Subject: Engineering Mathematics

DPP-03

Chapter: Vector Calculus

Topic: Divergence & Curl of Vector Function , Line, surface & Volume Integral

1. Curl of vector $\vec{v}(x, y, z) = 2x^2\hat{i} + 3z^2\hat{j} + y^3\hat{k}$ at

x = y = z = 1 is

- x = y = z = 11(a) -3i
- (b) 3*i*
- (c) 3i 4j
- (d) 3i-6k
- 2. If $\vec{r} = x\hat{a}_x + y\hat{a}_y + z\hat{a}_z$ and $|\vec{r}| = r$, then div $(r^2\nabla(\ln r))$ = ____.
- 3. A vectror \vec{P} is given by $\vec{P} = x^3 y \vec{a}_x x^2 y^2 \vec{a}_y x^2 y z \vec{a}_z$. Which one of the following statements is TRUE?
 - (a) \vec{P} is solenoidal, but not irrotational
 - (b) \vec{P} is irrotational, but not solenoidal
 - (c) \vec{P} is neither solenoidal nor irrotational
 - (d) \vec{P} is both solenoidal and irrotational
- **4.** The velocity field of an incompressible flow is given by

 $V = (a_1x + a_2y + a_3z)\hat{i} + (b_1x + b_2y + b_3z)j$

 $+(c_1x+c_2y+c_3z)\hat{k}$

and $a_1 = 2 \& c_3 = -4$. The value of b_2 is _____

- **5.** $\nabla \times \nabla \times P$ (where *P* is a vector) is equal to
 - (a) $P \times \nabla \times P \nabla^2 P$
 - (b) $\nabla^2 P + \nabla (\nabla \times P)$
 - (c) $\nabla^2 P + \nabla \times P$
 - (d) $\nabla(\nabla \bullet P) \nabla^2 P$

- **6.** The curl of vector $A = e^{xy} i + \sin xyj + \cos^2 xzk$ is
 - (a) $ye^{xy}i + x\cos xyj 2x\sin 2xzk$
 - (b) $z\sin 2xzi + (y\cos xy xe^{xy})k$
 - (c) $z\sin 2xzi + (x\cos xy xe^{xy})k$
 - (d) $xye^{xy}i + xy\cos xyj 2xz\sin 2xzk$
- 7. If $A = (3y^2 2z)i 2x^2 zj + (x + 2y)k$, the value of

 $\nabla \times \nabla \times A$ at P(-2, 3, -1) is

- (a) -(6i + 4j)
- (b) 8(i+j)
- (c) -8(i+j)
- (d) 0
- 8. The directional derivative of function $\Phi = xy + yz + zx$ at point P(3, -3, -3) in the direction toward point Q(4, -1, -1) is
 - (a) -3
- (b) 1
- (c) -2
- (d) 0
- 9. The maximum value of the directional derivative of the function $\phi = 2x^3 + 3y^2 + 5z^2$ at a point (1, 1, -1) is
 - (a) 10
- (b) -4
- (c) $\sqrt{152}$
- (d) 152
- **10.** The grad. $\nabla \times A$ of a vector field

$$A = x^2 yi + y^2 zj - 2xzk$$
 is

- (a) 2xy + 2yz 2x
- (b) $x^2 y + y^2 z 2xz$
- (c) $2x^2y + 2y^2z 2xz$
- (d) 0

Answer Key

1. (a)

2. (3)

3. (a)

4. (2)

5. (d)

6. (b)

7. (a)

8. (c)

9. (c)

10. (d)

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4