Name - Harshita Singh Sec - K

unio Rollno - 2315000950 Clars Rouno - (31)

Course Branch - B. tech (CSE)

ASSIGNMENT-1 (Machine Cearning)

Ans1 - used-car dataset -- Regression on classification?

- · Task given: Predict whether a car will sell above it's listing price -> this is a binary classification problem (Yes = Above price, No = Not above price).
- · Justification:
 - · Classification: The output is discrete (0/1). Model predicts probabilities (e.g., 0.8 chance the var sells above price).
 - · Regnession alterative: If instead we tried to predict the actual selling price as a continuous variable, then used use regression
- · Outputs & Metrics:
 - · Classification: output = probability or class label.

Metrics: Accuracy, Precision, Recall, F1-score, ROC-AUC.

· Regression: Output = numerical price prediction.

Metrics: RMSE, MAE, R2.

Ans 2 - Handling Missing BMI & Glucose Values

· options:

- 1. Mean imputation: Replace missing values with the mean. Works if data is normally distributed without outliers.
- 2. Median imputation: Replace with the median. Better when distributions are skewed on when extreme outliers exist (common for BMI and glucose).
- 3. Dropping records: Appropriate only if:

· Missing values are nare.

- · the overords are missing completely at random (MCAR).
- · clinical relevance:
 - · BMI and glucose often have skewed distributions, with important clinical thresholds. Using median imputation

- · Mean imputation could distort results if a few patients have extreme values.
- · Dropping should be avoided if missingness is systematic.

Ans3: - High Error / underfitting (high bias) - Model is performing poorly own or training.

Steps to improve :-

* Feature Engineering.

* Use a Stronger algo.

* Increase model capacity / complexity, tune, hyper parameters.

* Check data quality/labels, add more information feature.

Ansy: - One-hot Encoding Example

Input:

Department Name Alice Engineering Bob HR charlie Sales Dana

After one-hot encoding Department:

Name Alice	<u>Dept_Enginerring</u>	Dept_HR_	Dept_Sales
Bob	Τ	Ö	0
Charlie	0	J	0
Sana	0	0	7.

$$d(\xi,A) = \sqrt{(6-8)^2 + (7-6)^2} = \sqrt{5} = 2.23 \quad \text{pars}$$

$$d(\xi,B) = \sqrt{(6-5)^2 + (7-4)^2} = \sqrt{10} = 3.16 \quad \text{fail}$$

$$d(\xi,C) = \sqrt{(6-1)^2 + (7-5)^2} = \sqrt{5} = 2.23 \quad \text{pars}$$

$$d(\xi,D) = \sqrt{(6-3)^2 + (7-2)^2} = \sqrt{34} = 5.8 \quad \text{fail}$$

Ans 6 PCA on points (1,0), (0,1), (2,2), (4,4)

x	4.	(x-\bar{\pi})	(u- <u>ū</u>)	(x-x)(y-y)	(x-x)2	(y-y)"
	0	- 0.75	-1.75	1.31	0.56	ø 3·06
0		-1.75	-0.75	1.31	3,06	0.56
2	2	0.25	0.25	0.06	0.06	0.06
4	4	2.25	2.25	5.06	5.06	5.06
				7.74	8.74	8.74

#mean
$$\bar{x} = 1.75$$
 $\bar{y} = 1.75$

Covariance Matrix:

$$\begin{bmatrix}
COV(y,x) & COV(x,y) \\
COV(y,x) & COV(y)
\end{bmatrix}$$

$$Cov(x) = \frac{1}{3} \times 8.74 = 2.91$$

Covariance Matrix =
$$\begin{bmatrix} 2.91 & 2.58 \\ 2.58 & 2.91 \end{bmatrix}$$

Eigen Values

For a symmetric matrix of the form $\begin{bmatrix} a & c \\ c & a \end{bmatrix}$, eigen values are a+c and a-c.

fure,
$$a = 2.91$$
, $c = 2.58$
 $\lambda_1 = a + c = 2.91 + 2.58 = 5.5$
 $\lambda_2 = a - c = 2.91 + -2.58 = 0.33 (≈ 1/3)$

Interpretation / dimensionality reduction:

Total variance = $\lambda_1 + \lambda_2 = 5.83$. The first principal component $(\lambda_1 = 5.5)$ captures $\approx 5.5/5.83 = 94.3\%$ of the variance

PCA reduces dimensionally by projecting data onto the top K principal components (here k=1) which retain the largest possible fraction of variance - projecting onto the first eigenvector keeps $\approx 94\%$. If the variability while reducing $2D \rightarrow 1D$.

Ans 7. Logistic regression (bank churn)

- · logistic function maps linear score z into probability: p = 1 $(1+e^{-z})$
- · Positive coefficient for support calls more calls = higher churn probability (odds 1 by ecoef).

Ans 8 Confusion matrix metrics (TP=50, FN=20, FP=15, TN=85)

- · Accuracy = 79.4 %
- · Precision = 76.9%.
- · Recall = 71.4%.
- · Specificity = 05%
- · FI = 74.1%.

In critical health monitor - Recall more important. (

Ans 9 Smartphone resale price

· Pask = predict exact resall price - Regression.

· output : numeric price; Metrics: RMSE, MAE, R2.

· If predicting price ranges -> classification.

· Output: class labels; metrics: Accuracy, Precession, Recall, F1.

Ans 10. Missing creatinine & hemoglobin

- · Mean imputation: Symmetric, no outliers.
- · Median imputation: skeund data foutliers.
- · Drop records: very few missing, MCAR.

Ans 11 Sentiment Classifier (54% train, 56% val)

· Envor type: underfitting.

· fix: richer features (TF-IDF, n-grams, embeddings)
Stronger models (SVM, boosting, transformers), hyperparametering, more / better data.

Ans 12. Item	Station ary	Office Supplies	Art
Notebook	0	1-	0
Eraser	1	(0
Marker	0	O	1

Am 13. KNN (k=3)

distance -> PL = \(\tau \) 10 , P2 - \(\tau \) 10 , P3. - \(\tau \) 10 , P4 = \(\tau \)

Nearest 3: P1, P2, P3 -> pars -> 2, fail -1

-> predict pars.

Ansly covar. Matrix -> Eigen values show variance dir.
PCA keeps axis with max eigenvalue.

Ans 15 Sigmoid maps linear Sum - Prob.

Negative BMI coefficient = higher BMI +

Complications Prob.

Ans 10 Confusion Matrix (40,10,20,130)

Accuracy = 85%,

Precision = $40/60 \rightarrow 66.7\%$.

Recall = $40/50 \rightarrow 80\%$.

Specificity = $130/150 \rightarrow 86.71$.

F1 Score = 72.7%.

For Fraud alerts \rightarrow Recall more imp.

Ans. | Classification (above | below median).

Regression only if predicting exact orent.

Metrics: Reg - RMSE, MAE.

Classification - Accuracy | F1.

Ans 18. Mean - Normal dism. median - Skewed outliers. Drop - Small missing set & not crucial clinically.

Ans 19 Enron - underfitting fix - Richer features, Stronger, models, tuning.

Ans 20 Title	Sci-fi	Romance	Drama
	1	0	0
Inception Titanic	0	1	0
Joker	0	0	1
Up	0	0	0

Ans 21 KNN (K=3) Distance from X5(6,6): $X1 = \sqrt{2}$, $X2 = \sqrt{13}$, $X_3 = \sqrt{10}$, $X_4 = \sqrt{12}$ Nearest 3: X1 (Pars), X3, (pars) X2 (tail) - predict pass.

Ary 22 Covariance Eigen Values -> One large, One Small

> PCA keeps axis with larger eigenvalues -> max variance retained.

Ans 24. Accuracy -> (45+125) /200 → 85%. Precision → 45/70 → 64.3.1. Recall → 45/50 → 90%. Specificity -> 125/150 -> 83.3.1. F1 -> 75%

for fraud System -> Recall more