

Traffic Collisions Involving Autonomous Vehicles in California: Bayesian Model Based Clustering

Subasish Das (TTI) Anandi Dutta (UTSA) Ioannis Tsapakis (TTI)

Monday, January 13, 2020

Overview

Synopsis

Study Design and Analysis

Key Findings

Synopsis

Synopsis

- The emerging technology of autonomous vehicles (AV) has been rapidly advancing. This new is desired to reduce the number of crashes and travel time, as well as improving fuel efficiency and parking benefits.
- Safety outcomes from AV deployment is a critical issue. Ensuring safety of AVs requires a multi-disciplinary approach which monitors every aspect of these vehicles.
- To promote safety, the California Department of Motor Vehicles has mandated that autonomous car crash reports be made public in recent years.

Study Design and Analysis

Objectives

- Provide when-where-how-who-why-what of CA AV crashes.
- Identify patterns and trends of AV crashes using Bayesian Clustering

Data

- Developed a database that provides descriptive and detailed reports of AV crashes in California during 2014-2019.
- The total number of reported crashes used in this study was 151.
- On October 24, 2014, Delphi was the first manufacturer to experience AV collision in California.
- After October 2017, there was a sharp increase in AV collisions as a greater number of companies deployed AVs.

AV Crashes in California

When?

Day of Week	1- 6 AM	6- 12 PM	1- 6 PM	7-12 AM
Saturday	2	3	7	2
Sunday	2	2	4	6
Monday	2	6	8	4
Tuesday	3	7	5	8
Wednesda y	3	5	11	9
Thursday	2	16	5	6
Friday	0	5	14	4

Where?

How? Who?

Why? What?

Why? What?

Attribute	Count	Class 1 (28)	Class 2 (11)	Class 3 (21)	Class 4 (1)	Class 5 (26)	Class 6 (64)		
Driving Mode									
Autonomous	89	21.35	4.49	12.36	0	24.72	37.08		
Conventional	62	14.52	11.29	16.13	1.61	6.45	50		
Driver Severity									
No	143	19.58	7.69	11.19	0.7	16.08	44.76		
Yes	8	0	0	62.5	0	37.5	0		
Prior Event									
Left Turn	6	16.67	0	50	0	0	33.33		
Right Turn	5	0	0	60	0	0	40		
Stopped	43	0	0	2.33	0	0	97.67		
Straight	25	0	0	56	4	0	40		
Other/Unknown	72	37.5	15.28	0	0	36.11	11.11		

Why? What?

Key Findings

Key Findings

- Demonstrated a variational inference algorithm for Bayesian latent class models. They also applied the clustering algorithm to complex AV collision data, yielding good and interpretable results.
- Classes associated with turning, multi-vehicle collisions, dark lighting conditions with streetlights, and sideswipe and rear-end collisions, were also associated with a higher proportion of injury severity level.
- A significant finding demonstrated by Class 6, is that when a vehicle was in autonomous mode, there was a high likelihood of adverse weather crash occurrences when the vehicle's prior condition was stopped.

Questions?

Subasish Das

Security

Infrastructure

s-das@tti.tamu.edu

Economics

979-317-2153