

UNIVERSIDADE CATÓLICA DE PERNAMBUCO CURSO DE SISTEMAS PARA INTERNET

RELATÓRIO TÉCNICO-CIENTÍFICO CHATBOT PROTOCOLOS ACADÊMICOS

BRUNA BEATRIZ, ÉBER NASCIMENTO, EDIVALDO COELHO, FABYANE NAYARA, RICHARD HENRIQUE, RUAN THIAGO, SILAS SOUSA E THYAGO HENRIQUE

Resumo

Este relatório técnico-científico descreve o desenvolvimento e implementação do Projeto Chatbot Protocolos Acadêmicos, realizado para a secretaria da Unicap Icam Tech com o intuito de contribuir e colaborar com a melhoria do atendimento dos protocolos acadêmicos. O objetivo principal do projeto é facilitar o atendimento aos alunos e o processamento de solicitações por parte dos funcionários da Universidade Católica de Pernambuco (Unicap). Neste documento, são apresentados os fundamentos teóricos, as ferramentas e tecnologias utilizadas, a metodologia, o desenvolvimento do chatbot e do servidor backend, os resultados obtidos, a conclusão e os próximos passos.

Sumário

1	Intr	odução		
2	Ferr	ramentas e Tecnologias Utilizadas		
	2.1	Typebot		
	2.2	Railway		
	2.3	Node.js		
	2.4	Express		
	2.5	Body-Parser		
	2.6	Dotenv		
	2.7	Mongoose		
	2.8	MongoDB Atlas		
	2.9	Vercel		
	2.10	Git e GitHub		
	2.11	Figma		
	2.12	Front-end Estático e PWA		
	2.13	WebLatex		
3	Arquitetura do Sistema			
	3.1	Visão Geral		
	3.2	Componentes do Sistema		
		3.2.1 Frontend		
		3.2.2 Backend		
		3.2.3 Integração de Serviços		
	3.3	Fluxo de Dados		
		3.3.1 Coleta de Dados		
		3.3.2 Processamento		
		3.3.3 Resposta ao Usuário		
	3.4	Manutenção e Atualizações		
	3.5	Monitoramento		
Ļ	Desc	envolvimento do Chatbot		
	4.1	Criação do Chatbot no Typebot		
	4.2	Configuração do Email no Typebot		
	4.3	Configuração do Webhook no Typebot		
	4.4	Publicação do Chatbot no Railway		
	4.5	Fluxograma dos Protocolos Acadêmicos		
	Ъ			
•		envolvimento do Servidor Backend Configuração do Servidor		
		A A DILLIE LIL GALGAL AUGUSTE VILLAGI		

	5.2 Conexão com o MongoDB Atlas	10
6	Resultados	10
7	Conclusão	10
8	Próximos Passos	11

1 Introdução

Este documento apresenta a documentação técnica do projeto de desenvolvimento de um chatbot para atendimento automatizado aos alunos e apoio aos colaboradores da secretaria da Unicap Icam Tech. O chatbot foi criado utilizando a plataforma Typebot, publicado no Railway para maior autonomia e escalabilidade, e configurado para armazenar informações no banco de dados MongoDB Atlas. Após cada atendimento, um email é enviado via SMTP configurado no Typebot, utilizando o SMTP do Gmail do projeto, de modo que os emails enviados cheguem ao destinatário com o domínio do projeto. Em seguida, um webhook armazena os dados no MongoDB Atlas. O servidor backend foi publicado na Vercel. Além disso, o chatbot foi integrado a um front-end estático desenvolvido em Vite, React.js e TypeScript, publicado na Vercel, simulando a inclusão do chat no portal do aluno da Unicap. Também foi desenvolvido um PWA (Progressive Web App) do front-end publicado na Vercel com o chat incluído, permitindo que os usuários baixem o PWA como um aplicativo e utilizem o software diretamente em seus smartphones sem precisar acessar a web. O principal objetivo do chatbot é atender aos seguintes protocolos acadêmicos:

- Atividades Complementares
- Regime Especial
- Histórico Acadêmico
- Tratamento Excepcional
- Solicitação de Inserção de Placa
- Revisão de Prova

2 Ferramentas e Tecnologias Utilizadas

2.1 Typebot

Plataforma utilizada para a criação do chatbot, proporcionando facilidade de uso e integração com diversas plataformas. Escolhemos o Typebot devido à sua interface intuitiva e facilidade de integração com outros serviços, o que agiliza o desenvolvimento e a implementação do chatbot. Versão: Atual

2.2 Railway

Plataforma utilizada para a publicação e hospedagem do chatbot, oferecendo maior autonomia e escalabilidade. Railway foi escolhida por sua capacidade de simplificar a

implantação e gestão de serviços em nuvem, garantindo alta disponibilidade e facilidade de escalabilidade. Versão: Atual

2.3 Node.js

Ambiente de execução JavaScript para o desenvolvimento do servidor backend. Node.js foi escolhido por sua alta performance e capacidade de lidar com um grande número de conexões simultâneas, o que é ideal para aplicações em tempo real como o nosso chatbot. Versão: v20.14.0

2.4 Express

Framework para Node.js utilizado no desenvolvimento do servidor backend. Express oferece uma estrutura leve e robusta para criar APIs e gerenciar requisições HTTP, simplificando o desenvolvimento do servidor backend. Versão: v4.19.2

2.5 Body-Parser

Middleware para Node.js utilizado para processar dados de requisição. Body-Parser é essencial para analisar o corpo das requisições HTTP, permitindo que nosso servidor backend processe dados JSON enviados pelo chatbot. Versão: v1.20.2

2.6 Doteny

Módulo de zero-dependência que carrega variáveis de ambiente de um arquivo .env. Dotenv facilita a gestão de configurações sensíveis e seguras, carregando variáveis de ambiente a partir de um arquivo .env. Versão: v16.4.5

2.7 Mongoose

Biblioteca de modelagem de objetos MongoDB para Node.js. Mongoose foi escolhida por sua simplicidade e poder na modelagem de dados para o MongoDB, permitindo uma interação eficiente e segura com o banco de dados. Versão: v8.4.1

2.8 MongoDB Atlas

Banco de dados utilizado para o armazenamento seguro e escalável das informações dos usuários e suas interações com o chatbot. MongoDB Atlas oferece uma solução de banco de dados escalável e segura, com recursos avançados de gerenciamento e backup, garantindo a integridade e disponibilidade dos dados. Versão: Atual

2.9 Vercel

Plataforma utilizada para a publicação do servidor backend, do front-end estático e do PWA, oferecendo facilidade de implementação e escalabilidade. Vercel foi escolhida por sua capacidade de simplificar o deploy de aplicações web, oferecendo ferramentas para implementação contínua e alta performance. Versão: Atual

2.10 Git e GitHub

Ferramentas utilizadas para controle de versão e colaboração de todo o time no desenvolvimento do projeto. Git e GitHub são essenciais para o controle de versão e colaboração em equipe, permitindo que todos os membros contribuam de forma organizada e eficiente. Versão: Atual

2.11 Figma

Ferramenta utilizada para prototipação do front-end com o chat. Figma foi escolhido por sua capacidade de facilitar a colaboração em tempo real na criação de designs e protótipos, acelerando o processo de desenvolvimento do front-end.

2.12 Front-end Estático e PWA

Simulação do portal do aluno da Unicap, onde o link do Typebot publicado no Railway foi anexado e publicado na Vercel. O front-end estático foi desenvolvido em Vite, React.js e TypeScript, é responsivo e inclui um PWA publicado na Vercel com o chat integrado, permitindo que os usuários baixem o PWA como um aplicativo e utilizem o software diretamente em seus smartphones sem precisar acessar a web. Escolhemos essas tecnologias por sua capacidade de criar interfaces rápidas, responsivas e modernas, melhorando a experiência do usuário. Versão Vite: v5.2.0 Versão React: v18.2.0 Versão TypeScript: v5.2.2 Versão Styled-components: v6.1.11

2.13 WebLatex

Utilizamos o WebLatex para a criação do relatório técnico, com a contribuição de cada membro do time, garantindo uma colaboração eficiente e organizada. WebLatex permite a edição colaborativa de documentos em LaTeX, facilitando a criação e revisão do relatório técnico. Versão: Atual

3 Arquitetura do Sistema

3.1 Visão Geral

A arquitetura do sistema foi planejada para garantir a eficiência e a segurança no atendimento aos alunos. Abaixo, detalhamos os principais componentes e o fluxo de dados.

3.2 Componentes do Sistema

3.2.1 Frontend

Front-end estático e PWA desenvolvidos em Vite, React.js e TypeScript.

3.2.2 Backend

Servidor em Node.js com Express para processamento e armazenamento dos dados. Utilização de APIs para comunicação entre o Typebot e o servidor.

3.2.3 Integração de Serviços

Integração com Typebot para gerenciamento de conversas e coleta de dados dos usuários. Utilização do Railway para hospedagem e execução dos serviços Typebot. Utilização do SMTP do Gmail no Typebot para envio de emails. Armazenamento de dados no MongoDB Atlas.

3.3 Fluxo de Dados

3.3.1 Coleta de Dados

O chatbot coleta informações dos alunos (nome, registro, email, curso, turno, e solicitação) e envia para o servidor em Node.js via webhook usando o método POST para inserção dos dados.

3.3.2 Processamento

Os dados são processados no servidor backend em Node.js e armazenados no MongoDB Atlas.

3.3.3 Resposta ao Usuário

O chatbot responde aos alunos com base no fluxo de conversação criado no Typebot, fornecendo feedback em tempo real.

3.4 Manutenção e Atualizações

Deploy Contínuo: Implementação de integração contínua para garantir que novas funcionalidades e correções de bugs sejam rapidamente disponibilizadas.

3.5 Monitoramento

Ferramentas de monitoramento para acompanhar o desempenho do chatbot e dos serviços associados, garantindo alta disponibilidade e desempenho.

4 Desenvolvimento do Chatbot

4.1 Criação do Chatbot no Typebot

O Typebot foi escolhido por sua facilidade de uso e integração com várias plataformas. O fluxo de conversação foi cuidadosamente desenhado para atender aos principais protocolos acadêmicos listados anteriormente. Maria Helena, Auxiliar Administrativa da Secretaria da Unicap Icam Tech, contribuiu significativamente ajudando na criação e validação dos fluxos de conversação.

4.2 Configuração do Email no Typebot

As credenciais SMTP do Gmail foram configuradas diretamente no Typebot para permitir o envio de emails, garantindo que os emails enviados cheguem ao destinatário com o domínio do projeto. No futuro, a Unicap pretende implementar o sistema para que os emails cheguem com o domínio da Unicap. No fluxo de conversação do Typebot, foi adicionada uma ação de envio de email para a secretaria, incluindo todas as informações relevantes da solicitação.

4.3 Configuração do Webhook no Typebot

Após a ação de envio de email, foi configurado um webhook HTTP Request no Typebot para enviar os dados das interações dos usuários para o servidor backend usando o método POST para inserção dos dados, incluindo informações pessoais e arquivos anexados.

4.4 Publicação do Chatbot no Railway

O chatbot foi publicado no Railway para garantir maior autonomia e facilidade de escalabilidade. A configuração envolveu a definição das variáveis de ambiente e a configuração do domínio para acesso ao chatbot.

4.5 Fluxograma dos Protocolos Acadêmicos

A seguir, apresentamos o fluxograma criado no Figma que contém todos os fluxos e informações dos protocolos acadêmicos.

Figura 1: Fluxograma dos Protocolos Acadêmicos

5 Desenvolvimento do Servidor Backend

5.1 Configuração do Servidor

O servidor foi desenvolvido utilizando Node.js e Express. O middleware Body-Parser foi configurado para analisar dados JSON, facilitando a interpretação dos dados enviados pelo Typebot.

5.2 Conexão com o MongoDB Atlas

O servidor foi configurado para se conectar ao MongoDB Atlas, garantindo segurança e escalabilidade. As credenciais de conexão foram armazenadas como variáveis de ambiente para maior segurança.

5.3 Implementação das Rotas

A rota principal /submit foi criada para receber dados do Typebot via webhook usando o método POST para inserção dos dados. Esta rota foi configurada para salvar informações no MongoDB Atlas, incluindo os links de arquivos enviados pelos usuários.

5.4 Publicação do Servidor na Vercel

O servidor backend foi publicado na Vercel, proporcionando uma implementação fácil e escalável.

6 Resultados

- O chatbot foi configurado com sucesso e está em operação.
- Alunos e colaboradores da secretaria podem interagir com o chatbot para obter informações e enviar solicitações.
- Após cada atendimento, um email é enviado automaticamente para a secretaria com os detalhes da solicitação do aluno.
- As informações e arquivos enviados são armazenados de forma segura no MongoDB Atlas.
- O chatbot foi integrado a um front-end estático desenvolvido em Vite, React.js e TypeScript, publicado na Vercel, simulando a inclusão do chat no portal do aluno da Unicap.
- Foi desenvolvido um PWA do front-end publicado na Vercel com o chat incluído, permitindo que os usuários baixem o PWA como um aplicativo e utilizem o software diretamente em seus smartphones sem precisar acessar a web.

7 Conclusão

O projeto de criação do chatbot para a Unicap Icam Tech foi concluído com êxito. A adesão da Unicap proporcionará uma plataforma robusta e escalável para atender às necessidades dos alunos e colaboradores. A configuração do serviço de envio de email diretamente no Typebot, utilizando o SMTP do Gmail, assegura que a secretaria seja notificada imediatamente sobre novas solicitações, melhorando a eficiência do atendimento. A publicação do servidor backend na Vercel proporcionou uma implementação fácil e escalável. O armazenamento seguro das informações no MongoDB Atlas garante a integridade dos dados e a facilidade de acesso para futuras consultas. A integração do chatbot

em um front-end estático desenvolvido em Vite, React.js e TypeScript, juntamente com o PWA publicado na Vercel, simula sua inclusão no portal do aluno da Unicap, proporcionando uma experiência de usuário integrada e eficiente.

8 Próximos Passos

- Monitorar o desempenho do chatbot e coletar feedback dos usuários para melhorias contínuas.
- Integrar mais funcionalidades ao chatbot para atender a um número maior de demandas dos alunos e colaboradores.
- Expandir o uso do chatbot para outras áreas da universidade, aumentando sua utilidade e abrangência.