6. Übungsblatt zu "Analysis I" Wintersemester 2022/23

Abgabetermin: Sonntag, 27.11.2022, 24.00 Uhr

Aufgabe 1: (2+4=6 Punkte)

- a) Sei a>0 und $k\in\mathbb{N}$. Zeigen Sie, dass die Gleichung $x^k=a$ genau eine Lösung hat falls k ungerade ist und genau zwei Lösungen hat falls k gerade ist.
- **b)** Zeigen Sie für alle x, y > 0 und $r, s \in \mathbb{Q}$
 - (i) $x^r x^s = x^{r+s}$
 - (ii) $(x^r)^s = x^{rs}$

Hinweis: Sie können folgende Potenzgesetze für natürliche Exponenten verwenden: Für alle x, y > 0 und $n, m \in \mathbb{N}$ gilt

(1)
$$x^n y^n = (xy)^n$$
, (2) $x^n x^m = x^{n+m}$, (3) $(x^n)^m = x^{nm}$

Aufgabe 2: (2+2=4 Punkte)

Seien a, b > 0 und $n \in \mathbb{N}$. Beweisen Sie die Ungleichungen

$$\sqrt[n]{a+b} \le \sqrt[n]{a} + \sqrt[n]{b}, \qquad |\sqrt[n]{a} - \sqrt[n]{b}| \le \sqrt[n]{|a-b|}.$$

Hinweis: Sie können stets verwenden, dass für 0 < x, y und $n \in \mathbb{N}$ gilt $x < y \Leftrightarrow x^n < y^n$ Aufgabe 3 (2+4=6) Punkte)

a) Sei $(a_n)_n$ eine Folge mit $a_n \geq 0$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} a_n = a$. Zeigen Sie

$$\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{a}.$$

b) Sei a > 0. Zeigen Sie

$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$

Hinweis: Betrachten Sie zunächst den Fall $a \ge 1$.

Aufgabe 4: (1+1+1+1=4 Punkte)

Es seien $z, w \in \mathbb{C}$. Zeigen Sie

- a) $\overline{z+w} = \overline{z} + \overline{w}$, b) $\overline{zw} = (\overline{z})(\overline{w})$, c) $|z+w| \le |z| + |w|$, d) $|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2)$.