лекция 13

Мы завершаем обсуждение спектральной теоремы, точнее самого простого, в техническом отношении ее варианта. Интерес к таким конструкциям существовал всегда, поскольку любая математическая модель сводится к восстановлению сигала на входе преобразователя по сигналу, наблюдаемому на выходе. Такую задачу можно решать если преобразователь осуществляет взаимно однозначное соответствие сигналов на входе и выходе. Впервые такой подход возник в линейной алгебре. Оказалось, что матричная записи систем линейных уравнений, естественно приводит к понятию обратной матрицы.

Появление в аппарате алгебры собственных чисел, позволило вычислять функции от матриц, последующему правилу:

если $A = S\Lambda S^{-1}$, где

$$\Lambda = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{array} \right)$$

TO

$$f(\Lambda) = \begin{pmatrix} f(\lambda_1) & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & f(\lambda_n) \end{pmatrix}$$

И

$$f(A) = Sf(\Lambda)S^{-1}$$

единственным ограничением является, то что функция должна быть определена на всех числах λ_k , то есть на спектре.

Пример

если функция $f(x) = \frac{1}{x}$, то $f(A) = A^{-1}$ существует тогда и только тогда когда $Det(A) \neq 0$, то есть ноль не является собственным числом матрицы. Проверьте равенство Af(A) = I.

Теорема сформулированная на прошлой лекции прямо переносит это рассуждение на бесконечномерную ситуации, но этот требует жесткого ограничения на оператор – компактность оператор. Теорему можно распространить на самосопряженные операторы в гильбертовом пространстве, но это требует построения соответствующей оператору меры (по типу меры Лебега) в гильбертовом пространстве, где действует оператор.

Напомним соответствующее определение и саму теорему.

Определение

Оператор A, отображающий одно банахово пространство в другое, называется компактным, если из любой ограниченной последовательности $\{x_n\}$ можно выделить подпоследовательность $\{y_k\} \subset \{x_n\}$ такую, что существует $\lim_{k \to \infty} Ay_k$.

Теорема о спектральном разложении

Если A – компактный самосопряженный оператор на гильбертовом пространстве H, то он имеет не более чем счетное множество собственных векторов $\{\lambda_n\}$,

собственные подпространства оператора $H_n = \{x: Ax = \lambda_n x\}$ конечномерны, ортогональны между собой и

справедлива формула спектрального разложения

$$Ax = \sum_{n} \lambda_n P_n x$$

где P_n – ортогональный проектор на H_n .

В прошлой лекции был сделан первый шаг доказательства.

Предложение 1

Собственные числа самосопряженного оператора вещественны,

а собственные элементы, относящиеся к разным собственным числам ортогональны.

Отметим, что это утверждение использует только самоспряженность оператора. Размерность пространства никак не проявляется и компактность не нужна. Но это утверждение справедливо в предположении, что оператор имеет собственные числа. В конечномерной ситуации это следует из основной теоремы алгебры (собственное число – корень характеристического многочлена). Но ели пространство бесконенчномерно, то гарантией существования собственных чисел является компактность оператора. Этот факт является основой доказательства спектральной теоремы, чтобы его доказать, надо подготовить еще несколько утверждений о самосопряженных операторах.

Предложение 2

Произведение самосопряженных операторов является самосопряженным оператором тогда и только тогда, когда они коммутируют.

Доказательство

Утверждение следует из тождества $(AB)^* = B^*A^*$, которое легко вывести из определения сопряженного оператора. Из самосопряженности операторов A и B следует $(AB)^* = B^*A^* = BA$, а из самосопряженности оператора AB следует $(AB)^* = AB$. Эти два равенства доказывают требуемое.

Предложение 3

Если оператор A самосопряжен, то скалярное произведение (Ax, x) вещественно для любого x.

Доказательство

Если A самосопряжен, то (Ax, x) = (x, Ax), а по свойствам скалярного произведения $(Ax, x) = (A\bar{x}, x)$, то есть скалярное произведение вещественно.

Предложение 4

Если оператор A самосопряжен, то

$$||A|| = \sup\{|(Ax, x)| : ||x|| \le 1\}.$$

Доказательство

Обозначим $Q = \sup\{|(Ax,x)|: ||x|| \le 1\}$. Поскольку для $||x|| \le 1$

$$|(Ax, x)| \le ||Ax|| \cdot ||x|| \le ||A|| \cdot ||x|| \le ||A||,$$

то $Q \leq ||A||$. Для завершения доказательства достаточно установить обратное неравенство. Это можно сделать используя тождества, которые легко проверяются непосредственно

$$(A(x+y), x+y) = (Ax, x) + 2 Re(Ax, y) + (Ay, y),$$

$$(A(x-y), x-y) = (Ax, x) - 2 Re(Ax, y) + (Ay, y).$$

Из этих тождеств и равенства параллелограмма следует оценка

$$|Re(Ax,y)| = \frac{1}{4}|(A(x+y), x+y) - (A(x-y), x-y)| \le \frac{Q}{4}[||x+y||^2 + ||x-y||^2] = \frac{Q}{2}[||x||^2 + ||y||^2].$$

Фиксируем элемент x такой, что $||x|| \le 1$ и $Ax \ne 0$, и положим $y = \frac{Ax}{||Ax||}$, тогда ||y|| = 1. Получаем

$$||Ax|| = (Ax, y) = \frac{1}{||Ax||} (Ax, Ax) = Re\left(Ax, \frac{Ax}{||Ax||}\right) \le \frac{Q}{2} [||x||^2 + ||y||^2] \le Q.$$

Неравенство тем более верно, если Ax = 0. Следовательно, $||A|| \le Q$. Вместе с обратным неравенством это дает доказательство предложения.

Этой информации достаточно, чтобы доказать существование собственного числа у нашего оператора.

Теорема о существовании собственного числа

Если A — компактный самосопряженный оператор в гильбертовом пространстве, то он имеет собственное число λ такое, что $||A|| = |\lambda|$.

Доказательство

Обозначим $m=\inf\{(Ax,x):||x||=1\},\ M==\sup\{(Ax,x):||x||=1\}.$ Тогда по предложению 9.4 $||A||=\max\{|m|,M\}.$ Обозначим $\lambda=\max\{|m|,M\}$ и покажем, что это собственное число оператора. Для определенности будем считать, что $\lambda=M.$ Из определения супремума следует существование последовательности $\{x_n\}$ такой, что $||x_n||=1$ и $\lim_{n\to\infty}(Ax_n,x_n)=\lambda.$ Из определения компактности оператора следует, что найдется подпоследовательность $\{y_k\}\subset\{x_n\}$ такая, что существует $\lim_{n\to\infty}Ay_k=z_0.$ Тогда $||Ay_k-\lambda y_k||^2=||Ay_k||^2-2\lambda(Ay_k,y_k)+\lambda^2\leq \leq ||A||^2-2\lambda^2+o(1)+\lambda^2=o(1).$ Значит, $\lim_{k\to\infty}\lambda y_k=z_0.$ Положим $x_0=\lambda^{-1}z_0$ и получим $Ax_0=\lambda x_0.$

Еще одно важное свойство компактных операторов.

Предложение 4

Если A компактный оператор и $H_1=\{x:Ax==\lambda x\}$ — его собственное подпространство, то размерность H_1 конечна. Доказательство

Предположим, это неверно. Тогда в H_1 можно построить ортогональный нормированный базис $\{e_n\}$, $n=1,2,\ldots$ Из компактности оператора следует, что у последовательности $\{Ae_n\}$ найдется сходящаяся подпоследовательность $\{Ae_{n_k}\}$, $k=1,2,\ldots$ Но из того, что $e_{n_k}\in H_1$, следует $Ae_{n_k}=\lambda e_{n_k}$, то есть последовательность ортогональных векторов $\{e_{n_k}\}$ сходится, однако в силу ортогональности $||e_{n_k}-e_{n_m}||^2=2$. Полученное противоречие говорит о том, что сделанное предположение неверно.

Доказательство спектральной теоремы еще далеко до завершения, но осталась чисто техническая часть доказательства. Прямо реализующая следующее соображение:

Имея собственное число и соответствующее конечномерное подпространство, надо перейти к его ортогональному дополнению, и доказать, что сужение оператора на ортогональное дополнение удовлетворяет условиям теоремы.

За счетное число шагов будет исчерпано все пространство и поучится разбиение всего пространства в сумму ортогональных подпространств, на каждом из которых оператор действует как умножение на собственное число.