#### Amendments to the Claims

Please cancel claims 1-24 without prejudice. Please add new claims 25-100 as shown below in the List of Claims.

### **List of Claims**

- 1-24 Cancelled
- 25. (New) A compound of the formula (I)

$$\begin{array}{c}
A \\
N
\end{array}$$

$$\begin{array}{c}
B \\
(CH_2)_n
\end{array}$$

$$\begin{array}{c}
B^1
\end{array}$$

wherein

m is 1;

n is 1;

R<sup>1</sup> is selected from

hydrogen;

a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl;

C<sub>3</sub>-C<sub>8</sub> cycloalkyl;

 $C_4$ - $C_8$ (alkyl-cycloalkyl) wherein alkyl is  $C_1$ - $C_2$  alkyl and cycloalkyl is  $C_3$ - $C_6$  cycloalkyl;

benzyl;

$$+$$
  $(CH_2)_n - CH = CH_2$ ;  
 $+$   $(CH_2)_n - G$ ;

where G is a hydroaromatic or a heteroaromatic group having 5 or 6 atoms, and where the heteroatoms are selected from O, S and N; and

and wherein n = 0 or 1;

C<sub>6</sub>-C<sub>10</sub> aryl; or heteroaryl having from 5 to 10 atoms selected from any of C, S, N and O; wherein the aryl and heteroaryl may optionally and independently be substituted by 1 or 2 substituents independently selected from any of hydrogen, CH<sub>3</sub>, (CH<sub>2</sub>)<sub>p</sub>CF<sub>3</sub>, halogen, CONR<sup>5</sup>R<sup>4</sup>, COOR<sup>5</sup>, COR<sup>5</sup>, (CH<sub>2</sub>)<sub>p</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>p</sub>CH<sub>3</sub>(CH<sub>2</sub>)<sub>p</sub>SOR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>p</sub>SO<sub>2</sub>NR<sup>5</sup>, and (CH<sub>2</sub>)<sub>p</sub>SO<sub>2</sub>NR<sup>5</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each independently as defined below and p is 0, 1 or 2;

(C<sub>1</sub>-C<sub>2</sub> alkyl)-(C<sub>6</sub>-C<sub>10</sub> aryl); or (C<sub>1</sub>-C<sub>2</sub> alkyl)heteroaryl, the heteroaryl moieties having from 5 to 10 atoms selected from any of C, S, N and O, and where the aryl or heteroaryl may optionally and independently be substituted by 1 or 2 substituents independently selected from any of hydrogen, CH<sub>3</sub>, CONR<sup>5</sup>R<sup>4</sup>, COOR<sup>5</sup>, COR<sup>5</sup>, (CH<sub>2</sub>)<sub>q</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>q</sub>CH<sub>3</sub> (CH<sub>2</sub>)<sub>q</sub>SOR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>q</sub>SO<sub>2</sub>R<sup>5</sup>, (CH<sub>2</sub>)<sub>q</sub>SO<sub>2</sub>NR<sup>5</sup>, and (CH<sub>2</sub>)<sub>q</sub>OR<sup>4</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each independently as defined below and q is 0, 1 or 2;

$$R^{16}$$
 $Z^2$ 
 $Z^1$ 
, and
 $Z^2$ 

wherein R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup>, R<sup>12</sup>, R<sup>13</sup>, R<sup>14</sup>, R<sup>15</sup>, R<sup>16</sup>, R<sup>17</sup>, and R<sup>18</sup> are each independently as defined below and wherein the phenyl ring of each A substituent may be optionally and independently substituted by 1 or 2 substituents Z<sup>1</sup> and Z<sup>2</sup> which are each and independently selected from hydrogen, CH<sub>3</sub>, (CH<sub>2</sub>)<sub>r</sub>CF<sub>3</sub>, halogen, CONR<sup>2</sup>R<sup>3</sup>, CO<sub>2</sub>R<sup>2</sup>, COR<sup>2</sup>, (CH<sub>2</sub>)<sub>r</sub>NR<sup>2</sup>R<sup>3</sup>, (CH<sub>2</sub>)<sub>r</sub>CH<sub>3</sub>(CH<sub>2</sub>)<sub>r</sub>SOR<sup>2</sup>, (CH<sub>2</sub>)<sub>r</sub>SO<sub>2</sub>R<sup>2</sup> and (CH<sub>2</sub>)<sub>r</sub>SO<sub>2</sub>NR<sup>2</sup>R<sup>3</sup> wherein R<sup>2</sup> and R<sup>3</sup> are each indpendently as defined below and wherein r is 0, 1 or 2; X is O, S or NR<sup>19</sup> where R<sup>19</sup> is as defined below;

B is a substituted or unsubstituted aromatic, heteroaromatic, hydroaromatic or heterohydroaromatic moiety having from 5 to 10 atoms selected from any of C, S, N an O, optionally and independently substituted by 1 or 2 substituents independently selected from hydrogen, CH<sub>3</sub>, (CH<sub>2</sub>)<sub>t</sub>CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>t</sub>CONR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>COOR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>NR<sup>5</sup>R<sup>4</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each independently as defined below and t is 0, 1, 2 or 3;

wherein  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$ ,  $R^9$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{14}$ ,  $R^{15}$ ,  $R^{16}$ ,  $R^{17}$ ,  $R^{18}$  and  $R^{19}$  are selected from:

hydrogen;

a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl;

C<sub>3</sub>-C<sub>8</sub> cycloalkyl;

 $C_4$ - $C_8$ (alkyl-cycloalkyl) wherein alkyl is  $C_1$ - $C_2$  alkyl and cycloalkyl is  $C_3$ - $C_6$  cycloalkyl;

benzyl;

$$+$$
  $(CH_2)_n - CH = CH_2$ ;  
 $+$   $(CH_2)_n - G$ ;

where G is a hydroaromatic or a heteroaromatic group having 5 or 6 atoms, and where the heteroatoms are selected from O, S and N; and

wherein n = 0 or 1;

 $C_6$ - $C_{10}$  aryl; or heteroaryl having from 5 to 10 atoms selected from any of C, S, N and O; wherein the aryl and heteroaryl may optionally and independently be substituted by 1 or 2 substituents independently selected from any of hydrogen,  $CH_3$ ,  $(CH_2)_pCF_3$ , and halogen and p is 0, 1 or 2;

 $(C_1-C_2 \text{ alkyl})$ - $(C_6-C_{10} \text{ aryl})$ ; or  $(C_1-C_2 \text{ alkyl})$ heteroaryl, the heteroaryl moieties having from 5 to 10 atoms selected from any of C, S, N and O, and where the aryl or heteroaryl may optionally and independently be substituted by 1 or 2 substituents independently selected from any of hydrogen, and  $CH_3$ ;

or the pharmaceutically acceptable salt, isomer, hydrate, isoform or prodrug thereof.

(New) The compound of claim 25, wherein:R<sup>1</sup> is selected from benzyl;

$$- + (CH2)n - CH = CH2 ;$$

$$- + (CH2)n - G ;$$

where G is a hydroaromatic or a heteroaromatic group having 5 or 6 atoms, and where the heteroatoms are selected from O, S and N; and

$$\rightarrow$$
 (CH<sub>2</sub>)<sub>n</sub> ;

and wherein n = 0 or 1;

A is selected from any one of

wherein R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>16</sup>, R<sup>17</sup> and R<sup>18</sup> are each independently as defined below;

B is selected from phenyl, naphthyl, indolyl, benzofuranyl, dihydrobenzofuranyl; benzothiophenyl, pyrroyl, furanyl, quinolinyl, isoquinolinyl, cyclohexyl, cyclohexenyl, cyclopentyl, cyclopentenyl, indanyl, indenyl, tetrahydronaphthyl, tetrahydroquinyl, tetrahydroisoquinolinyl, terahydrofuranyl, pyrrolidinyl, and indazolinyl, each optionally and independently substituted by 1 or 2 substituents independently selected from hydrogen, CH<sub>3</sub>, CF<sub>3</sub>, halogen, —(CH<sub>2</sub>)tCONR<sup>5</sup>R<sup>4</sup>, —(CH<sub>2</sub>)tNR<sup>5</sup>R<sup>4</sup>, — CH<sub>2</sub>)tCOR<sup>5</sup>, —(CH<sub>2</sub>)tCO<sub>2</sub>R<sup>5</sup>, and —OR<sup>5</sup>, wherein t is 0 or 1, and wherein R<sup>4</sup> and R<sup>5</sup> are as defined below;

wherein R<sup>4</sup> and R<sup>5</sup>,R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>16</sup>, R<sup>17</sup> and R<sup>18</sup> are each independently selected from:

hydrogen;

a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl;

C<sub>3</sub>-C<sub>8</sub> cycloalkyl;

 $C_4$ - $C_8$ (alkyl-cycloalkyl) wherein alkyl is  $C_1$ - $C_2$  alkyl and cycloalkyl is  $C_3$ - $C_6$  cycloalkyl;

benzyl;

$$-\frac{1}{4}(CH_2)_n - CH = CH_2$$
;  
 $-\frac{1}{4}(CH_2)_n - G$ ;

where G is a hydroaromatic or a heteroaromatic group having 5 or 6 atoms, and where the heteroatoms are selected from O, S and N; and

and wherein n = 0 or 1.

#### 27. (New) The compound of claim 25, wherein

R<sup>1</sup> is (C<sub>1</sub>-C<sub>2</sub> alkyl)phenyl or hydrogen;

A is

wherein  $R^6$ ,  $R^7$ ,  $R^8$ ,  $R^9$ , is each an ethylene group; and  $Z^1$  and  $Z^2$ , are as defined in claim 25;

B is phenyl or naphthalene.

28. (New) The compound of claim 25, wherein A is:

- 29. (New) The compound of claim 28, wherein  $Z^1$  and  $Z^2$  are both hydrogen.
- 30. (New) The compound of claim 29, wherein R<sup>6</sup> and R<sup>7</sup> are each a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl.
- 31. (New) The compound of claim 30, wherein  $R^6$  and  $R^7$  are each a straight  $C_1$ - $C_3$  alkyl.
- 32. (New) The compound of claim 31, wherein  $R^6$  and  $R^7$  are each an ethyl.
- 33. (New) The compound of claim 25, wherein B is an aromatic optionally and independently substituted by 1 or 2 substituents independently selected from hydrogen, CH<sub>3</sub>(CH<sub>2</sub>)<sub>t</sub>CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>t</sub>CONR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>COOR<sup>5</sup>, OR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SOR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>R<sup>5</sup>, and (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>NR<sup>5</sup>R<sup>4</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each and independently as defined in claim 25 and t is 0, 1, 2 or 3.
- 34. (New) The compound of claim 33, wherein B is a phenyl optionally substituted with one or two substituents each and independently selected from hydrogen, CH<sub>3</sub>(CH<sub>2</sub>)<sub>t</sub>CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>t</sub>CONR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>COOR<sup>5</sup>, OR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>R<sup>5</sup>, and (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>NR<sup>5</sup>R<sup>4</sup>.

- 35. (New) The compound of claim 34, wherein B is unsubstituted.
- 36. (New) The compound of claim 35, wherein A is:

- 37. (New) The compound of claim 36, wherein  $Z^1$  and  $Z^2$  are both hydrogen.
- 38. (New) The compound of claim 37, wherein R<sup>6</sup> and R<sup>7</sup> are each a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl.
- 39. (New) The compound of claim 38, wherein  $R^6$  and  $R^7$  are each a straight  $C_1$ - $C_3$  alkyl.
- 40. (New) The compound of claim 39, wherein  $R^6$  and  $R^7$  are each an ethyl.
- 41. (New) The compound of claim 25, wherein R<sup>1</sup> is a (C<sub>1</sub>-C<sub>2</sub> alkyl)-(C<sub>6</sub>-C<sub>10</sub> aryl); optionally substituted by 1 or 2 substituents independently selected from any of hydrogen, CH<sub>3</sub>, CONR<sup>5</sup>R<sup>4</sup>, COOR<sup>5</sup>, COR<sup>5</sup>, (CH<sub>2</sub>)<sub>q</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>q</sub>CH<sub>3</sub> (CH<sub>2</sub>)<sub>q</sub>SOR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>q</sub>SO<sub>2</sub>NR<sup>5</sup>, and (CH<sub>2</sub>)<sub>q</sub>OR<sup>4</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each independently as defined in claim 25 and q is 0, 1 or 2.
- 42. (New) The compound of claim 41, wherein the aryl in said (C<sub>1</sub>-C<sub>2</sub> alkyl)-(C<sub>6</sub>-C<sub>10</sub> aryl) is unsubstituted.

- 43. (New) The compound of claim 42, wherein said  $(C_1-C_2 \text{ alkyl})-(C_6-C_{10} \text{ aryl})$  is a  $(C_1-C_2 \text{ alkyl})$ -phenyl.
- 44. (New) The compound of claim 43, wherein B is an aromatic optionally and independently substituted by 1 or 2 substituents independently selected from hydrogen, CH<sub>3</sub>(CH<sub>2</sub>)<sub>t</sub>CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>t</sub>CONR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>R<sup>5</sup>, and (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>NR<sup>5</sup>R<sup>4</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each and independently as defined in claim 25 and t is 0, 1, 2 or 3.
- 45. (New) The compound of claim 44, wherein B is a phenyl optionally substituted with one or two substituents each and independently selected from hydrogen, CH<sub>3</sub>(CH<sub>2</sub>)<sub>t</sub>CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>t</sub>CONR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>COOR<sup>5</sup>, OR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SOR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>R<sup>5</sup>, and (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>NR<sup>5</sup>R<sup>4</sup>.
- 46. (New) The compound of claim 45, wherein B is unsubstituted.
- 47. (New) The compound of claim 43, wherein A is:

- 48. (New) The compound of claim 47, wherein  $Z^1$  and  $Z^2$  are both hydrogen.
- 49. (New) The compound of claim 48, wherein R<sup>6</sup> and R<sup>7</sup> are each a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl.

- 50. (New) The compound of claim 49, wherein  $R^6$  and  $R^7$  are each a straight  $C_1$ - $C_3$  alkyl.
- 51. (New) The compound of claim 50, wherein  $R^6$  and  $R^7$  are each an ethyl.
- 52. (New) The compound of claim 46, wherein A is:

- 53. (New) The compound of claim 52, wherein  $Z^1$  and  $Z^2$  are both hydrogen.
- 54. (New) The compound of claim 53, wherein R<sup>6</sup> and R<sup>7</sup> are each a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl.
- 55. (New) The compound of claim 54, wherein  $R^6$  and  $R^7$  are each a straight  $C_1$ - $C_3$  alkyl.
- 56. (New) The compound of claim 55, wherein  $R^6$  and  $R^7$  are each an ethyl.
- 57. (New) The compound of claim 25 wherein said compound has the structure:

- 58. (New) The compound of claim 25, wherein said compound is in the form of a hydrochloride, bitartrate or trifluoroacetate salt.
- 59. (New) A pharmaceutical composition comprising a therapeutically effective amount of a compound according to any one of claims 25, 32, 35, 40, 43, 46, 51, 56 or 57 as an active ingredient, together with a pharmaceutically acceptable carrier.
- 60. (New) A method of treating a patient for pain, comprising administering a compound according to any one of claims 25, 32, 35, 40, 43, 46, 51, 56 or 57 to said patient at a dosage sufficient to reduce or eliminate said pain.
- 61. (New) A method of treating a patient for a gastrointestinal disorder, comprising administering a compound according to any one of claims 25, 32, 35, 40, 43, 46, 51, 56 or 57 to said patient at a dosage sufficient to reduce or eliminate one or more symptoms associated with said gastrointestinal disorder.
- 62. (New) A method of treating a patient for a spinal injury, comprising administering a compound according to any one of claims 25, 32, 35, 40, 43,46, 51, 56 or 57 to said patient at a dosage sufficient to reduce one or more symptoms associated with said spinal injury.
- 63. (New) A compound of the formula (I)

$$\begin{array}{c}
A \\
N
\end{array}$$

$$\begin{array}{c}
B \\
(CH_2)_{n}
\end{array}$$

$$\begin{array}{c}
B^1 \\
R^1
\end{array}$$
(I)

wherein

m is 0; n is 1;

R1 is selected from

hydrogen;

a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl;

C<sub>3</sub>-C<sub>8</sub> cycloalkyl;

 $C_4$ - $C_8$ (alkyl-cycloalkyl) wherein alkyl is  $C_1$ - $C_2$  alkyl and cycloalkyl is  $C_3$ - $C_6$  cycloalkyl;

benzyl;

$$\stackrel{+}{\longrightarrow} (CH_2)_n - CH = CH_2 ;$$

$$\stackrel{+}{\longrightarrow} (CH_2)_n - G ;$$

where G is a hydroaromatic or a heteroaromatic group having 5 or 6 atoms, and where the heteroatoms are selected from O, S and N; and

$$\downarrow$$
 (CH<sub>2</sub>)<sub>n</sub>  $\rightarrow$  ;

and wherein n = 0 or 1;

C<sub>6</sub>-C<sub>10</sub> aryl; or heteroaryl having from 5 to 10 atoms selected from any of C, S, N and O; wherein the aryl and heteroaryl may optionally and independently be substituted by 1 or 2 substituents independently selected from any of hydrogen, CH<sub>3</sub>, (CH<sub>2</sub>)<sub>p</sub>CF<sub>3</sub>, halogen, CONR<sup>5</sup>R<sup>4</sup>, COOR<sup>5</sup>, COR<sup>5</sup>, (CH<sub>2</sub>)<sub>p</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>p</sub>CH<sub>3</sub>(CH<sub>2</sub>)<sub>p</sub>SOR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>p</sub>SO<sub>2</sub>R<sup>5</sup>, and (CH<sub>2</sub>)<sub>p</sub>SO<sub>2</sub>NR<sup>5</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each independently as defined below and p is 0, 1 or 2;

(C<sub>1</sub>-C<sub>2</sub> alkyl)-(C<sub>6</sub>-C<sub>10</sub> aryl); or (C<sub>1</sub>-C<sub>2</sub> alkyl)heteroaryl, the heteroaryl moieties having from 5 to 10 atoms selected from any of C, S, N and O, and where the aryl or

heteroaryl may optionally and independently be substituted by 1 or 2 substituents independently selected from any of hydrogen,  $CH_3$ ,  $CONR^5R^4$ ,  $COOR^5$ ,  $COR^5$ ,  $(CH_2)_qNR^5R^4$ ,  $(CH_2)_qCH_3$   $(CH_2)_qSOR^5R^4$ ,  $(CH_2)_qSO_2R^5$ ,  $(CH_2)_qSO_2NR^5$ , and  $(CH_2)_qOR^4$ , wherein  $R^4$  and  $R^5$  are each independently as defined below and q is 0, 1 or 2;

wherein R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup>, R<sup>12</sup>, R<sup>13</sup>, R<sup>14</sup>, R<sup>15</sup>, R<sup>16</sup>, R<sup>17</sup>, and R<sup>18</sup> are each independently as defined below and wherein the phenyl ring of each A substituent may be optionally and independently substituted by 1 or 2 substituents Z<sup>1</sup> and Z<sup>2</sup> which are each and independently selected from hydrogen, CH<sub>3</sub>, (CH<sub>2</sub>)<sub>r</sub>CF<sub>3</sub>, halogen, CONR<sup>2</sup>R<sup>3</sup>, CO<sub>2</sub>R<sup>2</sup>, COR<sup>2</sup>, (CH<sub>2</sub>)<sub>r</sub>NR<sup>2</sup>R<sup>3</sup>, (CH<sub>2</sub>)<sub>r</sub>CH<sub>3</sub>(CH<sub>2</sub>)<sub>r</sub>SOR<sup>2</sup>, (CH<sub>2</sub>)<sub>r</sub>SO<sub>2</sub>R<sup>2</sup> and (CH<sub>2</sub>)<sub>r</sub>SO<sub>2</sub>NR<sup>2</sup>R<sup>3</sup> wherein R<sup>2</sup> and R<sup>3</sup> are each indpendently as defined below and wherein r is 0, 1 or 2; X is O, S or NR<sup>19</sup> where R<sup>19</sup> is as defined below;

B is a substituted or unsubstituted aromatic, heteroaromatic, hydroaromatic or heterohydroaromatic moiety having from 5 to 10 atoms selected from any of C, S, N an O, optionally and independently substituted by 1 or 2 substituents independently selected from hydrogen, CH<sub>3</sub>, (CH<sub>2</sub>)<sub>t</sub>CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>t</sub>CONR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>COOR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>R<sup>5</sup>, and (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>NR<sup>5</sup>R<sup>4</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each independently as defined below and t is 0, 1, 2 or 3;

wherein  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ ,  $R^6$ ,  $R^7$ ,  $R^8$ ,  $R^9$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{14}$ ,  $R^{15}$ ,  $R^{16}$ ,  $R^{17}$ ,  $R^{18}$  and  $R^{19}$  are selected from

hydrogen;

a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl;

C<sub>3</sub>-C<sub>8</sub> cycloalkyl;

 $C_4$ - $C_8$ (alkyl-cycloalkyl) wherein alkyl is  $C_1$ - $C_2$  alkyl and cycloalkyl is  $C_3$ - $C_6$  cycloalkyl;

benzyl;

$$\stackrel{\stackrel{\scriptstyle \bullet}{\longrightarrow}}{} (CH_2)_n - CH = CH_2 ;$$

$$\stackrel{\scriptstyle \bullet}{\longrightarrow} (CH_2)_n - G ;$$

where G is a hydroaromatic or a heteroaromatic group having 5 or 6 atoms, and where the heteroatoms are selected from O, S and N; and

and wherein n = 0 or 1;

 $C_6$ - $C_{10}$  aryl; or heteroaryl having from 5 to 10 atoms selected from any of C, S, N and O; wherein the aryl and heteroaryl may optionally and independently be substituted by 1 or 2 substituents independently selected from any of hydrogen,  $CH_3$ ,  $(CH_2)_pCF_3$ , and halogen and p is 0, 1 or 2;

( $C_1$ - $C_2$  alkyl)-( $C_6$ - $C_{10}$  aryl); or ( $C_1$ - $C_2$  alkyl)heteroaryl, the heteroaryl moieties having from 5 to 10 atoms selected from any of C, S, N and O, and where the aryl or heteroaryl may optionally and independently be substituted by 1 or 2 substituents independently selected from any of hydrogen, and  $CH_3$ ;

or the pharmaceutically acceptable salt, isomer, hydrate, isoform or prodrug thereof.

## 64. (New) The compound of claim 63, wherein

R<sup>1</sup> is selected from benzyl;

$$- \leftarrow (CH_2)_n - CH = CH_2 ;$$

$$- \leftarrow (CH_2)_n - G ;$$

where G is a hydroaromatic or a heteroaromatic group having 5 or 6 atoms, and where the heteroatoms are selected from O, S and N; and

and wherein n = 0 or 1;

A is selected from any one of

wherein R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>16</sup>, R<sup>17</sup> and R<sup>18</sup> are each independently as defined below;

B is selected from phenyl, naphthyl, indolyl, benzofuranyl, dihydrobenzofuranyl, benzothiophenyl, pyrroyl, furanyl, quinolinyl, isoquinolinyl, cyclohexyl, cyclohexenyl, cyclopentyl, cyclopentenyl, indanyl, indenyl, tetrahydronaphthyl, tetrahydroquinyl, tetrahydroisoquinolinyl, terahydrofuranyl, pyrrolidinyl, and indazolinyl, each optionally and independently substituted by 1 or 2 substituents independently selected from hydrogen, CH<sub>3</sub>, CF<sub>3</sub>, halogen, —(CH<sub>2</sub>)<sub>1</sub>CONR<sup>5</sup>R<sup>4</sup>, —(CH<sub>2</sub>)<sub>1</sub>NR<sup>5</sup>R<sup>4</sup>, —CH<sub>2</sub>)<sub>1</sub>COR<sup>5</sup>, —(CH<sub>2</sub>)<sub>1</sub>CO<sub>2</sub>R<sup>5</sup>, and —OR<sup>5</sup>,

wherein t is 0 or 1, and wherein R<sup>4</sup> and R<sup>5</sup> are as defined below;

wherein R<sup>4</sup> and R<sup>5</sup>,R<sup>6</sup>, R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>16</sup>, R<sup>17</sup> and R<sup>18</sup> are each independently selected from:

hydrogen;

a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl;

C<sub>3</sub>-C<sub>8</sub> cycloalkyl;

 $C_4$ - $C_8$ (alkyl-cycloalkyl) wherein alkyl is  $C_1$ - $C_2$  alkyl and cycloalkyl is  $C_3$ - $C_6$  cycloalkyl;

benzyl;

$$\stackrel{\stackrel{\scriptstyle \leftarrow}{\longrightarrow}}{(CH_2)_n} - CH = CH_2 ;$$

$$\stackrel{\stackrel{\scriptstyle \leftarrow}{\longrightarrow}}{\longrightarrow} (CH_2)_n - G ;$$

where G is a hydroaromatic or a heteroaromatic group having 5 or 6 atoms, and where the heteroatoms are selected from O, S and N; and

and wherein n = 0 or 1.

# 65. (New) The compound of claim 63, wherein

 $R^1$  is  $(C_1-C_2 \text{ alkyl})$  phenyl or hydrogen;

A is

wherein  $R^6$ ,  $R^7$ ,  $R^8$ ,  $R^9$ , is each an ethylene group; and  $Z^1$  and  $Z^2$ , are as defined in claim 25;

B is phenyl or naphthalene.

# 66. (New) The compound of claim 63, wherein A is:

- 67. (New) The compound of claim 66, wherein  $Z^1$  and  $Z^2$  are both hydrogen.
- 68. (New) The compound of claim 67, wherein R<sup>6</sup> and R<sup>7</sup> are each a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl.
- 69. (New) The compound of claim 68, wherein  $R^6$  and  $R^7$  are each a straight  $C_1$ - $C_3$  alkyl.

- 70. (New) The compound of claim 69, wherein R<sup>6</sup> and R<sup>7</sup> are each an ethyl.
- 71. (New) The compound of claim 63, wherein B is an aromatic optionally and independently substituted by 1 or 2 substituents independently selected from hydrogen, CH<sub>3</sub>(CH<sub>2</sub>)<sub>t</sub>CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>t</sub>CONR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>COOR<sup>5</sup>, OR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SOR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>R<sup>5</sup>, and (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>NR<sup>5</sup>R<sup>4</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each and independently as defined in claim 25 and t is 0, 1, 2 or 3.
- 72. (New) The compound of claim 71, wherein B is a phenyl optionally substituted with one or two substituents each and independently selected from hydrogen, CH<sub>3</sub>(CH<sub>2</sub>)<sub>t</sub>CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>t</sub>CONR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>COOR<sup>5</sup>, OR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SOR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>R<sup>5</sup>, and (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>NR<sup>5</sup>R<sup>4</sup>.
- 73. (New) The compound of claim 72, wherein B is unsubstituted.
- 74. (New) The compound of claim 73, wherein A is:

- 75. (New) The compound of claim 74, wherein  $Z^1$  and  $Z^2$  are both hydrogen.
- 76. (New) The compound of claim 75, wherein R<sup>6</sup> and R<sup>7</sup> are each a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl.
- 77. (New) The compound of claim 76, wherein  $R^6$  and  $R^7$  are each a straight  $C_1$ - $C_3$  alkyl.

- 78. (New) The compound of claim 77, wherein  $R^6$  and  $R^7$  are each an ethyl.
- 79. (New) The compound of claim 63, wherein R<sup>1</sup> is a (C<sub>1</sub>-C<sub>2</sub> alkyl)-(C<sub>6</sub>-C<sub>10</sub> aryl); optionally substituted by 1 or 2 substituents independently selected from any of hydrogen, CH<sub>3</sub>, CONR<sup>5</sup>R<sup>4</sup>, COOR<sup>5</sup>, COR<sup>5</sup>, (CH<sub>2</sub>)<sub>q</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>q</sub>CH<sub>3</sub> (CH<sub>2</sub>)<sub>q</sub>SOR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>q</sub>SO<sub>2</sub>R<sup>5</sup>, (CH<sub>2</sub>)<sub>q</sub>SO<sub>2</sub>NR<sup>5</sup>, and (CH<sub>2</sub>)<sub>q</sub>OR<sup>4</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each independently as defined in claim 25 and q is 0, 1 or 2.
- 80. (New) The compound of claim 79, wherein the aryl in said  $(C_1-C_2 \text{ alkyl})-(C_6-C_{10} \text{ aryl})$  is unsubstituted.
- 81. (New) The compound of claim 80, wherein said  $(C_1-C_2 \text{ alkyl})-(C_6-C_{10} \text{ aryl})$  is a  $(C_1-C_2 \text{ alkyl})$ -phenyl.
- 82. (New) The compound of claim 81, wherein B is an aromatic optionally and independently substituted by 1 or 2 substituents independently selected from hydrogen, CH<sub>3</sub>(CH<sub>2</sub>)<sub>t</sub>CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>t</sub>CONR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SOR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>R<sup>5</sup>, and (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>NR<sup>5</sup>R<sup>4</sup>, wherein R<sup>4</sup> and R<sup>5</sup> are each and independently as defined in claim 25 and t is 0, 1, 2 or 3.
- 83. (New) The compound of claim 82, wherein B is a phenyl optionally substituted with one or two substituents each and independently selected from hydrogen, CH<sub>3</sub>(CH<sub>2</sub>)<sub>t</sub>CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>t</sub>CONR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>NR<sup>5</sup>R<sup>4</sup>, (CH<sub>2</sub>)<sub>t</sub>COR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>COOR<sup>5</sup>, OR<sup>5</sup>, (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>R<sup>5</sup>, and (CH<sub>2</sub>)<sub>t</sub>SO<sub>2</sub>NR<sup>5</sup>R<sup>4</sup>.
- 84. (New) The compound of claim 83, wherein B is unsubstituted.

85. (New) The compound of claim 81, wherein A is:

and  $R^6$ ,  $R^7$ ,  $Z^1$  and  $Z^2$  are as defined in claim 25.

- 86. (New) The compound of claim 85 wherein  $Z^1$  and  $Z^2$  are both hydrogen.
- 87. (New) The compound of claim 86, wherein R<sup>6</sup> and R<sup>7</sup> are each a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl.
- 88. (New) The compound of claim 87, wherein  $R^6$  and  $R^7$  are each a straight  $C_1$ - $C_3$  alkyl.
- 89. (New) The compound of claim 88, wherein R<sup>6</sup> and R<sup>7</sup> are each an ethyl.
- 90. (New) The compound of claim 84, wherein A is:

and R<sup>6</sup>, R<sup>7</sup>, Z<sup>1</sup> and Z<sup>2</sup> are as defined in claim 25.

- 91. (New) The compound of claim 90, wherein  $Z^1$  and  $Z^2$  are both hydrogen.
- 92. (New) The compound of claim 91, wherein R<sup>6</sup> and R<sup>7</sup> are each a branched or straight C<sub>1</sub>-C<sub>6</sub> alkyl.

- 93. (New) The compound of claim 92, wherein  $R^6$  and  $R^7$  are each a straight  $C_1$ - $C_3$  alkyl.
- 94. (New) The compound of claim 93, wherein  $R^6$  and  $R^7$  are each an ethyl.
- 95. (New) The compound of claim 63, wherein said compound is in the form of a hydrochloride, bitartrate or trifluoroacetate salt.
- 96. (New) A pharmaceutical composition comprising a therapeutically effective amount of a compound according to any one of claims 63, 70, 73, 78, 81, 84, 89, or 94 an active ingredient, together with a pharmaceutically acceptable carrier.
- 97. (New) A method of treating a patient for pain, comprising administering a compound according to any one of claims 63, 70, 73, 78, 81, 84, 89, or 94 to said patient at a dosage sufficient to reduce or eliminate said pain.
- 98. (New) A method of treating a patient for a gastrointestinal disorder, comprising administering a compound according to any one of claims 63, 70, 73, 78, 81, 84, 89, or 94 to said patient at a dosage sufficient to reduce or eliminate one or more symptoms associated with said gastrointestinal disorder.
- 99. (New) A method of treating a patient for a spinal injury, comprising administering a compound according to any one of claims 63, 70, 73, 78, 81, 84, 89, or 94 to said patient at a dosage sufficient to reduce one or more symptoms associated with said spinal injury.
- 100. (New) A process for the preparation of a compound according to either claim 25 or 63 comprising:
  - (a) subjecting a ketone of the formula (IV)

$$\bigcap_{m(N)_{n}} (IV)$$

wherein  $R^1$  is as defined in claim 25, m = 0 or 1, and n=1, to reductive amination with a substituted arylamine of the formula (V)

$$W-NH_2$$
 (V)

wherein W is either A or B as defined in claim 25, and wherein said reductive amination is optionally performed in the presence of a solvent,

to give a compound of formula (II)



wherein  $R^1$  is as defined in claim 25, m = 0 or 1, and n=1, and W is either A or B as defined in claim 25:

- (b) optionally modifying R<sup>1</sup> and W in formula (II) after or during the preparation of (II) from (IV) and (V);
- (c) reacting the compound of formula (II) produced in step (a) with an arylating agent of the formula (III)

$$W-Z$$
 (III)

wherein W is either A or B as defined in claim 25, and Z is either  $Z^1$  or  $Z^2$  as defined in claim 25, optionally in the presence of a catalyst to give a compound of either claim 25 or claim 63; and

(d) optionally further modifying R<sup>1</sup>, and the substituents on A and B.