1. Permutations and combinations

There are $n! = \prod_{i=1}^{n} i = 1.2.3.4...n$ permutations of n objects.

There are $\binom{n}{k} = n!/(k!(n-k)!)$ ways of choosing a given k objects from n.

2. Joint and conditional probabilities

If C and D are any events: $P(C \cup D) = P(C) + P(D) - P(C \cap D)$. The conditional probability of C given D is $P(C \mid D) = P(C \cap D) / P(D)$. C and D are independent if and only if $P(C \cap D) = P(C) \times P(D)$.

3. Laws and theorems

Suppose E_1, \ldots, E_k is a partition of Ω .

That is $E_i \cap E_j$ is empty, and $E_1 \cup E_2 \cup ... \cup E_k = \Omega$.

The law of total probability states that: $P(D) = \sum_{j=1}^{k} P(D \cap E_j) = \sum_{j=1}^{k} P(D \mid E_j) P(E_j)$

Bayes' Theorem states that: $P(E_i \mid D) = P(D \mid E_i) P(E_i)/P(D)$

4. Random variables and distributions

	discrete (mass)	continuous (density)	
Probability mass/density function	pmf: $P(X = x) = p_X(x)$	pdf: $f_X(x)$	
Cumulative dist. func. $P(X \le x)$	$F_X(x) = \sum_{w \le x} p_X(w)$	$F_X(x) = \int_{-\infty}^x f_X(w) dw$	
Joint mass/density func. of (X, Y)	$p_{X,Y}(x,y) = P(X = x, Y = y)$	$f_{X,Y}(x,y)$	
Marginal mass/density of X	$p_X(x) = \sum_y p_{X,Y}(x,y)$	$f_X(x) = \int_{y=-\infty}^{\infty} f_{X,Y}(x,y)dy$	
Conditional of X given $Y = y$	$p_{X Y}(x y) = p_{X,Y}(x,y)/p_Y(y)$	$f_{X Y}(x y) = f_{X,Y}(x,y)/f_Y(y)$	
Independence of X and Y	$p_{X,Y}(x,y) = P(X=x)P(Y=y)$	$f_{X,Y}(x,y) = f_X(x)f_Y(y)$	
or	$p_{X Y}(x y) = p_X(x)$	$f_{X Y}(x y) = f_X(x)$	
	Must hold for all x and all y		

5. Moments of random variables:

(a) Expectation: E(X)
$$E(X) = \sum_{x} x \ P(X = x) \qquad \int_{-\infty}^{\infty} x f_{X}(x) dx$$
 and of $g(X)$
$$E(g(X)) = \sum_{x} g(x) \ P(X = x) \qquad \int_{-\infty}^{\infty} g(x) \ f_{X}(x) \ dx$$
 and of $g(X,Y)$
$$E(g(X,Y)) = \sum_{x} \sum_{y} g(x,y) \ P_{X,Y}(x,y) \qquad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \ f_{X,Y}(x,y) \ dx \ dy$$
 in each case **provided** the sum/integral converges absolutely.

(b) For any random variables X:

Variance:
$$var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$$

Note also: $E(aX + b) = a E(X) + b$, $var(aX + b) = a^2 var(X)$.

(c) For any random variables X, Y, Z and W:

Covariance: cov(X,Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)Correlation: $\rho(X,Y) = cov(X,Y)/\sqrt{var(X)var(Y)}, -1 \le \rho(X,Y) \le 1$

Note also:

$$\begin{split} & \mathrm{E}(X+Y) &= \mathrm{E}(X) \, + \, \mathrm{E}(Y), \\ & \mathrm{var}(X+Y) &= \mathrm{var}(X) \, + \, \mathrm{var}(Y) \, + \, 2 \, \mathrm{cov}(X,Y) \\ & \mathrm{cov}(aX+b,cW+d) &= \, ac \, \mathrm{cov}(X,W), \\ & \mathrm{cov}(X+Y,W+Z) &= \, \mathrm{cov}(X,W) + \mathrm{cov}(X,Z) + \mathrm{cov}(Y,W) + \mathrm{cov}(Y,Z) \end{split}$$

6. Conditional Expectations of random variables:

(a) If $h(y) = E(X \mid Y = y)$, we write $h(Y) = E(X \mid Y)$. Note this is a random variable, a function of Y.

Result 1: $E(X) = E(h(Y)) = E(E(X \mid Y))$ and more generally $E(g(X,Y)) = E(E(g(X,Y) \mid Y))$

Result 2: var(X) = E(var(X|Y)) + var(E(X|Y)).

(b) If $X_1, X_2, ...$, are independent, with mean μ and variance σ^2 , and independent of random variable N which takes values 1,2,3...., and $W = \sum_{i=1}^{N} X_i$, then

$$E(W) = E(E(W|N)) = \mu E(N)$$
 and $var(W) = \sigma^2 E(N) + \mu^2 var(N)$.

7. A note about Poisson Process rate λ

- (a) The number of events N in time t is Poisson: $N \sim \mathcal{P}o(\lambda t)$
- (b) Events occur independently. That is, numbers of events in disjoint time intervals are independent.
- (c) The time T to the next event is Exponential: $T \sim \mathcal{E}(\lambda)$
- (d) Given an event in time interval (0, s), the time T it occurred is Uniform: $T \sim U(0, s)$.
- (e) Multiple independent Poisson processes rates λ_i can be combined to a single process rate $\sum_i \lambda_i$.
- (f) If each event of a Poisson process rate λ is independently detected with probability p, detected events form a Poisson process rate λp .

8. Standard distributions:

(a) Binomial; $B(n, p)$	$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
index n , parameter p	k = 0, 1, 2,, n		
(b) Multinomial: $Mn(n, (p_1,, p_k))$	$P(X_i = n_i, i = 1,k) =$	$X_i \sim Bin(\cdot)$	$(n, p_i), i = 1,, k$
$\sum_{i} p_i = 1$ $\sum_{i} n_i = n$	$(n!/(n_1!)(n_k!)) p_1^{n_1}p_k^{n_k}$		
() II	$(k \setminus (N-k) \setminus (N-k))$	1 / 3.7	$(1 \qquad) N-n$

pmf or pdf

variance

mean

(c) Hypergeometric (N, k, n); $P(X = x) = {k \choose x} {N-k \choose n-x} / {N \choose n} \qquad nk/N \equiv np \qquad np(1-p) \frac{N-n}{N-1}$ sample n from N, p = k/N $x = \min(0, k+n-N), ..., \max(n, k)$ sample n from N $k = 0, ..., n, \ k < m, \ k > m+n-N$

(d) Geometric; G(p); $P(X = k) = p(1-p)^{k-1}$ 1/p $(1-p)/p^2$ parameter p k = 1, 2, 3, 4,

(e) Neg. Binomial; NegB(r,p); $P(X=k) = {k-1 \choose r-1} p^r (1-p)^{k-r} \qquad r/p \qquad r(1-p)/p^2$ index r, parameter p k=r,r+1,r+2,....

(f) Poisson; $\mathcal{P}o(\mu)$ $P(X=k) = \exp(-\mu)\mu^k/k!, \quad k=0,1,2,... \qquad \mu \qquad \mu$

(g) Uniform on (a, b); U(a, b); $f_X(x) = 1/(b-a)$, a < x < b (b+a)/2 $(b-a)^2/12$

(h) Normal, $N(\mu, \sigma^2)$ $f_X(x) = (1/\sqrt{2\pi\sigma^2}) \exp(-(x-\mu)^2/2\sigma^2)$ μ σ^2

(i) Exponential, $\mathcal{E}(\lambda)$ $f_X(x) = \lambda \exp(-\lambda x)$ $1/\lambda$ $1/\lambda^2$ rate parameter λ $0 \le x < \infty$