

# CHEMISTRY

Chapter 11





BALANCE POR EL MÉTODO REDOX





 Existen muchos fenómenos a tu alrededor y en tu cuerpo relacionado con los procesos REDOX.



Oxidación de metales



Reducción del CO<sub>2</sub>



Oxidación de nutrientes

Oxidación de combustibles





# REACCIÓN REDOX

Reacción química en la que se transfieren electrones de una sustancia a otra.







## ESTADO DE OXIDACIÓN

Es la carga real o aparente que adquiere un átomo cuando se combina.





Ε

0 Na

02

0 **H**<sub>2</sub> 0 P<sub>4</sub>

S<sub>8</sub>



**CHEMISTRY** 

$$2(+1)+1(X)+4(2-)=0$$

$$X = 6 +$$





$$1(+1)+1(X)+4(2-)=0$$

$$X = 7 +$$



| E.O |
|-----|
| +1  |
| +2  |
| +3  |
|     |



### OXIDACIÓN

Semirreacción donde existe un aumento en el estado de oxidación debido a la pérdida de electrones.

AI 
$$-3e^- \rightarrow AI^{3+}$$
H<sub>2</sub>  $-2e^- \rightarrow 2$  H<sup>1+</sup>

### REDUCCIÓN

Semirreacción donde existe disminución en el estado de oxidación debido a la ganancia de electrones.

$$Sn^{4+}$$
  $+2e^{-} \rightarrow Sn^{2+}$   
 $N^{5+}$   $+2e^{-} \rightarrow N^{3+}$   
 $O_{2}$   $+4e^{-} \rightarrow 2$   $O^{2-}$ 





#### **AGENTES Y FORMAS**

- A la sustancia que se oxida se le denomina agente reductor y luego de la oxidación se denomina forma o especie oxidada.
- A la sustancia que se reduce se le denomina agente oxidante y luego de la reducción se denomina forma o especie reducida.













### BALANCE DE ECUACIONES REDOX

- Indique el número de oxidación de los átomos que participan en la ecuación química.
- 2. Luego identifique cuales están modificando su número de oxidación al pasar de un lado de la flecha al otro.
- 3. Separe los pares respectivamente que indiquen al que se oxida y al que se reduce.
- 4. Forma las semirreacciones no olvidando el balance de masa y carga.
- 5. Por último sume ambas semirreacciones miembro a miembro eliminando los electrones libres.
- 6. Luego completar por tanteo si aún no está balanceada.









#### el EO (estado de oxidación) de los siguientes **Determine** elementos:

Manganeso en KMnO<sub>₄</sub>

$$+1 + X - 8 = 0 \qquad \Rightarrow X = 7 +$$

$$X = 7 +$$

+1 +1 X -2 Fósforo en Na<sub>2</sub>HPO<sub>4</sub>

$$+2+1+X-8=0$$
  $X=5+$ 

Carbono en H<sub>2</sub>CO<sub>3</sub>

$$\Rightarrow +2 + X - 6 = 0 \Rightarrow X = 4 +$$

X + 1Fósforo en P<sub>4</sub>H<sub>2</sub>

$$4X + 2 = 0$$

$$X = \frac{1}{2} -$$

Rpta 7+,5+,4+,1/2-



### Complete.

El elemento que pierde electrones se <u>oxida</u> y el elemento que gana electrones se <u>reduce</u>.







# ¿Cuántas proposiciones son verdaderas, con respecto a la siguiente semirreacción?

$$S^{2-} - 2e^- \rightarrow S^0$$

- I. Se trata de una oxidación. ( **V**
- II. Hay 2 protones transferidos. (F
- III. Se trata de una reducción. (F)
- IV. Hay una pérdida de 2 electrones. ( v )

El E.O. aumenta, por lo tanto se oxida, pierde electrones



#### **Balancee:**



Ag. Red.: I<sub>2</sub> Ag. Oxid.: HNO<sub>3</sub>

F. Oxid.: HIO<sub>3</sub> F. Red.: NO

Red: (N 
$$+3e^ \rightarrow$$
 N) × 10



10 N + 
$$3I_2 \rightarrow 6I + 10N$$

#### Luego:

$$10HNO_3 + 3I_2 \rightarrow 6HIO_3 + 10NO + H_2O$$

Por último:

$$10HNO_3 + 3I_2 \rightarrow 6HIO_3 + 10NO + 2H_2O$$



F. Oxid.: Cl<sub>2</sub>

F. Red.: MnCl<sub>2</sub>

#### Pregunta N°5

#### **Balancee:**



Red: 
$$(Mn + 2e^- \rightarrow Mn) \times 1$$

1Mn +4 Cl 
$$\rightarrow$$
 1Mn+1 Cl<sub>2</sub>+1 Cl<sub>2</sub>

### Luego:

$$1MnO_2 + 4HCI \rightarrow 1MnCI_2 + 1CI_2 + H_2O$$
  
Por último:

$$1MnO2 + 4HCI \rightarrow 1MnCI2 + 1CI2 + 2H2O$$



El hidróxido de sodio (NaOH) también conocido como soda cáustica, se emplea en los hogares para desatorar cañerías y limpiar la grasa de hornos y ollas. Determine qué cambios ocurren en la reacción:





- . El Sodio se oxida V
- II. El Hidrógeno se reduce V
- III. El oxígeno se oxida F
- IV. El agua es el agente oxidante
- V. El Sodio es el agente oxidante





Del siguiente diagrama, seleccione las proposiciones verdadero (V) o falso (F) según corresponda



- I. Es una reacción redox en la que no participa el oxígeno.
- II. El Fe se oxida de Fe  $\rightarrow$  Fe<sup>2+</sup>
- III. El cobre se reduce de  $Cu^{2+} \rightarrow Cu$
- IV.La reacción iónica es Fe<sup>2+</sup> + Cu → Fe + Cu<sup>2+</sup>
- V. La reacción neta es
   Fe + CuSO₄ → Cu + FeSO₄

La reacción iónica es Fe + Cu²+→ Fe²+ + Cu

La reacción neta es Fe + CuSO<sub>4</sub> → Cu + FeSO<sub>4</sub>