习题 1. 设 *X* 为 Noether 空间.

(i) 设 {ℱ} 为 X 上的 Abel 群层. 则

$$H^n(X, \bigoplus_i \mathcal{F}_i) \cong \bigoplus_i H^n(X, \mathcal{F}_i) \quad \forall n.$$

(ii) 设J为有向集, $(\{\mathcal{F}_i\}, \{\varphi_{i,j}\})_{i\in I}$ 为X上Abel 群层的有向系. 则

$$H^n(X, \varinjlim_i \mathscr{F}_i) \cong \varinjlim_i H^n(X, \mathscr{F}_i) \quad \forall n.$$

证明. 在 (ii) 中取 J 为 I 的所有有限子集就知道 (i) 是 (ii) 的直接推论. (有限直和显然保持同调). 据 Hartshorne 习题 II.1.11, 由于 X 是 Noether 空间, 有

$$\Gamma(X, \varinjlim_i \mathcal{F}_i) \cong \varinjlim_i \Gamma(X, \mathcal{F}_i).$$

这同时也说明若诸 \mathscr{F}_i 都为松层, 则 $\lim_i \mathscr{F}_i$ 也松; 且 \lim_i 正合.

因此我们取 \mathscr{F}_i 的内射消解 \mathscr{F}_i , 则 $\varinjlim_i \mathscr{F}_i$ 即为 $\varinjlim_i \mathscr{F}_i$ 的零调消解. 取上同调, 由正合性即得结论.

习题 2.

(i) 设 $f: X \to Y$ 连续. 则对 X 上任意 Abel 群层 \mathcal{F} 和任意 $i, R^i f_* \mathcal{F}$ 恰为预层

$$V \mapsto H^i(f^{-1}V, \mathcal{F})$$

的层化.

(ii) 设 (X, \mathcal{O}_X) 为环化空间, \mathcal{F}, \mathcal{G} 为 \mathcal{O}_X 模. 则对任意 $i, \mathscr{E}xt^i_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ 即为预层

$$U\mapsto \operatorname{Ext}^i_{\mathscr{O}_V|_U}(\mathscr{F}|_U,\mathscr{G}|_U)$$

的层化.

证明.

- (i) 设 \mathcal{F} 为 \mathcal{F} 的内射消解. 则 $R^if_*\mathcal{F}$ 按定义即为 $f_*\mathcal{F}$ 的上同调. 而 $f_*\mathcal{F}$ 作为预层的上同调即为 $V\mapsto H^i(f^{-1}V,\mathcal{F})$. 层化函子是预层范畴到层范畴的正合函子, 因此其保持链复形的上同调, 因而 $f_*\mathcal{F}$ 作为层的上同调即为预层 $V\mapsto H^i(f^{-1}V,\mathcal{F})$ 的层化.
- (ii) 类似的, 我们取 $\mathscr G$ 的内射消解 $\mathscr G$. 则 $\mathscr Ext^i_{\mathscr G}=H^i(\mathscr Hom_{\mathscr O_X}(\mathscr F,\mathscr F^{\scriptscriptstyle\bullet}))$. 按定义, $\mathscr Hom_{\mathscr O_X}(\mathscr F,\mathscr F^{\scriptscriptstyle\bullet})$ 即为层 $U\mapsto \operatorname{Hom}_{\mathscr O_X|U}(\mathscr F|_U,\mathscr F^{\scriptscriptstyle\bullet}|_U)$ 构成的链复形. 因此作为预层, 其上同调即为 $U\mapsto \operatorname{Ext}^i_{\mathscr O_X|_U}(\mathscr F|_U,\mathscr F|_U)$. 而层化保 链复形上同调, 因此此链复形作为层的上同调即为上述预层的层化.

习题 3. 设 (X, \mathcal{O}_X) 为环化空间, \mathcal{F} 为 \mathcal{O}_X 模. 令

$$0 \to \mathcal{G}' \to \mathcal{G} \to \mathcal{G}'' \to 0$$

为 O_X 模范畴中的短正合列. 证明有长正合列

$$\cdots \to \operatorname{Ext}^i_{\mathcal{O}_X}(\mathcal{G}'',\mathcal{F}) \to \operatorname{Ext}^i_{\mathcal{O}_X}(\mathcal{G},\mathcal{F}) \to \operatorname{Ext}^i_{\mathcal{O}_X}(\mathcal{G}',\mathcal{F}) \xrightarrow{\delta} \\ \to \operatorname{Ext}^{i+1}_{\mathcal{O}_X}(\mathcal{G}'',\mathcal{F}) \to \cdots.$$

证明. 只需证明 $\operatorname{Ext}^l_{\mathcal{O}_X}(\mathsf{-},\mathcal{F})$ 亦是反变函子 $\operatorname{Hom}_{\mathcal{O}_X}(\mathsf{-},\mathcal{F})$ 的右导出函子. 这是同调代数的基本结果.

可以通过同时取 $\mathscr G$ 的投射消解 $\mathscr P^{\bullet}$ 和 $\mathscr F$ 的内射消解 $\mathscr P^{\bullet}$, 直和得到双重链复形, 取其两种不同的滤结构求谱 序列即得到 $H^{i}(\operatorname{Hom}_{\mathscr O_{Y}}(\mathscr F,\mathscr F^{\bullet})))\cong H^{i}(\operatorname{Hom}_{\mathscr O_{Y}}(\mathscr P^{\bullet},\mathscr F^{\bullet}))$.

习题 4. 设 (X, \mathcal{O}_X) 为环化空间, \mathcal{F}, \mathcal{E} 为 \mathcal{O}_X 模. 定义 \mathcal{F} 对 \mathcal{E} 的扩张为形如

$$0 \to \mathcal{G} \to \mathcal{E} \to \mathcal{F} \to 0$$

的短正合列;两个扩张 8,8'等价当且仅当有交换图

$$0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow 0$$

$$\downarrow^{=} \qquad \downarrow^{\cong} \qquad \downarrow^{=}$$

$$0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{E}' \longrightarrow \mathcal{F} \longrightarrow 0.$$

证明存在自然的一一对应

$$\operatorname{Ext}^1_{\mathscr{O}_X}(\mathscr{F},\mathscr{G})\overset{\sim}{\to}\{\mathscr{F}\ o t\ \mathscr{G}\ ext{ 的扩张}\}/\cong .$$

证明. 这也是同调代数的基本结果. 我们不管 (X, \mathcal{O}_X) , 改为在任意有足够投射对象的 Abel 范畴 $\mathscr C$ 中考虑.

记 $A,B\in\mathscr{C}$. 我们记 e(A,B) 为所有 A 对 B 的扩张构成的的等价类的集合. 记 … \rightarrow P_1 \xrightarrow{d} P_0 $\xrightarrow{\pi}$ A 为 A 的投射消解. 则对任意扩张 $0\rightarrow B\rightarrow E\rightarrow A\rightarrow 0$, 我们有提升

且这样的提升在同伦意义下唯一. 此映射 $\varphi: P_1 \to B$ 是链复形 $\operatorname{Hom}(P_\bullet, B)$ 中的上环, 因此给出了 $[\varphi] \in H^1(\operatorname{Hom}(P_\bullet, B)) = \operatorname{Ext}^1(A, B)$. 同伦唯一性说明此上同调类不依赖于提升的选择 (这就是 $\operatorname{id}_B \in \operatorname{Hom}(B, B)$ 对应的上同调类的拉回).

记 E' 为 $B \stackrel{\varphi}{\leftarrow} P_1 \stackrel{d}{\rightarrow} P_0$. 则按定义有交换图表

其中 $\psi: E' \to A$ 由 $B \xrightarrow{0} A \xleftarrow{\pi} P_0$ 诱导. 第二行事实上也正合: 其显然在 B 和 A 处正合, 且是链复形. 若 $p \in P_0, b \in B$, 使得 $\psi(p+b) = 0$, 则 $\pi(p) = 0$. 因此存在 $p_1 \in P_1$ 使得 $p_0 = d(p_1)$. 因而在 E' 中有 $p+b=d(p_0)+b \in B$.

只关注后两行. 由五引理, $E \cong E'$. 因此扩张 $E \cong E' \in e(A, B)$ 反过来被 φ 唯一确定.

综上, 我们已经有如下交换图表

只需再证明若 $\varphi, \varphi' \in \text{Hom}(P_1, B)$ 给出同一个等价类,则他们给出同一个扩张.而此时存在 $\psi \in \text{Hom}(P_0, B)$ 使得 $\varphi - \varphi' = \psi d$.因此 $E = B \coprod_{P_1, \varphi} P_0$ 和 $E' = B \coprod_{P_1, \varphi'} P_0$ 之间有同构 $(p, b) \mapsto (p, b + \psi(p))$.所以上述映射 $\varphi \mapsto B \coprod_{P_1, \varphi} P_0$ 确实诱导了 $\text{Ext}^1(A, B) \to e(A, B)$ 的映射,其与 $E \mapsto [\varphi]$ 互逆.这样就给出了一一对应.