Samer Makni

Computer Engineering Msc

Spring 2024

Modeling

1 Introduction

Introduction •00

- 2 Data Preperation
- 4 What's Next

Motivation

- The European electricity market involves complex dynamics due to varying demand and supply.
- Short term Accurate time series prediction is crucial due to the signal unstability.
- The potential of spatio-temporal graph neural networks and their interpretability.

Objectives

- Collect and model European electricity data as graph-structured data.
- Train a spatio-temporal model able to make accurate node level regression.
- Apply several explainability techniques to interpret the model.

- 1 Introduction
- 2 Data Preperation
- Modeling
- 4 What's Next

Data Collection

Data were collected from ENTSOE platform [1] and oikolab
[2] using scraping scripts from 2020 to 2023, fine grained hourly.

Target Vector	Feature Vector
	Weather Data,
	Electricity Generation,
Day-ahead Total Load (MW),	Historical Load Data,
Energy Price (EUR/MWh)	Day-of-Week, Time-of-Day,
	Transmission Data,
	Public Holidays Indicator

Data Modeling

The collected data were preprocessed into a static graph using Pytorch Geometric Temporal [3], where $D = \{(G_t, X_t)\}_{t=1}^T$

Data Normalization

Before training, X_t , Y_t for t = 1, ..., T are normalized by dividing by N (population in million):

$$\hat{X}_t = \frac{X_t}{N}, \quad \hat{Y}_t = \frac{Y_t}{N}$$

After training, the predictions are denormalized by multiplying by N before evaluation:

$$\tilde{Y}_t = \hat{Y}_t \times N$$

Modeling •000000

- Introduction
- 2 Data Preperation
- 3 Modeling
- 4 What's Next

Baseline

As a baseline we train a a XGBRegressor and Linear Regression on $D' = \{(X_t, Y_t)\}_{t=1}^T$.

Model	MSE	MAE
XGBRegressor	2.077×10^{7}	1270
LinearRegression	1.603 $\times 10^7$	1782

A date feature was included, which was converted to radians for each time step t.

$$\mathsf{Date}\;\mathsf{Feature}_t = \sin\left(\frac{2\pi t}{365}\right)$$

Spatio-Temporal Model Architechture

We propose an Attention Based Spatial-Temporal Graph Convolutional Network (ASTGCN) [4].

Spatio-Temporal Model Details

The model is trained on 32 mini-batches, $D = \{D_1, D_2, \dots, D_{32}\}$, where each $D_i \subseteq D$ represents a mini-batch.

Length of X (X)	8760
Length of Nodes (N)	37
Length of Input (x)	23
Number of Parameters	44457
Hidden size	128
Epochs	400

Spatio-Temporal Model Performance

Predicted signal (orange) compared with actual signal (blue) after 400 epochs for a node.

Modeling

MAE per country.

Modeling

Model	MSE	MAE
XGBRegressor	2.077×10^{7}	1270
LinearRegression	1.603×10^7	1782
ASTGCN	1.36 $\times 10^5$	147

- 1 Introduction
- 2 Data Preperation
- Modeling
- 4 What's Next

New target and Explainability

- 1 The model could be more fine tuned and then trained to predict the energy price.
- 2 We will also aim to explain our model using:
 - Gradient or feature-based methods
 - Perturbation methods
 - Decomposition methods

Kolmogrov-Arnold Networks?

$$\begin{aligned} \mathsf{KAN}(\mathbf{x}) &= (\Phi_3 \cdot \Phi_2 \cdot \Phi_1)(\mathbf{x}) \\ &\quad \mathsf{instead of} \\ \mathsf{MLP}(\mathbf{x}) &= (\mathbf{W}_3 \cdot \sigma_2 \cdot \mathbf{W}_2 \cdot \sigma_1 \cdot \mathbf{W}_1)(\mathbf{x}) \end{aligned}$$

- Can KANs be adapted for spatio-temporal data?
- Would they perform better than MLP based models?
- Are they actually more interpretable?

- [1] ENTSOE platform
- [2] OikoLab
- [3] B. Rozemberczki et al, "PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models", *Proc. 30th ACM Int. Conf. on Info. and Knowledge Management*, 2021, pp. 4564–4573.
- [4] Guo, Shengnan et al, Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting, *Proceedings of the AAAI Conference on Artificial Intelligence*, 2019,pp. 922-929

Thanks! Questions?