Algebra I - Teoría para el primer parcial

Silvano Picard

April 2024

1 Conjuntos, Relaciones y Funciones

1.1 Conjuntos

Se dice conjunto a una colección de objetos, los cuales son llamados elementos. Un ejemplo de conjunto puede ser: A=1,2,3,7,8. Al definir un conjunto no importa el orden y tampoco la repetición, ya que en este último caso cuentan como si aparecieran una sola vez. Un conjunto puede describirgse de dos maneras:

- Por comprensión: $Q = \left\{ \frac{a}{b}, a \in Z, b \in N \right\}$
- Por extensión: $N = \{1, 2, 3, 4, ...\}$

1.2 Pertenencia

Respecto al conjunto vacío éste no pertenece a otro conjunto a menos que sea explicitado. Entonces si A es un conjunto definido como $A = \{1, 2, 3, 4\} \rightarrow \emptyset \notin A$ luego si B es otro conjunto definido como $B = \{3, 5, \emptyset, 8\} \rightarrow \emptyset \in B$.

1.3 Inclusión

Sean A y B conjuntos. Se dice que B está incluido en A cuando todos los elementos de B pertenecen a A: $B \subseteq A \iff \forall x : x \in B \to x \in A$.

Se dice que B no está incluido en A cuando algún elemento de B no pertenece a A: $BA \iff \exists x \in B: x \notin A$.

Entonces tenemos las siguientes afirmaciones tautológicas:

- \bullet $A \subseteq A$
- $\emptyset \subset A$

1.4 Conjunto de partes

Los elemtos de p(a) son los subconjuntos de A: $B \in p(a) \iff B \subseteq A$. Así tengo que $p(\emptyset) = \{\emptyset\}$ por tanto $\emptyset \in p(\emptyset)$ pues $\emptyset \subseteq \emptyset$

1.5 Operaciones entre conjuntos

1.5.1 Complemento

Siendo A y U conjuntos defino el complemento de A como: $A\subseteq U\to A^c\subseteq U, x\in A^c\iff x\in U\land x\notin A$

1.5.2 Unión

Siendo A,B,U conjuntos y $A,B\subseteq U$, la unión de A y B se define como: $A\cup B=\{x\in U:x\in A\vee x\in B\}$. Entonces tengo que $A\cup B=B\cup A,\ A\cup\emptyset=A,\ A\cup U=U$ y $A\cup A^c=U$

1.5.3 Intersección

Siendo A,B,U conjuntos tales que $A,B\subseteq U$. La intersección de A y B se escribe como: $A\cap B=\{x\in U:x\in A\land x\in B\}.$

Entonces tengo que:

- $A \cap B = B \cap A$
- $A \cap \emptyset = \emptyset$
- $A \cap U = A$
- $A \cap A^c = \emptyset$
- $A \cap B = B \iff B \subseteq A$

Por tanto puedo decir que $\emptyset \subseteq (A \cap B) \subseteq (A \cup B) \subseteq U$.

1.5.4 Leyes de De Morgan

Siendo A,B,U conjuntos tales que $A,B\subseteq U$ tengo que:

- $(A \cup B)^c = A^c \cap B^c$
- $\bullet \ (A \cap B)^c = A^c \cup B^c$

1.5.5 Diferencia

Sean A,B,U conjuntos y $A,B\subseteq U$ defino la diferencia entre A y B como: $A\setminus B=\{x\in A:x\notin B\}$ Entonces si $A\cap B=\emptyset \to [(A\setminus B=A)\wedge (B\setminus A=B)]$ y además:

- $A \setminus B \neq B \setminus A$ (en general)
- $A \setminus \emptyset = A$
- $A \setminus U = \emptyset$
- $\bullet \ \emptyset \setminus A = \emptyset$
- $\bullet \ U \setminus A = A^c$

1.5.6 Diferencia Simétrica

Sean A,B,U conjuntos tales que $A,B\subseteq U$ defino la diferencia simétrica como: $A\triangle B=(A\setminus B)\cup (B\setminus A)=(A\cup B)\setminus (A\cap B).$

Entonces tengo que:

- $A\triangle B = B\triangle A$
- $A \triangle \emptyset = A$
- $A\triangle U = A^c$
- $A \triangle A = \emptyset$
- $A\triangle A^c = U$

1.5.7 Propiedad distributiva en conjuntos

- $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$
- $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$

1.5.8 Producto cartesiano

Siendo A,B,U,V conjuntos tales que $A\subseteq U$ y $B\subseteq V$ defino el producto cartesiano como: $A\times B=\{(a,b):a\in A\wedge b\in B\}\subseteq U\times V$

De esta forma puedo establecer las siguientes afirmaciones:

- $A \times B = B \times A \iff A = B$
- $A \times \emptyset = \emptyset$
- $\bullet \ \emptyset \times B = \emptyset$
- $U \times V = \{(x, y)/x \in V \land y \in V\}$

1.6 Relaciones

Sean A,B conjuntos, una relación R de A en B es un subconjunto (cualquiera) de $A \times B$ osea que: R relación de A en B \iff R \subseteq $A \times B$ \iff R \in $p(A \times B)$.

Un ejemplo puede ser $A = \{a, b, c\}$ y $B = \{1, 2\}$ y $R_1 = \{(a, 1), (b, 1), (b, 2)\}$. Otros útiles pueden ser $R_2 = \emptyset$ (nadie está relacionado con nadie) y $R_3 = A \times B$ (todos están relacionados con todos).

1.6.1 Relaciones de un conjunto en sí mismo

Sea A un conjunto. Una relación en A es un subconjunto (cualquiera) de $A \times A$ (A^2). R relación en A $\iff R \subseteq A^2 \iff R \in p(A^2)$

1.6.2 Propiedades

Sea $R \in p(A^2)$ una relación en A:

- R es reflexiva si $\forall x \in A$ se tiene xRx
- R es simétrica si $\forall x, y \in A$ x tiene xRy \rightarrow yRx
- R es transitiva si $\forall x, y, z \in A$ se tiene xRy \land yRz \rightarrow xRz
- R es antisimétrica si $\forall x, y \in A$ se tiene xRy \land yRx \rightarrow x=y lo cual es lo mismo que decir $\forall x, y \in A$ si xy y xRy \rightarrow $y\cancel{R}x$

1.6.3 Relaciones de equivalencia y relaciones de orden

Sea R una relación en A entonces R es una relación de equivalencia si R es reflexiva, simétrica y transitiva.

Luego, se dice que R es una relación de orden si R es reflexiva, antisimétrica y transitiva

1.6.4 Particiones y clases de equivalencia

Se dice clase de equivalencia de x cuando tengo un conjunto de todos los elementos relacionados con ese x. Por ejemplo si tengo un $R = \{(2,5), (2,8)\}$ tengo que la clase de equivalencia de 2 es: $[2] = \{5,8\}$

1.7 Funciones

Dados X, Y conjuuntos. Una funcion $f: X \to Y$ es una asignación que a cada elemento $x \in X$ le asigna un elemento y (solo uno) de Y. Se nota y = f(x).

 $R = \{(x,y) \in X \times Y\}$. R relación es una fucnión $\iff \forall x \in X, \exists y \in Y : (x,y) \in R$ y además y es único. Es decir que a $\forall x \in X, \exists ! y \in Y : (x,y) \in R$ se lo llama y = f(x).

 $f: X \to Y$ es la función nula si $f(x) = 0, \forall x \in X$. Además f y g son iguales como funciones si: $f, g: X \to Y: f = g \iff f(x) = g(x), \forall x \in X$

1.7.1 Imagen y dominio de f

Se define la imagen de f como: $Im(f) = \{y \in Y : \exists x \in X : f(x) = y\} \subseteq Y$. La imagen es un subconjunto del conjunto de llegada, $Im(f) \subseteq Y$.

El dominio es lo mismo que el conjunto de partida (para nosotros).

1.7.2 Inyectividad, sobreyectividad y biyectividad

Sea $f: X \to Y$,

- f es inyectiva $\iff \forall x_1, x_2 \in X, f(x_1) = f(x_2) \to x_1 = x_2$ o también se puede ver como: f es inyectiva $\iff \forall x_1, x_2 \in X, x_1x_2 \to f(x_1)f(x_2)$
- f es sobreyectiva $\iff Im(f) = Y$
- f es biyectiva \iff f es inyectiva y sobreyectiva

1.7.3 Función inversa

Sea $f: X \to Y$ biyectiva, osea $\forall y \in Y, \exists ! x: y = f(x)$, entonces $f^{-1}: Y \to X, f^{-1}(y) = x \iff f(x) = y$. Por definición, la función inversa f^{-1} es biyectiva y $(f^{-1})^{-1} = f$.

1.7.4 Composición de funciones

Sea $f: X \to Y$ entonces tengo que: $f^{-1}(f(x)) = x, \forall x \in X$ es decir que $f^{-1} \circ f = id_x \to f^{-1} \circ f(x) = f^{-1}(f(x))$.

También vale que $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y, \forall y \in Y : f \circ f^{-1} = id_y$. Entonces podemos concluir que se cumple $f \circ f^{-1} = id_y$ y $f^{-1} \circ f = id_x$.

2 Numeros Naturales e Inducción

2.1 Sumatoria y productoria

- Suma de Gauss: $\forall n \in N, S_n = \frac{n(n+1)}{2} = \sum_{i=1}^n i$
- Suma geométrica: $Q_n = \sum_{k=0}^n q^k$. Escrito de otra manera implica que si $q \neq 1$ entonces $Q_n = \frac{q^{n+1}-1}{q-1}$ y si q=1 entonces $Q_n=n+1$.

2.1.1 Propiedades de la sumatoria

- $\sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k = \sum_{k=1}^{n} (a_k + b_k)$
- $c \cdot \sum_{k=1}^{n} a_k = \sum_{k=1}^{n} (c \cdot a_k)$
- $\bullet \ \sum_{k=1}^{n+1} a_k = \sum_{k=1}^n a_k + a_{n+1}$

2.1.2 Productoria

$$\prod_{k=1}^{n} a_k = a_1 \cdot a_2 \cdot \dots \cdot a_k.$$

Las propiedades escritas para la sumatoria también aplican para la productoria.

2.2 Principios de Inducción

Sea p(n) una proposición sobre N $(\forall n, p(n)V \lor p(n)F)$ tengo la pregunta: ¿p(n) verdadero para todo $n \in N$?. Además tengo que un conjunto inductivo se define de la siguiente manera:

- Sea $H \subseteq N$ es inductivo si:
- $1 \in H$
- $\forall h \in R, h \in H \Rightarrow h+1 \in H$

2.2.1 Principio de Inducción I

Sea p(n) una proposición sobre N, si se cumple:

- p(1)V
- $\forall h \in N, p(h)V \Rightarrow p(h+1)V$

Entonces tengo que p(n) es verdadero $\forall n \in N$

2.2.2 Principio de Inducción II

Sea $n_0 \in \mathbb{Z}$ y sea p(n) una proposición sobre $\mathbb{Z}_{\geq n_0}$, si se cumple:

- $p(n_0)$ es V
- $\forall h \in \mathbb{Z}_{\geq n_0}$, $p(h) V \Rightarrow p(h+1)V$

Entonces puedo afirmar que p(n) es V $\forall n \geq n_0$

2.2.3 Principio de Inducción III

Sea p(n) una proposición sobre N, si se cumple:

- $p(1)V \wedge p(2)V$
- $\forall h \in N$, $p(h)V \land p(h+1)V \Rightarrow p(h+2)V$

Entonces puedo afirmar que p(n) es $V \forall n \in N$

2.2.4 Principio de Inducción IV

Sea p(n) una proposición sobre $Z_{>n_0}$, si se cumple:

- $p(n_0)V \wedge p(n_0+1)V$
- $\forall h \in \mathbb{Z}_{\geq n_0}, \ p(h)V \land p(h+1)V \Rightarrow p(h+2)V$

Entonces puedo afirmar que p(n) es V $\forall n \geq n_0$

2.2.5 Principio de Inducción V

Este es el principio de induccion completa o también llamada global. Sea p(n) una proposición sobre N, si se cumple:

- p(1) V
- $\forall h \in N$: $p(k)V \Rightarrow p(h+1)V$ para $1 \le k \le h$

Entonces puedo afirmar que p(n) es $V \forall n \in N$

2.2.6 Principio de Inducción VI

Sea $n_0 \in \mathbb{Z}$ y sea p(n) una proposición en $\mathbb{Z}_{\geq n_0}$, si se cumple:

- $p(n_0) V$
- $\forall h \geq n_0$: $p(k)V \Rightarrow p(h+1)V$ para $n_0 \leq k \leq h$

Entonces puedo afirmar que p(n) es V, $\forall n \geq n_0$

2.2.7 Sucesión de Fibonacci

Tengo que $F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n \ \forall n \ge 0$. Ahi la sucesión está definida por recurrencia, luego de una breve demostración podemos llegar a que el término general de la sucesión de Fibonacci es

$$F_n = \frac{1}{\sqrt{5}} (\varphi^n - \hat{\varphi}^n) \forall n \in N_0$$
 (1)

2.2.8 Sucesiones de Lucas

Sea $(a_n)_{n\in\mathbb{N}_0}$ una sucesión por recurrencia que satisface

$$a_0 = \alpha, a_1 = \beta$$
 y $a_{n+2} = \gamma a_{n+1} + \delta a_n, \alpha, \beta, \gamma, \delta$ dados $\forall n \in N_0$ (2)

Entonces se puede decir que se trata de una sucesión de Lucas.

3 Combinatoria de conjuntos, relaciones y funciones