The discrete-time filtering system shown in **Figure 6.68** comprises an A/D converter sampling at rate f_1 , a discrete-time filter with frequency response $H(\omega)$ and an ideal D/A converter reconstructing at rate f_2 . Ideal means that the converter contains an ideal lowpass

reconstruction filter with a bandwidth of πf_2 and a gain of $1/f_2$. The spectrum of the input, $X(\Omega)$, is shown in **Figure 6.68**. Provide a fully labeled sketch of $X(\omega)$, $Y(\omega)$ and $Y(\Omega)$ for each of the following cases:

Figure 6.68

Ω= 27. 2000

(a)
$$f_1 = f_2 = 4000 \text{ Hz}.$$

$$Y(\omega)$$

(b) $f_1 = f_2 = 2000 \text{ Hz}.$

$$Y(\omega)$$

(c) $f_1 = 4000 \text{ Hz}, f_2 = 2000 \text{ Hz}.$

 $Y(\omega)$

(d) $f_1 = 2000 \text{ Hz}, f_2 = 4000 \text{ Hz}.$

Given the discrete-time filtering system of **Figure 6.68** with $x(t) = \cos 2\pi \cdot 1000t$, provide a fully labeled sketch of $X(\omega)$, $Y(\omega)$ and $Y(\Omega)$ and find y(t) for each of the following cases:

(a)
$$f_1 = f_2 = 4000$$
Hz.

$$\times(\omega)$$

(b) $f_1 = f_2 = 2000 \text{ Hz}.$

(c)
$$f_1 = f_2 = 1333 \text{ Hz}$$

$$X(\omega)$$

$$Y(\omega)$$

$$Y(\Omega)$$

(d) $f_1 = f_2 = 1000 \text{ Hz}.$

$$\times (\omega)$$

 $Y(\omega)$

The discrete-time filtering system shown in **Figure 6.70** comprises an A/D converter sampling at rate f_1 , a discrete-time filter with frequency response $H(\omega)$, a resampler that resamples at rate D:U and an ideal D/A converter at rate f_2 . "Ideal" means that the converter contains an ideal lowpass reconstruction filter with a bandwidth of πf_2 and a gain of $1/f_2$. Assume that the resampler is ideal (upsample by padding y[n] with U-1 zeros, discrete-time filter with gain of U and bandwidth of $\pi/\max(U,D)$, downsample at D, tossing D-1 points). The spectrum of the input, $X(\Omega)$, is shown in the lower panel of the figure. For each of the following parts, plot the spectra $X(\omega)$, $Y(\omega)$, $Z(\omega)$ and $Z(\Omega)$.

Figure 6.70

(a)
$$f_1 = 2000 \text{ Hz}$$
, $f_2 = 1000 \text{ Hz}$, $U = 1$, $D = 2$.

 $2(\Omega)$

(b) $f_1 = 2000 \text{ Hz}, f_2 = 4000 \text{ Hz}, U = 2, D = 1$

The discrete-time filtering system shown in **Figure 6.70** comprises an A/D converter sampling at rate $f_1 = 6000$ Hz, a filter with frequency response $H(\omega)$, as shown in the figure, a 2:1 downsampler and an ideal D/A converter reconstructing at rate $f_2 = 3000$ Hz. The input is $x(t) = 1 + \cos(2\pi \cdot 1000t) + \cos(2\pi \cdot 2000t)$. Provide a fully labeled sketch of $X(\omega)$, $Y(\omega)$, $Z(\omega)$ and $Z(\Omega)$.

$$\cos \alpha + \cos \beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

A discrete-time filtering system comprises an A/D converter sampling at rate f_1 , decimation by a factor of D such that y[n] = x[Dn], a discrete-time filter with frequency response $H(\omega)$ and bandwidth $3\pi/4$ and an ideal D/A converter operating at rate f_2 , as shown in **Figure 6.72**. The "ideal" D/A converter contains an ideal lowpass reconstruction filter with a bandwidth of πf_2 and a gain of $1/f_2$. The input to the system is $x(t) = \cos(2\pi \cdot 1000t)$. For each of the following parts, make a detailed, accurate sketch of $X(\omega)$, $Y(\omega)$, $Z(\omega)$ and $Z(\Omega)$ and find z(t).

Figure 6.72

(a)
$$f_1 = 8 \text{ kHz}, f_2 = 4 \text{ kHz}, D = 2.$$

$$X(\Omega)$$

 $Z(t) = 2\cos(2\pi.1000t)$

(b) $f_1 = 4 \text{ kHz}, f_2 = 2/3 \text{ kHz}, D = 6.$

 $X(\omega)$

A discrete-time demodulator shown in **Figure 6.74** comprises an A/D converter sampling at rate f_1 , a discrete-time filter with response $H(\omega)$ and an ideal D/A converter reconstructing at rate f_2 . The A/D converter has no anti-aliasing filter in it, so frequencies in the input greater than $2f_1$ are not attenuated. Given that the analog signal has an input spectrum, $X(\Omega)$, shown in the figure, with $\Omega_b = 2\pi \cdot 2$ kHz and $\Omega_c = 2\pi \cdot 10$ kHz, design a system such that the output spectrum of the analog signal is $Y(\Omega)$.

➤ Hint: Think "undersampling."

Figure 6.74

f2= 10 K Hz 277.2000 -271.2000