Task 5: Operational Amplifiers: Feedback and Stability

Optical Uplink

Joseph Arsenault Ryan Dufour Phil Robb

Abstract

The design, simulation and construction of a differential amplifier circuit (developed in task 4) with feedback is described. In this task a multistage op-amp with a class B output amplifier will be developed, simulated and constructed. The required differential voltage gain for this circuit is $200 \frac{V}{V}$ while driving the smallest load possible. The uncompensated unity gain is required to be larger than 150 kHz. The gain was measured at 63.3 dB while unloaded. The smallest value for the load resistor which caused a 3 dB drop in gain was found to be 900 Ω , with a gain measured at 61.3 dB. The unity gain uncompensated unity gain frequency was measured at 2 MHz.

Electrical and Computer Engineering
University of Maine
ECE - 343
April 22, 2018

Contents

1	Intr	roduction	1
2	Circ	cuit Development	2
	2.1	Simulations	2
3	Exp	perimental Implementation	2
	-	NMOS amplifier	2
		BJT amplifier	
4	Disc	cussion	7
5	Con	nclusion	7

List of Figures

1	Block diagram for optical uplink [1]	1
2	NMOS final circuit schematic	2
3	NMOS experimental frequency response	3
4	NMOS experimental FFT	4
5	BJT final schematic	5
6	BJT experimental frequency response	5
7	BJT experimental FFT	6
List	of Tables	
1	Voltage amplifier specifications	2
2	NMOS experimental values	4
3	BJT experimental values	6
4	BJT and NMOS comparison	7

1 Introduction

This report describes design, implementation and test of two voltage amplifiers. One consisting of nega-

Figure 1: Block diagram for optical uplink [1]

The voltage amplifier is required by the optical uplink project. The output signal from the multi-feedback bandpass filter (MFBP) is in the hundreds of millivolt range. In order to make a more easily detectable signal, a voltage amplifier is required. This can achieved through the use of either a common source or common emitter amplifier. The specifications for this lab are summarized in Table 1.

Table 1: Voltage amplifier specifications

Specifications	Required
Peak gain, with load	$21 \text{ dB} \pm 1 \text{dB}\%$
Bias current for N ₁	1mA
Lower cut-off frequency	≥100 mA
Upper cut-off frequency	at least 200 kHz
R_{in} , small signal	at least 1 $M\Omega$
R_{out} , small signal	at least 3 k Ω
2^{nd} Harmonic distortion @ 1kHz	<2%
Supply voltages	±12 V

The voltage amplifier circuit receives the voltage signal from the MFBP and increases the amplitude of the voltage wavefrom. The desired final output being 5 V. This is achieved with either the use of a NMOS common source amplifier or an NPN BJT common emitter amplifier.

Section 2 of this report describes the design and simulations of the common source amplifier and the common emitter amplifier. Experimental results are addressed in section 3. A discussion of the results, sources of error, and areas of possible improvement are outlined in section 4. Section 5 concludes this report.

2 Circuit Development

This section covers the design choices associated with the actively loaded differential amplifier with cascoded current mirror and a class B amplifier for an output stage. Frequency compensation will also be considered in the development to ensure stability.

2.1 Simulations

3 Experimental Implementation

The circuits required only minor changes from simulation to experimental implementation.

3.1 NMOS amplifier

The final circuit is shown in Figure 2.

Figure 2: NMOS final circuit schematic

Some of the resistor values had to be changed in order to meet specifications. The capacitors had to be increased as well due to the poor performance of the equivalent nominal value electrolytics. The implemented capacitors are parallel plate which operate better at higher frequencies. Figure 3 demonstrates the experimental frequency response of the NMOS amplifier.

Figure 3: NMOS experimental frequency response

The gain was just on the high end of the specification at 22 dB. The lower cutoff frequency is less than 1 kHz. The upper cutoff also meets spec by being greater than 200 kHz. The FFT of the circuit can by seen in Figure 4.

Figure 4: NMOS experimental FFT

The second harmonic distortion was slightly too high at 5%. This can be altered by the negative bias voltage, for the purpose of this lab, 5% was deemed acceptable. Table 2 shows the summary of the experimental NMOS circuit.

Table 2: NMOS experimental values

Q_1, Q_2, Q_3	2N7000
$R_r ef$	$22~\mathrm{k}\Omega$
R_g	$1~\mathrm{M}\Omega$
R_d	$8.2~\mathrm{k}\Omega$
R_s	$8.2~\mathrm{k}\Omega$
R_L	$1 \mathrm{k}\Omega$
C_B, C_C, C_E	$10 \ \mu F$
Gain	21 dB
Lower cutoff	600 Hz
Upper cutoff	10 MHz

After minor alterations the circuit operated correctly.

3.2 BJT amplifier

The BJT required only a slight change of capacitor values, due to availability. Figure 5 shows the final circuit for the BJT amplifier circuit.

Figure 5: BJT final schematic

Figure 6: BJT experimental frequency response

The gain was a little less than the simulated, at 24 dB, but the lower cutoff was quite higher at 6 kHz, far higher than the specified 1 kHz. The upper cutoff can not be measured exactly due to the limitations of the Digilent Discovery board's network analyzer. The measured values are only accurate up to 500 kHz. The measured FFT of the BJT can be seen in Figure 7.

Figure 7: BJT experimental FFT $\,$

The second harmonic distortion was significantly less than the NMOS while still being in spec, at roughly 1%. Table 3 shows the summary of the BJT performance.

Table 3: BJT experimental values

Q_1, Q_2, Q_3	2N3904
R_ref	$19.3 \mathrm{k}\Omega$
R_C	$4.7 \mathrm{k}\Omega$
R_B	$10 \mathrm{k}\Omega$
R_E	$3.3 \mathrm{k}\Omega$
R_L	$1 \mathrm{k}\Omega$
C_B, C_C, C_E	470nF
Gain	25 dB
Lower cutoff	6 kHz
Upper cutoff	>500 kHz

Overall, the BJT operated as expected, discussion and comparison of the two circuits can be found in Discussion.

4 Discussion

After several minor changes, both circuits operated correctly. This lab served as introduction to the main differences between MOSFET and BJT devices. The two components are both transistors but have defining differences, mainly the polarity of the devices. The specifications are outlined in Table 4.

BJT	Values	NMOS	Values
Q_1, Q_2, Q_3	2N3904	N_1, N_2, N_3	2N7000
$R_r ef$	19.3 k Ω	$R_R ef$	$22k\Omega$
R_C	$4.7\mathrm{k}\Omega$	R_D	$8.2 \mathrm{k}\Omega$
R_B	$10k\Omega$	R_G	$1 \mathrm{M}\Omega$
R_E	$3.3 \mathrm{k}\Omega$	R_S	$8.2 \mathrm{k}\Omega$
R_L	$1 \mathrm{k}\Omega$	R_L	$1 \mathrm{k}\Omega$
C_B, C_C, C_E	470nF	C_G, C_S, C_D	$10\mu\mathrm{F}$
Gain	25 dB	Gain	22 dB

Table 4: BJT and NMOS comparison

Notably, different voltages than those specified in the lab manual were used as the Analog Discovery handles small voltage signals very poorly, producing a lot of noise. Other than this both circuits had little issue performing as expected.

The BJT, while having a larger gain and much less 2nd harmonic distortion, did not have the required cutoff frequency to meet the specification for the optical link project, thus the NMOS CS amplifier was chosen for it's ability to meet specification.

One of the biggest challenges of this lab was the mathematical assumptions and operations used to solve for the transistor values in simulation. When dealing with such devices the assumptions used can sometimes give wildly incorrect values and lead to repetition of calculations until correct. Fortunately simulations help greatly with reducing the time it takes to get to the correct solution.

The final circuits fell well within specifications and operated correctly after minor component alterations.

5 Conclusion

The design, simulation, and implementation of a voltage amplifier have been explained. The specifications required, for the purposes of use in the optical uplink project, are a lower cutoff frequency of \leq 1kHz, upper cutoff frequency of 200 kHz, and a peak gain of 21 dB \pm 1 dB. Also, the 2nd Harmonic distortion for a 20 mVp-p sinusoidal signal at 1 kHz must be < 2%. The sinusoidal source was 20 mV_{P-P} at 1kHz, and the supply voltages were \pm 12V. This resulted in a lower cutoff frequency of approximately 600 Hz and the upper cutoff frequency was in the MHz range, which exceeds the required \geq 200 kHz. The 2nd harmonic distortion was measured to be approximately 5%. An important lesson was learned about the comparison between a voltage amplifier using NMOS components and a voltage amplifier using BJT components.

References

- [1] D.E. Kotecki Lab.(2017) Lab #5 Voltage Amplifier [Online]. Available: $http://davidkotecki.com/ECE342/labs/ECE342_2017_Lab5.pdf$
- [2] ON Semiconductor. (2017) 2N7000 [Online]. Available: http://www.onsemi.com/PowerSolutions/supportDoc.do?type=models&rpn=2N7000