Resultados de la Prueba de Movimiento Recto con IMU en Suelo de Baldosas

A continuación, se presentan los datos del sensor IMU registrados durante los 5 segundos de movimiento programado del robot sobre una superficie de baldosas. Posteriormente, presentamos las conclusiones respectivas.

1. Transcripción Completa de Datos del IMU (5 Segundos de Movimiento)

Tiempo (s)	Yaw (deg)	Pitch (deg)	Roll (deg)	Gz_c (deg/s)	Ax_c (g)	Ay_c (g)	Az_c (g)
15.1	0.0	6.3	-8.7	12.65	-0.09	-0.12	0.78
15.2	0.4	0.1	-0.3	0.02	-0.00	-0.01	0.99
15.3	2.6	1.8	0.2	27.85	-0.08	0.01	2.67
15.4	5.1	-2.0	-2.4	14.79	0.05	-0.06	1.35
15.5	7.5	5.4	-8.0	31.39	-0.34	-0.50	3.58
15.6	9.9	11.6	-6.3	21.57	-0.15	-0.08	0.74
15.7	10.2	-6.3	29.7	-30.25	0.03	0.15	0.27
15.8	9.7	132.6	-110.5	-4.86	-0.17	-0.42	-0.16
15.9	8.9	-48.3	-61.2	-9.01	0.14	-0.22	0.12
16.0	8.3	-0.1	-7.3	3.68	0.01	-0.37	2.91
16.1	8.2	15.0	-4.2	15.52	-1.38	-0.38	5.13
16.2	7.8	-174.9	175.1	-8.89	0.06	0.06	-0.67
16.3	7.2	174.2	-178.5	-2.97	-0.23	-0.06	-2.29
16.4	7.8	-15.4	-26.9	6.06	0.14	-0.26	0.51
16.5	7.8	33.3	-4.0	40.00	-5.07	-0.54	7.72
16.6	7.7	10.4	3.0	10.58	-0.66	0.19	3.56
16.7	7.7	158.0	165.6	-0.59	-0.24	0.16	-0.60
16.8	8.1	-176.9	170.0	-7.18	0.18	0.58	-3.26

16.9	8.1	2.0	-12.3	0.02	-0.08	-0.47	2.18
17.1	7.8	3.8	-6.8	-5.29	-0.16	-0.29	2.42
17.2	8.1	170.6	167.9	3.87	-0.27	0.35	-1.61
17.3	8.6	-15.5	-41.5	-4.44	0.10	-0.31	0.35
17.4	8.1	-2.6	-4.0	5.51	0.15	-0.23	3.26
17.5	8.1	-1.5	-9.6	9.91	0.06	-0.35	2.08
17.6	8.2	177.6	166.8	-4.68	-0.15	0.81	-3.48
17.7	8.2	25.5	-19.1	-5.78	-0.13	-0.09	0.27
17.8	7.0	-1.4	-5.5	16.01	0.18	-0.71	7.28
17.9	6.1	23.3	-13.6	4.41	-1.23	-0.69	2.86
18.0	5.5	-3.5	13.0	-3.52	0.10	0.39	1.68
18.1	4.4	175.6	178.0	-19.39	0.06	0.08	-2.34
18.2	3.0	-2.2	-22.2	-0.22	0.03	-0.34	0.83
18.3	2.4	2.4	-14.7	-9.87	-0.05	-0.33	1.26
18.4	2.6	2.3	7.0	8.75	-0.08	0.24	1.94
18.5	2.2	167.8	176.1	-11.76	-0.59	0.18	-2.72
18.6	2.4	-1.6	3.8	17.96	0.03	0.06	0.89
18.7	2.9	79.3	80.2	-1.51	-0.38	0.42	0.07
18.8	3.1	167.5	179.8	-7.49	-0.13	0.00	-0.60
18.9	2.6	109.1	139.9	1.91	-0.39	0.11	-0.13
19.1	2.9	78.5	23.6	5.76	-0.37	0.03	0.07
19.2	3.6	39.6	49.4	9.91	-0.26	0.37	0.32
19.3	4.1	164.5	174.1	-3.28	-0.16	0.06	-0.57
19.4	3.5	49.4	19.3	-9.62	-0.29	0.09	0.25

19.5	3.3	-44.5	-40.8	-5.35	0.31	-0.27	0.32
19.6	3.0	-11.6	-27.6	-12.06	0.19	-0.49	0.95
19.7	1.8	1.0	0.6	-1.81	-0.05	0.04	3.13
19.8	1.6	-120.6	138.2	0.57	0.21	0.11	-0.12
19.9	1.6	-4.4	4.5	10.52	0.11	0.12	1.45
20.0	2.5	3.6	6.3	-7.55	-0.07	0.11	1.03

Alrededor de t=20.0s, se imprimió "INFO: Movimiento terminado. Motores detenidos." Lecturas posteriores (20.1s en adelante) muestran al robot ya detenido y estabilizándose.

La prueba de movimiento recto en baldosas mostró un comportamiento mucho más inestable y dinámico del robot en comparación con superficies planas.

- ❖ Terreno Irregular: Las uniones y desniveles actuaron como perturbaciones constantes, provocando sacudidas y aceleraciones bruscas. El eje Z del acelerómetro (Az_c) mostró valores alejados de 1g e incluso negativos, evidenciando posibles pérdidas de contacto o inclinaciones extremas.
- Inestabilidad Postural: Se observaron rápidas y grandes variaciones en los ángulos de Pitch y Roll, indicando que el robot estuvo cerca de volcar o sufrió balanceos severos.
- ❖ Giro (Yaw) Activo: Aunque la desviación final fue pequeña (~+2.5°), el proceso fue agitado, con giros iniciales abruptos y correcciones posteriores. Las velocidades angulares (Gz c) fueron altas y muy variables.
- IMU como Diagnóstico: El sensor IMU resultó muy útil para detectar y cuantificar estas inestabilidades, proporcionando información clara sobre el efecto del terreno.
- Impacto en la Odometría: La inestabilidad y los posibles deslizamientos hacen que la estimación de posición basada solo en PWM (odometría simple) sea muy imprecisa en este tipo de superficie.