Problem G: Meeting Points

This problem is very simple. Given n lines lying in the x-y plane, determine the number of intersection points. Here are the details:

- 1. Each line is specified by two distinct points, (x_1, y_1) and (x_2, y_2) , through which the line passes.
- 2. All n lines are distinct, i.e., no two lines will be coincident (lie on top of each other).
- 3. You are guaranteed that there is no point in the plane at which three or more lines intersect.

The first line of input contains an integer n ($2 \le n \le 100\,000$). This is followed by n input lines, each containing the specification of a line in the x-y plane given as four space-separated integers, x_1 y_1 x_2 y_2 . Each coordinate is at most 10^6 in absolute value.

Output a single integer, the number of intersection points.

Sample Input	Sample Output	Sample Output, with
		visualized whitespace
2	1	1\n
-1 0 1 0		
0 1 0 -1		
Sample Input	Sample Output	Sample Output, with
		visualized whitespace
3	3	visualized whitespace
3 1 2 2	3	
	3	

Image by Radoslaw Drozdzewski (Wikimedia Commons), CC BY-SA 3.0

Sample Input	Sample Output	Sample Output, with
		visualized whitespace
4	6	6\n
0 2 2 0		
0 -2 2 0		
0 2 0 -2		
-1 -1 0 1		

Note: \Box is a space, and $\[\Box \]$ is a newline character.