Lecture #1

Introduction

Who am I

Visit **ANPL** (also in person)

Who are You?

Introduction

- Autonomous mobile systems key questions include
 - Where am I?
 - What is the surrounding environment?
 - What should I do next? Where am I going?
 - How to get there?

State Estimation & Perception

Planning & Control

- Required online
- Additional complexity for multiple platforms/robots

Urban IROS 2013 workshop

Indoor Upenn

Autonomous Cars Georgia Tech

Introduction

- Autonomous mobile systems key questions include
 - Where am I?
 - What is the surrounding environment?
 - What should I do next? Where am I going?
 - How to get there?

State Estimation & Perception

Planning & Control

- Required capabilities:
 - Estimate robot pose wrt to the environment
 - Obtain a model of the environment
 - A given map (Uncertainties? Dynamic environments?)
 - Perceive and analyze the environment on the fly
 - Plan actions, taking uncertainty into account

Numerous Applications

- Indoor, urban, underwater navigation
- Space, other planets
- Autonomous driving
- Robotic surgery
- Multi-robot, swarms
- Visual odometry
- Virtual/augmented reality
- ...

Vision Aided Quadrotor Navigation

Project Tango (Google)

Vision Aided Quadrotor Navigation

Aggressive Flight

Multi-Robot Localization, Mapping & Data Association

Distributed Real-time Cooperative Localization and Mapping using an Uncertainty-Aware Expectation Maximization Approach

> Jing Dong, Erik Nelson, Vadim Indelman, Nathan Michael, Frank Dellaert

Georgia Institute for Robotics Tech and Intelligent Machines

Structure From Motion (SfM): Building Rome in a Day

Online Inference: The Bayes Tree

The Bayes Tree: An Algorithmic Foundation for Probabilistic Robot Mapping

Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela IIa, John Leonard, Frank Dellaert

Seq: Manhattan dataset

IJRR Multimedia Extension

School of Interactive Computing Georgia Institute of Technology Computer Scienceand Artificial Intelligence Laboratory Massachusetts Instituteof Technology

Sampling Based Motion Planning

Application to Quadrotor Trajectory Planning

Polynomial Trajectory Planning for Quadrotor Flight

Charles Richter, Adam Bry, Nicholas Roy Robust Robotics Group

Augmented & Virtual Reality

Microsoft HoloLens (for example):

Nonparametric Object SLAM

SLAM with Objects using a Nonparametric Pose Graph

Beipeng Mu, Shih-Yuan Liu, Liam Paull, John Leonard, and Jonathan How

> Carbonatory for Information and Decision Systems Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Convolutional Neural Networks for Pose Estimation

Convolutional networks for real-time 6-DOF camera relocalization

Alex Kendall, Matthew Grimes, Roberto Cipolla

Socially Aware Motion Planning with Deep Reinforcement Learning

Many More Applications

8

- Space, other planets
- Autonomous driving
- Robotic surgery
- Multi-robot, swarms
- Visual odometry

•

This Course

- Fundamental topics in Vision Aided Navigation (VAN) and Simultaneous Localization and Mapping (SLAM)
- Some advanced topics towards end of course
- Projects focus on specific topic from a list opportunity to get in-depth understanding, identify research problem
- A bit of hands-on experience (homework)

Course Diagram

3D Transformations

Dead Reckoning

Basic Probability

Bayesian Inference

Extended Kalman/Information Filter

Projective camera geometry

Multi View Geometry

Feature Matching

Bundle Adjustment

VAN, SLAM

Graphical models

Incremental Smoothing and Mapping (iSAM)

Advanced topics (subject to progress in class)

Multi-Robot SLAM & VAN

Belief Space Planning

Heads Up!

In Spring'21 semester:

Autonomous Navigation and Perception (086762)

Heads Up!

Technion Robotics Seminars (TRS) – Fall'21 semester:

We are delighted to introduce the upcoming series of lectures for Fall'21 semester: Technion Robotics Seminars

Wednesdays at 15:00

03/11: Michael Kaess - Robotics Institute, Carnegie Melon University

10/11: Jan Faigl - Artificial Intelligence Center, Czech Technical University in Prague

17/11: Ilana Nisky - Biomedical Engineering, Ben Gurion University of the Negev

24/11 (at 16:00): Oren Salzman – Computer Science, Technion-Israel Institute of Technology

08/12: Tal Nir - Principal computer vision engineer, Asensus surgical

22/12: Luca Carlone - Laboratory for Information & Decision Systems (LIDS), Massachusetts Institute of Technology

05/01: Sarah Keren - Computer Science, Technion-Israel Institute of Technology

12/01: Shai Revzen - Electrical Engineering and Computer Science, University of Michigan

19/01: Sven Konig - Computer Science, University of Southern California

26/01: Hadas Kress-Gazit - Mechanical and Aerospace Engineering, Cornell University

Addition details: https://robotics-seminars.net.technion.ac.il/

Logistics

- Lectures: 3 weekly hours
- Grading policy:
 - Homework: 20% (teams of two students)
 - Project: 30%
 - Midterm exam: 50% (must pass)
 Moed A: 28/12/2021; Moed B: 03/02/2022
- Project
 - Choose topic from a list (1-3 papers)
 - Presentation to class
 - Report: summarize main ideas, identify weak points, basic implementation/demo
 - Teams of two students

Logistics

Course webpage:

- http://vindelman.net.technion.ac.il/teaching/
- Piazza: https://piazza.com/technion.ac.il/fall2021/086761

Important:

- Course is maintained via Piazza
- Provides: Handouts, homework, announcements, project and forum
- Sign up today to the course Piazza page
- Let me know (by email) in case you do not have a Technion email
- Choose project topic November 23rd 2021 no extensions!