SELF DECLARATION

I hereby declare that the project work entitled "SICKLE CELL ANEMIA CLASSIFICATION USING DEEP LEARNING" is a genuine work carried out by me in B.Tech. (C.S.E.) at SRKR Engineering College(A), Bhimavaram, and has not been submitted either in part or full for the award of any other degree or diploma in any other institute or University.

Goriparthi Jahnavi

21B91A05A3

ACKNOWLEDGEMENTS

I sincerely express my gratitude to Sagi Ramakrishnam Raju Engineering College(A) for providing us with the opportunity to undertake this final year project, "SICKLE CELL ANEMIA CLASSIFICATION USING DEEP LEARNING".

I extend heartfelt thanks to our **Prof. K.V. Murali Krishnam Raju**, **Principal**, for fostering an academic environment that encourages research and innovation. I am also deeply grateful to **Dr. Bh. V. S. Rama Krishnam Raju**, **Head of the Department of Computer Science & Engineering**, for continuous support and motivation throughout this project.

Special thanks to our project supervisor, **Dr. R. Shiva Shankar, Assistant Professor**, whose **guidance**, **technical expertise**, **and invaluable feedback** have been instrumental in shaping this work. His mentorship has provided me with both knowledge and confidence to tackle challenges effectively.

I also appreciate the support of faculty members, technical staff, family, and friends, whose encouragement and insights have been invaluable.

GORIPARTHI JAHNAVI

21B91A05A3

SI No	CONTENTS		Page. No	
	ABS	ГКАСТ		i
	LIST	OF TABLES		ii
	LIST	OF FIGURES		iii
	LIST	OF SYMBOLS		v
1	INT	RODUCTION		1
2	LIT	ERATURE REVIEW		9
3	PRO	BLEM STATEMENT		19
4	SOF	TWARE REQUIREMENT SP	ECIFICATION	20
	4.1	PURPOSE		20
	4.2	SCOPE		21
	4.3	OBJECTIVES		22
	4.4.	EXISTING SYSTEM		22
	4.5	PROPOSED SYSTEM		23
	4.6	REQUIREMENTS		24
		4.6.1 SOFTWARE REQUIR	EMENTS	24
		4.6.2 HARDWARE REQUIR	REMENTS	25
5	SYS	TEM ANALYSIS & DESIGN		26

	5.1	SYSTEM ARCHITECTURE / METHODOLOGY		26
	5.2	DATA	ASET	27
		5.2.1	FEATURES	28
		5.2.2	PRE-PROCESSING	28
		5.2.3	ALGORITHMS USED	30
6	IMP	LEME	NTATION	66
	6.1	TECH	HNOLOGIES USED	66
	6.2	MOD	ULES IMPLEMENTATION	67
7	TES	STING & RESULT ANALYSIS		70
	7.1	TEST	CASES	70
	7.2	RESU	JLT ANALYSIS	73
8	CON	CONCLUSION & FUTURE SCOPE		91
9	REFERENCES		93	
10	APPENDIX		99	
	-			

ABSTRACT

Sickle Cell Anemia (SCA) is a severe hereditary blood disorder that changes the shape of red blood cells to that of an elongated disk, drastically reducing their ability to transport oxygen. Because of this mis-shaping, blood flow is frequently blocked, leading to chronic pain and damage to organs as well as other life-threatening complications. Early and accurate diagnosis is indispensable to effectively ameliorate the consequences of SCA for patients. New technologies, such as automatic deep learning (Automated DL) and transformer-based models allow us to accurately identify SCA from microscopic blood smear images.

Essential preprocessing techniques were applied first. These involved images resizing normalization and augmentation of image quality an essential factor for labeling data sets after all! In the category of classic DL architecture, InceptionV3 performed best and was most consistent, with the highest accuracy for classification. Apart from CNN, however, VGG16 Mobile Net and ResNet also showed moderate results. Defining this as the point to set the system's starting point, will give us a strong line for comparison.

In order to achieve more sensitive detection of delicate cellular features, we tried several transformer-based architectures such as MaxVit, CoAtNet, DeiT-3, and Mobile SAM. The results clearly indicated that our Mobile SAM model, based on self-attention and neat tricks, learned better distinguishing features from complex image patterns than previous models regardless of index value or dimensionality From this starting point, we designed a hybrid model that combined InceptionV3 for deep feature extraction at different levels of hierarchy with Mobile SAM for attention enhancement that is aware contextually.

This hybrid model was particularly striking, exhibiting an accuracy rate of 92.5 percent and reducing loss to 0.406. The statute also posted strong sensitivity (Correctly identified sufferers of sickle cell) and specificity (Rightly identified non-sicklers).

These results confirm the effectiveness of combining CNNs with attention-based structures in medical image processing. In addition, our work confirms the role of deep learning and mixed algorithms in building robust yet scalable diagnostic tools. The model design advocated here not only ensures high levels of accuracy in detection but also serves as a realistic basis for putting AI into real-world practice in hematology.

S. No.	LIST OF TABLES	Page. No.
Table 2.1	Summary of Sickle Cell Anemia (SCA) Detection Techniques	14
Table 5.1	Parameters overview for each version of MaxViT	50
Table 7.1	Test Scenarios	70
Table 7.2	Sickle Cell Detection Results with Visual Explanation	71
Table 7.3	Performance Evaluation Metrics for SCA Classification Models	73
Table 7.4	Performance Comparison of Deep Learning Models	75
Table 7.5	Test Accuracy Comparison of Deep Learning Models	76
Table 7.6	Performance Metrics for CoAtNeT Model with Different K-Fold Splits	77
Table 7.7	Test Accuracy for Different K-Fold Splits of CoAtNeT	77
Table 7.8	Performance Metrics for MaxViT Model with Different K-Fold Splits	78
Table 7.9	Test Accuracy for Different K-Fold Splits of MaxViT	79
Table 7.10	Performance Metrics for Mobile SAM Model with Different K-Fold Splits	80
Table 7.11	Test Accuracy for Different K-Fold Splits of Mobile SAM	81
Table 7.12	Performance Metrics for DeiT-3 Model with Different K-Fold Splits	82

Table 7.13	Test Accuracy for Different K-Fold Splits of DeiT-3	83
Table 7.14	Final Model Test Accuracy Comparison	84
Table 7.15	Performance Metrics for Hybrid Model (Iteration 300)	84
Table 7.16	Performance Metrics for Hybrid Model (Iteration 500)	85
Table 7.17	Comparison of Test Accuracy between Iterations 300 and 500	86
Table 7.18	Best Performing Metrics from Table 14 (Fold 20, Iter 500)	87
Table 7.19	Comparison of different approaches with our proposed work process	88
Table 7.20	Limitations in Existing Approaches vs Strengths of Our Proposed System	89

S. No.	LIST OF FIGURES	Page. No.
Figure 1.1	Comparison Between Normal and Sickle-Shaped Red Blood Cells	1
Figure 1.2	Global prevalence of SCA	3
Figure 1.3	Readmission rates at 30 days for SCA by age group (2016)	4
Figure 1.4	Inheritance of Sickle Cell Disease	5
Figure 1.5	Symptoms of Sickle Cell Anemia	6
Figure 5.1	Workflow of SCA classification	26
Figure 5.2	Illustrates the sample images of each class within the dataset.	27
Figure 5.3	Architecture of the CNN model	31
Figure 5.4	Architecture of the InceptioV3	35
Figure 5.5	The MobileNet architecture and its core components	38
Figure 5.6	The architecture of ResNet-50-Model	42
Figure 5.7	The architecture of VGG16	46
Figure 5.8	MaxViT Architecture	49
Figure 5.9	Illustrates the multi-axis self-attention mechanism	50
Figure 5.10	CoAtNet architecture	53
Figure 5.11	The architecture features an extra token, the distillation token	57

Figure 7.1	Graph showing the Test Accuracy of Deep Learning Models	76
Figure 7.2	Test Accuracy Comparison Across K-Fold Splits of CoAtNeT	78
Figure 7.3	Test Accuracy Comparison Across K-Fold Splits of MaxViT	80
Figure 7.4	Test Accuracy Comparison Across K-Fold Splits of Mobile SAM	82
Figure 7.5	Test Accuracy Comparison Across K-Fold Splits of DeiT-3	83
Figure 7.6	Graph showing the Test Accuracy of Transformer Models	84
Figure 7.7	Graphical Representation of Table 7.13	86
Figure 10.1	Screenshot-1	122
Figure 10.2	Screenshot-2	122

LIST OF SYMBOLS

SYMBOL	DEFINITION
SCA	Sickle Cell Anemia
SCD	Sickle Cell Disease
DL	Deep Learning
CPU	Central Processing Unit
SVM	Support Vector Machine
CNN	Convolutional Neural Network
Inception V3	Inception Version 3
ResNet	Residual Networks
MobileNet	Mobile Neural Network
VGG16	Visual Geometry Group 16-layer Network
MaxViT	Maximal Vision Transformer
Mobile SAM	Mobile Segment Anything Model
CoAtNet	Convolutional Attention Network
DeiT-3	Data-efficient Image Transformer 3