Optimization as a Sequence of Decisions

Jeremias Berg

Department of Computer Science, University of Helsinki, Finland

May 22 MIAO

- Constraint-based approaches to combinatorial optimization.
- Constraint optimization algorithms:
 - solution improving
 - core guided
 - implicit hitting set
- Why such algorithms are actually all based on hitting sets.
- Our model: UniMaxSAT in more detail.

- Constraint-based approaches to combinatorial optimization.
- Constraint optimization algorithms:
 - solution improving
 - core guided
 - implicit hitting set
- Why such algorithms are actually all based on hitting sets.
- Our model: UniMaxSAT in more detail.

- Constraint-based approaches to combinatorial optimization.
- Constraint optimization algorithms:
 - solution improving
 - core guided
 - implicit hitting set
- Why such algorithms are actually all based on hitting sets.
- Our model: UniMaxSAT in more detail.

- Constraint-based approaches to combinatorial optimization.
- 2 Constraint optimization algorithms:
 - solution improving
 - core guided
 - implicit hitting set
- Why such algorithms are actually all based on hitting sets.
- Our model: UniMaxSAT in more detail.

Part 1: Combinatorial Optimization

Traveling Salesperson

What is the shortest tour?

Traveling Salesperson

Is there a tour of length at most 23?

Traveling Salesperson

Is there a tour of length at most 23?

Computationally complex optimization problems

Is there a tour of length at most 23?

Computationally complex optimization problems

NP-hardness → Solutions are hard to find but easy to check

solving by describing solutions

Problem instance

solving by describing solutions

MINIMIZE:
$$4e_{AB} + e_{BE} + 3e_{EF} + 8e_{FC} + \\ 7e_{CD} + 6e_{FD} + 2e_{AC} + 3e_{ED}$$

SUBJECT TO:

$$e_{AB} + e_{AC} + e_{AD} = 2$$

$$e_{AC} + e_{CD} + e_{CF} = 2$$

:

$$\textit{e}_{\textit{IJ}} \in \{0,1\}$$

Problem instance ———

Constraint representation

solving by describing solutions

MINIMIZE:
$$4e_{AB}+e_{BE}+3e_{EF}+8\frac{e_{FC}}{e_{CD}}+$$

 $7e_{CD}+6e_{FD}+2e_{AC}+3\frac{e_{ED}}{e_{ED}}$

SUBJECT TO:

$$e_{AB}+e_{AC}+\frac{e_{AD}}{e_{AC}}=2$$
 $e_{AC}+e_{CD}+\frac{e_{CF}}{e_{CF}}=2$:

÷

$$\textit{e}_{\textit{IJ}} \in \{\textcolor{red}{0}, 1\}$$

Problem instance

Constraint representation

Solution to constraints Green=1, Red=0

solving by describing solutions

MINIMIZE:
$$4e_{AB} + e_{BE} + 3e_{EF} + 8e_{FC} + 7e_{CD} + 6e_{FD} + 2e_{AC} + 3e_{ED}$$

SUBJECT TO:

$$e_{AB} + e_{AC} + e_{AD} = 2$$

 $e_{AC} + e_{CD} + e_{CF} = 2$

:

$$\textit{e}_{\textit{IJ}} \in \{\textcolor{red}{0}, 1\}$$

Constraint Optimization Problems of Interest

- MaxSAT
- PBC
- Ideas also applied in:
 - ► CP
 - ► ASP
 - ► SMT
 - ► MILP (maybe...)

MINIMIZE:
$$\sum_{i} c_i \cdot b_i$$

SUBJECT TO:

$$\left\{\bigvee_{j} x_{ij} \mid i = 1 \dots n\right\}$$

all variables $\in \{0, 1\}$

Constraint Optimization Problems of Interest

- MaxSAT
- PBO
- Ideas also applied in:
 - ► CP
 - ► ASF
 - ► SM1
 - ► MILP (maybe...)

MINIMIZE: $\sum_{i} c_i \cdot b_i$

SUBJECT TO:

$$\left\{\sum_{j}c_{ij}x_{ij}\geq B_{i}\mid i=1\ldots n\right\}$$

all variables $\in \{0, 1\}$

Constraint Optimization Problems of Interest

- MaxSAT
- PBO
- Ideas also applied in:
 - ► CP
 - ASP
 - ► SMT
 - MILP (maybe...)

[Smirnov, Berg, and Järvisalo, 2021; Gange, Berg, Demirovic, and Stuckey, 2020; Andres, Kaufmann, Matheis, and Schaub, 2012; Davies, Gange, and Stuckey, 2017; Devriendt, Gocht, Demirovic, Nordström, and Stuckey, 2021; Fazekas, Bacchus, and Biere, 2018]

Part 2: Optimization via a Sequence of Decisions

General Formulation of Constraint Optimization

F the constraints of the problem

 $VAR(\mathcal{F})$ the variables of the problem

 $cost \equiv \sum_{i} c_{i}x_{i}$ the objective to minimize

Minimize cost subject to \mathcal{F}

n	0		р	q
h	i	j	k	G
O	đ	Ф	ı	r
а		f		S
S	b	g	m	t

Shortest Path $S \rightarrow G$

n	0		р	q
h	i	j	k	G
С	đ	Ф	ı	r
а		f		S
S	b	g	m	t

 $\mathsf{VAR}(\mathcal{F}) = \{a, b, c, \dots, r, s, t\}$

n	0		р	q
h	i	j	k	G
С	đ	Φ	ı	r
а		f		s
S	b	g	m	t

$$extsf{VAR}(\mathcal{F}) = \{a, b, c, \dots, r, s, t\}$$

$$\mathcal{F} = extsf{ISPATH}(\mathcal{S}, \mathcal{G})$$

n	0		р	q
h	i	j	k	G
С	đ	Ф	I	r
а		f		s
S	b	g	m	t

$$extsf{VAR}(\mathcal{F}) = \{a, b, c, \dots, r, s, t\}$$

$$\mathcal{F} = extsf{ISPATH}(S, G)$$

$$cost = a + b + c + \ldots + r + s + t$$

n	0		р	q
h	i	j	k	G
С	d	е	I	,
а		f		s
S	b	g	-m	—t

$$\mathsf{VAR}(\mathcal{F}) = \{a, b, c, \dots, r, s, t\}$$
 $\mathcal{F} = \mathsf{ISPATH}(\mathcal{S}, \mathcal{G})$

$$au: x = 1 ext{ for } x \in \{b, g, m, t, s, r\}$$

 $x = 0 ext{ for } x \in \{a, c, \ldots\}$

$$cost = a + b + c + ... + r + s + t = 6$$

n	0		р	q
h	i	j	k	G —
С	d	е	I	_
а		f		w .
S	b	g	m	

$$VAR(\mathcal{F}) = \{a, b, c, \dots, r, s, t\}$$

 $\mathcal{F} = IsPATH(\mathcal{S}, \mathcal{G})$

$$\tau: x = 1 \text{ for } x \in \{b, g, m, t, s, r\}$$
$$x = 0 \text{ for } x \in \{a, c, \ldots\}$$
$$\tau \equiv \{b, g, m, t, s, r\}$$

$$cost = a + b + c + ... + r + s + t = 6$$

Central Concept: UNSAT Cores

Constraint κ is a core if $\tau(\kappa) = 1$ for all solutions.

				_ ` _
n	0		р	q
h	ï	j	k	G
С	đ	Φ	_	r
а		f		s
S	b	g	m	t

$$\kappa^1 = (a + b \ge 1) = (a \lor b)$$
 all paths go through either a or b

$$\kappa^2 = (h+d+f+m \geq 1)$$
 all paths go through (at least) one of h, d, f or m.

$$\kappa^3 = (q + k + r \ge 1)$$
 all paths go through (at least) one of q, k or r.

Central Concept: UNSAT Cores

Constraint κ is a core if $\tau(\kappa) = 1$ for all solutions.

n	0		р	q
h	i	j	k	G
С	а	Φ	_	r
а		f		s
S	b	g	m	t

$$\kappa^1 = (a+b \ge 1) = (a \lor b)$$
 all paths go through either a or b

$$\kappa^2 = (h+d+f+m \ge 1)$$
 all paths go through (at least) one of h, d, f or m.

$$\kappa^3 = (q + k + r \ge 1)$$
all paths go through (at least) one of q, k or r.

$$\kappa^4 = (h + d + f + m + q + k + r \ge 2)$$

$$\kappa^5 = (2a + b + g \ge 2)$$

Important Assumption on Constraint Optimization Problems of Interest

Let ${\mathcal F}$ a set of constraints and γ a (partial) assignment of its variables.

Core & Solution Computation

We assume a decision procedure $\mathsf{ORACLE}(\mathcal{F},\gamma)$ that returns

- SAT and a solution $\tau \supseteq \gamma$ of \mathcal{F} , or
- UNSAT and a *core* κ falsified by γ .

Important Assumption on Constraint Optimization Problems of Interest

Let ${\cal F}$ a set of constraints and γ a (partial) assignment of its variables.

Core & Solution Computation

We assume a decision procedure $ORACLE(\mathcal{F}, \gamma)$ that returns:

- SAT and a solution $\tau \supset \gamma$ of \mathcal{F} , or
- UNSAT and a *core* κ falsified by γ .

Important Assumption on Constraint Optimization Problems of Interest

Let ${\cal F}$ a set of constraints and γ a (partial) assignment of its variables.

Core & Solution Computation

We assume a decision procedure ORACLE(\mathcal{F} , γ) that returns:

- SAT and a solution $\tau \supset \gamma$ of \mathcal{F} , or
- UNSAT and a *core* κ falsified by γ .

Assumption holds for:

- MaxSAT
- PBO
- ASP
- SMT
- CP

Intuition

- Obtain a solution τ^*
- Update UB
- Improve τ^* until proven optimal

n	0		р	q
h	ï	j	k	G
С	đ	Φ	-	r
а		f		s
S	b	g	m	t

 $\mathsf{UB} = \infty$

Intuition

- **1** Obtain a solution τ^*
- Update UB
- Improve τ^* until proven optimal

n	0		р	q	$UB = \infty$
h	i	j	k	G	$ORACLE(\mathcal{F},\emptyset)$
С	d	е	ı	r	
а		f		S	
S	b	g	m	t	

Intuition

- **Obtain** a solution τ^*
- Update UB
- Improve τ^* until proven optima

Intuition

- **1** Obtain a solution τ^*
- Update UB
- **1** Improve τ^* until proven optimal

n	0		р	q
h	ï	j	k	G
С	d	Φ	-	r
а		f		s
S	b	g	m	t

UB = 10

 $\mathsf{ORACLE}\left(\mathcal{F} \land \mathsf{COSTLESSTHAN}(\mathbf{UB}), \emptyset\right)$

Solution Improving Search

Intuition

- **1** Obtain a solution τ^*
- Update UB
- 3 Improve τ^* until proven optimal

UB = **6**

 $\mathsf{ORACLE}\left(\mathcal{F} \land \mathsf{COSTLessThan}(\mathit{UB}), \emptyset\right)$

$$\tau^2 = \{a, c, d, e, l, r\}$$
$$cost(\tau^2) = 6$$

Core Guided Search

Core Guided Search

[Fu and Malik, 2006; Gange, Berg, Demirovic, and Stuckey, 2020; Devriendt, Gocht, Demirovic, Nordström, and Stuckey, 2021; Andres, Kaufmann, Matheis, and Schaub, 2012]

- Starting from LB = 0 check existence of solution τ for which $cost(\tau) = LB$.
- 2 Increase LB until optimum reached by relaxing formula.
- Use cores provided by ORACLE for more effective relaxation.

Core Guided Search

[Fu and Malik, 2006; Gange, Berg, Demirovic, and Stuckey, 2020; Devriendt, Gocht, Demirovic, Nordström, and Stuckey, 2021; Andres, Kaufmann, Matheis, and Schaub, 2012]

- Starting from LB = 0 check existence of solution τ for which $cost(\tau) = LB$.
- 2 Increase LB until optimum reached by relaxing formula.
- 3 Use cores provided by ORACLE for more effective relaxation.

- Initialise $\mathcal{F}^0 = \mathcal{F}$ and $\gamma_B^0 = \{b = 0 \mid b \in VAR(cost)\}$
- ② For $i = 0 \dots$ check for solutions $\tau \supseteq \gamma_B^i$ of \mathcal{F}
- \odot If NO, update \mathcal{F}^i and γ_B^i
- 4 If YES, such τ is optimal

n	0		р	q
h	i	j	k	G
С	d	е	I	r
а		f		s
S	b	g	m	t

Intuition

- Initialise $\mathcal{F}^0 = \mathcal{F}$ and $\gamma_B^0 = \{b = 0 \mid b \in VAR(cost)\}$
- ② For $i = 0 \dots$ check for solutions $\tau \supseteq \gamma_B^i$ of \mathcal{F}^i
- \odot If NO, update \mathcal{F}^i and γ_E^i
- 4 If YES, such τ is optimal

n	0		р	q
h	i	j	k	G
С	d	е	ı	r
а		f		S
S	b	g	m	t

$$\begin{aligned} \mathsf{LB} &= \mathsf{0}, \, \mathcal{K} = \emptyset \\ \mathsf{ORACLE}(\mathcal{F}^{\boldsymbol{i}}, \gamma_{\boldsymbol{B}}^{\boldsymbol{i}}) \\ \mathcal{F}^{\boldsymbol{i}} &= \mathcal{F} \end{aligned}$$

$$\gamma_B^i \equiv \{b = 0 \mid b \notin \mathcal{K}\}$$

Is there a path that visits at most 1 node from each found core

Intuition

- Initialise $\mathcal{F}^0 = \mathcal{F}$ and $\gamma_B^0 = \{b = 0 \mid b \in VAR(cost)\}$
- ② For $i = 0 \dots$ check for solutions $\tau \supseteq \gamma_B^i$ of \mathcal{F}^i
- **3** If NO, update \mathcal{F}^i and γ_B^i
- 4 If YES, such τ is optimal

n	0		р	q
h	i	j	k	G
С	d	е	ı	r
		f		S
S		g	m	t

$$\begin{aligned} \mathsf{LB} &= \mathsf{0}, \, \mathcal{K} = \emptyset \\ \mathsf{ORACLE} \big(\mathcal{F}^{\mathbf{i}}, \gamma_{\mathbf{B}}^{\mathbf{i}} \big) \end{aligned}$$

Formula is unsatisfiable

Obtain new core: $\kappa_0 = a + b \ge 1$

Intuition

- Initialise $\mathcal{F}^0 = \mathcal{F}$ and $\gamma_B^0 = \{b = 0 \mid b \in VAR(cost)\}$
- ② For $i = 0 \dots$ check for solutions $\tau \supseteq \gamma_B^i$ of \mathcal{F}^i
- **3** If NO, update \mathcal{F}^i and γ_B^i
- ① If YES, such τ is optimal

n	0		р	q
h	i	j	k	G
С	d	е	I	r
		f		s
S		g	m	t

$$\begin{split} \mathsf{LB} &= \mathsf{1}, \, \mathcal{K} = \{\kappa_0\} \\ \mathsf{ORACLE}(\mathcal{F}^{\mathbf{i}}, \gamma_{\mathbf{B}}^{\mathbf{i}}) \\ \mathcal{F}^{i} &\equiv \mathcal{F} \wedge \bigwedge_{\kappa \in \mathcal{K}} \left(\bar{o}_2^{\kappa} \to \sum_{b \in \kappa} b \leq 1 \right) \\ \gamma_B^{i} &\equiv \{o_2^{\kappa} = 0 \mid \kappa \in \mathcal{K}\} \cup \{b = 0 \mid b \notin \mathcal{K}\} \end{split}$$

Is there a path that visits at most 1 node from each found core

Intuition

- Initialise $\mathcal{F}^0 = \mathcal{F}$ and $\gamma_B^0 = \{b = 0 \mid b \in VAR(cost)\}$
- ② For $i = 0 \dots$ check for solutions $\tau \supseteq \gamma_B^i$ of \mathcal{F}^i
- **3** If NO, update \mathcal{F}^i and γ_B^i
- 4 If YES, such τ is optimal

n	0		р	q
h	i	j	k	G
С	d	е	I	r
		f		s
S		g	m	t

$$\begin{split} \mathsf{LB} &= \mathsf{1}, \, \mathcal{K} = \{\kappa_0\} \\ \mathsf{ORACLE}(\mathcal{F}^i, \gamma_B^i) \end{split}$$

Formula is unsatisfiable

Obtain new core: $\kappa_1 = q + k + r \ge 1$

Intuition

- Initialise $\mathcal{F}^0 = \mathcal{F}$ and $\gamma_B^0 = \{b = 0 \mid b \in VAR(cost)\}$
- ② For $i = 0 \dots$ check for solutions $\tau \supseteq \gamma_B^i$ of \mathcal{F}^i
- **3** If NO, update \mathcal{F}^i and γ_B^i
- \bigcirc If YES, such τ is optimal

n	0		р	q
h	i	j	k	G
С	d	е	I	r
		f		s
S		g	m	t

$$\begin{split} \mathsf{LB} &= 2,\, \mathcal{K} = \{\kappa_0, \kappa_1\} \\ \mathsf{ORACLE}(\mathcal{F}^i, \gamma_B^i) \\ \mathcal{F}^i &\equiv \mathcal{F} \land \bigwedge_{\kappa \in \mathcal{K}} \left(\bar{o}_2^\kappa \to \sum_{b \in \kappa} b \leq 1 \right) \\ \gamma_B^i &\equiv \{o_2^\kappa = 0 \mid \kappa \in \mathcal{K}\} \cup \{b = 0 \mid b \notin \mathcal{K}\} \end{split}$$

Is there a path that visits at most 1 node from each found core

Intuition

- Initialise $\mathcal{F}^0 = \mathcal{F}$ and $\gamma_B^0 = \{b = 0 \mid b \in VAR(cost)\}$
- ② For $i = 0 \dots$ check for solutions $\tau \supseteq \gamma_B^i$ of \mathcal{F}^i
- **3** If NO, update \mathcal{F}^i and γ_B^i
- 4 If YES, such τ is optimal

n	0		р	q
h	i	j	k	G
С	d	е	_	r
		f		s
S		g	m	t

$$\begin{split} \mathsf{LB} &= \mathsf{6}, \, \mathcal{K} = \{\kappa_0, \kappa_1, \kappa_2, \kappa_3, \kappa_4, \kappa_5\} \\ \mathsf{ORACLE}(\mathcal{F}^i, \gamma_{\mathbf{B}}^i) \\ \mathcal{F}^i &\equiv \mathcal{F} \wedge \bigwedge_{\kappa \in \mathcal{K}} \left(\bar{o}_2^\kappa \to \sum_{b \in \kappa} b \leq 1\right) \\ \gamma_B^i &\equiv \{o_2^\kappa = 0 \mid \kappa \in \mathcal{K}\} \cup \{b = 0 \mid b \notin \mathcal{K}\} \end{split}$$

Is there a path that visits at most 1 node from each found core

Intuition

- Initialise $\mathcal{F}^0 = \mathcal{F}$ and $\gamma_B^0 = \{b = 0 \mid b \in VAR(cost)\}$
- ② For $i = 0 \dots$ check for solutions $\tau \supseteq \gamma_B^i$ of \mathcal{F}^i
- **3** If NO, update \mathcal{F}^i and γ_B^i
- **1** If YES, such τ is optimal

$$\begin{split} \mathsf{LB} &= \mathsf{6}, \, \mathcal{K} = \{\kappa_0, \kappa_1, \kappa_2, \kappa_3, \kappa_4, \kappa_5\} \\ \mathsf{ORACLE}(\mathcal{F}^{\mathbf{i}}, \gamma_{\mathbf{B}}^{\mathbf{i}}) \end{split}$$

Formula is satisfiable Obtain optimal: $\tau = \{b, \dots, l, r\}$ $cost(\tau) = 6$

There are many ways to relax

OLL [Andres, Kaufmann, Matheis, and Schaub, 2012; Morgado, Dodaro, and Marques-Silva, 2014; Devriendt, Gocht, Demirovic, Nordström, and Stuckey, 2021; Gange, Berg, Demirovic, and Stuckey, 2020]

- i) for every core κ , introduce $\bar{o}_k \geq \sum_{b\kappa} b \leq (k-1)$.
- ii) remove each $b \in \kappa$ from assumptions.
- iii) assume $o_2 = 0$ (*).

PMRES [Narodytska and Bacchus, 2014]

- i) for every $\kappa = \{b_1, \dots, b_n\}$ add $b_i \wedge (b_{i+1} \vee \dots \vee b_n) \leftrightarrow o_i$
- ii) remove each $b \in \kappa$ from assumptions.
- ii) assume $o_i = 0$ for each i.

MSU3 [Manquinho, Marques-Silva, and Planes, 2009]

- i) maintain set INCORE of variables that have been in a core.
- ii) add $\bar{o} \to \sum_{b \in INCORE} b \le K$ where K is the number of cores.
- iii) assume $\{o = 0\} \cup \{b = 0 \mid b \notin InCORE\}$

There are many ways to relax

OLL [Andres, Kaufmann, Matheis, and Schaub, 2012; Morgado, Dodaro, and Marques-Silva, 2014; Devriendt, Gocht, Demirovic, Nordström, and Stuckey, 2021; Gange, Berg, Demirovic, and Stuckey, 2020]

- i) for every core κ , introduce $\bar{o}_k \geq \sum_{b\kappa} b \leq (k-1)$.
- ii) remove each $b \in \kappa$ from assumptions.
- iii) assume $o_2 = 0$ (*).

PMRES [Narodytska and Bacchus, 2014]

- i) for every $\kappa = \{b_1, \dots, b_n\}$ add $b_i \wedge (b_{i+1} \vee \dots \vee b_n) \leftrightarrow o_i$
- ii) remove each $b \in \kappa$ from assumptions.
- ii) assume $o_i = 0$ for each i.

MSU3 [Manquinho, Marques-Silva, and Planes, 2009]

- i) maintain set INCORE of variables that have been in a core.
- ii) add $\bar{o} \to \sum_{b \in INCORE} b \le K$ where K is the number of cores.
- iii) assume $\{o = 0\} \cup \{b = 0 \mid b \notin InCORE\}$

There are many ways to relax

OLL [Andres, Kaufmann, Matheis, and Schaub, 2012; Morgado, Dodaro, and Marques-Silva, 2014; Devriendt, Gocht, Demirovic, Nordström, and Stuckey, 2021; Gange, Berg, Demirovic, and Stuckey, 2020]

- i) for every core κ , introduce $\bar{o}_k \geq \sum_{b\kappa} b \leq (k-1)$.
- ii) remove each $b \in \kappa$ from assumptions.
- iii) assume $o_2 = 0$ (*).

PMRES [Narodytska and Bacchus, 2014]

- i) for every $\kappa = \{b_1, \dots, b_n\}$ add $b_i \wedge (b_{i+1} \vee \dots \vee b_n) \leftrightarrow o_i$
- ii) remove each $b \in \kappa$ from assumptions.
- ii) assume $o_i = 0$ for each i.

MSU3 [Manquinho, Marques-Silva, and Planes, 2009]

- i) maintain set INCORE of variables that have been in a core.
- ii) add $\bar{o} \to \sum_{b \in \mathsf{INCORE}} b \le K$ where K is the number of cores.
- iii) assume $\{o = 0\} \cup \{b = 0 \mid b \notin INCORE\}$

Implicit Hitting Set-Based Optimization

Definition: Hitting sets

- \mathcal{K} : a set of cores.
- hitting set hs a solution of K

n	0		р	q
h	ï	j	k	G
С	Q	е	Ι	
a		f		S
S	$\binom{b}{b}$	g	$\binom{n}{m}$	t

$$\kappa^{1} = \{a, b\}$$
 $\kappa^{2} = \{h, d, f, m\}$
 $\kappa^{3} = \{q, k, r\}$
 $K = \{\kappa^{1}, \kappa^{2}, \kappa^{3}\}$
 $hs_{1} = \{a, d, f, q\} \quad cost(hs_{1}) = 4$
 $hs_{2} = \{b, m, r\} \quad cost(hs_{2}) = 3$

Constraint Optimization with Hitting Sets

[Davies and Bacchus, 2011; Smirnov, Berg, and Järvisalo, 2021; Davies, Gange, and Stuckey, 2017]

- Set of solutions to cores ⊃ set of solutions to the instance.
- Minimum cost hitting sets over all cores are also minimum cost solutions of instance.
- Central insight we do not need every core. • $cost(hs) \le \mathsf{OPT\text{-}COST}(\mathcal{F})$ for min-cost hs over any set of CORES

Constraint Optimization with Hitting Sets

[Davies and Bacchus, 2011; Smirnov, Berg, and Järvisalo, 2021; Davies, Gange, and Stuckey, 2017]

- Set of solutions to cores ⊃ set of solutions to the instance.
- Minimum cost hitting sets over all cores are also minimum cost solutions of instance.
- Central insight we do not need every core.
 - $ho cost(hs) \le \mathsf{OPT\text{-}COST}(\mathcal{F})$ for min-cost hs over any set of CORES

n	0		р	q
h	i	j	k	G
С	d	е	ı	
а		f		s
S	(b)	g	(m)	t

$$\kappa^1 = \{a, b\}$$

$$\kappa^2 = \{h, d, f, m\}$$

$$\kappa^3 = \{q, k, r\}$$

$$\mathrm{CORES} = \{\kappa^1, \kappa^2, \kappa^3\}$$

$$hs = \{b, m, r\} \quad cost(hs) = 3 \le 6 = \mathrm{OPT\text{-}COST}(\mathcal{F})$$

The IHS Approach

Shortest path

- Initialise $\mathcal{K} = \emptyset$
- ② Check $ORACLE(\mathcal{F}, hs)$ for a min-cost \mathcal{K} -hitting set hs
- If not, obtain new core
- Otherwise, solution is optimal

n	0		р	q
h	i	j	k	G
С	d	е	I	r
а		f		S
S	b	g	m	t

Shortest path

Intuition

- Initialise $\mathcal{K} = \emptyset$
- ② Check $ORACLE(\mathcal{F}, hs)$ for a min-cost \mathcal{K} -hitting set hs.
- If not, obtain new core
- Otherwise, solution is optimal

n	o		р	q
h	i	j	k	G
С	d	е	I	r
а		f		s
S	b	g	m	t

$$\begin{aligned} \mathsf{LB} &= \mathsf{0},\, \mathcal{K} = \emptyset \\ \mathit{hs} &= \mathsf{MIN\text{-}COST\text{-}HS}(\mathcal{K},\mathit{cost}) = \emptyset \end{aligned}$$

$$ORACLE(\mathcal{F}, hs)$$

Is there a path that only visits squares in hs

Shortest path

Intuition

- Initialise $\mathcal{K} = \emptyset$
- ② Check $ORACLE(\mathcal{F}, hs)$ for a min-cost \mathcal{K} -hitting set hs.
- If not, obtain new core
- Otherwise, solution is optimal

n	0		р	q
h	i	j	k	G
С	d	е	I	r
а		f		s
S	b	g	m	t

$$\begin{aligned} \mathsf{LB} &= \mathsf{0},\, \mathcal{K} = \emptyset \\ \mathit{hs} &= \mathsf{MIN\text{-}COST\text{-}HS}(\mathcal{K},\mathit{cost}) = \emptyset \end{aligned}$$

 $\mathtt{ORACLE}(\mathcal{F}, \textit{hs})$

Formula is unsatisfiable Obtain new core: $\kappa_0 = a + b > 1$

Shortest path

Intuition

- Initialise $\mathcal{K} = \emptyset$
- ② Check ORACLE(\mathcal{F} , hs) for a min-cost \mathcal{K} -hitting set hs.
- If not, obtain new core
- Otherwise, solution is optimal

n	0		р	q
h	i	j	k	G
С	d	е	I	r
a		f		S
S	p	g	m	t

$$\begin{aligned} \mathsf{LB} &= \mathsf{1}, \, \mathcal{K} = \{\kappa_{\mathbf{0}}\} \\ \mathit{hs} &= \mathsf{MIN\text{-}COST\text{-}HS}(\mathcal{K}, \mathit{cost}) = \{\mathit{b}\} \end{aligned}$$

$$\mathsf{ORACLE}(\mathcal{F}, hs)$$

Is there a path that only visits squares in hs

Shortest path

Intuition

- Initialise $\mathcal{K} = \emptyset$
- ② Check $ORACLE(\mathcal{F}, hs)$ for a min-cost \mathcal{K} -hitting set hs.
- If not, obtain new core
- Otherwise, solution is optimal

n	0		р	q
h	i	j	k	G
С	d	е	I	r
a		f		s
S	p	g	m	t

$$\begin{aligned} \mathsf{LB} &= \mathsf{1}, \, \mathcal{K} = \{\kappa_{\mathbf{0}}\} \\ \mathit{hs} &= \mathsf{MIN\text{-}COST\text{-}HS}(\mathcal{K}, \mathit{cost}) = \{\mathit{b}\} \end{aligned}$$

 $\mathtt{ORACLE}(\mathcal{F}, \textit{hs})$

Formula is unsatisfiable Obtain new core: $\kappa_1 = q + k + r > 1$

Shortest path

Intuition

- **1** Initialise $\mathcal{K} = \emptyset$
- ② Check $ORACLE(\mathcal{F}, hs)$ for a min-cost \mathcal{K} -hitting set hs.
- If not, obtain new core
- Otherwise, solution is optimal

n	0		р	q
h	i	j	k	G
С	d	е	ı	r
a		f		s
s	b	g	m	t

$$\begin{aligned} \mathsf{LB} &= 2, \, \mathcal{K} = \{\kappa_0, \kappa_1\} \\ \mathit{hs} &= \mathsf{MIN\text{-}COST\text{-}HS}(\mathcal{K}, \mathit{cost}) = \{a, q\} \end{aligned}$$

$$ORACLE(\mathcal{F}, hs)$$

Is there a path that only visits squares in hs

Shortest path

Intuition

- **1** Initialise $\mathcal{K} = \emptyset$
- ② Check ORACLE(\mathcal{F} , hs) for a min-cost \mathcal{K} -hitting set hs.
- If not, obtain new core
- Otherwise, solution is optimal

$$\begin{split} \mathsf{LB} &= \mathsf{6}, \, \mathcal{K} = \{ \kappa_0, \kappa_1, \kappa_2, \kappa_3, \kappa_4, \kappa_5 \} \\ \mathit{hs} &= \mathsf{MIN\text{-}COST\text{-}HS}(\mathcal{K}, \mathit{cost}) = \{ \mathit{b}, \mathit{g}, \mathit{f}, \mathit{e}, \mathit{l}, \mathit{r} \} \end{split}$$

 $ORACLE(\mathcal{F}, hs)$

Is there a path that only visits squares in hs

Shortest path

Intuition

- **1** Initialise $\mathcal{K} = \emptyset$
- ② Check ORACLE(\mathcal{F} , hs) for a min-cost \mathcal{K} -hitting set hs.
- If not, obtain new core
- Otherwise, solution is optimal

$$\begin{split} \mathsf{LB} &= \mathsf{6}, \, \mathcal{K} = \{ \kappa_{\mathsf{0}}, \kappa_{\mathsf{1}}, \kappa_{\mathsf{2}}, \kappa_{\mathsf{3}}, \kappa_{\mathsf{4}}, \kappa_{\mathsf{5}} \} \\ \mathit{hs} &= \mathsf{MIN\text{-}COST\text{-}HS}(\mathcal{K}, \mathit{cost}) = \{ \mathit{b}, \mathit{g}, \mathit{f}, \mathit{e}, \mathit{l}, \mathit{r} \} \end{split}$$

$$\mathsf{ORACLE}(\mathcal{F}, \mathit{hs})$$

Formula is satisfiable

Obtain optimal
$$\tau = \{b, \dots, l, r\}$$

 $cost(\tau) = 6$

Shortest path

Intuition

- Initialise $\mathcal{K} = \emptyset$
- ② Check ORACLE(\mathcal{F} , hs) for a min-cost \mathcal{K} -hitting set hs.
- If not, obtain new core
- Otherwise, solution is optimal

$$\begin{split} \mathsf{LB} &= \mathsf{6},\, \mathcal{K} = \{\kappa_0, \kappa_1, \kappa_2, \kappa_3, \kappa_4, \kappa_5\} \\ \mathit{hs} &= \mathsf{MIN\text{-}COST\text{-}HS}(\mathcal{K}, \mathit{cost}) = \{\mathit{a}, \mathit{g}, \mathit{d}, \mathit{n}, \mathit{j}, \mathit{k}\} \end{split}$$

 $\mathsf{ORACLE}(\mathcal{F}, \mathit{hs})$

Formula is unsatisfiable

Obtain new core: $\kappa_6 = b + c \ge 1$

Everything is Hitting Sets over Cores

Slightly rephrased

LB = 2,
$$\mathcal{K} = \{\kappa_0, \kappa_1\}$$

$$hs = MIN-COST-HS(\mathcal{K}, cost) = \{x = 0 \mid x \neq a, q\}$$

Slightly rephrased

$$LB = 2, \mathcal{K} = \{\kappa_0, \kappa_1\}$$

$$hs = MIN-COST-HS(\mathcal{K}, cost) = \{x = 0 \mid x \neq a, q\}$$

Hitting Sets of ${\mathcal K}$

{a, q}

 $\{a, k\}$

{a, r}

{*b*, *q*}

 $\{b,k\}$

 $\{b,r\}$

Slightly rephrased

$$LB = 2, \mathcal{K} = \{\kappa_0, \kappa_1\}$$

$$hs = MIN-COST-HS(\mathcal{K}, cost) = \{x = 0 \mid x \neq a, q\}$$

 $\{a,q\}$

Hitting Sets of $\ensuremath{\mathcal{K}}$

 $\{a,q\}$

- {a, k}
- {a, r}
- $\{b, q\}$
- $\{b, k\}$
- {*b*, *r*}

Extensions of hs to sols of K

Hitting Sets in Core Guided Search

$$\mathsf{LB}=2,\,\mathcal{K}=\{\kappa_0,\kappa_1\}$$

$$\begin{split} \mathcal{F}^i &\equiv \mathcal{F} \wedge \mathsf{Extra-Constraints} \\ &= \mathcal{F} \wedge \bigwedge_{\kappa \in \mathcal{K}} \left(\bar{o}_2^\kappa \to \sum_{b \in \kappa} b \le 1 \right) \\ hs^i &\equiv \{o_2^{\kappa_0} = 0, o_2^{\kappa_1} = 0\} \cup \{c = 0, d = 0 \ldots \} \end{split}$$

Hitting Sets in Core Guided Search

LB = 2,
$$\mathcal{K} = \{\kappa_0, \kappa_1\}$$

$$\mathcal{F}^i \equiv \mathcal{F} \wedge \mathsf{EXTRA-CONSTRAINTS}$$

$$= \mathcal{F} \wedge \bigwedge_{\kappa \in \mathcal{K}} \left(\bar{o}_2^\kappa \to \sum_{b \in \kappa} b \le 1 \right)$$

$$hs^i \equiv \{o_2^{\kappa_0} = 0, o_2^{\kappa_1} = 0\} \cup \{c = 0, d = 0...\}$$

Hitting Sets of ${\mathcal K}$

- {a, q}
- $\{a, y\}$
- {*a*, *r*}
- $\{b,q\}$
- $\{b,k\}$
- $\{b, r\}$

Hitting Sets in Core Guided Search

$$LB = 2$$
, $\mathcal{K} = \{\kappa_0, \kappa_1\}$

$$\mathcal{F}^i \equiv \mathcal{F} \wedge \mathsf{EXTRA-CONSTRAINTS}$$

$$= \mathcal{F} \wedge \bigwedge_{\kappa \in \mathcal{K}} \left(\bar{o}_2^\kappa \to \sum_{b \in \kappa} b \le 1 \right)$$

$$hs^i \equiv \{o_2^{\kappa_0} = 0, o_2^{\kappa_1} = 0\} \cup \{c = 0, d = 0 \ldots\}$$

Hitting Sets of ${\cal K}$

Extensions of hs^i to sols of $\mathcal{K} \wedge \mathsf{Extra-Constraints}$

{ <i>a</i> , <i>q</i> }	{ <i>a</i> , <i>q</i> }
{a, k}	{a, k}
{ <i>a</i> , <i>r</i> }	{ <i>a</i> , <i>r</i> }
{ <i>b</i> , <i>q</i> }	{b, q}
{ <i>b</i> , <i>k</i> }	$\{b,k\}$
{ <i>b</i> , <i>r</i> }	{ <i>b</i> , <i>r</i> }

Cores and Hitting Sets in Solution Improving Search

n	0		р	q
h	i	j	k	G
С	đ	Φ		r
а		f		s
S	b	g	m	t

 $\mathsf{ORACLE}(\mathcal{F}^i,\emptyset)$ $\mathcal{F}^i = \mathcal{F} \wedge (\mathsf{COSTLESSTHAN}(k))$

Cores and Hitting Sets in Solution Improving Search

n	0		р	q
h	i	j	k	G
С	d	Φ	-	r
а		f		S
S	b	g	m	t

$$egin{aligned} \mathsf{ORACLE}(\mathcal{F}^i,\emptyset) \ & \mathcal{F}^i = \mathcal{F} \wedge (\mathsf{COSTLESSTHAN}(k)) \ & \mathsf{ORACLE}(\mathcal{F}^i,hs^i) \ & \mathcal{F}^i = \mathcal{F} \wedge (ar{o}_k o \mathsf{COSTLESSTHAN}(k)) \ & hs^i \equiv \{o_k = 0\} \end{aligned}$$

$$p = \mathcal{F} \wedge (o_k \to \mathsf{COSTE})$$

$$hs^i \equiv \{o_k = 0\}$$

Cores and Hitting Sets in Solution Improving Search

n	0		р	q
h	ï	j	k	G
С	d	е	Ι	r
а		f		S
S	b	g	m	t

$$\mathsf{ORACLE}(\mathcal{F}^i,\emptyset)$$

$$\mathcal{F}^i = \mathcal{F} \wedge (\mathsf{CostLessThan}(k))$$

$$ORACLE(\mathcal{F}', hs')$$

ORACLE
$$(\mathcal{F}^i,\emptyset)$$
 $\mathcal{F}^i=\mathcal{F}\wedge(\mathsf{COSTLESSTHAN}(k))$
ORACLE (\mathcal{F}^i,hs^i)
 $\mathcal{F}^i=\mathcal{F}\wedge(\bar{o}_k\to\mathsf{COSTLESSTHAN}(k))$
 $hs^i\equiv\{o_k=0\}$

$$hs^i \equiv \{o_k = 0\}$$

$$(o_k \ge 1)$$
 a core of

$$(o_k \geq 1)$$
 a core of $\mathcal{F} \wedge (ar{o}_k o \mathsf{CostLessThan}(k))$ iff

$$\mathsf{OPT}(\mathcal{F}) \geq k$$

IHS Solvers

- 1) Extract cores over \mathcal{F}
- 2) Impose one hitting set of those cores as assumptions.

Core-Guided Solvers

- 1) Extract cores over $\mathcal{F} \wedge \mathsf{Extra-Constraints}$
- 2) Impose all hitting sets of those cores (*).

- 1) Extract unit cores over $\mathcal{F} \wedge (\bar{o}_k \to \mathsf{CostLessThan}(k))$.
- 2) Impose a (trivial) hitting set over all those cores.

IHS Solvers

- 1) Extract cores over \mathcal{F}
- 2) Impose one hitting set of those cores as assumptions.

Core-Guided Solvers

- 1) Extract cores over $\mathcal{F} \wedge \mathsf{Extra-Constraints}$
- 2) Impose all hitting sets of those cores (*).

- 1) Extract unit cores over $\mathcal{F} \wedge (\bar{o}_k \to \mathsf{CostLessThan}(k))$.
- 2) Impose a (trivial) hitting set over all those cores.

IHS Solvers

- 1) Extract cores over *F*∧∅
- 2) Impose one hitting set of those cores as assumptions.

Core-Guided Solvers

- 1) Extract cores over $\mathcal{F} \wedge \mathsf{Extra-Constraints}$
- 2) Impose all hitting sets of those cores (*).

- 1) Extract unit cores over $\mathcal{F} \wedge (\bar{o}_k \to \mathsf{CostLessThan}(k))$.
- 2) Impose a (trivial) hitting set over all those cores.

IHS Solvers

- 1) Extract cores over $\mathcal{F} \wedge \emptyset$
- 2) Impose one hitting set of those cores as assumptions.

Core-Guided Solvers

- 1) Extract cores over $\mathcal{F} \wedge \mathsf{Extra-Constraints}$
- 2) Impose all hitting sets of those cores (*).

- 1) Extract unit cores over $\mathcal{F} \wedge (\bar{o}_k \to \mathsf{CostLessThan}(k))$.
- 2) Impose a (trivial) hitting set over all those cores.

Summary

- Many state-of-the-art constraint optimization solvers reduce optimization into a sequence of decisions.
- On the surface, these algorithms appear very different.
- Our work: Constraint-agnostic model that captures all instantiations of core-guided, IHS, and SIS solvers we are aware of.
 - Unified proofs of correctness
 - New insights into their relationship
 - Basis for new algorithmic instantiations.

UniMaxSAT in (a bit more) detail

for solving $(\mathcal{F}, cost)$

- Maintain EXTRA-CONSTRAINTS and K.
- Iterate

 - Oheck if γ can be extended to a solution of \mathcal{F} .
 - If so, return found solution.
 - Else obtain a new core of F \(\times \) EXTRA-CONSTRAINTS
 - (Optionally) extend EXTRA-CONSTRAINTS based on core

Challenges

Termination

Optimality of Solutior

for solving $(\mathcal{F}, cost)$

- Maintain Extra-Constraints and K.
- Iterate
 - \bigcirc Compute min-cost hitting set γ of \mathcal{K} \wedge EXTRA-CONSTRAINTS
 - \bigcirc Check if γ can be extended to a solution of \mathcal{F} .
 - If so, return found solution.
 - Else obtain a new core of F \(\times \) EXTRA-CONSTRAINTS
 - (Optionally) extend EXTRA-CONSTRAINTS based on core.

Challenges

Termination

Optimality of Solution

for solving $(\mathcal{F}, cost)$

- Maintain Extra-Constraints and K.
- Iterate:
 - **Output** Observation γ Of $\mathcal{K} \wedge \mathsf{EXTRA-CONSTRAINTS}$.
 - 2 Check if γ can be extended to a solution of \mathcal{F} .
 - If so, return found solution.
 - 4 Else obtain a new core of $\mathcal{F} \wedge \mathsf{EXTRA}\text{-}\mathsf{CONSTRAINTS}$
 - (Optionally) extend EXTRA-CONSTRAINTS based on core.

Challenges

Termination

Optimality of Solutior

for solving $(\mathcal{F}, cost)$

- Maintain Extra-Constraints and K.
- Iterate:
 - **①** Compute min-cost hitting set γ of $\mathcal{K} \wedge \mathsf{EXTRA-CONSTRAINTS}$.
 - 2 Check if γ can be extended to a solution of \mathcal{F} .
 - If so, return found solution.
 - 4 Else obtain a new core of $\mathcal{F} \wedge \mathsf{EXTRA}\text{-}\mathsf{CONSTRAINTS}$
 - (Optionally) extend EXTRA-CONSTRAINTS based on core.

Challenges

Termination

Optimality of Solutior

for solving $(\mathcal{F}, cost)$

- Maintain Extra-Constraints and K.
- Iterate:
 - **1** Compute min-cost hitting set γ of $\mathcal{K} \wedge \mathsf{EXTRA-CONSTRAINTS}$.
 - 2 Check if γ can be extended to a solution of \mathcal{F} .
 - If so, return found solution.
 - 4 Else obtain a new core of F ∧ EXTRA-CONSTRAINTS
 - (Optionally) extend EXTRA-CONSTRAINTS based on core.

Challenges

Termination

Optimality of Solution

for solving $(\mathcal{F}, cost)$

- Maintain Extra-Constraints and K.
- Iterate:
 - **①** Compute min-cost hitting set γ of $\mathcal{K} \wedge \mathsf{EXTRA-CONSTRAINTS}$.
 - 2 Check if γ can be extended to a solution of \mathcal{F} .
 - If so, return found solution.
 - 4 Else obtain a new core of $\mathcal{F} \wedge \mathsf{EXTRA-CONSTRAINTS}$
 - (Optionally) extend EXTRA-CONSTRAINTS based on core.

Challenges

Termination

Optimality of Solutior

for solving $(\mathcal{F}, cost)$

- Maintain Extra-Constraints and K.
- Iterate:
 - **1** Compute min-cost hitting set γ of $\mathcal{K} \wedge \mathsf{EXTRA-CONSTRAINTS}$.
 - 2 Check if γ can be extended to a solution of \mathcal{F} .
 - If so, return found solution.
 - **1** Else obtain a new core of $\mathcal{F} \wedge \mathsf{EXTRA}\text{-}\mathsf{CONSTRAINTS}$
 - (Optionally) extend EXTRA-CONSTRAINTS based on core.

Challenges

Termination

Optimality of Solutior

for solving $(\mathcal{F}, cost)$

- Maintain Extra-Constraints and K.
- Iterate:
 - **1** Compute min-cost hitting set γ of $\mathcal{K} \wedge \mathsf{EXTRA-CONSTRAINTS}$.
 - 2 Check if γ can be extended to a solution of \mathcal{F} .
 - If so, return found solution.
 - **1** Else obtain a new core of $\mathcal{F} \wedge \mathsf{EXTRA}\text{-}\mathsf{CONSTRAINTS}$
 - Optionally) extend EXTRA-CONSTRAINTS based on core.

Challenges

Termination

Optimality of Solution

for solving $(\mathcal{F}, cost)$

- Maintain Extra-Constraints and K.
- Iterate:
 - **1** Compute min-cost hitting set γ of $\mathcal{K} \wedge \mathsf{EXTRA-CONSTRAINTS}$.
 - 2 Check if γ can be extended to a solution of \mathcal{F} .
 - If so, return found solution.
 - **1** Else obtain a new core of $\mathcal{F} \wedge \mathsf{EXTRA-CONSTRAINTS}$
 - Optionally) extend EXTRA-CONSTRAINTS based on core.

Challenges:

Termination

Optimality of Solution

Abstraction Sets

(*in*, *D*, *out*)

(Abstract) Core

Abstraction Sets

(Abstract) Core

Abstraction Sets

(Abstract) Core

Abstraction Sets

(Abstract) Core

Abstraction Sets

 \mathcal{AB} , a collection of abstraction sets DEF(\mathcal{AB}), the set of all definitions

(Abstract) Core

Abstraction Sets

 \mathcal{AB} , a collection of abstraction sets DEF(\mathcal{AB}), the set of all definitions

(Abstract) Core

Abstract Candidates

- Instance $(\mathcal{F}, cost)$, abstraction sets \mathcal{AB} , (abstract) cores \mathcal{K} .
- A (partial) assignment γ is a (AB, K)-abstract candidate if:
 - $\triangleright \gamma$ extends to at least one solution of $\mathcal{F} \land \mathsf{DEF}(\mathcal{AB})$
 - All such extensions are minimum cost

- $\mathcal{F} = \{(b_1 \vee b_2, \vee x), (\bar{x} \vee b_3), (b_3 \vee b_4 \vee b_5)\},\$
- $cost = b_1 + b_2 + 3b_3 + b_4 + 2b_5$
- $\mathcal{K} = \{(b_1 \lor b_2 \lor b_3 \lor b_4 \lor b_5)\}$
- AB = $(\{b_1, b_2, b_3, b_4, b_5\}, \sum_{i=1}^5 b_i \le 2 \leftrightarrow \bar{o}_2, \{o_2\})$
- $\{\bar{b}_3, \bar{b}_5, \bar{o}_2\}$ & $\{\bar{b}_1, \bar{b}_3, \bar{b}_5, \bar{o}_2\}$ are abstract candidates
- $\{\bar{b}_5, \bar{o}_2\}$ is not.

Abstract Candidates

- Instance $(\mathcal{F}, cost)$, abstraction sets \mathcal{AB} , (abstract) cores \mathcal{K} .
- A (partial) assignment γ is a (AB, K)-abstract candidate if:
 - γ extends to at least one solution of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$
 - All such extensions are minimum cost.

- $\mathcal{F} = \{(b_1 \vee b_2, \vee x), (\bar{x} \vee b_3), (b_3 \vee b_4 \vee b_5)\},$
- $cost = b_1 + b_2 + 3b_3 + b_4 + 2b_5$
- $\mathcal{K} = \{(b_1 \lor b_2 \lor b_3 \lor b_4 \lor b_5)\}$
- AB = $(\{b_1, b_2, b_3, b_4, b_5\}, \sum_{i=1}^5 b_i \le 2 \leftrightarrow \bar{o}_2, \{o_2\})$
- \bullet { \bar{b}_3 , \bar{b}_5 , \bar{o}_2 } & { \bar{b}_1 , \bar{b}_3 , \bar{b}_5 , \bar{o}_2 } are abstract candidates
- $\{\bar{b}_5, \bar{o}_2\}$ is not.

Abstract Candidates

- Instance $(\mathcal{F}, cost)$, abstraction sets \mathcal{AB} , (abstract) cores \mathcal{K} .
- A (partial) assignment γ is a $(\mathcal{AB}, \mathcal{K})$ -abstract candidate if:
 - γ extends to at least one solution of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$
 - All such extensions are minimum cost.

- $\mathcal{F} = \{(b_1 \vee b_2, \vee x), (\bar{x} \vee b_3), (b_3 \vee b_4 \vee b_5)\},\$
- $cost = b_1 + b_2 + 3b_3 + b_4 + 2b_5$
- $\mathcal{K} = \{(b_1 \lor b_2 \lor b_3 \lor b_4 \lor b_5)\}$
- AB = $(\{b_1, b_2, b_3, b_4, b_5\}, \sum_{i=1}^5 b_i \le 2 \leftrightarrow \bar{o}_2, \{o_2\})$
- \bullet { b_3 , b_5 , \bar{o}_2 } & { b_1 , \bar{b}_3 , b_5 , \bar{o}_2 } are abstract candidates
- $\{\bar{b}_5, \bar{o}_2\}$ is not.

Abstract Candidates

- Instance $(\mathcal{F}, cost)$, abstraction sets \mathcal{AB} , (abstract) cores \mathcal{K} .
- A (partial) assignment γ is a (AB, K)-abstract candidate if:
 - γ extends to at least one solution of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$
 - All such extensions are minimum cost.

- $\mathcal{F} = \{(b_1 \vee b_2, \vee x), (\bar{x} \vee b_3), (b_3 \vee b_4 \vee b_5)\},\$
- $cost = b_1 + b_2 + 3b_3 + b_4 + 2b_5$
- $\mathcal{K} = \{(b_1 \lor b_2 \lor b_3 \lor b_4 \lor b_5)\}$
- AB = $(\{b_1, b_2, b_3, b_4, b_5\}, \sum_{i=1}^{3} b_i \le 2 \leftrightarrow \bar{o}_2, \{o_2\})$
- \bullet { b_3 , b_5 , \bar{o}_2 } & { b_1 , \bar{b}_3 , b_5 , \bar{o}_2 } are abstract candidates
- $\{\bar{b}_5, \bar{o}_2\}$ is not.

Abstract Candidates

- Instance $(\mathcal{F}, cost)$, abstraction sets \mathcal{AB} , (abstract) cores \mathcal{K} .
- A (partial) assignment γ is a (AB, K)-abstract candidate if:
 - γ extends to at least one solution of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$
 - All such extensions are minimum cost.

- $\mathcal{F} = \{(b_1 \lor b_2, \lor x), (\bar{x} \lor b_3), (b_3 \lor b_4 \lor b_5)\},\$
- $cost = b_1 + b_2 + 3b_3 + b_4 + 2b_5$
- $\mathcal{K} = \{(b_1 \lor b_2 \lor b_3 \lor b_4 \lor b_5)\}$
- AB = $(\{b_1, b_2, b_3, b_4, b_5\}, \sum_{i=1}^5 b_i \le 2 \leftrightarrow \bar{o}_2, \{o_2\})$
- $\{\bar{b}_3, \bar{b}_5, \bar{o}_2\}$ & $\{\bar{b}_1, \bar{b}_3, \bar{b}_5, \bar{o}_2\}$ are abstract candidates
- $\{\bar{b}_5, \bar{o}_2\}$ is not.

Abstract Candidates

- Instance $(\mathcal{F}, cost)$, abstraction sets \mathcal{AB} , (abstract) cores \mathcal{K} .
- A (partial) assignment γ is a (AB, K)-abstract candidate if:
 - γ extends to at least one solution of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$
 - All such extensions are minimum cost.

- $\mathcal{F} = \{(b_1 \vee b_2, \vee x), (\bar{x} \vee b_3), (b_3 \vee b_4 \vee b_5)\},\$
- $cost = b_1 + b_2 + 3b_3 + b_4 + 2b_5$
- $\mathcal{K} = \{(b_1 \lor b_2 \lor b_3 \lor b_4 \lor b_5)\}$
- AB = $(\{b_1, b_2, b_3, b_4, b_5\}, \sum_{i=1}^5 b_i \le 2 \leftrightarrow \bar{o}_2, \{o_2\})$
- $\{\bar{b}_3, \bar{b}_5, \bar{o}_2\}$ & $\{\bar{b}_1, \bar{b}_3, \bar{b}_5, \bar{o}_2\}$ are abstract candidates
- $\{\bar{b}_5, \bar{o}_2\}$ is not.

Abstract Candidates

- Instance $(\mathcal{F}, cost)$, abstraction sets \mathcal{AB} , (abstract) cores \mathcal{K} .
- A (partial) assignment γ is a (AB, K)-abstract candidate if:
 - γ extends to at least one solution of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$
 - All such extensions are minimum cost.

- $\bullet \ \mathcal{F} = \{(b_1 \lor b_2, \lor x), (\bar{x} \lor b_3), (b_3 \lor b_4 \lor b_5)\},\$
- $cost = b_1 + b_2 + 3b_3 + b_4 + 2b_5$
- $\mathcal{K} = \{(b_1 \lor b_2 \lor b_3 \lor b_4 \lor b_5)\}$
- AB = $(\{b_1, b_2, b_3, b_4, b_5\}, \sum_{i=1}^5 b_i \le 2 \leftrightarrow \bar{o}_2, \{o_2\})$
- $\{\bar{b}_3,\bar{b}_5,\bar{o}_2\}$ & $\{\bar{b}_1,\bar{b}_3,\bar{b}_5,\bar{o}_2\}$ are abstract candidates
- $\{\bar{b}_5, \bar{o}_2\}$ is not.

Abstract Candidates

- Instance $(\mathcal{F}, cost)$, abstraction sets \mathcal{AB} , (abstract) cores \mathcal{K} .
- A (partial) assignment γ is a (AB, K)-abstract candidate if:
 - γ extends to at least one solution of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$
 - All such extensions are minimum cost.

- $\mathcal{F} = \{(b_1 \lor b_2, \lor x), (\bar{x} \lor b_3), (b_3 \lor b_4 \lor b_5)\},\$
- $cost = b_1 + b_2 + 3b_3 + b_4 + 2b_5$
- $\mathcal{K} = \{(b_1 \vee b_2 \vee b_3 \vee b_4 \vee b_5)\}$
- AB = $(\{b_1, b_2, b_3, b_4, b_5\}, \sum_{i=1}^5 b_i \le 2 \leftrightarrow \bar{o}_2, \{o_2\})$
- $\{\bar{b}_3, \bar{b}_5, \bar{o}_2\}$ & $\{\bar{b}_1, \bar{b}_3, \bar{b}_5, \bar{o}_2\}$ are abstract candidates
- $\{\bar{b}_5, \bar{o}_2\}$ is not.

UniMaxSAT

Formalizing the EXTRACT-ABSTRACTCORE subroutine

- A formula \mathcal{F} , \mathcal{AB} of abstraction sets and a partial assignment γ .
- EXTRACT-ABSTRACTCORE($\mathcal{F}, \mathcal{AB}, \gamma$) returns:
 - ▶ SAT and a solution τ of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$ that extends γ , or
 - ▶ UNSAT and an abstract core κ falsified by γ .

Formalizing the ADD-ABSTRACTIONSETS subroutine

Challenges

- How to ensure previous cores are not invalidated?
- How to ensure the preservation of optimal solutions?

Our solution - Feasible abstraction sets

 \mathcal{AB} is feasible for \mathcal{F} if every solution to \mathcal{F} can be uniquely extended to a solution of $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.

In Practice

New abstraction sets can only share input variables.

Formalizing the ADD-ABSTRACTIONSETS subroutine

Challenges

- How to ensure previous cores are not invalidated?
- How to ensure the preservation of optimal solutions?

Our solution - Feasible abstraction sets

 \mathcal{AB} is feasible for \mathcal{F} if every solution to \mathcal{F} can be uniquely extended to a solution of $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.

In Practice

New abstraction sets can only share input variables.

Formalizing the ADD-ABSTRACTIONSETS subroutine

Challenges

- How to ensure previous cores are not invalidated?
- How to ensure the preservation of optimal solutions?

Our solution - Feasible abstraction sets

 \mathcal{AB} is feasible for \mathcal{F} if every solution to \mathcal{F} can be uniquely extended to a solution of $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.

In Practice

New abstraction sets can only share input variables.

Challenges

- How to ensure progress?
- How to ensure the detection of optimal solutions?

First Idea

OPTIMIZER(AB, K, cost) returns an abstract candidate γ and the cost LB of its extension(s).

Challenges

- How to ensure progress?
- How to ensure the detection of optimal solutions?

First Idea

OPTIMIZER($\mathcal{AB}, \mathcal{K}, cost$) returns an abstract candidate γ and the cost LB of its extension(s).

Challenges

- How to ensure progress?
- How to ensure the detection of optimal solutions?

First Idea

OPTIMIZER($\mathcal{AB}, \mathcal{K}, cost$) returns an abstract candidate γ and the cost LB of its extension(s).

does not quite work.

Unexpected Observation

Core-guided solvers do not always compute abstract candidates

- C and D cores.
- $o_k^C \leftrightarrow \sum_{b \in C} b \ge k$.

Unexpected Observation

Core-guided solvers do not always compute abstract candidates

Theorem

If the assumptions γ used by OLL are extendable to a solution of $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$, then γ is an abstract candidate.

Second Idea - Correctness Condition

- OPTIMIZER($\mathcal{AB}, \mathcal{K}, cost$) returns a partial assignment γ and any lower bound LB.
- For every iteration i, there should be a $k \ge 0$ s.t. Optimizer($\mathcal{AB}, \mathcal{K}, cost$) returns an abstract candidate and its cost on iteration i + k.

solving $(\mathcal{F}, cost)$

- Maintain AB and K.
- Iterate:
 - Compute (hopefully) an abstract candidate γ and lower bound LB over $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - ② Check if γ can be extended to a solution τ of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - If so and $cost(\tau) = LB$, return found solution.
 - Else obtain a new (abstract) core
 - (Optionally) extend AB with (feasible) abstraction sets.

Theorem

Assume: (i) γ is an abstract candidate "sufficiently" often,

- (ii) LB is a lower bound $OPT(\mathcal{F})$ and
- (iii) if γ is abstract candidate, LB is the cost of its extensions

solving $(\mathcal{F}, cost)$

- Maintain AB and K.
- Iterate
 - Occupied (hopefully) an abstract candidate γ and lower bound LB over $K \wedge DEF(AB)$.
 - ② Check if γ can be extended to a solution τ of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - \bigcirc If so and $cost(au)=\mathit{LB}$, return found solution.:
 - Else obtain a new (abstract) core
 - (Optionally) extend AB with (feasible) abstraction sets.

Theorem

Assume: (i) γ is an abstract candidate "sufficiently" often,

- (ii) LB is a lower bound $OPT(\mathcal{F})$ and
- (iii) if γ is abstract candidate, *LB* is the cost of its extensions.

solving $(\mathcal{F}, cost)$

- Maintain AB and K.
- Iterate:
 - Compute (hopefully) an abstract candidate γ and lower bound LB over $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - 2 Check if γ can be extended to a solution τ of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - ③ If so and $cost(\tau) = LB$, return found solution.
 - Else obtain a new (abstract) core
 - \bigcirc (Optionally) extend \mathcal{AB} with (feasible) abstraction sets.

Theorem

Assume: (i) γ is an abstract candidate "sufficiently" often,

- (ii) LB is a lower bound $OPT(\mathcal{F})$ and
- (iii) if γ is abstract candidate, *LB* is the cost of its extensions.

solving $(\mathcal{F}, cost)$

- Maintain AB and K.
- Iterate:
 - Compute (hopefully) an abstract candidate γ and lower bound LB over $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - ② Check if γ can be extended to a solution τ of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - ③ If so and $cost(\tau) = LB$, return found solution.
 - Else obtain a new (abstract) core
 - Optionally) extend AB with (feasible) abstraction sets.

Theorem:

Assume: (i) γ is an abstract candidate "sufficiently" often,

- (ii) LB is a lower bound $OPT(\mathcal{F})$ and
- (iii) if γ is abstract candidate, *LB* is the cost of its extensions.

solving $(\mathcal{F}, cost)$

- Maintain AB and K.
- Iterate:
 - Compute (hopefully) an abstract candidate γ and lower bound LB over $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - ② Check if γ can be extended to a solution τ of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - ③ If so and $cost(\tau) = LB$, return found solution.
 - Else obtain a new (abstract) core
 - \bigcirc (Optionally) extend \mathcal{AB} with (feasible) abstraction sets.

Theorem:

Assume: (i) γ is an abstract candidate "sufficiently" often,

- (ii) LB is a lower bound $OPT(\mathcal{F})$ and
- (iii) if γ is abstract candidate, *LB* is the cost of its extensions.

solving $(\mathcal{F}, cost)$

- Maintain AB and K.
- Iterate:
 - Compute (hopefully) an abstract candidate γ and lower bound LB over $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - ② Check if γ can be extended to a solution τ of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - 3 If so and $cost(\tau) = LB$, return found solution.
 - Else obtain a new (abstract) core
 - \bigcirc (Optionally) extend \mathcal{AB} with (feasible) abstraction sets.

Theorem:

Assume: (i) γ is an abstract candidate "sufficiently" often,

- (ii) LB is a lower bound $OPT(\mathcal{F})$ and
- (iii) if γ is abstract candidate, *LB* is the cost of its extensions.

solving $(\mathcal{F}, cost)$

- Maintain AB and K.
- Iterate:
 - Compute (hopefully) an abstract candidate γ and lower bound LB over $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - ② Check if γ can be extended to a solution τ of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - 3 If so and $cost(\tau) = LB$, return found solution.
 - Else obtain a new (abstract) core
 - \bigcirc (Optionally) extend \mathcal{AB} with (feasible) abstraction sets.

Theorem

Assume: (i) γ is an abstract candidate "sufficiently" often,

- (ii) LB is a lower bound $OPT(\mathcal{F})$ and
- (iii) if γ is abstract candidate, *LB* is the cost of its extensions.

solving $(\mathcal{F}, cost)$

- Maintain AB and K.
- Iterate:
 - Compute (hopefully) an abstract candidate γ and lower bound LB over $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - **2** Check if γ can be extended to a solution τ of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - 3 If so and $cost(\tau) = LB$, return found solution.
 - Else obtain a new (abstract) core
 - \odot (Optionally) extend \mathcal{AB} with (feasible) abstraction sets.

Theorem:

Assume: (i) γ is an abstract candidate "sufficiently" often,

- (ii) LB is a lower bound $OPT(\mathcal{F})$ and
- (iii) if γ is abstract candidate, *LB* is the cost of its extensions.

solving $(\mathcal{F}, cost)$

- Maintain AB and K.
- Iterate:
 - Compute (hopefully) an abstract candidate γ and lower bound LB over $\mathcal{K} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - ② Check if γ can be extended to a solution τ of $\mathcal{F} \wedge \mathsf{DEF}(\mathcal{AB})$.
 - 3 If so and $cost(\tau) = LB$, return found solution.
 - Else obtain a new (abstract) core
 - \bigcirc (Optionally) extend \mathcal{AB} with (feasible) abstraction sets.

Theorem:

Assume: (i) γ is an abstract candidate "sufficiently" often,

- (ii) LB is a lower bound $OPT(\mathcal{F})$ and
- (iii) if γ is abstract candidate, *LB* is the cost of its extensions.

Differences Between Core Guided Algorithms

Assume an unweighted instance; then MSU3, PMRES, only compute abstract candidates.

Strength of Cores Extracted by Core-Guided Solvers

Assume a core-guided solver has computed an abstract candidate γ and extracted a core κ falsified, then κ is falsified by all abstract candidates.

- Can we proof-log UniMaxSAT directly?
- 2 How do we model symmetry breaking with abstraction sets?
- Open to a supply of the sup

Differences Between Core Guided Algorithms

Assume an unweighted instance; then MSU3, PMRES, only compute abstract candidates.

Strength of Cores Extracted by Core-Guided Solvers

Assume a core-guided solver has computed an abstract candidate γ and extracted a core κ falsified, then κ is falsified by all abstract candidates.

- Can we proof-log UniMaxSAT directly?
- 2 How do we model symmetry breaking with abstraction sets?
- Open the framework fit e.g. B&B solvers?

Differences Between Core Guided Algorithms

Assume an unweighted instance; then MSU3, PMRES, only compute abstract candidates.

Strength of Cores Extracted by Core-Guided Solvers

Assume a core-guided solver has computed an abstract candidate γ and extracted a core κ falsified, then κ is falsified by all abstract candidates.

- Can we proof-log UniMaxSAT directly?
- 2 How do we model symmetry breaking with abstraction sets?
- Open the framework fit e.g. B&B solvers?

Differences Between Core Guided Algorithms

Assume an unweighted instance; then MSU3, PMRES, only compute abstract candidates.

Strength of Cores Extracted by Core-Guided Solvers

Assume a core-guided solver has computed an abstract candidate γ and extracted a core κ falsified, then κ is falsified by all abstract candidates.

- Can we proof-log UniMaxSAT directly?
- 4 How do we model symmetry breaking with abstraction sets?
- 3 Does the framework fit e.g. B&B solvers?

Summary of Contributions

- Formalization of the correctness of UniMaxSAT subject to generic properties of subroutines.
- Simulation of essentially all core-guided, IHS, and solution-improving MaxSAT algorithms.
- New insight into the relationships between the algorithms.
- Proof-of-concept new algorithm AbstCG.

Bibliography I

- B. Andres, B. Kaufmann, O. Matheis, and T. Schaub. Unsatisfiability-based optimization in clasp. In Proc. ICLP Technical Communications, volume 17 of LIPIcs, pages 211–221. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.
- J. Davies and F. Bacchus. Solving MAXSAT by Solving a Sequence of Simpler SAT Instances. In Proc. CP, volume 6876 of Lecture Notes in Computer Science, pages 225–239. Springer, 2011.
- Toby O. Davies, Graeme Gange, and Peter J. Stuckey. Automatic logic-based benders decomposition with minizinc. In Satinder Singh and Shaul Markovitch, editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA, pages 787–793. AAAI Press, 2017. doi: 10.1609/AAAI.V31II.10654. URL https://doi.org/10.1609/aaai.v31ii.10654.
- Jo Devriendt, Stephan Gocht, Emir Demirovic, Jakob Nordström, and Peter J. Stuckey. Cutting to the core of pseudo-boolean optimization: Combining core-guided search with cutting planes reasoning. In AAAI, pages 3750–3758. AAAI Press, 2021.
- Katalin Fazekas, Fahiem Bacchus, and Armin Biere. Implicit hitting set algorithms for maximum satisfiability modulo theories. In *Proc. IJCAR*, volume 10900 of *Lecture Notes in Computer Science*, pages 134–151. Springer, 2018.
- Z. Fu and S. Malik. On solving the partial MaxSAT problem. In Proc. SAT, volume 4121 of Lecture Notes in Computer Science, pages 252–265. Springer, 2006.
- Graeme Gange, Jeremias Berg, Emir Demirovic, and Peter J. Stuckey. Core-guided and core-boosted search for CP. In *CPAIOR*, volume 12296 of *Lecture Notes in Computer Science*. pages 205–221. Springer, 2020.
- Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Unifying core-guided and implicit hitting set based optimization. In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China*, pages 1935–1943. ijcai.org, 2023. doi: 10.24963/IJCAI.2023/215. URL https://doi.org/10.24963/ijcai.2023/215.
- V.M. Manquinho, J.P. Marques-Silva, and J. Planes. Algorithms for Weighted Boolean Optimization. In Proc. SAT, volume 5584 of Lecture Notes in Computer Science, pages 495–508. Springer, 2009.
- A. Morgado, C. Dodaro, and J. Marques-Silva. Core-Guided MaxSAT with Soft Cardinality Constraints. In Proc. CP, volume 8656 of Lecture Notes in Computer Science, pages 564–573. Springer, 2014.
- N. Narodytska and F. Bacchus. Maximum satisfiability using core-guided MaxSAT resolution. In Proc. AAAI, pages 2717–2723. AAAI Press, 2014.
- Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-boolean optimization by implicit hitting sets. In *CP*, volume 210 of *LIPIcs*, pages 51:1–51:20. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2021.