Basic Logic Gates

Md Saeed Siddik

Assistant Professor, IIT Dhaka University

Basic Logic Gates and Basic Digital Design

- NOT, AND, and OR Gates
- NAND and NOR Gates
- DeMorgan's Theorem
- Exclusive-OR (XOR) Gate
- Multiple-input Gates

X	Υ
0	1
1	0

NOT

•
$$Y = \sim X$$
 (Verilog)

•
$$Y = !X$$
 (ABEL)

•
$$Y = not X (VHDL)$$

•
$$Y = X'$$

•
$$Y = \neg X$$

•
$$Y = \overline{X}$$
 (textook)

NOT

X	\sim X	~~X
0	1	0
1	0	1

AND Gate

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1
		l

AND

- X & Y (Verilog and ABEL)
- X and Y (VHDL)
- X \ Y
- X **N** Y
- X * Y
- XY (textbook)
- and (Z, X, Y) (Verilog)

OR Gate

Χ	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

OR

- X | Y (Verilog)
- X # Y (ABEL)
- X or Y (VHDL)
- X + Y (textbook)
- X **V** Y
- X **U** Y
- or (Z, X, Y) (Verilog)

Basic Logic Gates and Basic Digital Design

- NOT, AND, and OR Gates
- NAND and NOR Gates
- DeMorgan's Theorem
- Exclusive-OR (XOR) Gate
- Multiple-input Gates

NAND Gate

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

$$Z = \sim (X \& Y)$$

nand (Z, X, Y)

NAND Gate

 $Z = \sim W = \sim (X \& Y)$

X	Y	M	Z
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

NOR Gate

$$Z = \sim (X \mid Y)$$

 $nor(Z, X, Y)$

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	0

NOR Gate

X	Y	M	Z
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Basic Logic Gates and Basic Digital Design

- NOT, AND, and OR Gates
- NAND and NOR Gates
- DeMorgan's Theorem
- Exclusive-OR (XOR) Gate
- Multiple-input Gates

NAND Gate

$$Z = \sim (X \& Y)$$

$$Z = \sim X \mid \sim Y$$

X	Y	~X	\sim Y	Z
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

De Morgan's Theorem-1

$$\sim (X \& Y) = \sim X \mid \sim Y$$

- NOT all variables
- Change & to | and | to &
- NOT the result

NOR Gate

$$Z = \sim (X \mid Y)$$

$$Z = \sim X \& \sim Y$$

Χ	Y	~X	~Y	Z
0	0	1	1	1
0	1	1		0
1	0	0	1	0
1	1	0	0	0

De Morgan's Theorem-2

$$\sim (X | Y) = \sim X \& \sim Y$$

- NOT all variables
- Change & to | and | to &
- NOT the result

- Basic Logic Gates and Basic Digital Design
- NOT, AND, and OR Gates
- NAND and NOR Gates
- DeMorgan's Theorem
- Exclusive-OR (XOR) Gate
- Multiple-input Gates

Exclusive-OR Gate

X	Y	Z
0 0 1 1	0 1 0	0 1 1

XOR

- X ^ Y (Verilog)
- X \$ Y (ABEL)
- X G Y
- $X \oplus Y$ (textbook)
- xor(Z,X,Y) (Verilog)

Exclusive-NOR Gate

XNOR

$$Z = \sim (X ^ Y)$$

 $Z = X \sim^{Y}$
 $\mathbf{xnor}(Z, X, Y)$

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

XNOR

- X ~^ Y (Verilog)
- ! (X \$ Y) (ABEL)
- X G Y
- X ⊙ Y
- xnor(Z,X,Y) (Verilog)

Basic Logic Gates and Basic Digital Design

- NOT, AND, and OR Gates
- NAND and NOR Gates
- DeMorgan's Theorem
- Exclusive-OR (XOR) Gate
- Multiple-input Gates

Multiple-input Gates

Logic Gates

COMBINATIONAL GATES

Name	Symbol	Function	Truth Table
AND	$A \longrightarrow X$	X = A • B or X = AB	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
OR	$A \longrightarrow X$	X = A + B	$\begin{array}{c ccccc} A & B & X \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
I	A —————X	X = A'	$\begin{array}{c c} A & X \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	$A \longrightarrow X$	X = A	A X 0 0 1 1
NAND	A DOM	X = (AB)'	A B X 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0
NOR	A Do-X	$\mathbf{X} = (\mathbf{A} + \mathbf{B})'$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
XOR Exclusive OR	$A \longrightarrow X$	$X = A \oplus B$ or $X = A'B + AB'$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
XNOR Exclusive NOR or Equivalence	A N X	X = (A ⊕ B)' or X = A'B'+ AB	$\begin{array}{c ccccc} A & B & X \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$

https://logic.ly/demo/

Live demo

BOOLEAN ALGEBRA

6

Boolean Algebra

Boolean Algebra

- Algebra with Binary(Boolean) Variable and Logic Operations
- Boolean Algebra is useful in Analysis and Synthesis of Digital Logic Circuits
- Input and Output signals can be represented by Boolean Variables
- Terminology:
 - Literal: A variable or its complement
 - Product term: literals connected by •
 - Sum term: literals connected by +

Boolean Algebra Properties

Let X: boolean variable, 0,1: constants

- 1. X + 0 = X -- Zero Axiom
- 2. $X \cdot 1 = X$ -- Unit Axiom
- 3. X + 1 = 1 -- Unit Property
- 4. $X \cdot 0 = 0$ -- Zero Property

Boolean Algebra Properties (cont.)

Let X: boolean variable, 0,1: constants

- 5. X + X = X -- Idepotence
- 6. $X \cdot X = X$ -- Idepotence
- 7. X + X' = 1 -- Complement
- 8. $X \cdot X' = 0$ -- Complement
- 9. (X')' = X -- Involution

Algebraic Manipulation

- Boolean algebra is a useful tool for simplifying digital circuits.
- Why do it? Simpler can mean cheaper, smaller, faster.
- Example: Simplify F = x'yz + x'yz' + xz.

$$F = x'yz + x'yz' + xz = x'y(z+z') + xz = x'y•1 + xz = x'y + xz$$

Algebraic Manipulation (cont.)

Example: Prove
 x'y'z' + x'yz' + xyz' = x'z' + yz'

Proof:

$$x'y'z' + x'yz' + xyz'$$

= $x'y'z' + x'yz' + x'yz' + xyz'$
= $x'z'(y'+y) + yz'(x'+x)$
= $x'z' \cdot 1 + yz' \cdot 1$
= $x'z' + yz'$

Truth Table

The most elementary specification of the function of a Digital Logic Circuit is the Truth Table

Table that describes the Output Values for all the combinations of the Input Values, called *MINTERMS*

- n input variables → 2ⁿ minterms

LOGIC CIRCUIT DESIGN

X	V	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$\mathbf{F} = \mathbf{x} + \mathbf{y}^{2}\mathbf{z}$$

Combinational Circuits

Consider the following Boolean expression A(B + C)

A	В	С	B + C	A(B + C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Theorem to Prove

 $(A+B) \cdot (A+C) = A+(B \cdot C)$ (Distributive Law)

Α		В	С	A+B	A+C	(A+B)· (A+C)	B· C	A+(B· C)
	0	0	0	0	0	0	0	0
	0	0	1	0	1	0	0	0
	0	1	0	1	0	0	0	0
	0	1	1	1	1	1	1	1
	1	0	0	1	1	1	0	1
	1	0	1	1	1	1	0	1
	1	1	0	1	1	1	0	1
	1	1	1	1	1	1	1	1

Daily Life Example: Choosing a Movie

- You're trying to decide what movie to watch tonight. You have three criteria:
 - A: The movie is a Comedy
 - B: The movie has good reviews
 - C: Your friend is available to watch
- Let's say you decide on the following rule for watching a movie:

"We watch a movie if it's a Comedy AND has good reviews, OR if my friend is available."

Boolean algebra

• In Boolean algebra, this would look like: (A x B) + C

A (Comedy)	B (Good Reviews)	C (Friend Available)	A· B (Comedy AND Good Reviews)	(A· B)+C (Watch Movie?)
0 (No)	0 (No)	0 (No)	0	0 (No Movie)
0 (No)	0 (No)	1 (Yes)	0	1 (Watch Movie)
0 (No)	1 (Yes)	0 (No)	0	0 (No Movie)
0 (No)	1 (Yes)	1 (Yes)	0	1 (Watch Movie)
1 (Yes)	0 (No)	0 (No)	0	0 (No Movie)
1 (Yes)	0 (No)	1 (Yes)	0	1 (Watch Movie)
1 (Yes)	1 (Yes)	0 (No)	1	1 (Watch Movie)
1 (Yes)	1 (Yes)	1 (Yes)	1	1 (Watch Movie)

End of this Lecture