Automated Deduction Compendium SS2023

Ida Hönigmann

May 7, 2023

1 Introduction, SAT Solving

1.0.1 Proposition, Formulas

Def (Proposition). Proposition is a statement that can be either true or false.

Def (Propositional formula, Atom, Connective). Atoms are boolean variables (e.g. p,q).

- 1. Atoms are formulas.
- 2. \top , \perp are formulas.
- 3. If A is a formula, then $\neg A$ is a formula.
- 4. If $A_1,...,A_n$ are formulas, then $(A_1 \wedge ... \wedge A_n)$ and $(A_1 \vee ... \vee A_n)$ are formulas.
- 5. If A and B are formulas, then $A \rightarrow B$ and $A \leftrightarrow B$ are formulas.

The symbols $\top, \bot, \land, \lor, \neg, \rightarrow, \leftrightarrow$ are called logical connectives.

1.0.2 Precedence

Connective	Name	Precedence
Т	verum	
\perp	falsum	
\neg	negation	5
\wedge	conjunction	4
V	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

1.0.3 Boolean Values, Interpretation

Def (Boolean values, Interpretation). There are two boolean vales: true (1) and false (0). An interpretation for a set P of boolean variables is a mapping $I: P \to \{0,1\}$.

1.0.4 Interpreting formulas

- 1. $I(\top) = 1$ and $I(\bot) = 0$
- 2. $I(A_1 \wedge ... \wedge A_n) = 1$ iff $I(A_i) = 1$ for all i
- 3. $I(A_1 \vee ... \vee A_n) = 1$ iff $I(A_i) = 1$ for some i
- 4. $I(\neg A) = 1$ iff I(A) = 0
- 5. $I(A_1 \to A_2) = 1$ iff $I(A_1) = 0$ or $I(A_2) = 1$
- 6. $I(A_1 \leftrightarrow A_2) = 1 \text{ iff } I(A_1) = I(A_2)$

1.0.5 Safisfiable, Valid, Model

```
Def (Satisfiable, Model, Valid). If I(A) = 1 then I satisfies A and I is a model of A, denoted by I \models A. A is satisfiable if some interpretation is a model of A. A is valid if every interpretation is a model of A. A and B are equivalent, denoted by A \equiv B, if they have the same models.
```

1.0.6 Connection valid, satisfiable

- 1. A is valid iff $\neg A$ is unsatisfiable.
- 2. A is satisfiable iff $\neg A$ is not valid.

1.0.7 Equivalent replacement

Def (Equivalent replacement). A[B] is a formula A with a fixed occurrence of subformula B. A[B'] is the formula A where every occurrence of B is replaced by B'.

```
Lemma 1 (Equivalent Replacement). Let I be an interpretation and I \models A_1 \leftrightarrow A_2. Then I \models B[A_1] \leftrightarrow B[A_2].
Let A_1 \equiv A_2. Then B[A_1] \equiv B[A_2].
```

1.0.8 Evaluating a formula

```
Algorithm 1. procedure evaluate (G, I) input: formula G, interpretation I output: the boolean value I(G) begin for all atoms p occurring in G if I models p then replace all occurrences of p in G by 1; else replace all occurrences of p in G by 0; rewrite G into a normal form using the rewrite rules if G=1 then return 1 else return 0 end
```

- 2 Splitting, Polarities
- 3 CNF, DPLL, MiniSat
- 4 Random SAT, Horn clauses
- 5 First-Order Logic, Theories
- 6 SMT, Theory of Equality, DPLL(T)
- 7 Theory of Arrays, Theory Combination, Nelson-Oppen, Z3
- 8 First-Order Theorem Proving, TPTP, Inference Systems
- 9 Selection functions, Saturation, Fairness and Redundancy
- 10 Redundancy, First-Order Reasoning with Equality
- 11 Ground Superposition, Term Orderings
- 12 Unification and Lifting
- 13 Non-Ground Superposition