	ПЛАТА ВИМ-3U-3 Инструкция по регулировке и технологической приработке
	ИЯДС.466226.001 ИЗ
Подп. и дата	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подл.	

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая инструкция предназначена для проведения регулировки и технологической приработке платы ВИМ-3U-3, входящей в состав модуля ВИМ-3U-3 после окончания сборки и перед предъявлением в ОТК, а также для обнаружения неисправностей при неправильной работе платы ВИМ-3U-3.
- $1.2~~{
 m B}$ дальнейшем тексте настоящей инструкции плата ВИМ-3U-3 именуется ВИМ-3U-3.
- 1.3 При необходимости ссылки на настоящую инструкцию в конструкторской документации записывают: «Регулировку и технологическую приработку производить по инструкции ИЯДС.466226.001 ИЗ».

Подп. и дата								
Инв. № дубл.								
B 3 a M. H HB. N $^{\underline{b}}$								
Подп. и дата			ı	· · · · · ·				
Π_Q	Изм Лист	№ докум.	Подп.	Дата	ИЯДС.466226.0	001 И	3	
Инв. № подл.	Разраб. Пров. Т. контр. Н. контр. Утв.	المارسين المارسين			Плата ВИМ-3U-3. Инструкция по регулировке и технологической приработке	Лит.	Лист 2	Листов 47
					Kопировал			Φ ормат $A4$

ДОКУМЕНТАЦИЯ

При работе по настоящей инструкции необходима следующая документация:

- а) чертеж платы ВИМ-3U-3 «ИЯДС.466226.001 СБ»;
- ВИМ-3U-3 б) схема электрическая принципиальная платы «ИЯДС.466226.001 ЭЗ»;
 - в) технические условия на модуль ВИМ-3U-3 «ИЯДС.466226.002 ТУ»;
- г) перечень аппаратных ВИМ-3U-3 ресурсов платы «ИЯДС.466226.001 Д4»;
- д) схема электрическая принципиальная платы стендового мезонина «ИЖДЯ.469135.050 ЭЗ».

Подп. и дата								
Инв. № дубл.								
Взам. инв. №								
Подп. и дата								
юдл.								
Инв. № подл.	Из	м Лист	№ докум.	Подп. "	Дата	ИЯДС.466226.001 ИЗ		Лист
						Копировал	Форма	4.4

3 ОБОРУДОВАНИЕ

Тип оборудования,

Инв. № подл.

№ докум.

Подп.

3.1 При работе по настоящей инструкции должно быть подготовлено следующее испытательное оборудование, средства контроля и измерения:

Требуемая метрологическая

Таблица 1 – Испытательное оборудование, средства контроля и измерения

наименование	Кол.	Обозначение	характеристика
Технологический стенд отладки и контроля ВИМ-3U-3, ТСОиК-ВИМ-3U-3	1	ИЖДЯ.441461.004	-
Мультиметр АРРА-505	1		Допустимые погрешности при измерении сопротивления: а) в диапазоне до 10 МОм: ± 100 КОм; б) в диапазоне до 1 МОм: ± 2 КОм; в) в диапазоне до 100 КОм: ± 100 Ом; г) в диапазоне до 10 КОм: ± 10 Ом; д) в диапазоне до 1 КОм: ± 0,1 Ом. Допустимая погрешность при измерении напряжения: а) в диапазоне до 10 В: ± 1 мВ б) в диапазоне до 1 В: ± 1 мВ
	 		77

Продолжение таблицы 1

Тип оборудования,	Кол.	Обозначение	Требуемая метрологическая
наименование	IXOJI.	Ооозначение	характеристика
Вибростенд	1		Частота от 20 до 30 Гц,
${ m ST}~5000/300/1$		-	ускорение до 2 g
			Пределы задания
Камера тепла и хо-	1		температуры: от
лода МС-81		-	минус (40 ± 3) до
			плюс (80 ± 3) °C

Примечание — допускается по согласованию с представителем заказчика и метрологической службой предприятия-изготовителя применение другого испытательного оборудования, средств контроля и измерения, обеспечивающих необходимые метрологические характеристики.

- 3.2 Средства измерения должны подвергаться периодической поверке, средства контроля— проверке, испытательное оборудование— аттестации и иметь документы, подтверждающие их пригодность.
- 3.3 Не допускается применение средств измерения, не прошедших поверку, средств контроля проверку, испытательного оборудования аттестацию в установленные сроки.

Изм	Лист	№ докум.	Подп.	Дата

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При работе по настоящей инструкции должно быть обеспечено соблюдение требований безопасности работы и эксплуатации для испытательного оборудования, средств контроля и измерения, а также персонала, проводящего испытания, в соответствии с действующей нормативной документацией по технике безопасности.

ВНИМАНИЕ. Подключение и отключение ВИМ-3U-3 должно производиться при выключенных источниках питания, при отсутствии напряжений на его входах и выходах.

4.2 Исполнители до начала регулировки и технологической приработки ВИМ-3U-3 должны изучить настоящий документ в части обеспечения безаварийного проведения работ, а в процессе работ строго соблюдать технические требования инструкций по технике безопасности.

5 УСЛОВИЯ ПРОВЕДЕНИЯ РАБОТЫ

- 5.1 Климатические условия окружающей среды должны быть нормальными. Характеристики нормальных климатических условий:
 - а) температура воздуха: (25 ± 10) °C;
 - б) относительная влажность воздуха: не более 75 %;
 - в) атмосферное давление, кПа (мм рт.ст.): 84,0-106,7 (630-800).
- 5.2 Работа по настоящей инструкции должна производиться при дневном или искусственном освещении по нормам освещенности, установленным для производственных цехов машиностроения («Нормы естественного и искусственного освещения», СНиП 23-05-95).
 - 5.3 Система электроснабжения должна обеспечивать:
- а) подачу на источник питания электропитания переменным однофазным током частоты 50 Гц напряжением 220 В;
 - б) защитное заземление.

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

ИЯДС.466226.001 ИЗ

6 МЕТОДИКА РАБОТЫ

6.1 Требования к изделию

6.1.1 Работы по данной инструкции допускается проводить с платой ВИМ-3U-3, соответствующей сборочному чертежу ИЯДС.466226.001 СБ.

Примечание — Все наименования цепей и элементов указаны согласно схеме электрической принципиальной ИЯДС.466226.001 ЭЗ.

6.2 Технологическая вибрация

- 6.2.1 ВИМ-3U-3 должен быть подвергнут воздействию технологической вибрации с помощью вибростенда в соответствии с действующей конструкторской документацией (паспорт технологический ИЯДС.466226.002 Д).
- 6.2.2 После воздействия технологической вибрации следует визуально удостовериться в отсутствии дефектов монтажа.

6.3 Проверка целостности цепей питания и вторичных источников питания

6.3.1 Перед установкой перемычек, соединяющих выходы вторичных источников питания ВИМ-3U-3 с нагрузкой, с помощью мультиметра проверьте сопротивление цепей питания ВИМ-3U-3 относительно общей точки схемы (цепи GND). Измеренные сопротивления должны находиться в пределах, указанных в таблице 2.

Таблица 2 - Сопротивления цепей питания

	Контрольная	Контрольная	Минимальное	Максимальное	
Имя/описание	точка №1	точка №2	значение со-	значение со-	
цепи	(вывод	(вывод	противления,	противления,	
	компонента)	компонента)	Ом	Ом	
Выход ИП	K109	вывод №1	15800	23600	
VCC3.3	K109	колодки ХР1	13000		
VCC3.3	K78	вывод №1	700	1000	
V CC3.3	Kio	колодки ХР1	700	1000	

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

Π родолжение таблицы 2

	Контрольная	Контрольная	Минимальное	Максимальное	
Имя/описание	точка №1	точка №2	значение со-	значение со-	
цепи	(вывод	(вывод	противления,	противления,	
	компонента)	компонента)	Ом	Ом	
Выход ИП	K123	вывод №1	3400	5200	
VCC2.5	K125	колодки ХР1	3400	3200	
VCC2.5	K122	вывод №1	1300	2000	
V CC2.3	K122	колодки ХР1	1300	2000	
Выход ИП	K128	вывод №1	3500	5300	
VCC1.0	K120	колодки ХР1	3900	3300	
VCC1.0	K127	вывод №1	9,8	14,8	
V CC1.0	K121	колодки ХР1	9,0	14,0	
Выход ИП	K116	вывод №1	4400	4900	
DDR3_VDD	K110	колодки ХР1	4400		
DDR3 VDD	K117	вывод №1	1400	1700	
מסא_עם	KIII	колодки ХР1	1400	1700	
Выход ИП	K114	вывод №1	1 700 000	2 600 000	
$DDR3_VTT$	K114	колодки ХР1	1 700 000	2 600 000	
	K115	вывод №1	1700	2600	
$DDR3_VTT$	K115	колодки ХР1	1700	2600	
Выход ИП	K112	вывод №1	3 900 000	4 300 000	
DDR3_VREF	1112	колодки ХР1	3 300 000	4 300 000	
DDD3 ADEL	K113	вывод №1	156 000	200 000	
DDR3_VREF	17119	колодки ХР1	190 000	290 000	

- 6.3.2 Если обнаружено несоответствие, то следует определить причину неисправности и устранить её, затем повторить действия, начиная с пункта 6.3.1.
- 6.3.3 Включите источник питания A1 из состава TCOиK-ВИМ-3U-3 (далее по тексту — источник питания A1).
- 6.3.4 Убедитесь, что выходные параметры канала №1 источника питания настроены следующим образом:
 - выходное напряжение: $(12,0\pm0,1)$ B;

Изм	Лист	№ локум.	Полп.	Лата

Инв. № дубл.

Взам. инв. №

Подп. и дата

ИЯДС.466226.001 ИЗ

- 6.3.6 Отключите источник питания А1.
- 6.3.7 Припаяйте два провода типа МГТФ 0.35 длиной (0.5 ± 0.2) м в соответствии со схемой A.1 и рисунком A.2 приложения A к следующим точкам платы ВИМ-3U-3:
 - контакт предохранителя FU2 (цепь VS1);
 - анод защитного диода VD23 (цепь GND).
- 6.3.8 Свободные концы проводов залудить на длину не менее 10 мм и присоединить к клеммам канала №1 источника питания в соответствии со схемой А.1 приложения А.
- 6.3.9 Проверьте правильность функционирования вторичного источника питания 3,3 В (цепь VCC3.3) ВИМ-3U-3 без нагрузки.
 - 6.3.9.1 Включите источник питания А1.
- 6.3.9.2 С помощью мультиметра измерьте значение выходного напряжения вторичного источника питания 3,3 В (цепь VCC3.3) ВИМ-3U-3 относительно общей точки схемы (цепь GND). Измерение проводить между контрольными точками, указанными в таблице 3.
 - 6.3.9.3 Отключите источник питания А1.
- 6.3.9.4 Если измеренное напряжение находится в пределах, указанных в таблице 3, то считается, что вторичный источник питания правильно функционирует без нагрузки.
- 6.3.9.5 Если вторичный источник питания правильно функционирует без нагрузки, установите перемычку между точками, указанными в таблице 4, в соответствии с ИЯДС.466226.001 СБ.

Примечание — Дополнительно перемычки, установленные по цепям питания, изображены на рисунке Б.1 приложения Б.

- 6.3.9.6 Если обнаружено несоответствие, то следует определить причину неисправности и устранить её, затем повторить действия, начиная с пункта 6.3.9.
- 6.3.10 Проверьте правильность функционирования вторичных источников питания ВИМ-3U-3 2,5 В (цепь VCC2.5), 1 В (цепь VCC1.0), 1,5 В (цепь

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

DDR3_VDD), 0,75 В (цепь DDR3_VTT), 0,75 В (цепь DDR3_VREF) без нагрузки.

- 6.3.10.1 Включите источник питания А1.
- 6.3.10.2 С помощью мультиметра измерьте значение выходного напряжения вторичых источников питания ВИМ-3U-3 2,5 В (цепь VCC2.5), 1 В (цепь VCC1.0), 1,5 В (цепь DDR3_VDD), 0,75 В (цепь DDR3_VTT), 0,75 В (цепь DDR3_VREF) относительно общей точки схемы (цепь GND). Измерение проводить между контрольными точками, указанными в таблице 3.
 - 6.3.10.3 Отключите источник питания А1.
- 6.3.10.4 Если измеренные напряжения находятся в пределах, указанных в таблице 3, то считается, что вторичные источники питания правильно функционируют без нагрузки.
- 6.3.10.5 Если вторичные источники питания правильно функционируют без нагрузки, установите перемычки между точками, указанными в таблице 4, в соответствии с ИЯДС.466226.001 СБ.

Примечание — Дополнительно перемычки, установленные по цепям питания, изображены на рисунке Б.1 приложения Б.

6.3.10.6 Если обнаружено несоответствие, то следует определить причину неисправности и устранить её, затем повторить действия, начиная с пункта 6.3.9.6.

Таблица 3 – Допустимые значения выходного напряжения вторичных источников питания

	Контроль-	Контроль-	Мини-	Макси-	Диапазон
Vмя-	ная точка	ная точка	мальное	мальное	значений
/описание	№1 (вывод	№2 (вывод	напряже-	напряже-	напряже-
цепи	компонен-	компонен-	ние,	ние,	ния в
	та)	та)	В	В	%
VCC3.3	K109	вывод №1 колодки XP1	3,201	3,399	± 3
VCC2.5	K123	вывод №1 колодки XP1	2,425	2,575	± 3

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

Продолжение таблицы 3

	Контроль-	Контроль-	Мини-	Макси-	Диапазон
Π мя-	ная точка	ная точка	мальное	мальное	значений
/описание	№1 (вывод	№2 (вывод	напряже-	напряже-	напряже-
цепи	компонен-	компонен-	ние,	ние,	ния в
	та)	та)	В	В	%
		вывод №1			
VCC1.0	K128	колодки	0,97	1,03	± 3
		XP1			
		вывод №1			
$DDR3_VDD$	K116	колодки	1,455	1,545	± 3
		XP1			
		вывод №1			
$DDR3_VTT$	K114	колодки	0,728	0,773	± 3
		XP1			
		вывод №1			
DDR3_VREF	K112	колодки	0,728	0,773	± 3
		XP1			
		вывод №1			199
$+1.8\mathrm{V}_\mathrm{CPLD}$	K83	колодки	1,725	1,860	+3,3
		XP1			-4,2

Таблица 4 – Точки для установки перемычек по цепям питания

Има /одиосино ноди	Контрольная точка №1	Контрольная точка №2	
Имя/описание цепи	(вывод компонента)	(вывод компонента)	
VCC3.3	K78	K109	
VCC2.5	K122	K123	
VCC1.0	K127	K128	
DDR3_VDD	K117	K116	
DDR3_VTT	K115	K114	
DDR3_VREF	K113	K112	

6.3.11 Проверьте правильность функционирования вторичных источни-

Изм	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

ИЯДС.466226.001 ИЗ

- 6.3.11.1 Включите источник питания А1.
- 6.3.11.2 С помощью мультиметра измерьте значение выходного напряжения вторичых источников питания ВИМ-3U-3 3,3 В (цепь VCC3.3), 2,5 В (цепь VCC2.5), 1 В (цепь VCC1.0), 1,5 В (цепь DDR3_VDD), 0,75 В (цепь DDR3_VTT), 0,75 В (цепь DDR3_VREF) относительно общей точки схемы (цепь GND). Измерение проводить между контрольными точками, указанными в таблице 3.
 - 6.3.11.3 Отключите источник питания А1.
- 6.3.11.4 Если измеренные напряжения находятся в пределах, указанных в таблице 3, то считается, что вторичные источники питания правильно функционируют под нагрузкой.
- 6.3.11.5 Если обнаружено несоответствие, то следует определить причину неисправности и устранить её, затем повторить действия, начиная с пункта 6.3.11.
 - 6.3.12 Отпаяйте адаптер питания.
 - 6.3.13 Произведите визуальный контроль состояния ВИМ-3U-3.

6.4 Программирование ПЛИС

- 6.4.1 Произведите программирование ПЛИС в соответствии с инструкцией ИЯДС.466226.001 И1.
- 6.5 Проверка функционирования в нормальных климатических условиях
- 6.5.1 Произведите проверку функционирования ВИМ-3U-3 в нормальных климатических условиях (НКУ) согласно разделу 3 технических условий ИЯДС.466226.002 ТУ.
- 6.5.2 В случае невыполнения программы проверки, определите и устраните неисправность. Возможные проявления и причины неисправностей перечислены в разделе 7.

Примечание — При поиске неисправности можно воспользоваться утилитой *fpga*. Порядок использования утилиты описан в разделе 8.

Инв. № подл. п Додп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм Лист № докум. Подп. Дата

ИЯДС.466226.001 ИЗ

6.7 Технологическая приработка

- 6.7.1 После лакировки платы подвергнуть ВИМ-3U-3 технологической приработке в форме термоциклирования.
- 6.7.2 Технологическую приработку проводить тремя циклами, следующими непрерывно друг за другом.
- 6.7.3 Во время технологической приработки ВИМ-3U-3 находится в обесточенном состоянии.
- 6.7.4 Скорость изменения температуры во время технологической приработки ВИМ-3U-3 не регламентируется.
 - 6.7.5 Последовательность одного цикла:
- 6.7.5.1 ВИМ-3U-3 поместить в камеру тепла и холода, температура в которой заранее доведена до минус (40 \pm 3) °C ;
- 6.7.5.2 Выдержать ВИМ-3U-3 при заданной температуре в течение одного часа;
 - 6.7.5.3 Изменить заданную температуру в камере на плюс (80 ± 3) °C;
- 6.7.5.4 По достижении температуры в камере заданного значения выдержать ВИМ-3U-3 при этой температуре в течение одного часа;
- 6.7.5.5 Если текущий цикл является конечным в последовательности, то извлечь ВИМ-3U-3 из камеры.
- 6.7.5.6 Если текущий цикл не является конечным в последовательности, то изменить заданную температуру в камере на минус (40 ± 3) °C и по достижении температуры заданного значения повторить цикл, начиная с пункта 6.7.5.2.
- 6.7.6 По окончании третьего цикла ВИМ-3U-3 извлечь из камеры тепла и холода и выдержать в нормальных климатических условиях в течение одного часа.
- 6.7.7 Провести внешний осмотр изделия с целью определения сохранности покрытий, отсутствия коррозии и обнаружения других возможных дефектов.

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

6.8	Завершающая проверка функционирования в нормальных
климатич	еских условиях

6.8.1 Произведите проверку функционирования ВИМ-3U-3 в нормальных климатических условиях (НКУ) согласно разделу 3 технических условий ИЯДС.466226.002 ТУ.

Подп. и дата											
Инв. № дубл.											
Взам. инв. №											
Подп. и дата											
Инв. № подл.	Из	м Лист	№ докум.	Подп. ,	Дата		C.4662	26.001	И3	-	ист 14
							Копировал			Φ ормат	A4

7 ВОЗМОЖНЫЕ ПРОЯВЛЕНИЯ И ПРИЧИНЫ НЕИСПРАВНОСТЕЙ

7.1 Ошибка при выполнении теста «Проверка загрузки U-boot»

- 7.1.1 Возможные причины данного сбоя:
- а) неверные значения делителей тактовой частоты; неверная последовательность сигналов, запускающих процессор;
 - 1) запрограммирован несоответствующий загрузочный код ПЛИС;
- 2) повреждение (дефект монтажа) микросхемы ПЛИС DD30 или её сервисных компонентов;
- б) тест ОЗУ, реализованный в загрузчике завершился с ошибками. Повреждение (дефект монтажа) микросхем ОЗУ DD2, DD3, DD4, DD5 или их сервисных компонентов;
- в) процессор не прошел стадию инициализации. Повреждение (дефект монтажа) микросхемы процессора DD1 или её сервисных компонентов.

7.2 Ошибка при выполнении теста «Комплексный тест NOR1 и NOR2»

- 7.2.1 При наличии диагностического сообщения «Ошибка: Не установлено соединение через технологический Ethernet» возможны следующие причины сбоя:
- а) сбой в работе технологического интерфейса Ethernet. Возможные причины описаны в 7.14;
- б) сбой в работе технологического интерфейса Ethernet (на стороне стенда ТСОиК).
- 7.2.2 При наличии диагностического сообщения «Ошибка: не удается подключиться к TFTP серверу TCOиК» возможны следующие причины сбоя:
- а) на стендовом компьютере ТСОиК не запущена программа TFTP сервера;

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

Копировал

в) в директории TFTP сервера нет двоичных файлов, предназначенных для комплексного теста NOR1 и NOR2.

7.2.3 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:

а) повреждение (дефект монтажа) РПЗУ NOR1 или его сервисных компонентов;

б) повреждение (дефект монтажа) РПЗУ NOR2 или его сервисных компонентов;

в) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;

г) повреждение (дефект монтажа) линий связи локальной шины (между процессором и РПЗУ NOR1);

д) повреждение (дефект монтажа) линий связи локальной шины (между процессором и РПЗУ NOR2);

е) сбой в работе технологического интерфейса RS232C.

7.3 Ошибка при выполнении теста «Запись Linux OS в NOR1»

7.3.1 При наличии диагностического сообщения «Ошибка: Не установлено соединение через технологический Ethernet» возможны следующие причины сбоя:

а) сбой в работе технологического интерфейса Ethernet. Возможные причин описаны в 7.14;

б) сбой в работе технологического интерфейса Ethernet (на стороне стенда TCOиK).

7.3.2 При наличии диагностического сообщения «Ошибка: не удается подключиться к TFTP серверу TCOиК» возможны следующие причины сбоя:

a) на стендовом компьютере TCOиK не запущена программа TFTP сервера;

б) программа TFTP сервера не настроена в соответствии с интструкцией по эксплуатации TCOuK;

в) в директории TFTP сервера нет двоичных файлов, предназначенных для комплексного теста NOR1 и NOR2.

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

а) сбой в работе технологического интерфейса RS232C.

7.4 Ошибка при выполнении теста «Проверка сигнала перезагрузки»

- 7.4.1 При наличии диагностического сообщения «Ошибка при тесте самотестирования, перезагрузите плату» возможны следующие причины сбоя:
 - а) причины аналогичны перечисленным в 7.1;
- 7.4.2 При отсутствии диагностических сообщения о сбое возможны следующие его причины:
 - а) сбой в работе технологического интерфейса RS232C.

7.5 Ошибка при выполнении теста «Запуск Linux»

- 7.5.1 При наличии диагностического сообщения «Ошибка: в NOR1 образ ядра поврежден» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) РПЗУ NOR1 или его сервисных компонентов;
- б) повреждение (дефект монтажа) микросхемы процессора DD1 или его сервисных компонентов;
- в) повреждение (дефект монтажа) линий связи локальной шины (между процессором и РПЗУ NOR1).
- 7.5.2 При отсутствии диагностических сообщения о сбое возможны следующие его причины:
 - а) сбой в работе технологического интерфейса RS232C.

7.6 Ошибка при выполнении теста «Проверка порта TRS»

- 7.6.1 При отсутствии диагностических сообщения о сбое возможны следующие его причины:
- а) повреждение (дефект монтажа) микросхемы драйвера DD31 или её сервисных компонентов;
- б) повреждение (дефект монтажа) микросхемы процессора DD1 или его сервисных компонентов;
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30;

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

- г) повреждение (дефект монтажа) линии DD1 до DD30 UART[0]_SOUT, UART[0]_SIN;
 - д) повреждение (дефект монтажа) линии DD30 до DD31;
 - е) повреждение (дефект монтажа) линии DD31 до XP3 TRS_T, TRS_R;
 - ж) повреждение (дефект монтажа) разъема XP3 (VPX);

7.7 Ошибка при выполнении теста «Запись тестовых скриптов»

- 7.7.1 При отсутствии диагностических сообщения о сбое возможны следующие его причины:
- а) на стендовом компьютере TCOиK не запущена программа HTTP сервера;
- б) программа HTTP сервера не настроена в соответствии с интструкцией по эксплуатации TCOuK;
- в) в директории HTTP сервера стендовоко ΠK нет файлов, предназначенных для проверки модуля по T Y;
 - г) сбой в работе технологического интерфейса RS232C.

7.8 Ошибка при выполнении теста «Проверка доступа к ПЛИС»

- 7.8.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:
 - а) сбой в линиях связи процессора с ПЛИС (SPI, GPIO);
- б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
- в) повреждение (дефект монтажа) микросхемы ПЛИС DD30 или его сервисных компонентов;
 - г) запрограммирован несоответствующий загрузочный код ПЛИС.
- 7.8.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

Копировал

7.9 Ошибка при выполнении теста «Проверка РПЗУ NAND»

- 7.9.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:
- a) повреждение (дефект монтажа) РПЗУ NAND DD6 или его сервисных компонентов;
- б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
- в) повреждение (дефект монтажа) линий связи локальной шины (между процессором и РПЗУ NAND);
 - г) повреждение (дефект монтажа) линии NAND_CS#.
- 7.9.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

7.10 Ошибка при выполнении теста «Проверка ЭЗУ nvRAM №1»

- 7.10.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) ЭЗУ nvRAM №1 или его сервисных компонентов;
- б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
- в) повреждение (дефект монтажа) линий SPI (между процессором и ЭЗУ nvRAM №1);
 - г) повреждение (дефект монтажа) линии NVRAM1_CS.
- 7.10.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

7.11 Ошибка при выполнении теста «Проверка ЭЗУ nvRAM №2»

7.11.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;

- в) повреждение (дефект монтажа) линий SPI (между процессором и ЭЗУ $nvRAM N^2$);
 - г) повреждение (дефект монтажа) линии NVRAM2 CS.
- 7.11.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

7.12 Ошибка при выполнении теста «Проверка РПЗУ I2С EEPROM»

- 7.12.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:
- a) повреждение (дефект монтажа) РПЗУ I2C EEPROM или его сервисных компонентов;
- б) повреждение (дефект монтажа) буфера I2C DD18 или его сервисных компонентов;
- в) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
- г) повреждение (дефект монтажа) линий шины IIC[1] (между процессором и буфером);
- д) повреждение (дефект монтажа) линий шины IIC_INT (между I2C EEPROM и буфером);
 - е) повреждение (дефект монтажа) лини EN IIC INT.
- 7.12.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

7.13 Ошибка при выполнении теста «Проверка I2С термодатчиков»

7.13.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

б) повреждение (дефект монтажа) буфера I2C DD18 или его сервисных компонентов;

- в) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
- г) повреждение (дефект монтажа) линий шины IIC[1] (между процессором и буфером);
- д) повреждение (дефект монтажа) линий шины IIC_INT (между термодатчиками и буфером);
 - е) повреждение (дефект монтажа) лини EN IIC INT.
- 7.13.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

7.14 Ошибка при выполнении теста «Проверка порта Ethernet (TEth)»

- 7.14.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) микросхемы DD10 (88E1111) или её сервисных компонентов (G2, T1, VD1 и так далее). Дополнительные дифференцирующие признаки:
- 1) отсутствие синусоидального напряжения с частотой 25 МГц на выходе Ј9 (XTAL2), тестовая точка K22;
- 2) несоответствие сопротивления входных и выходных каскадов интерфейса SGMII номиналу (см. таблицу 5);

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм Лист № докум. Подп. Дата

		7.5	2.5
		Минималь-	Максималь-
	Измеряемая	ное значение	ное значение
Имя/описание цепи	микросхе-	сопротивле-	сопротивле-
	ма	ния,	ния,
		Ом	Ом
SGMII1_TX+, SGMII1_TX-, SGMII2_TX+, SGMII2_TX-, SGMII3_TX+, SGMII3_TX-	DD1 (P1010)	190	210
SGMII1_TX_C+, SGMII1_TX_C-, SGMII2_TX_C+, SGMII2_TX_C-, SGMII3_TX_C-	DD10, DD11, DD12 (88E1111)	1700	2300
SGMII1_RX+, SGMII1_RX-, SGMII2_RX+, SGMII2_RX-, SGMII3_RX+, SGMII3_RX-	DD1 (P1010)	2800	3200
SGMII1_RX_C+, SGMII1_RX_C-, SGMII2_RX_C+, SGMII2_RX_C-, SGMII3_RX_C-, SGMII3_RX_C-	DD10, DD11, DD12 (88E1111)	1900	2100

- б) повреждение (дефект монтажа) микросхемы DD1(P1010) или её сервисных компонентов. Дополнительные дифференцирующие признаки:
- 1) несоответствие сопротивления входных и выходных каскадов интерфейса SGMII номиналу (см. таблицу 5);
- в) повреждение (дефект монтажа) линий связи микросхемы DD10 (88Е1111) с микросхемой DD30 (5М2210);
- г) повреждение (дефект монтажа) линий связи микросхемы DD12 (88Е1111) с микросхемой DD30 (5М2210) с учётом развязывающих конденсаторов C99, C105, C111, C114;
- д) отсутствие сигнала синхронизации по линии $SD1_REFCLK+/SD1_REFCLK-$ (компоненты G5, DA2, DA29 и их сервисные компоненты);

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

ИЯДС.466226.001 ИЗ

а) сбой в работе технологического интерфейса RS232C.

7.15 Ошибка при выполнении теста «Проверка порта Ethernet AFDX1»

- 7.15.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) микросхемы DD11 (88E1111) или её сервисных компонентов (G3, T2, VD2 и так далее). Дополнительные дифференцирующие признаки:
- 1) отсутствие синусоидального напряжения с частотой 25 М Γ ц на выходе Ј9 (XTAL2), тестовая точка К29;
- 2) несоответствие сопротивления входных и выходных каскадов интерфейса SGMII номиналу (см. таблицу 5);
- б) повреждение (дефект монтажа) микросхемы DD1(P1010) или её сервисных компонентов. Дополнительные дифференцирующие признаки:
- 1) несоответствие сопротивления входных и выходных каскадов интерфейса SGMII номиналу (см. таблицу 5);
- в) повреждение (дефект монтажа) линий связи микросхемы DD11 (88Е1111) с микросхемой DD30 (5М2210);
- г) повреждение (дефект монтажа) линий связи микросхемы DD12 (88Е1111) с микросхемой DD30 (5М2210) с учётом развязывающих конденсаторов C100, C106, C149, C152;
- д) отсутствие сигнала синхронизации по линии $SD1_REFCLK+/SD1_REFCLK-$ (компоненты $G5,\ DA2,\ DA29$ и их сервисные компоненты);
 - e) повреждение стендового порта Ethernet.
- 7.15.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

- 7.16.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) микросхемы DD12 (88Е1111) или её сервисных компонентов (G4, T3, VD3 и так далее). Дополнительные дифференцирующие признаки:
- 1) отсутствие синусоидального напряжения с частотой 25 М Γ ц на выходе Ј9 (XTAL2), тестовая точка K36.
- 2) несоответствие сопротивления входных и выходных каскадов интерфейса SGMII номиналу (см. таблицу 5);
- б) повреждение (дефект монтажа) микросхемы DD1(P1010) или её сервисных компонентов. Дополнительные дифференцирующие признаки:
- 1) несоответствие сопротивления входных и выходных каскадов интерфейса SGMII номиналу (см. таблицу 5);
- в) повреждение (дефект монтажа) линий связи микросхемы DD12 (88Е1111) с микросхемой DD30 (5М2210) с учётом развязывающих конденсаторов C101, C107, C187, C190;
- г) повреждение (дефект монтажа) линий связи микросхемы DD12 (88Е1111) с микросхемой DD1(P1010);
- д) отсутствие сигнала синхронизации по линии $SD1_REFCLK+/SD1_REFCLK-$ (компоненты $G5,\ DA2,\ DA29$ и их сервисные компоненты);
 - e) повреждение стендового порта Ethernet.
- 7.16.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

7.17 Ошибка при выполнении теста «Проверка порта $PCIe_VPX$ »

- 7.17.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) микросхемы DD1(P1010) или её сервисных компонентов;

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

- в) повреждение (дефект монтажа) разъема XP3 (VPX);
- г) плохой контакт разъёма (разъёмов) стендового мезонина с разъёмом (разъёмами) ВИМ-3U-3;
- д) при наличии в тестах сбоя типа 7.24, 7.19 (тесты используют общую аппаратуру для проверки) у всех трёх сбоев может быть общий источник;
- е) повреждение стендового устройства РСІе (сетевая карта на модуле МКИМ).
- 7.17.2При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

7.18 Ошибка «Проверка порта при теста выполнении I2C VPX»

- 7.18.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) буфера I2C DD17 или его сервисных компонентов;
- б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
- в) повреждение (дефект монтажа) линий шины IIC[2] (между процессором и буфером);
- г) повреждение (дефект монтажа) линий шины SM0, SM1 (между буфером и разъёмом);
 - д) повреждение (дефект монтажа) лини EN IIC VPX;
 - е) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.18.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

Подп. Лата Изм Лист № докум.

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

7.19.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:

- а) повреждение (дефект монтажа) микросхемы DD1(P1010) или её сервисных компонентов;
- б) повреждение (дефект монтажа) линий связи микросхемы DD1(P1010) с разъемом XS1 (XMC) с учётом развязывающих конденсаторов C102, C108, проходных резисторов R205, R206;
 - в) повреждение (дефект монтажа) разъема XS2 (XMC);
- г) плохой контакт разъёма (разъёмов) стендового мезонина с разъёмом (разъёмами) ВИМ-3U-3;
- д) при наличии в тестах сбоя типа 7.24, 7.17 (тесты используют общую аппаратуру для проверки) у всех трёх сбоев может быть общий источник;
- е) повреждение стендового устройства PCIe (сетевая карта на модуле MKИМ).
- 7.19.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

7.20 Ошибка при выполнении теста «Проверка порта I2C XMC»

- 7.20.1 При наличии диагностического сообщения «Тест завершился неудачей» возможны следующие причины сбоя:
- a) повреждение (дефект монтажа) буфера I2C DD16 или его сервисных компонентов;
- б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
- в) повреждение (дефект монтажа) линий шины IIC[1] (между процессором и буфером);
- г) повреждение (дефект монтажа) линий шины MSCL, MSDA (между буфером и разъёмом);
 - д) повреждение (дефект монтажа) лини EN IIC XMC;
 - е) повреждение (дефект монтажа) разъема XS1 (XMC).

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

а) сбой в работе технологического интерфейса RS232C.

7.21 Ошибка при выполнении теста «Проверка порта RS232C 1»

- 7.21.1 При наличии диагностического сообщения «Ошибка передачи данных, где передающая сторона ВИМ-3U-3» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) микросхемы драйвера DD32 или её сервисных компонентов;
- б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов:
 - в) повреждение (дефект монтажа) линий UART[2]_SOUT;
 - г) повреждение (дефект монтажа) линий RS_T[1];
 - д) повреждение (дефект монтажа) лини RS DX232;
 - е) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.21.2 При наличии диагностического сообщения «Ошибка передачи данных, где принимающая сторона ВИМ-3U-3» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) микросхемы драйвера DD32 или её сервисных компонентов;
- б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
 - в) повреждение (дефект монтажа) линий UART[2]_SIN;
 - г) повреждение (дефект монтажа) линий RS R[1];
 - д) повреждение (дефект монтажа) лини RS_RX232;
 - е) повреждение (дефект монтажа) разъема XP3 (VPX).

7.22 Ошибка при выполнении теста «Проверка порта RS232C 2»

- 7.22.1 При наличии диагностического сообщения «Ошибка передачи данных, где передающая сторона ВИМ-3U-3» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) микросхемы драйвера DD32 или её сервисных компонентов;

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

- б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
 - в) повреждение (дефект монтажа) линий UART[3]_SOUT;
 - г) повреждение (дефект монтажа) линий RS_T[2];
 - д) повреждение (дефект монтажа) лини RS DX232;
 - е) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.22.2 При наличии диагностического сообщения «Ошибка передачи данных, где принимающая сторона ВИМ-3U-3» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) микросхемы драйвера DD32 или её сервисных компонентов;
- б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
 - в) повреждение (дефект монтажа) линий UART[3]_SIN;
 - г) повреждение (дефект монтажа) линий RS R[2];
 - д) повреждение (дефект монтажа) лини RS RX232;
 - е) повреждение (дефект монтажа) разъема XP3 (VPX).

7.23 Ошибка при выполнении теста «Проверка порта RS485»

- 7.23.1 При наличии диагностического сообщения «Ошибка передачи данных, где передающая сторона ВИМ-3U-3» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) микросхемы драйвера DD31 или её сервисных компонентов;
- б) повреждение (дефект монтажа) микросхемы процессора DD1 или его сервисных компонентов;
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
 - г) повреждение (дефект монтажа) линии TSOUT;
 - д) повреждение (дефект монтажа) линии UART[3]_SOUT;
 - е) повреждение (дефект монтажа) линии TRS_T;
 - ж) повреждение (дефект монтажа) линий, связывающих DD31 и DD30;
 - з) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.23.2 При наличии диагностического сообщения «Ошибка передачи данных, где принимающая сторона ВИМ-3U-3» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) микросхемы драйвера DD32 или её сервисных компонентов;

Изм	Лист	№ докум.	Подп.	Дата

- б) повреждение (дефект монтажа) процессора DD1 или его сервисных компонентов;
 - в) повреждение (дефект монтажа) линий UART[3] SIN;
 - г) повреждение (дефект монтажа) линий шины RS_R[2];
 - д) повреждение (дефект монтажа) лини RS RX232;
 - е) повреждение (дефект монтажа) разъема XP3 (VPX).

7.24 Ошибка при выполнении теста «Сигналы XMC, сквозные дифференциальные. Прохождение 125 М Γ ц»

- 7.24.1 При отсутствии диагностических сообщения о сбое возможны следующие его причины:
 - а) повреждение (дефект монтажа) разъема XS2 (XMC);
 - б) повреждение (дефект монтажа) разъема XP3 (VPX);
- в) повреждение (дефект монтажа) линий, связывающих XS2 и XP3 (JN16-A[1,3,5...19]. JN16-B[1,3,5...19], JN16-D[1,3,5...19], JN16-E[1,3,5...19]);
- г) плохой контакт разъёма (разъёмов) стендового мезонина с разъёмом (разъёмами) ВИМ-3U-3;
- д) при наличии в тестах сбоя типа 7.19, 7.17 (тесты используют общую аппаратуру для проверки) у всех трёх сбоев может быть общий источник.
- 7.24.2 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) сбой в работе технологического интерфейса RS232C.

7.25 Ошибка при выполнении теста «РК 0В/Обрыв. (DS(0)..DS(9)) Срабатывание»

- 7.25.1 При наличии диагностического сообщения «РК * не может быть активирована» (где «*» номер разовой команды в диапазоне $\{0..9\}$) возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов каскада разовой команды $\mathbb{N}_{<\!\!>}$ «*» (см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект монтажа) предохранителя по цепи питания разовых команд модуля FU1;
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
 - г) повреждение (дефект монтажа) разъема XP3 (VPX);

Изм	Лист	№ докум.	Подп.	Дата

- 7.25.2 При наличии диагностического сообщения «РК * и ** возможно замкнуты» (где «*» номер разовой команды в диапазоне $\{0..9\}$, «**» номер разовой команды в диапазоне $\{0..9\}$, обоя:
- а) повреждение (дефект монтажа) компонентов каскадов разовых команд $N_0 «** »$ и $N_0 «** »$, приводящий к замыканию отдельных цепей, участвующих в их формировании (см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект) печатной платы, приводящий к замыканию отдельных цепей, участвующих в формировании каналов №«*» и №«**»;
 - в) замыкание контактов микросхемы ПЛИС DD30;
- г) повреждение (дефект монтажа) разъема XP3 (VPX), приводящее к замыканию разовых команд N_0 «*» и N_0 «**».

7.26 Ошибка при выполнении теста «РК 0B/Обрыв. (DS(15)..DS(22)). Срабатывание»

- 7.26.1 При наличии диагностического сообщения «РК * не может быть активирована» (где «*» номер разовой команды в диапазоне $\{0..9\}$) возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов каскада разовой команды $N_{\rm M}$ «*», образующих верхнее плечо, то есть подключаемые через оптореле к цепи 27VF (см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект монтажа) предохранителя по цепи питания разовых команд модуля FU1;
- в) повреждение (дефект монтажа) оптореле V4 (для РК $\{15..18\}$) или V7 (для РК $\{19..21\}$) или их сервисных компонентов;
 - г) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
 - д) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.26.2 При наличии диагностического сообщения «РК * не исправна (активен IN0P и IN0N)» (где «*» номер разовой команды в диапазоне {0..9}) возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов каскада разовой команды \mathbb{N}_{-} «*», образующих нижнее плечо, то есть подключаемые через оптореле к цепи 0/27 В (см. ИЯДС.466226.001 ЭЗ);

Изм Лист № докум. Подп. Дата

ИЯДС.466226.001 ИЗ

Инв. № подл.

- б) повреждение (дефект монтажа) оптореле V4 (для PK $\{15..18\}$) или V7 (для PK $\{19..21\}$) или их сервисных компонентов;
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30.
- 7.26.3 При наличии диагностического сообщения «РК * и ** сработали одновременно» возможны следующие причины сбоя: (где «*» номер разовой команды в диапазоне {0..9}, «**» номер разовой команды в диапазоне {0..9 15..18, 19..21}) возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов каскадов разовых команд $N_{\rm e} = 10^{10} \, {\rm e}^{10} \, {\rm e}$
- б) повреждение (дефект) печатной платы, приводящий к замыканию отдельных цепей, участвующих в формировании каналов №«*» и №«**»;
 - в) замыкание контактов микросхемы ПЛИС DD30;
- г) повреждение (дефект монтажа) разъема XP3 (VPX), приводящее к замыканию разовых команд $N_{\rm e}$ «*» и $N_{\rm e}$ «**».

7.27 Ошибка при выполнении теста «РК 27В/Обрыв. (DS(15)..DS(22)). Срабатывание»

- 7.27.1 При наличии диагностического сообщения «РК * не может быть активирована» (где «*» номер разовой команды в диапазоне $\{0..9\}$) возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов каскада разовой команды \mathbb{N}^{0} «*», образующих нижнее плечо, то есть подключаемые через оптореле к цепи 0/27 В (см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект монтажа) оптореле V4 (для PK $\{15..18\}$) или V7 (для PK $\{19..21\}$) или их сервисных компонентов;
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
 - г) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.27.2 При наличии диагностического сообщения «РК * не исправна (активен IN0P и IN0N)» (где «*» номер разовой команды в диапазоне $\{0..9\}$) возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов каскада разовой команды \mathbb{N} «*», образующих верхнее плечо, то есть подключаемые через оптореле к цепи 27VF (см. ИЯДС.466226.001 ЭЗ);

Изм	Лист	№ докум.	Подп.	Дата

- 7.27.3 При наличии диагностического сообщения «РК * и ** сработали одновременно» (где «*» номер разовой команды в диапазоне $\{0..9\}$, «**» номер разовой команды в диапазоне $\{0..9\}$, «**» номер сбоя:
- а) повреждение (дефект монтажа) компонентов каскадов разовых команд $\mathbb{N}_{<}$ «*» и $\mathbb{N}_{<}$ **», приводящий к замыканию отдельных цепей, участвующих в их формировании (см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект) печатной платы, приводящий к замыканию отдельных цепей, участвующих в формировании каналов №«*» и №«**»;
 - в) замыкание контактов микросхемы ПЛИС DD30;
- г) повреждение (дефект монтажа) разъема XP3 (VPX), приводящее к замыканию разовых команд $N_{\rm e} *$ и $N_{\rm e} *$.

7.28 Ошибка при выполнении теста «РК 0В/Обрыв. Выходы. Срабатывание»

- 7.28.1~ При наличии диагностического сообщения «РК * Ошибка цепи ВСК resh» (где «*» номер разовой команды в диапазоне $\{23..24\}$) возможны следующие причины сбоя (отсутствия срабатывания датчика DS[*]RESH):
- а) повреждение (дефект монтажа) компонентов каскада выходной разовой команды \mathbb{N} «*», образующих нижнее плечо, то есть транзисторы и сервисные компоненты, подключающие цепь 0/27 В (см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект монтажа) компонентов датчиков, формирующих сигналы DS[*]RESH или их сервисных компонентов, приводящее к отсутствию срабатывания датчика DS[*]RESH;
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
- г) повреждение (дефект монтажа) стабилитрона VD22, C420, C421, формирующих напряжение 8 В;
- д) повреждение (дефект монтажа) предохранителя по цепи питания разовых команд модуля FU1.
 - 7.28.2 При наличии диагностического сообщения «РК * Ошибка цепи

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

Инв. № подл.

BCK resl» (где «*» - номер разовой команды в диапазоне $\{23..24\}$) возможны следующие причины сбоя (ложного срабатывания датчика DS[*]RESL):

- а) повреждение (дефект монтажа) компонентов каскада выходной разовой команды № «*», образующих верхнее плечо, то есть транзисторы и сервисные компоненты, подключающие цепь 27VF (см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект монтажа) компонентов датчиков, формирующих сигналы DS[*]RESL или их сервисных компонентов, приводящее к ложному срабатыванию датчика DS[*]RESL;
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30.
- 7.28.3 При наличии диагностического сообщения «РК * Ошибка цепи ВСК resh (проверка отсутствия замыкания)» (где «*» номер разовой команды в диапазоне {23..24}) возможны следующие причины сбоя (ложного срабатывания датчика DS[*]RESH, относящегося к каналу, отличному от проверяемого):
- а) повреждение (дефект монтажа) компонентов каскадов разовых команд №23 и №24, приводящий к замыканию отдельных цепей, участвующих в формировании РК №«*»(см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект) печатной платы, приводящий к замыканию отдельных цепей, участвующих в формировании каналов №23 и №24;
 - в) замыкание контактов микросхемы ПЛИС DD30;
- г) повреждение (дефект монтажа) разъема XP3 (VPX), приводящее к замыканию разовых команд №23 и №24.
- 7.28.4 При наличии диагностического сообщения «РК * Ошибка цепи ВСК resl (проверка отсутствия замыкания)» (где «*» номер разовой команды в диапазоне {23..24}) возможны следующие причины сбоя (ложного срабатывания датчика DS[*]RESL, относящегося к каналу, отличному от проверяемого):
- а) повреждение (дефект монтажа) компонентов каскадов разовых команд N23 и N24, приводящий к замыканию отдельных цепей, участвующих в формировании РК $N4 \ll *$ (см. ИЯДС.466226.001 93);
 - б) замыкание контактов микросхемы ПЛИС DD30.
- 7.28.5 При наличии диагностического сообщения «РК * Ошибка цепи ds_r_h МКИ» (где «*» номер разовой команды в диапазоне $\{23..24\}$) возможны следующие причины сбоя:
 - а) причины аналогичны перечисленным в 7.28.2;
 - б) повреждение (дефект монтажа) разъема XP3 (VPX).

Изм	Лист	№ докум.	Подп.	Дата

Инв. № подл.

- 7.28.6~ При наличии диагностического сообщения «РК * Ошибка цепи ds_r_l MKИ» (где «*» номер разовой команды в диапазоне $\{23..24\}$) возможны следующие причины сбоя:
 - а) причины аналогичны перечисленным в 7.28.1;
 - б) повреждение (дефект монтажа) разъема XP3 (VPX).

7.29 — Ошибка при выполнении теста «РК 27В/Обрыв. Выходы. Срабатывание»

- 7.29.1 При наличии диагностического сообщения «РК * Ошибка цепи ВСК resh» (где «*» номер разовой команды в диапазоне $\{23..24\}$) возможны следующие причины сбоя(ложного срабатывания датчика DS[*]RESH):
- а) повреждение (дефект монтажа) компонентов каскада выходной разовой команды № «*», образующих нижнее плечо, то есть транзисторы и сервисные компоненты, подключающие цепь 0/27 В (см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект монтажа) компонентов датчиков, формирующих сигналы DS[*]RESH или их сервисных компонентов, приводящее к ложному срабатыванию датчика DS[*]RESH;
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30.
- 7.29.2 При наличии диагностического сообщения «РК * Ошибка цепи ВСК resl» (где «*» номер разовой команды в диапазоне $\{23..24\}$) возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов каскада выходной разовой команды № «*», образующих верхнее плечо, то есть транзисторы и сервисные компоненты, подключающие цепь 27VF (см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект монтажа) компонентов датчиков, формирующих сигналы DS[*]RESH или их сервисных компонентов, приводящее к ложному срабатыванию датчика DS[*]RESH;
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
- г) повреждение (дефект монтажа) предохранителя по цепи питания разовых команд модуля FU1.
- 7.29.3 При наличии диагностического сообщения «РК * Ошибка цепи ВСК resh (проверка отсутствия замыкания)» (где «*» номер разовой команды в диапазоне {23..24}) возможны следующие причины сбоя (ложного срабатывания датчика DS[*]RESH, относящегося к каналу, отличному от проверяемого):

Изм	Лист	№ докум.	Подп.	Дата

- а) повреждение (дефект монтажа) компонентов каскадов разовых команд №23 и №24, приводящий к замыканию отдельных цепей, участвующих в формировании РК №«*»(см. ИЯДС.466226.001 ЭЗ);
 - б) замыкание контактов микросхемы ПЛИС DD30.
- 7.29.4 При наличии диагностического сообщения «РК * Ошибка цепи ВСК resl (проверка отсутствия замыкания)» (где «*» номер разовой команды в диапазоне {23..24}) возможны следующие причины сбоя (ложного срабатывания датчика DS[*]RESL, относящегося к каналу, отличному от проверяемого):
- а) повреждение (дефект монтажа) компонентов каскадов разовых команд N^2 и N^2 и N^2 4, приводящий к замыканию отдельных цепей, участвующих в формировании РК N^2 «*»(см. ИЯДС.466226.001 ЭЗ);
- б) повреждение (дефект) печатной платы, приводящий к замыканию отдельных цепей, участвующих в формировании каналов №23 и №24;
 - в) замыкание контактов микросхемы ПЛИС DD30;
- г) повреждение (дефект монтажа) разъема XP3 (VPX), приводящее к замыканию разовых команд №23 и №24.
- 7.29.5 При наличии диагностического сообщения «РК * Ошибка цепи ds_r_h МКИ» (где «*» номер разовой команды в диапазоне $\{23..24\}$) возможны следующие причины сбоя:
 - а) причины аналогичны перечисленным в 7.29.2;
 - б) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.29.6~ При наличии диагностического сообщения «РК * Ошибка цепи ds_r_l MKИ» (где «*» номер разовой команды в диапазоне $\{23..24\}$) возможны следующие причины сбоя:
 - а) причины аналогичны перечисленным в 7.29.1;
 - б) повреждение (дефект монтажа) разъема XP3 (VPX).

7.30 Ошибка при выполнении теста «РК Готовность. 0В/Обрыв. Срабатывание»

- 7.30.1 При наличии диагностического сообщения «РК 12 МКИ не детектировала сигнал исправности» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов каскада выходной разовой команды N12, то есть транзистор и сервисные компоненты, подключающие цепь 0/27 В (см. ИЯДС.466226.001 93);

Изм	Лист	№ докум.	Подп.	Дата

- в) повреждение (дефект монтажа) стабилитрона VD22, C420, C421, формирующих напряжение 8 В;
- г) повреждение (дефект монтажа) предохранителя по цепи питания разовых команд модуля FU1;
 - д) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.30.2 При наличии диагностического сообщения «РК 12 МКИ не детектировала отсутствие сигнала исправности» возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов каскада выходной разовой команды №12: VT4, R382, C333, VD27;
 - б) повреждение (дефект монтажа) разъема XP3 (VPX).

7.31 Ошибка при выполнении теста «РК Низковольтные. Срабатывание»

- 7.31.1 При наличии диагностического сообщения «Ошибка ВИМ-3U-3 не детектирует сигнал * » (где *» номер разовой команды в диапазоне $\{13..14\}$) возможны следующие причины сбоя (отсутствия уровня логической *1»):
- а) повреждение (дефект монтажа) компонентов каскада входной разовой команды $DS_LV[*]$, а именно DD26 и сервисных компонентов (см. ИЯДС.466226.001 \ni 3);
 - б) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
 - в) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.31.2 При наличии диагностического сообщения «Ошибка ВИМ-3U-3 детектирует ложное срабатывание сигнала *» возможны следующие причины сбоя: (где «*» номер разовой команды в диапазоне $\{13..14\}$) возможны следующие причины сбоя (неправомерного наличия уровня логической «1»):
 - а) причины аналогичны перечисленным в 7.31.1.
- 7.32 Ошибка при выполнении теста «Интрерфейсные сигналы XMC. JN-C(12)..JN-C(19), JN-F(12)..JN-F(19). Проверка срабатывания»
- 7.32.1~ При наличии диагностического сообщения «Ошибка МКИМ не детектирует JN^* », предваряемого информационным сообщением «Проверка ме-

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

- а) повреждение (дефект монтажа) разъема XS2 (XMC);
- б) повреждение (дефект монтажа) разъема XP3 (VPX);
- в) плохой контакт разъёма (разъёмов) стендового мезонина с разъёмом (разъёмами) ВИМ-3U-3.
- 7.32.2 При наличии диагностического сообщения «Ошибка МКИМ детектирует ложное срабатывание бита **», предваряемого информационным сообщением «Проверка мезонинных сигналов JN^* » (где «*» номер первой проверяемой пары однопроводных сигналов JN-C(*)-JN-F(*), «**» номер второй проверяемой пары однопроводных сигналов JN-C(**)-JN-F(**)) возможны следующие причины сбоя:
 - а) причины аналогичны перечисленным в 7.32.1.
- 7.33 Ошибка при выполнении теста «Сигналы XMC, служебные. Срабатывание» («Интерфейсные сигналы XMC. JN-C(8)..JN-C(11), JN-F(8)..JN-F(11). Проверка срабатывания»
- 7.33.1 Во время данной проверки за счёт общих аппаратных ресурсов стендового мезонинного модуля одновременно проверяются (см. ИЖДЯ.469135.050 ЭЗ):
 - а) служебные сигналы мезонинного модуля:
 - 1) выходные: MRSTI_BUF#, MVMRO_BUF, MROOT_BUF#;
- 2) входные: MRSTO_BUF#, MPRESENT_BUF#, MBIST_BUF#, MWAKE_BUF#;
- б) сквозные однопроводные сигналы мезонинного модуля: JN-C[8]..JN-C[11] JN-F[8]..JN-F[11].
- 7.33.2 При применении стендового мезонина ИЖДЯ.469135.050 служебные выходные сигналы ХМС следующим образом используются для проверки сквозных однопроводныхе мезонинных сигналов ВИМ-3U-3:
 - а) для проверки JN-C[8] используется выход ВИМ-3U-3 MRSTI_BUF#;
- б) для проверки JN-C[9] используется инверсия от выхода ВИМ-3U-3 MROOT_BUF#;
 - в) для проверки JN-C[10] используется выход ВИМ-3U-3 MVMRO BUF;
 - г) для проверки JN-C[11] используется выход BИМ-3U-3 MROOT_BUF#.

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

ИЯДС.466226.001 ИЗ

- 7.33.3 При применении стендового мезонина ИЖДЯ.469135.050 служебные входные сигналы ХМС следующим образом используются для проверки сквозных однопроводныхе мезонинных сигналов ВИМ-3U-3:
 - а) для проверки JN-F[8] используется вход ВИМ-3U-3 MRSTO BUF#;
 - б) для проверки JN-F[9] используется вход BИМ-3U-3 MPRESENT_BUF#;
 - в) для проверки JN-F[10] используется вход ВИМ-3U-3 MBIST_BUF#;
 - г) для проверки JN-F[11] используется вход ВИМ-3U-3 MWAKE_BUF#.
- 7.33.4 При наличии диагностического сообщения «Ошибка ВИМ-3U-3 не детектирует JN *», предваряемого информационным сообщением «Проверка мезонинных сигналов JN*» и «Проверка входов» (где *» номер первой проверяемой пары однопроводных сигналов JN-C(*)–JN-F(*)) возможны следующие причины сбоя:
 - а) повреждение (дефект монтажа) разъема XS2 (XMC);
 - б) повреждение (дефект монтажа) разъема XP3 (VPX);
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
- г) плохой контакт разъёма (разъёмов) стендового мезонина с разъёмом (разъёмами) ВИМ-3U-3.
- 7.33.5 При наличии диагностического сообщения «Ошибка ВИМ-3U-3 детектирует ложное срабатывание бита **», предваряемого информационным сообщением «Проверка мезонинных сигналов JN^* » и «Проверка входов» (где «*» номер первой пары «JN-F(*)-входной сигнал XMC», а «**» номер второй пары «JN-F(*)-входной сигнал XMC» проверяемых однопроводных сигналов) возможны следующие причины сбоя:
 - а) причины аналогичны перечисленным в 7.33.4.
- 7.33.6 При наличии диагностического сообщения «Ошибка МКИМ не детектирует JN * », предваряемого информационным сообщением «Проверка мезонинных сигналов JN * » и «Проверка выходов» (где * » номер первой проверяемой пары однопроводных сигналов JN-C(*)–JN-F(*)) возможны следующие причины сбоя:
 - а) причины аналогичны перечисленным в 7.33.4.
- 7.33.7 При наличии диагностического сообщения «Ошибка МКИМ детектирует ложное срабатывание бита **», предваряемого информационным сообщением «Проверка мезонинных сигналов JN*» и «Проверка выходов» (где **» номер первой пары «JN-C(*)-выходной сигнал XMC», а ***» номер второй

Изм Лист № докум. Подп. Дата

Инв. № подл.

пары «JN-C(*)-выходной сигнал XMС» проверяемых однопроводных сигналов) возможны следующие причины сбоя:

- а) причины аналогичны перечисленным в 7.33.4.
- 7.33.8 При наличии диагностического сообщения «Ошибка МКИМ не детектирует JN9», предваряемого информационным сообщением «Проверка мезонинных сигналов JN11» и «Проверка выходов» возможны следующие причины сбоя:
 - а) причины аналогичны перечисленным в 7.33.4.

7.34 Ошибка при выполнении теста «Сигналы VPX, однонаправленные. Срабатывание»

- 7.34.1 При наличии диагностического сообщения «Ошибка ВИМ-3U-3 не детектирует бит *», предваряемого информационным сообщением с именем сигнала (GA*, где «*» номер бита географической адресации модуля от 0 до 4) возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов входного каскада сигналов $\mathrm{GA}[^*]\#,$ а именно DD23 и сервисных компонентов (см. ИЯДС.466226.001 $\mathfrak{B}3$);
 - б) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
 - в) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.34.2 При наличии диагностического сообщения «Ошибка ВИМ-3U-3 детектирует ложное срабатывание бита *», предваряемого информационным сообщением с именем сигнала (GA*, где *» номер бита географической адресации модуля от 0 до 4) возможны следующие причины сбоя:
 - а) причины аналогичны перечисленным в 7.34.1.
- 7.34.3 При наличии диагностического сообщения «Ошибка ВИМ-3U-3 не детектирует сигнал», предваряемого информационным сообщением с именем сигнала (GAP, SYSCON) возможны следующие причины сбоя:
- а) повреждение (дефект монтажа) компонентов входного каскада сигналов ${\rm GAP\#},~{\rm SYS_CON},~{\rm a}$ именно ${\rm DD23}$ и сервисных компонентов (см. ИЯДС.466226.001 ${\rm 93}$);
 - б) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
 - в) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.34.4 При наличии диагностического сообщения «Ошибка ВИМ-3U-3 обнаружило ложное срабатывание сигнала», предваряемого информационным

Изм Лист № докум. Подп. Дата

а) причины аналогичны перечисленным в 7.34.3.

7.35 Ошибка при выполнении теста «Сигналы VPX, двунаправленные, входы. Срабатывание»

Примечание — Номер проверяемого входного сигнала VPX следующим образом соответствует имени цепи (см. ИЯДС.466226.001 ЭЗ):

- a) 0: NVMRO;
- б) 1: MASKABLERESET#;
- в) 2: SYSRESET#;
- г) 3: GP OPMODE.
- 7.35.1 При наличии диагностического сообщения «Ошибка ВИМ-3U-3 не детектирует сигнал линии *» (где «*» номер проверяемого входного сигнала) возможны следующие причины сбоя (отсутствия уровня логической «1»):
- а) повреждение (дефект монтажа) компонентов входного каскада сигналов NVMRO, MASKABLERESET#, SYSRESET#, GP_OPMODE, а именно DD23, DD26 и сервисных компонентов (см. ИЯДС.466226.001 ЭЗ);
 - б) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
 - в) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.35.2 При наличии диагностического сообщения «Ошибка ВИМ-3U-3 обнаружил ложное срабатывание сигнала в линии *» (где «*» номер проверяемого входного сигнала) возможны следующие причины сбоя (неправомерного наличия уровня логической «1»):
 - а) причины аналогичны перечисленным в 7.35.1.

7.36 Ошибка при выполнении теста «Сигналы VPX, двунаправленные, выходы. Срабатывание»

Примечание — Номер проверяемого выходного сигнала VPX следующим образом соответствует имени цепи (см. ИЯДС.466226.001 Э3):

a) 0: NVMRO;

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

- б) 1: MASKABLERESET#;
- B) 2: SYSRESET#;
- г) 3: GP OPMODE.
- 7.36.1 При наличии диагностического сообщения «Ошибка МКИ не де-

Изм Лист № докум. Подп. Дата

тектирует сигнал линии *» (где «*» - номер проверяемого выходного сигнала) возможны следующие причины сбоя (отсутствия уровня логической «1»):

- а) повреждение (дефект монтажа) компонентов выходного каскада сигналов NVMRO, MASKABLERESET#, SYSRESET#, GP_OPMODE, а именно DD21, DD21 и сервисных компонентов (см. ИЯДС.466226.001 ЭЗ);
 - б) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
 - в) повреждение (дефект монтажа) разъема XP3 (VPX).
- 7.36.2 При наличии диагностического сообщения «Ошибка МКИ детектирует ложное срабатывание сигнала линии *» (где «*» номер проверяемого выходного сигнала) возможны следующие причины сбоя (неправомерного наличия уровня логической «1»):
 - а) причины аналогичны перечисленным в 7.36.1.

7.37 Ошибка при выполнении теста «Проверка метки времени»

- 7.37.1 При наличии диагностического сообщения «Время ожидания ответа вышло» возможны следующие причины сбоя:
 - а) запрограммирован несоответствующий загрузочный код ПЛИС;
- б) повреждение (дефект монтажа) микросхемы усилителя DD26 или её сервисных компонентов;
 - в) повреждение (дефект монтажа) микросхемы ПЛИС DD30;
 - г) повреждение (дефект монтажа) микросхемы ПЛИС DD1 (вывод B21);
 - д) повреждение (дефект монтажа) разъема XP3 (VPX);
- е) повреждение (дефект монтажа) линии связи от XP3 (VPX) к DD26 (AUX CLK_SE);
- ж) повреждение (дефект монтажа) линии связи от DD26 к DD30 (TMARK_SE);
 - з) повреждение (дефект монтажа) линии связи от DD30 к DD1 (IRQ_8);
 - и) отсутствие отклика по технологическому интерфейсу RS232C.

Изм Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

8 ПРИМЕНЕНИЕ УТИЛИТЫ *FPGA*

8.1 Общие сведения об утилите *fpga*

- 8.1.1 При обнаружении неисправностей можно воспользоваться утилитой fpga, входящей в состав стендового ПО модуля ВИМ-3U-3 .
- 8.1.2 С помощью утилиты fpga можно считывать и записывать регистры и отдельные битовые поля ПЛИС, используя их мнемоники (краткие обозначения) или адреса в десятичной форме (только для регистров).
- 8.1.3 Распределение адресного пространства ПЛИС и описание её функционирования приведено в документе ИЯДС.466226.001 Д4 «Перечень аппаратных ресурсов».

8.2 Подготовка к запуску утилиты fpga

- 8.2.1 Убедитесь, что ТСОиК-ВИМ-3U-3 подготовлен к работе согласно пункту 3.2.4 руководства по эксплуатации ИЖДЯ.441461.004 РЭ.
 - 8.2.2 Запустите терминальную программу:
- a) Откройте терминальную программу putty.exe двойным щелчком мыши по ярлыку «putty» на рабочем столе стендового компьютера.
- б) Запустите терминальную сессию со следующими параметрами, нажав кнопку «Open» в окне программы «putty.exe»:
 - 1) Тип соединения: Serial
 - 2) Имя порта: СОМ1

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

- 3) Скорость: 115200
- 4) Количество бит данных: 8
- 5) Количество стоп-бит: 1
- 6) Контроль четности: ОТКЛ.
- 7) Управление потоком: ОТКЛ.
- 8.2.3 Включите источники питания TCOиK-BИМ-3U-3. Для этого нажмите на кнопку «Output» на приборах «A1 Источник питания APS-7205L» и «A4 Источник питания APS-7205L» и убедитесь, что надписи около «Ch1», «Ch2» и «Ch3» изменились с «OFF» на «ON».
 - 8.2.4 Дождитесь окончания загрузки операционной системы. Признаком

Изм Лист № докум. Подп. Дата

ИЯДС.466226.001 ИЗ

окончания загрузки является появление текста приглашения командной строки в строке окна терминальной программы: «/ #».

8.3 Примеры использования утилиты fpqa

Пример вызова утилиты fpga для вывода карты доступных битовых полей (их мнемоники, адреса регистров, номера используемых битов):

/tests/fpga.sh fmap

Пример вызова утилиты *fpga* для чтения битового поля «Версия кода ПЛИС»:

/tests/fpga.sh read FW VER

8.3.3 Пример вызова утилиты *fpga* для записи битового поля «Разрешение формирования прерывания по приходу сигнала метки времени»:

/tests/fpga.sh write TMARK CTRL.INT EN 1

Подп. и дата				
Инв. № дубл.				
Взам. инв. №				
Подп. и дата				
подл.	-			
Инв. № подл.	Изм Лист № докум.	Подп. Дата	ИЯДС.466226.001 ИЗ	Лист 43
		<u> </u>	Копировал	Формат А4

9 ОТЧЁТНОСТЬ

После проведения регулировки и технологической приработки заполнить паспорт технологический на ВИМ-3U-3 ИЯДС.466226.001 в соответствии с утверждённой технологической документацией.

10 ХРАНЕНИЕ И МЕЖЦЕХОВОЕ ТРАНСПОРТИРОВАНИЕ

BИМ-3U-3 упаковать, транспортировать и хранить в цеховой таре, предохранять от ударов, загрязнений и коррозии.

Подп. и дата							
Инв. № дубл.							
Взам. инв. №							
Подп. и дата							
подл.							
Инв. № подл.	Изм .	Лист	№ докум.	Подп.	Дата	ИЯДС.466226.001 ИЗ	Лист 44
						Конциона и	Формал 14

Приложение A (обязательное)

Подключение источника питания к плате ВИМ-3U-3 через адаптер

Рисунок A.1 – Схема подключения источника питания к плате ВИМ-3U-3

Рисунок A.2 – Фотография места пайки при подключении источника питания к плате ВИМ-3U-3

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

Приложение Б (обязательное)

Установка перемычек по цепям питания на плате ВИМ-3U-3

Рисунок Б.1 – Фотография установленных перемычек по цепям питания на плате ВИМ-3U-3

Подп. и дата		
Инв. № дубл.		
Взам. инв. №		
Подп. и дата		
Инв. № поцл.	ИЯДС.466226.001 ИЗ	Лист 46

№ докум.

Подп.

				Лис	ст регистрации и	зменений			
Изм.	Ном	лера лист заме-		аннули-	Всего листов (страниц) в	№ докум.	Входящий № сопроводитель-	Подп.	Дата
	ненных	ненных	НОВЫХ	рован- ных	докум.		ного докум. и дата		
1									
-									
	T	<u> </u>	ı	<u> </u>					ı
\vdash	1				ИЯЛ	TC 166	5226.001 I	<i>M</i> 2	