MAP 555 : Analog filtering, sampling, reconstruction...

18 Septembre 2015

Today

- 1 Analog filters
- 2 Linear systems
- 3 Sampling
- 4 Aliasing
- 5 Practical reconstruction
- 6 Another approach to sampling

Analog filters

The tools we have just developed (convolution and the Fourier transform for functions) are going to be used to study analog filters that are governed by a linear differential equation with constant coefficients,

$$\sum_{k=0}^{q} b_k g^{(k)} = \sum_{j=0}^{p} a_j f^{(j)}, \ a_p \cdot b_q \neq 0,$$

where f is the input and g = A(f) is the output.

■ Assumption $f \in \mathcal{S}(\mathbb{R})$. This case is very special. The input has no reason to be so regular, but we will see that this is a step toward more general cases.

input and output are in $\mathcal{S}(\mathbb{R})$

■ Assume that $f \in \mathcal{S}(\mathbb{R})$ and look for a solution $g \in \mathcal{S}(\mathbb{R})$. If such a g exists, we can take the Fourier transform of both sides of

$$\sum_{k=0}^{q} b_k g^{(k)} = \sum_{j=0}^{p} a_j f^{(j)}, \ a_p \cdot b_q \neq 0, \quad (S)$$

showing that

$$\sum_{k=0}^{q} b_k (2i\pi\xi)^k \hat{g}(\xi) = \sum_{j=0}^{p} a_j (2i\pi\xi)^j \hat{f}(\xi) \quad (F)$$

Consider the two polynomials $P(x) = \sum_{j=0}^{p} a_j x^j$ and $Q(x) = \sum_{k=0}^{q} b_k x^k$ and assume that the rational function P(x)/Q(x) has no poles on the imaginary axis.

input and output are in $\mathcal{S}(\mathbb{R})$

■ Then $P(2i\pi\xi)/Q(2i\pi\xi)$ has no poles for real ξ , and (S) is equivalent to

$$\hat{g}(\xi) = G(\xi)$$
 where $G(\xi) = \frac{P(2\mathrm{i}\pi\xi)}{Q(2\mathrm{i}\pi\xi)}\hat{f}(\xi)$

Note that $G \in \mathcal{S}(\mathbb{R})$.

- This equality completely determines g in $\mathcal{S}(\mathbb{R})$, if it exists, and thus proves the uniqueness of a solution of (S) in $\mathcal{S}(\mathbb{R})$.
- $g = \overline{\mathcal{F}}(G)$ is a solution of (S) in $\mathcal{S}(\mathbb{R})$. The differential equation has a unique solution without initial conditions being specified. This is because we require the solution g to be in S, which means that g and all of its derivatives vanish at infinity.

Convolution

- Idea : express the solution as a convolution.
- **Assumption** : $\deg P < \deg Q$. Define the transfer function

$$H(\xi) = \frac{P(2i\pi\xi)}{Q(2i\pi\xi)}$$

is in $L_2(\mathbb{R}) \cap L_\infty(\mathbb{R})$.

 By decomposing this rational function into partial fractions, the impulse response, defined as the inverse Fourier transform of the transfer function

$$h = \overline{\mathcal{F}}(H)$$

is bounded, rapidly decreasing, continuous except perhaps at the origin.

Simple poles

- The poles of P/Q are assumed to lie off the imaginary axis. There are two cases to consider : P/Q has only simple poles or P/Q has multiple poles.
- Assume first that P(x)/Q(x) has only simple poles. In this case, H can be decomposed in the form

$$H(\xi) = \sum_{k=0}^{q} \frac{\beta_k}{2i\pi\xi - z_k}$$

where z_1, \ldots, z_a are the poles.

Simple poles

■ For $a \in \mathbb{C}$, $\operatorname{Re}(a) > 0$, $\epsilon = \pm 1$,

$$e^{-\epsilon ax}u(\epsilon x) \stackrel{\mathcal{F}}{\mapsto} \frac{\epsilon}{(\epsilon a + 2i\pi \xi)}$$

We conclude that

$$h(t) = \left(\sum_{k \in K-} \beta_k e^{z_k t}\right) u(t) - \left(\sum_{k \in K_+} \beta_k e^{z_k t}\right) u(-t).$$

where $t \mapsto u(t)$ is the Heaviside function and

$$K_{-} = \{k \in \{1, 2, \dots, q\} | \operatorname{Re}(z_k) < 0\},\$$

 $K_{+} = \{k \in \{1, 2, \dots, q\} | \operatorname{Re}(z_k) > 0\}.$

Multiple poles

- Let z_1, z_2, \ldots, z_l the poles and let m_1, m_2, \ldots, m_l be their multiplicities.
- Then we can write H as

$$H(\xi) = \sum_{k=1}^{I} \sum_{m=1}^{m_k} \frac{\beta_{k,m}}{(2i\pi\xi - z_k)^m}.$$

■ The impulse response is given by

$$h(t) = \left(\sum_{k \in K-} P_k(t) e^{z_k t}\right) u(t) - \left(\sum_{k \in K_+} P_k(t) e^{z_k t}\right) u(-t)$$

where

$$P_k(t) = \sum_{m=1}^{m_k} \beta_{k,m} \frac{t^{m-1}}{(m-1)!}.$$

Convolution

■ Since $h = \overline{\mathcal{F}}(H)$ is bounded, rapidly decreasing, continuous except perhaps at the origin (F) may be rewritten as

$$\hat{g} = \hat{h} \cdot \hat{f}$$
.

■ Since $\hat{h} \in L_2(\mathbb{R})$ and $\hat{f} \in \mathcal{S}(\mathbb{R}) \subset L_1(\mathbb{R})$, we have $h * f(t) = \overline{\mathcal{F}}\left(\hat{h}\hat{f}\right)$ implies that

$$g = h * f$$

Generalized solutions

The formula g = h * f, obtained when f is in S, makes sense in the following more general cases.

1 If f is in $L_1(\mathbb{R})$, then g is in $L_1(\mathbb{R}) \cap L_2(\mathbb{R}) \cap L_\infty(\mathbb{R})$ and

$$\|g\|_1 \le \|h\|_1 \|f\|_1,$$

 $\|g\|_2 \le \|h\|_2 \|f\|_1,$
 $\|g\|_{\infty} \le \|h\|_{\infty} \|f\|_1.$

2 If f is in $L_2(\mathbb{R})$, then g is in $L_2(\mathbb{R})$, it is bounded and continuous, it tends to 0 at infinity, and

$$||g||_2 \le ||h||_1 ||f||_2,$$

 $||g||_\infty \le ||h||_2 ||f||_2.$

 \blacksquare If f is in $L_{\infty}(\mathbb{R})$, then g is also bounded and

$$\|g\|_{\infty} \leq \|h\|_1 \|f\|_{\infty^* \square } + \mathbb{P} + \mathbb{P}$$

Purely imaginary poles

What we have done so far does not allow us to treat an equation like

$$g'' + \omega^2 g = f,$$

where $P(x)/Q(x)=1/(x^2+\omega^2)$ has two poles are on the imaginary axis.

- In this case *h* is a sinusoid and the Fourier transform of *H* (when *H* is considered to be a function) is no longer defined.
- This problem required the use of the theory of distributions but this degree of sophistication goes far beyond this course.

What happens in $\deg P = \deg Q$

Take for example the equation

$$g'' - \omega^2 g = f''.$$

Again, what we have done so far does not apply. Nevertheless, we can still manage to solve the equation. Changing the unknown function to $g_0 = g - f$ lowers the order of the right-hand side :

$$g_0'' - \omega^2 g_0 = \omega^2 f.$$

Then we have $g_0 = h_0 * f$ and $g = f + h_0 * f$. This is no longer a convolution but it will serve the same purpose.

X the set of input signals and Y the set of output signals. Assumptions

- **11** X is a vector spaces (over $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$).
- **2** X is closed under translation.

Definition (Linearity)

The system $A: X \to Y$ is said to be linear if for all $f_1, f_2 \in X$ and $a_1, a_2 \in \mathbb{K}$

$$A(a_1f_1+a_2f_2)=a_1A(f_1)+a_2A(f_2)$$
.

■ A system A defined A(f) = h * f is linear (assuming that h and f are in proper functions spaces so that h * f is well defined).

X the set of input signals and Y the set of output signals. Assumptions

- **1** X is a vector spaces (over $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$).
- 2 X is closed under translation.

Definition (Linearity)

The system $A: X \to Y$ is said to be linear if for all $f_1, f_2 \in X$ and $a_1, a_2 \in \mathbb{K}$

$$A(a_1f_1+a_2f_2)=a_1A(f_1)+a_2A(f_2)$$
.

- A system A defined A(f) = h * f is linear (assuming that h and f are in proper functions spaces so that h * f is well defined).
 - For example, if $h \in L_1(\mathbb{R})$ then A(f) = h * f is a linear system from $X = L_2(\mathbb{R})$ onto $Y = L_2(\mathbb{R})$.

Stability

Definition

A system $A: X \to Y$ is said to be stable if there exists an M > 0 such that $||Af||_{\infty} \le M||f||_{\infty}$ for all $f \in L_{\infty}(\mathbb{R}) \cap X$.

- **1** The generalized filter A is stable when $\deg P < \deg Q$.
- 2 It is still stable if $\deg P = \deg Q...$
- 3 Set $X = Y = L_2(\mathbb{R})$ and $h \in L_1\mathbb{R}$. Then A(f) = h * f, with $f \in L_2(\mathbb{R})$ is stable.

Causality

Definition

A system $A: X \to Y$ is causal if the equality of any two input signals up to time $t=t_0$ implies the equality of the two output signals at least to time t_0 ,

$$f_1(t) = f_2(t)$$
 for $t \le t_0 \Rightarrow Af_1(t) = Af_2(t)$ for $t < t_0$

This property is completely natural for a physical system in which the variable is time. It says that the response at time t depends only on what has happened before t.

Causality

Theorem

If A(f) = h * f is a defined with a convolution, then the system is causal if the impulse response vanishes for all $x \le 0$.

- The system A(f) = h * f with $h(x) = u(x)e^{-ax}$ a > 0 is causal (since $h \in L_1(\mathbb{R})$, we may take here $X = Y = L_2(\mathbb{R})$). The support of the impulse reponse is \mathbb{R}^+ (it is infinite).
- more generally, if $\deg P < \deg Q$, the generalized filter A: A(f) = h * f is causal if $\operatorname{supp}(h) \subset [0, \infty[$ or equivalently if the poles of P/Q are located to the left of the imaginary axis.

Invariance

Define by τ_a the delay operator : $\tau_a f(x) = f(x-a)$ for all $x \in \mathbb{R}$.

Definition

A system A is invariant if a translation of time in the input leads to the same translation in the output, or equivalently if A and τ_a commute for all $a \in \mathbb{R}$:

$$A \circ \tau_a = \tau_a \circ A$$

• if $X = Y = L_2(\mathbb{R})$, $h \in L_1(\mathbb{R})$, then A(f) = h * f is invariant.

Linear filter

Definition

A mapping $A: X \rightarrow Y$ is a linear filter if

- 1 A is linear
- 2 A is invariant.
 - $X = Y = L_2(\mathbb{R}), h \in L_1(\mathbb{R}), A(f) = h * f \text{ is a linear filter.}$
 - If $X \subset C^1(\mathbb{R})$ is the set of functions f satisfying $f(x) = \int \hat{f}(\xi) e^{+2i\pi\xi x} d\xi$ for all $x \in X$ for some $(1 + ||\xi|)\hat{f} \in L_1(\mathbb{R})$. The mapping A(f) = f' is a linear filter. Its transfer function is $H(\xi) = 2i\pi\xi$ but this is not a convolution.

A first order filter

- Consider the first order system RCg' + g = f.
- This is rational system with P(x) = 1 and Q(x) = 1 + RC(x) $(\deg(P) < \deg(Q))$
- The transfer function is

$$H(\xi) = \frac{P(2i\pi\xi)}{Q(2i\pi\xi)} = \frac{1}{1 + 2iRC\pi\xi}$$

There is a single pole at $z_1 = -1/RC$. The system is low pass.

■ The impulse response is

$$h(t) = \frac{1}{RC} e^{-t/RC} u(t) .$$

This is a convolutive system, which is causal and stable, which may be defined on $X = L_2(\mathbb{R})$ by

$$g = A(f) = \int h(s)f(t-s)ds$$
MAP 555: Analog filtering, sampling, reconstruction...

Periodic sampling?

T the sampling period. f[n] = f(nT) are the samples of the signals. The sampling frequency 1/T.

Band Limited functions

Definition (Band Limited function)

A function $f \in L_2(\mathbb{R})$ is said to be band limited if there exists $B < \infty$ such that : $\mathcal{F}f(\xi) = 0$ pour $\xi \notin [-B, +B]$. We denote $\mathrm{BL}(B)$ the subspace of $f \in L_2(\mathbb{R})$ of functions satisfying $\mathcal{F}f(\xi) = 0$ for (almost) all $\xi \notin [-B, +B]$.

Band-Limited functions

- The Fourier transform defines an isomporphism on $L_2(\mathbb{R})$. The inverse is $\overline{\mathcal{F}}$.
- Let $f \in BL(B)$. Since $\mathcal{F}f$ is compactly supported and belongs $L_2(\mathbb{R})$, $\mathcal{F}f \in L_1(\mathbb{R})$.
- Therefore $x \mapsto \overline{\mathcal{F}} \circ \mathcal{F} f(x)$ is continuous and since $\overline{\mathcal{F}} \circ \mathcal{F} f = f$ a.e., every function in $\mathrm{BL}(B)$ has a continuous version (and even a C^{∞} version).

Let $T \leq 1/(2B)$ be the sampling period and 1/T be the sampling frequency. Consider the periodic function $\xi \to \mathcal{F}f(\xi)$ given by :

$$F_T(\xi) = \sum_{n \in \mathbb{Z}} [\mathcal{F}f] \left(\xi - \frac{n}{T}\right) .$$

Let $T \leq 1/(2B)$ be the sampling period and 1/T be the sampling frequency. Consider the periodic function $\xi \to \mathcal{F}f(\xi)$ given by :

$$F_T(\xi) = \sum_{n \in \mathbb{Z}} [\mathcal{F}f] \left(\xi - \frac{n}{T}\right) .$$

 $\xi \mapsto F_T(\xi)$ is periodic with period 1/T

Let $T \leq 1/(2B)$ be the sampling period and 1/T be the sampling frequency. Consider the periodic function $\xi \to \mathcal{F}f(\xi)$ given by :

$$F_T(\xi) = \sum_{n \in \mathbb{Z}} [\mathcal{F}f] \left(\xi - \frac{n}{T}\right) .$$

The function $F_T \in L_2[-1/2T, 1/2T]$ can be expanded as a series function

$$F_T(\xi) = \sum_{n \in \mathbb{Z}} c_n(F_T) e^{-i2\pi \xi n T},$$

where $\{c_k(F_T)\}\$, the Fourier coefficients are given by

$$c_k(F_T) = T \int_{-1/(2T)}^{1/(2T)} F_T(\xi) e^{+i2\pi \xi kT} d\xi$$
.

The identity

$$F_T(\xi) = \sum_{n \in \mathbb{Z}} c_n(F_T) \mathrm{e}^{-\mathrm{i}2\pi \xi n T},$$

should be understood as a convergence of the partial sums

$$F_{N,T}(\xi) = \sum_{k=-N}^{N} c_N(F_T) e^{-i2\pi \xi nT} ,$$

toward F_T in the topology induced by the norm $\|\cdot\|_2$ in $L_2([-1/(2T),1/(2T)])$:

$$\lim_{N\to\infty} \int_{-1/(2T)}^{1/(2T)} |F_T(\xi) - F_{N,T}(\xi)|^2 \mathrm{d}\xi = 0.$$

The identity

$$F_T(\xi) = \sum_{n \in \mathbb{Z}} c_n(F_T) \mathrm{e}^{-\mathrm{i}2\pi \xi n T},$$

should be understood as a convergence of the partial sums

$$F_{N,T}(\xi) = \sum_{k=-N}^{N} c_N(F_T) \mathrm{e}^{-\mathrm{i}2\pi\xi nT} \;,$$

toward F_T in the topology induced by the norm $\|\cdot\|_2$ in $L_2([-1/(2T),1/(2T)])$:

$$\lim_{N \to \infty} \int_{-1/(2T)}^{1/(2T)} |F_T(\xi) - F_{N,T}(\xi)|^2 d\xi = 0.$$

The Parseval identity implies that $\sum_{n \in \mathbb{Z}} |c_n(F_T)|^2 \leq \infty$.

A key result

■ Since for all $T \le 1/(2B)$, $[-B, +B] \subset [-1/(2T), 1/(2T)]$, then for all $\xi \in [-1/(2T), 1/(2T)]$,

$$F_T(\xi) = \mathcal{F}f(\xi)$$

■ Therefore, the Fourier coefficients $c_k(F_T)$ are given by :

$$c_k(F_T) = T \int_{-B}^{B} \mathcal{F}f(\xi) \mathrm{e}^{+\mathrm{i}2\pi\xi kT} \mathrm{d}\xi = Tf(kT).$$

The Poisson Formula: Key result

If $f \in \operatorname{BL}(B)$ then the discrete-time Fourier transform (DTFT) of the sequence of samples $\{f(nT), n \in \mathbb{Z}\}$

$$T \sum_{n \in \mathbb{Z}} f(nT) e^{-i2\pi \xi nT}$$

is equal to the Fourier transform of the function f periodized with a period 1/T, a relation called the Poisson formula

$$\sum_{n\in\mathbb{Z}} \mathcal{F} f\left(\xi - \frac{n}{T}\right) = T \sum_{n\in\mathbb{Z}} f(nT) e^{-i2\pi \xi nT} ,$$

The Poisson Formula: Key result

If $f \in \operatorname{BL}(B)$ then the discrete-time Fourier transform (DTFT) of the sequence of samples $\{f(nT), n \in \mathbb{Z}\}$

$$T \sum_{n \in \mathbb{Z}} f(nT) e^{-i2\pi \xi nT}$$

is equal to the Fourier transform of the function f periodized with a period 1/T, a relation called the Poisson formula

$$\sum_{n\in\mathbb{Z}} \mathcal{F}f\left(\xi - \frac{n}{T}\right) = T \sum_{n\in\mathbb{Z}} f(nT) e^{-i2\pi\xi nT} ,$$

An amazing result : the DTFT is computable only from the knowledge of the samples $\{x(nT), n \in \mathbb{Z}\}$, whereas the knowledge of $\mathcal{F}f$ requires to evaluate the function at all time points

The Poisson Formula: Key result

If $f \in \mathrm{BL}(B)$ then the discrete-time Fourier transform (DTFT) of the sequence of samples $\{f(nT), n \in \mathbb{Z}\}$

$$T\sum_{n\in\mathbb{Z}}f(nT)e^{-i2\pi\xi nT}$$

is equal to the Fourier transform of the function f periodized with a period 1/T, a relation called the Poisson formula

$$\sum_{n\in\mathbb{Z}} \mathcal{F}f\left(\xi - \frac{n}{T}\right) = T \sum_{n\in\mathbb{Z}} f(nT) e^{-i2\pi\xi nT} ,$$

the DTFT is periodic with period 1/T, which is the sampling frequency. Because of this periodicity, one may restrict the frequency interval to just one-period, [-1/2T, 1/2T]

Interpolation formula

Multiply the Poisson formula

$$\sum_{n\in\mathbb{Z}} \mathcal{F}f\left(\xi - \frac{n}{T}\right) = T \sum_{n\in\mathbb{Z}} f(nT) e^{-i2\pi\xi nT} ,$$

by the indicator function $\mathbb{1}_{[-1/(2T),1/(2T)]}(\xi)$

Use the identity

$$\mathbb{1}_{[-1/(2T),1/(2T)]}(\xi)\mathcal{F}f(\xi) = \mathbb{1}_{[-1/(2T),1/(2T)]}(\xi)F_{\mathcal{T}}(\xi)$$

Interpolation formula

Multiply the Poisson formula

$$\sum_{n\in\mathbb{Z}} \mathcal{F}f\left(\xi - \frac{n}{T}\right) = T \sum_{n\in\mathbb{Z}} f(nT) e^{-i2\pi\xi nT} ,$$

by the indicator function $\mathbb{1}_{[-1/(2T),1/(2T)]}(\xi)$

Use the identity

$$\mathbb{1}_{[-1/(2T),1/(2T)]}(\xi)\mathcal{F}f(\xi) = \mathbb{1}_{[-1/(2T),1/(2T)]}(\xi)\mathcal{F}_{\mathcal{T}}(\xi)$$

Interpolation formula

For all $\xi \in [-1/2T, +1/2T]$,

$$\mathcal{F}f(\xi) = T \sum_{n \in \mathbb{Z}} f(nT) \mathbb{1}_{[-1/(2T), 1/(2T)]}(\xi) e^{-i2\pi \xi nT}$$
.

which should be understood as

$$\lim_{N\to\infty}\int\left|\mathcal{F}f(\xi)-T\sum_{n=-N}^Nf(nT)\mathbb{1}_{\left[-\frac{1}{2T},\frac{1}{2T}\right]}(\xi)\mathrm{e}^{-\mathrm{i}2\pi\xi nT}\right|^2\mathrm{d}\xi=0\;.$$

Since $\overline{\mathcal{F}}$ is an isometry and $\overline{\mathcal{F}}\mathcal{F}f=f$ a.e.

$$\lim_{N\to\infty} \int \left| f(t) - T \sum_{n=-N}^N f(nT) \overline{\mathcal{F}} \left(\mathbb{1}_{\left[-\frac{1}{2T},\frac{1}{2T}\right]}(\xi) \mathrm{e}^{+\mathrm{i} 2\pi \xi n T} \right)(t) \right|^2 \mathrm{d}t = 0 \; .$$

4日 > 4周 > 4 至 > 4 至 > 至

Interpolation formula

Lemma

$$\overline{\mathcal{F}}\left(\xi \to \mathbb{1}_{[-1/(2T),1/(2T)]}(\xi)e^{+i2\pi\xi nT}\right)(x) = \frac{\sin\left(\frac{\pi}{T}(x-nT)\right)}{\pi(x-nT)}$$

Interpolation formula

Theorem (Nyquist theorem)

If $f \in \operatorname{BL}(B)$ and $T \leq 1/2B$ then

$$f(x) =_{L_2(\mathbb{R})} \sum_{n \in \mathbb{Z}} f(nT) s_T(x - nT) ,$$

where s_T , is the cardinal-sine function

$$s_T(x) = \frac{\sin(\pi x/T)}{\pi x/T}$$
.

If in addition,

$$\sum_{k\in\mathbb{Z}}|f(kT)|<\infty,$$

the series converges uniformly to f.

What happens if the Nyquist condition is violated?

- Assume that $f \in \operatorname{BL}(B)$ but $T \geq 1/(2B)$.
- It still makes sense to consider the periodization of the Fourier transform

$$F_T(\xi) = \sum_{n \in \mathbb{Z}} [\mathcal{F}f] \left(\xi - \frac{n}{T}\right) .$$

but now the different spectral replicas now overlap, a phenomenon called aliasing.

What happens if the Nyquist condition is violated?

- Assume that $f \in BL(B)$ but $T \ge 1/(2B)$.
- It still makes sense to consider the periodization of the Fourier transform

$$F_T(\xi) = \sum_{n \in \mathbb{Z}} [\mathcal{F}f] \left(\xi - \frac{n}{T}\right) .$$

but now the different spectral replicas now overlap, a phenomenon called aliasing.

Aliasing

- The periodized spectrum $\xi \mapsto F_T(\xi)$ still belongs to $L^2(\mathbb{R})$.
- We may still develop this function as a Fourier series :

$$F_T(\xi) = \sum_{n \in \mathbb{Z}} c_k(T) e^{-i2\pi \xi nT},$$

where $c_k(T)$ are the Fourier coefficients.

Key result! We still have

$$c_k(T) = Tf(kT)$$

the Fourier coefficients of the periodized spectrum are the samples of the functions!

Aliasing...

The Fourier transform of the Nyquist interpolation

$$\tilde{f}(x) = \sum_{n \in \mathbb{Z}} f(nT) s_T(x - nT) ,$$

is the $\mathrm{BL}(1/2T)$ function whose Fourier transform is equal to

$$\mathbb{1}_{[-1/2T,1/2T]}(\xi)\sum_{n=-\infty}^{\infty}\mathcal{F}f(\xi-n/T)$$

Aliasing...

The Fourier transform of the Nyquist interpolation

$$\tilde{f}(x) = \sum_{n \in \mathbb{Z}} f(nT) s_T(x - nT) ,$$

is the $\mathrm{BL}(1/2T)$ function whose Fourier transform is equal to

$$\mathbb{1}_{[-1/2T,1/2T]}(\xi)\sum_{n=-\infty}^{\infty}\mathcal{F}f(\xi-n/T)$$

Beware! It is essential to use a lowpass antialiasing prefilter to bandlimit the input signal to within the Nyquist interval so that the resulting replicas after sampling will not overlap

An illustration

- This example illustrates the effect of sampling a non bandlimited signal and the degree to which the portion of the Fourier transform (spectrum) within the Nyquist interval approximates the original spectrum.
- Consider the exponentially decaying signal and its spectrum

$$f(x) = e^{-ax}u(x)$$
, $\mathcal{F}f(\xi) = \frac{1}{a + 2\pi i \xi}$.

■ The discrete time Fourier transform of the sampled signal can be obtained in two different ways...

Calculation of the DFT

$$\hat{F}_T(\xi) = T \sum_{n=-\infty}^{\infty} f(nT) e^{-i2\pi n\xi T}$$

$$= T \sum_{n=0}^{\infty} e^{-anT} e^{-i2\pi n\xi T} = \frac{T}{1 - e^{-aT} e^{-i2\pi \xi T}}$$

On the other hand, by the Poisson formula (which is still valid) the DTFT is the equal to the periodized spectrum

$$\hat{F}_{T}(\xi) = \sum_{m=-\infty}^{\infty} \frac{1}{a + 2\pi i(\xi - n\xi_s)}$$

where $\xi_s=1/T$ is the sampling frequency.

A not so-obvious identity

 Combining the two expressions of the DTFT, we obtain the not-so-obvious identity

$$\sum_{m=-\infty}^{\infty} \frac{1}{a + 2\pi i (\xi - n\xi_s)} = \frac{T}{1 - e^{-aT} e^{-i2\pi\xi T}}$$

■ A sanity check... When $T \to 0$ (the sampling frequency goes to ∞), then

$$\frac{T}{1 - e^{-aT}e^{-i2\pi\xi T}} \to \frac{1}{a + 2\pi i\xi}$$

Aliasing: the exponential case

Ideal antialiasing filter

FIGURE – An ideal analog lowpass prefilter removes all the frequency components of the analog input that lie beyond the Nyquist frequency $\xi_s/2$

Practical antialiasing filter

- Antialiasing filter used in practice are not ideal and do not completely remove all the frequency components outside the Nyquist interval. Thus, some aliasing will always take place.
- By proper design, the prefilters may be made as good as desired and the amount of aliasing reduced to tolerable levels.
- A practical anti-aliasing filter is a low pass filter with passband usually taken to be the frequency-range of interest for the application at hand and must be entirely within the Nyquist interval.

Practical antialiasing filter

FIGURE – Practical antialiasing lowpass filter

Practical antialiasing filter

- The prefilter must be essentially flat over his passband in order not to distort the frequencies of interest.
- Even if it is not completely flat over the passband, it can be equalized digitally at a subsequent processing stage by a digital filter.
- The stopband frequency ξ_{stop} of the prefilter and the minimum stop band attenuation must be chosen appropriately to minimize aliasing effects.
- The stop band frequency should be chosen so that

$$\xi_{\text{stop}} = \xi_{\text{s}} - \xi_{\text{pass}}$$
.

Analog reconstructors

- The ideal interpolation is not physically achievable (the support of s_T is the whole real-line and is non causal).
- Any reasonable way of filling the gaps between samples will result in some sort of reconstruction.
- A typical reconstruction formula is

$$f_a(x) = \sum_{n=-\infty}^{\infty} f(nT)h_T(x - nT)$$

where h_T has a finite support.

■ The simplest reconstruction formula is the sample and hold or staircase in which $h_T(x) = \mathbb{1}_{[0,T]}(x)$.

Staircase reconstructor

Practical reconstructor

■ Assume that $h_T \in L_1(\mathbb{R}) \times L_2(\mathbb{R})$. Then

$$\mathcal{F}h_{\mathcal{T}}(\xi) = \hat{h}_{\mathcal{T}}(\xi) = \int_{-\infty}^{\infty} h_{\mathcal{T}}(x) e^{-i2\pi\xi x} dx$$

Note that $\hat{h}_T \in L_2(\mathbb{R}) \cap L_\infty(\mathbb{R})$.

■ For any $N \in \mathbb{N}$,

$$\overline{\mathcal{F}}\left(\sum_{n=-N}^{N} f(nT)h_{T}(x-nT)\right)(\xi) = \hat{h}_{T}(\xi)\sum_{n=-N}^{N} f(nT)e^{-i2\pi\xi nT}$$
$$= T^{-1}\hat{h}_{T}(\xi)F_{N,T}(\xi)$$

Practical reconstruction

- $\lim_{N\to\infty} ||F_{N,T} F_T||_2 = 0$ where F_T is the T-periodized spectrum.
- Therefore, in $L_2(\mathbb{R})$,

$$\overline{\mathcal{F}}\left(\sum_{n=-N}^{N} f(nT)h_{T}(x-nT)\right)(\xi)$$

$$= T^{-1}\hat{h}_{T}(\xi) \sum_{m=-\infty}^{\infty} \mathcal{F}f(\xi-m/T)$$

Practical reconstruction

- $\lim_{N\to\infty} ||F_{N,T} F_T||_2 = 0$ where F_T is the T-periodized spectrum.
- Therefore, in $L_2(\mathbb{R})$,

$$\overline{\mathcal{F}}\left(\sum_{n=-N}^{N} f(nT)h_{T}(x-nT)\right)(\xi)$$

$$= T^{-1}\hat{h}_{T}(\xi) \sum_{m=-\infty}^{\infty} \mathcal{F}f(\xi-m/T)$$

 Practical interpolators do not completely eliminate the replicated spectral images as the ideal reconstructor does.

Staircase reconstruction

For the staircase reconstructor, $h_T(x) = \mathbb{1}_{[0,T]}(x)$ and

$$\hat{h}_T(\xi) = T \frac{\sin(\pi \xi T)}{\pi \xi T} e^{-i\pi \xi T}$$
.

FIGURE – The staircase reconstructor does not completely eliminate the replicated spectral images as the ideal reconstructor does

Anti-image postfilters

- The surviving spectral replicas may be removed by an additional lowpass filter, called the anti-image postfilter, whose cutoff frequency in the Nyquist frequency $\xi_s/2$.
- In the frequency domain, the combined effect of the staircase reconstructor followed by the anti-image postfilter is to remove the spectral replica as much as possible.
- The reason for using this two-stage reconstruction procedure is the simplicity pf implementation of the staircase reconstruction. A typical D/A converter will act as such a reconstructor.

Anti-image postfilters

Why?

- Sampling theorem can be derived from another perspective, which is in some sense broader.
- It acknowledges the fact that a function can be seen as a superposition if complex exponential (think! this is the meaning of the Fourier synthesis formula...)
- The approach starts by deriving the sampling theorem first for complex exponential, and then to extends the result to a (much) wider class of signals.

Problem

- Consider the function $s_{\xi_0}(x) = e^{2i\pi\xi_0 x}$, $\xi_0 \in \mathbb{R}$. This function is neither in $L_1(\mathbb{R})$ or in $L_2(\mathbb{R})$, and therefore does not fit into the framework presented earlier.
- A natural question is the following : under which conditions on the sampling period T may we retrieve s(x) from the its samples $\{s(nT), n \in \mathbb{Z}\}$.
- Since $s_{\xi_0}(nT) = e^{2i\pi\xi_0 nT}$, we have

$$s_{\xi_0}(nT) = s_{\xi_0 + k/T}(nT)$$
, for all $k, n \in \mathbb{Z}$

■ If $\xi_0 \in]-1/2T, 1/2T[$ we can retrieve s_{ξ_0} from its samples without error!

A sampling theorem for complex exponential

Theorem

For all $x \in \mathbb{R}$ and $\xi_0 \in]-1/2T, 1/2T[$,

$$e^{2i\pi\xi_0x} = \sum_{n\in\mathbb{Z}} e^{2i\pi\xi_0nT} s_T(x-nT) \quad s_T(x) = \frac{\sin(\pi x/T)}{\pi x/T}$$

where the series in the RHS converges uniformly on $[-B, B] \subset]-1/2T, 1/2T[$

If f is a powde
$$f(y) = \sum_{k \in Z} c_k(f) e^{-\frac{1}{2}\pi R} \frac{R}{e} dy = c_k(f) = \frac{1}{2} \int_{-\frac{1}{2}\pi}^{\frac{1}{2}} f(y) e^{-\frac{1}{2}\pi R} \frac{R}{e} dy$$
We upply this result to $g_{x}(g) = e^{-\frac{1}{2}\pi R} \frac{R}{e} + \frac{1}{2\pi} \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} f(y) e^{-\frac{1}{2}\pi R} \frac{R}{e} dy$
Then, $g_{x}(g) = \sum_{k \in Z} c_{k}(g_{x}) e^{-\frac{1}{2}\pi R} f(g) e^{-\frac{1}{2}\pi R} \frac{R}{e} f(g)$

Sampling a decomposable signal

■ If $x \mapsto f(x)$ is a finite superposition of complex sinewaves,

$$f(x) = \sum_{k=1}^{M} \gamma_k e^{2i\nu_k x}$$

where $\{\gamma_k\}_{k=1}^M\in\mathbb{C}$ and $\{\nu_k\}_{k=1}^M\subset]-1/2T,1/2T[$, then the Nyquist formula holds

$$f(x) = \sum_{k=-\infty}^{\infty} f(kT) s_T(x - kT)$$

This can be extended to any function f which can be written as

$$f(x) = \int_{-B}^{B} e^{2i\pi\xi x} \mu(\mathrm{d}x)$$

where μ is a measure on [-B, B] as soon as B < 1/2T