311117205041 KONICA MINOLTA Model Fram. 8/4/20 (S8092 - Computer Graphics and Multimedia. Part - A. Two dimensional structures constructed by the 1. process of regional filling, i.e., process of filling image or region are called as Filled trea Primitires. Filling can be of boundary or interior region. Boundary Filling Algorithms are used to fill the boundary while Flood-Fill algorithms are used to fill the interior. 7 Light travels in straight line oscillate perpendicular to each other.

The time of electric & magnetic waves that

each other. T Photons propagate with a speed of 3×10° ms-1. 7 Material is not needed for propagation 7 Shows the phenometron of reflection, reprochin, diffraction of polarization. Two dimensional Viewing is a transformation process 3, of real world words rates into window woordinates which is relative to the viewing volume, especially, the points behind the riewer. Chipping in a computer graphics process to remove lines, objects of line segments, all of which are outside the viewing plane

KONICA MINOLTA
The banc data types used in multimedia are; text i mages and o - 7 animations holograms -> Full-motion video -> hyperlinks and T margner. Entropy coding or hymann coding is a type of 8. lossless coding to compress digital data by nepresenting frequently occurring pattern with few bits and reasely occurring pattern with many bits. Bank components of hypermedia are; 9. -> Graphics -> plaintext and hyperlinks A hypermedia message can be a complex collection 10. of a variety of objects. It is an integrated message consisting of text, binary files, images, bit maps, audio and rideo.

$$(0,10)$$
 = (-10) $P_0 = -9$

(1,10)
$$Y_{KH} = Y_{K} = 10$$

 $P_{KH} = P_{K} + 2X_{KH} + 1 = -9 + (2-i) + 1$

KONICA MINOLTA S. PRH 70; CAR 2 m X KH = Xx +1 = 3+1 = A YXH = YK-1 = 10-1 = 9. PKHI = PK - 2(YKH) + 2(XKH) +1. (A,9) = 6 - 2(9) + 2(4) + 1= 6-18+8+1 6. PKH LO; care som I is true Xx+1 = Xx+1 = 4+1 = 5, (5,9) YKHI = YK = 9. $P_{K+1} = -3 + 2(5) + 1$ PX+1 70; case 2 is true, Xx+1 = Xx+1 = 5+1=6 YKH = YK -1 = 8 (6,6) PK+1= 8-2(8)+2(6)+1 =8-16 +12+1 25'

1	PK	PK+1	(XKH, YKH)	
			(0, 10)	
	-9	-6	(1,10)	
	-6	2(0)2	(2,10)	16147
	-1	6	(3,10)	
	6	-3	(4,0)	
by the contract of	-3	8	(5,9)	
	8	55	(6,8)	(6:3)
Point	for oct	ont 2 C	an be obtained ortant 1.	dby
SNO	pping x	sy of	octant 1.	
Poir	to for	Quadra	nt-1.	
Octant-1			Octant -2,	A V
(0,10)			(8,6)	
(4,10)			(915)	282
(2,10)			(9,11)	The state of the s
(3,10)			(10,3)	
(419)			(10, 2)	
(519)			(10, 1)	
(6,8)			(10,0)	
The	point of Sphaines	or other grave	drant can pring g changing	generated aricle.

$$\begin{bmatrix}
 x' \\
 y', \\
 z'
 \end{bmatrix} = \begin{bmatrix}
 x_1 & 0 & 0 & t_2 \\
 0 & 1 & 0 & t_2 \\
 0 & 0 & 1 & t_2 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 z
 \end{bmatrix}
 =
 \begin{bmatrix}
 x \\
 y \\
 z \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 z
 \end{bmatrix}
 =
 A' = T[A]$$

2. Scaling.

Consider stating operation performed on so cube as shown.

Initial coordinates are
A(x,y,Z)

A scaling factor of S., Sy 4 Sz are applied on the coordinates.

New Coordinates

$$x' = XS_{x}$$

$$y' = YS_{y}$$

$$z' = ZS_{z}$$

In Matrix format,

iv) Palette File Format (PAL):
Allows defining a palette of 1 to 256 RGB

V) Rich Text Format (RTF)
Allows embedded graphics and other
Allows embedded graphics and other
file formats within a document. Produced by Lotis Notes.

Video Processing Standards.

1. Intel's DVI.

DVI standard in to provide a processor i'ndependentspecification for a video interface. That video interface
should accomposate most compression algorithms for
fast multimedia displays.

Ex: Intel 1750B.

2. Apple Quick Time Monie (mor):

QuickTime is designed to support multimedic applications. It is integrated with marc DS and integrated with marc DS and is. BuickTime refers to both the extensions to the mads and to the compression/ decompression the mads and to the compression/ decompression functionality of the environment. Quick Time is designed to be the graphics standard for timebased graphic data types.

3. Microsoft AVI

AVI stands for Andrio - Video Interleave.

It is girnilar to Apple's anickTime. It offers how-costs

bow-resolution video processing for the average desktop user

bow-resolution video processing for the average desktop user

It is layered of scalable. It allows user to sel
It is layered of scalable that frame rate, quality and

parameter such as window size, frame rate, quality and

compression algorithms.

KONICA MINOLTA
Hyper medira Merrage Components A hypermedia merrage may be a simple merrage in the form of text with an embedded graphics. sound, or video clip. An authoring sequence for a message may consistof the following componen h -> The user may have watched some video presentation on the material and many mant to attach a part of that dip in the message While watching it, the user manks possible quotes and saves an amptated copy, -> Some pages of the book are scanned images. The images provide an illustration or a clearer analysis of the topic -> The user writes the text of the message ming a word processor, Components: 1. Text Mestages:

-7 Initially was firmited to ASCII text only,

-7 New messaging standards allow users to

communicate using complex messages including

emojis.

-7 Supports service 9 delivery seposts.

2. Email:

Name and address directory capability to messaging systems,

3. Rich-text messages!

Microsoft defined a standard for exporting and importing text data that included character set, fort table, seeking paragraph formatting, document formaling 21 color information.

4. Voice mail systems answer telephones warmy voice mail systems answer telephones warmy seconded messages of direct the calex through or segrence of fouch hone key operations.

MIDI was developed initially to allow computer control of and music aerordings from musical instruments like digital pianos.

6. Full-motion Video.

— Use of full-motion video for information

sepositories and memos are more informative.

— More information can be conveyed and

explained in a short motion chip than a

long text downent.

-7 Providing support for continuous media lapes

7 Heed for sophisticated quality of service

management-

such as andis, video and animahim.

Software that runs on network modes which I 2 functions namely 1. Qob Negotiation 2. Admission Control.

