0.1 Functions and Relations

It is also important to define some types of relations and functions.

Definition (Relation):

A (binary) **relation** R on a set S is a subset of $S \times S$. If $(a, b) \in R$, we write aRb.

Example (of relations): 1. L "loves" is a relation on $P \times P$ (where P is a set of all people).

2. The set $R = \{(0,0), (0,1), (2,2), (7,18)\}$ is a relation on \mathbb{Z}^+ . We would write 0R0, 0R1, 2R2, and 7R18.

Definition (Equivalence Relation):

An equivalence relation on a set S is a relation s.t.:

- 1. Reflexive: For each $a \in S$, $a \sim a$.
- 2. Symmetric: For $a, b \in S$, if $a \sim b$, then $b \sim a$.
- 3. Transitive: For $a,b,c\in S,$ if $a\sim b$ and $b\sim a$

Functions in the general sense are also a type of relation.

Definition (Function):

A function, F from a set A to a set B is a relation s.t.: if aFb and aFb' then b = b'. This is a rule that assigns a unique $a \in A$ to a unique $b \in B$. Write F(a) = b.