电动2

一阶线性电路

介绍

我们在第一章感到失望,也没有什么稳定的状态,即与时间无关。 当电路进行的突然变化,例如转动发电机时,需要一定的 时间达到稳定状态。我们建议在本章中描述的操作 网络在这种情况下,对应于瞬变的研究。我们限制自己现在 一阶的电路,这些电路由等式二?erential线性一阶约束。在物理学中, 这将限制我们的研究,RC和RL系列电路。我们将会把我们这下全篇中 在arqs,允许我们使用基尔霍夫定律?

1步骤电压和瞬态

- 1.1电压电平
- 1.1.1德? Nition

德?Nition 1。	电压等级
	••••••••••••••••••••••••••••••••••••

通过?图1两个电压电平二?Erent的形状来表示。

人物 1? 电压阶跃

1.1.2数学建模

通常用于描述一个电压步骤称为数学函数 Heaviside函数。

德?	Vitio	on :	2。	He	av	sid	еÞ	数																								
		0 0 0							 	0 0	 	 0 0	 	0 0	 0 0 0	 		 	 	 	0 0 0	 	 	 								
																								-								

可以看出的是,在一般情况下,电压步骤由Heaviside函数作为表示 接下来(图1的左部分):

 $U(T) = (K_2 - k_1) Y(T) + K_1$

要的权?古尔1,我们有 /k1=0 和 /k2= E , 因此,更简单地说:

U(吨)=EY(T)

这是我们最经常会遇到这样一种情况。

v 注意: 我们没有失望和Heaviside函数的值 T=0。 有些作者选择 Y(0)=0, 其他 Y(0)=1 甚至 Y(0)=1/2。 这个选择在物理并不重要。

1.1.3的电压步骤的实验实现

人们可以通过实验实现两种迪erent方式的电压电平?:

我 通过关闭连接到一个理想电压源的开关。

我 利用低频发生器,用于输出的方波信号(参照TP)。

如果我们观察到的实验产生的电压一步,它有吗?图2中的样子。

人物 2? 真正的电压阶跃

我们观察它确实需要很长的时间来摇杆电压低附加值向高附加值。 由Heaviside函数建模的电压电平是不完美的,它有时会 盲目?如果健康的上升时间的水平过长。

1.2定性研究RC电路 - 过渡性安排

考虑所示的电路?古尔3或电阻器的串联连接 [R 和冷凝 sateur c 经受通过连接到一个理想电压源的开关来实现的电压电平 电动势 E. 在初始时刻,开关打开和电容器被放电。一 T=0 关闭 开关,电压 \bar{E} 然后通过 $0 \le \bar{E}$ 并且,提供了一种电压电平。

我们感兴趣的是电压的演变 $\ddot{u}_{C(T)}$ 在电容随着时间的推移。它被观察到 呈现给定的外观?古尔4。

它提出以下意见:

我 电容器两端的电压最初为零。这是合乎逻辑的,因为它最初是 卸载,我们有:

$$U(0) = q(0)$$

$$C = 0$$

哪里 Q(t)的 在负载通过所述电容器的正极板在时间进行 吨。

 2018-2019
 一阶线性电路
 IFC北京化学

人物 3? RC经受电压阶跃

人物 4? 电容器两端的电压的演变

我 一段时间后,电容两端的电压 E. 然后充电电容器

最大值,并且在该电路中没有电流。该系统的不断发展,这个政权已经达到 固定。

我 这两个时刻之间,张力逐渐在电容器两端增加(电荷accumulate的作为对电容器板)。这个计划,我们将看看 在本章稍后,被称为 短暂的。

德?Nition 3。 过渡性安排	
	, , , , , , , , , , , , , , , , , , , ,
	, , , , , , , , , , , , , , , , , , , ,

v 注意: 我们推出的?古尔4特征时间 r。 我们会回来的上 显阳离子。请注意,只是给出的过渡安排期间的一个数量级。后

几 τ,稳态成立。

RC电路的2分析研究

2.1电容两端的电压中的表达	
2.1.1调试公式	
让在所示的电路?古尔3和表达在电容器与所述电压 网格法。再次假定电容器进行初始放电。	
德?Nition 4。 RC电路的时间常数	٦
电路演化方程的规范形式	٦
	.
是醒2.1.2 -修正了一阶的二erential方程?	
乙 在本节讨论的所有决议的示威和方法的视图 物理学家。因此,对于一个严格的数学分辨率的条件并不总是 其次,在电子?ciency的兴趣和简化?阳离子。	
公式二?Erential均匀一阶 考虑一个函数 <i>F(T)</i> 服从方程 类型:	
DF DT + F - r= 0	
»理 τ是在一个时间的均匀恒定。在物理学中,它被授权如下分离的变量。	

它仍然只是确定常量表达式由于问题的初始条件	⊧ ₀
方程二?与第二构件Erential第一阶 现在考虑的功能 桑特二erential方程类型?:	作听话
哪里 克(t)的是时间的任何功能。获得上述方程的	7= G(t)的
物主 ル (1) 的 定时间的在刊列能。	一放肝灰刀条时刀法
1.它决定了方程式二的解决?Erential均相(无第	〔二部件),表示为
	$ extit{DF}_g$ ^
	$\overline{DT} + F_g \cdot \overline{\tau} = 0$
2.然后确定一个特定的溶液 $\mathcal{F}_{ ho}$ 方程二?与形式的	的第二构件erential
	<i>的</i> 是一个常数,我们寻求 ℉ρ在恒定的形式。
3.一般溶液然后表示为的总和 $F_{\mathcal{B}_\ell}(T)$ 和 $F_{\mathcal{P}_\ell}$	T):
	$F(T) = F_{\mathcal{R}}(T) + F_{\mathcal{P}}(T)$
4.它仍然只是确定任何常量得益于问题的边界条何	件。
2.1.3表达 <i>üc(</i> T)	
回想一下公式VERI?由埃德 <i>üc(T):</i>	
	$\frac{\theta _{c}}{DT+U_{c}\tau =E} - \frac{-}{\tau}$
同 r= RC。 先前的分辨率方法被应用到确定 üc(T)	·
• • • • • • • • • • • • • • • • • • • •	

	 	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	 	

如果我们追溯这条曲线的形状,我们得到的结果已经在第一部分中相遇,对应于电容充电。电容器,开始放电,将负责直到我们到达 $\ddot{u}c=E$.

人物 5?进化 üc(T)

过渡性安排2.1.4时间常数和持续时间

v 图形确定 r: 人们可以很容易确定的特征时间 r 图形。该 相切的曲线 $\bar{u}_{C\ell}$ r / 在 r = 0 直切方程 $\bar{u}_{C\ell}$ 是 在 r = r 。 电容器然后63% 一个完整的充电。

v 建立时间: 我们可以	!立时间: 我们可以认为达到稳定状态时,电容器												
达到全部电量的99%。		渡性安排时间。											
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								

v :	备注:				
		 		 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	建立时间				
	建立时间				
		 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	
		 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	••••••••••
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	

电容器具有大容量,它越能存储负荷,并且需要更多的时间用于 负载。

我 更 [R 小,电容快速充电。这是一次有意义的,因为如果 由发电机供给的所有能量在电阻器耗散将需要更多的时间来加载 电容。

2.2的电流在电路中的强度的表达

表还的电流流过电路田士表还的强度 <i>UC(1)</i> 钾定剂	
cédemment。	

它的图形外观 /(t)的 在?古尔6。

人物 6? 当前对电容器充电时

据观察,与电压 $\ddot{u}_{C(T)}$ 强度 我在间断 T=0 在当前 从零瞬间变为价值 E/R_o 我们再次找到的特征时间 τ , 当 我是它的最大值(其然后观察的现象63%)的37%。我们发现已知的结果的是,在稳定状态下,电容器表现得像打开的开关(I=0 当 $\dot{T} \to \infty$)。

2.3能源研究
针对负载功率平衡,通过强度乘以网格法 <i>我</i> 电流。
我 第一项是由发电机的电路提供的电力。
我 第二项是由电阻所接收的电功率消耗E'和焦耳。
我 最后一项是存储在电容器中的能量的变化。
展望é?整个电容器充电的时间Ectuer能量平衡。这需要
整合之间的上述方程 $T=0$ 和 $\check{T} o\omega$ (因为这是当 $\check{T} o\omega$ 所述电容器是完全 加载):

能量储存在电容器

对于时间常数前大周期 7, 由发电机提供的能量的一半被耗散

è?焦耳和电阻,另外一半被储存在电容器。

2.4案例免费饮食

在以前的研究中,电容器表现得像一个 受体(他从接收到的能量 电压源),但我们在前面的章节中,可能有时表现得看见 发电机。 再一个是的一部分 免费饮食。

德?Nition 5。 免费饮食	
实施例1。 研究的电容器的放电的 i	
考虑充电电压的电容 <i>Ё</i>	· · · · · · · · · · · · · · · · · · ·
由于以前的设备。它断开	$-\frac{1}{C} u_{\rm c}$
电路和分支是一个电阻器的端子 $I\!\!R$ 至 $I\!\!R$ 瞬间 $I\!\!T$ 作为刚开始的时候。	_
	•
1.给的表达 <i>üc(T)。</i>	
2.给的表达 / (t) 的。	
3.电子?Ectuer的功率平衡。	
4.计算在电阻器中耗散的能量。	

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	 	 	 	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	 	 	 	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	 	 	 	0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	 	 	 	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 	 	 	 	0 0 0

的RL电路的3分析研究

现在考虑在所示的电电路?古尔7,由串联连接的 阻力 [R 和电感器 L. 一切都连接到发电机的端子。开关 / 闭合电路在时刻 广作为刚开始的时候。

人物 7? 下一个电压阶跃RL电路

3.1当前表达式 我 和在线圈端子上的电压 ü 🛭 🗷

3.1.1调试公式

网格电路的执法给出,一旦闭合的开关。

货	!
0	
0	
0	
Ħ	B 路演化方程的规范形式
•	
ŧ	电流的强度的3.1.2表达
	它解决了以同样的方式作为RC电路前面的公式。

.....

在电路中的强度的形状示于?古尔8。

人物 8? 在RL电路的电流强度

据观察,强度在电路逐渐增大。线圈反对建立一个在电路中的电流,这是关系到电磁感应现象后,你会看到你的课程。作为RC电路,恒定以图形时间来确定 7 注意横坐标切线在原点的交点和正确的公式 /=E/R。当 T=r, 的63%的强度其最大值。

在线圈端子3.1.3的电压中的表达

人物 9? 在线圈端子上的电压的演变

我们发现一个已知的结果是:线圈充当在稳定状态下的驱动程序(? \ddot{u}_{L} =0 当 $\check{T} \rightarrow \infty$)。

3.2能源方面

和以前一样,乘以强度执法网可以得到等式 *我* 的目前在功率预算的电路。

线圈两端的电压呈指数下降,如图?古尔9。

	我 中的第一	·项对应	F由发生	器提供	的功率	率 。											
	我 第二项是	由电阻抗	妾收到的	功率耗	散E~	·焦耳。											
	我 在2 N,	第三项对	应于存储	诸在线[圈中的	能量的	变化。										
	和以前一样	, 这第	三项之间	可以进	行集月	表 <i>T=</i> (O 和 Ť	→∞表〕	₹								
的总	总能量存储在	线圈。															
										 , , , , , , ,	 		 	 	 		
					0 0 0 0 0	0 0 0 0 0		0 0 0 0 0 0		 	 	0 0 0 0 0 0	 0 0 0 0 0 0	 0 0 0 0 0 0	 	0 0 0 0 0 0	
											 		 0 0 0 0 0 0	 	 		
					0 0 0 0 0												

关于这两个换句话说,我们不整合,因为强度不趋于0,能量 **Ë消散?焦耳和电阻不伟大?如果定义 Ť往往在?有限。这同样适用于** 由电压源给出的能量。

结论

我们一直在本章中,通过两个简单的情况下,即那些RL和RC电路的研究,观察的第一阶线性电路的研究的一般方法。我们将在这些练习加深知识,通过专注于更复杂的电路。在?N,在下一章中,通过学习RC电路和RLC,我们可以发现和描述更复杂的现象,并解决概念振荡器和耗散。