20104169 - SUMESH R

Importing Libraries

```
In [10]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [11]:

```
from google.colab import drive
drive.mount('/content/drive')
df=pd.read_csv("/content/drive/MyDrive/mydatasets/csvs_per_year/madrid_2001.csv")
df
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount ("/content/drive", force remount=True).

Out[11]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PM10	PXY	SO_2	тсн
0	2001- 08-01 01:00:00	NaN	0.37	NaN	NaN	NaN	58.400002	87.150002	NaN	34.529999	105.000000	NaN	6.340000	NaN
1	2001- 08-01 01:00:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100.599998	1.73	8.110000	1.24
2	2001- 08-01 01:00:00	NaN	0.28	NaN	NaN	NaN	50.660000	61.380001	NaN	46.310001	100.099998	NaN	7.850000	NaN
3	2001- 08-01 01:00:00	NaN	0.47	NaN	NaN	NaN	69.790001	73.449997	NaN	40.650002	69.779999	NaN	6.460000	NaN
4	2001- 08-01 01:00:00	NaN	0.39	NaN	NaN	NaN	22.830000	24.799999	NaN	66.309998	75.180000	NaN	8.800000	NaN
217867	2001- 04-01 00:00:00	10.45	1.81	NaN	NaN	NaN	73.000000	264.399994	NaN	5.200000	47.880001	NaN	39.910000	NaN
217868	2001- 04-01 00:00:00	5.20	0.69	4.56	NaN	0.13	71.080002	129.300003	NaN	13.460000	26.809999	NaN	13.450000	1.32
217869	2001- 04-01 00:00:00	0.49	1.09	NaN	1.00	0.19	76.279999	128.399994	0.35	5.020000	40.770000	0.61	14.700000	1.40
217870	2001- 04-01 00:00:00	5.62	1.01	5.04	11.38	NaN	80.019997	197.000000	2.58	5.840000	37.889999	4.31	39.919998	NaN
217871	2001- 04-01 00:00:00	8.09	1.62	6.66	13.04	0.18	76.809998	206.300003	5.20	8.340000	35.369999	4.95	27.340000	1.41

Data Cleaning and Data Preprocessing

217849 1.22 28079035217853 1.83 28079006217871 1.62 28079099

```
In [12]:
df=df.dropna()
In [13]:
df.columns
Out[13]:
dtype='object')
In [14]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 29669 entries, 1 to 217871
Data columns (total 16 columns):
   Column
            Non-Null Count Dtype
             -----
             29669 non-null object
29669 non-null float64
0
    date
1
   BEN
2
    CO
             29669 non-null float64
 3
   EBE
            29669 non-null float64
            29669 non-null float64
 4 MXY
 5 NMHC
            29669 non-null float64
            29669 non-null float64
 6 NO 2
 7 NOx
            29669 non-null float64
 8 OXY
            29669 non-null float64
 9 0 3
            29669 non-null float64
10 PM10
            29669 non-null float64
            29669 non-null float64
11 PXY
            29669 non-null float64
12 SO 2
            29669 non-null float64
13 TCH
            29669 non-null float64
14 TOL
15 station 29669 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 3.8+ MB
In [15]:
data=df[['CO' ,'station']]
data
Out[15]:
      CO
           station
    1 0.34 28079035
    5 0.63 28079006
   21 0.43 28079024
   23 0.34 28079099
   25 0.06 28079035
217829 4.48 28079006
217847 2.65 28079099
```

Line chart

```
In [16]:
```

```
data.plot.line(subplots=True)
Out[16]:
array([<Axes: >, <Axes: >], dtype=object)
 10.0
  7.5
  5.0
  2.5
  0.0
      +2.8079e7
  100
   80
   60
                                                             station
   40
   20
         0
                   50000
                                100000
                                             150000
                                                          200000
```

Line chart

```
In [17]:
data.plot.line()
Out[17]:
<Axes: >
 2.5
 2.0
                                                              CO
 1.5
                                                              station
 1.0
 0.5
```


Bar chart

```
In [18]:
```

b=data[0:50]

In [19]:

b.plot.bar()

Out[19]:

<Axes: >

Histogram

```
In [20]:
```

data.plot.hist()

Out[20]:

<Axes: ylabel='Frequency'>

Area chart

```
In [21]:
```

```
data.plot.area()
Out[21]:
<Axes: >
     1e7
```


Box chart

2.0 -

```
In [22]:
data.plot.box()
Out[22]:
<Axes: >
     1e7
 2.5
```


Pie chart

In [23]:

```
b.plot.pie(y='station')
```

Out[23]:

<Axes: ylabel='station'>

Scatter chart

```
In [24]:
```

```
data.plot.scatter(x='CO', y='station')
```

Out[24]:

<Axes: xlabel='CO', ylabel='station'>

f1~=+61

In [25]:

1

DEM

```
df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 29669 entries, 1 to 217871
Data columns (total 16 columns):
    # Column Non-Null Count Dtype
--- 0 date 29669 non-null object
```

29669 non-nii11

```
ZJUUJ HUH HULL
    אונים
                             LLUALUT
 2
    CO
              29669 non-null
                             float64
 3
    EBE
                             float64
              29669 non-null
    MXY
                             float64
              29669 non-null
 5
    NMHC
              29669 non-null float64
             29669 non-null float64
    NO 2
 7
    NOx
              29669 non-null float64
 8
    OXY
              29669 non-null float64
 9
    0 3
             29669 non-null float64
10 PM10
              29669 non-null float64
              29669 non-null
              29669 non-null
                            float64
12
    SO 2
13 TCH
              29669 non-null
                            float64
14 TOL
             29669 non-null float64
15 station 29669 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 3.8+ MB
```

In [26]:

```
df.describe()
```

Out[26]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	
count	29669.000000	29669.000000	29669.000000	29669.000000	29669.000000	29669.000000	29669.000000	29669.000000	296
mean	3.361895	1.005413	3.580229	8.113086	0.195222	67.652292	163.004858	3.736694	
std	3.176669	0.863135	3.744496	7.909701	0.192585	34.003120	147.491777	3.702559	
min	0.100000	0.000000	0.140000	0.210000	0.000000	1.180000	1.280000	0.190000	
25%	1.280000	0.470000	1.390000	3.040000	0.080000	44.299999	68.089996	1.480000	
50%	2.510000	0.760000	2.600000	5.830000	0.140000	64.449997	123.699997	2.730000	
75%	4.420000	1.270000	4.580000	10.640000	0.250000	86.540001	213.199997	4.830000	
max	54.560001	11.890000	77.260002	150.600006	2.880000	292.700012	1940.000000	89.510002	1
4									

In [27]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [28]:

```
sns.pairplot(df1[0:50])
```

Out[28]:

<seaborn.axisgrid.PairGrid at 0x7f253b3678e0>

In [29]:

```
sns.distplot(df1['station'])

<ipython-input-29-4bc330f7257f>:1: UserWarning:
    `distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df1['station'])
```

Out[29]:

<Axes: xlabel='station', ylabel='Density'>


```
In [30]:
```

```
sns.heatmap(df1.corr())
```

Out[30]:

<Axes: >

TO TRAIN THE MODEL AND MODEL BULDING

```
In [31]:
```

In [32]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [33]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train, y_train)
```

Out[33]:

```
▼ LinearRegression
LinearRegression()
```

Co-efficient BEN 7.795875 CO -17.273985 **EBE** 0.516764 **MXY** 0.066244 **NMHC** 89.263149 NO_2 0.110278 -0.078486 NOx OXY -2.942643 -0.024871 0_3 PM10 -0.061212 **PXY** 1.175102 SO_2 -0.309099 **TCH** 35.328353 TOL -1.362196

In [34]:

Out[34]:

In [35]:

Out[35]:

lr.intercept_

28079009.16482375

prediction =lr.predict(x_test) plt.scatter(y_test,prediction)

Out[36]:

In [36]:

<matplotlib.collections.PathCollection at 0x7f2520f67a00>

coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])

20 60 80 100 +2.8079e7

ACCURACY

```
In [37]:
lr.score(x_test,y_test)
Out[37]:
0.1560981914762234
In [38]:
lr.score(x_train,y_train)
Out[38]:
0.16747734739320896
Ridge and Lasso
In [39]:
from sklearn.linear_model import Ridge,Lasso
In [40]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[40]:
     Ridge
Ridge(alpha=10)
Accuracy(Ridge)
In [41]:
rr.score(x_test,y_test)
Out[41]:
0.15714896786525434
In [42]:
rr.score(x_train,y_train)
Out[42]:
0.16717492584275784
```

Out[43]:

In [43]:

Lasso Lasso(alpha=10)

la=Lasso(alpha=10) la.fit(x_train,y_train)

```
In [44]:
la.score(x train, y train)
Out[44]:
0.036138853604019805
Accuracy(Lasso)
In [45]:
la.score(x test, y test)
Out[45]:
0.04533993694040095
In [46]:
from sklearn.linear model import ElasticNet
en=ElasticNet()
en.fit(x train, y train)
Out[46]:
▼ ElasticNet
ElasticNet()
In [47]:
en.coef
Out[47]:
array([ 5.26902786, 0.
                               , 0.51992889, -0.1321379 , 0.11319397,
        0.06472817, -0.03285392, -2.41130199, -0.02691663,
                                                            0.07280831,
        0.73040554, -0.32944933, 1.1859783, -0.73889907])
In [48]:
en.intercept
Out[48]:
28079048.462195482
In [49]:
prediction=en.predict(x test)
In [50]:
en.score(x_test,y_test)
Out[50]:
0.10478612906640628
Evaluation Metrics
In [51]:
```

from sklearn import metrics

print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))

print(np.sqrt(metrics.mean squared error(y test,prediction)))

30.32339812894667 1211.7776248895525 34.81059644547264

Logistic Regression

```
In [52]:
from sklearn.linear model import LogisticRegression
In [53]:
feature matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY', 'O 3',
       'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
target vector=df[ 'station']
In [54]:
feature matrix.shape
Out[54]:
(29669, 14)
In [55]:
target vector.shape
Out[55]:
(29669,)
In [56]:
from sklearn.preprocessing import StandardScaler
In [57]:
fs=StandardScaler().fit transform(feature matrix)
In [58]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs,target_vector)
Out[58]:
         LogisticRegression
LogisticRegression (max iter=10000)
In [59]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [60]:
prediction=logr.predict(observation)
print(prediction)
[28079035]
In [61]:
logr.classes
Out[61]:
array([28079006, 28079024, 28079035, 28079099])
```

```
In [62]:
logr.score(fs, target vector)
Out[62]:
0.8086892042198928
In [63]:
logr.predict proba(observation)[0][0]
Out[63]:
1.802621471329542e-43
In [64]:
logr.predict proba(observation)
Out[64]:
array([[1.80262147e-43, 2.18514449e-56, 9.99998556e-01, 1.44365621e-06]])
Random Forest
In [65]:
from sklearn.ensemble import RandomForestClassifier
In [66]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[66]:
▼ RandomForestClassifier
RandomForestClassifier()
In [67]:
parameters={ 'max depth': [1,2,3,4,5],
            'min samples leaf': [5,10,15,20,25],
            'n estimators':[10,20,30,40,50]
In [68]:
from sklearn.model selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[68]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
      RandomForestClassifier
In [69]:
grid_search.best_score_
Out[69]:
0.7368547765793528
```

```
In [70]:
```

 $] \nclass = b'),$

```
rfc best=grid search.best estimator
```

```
In [71]:
from sklearn.tree import plot tree
plt.figure(figsize=(80,40))
plot tree(rfc best.estimators [5], feature names=x.columns, class names=['a', 'b', 'c', 'd'], f
illed=True)
Out[71]:
7, 2943, 5986, 58921 \times c'),
  Text(0.25, 0.75, 'OXY \le 1.005 \setminus gini = 0.727 \setminus gini = 9214 \setminus gini = 92
4805] \nclass = d'),
  Text(0.125, 0.5833333333333334, 'CO \le 0.215 = 0.583 = 1960 = 1960 = 149,
1618, 1045, 311]\nclass = b'),
  Text(0.0625, 0.41666666666666666, 'NO 2 <= 19.815 | ngini = 0.341 | nsamples = 435 | nvalue = [
7, 93, 525, 33]\nclass = c'),
  Text(0.03125, 0.25, 'OXY \le 0.645 \text{ ngini} = 0.604 \text{ nsamples} = 94 \text{ nvalue} = [7, 70, 60, 11] \text{ n}
class = b'),
  class = c'),
  \nclass = b'),
  Text(0.09375, 0.25, 'SO 2 <= 8.43 \cdot 165 
\nclass = c'),
  \nclass = c'),
  \nclass = c'),
  Text(0.1875, 0.41666666666666666, 'NO 2 <= 38.025 \ngini = 0.522 \nsamples = 1525 \nvalue =
[42, 1525, 520, 278] \setminus class = b'),
  Text(0.15625, 0.25, 'MXY \leq 1.045\ngini = 0.274\nsamples = 943\nvalue = [22, 1231, 64, 1
39] \nclass = b'),
  0] \nclass = b'),
  129] \nclass = b'),
  Text(0.21875, 0.25, 'CO <= 0.415\ngini = 0.62\nsamples = 582\nvalue = [20, 294, 456, 139]
] \nclass = c'),
  7] \nclass = c'),
  102] \nclass = b'),
  Text(0.375, 0.583333333333333, TCH \le 1.235 = 0.701 = 0.701 = 7254 = [22]
65, 1150, 3571, 4494]\nclass = d'),
  1011, 3, 403, 145]\nclass = a'),
  Text(0.28125, 0.25, 'NO 2 <= 46.32 \cdot 10^{-1} = 0.615 \cdot 10^{-1} =
26] \nclass = c'),
  123] \nclass = a'),
  ] \nclass = c'),
  Text(0.34375, 0.25, 'MXY <= 2.045 \cdot 10^{-2}) | Text(0.34375, 0.25, 'MXY <= 2.045 \cdot 10^{-2}) | Text(0.34375, 0.25, 'MXY <= 2.045 \cdot 10^{-2})
\nclass = a'),
  class = a'),
  1] \nclass = a'),
  Text(0.4375, 0.41666666666666666, 'O_3 <= 4.265 \ngini = 0.676 \nsamples = 6264 \nvalue = [1]
254, 1147, 3168, 4349]\nclass = d'),
  Text(0.40625, 0.25, 'PXY \le 2.395 / ngini = 0.215 / nsamples = 291 / nvalue = [38, 394, 0, 15]
\nclass = b'),
  nclass = b'),
```

```
Text(0.46875, 0.25, 'NOx \le 96.515 = 0.656 = 5973 = [1216, 753, 31]
68, 4334]\nclass = d'),
   6, 2110] \nclass = d'),
   452, 2224]\nclass = c'),
   Text(0.75, 0.75, '0_3 \le 8.805 = 0.585 = 3941 = [3633, 175, 1370, 1370]
1087]\nclass = a'),
   Text(0.625, 0.5833333333333333334, 'TOL <= 37.015 \ngini = 0.686 \nsamples = 1788 \nvalue = [1]
164, 153, 830, 723]\nclass = a'),
   Text(0.5625, 0.4166666666666667, 'EBE <= 7.58 \ngini = 0.71 \nsamples = 863 \nvalue = [419, 1.56]
115, 484, 387]\class = c'),
   Text(0.53125, 0.25, 'CO \le 1.165 = 0.709 = 800 = [402, 115, 468, 3]
21]\nclass = c'),
   681 \times a = a'),
   , 253]\nclass = c'),
   Text(0.59375, 0.25, 'OXY <= 7.27\ngini = 0.5\nsamples = 63\nvalue = [17, 0, 16, 66]\ncla
ss = d'),
   class = d'),
   \noindent \noi
   Text(0.6875, 0.41666666666666667, 'TCH <= 1.785 \ngini = 0.632 \nsamples = 925 \nvalue = [74]
5, 38, 346, 336] \nclass = a'),
   Text(0.65625, 0.25, 'SO 2 <= 24.935 \setminus 1 = 0.419 \setminus 1 = 271 \setminus 1 = 
5] \nclass = a'),
   nclass = a'),
   9] \nclass = a'),
  Text(0.71875, 0.25, '0 3 <= 5.29\ngini = 0.674\nsamples = 654\nvalue = [426, 33, 273, 30]
1] \setminus nclass = a'),
   52] \nclass = a'),
   49] \nclass = c'),
   Text(0.875, 0.583333333333333, "TOL <= 32.175 | min = 0.434 | msamples = 2153 | mvalue = [2]
469, 22, 540, 364]\nclass = a'),
   5, 18, 453, 304]\nclass = a'),
   Text(0.78125, 0.25, 'NOx <= 204.45 \cdot ngini = 0.25 \cdot nsamples = 488 \cdot nvalue = [664, 3, 84, 22]
\nclass = a'),
   2] \nclass = a'),
   class = c'),
   Text(0.84375, 0.25, 'NO 2 \le 89.325 / gini = 0.583 / samples = 996 / nvalue = [891, 15, 369, 15]
282] \nclass = a'),
   Text(0.828125, 0.083333333333333333333, 'gini = 0.461\nsamples = 524\nvalue = [558, 4, 72, 1]
65] \nclass = a'),
   1171 \setminus nclass = a'),
   Text(0.9375, 0.41666666666666666, 'NO 2 <= 109.95 | ngini = 0.254 | nsamples = 669 | nvalue = [
914, 4, 87, 60]\nclass = a'),
   Text(0.90625, 0.25, 'TOL <= 40.495 \cdot 166 \cdot 166
] \nclass = a'),
   4] \nclass = a'),
   \nclass = a'),
   Text(0.96875, 0.25, 'EBE <= 6.2 \neq 0.391 = 0.391 = 239 = 239 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 2, 56, 32 = 287, 20, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 32 = 287, 3
class = a'),
   nclass = c'),
   Text(0.984375, 0.08333333333333333333, 'gini = 0.311\nsamples = 207\nvalue = [264, 0, 26, 3]
2]\nclass = a')]
```


Conclusion

In [72]:

```
print("Linear Regression:",lr.score(x_test,y_test))
print("Ridge Regression:",rr.score(x_test,y_test))
print("Lasso Regression",la.score(x_test,y_test))
print("ElasticNet Regression:",en.score(x_test,y_test))
print("Logistic Regression:",logr.score(fs,target_vector))
print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.1560981914762234 Ridge Regression: 0.15714896786525434 Lasso Regression 0.04533993694040095

ElasticNet Regression: 0.10478612906640628 Logistic Regression: 0.8086892042198928

Random Forest: 0.7368547765793528

Logistic Regression is suitable for this dataset