Álgebra I Práctica 4 Resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:

1.	6.	11.	16.	21.	26.	31.	36.
2.	7.	12.	17.	22.	27.	32.	37.
3.	8.	13.	18.	23.	28.	33.	38.
4.	9.	14.	19.	24.	29.	34.	39.
5.	10.	15.	20.	25 .	30.	35.	40.

• Ejercicios Extras

1 .	3 .	5 .	♦ 7.	6 9.
2 .	4 .	♦ 6.	\ddots 8.	

Notas teóricas:

Divisibilidad:

• Definición divisibilidad:

$$d$$
 divide a $a \overset{\text{es lo mismo}}{\rightleftharpoons} a$ es un múltiplo entero de d $d \mid a \iff \exists \, k \in \mathbb{Z} \,$ tal que $a = k \cdot d$

• Conjunto de divisores de a:

$$\mathcal{D}(-a) = \{-|a|, \dots, -1, 1, \dots, |a|\}.$$

- $d \mid 0$, dado que $0 = 0 \cdot d$. Se desprende que $\mathcal{D}(0) = \{\mathbb{Z} \{0\}\}\$
- A la hora de divisibilidad los signos no importan:

$$\left\{ \begin{array}{ll} d \mid a & \Longleftrightarrow & -d \mid a \text{ (pues } a = k \cdot d \iff a = (-k) \cdot (-d)) \\ d \mid a & \iff d \mid -a \text{ (pues } a = k \cdot d \iff (-a) = (-k) \cdot d) \end{array} \right. \Rightarrow \boxed{d \mid a \iff |d| \mid |a|}$$

• Propiedades súper útiles para justificar los cálculos en los ejercicios:

$$\left\{ \begin{array}{l} d \mid a \ y \ d \mid b \Rightarrow d \mid a \pm b \\ d \mid a \Rightarrow d \mid c \cdot a, \ \forall c \in \mathbb{Z} \\ d \mid a \stackrel{!!}{\Longleftrightarrow} d^n \mid a^n \ \forall n \in \mathbb{N} \end{array} \right.$$

Error recurrente:
$$d \mid a \cdot b \not\Rightarrow \left\{ \begin{array}{l} d \mid a \\ \text{o} \\ d \mid b \end{array} \right.$$
. Por ejemplo $6 \mid 3 \cdot 4$ pero $\left\{ \begin{array}{l} 6 \not\mid 3 \\ \text{ni} \\ 6 \not\mid 4 \end{array} \right.$

Definición congruencia:

■ Definición congruencia:

$$\begin{cases} 'a' \ es \ congruente \ a \ 'b' \ m\'odulo \ 'd' \ si \ d \ | \ a-b. \end{cases} \quad \text{Notaci\'on} \ \boxed{a \equiv b \ (d)} \\ a \equiv b \ (d) \iff d \ | \ a-b \end{cases}$$

■ Sumar ecuaciones de congruencia de mismo módulo, conserva la congruencia:

$$\begin{cases} a_1 \equiv b_1 (d) \\ \vdots \Rightarrow a_1 + \dots + a_n \equiv a_b + \dots + b_n (d) \\ a_n \equiv b_n (d) \end{cases}$$

■ Multiplicar ecuaciones de congruencia de mismo módulo, conserva la congruencia:

$$\begin{cases} a_1 \equiv b_1 \ (d) \\ \vdots \\ a_n \equiv b_n \ (d) \end{cases} \Rightarrow a_1 \cdots a_n \equiv a_b \cdots b_n \ (d)$$

Un caso particular con un simpático resultado:

$$n \text{ ecuaciones} \begin{cases} a \equiv b \ (d) \\ \vdots \\ a \equiv b \ (d) \end{cases} \Rightarrow \boxed{a^n \equiv b^n \ (d)}$$

Algoritmo de división:

• Dados $a, d \in \mathbb{Z}$ con $d \neq 0$, existen únicos q (cociente), $r(\text{resto}) \in \mathbb{Z}$ tales que:

$$\begin{cases} a = q \cdot d + r, \\ \cos 0 \le r < |d|. \end{cases}$$

- Notación: $r_d(a)$ es el resto de dividir a a entre d
- $0 \le r < |d| \Rightarrow r = r_d(r)$. Un número que cumple condición de resto, <u>es su resto</u>.
- Así es como me gusta pensar a la congruencia. La derecha es el resto de dividir a a entre d:

$$a \equiv r_d(a) (d)$$
.

• Si d divide al número a, entonces el resto de la división es 0:

$$r_d(a) = 0 \iff d \mid a \iff a \equiv 0 \ (d)$$

• El resto es único:

$$a \equiv r \ (d) \ \text{con} \ \underbrace{0 \le r < |d|}_{\text{cumple condición de resto}} \Rightarrow r = r_d(a)$$

$$r_1 \equiv r_2$$
 (d) con $0 \leq r_1, r_2 < |d| \Rightarrow r_1 = r_2$

• Dos números que son congruentes módulo d entre sí, tienen igual resto al dividirse por d:

$$a \equiv b (d) \iff r_d(a) = r_d(b).$$

• Propiedades útiles para los ejercicios de calcular restos:

$$r_d(a+b) = r_d(r_d(a) + r_d(b))$$
 y $r_d(a \cdot b) = r_d(r_d(a) \cdot r_d(b))$

ya que si,

$$\left\{ \begin{array}{l} a \equiv r_d(a) \ (d) \\ b \equiv r_d(b) \ (d) \end{array} \right\} \xrightarrow[\text{ecuaciones}]{\text{sumo}} a + b \equiv r_d(a) + r_d(b) \ (d)$$

y,

$$\left\{ \begin{array}{l} a \equiv r_d(a) \; (d) \\ b \equiv r_d(b) \; (d) \end{array} \right\} \xrightarrow[\text{ecuaciones}]{\text{multiplico}} a \cdot b \equiv r_d(a) \cdot r_d(b) \; (d)$$

Máximo común divisor:

• Sean $a, b \in \mathbb{Z}$, no ambos nulos. El MCD entre a y b es el mayor de los divisores común entre a y b y se nota:

máximo común divisor: MCD =
$$(a:b)$$

- $(a:b) \in \mathbb{N}$ (pues $(a:b) \ge 1$) siempre existe y es único.
- Propiedades del (a:b), con $a y b \in \mathbb{Z}$, no ambos nulos.

- Los signos no importan: $(a:b) = (\pm a:\pm b)$
- \bullet Es simétrico: (a:b)=(b:a)
- Entre 1 y $a \in \mathbb{Z}$ siempre (a:1)=1
- Entre 0 y a siempre $(a:0) = |a|, \forall a \in \mathbb{Z} \{0\}$
- si $b \mid a \Rightarrow (a : b) = |b| \operatorname{con} b \in \mathbb{Z} \{0\}$
- Útil para ejercicios: $(a:b) = (a:b+na) \text{ con } n \in \mathbb{Z}$
- Útil para ejercicios: $(a:b) = (a:r_a(b)) \text{ con } n \in \mathbb{Z}$
- Útil para ejercicios: Sean $a, b \in \mathbb{Z}$ no ambos nulos, y sea $k \in \mathbb{N}$

$$(ka:kb) = k(a:b)$$

- Algoritmo de Euclides: Para encontrar el (a:b) con números feos. Hay que saber hacer esto. Fin. ¡Se usa de acá hasta el final de la materia!.
- Combinacion Entera: Otra herramienta gloriosa que sale de hacer Euclides. ¡Se usa de acá hasta el final de la materia!.

Sean $a, b \in \mathbb{Z}$ no ambos nulos, entonces $\exists s, t \in \mathbb{Z}$ tal que $(a : b) = s \cdot a + t \cdot b$.

♦ Todos los divisores comunes entre a y b dividen al (a:b). Sean $a,b \in \mathbb{Z}$ no ambos nulos, $d \in \mathbb{Z} - \{0\}$. Entonces:

$$d \mid a \ y \ d \mid b \iff d \mid \underbrace{(a:b)}_{s \cdot a + t \cdot b}.$$

- Sea $c \in \mathbb{Z}$ entonces $\exists s', t' \in \mathbb{Z}$ con $c = s'a + t'b \iff (a : b) \mid c$.
- Todos los números múltiplos del MCD se escriben como combinación entera de a y b.
- s Si un número es una combinación entera de a y b entonces es un múltiplo del MCD.

Coprimos:

• Definición coprimos:

Dados $a, b \in \mathbb{Z}$, no ambos nulos, se dice que son coprimos si (a : b) = 1

$$\begin{array}{lll} a \perp b & \Longleftrightarrow & (a:b) = 1 \\ a \perp b & \Longleftrightarrow & \exists \, s, \, \, t \in \mathbb{Z} \, \text{ tal que } 1 = s \cdot a + t \cdot b \end{array}$$

• Sean $a, b \in \mathbb{Z}$ no ambos nulos. coprimizar los números es dividirlos por su máximos común divisor, para obtener un nuevo par que sea coprimo:

$$(a:b) \neq 1 \xrightarrow{\text{coprimizar}} a' = \frac{a}{(a:b)}, b' = \frac{b}{(a:b)}, \Rightarrow \boxed{(a':b') = 1}$$

• ¡Causa de muchos errores! Sean $a, c, d \in \mathbb{Z}$ con c, d no nulos. Entonces:

$$c \mid a \ y \ d \mid a \ y \ c \perp d \stackrel{!!}{\iff} c \cdot d \mid a$$

Al ser c y d coprimos, pienso a a como un número cuya factorización tiene a c, d y la coprimicidad hace que en la factorización aparezca $c \cdot d$. (no sé, así lo piensa mi 🌓)

• Sean $a, b, d \in \mathbb{Z}$ con $d \neq 0$. Entonces:

$$d \mid a \cdot b \ y \ d \perp a \Rightarrow d \mid b$$

- Primos y Factorización:
 - Sea p primo y sean $a, b \in \mathbb{Z}$. Entonces:

$$p \mid a \cdot b \Rightarrow p \mid a \vee p \mid b$$

- Si p divide a algún producto de números, tiene que dividir a alguno de los factores \rightarrow Sean $a_1, \ldots, a_n \in \mathbb{Z}$:

$$\begin{cases} p \mid a_1 \cdot a_2 \cdots a_n \Rightarrow p \mid a_i \text{ para algún } i \text{ con } 1 \leq i \leq n. \\ p \mid a^n \Rightarrow p \mid a. \end{cases}$$

– Si $a \in \mathbb{Z}$, p primo:

$$\begin{cases} (a:p) = 1 \iff p \nmid a \\ (a:p) = p \iff p \mid a \end{cases}$$

– Sea $n \in \mathbb{Z} - \{0\}$, $n = \underbrace{s}_{\{-1,1\}} \cdot \prod_{i=1}^k p_i^{\alpha_i} = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ su factorización en primos. Entonces todo divisor m positivo de n se escribe como:

$$\begin{cases}
\operatorname{Si} m \mid n \to m = p_1^{\beta_1} \cdots p_k^{\beta_k} \operatorname{con} 0 \leq \beta_i \leq \alpha_i, & \forall i \, 1 \leq i \leq k \\ & \operatorname{y hay} \end{cases}$$

$$(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_k + 1) = \prod_{i=1}^k \alpha_i + 1$$

$$\operatorname{divisores positivos de } n.$$

– Sean $a y b \in \mathbb{Z}$ no nulos, con

$$\begin{cases} a = \pm p_1^{m_1} \cdots p_r^{m_r} \text{ con } m_1, \cdots, m_r \in \mathbb{Z}_0 \\ b = \pm p_1^{n_1} \cdots p_r^{n_r} \text{ con } n_1, \cdots, n_r \in \mathbb{Z}_0 \\ \Rightarrow (a:b) = p_1^{\min\{m_1, n_1\}} \cdots p_r^{\min\{m_r, n_r\}} \\ \Rightarrow [a:b] = p_1^{\max\{m_1, n_1\}} \cdots p_r^{\max\{m_r, n_r\}} \end{cases}$$

- Sean $a, d \in \mathbb{Z}$ con $d \neq 0$ y sea $n \in \mathbb{N}$. Entonces

$$d \mid a \iff d^n \mid a^n$$
.

- Sean $a, b, c \in \mathbb{Z}$ no nulos:
 - $* a \perp b \iff$ no tienen primos en común.
 - $* (a:b) = 1 y (a:c) = 1 \iff (a:bc) = 1$
 - $* (a:b) = 1 \iff (a^m:b^n) = 1, \forall m, n \in \mathbb{N}$
 - $* (a^n : b^n) = (a : b)^n \ \forall n \in \mathbb{N}$
- Si $a \mid m \land b \mid m$, entonces $[a:b] \mid m$
- $-(a:b)\cdot [a:b] = |a\cdot b|$

Ejercicios de la guía:

Divisibilidad

1. Decidir si las siguientes afirmaciones son verdaderas $\forall a, b, c \in \mathbb{Z}$: Calcular

i)
$$a \cdot b \mid c \Rightarrow a \mid c \text{ y } b \mid c$$

$$\begin{cases} c = k \cdot a \cdot b = \underbrace{b}_{k \cdot b} \cdot a \Rightarrow a \mid c \quad \checkmark \\ c = k \cdot a \cdot b = \underbrace{i}_{k \cdot a} \cdot b \Rightarrow b \mid c \quad \checkmark \end{cases}$$

ii)
$$4 \mid a^2 \Rightarrow 2 \mid a$$

$$a^{2} = k \cdot 4 = \underbrace{h}_{k \cdot 2} \cdot 2 \Rightarrow a^{2} \mid 2 \xrightarrow{\text{si } a \cdot b \mid c} a \mid 2 \quad \checkmark$$

iii)
$$2 \mid a \cdot b \Rightarrow 2 \mid a \text{ o } 2 \mid b$$

Si
$$2 \mid a \cdot b \Rightarrow \left\{ \begin{array}{c} a \text{ tiene que ser } par \\ \lor \\ b \text{ tiene que ser } par \end{array} \right\} \xrightarrow{\text{para que}} a \cdot b \text{ sea par. Por lo tanto si } 2 \mid a \cdot b \Rightarrow 2 \mid a \text{ o } 2 \mid b.$$

iv)
$$9 \mid a \cdot b \Rightarrow 9 \mid a \text{ o } 9 \mid b$$

Si $a = 3 \land b = 3$, se tiene que $9 \mid 9$, sin embargo $9 \not\mid 3$

v)
$$a \mid b + c \Rightarrow a \mid b$$
 o $a \mid c$

$$12 \mid 20 + 4 \Rightarrow 12 \not\mid 20 \text{ y } 12 \not\mid 4$$

Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

vii) ____

* Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

viii) ______ Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$.

ix)
$$a \mid b + a^2 \Rightarrow a \mid b$$

$$\begin{array}{l} a \mid b + a^2 \Rightarrow b + a^2 = k \cdot a \xrightarrow{\text{acomodo}} b = (k - a) \cdot a = h \cdot a \Rightarrow a \mid b \quad \checkmark \\ \xrightarrow{\text{también puedo}} \left\{ \begin{array}{l} a \mid a^2 \\ a \mid b - a^2 \end{array} \right\} \xrightarrow{\text{por propiedad}} a \mid (b - a^2) + (a^2) = b \Rightarrow a \mid b \quad \checkmark \end{array}$$

$$(x) \ a \mid b \Rightarrow a^n \mid b^n, \ \forall n \in \mathbb{N}$$

Pruebo por inducción. $p(n): a \mid b \Rightarrow a^n \mid b^n$ Caso base: $n = 1 \Rightarrow a \mid b \Rightarrow a^1 \mid b^1 \quad \checkmark$ Paso inductivo: $\forall h \in \mathbb{N}, p(h) \mid V \Rightarrow p(h+1) \mid V$?

Si $a \mid b \Rightarrow a^k \mid b^k \Rightarrow a^k \cdot c = b^k \xrightarrow{\text{multiplico por} \\ b \text{ M.A.M}} b \cdot a^k \cdot c = b^{k+1} \xrightarrow{a \mid b \\ a \cdot d = b} a \cdot d \cdot a^k \cdot c = a^{k+1} \cdot (cd) = b^{k+1}$ $\xrightarrow{\text{concluyendo}} a^{k+1} \mid b^{k+1} \text{como quería mostrarse.}$

Como $p(1) \wedge p(k) \wedge p(k+1)$ resultaron verdaderas, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$

Este resultado es importante y se va a ver en muchos ejercicios. $a \mid b \Rightarrow a^n \mid b^n \iff b \equiv 0 \ (a) \Rightarrow b^n \equiv \underbrace{0}_{\stackrel{(a^n)}{\equiv} a^n} (a^n) \iff b^n \equiv a^n \ (a^n)$

2. Hallar todos los $n \in \mathbb{N}$ tales que:

i)
$$3n-1|n+7$$

Busco eliminar la n del miembro derecho.

Busco eliminar in
$$n$$
 der m temoro derecho.
$$\left\{
\begin{array}{l}
3n-1 \mid n+7 \xrightarrow{a\mid c \Rightarrow} 3n-1 \mid 3 \cdot (n+7) = 3n+21 \\
\frac{a\mid b \land a\mid c}{\Rightarrow a\mid b \pm c} 3n-1 \mid 3n+21-(3n-1) = 22
\end{array}
\right\} \rightarrow 3n-1 \mid 22$$

$$\xrightarrow{\text{busco } n} \underset{\text{para que}}{\longrightarrow} \frac{22}{3n-1} \in \mathcal{D}(22) = \{1\pm 1, \pm 2, \pm 11, \pm 22\} \xrightarrow{\text{probando}} n \in \{1,4\} \quad \checkmark$$

- ii)
- iii)
- iv) $n-2 | n^3 8$

$$\xrightarrow[\Rightarrow a \mid k \cdot b]{a \mid b} n - 2 \mid \underbrace{(n-2) \cdot (n^2 + 2n + 4)}_{n^3 - 8}$$
 Esto va a dividir para todo $n \neq 2$

Página 7

- 3. Sean $a, b \in \mathbb{Z}$.
 - i) Probar que $a-b \mid a^n-b^n$ para todo $n \in \mathbb{N}$ y $a \neq b \in \mathbb{Z}$
 - ii) Probar que si n es un número natural par y $a \neq -b$, entonces $a + b \mid a^n b^n$.
 - iii) Probar que si n es un número natural impar y $a \neq -b$, entonces $a + b \mid a^n + b^n$.
 - i) Inducción:

Proposición:

$$p(n): a-b \mid a^n-b^n \ \forall n \in \mathbb{N} \ y \ a \neq b \in \mathbb{Z}$$

Caso Base:

$$p(1): a-b \mid a^1-b^1$$
,

p(1) es verdadera. \checkmark

Paso inductivo:

Asumo que p(k): $a - b \mid a^k - b^k$ es verdadera \Rightarrow quiero probar que p(k+1): $a - b \mid a^{k+1} - b^{k+1}$ también lo sea.

$$\left\{ \begin{array}{l} a-b \mid a^k-b^k \\ a-b \mid a^k-b^k \end{array} \right. \xrightarrow{\times a \atop \times b} \left\{ \begin{array}{l} a-b \mid a^{k+1}-ab^k \\ a-b \mid ba^k-b^{k+1} \end{array} \right. \xrightarrow{+} \left\{ \begin{array}{l} a-b \mid a^{k+1}-b^{k+1}. \end{array} \right. \checkmark \right.$$

Como p(1), p(k) y p(k+1) resultaron verdaderas por el principio de inducción p(n) también lo es.

ii) Sé que

$$a + b \mid a + b \stackrel{\text{def}}{\Longleftrightarrow} a \equiv -b (a + b)$$

Multiplicando la ecuación de congruencia por a sucesivas veces me formo:

$$\begin{cases} a \cdot a = a^2 & \stackrel{(a+b)}{\equiv} & a \cdot (-b) \stackrel{(a+b)}{\equiv} (-1)^2 b \\ & \vdots & \longleftarrow^{\mathbf{1}} \\ a^n & \stackrel{(a+b)}{\equiv} & (-1)^n \cdot b^n \to \begin{cases} a^n \equiv b^n \ (a+b) & \text{con n par} \\ a^n \equiv (-1)^n \cdot b^n \ (a+b) & \text{con n impar} \end{cases} \\ \begin{cases} \text{Con } n \text{ par:} & a^n \equiv b^n \ (a+b) & \Rightarrow \ a+b \ |a^n-b^n| \\ \text{Con } n \text{ impar:} & a^n \equiv -b^n \ (a+b) & \Rightarrow \ a+b \ |a^n+b^n| \end{cases}$$

★¹Inducción:

$$p(n): a \equiv -b (a + b) \Rightarrow a^n \equiv (-1)^n \cdot b^n (a + b) \ \forall n \in \mathbb{N}.$$

Caso base:

$$p(1): a \equiv -b \ (a+b) \Rightarrow a^1 \equiv (-1)^1 \cdot b^1 \ (a+b)$$

p(1) es verdadera.

Paso inductivo:

 $p(k): a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b)$ asumo verdadera para algún $k \in \mathbb{Z}$ \Rightarrow quiero probar que

$$p(k+1): a \equiv -b \ (a+b) \Rightarrow a^{k+1} \equiv (-1)^k \cdot b^k \ (a+b)$$

$$a \equiv -b \ (a+b) \Rightarrow a^k \equiv (-1)^k \cdot b^k \ (a+b)$$

$$\xrightarrow{\text{multiplico}} \Rightarrow a \cdot a^k = a^{k+1} \equiv (-1)^k \cdot \underbrace{a}_{(a+b)} \cdot b^k \ (a+b)$$

$$\Rightarrow a \cdot a^k = a^{k+1} \equiv (-1)^k \cdot \underbrace{a}_{(a+b)} \cdot b^k \ (a+b)$$

$$\Rightarrow a \cdot a^{k+1} \equiv (-1)^{k+1} \cdot b^{k+1} \ (a+b) \iff a+b \ | \ a^{k+1} - (-1)^{k+1} b^{k+1} \ \checkmark$$
Come $p(1) = p(k) = p(k+1)$ son verdederes per principio de inducción le es tembión $p(a)$

Como p(1), p(k), p(k+1) son verdaderas por principio de inducción lo es también p(n) $\forall n \in \mathbb{N}$

iii) Hecho en el anterior 😩.

Sea $a \in \mathbb{Z}$ impar. Probar que $2^{n+2} | a^{2^n} - 1$ para todo $n \in \mathbb{N}$

Pruebo por inducción:

$$p(n): 2^{n+2} \mid a^{2^n} - 1$$
, con $a \in \mathbb{Z}$ e impar. $\forall n \in \mathbb{N}$.

Caso base:

$$p(1) : 2^{3} = 8 \mid a^{2} - 1 = (a - 1) \cdot (a + 1)$$

$$\xrightarrow{a \text{ es impar, si } m \in \mathbb{Z}}$$

$$a = 2m - 1$$

$$(a - 1) \cdot (a + 1) \stackrel{\bigstar}{=} (2m - 2) \cdot (2m) \stackrel{!}{=} 4 \cdot \underbrace{m \cdot (m - 1)}_{par: 2h, h \in \mathbb{Z}} = 4 \cdot 2h = 8 * h$$

$$\xrightarrow{\text{por lo}}_{\text{tanto}}$$

$$8 \mid 8h = (a - 1) \cdot (a + 1) \text{ para algún } h \in \mathbb{Z} \quad \checkmark$$

Por lo tanto p(1) es verdadera.

Paso inductivo:

hipótesis inductiva

Asumo que: $p(k): 2^{k+2} \mid a^{2^k} - 1$, es verdadera \Rightarrow Quiero ver que $p(k+1): 2^{k+3} \mid a^{2^{k+1}} - 1$, también lo sea.

$$2^{k+3} \mid a^{2^{k+1}} - 1 \stackrel{!}{\Leftrightarrow} 2^{k+2} \cdot 2 \mid (a^{2^k} - 1) \cdot \overbrace{(a^{2^k} + 1)}^{\text{par }!}$$

$$\stackrel{\text{Si } a \mid b \text{ y } c \mid d \Rightarrow ac \mid bd}{\stackrel{\text{hipótesis inductiva}}{\stackrel{\text{hipótesis inductiva}}{\stackrel{\text{par}}{\longrightarrow}}}$$

$$2^{k+2} \cdot 2 \mid (a^{2^k} - 1) \cdot \underbrace{(a^{2^k} + 1)}_{\text{par}}.$$

El! es todo tuyo, hints: diferencia de cuadrados, propiedades de exponentes... En el último paso se comprueba que p(k+1) es vedadera.

Como p(1), p(k) y p(k+1) resultaron verdaderas, por el principio de inducción también lo será $p(n) \ \forall n \in \mathbb{N}$.

* Falta hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

* Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc 3$.

7.

i)
$$99 \mid 10^{2n} + 197$$

ii)
$$9 \mid 7 \cdot 5^{2n} + 2^{4n+1}$$

iii)
$$56 \mid 13^{2n} + 28n^2 - 84n - 1$$

iv)
$$256 \mid 7^{2n} + 208n - 1$$

i)
$$99 \mid 10^{2n} + 197 \iff 10^{2n} + 197 \equiv 0 \ (99) \to 10^{2n} + 198 \equiv 1 \ (99) \to 10^{2n} + \underbrace{198}_{\stackrel{(99)}{\equiv} 0} \equiv 1 \ (99) \to 100^n \equiv 100^n$$

$$\begin{cases} 1 & (99) \rightarrow \\ \begin{cases} \stackrel{\text{s\'e}}{\longrightarrow} 100 \equiv 1 & (99) \iff 100^2 \equiv 100 \\ \end{cases} & (99) \rightarrow 100^2 \equiv 1 & (99) \iff \dots \iff 100^n \equiv 1 & (99) \end{cases}$$

$$\begin{cases} Tengoquedemostrareserenglnporinduccinocon" propiedaddecongruencia" funciona? \end{cases}$$
Se concluye que $99 \mid 10^{2n} + 197 \iff 99 \mid 100 - 1 = 100$

ii)
$$9 \mid 7 \cdot 5^{2n} + 2^{4n+1} \iff 7 \cdot 5^{2n} + 2^{4n+1} \equiv 0 \ (9) \xrightarrow{\text{sumo } 2 \cdot 5^{2n} \atop \text{M.A.M}} \underbrace{9 \cdot 5^{2n}}_{\stackrel{(9)}{\equiv} 0} + 2 \cdot 2^{4n} \equiv 2 \cdot 5^{2n} \ (9)$$

iii) ***** Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\mathbb{A} \to \bigcirc$.

iv) ***** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Algoritmo de División:

Calcular el cociente y el resto de la división de a por b en los casos:

i)
$$a = 133$$
, $b = -14$.

iv)
$$a = b^2 - 6$$
, $b \neq 0$.

ii)
$$a = 13$$
, $b = 111$.

v)
$$a = n^2 + 5$$
, $b = n + 2 \ (n \in \mathbb{N})$.

iii)
$$a = 3b + 7, \quad b \neq 0.$$

vi)
$$a = n + 3$$
, $= n^2 + 1 \ (n \in \mathbb{N})$.

i)
$$133: (-14) \Rightarrow 133 = (-9) \cdot (-14) + 7$$

ii)

iii)
$$a = 3b + 7 \rightarrow \text{me interesa:} \rightarrow \left\{ \begin{array}{l} |b| \leq |a| \quad \checkmark \\ 0 \leq r < |b| \quad \checkmark \end{array} \right\} \rightarrow$$

$$\Rightarrow \begin{cases}
Si: |b| > 7 \to (q, r) = (3, 7) \\
Si: |b| \le 7 \to (q, r) = (3, 7) \\
\hline
(a, b) \mid (-14, -7) \mid (-11, -6) \mid (-8, -5) \mid (-5, -4) \mid (4, -1) \mid \dots \\
\hline
(q, r) \mid (2, 0) \mid (2, 1) \mid (2, 2) \mid (2, 3) \mid (4, 0) \mid \dots
\end{cases}$$

iv)
$$a = b^2 - 6$$
, $b \neq 0$.

- 9. Sabiendo que el resto de la división de un entero a por 18 es 5, calcular el resto de:
 - i) la división de $a^2 3a + 11$ por 18.
 - ii) la división de a por 3.
 - iii) la división de 4a + 1 por 9.
 - iv) la división de $7a^2 + 12$ por 28.

i)
$$r_{18}(a) = r_{18} \underbrace{(r_{18}(a)^2)}_{5^2} - \underbrace{r_{18}(3)}_{3} \cdot \underbrace{r_{18}(a)}_{5} + \underbrace{r_{18}(11)}_{11} = r_{18}(21) = 3$$

ii)
$$\begin{cases} a = 3 \cdot q + r_3(a) \\ 6 \cdot a = 18 \cdot q + \underbrace{6 \cdot r_3(a)}_{r_{18}(6a)} \end{cases} \rightarrow r_{18}(6a) = r_{18}(r_{18}(6) \cdot r_{18}(a)) = r_{18}(30) = 12$$
$$\Rightarrow 6 \cdot r_3(a) = r_{18}(6a) \rightarrow r_3(a) = 2$$

iii)
$$r_9(4a+1) = \underbrace{r_9(4 \cdot r_9(a)+1)}_{*1} \rightarrow a = 18 \cdot q + 5 = 9 \cdot \underbrace{(9 \cdot q)}_{q'} + \underbrace{5}_{r_9(a)} \xrightarrow{*_1} r_9(a) = r_9(21) = 3$$

iv)
$$r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) \xrightarrow{i\text{qué es}} r_{28}(a)$$

$$\begin{cases}
a = 18 \cdot q + 5 \xrightarrow{\text{busco algo}} \\
14 \cdot a = \underbrace{252 \cdot q}_{28 \cdot 9 \cdot q} + 70 \xrightarrow{\text{corrijo según}} \\
\frac{\text{condición resto}}{\text{condición resto}} 28 \cdot 9 \cdot q + \underbrace{2 \cdot 28 + 14}_{70} = 28 \cdot (9 \cdot q + 2) + 14 \quad \checkmark
\end{cases}$$

$$\begin{cases}
\frac{\text{por lo}}{\text{tanto}} \quad 14a = 28 \cdot q' + 14 \Rightarrow 14 \cdot a \equiv 14 \quad (28) \iff a \equiv 1 \quad (28)
\end{cases}$$
Ahora que sé que $r_{28}(a) = 1$ sale que $r_{28}(7a^2 + 12) = r_{28}(7 \cdot r_{28}(a)^2 + 12) = r_{28}(19) = 19 \quad \checkmark$

10.

- i) Si $a \equiv 22$ (14), hallar el resto de dividir a a por 14, por 2 y por 7.
- ii) Si $a \equiv 13$ (5), hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5.
- iii) Hallar, para cada $n \in \mathbb{N}$, el resto de la división de $\sum_{i=1}^{n} (-1)^i \cdot i!$ por 12

i)
$$\begin{cases} a \equiv 22 \ (14) \to a = 14 \cdot q + \underbrace{22}_{14+8} = 14 \cdot (q+1) + 8 \xrightarrow{\text{el resto}} r_{14}(a) = 8 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{2 \cdot (7 \cdot q)} + \underbrace{22}_{2 \cdot 11} = 2 \cdot (7q+11) + 0 \xrightarrow{\text{el resto}} r_{2}(a) = 0 \quad \checkmark \\ a \equiv 22 \ (14) \to a = \underbrace{14 \cdot q}_{7 \cdot (2 \cdot q)} + \underbrace{22}_{1+7 \cdot 3} = 7 \cdot (2q+3) + 1 \xrightarrow{\text{el resto}} r_{7}(a) = 1 \quad \checkmark \end{cases}$$

- ii) Dos números congruentes tienen el mismo resto. $a \equiv 13 \ (5) \iff a \equiv 3 \ (5) \ r_5(33a^3 + 3a^2 197a + 2) = r_5(3 \cdot r_5(a)^3 + 3 \cdot r_5(a)^2 2 \cdot r_5(a) + 2) = \frac{\text{como } a \equiv 13 \ (5)}{r_5(a) = 3} r_5(33a^3 + 3a^2 197a + 2) = 4$
- iii) ***** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

11.

- i) Probar que $a^2 \equiv -1$ (5) $\iff a \equiv 2$ (5) $\lor a \equiv 3$ (5)
- ii) Probar que no existe ningún entero a tal que $a^3 \equiv -3$ (7)
- iii) Probar que $a^7 \equiv a$ (7) $\forall a \in \mathbb{Z}$
- iv) Probar que $7 \mid a^2 + b^2 \iff 7 \mid a \land 7 \mid b$.
- v) Probar que $5 \mid a^2 + b^2 + 1 \iff 5 \mid a \vee 5 \mid b$. ¿Vale la recíproca?
- i) Me piden que pruebe una congruencia es válida solo para ciertos $a \in \mathbb{Z}$. Pensado en términos de restos quiero que el resto al poner los a en cuestión cumplan la congruencia.

restos quiero que el resto al poner los
$$a$$
 en cuestion cumpian la congruencia.
$$\begin{cases}
a^2 \equiv -1 \ (5) \iff a^2 \equiv 4 \ (5) \iff a^2 - 4 \equiv 0 \ (5) \iff (a-2) \cdot (a+2) \equiv 0 \ (5) \\
\frac{\text{quiero que el}}{\text{resto sea } 0} + r_5(a^2 + 1) = r_5(a^2 - 4) = r_5(r_5(a-2) \cdot r_5(a+2)) = \underbrace{r_5((r_5(a) - 2) \cdot (r_5(a) + 2))}_{\bigstar^1} = 0
\end{cases}$$

$$\begin{cases}
\frac{\text{el resto será}}{0 \text{ cuando}} r_5(a^2 + 1) = 0 \\
\end{cases}$$

$$\Leftrightarrow r_5((r_5(a) - 2) \cdot (r_5(a) + 2)) = 0$$

$$\begin{cases}
r_5(a) = 2 \Leftrightarrow a \equiv 2 \ (5) \\
\end{cases}$$

$$r_5(a) = -2 \Leftrightarrow a \equiv 3 \ (5)$$

Más aún:

Para una congruencia módulo 5 habrá solo 5 posibles restos, por lo tanto se pueden ver todos los casos haciendo una table de restos.

a	U	1	2	3	4	
						\rightarrow La tabla muestra que para un dado a
$r_5(a^2)$						
$\rightarrow r_5(a)$	=	<pre>};</pre>	2 ¢ 3 ¢	\Rightarrow	a	$\equiv 2 (5) \iff a^2 \equiv 4 (5) \iff a^2 \equiv -1 (5)$ $\equiv 3 (5) \iff a^2 \equiv 4 (5) \iff a^2 \equiv -1 (5)$

ii) ***** Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

iii) Me piden que exista una dada congruencia para todo $a \in \mathbb{Z}$. Eso equivale a probar a que al dividir el lado izquierdo entre el divisor, el resto sea lo que está en el lado derecho de la congruencia.

$$a^7 - a \equiv 0 \ (7) \iff a \cdot (a^6 - 1) \equiv 0 \ (7) \iff a \cdot (a^3 - 1) \cdot (a^3 + 1) \equiv 0 \ (7) \xrightarrow{\text{tabla de restos con} \atop \text{sus propiedades lineales}}$$

				(u	-1)	(u -	r +)	
a	0	1	2	3	4	5	6	
$r_7(a)$	0	1	2	3	4	5	6	\rightarrow Cómo para todos los a , alguno de los factores del resto siempre
$r_7(a^3-1)$	6	0	0	5	0	5	5	7 Como para todos los a, alguno de los factores del resto siempre
$r_7(a^3+1)$	1	2	2	0	2	0	0	

se anula, es decir:

$$r_7(a^7 - a) = r_7(r_7(a) \cdot r_7(a^3 - 1) \cdot r_7(a^3 + 1)) = 0 \ \forall a \in \mathbb{Z}$$

- iv)
- $\mathbf{v})$

* Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

Se define por recurrencia la sucesión $(a_n)_{n\in\mathbb{N}}$:

$$a_1 = 3$$
, $a_2 = -5$ y $a_{n+2} = a_{n+1} - 6^{2n} \cdot a_n + 21^n \cdot n^{21}$, para todo $n \in \mathbb{N}$.

Probar que $a_n \equiv 3^n \pmod{7}$ para todo $n \in \mathbb{N}$.

La infumabilidad de esos números me obliga a atacar a esto con el resto e inducción.

La infulmabilidad de esos numeros me obliga a atacar a esto con el resto e inducción.

$$\xrightarrow{\text{acomodo}} r_7(a_{n+2}) = r_7(r_7(a_{n+1}) - \underbrace{r_7(36)^n \cdot r_7(a_n)}_{\stackrel{(7)}{\equiv} 1} \cdot \underbrace{r_7(21)^n \cdot r_7(n)^{21}}_{\stackrel{(7)}{\equiv} 0}) = \underbrace{r_7(a_{n+2}) = r_7(a_{n+1}) - r_7(a_n)}_{\stackrel{(7)}{\equiv} 1} \checkmark$$
Puesto de otra forma $a_{n+2} \equiv a_{n+1} - a_n$ (7) $\rightarrow \begin{cases} a_1 \equiv 3^1 \ (7) \iff a_1 \equiv 3 \ (7) \\ a_2 \equiv 3^2 \ (7) \iff a_2 \equiv 2 \ (7) \\ a_3 \equiv 3^3 \ (7) \iff a_3 \equiv 6 \ (7) \end{cases}$
Ouioro prober que $a_1 \equiv 3^n \pmod{7}$ a inducción completa:

Quiero probar que $a_n \equiv 3^n \pmod{7} \rightarrow \text{inducción completa}$

Casos base:
$$\begin{cases} \text{Casos base:} & \begin{cases} p(n=1) : a_1 \equiv 3^1 \text{ (7)Verdadera} \\ p(n=2) : a_2 \equiv 3^2 \text{ (7)} \stackrel{\text{(7)}}{\equiv} 2 \stackrel{\text{(7)}}{\equiv} -5 \text{Verdadera} \\ p(k) : a_k \equiv 3^k \pmod{7} \text{ Verdadera} \\ \\ p(k+1) : a_{k+1} \equiv 3^{k+1} \pmod{7} \text{ Verdadera} \\ \\ \Rightarrow p(k+1) : a_{k+2} \equiv 3^{k+2} \pmod{7} \text{ Verdadera} \\ \\ \Rightarrow p(k+1) : a_{k+2} \equiv 3^{k+2} \pmod{7} \text{ Verdadera} \\ \\ a_k \equiv 3^k \pmod{7} \\ \\ a_{k+1} \equiv 3^{k+1} \pmod{7} \\ \\ a_{k+2} \equiv 3^{k+1} \pmod{7} \\ \\ \\ \frac{paso \text{ en}}{limpio} a_{k+2} \equiv \underbrace{9}_{\stackrel{\text{(7)}}{\equiv} 2} \cdot 3^k \pmod{7} \\ \\ a_{k+2} \equiv 3^{k+2} \pmod{7} \end{cases}$$

Concluyendo como $p(1), p(2), p(k), p(k+1) \wedge p(k+2)$ resultaron verdaderas por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$.

14.

- i) Hallar el desarrollo en base 2 de
 - (a) 1365
 - (b) 2800
 - (c) $3 \cdot 2^{12}$
 - (d) $13 \cdot 2^n + 5 \cdot 2^{n-1}$

Hacer!

15. Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

16. ** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

17. 🚼 Falta hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en LATEX $\to \odot$. Máximo común divisor:

- 18. En cada uno de los siguientes casos calcular el máximo común divisor entre a y b y escribirlo como combinación lineal entera de a y b:
 - i) a = 2532, b = 63.
 - ii) a = 131, b = 23.
 - iii) $a = n^4 3$, $b = n^2 + 2$ $(n \in \mathbb{N})$.

Hacer!

19. 😭 Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

- **20.** Sea $a \in \mathbb{Z}$.
 - a) Probar que (5a+8:7a+3)=1 o 41. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a=23 da 41.
 - b) Probar que $(2a^2 + 3a : 5a + 6) = 1$ o 43. Exhibir un valor de a para el cual da 1, y verificar que efectivamente para a = 16 da 43
 - c) Probar que $(a^2 3a + 2 : 3a^3 5a^2) = 2$ o 4, y exhibir un valor de a para cada caso. (Para este item es **indispensable** mostrar que el máximo común divisor nunca puede ser 1).
- ☐ ¡Aportá! Correcciones, subiendo ejercicios, ★ al repo, críticas, todo sirve.

i) ***** Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

ii) 🛣 Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

iii)
$$(a^2 - 3a + 2 : 3a^3 - 5a^2) \xrightarrow{\text{Euclides}} (\underbrace{a^2 - 3a + 2}_{\text{\star^1 par}} : \underbrace{6a - 8}_{\text{\star^1 par}})$$

$$\xrightarrow{\text{busco}} \left\{ \begin{array}{c} d \mid a^2 - 3a + 2 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\text{\star^6}} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\text{\star^6}} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\text{\star^6}} \left\{ \begin{array}{c} d \mid 10a - 12 \\ d \mid 6a - 8 \end{array} \right\} \xrightarrow{\text{\star^6}} \left\{ \begin{array}{c} d \mid 8 \end{array} \right\} \rightarrow \mathcal{D}_{+}(8) = \{1, 2, 4, 8\} \xrightarrow{\text{\star^1}} = \{2, 4, 8\}$$

$$\left\{ \begin{array}{c} a = 1 \quad (0 : -2) = 2 \\ a = 2 \quad (0 : 4) = 4 \end{array} \right.$$
Parecido al hecho en clase.

¿Qué onda el 8? Hice mal cuentas? Si no, cómo lo descarto?

Sean $a, b \in \mathbb{Z}$ coprimes. Probar que 7a - 3b y 2a - b son coprimes.

$$\begin{cases}
d \mid 7a - 3b \xrightarrow{\cdot 2} d \mid b \rightarrow d \mid b \\
d \mid 2a - b \xrightarrow{\cdot 7} d \mid 2a - b \rightarrow d \mid a
\end{cases}
\xrightarrow{\text{propiedad}} d \mid (a:b) \xrightarrow{\text{coprimos}} d \mid 1$$
Por lo tanto $(7a - 3b: 2a - b) = 1$ son coprimos como se quería mostrar.

22. Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

23.

- i) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{b+4}{a} + \frac{5}{b} \in \mathbb{Z}$.
- ii) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{9a}{b} + \frac{7a^2}{b^2} \in \mathbb{Z}$.
- iii) Determinar todos los $a, b \in \mathbb{Z}$ tales que $\frac{2a+3}{a+1} + \frac{a+2}{4} \in \mathbb{Z}$.

i)
$$\frac{b+4}{a} + \frac{5}{b} = \frac{b^2 + 4b + 5a}{ab} \xrightarrow{\text{quiero que}} ab \mid b^2 + 4b + 5a$$

$$\frac{\text{por }}{\text{coprimitusibilidad}} \begin{cases} a \mid b^2 + 4b + 5a \\ b \mid b^2 + 4b + 5a \end{cases} \rightarrow \begin{cases} a \mid b^2 + 4b \\ b \mid 5a \end{cases} \xrightarrow{\text{debe dividr a 5}} \begin{cases} a \mid b \cdot (b+4) \\ b \mid 5 \end{cases}$$
Seguro tengo que $b \in \{\pm 1, \pm 5\} \rightarrow \text{pruebo valores de } b \text{ y veo que valor de } a \text{ queda:}$

$$\begin{cases} b = 1 \rightarrow (a \mid 5, 1) \rightarrow \{(\pm 1, 1).(\pm 5, 1)\} \\ b = -1 \rightarrow (a \mid -3, 1) \rightarrow \{(\pm 1, -1).(\pm 3, 1)\} \\ b = 5 \rightarrow (a \mid 45, 5) \xrightarrow{\text{atención que}} \{(\pm 1, 5), (\pm 3, 5).(\pm 9, 5)\} \end{cases}$$

$$b = -5 \rightarrow (a \mid 5, -5) \xrightarrow{\text{atención que}} \{(\pm 1, -5)\}$$

- ii) Hacer!
- iii) 🚰 Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

Primos y factorización:

24.

25. Sea p primo positivo.

- i) Probar que si $0 < k < p \mid \binom{p}{k}$.
- ii) Probar que si $a, b \in \mathbb{Z}$, entonces $(a+b)^p \equiv a^p + b^p$ (p).

26. Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

27. 🚼 Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

28. ** Falta hacerlo!

Si querés mandarlo: Telegram $\to \emptyset$, o mejor aún si querés subirlo en $\LaTeX \to \emptyset$.

29. ** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 5$.

30. Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

31. Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc 3$.

32. Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

33. 🚼 Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc 3$.

34. ** Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

35. ** Falta hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

36. Falta hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

37. 😭 Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

38. 🏕 Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

39. 🚼 Falta hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en LATEX $\to \odot$.

40. 🏖 Falta hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

Ejercicios extras:

4400 ¿Cuántos divisores distintos tiene? ¿Cuánto vale la suma de sus divisores.

$$4400 \xrightarrow{\text{factorizo}} 4400 = 2^4 \cdot 5^2 \cdot 11 \xrightarrow{\text{los divisores } m \mid 4400} m = \pm 2^{\alpha} \cdot 2^{\beta} \cdot 2^{\gamma}, \text{ con } \begin{cases} 0 \le \alpha \le 4 \\ 0 \le \beta \le 2 \\ 0 \le \gamma \le 1 \end{cases}$$

Hay entonces un total de $5 \cdot 3 \cdot 2 = 30$ divisores positivos y 60 enteros.

Ahora busco la suma de esos divisores:
$$\sum_{i=0}^{4} \sum_{j=0}^{2} \sum_{k=0}^{1} 2^{i} \cdot 5^{j} \cdot 11^{k} = \left(\sum_{i=0}^{4} 2^{i}\right) \cdot \left(\sum_{j=0}^{2} 5^{j}\right) \cdot \left(\sum_{k=0}^{1} 11^{k}\right)$$

$$\xrightarrow{\text{sumas}} \xrightarrow{2^{4+1}-1} \cdot \frac{5^{2+1}-1}{5-1} \cdot \frac{11^{1+1}-1}{11-1} = 11532.$$

$$\xrightarrow{\text{geométricas}} \underbrace{\frac{2^{4+1}-1}{2-1}}_{31} \cdot \underbrace{\frac{5^{2+1}-1}{5-1}}_{31} \cdot \underbrace{\frac{11^{1+1}-1}{11-1}}_{12} = 11532.$$

- Hallar el menor $n \in \mathbb{N}$ tal que:
 - i) (n:2528) = 316
 - ii) n tiene exáctamente 48 divisores positivos
 - iii) 27 ∦ n

$$\begin{cases}
\frac{\text{factorizo}}{2528} & 2528 = 2^5 \cdot 79 \quad \checkmark \\
\frac{\text{factorizo}}{316} & 316 = 2^2 \cdot 79 \quad \checkmark \\
\frac{\text{reescribo}}{\text{condición}} & (n:2^5 \cdot 79) = 2^2 \cdot 79
\end{cases}$$

$$\frac{\text{quiero}}{\text{quiero}} \quad n = 2^{\alpha_2} \cdot 3^{\alpha_3} \cdot 5^{\alpha_5} \cdot 7^{\alpha_7} \cdot \dots 70^{\alpha_79} \cdot$$

$$\frac{\stackrel{\text{reescribo}}{\text{condición}} (n:2^5 \cdot 79) = 2^2 \cdot 79}{\stackrel{\text{quiero}}{\text{encontrar}}} n = 2^{\alpha_2} \cdot 3^{\alpha_3} \cdot 5^{\alpha_5} \cdot 7^{\alpha_7} \cdots 79^{\alpha_7 9} \cdots$$

$$\stackrel{\text{como}}{\text{encontrar}} (n:2^5 \cdot 79) = 2^2 \cdot 79 \xrightarrow{\text{tengo}} \begin{cases} \alpha_2 = 2, & \text{dado que } 2^2 \cdot 79 \mid n. \text{ Recordar que busco el menor } n!. \\ \alpha_{79} \ge 1, & \text{Al igual que antes.} \\ \frac{\text{notar}}{\text{que}} \alpha_3 < 3 & \text{si no } 3^3 = 27 \mid n \end{cases}$$

$$48 = \underbrace{(\alpha_2 + 1)}_{2+1} \cdot (\alpha_3 + 1) \cdots$$

$$\frac{1 \text{a estrategia sigue con}}{\text{el primo más chico que haya}} \begin{cases}
48 = \underbrace{(\alpha_2 + 1) \cdot (\alpha_3 + 1) \cdots}_{2+1} \\
48 = 3 \cdot (\alpha_3 + 1) \cdot \cdots \\
16 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots \underbrace{(\alpha_{79} + 1) \cdots}_{=2 \text{ quiero el menor}}
\end{cases}$$
El n que cumple lo pedido
$$8 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots \\
8 = \underbrace{(\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots}_{=2}$$

$$8 = (\alpha_3 + 1) \cdot (\alpha_5 + 1) \cdot (\alpha_7 + 1) \cdots 1$$

Sabiendo que (a:b)=5. Probar que $(3ab:a^2+b^2)=25$

Coprimizar:
$$\begin{cases} c = \frac{a}{5} \\ d = \frac{b}{5} \end{cases} \rightarrow (a:b) = 5 \cdot \underbrace{(c:d)}_{1} = 5$$

$$\rightarrow \begin{cases} \frac{\text{según}}{\text{enunciado}} 25 = (3ab:a^{2} + b^{2}) \xrightarrow{\text{reemplazo}} 25 = 25 \cdot \underbrace{(3cd:c^{2} + d^{2})}_{1} \end{cases}$$

$$\xrightarrow{\text{Ove a probar}} (3cd: c^2 + d) = 1.$$

$$\underbrace{\frac{\text{Supongo que}}{\text{no lo fuera}}}_{\text{no lo fuera}} \exists p \rightarrow \left\{ \begin{array}{l} p \mid 3 \rightarrow p = 3 \xrightarrow{\text{tabla}} \\ p \mid 3 cd \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} p \mid 3 \rightarrow p = 3 \xrightarrow{\text{tabla}} \\ \neq 0 \text{ si otro caso} \\ \end{array} \right. \left\{ \begin{array}{l} p \mid 3 \rightarrow p = 3 \xrightarrow{\text{tabla}} \\ \neq 0 \text{ si otro caso} \\ \end{array} \right. \left\{ \begin{array}{l} p \mid c \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} como \\ p \mid c \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} como \\ p \mid c \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} como \\ p \mid c \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} como \\ p \mid c \rightarrow \\ \end{array} \right. \left\{ \begin{array}{l} como \\ \end{array} \right\} \right\} \left\{ \begin{array}{l} como \\ \end{array} \right. \left\{ \begin{array}{l} como \\ \end{array} \right\} \left\{ \begin{array}{l} como \\$$

4.

- i) Calcular los posibles valores de: $(7^{n-1} + 5^{n+2} : 5 \cdot 7^n 5^{n+1})$.
- ii) Encontrar n tales que el mcd para ese n tome 3 valores distintos.

Busco independencia de n en algún lado del (a:b). Si d=0

$$\begin{cases} d \mid 7^{n-1} + 5^{n+2} \\ d \mid 5 \cdot 7^n - 5^{n+1} \end{cases} \to \begin{cases} d \mid \underbrace{7^{n-1} + 5^{n+2}}_{\stackrel{(5)}{=} 2^n} \\ d \mid 5 \cdot (7^n - 5^n) \end{cases} \xrightarrow{p \nmid d \land d \mid p \cdot k} \begin{cases} d \mid 7^{n-1} + 5^{n+2} \\ d \mid 7^n - 5^n \end{cases}$$

$$\to \begin{cases} d \mid 176 \cdot 5^n \\ d \mid 7^n - 5^n \end{cases} \xrightarrow{p \nmid d \land d \mid p \cdot k} \begin{cases} d \mid 176 \\ d \mid 7^n - 5^n \end{cases} \to d = (176 : 7^n - 5^n) \checkmark$$
Exertorize: 176 = 2⁴ · 11 $\to \mathcal{D}$ · (176) = \(176 \) 2.4.8 11 16 22 44 88 176\\ \)

$$\rightarrow \left\{ \begin{array}{ll} d \mid 176 \cdot 5^n & \underset{\Rightarrow p \mid k}{p \nmid d \land d \mid p \cdot k} \\ d \mid 7^n - 5^n & \xrightarrow{\Rightarrow p \mid k} \end{array} \right. \left\{ \begin{array}{ll} d \mid 176 \\ d \mid 7^n - 5^n \end{array} \right. \rightarrow d = (176 : 7^n - 5^n) \quad \checkmark$$

Factorizo:
$$176 = 2^4 \cdot 11 \rightarrow \mathcal{D}_+(176) = \{1, 2, 4, 8, 11, 16, 22, 44, 88, 176\}.$$
Descarto $\rightarrow \begin{cases} 1 \rightarrow 7^n - 5^n \equiv 2^n \ (5) \rightarrow d \text{ tiene que ser par y } 2 > 1 \\ 11 \rightarrow 7^n - 5^n \equiv 2^n \ (5) \rightarrow d \text{ tiene que ser par } \end{cases}$
 $\mathcal{D}_+(d) = \{2, 4, 8, 16, 22, 44, 88, 176\}.$

$$\mathcal{D}_{+}(d) = \{2, 4, 8, 16, 22, 44, 88, 176\}$$

Estudio congruencia de los pares e impares: $\begin{cases} 7^{2k} - 5^{2k} \equiv 1^k - 25^k \ (8) \rightarrow 1 - \underbrace{1}_{\stackrel{(8)}{\equiv} 25} \equiv 0 \ (8) \end{cases}$ $7^{2k+1} - 5^{2k+1} = 3 - 1 \ (4) \stackrel{(4)}{\equiv} 2$

$$7^{2k} - 5^{2k} \equiv 1^{k} - 25^{k} (8) \to 1 - \underbrace{1}_{\stackrel{(8)}{\equiv} 25} \equiv 0 (8)$$

$$7^{2k+1} - 5^{2k+1} \equiv 3 - 1 (4) \stackrel{(4)}{\equiv} 2$$

Puedo descartar a los múltiplos de 4 que no sean múltiplos de 8. $\rightarrow \mathcal{D}_{+}(d) = \{2, 8, 16, 22, 88, 176\}$ No lo terminé, no entiendo bien este paso y como descartar algún otro.

Estudiar los valores parar **todos** los $a \in \mathbb{Z}$ de $(a^3 + 1 : a^2 - a + 1)$

Primero hay que notar que el lado $a^2 - a + 1$ es siempre impar ya que:

 $\left\{
\begin{array}{l}
(2k-1)^2 - (2k-1) + 1 \stackrel{(2)}{\equiv} (-1)^2 - 1 + 1 \stackrel{(2)}{\equiv} 1 \\
(2k)^2 - (2k) + 1 \stackrel{(2)}{\equiv} (0)^2 - 0 + 1 \stackrel{(2)}{\equiv} 1.
\end{array}
\right\}$ Por lo tanto 2 no puede ser un divisor de ambas expresiones y si $2 \not\mid A \Rightarrow 2 \cdot k \not\mid A$ tampoco.

Se ve fácil contrarecíproco: 2k $|A \Rightarrow 2|A$. Porque existe un k tal que $2 \cdot c \cdot k = A \Rightarrow 2 \cdot (c \cdot k) = A$. Ahora cuentas para simplificar la expresión y encontrar número del lado derecho.

$$\begin{cases} d \mid a^3 + 1 \\ d \mid a^2 - a + 1 \end{cases} \rightarrow d \mid 30 \rightarrow \mathcal{D}_+(d) = \{1, 2, 3, 5, 6, 10, 15, 30\} \xrightarrow{\text{por lo de antes}} \mathcal{D}_+(d) = \{1, 3, 5, 15\}$$

$$\begin{cases}
d \mid a^{3} + 1 \\
d \mid a^{2} - a + 1
\end{cases}
\rightarrow d \mid 30 \rightarrow \mathcal{D}_{+}(d) = \{1, 2, 3, 5, 6, 10, 15, 30\} \xrightarrow{\text{por lo de antes}} \mathcal{D}_{+}(d) = \{1, 3, 5, 15\}$$

$$\xrightarrow{\text{hacer tabla de restos}}
\begin{cases}
r_{3}(a^{3} + 1) = 0 & \text{si} \quad a \equiv 2 \text{ (3)} \\
\land \\
r_{3}(a^{2} - a + 1) = 0 & \text{si} \quad a \equiv 2 \text{ (3)}
\end{cases}
\rightarrow \begin{cases}
r_{5}(a^{3} + 1) \neq 0 & \forall a \in \mathbb{Z} \}.$$

Luego si 5 /
$$(a^3 + 1 : a^2 - a + 1) \Rightarrow \underbrace{15}_{5\cdot 3}$$
 / $(a^3 + 1 : a^2 - a + 1) \xrightarrow{\text{se achica el } \atop \text{conjunto de divisores}} \mathcal{D}_+(d) = \{1, 3\}$

$$d = \begin{cases} 3 & \text{si} \quad a \equiv 2 \ (3) \\ 1 & \text{si} \quad a \equiv 1 \lor 2 \ (3) \end{cases}$$

♦6. Sean $a, b \in \mathbb{Z}$ tal que (a : b) = 6. Hallar todos los d = (2a+b : 3a-2b) y dar un ejemplo en cada caso.

Conviene coprimizar:
$$(a:b) = 6 \iff \begin{cases} a = 6A \\ b = 6B \end{cases}$$
 con $(A:B)^{\bigstar^1} = 1$

$$d = (2 \cdot 6A + 6B : 3 \cdot 6A - 2 \cdot 6B) = (6 \cdot (2 \cdot A + B) : 6 \cdot (3 \cdot A - 2 \cdot B)) = 6 \cdot \underbrace{(2A + B : 3A - 2B)}_{D}$$

$$\rightarrow d^{\bigstar^2} = 6D \xrightarrow{\text{busco divisores}}_{\text{comunes}} \begin{cases} D \mid 2A + B \\ D \mid 3A - 2B \xrightarrow{\dots} \end{cases} \begin{cases} D \mid 7B \\ D \mid 7A \end{cases} \Rightarrow D = (7A : 7B) = 7 \cdot (A : B)^{\bigstar^1} = 7$$
Por lo tanto $D \in \mathcal{D}_+(7) = \{1, 7\}$, pero yo quiero encontrar ejemplos de a y b :
$$\begin{cases} Si: & A = 2 \rightarrow a = 12 \\ B = 3 \rightarrow b = 18 \\ (7 : 0) \Rightarrow D = 7 \rightarrow d = (42 : 0) = \underbrace{42}_{6 \cdot D} \end{cases}$$

$$\downarrow^{\bigstar^2} \Rightarrow \begin{cases} Si: & A = 0 \rightarrow a = 0 \\ B = 1 \rightarrow b = 6 \\ (1 : -2) \Rightarrow D = 1 \rightarrow d = (6 : -12) = \underbrace{6}_{6 \cdot D} \end{cases}$$

♦7. Sea $a \in \mathbb{Z}$ tal que $32a \equiv 17$ (9). Calcular $(a^3 + 4a + 1 : a^2 + 2)$

$$32a \equiv 17 \ (9) \rightarrow 5a \equiv 8 \ (9) \xrightarrow{\text{multiplico}} a \equiv 7 \ (9) \quad \checkmark$$

$$d = (a^3 + 4a + 1 : a^2 + 2) \xrightarrow{\text{Euclides}} \left\{ \begin{array}{c} a^3 + 4a + 1 & a^2 + 2 \\ -a^3 - 2a & a \end{array} \right\} \rightarrow d = (a^2 + 2 : 2a + 1) \quad \checkmark$$

$$\xrightarrow{\text{buscar}} \left\{ \begin{array}{c} d \mid a^2 + 2 & 2F_1 - aF_2 \\ d \mid 2a + 1 & \end{array} \right\} \left\{ \begin{array}{c} d \mid -a + 4 \\ d \mid 2a + 1 & \end{array} \right\} \left\{ \begin{array}{c} d \mid -a + 4 \\ d \mid 9 & \end{array} \right\}$$

$$\rightarrow d = (-a + 4 : 9) \xrightarrow{\text{divisores}} \left\{ \begin{array}{c} 1, 3, 9 \\ 1, 3, 9 \end{array} \right\} \quad \checkmark$$

$$\text{However this where the formula and the sum of the content of$$

Hago tabla de restos 9 y 3, para ver si las expresiones $(a^2 + 2 : 2a + 1)$ son divisibles por mis potenciales MCDs.

$r_9(a)$	0	1	2	3	4	5	6	7	8	$\rightarrow a \equiv 4$ (9), valores de a candidatos para obtener MCD.
$r_9(-a+4)$	4	3	2	1	0	-1	-2	-3	-4	$\rightarrow u \equiv 4$ (9), valores de u candidatos para obtener MCD.
$r_3(a)$ 0 1 2 $\rightarrow a \equiv 1$ (3), valores de a candidatos para obtener MCD.										
$r_3(-a+4)$	2	0	2] ′	u _	- 1 (0), va	iorcs	uc u	candidates para obtener MCD.

La condición $a \equiv 7$ (9) no es compatible con el resultado de la tabla de r_9 , pero sí con r_3 . Notar que $a = 9k + 7 \stackrel{(3)}{\equiv} 1$.

El MCD
$$(a^3 + 4a + 1 : a^2 + 2) = \begin{cases} 3 & \text{si } a \equiv 7 \ (9) \\ 1 & \text{si } a \not\equiv 7 \ (9) \end{cases}$$

§8. Sea
$$(a_n)_{n \in \mathbb{N}_0}$$
 con
$$\begin{cases} a_0 = 1 \\ a_1 = 3 \\ a_n = a_{n-1} - a_{n-2} & \forall n \ge 2 \end{cases}$$

a) Probar que $a_{n+6} = a_n$

- b) Calcular $\sum_{k=0}^{255} a_k$
- (a) Por inducción: $p(n): a_{n+6} = a_n \ \forall n \geq \mathbb{N}_0$ Verdadero?

$$\left\{ \begin{array}{l} \textit{Caso Base: Primero notar que,} \\ a_0 = 1 \\ a_1 = 3 \\ a_2 \stackrel{\text{def}}{=} 2 \\ a_3 \stackrel{\text{def}}{=} -1 \\ a_4 \stackrel{\text{def}}{=} -3 \\ a_5 \stackrel{\text{def}}{=} -2 \end{array} \right\} \rightarrow \left\{ \begin{array}{l} a_6 \stackrel{\text{def}}{=} 1 \\ a_7 \stackrel{\text{def}}{=} 3 \\ a_8 \stackrel{\text{def}}{=} 2 \\ a_9 \stackrel{\text{def}}{=} -1 \\ a_{10} \stackrel{\text{def}}{=} -3 \\ a_{11} \stackrel{\text{def}}{=} -2 \end{array} \right\} \rightarrow \cdots \text{ Se ve que tiene un período de 6 elementos.}$$

Paso inductivo: Supongo
$$p(k)$$
 Verdadero? $\Rightarrow p(k+1)$ Verdadero? ?

Hipótesis inductiva: Supongo $a_{k+6} = a_k \ \forall k \in \mathbb{N}_0$ Verdadero? , quiero ver que $a_{k+7} = a_{k+1}$

$$a_{k+7} \stackrel{\text{def}}{=} a_{k+6} - a_{k+5} \stackrel{\text{HI}}{=} a_k - a_{k+5} \stackrel{\text{def}}{=} a_k - \underbrace{(a_k + a_{k+4})}_{a_{k+5}} = -a_{k+4}$$

$$\rightarrow a_{k+7} = -a_{k+4} \stackrel{\text{def}}{=} -(a_{k+3} - a_{k+2}) \stackrel{\text{def}}{=} -(a_{k+2} - a_{k+1} - a_{k+2}) = a_{k+1} \quad \checkmark$$

Como $p(0) \wedge p(1) \wedge \cdots p(5)$ son verdaderas y p(k) es verdadera así como p(k+1) también lo es, por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}_0$

(b) $\sum_{k=0}^{255} a_k = \underbrace{a_0 + a_1 + a_2 + a_3 + a_4 + a_5}_{=0} + \underbrace{a_6 + a_7 + a_8 + a_9 + a_{10} + a_{11}}_{=0} + \dots + a_{252} + a_{253} + a_{254} + a_{255}$ En la sumatoria hay 256 términos. $256 = 42 \cdot 6 + 4 \text{ por lo tanto van a haber 42 bloques que}$ dan 0 y sobreviven los últimos 4 términos. $\sum_{k=0}^{255} a_k = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{252} + a_{253} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{252} + a_{253} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + a_{254} + a_{255} = \underbrace{0 + 0 + \dots + 0}_{42 \text{ ceros}} + \underbrace{0 + 0 + \dots + 0}_{$

$$Donde usé que: a_n = \begin{cases} 1 & \text{si } n \mod 6 = 0\\ 3 & \text{si } n \mod 6 = 1\\ 2 & \text{si } n \mod 6 = 2\\ -1 & \text{si } n \mod 6 = 3\\ -3 & \text{si } n \mod 6 = 4\\ -2 & \text{si } n \mod 6 = 5 \end{cases} \longrightarrow \underbrace{\sum_{k=0}^{255} a_k = 5}_{k=0} \checkmark$$

Determinar todos los $a \in \mathbb{Z}$ que cumplen que

$$\frac{2a-1}{5} - \frac{a-1}{2a-3} \in \mathbb{Z}.$$

Busco una fracción. Para que esa fracción $en \mathbb{Z}$ es necesario que el denominador divida al numerador. Fin.

$$\frac{2a-1}{5} - \frac{a-1}{2a-3} = \frac{4a^2-13a+8}{10a-15}$$
 \checkmark

$$\begin{array}{c|c} \bigstar^{1} \left\{ \begin{array}{c} 10a - 15 \mid 4a^{2} - 13a + 8 \\ 10a - 15 \mid 10a - 15 \end{array} \right. \xrightarrow{\text{operaciones}} \left\{ \begin{array}{c} 10a - 15 \mid -25 \bigstar^{2} \\ 10a - 15 \mid 10a - 15 \end{array} \right. \end{array}$$

Para que ocurra \bigstar^1 , debe ocurrir \bigstar^2 .

$$10a - 15 \mid -25 \iff 10a - 25 \in \{\pm 1, \pm 5, \pm 25\} \stackrel{*}{\bigstar}$$
 para algún $a \in \mathbb{Z}$.

De paso observo que $|10a - 25| \le 25$. Busco a:

Caso:
$$d = 10a - 15 = 1$$
 \iff $a = \frac{8}{5}$
Caso: $d = 10a - 15 = -1$ \iff $a = \frac{8}{5}$
Caso: $d = 10a - 15 = 5$ \iff $a = 2$ \checkmark
Caso: $d = 10a - 15 = -5$ \iff $a = 1$ \checkmark
Caso: $d = 10a - 15 = 25$ \iff $a = 4$ \checkmark
Caso: $d = 10a - 15 = -25$ \iff $a = -1$ \checkmark

Los valores de $a \in \mathbb{Z}$ que cumplen \bigstar^2 son $\{-1, 1, 2, 4\}$. Voy a evaluar y así encontrar para cual de ellos se cumple \bigstar^1 , es decir que el númerador sea un múltiplo del denominador para el valor de a usado.

$$\begin{cases} d = 5 & a = 2 \\ d = -5 & a = 1 \end{cases} \Rightarrow 4 \cdot 2^2 - 13 \cdot 2 + 8 = -2 \Rightarrow 5 \not / -2$$

$$\begin{cases} d = 5 & a = 1 \\ d = -5 & a = 1 \end{cases} \Rightarrow 4 \cdot 1^2 - 13 \cdot 1 + 8 = 1 \Rightarrow -5 \not / 1$$

$$\begin{cases} d = 25 & a = 4 \\ d = -25 & a = -1 \end{cases} \Rightarrow 4 \cdot 4^2 - 13 \cdot 4 + 8 = 4 \Rightarrow 25 \not / 4$$

$$\begin{cases} d = 25 & a = 4 \\ d = -25 & a = -1 \end{cases} \Rightarrow 4 \cdot (-1)^2 - 13 \cdot (-1) + 8 = 25 \Rightarrow -25 \mid 25 \end{cases} \checkmark$$

El único valor de $a \in \mathbb{Z}$ que cumple lo pedido es a = -1

Notas extras sobre el ejercicio:

Para a = -1 se obtiene $\frac{2a-1}{5} - \frac{a-1}{2a-3} = -1$. Más aún, si hubiese encarado el ejercicio con tablas de restos para ver si lo de arriba es divisible por los divisores en \star^3 , calcularía:

$$r_5(4a^2 - 13a + 8)$$
 y $r_{25}(4a^2 - 13a + 8)$

$$r_5(4a^2 - 13a + 8) = 0 \Leftrightarrow \begin{cases} a \equiv 3 \ (5) \\ a \equiv 4 \equiv -1 \ (5) \end{cases} \quad \text{y} \quad r_{25}(4a^2 - 13a + 8) = 0 \Leftrightarrow \begin{cases} a \equiv 23 \ (25) \\ a \equiv 24 \equiv -1 \ (25) \end{cases}$$

Se puede ver también así que el único valor de $a \in \mathbb{Z}$, que cumple \bigstar^1 es a = -1