Sheet 4

Discussion of the sheet: Tue., 18.04.2023

- Let $u:(0,1)\to\mathbb{R}$ be a function that is continuously differentiable on (0,1/2) and (1/2,1) but such that $\lim_{x\uparrow 1/2} u(x) \neq \lim_{x\downarrow 1/2} u(x)$. Draw an example for such a function. Calculate the generalised/distributional derivative of u using the definition (that is, without just referring to the script or Wikipedia for the answer).
- Show that the bilinear form $A(\cdot, \cdot)$ corresponding to the Poisson problem with mixed boundary conditions (Section 3.2.2 in the lecture notes) is indeed a continuous and coercive bilinear form on $H_D^1(\Omega)$. Moreover, show that the linear form $f(\cdot)$ given in Section 3.2.2 is a bounded linear form on $H_D^1(\Omega)$.
- (Fourier description of Sobolev spaces) In some special domains, Sobolev spaces have a nice description in terms of Fourier series. Take $\Omega = (0,1)$ and recall that any $f \in L^2(\Omega)$ can be written in a complex Fourier series

$$f(x) = \sum_{k \in \mathbb{Z}} c_k e^{i2\pi kx}, \qquad c_k = \int_0^1 f(y) e^{i2\pi ky} dy.$$

a) Show that for any $m \geq 1$, the quantity

$$|f|_{\tilde{H}^m}^2 = \sum_{k \in \mathbb{Z}} k^{2m} |c_k|^2$$

is equivalent to the seminorm $|f|_{H^m}$ (that is, for some constant C, one has $|f|_{\tilde{H}^m} \leq C|f|_{H^m}$ and $|f|_{H^m} \leq C|f|_{\tilde{H}^m}$ for all $f \in H^m$).

- b) Based on the above observation, give a 1 line proof of the Poincaré inequality.
- c) Based on the above, how would you define $H^{1/2}(\Omega)$? How about $H^{-1}(\Omega)$?
- d) With the preceding definitions, for which $s \in \mathbb{R}$ does the Dirac-delta at 1/2 belong to $H^s(\Omega)$?
- (Hölder inequality and generalised Poincaré) The Hölder inequality states that if 1/p + 1/q = 1, then

$$\left| \int_{\Omega} f(x)g(x) \, dx \right| \le \left(\int_{\Omega} |f(x)|^p \, dx \right)^{1/p} \left(\int_{\Omega} |g(x)|^q \, dx \right)^{1/q},$$

which is just Cauchy-Schwartz if p=q=2. Use this to prove the following general form of Poincaré inequality in 1D, for arbitrary $p \in [1, \infty)$:

$$\int_{0}^{1} |v(x)|^{p} dx \le C_{p} \int_{0}^{1} |v'(x)|^{p} dx$$

$$W_0^{1,p} = \left\{ v : \int_0^1 |v(x)|^p dx < \infty, \int_0^1 |v'(x)|^p dx < \infty, \ v(0) = v(1) = 0 \right\}.$$

Hint: Use the fundamental theorem of calculus $v(x) - v(0) = \int_0^x v'(y) dy$.

$$-\Delta u = f \qquad \text{in } \Omega$$
$$\nabla u \cdot n = 0 \qquad \text{on } \partial \Omega.$$

has a unique solution in $\overline{H}^1(\Omega)$.

(Optional: What happened to the compatibility condition $\int_{\Omega} f = 0$? How come we don't need it?)

We now aim to implement the pure Neumann problem in 1D: Let $\Omega = (0,1)$ and \mathcal{T} be a uniform mesh with N+1 points. Take V_N to be the space of piecewise linear functions and $\overline{V}_N = V_N \cap \overline{H}^1$. Therefore the FEM reads as: $u_N \in \overline{V}_N$ s.t.

$$A(u_N, v_N) = \int_{\Omega} u'_N v'_N \ dx = \int_{\Omega} f v_N \ dx = \ell(v_N) \qquad \forall v_N \in \overline{V}_N.$$

The idea is now to take the hat functions $\{\varphi_i: i=1,\ldots,N+1\}$ as basis of V_N and enforce the condition $\int_0^1 u_N dx = 0$ separately.

Define the stiffness matrix $\mathbf{A} \in \mathbb{R}^{(N+1)\times(N+1)}$ given as $\mathbf{A}_{ij} = A(\varphi_i, \varphi_j)$ and the load vector \mathbf{l} given as $\mathbf{l}_i = \ell(\varphi_i)$. Show that, provided $\sum_i \mathbf{l}_i = 0$, writing $u_N = \sum_i \mathbf{u}_i \varphi_i$ the FEM formulation leads to the linear system of equations

$$\begin{pmatrix} \mathbf{A} \\ \mathbf{P}^T \end{pmatrix} \cdot \mathbf{u} = \begin{pmatrix} \mathbf{l} \\ 0 \end{pmatrix}, \quad \bigcirc$$

where $\mathbf{P} \in \mathbb{R}^{N+1}$ is given as $\mathbf{P}_i := \int_{\Omega} \varphi_i dx$. Note that this implies that we get a solution to a symmetric $(N+2) \times (N+2)$ system:

$$\begin{pmatrix} \mathbf{A} & \mathbf{P} \\ \mathbf{P}^T & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{u} \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{l} \\ 0 \end{pmatrix}.$$

$$0 = \begin{cases} -x + \frac{1}{2} & 1 & x \in (0, \frac{1}{2}) \\ x & x \in (\frac{1}{2}, 1) \end{cases}$$

$$(im \ \upsilon = (im \ (-\frac{\lambda}{i} + \frac{\lambda}{i}) = 0)$$

$$g(\varphi) = (-1)^{(\alpha)} v(D^{\alpha}\varphi) = -v(\varphi') = -\langle v, \varphi' \rangle_{D \times D} = -\int_{0}^{\infty} v \, \varphi' \, dx$$

=
$$(-x+\frac{1}{2})\varphi|^2 - \int (-1)\varphi dx + x\varphi|_3^2 - \int \varphi dx$$

$$= \left(-\frac{1}{2} + \frac{1}{2}\right) \varphi(\frac{1}{2}) - \frac{1}{2} \varphi(0) + \int_{0}^{2} \varphi dx + \varphi(1) - \frac{1}{2} \varphi(\frac{1}{2}) - \int_{0}^{2} \varphi dx$$

$$=\int_{0}^{2}\varphi\,dx-\int_{0}^{2}\varphi\,dx-\frac{1}{2}\varphi(x)$$

$$=\int_{0}^{2}\varphi\,dx-\int_{0}^{2}\varphi\,dx-\frac{1}{2}\varphi(x)$$

· · · conditions (Section	near form $A(\cdot, \cdot)$ corresponding to the F a 3.2.2 in the lecture notes) is indeed a very show that the linear form $f(\cdot)$ give	continuous and coerc	cive bilinear form	
Coercive	A(0,0) > 2 VUIV		= S. frde t	5.0, holes d
	A(U,V) = X2 VURVIVIV		· · · · · · · · · · · · · · · · · · ·	Scelulu) ds
	mixed boundary Gu			
$A(\omega,v) = \int_{\Omega} \nabla u \cdot v$	7vdx + S x tr(v) tr(v) c	ds · · · · ·		
Coalinity:				
[A(u,v)[= S V.	Vivdx + Six tr(v) tr(v)	ds		
ineq = SVV	V dx (+ () x tr(v)tr(r)	ds (
(f14) = 1 = 11 fl (2 11 g4,2	= 117 Merca 117 Mer	(a) + lal br	(6) 1 (62) 1 L	~(v)1/24(p)
Theorem 3, 13;	1/ + x (v) 1/2 = (MUNHA) bissi-leg b(a) + x = CAC2 v 46	(n)· · · · · · · · · · · · · · · · · · ·		
= 109 100 100 100 11	D(2) + X & CAC2 U 410	(a) 11 × 4 (2 (a)		
	nce) NUMUTOCA IVIUO			

Coercity: A(u,u) 3 x1 Vuly

1 vh 2 (1) = N vh C2 (1 N V) 1 2 (2)

Poincaré Friedrich: MUNCONE CAPUNCON

< ((+1) 1 Du 12 (a) + ((+1) 10 brand 2000)

= ((can) (Sa Vo de + Sa transluces ds)

= ((1 + c) A (0,0)

-> 1 01 H D(8) = (1+c) A(0,0)

 $A(\omega,\omega) \geq \frac{1}{1+c} \|\omega\|_{H^{\frac{1}{2}}(\Delta)}^{2}$

 $f(x) = \int_{\Omega} f v dx + \int_{\Omega} U_{n} hv(v) ds + \int_{\Omega} u_{n} hv(v) ds$

1 fas = 1 v1 (2(2) 1) E1 (2(2) + 1 Up 1 (2(1)) 1 + (1) (1)

+ N URULZ(PR) N tV(V) MLZ(PR)

Therein J. 13 (Lace inequality)
+ IVIC2 \ IVINO

= NVNuncon Hour (In) Chilly (In) Chilly (In) Chilly (In) Chilly (In) Chilly (In) (In)

3. (Fourier description of Sobolev spaces) In some special domains, Sobolev spaces have a nice description in terms of Fourier series. Take $\Omega = (0,1)$ and recall that any $f \in L^2(\Omega)$ can be written in a complex Fourier series

$$f(x) = \sum_{k \in \mathbb{Z}} c_k e^{i2\pi kx}, \qquad c_k = \int_0^1 f(y)e^{i2\pi ky}dy.$$

a) Show that for any $m \geq 1$, the quantity

$$|f|_{\tilde{H}^m}^2 = \sum_{k \in \mathbb{Z}} k^{2m} |c_k|^2$$

is equivalent to the seminorm $|f|_{H^m}$ (that is, for some constant C, one has $|f|_{\tilde{H}^m} \leq C|f|_{H^m}$ and $|f|_{H^m} \leq C|f|_{\tilde{H}^m}$ for all $f \in H^m$).

- b) Based on the above observation, give a 1 line proof of the Poincaré inequality.
- c) Based on the above, how would you define $H^{1/2}(\Omega)$? How about $H^{-1}(\Omega)$?
- d) With the preceding definitions, for which $s \in \mathbb{R}$ does the Dirac-delta at 1/2 belong to $H^s(\Omega)$?

4. (Hölder inequality and generalised Poincaré) The Hölder inequality states that if 1/p + 1/q = 1, then

$$\Big| \int_{\Omega} f(x) g(x) \, dx \Big| \leq \Big(\int_{\Omega} |f(x)|^p \, dx \Big)^{1/p} \Big(\int_{\Omega} |g(x)|^q \, dx \Big)^{1/q}, \qquad \text{(1)}$$

which is just Cauchy-Schwartz if p=q=2. Use this to prove the following general form of Poincaré inequality in 1D, for arbitrary $p \in [1, \infty)$:

with some constant C_p , for all v in the more general Sobolev space

$$W_0^{1,p} = \Big\{ v : \int_0^1 |v(x)|^p dx < \infty, \int_0^1 |v'(x)|^p dx < \infty, \ v(0) = v(1) = 0 \Big\}.$$

Hint: Use the fundamental theorem of calculus $v(x) - v(0) = \int_0^x v'(y) dy$.

$$\left|\int_{\Omega} |v'(x)| dx\right| = \left(\int_{\Omega} |v'(x)|^p dx\right)^{n/p}$$

$$\left|\int_{\Omega} |v'(x)| dx\right|^{p} \leq \int_{\Omega} |v'(x)|^{p} dx$$

5. Let $\overline{H}^1(\Omega) := \{u \in H^1(\Omega) : \int_{\Omega} u \ dx = 0\}$. Show that $\overline{H}^1(\Omega)$ is a complete subspace of $H^1(\Omega)$. As a consequence, show that for any $f \in L^2(\Omega)$, the weak form of the pure Neumann problem

$$-\Delta u = f \qquad \text{in } \Omega$$

$$\nabla u \cdot n = 0 \qquad \text{on } \partial \Omega.$$

has a unique solution in $\overline{H}^1(\Omega)$.

(*Optional*: What happened to the compatibility condition $\int_{\Omega} f = 0$? How come we don't need it?)

Complete subspace: every Cardy sequice of points in space Mes a limit that is also in M

(Un) = H (S) Cardy sequence

To show:] c = H^(1): (im un = 0

i) vhe H^(1)EH^(2)

HI is a Banachspace 50 its complete & normed

-> = = (s): (im un = v

-> V & H (s)

ii) show $v \in \Pi^{1}(\Omega)$ (i.e. show $\int v dx = 0$) $|\cdot| = \sqrt{(\cdot)^{2}}$

 $\left|\int v dx\right| = \left|\int v dx - \int v_n dx\right| = \left|\int v - v_n dx\right| = \sqrt{\left(\int v - v_n dx\right)^2}$

= O [UNEH (D)]

(Judx) = CS (v) dk = C | v-vn | dk = C | v-vn | L2

= C | v - vn | H7 = 0

-> | Sudx = 0 -> Sudx = 0

$$A(v,v) = \int_{-\infty}^{\infty} \nabla v \cdot \nabla v \, dx = \int_{-\infty}^{\infty} f(v) \, dx = \int_{-\infty}$$

(bounded? [(v) = N/Necas Nfleeas = Nfleeas = Nfleeas NVN where By Lax - Milymon Here exists a man Solution We now aim to implement the pure Neumann problem in 1D: Let $\Omega = (0,1)$ and \mathcal{T} be a uniform mesh with N+1 points. Take V_N to be the space of piecewise linear functions and $\overline{V}_N = V_N \cap \overline{H}^1$. Therefore the FEM reads as: $u_N \in \overline{V}_N$ s.t.

$$A(u_N, v_N) = \int_{\Omega} u'_N v'_N \ dx = \int_{\Omega} f v_N \ dx = \ell(v_N) \qquad \forall v_N \in \overline{V}_N.$$

The idea is now to take the hat functions $\{\varphi_i : i = 1, ..., N+1\}$ as basis of V_N and enforce the condition $\int_0^1 u_N dx = 0$ separately.

Define the stiffness matrix $\mathbf{A} \in \mathbb{R}^{(N+1)\times(N+1)}$ given as $\mathbf{A}_{ij} = A(\varphi_i, \varphi_j)$ and the load vector I given as $\mathbf{l}_i = \ell(\varphi_i)$. Show that, provided $\sum_i \mathbf{l}_i = 0$, writing $u_N = \sum_i \mathbf{u}_i \varphi_i$ the FEM formulation leads to the linear system of equations

$$\begin{pmatrix} \mathbf{A} \\ \mathbf{P}^T \end{pmatrix} \cdot \mathbf{u} = \begin{pmatrix} \mathbf{l} \\ 0 \end{pmatrix}, \quad \boxed{\mathbf{1}}$$

where $\mathbf{P} \in \mathbb{R}^{N+1}$ is given as $\mathbf{P}_i := \int_{\Omega} \varphi_i dx$. Note that this implies that we get a solution to a symmetric $(N+2) \times (N+2)$ system:

$$\begin{pmatrix} \mathbf{A} & \mathbf{P} \\ \mathbf{P}^T & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{u} \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{l} \\ 0 \end{pmatrix}.$$

$$\left(\begin{array}{c} (v_{N}) = (\sum_{i=1}^{N+1} V_{i} \varphi_{i}) = \sum_{i=1}^{N+1} V_{i} ((\varphi_{i})) = \sum_{i=1}^{N+1}$$

Σ ω Σ ν; A (φ, φ;) = \(\)

PTU = 2 P; U; = 2 3 9; (A) dx (U)

$$= \int_{0}^{\infty} \sum_{i} u_{i} \varphi_{i}(x) dx = \int_{0}^{\infty} u_{N} dx = 0$$

$$= \int_{0}^{\infty} \sum_{i} v_{i} \varphi_{i}(x) dx = \int_{0}^{\infty} v_{i} dx = 0$$

$$\frac{1}{2} - \frac{1}{2} > \frac{1}{2} \left(\frac{A}{P^{r}} \right) \cdot \omega \approx \left(\frac{C}{O} \right)$$

