SANKARA GOMATHI.R.

240701470

Week-12-User-Defined Functions

Dashboard / My courses / GE23131-PUC-2024 / Week-12-User-Defined Functions

A binary number is a combination of 1s and 0s. Its nth least significant digit is the nth digit starting from the right starting with 1. Given a decimal number, convert it to binary and determine the value of the the 4th least significant digit.

Example

number = 23

- Convert the decimal number 23 to binary number: $23^{10} = 2^4 + 2^2 + 2^1 + 2^0 = (10111)_2$.
- The value of the 4th index from the right in the binary representation is 0.

Function Description

Complete the function fourthBit in the editor below.

fourthBit has the following parameter(s):

int number: a decimal integer

Returns:

int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number.

Constraints

 $0 \le \text{number} < 2^{31}$

Reset answer

```
2
    * Complete the 'fourthBit' function below.
 3
 4
    * The function is expected to return an INTEGER.
    * The function accepts INTEGER number as parameter.
 5
 6
 7
 8 int fourthBit(int n)
9 🔻 {
       int b[32];
10
       int i=0;
11
12
       while(n>0)
13 ₹
14
          b[i]=n%<mark>2</mark>;
15
          n/=2;
          i++;
16
17
       if(i>=4){
18 ₹
       return b[3];
19
       }
21
       else
22
       return 0;
23
24 }
```

	Test	Expected	Got	
~	<pre>printf("%d", fourthBit(32))</pre>	0	0	~
~	<pre>printf("%d", fourthBit(77))</pre>	1	1	~

Passed all tests! <

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the p^{th} element of the list, sorted ascending. If there is no p^{th} element, return 0.

Example

n = 20

p = 3

The factors of 20 in ascending order are $\{1, 2, 4, 5, 10, 20\}$. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

Function Description

Complete the function pthFactor in the editor below.

pthFactor has the following parameter(s):

int n: the integer whose factors are to be found

int p: the index of the factor to be returned

int: the long integer value of the pth integer factor of n or, if there is no factor at that index, then 0 is returned

Constraints

 $1 \le n \le 10^{15}$

 $1 \le p \le 10^9$

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The first line contains an integer n, the number to factor.

The second line contains an integer p, the 1-based index of the factor to return.

```
* Complete the 'pthFactor' function below.
2
3
4
    * The function is expected to return a LONG_INTEGER.
5
    * The function accepts following parameters:
6
    * 1. LONG_INTEGER n
    * 2. LONG_INTEGER p
7
8
9
10 long pthFactor(long n, long p)
11 * {
12
        int c=0;
        for(long i=1;i<=n;i++){</pre>
13 ₹
            if(n%i==0){
14 ₹
15
               c++;
16 🔻
                if(c==p){
17
                   return i;
18
19
            }
20
21
        return 0;
22 }
```

	Test	Expected	Got	
~	<pre>printf("%ld", pthFactor(10, 3))</pre>	5	5	~
~	<pre>printf("%ld", pthFactor(10, 5))</pre>	0	0	~
~	<pre>printf("%ld", pthFactor(1, 1))</pre>	1	1	~

Passed all tests! <