Sprint- 2

Team ID	PNT2022TMID11481
Project Title	Smart Farmer -lot Enabled Smart Farming Application
Date	14.11.2022

IBM Watson and Python Integration:

By using Watson IoT Platform, you can collect connected device data and perform analytics on real-time data. The IBM Watson IoT Platform is a fully managed, Cloud-hosted service that provides device management capabilities as well as data collection and management in a time series format.

Your device or gateway

Start with your device and connect it with an IBM Cloud recipe.

MQTT and HTTP

Connect to the IBM Cloud using open, lightweight MQTT or HTTP.

IBM Watson® IoT Platform

Manage connected devices so your apps can access live and historical data.

REST and real-time APIs

Use highly-secure APIs to connect your apps with data from your devices.

Your application and analytics

Create analytic apps in the IBM Cloud, another cloud or your own servers.

Using the Device Created in IBM Watson:

Connected sign shows that it is connected and live

Python code execution:

Install this package: Python Client for IBM Watson IoT Platform

```
Python code:
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "47I2i8"
deviceType = "akk"
deviceId = "2005"
authMethod = "token"
authToken = "akk12345"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="switchon":
    print ("Switch is on")
  else:
    print ("Switch is off")
  #print(cmd)
try:
      deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
      deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
```

```
except Exception as e:
      print("Caught exception connecting device: %s" % str(e))
      sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event
of type "greeting" 10 times
deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
    temp=random.randint(0,100)
    Humid=random.randint(0,100)
    SoilMoisture=random.randint(0,100)
    data = { 'temp' : temp, 'Humid': Humid, "SoilMoisture": SoilMoisture}
    #print data
    def myOnPublishCallback():
       print ("Published Temperature = %s C" % temp, "Humidity = %s %%" %
Humid, "SoilMoisture = %s %%" % SoilMoisture, "to IBM Watson")
    success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on publish=myOnPublishCallback)
    if not success:
       print("Not connected to IoTF")
    time.sleep(1)
    deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
\underline{\text{File}} \quad \underline{\text{E}}\text{dit} \quad \underline{\text{Fo}}\text{rmat} \quad \underline{\text{R}}\text{un} \quad \underline{\text{O}}\text{ptions} \quad \underline{\text{W}}\text{indow} \quad \underline{\text{H}}\text{elp}
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "4712i8"
deviceType = "akk"
deviceId = "2005"
authMethod = "token"
authToken = "akk12345"
# Initialize GPIO
def mvCommandCallback(cmd):
      print("Command received: %s" % cmd.data['command'])
      status=cmd.data['command']
      if status=="switchon":
      print ("Switch is on")
else :
          print ("Switch is off")
      #print(cmd)
try:
            deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMetho
            deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
           print("Caught exception connecting device: %s" % str(e))
                                                                                                                                                    Ln: 12 Col: 21
```

```
BMsmartFarmer.py - C:\Users\arao1\Desktop\BMsmartFarmer.py (3.7.4)
<u>File Edit Format Run Options Window Help</u>
except Exception as e:
        print("Caught exception connecting device: %s" % str(e))
        sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type "greeting" 1
deviceCli.connect()
while True:
        #Get Sensor Data from DHT11
         temp=random.randint(0,100)
        Humid=random.randint(0,100)
        SoilMoisture=random.randint(0,100)
        data = { 'temp' : temp, 'Humid': Humid, "SoilMoisture": SoilMoisture}
        def myOnPublishCallback():
            print ("Published Temperature = %s C" % temp, "Humidity = %s %%" % Humid, "SoilMoisture = %s
         success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0, on_publish=myOnPublishCallback
        if not success:
            print("Not connected to IoTF")
         time.sleep(1)
        deviceCli.commandCallback = mvCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
- o ×
File Edit Format Run
print
sys.ex

File Edit Shell Debug Options Window Help
Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 19:29:22) [MSC v.1916 32 bit
(Intel)1 on win32
                          Type "help", "copyright", "credits" or "license()" for more information.
# Connect and
                                                                                                                                                                               eeting" 1
deviceCli.com
                                        ====== RESTART: C:\Users\arao1\Desktop\IBMsmartFarmer.py ==========
                          2022-11-14 00:45:30,852
                                                                        ibmiotf.device.Client
while True:
                          lly: d:4712i8:akk:2005
                         Published Temperature = 97 C Humidity = 23 % SoilMoisture = 80 % to IBM Watson Published Temperature = 25 C Humidity = 2 % SoilMoisture = 24 % to IBM Watson Published Temperature = 45 C Humidity = 42 % SoilMoisture = 34 % to IBM Watson Published Temperature = 35 C Humidity = 20 % SoilMoisture = 31 % to IBM Watson Published Temperature = 92 C Humidity = 98 % SoilMoisture = 25 % to IBM Watson Published Temperature = 29 C Humidity = 26 % SoilMoisture = 98 % to IBM Watson
               temp=
              Humid=
               SoilMo
              data
               #prin
               def m
                                                                                                                                                                               ure = %s
                     p:
                                                                                                                                                                               hCallback
               if no
                     p
               time.
               devic
# Disconnect
deviceCli.disc
                                                                                                                                                                                    Ln: 12 Col: 2
```

Recent Events in IBM Watson IoT Platform:

Boards in IBM Platform:

