КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Кафедра інтелектуальних та інформаційних систем

Лабораторна робота № 3 з дисципліни "Методи синтезу та оптимізації"

Виконав студент групи КН-31 Пашковський Павло Володимирович

Завдання №1. Побудова багатогранної множини заданої в канонічному вигляді в просторі E^{m-m} (n-m=3) на основі методу Гауса (повного виключення) та знаходження фундаментальної системи розв'язків (ФСР). **Умова:**

ax_i	$+(a-d)x_2$	$+(a-2d)x_3$	$+(a-d)x_4$	$+(a-2d)x_5$	=b	
$(b-e)x_1$	+ bx2	$+(b-2e)x_3$	$+(b-e)x_4$	$+(b-2e)x_5$	= C	
$(c-2f)x_1$	$+(c-f)x_2$	+ cx ₃	$+(c-2f)x_4$	$+(c-f)x_{5}$	= a], де a=3, b=3, c=6,

d=1, e=1, f=1.

Маємо:

Метод Гауса

Метод Гауса полягає в послідовному виключенні змінних і перетворенні системи рівнянь

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

до трикутного (східчастого) вигляду

$$\begin{cases} c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n = d_1; \\ c_{22}x_2 + \dots + c_{2n}x_n = d_2; \\ \dots \\ c_{2n}x_n = d_n, c_{3n} = 1, (k = 1, 2, \dots, n). \end{cases}$$

Хід вирішення:

Для вирішення систему побудуємо розширену матрицю:

Для зручності поміняємо рядки місцями:

4	5	6	4	4	3
3	2	1	2	1	3
2	3	1	2	1	6

Помножимо другий рядок на -2/3 і додамо до третього.

Помножимо перший рядок на -3/4 і додамо до другого.

4	5	6	4	4	3
0	-7/4	-7 _{/2}	-1	-2	3/4
0	5/3	1/3	2/3	1/3	4

Помножимо другий рядок на 20/21 і додамо до третього.

4	5	6	4	4	3
0	-7/4	-7 _{/2}	-1	-2	3/4
0	0	-3	-2/7	-11/7	33/7

Для отримання одиниць на головній діагоналі, ділимо кожний рядок на відповідний елемент головної діагоналі.

1	5/4	3/2	1	1	3/4
0	1	2	4/7	8/7	-3/7
0	0	1	2/21	11/21	-11/7

Тепер початкову систему можна записати наступним чином:

$$x1 = 3/4 - (5/4x2 + 3/2x3 + x4 + x5)$$

$$x2 = -3/7 - (2x3 + 4/7x4 + 8/7x5)$$

$$x3 = -11/7 - (2/21x4 + 11/21x5)$$

Необхідно прийняти змінні x4 та x5 в якості вільних змінних, щоб виразити через них інші змінні.

Для отримання частного рішення прирівнюємо x4 та x5 до нуля. Маємо:

$$x3 = -11/7$$

$$x^2 = -3/7 - 2*(-11/7) - 4/7*0 - 8/7*0 = 19/7$$

$$x1 = 3/4 - 5/4*19/7 - 3/2*(-11/7) - 1*0 - 1*0 = -2/7$$

Завдання №2. Геометрична інтерпретація задачі лінійного програмування заданої в канонічному вигляді в просторі E^{n-m} (n-m=2).

Беремо дану систему з попереднього завдання:

x1 = -5 - 2/21x4 - 53/21x5

x2=19/7+16/21x4+46/21x5

x3=-11/7-2/21x4-11/21x5

Обмеження:

 $-2/21x4-53/21x5 \le -5$

6/21x4+46/21x5<=19/7

 $-2/21x4-11/21x5 \le -11/7$

Завдання №3. Задача лінійного програмування: модифікований симплекс-метод, двоїстий симплекс-метод, як основа побудови алгоритмів розв'язання задач дискретної оптимізації.

Модифікований симплекс-метод

ax_1	+ bx2	+ cx ₃	$+ dx_4$	+ ex ₅	Max	
ax_1	$+$ $(a-d)x_2$	$+$ $(a-2d)x_3$	$+(a-d)x_4$	$+$ $(a-2d)x_5$	= b	1
$(b-e)x_1$	+ bx2	$+ (b-2e)x_3$	+ (b-e)x ₄	$+$ $(b-2e)x_5$	= c	2
$(c-2f)x_1$	$+$ $(c-f)x_2$	+ cx ₃	$+$ $(c-2f)x_4$	$+(c-f)x_5$	= a	3
$x_1 \ge 0$	$x_2 \ge 0$	$x_3 \ge 0$	$x_4 \ge 0$	$x_5 \ge 0$		T

, де a=3, b=3, c=6, d=1, e=1, f=1.

Маємо:

$$3x1+3x2+6x3+x4+x5 \rightarrow max$$

 $3x1+2x2+x3+2x4+x5=3$
 $2x1+3x2+x3+2x4+x5=6$
 $4x1+5x2+6x3+4x4+4x5=3$
 $x1, x2, x3, x4, x5>=0$

Розширена матриця:

3	2	1	2	1	3
2	3	1	2	1	6
4	5	6	4	4	3

Приведемо систему до одиничної матриці методом жораднівських перетворень. В якості базової змінної оберемо х3. Вирішальний ел. =1. Отримаємо нову матрицю.

3	2	1	2	1	3
-1	1	0	0	0	3
-14	-7	0	-8	-2	-15

В якості базової змінної оберемо x4. Вирішальний ел. =-8. Отримаємо нову матрицю.

-1 _{/2}	1/4	1	0	1/2	-3/4
-1	1	0	0	0	3
7/4	7/8	0	1	1/4	15/8

В якості базової змінної оберемо x2. Вирішальний ел. =1. Отримаємо нову матрицю.

-1/4	0	1	0	1/2	-3 _{/2}
-1	1	0	0	0	3
21/8	0	0	1	1/4	-3/4

Оскільки система містить одиничну матрицю, то в якості базисних змінних приймемо x2, x3, x4.

Виразимо базисні змінні через інші:

$$x3 = \frac{1}{4}x1 - \frac{1}{2}x5 - \frac{11}{2}$$

$$x2 = x1 + 3$$

$$x4 = -21/8x1 - 1/4x5 - \frac{3}{4}$$

Підставимо в цільову функцію:

$$F(X) = 39/8x1-9/4x5-3/4$$

Серед вільних членів ϵ від'ємні значення, отже отриманий базисний план не ϵ оптимальним.

Замість змінної х3 вводимо змінну х1.

Виповнимо зміни симплекс-таблиці:

Базис	В	Х1	X ₂	Х3	X ₄	X ₅
X ₁	6	1	0	-4	0	-2
x ₂	9	0	1	-4	0	-2
X ₄	-33/2	0	0	21/2	1	11/2
F(X0)	-30	0	0	39/2	0	15/2

Виразимо базисні змінні через інші:

$$x1 = 4x3 + 2x5 + 6$$

$$x2 = 4x3 + 2x5 + 9$$

$$x4 = -21/2x3 - 11/2x5 - 161/2$$

Підставимо їх в цільову функцію.

$$F(X) = 39/2x3+15/2x5+281/2$$

Вважаємо, що вільні змінні =0 і отримаємо перший опорний план.

$$X0 = (6,9,0,-161/2,0)$$

Базисне рішення вважається допустимим, якщо воно невід'ємне. Оскільки в початковому плані є від'ємні значення, то перейдемо до першого кроку модифікованого симплекс-методу.

Маємо:

Матриця коефіцієнтів А = аіј:

1	0	-4	0	-2
0	1	-4	0	-2
0	0	21/2	1	11/2

Матриця b:

Базисні змінні:

$$X=(1, 2, 4)$$

Обираємо з матриці А стовпці 1, 2, 4 та формуємо матрицю В.

	1	0	0
	0	1	0
	0	0	1

Матриця с.

$$c = (0, 0, -191/2, 0, -71/2)$$

Формуємо з матриці С дві матриці: cB з базисних компонентів та cN з небазисних.

$$cB(1,2,4) = (0, 0, 0)$$

$$cN(3,5) = (-191/2, -71/2)$$

Матриця N формується з матриці A:

$$-4$$
 -2
 $N_{3,5}=$ -4 -2
 $21_{1/2}$ $11_{1/2}$

Обчислимо $B^{(-1)}$:

$$B^{-1} = \frac{1}{1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Множимо вектор cB на $B^{(-1)}$, отримаємо вектор u.

$$u = cB*B^{(-1)} = (0, 0, 0)$$

Множимо $B^{(-1)}$ на вектор b.

Множимо вектор и на матрицю N.

$$uN = (0, 0)$$

$$c*3,5 = cN - uN = (-191/2, -71/2)$$

Звідси номер направляючого стовпчика.

$$(a_{11} \dots a_{m1}) = -4$$

$$21_{/2}$$

Множимо матрицю $B^{(-1)}$ на вектор (a11,...,am1).

Отримаємо: F(x)=28,5.