# P425/1 PURE MATHEMATICS Paper 1 December 2022

3 hours



## (MEPSA) RESOURCEFULL ASSESSMENT

## **Uganda Advanced Certificate of Education**

#### **MOCK EXAMINATIONS**

#### **PURE MATHEMATICS**

# Paper 1

3 hours

#### **INSTRUCTIONS TO CANDIDATES:**

Answer all the eight questions in section A and any five from section B.

Any additional question (s) answered will not be marked

**All** necessary working **must** be shown clearly

Begin each answer on a fresh sheet of paper

Squared paper is provided

Silent non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

## **SECTION A: (40 MARKS)**

Answer all questions in this section.

- 1. Solve the equation:  $\frac{16^x 4^x}{4^x + 2^x} = 5(2^x) 8$  (05 marks)
- 2. Find the equation of the tangent to the circle  $(x-1)^2 + (y+2)^2 = 8$  at the point (3, -4).
- 3. Show that the identity  $\frac{\sin^2 5A \sin^2 A}{\cos^2 A \cos^2 3A} = 1 + 2\cos 4A \qquad (05 \text{ marks})$
- 4. The gradient function of a curve is given by  $2x + \frac{54}{x^2}$ . If the y coordinate of the stationary point of the curve is 7, find the equation of the curve.

  (05 marks)
- 5. Prove by mathematical induction that  $7^n + 4^n + 1$  is divisible by 6 for all positive integers n. (05 marks)
- **6.** Evaluate  $\int_{4}^{9} \frac{dx}{3 + \sqrt{x}}$  (05 marks)
- 7. If the parametric equations of a line are such that  $x = 2\lambda + 1$ ,  $y = \lambda + 3$  and  $z = \lambda + 2$ , where  $\lambda$  is a parameter, determine the;
  - (i) Cartesian equation of the line
  - (ii) Coordinates of the point where the line meets the plane x y + z = 4 (05 marks)
- 8. Solve the differential equation  $(x + 2) \frac{dy}{dx} 2y = 5$  given that y = 0 when x = 0 (05 marks)

# **SECTION B: (60 MARKS)**

Answer any five questions from this section. All questions carry equal marks.

- 9. Solve the equation  $2\cos x + 3\sin x = 1$  for  $0^{\circ} \le x \le 360^{\circ}$ , hence find the minimum and maximum values of  $\frac{1}{4 + 2\cos x + 3\sin x}$  distinguishing between them.
- 10. (a) The ages of a man and his three children are in a Geometric progression (G.P) whose common ratio is greater than one. The sum of their ages is 80. If the sum of the ages of the two younger children is 8 years. Find the age of the youngest child. (05 marks)
  - (b) Given the function  $y = e^x \sin x$ , show that  $\frac{d^2y}{dx^2} = 2\left(\frac{dy}{dx} y\right)$ . Hence find the first three non-vanishing terms of the maclaurin's expansion of  $e^x \sin x$ .
- 11. The curve  $y = x^3 + 8$  cuts the x and y axes at the points A and B respectively. The line AB meets the curve again at point C.
  - (a) Find the coordinates of A, B and C. (07 marks)
  - (b) If the area bounded by the chord BC and the curve is rotated completely about the y axis, calculate the volume generated. (05 marks)
- 12. (a) Given that  $Z = 2 \left[ \cos \frac{\pi}{4} + i \sin \frac{\pi}{3} \right]$ , express Z in modulus-argument form and then deduce the Cartesian form of  $Z^5$ . (06 marks)
  - (b) Find the equation of the locus  $\left| \frac{Z-3}{Z-i} \right| = 1$ , hence shade the region on the Argand diagram that represents |Z-3| < |Z-i| (06 marks)

Evaluate the following integrals; **13.** 

(a) 
$$\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{dx}{x(1-x)}$$
 (06 marks)  
(b) 
$$\int_{\frac{1}{4}}^{1.5} x^3 e^{x^2} dx$$
 (06 marks)

(b) 
$$\int_0^{1.5} x^3 e^{x^2} dx$$
 (06 marks)

- Calculate the distance of the point P(1, 2, 3) from the line **14.** (a)  $\frac{x}{2} = \frac{y+3}{4} = z$ (08 marks)
  - Find the scalar product equation of the plane containing the point (b) P (1, 2, 3) and the line  $\frac{x}{3} = \frac{y+3}{4} = z$  in (i) above. (04 marks)
- The parametric equations of a curve are given as  $y = \frac{3}{2}t^2 6t + 1$  and **15.**  $x = t^2 + t + 1$ .
  - Find  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  in terms of t. (04 marks)
  - Determine the nature of the stationary point of the curve. (04 marks) (b)
  - (c) Obtain the equation of the tangent to the curve at the point when t = 1(04 marks)
- Show that the normal to the rectangular hyperbola  $xy = c^2$  at the **16.** (a) point T  $\left(ct, \frac{c}{t}\right)$  is given by the equation  $t^3x = ty + c(t^4 - 1)$ (04 marks)
  - If the normal meets the hyperbola at S  $\left(cs, \frac{c}{s}\right)$ , show that (b)  $t^3s + 1 = 0.$ (03 marks)
  - Given that t = -2 and 15c = 16, determine the equation of a circle (c) with TS as diameter (05 marks)