Departamento Metal Mecânico Curso Técnico de Manutenção Automotiva

Eletricidade I

eduardo.fontanella@ifsc.edu.br

Multímetro

- O que é um multímetro?
 - É um aparelho destinado a medir e avaliar grandezas elétricas;
- O que podemos medir com um multímetro?
 - Tensão contínua e alternada;
 - Resistência elétrica;
 - Corrente contínua e alternada;
 - Verificar continuidade;
 - Testar diodos;
 - Testar transistores;
 - Capacitância;
 - Frequencimetro;
 - Termômetro;
 - Alicate amperímetro;
 - Tacômetro.

Multímetro

- Display LCD.
- Soquete hFE: Soquete para medida de hFE de transistores NPN e PNP e teste de LED's
- Chave Rotativa.
- Terminal de Entrada 10A: Entrada positiva para medidas de corrente na escala de 10A
- Terminal de Entrada COM: Entrada negativa para as medidas de tensão, resistência e corrente, e para os testes de diodo e continuidade.
- Terminal de Entrada V/mA/Ω: Entrada positiva para medidas de tensão resistência, corrente DC (em mA) e para os testes de diodo e continuidade
- Indicador de Alta Tensão.
- Indicador de Polaridade Negativa (positiva é implícita).
- Indicador de Bateria Fraca.
- Dígitos do Display de Cristal Líquido.

Categoria do multímetro

Departamento Metal Mecânico Curso Técnico de Manutenção Automotiva

Categoria do multímetro

CATEGORIA	TENSÃO MÁXIMA DE TRABALHO	TRANSIENTE MÁXIMO DE PICO
II	600 V	Transiente de 4 000 V de pico
II	1000 V	Transiente de 6 000 V de pico
III	600 V	Transiente de 6 000 V de pico
III	1000 V	Transiente de 8 000 V de pico
IV	600 V	Transiente de 8 000 V de pico
IV	1000 V	Transiente de 12 000 V de pico

Departamento Metal Mecânico Curso Técnico de Manutenção

Analógico

Digital

Automotiva

Meio dígito

- Digito que é "1" ou é inexistente, "0";
- Muito comum em modelos básicos.
- O maior número mostrado no display costuma ser 1999;
- No caso do exemplo ao lado, as escalas de tensão são:
 - 200,0 mV
 - 2,000 V
 - 20,00 V
 - 200,0 V
 - 500 V
- Quando a medição for acima da escala é indicado um número 1 à esquerda;

Medição de tensão

- Multímetro sempre é ligado em paralelo com o elemento a ser medido;
- Colocar a chave seletora no tipo de tensão a ser medido e na escala adequada
- Alta impedância de entrada;

Cuidados!

- Nunca fechar curto circuito entre as pontas de prova durante a medição;
- Sempre que não souber a tensão a ser medida, começar pela maior escala do multímetro;

Medição de corrente

Multímetro sempre é ligado em série com o elemento a ser medido;

Colocar a chave seletora no tipo de corrente a ser medido e na escala

adequada

Cuidados!

- Nunca exceder a corrente máxima do multímetro;
- O multímetro está curto circuitando os pontos de ligação;

Departamento Metal Mecânico Curso Técnico de Manutenção Automotiva

Tensão

Corrente

Alicate amperímetro

- Colocar a chave seletora no tipo de corrente a ser medido e na escala adequada;
- Passar apenas 1 fio por dentro do alicate amperímetro;
- Impreciso para medições de correntes pequenas;
- Capacidade de medir corrente elevada;
- Robustez contra sobrecorrente;

Medição de resistência

- Colocar a chave seletora na escala adequada;
- Circuito elétrico sempre desenergizado;
- Levar em consideração a resistência de contato da ponta de prova;

Cuidados!

Circuito energizado pode danificar o multímetro;

Verificação de continuidade

- Nesta função é possível verificar se há contato elétrico entre as duas pontas de prova do multímetro;
- Geralmente o multímetro emite um sinal sonoro indicando a continuidade;
- Verificação de fusíveis;
- Verificação de integridade de condutores;
- Identificação de pinagem em conectores;

Testes de diodos e transistores

- Verificar a integridade dos componentes;
- Verificar a polaridade direta ou inversa de diodos;
- Verificação se transistores são NPN ou PNP;

Departamento Metal Mecânico

Curso Técnico de Manutenção Automotiva

Passos para realizar uma medição com multímetro

- Decidir o que será medido;
- 2. Colocar a chave seletora na posição adequada, respeitando as regras citadas anteriormente;
- 3. Posicionar adequadamente as pontas de prova para realizar a medição.

Caneta de polaridade

- Dispositivo utilizado para identificar se determinado fio/matéria está com polaridade positiva ou negativa;
- Os Jacarés da caneta devem ser ligados no polo positivo e negativo da bateria do carro;
- Acenderá um LED indicando a polaridade na qual a ponta de prova está em contato;

Cuidados!

 Ao se "espetar" a caneta em um fio da rede CAN, esta pode ser danificada;

Caneta de polaridade

Vantagens:

- A identificação de fios é facilitada com a agulha, podendo-se perfurar a capa de isolamento;
- Rápida resposta, podendo-se verificar o sinal pulsado de bicos injetores e bobina de ignição;
- Mais fácil e prático de se utilizar em comparação com o multímetro;

Desvantagens:

Não é possível verificar grandezas de tensão, corrente ou resistência elétrica;

Caneta de polaridade

Esquema elétrico da caneta de polaridade;

