lab7

May 16, 2018

1 Lab 7

First we import data from the City of Chicago Data Portal's API.

```
In [1]: import pandas as pd
        import json
        import requests
        from urllib.parse import quote
        %matplotlib inline
        # Get crime data
        soql = "https://data.cityofchicago.org/resource/6zsd-86xi.json?$query="
        soql += quote("SELECT community_area AS Community, count(*)/5 AS No_Crimes, primary_ty
        soql += quote("WHERE 2007 < year AND year < 2013 ")</pre>
        soql += quote("GROUP BY Community, Primary_Type LIMIT 10000")
        resp = requests.get(soql).json()
        crime_type = pd.DataFrame(resp)
In [2]: # Get rid of the redundant decimal places
        crime_type.No_Crimes = crime_type.No_Crimes.astype(float)
        crime_type.round(1)
        crime_type.dropna(axis = 0, how = "any", inplace = True)
In [3]: # Get socioeconomics data
        socioeconomics = pd.read_csv("./../data/Census_Data_-_Selected_socioeconomic_indicator
        # rename "community"
        crime_type.rename(columns={'Community':'Community Area Number'}, inplace = True)
        crime_type['Community Area Number'] = crime_type['Community Area Number'].astype(float
        # crime_type.head(15)
In [4]: # Merging two dataset
        crime_df = pd.DataFrame.merge(crime_type, socioeconomics, on = 'Community Area Number'
In [5]: # geopandas starts from here
        import matplotlib.pyplot as plt
```

import geopandas as gpd

Importing Chicago Community Area's Shapefile

Now merge the data with shapefile for plotting after aggregating

Here shows the sum of all kinds of crimes in different community areas

Number of Crimes

1.1 Interactive Web Maps

```
caption = 'Number of Crimes')
        colormap.add_to(m)
        folium.GeoJson(crime_sum_geo,
                       style_function = lambda feature: {
                          'fillColor': colormap(feature['properties']['No_Crimes']),
                          "color": "black", "weight": 1, "fillOpacity": 0.55
                       }).add_to(m)
        # m.save("output/maps/Number_of_Crimes.html")
       m
Out[9]: <folium.folium.Map at 0x7f019c309550>
1.2 Looking at the Jails in the City of Chicago
In [10]: df 4 = gpd.read file('advanced gis/inclassdata unit4.gdb')
In [11]: crime_sum_geo.crs
Out[11]: {'init': 'epsg:4269'}
In [12]: df_4.crs
Out[12]: {'init': 'epsg:26971'}
In [13]: # reproject the maps
         df_4_proj = df_4.to_crs({'init': 'epsg:4269'})
         crime_sum_geo_proj = crime_sum_geo.to_crs({'init': 'epsg:26971'})
In [14]: crime_sum_geo_proj.plot()
Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x7f019a1ede48>
```

```
590000 -
580000 -
570000 -
560000 -
340000 350000 360000
```

```
In [15]: crime_sum_geo.columns
Out[15]: Index(['DISTNAME', 'DISTITLE', 'FAMINC', 'HOUSINC', 'PERCAPINC', 'MEDVALOOH',
                'MEDRENT', 'geometry', 'No_Crimes', 'PERCENT OF HOUSING CROWDED',
                'PERCENT HOUSEHOLDS BELOW POVERTY', 'PERCENT AGED 16+ UNEMPLOYED',
                'PERCENT AGED 25+ WITHOUT HIGH SCHOOL DIPLOMA',
                'PERCENT AGED UNDER 18 OR OVER 64', 'PER CAPITA INCOME ',
                'HARDSHIP INDEX'],
               dtype='object')
In [16]: # plot the unemployment rate
         ax_sum = crime_sum_geo.plot(column = 'PERCENT AGED 16+ UNEMPLOYED', cmap = 'plasma',
                                     k = 10, linewidth = 2,
                                     legend = True, figsize = (10, 10),
         ax_sum.set_title("PERCENT AGED 16+ UNEMPLOYED", fontsize = 20, y = 1.05)
         ax_sum.get_legend().set_bbox_to_anchor((0.3, 0.3))
         ax_sum.get_legend().get_frame().set_linewidth(0)
         ax_sum.set_axis_off()
         # ax_sum.figure.savefig('output/maps/Number_of_Crimes.png')
```

PERCENT AGED 16+ UNEMPLOYED

Out[18]:	Austin	582
	North Lawndale	228
	Humboldt Park	221
	West Englewood	218
	Englewood	171
	Auburn Gresham	168
	South Shore	165
	Roseland	160
	East Garfield Park	153

New City	142
West Pullman	133
West Garfield Park	130
Chicago Lawn	110
Grand Boulevard	108
Near West Side	108
Greater Grand Crossing	98
West Town	98
South Chicago	88
Near North Side	88
Woodlawn	87
Chatham	86
Rogers Park	86
Logan Square	84
Douglas	79
Washington Heights	71
Uptown	69
Washington Park	60
Belmont Cragin	55
Irving Park	47
South Lawndale	45
Fuller Park	22
Hyde Park	21
Hermosa	20
East Side	19
Lower West Side	19
North Center	17
Ashburn	17
Calumet Heights	17
Dunning	16
Pullman	15
Avalon Park	14
West Elsdon	13
Lincoln Square	13
West Lawn	12
Jefferson Park	11
Armour Square	10
Clearing	10
Burnside	8
Norwood Park	7
Beverly	6
McKinley Park	6
Hegewisch	5
North Park	5
Forest Glen	5
Montclare	4
O'Hare	4

Archer Heights 4
Mount Greenwood 3
Loop 3
Edison Park 1

Name: DISTITLE, Length: 77, dtype: int64

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x7f019a065198>

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0199c89b00>

geopandas's overlay functions simply does not work for me

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0199c6ad30>

