Distancias en grafos

Dado un grafo conexo G=(V,E), la **distancia** entre dos vértices $u,v\in V$ es el mínimo entre las longitudes de los caminos que los conectan.

$$d_G(u,v) = \min\{\ell(P_{uv}) : P_{uv} \text{ es un camino de } u \text{ a } v\}.$$

Dado un grafo conexo G=(V,E), la **distancia** entre dos vértices $u,v\in V$ es el mínimo entre las longitudes de los caminos que los conectan.

$$d_G(u,v) = \min\{\ell(P_{uv}) : P_{uv} \text{ es un camino de } u \text{ a } v\}.$$

Dado un grafo conexo G = (V, E), la **distancia** entre dos vértices $u, v \in V$ es el mínimo entre las longitudes de los caminos que los conectan.

$$d_G(u,v) = \min\{\ell(P_{uv}) : P_{uv} \text{ es un camino de } u \text{ a } v\}.$$

Si G no es conexo, la distancia entre dos vértices de un una misma componente se define como en el caso anterior. Para vértices mutuamente inaccesibles, se asigna el valor convencional ∞ .

Dado un grafo conexo G = (V, E), la **distancia** entre dos vértices $u, v \in V$ es el mínimo entre las longitudes de los caminos que los conectan.

$$d_G(u,v) = \min\{\ell(P_{uv}) : P_{uv} \text{ es un camino de } u \text{ a } v\}.$$

Si G no es conexo, la distancia entre dos vértices de un una misma componente se define como en el caso anterior. Para vértices mutuamente inaccesibles, se asigna el valor convencional ∞ .

Definición

Sea G = (V, E) un grafo conexo y sea $v \in V$.

• La excentricidad de v es $\varepsilon(v) = \max_{u \in V} \{d_G(u, v)\}.$

2 / 33

Distancias en grafos

Dado un grafo conexo G = (V, E), la **distancia** entre dos vértices $u, v \in V$ es el mínimo entre las longitudes de los caminos que los conectan.

$$d_G(u,v) = \min\{\ell(P_{uv}) : P_{uv} \text{ es un camino de } u \text{ a } v\}.$$

Si G no es conexo, la distancia entre dos vértices de un una misma componente se define como en el caso anterior. Para vértices mutuamente inaccesibles, se asigna el valor convencional ∞ .

Definición

Sea G = (V, E) un grafo conexo y sea $v \in V$.

- La excentricidad de v es $\varepsilon(v) = \max_{u \in V} \{d_G(u, v)\}.$
- El **radio** de G es $r(G) = \min_{v \in V} \{ \varepsilon(v) \}.$

Distancias en grafos 2 / 33

Dado un grafo conexo G = (V, E), la **distancia** entre dos vértices $u, v \in V$ es el mínimo entre las longitudes de los caminos que los conectan.

$$d_G(u,v) = \min\{\ell(P_{uv}) : P_{uv} \text{ es un camino de } u \text{ a } v\}.$$

Si G no es conexo, la distancia entre dos vértices de un una misma componente se define como en el caso anterior. Para vértices mutuamente inaccesibles, se asigna el valor convencional ∞ .

Definición

Sea G = (V, E) un grafo conexo y sea $v \in V$.

- La excentricidad de v es $\varepsilon(v) = \max_{u \in V} \{d_G(u,v)\}.$
- El **radio** de G es $r(G) = \min_{u \in V} \{ \varepsilon(v) \}.$
- El diámetro de G es $D(G) = \max_{u \in V} \{ \varepsilon(v) \}.$

Distancias en grafos 2 / 33

Ejemplo

Consideremos el grafo G de la siguiente figura.

En este caso tenemos:

•
$$d_G(a,h) = d_G(a,c) = d_G(a,f) = d_G(a,i) = 2$$
,

•
$$d_G(a,g) = d_G(a,j) = 3$$
,

•
$$\varepsilon(a) = 3 = D(G)$$
,

•
$$\varepsilon(b) = r(G) = 2$$
.

Determina el diámetro de los siguientes grafos: K_n , $K_{r,s}$, C_n , P_n .

Determina el diámetro de los siguientes grafos: K_n , $K_{r,s}$, C_n , P_n .

Solución

- $O(K_n) = 1$
- $D(K_{r,s}) = 2 \text{ si } r \ge 2 \text{ o } s \ge 2$
- $D(P_n) = n 1, n \ge 2$
- $D(C_n) = \frac{n}{2}$ si n es par y $D(C_n) = \frac{n-1}{2}$ si n es impar.

Observación

Para todo grafo conexo G=(V,E) se cumple que (V,d_G) es un espacio métrico. Es decir, $d_G:V\times V\longrightarrow \mathbb{N}$ satisface las propiedades que definen una métrica. Esto es, para todo $u,v,w\in V$:

- ① $d_G(u,v) \ge 0$ y $d_G(u,v) = 0$ si y solo si u = v;
- 2 $d_G(u,v) = d_G(v,u);$
- $3 d_G(u,v) \le d_G(u,w) + d_G(w,v)$ (designaldad triangular).

- Sean $G_1, G_2, ..., G_k$ las componentes conexas de G.
- Sean $x, y \in V(G)$.

- Sean $G_1, G_2, ..., G_k$ las componentes conexas de G.
- Sean $x, y \in V(G)$.
- Si $x \not\sim y$ en G, entonces $x \sim y$ en G^c .

- Sean $G_1, G_2, ..., G_k$ las componentes conexas de G.
- Sean $x, y \in V(G)$.
- Si $x \not\sim y$ en G, entonces $x \sim y$ en G^c .
- Si $x \sim y$ en G, entonces existe una componente G_i tal que $x,y \in V(G_i)$, y para todo vértice $z \notin V(G_i)$ tenemos que $d_{G^c}(x,z) = 1$ y $d_{G^c}(y,z) = 1$, lo que implica que $d_{G^c}(x,y) = 2$.

- Sean $G_1, G_2, ..., G_k$ las componentes conexas de G.
- Sean $x, y \in V(G)$.
- Si $x \not\sim y$ en G, entonces $x \sim y$ en G^c .
- Si $x \sim y$ en G, entonces existe una componente G_i tal que $x,y \in V(G_i)$, y para todo vértice $z \notin V(G_i)$ tenemos que $d_{G^c}(x,z) = 1$ y $d_{G^c}(y,z) = 1$, lo que implica que $d_{G^c}(x,y) = 2$.
- Por lo tanto, G^c es conexo y $D(G^c) \le 2$.

Sea G=(V,E) un grafo de orden $n\geq 2$ tal que para todo par de vértices $u,v\in V$ se cumple $\delta(u)+\delta(v)\geq n-1$. Prueba que G es conexo. Obtén una cota superior para el diámetro de G.

Sea G=(V,E) un grafo de orden $n\geq 2$ tal que para todo par de vértices $u,v\in V$ se cumple $\delta(u)+\delta(v)\geq n-1$. Prueba que G es conexo. Obtén una cota superior para el diámetro de G.

Solución

• Sean $u, v \in V$ dos vértices no adyacentes (si existen).

Sea G=(V,E) un grafo de orden $n\geq 2$ tal que para todo par de vértices $u,v\in V$ se cumple $\delta(u)+\delta(v)\geq n-1$. Prueba que G es conexo. Obtén una cota superior para el diámetro de G.

Solución

- Sean $u, v \in V$ dos vértices no adyacentes (si existen).
- Por el principio de inclusión-exclusión,

$$|N(u) \cup N(v)| = |N(u)| + |N(v)| - |N(u) \cap N(v)|.$$

Sea G=(V,E) un grafo de orden $n\geq 2$ tal que para todo par de vértices $u,v\in V$ se cumple $\delta(u)+\delta(v)\geq n-1$. Prueba que G es conexo. Obtén una cota superior para el diámetro de G.

Solución

- Sean $u, v \in V$ dos vértices no adyacentes (si existen).
- Por el principio de inclusión-exclusión,

$$|N(u) \cup N(v)| = |N(u)| + |N(v)| - |N(u) \cap N(v)|.$$

• Nótese que $|N(u) \cup N(v)| \le n-2$ y $|N(u)| + |N(v)| = \delta(u) + \delta(v) \ge n-1$.

Sea G=(V,E) un grafo de orden $n\geq 2$ tal que para todo par de vértices $u,v\in V$ se cumple $\delta(u)+\delta(v)\geq n-1$. Prueba que G es conexo. Obtén una cota superior para el diámetro de G.

Solución

- Sean $u, v \in V$ dos vértices no adyacentes (si existen).
- Por el principio de inclusión-exclusión,

$$|N(u) \cup N(v)| = |N(u)| + |N(v)| - |N(u) \cap N(v)|.$$

- Nótese que $|N(u) \cup N(v)| \le n-2$ y $|N(u)| + |N(v)| = \delta(u) + \delta(v) \ge n-1$.
- De ahí obtenemos que $|N(u) \cap N(v)| \ge 1$ para todo par de vértices no adyacentes $u, v \in V$.

Sea G=(V,E) un grafo de orden $n\geq 2$ tal que para todo par de vértices $u,v\in V$ se cumple $\delta(u)+\delta(v)\geq n-1$. Prueba que G es conexo. Obtén una cota superior para el diámetro de G.

Solución

- Sean $u, v \in V$ dos vértices no adyacentes (si existen).
- Por el principio de inclusión-exclusión,

$$|N(u) \cup N(v)| = |N(u)| + |N(v)| - |N(u) \cap N(v)|.$$

- Nótese que $|N(u) \cup N(v)| \le n-2$ y $|N(u)| + |N(v)| = \delta(u) + \delta(v) \ge n-1$.
- De ahí obtenemos que $|N(u) \cap N(v)| \ge 1$ para todo par de vértices no advacentes $u, v \in V$.
- Por lo tanto, G es conexo y $D(G) \leq 2$.

Sea G=(V,E) un grafo conexo. Demuestra que si $D(G)\geq 4$, entonces $D(G^c)=2$.

Sea G=(V,E) un grafo conexo. Demuestra que si $D(G)\geq 4$, entonces $D(G^c)=2$.

Solución

Nótese que ${\cal G}$ no es un grafo vacío, lo que implica que ${\cal G}^c$ no es completo.

Sea G=(V,E) un grafo conexo. Demuestra que si $D(G)\geq 4$, entonces $D(G^c)=2$.

Solución

Nótese que G no es un grafo vacío, lo que implica que G^c no es completo. Sean $x,y\in V$ dos vértices diferentes.

Sea G=(V,E) un grafo conexo. Demuestra que si $D(G)\geq 4$, entonces $D(G^c)=2$.

Solución

Nótese que G no es un grafo vacío, lo que implica que G^c no es completo. Sean $x,y \in V$ dos vértices diferentes.

• Si $x \not\sim y$ en G, entonces $d_{G^c}(x,y) = 1$.

Sea G=(V,E) un grafo conexo. Demuestra que si $D(G)\geq 4$, entonces $D(G^c)=2$.

Solución

Nótese que G no es un grafo vacío, lo que implica que G^c no es completo. Sean $x,y \in V$ dos vértices diferentes.

- Si $x \not\sim y$ en G, entonces $d_{G^c}(x,y) = 1$.
- Vamos a asumir que $x \sim y$ en G. Para todo par de vértices $u,v \in V$ tales que $d_G(u,v) = D(G) \geq 4$ tenemos dos posibilidades.
 - Si $\{x,y\} \cap N_G[u] \neq \emptyset$, entonces $x,y \in N_{G^c}(v)$.
 - Si $\{x,y\} \cap N_G[u] = \emptyset$, entonces $x,y \in N_{G^c}(u)$.

De ahí que $d_{G^c}(x,y) = 2$.

Sea G=(V,E) un grafo conexo. Demuestra que si $D(G)\geq 4$, entonces $D(G^c)=2$.

Solución

Nótese que G no es un grafo vacío, lo que implica que G^c no es completo. Sean $x,y \in V$ dos vértices diferentes.

- Si $x \not\sim y$ en G, entonces $d_{G^c}(x,y) = 1$.
- Vamos a asumir que $x \sim y$ en G. Para todo par de vértices $u, v \in V$ tales que $d_G(u,v) = D(G) \ge 4$ tenemos dos posibilidades.
 - Si $\{x,y\} \cap N_G[u] \neq \emptyset$, entonces $x,y \in N_{G^c}(v)$.
 - Si $\{x,y\} \cap N_G[u] = \emptyset$, entonces $x,y \in N_{G^c}(u)$.

De ahí que $d_{G^c}(x,y) = 2$.

Por lo tanto, podemos concluir que G^c es conexo y $D(G^c) = 2$.

Sea G=(V,E) un grafo conexo. Si D(G)=3, entonces $2\leq D(G^c)\leq 3$.

Sea G=(V,E) un grafo conexo. Si D(G)=3, entonces $2\leq D(G^c)\leq 3$.

Solución

Nótese que G no es un grafo vacío, lo que implica que G^c no es completo.

Sea G=(V,E) un grafo conexo. Si D(G)=3, entonces $2\leq D(G^c)\leq 3$.

Solución

Nótese que G no es un grafo vacío, lo que implica que G^c no es completo.

Sean $u, v \in V$ tales que $d_G(u, v) = D(G) = 3$ y sea $x \in V$.

Sea G=(V,E) un grafo conexo. Si D(G)=3, entonces $2 \le D(G^c) \le 3$.

Solución

Nótese que G no es un grafo vacío, lo que implica que G^c no es completo.

Sean $u,v \in V$ tales que $d_G(u,v) = D(G) = 3$ y sea $x \in V$.

- Tenemos que $d_{G^c}(u,v)=1$
- Si $x \in N_G[u]$, entonces $x \in N_{G^c}(v)$.
- Si $x \notin N_G[u]$, entonces $x \in N_{G^c}(u)$.

Por lo tanto, G^c es conexo y $D(G^c) \leq 3$.

Para todo grafo conexo no trivial G y todo grafo H se cumple $D(G\odot H)=D(G)+2.$

Para todo grafo conexo no trivial G y todo grafo H se cumple $D(G\odot H)=D(G)+2.$

Demostración

Sea $V(G)=\{v_1,\ldots,v_n\}$ y $H_i=(V_i,E_i)$ la i-ésima copia de H en $G\odot H.$

Para todo grafo conexo no trivial G y todo grafo H se cumple $D(G \odot H) = D(G) + 2$.

Demostración

Sea $V(G) = \{v_1, \dots, v_n\}$ y $H_i = (V_i, E_i)$ la *i*-ésima copia de H en $G \odot H$.

ullet Para todo $i \in \{1,\dots,n\}$, todos $v \in V_i$, tenemos $N_{G \odot H}(v) = N_{H_i}(v) \cup \{v_i\}$.

Para todo grafo conexo no trivial G y todo grafo H se cumple $D(G\odot H)=D(G)+2.$

Demostración

Sea $V(G) = \{v_1, \dots, v_n\}$ y $H_i = (V_i, E_i)$ la *i*-ésima copia de H en $G \odot H$.

- Para todo $i \in \{1, \dots, n\}$, todos $v \in V_i$, tenemos $N_{G \odot H}(v) = N_{H_i}(v) \cup \{v_i\}$.
- En $G \odot H$, los caminos mínimos entre vértices de G no contiene vértices de las copias de H.

Para todo grafo conexo no trivial G y todo grafo H se cumple $D(G \odot H) = D(G) + 2$.

Demostración

Sea $V(G) = \{v_1, \dots, v_n\}$ y $H_i = (V_i, E_i)$ la *i*-ésima copia de H en $G \odot H$.

- Para todo $i \in \{1, ..., n\}$, todos $v \in V_i$, tenemos $N_{G \odot H}(v) = N_{H_i}(v) \cup \{v_i\}$.
- En $G \odot H$, los caminos mínimos entre vértices de G no contiene vértices de las copias de H.
- Para todo $a \in V_i$ y $b \in V_j$ tenemos que $d_{G \odot H}(a,b) = d_{G \odot H}(a,v_i) + d_{G \odot H}(v_i,v_j) + d_{G \odot H}(v_j,b) = 1 + d_G(v_i,v_j) + 1.$

Para todo grafo conexo no trivial G y todo grafo H se cumple $D(G\odot H)=D(G)+2.$

Demostración

Sea $V(G) = \{v_1, \dots, v_n\}$ y $H_i = (V_i, E_i)$ la *i*-ésima copia de H en $G \odot H$.

- Para todo $i \in \{1, ..., n\}$, todos $v \in V_i$, tenemos $N_{G \odot H}(v) = N_{H_i}(v) \cup \{v_i\}$.
- ullet En $G\odot H$, los caminos mínimos entre vértices de G no contiene vértices de las copias de H.
- Para todo $a \in V_i$ y $b \in V_j$ tenemos que $d_{G \odot H}(a,b) = d_{G \odot H}(a,v_i) + d_{G \odot H}(v_i,v_j) + d_{G \odot H}(v_j,b) = 1 + d_G(v_i,v_j) + 1.$

Por lo tanto, los vértices más alejados en $G\odot H$ no son vértices de G, y podemos concluir que $D(G\odot H)=D(G)+2$.

Sean ${\cal G}$ y ${\cal H}$ dos grafos conexos.

Sean G y H dos grafos conexos.

• Dada una secuencia Q de pares ordenados de $V(G) \times V(H)$ de la forma $(x_1,y_1),\ldots,(x_k,y_k)$, la proyección de Q sobre V(G), denotada por $P_G(Q)$, es la secuencia x_1,\ldots,x_k .

Sean G y H dos grafos conexos.

- Dada una secuencia Q de pares ordenados de $V(G) \times V(H)$ de la forma $(x_1, y_1), \ldots, (x_k, y_k)$, la proyección de Q sobre V(G), denotada por $P_G(Q)$, es la secuencia x_1, \ldots, x_k .
- La proyección $P_H(Q)$ de Q sobre V(H) es y_1, \ldots, y_k .

Sean G y H dos grafos conexos.

- Dada una secuencia Q de pares ordenados de $V(G) \times V(H)$ de la forma $(x_1,y_1),\ldots,(x_k,y_k)$, la proyección de Q sobre V(G), denotada por $P_G(Q)$, es la secuencia x_1,\ldots,x_k .
- La proyección $P_H(Q)$ de Q sobre V(H) es y_1, \ldots, y_k .
- Por razones técnicas, vamos a omitir la repetición consecutiva de vértices en $P_G(Q)$ y $P_H(Q)$.

Sean G y H dos grafos conexos.

- Dada una secuencia Q de pares ordenados de $V(G) \times V(H)$ de la forma $(x_1,y_1),\ldots,(x_k,y_k)$, la proyección de Q sobre V(G), denotada por $P_G(Q)$, es la secuencia x_1,\ldots,x_k .
- La proyección $P_H(Q)$ de Q sobre V(H) es y_1, \ldots, y_k .
- Por razones técnicas, vamos a omitir la repetición consecutiva de vértices en $P_G(Q)$ y $P_H(Q)$.
- Por ejemplo, si Q es (a,b),(a,d),(c,d),(e,f), entonces $P_G(Q)$ viene dada por a,c,e mientras $P_H(Q)$ sería b,d,f.

Sean G y H dos grafos conexos.

- Dada una secuencia Q de pares ordenados de $V(G) \times V(H)$ de la forma $(x_1,y_1),\ldots,(x_k,y_k)$, la proyección de Q sobre V(G), denotada por $P_G(Q)$, es la secuencia x_1,\ldots,x_k .
- La proyección $P_H(Q)$ de Q sobre V(H) es y_1, \ldots, y_k .
- Por razones técnicas, vamos a omitir la repetición consecutiva de vértices en $P_G(Q)$ y $P_H(Q)$.
- Por ejemplo, si Q es (a,b),(a,d),(c,d),(e,f), entonces $P_G(Q)$ viene dada por a,c,e mientras $P_H(Q)$ sería b,d,f.
- En $G \square H$, la copia de G asociada a $v \in V(H)$ será denotada por $G \square \langle v \rangle$, y la copia de H asociada a $u \in V(G)$ será denotada por $\langle u \rangle \square H$. Nótese que

$$G\square\langle v \rangle \cong \langle V(G) \times \{v\} \rangle \cong G \text{ y } \langle u \rangle \square H \cong \langle \{u\} \times V(H) \rangle \cong H.$$

Distancias en grafos 11 / 33

Sean G y H dos grafos conexos. Para todo $(u,v),(x,y)\in V(G\square H)$ se cumple

$$d_{G\square H}((u,v),(x,y))=d_G(u,x)+d_H(v,y).$$

Sean G y H dos grafos conexos. Para todo $(u,v),(x,y)\in V(G\square H)$ se cumple

$$d_{G\square H}((u,v),(x,y))=d_G(u,x)+d_H(v,y).$$

Demostración

Por la desigualdad triangular,

Sean G y H dos grafos conexos. Para todo $(u,v),(x,y)\in V(G\square H)$ se cumple

$$d_{G\square H}((u,v),(x,y)) = d_G(u,x) + d_H(v,y).$$

Demostración

Por la desigualdad triangular,

$$d_{G\square H}((u,v),(x,y)) \leq d_{G\square H}((u,v),(x,v)) + d_{G\square H}((x,v),(x,y))$$

$$\leq d_{G\square\langle v\rangle}((u,v),(x,v)) + d_{\langle x\rangle\square H}((x,v),(x,y))$$

$$= d_G(u,x) + d_H(v,y).$$

Sean G y H dos grafos conexos. Para todo $(u,v),(x,y)\in V(G\square H)$ se cumple

$$d_{G\square H}((u,v),(x,y)) = d_G(u,x) + d_H(v,y).$$

Demostración

Por la desigualdad triangular,

$$d_{G\square H}((u,v),(x,y)) \leq d_{G\square H}((u,v),(x,v)) + d_{G\square H}((x,v),(x,y))$$

$$\leq d_{G\square\langle v\rangle}((u,v),(x,v)) + d_{\langle x\rangle\square H}((x,v),(x,y))$$

$$= d_G(u,x) + d_H(v,y).$$

Por otro lado, cada arista de un camino mínimo Q de (u,v) a (x,y) se proyecta como una arista en $P_G(Q)$ y un vértice en $P_H(Q)$ o como un vértice en $P_G(Q)$ y una arista en $P_H(Q)$.

Sean G y H dos grafos conexos. Para todo $(u,v),(x,y)\in V(G\square H)$ se cumple

$$d_{G\square H}((u,v),(x,y))=d_G(u,x)+d_H(v,y).$$

Demostración

Por la desigualdad triangular,

$$d_{G\square H}((u,v),(x,y)) \leq d_{G\square H}((u,v),(x,v)) + d_{G\square H}((x,v),(x,y))$$

$$\leq d_{G\square\langle v\rangle}((u,v),(x,v)) + d_{\langle x\rangle\square H}((x,v),(x,y))$$

$$= d_G(u,x) + d_H(v,y).$$

Por otro lado, cada arista de un camino mínimo Q de (u,v) a (x,y) se proyecta como una arista en $P_G(Q)$ y un vértice en $P_H(Q)$ o como un vértice en $P_G(Q)$ y una arista en $P_H(Q)$.

De ahí que

$$d_{G \square H}((u,v),(x,y)) = |E(Q)| = |E(P_G(Q))| + |E(P_H(Q))| \ge d_G(u,x) + d_H(v,y).$$

Si G y H son grafos conexos, entonces $D(G \square H) = D(G) + D(H)$.

Si G y H son grafos conexos, entonces $D(G \square H) = D(G) + D(H)$.

Ejercicio

Para todo entero $k \ge 1$ se cumple que $D(Q_k) = ?$

Si G y H son grafos conexos, entonces $D(G \square H) = D(G) + D(H)$.

Ejercicio

Para todo entero $k \ge 1$ se cumple que $D(Q_k) = ?$

Solución

$$D(Q_k)=k.$$

Sea $G=C_4\odot N_1$. Calcula el diámetro de $G\Box L(G)$.

Sea $G = C_4 \odot N_1$. Calcula el diámetro de $G \square L(G)$.

Solución

$$D(G\square L(G))=D(G)+D(L(G))=4+3=7.$$

Dado el grafo $G = P_r \square P_s$:

- (a) Calcula el orden, la medida y el diámetro de G.
- (b) Sean u y v dos vértices de G tales que la distancia entre ellos coincide con el diámetro de G. Calcula el número de caminos de longitud mínima para ir de u a v.

Dado el grafo $G = P_r \square P_s$:

- (a) Calcula el orden, la medida y el diámetro de G.
- (b) Sean u y v dos vértices de G tales que la distancia entre ellos coincide con el diámetro de G. Calcula el número de caminos de longitud mínima para ir de u a v.

Dado el grafo $G = P_r \square P_s$:

- (a) Calcula el orden, la medida y el diámetro de G.
- (b) Sean u y v dos vértices de G tales que la distancia entre ellos coincide con el diámetro de G. Calcula el número de caminos de longitud mínima para ir de u a v.

Solución

(a) El orden de G es n=rs, la medida es m=r(s-1)+s(r-1) y el diámetro es $D(G)=D(P_r)+D(P_s)=r+s-2$.

Dado el grafo $G = P_r \square P_s$:

- (a) Calcula el orden, la medida y el diámetro de G.
- (b) Sean u y v dos vértices de G tales que la distancia entre ellos coincide con el diámetro de G. Calcula el número de caminos de longitud mínima para ir de ua v.

Solución

- (a) El orden de G es n = rs, la medida es m = r(s-1) + s(r-1) y el diámetro es $D(G) = D(P_r) + D(P_s) = r + s - 2$.
- (b) Pongamos las copias de P_r en vertical y las de P_s en horizontal. Para ir de la esquina inferior izquierda hasta la superior derecha debemos dar r+s-2pasos de los cuales r-1 son en vertical y s-1 son en horizontal. Así, el número de formas de elegir los pasos verticales (horizontales) es

$$\binom{r+s-2}{r-1} = \frac{(r+s-2)!}{(r-1)!(s-1)!}$$

Dado un grafo conexo G, el índice de Wiener denotado por $\mathit{W}(G)$, se define como

$$W(G) = \frac{1}{2} \sum_{u \in V(G)} \left(\sum_{v \in V(G)} d_G(u, v) \right).$$

Sean G y H dos grafos conexos. Obtén una formula para $W(G \square H)$ en términos de |V(G)|, |V(H)|, W(G) y W(H).

Solución

Veamos que la fórmula es $W(G \square H) = |V(H)|^2 \cdot W(G) + |V(G)|^2 \cdot W(H)$.

Solución

Veamos que la fórmula es $W(G \square H) = |V(H)|^2 \cdot W(G) + |V(G)|^2 \cdot W(H)$.

$$\begin{split} W(G \Box H) &= \frac{1}{2} \sum_{(g,h) \in V(G \Box H)} \left(\sum_{(g',h') \in V(G \Box H)} d_{G \Box H}((g,h),(g',h')) \right) \\ &= \frac{1}{2} \sum_{g \in V(G)} \sum_{h \in V(H)} \left(\sum_{g' \in V(G)} \sum_{h' \in V(H)} (d_G(g,g') + d_H(h,h')) \right) \\ &= \frac{1}{2} \sum_{g \in V(G)} \sum_{h \in V(H)} \left(\sum_{g' \in V(G)} \sum_{h' \in V(H)} d_G(g,g') \right) + \\ &+ \frac{1}{2} \sum_{g \in V(G)} \sum_{h \in V(H)} \left(\sum_{g' \in V(G)} \sum_{h' \in V(H)} d_H(h,h') \right) \\ &= \frac{1}{2} |V(H)|^2 \sum_{g \in V(G)} \left(\sum_{g' \in V(G)} d_G(g,g') \right) + \frac{1}{2} |V(G)|^2 \sum_{h \in V(H)} \left(\sum_{h' \in V(H)} d_H(h,h') \right) \\ &= |V(H)|^2 \cdot W(G) + |V(G)|^2 \cdot W(H). \end{split}$$

Sean G y H dos grafos conexos. Para todo $(u_1,u_2),(v_1,v_2)\in V(G\boxtimes H)$ se cumple

$$d_{G\boxtimes H}((u_1,u_2),(v_1,v_2))=\max\{d_G(u_1,v_1),d_H(u_2,v_2)\}.$$

Sean G y H dos grafos conexos. Para todo $(u_1,u_2),(v_1,v_2)\in V(G\boxtimes H)$ se cumple

$$d_{G\boxtimes H}((u_1,u_2),(v_1,v_2))=\max\{d_G(u_1,v_1),d_H(u_2,v_2)\}.$$

Sean G y H dos grafos conexos. Para todo $(u_1,u_2),(v_1,v_2)\in V(G\boxtimes H)$ se cumple

$$d_{G\boxtimes H}((u_1,u_2),(v_1,v_2))=\max\{d_G(u_1,v_1),d_H(u_2,v_2)\}.$$

Sean G y H dos grafos conexos. Para todo $(u_1,u_2),(v_1,v_2)\in V(G\boxtimes H)$ se cumple

$$d_{G\boxtimes H}((u_1,u_2),(v_1,v_2)) = \max\{d_G(u_1,v_1),d_H(u_2,v_2)\}.$$

Demostración

Sean $g = x_0x_1...x_k = g'$ y $h = y_0y_1...y_l = h'$ caminos de longitud mínima. Vamos a asumir, sin pérdida de generalidad, que

$$d_H(h,h') = \dot{l} \le k = d_G(g,g') = \max\{\dot{d}_G(g,g'), d_H(h,h')\}.$$

Sean G y H dos grafos conexos. Para todo $(u_1,u_2),(v_1,v_2)\in V(G\boxtimes H)$ se cumple

$$d_{G\boxtimes H}((u_1,u_2),(v_1,v_2))=\max\{d_G(u_1,v_1),d_H(u_2,v_2)\}.$$

Demostración

Sean $g = x_0x_1...x_k = g'$ y $h = y_0y_1...y_l = h'$ caminos de longitud mínima. Vamos a asumir, sin pérdida de generalidad, que $d_H(h,h') = l \le k = d_G(g,g') = \max\{d_G(g,g'),d_H(h,h')\}.$

• Entonces $(g,h) = (x_0,y_0),...,(x_l,y_l)(x_{l+1},y_l)...(x_k,y_l) = (g',h')$ es un amino de (g,h) a (g',h') y por eso

20 / 33

Sean G y H dos grafos conexos. Para todo $(u_1,u_2),(v_1,v_2)\in V(G\boxtimes H)$ se cumple

$$d_{G\boxtimes H}((u_1,u_2),(v_1,v_2)) = \max\{d_G(u_1,v_1),d_H(u_2,v_2)\}.$$

Demostración

Sean $g = x_0x_1...x_k = g'$ y $h = y_0y_1...y_l = h'$ caminos de longitud mínima. Vamos a asumir, sin pérdida de generalidad, que $d_H(h,h') = l < k = d_G(g,g') = \max\{d_G(g,g'),d_H(h,h')\}.$

• Entonces $(g,h) = (x_0,y_0), \dots, (x_l,y_l)(x_{l+1},y_l) \dots (x_k,y_l) = (g',h')$ es un amino de (g,h) a (g',h') y por eso

$$d_{G\boxtimes H}((g,h),(g',h'))\leq k=\max\{d_G(g,g'),d_H(h,h')\}.$$

Sean G y H dos grafos conexos. Para todo $(u_1,u_2),(v_1,v_2)\in V(G\boxtimes H)$ se cumple

$$d_{G\boxtimes H}((u_1,u_2),(v_1,v_2)) = \max\{d_G(u_1,v_1),d_H(u_2,v_2)\}.$$

Demostración

Sean $g = x_0x_1...x_k = g'$ y $h = y_0y_1...y_l = h'$ caminos de longitud mínima. Vamos a asumir, sin pérdida de generalidad, que $d_H(h,h') = l < k = d_G(g,g') = \max\{d_G(g,g'),d_H(h,h')\}.$

- Entonces $(g,h) = (x_0,y_0), \dots, (x_l,y_l)(x_{l+1},y_l) \dots (x_k,y_l) = (g',h')$ es un amino de (g,h) a (g',h') y por eso $d_{G \bowtie H}((g,h),(g',h')) \leq k = \max\{d_G(g,g'),d_H(h,h')\}.$
- Recíprocamente, para todo camino mínimo Q de (g,h) a (g',h'),

Sean G y H dos grafos conexos. Para todo $(u_1,u_2),(v_1,v_2)\in V(G\boxtimes H)$ se cumple

$$d_{G\boxtimes H}((u_1,u_2),(v_1,v_2)) = \max\{d_G(u_1,v_1),d_H(u_2,v_2)\}.$$

Demostración

Sean $g = x_0x_1...x_k = g'$ y $h = y_0y_1...y_l = h'$ caminos de longitud mínima. Vamos a asumir, sin pérdida de generalidad, que $d_H(h,h') = l < k = d_G(g,g') = \max\{d_G(g,g'),d_H(h,h')\}.$

- Entonces $(g,h) = (x_0,y_0), \dots, (x_l,y_l)(x_{l+1},y_l)...(x_k,y_l) = (g',h')$ es un amino de (g,h) a (g',h') y por eso $d_{G\boxtimes H}((g,h),(g',h')) \le k = \max\{d_G(g,g'),d_H(h,h')\}.$
- Recíprocamente, para todo camino mínimo Q de (g,h) a (g',h'), $d_G(g,g') \leq |E(P_G(Q))| \leq |E(Q)|$ y $d_H(h,h')\} \leq |E(P_H(Q))| \leq |E(Q)|$.

Sean G y H dos grafos conexos. Para todo $(u_1,u_2),(v_1,v_2)\in V(G\boxtimes H)$ se cumple

$$d_{G\boxtimes H}((u_1,u_2),(v_1,v_2))=\max\{d_G(u_1,v_1),d_H(u_2,v_2)\}.$$

Demostración

Sean $g = x_0x_1...x_k = g'$ y $h = y_0y_1...y_l = h'$ caminos de longitud mínima. Vamos a asumir, sin pérdida de generalidad, que $d_H(h,h') = l < k = d_G(g,g') = \max\{d_G(g,g'),d_H(h,h')\}.$

- Entonces $(g,h) = (x_0,y_0), \dots, (x_l,y_l)(x_{l+1},y_l)...(x_k,y_l) = (g',h')$ es un amino de (g,h) a (g',h') y por eso $d_{G\boxtimes H}((g,h),(g',h')) \le k = \max\{d_G(g,g'),d_H(h,h')\}.$
- Recíprocamente, para todo camino mínimo Q de (g,h) a (g',h'), $d_G(g,g') \leq |E(P_G(Q))| \leq |E(Q)|$ y $d_H(h,h')\} \leq |E(P_H(Q))| \leq |E(Q)|$. Por lo tanto, $\max\{d_G(g,g'),d_H(h,h')\} \leq |E(Q)| = d_{G\boxtimes H}((g,h),(g',h'))$.

Si G y H son grafos conexos, entonces $D(G\boxtimes H)=\max\{D(G),D(H)\}.$

Sea G un grafo conexo no trivial y sea H un grafo. Para todo par de vértices $(g,h),(g',h')\in V(G\circ H)$,

$$d_{G\circ H}((g,h),(g',h')) = \left\{ \begin{array}{ll} d_G(g,g') & \text{si} \quad g \neq g', \\ \min\{2,d_H(h,h')\} & \text{si} \quad g = g'. \end{array} \right.$$

Proposición

Sea G un grafo conexo no trivial y sea H un grafo. Para todo par de vértices $(g,h),(g',h')\in V(G\circ H)$,

$$d_{G\circ H}((g,h),(g',h')) = \left\{ \begin{array}{ll} d_G(g,g') & \text{si} \quad g \neq g', \\ \min\{2,d_H(h,h')\} & \text{si} \quad g = g'. \end{array} \right.$$

Demostración

Diferenciamos dos casos.

Caso 1. $g \neq g'$ en G.

Caso 2. g = g'.

Proposición

Sea G un grafo conexo no trivial y sea H un grafo. Para todo par de vértices $(g,h),(g',h')\in V(G\circ H)$,

$$d_{G\circ H}((g,h),(g',h')) = \left\{ \begin{array}{ll} d_G(g,g') & \text{si} \quad g \neq g', \\ \min\{2,d_H(h,h')\} & \text{si} \quad g = g'. \end{array} \right.$$

Demostración

Caso 1. $g \neq g'$ en G.

- Para todo camino mínimo Q de (g,h) a (g',h'), $d_{G\circ H}((g,h),(g',h'))=|E(Q)|\geq |E(P_G(Q))|\geq d_G(g,g').$
- Además, para todo camino mínimo $g=x_0,\ldots,x_k=g'$ tenemos que $(g,h)=(x_0,h),(x_1,h'),\ldots,(x_k,h')=(g',h')$ es un camino de (g,h) a (g',h'), lo que implica que $d_{G\circ H}((g,h),(g',h'))\leq k=d_G(g,g')$. Por lo tanto, $d_{G\circ H}((g,h),(g',h'))=d_G(g,g')$.

Proposición

Sea G un grafo conexo no trivial y sea H un grafo. Para todo par de vértices $(g,h),(g',h')\in V(G\circ H)$,

$$d_{G\circ H}((g,h),(g',h')) = \left\{ \begin{array}{ll} d_G(g,g') & \text{si} \quad g \neq g', \\ \min\{2,d_H(h,h')\} & \text{si} \quad g = g'. \end{array} \right.$$

Demostración

Caso 2. g = g'.

- Si h y h' son advacentes en H, entonces (g,h) y (g',h') son advacentes en $G \circ H$. Así, $d_{G \circ H}((g,h),(g',h')) = 1 = \min\{2,d_H(h,h')\}$.
- Supongamos que $h \not\sim h'$ en H. En tal caso, $(g,h) \not\sim (g',h')$ en $G \circ H$, y por eso $d_{G \circ H}((g,h),(g',h')) \geq 2 = \min\{2,d_H(h,h')\}$. Como para todo $z \in N_G(g)$ existe el camino (g,h),(z,h),(g,h'), concluimos que $d_{G \circ H}((g,h),(g',h')) = 2 = \min\{2,d_H(h,h')\}$.

Corolario

Para todo grafo conexo no trivial G y todo grafo H,

$$D(G \circ H) = \max\{D(G), \min\{2, D(H)\}\}.$$

Nótese que si H no es conexo, entonces asumimos que $D(H)=\infty$.

Sean G y H dos grafos conexos de orden mayor o igual que 2. Calcula el diámetro de los siguientes grafos:

- (a) $(G \odot H) \square (H \odot G)$
- (b) $(G \odot H) \boxtimes (H \odot G)$
- (c) $(G \odot H) \square G$
- (d) $(G \odot H) \boxtimes G$
- (e) $G\boxtimes (G\circ H)$

(a)
$$D((G \odot H) \square (H \odot G)) = D(G \odot H) + D(H \odot G) = D(G) + D(H) + 4$$
.

- (a) $D((G \odot H) \Box (H \odot G)) = D(G \odot H) + D(H \odot G) = D(G) + D(H) + 4$.
- (b) $D\left((G\odot H)\boxtimes (H\odot G)\right)=\max\{D(G\odot H),D(H\odot G)\}=\max\{D(G)+2,D(H)+2\}.$

- (a) $D((G \odot H) \Box (H \odot G)) = D(G \odot H) + D(H \odot G) = D(G) + D(H) + 4$.
- (b) $D((G \odot H) \boxtimes (H \odot G)) = \max\{D(G \odot H), D(H \odot G)\} = \max\{D(G) + 2, D(H) + 2\}.$
- (c) $D((G \odot H) \square G) = 2D(G) + 2$.

- (a) $D((G \odot H) \Box (H \odot G)) = D(G \odot H) + D(H \odot G) = D(G) + D(H) + 4$.
- (b) $D((G \odot H) \boxtimes (H \odot G)) = \max\{D(G \odot H), D(H \odot G)\} = \max\{D(G) + 2, D(H) + 2\}.$
- (c) $D((G \odot H) \Box G) = 2D(G) + 2$.
- (d) $D((G \odot H) \boxtimes G) = D(G) + 2$.

- (a) $D((G \odot H) \Box (H \odot G)) = D(G \odot H) + D(H \odot G) = D(G) + D(H) + 4$.
- (b) $D((G \odot H) \boxtimes (H \odot G)) = \max\{D(G \odot H), D(H \odot G)\} = \max\{D(G) + 2, D(H) + 2\}.$
- (c) $D((G \odot H) \Box G) = 2D(G) + 2$.
- (d) $D((G \odot H) \boxtimes G) = D(G) + 2$.
- (e) $D(G\boxtimes (G\circ H)) = \max\{D(G), \min\{2, D(H)\}\}.$

Definición

El **centro** de un grafo G es el conjunto

$$C(G) = \{ v \in V(G) : \varepsilon(v) = r(G) \}.$$

Definición

El **centro** de un grafo G es el conjunto

$$C(G) = \{ v \in V(G) : \varepsilon(v) = r(G) \}.$$

Ejercicio

Pon tres ejemplos de grafos G = (V, E) tales que C(G) = V.

Definición

El **centro** de un grafo G es el conjunto

$$C(G) = \{ v \in V(G) : \varepsilon(v) = r(G) \}.$$

Ejercicio

Pon tres ejemplos de grafos G = (V, E) tales que C(G) = V.

- Los grafos completos, $G = K_n$.
- Los hipercubos $G = Q_k$.
- Los grafos bipartitos completos $G = K_{r,s}$ con $r,s \ge 2$.

El centro de todo árbol está formado por un vértice o por un par de vértices adyacentes.

El centro de todo árbol está formado por un vértice o por un par de vértices adyacentes.

Demostración

Sea T un árbol. El resultado es obvio para $T=K_1$ y $T=K_2$. Sea $n(T)\geq 3$. Nótese lo siguiente.

El centro de todo árbol está formado por un vértice o por un par de vértices adyacentes.

Demostración

Sea T un árbol. El resultado es obvio para $T=K_1$ y $T=K_2$. Sea $n(T)\geq 3$. Nótese lo siguiente.

• Si la excentricidad de un vértice v es $\varepsilon_T(v) = d_T(u, v)$, entonces $\delta(u) = 1$.

El centro de todo árbol está formado por un vértice o por un par de vértices adyacentes.

Demostración

Sea T un árbol. El resultado es obvio para $T=K_1$ y $T=K_2$. Sea $n(T)\geq 3$. Nótese lo siguiente.

- Si la excentricidad de un vértice v es $\varepsilon_T(v) = d_T(u, v)$, entonces $\delta(u) = 1$.
- Para el árbol T' obtenido a partir de T eliminando los vértices de grado uno, se cumple que $\varepsilon_{T'}(v) = \varepsilon_T(v) 1$ para todo $v \in V(T')$.

El centro de todo árbol está formado por un vértice o por un par de vértices adyacentes.

Demostración

Sea T un árbol. El resultado es obvio para $T=K_1$ y $T=K_2$. Sea $n(T)\geq 3$. Nótese lo siguiente.

- Si la excentricidad de un vértice v es $\varepsilon_T(v) = d_T(u, v)$, entonces $\delta(u) = 1$.
- Para el árbol T' obtenido a partir de T eliminando los vértices de grado uno, se cumple que $\varepsilon_{T'}(v) = \varepsilon_T(v) 1$ para todo $v \in V(T')$.
- De ahí que C(T) = C(T').

El centro de todo árbol está formado por un vértice o por un par de vértices adyacentes.

Demostración

Sea T un árbol. El resultado es obvio para $T=K_1$ y $T=K_2$. Sea $n(T)\geq 3$. Nótese lo siguiente.

- Si la excentricidad de un vértice v es $\varepsilon_T(v) = d_T(u, v)$, entonces $\delta(u) = 1$.
- Para el árbol T' obtenido a partir de T eliminando los vértices de grado uno, se cumple que $\varepsilon_{T'}(v) = \varepsilon_T(v) 1$ para todo $v \in V(T')$.
- De ahí que C(T) = C(T').
- Si continuamos el proceso de eliminar las hojas, obtenemos subárboles de T con el mismo centro que T.

Distancias en grafos 29 / 33

El centro de todo árbol está formado por un vértice o por un par de vértices adyacentes.

Demostración

Sea T un árbol. El resultado es obvio para $T=K_1$ y $T=K_2$. Sea $n(T)\geq 3$. Nótese lo siguiente.

- Si la excentricidad de un vértice v es $\varepsilon_T(v) = d_T(u, v)$, entonces $\delta(u) = 1$.
- Para el árbol T' obtenido a partir de T eliminando los vértices de grado uno, se cumple que $\varepsilon_{T'}(v) = \varepsilon_T(v) 1$ para todo $v \in V(T')$.
- De ahí que C(T) = C(T').
- Si continuamos el proceso de eliminar las hojas, obtenemos subárboles de T con el mismo centro que T.
- En un número finito de pasos obtendremos a K_1 o a K_2 como subárboles de T, y los vértices de estos subárboles formarán el centro de T.

Un grafo es bipartito si y sólo si no tiene ciclos de longitud impar.

Un grafo es bipartito si y sólo si no tiene ciclos de longitud impar.

Demostración, nos limitamos al caso conexo: ver apuntes.

$$V_2 = \{u_0\} \cup \{v \in V : d(u_0, v) \text{ es par }\}$$

$$V_1 = V \setminus V_2$$

$$u_1 = \begin{cases} 0 & \text{if } v \\ \text{if } v \end{cases}$$

$$d(u_0, u) = 1 + u$$

Corolario

Todos árbol es un grafo bipartito.

Sean G y H dos grafos. Determina una condición necesaria y suficiente para que los siguientes grafos sean bipartitos.

- (a) $G \odot H$
- (b) G+H
- (c) $G\Box H$
- (d) $G \boxtimes H$

Sean G y H dos grafos. Determina una condición necesaria y suficiente para que los siguientes grafos sean bipartitos.

- (a) $G \odot H$
- (b) G+H
- (c) $G \square H$
- (d) $G \boxtimes H$

Solución

(a) $G \odot H$ es bipartito si y sólo si G es bipartito y H es nulo.

Sean G y H dos grafos. Determina una condición necesaria y suficiente para que los siguientes grafos sean bipartitos.

- (a) $G \odot H$
- (b) G+H
- (c) $G\Box H$
- (d) $G \boxtimes H$

- (a) $G \odot H$ es bipartito si y sólo si G es bipartito y H es nulo.
- (b) G+H es bipartito si y sólo si G y H son nulos.

Sean G y H dos grafos. Determina una condición necesaria y suficiente para que los siguientes grafos sean bipartitos.

- (a) $G \odot H$
- (b) G+H
- (c) $G \square H$
- (d) $G \boxtimes H$

- (a) $G \odot H$ es bipartito si y sólo si G es bipartito y H es nulo.
- (b) G+H es bipartito si y sólo si G y H son nulos.
- (c) $G \square H$ es bipartito si y sólo si G y H son bipartitos.

Sean G y H dos grafos. Determina una condición necesaria y suficiente para que los siguientes grafos sean bipartitos.

- (a) $G \odot H$
- (b) G+H
- (c) $G \square H$
- (d) $G \boxtimes H$

- (a) $G \odot H$ es bipartito si y sólo si G es bipartito y H es nulo.
- (b) G+H es bipartito si y sólo si G y H son nulos.
- (c) $G \square H$ es bipartito si y sólo si G y H son bipartitos.
- (d) $G \boxtimes H$ es bipartito si y sólo si G es bipartito y H es nulo o viceversa.

Sea G un grafo.

- Diremos que $S \subseteq V(G)$ es un conjunto dominante en G si $N_G(u) \cap S \neq \emptyset$ para todo $u \in V(G) \setminus S$.
- Un subconjunto $S\subseteq V(G)$ es un conjunto dominante conexo en G si es un conjunto dominante en G y el subgrafo inducido por S es conexo.
- El número de dominación conexa de G, denotado por $\gamma_c(G)$, es el mínimo cardinal entre todos los conjuntos dominantes conexos de G.

Demuestra que las siguientes afirmaciones se cumplen para todo grafo conexo $G \not\cong K_1$ tal que su complemento G^c es conexo.

- (a) $D(G^c) \neq 2$ si y solo si $\gamma_c(G) = 2$.
- (b) $D(G) = D(G^c) = 3$ si y solo si $\gamma_c(G) = \gamma_c(G^c) = 2$.

