound on length of unaccepted connection queue (connection backlog); kernel will cap, thus better to set high

Listen is <u>non-blocking</u>: returns immediately

Function: accept

int accept (int sockfd, struct sockaddr*
 cliaddr, int* addrlen);

- Accept a new connection.
 - Returns file descriptor or -1. Also sets errno on failure.
 - sockfd: socket file descriptor (returned from socket)
 - cliaddr: IP address and port number of client (returned from call)
 - addrlen: length of address structure = pointer to int set to sizeof (struct sockaddr_in)
- □ Accept is <u>blocking</u>
 - Waits for connection before returning

 Waits for connection before returning

 We part of the pool # + 3444 UEC.

Sockets API

- Creation and Setup
- Establishing a Connection (TCP)
- Sending and Receiving Data
- □ Tearing Down a Connection (TCP)

Function: connect dient म आ अने हिंदू.

int connect (int sockfd, struct sockaddr*
 servaddr, int addrlen);

- Connect to another socket.
 - O Returns 0 on success, -1 and sets errno on failure.
 - sockfd: socket file descriptor (returned from socket)
 - servaddr: IP address and port number of server
 - addrlen: length of address structure
 - = sizeof (struct sockaddr_in)

Connect is blocking

Recap: TCP socket connection setup

Sample code: server

```
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/wait.h>
#define PORT 3490
#define BACKLOG 10
                        /* how many pending
                           connections queue
                           will hold */
```

server

server

```
The Internet-specific:
    struct sockaddr_in {
        short sin_family;
        u_short sin_port;
        struct in_addr sin_addr;
        };
        sin_family = AF_INET
        sin_port: port # (0-65535)
        sin_addr: IP-address
```

server

```
if (listen(sockfd, BACKLOG) == -1) {
    perror("listen");
    exit(1);
while(1) { /* main accept() loop */
    sin size = sizeof(struct sockaddr in);
    if ((new fd = accept(sockfd, (struct sockaddr*))
                     &their addr,&sin size)) == -1) {
           perror("accept");
           continue;
    printf("server: got connection from %s\n",
                       inet ntoa(their addr.sin addr));
```

client

```
if ((sockfd = socket (PF INET, SOCK STREAM, 0)) == -1) {
    perror ("socket");
    exit (1);
their addr.sin family = AF INET;
their addr.sin port = htons (Server Portnumber);
their addr.sin addr = htonl(Server IP address);
if (connect (sockfd, (struct sockaddr*) &their addr,
              sizeof (struct sockaddr)) == -1) {
    perror ("connect");
    exit (1);
  Client porté bind 2645 39.
   ज्व पमेर येमान शुनात.
```

Sockets API

- Creation and Setup
- Establishing a Connection (TCP)
- Sending and Receiving Data
- □ Tearing Down a Connection (TCP)

Functions: write

```
int write (int sockfd, char* buf, size_t
  nbytes);
```

- □ Write data to a stream (TCP).
 - Returns number of bytes written or -1. Also sets errno on failure.
 - sockfd: socket file descriptor (returned from socket)
 - buf: data buffer
 - nbytes: number of bytes to try to write
- write is <u>blocking</u>; returns only after data is sent

Functions: read

```
int read (int sockfd, char* buf, size_t
  nbytes);
```

- □ Read data from a stream (TCP).
 - Returns number of bytes read or -1. Also sets errno on failure.
 - Returns 0 if socket closed.
 - sockfd: socket file descriptor (returned from socket)
 - buf: data buffer
 - nbytes: number of bytes to try to read
- read is **blocking**; returns only after data is received

Big picture: UDP Socket Functions

Functions: sendto

```
int sendto (int sockfd, char* buf, size_t nbytes,
  int flags, struct sockaddr* destaddr, int
  addrlen);
```

- Send a datagram to UDP socket.
 - O Returns number of bytes written or -1. Also sets errno on failure.
 - sockfd: socket file descriptor (returned from socket)
 - buf: data buffer
 - nbytes: number of bytes to try to read
 - flags: see man page for details; typically use 0
 - destaddr: IP address and port number of destination socket
 - addrlen: length of address structure
 - = sizeof (struct sockaddr in)
- sendto is <u>blocking</u>; returns only after data is sent

Function: recvfrom

```
int recvfrom (int sockfd, char* buf, size_t nbytes,
  int flags, struct sockaddr* srcaddr, int*
  addrlen);
```

- Read a datagram from a UDP socket.
 - O Returns number of bytes read (0 is valid) or -1. Also sets errno on failure.
 - sockfd: socket file descriptor (returned from socket)
 - buf: data buffer
 - nbytes: number of bytes to try to read
 - flags: see man page for details; typically use 0
 - srcaddr: IP address and port number of sending socket (returned from call)
 - addrlen: length of address structure = pointer to int set to sizeof (struct sockaddr in)
- recvfrom is **blocking**; returns only after data is received

Recap: UDP socket functions

Sockets API

- Creation and Setup
- Establishing a Connection (TCP)
- Sending and Receiving Data
- □ Tearing Down a Connection (TCP)

Function: close

int close (int sockfd); salet up ge we release.

- When finished using a socket, the socket should be closed:
 - o returns 0 if successful, -1 if error
 - sockfd: the file descriptor (socket being closed)
- Closing a socket
 - o frees up the port used by the socket
 - closes a connection (for SOCK_STREAM)

Tip: Release of ports

- □ Sometimes, a "rough" exit from a program (e.g., ctrl-c) does not properly free up a port
- Eventually (after a few minutes), the port will be freed
- □ To reduce the likelihood of this problem, include the following code:

```
#include <signal.h>
void cleanExit(){exit(0);}
```

 in socket code: signal(SIGTERM, cleanExit); signal(SIGINT, cleanExit); Portaloil Sample code Zett.

Project 1: Web server (Warming up for Project 2)

Web client = Web browser.

- □ Part A: Server process.
 - O Web server simply dumps HTTP request messages to the console.
- □ Part B: 변메세기에 해생는 response를 살맻것.
 - Based on Part A, the Web server:
 - 1. parses the HTTP request from the browser
 - Creates an HTTP response message containing the requested file preceded by header lines
 - 3. Sends the response directly to the client (i.e., browser)

Some more useful information for socket programming...

The struct sockaddr

The generic: struct sockaddr { u_short sa_family; char sa_data[14]; };

o sa_family

- specifies which address family is being used
- determines how the remaining 14 bytes are used

```
The Internet-specific:
struct sockaddr_in {
    short sin_family;
    u_short sin_port;
    struct in_addr sin_addr;
    char sin_zero[8];
};
o sin_family = AF_INET
o sin_port: port # (0-65535)
o sin_addr: IP-address
o sin_zero: unused
```

Address and port byte-ordering

- Address and port are stored as integers
 - o u_short sin_port; (16 bit)
 - o in_addr sin_addr; (32 bit)

```
struct in_addr {
  u_long s_addr;
};
```

□ Problem:

- o different machines / OS's use different word orderings
 - · little-endian: lower bytes first
 - · big-endian: higher bytes first
- these machines may communicate with one another over the network

Solution: Network Byte-Ordering

□ Define:

- Host Byte-Ordering: the byte ordering used by a host (big or little)
- Network Byte-Ordering: the byte ordering used by the network - always big-endian
- Any words sent through the network should be converted to Network Byte-Order prior to transmission (and back to Host Byte-Order once received)
- Q: should the socket perform the conversion automatically?

Q: Given big-endian machines don't need conversion routines and little-endian machines do, how do we avoid writing two versions of code?

UNIX's byte-ordering funcs

```
u_long htonl(u_long x);u_long ntohl(u_long x);u_short ntohs(u_short x);
```

- On big-endian machines, these routines do nothing
- On little-endian machines, they reverse the byte

Same code would have worked regardless of endianness of the two machines

Other useful functions

- bzero(char* c, int n): 0's n bytes starting at c
- gethostname(char *name, int len): gets the name of the current host
- gethostbyaddr(char *addr, int len, int type): converts IP hostname to structure containing long integer
- inet_addr(const char *cp): converts dotted-decimal char-string to long integer
- inet_ntoa(const struct in_addr in): converts long to dotted-decimal notation
- Warning: check function assumptions about byteordering (host or network). Often, they assume parameters / return solutions in network byte-order

Dealing with blocking calls

- Many of the functions we saw block until a certain event
 - o accept: until a connection comes in
 - o connect: until the connection is established
 - o recv, recvfrom: until a packet (of data) is received
 - send, sendto: until data is pushed into socket's buffer
 - · Q: why not until received?
- For simple programs, blocking is convenient
- What about more complex programs?
 - multiple connections
 - o simultaneous sends and receives
 - simultaneously doing non-networking processing

Dealing w/ blocking (cont'd)

- Options:
 - o create multi-process or multi-threaded code
 - turn off the blocking feature (e.g., using the fcntl file-descriptor control function)
 - o use the select function call.
- What does select do?
 - can be permanent blocking, time-limited blocking or non-blocking
 - o input: a set of file-descriptors
 - output: info on the file-descriptors' status
 - i.e., can identify sockets that are "ready for use": calls involving that socket will return immediately

Function: select

- ☐ int status = select(nfds, &readfds, &writefds, &exceptfds, &timeout);
 - o status: # of ready objects, -1 if error
 - onfds: 1 + largest file descriptor to check
 - o readfds: list of descriptors to check if read-ready
 - o writefds: list of descriptors to check if write-ready
 - exceptfds: list of descriptors to check if an exception is registered
 - o timeout: time after which select returns, even if nothing ready can be 0 or ∞ (point timeout parameter to NULL for ∞)

To be used with select:

- □ Recall select uses a structure, struct fd_set
 - o it is just a bit-vector
 - if bit i is set in [readfds, writefds, exceptfds], select will check if file descriptor (i.e. socket) i is ready for [reading, writing, exception]
- □ Before calling select:
 - o FD_ZERO(&fdvar): clears the structure
 - FD_SET(i, &fdvar): to check file desc. i
- □ After calling select:
 - int FD_ISSET(i, &fdvar): boolean returns TRUE iff i is "ready"