# Álgebra Lineal I

Usando Beamer (nunca ppt)

### William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

4 de noviembre de 2020

# Espacios Vectoriales (continuación)

# Definición (Combinación Lineal)

Sean V un espacio vectorial y los vectores  $v^1, v^2, \cdots, v^r \in V$ , entonces estos vectores son llamados **combinación lineal** a toda expresión de la forma

$$\lambda_1 v^1 + \lambda_2 v^2 + \cdots + \lambda_r v^r,$$

donde  $\lambda_1, \lambda_2, \cdots, \lambda_r \in \mathbb{K}$ .

El conjunto  $A \subset V$  se llama combinación lineal de elementos de A a toda combinación lineal de un número finito de elementos de A.

Sean V un espacio vectorial,  $A \subset V$  un conjunto no-vacío, y  $\mathscr{F} = \{W \supset A/W \text{ es un subespacio de } V\}$ , entonces

$$\bigcap_{W\in\mathscr{F}}W\in\mathscr{F}$$

#### Prueba:

Sean  $u, v \in \bigcap_{W \in \mathscr{F}} W$ , entonces  $u, v \in W$  para todo  $W \in \mathscr{F}$ ,

pero  $W \subset V$  es un subespacio, luego  $(\forall \alpha, \beta \in \mathbb{F})(\alpha u + \beta v \in W)$  por tanto  $\alpha u + \beta v \in \bigcap W$ , es decir,

 $W \in \mathscr{F}$ 

 $\bigcap_{W \in \mathscr{F}} W$  es un subespacio de V que contiene a A.

Denotemos  $\mathscr{L}(A) = \bigcap_{W \subset \mathscr{X}} W$ , es decir, es el subespacio más pequeño

de V que contiene a A y  $\mathcal{L}(A) \subset W$  para todo  $W \in \mathcal{F}$ .

Sean V un espacio vectorial,  $A \subset V$  un conjunto no-vacío, entonces  $\mathcal{L}(A)$  es el conjunto de todas las combinaciones lineales de A.

Prueba: ejercicio.

#### Nota

Esta proposición nos indica que  $\mathcal{L}(A)$  puede ser obtenido a partir de los elementos de A.

### Nota

Si  $A = \emptyset$ , entonces  $\mathcal{L}(\emptyset) = \{\mathbf{0}\}$ .

#### Definición

Sean V un espacio vectorial y  $A \subset V$  un conjunto. Si  $\mathcal{L}(A) = V$ , entonces decimos que A es un conjunto de **generadores** de V.

### Ejemplo

1. Sean  $V = \mathbb{R}^2$  y  $\mathcal{L}(A) = \{(0; 1), (1; 0)\} \subset V$ , entonces  $\mathcal{L}(A) = V$ . En efecto: Basta elegir cualquier  $v = (v_1, v_2) \in V$  el cual puede ser expresado

$$v = (v_1, v_2) = v_1(1; 0) + v_2(0; 1).$$

2.  $\{(1-x)^2, (1+x)^2, x+x^2\}$  genera a  $F = \{f(x) \in \mathbb{R}[x]/grad(f) \le 2\}$ . En efecto: Ejercicio

Si R, S son subespacios de V, entonces definimos la suma de estos subespacios por

$$R + S = \{u + v/u \in R, \ v \in S\}.$$

#### Nota

R + S es un subespacio de V.

En efecto:

Sean  $x, y \in R + S$ ,  $\alpha, \beta \in \mathbb{F}$  arbitrarios,

entonces existen  $u^1, u^2 \in R$ ,  $v^1, v^2 \in S$  tales que:

$$x = u^1 + v^1 e y = u^2 + v^2$$
.

Dado que R, S son subespacios de V, entonces

 $\alpha u^1 + \beta u^2 \in R$  y  $\alpha v^1 + \beta v^2 \in S$ , de donde se tiene

$$\alpha x + \beta y = \alpha (u^1 + v^1) + \beta (u^2 + v^2) = (\alpha u^1 + \beta u^2) + (\alpha v^1 + \beta v^2) \in R + S.$$

Así R + S es un subespacio de V.

Si R, S son subespacios de V, entonces definimos la **suma directa** de estos subespacios por

$$R + S = \{u + v/u \in R, v \in S\}, y R \cap S = \{0\},\$$

y lo denotamos por  $R + S = R \oplus S$ 

### Ejemplo

Consideremos  $V = \mathbb{R}^3$ , y los subespacios

1. 
$$R = \{(x, y, z) \in V/x + y + z = 0\}$$
  $y \in S = \{(x, y, z) \in V/-x + y - z = 0\}$  Veamos  $R \cap S$ :

$$R \cap S = \{(x, y, z) \in V/x + y + z = 0, -x + y - z = 0\}$$

$$= \{(x, y, z) \in V/y = 0, x = -z\}$$

$$= \{(-z, 0, z) \in V/z \in \mathbb{R}\}$$

$$= \{z(-1, 0, 1)/z \in \mathbb{R}\} \neq \{\mathbf{0}\}.$$

Por tanto. la suma R + S no es suma directa.

2.  $R = \{\alpha(1, -1, 2)/\alpha \in \mathbb{R}\}\ y\ S = \{(x, y, z) \in V/x + y + z = 0\}\$ Veamos  $R \cap S$ :

$$R \cap S = \{(x, y, z) \in V/(x, y, z) = \alpha(1, -1, 2), \ x + y + z = 0\}$$
  
=  $\{\mathbf{0}\},$  esto es debido a que  $\alpha = 0$ 

Por tanto, la suma R + S es suma directa, es decir,  $R + S = R \oplus S$ .

Sean V un espacio vectorial y  $R, S \subset V$  subespacios. Entonces la suma R+S directa si, y solo si todo elemento  $u \in R+S$  debe escribirse de manera única

$$u = v + w$$
, donde  $v \in R$ ,  $w \in S$ .

#### Prueba:

 $\implies$ ) Supongamos que  $R \cap S = \{0\}$ , y  $u \in R + S$  arbitrarios. Consideremos que existen  $v, v' \in R$ ,  $w, w' \in S$  tales que

$$u = v + w = v' + w',$$

de donde

$$v - v' = w' - w \in R \cap S$$
.

Como  $R \cap S = \{\mathbf{0}\}\$ , entonces v' = v y w' = w.

Ejercicio.

### **Ejercicio**

Sean  $n \in \mathbb{N}$ , V un espacio vectorial y los subespacios  $S^k \subset V$ ,  $k = 1, 2 \cdots$ , n. Generalice el resultado anterior.

Veremos como determinar un mínimo de generadores de un espacio vectorial.

Consideremos  $k \in \mathbb{N}$ , V un espacio vectorial y un conjunto de vectores  $\{v^1, v^2, \cdots, v^k\} \subset V$ , diremos que estos vectores son **linealmente dependiente**, simplemente lo denotamos por **l.d.**, si existen escalares  $\alpha_1, \alpha_2, \cdots, \alpha_k$  no todos nulos tales que

$$\alpha_1 \mathbf{v}^1 + \alpha_2 \mathbf{v}^2 + \dots + \alpha_k \mathbf{v}^k = \mathbf{0}$$

### Ejemplo

Los vectores (2, -3), (-4, 6) son l.d. en  $\mathbb{R}^2$ , en efecto:

$$2(2,-3)+(-4,6)=(0,0).$$

# Definición (Linealmente Independiente)

Sean V un espacio vectorial, decimos que los vectores  $v^1, v^2, \dots, v^k$  de V son **linealmente independientes**, y lo denotamos por **l.i.**, si la ecuación

$$\alpha_1 \mathbf{v}^1 + \alpha_2 \mathbf{v}^2 + \dots + \alpha_k \mathbf{v}^k = \mathbf{0}$$

tiene como única solución a  $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$ .

### Ejercicio

- 1. Pruebe que si  $\{v^1, v^2, \dots, v^k\}$  son l.i., entonces estos vectores son no-nulos.
- 2. Cualquier vector  $v \neq \mathbf{0}$ , es l.i.
- 3. si conjunto de vectores  $\{v^1, v^2, \dots, v^k\}$  es l.i., entonces el conjunto  $\{v^1, v^2, \dots, v^k, \mathbf{0}\}$  es l.d.

#### Definición

Sean V un espacio vectorial y  $A \subset V$  un conjunto no-vacío, decimos que A es **linealmente independiente**si toda colección finita de elementos de A es I.i.

### Definición

Sea V un espacio vectorial, un conjunto  $A \subset V$  es una base si

- 1.  $V = \mathcal{L}(A)$ , es decir, A genera a V.
- 2. A es linealmente independiente.

### Nota

Si A es un conjunto finito, digamos  $A = \{v^1, v^2, \dots, v^k\}$ , y además una base para el espacio vectorial V, entonces se tiene

1. Cada elemento  $u \in V$  se expresa de la forma

$$u = \sum_{j=1}^{k} \alpha_j v^j,$$

donde  $\alpha_i \in \mathbb{F}$ .

2. Los vectores  $\{v^1, v^2, \dots, v^k\}$  son l.i.

Sean V un espacio vectorial y  $\{v^1, v^2, \dots, v^k\}$  un conjunto de generadores de V. Supongamos que  $u = \alpha_1 v^1 + \alpha_2 v^2 + \dots + \alpha_k v^k$ , con  $\alpha_1 \neq 0$ . entonces  $\{u, v^2, \dots, v^k\}$  genera a V.

#### Prueba:

Dado que  $\alpha_1 \neq 0$ , entonces tenemos

$$\mathbf{v}^1 = \beta_1 \mathbf{u} + \beta_2 \mathbf{v}^2 + \dots + \beta_k \mathbf{v}^k,$$

donde  $\beta_1 = \frac{1}{\alpha_1}$ ,  $y \beta_j = -\frac{\alpha_j}{\alpha_1}$ ,  $j = 2, 3, \dots, k$ . Sea  $w \in V$  cualquiera y como  $v^1, v^2, \dots, v^k$  genera a V, entonces escalares  $\lambda_1, \lambda_2, \dots, \lambda_k$  tales que

$$w = \lambda_1 v^1 + \lambda_2 v^2 + \dots + \lambda_k v^k$$
  
=  $\lambda_1 (\beta_1 u + \beta_2 v^2 + \dots + \beta_k v^k) + \lambda_2 v^2 + \dots + \lambda_k v^k$   
=  $\lambda_1 \beta_1 u + (\lambda_1 \beta_2 + \lambda_2) v^2 + \dots + (\lambda_1 \beta_k + \lambda_k) v^k$ .

Por tanto  $\{u, v^2, \dots, v^k\}$  genera a V.



Sean V un espacio vectorial,  $\{v^1, v^2, \dots, v^k\} \subset V$  genera a V y  $\{u^1, u^2, \dots, u^r\} \subset V$  una colección arbitraria de vectores, con k < r, entonces  $\{u^1, u^2, \dots, u^r\}$  son l.d.

#### Prueba:

Probaremos está proposición por el absurdo, es decir, supongamos que  $\{u^1, u^2, \cdots, u^r\}$  son l.i.

Por hipótesis tenemos que  $\{v^1, v^2, \cdots, v^k\}$  generan a V, entonces, tenemos

$$u^1 = \alpha_1 v^1 + \alpha_2 v^2 + \dots + \alpha_k v^k,$$

donde algún  $\alpha_i \neq 0$ , dado que  $u^1 \neq \mathbf{0}$ .

Sin pérdida de generalidad, podemos suponer que  $\alpha_1 \neq 0$ .

Entonces, por la proposición anterior tenemos que los vectores  $\{u^1, v^2, \cdots, v^k\}$  generan a V.

En forma inductiva, podemos asumir que hemos conseguido que los vectores  $\{u^1, u^2, \cdots, u^j, v^{j+1}, \cdots, v^k\}$  sean generadores de V. Así podemos escribir

$$u^{j+1} = \sum_{i=1}^{j} \beta_{j} u^{j} + \sum_{i=j+1}^{k} \gamma_{i} v^{i}.$$

Como  $u^{j+1} \neq \mathbf{0}$ , para algún  $\gamma_i \neq 0$ , (si todos los  $\gamma_i = 0$  entonces los  $u^i$  serían l.d. contradice la hipótesis auxiliar).

Sin pérdida de generalidad, asumiremos que  $\gamma_{j+1} \neq 0$ , entonces por la proposición anterior se tiene

$$\{u^1, u^2, \cdots, u^j, u^{j+1}, v^{j+2}, \cdots, v^k\}$$

generan a V.

Luego por el Principio de Inducción Matemática, se logró reemplazar todos los vectores  $v^i$  por los  $u^i$ , obteniéndose que

$$\{u^1, u^2, \cdots, u^k\}$$

generan a V.

Pero r > k, entonces existe  $u^{k+1}$  tal que

$$u^{k+1} = \beta_1 u^1 + \beta_2 u^2 + \dots + \beta_k u^k,$$

lo cual es una contradicción a la independencia lineal de  $\{u^1, u^2, \cdots, u^k\}$ . Por tanto,  $\{u^1, u^2, \cdots, u^k\}$  son l.d.

# Proposición (Teorema de la Dimensión)

Todas las bases de un espacio vectorial V tienen el mismo cardinal.

# Proposición (Existencia de Bases)

De cualquier conjunto generador de un espacio vectorial V se puede extraer una base.