Solutions Stat755 Homework 5

4.18 Find the maximum likelihood estimates of the 2×1 mean vector μ and the 2×2 covariance matrix Σ based on the random sample

$$\mathbf{X} = \begin{bmatrix} 3 & 6 \\ 4 & 4 \\ 5 & 7 \\ 4 & 7 \end{bmatrix}$$

from a bivariate normal population.

Sln: Since the random samples \mathbf{X}_1 , \mathbf{X}_2 , \mathbf{X}_3 and \mathbf{X}_4 are from normal population, the MLEs of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are \overline{X} and $\frac{1}{n}\sum_{i=1}^n \left(\overline{\mathbf{X}}_j - \overline{\mathbf{X}}\right) \left(\overline{\mathbf{X}}_j - \overline{\mathbf{X}}\right)^T$. Therefore,

$$\hat{\boldsymbol{\mu}} = \overline{\mathbf{X}} = \frac{1}{n} \mathbf{X}^T \cdot \mathbf{1}_{n \times 1} = \frac{1}{4} \mathbf{X}^T \cdot \mathbf{1}_{4 \times 1} = \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \end{bmatrix} = \begin{bmatrix} \frac{3+4+5+4}{3} \\ \frac{6+4+7+7}{3} \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}.$$

$$\begin{split} \hat{\Sigma} &= \frac{1}{n} \sum_{j=1}^{n} \left(\mathbf{X}_{j} - \overline{\mathbf{X}} \right) \left(\mathbf{X}_{j} - \overline{\mathbf{X}} \right)^{T} \\ &= \frac{1}{4} \left\{ \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -2 \end{bmatrix} \begin{bmatrix} 0 & -2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \right\} \\ &= \frac{1}{4} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \\ &= \frac{1}{4} \begin{bmatrix} 2 & 1 \\ 1 & 6 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}. \end{split}$$

4.19 Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{20}$ be a random sample of size n = 20 from an $N_6(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ population. Specify each of the following completely.

- (a) the distribution of $\left(\mathbf{X}_{_{1}}-\boldsymbol{\mu}\right)^{T}\boldsymbol{\Sigma}^{^{-1}}\left(\mathbf{X}_{_{1}}-\boldsymbol{\mu}\right)$
- (b) the distributions of $\overline{\mathbf{X}}$ and $\sqrt{n}\left(\overline{\mathbf{X}}-\mathbf{\mu}\right)$
- (c) the distribution of (n-1)**S**

Sln: (a) $(\mathbf{X}_1 - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{X}_1 - \boldsymbol{\mu})$ is distributed as χ_6^2 .

(b) $\overline{\mathbf{X}}$ is distributed as $N_6\left(\mathbf{\mu}, \frac{1}{20}\mathbf{\Sigma}\right)$ and $\sqrt{n}\left(\overline{\mathbf{X}} - \mathbf{\mu}\right)$ is distributed as $N_6\left(\mathbf{0}, \mathbf{\Sigma}\right)$.

Solutions Stat755 Homework 5

- (c) (n-1)**S** is distributed as Wishart distribution $\sum_{i=1}^{20-1} \mathbf{Z}_i \mathbf{Z}_i^T$, where $\mathbf{Z}_i \sim N_6(\mathbf{0}, \mathbf{\Sigma})$.
- 4.21 Let $\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_{60}$ be a random sample of size 60 from a four-variate normal distribution having mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$. Specify each of the following completely.
- (a) The distribution of $\bar{\mathbf{X}}$
- (b) The distribution of $\left(\boldsymbol{X}_{_{1}} \boldsymbol{\mu} \right)^{\! T} \boldsymbol{\Sigma}^{^{-1}} \! \left(\boldsymbol{X}_{_{1}} \boldsymbol{\mu} \right)$
- (c) The distribution of $n(\bar{X} \mu)^T \Sigma^{-1}(\bar{X} \mu)$
- (d) The approximate distribution of $n(\bar{X} \mu)^T S^{-1}(\bar{X} \mu)$
- Sln: (a) $\bar{\mathbf{X}}$ is distributed as $N_4(\mu, \frac{1}{60}\Sigma)$
- (b) $(\mathbf{X}_1 \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{X}_1 \boldsymbol{\mu})$ is distributed as χ_4^2 .
- (c) $n(\overline{\mathbf{X}} \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\overline{\mathbf{X}} \mathbf{\mu})$ is distributed as χ_4^2 , because $\overline{\mathbf{X}}$ is distributed as $N_4(\mathbf{\mu}, \frac{1}{60}\mathbf{\Sigma})$
- (d) Since $60 \gg 4$, $n(\bar{\mathbf{X}} \boldsymbol{\mu})^T \mathbf{S}^{-1}(\bar{\mathbf{X}} \boldsymbol{\mu})$ can be approximated as χ_4^2 .
- 4.22 Let $X_1, X_2, ..., X_{75}$ be a random sample from population distribution with mean μ and covariance Σ . What is the approximate distribution of each of the following.
- (a) \bar{X}
- (b) $n(\bar{\mathbf{X}} \boldsymbol{\mu})^T \mathbf{S}^{-1}(\bar{\mathbf{X}} \boldsymbol{\mu})$
- **Sln**: (a) $\bar{\mathbf{X}}$ can be approximated by $N_p\left(\mathbf{\mu}, \frac{1}{75}\mathbf{\Sigma}\right)$
- (b) $n(\bar{\mathbf{X}} \boldsymbol{\mu})^T \mathbf{S}^{-1}(\bar{\mathbf{X}} \boldsymbol{\mu})$ can be approximated by χ_p^2