第4章 整数规划

4.1 问题的提出

实际中很多问题的优化是用线性规划解决的,除特殊要求,其最优解非负即可,对某些问题,最优解必须加整数要求。例如运货派出的车数,购买机器的台数,分配工作需要的人数等。为整数要求的线性规划,称为整数规划(Integer Programming),简称IP。IP的所有变量都要求是整数的,成为全整数规划(AII Integer Programming),要求变量非 0 即 1 的,称为 0—1 规划(0—1 Programming),下面就是一个整数规划的例子。

例 4.1 某公司承建一项工程需要大型设备,有两种型号可供选择,若选用第一种类型,需配备司机一人,助手一人,施工一个小时可获利润 20 元,若选用第二种类型,需配备司机一人,助手三人,施工一个小时可获利润 30 元。该公司可驾驶这类大型设备的司机最多只能抽调五人,合适的助手只有六人。为了获得最大利润,应该怎样选用大型设备?

设:选用 " A " 型设备 x_1 台,选用 " B " 型设备 x_2 台,最优化模型为(含去名数):

对例 1, 若去掉整数要求, 是一个典型的线性规划问题。其最优解是(图 4-1 的 B

点):

$$x_1 = 4\frac{1}{2}, x_2 = \frac{1}{2} \max z = 105$$

初看起来,这个最优解可以简单地舍入取得整数解,满足整数约束,即 $x_1 = 5, x_2 = 1$ (或 $x_1 = 4, x_2 = 0$)由图 4-1 知,它不是可行解,更谈不上最优解,这种方法不可取。

那么,有约束条件(1)、(2)知,为保证解的可行性,必须使 $x_1 \le 5, x_2 \le 2$,则 x_1 的取值可以是 0,1,2,3,4,5,共计六个, x_2 的取值有 0,1,2,共计三个。所以,该问题的整数解共有 $3 \times 6 = 18$ 个,在它们中找处所有可行解,(由图 4-1,可行域内除 B 点以外的其它 11 个"点"都是整数可行解),分别代入目标函数, Z 值最大所对应的解,就是 IP 的最优解(D 点 $x_1 = 3, x_2 = 1, \max z = 90$)。

对于小型问题,变量很少,可行的整数解组合不太多,这种枚举的方法是可行的,也是有效的。对于大型问题,可行的整数解是很多的,不宜采用此方法。例如指派问题,其 n=10 时,指派方案就有10!个,超过300万,若用枚举法,一开始就失去了优化原则。

4.2 分枝定界法

分枝定界法(Branch and Bound Methed)是由 Land 和 Doig 提出修正的,可用于全部整数规划和部分整数规划。它首先求得相应的 LP 整数解(最优值 z_0),若有变量不合整数约束要求,就任选其一,设 $x_K = b_K + f_K$ (其中为 b_K 整数, f_K 为小数部分),把原问题(可行域)分为两个分枝,既 $x_K \le b_K$ 和 $x_K \ge b_K + 1$,然后解分枝问题,若得到满足约束的整数解,解题就到此为止。对极大化问题而言,其最优值 Z 以 Z^0 为上界。若仍未得到合于整数要求的解,就对分枝继续分解,直到求得最优整数解。

例 4.2 求:

$$\max Z = 2x_1 + x_2$$

$$\begin{cases} x_1 + x_2 \le 5 \\ -x_1 + 3x_2 \le 0 \end{cases}$$
 $6x_1 + 2x_2 \le 21$ $x_1, x_2 \ge 0$, 且为整数

不考虑整数约束,解相应 LP 得最优解表(表 4-1):

表 4-1

C_{j}			2	1	0	0	0
	基底	b	X_1	x_2	X_3	X_4	X_5
	x_2	$\frac{9}{4}$	0	1	$\frac{3}{2}$	0	$-\frac{1}{4}$
	X_4	$\frac{1}{2}$	0	0	-2	1	$\frac{1}{2}$
	\mathcal{X}_1	$\frac{11}{4}$	1	0	$-\frac{1}{2}$	0	$\frac{1}{4}$
$C_j - Z_j$		$7\frac{3}{4}$	0	0	$-\frac{1}{2}$	0	$-\frac{1}{4}$

最优解对应于图 4-2 的 B 点,它不满足整数约束要求,选 x_1 ,使 $x_1 \le 2\pi x_2 \ge 3$,把可行域 R_1 分为两个部分 $R_{2(1)}$ 及 $R_{2(2)}$,原问题就被分为两个分枝,舍去了 $2 \prec x_1 \prec 3$ 不合整数约束的部分(见图 4-3),第一个分枝(即 $R_{2(1)}$)增加新约束 $x_1 \le 2$ 为 $\frac{1}{2}x_3 - \frac{1}{4}x_5 \le -\frac{3}{4}$ 图中第二分枝(即 $R_{2(2)}$)增加新约束 $x_1 \ge 3$ 为 $-\frac{1}{2}x_3 + \frac{1}{4}x_5 \le -\frac{1}{4}$,新约束加入松弛变量 x_6 (或 x_7)后,分别列入原问题的最优解表,利用对偶单纯形法,求得最优解:

第二分枝 (2(2)) 不合整数约束要求,需继续分解。把分枝 (2(2)) (即 $R_{2(2)}$)分为两部分,即 $x_2 \le 1$,和 $x_2 \ge 2$,显然, $x_2 \ge 2$ 分枝无可行解, $x_2 \le 1$ 的分枝最优解是: max $Z = 7\frac{1}{3}$, $x_1 = 3\frac{1}{6}$, $x_2 = 1$ 仍不合整数要求。以后的分枝及最优解见分枝树,图 4-4。

分枝树的第四层得到原问题的整数最优解:

$$x_1 = 3, x_2 = 1, \max Z = 7$$

现在回头讨论一下,在分枝 2(1) 得到整数解后,为什么还要对分枝 (2(2)) 继续分解?因为分枝 (2(2)) 的新分枝 (3(1)) ,其最优值 (对极大化)的上界是 $7\frac{1}{2}$,大于分枝 (2(2)) 的最优值 6,则新分枝 (3(1)) 的最优值有可能大于 6,所以要对分枝 (2(2)) 继续分解。事实上,分枝树已经给出答案。假设分枝 (2(2)) 的值不是 $7\frac{1}{2}$,而是 6 或者更小,则新分枝的最优值决不会大于 6,那么就要舍去分枝 (2(2)) ,不再对其进行分解工作。

图 4-4 分枝树

4.3 割平面法

割平面法(又称 Gomory 法)的基本思想,是新增加一些线性(不等式)约束条件,称为割平面,去"切割"相应的 LP 可行域,并使切掉部分都是非整数解,所有整数解被保留下来。当这种割平面足够多时,使相应的 LP(被保留下来的可行域)和原 IP 具有相同的最优解。那么,相应 LP 的最优解也就是原 IP 的最优解。

4.3.1 全部整数型运算方法

例 4.3

$$\sum_{s.t} \max Z = 6x_1 + 4x_2$$

$$\sum_{s.t} \begin{cases} 2x_1 + 4x_2 \le 13 \\ \frac{1}{3}x_1 + \frac{1}{6}x_2 \le 1\frac{1}{6} \\ x_1, x_2 \ge 0 \\ x_1, x_2, 为整数 \end{cases}$$

首先,将该问题的限制条件予以整数化,并加松弛变量。

$$\max Z = 6x_1 + 4x_2$$
 (5)

$$2x_1 + 4x_2 + x_3 = 13$$
 (1)

$$2x_1 + x_2 = 7$$
 (2)

$$x_j \ge 0, j = 1, 2, 3, 4$$
 (3)

$$x_j$$
 整数 (4)

不考虑整数约束(4),用单纯形方法求解相应LP得最优解表(见表4-2)。

表 4-2 C_{i} 0 6 4 0 $C_{\scriptscriptstyle B}$ $X_{\scriptscriptstyle B}$ x_1 x_2 $-\frac{1}{3}$ $\frac{2}{3}$ $-2\frac{2}{3}$ 4 X_2 0 1 6 $C_j - Z_j$

 x_1 不合整数要求,于是找(第一个)割平面(即考虑整数要求),由表得:

$$x_1 = 2\frac{1}{2} + \frac{1}{6}x_3 - \frac{2}{3}x_4$$
 为整数

使各系数均为正,有:

$$\frac{1}{2} + \frac{1}{6}x_3 + \frac{1}{3}x_4$$

是整数,因为所有变量均为整数,则上式至少是一,则有:

$$\frac{1}{2} + \frac{1}{6}x_3 + \frac{1}{3}x_4 \ge 1 \tag{6}$$

即
$$x_3 + 2x_4 \ge 3$$

(6) 即为切割方程,其通式为: $f_j + \sum_{\kappa} f_{j\kappa} x_{\kappa} \ge 1$

其等式形式就是割平面,为了在图上表示,由约束(1)(2)可以把(6)变为

$$x_1 + x_2 \le 4$$
 (7)

(7) 是切割方程的另一种表现形式,割平面就表示为: $x_1 + x_2 = 4$

它就是图 4-5 所表示的 EF 直线。直观地看,它割去了(除 EF 直线上的所有点)

 ΔEFB 部分: $x_1 + x_2 > 4$

其中不含整数(坐标)点。留下部分是: $x_1 + x_2 \le 4$

即多边形 OAEFC , 从图 4-5 看 , 所有整数 (坐标) 点都保留下来了。

图 4-5

把切割方程作为新约束条件加入原问题,变为:

$$\max Z = 6x_1 + 4x_2$$

$$\begin{cases} 2x_1 + 4x_2 \le 13 \\ 2x_1 + x_2 \le 7 \\ x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0 \\ x_1, x_2$$
为整数

按上述步骤,解相应 LP 得最优解: $x_1=3,x_2=1$, $x_3=3,x_4=x_5=0$ $\max Z=22$ 。 实际上就是 F 点。因为它已经满足整数约束,所以就是原 IP 的最优解。 割平面方程的另一种表达方法也是常用的,再经此法求解例 3 :

由表 4-2 知 , x_1 不满足整数约束 , 则

$$x_1 - \frac{1}{6}x_3 + \frac{2}{3}x_4 = 2\frac{1}{2}$$
 变为
$$(1+0)x_1 - \left(1 - \frac{5}{6}\right)x_3 + \left(0 + \frac{2}{3}\right)x_4 = 2 + \frac{1}{2}$$

移项:
$$x_1 - x_3 - 2 = \frac{1}{2} - \left(\frac{5}{6}x_3 + \frac{2}{3}x_4\right)$$

因为要求所有变量均为整数,则

$$x_1 - x_3 - 2$$
 为整数,
$$\frac{1}{2} - \left(\frac{5}{6}x_3 + \frac{2}{3}x_4\right)$$
 亦为整数,
$$\frac{5}{6}x_3 + \frac{2}{3}x_4$$
 为整数,所以有:
$$\frac{1}{2} - \left(\frac{5}{6}x_3 + \frac{2}{3}x_4\right) \le 0$$
 即
$$-\frac{5}{6}x_3 - \frac{2}{3}x_4 \le \frac{1}{2}$$
 (8)

此即所求之切割方程,切割平面是: $\frac{5}{6}x_3 + \frac{2}{3}x_4 \ge \frac{1}{2}$

(8) 加入松弛变量 x_5 作为新约束条件,并入最优解表 4-3,得

							表 4-3
C_{j}			6	4	0	0	0
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	x_1	X_2	X_3	X_4	x_5
4	x_2	2	0	1	$\frac{1}{3}$	$-\frac{3}{5}$	0
6	x_1	$\frac{2}{5}$	1	0	$-\frac{1}{6}$	$\frac{4}{5}$	0
0	x_5	$-\frac{1}{2}$	0	0	$-\frac{5}{6}$	$\frac{4}{5}$	1
$C_j - Z_j$			0	0	$-\frac{1}{3}$	$-2\frac{2}{3}$	0

由表 4-3 知,此不是可行解,需用对偶单纯形法继续求解。 x_5 为出基变量,由下式确定进基变量为 x_3 :

$$\theta = \min_{j} \left(\frac{C_{j} - Z_{j}}{a_{ij}} \mid a_{ij} < 0 \right) = \min_{j} \left(\frac{-\frac{1}{3}}{-\frac{5}{6}}, -\frac{2\frac{2}{3}}{-\frac{2}{3}} \right)$$
$$= \min_{j} \left(\frac{6}{15}, 4 \right) = \frac{6}{15}$$

再按原单纯形法计算,得表 4-4

C_{j}			6	4	0	0	0
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	X_1	X_2	X_3	x_4	x_5
4	x_2	$1\frac{4}{5}$	0	1	0	$-\frac{3}{5}$	$\frac{2}{5}$
6	x_1	$2\frac{3}{5}$	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$
0	X_3	$\frac{3}{5}$	0	0	1	$\frac{4}{5}$	$-\frac{6}{5}$
$C_j - Z_j$			0	0	0	$-\frac{12}{5}$	$-\frac{2}{5}$

由表 4-4 知,基变量均为非整数,需找新的切割方程,取 b_i 列中纯分数值(部

分)最大的(
$$x_2$$
)得: $x_2 - \frac{3}{5}x_4 + \frac{2}{5}x_5 = 1\frac{2}{5}$ 即: $x_2 - x_4 - 1 = \frac{4}{5} - \left(\frac{2}{5}x_4 + \frac{2}{5}x_5\right)$ 等式两

端均为整数,且要求 x_i 都为整数,所以 $\frac{2}{5}x_4 + \frac{2}{5}x_5$ 为整数,则有

$$\frac{4}{5} - \frac{2}{5} x_4 - \frac{2}{5} x_5 \le 0 \tag{9}$$

即为新的切割方程。新的切割平面是: $-\frac{2}{5}x_4 - \frac{2}{5}x_5 = -\frac{4}{5}$ 把(9)加入松弛变量 x_6 ,作为新的约束条件,加入表 4-4 得:

								表 4-5
C_{j}			6	4	0	0	0	0
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	x_1	x_2	X_3	X_4	X_5	X_6
4	x_2	$1\frac{4}{5}$	0	1	0	$-\frac{3}{5}$	$\frac{2}{5}$	0
6	x_1	$2\frac{3}{5}$	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	0
0	x_3	$\frac{3}{5}$	0	0	1	$\frac{4}{5}$	$-\frac{6}{5}$	0
0	X_6	$-\frac{4}{5}$	0	0	0	$-\frac{2}{5}$	$-\frac{2}{5}$	1
$C_j - Z_j$			0	0	0	$-\frac{12}{5}$	$-\frac{2}{5}$	0

由表 4-5 知,所得为非可行解,按前面的办法,确定 x_6 出基, x_5 进基,继续按原单 纯形法进行迭代,得:

C_{j}			6	4	0	0	0	0
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	x_1	x_2	X_3	X_4	X_5	X_6
4	X_2	1	0	1	0	-1	0	1
6	\mathcal{X}_1	3	1	0	0	1	0	$-\frac{1}{2}$
0	x_3	3	0	0	1	2	0	-3
0	X_5	2	0	0	0	1	1	$-\frac{5}{2}$
$C_j - Z_j$		(22)	0	0	0	-2	0	-1

检验数均为负,基变量均为正整数,所得为最优解,即为IP最优解,

max
$$Z = 22$$
, $X^* = (3,1,3,0,2,0)$

为了便于学习,把割平面法步骤小结于下:

- 1. 把整数规划约束不等式的变量系数 a_{ij} 和常量 b_i 全部整数化,然后加入松弛变量,且暂不考虑整数约束条件,用单纯形法解相应线性规划得到最优解;
 - 2. 求割平面:
- 2.1 设 x_i 为相应线性规划最优解中有分数值的一个变量,并且真分数部分是最大的,以非基变量表示为:

$$x_i = b_i + \sum_k b_{ik} x_k \tag{1}$$

2.2 将 b_i 和 b_{ik} 都分解成整数部分 N 和非整数部分 f 之和 f 之和 f (f 不大于的 f 最大整数):

例如:
$$b = 2\frac{1}{2}, 则N = 2, f = \frac{1}{2}$$

$$b = -\frac{1}{6}, 则N = -1, f = \frac{5}{6}$$

于是 x, 表示为:

$$x_{i} = N + \sum_{k} N_{ik} x_{k} + f_{i} + \sum_{k} f_{ik} x_{k}$$
 (2)

则:
$$x_i - N - \sum_k N_{ik} x_k = f_i + \sum_k f_{ik} x_k$$
 (3)

(3) 式左、右两端均为整数,于是:

(3)根据(2)必有:
$$f_i + \sum_k f_{ik} x_k \ge 1$$
 (4)

(4) 既为切割方程,切割平面是: $f_i + \sum_k f_{ik} x_k = 1$

它把相应的线性规划可行域分为两个部分,其一: $f_i + \sum_k f_{ik} x_k < 1$ 就是被切割掉的部分,其中不包含整数(坐标)点。

3. 把切割方程(4)作为新约束条件,并入相应线性规划最优单纯形表,用对偶单纯形法调整基变量,然后按原单纯形法继续迭代得到最优解。若其符合整数约束要求,计算停止,所得的最优解,就是原整数规划的最优解。若所得最优解不满足整数约束要求,则重复(2)(3)步骤,直到取得整数最优解为止。

4.3.2 部分整数型规划的割平面法

一部分变量为整数,另一部分变量不必取整数,称为部分(或混合)整数规划,解法和全部整数型割平面法所不同的只是加放限制条件——割平面有差异。就是所得相应线性规划最优解,如果整数变量未被满足,则增加下面指出的限制条件后,再继续迭代,直到满足要求。

新限制条件(即割平面)为:

$$x_{n+m+i} = -f_{i0} + \sum_{i} f_{ij}^* x_j$$

其中: x_{n+m+i} — 新增约束的松弛(不足)变量。

 f_{i0} ——未被满足的整数要求(x_i)行之常数项 b_i 的非负分数。

 f_{ij}^st ——新增约束条件的变量相应系数,依下列规则求得。

$$f_{ij}^* = \begin{cases} a_{ij}; \exists a_{ij} \geq 0 \text{ , } \exists x_j \text{为非负整数变量} \\ \frac{f_{i0}}{1 - f_{i0}} (-a_{ij}); & \exists a_{ij} < 0 \text{ , } \exists x_j \text{为非负整数变量} \\ f_{ij}; & \exists f_{ij} < f_{i0} \text{ , } \exists x_j \text{为非负整数变量} \\ \frac{f_{i0}}{1 - f_{i0}} (1 - f_{ij}); & \exists f_{ij} > f_{i0} \text{ , } \exists x_j \text{为非负整数变量} \end{cases}$$

这里: a_{ij} ——相应项的常系数(未被满足要求的 x_i 行的)。 f_{ij} ——为整数变量相应项常系数的非负分数。

例 4.4 求解:

$$\begin{cases} \max Z = 10x_1 + 8x_2 + \frac{19}{8}x_3 - 11x_4 \\ -x_1 + \frac{1}{4}x_2 + \frac{3}{4}x_3 \le \frac{31}{2} \\ \frac{1}{2}x_1 + \frac{7}{8}x_2 + \frac{1}{8}x_3 - \frac{1}{2}x_4 \le \frac{9}{4} \\ x_j \ge 0 \qquad j = 1, 2, 3, 4 \\ x_1, x_2, x_3$$
为整数

解相应线性规划,得最优解表:

								表 4-7
C_{j}			10	8	$\frac{19}{8}$	-11	0	0
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	X_1	x_2	X_3	X_4	X_5	\mathcal{X}_{6}
0	x_5	20	0	2	1	-1	1	2
10	x_1	$\frac{9}{2}$	1	$\frac{7}{4}$	$\frac{1}{4}$	-1	0	2
$C_j - Z_j$			0	$-\frac{19}{2}$	$-\frac{1}{8}$	-1	0	-20

由表 4-7 知 , x_1 不满足整数要求 , 求加入新约束 , 因为 $f_{i0} = \frac{1}{2}$

$$a_{11} = 1(f_{11} = 0), a_{12} = \frac{7}{4}(f_{12} = \frac{3}{4}),$$

 $a_{13} = \frac{1}{4}(f_{13} = \frac{1}{4})$

对整数变量部分,

$$f_{11} = 0 < f_{10}$$

$$f_{11}^* = 0$$

$$f_{12} = \frac{3}{4} > f_{10}$$

$$f_{12}^* = \frac{\frac{1}{2}}{1 - \frac{1}{2}} \left(1 - \frac{3}{4} \right) = \frac{1}{4}$$

$$f_{13} = \frac{1}{4} < f_{10}$$

$$f_{13}^* = \frac{1}{4}$$

对于非整数约束变量:

$$a_{11} = -1 < 0$$
 $f_{12}^* = \frac{\frac{1}{2}}{1 - \frac{1}{2}} (+1) = 1$ $a_{15} = 0$ $f_{15}^* = 0$ $a_{16} = 2 > 0$ $f_{16}^* = 2$

故得新约束(割平面)为:

$$x_7 = -\frac{1}{2} + \frac{1}{4}x_2 + \frac{1}{4}x_3 + x_4 + 2x_6$$

即:

$$-\frac{1}{4}x_2 - \frac{1}{4}x_3 - x_4 - 2x_6 + x_7 = -\frac{1}{2}$$

加入最优解表 4-7 得:

									表 4-8
C_{j}			10	8	$\frac{19}{8}$	-11	0	0	0
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	x_1	X_2	x_3	X_4	<i>x</i> ₅	X_6	<i>X</i> ₇
0	X_5	20	0	2	1	-1	1	2	0
10	X_1	$\frac{9}{2}$	1	$\frac{7}{4}$	$\frac{1}{4}$	-1	0	2	0
0	x_7	$-\frac{1}{2}$	0	$-\frac{1}{4}$	$-\frac{1}{4}$	-1	0	-2	1
$C_j - Z_j$			0	$-\frac{19}{2}$	$-\frac{1}{8}$	-1	0	-20	0

用对偶单纯形法求解, x_7 出基, x_3 进基得:

									表 4-9
C_{j}			10	8	$\frac{19}{8}$	-11	0	0	0
$C_{\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	X_1	x_2	x_3	x_4	X_5	x_6	<i>x</i> ₇
0	X_5	18	0	1	0	-5	1	-6	4
10	x_1	4	1	$\frac{3}{2}$	0	-2	0	0	1
$\frac{19}{8}$	x_3	2	0	1	1	4-1	0	8	-4
$C_j - Z_j$			0	$-9\frac{3}{8}$	0	$-\frac{1}{2}$	0	-19	$-\frac{1}{2}$

检验数皆负,最优解

$$X^* = (4,0,2,0,18,0)$$

max $Z = 44\frac{3}{4}$

满足整数约束要求。

4.4 0-1(整数)型规划

整数规划中会遇到变量 x_j 取值非 0 即 1 的情况,称这种 0—1 规划(0—1 Programmi ng),这是 x_j 称为 0—1 变量,也称逻辑变量。0—1 规划适用于"是"或"非"的决策。

4.4.1 应用 0—1 变量的决策问题

1. 厂址选择问题

经济管理活动中,工厂地址的选择是一项重要而细致的工作,可行性研究和投入产出分析,都是行之有效的方法,若和0—1规划配合使用,对解决问题收效更好。

例 4.4 某建设工程,必须新建两个混凝土搅拌站和原有的一个配合工作,才能满足需要,现有三个地点可供建设新搅拌站用,问如何选址最好?假设有关资料如下:

	供需	平 衡 表	表 4-10	
工地 搅拌站	1	2	3	日产量 (m ³)
1				90
2(拟建)				50
3				50
4				50
日用量 (m ³)	30	110	50	

	运 距 表	表 4-11	
工地 搅拌站	1	2	3
1	3	2	1
2(拟建)	8	5	4
3	2	3	9
4	4	5	4

首先,令i(i=1,2,3,4)表示混凝土搅拌站,j(j=1,2,3)表示需用混凝土的主要工地, x_{ij} 表示第i个搅拌站到第j个工地的混凝土运量(m^3 /日),引入0—1 变量 y_2,y_3,y_4 分别表示第2、3、4个混凝土搅拌站。

根据题意,问题可以归结为:

max
$$Z = 3x_{11} + 3x_{12} + x_{13} + 8x_{21} + 5x_{22} + 4x_{23}$$
 $+2x_{31} + 3x_{32} + 9x_{33} + 4x_{41} + 5x_{42} + 4x_{43}$
$$\begin{cases} x_{11} + x_{12} + x_{13} \leq 90 \\ x_{21} + x_{22} + x_{23} \leq 50 y_2 \\ x_{31} + x_{32} + x_{33} \leq 50 y_3 \\ x_{41} + x_{42} + x_{43} \leq 50 y_4 \\ x_{11} + x_{21} + x_{31} + x_{41} \geq 30 \end{cases}$$
 $s.t$
$$\begin{cases} s.t \\ x_{12} + x_{22} + x_{32} + x_{42} \geq 110 \\ x_{13} + x_{23} + x_{33} + x_{43} \geq 50 \\ x_{ij} \geq 0 \qquad i = 1, 2, 3, 4 \qquad j = 1, 2, 3 \end{cases}$$
 $y_2 + y_3 + y_4 \geq 2$ $y_2 + y_3 + y_4 \leq 3$ $y_2, y_3, y_4 = 0$ 可以 1

2. 关于产品成本问题

例4.6 某厂一种新产品要投产,有几种水平不同的机械化、自动化方案可供选择, 究竟选那种方案,是管理部门必须事先决策的。

设 x, 表示采用第 j 种方案时的产品产量。

 F_i 表示采用第 j 种方案时的固定成本。

V 表示单位产品的可变成本 (如材料费等)。

那么,采用不同方案时,相应的总成本表示如下:

当采用第j种方案时,即 $x_i > 0$,成本是:

$$P_{j} = \left(\frac{F_{j}}{x_{i}} + V\right) x_{j} = F_{j} + V x_{j}$$

当不采用第j种方案时,即 $x_i = 0$,成本是:

$$P_i = 0$$

现在引入0—1 变量 y_i ,并令

$$y_j = \begin{cases} 1, & x_j > 0 \\ 0, & x_j = 0 \end{cases}$$

设M 为一个相当大的常数,则成本可以表示为:

$$\min Z = \sum_{j=1}^{n} (F_j y_j + V x_j)$$

约束条件: $x_i < y_i M$ $j = 1, \dots, n$.

它表示,当 $x_j > 0$ 时,必有 $y_j = 1$,即采用第 j 种方案,成本为 $P_j = F_j + Vx_j$,相应

的目标函数值Z也就随之而定了。

3. 非此即彼的决策条件

例 4.7 某厂决定生产两种合同产品,有两种加工方法都可以满足要求,由于方法不同,每种产品的消耗和收益也就不同,究竟采用哪种方法加工,需要研究,但只能选择一种方法进行生产。假设有关设备情况如表 4-12 所示,如何把她们统一在一个问题中?

表 4-12

方法	Ι		II	每日可使	
产品工序	A	В	A	В	用工时
d_1	5	4	3	2	12
d_2			1	2	8

首先,令产品的日产量,A 为 x_1 ,B 为 x_2 ,那么,采用第一种加工方法时,限制条件是:

$$5x_1 + 4x_2 \le 12$$

采用第二种加工方法时,约束为:

$$3x_1 + 2x_2 \le 12$$
$$x_1 + 2x_2 \le 8$$

由于最终只能采用一种方法,引入0—1变量y和一个充分大的数M,

$$y = \begin{cases} 1, & \text{采用方法I} \\ 0, & \text{采用方法II} \end{cases}$$

那么必居其一的方案可由下面约束而定:

$$5x_1 + 4x_2 \le 12 + (1 - y)M$$
$$3x_1 + 2x_2 \le 12 + yM$$
$$x_1 + 2x_2 \le 8 + yM$$

若决策部门确定采用第一种方法进行生产,则y=1,第一种加工方法的限制条件就是原来的

$$5x_1 + 4x_2 \le 12$$

这是,第二种方法的不等式约束右侧都增加了一个充分大的数M,成为多余的限制,失去了作用。反之,采用第二种方法时,y=0,第一个约束的右侧多了一个M,成为多余的限制。这样使不同时被采用的限制条件,被统一在一个问题之中了。

4.5 指派问题

管理工作中会遇到这种情况:有n项任务,必须由n个人或n台机器完成其中一项,由于工作性质和每个人技术专长不同,使每个人做不同工作时效率(单位时间内完成的工作量)就有差异。怎样作出最优决策,以使人尽其才,经济效益最佳?这是管理工作中不可避免的问题。这类问题称为指派问题(Assignment Problem),是 0—1 规划和运输问题的特殊形式。

若以n表示工作种类,m表示人(或机器)数,当m=n时,称为平衡性(Balanced) 指派,当 $m\neq n$ 时,称为不平衡性(Unbalanced)指派(或特殊指派)。

4.5.1 指派问题的数学模型

设n个人被指派做n种工作, C_{ij} 表示(工作、效率)成本,变量 x_{ij} 表示第i个人做(或者不做)第i项工作。则指派问题的模式可以表示如表 4-14。

表 4-14

				₹₹ 4
工作 成本/变量 人员	1	2		$\frac{a_i}{\sum_{j=1}^n x_{ij}}$
1	$\frac{C_{11}}{x_{11}}$	$\frac{C_{12}}{x_{12}}$	 $\frac{C_{1n}}{x_{1n}}$	1
2	$\frac{C_{21}}{x_{21}}$	$\frac{C_{22}}{x_{22}}$	 $\frac{C_{2n}}{x_{2n}}$	1
:		•••••	 ••••••	:
n	$\frac{C_{n1}}{x_{n1}}$	$\frac{C_{n2}}{x_{n2}}$	 $\frac{C_{nn}}{x_{nn}}$	1
$\frac{b_j}{\sum_{i=1}^n x_{ij}}$	1	1	 1	

由此容易得到指派(极小化)数学模型:

$$\min Z = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij}$$

$$\int_{i=1}^{n} x_{ij} = 1$$

$$\int_{j=1}^{n} x_{ij} = 1$$

$$\int_{j=1}^{n} x_{ij} = 1$$

$$\int_{j=1}^{n} x_{ij} = \begin{cases} 1, & \text{第}i \text{人做第}j \text{种工作} \\ 0, & \text{第}i \text{人不做第}j \text{种工作} \end{cases}$$

例 4.9 有四台机器,分别完成四项任务,由于机器性质,完成不同任务所用工时不同,如表 4-15 所示,问如何分派任务才能使总工时数最少?

显然,对n=4指派方案有 4!(24) 个,当n=10 时,指派方案超过三百万个。所以,对指派问题,特别是当n 很大时,不能逐个找最优指派方案。用 0—1 规划或表上作业法,对解决指派问题同样是不经济的。

		表 4-15		
工作 用工时数 机器	$B_{\rm l}$	B_2	B_3	B_4
$A_{ m l}$	3	5	9	4
A_2	6	7	5	4
A_3	2	5	8	5
A_4	8	2	6	1

4.5.2 指派问题的解法

- 1. 指派问题最优解性质。如果从系数矩阵的(C_{ij})一行(或一列)各元素分别减去该行(或列)的最小元素,得到一个新矩阵(b_{ij})。那么,以(b_{ij})为系数矩阵指派问题的最优解(x_{ij})和原问题的最优解相同。由表 4-15 知,欲使指派方案总工时最少,指派方案应该是每行(或列)工时最小元素的格位处 $x_{ij}=1$,行(或列)中其他元素处的 $x_{ij}=0$,这样做的结果和最优解的性质是一致的。
 - 2. 最少工时(成本)的指派问题 以例 4。9 为例,根据最优解的性质,做以下工作:
 - A. 使工时矩阵中出现 0 元素
 - 1. 每行各元素减去该行最小元素;

2. 每列各元素减去该列最小元素。

行或列内已有 0 元素者,不必做上述工作,于是得到矩阵 II,

(横)行减 (竖)列减
$$\begin{bmatrix} 0 & 2 & 6 & 1 \\ 2 & 3 & 1 & 0 \\ 0 & 3 & 6 & 3 \\ 7 & 1 & 5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 5 & 1 \\ 2 & 2 & 0 & 0 \\ 0 & 2 & 5 & 3 \\ 7 & 0 & 4 & 0 \end{bmatrix}$$
 矩阵 II

B. 试求最优解

画一条横线表示一台机器完成一项任务,画一条竖线表示一项任务已有机器去做,一行 0 元素多于一个者,表示该行的机器可以被指派(去完成任务)的位置不止一个,然而一台机器只能完成一项任务,所以只能画一条横线,一列的 0 元素多于一个者,原理相似,也只能画一条竖线。当所画直线条数等于 4 时,则此时可以得到最优指派方案。

1. 初始指派:用最小直线画去矩阵 II 的全部 0 元素。换句话说,画线的原则是用一条直线应画去尽可能多的 0 元素,即:

$$\begin{bmatrix}
0 & 1 & 5 & 1 \\
2 & 2 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 2 & 5 & 3 \\
7 & 0 & 4 & 0
\end{bmatrix}$$
III

所画直线数为3<4,不能得到最优指派。

- 2. 指派的改进
- (1) 未被直线画去的所有元素减去其中最小元素,以便得到新的0元素。
- (2) 横、竖直线交叉处的所有元素,都加上(1)中所指出的最小元素(以避免重复指派和消除不当指派),得到新矩阵,并以最少直线画去全部0元素。即:

$$\begin{bmatrix} 0 & 0 & 4 & 0 \\ 3 & 2 & 0 & 0 \\ 0 & 1 & 4 & 2 \\ 8 & 0 & 4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 4 & 0 \\ 3 & 2 & 0 & 0 \\ 0 & 1 & 4 & 2 \\ 8 & 0 & 4 & 0 \end{bmatrix} \qquad IV$$

矩阵 IV 中所画直线条数为 4, 并且不能再少, 所以据此可以得到最优指派方案。

C. 最优指派方案的确定

原则:

- (1)0元素最少的行或列首先指派;
- (2)后面再被指派者,应和前面的指派不矛盾;
- (3) 所有行、列均有一个 $x_{ij} = 1$,其余的 $x_{ij} = 0$ 。

于是,由矩阵 IV,先指派 $x_{31}=1, x_{23}=1$,然后派 $x_{12}=x_{44}=1$,即最优指派是: $A_1\to B_2$ $A_2\to B_3$ $A_3\to B_1$ $A_4\to B_4$ 最少总工时数为:

$$\min Z = C_{12}x_{12} + C_{23}x_{23} + C_{31}x_{31} + C_{44}x_{44}$$
$$= C_{12} + C_{23} + C_{31} + C_{44}$$
$$= 13$$

3. 最大效率的指派

这是极大化指派问题: $\max Z = \sum_{i} \sum_{j} C_{ij} x_{ij}$ 。它要求 C_{ij} 最大者所对应的 $x_{ij} = 1$ (被指派)。由极大化指派可以想到使极大化指派问题中的 C_{ij} 变为 0 ,则以后的具体算法不变就成前面指出的极小化问题的所法了么?

设M 为系数矩阵(C_{ij})中的最大元素,那么,对极大化问题的系数矩阵(C_{ij}),可以构成一个新矩阵(b_{ij})=($M-C_{ij}$),其中 $b_{ij}\geq 0$,使极大化问题转化成极小化指派问题。

$$\min Z' = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} x_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} (M - C_{ij}) x_{ij}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} M x_{ij} - \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij}$$
$$= nM - \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij}$$

最优解就是原极大化问题的最优解。

例 4.10 将例 4.9 的工时改为效率,则问题转化为求解最大效率问题。用表 4-16 中最大数字 9,减去表内各个数,得到新的矩阵 I:

				表 4-16
任务 工作效率 机器	B_1	B_2	B_3	B_4
$A_{ m l}$	3	5	9	4
A_2	6	7	5	4
A_3	2	5	8	5
A_4	8	2	6	1

$$\begin{bmatrix} 6 & 4 & 0 & 5 \\ 3 & 2 & 4 & 5 \\ 7 & 4 & 1 & 4 \\ 1 & 7 & 3 & 8 \end{bmatrix}$$

这时,原来最大的数 (9) 变化为 (9) 变化为 (9) 变化为 (1) 变化为最大的数 (8), 于是,矩阵 (1) 内的数字小者应被指派,它对应的就是最大效率,而数字大者则表示最小效率,不能被指派。那么,下一步的工作就是使矩阵 (1) 每行每列出现 (1) 元素,并按最小(成本)指派问题进行指派。

4. 特殊指派问题

事实上并不是每个工人都可以担当任何工作,也不是每套设备都可以指派于任何位置,而且需要分派的工作项目与可用的设备数目也未必相等,下述例子将说明指派受限制和数目不相等时,如何应用指派求解。

 \pmb{M} **4.11** 设有 M_1, M_2 和 M_3 三台机器,可以安装于 A, B, C 和 D 四个不同位置,各种不同安装后的成本见表 4-17,而且机器 M_2 无法安装于位置 C,试求如何安装才能使总成本最低。

应用指派求解这一问题,需增设一部虚构的 M_4 ,以便安装于多余的位置上,这样处理后得到表 4-18。

	机器安装位置及成本			表 4-17
位置 成本 机器	A	В	С	D
M_1	16	10	12	15
M_2	11	12	×	18
M_3	8	17	13	16
				表 4-18
位置 成本 机器	A	В	C	D
M_1	16	10	12	15
M_2	11	12	∞	18
M_3	8	17	13	16
M_4	0	0	0	0

求解时先将表 4-18 中各行数值分别减去各行中的最小值,得到矩阵 I。

在矩阵 I 中,每列都有 0,所以各列中的数值不必再分别减去各列中的最小值。但矩阵中全部 0 只要三条线即可化去,所以还需继续求解。各未被画线的数字减去其中最小值 1,并在画线相交处的数值上分别再加上 1 得到矩阵 II。

$$\begin{bmatrix}
6 & 0 & 2 & 5 \\
0 & 1 & \infty & 7 \\
0 & 9 & 5 & 8 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix} 7 & 0 & 2 & 5 \\ 0 & 0 & \infty & 6 \\ 0 & 8 & 4 & 7 \\ 1 & 0 & 0 & 0 \end{bmatrix} II$$

矩阵 II 中也只有三条线即可画去全部的 0, 所以仍需继续求解。将未被画线的各数值分别减去其中最小值 2, 并在画线相交处各数值上加 2, 得到矩阵 III。

$$\begin{bmatrix} 7 & 0 & 0 & 3 \\ 0 & 0 & \infty & 4 \\ 0 & 8 & 2 & 5 \\ 3 & 2 & 0 & 0 \end{bmatrix}$$
 III

总成本

观察矩阵 III ,可知要用四条线才能画去全部的 0 ,因而可以得到最优指派。 机器 M_1 和 M_2 都有两个适当的位置可以安装,但是不能随意决定,必须参考其它机器的安装位置再加以权衡。由于机器 M_3 只有一个适当位置 A 可以安装,因此机器 M_2 必须安装于位置 B ,那么机器 M_1 只能安装于位置 C 了。因为机器 M_4 为虚设,所以位置 D 空闲不用。依此种指派方式,安装机器的总成本为 32。

 表 4-19

 机器
 安装位置
 安装成本

 M_1 C 12

 M_2 B 12

 M_3 A 8

32

此例说明,应用指派方案求解时,人员与任务、设备与安装位置必须相等,也就是说数据必须成方阵,否则可以虚设项目加以补充,以便凑成方阵加以求解。