Introduction to Operating Systems and SQL for Data Science

Practice 4 – Memory

Memory Hierarchy

Disk	RAM	Cache	Registers
Large	Medium	Small	Very small
Slow	Medium	Fast	Very fast
Persistent	Non persistent	Non persistent	Non persistent
Cheap	Medium	Expensive	Expensive

Address space

- Each process has its own address space
- Base register start of process's address space
- Limit register size of process's address space
- Logical address an address from process's address space
- Physical address- the actual address in memory

Memory block

- Memory is divided to fixed size units (blocks)
- A block can contain memory of only one process

RAM	Process
Blocks	Memory
9	Α
8	Α
7	
6	D
5	
4	В
3	В
2	В
1	
0	

Words

- Blocks contains many words
- Word is the smallest storage unit
- Each address in memory maps to a word in the memory.

RAM	RAM Addresses	Process
Blocks		Memory
9	144-159	
8	128-143	В
7	112-127	
6	96-111	С
5	80-95	С
4	64-79	С
3	48-63	С
2	32-47	Α
1	15-31	A
0	0-15	_ A

Example #1:

- Given:
 - Process A needs 150 byte memory.
 - Block size is 64 byte
- How much blocks does process A needs?

Example #1:

- Given:
 - Process A needs 150 byte memory.
 - Block size is 64 byte
- How much blocks does process A needs?
- Solution:
 - RoundUp($\frac{150}{64}$) = 3
 - Process that uses part of the block considered as using the whole block

Example #2:

- Given:
 - Process A needs16 byte memory.
 - Block size is 64 byte
 - Word size is 2 byte
- How many addresses are needed to describe A's memory?

Example #2:

- Given:
 - Process A needs16 byte memory.
 - Block size is 64 byte
 - Word size is 2 byte
- How many addresses are needed to describe A's memory?
- Solution:
 - $(\frac{16}{2}) = 8$
 - Each address maps to a word

Example #3:

- Given:
 - 32 bits Address BUS.
 - RAM size is 32 GB
 - Word size is 4 byte
- What is the maximal memory size a process can have (in bytes)?

Example #3:

- Given:
 - 32 bits Address BUS.
 - RAM size is 32 GB
 - Word size is 4 byte
- What is the maximal memory size a process can have (in bytes)?
- Solution:
 - Address size is 32 bits so there are 2³² addresses
 - Each address maps to a word
 - $2^{32} \times 4Byte = 2^{34}Byte =$ **16GB**

Swapping

- The memory of a running process should be in the RAM
- Memory allocation is continuous
- If there isn't enough place in RAM for a process memory allocation, we can "free" some space in RAM by swap out other's process memory
- Swap out: move process's memory from RAM to the disk
- Swap in: move process's memory from disk to the RAM

Memory state management

- Bitmap
- Linked list

Bitmap

- Data structure represent for each block if its free (1) or not (0)
- Advantage: easy to implement
- Disadvantage: finding "hole" for a process can be relatively slow

BLOCK	Bit
9	1
8	1
7	0
6	1
5	0
4	1
3	1
2	1
1	0
0	0

RAM	Process Blocks
450MB	A
400MB	Α
350MB	
300MB	D
250MB	
200MB	В
150MB	В
100MB	В
50MB	
0MB	

Linked list

- We'll hold a bi-directions linked list that describes the memory state (holes & processes)
- Advantage: takes less time to find a "hole" for a process
- When new process is created: we look for a hole in the list, if the hole found is too big we will split it to two nodes (one for the process and one for the left space)
- When a process finishes: we take the process's node and turn it to a "hole"
 - if as a result of that action we create two consecutive holes, we'll merge them to one.

Linked list

- Which process should we swap out?
 - 1. A process with the needed memory size, we might need its memory back soon
 - 2. Least Recently Used the process who wasn't active for the longest amount of time

Linked list

- Which hole to pick?
 - 1. First-fit: first on the list that matches, ruins big holes
 - 2. <u>Best-fit:</u> smallest hole that matches, hard to find and creates small holes
 - 3. Quick-fit: we'll keep different holes list (by sizes) from each list we'll choose first fit
 - 4. Worst-fit: biggest hole, hard to find and ruins big holes

Question #1

- Given a swapping system with the following memory state
- Write the holes list if the system uses first fit match
 3-6,8-9,12-14,16-20
- 2. Write the holes list if the system uses **best fit** match **8-9,12-14,3-6,16-20**

Process		A		_			1	C			F			13	I	3	STILLAND			
Address × 1KB	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

Question #2 – first fit

- Given:
 - system with continues memory allocation and swapping by first-fit match and LRU swap out mechanism.
 - 500 MB RAM
 - 5 processes:
 A- 250MB B- 200MB C- 200MB D- 100MB E- 400MB
- Show memory state through the following execution order: A,B,C,D,B,C,E,B,A,D,C,E

Process	Α	В	С	D	В	С	Е	В	Α	D	С	E
450MB												
400MB												
350MB												
300MB												
250MB												
200MB												
150MB												
100MB												
50MB												
OMB												

Process	Α	В	С	D	В	С	E	В	Α	D	С	E
450MB												
400MB												
350MB												
300MB												
250MB												
200MB	Α											
150MB	А											
100MB	Α											
50MB	Α											
0MB	Α											

Process	Α	В	С	D	В	С	E	В	Α	D	С	E
450MB												
400MB		В										
350MB		В										
300MB		В										
250MB		В										
200MB	Α	Α										
150MB	Α	Α										
100MB	Α	Α										
50MB	Α	Α										
0MB	Α	Α										

Process	Α	В	С	D	В	С	E	В	Α	D	С	E
450MB												
400MB		В	В									
350MB		В	В									
300MB		В	В									
250MB		В	В									
200MB	А	Α										
150MB	А	Α	С									
100MB	А	Α	С									
50MB	А	Α	С									
0MB	Α	Α	С									

Process	Α	В	С	D	В	С	E	В	Α	D	С	E
450MB												
400MB		В	В									
350MB		В	В									
300MB		В	В									
250MB		В	В	D								
200MB	Α	Α		D								
150MB	Α	Α	С	С								
100MB	Α	Α	С	С								
50MB	Α	Α	С	С								
0MB	Α	Α	С	С								

Process	Α	В	С	D	В	С	Е	В	Α	D	С	E
450MB					В							
400MB		В	В		В							
350MB		В	В		В							
300MB		В	В		В							
250MB		В	В	D	D							
200MB	Α	Α		D	D							
150MB	Α	Α	С	С	С							
100MB	Α	Α	С	С	С							
50MB	Α	Α	С	С	С							
ОМВ	А	Α	С	С	С							

Process	Α	В	С	D	В	С	E	В	Α	D	С	E
450MB					В	В						
400MB		В	В		В	В						
350MB		В	В		В	В						
300MB		В	В		В	В						
250MB		В	В	D	D	D						
200MB	Α	Α		D	D	D						
150MB	Α	Α	С	С	С	С						
100MB	Α	Α	С	С	С	С						
50MB	Α	Α	С	С	С	С						
0MB	Α	Α	С	С	С	С						

Process	А	В	С	D	В	С	Е	В	Α	D	С	Е
450MB					В	В						
400MB		В	В		В	В						
350MB		В	В		В	В	Е					
300MB		В	В		В	В	E					
250MB		В	В	D	D	D	E					
200MB	Α	Α		D	D	D	E					
150MB	Α	Α	С	С	С	С	Е					
100MB	Α	Α	С	С	С	С	Е					
50MB	Α	Α	С	С	С	С	Е					
0MB	Α	Α	С	С	С	С	Е					

Process	Α	В	С	D	В	С	E	В	Α	D	С	E
450MB					В	В						
400MB		В	В		В	В						
350MB		В	В		В	В	E					
300MB		В	В		В	В	E					
250MB		В	В	D	D	D	E					
200MB	Α	Α		D	D	D	E					
150MB	Α	Α	С	С	С	С	Е	В				
100MB	Α	Α	С	С	С	С	Е	В				
50MB	Α	Α	С	С	С	С	Е	В				
0MB	Α	Α	С	С	С	С	Е	В				

Process	Α	В	С	D	В	С	E	В	Α	D	С	E
450MB					В	В						
400MB		В	В		В	В			Α			
350MB		В	В		В	В	E		Α			
300MB		В	В		В	В	E		Α			
250MB		В	В	D	D	D	E		Α			
200MB	Α	Α		D	D	D	E		Α			
150MB	Α	Α	С	С	С	С	E	В	В			
100MB	Α	Α	С	С	С	С	E	В	В			
50MB	Α	Α	С	С	С	С	E	В	В			
0MB	Α	Α	С	С	С	С	Е	В	В			

Process	Α	В	С	D	В	С	E	В	Α	D	С	E
450MB					В	В						
400MB		В	В		В	В			Α	Α		
350MB		В	В		В	В	E		Α	Α		
300MB		В	В		В	В	E		Α	Α		
250MB		В	В	D	D	D	E		Α	Α		
200MB	Α	Α		D	D	D	E		Α	Α		
150MB	Α	Α	С	С	С	С	E	В	В			
100MB	Α	Α	С	С	С	С	E	В	В			
50MB	Α	Α	С	С	С	С	E	В	В	D		
0MB	Α	Α	С	С	С	С	Е	В	В	D		

Process	Α	В	С	D	В	С	Е	В	Α	D	С	E
450MB					В	В						
400MB		В	В		В	В			Α	Α		
350MB		В	В		В	В	E		Α	Α		
300MB		В	В		В	В	Е		Α	Α		
250MB		В	В	D	D	D	Е		Α	Α	С	
200MB	Α	Α		D	D	D	Е		Α	Α	С	
150MB	Α	Α	С	С	С	С	E	В	В		С	
100MB	Α	Α	С	С	С	С	Е	В	В		С	
50MB	Α	Α	С	С	С	С	E	В	В	D	D	
0MB	Α	Α	С	С	С	С	Е	В	В	D	D	

Process	Α	В	С	D	В	С	E	В	Α	D	С	E
450MB					В	В						
400MB		В	В		В	В			Α	Α		
350MB		В	В		В	В	E		Α	Α		Е
300MB		В	В		В	В	E		Α	Α		Ε
250MB		В	В	D	D	D	E		Α	Α	С	Е
200MB	Α	Α		D	D	D	E		Α	Α	С	Ε
150MB	Α	Α	С	С	С	С	E	В	В		С	Ε
100MB	Α	Α	С	С	С	С	E	В	В		С	Ε
50MB	Α	Α	С	С	С	С	Е	В	В	D	D	Е
0MB	Α	Α	С	С	С	С	Е	В	В	D	D	Е

Issues with Swapping

- Moving whole memory of a process from RAM to disk and vice versa
- Disk read and write actions are very slow bad for performance
- RAM is fast but small (process memory is limited to RAM size in this method)
- Solution:
 - Virtual Memory (not in recitation scope)

