CSci 423 Homework 8

Due: 1:00 pm, Wednesday, 11/7 Eric Shih

1. (10 points) Exercise 3.1 (d) on page 159.

Turing Machin M = On input string w:

- 1. Sweep left to right across the tape, crossing off every other 0.
- 2. If in state 1, the tape contained a single 0, accept.
- 3. If in stage 1, the tape contained more than a single 0 and the number of 0s was odd, reject.
- 4. Return to state 1.

The configuration for TM *M* for input string 000000 is:

q1000000

q200000

Xq30000

X0q4000

X0Xq300

7074300

X0X0q40

X0X0Xq3

X0X0q50

X0Xq5X0

X0q50X0

Xq5X0X0

q50X0X0

q5X0X0X0

q20X0X0

Xq3X0X0

XXq30X0

XXXq3X0

XXX0q40

 $XXX0Xq4 \rightarrow reject$

- 2. (10 points) Exercise 3.8 (b) on page 160.
 - (a) Accept string if empty
 - (b) Make a pass from left to right, marking two 0s and one 1.
 - (c) If unable to perform step (b), reject
 - (d) Repeat step (b) and (c) until the string has only marked symbols, then *accept*.
- 3. (10 points) Problem 3.15 (b), (c) and (e) on page 161.

- Concatenation: A TM M can be constructed to decide the concatentation of two decidable languages AB. For the input string w, we can partition w into w_a and w_b . TM M_A will take w_a and TM M_B will take w_b . If both M_A and M_B accept, then M will accept, otherwise it will reject.
- Star: A TM M can be constructed to decide L*. If the input string w is empty, M will accept. Then for each way to divide w, the substrings will be input to TM M_L . If M accepts all substrings, then M will accept L*, otherwise it will reject.
- Intersection: A TM M can be constructed to decide $A \cap B$. TM M_A decides A and TM M_B will decide B. We then use input string w as input for M_A . If it is not rejected, it is input to M_B . If it is accepted in M_B it is accepted, otherwise it be rejected.
- 4. (10 points) Problem 3.16 (b), (c) and (d) on page 161.
 - Concatentation: A TM M can be constructed to recognize the language AB. TM M_A will recognize A and TM M_B will recognize B. Input string w can be non-deterministically partitioned to w_a and w_b . w_a will be used for M_A and w_b will be used for M_B . While w_a is running, w_b should be run. If M_B accepts, then it will be accepted.
 - Star: A TM M can be constructed to recognize L*. If the input string w is empty, M will accept. For every possible way to divide w, the substrings should be run as input to TM M_L . If M_L accepts all the substrings, then M will accept.
 - Intersection: A TM M can be constructed to recognize $A \cap B$. TM M_A recognizes A and TM M_B recognizes B. An input string, w, is then run on M_A . If M_A accepts w, then w will be used as input for M_B . If M_B accepts, then M will accept.