Spin Hall Effect

A brief introduction of theoretical and experimental research

<u>赵利利</u>, 王善, 闫姣婕, <u>齐少勉</u>, <u>李龙飞</u>, 刘震

Outline

- SHE and related phenomena
- Mechanisms of SHE
- Optical experiments of SHE
- Transport experiments of SHE
- Magnetization dynamics and SHE
- Quantum spin Hall effect

(a) Hall effect. (b) AHE. (c) SHE. (d) QHE, (e) QAHE. (f) QSHE.

AHE, SHE and ISHE

SHE and ISGE

SHE and ISGE(inverse spin galvanic effect) (or REE, Rashba Edelstein effect) are known as companion phenomena

key signature of the SGE is the electrical current-induced by a non-

equilibrium, but uniform, polarization of electron spins

Extrinsic mechanism: skew scattering

originated in the Mott scattering by Mott in 1929 and 1931 phenomenological theory that considered the consequences of chiral Mott scattering in a solid-state system

Extrinsic mechanism: side jump

scattering of a spinning particle by a hard sphere: 1. with SOC, 2. without SOC the side jump δr

Wave packet scattering

introduced by Berger in 1964

depending on specific material parameters, particularly in systems with complex band structures

Intrinsic mechanism

first derived by Karplus and Luttinger in 1954 dependent only on the band structure of the perfect crystal

materials with relatively complex electronic band structure

using microscopic ab initio theory

strong SOC materials especially metals

Theory of SHE

Semi-classical

Intrinsic: band structure

Extrinsic: skew scattering

Extrinsic: side jump

Kubo formalism

(exact expression for the spin Hall conductivity in linear response theory)

Optical tools in spin Hall experiments

- 1. Optical detection of the spin Hall effect
 - A. Magneto-optical Kerr effects
 - B. Circularly polarized electroluminescence

2. Optical generation of the inverse spin Hall effect Absorption of circularly polarized light

Magneto-optical Kerr effects

Kato, Y. K., R. C. Myers, A. C. Gossard, and D. D. Awschalom, 2004a, Science 306, 1910

Magneto-optical Kerr effects

extrinsic SHE:
No marked crystal direction dependence

Circularly polarized electroluminescence

Wunderlich, J., B. Kaestner, J. Sinova, and T. Jungwirth, 2005, Phys.Rev. Lett. 94, 047204.

Absorption of circularly polarized light

Transport experiments

Concepts of nonlocal spin transport

Fig.1. Nonlocal spin detection and spin accumulation.

Nonlocal detection with lateral spin current

Fig.2. (a) experimental setup. (b) and (c) show the experimental symmetrized nonlocal spin-valve and antisymmetrized ISHE signals

Nonlocal detection with vertical spin current

Fig.3. (a) experimental setup; (c) show charge accumulation process in the Pt wire (e) charge to spin-current conversion

Nonlocal detection with vertical spin current

Fig.3. (b) shows the change in Hall \triangle Vc/I due to the inverse spin Hall effect(SHE)

Jairo Sinova et al. *Rev. Mod. Phys.* **87**, 1213 (2015). T. Kimura et al. Phys. Rev. Lett. 98, 156601 (2007)

Direct detection of the spin Hall induced spin accumulation

Detection without ferromagnets

Spin Hall effect coupled to magnetization dynamics

Ferromagnetic resonance spin pumping

Ferromagnetic resonance spin pumping

E. Saitoh, et al, APL 2006

Spin Hall effect modulation of magnetization damping

Spin-transfer torque

FIG. 1 (color online). (a) Schematic of a Pt/Py bilayer thin film illustrating the spin transfer torque τ_{STT} , the torque τ_H induced by the Oersted field $H_{\rm rf}$, and the direction of the damping torque τ_{α} . θ denotes the angle between the magnetization M and the microstrip. $H_{\rm ext}$ is the applied external field. The spin Hall effect causes spins in the Pt pointing out of the

page to be deflected towards the top surface, generating a spin current incident on the Py. (b) Left-side view of the Pt/Py system, with the solid line showing the Oersted field generated by the current flowing just in the Py layer, which should produce no net effect on the Py anisotropic magnetoresistance. (c) Schematic circuit for the ST-FMR measurement.

Spin-transfer torque

Spin Hall effect induced switching of the magnetization

QSHE

Schematic of the spin-polarized edge channels in a quantum spin Hall insulator.

Carriers with opposite spins move in opposite directions on a given edge

QSHE

- Insulating in the bulk
- Gapless edge or surface states
- Time-reversal symmetry

Bulk HgTe has inverted band, CdTe normal band. The thickness of HgTe has a critical value 6.5nm.

B. A. Bernevig et al. Science 314 (5806), 1757-1761 (2006).

Experiment

HgTe/CdTe Quantum well

	Length/ um	Width/ um	d /nm	Band structure
I	20.0	13.3	5.5	Normal band
П	20.0	13.3	7.3	Inverted band
Ш	1.0	1.0	7.3	
IV	1.0	0.5	7.3	

M. Konig et al. Science **318** (5851), 766-770 (2007).

QSHE

Question Time

Thanks for your attention!