Differential- und Integralrechnung, Wintersemester 2024-2025

3. Vorlesung

Th5 (Das Vergleichstheorem für Folgen)

Seien $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$ Zahlenfolgen mit der Eigenschaft, dass $\exists n_0 \in \mathbb{N}$ mit $x_n \leq y_n, \forall n \geq n_0$. Dann gelten:

- 1° Sind $x, y \in \mathbb{R}$, so dass $\lim_{n \to \infty} x_n = x$ und $\lim_{n \to \infty} y_n = y$, dann ist $x \le y$.
- 2° Ist $\lim_{n\to\infty} x_n = \infty$, dann ist auch $\lim_{n\to\infty} y_n = \infty$.
- 3° Ist $\lim_{n\to\infty} y_n = -\infty$, dann ist auch $\lim_{n\to\infty} x_n = -\infty$.

Bemerkung

Haben die Zahlenfolgen $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$ einen Grenzwert, dann beachte man, dass

$$x_n < y_n, \ \forall n \ge n_0 \overset{\text{i. A.}}{\Rightarrow} \lim_{n \to \infty} x_n < \lim_{n \to \infty} y_n.$$

Beispiel

Seien
$$x_n = \frac{1}{n}$$
 und $y_n = \frac{2}{n}$, $\forall n \in \mathbb{N}^*$. Dann ist

$$x_n < y_n, \ \forall n \ge 1, \ \text{und} \ \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0.$$

Th6 (Das Sandwich-Theorem für Folgen)

Seien $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ Zahlenfolgen mit der Eigenschaft, dass $\exists n_0 \in \mathbb{N}$ mit

$$x_n \leq y_n \leq z_n, \ \forall n \geq n_0.$$

Haben die Folgen $(x_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ den gleichen Grenzwert $x\in\overline{\mathbb{R}}$, dann hat auch die Folge $(y_n)_{n\in\mathbb{N}}$ den Grenzwert x.

F7

Ist $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge und $(b_n)_{n\in\mathbb{N}}$ eine gegen Null konvergierende Folge, dann konvergiert auch die Folge $(a_nb_n)_{n\in\mathbb{N}}$ gegen Null.

Beweis

Sei a>0, so dass $|a_n|\leq a$, $\forall n\in\mathbb{N}$. Hieraus folgt $|a_n|\cdot|b_n|\leq a\cdot|b_n|,\ \forall n\in\mathbb{N}$. Da $|a_n|\cdot|b_n|=|a_n\cdot b_n|$, erhält man $0\leq |a_n\cdot b_n|\leq a\cdot|b_n|,\ \forall n\in\mathbb{N}$.

Da $\lim_{n\to\infty}b_n=0$ ist, ist auch $\lim_{n\to\infty}|b_n|=0$. Die obigen Ungleichungen liefern mit **Th6**, dass $\lim_{n\to\infty}|a_n\cdot b_n|=0$ ist. Mit **Th3** aus der 2. Vorlesung folgt nun $\lim_{n\to\infty}a_n\cdot b_n=0$. \square

F7

Ist $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge und $(b_n)_{n\in\mathbb{N}}$ eine gegen Null konvergierende Folge, dann konvergiert auch die Folge $(a_nb_n)_{n\in\mathbb{N}}$ gegen Null.

Beispiele

$$\lim_{n\to\infty}\frac{\sin(n^5+1)}{n^2+3n}=0,$$

$$\lim_{n\to\infty}\frac{(-1)^n}{n}=0.$$

Th8 (Grenzwerte und Beschränktheit)

Für eine Zahlenfolge $(x_n)_{n\in\mathbb{N}}$ gelten die folgenden Aussagen:

- 1° Ist $(x_n)_{n\in\mathbb{N}}$ konvergent, dann ist $(x_n)_{n\in\mathbb{N}}$ beschränkt.
- 2° Ist $\lim_{n\to\infty} x_n = \infty$, dann ist $(x_n)_{n\in\mathbb{N}}$ nach oben unbeschränkt.
- 3° Ist $\lim_{n\to\infty} x_n = -\infty$, dann ist $(x_n)_{n\in\mathbb{N}}$ nach unten unbeschränkt.

Bemerkung

Die Umkehrung der obigen Aussage 1° gilt nicht, d.h. eine beschränkte Folge ist nicht unbedingt konvergent. Z.B. $((-1)^n)_{n\in\mathbb{N}}$ ist beschränkt, aber nicht konvergent. Es gilt jedoch:

Th9

Jede beschränkte Folge enthält eine konvergente Teilfolge.

Die eulersche Zahl e

• ist der gemeinsame Grenzwert der Folgen

$$\left(\left(1+\frac{1}{n}\right)^n\right)_{n\in\mathbb{N}^*} \text{ und } \left(\left(1+\frac{1}{n}\right)^{n+1}\right)_{n\in\mathbb{N}^*};$$

• aus **Th10** (Grenzwerte und Monotonie) ⇒

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}, \forall \ n \in \mathbb{N}^*.$$

Th12 (Grenzwerte mit e)

Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge mit $x_n>-1$ und $x_n\neq 0, \ \forall \ n\in\mathbb{N}$. Falls $\lim_{n\to\infty}x_n=0$, dann ist

$$\lim_{n\to\infty} (1+x_n)^{\frac{1}{x_n}} = e.$$

Bsp.:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2 + 2n} \right)^{-2n^2 + 3} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{n^2 + 2n} \right)^{n^2 + 2n} \right]^{\frac{-2n^2 + 3}{n^2 + 2n}} = e^{-2}.$$

Bem.: Bei Grenzwerten der Form $\lim_{n\to\infty}(1+x_n)^{y_n}$ kann der Trick mit e nur im Fall $\lim_{n\to\infty}x_n=0$ angewandt werden. Z.B. kann dieser Trick beim Bestimmen des folgenden Grenzwertes NICHT eingesetzt werden.

$$\lim_{n \to \infty} \left(1 + \frac{n^2}{n^2 + 2n} \right)^{\frac{n^2 + 2n}{n^2}} = 2.$$

Th13 (Stolz-Cesàro)

Sei $(y_n)_{n\in\mathbb{N}}$ eine streng monotone und divergente Folge von Null verschiedener Zahlen (d.h. entweder ist $(y_n)_{n\in\mathbb{N}}$ streng wachsend und hat den Grenzwert ∞ , oder $(y_n)_{n\in\mathbb{N}}$ streng fallend und hat den Grenzwert $-\infty$). Ist $(x_n)_{n\in\mathbb{N}}$ eine Folge, so dass der Grenzwert

$$\ell := \lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n} \in \overline{\mathbb{R}}$$

existiert, dann ist

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\ell.$$

F14

Sei $(a_n)_{n\in\mathbb{N}^*}$ eine Zahlenfolge. Dann gelten:

- 1° Ist $\lim_{n\to\infty} a_n = a \in \overline{\mathbb{R}}$, dann ist auch $\lim_{n\to\infty} \frac{a_1 + \dots a_n}{n} = a$.
- 2° Ist $a_n > 0$, $\forall n \in \mathbb{N}^*$, und $\lim_{n \to \infty} a_n = a \in \overline{\mathbb{R}}$, dann ist auch $\lim_{n \to \infty} \sqrt[n]{a_1 \dots a_n} = a$.
- 3° Ist $a_n > 0$, $\forall n \in \mathbb{N}^*$, und $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \ell \in \overline{\mathbb{R}}$, dann ist $\lim_{n \to \infty} \sqrt[n]{a_n} = \ell$.