ISA SOFTWARE V.1.3

1. Caso di studio : Grafo $P_1^{(1)} \times C_5^{(2)}$

Definition 1.1. Un grafo (non orientato e finito) è una coppia ordinata (V, E) dove V è un insieme finito ed E è un multiinsieme di coppie non ordinate di elementi di V. L'insieme V contiene i vertici del grafo ed E i suoi lati. Per un generico grafo G, l'insieme dei suoi vertici è indicato con V(G) e quello dei suoi lati con E(G).

La struttura dati con la quale si è scelto di memorizzare il grafo è la matrice di adicenza.

Definition 1.2. La matrice di adiacenza di un grafo G i cui vertici siano v_1, v_2, \ldots, v_n è una matrice A(G) = [a(i, j)] simmetrica di ordine $n \times n$ in cui si pone:

$$a(i,j) = \begin{cases} 1 & \text{se } (v_i, v_j) \in E(G) \\ 0 & \text{altrimenti} \end{cases}$$

Di seguito viene mostrata invece la lista di adiacenza che permette una più facile lettura delle adiacenze:

$$\left\{ \begin{array}{l} (1;1) \longrightarrow \ (1;2), (1;3), (1;4), (1;5), \\ (1;2) \longrightarrow \ (1;1), (1;3), (1;4), (1;5), \\ (1;3) \longrightarrow \ (1;1), (1;2), (1;4), (1;5), \\ (1;4) \longrightarrow \ (1;1), (1;2), (1;3), (1;5), \\ (1;5) \longrightarrow \ (1;1), (1;2), (1;3), (1;4), \end{array} \right.$$

In forma circolare diventa:

Date: January 18, 2016.

Key words and phrases. sample.tex.

Con le famiglie di grafi C vogliamo indicare dei circuiti $veri\ e\ propri$ in cui, oltre all'arco che collega il primo nodo con l'ultimo, abbiamo anche archi delle potenze dei cammini orizzontali che possono collegarsi ai nodi precedenti rispetto ai nodi dai quali partono.

1.1. Calcolo insiemi indipendenti con metodo forza bruta.

Definition 1.3. Un insieme indipendente di un grafo è un insieme di vertici non adiacenti del grafo.

Definiamo T(n,k) il numero di k-sottoinsiemi indipendenti di Grafo $P_1^{(1)}\times C_5^{(2)}$. Ecco alcuni valori

T(n,k)	k = 0	1	2	3
0	1			
1	1	1		
2	1	2		
3	1	3		
4	1	4		
5	1	5		
6	1	6	3	
7	1	7	7	
8	1	8	12	
9	1	9	18	3
10	1	10	25	10
11	1	11	33	22

Seguono le successioni delle antidiagonali, della somma delle righe e dei valori massimali di k per cui esistono insiemi indipendenti:

n	0	1	2	3	4	5	6	7	8	9	10	11
AD_n	1	1	2	3	4	5	6	7	11	16	22	29
RS_n	1	2	3	4	5	6	10	15	21	31	46	67
$\overline{K_n}$	0	1	1	1	1	1	2	2	2	3	3	3

Ricerca delle bijezioni disabilitata per questa stampa.

Wilf: Non possiamo usare il metodo di Wilf per trovare la Fgo delle somme delle righe in quanto il grafo è un circuito.

1.2. Automa.

L'automa che riconosce (tutte e sole) le stringhe che corrispondono agli insiemi indipendenti di $C_n^{(2)}$ diventa:

Il sistema lineare diventa:

```
\operatorname{eqs} = \{
s = t * f1 + t * g1 + 1,
f1 == t * f2 + t * e1 + 1,
f2 == t * f2 + t * f3 + 1,
f3 == t * f4 + 1,
f4 == t * f2 + 1,
e1 == t * e2 + 1,
e2 == t * e3 + 1,
e3 == t * e3 + t * e4 + 1,
e4 == t * e5,
e5 == t * e3 + 1,
g1 == t * g2 + 1,
\mathbf{g2} == t * \mathbf{g3} + 1,
g3 == t * g3 + t * g4 + 1,
g4 == t * g5,
g5 == t * g3
```

$$F(t) = \frac{-1 - t - t^2 + t^4 + 2t^5}{-1 + t + t^3}$$

$$1 + 2t + 3t^2 + 4t^3 + 5t^4 + 6t^5 + 10t^6 + 15t^7 + 21t^8 + 31t^9 + O[t]^{10}$$

Calcolo automatico sistema lineare e automa per circuiti:

$$e \bigcirc u \bigcirc$$

$$\begin{cases}
ee \longrightarrow e + u \\
u_i \longrightarrow e_n \\
s \longrightarrow e + u_i \\
e_n \longrightarrow e_i \\
eu \longrightarrow e \\
u_1 \longrightarrow e_i \\
ue \longrightarrow e \\
e_i \longrightarrow e_i + u_1
\end{cases}$$

$$\begin{cases} EE(x) = xEE(x) + xEU(x) + 1\\ U_i(x) = +1\\ S(x) = xSE(x) + xSU_i(x) + 1\\ E_n(x) = +1\\ EU(x) = xUE(x) + 1\\ U_1(x) = \\ UE(x) = xEE(x) + 1\\ E_i(x) = +1 \end{cases}$$

$$\begin{cases} EE \rightarrow eEE \mid uEU \mid \lambda \\ U_i \rightarrow \mid \lambda \\ S \rightarrow eSE \mid uSU_i \mid \lambda \\ E_n \rightarrow \mid \lambda \\ EU \rightarrow eUE \mid \lambda \\ U_1 \rightarrow \\ UE \rightarrow eEE \mid \lambda \\ E_i \rightarrow \mid \lambda \end{cases}$$

$$EE(x) = \frac{(-1-x+x^3)}{(-1+x+x^2)} = 1 + 2x + 3x^2 + 4x^3 + 7x^4 + 11x^5 + O(x^6)$$

$$\frac{n \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9}{RS_n \mid 1 \quad 2 \quad 3 \quad 4 \quad 7 \quad 11 \quad 18 \quad 29 \quad 47 \quad 76}$$

