CLAIMS

We claim:

1. A compound of the general formula:

wherein:

a) R_b and R_0 are independently -H, -Cl, -Br, -I, -F, -CN, lower alkyl, -OH, -CH₂-OH, -NH₂; or N(R₀)(R₇), wherein R₀ and R₇ are independently hydrogen or an alkyl or branched alkyl with up to 6 carbons;

- b) R_a is -N₃, -C \equiv N, -N₃, -C \equiv C -R, -C=CH-R, -R-C=CH₂, -C=CH, -O-R, -R-R₁, or -O-R-R₁ where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R₁ is -OH, -NH₂, -Cl, -Br, -I, -F or CF₃;
- c) Z' is >CH, >COH, or >C-R₂-OH, where R_2 is an alkyl or branched alkyl with up to 10 carbons or aralkyl;
- d) >C-Rg is >CH2, >C(H)-OH, >C=O, >C=N-OH, >C(R3)OH, >C=N-OR3, >C(H)-NH2, >C(H)-NHR3, >C(H)-NR3R4, or >C(H)-C(O)-R3, where each R3 and R4 is independently an alkyl or branched alkyl with up to 10 carbons or aralkyl; and
- e) Z" is >CH2, >C=O, >C(H)-OH, >C=N-OH, >C=N-OR5, > C(H)-C \equiv N, or >C(H)-NR5R5, wherein each R5 is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl.

2. The compound of Claim 1, wherein:

 R_b and R_o are H, R_a is $-C \equiv C - CH_3$ Z' is >C-OH, $>C-R_g$ is $>C(H)-\beta-OH$, and Z'' is $>CH_2$. The compound of Claim 1, wherein:

 R_b and R_o are H, R_a is OCH₂CF₃ Z' is >C-OH, >C-R_g is >C(H)- β -OH, and Z" is >C=O.

4. The compound of Claim 1, wherein:

 R_b and R_O are H, R_a is OCH_2CF_3 Z' is >C-OH, $>C-R_g$ is $>C(H)-\beta-OH$, and Z'' is >C=NOH.

The compound of Claim 1, wherein:

 R_b and R_o are H, R_a is OC₂H₅ Z' is >C-OH, >C-R_g is >C(H)- β -OH, and Z'' is >CH₂.

The compound of Claim 1, wherein:

Rb and Ro are H, Ra is OCH2CF3 Z' is >C-OH, >C-Rg is >C(H)-B-OH, and Z' is >CH2.

The compound of Claim 1, wherein:

 R_b and R_o are H, R_a is CH=CH2 Z' is >C-OH, >C-Rg is >C(H)- β -OH, and Z'' is >CH2.

8. The compound of Claim 1, wherein:

 R_b and R_0 are H, R_a is E-CH=CHCH3 Z' is >C-OH, >C-Rg is >C(H)- β -OH, and Z" is >CH2. 9. The compound of Claim 1, wherein:

 R_b and R_o are H, R_a is NHC₂H₅ Z' is >C-OH, >C-R_g is >C(H)- β -OH, and Z'' is >CH₂.

10. The compound of Claim 1, wherein:

 R_b and R_0 are H, R_a is NHCOCH3 Z' is >C-OH, >C-Rg is >C(H)- β -OH, and Z'' is >CH2.

The compound of Claim 1, wherein :

 R_b and R_0 are H, R_a is OC2H5 Z^{\prime} is >C-OH, >C-Rg is >C(H)-\$-OH, and $Z^{\prime\prime}$ is >C=O.

12. The compound of Claim 1, wherein :

 R_b and R_o are H, R_a is OC₂H₅ Z' is >C-OH, >C-Rg is >C(H)-\$-OH, and Z'' is >OH.

13. The compound of Claim 1, wherein:

 R_b and R_O are H, R_a is OC_2H_5 Z' is >C-OH, $>C-R_g$ is >C(H)- β -OH, and Z'' is >C=NOH.

14. The compound of Claim 1, wherein:

 R_b and R_o are H, R_a is OC₂H₅ Z' is >C-OH, >C-R_g is >C(H)-\$-OH, and Z" is >C=NOCH₃.

15. A method of inhibiting angiogenesis comprising administeriung to an endothelial cell an angiogenesis inhibiting amount of a compound of the general formula:

wherein:

- a) R_b and R_o are independently -H, -Cl, -Br, -I, -F, -CN, lower alkyl, -OH, -CH₂-OH, -NH₂; or N(R_b)(R_f), wherein R_b and R_f are independently hydrogen or an alkyl or branched alkyl with up to 6 carbons;
- b) R_a is -N3, -C \equiv N, -N3, -C \equiv C R, -C=CH-R, -R-C=CH2, -C \equiv CH, -O-R, -R-R1, or -O-R-R1 where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R1 is -OH, -NH2, -Cl, -Br, -I, -F or CF3;
- c) Z' is >CH, >COH, or >C-R₂-OH, where R₂ is an alkyl or branched alkyl with up to 10 carbons or aralkyl;
- d) >C-Rg is >CH2, >C(H)-OH, >C=O, >C=N-OH, >C(R3)OH, >C=N-OR3, >C(H)-NH2, >C(H)-NHR3, >C(H)-NR3R4, or >C(H)-C(O)-R3, where each R3 and R4 is independently an alkyl or branched alkyl with up to 10 carbons or aralkyl; and
- e) Z" is >CH2, >C=O, >C(H)-OH, >C=N-OH, >C=N-OR5, > C(H)-C \equiv N, or >C(H)-NR5R5, wherein each R5 is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl.
- 16. The method of Claim 15, wherein:

 R_b and R_0 are H, R_a is $-C \equiv C - CH_3$ Z' is >C-OH, $>C-R_g$ is >C(H)-B-OH, and Z'' is $>CH_2$. 17. The method of Claim 15, wherein:

 R_b and R_0 are H, R_a is OCH_2CF_3 Z^* is >C-OH, $>C-R_g$ is >C(H)-B-OH, and Z^* is >C=O.

18. The method of Claim 15, wherein:

 R_b and R_O are H, R_a is OCH₂CF₃ Z' is >C-OH, >C-Rg is >C(H)- β -OH, and Z'' is >C=NOH.

19. The method of Claim 15, wherein:

 R_b and R_o are H, R_a is OC₂H₅ Z' is >C-OH, >C-R_g is >C(H)- $\mbox{\&}$ -OH, and Z" is >CH₂.

20. The method of Claim 15, wherein:

 R_b and R_0 are H, R_a is OCH₂CF₃ Z' is >C-OH, >C-R_g is >C(H)- β -OH, and Z" is >CH₂.

21. The method of Claim 15, wherein:

 R_b and R_0 are H, R_a is $CH=CH_2$ Z' is >C-OH, $>C-R_g$ is >C(H)-B-OH, and Z'' is $>CH_2$.

22. The method of Claim 15, wherein:

R_b and R_o are H, R_a is E-CH=CHCH3 Z' is >C-OH, >C-R_g is >C(H)-\(\beta\)-OH, and Z" is >CH₂.

23. The method of Claim 15, wherein:

 R_b and R_o are H, R_a is NHC_2H_5 Z' is >C-OH, $>C-R_g$ is $>C(H)-\beta-OH$, and Z'' is $>CH_2$.

24. The method of Claim 15, wherein:

 R_b and R_0 are H, R_a is NHCOCH₃ Z' is >C-OH, >C-R_g is >C(H)- β -OH, and Z'' is >CH₂.

25. The method of Claim 15, wherein:

 R_b and R_0 are H, R_a is OC_2H_5 Z' is >C-OH, $>C-R_g$ is $>C(H)-\beta-OH$, and Z'' is >C=O.

26. The method of Claim 15, wherein:

 R_b and R_o are H, R_a is OC_2H_5 Z' is >C-OH, $>C-R_g$ is $>C(H)-\beta-OH$, and Z'' is >OH.

The method of Claim 15, wherein :

 R_b and R_o are H, R_a is OC₂H₅ Z' is >C-OH, >C- R_g is >C(H)-\$-OH, and Z'' is >C=NOH.

28. The method of Claim 15, wherein:

 R_b and R_0 are H, R_a is OC_2H_5 Z' is >C-OH, $>C-R_g$ is $>C(H)-\beta-OH$, and Z'' is $>C=NOCH_3$.