Math 4242 Homework 3

- (1) Let $V = \mathbb{R}^3$ and $W = \mathbb{R}_{\leq 2}[x]$. Let $T(a, b, c) = a + b(x 1) + c(x 1)^2$. Is T linear? If so, identify a basis for V and W and write down the matrix $\mathcal{M}(T)$.
- (2) Suppose $T \in \text{End}(V)$ is an invertible map. Prove that if v_1, \dots, v_n is a basis, then Tv_1, \dots, Tv_n is also a basis. (3) Prove that (a) $(U+W)^0 = U^0 \cap W^0$ (b) $(U\cap W)^0 = U^0 + W^0$.
- (4) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (2x + 3y + 4x, 3x + 4y + 5z). Let e_1, e_2, e_3 denote the standard basis of \mathbb{R}^3 and f_1, f_2 denote the standard basis of \mathbb{R}^2 . (a) Describe the linear functionals $T^*(f_1^*)$ and $T^*(f_2^*)$. (b) Write $T^*(f_1^*)$ and $T^*(f_2^*)$ as linear combinations of e_1^*, e_2^*, e_3^* .
- (5) Suppose U is a subspace of V, and $\pi: V \to V/U$ the quotient map. Consider the dual of the quotient map $\pi^* \in \text{Hom}((V/U)^*, V^*)$. Show that $\operatorname{Img}(\pi^*) = U^0$ and π^* is an isomorphism $(U/V)^* \cong U^0$.
- (6) OS 3.1.9
- (7) OS 3.1.17

1