Voronoi decompositions of flat surfaces and origamis

熊谷 駿 (東北大学 (情報) →秋~ 九州大学 IMI)

リーマン面に関連する位相幾何学 (2023/8/23, 東京大学)

1	Introduction/Background	2
1.1	Teichmüller space	3
1.2	Flat surface	4
1.3	Category	6
2	Voronoi decomposition and Edwards-Sanderson-Schmidt method	9
3	Main result	14
3.1	Origami and Delaunay triangulation	14
3.2	Edwards-Sanderson-Schmidt method in terms of category	19

1 Introduction/Background

Main theme: calculation of Veech groups and its calculation process

The **Veech group** of a flat surface is the group of its *affine self-similarity*.

Strategy

- ▷ tiling-based (parallelogram decomposition, cut-and-paste construction; forklore result / K. [9] '23)
- \triangleright covering-based (monodromy, Aut($\pi_1(R^*)$)-action; Schmithüsen '04, Freidinger '08 Shinomiya '12)
- ▷ singularity-based (Delaunay/Voronoi; Bowman '10, Mukarel '17, Edwards-Sanderson-Schmidt [4] '22)

Main result: for origamis (square-tiled surfaces)

- ▶ Relationship among covering, singularity, and modification of tiling
- > Categorical description of singularity-based method

1 Introduction/Background

Main theme: calculation of Veech groups and its calculation process

The **Veech group** of a flat surface is the group of its *affine self-similarity*.

Strategy:

- ▷ tiling-based (parallelogram decomposition, cut-and-paste construction; forklore result / K. [9] '23)
- \rhd covering-based (monodromy, $\mathrm{Aut}(\pi_1(\check{R}^*))\text{-action};$ Schmithüsen '04, Freidinger '08 Shinomiya '12)
- \triangleright singularity-based (Delaunay/Voronoi; Bowman '10, Mukarel '17, Edwards-Sanderson-Schmidt [4] '22)

Main result: for origamis (square-tiled surfaces)

- $\rhd \ \text{Relationship among} \ \textit{covering, singularity, and modification of tiling}$
- ▷ Categorical description of singularity-based method

1.1 Teichmüller space

Let R_{\bullet} be a Riemann surface of type (g, n) with 2g - 2 + n > 0. (This kind of surface is mainly considered in this talk.)

Definition 1 An orientation-preserving homeomorphism $f: R_0 \to R$ is called a **marked Riemann surface** over R_0 . Two marked Riemann surfaces f_1, f_2 are called **Teichmüller equivalent** $f_1 \sim f_2$ if there exists a biholomorphism $h: R_1 \to R_2$ homotopic to the map $f_2 \circ f_1^{-1}: R_1 \to R_2$.

For each base point R_0 of type (g, n), the **Teichmüller space** $T(R_0) = \{f : R_0 \to R : \text{ marked Riemann surface}\}/_{\sim}$ is known to be a simply-connected complex manifold of dimension (3g - 3 + n) (Ahlfors-Bers). The **mapping class group** $MCG(R_0) = \{\gamma : R_0 \to R_0 : \text{ orientation preserving homeomorphism}\}/_{\text{homotopy}}$ acts discontinuously on $T(R_0)$ by the pullback

$$[\gamma]^* : [f] \mapsto [f \circ \gamma^{-1}], \ [\gamma] \in MCG(R_0), \ [f] \in T(R_0).$$

The moduli space $M(R_0) = \{\text{Riemann surface homeomorphic to } R_0\}/_{\text{biholo.}}$ is the quotient orbifold $T(R_0)/MCG(R_0)$ of dimension (3g-3+n).

1.2 Flat surface

Definition 2 A flat surface is a G-manifold (i.e. surface with G-atlas) where $G = \operatorname{HTrans}(\mathbb{C}) := \{z \mapsto \pm z + c \mid c \in \mathbb{C}\}$ is the group of half-translations on the plane. A flat surface is called abelian if it admits a $\{z \mapsto z + c \mid c \in \mathbb{C}\}$ -subatlas.

For a Riemann surface R and a holomorphic quadratic differential $\phi = \phi(z)dz^2$ on R, we have the ϕ -coordinates around a point $p_0 \in R^* := R \setminus \text{Zero}(\phi)$ locally defined by

$$p \mapsto \pm z_{\phi}(p) = \pm \int_{p_0}^p \sqrt{\phi(z)} dz.$$

The ϕ -coordinates form a HTrans(\mathbb{C})-atlas on \mathbb{R}^* . We call it a flat surface (\mathbb{R}, ϕ) .

Consider the flat metric on (R^*, ϕ) given by pullback of the Euclidian metric via the ϕ -coordinates. From now on, we assume the finite area $\|\phi\| := \int_R |\phi| < \infty$, and then the HTrans(C)-atlas uniquely extends to the completion \bar{R} in such a way that a transition map arround $p \in \mathrm{Sing}(R, \phi) := \mathrm{Zero}(\phi) \cup \partial R$ is of the form $z \mapsto \frac{2}{k+2} z^{\frac{k+2}{2}}$, $k = \mathrm{ord}_p(\phi) \ge -1$. In particular, p is a cone point of angle $(k+2)\pi$.

Definition 3 An **affine deformation** is an orientation-preserving homeomorphism $F:(R,\phi)\to(S,\psi)$ that is locally affine, i.e. for some $a,b,c,d,e,f\in\mathbb{R}$ a local representation is of the form

$$z_{\psi} \circ F \circ z_{\phi}^{-1}(x+iy) = (ax+cy+e) + i(bx+dy+f), \ \forall x+iy \in \operatorname{Im} z_{\phi}.$$

The derivative $D_F = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in PGL_2(\mathbb{R})$ is a $\operatorname{HTrans}(\mathbb{C})$ -invariant such that $\|\psi\| = |D_F| \|\phi\|$. So we have $D_F \in PSL_2(\mathbb{R})$ for a self-deformation $F: (R, \phi) \to (R, \phi)$.

1.2 Flat surface

Definition 2 A flat surface is a G-manifold (i.e. surface with G-atlas) where $G = \operatorname{HTrans}(\mathbb{C}) := \{z \mapsto \pm z + c \mid c \in \mathbb{C}\}$ is the group of half-translations on the plane. A flat surface is called abelian if it admits a $\{z \mapsto z + c \mid c \in \mathbb{C}\}$ -subatlas.

For a Riemann surface R and a holomorphic quadratic differential $\phi = \phi(z)dz^2$ on R, we have the ϕ -coordinates around a point $p_0 \in R^* := R \setminus \text{Zero}(\phi)$ locally defined by

$$p \mapsto \pm z_{\phi}(p) = \pm \int_{p_0}^p \sqrt{\phi(z)} dz.$$

The ϕ -coordinates form a HTrans(\mathbb{C})-atlas on \mathbb{R}^* . We call it a flat surface (\mathbb{R}, ϕ) .

Consider the flat metric on (R^*, ϕ) given by pullback of the Euclidean metric via the ϕ -coordinates. From now on, we assume the finite area $\|\phi\| := \int_R |\phi| < \infty$, and then the HTrans($\mathbb C$)-atlas uniquely extends to the completion $\bar R$ in such a way that a transition map arround $p \in \mathrm{Sing}(R,\phi) := \mathrm{Zero}(\phi) \cup \partial R$ is of the form $z \mapsto \frac{2}{k+2} z^{\frac{k+2}{2}}$, $k = \mathrm{ord}_p(\phi) \ge -1$. In particular, p is a cone point of angle $(k+2)\pi$.

Definition 3 An affine deformation is an orientation-preserving homeomorphism $F:(R,\phi)\to(S,\psi)$ that is locally affine, i.e. for some $a,b,c,d,e,f\in\mathbb{R}$ a local representation is of the form

$$z_{\psi} \circ F \circ z_{\phi}^{-1}(x+iy) = (ax+cy+e) + i(bx+dy+f), \ \forall x+iy \in \operatorname{Im} z_{\phi}.$$

The derivative $D_F = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in PGL_2(\mathbb{R})$ is a $\operatorname{HTrans}(\mathbb{C})$ -invariant such that $\|\psi\| = |D_F| \|\phi\|$. So we have $D_F \in PSL_2(\mathbb{R})$ for a self-deformation $F: (R, \phi) \to (R, \phi)$.

We say that a trivial $(D_F = I)$ affine deformation is a half-translation (HTrans).

Proposition 4 (Teichmüller [1]) For any $[f:R\to S]\in T(R)$, there exist $0\le k<1,\ \phi\in QD(R),\ \psi\in QD(S)$, and a representative $F=F_{[f]}\in [f]$ of Teichmüller equivalence class such that

- 1. $F:(R,\phi)\to(S,\psi)$ is an affine deformation of the form $z_{\psi}\circ F\circ z_{\phi}^{-1}(z)=\frac{z+k\bar{z}}{1-k}$,
- 2. F attains the minimum of $K(h) := \frac{1 + \|h_{\bar{z}}/h_z\|_{\infty}}{1 \|h_{\bar{z}}/h_z\|_{\infty}}$, $h \in [f]$: weakly x, y-differentiable (ACL), where $K(F) = \frac{1 + k}{1 k}$.

Furthermore, an extremal deformation F in the sense of 2. is unique up to half-translations.

The complete **Teichmüller distance** on T(R) is defined by $d_T([f_1], [f_2]) := \frac{1}{2} \log \inf\{K(h) \mid h \in [f_2 \circ f_1^{-1}] : ACL\}$ for $[f_1], [f_2] \in T(R)$. For each fixed flat surface (R, ϕ) , the following **Teichmüller embedding** ι_{ϕ} is an isometric embedding by Proposition 4.

$$\iota_{\phi}: \mathbb{H} \to T(R): t \mapsto [f_t] \ s.t. \ f_t^* \phi = \operatorname{Re}(\phi) + t\operatorname{Im}(\phi)$$

Proposition 5 (Earle-Gardiner [3]) A mapping class $[\gamma] \in MCG(R)$ satisfies that $[\gamma]^*(\iota_{\phi}(\mathbb{H})) \cap \iota_{\phi}(\mathbb{H}) \neq \emptyset$ if and only if $F_{[\gamma]}$ is an affine self-deformation of (R, ϕ) . Furthermore, such a $[\gamma]$ acts on \mathbb{H} by

$$F_{[\gamma]}^* \iota_{\phi}(t) = \iota_{\phi} \left(\frac{-at+b}{ct-d} \right), \ \forall t \in \mathbb{H}, \ D_{F_{[\gamma]}} = \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \in PSL(2, \mathbb{R}).$$

The group $\Gamma(R,\phi) := \{D_F \mid F : (R,\phi) \xrightarrow{\text{affine}} (R,\phi)\} < PSL(2,\mathbb{R})$ is called the **Veech group** of (R,ϕ) . We have an embedded disk-uniformized model $\mathbb{L}/\Gamma(R,\phi) \cong \operatorname{proj}(\iota_{\phi}(\mathbb{H})) \hookrightarrow M(R)$ of the affine deformations of (R,ϕ) .

We say that a trivial $(D_F = I)$ affine deformation is a half-translation (HTrans).

Proposition 4 (Teichmüller [1]) For any $[f:R\to S]\in T(R)$, there exist $0\le k<1,\ \phi\in QD(R),\ \psi\in QD(S)$, and a representative $F=F_{[f]}\in [f]$ of Teichmüller equivalence class such that

- 1. $F:(R,\phi)\to(S,\psi)$ is an affine deformation of the form $z_{\psi}\circ F\circ z_{\phi}^{-1}(z)=\frac{z+k\bar{z}}{1-k}$,
- 2. F attains the minimum of $K(h) := \frac{1 + \|h_{\bar{z}}/h_z\|_{\infty}}{1 \|h_{\bar{z}}/h_z\|_{\infty}}, h \in [f]$: weakly x, y-differentiable (ACL), where $K(F) = \frac{1 + k}{1 k}$.

Furthermore, an extremal deformation F in the sense of 2. is unique up to half-translations.

The complete **Teichmüller distance** on T(R) is defined by $d_T([f_1], [f_2]) := \frac{1}{2} \log \inf\{K(h) \mid h \in [f_2 \circ f_1^{-1}] : ACL\}$ for $[f_1], [f_2] \in T(R)$. For each fixed flat surface (R, ϕ) , the following **Teichmüller embedding** ι_{ϕ} is an isometric embedding by Proposition 4.

$$\iota_{\phi}: \mathbb{H} \to T(R): t \mapsto [f_t] \text{ s.t. } f_t^* \phi = \text{Re}(\phi) + t \text{Im}(\phi)$$

Proposition 5 (Earle-Gardiner [3]) A mapping class $[\gamma] \in MCG(R)$ satisfies that $[\gamma]^*(\iota_{\phi}(\mathbb{H})) \cap \iota_{\phi}(\mathbb{H}) \neq \emptyset$ if and only if $F_{[\gamma]}$ is an affine self-deformation of (R, ϕ) . Furthermore, such a $[\gamma]$ acts on \mathbb{H} by

$$F_{[\gamma]}^*\iota_{\phi}(t) = \iota_{\phi}\left(\frac{-at+b}{ct-d}\right), \ \forall t \in \mathbb{H}, \ D_{F_{[\gamma]}} = \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right] \in PSL(2,\mathbb{R}).$$

The group $\Gamma(R,\phi) := \{D_F \mid F : (R,\phi) \xrightarrow{\text{affine}} (R,\phi)\} < PSL(2,\mathbb{R}) \text{ is called the } \mathbf{Veech group} \text{ of } (R,\phi).$ We have an embedded disk-uniformized model $\mathbb{L}/\Gamma(R,\phi) \cong \operatorname{proj}(\iota_{\phi}(\mathbb{H})) \hookrightarrow M(R)$ of the affine deformations of (R,ϕ) .

1.3 Category

A composable concept is regarded as an **arrow** connecting two **objects**. The system of compositions of arrows with certain axioms (identity law, associative law) is called a **category**. A **functor** is a correspondence between two categories C_1, C_2

$$F = (F_{\mathcal{O}} : \mathrm{Obj}_{C_1} \to \mathrm{Obj}_{C_2}, \ F_{\mathcal{A}} : \mathrm{Arr}_{C_1} \to \mathrm{Arr}_{C_2})$$

 $\text{compatible with} \begin{cases} \text{domains and codomains} &: F_{\mathcal{A}}(o_1 \xrightarrow{f} o_2) = (F_{\mathcal{O}}(o_1) \xrightarrow{F_{\mathcal{A}}(f)} F_{\mathcal{O}}(o_2)), \\ \text{compositions} &: F_{\mathcal{A}}(o_1 \xrightarrow{f_1} o_2 \xrightarrow{f_2} o_3) = (F_{\mathcal{O}}(o_1) \xrightarrow{F_{\mathcal{A}}(f_1)} F_{\mathcal{O}}(o_2) \xrightarrow{F_{\mathcal{A}}(f_2)} F_{\mathcal{O}}(o_3)), \text{ and} \\ \text{the identity} &: F_{\mathcal{A}}(o \xrightarrow{1_o} o) = (F_{\mathcal{O}}(o) \xrightarrow{1_{F_{\mathcal{O}}(o)}} F_{\mathcal{O}}(o)). \end{cases}$

Example A (a group) A group is a category such that $Obj = \{\bullet\}$ and all arrows are invertible.

Example B (category of groups) Obj = $\{G : \text{group}\}\$, Arr = $\{(G_1 \xrightarrow{f} G_2) : \text{group homomorphism}\}\$.

1.3 Category

A composable concept is regarded as an **arrow** connecting two **objects**. The system of compositions of arrows with certain axioms (identity law, associative law) is called a **category**. A **functor** is a correspondence between two categories C_1, C_2

$$F = (F_{\mathcal{O}} : \mathrm{Obj}_{C_1} \to \mathrm{Obj}_{C_2}, \ F_{\mathcal{A}} : \mathrm{Arr}_{C_1} \to \mathrm{Arr}_{C_2})$$

Example A (a group) A group is a category such that $Obj = \{\bullet\}$ and all arrows are invertible.

Example B (category of groups) Obj = $\{G : \text{group}\}$, Arr = $\{(G_1 \xrightarrow{f} G_2) : \text{group homomorphism}\}$.

Example C (Teichmüller vs Flat) We say that a 2-arrow connects two arrows (respecting their dom. and cod.).

Teich

$$[\gamma] \bigcap_{f \in \gamma^{-1}} R \xrightarrow{\downarrow [f]^*} S \longrightarrow \cdots$$
 {obj: Riemann surfaces/biholo.
arr: ori. pres. homeo./homotopy
arr²: pullback of MCG

 \triangleright The set of objects associated to R is M(R). We have Arr(R, -) = T(R) and $Arr^2([f], -) = Mod(dom([f]))$.

Flat

$$(R, \phi) \xrightarrow{F_{[f]}} (S, \psi) \longrightarrow \cdots$$
 {obj: Flat surfaces/HTrans. arr: affine deformations arr²: Teichmüller's theorem \circ pullback of MCG $(R, \phi') \xrightarrow{F_{[f \circ \gamma^{-1}]}} (S, \psi')$

▷ The forgetful functor $\underline{Flat} \to \underline{Teich} : (R, \phi) \mapsto R$ embeds all arrows but rotations. For each fixed (R, ϕ) , it induces an embedding ι_{ϕ} of $\mathbb{H} = \{_{\text{HTrans.}} \setminus \text{affine deformations}/_{\text{rotations}} \}$ into T(R).

$$\begin{array}{cccc}
& \iota_{\phi}(\mathbb{H}) & & F_{[\gamma]} \\
& & & \downarrow & \downarrow \\
(R, \phi) & & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \uparrow \\
& & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow &$$

As in the examples above, a category with all arrows invertible is called a groupoid

Example C (Teichmüller vs Flat) We say that a 2-arrow connects two arrows (respecting their dom. and cod.).

Teich

$$[\gamma] \bigcap_{f \in \gamma^{-1}} R \xrightarrow{\downarrow [f] \xrightarrow{\downarrow} S} S \longrightarrow \cdots$$
 {obj: Riemann surfaces/biholo.
arr: ori. pres. homeo./homotopy
arr²: pullback of MCG

ightharpoonup The set of objects associated to R is M(R). We have $\operatorname{Arr}(R,-)=T(R)$ and $\operatorname{Arr}^2([f],-)=\operatorname{Mod}(\operatorname{dom}([f]))$.

Flat

$$(R,\phi) \xrightarrow[F_{[f]}]{\psi} (S,\psi) \longrightarrow \cdots \begin{cases} \text{obj: Flat surfaces/}_{\text{HTrans.}} \\ \text{arr: affine deformations} \\ \text{arr}^2 : \text{Teichmüller's theorem } \circ \text{ pullback of MCG} \end{cases}$$

▷ The forgetful functor <u>Flat</u> \rightarrow <u>Teich</u> : $(R, \phi) \mapsto R$ embeds all arrows but rotations. For each fixed (R, ϕ) , it induces an embedding ι_{ϕ} of $\mathbb{H} = \{_{\text{HTrans.}} \setminus \text{affine deformations}/_{\text{rotations}} \}$ into T(R).

$$(R,\phi) \xrightarrow{f_{[\gamma]}} (R_t,\phi_t) \xrightarrow{f} (R_t,\phi_t) \longrightarrow \cdots \begin{cases} \text{obj: Flat surfaces} \\ \text{arr: }_{\text{HTrans.}} \setminus \text{affine deformation}/_{\text{rotation}} \\ \text{arr}^2 : \text{ pullback of } \text{Arr}((R,\phi),(R,\phi)) \\ \text{ = M\"obius transformation of } \Gamma(R,\phi)^* \end{cases}$$

As in the examples above, a category with all arrows invertible is called a **groupoid**.

The GAGA theorem [8] implies $\underline{\mathbf{Riemann}}$ { obj: cpt. Riemann surfaces arr: holomorphic coverings } $\sim \underline{\mathbf{Curve}}$ { obj: nonsing. proj. curves arr: rational maps }.

Arrows of **Teich** (=higher arrows of **Riemann**) are understood as follows.

arises from a covering construction up to pre-/post- compositions of MCGs. It is given by a map

$$h^*: T(R) \to T(\hat{R}): [R \xrightarrow{f} S] \mapsto [\hat{R} \xrightarrow{\hat{f}} \hat{S}] \ s.t. \ (\hat{S} \xrightarrow{\hat{f}^{-1}} \hat{R} \xrightarrow{h} R \xrightarrow{f} S): \text{holomorphic}$$

bianalytically embedded into the set of stability conditions of the Fukaya category of (R, f, ϕ) .

Surface	Triangulated category
mapping class group	group of autoequivalences
simple curve c	spherical object C
intersection number $i(c_1, c_2)$	$\dim \operatorname{Arr}^*(C_1, C_2)$
flat metric μ	stability condition σ
μ -geodesic	σ -semistable object
$\operatorname{length}_{\mu}(c)$	$\operatorname{mass}_{\sigma}(C)$

The GAGA theorem [8] implies
$$\underline{\mathbf{Riemann}}$$
 $\left\{ \begin{array}{l} \mathrm{obj:\ cpt.\ Riemann\ surfaces} \\ \mathrm{arr:\ holomorphic\ coverings} \end{array} \right\} \sim \underline{\mathbf{Curve}} \left\{ \begin{array}{l} \mathrm{obj:\ nonsing.\ proj.\ curves} \\ \mathrm{arr:\ rational\ maps} \end{array} \right\}.$

Arrows of <u>Teich</u> (=higher arrows of <u>Riemann</u>) are understood as follows.

Proposition A (Benirschke-Serván [15], 2023) In case $2g - 2 + n \ge 3$, any d_T -isometric embedding $T(R) \hookrightarrow T(\hat{R})$ arises from a **covering construction** up to pre-/post- compositions of MCGs. It is given by a map

$$h^*: T(R) \to T(\hat{R}): [R \xrightarrow{f} S] \mapsto [\hat{R} \xrightarrow{\hat{f}} \hat{S}] \text{ s.t. } (\hat{S} \xrightarrow{\hat{f}^{-1}} \hat{R} \xrightarrow{h} R \xrightarrow{f} S): \text{holomorphic}$$

for some holomorphic covering $h: \hat{R} \to R$ of totally marked surfaces $(\partial R \subset \operatorname{Crit}(h), \, \partial \hat{R} = h^{-1}(\partial R))$, in combination with forgetting marked points $\left(T(S \setminus B) \xrightarrow{h^*} T(\hat{S} \setminus h^{-1}(B))\right) \mapsto \left(T(S) \xrightarrow{h_F^*} T(\hat{S})\right)$.

Pro [15] F. Benirschke, C. A. Serván: Isometric embeddings of Teichmüller spaces are covering constructions. arXiv.2305.04153, bian 2023.

Surface	Triangulated category
mapping class group	group of autoequivalences
simple curve c	spherical object C
intersection number $i(c_1, c_2)$	$\dim Arr^*(C_1, C_2)$
flat metric μ	stability condition σ
μ -geodesic	σ -semistable object
$length_{\mu}(c)$	$\operatorname{mass}_{\sigma}(C)$

Table 1 (Heng [16]) stability condition theory: categorical version of Teichmüller theory

The GAGA theorem [8] implies
$$\underline{\mathbf{Riemann}}$$
 $\left\{ \begin{array}{l} \mathrm{obj:\ cpt.\ Riemann\ surfaces} \\ \mathrm{arr:\ holomorphic\ coverings} \end{array} \right\} \sim \underline{\mathbf{Curve}} \left\{ \begin{array}{l} \mathrm{obj:\ nonsing.\ proj.\ curves} \\ \mathrm{arr:\ rational\ maps} \end{array} \right\}.$

Arrows of <u>Teich</u> (=higher arrows of <u>Riemann</u>) are understood as follows.

Proposition A (Benirschke-Serván [15], 2023) In case $2g - 2 + n \ge 3$, any d_T -isometric embedding $T(R) \hookrightarrow T(\hat{R})$ arises from a **covering construction** up to pre-/post- compositions of MCGs. It is given by a map

 $b^* \cdot T(D) = T(\hat{D}) \cdot [D^{-f}, S] + [\hat{D}^{-\hat{f}}, \hat{S}] + [\hat{S}^{-\hat{f}^{-1}}, \hat{D}^{-h}, D^{-f}, S] + \text{belomorphic}$

- [16] E. X. C. Heng: Categorification and Dynamics in Generalised Braid Groups, PhD thesis, Australian National University, 2023.
- [17] F. Haiden, L. Katzarkov, M. Kontsevich: Flat surfaces and stability structures. Publ. Math. IHES 126, 247–318 (2017).

Proposition B (Haiden-Katzarkov-Kontsevich [17], 2017) The moduli space of marked flat surfaces $M(R, f, \phi)$ is bianalytically embedded into the set of stability conditions of the Fukaya category of (R, f, ϕ) .

Surface	Triangulated category
mapping class group	group of autoequivalences
simple curve c	spherical object C
intersection number $i(c_1, c_2)$	$\dim \operatorname{Arr}^*(C_1, C_2)$
flat metric μ	stability condition σ
μ -geodesic	σ -semistable object
$\operatorname{length}_{\mu}(c)$	$\operatorname{mass}_{\sigma}(C)$

Table 1 (Heng [16]) stability condition theory: categorical version of Teichmüller theory

2 Voronoi decomposition and Edwards-Sanderson-Schmidt method

Definition 6 We denote by Q_g the set of flat surfaces of genus g. We denote by \mathcal{A}_g (resp. $\mathcal{Q}_g := Q_g \setminus \mathcal{A}_g$) the subset of abelian (resp. non-abelian) flat surfaces in Q_g . For $\mathcal{H} = Q, \mathcal{A}, \mathcal{Q}$, the **stratum** $\mathcal{H}_g(k_1, ..., k_n) \subset \mathcal{H}$ is defined by assigning singular orders $k_1, ..., k_n$ satisfying the Riemann-Hurwitz formula $\sum k_i = 4g - 4$.

(Hubbard-Masur, Veech[5]) The stratum $A_g(k_1,...,k_n)$ is a complex (2g-1+n)-dimensional orbifold locally parametrized by the **period map**

$$\Pi(R,\omega) := ([c] \mapsto \int_c \omega) \in H^1(R, \operatorname{Sing}(R,\omega); \mathbb{C}) \cong \mathbb{C}^{2g-1+n}.$$

For each $(R, \phi) \in \mathcal{Q}_g(k_1, ..., k_n)$, an analytic continuation of $\sqrt{\phi}$ defines a **canonical double** $\pi : \hat{R} \to R$ and an abelian flat surface $(\hat{R}, \hat{\phi} = \pi^* \phi) \in \mathcal{A}_{\hat{g}}(\hat{k}_1, ..., \hat{k}_{\hat{n}})$. The Riemann-Hurwitz formula implies $2\hat{g} - 1 + \hat{n} = 4g - 3 + 2n$, and every local image of Π splits into two eigenspaces $\Pi(\mathcal{A})_{\text{local}} \oplus \Pi(\mathcal{Q})_{\text{local}} \subset \mathbb{C}^{2g-1+n} \oplus \mathbb{C}^{2g-2+n}$ w.r.t. the linear involution $\sigma : \sqrt{\phi} \mapsto -\sqrt{\phi}$. In particular, the non-abelian stratum $\mathcal{Q}_g(k_1, ..., k_n)$ is a complex (2g - 2 + n)-dimensional orbifold.

Proposition C (Haiden-Katzarkov-Kontsevich [17], 2017) Let $\mathcal{F}(R,\phi)$ be the Fukaya category of a flat surface (R,ϕ) of finite type. Then there exist a series of subcategories $(\mathcal{C}^k \subset H^0(\mathcal{F}(R,\phi)))_{k\in\mathbb{R}}$ and the "period map" $Z: K_0(\mathcal{F}(R,\phi)) \to H_1(R,\partial R,\mathbb{Z} \otimes_{\mathbb{Z}/2} \sigma)$ satisfying the axiom of a stability condition.

2 Voronoi decomposition and Edwards-Sanderson-Schmidt method

Definition 6 We denote by Q_g the set of flat surfaces of genus g. We denote by \mathcal{A}_g (resp. $\mathcal{Q}_g := Q_g \setminus \mathcal{A}_g$) the subset of abelian (resp. non-abelian) flat surfaces in Q_g . For $\mathcal{H} = Q, \mathcal{A}, \mathcal{Q}$, the **stratum** $\mathcal{H}_g(k_1, ..., k_n) \subset \mathcal{H}$ is defined by assigning singular orders $k_1, ..., k_n$ satisfying the Riemann-Hurwitz formula $\sum k_i = 4g - 4$.

(Hubbard-Masur, Veech[5]) The stratum $A_g(k_1,...,k_n)$ is a complex (2g-1+n)-dimensional orbifold locally parametrized by the **period map**

$$\Pi(R,\omega) := ([c] \mapsto \int_c \omega) \in H^1(R,\mathrm{Sing}(R,\omega);\mathbb{C}) \cong \mathbb{C}^{2g-1+n}.$$

For each $(R, \phi) \in \mathcal{Q}_g(k_1, ..., k_n)$, an analytic continuation of $\sqrt{\phi}$ defines a **canonical double** $\pi : \hat{R} \to R$ and an abelian flat surface $(\hat{R}, \hat{\phi} = \pi^* \phi) \in \mathcal{A}_{\hat{g}}(\hat{k}_1, ..., \hat{k}_{\hat{n}})$. The Riemann-Hurwitz formula implies $2\hat{g} - 1 + \hat{n} = 4g - 3 + 2n$, and every local image of Π splits into two eigenspaces $\Pi(\mathcal{A})_{\text{local}} \oplus \Pi(\mathcal{Q})_{\text{local}} \subset \mathbb{C}^{2g-1+n} \oplus \mathbb{C}^{2g-2+n}$ w.r.t. the linear involution $\sigma : \sqrt{\phi} \mapsto -\sqrt{\phi}$. In particular, the non-abelian stratum $\mathcal{Q}_g(k_1, ..., k_n)$ is a complex (2g - 2 + n)-dimensional orbifold.

Proposition C (Haiden-Katzarkov-Kontsevich [17], 2017) Let $\mathcal{F}(R,\phi)$ be the Fukaya category of a flat surface (R,ϕ) of finite type. Then there exist a series of subcategories $(\mathcal{C}^k \subset H^0(\mathcal{F}(R,\phi)))_{k\in\mathbb{R}}$ and the "period map" $Z: K_0(\mathcal{F}(R,\phi)) \to H_1(R,\partial R,\mathbb{Z} \otimes_{\mathbb{Z}/2} \sigma)$ satisfying the axiom of a stability condition.

2 Voronoi decomposition and Edwards-Sanderson-Schmidt method

Definition 6 We denote by Q_g the set of flat surfaces of genus g. We denote by \mathcal{A}_g (resp. $\mathcal{Q}_g := Q_g \setminus \mathcal{A}_g$) the subset of abelian (resp. non-abelian) flat surfaces in Q_g . For $\mathcal{H} = Q, \mathcal{A}, \mathcal{Q}$, the **stratum** $\mathcal{H}_g(k_1, ..., k_n) \subset \mathcal{H}$ is defined by assigning singular orders $k_1, ..., k_n$ satisfying the Riemann-Hurwitz formula $\sum k_i = 4g - 4$.

(Hubbard-Masur, Veech[5]) The stratum $A_g(k_1,...,k_n)$ is a complex (2g-1+n)-dimensional orbifold locally parametrized by the **period map**

$$\Pi(R,\omega) := ([c] \mapsto \int_c \omega) \in H^1(R,\mathrm{Sing}(R,\omega);\mathbb{C}) \cong \mathbb{C}^{2g-1+n}.$$

For each $(R, \phi) \in \mathcal{Q}_g(k_1, ..., k_n)$, an analytic continuation of $\sqrt{\phi}$ defines a **canonical double** $\pi : \hat{R} \to R$ and an abelian flat surface $(\hat{R}, \hat{\phi} = \pi^* \phi) \in \mathcal{A}_{\hat{g}}(\hat{k}_1, ..., \hat{k}_{\hat{n}})$. The Riemann-Hurwitz formula implies $2\hat{g} - 1 + \hat{n} = 4g - 3 + 2n$, and every local image of Π splits into two eigenspaces $\Pi(\mathcal{A})_{\text{local}} \oplus \Pi(\mathcal{Q})_{\text{local}} \subset \mathbb{C}^{2g-1+n} \oplus \mathbb{C}^{2g-2+n}$ w.r.t. the linear involution $\sigma : \sqrt{\phi} \mapsto -\sqrt{\phi}$. In particular, the non-abelian stratum $\mathcal{Q}_g(k_1, ..., k_n)$ is a complex (2g - 2 + n)-dimensional orbifold.

Proposition C (Haiden-Katzarkov-Kontsevich [17], 2017) Let $\mathcal{F}(R,\phi)$ be the Fukaya category of a flat surface (R,ϕ) of finite type. Then there exist a series of subcategories $\left(\mathcal{C}^k\subset H^0(\mathcal{F}(R,\phi))\right)_{k\in\mathbb{R}}$ and the "period map" $Z:K_0(\mathcal{F}(R,\phi))\to H_1(R,\partial R,\mathbb{Z}\otimes_{\mathbb{Z}/2}\sigma)$ satisfying the axiom of a stability condition.

[17] F. Haiden, L. Katzarkov, M. Kontsevich: Flat surfaces and stability structures. Publ. Math. IHES 126, 247–318 (2017).

Definition 7 A geodesic connecting two singularities is called a saddle connection. A geometric triangulation (i.e. all edges are geodesics) is called **Delaunay** if no circumcircle contains a vertex in its interior. Delaunay triangles sharing common circumcircle are called **degenerate**. We say that a **flip** replaces two triangles pqr, rsp by qrs, spq.

Figure 1 Delaunay triangulation and flip. Voronoi decomposition is obtained by prependicular bisectors of edges.

The **Voronoi decomposition** of a flat surface (R, ϕ) with $Sing(R, \phi) = \{p_1, ..., p_n\}$ is the cell decomposition whose 2-cells C_{p_i} , i = 1, ..., n are given by

$$C_{p_i} := \{ x \in R \mid \exists! \text{ shortest saddle connection from } x \text{ to } \operatorname{Sing}(R, \phi) \text{ with terminus } p_i \}.$$

It is dual to the Delaunay triangulation of (R, ϕ) .

Definition 7 A geodesic connecting two singularities is called a saddle connection. A geometric triangulation (i.e. all edges are geodesics) is called **Delaunay** if no circumcircle contains a vertex in its interior. Delaunay triangles sharing common circumcircle are called **degenerate**. We say that a **flip** replaces two triangles pqr, rsp by qrs, spq.

Figure 1 Delaunay triangulation and flip. Voronoi decomposition is obtained by prependicular bisectors of edges.

The **Voronoi decomposition** of a flat surface (R, ϕ) with $Sing(R, \phi) = \{p_1, ..., p_n\}$ is the cell decomposition whose 2-cells C_{p_i} , i = 1, ..., n are given by

$$C_{p_i} := \Big\{ x \in R \mid \exists ! \text{ shortest saddle connection from } x \text{ to } \operatorname{Sing}(R, \phi) \text{ with terminus } p_i \Big\}.$$

It is dual to the Delaunay triangulation of (R, ϕ) .

Definition 8 The canonical surface of the stratum $Q_g(k_1,...,k_n)$ is the infinite flat surface

$$\Delta = \Delta(k_1, ..., k_n) = \bigsqcup_{i=1}^n \Delta_i := \bigsqcup_{i=1}^n (\mathbb{C}, z^{k_i} dz^2).$$

We have $\operatorname{Htrans}(\Delta) \cong \prod_{i=1}^n C_{2(k_i+1)} \times \prod_{t=1}^\infty \operatorname{Sym}\{i \mid k_i = t\}$, where each $C_{2(k_i+1)}$ acts on Δ_i by π -rotation and each $\operatorname{Sym}\{i \mid k_i = t\}$ permutates Δ_i 's of the same degree.

Lemma 9 There exists a unque embedding $\iota = \iota_{(R,\phi)}$ of Voronoi 2-cells C_{p_i} into Δ_i modulo $\operatorname{Htrans}(\Delta)$. The embedding ι extends to any star-like region in R^* , and it follows that $(R,\phi) \cong (\bigsqcup_{i=1}^n \overline{\iota(C_{p_i})})/_{\sim}$ for a suitable edge identification \sim .

Figure 2 Voronoi decomposition and embedded image of C_{p_i} in Δ_i .

Definition 10 Fix an embedding $\iota = \iota_{(R,\phi)}$ in Lemma 9. For each oriented saddle connection $s(p_i \to p_j)$, let $\iota(s) \in \Delta_i$ be the extension of $\iota \mid_{C_{p_i}}$ along s. The inverse is denoted by $s^{-1}(p_j \to p_i)$ where $\iota(s^{-1}) \in \Delta_j$. We define

$$\begin{split} \widehat{\mathcal{M}}(R,\phi) &:= \Big\{ (\iota(s),\iota(s^{-1})) \in \Delta \times \Delta \ \big| \ s : \text{ori. saddle conn. on } (R,\phi) \Big\}, \\ \widehat{\mathcal{S}}(R,\phi) &:= \Big\{ (\iota(s),\iota(s^{-1})) \in \widehat{\mathcal{M}}(R,\phi) \ \big| \ s : \text{prep. bisector of a Voronoi 1-cell} \Big\}. \end{split}$$

The finite set $\widehat{\mathcal{S}}(R,\phi)$ is called the set of **Voronoi staples** of (R,ϕ) .

Each $(\iota(s), \iota(s^{-1})) \in \widehat{\mathcal{M}}(R, \phi)$, $s(p_1 \to p_2)$ consists of the following data modulo HTrans(Δ)-action.

Furthermore, for $\|\cdot\|_{a,d}^{\omega}\|_{\mathrm{Frob}} := \sqrt{a^{\omega} + b^{\omega} + c^{\omega} + a^{\omega}}$ and $\mathrm{Sys}(\kappa, \varphi) := \min\{\iota(s) | s : \mathrm{saddle\ conn.}\ \mathrm{of\ }(\kappa, \varphi)\}$ we have

$$\operatorname{diam}(A \cdot \widehat{\mathcal{S}}(R, \phi)) < \|A\|_{\operatorname{Frob}} \cdot \operatorname{Sys}(R, \phi). \tag{2}$$

Definition 10 Fix an embedding $\iota = \iota_{(R,\phi)}$ in Lemma 9. For each oriented saddle connection $s(p_i \to p_j)$, let $\iota(s) \in \Delta_i$ be the extension of $\iota \mid_{C_{p_i}}$ along s. The inverse is denoted by $s^{-1}(p_j \to p_i)$ where $\iota(s^{-1}) \in \Delta_j$. We define

$$\begin{split} \widehat{\mathcal{M}}(R,\phi) &:= \Big\{ (\iota(s),\iota(s^{-1})) \in \Delta \times \Delta \ \big| \ s : \text{ori. saddle conn. on } (R,\phi) \Big\}, \\ \widehat{\mathcal{S}}(R,\phi) &:= \Big\{ (\iota(s),\iota(s^{-1})) \in \widehat{\mathcal{M}}(R,\phi) \ \big| \ s : \text{prep. bisector of a Voronoi 1-cell} \Big\}. \end{split}$$

The finite set $\widehat{\mathcal{S}}(R,\phi)$ is called the set of **Voronoi staples** of (R,ϕ) .

Each $(\iota(s), \iota(s^{-1})) \in \widehat{\mathcal{M}}(R, \phi)$, $s(p_1 \to p_2)$ consists of the following data modulo HTrans(Δ)-action.

- the domain p_1 and the codomain p_2
- the passing sheets of Δ_1 and Δ_2 ; in $\mathbb{Z}/(k+2)\mathbb{Z}$
- the holonomy vector $hol(s) = \int_s \sqrt{\phi} \in \mathbb{C}$

Lemma 11 $(R_1, \phi_1), (R_2, \phi_2)$ are equal in <u>Flat</u> if and only if $\widehat{\mathcal{S}}(R_1, \phi_1), \widehat{\mathcal{S}}(R_2, \phi_2)$ are HTrans(Δ)-equivalent.

Proposition 12 (Edwards-Sanderson-Schmidt [4], 2022) A matrix $A \in PSL(2,\mathbb{R})$ belongs to $\Gamma(R,\phi)$ if and only if

$$\exists \gamma \in \operatorname{Htrans}(\Delta) \text{ s.t. } \gamma(A \cdot \widehat{\mathcal{S}}(R, \phi)) \subset \widehat{\mathcal{M}}(R, \phi). \tag{1}$$

Furthermore, for $\|\begin{bmatrix} a & b \\ c & d \end{bmatrix}\|_{\text{Frob}} := \sqrt{a^2 + b^2 + c^2 + d^2}$ and $\operatorname{Sys}(R, \phi) := \min\{l(s) | s : \text{saddle conn. of } (R, \phi)\}$ we have

$$\operatorname{diam}(A \cdot \widehat{\mathcal{S}}(R, \phi)) < ||A||_{\operatorname{Frob}} \cdot \operatorname{Sys}(R, \phi). \tag{2}$$

For each a>0, the set $\Gamma^a(R,\phi):=\{A\in PSL(2,\mathbb{R})\mid \exists \gamma\in \operatorname{Htrans}(\Delta) \text{ s.t. } \gamma(A\cdot\widehat{\mathcal{S}}(R,\phi))\subset\widehat{\mathcal{M}}(R,\phi) \text{ and } \|A\|_{\operatorname{Frob}}< a\}$ is a computable, finite subset in $\Gamma(R,\phi)$. Denote its convex body by $\Omega(\Gamma^a)=\bigcap_{A\in\Gamma^a}\{\tau\in\mathbb{H}\mid d_{\mathbb{H}}(i,\tau)\leq d_{\mathbb{H}}(\gamma_A(i),\tau)\}.$

Proposition 13 (Edwards-Sanderson-Schmidt [4], 2022) If $a \ge \sqrt{2}$ satisfies

$$\mu_{\mathbb{H}}(\Omega(\Gamma^a)) < 2\mu_{\mathbb{H}} \left(\Omega(\Gamma^a) \cap B\left(i, \log\sqrt{\frac{a^2 - \sqrt{a^4 - 4}}{2}}\right) \right)$$
(3)

then, $\Gamma^a(R,\phi)$ generates $\Gamma(R,\phi)$. In particular, $\Gamma(R,\phi)$ is a lattice in this case.

Figure 3 Lattice test (3): cited from Edwards-Sanderson-Schmidt [4, Fig. 7]

3 Main result

3.1 Origami and Delaunay triangulation

Fix $d \in \mathbb{N}$ and let $\Lambda := \{\pm 1, \ldots, \pm d\}$, $\mathfrak{S} := \operatorname{Sym}(\Lambda)$. A flat surface obtained by gluing d unit square cells at edges by half-translations is called an **origami** of degree d. The Veech group of an origami is a lattice in $PSL(2,\mathbb{Z})$. Möller [13] showed that the $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ -action respects the Teichmüller embedding of the arithmetic curve $\mathbb{L}/\Gamma(\mathcal{O}) \hookrightarrow M_{g,n}$.

Example D For $x, y \in S_d$, an abelian origami (x, y) is defined by the gluing rule (right edge of $i \leftrightarrow$ left edge of x(i)) and (upper edge of $i \leftrightarrow$ lower edge of y(i)), where the d squares are labelled by i = 1, ..., d. Its Veech group is a stabilizer under the following $SL(2, \mathbb{Z}) \cong \text{Out}^+(F_2)$ -action (Schmithüsen[14]).

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}(x,y) = (x,xy), \ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}(x,y) = (y,x^{-1}),$$

Figure 4 Abelian origami (x, y) where x = (1)(2 3 4), y = (1 2)(3 4)

3 Main result

3.1 Origami and Delaunay triangulation

Fix $d \in \mathbb{N}$ and let $\Lambda := \{\pm 1, \ldots, \pm d\}$, $\mathfrak{S} := \operatorname{Sym}(\Lambda)$. A flat surface obtained by gluing d unit square cells at edges by half-translations is called an **origami** of degree d. The Veech group of an origami is a lattice in $PSL(2,\mathbb{Z})$. Möller [13] showed that the $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ -action respects the Teichmüller embedding of the arithmetic curve $\mathbb{L}/\Gamma(\mathcal{O}) \hookrightarrow M_{g,n}$.

Example D For $x, y \in S_d$, an abelian origami (x, y) is defined by the gluing rule (right edge of $i \leftrightarrow$ left edge of x(i)) and (upper edge of $i \leftrightarrow$ lower edge of y(i)), where the d squares are labelled by i = 1, ..., d. Its Veech group is a stabilizer under the following $SL(2, \mathbb{Z}) \cong \text{Out}^+(F_2)$ -action (Schmithüsen[14]).

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} (x, y) = (x, xy), \ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} (x, y) = (y, x^{-1}),$$

Figure 4 Abelian origami (x, y) where x = (1)(2 3 4), y = (1 2)(3 4).

Example E (K. 2023 [9]) All possible patterns of origamis are obtained by considering the cut-and-paste construction with respect to the origami (x, y) and all the negative cells, where $x, y \in S_d < \mathfrak{S}_{\text{odd}}$, $\varepsilon \in \{\pm 1\}_{\text{odd}}^d$. In the construction, The canonical double is represented by the abelian origami $(x^{\text{sign}}, \varepsilon y^{\varepsilon} \varepsilon (y^{\varepsilon})) \in \mathfrak{S} \times \mathfrak{S}$.

Figure 5 Cut-and-paste construction for the case $x=(1)(2\ 3\ 4),\ y=(1\ 2)(3\ 4),\ \varepsilon=(+,+,+,-).$

- In the step (i), the upper side s of the 4th cell is paired with the lower side s' of the 3rd cell.
- In the step (ii), the vertical reflection ι is applied to the 4th cell.
- In the step (iii), the sides $\iota(s)$ and s' are glued by a half-translation.

Proposition 14 (K. [10]) Let $\mathfrak{S}^i := \{ \sigma \in \mathfrak{S} : \text{fixed-point-free, order 2} \}$. There is one-to-one correspondence between HTrans-classes of origamis and \mathfrak{S} -conjugacy classes of tuples of $\mu, \nu, \tau \in \mathfrak{S}^i$ with the relationships in the following table. The canonical double of \mathcal{O} is the abelian origami $(x_{\mathcal{O}}, y_{\mathcal{O}})$. We have $\mu = z_{\mathcal{O}}y_{\mathcal{O}}, \nu = x_{\mathcal{O}}^{-1}z_{\mathcal{O}}, \tau = x_{\mathcal{O}}^{-1}z_{\mathcal{O}}y_{\mathcal{O}}$, and $z_{\mathcal{O}}^2 = x_{\mathcal{O}}y_{\mathcal{O}}x_{\mathcal{O}}^{-1}y_{\mathcal{O}}^{-1}$.

$\lambda \in \Lambda$	$\operatorname{half-square}({\scriptstyle \trianglerighteq \triangledown})$	μ, ν, τ	reflection along edge
$\lambda \cdot \langle \mu \rangle$	horiz. λ -edge	$x_{\mathcal{O}} := \mu \tau$	horiz. translation
$\lambda \cdot \langle \nu \rangle$	vert. λ -edge	$y_{\mathcal{O}} := \nu \tau$	vert. translation
$\lambda \cdot \langle \tau \rangle$	λ -cell	$z_{\mathcal{O}} := \mu \tau \nu$	π -rotation arr. cone
$\lambda \cdot \langle x_{\mathcal{O}} \rangle$	horiz. λ -cylinder	$\#(\lambda \cdot \langle x_{\mathcal{O}} \rangle)$	cylinder width
$\lambda \cdot \langle y_{\mathcal{O}} \rangle$	vert. λ -cylinder	$\#(\lambda\cdot\langle y_{\mathcal{O}}\rangle)$	cylinder width
$\lambda \cdot \langle z_{\mathcal{O}} \rangle$	$\lambda ext{-cone}$	$\#(\lambda \cdot \langle z_{\mathcal{O}} \rangle)$	deg(cone)+2

Figure 6 (x, y, z) for the origami (x, y, z): $\mu \tau \nu(1) = \nu \mu \tau(1)$ in this case.

Let $\Theta := \mathfrak{S}^i \times \mathfrak{S}^i \times \mathfrak{S}^i / \mathfrak{S}^{\text{conj}}$ and $\tau = \tau_0 := (\lambda \mapsto -\lambda) \in \mathfrak{S}^i$. We have $(\mu, \nu, \tau_0) = (x\tau_0, y\tau_0, \tau_0) = (-x, -y, \tau_0)$.

Figure 7 The ($\triangle \neg$)-Delaunay triangulation of origami (μ, ν, τ). The flip at the square (1(κ), $\tau(\kappa)$) is represented by the ($\triangle \neg$)-Delaunay triangulation of the origami given by the cut-and-paste construction in Example E.

Proposition 16 The universal Veech group $PSL(2,\mathbb{Z}) = \langle T = \left[\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right], S = \left[\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right] \rangle$ acts on $\mathcal{O} = (\mu,\nu,\tau) \in \Theta$ as follows.

$$\begin{cases} T(\mu, \nu, \tau) = (\mu^* \tau, \nu, \mu) \\ S(\mu, \nu, \tau) = (\tau^* \nu, \mu, \tau) \\ TS(\mu, \nu, \tau) = (\nu, \tau, \mu) \end{cases} \begin{cases} T(x, y, z) = (x, yx^{-1}, z) \\ S(x, y, z) = (y, x, y^{-1}zy) \\ TS(x, y, z) = (yx^{-1}, x^{-1}, z^{-1}) \end{cases}$$

outline of proof) One gets the formulae for $(\triangle \neg)$ -Delaunay triangulation of $T\mathcal{O}, S\mathcal{O}$ from a local picture below.

Figure 8 T (resp. S)-affine deformation of (μ, ν, τ) is the mirror of (τ, ν, μ) (resp. (ν, μ, τ)).

The simulatenous flip of (μ, ν, τ) at all cells gives the $(\nabla \Delta)$ -Delaunay represented by the mirror image of the origami $(\tau^*\mu, \nu, \tau)$. The formulae for x, y, z follows from $\mu = zy$, $\nu = x^{-1}z$, $\tau = x^{-1}zy$.

Figure 9 The simulatenous flip of (μ, ν, τ) is the mirror of $(\tau^*\mu, \nu, \tau)$.

3.2 Edwards-Sanderson-Schmidt method in terms of category

We will construct $\widehat{\mathcal{M}}$, $\widehat{\mathcal{S}}$ for origamis. Assume that all the corner points of squares are marked. Though singularities of order 0 should be removed with Veech groups in mind, our assumption does not matter because these marked points form a $PSL(2,\mathbb{Z})$ -invariant set. We can align the Voronoi staples with the sheet cuts in this way.

Definition 17 For an origami $\mathcal{O} = (\mu, \nu, \tau) \in \Theta$, denote $x = x_{\mathcal{O}}, y = y_{\mathcal{O}}, z = z_{\mathcal{O}}, Z := \langle z \rangle$. We define a **groupoid** $\mathcal{G}_{\mathcal{O}}$ equipped with 2-arrows (ribbon-graph structure) and 3-arrows (relabeling) as follows.

$$\begin{cases} \operatorname{Obj}_{\mathcal{G}_{\mathcal{O}}} = \Lambda/Z \\ \operatorname{Arr}_{\mathcal{G}_{\mathcal{O}}} = \langle \lambda Z \xrightarrow{\lambda^{\sigma}} \lambda \sigma Z \mid \lambda \in \Lambda, \sigma = \mu, \nu, \tau \rangle \\ \operatorname{Arr}_{\mathcal{G}_{\mathcal{O}}}^{2} = \{ \lambda^{\sigma} \to (\lambda z)^{\sigma} \} \\ \operatorname{Arr}_{\mathcal{G}_{\mathcal{O}}}^{3} = \mathfrak{G}\text{-conjugate} \end{cases}$$

Arrows arround vertices λZ , $\lambda \in \Lambda$ are placed as follows. We have $\# \operatorname{Arr}(\lambda Z, -) = 3 \# \lambda Z = 3(\operatorname{ord}_{\lambda Z}(\phi) + 2)$.

3.2 Edwards-Sanderson-Schmidt method in terms of category

We will construct $\widehat{\mathcal{M}}$, $\widehat{\mathcal{S}}$ for origamis. Assume that all the corner points of squares are marked. Though singularities of order 0 should be removed with Veech groups in mind, our assumption does not matter because these marked points form a $PSL(2,\mathbb{Z})$ -invariant set. We can align the Voronoi staples with the sheet cuts in this way.

Definition 17 For an origami $\mathcal{O} = (\mu, \nu, \tau) \in \Theta$, denote $x = x_{\mathcal{O}}, y = y_{\mathcal{O}}, z = z_{\mathcal{O}}, Z := \langle z \rangle$. We define a **groupoid** $\mathcal{G}_{\mathcal{O}}$ equipped with 2-arrows (ribbon-graph structure) and 3-arrows (relabeling) as follows.

$$\begin{cases} \operatorname{Obj}_{\mathcal{G}_{\mathcal{O}}} = \Lambda/Z \\ \operatorname{Arr}_{\mathcal{G}_{\mathcal{O}}} = \langle \lambda Z \xrightarrow{\lambda^{\sigma}} \lambda \sigma Z \mid \lambda \in \Lambda, \sigma = \mu, \nu, \tau \rangle \\ \operatorname{Arr}_{\mathcal{G}_{\mathcal{O}}}^{2} = \{ \lambda^{\sigma} \to (\lambda z)^{\sigma} \} \\ \operatorname{Arr}_{\mathcal{G}_{\mathcal{O}}}^{3} = \mathfrak{G}\text{-conjugate} \end{cases}$$

Arrows arround vertices λZ , $\lambda \in \Lambda$ are placed as follows. We have $\# \mathrm{Arr}(\lambda Z, -) = 3 \# \lambda Z = 3 (\mathrm{ord}_{\lambda Z}(\phi) + 2)$.

By $\nu = x^{-1}z$, $\mu = y^{-1}z^{-1}$, and proposition 14, arrows are regarded as local-translations.

We may define a homomorphism $h: \operatorname{Arr}(\lambda Z, -) \to (\mathbb{C}, +)$ by $h(\lambda^x) = 1$, $h(\lambda^y) = i$ and commutativity $h(\Delta) = h(\mathcal{P}) = 0$. We obtain $\widehat{\mathcal{M}}^*(\mathcal{O}) := (\mathcal{G} \times h)_{\mathcal{O}} \in \mathbf{Groupoid} \times (\mathbb{C}, +)$ as follows; vector asigned to each arrows

By replacing the arrow set with $\operatorname{Arr}_{G_{\mathcal{O}}} = \{\lambda Z \xrightarrow{\lambda^{\sigma}} \lambda \sigma Z \mid \lambda \in \Lambda, \sigma = \mu, \nu, \tau\}$, we get $\widehat{\mathcal{S}}^{*}(\mathcal{O}) := (G \times h)_{\mathcal{O}} \in \underline{\mathbf{Graph}} \times (\mathbb{C}, +)$. As explained as adjunction $\mathbf{Graph} \rightleftharpoons \mathbf{Category}$ [12], $\widehat{\mathcal{S}}^{*}$ is a "finite generating system" of $\widehat{\mathcal{M}}^{*}$.

By $\nu = x^{-1}z$, $\mu = y^{-1}z^{-1}$, and proposition 14, arrows are regarded as local-translations.

We may define a homomorphism $h: \operatorname{Arr}(\lambda Z, -) \to (\mathbb{C}, +)$ by $h(\lambda^x) = 1$, $h(\lambda^y) = i$ and commutativity $h(\Delta) = h(\mathcal{P}) = 0$. We obtain $\widehat{\mathcal{M}}^*(\mathcal{O}) := (\mathcal{G} \times h)_{\mathcal{O}} \in \mathbf{Groupoid} \times (\mathbb{C}, +)$ as follows; vector asigned to each arrows

By replacing the arrow set with $\operatorname{Arr}_{G_{\mathcal{O}}} = \{\lambda Z \xrightarrow{\lambda^{\sigma}} \lambda \sigma Z \mid \lambda \in \Lambda, \sigma = \mu, \nu, \tau\}$, we get $\widehat{\mathcal{S}}^{*}(\mathcal{O}) := (G \times h)_{\mathcal{O}} \in \underline{\mathbf{Graph}} \times (\mathbb{C}, +)$. As explained as adjunction $\mathbf{Graph} \rightleftharpoons \mathbf{Category}$ [12], $\widehat{\mathcal{S}}^{*}$ is a "finite generating system" of $\widehat{\mathcal{M}}^{*}$.

Theorem 18 $\widehat{\mathcal{M}}^* = (\mathcal{G} \times h)$ is a functor $\underline{\mathbf{Flat}} \supset \Theta \ (\textit{origamis}) \rightarrow \underline{\mathbf{Groupoid}} \times (\mathbb{C}, +)$ such that

1.
$$\widehat{\mathcal{M}}^*(\mathcal{O}_1 \xrightarrow{f} \mathcal{O}_2) = 1 \times (D_f)_{\text{linear}},$$

2.
$$\mathcal{O}_1 = \mathcal{O}_2 \Leftrightarrow \widehat{\mathcal{M}}^*(\mathcal{O}_1) = \widehat{\mathcal{M}}^*(\mathcal{O}_2) \Leftrightarrow \widehat{\mathcal{S}}^*(\mathcal{O}_1) \subset \widehat{\mathcal{M}}^*(\mathcal{O}_2)$$
, and

3.
$$A \in \Gamma(\mathcal{O}) \Leftrightarrow A\widehat{\mathcal{S}}^*(\mathcal{O}) \subset \widehat{\mathcal{M}}^*(\mathcal{O})$$
.

Note that the inclusions in 2. 3. implies that the arrows are embedded modulo $\cong \operatorname{Htrans}(\Delta)$; 3-arrows preserving 2-arrows.

Edwards-Sanderson-Schmidt method	categorical version for origamis
flat surface (R, ϕ)	origami $\mathcal{O} = (\mu, \nu, \tau)$
singularity p	orbit λZ
Voronoi staple $(\iota(s), \iota(s^{-1}))$	generating arrow $\lambda Z \xrightarrow{\lambda^{\sigma}} \lambda \sigma Z$
saddle connection $(\iota(s), \iota(s^{-1}))$	arrow (piecewise line)
sheet transition on Δ	arrow ² $\lambda^{\sigma} \to (\lambda z)^{\sigma}$
automorphism $(Htrans(\Delta))$	arrow ³ (\mathfrak{S} -conjugate)
combinatorial structure of $\widehat{\mathcal{M}}$, $\widehat{\mathcal{S}}$	groupoid \mathcal{G} , group G
holonomy $(hol(s), hol(s^{-1}))$	vector $h(\lambda^{\sigma})$
finite bound for $A\widehat{\mathcal{S}}$	finite arrows of bounded length

Table 2 categorical version of Edwards-Sanderson-Schmidt method

Thank you for your attention!!

Bibliography

- [1] L. V. Ahlfors, Lectures on Quasiconformal Mappings, Amer. Math. Soc., Providence, RI, 1966.
- [2] J. P. Bowman: Teichmüller geodesics, Delaunay triangulations, and Veech groups. Ramanujan Math. Soc. Lect. Notes Ser., 10 (2010), 113–129.
- [3] C. J. Earle, F. P. Gardiner, Geometric isomorphisms between infinite dimensional Teichmüller spaces, *Trans. Amer. Math. Soc.*, **348** (1996), 1163–1190.
- [4] B. Edwards, S. Sanderson, and T. A. Schmidt: Canonical translationsurfaces for computing Veech groups. *Geom. Dedicata*, **216**(5): 60, 2022.
- [5] G. Forni and C. Matheus: Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, *Journal of Modern Dynamics*, 8 (2014), no. 3-4, 271–436.
- [6] F. P. Gardiner, N. Lakic: Quasiconformal Teichmüller Theory, Amer. Math. Soc., Providence, RI, 2000.
- [7] A. Hatcher: Algebraic topology, Cambridge University Press, Cambridge, 2002.
- [8] F., Herrlich, G. Schmithüsen: Dessins d'enfants and origami curves, IRMA Lect. Math. Theor. Phys., 13, 767–809 (2009)
- [9] S. Kumagai: Calculation of Veech groups and Galois invariants of general origamis. Accepted for publication of Kodai Math Journal, arXiv.2006.00905, 2023.
- [10] S. Kumagai: General origamis and Veech groups of flat surfaces. arXiv.2111.09654, 2021.
- [11] H. Masur and J. Smillie: Hausdorff dimension of sets of nonergodic measured foliations. *Ann. Math.* **134**, 455–543, 1991.

- [12] S. MacLane: Categories for the working mathematician. Graduate texts in mathematics 5, Springer-Verlag, 1971.
- [13] M. Möller: Teichmüller curves, Galois actions and \widehat{GT} -relations. Math. Nachr. 278, no.9, 1061–1077 (2005)
- [14] G. Schmithüsen: An algorithm for finding the Veech group of an origami. Experiment. Math. 13, no. 4, 459–472, 2004
- [15] F. Benirschke, C. A. Serván: Isometric embeddings of Teichmüller spaces are covering constructions. arXiv.2305.04153, 2023.
- [16] E. X. C. Heng: Categorification and Dynamics in Generalised Braid Groups, *PhD thesis, Australian National University*, 2023.
- [17] F. Haiden, L. Katzarkov, M. Kontsevich: Flat surfaces and stability structures. Publ. Math. IHES 126, 247–318 (2017).