Sets and Maps

1 Sets

$$\mathbb{N} = \{0, 1, 2, \ldots\} \text{ *natural numbers*}$$

$$\mathbb{Z} = \{-2, -1, 0, 1, 2, \ldots\} \text{ *integers*}$$

$$\mathbb{Q} = \left\{\frac{k}{n}|k, n \in \mathbb{N}, n \neq 0\right\} \text{ *rationals*}$$

$$\mathbb{R} = \text{ *real numbers*}$$

$$\mathbb{C} = \{a + ib|a, b \in \mathbb{R}\} \text{ *complex numbers*}$$

$$\text{*i = imaginary unit*}$$

$$\text{*characterized by } i^2 = -1^*$$

$$\mathbb{R}^d = \{(a_1...a_d)|a_i \in \mathbb{R}\} \text{ *d-dimensional space*}$$

$$\mathbb{R}^{\infty} = \{(a_0, a_1, a_2, \ldots)|a_i \in \mathbb{R}\} \text{ *space of infinite sequences of reals*}$$

2 Set Operations

$$A \cup B = \{c | c \in A \text{ or } c \in B\}$$
 union
 $A \cap B = \{c | c \in A \text{ and } c \in B\}$ *intersection*
 $A \setminus B = \{c \in A | c \notin B\}$ *difference*
 $A \Delta B = A \cup B \setminus (A \cap B)$ *symmetric difference*

3 Families of Sets

Let $(A_{\alpha})_{{\alpha}\in I}$ be an *indexed family of sets* (index set I).

EX: (1)
$$I = \mathbb{N}$$

$$A_{\alpha} := \{\alpha, \alpha + 1\}$$
(2) $I = \mathbb{R}^+ = \{x \in \mathbb{R} | x > 0\}$

$$A_{\alpha} := [\alpha, \infty)$$
union:
$$\bigcup_{\alpha \in I} A_{\alpha} = \{\alpha | \alpha \in A_{\alpha} \text{ for some } \alpha \in I\}$$

$$= \{\alpha | \exists \alpha \in I \text{ such that } \alpha \in A_{\alpha}\}$$
intersection:
$$\bigcap_{\alpha \in I} A_{\alpha} = \{\alpha | \alpha \in A_{\alpha} \text{ for every } \alpha \in I\}$$

$$= \{\alpha | \forall \alpha \in I \text{ we have } \alpha \in A_{\alpha}\}$$

4 Maps

Maps in general. Map = function = mapping = transformation Let A, B be *sets* $(+\emptyset)$. A *map* f:

$$A \to B$$

 $a \mapsto f(a)$

is an *assignment*: to $\forall a \in A$ f assign a unique $b \in B$ which is called the *value of f at a* and is denoted by f(a).

Note: f assigns to $\forall a \in A$ a value, but there may exists $b \in B$ st $f(a_1) \neq b \ \forall a \in A$.

A is called the *domain* (of definition) of f

B is the *target space* of f

5 Restriction of a Map

If $A' \subset A$, then the map f' (0.15)

$$f': A' \to B$$

 $a \mapsto f'(a) = f(a)$

is called the *restriction of f to A'* (denoted by $f' = f|_{A'}$) EX: (1) $f: \mathbb{R} \to \mathbb{R}$ -; $f = \sin$ fet.

$$(2) f: \mathbb{R} \backslash \{0\} \to \mathbb{R}$$

$$x\mapsto \frac{1}{x}$$

$$(3) g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \left\{ \begin{array}{ll} \frac{1}{x} & x \neq 0 \\ 2 & x = 0 \end{array} \right.$$

(4) f: V set of subspaces of V = S

$$v \mapsto \operatorname{span}(v)$$

(5)
$$D: P(\mathbb{R}) \to P(\mathbb{R})$$
 derivative

$$p(x) \mapsto p'(x) = p'$$