Lecture: Natural Language Processing

Chapter 06: Feedforward and Recurrent Neural Language Models

Tim Metzler, Jörn Hees 2024-05-14

Hochschule
Bonn-Rhein-Sieg
University of Applied Sciences

Fachbereich Informatik
Department of Computer Science

Plan (Preliminary)

Date	Lec.	Topics				
2024-04-09	1	Org, Introduction to NLP, Text Processing				
2024-04-16	2	Text Processing and Tokenization				
2024-04-23	3	Statistical Language Models				
2024-04-30	4	Static Embeddings (1-Hot, TF-IDF) Plan updated!				
2024-05-07	5	Static Embeddings (Word2Vec)				
2024-05-14	6	Feedforward & Recurrent Neural Language Models				
2024-05-21	7	Attention and the Transformer Architecture				
2024-05-28	8	Transformers and Applications				
2024-06-04	9	Generative Pretrained Transformers and Large Language Models				
2024-06-11	10	Instruction-Following Language Models				
2024-06-18	11	Model Adaptation, Retrieval Augmented Generation				
2024-06-25	12	Project: Run your own LLM				
2024-07-02	13	Project: Presentations				
2024-07-09	14	Summary & Questions				

Feedforward Neural Language Models

Quiz: How would you build a simple sentiment classifier?

- Input: Document (e.g., amazon review)
 - Examples:
 - "This blender is great, it shredded my iphone without any problems"
 - "The blender is no good ⊗"
 - "Broken after first use!"
 - "The dessert was delicious"
 - "I wouldn't recommend the desserts at this place"
- Output: Sentiment classification (binary: positive / negative)

Simple Text Classifiers: Ideas

- Manual Feature Engineering
- Embeddings

Sentiment Classifier: Manual Feature Engineering

- 1. "This blender is great, it shredded my iphone without any problems"
- 2. "The blender is no good ⊗"
- "Broken after first use!"
- 4. "The dessert was delicious"
- "I wouldn't recommend the desserts at this place"

• Feature ideas:

- Count positive words
- Count negative words
- Count positive emoticons
- Count negative emoticons
- Does the review contain negations?
- Does the review include "!"?
- Length of review

R. 1	R. 2	R. 3	R. 4	R. 5
1	1		1	1
2		1		
	1			
1	1			1
		1		
11	6	5	4	8

Sentiment Classifier: Manual Feature Engineering

- Manual Feature Engineering turned each doc into a feature vector
- Let's plug them into a simple Feed Forward Neural Network

Sentiment Classifier: Embeddings

- Hand crafted features
 - often useful
 - might reach their limits
- Why not let the network learn what's important?
- Textual feature representations / Embeddings:
 - One-Hot
 - TF-IDF
 - Word2Vec
 - ...

Image Source: D. Jurafsky, J. H. Martin: Speech and Language Processing 2024, Lecture 7

Image Source: D. Jurafsky, J. H. Martin: Speech and Language Processing 2024, Lecture 7

p(positive sentiment|The dessert is...)

Image Source: D. Jurafsky, J. H. Martin: Speech and Language Processing 2024, Lecture 7

- Issues?
 - Only works for fixed length inputs!
 - In this case: 3 words
- Workarounds?
 - Set input size to fixed length (e.g., that of longest review)
 - Pad shorter with 0 vectors
 - Truncate longer ones
 - Create single fixed size review embedding (sentence / paragraph / document)
 - Mean of all word embeddings
 - Element-wise max of all word embeddings

Simple Text Classifiers: More Classes

General idea applicable not only to (binary) sentiment classification

Simple Language Modeling Task

Neural Language Models (LMs)

Language Modeling: Calculating the probability of the next word in a sequence given some history.

- We've seen N-gram based LMs
- But neural network LMs far outperform n-gram language models

State-of-the-art neural LMs are based on more powerful neural network technology like Transformers

But simple feedforward LMs can do almost as well!

Simple feedforward Neural Language Models

Task: predict next word w_t

given prior words W_{t-1} , W_{t-2} , W_{t-3} , ...

Problem: Now we're dealing with sequences of arbitrary length.

Solution: Sliding windows (of fixed length)

$$P(w_t|w_1^{t-1}) \approx P(w_t|w_{t-N+1}^{t-1})$$

Neural Language Model

Why Neural LMs work better than N-gram LMs

Training data:

We've seen: I have to make sure that the cat gets fed.

Never seen: dog gets fed

Test data:

I forgot to make sure that the dog gets ____

N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog" embeddings to generalize and predict "fed" after dog

Next

Recurrent Neural Language Models

