

#### **Famous Last Question**

Wie könnte eine kantenerhaltene Rauschunterdrückung aussehen, die ausnutzt, dass Kanten ihre Richtung nur langsam ändern?



# Segmentierung



Segmentierung





# Gibt es die "ideale Segmentierung"?







Beispielbilder aus dem Berkeley Segmentation Dataset



#### Referenzsegmentierungen



Helligkeit = Häufigkeit, mit der die betreffende Segmentgrenze gewählt wurde



## Referenzsegmentierungen

- Es existieren zwar meist Segmente, die jeder als solche bezeichnet, aber
  - Was Hintergrund ist, wird oft unterschiedlich gesehen
  - Segmente selbst werden unterschiedlich detailliert gesehen
- Segmentierung ist nicht a-priori lösbar



#### Segmente

- Segmente und Semantik
  - Unterschiedliche Segmente haben unterschiedliche Bedeutung
  - Pixel innerhalb eines Segments haben die gleiche Bedeutung
- Segmentierung ist ein subjektiver Prozess!
- Segmente können aus einem Bild generiert werden, falls
  - Pixel eines Segments andere Eigenschaften haben als die außerhalb eines Segments
  - jedes Pixel nur einem Segment angehört
- Es gibt viele Fälle, in denen diese Annahmen (näherungsweise) zutreffen

## Segmentierung (abgeschwächt)

- Ziel: Pixelaggregate schaffen, denen Bedeutung zugeordnet werden kann
- Pixel gehören zusammen, wenn sie einem zusammenhängenden Gebiet angehören.
- Homogenitätsbedingung ist vom Bildinhalt unabhängig (Segmentierung ist datenbasiert).
- Modellbasierte Segmentierung: Zwitter zwischen Segmentierung und Analyse.



#### Segmentierung

- Zerlegung eines Bildes in semantische Einheiten.
- Segmente: Träger der Bedeutung von Strukturen eines Bildes.
- Eigenschaften einer Segmentierung:
  - vollständig: jedes Pixel ist einem
     Segment zugeordnet.
  - überdeckungsfrei: ein Pixel ist genau einem Segment zugeordnet.
  - zusammenhängend: jedes Segment bildet ein zusammenhängendes Gebiet.



Bsp. Figure-Ground-Segmentation



# **Datenbasierte Segmentierungsmethoden**



Regionen- oder Kantenorientierung:

Segmente werden durch ihre Grenzen oder ihr Inneres definiert



#### **Histogrammbasierte Segmentierung**

- Annahme: Bild besteht aus zwei Anteilen die sich durch ihren Grauwert unterscheiden.
- Aufgabe: Schwellenwert zwischen den beiden Grauwerten finden.
- b(i,j) = 1, falls f(i,j) > T;0, sonst





#### **Shading**

- Helligkeitsvariationen zerstören die bimodale Verteilung der Häufigkeiten.
- Schwellenwert ist nicht mehr für das gesamte Bild definierbar.





#### Berücksichtung von Shading

- Homogenes Bild unter gleichen Bedingungen aufnehmen.
- Shading-Bild aus dem Bild selbst bestimmen.
- Variierende Schwellenwerte.

#### **Bestimmung des Shadingbilds**

- Falls die überwiegende Mehrzahl des Bildes aus Vorder- oder Hintergrundpixeln besteht, kann das Shadingbild durch einem Rangordnungsfilter erzeugt werden.
- Das Rangordnungsfilter muss mindestens so groß sein, dass immer mindestens ein Vordergrundund ein Hintergrundpixel enthalten ist.





13×13 Maximumsfilter

#### **Shading-Korrektur**

- Berechne aus dem Hintergrundsbild Shadingfunktion s(i,j)
- Korrektur:  $f'(i,j) = f(i,j) \cdot s(i,j)$
- Segmentierung auf dem korrigierten Bild.











mit Korrektur

## Variierende Schwelle



Lokale Schwellenwerte aus Histogramme in Teilregionen.

(Lineare) Interpolation von Schwellenwerten T(i,j) an allen anderen Punkten.

Segmentierung durch f(i,j) > T(i,j).

#### **Region Labeling**

- Schwellenwert zerlegt das Bild in Vordergrund und Hintergrundsegmente.
- Region Labeling bestimmt Ort und Anzahl aller zusammenhängenden Gebiete im Binärbild b:

#### Flood Fill

```
flood fill(i,j,label) // Variablen zur Auswertung der
            Zusammenhangsbedingung sind global
                          verfügbar
if f(i,j) erfüllt Zusammenhangsbedingung then
   region(i,j) = label // Region an (i,j) mit Label
              // versehen
   flood fill(i-1,j,label) // Nachbarpixel untersuchen
   flood fill(i,j-1,label)
   flood fill(i+1,j,label)
   flood fill(i,j+1,label)
```

#### Zusammenhangsbedingung:

- hat den gleichen Grauwert wie Saatpunkt oder
- ist kein Randpunkt



#### **Resultat**





## **Nachverarbeitung**

- Trennung nach Grauwerten wird nicht perfekt sein.
- Schwellenwertbild enthält falsche Regionen:
  - kleine fälschlicherweise als Segmente identifizierte Regionen.
  - Störungen am Rand von Regionen.
- Nachverarbeitung
  - Medianfilterung auf den Labeln
  - Entfernung von zu kleinen Regionen
  - Relaxation Labelling









# **Medianfilterung auf Labeln**







# **Entfernung kleiner Gebiete**





#### Regionenbasierte Segmentierung

- Homogenität im Inneren des Segments.
- Homogenitätsbedingung wird bei der Segmentierung ausgewertet.
- Homogenität ist relativ zu den Attributen eines Segments definiert.
- Globale Zusammenhänge über Multiskalenstrategie.



#### Multiskalenstrategie

- relative Kriterien für Homogenität können über unterschiedliche Entfernungen verschieden wirken.
- Segmentierung nach Multiskalenstrategie wertet Kriterien auf unterschiedlichen Skalierungen aus.
- Multiskalenstrategie
  - explizit auf einer Multiskalenrepräsentation
  - implizit in den Segmentierungsalgorithmus integriert.





## Gaußpyramide

- Das Originalbild wird fortlaufend durch eine "reduce"-Operation skaliert.
- Jedes Pixel der nächsthöheren Skalierungsstufe repräsentiert 4 Pixel der aktuellen Stufe.
- Vor der Reduktion wird der Frequenzumfang durch Filterung vermindert:

• Gaußfilter 
$$\frac{1}{16}$$
 (0.87 3.91 6.44 3.91 0.87)

• Binomialfilter  $\frac{1}{16} \begin{pmatrix} 1 & 4 & 6 & 4 & 1 \end{pmatrix}$ 



# Gaußpyramide



## **Expand-Operation**

- Um die vorherige Skalierungsstufe zu erzeugen, wird eine "expand"-Operation definiert.
- Pixel der neuen Skalierungsstufe werden durch Interpolation erzeugt:
  - Pixelorte, die auf beiden Skalierungsstufen existieren:
  - Pixelorte, die nur auf der vorherigen Skalierungsstufe existieren:

$$\frac{1}{8.18}$$
 (0.87 6.44 0.87) bzw.  $\frac{1}{8}$  (1 6 1)

$$\frac{1}{7.82}$$
(3.91 3.91) bzw.  $\frac{1}{8}$ (4 4)



#### **Expand-Operation**



Die Expand-Operation ist nicht verlustfrei

## **Laplace-Pyramide**

- Jede Skalierungsstufe s enthält nur den Unterschied  $f_s expand(reduce(f_s))$
- Redundanzfreie Repräsentation





#### **Region Merging**

- Initial wird jedes Pixel zu einem Segment erklärt.
- Zwei benachbarte Regionen werden zusammengefasst, wenn sie auch gemeinsam das Homogenitätskriterium erfüllen.
- Die Segmentierung ist beendet, wenn keine zwei Regionen mehr existieren, die zusammengefasst werden können.
- Zwischenergebnisse werden in einem Region Adjacency Graph (RAG) gespeichert.





#### **Region Merging**

"von Pixeln zu Regionen":

```
stopMerge = false
while not stopMerge do
  (r1,r2) = MaxSimilarity(region)
if sim(r1,r2)>T then
  region.merge(r1,r2)
else
  stopMerge=true
```

#### Ähnlichkeitskriterium:

z.B., maximaler Grauwertunterschied zwischen Pixeln von r1 und r2.

Region Labeling kann integriert werden.



#### **Region Merging**

- Homogenitätskriterium
  - Grauwertdifferenz innerhalb der Region.
  - Wahrscheinlichkeit, dass beide Regionen die gleichen Grauwertverteilungen haben.





## Region Merging und Multiskalenstrategie

#### Modellannahme:

Die gröbste Skalierungsstufe, auf der sich segmentierungsrelevante Eigenschaften manifestieren, ist bekannt.

#### Prozess:

- Region Merging auf grober Skalierung
- Übertragung des Resultats auf die n\u00e4chstfeinere Stufe.
- Alle Pixel, die zu Pixeln eines anderen Segments benachbart sind, werden nochmals geprüft.
- Verfahren endet, wenn die die feinste Skalierungsstufe erreicht ist

# Split & Merge-Algorithmus (Regionenbasiertes Verfahren)

- Startbedingung: Das gesamte Bild ist ein Segment.
- Ein Segment wird solange in 4 Untersegmente zerlegt, wie es ein gegebenes Homogenitätskriterium nicht erfüllt
- Benachbarte Segmente werden zusammenfasst, wenn sie auch nach der Zusammenfassung das das Homogenitätskriterium erfüllen.
- Resultat ist eine vollständige, überdeckungsfreie Zerlegung des Bildes (Segmentierung gemäß Definition)





# Zerlegungsschritt

- Zerlegung terminiert spätestens auf Pixelebene.
- Problem: Datenstruktur zur Dokumentation der aktuellen Zerlegung











Wert des Homogenitätsmerkmals

## Zerlegungsschritt (Quad-Tree Repräsentation)





# Merging

Quadtree wird traversiert und in einen RAG überführt.

Auf dem RAG wird ein Region Merging durchgeführt.





## **Split & Merge**

- Resultat: Zerlegung des gesamten Bilds in Regionen.
- Multiskalenstrategie ist integriert
- Homogenitätsmerkmale wie bei Region Merging
- Probleme (Region Merging und Split & Merge):
  - Merge-Schritt ist bei relativen Homogenitätsmerkmal nicht immer eindeutig.
  - Keine absoluten Merkmale möglich.











#### Was Sie heute gelernt haben sollten?

- Schwellenwertsegmentierung
- Region Labelling, Shadingkorrektur und Nachverarbeitung
- Gauß- und Laplacepyramide
- Region Merging
- Split and Merge

#### **Famous Last Question**

Wie könnte man diese Mikroorganismen segmentieren?

