Statistical Methods for Insurance: Linear Models

Di Cook & Souhaib Ben Taieb, Econometrics and Business Statistics, Monash University W4.C1

Overview of this class

- Fitting a linear model to olympic medal tally
- · Review of linear regression
- · READING: Ch 5, Diez, Barr, Cetinkaya-Rundel

Modeling Olympic medal counts

term	estimate	std.error	statistic	p.value
(Intercept)	0.93	0.54	1.73	0.09
Total.2008	0.91	0.04	20.80	0.00
Population	0.00	0.00	-0.94	0.35
GDP	0.00	0.00	1.50	0.14

$$M_{2012} = M_{2008} + Population + GDP + \varepsilon$$

Model summary

Fit and residuals

Make plots interactive

Make plots interactive

Simple linear model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Explains how response variable (Y) changes in relation to explanatory variable (X), on average.
- · Use line to predict value of *Y* for a given value of *X*

8/22

Observed, fitted, residuals

- Observed value is Y (a point on plot)
- Fitted value is \hat{Y} , a value that lies on the line
- · Residual is the difference between observed and fitted, $e = Y \hat{Y}$

Fitting process

- · Minimizing the sum of squared residuals produces the best fitting line.
- Minimizes $\sum e^2$
- · Line that is closest to the points, as a whole.

Parameter interpretation

- Line of best fit: $\hat{Y} = b_0 + b_1 X$
- b_0 is the intercept of the line with y-axis
- b_1 is the slope of the line

Calculating manually

Given standard deviation of X, S_X , standard deviation of Y, S_Y , and the correlation, r, between the two, the slope is computed by

$$b_1 = r \frac{s_y}{s_x}$$

and given the sample means \bar{X}, \bar{Y}

$$b_0 = \bar{Y} - b_1 \bar{X}$$

YOUR TURN

Is the point \bar{X} , \bar{Y} on the regression line?

Prediction

For given *X* values, plug these into the model equation to predict *Y*,

$$\hat{Y} = b_0 + b_1 X$$

Goodness of fit

• R^2 is the proportion of variation in Y that is explained by X. Computed by

$$R^2 = 1 - \frac{\sum e^2}{\sum Y^2}$$

· Deviance: up to a constant, minus twice the maximized log-likelihood

Reading residual plots

- Make a histogram and normal probability plot of the residuals for a good fit the shape should be pretty symmetric and bell-shaped
- Plot the residuals against the fitted values for a good fit should be just a random splatter, no patterns

Residual plots

Diagnostics

- Influential points: leverage (diagonal elements of hat matrix, values > 2p/n would indicate cases with high influence), cooksd (Cooks distance, measures the change in the residual when the case is removed)
- Collinearity between explanatory variables (multiple regression): variance inflation factor

Cautions

- Association is not causation
- Linear association only
- · Extrapolation outside the range of the data is not recommended

Anscombe's quartet

Always plot the data, because very different patterns can lead to the same correlation.

20/22

Resources

Statistics online textbook, Diez, Barr, Cetinkaya-Rundel

Ancombe's quartet

Share and share alike

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.