## Modelos estocásticos de circuitos genéticos

Luis Alberto Gutiérrez López

Director: Juan Manuel Pedraza Leal

Universidad de los Andes Departamento de Física

Mayo 23, 2016

#### Introducción

Ecuación maestra Ecuación de Langevin División celular Conclusiones Referencias Expresión genética Circuitos genéticos Ruido en circuitos genéticos Motivaciones para el estudio del ruido





#### Introducción

Ecuación maestra Ecuación de Langevin División celular Conclusiones Referencias

Expresión genética
Circuitos genéticos
Ruido en circuitos genéticos
Motivaciones para el estudio del ruid





Tomado de phages.org.



Arkin y col. (1998).

- ► Fluctuaciones aleatorias en expresión genética.
- ► En transcripción y traducción: Colisiones aleatorias entre moléculas que se encuentran en bajo número (Intrínseco). Para *E. coli* en promedio

$$\langle r 
angle_s pprox 5$$
 ARNs  $\langle p 
angle_s pprox 3000$  proteínas

 Otros factores como la división celular y la variablidad del ambiente (Extrínseco).

$$\eta_X = \frac{\sigma_X}{\langle X \rangle}.$$

$$\nu_X = \frac{\sigma_X^2}{\langle X \rangle}.$$

Expresión genética Circuitos genéticos Ruido en circuitos genéticos Motivaciones para el estudio del ruido

▶ Los efectos del ruido son muy notorios.



Elowitz y col. (2002).

#### Introducción

Ecuación maestra Ecuación de Langevin División celular Conclusiones Referencias Expresión genética Circuitos genéticos Ruido en circuitos genéticos Motivaciones para el estudio del ruido

### ► Estrategias ante el ruido

#### Robustez



Embrión de *D. melanogaster* (mosca de la fruta). Tomado de: https://en.wikipedia.org/wiki/Drosophila\_embryogenesis.

#### Variabilidad



Alberts y col. (2008).



$$\dot{r}(t) = k_R - \gamma_R r(t).$$
  
 $\dot{p}(t) = k_P r(t) - \gamma_P p(t).$ 

$$(r,p+1)$$

$$(r-1,p) \xrightarrow{k_R d} (r,p+1)$$

$$k_p r \downarrow \gamma_p (p+1)$$

$$k_p r \downarrow \gamma_p r$$

$$k_p r \downarrow \gamma_p r$$

$$(r,p-1)$$

$$\frac{df_{r,p}}{dt} = k_R f_{r-1,p} - k_R f_{r,p} 
+ k_P r f_{r,p-1} - k_P r f_{r,p} + \gamma_R (r+1) f_{r+1,p} 
- \gamma_R r f_{r,p} + \gamma_P (p+1) f_{r,p+1} - \gamma_P p f_{r,p}.$$

#### **Promedio**

# $\langle r \rangle = \frac{k_R}{\gamma_R}.$

$$\langle p \rangle = \frac{k_R b}{\gamma_P}.$$

$$b := \frac{k_P}{\gamma_P}$$

#### Ruido

$$\nu_r = \frac{\sigma_r^2}{\langle r \rangle} = 1.$$

$$u_p = \frac{\sigma_p^2}{\langle p \rangle} = \frac{b}{1+\eta} + 1 \approx b + 1.$$

$$b \coloneqq \frac{k_P}{\gamma_R}, \quad \eta \coloneqq \frac{\gamma_P}{\gamma_R}.$$

#### Las ecuaciones

$$\dot{r}(t) = k_r - \gamma_r r(t),$$
  

$$\dot{p}(t) = k_p r(t) - \gamma_p p(t),$$

pueden ser escritas como

$$\dot{\mathbf{q}} = (A - \Gamma)\mathbf{q}$$
.

Donde  $\mathbf{q}^T := (d, r, p)$  y

$$A := \begin{pmatrix} (d) & (r) & (p) & & & (d) & (r) & (p) \\ 0 & 0 & 0 & 0 \\ k_R & 0 & 0 \\ 0 & k_P & 0 \end{pmatrix}, \qquad \Gamma := \begin{pmatrix} (d) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \gamma_P \end{pmatrix}.$$

Se puede realizar en general. Si  $\mathbf{q}^T \coloneqq (q_1, q_2, \dots, q_n)$ , la ecuación maestra queda

$$\dot{f} = \sum_i \sum_j \left[ \left( A_{ij} q_j 
ight) \left( f_{q_{i-1}} - f_{q_i} 
ight) 
ight] + \Gamma_{ii} (q_i + 1) f_{q_{i+1}} - \Gamma_{ii} q_i f_{q_i}.$$

Al realizar todo el procedimiento obtenemos en estado estacionario

$$(\mathbf{A} - \mathbf{\Gamma}) \langle \mathbf{q} \rangle = 0.$$

$$\begin{split} \mathbf{0} &= \left( \left( \mathbf{\Gamma} - \mathbf{A} \right) \nabla \nabla^T F|_1 - \mathbf{A} \Theta F|_1 \right) + \left( \left( \mathbf{\Gamma} - \mathbf{A} \right) \nabla \nabla^T F|_1 - \mathbf{A} \Theta F|_1 \right)^T, \\ \Theta_{ij} &:= \delta_{ij} \frac{\partial}{\partial z_i}. \end{split}$$





► Ecuación de Hill.

$$k_R = rac{k_R^{\mathsf{max}}}{1 + (p/K_d)^n}.$$

 Linearizar alrededor del promedio en estado estacionario.

$$k_R \approx k_0 - k_1 p$$
.

$$A = \begin{pmatrix} 0 & 0 & 0 \\ k_0 & 0 & -k_1 \\ 0 & k_P & 0 \end{pmatrix}.$$

#### Promedio

$$\langle p \rangle = \frac{1}{1 + b\phi} \cdot \frac{k_0 b}{\gamma_p}$$

$$u_p = rac{1-\phi}{1+b\phi}\cdotrac{b}{1+\eta}+1.$$

$$b \coloneqq \frac{k_P}{\gamma_R}, \quad \eta \coloneqq \frac{\gamma_P}{\gamma_R}, \quad \phi \coloneqq \frac{k_1}{\gamma_P}.$$



Ec. de Langevin - Gen 0 Ec. de Langevin - Gen 1 Distintas fuentes de ruido y su propagació Ganancia logarítmica Ruidos y correlaciones



#### Ecuación determinista con términos de ruido. Para el gen 0

$$\dot{p_0} = k - \gamma p_0 + \mu_0 + \xi_0.$$

Los términos de ruido cumplen:

$$\langle \mu_0 \rangle = \langle \xi_0 \rangle = 0,$$
  $\langle \mu_0(t) \mu_0(t+\tau) \rangle = 2\gamma (b_0+1) \bar{p_0} \delta(\tau),$   $\langle \xi_0(t) \xi_0(t+\tau) \rangle = 2\gamma \eta_G^2 \bar{p_0}^2 \delta(\tau),$   $\langle \mu_0(t) \xi_0(t+\tau) \rangle = 0.$ 

Luego de hacer el proceso:

$$\eta_0^2 = \frac{b_0 + 1}{\bar{p}_0} + \eta_G^2 := \eta_{0 \, \text{int}}^2 + \eta_G^2$$

Ahora para el gen 1

$$\dot{p_1} = f_1(p_0) - \gamma p_1 + \mu_1 + \xi_1$$

Además de las anteriores autocorrelaciones, hay que incluir:

$$\langle \xi_0(t)\xi_1(t+\tau)\rangle = 2\gamma \eta_G^2 \bar{\rho}_0 \bar{\rho}_1 \delta(\tau),$$
$$\langle \mu_0(t)\mu_1(t+\tau)\rangle = 0.$$

Se obtiene al final

$$\eta_1^2 = \eta_{1\, \mathrm{int}}^2 + rac{1}{2}H_{10}^2\eta_{0\, \mathrm{int}}^2 + \eta_G^2\left(1 + rac{1}{2}H_{10}^2 - H_{10}
ight)$$

Ec. de Langevin - Gen 0 Ec. de Langevin - Gen 1 Distintas fuentes de ruido y su propagación Ganancia logarítmica Ruidos y correlaciones



Ec. de Langevin - Gen 0 Ec. de Langevin - Gen 1 Distintas fuentes de ruido y su propagación Ganancia logarítmica Ruidos y correlaciones



Ec. de Langevin - Gen 0 Ec. de Langevin - Gen 1 Distintas fuentes de ruido y su propagación Ganancia logarítmica Ruidos y correlaciones





Para un componente X, donde L y R copias se segregan a cada hija, el error en la partición está dado por

$$Q_X^2 = \frac{\langle (L-R)^2 \rangle}{\langle X \rangle^2}.$$

Para segregación independiente:

$$Q_X=\frac{1}{\sqrt{X}}.$$

Para los mecanismos considerados

$$Q_X^2 = \frac{A}{X}, \quad \text{donde} \quad \begin{cases} A = 1 & \text{para segregación independiente,} \\ A < 1 & \text{para segregación ordenada,} \\ A > 1 & \text{para segregación desordenada.} \end{cases}$$

- ► Ecuación maestra vs. ecuación de Langevin.
- ▶ Dificultad para identificar las fuentes de ruido.
- ► Técnicas experimentales para medir con mayor resolución.

- ► Analizar el ruido por partición mediante simulaciones que lo integren con transcripción y traducción.
- Analizar la aleatoriedad en el volumen de la célula.

- Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. *J. Phys. Chem.* **81**, 2340-2361 (1977).
- Van Kampen, N. G. Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992).
- Arkin, A., Ross, J. y McAdams, H. H. Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in Phage λ-Infected Escherichia coli Cells. *Genetics* **149**, 1633-1648 (1998).
- Alon, U., Surette, M. G., Barkai, N. y Leibler, S. Robustness in bacterial chemotaxis. *Nature* **397**, 168-171 (1999).
- McAdams, H. H. y Arkin, A. It's a noisy business! Genetic regulation at the nanomolar scale. *Trends Genet.* **15**, 65-69 (1999).

- Thattai, M. y van Oudenaarden, A. Intrinsic noise in gene regulatory networks. *Proc. Natl. Acad. Sci. U.S.A.* **98**, 8614-8619 (2001).
- Elowitz, M. B., Levine, A. J., Siggia, E. D. y Swain, P. S. Stochastic gene expression in a single cell. *Science* **297**, 183-186 (2002).
- Gardiner, C. W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 2003).
- Paulsson, J. Summing up the noise in gene networks. *Nature* **427**, 415-418 (2004).
- Golding, I., Paulsson, J., Zawilski, S. M. y Cox, E. C. Real time Kinetics of Gene Activity in Individual Bacteria. *Cell* **123**, 1025-1036 (2005).

- Kaern, M., Elston, T. C., Blake, W. J. y Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. *Nat. Rev. Genet.* **6**, 451-464 (2005).
- Kussell, E. y Leibler, S. Phenotypic Diversity, Population Growth, and Information in Fluctuationg Environments. *Science* **309**, 2075-2078 (2005).
- Paulsson, J. Models of stochastic gene expression. *Phys. Life Rev.* **2**, 157-175 (2005).
- Pedraza, J. M. y van Oudenaarden, A. Noise Propagation in Gene Networks. *Science* **307**, 1965-1969 (2005).
- Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman y Hall/CRC, Boca Raton, 2006).



- Alberts, B. y col. Molecular Biology of the Cell (Garland Science, New York, 2008).
- Bertsekas, D. P. y Tsitsiklis, J. N. Introduction to Probability (Athena Scientific, Belmont, 2008).
- Pedraza, J. M. y Paulsson, J. Effects of Molecular Memory and Bursting on Fluctuations in Gene Expression. *Science* **319**, 339-343 (2008).
- Raj, A. y van Oudenaarden, A. Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. *Cell* **135**, 216-226 (2008).

- Wang, P. y col. Robust Growth of Escherichia coli. Curr. Biol 20, 1099-1103 (2010).
- Huh, D. y Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell division. *Nat. Genet.* **43**, 95-100 (2011).
- Huh, D. y Paulsson, J. Random partitioning of molecules at cell division. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 15004-15009 (2011).
- Alberts, B. y col. Essential Cell Biology (Garland Science, New York, 2013).
- Okumus, B., Fernandez-Lopez, R., Landgraf, D., Huh, D. y Paulsson, J. Microfluidic Assisted Cell Screening. *Biophys. J* **104**, 502a-503a (2013).



Tanouchi, Y. y col. A noisy linear map underlies oscillations in cell size and gene expression in bacteria. *Nature* **523**, 357-360 (2015).