ENGR 507 (Spring 2025) S. Alghunaim

13. Neural networks

- introduction
- single-neuron training
- the backpropagation algorithm

Neural network success

neural networks have found tremendous success in many real life applications such as

- · speech recognition
- image classifications
- · recommendations systems
- cancer cell detection
- · ...etc

Neuron

an *artificial neural network* is a system composed of interconnected simple subsystems called *neurons*

neuron symbol:

- the output of the neuron is a function of the sum of the inputs
- ullet the function f at the output is called the *activation function*

Single-neuron output

the output of a single-neuron can be represented by the map from $\mathbb{R}^n \to \mathbb{R}$:

$$y = f\left(\sum_{i=1}^{n} w_i x_i\right) = f(x^T w) \tag{13.1}$$

- *f* is the activation function
- ullet w_i is the weight multiplied by input x_i
- $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ the vector of inputs
- $w = (w_1, \dots, w_n) \in \mathbb{R}^n$ is the vector of weights

Activation functions

- *Linear* (no activation): f(v) = v
- Softplus:

$$f(v) = \log(1 + e^v)$$

• Sigmoid or logistic, soft step:

$$f(v) = \frac{1}{1 + e^{-v}}$$

Binary step:

$$f(v) = \begin{cases} 0 & v \le 0 \\ 1 & v > 0 \end{cases}$$

• Rectified linear unit (ReLU):

$$f(v) = \begin{cases} 0 & v \le 0 \\ v & v > 0 \end{cases}$$

Feedforward neural network

in a *feedforward neural network*, the neurons are interconnected in layers and the data flow in only one direction

- the first layer in the network is called the *input layer*
- the last layer is called the output layer
- the layers in between the input and output layers are called *hidden layers*

Training a neural network

- a neural network is a mapping from \mathbb{R}^n to \mathbb{R}^m , where n is the number of inputs x_1, \ldots, x_n and m is the number of outputs y_1, \ldots, y_m
- suppose that we are given a map $F:\mathbb{R}^n\to\mathbb{R}^m$ that we wish to approximate by a given neural network
- then, a neural network woth apprpiate weights our task boils down to selecting the
 interconnection weights in the network appropriately; this task is referred to as
 training of the neural network or learning by the neural network
- input-output data of the given map are used to train the neural network
- we train the neural network by adjusting the weights such that the map that is implemented by the network is close to the desired map F

Outline

- introduction
- single-neuron training
- the backpropagation algorithm

Single neuron training

- we wish to find the value of the weights w_1, \ldots, w_n such that the neuron approximates a given map $F : \mathbb{R}^n \to \mathbb{R}$ map F as closely as possible
- we are given a training set consisting of p pairs $\left\{\left(x_{d,1},y_{d,1}\right),\ldots,\left(x_{d,p},y_{d,p}\right)\right\}$, where $x_{d,i}\in\mathbb{R}^n$ and $y_{d,i}\in\mathbb{R},i=1,\ldots,p$
- for each $i, y_{d,i} = F\left(x_{d,i}\right)$ is the "desired" output corresponding to the given input $x_{d,i}$

Optimization formulation

$$\label{eq:minimize} \text{minimize} \quad (1/2) \sum_{i=1}^p \left(y_{d,i} - f(x_{d,i}^T w) \right)^2$$

- variable $w = (w_1, \dots, w_n) \in \mathbb{R}^n$
- ullet the choice of the method typically depends on the activation function f

Example: when f is the identity function, then the problem becomes

$$\text{minimize} \quad (1/2) \sum_{i=1}^{p} \left(y_{d,i} - x_{d,i}^T w \right)^2,$$

which is just a least squares problem:

minimize
$$(1/2)||y_d - x_d^T w||^2$$

where

$$x_d = \begin{bmatrix} x_{d,1} \cdots x_{d,p} \end{bmatrix} \in \mathbb{R}^{n \times p}$$
 and $y_d = (y_{d,1}, \dots, y_{d,p}) \in \mathbb{R}^p$

139

Outline

- introduction
- single-neuron training
- the backpropagation algorithm

Three-layered neural network

- n inputs x_i , $i = 1, \ldots, n$, and m outputs y_s , $s = 1, \ldots, m$
- I neurons in the hidden layer; the outputs of the neurons in the hidden layer are z_i , where $j = 1, \ldots, l$
- the inputs x_1, \ldots, x_n are distributed to the neurons in the hidden layer
- we let $f_i^h:\mathbb{R}\to\mathbb{R}$ denote the activation functions of the neurons in the hidden layer where $j=1,\ldots,l$, and f_s^o the activation functions of the neurons in the output layer by, where $s = 1, \ldots, m$

Mapping representation

given the hidden layers weights w^h_{ji} and the output layer weights w^o_{sj} , let us denote the input to the jth neuron in the hidden layer by v_j and the output of the jth neuron in the hidden layer by z_j ; then, we have

$$v_j = \sum_{i=1}^n w_{ji}^h x_i,$$
$$z_j = f_j^h \left(\sum_{i=1}^n w_{ji}^h x_i \right)$$

the output from the sth neuron of the output layer is

$$y_s = f_s^o \left(\sum_{j=1}^l w_{sj}^o z_j \right)$$

therefore, the relationship between the inputs x_i , $i=1,\ldots,n$, and the sth output y_s is given by

$$y_s = f_s^o \left(\sum_{j=1}^l w_{sj}^o f_j^h \left(v_j \right) \right)$$
$$= f_s^o \left(\sum_{j=1}^l w_{sj}^o f_j^h \left(\sum_{i=1}^n w_{ji}^h x_i \right) \right)$$
$$= F_s \left(x_1, \dots, x_n \right)$$

the overall mapping that the neural network implements is therefore given by

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} F_1(x_1, \dots, x_n) \\ \vdots \\ F_m(x_1, \dots, x_n) \end{bmatrix}$$

Training the neural network

- we are given the training set (x_d, y_d) , where $x_d \in \mathbb{R}^n$ and $y_d \in \mathbb{R}^m$
- the training of the neural network involves adjusting the weights of the network such that the output generated by the network for the given input
 x_d = (x_{d1},...,x_{dn}) is as close to y_d as possible

The training problem

minimize
$$(1/2) \sum_{s=1}^{m} (y_{ds} - y_s)^2$$

- y_s , s = 1, ..., m, are the outputs of the neural network from the inputs $x_{d1}, ..., x_{dn}$
- this minimization is taken over

$$w = \left\{ w_{ji}^h, w_{sj}^o : i = 1, \dots, n, j = 1, \dots, l, s = 1, \dots, m \right\}$$

the neural network requires minimizing the objective function

$$E(w) = (1/2) \sum_{s=1}^{m} (y_{ds} - y_s)^2$$

$$= (1/2) \sum_{s=1}^{m} \left(y_{ds} - f_s^o \left(\sum_{j=1}^{l} w_{sj}^o f_j^h \left(\sum_{i=1}^{n} w_{ji}^h x_{di} \right) \right) \right)^2.$$

- we can solve using the gradient method with stepsize η
- doing so leads to the backpropagation algorithm

The back-propagation algorithm

$$\begin{split} w_{sj}^{o(k+1)} &= w_{sj}^{o(k)} + \eta \delta_s^{(k)} z_j^{(k)} \\ w_{ji}^{h(k+1)} &= w_{ji}^{h(k)} + \eta \left(\sum_{p=1}^m \delta_p^{(k)} w_{pj}^{o(k)} \right) f_j^{h'} \left(v_j^{(k)} \right) x_{di} \end{split}$$

where η is the (fixed) step size and

$$\begin{aligned} v_j^{(k)} &= \sum_{i=1}^n w_{ji}^{h(k)} x_{di} \\ z_j^{(k)} &= f_j^h \left(v_j^{(k)} \right) \\ y_s^{(k)} &= f_s^o \left(\sum_{q=1}^l w_{sq}^{o(k)} z_q^{(k)} \right) \\ \delta_s^{(k)} &= \left(y_{ds} - y_s^{(k)} \right) f_s^{o'} \left(\sum_{q=1}^l w_{sq}^{o(k)} z_q^{(k)} \right) \end{aligned}$$

- the reason for the name backpropagation is that the output errors $\delta_1^{(k)}, \ldots, \delta_m^{(k)}$ are propagated back from the output layer to the hidden layer
- and are used in the update equation for the hidden layer weights
- forward pass of the algorithm: using the inputs x_{di} and the current set of weights, we first compute the quantities $v_j^{(k)}, z_j^{(k)}, y_s^{(k)}$, and $\delta_s^{(k)}$, in turn
- reverse pass of the algorithm: compute the updated weights using the quantities computed in the forward pass

References and further readings

• E. K.P. Chong, Wu-S. Lu, and S. H. Zak. *An Introduction to Optimization: With Applications to Machine Learning*. John Wiley & Sons, 2023. (ch 13)

references SA FIGRS07 13.17