6.842 Randomness and Computation

February 22, 2022

Homework 1

Yuchong Pan MIT ID: 911346847

1. Collaborators and sources: none.

Proof. We construct an approximation scheme \mathcal{B} for f as follows: On input (x, ε, δ) , run $\mathcal{A}(x, \varepsilon)$ independently for $k := \lceil 12 \log(1/\delta) \rceil$ times with outputs y_1, \ldots, y_k , and output a median of y_1, \ldots, y_k .

Let $t_{\mathcal{A}}(x,\varepsilon)$ be the running time of \mathcal{A} on input (x,ε) . Then \mathcal{B} runs in $O(kt_{\mathcal{A}}(x,\varepsilon)) = O(\log(1/\delta)t_{\mathcal{A}}(x,\varepsilon))$. Since \mathcal{A} runs in time polynomial in $1/\varepsilon$ and |x|, then \mathcal{B} runs in time polynomial in $1/\varepsilon$, |x| and $\log(1/\delta)$.

By the definition of medians, if more than half of y_1, \ldots, y_k fall in $[f(x)/(1+\varepsilon), f(x)(1+\varepsilon)]$, then $\mathcal{B}(x,\varepsilon,\delta) \in [f(x)/(1+\varepsilon), f(x)(1+\varepsilon)]$. Let $X_1, \ldots, X_k \in \{0,1\}$ be random variables so that $X_i = 1$ with probability $p := \mathbb{P}[\mathcal{A}(x,\varepsilon) \notin [f(x)/(1+\varepsilon), f(x)(1+\varepsilon)]] \le 1 - 3/4 = 1/4$. Then $\sum_{i=1}^k \mathbb{E}[X_i] = kp \le k/4$. Therefore,

$$\mathbb{P}\left[\mathcal{B}(x,\varepsilon,\delta) \not\in \left[\frac{f(x)}{1+\varepsilon}, f(x)(1+\varepsilon)\right]\right] \\
\leq \mathbb{P}\left[\text{at least half of } y_1, \dots, y_k \text{ do not fall in } \left[\frac{f(x)}{1+\varepsilon}, f(x)(1+\varepsilon)\right]\right] \\
= \mathbb{P}\left[\sum_{i=1}^k X_i \ge \frac{k}{2}\right] \\
= \mathbb{P}\left[\sum_{i=1}^k X_i \ge (1+1) \cdot \frac{k}{4}\right] \\
\leq e^{-\frac{k/4}{3}} \qquad (Chernoff bound) \\
= e^{-\frac{\left[12\log\frac{1}{\delta}\right]}{12}} < e^{-\frac{12\log\frac{1}{\delta}}{12}} = \delta.$$

Therefore,

$$\mathbb{P}\left[\mathcal{B}(x,\varepsilon,\delta)\in\left[\frac{f(x)}{1+\varepsilon},f(x)(1+\varepsilon)\right]\right]=1-\mathbb{P}\left[\mathcal{B}(x,\varepsilon,\delta)\not\in\left[\frac{f(x)}{1+\varepsilon},f(x)(1+\varepsilon)\right]\right]\geq1-\delta.$$

This completes the proof.