PARTE III

OBTENCIÓN DE MODELOS

OBTENCIÓN DE MODELOS

- 1. INFORMACIÓN SOBRE EL SISTEMA
 - EL PROPIO SISTEMA (OBSERVACIÓN, TEST)
 - CONOCIMIENTO TEÓRICO (LEYES DE LA NATURALEZA, EXPERTOS, LITERATURA, ETC.)
- 2. DESCRIPCIÓN DEL MODELO
 - ESTIMACIÓN PARAMÉTRICA
- 3. VALIDACIÓN

M. Santos, UCM

ASPECTOS A TENER EN CUENTA

- ✓ un modelo se basa siempre en aproximaciones e hipótesis
- ✓ un modelo se construye para un fin específico (debe formularse de modo que sea útil para tal fin)
- ✓ un modelo es siempre un compromiso entre la sencillez y la necesidad de recoger todos los aspectos esenciales del sistema

MODELADO E IDENTIFICACIÓN

OBTENCIÓN DE MODELOS

MODELADO IDEN

IDENTIFICACIÓN

M, Santos, UCM

M, Santos, UCM

M, Santos, UCM

MODELADO

- > unas hipótesis sobre el mismo, ó
- > el uso de las leyes de comportamiento físico-químicas, u otras particulares para el tipo de sistema, o bien expresiones deducidas de datos experimentales
- métodos de modelado Los generan conjuntos de ecuaciones diferenciales y algebraicas, normalmente no lineales

M. Santos, UCM

MODELADO

√ amplio rango de validez

√ tarea larga: requiere experiencia y conocimiento del sistema

M. Santos, UCM

IDENTIFICACIÓN

Los métodos de identificación generan ecuaciones lineales basándose exclusivamente en datos experimentales de salida exclusivamente, entrada considerando al sistema como una caja negra

IDENTIFICACIÓN

- ✓ modelos lineales orientados a control
- ✓ entorno de validez más restringido
- ✓ suelen ser más sencillos de deducir

7

OBTENCIÓN DEL MODELO SEGÚN LA INFORMACIÓN

GRADO DE DETALLE

La complejidad va a depender del sistema que intentemos modelar y simular

M. Santos, UCM

,

MODELO SIMPLE

- MODELOS LINEALES
- ORDEN DEL MODELO NO MUY ALTO
- RELACIONES FÁCILMENTE COMPUTABLES
 - ✓ Modelos manejables
 - ✓ Compromiso entre complejidad y precisión

M. Santos, UCM

SIMPLIFICACIONES

- ➤ Despreciar efectos pequeños (se usan relaciones aproximadas)
 - ⇒ depende de la precisión deseada
- > Agregación de variables de estado en una que tiene un valor *medio*

SIMPLIFICACIONES

- Separación de las constantes de tiempo
 - ⇒ reducir el orden del sistema (ignorar dinámicas muy rápidas o muy lentas)
 - \Rightarrow No ecuaciones $stiff: T_{máx}/T_{mín} \le 10-100$
 - Modelar fenómenos cuyas constantes de tiempo son de interés
 - Aproximar las dinámicas muy rápidas por relaciones estáticas
 - Aproximar como constantes las variables con dinámicas muy lentas

MODELIZACIÓN

OBTENCIÓN DE MODELOS

MODELADO

IDENTIFICACIÓN

13 M. Santos, UCM

EJEMPLO DE MODELIZACIÓN: MÁQUINA DE PRENSAR PAPEL

FASES DE LA MODELIZACIÓN

- 1) ESTRUCTURAR EL SISTEMA: dividirlo en subsistemas y determinar causas-efectos ⇒ Diagrama de bloques
- 1) FORMULAR LAS ECUACIONES BÁSICAS: relacionar variables y constantes en cada bloque
- 2) REPRESENTAR EL MODELO EN EL ESPACIO DE ESTADOS: formulación adecuada para análisis y simulación

14 M. Santos, UCM

FASE 1: ESTRUCTURAR EL PROBLEMA

- OBJETIVO: nivel de precisión
- IDENTIFICAR LAS SEÑALES
 - ¿Qué señales son de interés? (salidas)
 - ¿Qué cantidades son importantes?
 - ¿Cuáles son constantes?
 - ¿Cuáles varían con el tiempo?
 - ¿Cuáles son variables internas?
 - ¿Qué variables afectan a otras variables y cómo?
 - ¿Qué relaciones son estáticas y cuáles dinámicas?
- DIAGRAMA DE BLOQUES

15 16 M. Santos, UCM M. Santos, UCM

FASE 1: IDENTIFICAR EL OBJETIVO

■ OBJETIVO

ANÁLISIS DE LAS VARIACIONES DEL FLUJO DE LA PULPA

M. Santos, UCM

17

FASE 1: IDENTIFICAR SEÑALES

■ Entradas:

- M: velocidad del flujo del aire (flujo de masa)
- Q: velocidad del flujo de la pulpa (flujo de volumen)
- Salidas:
 - q: velocidad del flujo de salida de pulpa
 - h: nivel de pulpa
 - p_e: exceso de presión del aire

FASE 1: IDENTIFICAR LOS BLOQUES

- Subsistema de Aire
- Subsistema de Pulpa

M. Santos, UCM

FASE 1: IDENTIFICAR SEÑALES

Subsistema de pulpa

Inputs: Q: input flow rate (m³/s) pe: excess pressure in air pad (N/m²) Outputs: q: output flow rate (m³/s) h: pulp level (m) Internal variables: h_{eff} : the effective pulp level (m) (see Section 4.4) V_2 : pulp volume (m³) Constants: A: cross sectional area of head box (m²) a2: cross sectional area of slit (m2) C: coefficient of slit area (see Section 4.4) V: total volume of head box (m³) ρ_0 : density of pulp (kg/m³) (assumed to be incompressible) g: gravitational acceleration (m/s²) M. Santos, Juli

M. Santos, UCM

FASE 1: IDENTIFICAR SEÑALES

Subsistema de aire

```
Inputs:
M: inflow of air (kg/s)
V_1: volume of air (m<sup>3</sup>)
Output:
p_e: excess pressure of the air (N/m^2)
Internal variables:
\rho_1: density of air (kg/m<sup>3</sup>)
m: mass outflow of air (kg/s)
p_1: pressure in air pad (N/m^2)
N: mass of air in air pad (kg)
Constants:
T: absolute temperature of air (K)
   (We regard the physical processes in the air pad as isothermal.)
a1: cross-sectional area of air outflow (m2)
R: gas constant for air (m^2/K/s^2)
p_0: atmospheric pressure (N/m^2)
```

FASE 1: DIAGRAMA DE BLOQUES

M. Santos, UCM

FASE 2: RELACIONES ENTRE VARIABLES

- Leyes de conservación (energía, masa, electrones, movimiento,...)
 entre cantidades del mismo tipo
- Relaciones constitutivas relevantes entre cantidades de diferentes tipos (flujo en función del área, corriente en función del voltaje, etc.)

Para cada bloque

FASE 2: ECUACIONES

Subsistema de aire

Conservation law (conservation of mass)

$$\dot{N} = M - m$$

 $Constitutive\ relationships$

$$N = \rho_1 \cdot V_1$$
 (mass = density · volume)

$$p_1 = R \cdot T \cdot \rho_1$$
 (pressure)

The mass flow m is determined by Bernoulli's law for gases:

$$m = a_1 \sqrt{2p_e \rho_1}$$

The total pressure is the sum of the atmospheric and excess \mathbf{p}_{i}

$$p_1 = p_e + p_0$$

23

24

22

M. Santos

FASE 2: ECUACIONES

Subsistema de pulpa

Conservation law (conservation of volume)

$$\dot{V}_2 = Q - q$$

 $Constitutive\ relationships$

$$V_2 = Ah$$
 (volume = area · height)
$$V_1 = V - V_2$$

The flow q is determined by Bernoulli's law, as in Se complication is the excess pressure above the pulp. Copressure into an effective pulp level, we get

$$h_{eff} = h + \frac{p_e}{\rho_2 g}$$

The flow out of the head box now becomes

$$q = a_2 \cdot C \cdot \sqrt{2h_{eff}g}$$

M. Santos, UCM

M. Santos, UCM

25

FASE 3: MODELO EN EL ESPACIO DE ESTADOS

- ELEGIR UN CONJUNTO DE VARIABLES DE ESTADO
- EXPRESAR LAS DERIVADAS EN EL TIEMPO DE CADA VARIABLE SÓLO EN FUNCIÓN DE LAS VARIABLES DE ESTADO Y LAS ENTRADAS
- EXPRESAR LAS SALIDAS COMO FUNCIONES DEL ESTADO Y DE LAS ENTRADAS

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = h(x(t), u(t))$$

M. Santos, UCM

FASE 3: CONSIDERACIONES

- Número de variables de estado
 - Necesarias y suficientes
 - Redundantes
- Las variables de estado representan la memoria de lo que ha ocurrido antes (variables internas)
- Las variables cuya derivada aparece en alguna de las ecuaciones de la fase 2 son candidatas

FASE 3: VARIABLES DE ESTADO

Variables internas:

$$x_1 = V_2$$
 (volumen de la pulpa)

$$\dot{x}_1 = \dot{V}_2 = Q - q = Q - a_2 C \sqrt{2hg + \frac{2p_e}{\rho_2}}$$

$$= Q - a_2 C \left[\frac{2gV_2}{A} + \frac{2(RT\rho_1 - p_0)}{\rho_2} \right]^{1/2}$$

$$= Q - a_2 C \left[\frac{2g}{A} x_1 + \frac{2}{\rho_2} \left(\frac{RTx_2}{V - x_1} - p_0 \right) \right]^{1/2}$$

$$\dot{x}_2 = \dot{N} = M - m = M - a_1 \sqrt{2(p_1 - p_0)\rho_1} = 0$$

$$x_2 = N$$
 (masa de aire)

$$x_{2} = N = M - m = M - a_{1}\sqrt{2(p_{1} - p_{0})\rho_{1}} =$$

$$= M - a_{1}\left[2\left(RT\frac{N}{V_{1}} - p_{0}\right)\frac{N}{V_{1}}\right]^{1/2} =$$

$$= M - a_{1}\left[2\left(RT\frac{x_{2}}{V - x_{1}} - p_{0}\right)\frac{x_{2}}{V - x_{1}}\right]^{1/2}$$

27 M. Santos, UCM

FASE 3: SALIDA

Salida:

$$q = a_2 C \left[\frac{2g}{A} x_1 + \frac{2}{\rho_2} \left(\frac{RT x_2}{V - x_1} - p_0 \right) \right]^{1/2}$$

$$p_e = RT \frac{x_2}{V - x_1} - p_0$$

$$h = \frac{x_1}{A}$$

En función de x_1 , x_2 , de las entradas y constantes

M. Santos, UCM

RESUMEN FASES

FASE 1: ESTRUCTURAR EL PROBLEMA

- OBJETIVO DEL MODELO
- IDENTIFICAR LAS SEÑALES
 - ENTRADAS, SALIDAS, VARIABLES, CONSTANTES
- CÓMO INTERACTUAN LAS VARIABLES

DIAGRAMA DE BLOQUES

FASE 2: RELACIONES ENTRE VARIABLES

- LEYES DE CONSERVACIÓN
- RELACIONES CONSTITUTIVAS RELEVANTES

PARA CADA BLOQUE

M. Santos, UCM

30

RESUMEN FASES

FASE 3: FORMULAR EL MODELO EN EL ESPACIO DE ESTADOS

- ELEGIR LAS VARIABLES DE ESTADO
- EXPRESAR SUS DERIVADAS EN FUNCIÓN DE LAS VARIABLES DE ESTADO Y LAS ENTRADAS
- EXPRESAR LAS SALIDAS EN FUNCIÓN DE LAS VARIABLES DE ESTADO Y LAS ENTRADAS

EJEMPLO SISTEMAS DISCRETOS

- NÚMERO DE PERSONAS O VEHÍCULOS EN UNA COLA
 - y(n) = y(n-1) + e(n) s(n)
 - y(n): n° personas en la cola en t=nT, T = unidad de tiempo (minuto, hora, ...)
 - e(n): nº personas que han llegado desde la unidad de tiempo anterior al actual
 - s(n): nº personas que han salido desde el minuto anterior al actual

31

IDENTIFICACIÓN

OBTENCIÓN DE MODELOS

IDENTIFICACIÓN MODELADO

M. Santos, UCM

TÉCNICAS DE IDENTIFICACIÓN

MÉTODOS RECURSIVOS

Se aplican algoritmos recursivos a los datos de entrada-salida para obtener el modelo del sistema

- ✓ suelen dar modelos lineales discretos
- ✓ la entrada puede ser cualquier normalmente señales aleatorias
- ✓ dominio del tiempo y de la frecuencia

FASES DE LA IDENTIFICACIÓN

- ◆ Postular una clase de modelos para el sistema (por ejemplo, funciones de transferencia)
- ◆ Realizar los experimentos adecuados y tomar un conjunto de datos de entrada y salida del sistema
- ◆ Escoger un tipo de modelo y estimar sus parámetros por algún método numérico, para que las respuestas del modelo se ajusten lo mejor posible a los datos experimentales

M. Santos, UCM

TÉCNICAS DE IDENTIFICACIÓN

MÉTODOS BASADOS EN ENTRADAS **ESPECIALES**

Se aplica al sistema un estímulo conocido (salto, rampa, ...), y de la respuesta se deduce el modelo

- ✓ modelos lineales
- ✓ generan funciones de transferencia
- se aplican en ambientes no estocásticos
- ✓ dominio del tiempo y de la frecuencia

EJEMPLO: IDENTIFICACIÓN EN EL DOMINIO TEMPORAL

RESPUESTA DE UN SISTEMA A UNA SEÑAL DETERMINÍSTICA

La mayoría de los procesos industriales producen una respuesta estable monótona creciente a una entrada escalón, similar a la de un sistema de primer orden con retardo

EJEMPLO DE IDENTIFICACIÓN: RESULTADOS

Modelo de primer orden con retardo (CLASE):

$$Gm(s) = \frac{K}{1 + s.Tp}e^{-sTo}$$

- Características en el dominio temporal:
 - la ganancia estática K
 - la constante de tiempo dominante *Tp*
 - el retardo aparente To

M. Santos, UCM