Appunti

Andreas Araya Osorio

3 June 2021

Contents

1	Insiemi 2			
	1.1	Introduzione	2	
	1.2	Insiemi ed operazioni	2	
	1.3	Relazioni d'ordine	3	
	1.4	Numeri reali	4	
	1.5	Radice n-esima	6	
	1.6	Funzioni esponenziali in $\mathbb Q$	6	
2	Successioni			
	2.1	Successioni in \mathbb{R}	7	
3	Funzioni 11			
	3.1	Introduzione	11	
	3.2	Tipi di funzioni	11	
	3.3	Funzioni invertibili	13	
	3.4	Piano Cartesiano	14	
	3.5	Grafici di funzioni	15	
	3.6	Funzioni Pari e Dispari	15	
	3.7	Funzioni crescenti e decrescenti	16	
	3.8	Funzioni inverse	17	
	3.9	Modelizzazione matematica	18	
	3.10	Proporzioni	19	
4	Combinatoria e probabilità			
	4.1	Introduzione	20	
	4.2	Combinatoria	20	
	4.3	Fattoriale		
	4.4	Numero di Insiemi		

1 Insiemi

1.1 Introduzione

Definizione 1:

Un insieme è una "collezione" di oggetti.

Sia A un INSIEME, la scrittura $x \in A$ significa che x appartiene ad A. Analogamento, scrivendo $x \notin A$ si intende che x non appartiene ad A. Gli insiemi **finiti** si possono denotare all'interno di parentesi graffe " $\{,\}$ " Un qualsiasi insieme può definirsi mediante una **proprietà astratta**

Esempio 1.

$$A = \{ x \in \mathbb{N} \mid x \ pari \}$$
 (1)

Questo insieme raccoglie **tutti i numeri naturali pari** e si può meglio riscrivere così:

$$A = \{ x \in \mathbb{N} \mid \exists y \in \mathbb{N} : x = 2y \}$$
 (2)

1.2 Insiemi ed operazioni

Sia X un insieme e siano $A, B \subseteq X$

• UNIONE $A \cup B$, L'unione di A e B come l'insieme

$$A \cup B = \{ x \in X : x \in A \ o \ x \in B \}$$
 (3)

• INTERSEZIONE $A \cap B$, L'intersezione di A e B come l'insieme

$$A \cap B = \{x \in X : x \in A \ e \ x \in B \}$$
 (4)

• DIFFERENZA $A \setminus B$, che equivale a

$$A \setminus B = \{ x \in X : x \in A \ e \ x \notin B \}$$
 (5)

• COMPLEMENTARE L'insieme complementare di A in X è:

$$A^C = X \setminus A = \{x \in X : x \notin A \} \tag{6}$$

Esempio 2.

Il complementare dell'unione è l'intersezione dei complementari, mentre il complementare dell'intersezione è l'unione dei complementari.

- $\bullet \ X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$
- $\bullet \ X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$

DIMOSTRAZIONE 1.

Si dice relazione da A a B ogni sottoinsieme R di $A \times B$ Se $(a, b) \in R$. a è in relazione R con b, si scrive aRb.

$$R = \{(a,b) \in \mathbb{N} \times \mathbb{N} : \exists p \in \mathbb{N} \mid a = p \cdot b \}$$
 (7)

1.3 Relazioni d'ordine

Sia $A \neq \emptyset$ un insieme non vuoto e sia $R \subseteq A \times A$ una relazione di A con A. R è:

- 1. riflessiva se $xRx \quad \forall x \in A$,
- 2. simmetrica se $xRy \rightarrow yRx$,
- 3. transitiva se $xRy \wedge yRz \rightarrow xRz$,
- 4. antisimmetrica se $xRy \wedge yRz \rightarrow x = y$.

Una **relazione d'equivalenza** è tale se è RIFLESSIVA, SIMMETRICA E TRAN-SITIVA.

Definizione 2:

Una relazione d'ordine su un insieme $X \neq \emptyset$ è detta di ordine totale se $\forall x,y \in X$ si ha $x \leq y \vee y \leq x$. Se su X c'è una relazione d'ordine totale, X è totalmente ordinato.

Definizione 3:

Sia (X, \leq) , insieme non vuoto e ordinato e sia $A \subseteq X$, $A \neq \emptyset$

- $x \in X$ è un maggiorante di A se $a \le x \ \forall a \in A$
- $y \in X$ è un **minorante** di A se $y < x \ \forall a \in A$
- A ha massimo se $\exists \lambda \in A \mid a \leq \lambda \ \forall a \in A \implies \lambda = \max A$
- A ha minimo se $\exists \mu \in A \mid \mu \leq a \ \forall a \in A \implies \mu = \min A$

Definizione 4:

Siano (X, \leq) un insieme ordinato e $A \subseteq X, A \neq \emptyset$. A ha estremo superiore se l'insieme dei maggioranti di A è non vuoto e ha minimo. supA è il più piccolo dei maggioranti. Analogamente l'estremo inferiore è presente se l'insieme dei minoranti di A è non vuoto ed esso ne è il più piccolo: in fA.

Definizione 5:

Proprietà di sup e inf:

Siano (X, \leq) un insieme ordinato e $A \subseteq X, A \neq \emptyset$. SUP Si ha che $\lambda = \sup A$ se e solo se

- 1. $a \leq \lambda \quad \forall a \in A$;
- 2. $\lambda_1 \in X$, $a \le \lambda_1 \quad \forall a \in A \implies \lambda \le \lambda_1$

 $INF Si ha che \mu = inf A se e solo se$

- 1. $\mu \leq a \quad \forall a \in A;$
- 2. $\mu_1 \in X$, $\mu_1 \le a \quad \forall a \in A \implies \mu_1 \le \mu$

Definizione 6:

Siano (X, \leq) un insieme ordinato e $A \subseteq X, A \neq \emptyset$, allora:

- 1. $se\ A\ ha\ massimo,\ allora\ si\ ha\ maxA\ =\ supA$
- 2. se A ha minimo, allora si ha minA = infA

1.4 Numeri reali

Un **gruppo commutativo** e' un insieme X dotato di un'operazione binaria $*: X \times X \to X$ tale che:

- 1. PROPRIETÀ ASSOCIATIVA: $(x \star y) \star z = x \star (y * z) \quad \forall x, y, z \in X$
- 2. Elemento neutro: $\exists e \in X \rightarrow e * x = x * e = e$
- 3. INVERSO: $\forall x \in X \quad \exists y \in X \rightarrow x * y = y * x = e$
- 4. Proprietà commutativa; $\forall x, y \in X \rightarrow x * y = y * x$

Se le prime 3 proprietà sono valide allora X e' un gruppo. Se e' valida solo la prima allora si chiama semigruppo

Definizione 7 (Campo dei numeri reali \mathbb{R}):

I 6 assiomi di completezza:

- A_1) $(\mathbb{R}, +) \to gruppo\ commutativo,\ neutro = 0$
- A_2) ($\mathbb{R} \setminus \{0\}, \cdot$) \rightarrow gruppo commutativo, neutro = 1
- A_3) $x \cdot (y+z) = x \cdot y + x \cdot z \quad \forall x, y, z \in \mathbb{R}$, proprietà distributiva

- A_4) $(\mathbb{R}, \leq) \to totalmente ordinato$
- A_5) (\leq) \rightarrow compatibile $con + \wedge \cdot$
- A_6) $(\mathbb{R}, \leq) \to completo$

Le proprietà $A_1, \ldots, A_3 \Longrightarrow (\mathbb{R}, +, \cdot) \to campo$ Le proprietà $A_1, \ldots, A_6 \Longrightarrow (\mathbb{R}, +, \cdot, \leq) \to campo$ ordinato e completo.

Definizione 8 (Sottoinsiemi induttivi):

Un sottoinsieme $I \subseteq \mathbb{R}$ si dice **induttivo** se:

1. $1 \in I$

2.
$$x \in I \implies x+1 \in I$$

 \mathcal{F} indica la famiglia degli insiemi induttivi di \mathbb{R} :

$$\mathbb{N} \stackrel{def.}{=} \{ x \in \mathbb{R} : x \in I \forall I \in \mathcal{F} \}$$
 (8)

ℕ è per definizione l'interesezione di tutti gli insiemi induttivi

$$\mathbb{N} = \bigcap_{I \in \mathcal{F}} I \tag{9}$$

DIMOSTRAZIONE 2 (Il principio di induzione).

Se $M \subseteq \mathbb{N}$ è induttivo $\iff M = \mathbb{N}$

Dato che M è induttivo $\mathbb{N} \subseteq M \iff \mathbb{N} = M$

Questo ragionamento introduce il principio di induzione.

Definizione 9 (Il minimo di \mathbb{N}):

$$1 < n \ \forall n \in \mathbb{N} \tag{10}$$

 $Il \ min \mathbb{N} = 1$

Definizione 10 (\mathbb{Z} l'anello dei numeri interi):

$$\mathbb{Z} \stackrel{def.}{=} \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\}$$
 (11)

 \mathbb{Z} è chiuso per somma e motliplicazione

$$n, m \in \mathbb{Z} \implies n + m, \ n \cdot m \in \mathbb{Z}$$
 (12)

 $Se \ A \subseteq \mathbb{Z}, \ A \neq \emptyset$

• se A è superiormente limitato, ammette massimo \exists maxA

• se A è inferiormente limitato ammette minimo \exists minA

Definizione 11 (Q l'anello dei numeri razionali):

$$\mathbb{Q} \stackrel{def.}{=} \left\{ \frac{p}{q} : \in \mathbb{Z}, q \in \mathbb{N} \right\}$$
 (13)

Q è chiuso per somma e moltiplicazione

$$x, y \in \mathbb{Q} \implies x + y, x \cdot y \in \mathbb{Q}$$
 (14)

 \mathbb{Q} è un campo totalmente ordinato ossia sono validi gli assiomi A_1, \ldots, A_5 escluso l' A_6

1.5 Radice n-esima

Sia $n \in \mathbb{N}$ e sia $x \in \mathbb{R}, x \ge 0$.

 $y \in \mathbb{R}$ è la radice n-esima di x se $y \geq 0, y^n = x$

$$y \stackrel{\text{def.}}{=} x^{\frac{1}{n}}, \ \sqrt[n]{x} \tag{15}$$

Definizione 12:

Proprietà della radice n-esima: per ogni $x, y \in \mathbb{R}, x, y \geq 0$:

$$P_1 \ x^n \le y^n \iff x \le y$$

$$P_2 x^n = y^n \iff x = y$$

$$P_3 \ x^n < y \iff \exists \epsilon \in \mathbb{R}, \epsilon > 0, : (x + \epsilon)^n < y$$

$$P_4 \ x^n > y \iff \exists \epsilon \in \mathbb{R}, \epsilon > 0, : (x - \epsilon)^n > y$$

1.6 Funzioni esponenziali in $\mathbb Q$

Definizione 13:

Sia $a > 0, \ \forall x \in \mathbb{Q}$:

$$a^x := \sqrt[q]{a^p} \Rightarrow x = \frac{p}{q} , \ p \in \mathbb{Z}, q \in \mathbb{N}$$
 (16)

Se
$$x = \frac{p}{q} = \frac{m}{n} \implies np = mq$$

1.
$$a^{x+y} = a^x a^y \ \forall x, y \in \mathbb{Q}$$

$$2. \ a^x > 0 \ \forall x \in \mathbb{Q}$$

3.
$$(a^x)^y = a^{xy} \ \forall x, y \in \mathbb{Q}$$

se a > 1

$$x < y \Longrightarrow a^x < a^y \ \forall x, y \in \mathbb{Q}$$

se a < 1

$$x < y \Longrightarrow a^y < a^x \ \forall x, y \in \mathbb{Q}$$

In parole povere se la **base è minore di 1**, con un esponente maggiore (y) avremo un numero inferiore rispetto a quello di un esponente minore (x), viceversa quando avremo la **base maggiore di 1**, con esponente maggiore avremo un numero maggiore rispetto ad uno con base minore.

2 Successioni

2.1 Successioni in \mathbb{R}

Sia $X \neq \emptyset$, una qualsiasi funzione $f : \mathbb{N} \to X$ si dice: **successione in** X. Una notazione si indica $\{f_n\}_{n\in\mathbb{N}}$ o f_1, f_2, \ldots, f_n f_n si chiama termine n-esimo.

 k_1,k_2,\ldots,k_n è una successione di numeri naturali:

$$k_1 < k_2 < \dots < k_n < k_{n+1} < \dots \quad \forall n \in \mathbb{N} \tag{17}$$

La successione $\{f_{k_n}\}$ è una sottosuccessione di $\{f_n\}$.

Definizione 14:

Se a_n tende $a \mid l \in \mathbb{R}$ per $n \to \infty$, si dice che $\lim_{n \to \infty} a_n = l$

$$\forall \epsilon > 0 \exists \overline{n} : \forall n \in \mathbb{N} (n > \overline{n} \implies |a_n - l| < \epsilon) \tag{18}$$

 $\{a_n\}$ converge ad l ed esso \grave{e} il limite di $\{a_n\}$

Esempio 3.

$$\lim_{n \to \infty} \frac{1}{n} = 0 \tag{19}$$

Ovvero

$$\forall \epsilon > 0 \exists \overline{n} : \forall n \in \mathbb{N} \left(n > \overline{n} \Rightarrow \left| \frac{1}{n} - 0 \right| < \epsilon \right)$$
 (20)

DIMOSTRAZIONE 3 (Il limite se esiste è unico).

$$\lim_{x \to \infty} a_n = l \quad \wedge \quad \lim_{x \to \infty} a_n = m \quad \iff \quad l = m$$
 (21)

Esempio 4.

Poniamo per assurdo che $l \neq m$ Fissiamo $\epsilon > 0$

$$\underbrace{|a_n - l| < \frac{\epsilon}{2}}_{n > \overline{n_1}} & \underbrace{|a_n - m| < \frac{\epsilon}{2}}_{n > \overline{n_2}}$$

$$\underbrace{|a_n - m| < \frac{\epsilon}{2}}_{n > \overline{n_2}}$$

Ricordiamo che $|a_n - m| = |m - a_n|$

$$| -a_n - l - -a_n + m | |a_n - l| + |m - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (23)

 $\downarrow \downarrow$

$$|m-l| < \epsilon \implies |m-l| = 0$$
 (24)

Ma questo è assurdo perchè: $\epsilon > 0, \forall \epsilon \in \mathbb{R}$

$$m = l (25)$$

Definizione 15:

Se $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ converge ad $l\in\mathbb{R}$ ogni sua sottosuccessione $\{a_{k_n}\}_{n\in\mathbb{N}}$ converge ad l

DIMOSTRAZIONE 4 (Limiti).

Se $\{a_n\}_{n\in\mathbb{N}}$ converge $l\in\mathbb{R}$ \Longrightarrow $\{a_{k_n}\}_{k_n\in\mathbb{N}}$ converge $l\in\mathbb{R}$

Si ha che:

$$\forall \epsilon > 0 \ \exists \overline{n} \in \mathbb{N} : n > \overline{n} \implies |a_n - l| < \epsilon \tag{26}$$

$$\forall \epsilon > 0 \ \exists \overline{n} \in \mathbb{N} : n > \overline{n} \implies |a_{k_n} - l| < \epsilon$$
 (27)

$$\lim_{n \to \infty} a_{k_n} = l \tag{28}$$

Esempio 5.

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \qquad \& \qquad k = 2, \lim_{k_n \to +\infty} \frac{1}{k_n} = 0 \tag{29}$$

Esercizio 1.

DIMOSTRAZIONE 5.

$$\lim_{n \to +\infty} (a_n + b_n) = l + m \tag{30}$$

$$\lim_{n \to +\infty} a_n = l \quad \& \quad \lim_{n \to +\infty} b_n = m \tag{31}$$

 \parallel

$$|a_n - l| < \frac{\epsilon}{2} \quad \text{se} \quad n > \overline{n_1}$$
 (32)

$$|b_n - m| < \frac{\epsilon}{2} \quad \text{se} \quad n > \overline{n_2}$$
 (33)

 $n > \max\{\overline{n_1}, \overline{n_2}\}$

$$|a_n + b_n - l - m| \le |a_n - l| + |b_n - m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

$$\qquad (34)$$

$$\forall \epsilon > 0, \exists \overline{n} \equiv \max\{\overline{n_1}, \overline{n_2}\} : n > \overline{n} \Rightarrow \underbrace{|(a_n + b_n) - (l + m)|}_{0} < \epsilon$$
 (35)

$$(a_n + b_n) - (l + m) = 0 (36)$$

$$a_n + b_n = l + m \tag{37}$$

DIMOSTRAZIONE 6 (Permanenza del segno).

$$\forall \epsilon > 0, \exists \overline{n} \in \mathbb{N} : n > \overline{n} \Rightarrow \underbrace{|a_n - l < \epsilon|}_{l - \epsilon < a_n < l + \epsilon \quad \forall n > \overline{n}}$$
(38)

$$\epsilon = |l|$$

Da questo otteniamo che

$$\underbrace{l-|l|}_{0} < a_n < \underbrace{l+|l|}_{2l} \tag{39}$$

In conclusione avremo che:

se
$$l > 0 \Rightarrow a_n > 0$$

se
$$l < 0 \Rightarrow a_n < 0$$

Definizione 16 (Teorema dei 2 carabinieri):

$$Se \quad \underbrace{\{a_n\}, \{b_n\}}, \{c_n\}$$

convergono a l

è ovvio che:
$$a_n \le c_n \le b_n \implies c_n converge \ a \ l$$
 (40)

DIMOSTRAZIONE 7.

$$\forall \epsilon > 0, \exists \overline{n_1}, \overline{n_2} \in \mathbb{N} : \tag{41}$$

 \parallel

$$l - \epsilon < a_n < l + \epsilon \qquad \& \qquad l - \epsilon < b_n < l + \epsilon \tag{42}$$

se $n > \max\{\overline{n_1}, \overline{n_2}\}$

 $\downarrow \downarrow$

$$l - \epsilon < a_n \le c_n \le b_n < l + \epsilon \qquad \forall n > \overline{n}$$
 (43)

$$\underbrace{l - \epsilon < c_n < l + \epsilon}_{|c_n - l| < \epsilon} \Longrightarrow \lim_{n \to +\infty} c_n = l \tag{44}$$

Definizione 17:

Sia una successione $\{a_n\}_n \subseteq \mathbb{R} \ \dot{e} \ detta$:

- superiormente limitata, se $\exists M \in \mathbb{R} : a_n \leq M \ \forall n \in \mathbb{N}$
- inferiormente limitata, se $\exists M \in \mathbb{R} : a_n \geq M \ \forall n \in \mathbb{N}$
- $limitata, se \exists M \in \mathbb{R} : |a_n| \leq M \ \forall n \in \mathbb{N}$

Definizione 18 (Ogni successione convergente è limitata):

$$Sia \{a_n\}_{n\in\mathbb{N}} \subseteq \mathbb{R}, \ a_n \underset{n\to\infty}{\to} l$$

Allora (con $\epsilon = 1$)

$$\exists \overline{n} : \forall n \in \mathbb{N} (n > \overline{n} \implies |a_n - l| < 1) \tag{45}$$

Segue quindi che $|a_n| \le |a_n - l| + |l| < 1 + |l|, n > \overline{n}$

$$|a_n| \le 1 + |l| \tag{46}$$

Definizione 19 (Retta reala ampliata):

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\} \cup \{-\infty\} \tag{47}$$

Definizione 20:

 $Sia\ \{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$

$$\lim_{n \to +\infty} a_n = +\infty$$

$$\downarrow \qquad \qquad \downarrow$$

$$\forall k \in \mathbb{R} \exists \overline{n} \in N : \forall n \in \mathbb{N} (n > \overline{n} \implies a_n > k)$$

$$(48)$$

La scrittura è analoga per $-\infty$ invertendo il segno: $(a_n < k)$ Potremo dire che a_n diverge positivamente o negativamente

2.2 Forme indeterminate

Se $\{a_n\}, \{b_n\} \subseteq \mathbb{R}$ e $\{a_n\} \to +\infty, \{b_n\} \to -\infty\}$ allora:

$$a_n + b_n \to +\infty - \infty = ? \tag{49}$$

 $+\infty~e~-\infty~non~sono~veri~e~propri~numeri,~piuttosto~sono~dei~simboli,~quindi~il~risultato~sarà~detto:$ FORMA INDETERMINATA $+\infty~-\infty$

Altri tipi di forme indeterminate sono:

$$\frac{\infty}{\infty}, \ \frac{0}{0}, \ 0 \cdot \infty, \ 1^{\infty}, \ 0^0, \ \infty^0 \tag{50}$$

2.3 Teoremi generali di esistenza

Una successione $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ è detta monotona crescente se $a_n\leq a_{n+1}, \forall n\in\mathbb{N}$

Si dice invece monotona decrescente se $a_n \geq a_{n+1}, \forall n \in \mathbb{N}$.

Sono rispettivamente **strettamente** monotone crescenti o decrescenti se le disuguaglianze sono **strette**

Le scritture $a_n \nearrow e a_n \searrow$ indicano monotonia crescente e decrescente

Definizione 21:

Ogni successione monotona ammette limite: Se $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$:

1.
$$a_n \nearrow \Longrightarrow \lim_{n \to +\infty} a_n = \sup_{n \in \mathbb{N}} a_n$$

2.
$$a_n \searrow \Longrightarrow \lim_{n \to +\infty} a_n = \inf_{n \in \mathbb{N}} a_n$$

DIMOSTRAZIONE 8.

Se $\{a_n\}$ è superiormente limitata per l'assioma di completezza:

$$\exists \sup_{n \in \mathbb{N}} a_n = \lambda \tag{51}$$

Per la proprietà del sup si ha che $a_n \leq \lambda, \forall n \in \mathbb{N}$ dunque:

$$a_n < \lambda + \epsilon \ \forall n \in \mathbb{N}, \ \forall \epsilon > 0$$
 (52)

$$\forall \epsilon > 0, \exists \overline{n} \in \mathbb{N} : \lambda < a_{\overline{n}} + \epsilon \tag{53}$$

La definizione di limite è:

$$\lim_{n \to +\infty} a_n = \lambda \tag{54}$$

Esercizio 2 (Il numero di nepero e).

$$e \equiv \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n \tag{55}$$

Si nota che $a_n = \left(1 + \frac{1}{n}\right)^n$ e $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$ sono successioni **convergenti** che hanno lo stesso limite e, inoltre sono **strettamente monotone**

$$a_n < a_{n+1} \quad e \quad b_n > b_{n+1} \ \forall n \in \mathbb{N}$$
 (56)

Inoltre

$$a_n < b_n \ \forall n \in \mathbb{N} \tag{57}$$

allora:

$$a_n < a_p < b_p < b_m \quad \forall n, m, p; p = \max\{n, m\}$$
 (58)

Entrambe le successioni convergono: a_n è monotona crescente e superiormente limitata e b_n è monotona decrescente e inferiormente limitata.

$$\lim_{n \to +\infty} \frac{b_n}{a_n} = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right) = 1 \tag{59}$$

Questo implica che:

$$\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} a_n = e \tag{60}$$

DIMOSTRAZIONE 9.

$$b_n = \left(1 - \frac{1}{n}\right)^{n+1} \tag{61}$$

3 Funzioni

3.1 Introduzione

Definizione 22:

Una funzione f é una relazione tra gli elementi di due insieme A e B che ad ogni elemento di A associa **uno ed un solo** elemento di B.

Una funzione è definita assegnando:

- un insieme A detto DOMINIO
- \bullet un insieme B detto CODOMINIO
- \bullet una relazione $f:A\to B$ che associa ogni elemento di A
 uno ed un solo elemento di B

3.2 Tipi di funzioni

Una funzione f(x) può essere di 3 tipi:

- 1. suriettiva
- 2. iniettiva
- 3. biiettiva se è <u>sia</u> iniettiva e suriettiva

Definizione 23:

Una funzione si dice **iniettiva** quando ad elementi **distinti** del DOMINIO corrispondono elementi **distinti** del CODOMINIO

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2 \tag{62}$$

Figure 1: grafico iniettiva

Definizione 24:

Una funzione si dice **suriettiva** qunado **ogni** elemento del codominio è immagine di **almeno** un elemento del dominio.

$$b \in B \to \exists a \in A : f(a) = b \tag{63}$$

Figure 2: graifco suriettiva

Esercizio 3.

Dimostra di che tipo è questa funzione:

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = x^2$ (64)

DIMOSTRAZIONE 10.

Non può essere iniettiva perchè per ogni numero reale positivo ne esiste uno uguale negativo, il cui qudrato sarà il **medesimo**.

$$se \quad x_1 = -x_2 \quad \Rightarrow \quad f(x_1) = f(x_2) \tag{65}$$

si può provare inoltre che non è una funzione suriettva in quanto **nessun** numero negativo fa parte del codominio ed esso è formato da \mathbb{R} dunque

$$-4 \neq f(x) \qquad \forall x \in \mathbb{R} \tag{66}$$

Esercizio 4.

Dimostra di che tipo è questa funzione:

$$f: \mathbb{N} \to \mathbb{N}$$
 $f(x) = x^2$ (67)

DIMOSTRAZIONE 11.

se cambiamo il dominio e il codominio nell'insieme dei numeri naturali e consideriamo la stessa legge possiamo deddure che:

$$\forall n, m : n \neq m \quad \Rightarrow \quad n^2 \neq m^2 \tag{68}$$

Per **qualsiasi** coppia di numeri naturali diversi fra loro non è possibile pensare che il loro quadrato sia uguale, per tanto la funzione è iniettiva. Inoltre **qualsiasi** numero dispari non avrà una propria immagine, in quanto

l'insieme racchiude **solo** numeri interi positivi. Ovvero:

$$\exists \frac{x}{2} \in \mathbb{N} : \{ y = x + 1 \} \quad \Rightarrow \quad y \neq n^2 \qquad \forall n \in \mathbb{N}$$
 (69)

3.3 Funzioni invertibili

Definizione 25:

Una funzione $f: A \to B$ si dice invertibile se esiste una funzione $g: B \to A$ chiamata funzione inversa tale che:

- $\forall a \in A, \quad g(f(a)) = a$
- $\forall b \in B$, f(q(b)) = b

Essa si può considerare invertibile se è biiettiva.

Esercizio 5.

Dimostra se la funzione $f: \mathbb{R} \to \mathbb{R}$ f(x) = 2x + 1 è inversibile.

DIMOSTRAZIONE 12.

Ponendo l'equazione y = 2x + 1 deduciamo che

$$f^{(-1)}(x) = \frac{x - 1}{2} \tag{70}$$

quindi:

$$f^{(-1)}(f(x)) = f^{(-1)}(2x + 1) = \frac{(2x + 1) - 1}{2} = x;$$
 (71)

e allo stesso tempo

$$f(f^{(-1)}(y)) = f(\frac{y-1}{2}) + 1 = y$$
 (72)

3.4 Piano Cartesiano

Fissando un'origine e un'unità di misura ad **ogni** punto di una retta orientata corrisponde uno ed un solo numero reale. Si stabilisce così una **corrispondenza biunivoca** tra i punti della retta orientata e i numeri reali. Data la funzione

$$f: A \to B \quad A, B \subseteq \mathbb{R} \times \mathbb{R} = \mathbb{R}^{2}$$

$$\xrightarrow{A \quad B \quad AB>0 \quad BA<0}$$

$$\xrightarrow{B \quad A \quad BA>0 \quad BA>0 \quad AB<0}$$

Figure 3: la retta orientata

Definizione 26:

Definiamo una coppia di rette orientate disposte perpendicolarmente fra loro assi coordinati.

- La retta da destra verso sinistra viene chiamata asse delle ascisse
- la retta dal basso verso l'alto viene chiamata asse delle ordinate

Il punto del piano in cui si incontrano viene chiamato **origine degli assi** e viene indicato con O

Un qualsiasi punto del piano P viene identificato con una ascissa x_p ed una ordinata y_p , quindi $P(x_p, y_p)$.

Il piano viene diviso in IV quadranti numerati in senso antiorario.

Figure 4: il piano cartesiano

3.5 Grafici di funzioni

Ora possiamo rappresentare graficamente coppie ordinate di numeri reali sul piano, quindi possiamo rappresentare il **grafico** di una funzione

$$f: A \subseteq \mathbb{R} \to B \subseteq \mathbb{R} \tag{74}$$

e tutte le coppie (x, f(x)) tali che $x \in A$:

$$G(f) = \{(x, f(x))\} : x \in A$$
 (75)

Figure 5: il grafico di una funzione crescente

3.6 Funzioni Pari e Dispari

Definizione 27:

Una funzione $f:[-a,a] \rightarrow \mathbb{R}$ si dice **pari** se f(x)=f(-x)

Figure 6: Una funzione pari

Si deduce quindi che il grafico di una funzione così definita è simettrico rispetto all'asse delle ordinate

Definizione 28:

Una funzione $f:[-a,a] \to \mathbb{R}$ si dice **dispari** se f(-x) = -f(x)Si deduce quindi che il grafico di una funzione così definita viene **specchiata** in due quadranti uno **oppsoto** all'altro

Figure 7: Una funzione dispari

3.7 Funzioni crescenti e decrescenti

Definizione 29:

Una funzione $f:[-a,a] \rightarrow \mathbb{R}$ si dice **crescente** se

$$f(x_2) \ge f(x_1) \quad \forall x_2 > x_1 \in [a, b]$$
 (76)

Si dice strettamente crescente se

Figure 8: il grafico di una funzione crescente

Definizione 30:

Una funzione $f:[-a,a] \rightarrow \mathbb{R}$ si dice **decrescente** se

$$f(x_2) \le f(x_1) \quad \forall x_2 > x_1 \in [a, b]$$
 (78)

Si dice strettamente decrescente se

$$f(x_2) < f(x_1) \quad \forall x_2 > x_1 \in [a, b] \tag{79}$$

 $f(x_1)$ $f(x_2)$ x_1 x_2

Figure 9: il grafico di una funzione decrescente

3.8 Funzioni inverse

Se i punti di una funzione $f:A\to B$ $A,B\subseteq\mathbb{R}$ si ottengono dalle coppie $(a,b)\in A$ \times B

Definizione 31:

Il grafico di una funzione inversa si ottiene invertendo le coordinate dei punti del grafico. Ovvero i punti del grafico della **funzione inversa** si ottengono dalle coppie $(b,a) \in B \times A$ // Per via grafica esso può essere ottenuto **riflettendo** il grafico rispetto alla **bisettrice** del **primo** e **terzo** quadrante

Figure 10: Il grafico di una funzione inversa

3.9 Modelizzazione matematica

Definizione 32:

Per modelizzazione matematica si intende un porcesso che ha per scopo quello di interpretare fenomeni legati al mondo reale partendo da dati sperimentali e traducendoli in problemi matematici

Per passare da un fenomeno reale alla sua descrizione mediante modello matematico è necessario un processo di **astrazione** e **traduzione** del fenomeno in termini matematici e rigorosi.

Quando si vuole modelizzare un certo fenomeno, si vuole capire **come** le variabili coinvolte siano in relazione tra loro, ovvero stabilire delle **leggi matematiche** che descrivono queste relazioni.

La procedura di modelizzazione è:

- 1. si identifica l'incognita del problema
- 2. si analizza il fenomeno fisico e si raccolgono informazioni
- 3. si individuano le relazioni tra le informazioni raccolte, che poi vengono tradotte in equazioni

4. si risolvono le equazioni ottenute e se ne verifica la validità del modello

In un modello matematico che coinvolge due grandezze x ed y ci interessa capire come la **variabile dipendente** (y) varia al variare di quella **indipendente**

Esempio 6.

Supponiamo di aver formulato la legge y = f(x)

Se il modello è giusto potremmo ricavare il valore di y a partire da qualsiasi valore di x senza effettuare ulteriori esperimenti e misurazioni. Rappresentandolo graficamente:

Figure 11: Il grafico dell'andamento dei bitcoin

Questo è il grafico di y = f(x) dove y="valore del bitcoin in dollari" e x="tempo".

3.10 Proporzioni

Definizione 33:

Due grandezze A e B si dicono direttamente proprozionali se esiste un numero c detto costante di proporzionalità tale che:

$$A = cB \tag{80}$$

Questo significa che le due grandezze sono legate da una certa legge, per la quale quando una raddoppia, triplica, dimezza, di conseguenza la seconda raddoppia, triplica, dimezza etc.

Esempio 7.

A = "quantità di chilometri che l'auto può percorrere"

B = "litri di carburante nel serbatoio"

Definizione 34:

Due grandezze A e B si dicono inversamente proprozionali se esiste un numero c detto costante di proporzionalità tale che:

$$AB = c \tag{81}$$

Questo significa che le due grandezze sono tali che all'aumentare di una, l'altra diminuisce proporzionalmente.

Esempio 8.

A = "numero di partecipanti all'acquisto di un immobile"

B = "quota per partecipante"

 $c = \cos to dell'immobile$

4 Combinatoria e probabilità

4.1 Introduzione

Definizione 35:

L'analisi combinatoria è la branca della matematica applicata per risolvere problemi nel quale è necessario saper "contare" efficacemente esiti e probabilità di determinate situazioni.

Essa è infatti la disciplina che ci permette di contare senza contare

4.2 Combinatoria

Definizione 36 (Principio di moltiplicazione):

Un insieme X soddisfa le ipotesi del principio di moltiplicazione se:

- è possibile ottenere ciascuno dei suoi elementi come risultato di una procedura composta da n fasi successive.
- se ad una fase interemedia si sono ottenuti due esisti distinti allora la procedura conduce ad elementi distinti di X

Nella prima fase avremo m_1 possibili esiti nella seconda fase avremo m_2 esiti sino alla n-esima fase avremo m_n esiti

$$|X| = m_1 \times m_2 \times \dots \times m_k \tag{82}$$

Esercizio 6.

Calcoliamo il numero di coppie ordinate (a, b) contenenti un numero primo ed uno non primo compresi tra 1 ed 8

DIMOSTRAZIONE 13.

I numeri primi tra 1 e 8 sono $\{2,3,5,7\}$ mentre i numeri non primi tra 1 e 8 sono $\{1,4,6,8\}$

- I. Scegliamo un qualsiasi elemento di I_8 : abbiamo 8 possibilità.
- II. Se il primo elemento era primo il secondo non lo sarà, e viceversa se il numero non era primo. In ogni caso avremo 4 distinte possiblità

Il numero di coppie è: $8 \times 4 = 32$

Esercizio 7.

Consideriamo un'estrazione in successione di 3 numeri della tombola **tenendo conto dell'ordine**. Quanti sono i possibili esiti?

DIMOSTRAZIONE 14.

I numeri della tombola sono 90. Gli scenari possibili sono 2:

Nel primo caso **senza rimpiazzo** se ogni numero può essere scelto una volta sola, mentre sarà **con rimpiazzo** se un numero può essere scelto più di una volta.

Nel primo caso $(a_1, a_2, a_3) :\rightarrow (a_1 \neq a_2 \neq a_3)$:

I FASE: $a_1 = 90$

II FASE: $a_2 = 90 - 1 = 89$

III FASE: $a_3 = 90 - 2 = 88$

Quindi il numero di possibili esiti è:

$$90 \times 89 \times 88 = 704880 \tag{83}$$

Nel secondo caso $(a_1, a_2, a_3) :\rightarrow (a_1 = a_2 = a_3)$:

I fase: $a_1 = 90$

II fase: $a_2 = 90$

III fase: $a_3 = 90$

Quindi il numero di possibili esiti è:

$$90 \times 90 \times 90 = 90^3 = 729000$$
 (84)

Definizione 37:

Definiamo una regola general per k-sequenze di I_n . Siano $k, n \in \mathbb{N}$ definiamo k-sequenza di I_n una k-upla **ordinata** (a_1, \ldots, a_k) di elementi **non** necessariamente distinti di I_n Ovvero:

$$(a_1, \dots, a_k) \in \underbrace{I_n \times \dots \times I_n} \tag{85}$$

Nella definzione di sequenze l'ordine degli elementi della k-upla è importante: le 3-sequenze (2,1,3) e (3,1,2) sono diverse anceh se composte dagli stessi numeri. Vengono comunemente dette **disposizioni** di **n** oggetti a k a k

Esempio 9.

Sia $I_4 = 1, 2, 3, 4$. Allora

$$(1, 2, 3, 3, 4), \qquad (1, 1, 1, 1, 1), \qquad (2, 2, 1, 3, 4)$$
 (86)

sono 5-sequenze di I_4 . Invece

$$(1,2,3), \qquad (1,1,1), \qquad (2,3,4)$$
 (87)

sono 3-sequenze di I_4

4.3 Fattoriale

$$5! = 5 \times 4 \times 3 \times 2 \times 1 \tag{88}$$

$$n! = \begin{cases} n \times (n-1) \times (n-2) \times \dots & 3 \times 2 \times 1 \text{ se } n \ge 1\\ 1 & \text{se } n = 0 \end{cases}$$
(89)

Definizione 38:

Il **fattoriale** di un numero equivale al prodotto di quel numero per tutti i numeri che lo precedono. I valori dei fattoriale crescono esponenzialmente

$$0! = 1$$
 $5! = 120$ $6! = 720$ $7! = 5040$ $10! = 3628800$ (90)

4.4 Numero di Insiemi

Definizione 39:

Il numero di sottoinsiemi di k elementi di I_n si distinguono esclusivamente dagli elementi di cui fanno parte: l'ordine non conta.

Spesso un sottoinsieme di k elementi di un insieme di n elementi viene chiamato **combinazione** (semplice, senza ripetizioni) di n elementi a k a k

Definizione 40:

Siano $k, n \in \mathbb{N}$ il **binomiale** di n su k è:

Il numero di sottoinsiemi di k elementi di I_n è

Esempio 10.

Calcola i sotttoinsiemi con 3 elementi di I_6

DIMOSTRAZIONE 15.

La soluzione è data da una semplice applicazione della formula prima vista:

$$\begin{cases} 6 \\ 3 \end{cases} = \frac{6!}{3!3!} = 20 \tag{93}$$

Esempio 11.

Calcola il numero di partite giocate nella fase a gironi dei Mondiali di calcio. Ci sono 32 squadre divise in 8 gironi da 4 squadre ed in ogni girone una squadra deve giocare contro le altre una volta sola.

DIMOSTRAZIONE 16.

Il numero di partite totale è 8 volte le partite giocate in un singolo girone. L'insieme delle 4 squadre in un girone possiamo identificarlo con I_4 , e una partita tra 2 squadre con un sottoinsieme di 2 elementi di I_4 . Il numero di partite giocate in un girone**è il numero di sottoinsiemi** di 2 elementi di I_4 ovvero:

$${4 \brace 2} = \frac{4!}{2!(4-2)!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 2} = \frac{24}{4} = 6$$
 (94)

Infine il risultato equivale a: $6 \times 8 = 48$