Questions

Existe-t'il un "continuous map theorem" pour la convergence L_p ?

Le 'continuous map theorem' dit que si $X_n \to X$ converge p.s. (resp. en proba, resp en loi) et que f est une fonction continue alors $f(X_n) \to f(X)$ converge p.s. (resp. en proba, resp en loi). Il est alors naturel de se poser la question si ce théorème s'étend aussi à la convergence L_p .

On peut remarquer en premier lieu que si $X_n \to X$ dans L_p et que f est continue alors on n'a pas forcément $f(X_n)$ et f(X) qui appartiennent à L_p . Donc, en toute généralité, il n'y a pas de 'continuous map theorem' pour la convergence L_p . Cependant, on peut essayer de trouver des conditions sur f pour que ça marche.

Par exemple, si f est Lipschitz (i.e. $|f(x) - f(y)| \le L|x - y|$ pour tout $x, y \in \mathbb{R}$) alors on a

$$\mathbb{E}|f(X_n) - f(X)|^p \le L^p \mathbb{E}|X_n - X|^p \to 0$$

quand $n \to +\infty$. Et $|f(X_n) - f(0)|^p \le |X_n|^p \in L_1$ donc $f(X_n) \in L_p$ (de même $f(X) \in L_p$).

Aussi, quand f est continue et bornée alors on a bien $f(X_n) \to f(X)$ converge dans L_p . En effet, comme $X_n \to X$ converge dans L_p , on a aussi la convergence en proba de $(X_n)_n$ vers X et par le continuous map theorem $(f(X_n))_n$ converge en proba vers f(X). Comme f est bornée, on conclut bien que la convergence se fait aussi dans L_p : pour tout $\varepsilon > 0$

$$\mathbb{E}|f(X_n) - f(X)|^p = \mathbb{E}|f(X_n) - f(X)|^p I(|f(X_n) - f(X)| \le \varepsilon) + \mathbb{E}|f(X_n) - f(X)|^p I(|f(X_n) - f(X)| > \varepsilon)$$

$$\le \varepsilon^p + 2^p \|f\|_{\infty}^p \mathbb{P}[|f(X_n) - f(X)| > \varepsilon] \to \varepsilon^p$$

quand n tend vers ∞ . Ceci étant vrai pour tout $\varepsilon > 0$, on conclut.

On peut alors se poser les deux questions suivantes. On suppose que $(X_n)_n$ converge vers X dans L_p et que f est une fonction continue. Peut-on prouver que $(f(X_n))_n$ converge vers f(X) dans L_p sous une des conditions suivantes

- a) si $Y \in L_2$ alors $f(Y) \in L_2$?
- b) ou encore sous l'hypothèse minimale que $f(X_n), f(X) \in L_p$?

On voit dans le cas de l'hypothèse a) que cette question revient ici à montrer que $Y \in L_2 \to f(Y) \in L_2$ est continue (de L_2 dans L_2).

Pour répondre à ces questions, on peut introduire la notion d'équi-intégrabilité : $(Y_n)_n$ est équi-intégrable quand

$$\lim_{a \to +\infty} \sup_{n \in \mathbb{N}} \mathbb{E}[|Y_n|I(|Y_n| \ge a)] = 0.$$

Il y a équivalence entre :

- i) $(Y_n)_n$ converge dans L_p
- ii) $(Y_n)_n$ converge en probabilité et $(|Y_n|^p)_n$ est équi-intégrable (voir Exercice 1.4 ici pour une preuve).

Dans notre cas, on suppose que $(X_n)_n$ converge vers X dans L_p et que f est continue donc par le continuous map theorem, on a bien que $(f(X_n))_n$ converge vers f(X) en probabilité. Il suffit donc de s'intéresser à l'équi-intégrabilité de la suite $(|f(X_n)|^p)_n$. On s'intéresse donc à la limite quand $a \to +\infty$ de

$$\sup_{n \in \mathbb{N}} \mathbb{E}[|f(X_n)|^p I(|f(X_n)|^p \ge a)]$$

.

Construction d'une variable aléatoire de loi donnée (Corollaire 7.6 du cours).

Soit X_1, \ldots, X_n des v.a.r. de lois respectives $\mathbb{P}_1, \ldots, \mathbb{P}_n$. On ne suppose pas que les $X_i, i = 1, \ldots, n$ sont indépendantes de telle sorte que la loi du n-uplet (X_1, \ldots, X_n) n'est pas forcément $\mathbb{P}_1 \otimes \cdots \otimes \mathbb{P}_n$. On veut construire des variables aléatoires X'_1, \ldots, X'_n telles que X'_i a pour loi \mathbb{P}_i et les X'_i sont indépendantes. Cela revient à construire une variable aléatoire (X'_1, \ldots, X'_n) à valeur dans \mathbb{R}^n de loi $\mathbb{P} = \mathbb{P}_1 \otimes \cdots \otimes \mathbb{P}_n$.

Ici on peut se rappeler que les varibales aléatoires sont des fonctions sur des espaces probabilisés. On peut considérer l'espace probabilisé $(\mathbb{R}^n, \mathcal{B}_n, \mathbb{P})$ où \mathcal{B}_n est la tribu des boréliens sur \mathbb{R}^n . On considère la fonction

$$f: \left\{ \begin{array}{ccc} (\mathbb{R}^n, \mathcal{B}_n, \mathbb{P}) & \to & (\mathbb{R}^n, \mathcal{B}_n) \\ x & \to & x \end{array} \right. \tag{1}$$

Pour tout $A_1, \ldots A_n \in \mathcal{B}_1$, on a

$$\mathbb{P}[f \in A_1 \times \dots \times A_n] = \mathbb{P}\left[\left\{x \in \mathbb{R}^n : f(x) \in A_1 \times \dots \times A_n\right\} = \mathbb{P}\left[\left\{x \in \mathbb{R}^n : x \in A_1 \times \dots \times A_n\right\} = \mathbb{P}\left[A_1 \times \dots \times A_n\right] = \mathbb{P}\left[A_1$$

Ainsi, on a que la loi de la variable aléatoire f est $\mathbb{P}^f = \mathbb{P}$. On note $X_i' = \langle e_i, f \rangle$ les coordonnées de f (où $(e_i)_1^n$ est la base canonique de \mathbb{R}^n). On a donc construit $f = (X_1', \dots, X_n')$ qui a pour loi jointe \mathbb{P} . C'est bien ce qu'on voulait.

Maintenant, on a la problème suivant que les variable $(X_i)_1^n$ et $(X_i')_1^n$ ne sont pas définies sur le même espace probabilisé : les X_i sont définies sur un espace $(\Omega, \mathcal{A}, \mathbb{Q})$ alors que les X_i' sont définie sur \mathbb{R}^n . Pour ce faire, on peut 'augmenter' Ω par exemple, en introduisant $\Omega' = \Omega \times \mathbb{R}^n$ et en prolongeant les X_i et X_i' sur Ω' . L'intérêt d'avoir les variables aléatoires définies sur un même espace Ω' est qu'on peut utiliser la mesure $\mathbb{Q}' = \mathbb{Q} \otimes \mathbb{P}$ aussi bien pour mesurer les événements relatifs aux X_i qu'aux X_i' . Généralement, pour la construction des X_1', \ldots, X_n' , on utilise la formule consacrée 'En supposant Ω suffisant grand, on construit X_1', \ldots, X_n' de loi etc...' cela signifie, par exemple dans notre cas, que Ω est suffisant riche pour contenir \mathbb{R}^n . Ce qu'on peut toujours faire vu qu'on ne précise presque jamais l'espace $(\Omega, \mathcal{A}, \mathbb{Q})$ sur lequel on définit les variables aléatoires.