МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Вологодский государственный университет»

АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ В МАШИНОСТРОЕНИИ

Методические указания к выполнению курсовой работы

Направление подготовки: 15.03.05 – Конструкторско-технологическое обеспечение

машиностроительных производств

Направленность (профиль): Металлообрабатывающие станки и комплексы

Технология машиностроения

Программа: академического бакалавриата

Квалификация выпускника: бакалавр

Форма обучения: очная

Институт: машиностроения, энергетики и транспорта

Кафедра: технологии машиностроения

В методических указаниях дано описание методики проектирования автоматической станочной системы механообработки. Приведены варианты заданий. Основные разделы указаний посвящены оценке степени подготовленности изделий к его автоматизированному производству, разработке технологического процесса, структуры и компоновки станочной системы, выбору оборудования и построению циклограмм работы комплекса.

ВВЕДЕНИЕ

Курсовая работа заключается в создании автоматической станочной системы механообработки и служит целью обучить методам и принципам построения автоматических производств с элементами гибкой автоматизации, а также автоматического управления производственными процессами.

Вариант курсовой работы по проектированию автоматической станочной системы формируется в соответствии с шифром задания, состоящего из трех цифр. Первая цифра шифра задает годовую программу выпуска. Вторая цифра шифра задания определяет вид комплексной детали, группы подлежащей обработке на проектируемом участке. По третьей цифре шифра определяются размеры комплексной детали. Варианты заданий приведены в таблице 1 и на рис.1-10.

Для студентов заочной формы обучения номер задания определяется шифром зачетной книжки, причем цифры шифра считать справа налево. Например, шифру студента 33 – 491 соответствует вариант задания 194.

Таблица 1

Первая цифра шифра	1	2	3	4	5	6	7	8	9	0
Годовая программа выпуска в тыс. штук	22	35	46	50	60	70	80	90	65	75

Курсовая работа содержит графическую часть и расчетно-пояснительную записку объемом 25-30 страниц.

Обоз-	Раз-				Tpe	тья ци	фра ши	фра			
наче-	мер-	1	2	3	4	5	6	7	8	9	10
ние	ность										
D	MM	50	16	40	160	206	100	250	30	120	80
D1	MM	18	8	25	80	100	40	180	15	30	10
D2	MM	28	32	125	140	80	200	20	50	50	30
L	MM	35	15	200	32	125	100	50	80	200	150
L1	MM	20	6	125	12	60	30	15	60	120	20
В	MM	6	2	3	12	18	4	16	3	14	10
B1	MM	16	3	8	32	40	6	45	6	12	8
R _a 1	MKM	0,8	1,6	6,3	4,0	1,6	10,0	2,5	2,5	4,0	0,8
R _a 2	МКМ	3,2	2,5	5,0	8,0	2,5	3,2	1,6	10,0	5,0	3,2
F1	MM	3	1	3	5	6	5	7	2	4	5

Рис.1. Варианты заданий

Обоз-	Раз-				Tpe	тья ци	фра ши	ıфра			
наче-	мер-	1	2	3	4	5	6	7	8	9	0
ние	ность										
L	MM	50	200	32	12	125	40	25	160	80	16
L1	MM	20	40	10	5	30	12	10	80	20	6
L2	MM	16	80	16	6	40	12	8	100	20	8
D	MM	60	40	160	16	200	32	125	25	100	80,0
D1	MM	30	16	60	10	100	16	60	12	40	50
D2	MM	25	20	68	8	68	20	50	12	60	40
В	MM	16	12	50	5	60	8	30	8	20	15
B1	MM	6	5	20	2	25	3	12	3	10	6
F1	MM	4	3	2	1	5	2	1	1	3	1
R _a 1	MKM	0,8	5,0	10,0	2,5	8,0	1,25	0,8	6,3	12,5	4,0

Рис.2. Варианты заданий

Обоз-	Раз-				Tpe	тья ци	фра ши	фра			
наче-	мер-	1	2	3	4	5	6	7	8	9	0
ние	ность										
L	MM	60	200	32	15	125	40	25	160	80	16
L1	MM	35	160	20	10	50	30	20	126	50	12
L2	MM	25	125	16	8	32	25	16	50	40	10
L3	MM	20	30	12	6	25	20	15	80	32	10
L4	MM	20	32	8	3	40	8	3	30	16	3
D	MM	70	40	160	16	200	32	125	25	100	80
D1	MM	20	32	63	8	160	28	80	16	80	40
D2	MM	40	30	100	15	125	30	100	20	60	60
M	MM	M20	M12	M36	M4	M56	M12	M24	M6	M16	M22
R	MM	10	16	12	5	20	5	3	6	12	3

Рис.3. Варианты заданий

Обоз-	Раз-				Tpe	гья циф	рра ши	фра			
наче-	мер-	1	2	3	4	5	6	7	8	9	0
ние	ность										
L	MM	100	125	15	32	200	16	30	160	25	40
L1	MM	44	60	8	16	80	6	32	20	12	15
L2	MM	40	50	6	12	100	5	40	32	10	12
L3	MM	30	40	5	10	50	4	32	30	6	8
L4	MM	12	40	3	10	60	5	20	8	6	15
L5	MM	8	30	3	3	20	3	13	6	6	5
D	MM	20	160	10	32	25	60	30	20	32	25
D1	MM	5	20	3	3	10	10	5	3	8	5
M	MM	M30	M140	M12	M56	M20	M64	M30	M12	M36	M24
В	MM	10	40	4	16	10	30	8	5	12	14

Рис.4. Варианты заданий

Обоз-	Раз-				Tpe	тья ци	фра ши	фра			
наче-	мер-	1	2	3	4	5	6	7	8	9	0
ние	ность										
L	MM	100	90	180	200	100	90	160	80	100	200
L1	MM	25	8	40	100	20	10	20	8	50	160
L2	MM	25	40	40	50	20	60	60	40	24	18
L3	MM	40	60	90	72	50	70	80	56	34	30
D1	MM	15	32	40	20	12	50	40	32	20	12
D2	MM	10	6	12	8	10	6	10	12	6	5
M	MM	M40	M60	M90	M56	M36	M90	M60	M72	M48	M36
В	MM	30	50	80	40	24	72	48	48	40	20
F	MM	4	5	5	5	3	4	5	5	3	3
R _a 1	MKM	0,4	1,6	1,6	0,8	0,8	5	1,6	5	1,6	0,8

Рис.5. Варианты заданий

Обоз-	Раз-				Tpe	тья ци	фра ши	ıфра			
наче-	мер-	1	2	3	4	5	6	7	8	9	0
ние	ность										
L	MM	50	60	50	100	150	100	40	100	120	150
L1	MM	15	30	15	20	30	30	15	60	40	30
L2	MM	10	20	30	15	20	20	10	15	40	30
D1	MM	32	72	100	64	80	70	32	80	60	80
D2	MM	5	20	20	10	20	10	5	20	8	12
D3	MM	30	60	72	60	80	60	30	72	70	60
В	MM	24	48	70	48	72	38	24	40	30	34
F	MM	3	4	5	3	4	5	3	4	5	4
R _a 1	МКМ	6,3	12,5	6,3	12,5	6,3	6,3	12,5	6,3	12,5	3,2
R _a 2	MKM	1,6	1,6	1,6	0,8	1,6	0,8	1,6	0,8	1,6	0,8

Рис.6.Варианты заданий

Обоз-	Раз-				Tpe	тья ци	фра ши	фра			
наче-	мер-	1	2	3	4	5	6	7	8	9	0
ние	ность										
L	MM	110	90	100	130	140	60	200	90	120	150
L1	MM	34	60	40	50	60	30	40	20	50	30
L2	MM	24	30	17	25	34	18	20	12	30	14
L3	MM	14	20	34	30	20	14	60	18	40	70
L4	MM	40	35	50	54	44	24	80	40	55	80
D	MM	50	80	100	180	150	100	100	50	80	70
D1	MM	40	60	80	140	70	110	50	30	50	40
D2	MM	6	10	12	8	14	10	14	8	4	5
В	MM	4	6	8	6	12	5	10	8	4	6
M	MM	M20	M36	M42	M20	M64	M20	M36	M16	M12	M36

Рис.7. Варианты заданий

Обоз-	Раз-				Tpe	тья ци	фра ши	фра			
наче-	мер-	1	2	3	4	5	6	7	8	9	0
ние	ность										
L	MM	90	120	200	180	120	180	100	160	120	80
L1	MM	60	80	110	120	100	110	82	100	100	55
L2	MM	40	50	80	100	70	40	60	70	70	30
L3	MM	4	10	8	5	12	7	9	12	5	14
L4	MM	16	25	40	30	5	50	6	27	4	10
В	MM	7	12	14	16	20	25	10	8	6	9
M	MM	M14	M30	M72	M80	M64	M36	M90	M30	M24	M56
D1	MM	30	42	30	60	40	100	30	70	14	160
D2	MM	10	26	60	50	36	34	70	24	20	50
D3	MM	8	5	4	7	6	8	5	4	7	10

Рис.8. Варианты заданий

Обоз-	Раз-				Tpe	тья ци	фра ши	фра			
наче-	мер-	1	2	3	4	5	6	7	8	9	0
ние	ность										
L	MM	70	64	90	120	98	140	80	200	160	100
L1	MM	25	30	36	42	48	56	48	42	80	42
L2	MM	14	15	12	9	24	36	20	10	60	20
L3	MM	20	25	32	40	28	25	26	28	40	24
L4	MM	5	10	12	10	8	5	6	8	10	12
D1	MM	60	100	90	110	72	140	180	90	64	160
D2	MM	40	56	48	42	64	60	72	64	48	56
D3	MM	25	64	42	90	56	64	64	72	56	48
B1	MM	6	8	10	6	10	6	12	10	8	6
B2	MM	3	4	5	3	5	3	6	5	4	3

Рис.9. Варианты заданий

Обоз-	Раз-				Tpe	тья ци	фра ши	фра			
наче-	мер-	1	2	3	4	5	6	7	8	9	0
ние	ность		_		-			-			
L	MM	120	125	20	32	200	46	80	160	250	40
L1	MM	80	60	10	18	140	20	60	100	130	20
L2	MM	12	10	2	3	16	2	20	50	60	8
L3	MM	26	30	8	15	46	18	42	74	86	18
L4	MM	20	30	3	9	30	11	15	20	18	8
D	MM	30	200	16	160	40	80	100	25	125	32
D1	MM	14	100	10	80	25	40	60	15	68	20
D2	MM	60	180	30	180	32	10	140	40	200	50
R	MM	70	60	20	22	46	38	48	32	58	50
В	MM	5	12	6	3	5	6	8	4	7	5

Рис.10. Варианты заданий

І. ГРАФИЧЕСКАЯ ЧАСТЬ

Графическая часть работы выполняется в Компас-3D (сохранять в ver.18.1) на 2-х листах A1 формата и должна содержать:

- 1.1. Временную и тактовую циклограммы работы комплекса.
- 1.2. Чертеж компоновки оборудования комплекса с указанием необходимых размеров и зон обслуживания.

2. РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Основная часть расчетно-пояснительной записки включает следующие разделы: определение степени подготовленности изделия к автоматическому производству; проектирование технологического процесса автоматизированного производства; разработка структуры автоматизированного производства и построение циклограммы работы выбор оборудования автоматизированного комплекса; И компоновки комплекса; построение циклограммы последовательности работы механизмов и узлов комплекса.

2.1. Определение степени подготовленности изделия к автоматическому производству

Внедрению нового изделия в производство или началу проектных работ по автоматизации его изготовления предшествует тщательный анализ конструкции изделия и технологического процесса. Этот анализ дает возможность оценить степень подготовленности изделия к автоматическому производству. В основу способа положен принцип поэлементного анализа на основе экспертных оценок. Анализ производится по методике и справочным данным, изложенным в [7] стр.5 – 10. Параметрами оценки являются: конфигурация, физико-механические свойства сечения и поверхности, абсолютные размеры сцепляемость, И ИХ соотношения, симметрии, специфические свойства деталей. Все свойства конкретной детали взаимосвязаны, находятся в единой связи и в совокупности определяют ее качественную характеристику. Для исследования деталей характерные свойства дифференцированы на 7 ступеней. Каждая ступень качественно характеризует определенную совокупность свойств [7] рис.1.1.

Информативность рекомендуемой схемы оценки степени подготовленности деталей и автоматизированному производству сравнительно высокая. В схему включено 6 миллионов комбинаций конструктивных признаков дискретных деталей. Присвоив в соответствии с рис.1.1. [7], кодовый номер для каждой из 7 ступеней, находят сумму цифр кодовых номеров – сумму баллов. Число, соответствующее сумме баллов, позволяет судить о степени сложности детали, а следовательно, и подготовленности ее к автоматическому производству. Установлены 4

категории сложности автоматизации. Характеристики этих категорий приведены в табл.1.2. [7].

При получении 3-й или 4-й категории сложности необходимо произвести изменение конструкции детали или технологии изготовления с целью понижения категории до 1-й или 2-й.

Данный раздел может быть выполнен с помощью компьютерной программы определения степени подготовленности изделия к автоматическому производству - SUM8.

2.2. Проектирование технологического процесса автоматического производства

Работу по данному разделу следует начинать с общего знакомства с вопросами автоматизации производства, изложенными в главах I [4], I[6,17], I[2], I[10], 5-9 том I[11], где особое внимание уделить специфике проектирования групповых технологических процессов. При проектировании технологических процессов для автоматических производств необходимо обеспечить:

- достижение равной или кратной производительности на отдельных видах оборудования для получения большей синхронизации работы и загрузки проектируемого комплекса;
- автоматизацию не только переходов обработки, но и всех вспомогательных переходов;
 - -длительное сохранение заданной точности;
- высокую надежность и безаварийность работы за счет тщательной проработки всех вопросов контроля;
 - -блокировки, сигнализации, резервирования и отвода стружки;
 - -удобство транспортирования и базирования обрабатываемой детали.

Желательно уменьшение количества станков в автоматизированном комплексе за счет повышения степени концентрации технологических переходов и применения многоинструментального оборудования.

проектирования Перед началом технологического процесса внимательно анализируют конструкцию комплексной детали и технические изготовления на предмет возможного технологичности. Особое внимание следует обратить на выбор установочных баз, использовать принцип их постоянства и совмещения измерительных и технологических баз. Это необходимо ДЛЯ уменьшения положений детали в процессе ее производства. Каждое изменение положения разрабатываемой детали вызывает необходимость применять кантователь, автооператор и др., что усложняет устройство автоматизированного участка При единой технологической базе упрощается транспортировка обрабатываемой заготовки от одной позиции к другой. конструкцию обратить Анализируя детали, следует внимание возможность многоинструментальной обработки И применения

высокопроизводительного многолезвийного инструмента, на легкость удаления стружки и отвода смазочно-охлаждающей жидкости.

С учетом приведенных требований осуществляется проектирование автоматизированного группового технологического процесса для комплексной детали. Пользуясь [12] и [11] выбирается заготовка. Разрабатывается маршрутная технология и по материалам приложения I[12] (стр.146) определяются основные технологические времена операций. Дополнительные рекомендации по разработке технологических процессов автоматизированных производств изложены в главах 4 и 5 [5].

С помощью САПР ТП Вертикаль проводится окончательное проектирование технологического процесса.

2.3. Разработка структуры автоматизированного производства и построение циклограммы работы комплекса

Структура автоматического производства дает представление пространственном расположении станочного И вспомогательного оборудования и связи всех рабочих позиций единой транспортной системой потока деталей. Каждое рабочее место, на котором деталь подготовляется, обрабатывается, очищается, измеряется, складируется, (разжимается) и консервируется, является вместе с соответствующим оборудованием рабочей позицией. В состав комплекса должны войти станки, автоматический склад заготовок и готовой продукции, промежуточные накопители, устройства загрузки оборудования, транспортирующие устройства.

В задачу транспортирования потока деталей входит такое перемещение деталей через рабочие позиции, при котором достигается минимум среднего времени цикла обработки всех деталей. Транспортная система потока деталей состоит из загрузочных устройств и внутреннего транспорта. Загрузочные устройства обеспечивают снабжение деталями, взятыми с позиций подготовки всех станков, измерительных и других устройств, а обеспечивает перемещение деталей внутренний транспорт внутренними накопителями, складом, перегружателями. Для внутренних накопителей обычно становится условие, чтобы их емкость обеспечивала как минимум одну смену работы без пополнения деталями. Примеры структурных схем и их оценка приведены в [6] рис. IX-1, X-1, X-2, [I] рис. 6.22, 6.23, [10] рис. 3.31-3.43, [13].

Следует иметь в виду, что проектирование автоматических производственных систем – итерационная процедура: в ходе проектирования нередко приходиться возвращаться к пересмотру ранее принятых решений после выявления их несоответствия тем или иным новым требованиям или решениям.

При разработке структуры автоматического производственного комплекса необходимо знать потребное количество основного и

вспомогательного оборудования для обеспечения заданной программы выпуска деталей.

Определить количество основного оборудования, включаемого в автоматический комплекс, можно, исходя из среднего такта выпуска деталей на комплексе [3] § 4.1.

Средний такт выпуска деталей

$$T = \frac{T HOM \cdot K}{Nr},$$

где Thom — номинальный фонд времени работы оборудования, час.; K=0,9 — коэффициент использования оборудования; N_r — годовая программа выпуска деталей.

Календарный фонд времени работы оборудования в часах (*Тном*) определяется как произведение количества дней $\mathcal{L}\kappa$ в планируемом календарном периоде на количество часов в сутки:

Тном =
$$\Pi \kappa * 24$$
 (час.).

Номинальный (**режимный**) фонд времени работы оборудования *Тном* зависит от количества календарных дней и количества нерабочих (выходных Двых. и праздничных Дпраз d.) дней в году, а также от принятого режима сменности работы в сутки:

$$T$$
ном = (Дк – Двых. – Дпразд.) * t ,

где t - среднее количество часов работы оборудования в сутки, 8,16 или 24 часа.

С учётом сокращения длительности смены в предпраздничные дни:

$$\mathit{T}$$
ном = $[(\mathcal{A}\kappa - \mathcal{A}\mathit{ebix}. - \mathcal{A}\mathit{npasd}.)] * \mathit{tc} - \mathcal{A}\mathit{cn} * \mathit{tcn}] * \mathit{np.c},$

где tc – продолжительность рабочей смены, час.;

 \mathcal{L} сn — число предпраздничных дней с сокращённой продолжительностью рабочей смены;

tcn – время, на которое продолжительность рабочей смены в предпраздничные дни короче, чем в обычные дни, час.;

пр.с – количество рабочих смен в сутки.

Расчетное число оборудования определяется как отношение времени обработки детали на станке к среднему такту выпуска деталей.

Работа автоматизированного комплекса во многом зависит от работы его транспортной системы, которая может состоять только из системы транспортирования деталей или включать в себя еще и систему

транспортирования инструмента. Транспортная система располагается вдоль станков с одной стороны или вокруг них, а транспортирование заготовок и обработанных деталей осуществляется либо с помощью роликовых конвейеров (непрерывный транспорт), либо подвижных механизмов, штабелеров, промышленных роботов и т.д. (дискретный транспорт).

Необходимые расчеты по определению основных параметров системы транспортирования деталей можно осуществить по методике изложенной в § 4.2. [3] и § 4.3 [3]. При разработке структуры транспортной системы и комплекса в целом полезно ознакомиться с материалами глав IX и X [6,17], 7[2], 4-8[9], 5 и 6 [4], 4[7], часть 2[I], 1,5[10], 7-9 том I [11], [13].

При проектировании роботизированных технологических комплексов определения онжом ИХ структуры использовать ДЛЯ системы работы автоматизированного проектирования. Для ПО определению структуры необходимо задать следующую информацию: количество единиц изготовления оборудования, время одной детали, перемещения робота между оборудованием, машинное время каждой единицы основного оборудования, вид техпроцесса.

Разработав структурную схему с учетом технологии изготовления деталей, вычерчивается временная циклограмма работы проектируемого комплекса. Циклограмма должна отражать работу каждой единицы оборудования: станков, роботов, накопителей, транспортных устройств, склада, контроль — измерительных машин и т.д. за полный цикл работы комплекса. По циклограмме определяются коэффициенты загрузки основного и вспомогательного оборудования, увеличения которых следует добиваться, при необходимости внося изменения в структуру комплекса. Значения коэффициентов загрузки выносятся на лист графической части. Примеры циклограммы работы станочной системы приведены на стр. 58, 69 [10], стр. 20 [6], [13],[17].

2.4. Выбор оборудования и компоновки автоматизированных комплексов

Компоновка автоматизированных комплексов неразрывно связана с его структурой и выбранным основным и вспомогательным оборудованием. Состав металлорежущего оборудования в основном обусловлен конструктивно-технологическими особенностями обрабатываемых деталей. Анализ классификаторов ЕСКД (классы деталей 71-75) показывает, что все разнообразие деталей, подлежащих обработке на определенных типах металлорежущих станков, условно можно разбить на детали типа валов, дисков и корпусные.

К деталям типа валов с соотношением геометрических размеров (длина – диаметр) L>2D относятся, собственно валы, оси, штоки, колонки, стержни и др. с соотношением L≤2D относятся к деталям типа дисков. Не тела вращения — это детали разнообразной конфигурации и различного назначения. Определяющим оборудованием по изготовлению деталей типа

валов являются токарно-центровые и патронно-центровые станки, деталей дисков — токарные патронные станки, не тел вращения — станки расточно-фрезерно-сверлильной группы.

Таблица 2 Рекомендуемые модели станков

деталей деталей D, L, Macca, Dy MM MM KГ ста 1B 20 250 2 2 2B 50 500 10 3 3B 80 100 40 4 4B 160 0 160 6	Парам стан над нин. 50 20 00 30	Рика D над суппор. 125/20 0 200 250	Модели токарных центровых и патронно-центровых станков ТПК-125В, 1И611ПМФЗ 16Б16ФЗ, 1713ФЗ 1720ПФЗО, 16К20ФЗ			
D, мм мм мм кг ста 1В 20 250 2 2 2В 50 500 10 3 3В 80 100 40 4 4В 160 0 160 6	над нин. 50 20 00	D над суппор. 125/20 0 200 250	и патронно-центровых станков ТПК-125В, 1И611ПМФЗ 16Б16ФЗ, 1713ФЗ 1720ПФЗ0, 16К20ФЗ			
MM MM КГ ста 1B 20 250 2 2 2B 50 500 10 3 3B 80 100 40 4 4B 160 0 160 6	нин. 50 20 00	суппор. 125/20 0 200 250	станков ТПК-125В, 1И611ПМФЗ 16Б16ФЗ, 1713ФЗ 1720ПФЗО, 16К20ФЗ			
1B 20 250 2 2 2B 50 500 10 3 3B 80 100 40 4 4B 160 0 160 6	50 20 00	125/20 0 200 250	ТПК-125В, 1И611ПМФЗ 16Б16ФЗ, 1713ФЗ 1720ПФЗО, 16К20ФЗ			
2B 50 500 10 3 3B 80 100 40 4 4B 160 0 160 6	20 00	0 200 250	16Б16Ф3, 1713Ф3 1720ПФ30, 16К20Ф3			
3B 80 100 40 4 4B 160 0 160 6	00	200 250	1720ПФ30, 16К20Ф3			
4B 160 0 160 6		250	ŕ			
	30		1 (Trn 0 + n 1 (700 + n			
140		100	16К3ОФ3, 16732Ф3,			
140		100	1740РФЗ			
Д	иски					
Группа Параметры дет	алей		Модели токарных			
деталей D, мм L, мм	Ma	асса, кг	центровых			
			и патронно-центровых			
			станков			
1Д 160 100		10	КТ-141, ИРТ180ПМФ4,			
			1П717Ф3, 11Б40ПФ4,			
			1В340Ф3О, 1П420ПФ40			
2Д 250 200		40	16Б16Ф3, 1734Ф3,			
			16К20Ф3, 1720ПФ3О			
3Д 320 250		80	1740РФЗ, 16К20ФЗ			
Корпус	ные де	етали				
Группа Параметры дет	алей		Модели			
деталей коробчатых (L ≥ F	3 ≥ H)	И	обрабатывающих			
плоскостных (L > B	, H < I	B/2)	центров			
L x B, mm	Macca	ι, кг	_			
1K 300 x 300	200)	ИР320ПМФ4,			
			2204ВМФ4,			
2K 500 x 500	500)	2254ВМФ4,6904ВМФ2			
	ИР500ВМФ					
	6902BMΦ2					

Между основными параметрами станков и предельными размерами обрабатываемых деталей имеются определенные зависимости. Исходя из этого, каждый тип деталей разбивают на 4 группы по массогабаритным признакам. В таблице 2 приведены рекомендуемые модели станков, наиболее

пригодных для автоматических производств в зависимости от конструктивно-технологических характеристик деталей (D — диаметр, L — длина, B — ширина, H — высота деталей). При выборе основного оборудования, кроме таблицы 2, следует пользоваться [8], [13].

При выборе основного технологического оборудования нужно учитывать компоновочную и программную стыковку с транспортноскладскими системами, загрузочными измерительными устройствами. В таблицах 4.1, 5.3 [9] и §§ 4.3, 4.6 [2] приведены примеры оптимального сочетания станков и роботов, выпускаемых отечественных технологических комплексов.

В качестве оборудования транспортно-загрузочной системы используются целевые механизмы различных типов и промышленные роботы. Примеры различных транспортеров, накопителей заделов, механизмов изменения ориентации и фиксации деталей приведены в главах VI и VII [6], 7[2], 7[9], 3[3], 8[11], [13].

Применение в качестве загрузочных устройств промышленных роботов допускает 3 основные схемы их размещения относительно основного оборудования:

- 1. Напольное робот устанавливается на полу перед станком;
- 2.Подвесное робот портальный и устанавливается над оборудованием;
 - 3. Навесное робот устанавливается на переднюю бабку станка, станину, либо другую его часть.

Примеры указанных схем приведены на рис.6.12 [1].

При проектировании модуля робот — станок необходимо использовать методику и рекомендации, изложенные в главах 6 и 7 [1] и [4], [9], [11] том I глава8.

Выбор автоматического складского оборудования осуществляется по материалам главы 8 [2].

При выборе контрольно-измерительных средств можно использовать [7] главы 7 и 8 и [2] глава 6, [11] том 2 глава 9, [13].

Обосновав выбор того или иного оборудования в пояснительной записке, и определив его геометрические параметры, приступают к компоновке комплекса. При этом целесообразно вырезать из бумаги макеты материальных элементов комплекса, включая стойки всех систем управления, выполненные в определенном масштабе, проработать различные варианты компоновки и выбрать наилучший. Важно добиваться уменьшения между соседним оборудованием, предусмотрев расстояния удобство обслуживания. обслуживании роботами, необходимо При станков обеспечить минимальное количество точек позиционирования, что особенно важно при использовании роботов с цикловой системой управления. Анализ движения робота начинают с перемещений рабочего органа вблизи рабочей зоны отдельного оборудования. Прорабатывается установка и съем изделия с оборудования, условия сопряжения изделия со схватом и технологической оснасткой, вход и выход схвата из рабочей зоны оборудования. Затем оценивается перемещение робота между обслуживаемым оборудованием. Подробно компоновка роботизированных комплексов изложена в §6.5 и главе 7[1]. Разработанная компоновка вычерчивается в масштабе на листе 24 формата с упрощенным изображением оборудования, указанием мест установки обрабатываемой детали на столе или в патроне станка, в накопителе и т.д.; обозначаются зоны обслуживания роботов и других транспортных устройств [13,15,16].

2.5.Построение циклограммы последовательности работы механизмов и узлов комплекса

Циклограмма последовательности работы механизмов И **УЗЛОВ** оборудования, входящего в состав комплекса, является практически алгоритмом его работы и служит исходной информацией для создания всем участком. Следует управления отметить необходимости включать в циклограмму все механизмы комплекса, т.к. многие группы механизмов управляются самостоятельно от своих систем управления. Например, из всех механизмов станка в циклограмму следует включить механизм зажима детали, привод главного движения, ограждение. Работу позиционных промышленных роботов можно описать положением схвата в основных точках позиционирования, т.е. в точках зажима и разжима схвата. Циклограмму роботов с цикловой системой управления лучше строить для отдельных степеней подвижности.

Главная особенность циклограмм последовательности состоит в том, что она не временная, а потактовая. Каждый такт циклограммы отражает новое положение механизмов автоматической системы, при этом соблюдается строгая последовательность их срабатывания от такта к такту.

Для удобства составления циклограммы, весь комплекс следует разбить на модули, а последние, в свою очередь, на отдельные виды оборудования. Пример фрагмента циклограммы последовательности для РТК, содержащего один станок и робот с накопителями, не имеющими своих приводов, показан на рис. 11. Другой пример дан на стр. 310 [10], [13].

В результате анализа построенной циклограммы даются рекомендации системы управления автоматическим комплексом проектируется ee структурная схема. При анализе циклограммы проектировании структурной схемы системы управления ознакомиться с материалами глав 5[6,17], 9 и 10[7], 9[2], 2 и 4 [10]. Примеры структурных схем приведены на рис. 5.7[6], 10.2, 10.3, 10.4[7]. Рисунок структурной схемы системы управления дополняется необходимыми подписями, а также пояснительным текстом с описанием составных элементов и информационных связей между ними.

Рис. 11. Циклограмма последовательности

ЛИТЕРАТУРА

- 1. Бурдаков С.Ф. Проектирование манипуляторов промышленных роботов и роботизированных комплексов: учебное пособие / С.Ф. Бурдаков, В.А. Дьяченко, А.Н. Тимофеев М.: Высш. шк., 1986. 264с.
- 2. Гибкое автоматическое производство / В.О. Азбель, В.А. Егоров, А.Ю. Звоницкий и др./ под общ. ред. С.А. Майорова, Г.В. Орловского 2-е изд., Л.: Машиностроение, 1985. 454 с.
- 3. Гидкие производственные комплексы / под ред. П.Н. Белянина и В.А. Лещенко, М.: Машиностроение, 1984.-384 с.
- 4. Козырев Ю.Г. Промышленные роботы: справочник / Ю.Г. Козырев— М.: Машиностроение, 1983. 376 с.
- 5. Корсаков В.С. Автоматизация производственных процессов: учебник для вузов / В.С. Корсаков М.: Высш. шк., 1978. 295 с.
- 6. Кузнецов М.М. Автоматизация производственных процессов / М.М. Кузнецов, Л.И. Волчкевич, Ю.П. Замчалов / под ред. Г.А. Шаумяна. М.: Высш. шк., 1978. 431 с.
- 7. Лебедовский М.С., Федотов А.И. Автоматизация в промышленности: справочная книга / М.С. Лебедовский, А.И. Федотов Л.: Лениздат 1976. 251 с.
- 8. Металлорежущие станки. отраслевой каталог / ВНИИТЭМР М., 1982-1988. Вып. -40.-110 с.
- 9. Промышленная робототехника и гибкие автоматизированные производства / под ред. Е.И. Юревича. Л.: Лениздат, 1984. 223 с.
- 10. Пуш В.Э. Автоматические станочные системы / В.Э. Пуш, Р. Пигерт, В.Л. Сосонкин М.: Машиностроение, 1982. 319 с.
- 11. Справочник технолога-машиностроителя в 2-х томах / под ред. А.Г. Косиловой и Р.К. Мещерякова 4-е изд., переработ. и дополненное. М.: Машиностроение, 1985. T.1. 656 с., T2. 696 с.
- 12. Горбацевич А.Ф. Курсовое проектирование по технологии машиностроения / А.Ф. Горбацевич, В.А. Шкред 4-е издание, переработ. и доп. Минск.: Высш. школа, 1983. 256 с., ил.
- 13. Роботизированные технологические и гибкие производственные системы в машиностроении: альбом схем и чертежей: учебное пособие для втузов / Ю.М. Соломенцев, К.П. Жуков, Ю.А. Павлов и др. / под общ. Ред. Ю.М. Соломенцева М.: Машиностроение, 1989. 192 с.: ил.
- 14. Проектирование автоматизированных участков и цехов: учеб. для машиностроит. спец. вузов / В.П. Вороненко, В.А. Егоров, М.Г. Косов и др.; под ред. Ю.М. Соломенцева. 2-е изд., испр. М.: Высш. шк., 2000. 272с.: ил.
- 15. Медведев В.А. Технологические основы гибких производственных систем: учеб. для машиностроит. спец. вузов / В.А. Медведев. 2-е изд., испр. М.: Высш. шк., 2002. 255 с.
- 16. Автоматизация производственных процессов в машиностроении: учеб. для втузов / Н.М. Капустин, П.М. Кузнецов, А.Г. Схиртладзе, др.; под ред. Н.М. Капустина М.: Высш. шк., 2004.-415 с.:ил.
- 17. Волчкевич Л.И. Автоматизация производственных процессов: учеб. пособие / Л.И. Волчкевич М.: Машиностроение, 2005. 380 с.