

INVENTORY MANAGEMENT

GROUP-IV

- a. Gokul
- b. Sudha
- c. Anuradha
- d. Abhishek
- e/ Anu Sanal
- f. Ashwini

01/05/2021

Business Problem:

Objective:

Poor inventory management leads to a loss in sales which in turn paints an inaccurate picture of lower demand for certain items, making future order predictions based on that past data inherently inaccurate. Instead, smart retailers use real-time data to move inventory where it's needed before it's too late. Additionally, they use predictive analytics to decide what to stock and where based on data about regional differences in preferences, weather, etc by using

Python Technology.

Project Architecture / Project Flow

1. Business Understanding

Define the business guestion

2. Data Understanding

Get familiar with the data

3. Data Preparation

Combine, transform, de an data

4. Modeling

Apply algorithms, calibrate parameters

Evaluation

Review and determine usability

Deployment

Simple - Generate a report Complex - Implement a repeatable scoring process

Python Libraries Used in Project

Exploratory Data Analysis (EDA) and Feature Engineering

Data set details

There are 2 datasets

Product details
Product revenue

Product details:

Rows -1115 Columns - 3

Product revenue:

Rows -1017209 Columns – 8 Product dataset features:

product_type int64

cost_per_unit int64

time_delivery int64

Revenue dataset features : product type int64 int64 revenue number purchases int64 store status object promotion apply int64 generic holiday object education holiday int64 day of week int64

Exploratory Data Analysis (EDA)

- Store_status and Generic holiday are character data type remaining other column are integer data type.
- No missing values in the dataset
- No. of duplicates 156958
- Revenue is high when applying promotion
- For Outliers Handling we can use scaling techniques

Correlation between no. of purchases and revenue high

+	product_type \$	cost_per_unit \$	time_delivery \$	revenue 🕏	number_purchases \$	promotion_apply \$	education_holiday \$	day_of_week \$
product_type	1.00	-0.04	-0.02	0.01	0.02	0.00	0.00	-0.00
cost_per_unit	-0.04	1.00	0.02	0.00	0.00	0.00	0.00	-0.00
time_delivery	-0.02	0.02	1.00	-0.01	0.00	0.00	-0.00	-0.00
revenue	0.01	0.00	-0.01	1.00	0.89	0.45	0.09	-0.46
umber_purchases	0.02	0.00	0.00	0.89	1.00	0.32	0.07	-0.39
promotion_apply	0.00	0.00	0.00	0.45	0.32	1.00	0.07	-0.39
education_holiday	0.00	0.00	-0.00	0.09	0.07	0.07	1.00	-0.21
day_of_week	-0.00	-0.00	-0.00	-0.46	-0.39	-0.39	-0.21	1.00

REVENUE HISTOGRAM PLOT

As per the below graph-Revenue is right skewed

Revenu	e		
count	101720	99	
mean	577	73	
std	384	19	
min		0	
25%	372	27	
50%	574	14	
75%	789	56	
max	4159	51	
Name: R	evenue,	dtype:	int64

Histogram Plot for Education Holiday and counts for store status

? Merging the two datasets Product details and product revenue with with respect to product type.

*	count \$	mean 🕏	std 💠	min 🕏	25% 💠	50 % \$	75% 💠	max ≑
product_type	1017209.00	558.43	321.91	1.00	280.00	558.00	838.00	1115.00
cost_per_unit	1017209.00	1012.84	565.50	50.00	502.00	1023.00	1519.00	1999.00
time_delivery	1017209.00	9.54	2.86	5.00	7.00	10.00	12.00	14.00
revenue	1017209.00	5773.83	3849.95	0.00	3727.00	5744.00	7856.00	41551.00
number_purchases	1017209.00	633.14	464.41	0.00	405.00	609.00	837.00	7388.00
promotion_apply	1017209.00	0.38	0.49	0.00	0.00	0.00	1.00	1.00
education_holiday	1017209.00	0.18	0.38	0.00	0.00	0.00	0.00	1.00
day_of_week	1017209.00	4.00	2.00	1.00	2.00	4.00	6.00	7.00

POINT PLOT AGAINST REVENUE

Feature Engineering

Feature engineering has two goals primarily:

- Preparing the proper input dataset, compatible with the machine learning algorithm requirements
- Improving the performance of machine learning models

Following categorical columns converted into numerical

- Store_status

Feature Engineer target Variable for feeding dataset to ML algorithms.

TARGET VARIABLE:

Calculated target variable column no. of units using the below formula

No.of units = revenue / cost per unit

- -Added 10% buffer to no. of units to avoid shortage/overload of inventory
- Normalised the dataset using Robustscaler function

Feature Selection by RFE and Decision Tree techniques

Decision Tree Feature Importance on whole dataset

	Columns	Feature_IMP
0	product_type	0.00015
1	cost_per_unit	0.79522
2	time_delivery	0.00006
3	revenue	0.20440
4	number_purchases	0.00015
5	store_status	0.00000
6	promotion_apply	0.00000
7	generic_holiday	0.00000
8	education_holiday	0.00000
9	day_of_week	0.00002

RFE Feature Ranking

```
Columns Feature IMP
        product type 3.108101e+02
       cost per unit 3.807241e+05
       time delivery 2.339764e+03
             revenue 8.114169e+04
    number purchases 5.553236e+04
        store status 6.869101e+03
     promotion apply 9.530650e+03
     generic holiday 5.193270e+03
   education holiday 2.217300e+00
         day of week 2.012102e+03
10
     number of units 2.140451e+19
```

Feature Selection

- Drop Generic_Holiday and Education_Holiday col
- Drop Number_of_Purchases col to remove collinearity problem with revenue column

Model – RANDOM FOREST

Data set details

5% Sample of the whole data set

Data Partition details

TRAINING SET – 80%

TESTING SET – 20%

Algorithms

Partitioned the dataset with 80% and 20% for training and test. Scaled the features by Robust Scaler .Installed sklearn.ensemble package to unpack RandomForestRegressor function. Created model and calculated RMS.

Algorithm details and configuration

from sklearn.ensemble import RandomForestRegressor

regressor_RF =
RandomForestRegressor(n_estimators = 20,
random_state = 0)
regressor_RF.fit(X_train, Y_train)

Root Mean Squared Error – 1.1068

Mean Absolute Error : 0.1506962243829122

Mean Squared Error : 1.2250701482662356

Root Mean Squared Error : 1.1068288703617355

Model – DECISION TREE

Data set details

5% Sample of the whole data set

Data Partition details

TRAINING SET – 80%

TESTING SET – 20%

Algorithms

Partitioned the dataset with 80% and 20% for training and test. Scaled the features by Robust Scaler Installed sklearn. tree package to unpack DecisionTreeRegressor function. Created model and calculated RMS.

Algorithm details and configuration

from sklearn.tree import DecisionTreeRegressor

regressor_DT = DecisionTreeRegressor()
regressor_DT.fit(X_train, Y_train)

Root Mean Squared Error – 1.081

Mean Absolute Error : 0.23168785132605774

Mean Squared Error : 1.169636694110116

Root Mean Squared Error : 1.0814974313932122

Model – LINEAR REGRESSION

Data set details

5% Sample of the whole data set

Data Partition details

TRAINING SET – 80% TESTING SET – 20%

Algorithms

Partitioned the dataset with 80% and 20% for training and test. Scaled the features by Robust Scaler. Installed sklearn. Inear package to unpack Linear Regressor function. Created model and calculated RMS.

Algorithm details and configuration

from sklearn.linear_model import LinearRegression

regressor_LR = LinearRegression()
regressor_LR.fit(X_train, Y_train)

Root/Mean Squared Error – 17.313

Mean Absolute Error : 9.343981496902034

Mean Squared Error : 299.74668048123885

Root Mean Squared Error : 17.31319382671028

Model – NN Regressor

Data set details
5% Sample of the whole data set

Data Partition details

TRAINING SET – 80% TESTING SET – 20%

Algorithms

Partitioned the dataset with 80% and 20% for training and test. Scaled the features by Robust Scaler. Installed keras package to create NN model. Created model and calculated RMS.

Algorithm details and configuration

from keras.models import Sequential from keras.layers import Dense, Activation, Flatten

NN_model.fit(X_train,Y_train, epochs=10, batch_size=5 0, validation_split = 0.2)

Root/Mean Squared Error – 25.17

Mean Absolute Error : 13.780497547642756

Mean Squared Error : 633.7768590176254

Root Mean Squared Error: 25.17492520381392

EXCELR Raising Excellence

Model – RANDOM FOREST

Data set details

whole data set

Data Partition details

TRAINING SET – 75% TESTING SET – 25%

Algorithms

Partitioned the dataset with 75% and 25% for training and test. Scaled the features with Robust Scaler .Installed sklearn.ensemble package to unpack RandomForestRegressor function. Created model and calculated RMS.

Algorithm details and configuration

from sklearn.ensemble import RandomForestRegressor

regressor_RF =
RandomForestRegressor(n_estimators = 20,
random_state = 0)
regressor_RF.fit(X_train, Y_train)

Root Mean Squared Error – 0.2415

Mean Absolute Error : 0.01925158937258893

Mean Squared Error : 0.05835326944124611

Root Mean Squared Error: 0.24156421390853014

"Indian Abraluta Fanon . A A167F776170161FA47\mMaan Causand Fanon

RandomForest is best model as it is giving less RMSE value

Hyperparameter tuning and Cross Validation of Radom Forest Model

Grid Search CV

RandomisedSearch CV

RESULTS:

- print(model_cv_rf.best_params_) #Grid Search CV
- {'bootstrap': True, 'max_depth': None, 'max_features': 'auto', 'n_estimator s': 13}
- print(model_RSCV_rf.best_params_)
- #RandomisedSearch CV
- {'n_estimators': 12, 'max_features': 'auto', 'max_depth': None, 'bootstrap':
 True}
- We Select
- <u>regressor RF = RandomForestRegressor(n estimators= 12,max features = 'auto', max depth = None, bootstrap=True)</u>
- regressor RF.fit(X train, Y train)

Pycaret Package Results

```
exp_reg101 = setup(data = sample_data, target = 'per_added', sessio
n_id=105,remove_outliers = True, outliers_threshold = 0.05, normalize =
True, normalize_method = 'robust', transformation = True, html = False
)
best_specific = compare_models(include = ['lr','lasso','ridge','knn','dt','rf','et', 'lightgbm'])
```

Pycaret Package Results

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
rf	Random Forest Regressor	0.1196	0.7561	0.7636	0.9985	0.0129	0.0049	10.844
dt	Decision Tree Regressor	0.2343	1.3262	1.1002	0.9973	0.0175	0.0122	0.192
knn	K Neighbors Regressor	2.7963	99.9123	9.9833	0.7939	0.1869	0.1393	0.473
lr	Linear Regression	9.2463	295.3055	17.1564	0.3963	0.9778	1.0393	0.295
ridge	Ridge Regression	9.2460	295.3054	17.1564	0.3963	0.9778	1.0392	0.030
lasso	Lasso Regression	8.6672	299.9098	17.2855	0.3874	0.9385	0.8844	0.031

Final Random Forest Model

```
from sklearn.ensemble import RandomForestRegressor
regressor_RF = RandomForestRegressor(n_estimators= 12,max_features
= 'auto', max_depth = None, bootstrap=True)
regressor_RF.fit(X_train, Y_train)
y_pred_RF = regressor_RF.predict(X_test)
```

Mean Absolute Error : 0.01936792359746316 Mean Squared Error : 0.03058347237898626 Root Mean Squared Error : 0.1748813094043679

Final Random Forest Model

TEST DATASET PREDICTED VS ACTUAL VALUES PLOT

Final Random Forest Model

- Pickled the finalized Model
- Checked the score on test dataset again

```
# load the model from disk
loaded_model = pickle.load(open(filename, 'rb'))
result = loaded_model.score(X_test, Y_test)
print(result)
0.9999372337963354
```

Model Deployment In Local and Cloud

Heroku Deployment link

Using Flask Framework for Deployment A. Login page

B. Application Page Before Field Values

ML APPLICATION INVENTORY MANAGEMENT Copyright @ 2021 - All Rights Reserved -Logout Back Gokul A. **Inventory Management Application** Please fill all the Product details as mentioned below. All the fields are mandatory. Product_Number Cost Per_Unit Revenue Product_Number Cost_Per_Unit Revenue Time_of_Delivery Select_Store_Status Select_Promotion **YES YES** Time_of_Delivery O NO O NO Day_of_Week Monday **Predict Inventory**

C. Application Page After Clicking Predict Button

ML APPLICATION INVENTORY MANAGEMENT Copyright @ 2021 - All Rights Reserved -Logout Back Gokul A. **Inventory Management Application** Please fill all the Product details as mentioned below. All the fields are mandatory. **Product Number** Cost Per Unit Revenue Product_Number Cost_Per_Unit Revenue Time_of_Delivery Select Promotion Select Store Status YES O YES Time_of_Delivery O NO NO Day_of_Week Monday Predict Inventory Inventory for product 125 to be maintained daily basis: 11

