CHAPTER 8 (8.1) - IN-CLASS WORKSHEET - PART 1 MAT344 - Spring 2019

A quick review... the **generating function** A(x) for a sequence of integers (a_n) is the formal power series $\sum_{n\geqslant 0} a_n x^n$.

We don't care about convergence of the series; nonetheless we are usually interested in the **closed-form** for the generating function.

The core example of this is the "geometric" series you know and love from Calculus:

$$1 + x + x^2 + x^3 + \dots = \sum x^n = \frac{1}{1 - x}.$$

(What is the sequence a_n here?)

Work earnestly! Work in groups! Don't be afraid to ask questions, or check your work!

For each of the following sequences, find its generating function (in closed-form).

(Write both (a) the **series form** $\sum_{n\geqslant 0} a_n x^n$ (i.e. identify what a_n is, but also make sure your index is " $n\geqslant 0$ " and power on x is n inside the sum); and (b) in **closed form** (i.e. as a function of x, like a rational function, polynomial, e^x , etc.)

- 1.1 (2, 2, 2, 2, ...)
- 1.2 (1, 2, 4, 8, 16, ...)
- 1.3 (1, -1, 1, -1, ...)
- 1.4 (1, 2, 3, 4, ...)
- 1.5 $(1^2, 2^2, 3^2, ...)$
- 1.6 (*) (1, 1/2, 1/3, 1/4, 1/5, ...)

(This is not a sequence of integers, but ignore that and use the opposite approach from the previous two cases to get this one.)

1.7 (*)
$$(2^3, 3^3, 4^3, ...)$$

Fix a generating function $A(x) = \sum a_n x^n$.

Determine the **closed form** of the following generating functions in terms of A(x):

2.1
$$R(x) = \sum_{n \geqslant 1} \alpha_{n-1} x^n$$
, i.e. the gf for the sequence $(r_n) = (0, \alpha_0, \alpha_1, \alpha_2, ...)$.

We could call this the result of ("shifting a_n to the right").

2.2
$$L(x) = \sum_{n\geqslant 1} \alpha_n x^{n-1}$$
, i.e. the gf for the sequence $(l_n) = (\alpha_1, \alpha_2, \alpha_3, ...)$.

We could call this the result of ("shifting a_n to the left").

2.3
$$L_2(x)=\sum_{n\geqslant 2}\alpha_nx^{n-2}$$
, i.e. the gf for the sequence $(l_{2,n})=(\alpha_2,\alpha_3,\alpha_4,...).$

2.4 To what extent are R(x) and L(x) inverses of each other?

Recall (from Lemma 8.4): if $C(x) = \sum c_n x^n = A(x)B(x)$ (i.e. is the product of generating functions $A(x) = \sum a_n x^n$ and $B(x) = \sum b_n x^n$), then

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Find the closed form of each of the following generating functions:

3.1 $C_A(x) = \alpha_0 + (\alpha_0 + \alpha_1)x + (\alpha_0 + \alpha_1 + \alpha_2)x^2 + ... = \sum_n c_n x^n$

Here $A(x) = \sum a_n x^n$ is unknown; your answer should be in terms of A(x).

3.2 $D(x) = C_A(x)$, but where A(x) = 1/(1-x). (Notice that this recovers for us one of the closed forms we found in Question 1.)

3.3 $S(x) = \sum s_n x^n = 1 + (1+2)x + (1+2+3)x^2 + ...$

 $T(x) = \sum t_n x^n = 1 + (1+4)x + (1+4+9)x^2 + ...$

 $(*) \ E(x) = \sum e_n x^n = \binom{0}{0} + \left(\binom{1}{0} + \binom{1}{1}\right) x + \left(\binom{2}{0} + \binom{2}{1} + \binom{2}{2}\right) x^2 + \dots$

This one is a bit of a trick question...

Hint: use D(x).

3.5

In the previous problem, we found that:

$$S(x) = (1-x)^{-3} = \sum_{n} s_n x^n = \sum_{n} \left(\sum_{k=0}^n (k+1) \right) x^n$$
and
$$T(x) = (1+x)(1-x)^{-4} = \sum_{n} t_n x^n = \sum_{n} \left(\sum_{k=0}^n (k+1)^2 \right) x^n$$

Here $s_n = 1 + 2 + ... + n + (n + 1)$ and $t_n = 1^2 + 2^2 + ... + n^2 + (n + 1)^2$ are the sums of the first n + 1 numbers and the sum of the first n + 1 squares, respectively.

We already know¹ nice **closed formulas** for s_n and t_n:

$$s_n = \frac{(n+1)(n+2)}{2} \; (\star) \; \text{,} \quad \text{ and } \quad t_n = \frac{(n+1)(n+2)(2n+3)}{6} \; (\star \; \star)$$

We want to **derive** these formulas using our knowledge of the **Generalized Binomial Theorem**.

Recall that a special case of it tells us that for k > 0:

$$(1+x)^{-k} = \sum_{n\geqslant 0} \binom{-k}{n} x^n$$

- 4.1 Prove algebraically that $\binom{-k}{n}$ (here k > 0 still) is equal to $(-1)^n \binom{n+k-1}{k-1}$.
- 4.2 Use this to rewrite the **series forms** of S(x) and T(x) so that s_n and t_n are expressed as the formulas (\star) and $(\star \star)$ above, i.e. we want to see

$$S(x) = \sum_{n} \frac{(n+1)(n+2)}{2} x^{n}$$
, and $T(x) = \sum_{n} \frac{(n+1)(n+2)(2n+3)}{6} x^{n}$

¹You would have perhaps proved that these are true in MAT102 using induction, and you might have used them in Calculus when working with Riemann sums.

5 Fix an arbitrary gf $A(x) = \sum a_n x^n$.

5.1 What is
$$b_n$$
 if $B(x) = \sum b_n x^n = \frac{A(\sqrt{x}) + A(-\sqrt{x})}{2}$?

5.2 What is
$$c_n$$
 if $C(x) = \sum c_n x^n = \frac{A(\sqrt{x}) - A(-\sqrt{x})}{2\sqrt{x}}$?

- 5.3 Find the closed form of $D(x) = \sum d_n x^n$ where $(d_n) = (1,0,1,0,1,0,...)$.
- 5.4 Find the **closed form** of $E(x) = \sum e_n x^n$ where $(e_n) = (0, 1, 0, 1, 0, 1, ...)$.

6

Let $S(x) = \sum s_n x^n$ where s_n is the n-th Fibonnaci number, i.e. s_n satisfies $s_0 = 1$, $s_1 = 1$ and $s_n = s_{n-1} + s_{n-2}$ for $n \ge 2$.

- 6.1 Derive a **functional equation** involving S, then solve it to show that $S(x) = \frac{1}{1-x-x^2}$. Start by substituting the recurrence relation for s_n into " $S(x) = \sum s_n x^n$ ".
- 6.2 Use *partial fractions* to rewrite the closed-form of S(x) as a sum of fractions of the form " $\frac{\alpha}{1-x^*}$ ".

Here α is some number, and "*x*" could be something more complicated, like x^2 or 2x, etc.

Steps:

- Show that the roots of the denominator are $\phi = \frac{1}{2} + \frac{\sqrt{5}}{2}$ and $\phi = \frac{1}{2} \frac{\sqrt{5}}{2}$.
- Write $1-x-x^2=(1-\varphi x)(1-\varphi x)$ and do partial fractions with these factors. Note that $\varphi+\varphi=1$.
- You should get

$$\frac{1}{1 - x - x^2} = \frac{A}{1 - \phi x} + \frac{B}{1 - \phi x}$$
, where $A = \frac{1}{\sqrt{5}} \cdot \phi$, $B = -\frac{1}{\sqrt{5}} \cdot \phi$

- 6.3 Rewrite the expression you got for S from the previous part as a sum of *series* by finding the **series form** of each partial fraction.
- 6.4 Extract a closed formula for s_n from the result in the previous part.
- 6.5 (*) Go back to 6.2 and instead of moving on to 6.3, instead rewrite the closed form in the form " $\frac{1}{1-(...)}$ ", convert to series form, and then apply the **Binomial Theorem** to get a (messier) series form expression for s_n involving $\binom{n}{k}$'s. What is the relationship to *Pascal's Triangle?*