

PCT/GB99/04399

The
Patent
Office

GB99
04399

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 17 January 2000

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

An Executive Agency of the Department of Trade and Industry

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

Cardiff Road
Newport
Gwent NP9 1RH

1. Your reference

SJK/BP5743224

2. Patent application number

*(The Patent Office will fill in this part)***9828712.1**3. Full name, address and postcode of the or of each applicant *(underline all surnames)*UNIVERSITY COLLEGE LONDON
GOWER STREET
LONDON WC1E 6BT
GBPatents ADP number *(if you know it)*

If the applicant is a corporate body, give the country/state of its incorporation

20798652002

4. Title of the invention

GLYCOSYLPHOSPHATIDYLINOSITOL SPECIFIC PHOSPHOLIPASE D PROTEINS AND USES THEREOF

5. Name of your agent *(if you have one)*

MEWBURN ELLIS

"Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)

YORK HOUSE
23 KINGSWAY
LONDON
WC2B 6HPPatents ADP number *(if you know it)*

109006

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number
*(if you know it)*Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
*(day / month / year)*8. Is a statement of inventorship and of right to grant of a patent required in support of this request? *(Answer 'Yes' if:*

YES

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.

See note (d))

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form	0	<i>J.S.</i>
Description	29	
Claim(s)	0	
Abstract	0	
Drawing(s)	18	<i>X 18</i>

10. If you are also filing any of the following, state

Priority documents	0
Translations of priority documents	0
Statement of inventorship and right to grant of a patent (Patents Form 7/77)	0
Request for preliminary examination and search (Patents Form 9/77)	0
Request for substantive examination (Patents Form 10/77)	0
Any other documents (Please specify)	0

11. I/We request the grant of a patent on the basis of this application.

Signature
Mawbun Ebin

Date
23 December 1998

12. Name and daytime telephone number of person
to contact in the United Kingdom SIMON J. KIDDLE 0117 926 6411

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

Glycosylphosphatidylinositol Specific Phospholipase D
Proteins and Uses Thereof

Field of the Invention

5 The present invention relates to glycosylphosphatidylinositol specific phospholipase D (GPI-PLD) proteins and uses of these proteins, in particular in the treatment of liver dysfunction.

Background of the Invention

10 Studies have shown that a number of cell surface proteins are attached to the cell membrane by covalent linkage to a glycosylphosphatidylinositol (GPI) anchor. It has been shown that the enzyme GPI-PLD cleaves the photodiester bond linking glycosylphosphatidylinositol to phosphatidic acid, thereby releasing anchored proteins.

15 GPI-PLD enzymes are abundantly present in human and bovine serum (5-10 μ g/ml in human serum). US Patent No: 5,418,147 (Huang et al) describes the purification of GPI-PLD from bovine liver, and the subsequent cloning of three GPI-PLD enzymes from bovine liver, human liver and human pancreas cDNA libraries. This patent reports the full length cDNA and amino acid sequences of the GPI-PLDs from human and bovine liver, and the partial cDNA and amino acid sequences of the human pancreatic form of the enzyme. Subsequently, the full length sequence of the pancreatic form of GPI-PLD was reported in Tsang et al (1992), and this enzyme has been found in cDNA libraries 20 from breast, eye, spleen and tonsil. The three forms of the enzymes are highly homologous with the predicted mature protein sequences of bovine liver GPI-PLD sharing 82% sequence identity with the human liver enzyme and 81% sequence identity with the human pancreatic enzyme. The 25 amino acid sequences of human liver and pancreatic forms of GPI-PLD were deposited at GenBank under accession numbers L11701 and L11702 and consist of 841 and 840 amino acids respectively. The human liver and pancreatic forms of GPI-PLD share 94.6% sequence identity. The 30 35

structure of GPI-PLDs is further discussed in Scallion et al, 1991.

However, despite cloning three forms of GPI-PLD, there is no suggestion in these references as to the *in vivo* role of the enzymes. Further, the only application of the enzymes suggested is in an expression system in which a heterologous protein is expressed in a host cell as a fusion with a GPI-signal peptide, leading to the heterologous protein becoming anchored to the cell membrane by a GPI anchor, where it can be cleaved off by coexpressed or added GPI-PLD.

GPI-PLD has also been isolated from human serum by Hoener et al (1992) and this form of the enzyme was found to be identical to the human pancreatic GPI-PLD apart from changes at 531 to 534 where VIGS is replaced by MLGT. This paper also showed that treatment of serum GPI-PLD with N-glycosidase F reduced the apparent molecular weight from 123 kD to 87 kD. Similarly, by Li et al (1994) showed GPI-PLD was cleaved by trypsin into 3 fragments (2 x 40 kD and 30 kD), and by Heller et al (1994) which showed that 33, 39 and 47kD species were produced, with only the N-terminal 39 kD fragment moiety showing enzyme activity after renaturation.

It has been proposed that one function of GPI-PLD enzyme is to produce inositolphosphoglycans (IPGs) by the cleavage of "free" GPIs in the plasma membrane in response to binding of a growth factor to its receptor (Rademacher et al, 1994). This role for GPI-PLD has been demonstrated in mast cells where IgE-dependent activation of these cells results in release of their granule contents, which include substances such as histamine, a mediator of the inflammatory response. In the presence of antigen, histamine is released; this release can be mimicked by addition of IPGs and is blocked by addition

of anti-GPI-PLD antibodies (Lin et al, 1991).

The role of GPI-PLD in cleaving GPI-anchored proteins, and especially inositolphosphoglycans (IPGs), is examined
5 in Jones et al (1997). However, the authors reflect the uncertainty in the art regarding the mechanism of IPG generation, noting that "The definitive activated enzyme, being a GPI-PLC or a GPI-PLD, has yet to be unequivocally identified" and that "little attention has been payed to
10 the role of GPI-PLD as the hydrolysing enzyme".

Deeg et al (1994) employed fractionation to look at the association of GPI-PLD with high-density lipoproteins (HDL) in human plasma and found that most of the GPI-PLD in human plasma was associated with apolipoprotein A1 (A1). However, the authors conclude that "the significance of the GPI-PLD association with A1 is unknown". Similar results were reported in Hoener et al (1993), which notes that the complex between the two
15 species was virtually inactive, although it was capable of hydrolyzing solubilised GPI-anchored substrate efficiently.
20

In summary, despite the cloning of GPI-PLD enzymes and
25 investigation as to their biochemical properties, the role of the enzyme *in vivo* or any possible medical use remains unknown.

Summary of the Invention

Broadly, the present invention relates to GPI-PLD for medical use, and in particular to the use of GPI-PLD in the treatment of liver dysfunction, optionally in combination with apolipoprotein A1.
30

Accordingly, in a first aspect, the present invention provides the use of GPI-PLD for the preparation of a medicament for the treatment of liver dysfunction.
35

Preferably, the GPI-PLD is administered in combination with apolipoprotein A1.

5 In a further aspect, the present invention provides a method of treating a patient having liver dysfunction, the method comprising administering to the patient a therapeutically effective amount of GPI-PLD.

10 In all of the above aspects, GPI-PLD can be administered alone or in conjunction with other treatments for liver dysfunction, either sequentially or simultaneously.

15 In a further aspect, the present invention provides a kit comprising a composition including GPI-PLD, and optionally apolipoprotein A1, and a second composition for the treatment of liver dysfunction.

20 In a further aspect, the present invention provides a pharmaceutical composition comprising a nucleic acid molecule encoding a GPI-PLD protein and apolipoprotein A1.

These and other aspects of the present invention are described in more detail below.

25 By way of example, embodiments of the present invention will now be described in more detail with reference to the accompanying figures.

30 Brief Description of the Figures

Figure 1 shows an alignment of the deduced amino acid sequences of GPI-PLD encoded by cDNA clone A1 and the bovine and human liver GPI-PLD sequences disclosed in US Patent No: 5,418,147 (Huang et al).

35 Figure 2 shows the nucleic acid sequence from cDNA clone A1 aligned with the pancreatic forms of GPI-PLD disclosed

in US Patent No: 5,418,147 (Huang et al) (partial sequence) and the corresponding full length nucleic acid sequence deposited at GenBank.

5 Figure 3 shows the amino acid sequences of the GPI-PLDs in clones a1, b2 and d3, and consist of 840, 795 and 510 amino acids respectively.

10 Figure 4 shows the nucleic acid sequence of cDNA clone a1 encoding GPI-PLD, consisting of 2832 bp.

Figure 5 shows the nucleic acid sequence of cDNA clone b2 encoding GPI-PLD, consisting of 2472 bp.

15 Figure 6 shows the nucleic acid sequence of cDNA clone d3 encoding GPI-PLD, consisting of 1942 bp.

20 Figure 7 shows an alignment of the deduced amino acid sequences of GPI-PLDs encoded by cDNA clones a1, b2 and d3 with the pancreatic form of the enzyme deposited at GenBank under accession number 11702.

25 Figure 8 shows an alignment of the nucleic acid sequences from cDNA clones a1, b2 and d3 with the cDNA sequence encoding the human pancreatic form of GPI-PLD deposited at GenBank under accession number 11702.

Detailed Description

GPI-PLD Proteins

30 The term "GPI-PLD biological activity" is herein defined as the enzymatic activity of GPI-PLD in cleaving the photodiester bond linking glycosylphosphatidylinositol to phosphatidic acid, e.g. releasing a GPI-anchored protein. As noted in Heller et al (1994), this activity has been localised to the N-terminal 39 kD portion of full length GPI-PLD.

The medical uses of GPI-PLD described herein can use the novel GPI-PLD variants or the forms of the enzyme disclosed in the prior art. In either event, the skilled person can use the techniques described herein and others well known in the art to produce large amounts of these proteins, or fragments or active portions thereof, for use as pharmaceuticals, in the developments of drugs and for further study into its properties and role *in vivo*.

In a further aspect of the present invention provides a polypeptide having the amino acid sequence shown in figure 3, which may be in isolated and/or purified form, free or substantially free of material with which it is naturally associated. In one embodiment, the clone a1 has an amino acid sequence consisting of 840 amino acids, a 23 amino acid signal peptide and a 817 amino acid mature protein.

GPI-PLD proteins which are amino acid sequence variants, alleles or derivatives can also be used in the present invention. A polypeptide which is a variant, allele or derivative may have an amino acid sequence which differs from that given in figures 1 or 3 by one or more of addition, substitution, deletion and insertion of one or more amino acids. Preferred polypeptides have GPI-PLD enzymatic function as defined above.

A GPI-PLD protein which is an amino acid sequence variant, allele or derivative of an amino acid sequence shown in figures 1 or 3 may comprise an amino acid sequence which shares greater than about 70%, greater than about 80%, greater than about 90%, greater than about 95%, greater than about 97%, greater than about 98% or greater than about 99% sequence identity with an amino acid sequence shown in figures 1 or 3. Sequence comparison and identity calculations were carried out using the Cluster program (Thompson et al, 1994), using

the following parameters (Pairwise Alignment Parameters: Weight Matrix: pam series; Gap Open Penalty: 10.00; Gap Extension Penalty: 0.10). Alternatively, the GCG program could be used which is available from Genetics Computer Group, Oxford Molecular Group, Madison, Wisconsin, USA, Version 9.1. Particular amino acid sequence variants may differ from those shown in figures 1 and 3 by insertion, addition, substitution or deletion of 1 amino acid, 2, 3, 4, 5-10, 10-20 20-30, 30-50, 50-100, 100-150, or more than 150 amino acids.

The present invention also includes the use of active portions, fragments and derivatives of the GPI-PLD proteins.

An "active portion" of GPI-PLD protein is a polypeptide which is less than said full length GPI-PLD protein, but which retains at least one its essential biological activity, e.g. the enzyme activity mentioned above. For instance, portions of GPI-PLD protein can act as sequestrators or competitive antagonists by interacting with other proteins.

A "fragment" of the GPI-PLD protein means a stretch of amino acid residues of at least about 5 to 7 contiguous amino acids, often at least about 7 to 9 contiguous amino acids, typically at least about 9 to 13 contiguous amino acids and, most preferably, at least about 20 to 30 or more contiguous amino acids.

A "derivative" of the GPI-PLD protein, or a fragment thereof, means a polypeptide modified by varying the amino acid sequence of the GPI-PLD protein, e.g. by manipulation of the nucleic acid encoding the protein or by altering the protein itself. Such derivatives of the natural amino acid sequence may involve insertion, addition, deletion or substitution of one, two, three,

five or more amino acids, without fundamentally altering a biological activity of the wild type GPI-PLD protein.

A polypeptide according to the present invention may be isolated and/or purified (e.g. using an antibody) for instance after production by expression from encoding nucleic acid (for which see below). Polypeptides according to the present invention may also be generated wholly or partly by chemical synthesis. The isolated and/or purified polypeptide may be used in formulation of a composition, which may include at least one additional component, for example a pharmaceutical composition including a pharmaceutically acceptable excipient, vehicle or carrier. A composition including a polypeptide according to the invention may be used in prophylactic and/or therapeutic treatment as discussed below.

The GPI-PLD polypeptides can also be linked to a coupling partner, e.g. an effector molecule, a label, a drug, a toxin and/or a carrier or transport molecule. Techniques for coupling the peptides of the invention to both peptidyl and non-peptidyl coupling partners are well known in the art. In one embodiment, the carrier molecule is a 16 aa peptide sequence derived from the homeodomain of *Antennapedia* (e.g. as sold under the name "Penetratin"), which can be coupled to a peptide via a terminal Cys residue. The "Penetratin" molecule and its properties are described in WO91/18981.

30

Pharmaceutical Compositions

As mentioned above, GPI-PLD proteins can be used for treating liver dysfunction, optionally in conjunction with other treatments for these disorders. Preferably, the GPI-PLD is administered with apolipoprotein A1, and more preferably, as a complex with this substance. The isolation of apolipoprotein A1 is described in Hoener et

al (1993), Deeg et al (1994) and Brewer et al (1986). The compositions can be used to treat liver dysfunction conditions which are characterised by reduced levels of apolipoprotein A1 and/or GPI-PLD and/or apolipoprotein A1/GPI-PLD complex.

Thus, the GPI-PLD protein and/or apolipoprotein A1 can be formulated in pharmaceutical compositions, which may comprise, in addition to one of the above substances, a pharmaceutically acceptable excipient, carrier, buffer, stabiliser or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient. The precise nature of the carrier or other material may depend on the route of administration, e.g. oral, intravenous, cutaneous or subcutaneous, nasal, intramuscular, intraperitoneal routes.

Pharmaceutical compositions for oral administration may be in tablet, capsule, powder or liquid form. A tablet may include a solid carrier such as gelatin or an adjuvant. Liquid pharmaceutical compositions generally include a liquid carrier such as water, petroleum, animal or vegetable oils, mineral oil or synthetic oil.

Physiological saline solution, dextrose or other saccharide solution or glycols such as ethylene glycol, propylene glycol or polyethylene glycol may be included.

For intravenous, cutaneous or subcutaneous injection, or injection at the site of affliction, the active ingredient will be in the form of a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pH, isotonicity and stability. Those of relevant skill in the art are well able to prepare suitable solutions using, for example, isotonic vehicles such as sodium chloride injection, Ringer's injection, lactated Ringer's injection. Preservatives, stabilisers,

buffers, antioxidants and/or other additives may be included as required.

whether it is a polypeptide, peptide, nucleic acid molecule, small molecule or other pharmaceutically useful compound of the invention that is to be given to an individual, administration is preferably in a "prophylactically effective amount" or a "therapeutically effective amount" (as the case may be, although prophylaxis may be considered therapy), this being sufficient to show benefit to the individual. The actual amount administered, and rate and time-course of administration, will depend on the nature and severity of what is being treated. Prescription of treatment, e.g. decisions on dosage etc, is within the responsibility of general practitioners and other medical doctors, and typically takes account of the disorder to be treated, the condition of the individual patient, the site of delivery, the method of administration and other factors known to practitioners. Examples of the techniques and protocols mentioned above can be found in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A. (ed), 1980.

GPI-PLD proteins can be administered alone or in combination with other treatments for liver dysfunction, either simultaneously or sequentially.

GPI-PLD nucleic acid

"GPI-PLD nucleic acid" includes a nucleic acid molecule which has a nucleotide sequence encoding a polypeptide which includes the amino acid sequence shown in figures 4 to 6, and in some embodiments of the invention extends to the known human liver and pancreatic forms of GPI-PLD (L11701 and L11702). These forms of GPI-PLD have been mapped to human chromosome 6 and are contained in the 4 centimorgan region of D6S1660-D6S1558 at positions 95.95

and 99.71 (NCBI GeneMap'98). This corresponds to the cytogenetic region of 6p21.3. This region also contains the IDDM1 and HLA loci (although the HLA genes map to the adjacent D6S1558-D6S1616 interval). The mouse GPI-PLD gene has also been mapped to chromosome 13, near the *fim* 1 locus, which is found in humans on chromosome 6.

The GPI-PLD coding sequence may be that shown in figures 2, 4 to 6 or 8, a complementary nucleic acid sequence, or it may be a mutant, variant, derivative or allele of these sequences. The sequence may differ from that shown by a change which is one or more of addition, insertion, deletion and substitution of one or more nucleotides of the sequence shown. Changes to a nucleotide sequence may result in an amino acid change at the protein level, or not, as determined by the genetic code.

The encoded polypeptide may comprise an amino acid sequence which differs by one or more amino acid residues from the amino acid sequence shown in the figures. Nucleic acid encoding a polypeptide which is an amino acid sequence mutant, variant, derivative or allele of the sequence shown in figures 1, 3 or 7 is further provided by the present invention. Such polypeptides are discussed below. Nucleic acid encoding such a polypeptide may show greater than about 70% identity, greater than about 80% identity, greater than about 90% identity, greater than about 95% identity, greater than about 98% identity, or greater than about 99% identity with a sequence shown in the figures.

The present invention also includes fragments of the GPI-PLD nucleic acid sequences described herein, the fragments preferably being at least 12, 15, 30, 45, 60, or 120 nucleotides in length.

Generally, nucleic acid according to the present

invention is provided as an isolate, in isolated and/or purified form, or free or substantially free of material with which it is naturally associated, such as free or substantially free of nucleic acid flanking the gene in
5 the human genome, except possibly one or more regulatory sequence(s) for expression. Nucleic acid may be wholly or partially synthetic and may include genomic DNA, cDNA or RNA. Where nucleic acid according to the invention includes RNA, reference to the sequence shown should be
10 construed as reference to the RNA equivalent, with U substituted for T.

Nucleic acid sequences encoding all or part of the GPI-PLD gene and/or its regulatory elements can be readily prepared by the skilled person using the information and references contained herein and techniques known in the art (for example, see Sambrook, Fritsch and Maniatis, "Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989, and Ausubel et al, Short
15 Protocols in Molecular Biology, John Wiley and Sons, 1992). These techniques include (i) the use of the polymerase chain reaction (PCR) to amplify samples of such nucleic acid, e.g. from genomic sources, (ii) chemical synthesis, or (iii) amplification in *E. coli*.
20 Modifications to the GPI-PLD sequences can be made, e.g. using site directed mutagenesis, to provide expression of modified GPI-PLD protein or to take account of codon preference in the host cells used to express the nucleic acid.
25

30 In order to obtain expression of the GPI-PLD nucleic acid sequences, the sequences can be incorporated in a vector having control sequences operably linked to the GPI-PLD nucleic acid to control its expression. The use of expression systems has reached an advanced degree of sophistication. The vectors may include other sequences such as promoters or enhancers to drive the expression of
35

the inserted nucleic acid, nucleic acid sequences so that the GPI-PLD protein is produced as a fusion and/or nucleic acid encoding secretion signals so that the polypeptide produced in the host cell is secreted from
5 the cell. GPI-PLD protein can then be obtained by transforming the vectors into host cells in which the vector is functional, culturing the host cells so that the GPI-PLD protein is produced and recovering the GPI-PLD protein from the host cells or the surrounding
10 medium. Prokaryotic and eukaryotic cells are used for this purpose in the art, including strains of *E. coli*, yeast, and eukaryotic cells such as COS or CHO cells. The choice of host cell can be used to control the properties of the GPI-PLD protein expressed in those
15 cells, e.g. controlling where the polypeptide is deposited in the host cells or affecting properties such as its glycosylation and phosphorylation.

PCR techniques for the amplification of nucleic acid are
20 described in US Patent No: 4,683,195. In general, such techniques require that sequence information from the ends of the target sequence is known to allow suitable forward and reverse oligonucleotide primers to be designed to be identical or similar to the polynucleotide
25 sequence that is the target for the amplification. PCR comprises steps of denaturation of template nucleic acid (if double-stranded), annealing of primer to target, and polymerisation. The nucleic acid probed or used as template in the amplification reaction may be genomic
30 DNA, cDNA or RNA. PCR can be used to amplify specific sequences from genomic DNA, specific RNA sequences and cDNA transcribed from mRNA, bacteriophage or plasmid sequences. The GPI-PLD protein nucleic acid sequences provided herein readily allow the skilled person to
35 design PCR primers. References for the general use of PCR techniques include Mullis et al, Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Ehrlich (ed), PCR

Technology, Stockton Press, NY, 1989; Ehrlich et al, Science, 252:1643-1650, 1991; "PCR protocols; A Guide to Methods and Applications", Eds. Innis et al, Academic Press, New York, 1990.

5

Nucleic acid according to the present invention is obtainable using one or more oligonucleotide probes or primers designed to hybridize with one or more fragments of the nucleic acid sequence shown in the figures, particularly fragments of relatively rare sequence, based on codon usage or statistical analysis. A primer designed to hybridize with a fragment of the nucleic acid sequence shown in the above figures may be used in conjunction with one or more oligonucleotides designed to hybridize to a sequence in a cloning vector within which target nucleic acid has been cloned, or in so-called "RACE" (rapid amplification of cDNA ends) in which cDNA's in a library are ligated to an oligonucleotide linker and PCR is performed using a primer which hybridizes with a GPI-PLD nucleic acid sequence shown in figures and a primer which hybridizes to the oligonucleotide linker.

25

Such oligonucleotide probes or primers, as well as the full-length sequence (and mutants, alleles, variants and derivatives) are also useful in screening a test sample containing nucleic acid for the presence of alleles, mutants and variants, especially those that lead to the production of inactive forms of GPI-PLD protein, the probes hybridizing with a target sequence from a sample obtained from the individual being tested. The conditions of the hybridization can be controlled to minimise non-specific binding, and preferably stringent to moderately stringent hybridization conditions are preferred. The skilled person is readily able to design such probes, label them and devise suitable conditions for the hybridization reactions, assisted by textbooks such as Sambrook et al (1989) and Ausubel et al (1992).

30

35

Examples of "stringent conditions" are those which: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulphate at 50°C; (2) 5 employ during hybridisation a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% BSA/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750mM sodium chloride, 75mM sodium citrate at 42°C; or (3) employ 50% formamide, 10 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50µg/ml), 0.1% SDS, and 10% dextran sulphate at 42°C, with washes at 42°C in 0.2 x SSC and 50% formamide at 15 55°C, followed by high stringency wash consisting of 0.1 x SSC containing EDTA at 55°C. These hybridisation conditions may be used in the context of defining nucleic acid sequences which hybridize with GPI-PLD nucleic acid sequences.

20

Uses of GPI-PLD Nucleic Acid

The GPI-PLD nucleic acid sequences can be used in the preparation of cell lines capable of expressing GPI-PLD and in gene therapy techniques.

25

Thus, the present invention provides a cell line for transplantation into a patient, the cell line being transformed with nucleic acid encoding GPI-PLD, and being capable of expressing and secreting GPI-PLD. In one embodiment, the cell lines are encapsulated, e.g. in a biocompatible polymer, so that the GPI-PLD produced by the cell line can be secreted into the patient, while preventing rejection by the immune system of the host. Methods for encapsulating cells in biocompatible polymers 30 are described in WO93/16687 and WO96/31199.

35 As a further alternative, the nucleic acid encoded the

GPI-PLD protein could be used in a method of gene therapy, to treat a patient who is unable to synthesize the active polypeptide or unable to synthesize it at the normal level, thereby providing the effect provided by wild-type GPI-PLD protein and suppressing the occurrence of liver dysfunction in the target cells.

Vectors such as viral vectors have been used in the prior art to introduce genes into a wide variety of different target cells. Typically, the vectors are exposed to the target cells so that transfection can take place in a sufficient proportion of the cells to provide a useful therapeutic or prophylactic effect from the expression of the desired polypeptide. The transfected nucleic acid may be permanently incorporated into the genome of each of the targeted tumour cells, providing long lasting effect, or alternatively the treatment may have to be repeated periodically.

A variety of vectors, both viral vectors and plasmid vectors, are known in the art, see US Patent No: 5,252,479 and WO93/07282. In particular, a number of viruses have been used as gene transfer vectors, including papovaviruses, such as SV40, vaccinia virus, herpesviruses, including HSV and EBV, and retroviruses. Many gene therapy protocols in the prior art have used disabled murine retroviruses.

As an alternative to the use of viral vectors other known methods of introducing nucleic acid into cells includes electroporation, calcium phosphate co-precipitation, mechanical techniques such as microinjection, transfer mediated by liposomes and direct DNA uptake and receptor-mediated DNA transfer.

As mentioned above, the aim of gene therapy using nucleic acid encoding the GPI-PLD protein, or an active portion

thereof, is to increase the amount of the expression product of the nucleic acid in cells in which the level of the wild-type GPI-PLD protein is absent or present only at reduced levels. Target cells for gene therapy 5 include insulin secreting β -cells or any neuron derived cells. Cell engineering can be used to provide the overexpression or repression of GPI-PLD protein in transfected cell lines which can then be subsequently transplanted to humans. Gene therapy can be employed 10 using a promoter to drive GPI-PLD protein expression in a tissue specific manner (i.e. an insulin promoter linked to GPI-PLD cDNA will overexpress GPI-PLD protein in β -cells and transiently in the brain). If defective function of GPI-PLD protein is involved in neurological 15 disease, GPI-PLD protein can be overexpressed in transformed cell lines for transplantation.

Gene transfer techniques which selectively target the GPI-PLD nucleic acid to target tissues are preferred. 20 Examples of this included receptor-mediated gene transfer, in which the nucleic acid is linked to a protein ligand via polylysine, with the ligand being specific for a receptor present on the surface of the target cells.

25 **Diagnostic Methods**
Methods for determining the concentration of analytes in biological samples from individuals are well known in the art and can be employed in the context of the present invention to determine the presence or amount of GPI-PLD 30 in a biological sample from a patient. This in turn can allow a physician to determine whether a patient suffers from liver dysfunction, and so optimise the treatment of it.

35 Broadly, the methods divide into those screening for the presence of GPI-PLD protein nucleic acid sequences and

those that rely on detecting the presence or absence of the GPI-PLD protein polypeptide. The methods make use of biological samples from individuals that are suspected of contain the nucleic acid sequences or polypeptide.

5

These diagnostic methods can employ biological samples such as blood, serum, tissue samples or urine. In view of the fact that the activity of GPI-PLD is thought to be due to the level of the enzyme circulating in serum, the 10 use of serum or blood samples is preferred.

The assay methods for determining the amount or concentration of GPI-PLD protein typically either employ binding agents having binding sites capable of 15 specifically binding to GPI-PLD in preference to other molecules or measure a characteristic biological activity of GPI-PLD. Examples of binding agents include antibodies, receptors and other molecules capable of specifically binding the enzyme. Conveniently, the 20 binding agent(s) are immobilised on solid support, e.g. at defined locations, to make them easy to manipulate during the assay.

The sample is generally contacted with the binding 25 agent(s) under appropriate conditions so that GPI-PLD present in the sample can bind to the binding agent(s). The fractional occupancy of the binding sites of the binding agent(s) can then be determined using a developing agent or agents. Typically, the developing 30 agents are labelled (e.g. with radioactive, fluorescent or enzyme labels) so that they can be detected using techniques well known in the art. Thus, radioactive labels can be detected using a scintillation counter or other radiation counting device, fluorescent labels using a laser and confocal microscope, and enzyme labels by the 35 action of an enzyme label on a substrate, typically to produce a colour change. The developing agent(s) can be

used in a competitive method in which the developing agent competes with the analyte for occupied binding sites of the binding agent, or non-competitive method, in which the labelled developing agent binds analyte bound by the binding agent or to occupied binding sites. Both methods provide an indication of the number of the binding sites occupied by the analyte, and hence the concentration of the analyte in the sample, e.g. by comparison with standards obtained using samples containing known concentrations of the analyte.

Experimental

The present invention is based on the realisation that GPI-PLD can be used in the treatment of liver dysfunction, and in particular combination with apolipoprotein A1 to which it is bound in human serum and blood. As GPI-PLD is transported in blood complexed with apolipoprotein A1, liver dysfunction, and especially dysfunction characterised by reduced apolipoprotein A1 levels, can be treated using GPI-PLD.

Screening of human liver cDNA library

A human liver cDNA library (Gibco BRL, cat # 10422-012, lot # HF4703) was screened for GPI-PLD, resulting in the isolation of 3 cDNA clones. The nucleic acid sequences of the clones are shown in figures 4 to 6, with the deduced amino acid sequences shown in figure 3.

Clone a1 represents the full length cDNA. There are only two differences within the coding region of this sequence when compared to that of the human GPI-PLD pancreatic form described in the GenBank database (accession number L11702). These are a g to a conversion at positions 88 (L11702), 199 (a1) and a t to g conversion at positions 797 (L11702), 908(a1). Interestingly this latter this latter conversion creates a unique *HindIII* restriction site in the a1 clone. Both conversions result in amino

acid differences, the first changes amino acid 30 from a valine in L11702 to an isoleucine in a1, and the second changes amino acid 266 from an isoleucine in L11702 to a serine in a1. Clone a1 also differs from L11702 in that 5 it contains 5' untranslated region (UTR) and only shares the first 168 bases of the 3' UTR before terminating in a poly-A tail.

Clone b2 lacks the exon of GPI-PLD, which begins at 10 position 2469 in the a1 nucleotide sequence. However, the sequence from here to the end of b2 (2444-2473) does not contain a stop codon. It is therefore not clear whether b2 represents a cDNA with a different final exon or is the produce of aberrant processing.

Clone d3 shared the coding 3' UTR sequence of the a1 clone from a1 position 1119 onwards, however the initial 1008 base pairs of coding sequence are absent from this clone. Clone d3 contains a methionine initiation codon 20 in frame to the coding sequence at position 202 and a unique 5' UTR. Translation of d3 from this codon would result in a unique sequence of 6 amino acids (1-6). Clone d3 therefore appears to represent a true transcript, in that it contains initiation and stop codons and both 5' and 3' UTRs. The predicted protein product of this transcript would apparently lack the catalytic domain, which has been localised to the N-terminus of the GPI-PLD enzyme (amino acids 1-375), 25 however the 3 EF hand-like domains would still be present.

Huang et al and Tsang et al (1992) reported that two variants or isoenzymes of GPI-PLD exist, the so-called liver and pancreatic forms (accession numbers L11701 and 35 11702). Other workers have detected L11702 cDNAs in human breast, eye, spleen, tonsil, and pancreas, as well as in liver. However, we failed to detect the liver form

of GPI-PLD in the liver or in any other tissues.

Gene mapping and localisation

The chromosomal gene isolated in the experiments above is
5 about 20-30 kb in length. The gene was also isolated on
a PAC and mapped by fluorescence-in situ hybridisation
(FISH) to 6p21.3, agreeing with recent radiation hybrid
maps as seen on GeneMap'98; NCBI). The IDDM1
susceptibility gene also maps to 6p21.3, although recent
10 evidence suggests that at least two closely-linked loci
for IDDM1 are in the MHC region. The MHC locus itself
seems to map to a region adjoining the GPI-PLD locus
rather than within the same microsatellite band, so the
significance of the proximity of the GPI-PLD and IDDM1
15 loci is unclear.

Northern blots of the mRNA species found in liver have
shown two presumed splice variants as well as the full-
length transcript. One has a deletion of about 160 amino
20 acids from the mature 817 amino acid protein. The other
seems to be a C-terminal deletion, which may therefore be
non-functional if other authors are correct in finding
that the C-terminus is necessary for enzyme activity.

25 The predominant GPI-PLD species detected after tissue
extraction by antibodies (Western blots) has apparent
molecular weight of about 47 kD, which agrees with other
authors that full-length GPI-PLD is taken up from the
plasma and processed to smaller active species.

30 GPI-PLD obtained from serum by cells is required for
second messenger signalling
The principle goal of these experiments was to determine
the role of glycosylphosphatidylinositol phospholipase D
35 (GPI-PLD) in a type one hypersensitivity reaction. This
reaction involved the cross-linking of IgE receptors on
the mast cell surface, leading to the release of allergic

mediators.

Such an allergic reaction has been experimentally reproduced in our laboratory, using a rat basophilic leukaemia cell line, RBL-2H3. These cells naturally have unoccupied IgE receptors (Fc ϵ R1, or high-affinity receptors), allowing them to be passively sensitised with an IgE isotype of choice.

10 RBL-2H3 cell culture was maintained in Eagles minimum essential medium, containing 10% Foetal Bovine Serum (FBS) (heat activated), 100 U/ml Penicillin, 100 μ g/ml Streptomycin and 2 mM L-glutamine.

15 Previous research indicates that RBL-2H3 cells derive their GPI-PLD from the culture serum (data not shown). Therefore, it follows that inactivation of this external source of GPI-PLD would deprive the cells of any further enzyme.

20 Inactivation of GPI-PLD activity in foetal bovine serum was achieved according to the method of Kung et al (Biochimica et Biophysica Acta, 1357:329-338, 1997). Briefly, FCS was adjusted to pH 11 using concentrated hydrochloric acid, and incubated for 1 hour at 37°C using. After this time, the pH was adjusted to 7.4, and GPI-PLD activity was determined using an enzymatic assay (Davitz et al, J. Biol. Chem., 264:13760-13764, 1989). Results indicated that this alkaline incubation severely depleted GPI-PLD activity (data not shown).

35 To determine the effect of culture of RBL-2H3 cells in GPI-PLD inactive serum, the supplemented MEM was replaced with MEM in which the FBS had been inactivated. Although the cell appearance was not dramatically altered by the altered culture conditions, determination of GPI-PLD activity showed a dramatic reduction in activity.

GPI-PLD activity in cells cultured with GPI-PLD active/inactive FBS:

Active = 0.66 units GPI-PLD activity/mg of protein.

5

Inactive = 0.11 units GPI-PLD activity/mg of protein.

10

The effect of a reduced GPI-PLD activity on the cell's ability to respond to IgE cross-linking was determined as follows:

15

RBL-2H3 cells were grown to confluence, after which time the adherent cells were removed from the culture flask using a cell scraper. The cell density was determined, using a haemocytometer, and adjusted to 2×10^5 per ml. The cells were seeded at 1 ml per well in a 24 well culture plate and cultured for overnight at 37°C in a humidified 5% CO₂ incubator.

20

The overnight culture media was aspirated and replaced with fresh media containing Rat IgE anti-DNP at β mg/ml. After a 2 hour incubation period, the media was aspirated, and the cells were washed twice, with HEPES Buffered Saline. Cross-linking was achieved by the addition of 200 μ l of DNP-Albumin at 100 ng/ml, and incubation for 2 hours. Mediator release was determined using a colorimetric assay to detect the presence of β -hexosaminidase and compared with the total cell β -hexosaminidase content (as determined by incubation with 200 μ l 5% Triton X-100 detergent). (Yasuda et al, Int. Immunol., 7:251-258, 1995). As shown in the table below, the responsiveness to cross-linking was significantly reduced in those cells that were cultured in GPI-PLD inactive media.

30

35

Percentage release in IgE linking activity assay
(compared with total)

Active GPI-PLD culture = 48.79%

Inactive GPI-PLD culture = 5.07%

5 **Phosphorylation of GPI-PLD**

The phosphorylation state of the GPI-PLD enzymes can be determined using MALDI-TOF mass spectrometry as described by Yip & Hutchins (1992). Spectrums of tryptic digests of the four proteins can be compared before and after treatment with calf intestinal alkaline phosphatase. The specific kinases responsible for phosphorylation of GPI-PLD can then be determined by incubation of the GPI-PLD tryptic fragments with ATP in the presence of various kinases. Motif analysis of the amino acid sequence of human GPI-PLD using the HGMP "motif" package has revealed the presence of numerous potential phosphorylation sites for two enzymes: protein kinase C and protein kinase ck2 (formerly known as casine kinase II). These enzymes may therefore be involved in the activation of GPI-PLD.

20 Intriguingly the activity of protein kinase ck2 has been shown to be modulated by IPGs (Alemany et al, 1990) and there is also indirect evidence suggesting that IPGs may act through protein kinase C, thus suggesting the possibility of feedback loops regulating the production of IPGs.

25 **GPI-PLD as a metal ion transferase**

Two families of IPGs exist. IPGs of the P-type stimulate incorporation of glucose into glycogen whereas the A-type IPGs stimulate incorporation of glucose into lipid.

30 Metal ion analysis has shown that the P-type IPGs contain manganese and the A-type zinc. It is known that the serum form of GPI-PLD contains approximately 10 atoms of zinc per molecule. Investigation can therefore show whether the different isoforms of human GPI-PLD produce IPGs with differing metal ion content.

This experiment can be performed in two ways. Firstly purified A-type and P-type IPGs can be extracted from rat liver (Caro et al, 1997) and their metal ions removed using dithiazone in chloroform. The IPGs can be
5 incubated in the presence of radiosotopes of zinc ($^{65}\text{Zn}^{2+}$) and manganese ($^{52}\text{Mn}^{2+}$) respectively. The radiolabelled IPGs can then be added to the different isoforms of purified GPI-PLD (as determined in the above experiments) in the absence of GPI substrate thus driving the reaction
10 from product (IPG) to substrate (GPI). It can then be determined whether or not the GPI-PLD protein have incorporated radioactive metal ions from the IPGs. The reverse situation will also be examined, whereby the metal ions of GPI-PLD isoforms are replaced by the
15 respective radioisotopes. GPI-PLD can then be incubated with GPIS extracted from membrane preparations and the resulting IPG products analysed for incorporation of radioisotope. These experiments will thus determine whether or not GPI-PLD is responsible for the transfer of
20 divalent cations (Mn^{2+} or Zn^{2+}) to its IPG products.

Site of action

The function of the enzyme in releasing GPI-anchored proteins, and its postulated function as the generator of IPG second messengers require the enzyme to be active at the cell surface. It is known that GPI-anchored proteins accumulate in clusters in caveolae, an uncoated pit membrane specialisation, and so this is a good potential site for GPI-PLD activity. Analysis of the primary
25 structure of the protein predicts a secondary structural arrangement of four amphipathic helices, thus suggesting that the protein can interact with lipids in membranes. Previous experiments have demonstrated significant amounts of the enzyme in the lysosomal fraction but not
30 in the cytosol. The location of GPI-PLD will be examined by staining tissues with anti-GPI-PLD antibodies, followed by a gold particle-labelled second antibody.
35

Tissue can then be prepared for transmission electron microscopy and the location of the GPI-PLD protein determined. Caveolae will also be produced according to the protocol of Chang et al (1994), which involves three 5 rounds of sucrose step gradient ultracentrifugation. Caveolae-enriched proteins will then be separated by SDS-PAGE and electrophoretically transferred to nitrocellulose membranes. We can then use the anti-GPI-PLD antibody to determine if GPI-PLD is present in these 10 membrane specialisations.

Activation of GPI-PLD

If GPI-PLD is found to be phosphorylated by protein kinase C and/or protein kinase ck2 by MALDI-TOF spectrometry, the interaction of these proteins can be 15 confirmed using immunoprecipitation since antibodies to GPI-PLD, protein kinase C and protein kinase ck2 have all been produced. The yeast two hybrid system can also be used to identify other proteins which interact with GPI-PLD in the cell. The yeast two hybrid systems (Chen et al, 1991) is based on the property of the yeast 20 transcriptional activator Ga14, which is separable into DNA binding and transcriptional activating domains. GPI-PLD cDNAs can be cloned in frame into the DNA binding 25 domain vector. This will be co-transfected into an appropriate yeast host strain along with a library of cDNAs cloned into the activation domain vector. Interaction of a protein with GPI-PLD will therefore 30 result in localisation of the activation and DNA binding domains, and hence transcription of the galactosidase reporter gene. Clones containing interacting proteins are then identified by the colour reaction they produce. The advantage of this system is that the gene encoding 35 the interacting protein is immediately available for sequence analysis and thus identification. The use of this system has enabled identification of many interacting proteins and the system available in kit form.

from Clontech. This also provides a method of screening for substances which are capable of activating GPI-PLD, e.g. for further development as lead compounds.

5 Discussion

GPI-PLD is a metalloenzyme with 5 and 10 atoms per molecule of calcium and zinc, respectively. It circulates in a complex with apolipoprotein A1. GPI-PLD is produced in the pancreas by both α and β -cells in the
10 islets of Langerhans. It is also produced by a mouse insulinoma cell line (TC3), with GPI-PLD and insulin generally colocalised intracellularly. The enzyme was shown to be secreted in response to insulin secretagogues. Both isoenzymes of GPI-PLD also seem to
15 be present in liver; a major part of the activity could be washed away from the tissue by extraction with detergent-free buffer (thus, likely to be the plasma enzyme). There is some suggestions that the liver, as well as the pancreas, may contribute to the serum pool of
20 GPI-PLD as patients with liver disease have lower levels of active enzyme, which is correlated with the reduced albumin levels.

References:

The references mentioned herein are all incorporated by reference in their entirety.

5 Huang et al, US Patent No: 5,418,147.

Tsang et al, FASEB J. (supp), 6:A1922, 1992.

Scallon et al, Science, 252:446-448, 1991.

10 Hoener et al, Eur. J. Biochem., 206:747-757, 1992.

Deeg et al, Brazilian J. Med. Biol. Res., 27:375-381, 1994.

15 Hoener et al, FEBS Letters, 327(2):203-206, 1993.

Li et al, J. Biol. Chem., 269:28963-28971, 1994.

20 Heller et al, Eur. J. Biochem., 224:823-833, 1994.

Jones et al, Biochem. Biophys. Res. Comm., 233:432-437, 1997.

25 Brewer et al, Meth. Enzymol., 128:223-240, 1986.

Rademacher et al, Brazilian J. Med. Biol. Res., 27:327-341, 1994.

30 Lin et al, J. Cell Biol., 115:220a, 1991

Thompson et al, Nucleic Acid Research, 22:4673-4680, 1994, with algorithm from Higgins et al, CABIOS, 8(2):189-191, 1992.

35 Alemany et al, Nature, 330:77-79, 1987.

Caro et al, Biochem. Molec. Med., 61:214-228, 1997.

Deeg & Verchere, Endocrinology, 136:819-826, 1997.

Figure 1: Alignment of GPI-PLD deduced amino acid sequences

Top: protein produced from cDNA clone A1
 Mid: protein produced from Roche patent bovine liver sequence
 Bot: protein produced from Roche patent human liver sequence

MSAFRLWPGLLIMLG-SLCHRGS PCGLSTHIEIGHRALEFLQLHN GRVNYRELLLEHQDA
 MSAFRFWGGLLMLLG-FLCPRSSPCGISTHIEIGHRALEFLHLQDGSI NYKELLRLHQDA
 MSAFRLWPGLLIVMASLCHRGSSCGLSTHIEIGHRALEFLHLHN GHVNYKELLEHQDA

 YQAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYP LPW EKDTEKLV AFL
 YQAGSVFPDSFYPSICERGQFHDVSESTHWTPFLNASVHYIRKNYPLP DEDTEKLV AFL
 YQAGTVFPDCFYPSLCKGGKFHDVSESTHWTPFLNASVHYIRENYP LPW EKDTEKLV AFL

 FGITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSGAGDFGGDVLSQFE FNFNYLA
 FGITSHMVADVNWHSLGIENGFLRTMAAIDFHNSYPEAHPAGDFGGDVLSQFE FKFNLYLS
 FGITSHMVADVSWHSLGIEQGFLRTMGAIDFHGSYSEAHSGAGDFGGDVLSQFE FNFNYLA

 RRWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEM GEMLA VSKLYPTYSTKSPFL
 RH WYVPAEDLLGIYRELYGRIVITKKAI VDCSYLQFLEM YAEMLA ISKLYPTYSVKSPFL
 RRWYVPVKDLLGIYEKLYGREVITENVIVDCSHIQFLEM GEMLA VSKLYPSYSTKSPFL

 VEQFQEYFLGGLDDMAFWSTNIYH LTSFMLENGTSDCNLPENPENPLFIACGGQQNHTQG
 VEQFQEYFLGGLEDMAFWSTNIYH LTSFMLENGTSDCSLFPENPENPLFIACGGQQNHTQG
 VEQFQEYFLGGLDDMAFWSTNIYH LTSFMLENGTSDCSLFPENPENPLFIACGGQQNHTQG

 SKMQKNDFH RNLTTSLTESVDRNINYTERGVFFSVNSWPDSMSFIYKALERNIRTMFIG
 SKVQKNGFH KNVTAALT KNI GKHINYTKRGVFFSVDSWTMDFLSF MYKSLERSIREMFIG
 SKMQKNDFH RNLTTSLTENIDRNINYTERGVFFSVNSWPDSMSFIYKALERNVRTMFIG

 GS QLSQKH VSSPLASYFLSF PYARLGWAMTSADLNQDGHD L VVGAPGYSRP GHI HIGRV
 SSQP-LTHVSSPAASYYLSF PYTRLGWAMTSADLNQDGHD L VVGAPGYSRP GRIHVGRV
 GS QLSQKH ISSPLASYFLSF PYARLGWAMTSADLNQDGHD L VVGAPGYSRP GRIHIGRV

 YLIYGN DLGLPPVLDLDKEAHRILEGFQPSGRFGS ALAVLDFNV DGP DLA VGAP SVGS
 YLIYGN DLG-PRIDLDLDKEA H GILEGFQPSGRFGS AVA VLDFNV DGP DLA VGAP SVGS
 YLIYGN ELGLPPVLDLDKEA H GILEGFQPSGRFGS ALA MDFNV DGP DLA VGAP SVGS

 EQLTYKGAVVYVYFGSKQ QGMSSSPNITISCQDIYCN LGWTLLA ADVNGDSEPD-LVIGSP
 EKLTYTGAVVYVYFGSKQ QGQLSSSPNVTISCQDTYCN LGWTLLA ADVGDSEPD LFVIGSP
 EQLTYKGAVVYVYFGSKQ QRMSSSPNITISCQDIYCN LGWTLLA ADVNGDSEPD-LVIGSP

 FAPGGGKQKGIVAAFYSGPSLSDKEKLNVEAANWTVRGEEDFSWF GYSLHGVTVDNRTLL
 FAFGGGKQKGIVAAFYSGSSYSSREKL NVEAANWMVKGEEDFAWLGYSLHG VNVNNRTLL
 FAPGGGKQKGIVAAFYSGPSLSNKEKLNVEAANWTVRGEEDFAWF GYSLHGVTVDNRTLL

 LVGSPTWKNA SRLGHLLHIRDEKKS LGRVYGYFPPNGQ SWFTISGDKAMGKL GTSLSSGH
 LAGSPTWKDTSSQGHLFTRDEKQSPGRVYGYFPPICQ SWFTISGDKAMGKL GTSLSSGH
 LVGSPTWKNA SRLGRLLHIRDEKKS LGRVYGYFPPNSQ SWFTIVGDKAMGKL GTSLSSGH

 VLMNGTILKQVLLVGAP TYDDVSKVAFLT VTLHQGGATRMYALISDAQPLL LSTFSGD RRF
 VIVNGT RTQVLLVGAP TQDV VSKS-FLTMTLHQGGSTRM YELTPDSQPSLL LSTFSGNRRF
 VLMNGT LTQVLLVGAP TRDDVSKMAFLTMTLHQGGATRMYALTS DQLQ PPLL LSTFSGD RRF

 SRFGGVILHLS DDDGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKC
 SRFGGVILHLS DLDNDGLDEIIVAAPLRIITDATA GLMGEEDGRVYVFN GKOITVGDVTGKC
 SRFGGVILHLS DDDGVDEIIVAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKC

 KSWITPCPEEK A QYVLISPEASSRFGSSLITVR SKAKNQV VIAAGRSSLGARL SGALHVY
 KSWVTPCPEEK A QYVLISPEAGSRF GSSVITVR SKAKNQV VIAAGRSSLGARL SGVLHIY
 KSWMTPCPEEK A QYVLISPEASSRFGSSLITVR SKAKNQV VIAAGRSSLGARL SGALHVY

SLGSD
RLGQD
SLGSD

Figure 2: Alignment of human GPI-PLD nucleic acid sequences

Top: pancreatic-form cDNA sequence from GenBank database

mid: our sequence cloned from human liver cDNA library

bot: Roche patent pancreatic-form partial cDNA sequence

1	GTGACCTGCTTAGAGAGAACGGTGGGCTGCACCTGGATTGGAGTCCCAGTGCTGCT	60
1	-----	
61	----- ATGTC TGCT	9
61	GCAGCTCTGAGCATTCCCACGT CACCAGAGAACGCCGGTGGGCAATGAGAGCATGTCTGCT	120
10	-----	
121	TTCAGGTTGTGGCCTGGCCTGCTGATCATGTTGGTTCTCTGCCATAGAGGTTACCG	69
121	TTCAGGTTGTGGCCTGGCCTGCTGATCATGTTGGTTCTCTGCCATAGAGGTTACCG	180
70	-----	
181	TGTGGCCTTCAACACACAGTAGAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	129
181	TGTGGCCTTCAACACACATAGAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	240
130	-----	
241	AATGGGCGTGTAACTACAGAGAGCTGTTACTAGAACACCAAGGATGCGTATCAGGCTGGA	189
241	AATGGGCGTGTAACTACAGAGAGCTGTTACTAGAACACCAAGGATGCGTATCAGGCTGGA	300
190	-----	
301	ATCGTGTTCCTGATTGTTTACCC TAGCATCTGCAAAGGAGGAAAATTCCATGATG TG	249
301	ATCGTGTTCCTGATTGTTTACCC TAGCATCTGCAAAGGAGGAAAATTCCATGATG TG	360
250	-----	
361	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCATTATATCCGAGAGAAC	309
361	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCATTATATCCGAGAGAAC	420
310	-----	
421	TATCCCCTCCCTGGGAGAACGGACACAGAGAAACTGGTAGCTTCTTGGAAATTACT	369
421	TATCCCCTCCCTGGGAGAACGGACACAGAGAAACTGGTAGCTTCTTGGAAATTACT	480
370	-----	
481	TCTCACATGGCGGCAGATGTCAGCTGGCATAGTCTGGCCTTGAACAAGGATTCCCTAGG	429
481	TCTCACATGGCGGCAGATGTCAGCTGGCATAGTCTGGCCTTGAACAAGGATTCCCTAGG	540
430	-----	
541	ACCATGGGAGCTATTGATTTCACGGCTCTATTCA GAGGCTCATTGGCTGGT GATT TT	489
541	ACCATGGGAGCTATTGATTTCACGGCTCTATTCA GAGGCTCATTGGCTGGT GATT TT	600
490	-----	
601	GGAGGAGATGTGTTGAGCCAGTTGAATTAAATTAAATTACCTTGACAGACGCTGGTAT	549
601	GGAGGAGATGTGTTGAGCCAGTTGAATTAAATTAAATTACCTTGACAGACGCTGGTAT	660
550	-----	
661	GTGCCAGTCAAAGATCTACTGGGAATT TATGAGAAACTGTATGGTCGAAAAGTCATCACC	609
661	GTGCCAGTCAAAGATCTACTGGGAATT TATGAGAAACTGTATGGTCGAAAAGTCATCACC	720
610	-----	
721	GAAAATGTAATCGTTGATTGTTCACATATCCAGTTAGAAATGTATGGT GAGATGCTA	669
721	GAAAATGTAATCGTTGATTGTTCACATATCCAGTTAGAAATGTATGGT GAGATGCTA	780
670	-----	
781	GCTGTTCCAAGTTATATCCCACCTTACTCTACAAAGTCCCCGTTTGGTGGAACAAATT C	729
781	GCTGTTCCAAGTTATATCCCACCTTACTCTACAAAGTCCCCGTTTGGTGGAACAAATT C	840

730 CAAGAGTATTTCTGGAGGACTGGATGATGGCATTGGTCCACTAATATTTACCAT 789
 841 CAAGAGTATTTCTGGAGGACTGGATGATGGCATTGGTCCACTAATATTTACCAT 900

 790 CTAACAATCTTCATGTTGGAGAATGGGACCAGTGACTGCAACCTGCCTGAGAACCCCTCTG 849
 901 CTAACAAGCTTCATGTTGGAGAATGGGACCAGTGACTGCAACCTGCCTGAGAACCCCTCTG 960

 850 TTCATTGCATGTGGCGGCCAGCAAAACACACCCCAGGGCTCAAAAATGCAGAAAAATGAT 909
 961 TTCATTGCATGTGGCGGCCAGCAAAACACACCCCAGGGCTCAAAAATGCAGAAAAATGAT 1020

 910 TTTCACAGAAATTGACTACATCCCTAAGTGAAGTGTGACAGGAATATAAACTATACT 969
 1021 TTTCACAGAAATTGACTACATCCCTAAGTGAAGTGTGACAGGAATATAAACTATACT 1080

 970 GAAAGAGGAGTGTCTTTAGTGTAAATTCCCTGGACCCCGGATTCCATGTCCTTTATCTAC 1029
 1081 GAAAGAGGAGTGTCTTTAGTGTAAATTCCCTGGACCCCGGATTCCATGTCCTTTATCTAC 1140

 1030 AAGGCTTGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTCACAAAAG 1089
 1141 AAGGCTTGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTCACAAAAG 1200

 1090 CACGTCTCCAGCCCCCTAGCATCTTACTTGTCAATTCCCTATGCGAGGCTTGGCTGG 1149
 1201 CACGTCTCCAGCCCCCTAGCATCTTACTTGTCAATTCCCTATGCGAGGCTTGGCTGG 1260

 1150 GCAATGACCTCAGCTGACCTAACCAACAGGATGGCACGGTGACCTCGTGGTGGCGCACCA 1209
 1261 GCAATGACCTCAGCTGACCTAACCAACAGGATGGCACGGTGACCTCGTGGTGGCGCACCA 1320

 1210 GGCTACAGCCGCCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC 1269
 1321 GGCTACAGCCGCCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC 1380

 1270 CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGCCCACAGGATCCTGAAGGC 1329
 1381 CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGCCCACAGGATCCTGAAGGC 1440

 1330 TTCCAGCCCTCAGGTGGTTGGCTCGGCCTTGGCTGTGTTGGACTTTAACGTGGACGGC 1389
 1441 TTCCAGCCCTCAGGTGGTTGGCTCGGCCTTGGCTGTGTTGGACTTTAACGTGGACGGC 1500

 1390 GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT 1449
 1501 GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT 1560

 1450 GCCGTGTATGTCTACTTTGGTCCAAACAAGGAGGAATGTCTTCTTCCCTAACATCACC 1509
 1561 GCCGTGTATGTCTACTTTGGTCCAAACAAGGAGGAATGTCTTCTTCCCTAACATCACC 1620

 1510 ATTTCTTGCAGGACATCTACTGTAACCTGGCTGGACTCTCTTGGCTGAGATGTGAAT 1569
 1621 ATTTCTTGCAGGACATCTACTGTAACCTGGCTGGACTCTCTTGGCTGAGATGTGAAT 1680

 1570 GGAGACAGTGAACCCGATCTGGCATCGGCCTCCCTTGCACCGAGGTGGAGGGAAAGCAG 1629
 1681 GGAGACAGTGAACCCGATCTGGCATCGGCCTCCCTTGCACCGAGGTGGAGGGAAAGCAG 1740

 1630 AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC 1689
 1741 AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC 1800
 1 -----CTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC 35

1690 GTGGAGGCAGCCAACTGGACGGTGAGAGGCAGGAAAGACTCTCCTGGTTGGATATTCC 1749
 1801 GTGGAGGCAGCCAACTGGACGGTGAGAGGCAGGAAAGACTCTCCTGGTTGGATATTCC 1860
 36 GTGGAGGCAGCCAACTGGACGGTGAGAGGCAGGAAAGACTCTCCTGGTTGGATATTCC 95

 1750 CTTCACGGTGTCACTGTGGACAACAGAACCTGCTGTTGGTGGAGCCCCGACCTGGAAG 1809
 1861 CTTCACGGTGTCACTGTGGACAACAGAACCTGCTGTTGGTGGAGCCCCGACCTGGAAG 1920
 96 CTTCACGGTGTCACTGTGGACAACAGAACCTGCTGTTGGTGGAGCCCCGACCTGGAAG 155

 1810 AATGCCAGCAGGCTGGGCCATTTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG 1869
 1921 AATGCCAGCAGGCTGGGCCATTTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG 1980
 156 AATGCCAGCAGGCTGGGCCATTTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG 215

 1870 GTGTATGGCTACTTCCCACAAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA 1929
 1981 GTGTATGGCTACTTCCCACAAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA 2040
 216 GTGTATGGCTACTTCC-ACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA 275

 1930 ATGGGGAAAATGGGTACTTCCCTTCAGTGGCACGTAAGTGAATGGGACTCTGAAA 1989
 2041 ATGGGGAAAATGGGTACTTCCCTTCAGTGGCACGTAAGTGAATGGGACTCTGAAA 2100
 276 ATGGGGAAAATGGGTACTTCCCTTCAGTGGCACGTAAGTGAATGGGACTCTGAAA 335

 1990 CAAGTGTGCTGGTGGAGCCCCCTACGTACGATGACGTGCTAACGGTGGCATTCTGACC 2049
 2101 CAAGTGTGCTGGTGGAGCCCCCTACGTACGATGACGTGCTAACGGTGGCATTCTGACC 2160
 336 CAAGTGTGCTGGTGGAGCCCCCTACGTACGATGACGTGCTAACGGTGGCATTCTGACC 395

 2050 GTGACCTACACCAAGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT 2109
 2161 GTGACCTACACCAAGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT 2220
 396 GTGACCTACACCAAGCGGAGCCACTCGGTGTACGCACTCATATCTGACGCGCAGCCT 455

 2110 CTGCTGCTCAGCACCTCAGCGGAGACCGCCGCTTCTCCGATTTGGTGGCCTCTGCAC 2169
 2221 CTGCTGCTCAGCACCTCAGCGGAGACCGCCGCTTCTCCGATTTGGTGGCCTCTGCAC 2280
 456 CTGCTGCTCAGCACCTCAGCGGAGACCGCCGCTTCTCCGATTTGGTGGCCTCTGCAC 515

 2170 TTGAGTGACCTGGATGATGGCTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA 2229
 2281 TTGAGTGACCTGGATGATGGCTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA 2340
 516 TTGAGTGACCTGGATGATGGCTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA 575

 2230 GCAGATGTAACCTCTGGACTGATTGGGGAGAAGACGGCCGAGTATATGTATATAATGGC 2289
 2341 GCAGATGTAACCTCTGGACTGATTGGGGAGAAGACGGCCGAGTATATGTATATAATGGC 2400
 576 GCAGATGTAACCTCTGGACTGATTGGGGAGAAGACGGCCGAGTATATGTATATAATGGC 635

 2290 AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA 2349
 2401 AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA 2460
 636 AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA 695

 2350 GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC 2409
 2461 GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC 2520
 696 GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC 755

 2410 CTCATCACCGTGAGGTCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAAAGGAGTTCT 2469
 2521 CTCATCACCGTGAGGTCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAAAGGAGTTCT 2580
 756 CTCATCACCGTGAGGTCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAAAGGAGTTCT 815

 2470 TTGGGAGCCCGACTCTCGGGGCACTTCACGTCTATAGCCTGGTCAGATTGAAGATTT 2529
 2581 TTGGGAGCCCGACTCTCGGGGCACTTCACGTCTATAGCCTGGTCAGATTGAAGATTT 2640
 816 TTGGGAGCCCGACTCTCGGGGCACTTCACGTCTATAGCCTGGTCAGATTGAAGATTT 875

 2530 CACTGCATTTCCCCACTCTGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT 2589
 2641 CACTGCATTTCCCCACTCTGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT 2700
 876 CACTGCATTTCCCCACTCTGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT 935

 2590 TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC 2649
 2701 TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC 2760
 936 TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC 995

2650 CTGGGA----- 2655
2761 CTGGGA----- 2766
996 CTGGGACAGTGAACCCGATCTGGTCATCGGCTCCCCTTTGCACCAGGTGGAGGGAAGCA 1055

2656 -----GTA GAGAGACACACTAACAGCCACACCCCTCTG 2687
2767 -----GTA GAGAGACACACTAACAGCCACACCCCTCTG 2798
1056 GAAGGGAATTGTGGCTGC GTTTATTGAGTAGAGAGACACACTAACAGCCACACCCCTCTG 1115

2688 GAAATCTGATACAGTAAATATATGACTGCACCA GAAATATGTGAAATAGCAGACATTCTG 2747
2799 GAAATCTGATACAGTAAATATATGACTGCACCA G----- 2833
1116 GAAATCTGATACAGTAAATATATGACTACACCAGAAATATGTGAAATAGCAGACATTCTG 1175

2748 CTTACTCATGTCTCCTTCCACAGTTACTTCCTCGCTCCCTTGCACTAAACCTTTCTT 2807

1176 CTTACTCATGTCTCCTTCCACAGTTACTTCCTCGCTCCCTTGCACTAAACCTTTCTT 1235

2808 CTTTCCCAACTTATTGCCTGTAGTCAGACCTGCTGTACAACCTATTCCTCTTCTTG 2867

1236 CTTTCCCAACTTATTGCCTGTAGTC----- 1261

2868 AATGTCTTCCAGTGGCTGGAAAGGTCCCTGTGGTTATCTGTTAGAACAGTCTGT A 2927

2928 CACAATTCCCTCCTAAAAACATCCTTTTAAAAAAGAATTGTTAGCCATAAAGAAAAGA 2987

2988 ACAAGATCATGCCCTTGCAAGGACATGGATGGAGCTGGAGGCCATTATCCTTCATAAAC 3047

3048 TATTGCAGGAACAGAAAACCAAACACTCCATATTCTCACTTGTAAGTGGAGCTAAGTGA 3107

3108 GAACACGTGGACACATAGAGGGAAACAACACACACTGGGCCTATGAGAGGGCGGAAGGT 3167

3168 GGGAGGAGGGAGAGATCAGGAAAATAACTAATGGATACTTAGGGTGTGAAATAATCTG 3227

3228 TGTAACAAACCCCCATGACACACCTTATGTATGTAACAAACAGCACCTGCGCATG 3287

3288 TACCCCTGAACTTAAAGTTAAAAAAAGTTGAACTTAAAATAACAGATTGGCCCATGC 3347

3348 CAATCAAAGTATAATAGAAAGCATAGTATAC 3378

Figure 3: Amino acid sequences of GPI-PLD a1, b2 and d3.

cDNA clone d3

MILLFQDSMSFIYKALERNIRTMFIGGSQLSQKHVSSPLASYFLSFPLYARLGWAMTSADLNQDGHGDLVVGAPGYSRPGHIHIGRVYLIYGNDLGLPPVDLDDKEAHRILEGFQPSGRFGSALAVLDNFVNVDGVPDLAVGAPSGVGSEQLTKGAVVYFGSKQGGMSSSPNITISCQDIYCNLGWTLAADVNGDSEPDLVIGSPFAPGGGQKGIVAAFYSGPSLSDKEKLNVAAANWTVRGEEDFSWFGYSLHGVTVDNRTLLLGVGSPTWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSSGHVIMNGTLKQVLLVGAPTYDDVSKVAFLTTLHQGGATRMYALISDAQPLLSTFSGDRRFSRFGGVHLSDLDDGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWITPCPEEKVSEKKKKKK

cDNA clone b2

MSAFRLWPGLLIMLGSLCHRGSPCGLSTHIEIGHRALEFLQLHNGRVNYRELLLEHQDAYQAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLGITSHMAADVWSHSLGLEQGFLRTMGAIDFHGSYSEAHSAAGDFGGDVLSQFEFNFNYLARRWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAVSKLYPTYSTKSPFLVEQFQEYFLGGGLDDMAFWSTNIYHHTSFMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQKNDFHRLNTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQLSQKHVSSPLASYFLSFPLYARLGWAMTSADLNQDGHDVLVVGAPGYSRPGHIHIGRVYLIYGNGLGLPPVDLDDKEAHRILEGFQPSGRFGSALAVLDNFVNVDGVPDLAvgapsgvgseqltykgavyvfgskqggmssspnitiscdiycnlgwtllaadvngdsepdlvigspfapgggkqkgivaafygpslsdkeklnvaaanwtvrgeedfswfgyshgvtvdnrtlllvgsptwknasrlghllhirdekkslgrvgyfppngqswftisgdkamgklgttsllsvimngtlkqvllvgaptyddvskvafltvltlhqggatrmyalisdaqplllstfsgdrffsrfggvhlSDLDDGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWITPCPEEKVSEKKKKKK

cDNA clone a1

MSAFRLWPGLLIMLGSLCHRGSPCGLSTHIEIGHRALEFLQLHNGRVNYRELLLEHQDAYQAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLGITSHMAADVWSHSLGLEQGFLRTMGAIDFHGSYSEAHSAAGDFGGDVLSQFEFNFNYLARRWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAVSKLYPTYSTKSPFLVEQFQEYFLGGGLDDMAFWSTNIYHHTSFMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQKNDFHRLNTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQLSQKHVSSPLASYFLSFPLYARLGWAMTSADLNQDGHDVLVVGAPGYSRPGHIHIGRVYLIYGNGLGLPPVDLDDKEAHRILEGFQPSGRFGSALAVLDNFVNVDGVPDLAvgapsgvgseqltykgavyvfgskqggmssspnitiscdiycnlgwtllaadvngdsepdlvigspfapgggkqkgivaafygpslsdkeklnvaaanwtvrgeedfswfgyshgvtvdnrtlllvgsptwknasrlghllhirdekkslgrvgyfppngqswftisgdkamgklgttsllsvimngtlkqvllvgaptyddvskvafltvltlhqggatrmyalisdaqplllstfsgdrffsrfggvhlSDLDDGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWITPCPEEKVSEKKKKKK

Figure 4: Human GPI-PLD cDNA clone a1

2832 bp: 690 a 688 c 735 g 719 t

1 gtgacctgct tagagagaag cggtgggtct gcacacctggat tttggagtcc cagtgcgtc
 61 gcagctctga gcattccccac gtcaccagag aagccgggtgg gcaatgagag catgtctgtc
 121 ttcagggttgc ggcctggct gctgatcatg ttgggttctc tctgccatag aggttcaccg
 181 tggccctt caacacacat agaaatacca cacagagctc tggagttct tcagcttcac
 241 aatgggcgtg ttaactacag agagctgtt ctagaacacc aggatgcgtt tcaggctgaa
 301 atcggtttc ctgattgtt ttacccttagc atctgcaaag gaggaaaatt ccatgatgtg
 361 tctgagagac ctcaactggac tccggtttttt aatgcaagcg ttcattatata ccgagagaac
 421 tatccccttc cctggggagaa ggacacagag aaactggtag ctttcttggtt tggaaattact
 481 ttcacatgg cggcagatgt cagctggcat agtctggcc ttgaacaagg attcccttagg
 541 accatgggag ctattgtt tcacggctcc tattcagagg ctcatctggc tggtgatttt
 601 ggaggagatg tggttggagcca gtttgaattt aattttaattt accttgcacg acgctggtat
 661 gtgccagtc aagatctact gggaaattttt gagaactgtt atggtcgaaa agtcatcacc
 721 gaaaatgtaa tcgttgattt ttcacatatac cagttcttag aatgtatgg tgagatgtca
 781 gctgtttcca agtttatatcc cacttactt acaaagtccc cggttttggt ggaacaattt
 841 caagagtatt ttcttggagg actggatgtt atggcattttt ggtccactaa tatttacat
 901 ctaacaagct tcatttttgc gatatggacc agtgcacttca accttgcctga gaaccctctg
 961 ttcatttgcat gtggccggcca gcaaaaaccac acccagggtt caaaaatgca gaaaaaatgt
 1021 tttcacagaaa atttgcatttcc atcccttaact gaaagtgtt gacggaaat aactataact
 1081 gaaagaggag tggttcttag tggtaaatttcc tggacccccc attccatgtc ctttatctac
 1141 aaggctttgg aaaggaacat aaggacaatg ttcataggtt gctctcagtt gtcacaaaag
 1201 cacgtctcca gccccttgc atcttacttcc ttgtcatttcc ttatgcgag gcttggcttg
 1261 gcaatgacact cagctgaccc caaccaggat gggcacgggtt acctcggtt gggcgccacca
 1321 ggctacagccc gccccggcca catccacatc gggcgctgtt acctcatcta cggcaatgac
 1381 ctggccctgc cacctgttgc cctggaccc gacaaggagg cccacaggat ctttgaaggc
 1441 ttccagccct caggtcggtt tggctcggtt ttggctgtt gggactttaa cgtggacggc
 1501 gtgcctgacc tggccgtggg agctccctcg gtggctccg agcagctcac ctacaaagg
 1561 gccgtgtatg tctactttgg ttccaaacaa ggaggaatgtt cttttcccc taacatcacc
 1621 atttcttgc aggacatcta ctgttaacttgg ggctggactc tcttggctgc agatgtgaat
 1681 ggagacagtg aacccgatct ggtcatcgcc tcccttttgc caccagggtt gggaaaggcag
 1741 aagggaattt tggctcggtt ttattcttgc cccagccctga ggcacaaaaga aaaactgaac
 1801 gtggaggccag ccaactggac ggtgagaggc gagaagact tctccttggg tggatattcc
 1861 cttcacgggt tcactgttgc caacagaaacc ttgttgcgttgg ttggagccc gacctggaa
 1921 aatgcccggca ggctggggcca tttgttacac atccgagatg agaaaaaagg ccttggggagg
 1981 gtgtatggctt acttccccc aaacggccaa agtgggtttt ccattttctgg agacaaggca
 2041 atggggaaac tgggtacttcc cttttccatg ggccacgtac tggatgtt gactctgaaa
 2101 caagtgcgtc tgggtggagg ccctacgtac gatgacgtgtt ctaagggtgc attcctgacc
 2161 gtgaccctac accaaggccg agccacttgc atgtacgcac tcatatctga cggcggcc
 2221 ctgctgctca gcaccccttgc cggagaccgc cgcttctccc gatttgggtt cgttctgcac
 2281 ttgagtgacc tggatgttgc tggcttagat gaaatcatca tggcagcccc cctgaggata
 2341 gcagatgtaa cctctggact gattggggga gaagacggcc gatgtatgtt atataatggc
 2401 aaagagacca cccttgggtga catgacttgc aaatgcaat catggataac tccatgtcca
 2461 gaagaaaagg cccaaatatgtt attgattttt cctgaagccca gctcaagggtt tggaggttcc
 2521 ctcatcaccc tgaggccaa ggcaaaaac caagtcgtca ttgctgtgg aaggagttt
 2581 ttgggagccc gacttccgg ggcacttccat gtcataagcc ttggctcaga ttgaagattt
 2641 cactgcattt cccactctg cccaccttcc tcatgctgaa tcacatccat ggtgagcatt
 2701 ttgatggaca aagtggcaca tccagtgagg cgggtgtt gatgtataga catggggctc
 2761 ctgggagtag agagacacac taacagccac accctcttggaa aatctgatac agtaaatata
 2821 tgactgcacc ag

9 / 18

Figure 5: Human GPI-PLD cDNA clone b2

2472 bp: 617 a 588 c 639 g 628 t

1 gtctgcacct ggattttgga gtcccgagtgc tgctgcagct ctgagcattc ccacgtcacc
61 agagaagccg gtgggcaatg agagcatgtc tgctttcagg ttgtggccctg gcctgctgat
121 catgttgggt tctctctgcc atagagggtc accgtgtggc cttcaacac acatagaaat
181 aggacacaga gctctggagt ttcttcagct tcacaatggg cgtttaact acagagagct
241 gttactagaa caccaggatg cgtatcaggc tggaaatcgtg tttcctgatt gtttttaccc
301 tagcatctgc aaaggaggaa aattccatga tgggtctgag agcactcaact ggactccgtt
361 tcttaatgca agcgttcatt atatccgaga gaactatccc cttccctggg agaaggacac
421 agagaaaactg gtagcttct tggggaaat tacttctcac atggcggcag atgtcagctg
481 gcatagtctg ggccttgaac aaggattcct taggaccatg ggagctattt gtttttaccc
541 ctcctattca gagggcttatt cggctggta tttggagga gatgtgttga gccaagtttga
601 atttaatttt aattaccttg cacgacgctg gtatgtgcca gtcaagatc tactggaaat
661 ttatgagaaa ctgtatggtc gaaaagtcat caccgaaaat gtaatcggtt atgttaccca
721 tatttcaggatc ttgaaaatgt atggtgagat gctagctgtt tccaagtttat
781 ctctacaaaag tccccgtttt tgggtggaaaca attccaagag tattttcttg
841 tgatatggca tttgggtcca ctaatattta ccatctaaca agcttcatgt
901 gaccagtgtac tgcaacctgc ctgagaaccc tctgttcttgc gcatgtggcg
961 ccacaccccg ggctaaaaaa tgatgttccac agaaatttga
1021 aactgaaaatg tttgacaggaa atataaacta tactgaaaaga ggaggtttct
1081 ttcctggacc cccgattcca tgcctttat ctacaaggct ttggaaaagga
1141 aatgttcata ggtggctctc agttgtcaca aaagcacgtc tccagcccc
1201 cttcttgcata tttcctttagt cgaggcttgg ctgggcaatg acctcagctg
1261 ggtatgggcac ggtgacctcg tgggtggcgc accaggctac agccccc
1321 catcgggcgc gtgtacctca tctacggcaa tgacctgggc ctgcccac
1381 cctggacaag gagggccaca ggatccttga aggttccag ccctcagg
1441 ggccttggct gtgttggact ttaacgttga cggcgtgcct
1501 ctcgggtggc tccgagcagc tcacccatca aggtggcgtg tatgttact
1561 acaaggagga atgttttttcc cccctaaat caccatttttgc
1621 cttgggcttgg actcttgc tgcagatgt
1681 cggctccctt tttgcaccag
1741 tggccccagc ctgagcgaca
1801 aggcgagggaa gacttctct
1861 aaccttgcgt tttggggaa
1921 acacatccga gatgagaaaa
1981 ccaaagctgg tttaccattt
2041 cagtggccac gtactgtat
2101 gtacgtatgc gtgtctaaagg
2161 tgcgtatgtac gcaactcat
2221 cccggcttc tcccgattt
2281 agatgaaaatc atcatggc
2341 gggagaagac ggccgagtt
2401 tggcaaatgaaatc
2461 aaaaaaaaaaa aa

10/18

Figure 6: Human GPI-PLD cDNA clone d3

1942 bp: 455 a 496 c 502 g 489 t

1 gggctgtAAC tctGCCatCC ctcaGcataa tttGGGGta tgatttcaCT atcctaattG
61 cctgtCctAA gtgatCttAC ttgctgatAG gacctaAtG tttatTTtAT tgTTtagcac
121 ttctaaaaAC tcatttCtt tacacaAGtc caatacttG gacAGaaAC agtagcttG
181 ttgattatGc tacgtgtCtt tactgtctat aatgattctt ttatttcagg attccatgtc
241 cttatatctac aaggcttGg aaaggaACat aaggacaAtG ttcatAGgtG gctctcaggG
301 gtcacaaaAG cacgtctcca gccccttagc atcttacttc ttgtcatttc cttatgcgag
361 gcttggcttg gcaatgacct cagctgacct caaccaggat gggcacGGtG acctcggtG
421 gggcgcacca ggctacagcc gccccggcca catccacatc gggcgcgtgt acctcatcta
481 cggcaatgac ctgggcctgc cacctgtGA cctggacctG gacaaggagg cccacaggat
541 ccttgaaggc ttccagccct caggctggG ttggctcgGc ttggctgtgt tggactttAA
601 cgtggacGc gtgcgtGacc tggccGtGgg agtccctcg gtggGctccg agcagctcac
661 ctacaaaAGt gcccgtatG tctactttG ttccaaacaa ggagGAatgt ctcttcccc
721 taacatcacc atttcttGcc aggacatctA ctgtAActtG ggtcgactc tcttggctGc
781 agatgtgaat ggagacagtG aacccgatct ggtcatcgGc tcccccttG caccaggGtG
841 agggaaAGcAG aaggGAattG tggctcgGt ttattctGgc cccagcctGg ggcacaaaAGa
901 aaaactgaac gtggaggcAG ccaactggac ggtgagaggc gagGAAGact tctcctGgtt
961 tggatattcc cttcacGgtG tcactgtGga caacagaacc ttgctgtGg ttgggagccc
1021 gacctggaaAG aatGCCAGCA ggctggGcca tttGttacac atccgagatG agaaaaAGAG
1081 ccttgggagg gtgtatGgct acttcccacc aaacGGccAA agctgttA ccatTTctGg
1141 agacaaggcA atggggAAAC tgggtacttc ctttccAGt ggccacgtac tgatGAatGG
1201 gactctgaaa caagtGctGc tggGtggAGc ccctacgtac gatgacgtgt ctaaggGtGc
1261 attcctgacc gtgaccctac accaaggcGG aGccactcgC atgtacgcac tcataatctG
1321 cgCGcAGcCT ctgctgtca gcaccttcAG cggagaccGc cgcttctccc gatttggGtG
1381 cgTTctGcAc ttGAGtGacc tggatGatG tggcttagat gaaatcatca tggcagcccc
1441 cctgaggata gcAGatgtAA cctctggact gattGGGGa gaAGacGGcc gagtataAtG
1501 atataatGGc aaAGAGACCA cccttggta catGactGgc aaatGcaaAt catggataAC
1561 tccatgtCCA gaAGAAAAGG cccaaAtAtGt attGatttct cctGAAGcCA gctcaAGGt
1621 tgggagGtCC ctcAtcAccG tgaggGtccA ggcaAAAGAAC caAGtGtca ttGctGtG
1681 aaggagttct ttgggagccc gactctccGg gGcaacttcac gtctataGcc ttggctcaga
1741 ttGAAGATT cactGcattt ccccactctG cccacctctc tcAtGtGaa tcacatccat
1801 ggtgagcatt ttGatGgaca aagtGGcaca tccAGtGGGAG cggGtGtGAGa tcctGatAGa
1861 catGGGGGtCc ctgggagtag agAGACACAC taacAGGccAC accctctGGA aatctgatac
1921 agtaaaatata tgactGcacc ag

Figure 7: Alignment of GPIPLD protein sequences

database	MSAFRLWPGLLIMLGSILCHRGS PCGLSTHVEIGHRALEFLQLHNGRVNYRELLLEHQDAY	60
d3	-----	
b2	MSAFRLWPGLLIMLGSILCHRGS PCGLSTHIEIGHRALEFLQLHNGRVNYRELLLEHQDAY	60
a1	MSAFRLWPGLLIMLGSILCHRGS PCGLSTHIEIGHRALEFLQLHNGRVNYRELLLEHQDAY	60
database	QAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYP LPWEKDTEKLVAFLF	120
d3	-----	
b2	QAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYP LPWEKDTEKLVAFLF	120
a1	QAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYP LPWEKDTEKLVAFLF	120
database	GITSMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSAGDFGGDVLSQFEFNFNYLAR	180
d3	-----	
b2	GITSMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSAGDFGGDVLSQFEFNFNYLAR	180
a1	GITSMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSAGDFGGDVLSQFEFNFNYLAR	180
database	RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLA VSKLYPTYSTKSPFLV	240
d3	-----	
b2	RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLA VSKLYPTYSTKSPFLV	240
a1	RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLA VSKLYPTYSTKSPFLV	240
database	EQFQEYFLGGLDDMAFWSTNIYHLTI FMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQ	300
d3	-----	
b2	EQFQEYFLGGLDDMAFWSTNIYHLTS FMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQ	300
a1	EQFQEYFLGGLDDMAFWSTNIYHLTS FMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQ	300
database	KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL	360
d3	-----MILLFQDSMSFIYKALERNIRTMFIGGSQL	30
b2	KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL	360
a1	KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL	360
database	SQKHVS S PLASYFLSF PYARLGWAMTSADLNQDGHD L VVGAPGYSRPGHIIGRVYLIY	420
d3	SQKHVS S PLASYFLSF PYARLGWAMTSADLNQDGHD L VVGAPGYSRPGHIIGRVYLIY	90
b2	SQKHVS S PLASYFLSF PYARLGWAMTSADLNQDGHD L VVGAPGYSRPGHIIGRVYLIY	420
a1	SQKHVS S PLASYFLSF PYARLGWAMTSADLNQDGHD L VVGAPGYSRPGHIIGRVYLIY	420
database	GNDLGLPPVDLDLDEKAHRILEGFQPSGRFGS ALAVLDFNV DGV PDLAVGAPSVGSEQLT	480
d3	GNDLGLPPVDLDLDEKAHRILEGFQPSGRFGS ALAVLDFNV DGV PDLAVGAPSVGSEQLT	150
b2	GNDLGLPPVDLDLDEKAHRILEGFQPSGRFGS ALAVLDFNV DGV PDLAVGAPSVGSEQLT	480
a1	GNDLGLPPVDLDLDEKAHRILEGFQPSGRFGS ALAVLDFNV DGV PDLAVGAPSVGSEQLT	480
database	YKGAVVVYFGSKQGGMSSSPNITISCQDIYCNL GWTL LAADVNGDSEPD LVI GSPFAPGG	540
d3	YKGAVVVYFGSKQGGMSSSPNITISCQDIYCNL GWTL LAADVNGDSEPD LVI GSPFAPGG	210
b2	YKGAVVVYFGSKQGGMSSSPNITISCQDIYCNL GWTL LAADVNGDSEPD LVI GSPFAPGG	540
a1	YKGAVVVYFGSKQGGMSSSPNITISCQDIYCNL GWTL LAADVNGDSEPD LVI GSPFAPGG	540
database	GKQKGIVAA FYSGPSLSDKEKL NVEAANWTVRGEEDFSWFGYSLHGV TVDNR TLLVGSP	600
d3	GKQKGIVAA FYSGPSLSDKEKL NVEAANWTVRGEEDFSWFGYSLHGV TVDNR TLLVGSP	270
b2	GKQKGIVAA FYSGPSLSDKEKL NVEAANWTVRGEEDFSWFGYSLHGV TVDNR TLLVGSP	600
a1	GKQKGIVAA FYSGPSLSDKEKL NVEAANWTVRGEEDFSWFGYSLHGV TVDNR TLLVGSP	600
database	TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQ SWFTISGDKAMGKLGTSLSSGHVLMNG	660
d3	TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQ SWFTISGDKAMGKLGTSLSSGHVLMNG	330
b2	TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQ SWFTISGDKAMGKLGTSLSSGHVLMNG	660
a1	TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQ SWFTISGDKAMGKLGTSLSSGHVLMNG	660
database	TLKQVL LVGAP TYDDVSKVAFLT VTLHQGGAT RMYALISDAQPLL STFSGDR RFSR FGG	720
d3	TLKQVL LVGAP TYDDVSKVAFLT VTLHQGGAT RMYALISDAQPLL STFSGDR RFSR FGG	390
b2	TLKQVL LVGAP TYDDVSKVAFLT VTLHQGGAT RMYALISDAQPLL STFSGDR RFSR FGG	720
a1	TLKQVL LVGAP TYDDVSKVAFLT VTLHQGGAT RMYALISDAQPLL STFSGDR RFSR FGG	720

12/18

7.2

database	VLHLSLDDDGGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT	780
d3	VLHLSLDDDGGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT	450
b2	VLHLSLDDDGGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT	780
a1	VLHLSLDDDGGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT	780

database	PCPEEKAQYVLISPEASSRGSSLITVRSKAKNQVVIAAGRSSLGARLSGALHVYSLGSD	840
d3	PCPEEKAQYVLISPEASSRGSSLITVRSKAKNQVVIAAGRSSLGARLSGALHVYSLGSD	510
b2	PCPEEKVSEKKKKK-----	795
a1	PCPEEKAQYVLISPEASSRGSSLITVRSKAKNQVVIAAGRSSLGARLSGALHVYSLGSD	840

Database	840 aa
d3	510 aa
b2	795 aa
a1	840 aa

Figure 8: Alignment of human GPI-PLD nucleic acid sequences

1: pancreatic-form: cDNA sequence from GenBank database (L11702)
 2: cDNA clone A1
 3: cDNA clone B2
 4: cDNA clone D3

1	GTGACCTGCTTAGAGAGAAGCGGTGGTCTGCACCTGGATTTGGAGTCCCAGTGCTGCT	60
1	-----GTCTGCACCTGGATTTGGAGTCCCAGTGCTGCT	34
1	-----ATGTC TGCT	9
61	GCAGCTCTGAGCATTCCCACGTCACCAGAGAAGCCGGTGGGCAATGAGAGCATGTCTGCT	120
35	GCAGCTCTGAGCATTCCCACGTCACCAGAGAAGCCGGTGGGCAATGAGAGCATGTCTGCT	94
10	-----	
121	TTCAGGTTGTGGCTGGCCTGCTGATCATGTTGGGTTCTCTGCCATAGAGGTTACCG	69
95	TTCAGGTTGTGGCTGGCCTGCTGATCATGTTGGGTTCTCTGCCATAGAGGTTACCG	180
95	TTCAGGTTGTGGCTGGCCTGCTGATCATGTTGGGTTCTCTGCCATAGAGGTTACCG	154
70	-----	
181	TGTGGCCTTCAACACACACGTAGAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	129
155	TGTGGCCTTCAACACACATAGAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	240
155	TGTGGCCTTCAACACACATAGAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	214
130	-----	
241	AATGGGCGTGTAACTACAGAGAGCTGTTACTAGAACACCAAGGATGCGTATCAGGCTGGA	189
215	AATGGGCGTGTAACTACAGAGAGCTGTTACTAGAACACCAAGGATGCGTATCAGGCTGGA	300
215	AATGGGCGTGTAACTACAGAGAGCTGTTACTAGAACACCAAGGATGCGTATCAGGCTGGA	274
190	-----	
301	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	249
275	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	360
275	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	334
250	-----	
361	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCAATTATATCCGAGAGAAC	309
335	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCAATTATATCCGAGAGAAC	420
335	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCAATTATATCCGAGAGAAC	394
310	-----	
421	TATCCCCCTCCCTGGGAGAACAGAGAACAGAGAACACTGGTAGCTTCTGTTGAAATTACT	369
395	TATCCCCCTCCCTGGGAGAACAGAGAACAGAGAACACTGGTAGCTTCTGTTGAAATTACT	480
395	TATCCCCCTCCCTGGGAGAACAGAGAACACTGGTAGCTTCTGTTGAAATTACT	454
370	-----	
481	TCTCACATGGCGGAGATGTCAGCTGGCATAGTCTGGCCTTGAACAAGGATTCTTAGG	429
541	TCTCACATGGCGGAGATGTCAGCTGGCATAGTCTGGCCTTGAACAAGGATTCTTAGG	540
541	TCTCACATGGCGGAGATGTCAGCTGGCATAGTCTGGCCTTGAACAAGGATTCTTAGG	514
430	-----	
541	ACCATGGGAGCTATTGATTTCACGGCTCCTATTCAAGAGGCTCATTGGCTGGTAGTTT	489
541	ACCATGGGAGCTATTGATTTCACGGCTCCTATTCAAGAGGCTCATTGGCTGGTAGTTT	600
515	ACCATGGGAGCTATTGATTTCACGGCTCCTATTCAAGAGGCTCATTGGCTGGTAGTTT	574

14/18

8.2

490	GGAGGAGATGTGTTGAGCCAGTTGAATTAAATTACCTTGCACGACGCTGGTAT	549
601	GGAGGAGATGTGTTGAGCCAGTTGAATTAAATTACCTTGCACGACGCTGGTAT	660
575	GGAGGAGATGTGTTGAGCCAGTTGAATTAAATTACCTTGCACGACGCTGGTAT	634
<hr/>		
550	GTGCCAGTCAAAGATCTACTGGGAATTATGAGAAACTGTATGGTCGAAAAGTCATCACC	609
661	GTGCCAGTCAAAGATCTACTGGGAATTATGAGAAACTGTATGGTCGAAAAGTCATCACC	720
635	GTGCCAGTCAAAGATCTACTGGGAATTATGAGAAACTGTATGGTCGAAAAGTCATCACC	694
<hr/>		
610	GAAAATGTAATCGTGATTGTTCACATATCCAGTTCTAGAAATGTATGGTGGAGATGCTA	669
721	GAAAATGTAATCGTGATTGTTCACATATCCAGTTCTAGAAATGTATGGTGGAGATGCTA	780
695	GAAAATGTAATCGTGATTGTTCACATATCCAGTTCTAGAAATGTATGGTGGAGATGCTA	754
<hr/>		
670	GCTGTTCCAAGTTATATCCCACTTACTCTACAAAGTCCCCGTTTGGTGGAACAAATTC	729
781	GCTGTTCCAAGTTATATCCCACTTACTCTACAAAGTCCCCGTTTGGTGGAACAAATTC	840
755	GCTGTTCCAAGTTATATCCCACTTACTCTACAAAGTCCCCGTTTGGTGGAACAAATTC	814
<hr/>		
730	CAAGAGTATTTCTGGAGGACTGGATGATATGGCATTTGGTCCACTAATATTCACCAT	789
841	CAAGAGTATTTCTGGAGGACTGGATGATATGGCATTTGGTCCACTAATATTCACCAT	900
815	CAAGAGTATTTCTGGAGGACTGGATGATATGGCATTTGGTCCACTAATATTCACCAT -----GGGCTGTAAC	874
		10
<hr/>		
790	CTAACAACTTCATGTTGGAGAATGGGACCACTGACTGCAACCTGCCTGAGAACCCCTCTG	849
901	CTAACAAAGCTTCATGTTGGAGAATGGGACCACTGACTGCAACCTGCCTGAGAACCCCTCTG	960
875	CTAACAAAGCTTCATGTTGGAGAATGGGACCACTGACTGCAACCTGCCTGAGAACCCCTCTG	934
11	TCTGCCATCCCTCAGCATAATTGGGGTATGATTCACTATCCTAATTGCCTGCTCAA	70
<hr/>		
850	TTCATTGCATGTGGCGGCCAGCAAAACCACACCCAGGGCTCAAAATGCAGAAAAATGAT	909
961	TTCATTGCATGTGGCGGCCAGCAAAACCACACCCAGGGCTCAAAATGCAGAAAAATGAT	1020
935	TTCATTGCATGTGGCGGCCAGCAAAACCACACCCAGGGCTCAAAATGCAGAAAAATGAT	994
71	GTGATCTTACTGCTGATAGGACCTAATGTTATTGTTAGCACTTCTAAAC	130
<hr/>		
910	TTTCACAGAAATTGACTACATCCCTAAGTGGAGGAAATATAAAACTATACT	969
1021	TTTCACAGAAATTGACTACATCCCTAAGTGGAGGAAATATAAAACTATACT	1080
995	TTTCACAGAAATTGACTACATCCCTAAGTGGAGGAAATATAAAACTATACT	1054
131	TCATTTCTTACACAAGTCCAATACTTGGACAGGAAACAGTAGCTTGTGATTATGC	180
<hr/>		
970	GAAAGAGGAGTGTCTTACTGTAAATTCCCTGGACCCGGATTCCATGTCCTTATCTAC	1029
1081	GAAAGAGGAGTGTCTTACTGTAAATTCCCTGGACCCGGATTCCATGTCCTTATCTAC	1140
1055	GAAAGAGGAGTGTCTTACTGTAAATTCCCTGGACCCGGATTCCATGTCCTTATCTAC	1114
181	TACGTGTCTTACTGTCTATAATGATTCTTTATTGAGGATTCCATGTCCTTATCTAC	240
<hr/>		
1030	AAGGCTTGGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTCAACAAAG	1089
1141	AAGGCTTGGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTCAACAAAG	1200
1115	AAGGCTTGGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTCAACAAAG	1174
241	AAGGCTTGGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTCAACAAAG	300
<hr/>		
1090	CACGTCTCCAGCCCCCTTAGCATCTTACTTCTTGTCAATTCTTATGCGAGGCTGGCTGG	1149
1201	CACGTCTCCAGCCCCCTTAGCATCTTACTTCTTGTCAATTCTTATGCGAGGCTGGCTGG	1260
1175	CACGTCTCCAGCCCCCTTAGCATCTTACTTCTTGTCAATTCTTATGCGAGGCTGGCTGG	1234
301	CACGTCTCCAGCCCCCTTAGCATCTTACTTCTTGTCAATTCTTATGCGAGGCTGGCTGG	360

15/18

1150	GCAATGACCTCAGCTGACCTCAACCAGGATGGGCACGGTGACCTCGTGGTGGCGCACCA	1209
1261	GCAATGACCTCAGCTGACCTCAACCAGGATGGGCACGGTGACCTCGTGGTGGCGCACCA	1320
1235	GCAATGACCTCAGCTGACCTCAACCAGGATGGGCACGGTGACCTCGTGGTGGCGCACCA	1294
361	GCAATGACCTCAGCTGACCTCAACCAGGATGGGCACGGTGACCTCGTGGTGGCGCACCA	420
1210	GGCTACAGCCGCCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	1269
1321	GGCTACAGCCGCCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	1380
1295	GGCTACAGCCGCCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	1354
421	GGCTACAGCCGCCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	480
1270	CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGCCACAGGATCCTTGAAGGC	1329
1381	CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGCCACAGGATCCTTGAAGGC	1440
1355	CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGCCACAGGATCCTTGAAGGC	1414
481	CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGCCACAGGATCCTTGAAGGC	540
1330	TTCCAGCCCTCAGGT CGGTTGGCTCGGCCTTGGCTGTGTTGACTTTAACGTGGACGGC	1389
1441	TTCCAGCCCTCAGGT CGGTTGGCTCGGCCTTGGCTGTGTTGACTTTAACGTGGACGGC	1500
1415	TTCCAGCCCTCAGGT CGGTTGGCTCGGCCTTGGCTGTGTTGACTTTAACGTGGACGGC	1474
541	TTCCAGCCCTCAGGT CGGTTGGCTCGGCCTTGGCTGTGTTGACTTTAACGTGGACGGC	600
1390	GTGCCTGACCTGGCGTGGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT	1449
1501	GTGCCTGACCTGGCGTGGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT	1560
1475	GTGCCTGACCTGGCGTGGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT	1534
601	GTGCCTGACCTGGCGTGGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT	660
1450	GCCGTGTATGTCTACTTGGTCCAAACAAGGAGGAATGTCTTCTTCCCCTAACATCACC	1509
1561	GCCGTGTATGTCTACTTGGTCCAAACAAGGAGGAATGTCTTCTTCCCCTAACATCACC	1620
1535	GCCGTGTATGTCTACTTGGTCCAAACAAGGAGGAATGTCTTCTTCCCCTAACATCACC	1594
661	GCCGTGTATGTCTACTTGGTCCAAACAAGGAGGAATGTCTTCTTCCCCTAACATCACC	720
1510	ATTTCTGCCAGGACATCTACTGTAACCTGGGCTGGACTCTCTGGCTGCAGATGTGAAT	1569
1621	ATTTCTGCCAGGACATCTACTGTAACCTGGGCTGGACTCTCTGGCTGCAGATGTGAAT	1680
1595	ATTTCTGCCAGGACATCTACTGTAACCTGGGCTGGACTCTCTGGCTGCAGATGTGAAT	1654
721	ATTTCTGCCAGGACATCTACTGTAACCTGGGCTGGACTCTCTGGCTGCAGATGTGAAT	780
1570	GGAGACAGTGAACCGATCTGGTCATCGGCCTCCCTTTGCACCAAGGTGGAGGGAAAGCAG	1629
1681	GGAGACAGTGAACCGATCTGGTCATCGGCCTCCCTTTGCACCAAGGTGGAGGGAAAGCAG	1740
1655	GGAGACAGTGAACCGATCTGGTCATCGGCCTCCCTTTGCACCAAGGTGGAGGGAAAGCAG	1714
781	GGAGACAGTGAACCGATCTGGTCATCGGCCTCCCTTTGCACCAAGGTGGAGGGAAAGCAG	840
1630	AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC	1689
1741	AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC	1800
1715	AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC	1774
841	AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC	900
1690	GTGGAGGCAGCCA ACTGGACGGTGAGAGGGCGAGGAAGACTCTCCTGGTTGGATATTCC	1749
1801	GTGGAGGCAGCCA ACTGGACGGTGAGAGGGCGAGGAAGACTCTCCTGGTTGGATATTCC	1860
1775	GTGGAGGCAGCCA ACTGGACGGTGAGAGGGCGAGGAAGACTCTCCTGGTTGGATATTCC	1834
901	GTGGAGGCAGCCA ACTGGACGGTGAGAGGGCGAGGAAGACTCTCCTGGTTGGATATTCC	960
1750	CTTCACGGTGTCACTGTGGACAACAGAACCTTGTGTTGGTGGAGGCCGACCTGGAAG	1809
1861	CTTCACGGTGTCACTGTGGACAACAGAACCTTGTGTTGGTGGAGGCCGACCTGGAAG	1920
1835	CTTCACGGTGTCACTGTGGACAACAGAACCTTGTGTTGGTGGAGGCCGACCTGGAAG	1894
961	CTTCACGGTGTCACTGTGGACAACAGAACCTTGTGTTGGTGGAGGCCGACCTGGAAG	1020

16/18

1810	AATGCCAGCAGGCTGGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTTGGGAGG	1869
1921	AATGCCAGCAGGCTGGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTTGGGAGG	1980
1895	AATGCCAGCAGGCTGGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTTGGGAGG	1954
1021	AATGCCAGCAGGCTGGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTTGGGAGG	1080
1870	GTGTATGGCTACTTCCCACCAAACGGCCAAAGCTGGTTACCATTCTGGAGACAAGGCA	1929
1981	GTGTATGGCTACTTCCCACCAAACGGCCAAAGCTGGTTACCATTCTGGAGACAAGGCA	2040
1955	GTGTATGGCTACTTCCCACCAAACGGCCAAAGCTGGTTACCATTCTGGAGACAAGGCA	2014
1081	GTGTATGGCTACTTCCCACCAAACGGCCAAAGCTGGTTACCATTCTGGAGACAAGGCA	1140
1930	ATGGGGAAAATGGGTACTTCCTTCCAGTGGCACGTA CTGACTGATGAATGGGACTCTGAAA	1989
2041	ATGGGGAAAATGGGTACTTCCTTCCAGTGGCACGTA CTGACTGATGAATGGGACTCTGAAA	2100
2015	ATGGGGAAAATGGGTACTTCCTTCCAGTGGCACGTA CTGACTGATGAATGGGACTCTGAAA	2074
1141	ATGGGGAAAATGGGTACTTCCTTCCAGTGGCACGTA CTGACTGATGAATGGGACTCTGAAA	1200
1990	CAAGTGTGCTGGTTGGAGCCCTACGTACGATGACGTG CTAAGGTGGCATTCTGACC	2049
2101	CAAGTGTGCTGGTTGGAGCCCTACGTACGATGACGTG CTAAGGTGGCATTCTGACC	2160
2075	CAAGTGTGCTGGTTGGAGCCCTACGTACGATGACGTG CTAAGGTGGCATTCTGACC	2134
1201	CAAGTGTGCTGGTTGGAGCCCTACGTACGATGACGTG CTAAGGTGGCATTCTGACC	1260
2050	GTGACCTACACCAAGGCGGAGCCACTCGCATGTACGCA CTCATATCTGACGCGCAGCCT	2109
2161	GTGACCTACACCAAGGCGGAGCCACTCGCATGTACGCA CTCATATCTGACGCGCAGCCT	2220
2135	GTGACCTACACCAAGGCGGAGCCACTCGCATGTACGCA CTCATATCTGACGCGCAGCCT	2194
1261	GTGACCTACACCAAGGCGGAGCCACTCGCATGTACGCA CTCATATCTGACGCGCAGCCT	1320
2110	CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTTCT CCCGATTGGTGGCGTTCTGCAC	2169
2221	CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTTCT CCCGATTGGTGGCGTTCTGCAC	2280
2195	CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTTCT CCCGATTGGTGGCGTTCTGCAC	2254
1321	CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTTCT CCCGATTGGTGGCGTTCTGCAC	1380
2170	TTGAGTGACCTGGATGATGGCTTAGATGAAATCAT CATGGCAGCCCCCTGAGGATA	2229
2281	TTGAGTGACCTGGATGATGGCTTAGATGAAATCAT CATGGCAGCCCCCTGAGGATA	2340
2255	TTGAGTGACCTGGATGATGGCTTAGATGAAATCAT CATGGCAGCCCCCTGAGGATA	2314
1381	TTGAGTGACCTGGATGATGGCTTAGATGAAATCAT CATGGCAGCCCCCTGAGGATA	1440
2230	GCAGATGTAACCTCTGGACTGATTGGGGAGAAC GACGGCCAGTATATGTATATAATGGC	2289
2341	GCAGATGTAACCTCTGGACTGATTGGGGAGAAC GACGGCCAGTATATGTATATAATGGC	2400
2315	GCAGATGTAACCTCTGGACTGATTGGGGAGAAC GACGGCCAGTATATGTATATAATGGC	2374
1441	GCAGATGTAACCTCTGGACTGATTGGGGAGAAC GACGGCCAGTATATGTATATAATGGC	1500
2290	AAAGAGACCACCCCTGGTACATGACTGGCAAAT GCAAATCATGGATAACTCCATGTCCA	2349
2401	AAAGAGACCACCCCTGGTACATGACTGGCAAAT GCAAATCATGGATAACTCCATGTCCA	2460
2375	AAAGAGACCACCCCTGGTACATGACTGGCAAAT GCAAATCATGGATAACTCCATGTCCA	2434
1501	AAAGAGACCACCCCTGGTACATGACTGGCAAAT GCAAATCATGGATAACTCCATGTCCA	1560
2350	GAAGAAAAGGCCAATATGTATTGATTCTCCT GAAGCCAGCTCAAGGTTGGAGCTCC	2409
2461	GAAGAAAAGGCCAATATGTATTGATTCTCCT GAAGCCAGCTCAAGGTTGGAGCTCC	2520
2435	GAAGAAAAGGTAAAGTGA ----- 1561	2472 1620
2410	CTCATCACCGTGAGGTCCAAGGCAAAGAAC CAAGTCGTATTGCTGCTGGAAGGAGTTCT	2469
2521	CTCATCACCGTGAGGTCCAAGGCAAAGAAC CAAGTCGTATTGCTGCTGGAAGGAGTTCT	2580
1621	CTCATCACCGTGAGGTCCAAGGCAAAGAAC CAAGTCGTATTGCTGCTGGAAGGAGTTCT	1680

17118

8.5

2470	TTGGGAGCCCGACTCTCGGGGCACCACTCACGTCTATAGCCTGGCTCAGATTGAAGATTT	2529
2581	TTGGGAGCCCGACTCTCGGGGCACCACTCACGTCTATAGCCTGGCTCAGATTGAAGATTT	2640
1681	TTGGGAGCCCGACTCTCGGGGCACCACTCACGTCTATAGCCTGGCTCAGATTGAAGATTT	1740
2530	CACTGCATTTCCCCACTCTGCCAACCTCTCATGCTGAATCACATCCATGGTGAGCATT	2589
2641	CACTGCATTTCCCCACTCTGCCAACCTCTCATGCTGAATCACATCCATGGTGAGCATT	2700
1741	CACTGCATTTCCCCACTCTGCCAACCTCTCATGCTGAATCACATCCATGGTGAGCATT	1800
2590	TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC	2649
2701	TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC	2760
1801	TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC	1860
2650	CTGGGAGTAGAGAGACACACTAACAGCCACACCCCTCTGGAAATCTGATAACAGTAAATATA	2709
2761	CTGGGAGTAGAGAGACACACTAACAGCCACACCCCTCTGGAAATCTGATAACAGTAAATATA	2820
1861	CTGGGAGTAGAGAGACACACTAACAGCCACACCCCTCTGGAAATCTGATAACAGTAAATATA	1920
2710	TGACTGCACCAGAAAATATGTGAAATAGCAGACATTCTGCTTAACATGTCCTCCACA	2769
2821	TGACTGCACCAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-----	2880
1921	TGACTGCACCAGAAAAAAAAAAAAAAAAAAAAA-----	1952
2770	GTTTACTTCCTCGCTCCCTTGCATCTAACCTTCTTCTTCCAACTTATTGCCTGTA	2829
2881	AAAAAAAAAAAAAAAAAAAAAAAAAAAAA-----	2915
2830	GTCAGACCTGCTGTACAACCTATTCCTCTTCTTGAATGTCTTCCAGTGGCTGGAA	2889
2890	AGGTCCCTCTGTGGTTATCTGTTAGAACAGTCTGTACACAATTCCCTCTAAAAACATC	2949
2950	CTTTTTAAAAAGAATTGTTAGCCATAAGAAAGAACAGATCATGCCCTTGAGG	3009
3010	GACATGGATGGAGCTGGAGGCCATTATCCTCATAAACTATTGCAGGAACAGAAAACCAA	3069
3070	ACACTCCATATTCTCACTTGTAAAGTGGAGCTAAGTGAGAACACGTGGACACATAGAGGG	3129

18/18

3130 AAACAAACACACACTGGGCCTATGAGAGGGCGGAAGGTGGGAGGGAGAGATCAGGAA 3189

3190 AAATAACTAATGGATACTTAGGGTGATGAAATAATCTGTGTAACAAACCCCCATGACACA 3249

3250 CCTTTATGTATGTAACAAACCAGCACTCCTGCGCATGTACCCCTGAACTTAAAAGTTAA 3309

3310 AAAAAAGTTGAACTTAAAAATAACAGATTGGCCCATGCCAATCAAAGTATAATAGAAAGC 3369

3370 ATAGTATAC 3378

Pct No : 6299 / 04399

from 23/77 : 23/12/95

Agent : Member E.H.S