```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
df=pd.read_csv('/content/iris.csv')
df.head()
(1)
         sepal_length sepal_width petal_length petal_width species
      0
                  5.1
                                3.5
                                              1.4
                                                            0.2
                                                                 setosa
      1
                                              1.4
                  4.9
                                3.0
                                                            0.2
                                                                  setosa
      2
                  4.7
                                3.2
                                              1.3
                                                            0.2
                                                                  setosa
      3
                                              1.5
                                                            0.2
                  4.6
                                3.1
                                                                  setosa
      4
                  5.0
                                3.6
                                              1.4
                                                            0.2
                                                                  setosa
df.tail()
           sepal_length sepal_width petal_length petal_width species
      145
                                                5.2
                                                              2.3 virginica
      146
                     6.3
                                  2.5
                                                5.0
                                                              1.9 virginica
                                                5.2
      147
                     6.5
                                  3.0
                                                              2.0 virginica
                     6.2
      148
                                  3.4
                                                5.4
                                                              2.3 virginica
                     5.9
      149
                                  3.0
                                                5.1
                                                              1.8 virginica
df.shape
     (150, 5)
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 150 entries, 0 to 149
     Data columns (total 5 columns):
     # Column
                       Non-Null Count Dtype
          sepal_length 150 non-null
                                         float64
                                         float64
          sepal_width 150 non-null
          petal_length 150 non-null
                                         float64
                                         float64
          petal_width 150 non-null
         species
                        150 non-null
                                         object
     dtypes: float64(4), object(1)
     memory usage: 6.0+ KB
df.isnull().sum()
     sepal_length
     sepal_width
                     0
     petal_length
petal_width
                     0
                     0
     species
                      0
     dtype: int64
df.describe()
```

```
        sepal_length
        sepal_width
        petal_width

        df['species'].unique()
        450,000000
        450,000000
        450,000000

        df['species'].unique()
        array(['setosa', 'versicolor', 'virginica'], dtype=object)

        df['species'].value_counts()
        setosa
        50

        versicolor
        50
        virginica
        50

        Name: species, dtype: int64
        max
        7.900000
        4.400000
        6.900000
        2.500000

        sns.pairplot(df,hue='species')
        5000000
        5000000
        2.500000
        5000000
        5000000
```


	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.109369	0.871754	0.817954
sepal_width	-0.109369	1.000000	-0.420516	-0.356544
petal_length	0.871754	-0.420516	1.000000	0.962757
petal_width	0.817954	-0.356544	0.962757	1.000000

sns.heatmap(df.corr(),annot=True,cmap='viridis')

```
- 1.0
       petal_length sepal_width sepal_length
                              -0.11
                                             0.87
                                                            0.82
                                                                            - 0.8
                                                                            - 0.6
                                1
                                             -0.42
                                                            -0.36
                                                                            - 0.4
                                                                            - 0.2
                0.87
                              -0.42
                                                            0.96
                                               1
                                                                            - 0.0
      petal_width
                                                                             -0.2
                0.82
                              -0.36
                                             0.96
                                                                             -0.4
           sepal_length sepal_width petal_length petal_width
# X contains feature columns
X=df.drop(['species'],axis=1)
# y contain target column
y=df['species']
X.shape
     (150, 4)
y.shape
      (150,)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train.shape
     (120, 4)
y_train.shape
      (120,)
X\_test.shape
      (30, 4)
y_test.shape
```

DTC.fit(X_train,y_train)

DTC=DecisionTreeClassifier ()

from sklearn.tree import DecisionTreeClassifier

(30,)

* DecisionTreeClassifier
DecisionTreeClassifier()

```
prediction=DTC.predict(X_test)
```

compare=pd.DataFrame({'Actual':y_test,'Prediction':prediction})
compare

	Actual	Prediction
73	versicolor	versicolor
18	setosa	setosa
118	virginica	virginica
78	versicolor	versicolor
76	versicolor	versicolor
31	setosa	setosa
64	versicolor	versicolor
141	virginica	virginica
68	versicolor	versicolor
82	versicolor	versicolor
110	virginica	virginica
12	setosa	setosa
36	setosa	setosa
9	setosa	setosa
19	setosa	setosa
56	versicolor	versicolor
104	virginica	virginica
69	versicolor	versicolor
55	versicolor	versicolor
132	virginica	virginica
29	setosa	setosa
127	virginica	virginica
26	setosa	setosa
128	virginica	virginica
131	virginica	virginica
145	virginica	virginica
108	virginica	virginica
143	virginica	virginica
45	setosa	setosa
30	setosa	setosa

```
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
```

print(classification_report(y_test,prediction))

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	9
virginica	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30

weighted avg 1.00 1.00 30

```
print(confusion_matrix(y_test,prediction))

[[10 0 0]
  [0 9 0]
  [0 0 11]]

Accuracy = accuracy_score(y_test,prediction)

Precision =precision_score(y_test, prediction,average='weighted')
Precision

1.0
```

Sensitivity_recall = recall_score(y_test,prediction,average='weighted')
Sensitivity_recall

1.0

```
Specificity = recall_score(y_test, prediction, average='weighted')
Specificity
```

1.0

```
from sklearn.tree import plot_tree

plt.figure(figsize=(20,10))
tree=plot_tree(DTC,feature_names=X.columns,precision=2,rounded=True,filled=True,class_names=y.values)
```

