Reivew (Exam 1-2 material): True or False? Justify.

- (1) The sequence $\left\{\frac{3n-4}{2n+5}\right\}_{n=1}^{\infty}$ converges to $\frac{3}{2}$. (Use Theorems.)
- (2) If $\{a_n\}_{n=1}^{\infty}$ converges to 5, then there is some $N \in \mathbb{R}$ such that for all n > N, $2a_n^2 > 49$.
- (3) The limit of $f(x) = \begin{cases} 2x 1 & \text{if } x > 3 \\ x + 2 & \text{if } x \le 2 \end{cases}$ as x approaches 3 is 5. (Use only the definition.)

 (4) The function $f(x) = \begin{cases} 2x \sin(1/x) & \text{if } x > 0 \\ 2 & \text{if } x = 0 \text{ is continuous at } x = 0. \\ -2x \cos(1/x) & \text{if } x < 0 \end{cases}$
- (5) Every nonempty set of real numbers that is bounded above has a maximum element.
- (6) The supremum of the set $\{x \in \mathbb{Q} \mid x < \pi\}$ is π .
- (7) If the domain of f is \mathbb{R} , then f is continuous at some value of x.
- (8) Every decreasing sequence is convergent.
- (9) The sequence $\left\{\frac{\sin(n^2)}{n}\right\}_{n=1}^{\infty}$ is convergent.
- (10) We can prove that every polynomial p(x) has a property P by induction on degree by showing that every constant function has property P and then showing that if p(x) has property P then so does p'(x).
- (11) For every pair of integers $m, n \in \mathbb{Z}, m^2 \neq 8n^2$.
- (12) If $\{b_n\}_{n=1}^{\infty}$ is not decreasing, then $\{b_n\}_{n=1}^{\infty}$ has an increasing subsequence.
- (13) If f is continuous on [1, 3], and y > f(1) > f(3), then there is no $c \in [1, 3]$ with f(c) = y.
- (14) If f is not bounded below, then f diverges to $-\infty$.
- (15) If f and g are continuous on (-7,7) and g(4)=-1, then $\lim_{x\to 4}(f\circ g)(x)=f(-1)$.
- (16) If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ both diverge, then so does $\{a_n+b_n\}_{n=1}^{\infty}$.
- (17) If f(x) > 5 for all $x \neq -7$ and $\lim_{x \to -7} f(x) = L$, then L > 5.

Reivew (Exam 1-2 material): True or False? Justify.

- (1) The sequence $\left\{\frac{3n-4}{2n+5}\right\}_{n=1}^{\infty}$ converges to $\frac{3}{2}$. (Use only the definition.)
- (2) If $\{a_n\}_{n=1}^{\infty}$ converges to L>0, then there is some $N\in\mathbb{R}$ such that for all n>N, $a_n>L/2$.
- (3) The limit of $f(x) = \begin{cases} 2x 1 & \text{if } x > 3 \\ x + 3 & \text{if } x < 3 \end{cases}$ as x approaches 3 is 5. (Use only the definition.)

 (4) The function $f(x) = \begin{cases} x^2 \sin(1/x^2) & \text{if } x > 0 \\ 0 & \text{if } x = 0 \text{ is continuous at } x = 0. \\ -x^2 \cos(1/x^2) & \text{if } x < 0 \end{cases}$
- (5) If S is a set of real numbers and $\sup(S) \in S$, then $\sup(S)$ is the maximum element of S.
- (6) The maximum of the set $\{x \in \mathbb{Q} \mid x < \pi\}$ is π .
- (7) Every convergent sequence is bounded.
- (8) Every monotone sequence has a convergent subsequence.
- (9) If f is differentiable at x = 2 and f(2) = 5, then the sequence $\left\{ f\left(\frac{2n+1}{n+4}\right) \right\}_{n=1}^{\infty}$ converges to 5.
- (10) The sequence $\{\sin(n^2)\}_{n=1}^{\infty}$ has a convergent subsequence.
- (11) For any rational numbers a < b, there is an irrational number c such that a < c < b.
- (12) If f does not diverge to $-\infty$ and f does not diverge to $+\infty$, then f converges.
- (13) If f is differentiable on \mathbb{R} , $f'(x) \leq 0$ for all x > 0, and $f(x) \geq -5$ for all x > 0, then the sequence $\{f(n)\}_{n=1}^{\infty}$ converges.
- (14) Every sequence has a strictly increasing subsequence or a strictly decreasing subsequence.
- (15) We can prove that every polynomial p(x) has a property P by induction on degree by showing that every constant function has property P and then showing that if p'(x) has property P then so does p(x).
- (16) If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ both diverge to $+\infty$, then so does $\{a_n+b_n\}_{n=1}^{\infty}$.
- (17) If $\lim_{x \to -3} f(x) > 5$, then $\exists \delta > 0$ such that f(x) > 5 for all $x \in (-3 \delta, -3) \cup (-3, -3 + \delta)$.