

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA Sumativa 2 - Cálculo Diferencial - 2020-2

SUMATIVA 2 CÁLCULO DIFERENCIAL

	RESULTADOS DE APRENDIZAJES					
1	Aplica los axiomas de cuerpo y orden de los números reales para resolver inecuaciones lineales, cuadráticas					
	y con valor absoluto.					
2	Analiza la existencia de límites en funciones reales para resolver problemas relativos a continuidad y					
	derivadas de funciones.					

29 de Octubre de 2020

Nombre:......Rut:.....Sección:.....

Problema	1 (20 puntos)	2 (25 puntos)	3 (25 puntos)	4 (30 puntos)	Total puntos	Nota (1-7)
Puntaje						
Obtenido						

INSTRUCCIONES

- HACER SOLAMENTE LOS EJERCICIOS QUE VIENEN ASIGNADOS, EN CASO CONTRARIO NO SERAN CONSIDERADOS.
- \blacksquare Escribir sus respuestas con letra clara y legible con lápiz pasta.
- Las respuestas deben venir debidamente justificada.
- Cada una las hojas de respuestas debe venir con Nombre y rut y número de la pregunta.
- Al enviar la resolución de la evaluación, esta debe venir en un archivo pdf (o comprimido), de la siguiente forma: Nombre Apellido Alumno Codigo Asignatura seccion sumativo 1.pdf
- Tiene 80 minutos para responder + 20 minutos para el envio de archivo.

RUT	Preg 1	Preg 2	Preg 3	Preg 4
20949203-2	a	b	a	b
21044283-9	b	a	a	b
20912987-6	b	b	a	a
20256093-8	a	b	a	b
20643761-8	b	b	a	b
20953595-5	a	a	a	b
20691801-2	b	b	b	a
20943210-2	a	b	a	b
19512758-1	b	a	b	a
20681033-5	a	a	b	b
20780898-9	b	b	b	a
20962030-8	b	a	a	a
20953975-6	a	b	a	b
20914920-6	b	b	a	a
20827864-9	a	a	b	a
20411856-6	a	b	b	b
20488013-1	b	b	b	a
20640954-1	b	a	b	a

RUT	Preg 1	Preg 2	Preg 3	Preg 4
20517117-7	\mathbf{a}	a	a	b
20488773-k	b	a	a	b
20519059-7	\mathbf{a}	b	b	a
19952934-k	b	a	b	a
20941653-0	a	a	b	b
21036331-9	a	b	b	a
20915062-k	b	a	b	b
19511677-6	a	b	a	a
16738209-6	a	b	a	b
20620542-3	a	a	a	b
20488239-8	a	b	b	b
20992128-6	b	b	b	a
	b	a	b	a

1. (20 puntos) Pregunta 1.

(a) Completar en el espacio en blanco con el paso faltante y/o axioma en la siguiente prueba

 $\forall a, b, c \in \mathbb{R}$, con $b, c \neq 0$ entonces $(ac)(bc)^{-1} = ab^{-1}$

Prueba:

$$(ac)(bc)^{-1} = ac(b^{-1}c^{-1})$$

$$= \underline{\qquad \qquad }$$

$$= a(cc^{-1})b^{-1}$$

$$= a \cdot 1 \cdot b^{-1}$$

$$= (a \cdot 1)b^{-1}$$

$$= a \cdot 1 \cdot b^{-1}$$

Conmutatividad

Neutro Multiplicativo

(b) Completar en el espacio en blanco con el paso faltante y/o axioma en la siguiente prueba

Sean $a, b \in \mathbb{R}$, entonces existe uno y sólo un $x \in \mathbb{R}$ tal que a + x = b. A tal x se denota por b + (-a).

Prueba:

$$a + x = a + (b + (-a))$$

$$= \underline{\qquad}$$

$$= (b + a) + (-a)$$

$$= b + (a + (-a))$$

$$= \underline{\qquad}$$
Invero Aditivo
$$= b$$

2. (25 puntos) Pregunta 2.

- a) Determinar el conjunto solución de las siguientes inecuaciones
 - i) $\frac{2x+1}{x-5} \le 3$
 - ii) |3x-1| < 2x+5
- b) Determinar el conjunto solución de las siguientes inecuaciones
 - i) $\frac{4x}{2x+3} > 5$
 - ii) $|1-x^2| \le 2x+2$

3. (25 puntos) Pregunta 3.

(a) i) Usando la definición de límite, probar que

$$\lim_{x \to 2} (x^2 - 4x + 5) = 1$$

ii) Hallar las asíntotas vérticales, horizontales u oblícuas, si existen, de la función

$$f(x) = \frac{x^2 + 1}{2x - 3}$$

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA Sumativa 2 - Cálculo Diferencial - 2020-2

(b) i) Usando la definición de límite, probar que

$$\lim_{x \to 3} (x^2 + x - 4) = 8$$

ii) Hallar las asíntotas vérticales, horizontales u oblícuas, si existen, de la función

$$f(x) = \frac{3x^2 - 1}{2x + 5}$$

- 4. (30 puntos) Pregunta 4.
 - a) Resuelve

$$\mathbf{i)} \lim_{x \to 0} \frac{\sqrt{2-x} - \sqrt{2}}{x}$$

ii)
$$\lim_{x \to \infty} \frac{\sqrt{x-1}}{\sqrt{x^2-1}}$$

iii) Considere la función

$$f(x) = \begin{cases} x+1 & si & 1 < x \\ ax^2 + b & si & -2 < x \le 1 \\ 3x - 2 & si & x \le -2 \end{cases}$$

Determine los valores de a y b tal que $\lim_{x\to -2} f(x)$ y $\lim_{x\to 1} f(x)$ existen.

b) Resuelve

$$\mathbf{i)} \quad \lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{3}}{x}$$

ii)
$$\lim_{x \to \infty} \frac{\sqrt{1 + 4x^2}}{\sqrt{4x}}$$

iii) Considere la función

$$f(x) = \begin{cases} 3x + 5 & si & x \le -1\\ ax^2 + b & si & -1 < x < 2\\ 6 - \frac{x}{2} & si & x > 2 \end{cases}$$

Determine los valores de a y b tal que $\lim_{x\to 2} f(x)$ y $\lim_{x\to -1} f(x)$ existen.