Leonel Garay CS-225: Discrete Structures in CS Homework 5, Part 1

Exercise Set 5.2: Problem 11

$$\begin{vmatrix}
1^{3}+2^{5}+\dots+n^{3} &= \left[\frac{n(n+1)}{2}\right]^{2} \\
= \left[\frac{1(n+1)}{2}\right]^{2} \\
= \left[\frac{1(n+1)}{2}\right]^{2} \\
= \left[\frac{(n+1)}{2}\right]^{2} \\
=$$

Exercise Set 5.2: Problem 15

Exercise Set 5.3: Problem 9

Exercise Set 5.3: Problem 18

$$5^{n} + 9 < 6^{n}$$
, for each inleger $n \ge 2$
 $5 + 9 < 6$
 $5^{k} + 9 < 6^{k}$
 $5^{2} + 9 < 6^{2}$
 $5^{k} < 6^{k} - 9$
 $25 + 9 < 36$
 $34 < 36$
 $5^{k+1} + 9 = 5 \cdot 5^{k} + 9$
 $= 5 \cdot 6^{k} - 45 + 9$
 $= 5 \cdot 6^{k} - 36$
 $5 \cdot 6^{k} < 6 \cdot 6^{k} - 36 < 0$
 $\therefore 5^{k+1} + 9 < 6^{k+1}$

Exercise Set 5.3: Problem 26

Exercise Set 5.3: Proble $C_0, C_1, C_2...$ $C_0 = 3$ $C_k = (k_{k-1})^2$ $C_n = 3^{2n}$, for each integer $n \ge 0$ n = 0 $C_0 = 3^{2^k} = 3^k = 3$, $3 \ge 0$ $C_k = 3^{2^k}$ $C_{k+1} = (C_k)^2$ $C_{k+1} = (C_k)^2$ $C_{k+1} = 3^{2^k}$ $C_k = 3^{2^k}$