

Prof. Flávio Pandur - FIPP / Unoeste

- Todo microcontrolador tem E/S digitais, mas há vários modelos também com entradas analógicas (saída analógica em geral é emulada por PWM)
 - Para essa implementação, deve haver internamente um ADC

- Com um ADC é possível realizar a leitura de diversos sensores analógicos, tais como:
 - > temperatura
 - pressão
 - luminosidade

 Um ADC possui diversas características de funcionamento, sendo que algumas delas são fundamentais se conhecer para utilizá-lo em diferentes aplicações

FAIXA DINÂMICA

- Faixa de tensão de entrada do sinal analógico a qual o ADC tem capacidade de trabalhar
- Caso o sinal de entrada não se adeque a essa faixa, é necessário circuitos de condicionamento do sinal antes de aplicá-lo ao ADC

FAIXA DINÂMICA

 O ideal é que o condicionamento seja de tal forma que possibilite a máxima utilização dentro da faixa dinâmica

RESOLUÇÃO

- Especificada pelo número de bits do ADC
- Determina a menor variação possível de sinal que o ADC reconhece

RESOLUÇÃO

 Esse valor mínimo é determinado pelo seguinte cálculo:

$$\frac{\text{FAIXA DINÂMICA}}{2^{n} - 1} \qquad \text{n = resolução do ADC}$$

RESOLUÇÃO

Exemplo: qual a menor variação de entrada reconhecida por um ADC com resolução de 3 bits e faixa dinâmica de 5 V ?

$$\frac{\text{FAIXA DINÂMICA}}{2^{n}-1} \implies \frac{5 \text{ V}}{2^{3}-1} \cong \textbf{0,714 V} \cong \textbf{714 mV}$$

RESOLUÇÃO

V	BINARIO
0	000
0,714	001
1,428	010
2,142	011
2,856	100
3,57	101
4,284	110
4,998	111

RESOLUÇÃO

Exemplo: qual a menor variação de entrada reconhecida por um ADC com resolução de 8 bits e faixa dinâmica de 5 V ?

$$\frac{\text{FAIXA DINÂMICA}}{2^{n}-1} \implies \frac{5 \text{ V}}{2^{8}-1} \cong \textbf{0,0196 V} \cong \textbf{19,6 mV}$$

RESOLUÇÃO

V	BINARIO
0	00000000
0,0196	00000001
0,0392	00000010
0,0588	00000011
0,0784	00000100
0,098	00000101
0,1176	00000110
0,1372	00000111

TEMPO DE CONVERSÃO

- Tempo necessário para se obter o valor na saída do ADC a partir do momento em que foi iniciado o processo de conversão
- Esse tempo depende da arquitetura do ADC e da sua resolução

TEMPO DE CONVERSÃO

- Em geral, quanto maior a resolução, maior o tempo de conversão
- Esse é um fator importante para evitar erros no processo de conversão do sinal

TEMPO DE CONVERSÃO

Prof. Flávio Pandur - FIPP / Unoeste

TEMPO DE CONVERSÃO

 O efeito observado nos casos b) e c) é chamado aliasing, erro decorrente da aplicação de um sinal com frequência maior que a taxa de conversão do ADC