

8. Elektronikarako sarrera

http://zthiztegia.elhuyar.org/

http://www.allaboutcircuits.com/vol_3/chpt_2/index.html

http://pvcdrom.pveducation.org/index.html

http://library.thinkquest.org/12666/junction.html

http://www.ndt-ed.org/EducationResources/HighSchool/Electricity/hs_elec_index.htm

Materialen sailkapena eroankortasunaren arabera

- Eroaleak
- Erdieroaleak
- Isolatzaileak

http://www.britannica.com/EBchecked/topic/41549/atom/260973/Conductors-and-insulators

Material eroaleak:

Zenbaki atomiko altua →

kanpoko geruzetako elektroiek erakarpen indar txikia jasaten dute → atomotik askatzeko energia txikia behar da → elektroi askeak sortzea erraza da eta horiek erraz mugitzen dira korronte elektrikoa sortzeko

Kobre atomoa

Shell #	Maximum # e-per shell	Actual # e-per shell
K	2	2
L	8	8
M	18	18
N	32	1
Total #	60	29

One electron in the valence ring

Material isolatzaileak:

Zenbaki atomiko baxua →
kanpoko geruzetako elektroiek erakarpen
indar handia jasaten dute →
atomotik askatzeko energia oso handia
behar da

Material Erdieroaleak:

Eroaleen eta isolatzaileen artekoak dira, ez dira eroale onak eta isolatzaile txarrak dira baina... ezaugarri horiei esker egokiak dira elektronikarako

http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

Energia banden teoria

http://www.youtube.com/watch?v=qkjCe0r5-cw&feature=related

http://www.youtube.com/watch?v=AgkQrCeJF1Y&NR=1

The Periodic Table of the Elements

Karbono atomoaren oinarrizko eredua

Ohiko erdieroaleak

isolatzailea

erdieroaleak

Group IVA	
C, Carbon	6
Si, Silicon	14
Ge, Germanium	32
Sn, Tin	50
Pb, Lead	82

Silizioa

Covalent Bonding of Pure Silicon

Erdieroale intrintsekoak

Silicon atoms share valence electrons to form insulator-like bonds.

SiO₂ on Silicon Wafer

Doping of Silicon

Silicon Dopants

Acceptor Impurities		Semiconductor		Donor Impurities	
Group III (p-type)		Group IV		Group V (n-type)	
Boron	<u>5</u>	Carbon	6	Nitrogen	7
Aluminum	13	Silicon	14	Phosphorus	<u> 15</u>
Gallium	31	Germanium	32	Arsenic	<u>33</u>
Indium	49	Tin	50	Antimony	<u>51</u>
Indium	49	Tin	50	Antimony	<u>51</u>

^{*} Items underlined are the most commonly used in silicon-based IC manufacturing.

http://www.youtube.com/watch?v=IMiuD-PNIts&feature=related

http://www.youtube.com/watch?v=o-PPbmMm0eA&feature=related

Electrons in N-Type Silicon with Phosphorus Dopant

Donor atoms provide excess electrons to form n-type silicon.

Energy Band Gaps

Energy Band Gaps

Energia pixka bat emanez gero, elektroi horiek jauzi egiten dute eroalpen bandara eta elektroi aske bihurtzen dira.
Potentzial-diferentzia baten eraginez mugituko dira: korronte elektrikoa sortuko da

Conduction in n-Type Silicon

Positive terminal from power supply Negative terminal from power supply Electron Flow Free electrons flow toward positive terminal.

Holes in p-Type Silicon with Boron Dopant

Acceptor atoms provide a deficiency of electrons to form p-type silicon.

Energy Band Gaps

Energy Band Gaps

Energia pixka bat emanez gero, balentzi bandako elektroi batzuk hutsune horietara jauzi egiten dute eta balentzi bandan hutsuneak uzten dituzte.

Potentzial-diferentzia baten eraginez balentzi bandako elektroi lotuak mugitu daitezke hutsunez hutsune: korronte elektrikoa sortuko da

Conduction in p-Type Silicon

http://www.youtube.com/watch?v=gMTOH2rYIOE&feature=related

Laburpena: erdieroale estrintsekoak

http://mrsec.wisc.edu/Edetc/SlideShow/slides/contents/pn.html

http://pvcdrom.pveducation.org/SEMICON/PN.HTM

http://en.wikipedia.org/wiki/P-n_junction

http://www.youtube.com/watch?v=W6QUEq0nUH8&feature=related

http://www.youtube.com/watch?v=kaSXVfWUqEw&NR=1

http://www.tpub.com/neets/book7/24h.htm

Zuzeneko polarizazioa (ZP) Alderantzizko polarizazioa (AP)

PN juntura: diodoa

http://www.electronics-tutorials.ws/diode/diode_3.html

http://www.youtube.com/watch?v=ZaBLiciesOU

Eremu efektuzko transistoreak (FET)

JFET:

JFET

JFET

FETMOS transistoreak

