

Líneas de investigación general

- Determinación de la temperatura de las superficies por radiometría en el Infrarrojo Térmico
- Caracterización de las superficies a través de su emisividad

Contexto

Necesidades actuales

- Elevada precisión en la temperatura para su uso como magnitud de entrada en el estudio y simulación de:
 - Comportamiento de los geofluidos
 - Estrés hídrico
 - Desertización y desertificación
 - Isla de calor
 - Etc.

Línea de investigación particular

 Revisión de metodologías para la medida precisa de la temperatura

 Localización y evaluación de errores que menguan la precisión, especialmente en la medida de la emisividad

Interés de la medida precisa de la emisividad

Temperatura: magnitud física clave

Efecto conjunto atmósfera-emisividad

Trabajos previos

Detección errores metodológicos

Conclusiones

Conclusiones

- El impacto de la atmósfera es importante para el cálculo de Pv.
 Es más apreciable en entornos heterogéneos
- El impacto de la atmósfera es despreciable en promedio para el cálculo de la emisividad. Es más apreciable en entornos heterogéneos
- Es posible emplear índices diferentes al NDVI para el MCV
- La adecuada elección del índice de vegetación minimiza el impacto en entornos heterogéneos

Fundamentos

La emisividad depende de la Pv

Determinación precisa de la emisividad MCV

- Método de la cobertura vegetal => emisividad
 - Modelo geométrico
 - Relación emisividad-índice vegetación
 - Operativo y preciso

Determinación precisa de la emisividad cálculo

Método cobertura vegetal

$$\varepsilon = \varepsilon_V \cdot P_V + \varepsilon_S \cdot (1 - P_V) + 4 \cdot \langle d\varepsilon \rangle \cdot P_V \cdot (1 - P_V)$$

- ε_v : emisividad de la vegetación
- \bullet $\epsilon_{\rm s}$: emisividad del suelo
- Pv: proporción de vegetación
- <dε>: término de cavidad

Determinación de Pv

La Pv se calcula a partir de medidas espectro solar

Determinación precisa de la emisividad cálculo de Pv

- La reflectividad tiene dos componentes
 - La procedente de la vegetación
 - La procedente del suelo

$$\rho = \rho_{V} \cdot P_{V} + \rho_{S} \cdot (1 - P_{V})$$

Determinación precisa de la emisividad cálculo Pv con NDVI (LanSat)

Caso particular

$$NDVI = \frac{\rho_4 - \rho_3}{\rho_4 + \rho_3}$$

$$\rho_i = \rho_{iV} \cdot P_V + \rho_{iS} \cdot (1 - P_V)$$

$$P_{V} = \frac{\left(1 - \frac{NDVI}{NDVI_{S}}\right)}{\left(1 - \frac{NDVI}{NDVI_{S}}\right) - K \cdot \left(1 - \frac{NDVI}{NDVI_{V}}\right)}$$

$$K = \frac{\rho_{4V} - \rho_{3V}}{\rho_{4S} - \rho_{3S}}$$

Determinación precisa de la emisividad cálculo Pv con *Indice*

Caso general

Indice = Indice(
$$\rho_1, \rho_2, \rho_3, ..., \rho_n$$
)

$$\rho_i = \rho_{iV} \cdot P_V + \rho_{iS} \cdot (1 - P_V)$$

$$P_{\rm V} \Rightarrow o$$

$$num\'erico$$

Determinación precisa de la emisividad cálculo Pv con *Indice*

Hay alternativas al NDVI para el cálculo de Pv

- RVI
- PVI
- NDII
- WDVI
- SAVI
- IPVI
- TSAVI
- GEMI
- ARVI

- MSAVI
- MSAVI2
- EVI
- NDWI
- OSAVI
- AFRI1.6
- AFRI2.1
- TDVI
- GESAVI

- VARI
- WDRVI
- NMDI
-

Efecto atmosférico

El espectro solar es afectado por atmósfera

- Fundamentos de la interacción radiación-atmósfera
 - Absorción de la atmósfera
 - Dispersión de la atmósfera
 - Impacto en el flujo ascendente y descendente

ColourChecker original

ColourChecker con atmósfera

Irradiancia = Idirecta + Idifusa + Imultireflexión

Radiancia = Ldirecta + Lentorno + Lretrodispersada

Dispersión:

Fenómeno continuo

Absorción:

Fenómeno discreto

Transferencia radiativa espectro solar

$$L^* = A \frac{\rho_c}{(1 - \langle \rho_e \rangle S)} + B \frac{\langle \rho_e \rangle}{(1 - \langle \rho_e \rangle S)} + L_a$$

L* radiancia a nivel de sensor ρ_c reflectividad píxel ρ_e reflectividad entorno

A, B, S, La Caracteritzación atmósfera

Transferencia radiativa espectro solar con altura

Observació des de satèl.lit respecte a camp							
nm	Diferència promig		Diferència mínima				
.45	199%	490%	-6%				
.56	24%	107%	-38%				
.67	18%	112%	-39%				
.7-1.05	-20%	-5%	-43%				
Observació	des de 4.770m re	specte a camp					
nm	Diferència promig	Diferència màxima	Diferència mínima				
.45	98%	300%	-29%				
.56	10%	76%	-40%				
.67	9%	88%	-38%				
.7-1.05	-19%	-5%	-42%				
Observació	des de 2.510m re	specte a camp					
nm	Diferència promig	Diferència màxima	Diferència mínima				
.45	57%	201%	-36%				
.56	2%	51%	-40%				
.67	3%	63%	-36%				
.7-1.05	-19%	6%	-40%				
Observació	Observació des de 1.370 respecte a camp						
nm	Diferència promig	Diferència màxima	Diferència mínima				
.45	27%	121%	-40%				
.56	4%	29%	-39%				
.67	2%	38%	-34%				
.7-1.05	18%	-6%	-38%				

Transferencia radiativa espectro solar

$$A\frac{\rho}{(1-\rho S)}$$

- * rad at satel. level (w/m2/sr/mic)
- rad. target radiance : ainr(2,3)

Obtenció de A, B, S, La

$$B\frac{\rho}{(1-\rho S)} + L_a$$

- * rad at satel. level (w/m2/sr/mic)
- atm. Intrin : ainr(2,1)
- rad. Environment :ainr(2,2)

2 simulacions 6S: sistema 2 eq. 2 inc.

Vàlido para cualquier reflectividad!!!

Transferencia radiativa espectro solar

Aplicació de A, B, S, La

$$L^* = A \frac{\rho_c}{\left(1 - \langle \rho_e \rangle S\right)} + B \frac{\langle \rho_e \rangle}{\left(1 - \langle \rho_e \rangle S\right)} + L_a$$

Precorrección entorno

$$\langle \rho_e \rangle = \frac{\left(L^* - L_a\right)}{A + B + S\left(L^* - L_a\right)}$$

Corrección

$$\rho_c = \frac{\left(L^* - L_a\right)\left(1 - \left\langle \rho_e \right\rangle S\right) - \left\langle \rho_e \right\rangle B}{A}$$

Simulaciones espectrales de transferencia radiativa

18,000 combinaciones diferentes

6S Radiative Transfer Parameters Values			
Atmospheric model	standard 62, Tropical, Mid-latitude winter, Mid-latitude summer, Sub- arctic summer & Sub-arctic winter		
Aerosol model	Continental, maritime & urban		
Aerosol concentration (meteorological vis km)	7.5, 15, 30, 60 & 120		
Solar zenith angle (zenith=0°)	0, 30, 45, 60 & 75		
Sensor zenith angle (zenith=0°)	0, 15, 30, 45 & 60		
Azimuth difference	0, 45, 90, 135, 180, 225, 270 & 315		

Simulaciones de canal de transferencia radiativa

18,000 combinaciones espectrales

Sensibilidad espectral

18,000 combinaciones

de canal

Muestras Aster puras de vegetación y suelo

Los suelos son muy variables radiométricamente

La vegetación es muy semejante radiométricamente

Muestras Aster mixtas de vegetación y suelo

¡ Pv conocida!

$$\rho_i = \rho_{iV} \cdot P_V + \rho_{iS} \cdot (1 - P_V)$$

- 3 muestras vegetación
- 9 muestras de suelo
- Múltiples Pv (50 aprox. para cada muestra de vegetación y suelo)

Simulaciones de canal de transferencia radiativa

Múltiples Pv (100 para cada

muestra de vegetación y suelo)

18,000 combinaciones

de canal

- Efecto atmósfera en
 - Índice vegetación
 - Pv
 - Emisividad

Analizando...

Muchos datos...

Efecto en reflectividad de la atmósfera

Efecto en NDVI de la atmósfera

Efecto en Pv de la atmósfera

Algunos resultados

Complejos de obtener... mucho análisis

Dependencia de los índices vegetación con el tipo de suelo

Dependencia de los índices vegetación con el tipo de suelo

Mucha dependencia del suelo

Poca dependencia del suelo

Dependencia de la forma de los canales

Canal "medio"
Canal "ancho"
Canal "estrecho"

SENSOR\BANDA	Blue	Green	Red	Nir	Swir1p2	Swir1p6	Swir2p2
MODIS	3	4	1	2	5	6	7
AVHRR	no	no	1	2	no	3	no
MERIS	2	5	8	13	no	no	no
ATSR	no	1	2	3	no	4	no
ASTER	no	1	2	3	no	5	7
LANDSAT	1	2	3	4	no	5	<mark>6</mark>
SEVIRI	no	no	1	2	no	3	no

Comunes => NDVI

Efecto de la atmósfera en Pv, emisividad y temperatura

Pure landscape and atmosphere				
	AVHRR	MODIS	MERIS	
ΔP _v mean	0.002	0.002	0.002	
ΔP _v max	0.016	0.016	0.016	
ΔP _v min	-0.010	-0.010	-0.009	
Δε mean	0.0001	0.0001	0.0001	
Δε max	0.0014	0.0014	0.0014	
Δε min	-0.0009	-0.0009	-0.0008	

Vegetation cover error $\mathrm{D}P_{\mathrm{v}}$ varies between -0.010 and +0.016. Thermal (8-13 mm) emissivity error De varies between -0.009 and +0.0015. It represents a systematic error of approximately -0.05K to +0.08K

Ligera dependencia de la anchura del canal

(mejor si estrecho)

Mixed landscape and atmosphere				
	AVHRR	MODIS	MERIS	
$\Delta P_{_{ m V}}$ mean $\Delta P_{_{ m V}}$ max $\Delta P_{_{ m V}}$ min	0.112	0.112	0.117	
	0.438	0.442	0.427	
	-0.247	-0.248	-0.212	
Δε mean	0.0074	0.0073	0.0071	
Δε max	0.0502	0.0501	0.0493	
Δε min	-0.0199	-0.0198	-0.0171	

Vegetation cover Pv error varies between -0.25 and +0.44. Thermal emissivity error varies between -0.02 and +0.05. It represents a systematic error of approximately -1.0K to +2.6K

Heterogeneidad en Pv, emisividad y temperatura

The same order of magnitude than for a mixed landscape and atmosphere

Mixed landscape without atmosphere				
	AVHRR	MODIS	MERIS	
ΔP _v mean	0.170	0.161	0.150	
ΔP _v max	0.509	0.486	0.457	
ΔP _v min	-0.022	-0.023	-0.011	
Δε mean	0.0089	0.0086	0.0079	
Δε max	0.0567	0.0546	0.0518	
Δε min	-0.0056	-0.0055	-0.0052	

The vegetation cover Pv error varies between -0.023 and +0.51. Besides, the thermal emissivity error varies between -0.006 and +0.06 which represents a systematic error of approximately -0.3K to +3.0K).

Conclusiones

Conclusiones

- El impacto de la atmósfera es importante para el cálculo de Pv.
 Es más apreciable en entornos heterogéneos
- El impacto de la atmósfera es despreciable en promedio para el cálculo de la emisividad. Es más apreciable en entornos heterogéneos
- Es posible emplear índices diferentes al NDVI para el MCV
- La adecuada elección del índice de vegetación minimiza el impacto en entornos heterogéneos

¡ Gracias!

lucas.martinez@uv.es

http://www.uv.es

lucas.martinez@icc.cat

http://www.icc.cat

