# Константы

| Число Авогадро, $N_A$                      | $6.022 	imes 10^{23}$ моль $^{-1}$           |
|--------------------------------------------|----------------------------------------------|
| Элементарный заряд, <i>е</i>               | $1.602 \times 10^{-19}  \mathrm{K}$ л        |
| Универсальная газовая постоянная, <i>R</i> | $8.314\mathrm{Дж}\mathrm{моль^{-1}K^{-1}}$   |
| Постоянная Фарадея, F                      | 96 485 Кл моль <sup>–1</sup>                 |
| Постоянная Планка, <i>h</i>                | $6.626 	imes 10^{-34}$ Дж с                  |
| Температура в Кельвинах (К)                | $T_{\rm K} = T_{^{\circ}{\rm C}} + 273.15$   |
| Ангстрем, Å                                | $1\times10^{-10}\text{m}$                    |
| пико, п                                    | $1 \text{ mm} = 1 \times 10^{-12} \text{ m}$ |
| нано, н                                    | $1 \text{ HM} = 1 \times 10^{-9} \text{ M}$  |
| микро, мк                                  | $1 \text{ MKM} = 1 \times 10^{-6} \text{ M}$ |

| 1                        |                          |                         |                          |                          |                          |                          |                   |                          |                          |                          |                          |                          |                          |                          |                          |                          | 18                       |
|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1<br>H<br>1.008          | 2                        |                         |                          |                          |                          |                          |                   |                          |                          |                          |                          | 13                       | 14                       | 15                       | 16                       | 17                       | 2<br>He<br>4.003         |
| 3<br>Li<br>6.94          | 4<br>Be<br>9.01          |                         |                          |                          |                          |                          |                   |                          |                          |                          |                          |                          | 10<br><b>Ne</b><br>20.18 |                          |                          |                          |                          |
| 11<br><b>Na</b><br>22.99 | 12<br><b>Mg</b><br>24.31 | 3                       | 4                        | 5                        | 6                        | 7                        | 8                 | 9                        | 10                       | 11                       | 12                       | 13<br><b>Al</b><br>26.98 | 14<br>Si<br>28.09        | 15<br>P<br>30.97         | 16<br>S<br>32.06         | 17<br>Cl<br>35.45        | 18<br><b>Ar</b><br>39.95 |
| 19<br><b>K</b><br>39.10  | 20<br>Ca<br>40.08        | 21<br>Sc<br>44.96       | 22<br>Ti<br>47.87        | 23<br>V<br>50.94         | 24<br>Cr<br>52.00        | 25<br><b>Mn</b><br>54.94 | 26<br>Fe<br>55.85 | 27<br><b>Co</b><br>58.93 | 28<br><b>Ni</b><br>58.69 | 29<br>Cu<br>63.55        | 30<br>Zn<br>65.38        | 31<br><b>Ga</b><br>69.72 | 32<br>Ge<br>72.63        | 33<br><b>As</b><br>74.92 | 34<br>Se<br>78.97        | 35<br><b>Br</b><br>79.90 | 36<br><b>Kr</b><br>83.80 |
| 37<br><b>Rb</b><br>85.47 | 38<br>Sr<br>87.62        | 39<br><b>Y</b><br>88.91 | 40<br>Zr<br>91.22        | 41<br><b>Nb</b><br>92.91 | 42<br><b>Mo</b><br>95.95 | 43<br>Tc<br>-            | 44<br>Ru<br>101.1 | 45<br><b>Rh</b><br>102.9 | 46<br>Pd<br>106.4        | 47<br><b>Ag</b><br>107.9 | 48<br>Cd<br>112.4        | 49<br>In<br>114.8        | 50<br><b>Sn</b><br>118.7 | 51<br>Sb<br>121.8        | 52<br><b>Te</b><br>127.6 | 53<br> <br>126.9         | 54<br><b>Xe</b><br>131.3 |
| 55<br><b>Cs</b><br>132.9 | 56<br><b>Ba</b><br>137.3 | 57-<br>71               | 72<br><b>Hf</b><br>178.5 | 73<br>Ta<br>180.9        | 74<br>W<br>183.8         | 75<br><b>Re</b><br>186.2 | 76<br>Os<br>190.2 | 77<br><b>lr</b><br>192.2 | 78<br><b>Pt</b><br>195.1 | 79<br><b>Au</b><br>197.0 | 80<br><b>Hg</b><br>200.6 | 81<br>Tl<br>204.4        | 82<br><b>Pb</b><br>207.2 | 83<br>Bi<br>209.0        | 84<br>Po<br>-            | 85<br><b>At</b><br>-     | 86<br>Rn<br>-            |
| 87<br>Fr<br>-            | 88<br>Ra<br>-            | 89-<br>103              | 104<br>Rf<br>-           | 105<br><b>Db</b><br>-    | 106<br><b>Sg</b><br>-    | 107<br><b>Bh</b><br>-    | 108<br>Hs<br>-    | 109<br><b>Mt</b><br>-    | 110<br>Ds<br>-           | 111<br>Rg<br>-           | 112<br>Cn<br>-           | 113<br>Nh<br>-           | 114<br>Fl<br>-           | 115<br><b>Mc</b><br>-    | 116<br>Lv<br>-           | 117<br>Ts<br>-           | 118<br>Og<br>-           |

| 57<br>La             | <sup>58</sup><br>Ce      | 59<br><b>Pr</b>   | 60<br><b>Nd</b>  | 61<br>Pm             | Sm            | <sup>63</sup><br>Eu  | 64<br>Gd      | 65<br><b>Tb</b>      | 66<br>Dy      | 67<br><b>Ho</b> | 68<br>E <b>r</b> | 69<br><b>Tm</b> | <sup>70</sup><br><b>Yb</b> | 71<br>Lu       |
|----------------------|--------------------------|-------------------|------------------|----------------------|---------------|----------------------|---------------|----------------------|---------------|-----------------|------------------|-----------------|----------------------------|----------------|
| 138.9                | 140.1                    | 140.9             | 144.2            | -                    | 150.4         | 152.0                | 157.3         | 158.9                | 162.5         | 164.9           | 167.3            | 168.9           | 173.0                      | 175.0          |
| 89<br><b>Ac</b><br>- | 90<br><b>Th</b><br>232.0 | 91<br>Pa<br>231.0 | 92<br>U<br>238.0 | 93<br><b>Np</b><br>- | 94<br>Pu<br>- | 95<br><b>Am</b><br>- | 96<br>Cm<br>- | 97<br><b>Bk</b><br>- | 98<br>Cf<br>- | 99<br>Es<br>-   | 100<br>Fm<br>-   | 101<br>Md<br>-  | 102<br><b>No</b><br>-      | 103<br>Lr<br>- |



## Регламент олимпиады:

Перед вами находится комплект задач республиканской олимпиады 2022 года по химии. **Внимательно** ознакомьтесь со всеми нижеперечисленными инструкциями и правилами. У вас есть **5 астрономических часов (300 минут)** на выполнение заданий олимпиады. Ваш результат – сумма баллов за каждую задачу, с учетом весов каждой из задач.

Вы можете решать задачи в черновике, однако, не забудьте перенести все решения на листы ответов. Проверяться будет **только то, что вы напишете внутри специально обозначенных квадратиков**. Черновики проверяться **не будут**. Учтите, что вам **не будет выделено** дополнительное время на перенос решений на бланки ответов.

Вам разрешается использовать графический или инженерный калькулятор.

Вам запрещается пользоваться любыми справочными материалами, учебниками или конспектами.

Вам **запрещается** пользоваться любыми устройствами связи, смартфонами, смарт-часами или любыми другими гаджетами, способными предоставлять информацию в текстовом, графическом и/или аудио формате, из внутренней памяти или загруженную с интернета.

Вам **запрещается** пользоваться любыми материалами, не входящими в данный комплект задач, в том числе периодической таблицей и таблицей растворимости. На **титульной странице** предоставляем единую версию периодической таблицы.

Вам **запрещается** общаться с другими участниками олимпиады до конца тура. Не передавайте никакие материалы, в том числе канцелярские товары. Не используйте язык жестов для передачи какой-либо информации.

За нарушение любого из данных правил ваша работа будет **автоматически** оценена в **0 бал- лов**, а прокторы получат право вывести вас из аудитории.

На листах ответов пишите **четко** и **разборчиво**. Рекомендуется обвести финальные ответы карандашом. **Не забудьте указать единицы** измерения **(ответ без единиц измерения будет не засчитан)**. Соблюдайте правила использования числовых данных в арифметических операциях. Иными словами, помните про существование значащих цифр.

Если вы укажете только конечный результат решения без приведения соответствующих вычислений, то Вы получите  ${f 0}$  баллов, даже если ответ правильный.

Решения этой олимпиады будут опубликованы на сайте www.qazcho.kz.

Рекомендации по подготовке к олимпиадам по химии есть на сайте www.kazolymp.kz.

# Задача №1. Название крутой задачи

| 1.1 | 1.2 | 1.3 | 1.4 | Всего | Bec(%) |
|-----|-----|-----|-----|-------|--------|
| 1   | 2   | 3   | 3   | 9     | 11     |

- 1. Нарисуйте структуру вещества  $C_2H_6O$  если известно, что в нем присутствует OH-группа.
- 2. При какой температуре атомы гелия будут иметь среднеквадратичную скорость  $3.5 \times 10^6$  м с $^{-1}$ ?
- 3. Сколько грамм сахара было растворено в 100 г воды, если ее температура замерзания опустилась до  $-1.3\,^{\circ}$  С?

Фосген образуется из угарного газа и хлора в соответствии со следующим уравнением:

$$CO + Cl_2 \longrightarrow COCl_2$$

4. Увеличение концентрации угарного газа в 2 раза приводит к увеличению начальной скорости образования фосгена в 2 раза. Определите порядок данной реакции по угарному газу.

# Задача №2. Название крутой задачи

Автор: Авторов А.

| 2.1 | 2.2 | 2.3 | 2.4 | Всего | Bec(%) |
|-----|-----|-----|-----|-------|--------|
| 1   | 2   | 3   | 3   | 9     | 11     |

### 2.1 (1 балл)

Есть два органических вещества с молекулярной формулой  $C_2H_6O$  — этанол и диметиловый эфир. Из них только в первом есть гидроксо-группа, поэтому ответ —  $H_3C-CH_2-OH$  (1 балл).

### 2.2 (2 балла)

Используем формулу:

$$Mv_{rms}^2 = 3RT$$

Выразим T:

$$T = \frac{Mv_{rms}^2}{3R}$$

Подставим значения, и получим ответ:

$$T = \frac{4 \times 10^{-3} \,\mathrm{Kr} \,\mathrm{моль}^{-1} \times (3.5 \times 10^6 \,\mathrm{m} \,\mathrm{c}^{-1})^2}{3 \times 8.314 \,\mathrm{Лж} \,\mathrm{моль}^{-1} \,\mathrm{K}^{-1}} = 561 \,\mathrm{K} \,(2 \,\mathrm{балла})$$

### 2.3 (3 балла)

Используем формулу, которая связывает изменение в температуре замерзания растворителя и моляльность растворенного вещества:

$$\Delta T_f = -ik_f m$$

Сахар имеет формулу  $C_{12}H_{22}O_{11}$  и для него фактор Вант-Гоффа, i, равен единице.  $k_f$  равна  $1.86~\rm kr\,^\circ C$  моль $^{-1}$  для воды.

$$m = \frac{-1.3\,^{\circ}\mathrm{C}}{-1.86\,\mathrm{kr}\,^{\circ}\mathrm{C}\,\mathrm{moj}^{-1}} = 0.70\,\mathrm{moj}\,\mathrm{kr}^{-1}$$

Отсюда можно найти количество сахара в граммах:

$$m_{\rm caxap} = 0.70$$
 моль кг $^{-1} \times 0.100$  кг $\times 486$  г моль $^{-1} = 34$  г (3 балла)

### 2.4 (3 балла)

$$r_0 = k \cdot [\text{CO}]_0^m \cdot [\text{Cl}_2]_0^n$$

$$r_1 = k \cdot [\text{CO}]_1^m \cdot [\text{Cl}_2]_0^n$$

$$\frac{r_0}{r_1} = \left(\frac{[\text{CO}]_0}{[\text{CO}]_1}\right)^m = \left(\frac{1}{2}\right)^m = \frac{1}{2}$$

$$m = 1$$

Ответ: Порядок реакции по угарному газу равен одному (3 балла).

# I III A B C NH NH X Y

# Задача №3. Название крутой задачи

| 3.1 | 3.2 | 3.3 | 3.4 | Всего | Bec(%) |
|-----|-----|-----|-----|-------|--------|
| 1   | 2   | 3   | 3   | 9     | 11     |

| 3.1 |    |     |
|-----|----|-----|
|     |    |     |
| 7.0 |    |     |
| 3.2 |    |     |
|     |    |     |
|     |    |     |
|     |    |     |
| 3.3 |    |     |
|     |    |     |
|     |    |     |
|     |    |     |
|     |    |     |
| 3.4 |    |     |
| 3.4 |    |     |
|     |    |     |
|     |    |     |
|     |    |     |
|     |    |     |
|     |    |     |
|     |    |     |
|     |    |     |
|     |    |     |
|     |    |     |
| 3.5 |    |     |
| I   | II | III |
|     |    |     |
|     |    |     |
|     |    |     |
| A   | В  |     |
|     |    |     |
|     |    |     |
|     |    |     |
|     |    |     |

Районный этап республиканской олимпиады по химии 2023-2024. Комплект заданий теоретического тура. 10-класс.

| 3.19 |  |  |  |
|------|--|--|--|
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |