ANN Design guideline

Tommy Petersen
AIA
Copenhagen
Denmark
tp@aia.dk
Copyright 2017 AIA
All rights reserved

Abstract

This article presents some notes on a design guideline for an artificial neural network (ANN). The ANN is a feedforward network implementing stochastic gradient descent by using the backpropagation algorithm.

1 Introduction

In [1], an introduction to ANN implementing stochastic gradient descent using the backpropagation algorithm is given. This article presents a design guideline to be used for implementing the ANN itself. The guideline is independent of programming language.

2 Overview

Figure 1 presents an overview of learning via gradient descent.

Figure 1: Overview of learning via gradient descent.

SGD (Stochastic Gradient Descent)

 η : Learning rate, small positive.

Uses mini-batches to compute approximated gradient.

Uses epochs in which the training inputs are exhausted through sampling of mini-batches.

Backpropagation overview 3

Figure 2 presents an overview of the backpropagation algorithm.

Figure 2: Overview of the backpropagation algorithm.

In computeSingletonGradient, the gradient $(\nabla_W C_x, \nabla_b C_x)$ is computed using the following four equations:

$$\delta^L = \nabla_{a^L} C \odot \sigma'(z^L) \tag{BP1}$$

$$\delta^{l} = (W^{l+1})^{T} \cdot \delta^{l+1} \odot \sigma'(z^{l})$$
(BP2)

$$\frac{\partial C}{\partial b_i^l} = \delta_j^l \tag{BP3}$$

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l$$
 (BP3)
$$\frac{\partial C}{\partial w_{jk}^l} = \delta_j^l \cdot a_k^{l-1}$$
 (BP4)

, where $\delta_j^l=\frac{\partial C}{\partial z_j^l}$, $z^l=W^l\cdot a^{l-1}+b^l$ and $a^l=\sigma(z^l).$

trainANN

Trains the network by calling runAllEpochs (miniBatchSize, η , numberOfEpochs).

Datastructures

Datastructure	Description	
trainingData	The training data	
miniBatchSize	The size of each mini-batch except a possible mini-	
	batch remainder (input)	
η	Learning rate (input)	
numberOfEpochs	The number of epochs to run (input)	

5 runAllEpochs

Runs all epochs as follows:

- 1. For each epoch
 - (a) runSingleEpoch(miniBatchSize, η)

Datastructures

Datastructure	Description	
miniBatchSize	The size of each mini-batch except a possible mini-	
	batch remainder (input)	
η	Learning rate (input)	
numberOfEpochs	The number of epochs to run (input)	

6 runSingleEpoch

Runs a single epoch as follows:

- 1. Permute the set of training examples.
- 2. Partition the training examples into mini-batches.
- 3. For each mini-batch
 - (a) computeMiniBatchGradient(mini-batch)
 - (b) adjustLearningParameters(η , WGradientList, bGradientList)

$\underline{Datastructures}$

Datastructure	Description		
trainingData	List of all training examples		
miniBatchSize	The size of each mini-batch except a possible mini-		
	batch remainder		
η	Learning rate		
WGradientList	List of gradient weight matrices		
bGradientList	List of gradient bias vectors		
miniBatch	List of training examles		

7 computeMiniBatchGradient

Computes $(\nabla_W C, \nabla_b C)$ given mini-batch consisting of training examples (x, y).

$$[(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)]$$
 (mini-batch)

Gradients are computed by averaging sums of singleton gradients:

$$\nabla_W C = \frac{1}{m} \cdot \sum_x \nabla_W C_x$$

$$\nabla_b C = \frac{1}{m} \cdot \sum_x \nabla_b C_x$$

 $\nabla_W C_x$ and $\nabla_b C_x$ are computed by calling computeSingletonGradient(x_i,y_i)

Datastructures

Datastructure	Description		
miniBatch	List of training examples (x, y) (input)		
m	Number of elements in miniBatch		
WSingletonGradientAggrList	List of aggregated singleton gradient weight ma-		
	trices (for local use)		
bSingletonGradientAggrList	List of aggregated singleton gradient bias vectors		
	(for local use)		
WGradientList	List of gradient weight matrices (output)		
bGradientList	List of gradient bias vectors (output)		

${\bf 8}\quad {\bf adjust Learning Parameters}$

Computes (Δ_W, Δ_b) and updates (W, b) by

$$W := W + \Delta_W$$
$$b := b + \Delta_b$$

, where $\Delta_W := -\eta \cdot \nabla_W C$ and $\Delta_b := -\eta \cdot \nabla_b C$.

$\underline{Datastructures}$

Datastructure	Description
WList	List of weight matrices
bList	List of bias vectors
η	Learning rate
WGradientList	List of gradient weight matrices (input)
bGradientList	List of gradient bias vectors (input)

9 computeSingletonGradient

Computes $(\nabla_W C_x, \nabla_b C_x)$ given training example (x, y). In figure 3 an ANN is showed.

Figure 3: ANN.

For input to and output from the network, we use the following:

- a^1 is input to the network.
- a^L is output from the network.

Feedforward

Computes z^l and a^l for l = 2, 3, ..., L.

$$z^{l} := W^{l} \cdot a^{l-1} + b^{l}$$

$$a^{l} := \sigma(z^{l}) \tag{1}$$

The equation (1) can be used to compute $\sigma'(z^l)$ when back propagating.

Backpropagate

Computes $(\nabla_W C_x, \nabla_b C_x)$ by sending the error δ^l backwards. The computations are done using the following four equations:

$$\delta^L = \nabla_{aL} C \odot \sigma'(z^L) \tag{BP1}$$

$$\delta^{l} = (W^{l+1})^{T} \cdot \delta^{l+1} \odot \sigma'(z^{l})$$
 (BP2)

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \tag{BP3}$$

$$\frac{\partial C}{\partial w_{jk}^l} = \delta_j^l \cdot a_k^{l-1} \tag{BP4}$$

, where $\delta_j^l = \frac{\partial C}{\partial z_j^l}$, $z^l = W^l \cdot a^{l-1} + b^l$ and $a^l = \sigma(z^l).$

For BP2, l = L - 1, L - 2, ..., 2, and for BP3 and BP4, l = L, L - 1, ..., 2.

For BP1, the whole matrix $\frac{\partial C}{\partial W^l}$ can possibly be computed by multiplication of vector and transposed vector, $\delta^l \cdot (a^{l-1})^T$.

So, given the quantities δ^l and a^{l-1} , we must compute

$$\frac{\partial C}{\partial w_{jk}^l} := \delta_j^l \cdot a_k^{l-1}$$

for all j = 1, 2, ..., J and k = 1, 2, ..., K.

We have the following matrix dimensions:

$$\frac{\partial C}{\partial W^{l}} \in \mathbb{M}(J, K)$$
$$\delta^{l} \in \mathbb{M}(J, 1)$$
$$a^{l-1} \in \mathbb{M}(K, 1)$$

The claim is, that

$$\frac{\partial C}{\partial W^l} = \delta^l \cdot (a^{l-1})^T$$

Proof

$$\begin{split} \left(\frac{\partial C}{\partial W^l}\right)_{jk} &= \frac{\partial C}{\partial w_{jk}^l} \\ &= \delta_j^l \cdot a_k^{l-1} \\ &= \delta_j^l \cdot (a^{l-1})_k^T \\ &= (\delta^l \cdot (a^{l-1})^T)_{jk} \end{split}$$

For all j = 1, 2, ..., J and k = 1, 2, ..., K.

This shows, that BP4 can be computed as $\delta^l \cdot (a^{l-1})^T$.

 $\frac{\sigma(z^l), \ \mathbf{activation}(z^l)}{\text{The sigmoid function}} \sigma(z)$:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Figure 4: Sigmoid $\frac{1}{1+e^{-z}}$ (from wikipedia).

$\sigma'(z^l)$, derivativeActivation (z^l)

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

$\nabla^L_a C_x$, gradientCostOutput (a^L)

$$C_x(a^L) = \frac{1}{2} \cdot ||a^L - y||^2$$

$$= \frac{1}{2} \cdot \sum_{j=1}^L (a_j^L - y_j^L)^2$$
(Quadratic cost)

Computation of $\nabla_{a^L} C_x$:

$$\begin{split} \frac{\partial}{\partial a_i^L} C_x(a^L) &= \frac{\partial}{\partial a_i^L} \frac{1}{2} \cdot \sum_{j=1}^L (a_j^L - y_j^L)^2 \\ &= \frac{\partial}{\partial a_i^L} \frac{1}{2} \cdot (a_i^L - y_i^L)^2 \\ &= (a_i^L - y_i^L) \cdot \frac{\partial}{\partial a_i^L} (a_i^L - y_i^L) \\ &= a_i^L - y_i^L \end{split}$$

So

$$\nabla_{a^L} C_x = \begin{pmatrix} a_1^L - y_1^L \\ \vdots \\ a_J^L - y_J^L \end{pmatrix}$$

$\underline{\mathbf{Datastructures}}$

Datastructure	Description	Size	Remark
WList	List of weight matrices	L	WList[0] is not used
bList	List of bias vectors	L	bList[0] is not used
WSingletonGradientList	List of singleton gradient	L	WSingletonGradientList[0]
	weight matrices		is not used
bSingletonGradientList	List of singleton gradient	L	bSingletonGradientList[0] is
	bias vectors		not used
x	Input vector for the net-	$K \times 1$	
	work		
deltaList	List of delta vectors	L	deltaList[0] is not used
zList	List of z-vectors	L	zList[0] is not used
aList	List of a-vectors	L	aList[0] is not used
У	Correct output vector	$J \times 1$	
	from the network		

REFERENCES 9

References

[1] Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015, http://neuralnetworksanddeeplearning.com/.