Successive Overrelaxation

Tung and Tung Menlo School

May 2, 2021

Gaussian elimination

- ► Consider the matrix equation $A\vec{x} = \vec{b}$, where
 - ightharpoonup A is an $n \times n$ matrix
 - $ightharpoonup \vec{x}$ and \vec{b} are *n*-component column vectors
- ▶ To solve for \vec{x} , we can use Gaussian elimination to write $[A|\vec{b}]$ in row echelon form.
- ▶ But this process is computationally intensive.
 - ightharpoonup n(n+1)/2 divisions
 - \triangleright $(2n^3 + 3n^2 5n)/6$ multiplications
 - \triangleright $(2n^3 + 3n^2 5n)/6$ subtractions
 - $ightharpoonup 2n^3/3$ operations
 - O(n³) arithmetic complexity
- ► Gaussian elimination can be used on a computer for solving systems with thousands of equations and unknowns. But it can't be used when there are millions of equations and unknowns, due to computing power limitations.
- ► Instead, these systems are often solved using **iterative methods**.

Iterative methods

- An **iterative method** uses an initial value to generate a sequence of improving approximate solutions $\{\vec{x}^k\}$ for k nonnegative. Each approximation is derived from the previous ones.
- An iterative method converges if the spectral radius ρ of the iteration matrix is less than 1.
 - ► The spectral radius of a square matrix is the largest absolute value of its eigenvalues.

Stationary iterative methods

- ▶ Split the matrix A into M + N, where M is easily invertible.
- Solving for \vec{x}^{k+1} yields $\vec{x}^{k+1} = -M^{-1}N\vec{x}^k + M^{-1}\vec{b}$.
- ▶ In many algorithms, *A* is split into terms involving lower and upper triangular matrices because these are easy to invert.
 - ▶ A lower triangular matrix can be inverted via forward substitution.
 - ▶ An upper triangular matrix can be inverted via back substitution.
- ▶ The approximate solutions don't always converge to the true solution.
- ▶ The three methods we will discuss are all stationary iterative methods.

The Jacobi method

- ▶ To run the algorithm, first guess some $\vec{x_0}$. The better the guess, the faster the convergence.
- \blacktriangleright Write A=D+L+U, where D is diagonal, L is strictly lower triangular, and U is strictly upper triangular.
- ▶ To find the k+1st approximation to \vec{x} , compute $\vec{x}^{k+1} = D^{-1}(\vec{b} - (L + U)\vec{x}^k).$
- Indexing the elements of A, \vec{x} , and \vec{b} , we can index the components of \vec{x}^{k+1} :

$$\vec{x}_i^{k+1} = \frac{1}{a_{ii}} \left(\vec{b}_i - \sum_{j \neq i} a_{ij} \vec{x}_j^k \right), \quad i = 1, 2, \dots, n.$$

Jacobi converges too slowly to be used in practice, so better methods are needed.

4 中 × 4 国 × 4 国 × 4 国 × 1 Menlo School

The Gauss-Seidel method

- Compared to Jacobi, this method has a faster rate of convergence.
- ▶ To run the algorithm, first guess some \vec{x}_0 . The better the guess, the faster the convergence.
- \blacktriangleright Write $A=L_*+U$, where L_* is lower triangular and U is strictly upper triangular (diagonal terms of U are 0).
- ▶ To find the k+1st approximation to \vec{x} , compute $\vec{x}^{k+1} = L_*^{-1}(\vec{b} U\vec{x}^k)$
- Indexing the elements of A, \vec{x} , and \vec{b} , we can index the components of \vec{x}^{k+1} :

$$\vec{x}_i^{k+1} = \frac{1}{a_{ii}} \left(\vec{b}_i - \sum_{j=1}^{i-1} a_{ij} \vec{x}_j^{k+1} - \sum_{j=i+1}^{n} a_{ij} \vec{x}_j^k \right), \quad i = 1, 2, \dots, n.$$

Menlo School May 2, 2021

Successive overrelaxation (SOR)

- ▶ SOR is a generalization of Gauss-Seidel that speeds up rate of convergence.
- SOR takes a weighted average between the previous iterate and the Gauss-Seidel iterate successively for each component.
- ▶ To run the algorithm, first guess some \vec{x}_0 . The better the guess, the faster the convergence. In addition, select a relaxation factor $\omega \in (0,2)$. A method for choosing the optimal ω is discussed later.
- ▶ If $\omega = 1$, SOR is the same as Gauss-Seidel.
- ightharpoonup Write A=D+L+U, where D is diagonal, L is strictly lower triangular, and U is strictly upper triangular.
- ▶ To find the k+1st approximation to \vec{x} , compute $\vec{\mathbf{x}}^{k+1} = (D + \omega L)^{-1} (\omega \vec{\mathbf{b}} - [\omega U + (\omega - 1)D]\vec{\mathbf{x}}^k).$
- Indexing the elements of A, \vec{x} , and \vec{b} , we can index the components of \vec{x}^{k+1} :

$$\vec{x}_i^{k+1} = (1-\omega)\vec{x}_i^k + \frac{\omega}{a_{ii}} \left(\vec{b}_i - \sum_{j < i} a_{ij}\vec{x}_j^{k+1} - \sum_{j > i} a_{ij}\vec{x}_j^k \right), \quad i = 1, 2, \dots, n.$$

Menlo School

The relaxation factor and convergence rate

- ► The convergence rate for SOR can be analytically derived when these assumptions are satisfied:
 - ▶ Jacobi iteration matrix $C_{Jac} := I D^{-1}A$ has only real eigenvalues
 - ▶ The Jacobi method is convergent: $\mu := \rho(C_{\mathsf{Jac}}) < 1$
 - ▶ A unique solution exists: $det(A) \neq 0$
- Convergence rate:

$$\rho(C_{\omega}) = \begin{cases} \frac{1}{4} \left(\omega \mu + \sqrt{\omega^2 \mu^2 - 4(\omega - 1)} \right)^2, & 0 < \omega \leq \omega_{\text{opt}} \\ \omega - 1, & \omega_{\text{opt}} < \omega < 2 \end{cases}$$

▶ where the optimal relaxation parameter is given by

$$\omega_{\mathsf{opt}} := 1 + \left(rac{\mu}{1 + \sqrt{1 - \mu^2}}
ight)^2$$

Sources

- ▶ https://en.wikipedia.org/wiki/Gaussian_elimination
- ▶ https://en.wikipedia.org/wiki/Iterative_method
- https://en.wikipedia.org/wiki/Jacobi_method
- ▶ https://en.wikipedia.org/wiki/Gauss-Seidel_method
- ▶ https://en.wikipedia.org/wiki/Successive_over-relaxation
- https: //mathworld.wolfram.com/SuccessiveOverrelaxationMethod.html
- Strauss, Partial Differential Equations: An Introduction, 2nd ed.

