Linear Systems: Positive Definite Matrices and Matrix Norm Assignment

- 1. Prove that $\mathbf{A}^T \mathbf{A}$ is positive semi-definite for any matrix \mathbf{A} . When is $\mathbf{A}^T \mathbf{A}$ guaranteed to be positive definite?
- 2. If ${\bf A}$ is positive definite, then prove that ${\bf A}^{-1}$ is also positive definite.
- 3. Show that a positive definite matrix cannot have a zero or a negative element along its diagonal.
- 4. Show that the following statements are true.
 - (a) All positive definite matrices are inverstible.
 - (b) The only positive definite projection matrix is I.
- 5. Is the function $f(x_1,x_2,x_3)=12x_1^2+x_2^2+6x_3^2+x_1x_2-2x_2x_3+4x_3x_1$ positive definite?
- 6. The LU decomposition for symmetric matrices can be written as $\mathbf{A} = \mathbf{L}^T \mathbf{D} \mathbf{L}$, where \mathbf{D} is a diagonal matrix, and \mathbf{L} is lower triangular with 1 along its main diagonal. When \mathbf{A} is postive definite, we can write, $\mathbf{A} = \mathbf{C}^T \mathbf{C} = \mathbf{L}^T \sqrt{\mathbf{D}} \sqrt{\mathbf{D}} \mathbf{L}$. This is the *Cholesky decomposition*. Find \mathbf{C} for the following,
 - (a) $\begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}$
 - (b) $\begin{bmatrix} 4 & 1 & 0 \\ 1 & 8 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

7. Prove the following for $\mathbf{A} \in \mathbb{R}^{m \times n}$:

$$\mathbf{A} = egin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} = egin{bmatrix} \tilde{\mathbf{a}}_1^T \ \tilde{\mathbf{a}}_1^T \ dots \ \tilde{\mathbf{a}}_m^T \end{bmatrix}$$

- (a) $\|\mathbf{A}\|_1 = \max_{1 \le i \le n} \|\mathbf{a}_i\|_1$
- (b) $\|\mathbf{A}\|_{\infty} = \max_{1 \leq i \leq m} \|\tilde{\mathbf{a}}_i\|_1$
- (c) $\|\mathbf{A}\|_2 = \max_{1 \leq i \leq n} |\lambda_i|$, where λ_i are the eigenvalues of $\mathbf{A}^T \mathbf{A}$.
- (d) $\|\mathbf{A}\|_{F} = trace(\mathbf{A}^{T}\mathbf{A})$
- 8. Prove that the induced norm of a matrix product is bounded: $\|\mathbf{A}\mathbf{B}\| \le \|\mathbf{A}\| \|\mathbf{B}\|$.
- 9. Verify the following inequalities on vector and matrix norms $(\mathbf{x} \in \mathbb{R}^m \text{ and } \mathbf{A} \in \mathbb{R}^{m \times n})$:
 - (a) $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2}$
 - (b) $\|\mathbf{x}\|_2 \leq \sqrt{m} \|\mathbf{x}\|_{\infty}$
 - (c) $\|\mathbf{A}\|_{\infty} \leq \sqrt{n} \|\mathbf{A}\|_{2}$
 - (d) $\|\mathbf{A}\|_{2} \leq \sqrt{m} \|\mathbf{A}\|_{\infty}$
- 10. Find an expression for the induced 2-norm of an outer product, $\mathbf{A} = \mathbf{u}\mathbf{v}^T$, where $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$.