Self-Interpretable Graph Learning with Sufficient and Necessary Explanations

Jiale Deng, Yanyan Shen

Shanghai Jiao Tong University

Deep Learning on Graphs

- Graphs are everywhere
 - Social networks, co-purchase graphs, paper citation networks, ...
- Graph Neural Networks (GNNs) with message passing
 - Strong performance but lack transparency;
 - Learning representations by aggregating and updating information from neighbors;
 - An example (predicting the research area of an author node in coauthor network):

Explaining GNNs

- Post-hoc methods
 - Explain a fix GNN by extracting salient substructures from the input graph;
 - Post-hoc explanations can be biased and inconsistent^[1].
 - Not directly produced by the GNN model!
- Self-interpretable methods^[2]
 - Simultaneously provide predictions and built-in explanations (unbiased);
 - Consist of:
 - An explanation generator: extracts explanation from input;
 - A predictor: learns the representation from the explanation to make final prediction.

^[2] Miao, Siqi, Mia Liu, and Pan Li. "Interpretable and generalizable graph learning via stochastic attention mechanism." ICML 2022.

^[1] Dai, Enyan, and Suhang Wang. "Towards self-explainable graph neural network." CIKM 2021.

Issues of Self-Interpretable Methods

• The quality of explanations determines the model performance.

An example:

Sufficient & Necessary:

Ideal explanation capturing the rationale that v, a, b form an ML research group (clique).

Original input

Sufficient^[1-3]:

Contains the clique while *introduce* noisy edges (e,c) and (c,v).

Necessary^[4-6]:

Missing the salient clique.

Compromised performance!

- [1] Yu, Junchi, et al. "Graph Information Bottleneck for Subgraph Recognition." ICLR 2020.
- [2] Dai, Enyan, et al. "Towards self-explainable graph neural network." CIKM 2021.
- [3] Miao, Siqi, et al. "Interpretable and generalizable graph learning via stochastic attention mechanism." ICML 2022.
- [4] Wu, Yingxin, et al. "Discovering Invariant Rationales for Graph Neural Networks." ICLR 2021.
- [5] Sui, Yongduo, et al. "Causal attention for interpretable and generalizable graph classification." KDD 2022.
- [6] Fan, Shaohua, et al. "Debiasing graph neural networks via learning disentangled causal substructure." NIPS 2022.

Key Insight: Overview

 A self-interpretable graph learning framework with SUfficient aNd NecessarY explanations (SUNNY-GNN).

Our goal

Promote the quality of explanations toward both sufficiency and necessity directions,
 thus encourage the explanations to improve model performance.

How to promote?

• Perform augmentations on explanations and employ a contrastive loss to supervise the explanation generator for producing sufficient and necessary explanations.

Key Insight: Augmentations and Contrastive Loss

- Augmentations on an explanation E
 - Positive samples E^+ : add information (e.g., edges) to E;
 - Negative samples E^- : remove information (e.g., edges) from E;
 - Construct contrastive loss \mathcal{L}_{cts} with E^+ and E^- ;
- Minimizing \mathcal{L}_{cts} means

Key Insight: Augmentations and Contrastive Loss

- Augmentations on an explanation E
 - Positive samples E^+ : add edges to E;
 - Negative samples E^- : delete edges in E;
 - Construct Contrastive Loss \mathcal{L}_{cts} with E^+ and E^- ;
- Minimizing \mathcal{L}_{cts} means

SUNNY-GNN: Overview

- Workflow of SUNNY-GNN*
 - (1) Explanation generation: Extract the explanation G_S from input G;
 - (2) Prediction: Encode G_S and yield the prediction \hat{y} , compute the prediction loss \mathcal{L}_{pred} ;
 - (3) <u>Augmentation</u>: Perturb G_S to get a set of positive and negative samples, compute the contrastive loss \mathcal{L}_{cts} .
 - SUNNY-GNN is trained in an end-to-end manner
 - The update of Parameters $\Theta = \{\varphi, \theta, \phi, \pi, \psi\}$ are supervised by \mathcal{L}_{pred} and \mathcal{L}_{cts} .

SUNNY-GNN: Explanation generation

ullet Generate edge mask M

- $m_{ij}=h_{\theta}(z_i^{(0)}||z_j^{(1)}||z_v^{(2)})$ if (i,j) connects nodes between layer 0 and 1, e.g., edge (e,c);
- $m_{ij}=h_{\theta}(z_i^{(1)}||z_j^{(2)}||z_v^{(2)})$ if (i,j) connects nodes between layer 1 and 2, e.g., edge (c,v).

- Get explainable subgraph G_S
 - Training phase: $G_{S_{att}} = G_C \odot M$ (differentiable)
 - Testing phase: $G_S \sim \text{Bern}(G_{S_{att}})$ (not differentiable)

SUNNY-GNN: Augmentation

- Positive samples
 - Sample edges from $G_C \backslash G_S$ and add them to G_S .
- Negative samples
 - Sample edges from G_S and remove them.

SUNNY-GNN: Augmentation

- How to sample?
 - A simple way: by edge mask, but may lead to
 - Trivial samples that impair the self-supervision signals;
 - Unreliable samples that mislead the GNN training.
 - Distance coefficients → Enhance contrastive signal
 - Intuition: perturbations on edges closer to the target node v tend to have a greater impact to v than those on farther edges.

$$\delta^+ = 1 - \alpha \cdot \exp(\mathbf{d}) \in \mathbb{R}^{|\mathcal{E}_C|}$$

$$\delta^- = \alpha \cdot \exp(\mathbf{d}) \in \mathbb{R}^{|\mathcal{E}_C|}$$
, where $\alpha \in \mathbb{R}^+$ is a positive constant and $\mathbf{d} \in \{1, ..., L\}^{|\mathcal{E}_C|}$.

• Get positive and negative samples by sampling edges with $M \odot \delta^+$ and $M \odot \delta^-$, respectively.

SUNNY-GNN: Augmentation

- How to sample?
 - A simple way: by edge mask, but may lead to
 - Trivial samples that impair the self-supervision signals;
 - Unreliable samples that mislead the GNN training.
 - Confidence coefficients → Filter out unreliable samples with labels
 - Intuition: introducing noisy edges and removing irrelevant edges forms *untrustworthy* positive and negative samples, respectively.
 - $\eta^+ = \operatorname{SoftMax}(f_{\pi}(g_{\phi}(G_S^+))_{\mathcal{Y}_{vt}}) \in \mathbb{R}^{n^+}$ • $\eta^- = (1 - \operatorname{SoftMax}(f_{\pi}(g_{\phi}(G_S^-))_{\mathcal{Y}_{vt}})) \in \mathbb{R}^{n^-}$, where $f_{\pi}(g_{\phi}(G_S^+))_{\mathcal{Y}_{vt}}$ the prediction probability of samples in the truth label t of target node v.
 - Reweight the augmented samples in the contrastive loss by η^+ and η^- .

SUNNY-GNN: Prediction and Optimization

- Prediction: $z_S = g_{\phi}(G_S), \ \hat{y} = f_{\pi}(z_S)$
- Optimization: $\min_{\Theta} \mathcal{L}_{pred} + \gamma \mathcal{L}_{cts}$
 - Prediction loss:

$$\hat{\mathcal{L}}_{pred} = -rac{1}{|\mathcal{V}_{train}|} \sum_{v \in \mathcal{V}_{train}} \sum_{t=1}^{\gamma} \mathcal{Y}_{vt} \log \hat{\mathcal{Y}}_{vt}$$

- Contrastive loss
 - For one node v: $\mathcal{L}_{cts}(v) = \mathbb{E}\left[-\log \frac{\eta_i^+ \exp(z_S^\top z_{S_i}^+/\tau)}{\sum_j \eta_j^+ \exp(z_S^\top z_{S_j}^+/\tau) + \sum_k \eta_k^- \exp(z_S^\top z_{S_k}^-/\tau)}\right]$;
 - Contrastive loss over all training nodes: $\mathcal{L}_{cts} = \frac{1}{|\mathcal{V}_{train}|} \sum_{v \in \mathcal{V}_{train}} \mathcal{L}_{cts}(v)$

Evaluations of Prediction Performance

	Citeseer	Cora	Pubmed	Amazon	Coauthor-CS	Coauthor-Physics
GCN	69.84±0.7	81.20±0.7	77.68 ± 0.7	90.18±0.3	83.52±0.4	92.46±0.2
+ GSAT	$\textbf{70.90} {\pm} \textbf{1.1}$	81.48 ± 0.7	77.44 ± 0.3	88.36 ± 1.3	83.76 ± 0.6	$\overline{92.14\pm0.5}$
+ CAL	65.60 ± 1.1	75.72 ± 1.2	73.66 ± 0.8	84.32 ± 1.7	82.12 ± 1.2	91.26 ± 0.7
+ SE-GNN	68.90 ± 0.9	80.72 ± 0.1	77.56 ± 0.3	-	83.14 ± 0.8	-
+ ProtGNN	66.30 ± 2.1	77.48 ± 8.7	74.18 ± 3.3	82.46 ± 1.4	79.50 ± 3.7	88.80 ± 3.3
+ Sunny-GNN	$\underline{70.72{\pm0.8}}$	$81.68 {\pm 0.9}$	$\textbf{78.68} {\pm} \textbf{0.2}$	90.43 ± 0.4	$85.03 {\pm} 1.1$	$93.10 {\pm 0.8}$
Average impro. (%)	3.6↑	3.1 ↑	3.4 ↑	4.8 ↑	3.2 ↑	3.0 ↑
GAT	69.68±1.2	81.22±0.7	77.50 ± 0.4	89.08±1.8	84.42±0.8	92.30 ± 0.5
+ GSAT	69.42 ± 0.8	81.20 ± 0.7	77.04 ± 0.3	89.73 ± 0.4	84.37 ± 0.7	$\overline{91.90\pm0.8}$
+ CAL	67.64 ± 1.5	76.64 ± 1.1	74.74 ± 0.7	84.86 ± 11.5	78.69 ± 3.8	78.24 ± 5.1
+ SE-GNN	68.18 ± 1.1	79.46 ± 0.4	75.88 ± 0.4	-	83.71 ± 0.5	-
+ ProtGNN	69.90 ± 1.5	80.40 ± 0.9	76.84 ± 0.8	86.52 ± 0.3	$80.95{\pm}1.2$	90.42 ± 2.3
+ SUNNY-GNN	$\overline{71.30\pm0.7}$	$\textbf{82.18} {\pm} \textbf{1.3}$	$\textbf{78.14} {\pm} \textbf{0.3}$	$90.78{\pm0.4}$	85.13 ± 0.5	93.06 ± 0.6
Average impro. (%)	3.2↑	3.1 ↑	2.3 ↑	3.0 ↑	3.4 ↑	6.0↑

Table 2: Classification Acc(%). The best and second-best results are bolded and underlined, respectively.

SUNNY-GNN outperforms all baselines by 3.5% on average and up to 6.0%.

Evaluations of Explainability Performance

	Cite	seer	Cora	
	$\overline{fid_{+}\uparrow}$	$fid\downarrow$	$fid_+ \uparrow$	$fid\downarrow$
GCN				
+ GNNExplainer	72.27 ± 4.2	9.31 ± 3.4	38.29 ± 4.1	1.08 ± 0.4
+ PGExplainer	82.09 ± 7.2	$0.92{\pm}2.6$	87.47 ± 0.9	1.42 ± 0.3
+ ReFine	83.01 ± 7.1	0.78 ± 0.5	88.19 ± 0.6	$0.00 \!\pm\! 0.0$
+ GSAT	86.75 ± 5.7	2.72 ± 1.1	76.11 ± 16.0	1.82 ± 1.0
+ CAL	86.44 ± 4.3	12.25 ± 3.9	82.15 ± 9.1	5.78 ± 0.8
+ Sunny-GNN	$\textbf{87.29} {\pm} \textbf{5.3}$	$0.25 \!\pm\! 0.4$	90.24 ± 0.3	$\textbf{0.00} \!\pm\! 0.0$
GAT				
+ GNNExplainer	52.95 ± 16.9	8.61 ± 10.1	36.44 ± 21.0	1.43 ± 2.2
+ PGExplainer	76.80 ± 0.3	1.71 ± 2.8	88.25 ± 6.1	0.17 ± 0.2
+ ReFine	77.78 ± 2.8	$0.32{\pm}1.3$	88.79 ± 3.2	$\overline{0.00\pm0.0}$
+ GSAT	72.52 ± 8.1	1.55 ± 1.3	$\overline{77.43 \pm 8.7}$	1.03 ± 0.5
+ CAL	77.78 ± 6.5	11.46 ± 1.4	85.23 ± 9.6	5.34 ± 1.5
+ Sunny-GNN	$\textbf{79.25} {\pm} \textbf{2.4}$	$\underline{0.46{\pm}0.5}$	$91.79 {\pm} 3.2$	$\textbf{0.00} {\pm} \textbf{0.0}$

Table 4: Explainability performance (%). The best and second-best results are bolded and underlined, respectively.

• Metrics of explanation quality:

$$fid_{-} = \frac{1}{N} \sum_{i=1}^{N} |\mathbb{1}(\hat{y}_{i} = y_{i}) - \mathbb{1}(\hat{y}_{i}^{G_{S}} = y_{i})|,$$
$$fid_{+} = \frac{1}{N} \sum_{i=1}^{N} |\mathbb{1}(\hat{y}_{i} = y_{i}) - \mathbb{1}(\hat{y}_{i}^{G_{C} \setminus G_{S}} = y_{i})|$$

- Smaller fid_ indicates better sufficiency;
- Larger fid_+ means better necessity.
- SUNNY-GNN generates explanations satisfying both good sufficiency and necessity. It outperforms the baselines by 13.1% on average and up to 33.5%.

Case Studies and Ablation Studies

Case Studies:

Figure 5: The visualization of explanations generated by (a) SUNNY-GNN, (b) GSAT and (c) CAL in Coauthor-CS.

• SUNNY-GNN highlights the most salient input information, while other baselines fail to.

Ablation Studies:

	Acc ↑	$fid_+ \uparrow$	$fid\downarrow$
SUNNY-GNN	71.26 ± 0.7	$79.25{\pm}2.4$	$0.46 {\pm} 0.5$
w/o \mathcal{L}_{cts}	69.01 ± 1.2	$76.50 {\pm} 1.4$	1.78 ± 0.4
w/o δ	70.78 ± 0.7	79.13 ± 1.8	0.47 ± 0.5
w/o η	70.48 ± 0.8	77.83 ± 1.9	$1.28{\pm}1.0$

Table 5: Individual contributions of proposed modules.

 The contrastive training paradigm plays a key role in improving the prediction and explainability performance of SUNNY-GNN.

Takeaways

- We illustrate the importance of generating sufficient and necessary explanations for improving the performance of self-interpretable graph learning methods;
- We propose SUNNY-GNN, to generate such explanations while improving prediction performance empowered by contrastive loss;
- Future work: More complex graph mining scenarios such as heterogenous settings or multimodal settings.
- Code: https://github.com/SJTU-Quant/SUNNY-GNN
- Contact us: jialedeng@sjtu.edu.cn

