

Operaciones morfológicas

- Están basadas en la geometría y en la forma.
 Simplifican la imagen y preservan las formas principales de los objetos:
 - Suavizan bordes de una región.
 - Separan/unen determinadas regiones.
 - Facilitan el cómputo de regiones en una imagen.

Operaciones morfológicas

- El valor de cada píxel en la imagen de salida depende de:
 - El valor de ese píxel en la imagen de entrada.
 - Su relación con la vecindad.

Elemento estructural

- Define el tramaño y la forma de la vecindad del píxel a ser analizado.
- Formado por ceros y unos. Las posiciones con valor uno definen la vecindad.
- Función MATLAB para definir el elemento estructural:
 - strel (forma, parámetros):

- Rellena agujeros.
- Suaviza bordes de objetos.
- Añade píxeles al borde de un objeto de manera que se hace más grande.

- Pixel de salida:
 - Máximo de los píxeles presentes en la vecindad definida por el elemento estructural.
 - Pasos (para cada píxel de la imagen):
 - 1. Seleccionar el píxel de la imagen original.
 - 2. Buscar el mayor de los píxeles de la vecindad.
 - 3. El valor del píxel de salida es el del píxel con valor máximo.

15	27	8
100	95	1
125	30	2

1	1	1
1	1	1
1	1	1

15	27	8
100	125	1
125	30	2

```
% Imagen de entrada
imagen = zeros(7,7);
I = [15 27 8; 100 95 1;125 30 2];
imagen (3:5,3:5) = I;
imagen
% Definimos el elemento estructural
ele = strel('square',3);
% Dilatación
imagen_dilatada = imdilate(imagen,ele);
imagen_dilatada
```

15	27	8
100	95	1
125	30	2

1961		
1	1	1
1	1	1
1	1	1

100	_	
15	27	8
100	125	1
125	30	2

•	
IMAGAA	_
ппапеп	
ımagen	_

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	15	27	8	0	0
0	0	100	95	1	0	0
0	0	125	30	2	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

imagen_dilatada =

0	0	0	0	0	0	0
0	15	27	27	27	8	0
0	100	100	100	95	8	0
0	125	125	125	95	8	0
0	125	125	125	95	2	0
0	125	125	125	30	2	0
0	0	0	0	0	0	0

```
subplot(1,2,1);
% Imagen de entrada
imagen = zeros(7,7);
I = [0 0 0; 255 255 0;255 0 0];
imagen (3:5,3:5) = I;
imshow (imresize(imagen,200,'nearest'),[]);
title ('Original');
subplot(1,2,2);
% Definimos el elemento estructural
ele = strel('square',3);
% Dilatación
imagen_dilatada = imdilate(imagen,ele);
imshow(imresize(imagen_dilatada,200,'nearest'),[]);
title('Tras la dilatación');
```



```
subplot(1,2,1);
% Imagen de entrada
imagen = imread('text.png');
imshow (imagen,[]);
title ('Original');
subplot(1,2,2);
% Definimos el elemento estructural
ele = strel('square',3);
% Dilatación
imagen_dilatada = imdilate(imagen,ele);
imshow(imagen_dilatada,[]);
title('Tras la dilatación');
```

Original

The term watershed refers to a ridge that ...

... divides areas drained by different river systems.

Tras la dilatación

The term watershed refers to a ridge that ...

– divides areas drained by differen fiver evetens.

Erosión

- Píxel de salida:
 - Mínimo de los píxeles presentes en la vecindad definida por el elemento estructural.
 - Pasos (para cada píxel de la imagen):
 - 1. Seleccionar el píxel de la imagen original.
 - 2. Buscar el menor de los píxeles de la vecindad.
 - 3. El valor del píxel de salida es el del píxel con valor mínimo.

Erosión

```
% Imagen de entrada
imagen = zeros(7,7);
I = [15 27 8; 100 95 1;125 30 2];
imagen (3:5,3:5) = I;
% Definimos el elemento estructural
ele = strel('square',3);
% Erosión
imagen_erosionada = imerode(imagen,ele);
```


15	27	8
100	95	1

125 30 2

	1	1	1
	1	1	1
	1	1	1

<u> </u>	•	No.
15	27	8
100	1	1
125	30	2

ımagen	Ŧ

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	15	27	8	0	0
0	0	100	95	1	0	0
0	0	125	30	2	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

imagen_erosionada =

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Erosión

```
subplot(1,2,1);
% Imagen de entrada
imagen = imread('text.png');
imshow (imagen,[]);
title ('Original');
subplot(1,2,2);
% Definimos el elemento estructural
ele = strel('square',3);
% Dilatación
imagen_erosionada = imerode(imagen,ele);
imshow(imagen_erosionada,[]);
title('Tras la erosión');
```

Original

The term watershed refers to a ridge that ...

. divides areas Irained by different iver systems.

Tras la erosión

The term catershed to be steen and perfect to a ridge that ...

golfodos, pere Torrellegoliik per 17 a. e. e. e. e.

Propiedades de la erosión (⊕) y la dilatación (⊕)

- La erosión y la dilatación son transformaciones no invertibles.
 - $-X \neq (X \Theta B) \oplus B$
 - $-X \neq (X \oplus B) \Theta B$
 - La dilatación es conmutativa:
 - $I \oplus H = H \oplus I$
 - La erosión no es conmutativa:
 - $-I\ThetaH\neq H\ThetaI$

- Clausura = Dilatación + Erosión:
 - Conecta objetos que están próximos entre sí.
 - Suaviza los contornos.
 - Rellena vacíos en el contorno.
 - Elimina pequeños huecos.

Original

Dilatación

Erosión

- Clausura = Dilatación + Erosión:
 - imerode(imdilate(I,ele),ele); ó
 - imclose(I,ele);

```
subplot(1,2,1);
% Imagen de entrada
imagen = imread('circles.png');
imshow (imagen,[]);
title ('Original');
subplot(1,2,2);
% Definimos el elemento
estructural
ele = strel('square',5);
% Clausura
imagen = imclose(imagen,ele);
imshow(imagen,[]);
title('Tras la clausura');
```


- Apertura = Erosión + Dilatación:
 - Suaviza contornos de los objetos.
 - Elimina pequeñas protuberancias.
 - Rompe conexiones débiles.

- Apertura = Erosión + Dilatación:
 - imdilate(imerode(I,ele),ele); ó
 - imopen(I,ele);

```
subplot(2,1,1);
% Imagen de entrada
imagen = imread('snowflakes.png');
imshow (imagen,[]);
title ('Original');
subplot(2,1,2);
% Definimos el elemento
estructural
ele = strel('square',5);
% Clausura
imagen = imopen(imagen,ele);
imshow(imagen,[]);
title('Tras la apertura');
```


Original

Clausura

Apertura

- Bordes
 - Apertura Erosión
- Top-hat
 - Imagen Apertura
- Bottom-hat
 - Clausura Imagen
- Realce
 - Imagen Top-hat Bottom-hat

