київський національний університет ІМЕНІ ТАРАСА ШЕВЧЕНКА

	фізичний факультет	
	(назва факультету, інституту)	
Кафедра квантової теорії	поля космомікрофізики	
	Заслучіних декана з фа	вчальної роботи В. Момот 28 2022 року
	ЛІНІЙНА ФІЗИКА ТА СИНЕРГЕТИК	
	(повна назва навчальної дисципліни)	
	для студентів	
галузь знань	10 Природничі науки (шифр і назва)	
спеціальність	104 Фізика та астрономія	
освітній рівень	(шифр і назва спеціальності) МАГІСТР	
осытни рівень	(молодший бакалавр, бакалавр, магістр)	
освітні програми	ва попа, фізика високих енергій, ядер	<u>на</u>
<u>enepreti</u>		
вид дисципліни	обов"язкова	
	Форма навчання	денна
	Навчальний рік	2022/2023
	Семестр	1
	Кількість кредитів ECTS	3
	Мова викладання, навчання та оцінювання	українська
	Форма заключного контролю	залік
	Олександр Ілліч говано: на 20 /20 н.р. ()
Пролоні	овано: на 20_/20_ н.р	_) «»20p.

Розробники:

Якименко Олександр Ілліч, доктор фізико-математичних наук, доцент кафедри квантової теорії поля та космомікрофізики

ЗАТВЕРДЖЕНО	
Зав. кафедри квантової теорії поля	T
космомікрофізики	
(Вільчинський С.Й.) (прізвище та ініціали)	
Протокол № 17 від «27» <u>травня</u> 2022 р.	
ЗАТВЕРДЖЕНО	
Зав. кафедри ядерної фізики	
(Каденко І.М.) (прізвище та ініціали)	
Протокол № 14 від «ОЗ» червня 2022 р	

Схвалено науково - методичною комісією фізичного факультету

Протокол від «10»червня	2022 року № 11	
Голова науково-методичної комісії	apple -	(Оліх О.Я)
	(підпис)	(прізвище та ініціали)

- **1. Мета** дисципліни оволодіння сучасними методами нелінійної теоретичної фізики, ознайомлення з основними поняттями синергетики, як міждисциплінарної науки.
- 2. Попередні вимоги до опанування або вибору навчальної дисципліни (за наявності):
 - 1. **Знати** основні принципи статистичної фізики, термодинаміки, класичної механіки та фізичної кінетики.
 - 2. **Вміти** розв'язувати задачі з теорії диференціальних рівнянь в звичайних та частинних похідних, теорії стійкості динамічних систем, квантової механіки та класичної механіки.
 - 3. **Володіти навичками** пошуку та опрацювання спеціалізованої літератури, розв'язку алгебраїчних і диференційних рівнянь, роботи з інтерактивними і мультимедійними засобами, взаємодії з колегами під час навчання.
- **3. Анотація навчальної дисципліни**: В рамках курсу «Нелінійна фізика та синергетика» викладаються основи сучасної теорії складних нелінійних, відкритих, термодинамічно-нерівноважних систем.
- **4. Завдання (навчальні цілі)** основними завданнями вивчення дисципліни «Нелінійна фізика та синергетика» є сприяння розвитку логічного й аналітичного мислення студентів, оволодіння основними методами досліджень нелінійних систем в різних фізичних системах, вивчення необхідних теоретичними положень і методів дослідження таких систем, формування знань та застосування властивостей основних понять курсу для розв'язування практичних задач.

Згідно освітньо-наукових програм «Квантова теорія поля», «Фізика високих енергій», «Ядерна енергетика» дисципліна забезпечує набуття здобувачами освіти наступних компетентностей:

загальних

- Здатність виявляти, ставити та вирішувати проблеми. (ЗК06)
- Знання та розуміння предметної області та розуміння професійної діяльності. (ЗК02)
- Здатність до пошуку, оброблення та аналізу інформації з різних джерел. (ЗКОЗ)
- Здатність вчитися і оволодівати сучасними знаннями. (ЗКО4)
- Здатність використовувати інформаційні та комунікаційні технології. (ЗК05)
- Здатність використовувати основні методи програмування та моделювання у фізиці. (ЗК08) фахових:
- Здатність використовувати закони та принципи фізики та/або астрономії у поєднанні із потрібними математичними інструментами для опису природних явищ (СК01).
- Здатність складати уявлення про сучасні методи досліджень у квантовій теорії поля, теоретичній ядерній фізиці. (СК10).
- Здатність формулювати, аналізувати та синтезувати рішення наукових проблем в області фізики та астрономії. (СК02)
- Здатність організовувати освітній процес та проводити практичні та лабораторні заняття з фізичних навчальних дисциплін в закладах вищої освіти. (СК07)

5. Результати навчання за дисципліною:

Код	Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність) Результат навчання	Форми (та/або методи і технології) викладання і навчання	Методи оцінювання та пороговий критерій оцінювання (за необхідності)	Відсоток у підсумкові й оцінці з дисциплін и
			пеослідності	

1.1	основні методи дослідження нелінійних динамічних систем	лекціїсамостійна робота	доповідімодульний контроль (колоквіум)	14
1.2	властивості автоколивальних систем та умови існування та виникнення автохвиль в нерівноважних системах		• контроль виконання домашніх завдань • залікова робота	13
1.3	роль стохастичних процесів на поведінку динамічних систем			13
			Загалом:	40
		2. Вміти		
2.1	досліджувати стійкість динамічних систем	лекціїсамостійна робота	доповідімодульний контроль (колоквіум)	13
2.2	застосовувати сучасні методи дослідження для розв'язання практичних задач в нелінійній фізиці		• контроль виконання домашніх завдань	14
2.3	набути навичок самостійного використання і вивчення літератури в нелінійній фізиці та синергетиці.		• залікова робота	13
			Загалом:	40
	3. 1	Комунікація		
3.1	здатність бути активним учасником дискусій з концентруванням уваги на значущих складових судження	лекціїсамостійна робота	доповідімодульний контроль	3
3.2	презентувати результати самостійної роботи у форматі усних та/або письмових повідомлень із/без використання наочних засобів		(колоквіум)• контроль виконання домашніх завдань• залікова робота	4
3.3	бути толерантним щодо інших впродовж вербальної взаємодії		,	3
			Загалом:	10
	4. Автономніс	сть та відпові	дальність	
4.1	самостійно опрацьовувати, упорядковувати та оцінювати інформацію з різних джерел	лекціїсамостійна робота	доповідімодульний контроль	4
4.2	застосовувати отримані знання в наукових дослідженнях		(колоквіум) • контроль виконання	3
4.3	демонструвати вміння працювати в колективі та самостійно		домашніх завдань • залікова робота	3

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання за ОНП «Квантова теорія поля», «Фізика високих енергій», «Ядерна енергетика»

Результати навчання дисципліни Програмні			1			2		3			4		
результати навчання		2	3	1	2	3		1	2	3	1	2	3
РН01. Використовувати концептуальні та спеціалізовані знання і розуміння актуальних проблем і досягнень обраних напрямів сучасної теоретичної і експериментальної фізики та/або астрономії для розв'язання складних задач і практичних проблем.	+	+	+										
РН17. Застосовувати сучасні методи дослідження для розв'язування практичних задач в нелінійній фізиці та фізиці систем багатьох частинок.	+	+	+	+	+	+							
РН03.Застосовувати сучасні теорії наукового менеджменту та ділового адміністрування для організації наукових та прикладних досліджень в області фізики та астрономії.											+	+	+
РН04.Вибирати та використовувати відповідні методи обробки та аналізу даних в фізичних та астрономічних дослідженнях і оцінювання їх достовірності.				+	+	+							
РН06.Обирати ефективні математичні методи та інформаційні технології та застосовувати їх для здійснення досліджень та/або інновацій в області фізики та астрономії.	+	+	+	+	+	+							
PH16.Брати продуктивну участь у виконанні експериментальних та теоретичних досліджень в області фізики та астрономії.	+	+	+										
PH19. Вміти визначати метод розрахунку, необхідний для розв'язку конкретної наукової проблеми в області фізики високих енергій.				+	+	+							
РН07. Оцінювати новизну та достовірність наукових результатів з обраного напряму фізики та астрономії, оприлюднених у формі публікацій чи усної доповіді.											+	+	+
РН08.Презентувати результати досліджень у формі доповідей на семінарах, конференціях тощо, здійснювати професійний письмовий опис наукового дослідження, враховуючи вимоги, мету та цільову аудиторію.											+	+	+
PH11.Застосовувати теорії, принципи і методи фізики та астрономії для розв'язання складних міждисциплінарних наукових і прикладних задач.	+	+	+	+	+	+							

РН14.Розробляти та викладати фізичні навчальні дисципліни у закладах вищої, фахової передвищої, професійної (професійно-технічної), загальної середньої та позашкільної освіти, застосовувати сучасні освітні технології та методики, здійснювати необхідну консультативну та методичну підтримку здобувачів освіти.									+	+	+	+	+	+
РН15.Планувати наукові дослідження з урахуванням цілей та обмежень, обирати ефективні методи дослідження, робити обґрунтовані висновки за результатами дослідження.												+	+	+
РН19. Застосовувати фізичні моделі та прийоми аналізу достовірності фізичних моделей для розв'язання прикладних задач в області ядерної енергетики;	+	+	+		+	+	+							

7. Схема формування оцінки.

Контроль знань здійснюється за системою ECTS, яка передбачає дворівневе оцінювання засвоєного матеріалу, зокрема:

• оцінювання теоретичної підготовки

(результати навчання: **знати** 1.1 - 1.6), що складає 40% від загальної оцінки;

оцінювання вмінь працювати з науковою літературою за темою спецкурсу

(результати навчання: **вміти** 2.1-2.6; **комунікація** 3.1-3.6; **автономність та відповідальність** 4.1-4.6), що складає 60% загальної оцінки.

7.1 Форми оцінювання студентів:

- **семестрове оцінювання** розмежоване поміж практичними заняттями, лекційними заняттями, самостійною роботою. Загалом форми викладання і навчання проводяться у форматі усних та письмових завдань, обов'язкову кількість яких оцінюють різною кількістю балів:
- min— найменша кількість балів (їх отримання є свідченням, що студент приділив недостатньо уваги окремому завданню)
- max— висока кількість балів (їх отримання є свідченням, що студент приділив достатньо уваги та самоорганізації для опрацювання теми)

Форми викладання і	Форми контролю	Результати	Кількіст	ь балів
навчання		навчання	min	max
Доповіді з оглядом	Доповідь 1	1.1-1.5 2.1-2.5	8	15
наукової літератури	укової літератури Доповідь 2 2.1-2.5 3.1-3.3			

	Доповідь 3	4.1-4.3			
		1.1-1.5	9	30	
Лекційні заняття	Модульний контроль	2.1-2.5			
лекцині заняття	(колоквіум)	3.1-3.3			
		4.1-4.3			
		1.1-1.5	7	15	
	Контроль виконання	2.1-2.5			
Самостійна робота	домашніх завдань	3.1-3.3			
		4.1-4.3			
	Загалом за роботу у семестрі				

- **-відпрацювання пропусків** практичних занять, всі пропуски студентом без поважної причини повинні бути відпрацьовані.
- **-допуском** студента до підсумкового оцінювання є виконання обов'язкових самостійних завдань, відпрацювання пропусків практичних занять та набирання мінімальної (24) кількості балів.
- підсумкове оцінювання у формі заліку здійснюється у формі письмового заліку . Завдання на залік включають три теоретичних питання і три практичних. Загальна кількість балів за залікову роботу складає 40 балів (5+5+5+10+10).

7.2 Організація оцінювання:

Форма	Форми		Графік оцінь	овання
оцінюва ння	викладання і навчання	Форми контролю	Конкретизований	загальний
		Доповідь 1	Після теми 1, 5	
	Доповідь	Доповідь 2	Після теми 2, 6	
		Доповідь 3		Впродовж
Ва Семестро	Лекційні заняття	Модульний контроль (колоквіум)	В кінці жовтня	теоретичного навчання у
	Самостійна Контроль виконання робота домашніх завдань	В рамках теоретичного навчання, до початку семестрового контролю	семестрі	
Підсумк ова	Письмова робота	Залікова робота	Залежно від графіку навчання	Впродовж семестрового контролю

7.3 Шкала відповідності оцінок

Відмінно / Excellent	90-100
Добре / Good	75-89
Задовільно / Satisfactory	60-74
Незадовільно / Fail	0-59
Зараховано / Passed	60-100
Незараховано / Fail	0-59

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ І СЕМІНАРСЬКИХ ЗАНЯТЬ

No	W***	Кіл	ькість годі	И Н					
п/п	Назва лекції	лекції	семінари	C/P					
	Змістовий модуль 1 Математичні методи та основні нелінійні моделі								
1	Вступ.	2		4					
2	Математичні аспекти нелініної теорії	2		4					
3	Статичні нестійкості	2		4					
4	Стійкість динамічних систем	2		4					
5	Автоколивальні процеси	2		4					
6	Хаос в динамічних системах	2		4					
7	Поняття про турбулентність	2		4					
	Модульна контрольна робота 1								
	Змістовий модуль 2 Класичні та сучасні проблеми нелін	ійної фіз	зики						
8	Структури у відкритих системах	2		4					
9	Нелінійні хвильові процеси	2		4					
10	Ударні хвилі	2		4					
11	Автохвильові процеси	4		8					
12	Елементи теорії солітонів	2		4					
13	Нелінійні моделі в КТП	2		4					
14	Класичні задачі нелінійної науки	2		4					
	Підсумкова модульна контрольна робота								
	ВСЬОГО	30		60					

Загальний обсяг $_{\underline{90}}$ год. l , в тому числі:

Лекцій — <u>__30_</u> год.

Семінари – $\underline{\mathbf{0}}$ год.

Самостійна робота - _60_ год.

¹ Загальна кількість годин, відведених на дану дисципліну згідно навчального плану.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА:

Основна

- 1. Сугаков В.Й.. Основи синергетики (2001), Київ: Обереги
- 2. Хакен Г. Синергетика, -М. 1980
- 3. Заславский Г.М., Сагдеев Р.З. Введение в нелинейную физику: от маятника до турбулентности и хаоса, -М. 1988

Додаткова

- 4. Лоскутов А.Ю., Михайлов А.С. Введение в синергетику.- М., 1990.
- 5. Додд Р., Эйлбек Дж., Гиббон Дж. Солитоны и нелинейные волновые уравнения, М. 1988
- 6. Пригожин И. От существующего к возникающему. Время и сложность в физических науках, -М. 2006

Питання на залік

- 1. Сформулювати теорему Ляпунова.
- 2. Записати нелінійне рівняння Шрьодінгера. Які фізичні системи воно описує?
- 3. Знайти солітонний розв'язок рівняння КдВ.
- 4. Знайти солітонний розв'язок нелінійного рівняння Шрьодінгера.
- 5. Що описує модель Лорентца? Що таке дивний аттрактор.
- 6. Що таке дисипативна система?
- 7. За яких умов можуть автохвилі? В чому відмінність автохвиль від звичайних хвиль?
- 8. Що таке солітон?
- 9. Які рівняння називають інтегрованими?
- 10. Записати перші три інтеграли руху для рівняння КдВ. Скільки всього існує інтегралів руху у рівняння КдВ.
- 11. Як пов'язані кількість інтегралів руху у нелінійного рівняння і його інтегровність.
- 12. Наведіть приклад інтегровного рівняння з двома просторовими змінними.
- 13. В яких системах можуть існувати хвилі з від'ємною енергією?
- 14. Що таке вибухова нестійкість? Наведіть механізми, що можуть стабілізувати вибухову нестійкість.
- 15. Наведіть приклади нелінійні квантово-польові моделі.
- 16. Дайте означення інстантона.