

# JLX256128G-920-PN 使用说明书

| 序号 | 内 容 标 题       | 页码    |
|----|---------------|-------|
| 1  | 概述            | 2     |
| 2  | 特点            | 2     |
| 3  | 外形及接口引脚功能     | 3~5   |
| 4  | 电路框图          | 5     |
| 5  | 技术参数          | 5~6   |
| 6  | 时序特性          | 6~10  |
| 7  | 指令表及硬件接口、编程案例 | 11~末页 |
|    |               |       |
|    |               |       |
|    |               |       |



#### 1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX256128G-920-PN 型液晶模块由于使用方便、显示清晰,广泛应用于各种人机交流面板。

JLX256128G-920-PN 可以显示 256 列\*128 行点阵单色或 4 灰度级的图片,或显示 8 个/行\*4 行 32\*32 点阵或显示 10 个/行\*5 行 24\*24 点阵的汉字,或显示 16 个/行\*8 行 16\*16 点阵的汉字。

#### 2. JLX256128G-920-PN 图像型点阵液晶模块的特性

- 2.1 结构牢。
- 2.2 IC 采用矽创公司 ST75256, 功能强大, 稳定性好
- 2.3 功耗低: 不带背光 3.0mW (3.3V\*(0.5mA 参考值)), 带背光不大于 205mW (3.3V\*62mA);
- 2.4接口简单方便:可采用4线SPI串行接口、并行接口,I<sup>2</sup>C接口。
- 2.5 工作温度宽:-20℃ 70℃;
- 2.6 储存温度宽:-30℃ 80℃;
- 2.7 显示内容:
  - ●256\*128 点阵单色或 4 灰度级图片:
  - ●或显示 8 个×4 行 32\*32 点阵的汉字;





#### 3. 外形尺寸及接口引脚功能:



图 1. 液晶模块外形尺寸

#### 3.1 模块的接口引脚功能

#### 3.1.1 并行时接口引脚功能

| 1. 1 <u>7</u> 1 1 1 1 1 1 3 |          | 76      |                                      |
|-----------------------------|----------|---------|--------------------------------------|
| 引线号                         | 符号       | 名 称     | 功 能                                  |
| 1                           | NC       |         | 空脚                                   |
| 2                           | NC       |         | 空脚                                   |
| 3                           | NC       |         | 空脚                                   |
| 4                           | NC       |         | 空脚                                   |
| 5                           | LEDA     | 背光电源    | 背光电源正极,同 VDD 电压(5V 或 3.3V)           |
| 6                           | VSS      | 接地      | OV                                   |
| 7                           | VDD      | 电路电源    | 5V 或 3. 3V (购买时需选择 3. 3V 或 5. 0V 供电) |
| 8                           | AO (RS)  | 寄存器选择信号 | H:数据寄存器 0:指令寄存器 (IC 资料上所写为"A0")      |
| 9                           | RES      | 复位      | 低电平复位,复位完成后,回到高电平,液晶模块开始工作           |
| 10                          | CS       | 片选      | 低电平片选                                |
| 11-18                       | D7-D0    | I/0     | 数据总线                                 |
| 19                          | E (RD)   | 使能信号    | 使能信号                                 |
| 20                          | WR (R/W) | 读/写     | H:读数据 0:写数据                          |

表 1: 模块的并行接口引脚功能

| 3. 2 | 模块的串行 | 接口引脚    | 功能      |                                      |
|------|-------|---------|---------|--------------------------------------|
|      | 引线号   | 符号      | 名 称     | 功能                                   |
|      | 1     | NC      |         | 空脚                                   |
|      | 2     | NC      |         | 空脚                                   |
|      | 3     | NC      |         | 空脚                                   |
|      | 4     | NC      |         | 空脚                                   |
|      | 5     | LEDA    | 背光电源    | 背光电源正极,同 VDD 电压 (5V 或 3.3V)          |
| L    | 6     | VSS     | 接地      | OV                                   |
|      | 7     | VDD     | 电路电源    | 5V 或 3. 3V (购买时需选择 3. 3V 或 5. 0V 供电) |
|      | 8     | AO (RS) | 寄存器选择信号 | H:数据寄存器 0:指令寄存器 (IC 资料上所写为"A0")      |
|      | 9     | RES     | 复位      | 低电平复位,复位完成后,回到高电平,液晶模块开始工作           |
|      | 10    | CS      | 片选      | 低电平片选                                |
|      | 11-14 | D7-D4   | I/0     | 悬空或接 VDD                             |
|      | 15-17 | D3-D1   | I/0     | 串行时:串行数据(SDA) (D1、D2、D3 短接一起作为 SDA)  |
|      | 18    | D0      | I/0     | 串行时钟(SCLK)                           |
|      | 19    | E (RD)  | 使能信号    | 悬空或接 VDD                             |

#### 3.3 模块的 IIC 接口引脚功能

WR (R/W)

读/写

19 20

| 引线号 | 符号 | 名 称 | 功 能 |
|-----|----|-----|-----|
| 1   | NC |     | 空脚  |
| 2   | NC |     | 空脚  |
| 3   | NC |     | 空脚  |
| 4   | NC |     | 空脚  |

|       | 晶联讯电子       | 液晶模块 .  | JLX256128G-920-PN 更新日期: 2019-06-24 |
|-------|-------------|---------|------------------------------------|
| 5     | LEDA        | 背光电源    | 背光电源正极,同 VDD 电压 (5V 或 3.3V)        |
| 6     | VSS         | 接地      | OV                                 |
| 7     | VDD         | 电路电源    | 供电电源正极(购买时需选择 3.3V 或 5.0V 供电)      |
| 8     | AO (RS)     | 寄存器选择信号 | IIC 接口,此引脚接 VDD                    |
| 9     | RST         | 复位      | 低电平复位,复位完成后,回到高电平,液晶模块开始工作         |
| 10    | CS          | 片选      | IIC 接口,此引脚接 VSS                    |
| 11    | D7          | I/0     | IIC 接口,此引脚是从属地址接 VSS               |
| 12    | D6          | I/0     | IIC 接口,此引脚是从属地址接 VSS               |
| 13    | D5          | I/0     | IIC 接口,悬空或接 VDD                    |
| 14    | D4          | I/0     | IIC 接口,悬空或接 VDD                    |
| 15-17 | D3-D1 (SDA) | I/0     | 串行数据(D1、D2、D3 短接一起作为 SDA)          |
| 18    | DO (SCK)    | I/0     | 串行时钟                               |
| 19    | RD (E)      | 使能信号    | IIC 接口,悬空或接 VDD                    |
| 20    | WR          | 读/写     | IIC 接口,悬空或接 VDD                    |

表 3: 模块的 IIC 接口引脚功能

# 4. 电路框图



图 2: JLX256128G-920-PN 图像点阵型液晶模块的电路框图

### 4.1 背光参数

该型号液晶模块带 LED 背光源。它的性能参数如下:

工作温度:-20° C∽+70° C;

背光颜色:白色。

正常工作电流为: (8~15)×4=32~60mA (LED 灯数共 4 颗);

## 5. 技术参数

#### 5.1 最大极限参数(超过极限参数则会损坏液晶模块)

| <br> |    | 2.22 1 7 IX HA 127 7 7 . |    |
|------|----|--------------------------|----|
| 名称   | 符号 | 标准值                      | 单位 |



|          |           | 最小   | 典型 | 最大   |                      |
|----------|-----------|------|----|------|----------------------|
| 电路电源     | VDD - VSS | -0.3 | _  | 3. 5 | V                    |
| LCD 驱动电压 | VO - XVO  | -0.3 | _  | 16   | V                    |
| 静电电压     |           | _    |    | 100  | V                    |
| 工作温度     |           | -20  | _  | +70  | $^{\circ}\mathbb{C}$ |
| 储存温度     |           | -30  |    | +80  | $^{\circ}\mathbb{C}$ |

表 4: 最大极限参数

#### 5.2 直流 (DC) 参数

| 名 称    | 符号   | 测试条件         | 标 准 值  |      |         | 单位 |
|--------|------|--------------|--------|------|---------|----|
|        |      |              | MIN    | TYPE | MAX     |    |
| 工作电压   | VDD  | _            | 2.6    | 3. 3 | 3.5     | V  |
| 背光工作电压 | VLED | _            | 2.9    | 3.0  | _       | V  |
| 输入高电平  | VIH  |              | 0.8VDD | —    | VDD     | V  |
| 输入低电平  | VIO  |              | 0      | —    | 0. 2VDD | V  |
| 输出高电平  | VOH  | IOH = 0.2 mA | 0.8VDD | —    | VDD     | V  |
| 输出低电平  | V00  | 100 = 1.2 mA | 0      | —    | 0. 2VDD | V  |
| 模块工作电流 | IDD  | VDD = 3.0V   | _      | 0.3  | 1.0     | mA |
| 背光工作电流 | ILED | VLED=3. OV   | 32     | 60   | 80      | mA |

#### 表 5: 直流 (DC) 参数

#### 6. 读写时序特性(AC参数)

### 6.1 4线 SPI 串行接口写时序特性(AC 参数)



图 3. 从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

#### 表 6. 写数据到 ST75256 的时序要求

| 项 目 | 符号 | 测试条件 | 极限值 |      |     | 单位 |
|-----|----|------|-----|------|-----|----|
|     |    |      | MIN | TYPE | MAX |    |

| ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ | 液晶    | 模块    | JLX25612 | 8G-920-F | N 更 | 新日期:2 | 2019-06-24 |
|--------------------------------------|-------|-------|----------|----------|-----|-------|------------|
| 4线 SPI串口时钟周期                         | tSCYC |       |          | 80       |     |       | ns         |
| (4-line SPI Clock Period)            |       |       |          | 80       |     |       |            |
| 保持SCK高电平脉宽                           | tSHW  |       |          | 20       |     |       | ns         |
| (SCL "H" pulse width)                |       | 引脚:   | SCL      | 30       |     |       |            |
| 保持SCLK低电平脉宽                          | tSLW  |       |          | 30       |     |       | ns         |
| (SCL "L" pulse width)                |       |       |          |          |     |       |            |
| 地址建立时间                               | tSAS  |       |          | 20       |     |       | ns         |
| (Address setup time)                 |       | n401C | AO       |          |     |       |            |
| 地址保持时间                               | tSAH  |       |          | 20       |     |       | ns         |
| (Address hold time)                  |       |       |          |          |     |       |            |
| 数据建立时间                               | tSDS  |       |          | 20       |     |       | ns         |
| (Data setup time)                    |       | 린태    | CID      |          |     |       |            |
| 数据保持时间                               | tSDH  | ┤ 引脚: | 210      | 20       |     |       | ns         |
| (Data hold time)                     |       |       |          |          |     |       |            |
| 片选信号建立时间                             | tCSS  |       |          | 20       |     |       | ns         |
| (CS-SCL time)                        |       | 引脚:   | CCD      |          |     |       |            |
| 片选信号保持时间                             | tCSH  |       | CSR      | 20       |     |       | ns         |
| (CS-SCL time)                        |       |       |          |          |     |       |            |

VDD =1.8 $^{\circ}$ 3.3V ± 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升和下降时间(TR, TF)在15纳秒或更少的规定。

所有的时间,用 20%和 80%作为标准规定的测定。



从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

图 4. 写数据到 ST75256 的时序要求(6800 系列 MPU)

表 7. 读写数据的时序要求

|     |     |    | ~ • |      |     |    |
|-----|-----|----|-----|------|-----|----|
| 项 目 | 符 号 | 名称 | 极限值 |      |     | 单位 |
|     |     |    | MIN | TYPE | MAX |    |

更新日期: 2019-06-24

| 地址保持时间    | A0       | tAH6  | 20  |  | ns |
|-----------|----------|-------|-----|--|----|
| 地址建立时间    |          | tAW6  | 0   |  | ns |
| 系统循环时间    | Е        | tCYC6 | 160 |  | ns |
| 使能"低"脉冲宽度 |          | tEWLW | 70  |  | ns |
| 使能"高"脉冲宽度 |          | tEWHW | 70  |  | ns |
| 写数据建立时间   | DB[7: 0] | tDS6  | 15  |  | ns |
| 写数据保持时间   |          | tDH6  | 15  |  | ns |

VDD = 1.8 $^{\sim}$ 3.3V ± 5%, Ta = -30 $^{\sim}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非 常快,

(TR + TF) ≤ (tcyc6 - tewlw - tewhw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tewlw 指定为重叠的 CSB "H"和"L"。

R/W信号总是"H"



从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

#### 图 5. 写数据到 ST75256 的时序要求 (8080 系列 MPU)

表 8. 读写数据的时序要求

| 项 目    | 符号  | 名称    |     | 单位   |     |    |
|--------|-----|-------|-----|------|-----|----|
|        |     |       | MIN | TYPE | MAX |    |
| 地址保持时间 | A0  | tAH8  | 20  |      |     | ns |
| 地址建立时间 |     | tAW8  | 0   |      |     | ns |
| 系统循环时间 | /WR | tCYC8 | 160 |      |     | ns |



**↓↓↓★**®晶联讯电子 液晶<u>模</u>块 JLX256128G-920-PN 更新日期: 2019-06-24

| 使能"低"脉冲宽度 |    | tCCLW | 70 |  | ns |
|-----------|----|-------|----|--|----|
| 使能"高"脉冲宽度 |    | tCCHW | 70 |  | ns |
| 写数据建立时间   | DB | tDS8  | 15 |  | ns |
| 写数据保持时间   |    | tDH8  | 15 |  | ns |

VDD =1.8 $^{\circ}$ 3.3V ± 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非 常快,

(TR + TF) ≤ (tcyc8 - tcclw - tcchw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tcclw被指定为"L"之间的重叠 CSB 和/ WR 处于"L"级

# 6.3 I<sup>2</sup>C 接口的时序特性(AC 参数)



#### 从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

# 图 6. 写数据到 ST75256 的时序要求(I<sup>2</sup>C 系列 MPU)

表 9. 读写数据的时序要求

| 项 目            | 符号  | 名称       |           | 极限值  |     |     |  |  |
|----------------|-----|----------|-----------|------|-----|-----|--|--|
|                |     |          | MIN       | TYPE | MAX |     |  |  |
| SCL时钟频率        | CSL | FSCLK    |           |      | 400 | kUZ |  |  |
| SCL时钟的低周期      | CSL | TLOW     | 1.3       |      |     | us  |  |  |
| SCL时钟周期        | CSL | THIGH    | 0.6       |      |     | us  |  |  |
| 数据保持时间         | SDA | TSU;Data | 0.1       |      |     | ns  |  |  |
| 数据建立时间         | SDA | THD;Data | 0         |      | 0.9 | us  |  |  |
| SCL, SDA 的上升时间 | SCL | TR       | 20+0. 1Cb |      | 300 | ns  |  |  |

| HH-0(1)( 1)          |     | · • • • • • • • • • • • • • • • • • • • | <b>720 11</b> 1 | <i>→</i> 4/1 F | 4 /y <b>,1• 2</b> 012 | 002. |
|----------------------|-----|-----------------------------------------|-----------------|----------------|-----------------------|------|
| SCL, SDA 下降时间        | SCL | TF                                      | 20+0.1Cb        |                | 300                   | ns   |
| 每个总线为代表的电容<br>性负载    |     | Cb                                      |                 |                | 400                   | pF   |
| 一个重复起始条件设置<br>时间     | SDA | TSU;SUA                                 | 0.6             |                |                       | us   |
| 启动条件的保持时间            | SDA | THD;STA                                 | 0.6             |                |                       | us   |
| 为停止条件建立时间            |     | TSU;STO                                 | 0.6             |                |                       | us   |
| 容许峰值宽度总线             |     | TSW                                     |                 |                | 50                    | ns   |
| 开始和停止条件之间的<br>总线空闲时间 | SCL | TBUF                                    | 0.1             |                |                       | us   |

所有的时间,用 20%和 80%作为标准规定的测定。

这是推荐的操作 I C接口与 VDD1 高于 2.6V。



图 7: 电源启动后复位的时序

#### 表 10: 电源启动后复位的时序要求

| 项 目        | 符号              | 测试条件          |     | 极限值  |     | 单位 |
|------------|-----------------|---------------|-----|------|-----|----|
|            |                 |               | MIN | TYPE | MAX |    |
| 复位时间       | T <sub>RW</sub> |               |     |      | 1   | us |
| 复位保持低电平的时间 | T <sub>RD</sub> | 引脚: RESET, WR | 1   |      |     | ms |



# 7. 指令功能:

7.1 指令表 表 11

| 7.1 16 2 18              | 1     |        |      |      |       |      |              |      |      |        | <b>投</b> [1]               |
|--------------------------|-------|--------|------|------|-------|------|--------------|------|------|--------|----------------------------|
| 指令名称                     |       |        |      |      | 指(    | ~ 在  | 4            |      | ı    |        |                            |
|                          | RS    | R/W    | DB7  | DB6  | DB5   | DB4  | DB3          | DB2  | DB1  | DB0    |                            |
| (1)扩展指令1                 | 0     | 0      | 0    | 0    | 1     | 1    | EXT1         | 0    | 0    | EXT0   | 扩展指令1、2、3、4                |
|                          |       |        | L    |      |       |      |              |      |      |        | 0X30:扩展指令 1                |
| Ext[1:0]=0, 0 (Extension | Comma | ind1/扩 | 展指令  | 1) 0 | X30 ± | 广屏指  | <b>令</b> 1 - | 一定要  | 调用(  | OX30 ス | 十能用扩展指令 1                  |
| (2)显示开/关                 | 0     | 0      | 1    | 0    | 1     | 0    | 1            | 1    | 1    | 0      | 显示开/关:                     |
| (display on/off)         |       |        |      |      |       |      |              |      |      | 1      | OXAE: 关, OXAF: 开           |
| (3)正显/反显                 | 0     | 0      | 1    | 0    | 1     | 0    | 0            | 1    | 1    | 0      | 显示正显/反显                    |
| (Inverse Display)        |       |        |      |      |       |      |              |      |      | 1      | OXA6:正显,正常                 |
|                          |       |        |      |      |       |      |              |      |      |        | OXA7: 反显                   |
| (4)所有点阵开/关               | 0     | 0      | 0    | 0    | 1     | 0    | 0            | 0    | 1    | 0      | 0X22: 所有点阵关                |
| (All Pixel ON/OFF)       |       |        |      |      |       |      |              |      |      | 1      | 0X23: 所有点阵开                |
| (5) 控制液晶屏显示              | 0     | 0      | 1    | 1    | 0     | 0    | 1            | 0    | 1    | 0      | OXCA:显示控制                  |
| (Display Control)        | 1     | 0      | 0    | 0    | 0     | 0    | 0            | CLD  | 0    | 0      | 0X00:设置 CL 驱动频率: CLD=0     |
|                          | 1     | 0      | DT7  | DT6  | DT5   | DT4  | DT3          | DT2  | DT1  | DT0    | 0X7F:点空比: Duty=128         |
|                          | 1     | 0      | 0    | 0    | LF4   | F1   | LF3          | LF2  | LF1  | LF0    | 0X20:帧周期                   |
| (6)省电模式                  | 0     | 0      | 1    | 0    | 0     | 1    | 0            | 1    | 0    | SLP    | 0X94: SLP=0, 退出睡眠模式        |
| (Power save)             |       |        |      |      |       |      |              |      |      |        | <b>0X95</b> : SLP=1,进入睡眠模式 |
| (7)页地址设置                 | 0     | 0      | 0    | 1    | 1     | 1    | 0            | 1    | 0    | 1      | 0X75: 页地址设置                |
| (Set Page Address)       | 1     | 0      | YS7  | YS6  | YS5   | YS4  | YS3          | YS2  | YS1  | YS0    | 0X00: 起始页地址                |
|                          | 1     | 0      | YE7  | YE6  | YE5   | YE4  | YE3          | YE2  | YE2  | YEO    | 0X1F: 结束页地址,每4行为1页         |
| (8)列地址设置                 | 0     | 0      | 0    | 0    | 0     | 1    | 0            | 1    | 0    | 1      | 0X15:列地址设置                 |
| (Set Column Address)     | 1     | 0      | XS7  | XS6  | XS5   | XS4  | XS3          | XS2  | XS1  | XS0    | 0X00: 起始列地址                |
|                          | 1     | 0      | XE7  | XE6  | XE5   | XE4  | XE3          | XE2  | XE1  | XEO    | OXFF: 结束列地址 XE=256         |
| (9)行列扫描 <b>方向</b>        | 0     | 0      | 1    | 0    | 1     | 1    | 1            | 1    | 0    | 0      | OXBC: 行列扫描方向               |
| (Data Scan Direction)    | 1     | 0      | 0    | 0    | 0     | 0    | 0            | MV   | MX   | MY     | 0X00: MX, MY=Normal        |
| (10)写数据到晶液屏              | 0     | 0      | 0    | 1    | 0     | 1    | 1            | 1    | 0    | 0      | OX5C: 写数据                  |
| (Write Data)             | 1     | 0      | D7   | D6   | D5    | D4   | D3           | D2   | D1   | DO     | 8 位显示数据                    |
| (11)读液晶屏显示数据             | 0     | 0      | 0    | 1    | 0     | 1    | 1            | 1    | 0    | 1      | OX5D: 读数据                  |
| (Read Data)              | 1     | 1      | D7   | D6   | D5    | D4   | D3           | D2   | D1   | DO     | 8 位显示数据                    |
| (12)指定区域显示数据             | 0     | 0      | 1    | 0    | 1     | 0    | 1            | 0    | 0    | 0      | OXA8: 指定显示区域               |
| (Partial In)             | 1     | 0      | PTS7 | PTS6 | PTS5  | PTS4 | PTS3         | PTS2 | PTS1 | PTS0   | 起始区域地址: 00h≤PTS≥A1h        |
|                          | 1     | 0      | PTE7 | PTE6 | PTE5  | PTE4 | PTE3         | PTE2 | PTE1 | PTE0   | 结束区域地址: 00h≤PTE≥A1h        |
| (13) 退出指定区域显示            | 0     | 0      | 1    | 0    | 1     | 0    | 1            | 0    | 0    | 1      | OXA9: 退出指定区域显示             |
| (Partial Out)            |       |        |      |      |       |      |              |      |      |        |                            |
| (14)读/改/写                | 0     | 0      | 1    | 1    | 1     | 0    | 0            | 0    | 0    | 0      | OXEO: 进入读/改/写              |
| (15)退出读/改/写              | 0     | 0      | 1    | 1    | 1     | 0    | 1            | 1    | 1    | 0      | OXEE: 退出读/改/写              |
| (16)指定显示滚动区域             | 0     | 0      | 1    | 0    | 1     | 0    | 1            | 0    | 1    | 0      | OXAA: 滚动区域设置               |
| (Scroll Area)            | 1     | 0      | TL7  | TL6  | TL5   | TL4  | TL3          | TL2  | TL1  | TLO    | TL[7:0]:起始区域地址             |
|                          | 1     | 0      | BL7  | BL6  | BL5   | BL4  | BL3          | BL2  | BL1  | BLO    | BL[7:0]:结束区域地址             |
|                          | 1     | 0      | NSL7 | NLS6 | NSL5  | NSL4 | NSL3         | NSL2 | NSL1 | NSL0   | NSL[7:0]:指定行数              |
|                          | 1     | 0      | 0    | 0    | 0     | 0    | 0            | 0    | SCM1 | SCMO   | SCM[1:0]:显示模式              |
| (17)显示初始行设置              | 0     | 0      | 1    | 0    | 1     | 0    | 1            | 0    | 1    | 1      | OXAB: 滚动开始初始行设置            |

更新日期: 2019-06-24

| 前                        | (田)    |       | 71义自日 | 医坏  |      | JLA2      | 3012  | 28G-S | 72U-F   | 11                 | 更别口 <b>别:</b> 2019-06-24    |
|--------------------------|--------|-------|-------|-----|------|-----------|-------|-------|---------|--------------------|-----------------------------|
| (Set Start Line)         | 1      | 0     | SL7   | SL6 | SL5  | SL4       | SL3   | SL2   | SL1     | SL0                | 00h≤SL≥A1h                  |
| (18)开振荡电路                | 0      | 0     | 1     | 1   | 0    | 1         | 0     | 0     | 0       | 1                  | OXD1: 开内部振荡电路               |
| (19)关振荡电路                | 0      | 0     | 1     | 1   | 0    | 1         | 0     | 0     | 1       | 0                  | 0XD2: 关内部振荡电路               |
| (20)电源控制                 | 0      | 0     | 0     | 0   | 1    | 0         | 0     | 0     | 0       | 0                  | 0X20: 电源控制                  |
| (Power Control)          | 1      | 0     | 0     | 0   | 0    | 0         | VB    | 0     | VF      | VR                 | OXOB: VB, VF, VR=1          |
| (21)液晶内部电压设置             | 0      | 0     | 1     | 0   | 0    | 0         | 0     | 0     | 0       | 1                  | 0X81:设置对比度                  |
| (Set Vop)                | 1      | 0     | 0     | 0   | Vop5 | Vop4      | Vop3  | Vop2  | Vop1    | Vop0               | OX26: 微调对比度, 范围 OX00-OXFF   |
|                          | 1      | 0     | 0     | 0   | 0    | 0         | 0     | Vop7  | Vop6    | Vop5               | 0X04:粗调对比度,范围 0X00-0X07     |
|                          |        |       |       |     |      |           |       |       |         |                    | 先微调再粗调,顺序不能变                |
| (22)液晶内部电压控制             | 0      | 0     | 1     | 1   | 0    | 1         | 0     | 1     | 1       | VOL                | OXD6: VOP 每格增加 0.04V        |
| (Vop Control)            |        |       |       |     |      |           |       |       |         |                    | OXD7: VOP 每格减少 0.04V        |
| (23)读寄存器模式               | 0      | 0     | 0     | 1   | 1    | 1         | 1     | 1     | 0       | REG                | <b>OX7C:</b> 读寄存器值 Vop[5:0] |
|                          |        |       |       |     |      |           |       |       |         |                    | OX7D: 读寄存器值 Vop[8:6]        |
| (24)空操作                  | 0      | 0     | 0     | 0   | 1    | 0         | 0     | 1     | 0       | 1                  | <b>0X25:</b> 空操作            |
| (25)读状态 (并行、IIC)         | 0      | 1     | D7    | D6  | D5   | D4        | D3    | D2    | D1      | D0                 | 读状态字节                       |
| (26)读状态(串行接口)            | 0      | 0     | 1     | 1   | 1    | 1         | 1     | 1     | 1       | 0                  | 读状态字节                       |
| (07) W. LT Lt . 1) th LT | 0      | 1     | D7    | D6  | D5   | D4        | D3    | D2    | D1      | DO                 |                             |
| (27)数据格式选择               | 0      | 0     | 0     | 0   | 0    | 0         | 1     | DO    | 0       | 0                  | <b>0X08:</b> 数据 D7→D0       |
| (Data Format Select)     | 0      | 0     |       | ,   | ,    |           | -     | 0     | 0       | 0                  | OXOC: 数据 DO→D7              |
| (28)显示模式                 | 0      | 0     | 1     | 1   | 1    | 1         | 0     | 0     | 0       | 0                  | OXFO: 显示模式设置                |
| (Display Mode)           | 1      | 0     | 0     | 0   | 0    | 1         | 0     | 0     | 0       | DM                 | 0X10: 黑白模式<br>0X11: 4 灰级度模式 |
| (29)ICON设置               | 0      | 0     | 0     | 1   | 1    | 1         | 0     | 1     | 1       | ICON               | OX77: 使能 ICON RAM           |
| (29)ICON反且               | 0      | 0     | U     | 1   | 1    | 1         | U     | 1     | 1       | TCON               | OX76: 禁用 ICON RAM           |
| (30)设置主/从模式              | 0      | 0     | 0     | 1   | 1    | 0         | 1     | 1     | 1       | MS                 | 0X6E: 主模式(使用主模式)            |
| (30) 攻且土/州侯八             | U      |       | U     | 1   | 1    |           | 1     | 1     | 1       | MO                 | OX6F: 从模式                   |
| Ext[1:0]=0, 1 (Extens    | sion ( | omman | d 2)  | OY  | 21 址 | <b>屈地</b> | × 2 — | 完更证   | a 田 O X | '31 <del>小</del> ' | 能用扩展指令 2                    |
| (31)灰度设置                 |        |       |       |     |      |           |       |       |         |                    |                             |
| Set Gray Level           | 1      | 0     | 0     | 0   | 0    | 0         | 0     | 0     | 0       | 0                  | GL[4:0]: 浅灰度级设置             |
| Oct Glay Level           | 1      | 0     | 0     | 0   | 0    | 0         | 0     | 0     | 0       | 0                  | GD[4:0]: 深灰度级设置             |
|                          | 1      | 0     | 0     | 0   | 0    | 0         | 0     | 0     | 0       | 0                  |                             |
|                          | 1      | 0     | 0     | 0   | 0    | GL4       | GL3   | GL2   | GL1     | GLO                |                             |
|                          | 1      | 0     | 0     | 0   | 0    | GL4       | GL3   | GL2   | GL1     | GLO                |                             |
|                          | 1      | 0     | 0     | 0   | 0    | GL4       | GL3   | GL2   | GL1     | GLO                |                             |
|                          | 1      | 0     | 0     | 0   | 0    | 0         | 0     | 0     | 0       | 0                  |                             |
|                          | 1      | 0     | 0     | 0   | 0    | 0         | 0     | 0     | 0       | 0                  |                             |
|                          | 1      | 0     | 0     | 0   | 0    | GD4       | GD3   | GD2   | GD1     | GDO                |                             |
|                          | 1      | 0     | 0     | 0   | 0    | 0         | 0     | 0     | 0       | 0                  |                             |
|                          | 1      | 0     | 0     | 0   | 0    | 0         | 0     | 0     | 0       | 0                  |                             |
|                          | 1      | 0     | 0     | 0   | 0    | GD4       | GD3   | GD2   | GD1     | GDO                |                             |
|                          | 1      | 0     | 0     | 0   | 0    | GD4       | GD3   | GD2   | GD1     | GDO                |                             |
|                          | 1      | 0     | 0     | 0   | 0    | GD4       | GD3   | GD2   | GD1     | GDO                |                             |
|                          | 1      | 0     | 0     | 0   | 0    | 0         | 0     | 0     | 0       | 0                  |                             |
|                          | _      | -     |       |     |      |           | -     |       |         |                    |                             |
|                          | 1      | 0     | 0     | 0   | 0    | 0         | 0     | 0     | 0       | 0                  |                             |
| (32)LCD偏压比设置             |        | 0     | 0     | 0   | 0    | 0         | 0     | 0     | 0       | 0                  | <b>0X32:</b> 偏压比设置          |
| (32)LCD偏压比设置             | 1      |       |       |     |      |           |       | -     | _       |                    | <b>0X32:</b> 偏压比设置          |

|                                 | 自联州         | 电丁 |       | 液晶       |                |                 | ILX2 | 3012                     | .8G-S      | 12U-F                                 | 'IN                 | 更新日期 <b>:</b> 2019-06-24   |
|---------------------------------|-------------|----|-------|----------|----------------|-----------------|------|--------------------------|------------|---------------------------------------|---------------------|----------------------------|
|                                 |             | 1  | 0     | 0        | 0              | 0               | 0    | 0                        | 0          | BE1                                   | BE0                 | 0X01: 升压电容频率               |
|                                 |             | 1  | 0     | 0        | 0              | 0               | 0    | 0                        | BS2        | BS1                                   | BS0                 | <b>0X02:</b> 偏压比,BIAS=1/12 |
| (33)升压倍数                        |             | 0  | 0     | 0        | 1              | 0               | 1    | 0                        | 0          | 0                                     | 1                   | 0X51:内建升压倍数设置              |
| (Booster Level)                 | )           | 1  | 0     | 0        | 1              | 1               | 1    | 1                        | 0          | 1                                     | BST                 | 0X7B:10 倍                  |
| (34)电压驱动选择                      | <b></b>     | 0  | 0     | 0        | 1              | 0               | 0    | 0                        | 0          | 0                                     | DS                  | <b>0X41:</b> LCD 内部升压      |
| (25)白马法丽烩                       | al.         | 0  | 0     | 1        | 1              | 0               | 1    | 0                        | 1          | 1                                     | 1                   | XARD=0: 使能自动读              |
| (35)自动读取控制                      | <u>i</u> l] | 1  | 0     | 1        | 0              | 0               | XARD | 1                        | 1          | 1                                     | 1                   | XARD=0: 不使能自动读             |
|                                 |             | 0  | 0     | 1        | 1              | 1               | 0    | 0                        | 0          | 0                                     | 0                   | 0xe0: OTP 读写               |
| (36)控制OTP读写                     |             | 1  | 0     | 0        | 0              | ER/             | 0    | 0                        | 0          | 0                                     | 0                   | WR/RD=0; 0x00, 使能 OTP 读    |
|                                 |             |    |       |          |                | RD              |      |                          |            |                                       |                     | ER/RD=1; 0x20, 使能 OTP 写    |
| (37)控制OTP出                      |             | 0  | 0     | 1        | 1              | 1               | 0    | 0                        | 0          | 0                                     | 1                   | 控制 OTP 出                   |
| (38)写OTP                        |             | 0  | 0     | 1        | 1              | 1               | 0    | 0                        | 0          | 1                                     | 0                   | 写OTP                       |
| (39)读OTP                        |             | 0  | 0     | 1        | 1              | 1               | 0    | 0                        | 0          | 1                                     | 1                   | 读 OTP                      |
|                                 |             | 0  | 0     | 1        | 1              | 1               | 0    | 0                        | 1          | 0                                     | 0                   | 0xe4: OTP 选择控制             |
| (40)OTP选择控制                     | 钊           | 1  | 0     | 1        | Ctrl           | 0               | 0    | 1                        | 0          | 0                                     | 1                   | Ctrl=1: 0xc9,不使能 OTP       |
|                                 |             |    |       |          |                |                 |      |                          |            |                                       |                     | Ctrl=0: 0x89,使能 OTP        |
| <br>  (41)OTP程序设置               | 署 .         | 0  | 0     | 1        | 1              | 1               | 0    | 0                        | 1          | 0                                     | 1                   | OTP 程序设置                   |
| (11)011 412/1 (2)               | 1,          | 1  | 0     | 0        | 0              | 0               | 0    | 1                        | 1          | 1                                     | 1                   |                            |
|                                 |             | 0  | 0     | 1        | 1              | 1               | 1    | 0                        | 0          | 0                                     | 0                   | 0xf0: 帧速率设置在不同的温度范         |
|                                 |             | 1  | 0     | 0        | 0              | 0               | FRA4 | FRA3                     | FRA2       | FRA1                                  | FRA0                | 围                          |
| (42) 帧速率                        |             | 1  | 0     | 0        | 0              | 0               | FRB4 | FRB3                     | FRB2       | FRB1                                  | FRB0                |                            |
|                                 |             | 1  | 0     | 0        | 0              | 0               | FRC4 | FRC3                     | FRC2       | FRC1                                  | FRC0                |                            |
|                                 |             | 1  | 0     | 0        | 0              | 0               | FRD4 | FRD3                     | FRD2       | FRD1                                  | FRD0                |                            |
|                                 |             | 0  | 0     | 1        | 1              | 1               | 1    | 0                        | 0          | 1                                     | 0                   | 0xf2: 温度范围设置               |
| (43)温度范围                        |             | 1  | 0     | 0        | TA6            | TA5             | TA4  | TA3                      | TA2        | TA1                                   | TA0                 |                            |
|                                 |             | 1  | 0     | 0        | TB6            | TB5             | TB4  | TB3                      | TB2        | TB1                                   | TB0                 |                            |
|                                 |             | 1  | 0     | 0        | TC6            | TC5             | TC4  | TC3                      | TC2        | TC1                                   | TC0                 |                            |
|                                 |             | 0  | 0     | 1        | 1              | 1               | 1    | 0                        | 1          | 0                                     | 0                   | 0xf4: 温度补偿系数设置             |
|                                 |             | 1  | 0     | MT13     | MT12           | MT11            | MT10 | MT03                     | MT02       | MTO1                                  | MTOO                |                            |
|                                 |             | 1  | 0     | MT33     | MT32           | MT31            | MT30 | MT23                     | MT22       | MT21                                  | MT20                |                            |
| ٠, ١, ١٨ محم ١٨ محم ١٨ ١٨ ١٨ ١٨ | NI.         | 1  | 0     | MT53     | MT52           | MT51            | MT50 | MT43                     | MT42       | MT41                                  | MT40                |                            |
| (44)温度梯度补付                      | 层           | 1  | 0     | MT73     | MT72           | MT71            | MT70 | MT63                     | MT62       | MT61                                  | MT60                |                            |
|                                 |             | 1  | 0     | MT93     | MT92           | MT91            | MT90 | MT83                     | MT82       | MT81                                  | MT80                |                            |
|                                 |             | 1  | 0     | MTB3     | MTB2           | MTB1            | MTB0 | MTA3                     | MTA2       | MTA1                                  | MTA0                |                            |
|                                 |             | 1  | 0     | MTD3     | MTD2           | MTD1            | MTD0 | MTC3                     | MTC2       | MTC1                                  | MTC0                |                            |
| T 111 01 4 0 T                  | •           | 1  | 0     | MTF3     | MTF2           | MTF1            | MTF0 | MTE3                     | MTE2       | MTE1                                  | MTEO                | ****                       |
| Ext[1:0]=1,0(Ext                | ension      |    | T     |          |                |                 |      |                          |            | I                                     |                     |                            |
| (45) ID 设置                      |             | 0  | 0     | 1<br>ID7 | 1<br>IDG       | 0               | 1    | 0                        | 1          | 0<br>TD1                              | 1                   | 0xd5: ID 设置                |
| (46) 法 ID                       |             | 0  | 0     | 0        | ID6            | ID5             | ID4  | ID3                      | ID2        | ID1                                   | ID0                 | DID-1. 0v7f 结化             |
| (46)读 ID<br>Ext[1:0]=1,1(Ext    | ongion      | Ů  | Ů     | _        | <b>孙宫</b> .    | 1<br>比众 1       |      |                          | 1<br>Foveo | 1 十                                   | RID<br>FFI ±12° FFF | RID=1: 0x7f,使能             |
| EXI[1:U]=1,1(EXT                | ension.     | 0  | and 4 | ) 0x39   | <b>10 /开</b> : | <b>頂令4</b><br>0 |      | 安 炯 /<br>┃ <sub>()</sub> | 1 0y9a     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1111 成              | でする。<br>0xd6: 使能 OTP       |
|                                 |             | U  |       | 1        | 1              | U               | 1    | U                        | 1          | 1                                     | U                   | EOTP=1;不使能 EOTP,一般不        |
| (47) 使能 OTP                     |             |    |       |          |                |                 |      |                          |            |                                       |                     | 使能 EOTP                    |
|                                 |             |    |       |          |                |                 |      |                          |            |                                       |                     | 便能 EOTP<br>EOTP=0;使能 EOTP  |
|                                 |             |    |       |          |                |                 |      |                          |            |                                       |                     | LUIF-U; 皮能 EUIF            |

请详细参考 IC 资料"ST75256.PDF"。

#### 7.2 点阵与 DD RAM 地址的对应关系

请留意页的定义: PAGE, 与平时所讲的"页"并不是一个意思, 在此表示 8 个行就是一个"页", 一个 256\*128 点阵的屏分为 16 个"页", 从第 0 "页"到第 15 "页"。

DB7--DB0 的排列方向:数据是从下向上排列的。最低位 D0 是在最上面,最高位 D7 是在最下面。每一位(bit)数据对应一个点阵,通常"1"代表点亮该点阵,"0"代表关掉该点阵.如下图所示:



Figure 21 DDRAM Mapping (4-Level Gray Scale Mode)

下图摘自 ST75256 IC 资料,可通过 "ST75256. PDF"之第 37 页获取最佳效果。



#### 7.3 初始化方法

用户所编的显示程序, 开始必须进行初始化, 否则模块无法正常显示, 过程请参考程序

#### 点亮液晶模块的步骤



# 7.4接口方式及程序:

7.4.1 液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:



图 8: 并行接口图

```
液晶模块型号: JLX256128G-920
    并行接口, 6800 时序!!!
    驱动 IC 是:ST75256
    晶联讯电子: 网址 http://www.jlxlcd.cn/
    单片机型号: STC15W4K56S4, 选择使用内部 IRC 时钟, 频率: 11.0592MHZ
#include <STC15F2K60S2.H>
#include <intrins.h>
#include <chinese code.h>
#include <ASCII_CODE_8X16_5X8_VERTICAL.H>
sbit CS=P3^4;
                   /*对应 LCD 的 CS 引脚*/
sbit RST=P3^5;
                     /*对应 LCD 的 RST 引脚*/
sbit RS=P3^3;
                     /*对应 LCD 的 RS 引脚*/
sbit E=P3^0;
                     /*对应 LCD 的 E(RD) 引脚*/
sbit RW=P2^1;
                     /*对应 LCD 的 RW (WR) 引脚。另外 P1.0~1.7 对应 DB0~DB7*/
                     /*按键接口, P2.0 口与 GND 之间接一个按键*/
sbit key=P2^0;
#define uchar unsigned char
#define uint unsigned int
/*延时: 1 毫秒的 i 倍*/
void delay(int i)
    int j, k;
    for(j=0;j<i;j++)
        for (k=0; k<110; k++);
/*延时: 1us 的 i 倍*/
void delay_us(int i)
{
    int j, k;
    for (j=0; j<i; j++)
        for (k=0; k<1; k++);
}
/*等待一个按键, 我的主板是用 P2.0 与 GND 之间接一个按键*/
void waitkey()
 repeat:
    if (key==1) goto repeat;
    else delay(2000);
}
             ==transfer command to LCM=
```

```
void transfer_command_lcd(int datal)
{
     CS=0;
     RS=0;
     E=0;
     delay_us(1);
     RW=0:
     P1=data1;
     E=1;
     delay_us(1);
     CS=1;
     E=0;
}
//----transfer data to LCM-
void transfer_data_lcd(int data1)
     CS=0;
     RS=1;
     E=0;
     delay_us(1);
     RW=0;
     P1=data1;
     E=1:
     delay_us(1);
     CS=1;
     E=0;
void initial_lcd()
{
     RST=0;
     delay(100);
     RST=1;
     delay(100);
     transfer_command_lcd(0x30);
                                   //EXT=0
     transfer_command_lcd(0x94);
                                   //Sleep out
                                   //EXT=1
     transfer_command_lcd(0x31);
     transfer_command_lcd(0xD7);
                                   //Autoread disable
     transfer_data_lcd(0X9F);
                                   //
     transfer_command_lcd(0x32);
                                   //Analog SET
     transfer_data_lcd(0x00);
                                      //OSC Frequency adjustment
     transfer_data_lcd(0x01);
                                      //Frequency on booster capacitors->6KHz
                                      //Bias=1/11
     transfer_data_1cd(0x03);
```

```
transfer_command_1cd(0x20);
                              // Gray Level
transfer_data_lcd(0x01);
transfer_data_lcd(0x03);
transfer_data_lcd(0x05);
transfer_data_lcd(0x07);
transfer_data_lcd(0x09);
transfer_data_lcd(0x0b);
transfer_data_lcd(0x0d);
transfer_data_lcd(0x10);
transfer_data_lcd(0x11);
transfer_data_lcd(0x13);
transfer_data_lcd(0x15);
transfer_data_lcd(0x17);
transfer_data_lcd(0x19);
transfer_data_lcd(0x1b);
transfer_data_lcd(0x1d);
transfer_data_lcd(0x1f);
transfer_command_lcd(0x30);
                              //EXT=0
                              //Page Address setting
transfer_command_lcd(0x75);
                              // XS=0
transfer_data_lcd(0X00);
transfer_data_lcd(0X14);
                              // XE=159 0x28
transfer_command_lcd(0x15);
                              //Clumn Address setting
transfer_data_lcd(0X00);
                              // XS=0
transfer_data_lcd(0Xff);
                              // XE=256
transfer_command_lcd(0xBC);
                               //Data scan direction
transfer_data_lcd(0x00);
                                  //MX. MY=Normal
transfer_data_lcd(0xA6);
                               //Display Control
transfer_command_lcd(0xCA);
transfer_data_lcd(0X00);
                                  //
transfer_data_lcd(0X9F);
                                  //Duty=160
transfer_data_lcd(0X20);
                                  //Nline=off
transfer_command_lcd(0xF0);
                               //Display Mode
transfer_data_lcd(0X10);
                                  //10=Monochrome Mode, 11=4Gray
                               //EV control
transfer_command_lcd(0x81);
transfer_data_lcd(0x36);
                                  //VPR[5-0]
transfer_data_lcd(0x04);
                                  //VPR[8-6]
transfer_command_1cd(0x20);
                               //Power control
transfer_data_lcd(0x0B);
                                  //D0=regulator; D1=follower; D3=booste,
                                                                              on:1 off:0
delay_us(100);
transfer_command_lcd(0xAF);
                               //Display on
```

}

```
/*写 LCD 行列地址: X 为起始的列地址, Y 为起始的行地址, x_total, y_total 分别为列地址及行地址的起点到终点的差值 */
void lcd_address(int x, int y, x_total, y_total)
    x=x-1;
    y=y+3;
    transfer_command_lcd(0x15); //Set Column Address
    transfer_data_lcd(x);
    transfer_data_lcd(x+x_total-1);
    transfer_command_lcd(0x75); //Set Page Address
    transfer_data_lcd(y);
    transfer_data_lcd(y+y_total-1);
    transfer_command_lcd(0x30);
    transfer_command_lcd(0x5c);
/*清屏*/
void clear_screen()
    int i, j;
    lcd_address(1, 1, 256, 17);
    for (i=0; i<17; i++)
         for(j=0;j<256;j++)
             transfer_data_lcd(0x00);
         }
    }
}
/*显示 32*32 点阵的汉字或等同于 32*32 点阵的图像*/
void disp_32x32(int x, int y, uchar *dp)
{
    int i, j;
    lcd_address(x, y, 32, 4);
    for(i=0;i<4;i++)
     {
         for(j=0;j<32;j++)
             transfer_data_lcd(*dp);
             dp++;
```

```
}
}

void disp_256x128(int x, int y, char *dp)
{
    int i, j;
    lcd_address(x, y, 256, 16);
    for(i=0;i<16;i++)
    {
        for(j=0;j<256;j++)
        {
            transfer_data_lcd(*dp);
            dp++;
        }
    }
}</pre>
```

```
void display_string_16x16(uchar column, uchar page, uchar *text)
    uchar i, j, k;
    uint address;
    j=0;
    while(text[j]!= '\0')
     {
         i=0;
         address=1;
         while(Chinese_text_16x16[i]> 0x7e)
              if(Chinese_text_16x16[i] == text[j])
                   if(Chinese\_text\_16x16[i+1] == text[j+1])
                   {
                        address=i*16;
                        break;
                   }
              }
              i +=2;
         }
         if(column>255)
         {
              column=0;
              page+=2;
         }
         if(address !=1)
```

{

```
lcd_address(column, page, 16, 2);
              for (k=0; k<2; k++)
                   for(i=0;i<16;i++)
                   {
                        transfer_data_lcd(Chinese_code_16x16[address]);
                        address++;
                   }
              }
              j +=2;
         }
         else
         {
              for (k=0; k<2; k++)
                   lcd_address(column, page, 16, 2);
                   for(i=0;i<16;i++)
                        transfer_data_lcd(0x00);
              j++;
         column+=16;
    }
void display_string_32x32(uchar column, uchar page, uchar *text)
    uchar i, j, k;
    uint address;
    j=0;
    while(text[j]!= '\0')
         i=0;
         address=1;
         while(Chinese_text_32x32[i]> 0x7e)
         {
              if(Chinese_text_32x32[i] == text[j])
                   if(Chinese\_text\_32x32[i+1] == text[j+1])
                   {
                        address=i*64;
                        break;
                   }
              }
```

JLX256128G-920-PN

```
i+=2;
         if(column>255)
              column=0;
              page+=4;
         if(address !=1)
              lcd_address(column, page, 32, 4);
              for (k=0; k<4; k++)
                   for(i=0;i<32;i++)
                        transfer_data_1cd(Chinese_code_32x32[address]);
                       address++;
                   }
              j +=2;
         }
         else
         {
              for (k=0; k<4; k++)
                   1cd_address(column, page, 32, 4);
                   for(i=0;i<32;i++)
                        transfer_data_lcd(0x00);
                   }
              j++;
         }
         column+=32;
     }
}
//显示 8x16 的点阵的字符串,括号里的参数分别为(页,列,字符串指针)
void display_string_8x16(uint column, uint page, uchar reverse, uchar *text)
{
     uint i=0, j, k, n;
     if(column>248)
     {
         column=1;
         page+=2;
     while(text[i]>0x00)
```

```
JLX256128G-920-PN
if((text[i] \ge 0x20) \&\&(text[i] \le 0x7e))
    j=text[i]-0x20;
    for (n=0; n<2; n++)
        lcd_address(column, page+n, 8, 2); //(column, page+n, 256, 16);
        for(k=0;k<8;k++)
        {
    if(reverse==1)
   transfer_data_lcd(~ascii_table_8x16[j][k+8*n]);//写数据到LCD,每写完1字节的数据后列地址自动加1
                 }
               else
                 {
                     transfer data lcd(ascii table 8x16[j][k+8*n]); //写数据到 LCD, 每写完 1 字节的数据后
        }
```



```
else transfer_data_lcd(0x00);
             i++:
             column+=6;
         else
        i++:
    }
}
void main ()
    P1M1=0x00;
    P1M0=0x00;
                //P1 配置为准双向
    P2M1=0x00;
    P2M0=0x00;
                //P2 配置为准双向
    P3M1=0x00;
    P3M0=0x00; //P3 配置为准双向
    initial_lcd();
                                                        //对液晶模块进行初始化设置
    while(1)
    {
         transfer_command_lcd(0x08);
                                      //数据格式,如果设为 0x0C: 表示选择 LSB (DBO)在顶,如果设为 0x08:表示选择
LSB(DBO)在底
        clear_screen();
                                                        //清屏
        disp_256x128(1, 1, bmp8);
                                           //显示一幅 256*128 点阵的黑白图。
        waitkey();
        clear_screen();
                                                        //清屏
        disp_256x128(1, 1, bmp1);
                                           //显示一幅 256*128 点阵的黑白图。
         waitkey();
        clear_screen();
                                                        //清屏
        disp_32x32(49, 1, jing2);
        disp_32x32((32*1+49), 1, 1ian2);
         disp_32x32((32*2+49), 1, xun2);
        disp_32x32((32*3+49), 1, dian2);
         disp_32x32((32*4+49),1,zi2);
   display_string_16x16(33, 6, "深圳市晶联讯电子有限公司");
   display_string_32x32(49, 13, "晶联讯电子");
         transfer_command_lcd(0x0C);
                                      //数据格式,如果设为 0x0C:表示选择 LSB (DB0)在顶,如果设为 0x08:表示选择
LSB(DB0)在底
        display_string_8x16(73, 9, 1, "JLX256128G-920");
        display_string_5x8(73, 12, 0, "JLX256128G-920");
        waitkey();
    }
}
```

#### 7.5 程序举例:

#### 7.5.1 串行接口

液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:





27

```
晶联讯电子
```

```
if (data1&0x80) lcd sid=1;
    else lcd_sid=0;
    lcd_sclk=1;
    data1<<=1;
1cd_cs1=1;
```

#### 7.6、IIC 接口



图 10. IIC

# 7.6.1、以下为 I2C 接口方式范例程序

与串行方式相比较,只需改变接口顺序以及传送数据、传送命令这两个函数即可:

```
液晶模块型号: JLX256128G-920
    IIC 接口
    驱动 IC 是:ST75256
    版权所有: 晶联讯电子: 网址 http://www.jlxlcd.cn;
#include <reg52.H>
#include <intrins.h>
#include <chinese_code.h>
sbit reset=P1^1;
sbit scl=P1^3;
sbit sda=P1^2;
sbit key=P2^0;
void transfer(int datal)
    int i;
    for (i=0; i<8; i++)
        sc1=0;
        if (data1&0x80) sda=1;
        else sda=0;
        scl=1;
        sc1=0;
        data1=data1<<1;</pre>
       sda=0;
```

```
scl=1;
        sc1=0;
void start_flag()
               /*START FLAG*/
    scl=1;
    sda=1;
               /*START FLAG*/
    sda=0;
               /*START FLAG*/
void stop_flag()
               /*STOP FLAG*/
    scl=1;
               /*STOP FLAG*/
    sda=0;
               /*STOP FLAG*/
    sda=1;
//写命令到液晶显示模块
void transfer_command(uchar com)
    start_flag();
    transfer(0x78);
    transfer(0x80);
    transfer(com);
    stop_flag();
//写数据到液晶显示模块
void transfer_data(uchar dat)
    start_flag();
    transfer (0x78);
   transfer(0xC0);
   transfer(dat);
    stop_flag();
```

# -END-