Condensed Notes for Maths40010

Aris Zhu Yi Qing

January 11, 2020

Contents

1	Numbers			
	1.1	Countability	2	
	1.2		2	
	1.3		3	
	1.4		4	
2	Sequ	uences	5	
	2.1	convergence of sequences	5	
	2.2	Cauchy Sequences	ŝ	
	2.3		ŝ	
	2.4		7	
	2.5	Convergence of Series	7	
	2.6	Absolute convergence	3	
	2.7	Tests for convergence	3	
	2.8		9	
	2.9	Power Series)	
		2.9.1 Products of Series)	
	2.10)	
3	Continuity 11			
	3.1	Limits	1	
	3.2	Continuity	1	

Chapter 1

Numbers

1.1 Countability

Definition 1. A set S is *countable* iff \exists bijection $f : \mathbb{N} \to S$.

Theorem 2. Suppose $S \subset \mathbb{N}$ is infinite. Then S is countable.

Theorem 3. \mathbb{Z} is countable.

Theorem 4. \mathbb{Q} is countable.

Theorem 5. \mathbb{R} is uncountable.

1.2 The Completeness Axiom

Definition 6. $\emptyset \neq S \subset \mathbb{R}$ is bounded above if

$$\exists M \in \mathbb{R} \text{ s.t. } \forall x \in S, x \leq M$$

Such an M is called an *upper bound* for S. In addition, we say $x \in \mathbb{R}$ is a *least upper bound* for S or **supremum** of S iff

- x is an upper bound for S (i.e. $x \ge s \ \forall s \in S$)
- $x \le y \ \forall$ upper bounds y of S (i.e. $y \ge s \ \forall s \in S \Rightarrow y \ge x$)

Theorem 7. $\emptyset \neq S \subset \mathbb{R}$ is bounded below if

$$\exists M \in \mathbb{R} \text{ s.t. } \forall x \in S, x \geq M$$

Such an M is called an *lower bound* for S. In addition, we say $x \in \mathbb{R}$ is a *greatest lower bound* for S or **infimum** of S iff

- x is a lower bound for S (i.e. $x \leq s \ \forall s \in S$)
- $x \ge y \ \forall$ lower bounds y of S (i.e. $y \le s \ \forall s \in S \Rightarrow y \le x$)

Theorem 8. Suppose $S \subseteq \mathbb{R}$ is nonempty, bounded above, then $\exists \sup S \in \mathbb{R}$

1.3 Dedekind cuts

Definition 9. We say a nonempty subset $s \subset \mathbb{Q}$ is a *Dedekind cut* if it satisfy

- (i) $\forall s \in S$, $[t < s \Rightarrow t \in S]$, i.e. S is a semi-infinite interval to the left.
- (ii) S has an upper bound but <u>no maximum</u>

Definition 10. New Definition of \mathbb{R} :

$$\mathbb{R} := \{ \text{Dedekind cuts } S \subset \mathbb{Q} \}$$

1.4 triangle inequalities

Theorem 11. $\forall a, b \in \mathbb{R}$, we have

$$|a+b| \le |a| + |b|$$

$$|a+b| \ge \Big||a| - |b|\Big|$$

$$|a| \le |b| + |a - b|$$

$$|a| \ge |b| - |a - b|$$

$$|a-b| \le |a-c| + |b-c|$$

Chapter 2

Sequences

Definition 12. A sequence is a function $a : \mathbb{N} \to \mathbb{R}$

2.1 convergence of sequences

Definition 13. We say that $a_n \to a$ as $n \to \infty$ iff

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } |a_n - a| < \varepsilon \ \forall n > N$$

Definition 14. We say that a_n converges iff $\exists a \in \mathbb{R}$ s.t. $a_n \to a$, i.e. a_n converges iff

$$\exists a \in \mathbb{R} \text{ s.t. } \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N, |a_n - a| < \varepsilon$$

Definition 15. We say a_n diverges iff it does not converge (to any $a \in \mathbb{R}$), i.e.

$$\forall a \in \mathbb{R}, \exists \varepsilon > 0 \text{ s.t. } \forall N \in \mathbb{N}, \exists n \geq N \text{ s.t. } |a_n - a| \geq \varepsilon$$

Definition 16. We say $a_n \to +\infty$ iff

$$\forall R > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N, a_n > R$$

Definition 17. $a_n \in \mathbb{C}, \forall \geq 1$. We say $a_n \to a \in \mathbb{C}$ iff

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } n \geq N \Rightarrow |a_n - a| < \varepsilon$$

Theorem 18. Limits are unique. If $a_n \to a$ and $a_n \to b$, then a = b.

Theorem 19. if $a_n \to a$ and $b_n \to b$ then:

- 1. $a_n + b_n \rightarrow a + b$
- $2. \ a_n b_n \to ab$
- 3. $\frac{a_n}{b_n} \to \frac{a}{b}$ if $b \neq 0$.

Theorem 20. If (a_n) is bounded above and monotonically increasing then a_n converges to $a := \sup \{a_i : i \in \mathbb{N}\}$. We write $a_n \uparrow a$.

2.2 Cauchy Sequences

Definition 21. $(a_n)_{n>1}$ is called a *Cauchy* sequence iff

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n, m \geq N, |a_n - a_m| < \varepsilon$$

Theorem 22. (a_n) is Cauchy $\Rightarrow (a_n)$ is bounded.

Theorem 23. (a_n) is Cauchy \iff (a_n) is convergent.

2.3 Subsequences

Definition 24. A subsequence of a_n is a new sequence $b_i = a_{n(i)} \forall i \in \mathbb{N}$, where $n(1) < n(2) < \cdots < n(i) < \cdots \forall i$.

(Bolzano-Weiestrass) Theorem 25. If (a_n) is a bounded sequence of real numbers, then it has a convergent subsequence.

Theorem 26. If $a_n \to a$ then any subsequence $a_{n(i)} \to a$ as $i \to \infty$.

2.4 Series

Definition 27. An (infinite) series is an expression

$$\sum_{n=1}^{\infty} a_n \quad \text{or} \quad a_1 + a_2 + a_3 + \dots,$$

where $(a_i)_{i>1}$ is a sequence.

Definition 28. n^{th} partial sum is

$$S_n := \sum_{i=1}^n a_i \in \mathbb{R}$$

2.5 Convergence of Series

Definition 29. We say that the series $\sum a_n$ "converges to $A \in \mathbb{R}$ " iff the sequence (S_n) of partial sums converges to A:

$$\sum_{n=1}^{\infty} a_n = A \in \mathbb{R} \iff S_n \to A \text{ as } n \to \infty$$

Theorem 30. $\sum_{n=1}^{\infty} a_n$ is convergent $\Rightarrow a_n \to 0$. In other words, $a_n \nrightarrow 0 \Rightarrow \sum_{n=1}^{\infty} a_n$ is divergent.

Theorem 31. Suppose $a_n \geq 0$ $\forall n \ (\iff S_n = \sum_{i=1}^n a_i \text{ monotonically increasing})$, then $S_\infty = \sum_{n=1}^\infty a_n \text{ convergent } \iff (S_n) \text{ bounded above.}$ Similarly, $\sum_{n=1}^\infty a_n \to +\infty \iff (S_n)$ is unbounded.

Theorem 32. if $\sum a_n$, $\sum b_n$ are convergent then so is $\sum (\lambda a_n + \mu b_n)$, to

$$\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \lambda \sum_{n=1}^{\infty} a_n + \mu \sum_{n=1}^{\infty} b_n$$

2.6 Absolute convergence

Definition 33. For $a_n \in \mathbb{R}$ or \mathbb{C} , we say the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent iff the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

Theorem 34. If $\sum a_n$ is absolutely convergent, then it is convergent.

2.7 Tests for convergence

Theorem 35. if $0 \le a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum a_n$ convergent and $0 \le \sum a_n \le \sum b_n$.

Theorem 36. If $c_n \leq a_n \leq b_n \ \forall n \ \text{and} \ \sum c_n, \ \sum b_n \ \text{both convergent, then} \ \sum a_n \ \text{convergent and} \ \sum c_n \leq \sum a_n \leq \sum b_n.$

Theorem 37. If $\frac{a_n}{b_n} \to L \in \mathbb{R}(b_n \neq 0 \ \forall n)$, then if $\sum b_n$ is absolutely convergent, then $\sum a_n$ is absolutely convergent.

Theorem 38. If (a_n) is alternating and $|a_n| \downarrow 0$, then $\sum a_n$ is convergent.

Theorem 39. If $\left|\frac{a_{n+1}}{a_n}\right| \to r < 1$, then $\sum a_n$ is absolutely convergent.

Theorem 40. If $|a_n|^{\frac{1}{n}} \to r < 1$, then $\sum a_n$ is absolutely convergent.

2.8 Rearangement of series

Definition 41. Given a bijection $n : \mathbb{N} \to \mathbb{N}$, define $b_i := a_{n(i)}$. Then $(b_i)_{i \ge 1}$ is a rearrangement or reordering of $(a_n)_{n \ge 1}$.

Theorem 42. $\sum a_n$ is absolutely convergent \iff $(1)+(2) \Rightarrow (3)+(4)$, where

- 1. $\sum_{a_n \geq 0} a_n$ is convergent (to A say),
- 2. $\sum_{a_n < 0} a_n$ is convergent (to B say),
- $3. \sum a_n = A + B,$
- 4. $\sum b_m = A + B$ where (b_m) is any rearrangement of (a_n) .

2.9 Power Series

Theorem 43. Fix a real complex series (a_n) an consider the series $\sum a_n z^n$ for $z \in \mathbb{C}$. Then $\exists R \in [0, \infty]$ s.t.

- $|z| < R \Rightarrow \sum a_n z^n$ is absolutely convergent, and
- $|z| > R \Rightarrow \sum a_n z^n$ is divergent.

10

2.9.1 Products of Series

Definition 44. Given series $\sum a_n$, $\sum b_n$, their *Cauchy Product* is the series $\sum c_n$ where $c_n := \sum_{i=0}^n a_i b_{n-i}$.

Theorem 45. If $\sum a_n$, $\sum b_n$ are absolutely convergent, then their Cauchy Product $\sum c_n$ is absolutely convergent to $(\sum a_n) \cdot (\sum b_n)$.

2.10 Exponential Power Series

Definition 46. For any $z \in \mathbb{C}$ set

$$E(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Theorem 47. E(x) has the following properties for $x \in \mathbb{R}$.

- 1. $E(x) > 0 \ \forall x \in \mathbb{R}$
- 2. $x \ge 0 \Rightarrow E(x) \ge 1$ and $x > 0 \Rightarrow E(x) > 1$
- 3. E(x) is strictly increasing for $x \in \mathbb{R}$
- 4. $|E(x) 1| < \frac{|x|}{1 |x|} \forall |x| < 1$
- 5. $x \mapsto E(x)$ is a continuous bijection $\mathbb{R} \to (0, \infty)$

Chapter 3

Continuity

3.1 Limits

Definition 48. Fix a function $f : \mathbb{R} \to \mathbb{R}$ and points $a, b \in \mathbb{R}$. We say that $f(x) \to b$ as $x \to a$ (or " $\lim_{x \to a} f(x) = b$ ") iff

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

3.2 Continuity

Definition 49. Given a function $f : \mathbb{R} \to \mathbb{R}$, we say that f is *continuous* at $a \in \mathbb{R}$ iff

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x \text{ that are } |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

We say that f is continuous on \mathbb{R} (or just "continuous") if it is continuous at all $a \in \mathbb{R}$.

Definition 50. Given a function $f : \mathbb{R} \to \mathbb{R}$, we say that f is discontinuous at $a \in \mathbb{R}$ iff

$$\exists \varepsilon > 0 \text{ s.t. } \forall \delta > 0, \exists x \text{ with } |x - a| < \delta \Rightarrow |f(x) - f(a)| \ge \varepsilon$$

Theorem 51. $f: \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R} \iff f(x_n) \to f(a) \quad \forall \text{ sequences } (x_n) \text{ which tends to } a.$ In other words, $f: \mathbb{R} \to \mathbb{R}$ is *not* continuous at $a \in \mathbb{R} \iff f(x_n) \nrightarrow f(a) \quad \forall \text{ sequences } (x_n) \text{ which tends to } a.$