Food Delivery Time Prediction

Objective

The goal is to predict whether a food delivery will be "Fast" or "Delayed" based on features like customer location, restaurant location, weather, traffic conditions, and more. This dataset can be used to explore **clustering and neural network models** for predictive analytics.

Phase 1 - Data Preprocessing and Feature Engineering

Data Import and Cleaning:

- Load the dataset (Food_Delivery_Time_Prediction.csv).
- o Handle missing values through imputation or removal.
- Encode categorical variables (e.g., weather, traffic conditions) using One-Hot Encoding or Label Encoding.
- o Normalize numerical features (e.g., Distance, Delivery Time).

Feature Engineering:

- Calculate geographical distance using the Haversine formula if not provided.
- Derive time-related features such as "rush hour" or "non-rush hour".

Phase 2 - Clustering using K-Means and Hierarchical Clustering

1. K-Means Clustering

- Objective Use K-Means Clustering to group similar delivery times and characteristics based on features such as customer and restaurant locations, weather, traffic conditions, and more.
- Implementation
 - Apply the K-Means algorithm to segment data into clusters based on delivery time patterns.
 - Use **Elbow Method** to determine the optimal number of clusters.
- Evaluation:
 - Visualize clusters using 2D or 3D scatter plots.
 - Analyze how delivery times are influenced by different clusters.

2. Hierarchical Clustering

- Objective Perform hierarchical clustering to understand how the features like traffic, weather, and location group together in a hierarchical structure.
- Implementation
 - Apply Agglomerative Clustering to the dataset.
 - Use dendrograms to visualize the clusters and decide on the optimal number of clusters.
- Evaluation
 - Visualize the hierarchy using a dendrogram.
 - Compare cluster analysis with K-Means results to find patterns.

Phase 3 - Neural Networks for Prediction

1. Introduction to Neural Networks

- Objective Predict if a delivery will be "Fast" or "Delayed" using a neural network model.
- Implementation
 - Build a simple feedforward neural network using Keras/TensorFlow.
 - Input features: Distance, Traffic, Weather, Order Priority, etc.
 - Output: "Fast" (0) or "Delayed" (1).

Evaluation Metrics Accuracy, Precision, Recall, F1-score.

2. Model Improvement

- Tune hyperparameters such as the number of layers, number of neurons, activation functions, and learning rate.
- Evaluate the neural network's performance compared to traditional machine learning models (e.g., Logistic Regression).

Phase 4 - Reporting and Insights

• Model Comparison

- Compare the clustering results and neural network accuracy to determine the most effective method for delivery time prediction.
- Discuss the insights derived from K-Means and Hierarchical Clustering and how they relate to improving delivery prediction.

Actionable Insights

 Based on clustering and neural network predictions, provide recommendations on improving food delivery times, optimizing delivery routes, and better managing resources.

Final Deliverables

1. Jupyter Notebook (.ipynb)

Full code for data preprocessing, clustering, and neural network modeling.

2. Data Visualizations

• Visualizations such as Elbow Method graphs, dendrograms, cluster scatter plots, and neural network performance metrics.

3. Final Report

A comprehensive report summarizing the methodology, model evaluations, key findings, and actionable recommendations.