ML 1 LINEARMOTOREN

Eisenbehaftete und eisenlose Linear-AC-Servomotoren Dauerkraft 120 bis 2850 N, Spitzenwerte bis 6 kN, bis 18 m/s

Komponenten der Linearmotorfamilie ML 1: Primärteile (Spulenpakete) und Sekundärteile (Magnetplatten). Links: eisenlose Linearmotoren; rechts: eisenbehaftete Linearmotoren.

Hauptmerkmale

- · kompakte Bauform
- · geringes Gewicht
- eisenbehaftete Ausführung mit niedrigen Anziehungskräften oder eisenlos ohne Anziehungskräfte und Nutrasten
- hohe Beschleunigung
- · hohe Geschwindigkeit
- hohe Dynamik und Genauigkeit in Verbindung mit hochauflösenden optischen Gebern
- Motorlänge nach Maß, da Sekundärteil (Magnetplatte) aus verschieden langen Elementen kombinierbar
- auch als einbaufertige Module erhältlich, bestehend aus Primärteil, Magnetplatte, Lagegeber, Schlitten und Führungen

Passende Servoregler

- · Digitale Servoregler
- · Mehrachs-Servosystem
- ... siehe Rückseite dieses Datenblatts

Anwendungen

Besonders geeignet für Positionier- und Zustellbewegungen hoher Dynamik und hoher Genauigkeit, zum Beispiel in

- · Handling- und Montagesystemen
- Verpackungsmaschinen
- Maschinen für die Elektronikfertigung

Inhalt Aufbau der Linearmotoren 2 Typschlüssel 4 Abmessungen 5 Linearmotoren für 320 V Zwischenkreisspannung 8 Übersicht und Zuordnung 8 Technische Daten 9 Linearmotoren für 560 V Zwischenkreisspannung 13 Übersicht und Zuordnung 13 Technische Daten 14 Lineare Gebersysteme 19 Servo-Antriebspakete von ESR 20

Aufbau der Linearmotoren

Allgemeines

ML-1-Linearmotoren sind Synchron-Linearmotoren (lineare 3-Phasen-Servomotoren).

Gegenüber linearen Antriebseinheiten mit rotatorischem Motor und einer Spindeloder Zahnriemeneinheit haben Linearmotoren den Vorteil, die Kraft direkt zu übertragen. Dadurch werden Elastizität und Spiel eliminiert und es kann eine wesentlich höhere Dynamik und Genauigkeit erzielt werden. Außerdem entsteht im Motor selbst kein mechanischer Verschleiß, da nur im Bereich der Führungen Reibung auftritt.

Aufbau

ML-1-Linearmotoren bestehen aus einem Primärteil (Spulenpaket) und einem Sekundärteil (Magnetplatte). Üblicherweise wird das Primärteil an einen Linearschlitten angebaut und das Sekundärteil im Bereich der Linearführungen fest montiert. Bei kurzen Verfahrwegen kann es sinnvoll sein, das Spulenpaket fest zu montieren und die Magnetplatte als bewegliches Teil auszuführen. Parallel zu Linearführung und Magnetplatte wird das lineare Gebersystem (optisch oder magnetisch) angebracht. Alternativ dazu kann die Lageinformation auch über Hallsensoren ermittelt werden.

Wirkungsweise

am Beispiel eines eisenbehafteten Linearmotors

Primärteil (Spulenpaket)

Sekundärteil (Magnetplatte)

Übersicht

Baureihe	ML 11	ML 12	ML 13	ML 14	ML 15	ML 16	ML 17
Primärteil (Spulenpaket)	eisenbehafte	t eisenbehafte	t eisenbehafte	t eisenbehafte	t eisenlos	eisenlos	eisenlos
für Zwischenkreisspannung	560 V	560 V	560 V	560 V	320 V	320 V	320 V
Dauerkraft	bis 800 N	bis 240 N	bis 1.900 N	bis 2.850 N	bis 280 N	bis 116 N	bis 564 N
Spitzenkraft	bis 1.600 N	bis 420 N	bis 4.000 N	bis 6.000 N	bis 960 N	bis 400 N	bis 2.800 N
theor. max. Geschwindigkeit	bis 7 m/s	bis 12 m/s	bis 6 m/s	bis 6 m/s	bis 12 m/s	bis 18 m/s	bis 6,6 m/s
Dauerkraft bezogen auf bewegte Masse	bis 150 N/kg	bis 150 N/kg	bis 160 N/kg	bis 150 N/kg	bis 300 N/kg	bis 370 N/kg	bis 310 N/kg
Gewicht des Sekundärteils	3,8 kg/m	2,1 kg/m	10,5 kg/m	10,5 kg/m	11,2 kg/m	4,8 kg/m	25,5 kg/m

Eisenbehaftete Linearmotoren ML 11 bis ML 14

Die eisenbehafteten Linearmotoren der Baureihen ML 11 bis ML 14 werden in Anwendungen eingesetzt, in denen mittlere bis große Massen über mittlere bis große Wegstrecken bewegt werden. Sie zeichnen sich aus durch

- kompakte Baugröße (Breite: ab 50 mm, Höhe: ab 40 mm)
- geringes Gewicht (bewegte Masse ab 600 g pro 100 Newton Dauerkraft, Verfahrweg ab 2,1 kg pro Meter)
- hohe Beschleunigung (theoretisch bis zu 35 g)
- niedrige Anziehungskräfte (ca. doppelte Spitzenkraft) und
- · ruhigen Lauf durch geringes Nutrasten.

Eisenlose Linearmotoren ML 15 bis ML 17

Die eisenlosen Linearmotoren der Baureihen ML 15 bis ML 17 werden in Anwendungen eingesetzt, in denen kleine bis mittlere Massen über kleine bis mittlere Wegstrecken bewegt werden. Vorteile dieser Linearmotoren:

- · ruhiger Lauf ohne Nutrasten
- · keine Anziehungskräfte
- geringe bewegte Masse (ab 270 g pro 100 Newton Dauerkraft)
- hohe Dynamik durch hohe Spitzenkraft (ca. vierfache Dauerkraft) und
- sehr hohe Beschleunigung (theoretisch bis 50 g und mehr).

Primärteil (Spulenpaket)

Das Primärteil enthält die Kupferwicklungen und – bei den eisenbehafteten Linearmotoren – das genutete Blechpaket. Es ist vergossen (Schutzart IP 65) und prinzipiell auch für den Einsatz in rauer Umgebung geeignet.

Zum Schutz des Motors ist das Primärteil mit einem Temperatursensor ausgestattet (PTC, 1 k Ω). Der Anschluss (Spulen und Temperatursensor) erfolgt über fest installierte Kabel (1 m, andere Längen auf Anfrage), nach Wunsch mit Steckern fertig konfektioniert.

Das zur Anwendung passende ML-1-Primärteil wird anhand der gewünschten Kraft (Beschleunigung) und Geschwindigkeit ausgewählt. Je nach Anwendungsfall kann das Spulenpaket mit Luft oder Wasser gekühlt werden.

Sekundärteil (Magnetplatte)

Alle ML-1-Motoren einer Baureihe haben die gleiche Breite und bauen auf dem gleichen Sekundärteil auf. Die Motorlänge kann aus Magnetplatten-Elementen nach Maß kombiniert werden. Die Magnete der eisenbehafteten Linearmotoren sind vergossen und so gegen mechanische Beanspruchung geschützt.

Anbaulage

Linearmotoren werden üblicherweise horizontal eingesetzt: liegend, hängend oder in seitlicher Anbaulage. Wenn der Linearmotor schräg oder vertikal montiert werden soll, ist möglicherweise ein Gegengewicht oder Federsystem nötig. Setzen Sie sich in dem Fall mit uns in Verbindung.

Datenblatt 6700.161. V 2.0 ML 1 Linearmotoren

Integration in die Maschine

Linearmotoren können durch den Aufbau nach Baukasten-Prinzip optimal an die Anwendung angepasst werden. Primär- und Sekundärteil werden üblicherweise direkt in die Maschine integriert. Das ermöglicht eine sehr kompakte Bauweise und eine optimale Anpassung an die Anwendung.

Linearmotor-Module

Auf Wunsch stellen wir aus Primär- und Sekundärteil, Lagegeber und Führungen einen kompletten linearen Direktantrieb zusammen, der zu Ihrer Anwendung optimal passt. Ein solches Modul lässt sich wie ein rotatorischer Motor in das System integrieren. Das erleichtert Ihnen den Einstieg in die hochdynamische Welt der Linearmotoren.

Auch für den Ersatz von Linearantrieben auf Basis von Zahnriemen oder Spindeln bieten sich Linearmotor-Module an. Oft kann ein solches Modul mit gleichen Abmessungen aufgebaut werden. Lassen Sie sich durch uns beraten.

Typschlüssel

Der Typschlüssel kennzeichnet einen in bestimmter Weise ausgerüsteten Linearmotor eindeutig.

Baureihe

für ML 14:

ML 15 Standard-Linearmotor, eisenlos ML 11 Standard-Linearmotor, eisenbehaftet ML 16 kompakter Linearmotor, eisenlos ML 12 kompakter Linearmotor, eisenbehaftet ML 13 großer Linearmotor, eisenbehaftet ML 17 großer Linearmotor, eisenlos ML 14 sehr großer Linearmotor, eisenbehaftet

Baugröße Primärteil

06, 09, 12, 15, 18, 24 für ML 11: für ML 15 und ML 16: 03.06.09.12 für ML 12: 03, 06, 12 für ML 17: 03, 06, 09, 12, 18 nur Sekundärteil (Magnetplatte): für ML 13: 12, 15, 30 15, 30, 45

1234

Bauvorschrift (BV): Firmeninterne Codierung, sie wird für die verschiedenen Merkmalskombinationen vergeben. Die Angabe der BV ist nicht erforderlich wenn alle übrigen Merkmale angegeben und die kundenspezifischen Ausstattungen beschrieben sind. Für das o. a. Beispiel wäre "ML 1115-U5-W1-M2-K1" ausreichend.

Zwischenkreisspannung

Motor für 320 V Zwischenkreisspannung Motor für 560 V Zwischenkreisspannung U3 (ML 15..17) (ML 11..14)

Geschwindigkeit

erhöhte Geschwindigkeit normale Geschwindigkeit

Anzahl Elemente Sekundärteil

Anzahl Elemente "X" Anzahl Elemente "M" M.. Κ Anzahl Elemente "K" Anzahl Elemente "L"

Verfügbare Elemente und Maße siehe Abschnitt "Abmessungen" auf den folgenden Seiten.

Sonderausstattung

keine (Standard)

SK Sonderausführung, durch Text beschrieben

Verfahrweg

Die Gesamtlänge des Sekundärteils ergibt sich aus der Summe der Längen der einzelnen Elemente. Im obigen Beispiel "ML 1115-U5-W1-M2-K1" besteht das Sekundärteil aus 2 "M"-Elementen (je 288 mm) und 1 "K"-Element (192 mm, Maße siehe nächste Seite). Die Gesamtlänge des Sekundärteils beträgt also 768 mm. Für den nutzbaren Verfahrweg muss die Länge des Primärteils abgezogen werden (hier: 290 mm); er beträgt in diesem Beispiel 478 mm.

Abmessungen

Alle Maße sind in Millimetern angegeben.

Abmessungen ML 11

Primärteil	1	Α	В	F	F	G	M5
(Spulenpaket)	L _P	^	U				IVIO
ML 1106	146	25	116	37	_	92	4 ×
ML 1109	194	51	112	35	72 (2×)	_	6 ×
ML 1112	244	54	160	38	64 (3×)	_	8 ×
ML 1115	290	51	208	35	80 (3×)	_	8 ×
ML 1118	336	68	223	52	85 (3×)	_	8 ×
ML 1124	468	54	384	38	64 (6×)	32	16 ×

Sekundärteil (Magnetplatte)	L _s	Gewicht	Ø6
ML 1100-K	192	3,8 kg/m	8 ×
ML 1100-M	288	3,8 kg/m	12 ×

Längere Verfahrwege werden durch mehrere, aneinander geschraubte Magnetplatten erzielt.

Abmessungen ML 12

Primärteil (Spulenpaket)	L _P	Α	В	E	F	M4
ML 1203	93	15	74	30	44 (1×)	4 ×
ML 1206	143	50	60	34	92 (1×)	4 ×
ML 1212	241	51	160	35	64 (3×)	8 ×

Sekundärteil (Magnetplatte)	Ls	Gewicht	Ø6
ML 1200-K	96	2,1 kg/m	4 ×
ML 1200-M	144	2,1 kg/m	6 ×
ML 1200-L	384	2,1 kg/m	16 ×

Längere Verfahrwege werden durch mehrere, aneinander geschraubte Magnetplatten erzielt.

Abmessungen ML 13 und ML 14

Primärteil (Spulenpaket)	L_P	Α	В	С	D	E	F	M5
ML 1312	244	38	64	_	_	_	_	12 ×
ML 1315	290	35	80	_	_	_	_	12 ×
ML 1330	568	35	80	32	80	_	_	24 ×
ML 1418	344	60	85	-	-	-	_	24 ×
ML 1430	580	48	80	32	80	-	_	48 ×
ML 1445	852	48	80	32	80	32	80	72 ×

Sekundärteil (Magnetplatte)	L _s	Gewicht	Ø6
ML 1300-K	192	10,5 kg/m	8 ×
ML 1300-M	288	10,5 kg/m	12 ×
ML 1400-K	192	10,5 kg/m	8 ×
ML 1400-M	288	10,5 kg/m	12 ×

Längere Verfahrwege werden durch mehrere, aneinander geschraubte Magnetplatten erzielt.

Abmessungen ML 15

Primärteil (Spulenpaket)	L _P	N_P	Ø4,5
ML 1503	106	3	4 ×
ML 1506	190	6	7 ×
ML 1509	274	9	10 ×
MI 1512	358	12	13 ×

Sekundärteil (Magnetplatte)	L _s	Gewicht	N _s	Ø5,5
ML 1500-K	126	11,2 kg/m	2	3 ×
ML 1500-M	168	11,2 kg/m	3	4 ×
ML 1500-L	210	11,2 kg/m	4	5 ×
ML 1500-X	546	11,2 kg/m	12	13 ×

Längere Verfahrwege werden durch mehrere, aneinander geschraubte Magnetplatten erzielt.

Abmessungen ML 16

	närteil ulenpaket)	L _P	N_P	Ø3,5
ML	1603	78	3	4 ×
ML	1606	138	6	7 ×
ML	1609	198	9	10 ×
ML	1612	258	12	13 ×

Sekundärteil (Magnetplatte)	L _s	Gewicht	N _s	Ø4,5
ML 1600-K	90	4,8 kg/m	2	3 ×
ML 1600-M	120	4,8 kg/m	3	4 ×
ML 1600-L	150	4,8 kg/m	4	5 ×
ML 1600-X	390	4,8 kg/m	12	13 ×

Längere Verfahrwege werden durch mehrere, aneinander geschraubte Magnetplatten erzielt.

Abmessungen ML 17

Primärteil (Spulenpaket)	L _P	N_P	Ø5,3
ML 1703	134	3	4 ×
ML 1706	248	6	7 ×
ML 1709	362	9	10 ×
ML 1712	476	12	13 ×
ML 1718	704	18	19 ×

Sekundärteil (Magnetplatte)	L _s	Gewicht	N _s	Ø6,5
ML 1700-K	114	25,5 kg/m	1	2 ×
ML 1700-M	171	25,5 kg/m	2	3 ×
ML 1700-L	456	25,5 kg/m	7	8 ×

Längere Verfahrwege werden durch mehrere, aneinander geschraubte Magnetplatten erzielt.

Linearmotoren für U_{ZK} = 320 V: Übersicht und Zuordnung

Bestellnummer Motor	Dauerkraft F _D [N]	Spitzenkraft F _{max} [N]	theor. max. Geschwindigkeit v _{max} [m/s]	Servoregler bzw. Servo-Power-Modul mit Nennstrom
ML 1503-U3-W1	70	240	5	2 A
ML 1506-U3-W1	140	480	5	4 A
ML 1509-U3-W1	210	720	5	4 A
ML 1512-U3-W1	280	960	5	6 A
ML 1503-U3-W2	70	240	12	4 A
ML 1506-U3-W2	140	480	12	6 A
ML 1603-U3-W1	29	100	10	0,8 A / 2 A
ML 1606-U3-W1	58	200	10	2 A
ML 1609-U3-W1	87	300	10	4 A
ML 1612-U3-W1	88	400	10	6 A
ML 1603-U3-W2	116	100	18	2 A
ML 1606-U3-W2	58	200	18	4 A
ML 1609-U3-W2	87	300	17	6 A
ML 1612-U3-W2	116	400	16	6 A
ML 1703-U3-W1	141	700	2,7	2 A
ML 1706-U3-W1	282	1400	2,7	4 A
ML 1709-U3-W1	423	2100	2,7	4 A
ML 1712-U3-W1	564	2800	2,7	6 A
ML 1703-U3-W2	141	700	6,6	6 A
ML 1706-U3-W2	282	1400	6,6	6 A

Passende Servoregler mit 320 V Zwischenkreisspannung:

Servoregler-Familie		TrioDrive D/xS	TrioDrive C
Bauform		kompakt	kompakt
Netzanschluss		direkt 230 V~	direkt 230 V∼
Тур		digitaler Servoregler	Servo-Power-Modul im Mehrachs-Servosystem
Nennstrom	0,8 A	BN 6755	
	2 A	BN 6756	BN 6621
	4 A	BN 6757	BN 6622
	6 A	BN 6758	BN 6623

Linearmotoren für U_{ZK} = 320 V: Technische Daten (1) – ML 1503 bis ML 1512

In folgender Ausführung: ML 15..-U3-W1... bzw. ML 15..-U3-W2... (Typschlüssel siehe Seite 4)

Motoren ML 1503 bis ML 1512 f	,	ML 1503 -U3-W1	ML 1503 -U3-W2	ML 1506 -U3-W1	ML 1506 -U3-W2	ML 1509 -U3-W1	ML 1512 -U3-W1	
Spitzenkraft (+20 °C/s)	F _{max}	N	240	240	480	480	720	960
Spitzenstrom	I _{max}	A_{eff}	3,5	8,7	7,0	17,5	10,5	14,1
Dauerkraft* (bei 110 °C)	F_D	N	70	70	140	140	210	280
Dauerstrom	I_D	A_{eff}	1,0	2,6	2,1	5,1	3,1	4,2
Max. Verlustleistung (alle Spulen)	P _D	W	67	67	134	134	200	270
Max. Geschwindigkeit	\mathbf{V}_{max}	m/s	5	12	5	12	5	5
Kraftkonstante	K N	I/A _{eff}	68	27,5	68	27,5	68	68
Spannungskonstante	K _e V/	m/s	55,5	22,5	55,5	22,5	55,5	55,5
Motorkonstante	S N	1 2/W	97	97	195	195	290	390
Widerstand / Phase (bei 25 °C)	R _f	Ω	15,9	2,6	8,0	1,28	5,3	4,0
Induktivität / Phase	L_f	mΗ	13	2,0	6,5	1,0	4,2	3,2
Elektr. Zeitkonstante (bei 25 °C)	T _{el}	ms	0,8	0,8	0,8	0,8	0,8	0,8
Wärmewiderstand	R _{therm} °C	C/W	1,3	1,3	0,65	0,65	0,43	0,32
Magn. Polabstand N-N	_	mm	42	42	42	42	42	42
Anziehungskraft	F_A	N	0	0	0	0	0	0
Länge des Primärteils	L	mm	106	106	190	190	274	358
Gewicht des Primärteils	m	g	250	250	470	470	690	910

^{*} je nach Anwendung: Kühlfläche, Luftgeschwindigkeit, Umgebungstemperatur

Linearmotoren für U_{zK} = 320 V: Technische Daten (2) – ML 1603 bis ML 1606

In folgender Ausführung: ML 16..-U3-W1... bzw. ML 16..-U3-W2... (Typschlüssel siehe Seite 4)

Motoren ML 1603 bis ML 1606 t	für U _{zK} =	320 V	ML 1603 -U3-W1	ML 1603 -U3-W2	ML 1606 -U3-W1	ML 1606 -U3-W2
Spitzenkraft (+20 °C/s)	F _{max}	N	100	100	200	200
Spitzenstrom	I _{max}	A_{eff}	2,8	5,0	5,5	10,0
Dauerkraft* (bei 110 °C)	F_{D}	N	29	29	58	58
Dauerstrom	I_{D}	A_{eff}	0,8	1,5	1,6	2,9
Max. Verlustleistung (alle Spulen)	P_D	W	47	47	95	95
Max. Geschwindigkeit	\mathbf{V}_{max}	m/s	10	18	10	18
Kraftkonstante	K	N/A _{eff}	36,3	19,9	36,3	19,9
Spannungskonstante	K_{e}	V / m/s	30	16	30	16
Motorkonstante	S	N^2/W	24	24	48	48
Widerstand / Phase (bei 25 °C)	R _f	Ω	18,5	5,5	9,3	2,8
Induktivität / Phase	L_f	mH	6,0	1,8	3,0	0,9
Elektr. Zeitkonstante (bei 25 °C)	T _{el}	ms	0,35	0,35	0,35	0,35
Wärmewiderstand	R_{therm}	°C/W	1,8	1,8	0,9	0,9
Magn. Polabstand N-N	d	mm	30	30	30	30
Anziehungskraft	F_A	N	0	0	0	0
Länge des Primärteils	L	mm	78	78	138	138
Gewicht des Primärteils	m	g	84	84	162	162

^{*} je nach Anwendung: Kühlfläche, Luftgeschwindigkeit, Umgebungstemperatur

Linearmotoren für U_{ZK} = 320 V: Technische Daten (3) – ML 1609 bis ML 1612

In folgender Ausführung: ML 16..-U3-W1... bzw. ML 16..-U3-W2... (Typschlüssel siehe Seite 4)

Motoren ML 1609 bis ML 1612 t	320 V	ML 1609 -U3-W1	ML 1609 -U3-W2	ML 1612 -U3-W1	ML 1612 -U3-W2	
Spitzenkraft (+20 °C/s)	F_{max}	N	300	300	400	400
Spitzenstrom	I _{max}	A_{eff}	8,3	15,0	11,0	20,0
Dauerkraft* (bei 110 °C)	F _D	N	87	87	116	116
Dauerstrom	I_D	A_{eff}	2,4	4,4	3,2	5,8
Max. Verlustleistung (alle Spulen)	P _D	W	142	142	190	190
Max. Geschwindigkeit	\mathbf{v}_{max}	m/s	10	17	10	16
Kraftkonstante	K	N/A _{eff}	36,3	19,9	36,3	19,9
Spannungskonstante	$K_{\rm e}$	V / m/s	30	16	30	16
Motorkonstante	S	N ² /W	71	71	95	95
Widerstand / Phase (bei 25 °C)	R _f	Ω	6,2	1,8	4,6	1,4
Induktivität / Phase	L_f	mH	2,0	0,6	1,5	0,4
Elektr. Zeitkonstante (bei 25 °C)	T _{el}	ms	0,35	0,35	0,35	0,35
Wärmewiderstand	R_{therm}	°C/W	0,60	0,60	0,45	0,45
Magn. Polabstand N-N	d	mm	30	30	30	30
Anziehungskraft	F_A	N	0	0	0	0
Länge des Primärteils	L	mm	198	198	258	258
Gewicht des Primärteils	m	g	240	240	318	318

^{*} je nach Anwendung: Kühlfläche, Luftgeschwindigkeit, Umgebungstemperatur

Linearmotoren für U_{ZK} = 320 V: Technische Daten (4) – ML 1703 bis ML 1712

In folgender Ausführung: ML 17..-U3-W1... bzw. ML 17..-U3-W2... (Typschlüssel siehe Seite 4)

Motoren ML 1703 bis ML 1712 1	320 V	ML 1703 -U3-W1	ML 1703 -U3-W2	ML 1706 -U3-W1	ML 1706 -U3-W2	ML 1709 -U3-W1	ML 1712 -U3-W1	
Spitzenkraft (+20 °C/s)	F_{max}	N	700	700	1.400	1.400	2.100	2.800
Spitzenstrom	I _{max}	A_{eff}	5,6	13,9	11,3	28,0	16,9	22,6
Dauerkraft* (bei 110 °C)	F _D	N	141	141	282	282	423	564
Dauerstrom	I_D	A_{eff}	1,14	2,80	2,27	5,6	3,4	4,5
Max. Verlustleistung (alle Spulen)	P_D	W	82	82	165	165	247	330
Max. Geschwindigkeit	\mathbf{V}_{max}	m/s	2,7	6,6	2,7	6,6	2,7	2,7
Kraftkonstante	K	N/A _{eff}	124	50,3	124	50,3	124	124
Spannungskonstante	$K_{\rm e}$	V / m/s	101	41	101	41	101	101
Motorkonstante	S	N^2/W	323	323	647	647	970	1293
Widerstand / Phase (bei 25 °C)	R _f	Ω	15,8	2,6	7,9	1,29	5,3	4,0
Induktivität / Phase	L_f	mH	28	4,6	14	2,3	9,0	7,0
Elektr. Zeitkonstante (bei 25 °C)	T _{el}	ms	1,8	1,8	1,8	1,8	1,8	1,8
Wärmewiderstand	R_{therm}	°C/W	1,04	1,04	0,52	0,52	0,35	0,26
Magn. Polabstand N-N	d	mm	57	57	57	57	57	57
Anziehungskraft	F_A	N	0	0	0	0	0	0
Länge des Primärteils	L	mm	134	134	248	248	362	476
Gewicht des Primärteils	m	kg	0,55	0,55	0,95	0,95	1,35	1,75

^{*} je nach Anwendung: Kühlfläche, Luftgeschwindigkeit, Umgebungstemperatur

Linearmotoren für U_{ZK} = 560 V: Übersicht und Zuordnung

Bestellnummer Motor	Dauerkraft F _□ [N]	Spitzenkraft F _{max} [N]	theor. max. Geschwindigkeit v _{max} [m/s]	Servoregler bzw. Servo-Power-Modul mit Nennstrom
ML 1106-U5-W1	200	450	3,5	4 A
ML 1109-U5-W1	300	675	3,5	4 A
ML 1112-U5-W1	400	900	3,5	8 A
ML 1115-U5-W1	500	1125	3,5	8 A
ML 1118-U5-W1	600	1350	3,5	8 A
ML 1124-U5-W1	800	1800	3,5	12 A / 16 A
ML 1106-U5-W2	200	450	7	8 A
ML 1109-U5-W2	300	675	7	8 A
ML 1112-U5-W2	400	900	7	12 A / 16 A
ML 1115-U5-W2	500	1125	7	12 A / 16 A
ML 1118-U5-W2	600	1350	7	16 A / 20 A
ML 1124-U5-W2	800	1800	7	20 A / 32 A
ML 1203-U3-W2	60	105	12	2 A
ML 1206-U3-W2	120	210	12	4 A
ML 1212-U3-W2	240	420	12	8 A
ML 1312-U5-W1	760	1600	3	8 A
ML 1315-U5-W1	950	2000	2,5	8 A
ML 1330-U5-W1	1900	4000	2,5	12 A / 16 A
ML 1312-U5-W2	760	1600	6	12 A / 16 A
ML 1315-U5-W2	950	2000	6	12 A / 16 A
ML 1330-U5-W2	1900	4000	6	20 A / 32 A
ML 1418-U5-W1	1140	2400	3	8 A
ML 1430-U5-W1	1900	4000	2,5	12 A / 16 A
ML 1445-U5-W1	2850	6000	2,5	16 A / 20 A
ML 1418-U5-W2	1140	2400	6	16 A / 20 A
ML 1430-U5-W2	1900	4000	6	32 A
ML 1445-U5-W2	2850	6000	6	32 A*

^{*} bei reduzierter Motorleistung

Passende Servoregler mit 560 V Zwischenkreisspannung:

Servoregler-Familie		MidiDrive D/xS	MidiDrive C
Bauform		kompakt	kompakt
Netzanschluss		direkt 3 × 400 V	direkt 3 × 400 V / 480 V
Тур		digitaler Servoregler	Servo-Power-Modul im Mehrachs-Servosystem
Nennstrom	2 A	BN 6745	BN 6626
	4 A	BN 6746	BN 6627
	8 A	BN 6747	BN 6628
	12 A		BN 6629
	16 A	BN 6748	
	20 A		BN 6630
	32 A	BN 6749	

Linearmotoren für U_{zK} = 560 V: Technische Daten (1) – ML 1106 bis ML 1112

In folgender Ausführung: ML 11..-U5-W1... oder ML 11..-U5-W2... (Typschlüssel siehe Seite 4)

Motoren ML 1106 bis ML 1112 f	ür U _{zK} = 56	80 V	ML 1106 -U5-W1	ML 1106 -U5-W2	ML 1109 -U5-W1	ML 1109 -U5-W2	ML 1112 -U5-W1	ML 1112 -U5-W2
Impulskraft (+10 °C/s) (bei 25 °C)	F _{imp}	N	450	450	675	675	900	900
Impulsstrom	l _{imp}	A_{eff}	6,5	13,1	6,5	19,6	13,1	26,2
Spitzenkraft (+6 °C/s) (bei 25 °C)	F _{max}	N	400	400	600	600	800	800
Spitzenstrom	I _{max}	A_{eff}	5,0	10,0	5,0	15,0	10,0	20,0
Dauerkraft* (bei 100 °C, luftgekühlt)	$F_{D,Luft}$	N	200	200	300	300	400	400
Dauerkraft (bei 100 °C, wassergek.)	$F_{D,Wasser}$	N	210	210	315	315	420	420
Dauerstrom	I_D	A_{eff}	2,3	4,5	2,3	6,8	4,5	9,0
Max. Verlustleistung (alle Spulen)	P_{D}	W	150	150	225	225	300	300
Max. Geschwindigkeit	\mathbf{v}_{max}	m/s	3,5	7	3,5	7	3,5	7
Kraftkonstante (I < 0,6 I _{max})	K	$N/A_{\rm eff}$	93	46	140	46	93	46
Spannungskonstante	K_{e}	V / m/s	76	38	114	38	76	38
Motorkonstante	S	N^2/W	380	380	570	570	760	760
Widerstand / Phase (bei 25 °C)	R_f	Ω	7,2	1,8	10,8	1,2	3,6	0,9
Induktivität / Phase (I < 0,6 I _{max})	$L_{\rm f}$	mH	54	14	81	9	27	7
Elektr. Zeitkonstante (bei 25 °C)	T _{el}	ms	7,5	7,5	7,5	7,5	7,5	7,5
Wärmewiderstand	R_{therm}	°C/W	0,48	0,48	0,32	0,32	0,24	0,24
Magn. Polabstand N-N	d	mm	24	24	24	24	24	24
Anziehungskraft	F_A	N	950	950	1325	1325	1.700	1.700
Länge des Primärteils	L	mm	146	146	194	194	244	244
Gewicht des Primärteils	m	kg	1,5	1,5	2,0	2,0	2,6	2,6
Kühlwasser-Durchfluss (bei 25 °C)	Ф	l/min	0,7	0,7	1,1	1,1	1,4	1,4
Kühlwasser-Druckabfall	dP	bar	1	1	1	1	2	2

^{*} je nach Anwendung: Kühlfläche, Luftgeschwindigkeit, Umgebungstemperatur

Linearmotoren für U_{ZK} = 560 V: Technische Daten (2) – ML 1115 bis ML 1124

In folgender Ausführung: ML 11..-U5-W1... oder ML 11..-U5-W2... (Typschlüssel siehe Seite 4)

Motoren ML 1115 bis ML 1124 f	ML 1115 -U5-W1	ML 1115 -U5-W2	ML 1118 -U5-W1	ML 1118 -U5-W2	ML 1124 -U5-W1	ML 1124 -U5-W2		
Impulskraft (+10 °C/s) (bei 25 °C)	F _{imp}	N	1.125	1.125	1.350	1.350	1.800	1.800
Impulsstrom	I _{imp}	A_{eff}	14	33	20	41	26	52
Spitzenkraft (+6 °C/s) (bei 25 °C)	F _{max}	N	1.000	1.000	1.200	1.200	1.600	1.600
Spitzenstrom	I _{max}	A_{eff}	10	25	15	31	20	40
Dauerkraft* (bei 100 °C, luftgekühlt)	$F_{D,Luft}$	N	500	500	600	600	800	800
Dauerkraft (bei 100 °C, wassergek.)	$F_{D,Wasser}$	N	525	525	630	630	840	840
Dauerstrom	I_D	A_{eff}	4,7	11,3	6,8	14,0	9,0	18,1
Max. Verlustleistung (alle Spulen)	P_{D}	W	375	375	450	450	600	600
Max. Geschwindigkeit	\mathbf{V}_{max}	m/s	3,5	7	3,5	7	3,5	7
Kraftkonstante (I < 0,6 I _{max})	K	$N/A_{\rm eff}$	112	46	93	45	93	46
Spannungskonstante	K_{e}	V / m/s	92	38	76	38	76	38
Motorkonstante	S	N ² /W	950	950	1140	1140	1520	1520
Widerstand / Phase (bei 25 °C)	R_f	Ω	4,3	0,72	2,4	0,59	1,8	0,46
Induktivität / Phase (I < 0,6 I _{max})	L_f	mH	32	5,4	18	4,4	14	3,4
Elektr. Zeitkonstante (bei 25 °C)	T_{el}	ms	7,5	7,5	7,5	7,5	7,5	7,5
Wärmewiderstand	R_{therm}	°C/W	0,19	0,19	0,16	0,16	0,12	0,12
Magn. Polabstand N-N	d	mm	24	24	24	24	24	24
Anziehungskraft	F_A	N	2.075	2.075	2.450	2.450	3.400	3.400
Länge des Primärteils	L	mm	290	290	336	336	468	468
Gewicht des Primärteils	m	kg	3,2	3,2	3,8	3,8	5,2	5,2
Kühlwasser-Durchfluss (bei 25 °C)	Ф	l/min	1,8	1,8	2,2	2,2	2,9	2,9
Kühlwasser-Druckabfall	dP	bar	2	2	2	2	3	3

^{*} je nach Anwendung: Kühlfläche, Luftgeschwindigkeit, Umgebungstemperatur

Linearmotoren für U_{ZK} = 560 V: Technische Daten (3) – ML 1203 bis ML 1212

In folgender Ausführung: ML 12..-U5-W2... (Typschlüssel siehe Seite 4)

Motoren ML 1203 und ML 1206	für U _{ZK} = 560	v	ML 1203 -U5-W2	ML 1206 -U5-W2	ML 1212 -U5-W2
Impulskraft (+10 °C/s) (bei 25 °C)	F _{imp}	N	120	240	480
Impulsstrom	l _{imp}	A_{eff}	4,1	8,2	16,4
Spitzenkraft (+6 °C/s) (bei 25 °C)	F _{max}	N	105	210	420
Spitzenstrom	I _{max}	A_{eff}	3,1	6,2	12,4
Dauerkraft* (bei 100 °C)	F _D	N	60	120	240
Dauerstrom	I_D	A_{eff}	1,5	3,0	6,0
Max. Verlustleistung (alle Spulen)	P _D	W	49	99	197
Max. Geschwindigkeit	\mathbf{V}_{max}	m/s	12	12	12
Kraftkonstante	K	N/A _{eff}	39	39	39
Spannungskonstante	K _e V	/ m/s	32	32	32
Motorkonstante	S	N ² /W	95	190	380
Widerstand / Phase (bei 25 °C)	R _f	Ω	5,4	2,7	1,35
Induktivität / Phase	L_f	mH	35	17	9
Elektr. Zeitkonstante (bei 25 °C)	T _{el}	ms	6,5	6,5	6,5
Wärmewiderstand	R_{therm}	°C/W	1,50	0,75	0,38
Magn. Polabstand N-N	d	mm	24	24	24
Anziehungskraft	F_A	N	300	500	900
Länge des Primärteils	L	mm	93	143	241
Gewicht des Primärteils	m	kg	0,6	0,9	1,6

^{*} je nach Anwendung: Kühlfläche, Luftgeschwindigkeit, Umgebungstemperatur

Linearmotoren für U_{ZK} = 560 V: Technische Daten (4) – ML 1312 bis ML 1330

In folgender Ausführung: ML 13..-U5-W1... oder ML 13..-U5-W2... (Typschlüssel siehe Seite 4)

Motoren ML 1312 bis ML 1330 für U _{ZK} = 560 V			ML 1312 -U5-W1	ML 1312 -U5-W2	ML 1315 -U5-W1	ML 1315 -U5-W2	ML 1330 -U5-W1	ML 1330 -U5-W2
Impulskraft (+10 °C/s) (bei 25 °C)	F_{imp}	N	1.800	1.800	2.250	2.250	4.500	4.500
Impulsstrom	$I_{\rm imp}$	A_{eff}	13	26	13,5	33	27	66
Spitzenkraft (+6 °C/s) (bei 25 °C)	F _{max}	N	1.600	1.600	2.000	2.000	4.000	4.000
Spitzenstrom	I _{max}	A_{eff}	10	20	10	25	20	50
Dauerkraft* (bei 100 °C)	F _D	N	760	760	950	950	1.900	1.900
Dauerstrom	I_D	A_{eff}	4,1	8,2	4,2	10,2	8,5	20,5
Max. Verlustleistung (alle Spulen)	P _D	W	430	430	550	550	1.060	1.060
Max. Geschwindigkeit	\mathbf{V}_{max}	m/s	3	6	2,5	6	2,5	6
Kraftkonstante (I < 0,6 I _{max})	K	N/A_{eff}	186	93	225	93	225	93
Spannungskonstante	$K_{\rm e}$	V / m/s	152	76	183	76	183	76
Motorkonstante	S	N^2/W	1.750	1.750	2.150	2.150	4.300	4.300
Widerstand / Phase (bei 25 °C)	R _f	Ω	6,3	1,6	7,6	1,3	3,8	0,65
Induktivität / Phase (I < 0,6 I _{max})	L_f	mH	51	13	60	10	30	5
Elektr. Zeitkonstante (bei 25 °C)	T _{el}	ms	8	8	8	8	8	8
Wärmewiderstand	R_{therm}	°C/W	0,15	0,15	0,12	0,12	0,06	0,06
Magn. Polabstand N-N	d	mm	24	24	24	24	24	24
Anziehungskraft	F_A	N	3.400	3.400	4.150	4.150	8.300	8.300
Länge des Primärteils	L	mm	244	244	290	290	568	568
Gewicht des Primärteils	m	kg	4,9	4,9	5,9	5,9	11,6	11,6

^{*} je nach Anwendung: Kühlfläche, Luftgeschwindigkeit, Umgebungstemperatur

Linearmotoren für U_{ZK} = 560 V: Technische Daten (5) – ML 1418 bis ML 1445

In folgender Ausführung: ML 14..-U5-W1... oder ML 14..-U5-W2... (Typschlüssel siehe Seite 4)

Motoren ML 1418 bis ML 1445 für U _{ZK} = 560 V			ML 1418 -U5-W1	ML 1418 -U5-W2	ML 1430 -U5-W1	ML 1430 -U5-W2	ML 1445 -U5-W1	ML 1445 -U5-W2
Impulskraft (+10 °C/s) (bei 25 °C)	F _{imp}	N	2.700	2.700	4.500	4.500	6.750	6.750
Impulsstrom	I _{imp}	A_{eff}	19,6	41	27	65	41	98
Spitzenkraft (+6 °C/s) (bei 25 °C)	F _{max}	N	2.400	2.400	4.000	4.000	6.000	6.000
Spitzenstrom	I _{max}	A_{eff}	15,0	31,1	20,7	50	31	75
Dauerkraft* (bei 100 °C, luftgekühlt)	$F_{D,Luft}$	N	1.140	1.140	1.900	1.900	2.850	2.850
Dauerkraft (bei 100 °C, wassergek.)	$F_{D,Wasser}$	N	1.200	1.200	2.000	2.000	3.000	3.000
Dauerstrom	I_D	A_{eff}	6,5	13,4	8,9	21,5	13,4	32,3
Max. Verlustleistung (alle Spulen)	P _D	W	726	726	1.209	1.209	1.804	1.804
Max. Geschwindigkeit	\mathbf{V}_{max}	m/s	3	6	2,5	6	2,5	6
Kraftkonstante (I < 0,6 I _{max})	K	N/A _{eff}	186	90	225	93	225	93
Spannungskonstante	K_{e}	V / m/s	152	76	183	76	183	76
Motorkonstante	S	N ² /W	2.580	2.580	4.300	4.300	6.450	6.450
Widerstand / Phase (bei 25 °C)	R _f	Ω	4,4	1,0	3,9	0,66	2,6	0,44
Induktivität / Phase (I < 0,6 I _{max})	L_f	mH	35	8	31	5	21	3
Elektr. Zeitkonstante (bei 25 °C)	T _{el}	ms	8	8	8	8	8	8
Wärmewiderstand	R_{therm}	°C/W	0,10	0,10	0,06	0,06	0,04	0,04
Magn. Polabstand N-N	d	mm	24	24	24	24	24	24
Anziehungskraft	F_A	N	4.900	4.900	8.300	8.300	12.450	12.450
Länge des Primärteils	L	mm	344	344	580	580	852	852
Gewicht des Primärteils	m	kg	7,3	7,3	12,3	12,3	18,2	18,2
Kühlwasser-Durchfluss (bei 25 °C)	Ф	l/min	3,1	3,1	5,2	5,2	7,8	7,8
Kühlwasser-Druckabfall	dΡ	bar	1,0	1,0	1,5	1,5	2,5	2,5

^{*} je nach Anwendung: Kühlfläche, Luftgeschwindigkeit, Umgebungstemperatur

Lineare Gebersysteme

Allgemeines

Für den Servo-Betrieb des Linearmotors wird ein lineares Gebersystem benötigt. Parallel zu Linearführung und Magnetplatte angebracht erfüllt es zwei Aufgaben:

- · es liefert Lage-Informationen für die Kommutierung des Motors und
- · es ermöglicht das Positionieren innerhalb des Verfahrwegs.

Je nach gewünschter Genauigkeit und Dynamik kommen magnetische oder optische Gebersysteme zum Einsatz. Mit Absolutwertgebern kann zudem auf Autokommutierung, Hallsensoren (siehe unten) und Referenzfahrt verzichtet werden; sprechen Sie uns bitte bei Bedarf an.

Für den Betrieb mit ML-1-Linearmotoren können handelsübliche Gebersysteme verwendet werden. Falls Sie das Gebersystem nicht über ESR beziehen, setzen Sie sich bitte wegen der unterstützten Typen mit uns in Verbindung.

Technische Daten

Wir vertreiben hochwertige Gebersysteme von namhaften Herstellern wie Siko, Numerik Jena, Heidenhain, Renishaw oder Sony. Die folgende Tabelle gibt einen Überblick über die unterschiedlichen Systeme.

Gebersystem	MZ 1711	MZ 1741	MZ 1751	MZ 1752	MZ 1811	MZ 1812	MZ 1831	MZ 1861	
Messprinzip		magn	etisch		optisch				
Genauigkeitsklasse	±100 μm	±10 μm	±50 μm	±10 μm	±5 μm	±15 μm	±15 µm	±5 μm	
Messschritt	10 µm	1 µm	10 μm	1 µm	0,1 μm bis 1 μm				
Signalperiode	10,24 mm	0,8 mm	2 mm	1 mm	20 μm		20 µm	20 μm / 100 μm	
max. Verfahrgeschw.	10 m/s	6,4 m/s	5 m/s	20 m/s	8 m/s		5 m/s	10 m/s	
Referenzmarken	alle 10,24 mm	optional			Marke in der Mitte der Messlänge		Magnete	optional	
Messlänge	bis 2 m*	bis 3 m	bis 80 m	bis 4 m	bis 30 m	bis 6 m	bis 70 m	bis 10 m	

^{*} bis 28 m durch Kombination mehrerer Teilstücke

Hallsensoren

Allgemeines

Bei jedem ersten Einschalten wird die Kommutierungslage des Linearmotors ermittelt (falls kein Absolutwertgeber eingesetzt wird, siehe oben). Dabei ist eine minimale Bewegung (typischerweise <0,5 mm) des Schlittens unumgänglich. In Anwendungen, in denen dies nicht gewünscht oder zulässig ist, oder in denen der Antrieb beim Einschalten blockiert ist (z. B. in einer Vertikalachse durch eine Bremse oder weil eine Feder ihn auf einen Anschlag drückt), kann ein Hallsensor eingesetzt werden. Dieser wird zusammen mit dem Primärteil am Schlitten montiert und misst das Magnetfeld des Sekundärteils, woraus die Kommutierungslage des Linearmotors ermittelt wird, bevor er bewegt wird.

Digitale und analoge Hallsensoren

Für die eisenlosen Linearmotoren sind digitale Hallsensoren verfügbar. Mit ihnen wird die Lageinformation im Stillstand zunächst grob ermittelt. Während der ersten Bewegung wird dieser Wert ggf. korrigiert. Hierbei steht auf den ersten Millimetern des Verfahrwegs u. U. nicht die volle Kraft des Linearmotors zur Verfügung.

Für die eisenbehafteten Linearmotoren sind analoge Hallsensoren verfügbar. Ihr kontinuierliches Messsignal gibt die aktuelle Position genau wieder.

20 ML 1 Linearmotoren Datenblatt 6700.161, V 2.0

Servo-Antriebspakete von ESR Pollmeier GmbH

ESR – der komplette Servoantrieb aus einer Hand

Allgemeines

Die in diesem Datenblatt beschriebenen Linearmotoren der Baureihe ML 1 sind Bausteine der ESR-Antriebspakete. Diese bestehen aus Servoreglern und wahlweise Linearmotoren, auf Wunsch als einbaufertiges Modul mit Lagegebern und Führungen, oder Servomotoren, komplett mit Lagegebern und bei Bedarf mit Getrieben und Bremsen. Sie werden ergänzt durch Software und Zubehör. Alle Teile der Pakete sind aufeinander abgestimmt und miteinander als Kombination erprobt. Die Lieferung "aus einer Hand" bietet die Gewähr für problemlose Inbetriebnahme, zuverlässige Arbeitsweise und eindeutige Systemverantwortung bei nur einem Lieferanten.

33.114.1 3.113.11

Antriebsauslegung Als Dienstleistung bieten wir eine individuelle Antriebsberechnung. Mit unserer

langjährigen Erfahrung unterstützen wir Sie bei der Auswahl und Auslegung des

richtigen Servoantriebs für Ihre Anwendung.

Antriebspakete Auf Basis der Linearmotoren der Baureihe ML 1 stehen folgende Antriebspakete

zur Verfügung:

TrioDrive-D/xS- und MidiDrive-D/xS-Servoantriebe (Datenblatt 6755.150)

Digitale Servoregler mit 320 V oder 560 V Zwischenkreisspannung in Kompaktbauweise (Einachsregler), integrierte Positioniersteuerung, Feldbus-Optionen.

TrioDrive-C-Servoantriebe (Datenblatt 6620.150)

MidiDrive-C-Servoantriebe (Datenblatt 6625.150)

Modulares Mehrachs-Servosystem für beliebige Servomotoren: Servo-Power-Module mit 320 V oder 560 V Zwischenkreisspannung in Kompaktbauweise, Motion-Control-Module für die koordinierte Bewegung mehrerer Achsen, Feldbus-Optionen.

Die Angaben dieses Datenblattes haben informativen Charakter ohne Zusicherung von Eigenschaften. Änderungen ohne vorherige Ankündigungen vorbehalten.

O:\!DB\MOTOR\6700 161 20.wpd, Datenblatt 6700.161, V 2.0, 2012-08-30 MH

