Technika cyfrowa Sprawozdanie z ćwiczenia nr 3

Rozmus Dariusz, Fabia Jakub, Smołka Tomasz, Czyż Bartosz, Zając Kacper

1. TREŚĆ ZADANIA

Zaprojektować automat mogący posłużyć do sterowania jakimś prostym odtwarzaczem plików muzycznych mp3.

Układ powinien mieć następujące przyciski oraz odpowiadające im sygnały i wskaźniki:

- STOP
- PLAY
- NEXT
- PREVIOUS

oraz powinien posiadać dwubitowe wyjście binarne określające numer utworu.

2. IDEA ROZWIĄZANIA

Rysunek 1: Schemat automatu w postaci grafu

Układ ten będzie automatem nieskończonym, zupełnym. Wyjścia zależeć będą tylko od stanu automatu, a zatem będzie to także automat Moore'a.

Każdy utwór w danej chwili może być włączony (PLAY) albo wyłączony (STOP), zatem w sumie nasz automat będzie miał 8 różnych stanów.

Układ będzie miał cztery różne wejścia – PLAY, STOP, PREV, NEXT. Można zatem posłużyć się dwubitową liczbą binarną do ich reprezentacji:

- PLAY 01
- STOP 00
- PREV 10
- NEXT 11

Rysunek 2: Schemat wejść i wyjść dla podukładu głównego

Wejścia podukładu:

- *X, Y* bity dwucyfrowej liczby binarnej reprezentującej wciśnięty przycisk PLAY, STOP, NEXT albo PREV.
- CLOCK zegar
- RESET reset (na potrzeby podukładu testującego)

Wyjścia podukładu:

- OUT_A, OUT_B bity dwucyfrowej liczby binarnej reprezentującej dany utwór
- IS_PLAY bit oznaczająca czy dany utwór się wykonuje ('1' utwór gra, '0' utwór nie gra)

3. PROJEKTOWANIE UKŁADU

3.1. Podukład główny - automat

Do realizacji wszystkich stanów wykorzystano trzy przerzutniki typu JK ($2^3 = 8$ stanów):

Rysunek 3: Przerzutnik typu JK - Flip Flop

Do sporządzenia tabelki Karnaugh wykorzystano wiedzę o przejściach między stanami automatu i tablicy prawdościowej przerzutnika JK:

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	$\overline{Q_n}$

Tabela 1: Tablica prawdościowa dla przerzutników typu JK

J	K	Q_n	Q_{n+1}
0	ı	0	0
1	1	0	1
-	0	1	1
-	1	1	0

Tabela 2: Inna wersja tablica prawdościowej dla przerzutników typu JK

	WEJŚCIA			
STAN	STOP	PLAY	NEXT	PREV
	00	01	10	11
0	0	4	1	3
1	1	5	2	0
2	2	6	3	1
3	3	7	0	2
4	0	4	5	7
5	1	5	6	4
6	2	6	7	5
7	3	7	4	6

Tabela 3: Tabela wejść automatu

STAN	WYJŚCIE		
	(OUT_A, OUT_B, IS_PLAY)		
0	000		
1	001		
2	010		
3	011		
4	100		
5	101		
6	110		
7	111		

Tabela 4: Tabela wyjść automatu

Tabela 5: Sumaryczna tablica Karnaugh dla automatu

Gdzie:

- A odpowiada wyjściu OUT_A
- B odpowiada wyjściu OUT_B
- C odpowiada wyjściu IS_PLAY

Tabela 6: Tablica Karnaugh dla pierwszego przerzutnika $J_A K_A$

$$J_A = X$$

$$K_A = X + B\overline{A}$$

Rysunek 4: Układ wejść J, K przerzutnika A

Tabela 7: Tablica Karnaugh dla drugiego przerzutnika $J_B K_B$

$$J_B = XYA + \overline{B} \overline{A} X \overline{Y}$$
$$K_B = XYA + B \overline{A} X \overline{Y}$$

Rysunek 5: Układ wejścia J przerzutnika B

Rysunek 6: Układ wejścia K przerzutnika B

Tabela 8: Tablica Karnaugh dla trzeciego przerzutnika $J_{\mathcal{C}}K_{\mathcal{C}}$

Rysunek 7: Układ wejść J, K przerzutnika C

Rysunek 8: Implementacja podukładu głównego w programie Multisim

3.2. Podukład dekodujący i spamiętujący wciśnięty przycisk

Rysunek 9: Schemat wejść i wyjść dla podukładu dekodującego wciśnięty przycisk

Wejścia podukładu:

- PLAY_BTN przycisk PLAY służący do włączania danego utworu
- STOP_BTN przycisk STOP służący do wyłączania danego utworu
- PREV_BTN przycisk PREV służący do przechodzenia po poprzednich utworach
- NEXT_BTN przycisk NEXT służący do przechodzenia po następnych utworach

Wyjścia podukładu:

• X, Y – cyfry otrzymanej liczby binarnej

Rysunek 10: Schemat podukładu dekodującego w programie Multisim

Do implementacji tego podukładu zastosowano dwa przerzutniki typu SR – wyjścia Q każdego z nich reprezentują odpowiedni bit dwucyfrowej liczby binarnej. Przyjęto:

- PLAY 01 (RESET na pierwszym przerzutniku i SET na drugim)
- STOP 00 (RESET na pierwszym i drugim)
- PREV 10 (SET na pierwszym przerzutniku i RESET na drugim)
- NEXT 11 (SET na pierwszym i drugim)

W podukładzie wykorzystano również diody półprzewodnikowe.

3.3. Gotowy układ cyfrowy

Rysunek 11: Gotowy układ cyfrowy

Numer utworu pokazywany jest na wyświetlaczu. Lampka obok wyświetlacza określa czy utwór jest włączony, czy wyłączony. Wejścia PLAY, STOP, PREV, NEXT zrealizowano przy pomocy kluczy.

4. PODUKŁAD TESTUJĄCY

4.1. Schemat podukładu testującego

Do implementacji podukładu testującego wykorzystano generator słów i analizator stanów logicznych.

Rysunek 8: Schemat podukładu testującego

Wejścia podukładu:

- R1, R2, R3 sygnały generowane przez podukład główny
- E1, E2, E3 sygnały generowane przez generator słów
- CLOCK zegar z generatora słów
- RESET reset generowany na początku każdego cyklu (z generatora słów)

Wyjścia podukładu:

- ERROR sygnał błędu
- ERROR_NOW asynchroniczny sygnał ustalający moment w którym wystąpił błąd

Rysunek 9: Schemat podukładu testującego zaimplementowany w programie Multisim

Wykorzystano dwa przerzutniki typu D, aby zapamiętać sygnał błędu do czasu zakończenia cyklu. Dodatkowo zastosowano bramkę NOT opóźniającą zegar o pół taktu, ponieważ sygnały z generatora słów i układu głównego nie są ze sobą zsynchronizowane przez sygnał reset.

4.2. Podpięcie układu testującego do zaprojektowanego układu cyfrowego

Rysunek 10: Układ cyfrowy z wpiętym podukładem testującym

4.3. Ustawienia generatora słów

Rysunek 11: Ustawienia generatora słów

Iterujemy cyklicznie po wszystkich możliwych przejściach stanów zaprojektowanego automatu. Na powyższym rysunku zaznaczone na niebiesko słowo oznacza RESET. Następujące 40 słów oznacza wszystkie możliwe przejścia stanów w automacie.

Generator słów ma również własny wyświetlacz. Sprawdzamy, czy wyświetlacz generatora słów daje ten sam wynik, co wyświetlacz naszego układu.

4.4. Analizator logiczny

Rysunek 12: Pokazania analizatora logicznego dla działającego układu

Pierwsze 3 sygnały wyjścia układu głównego: OUT_A, OUT_B, IS_PLAY.

Kolejne 2 to symulowane przyciski (wejścia głównego) X, Y.

Kolejne 3 to wyjścia generatora słów: OUT_A, OUT_B, IS_PLAY.

Ostatnie 3 to kolejno: ERROR, ERROR_NOW i CLOCK.

Rysunek 13: Ustawienia analizatora logicznego

4.5. Przeprowadzenie testu

W poniższym przypadku w podukładzie głównym dla jednego przerzutnika podpięto na odwrót wejścia J i K przerzutnika B:

Rysunek 14: Błędny podukład główny

Rysunek 15: Działanie podukładu testującego na sforsowanym układzie. Widać, że lampki podukładu testującego święcą się, a więc błąd został wykryty

Rysunek 16: Pokazania błędu w analizatorze logicznym

5. WNIOSKI I ZASTOSOWANIA

5.1 Zastosowania

- Taki automat mógłby posłużyć do obsługi odtwarzacza muzyki (z tylko 4 piosenkami).
- Można go też wykorzystać jako metoda zmiany plików wideo na interaktywnym kiosku np. w muzeum.

Rysunek 17: Wykorzystanie układu w interaktywnym kiosku

• UWAGA DRASTYCZNE: Oraz do karmienia dzikich zwierząt w klatkach!

Rysunek 18: Wykorzystanie układu do karmienia

5.2 Co można było zrobić lepiej / inaczej?

• Można było stworzyć dodatkową logikę, która sprawi, że po wciśnięciu przycisku NEXT lub PREV wciskany jest przycisk PLAY. W tym momencie po wciśnięciu jednego z tych przycisków, utwory są przewijane do momentu wciśnięcia PLAY lub STOP.