中国科学技术大学

2023—2024学年第二学期考试试卷

		考试科目_	概率论与	数理统计		身分		
		所在院系	姓	名		2号		
		考试时间:	2024年6月	21 日下午 14	4:30-16:30;	可使用简单	计算器	
— ,	`	分,每小题3分)						
	(1)	设事件 A 和 B	相互独立且	P(A) = P(A)	B), 若 P(A	$(\cup B) = 0.6$	4, 则 P(A)	=
	(2)	已知现在的电子 圾邮件, 但也会 该软件识别为与	以 5% 的概	[率误将常规	见邮件识别	为垃圾邮件	若一封申	
	(3)	设 x,y 为任意约 (A) 若 P(Y = g (C) 随机事件 {	$y) > 0$, \mathbb{M} P	$(X \le x Y =$	$=y)=\mathrm{P}(X$	$T \le x$) (B	$S) X^2 = Y^2$	相互独立
	(4)	将 n 根短绳的 (注意圈也可由 (A) 0 (B)	多根绳子构成	戏), 则 \lim_n			连成圈的个	数的期望
	(5)	设 X, Y 为相互 $\max\{X, Y\}, W$,			l变量 <i>Z</i> =
	(6)	设随机变量 <i>X_n</i> 到	服从自由度	更为 n 的 χ	² 分布, 则	$\stackrel{\text{def}}{=} n \to \infty$	时, X_n/n 包	
	,	设 X_1, X_2, \cdots ,表示样本均值和 $(A) (n-1)\overline{X}^2/$	口样本方差,	则下列统计	量中服从	F 分布的是	$\varepsilon($	
	(8)	对一给定总体的 (A) 无偏估计仇 (C) 无偏估计一	2于有偏估计	· (B) 无偏位	古计的个数	至多有限个	-	无偏估计
	(9)	已知一设备生产 中随机抽取 16 方差 σ^2 的置信	个产品, 测得	导样本均值和	和样本标准	差分别为 2	20 厘米和 0	.1 厘米, 则
	(10)	设 Z _n 为服从 y	χ_a^2 分布的随	机变量, 若	在 3×5 列	 联表独立性	生检验中. 自	1样本求得

(A) $P(Z_8 \ge z_0)$ (B) $P(Z_8 \le z_0)$ (C) $P(Z_{14} \ge z_0)$ $P(Z_{14} \le z_0)$

的检验统计量的值为 z_0 ,则该假设检验的 p 值大约为().

- 二、 (18分) 设随机向量 (X,Y) 的联合概率密度函数为 $f(x,y) = xe^{-x(y+1)}, x,y > 0$.
 - (1) 分别求 X 和 Y 的边缘密度函数 $f_1(x)$ 和 $f_2(y)$.
 - (2) 通过计算说明在给定 X = x (x > 0) 的条件下 Y 服从指数分布, 并指出参数.
 - (3) 计算期望 EY, E[Y|X] 和 E[XY].
- 三、 (18分) 设随机变量 X 和 Y 相互独立, 且分别服从参数为 λ 和 μ 的指数分布. 记随机变量 $Z=\min\{X,Y\}$.
 - (1) 试求概率 P(Z = X).
 - (2) 试求随机变量 $W = \max\{X Y, 0\}$ 的分布函数 $F_W(w)$.
 - (3) 问 Z 是否与示性变量 $I_{\{X < Y\}}$ (亦即与随机事件 $\{X < Y\}$) 独立? 需写出证明过程.
- 四、(20分) 设 X_1, X_2, \dots, X_n 为抽自总体 X 的一组简单随机样本, 且 X 的概率密度函数 为 $f(x;\theta) = -\theta^x \ln \theta \cdot I_{(0,\infty)}(x)$, 其中 $0 < \theta < 1$ 为一未知参数.
 - (1) 试求 θ 的矩估计 $\hat{\theta}$.
 - (2) 试求 $h(\theta) = (\ln \theta)^{-1}$ 的最大似然估计 \hat{h} .
 - (3) 上一小题中, 估计量 \hat{h} 是否为无偏估计? 证明你的结论.
 - (4) 试求常数 b > 0, 使得对任一实数 x, 均有

$$\lim_{n \to \infty} P\left(\frac{\sqrt{n}(\hat{h} - (\ln \theta)^{-1})}{b} \le x\right) = \Phi(x)$$

成立, 其中 $\Phi(\cdot)$ 为标准正态分布函数.

五、 (14分) 从甲乙两班中随机抽取部分同学, 获得他们的《概率论与数理统计》期末考试成绩如下:

假设甲班和乙班的学生成绩独立地分别服从 $N(\mu_1,195)$ 和 $N(\mu_2,120)$ 分布, 其中 μ_1,μ_2 均未知.

(1) 在显著性水平 $\alpha = 0.05$ 下, 对如下检验问题做出决策:

$$H_0: \mu_1 = \mu_2 \iff H_1: \mu_1 - \mu_2 = -1.8.$$

(2) 在 H_1 成立条件下计算上述检验的功效函数值.

附录 上分位数: $u_{0.025} = 1.96$, $u_{0.05} = 1.645$, $u_{0.1} = 1.285$, $u_{0.2} = 0.845$, $u_{0.3} = 0.525$, $t_{23}(0.05) = 1.7139$, $t_{23}(0.025) = 2.0687$, $t_{24}(0.05) = 1.7109$, $t_{24}(0.025) = 2.0639$, $\chi^2_{15}(0.05) = 24.996$, $\chi^2_{15}(0.95) = 7.261$, $\chi^2_{15}(0.10) = 22.307$, $\chi^2_{15}(0.90) = 8.547$

参考答案

一、 每小题 3 分.

$$\frac{2}{5}$$
 $\frac{5}{104}$ D B $\frac{1}{36}$ 1 B D $[0.006, 0.021]$ A

- 二、 每小题 6 分.
 - (1) 由联合密度和边缘密度的关系可知(注: 变量取值范围缺失或出错, 一处扣 1 分),

$$f_1(x) = \int_0^\infty x e^{-x(y+1)} dy = e^{-x}, \quad x > 0,$$

$$f_2(y) = \int_0^\infty x e^{-x(y+1)} dx = \frac{1}{(y+1)^2}, \quad y > 0.$$

(2) 由条件密度函数公式和 (1), 可知在 X = x > 0 的条件下 Y 的条件密度函数为

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_1(x)} = \frac{xe^{-x(y+1)}}{e^{-x}} = xe^{-xy}, \quad y > 0,$$

即此时 Y 的条件分布是参数为 x 的指数分布.

(3) 由 (1) 可知, $\mathrm{E}Y = \int_0^\infty \frac{y}{(y+1)^2} \mathrm{d}y = \infty$, 即期望 $\mathrm{E}Y$ 不存在. 而由 (2) 及指数分布的 性质可知, 对任一 x > 0, 有 $\mathrm{E}[Y|X = x] = \frac{1}{x}$, 故 $\mathrm{E}[Y|X] = \frac{1}{X}$. 再由全期望公式,

$$\mathrm{E}[XY] = \mathrm{E}[\mathrm{E}(XY|X)] = \mathrm{E}[X\mathrm{E}(Y|X)] = \mathrm{E}\Big[X \cdot \frac{1}{X}\Big] = 1.$$

上述结果也可由 $E[XY] = \int_0^\infty \int_0^\infty xy f(x,y) dx dy$ 直接计算得出.

三、 每小题 6 分.

(1) 易知 P(Z = X) = P(X < Y), 故由连续型全概率公式可知

$$P(Z = X) = \int_0^\infty P(Y > x | X = x) f_X(x) dx = \int_0^\infty \lambda e^{-(\lambda + \mu)x} dx = \frac{\lambda}{\lambda + \mu}.$$

(2) 首先由 (1) 可知, $P(W=0) = P(X < Y) = \frac{\lambda}{\lambda + \mu}$. 而对任一 w > 0,

$$P(W > w) = P(X - Y > w) = \int_0^\infty P(X > y + w) \mu e^{-\mu y} dy$$
$$= \int_0^\infty \mu e^{-\lambda(y+w)-\mu y} dy = \frac{\mu}{\lambda + \mu} e^{-\lambda w}.$$

从而, 分布函数 $F_W(w)$ 为 (注意下式的完整性, 不完整至少扣 1 分)

$$F_W(w) = \begin{cases} 0, & w < 0; \\ \frac{\lambda}{\lambda + \mu}, & w = 0; \\ 1 - \frac{\mu}{\lambda + \mu} e^{-\lambda w}, & w > 0. \end{cases}$$

(3) 独立. 我们只需证明对任一 z>0, 事件 $\{Z>z\}$ 与 $\{X< Y\}$ 相互独立即可. 由

$$P(X < Y, Z > z) = P(z < X < Y) = \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)z} = P(X < Y) \cdot P(Z > z),$$

即知结论成立. (结论 2 分, 证明过程 4 分.)

四、每小题5分.

(1) 由于总体期望

$$EX = \int_0^\infty -x\theta^x \ln \theta dx = -\frac{1}{\ln \theta},$$

可知 θ 的矩估计 $\hat{\theta} = \exp\{-1/\overline{X}\}$, 其中 \overline{X} 为样本均值.

(2) 先求 θ 的最大似然估计. 由似然函数 $L(\theta) = -\theta^{\sum_{i=1}^{n} X_i} (\ln \theta)^n$ 知对数似然函数为

$$l(\theta) = -\ln \theta \sum_{i=1}^{n} X_i - n \ln \ln \theta.$$

令

$$\frac{\partial l}{\partial \theta} = -\frac{1}{\theta} \sum_{i=1}^{n} X_i - \frac{n}{\theta \ln \theta} = 0,$$

再化简可得 $\overline{X} + \frac{1}{\ln \theta} = 0$. 由此可知, θ 的最大似然估计也为 $\exp\{-1/\overline{X}\}$. 从而, $h(\theta) = (\ln \theta)^{-1}$ 的最大似然估计 $\hat{h} = -\overline{X}$.

(3) 为无偏估计. 这是因为由 (1) 和 (2) 可知,

$$E[\hat{h}] = -E[\overline{X}] = -EX = (\ln \theta)^{-1}.$$

(4) 由独立同分布场合下的中心极限定理(或 Lindeberg-Lévy CLT)可知 $b = \sqrt{\text{Var}(X)}$. 而由

$$E[X^{2}] = \int_{0}^{\infty} -x^{2} \theta^{x} \ln \theta dx = \frac{2}{\ln^{2} \theta}$$

及 (1) 可知, $Var(X) = 1/(\ln^2 \theta)$. 故 $b = -(\ln \theta)^{-1}$.

五、 每小题 7 分.

(1) 首先通过计算可以得到两班成绩的样本均值分别为 $\bar{x}=81.0769, \bar{y}=83.4167.$ 在原假设 H_0 成立条件下, 检验统计量

$$T = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{195}{13} + \frac{120}{12}}} = \frac{\bar{x} - \bar{y}}{5} \sim N(0, 1).$$

故在显著性水平 $\alpha = 0.05$ 下, 拒绝域为 $T < -u_{0.05} = -1.645$. 代入数值后计算可得 T = -0.4679 > -1.645, 从而我们应接受 H_0 .

(2) 在备择假设 H_1 成立下, 检验统计量 $T \sim N(-1.8, 1)$, 故功效函数值为

$$P_{H_1}(T < -u_{0.05}) = P_{H_1}\left(\frac{\bar{x} - \bar{y}}{5} < -u_{0.05}\right)$$

$$= P_{H_1}\left(\frac{\bar{x} - \bar{y} + 1.8}{5} < \frac{1.8}{5} - 1.645\right)$$

$$= \Phi(-1.285)$$

$$= 1 - \Phi(1.285)$$

$$= 0.1.$$