格

Discrete Mathematics

黄正华

数学与统计学院 武汉大学

December 3, 2012

1 / 103

主要内容

- 格 (Lattice): 一个偏序集, 其任意两个元素都有最小上界和最大下界.
- 特殊的格: 分配格, 有补格.
- 布尔代数: 有补分配格.

本章概念关系图

3 / 103

- 1 格的定义
- 2 子格与格同态
- ③ 几种特殊的格
- 4 布尔代数
- 5 有限布尔代数的表示定理

4 / 103

- 1 格的定义
- 2 子格与格同态
- ③ 几种特殊的格
- 4 布尔代数
- 5 有限布尔代数的表示定理

本节主要内容:

- 格的两种定义;
- ❷ 格的基本性质;
- ◎ 格与代数系统间的关系.

回顾:

Definition 1.1 (偏序)

如果集合 A 上的关系 ≼ 具有

- 自反性,
- ② 反对称性,
- ◎ 传递性.

则称关系 \preccurlyeq 为 A 上偏序关系. $\langle A, \preccurlyeq \rangle$ 称为偏序集.

格

Example 1.2

设 $X = \{1, 2, 3, 4, 6, 12\}, Y = \{2, 3, 6, 12, 24, 36\}.$ 集合 X 和 Y 关于整除关系" | "构成两个偏序集: $\langle X, | \rangle, \langle Y, | \rangle.$

Example 1.2

设 $X = \{1, 2, 3, 4, 6, 12\}, Y = \{2, 3, 6, 12, 24, 36\}.$ 集合 X 和 Y 关于整除关系" | "构成两个偏序集: $\langle X, | \rangle, \langle Y, | \rangle$.

- ⟨X, |⟩ 中 "每两个元素构成的集合"都有最大下界和最小上界.
- ⟨Y, |⟩ 无此特点.

格的定义

Definition 1.3 (格)

如果偏序集 $\langle A, \preccurlyeq \rangle$ 中任意两个元素都有最小上界和最大下界,则称 $\langle A, \preccurlyeq \rangle$ 是格(lattice).

8 / 103

格的定义

Definition 1.3 (格)

如果偏序集 $\langle A, \preccurlyeq \rangle$ 中任意两个元素都有最小上界和最大下界,则称 $\langle A, \preccurlyeq \rangle$ 是格(lattice).

lattice: 木格, 窗格.

格的定义

Definition 1.3 (格)

如果偏序集 $\langle A, \preccurlyeq \rangle$ 中任意两个元素都有最小上界和最大下界,则称 $\langle A, \preccurlyeq \rangle$ 是格(lattice).

a 和 b 的最小上界: lub{a, b}. (least upper bound)

a 和 b 的最大下界: glb $\{a, b\}$. (greatest lower bound)

8 / 103

格的典型例子

Example 1.4

偏序集 $\langle \mathcal{P}(S), \subseteq \rangle$ 是格:

任意 $S_1, S_2 \in \mathcal{P}(S)$, 它们的最大下界为 $S_1 \cap S_2$; 最小上界为 $S_1 \cup S_2$.

格的典型例子

Example 1.4

偏序集 $\langle \mathcal{P}(S), \subseteq \rangle$ 是格:

任意 $S_1, S_2 \in \mathcal{P}(S)$, 它们的最大下界为 $S_1 \cap S_2$; 最小上界为 $S_1 \cup S_2$.

这是格的一个典型例子. 关于格的很多性质, 都可以借助这个例子理解.

格的典型例子

Example 1.4

偏序集 $\langle \mathcal{P}(S), \subseteq \rangle$ 是格:

任意 $S_1, S_2 \in \mathcal{P}(S)$, 它们的最大下界为 $S_1 \cap S_2$; 最小上界为 $S_1 \cup S_2$.

EP

这是格的一个典型例子. 关于格的很多性质, 都可以借助这个例子理解.

Example 1.5

偏序集⟨ℤ+, |⟩ 是格:

Z+ 中任意两个元素的最小公倍数、最大公约数就是这两个元素的最小上界和 最大下界.

"任意两个元素有最小上界、最大下界"

→ "任意有限个元素有最小上界、最大下界".

"任意两个元素有最小上界、最大下界"

⇔ "任意有限个元素有最小上界、最大下界".

Definition 1.6

偏序集 $\langle A, \preccurlyeq \rangle$ 是一个格, 当且仅当 A 中任意非空有限子集 S 有最小上界、最大下界.

"任意两个元素有最小上界、最大下界"

⇔ "任意有限个元素有最小上界、最大下界".

Definition 1.6

偏序集 $\langle A, \preccurlyeq \rangle$ 是一个格, 当且仅当 A 中任意非空有限子集 S 有最小上界、最大下界.

其中要求子集元素个数"有限"是重要的,不能是"任意的非空子集".

"任意两个元素有最小上界、最大下界"

⇔ "任意有限个元素有最小上界、最大下界".

Definition 1.6

偏序集 $\langle A, \preccurlyeq \rangle$ 是一个格, 当且仅当 A 中任意非空有限子集 S 有最小上界、最大下界.

其中要求子集元素个数"有限"是重要的,不能是"任意的非空子集".

比如 $\langle \mathbb{N}, \leq \rangle$ 是一个格, 但不是任意的非空子集都有最小上界、最大下界 —— \mathbb{N} 就是它自己的一个子集, 它没有最小上界.

设 $\langle A, \preccurlyeq \rangle$ 是格, 在 A 上定义两个二元运算 \vee 和 \wedge : 对任意 $a, b \in A$,

$$a \lor b \triangleq \text{lub}\{a, b\},\tag{1}$$

$$a \wedge b \triangleq \text{glb}\{a, b\}.$$
 (2)

则二元运算 \vee 和 \wedge 分别称为<mark>并运算和交运算</mark>; 称 $\langle A, \vee, \wedge \rangle$ 是格 $\langle A, \prec \rangle$ 所诱导的代数系统.

黄正华 (武汉大学) 格 December 3, 2012 11 / 103

设 $\langle A, \preccurlyeq \rangle$ 是格, 在 A 上定义两个二元运算 \vee 和 \wedge : 对任意 $a, b \in A$,

$$a \lor b \triangleq \text{lub}\{a, b\},\tag{1}$$

(2)

$$a \wedge b \triangleq \text{glb}\{a, b\}.$$

则二元运算 \lor 和 \land 分别称为并运算和交运算; 称 $\langle A, \lor, \land \rangle$ 是格 $\langle A, \preccurlyeq \rangle$ 所诱导的代数系统.

Example 1.8

在格 $\langle \mathcal{P}(S), \subseteq \rangle$ 诱导的代数系统中, 运算 \vee 和 \wedge 就是普通的并、交运算: 任意 $S_1, S_2 \in \mathcal{P}(S)$, 有

$$S_1 \vee S_2 = S_1 \cup S_2, \quad S_1 \wedge S_2 = S_1 \cap S_2.$$

 黄正华 (武汉大学)
 格
 December 3, 2012

设 $\langle A, \preccurlyeq \rangle$ 是格, 在 A 上定义两个二元运算 \vee 和 \wedge : 对任意 $a, b \in A$,

$$a \lor b \triangleq \text{lub}\{a, b\},\tag{1}$$

(2)

$$a \wedge b \triangleq \text{glb}\{a, b\}.$$

则二元运算 \vee 和 \wedge 分别称为<mark>并运算和交运算</mark>; 称 $\langle A, \vee, \wedge \rangle$ 是格 $\langle A, \preccurlyeq \rangle$ 所诱导的代数系统.

Example 1.8

在格 $\langle \mathbb{Z}, \leqslant \rangle$ 或 $\langle \mathbb{N}, \leqslant \rangle$ 诱导的代数系统中, 运算 \vee 和 \wedge 就是普通的取大、取小运算. 比如, 任意的 $a,b\in \mathbb{N}$, 有

$$a \lor b = \max\{a, b\}, \quad a \land b = \min\{a, b\}.$$

设 $\langle A, \preccurlyeq \rangle$ 是格, 在 A 上定义两个二元运算 \vee 和 \wedge : 对任意 $a, b \in A$,

$$a \lor b \triangleq \text{lub}\{a, b\},\tag{1}$$

$$a \wedge b \triangleq \text{glb}\{a, b\}.$$
 (2)

则二元运算 \lor 和 \land 分别称为<mark>并运算和交运算</mark>; 称 $\langle A, \lor, \land \rangle$ 是格 $\langle A, \preccurlyeq \rangle$ 所诱导的代数系统.

Example 1.8

对于格 $\langle \mathbb{Z}^+, | \rangle$ 来说, 其诱导的代数系统 $\langle \mathbb{Z}^+, \vee, \wedge \rangle$ 中的二元运算 \vee 和 \wedge 分别为: 对任意的 $a, b \in \mathbb{Z}^+$ 有

$$a \vee b = LCM(a, b),$$

(least common mutiple, 最小公倍数)

$$a \wedge b = GCD(a, b).$$

(greatest common divisor, 最大公约数)

设 $\langle A, \preccurlyeq \rangle$ 是格, 在 A 上定义两个二元运算 \vee 和 \wedge : 对任意 $a, b \in A$,

$$a \lor b \triangleq \text{lub}\{a, b\},$$
 (1)

$$a \wedge b \triangleq \text{glb}\{a, b\}.$$
 (2)

则二元运算 \lor 和 \land 分别称为<mark>并运算和交运算</mark>; 称 $\langle A, \lor, \land \rangle$ 是格 $\langle A, \preccurlyeq \rangle$ 所诱导的代数系统.

这个定义表明, 从格出发, 可以构造一个代数系统. 这也说明了格这类特殊偏序集的重要性.

黄正华 (武汉大学)

设 $\langle A, \preccurlyeq \rangle$ 是偏序集, 用 \triangleright 表示偏序关系 \preccurlyeq 的<mark>逆关系</mark>, 则

• ⟨*A*, ≽⟩ 也是偏序集.

设 $\langle A, \preccurlyeq \rangle$ 是偏序集, 用 \triangleright 表示偏序关系 \preccurlyeq 的<mark>逆关系</mark>, 则

- ⟨*A*,≽⟩ 也是偏序集.
- $\langle A, \preccurlyeq \rangle$ 与 $\langle A, \succcurlyeq \rangle$ 的哈斯图是互为颠倒的.

设 $\langle A, \preccurlyeq \rangle$ 是偏序集, 用 \triangleright 表示偏序关系 \preccurlyeq 的<mark>逆关系</mark>, 则

- ⟨A,≽⟩ 也是偏序集.
- $\langle A, \preccurlyeq \rangle$ 与 $\langle A, \succ \rangle$ 的哈斯图是互为颠倒的.

设 $\langle A, \preccurlyeq \rangle$ 是偏序集, 用 \triangleright 表示偏序关系 \preccurlyeq 的<mark>逆关系</mark>, 则

- ⟨A,≽⟩ 也是偏序集.
- $\langle A, \prec \rangle$ 与 $\langle A, \succ \rangle$ 的哈斯图是互为颠倒的.
- 如果其中一个是格,则另一个也是格.

设 $\langle A, \preccurlyeq \rangle$ 是偏序集, 用 \triangleright 表示偏序关系 \preccurlyeq 的<mark>逆关系</mark>, 则

- ⟨A,≽⟩ 也是偏序集.
- $\langle A, \preccurlyeq \rangle$ 与 $\langle A, \succcurlyeq \rangle$ 的哈斯图是互为颠倒的.
- 如果其中一个是格,则另一个也是格.
- 由格 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统的 $\overset{\bullet}{\mathbf{H}}$ (交) 运算, 正好是由格 $\langle A, \succcurlyeq \rangle$ 诱导的代数系统的 $\overset{\bullet}{\mathbf{V}}$ (并) 运算.

黄正华 (武汉大学) 格 December 3, 2012 12 / 10

设 $\langle A, \preccurlyeq \rangle$ 是偏序集,用 表示偏序关系 的<mark>逆关系</mark>,则

- ⟨A,≽⟩ 也是偏序集.
- $\langle A, \preccurlyeq \rangle$ 与 $\langle A, \succcurlyeq \rangle$ 的哈斯图是互为颠倒的.
- 如果其中一个是格,则另一个也是格.
- 由格 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统的 $\overset{\bullet}{\mathbf{H}}$ (交) 运算, 正好是由格 $\langle A, \succcurlyeq \rangle$ 诱导的代数系统的 $\overset{\bullet}{\mathbf{V}}$ (并) 运算.

Theorem 1.8 (对偶原理)

设 P 是对任意格都为真的命题, 将 P 中的 \preccurlyeq , \lor , \land 分别换成 \succcurlyeq , \land , \lor 得命题 Q, 则 Q 对任意格也是真的命题. (Q 称为 P 的对偶命题.)

黄正华 (武汉大学) 格 December 3, 2012 12 / :

Theorem 1.9

设 $\langle A, \preccurlyeq \rangle$ 是格, 对任意 $a, b \in A$, 有

$$a \preccurlyeq a \lor b, \qquad b \preccurlyeq a \lor b,$$

$$a \wedge b \preccurlyeq a, \qquad a \wedge b \preccurlyeq b.$$

Theorem 1.9

设 $\langle A, \preccurlyeq \rangle$ 是格, 对任意 $a, b \in A$, 有

$$a \preccurlyeq a \lor b, \qquad b \preccurlyeq a \lor b,$$

$$a \wedge b \preccurlyeq a, \qquad a \wedge b \preccurlyeq b.$$

分析 由 ∨, ∧ 的定义即得上述结论. 如图:

Theorem 1.9

设 $\langle A, \preccurlyeq \rangle$ 是格,对任意 $a, b \in A$,有

$$a \preccurlyeq a \lor b, \qquad b \preccurlyeq a \lor b,$$

$$a \wedge b \leq a, \qquad a \wedge b \leq b.$$

证 因为 $a \lor b$ 是 a 和 b 的 (最小) 上界, 所以

$$a \preccurlyeq a \lor b, \qquad b \preccurlyeq a \lor b.$$

13 / 103

Theorem 1.9

设 $\langle A, \preccurlyeq \rangle$ 是格, 对任意 $a, b \in A$, 有

$$a \preccurlyeq a \lor b, \qquad b \preccurlyeq a \lor b,$$

$$b \preccurlyeq a \lor b$$

$$a \wedge b \leq a$$

$$a \wedge b \leq b$$
.

证 因为 $a \lor b$ 是 a 和 b 的 (最小) 上界, 所以

$$a \preccurlyeq a \lor b$$
,

$$a \preccurlyeq a \lor b$$
, $b \preccurlyeq a \lor b$.

由对偶原理,即得

$$a \wedge b \leq a$$
, $a \wedge b \leq b$.

$$a \wedge b \leq b$$
.

Theorem 1.10

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c, d \in A$, 若 $a \preccurlyeq b, c \preccurlyeq d$, 则

$$a \lor c \preccurlyeq b \lor d,$$
 (3)

$$a \wedge c \leq b \wedge d.$$
 (4)

Theorem 1.10

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c, d \in A$, 若 $a \preccurlyeq b, c \preccurlyeq d$, 则

$$a \lor c \preccurlyeq b \lor d,$$
 (3)

$$a \wedge c \leq b \wedge d.$$
 (4)

证 已知 $a \leq b$, $c \leq d$, 又

$$b \preccurlyeq b \lor d, \quad d \preccurlyeq b \lor d,$$

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c, d \in A$, 若 $a \preccurlyeq b, c \preccurlyeq d$, 则

$$a \lor c \preccurlyeq b \lor d,$$
 (3)

$$a \wedge c \leq b \wedge d.$$
 (4)

证 已知 $a \leq b$, $c \leq d$, 又

$$b \preccurlyeq b \lor d, \quad d \preccurlyeq b \lor d,$$

由传递性可得

$$a \preccurlyeq b \lor d, \quad c \preccurlyeq b \lor d.$$

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c, d \in A$, 若 $a \preccurlyeq b, c \preccurlyeq d$, 则

$$a \lor c \preccurlyeq b \lor d,$$
 (3)

$$a \wedge c \leq b \wedge d.$$
 (4)

证 己知 $a \leq b, c \leq d,$ 又

$$b \preccurlyeq b \lor d, \quad d \preccurlyeq b \lor d,$$

由传递性可得

$$a \preccurlyeq b \lor d$$
, $c \preccurlyeq b \lor d$.

这说明 $b \lor d$ 是 a 和 c 的一个上界,

14 / 103

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c, d \in A$, 若 $a \preccurlyeq b, c \preccurlyeq d$, 则

$$a \lor c \preccurlyeq b \lor d,$$
 (3)

$$a \wedge c \leq b \wedge d.$$
 (4)

证 已知 $a \leq b$, $c \leq d$, 又

$$b \preccurlyeq b \lor d, \quad d \preccurlyeq b \lor d,$$

由传递性可得

$$a \preccurlyeq b \lor d$$
, $c \preccurlyeq b \lor d$.

这说明 $b \lor d$ 是 a 和 c 的一个上界, 但 $a \lor c$ 是 a 和 c 的最小上界,

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c, d \in A$, 若 $a \preccurlyeq b, c \preccurlyeq d$, 则

$$a \lor c \preccurlyeq b \lor d,$$
 (3)

$$a \wedge c \leq b \wedge d.$$
 (4)

证 己知 $a \leq b, c \leq d,$ 又

$$b \preccurlyeq b \lor d, \quad d \preccurlyeq b \lor d,$$

由传递性可得

$$a \preccurlyeq b \lor d$$
, $c \preccurlyeq b \lor d$.

这说明 $b \lor d$ 是 a 和 c 的一个上界, 但 $a \lor c$ 是 a 和 c 的最小上界, 所以 $a \lor c \preccurlyeq b \lor d.$

黄正华 (武汉大学)

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c, d \in A$, 若 $a \preccurlyeq b, c \preccurlyeq d$, 则

$$a \lor c \preccurlyeq b \lor d,$$
 (3)

$$a \wedge c \leq b \wedge d$$
.

(4)

证 已知 $a \leq b$, $c \leq d$, 又

$$b \preccurlyeq b \lor d, \quad d \preccurlyeq b \lor d,$$

由传递性可得

$$a \leq b \vee d$$
, $c \leq b \vee d$.

这说明 $b \lor d$ 是 a 和 c 的一个上界, 但 $a \lor c$ 是 a 和 c 的最小上界, 所以

$$a \lor c \preccurlyeq b \lor d$$
.

类似地可以证明

$$a \wedge c \leq b \wedge d$$
.

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c \in A$, 若 $b \preccurlyeq c$, 则

 $a \lor b \preccurlyeq a \lor c$, $a \land b \preccurlyeq a \land c$.

这个性质称为格的保序性.

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c \in A$, 若 $b \preccurlyeq c$, 则

 $a \lor b \preccurlyeq a \lor c$, $a \land b \preccurlyeq a \land c$.

这个性质称为格的保序性.

证 已知 $b \leq c$,

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c \in A$, 若 $b \preccurlyeq c$, 则

 $a \lor b \preccurlyeq a \lor c$, $a \land b \preccurlyeq a \land c$.

这个性质称为格的保序性.

证 已知 $b \leq c$, 又 $a \leq a$,

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c \in A$, 若 $b \preccurlyeq c$, 则

$$a \lor b \preccurlyeq a \lor c$$
, $a \land b \preccurlyeq a \land c$.

这个性质称为格的保序性.

证 已知 $b \leq c$, 又 $a \leq a$, 所以

$$a \vee b \preccurlyeq a \vee c.$$

设 $\langle A, \preccurlyeq \rangle$ 是格, $a, b, c \in A$, 若 $b \preccurlyeq c$, 则

$$a \lor b \leq a \lor c$$
, $a \land b \leq a \land c$.

$$a \wedge b \preccurlyeq a \wedge c$$

这个性质称为格的保序性.

已知 $b \leq c$, 又 $a \leq a$, 所以

$$a \lor b \preccurlyeq a \lor c$$
.

同理有

$$a \wedge b \preccurlyeq a \wedge c.$$

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \preccurlyeq b \iff a \land b = a \iff a \lor b = b.$$

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \preccurlyeq b \iff a \land b = a \iff a \lor b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \preccurlyeq b \iff a \land b = a \iff a \lor b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $a \preccurlyeq b$.

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \leq b \iff a \wedge b = a \iff a \vee b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $a \prec b$. 又 $a \prec a$, 则 a 是 a 和 b 的下界, 而 $a \land b$ 是最大下界, 得

 黄正华 (武汉大学)
 格
 December 3, 2012
 16 / 103

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \leq b \iff a \wedge b = a \iff a \vee b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $a \leq b$. 又 $a \leq a$, 则 a 是 a 和 b 的下界, 而 $a \wedge b$ 是最大下界, 得

 $a \preccurlyeq a \land b$.

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \leq b \iff a \wedge b = a \iff a \vee b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $a \prec b$. 又 $a \prec a$, 则 a 是 a 和 b 的下界, 而 $a \land b$ 是最大下界, 得

$$a \preccurlyeq a \land b$$
.

又

$$a \wedge b \preccurlyeq a$$
,

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \leq b \iff a \wedge b = a \iff a \vee b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $a \prec b$. 又 $a \prec a$, 则 a 是 a 和 b 的下界, 而 $a \land b$ 是最大下界, 得

 $a \preccurlyeq a \land b$.

又

 $a \wedge b \leq a$,

所以

 $a \wedge b = a$.

(反对称性)

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \preccurlyeq b \iff a \land b = a \iff a \lor b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $a \prec b$. 又 $a \prec a$, 则 a 是 a 和 b 的下界, 而 $a \land b$ 是最大下界, 得

 $a \preccurlyeq a \land b$.

又

 $a \wedge b \leq a$,

所以

 $a \wedge b = a$.

(反对称性)

反之, 假定 $a \wedge b = a$, 又 $a \wedge b \leq b$, 所以

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \preccurlyeq b \iff a \land b = a \iff a \lor b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $a \prec b$. 又 $a \prec a$, 则 a 是 a 和 b 的下界, 而 $a \land b$ 是最大下界, 得

 $a \preccurlyeq a \land b$.

又

 $a \wedge b \leq a$,

所以

 $a \wedge b = a$.

(反对称性)

反之, 假定 $a \wedge b = a$, 又 $a \wedge b \leq b$, 所以

 $a \preccurlyeq b$.

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \leq b \iff a \wedge b = a \iff a \vee b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $a \prec b$. 又 $a \prec a$, 则 a 是 a 和 b 的下界, 而 $a \land b$ 是最大下界, 得

 $a \preccurlyeq a \land b$.

又

 $a \wedge b \leq a$,

所以

 $a \wedge b = a$.

(反对称性)

反之, 假定 $a \wedge b = a$, 又 $a \wedge b \leq b$, 所以

 $a \preccurlyeq b$.

因此, $a \leq b \iff a \wedge b$.

设 $\langle A, \prec \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \preccurlyeq b \iff a \land b = a \iff a \lor b = b.$$

证 先证明 $a \leq b \iff a \wedge b = a$.

设 $a \leq b$. 又 $a \leq a$, 则 $a \in a$ 和 b 的下界, 而 $a \wedge b$ 是最大下界, 得

 $a \leq a \wedge b$.

又

 $a \wedge b \leq a$

所以

 $a \wedge b = a$.

(反对称性)

反之, 假定 $a \wedge b = a$, 又 $a \wedge b \leq b$, 所以

 $a \preccurlyeq b$.

因此, $a \leq b \iff a \wedge b$. 其他的证明类似.

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 那么, 对于任意的 $a, b \in A$, 有

$$a \leq b \iff a \wedge b = a \iff a \vee b = b.$$

此时的哈斯图为:

"小∧大=小", "小∨大=大"

Theorem 1.13

设 $\langle A, \preccurlyeq \rangle$ 是格, 由格 $\langle A, \preccurlyeq \rangle$ 所诱导的代数系统为 $\langle A, \lor, \land \rangle$, 则对任意的 $a, b, c, d \in A$, 有

①
$$\left. \begin{array}{ll} a \lor b = b \lor a, \\ a \land b = b \land a. \end{array} \right\} \left($$
交换律 $\right)$

格

Theorem 1.13

设 $\langle A, \preccurlyeq \rangle$ 是格, 由格 $\langle A, \preccurlyeq \rangle$ 所诱导的代数系统为 $\langle A, \lor, \land \rangle$, 则对任意的 $a, b, c, d \in A$, 有

- ① $\left. \begin{array}{ll} a \lor b = b \lor a, \\ a \land b = b \land a. \end{array} \right\} \, ($ 交换律)
- 2 $a \lor (b \lor c) = (a \lor b) \lor c,$ $a \land (b \land c) = (a \land b) \land c.$ } (结合律)

格

Theorem 1.13

设 $\langle A, \prec \rangle$ 是格, 由格 $\langle A, \prec \rangle$ 所诱导的代数系统为 $\langle A, \lor, \land \rangle$, 则对任意 的 $a, b, c, d \in A$, 有

- ① $\left. \begin{array}{ll} a \lor b = b \lor a, \\ a \land b = b \land a. \end{array} \right\} \left(\stackrel{\circ}{\nabla} 换律 \right)$
- ② $a \lor (b \lor c) = (a \lor b) \lor c,$ $a \land (b \land c) = (a \land b) \land c.$ } (结合律)
 ③ $a \lor a = a,$ $a \land a = a.$ } (幂等律)

Theorem 1.13

设 $\langle A, \preccurlyeq \rangle$ 是格, 由格 $\langle A, \preccurlyeq \rangle$ 所诱导的代数系统为 $\langle A, \lor, \land \rangle$, 则对任意的 $a, b, c, d \in A$, 有

- ① $\left. \begin{array}{ll} a \lor b = b \lor a, \\ a \land b = b \land a. \end{array} \right\} \left($ 交换律 $\right)$
- ② $a \lor (b \lor c) = (a \lor b) \lor c,$ $a \land (b \land c) = (a \land b) \land c.$ (结合律)
- ③ $a \lor a = a,$ $a \land a = a.$ $\left\{\begin{array}{c} a \lor a = a, \\ a \land a = a. \end{array}\right\}$
- $\left\{ egin{array}{ll} & a \lor (a \land b) = a, \\ & a \land (a \lor b) = a. \end{array}
 ight\} \left(% \psi \right)$

分析 由偏序的反对称性, 可证下列两式同时成立:

$$(a \lor b) \lor c \preccurlyeq a \lor (b \lor c), \tag{5}$$

$$a \lor (b \lor c) \preccurlyeq (a \lor b) \lor c. \tag{6}$$

证 因为 $b \leq b \vee c$, 由保序性得

$$a \lor b \preccurlyeq a \lor (b \lor c).$$

反复使用结论 " $x \leq x \vee y$, $y \leq x \vee y$ ", 有

$$c \preccurlyeq b \lor c \preccurlyeq a \lor (b \lor c).$$

格

这说明 $a \lor (b \lor c)$ 是 $a \lor b$ 和 c 的一个上界.

证 因为 $b \leq b \vee c$, 由保序性得

$$a \lor b \preccurlyeq a \lor (b \lor c).$$

反复使用结论 " $x \leq x \vee y$, $y \leq x \vee y$ ", 有

$$c \preccurlyeq b \lor c \preccurlyeq a \lor (b \lor c).$$

这说明 $a \lor (b \lor c)$ 是 $a \lor b$ 和 c 的一个上界. 但 $(a \lor b) \lor c$ 是 $a \lor b$ 和 c 的最小上界,

黄正华 (武汉大学) 格 December 3, 2012 19 / 103

证 因为 $b \leq b \vee c$, 由保序性得

$$a \lor b \preccurlyeq a \lor (b \lor c).$$

反复使用结论 " $x \leq x \vee y$, $y \leq x \vee y$ ", 有

$$c \preccurlyeq b \lor c \preccurlyeq a \lor (b \lor c).$$

这说明 $a \lor (b \lor c)$ 是 $a \lor b$ 和 c 的一个上界. 但 $(a \lor b) \lor c$ 是 $a \lor b$ 和 c 的最小上界, 所以

$$(a \lor b) \lor c \preccurlyeq a \lor (b \lor c).$$

证 因为 $b \leq b \vee c$, 由保序性得

$$a \lor b \preccurlyeq a \lor (b \lor c).$$

反复使用结论 " $x \leq x \vee y$, $y \leq x \vee y$ ", 有

$$c \preccurlyeq b \lor c \preccurlyeq a \lor (b \lor c).$$

这说明 $a \lor (b \lor c)$ 是 $a \lor b$ 和 c 的一个上界. 但 $(a \lor b) \lor c$ 是 $a \lor b$ 和 c 的最小上界, 所以

$$(a \lor b) \lor c \preccurlyeq a \lor (b \lor c).$$

类似可证

$$a \lor (b \lor c) \preccurlyeq (a \lor b) \lor c.$$

ìF 因为 $b \leq b \vee c$, 由保序性得

$$a \lor b \preccurlyeq a \lor (b \lor c).$$

反复使用结论 " $x \leq x \vee y$, $y \leq x \vee y$ ", 有

$$c \preccurlyeq b \lor c \preccurlyeq a \lor (b \lor c).$$

这说明 $a \lor (b \lor c)$ 是 $a \lor b$ 和 c 的一个上界. 但 $(a \lor b) \lor c$ 是 $a \lor b$ 和 c 的最小 上界, 所以

$$(a \lor b) \lor c \preccurlyeq a \lor (b \lor c).$$

类似可证

$$a \lor (b \lor c) \preccurlyeq (a \lor b) \lor c$$
.

因而
$$a \lor (b \lor c) = (a \lor b) \lor c.$$

证明吸收律: $a \lor (a \land b) = a$.

证明吸收律: $a \lor (a \land b) = a$.

证 因为

 $a \wedge b \preccurlyeq a$,

格

证明吸收律: $a \lor (a \land b) = a$.

证 因为

$$a \wedge b \leq a$$

格

所以

$$a \vee (a \wedge b) = a. \tag{5}$$

黄正华 (武汉大学)

证明吸收律: $a \lor (a \land b) = a$.

证 因为

$$a \wedge b \leq a$$

格

所以

$$a \vee (\mathbf{a} \wedge \mathbf{b}) = a. \tag{5}$$

这里(5)式成立的理由是"大∨小=大".

黄正华 (武汉大学)

设 $\langle A, \lor, \land \rangle$ 是一个代数系统, 其中 \lor, \land 都是二元运算且满足吸收律, 那么 \lor, \land 必满足幂等律.

设 $\langle A, \vee, \wedge \rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算且满足吸收律, 那么 \vee , \wedge 必满足幂等律.

证 对任意 $a, b \in A$, 因 \vee , \wedge 满足吸收律, 所以

$$a \lor (a \land b) = a, \tag{6}$$

$$a \wedge (a \vee b) = a. \tag{7}$$

21 / 103

设 $\langle A, \lor, \land \rangle$ 是一个代数系统, 其中 \lor, \land 都是二元运算且满足吸收律, 那么 \lor, \land 必满足幂等律.

证 对任意 $a, b \in A$, 因 \vee , \wedge 满足吸收律, 所以

$$a \lor (a \land b) = a, \tag{6}$$

$$a \wedge (a \vee b) = a. \tag{7}$$

由 b 的任意性, 在 (6) 式中用 $a \lor b$ 取代 b 仍然成立, 可得

$$a \lor (a \land b) = a.$$

设 $\langle A, \vee, \wedge \rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算且满足吸收律, 那么 \vee , \wedge 必满足幂等律.

证 对任意 $a, b \in A$, 因 \vee , \wedge 满足吸收律, 所以

$$a \lor (a \land b) = a, \tag{6}$$

$$a \wedge (a \vee b) = a. \tag{7}$$

由 b 的任意性, 在 (6) 式中用 $a \lor b$ 取代 b 仍然成立, 可得

$$a \lor (a \land (a \lor b)) = a.$$

设 $\langle A, \lor, \land \rangle$ 是一个代数系统, 其中 \lor, \land 都是二元运算且满足吸收律, 那么 \lor, \land 必满足幂等律.

证 对任意 $a, b \in A$, 因 \vee , \wedge 满足吸收律, 所以

$$a \lor (a \land b) = a, \tag{6}$$

$$a \wedge (a \vee b) = a. \tag{7}$$

由 b 的任意性, 在 (6) 式中用 $a \lor b$ 取代 b 仍然成立, 可得

$$a \lor \left(\underbrace{a \land \left(\begin{array}{c} a \lor b \end{array}\right)}_{a}\right) = a.$$

设 $\langle A, \vee, \wedge \rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算且满足吸收律, 那么 \vee , \wedge 必满足幂等律.

证 对任意 $a, b \in A$, 因 \vee , \wedge 满足吸收律, 所以

$$a \lor (a \land b) = a, \tag{6}$$

$$a \wedge (a \vee b) = a. \tag{7}$$

由 b 的任意性, 在 (6) 式中用 $a \lor b$ 取代 b 仍然成立, 可得

$$a \lor \left(\underbrace{a \land \left(\begin{array}{c} a \lor b \end{array}\right)}_{a}\right) = a.$$

再由 (7) 式得:

$$a \vee a = a$$
.

同理可证

$$a \wedge a = a$$
.

Theorem 1.14

设 $\langle A,\vee,\wedge\rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算, 且满足交换律、结合律和吸收律, 则 A 上存在偏序关系 \preccurlyeq , 使 $\langle A,\preccurlyeq\rangle$ 是一个格.

Theorem 1.14

设 $\langle A,\vee,\wedge\rangle$ 是一个代数系统, 其中 \vee,\wedge 都是二元运算, 且满足交换律、结合律和吸收律, 则 A 上存在偏序关系 \preccurlyeq , 使 $\langle A,\preccurlyeq\rangle$ 是一个格.

分析 证明思路:

- 在 A 上构造偏序关系 ≼;
- ② 证明 ⟨A, ≼⟩ 中任意两个元素有最小上界和最大下界.

Theorem 1.14

设 $\langle A,\vee,\wedge\rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算, 且满足交换律、结合律和吸收律, 则 A 上存在偏序关系 \preccurlyeq , 使 $\langle A,\preccurlyeq\rangle$ 是一个格.

分析 证明思路:

- 在 A 上构造偏序关系 ≼;
- ② 证明 ⟨A, ≼⟩ 中任意两个元素有最小上界和最大下界.

证 在 A 上定义二元关系 \leq : 对任意 $a, b \in A$,

 $a \preccurlyeq b \iff a \land b = a$.

Theorem 1.14

设 $\langle A, \vee, \wedge \rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算, 且满足交换律、结合律和吸收律, 则 A 上存在偏序关系 \preccurlyeq , 使 $\langle A, \preccurlyeq \rangle$ 是一个格.

分析 证明思路:

- 在 A 上构造偏序关系 ≼:
- ② 证明 ⟨A, ≼⟩ 中任意两个元素有最小上界和最大下界.

证 在 A 上定义二元关系 \leq : 对任意 $a, b \in A$,

 $a \leq b \iff a \wedge b = a$.

先证 ≼ 是偏序. (下一页)

ightharpoonup: 注意到 $a \preccurlyeq b \Longleftrightarrow a \land b = a$,

• 运算 \wedge 满足吸收律, 由引理知满足幂等律: 对任意 $a \in A, a \wedge a = a$.

 黄正华 (武汉大学)
 格
 December 3, 2012
 23 / 103

• 运算 \wedge 满足吸收律, 由引理知满足幂等律: 对任意 $a \in A$, $a \wedge a = a$. 所以

 $a \preccurlyeq a$.

从而 ≼ 是自反的.

 黄正华 (武汉大学)
 格
 December 3, 2012
 23 / 103

 ${\bf Zii}$: 注意到 $a \preccurlyeq b \iff a \land b = a$,

• 运算 \wedge 满足吸收律, 由引理知满足幂等律: 对任意 $a \in A, a \wedge a = a$. 所以

 $a \preccurlyeq a$.

从而 ≼ 是自反的.

• 设 $a \leq b$, 则 $a \wedge b = a$. 如果同时有 $b \leq a$, 则 $b \wedge a = b$.

• 运算 \wedge 满足吸收律, 由引理知满足幂等律: 对任意 $a \in A$, $a \wedge a = a$. 所以

$$a \preccurlyeq a$$
.

从而 ≼ 是自反的.

• 设 $a \leq b$, 则 $a \wedge b = a$. 如果同时有 $b \leq a$, 则 $b \wedge a = b$. 而运算 \wedge 满足交换律, 所以

$$a \wedge b = b \wedge a$$
.

 $oxed{c}
 iii: 注意到 <math>a \preccurlyeq b \Longleftrightarrow a \land b = a,$

• 运算 \wedge 满足吸收律, 由引理知满足幂等律: 对任意 $a \in A, a \wedge a = a$. 所以

$$a \preccurlyeq a$$
.

从而 ≼ 是自反的.

• 设 $a \leq b$, 则 $a \wedge b = a$. 如果同时有 $b \leq a$, 则 $b \wedge a = b$. 而运算 \wedge 满足交换律, 所以

$$a \wedge b = b \wedge a$$
.

故 a = b. 从而 \leq 是反对称的.

<mark>读证</mark>: 注意到 $a \preccurlyeq b \iff a \land b = a$,

• 运算 \wedge 满足吸收律, 由引理知满足幂等律: 对任意 $a \in A$, $a \wedge a = a$. 所以

$$a \preccurlyeq a$$
.

从而 ≼ 是自反的.

• 设 $a \leq b$, 则 $a \wedge b = a$. 如果同时有 $b \leq a$, 则 $b \wedge a = b$. 而运算 \wedge 满足交换律, 所以

$$a \wedge b = b \wedge a$$
.

故 a = b. 从而 \leq 是反对称的.

• \mathfrak{P} $a \leq b, b \leq c, \mathfrak{M}$ $a \wedge b = a, b \wedge c = b.$

<mark>续证</mark>: 注意到 $a \preccurlyeq b \iff a \land b = a$,

• 运算 \wedge 满足吸收律, 由引理知满足幂等律: 对任意 $a \in A$, $a \wedge a = a$. 所以

$$a \preccurlyeq a$$
.

从而 ≼ 是自反的.

• 设 $a \leq b$, 则 $a \wedge b = a$. 如果同时有 $b \leq a$, 则 $b \wedge a = b$. 而运算 \wedge 满足交换律, 所以

$$a \wedge b = b \wedge a$$
.

故 a = b. 从而 \leq 是反对称的.

• $\forall a \leq b, b \leq c, \ \emptyset \ a \wedge b = a, b \wedge c = b. \ \mathbb{m}$

$$a \wedge c = (a \wedge b) \wedge c \qquad \qquad (a \wedge b = a)$$

$$= a \wedge (b \wedge c) \tag{结合律}$$

$$= a \wedge b \qquad (b \wedge c = b)$$

$$=a.$$
 $(a \wedge b = a)$

注意到 $a \leq b \iff a \wedge b = a$,

• 运算 \wedge 满足吸收律, 由引理知满足幂等律: 对任意 $a \in A$, $a \wedge a = a$. 所以

$$a \preccurlyeq a$$
.

从而 ≼ 是自反的.

• 设 $a \leq b$, 则 $a \wedge b = a$. 如果同时有 $b \leq a$, 则 $b \wedge a = b$. 而运算 \wedge 满足交 换律, 所以

格

$$a \wedge b = b \wedge a$$
.

故 a=b. 从而 \leq 是反对称的.

• \emptyset $a \leq b$, $b \leq c$, \emptyset $a \wedge b = a$, $b \wedge c = b$. \mathbb{R}

$$a \wedge c = (a \wedge b) \wedge c$$
 $(a \wedge b = a)$
 $= a \wedge (b \wedge c)$ (结合律)
 $= a \wedge b$ $(b \wedge c = b)$
 $= a.$ $(a \wedge b = a)$

所以 $a \leq c$. 说明 \leq 是传递的.

黄正华 (武汉大学)

其次, 证明 $a \wedge b$ 是 a, b 的最大下界.

其次, 证明 $a \wedge b \neq a$, b 的最大下界. 因

$$(a \wedge b) \wedge a = a \wedge (b \wedge a)$$

$$= a \wedge (a \wedge b)$$

$$= (a \wedge a) \wedge b$$

$$= a \wedge b.$$

$$(结合律)$$

$$= a \wedge b.$$

$$(a \wedge b) \wedge b = a \wedge (b \wedge b) = a \wedge b.$$

其次, 证明 $a \wedge b$ 是 a, b 的最大下界. 因

$$(a \wedge b) \wedge a = a \wedge (b \wedge a)$$

$$= a \wedge (a \wedge b)$$

$$= (a \wedge a) \wedge b$$

$$= a \wedge b.$$

$$(结合律)$$

$$= a \wedge b.$$

$$(a \wedge b) \wedge b = a \wedge (b \wedge b) = a \wedge b.$$

又由 \preccurlyeq 的定义, 可得 $a \land b \preccurlyeq a$, $a \land b \preccurlyeq b$.

其次, 证明 $a \wedge b \neq a$, b 的最大下界. 因

$$(a \wedge b) \wedge a = a \wedge (b \wedge a)$$

$$= a \wedge (a \wedge b)$$

$$= (a \wedge a) \wedge b$$

$$= a \wedge b.$$

$$(结合律)$$

$$= a \wedge b.$$

$$(a \wedge b) \wedge b = a \wedge (b \wedge b) = a \wedge b.$$

又由 \preceq 的定义, 可得 $a \land b \preceq a$, $a \land b \preceq b$. 说明 $a \land b \not\in a$, $b \in a$

其次, 证明 $a \wedge b \neq a$, b 的最大下界. 因

$$(a \wedge b) \wedge a = a \wedge (b \wedge a)$$

$$= a \wedge (a \wedge b)$$

$$= (a \wedge a) \wedge b$$

$$= a \wedge b.$$

$$(结合律)$$

$$= a \wedge b.$$

$$(a \wedge b) \wedge b = a \wedge (b \wedge b) = a \wedge b.$$

又由 \preceq 的定义, 可得 $a \land b \preceq a$, $a \land b \preceq b$. 说明 $a \land b \not\in a$, b 的下界. 设 $c \not\in a$, b 的任一下界, 则 $c \preceq a$, $c \preceq b$.

其次, 证明 $a \wedge b \neq a$, b 的最大下界. 因

$$(a \wedge b) \wedge a = a \wedge (b \wedge a)$$

$$= a \wedge (a \wedge b)$$

$$= (a \wedge a) \wedge b$$

$$= a \wedge b.$$

$$(结合律)$$

$$= a \wedge b.$$

$$(幂等律)$$

又由 \preccurlyeq 的定义, 可得 $a \land b \preccurlyeq a$, $a \land b \preccurlyeq b$. 说明 $a \land b \not\in a$, b 的下界. 设 $c \not\in a$, b 的任一下界, 则 $c \preccurlyeq a$, $c \preccurlyeq b$. 按 \preccurlyeq 的定义有

$$c \wedge a = c,$$
 $c \wedge b = c.$

其次, 证明 $a \wedge b$ 是 a, b 的最大下界. 因

$$(a \wedge b) \wedge a = a \wedge (b \wedge a)$$

$$= a \wedge (a \wedge b)$$

$$= (a \wedge a) \wedge b$$

$$= a \wedge b.$$

$$(结合律)$$

$$= a \wedge b.$$

$$(a \wedge b) \wedge b = a \wedge (b \wedge b) = a \wedge b.$$

又由 \preccurlyeq 的定义, 可得 $a \land b \preccurlyeq a$, $a \land b \preccurlyeq b$. 说明 $a \land b \not\in a$, b 的下界. 设 $c \not\in a$, b 的任一下界, 则 $c \preccurlyeq a$, $c \preccurlyeq b$. 按 \preccurlyeq 的定义有

$$c \wedge a = c,$$
 $c \wedge b = c.$

进而有

$$c \wedge (a \wedge b) = (c \wedge a) \wedge b = c \wedge b = c$$
.

其次, 证明 $a \wedge b$ 是 a, b 的最大下界. 因

$$(a \wedge b) \wedge a = a \wedge (b \wedge a)$$

$$= a \wedge (a \wedge b)$$

$$= (a \wedge a) \wedge b$$

$$= a \wedge b.$$

$$(结合律)$$

$$= a \wedge b.$$

$$(幂等律)$$

又由 \preccurlyeq 的定义, 可得 $a \land b \preccurlyeq a$, $a \land b \preccurlyeq b$. 说明 $a \land b \not\in a$, b 的下界. 设 $c \not\in a$, b 的任一下界, 则 $c \preccurlyeq a$, $c \preccurlyeq b$. 按 \preccurlyeq 的定义有

$$c \wedge a = c,$$
 $c \wedge b = c.$

进而有

$$c \wedge (a \wedge b) = (c \wedge a) \wedge b = c \wedge b = c.$$

黄正华 (武汉大学)

第三, 证明 $a \lor b$ 是 a, b 的最小上界.

第三, 证明 $a \lor b$ 是 a, b 的最小上界.

先证 $a \land b = a 与 a \lor b = b$ 等价.

第三, 证明 $a \lor b$ 是 a, b 的最小上界.

先证 $a \land b = a$ 与 $a \lor b = b$ 等价.

若 $a \wedge b = a$, 则

$$a \lor b = (a \land b) \lor b$$
 $(a \land b = a)$
= $b \lor (a \land b)$ (交换律)
= $b \lor (b \land a)$ (交换律)

= b. (吸收律)

第三, 证明 $a \lor b$ 是 a, b 的最小上界.

先证 $a \land b = a 与 a \lor b = b$ 等价.

若 $a \wedge b = a$, 则

$$a \lor b = (a \land b) \lor b$$
 $(a \land b = a)$
 $= b \lor (a \land b)$ (交换律)
 $= b \lor (b \land a)$ (交换律)

于是 $a \lor b = b$.

第三, 证明 $a \lor b$ 是 a, b 的最小上界.

先证 $a \land b = a 与 a \lor b = b$ 等价.

若 $a \wedge b = a$, 则

$$a \lor b = (a \land b) \lor b \qquad (a \land b = a)$$

$$=b\vee(a\wedge b)$$

$$= b \lor (b \land a) \tag{交换律}$$

$$= b.$$
 (吸收律)

于是 $a \lor b = b$.

反之, 若 $a \lor b = b$, 则

$$a \wedge b = a \wedge (a \vee b) \qquad (a \vee b = b)$$

格

$$=a$$
. (吸收律)

亦即 $a \wedge b = a$.

(交換律)

第三, 证明 $a \lor b$ 是 a, b 的最小上界.

先证 $a \land b = a \vdash a \lor b = b$ 等价.

若 $a \wedge b = a$, 则

$$a \lor b = (a \land b) \lor b$$
 $(a \land b = a)$ $($ 交换律 $)$

$$= b \lor (b \land a) \tag{交換律}$$

$$= b.$$
 (吸收律)

于是 $a \lor b = b$.

反之, 若 $a \lor b = b$, 则

$$a \wedge b = a \wedge (a \vee b)$$
 $(a \vee b = b)$ $= a.$ (吸收律)

亦即 $a \wedge b = a$.

由此可见, 偏序关系 \leq 的等价定义为: " $a \leq b \iff a \vee b = b$."

可以用证明 " $a \land b$ 是 a, b 的最大下界"类似的方法证明 " $a \lor b$ 是 a, b 的最小上界".

可以用证明 " $a \land b$ 是 a, b 的最大下界"类似的方法证明 " $a \lor b$ 是 a, b 的最小上界".

综上所述, $\langle A, \preccurlyeq \rangle$ 是格.

可以用证明 " $a \land b$ 是 a, b 的最大下界"类似的方法证明 " $a \lor b$ 是 a, b 的最小上界".

综上所述, $\langle A, \preccurlyeq \rangle$ 是格.

事实上,这个定理给出的是格的另一个定义方式.

Definition 1.15

设 $\langle A,\vee,\wedge\rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算, 且满足交换律、结合律和吸收律, 定义 A 上的偏序关系 \preccurlyeq : 对任意 $a,b\in A$,

$$a \preccurlyeq b \iff a \land b = a. \quad (\vec{\mathfrak{U}} \ a \preccurlyeq b \iff a \lor b = b.)$$

则 $\langle A, \preccurlyeq \rangle$ 是一个格.

续证:

可以用证明 " $a \land b$ 是 a, b 的最大下界"类似的方法证明 " $a \lor b$ 是 a, b 的最小上界".

综上所述, $\langle A, \preccurlyeq \rangle$ 是格.

事实上,这个定理给出的是格的另一个定义方式.

Definition 1.15

设 $\langle A,\vee,\wedge\rangle$ 是一个代数系统, 其中 \vee , \wedge 都是二元运算, 且满足交换律、结合律和吸收律, 定义 A 上的偏序关系 \preccurlyeq : 对任意 $a,b\in A$,

$$a \preccurlyeq b \iff a \land b = a. \quad (\vec{\mathfrak{A}} \ a \preccurlyeq b \iff a \lor b = b.)$$

则 $\langle A, \preccurlyeq \rangle$ 是一个格.

由格 $\langle A, \preccurlyeq \rangle$ 可以构造代数系统 $\langle A, \lor, \land \rangle$, 反过来, 由代数系统 $\langle A, \lor, \land \rangle$ 出发也可以返回到格 $\langle A, \preccurlyeq \rangle$.

黄正华 (武汉大学) 格 December 3, 2012 2

在一个格 $\langle A, \preccurlyeq \rangle$ 中, 对任意的 $a, b, c \in A$, 都有

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c),$$
 (8)

$$(a \wedge b) \vee (a \wedge c) \preccurlyeq a \wedge (b \vee c). \tag{9}$$

在一个格 $\langle A, \preccurlyeq \rangle$ 中, 对任意的 $a, b, c \in A$, 都有

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c),$$
 (8)

$$(a \wedge b) \vee (a \wedge c) \preccurlyeq a \wedge (b \vee c). \tag{9}$$

分析

• 比较: 集合的并、交运算的分配律

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \tag{10}$$

$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C). \tag{11}$$

在一个格 $\langle A, \preccurlyeq \rangle$ 中, 对任意的 $a, b, c \in A$, 都有

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c),$$
 (8)

$$(a \wedge b) \vee (a \wedge c) \leq a \wedge (b \vee c). \tag{9}$$

分析

• 比较: 集合的并、交运算的分配律

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \tag{10}$$

$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C). \tag{11}$$

• 谓之"分配不等式", 或弱分配律, 次分配律;

在一个格 $\langle A, \preccurlyeq \rangle$ 中, 对任意的 $a, b, c \in A$, 都有

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c),$$
 (8)

$$(a \wedge b) \vee (a \wedge c) \preccurlyeq a \wedge (b \vee c). \tag{9}$$

分析

• 比较: 集合的并、交运算的分配律

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \tag{10}$$

$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C). \tag{11}$$

- 谓之"分配不等式",或弱分配律,次分配律;
- 这里, (8) 式与 (9) 式是互为对偶的.

在一个格 $\langle A, \preccurlyeq \rangle$ 中, 对任意的 $a, b, c \in A$, 都有

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c),$$
 (8)

$$(a \wedge b) \vee (a \wedge c) \preccurlyeq a \wedge (b \vee c). \tag{9}$$

分析

• 比较: 集合的并、交运算的分配律

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \tag{10}$$

$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C). \tag{11}$$

- 谓之"分配不等式",或弱分配律,次分配律;
- 这里, (8) 式与 (9) 式是互为对偶的.

下证 (8) 式成立, (9) 式由对偶原理可得.

$$a \preccurlyeq (a \lor b) \land (a \lor c), \tag{12}$$

$$b \wedge c \preccurlyeq (a \vee b) \wedge (a \vee c). \tag{13}$$

$$a \preccurlyeq (a \lor b) \land (a \lor c), \tag{12}$$

$$b \wedge c \leq (a \vee b) \wedge (a \vee c). \tag{13}$$

• (12) 式成立, 因为

$$a = a \wedge a$$
 (幂等性)
 $\preceq (a \vee b) \wedge (a \vee c).$ $(a \preceq (a \vee b), a \preceq (a \vee c))$

黄正华 (武汉大学) 格 December 3, 2012 28 / 103

$$a \preccurlyeq (a \lor b) \land (a \lor c), \tag{12}$$

$$b \wedge c \leq (a \vee b) \wedge (a \vee c). \tag{13}$$

• (12) 式成立, 因为

$$a = a \wedge a$$
 (幂等性)
 $\preccurlyeq (a \lor b) \land (a \lor c).$ $(a \preccurlyeq (a \lor b), a \preccurlyeq (a \lor c))$

• (13) 式成立, 因为

$$b \wedge c \leq b \leq a \vee b$$
,
 $b \wedge c \leq c \leq a \vee c$,

$$a \preccurlyeq (a \lor b) \land (a \lor c), \tag{12}$$

$$b \wedge c \leq (a \vee b) \wedge (a \vee c). \tag{13}$$

• (12) 式成立, 因为

$$a = a \wedge a$$
 (幂等性)
 $\preceq (a \lor b) \land (a \lor c).$ $(a \preceq (a \lor b), a \preceq (a \lor c))$

• (13) 式成立, 因为

$$b \wedge c \preccurlyeq b \preccurlyeq a \vee b,$$

$$b \wedge c \preccurlyeq c \preccurlyeq a \vee c,$$

所以

$$b \wedge c = (b \wedge c) \wedge (b \wedge c)$$

$$a \preccurlyeq (a \lor b) \land (a \lor c), \tag{12}$$

$$b \wedge c \leq (a \vee b) \wedge (a \vee c). \tag{13}$$

• (12) 式成立, 因为

$$a = a \wedge a$$
 (幂等性)
 $\preccurlyeq (a \lor b) \land (a \lor c).$ ($a \preccurlyeq (a \lor b), a \preccurlyeq (a \lor c)$)

• (13) 式成立, 因为

$$b \wedge c \leq b \leq a \vee b,$$

$$b \wedge c \leq c \leq a \vee c,$$

所以

$$b \wedge c = (b \wedge c) \wedge (b \wedge c)$$

$$\leq (a \vee b) \wedge (a \vee c).$$

分配不等式

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c),$$

 $(a \land b) \lor (a \land c) \preccurlyeq a \land (b \lor c).$

Example 1.17

分配不等式实例:

$$b \wedge (c \vee d) = b \wedge e = b, \quad (b \wedge c) \vee (b \wedge d) = a \vee a = a.$$

P 称为钻石格(diamond lattice).

分配不等式

$$a \vee (b \wedge c) \preccurlyeq (a \vee b) \wedge (a \vee c),$$
$$(a \wedge b) \vee (a \wedge c) \preccurlyeq a \wedge (b \vee c).$$

Example 1.18

分配不等式实例:

$$d \wedge (b \vee c) = d \wedge e = d, \quad (d \wedge b) \vee (d \wedge c) = a \vee c = c.$$

☞ 称为五角格(pentagon lattice).

设 $L = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \langle L, \preccurlyeq \rangle$ 是偏序集, \preccurlyeq 定义为: 对于 $n_1, n_2 \in L, n_1 \preccurlyeq n_2$ 当且仅当 n_1 是 n_2 的因子. 问 $\langle L, \preccurlyeq \rangle$ 是否为格?

设 $L = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \langle L, \preccurlyeq \rangle$ 是偏序集, \preccurlyeq 定义为: 对于 $n_1, n_2 \in L, n_1 \preccurlyeq n_2$ 当且仅当 n_1 是 n_2 的因子. 问 $\langle L, \preccurlyeq \rangle$ 是否为格?

解 不是格.

设 $L = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \langle L, \preccurlyeq \rangle$ 是偏序集, \preccurlyeq 定义为: 对于 $n_1, n_2 \in L, n_1 \preccurlyeq n_2$ 当且仅当 n_1 是 n_2 的因子. 问 $\langle L, \preccurlyeq \rangle$ 是否为格?

解 不是格. 哈斯图为:

31 / 103

设 $L = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \langle L, \preccurlyeq \rangle$ 是偏序集, \preccurlyeq 定义为: 对于 $n_1, n_2 \in L, n_1 \preccurlyeq n_2$ 当且仅当 n_1 是 n_2 的因子. 问 $\langle L, \preccurlyeq \rangle$ 是否为格?

解 不是格. 哈斯图为:

例如,"9和10"没有最小上界.

- 1 格的定义
- 2 子格与格同态
- ③ 几种特殊的格
- 4 布尔代数
- 5 有限布尔代数的表示定理

32 / 103

设 $\langle A, \preccurlyeq \rangle$ 是格, $\langle A, \lor, \land \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统. 设 B 是 A 的非空子集. 如果运算 \lor 和 \land 在 B 中封闭, 则称 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的<mark>子格</mark>.

设 $\langle A, \preccurlyeq \rangle$ 是格, $\langle A, \lor, \land \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统. 设 B 是 A 的非空子集. 如果运算 \lor 和 \land 在 B 中封闭, 则称 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的<mark>子格</mark>.

可以证明, 子格也是格.

设 $\langle A, \preccurlyeq \rangle$ 是格, $\langle A, \lor, \land \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统. 设 B 是 A 的非空子集. 如果运算 \lor 和 \land 在 B 中封闭, 则称 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的<mark>子格</mark>.

可以证明, 子格也是格.

Example 2.2

设 E^+ 是正偶数的全体, 易知 $\langle E^+, | \rangle$ 是 $\langle \mathbb{Z}^+, | \rangle$ 的子格:

设 $\langle A, \preccurlyeq \rangle$ 是格, $\langle A, \lor, \land \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统. 设 B 是 A 的非空子集. 如果运算 \lor 和 \land 在 B 中封闭, 则称 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的<mark>子格</mark>.

可以证明, 子格也是格.

Example 2.2

设 E^+ 是<mark>正偶数</mark>的全体, 易知 $\langle E^+, | \rangle$ 是 $\langle \mathbb{Z}^+, | \rangle$ 的<mark>子格</mark>: 任何两个偶数的最大公约数和最小公倍数都是偶数, 运算 \vee 和 \wedge 关于 E^+ 是封闭的.

设 $\langle S, \preccurlyeq \rangle$ 是一个格, 任取 $a \in S$, 构造 S 的子集为:

$$T = \{ x \mid x \in S \perp \!\!\!\! \perp x \preccurlyeq a \},$$

则 $\langle T, \preccurlyeq \rangle$ 是 $\langle S, \preccurlyeq \rangle$ 的一个子格.

33 / 103

设 $\langle S, \preccurlyeq \rangle$ 是一个格, 任取 $a \in S$, 构造 S 的子集为:

$$T = \{ x \mid x \in S \perp \!\!\!\! \perp x \preccurlyeq a \},$$

则 $\langle T, \preccurlyeq \rangle$ 是 $\langle S, \preccurlyeq \rangle$ 的一个子格.

证 对任意的 $x, y \in T$, 必有 $x \leq a$ 和 $y \leq a$,

设 $\langle S, \preccurlyeq \rangle$ 是一个格, 任取 $a \in S$, 构造 S 的子集为:

$$T = \{ x \mid x \in S \perp \!\!\! \perp x \preccurlyeq a \},$$

则 $\langle T, \preccurlyeq \rangle$ 是 $\langle S, \preccurlyeq \rangle$ 的一个子格.

证 对任意的 $x, y \in T$, 必有 $x \leq a$ 和 $y \leq a$, 所以

$$x \lor y \preccurlyeq a$$
,

$$x \wedge y \leq a$$
,

$$(x \wedge y \preccurlyeq x \vee y)$$

设 $\langle S, \preccurlyeq \rangle$ 是一个格, 任取 $a \in S$, 构造 S 的子集为:

$$T = \{ x \mid x \in S \perp \!\!\! \perp x \preccurlyeq a \},$$

则 $\langle T, \preccurlyeq \rangle$ 是 $\langle S, \preccurlyeq \rangle$ 的一个子格.

证 对任意的 $x, y \in T$, 必有 $x \leq a$ 和 $y \leq a$, 所以

$$x \lor y \preccurlyeq a$$
,

$$x \land y \preccurlyeq a$$
,

$$(x \land y \preccurlyeq x \lor y)$$

故

$$x \lor y \in T, \qquad x \land y \in T.$$

设 $\langle S, \preccurlyeq \rangle$ 是一个格, 任取 $a \in S$, 构造 S 的子集为:

$$T = \{ x \mid x \in S \perp \!\!\! \perp x \preccurlyeq a \},$$

则 $\langle T, \preccurlyeq \rangle$ 是 $\langle S, \preccurlyeq \rangle$ 的一个子格.

对任意的 $x, y \in T$, 必有 $x \leq a$ 和 $y \leq a$, 所以 证

$$x \lor y \le a$$
, $(a 是 x, y)$ 的上界)
 $x \land y \le a$, $(x \land y \le x \lor y)$

故

$$x \lor y \in T$$
, $x \land y \in T$.

运算 \vee 和 \wedge 关于 T 是封闭的, 因此, $\langle T, \prec \rangle$ 是 $\langle S, \prec \rangle$ 的一个子格.

黄正华 (武汉大学)

33 / 103

注意

若 $\langle A, \preccurlyeq \rangle$ 是格, $B \subseteq A$ 且 $B \neq \emptyset$, 则 $\langle B, \preccurlyeq \rangle$ 仍然是偏序集,

但 ⟨B, ≼⟩ 不一定是格.

注意

若 $\langle A, \preccurlyeq \rangle$ 是格, $B \subseteq A$ 且 $B \neq \varnothing$, 则 $\langle B, \preccurlyeq \rangle$ 仍然是偏序集,

- 但 ⟨B, ≼⟩ 不一定是格.
- 即使是格, 也不一定是 $\langle A, \preccurlyeq \rangle$ 的子格.

设 $S = \{a, b, c\}$, 则 $\langle \mathscr{P}(S), \subseteq \rangle$ 是格, 其哈斯图如下.

$$A = \{\emptyset, \{a\}, \{c\}, \{a, c\}\},\$$

$$B = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$$

设 $S = \{a, b, c\}$, 则 $\langle \mathscr{P}(S), \subseteq \rangle$ 是格, 其哈斯图如下.

取

$$A = \{\emptyset, \{a\}, \{c\}, \{a, c\}\},\$$

$$B = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$$

则

• $\langle A, \subseteq \rangle$ 是 $\langle \mathcal{P}(S), \subseteq \rangle$ 的子格;

正华 (武汉大学) 格 December 3, 2012 35 / 103

设 $S = \{a, b, c\}$, 则 $\langle \mathcal{P}(S), \subseteq \rangle$ 是格, 其哈斯图如下.

取

$$\begin{split} A &= \big\{\varnothing, \{a\}, \{c\}, \{a,c\}\big\}, \\ B &= \big\{\varnothing, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\big\}. \end{split}$$

- Kü
 - $\langle A, \subseteq \rangle$ 是 $\langle \mathcal{P}(S), \subseteq \rangle$ 的子格;
 - $\langle B, \subseteq \rangle$ 是格, 但不是 $\langle \mathscr{P}(S), \subseteq \rangle$ 的子格.

设 $S = \{a, b, c\}$, 则 $\langle \mathcal{P}(S), \subseteq \rangle$ 是格, 其哈斯图如下.

取

$$\begin{split} A &= \big\{\varnothing, \{a\}, \{c\}, \{a,c\}\big\}, \\ B &= \big\{\varnothing, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\big\}. \end{split}$$

- $\langle A, \subseteq \rangle$ 是 $\langle \mathcal{P}(S), \subseteq \rangle$ 的子格;
- $\langle B, \subseteq \rangle$ 是格, 但不是 $\langle \mathscr{P}(S), \subseteq \rangle$ 的子格. 这是因为

$${a,b} \cap {b,c} = {b} \notin B.$$

格同态

格 $\langle A, \preccurlyeq \rangle$ 可视为具有两个二元运算的代数系统 $\langle A, \lor, \land \rangle$, 其中运算满足交换律、结合律、吸收律和幂等律.

因此, 对格可引入代数系统中同态的概念.

格同态

Definition 2.5

设 $\langle A_1, \preccurlyeq_1 \rangle$, $\langle A_2, \preccurlyeq_2 \rangle$ 是格, 它们所诱导的代数系统分别是 $\langle A_1, \lor_1, \land_1 \rangle$, $\langle A_2, \lor_2, \land_2 \rangle$. 如果存在映射 $f \colon A_1 \to A_2$, 使对任意 $a, b \in A_1$, 有

$$f(a \vee_1 b) = f(a) \vee_2 f(b), \qquad f(a \wedge_1 b) = f(a) \wedge_2 f(b).$$

格同态

Definition 2.5

设 $\langle A_1, \preccurlyeq_1 \rangle$, $\langle A_2, \preccurlyeq_2 \rangle$ 是格, 它们所诱导的代数系统分别是 $\langle A_1, \lor_1, \land_1 \rangle$, $\langle A_2, \lor_2, \land_2 \rangle$. 如果存在映射 $f \colon A_1 \to A_2$, 使对任意 $a, b \in A_1$, 有

$$f(a \vee_1 b) = f(a) \vee_2 f(b), \qquad f(a \wedge_1 b) = f(a) \wedge_2 f(b).$$

• 则称 f 是从 $\langle A_1, \vee_1, \wedge_1 \rangle$ 到 $\langle A_2, \vee_2, \wedge_2 \rangle$ 的格同态.

格同态

Definition 2.5

设 $\langle A_1, \preccurlyeq_1 \rangle$, $\langle A_2, \preccurlyeq_2 \rangle$ 是格, 它们所诱导的代数系统分别是 $\langle A_1, \lor_1, \land_1 \rangle$, $\langle A_2, \lor_2, \land_2 \rangle$. 如果存在映射 $f \colon A_1 \to A_2$, 使对任意 $a, b \in A_1$, 有

$$f(a \vee_1 b) = f(a) \vee_2 f(b), \qquad f(a \wedge_1 b) = f(a) \wedge_2 f(b).$$

- 则称 f 是从 $\langle A_1, \vee_1, \wedge_1 \rangle$ 到 $\langle A_2, \vee_2, \wedge_2 \rangle$ 的格同态.
- $\pi \langle f(A_1), \preccurlyeq_2 \rangle \in \langle A_1, \preccurlyeq_1 \rangle$ 的格同态象.

格同态

Definition 2.5

设 $\langle A_1, \preccurlyeq_1 \rangle, \langle A_2, \preccurlyeq_2 \rangle$ 是格, 它们所诱导的代数系统分别是 $\langle A_1, \lor_1, \land_1 \rangle$, $\langle A_2, \vee_2, \wedge_2 \rangle$. 如果存在映射 $f: A_1 \to A_2$, 使对任意 $a, b \in A_1$, 有

$$f(a \vee_1 b) = f(a) \vee_2 f(b), \qquad f(a \wedge_1 b) = f(a) \wedge_2 f(b).$$

- 则称 f 是从 $\langle A_1, \vee_1, \wedge_1 \rangle$ 到 $\langle A_2, \vee_2, \wedge_2 \rangle$ 的格同态.
- $\mathfrak{m} \langle f(A_1), \preceq_2 \rangle \in \langle A_1, \preceq_1 \rangle$ 的格同态象.
- 如果 f 是双射, 则称 f 是从 $\langle A_1, \vee_1, \wedge_1 \rangle$ 到 $\langle A_2, \vee_2, \wedge_2 \rangle$ 的格同构. 也称 A_1, \leq_1 , A_2, \leq_2 同构.

设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同态. 对任意 $x, y \in A_1$, 如果 $x \preccurlyeq_1 y$, 则 $f(x) \preccurlyeq_2 f(y)$.

设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同态. 对任意 $x, y \in A_1$, 如果 $x \preccurlyeq_1 y$, 则 $f(x) \preccurlyeq_2 f(y)$.

证 己知 $x \leq_1 y$, 因 $x \leq_1 y \iff x \wedge_1 y = x$, 则

 $x \wedge_1 y = x$.

设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同态. 对任意 $x, y \in A_1$, 如果 $x \preccurlyeq_1 y$, 则 $f(x) \preccurlyeq_2 f(y)$.

证 已知 $x \leq_1 y$, 因 $x \leq_1 y \iff x \wedge_1 y = x$, 则

$$x \wedge_1 y = x$$
.

所以

$$f(x) = f(x \wedge_1 y) \qquad (x \wedge_1 y = x)$$

$$= f(x) \land_2 f(y)$$
. $(f 是格同态)$

设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同态. 对任意 $x, y \in A_1$, 如果 $x \preccurlyeq_1 y$, 则 $f(x) \preccurlyeq_2 f(y)$.

证 己知 $x \leq_1 y$, 因 $x \leq_1 y \iff x \wedge_1 y = x$, 则

$$x \wedge_1 y = x$$
.

所以

$$f(x) = f(x \wedge_1 y) \qquad (x \wedge_1 y = x)$$

$$=f(x) \wedge_2 f(y)$$
. (f 是格同态)

而
$$f(x) \wedge_2 f(y) = f(x) \iff f(x) \leq_2 f(y)$$
, 所以

$$f(x) \preccurlyeq_2 f(y)$$
.

黄正华 (武汉大学) 格 December 3, 2012 38 / 103

设 f 是格 $\langle A_1, \preceq_1 \rangle$ 到 $\langle A_2, \preceq_2 \rangle$ 的格同态. 对任意 $x, y \in A_1$, 如果 $x \preceq_1 y$, 则 $f(x) \leq_2 f(y)$.

证 已知 $x \leq_1 y$, 因 $x \leq_1 y \iff x \wedge_1 y = x$, 则

$$x \wedge_1 y = x$$
.

所以

$$f(x) = f(x \land_1 y) \qquad (x \land_1 y = x)$$
$$= f(x) \land_2 f(y). \qquad (f 是格同态)$$

$$= f(x) \wedge_2 f(y).$$

而 $f(x) \wedge_2 f(y) = f(x) \iff f(x) \leq_2 f(y)$, 所以

格

$$f(x) \preccurlyeq_2 f(y).$$

注:

此定理说明,格同态是保序的.

设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同态. 对任意 $x, y \in A_1$, 如果 $x \preccurlyeq_1 y$, 则 $f(x) \preccurlyeq_2 f(y)$.

证 己知 $x \leq_1 y$, 因 $x \leq_1 y \iff x \wedge_1 y = x$, 则

$$x \wedge_1 y = x$$
.

所以

$$f(x) = f(x \wedge_1 y) \qquad (x \wedge_1 y = x)$$

$$= f(x) \wedge_2 f(y).$$

(*f* 是格同态)

而 $f(x) \land_2 f(y) = f(x) \iff f(x) \preccurlyeq_2 f(y)$,所以

$$f(x) \preccurlyeq_2 f(y)$$
.

格

注:

此定理说明,格同态是保序的.但,其逆不真.

设 $A = \{1, 2, 3, 4, 6, 12\}, \langle A, | \rangle$ 和 $\langle A, \preccurlyeq \rangle$ 都是格, 其中" | "表示整除关系, " \preccurlyeq "表示数的"小于等于"关系.

设 $A = \{1, 2, 3, 4, 6, 12\}, \langle A, | \rangle$ 和 $\langle A, \preccurlyeq \rangle$ 都是格, 其中" | "表示整除关系, " \preccurlyeq "表示数的"小于等于"关系.

作映射 $f: A \to A$, f(x) = x.

设 $A = \{1, 2, 3, 4, 6, 12\}, \langle A, | \rangle$ 和 $\langle A, \preccurlyeq \rangle$ 都是格, 其中" | "表示整除关系, " \preccurlyeq "表示数的"小于等于"关系.

作映射 $f: A \to A$, f(x) = x. 显然, 若 x|y, 则 $f(x) \leq f(y)$, 因而 f 是保序的.

设 $A = \{1, 2, 3, 4, 6, 12\}, \langle A, | \rangle$ 和 $\langle A, \preccurlyeq \rangle$ 都是格, 其中" | "表示整除关系, " \preccurlyeq "表示数的"小于等于"关系.

作映射 $f: A \to A$, f(x) = x. 显然, 若 x|y, 则 $f(x) \leq f(y)$, 因而 f 是保序的. 但 f 不是格同态.

设 $A = \{1, 2, 3, 4, 6, 12\}, \langle A, | \rangle$ 和 $\langle A, \preccurlyeq \rangle$ 都是格, 其中" | "表示整除关系, " \preccurlyeq "表示数的"小于等于"关系.

作映射 $f: A \to A$, f(x) = x. 显然, 若 x|y, 则 $f(x) \leq f(y)$, 因而 f 是保序的. 但 f 不是格同态. 例如:

$$\underbrace{f(4 \wedge_1 6)}_{=2} \neq \underbrace{f(4) \wedge_2 f(6)}_{=4}.$$

设两个格为 $\langle A_1, \preccurlyeq_1 \rangle$ 和 $\langle A_2, \preccurlyeq_2 \rangle$, f 是 A_1 到 A_2 的双射.则 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构, 当且仅当

$$\forall a, b \in A_1, \quad a \preccurlyeq_1 b \iff f(a) \preccurlyeq_2 f(b). \tag{14}$$

设两个格为 $\langle A_1, \preccurlyeq_1 \rangle$ 和 $\langle A_2, \preccurlyeq_2 \rangle$, f 是 A_1 到 A_2 的双射.则 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构,当且仅当

$$\forall a, b \in A_1, \quad a \preccurlyeq_1 b \iff f(a) \preccurlyeq_2 f(b). \tag{14}$$

证 (1) 设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构. 下证 (14) 式成立.

 黄正华 (武汉大学)
 格
 December 3, 2012
 40 / 103

设两个格为 $\langle A_1, \preccurlyeq_1 \rangle$ 和 $\langle A_2, \preccurlyeq_2 \rangle$, f 是 A_1 到 A_2 的双射.则 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构,当且仅当

$$\forall a, b \in A_1, \quad a \preccurlyeq_1 b \iff f(a) \preccurlyeq_2 f(b). \tag{14}$$

证 (1) 设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构. 下证 (14) 式成立.

i) 对任意 $a, b \in A_1$, 如果 $a \preccurlyeq_1 b$, 由保序性, 则 $f(a) \preccurlyeq_2 f(b)$.

 黄正华 (武汉大学)
 格
 December 3, 2012
 40 / 103

设两个格为 $\langle A_1, \preccurlyeq_1 \rangle$ 和 $\langle A_2, \preccurlyeq_2 \rangle$, f 是 A_1 到 A_2 的双射.则 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构, 当且仅当

$$\forall a, b \in A_1, \quad a \preccurlyeq_1 b \iff f(a) \preccurlyeq_2 f(b). \tag{14}$$

证 (1) 设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构. 下证 (14) 式成立.

- i) 对任意 $a, b \in A_1$, 如果 $a \leq_1 b$, 由保序性, 则 $f(a) \leq_2 f(b)$.
- ii) 若 $f(a) \preccurlyeq_2 f(b)$, 则

设两个格为 $\langle A_1, \preccurlyeq_1 \rangle$ 和 $\langle A_2, \preccurlyeq_2 \rangle$, f 是 A_1 到 A_2 的双射.则 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构,当且仅当

$$\forall a, b \in A_1, \quad a \preccurlyeq_1 b \iff f(a) \preccurlyeq_2 f(b). \tag{14}$$

证 (1) 设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构. 下证 (14) 式成立.

- i) 对任意 $a, b \in A_1$, 如果 $a \leq_1 b$, 由保序性, 则 $f(a) \leq_2 f(b)$.
- ii) 若 $f(a) \preccurlyeq_2 f(b)$, 则

$$f(a) = f(a) \wedge_2 f(b)$$

设两个格为 $\langle A_1, \preccurlyeq_1 \rangle$ 和 $\langle A_2, \preccurlyeq_2 \rangle$, f 是 A_1 到 A_2 的双射.则 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构,当且仅当

$$\forall a, b \in A_1, \quad a \preccurlyeq_1 b \iff f(a) \preccurlyeq_2 f(b). \tag{14}$$

证 (1) 设 f 是格 $\langle A_1, \preceq_1 \rangle$ 到 $\langle A_2, \preceq_2 \rangle$ 的格同构. 下证 (14) 式成立.

- i) 对任意 $a, b \in A_1$, 如果 $a \leq_1 b$, 由保序性, 则 $f(a) \leq_2 f(b)$.
- ii) 若 $f(a) \leq_2 f(b)$, 则

$$f(a) = f(a) \land_2 f(b)$$

= $f(a \land_1 b)$. (f 是同构)

40 / 103

设两个格为 $\langle A_1, \preccurlyeq_1 \rangle$ 和 $\langle A_2, \preccurlyeq_2 \rangle$, f 是 A_1 到 A_2 的双射.则 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构,当且仅当

$$\forall a, b \in A_1, \quad a \preccurlyeq_1 b \iff f(a) \preccurlyeq_2 f(b). \tag{14}$$

证 (1) 设 f 是格 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构. 下证 (14) 式成立.

- i) 对任意 $a, b \in A_1$, 如果 $a \leq_1 b$, 由保序性, 则 $f(a) \leq_2 f(b)$.
- ii) 若 $f(a) \preccurlyeq_2 f(b)$, 则

$$f(a) = f(a) \land_2 f(b)$$

= $f(a \land_1 b)$. (f 是同构)

而 f 是双射, 则

$$f(a \wedge_1 b) = f(a) \iff a \wedge_1 b = a$$
$$\iff a \preccurlyeq_1 b.$$

黄正华 (武汉大学)

续证: (2) 假设对任意 $a, b \in A_1, a \leq_1 b \iff f(a) \leq_2 f(b)$. 即映射 f 是保序的.

黄正华 (武汉大学) 格 December 3, 2012 41 / 103

续证: (2) 假设对任意 $a, b \in A_1, a \preceq_1 b \iff f(a) \preceq_2 f(b)$. 即映射 f 是保序的. 要证 f 是 $\langle A_1, \preceq_1 \rangle$ 到 $\langle A_2, \preceq_2 \rangle$ 的格同构, 即要证

$$f(a \wedge_1 b) = f(a) \wedge_2 f(b), \tag{15}$$

$$f(a \vee_1 b) = f(a) \vee_2 f(b). \tag{16}$$

 黄正华 (武汉大学)
 格
 December 3, 2012
 41 / 103

续证: (2) 假设对任意 $a, b \in A_1, a \preccurlyeq_1 b \iff f(a) \preccurlyeq_2 f(b)$. 即映射 f 是保序的. 要证 f 是 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构, 即要证

$$f(a \wedge_1 b) = f(a) \wedge_2 f(b), \tag{15}$$

$$f(a \vee_1 b) = f(a) \vee_2 f(b). \tag{16}$$

要证 (15) 式成立, 即要证

$$f(a \wedge_1 b) \preccurlyeq_2 f(a) \wedge_2 f(b), \qquad f(a) \wedge_2 f(b) \preccurlyeq_2 f(a \wedge_1 b)$$

同时成立.

黄正华 (武汉大学) 格 December 3, 2012 41 / 103

续证: (2) 假设对任意 $a, b \in A_1, a \preccurlyeq_1 b \iff f(a) \preccurlyeq_2 f(b)$. 即映射 f 是保序的. 要证 f 是 $\langle A_1, \preccurlyeq_1 \rangle$ 到 $\langle A_2, \preccurlyeq_2 \rangle$ 的格同构, 即要证

$$f(a \wedge_1 b) = f(a) \wedge_2 f(b), \tag{15}$$

$$f(a \vee_1 b) = f(a) \vee_2 f(b). \tag{16}$$

要证 (15) 式成立, 即要证

$$f(a \wedge_1 b) \preccurlyeq_2 f(a) \wedge_2 f(b), \qquad f(a) \wedge_2 f(b) \preccurlyeq_2 f(a \wedge_1 b)$$

同时成立.

因为 $a \wedge_1 b \leq_1 a$, $a \wedge_1 b \leq_1 b$, 由 f 的保序性, 得

$$f(a \wedge_1 b) \preccurlyeq_2 f(a), \qquad f(a \wedge_1 b) \preccurlyeq_2 f(b).$$

黄正华 (武汉大学) 格 December 3, 2012 41 / 10

续证: (2) 假设对任意 $a, b \in A_1, a \preceq_1 b \iff f(a) \preceq_2 f(b)$. 即映射 f 是保序的. 要证 f 是 $\langle A_1, \preceq_1 \rangle$ 到 $\langle A_2, \preceq_2 \rangle$ 的格同构, 即要证

$$f(a \wedge_1 b) = f(a) \wedge_2 f(b), \tag{15}$$

$$f(a \vee_1 b) = f(a) \vee_2 f(b). \tag{16}$$

要证 (15) 式成立, 即要证

$$f(a \wedge_1 b) \preccurlyeq_2 f(a) \wedge_2 f(b), \qquad f(a) \wedge_2 f(b) \preccurlyeq_2 f(a \wedge_1 b)$$

同时成立.

因为 $a \wedge_1 b \leq_1 a$, $a \wedge_1 b \leq_1 b$, 由 f 的保序性, 得

$$f(a \wedge_1 b) \preccurlyeq_2 f(a), \qquad f(a \wedge_1 b) \preccurlyeq_2 f(b).$$

所以

$$f(a \wedge_1 b) \leq_2 f(a) \wedge_2 f(b)$$
.

续证: 记 $f(a) \wedge_2 f(b) \triangleq f(d)$, 则 $f(d) \preccurlyeq_2 f(a)$, $f(d) \preccurlyeq_2 f(b)$.

续证: 记 $f(a) \wedge_2 f(b) \triangleq f(d)$, 则 $f(d) \preccurlyeq_2 f(a)$, $f(d) \preccurlyeq_2 f(b)$. 由 f 的保序性, 得

 $d \preccurlyeq_1 a, \qquad d \preccurlyeq_1 b.$

所以, $d \preccurlyeq_1 a \land_1 b$.

续证: 记 $f(a) \wedge_2 f(b) \triangleq f(d)$, 则 $f(d) \preccurlyeq_2 f(a)$, $f(d) \preccurlyeq_2 f(b)$. 由 f 的保序性, 得

 $d \preccurlyeq_1 a, \qquad d \preccurlyeq_1 b.$

所以, $d \preccurlyeq_1 a \land_1 b$. 再由保序性, 得 $f(d) \preccurlyeq_2 f(a \land_1 b)$, 即

 $f(a) \wedge_2 f(b) \preccurlyeq_2 f(a \wedge_1 b).$

续证: 记 $f(a) \land_2 f(b) \triangleq f(d)$, 则 $f(d) \preccurlyeq_2 f(a)$, $f(d) \preccurlyeq_2 f(b)$. 由 f 的保序性, 得

$$d \preccurlyeq_1 a, \qquad d \preccurlyeq_1 b.$$

所以, $d \preccurlyeq_1 a \land_1 b$. 再由保序性, 得 $f(d) \preccurlyeq_2 f(a \land_1 b)$, 即

$$f(a) \wedge_2 f(b) \preccurlyeq_2 f(a \wedge_1 b).$$

类似可证 $f(a \lor_1 b) = f(a) \lor_2 f(b)$ 成立. 故 $f \in \langle A_1, \preceq_1 \rangle$ 到 $\langle A_2, \preceq_2 \rangle$ 的格同构.

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 a, b 且 $a \prec b$ (意指 $a \preccurlyeq b$ 且 $a \neq b$). 构造集合

$$B = \left\{ x \mid x \in A \perp \exists a \preccurlyeq x \preccurlyeq b \right\}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 a, b 且 $a \prec b$ (意指 $a \preccurlyeq b$ 且 $a \neq b$). 构造集合

$$B = \left\{ x \mid x \in A \perp \exists a \preccurlyeq x \preccurlyeq b \right\}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

证 可证 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的子格.

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 a, b 且 $a \prec b$ (意指 $a \preccurlyeq b$ 且 $a \neq b$). 构造集合

$$B = \left\{ x \mid x \in A \perp \exists a \preccurlyeq x \preccurlyeq b \right\}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

证 可证 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的子格. 下证 "集合 B 关于运算是封闭的" 即可.

黄正华 (武汉大学) 格 December 3, 2012

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 a, b 且 $a \prec b$ (意指 $a \preccurlyeq b$ 且 $a \neq b$). 构造集合

$$B = \left\{ x \mid x \in A \perp \exists a \preccurlyeq x \preccurlyeq b \right\}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

证 可证 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的子格. 下证 "集合 B 关于运算是封闭的" 即可. 任意 $x, y \in B \subseteq A$, 有

 $a \preccurlyeq x \preccurlyeq b, \quad a \preccurlyeq y \preccurlyeq b.$

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 a, b 且 $a \prec b$ (意指 $a \preccurlyeq b$ 且 $a \neq b$). 构造集合

$$B = \left\{ x \mid x \in A \perp \exists a \preccurlyeq x \preccurlyeq b \right\}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

证 可证 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的子格. 下证 "集合 B 关于运算是封闭的" 即可. 任意 $x, y \in B \subseteq A$, 有

$$a \preccurlyeq x \preccurlyeq b, \quad a \preccurlyeq y \preccurlyeq b.$$

所以由 $a \leq x$, 和 $a \leq y$,

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 a, b 且 $a \prec b$ (意指 $a \preccurlyeq b$ 且 $a \neq b$). 构造集合

$$B = \left\{ x \mid x \in A \perp \exists a \preccurlyeq x \preccurlyeq b \right\}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

证 可证 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的子格. 下证 "集合 B 关于运算是封闭的" 即可. 任意 $x, y \in B \subseteq A$, 有

$$a \preccurlyeq x \preccurlyeq b$$
, $a \preccurlyeq y \preccurlyeq b$.

所以由 $a \leq x$, 和 $a \leq y$, 可得

$$a \preccurlyeq x \lor y$$
.

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 a, b 且 $a \prec b$ (意指 $a \preccurlyeq b$ 且 $a \neq b$). 构造集合

$$B = \left\{ \left. x \mid x \in A \perp \!\!\! \perp a \preccurlyeq x \preccurlyeq b \right. \right\}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

证 可证 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的子格. 下证 "集合 B 关于运算是封闭的" 即可. 任意 $x, y \in B \subseteq A$, 有

$$a \preccurlyeq x \preccurlyeq b, \quad a \preccurlyeq y \preccurlyeq b.$$

所以由 $a \leq x$, 和 $a \leq y$, 可得

$$a \preccurlyeq x \lor y$$
.

由 $x \leq b$, 和 $y \leq b$,

练习

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 a, b 且 $a \prec b$ (意指 $a \preccurlyeq b$ 且 $a \neq b$). 构造集合

$$B = \left\{ \left. x \mid x \in A \perp \!\!\! \perp a \preccurlyeq x \preccurlyeq b \right. \right\}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

证 可证 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的子格. 下证 "集合 B 关于运算是封闭的" 即可. 任意 $x, y \in B \subseteq A$, 有

$$a \preccurlyeq x \preccurlyeq b, \quad a \preccurlyeq y \preccurlyeq b.$$

所以由 $a \leq x$, 和 $a \leq y$, 可得

$$a \preccurlyeq x \lor y$$
.

由 $x \leq b$, 和 $y \leq b$, 可得

$$x \lor y \preccurlyeq b$$
.

练习

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 a, b 且 $a \prec b$ (意指 $a \preccurlyeq b$ 且 $a \neq b$). 构造集合

$$B = \left\{ x \mid x \in A \perp \exists a \preccurlyeq x \preccurlyeq b \right\}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

证 可证 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的子格. 下证 "集合 B 关于运算是封闭的" 即可. 任意 $x, y \in B \subseteq A$, 有

$$a \preccurlyeq x \preccurlyeq b$$
, $a \preccurlyeq y \preccurlyeq b$.

所以由 $a \leq x$, 和 $a \leq y$, 可得

$$a \preccurlyeq x \lor y$$
.

由 $x \leq b$, 和 $y \leq b$, 可得

$$x \lor y \preccurlyeq b$$
.

所以 $a \preccurlyeq x \lor y \preccurlyeq b$, 即 $x \lor y \in B$.

练习

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 任取 a, b 且 $a \prec b$ (意指 $a \preccurlyeq b$ 且 $a \neq b$). 构造集合

$$B = \left\{ x \mid x \in A \perp \exists a \preccurlyeq x \preccurlyeq b \right\}$$

则 $\langle B, \preccurlyeq \rangle$ 也是一个格,

证 可证 $\langle B, \preccurlyeq \rangle$ 是 $\langle A, \preccurlyeq \rangle$ 的子格. 下证 "集合 B 关于运算是封闭的" 即可. 任意 $x, y \in B \subseteq A$, 有

$$a \preccurlyeq x \preccurlyeq b, \quad a \preccurlyeq y \preccurlyeq b.$$

所以由 $a \leq x$, 和 $a \leq y$, 可得

$$a \preccurlyeq x \lor y$$
.

由 $x \leq b$, 和 $y \leq b$, 可得

$$x \lor y \preccurlyeq b$$
.

所以 $a \leq x \vee y \leq b$, 即 $x \vee y \in B$. 同理可证 $x \wedge y \in B$.

- 1 格的定义
- 2 子格与格同态
- ③ 几种特殊的格
- 4 布尔代数
- 5 有限布尔代数的表示定理

本节介绍几种特殊的格:

- 分配格;
- 有补格;
- 模格.

格中任意三个元素 a, b, c 满足分配不等式:

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c) \tag{17}$$

$$a \wedge (b \vee c) \succcurlyeq (a \wedge b) \vee (a \wedge c)$$
 (18)

格

格中任意三个元素 a, b, c 满足分配不等式:

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (17)

$$a \wedge (b \vee c) \succcurlyeq (a \wedge b) \vee (a \wedge c)$$
 (18)

是否存在格使上述两式等号成立呢?

45 / 103

格中任意三个元素 a, b, c 满足分配不等式:

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (17)

$$a \wedge (b \vee c) \succcurlyeq (a \wedge b) \vee (a \wedge c)$$
 (18)

是否存在格使上述两式等号成立呢?

回答是肯定的. 比如格的典型例子 $\langle \mathscr{P}(S), \subseteq \rangle$, 其分配律是成立的.

Definition 3.1

设 $\langle A, \vee, \wedge \rangle$ 是由格 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统. 如果对任意 $a, b, c \in A$, 满足

$$a \lor (b \land c) = (a \lor b) \land (a \lor c),$$

(并对交可分配)

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$$

(交对并可分配)

则称 $\langle A, \preccurlyeq \rangle$ 是<mark>分配格</mark>.

Definition 3.1

设 $\langle A, \vee, \wedge \rangle$ 是由格 $\langle A, \prec \rangle$ 诱导的代数系统. 如果对任意 $a, b, c \in A$, 满足

$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c),$$

(并对交可分配)

 $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$

(交对并可分配)

则称 $\langle A, \preccurlyeq \rangle$ 是分配格.

这和我们熟知的集合运算的分配律, 有完全相同的形式:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Definition 3.1

设 $\langle A, \vee, \wedge \rangle$ 是由格 $\langle A, \prec \rangle$ 诱导的代数系统. 如果对任意 $a, b, c \in A$, 满足

$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c),$$

(并对交可分配)

 $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$

(交对并可分配)

则称 $\langle A, \preccurlyeq \rangle$ 是分配格.

这和我们熟知的集合运算的分配律, 有完全相同的形式:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

可见〈 $\mathscr{P}(S)$, \subseteq 〉也是分配格的典型例子.

判断下列各图是否为分配格?

<mark>解</mark> (1), (4) 是分配格. (2), (3) 不是分配格.

黄正华 (武汉大学) 格 December

判断下列各图是否为分配格?

解 (1), (4) 是分配格. (2), (3) 不是分配格. 在 (2) 中,

$$b \wedge (c \vee d) = b \wedge e = b$$
, $(b \wedge c) \vee (b \wedge d) = a \vee a = a$,

黄正华 (武汉大学) 格 Decem

47 / 103

判断下列各图是否为分配格?

解 (1), (4) 是分配格. (2), (3) 不是分配格. 在 (2) 中,

$$b \wedge (c \vee d) = b \wedge e = b, \quad (b \wedge c) \vee (b \wedge d) = a \vee a = a,$$

在(3)中,

$$d \wedge (b \vee c) = d \wedge e = d, \quad (d \wedge b) \vee (d \wedge c) = a \vee c = c.$$

判断下列各图是否为分配格?

(2), (3) 这两个具有五个元素的格是很重要的, 分别称为钻石格 (diamond lattice) 和五角格 (pentagon lattice), 分别记为 M_3 和 N_5 .

黄正华 (武汉大学) 格 December 3, 2012 47 / 103

有一个如下的重要结论 (证明略去).

Theorem 3.3

一个格是分配格的充要条件是, 在该格中没有任何子格与 M_3 和 N_5 中的任一个同构.

(a) 钻石格 M₃

(b) 五角格 N₅

如图 (a) 所示的格中, $\langle \{a,b,d,g,e\}, \preccurlyeq \rangle$ 是格 $\langle \{a,b,c,d,e,f,g\}, \preccurlyeq \rangle$ 的子格,

49 / 103

如图 (a) 所示的格中, $\langle \{a, b, d, g, e\}, \prec \rangle$ 是格 $\langle \{a, b, c, d, e, f, g\}, \prec \rangle$ 的子格,

而这个子格与图 (b) 是同构的, 所以, 图 (a) 所示的格不是分配格.

如果格中运算 ∧ 对运算 ∨ 可分配,则运算 ∨ 对运算 ∧ 可分配. 反之亦然.

如果格中运算 ∧ 对运算 ∨ 可分配, 则运算 ∨ 对运算 ∧ 可分配. 反之亦然.

证 设 a, b, c 是格中任意元素, 如果

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \tag{19}$$

如果格中运算 ∧ 对运算 ∨ 可分配,则运算 ∨ 对运算 ∧ 可分配. 反之亦然.

证 设 a, b, c 是格中任意元素, 如果

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \tag{19}$$

$$(a \lor b) \land (a \lor c)$$

如果格中运算 ∧ 对运算 ∨ 可分配, 则运算 ∨ 对运算 ∧ 可分配. 反之亦然.

证 设 a, b, c 是格中任意元素, 如果

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \tag{19}$$

如果格中运算 ∧ 对运算 ∨ 可分配, 则运算 ∨ 对运算 ∧ 可分配. 反之亦然.

证 设 a, b, c 是格中任意元素, 如果

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \tag{19}$$

$$(a \lor b) \land (a \lor c)$$

$$= ((a \lor b) \land a) \lor ((a \lor b) \land c)$$

$$= a \lor ((a \lor b) \land c)$$

$$((a \lor b) \land a = a)$$

如果格中运算 ∧ 对运算 ∨ 可分配, 则运算 ∨ 对运算 ∧ 可分配. 反之亦然.

证 设 a, b, c 是格中任意元素, 如果

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \tag{19}$$

则

黄正华 (武汉大学) 格 December 3, 2012 50 / 103

如果格中运算 ∧ 对运算 ∨ 可分配, 则运算 ∨ 对运算 ∧ 可分配. 反之亦然.

证 设 a, b, c 是格中任意元素, 如果

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \tag{19}$$

$$(a \lor b) \land (a \lor c)$$

$$= ((a \lor b) \land a) \lor ((a \lor b) \land c)$$

$$= a \lor ((a \lor b) \land c)$$

$$= a \lor ((a \land c) \lor (b \land c))$$

$$= (a \lor (a \land c)) \lor (b \land c)$$

$$(结合律)$$

如果格中运算 ∧ 对运算 ∨ 可分配, 则运算 ∨ 对运算 ∧ 可分配. 反之亦然.

证 设 a, b, c 是格中任意元素, 如果

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \tag{19}$$

如果格中运算 ∧ 对运算 ∨ 可分配, 则运算 ∨ 对运算 ∧ 可分配. 反之亦然.

证 设 a, b, c 是格中任意元素, 如果

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \tag{19}$$

则

类似可证 $a \lor (b \land c) = (a \lor b) \land (a \lor c) \Rightarrow a \land (b \lor c) = (a \land b) \lor (a \land c)$.

链是分配格.

链是分配格.

 \overline{U} 设 $\langle A, \preccurlyeq \rangle$ 是链, 则 $\langle A, \preccurlyeq \rangle$ 是格.

链是分配格.

证 设 $\langle A, \preccurlyeq \rangle$ 是链, 则 $\langle A, \preccurlyeq \rangle$ 是格. (链中的任意两个元都是可比的. 比如 $a \preccurlyeq b$, 则 $a \land b = a$, $a \lor b = b$. 任意两个元素都有最小上界和最大下界, 所以是格.)

链是分配格.

证 设 $\langle A, \preccurlyeq \rangle$ 是链, 则 $\langle A, \preccurlyeq \rangle$ 是格. (链中的任意两个元都是可比的. 比如 $a \preccurlyeq b$, 则 $a \land b = a$, $a \lor b = b$. 任意两个元素都有最小上界和最大下界, 所以是格.)

对任意 $a, b, c \in A$, 可分两种情况讨论:

- $b \preccurlyeq a \perp c \preccurlyeq a.$

链是分配格.

证 设 $\langle A, \preccurlyeq \rangle$ 是链,则 $\langle A, \preccurlyeq \rangle$ 是格. (链中的任意两个元都是可比的. 比如 $a \preccurlyeq b$,则 $a \land b = a$, $a \lor b = b$. 任意两个元素都有最小上界和最大下界,所以是格.)

对任意 $a, b, c \in A$, 可分两种情况讨论:

- $b \preccurlyeq a \perp c \preccurlyeq a.$
- ① $a \leq b$ 或 $a \leq c$.

$$a \wedge (b \vee c) = \begin{cases} a \wedge c = a, & b \leq c, \\ a \wedge b = a, & c \leq b. \end{cases}$$

链是分配格.

证 设 $\langle A, \preccurlyeq \rangle$ 是链, 则 $\langle A, \preccurlyeq \rangle$ 是格. (链中的任意两个元都是可比的. 比如 $a \preccurlyeq b$, 则 $a \land b = a$, $a \lor b = b$. 任意两个元素都有最小上界和最大下界, 所以是格.)

对任意 $a, b, c \in A$, 可分两种情况讨论:

- ① $a \leq b$ 或 $a \leq c$.

$$a \wedge (b \vee c) = \begin{cases} a \wedge c = a, & b \leq c, \\ a \wedge b = a, & c \leq b. \end{cases}$$
$$(a \wedge b) \vee (a \wedge c) = \begin{cases} a \vee (a \wedge c) = a, & a \leq b, \\ (a \wedge b) \vee a = a, & a \leq c. \end{cases}$$

链是分配格.

证 设 $\langle A, \preccurlyeq \rangle$ 是链,则 $\langle A, \preccurlyeq \rangle$ 是格. (链中的任意两个元都是可比的. 比如 $a \preccurlyeq b$,则 $a \land b = a$, $a \lor b = b$. 任意两个元素都有最小上界和最大下界,所以是格.)

对任意 $a, b, c \in A$, 可分两种情况讨论:

- $b \preccurlyeq a \perp c \preccurlyeq a.$
- ① $a \leq b$ 或 $a \leq c$.

$$a \wedge (b \vee c) = \begin{cases} a \wedge c = a, & b \leq c, \\ a \wedge b = a, & c \leq b. \end{cases}$$
$$(a \wedge b) \vee (a \wedge c) = \begin{cases} a \vee (a \wedge c) = a, & a \leq b, \\ (a \wedge b) \vee a = a, & a \leq c. \end{cases}$$

所以, $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$.

续证: ② $b \preccurlyeq a \perp c \preccurlyeq a$.

这时必有 $b \lor c \preccurlyeq a$ (上界). 进而有

$$a \wedge (b \vee c) = b \vee c$$

续证: ② $b \preccurlyeq a \perp c \preccurlyeq a$.

这时必有 $b \lor c \preccurlyeq a$ (上界). 进而有

$$a \wedge (b \vee c) = b \vee c$$

另一方面, 由 $b \leq a$ 且 $c \leq a$ 可得:

$$(a \wedge b) \vee (a \wedge c) = b \vee c$$

续证: ② $b \preccurlyeq a \perp c \preccurlyeq a$.

这时必有 $b \lor c \preccurlyeq a$ (上界). 进而有

$$a \wedge (b \vee c) = b \vee c$$

另一方面, 由 $b \leq a$ 且 $c \leq a$ 可得:

$$(a \wedge b) \vee (a \wedge c) = b \vee c$$

所以,

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$$

续证: ② $b \preccurlyeq a \perp c \preccurlyeq a$.

这时必有 $b \lor c \preccurlyeq a$ (上界). 进而有

$$a \wedge (b \vee c) = b \vee c$$

另一方面, 由 $b \leq a$ 且 $c \leq a$ 可得:

$$(a \wedge b) \vee (a \wedge c) = b \vee c$$

所以,

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$$

得证: 链是分配格.

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

证 ① 设 $a \leq c$.

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

证 ① 设 $a \leq c$. 由 $a \leq c \iff (a \vee c) = c$,

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

格

证 ① 设 $a \leq c$. 由 $a \leq c \iff (a \vee c) = c$, 得

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (分配不等式)
= $(a \lor b) \land c$. ($(a \lor c) = c$)

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

证 ① 设 $a \leq c$. 由 $a \leq c \iff (a \vee c) = c$, 得

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (分配不等式)
= $(a \lor b) \land c$. ($(a \lor c) = c$)

② $\stackrel{\cdot}{a} \lor (b \land c) \preccurlyeq (a \lor b) \land c$,

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

证 ① 设 $a \leq c$. 由 $a \leq c \iff (a \vee c) = c$, 得

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (分配不等式)
= $(a \lor b) \land c$. ($(a \lor c) = c$)

② 若 $a \lor (b \land c) \preccurlyeq (a \lor b) \land c$,则由

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

证 ① 设 $a \leq c$. 由 $a \leq c \iff (a \vee c) = c$, 得

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (分配不等式)
= $(a \lor b) \land c$. ($(a \lor c) = c$)

② 若 $a \lor (b \land c) \preccurlyeq (a \lor b) \land c$,则由

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

证 ① 设 $a \leq c$. 由 $a \leq c \iff (a \vee c) = c$, 得

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (分配不等式)
= $(a \lor b) \land c$. ($(a \lor c) = c$)

② 若 $a \lor (b \land c) \preccurlyeq (a \lor b) \land c$,则由

$$a \preccurlyeq a \lor (b \land c)$$

53 / 103

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

证 ① 设 $a \leq c$. 由 $a \leq c \iff (a \vee c) = c$, 得

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (分配不等式)
= $(a \lor b) \land c$. ($(a \lor c) = c$)

② 若 $a \lor (b \land c) \preccurlyeq (a \lor b) \land c$,则由

$$a \preccurlyeq a \lor (b \land c)$$

 $(a \lor b) \land c \preccurlyeq c.$

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

证 ① 设 $a \leq c$. 由 $a \leq c \iff (a \vee c) = c$, 得

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (分配不等式)
= $(a \lor b) \land c$. ($(a \lor c) = c$)

② 若 $a \lor (b \land c) \preccurlyeq (a \lor b) \land c$,则由

$$a \preccurlyeq a \lor (b \land c)$$

 $\preccurlyeq (a \lor b) \land c \preccurlyeq c.$

Theorem 3.7

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$

证 ① 设 $a \leq c$. 由 $a \leq c \iff (a \vee c) = c$, 得

$$a \lor (b \land c) \preccurlyeq (a \lor b) \land (a \lor c)$$
 (分配不等式)
= $(a \lor b) \land c$. ($(a \lor c) = c$)

② 若 $a \lor (b \land c) \preccurlyeq (a \lor b) \land c$,则由

$$a \preccurlyeq a \lor (b \land c)$$

 $\preccurlyeq (a \lor b) \land c \preccurlyeq c.$

所以, $a \preccurlyeq c$.

Definition 3.8

设 $\langle A, \vee, \wedge \rangle$ 是由格 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统. 如果对任意 $a, b, c \in A$, 只要 $a \preccurlyeq c$, 就有

$$a \lor (b \land c) = (a \lor b) \land c, \tag{20}$$

则称 $\langle A, \preccurlyeq \rangle$ 是<mark>模格</mark>(modular lattice).

Definition 3.8

设 $\langle A, \vee, \wedge \rangle$ 是由格 $\langle A, \prec \rangle$ 诱导的代数系统. 如果对任意 $a, b, c \in A$, 只要 $a \prec c$, 就有

$$a \lor (b \land c) = (a \lor b) \land c, \tag{20}$$

则称 $\langle A, \preceq \rangle$ 是<mark>模格</mark>(modular lattice).

☞ 对照前述结论:

设 $\langle A, \preccurlyeq \rangle$ 是一个格, 则对于任意的 $a, b, c \in A$, 有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$
 (21)

☞ 把 (20) 式与"分配等式"相比较:

$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c), \tag{22}$$

Definition 3.8

设 $\langle A, \vee, \wedge \rangle$ 是由格 $\langle A, \preccurlyeq \rangle$ 诱导的代数系统. 如果对任意 $a, b, c \in A$, 只要 $a \preccurlyeq c$. 就有

$$a \lor (b \land c) = (a \lor b) \land c, \tag{20}$$

则称 $\langle A, \preccurlyeq \rangle$ 是<mark>模格</mark>(modular lattice).

☞ 对照前述结论:

设 $\langle A, \preccurlyeq \rangle$ 是一个格,则对于任意的 $a, b, c \in A$,有

$$a \preccurlyeq c \iff a \lor (b \land c) \preccurlyeq (a \lor b) \land c.$$
 (21)

№ 把 (20) 式与"分配等式"相比较:

$$a \vee (b \wedge c) = (a \vee b) \wedge ({\color{red}a} \vee {\color{red}c}), \tag{22}$$

知分配格必定是模格.

分配格必定是模格.

分配格必定是模格.

证 设 $\langle A, \preccurlyeq \rangle$ 是分配格, 任意的 $a, b, c \in A$, 若 $a \preccurlyeq c$, 则

$$a \lor c = c$$
.

分配格必定是模格.

证 设 $\langle A, \preccurlyeq \rangle$ 是分配格, 任意的 $a, b, c \in A$, 若 $a \preccurlyeq c$, 则

$$a \lor c = c$$
.

故

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$
 (分配律)
= $(a \lor b) \land c$.

55 / 103

分配格必定是模格.

证 设 $\langle A, \preccurlyeq \rangle$ 是分配格, 任意的 $a, b, c \in A$, 若 $a \preccurlyeq c$, 则

$$a \lor c = c$$
.

格

故

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$
 (分配律)
= $(a \lor b) \land c$.

即证 $\langle A, \preccurlyeq \rangle$ 是模格.

Example 3.10

钻石格 M3 不是分配格, 但它是模格.

Example 3.10

钻石格 M_3 不是分配格, 但它是模格. 对于任意的 $a, b, c \in \{0, 1, x, y, z\}$, 若有 $a \leq c$, 则必有 a = 0 或者 c = 1.

Example 3.10

钻石格 M_3 不是分配格, 但它是模格.

对于任意的 $a, b, c \in \{0, 1, x, y, z\}$, 若有 $a \leq c$, 则必 有 a = 0 或者 c = 1.

若 a=0, 则

$$a \lor (b \land c) = b \land c,$$

 $(a \lor b) \land c = b \land c.$

Example 3.10

钻石格 M_3 不是分配格, 但它是模格.

对于任意的 $a,b,c\in\{0,1,x,y,z\}$, 若有 $a \preceq c$, 则必 有 a=0 或者 c=1.

若 a=0,则

$$a \lor (b \land c) = b \land c,$$

 $(a \lor b) \land c = b \land c.$

若
$$c=1$$
,则

$$a \lor (b \land c) = a \lor b,$$

$$(a \lor b) \land c = a \lor b.$$

Example 3.10

钻石格 M_3 不是分配格, 但它是模格.

对于任意的 $a,b,c\in\{0,1,x,y,z\}$, 若有 $a\preccurlyeq c$, 则必有 a=0 或者 c=1.

若 a=0, 则

$$a \vee (b \wedge c) = b \wedge c,$$

$$(a \lor b) \land c = b \land c.$$

若 c=1, 则

$$a \lor (b \land c) = a \lor b$$
,

$$(a \lor b) \land c = a \lor b.$$

所以它是模格.

试举两个含有6个元素的格,一个是分配格,另一个不是分配格.

试举两个含有6个元素的格,一个是分配格,另一个不是分配格.

解 分配格如图 (a) 所示, 不是分配格如图 (b) 所示.

试举两个含有6个元素的格,一个是分配格,另一个不是分配格.

解 分配格如图 (a) 所示, 不是分配格如图 (b) 所示.

图 (b) 中有子格与钻石格同构, 所以图 (b) 不是分配格.

试举两个含有6个元素的格,一个是分配格,另一个不是分配格.

解 分配格如图 (a) 所示, 不是分配格如图 (b) 所示.

图 (b) 中有子格与钻石格同构, 所以图 (b) 不是分配格. 当然, 分配格的最直接例子是链.

黄正华 (武汉大学)

试举两个含有6个元素的格,一个是分配格,另一个不是分配格.

解 分配格如图 (a) 所示, 不是分配格如图 (b) 所示.

图 (b) 中有子格与钻石格同构, 所以图 (b) 不是分配格.

当然, 分配格的最直接例子是链. 非分配格还有很多, 比如六个元素组成的一个环形结构, 此时在其中任取 5 点都是和五角格 N_5 同构的.

黄正华 (武汉大学) 格 December 3, 2012 57

在下图中给出的几个格,哪个是分配格?

在下图中给出的几个格,哪个是分配格?

解

图 (b) 是分配格.

图 (a), (c) 中都有子格与

🍗 同构, 所以图 (a), (c) 不是分配格.

(武汉大学) 格 December 3, 2012

58 / 103

在下图中给出的几个格,哪个是分配格?

图 (b) 是分配格.

图 (a), (c) 中都有子格与

🍗 同构, 所以图 (a), (c) 不是分配格.

(武汉大学) 格 December 3, 2012

格的全下界、全上界

Definition 3.11

设 $\langle A, \preccurlyeq \rangle$ 是格,如果存在元素 $a \in A$,对任意 $x \in A$,都有

 $a \preccurlyeq x$,

则称 a 为格 $\langle A, \preccurlyeq \rangle$ 的全下界. 格的全下界记为 0.

格的全下界、全上界

Definition 3.11

设 $\langle A, \preccurlyeq \rangle$ 是格,如果存在元素 $a \in A$,对任意 $x \in A$,都有

 $a \preccurlyeq x$

则称 a 为格 $\langle A, \preccurlyeq \rangle$ 的全下界. 格的全下界记为 0.

Definition 3.12

设 $\langle A, \preccurlyeq \rangle$ 是格,如果存在元素 $a \in A$,对任意 $x \in A$,都有

 $x \preccurlyeq a$

则称 a 为格 $\langle A, \preccurlyeq \rangle$ 的全上界. 格的全上界记为 1.

格的全下界、全上界

Theorem 3.13

格的全下界 (全上界) 如果存在, 则必惟一.

格的全下界、全上界

Theorem 3.13

格的全下界 (全上界) 如果存在, 则必惟一.

证 假设格 $\langle A, \preccurlyeq \rangle$ 有两个全下界 a 和 b.

格

格的全下界、全上界

Theorem 3.13

格的全下界 (全上界) 如果存在, 则必惟一.

假设格 $\langle A, \preccurlyeq \rangle$ 有两个全下界 a 和 b. 那么按全下界的定义, 应有 证

 $a \leq b$ 和 $b \leq a$

格

同时成立,

格的全下界、全上界

Theorem 3.13

格的全下界 (全上界) 如果存在, 则必惟一.

证 假设格 $\langle A, \preccurlyeq \rangle$ 有两个全下界 a 和 b. 那么按全下界的定义, 应有

$$a \leq b$$
 和 $b \leq a$

同时成立, 从而

$$a = b$$
.

有界格

Definition 3.14

具有全下界和全上界的格称为有界格.

有界格

Definition 3.14

具有全下界和全上界的格称为有界格.

Example 3.15

设 S 是有限集合, 那么格 $\langle \mathcal{P}(S), \subseteq \rangle$ 是有界格, 其全下界是 \varnothing , 全上界是 S.

格

黄正华 (武汉大学)

有界格

Definition 3.14

具有全下界和全上界的格称为有界格.

Example 3.15

设 S 是有限集合, 那么格 $\langle \mathscr{P}(S), \subseteq \rangle$ 是有界格, 其全下界是 \varnothing , 全上界是 S.

Example 3.16

如图所示的格中, h 是全下界, a 是全上界. 该格是有界格.

设 $\langle A, \preccurlyeq \rangle$ 是有界格, 则对任意 $a \in A$, 必有

$$a \lor 1 = 1$$
,

$$a \wedge 1 = a$$
;

$$(23)$$

$$a \lor 0 = a$$
,

$$a \wedge 0 = 0.$$

(24)

格

设 $\langle A, \preccurlyeq \rangle$ 是有界格, 则对任意 $a \in A$, 必有

$$a \lor 1 = 1, \qquad \qquad a \land 1 = a; \tag{23}$$

$$a \lor 0 = a, \qquad \qquad a \land 0 = 0.$$

证 因 $\langle A, \preccurlyeq \rangle$ 是有界格, 对任意 $a \in A$, 应有 $0 \preccurlyeq a \preccurlyeq 1$.

(24)

设 $\langle A, \preccurlyeq \rangle$ 是有界格, 则对任意 $a \in A$, 必有

$$a \vee 1 = 1$$
,

$$a \wedge 1 = a$$
;

$$(23)$$

$$a \vee 0 = a$$
,

$$a \wedge 0 = 0.$$

证 因 $\langle A, \preccurlyeq \rangle$ 是有界格,对任意 $a \in A$, 应有 $0 \preccurlyeq a \preccurlyeq 1$. 再由格的性质,即可得:

$$a \lor 1 = 1$$
,

$$a \wedge 1 = a;$$

$$a \lor 0 = a$$
,

$$a \wedge 0 = 0$$
.

设 $\langle A, \preccurlyeq \rangle$ 是有界格, 则对任意 $a \in A$, 必有

$$a \vee 1 = 1$$
,

$$a \wedge 1 = a; \tag{23}$$

$$a \lor 0 = a$$
,

$$a \wedge 0 = 0$$
.

注

• 运算 \vee 的零元和4元分别为 1 和 0.

设 $\langle A, \preccurlyeq \rangle$ 是有界格, 则对任意 $a \in A$, 必有

$$a \vee 1 = 1$$
,

$$a \wedge 1 = a$$
;

$$a \lor 0 = a$$
,

$$a \wedge 0 = 0.$$

注

- 运算 ∨ 的零元和幺元分别为 1 和 0.
 - $a \lor 1 = 1 \lor a = 1 \Rightarrow 1 \not\in V$ 的零元;

设 $\langle A, \preccurlyeq \rangle$ 是有界格, 则对任意 $a \in A$, 必有

$$a \vee 1 = 1$$
,

$$a \wedge 1 = a$$
;

$$(23)$$

$$a \lor 0 = a$$
,

$$a \wedge 0 = 0$$
.

注

- 运算 ∨ 的零元和幺元分别为 1 和 0.
 - $a \lor 1 = 1 \lor a = 1 \Rightarrow 1 \not\in V$ 的零元;
 - $a \lor 0 = 0 \lor a = a \Rightarrow 0 \& \lor$ 的幺元.

设 $\langle A, \preccurlyeq \rangle$ 是有界格, 则对任意 $a \in A$, 必有

$$a \lor 1 = 1, \qquad \qquad a \land 1 = a; \tag{23}$$

$$a \lor 0 = a, \qquad \qquad a \land 0 = 0. \tag{24}$$

注

• 运算 \vee 的零元和4元分别为 1 和 0.

•
$$a \lor 1 = 1 \lor a = 1 \Rightarrow 1 \not\in V$$
 的零元;

•
$$a \lor 0 = 0 \lor a = a \Rightarrow 0 \not E \lor u S \not A$$
.

• 运算 \wedge 的零元和4元分别为 0 和 1.

设 $\langle A, \preccurlyeq \rangle$ 是有界格, 则对任意 $a \in A$, 必有

$$a \vee 1 = 1$$
,

$$a \wedge 1 = a$$
;

$$(23)$$

$$a \lor 0 = a$$
,

$$a \wedge 0 = 0.$$

注

- 运算 ∨ 的零元和幺元分别为 1 和 0.
 - $a \lor 1 = 1 \lor a = 1 \Rightarrow 1 \not\in V$ 的零元;
 - $a \lor 0 = 0 \lor a = a \Rightarrow 0 \not\in V$ 的幺元.
- 运算 ∧ 的零元和幺元分别为 0 和 1.
 - $a \wedge 0 = 0 \wedge a = 0 \Rightarrow 0 \not\equiv \wedge \text{ hsp.};$

设 $\langle A, \preccurlyeq \rangle$ 是有界格, 则对任意 $a \in A$, 必有

$$a \vee 1 = 1$$
,

$$a \wedge 1 = a$$
;

$$(23)$$

$$a \vee 0 = a$$
,

$$a \wedge 0 = 0.$$

注

- 运算 ∨ 的零元和幺元分别为 1 和 0.
 - $a \lor 1 = 1 \lor a = 1 \Rightarrow 1 \not\in V$ 的零元;
 - $a \lor 0 = 0 \lor a = a \Rightarrow 0 \not\in \lor n \not\preceq \pi$.
- 运算 \wedge 的零元和4元分别为 0 和 1.
 - $a \wedge 0 = 0 \wedge a = 0 \Rightarrow 0 \not\in \wedge \text{ hsp.};$
 - $a \wedge 1 = 1 \wedge a = a \Rightarrow 1 \not\in \wedge \text{ in } \Delta \vec{\pi}$.

Definition 3.18

设 $\langle A, \preccurlyeq \rangle$ 是有界格, 对 $a \in A$, 若存在 $b \in A$, 使

$$a \lor b = 1, \qquad a \land b = 0,$$

则称 $b \in a$ 的补元.

Definition 3.18

设 $\langle A, \prec \rangle$ 是有界格, 对 $a \in A$, 若存在 $b \in A$, 使

$$a \lor b = 1, \qquad a \land b = 0,$$

则称 $b \neq a$ 的补元.

Example 3.19

设 S 是有限集合, 对有界格 $\langle \mathcal{P}(S), \subseteq \rangle$, 其全下界是 \varnothing , 全上界是 S. 任 意 $A \in \mathcal{P}(S)$, A 的补元是 S - A.

Example 3.20

如图所示有界格中,

格

• d和 c, d和 e, a和 e, 0和1互为 补元, 即 a, c, d, e, 0, 1 都有补元.

Example 3.20

如图所示有界格中,

- *d* 和 *c*, *d* 和 *e*, *a* 和 *e*, 0 和 1 互为 补元, 即 *a*, *c*, *d*, *e*, 0, 1 都有补元.
- 但 b 没有补元.

Example 3.20

如图所示有界格中,

- d和 c, d和 e, a和 e, 0和1互为 补元, 即 a, c, d, e, 0, 1 都有补元.
- 但 b 没有补元.
- 一个元的补元可以有多个: 例如, d, e 有两个补元;

Example 3.20

如图所示有界格中,

- *d* 和 *c*, *d* 和 *e*, *a* 和 *e*, 0 和 1 互为 补元, 即 *a*, *c*, *d*, *e*, 0, 1 都有补元.
- 但 b 没有补元.
- 一个元的补元可以有多个:例如,d, e 有两个补元;
- 0 是 1 惟一的补元; 1 是 0 惟一的 补元.

Example 3.20

如图所示有界格中,

- ◆ d 和 c, d 和 e, a 和 e, 0 和 1 互为
 补元,即 a, c, d, e, 0, 1 都有补元.
- 但 b 没有补元.
- 一个元的补元可以有多个: 例如,d, e 有两个补元;
- 0 是 1 惟一的补元; 1 是 0 惟一的 补元.

对于元素 $a \in A$, 可以存在多个补元, 也可以不存在补元.

Definition 3.21

在一个有界格中, 如果每个元素至少有一个补元, 则称此格为有补格.

Definition 3.21

在一个有界格中, 如果每个元素至少有一个补元, 则称此格为有补格.

Example 3.22

如下是一些有补格的例子.

格

Definition 3.21

在一个有界格中, 如果每个元素至少有一个补元, 则称此格为有补格.

Example 3.22

如下是一些有补格的例子.

Definition 3.21

在一个有界格中, 如果每个元素至少有一个补元, 则称此格为有补格.

Example 3.22

如下是一些有补格的例子.

在有界分配格中, 若某元素有补元, 则必惟一.

在有界分配格中, 若某元素有补元, 则必惟一.

证 设 a 有补元 b, c, 则有

$$a \lor b = 1, \qquad a \land b = 0; \tag{25}$$

$$a \lor c = 1, \qquad \qquad a \land c = 0. \tag{26}$$

December 3, 2012

在有界分配格中, 若某元素有补元, 则必惟一.

证 设 a 有补元 b, c, 则有

$$a \lor b = 1, \qquad a \land b = 0; \tag{25}$$

$$a \lor c = 1, \qquad a \land c = 0. \tag{26}$$

那么,

$$a \lor b = a \lor c,$$
 $a \land b = a \land c,$

在有界分配格中, 若某元素有补元, 则必惟一.

证 设 a 有补元 b, c, 则有

$$a \lor b = 1, \qquad a \land b = 0; \tag{25}$$

$$a \lor c = 1, \qquad a \land c = 0. \tag{26}$$

那么,

$$a \lor b = a \lor c,$$
 $a \land b = a \land c,$

由分配格的性质得

$$b=c$$
.

在有界分配格中, 若某元素有补元, 则必惟一.

证 设 a 有补元 b, c, 则有

$$a \vee b = 1$$
,

$$a \wedge b = 0; \tag{25}$$

$$a \lor c = 1$$
,

$$a \wedge c = 0. \tag{26}$$

那么,

$$a \lor b = a \lor c,$$
 $a \land b = a \land c,$

由分配格的性质得

$$b=c$$
.

格

注

• 当补元惟一时, 我们通常用 x', \bar{x} 或 $\neg x$ 表示 x 的补元.

在有界分配格中, 若某元素有补元, 则必惟一.

证 设 a 有补元 b, c, 则有

$$a \vee b = 1$$
,

$$a \wedge b = 0; \tag{25}$$

$$a \vee c = 1$$
,

$$a \wedge c = 0. \tag{26}$$

那么,

$$a \lor b = a \lor c, \qquad a \land b = a \land c,$$

由分配格的性质得

$$b=c$$
.

注

- 当补元惟一时, 我们通常用 x', \bar{x} 或 $\neg x$ 表示 x 的补元.
- 注意到有补格是有界格, 故有补分配格中, 每个元素必有惟一的补元.

试根据如图所示有界格, 回答以下问题.

- a 和 f 的补元素分别是哪些元素?
- 该有界格是分配格吗?
- 该有界格是有补格吗?

试根据如图所示有界格, 回答以下问题.

- a 和 f 的补元素分别是哪些元素?
- 该有界格是分配格吗?
- 该有界格是有补格吗?

解

• a 和 f 都没有补元;

试根据如图所示有界格, 回答以下问题.

- a 和 f 的补元素分别是哪些元素?
- 该有界格是分配格吗?
- 该有界格是有补格吗?

解

- a 和 f 都没有补元;
- 该有界格不是是分配格: 有子格与

同构;

试根据如图所示有界格, 回答以下问题.

- a 和 f 的补元素分别是哪些元素?
- 该有界格是分配格吗?
- 该有界格是有补格吗?

解

- a 和 f 都没有补元;
- 该有界格不是是分配格: 有子格与

同构;

• 该有界格不是有补格.

- 1 格的定义
- 2 子格与格同态
- ③ 几种特殊的格
- 4 布尔代数
- 5 有限布尔代数的表示定理

格

主要内容

布尔代数 (或布尔格) 是抽象了集合运算和逻辑运算二者的根本性质的一个 代数结构.

在这一节中将证明:

任何一个有限布尔代数必定与格 $\langle \mathcal{P}(S), \subseteq \rangle$ 所诱导的代数系统同构.

黄正华 (武汉大学) 格 December 3, 2012 68 / 103

主要内容

布尔代数 (或布尔格) 是抽象了集合运算和逻辑运算二者的根本性质的一个 代数结构.

在这一节中将证明:

任何一个有限布尔代数必定与格 $\langle \mathcal{P}(S), \subseteq \rangle$ 所诱导的代数系统同构.

Definition 4.1

一个有补分配格称为布尔格(Boolean lattice).

黄正华 (武汉大学) 格 December 3, 2012

68 / 103

概念之间的关系

格

注意到有补分配格 (布尔格) 的每个元素有补元, 且惟一.

在布尔格 $\langle A, \preccurlyeq \rangle$ 上可以确定一个一元运算, 记为 "一", 使得 \overline{a} 为 a 的补元. 这个一元运算称为<mark>补运算</mark>.

注意到有补分配格 (布尔格) 的每个元素有补元, 且惟一.

在布尔格 $\langle A, \preccurlyeq \rangle$ 上可以确定一个一元运算, 记为 "一", 使得 \overline{a} 为 a 的补元. 这个一元运算称为补运算.

Definition 4.2

由布尔格 $\langle A, \prec \rangle$, 可以诱导一个代数系统 $\langle A, \lor, \land, ^- \rangle$, 这个代数系统称为<mark>布尔</mark>代数(Boolean lattice).

 黄正华 (武汉大学)
 格
 December 3, 2012
 70 / 103

注意到有补分配格 (布尔格) 的每个元素有补元, 且惟一.

在布尔格 $\langle A, \preccurlyeq \rangle$ 上可以确定一个一元运算, 记为 "一", 使得 \overline{a} 为 a 的补元. 这个一元运算称为<mark>补运算</mark>.

Definition 4.2

由布尔格 $\langle A, \prec \rangle$, 可以诱导一个代数系统 $\langle A, \lor, \land, ^- \rangle$, 这个代数系统称为<mark>布尔</mark> 代数(Boolean lattice).

☞ 为了强调布尔代数中的最小元 0 和最大元 1, 也记布尔代数 为 $\langle A, \lor, \land, ^-, 0, 1 \rangle$.

黄正华 (武汉大学) 格 December 3, 2012 70 / 10:

注意到有补分配格 (布尔格) 的每个元素有补元, 且惟一.

在布尔格 $\langle A, \preccurlyeq \rangle$ 上可以确定一个一元运算, 记为 "一", 使得 \overline{a} 为 a 的补元. 这个一元运算称为补运算.

Definition 4.2

由布尔格 $\langle A, \prec \rangle$, 可以诱导一个代数系统 $\langle A, \lor, \land, ^- \rangle$, 这个代数系统称为<mark>布尔</mark> 代数(Boolean lattice).

▶ 为了强调布尔代数中的最小元 0 和最大元 1, 也记布尔代数 为 $\langle A, \vee, \wedge, ^-, 0, 1 \rangle$.

Example 4.3

设 S 是非空有限集合, 则 $\langle \mathcal{P}(S), \subseteq \rangle$ 是一个布尔格.

 黄正华 (武汉大学)
 格
 December 3, 2012

注意到有补分配格 (布尔格) 的每个元素有补元, 且惟一.

在布尔格 $\langle A, \preccurlyeq \rangle$ 上可以确定一个一元运算, 记为 "一", 使得 \overline{a} 为 a 的补元. 这个一元运算称为<mark>补运算</mark>.

Definition 4.2

由布尔格 $\langle A, \prec \rangle$, 可以诱导一个代数系统 $\langle A, \lor, \land, ^- \rangle$, 这个代数系统称为<mark>布尔</mark> 代数(Boolean lattice).

▶ 为了强调布尔代数中的最小元 0 和最大元 1, 也记布尔代数 为 $\langle A, \vee, \wedge, ^-, 0, 1 \rangle$.

Example 4.3

设 S 是非空有限集合, 则 $\langle \mathcal{P}(S), \subseteq \rangle$ 是一个布尔格. 而由这个布尔格所诱导的代数系统 $\langle \mathcal{P}(S), \cup, \cap, \sim \rangle$ 是一个布尔代数.

黄正华 (武汉大学) 格 December 3, 2012

布尔代数的等价定义

Definition 4.4

布尔代数是一个集合 A, 提供了两个二元运算 \land , \lor , 一个一元运算 \lnot 和两个元 素 0 和 1, 对于集合 A 的任意元素 a, b 和 c, 满足

- 结合律: $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$;
- ② 交換律: $a \lor b = b \lor a$, $a \land b = b \land a$:
- 吸收律: $a \lor (a \land b) = a$, $a \land (a \lor b) = a$;
- **⑤** 分配律: $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c), \ a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c);$
- **⑤** 互补律: $a \vee \neg a = 1$, $a \wedge \neg a = 0$.

布尔代数的等价定义

Definition 4.4

布尔代数是一个集合 A, 提供了两个二元运算 \land , \lor , 一个一元运算 \lnot 和两个元素 0 和 1, 对于集合 A 的任意元素 a, b 和 c, 满足

- **⑤** 结合律: $a \lor (b \lor c) = (a \lor b) \lor c$, $a \land (b \land c) = (a \land b) \land c$;
- ② 交換律: $a \lor b = b \lor a$, $a \land b = b \land a$;
- **③** 吸收律: $a \lor (a \land b) = a$, $a \land (a \lor b) = a$;
- **③** 分配律: $a \lor (b \land c) = (a \lor b) \land (a \lor c), \ a \land (b \lor c) = (a \land b) \lor (a \land c);$
- **⑤** 互补律: $a \vee \neg a = 1$, $a \wedge \neg a = 0$.

前三条就是格的定义; 加上后面两条, 说明布尔代数是有补分配格.

黄正华 (武汉大学) 格 December 3, 2012

Example 4.5

最简单的布尔代数只有两个元素 0 和 1, 其运算表为:

V	0	1
0	0	1
1	1	1

\wedge	0	1
0	0	0
1	0	1

a	$\neg a$
0	1
1	0

72 / 103

Example 4.5

最简单的布尔代数只有两个元素 0 和 1, 其运算表为:

V	0	1
0	0	1
1	1	1

\wedge	0	1
0	0	0
1	0	1

\overline{a}	$\neg a$
0	1
1	0

☞ 应用于逻辑和电路设计.

设 a, b 是布尔代数中任意两个元素, 则

$$\overline{(\overline{a})} = a; \tag{27}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{28}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{29}$$

设 a, b 是布尔代数中任意两个元素, 则

$$\overline{(\overline{a})} = a; (27)$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{28}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{29}$$

证 ① 按定义, a 与 \overline{a} 互补, 所以 \overline{a} 的补元是 a, 即

$$\overline{(\overline{a})} = a. \tag{30}$$

设 a, b 是布尔代数中任意两个元素, 则

$$\overline{(\overline{a})} = a; \tag{27}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{28}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{29}$$

证 ② 可直接验证 $a \lor b$ 的补元是 $(\overline{a} \land \overline{b})$:

73 / 103

设 a, b 是布尔代数中任意两个元素, 则

$$\overline{(\overline{a})} = a; \tag{27}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{28}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{29}$$

$$(\underline{a} \vee \underline{b}) \vee (\overline{a} \wedge \overline{b}) = (\underline{a} \vee \underline{b} \vee \overline{a}) \wedge (\underline{a} \vee \underline{b} \vee \overline{b})$$
 (分配律)

设 a, b 是布尔代数中任意两个元素, 则

$$\overline{(\overline{a})} = a; \tag{27}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{28}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{29}$$

$$(a \lor b) \lor (\overline{a} \land \overline{b}) = (a \lor b \lor \overline{a}) \land (a \lor b \lor \overline{b})$$
 (分配律)
= $(1 \lor b) \land (a \lor 1)$

设 a, b 是布尔代数中任意两个元素, 则

$$\overline{(\overline{a})} = a; \tag{27}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{28}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{29}$$

$$(\mathbf{a} \vee \mathbf{b}) \vee (\overline{a} \wedge \overline{b}) = (\mathbf{a} \vee \mathbf{b} \vee \overline{a}) \wedge (\mathbf{a} \vee \mathbf{b} \vee \overline{b})$$
 (分配律)
$$= (1 \vee \mathbf{b}) \wedge (\mathbf{a} \vee \mathbf{1})$$

$$= 1 \wedge 1 = 1,$$

设 a, b 是布尔代数中任意两个元素, 则

$$\overline{(\overline{a})} = a; \tag{27}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{28}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{29}$$

证 ② 可直接验证 $a \lor b$ 的补元是 $(\overline{a} \land \overline{b})$:

$$(a \lor b) \lor (\overline{a} \land \overline{b}) = (a \lor b \lor \overline{a}) \land (a \lor b \lor \overline{b})$$

$$= (1 \lor b) \land (a \lor 1)$$

$$= 1 \land 1 = 1,$$

$$(a \lor b) \land (\overline{a} \land \overline{b}) = (a \land \overline{a} \land \overline{b}) \lor (b \land \overline{a} \land \overline{b})$$

黄正华 (武汉大学)

设 a, b 是布尔代数中任意两个元素, 则

$$\overline{(\overline{a})} = a; \tag{27}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{28}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{29}$$

$$(a \lor b) \lor (\overline{a} \land \overline{b}) = (a \lor b \lor \overline{a}) \land (a \lor b \lor \overline{b})$$

$$= (1 \lor b) \land (a \lor 1)$$

$$= 1 \land 1 = 1,$$

$$(a \lor b) \land (\overline{a} \land \overline{b}) = (a \land \overline{a} \land \overline{b}) \lor (b \land \overline{a} \land \overline{b})$$

$$= (0 \land \overline{b}) \lor (\overline{a} \land 0)$$

设 a, b 是布尔代数中任意两个元素, 则

$$\overline{(\overline{a})} = a; \tag{27}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{28}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{29}$$

证 ② 可直接验证 $a \lor b$ 的补元是 $(\overline{a} \land \overline{b})$:

$$(a \lor b) \lor (\overline{a} \land \overline{b}) = (a \lor b \lor \overline{a}) \land (a \lor b \lor \overline{b})$$

$$= (1 \lor b) \land (a \lor 1)$$

$$= 1 \land 1 = 1,$$

$$(a \lor b) \land (\overline{a} \land \overline{b}) = (a \land \overline{a} \land \overline{b}) \lor (b \land \overline{a} \land \overline{b})$$

$$= (0 \land \overline{b}) \lor (\overline{a} \land 0)$$

 $= 0 \lor 0 = 0.$

设 a, b 是布尔代数中任意两个元素, 则

$$\overline{(\overline{a})} = a; \tag{27}$$

$$\overline{a \vee b} = \overline{a} \wedge \overline{b}; \tag{28}$$

$$\overline{a \wedge b} = \overline{a} \vee \overline{b}. \tag{29}$$

证 ② 可直接验证 $a \lor b$ 的补元是 $(\overline{a} \land \overline{b})$:

$$(a \lor b) \lor (\overline{a} \land \overline{b}) = (a \lor b \lor \overline{a}) \land (a \lor b \lor \overline{b})$$

$$= (1 \lor b) \land (a \lor 1)$$

$$= 1 \land 1 = 1,$$

$$(a \lor b) \land (\overline{a} \land \overline{b}) = (a \land \overline{a} \land \overline{b}) \lor (b \land \overline{a} \land \overline{b})$$

$$= (0 \land \overline{b}) \lor (\overline{a} \land 0)$$

$$= 0 \lor 0 = 0.$$

所以 $\overline{a \lor b} = \overline{a} \land \overline{b}$. 同理可证 (29) 式.

(分配律)

布尔代数的同构

Definition 4.7

设 $\langle A, \vee, \wedge, - \rangle$ 和 $\langle B, \vee, \wedge, - \rangle$ 是两个布尔代数, 如果存在双射 $f: A \to B$, 对任 意 $a, b \in A$, 有

$$f(a \lor b) = f(a) \lor f(b) \tag{30}$$

$$f(a \wedge b) = f(a) \wedge f(b) \tag{31}$$

$$f(\overline{a}) = \overline{f(a)} \tag{32}$$

则称 $\langle A, \vee, \wedge, ^- \rangle$ 和 $\langle B, \vee, \wedge, ^- \rangle$ 同构.

- 1 格的定义
- 2 子格与格同态
- ③ 几种特殊的格
- 4 布尔代数
- 5 有限布尔代数的表示定理

Definition 5.1

具有有限个元素的布尔代数叫有限布尔代数.

Definition 5.1

具有有限个元素的布尔代数叫有限布尔代数.

注

关于有限布尔代数有如下重要结论:

• 对任一正整数 n, 必存在含有 2^n 个元素的布尔代数.

Definition 5.1

具有有限个元素的布尔代数叫有限布尔代数.

注

关于有限布尔代数有如下重要结论:

- 对任一正整数 n, 必存在含有 2^n 个元素的布尔代数.
- 任一有限布尔代数的元素的个数必为 2^n , n 为正整数.

黄正华 (武汉大学) 格 December 3, 2012 75 / 10:

Definition 5.1

具有有限个元素的布尔代数叫有限布尔代数.

注

关于有限布尔代数有如下重要结论:

- 对任一正整数 n, 必存在含有 2^n 个元素的布尔代数.
- 任一有限布尔代数的元素的个数必为 2^n , n 为正整数.
- 元素个数相同的布尔代数, 都是同构的.

Definition 5.1

具有有限个元素的布尔代数叫有限布尔代数.

注

关于有限布尔代数有如下重要结论:

- 对任一正整数 n, 必存在含有 2^n 个元素的布尔代数.
- 任一有限布尔代数的元素的个数必为 2^n , n 为正整数.
- 元素个数相同的布尔代数, 都是同构的.

为了证明上述关于有限布尔代数的结论, 先引入原子的概念.

Definition 5.2

设格 $\langle A, \prec \rangle$ 具有全下界 0, 如果有元素 a 盖住 a 0, 则称元素 a 为原子.

 a 在偏序集 $\langle A, \preccurlyeq \rangle$ 中, $\forall x, y \in A$, 如果 $x \preccurlyeq y, x \neq y$, 且不存在 $z \in A$ 使得 $x \preccurlyeq z \preccurlyeq y$, 则称 y 盖住 x. (见第二章)

Definition 5.2

设格 $\langle A, \preccurlyeq \rangle$ 具有全下界 0, 如果有元素 a 盖住 a 0, 则称元素 a 为原子.

a在偏序集 $\langle A, \preccurlyeq \rangle$ 中, $\forall x, y \in A$, 如果 $x \preccurlyeq y, x \neq y$, 且不存在 $z \in A$ 使得 $x \preccurlyeq z \preccurlyeq y$, 则称 y 盖住 x. (见第二章)

注

如果 a, b 皆为原子, $a \neq b$, 则 $a \wedge b = 0$.

Definition 5.2

设格 $\langle A, \preccurlyeq \rangle$ 具有全下界 0, 如果有元素 a 盖住 a 0, 则称元素 a 为原子.

a在偏序集 $\langle A, \preccurlyeq \rangle$ 中, $\forall x, y \in A$, 如果 $x \preccurlyeq y, x \neq y$, 且不存在 $z \in A$ 使得 $x \preccurlyeq z \preccurlyeq y$, 则称 y 盖住 x. (见第二章)

注

如果 a, b 皆为原子, $a \neq b$, 则 $a \wedge b = 0$.

因为, 若 $a \land b \neq 0$, 则

$$0 \preccurlyeq a \land b \preccurlyeq a \ (\vec{\mathfrak{A}} \ b),$$

Definition 5.2

设格 $\langle A, \preccurlyeq \rangle$ 具有全下界 0, 如果有元素 a 盖住 a 0, 则称元素 a 为原子.

 a 在偏序集 $\langle A, \preccurlyeq \rangle$ 中, $\forall x, y \in A$, 如果 $x \preccurlyeq y, x \neq y$, 且不存在 $z \in A$ 使得 $x \preccurlyeq z \preccurlyeq y$, 则称 y 盖住 x. (见第二章)

注

如果 a, b 皆为原子, $a \neq b$, 则 $a \wedge b = 0$.

因为, 若 $a \land b \neq 0$, 则

$$0 \preccurlyeq a \land b \preccurlyeq a \ (\vec{\mathfrak{A}} \ b),$$

则 a 和 b 没有盖住 0, 导致 " a 和 b 不是原子"的矛盾.

Example 5.3

例如, 如图所示格中, 元素 d, e 是原子.

Example 5.3

例如, 如图所示格中, 元素 d, e 是原子.

格

☞ 可见

• 原子不是惟一的.

原子

Example 5.3

例如, 如图所示格中, 元素 d, e 是原子.

可见

- 原子不是惟一的.
- 一个元素可以盖住多个元素. 例如, 1 盖住 a, b, c; b 盖住 d, e.

设 $\langle A, \preccurlyeq \rangle$ 是一个具有全下界 0 的有限格. 若 $b \neq 0$, 则至少存在一个原子 a, 使 得 $a \preccurlyeq b$.

设 $\langle A, \preccurlyeq \rangle$ 是一个具有全下界 0 的有限格. 若 $b \neq 0$, 则至少存在一个原子 a, 使得 $a \preccurlyeq b$.

 \overline{L} 如果 b 本身为原子, 因 $b \preccurlyeq b$, 命题得证.

设 $\langle A, \preccurlyeq \rangle$ 是一个具有全下界 0 的有限格. 若 $b \neq 0$, 则至少存在一个原子 a, 使 得 $a \preccurlyeq b$.

证 如果 b 本身为原子, 因 $b \preccurlyeq b$, 命题得证.

如果 b 不是原子, 按盖住的定义, 必存在 $b_1 \in A$, 使得

$$0 \prec b_1 \prec b$$
.

设 $\langle A, \preccurlyeq \rangle$ 是一个具有全下界 0 的有限格. 若 $b \neq 0$, 则至少存在一个原子 a, 使 得 $a \preccurlyeq b$.

证 如果 b 本身为原子, 因 $b \preccurlyeq b$, 命题得证.

如果 b 不是原子, 按盖住的定义, 必存在 $b_1 \in A$, 使得

$$0 \prec b_1 \prec b$$
.

若 b₁ 为原子, 命题得证.

设 $\langle A, \preccurlyeq \rangle$ 是一个具有全下界 0 的有限格. 若 $b \neq 0$, 则至少存在一个原子 a, 使 得 $a \preccurlyeq b$.

证 如果 b 本身为原子, 因 $b \preccurlyeq b$, 命题得证.

如果 b 不是原子, 按盖住的定义, 必存在 $b_1 \in A$, 使得

$$0 \prec b_1 \prec b$$
.

若 b_1 为原子, 命题得证. 否则, 必存在 $b_2 \in A$, 使

$$0 \prec b_2 \prec b_1 \prec b$$
.

设 $\langle A, \preccurlyeq \rangle$ 是一个具有全下界 0 的有限格. 若 $b \neq 0$, 则至少存在一个原子 a, 使得 $a \preccurlyeq b$.

证 如果 b 本身为原子, 因 $b \leq b$, 命题得证.

如果 b 不是原子, 按盖住的定义, 必存在 $b_1 \in A$, 使得

$$0 \prec b_1 \prec b$$
.

若 b_1 为原子, 命题得证. 否则, 必存在 $b_2 \in A$, 使

$$0 \prec b_2 \prec b_1 \prec b$$
.

因为 A 是有限集合, 经过上述有限的步骤之后, 必可找到一个原子 b_i , 使

$$0 \prec b_i \prec \cdots \prec b_2 \prec b_1 \prec b$$
,

设 $\langle A, \preccurlyeq \rangle$ 是一个具有全下界 0 的有限格. 若 $b \neq 0$, 则至少存在一个原子 a, 使得 $a \preccurlyeq b$.

证 如果 b 本身为原子, 因 $b \leq b$, 命题得证.

如果 b 不是原子, 按盖住的定义, 必存在 $b_1 \in A$, 使得

$$0 \prec b_1 \prec b$$
.

若 b_1 为原子, 命题得证. 否则, 必存在 $b_2 \in A$, 使

$$0 \prec b_2 \prec b_1 \prec b$$
.

因为 A 是有限集合, 经过上述有限的步骤之后, 必可找到一个原子 b_i , 使

$$0 \prec b_i \prec \cdots \prec b_2 \prec b_1 \prec b$$
,

它是 $\langle A, \prec \rangle$ 中的一条链, 其中 b_i 是原子, 且 $b_i \prec b$.

 黄正华 (武汉大学)
 格
 December 3, 2012

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

格

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \preccurlyeq c$.

用集合的情形, 很容易理解这个结论:

Figure : $B \cap \overline{C} = \emptyset$ 当且仅当 $B \subseteq C$.

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$

(分配律)

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$
 又 $(b \wedge \overline{c}) \vee c = (b \vee c) \wedge (\overline{c} \vee c)$ (分配律)
$$= (b \vee c) \wedge 1$$

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$
又 $(b \wedge \overline{c}) \vee c = (b \vee c) \wedge (\overline{c} \vee c)$ (分配律)
$$= (b \vee c) \wedge 1$$

$$= b \vee c.$$

79 / 103

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$
又 $(b \wedge \overline{c}) \vee c = (b \vee c) \wedge (\overline{c} \vee c)$ (分配律)
$$= (b \vee c) \wedge 1$$

$$= b \vee c.$$

 \Rightarrow $b \lor c = c$

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$
又 $(b \wedge \overline{c}) \vee c = (b \vee c) \wedge (\overline{c} \vee c)$ (分配律)
$$= (b \vee c) \wedge 1$$

$$= b \vee c.$$

$$\Rightarrow b \vee c = c$$

 $\iff b \preccurlyeq c.$

79 / 103

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$
又 $(b \wedge \overline{c}) \vee c = (b \vee c) \wedge (\overline{c} \vee c)$ (分配律)
$$= (b \vee c) \wedge 1$$

$$= b \vee c.$$

$$\Rightarrow b \vee c = c$$

反之,如果 $b \preccurlyeq c$,则

 $\iff b \leq c$.

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$
又 $(b \wedge \overline{c}) \vee c = (b \vee c) \wedge (\overline{c} \vee c)$ (分配律)
$$= (b \vee c) \wedge 1$$

$$= b \vee c.$$

$$\Rightarrow b \vee c = c$$

反之,如果 $b \preccurlyeq c$,则

 $b \wedge \overline{c} \preccurlyeq c \wedge \overline{c}$ (格的保序性)

黄正华 (武汉大学) 格 Dece

 $\iff b \leq c$.

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$
又 $(b \wedge \overline{c}) \vee c = (b \vee c) \wedge (\overline{c} \vee c)$ (分配律)
$$= (b \vee c) \wedge 1$$

$$= b \vee c.$$

$$\Rightarrow b \vee c = c$$

反之, 如果 $b \preccurlyeq c$, 则

$$b \wedge \overline{c} \preccurlyeq c \wedge \overline{c}$$
 (格的保序性)

$$\Rightarrow b \wedge \overline{c} \leq 0$$

 $\iff b \leq c$.

黄正华 (武汉大学) 格 December 3.

在布尔格中, $b \wedge \overline{c} = 0$ 当且仅当 $b \leq c$.

证 如果 $b \wedge \overline{c} = 0$,则

$$(b \wedge \overline{c}) \vee c = 0 \vee c = c,$$
又 $(b \wedge \overline{c}) \vee c = (b \vee c) \wedge (\overline{c} \vee c)$ (分配律)
$$= (b \vee c) \wedge 1$$

$$= b \vee c.$$

$$\Rightarrow b \vee c = c$$

反之, 如果 $b \preccurlyeq c$, 则

$$b \wedge \overline{c} \preccurlyeq c \wedge \overline{c}$$
 (格的保序性)

$$\Rightarrow b \wedge \overline{c} \leq 0$$

 $\iff b \leq c$.

$$\Rightarrow b \wedge \overline{c} = 0.$$

设 $\langle A, \vee, \wedge, ^- \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \leq b$ $(j = 1, 2, \cdots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 $\diamondsuit c = a_1 \lor a_2 \lor \cdots \lor a_k$, 因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$, 所以 $c \preccurlyeq b$.

设 $\langle A, \vee, \wedge, ^- \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$, 因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$, 所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$.

黄正华 (武汉大学) 格 December 3, 2012 80 / 10:

设 $\langle A, \vee, \wedge, ^- \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b \ (j=1, 2, \cdots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$,因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$,所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$. 根据引理 1,只须证 $b \land \overline{c} = 0$.

黄正华 (武汉大学) 格 December 3, 2012 80 / 10.

设 $\langle A, \vee, \wedge, ^- \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$,因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$,所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$. 根据引理 1,只须证 $b \land \overline{c} = 0$. 用反证法.

黄正华 (武汉大学) 格 December 3, 2012 80 / 10.

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \dots, a_k 是 A 中满足 $a_j \preccurlyeq b \ (j = 1, 2, \dots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$,因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$,所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$. 根据引理 1,只须证 $b \land \overline{c} = 0$. 用反证法.

假设 $b \wedge \overline{c} \neq 0$. 则存在原子 a, 使

 $a \preccurlyeq b \wedge \overline{c}$.

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \dots, a_k 是 A 中满足 $a_j \leq b \ (j = 1, 2, \dots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$,因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$,所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$. 根据引理 1,只须证 $b \land \overline{c} = 0$. 用反证法.

假设 $b \wedge \overline{c} \neq 0$. 则存在原子 a, 使

 $a \preccurlyeq b \wedge \overline{c}$.

又 $b \wedge \overline{c} \leq b$, $b \wedge \overline{c} \leq \overline{c}$, 由传递性得:

 $a \preccurlyeq b, \qquad a \preccurlyeq \overline{c}.$

设 $\langle A, \vee, \wedge, {}^- \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b \ (j=1, 2, \cdots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$, 因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$, 所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$. 根据引理 1, 只须证 $b \land \overline{c} = 0$. 用反证法.

假设 $b \wedge \overline{c} \neq 0$. 则存在原子 a, 使

 $a \preccurlyeq b \wedge \overline{c}$.

又 $b \wedge \overline{c} \leq b$, $b \wedge \overline{c} \leq \overline{c}$, 由传递性得:

 $a \preccurlyeq b, \qquad a \preccurlyeq \overline{c}.$

因 a 是原子, 且 $a \leq b$, 所以

$$a \in \{a_1, a_2, \cdots, a_k\},\$$

设 $\langle A, \vee, \wedge, {}^- \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b \ (j=1, 2, \cdots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$,因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$,所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$. 根据引理 1,只须证 $b \land \overline{c} = 0$. 用反证法.

假设 $b \wedge \overline{c} \neq 0$. 则存在原子 a, 使

 $a \preccurlyeq b \wedge \overline{c}$.

又 $b \wedge \overline{c} \leq b$, $b \wedge \overline{c} \leq \overline{c}$, 由传递性得:

 $a \preccurlyeq b, \qquad a \preccurlyeq \overline{c}.$

因 a 是原子, 且 $a \leq b$, 所以

 $a \in \{a_1, a_2, \cdots, a_k\},\$

故 $a \leq c$.

黄正华 (武汉大学) 格

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \dots, a_k 是 A 中满足 $a_j \leq b$ $(j = 1, 2, \dots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$,因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$,所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$. 根据引理 1,只须证 $b \land \overline{c} = 0$. 用反证法.

假设 $b \wedge \overline{c} \neq 0$. 则存在原子 a, 使

 $a \preccurlyeq b \wedge \overline{c}$.

又 $b \wedge \overline{c} \leq b$, $b \wedge \overline{c} \leq \overline{c}$, 由传递性得:

 $a \preccurlyeq b, \qquad a \preccurlyeq \overline{c}.$

因 a 是原子, 且 $a \leq b$, 所以

黄正华 (武汉大学)

$$a \in \{a_1, a_2, \cdots, a_k\},\$$

故 $a \leq c$.

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \dots, a_k 是 A 中满足 $a_j \preccurlyeq b \ (j = 1, 2, \dots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$,因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$,所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$. 根据引理 1,只须证 $b \land \overline{c} = 0$. 用反证法.

假设 $b \wedge \overline{c} \neq 0$. 则存在原子 a, 使

 $a \preccurlyeq b \wedge \overline{c}$.

又 $b \land \overline{c} \preccurlyeq b$, $b \land \overline{c} \preccurlyeq \overline{c}$, 由传递性得:

 $a \preccurlyeq b, \qquad a \preccurlyeq \overline{c}.$

因 a 是原子, 且 $a \leq b$, 所以

黄正华 (武汉大学)

$$a \in \{a_1, a_2, \cdots, a_k\},\$$

故 $a \leq c$.

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \dots, a_k 是 A 中满足 $a_j \preccurlyeq b \ (j = 1, 2, \dots, k)$ 的所有原子, 则

$$b = a_1 \vee a_2 \vee \cdots \vee a_k.$$

证 令 $c = a_1 \lor a_2 \lor \cdots \lor a_k$,因 $a_j \preccurlyeq b \ (0 \leqslant j \leqslant k)$,所以 $c \preccurlyeq b$. 下面证明 $b \preccurlyeq c$. 根据引理 1,只须证 $b \land \overline{c} = 0$. 用反证法.

假设 $b \wedge \overline{c} \neq 0$. 则存在原子 a, 使

 $a \preccurlyeq b \wedge \overline{c}$.

又 $b \land \overline{c} \preccurlyeq b$, $b \land \overline{c} \preccurlyeq \overline{c}$, 由传递性得:

 $a \preccurlyeq b, \qquad a \preccurlyeq \overline{c}.$

因 a 是原子, 且 $a \leq b$, 所以

黄正华 (武汉大学)

$$a \in \{a_1, a_2, \cdots, a_k\},\$$

故 $a \leq c$.

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b \ (j=1, \, 2, \, \cdots, \, k)$ 的所有原子, 则 $b=a_1 \vee a_2 \vee \cdots \vee a_k$ 是将 b 表示为原子的并的惟一形式.

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \dots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j = 1, 2, \dots, k)$ 的所有原子, 则 $b = a_1 \vee a_2 \vee \dots \vee a_k$ 是将 b 表示为原子的并的惟一形式.

证 设 b 有另一表达式: $b = a_{j_1} \lor a_{j_2} \lor \cdots \lor a_{j_t}$, 其中 $a_{j_r} (0 \leqslant r \leqslant t)$ 是原子.

设 $\langle A, \lor, \land, \neg \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则 $b=a_1 \lor a_2 \lor \cdots \lor a_k$ 是将 b 表示为原子的并的惟一形式.

证 设 b 有另一表达式: $b = a_{j_1} \lor a_{j_2} \lor \cdots \lor a_{j_t}$, 其中 $a_{j_r} (0 \le r \le t)$ 是原子. 于是 有 $a_{j_r} \le b (0 \le r \le t)$.

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则 $b=a_1 \vee a_2 \vee \cdots \vee a_k$ 是将 b 表示为原子的并的惟一形式.

证 设 b 有另一表达式: $b = a_{j_1} \lor a_{j_2} \lor \cdots \lor a_{j_t}$, 其中 $a_{j_r} (0 \leqslant r \leqslant t)$ 是原子. 于是 有 $a_{j_r} \preccurlyeq b (0 \leqslant r \leqslant t)$.

因为已设 a_1, a_2, \cdots, a_k 是 A 中所有满足 $a_i \leq b$ 的不同原子, 所以 $t \leq k$. 问题转化为证明 t = k.

 黄正华 (武汉大学)
 格
 December 3, 2012
 81 / 103

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则 $b=a_1 \vee a_2 \vee \cdots \vee a_k$ 是将 b 表示为原子的并的惟一形式.

证 设 b 有另一表达式: $b = a_{j_1} \lor a_{j_2} \lor \cdots \lor a_{j_t}$, 其中 $a_{j_r} (0 \leqslant r \leqslant t)$ 是原子. 于是 有 $a_{j_r} \preccurlyeq b (0 \leqslant r \leqslant t)$.

因为已设 a_1, a_2, \cdots, a_k 是 A 中所有满足 $a_i \leq b$ 的不同原子, 所以 $t \leq k$. 问题转化为证明 t = k.

假设 t < k, 则 $\exists \ a_{j_0} \in \{a_1, a_2, \cdots, a_k\}$, 使得 $a_{j_0} \notin \{a_{j_1}, a_{j_2}, \cdots, a_{j_t}\}$.

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则 $b=a_1 \vee a_2 \vee \cdots \vee a_k$ 是将 b 表示为原子的并的惟一形式.

证 设 b 有另一表达式: $b = a_{j_1} \lor a_{j_2} \lor \cdots \lor a_{j_t}$, 其中 $a_{j_r} (0 \leqslant r \leqslant t)$ 是原子. 于是 有 $a_{j_r} \preccurlyeq b (0 \leqslant r \leqslant t)$.

因为已设 a_1, a_2, \cdots, a_k 是 A 中所有满足 $a_i \leq b$ 的不同原子, 所以 $t \leq k$. 问题转化为证明 t = k.

假设 t < k, 则 $\exists a_{j_0} \in \{a_1, a_2, \dots, a_k\}$, 使得 $a_{j_0} \notin \{a_{j_1}, a_{j_2}, \dots, a_{j_t}\}$. 因

$$a_{j_0} \wedge (a_{j_1} \vee a_{j_2} \vee \cdots \vee a_{j_t}) = a_{j_0} \wedge (a_1 \vee a_2 \vee \cdots \vee a_{j_0} \vee \cdots \vee a_k)$$

黄正华 (武汉大学) 格 December 3, 2012 81 / 103

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则 $b=a_1 \vee a_2 \vee \cdots \vee a_k$ 是将 b 表示为原子的并的惟一形式.

证 设 b 有另一表达式: $b = a_{j_1} \lor a_{j_2} \lor \cdots \lor a_{j_t}$, 其中 $a_{j_r} (0 \leqslant r \leqslant t)$ 是原子. 于是 有 $a_{j_r} \preccurlyeq b (0 \leqslant r \leqslant t)$.

因为已设 a_1, a_2, \cdots, a_k 是 A 中所有满足 $a_i \leq b$ 的不同原子, 所以 $t \leq k$. 问题转化为证明 t = k.

假设 t < k, 则 $\exists \ a_{j_0} \in \{a_1, a_2, \cdots, a_k\}$, 使得 $a_{j_0} \notin \{a_{j_1}, a_{j_2}, \cdots, a_{j_t}\}$. 因

$$a_{j_0} \wedge (a_{j_1} \vee a_{j_2} \vee \cdots \vee a_{j_t}) = a_{j_0} \wedge (a_1 \vee a_2 \vee \cdots \vee a_{j_0} \vee \cdots \vee a_k)$$

$$\iff (a_{j_0} \wedge a_{j_1}) \vee (a_{j_0} \wedge a_{j_2}) \vee \cdots \vee (a_{j_0} \wedge a_{j_t})$$

$$= (a_{j_0} \wedge a_1) \vee (a_{j_0} \wedge a_2) \vee \cdots \vee (a_{j_0} \wedge a_{j_0}) \vee \cdots \vee (a_{j_0} \wedge a_k)$$

 黄正华 (武汉大学)
 格
 December 3, 2012
 81 / 10.

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则 $b=a_1 \vee a_2 \vee \cdots \vee a_k$ 是将 b 表示为原子的并的惟一形式.

证 设 b 有另一表达式: $b = a_{j_1} \lor a_{j_2} \lor \cdots \lor a_{j_t}$, 其中 $a_{j_r} (0 \leqslant r \leqslant t)$ 是原子. 于是有 $a_{j_r} \preccurlyeq b (0 \leqslant r \leqslant t)$.

因为已设 a_1, a_2, \cdots, a_k 是 A 中所有满足 $a_i \leq b$ 的不同原子, 所以 $t \leq k$. 问题转化为证明 t = k.

假设 t < k, 则 $\exists \ a_{j_0} \in \{a_1, a_2, \cdots, a_k\}$, 使得 $a_{j_0} \notin \{a_{j_1}, a_{j_2}, \cdots, a_{j_t}\}$. 因

$$a_{j_0} \wedge (a_{j_1} \vee a_{j_2} \vee \cdots \vee a_{j_t}) = a_{j_0} \wedge (a_1 \vee a_2 \vee \cdots \vee a_{j_0} \vee \cdots \vee a_k)$$

$$\iff (a_{j_0} \wedge a_{j_1}) \vee (a_{j_0} \wedge a_{j_2}) \vee \cdots \vee (a_{j_0} \wedge a_{j_t})$$

$$= (a_{j_0} \wedge a_1) \vee (a_{j_0} \wedge a_2) \vee \cdots \vee (a_{j_0} \wedge a_{j_0}) \vee \cdots \vee (a_{j_0} \wedge a_k)$$

$$\iff 0 \vee 0 \vee \cdots \vee 0 = 0 \vee 0 \vee \cdots \vee a_{j_0} \vee 0 \vee \cdots \vee 0$$

黄正华 (武汉大学) 格 December 3, 2012 81 / 10

设 $\langle A, \vee, \wedge, - \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则 $b=a_1 \vee a_2 \vee \cdots \vee a_k$ 是将 b 表示为原子的并的惟一形式.

证 设 b 有另一表达式: $b = a_{j_1} \lor a_{j_2} \lor \cdots \lor a_{j_t}$, 其中 $a_{j_r} (0 \leqslant r \leqslant t)$ 是原子. 于是 有 $a_{j_r} \preccurlyeq b (0 \leqslant r \leqslant t)$.

因为已设 a_1, a_2, \cdots, a_k 是 A 中所有满足 $a_i \leq b$ 的不同原子, 所以 $t \leq k$. 问题转化为证明 t = k.

假设 t < k, 则 $\exists a_{j_0} \in \{a_1, a_2, \cdots, a_k\}$, 使得 $a_{j_0} \notin \{a_{j_1}, a_{j_2}, \cdots, a_{j_t}\}$. 因

$$a_{j_0} \wedge (a_{j_1} \vee a_{j_2} \vee \cdots \vee a_{j_t}) = a_{j_0} \wedge (a_1 \vee a_2 \vee \cdots \vee a_{j_0} \vee \cdots \vee a_k)$$

$$\iff (a_{j_0} \wedge a_{j_1}) \vee (a_{j_0} \wedge a_{j_2}) \vee \cdots \vee (a_{j_0} \wedge a_{j_t})$$

$$= (a_{j_0} \wedge a_1) \vee (a_{j_0} \wedge a_2) \vee \cdots \vee (a_{j_0} \wedge a_{j_0}) \vee \cdots \vee (a_{j_0} \wedge a_k)$$

$$\iff$$
 $0 \lor 0 \lor \cdots \lor 0 = 0 \lor 0 \lor \cdots \lor a_{j_0} \lor 0 \lor \cdots \lor 0$

$$\iff a_{i_0} = 0.$$

黄正华 (武汉大学) 格 December 3, 2012 81

设 $\langle A, \lor, \land, \neg \rangle$ 是一个有限布尔代数, 若 $b \in A$, 且 $b \neq 0$, 又设 a_1, a_2, \cdots, a_k 是 A 中满足 $a_j \preccurlyeq b$ $(j=1, 2, \cdots, k)$ 的所有原子, 则 $b=a_1 \lor a_2 \lor \cdots \lor a_k$ 是将 b 表示为原子的并的惟一形式.

证 设 b 有另一表达式: $b = a_{j_1} \lor a_{j_2} \lor \cdots \lor a_{j_t}$, 其中 $a_{j_r} (0 \leqslant r \leqslant t)$ 是原子. 于是 有 $a_{j_r} \preccurlyeq b (0 \leqslant r \leqslant t)$.

因为已设 a_1, a_2, \cdots, a_k 是 A 中所有满足 $a_i \leq b$ 的不同原子, 所以 $t \leq k$. 问题转化为证明 t = k.

假设 t < k, 则 $\exists a_{j_0} \in \{a_1, a_2, \dots, a_k\}$, 使得 $a_{j_0} \notin \{a_{j_1}, a_{j_2}, \dots, a_{j_t}\}$. 因

$$a_{j_0} \wedge (a_{j_1} \vee a_{j_2} \vee \cdots \vee a_{j_t}) = a_{j_0} \wedge (a_1 \vee a_2 \vee \cdots \vee a_{j_0} \vee \cdots \vee a_k)$$

$$\iff (a_{j_0} \wedge a_{j_1}) \vee (a_{j_0} \wedge a_{j_2}) \vee \cdots \vee (a_{j_0} \wedge a_{j_t})$$

$$= (a_{j_0} \wedge a_1) \vee (a_{j_0} \wedge a_2) \vee \cdots \vee (a_{j_0} \wedge a_{j_0}) \vee \cdots \vee (a_{j_0} \wedge a_k)$$

$$\iff 0 \vee 0 \vee \cdots \vee 0 = 0 \vee 0 \vee \cdots \vee a_{j_0} \vee 0 \vee \cdots \vee 0$$

$$\iff a_{j_0} = 0.$$

与 a_{i0} 是原子相矛盾, 故必有 t = k.

比如布尔代数 $\langle \mathcal{P}(S), \cup, \cap, \sim \rangle$, 其中

$$S = \{a, b, c\}.$$

$$S = \{a, b, c\}.$$

对 $\mathscr{P}(S)$ 中的元素 $\{a, b\}$ 来说, $\{a\}$, $\{b\}$ 是满足 " $\preccurlyeq \{a, b\}$ "的所有原子, 有

$${a, b} = {a} \cup {b}.$$

82 / 103

比如布尔代数 $\langle \mathcal{P}(S), \cup, \cap, \sim \rangle$, 其中

$$S = \{a, b, c\}.$$

对 $\mathcal{P}(S)$ 中的元素 $\{a, b\}$ 来说, $\{a\}$, $\{b\}$ 是满足 " $\preccurlyeq \{a, b\}$ "的所有原子, 有

$${a, b} = {a} \cup {b}.$$

类似地,

$$\{a, c\} = \{a\} \cup \{c\},$$

$$\{b, c\} = \{b\} \cup \{c\},$$

$$\{a, b, c\} = \{a\} \cup \{b\} \cup \{c\}.$$

比如布尔代数 $\langle \mathcal{P}(S), \cup, \cap, \sim \rangle$, 其中

$$S = \{a, b, c\}.$$

对 $\mathcal{P}(S)$ 中的元素 $\{a, b\}$ 来说, $\{a\}$, $\{b\}$ 是满足 " $\preccurlyeq \{a, b\}$ "的所有原子, 有

$${a, b} = {a} \cup {b}.$$

类似地,

$$\{a, c\} = \{a\} \cup \{c\},$$
$$\{b, c\} = \{b\} \cup \{c\},$$
$$\{a, b, c\} = \{a\} \cup \{b\} \cup \{c\}.$$

这些表示为原子的并的形式当然是惟一的.

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, $b \neq 0$, 则

 $a \preccurlyeq b$ $\overline{a} \preccurlyeq \overline{b}$

两式中,有且仅有一个成立.

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, $b \neq 0$, 则

$$a \preccurlyeq b$$
 和 $a \preccurlyeq \overline{b}$

两式中,有且仅有一个成立.

分析 这从含义上是不难理解的. b 的"原子表达式"

$$b = a_1 \vee a_2 \vee \cdots \vee a_k$$

是惟一的.

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, $b \neq 0$, 则

$$a \preccurlyeq b$$
 和 $a \preccurlyeq \overline{b}$

两式中,有且仅有一个成立.

分析 这从含义上是不难理解的. b 的"原子表达式"

$$b = a_1 \vee a_2 \vee \cdots \vee a_k$$

是惟一的.

对任意的原子 a, 它要么是 a_1 , a_2 , \cdots , a_k 其中之一, 要么不在其中.

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, $b \neq 0$, 则

$$a \leq b$$
 和 $a \leq \overline{b}$

两式中,有且仅有一个成立.

分析 这从含义上是不难理解的. b 的"原子表达式"

$$b = a_1 \vee a_2 \vee \cdots \vee a_k$$

是惟一的.

对任意的原子 a, 它要么是 a_1 , a_2 , \cdots , a_k 其中之一, 要么不在其中. 易知,

$$a \preccurlyeq b \ \pi \ a \preccurlyeq \overline{b}$$

两式中有且仅有一个成立.

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, $b \neq 0$, 则

$$a \preccurlyeq b$$
 和 $a \preccurlyeq \overline{b}$

两式中,有且仅有一个成立.

证 因 $a \wedge b \leq a$, 而 a 为原子, 则只可能有

$$a \wedge b = 0$$
 或者 $a \wedge b = a$.

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, $b \neq 0$, 则

$$a \leq b$$
 和 $a \leq \overline{b}$

两式中,有且仅有一个成立.

证 因 $a \wedge b \leq a$, 而 a 为原子, 则只可能有

$$a \wedge b = 0$$
 或者 $a \wedge b = a$.

• 若 $a \wedge b = 0$, 即 $a \wedge \overline{(\overline{b})} = 0$, 根据引理 1,

$$a \wedge \overline{(\overline{b})} = 0 \Longleftrightarrow a \preccurlyeq \overline{b}$$

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, b ≠ 0, 则

$$a \leq b$$
 和 $a \leq \overline{b}$

两式中,有且仅有一个成立.

证 因 $a \wedge b \leq a$, 而 a 为原子, 则只可能有

$$a \wedge b = 0$$
 或者 $a \wedge b = a$.

5 若 $a \wedge b = 0$, 即 $a \wedge \overline{(\overline{b})} = 0$, 根据引理 1,

$$a \wedge \overline{(\overline{b})} = 0 \iff a \preccurlyeq \overline{b}$$

② 若 $a \wedge b = a$, 由格的性质有

$$a \wedge b = a \iff a \preccurlyeq b$$
.

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, b ≠ 0, 则

$$a \preccurlyeq b$$
 和 $a \preccurlyeq \overline{b}$

两式中,有且仅有一个成立.

证 因 $a \wedge b \leq a$, 而 a 为原子, 则只可能有

$$a \wedge b = 0$$
 或者 $a \wedge b = a$.

5 若 $a \wedge b = 0$, 即 $a \wedge \overline{(\overline{b})} = 0$, 根据引理 1,

$$a \wedge \overline{(\overline{b})} = 0 \Longleftrightarrow a \preccurlyeq \overline{b}$$

② 若 $a \wedge b = a$, 由格的性质有

$$a \wedge b = a \iff a \preccurlyeq b$$
.

下面证明两式仅有一个成立.

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, $b \neq 0$, 则

$$a \preccurlyeq b$$
 和 $a \preccurlyeq \overline{b}$

两式中,有且仅有一个成立.

证 因 $a \wedge b \leq a$, 而 a 为原子, 则只可能有

$$a \wedge b = 0$$
 或者 $a \wedge b = a$.

• 若 $a \wedge b = 0$, 即 $a \wedge \overline{(\overline{b})} = 0$, 根据引理 1,

$$a \wedge \overline{(\overline{b})} = 0 \iff a \preccurlyeq \overline{b}$$

② 若 $a \wedge b = a$, 由格的性质有

$$a \wedge b = a \iff a \preccurlyeq b$$
.

下面证明两式仅有一个成立.

假设 $a \leq b$ 和 $a \leq \overline{b}$ 同时成立,

设 $\langle A, \preccurlyeq \rangle$ 是布尔格, a 为任意一个原子, $b \neq 0$, 则

$$a \preccurlyeq b$$
 和 $a \preccurlyeq \overline{b}$

两式中,有且仅有一个成立.

证 因 $a \wedge b \leq a$, 而 a 为原子, 则只可能有

$$a \wedge b = 0$$
 或者 $a \wedge b = a$.

• 若 $a \wedge b = 0$, 即 $a \wedge \overline{(\overline{b})} = 0$, 根据引理 1,

$$a \wedge \overline{(\overline{b})} = 0 \iff a \preccurlyeq \overline{b}$$

② 若 $a \wedge b = a$, 由格的性质有

$$a \wedge b = a \iff a \preccurlyeq b$$
.

下面证明两式仅有一个成立.

假设 $a \leq b$ 和 $a \leq \overline{b}$ 同时成立,则

Theorem 5.6 (Stone 表示定理)

设 $\langle A, \vee, \wedge, ^- \rangle$ 是由有限布尔格 $\langle A, \preccurlyeq \rangle$ 所诱导的有限布尔代数, S 是布尔格 $\langle A, \preccurlyeq \rangle$ 中所有原子的集合, 则

 $\langle A, \vee, \wedge, - \rangle$ 和 $\langle \mathscr{P}(S), \cup, \cap, \sim \rangle$ 同构.

Theorem 5.6 (Stone 表示定理)

设 $\langle A, \lor, \land, - \rangle$ 是由有限布尔格 $\langle A, \preccurlyeq \rangle$ 所诱导的有限布尔代数, S 是布尔 格 $\langle A, \preccurlyeq \rangle$ 中所有原子的集合, 则

$$\langle A, \vee, \wedge, - \rangle$$
 和 $\langle \mathscr{P}(S), \cup, \cap, \sim \rangle$ 同构.

证明的主要思路 (具体证明略):

- 作映射 $f: A \to \mathcal{P}(S)$,
 - $\stackrel{\bullet}{=} a = 0$ $\stackrel{\bullet}{=}$ $f(a) = \emptyset$;
 - 当 $a \neq 0$ 时, $f(a) = S_i$, S_i 表示所有满足 $x \leq a$ 的原子 x 的集合. 然后证明 f是双射.

December 3, 2012

Theorem 5.6 (Stone 表示定理)

设 $\langle A, \vee, \wedge, ^- \rangle$ 是由有限布尔格 $\langle A, \preccurlyeq \rangle$ 所诱导的有限布尔代数, S 是布尔格 $\langle A, \preccurlyeq \rangle$ 中所有原子的集合, 则

$$\langle A, \vee, \wedge, - \rangle$$
 和 $\langle \mathscr{P}(S), \cup, \cap, \sim \rangle$ 同构.

证明的主要思路 (具体证明略):

- 作映射 $f: A \to \mathscr{P}(S)$,
 - $\stackrel{\bullet}{=}$ a = 0 lf, $f(a) = \emptyset$;
 - 当 $a \neq 0$ 时, $f(a) = S_i$, S_i 表示所有满足 $x \preccurlyeq a$ 的原子 x 的集合. 然后证明 f 是双射.
- ② 证明 f 是同构映射:

$$f(a \lor b) = f(a) \cup f(b),$$

$$f(a \land b) = f(a) \cap f(b),$$

$$f(\overline{a}) = \overline{f(a)}.$$

Stone 表示定理

推论 1

有限布尔格的元素的个数必等于 2^n , 其中 n 是布尔格中所有原子的个数.

Stone 表示定理

推论 1

有限布尔格的元素的个数必等于 2^n , 其中 n 是布尔格中所有原子的个数.

推论 2

元素的个数相同的有限布尔代数是同构的.

85 / 103

设 $\langle S, \vee, \wedge, ^- \rangle$ 是布尔代数, $x, y \in S$. 证明 $x \preccurlyeq y$ 当且仅当 $\overline{y} \preccurlyeq \overline{x}$.

设 $\langle S, \vee, \wedge, ^- \rangle$ 是布尔代数, $x, y \in S$. 证明 $x \prec y$ 当且仅当 $\overline{y} \prec \overline{x}$.

解 由引理 1,

$$\overline{y} \preccurlyeq \overline{x} \iff \overline{y} \land \overline{(\overline{x})} = 0$$

86 / 103

设 $\langle S, \vee, \wedge, ^- \rangle$ 是布尔代数, $x, y \in S$. 证明 $x \prec y$ 当且仅当 $\overline{y} \prec \overline{x}$.

解 由引理 1,

$$\overline{y} \preccurlyeq \overline{x} \iff \overline{y} \land \overline{(\overline{x})} = 0$$

86 / 103

设 $\langle S, \vee, \wedge, ^- \rangle$ 是布尔代数, $x, y \in S$. 证明 $x \prec y$ 当且仅当 $\overline{y} \prec \overline{x}$.

解 由引理 1,

$$\overline{y} \preccurlyeq \overline{x} \iff \overline{y} \land \overline{(\overline{x})} = 0$$
 $\iff \overline{y} \land x = 0$

设 $\langle S, \vee, \wedge, ^- \rangle$ 是布尔代数, $x, y \in S$. 证明 $x \prec y$ 当且仅当 $\overline{y} \prec \overline{x}$.

解 由引理 1,

$$\overline{y} \preccurlyeq \overline{x} \iff \overline{y} \land \overline{(\overline{x})} = 0$$

$$\iff \overline{y} \land x = 0$$

$$\iff x \land \overline{y} = 0$$

设 $\langle S, \vee, \wedge, ^- \rangle$ 是布尔代数, $x, y \in S$. 证明 $x \prec y$ 当且仅当 $\overline{y} \prec \overline{x}$.

解 由引理 1,

$$\overline{y} \preccurlyeq \overline{x} \iff \overline{y} \land \overline{(\overline{x})} = 0$$

$$\iff \overline{y} \land x = 0$$

$$\iff x \land \overline{y} = 0$$

$$\iff x \preccurlyeq y.$$

86 / 103

设 $\langle S, \vee, \wedge, ^- \rangle$ 是布尔代数, $x, y \in S$. 证明 $x \prec y$ 当且仅当 $\overline{y} \prec \overline{x}$.

解 由引理 1,

$$\overline{y} \preccurlyeq \overline{x} \iff \overline{y} \land \overline{(\overline{x})} = 0$$

$$\iff \overline{y} \land x = 0$$

$$\iff x \land \overline{y} = 0$$

$$\iff x \preccurlyeq y.$$

故在任何布尔代数中, $x \leq y$ 当且仅当 $\overline{y} \leq \overline{x}$.

布尔表达式

Definition 5.8

设 $\langle A, \vee, \wedge, ^- \rangle$ 是布尔代数, 称 A 中的元素为<mark>布尔常元</mark>. 以 A 为取值范围的变元叫<mark>布尔变元</mark>.

黄正华 (武汉大学) 格 December 3, 2012 87 / 103

布尔表达式

Definition 5.8

设 $\langle A, \vee, \wedge, ^- \rangle$ 是布尔代数, 称 A 中的元素为<mark>布尔常元</mark>. 以 A 为取值范围的变元叫<mark>布尔变元</mark>.

Definition 5.9

设 $\langle A, \vee, \wedge, ^- \rangle$ 是布尔代数, 在其上的<mark>布尔表达式</mark> (Boolean expressions) 定义为:

- A 中任何元素 (即布尔常元) 是布尔表达式;
- ② 任何布尔变元是一个布尔表达式;
- ③ 若 e_1 , e_2 是布尔表达式, 则 $\overline{e_1}$, $e_1 \lor e_2$, $e_1 \land e_2$ 也都是布尔表达式;
- 只有通过有限次运用规则 (2), (3) 所构造的符号串是布尔表达式.

黄正华 (武汉大学) 格 December 3, 2012

布尔表达式

Definition 5.8

设 $\langle A, \vee, \wedge, ^- \rangle$ 是布尔代数, 称 A 中的元素为<mark>布尔常元</mark>. 以 A 为取值范围的变元叫布尔变元.

Definition 5.9

设 $\langle A, \vee, \wedge, ^- \rangle$ 是布尔代数, 在其上的<mark>布尔表达式</mark> (Boolean expressions) 定义为:

- A 中任何元素 (即布尔常元) 是布尔表达式;
- ② 任何布尔变元是一个布尔表达式;
- ③ 若 e_1 , e_2 是布尔表达式,则 $\overline{e_1}$, $e_1 \lor e_2$, $e_1 \land e_2$ 也都是布尔表达式;
- 只有通过有限次运用规则 (2), (3) 所构造的符号串是布尔表达式.

☞ 我们见过类似的定义方式: 命题演算的合式公式; 谓词演算的合式公式.

黄正华 (武汉大学) 格 December 3, 2012 87 / 103

设 $\langle \{0, a, b, 1\}, \vee, \wedge, - \rangle$ 是布尔代数,则

$$a,$$
 (33)

$$1 \vee x_1, \tag{34}$$

$$(1 \vee x_1) \wedge x_2, \tag{35}$$

$$(a \wedge x_2) \vee (b \wedge x_1) \vee (x_2 \wedge x_3), \tag{36}$$

都是布尔表达式,这里 x1, x2, x3 是布尔变元.

设 $\langle \{0, a, b, 1\}, \vee, \wedge, - \rangle$ 是布尔代数,则

$$a$$
, (33)

$$1 \vee x_1$$
, (34)

$$(1 \vee x_1) \wedge x_2, \tag{35}$$

$$(a \wedge x_2) \vee (b \wedge x_1) \vee (x_2 \wedge x_3), \tag{36}$$

都是布尔表达式,这里 x1, x2, x3 是布尔变元.

并且 (34), (35), (36) 式分别称为

- 含有单个变元 x1 的布尔表达式;
- 含有两个变元 x₁, x₂ 的布尔表达式;
- 含有三个变元 x₁, x₂, x₃ 的布尔表达式.

Definition 5.11

一个含n个相异变元的布尔表达式,称为n元布尔表达式,记作

$$E(x_1, x_2, \cdots, x_n),$$

其中 x_1, x_2, \cdots, x_n 为变元.

Definition 5.11

一个含n个相异变元的布尔表达式,称为n元布尔表达式,记作

$$E(x_1, x_2, \cdots, x_n),$$

其中 x_1, x_2, \cdots, x_n 为变元.

Definition 5.12 (布尔表达式的值)

设 $\langle A, \vee, \wedge, ^- \rangle$ 是布尔代数. n 元布尔表达式 $E(x_1, x_2, \cdots, x_n)$ 的值是指: 将 A 中的布尔常元作为变元 x_i 的值来代替表达式中相应的变元 (即对变元赋值), 从而计算得出的表达式的值.

Example 5.13

设布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$ 上的一个 3 元布尔表达式为

$$E(x_1, x_2, x_3) = (x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_2} \vee \overline{x_3}).$$

Example 5.13

设布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$ 上的一个 3 元布尔表达式为

$$E(x_1, x_2, x_3) = (x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_2} \vee \overline{x_3}).$$

格

当赋值为 $x_1 = 1$, $x_2 = 0$, $x_3 = 1$ 时,

Example 5.13

设布尔代数 ⟨{0,1},∨,∧,⁻⟩ 上的一个 3 元布尔表达式为

$$E(x_1, x_2, x_3) = (x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_2} \vee \overline{x_3}).$$

当赋值为 $x_1 = 1$, $x_2 = 0$, $x_3 = 1$ 时, 其值为:

$$E(1,0,1) = (1 \lor 0) \land (\overline{1} \lor \overline{0}) \land \overline{(0 \lor 1)}$$
$$= 1 \land 1 \land 0$$
$$= 0.$$

布尔表达式的等价

Definition 5.14

设 $E_1(x_1, x_2, \cdots, x_n)$ 和 $E_2(x_1, x_2, \cdots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, ^- \rangle$ 上的两个 n 元布尔表达式, 如果对 n 个变元的任意赋值均相等, 即对任意赋值 $x_i = \widetilde{x}_i$, $\widetilde{x}_i \in A$ 均有

$$E_1(\widetilde{x}_1, \, \widetilde{x}_2, \, \cdots, \, \widetilde{x}_n) = E_2(\widetilde{x}_1, \, \widetilde{x}_2, \, \cdots, \, \widetilde{x}_n), \tag{37}$$

则称布尔表达式 E_1 , E_2 是<mark>等价</mark>的. 记作:

$$E_1(x_1, x_2, \dots, x_n) = E_2(x_1, x_2, \dots, x_n).$$
 (38)

布尔表达式的等价

Definition 5.14

设 $E_1(x_1,x_2,\cdots,x_n)$ 和 $E_2(x_1,x_2,\cdots,x_n)$ 是布尔代数 $\langle A,\vee,\wedge,^-\rangle$ 上的两个 n 元布尔表达式, 如果对 n 个变元的任意赋值均相等, 即对任意赋值 $x_i=\widetilde{x_i},$ $\widetilde{x_i}\in A$ 均有

$$E_1(\widetilde{x}_1, \, \widetilde{x}_2, \, \cdots, \, \widetilde{x}_n) = E_2(\widetilde{x}_1, \, \widetilde{x}_2, \, \cdots, \, \widetilde{x}_n), \tag{37}$$

则称布尔表达式 E_1 , E_2 是<mark>等价</mark>的. 记作:

$$E_1(x_1, x_2, \dots, x_n) = E_2(x_1, x_2, \dots, x_n).$$
 (38)

☞ 这类似于定义"命题公式的等价"、"谓词公式的等价".

在布尔代数 \{0, 1}, \(\neg \tau, \cdot \), \(\neg \) 上的两个布尔表达式

$$E_1(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_1 \wedge \overline{x_3}), \tag{39}$$

$$E_2(x_1, x_2, x_3) = x_1 \wedge (x_2 \vee \overline{x_3}),$$
 (40)

容易验证,它们是等价的.

黄正华 (武汉大学) 格 December 3, 2012 92 / 103

在布尔代数 \{0, 1}, \(\neg \tau, \cdot \), \(\neg \) 上的两个布尔表达式

$$E_1(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_1 \wedge \overline{x_3}),$$
 (39)

$$E_2(x_1, x_2, x_3) = x_1 \wedge (x_2 \vee \overline{x_3}),$$
 (40)

容易验证, 它们是等价的. 比如

$$E_1(0,1,1) = (0 \wedge 1) \vee (0 \wedge \overline{1}) = 0 \wedge 0 = 0,$$

 $E_2(0,1,1) = 0 \wedge (1 \vee \overline{1}) = 0,$

等等.

在布尔代数 ⟨{0,1},∨,∧,⁻⟩ 上的两个布尔表达式

$$E_1(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_1 \wedge \overline{x_3}), \tag{39}$$

$$E_2(x_1, x_2, x_3) = x_1 \wedge (x_2 \vee \overline{x_3}),$$
 (40)

容易验证, 它们是等价的. 比如

$$E_1(0,1,1) = (0 \wedge 1) \vee (0 \wedge \overline{1}) = 0 \wedge 0 = 0,$$

$$E_2(0,1,1) = 0 \wedge (1 \vee \overline{1}) = 0,$$

等等.

或者直接由运算规律验证

黄正华 (武汉大学) 格 December 3, 2012 92 / 103

在布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$ 上的两个布尔表达式

$$E_1(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_1 \wedge \overline{x_3}), \tag{39}$$

$$E_2(x_1, x_2, x_3) = x_1 \wedge (x_2 \vee \overline{x_3}), \tag{40}$$

容易验证, 它们是等价的. 比如

$$E_1(0,1,1) = (0 \wedge 1) \vee (0 \wedge \overline{1}) = 0 \wedge 0 = 0,$$

$$E_2(0,1,1) = 0 \wedge (1 \vee \overline{1}) = 0,$$

等等.

或者直接由运算规律验证:

$$E_2(x_1, x_2, x_3) = x_1 \wedge (x_2 \vee \overline{x_3})$$

$$= (x_1 \wedge x_2) \vee (x_1 \wedge \overline{x_3})$$

$$= E_1(x_1, x_2, x_3).$$
(分配律)

92 / 103

 黄正华 (武汉大学)
 格
 December 3, 2012

设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, \neg \rangle$ 上的一个 n 元布尔表达式, 因为运算 \vee , \wedge , \neg 在 A 上封闭, 任意有序 n 元组 $\langle a_1, a_2, \dots, a_n \rangle$ $(a_i \in A)$, 可以对应着布尔表达式 $E(x_1, x_2, \dots, x_n)$ 的一个值, 这个值必属于 A.

设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, - \rangle$ 上的一个 n 元布尔表达式, 因为运算 \vee , \wedge , - 在 A 上封闭, 任意有序 n 元组 $\langle a_1, a_2, \dots, a_n \rangle$ $(a_i \in A)$, 可以对应着布尔表达式 $E(x_1, x_2, \dots, x_n)$ 的一个值, 这个值必属于 A.

因此, $E(x_1, x_2, \dots, x_n)$ 确定了一个由 A^n 到 A 的函数.

设 $E(x_1, x_2, \cdots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, - \rangle$ 上的一个 n 元布尔表达式, 因为运算 \vee , \wedge , - 在 A 上封闭, 任意有序 n 元组 $\langle a_1, a_2, \cdots, a_n \rangle$ $(a_i \in A)$, 可以对应着布尔表达式 $E(x_1, x_2, \cdots, x_n)$ 的一个值, 这个值必属于 A.

因此, $E(x_1, x_2, \dots, x_n)$ 确定了一个由 A^n 到 A 的函数.

Definition 5.16

设 $\langle A, \vee, \wedge, ^- \rangle$ 是布尔代数, 一个由 A^n 到 A 的函数如果能用 $\langle A, \vee, \wedge, ^- \rangle$ 上的一个 n 元布尔表达式来表示, 则称该函数为<mark>布尔函数</mark>.

黄正华 (武汉大学) 格 December 3, 2012 93 / 10:

设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, - \rangle$ 上的一个 n 元布尔表达式, 因为运算 \vee , \wedge , - 在 A 上封闭, 任意有序 n 元组 $\langle a_1, a_2, \dots, a_n \rangle$ $(a_i \in A)$, 可以对应着布尔表达式 $E(x_1, x_2, \dots, x_n)$ 的一个值, 这个值必属于 A.

因此, $E(x_1, x_2, \dots, x_n)$ 确定了一个由 A^n 到 A 的函数.

Definition 5.16

设 $\langle A, \vee, \wedge, ^- \rangle$ 是布尔代数, 一个由 A^n 到 A 的函数如果能用 $\langle A, \vee, \wedge, ^- \rangle$ 上的一个 n 元布尔表达式来表示, 则称该函数为<mark>布尔函数</mark>.

黄正华 (武汉大学) 格 December 3, 2012 93 / 10

设 $A = \{0,1\}$, 下面的表格表示了一个从 A^3 到 A 的函数 f.

	f
$\langle 0, 0, 0 \rangle$	0
$\langle 0, 0, 1 \rangle$	0
$\langle 0, 1, 0 \rangle$	1
$\langle 0, 1, 1 \rangle$	0
$\langle 1, 0, 0 \rangle$	1
$\langle 1, 0, 1 \rangle$	1
$\langle 1, 1, 0 \rangle$	0
$\langle 1, 1, 1 \rangle$	1

设 $A = \{0,1\}$, 下面的表格表示了一个从 A^3 到 A 的函数 f.

	f
$\langle 0, 0, 0 \rangle$	0
$\langle 0, 0, 1 \rangle$	0
$\langle 0, 1, 0 \rangle$	1
$\langle 0, 1, 1 \rangle$	0
$\langle 1, 0, 0 \rangle$	1
$\langle 1, 0, 1 \rangle$	1
$\langle 1, 1, 0 \rangle$	0
$\langle 1, 1, 1 \rangle$	1

容易验证其布尔函数表达式为:

$$E(x_1, x_2, x_3) = (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_3).$$

格

在给出下一个定理之前, 我们先给出<mark>小项、大项、析取范式、合取范式</mark>的概念.

在给出下一个定理之前, 我们先给出小项、大项、析取范式、合取范式的 概念.

Definition 5.18

一个含有 n 个变元 x_1, x_2, \dots, x_n 的布尔表达式, 如果它有形式

$$\widetilde{x_1} \wedge \widetilde{x_2} \wedge \dots \wedge \widetilde{x_n}$$
 (41)

其中 \tilde{x}_i 是 x_i 或 \overline{x}_i 中的任一个,则我们称这个布尔表达式为<mark>小项</mark>.

在给出下一个定理之前, 我们先给出小项、大项、析取范式、合取范式的 概念.

Definition 5.18

一个含有 n 个变元 x_1, x_2, \dots, x_n 的布尔表达式, 如果它有形式

$$\widetilde{x_1} \wedge \widetilde{x_2} \wedge \dots \wedge \widetilde{x_n}$$
 (41)

其中 \tilde{x}_i 是 x_i 或 \bar{x}_i 中的任一个, 则我们称这个布尔表达式为<mark>小项</mark>. 如果它有形式

$$\widetilde{x_1} \vee \widetilde{x_2} \vee \cdots \vee \widetilde{x_n}$$
 (42)

则我们称这个布尔表达式为大项.

在给出下一个定理之前, 我们先给出小项、大项、析取范式、合取范式的 概念.

Definition 5.18

一个含有 n 个变元 x_1, x_2, \dots, x_n 的布尔表达式, 如果它有形式

$$\widetilde{x_1} \wedge \widetilde{x_2} \wedge \cdots \wedge \widetilde{x_n}$$
 (41)

其中 \tilde{x}_i 是 x_i 或 \bar{x}_i 中的任一个,则我们称这个布尔表达式为<mark>小项.</mark> 如果它有形式

$$\widetilde{x_1} \vee \widetilde{x_2} \vee \cdots \vee \widetilde{x_n}$$
 (42)

则我们称这个布尔表达式为大项.

每个位置 x_i 或 $\overline{x_i}$ 必出现且仅出现一次.

在给出下一个定理之前, 我们先给出小项、大项、析取范式、合取范式的 概念.

Definition 5.18

一个含有 n 个变元 x_1, x_2, \dots, x_n 的布尔表达式, 如果它有形式

$$\widetilde{x_1} \wedge \widetilde{x_2} \wedge \dots \wedge \widetilde{x_n}$$
 (41)

其中 \tilde{x}_i 是 x_i 或 \bar{x}_i 中的任一个,则我们称这个布尔表达式为<mark>小项.</mark> 如果它有形式

$$\widetilde{x_1} \vee \widetilde{x_2} \vee \cdots \vee \widetilde{x_n}$$
 (42)

则我们称这个布尔表达式为大项.

每个位置 x_i 或 $\overline{x_i}$ 必出现且仅出现一次. 和命题逻辑里的定义完全一样,后面的很多概念均是如此.

• 两个布尔变元 x_1, x_2 可构成 2^2 个小项和 2^2 个大项;

两个布尔变元 x₁, x₂ 可构成 2² 个小项和 2² 个大项;

小项	二进制下标	十进制下标
$\overline{x_1} \wedge \overline{x_2}$	m_{00}	m_0
$\overline{x_1} \wedge x_2$	m_{01}	m_1
$x_1 \wedge \overline{x_2}$	m_{10}	m_2
$x_1 \wedge x_2$	m_{11}	m_3

两个布尔变元 x₁, x₂ 可构成 2² 个小项和 2² 个大项;

小项	二进制下标	十进制下标	大项	二进制下标	十进制下标
$\overline{x_1} \wedge \overline{x_2}$	m_{00}	m_0	$x_1 \vee x_2$	M_{00}	M_0
$\overline{x_1} \wedge x_2$	m_{01}	m_1	$x_1 \vee \overline{x_2}$	M_{01}	M_1
$x_1 \wedge \overline{x_2}$	m_{10}	m_2	$\overline{x_1} \vee x_2$	M_{10}	M_2
$x_1 \wedge x_2$	m_{11}	m_3	$\overline{x_1} \vee \overline{x_2}$	M_{11}	M_3

两个布尔变元 x₁, x₂ 可构成 2² 个小项和 2² 个大项;

小项	二进制下标	十进制下标	大项	二进制下标	十进制下标
$\overline{x_1} \wedge \overline{x_2}$	m_{00}	m_0	$x_1 \vee x_2$	M_{00}	M_0
$\overline{x_1} \wedge x_2$	m_{01}	m_1	$x_1 \vee \overline{x_2}$	M_{01}	M_1
$x_1 \wedge \overline{x_2}$	m_{10}	m_2	$\overline{x_1} \vee x_2$	M_{10}	M_2
$x_1 \wedge x_2$	m_{11}	m_3	$\overline{x_1} \vee \overline{x_2}$	M_{11}	M_3

• n 个布尔变元 x_1, x_2, \dots, x_n , 可构成 2^n 个小 (大) 项.

析取范式 & 合取范式

Definition 5.19

形如

$$m_0 \vee m_1 \vee \cdots \vee m_t$$
 (43)

格

的布尔表达式称为析取范式;

析取范式 & 合取范式

Definition 5.19

形如

$$m_0 \vee m_1 \vee \dots \vee m_t$$
 (43)

的布尔表达式称为析取范式:

形如

$$M_0 \wedge M_1 \wedge \cdots \wedge M_t$$
 (44)

的布尔表达式称为合取范式.

其中 m_i 表示小项, M_i 表示大项, $i=1,2,\dots,t$.

格

析取范式 & 合取范式

Definition 5.19

形如

$$m_0 \vee m_1 \vee \cdots \vee m_t$$
 (43)

的布尔表达式称为析取范式;

形如

$$M_0 \wedge M_1 \wedge \cdots \wedge M_t$$
 (44)

的布尔表达式称为合取范式.

其中 m_i 表示小项, M_i 表示大项, $i = 1, 2, \dots, t$.

格

- 析取范式: 小项之并;
- 合取范式: 大项之交.

Theorem 5.20

对于两个元素的布尔代数 $\langle\{0,1\},\vee,\wedge,^-\rangle$, 任意一个从 $\{0,1\}^n$ 到 $\{0,1\}$ 的函数都是布尔函数.

证 对于一个从 $\{0,1\}^n$ 到 $\{0,1\}$ 的函数, 先用那些使函数值为 1 的有序 n 元组分别构造小项

$$\widetilde{x_1} \wedge \widetilde{x_2} \wedge \dots \wedge \widetilde{x_n},$$
 (45)

其中

$$\widetilde{x}_i = \begin{cases} x_i, & \text{如果有序 } n \text{ 元组中的第 } i \text{ 个分量为 } 1, \\ \overline{x}_i & \text{如果有序 } n \text{ 元组中的第 } i \text{ 个分量为 } 0. \end{cases}$$

Theorem 5.20

对于两个元素的布尔代数 $\langle\{0,1\},\vee,\wedge,^-\rangle$, 任意一个从 $\{0,1\}^n$ 到 $\{0,1\}$ 的函数都是布尔函数.

证 对于一个从 $\{0,1\}^n$ 到 $\{0,1\}$ 的函数, 先用那些使函数值为 1 的有序 n 元组分别构造小项

$$\widetilde{x_1} \wedge \widetilde{x_2} \wedge \cdots \wedge \widetilde{x_n},$$
 (45)

其中

$$\widetilde{x}_i = \begin{cases} x_i, & \text{如果有序 } n \text{ 元组中的第 } i \text{ 个分量为 } 1, \\ \overline{x}_i & \text{如果有序 } n \text{ 元组中的第 } i \text{ 个分量为 } 0. \end{cases}$$

然后, 再由这些小项所构成的析取范式, 它就是给定函数对应的布尔表达式, 从 而该函数是布尔函数. □

Theorem 5.20

对于两个元素的布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$, 任意一个从 $\{0,1\}^n$ 到 $\{0,1\}$ 的函数都是布尔函数.

障 注: 当然, 也可用那些使函数值为 0 的有序 n 元组分别构造大项

$$\widetilde{x_1} \vee \widetilde{x_2} \vee \cdots \vee \widetilde{x_n},$$
 (45)

其中

$$\widetilde{x}_i = \begin{cases} x_i, & \text{如果有序 } n \text{ 元组中的第 } i \text{ 个分量为 } 0, \\ \overline{x}_i & \text{如果有序 } n \text{ 元组中的第 } i \text{ 个分量为 } 1. \end{cases}$$

由这些大项所构成的合取范式, 也是给定函数对应的布尔表达式.

求由下表所给定的函数 $f(x_1, x_2, x_3)$ 的析取范式、合取范式.

	f
$\langle 0, 0, 0 \rangle$	1
$\langle 0, 0, 1 \rangle$	0
$\langle 0, 1, 0 \rangle$	1
$\langle 0, 1, 1 \rangle$	0
$\langle 1, 0, 0 \rangle$	0
$\langle 1, 0, 1 \rangle$	0
$\langle 1, 1, 0 \rangle$	0
$\langle 1, 1, 1 \rangle$	1

求由下表所给定的函数 $f(x_1, x_2, x_3)$ 的析取范式、合取范式.

	f	构造小项
$\langle 0, 0, 0 \rangle$	1	$\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}$
$\langle 0, 0, 1 \rangle$	0	
$\langle 0, 1, 0 \rangle$	1	$\overline{x_1} \wedge x_2 \wedge \overline{x_3}$
$\langle 0, 1, 1 \rangle$	0	
$\langle 1, 0, 0 \rangle$	0	
$\langle 1, 0, 1 \rangle$	0	
$\langle 1, 1, 0 \rangle$	0	
$\langle 1, 1, 1 \rangle$	1	$x_1 \wedge x_2 \wedge x_3$

Example 5.21

求由下表所给定的函数 $f(x_1, x_2, x_3)$ 的析取范式、合取范式.

	f	构造小项
$\langle 0, 0, 0 \rangle$	1	$\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}$
$\langle 0, 0, 1 \rangle$	0	
$\langle 0, 1, 0 \rangle$	1	$\overline{x_1} \wedge x_2 \wedge \overline{x_3}$
$\langle 0, 1, 1 \rangle$	0	
$\langle 1, 0, 0 \rangle$	0	
$\langle 1, 0, 1 \rangle$	0	
$\langle 1, 1, 0 \rangle$	0	
$\langle 1, 1, 1 \rangle$	1	$x_1 \wedge x_2 \wedge x_3$

 \mathbf{p} 函数 $f(x_1, x_2, x_3)$ 的析取范式:

 $\mathit{f}(x_1,x_2,x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge x_3).$

Example 5.21

求由下表所给定的函数 $f(x_1, x_2, x_3)$ 的析取范式、合取范式.

	f	构造小项	构造大项
$\langle 0, 0, 0 \rangle$	1	$\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}$	
$\langle 0, 0, 1 \rangle$	0		$x_1 \vee x_2 \vee \overline{x_3}$
$\langle 0, 1, 0 \rangle$	1	$\overline{x_1} \wedge x_2 \wedge \overline{x_3}$	
$\langle 0, 1, 1 \rangle$	0		$x_1 \vee \overline{x_2} \vee \overline{x_3}$
$\langle 1, 0, 0 \rangle$	0		$\overline{x_1} \lor x_2 \lor x_3$
$\langle 1, 0, 1 \rangle$	0		$\overline{x_1} \lor x_2 \lor \overline{x_3}$
$\langle 1, 1, 0 \rangle$	0		$\overline{x_1} \vee \overline{x_2} \vee x_3$
$\langle 1, 1, 1 \rangle$	1	$x_1 \wedge x_2 \wedge x_3$	

Example 5.21

求由下表所给定的函数 $f(x_1, x_2, x_3)$ 的析取范式、合取范式.

	f	构造小项	构造大项
$\langle 0, 0, 0 \rangle$	1	$\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}$	
$\langle 0, 0, 1 \rangle$	0		$x_1 \vee x_2 \vee \overline{x_3}$
$\langle 0, 1, 0 \rangle$	1	$\overline{x_1} \wedge x_2 \wedge \overline{x_3}$	
$\langle 0, 1, 1 \rangle$	0		$x_1 \vee \overline{x_2} \vee \overline{x_3}$
$\langle 1, 0, 0 \rangle$	0		$\overline{x_1} \lor x_2 \lor x_3$
$\langle 1, 0, 1 \rangle$	0		$\overline{x_1} \vee x_2 \vee \overline{x_3}$
$\langle 1, 1, 0 \rangle$	0		$\overline{x_1} \vee \overline{x_2} \vee x_3$
$\langle 1, 1, 1 \rangle$	1	$x_1 \wedge x_2 \wedge x_3$	

解 合取范式:

$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3)$$
$$\land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3).$$

一般布尔代数上的析 (合) 取范式

布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$ 上的布尔表达式的析取范式、合取范式可以扩充到一般的布尔代数上.

一般布尔代数上的析 (合) 取范式

布尔代数 ({0, 1}, ∨, ∧, ¬) 上的布尔表达式的析取范式、合取范式可以扩充 到一般的布尔代数上.

Definition 5.22

设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, - \rangle$ 上任一布尔表达式.

• 若 $E(x_1, x_2, \dots, x_n)$ 能表示成

$$(a_0 \wedge m_0) \vee (a_1 \wedge m_1) \vee \cdots \vee (a_t \wedge m_t), \tag{46}$$

则称形如 (46) 式的布尔表达式为析取范式;

一般布尔代数上的析 (合) 取范式

布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$ 上的布尔表达式的析取范式、合取范式可以扩充 到一般的布尔代数上.

Definition 5.22

设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, - \rangle$ 上任一布尔表达式.

• 若 $E(x_1, x_2, \cdots, x_n)$ 能表示成

$$(a_0 \wedge m_0) \vee (a_1 \wedge m_1) \vee \cdots \vee (a_t \wedge m_t), \tag{46}$$

则称形如 (46) 式的布尔表达式为析取范式;

• 若 $E(x_1, x_2, \cdots, x_n)$ 能表示成

$$(a_0 \vee M_0) \wedge (a_1 \vee M_1) \wedge \cdots \wedge (a_t \vee M_t), \tag{47}$$

则称形如 (47) 式的布尔表达式为合取范式.

其中 a_i 表示布尔常元, m_i 表示小项, M_i 表示大项, $i = 1, 2, \dots, t$.

Theorem 5.23

设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, - \rangle$ 上任一布尔表达式,则它一定可化为析 (合) 取范式.

(证明略.)

Theorem $5.\overline{23}$

设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, - \rangle$ 上任一布尔表达式, 则它一定可化为析 (合) 取范式.

(证明略.)

作为布尔代数的直接应用, 命题逻辑可用布尔代数

$$\langle \{\mathbf{F}, \mathbf{T}\}, \vee, \wedge, -\rangle$$

来描述.

101 / 103

Theorem 5.23

设 $E(x_1, x_2, \dots, x_n)$ 是布尔代数 $\langle A, \vee, \wedge, - \rangle$ 上任一布尔表达式, 则它一定可化为析 (合) 取范式.

(证明略.)

作为布尔代数的直接应用, 命题逻辑可用布尔代数

$$\langle \{\mathbf{F}, \mathbf{T}\}, \vee, \wedge, - \rangle$$

来描述.

一个原子命题可视为一个布尔变元, 其值非 \mathbf{T} 即 \mathbf{F} . 因此, 任一复合命题都 能用布尔代数

$$\langle \{\mathbf{F}, \mathbf{T}\}, \vee, \wedge, -\rangle$$

中的一个布尔函数来表示.

练习

将布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$ 上的布尔表达式

$$E(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3 \tag{48}$$

化为合取范式.

解

$$E(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3$$

$$= (x_1 \lor x_3) \land (x_2 \lor x_3)$$

$$= (x_1 \lor (x_2 \land \overline{x_2}) \lor x_3) \lor ((x_1 \land \overline{x_1}) \lor x_2 \lor x_3)$$

$$= (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3)$$

$$= M_0 \land M_2 \land M_4.$$

练习

将布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$ 上的布尔表达式

$$E(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3 \tag{48}$$

化为合取范式.

解

$$E(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee x_3$$

$$= (x_1 \vee x_3) \wedge (x_2 \vee x_3)$$

$$= (x_1 \vee (x_2 \wedge \overline{x_2}) \vee x_3) \vee ((x_1 \wedge \overline{x_1}) \vee x_2 \vee x_3)$$

$$= (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3)$$

$$= M_0 \wedge M_2 \wedge M_4.$$

或者用列表的方式确定大项...

练习

将布尔代数 $\langle \{0,1\},\vee,\wedge,^-\rangle$ 上的布尔表达式

$$E(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3 \tag{48}$$

化为合取范式.

解

	$E(x_1, x_2, x_3)$	构造大项
$\langle 0, 0, 0 \rangle$	0	$x_1 \vee x_2 \vee x_3$
$\langle 0, 0, 1 \rangle$	1	
$\langle 0, 1, 0 \rangle$	0	$x_1 \vee \overline{x_2} \vee x_3$
$\langle 0, 1, 1 \rangle$	1	
$\langle 1, 0, 0 \rangle$	0	$\overline{x_1} \lor x_2 \lor x_3$
$\langle 1, 0, 1 \rangle$	1	
$\langle 1, 1, 0 \rangle$	1	
$\langle 1, 1, 1 \rangle$	1	

得 $E(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3).$

黄正华 (武汉大学)

设 $E(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (\overline{x_2} \land x_3)$ 是布尔代数 $\langle \{0, 1\}, \lor, \land, \neg \rangle$ 上的一个布尔表达式. 试写出 $E(x_1, x_2, x_3)$ 的析取范式和合取范式.

设 $E(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (\overline{x_2} \land x_3)$ 是布尔代数 $\langle \{0, 1\}, \lor, \land, - \rangle$ 上的一个布尔表达式. 试写出 $E(x_1, x_2, x_3)$ 的析取范式和合取范式.

 \mathbf{w} 对 $E(x_1, x_2, x_3)$ 写出其对应的函数表, 然后构造小项、大项:

	$E(x_1, x_2, x_3)$	构造小项	构造大项
$\langle 0, 0, 0 \rangle$	0		$x_1 \vee x_2 \vee x_3$
$\langle 0, 0, 1 \rangle$	1	$\overline{x_1} \wedge \overline{x_2} \wedge x_3$	
$\langle 0, 1, 0 \rangle$	0		$x_1 \vee \overline{x_2} \vee x_3$
$\langle 0, 1, 1 \rangle$	1	$\overline{x_1} \wedge x_2 \wedge x_3$	
$\langle 1, 0, 0 \rangle$	0		$\overline{x_1} \lor x_2 \lor x_3$
$\langle 1, 0, 1 \rangle$	1	$x_1 \wedge \overline{x_2} \wedge x_3$	
$\langle 1, 1, 0 \rangle$	1	$x_1 \wedge x_2 \wedge \overline{x_3}$	
$\langle 1, 1, 1 \rangle$	1	$x_1 \wedge x_2 \wedge x_3$	

设 $E(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (\overline{x_2} \land x_3)$ 是布尔代数 $\langle \{0, 1\}, \lor, \land, - \rangle$ 上的一个布尔表达式. 试写出 $E(x_1, x_2, x_3)$ 的析取范式和合取范式.

 $\mathbf{E}(x_1, x_2, x_3)$ 的析取范式:

$$E(x_1, x_2, x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_2} \wedge x_3)$$
$$\vee (x_1 \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge x_3).$$

设 $E(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (\overline{x_2} \land x_3)$ 是布尔代数 $\langle \{0, 1\}, \lor, \land, - \rangle$ 上的一个布尔表达式. 试写出 $E(x_1, x_2, x_3)$ 的析取范式和合取范式.

解 E(x1, x2, x3) 的析取范式:

$$E(x_1, x_2, x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge x_3).$$

 $E(x_1, x_2, x_3)$ 的合取范式:

$$E(x_1, x_2, x_3) = (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_2 \vee x_3).$$

黄正华 (武汉大学)