REPORT

COURSE: CSE - 206 EXPERIMENT NO: 4

TOPIC: Comparator, Adder/ Subtractor

SUBMITTED BY:

1805021 - Abdus Samee

1805022 - Md. Tamimul Ehsan

1805023 - Mohammad Abrarul Hasanat

1805024 - Zannatul Naim

1805025 - Md. Fahim Shahriar

Problem - 1

Problem Specification:

Design using basic gates, a 2-bit comparator to compare 2-bit numbers X and Y. The circuit should provide 3 output lines to indicate X>Y, X=Y, and X<Y.

Required Instruments:

- (1) 4 input pins, (2) 3 output pins, (3) 1 IC7404 gate, (4) 4 IC7408 gates,
- (5) 2 IC7432 gates, (6) Wires.

Truth Table;

	Χ		Y Output		Output	
Р	Q	R	S	A(X <y)< td=""><td>B(X=Y)</td><td>C(X>Y)</td></y)<>	B(X=Y)	C(X>Y)
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0

1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Minimized equation:

For A(X < Y), we construct the K-map below:

The simplified equation we get from the K-map is: P'R + Q'RS + P'Q'S

For B(X=Y), we construct the K-map below:

RS PQ	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

The simplified equation we get from K-map is:

$$P'Q'R'S' + P'QR'S + PQRS + PQ'RS'$$

= $P'R'(Q'S' + QS) + PR(Q'S' + QS)$
= $(PR + P'R')(QS + Q'S')$
= $(P \odot R)(Q \odot S)$

For C(X>Y), we construct the K-map below:

The simplified equation we get from K-map is:

Circuit Diagram:

Problem - 2

Problem Specification:

Design a 1-bit full subtractor circuit using basic logic gates. Inputs are P, Q, and R denoting minuend, subtrahend, and previous borrow respectively. The outputs are D and B representing the difference and output borrow.

Required Instruments:

(1) 3 input pins, (2) 2 output pins, (3) IC7404 gate, (4) IC7408 gate, (5) IC7432 gate, (6) Wires.

Truth Table:

Р	Q	R	D	В
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Minimized equation:

For D, we draw the K-map below:

The simplified equation we get from the above K-map is:

$$D = P'Q'R + P'QR' + PQ'R' + PQR$$
or,
$$D = P'(Q'R + QR') + P(QR + Q'R')$$
or,
$$D = P'(Q \oplus R) + P(Q \odot R)$$
or,
$$D = P \oplus Q \oplus R$$

For B, we draw the K-map below:

QR P	00	01	11	10
0	0	1	1	1
1	0	0	1	0

The simplified equation we get from the above K-map is:

$$B = P'R + QR + P'Q$$

Circuit Diagram:

