

Operating System-Level Virtualization

Seyyed Ahmad Javadi

sajavadi@aut.ac.ir

Spring 2023

Understanding Full Virtualization, Paravirtualization, and Hardware Assist

- ➤ You should read VMWare white paper
 - There will be exam questions from the paper (up to page 10)

A quick review

Virtualization approach	Method	Performance (boot time, runtime,)	Isolation
Hardware-level	Binary translation		
	Paravirtualization		
	Hardware-assisted		
OS-level	Containers		

- ➤ Creating **different** and **separated** execution environments for applications that are managed concurrently.
- ➤OS kernel allows for multiple isolated user space instances.

	Is there hypervisor?	How many OSs are involved?
Hardware-level	YES	Multiple OSs
OS-level	NO	Single OS

- The kernel is also responsible *for*
 - Sharing the system resources among instances
 - Limiting the impact of instances on each other.
- >A user space instance contains a proper view of
 - the file system, which is completely isolated
 - separate IP addresses
 - software configurations
 - access to devices.

- An evolution of the *chroot mechanism in Unix systems*.
 - Changes the file system root directory for a process and its children.
 - The process and its children cannot have access to other portions of the file system than those accessible under the new root directory.

https://www.geeksforg eeks.org/chrootcommand-in-linuxwith-examples/

Jailed Directory

- Unix systems expose devices as parts of the file system
 - Using chroot it is possible to completely isolate a set of processes
- Following the same principle, operating system-level virtualization aims to *provide separated and multiple execution containers* for

running applications.

- An *efficient solution* for server consolidation scenarios in which multiple application servers share the same technology:
 - Operating system
 - Application server framework
 - Other components.

- ➤ When different application servers are aggregated into one physical server, each server is run in a different user space, completely isolated from the others.
- Examples of operating system-level virtualizations are:
 - FreeBSD Jails
 - IBM Logical Partition (LPAR)
 - SolarisZones
 - Containers and Docker.

Containers

➤ OS-level virtualization also called containerization.

- A container is an isolated virtual env. which can run an application.
- Several containers can be created on each operating system, to each of which a *subset of the computer's resources* is allocated.
- ➤ Programs running inside a container can only see the container's contents and devices assigned to the container.

Docker

11

- ➤ Docker is the company driving the container movement .
- ➤ A container image is
 - A lightweight, stand-alone, executable package of a piece of software
 - It includes everything needed to run it: code, runtime, system tools, system libraries, settings.

Available for both Linux and Windows based apps, containerized software will always run the same, regardless of the environment.

Docker

Dockerfile example

```
FROM alpine:3.4

RUN apk update

RUN apk add vim

RUN apk add curl
```

https://takacsmark.com/dockerfile-tutorial-by-example-dockerfile-best-practices-2018/

Docker

14

What about running Linux docker image in Windows?

Windows Subsystem for Linux (WSL)

➤ "A full Linux kernel built by Microsoft, allowing Linux distributions to run without having to manage Virtual Machines."

- "With Docker Desktop running on WSL 2, users can leverage Linux workspaces and avoid having to maintain both Linux and Windows build scripts."
- ➤ "In addition, WSL 2 provides improvements to file system sharing, boot time, and allows access to some cool new features for Docker Desktop users."

https://docs.docker.com/desktop/windows/wsl/

Containers vs. Virtual Machines

➤ Virtual machines (VMs) are an abstraction of physical hardware turning one server into many servers.

A VM includes a full copy of an operating system, one or more apps, necessary binaries & libraries-taking up tens of GBs.

VMs can also be slow to boot.

Containers vs. Virtual Machines (Cont.)

- Containers are *an abstraction at the app layer* that packages code and dependencies together.
- Multiple containers can run on the same machine and share the OS kernel with other containers.
 - each running as isolated processes in user space.
- ➤ Containers take up less space than VMs
 - Container images are typically tens of MBs in size
 - Start almost instantly.

Containers vs. Virtual Machines (Cont.)

Containers vs. Virtual Machines (Cont.)

Docker Technology

Virtualization

20

Docker Technology

- ➤ Docker is developed *primarily for Linux*, where it uses the resource isolation features of the Linux kernel such as:
 - cgroups and kernel namespaces,
 - and a union-capable file system such as OverlayFS and others.

https://medium.com/@knoldus/unionfs-a-file-system-of-a-container-2136cd11a779

Docker Technology- cgroups

➤ cgroups (abbreviated from control groups) is a Linux kernel feature that limits, accounts for, and isolates the resource usage (CPU, memory, disk I/O, network, etc.) of a collection of processes.

Docker Technology- Namespaces

Feature of the Linux kernel that partitions kernel resources such that one set of processes sees one set of resources while another set of processes sees a different set of resources.

https://wvi.cz/diyC/namespaces/

https://www.nginx.com/blog/what-are-namespaces-cgroups-how-do-they-work/

