ECUACIONES ALGEBRAICAS, CURSO 2015-2016

José F. Fernando

Generalidades sobre cuerpos

1. Para los siguientes valores de $\alpha \in \mathbb{C}$ encontrar el polinomio mínimo de α sobre \mathbb{Q} y el grado de la extensión $\mathbb{Q}(\alpha)|\mathbb{Q}$:

$$\alpha := (\sqrt{3} - 1)/2, \quad \alpha := (i + 1)\sqrt{5}/3 \quad \& \quad \alpha := \sqrt{1 - \sqrt{11}}.$$

- 2. (i) Sean L|K una extensión finita y $f \in K[t]$ un polinomio irreducible. Probar que si f tiene alguna raíz en L entonces el grado de f divide al grado [L:K] de la extensión.
 - (ii) Supongamos que [L:K] es un número primo. Demostrar que cada elemento $\alpha \in L \setminus K$ cumple que $L = K(\alpha)$.
- 3. Sean $a := \sqrt{5} + \sqrt{-5}$ y $b := \sqrt[4]{5}$. Calcular el grado de la extensión $\mathbb{Q}(a,b)|\mathbb{Q}(b)$.
- 4. Sean E|K una extensión y $\alpha \in E$ un elemento algebraico sobre K. Demostrar que si el grado de la extensión $K(\alpha)|K$ es impar entonces $K(\alpha^2) = K(\alpha)$.
- 5. Sean L|K una extensión de cuerpos, $f \in K[t] \setminus K$ y $\alpha \in L$ transcendente sobre K.
 - (i) Demostrar que $f(\alpha)$ es transcendente sobre K.
 - (ii) Demostrar que si $\beta \in L$ satisface $f(\beta) = \alpha$ entonces β es transcendente sobre K.
- 6. Hallar los polinomios mínimos de $\alpha := \sqrt[3]{5}$ sobre los cuerpos \mathbb{Q} y $K := \mathbb{Q}(\sqrt{3}, \sqrt{5})$.
- 7. Dados $k \in \mathbb{Z} \setminus 7\mathbb{Z}$ y $\alpha_k := 2k\pi/7$ calcular el polinomio mínimo de $u := 2\cos\alpha_k$ sobre \mathbb{Q} .
- 8. Sea \mathfrak{a} el ideal de $\mathbb{Q}[t]$ generado por los polinomios

$$f(t) := t^4 + t^3 + 2t^2 + t + 1$$
 & $g(t) := t^3 + 4t^2 + 4t + 3$.

Probar que el cociente $K:=\mathbb{Q}[t]/\mathfrak{a}$ es un cuerpo extensión de \mathbb{Q} . Hallar el grado y un elemento primitivo de la extensión $K|\mathbb{Q}$.

- 9. (i) Demostrar que el polinomio $f(t) := t^5 t 1$ es irreducible en $\mathbb{Q}[t]$.
 - (ii) Sean $a,b\in\mathbb{Q}$. ¿Tienen los polinomios $\mathsf{t}^5-\mathsf{t}-1$ y $\mathsf{t}^3+a\mathsf{t}+b$ alguna raíz compleja común?
 - (iii) Sea $\alpha := [t]$ la clase de t en $\mathbb{Q}[t]/(t^5 t 1)$. Escribir el elemento $1/(1 + \alpha + \alpha^3)$ como expresión polinómica en α con coeficientes en \mathbb{Q} .

Cuerpo de descomposición de un polinomio

- 10. Sean K un cuerpo, $a \in K$ y m y n enteros positivos primos entre sí. Demostrar que el polinomio $f(t) := t^{mn} a$ es irreducible en K[t] si y sólo si los polinomios $g(t) := t^m a$ y $h(t) := t^n a$ son irreducibles en K[t].
- 11. Sean $f(t) := t^6 1$, $i := \sqrt{-1}$ y $\omega \neq 1$ tal que $\omega^3 = 1$. Hallar el grado de la extensión $L_f|L$, donde L_f denota un cuerpo de descomposición de f sobre cada uno de los siguientes cuerpos $L: \mathbb{Q}, \mathbb{Q}(i)$ y $\mathbb{Q}(\omega)$.
- 12. Sean K un cuerpo de característica distinta de 2 y $u, v \in K$ dos elementos que no son un cuadrado en K. Sean \sqrt{u} y \sqrt{v} raíces del polinomio $f(t) := (t^2 u)(t^2 v)$ en un cuerpo de descomposición L de f sobre K tales que $K(\sqrt{u}) \neq K(\sqrt{v})$. Probar que

$$[K(\sqrt{u}, \sqrt{v}) : K] = 4$$
 & $K(\sqrt{u}, \sqrt{v}) = K(\sqrt{u} + \sqrt{v}).$

- 13. Sean $p \in \mathbb{Z}$ un número primo y L un cuerpo de descomposición del polinomio $f(t) := t^p 3$ sobre \mathbb{Q} . Calcular el grado $[L : \mathbb{Q}]$.
- 14. Probar que $u := \operatorname{tg}(2\pi/5)$ es un número algebraico sobre \mathbb{Q} y hallar su polinomio mínimo. ¿Es $\mathbb{Q}(u)$ un cuerpo de descomposición sobre \mathbb{Q} de algún polinomio irreducible en $\mathbb{Q}[t]$?
- 15. Encontrar elementos primitivos de las subextensiones $\mathbb{Q}_f|\mathbb{Q}$ de $\mathbb{C}|\mathbb{Q}$, donde \mathbb{Q}_f es un cuerpo de descomposición de f sobre \mathbb{Q} , en los siguientes casos:

$$f(t) := t^9 - 1$$
, $f(t) := t^4 + 5t^2 + 6$ & $f(t) := t^6 - 8$.

Encontrar los grados de las extensiones $\mathbb{Q}_f|\mathbb{Q}$.

- 16. Sea $\alpha := 1/(\sqrt{2} + \sqrt[3]{3})$. Encontrar el polinomio mínimo de α sobre \mathbb{Q} . Escribir α como expresión polinómica en $\sqrt{2}$ y $\sqrt[3]{3}$ con coeficientes racionales.
- 17. Sea L|K una extensión de cuerpos de característica 0. Supongamos que existe un entero positivo n tal que $[K(u):K] \leq n$ para cada $u \in L$. Demostrar que la extensión L|K es finita, de grado menor o igual que n.

Extensiones transcendentes

- 18. Sean F := K(t) y $L := K(t^2/(1+t^3))$, donde K es un cuerpo y t es una indeterminada. Demostrar que la extensión F|L es algebraica y simple y calcular su grado [F:L].
- 19. Sean E|K una extensión de cuerpos y $u \in E \setminus K$.
 - (i) Demostrar que existe una subextensión L|K de E|K maximal entre las que no contienen a u.
 - (ii) Demostrar que u es algebraico sobre L y que la extensión E|L es algebraica.
- 20. Sea $\{u,v\}$ una base de transcendencia de la extensión de cuerpos L|K. Calcular el grado de transcendencia de la extensión $K(u^2,uv)|K$.
- 21. Sean E|K una extensión de cuerpos y $x, y \in E$. Determinar razonadamente la veracidad o falsedad de las siguientes afirmaciones.
 - (i) Si x o y es transcendente sobre K entonces x + y o xy es transcendente sobre K.
 - (ii) Si x es transcendente sobre K pero y es algebraico sobre K, entonces x+y es transcendente sobre K.
 - (iii) Si x es transcendente sobre K mientras que y es algebraico sobre K, entonces xy es transcendente sobre el cuerpo K.
 - (iv) Si tanto x como y son elementos transcendentes sobre K entonces, x,y son algebraicamente independientes sobre K.
 - (v) Si x es transcendente sobre K e y es transcendente sobre K(x), entonces x, y son algebraicamente independientes sobre K.
- 22. Sean p un número primo, \mathbf{x} e \mathbf{y} indeterminadas sobre \mathbb{Z}_p y consideremos los cuerpos $E = \mathbb{Z}_p(\mathbf{x}, \mathbf{y})$ y $K = \mathbb{Z}_p(\mathbf{x}^p, \mathbf{y}^p)$. Demostrar que la extensión E|K es finita y calcular su grado. ¿Cuál es el grado de transcendencia de la extensión $K|\mathbb{Z}_p$? Demostrar que E|K no es una extensión simple.
- 23. Utilizar el Teorema de Lindemann-Weierstrass para demostrar que para cada número algebraico $\alpha \in \mathbb{R} \setminus \{0\}$ los números senh α , cosh α y tgh α son transcendentes.
- 24. Emplear el Teorema de Gelfond-Schneider para probar que $e^{-\pi/2}$ es un número transcendente. ¿Es transcendente e^{π} ?

Grupo de automorfismos de una extensión

25. Sea α la raíz séptima real de 5. ¿Cuáles de las siguientes extensiones son de Galois?

$$\mathbb{Q}(\alpha)|\mathbb{Q}, \quad \mathbb{Q}(\sqrt{5},\alpha)|\mathbb{Q}(\alpha), \quad \mathbb{Q}(\sqrt{-5})|\mathbb{Q} \quad \& \quad \mathbb{R}(\sqrt{-7})|\mathbb{R}.$$

26. Sea $E := \mathbb{Q}(r)$, donde $r := \sqrt[4]{2}$ es el único número real positivo cuya potencia cuarta vale 2. ¿Existen números reales α y β tales que

$$\mathbb{Q}(\alpha) \neq E \neq \mathbb{Q}(\beta)$$
 & $E = \mathbb{Q}(\alpha, \beta)$?

- 27. Sean $E \subset \mathbb{R}$ un cuerpo que contiene a \mathbb{Q} de modo que la extensión $E|\mathbb{Q}$ es de Galois, y $F := E(\sqrt{-1})$. ¿Se puede asegurar que la extensión $F|\mathbb{Q}$ es también de Galois?
- 28. Sean $\alpha := e^{\pi i/3}$ y β una raíz del polinomio $f(t) := t^4 6t^2 + 6$. Encontrar generadores de la clausura de Galois $L|\mathbb{Q}$ de las siguientes extensiones y calcular en cada caso el grado de la extensión $L|\mathbb{Q}$:

$$\mathbb{Q}(\sqrt[4]{3})|\mathbb{Q}, \quad \mathbb{Q}(\alpha)|\mathbb{Q}, \quad \mathbb{Q}(\beta)|\mathbb{Q} \quad \& \quad \mathbb{Q}(\sqrt[5]{2})|\mathbb{Q}.$$

- 29. (*) Sean $A := \mathbb{Z}[\sqrt{2}]$, $\xi := e^{\pi i/5}$, donde $i := \sqrt{-1} \in \mathbb{C}$, y $L \subset \mathbb{C}$ un cuerpo de descomposición sobre \mathbb{Q} del polinomio $f(\mathbf{t}) := \mathbf{t}^{10} 2$. Se pide:
 - (i) Hallar el polinomio mínimo de ξ sobre \mathbb{Q} y estudiar si es irreducible en A[t].
 - (ii) Encontrar el polinomio mínimo de $\sqrt[10]{2}$ sobre \mathbb{Q} y factorizarlo en producto de polinomios irreducibles en el anillo A[t].
 - (iii) Calcular el grado $n := [L : \mathbb{Q}]$ de la extensión $L|\mathbb{Q}$.
 - (iv) Demostrar que para cada divisor positivo d de n la extensión $L|\mathbb{Q}$ admite alguna subextensión de grado d.
 - (v) ¿Cuántas subextensiones $E|\mathbb{Q}$ de $L|\mathbb{Q}$ tienen grado 8? ¿Cuántas tienen grado 5?
 - (vi) ¿Es abeliano el grupo de Galois $G(L:\mathbb{Q})$?
- 30. (i) Probar que los polinomios $g(t) := t^2 + 4$, $h(t) := t^3 + 4$ y $f(t) := t^6 + 4$ son irreducibles en $\mathbb{Q}[t]$.
 - (ii) Demostrar que $L := \mathbb{Q}(\sqrt{3}, i, \sqrt[3]{2})$ es un cuerpo de descomposición de f sobre \mathbb{Q} .
 - (iii) Calcular el grado de la extensión $L|\mathbb{Q}$
 - (iv) ¿Cuál es el orden del grupo de Galois $G(L:\mathbb{Q})$? Probar que es un grupo diedral.
 - (v) Encontrar generadores de todas las subextensiones no triviales de $L|\mathbb{Q}$ y determinar cuáles son de Galois.
- 31. Sean K un cuerpo de característica 0 tal que todo polinomio de K[t] de grado impar tiene alguna raíz en K, y L|K una extensión de Galois. Demostrar que el orden del grupo de Galois G(L:K) es potencia de 2.
- 32. Sean E_1 y E_2 dos subcuerpos de $\mathbb C$ tales que las extensiones $E_1|\mathbb Q$ y $E_2|\mathbb Q$ son de Galois y $G(E_1:\mathbb Q)\cong\mathbb Z_6\cong G(E_2:\mathbb Q)$. Supongamos además que $[E_1\cap E_2:\mathbb Q]=2$.
 - (i) Sea F el menor subcuerpo de $\mathbb C$ que contiene a E_1 y E_2 . ¿Es de Galois la extensión $F|\mathbb Q$? ¿Cuál es su grado?
 - (ii) Demostrar que el grupo de Galois $G(F:\mathbb{Q})$ es abeliano. Calcular sus coeficientes de torsión. ¿Cuántas subextensiones propias y no triviales tiene $F|\mathbb{Q}$?

Grupo de Galois de algunos polinomios

- 33. (i) Hallar el polinomio ciclotómico Φ_9 y su grupo de Galois $G_{\mathbb{Q}}(\Phi_9)$.
 - (ii) Sea $L \subset \mathbb{C}$ un cuerpo de descomposición de Φ_9 sobre \mathbb{Q} . Expresar como extensiones simples las subextensiones de $L|\mathbb{Q}$ y en cada caso encontrar el polinomio mínimo sobre \mathbb{Q} de un elemento primitivo.
- 34. ¿Es finito el conjunto formado por los números primos p para los que existe algún entero n tal que $p|(n^2+1)$?
- 35. Sea $L \subset \mathbb{C}$ un cuerpo de descomposición sobre \mathbb{Q} de un polinomio irreducible $f \in \mathbb{Q}[t]$. Demostrar que si $[L : \mathbb{Q}]$ es impar entonces $L \subset \mathbb{R}$.
- 36. Consideremos los números reales

$$a := \sqrt[5]{2}$$
 & $b := \sqrt[3]{-7/2 - \sqrt{3981}/18} + \sqrt[3]{-7/2 + \sqrt{3981}/18}$.

Calcular el polinomio mínimo de a + b sobre \mathbb{Q} .

- 37. Sean u, v y w las raíces en \mathbb{C} del polinomio $f(\mathsf{t}) := \mathsf{t}^3 3\mathsf{t} + 1$. Sean $a := u^2v^2, b := u^2w^2$ y $c := v^2w^2$.
 - (i) Calcular los coeficientes del polinomio g(t) := (t a)(t b)(t c). ¿Es g irreducible en $\mathbb{Q}[t]$?
 - (ii) Calcular el discriminante de g y el grupo de Galois $G_{\mathbb{Q}}(g)$.
- 38. Encontrar una extensión $K|\mathbb{Q}$ de grado 2 y un polinomio $f \in \mathbb{Q}[\mathsf{t}]$ de grado 3 tales que f es irreducible en $K[\mathsf{t}]$ y los grupos de Galois $G_{\mathbb{Q}}(f)$ y $G_K(f)$ no sean isomorfos.
- 39. Sean K un cuerpo de característica 0 y $f \in K[t]$ un polinomio de grado 4 cuyo grupo de Galois $G_K(f)$ es el grupo alternado \mathcal{A}_4 . ¿Cuál es el grupo de Galois sobre K de la resolvente cúbica g del polinomio f?
- 40. Sean $K \subset \mathbb{R}$ un cuerpo y $f \in K[t]$ un polinomio irreducible de grado 4 que tiene, exactamente, dos raíces reales. Demostrar que su grupo de Galois $G_K(f)$ es \mathcal{D}_4 o \mathcal{S}_4 .
- 41. Sean K un cuerpo de característica 0 y $a, b \in K$ tales que el polinomio $f(t) := t^4 + at^2 + b$ es irreducible en K[t]. Hallar, en función de los valores de a y b, el grupo de Galois de f sobre K.
- 42. Sean $f_1(t) := t^4 2t^2 + 2$, $f_2(t) := t^3 + 9t + 18$, L_i el cuerpo de descomposición de f_i sobre \mathbb{Q} y L el menor subcuerpo de \mathbb{C} que contiene a L_1 y L_2 .
 - (i) Probar que el grupo de Galois $G_{\mathbb{Q}}(f_1)$ es isomorfo al grupo diedral \mathcal{D}_4 de orden 8.
 - (ii) Sean v y w dos raíces de f_1 en L_1 que no son opuestas. Calcular el polinomio mínimo de w sobre $\mathbb{Q}(v)$.
 - (iii) Probar que f_2 tiene tres raíces distintas u_1, u_2 y u_3 en L_2 , que el grupo de Galois $G_{\mathbb{Q}}(f_2) \cong \mathcal{S}_3$ y que $G_{L_1}(f_2)$ es isomorfo a \mathbb{Z}_3 .
 - (iv) Demostrar que $[L:\mathbb{Q}]=24$.
 - (v) Probar que $L_1|\mathbb{Q}$ es la única subextensión de $L|\mathbb{Q}$ de grado 8.
 - (vi) Demostrar que $\mathbb{Q}(u_i)|\mathbb{Q}$, con i=1,2,3 son todas las subextensiones de grado 3 de la extensión $L|\mathbb{Q}$.
 - (vii) Demostrar que existe un único automorfismo $\rho \in G(L : \mathbb{Q})$ tal que $\rho(v) = w$, $\rho(w) = -v$ y $\rho(u_1) = u_2$. Calcular el grado $[F : \mathbb{Q}]$, donde $F = \text{Fix}(\rho)$ es el cuerpo fijo de ρ .
 - (viii) Hallar un elemento primitivo θ de la extensión $F|\mathbb{Q}$ y el polinomio mínimo $P_{\mathbb{Q},\theta}$ de θ sobre \mathbb{Q} .
- 43. Sean $K := \mathbb{Q}(\sqrt{-3})$ y $f(t) := (t^3 2)(t^2 5)$. Hallar el grupo de Galois $G_K(f)$.

Aplicacions de la teoría de Galois

- 44. Sean $f, g \in \mathbb{Q}[t]$ dos polinomios resolubles por radicales.
 - (i) ¿Se puede asegurar que también f + g es resoluble por radicales?
 - (ii) Se puede asegurar que fg es resoluble por radicales?
- 45. Sean $\xi := e^{2\pi i/7}$ y $L := \mathbb{Q}(\xi)$.
 - (i) ¿Cuántas subextensiones de grado dos posee la extensión $L|\mathbb{Q}$? Obtener elementos primitivos de dichas subextensiones y los polinomios mínimos sobre \mathbb{Q} de dichas elementos.
 - (ii) ¿Contiene L a $i := \sqrt{-1}$? Sea $\gamma := e^{\pi i/7}$. Demostrar que $\mathbb{Q}(\xi) = \mathbb{Q}(\gamma)$.
 - (iii) ¿Es resoluble por radicales sobre $\mathbb Q$ el polinomio

$$h(t) := t^6 - t^5 + t^4 - t^3 + t^2 - t + 1?$$

46. Sean K un cuerpo de característica 0 y $a,b,c,d\in K$. ¿Es resoluble por radicales sobre K el polinomio

$$f(t) := t^8 + at^7 + bt^6 + ct^5 + dt^4 + ct^3 + bt^2 + at + 1?$$

- 47. (i) Sea $f \in \mathbb{Q}[t]$ un polinomio irreducible cuyo grado es un número primo. Supongamos que f posee al menos dos raíces reales y alguna raíz en $\mathbb{C} \setminus \mathbb{R}$. ¿Es f resoluble por radicales sobre \mathbb{Q} ?
 - (ii) Sean $p \equiv 1 \mod 4$ un número primo y $f \in \mathbb{Q}[t]$ un polinomio irreducible de grado p cuyo discriminante es negativo. Probar que f no es resoluble por radicales sobre \mathbb{Q} .
- 48. Sean K un cuerpo de característica 0 y t, x_1, \ldots, x_n indeterminadas sobre K. Denotamos s_1, \ldots, s_n las formas simétricas elementales en las indeterminadas x_1, \ldots, x_n y consideramos el polinomio

$$f(\mathsf{t}) := \mathsf{t}^n + \sum_{j=0}^{n-1} (-1)^{n-j} \mathsf{s}_{n-j} \mathsf{t}^j = \prod_{k=1}^n (\mathsf{t} - \mathsf{x}_k)$$

y el cuerpo $L := K(\mathbf{x}_1, \dots, \mathbf{x}_n)$. Demostrar que si c_1, \dots, c_n son elementos de K distintos dos a dos y $E := K(\mathbf{x}_1, \dots, \mathbf{x}_n)$, entonces $u := \sum_{k=1}^n c_k \mathbf{x}_k$ es un elemento primitivo de la extensión E|L.

- 49. Sean G un grupo y K un cuerpo. Un carácter de G a valores en K es un homomorfismo de grupos $\chi:G\to K^*$.
 - (i) Probar que cualesquiera caracteres χ_1, \ldots, χ_n de G a valores en K distintos dos a dos son linealmente independientes sobre K, o sea, para cada n-upla $(a_1, \ldots, a_n) \in K^n$ donde algún $a_i \neq 0$ existe $g \in G$ tal que

$$\sum_{k=1}^{n} a_k \chi_k(g) \neq 0.$$

(ii) Sean $\alpha_1, \ldots, \alpha_\ell \in K$ no nulos y distintos dos a dos y $a_1, \ldots, a_\ell \in K$ tales que

$$\sum_{k=1}^{\ell} a_k \alpha_k^n = 0 \quad \forall \, n \in \mathbb{Z}.$$

Demostrar que $a_k = 0$ para $1 \le k \le \ell$.

50. (Ternas pitagóricas) Emplear el Teorema 90 de Hilbert para demostrar que una terna (x, y, z) de números enteros no nulos primos dos a dos cumple $x^2 + y^2 = z^2$ si y sólo si existen $s, m, n \in \mathbb{Z}$ tales que $s \neq 0$ y

$$(sx, sy, sz) = (m^2 - n^2, 2mn, m^2 + n^2).$$

51. (Forma aditiva del Teorema 90 de Hilbert) (i) Sean L|K una extensión de Galois y $x \in L$. Se llama traza de x a

$$\mathsf{T}(x) := \sum_{\sigma \in G(L:K)} \sigma(x).$$

Demostrar que $T(x) \in K$.

- (ii) Supongamos que K tiene característica 0 y que el grupo de Galois $G(L:K) := \langle \sigma \rangle$ es cíclico. Demostrar que la traza de un elemento $x \in L$ es nula si y sólo si existe $\alpha \in L$ tal que $x = \alpha \sigma(\alpha)$.
- 52. Sean m y n enteros positivos y M := mcm(m, n) su mínimo común múltiplo. Supongamos que los polígonos regulares de m y n lados son constructibles con regla y compás. Demostrar que también es constructible con regla y compás el polígono con M lados.
- 53. Demostrar que si n es un divisor de $2^{32} 1$, el polígono regular de n lados es constructible con regla y compás.
- 54. ¿Para qué valores del entero positivo n es trisecable con regla y compás el ángulo $2\pi/n$?

Cuerpos finitos

- 55. (i) Sea $A := \mathbb{Z}[i]$ el anillo de los enteros de Gauss. Demostrar que el cociente E := A/7A es un cuerpo finito y calcular cuántos elementos tiene.
 - (ii) Determinar el cuerpo primo K de E y un elemento primitivo ξ de la extensión E|K. Calcular el polinomio mínimo de ξ sobre K.
- 56. Sea K un cuerpo finito con q elementos. Determinar el número de polinomios mónicos e irreducibles de grado 3 en K[t]. Deducir que para cada número primo p y cada entero positivo n existe un cuerpo con p^{3^n} elementos.
- 57. (i) Factorizar $t^{16} t$ como producto de polinomios irreducibles en $\mathbb{F}_2[t]$.
 - (ii) Factorizar como producto de polinomios irreducibles en el anillo $\mathbb{F}_3[t]$ el polinomio t^9-t .
- 58. Escribir las tablas de sumar y multiplicar del cuerpo de 9 elementos.
- 59. Sean K un cuerpo con 2^{10} elementos y $\alpha \in K^*$ un generador del grupo multiplicativo $K^* := K \setminus \{0\}$. Encontrar un elemento primitivo de cada subextensión de $K|\mathbb{F}_2$.
- 60. Demostrar que $f(t) := t^4 + 1$ es irreducible como polinomio en $\mathbb{Z}[t]$ pero es reducible en $\mathbb{F}_p[t]$ para cada primo p.
- 61. ¿Tiene el polinomio $f(t) := t^2 [2002]_{97} \in \mathbb{F}_{97}[t]$ alguna raíz en el cuerpo \mathbb{F}_{97} ?
- 62. ¿Existe algún número entero x tal que $x^2 + 4x + 3 \equiv 7 \mod 11$?
- 63. Sean $K := \mathbb{F}_{31}$ y $f(x,y) := 317x^2 151xy + 40y^2$. Decidir si existe algún punto $(a,b) \in K^2$ con alguna coordenada no nula en el que se anula la forma cuadrática f.
- 64. (i) Sea p un primo tal que q := 2p+1 es primo y $p \equiv 3 \mod 4$. Demostrar que $2^p \equiv 1 \mod q$. (ii) ¿Es primo el número $2^{59} 1$?

Polinomios en varias variables

- 65. Sean K un cuerpo y $f_1, f_2 \in K[x, y]$ polinomios homogéneos primos entre sí de grados $d \ge 1$ y d+1, respectivamente. Probar que $f := f_1 + f_2$ es irreducible en K[x, y].
- 66. Estudiar la irreducibilidad en $\mathbb{C}[x,y]$ de los siguientes polinomios:

$$f_1 := x^2y^5 + x^3 + xy^2 + y^2 + x - 1, \quad f_2 := x^2y^5 + yx^3 - x^2y^2 + y - 1,$$

 $f_3 := x^3 + x^2y - 2xy^2 + 3xy^3 + 3y^4.$

67. ¿Es irreducible en $\mathbb{R}[x,y]$ el polinomio

$$f := -x + y + x^2 + xy + x^2y + x^2y^2 + x^2y^3 + x^2y^4$$
?

- 68. Consideremos los ideales $\mathfrak{a} := (2, x^2 + 1, y)$, $\mathfrak{b} := (3, x^2 + 1, y^2 + 1)$ y $\mathfrak{m} := (3, x^2 + 1, y)$ del anillo $\mathbb{Z}[x, y]$. ¿Es alguno de ellos primo? ¿Y maximal?
- 69. Demostrar que el único polinomio $f \in \mathbb{C}[x, y]$ que se anula en todos los puntos del producto $\mathbb{Z}^+ \times \mathbb{Z}^+$ es el polinomio nulo.
- 70. Calcular la suma de los inversos de las raíces en \mathbb{C} de $f(t) := t^3 2t^2 + 3t 4$. Calcular la suma de los cuadrados de dichas raíces.
- 71. Determinar todos los polinomios mónicos de $\mathbb{C}[t]$ de grado 3 cuyas raíces, no necesariamente distintas, cumplen que dos de sus medias aritméticas son raíces de su derivada.
- 72. Probar que tres números complejos no nulos x, y y z, convenientemente ordenados, son términos consecutivos de una progresión geométrica si y sólo si

$$(xy + xz + yz)^3 = xyz(x + y + z)^3.$$

73. Encontrar las soluciones reales del sistema de ecuaciones

$$\begin{cases} xyz & = 8 \\ xz^2 + yx^2 + zy^2 & = 73 \\ x(y-z)^2 + y(x-z)^2 + z(x-y)^2 & = 98 \end{cases}$$

74. Se consideran los polinomios

Encontrar todos los puntos de corte de las cónicas afines

$$C_1 := \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$$
 & $C_2 := \{(x, y) \in \mathbb{C}^2 : g(x, y) = 0\}.$

75. Consideremos la aplicación

$$\varphi: \mathbb{C}^3 \to \mathbb{C}^3, (x, y, z) \mapsto (x + y + z, xy + xz + yz, xyz)$$

y el conjunto $M:=\{(x,y,z)\in\mathbb{C}^3: f(x,y,z)=0\}$, donde f es el polinomio

$$f(x, y, z) := x^{2}(y - z) + x(z^{2} - y^{2}) + yz(y - y).$$

- (1) Demostrar que φ es sobreyectiva y calcular la fibra del punto p:=(1,1,1). ¿Qué grado tiene la aplicación φ , esto es, cuántos elementos tiene la fibra que más elementos tiene? Encontrar un punto $q \in \mathbb{C}^3$ cuya fibra conste de menos puntos que el grado de φ .
- (2) Factorizar f en producto de polinomios irreducibles en $\mathbb{C}[x, y, z]$.
- (3) Encontrar un polinomio $\Delta \in \mathbb{Z}[u, v, w]$ tal que

$$\varphi(\mathbb{C}^3 \setminus M) = \{(u, v, w) \in \mathbb{C}^3 : \Delta(u, v, w) \neq 0\}.$$

¿Contiene $\varphi(\mathbb{C}^3 \setminus M)$ al punto (0, -3, 2)?

- 76. Sean $f,g \in \mathbb{C}[t]$ dos polinomios no constantes, \mathfrak{a} el ideal generado por f y el cociente $V := \mathbb{C}[t]/\mathfrak{a}$.
 - (1) Comprobar que V tiene estructura de espacio vectorial sobre el cuerpo \mathbb{C} con las operaciones definidas mediante: dados $h_1, h_2 \in \mathbb{C}[t]$ y $\lambda \in \mathbb{C}$,

$$(h_1 + \mathfrak{a}) + (h_2 + \mathfrak{a}) := (h_1 + h_2) + \mathfrak{a}$$
 & $\lambda \cdot (h_1 + \mathfrak{a}) := \lambda h_1 + \mathfrak{a}$.

Calcular la dimensión de V.

- (2) Supongamos que el discriminante $\Delta(f)$ de f es no nulo. Demostrar que entonces la aplicación definida por $g_*: V \to V, \ h + \mathfrak{a} \mapsto gh + \mathfrak{a}$ es un endomorfismo de V y expresar sus autovalores en función de lo que vale g en las raíces de f.
- (3) Probar que g_* es isomorfismo de \mathbb{C} -espacios vectoriales si y sólo si $\mathrm{Res}(f,g) \neq 0$.
- (4) Demostrar que g_* es diagonalizable y expresar la traza de g_* en función de los valores que toma g en las raíces de f.
- (5) Calcular la suma de los cubos de las raíces del polinomio $f(t) := t^5 2t^2 2$.