Continuous Distributions Math 122

Binomial and Poisson

- Discrete Distributions
- Gaps between possible values
 - -0, 1, 2, 3, 4...
- Each possible value has nonzero probability

A marker is thrown at the square below. How could we find the probability that the marker hits the circle?

The total area under this curve is 1. A marker is thrown at the curve, what is the probability it hits the yellow

Continuous Random Variables

- Infinitely many possible values
- Possible values spread over a range with no gaps
- Probability of any single value 0
- Probability corresponds to area
- Consider P(x<b) or P(a<x) or P(a<x<b)

Probability = Area

 Finding probabilities corresponds to finding areas under smooth curves such as

 The curve is called the density curve or density function

Density Functions

- Every continuous random variable has a density function
- The total area under the function is 1
- To find P(a<x<b), we find the area under the function between a and b

Uniform Distribution

Normal Distribution

Student t Distributions

Chi-Squared Distributions

F Distributions

Uniform Distribution

- Density function is a horizontal line from the minimum value of the random variable to the maximum value.
- The height of the line is selected so that the total area under the curve is 1

• Find P(x<3)

• Find P(1<x<2)

Find a so that P(x<a)=0.1

• Find a so that P(x>a)=0.01

 Find a and b which separate the middle 95% of values of x from the highest and lowest values. The Newport Power and Light Company provides electricity with voltages uniformly distributed between 123 and 125 volts.

 Find the probability that a random voltage is greater than 124.5 The Newport Power and Light Company provides electricity with voltages uniformly distributed between 123 and 125 volts.

 Find a voltage which is greater than 99% of all voltages.

Normal Distributions

• The most important distribution for statistics.

Normal Distribution with mean μ and standard deviation σ

$$y = \frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}}{\sigma\sqrt{2\pi}}$$

Standard Normal Distribution

• Has mean μ =0 and standard deviation σ =1

$$y = \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}}$$

Usually use z for a standard normal distribution

Standard Normal Distribution

Inverse Normal Function

To find a number a so that P(x<a)=α use invnorm(α)

Suppose that z has a standard normal distribution

• Find a so that P(z<a)=0.05

Find a so that P(z>a)=0.1

Suppose that z has a standard normal distribution

 Find a and b which separate the middle 95% of values of z from the rest.

α Tails

• The number z_{α} is the unique number so that $P(z>z_{\alpha})=\alpha$

• Find z_{0.01} • Find z_{0.005}

Summary

- Probabilities for continuous random variables correspond to areas under density curves.
- The density curve of a uniform distribution is a horizontal line.
- The density curve of a normal distribution is a special bell curve.
- A standard normal distribution has mean 0 and standard deviation 1.
- Use normalcdf(a,b) to find P(a<z<b)