Sherry likes matrices a lot, but her favorite ones are *humble matrices*. An \$N \times M\$ matrix (we'll call it \$A\$) is *humble* if:

- It contains all the elements in range \$[1, N \times M]\$ exactly once.
- For any \$2\$ elements \$(i_1, j_1)\$ and \$(i_2, j_2)\$ in matrix \$A\$:

 If \$i_1 + j_1 \lt i_2 + j_2\$, then \$A_{i_1, j_1} \lt A_{i_2, j_2}\$ should hold.

Given N and M, find and print the total number of possible humble matrices; as this number can be quite large, print your answer modulo 10^9+7 .

Input Format

Two space-separated integers, \$N\$ and \$M\$, respectively.

Constraints

• \$1 \le N,M \le 10^6\$

Scoring

- \$1 \le N,M \le 10^3\$ for \$30\%\$ of the test data.
- \$1 \le N,M \le 10^6\$ for \$100\%\$ of the test data.

Output Format

Print the total number of humble matrices possible, modulo \$10^9+7\$.

Sample Input 0

Sample Output 0

2

2 2

Sample Input 1

3 2

Sample Output 1

4

Explanation

There are \$2\$ possible \$2 \times 2\$ humble matrices:

- 1. **[1,2]**
 - [3, 4]
- 2. **[1,3]**

[2,4]

Thus, we print the result of $2 \ \ (10^9+7)$, which is 2.