

Deep Learning

Treinamento e Avaliação de Modelos - Deep Learning

Prof. Bruno Martins, Msc.

Ao treinar modelos de Machine Learning, buscamos o equilíbrio perfeito entre aprendizado e generalização. Porém, é comum enfrentarmos desafios como Overfitting e Underfitting. Vamos entender melhor esses conceitos:

- Overfitting (Sobreajuste)
- 🔔 O que é:
- Modelo "memoriza" demais os dados de treino.
- •Excelente no treino, ruim na validação/teste.
- **©** Exemplo:
- •Aluno que decora todas as respostas do livro, mas falha em questões inéditas.

Tipo Precisão no treino		Precisão no teste	
✓ Ideal	90%	88%	
⚠ Overfitting	98%	60%	

Gráfico ilustrativo:

```
Desempenho
    . Overfitting
         Ideal
                Dados
```


Underfitting (Subajuste)

▲ O que é:

- •Modelo simples demais, não aprende o suficiente.
- •Baixo desempenho tanto no treino quanto no teste.

Exemplo:

•Aluno que estuda apenas superficialmente, falhando em questões complexas.

Q Como identificar:

Tipo	Precisão no treino	Precisão no teste	
✓ Ideal	90%	88%	
▲ Underfitting	65%	60%	

── Gráfico ilustrativo:

```
Desempenho
            Ideal .
       Underfitting
                Dados
```


- Estratégias para Melhorar o Desempenho
- Reduzir Overfitting:
- Regularização (L1, L2)
- 🆈 Mais dados 🚍
- **A** Early stopping 💍

Reduzir Underfitting:

- 📌 Mais variáveis ou atributos 🗐
- Ajuste de hiperparâmetros 🗍
- 🖈 Menos regularização 🞇
- 📌 Melhorar dados de treinamento 📈

Reduzir Overfitting:

• 📌 Regularização (L1, L2):

Limita a complexidade do modelo penalizando pesos muito grandes, evitando que o modelo memorize os dados.

• ***** Cross-validation:

Divide os dados em vários grupos, treina e testa múltiplas vezes. Ajuda a validar que o modelo realmente generaliza bem.

• 🖈 Mais dados 🖳 :

Quanto mais dados, menos provável que o modelo memorize detalhes específicos. Melhora a generalização.

• 🖈 Early stopping 🧑 :

Interrompe o treinamento antes do modelo começar a memorizar os dados, preservando melhor a capacidade de generalização.

• 🖈 Dropout 🧩 (para redes neurais):

Desativa aleatoriamente alguns neurônios durante o treino, evitando dependência excessiva em poucos neurônios específicos.

• 🖈 Simplificação do modelo:

Reduz o número de parâmetros ou camadas, deixando o modelo menos propenso a memorizar.

Reduzir Underfitting:

• Modelos mais complexos \hat\cdot :

Usar algoritmos ou arquiteturas mais robustas capazes de capturar padrões mais sofisticados.

• 🖈 Mais variáveis ou atributos 📃 :

Adicionar novas informações que possam ajudar o modelo a entender melhor os padrões nos dados.

• 🖈 Ajuste de hiperparâmetros 👔 :

Ajustar parâmetros como taxa de aprendizado, número de camadas ou épocas para melhorar a capacidade de aprendizado.

• 🖈 Menos regularização 🛠 :

Reduzir penalidades aplicadas ao modelo, permitindo que ele aprenda padrões mais complexos.

• Melhorar dados de treinamento :

Garantir que os dados estejam corretos, limpos e representativos dos padrões que o modelo precisa aprender.

Resumo visual dos conceitos:

Conceito	Problema	Soluções práticas
Overfitting	Complexo demais	Simplificação, Regularização, Dropout, Early stopping
□ Underfitting	Simples demais 📉	Complexidade, Hiperparâmetros, Novos atributos

Oica final:

"Busque sempre um equilíbrio. Um modelo bom aprende padrões reais sem decorar detalhes irrelevantes!" 📌 🐈

- Primeiros passos com TensorFlow e PyTorch
- Configuração e primeiros códigos:
- Instale as bibliotecas:

```
pip install tensorflow
pip install torch torchvision
```

Confira se tudo está instalado corretamente:

```
import tensorflow as tf
print(tf. version )
import torch
print(torch. version )
```


Conjunto de dados MNIST?

O MNIST é um famoso conjunto de dados utilizado para testar algoritmos de aprendizado de máquina. É amplamente utilizado para aprendizado em Machine Learning e Redes Neurais.

Características principais:

- •Conteúdo: 70.000 imagens em tons de cinza (preto e branco) de dígitos escritos à mão (0 a 9).
- •Tamanho das imagens: Cada imagem tem o tamanho padrão de 28x28 pixels.

•Divisão:

- 60.000 imagens para treinamento.
- 10.000 imagens para **teste** (validação do modelo).

Para que serve? É muito utilizado para:

- •Treinar redes neurais básicas.
- Ensinar conceitos de classificação.
- •Avaliar desempenho de algoritmos.

Normalização dos dados

normalização dos dados. Significa neste modelo que ela transforma os valores originais das imagens em valores entre 0 e 1

Por que dividir por 255?

- •As imagens originais do MNIST têm valores entre **0 e 255**, onde:
 - **0** significa **preto total**.
 - **255** significa **branco total**.
 - Valores intermediários são tons de cinza.

Quando você divide por 255, está transformando todos esses valores para uma escala entre 0 e 1, facilitando o aprendizado da rede neural.

Normalização dos dados

Exemplo prático:

Se um pixel originalmente tem o valor 127 (cinza médio):

$$\frac{127}{255}\approx 0.498$$

Agora o valor será aproximadamente 0.498 na escala de 0 a 1.

📌 Benefícios da normalização:

- Acelera o processo de aprendizado.
- Melhora o desempenho e estabilidade da rede neural.
- Evita valores grandes que dificultam o treinamento.

Por que fazer separadamente no treino e teste?

- Garantir que os dados usados para treino e teste estejam na mesma escala.
- Mantém coerência e evita erros na avaliação.

Normalização dos dados

📌 Resumindo a lógica:

Antes (pixel original)	Depois da normalização
0 (preto total)	0.0
127 (cinza médio)	~0.498
255 (branco total)	1.0

Conclusão:

Realizar a normalização dos pixels das imagens para uma escala entre 0 e 1, melhorando o desempenho da rede neural durante o treinamento neste modelo.

Cada imagem do MNIST representa um dígito manuscrito:

```
Imagem (28x28 pixels)
```

Exemplo: um "7" escrito à mão.

Resumindo:

O MNIST é um conjunto de dados com milhares de imagens pequenas de números escritos à mão, utilizado amplamente para ensinar e praticar modelos simples de classificação de imagens em aprendizado de máquina.

Atividade prática: Implementação de uma rede neural simples para classificação de dados

- •Utilize TensorFlow ou PyTorch para criar uma rede neural básica.
- •Treine a rede utilizando um conjunto de dados simples (ex: MNIST).
- •Avalie o desempenho e ajuste os parâmetros.
- •Compare os resultados para verificar a generalização e identificar possíveis problemas (Overfitting ou Underfitting).

Dica final:

"Busque sempre um equilíbrio. Um modelo bom aprende padrões reais sem decorar detalhes irrelevantes!" 🖈 🧎

DSI DE JANUAR

> 1. Função de ativação ReLU (Rectified Linear Unit)

Fórmula:

$$f(x) = \max(0, x)$$

- · Como funciona:
 - Se o valor for **positivo**, mantém o valor.
 - Se o valor for negativo, substitui por zero.
- Exemplo:
 - ReLU(-5) = 0
 - ReLU(3) = 3
- Uso:
 - · Usada principalmente em camadas ocultas.
 - Ajuda redes neurais a aprenderem rapidamente.

2. Função de ativação Softmax

Fórmula:

$$f(x_i) = rac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

- · Como funciona:
 - Transforma valores em probabilidades (de 0 a 1), cuja soma total é sempre 1.
 - Muito usada na última camada em classificações com múltiplas classes.
- Exemplo (classe com 3 valores):
 - Entrada: [2.0, 1.0, 0.1]
 - Saída: [0.65, 0.24, 0.11] (probabilidades que somam 1).

3. Otimizador Adam

- Adam (Adaptive Moment Estimation):
 - É um otimizador moderno que ajusta automaticamente a taxa de aprendizado durante o treino.
 - Combina vantagens de dois métodos populares: RMSProp e Momentum.
- · Como funciona:
 - Ajusta parâmetros do modelo considerando a média e variância dos gradientes.
 - Permite treinos rápidos e estáveis.
- Uso:
 - Muito usado em redes neurais modernas devido à eficiência e facilidade.

4. Theta (θ)

- O que é?
 - "Theta" (θ) geralmente representa os parâmetros (pesos e vieses) em aprendizado de máquina.
 - Esses parâmetros são atualizados durante o treinamento.
- Contexto:
 - Durante o treino, a rede ajusta continuamente os valores de θ para reduzir os erros e melhorar a precisão do modelo.

DSI DO DE JANTANO

> 5. Degrau (Step Function)

Fórmula básica:

$$f(x) = egin{cases} 0, & ext{se } x < 0 \ 1, & ext{se } x \geq 0 \end{cases}$$

- Como funciona:
 - Retorna 0 se o valor for negativo.
 - Retorna 1 se o valor for zero ou positivo.
- Uso:
 - Muito utilizada nas primeiras redes neurais artificiais.
 - Hoje em dia menos usada, pois dificulta o aprendizado por não permitir pequenos ajustes (derivada zero quase em todo lugar).

Resumindo visualmente:

Função	Tipo	Utilização principal
✓ ReLU	Não-linear	Camadas ocultas
✓ Softmax	Probabilidade	Última camada (classificação)
✓ Adam	Otimizador	Ajustar parâmetros automaticamente
✓ Theta (θ)	Parâmetros	Pesos e vieses
✓ Degrau	Binária (0 ou 1)	Primeiras redes neurais

Taxa de Aprendizado (Learning Rate)

- Controla quão rápido o modelo ajusta os parâmetros (pesos).
- Alta demais pode causar instabilidade no treinamento.
- Baixa demais pode tornar o treinamento muito lento ou travar o aprendizado.

Exemplo prático:

- Taxa alta: 0.1 (rápido, mas pode instabilizar)
- Taxa moderada: 0.001 (mais estável, geralmente ideal)
- Taxa baixa: 0.00001 (lento, mas seguro)

Otimizadores

São algoritmos que ajustam automaticamente os parâmetros do modelo para reduzir erros.

- Adam: Ajusta automaticamente a taxa de aprendizado, combinando vantagens de RMSProp e Momentum (moderno e recomendado).
- SGD (Stochastic Gradient Descent): Simples, tradicional, pode ser lento, mas funciona bem com ajustes adequados.
- RMSProp: Ajusta a taxa de aprendizado conforme o histórico de gradientes. Bom para problemas complexos.
- Adamax: Uma versão modificada do Adam que pode funcionar melhor em algumas situações específicas.

Batch Size (Tamanho do Lote)

- Número de amostras (imagens, dados) usados em cada atualização do modelo.
- Menor batch: Mais atualizações, pode melhorar precisão, mas treinamento lento.
- Maior batch: Menos atualizações, mais rápido, porém pode diminuir precisão.

Exemplos comuns:

- Batch size = 16 : Pequeno, mais atualizações.
- Batch size = 64 : Moderado, equilíbrio entre velocidade e precisão.
- Batch size = 256 : Grande, rápido, menos atualizações.

Hiperparâmetros vamos testar

1. Número de neurônios na camada oculta:

- Original: 128
- Sugestões: 32, 64, 256, 512
- Como testar:

```
Dense(128, activation='relu')
```

2. Número de épocas (epochs):

- Original: epochs=5
- Sugestões: epochs=3, epochs=10, epochs=20
- Como testar:

Altere o número de épocas na linha:

```
model.fit(x train, y train, epochs=5)
```

Hiperparâmetros testar

1. Número de neurônios na camada oculta:

- Original: 128
- Sugestões: 32, 64, 256, 512
- Como testar:

```
Dense(128, activation='relu')
```

2. Número de épocas (epochs):

- Original: epochs=5
- Sugestões: epochs=3, epochs=10, epochs=20
- Como testar:

Altere o número de épocas na linha:

```
model.fit(x train, y train, epochs=5)
```

Hiperparâmetros testar

3. Taxa de aprendizado (learning rate):

- Original: Utilizando padrão do otimizador Adam.
- Sugestões: 0.1, 0.01, 0.001, 0.0001
- Como testar: Modifique o otimizador com taxas diferentes:

4. Otimizadores diferentes:

- Original: optimizer='adam'
- Sugestões: 'sgd', 'rmsprop', 'adamax'
- Como testar:

Altere o otimizador:

Hiperparâmetros testar

- Original: padrão (geralmente 32)
- Sugestões: 16, 64, 128, 256
- Como testar: Modifique o tamanho do lote na função fit :

```
model.fit(x\_train, y\_train, epochs=5, batch\_size=64)
```


Hiperparâmetros testar

© Como avaliar os testes?

Criem uma tabela simples para registrar e comparar resultados como:

Teste	Neurônios	Épocas	Otimizador	Learning rate	Batch size	Acurácia Final (%)
1	128	5	Adam	0.001	32	97%
2	64	5	Adam	0.001	32	95%
3	128	10	SGD	0.01	64	93%

Hiperparâmetros testar

O que observar?

- Como o número de neurônios afeta a precisão e o tempo de treinamento.
- Como o número de épocas influencia o overfitting.
- Qual otimizador apresenta melhores resultados.
- Como o tamanho do lote afeta a rapidez e desempenho.
- Como diferentes taxas de aprendizado influenciam o aprendizado.

*

Discussão final:

- •Qual combinação de hiperparâmetros foi mais eficiente e por quê.
- •É importante experimentar para encontrar um equilíbrio ótimo entre precisão, rapidez e capacidade de generalização.

