Contents

1 Equational Unification

 $\mathbf{2}$

1 Equational Unification

In the following let E be a set of identities of the form $\{e_1 \approx f_1, \dots, e_n \approx f_n\}$. Furthermore let Sig(E) denote the set of all function symbols occurring in E. Let Σ be a finite set of function symbols and a superset of Sig(E).

Definition 1.1. An *E*-unification problem over Σ is a finite set *S* of the form $S = \left\{ s_1 \stackrel{?}{\approx}_E t_1, \dots, s_n \stackrel{?}{\approx}_E t_n \right\}$ with $s_1, \dots, s_n, t_1, \dots, t_n \in T(\Sigma, V)$, *V* being a countable set of Variables

A substitution σ is an *E*-unifier of *S* iff $\sigma(s_i) \approx_E \sigma(t_i)$ for all $1 \leq i \leq n$. The set of all *E*-unifiers of *S* is denoted by $\mathcal{U}_E(S)$. *S* is *E*-unifiable iff $\mathcal{U}_E(S) \neq \emptyset$.

Definition 1.2. Let S be an E-unification problem over Σ .

- S is an elementary E-unification problem iff $Sig(E) = \Sigma$.
- S is an E-unification problem with constants iff $\Sigma Sig(E) \subseteq \Sigma^{(0)}$ and $Sig(E) \subset \Sigma$
- S is an **general** E-unification problem iff $\Sigma Sig(E)$ contains an at least unary function symbol.

One most general unifier does not always suffice to represent $\mathcal{U}_E(S)$. In this case we need a minimal complete set of unifiers but to define this set we first need an order on substitutions.

Definition 1.3. Let X be a set of variables. A substitution σ is **more general** modulo \approx_E than a substitution σ' on X iff there is a substitution δ such that $\delta(\sigma(x)) \approx_E \sigma'(x)$ for all $x \in X$. We denote this by $\sigma \lesssim_E^X \sigma'$.

 \lesssim_E^X is a is a quasi order since it obviously is reflexive and transitive. But why do we only demand equality modulo \approx_E on X and not on all Variables like we did in syntactic unification? Note that by the restriction to Variables in Xmore substitutions are comparable with respect to \lesssim_E^X since we do not demand equality modulo \approx_E on all Variables. Lets denote the Variables occurring in an E-unification problem S by Var(S). It is easy to see that if X = Var(S), σ' is an E-unifier of S and $\sigma \lesssim_E^X \sigma'$ then σ is also an E-unifier of S. This only shows that restriction to X does not do any damage but the reason it is useful is that there are E-unification problems S for which any minimal complete set of Eunifiers has to contain Variables not occurring in S. Lets consider a small example, let $\sigma := \{x \mapsto f(y)\}\$ be in \mathcal{M} a minimal complete set of E-unifiers of S with $\mathcal{V}ar(S) = \{x\}$ and $\{a \approx x\} \notin E$. Clearly $\sigma' := \{x \mapsto f(a)\}$ is also an E-unifier of S but σ and σ' are incomparable w.r.t. $\lesssim_E^{\{x,y\}}$. The substitution $\delta := \{y \mapsto a\}$ does not work here since $\delta(\sigma(y)) = a \not\approx_E y = \sigma'(y)$ which means there has to be another unifier σ'' in \mathcal{M} with $\sigma'' \lesssim_E^{\{x,y\}} \sigma$. But if we restrict Xto $\{x\}$ we only need that $\delta(\sigma(x)) = f(a) \approx_E f(a) = \sigma'(x)$ so $\sigma \lesssim_E^{\{x\}} \sigma'$ holds. We see that minimal complete sets of E-unifiers can become unnecessary large if we consider all Variables. Since we have talked about these sets a lot lets define them formally.

Definition 1.4. Let S be an E-unification problem over Σ and let $X := \mathcal{V}ar(S)$. An E-complete set of S is a set of substitutions \mathcal{C} that satisfies the following properties.

- each $\sigma \in \mathcal{C}$ is an E-unifier of S
- for all $\theta \in \mathcal{U}_E(S)$ there exists a $\sigma \in \mathcal{C}$ such that $\sigma \lesssim_E^X \theta$

An E-minimal E-complete set is an E-complete set \mathcal{M} that satisfies the additional property

• for all $\sigma, \sigma' \in \mathcal{M}$, $\sigma \lesssim_E^X \sigma'$ implies $\sigma = \sigma'$.

The substitution σ is a **most general** E-unifier (mgu) of S iff $\{\sigma\}$ is an E-minimal E-complete set of S.

Now let us consider an example in which an E-minimal E-complete set contains infinitely many elements. Let $A:=\{x+(y+z)\approx (x+y)+z\}$ be a set of identities and $S:=\{x+a\stackrel{?}{\approx}_A a+x\}$ an A-unification problem over $\Sigma:=\{+,a\}$. For n>0, we define substitutions σ_n inductively as follows:

$$\sigma_1 := \{x \mapsto a\}$$

$$\sigma_{n+1} := \{x \mapsto a + \sigma_n(x)\}$$

Since A axiomatizes associativity we can omit the brackets and give an explicit definition of σ_n .

$$\sigma_n := \{\underbrace{a + \dots + a}_{n \times a}\}$$

Now it is easy to see that all σ_n are A-unifiers of S. Lets consider an arbitrary A-unifier θ of S. $\theta(x)$ has the form $\theta(x) := x_1 + \cdots + x_n$ where the x_i 's are either a or a variable. Since θ is an A-unifier of S we have that:

$$\theta(x) + a \approx_A a + \theta(x)$$

$$x_1 + \dots + x_n + a \approx_A a + x_1 + \dots + x_n$$

$$\implies x_1 = a, x_n = a \qquad a + x_2 + \dots + x_{n-1} + a + a \approx_A a + a + x_2 + \dots + x_{n-1} + a$$

$$\implies x_2 = a, x_{n-1} = a \qquad a + a + \dots + a + a + a \approx_A a + a + a + \dots + a + a$$

$$\vdots \qquad \vdots$$

$$\implies \underbrace{a + \dots + a}_{n+1 \times a} \approx_A \underbrace{a + \dots + a}_{n+1 \times a}$$

So $\theta(x) = \sigma_n(x)$ which implies $\sigma \lesssim_A^{\{x\}} \theta$. Since we picked θ arbitrarily this yields A-completeness of the set $\mathcal{M} := \bigcup_{n>0} \{\sigma_n\}$. All σ_n are distinct and map x to ground terms. Hence they are pairwise incomparable with respect to $\lesssim_A^{\{x\}}$. This yields A-minimality of \mathcal{M} . We see that E-minimal E-complete sets do not need to have finite cardinality.

Lemma 1.5. Let \mathcal{M}_1 and \mathcal{M}_2 be E-minimal E-complete sets of S. Then there exists a bijective mapping $B: \mathcal{M}_1 \mapsto \mathcal{M}_2$ such that $\sigma_1 \sim_E^X B(\sigma_1)$ for all $\sigma_1 \in \mathcal{M}_1$.

Proof. We define a mapping $B: \mathcal{M}_1 \mapsto \mathcal{M}_2$ such that $B(\sigma_1) \lesssim_E^X \sigma_1$ for all $\sigma_1 \in \mathcal{M}_1$. This is possible since $\mathcal{M}_1 \subseteq \mathcal{U}_E(S)$ and E-completeness of \mathcal{M}_2 yields that for every $\sigma_1 \in \mathcal{M}_1$ there exists a $\sigma_2 \in \mathcal{M}_2$ such that $\sigma_2 \lesssim_E^X \sigma_1$. We define $B': \mathcal{M}_2 \mapsto \mathcal{M}_1$ in a similar way.

Since by definition $B'(B(\sigma_1)) \lesssim_E^X B(\sigma_1) \lesssim_E^X \sigma_1$ E-minimality of \mathcal{M}_1 implies that $B'(B(\sigma_1)) = \sigma_1$ for all $\sigma_1 \in \mathcal{M}_1$. Symmetrically, $B(B'(\sigma_2)) = \sigma_2$ for all $\sigma_2 \in \mathcal{M}_2$. It follows that B is a bijection and $B' = B^{-1}$.

The most interesting consequence from this Lemma is that E-minimal E-complete sets of the same S always have the same cardinality. This allows us to classify equational theories \approx_E by the existence and possible cardinalities of E-minimal E-complete sets of E-unification problems.

Definition 1.6. The equational theory \approx_E is of unification type

unitary iff for all E-unification problems S there exists an E-minimal E-complete set of cardinality ≤ 1 .

finitary iff for all E-unification problems S there exists an E-minimal E-complete set with finite cardinality.

infinitary iff for all E-unification problems S there exists an E-minimal E-complete set, and there exists an E-unification problem for which this set is infinite.

zero iff there exists an E-unification problem that does not have an E-minimal E-complete set.

Note that if the *E*-unification problem *S* has no *E*-unifiers then the empty set is an *E*-minimal *E*-complete set of *S*. \emptyset is *E*-complete because there are no $\sigma \in \emptyset$ and \mathcal{U}_E is empty. *E*-minimality holds trivially.