Visión por Computadora I

Ing. Maxim Dorogov
(mdorogov@fi.uba.ar)

Laboratorio de Sistemas Embebidos -FIUBA

FILTROS LINEALES

- A diferencia de los operadores de pixeles los filtros utilizan varios pixeles de la imagen original para computar 1 pixel en la imagen de salida (operadores de vecindad)
- Los ajustes adaptativos de histograma o códigos LBP son ejemplos de operadores de vecindad (se utiliza el valor de los píxeles vecinos para determinar el valor de salida del píxel en cuestión)
- Se pueden aplicar filtros a imágenes de manera de:
 - 1. Agregar suavizados
 - Remarcar detalles
 - 3. Acentuar bordes
 - 4. Remover ruido
 - Resaltar características para su posterior procesamiento.
- A continuación vamos a ver el caso de Operadores Lineales.

$$I'(u,v) \leftarrow \sum_{(i,j) \in R_H} I(u+i,v+j) \cdot H(i,j), \quad \rightarrow I' = f \otimes h$$

H(k, l): Kernel, máscara, coef. filtro, núcleo \otimes : Operador correlación.

FILTROS LINEALES

Conceptos generales:

- Consideramos al punto central del filtro como origen (0, 0). (Los filtros generalmente son impares)
- Desplazamos el filtro a lo largo y ancho de la imagen y multiplicamos los coeficientes punto a punto, sumamos y obtenemos el valor del pixel en la posición (u,v) de la imagen de salida.
- La imagen de salida resulta mas chica que la imagen original.
- Definimos:
 - Stride: Numero de pixeles que desplazo el filtro en X como en Y.
 - **Padding:** Agregado de pixeles en los bordes de la imagen original para preservar las dimensiones en la imagen de salida.
 - Ganancia: Es la suma de todos los coeficientes. Vamos a buscar siempre filtros de ganancia unitaria para evitar la saturación de luminancia.

$$H = \begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \frac{1}{9} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Correlación con k(x,y)

Convolución con k'(x,y)

$$\frac{1}{9} \cdot \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \frac{1}{57} \cdot \begin{bmatrix} 0 & 1 & 2 & 1 & 0 \\ 1 & 3 & 5 & 3 & 1 \\ 2 & 5 & 9 & 5 & 2 \\ 1 & 3 & 5 & 3 & 1 \\ 0 & 1 & 2 & 1 & 0 \end{bmatrix} \quad \frac{1}{16} \cdot \begin{bmatrix} 0 & 0 - 1 & 0 & 0 \\ 0 - 1 - 2 - 1 & 0 \\ -1 - 2 & 16 - 2 - 1 \\ 0 - 1 - 2 - 1 & 0 \\ 0 & 0 - 1 & 0 & 0 \end{bmatrix}$$

FILTROS LINEALES

• Una variante de la fórmula es invertir los offsets sobre I(i,j)

$$\begin{split} I'(u,v) &= \sum_{(i,j) \in R_H} I(u-i,v-j) \cdot H(i,j) \\ &= \sum_{(i,j) \in R_H} I(u+i,v+j) \cdot H(-i,-j) \\ &= \sum_{(i,j) \in R_H} I(u+i,v+j) \cdot H^*(i,j). \end{split}$$

Esto se escribe como

$$I' = I * H$$

Donde * es el operador convolución

• ¿Por qué rotamos el núcleo?.

Porque si lo convolucionamos con la señal impulso:

 $\delta(i=0,j=0)=1$ (y cero para cualquier otro caso) resulta $h*\delta=h$

Ejemplo:

$$h(n) = [-1,0,1]; \ \delta(n) = 1$$

$$h'(n) = [1,0,-1] \rightarrow g(n) = h' \otimes \delta = [-1,0,1] = h = h * \delta$$

Esto parece trivial si ya conocemos los coeficientes del filtro pero tiene su aplicación en identificación de sistemas lineales.

• ¿Qué pasa si el núcleo es simétrico?

FILTROS LINEALES

Propiedades de la convolución:

1. Conmutativa:

$$h * f = f * h$$

2. Lineal:

$$s \cdot (f * h) = f * (s \cdot h) = (s \cdot f) * h$$

3. Asociativa

$$f * (h_1 * h_2) = (f * h_1) * h_2$$

4. Invariante en el tiempo (o a desplazamientos para el caso de imágenes):

$$f[u-d, v-d] * h = (f * h)[u-d, v-d]$$

 Una diferencia importante entre correlación y convolución es que la primera no es asociativa para operaciones con imágenes.

EJEMPLOS DE NÚCLEOS TÍPICOS

- Algunos ejemplos de núcleos (Kernels) típicos:
- Enfoque: $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$ Desenfoque: $\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Repujado: $\begin{bmatrix} -2 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$
- $LoG: \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ Sharpen: $\begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ -1 & -2 & 1 \end{bmatrix}$ Gauss: $\frac{1}{121} \begin{bmatrix} 1 & 2 & 3 & 2 & 1 \\ 2 & 7 & 11 & 7 & 2 \\ 3 & 11 & 17 & 11 & 3 \\ 2 & 7 & 11 & 7 & 2 \\ 1 & 2 & 3 & 2 & 1 \end{bmatrix}$
- Sobel: $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$ Prewitt y: $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$ Prewitt x: $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$
- La suma de los filtros debe dar 'l' para que la respuesta del filtro no tenga efecto en regiones homogéneas
- Sobel y Prewitt se utilizan para la detección de bordes.
- Sobel y Prewitt son a su vez ejemplos de filtros pasa alto, direccionables.

LOG (LAPLACIANO DEL GAUSSIANO)

· Podemos definir matemáticamente el Laplaciano como

$$\nabla^{2} = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}$$

$$\frac{\partial^{2}}{\partial x^{2}} = f(x+1) + f(x-1) - 2f(x) \rightarrow kernel \ x: \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$$

$$\frac{\partial^{2}}{\partial y^{2}} = f(y+1) + f(y-1) - 2f(y) \rightarrow kernel \ y: \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

- Detecta los cruces por cero (cambio de signo)
- No usa dos núcleos con orientaciones distintas (como Prewitt, Sobel) y pierde información de orientación
- Es isotrópico→ magnitud de borde uniforme en toda dirección
- Es muy sensible al ruido

Para reducir el ruido se le puede aplicar $\underline{previamente}$ un filtro gaussiano a la imagen, o...hacerlo en un solo paso!

$$abla^2(f*g)=f*
abla^2(g) o Convolución con el Laplaciano de la Gaussiana$$

Matemáticamente,
$$LoG(x,y) = \frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2}\right] e^{-\frac{x^2 + y^2}{2\sigma^2}}...$$
y podemos muestrear...

0	1	1	2	2	2	1	1	0
1	2	4	5	5	ю	4	2	1
1	4	5	3	0	3	5	4	1
2	5	э	-12	-24	-12	Э	5	2
2	5	0	-24	-40	-24	0	5	2
2	5	э	-12	-24	-12	Э	5	2
1	4	5	3	0	3	5	4	1
1	2	4	5	5	5	4	2	1
0	1	1	2	2	2	1	1	0

FILTROS SEPARABLES

- La convolución con un núcleo implica procesar por cada píxel K² operaciones de multiplicación+suma donde K es el tamaño del núcleo (NxM)
- Esto puede acelerarse realizando primero una convolución unidimensional horizontal seguida de una convolución unidimensional vertical. Requiriendo así 2K operaciones.
- Un núcleo que permita hacer esto se dice ser <u>separable</u>
- Un núcleo K "separable", es decir corresponda a una convolución sucesiva de un núcleo horizontal h y un núcleo vertical v debe cumplir:

$$\mathbf{K} = vh^t$$

Ejemplos:

- Filtros de suavizado: $\frac{1}{3}\begin{bmatrix}1\\1\\1\end{bmatrix} * \frac{1}{3}[1 \quad 1 \quad 1] = \frac{1}{9}\begin{bmatrix}1 & 1 & 1\\1 & 1 & 1\\1 & 1 & 1\end{bmatrix}$
- Filtro Gaussiano: $\frac{1}{4}\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ $\frac{1}{4}[1 \ 2 \ 1] = \frac{1}{16}\begin{bmatrix} 1 \ 2 \ 1\\2 \ 4 \ 2\\1 \ 2 \ 1 \end{bmatrix}$
- Sobel (vale para Prewitt): $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$
- Los filtros Laplacianos también pueden ser implementados como filtros separables.

¿Cómo sabemos si un filtro es separable?

- Por inspección
- Tratar al núcleo K como matriz y tomar su descomposición en valores singulares (SVD): $K = \sum_i \sigma_i \mu_i v_i^T$
 - Si solo el primer valor singular σ_0 es distinto de cero, entonces el kernel es separable y $\sqrt{\sigma_0} \mu_0$ y $\sqrt{\sigma_0} v_0^T$ son los kernels verticales y horizontales respectivamente.

EFECTO DE BORDES (PADDING)

- ¿Qué pasa en los bordes de la imagen?
- Opciones:
- 1. Cero: establecer todos los píxeles fuera de la imagen de origen en 0
- Constante (color del borde): establece todos los píxeles fuera de la imagen de origen en un valor de borde especificado
- 3. **Replicado (clamp):** repetir los píxeles del borde indefinidamente;
- 4. Envolver (cíclica) (repetición o mosaico): bucle "alrededor" de la imagen en una configuración "toroidal";
- 5. **Espejo:** reflejar píxeles en el borde de la imagen;
- 6. **Extender:** extiende la señal restando la versión reflejada de la señal del valor de píxel de borde.

EJEMPLO

- En los ejemplos de la derecha el tipo de datos de salida es cv.CV_8U. Pero hay un problema:
 - La transición de negro a blanco (pendiente positiva) tiene un valor positivo.
 - Transición de blanco a negro (pendiente negativa) tiene valor negativo.
- Cuando se convierte datos a UINT8, todas las pendientes negativas se hacen cero. En palabras simples, echas de menos esa ventaja.
- Si se desea detectar ambos bordes, la mejor opción es mantener el tipo de datos de salida en algunas formas superiores, como cv.CV_16S, cv.CV_64F, etc., tomar su valor absoluto y luego volver a convertirlo en cv.CV_8U.

UNSHARP MASKING

- Es un algoritmo que tiene enfocar o mejorar los bordes con un filtro de suavizado
 - Desenfoque de la imagen con un filtro suavizador (ej. Gaussiano)

$$f(x,y) \to f_B(x,y)$$

2. Resta de la imagen original con la suavizada (sobreviven componentes de alta frecuencia)

$$m(x,y) = f(x,y) - f_B(x,y)$$

3. Agregar esa máscara a la imagen original (realce de las componentes de alta frecuencia)

$$g(x,y) = f(x,y) + k. m(x,y)$$

De manera genérica:

$$g(x,y) = (k+1).f(x,y) - k.f_B(x,y)$$

k = 1: Máscara de desenfoque (unsharp masking)

k > 1: Filtrado de alto impulso (highboost filtering)

DOG (DIFFERENCE OF GAUSSIAN)

- De los filtros de suavizado Gaussianos sabemos que el desvío estándar incide directamente en el grado de suavizado.
 - A mayor sigma mayor nivel de desenfoque
- Por lo tanto si utilizamos dos sigma distintos y aplicamos el suavizado a una misma imagen para después restar las salidas esto actuará como un filtro pasabanda

$$DoG = Gauss_{low_{sigma}} - Gauss_{high_{sigma}}$$

FILTROS NO LINEALES

Realizan operaciones no lineales entre pixeles vecinos para obtener el pixel de salida. Dentro de esta familia los utilizados mas frecuentemente son:

Filtros de mínima y máxima

$$I'(u,v) = \min_{(i,j) \in R} \left\{ I(u+i,v+j) \right\}$$

$$I'(u,v) = \max_{(i,j) \in R} \left\{ I(u+i,v+j) \right\}$$

• Filtro de Mediana

$$I'(u,v) = \underset{(i,j) \in R}{\operatorname{median}} \{ I(u+i,v+j) \}$$

Para el caso en que el num. de elementos sea par se toma el promedio de los dos centrales generando así un nivel de intensidad nuevo que no estaba presente en la imagen.

• <u>Filtro de Mediana ponderada</u>

Se multiplica la región por una ventana de pesos, generalmente ponderando los pixeles centrales.

Fig. 1: Ejemplo de un filtro de mediana clásico

Fig. 2: Ejemplo de un filtro de mediana ponderada

FILTROS NO LINEALES

Fig. 1: Imagen con ruido Salt & Pepper

Fig.3: Filtrado con filtro de mínima (izquierda) y máxima (derecha)

Fig.2: Filtrado con desenfoque uniforme

$$W = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

[11]/9

Original con ruido

Filtro media 5x5

Filtro mediana 5x5

FILTROS DE RUIDO IMPULSIVO

- Ruido impulsivo: Salt & Pepper
 - Media: Valor Promedio
 - Mediana: Valor medio del conjunto ordenado
 - Moda: Valor más repetido

• Moda: Valor más repetido
• Ej:
$$\begin{bmatrix} 1 & 9 & 5 \\ 6 & 9 & 8 \\ 4 & 10 & 3 \end{bmatrix} \rightarrow Media: \mathbf{6}, \mathbf{1} / Mediana: \mathbf{6} / Moda: \mathbf{9}$$

- Media: (1+9+5+6+9+8+4+10+3)/9
- Mediana: [1;3;4;5;6;8;9;9;10] / Moda: 9

FILTROS BILATERALES

Peso de

rango

- Filtros de suavizado como Promedio, Mediana, Gaussiana.
 - 1. Útiles para eliminar distintos tipos de ruido
 - 2. También desenfocan los bordes!
- Las imágenes (como cualquier función) tienen:
 - Dominio: Todas las posiciones posibles
 - Rango: Todos los valores posibles
- Los filtros de Mediana, Gaussiana, etc son filtros de dominio.

$$\mathbf{Ej:} \begin{bmatrix} 0 \\ 0 \\ 10 \\ 0 \end{bmatrix} * \frac{1}{16} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 10 \\ 0 & 4 & 0 \\ 10 & 0 & 0 \end{bmatrix} \rightarrow$$

Cambio del píxel central

Veamos cómo se ve un suavizado Gaussiano

$$G_B[I]_p = \sum_{q \in S} G_{\sigma}(\|p - q\|) I_q; \quad \sigma: Par\'{a}metro \ espacial$$

• Con una modificación lo transformamos en un filtro bilateral

$$BF[I]_{p} = \frac{1}{W_{p}} \sum_{q \in S} G_{\sigma S}(\|p - q\|) \cdot G_{\sigma r}(|I_{p} - I_{q}|)I_{q}$$

$$W_{p} = \sum_{q \in S} G_{\sigma S}(\|p - q\|) \cdot G_{\sigma r}(|I_{p} - I_{q}|)$$

FOURIER

- La transformada de Fourier se utiliza:
 - Para analizar el comportamiento en frecuencia de sistemas y señales.
 - En imágenes (2D DFT), para encontrar las componentes de frecuencia. El algoritmo que implementa esto de forma eficiente es la Fast Fourier Transform (FFT).

$$H(k) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} h(x)e^{-j\frac{2\pi kx}{N}}; vale \ \forall \ k, pero \ solo \ tiene \ sentido \ en \ k \in \left[-\frac{N}{2}, \frac{N}{2}\right]$$

• $DFT \rightarrow N^2$ operaciones; $FFT \rightarrow Nlog_2N$

Para 2 dimensiones nos queda:

$$G(m,n) = \frac{1}{\sqrt{MN}} \cdot \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} g(u,v) \cdot e^{-\mathrm{i}2\pi \frac{mu}{M}} \cdot e^{-\mathrm{i}2\pi \frac{nv}{N}}$$

¿Dónde es que varía fuertemente la intensidad en imágenes?

- 1. En bordes
- 2. En donde hay ruido
- Por lo tanto, bordes y ruido son componentes de alta frecuencia.
- Algunas propiedades:

$$f_1(x) + f_2(x) \rightarrow F_1(w) + F_2(w)$$

$$f(-\chi) \to F^*(w)$$

$$f(x) * h(x) \rightarrow F(w)H(w)$$

$$f(x) \otimes h(x) \to F(w)H^*(w)$$

$$f(x)h(x) \to F(w) * H(w)$$

$$f(ax) \to \frac{1}{a} F\left(\frac{w}{a}\right)$$

$$f'(x) \to jwF(w)$$

Original

Magnitud del espectro

Máscara

Transformada inversa

FOURIER: APLICACIONES

Trabajar en el dominio de la frecuencia espacial permite resolver problemas de forma sencilla que serian muy complejos si solo usamos la imagen original.

- 1. Transformamos la imagen al dominio de frecuencia espacial.
- 2. Detectamos las componentes que corresponden con el patrón de impresión.
- 3. Aplicamos una mascara binaria para eliminar esas componentes de la escena
- Hacemos la transformada inversa para volver al dominio original

DETECTOR DE BORDES DE CANNY

- Algoritmo desarrollado por John F. Canny en 1986Consta de varias etapas:
 - 1. Reducción de ruido
 - Canny usa un filtro Gaussiano, en general de 5x5

$$H_{i,j} = \frac{1}{2\pi\sigma^2} e^{-\frac{(i-(k+1))^2+(j-(k+1))^2}{2\sigma^2}} \quad \forall \ 1 \le i,j \le (2k+1)$$

- 2. Encontrar el gradiente de intensidad de la imagen
 - Se puede utilizar un operador de Sobel (filtro direccionable) y obtener Gx, Gy. Luego,

$$G = \sqrt{G_x^2 + G_y^2}$$
: Magnitud $\Theta = \operatorname{atan}\left(\frac{G_y}{G_x}\right)$: Dirección

- 3. Supresión de no-máximos
 - Técnica de adelgazamiento de bordes. Se verifica para cada píxel si hay un máximo local vecino en la dirección del gradiente o no. Si es un máximo local se retiene, sino se elimina.
 - 1. Los vecinos estarán a $0^{\circ},45^{\circ},90^{\circ},135^{\circ} \rightarrow los$ valores del gradiente tienen que redondearse a esos rangos.
 - 2. Una vez definida la dirección:

$$Si A > C \land A > B \Rightarrow Se \ retiene \ A, caso \ contrario \ se \ suprime$$

- 4. Umbral con histéresis
 - Del paso anterior se obtendrán distintos bordes, algunos más brillantes que otros. Para saber cuáles son bordes reales y cuales no, Canny usa histéresis. Se definen dos umbrales: Alto y Bajo
 - 1. Cualquier borde con intensidad mayor que 'Alto' es borde seguro, se retiene
 - 2. Cualquier borde con intensidad menor que 'Bajo' no es borde, se descarta
 - Los bordes entre los umbrales 'Alto' y 'Bajo' se clasifican como bordes solo si están conectados a un borde seguro, de otro modo se descarta.

TP2 - CLASE 3

- Implementar la función create_gauss_filter(h, w, k_size, sigma) para crear filtros gaussianos para filtrado espectral. Debe retornar un filtro gaussiano de tamaño HxW en dominio espacial y su transformada de Fourier.
 - 1. Graficar ambas representaciones para diferentes tamaños de kernel y sigma. Aplicar el filtro una imagen para validar el funcionamiento en el dominio espectral.
 - 2. Comparar el resultado de hacer un filtrado por convolución con el mismo kernel.
- Para la imagen suministrada "metal grid". Implementar un algoritmo que:
 - 1. Calcule los gradientes en la imagen (dirección y módulo)
 - 2. Muestre imágenes de ángulo y módulo
 - 3. Marque con colores las direcciones de gradientes más representativos.

