

Near-Optimality of Greedy Set Selection in the Sampling of Graph Signals

Luiz F. O. Chamon and Alejandro Ribeiro

December 7th, 2016

Greedy Sampling of Graph Signals

Greedy Sampling of Graph Signals

What is a graph signal?

Definition

It's a signal that comes with a graph.

Old dog

In traditional signal processing, we only look at the values ...

$$oldsymbol{x} = egin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

... because the structure is implicit

Greedy Sampling of Graph Signals

So what? I already know how to do this. . .

► Classical signals: sampling is "easy" on regular domains

So what? I already know how to do this. . .

- ► Classical signals: sampling is "easy" on regular domains
- Graph signals: not so easy (combinatorial)

Greedy Sampling of Graph Signals

Greedy sampling

Definition

Pick nodes one at a time by always choosing the one that most improves interpolation at each step.

```
\begin{aligned} & \textbf{function} \ \text{GreedySampling}(\ell) \\ & \mathcal{G}_0 = \{\} \\ & \textbf{for} \ j = 1, \dots, \ell \\ & u = \operatorname{argmin}_{s \in \mathcal{V} \setminus \mathcal{G}_{j-1}} \ \text{MSE} \left(\mathcal{G}_{j-1} \cup \{s\}\right) \\ & \mathcal{G}_j = \mathcal{G}_{j-1} \cup \{u\} \\ & \textbf{end} \end{aligned}
```

Greedy sampling

- ► Pros:
 - Low complexity
 - Sequential
 - Empirically successful
- ► Cons:
 - Is it guaranteed to be close to optimal?

Greedy sampling

- ► Pros:
 - Low complexity
 - Sequential
 - Empirically successful
- ► Cons:
 - Is it guaranteed to be close to optimal?

Greedy sampling is guaranteed to do a good job minimizing the interpolation MSE

Graph signal formalism

- lacksquare A graph signal is a pair $(\mathbb{G}, oldsymbol{x})$
 - lacksquare A graph $\mathbb{G}=(\mathcal{V},\mathcal{E})$
 - ightharpoonup A is a matrix representation of \mathbb{G} (e.g., adjacency, Laplacian)
 - ▶ Assumption (Parseval): A is normal, i.e., $A = V\Sigma V^T$
 - lacksquare A signal $oldsymbol{x} \in \mathbb{R}^n$ defined over \mathcal{V}

Graph signal formalism

- lacksquare A graph signal is a pair $(\mathbb{G}, oldsymbol{x})$
 - lacksquare A graph $\mathbb{G}=(\mathcal{V},\mathcal{E})$
 - lacktriangleq A is a matrix representation of $\Bbb G$ (e.g., adjacency, Laplacian)
 - ► Assumption (Parseval): A is normal, i.e., $A = V\Sigma V^T$
 - lacksquare A signal $oldsymbol{x} \in \mathbb{R}^n$ defined over \mathcal{V}
- ► Graph Fourier Transform

$$ar{m{x}} = m{V}^Tm{x} \quad \longleftrightarrow \quad m{x} = m{V}ar{m{x}}$$

lacktriangle A signal is $\mathcal K$ -bandlimited if ar x is $\mathcal K$ -sparse: $ar x_{\mathcal V\setminus\mathcal K}=\mathbf 0$

$$oldsymbol{x} = oldsymbol{V}_{\mathcal{K}} ar{oldsymbol{x}}_{\mathcal{K}}$$

\mathcal{K} -bandlimited graph signal

Stochastic graph signal

ullet Signal: $ar x_{\mathcal K}$ is a zero-mean RV with covariance $oldsymbol{\Lambda} = \sigma_x^2 oldsymbol{I}$

$$oldsymbol{x} = oldsymbol{V}_{\mathcal{K}}ar{oldsymbol{x}}_{\mathcal{K}}$$

lacktriangle Noise: $m{w}$ is a zero-mean RV with covariance $m{\Lambda}_w = \sigma_w^2 m{I}$

$$y = x + w$$

Sampling and interpolation

Optimal interpolator:

$$oldsymbol{L}^{\star}oldsymbol{C}\left(oldsymbol{V}_{\mathcal{K}}oldsymbol{\Lambda}oldsymbol{V}_{\mathcal{K}}^{T}+oldsymbol{\Lambda}_{w}
ight)oldsymbol{C}^{T}=oldsymbol{V}_{\mathcal{K}}oldsymbol{\Lambda}oldsymbol{V}_{\mathcal{K}}^{T}oldsymbol{C}^{T}$$

Optimal interpolation MSE:

$$\mathsf{MSE}(\mathcal{S}) = \mathbb{E} \left\| oldsymbol{x} - \hat{oldsymbol{x}}^\star
ight\|^2 = \mathrm{Tr} \left[\left(\sigma_x^{-2} oldsymbol{I} + \sigma_w^{-2} \sum_{i \in \mathcal{S}} oldsymbol{v}_i oldsymbol{v}_i^T
ight)^{-1}
ight]$$

The sampling set selection problem

$$\begin{array}{ll} \underset{\mathcal{S} \subseteq \mathcal{V}}{\text{minimize}} & \text{MSE}(\mathcal{S}) \\ \text{subject to} & |\mathcal{S}| \neq k \end{array}$$

Set function minimization with cardinality constraint

Greedy supermodular minimization

Theorem ([NWF, 1978])

Let \mathcal{S}^{\star} be the optimal solution of the problem

and $\mathcal G$ be its greedy solution. If f is (i) monotone decreasing and (ii) supermodular, then

$$\frac{f(\mathcal{G}) - f(\mathcal{S}^*)}{f(\{\}) - f(\mathcal{S}^*)} \le e^{-1} \approx 0.37.$$

Greedy supermodular minimization

Theorem ([NWF, 1978])

If f is (i) monotone decreasing and (ii) supermodular, then

$$\frac{f(\mathcal{G}) - f(\mathcal{S}^*)}{f(\{\}) - f(\mathcal{S}^*)} \le e^{-1} \approx 0.37.$$

Supermodularity

Definition (Supermodularity)

For $\mathcal{A} \subseteq \mathcal{B}$ and $u \notin \mathcal{B}$,

$$f(A \cup \{u\}) - f(A) \le f(B \cup \{u\}) - f(B)$$

$$f\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) - f\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) \leq f\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) - f\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right)$$

"diminishing returns"

Which f are supermodular?

- ▶ MSE(S) is NOT supermodular
- ▶ log det of the error covariance matrix is supermodular

Definition (Supermodularity)

For $A \subseteq \mathcal{B}$, $u \notin \mathcal{B}$

$$f(\mathcal{A} \cup \{u\}) - f(\mathcal{A}) \le f(\mathcal{B} \cup \{u\}) - f(\mathcal{B})$$

Definition (Approximate supermodularity or α -supermodularity)

For $\mathcal{A} \subseteq \mathcal{B}$ and $u \notin \mathcal{B}$, and $\alpha \in [0,1]$

$$f(A \cup \{u\}) - f(A) \le \alpha \left[f(B \cup \{u\}) - f(B) \right]$$

• If $\alpha = 1$, then f is supermodular

Greedy α -supermodular minimization

Theorem

Let \mathcal{S}^{\star} be the optimal solution of the problem

$$\begin{array}{ll} \mbox{minimize} & f\left(\mathcal{S}\right) \\ \mbox{subject to} & \left|\mathcal{S}\right| = k \end{array}$$

and G_{ℓ} be the ℓ -th iteration of a greedy solution. If f is (i) monotone decreasing and (ii) α -supermodular, then

$$\frac{f(\mathcal{G}_{\ell}) - f(\mathcal{S}^{\star})}{f(\{\}) - f(\mathcal{S}^{\star})} \le e^{-\alpha\ell/k}.$$

Greedy α -supermodular minimization

Theorem

If f is (i) monotone decreasing and (ii) α -supermodular, then

$$\frac{f(\mathcal{G}_{\ell}) - f(\mathcal{S}^{\star})}{f(\{\}) - f(\mathcal{S}^{\star})} \le e^{-\alpha \ell/k}.$$

- ▶ For $\ell = k$ and $\alpha = 1$, we recover the classical greedy result
- ▶ If α < 1, then e^{-1} is recovered for $\ell = \alpha^{-1}k$
- ightharpoonup Evaluating lpha is NP-hard

What is α for the MSE?

Theorem

The $\mathsf{MSE}(\mathcal{S})$ is α -supermodular with

$$\alpha \ge \frac{1+2\gamma}{(1+\gamma)^4}$$
, for $\gamma = \frac{\sigma_x^2}{\sigma_w^2}$.

What is α for the MSE?

Theorem

The $\mathsf{MSE}(\mathcal{S})$ is α -supermodular with

$$\alpha \geq \frac{1+2\gamma}{(1+\gamma)^4}, \quad \text{for } \gamma = \frac{\sigma_x^2}{\sigma_w^2}.$$

$$\qquad \qquad \alpha \to 1 \text{ as } \gamma \to 0 \\$$

What is α for the MSE?

Theorem

The MSE(S) is α -supermodular with

$$\alpha \geq \frac{1+2\gamma}{(1+\gamma)^4}$$
, for $\gamma = \frac{\sigma_x^2}{\sigma_w^2}$.

- $\alpha \to 1$ as $\gamma \to 0$
- ightharpoonup lpha
 ightarrow 0 as $\gamma
 ightharpoonup \infty$
 - In the noiseless case, almost every S with $|S| \ge |\mathcal{K}|$ yields perfect reconstruction

Simulations: α for the MSE

▶ n = 10 nodes, $|\mathcal{K}| = 4$, and 100 realizations

Simulations: greedy sampling

▶ MSE (10 nodes, |S| = |K| = 4, and SNR = 20 dB)

Simulations: greedy sampling ($\log \det$)

▶ MSE vs $\log \det (10 \text{ nodes}, |\mathcal{S}| = |\mathcal{K}| = 4, \text{ and SNR} = 20 \text{ dB})$

Simulations: greedy sampling

▶ 100 nodes, $|\mathcal{K}| = 7$, and $\mathsf{SNR} = 20~\mathsf{dB}$

Conclusion

- Graph signal sampling is useful, but it's hard
- ► Interpolation MSE is not supermodular, but almost
- Greedy sampling set selection is efficient and has a guaranteed near-optimal performance

Near-Optimality of Greedy Set Selection in the Sampling of Graph Signals

Luiz F. O. Chamon and Alejandro Ribeiro

More details: http://www.seas.upenn.edu/~luizf