Errores de redondeo Lección 02

Dr. Pablo Alvarado Moya

CE3102 Análisis Numérico para Ingeniería Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre 2017

Contenido

- Errores de redondeo
 - Números codificados con coma fija
 - Números codificados con coma flotante

Manipulaciones aritméticas

Representaciones numéricas

Coma fija

Números codificados con coma fija

Las representaciones con **coma fija** son posicionales, donde el peso de cada bit en la representación es constante.

Número de N bits:

$$b_{N-1}$$
 ... b_5 b_4 b_3 b_2 b_1 b_0
 \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow
 2^{N-1} ... 2^5 2^4 2^3 2^2 2^1 2^0
MSB

• Sea x un número entero sin signo de N-bits

$$x = \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x.

• Sea x un número entero sin signo de N-bits

$$x = \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x.

• El rango representable es entonces desde 0 hasta $2^N - 1$.

• Sea x un número entero sin signo de N-bits

$$x = \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x.

- El rango representable es entonces desde 0 hasta $2^N 1$.
- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a uno.

• Sea x un número entero sin signo de N-bits

$$x = \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x.

- El rango representable es entonces desde 0 hasta $2^N 1$.
- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a uno.
- El dígito b_{N-1} es el más significativo (MSB, most significant bit) y tiene un peso relativo de 2^{N-1}

Ejemplo

Encuentre el equivalente decimal del número binario

 $(10100101)_2$

Solución: El número de 8 bits

$$x = (10100101)_2$$

es equivalente al número en base 10

$$x = 1 \times 2^{7} + 1 \times 2^{5} + 1 \times 2^{2} + 1 \times 2^{0}$$
$$= 128 + 32 + 4 + 1$$
$$= 165 \quad (= 1 \times 10^{2} + 6 \times 10 + 5)$$

• Sea x un número sin signo de N-bits

$$x = \frac{1}{M} \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x y M es una constante de normalización elegida usualmente como 2^m .

• Sea x un número sin signo de N-bits

$$x = \frac{1}{M} \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x y M es una constante de normalización elegida usualmente como 2^m .

• El rango representable es entonces desde 0 hasta $(2^N - 1)/M$.

• Sea x un número sin signo de N-bits

$$x = \frac{1}{M} \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x y M es una constante de normalización elegida usualmente como 2^m .

- El rango representable es entonces desde 0 hasta $(2^N 1)/M$.
- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a 1/M.

Sea x un número sin signo de N-bits

$$x = \frac{1}{M} \sum_{n=0}^{N-1} b_n 2^n$$

donde $b_n \in \{0,1\}$ es el *n*-ésimo dígito de x y M es una constante de normalización elegida usualmente como 2^m .

- El rango representable es entonces desde 0 hasta $(2^N 1)/M$.
- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a 1/M.
- El dígito b_{N-1} es el más significativo (MSB, most significant bit) y tiene un peso relativo de $2^{N-1}/M$.

Ejemplo

Encuentre el equivalente decimal del número binario

 $(10, 100101)_2$

Solución: El número de 8 bits

$$x = (10, 100101)_2$$

es equivalente al número en base 10

$$x = 1 \times 2^{1} + 1 \times 2^{-1} + 1 \times 2^{-4} + 1 \times 2^{-6}$$

$$= 2 + \frac{1}{2} + \frac{1}{16} + \frac{1}{64}$$

$$= \frac{128 + 32 + 4 + 1}{64} = \frac{1}{64}165$$

$$= 2,578125 \quad (= 2 \times 10^{0} + 5 \times 10^{-1} + 7 \times 10^{-2} + \dots)$$

- En este caso se tiene M=64, con dos bits en la parte entera y 6 en la parte fraccionaria
- Nóte que $M = 2^f$ con f el número de bits en la parte fraccionaria

• La representación de *N* bits de un número entero con signo en complemento a dos está dada por

$$x = -b_{N-1}2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n$$

lo que permite representar números en el rango desde -2^{N-1} hasta $2^{N-1} - 1$.

• La representación de *N* bits de un número entero con signo en complemento a dos está dada por

$$x = -b_{N-1}2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n$$

lo que permite representar números en el rango desde -2^{N-1} hasta $2^{N-1} - 1$.

• El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a uno.

• La representación de *N* bits de un número entero con signo en complemento a dos está dada por

$$x = -b_{N-1}2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n$$

lo que permite representar números en el rango desde -2^{N-1} hasta $2^{N-1} - 1$.

- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a uno.
- El dígito b_{N-2} es el más significativo (MSB, most significant bit) y tiene un peso relativo de 2^{N-2} .

• La representación de *N* bits de un número entero con signo en complemento a dos está dada por

$$x = -b_{N-1}2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n$$

lo que permite representar números en el rango desde -2^{N-1} hasta $2^{N-1} - 1$.

- El dígito b_0 es el menos significativo (LSB, *least significant bit*) y su peso relativo es igual a uno.
- El dígito b_{N-2} es el más significativo (MSB, most significant bit) y tiene un peso relativo de 2^{N-2} .
- El último bit b_{N-1} codifica al signo.

Sumas con complemento a dos

• El uso del complemento a dos es el más difundido de todas las representaciones de números con signo.

Sumas con complemento a dos

- El uso del complemento a dos es el más difundido de todas las representaciones de números con signo.
- Es posible sumar varios números con signo, y siempre que el resultado final se encuentre en el rango de representación, es irrelevante si resultados intermedios producen desbordamiento.

Sumas con complemento a dos

- El uso del complemento a dos es el más difundido de todas las representaciones de números con signo.
- Es posible sumar varios números con signo, y siempre que el resultado final se encuentre en el rango de representación, es irrelevante si resultados intermedios producen desbordamiento.
- Por ejemplo, supóngase que se debe hacer la secuencia de operaciones 2 + 3 - 2 con números de 3 bits. La secuencia de adiciones es entonces

$$(x_i)_{10}$$
 $(x_i)_2$ $(\sum x_i)_2$ $(\sum x_i)_{10}$
 2_{10} 010 010 2_{10}
 3_{10} 011 101 -3_{10}
 -2_{10} 110 011 3_{10}

donde el resultado intermedio 5 fue representado por el número -3, sin afectar el resultado final.

Coma fija con signo

 La representación de N bits de un número con signo en complemento a dos está dada por

$$x = \frac{1}{M} \left(-b_{N-1} 2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n \right)$$

con la constante de normalización M elegida usualmente como 2^m .

Coma fija con signo

 La representación de N bits de un número con signo en complemento a dos está dada por

$$x = \frac{1}{M} \left(-b_{N-1} 2^{N-1} + \sum_{n=0}^{N-2} b_n 2^n \right)$$

con la constante de normalización M elegida usualmente como 2^m .

• El rango representable será entonces desde $-2^{N-1}/M$ hasta $(2^{N-1}-1)/M$.

Ejemplo

Encuentre la representación binaria del número decimal x=-3,125 con cinco bits para la parte fraccionaria y tres bits para la parte entera utilizando coma fija con complemento a dos.

Solución:

Con f = 5 bits para la parte fraccionaria se obtiene

$$M = 2^f = 32$$

por lo que el número entero a convertir es

$$32 \times -3,125 = -100$$

y finalmente
$$-100 = -128 + (16 + 8 + 4) = (10011100)_2$$

El caso fraccionario

• Un caso frecuentemente utilizado permite representar números de valor absoluto igual o inferior a uno empleando $M=2^{N-1}$ con lo que se obtiene

$$x = -b_{N-1} + \sum_{n=0}^{N-2} b_n 2^{n-N+1}$$

Coma flotante

Números codificados con coma flotante

- La representación en coma flotante permite ampliar el rango de representación numérica.
- La separación entre dos números adyacentes es variable: pequeña para números pequeños, grande para números grandes.
- Las representaciones de 32 y 64 bits más frecuentemente utilizadas han sido estandarizadas por la IEEE (estándar 754 en su versión original de 1985 y su más reciente versión de 2008).

Codificación según IEEE 754

Un número codificado con el estándar consiste en

- un bit de signo s,
- el exponente e con E bits y
- la mantisa *m* normalizada (fraccionaria) de *M* bits,

y se codifica como

s Exponente e	Mantisa <i>m</i>
---------------	------------------

Codificación según IEEE 754

Un número codificado con el estándar consiste en

- un bit de signo s,
- el exponente e con E bits y
- la mantisa *m* normalizada (fraccionaria) de *M* bits,

y se codifica como

S	Exponente e	Mantisa <i>m</i>	
- 1			

De forma algebraica, el número representado es

$$x = (-1)^s \times (1, m) \times 2^{e-\mathsf{bias}}$$

con

bias =
$$2^{E-1} - 1$$

Equivalencia decimal de número en coma flotante

Nótese que la mantisa se completa con un 1 bit *oculto* (en el sentido de que no se indica explícitamente en la representación), mientras que los bits especificados en la mantisa representan solo la parte fraccionaria.

Ejemplo

Indique cuál es la representación en coma flotante del número $10,125_{10}$ en un formato de 14 bits que utiliza E=6 bits y M=7 bits.

Solución:

Primero, el bias está dado por

bias =
$$2^{E-1} - 1 = 2^5 - 1 = 31$$

y para la mantisa

$$10,125_{10} = 1010,0010_2 = 1,0100010_2 \times 2^3$$

El exponente corregido se obtiene con

$$e = 3 + bias = 34_{10} = 100010_2$$

Finalmente, la representación del número es:

5	Exponente e	Mantisa <i>m</i>	
0	1000102	01000102	

Ejemplo

Encuentre qué número decimal es representado por el código de coma flotante con E=6 bits y M=7 bits:

5	Exponente e	Mantisa <i>m</i>	
1	011110_2	10000002	

Solución:

El número representado está dado por

$$-1\times 1, 1000000_2\times 2^{30-\mathsf{bias}} = -1, 1_2\times 2^{-1} = -0, 11_2 = -0, 75_{10}$$

Estándar de coma flotante IEEE 754-2008

	Simple	Doble
Ancho de palabra	32	64
Mantisa	23	52
Exponente	8	11
Bias	127	1023
Rango	$2^{128}\approx 3,4\times 10^{38}$	$2^{1024}\approx 1,8\times 10^{308}$

Algunos números especiales en precisión simple

Nombre	s	е	m	Hex
			11 11	FFFFFFFFH
-NaN (Quiet)	1	1111	:	:
			10 01	FFC00001 _H
			$01 \dots 11$	$FFBFFFFF_H$
-NaN (Signal)	1	11 11	:	:
			00 01	FF800001 _H
$-\infty$	1	$11 \dots 11$	00 00	FF800000 _H
-0	1	00 00	00 00	80000000 _H
+0	0	0000	00 00	00000000 _H
$+\infty$	0	$11 \dots 11$	00 00	7F800000 _H
			00 01	7F800001 _H
+NaN (Signal)	0	1111	÷	:
			$01 \dots 11$	$7FBFFFFF_H$
			10 01	7FC00000 _H
+NaN (Quiet)	0	1111	:	:
			11 11	$7FFFFFFF_H$

Algunos números especiales en precisión doble

Nombre	s	е	т	Hex
			11 11	FFFFFFFFFFFFF
-NaN (Quiet)	1	1111	:	:
			10 01	FFC0000000000001 _H
			01 11	FFF7FFFFFFFFFH
-NaN (Signal)	1	1111	:	:
			00 01	FFF8000000000001 _H
$-\infty$	1	$11 \dots 11$	0000	FFF000000000000000
-0	1	00 00	00 00	800000000000000000H
+0	0	00 00	00 00	00000000000000000 _H
$+\infty$	0	$11 \dots 11$	00 00	7FF000000000000000
			00 01	7FF0000000000001 _H
+NaN (Signal)	0	1111	:	:
			0111	7FF7FFFFFFFFFF _H
			10 01	7FF800000000000000 _H
+NaN (Quiet)	0	1111	:	:
			11 11	$7\mathtt{FFFFFFFFFF}_H$

Error de redondeo

Se produce al utilizar representaciones numéricas incapaces de representar todas las cifras significativas del número a representar. Se produce porque

- El rango de cantidades representables es limitado.
 Fuera del rango representable ocurre el error de desbordamiento (overflow)
- Número finito de números representables en un rango.
 Al utilizar el número representable más cercano se produce el error de cuantificación. Este número se puede asignar por redondeo o por corte.
- Con coma flotante, intervalo Δx entre números aumenta conforme los números crecen en magnitud

• En coma flotante, sea Δx el intervalo entre representaciones válidas alrededor de un valor x.

- En coma flotante, sea Δx el intervalo entre representaciones válidas alrededor de un valor x.
- Si se utiliza corte, el epsilon & del formato se define como el menor número que cumple con

$$\mathscr{E} \geq \frac{|\Delta x|}{|x|}$$

- En coma flotante, sea Δx el intervalo entre representaciones válidas alrededor de un valor x.
- Si se utiliza corte, el epsilon $\mathscr E$ del formato se define como el menor número que cumple con

$$\mathscr{E} \ge \frac{|\Delta x|}{|x|}$$

Si se utiliza redondeo

$$\frac{\mathscr{E}}{2} \ge \frac{|\Delta x|}{|x|}$$

- En coma flotante, sea Δx el intervalo entre representaciones válidas alrededor de un valor x.
- Si se utiliza corte, el epsilon $\mathscr E$ del formato se define como el menor número que cumple con

$$\mathscr{E} \geq \frac{|\Delta x|}{|x|}$$

Si se utiliza redondeo

$$\frac{\mathscr{E}}{2} \ge \frac{|\Delta x|}{|x|}$$

• En general se cumple $\mathscr{E} = 2^{1-M}$ donde M es el número de bits de la mantisa.

Información sobre tipos en C++

- STL (Standard Template Library)
- limits>
- std::numeric_limits<float>::epsilon()
- std::numeric_limits<double>::max()
- Ver ejemplo eps.cpp $(M_{\text{float}} = 23, M_{\text{double}} = 52)$

Información sobre tipos en C++

- STL (Standard Template Library)
- imits>
- std::numeric_limits<float>::epsilon()
- std::numeric_limits<double>::max()
- Ver ejemplo eps.cpp $(M_{\text{float}} = 23, M_{\text{double}} = 52)$
- ¿Por qué resultado da $\mathscr{E} = 2^{-M}$ y no $\mathscr{E} = 2^{1-M}$?

Manipulaciones aritméticas

Se brindarán ejemplos en base 10 por simplicidad, pero recuérdese que el computador utiliza números en base 2.

Suma Coma flotante

- Se toma número con menor exponente
- Mantisa se modifica para igualar exponente del otro número (Alineación de la coma decimal)
- Se realiza la suma
- En caso necesario, se renormaliza número

Ejemplo: Suma

(1)

Ejemplo

Sume los números $0,157\times 10^1$ y $0,44\times 10^{-1}$, asumiendo que el sistema numérico utilizado puede representar 3 cifras significativas.

Solución:

$$0,157 \times 10^{1} \\ 0,0044 \times 10^{1} \\ \hline 0,1614 \times 10^{1} \\ \downarrow \\ 0,161 \times 10^{1}$$

Resta Coma flotante

Idéntico al caso de la suma

- Se toma número con menor exponente
- Mantisa se modifica para igualar exponente del otro número (Alineación de la coma decimal)
- Se realiza la resta
- En caso necesario, se renormaliza número

Ejemplo

Reste los números 10 y 9,99, asumiendo que el sistema numérico utilizado puede representar 3 cifras significativas.

Solución:

$$0,10 \times 10^{2} \\ 0,0999 \times 10^{2} \\ \hline 0,0001 \times 10^{2} \\ \downarrow \\ 0,100 \times 10^{-1}$$

Problema: si los dos números a restar son similares, en la representación numérica aprecen cifras que **no** son significativas.

P. Alvarado

Suma y resta Coma fija

En representaciones de coma fija, las operaciones de suma y resta tienen la coma decimal alineada, lo mismo que el resultado, así que símplemente se realizan las operaciones sobre cada dígito con acarreo.

Multiplicación y división

- Se suman (o restan) exponentes
- Se multiplican (o dividen) las mantisas de *n* dígitos
- Se normaliza el resultado (y se redondea si es necesario)

Nótese que el producto de dos mantisas de n dígitos produce 2n dígitos.

Ejemplo: Multiplicación

(1)

Ejemplo

Multiplique los números 136,3 y 0,06423, asumiendo que el sistema numérico puede representar cuatro cifras significativas.

Solución:

$$\begin{array}{c} 0,1363 & \times 10^{3} \\ 0,6423 & \times 10^{-1} \\ \hline 0,08754549 \times 10^{2} \\ \downarrow \\ 0,8754549 \times 10^{1} \approx 8,754 \text{ (corte)} \end{array}$$

Procesos acumulativos

En procesos acumulativos de las formas:

$$y = \sum_{i} x_{i} \qquad \qquad y = \prod_{i} x_{i}$$

implementados iterativamente, los redondeos de cada resultado parcial introducen errores crecientes con cada paso.

Tarea

Ejemplo

Realice un programa en C++ que acumule (aditivamente) 100 000 veces los números 1 y 0,00001 en precisiones simple y doble.

Suma de números grandes y pequeños

La suma de un número grande y otro pequeño, con una diferencia en órdenes de magnitud mayor al número de cifras significativas, no produce **ningún** efecto.

$$0,4000 \times 10^{4} \\ 0,0000001 \times 10^{4} \\ \hline 0,4000001 \times 10^{4} \\ \downarrow \\ 0,4000 \times 10^{4}$$

¡Advertencia!

En sumas de gran número de términos, se debe procurar sumar primero los términos pequeños y por último los grandes, de modo que se minimice el efecto anterior.

Cancelación por resta

Redondeo inducido cuando se restan dos números de coma flotante casi iguales.

Cancelación por resta

Ejemplo

Cálculo de las soluciones de la ecuación cuadrática $ax^2 + bx + c = 0$:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

con $b^2 \gg 4ac$.

En el ejemplo anterior el numerador tiende a cero.

Ejemplo

Verifique el problema anterior para a=1, b=3000,001 y c=3, con un programa en C++, si se sabe que $x_{1,2}=-0,001|-3000$.

Solución cuadrática alternativa

La ecuación cuadrática:

$$ax^2 + bx + c = 0$$

tiene una formulación alternativa de solución que minimiza error de cancelación por resta:

$$x_{1,2} = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$$

Presencia de errores de redondeo

• Series: p.ej.
$$\sum_{i=0}^{N} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots$$

② Productos punto:
$$\sum_{i=0}^{N} x_i y_i = x_0 y_0 + x_1 y_1 + x_2 y_2 + \dots$$

- Reducción de error de redondeo: usar precisión extendida
- Existen técnicas de reducción de error, pero dependen de cada caso particular

Resumen

- Errores de redondeo
 - Números codificados con coma fija
 - Números codificados con coma flotante

2 Manipulaciones aritméticas

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2005-2017 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica