Contents

1.	Outline	2
2.	Outline of Class Field Theory	2
2.1.	. Local Fields	2
2.2.	. Local Class Field Theory	3
2.3.	. Weil group of F	4
2.4.	. Relative Weil groups	5
2.5.	. Global Class Field Theory	5
2.6.	. Adeles and Ideles	5

1. Outline

- (1) Outline of class field theory
- (2) Abelian *L*-functions (Hecke, Tate)
- (3) Non-abelian L-functions (Weil-Deligne group, local L- and ϵ factors)
- (4) Local Langlands program for GL_n
- (5) Global: automorphic forms and representations

2. Outline of Class Field Theory

This is the study of abelian extensions of local/global fields. We first fix some notation. If K is a field, \overline{K} will be a separable closure of K. Also, $\Gamma_K = \operatorname{Gal}(\overline{K}/K) = \varprojlim_{L/Kfinite} \operatorname{Gal}(L/K)$ (inverse limit). Then this is a profinite group with the Krull topology. Galois theory gives us two bijections:

- (1) Closed subgroups of Γ_K with subfields $K \subset L \subset \overline{K}$
- (2) Open subgroups correspond to finite extensions L/K

We'll also write $K^{\rm ab}\subset \overline{K}$ for the maximal abelian subextension. Then ${\rm Gal}(K^{\rm ab}/K)=\Gamma_K^{\rm ab}=\Gamma_K/\overline{[\Gamma_K,\Gamma_K]}$. Note that \overline{K} is unique up to a (non-unique) isomorphism. So Γ_K is well-defined up to conjugation, and $\Gamma_K^{\rm ab}$ is well-defined.

2.1. **Local Fields.** At the moment, let F be a non-archimedean local field (finite extension of \mathbb{Q}_p or Laurent series in one variable over a finite field). This has a normalized valuation $v = v_F : F^{\times} \to \mathbb{Z}$. Then we get a valuation ring $\mathcal{O} = \mathcal{O}_F$, also the ring of integers. Pick a uniformizer $\pi = \pi_F$ ($v(\pi) = 1$). Then let $k = k_F$ be the residue field, isomorphic to \mathbb{F}_q , where $q = p^r$.

Within $\overline{F} \subset F^{ab} \subset F^{ur}$, the maximal unramified extension of F. Within Γ_F we have $I_F = \operatorname{Gal}(\overline{F}/F^{nr})$, and within that P_F the wild inertia group (maximal proper subgroup of I_F).

Now to describe the first layer, which tells us about unramified extensions. Then we have an isomorphism

$$\Gamma_F/I_F \xrightarrow{\sim} \operatorname{Gal}(\overline{k}/k) \xrightarrow{\sim} \hat{\mathbb{Z}}$$

given by reduction modulo π . Inside the Galois group we have $\varphi_q: x \mapsto x^q$, the arithmetic Frobenius map. It results in infinite confusion to send $1 \mapsto \varphi_q$, so it's standard to take $\operatorname{Frob}_q := \varphi_q^{-1}$, called the geometric Frobenius. We fix the isomorphism $\operatorname{Gal}(\overline{k}/k) \stackrel{\sim}{\longrightarrow} \hat{\mathbb{Z}}$ so that $\operatorname{Frob}_q \mapsto 1$.

Now to describe the second layer (the group I_F/P_F), which tells us about tamely ramified extensions. Fix $\pi_n \in \overline{F}$ with $\pi_n^n = \pi$. Define

$$t(n): I_F = \operatorname{Gal}(\overline{F}/F^{\operatorname{ur}}) \to \mu_n(\overline{k}),$$

for (n, p) = 1, sending

$$\gamma \mapsto \gamma(\pi_n)/\pi_n \pmod{\pi}$$
.

Now this is the tame mod n character, and doesn't actually depend on all the choices we made and is a homomorphism $I_F \to \mu_n(\overline{k})$. Assembling all of these together, we obtain a map

$$I_F \to \varprojlim_{(n,p)=1} \mu_n(\overline{k}) = \prod_{l \neq p} \varprojlim_{m \geq 1} \mu_{l^m}(\overline{k}) = \mathbb{Z}_l(1)(\overline{k}),$$

and this last one is called the Tate module of \overline{k}^{\times} . Each of these is isomorphic to \mathbb{Z}_l but not canonically so. The kernel \hat{t} of this map is $\prod_{l\neq p} t_l = P_F$. Equivalently, the maximal tamely ramified extension of F is

$$\bigcup_{(n,p)=1} F^{\rm nr}(\sqrt{n}\pi),$$

which is also just Kummer theory.

Remark 2.1. This t(n) extends to a map $\Gamma_F \to \mu_n$, given by the same formula, although it is not a homomorphism. Explicitly,

$$t(n)(\gamma\delta) = \gamma\delta(\pi_n)/\pi_n = \gamma(\pi_n)/\pi_n\gamma(\frac{\delta(\pi_n)}{\pi_n}) = t(n)(\gamma)\gamma(t(n)\delta) = t(n)(\delta),$$

where this last equality holds if $\gamma \in I_F$, but not in general. This means that t(n) is a 1-cocycle.

2.2. Local Class Field Theory. We'll now just state local class field theory. The first part is the following theorem.

Theorem 2.2. There is a unique family of continuous homomorphisms $\operatorname{Art}_F: F^{\times} \to \Gamma_F^{ab}$ with dense image, characterized by

- (1) $F^{\times} \to \operatorname{Art}_F\Gamma_F^{ab}$ surjects onto $\Gamma_F\mathcal{I}_F$ "uniformizers map to geometric Frobenius" (see photo)
- (2) Often called the base-change property: (see other photo)

The second part is the existence theorem.

Theorem 2.3. The inverse of the Artin map $\operatorname{Art}_F^{-1}$ induces a bijection between open subgroups of Γ_F^{ab} (finite abelian extensions of F) and open subgroups of F^{\times} of finite index.

The final part is that if $F = \mathbb{Q}_p$, then for $x = p^n y \in \mathbb{Q}_p^{\times}$, $y \in \mathbb{Z}_p^{\times}$. Then

$$F^{\mathrm{ab}} = \mathbb{Q}_p(\mu_\infty) = \bigcup \mathbb{Q}_p(\mu_n) = \mathbb{Q}_p^{\mathrm{nr}}(\mu_\infty).$$

Then

$$\operatorname{Art}_{\mathbb{Q}}(x)\big|_{\mathbb{Q}_p^{\operatorname{nr}}} = \operatorname{Frob}_p^n,$$

and

$$\operatorname{Art}_{\mathbb{Q}}(x)\big|_{\mathbb{Q}_p^{\operatorname{nr}}} = (\zeta_{p^n} \mapsto \zeta_{p^n}^y \pmod{p^n}).$$

On the level of finite extensions, you can rephrase the first theorem as: for E/F a finite Galois extension, we get $\operatorname{Art}_{E/F}: F^{\times}/N_{E/F}(E^{\times}) \stackrel{\sim}{\longrightarrow} \operatorname{Gal}(E/F)^{\operatorname{ab}}$.

Finally, we note that Art_F induces an isomorphism

$$\mathcal{O}_F \simeq \operatorname{im} (I_F \to \Gamma_F^{\operatorname{ab}}),$$

which sends

$$(1 + \pi \mathcal{O}_F)^{\times} \xrightarrow{\sim} \operatorname{im} (P_F \to \Gamma_F^{\operatorname{ab}}).$$

Also, this is funtorial, namely if $F \simeq F'$, and extend it to an isomorphism $\overline{F} \simeq \overline{F'}$, which induces an isomorphism $\Gamma_F \simeq \Gamma_{F'}$ up to conjugacy, calling the abelianization of this isomorphism $\alpha_*^{\rm ab}$, then

$$\alpha_*^{\mathrm{ab}} \circ \mathrm{Art}_F = \mathrm{Art}_{F'} \circ \alpha_*^{\mathrm{ab}}.$$

2.3. Weil group of F. There is also a topological group W_F (not profinite). Here we take F to be a non-archimedean local field. It's related to the Galois group by the following. As an abstract group,

$$W_F = \{ \gamma \in \Gamma_F \mid \exists n \in \mathbb{Z}, \ \gamma \big|_{F^{\text{nr}}} = \text{Frob}_q^n \}.$$

This contains I_F . To topologize it, we dictate that I_F is an open subgroup with profinite topology. So W_F is a fibred product of topological groups.

(see photo)

We now give some motivation for this group. Then Art_F induces an isomorphism of topological groups

$$\operatorname{Art}_F^W: F^{\times} \xrightarrow{\sim} W_F^{\operatorname{ab}}.$$

Then note that

$$\operatorname{Art}_F: \mathcal{O}_F^{\times} \stackrel{\sim}{\longrightarrow} \operatorname{inertial subgroup of} \Gamma_F^{\operatorname{ab}}$$

 $F^{\times}/\mathcal{O}_F^{\times} \simeq \mathbb{Z} \to \operatorname{Gal}(F^{\operatorname{nr}}/F).$

Now a comment on the proofs. There are two main proofs.

(a) Cohomological, see Artin-Tate, Cassels-Frohlich. For E/F finite and Galois, we want to show that

$$\operatorname{Art} E/F : F^{\times}/N_{E/F}E^{\times} \xrightarrow{\sim} \operatorname{Gal}(E/F)^{\operatorname{ab}}.$$

It proceeds by noting that the left-hand side has a group-cohomological interpretation, i.e. as $\hat{H}^0(G, E^\times)$ where the hat refers to Tate cohomology. Then we have that for $G = \operatorname{Gal}(E/F)$, $G^{\operatorname{ab}} = H_1(G, \mathbb{Z}) = \hat{H}^{-2}(G, \mathbb{Z})$. The main step is then to show that $H^2(G, E^\times) = \hat{H}^2(G, E^\times) \simeq \frac{1}{n}\mathbb{Z}/\mathbb{Z} \subset \mathbb{Q}/\mathbb{Z} = H^2(\Gamma_F, \overline{F}^\times)$, the Brauer group $\operatorname{Br}(F)$ of F. Then define $\operatorname{Art}_{E/F}^{-1}$ to be the product with geneartor of $\hat{H}^2(G, E^\times)$, which is a map $\hat{H}^{-2}(G, \mathbb{Z}) \to \hat{H}^0(G, E^\times)$. It is then rather formal that this is an isomorphism, and a bonus is that it generalizes to duality theorems, where one looks at $H^*(G, M)$ for some arbitrary G-module M. One issue however is that it is not very explicit, and very much tied to abelian extensions.

- (b) The other approach is with formal groups. Recall that $\mathbb{Q}_p^{ab} = \mathbb{Q}_p^{nr}(\mu_{p^{\infty}}) = \mathbb{Q}_p^{nr}(torsionin\hat{\mathbb{G}}_m)$, where $\hat{\mathbb{G}}_m$ is roughly $(1+\mathfrak{p}_{\overline{\mathbb{Q}_p}})^{\times} \supset \mu_{p^{\infty}}$. This generalizes to any F/\mathbb{Q}_p , $F^{ab} = F^{nr}(torsionin\mathcal{G}_{\pi})$, where \mathcal{G}_{π} is the "Lubin-Tate formal group." Reference for this is Iwasawa, and a paper on LCFT by T. Yoshida. The advantage of this is that it is explicit and gives both Artin map and existence theorem. It has a natural generalization to non-abelian extensions. The downside is that it doesn't give the duality theorems.
- (c) Finally, there is also Neukirch's method. Take E/F abelian and finite. Neukirch's idea is that for $g \in \operatorname{Gal}(E/F)$, there is only one possibility for $\operatorname{Art}_{E/F}^{-1}(g) \in F^{\times}/N_{E/F}E^{\times}$, due to the following lemma. There is only one possibility because if we look at $\langle g \rangle = \operatorname{Gal}(E/F') \subset \operatorname{Gal}(E/F)$ cyclic,
 - **Lemma 2.4.** There exists a finite K/F' such that $K \cap E = F'$, so $Gal(KE/K) \simeq \langle g \rangle$, and KE/K is unramified, and we have the diagram in the photo. So we have to have $g'|_E = g = \operatorname{Frob}_{KE/K}^a$, and $\operatorname{Art}_{KE/K}^{-1}(g') = \pi_K^a \pmod{N_{KE/K}(KE^\times)}$. Hence $\operatorname{Art}_{E/F}^{-1}(g) = N_{K/F}(\pi_K^a) \pmod{N_{E/F}(E^\times)}$.

The problem is to show that this doesn't depend on choices and is a homomorphism. But so far we haven't used any number theory, and it's these last two steps that involves the number theory.

For completeness, we should also describe the archimedean setting. If F is the complex numbers, then $W_{\mathbb{C}} = \mathbb{C}^{\times}$, and $\operatorname{Art}_{\mathbb{C}}^{W}$ is the identity map on \mathbb{C} . If F is the real numbers, then $\operatorname{Art}_{F}: \mathbb{R}^{\times} \to \operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \mathbb{Z}/2\mathbb{Z}$. Then $W_{\mathbb{R}} = \langle \mathbb{C}^{\times}, \sigma \mid \sigma^{2} = -1 \in \mathbb{C}^{\times}, \sigma z \sigma^{-1} = \overline{z} \forall z \in \mathbb{C}^{\times} \rangle$. Thus we have the s.e.s.

$$1 \to \mathbb{C}^{\times} \to W_{\mathbb{R}} \to \Gamma_{\mathbb{R}} \to 1$$

where we send $z \mapsto 0, \sigma \mapsto 1$. Then $\left(\operatorname{Art}_{\mathbb{R}}^{W}\right)^{-1}: W_{\mathbb{R}}^{\operatorname{ab}} \xrightarrow{\sim} \mathbb{R}^{\times}$ by taking $z \mapsto z\overline{z}, \sigma \mapsto -1$. While these look ad-hoc, they are not.

2.4. Relative Weil groups. Suppose we took F non-archimedean, E/F Galois. Define

$$W_{E/F} = \{ \gamma \in \operatorname{Gal}(E^{\operatorname{ab}}/F) \mid \gamma \big|_{F^{\operatorname{nr}}} = \operatorname{Frob}_q^n, n \in \mathbb{Z} \} = W_F / \overline{[W_E, W_E]},$$

topologized with quotient topology. Then $W_{\overline{F}/F} = W_F$ and $W_{F/F} \simeq F^{\times}$ by local class field theory. Now take E/F finite. Then we have

$$1 \to \operatorname{Gal}(E^{\operatorname{ab}}/E) \to \operatorname{Gal}(E^{\operatorname{ab}}/F) \to \operatorname{Gal}(E/F) \to 1.$$
$$1 \to W_F^{\operatorname{ab}} \simeq E^{\times} \to W_{E/F} \to \operatorname{Gal}(E/F) \to 1.$$

So $\varprojlim E, \varprojlim \text{norm} E^{\times} = \{1\}$. So \overline{F}^{\times} is not visible in $W_F = \varprojlim W_{E/F}$. We get some equality in the short exact sequences if and only if element of

$$H^2(\operatorname{Gal}(E/F), E^{\times}) \simeq \frac{1}{n} \mathbb{Z}/\mathbb{Z}.$$

2.5. Global Class Field Theory. By K being a global field, we mean a number field or the function field of a smooth projective absolutely irreducible curve over a finite field. Let Σ_K be the set of places of K, and for a number field this can be split into $\Sigma_{K,\infty}$ the infinite places and Σ_K^{∞} the finite places, which are the embeddings into \mathbb{C} and the prime ideals of \mathcal{O}_K , respectively. For a function field, the places are parameterized by the closed points of C, which are also the orbits of $\overline{\mathbb{F}_q}$ under the action of $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$. Now if we have $v \in \Sigma_K$ we can consider the inclusion $K \hookrightarrow K_v$. Sometimes it's convenient to write $v \mid \infty$ to indicate that $K_v = \mathbb{R}$ or \mathbb{C} . If $v \in \Sigma_K^{\infty}$ then write \mathcal{O}_v for the valuation ring of the completion.

It's convenient to normalize absolute values associated to these valuations. There are two different ways to normalize over p-adic fields. Suppose v is non-archimedean, then we have for π_v a uniformizer, $K_v \supset \mathcal{O}_v \supset \pi_v \mathcal{O}_v$, and let $q_v = |\mathcal{O}_v/\pi_v \mathcal{O}_v|$. Then the normalized absolute value associated to v is $|x|_v = q_v^{-v(x)}$. When v is real, we take $|x|_v = |x|$. When v is complex, we take $|x|_v = x\overline{x}$. Ultimately, the reason we choose these valuations is that if $x \in K^{\times}$, then

$$\prod_{v \in \Sigma_K} |x|_v = 1.$$

2.6. Adeles and Ideles. We write \mathbb{A}_K for the restricted tensor product over all places of K. The restricted means that for all but finitely many $v \in \Sigma_K^{\infty}$, an element $(x_v)_v$, $x_v \in \mathcal{O}_v$. This is so that \mathbb{A}_K is locally compact, and \mathbb{Q} is actually discrete inside \mathbb{A}_K . Alternative notations for this are

(1) $K_{\infty} \times \hat{K}$, where $K_{\infty} = \mathbb{A}_{K,\infty} = \prod_{v \mid \infty} K_v = K \otimes_{\mathbb{Q}} \mathbb{R} = \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$, or nothing if char K > 0. Also, $\hat{K} = \mathbb{A}_K^{\infty} = \sum_{v \mid \infty}' K_v = \bigcup_{S \subset \Sigma_K^{\infty}, |S| < \infty} \prod_S K_v \times \prod_{v \in \Sigma_K^{\infty}} {}_S \mathcal{O}_v$. Within this, $\hat{\mathcal{O}}_K = \prod_{v \mid \infty} \mathcal{O}_v$, which is the completion of \mathcal{O}_K is the number field case. More precisely,

$$\hat{\mathcal{O}_K} = \varprojlim_{\mathfrak{a}} \mathcal{O}_K/\mathfrak{a} = \varprojlim_N \mathcal{O}_K/N\mathcal{O}_K = \mathcal{O}_K \otimes_{\mathbb{Z}} \hat{\mathbb{Z}}.$$

(2) $\mathbb{A}_{K,\infty} \times \mathbb{A}_K^{\infty}$.

The ideles, or $J_K = \mathbb{A}_K^{\times} = \prod_{v=1}^{r} K_v^{\times}$, where almost every entry is in \mathcal{O}_v^{\times} .

The topology on the adeles is taken so that $K_{\infty} \times \hat{\mathcal{O}}_K$ to be open with the product topology. The topology on the ideles is given in the same way, by taking $K_{\infty}^{\times} \times \hat{\mathcal{O}}_K^{\times}$ to be open with the product topology. However, this topology on J_K is not the induced topology given by the inclusion. It is actually the one indued from taking $J_K \hookrightarrow \mathbb{A}_K \times \mathbb{A}_K$ taking $x \mapsto (x, x^{-1})$. This is similar in how we make GL_n an affine variety.

A basic fact is that $K^{\times} \subset J_K$ is a discrete subgroup, and the idele class group is $C_K = J_K/K^{\times}$. This comes with a continuous homomorphism

$$|\cdot|_{\mathbb{A}_K}:(x_v)_v\mapsto\prod_{v\in\Sigma_K}|x_v|_v,$$

which defines a map $|\cdot|_{\mathbb{A}}: C_K \to \mathbb{R}_{>0}^{\times}$, with *compact* kernel! This is the conjunction of two theorems: finiteness of the class number and Dirichlet's unit theorem.

Let's look at $K = \mathbb{Q}$ and $J_{\mathbb{Q}} = \mathbb{R}^{\times} \times \prod_{p}' \mathbb{Q}_{p}^{\times}$. Then there exists a unique $y \in \mathbb{Q}^{\times}$ such that $\operatorname{sgn}(y) = \operatorname{sgn}(x_{\infty})$ and for all $p, v_{p}(y) = v_{p}(x_{p})$. We can actually write $J_{\mathbb{Q}} = \mathbb{Q}^{\times} \times (\mathbb{R}_{>0}^{\times} \times \prod_{p} \mathbb{Z}_{p}^{\times})$, which the product of a discrete and locally compact, so

$$C_{\mathbb{O}} = \mathbb{R}^{\times}_{>0} \times \hat{\mathbb{Z}}^{\times} = \mathbb{R}^{\times}_{>0} \times \ker |\cdot|_{\mathbb{A}}.$$

Now $C_{\mathbb{Q}} \supset \mathbb{R}_{>0}^{\times}$ is the maximal connected subgroup and the intersection of all open subgroups containing 1. The other piece is totally disconnected as it's profinite. Also, $\pi_0(C_K) = C_K/C_K^0$, so $\pi_0(C_{\mathbb{Q}}) = \hat{\mathbb{Z}}^{\times} \simeq \operatorname{Gal}(\mathbb{Q}(\{\mu_n\}_n)/\mathbb{Q})$. So global class field theory is just a generalization of this to all number fields.

We elaborate on this remark. For L/K finite Galois, v a place of K, place w|v of L (for infinite places this just means that $L \hookrightarrow L_w = \mathbb{R}$ or \mathbb{C} extends $K \hookrightarrow K_v$. Then we have the decomposition group

$$\operatorname{Gal}(L_w/K_v) \subset \operatorname{Gal}(L/K).$$

If L/K is abelian, this depends only on v. Now we can define the global Artin map

$$\operatorname{Art}_{L/K}: J_K \to \operatorname{Gal}(L/K),$$

if L/K is abelian. Note that if $x_v \in \mathcal{O}_v^{\times}$, where L/K is unramified at $v \in \Sigma_K^{\infty}$, then $\operatorname{Art}_{L_w} K_v(x_v) = 1$. So we can define for an arbitrary idele,

$$\operatorname{Art}_{L/K}((x_v)_v) = \prod_v \operatorname{Art}_{L_w/K_v}(x_v).$$

Now if we pass to the limit over L/K, we get

$$\operatorname{Art}_K: J_K \to \Gamma_K^{\operatorname{ab}}.$$

As an exercise, check continuity of these maps.

Then we have the following

Theorem 2.5 (Artin Reciprocity). $\operatorname{Art}_K(K^{\times}) = \{1\}$, so defines a map $\operatorname{Art}_K : C_K \to \Gamma_K^{\operatorname{ab}}$.

Something about something being profinite, so this can't be an isomorphism of topological groups. So we need to look at kernel and image.