Przykład rozwiązań zadania: "sprawdź czy coś jest tautologią w logice pierwszego rzędu"

Bartosz Bednarczyk

Instytut Informatyki Uniwersytetu Wrocławskiego bartosz.bednarczyk@cs.uni.wroc.pl

Aby pokazać, że formuła ψ logiki pierwszego rzędu nie jest tautologią, należy wskazać przykład struktury \mathfrak{A} , składającej się ze zbioru A zwanego uniwersum oraz interpretacji symboli używanych w formułach, w której ψ nie jest spełniona. Fakt, że struktura \mathfrak{A} spełnia ψ zapisujemy $\mathfrak{A} \models \psi$.

 \triangleright Zadanie. Pokaż, że formuła $\psi \stackrel{\text{def}}{:=} (\exists x \ \varphi) \Leftrightarrow (\exists x \ \neg \varphi)$ nie jest tautologią.

Dowód. Niech $\mathfrak A$ będzie strukturą o uniwersum $A=\{1\}$, a symbol = będzie interpretowany jako równość. Weźmy $\varphi(x) \stackrel{\text{def}}{:=} x=1$. Wtedy oczywiście $\mathfrak A \models \exists x \ \varphi$ (czytaj: struktura $\mathfrak A$ spełnia formułę $\exists x \ \varphi$), gdyż znajdziemy takiego $x \in A$ (np. x=1), że x=1. Natomiast formuła $\exists x \ \neg \varphi$, czyli $\exists x \ x \ne 1$, nie jest spełniona w $\mathfrak A$ (zapisujemy: $\mathfrak A \not\models \exists x \ x \ne 1$). Zatem ψ nie jest tautologią. \blacktriangleleft

 \triangleright Zadanie. Pokaż, że formuła $\psi \stackrel{\text{def}}{:=} (\exists x \varphi_1) \land (\exists x \varphi_2) \Rightarrow \exists x (\varphi_1 \land \varphi_2)$ nie jest tautologią.

Dowód. Podobnie jak w poprzednim zadaniu weźmy strukturę $\mathfrak A$ taką, że jej uniwersum A jest równe $\mathbb N_+$ (uniwersum to liczby naturalne dodatnie) oraz symbole =, + są interpretowane jako równość liczb naturalnych oraz ich suma. Weźmy formułę $\varphi_1(x) \stackrel{\text{def}}{:=} \exists y \ x = y + y$, oraz formułę $\varphi_2(x) \stackrel{\text{def}}{:=} \neg \exists y \ x = y + y$. Zauważmy, że $\varphi_1(x)$ mówi że x jest parzysty, a $\varphi_2(x)$ mówi, że x jest nieparzysty.

Wtedy $\mathfrak{A}\models (\exists x\ \varphi_1)$, bo np. liczba $2\in A$ jest parzysta, więc spełnia φ_1 . Zauważmy, że \mathfrak{A} spełnia również formułę $(\exists x\ \varphi_2)$, bo np. liczba $3\in A$ jest nieparzysta, więc spełnia φ_2 . Ale nie istnieje liczba naturalna dodatnia, która jest jednocześnie parzysta i nieparzysta. Zatem $\mathfrak{A}\not\models\exists x\ (\varphi_1\land\varphi_2)$. Więc formuła ψ z treści zadania nie jest tautologią.

Innym, równie dobrym rozwiązaniem by było wzięcie $\mathfrak B$ o uniwersum $B=\{1,2\}$ z symbolem = interpretowanym jako równość i formuły $\varphi_1(x)\stackrel{\text{def}}{:=} x=1$ oraz $\varphi_2(x)\stackrel{\text{def}}{:=} x=2$. Wtedy $\mathfrak B\models\exists x\ \varphi_1$, bo istnieje taki $x\in B$ (np. x=1 spełniający φ_1). Analogicznie, istnieje $x\in B$ (np. x=2) spełniający φ_2 , więc $\mathfrak B\models\exists x\ \varphi_2$. Ale nie ma takiego $x\in B$, który jednocześnie spełniałby $\varphi_1(x)$ oraz $\varphi_2(x)$, więc $\mathfrak B\not\models\exists x\ (\varphi_1\wedge\varphi_2)$, więc ψ nie jest tautologią.

Rozwiążmy również zadanie, mówiące że dana formuła jest tautologią.

ightharpoonup Zadanie. Pokaż, że formuła $\psi \stackrel{\text{\tiny def}}{:=} (\exists x \; p(x)) \Rightarrow (\neg \forall x \; \neg p(x))$ jest tautologią.

Dowód. Jedną z możliwości jest przeprowadzenie dowodu w systemie naturalnej dedukcji.

2 Przykład rozwiązań zadania: "sprawdź czy coś jest tautologią w logice pierwszego rzędu"

Inną możliwością jest przeprowadzenie dowodu bezpośrednio. Weźmy dowolną strukturę $\mathfrak A$ i pokażmy, że spełniona jest w niej formuła $(\exists x\ p(x)) \Rightarrow (\neg \forall x\ \neg p(x))$. Aby to zrobić, załóżmy że $\mathfrak A \models \exists x\ p(x)$ i pokażmy, że $\mathfrak A \models (\neg \forall x\ \neg p(x))$. Załóżmy nie wprost, że tak nie jest, czyli że $\mathfrak A \models \forall x\ \neg p(x)$. Skoro $\mathfrak A \models \exists x\ p(x)$, to istnieje takie $x \in A$ (nazwijmy je x_0), takie że x_0 spełnia p (inaczej: $\mathfrak A \models p(x_0)$). Ponieważ zachodzi $\mathfrak A \models \forall x\ \neg p(x)$ to dla dowolnego $x \in A$ spełnione jest $\neg p(x)$. Czyli dla x_0 również, co oznacza że $\mathfrak A \models p(x_0)$ oraz $\mathfrak A \models \neg p(x_0)$. Sprzeczność. Zatem zachodzi $\mathfrak A \models (\neg \forall x\ \neg p(x))$, co oznacza że $\mathfrak A \models \psi$. Z dowolności $\mathfrak A$ dostajemy, że ψ jest tautologią.

4