Математические методы анализа текстов

Нейросетевой машинный перевод. Архитектура Transformer

Мурат Апишев (mel-lain@yandex.ru)

Сентябрь, 2020

Задача машинного перевода

- ▶ Задача перевода массовая, её было бы здорово решать автоматически
- ▶ Идея машинного перевода зародилась ещё в 1947 году и к середине 60-х уже появились первые системы
- ▶ Несмотря на сложности, область развивается до сих пор, особенно сильный рост качества произошёл в последние годы
- ▶ Изначально задача решалась статистическими методами (IBM Model)
- ▶ В 2013 году появилась первая полностью нейросетевая модель, с 2016 нейросетевой машинный перевод (NMT) стал индустриальным стандартом
- Современный машинный перевод хорош в ситуациях, где тексты формализованы или же достаточно грубого перевода
- ▶ С художественной литературой до сих пор всё плохо

Оценка качества машинного перевода

- ▶ Экспертная оценка даём исходное предложение и перевод модели специалистам, просим оценить по шкале
 - ▶ Оценка очень точная
 - ▶ Получать её дорого и медленно
- Сравнение с правильным ответом на тестовом корпусе сравним полученный ответ с одним из возможных переводов
 - Оценка получается быстро (если есть готовый корпус)
 - ▶ Корпус размечать сложно, обычно тексты одного жанра, не содержать сленг и неологизмы
- Для автоматической оценки нужно уметь сравнивать две последовательности токенов

Метрика BLEU

- ► BLEU (bilingual evaluation understudy) метод сравнения автоматически переведённого предложения с «золотым стандартом»
- Рассмотрим на примере:

Правильный ответ: E-mail was sent on Tuesday

Ответ системы: The letter was sent on Tuesday

▶ Посчитаем для заданного N (обычно 3-4) число N-грамм в ответе системы, которые присутствуют в правильном ответе (аналог точности):

$$N=1\Rightarrow 4/6$$
 $N=2\Rightarrow 3/5$ $N=3\Rightarrow 2/4$ $N=4\Rightarrow 1/3$

ightharpoonup Теперь посчитаем среднее геометрическое по всем N:

score =
$$\sqrt[4]{4/6 \cdot 3/5 \cdot 2/4 \cdot 1/3}$$

Вместо подсчёта полноты вводится штраф за краткость (brevity penalty):

$$BP = \min(1, 6/5)$$

lacktriangle Итоговая значение метрики BLEU: $BP\cdot scorepprox 0.5081$

Метрика WER

- WER (word error rate) минимальное число операций, нужное для преобразования полученного перевода в правильный
- ▶ Допустимые операции: замена, вставка, удаление слова
- > Значение рассчитывается по формуле

$$\textit{WER} = \frac{\# \text{insetions} + \# \text{deletions} + \# \text{replacements}}{\# \text{words in translated sentence}}$$

- ▶ Особенности метрик BLEU и WER:
 - Легко считаются
 - ▶ Неплохо коррелируют с экспертными оценками
 - ▶ Оперируют короткими фрагментами, не оценивают общую корректность
 - ▶ Не позволяют оценить жанровую специфику
 - Не дифференцируемы

Задача seq2seq для машинного перевода

- $ightharpoonup {f x}_{source} = x_i, \ i \in [1, n], \ x_i \in V_{source}$ предложение на исходном языке
- ▶ $\mathbf{y}_{target} = y_i, i \in [1, m], y_i \in V_{target}$ предложение на целевом языке
- ▶ С параллельный обучающий корпус из пар предложений x, y
- Решается задача максимизации лог-правдоподобия модели с параметрами θ :

$$\mathcal{L}_{\theta} = \sum_{\mathbf{x}, \mathbf{y} \in \mathbf{C}} \log p(\mathbf{y}|\mathbf{x}; \theta) o \max_{\theta}$$

 Предсказываем последовательно каждый целевой токен перевода в зависимости от предыдущих:

$$p(\mathbf{y}|\mathbf{x};\theta) = \prod_{j=1}^{m} p(\mathbf{y}_{j}|\mathbf{y}_{< j},\mathbf{x};\theta)$$

Модель можно параметризовать нейронной сетью

Кодировщик-декодировщик

- Показывает хорошие результаты в задачах машинного перевода, суммаризации и генерации подписей к картинкам
- ightharpoonup Кодировщик получает на вход последовательность входных элементов $ightharpoonup_{source}$ и генерирует числовой вектор контекста h_n
- На базе этого вектора декодировщик генерирует выходную последовательность $\hat{\mathbf{y}}_{target}$
- ▶ Работа завершается после генерации завершающего токена (<EOS>)
- ▶ Функция потерь отрицательный логарифм правдоподобия (NLL Loss):

$$L(\mathbf{y}, \mathbf{\hat{y}}) = \sum_{j} y_{j} \log \hat{y}_{j}$$

Архитектуры кодировщика и декодировщика могут быть различными.

Кодировщик-декодировщик

- ► Можно обе сети взять рекурентными (RNN, LSTM, GRU)
- ightharpoonup Входные слова x_i кодируются эмбеддингами (word2vec или GloVe)
- Вход декодировщика: вектор итоговый скрытого состояния кодировщика и вектор старта фразы (выделенный или последний из входа)
- На каждом шаге передаётся вектор последнего сгенерированного токена и скрытое состояние декодировщика

Механизм внимания

- ightharpoonup Узким местом описанного подхода является вектор контекста h_n (итоговое состояние RNN-кодировщика)
- Очевидно, что последние слова входной фразы будут оказывать на него большее влияние, чем первые
- Это позволяет переводить только короткие фразы
- ▶ Одно из возможных решений механизм внимания (attention):
 - при ручном переводе слова в предложении мы смотрим не только на само слово, но и на релевантный контекст
 - в то же время, мы игнорируем те части предложения, которые к текущему переводимому слов не относятся
- ightharpoonup Кодировщик передаёт декодировщику не последнее значение своего вектора состояния h_n , а все $h_i,\ i\in[1,n]$
- Каждый вектор в наибольшей степени отражает влияние того слова, при обработке которого он был получен

Декодирование с вниманием

При генерации очередного слова декодировщик:

- lacktriangle получает на вход последний вектор своего состояния $h_{j-1},\ j\in [n+1,m]$ и вектор последнего сгенерированного слова (или метки старта) \hat{y}_{j-1}
- lacktriangle выдаёт новый вектор своего состояния h_j и выходной вектор

Декодирование с вниманием

При генерации очередного слова декодировщик:

- lacktriangle считает для каждого вектора состояния кодировщика $h_i,\ i\in [1,n]$ вес $lpha_i^j,$ отражающий его важность при генерации текущего j-го слова
- lacktriangle конкатенирует вектор $\sum_{i=1}^n lpha_i^j h_i$ с новым вектором своего состояния h_j

Декодирование с вниманием

При генерации очередного слова декодировщик:

- ▶ подаёт результат конкатенации в общую для модели полносвязную сеть
- lacktriangle результат проходит через Softmax и генерируется слово перевода y_j

Подсчёт весов внимания

▶ Вес α_{ij} вектора состояния кодировщика h_i при генерации слова j зависит от h_i и вектора скрытого состояния декодировщика h_j :

$$a_{ij} = \frac{\exp(\operatorname{sim}(h_i, h_j))}{\sum_k \exp(\operatorname{sim}(h_k, h_j))}$$

- ▶ Считать функцию близости sim можно по-разному:
 - Скалярное произведение:

$$sim(h_i, h_j) = h_i^T h_j$$

Аддитивное внимание:

$$sim(h_i, h_j) = w^T tanh(W_{h_i} h_i + W_{h_i} h_j)$$

Мультипликативное внимание:

$$sim(h_i, h_j) = h_i^T W h_j$$

 Параметры весовых функций (при их наличии) обучаются вместе с основной сетью

Вариации работы с вниманием

- ► Использовать внимание до RNN:
 - ▶ В примере RNN выдаёт текущее состояние, после чего используется внимание + полносвязная сеть
 - Можно вектор внимания посчитать до RNN на основе состояния с предыдущего шага и выходы RNN использовать напрямую
- Считать веса для внимания на основе разных векторов:
 - В примере «вектор декодировщика + векторы кодировщика»
 - Можно «вектор декодировщика + векторы входных слов»
- Изменять множество рассматриваемых векторов состояния кодировщика:
 - ► Global Attention как в примере, работаем на каждом шаге со всеми векторами (качественнее)
 - ► Local Attention предсказываем позицию слова и работаем с векторами из фиксированного окна (быстрее)

Архитектура Transformer

- До последнего времени основой для Seq2seq моделей служили рекурентные сети
- ▶ Основная проблема в их использовании большие затраты времени и вычислительных ресурсов на обучение
- ▶ В 2017 году была предложена архитектура Transformer, которая полностью откзаывается от рекурентных слоёв в кодировщике и декодировщике
- ▶ Вместо этого предлагается использовать новый тип слоя Multi-head self-attention, работающий исключительно на основе механизма внимания
- ▶ Transformer превзошёл имеющиеся на тот момент архитектуры на основе LSTM и GRU как по качеству решения (в т.ч. и в переводе), так и по скорости обучения

- ▶ По указанной ссылке находится одно из наиболее подробных и доступных объяснений Transformer, будем следовать ему
- Верхнеуровнево это всё тот же кодировщик-декодировщик

- Кодировщик и декодировщик состоят из своих наборов одинаковых блоков, блоки стекаются друг за другом
- ▶ В оригинальной статье блоков б, но это не принципиально
- ▶ Веса у каждого блока свои (т.е. неразделяемые)

- ▶ Первый слой кодировщика self-attention, который кодирует каждое слово последовательности с учётом остальных (рассмотрим далее)
- ➤ Затем выход self-attention для каждого элемента последовательности проходит через одну и ту же полносвязную сеть
- Декодер дополнительно к этим слоям имеет слой обычного внимания для работы с последовательностью выходов кодировщика

- ► На вход первого кодировщика приходят эмбеддинги слов, остальные получают выходы предшественников
- Слова последовательности обрабатываются взаимнозависимо в слое self-attention и независимо в полносвязном, всё параллелится

Слой self-attention

- ▶ Для каждого входного вектора считаются три новых: Key, Value и Query
- ▶ Матрицы преобразований обучаются вместе с сетью

Слой self-attention

- Как и в обычном внимания, нужно сгенерировать вектор для слова с учётом всей последовательности
- Обработка текущего слова:
 - Query для текущего слова скалярно умножаем на векторы Кеу всех входных слов, получаем веса
 - делим все веса на некоторую константу (для стабильности градиентов), пропускаем через Softmax
 - складываем все векторы
 Value с полученными весами
 получаем итоговый вектор
 для слова в контексте
 последовательности

Self-attention в матричном виде

Multi-head self-attention

 Идея: для каждого слова вычислять параллельно сразу несколько векторов self-attention

Multi-head self-attention

- Эксперименты показывают, что матрицы весов, инициализированные по-разному, выделяют различные аспекты слова в последовательности
- ▶ На выходе получается несколько матриц векторов для одной входной последовательности токенов
- ightharpoonup Перед подачей в полносвязную сеть они конкатенируются и умножаются на промежуточную весовую матрицу (W_0) для сохранения размерности

Общая схема Multi-head self-attention

На входе первого слоя эмбеддинги X, далее — предыдущие выходы R

Positional encoding

- ▶ Позиционное кодирование (positional encoding) способ передачи информации о взаимном расстоянии между словами в последовательности через их векторные представления
- Для этого к вектору слова прибавляется вектор из набора значений синусов и косинусов с разными периодами от номера позиции слова в последовательности

Детали устройства кодировщика

- ▶ Для борьбы с затуханием градиента добавляются residual connections
- ► Для регуляризации используется Layer normalization

Сеть-декодировщик

- Сеть-декодировщик состоит из последовательных блоков-декодировщиков
- Выходы последнего кодировщика преобразовываются обучаемыми весовыми матрицами в набор матриц Key и Value
- Эти матрицы передаются в каждый из блоков-декодировщиков

Блок-декодировщик

- Блок декодирования похож на блок кодирования
- В начале его идёт слой self-attention, на входе
 токены генерируемой последовательности
 - При обучении используется teacher forcing — на вход подаётся вся правильная целевая последовательность
 - При выводе подаются уже сгенерированные ранее токены
- При обучении токены, которые при генерации текущего токена ещё неизвестны, маскируются
- Они не участвуют в self-attention для текущего токена

Блок-декодировщик

- ▶ Выходы первого слоя Multi-head self-attention идут во второй Encoder-Decoder Attention
- Он соединяет информацию от первого слоя и кодировщика
 - Выходы кодировщика набор матриц
 Key и Value
 - Выхода первого слоя блока декодировщика — матрица Query
- Снова используется Multi-head self-attention, выходы слоя подаются в полносвязный слой
- На выходе блока набор векторов, соответствующих токенам входной последовательности

Сеть-декодировщик

- Последний блок выдал векторы
- ▶ При обучении:
 - каждый из них пропускается через полносвязный слой и Softmax
 - все векторы обрабатываются одновременно
 - максимизируется вероятность ожидаемого слова
- При выводе:
 - всё в декодировщике считается только вектора предсказываемого токена
 - предсказание можно делать с помощью argmax, Beam Search или сэмплирования

Проблема OOV-слов

- ▶ Softmax на последнем слое существенное ограничение
- Добавление нового генерируемого слова требует полного переобучения последнего полносвязного слоя
- Можно добавить специальный токен <UNK> для незнакомых слов и переводить их по обычному словарю
- Можно строить модели не на словах, а на уровне символов или символьных последовательностей
- Архитектура модели не меняется, предсказываются фрагменты слов с символом/токеном конца слова
- Символьных последовательностей может быть очень много, один из методов сокращения их числа — Byte-pair encoding (BPE)

Byte-pair encoding

- Предварительно текст разбивается на токены-слова
- ▶ Далее каждое слово разбивается на символы, общее число уникальных символов — базовый словарь
- Выполняется N операций слияния, на каждом шаге наиболее частая пара токенов-фрагментов (символов или их последовательностей) сливается в один
- Число N позволяет контролировать объём итогового словаря
- Векторные представления фрагментов можно предобучать заранее, обычно они обучаются вместе с моделью
- ▶ Для того, чтобы работать со всеми символами из unicode без использования огромного словаря применяется Byte-level BPE

Warm-up learning rate

- Одна из частых проблем при обучении Transformer расхождение (divergence): кривая обучения нормально растёт, но в некоторый момент резко падает в ноль и не больше поднимается
- ▶ Для борьбы с этим обычно применяется warm-up learning rate:
 - ► на первых батчах используется небольшой lr
 - ▶ затем он линейно растёт заданное число батчей (warm-up period)
 - с некоторого момента Ir начинает убывать

Методы борьбы с расхождением

▶ Более длинный (warm-up period) повышает шансы избежать расхождения

- ► При этом расширяется диапазон используемых значений learning rate, что ускоряет сходимость модели
- ► Если расхождение всё равно происходит, стоит уменьшать learning rate
- ► Ещё вариант gradient clipping и/или gradient scaling

Влияние частоты обновления весов

- Между шагами обновления весов модели должно быть обработано достаточно обучающих примеров
- ▶ Иначе для моделей поменьше ухудшится сходимость:

Влияние частоты обновления весов

- Между шагами обновления весов модели должно быть обработано достаточно обучающих примеров
- ▶ Иначе для больших моделей может произойти расхождение:

► Если расхождения у большой модели не произошло, то дальнейший рост числа объектов между обновлениями несущественен

Влияние длин предложений

- ▶ Максимальную длину предложений в батчах стоит брать побольше
- ▶ Иначе модель будет хуже:

▶ Кроме того, она не сможет генерировать длинные переводы

Усреднение чекпойнтов

- Большой Transformer обучается долго (дни, недели), полезно периодически сохранять состояние модели
- Если вместо последней версии модели взять усреднение весов нескольких последних версий, можно бесплатно получить небольшое улучшение качества:

Неавторегрессионный машинный перевод

▶ До сих пор рассматривался авторегрессионный подход — генерация текущего токена зависит от предыдущих:

$$p(\mathbf{y}|\mathbf{x};\theta) = \prod_{j=1}^{m} p(\mathbf{y}_{j}|\mathbf{y}_{< j},\mathbf{x};\theta)$$

- Неавторегрессионный перевод предполагает параллельную генерацию всех токенов целевой последовательности
- ▶ Наивный вариант убрать из модели зависимости между токенами:

$$p(\mathbf{y}|\mathbf{x};\theta) = p(m|\mathbf{x};\theta) \prod_{j=1}^{m} p(\mathbf{y}_{j}|\mathbf{x};\theta)$$

 Работать будет плохо: перевод фразы несколькими переводчиками по одному слову независимо друг от друга

Non-Autoregressive Transformer

- ▶ В основе модель Transformer, сеть-кодировщик остаётся без изменений
- Сеть декодировщик получает на вход исходную последовательность
- Но число выходов должно быть равно числу входов
- ▶ Сопоставим каждому токену входной последовательности целое число fertility
 - скольки токенам выходной последовательности он должен соответствовать
- Будем предсказывать эти числа на выходе кодировщика
- Каждый токен исходной последовательности будем подавать на вход декодеровщика N раз (его значение fertility)
- ▶ В блок-декодировщика между двумя слоями self-attention добавляется + один:
 - ▶ Value выходы первого слоя внимания
 - ► Key и Query позиционные эмбеддинги входной последовательности
- ▶ Обычного маскирования нет, но есть маскирование токена от самого себя

Non-Autoregressive Transformer

Данные для машинного перевода

- Обычно данные для NMT представляют собой наборы пар фрагментов на разных языках:
 - пары предложений-переводов с выравниванием по словам
 - просто пары предложений-переводов
 - пары абзацев/документов-переводов
- ▶ Примеры популярных мультиязычных корпусов (parallel corpus):
 - ► Europarl: параллельные предложения на 21 языке
 - ▶ Wikipedia: параллельные предложения на 20 языках
 - ▶ Global Voices: параллельные тексты на 57 языках
- ▶ На самом деле их много, в том числе для локальных языков

Машинный перевод без учителя

- ▶ Параллельные данные можно сгенерировать, для этого нужны:
 - Алгоритм перевода между парой языков для некоторого числа популярных слов
 - Языковая модель для целевого языка
 - Векторные представления слов для обоих языков

Основная идея:

- Составляем автоматический словарь между двумя языками
- Для исходной реплики генерируем варианты переводов по токенам.
- С помощью языковой модели выбираем наиболее вероятный перевод на целевом языке
- Почему словарь автоматический, а не статический:
 - ▶ Большой словарь для произвольной пары языков сложно построить
 - Его сложно держать в полностью актуальном состоянии
 - Он неустойчив к опечаткам или небольшим изменениям форм слов

Построение автоматического словаря

Обучаются поворот пространства векторов слов целевого языка и его наложение на пространство векторов исходного языка:

- Построение векторных пространств отдельно для обоих языков
- ▶ Выбор опорных точек пар слов с известным переводом
- ▶ Поворот и растяжение пространства для совпадения опорных точек
- ▶ Растяжение плотных областей вокруг частых слов

Итоги занятия

- ▶ Машинный перевод одна из флагманских задач обработки текстов, многие сильные методы NLP появились в процессе её решения
- ► Текущим стандартом является архитектура seq2seq на основе рекурентных сетей или Transformer
- Качество работы с длинными последовательностями существенно растёт при использовании механизмов внимания
- ▶ Модель Transformer основана на новом типе слоя Multi-head self-attention, который является развитием механизма внимания
- Transformer сейчас одна из наиболее сильных и универсальных моделей, но обучается сложно, важны технические детали
- ▶ Перевод может авторегрессионным и неавторегрессионым, второй быстрее при выводе, модели в обоих случаях похожи
- Для обучения нужны параллельные корпуса, иногда их можно генерировать автоматическими методами