Dr. Brigitte Breckner Dr. Anca Grad

Winter semester 2013-2014

Warming up Exercises

Analysis for CS

GROUPWORK:

(G 1) (Bernoulli-type inequalities with \geq)

- a) Let $n \in \mathbb{N}^*$ and let $x_1, \ldots, x_n \in \mathbb{R}$ be real numbers satisfying the following properties:
 - (1) $x_i \ge -1$, for all $i \in \{1, ..., n\}$.
 - (2) $x_i x_j \ge 0$, for all $i, j \in \{1, ..., n\}$.

Prove that the generalized Bernoulli-inequality

$$(1+x_1)\dots(1+x_n) \ge 1+x_1+\dots+x_n$$

does hold.

b) Prove that for every $n \in \mathbb{N}^*$ and every real number $x \geq -1$ the **Bernoulli-inequality**

$$(1+x)^n \ge 1 + nx$$

does hold.

(G 2) (AM-GM-HM inequalities)

Let $n \in \mathbb{N}^*$ and let $x_1, \ldots, x_n \in \mathbb{R}_+^*$. Prove the following sequence of inequalities

$$\min\{x_1, \dots, x_n\} \le \frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}} \le \sqrt[n]{x_1 \cdots x_n} \le \frac{x_1 + \dots + x_n}{n} \le \max\{x_1, \dots, x_n\}.$$

Remarks. 1) The expression $\frac{x_1+\cdots+x_n}{n}$ is the arithmetic mean (AM, for short), $\sqrt[n]{x_1\cdots x_n}$ is the geometric mean (GM, for short), and $\frac{n}{\frac{1}{x_1}+\cdots+\frac{1}{x_n}}$ is the harmonic mean (HM, for short) of the positive reals x_1,\ldots,x_n .

2) It can be shown that equality holds in each of the inequalities of the above sequence if and only if $x_1 = \cdots = x_n$.

(G 3)

Let $n \in \mathbb{N}^*$.

- a) Show that if the positive reals $x_1, \ldots, x_n > 0$ are so that their product $x_1 \cdots x_n = 1$, then $x_1 + \cdots + x_n \geq n$.
- b) If $n \geq 2$, prove that $n! < \left(\frac{n+1}{2}\right)^n$. (We recall that n!, called the *factorial* of n, denotes the product $1 \cdot 2 \cdot \ldots \cdot n$.)

HOMEWORK:

(H 1) (To be delivered in the next exercise-class)

Let $n \in \mathbb{N}^*$. Compute the following sums in a direct way and prove afterwards (using mathematical induction) that the formula you have got does hold for every $n \in \mathbb{N}^*$.

- (a) $1^2 + 2^2 + \dots + n^2$,
- (b) $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n!$.

(H 2) (Bernoulli-type inequalities with >)

- a) Let $n \in \mathbb{N}$ with $n \geq 2$ and let $x_1, \ldots, x_n \in \mathbb{R}$ be real numbers satisfying the following properties:
 - (1) $x_i \ge -1$, for all $i \in \{1, ..., n\}$.
 - (2) $x_i x_j > 0$, for all $i, j \in \{1, ..., n\}$.

Prove that

$$(1+x_1)\dots(1+x_n) > 1+x_1+\dots+x_n.$$

b) Prove that for every $n \in \mathbb{N}$ with $n \geq 2$ and every nonzero real number $x \geq -1$

$$(1+x)^n > 1 + nx.$$

(H 3)

Prove the following inequalities

a)
$$(1 + \frac{1}{n-1})^n > (1 + \frac{1}{n})^{n+1}, \ \forall n \in \mathbb{N} \text{ with } n \ge 2,$$

b)
$$(1 + \frac{1}{n})^n < (1 + \frac{1}{n+1})^{n+1}, \ \forall n \in \mathbb{N}^*.$$

(H 4) (The geometric interpretation of the AM–GM inequality)

Explain why for n=2 the AM–GM inequality states that the square has the smallest perimeter amongst all rectangles of equal area.