Measuring Inertia: Appendix

E.G. Alberts and I. Gerostathopoulos $\label{eq:may-2022} \text{May 2022}$

1 Extra Results

	Hyper	Context A	Context B	Context A	Weighted	
Policy	para-	(n = 0 -	(n = 112 -	(n = 224 -	Average	
	meter	110)	222)	244)	Average	
Random	n/a	0.33	0.33	0.35	0.34	
EXP3FH	n/a	0.5	0.5	0.11	0.47	
UCBTN	n/a	0.68	0.97	0.0	0.72	
e-greedy	$\epsilon = 0.3$	0.78	0.44	0.1	0.59	
	$\epsilon = 0.4$	0.69	0.48	0.14	0.56	
	$\epsilon = 0.5$	0.66	0.45	0.15	0.54	
e-greedy	$\epsilon = 0.6$	0.57	0.43	0.21	0.48	
	$\epsilon = 0.7$	0.51	0.39	0.27	0.44	
	$\epsilon = 0.8$	0.46	0.39	0.24	0.41	
	$\eta = 0.04$	0.48	0.56	0.19	0.48	
	$\eta = 0.10$	0.56	0.56	0.08	0.51	
EXP4	$\eta = 0.20$	0.62	0.56	0.07	0.54	
EAI 4	$\eta = 0.40$	0.67	0.51	0.07	0.56	
	$\eta = 0.60$	0.69	0.54	0.06	0.57	
	$\eta = 0.80$	0.7	0.52	0.05	0.57	
D-UCB	$\gamma = 0.89$	0.39	0.42	0.4	0.4	
	$\gamma = 0.92$	0.42	0.45	0.42	0.43	
	$\gamma = 0.97$	0.47	0.55	0.49	0.5	
	$\gamma = 0.99$	0.58	0.74	0.55	0.64	
	$\gamma = 0.995$	0.61	0.84	0.33	0.67	
	$\gamma = 0.997$	0.64	0.91	0.03	0.68	

Table 1: XXY: Convergence Rates per Context

Future Work: -XXX?

⁻ The inertia of UCB-Tuned is shown in Context 3. - DUCB provides an tradeoff between committing and overcoming inertia (better UCB-Tuned). - UCB-Tuned is bad for longer periods of time sequentially which can have larger drawbacks than the intermittent inaccuracies of a non-stationary policy. Reward graph for the best and the worst in each context: UCBTN, DUCB99, eGreedy0.7, DUCB89, Random

	Hyper	Context A	Context B	Context A	Weighted
Policy	para-	(n = 0 -	(n = 22 -	(n = 134 -	Average
	meter	20)	132)	154)	Average
Random	n/a	0.34	0.33	0.34	0.33
EXP3FH	n/a	0.37	0.6	0.03	0.47
UCBTN	n/a	0.5	0.81	0.25	0.67
egreedy	$\epsilon = 0.3$	0.6	0.47	0.2	0.44
	$\epsilon = 0.4$	0.52	0.45	0.22	0.42
	$\epsilon = 0.5$	0.51	0.41	0.22	0.39
	$\epsilon = 0.6$	0.48	0.38	0.24	0.37
	$\epsilon = 0.7$	0.47	0.36	0.25	0.36
	$\epsilon = 0.8$	0.46	0.34	0.27	0.35
EXP4	$\eta = 0.04$	0.41	0.67	0.12	0.54
	$\eta = 0.10$	0.44	0.77	0.02	0.59
	$\eta = 0.20$	0.4	0.8	0.02	0.61
	$\eta = 0.40$	0.44	0.82	0.03	0.62
	$\eta = 0.60$	0.46	0.81	0.01	0.62
	$\eta = 0.80$	0.5	0.84	0.03	0.65
DUCB	$\gamma = 0.89$	0.4	0.43	0.4	0.42
	$\gamma = 0.92$	0.4	0.45	0.43	0.44
	$\gamma = 0.97$	0.45	0.56	0.52	0.53
	$\gamma = 0.99$	0.49	0.68	0.55	0.63
	$\gamma = 0.995$	0.5	0.73	0.43	0.65
	$\gamma = 0.997$	0.5	0.76	0.35	0.65

Table 2: YXY

	Hyper	Context A	Context B	Context A	Weighted
Policy	para-	(n = 0 -	(n = 112 -	(n = 134 -	Average
	meter	110)	132)	154)	
Random	n/a	0.33	0.33	0.3	0.32
EXP3FH	n/a	0.54	0.22	0.62	0.52
UCBTN	n/a	0.69	0.80	0.31	0.64
egreedy	$\epsilon = 0.3$	0.75	0.09	0.81	0.7
	$\epsilon = 0.4$	0.72	0.11	0.72	0.67
	$\epsilon = 0.5$	0.64	0.18	0.68	0.6
	$\epsilon = 0.6$	0.59	0.17	0.57	0.54
	$\epsilon = 0.7$	0.52	0.24	0.53	0.5
	$\epsilon = 0.8$	0.45	0.27	0.46	0.43
EXP4	$\eta = 0.04$	0.47	0.43	0.5	0.47
	$\eta = 0.10$	0.55	0.33	0.6	0.53
	$\eta = 0.20$	0.63	0.25	0.66	0.6
	$\eta = 0.40$	0.65	0.24	0.63	0.61
	$\eta = 0.60$	0.67	0.21	0.73	0.64
	$\eta = 0.80$	0.7	0.21	0.67	0.65
DUCB	$\gamma = 0.89$	0.39	0.38	0.41	0.39
	$\gamma = 0.92$	0.42	0.46	0.42	0.42
	$\gamma = 0.97$	0.48	0.65	0.48	0.5
	$\gamma = 0.99$	0.59	0.77	0.31	0.56
	$\gamma = 0.995$	0.64	0.85	0.25	0.6
	$\gamma = 0.997$	0.65	0.85	0.29	0.62

Table 3: XYY

- UCBTuned is stressed more because it doesn't have time to converge in contexts 2 and 3. However, we see the (accidental but positive) effect of inertia in context 3. Discount UCB quite literally benefits from a direct reduction in inertia by forgetting some values from context 1 which UCB-Tuned cannot.
 - There seems to be a sweet spot for the tuning of DUCB