IN THE CLAIMS:

1. (Currently Amended) A fuel injector comprising:

a body having an inlet port, an outlet port and a fuel passageway extending from the inlet port to the outlet port along a longitudinal axis;

a metering element disposed proximate the outlet port;

an actuation element having a proximal end and a distal end, the proximal end being in operative contact with the metering element;

an electromagnetic coil; and

a compensator being coupled to the distal end of the actuation element <u>via a plunger</u>, the compensator <u>having a chamber formed between the plunger and a sleeve to define a volume</u>, the <u>chamber containing a generally constant volume of magnetically-active fluid</u>, the magnetically-active fluid being responsive to magnetic flux so as to change the fluid from a first state to a second state to generally prevent movement of the plunger relative to the sleeve.

2.(Currently Amended) The A fuel injector-according to claim 1 comprising:

a body having an inlet port, an outlet port and a fuel passageway extending from the inlet port to the outlet port along a longitudinal axis;

a metering element disposed proximate the outlet port;

an actuation element having a proximal end and a distal end, the proximal end being in operative contact with the metering element;

an electromagnetic coil; and

a compensator being coupled to the distal end of the actuation element, the compensator containing magnetically-active fluid, the magnetically-active fluid being responsive to magnetic flux so as to change the fluid from a first state to a second state, wherein the compensator comprises including:

a sleeve extending between a first end and a second end along the longitudinal axis, one of the first and second ends having an opening and the other of the first and second end is closed;

a plunger extending between a first plunger end and a second plunger end along the longitudinal axis, the first plunger end being cinctured by the sleeve and spaced apart with a portion of the plunger by a clearance, the plunger having an opening formed on the plunger and

A

extending into the plunger for a predetermined distance so as to form an interior volume;

a seal disposed between the sleeve and the plunger so as to define a first volume between the other of the first and second ends of the sleeve and the plunger;

a plunger guide having a fluid passage extending between a first guide end and a second guide end, one of the first guide end and second end being disposed at least partly in the interior volume of the plunger so as to define a second volume; and

a biasing member disposed between the plunger guide and the interior volume.

- 3. (Original) The fuel injector according to claim 2, wherein the electromagnetic coil generates at least a portion of the magnetic flux.
- 4.(Currently Amended) The fuel injector according to claim 12, wherein the electromagnetic coil is coupled to the actuation element such that the metering element is operative to move when the electromagnetic coil is energized.
- 5. (Original) The fuel injector according to claim 2, wherein the actuation element comprises a magnetostrictive member.
- 6. (Original) The fuel injector according to claim 5, wherein the magnetostrictive rod comprises a Terfenol-D alloy.
- 7. (Original) The fuel injector according to claim 5, wherein at least a portion of the magnetostrictive member is exposed to fuel.
- 8. (Original) The fuel injector according to claim 5, further comprising a biasing means operatively positioned to exert a predetermined prestress force on the magnetostrictive rod.
- 9. (Original) The fuel injector according to claim 8, wherein the biasing means biases the plunger away from the sleeve so as to cause magnetically-active fluid to flow between the second volume and at least one of the clearance and the first volume.

A

- 10. (Original) The fuel injector according to claim 2, wherein the actuation element comprises a piezoelectric stack.
- 11. (Original) The fuel injector of claim 10, wherein the charging voltage of the piezostack is used to maintain a current in the electromagnetic coil proximate the compensator.
- 12. (Original) The fuel injector according to claim 10, wherein the biasing means controls the amount of magnetically-active fluid passing through between the first volume and the second volume.
- 13. (Original) The fuel injector according to claim 2, wherein the first state comprises a liquid and the second state comprises the liquid in a substantially solidified state so that movement of the magnetically-active fluid between the clearance is reduced or prevented.
- 14. (Original) The fuel injector according to claim 2, wherein the first state comprises a fluid having a first viscosity and the second state comprises a second viscosity greater than the first viscosity so that movement of the fluid between the first volume, the clearance and the second volume is reduced or prevented.
- 15. (Original) The fuel injector according to claim 14, wherein the second viscosity comprises a viscosity approximately four orders of magnitude different from the first viscosity.
- 16. (Original) The fuel injector according to claim 2, wherein the body comprises an inlet assembly having the sleeve formed therein.

17-23 (Canceled)

A