ROL

Generated by Doxygen 1.6.1

Wed Dec 11 11:39:40 2013

Contents

1	ROI	L Documentation (Development Version)	1
	1.1	Introduction	1
	1.2	Overview	1
	1.3	Quick Start	2
		1.3.1 Step 1: Implement linear algebra / vector interface	2
		1.3.2 Step 2: Implement objective function interface	2
		1.3.3 Step 3: Choose optimization step	2
		1.3.4 Step 4: Set status test	2
		1.3.5 Step 5: Define an algorithm.	2
		1.3.6 Step 6: Run algorithm.	2
		1.3.7 Done!	3
	1.4	Development Plans	3
2	Clas	ss Index	5
	2.1	Class Hierarchy	5
3	Clas	ss Index	7
	3.1	Class List	7
4	File	Index	9
	4.1	File List	9
5	Clas	ss Documentation	11
	5.1	POL Algorithm Class Pafarance	11

ii CONTENTS

	5.1.1 Detailed Description	11
5.2	ROL::AlgorithmState< Real > Struct Template Reference	12
	5.2.1 Detailed Description	12
5.3	ROL::BarzilaiBorwein < Real > Class Template Reference	13
	5.3.1 Detailed Description	13
5.4	ROL::DefaultAlgorithm < Real > Class Template Reference	14
	5.4.1 Detailed Description	14
5.5	$ROL:: Epetra Multi Vector < Real > Class \ Template \ Reference \ . \ . \ . \ .$	15
	5.5.1 Detailed Description	16
5.6	ROL::Krylov < Real > Class Template Reference	17
	5.6.1 Detailed Description	17
5.7	ROL::lBFGS< Real > Class Template Reference	18
	5.7.1 Detailed Description	18
5.8	ROL::lDFP< Real > Class Template Reference	19
	5.8.1 Detailed Description	19
5.9	ROL::LineSearch< Real > Class Template Reference	20
	5.9.1 Detailed Description	21
5.10	ROL::LineSearchStep< Real > Class Template Reference	22
	5.10.1 Detailed Description	23
5.11	ROL::lSR1 < Real > Class Template Reference	24
	5.11.1 Detailed Description	24
5.12	ROL::NonlinearCG< Real > Class Template Reference	25
	5.12.1 Detailed Description	25
5.13	$ROL::Nonlinear CGS tate < Real > Struct\ Template\ Reference\ .\ .\ .\ .$	26
	5.13.1 Detailed Description	26
5.14	ROL::Objective < Real > Class Template Reference	27
	5.14.1 Detailed Description	28
5.15	ROL::Objective_Beale < Real > Class Template Reference	29
	5.15.1 Detailed Description	29
5.16	ROL::Objective_FreudensteinRoth< Real > Class Template Reference	31
	5.16.1 Detailed Description	31

CONTENTS iii

5.17 ROL::Objective_LeastSquares< Real > Class Template Reference	32
5.17.1 Detailed Description	32
$5.18 \;\; ROL::Objective_PoissonControl < Real > Class \; Template \; Reference \; .$	33
5.18.1 Detailed Description	33
5.19 ROL::Objective_PoissonInversion < Real > Class Template Reference	35
5.19.1 Detailed Description	36
5.20 ROL::Objective_Powell< Real > Class Template Reference	37
5.20.1 Detailed Description	37
5.21 ROL::Objective_Rosenbrock< Real > Class Template Reference	38
5.21.1 Detailed Description	38
$5.22\ ROL::Objective_SumOfSquares < Real > Class\ Template\ Reference\ .$	40
5.22.1 Detailed Description	40
5.23 ROL::Secant < Real > Class Template Reference	41
5.23.1 Detailed Description	41
5.24 ROL::SecantState < Real > Struct Template Reference	42
5.24.1 Detailed Description	42
5.25 ROL::StatusTest< Real > Class Template Reference	43
5.25.1 Detailed Description	43
5.26 ROL::StdVector< Real, Element > Class Template Reference	44
5.26.1 Detailed Description	45
5.27 ROL::Step< Real > Class Template Reference	46
5.27.1 Detailed Description	47
5.28 ROL::StepState < Real > Struct Template Reference	48
5.28.1 Detailed Description	48
5.29 ROL::TrustRegion < Real > Class Template Reference	49
5.29.1 Detailed Description	50
5.30 ROL::TrustRegionStep< Real > Class Template Reference	51
5.30.1 Detailed Description	52
5.31 ROL::Vector< Real > Class Template Reference	53
5.31.1 Detailed Description	54

iv CONTENTS

5	File l	Documentation	55
	6.1	example_01.cpp File Reference	55
		6.1.1 Detailed Description	56
	6.2	ROL_Beale.hpp File Reference	57
		6.2.1 Detailed Description	57
	6.3	ROL_FreudensteinRoth.hpp File Reference	58
		6.3.1 Detailed Description	58
	6.4	ROL_LeastSquares.hpp File Reference	59
		6.4.1 Detailed Description	59
	6.5	ROL_PoissonControl.hpp File Reference	60
		6.5.1 Detailed Description	60
	6.6	ROL_PoissonInversion.hpp File Reference	61
		6.6.1 Detailed Description	61
	6.7	ROL_Powell.hpp File Reference	62
		6.7.1 Detailed Description	62
	6.8	ROL_Rosenbrock.hpp File Reference	63
		6.8.1 Detailed Description	63
	6.9	ROL_SumOfSquares.hpp File Reference	64
		6.9.1 Detailed Description	64
	6.10	ROL_TestObjectives.hpp File Reference	65
		6.10.1 Detailed Description	65
	6.11	ROL_Types.hpp File Reference	66
		6.11.1 Detailed Description	69

Chapter 1

ROL Documentation (Development Version)

Figure 1.1: Rapid Optimization Library

1.1 Introduction

ROL, the Rapid Optimization Library, is a Trilinos package for matrix-free optimization.

1.2 Overview

Current release of ROL includes the following features:

• Unconstrained optimization algorithms.

1.3 Quick Start

The Rosenbrock example (rol/example/rosenbrock/example_01.cpp) demonstrates the use of ROL. It amounts to sixsteps:

1.3.1 Step 1: Implement linear algebra / vector interface.

--- or try one of the provided implementations, such as ROL::StdVector in rol/vector.

```
ROL::Vector
```

1.3.2 Step 2: Implement objective function interface.

--- or try one of the provided functions, such as ROL::Objective_Rosenbrock in rol/zoo.

```
ROL::Objective
```

1.3.3 Step 3: Choose optimization step.

--- with ParameterList settings in the variable parlist.

```
ROL::LineSearchStep<RealT> step(parlist);
```

1.3.4 Step 4: Set status test.

--- with gradient tolerance {gtol}, step tolerance {stol} and the maximum number of iterations {maxit}.

```
ROL::StatusTest<RealT> status(gtol, stol, maxit);
```

1.3.5 Step 5: Define an algorithm.

--- based on the status test and the step.

```
ROL::DefaultAlgorithm<RealT> algo(step, status);
```

1.3.6 Step 6: Run algorithm.

--- starting from the initial iterate $\{x\}$, applied to objective function $\{obj\}$.

```
algo.run(x, obj);
```

1.3.7 Done!

1.4 Development Plans

Constrained optimization, optimization under uncertainty, etc.

4	RO	L Documentation	(Development Vers	sion)

Chapter 2

Class Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
ROL::Algorithm
ROL::AlgorithmState < Real >
ROL::DefaultAlgorithm < Real >
ROL::Krylov < Real >
ROL::LineSearch < Real >
ROL::NonlinearCG< Real >
ROL::NonlinearCGState < Real >
ROL::Objective < Real >
ROL::Objective_Beale < Real >
ROL::Objective_FreudensteinRoth < Real >
ROL::Objective_LeastSquares< Real >
ROL::Objective_PoissonControl < Real >
ROL::Objective_PoissonInversion < Real >
ROL::Objective_Powell < Real >
ROL::Objective_Rosenbrock< Real >
ROL::Objective_SumOfSquares< Real >
ROL::Secant < Real >
ROL::BarzilaiBorwein < Real >
ROL::lBFGS < Real >
ROL::lDFP< Real >
ROL::ISR1 < Real >
ROL::SecantState < Real >
ROL::StatusTest < Real >
ROL::Step < Real >
POL al ing Sourch Ston / Poul >

\mathbf{c}	lass	Ind	le

ROL::TrustRegionStep< Real >	51
ROL::StepState < Real >	48
ROL::TrustRegion < Real >	49
ROL::Vector < Real >	53
ROL::EpetraMultiVector< Real >	15
ROL::StdVector< Real, Element >	44

Chapter 3

Class Index

3.1 Class List

ere are the classes, structs, unions and interfaces with orief descriptions:	
ROL::Algorithm (Provides an interface to run optimization algorithms)	11
ROL::AlgorithmState < Real >	12
ROL::BarzilaiBorwein < Real > (Provides definitions for Barzilai-Borwein	
operators)	13
ROL::DefaultAlgorithm < Real >	14
ROL::EpetraMultiVector< Real > (Implements the ROL::Vector interface	
for an Epetra_MultiVector)	15
ROL::Krylov < Real > (Provides definitions for Krylov solvers)	17
ROL::IBFGS < Real > (Provides definitions for limited-memory BFGS op-	
erators)	18
ROL::IDFP< Real > (Provides definitions for limited-memory DFP opera-	
tors)	19
ROL::LineSearch< Real > (Provides interface for and implements line	
searches)	20
ROL::LineSearchStep < Real > (Provides the interface to compute optimiza-	
tion steps with line search)	22
ROL::ISR1 < Real > (Provides definitions for limited-memory SR1 opera-	
tors)	24
ROL::NonlinearCG< Real > (Implementats nonlinear conjugate gradient	
methods)	25
ROL::NonlinearCGState < Real >	26
ROL::Objective < Real > (Provides the interface to evaluate objective func-	
tions)	27
ROL::Objective Beale < Real > (Beale's function)	29

8 Class Index

ROL::Objective_FreudensteinRoth < Real > (Freudenstein and Roth's func-	
tion)	31
ROL::Objective_LeastSquares < Real > (Least squares function)	32
ROL::Objective_PoissonControl < Real > (Poisson distributed control)	33
ROL::Objective_PoissonInversion < Real > (Poisson material inversion)	35
ROL::Objective_Powell< Real > (Powell's badly scaled function)	37
ROL::Objective_Rosenbrock< Real > (Rosenbrock's function)	38
ROL::Objective_SumOfSquares< Real > (Sum of squares function)	40
ROL::Secant < Real > (Provides interface for and implements limited-	
memory secant operators)	41
ROL::SecantState < Real >	42
ROL::StatusTest< Real > (Provides an interface to check status of optimiza-	
tion algorithms)	43
ROL::StdVector < Real, Element > (Provides the std::vector implementation	
of the ROL::Vector interface)	44
ROL::Step < Real > (Provides the interface to compute optimization steps).	46
ROL::StepState < Real >	48
ROL::TrustRegion < Real > (Provides interface for and implements trust-	
region subproblem solvers)	49
ROL::TrustRegionStep< Real > (Provides the interface to compute opti-	
mization steps with trust regions)	51
ROL::Vector < Real > (Provides the vector space interface)	53

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

example_01.cpp (Shows how to minimize Rosenbrock's function using
Newton-Krylov)
ROL_Algorithm.hpp?
ROL_BarzilaiBorwein.hpp
ROL_Beale.hpp (Contains definitions for Beale's function)
ROL_EpetraMultiVector.hpp
ROL_FreudensteinRoth.hpp (Contains definitions for Freudenstein and
Roth's function)
ROL_Krylov.hpp
ROL_IBFGS.hpp
ROL_IDFP.hpp?
ROL_LeastSquares.hpp (Contains definitions for least squares function) 59
ROL_LineSearch.hpp
ROL_LineSearchStep.hpp
ROL_ISR1.hpp
ROL_NonlinearCG.hpp
ROL_Objective.hpp
ROL_ObjectiveDef.hpp
ROL_PoissonControl.hpp (Contains definitions for Poisson optimal control). 60
ROL_PoissonInversion.hpp (Contains definitions for Poisson material inver-
sion)
ROL_Powell.hpp (Contains definitions for Powell's badly scaled function) . 62
ROL_Rosenbrock.hpp (Contains definitions for Rosenbrock's function) 63
ROL_Secant.hpp?
ROL StatusTest.hpp

10 File Index

ROL_StdVector.hpp	??
ROL_Step.hpp	??
ROL_SumOfSquares.hpp (Contains definitions for sum of squares function) .	64
ROL_TestObjectives.hpp (Contains definitions of test objective functions)	65
ROL_TrustRegion.hpp	??
ROL_TrustRegionStep.hpp	
ROL_Types.hpp (Contains definitions of custom data types in ROL)	66
ROL_Vector.hpp	??
function/test_01.cpp	
step/test_01.cpp	
vector/test_01.cpp	
step/test_02.cpp	
vector/test 02.cpp	

Chapter 5

Class Documentation

5.1 ROL::Algorithm Class Reference

Provides an interface to run optimization algorithms.

#include <ROL_Algorithm.hpp>

5.1.1 Detailed Description

Provides an interface to run optimization algorithms.

The documentation for this class was generated from the following file:

• ROL_Algorithm.hpp

5.2 ROL::AlgorithmState< Real > Struct Template Reference

Public Attributes

- int iter
- int nfval
- int ngrad
- Real value
- Real gnorm
- Real snorm
- Teuchos::RCP< Vector< Real >> iterateVec

5.2.1 Detailed Description

template < class Real > struct ROL::AlgorithmState < Real >

Definition at line 58 of file ROL_Step.hpp.

The documentation for this struct was generated from the following file:

• ROL_Step.hpp

5.3 ROL::BarzilaiBorwein< Real > Class Template Reference

Provides definitions for Barzilai-Borwein operators.

#include <ROL_BarzilaiBorwein.hpp>Inheritance diagram for
ROL::BarzilaiBorwein< Real >::

Public Member Functions

- **BarzilaiBorwein** (int type=1)
- void **applyH** (Vector< Real > &Hv, const Vector< Real > &v, const Vector< Real > &x)
- void applyB (Vector< Real > &Bv, const Vector< Real > &v, const Vector< Real > &x)

Private Attributes

• int type_

5.3.1 Detailed Description

template<class Real> class ROL::BarzilaiBorwein< Real>

Provides definitions for Barzilai-Borwein operators.

Definition at line 54 of file ROL_BarzilaiBorwein.hpp.

The documentation for this class was generated from the following file:

• ROL_BarzilaiBorwein.hpp

$\textbf{5.4} \quad \textbf{ROL::DefaultAlgorithm} < \textbf{Real} > \textbf{Class Template} \\ \textbf{Reference}$

Public Member Functions

- **DefaultAlgorithm** (Step< Real > &step, StatusTest< Real > &status, bool printHeader=false)
- virtual std::vector< std::string > run (Vector< Real > &x, Objective< Real > &obj, bool print=false)

Run algorithm.

- std::string getIterHeader (void)
- std::string **getIterInfo** (bool withHeader=false)

Private Attributes

- Teuchos::RCP< Step< Real >> step_
- Teuchos::RCP< StatusTest< Real >> status_
- Teuchos::RCP< AlgorithmState< Real >> state_
- bool printHeader_

5.4.1 Detailed Description

template<class Real> class ROL::DefaultAlgorithm< Real>

Definition at line 58 of file ROL_Algorithm.hpp.

The documentation for this class was generated from the following file:

• ROL_Algorithm.hpp

5.5 ROL::EpetraMultiVector< Real > Class Template Reference

Implements the ROL::Vector interface for an Epetra_MultiVector.

#include <ROL_EpetraMultiVector.hpp>Inheritance diagram for
ROL::EpetraMultiVector< Real >::

Public Member Functions

- **EpetraMultiVector** (const Teuchos::RCP< Epetra_MultiVector > &epetra_vec)
- void plus (const Vector < Real > &x) Compute $y \leftarrow x + y$ where y = *this.
- void scale (const Real alpha)

 Compute $y \leftarrow \alpha y$ where y = *this.
- Real dot (const Vector< Real > &x) const Returns $\langle y, x \rangle$ where y = *this.
- Real norm () const Returns ||y|| where y = *this.
- Teuchos::RCP< Vector< Real >> clone () const Clone to make a new (uninitialized) vector.
- virtual void axpy (const Real alpha, const Vector < Real > &x)

 Compute $y \leftarrow \alpha x + y$ where y = *this.
- virtual void zero ()

 Set to zero vector.
- virtual void set (const Vector< Real > &x)

Set
$$y \leftarrow x$$
 where $y = *this$.

- Teuchos::RCP< const Epetra_MultiVector > getVector () const
- Teuchos::RCP< Vector< Real >> basis (const int i) const

 Return i-th basis vector: define if finite-difference gradients and Hessians are used.
- int dimension () const

Private Attributes

• Teuchos::RCP< Epetra_MultiVector > epetra_vec_

5.5.1 Detailed Description

template<class Real> class ROL::EpetraMultiVector< Real>

Implements the ROL::Vector interface for an Epetra_MultiVector.

Definition at line 61 of file ROL_EpetraMultiVector.hpp.

The documentation for this class was generated from the following file:

• ROL_EpetraMultiVector.hpp

5.6 ROL::Krylov< Real > Class Template Reference

Provides definitions for Krylov solvers.

```
#include <ROL_Krylov.hpp>
```

Public Member Functions

- **Krylov** (Real tol1=1.e-4, Real tol2=1.e-2, int maxit=100, bool useInexact=false)
- void **CG** (Vector< Real > &s, int &iter, int &flag, const Vector< Real > &g, const Vector< Real > &x, Objective< Real > &obj, Teuchos::RCP< Secant< Real >> secant=Teuchos::null)

Private Attributes

- Real tol1_
- Real tol2_
- int maxit
- bool useInexact_

5.6.1 Detailed Description

template<class Real> class ROL::Krylov< Real>

Provides definitions for Krylov solvers.

Definition at line 54 of file ROL_Krylov.hpp.

The documentation for this class was generated from the following file:

• ROL_Krylov.hpp

5.7 ROL::lBFGS< Real > Class Template Reference

Provides definitions for limited-memory BFGS operators.

#include <ROL_lBFGS.hpp>Inheritance diagram for ROL::lBFGS< Real >::

Public Member Functions

- **IBFGS** (int M)
- void applyH (Vector< Real > &Hv, const Vector< Real > &v, const Vector< Real > &x)
- void **applyB** (Vector< Real > &Bv, const Vector< Real > &v, const Vector< Real > &x)

5.7.1 Detailed Description

template < class Real > class ROL:: lBFGS < Real >

Provides definitions for limited-memory BFGS operators.

Definition at line 54 of file ROL_lBFGS.hpp.

The documentation for this class was generated from the following file:

• ROL_IBFGS.hpp

5.8 ROL::IDFP< Real > Class Template Reference

Provides definitions for limited-memory DFP operators.

#include <ROL_lDFP.hpp>Inheritance diagram for ROL::IDFP< Real >::

Public Member Functions

- **IDFP** (int M)
- void applyH (Vector < Real > &Hv, const Vector < Real > &v, const Vector < Real > &x)
- virtual void applyH0 (Vector< Real > &Hv, const Vector< Real > &v, const Vector< Real > &x)
- void applyB (Vector < Real > &Bv, const Vector < Real > &v, const Vector < Real > &x)
- virtual void **applyB0** (Vector< Real > &Bv, const Vector< Real > &v, const Vector< Real > &x)

5.8.1 Detailed Description

template<class Real> class ROL::IDFP< Real>

Provides definitions for limited-memory DFP operators.

Definition at line 54 of file ROL_lDFP.hpp.

The documentation for this class was generated from the following file:

• ROL_IDFP.hpp

5.9 ROL::LineSearch< Real > Class Template Reference

Provides interface for and implements line searches.

#include <ROL_LineSearch.hpp>

Public Member Functions

- LineSearch (Teuchos::ParameterList &parlist)
- bool **status** (const ELineSearch type, int &ls_neval, int &ls_ngrad, const Real alpha, const Real fold, const Real sgold, const Real fnew, const Vector< Real > &x, const Vector< Real > &s, Objective< Real > &obj)
- void run (Real &alpha, Real &fval, int &ls_neval, int &ls_ngrad, const Real &gs, const Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj)
- void **simplebacktracking** (Real &alpha, Real &fval, int &ls_neval, int &ls_ngrad, const Real &gs, const Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj)
- void **backtracking** (Real &alpha, Real &fval, int &ls_neval, int &ls_ngrad, const Real &gs, const Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj)
- void **bisection** (Real &alpha, Real &fval, int &ls_neval, int &ls_ngrad, const Real &gs, const Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj)
- void **goldensection** (Real &alpha, Real &fval, int &ls_neval, int &ls_ngrad, const Real &gs, const Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj)
- void brents (Real &alpha, Real &fval, int &ls_neval, int &ls_ngrad, const Real &gs, const Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj)

Private Attributes

- ELineSearch els
- ECurvatureCondition econd_
- EDescent **edesc**_
- int maxit
- Real **c1**_
- Real **c2**
- Real tol
- Real rho
- Real alpha0
- bool useralpha

5.9.1 Detailed Description

template<class Real> class ROL::LineSearch< Real>

Provides interface for and implements line searches.

Definition at line 54 of file ROL_LineSearch.hpp.

The documentation for this class was generated from the following file:

• ROL_LineSearch.hpp

5.10 ROL::LineSearchStep< Real > Class Template Reference

Provides the interface to compute optimization steps with line search.

 $\label{line} \begin{tabular}{ll} $\#$ include $$< ROL_LineSearchStep.hpp>$ Inheritance & diagram & for \\ ROL::LineSearchStep< Real >:: \\ \end{tabular}$

Public Member Functions

- LineSearchStep (Teuchos::ParameterList &parlist)
- LineSearchStep (Teuchos::RCP< Secant< Real > > &secant, Teuchos::ParameterList &parlist)
- void compute (Vector < Real > &s, const Vector < Real > &x, Objective < Real > &obj, AlgorithmState < Real > &algo_state)
 Compute step.
- void update (Vector< Real > &x, const Vector< Real > &s, Objective< Real > &obj, AlgorithmState< Real > &algo_state)

Update step, if successful.

• std::string printHeader (void) const

Print iterate header.

• std::string printName (void) const

Print step name.

std::string print (AlgorithmState < Real > &algo_state, bool printHeader=false)
const

Print iterate status.

Private Attributes

- Teuchos::RCP< Secant< Real >> secant_
- Teuchos::RCP< Krylov< Real >> krylov_

- Teuchos::RCP< NonlinearCG< Real >> nlcg_
- Teuchos::RCP< LineSearch< Real >> lineSearch_
- int iterKrylov_
- int flagKrylov_
- ELineSearch els_
- ECurvatureCondition econd_
- EDescent edesc_
- ESecant esec_
- int ls_nfval_
- int ls_ngrad_
- std::vector< bool > **useInexact**_

5.10.1 Detailed Description

$template < class \ Real > class \ ROL :: Line Search Step < \ Real >$

Provides the interface to compute optimization steps with line search.

Definition at line 65 of file ROL_LineSearchStep.hpp.

The documentation for this class was generated from the following file:

• ROL_LineSearchStep.hpp

5.11 ROL::ISR1< Real > Class Template Reference

Provides definitions for limited-memory SR1 operators.

#include <ROL_1SR1.hpp>Inheritance diagram for ROL::ISR1< Real >::

Public Member Functions

- **ISR1** (int M)
- void update (const Vector< Real > &grad, const Vector< Real > &gp, const Vector< Real > &s, const Real snorm, const int iter)
- virtual void applyH0 (Vector< Real > &Hv, const Vector< Real > &v, const Vector< Real > &x)
- void applyH (Vector< Real > &Hv, const Vector< Real > &v, const Vector< Real > &x)
- virtual void **applyB0** (Vector< Real > &Bv, const Vector< Real > &v, const Vector< Real > &x)
- void applyB (Vector < Real > &Bv, const Vector < Real > &v, const Vector < Real > &x)

Private Attributes

• bool updateIterate_

5.11.1 Detailed Description

template<class Real> class ROL::ISR1< Real>

Provides definitions for limited-memory SR1 operators.

Definition at line 54 of file ROL_ISR1.hpp.

The documentation for this class was generated from the following file:

• ROL_ISR1.hpp

5.12 ROL::NonlinearCG< Real > Class Template Reference

Implementats nonlinear conjugate gradient methods.

```
#include <ROL_NonlinearCG.hpp>
```

Public Member Functions

- **NonlinearCG** (ENonlinearCG type, int restart=100)
- Teuchos::RCP< NonlinearCGState< Real >> & get_state ()
- virtual void run (Vector< Real > &s, const Vector< Real > &g, const Vector<
 Real > &x, Objective< Real > &obj)

Private Attributes

• Teuchos::RCP< NonlinearCGState< Real >> state_

5.12.1 Detailed Description

template<class Real> class ROL::NonlinearCG< Real>

Implementats nonlinear conjugate gradient methods.

Definition at line 65 of file ROL_NonlinearCG.hpp.

The documentation for this class was generated from the following file:

• ROL_NonlinearCG.hpp

5.13 ROL::NonlinearCGState< Real > Struct Template Reference

Public Attributes

- std::vector< Teuchos::RCP< Vector< Real >>> grad
- std::vector< Teuchos::RCP< Vector< Real >>> pstep
- int iter
- int restart
- ENonlinearCG nlcg_type

5.13.1 Detailed Description

 $template < class \ Real > struct \ ROL:: Nonlinear CGS tate < Real >$

Definition at line 56 of file ROL_NonlinearCG.hpp.

The documentation for this struct was generated from the following file:

• ROL_NonlinearCG.hpp

5.14 ROL::Objective< Real > Class Template Reference

Provides the interface to evaluate objective functions.

 $\label{linear_loss} \begin{tabular}{ll} \tt \#include & <& ROL_Objective. \\ \tt Real >:: \\ \end{tabular}$

Public Member Functions

- virtual Real value (const Vector< Real > &x, Real &tol)=0
 Compute value.
- virtual void gradient (Vector< Real > &g, const Vector< Real > &x, Real &tol)

Compute gradient.

virtual Real dirDeriv (const Vector < Real > &x, const Vector < Real > &d, Real &tol)

Compute directional derivative.

virtual void hess Vec (Vector < Real > &hv, const Vector < Real > &v, const Vector < Real > &x, Real &tol)

Apply Hessian approximation to vector.

virtual void invHessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)

Apply inverse Hessian approximation to vector.

virtual void precond (Vector< Real > &Pv, const Vector< Real > &v, const Vector< Real > &x)

Apply preconditioner to vector.

virtual std::vector< std::vector< Real >> checkGradient (const Vector< Real > &x, const Vector< Real > &d, const bool printToScreen=true, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)

Finite-difference gradient check.

virtual std::vector< std::vector< Real >> checkHessVec (const Vector< Real > &x, const Vector< Real > &v, const bool printToScreen=true, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)

Finite-difference Hessian-applied-to-vector check.

5.14.1 Detailed Description

template<class Real> class ROL::Objective< Real>

Provides the interface to evaluate objective functions. Provides the definition of the objective function interface.

Definition at line 59 of file ROL_Objective.hpp.

The documentation for this class was generated from the following files:

- ROL_Objective.hpp
- ROL_ObjectiveDef.hpp

5.15 ROL::Objective_Beale< Real > Class Template Reference

Beale's function.

#include <ROL_Beale.hpp>Inheritance diagram for ROL::Objective_Beale< Real >::

Public Member Functions

- Real value (const Vector< Real > &x, Real &tol)

 Compute value.
- void gradient (Vector< Real > &g, const Vector< Real > &x, Real &tol)

 Compute gradient.
- void hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)

Apply Hessian approximation to vector.

void invHessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)

Apply inverse Hessian approximation to vector.

Private Attributes

• std::vector< Real> \mathbf{y}_{-}

5.15.1 Detailed Description

 $template < class \ Real > class \ ROL :: Objective_Beale < Real >$

Beale's function.

Definition at line 64 of file ROL_Beale.hpp.

The documentation for this class was generated from the following file:

• ROL_Beale.hpp

5.16 ROL::Objective_FreudensteinRoth< Real > Class Template Reference

Freudenstein and Roth's function.

#include <ROL_FreudensteinRoth.hpp>Inheritance diagram for
ROL::Objective_FreudensteinRoth< Real >::

Public Member Functions

- Real value (const Vector < Real > &x, Real &tol)
 Compute value.
- void gradient (Vector< Real > &g, const Vector< Real > &x, Real &tol)

 Compute gradient.
- void hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)

Apply Hessian approximation to vector.

void invHessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)

Apply inverse Hessian approximation to vector.

5.16.1 Detailed Description

template < class Real > class ROL::Objective_FreudensteinRoth < Real >

Freudenstein and Roth's function.

Definition at line 64 of file ROL_FreudensteinRoth.hpp.

The documentation for this class was generated from the following file:

• ROL_FreudensteinRoth.hpp

5.17 ROL::Objective_LeastSquares< Real > Class Template Reference

Least squares function.

#include <ROL_LeastSquares.hpp>Inheritance diagram for
ROL::Objective_LeastSquares< Real >::

Public Member Functions

- Real value (const Vector< Real > &x, Real &tol)

 Compute value.
- void gradient (Vector < Real > &g, const Vector < Real > &x, Real &tol)
 Compute gradient.
- void hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)

Apply Hessian approximation to vector.

5.17.1 Detailed Description

template<class Real> class ROL::Objective_LeastSquares< Real>

Least squares function.

Definition at line 64 of file ROL_LeastSquares.hpp.

The documentation for this class was generated from the following file:

• ROL_LeastSquares.hpp

5.18 ROL::Objective_PoissonControl< Real > Class Template Reference

Poisson distributed control.

#include <ROL_PoissonControl.hpp>Inheritance diagram for
ROL::Objective_PoissonControl< Real >::

Public Member Functions

- Objective_PoissonControl (Real alpha=1.e-4)
- void apply_mass (Vector< Real > &Mz, const Vector< Real > &z)
- void solve_poisson (Vector< Real > &u, const Vector< Real > &z)
- Real evaluate_target (Real x)
- Real value (const Vector< Real > &z, Real &tol) Compute value.
- void gradient (Vector< Real > &g, const Vector< Real > &z, Real &tol)

 Compute gradient.
- void hess Vec (Vector < Real > &hv, const Vector < Real > &v, const Vector < Real > &z, Real &tol)

Apply Hessian approximation to vector.

Private Attributes

• Real alpha_

5.18.1 Detailed Description

 $template < class \ Real > class \ ROL :: Objective_PoissonControl < Real >$

Poisson distributed control.

Definition at line 64 of file ROL_PoissonControl.hpp.

The documentation for this class was generated from the following file:

• ROL_PoissonControl.hpp

5.19 ROL::Objective_PoissonInversion< Real > Class Template Reference

Poisson material inversion.

#include <ROL_PoissonInversion.hpp>Inheritance diagram for
ROL::Objective_PoissonInversion< Real >::

Public Member Functions

- **Objective_PoissonInversion** (int nz=32, Real alpha=1.e-4)
- Real **reg_value** (const **Vector**< Real > &z)
- void reg_gradient (Vector< Real > &g, const Vector< Real > &z)
- void reg_hessVec (Vector < Real > &hv, const Vector < Real > &v, const Vector < Real > &z)
- void apply_mass (Vector < Real > &Mf, const Vector < Real > &f)
- void solve_poisson (Vector< Real > &u, const Vector< Real > &z, Vector< Real > &b)
- Real evaluate_target (Real x)
- void apply_linearized_control_operator (Vector < Real > &Bd, const Vector < Real > &z, const Vector < Real > &d, const Vector < Real > &u)
- void apply_transposed_linearized_control_operator (Vector< Real > &Bd, const Vector< Real > &z, const Vector< Real > &d, const Vector< Real > &u)
- void apply_transposed_linearized_control_operator_2 (Vector< Real > &Bd, const Vector< Real > &z, const Vector< Real > &v, const Vector< Real > &d, const Vector< Real > &u)
- void solve_state_equation (Vector< Real > &u, const Vector< Real > &z)
- void solve_adjoint_equation (Vector< Real > &p, const Vector< Real > &u, const Vector< Real > &z)
- void solve_state_sensitivity_equation (Vector< Real > &w, const Vector<
 Real > &v, const Vector< Real > &u, const Vector< Real > &z)
- void solve_adjoint_sensitivity_equation (Vector< Real > &q, const Vector<
 Real > &w, const Vector< Real > &v, const Vector<
 Real > &u, const Vector<
 Real > &u, const Vector<
- Real value (const Vector < Real > &z, Real &tol)

Compute value.

- void gradient (Vector< Real > &g, const Vector< Real > &z, Real &tol)

 Compute gradient.
- void hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &z, Real &tol)

Apply Hessian approximation to vector.

Private Attributes

- int **nu**_
- int **nz**_
- Real hu_
- Real hz_
- Real alpha_
- Real eps_
- int reg_type_

5.19.1 Detailed Description

template<class Real> class ROL::Objective_PoissonInversion< Real>

Poisson material inversion.

Definition at line 66 of file ROL_PoissonInversion.hpp.

The documentation for this class was generated from the following file:

• ROL_PoissonInversion.hpp

5.20 ROL::Objective_Powell< Real > Class Template Reference

Powell's badly scaled function.

#include <ROL_Powell.hpp>Inheritance diagram for ROL::Objective_Powell< Real >::

Public Member Functions

- Real value (const Vector < Real > &x, Real &tol)
 Compute value.
- void gradient (Vector < Real > &g, const Vector < Real > &x, Real &tol)
 Compute gradient.
- void hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)

Apply Hessian approximation to vector.

void invHessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)

Apply inverse Hessian approximation to vector.

5.20.1 Detailed Description

template<class Real> class ROL::Objective_Powell< Real>

Powell's badly scaled function.

Definition at line 64 of file ROL_Powell.hpp.

The documentation for this class was generated from the following file:

• ROL_Powell.hpp

5.21 ROL::Objective_Rosenbrock< Real > Class Template Reference

Rosenbrock's function.

#include <ROL_Rosenbrock.hpp>Inheritance diagram for ROL::Objective_Rosenbrock< Real >::

Public Member Functions

- Objective_Rosenbrock (Real alpha=100.0)
- Real value (const Vector< Real > &x, Real &tol)

 Compute value.
- void gradient (Vector < Real > &g, const Vector < Real > &x, Real &tol)
 Compute gradient.
- void hessVec (Vector < Real > &hv, const Vector < Real > &v, const Vector < Real > &x, Real &tol)

Apply Hessian approximation to vector.

void invHessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)

Apply inverse Hessian approximation to vector.

Private Attributes

• Real alpha_

5.21.1 Detailed Description

template<class Real> class ROL::Objective_Rosenbrock< Real>

Rosenbrock's function.

Definition at line 64 of file ROL_Rosenbrock.hpp.

The documentation for this class was generated from the following file:

• ROL_Rosenbrock.hpp

5.22 ROL::Objective_SumOfSquares< Real > Class Template Reference

Sum of squares function.

#include <ROL_SumOfSquares.hpp>Inheritance diagram for
ROL::Objective_SumOfSquares< Real >::

Public Member Functions

- Real value (const Vector< Real > &x, Real &tol)

 Compute value.
- void gradient (Vector < Real > &g, const Vector < Real > &x, Real &tol)
 Compute gradient.
- void hessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector<
 Real > &x, Real &tol)

Apply Hessian approximation to vector.

void invHessVec (Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)

Apply inverse Hessian approximation to vector.

5.22.1 Detailed Description

template < class Real > class ROL::Objective_SumOfSquares < Real >

Sum of squares function.

Definition at line 64 of file ROL_SumOfSquares.hpp.

The documentation for this class was generated from the following file:

• ROL_SumOfSquares.hpp

5.23 ROL::Secant< **Real** > **Class Template Reference**

Provides interface for and implements limited-memory secant operators.

#include <ROL_Secant.hpp>Inheritance diagram for ROL::Secant < Real >::

Public Member Functions

- Secant (int M=10)
- Teuchos::RCP< SecantState< Real >> & get_state ()
- virtual void update (const Vector< Real > &grad, const Vector< Real > &gp, const Vector< Real > &s, const Real snorm, const int iter)
- virtual void applyH (Vector< Real > &Hv, const Vector< Real > &v, const Vector< Real > &x)=0
- virtual void applyH0 (Vector< Real > &Hv, const Vector< Real > &v, const Vector< Real > &x)
- virtual void applyB (Vector< Real > &Bv, const Vector< Real > &v, const Vector< Real > &x)=0
- virtual void applyB0 (Vector< Real > &Bv, const Vector< Real > &v, const Vector< Real > &x)
- void **test** (const Vector < Real > &x, const Vector < Real > &s)

Private Attributes

• Teuchos::RCP< SecantState< Real >> state_

5.23.1 Detailed Description

template<class Real> class ROL::Secant< Real>

Provides interface for and implements limited-memory secant operators.

Definition at line 67 of file ROL_Secant.hpp.

The documentation for this class was generated from the following file:

• ROL_Secant.hpp

5.24 ROL::SecantState< Real > Struct Template Reference

Public Attributes

- std::vector< Teuchos::RCP< Vector< Real >>> iterDiff
- std::vector< Teuchos::RCP< Vector< Real >>> gradDiff
- std::vector< Real > **product**
- std::vector< Real > product2
- int storage
- int current
- int iter

5.24.1 Detailed Description

template<class Real> struct ROL::SecantState< Real>

Definition at line 56 of file ROL_Secant.hpp.

The documentation for this struct was generated from the following file:

• ROL_Secant.hpp

5.25 ROL::StatusTest< Real > Class Template Reference

Provides an interface to check status of optimization algorithms.

```
#include <ROL_StatusTest.hpp>
```

Public Member Functions

- StatusTest (Real gtol=1.e-6, Real stol=1.e-12, int max_iter=100)
- virtual bool check (AlgorithmState< Real > &state)

Check algorithm status.

Private Attributes

- Real gtol_
- Real stol_
- int max_iter_

5.25.1 Detailed Description

template<class Real> class ROL::StatusTest< Real>

Provides an interface to check status of optimization algorithms.

Definition at line 56 of file ROL_StatusTest.hpp.

The documentation for this class was generated from the following file:

• ROL_StatusTest.hpp

5.26 ROL::StdVector< Real, Element > Class Template Reference

Provides the std::vector implementation of the ROL::Vector interface.

#include <ROL_StdVector.hpp>Inheritance diagram for ROL::StdVector<
Real, Element >::

Public Member Functions

- **StdVector** (const Teuchos::RCP< std::vector< Element > > &std_vec)
- void **plus** (const Vector < Real > &x)
- void scale (const Real alpha)

Compute $y \leftarrow \alpha y$ where y = *this.

- Real **dot** (const Vector< Real > &x) const
- Real norm () const

Returns ||y|| where y = *this.

- Teuchos::RCP< Vector< Real >> clone () const
 Clone to make a new (uninitialized) vector.
- Teuchos::RCP< const std::vector< Element >> getVector () const
- Teuchos::RCP< Vector< Real > > basis (const int i) const

Return i-th basis vector: define if finite-difference gradients and Hessians are used.

• int dimension ()

Return dimension of the vector space.

Private Attributes

• Teuchos::RCP< std::vector< Element >> std_vec_

5.26.1 Detailed Description

template<class Real, class Element = Real> class ROL::StdVector< Real, Element>

Provides the std::vector implementation of the ROL::Vector interface.

Definition at line 57 of file ROL_StdVector.hpp.

The documentation for this class was generated from the following file:

• ROL_StdVector.hpp

5.27 ROL::Step< Real > Class Template Reference

Provides the interface to compute optimization steps.

#include <ROL_Step.hpp>Inheritance diagram for ROL::Step< Real >::

Public Member Functions

- Teuchos::RCP< StepState< Real >> & get_state ()
- virtual void initialize (const Vector< Real > &x, Objective< Real > &obj, AlgorithmState< Real > &algo_state)
 Initialize step.
- virtual void compute (Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj, AlgorithmState< Real > &algo_state)=0
 Compute step.
- virtual void update (Vector< Real > &x, const Vector< Real > &s, Objective< Real > &obj, AlgorithmState< Real > &algo_state)=0
 Update step, if successful.
- virtual std::string printHeader (void) const =0

 Print iterate header.
- virtual std::string printName (void) const =0

 Print step name.
- virtual std::string print (AlgorithmState< Real > &algo_state, bool print-Header=false) const =0

Print iterate status.

Public Attributes

• Teuchos::RCP< StepState< Real >> state_

5.27.1 Detailed Description

$template < class \ Real > class \ ROL :: Step < Real >$

Provides the interface to compute optimization steps.

Definition at line 76 of file ROL_Step.hpp.

The documentation for this class was generated from the following file:

• ROL_Step.hpp

5.28 ROL::StepState< Real > Struct Template Reference

Public Attributes

- Teuchos::RCP< Vector< Real >> gradientVec
- Teuchos::RCP< Vector< Real >> descentVec

5.28.1 Detailed Description

 $template < class \ Real > struct \ ROL :: StepState < Real >$

Definition at line 69 of file ROL_Step.hpp.

The documentation for this struct was generated from the following file:

• ROL_Step.hpp

5.29 ROL::TrustRegion< Real > Class Template Reference

Provides interface for and implements trust-region subproblem solvers.

#include <ROL_TrustRegion.hpp>

Public Member Functions

- **TrustRegion** (Teuchos::ParameterList &parlist)
- void update (Vector< Real > &x, Real &fnew, Real &del, int &nfval, int &ngrad, int &flagTR, const Vector< Real > &s, const Real snorm, const Real fold, const Vector< Real > &g, Objective< Real > &obj, Teuchos::RCP< Secant< Real >> &secant=Teuchos::null)
- void run (Vector < Real > &s, Real &snorm, Real &del, int &iflag, int &iter, const Vector < Real > &x, const Vector < Real > &grad, const Real &gnorm, Objective < Real > &obj, Teuchos::RCP < Secant < Real > > &secant = Teuchos::null)
- void cauchypoint (Vector< Real > &s, Real &snorm, Real &del, int &iflag, int &iter, const Vector< Real > &x, const Vector< Real > &grad, const Real &gnorm, Objective< Real > &obj, Teuchos::RCP< Secant< Real > > &secant=Teuchos::null)
- void truncatedCG (Vector< Real > &s, Real &snorm, Real &del, int &iflag, int &iter, const Vector< Real > &x, const Vector< Real > &grad, const Real &gnorm, Objective< Real > &obj, Teuchos::RCP< Secant< Real > > &secant=Teuchos::null)
- void dogleg (Vector< Real > &s, Real &snorm, Real &del, int &iflag, int &iter, const Vector< Real > &x, const Vector< Real > &grad, const Real &gnorm, Objective< Real > &obj, Teuchos::RCP< Secant< Real >> &secant=Teuchos::null)
- void doubledogleg (Vector< Real > &s, Real &snorm, Real &del, int &iflag, int &iter, const Vector< Real > &x, const Vector< Real > &grad, const Real &gnorm, Objective< Real > &obj, Teuchos::RCP< Secant< Real > > &secant=Teuchos::null)

Private Attributes

- ETrustRegion etr_
- bool useSecantPrecond_
- bool useSecantHessVec_
- int maxit
- Real tol1_
- Real tol2

- Real delmin_
- Real delmax_
- Real eta0_
- Real eta1_
- Real eta2_
- Real gamma0_
- Real gamma1_
- Real gamma2_
- Real **pRed**_
- Real TRsafe_
- Real eps_

5.29.1 Detailed Description

$template < class \ Real > class \ ROL :: TrustRegion < Real >$

Provides interface for and implements trust-region subproblem solvers.

Definition at line 56 of file ROL_TrustRegion.hpp.

The documentation for this class was generated from the following file:

• ROL_TrustRegion.hpp

5.30 ROL::TrustRegionStep< Real > Class Template Reference

Provides the interface to compute optimization steps with trust regions.

 $\label{lem:line_loss} $$\#include < ROL_TrustRegionStep.hpp>Inheritance & diagram & for \\ ROL::TrustRegionStep< Real>:: \\ \\$

Public Member Functions

- **TrustRegionStep** (Teuchos::ParameterList &parlist)
- **TrustRegionStep** (Teuchos::RCP< **Secant**< Real > > &secant, Teuchos::ParameterList &parlist)
- void initialize (const Vector< Real > &x, Objective< Real > &obj, Algorithm-State< Real > &algo_state)

Initialize step.

- void compute (Vector < Real > &s, const Vector < Real > &x, Objective < Real > &obj, AlgorithmState < Real > &algo_state)
 Compute step.
- void update (Vector< Real > &x, const Vector< Real > &s, Objective< Real > &obj, AlgorithmState< Real > &algo_state)

Update step, if successful.

• std::string printHeader (void) const

Print iterate header.

• std::string printName (void) const

Print step name.

std::string print (AlgorithmState < Real > &algo_state, bool printHeader=false)

Print iterate status.

Private Attributes

- Teuchos::RCP< Secant< Real >> secant_
- Teuchos::RCP< TrustRegion< Real >> trustRegion_
- ETrustRegion etr_
- ESecant esec_
- bool useSecantHessVec_
- bool useSecantPrecond_
- Real del_
- std::vector< bool > useInexact_
- int TRflag_
- int TR_nfval_
- int TR_ngrad_
- int CGflag_
- int CGiter_

5.30.1 Detailed Description

$template < class \ Real > class \ ROL :: TrustRegionStep < Real >$

Provides the interface to compute optimization steps with trust regions.

Definition at line 63 of file ROL_TrustRegionStep.hpp.

The documentation for this class was generated from the following file:

• ROL_TrustRegionStep.hpp

5.31 ROL::Vector < Real > Class Template Reference

Provides the vector space interface.

#include <ROL_Vector.hpp>Inheritance diagram for ROL::Vector < Real >::

Public Member Functions

- virtual void plus (const Vector &x)=0 Compute $y \leftarrow x + y$ where y = *this.
- virtual void scale (const Real alpha)=0 Compute $y \leftarrow \alpha y$ where y = *this.
- virtual Real dot (const Vector &x) const =0 Returns $\langle y, x \rangle$ where y = *this.
- virtual Real norm () const =0 Returns ||y|| where y = *this.
- virtual Teuchos::RCP< Vector > clone () const =0

 Clone to make a new (uninitialized) vector.
- virtual void axpy (const Real alpha, const Vector &x)

 Compute $y \leftarrow \alpha x + y$ where y = *this.
- virtual void zero ()

 Set to zero vector.
- virtual Teuchos::RCP< Vector > basis (const int i) const

 Return i-th basis vector: define if finite-difference gradients and Hessians are used.
- virtual int dimension ()

 Return dimension of the vector space.
- virtual void set (const Vector &x) Set $y \leftarrow x$ where y = *this.

5.31.1 Detailed Description

template<class Real> class ROL::Vector< Real>

Provides the vector space interface. The basic interface to be supplied by the user includes:

- · vector addition,
- scalar multiplication,
- dot (scalar) product of vectors,
- · vector norm,
- cloning of vectors.

The dot product can represent an inner product (in Hilbert space) or a duality pairing (in general Banach space).

There are additional virtual member functions that the user may want to reimplement for added efficiency.

Definition at line 70 of file ROL_Vector.hpp.

The documentation for this class was generated from the following file:

• ROL_Vector.hpp

Chapter 6

File Documentation

6.1 example_01.cpp File Reference

```
Shows how to minimize Rosenbrock's function using Newton-Krylov. #include "ROL_Rosenbrock.hpp"

#include "ROL_LineSearchStep.hpp"

#include "ROL_Algorithm.hpp"

#include "Teuchos_oblackholestream.hpp"

#include "Teuchos_GlobalMPISession.hpp"

#include <iostream>
```

Defines

• #define USE_HESSVEC 1

Typedefs

• typedef double RealT

Functions

• int main (int argc, char *argv[])

56 File Documentation

6.1.1 Detailed Description

Shows how to minimize Rosenbrock's function using Newton-Krylov.

Definition in file example_01.cpp.

6.2 ROL_Beale.hpp File Reference

Contains definitions for Beale's function. #include "ROL_StdVector.hpp" #include "ROL_Objective.hpp"

Classes

class ROL::Objective_Beale < Real >
 Beale's function.

Defines

• #define USE_HESSVEC 1

Functions

template < class Real > void ROL::getBeale (Teuchos::RCP < Objective < Real > > &obj, Vector < Real > &x0, Vector < Real > &x)

6.2.1 Detailed Description

Contains definitions for Beale's function.

Author:

Created by D. Ridzal and D. Kouri.

Definition in file ROL_Beale.hpp.

58 File Documentation

6.3 ROL_FreudensteinRoth.hpp File Reference

Contains definitions for Freudenstein and Roth's function. #include #ROL_-StdVector.hpp#

```
#include "ROL_Objective.hpp"
```

Classes

class ROL::Objective_FreudensteinRoth< Real >
 Freudenstein and Roth's function.

Functions

template < class Real > void ROL::getFreudensteinRoth (Teuchos::RCP < Objective < Real > > &obj, Vector < Real > &x0, Vector < Real > &x)

6.3.1 Detailed Description

Contains definitions for Freudenstein and Roth's function.

Author:

Created by D. Ridzal and D. Kouri.

Definition in file ROL_FreudensteinRoth.hpp.

6.4 ROL_LeastSquares.hpp File Reference

Contains definitions for least squares function. #include "ROL_-StdVector.hpp"

#include "ROL_Objective.hpp"

Classes

class ROL::Objective_LeastSquares < Real >
 Least squares function.

Functions

template<class Real >
 void ROL::getLeastSquares (Teuchos::RCP< Objective< Real > > &obj,
 Vector< Real > &x0, Vector< Real > &x)

6.4.1 Detailed Description

Contains definitions for least squares function.

Author:

Created by D. Ridzal and D. Kouri.

Definition in file ROL_LeastSquares.hpp.

60 File Documentation

6.5 ROL_PoissonControl.hpp File Reference

Contains definitions for Poisson optimal control. #include "ROL_StdVector.hpp"
#include "ROL_Objective.hpp"

Classes

class ROL::Objective_PoissonControl< Real >
 Poisson distributed control.

Functions

template < class Real > void ROL::getPoissonControl (Teuchos::RCP < Objective < Real > & obj, Vector < Real > & x0, Vector < Real > & x)

6.5.1 Detailed Description

Contains definitions for Poisson optimal control.

Author:

Created by D. Ridzal and D. Kouri.

Definition in file ROL_PoissonControl.hpp.

6.6 ROL_PoissonInversion.hpp File Reference

```
Contains definitions for Poisson material inversion. #include "ROL_-StdVector.hpp"

#include "ROL_Objective.hpp"

#include "Teuchos_LAPACK.hpp"
```

Classes

class ROL::Objective_PoissonInversion < Real >
 Poisson material inversion.

Functions

template<class Real > void ROL::getPoissonInversion (Teuchos::RCP< Objective< Real >> &obj, Vector< Real > &x0, Vector< Real > &x)

6.6.1 Detailed Description

Contains definitions for Poisson material inversion.

Author:

Created by D. Ridzal and D. Kouri.

Definition in file ROL_PoissonInversion.hpp.

62 File Documentation

6.7 ROL_Powell.hpp File Reference

Contains definitions for Powell's badly scaled function. #include #ROL_-StdVector.hpp#

#include "ROL_Objective.hpp"

Classes

• class ROL::Objective_Powell< Real >

Powell's badly scaled function.

Functions

template < class Real > void ROL::getPowell (Teuchos::RCP < Objective < Real > &obj, Vector < Real > &x0, Vector < Real > &x)

6.7.1 Detailed Description

Contains definitions for Powell's badly scaled function.

Author:

Created by D. Ridzal and D. Kouri.

Definition in file ROL_Powell.hpp.

6.8 ROL_Rosenbrock.hpp File Reference

Contains definitions for Rosenbrock's function. #include "ROL_-StdVector.hpp"

#include "ROL_Objective.hpp"

Classes

class ROL::Objective_Rosenbrock
 Rosenbrock's function.

Functions

template<class Real > void ROL::getRosenbrock (Teuchos::RCP< Objective< Real > > &obj, Vector< Real > &x0, Vector< Real > &x)

6.8.1 Detailed Description

Contains definitions for Rosenbrock's function.

Author:

Created by D. Ridzal and D. Kouri.

Definition in file ROL_Rosenbrock.hpp.

64 File Documentation

6.9 ROL_SumOfSquares.hpp File Reference

Contains definitions for sum of squares function. #include "ROL_-StdVector.hpp"

#include "ROL_Objective.hpp"

Classes

class ROL::Objective_SumOfSquares< Real >
 Sum of squares function.

Functions

template < class Real > void ROL::getSumOfSquares (Teuchos::RCP < Objective < Real > > &obj, Vector < Real > &x0, Vector < Real > &x)

6.9.1 Detailed Description

Contains definitions for sum of squares function.

Author:

Created by D. Ridzal and D. Kouri.

Definition in file ROL_SumOfSquares.hpp.

6.10 ROL_TestObjectives.hpp File Reference

```
Contains definitions of test objective functions. #include "ROL_-Rosenbrock.hpp"

#include "ROL_FreudensteinRoth.hpp"

#include "ROL_Beale.hpp"

#include "ROL_Powell.hpp"

#include "ROL_SumOfSquares.hpp"

#include "ROL_LeastSquares.hpp"

#include "ROL_PoissonControl.hpp"

#include "ROL_PoissonInversion.hpp"

#include "ROL_Types.hpp"

#include "ROL_StdVector.hpp"

#include "ROL_Objective.hpp"
```

Functions

template < class Real > void ROL::getTestObjectives (Teuchos::RCP < Objective < Real > > &obj, Vector < Real > &x0, Vector < Real > &x, const ETestObjectives test)

6.10.1 Detailed Description

Contains definitions of test objective functions.

Author:

Created by D. Ridzal and D. Kouri.

Definition in file ROL_TestObjectives.hpp.

66 File Documentation

6.11 ROL_Types.hpp File Reference

Contains definitions of custom data types in ROL. #include <Teuchos_-ScalarTraits.hpp>

#include <Teuchos_TestForException.hpp>

Defines

- #define **ROL VALIDATE**(A)
- #define ROL_NUM_CHECKDERIV_STEPS 13

Number of steps for derivative checks.

Enumerations

• enum **EDescent** {

DESCENT_STEEPEST = 0, DESCENT_NONLINEARCG, DESCENT_-SECANT, DESCENT NEWTON,

DESCENT_NEWTONKRYLOV, DESCENT_SECANTPRECOND, DESCENT_LAST }

Enumeration of descent direction types.

• enum ESecant {

SECANT_LBFGS = 0, SECANT_LDFP, SECANT_LSR1, SECANT_BARZILAIBORWEIN,

SECANT_USERDEFINED, SECANT_LAST }

Enumeration of secant update algorithms.

• enum ENonlinearCG {

NONLINEARCG_HESTENES_STIEFEL = 0, NONLINEARCG_FLETCHER_REEVES, NONLINEARCG_DANIEL, NONLINEARCG_POLAK_RIBIERE,

NONLINEARCG_FLETCHER_CONJDESC, NONLINEARCG_LIU_STOREY, NONLINEARCG_DAI_YUAN, NONLINEARCG_HAGAR_ZHANG,

NONLINEARCG_LAST }

Enumeration of nonlinear CG algorithms.

• enum **ELineSearch** {

LINESEARCH_BACKTRACKING = 0, LINESEARCH_BISECTION, LINESEARCH_GOLDENSECTION, LINESEARCH_CUBICINTERP,

LINESEARCH_BRENTS, LINESEARCH_LAST }

Enumeration of line-search types.

 enum ECurvatureCondition { CURVATURECONDITION_-WOLFE = 0, CURVATURECONDITION_STRONGWOLFE, CURVATURECONDITION_GOLDSTEIN, CURVATURECONDITION_-LAST }

Enumeration of line-search curvature conditions.

• enum ETrustRegion {

TRUSTREGION_CAUCHYPOINT = 0, TRUSTREGION_-TRUNCATEDCG, TRUSTREGION_DOGLEG, TRUSTREGION_-DOUBLEDOGLEG,

TRUSTREGION_LAST }

Enumeration of trust-region solver types.

• enum ETestObjectives {

TESTOBJECTIVES_ROSENBROCK = 0, TESTOBJECTIVES_FREUDENSTEINANDROTH, TESTOBJECTIVES_BEALE, TESTOBJECTIVES_POWELL,

TESTOBJECTIVES_SUMOFSQUARES, TESTOBJECTIVES_-LEASTSQUARES, TESTOBJECTIVES_POISSONCONTROL, TESTOBJECTIVES POISSONINVERSION,

TESTOBJECTIVES LAST }

Enumeration of test objective functions.

Functions

- std::string **ROL::EDescentToString** (EDescent tr)
- int ROL::isValidDescent (EDescent d)

Verifies validity of a Secant enum.

- EDescent & **ROL::operator++** (EDescent &type)
- EDescent **ROL::operator++** (EDescent &type, int)
- EDescent & ROL::operator-- (EDescent &type)
- EDescent **ROL::operator--** (EDescent &type, int)
- std::string **ROL::ESecantToString** (ESecant tr)

68 File Documentation

• int ROL::isValidSecant (ESecant s)

Verifies validity of a Secant enum.

- ESecant & **ROL::operator++** (ESecant & type)
- ESecant **ROL::operator++** (ESecant &type, int)
- ESecant & **ROL::operator--** (ESecant &type)
- ESecant **ROL::operator--** (ESecant &type, int)
- std::string ROL::ENonlinearCGToString (ENonlinearCG tr)
- int ROL::isValidNonlinearCG (ENonlinearCG s)

Verifies validity of a NonlinearCG enum.

- ENonlinearCG & **ROL::operator++** (ENonlinearCG & type)
- ENonlinearCG **ROL::operator++** (ENonlinearCG &type, int)
- ENonlinearCG & **ROL::operator--** (ENonlinearCG & type)
- ENonlinearCG **ROL::operator--** (ENonlinearCG &type, int)
- std::string **ROL::ELineSearchToString** (ELineSearch ls)
- int ROL::isValidLineSearch (ELineSearch ls)

Verifies validity of a LineSearch enum.

- ELineSearch & **ROL::operator++** (ELineSearch & type)
- ELineSearch **ROL::operator++** (ELineSearch &type, int)
- ELineSearch & **ROL::operator--** (ELineSearch & type)
- ELineSearch ROL::operator-- (ELineSearch &type, int)
- std::string **ROL::ECurvatureConditionToString** (ECurvatureCondition ls)
- int ROL::isValidCurvatureCondition (ECurvatureCondition ls)

Verifies validity of a CurvatureCondition enum.

- ECurvatureCondition & **ROL::operator++** (ECurvatureCondition & type)
- ECurvatureCondition **ROL::operator++** (ECurvatureCondition &type, int)
- ECurvatureCondition & **ROL::operator--** (ECurvatureCondition & type)
- ECurvatureCondition **ROL::operator--** (ECurvatureCondition &type, int)
- $\bullet \ \, std::string \ \, \textbf{ROL}:: \textbf{ETrustRegionToString} \, \, (ETrustRegion \, tr)$
- int ROL::isValidTrustRegion (ETrustRegion ls)

Verifies validity of a TrustRegion enum.

- ETrustRegion & **ROL::operator++** (ETrustRegion & type)
- ETrustRegion **ROL::operator++** (ETrustRegion &type, int)
- ETrustRegion & **ROL::operator--** (ETrustRegion & type)
- ETrustRegion **ROL::operator--** (ETrustRegion &type, int)
- std::string **ROL::ETestObjectivesToString** (ETestObjectives to)
- int ROL::isValidTestObjectives (ETestObjectives to)

Verifies validity of a TestObjectives enum.

- ETestObjectives & **ROL::operator++** (ETestObjectives &type)
- ETestObjectives **ROL::operator++** (ETestObjectives &type, int)
- ETestObjectives & **ROL::operator--** (ETestObjectives & type)
- ETestObjectives **ROL::operator--** (ETestObjectives &type, int)

Variables

- static const double ROL::ROL_EPSILON = std::abs(Teuchos::ScalarTraits<double>::eps())

 Platform-dependent machine epsilon.
- static const double ROL::ROL_THRESHOLD = 10.0 * ROL_EPSILON Tolerance for various equality tests.

6.11.1 Detailed Description

Contains definitions of custom data types in ROL.

Author:

Created by D. Ridzal and D. Kouri.

Definition in file ROL_Types.hpp.

Index

example_01.cpp, 55	ROL_PoissonInversion.hpp, 61
	ROL_Powell.hpp, 62
ROL::Algorithm, 11	ROL_Rosenbrock.hpp, 63
ROL::AlgorithmState, 12	ROL_SumOfSquares.hpp, 64
ROL::BarzilaiBorwein, 13	ROL_TestObjectives.hpp, 65
ROL::DefaultAlgorithm, 14	ROL_Types.hpp, 66
ROL::EpetraMultiVector, 15	
ROL::Krylov, 17	
ROL::lBFGS, 18	
ROL::IDFP, 19	
ROL::LineSearch, 20	
ROL::LineSearchStep, 22	
ROL::ISR1, 24	
ROL::NonlinearCG, 25	
ROL::NonlinearCGState, 26	
ROL::Objective, 27	
ROL::Objective_Beale, 29	
ROL::Objective_FreudensteinRoth, 31	
ROL::Objective_LeastSquares, 32	
ROL::Objective_PoissonControl, 33	
ROL::Objective_PoissonInversion, 35	
ROL::Objective_Powell, 37	
ROL::Objective_Rosenbrock, 38	
ROL::Objective_SumOfSquares, 40	
ROL::Secant, 41	
ROL::SecantState, 42	
ROL::StatusTest, 43	
ROL::StdVector, 44	
ROL::Step, 46	
ROL::StepState, 48	
ROL::TrustRegion, 49	
ROL::TrustRegionStep, 51	
ROL::Vector, 53	
ROL_Beale.hpp, 57	
ROL_FreudensteinRoth.hpp, 58	
ROL_LeastSquares.hpp, 59	
ROL_PoissonControl.hpp, 60	