Sustainable Energy Transformation Technologies, SH2706

Lecture No 1

Title:

Part I: Preliminaries

Henryk Anglart
Nuclear Engineering Division
Department of Physics, School of Engineering Sciences
KTH
Autumn 2022

Outline of the Lecture

- Objectives of the course
 - Contents and main topics
 - Expected learning outcome
- Conventions and standards
 - Units
 - Notation
 - Auxiliary data
- Sustainable energy transformation
 - Where are we now?
 - What are the major issues?

Objectives of the course

Main topics

- Energy supply and needs today
- Energy resources available to humans
- Energy degradation (exergy destruction)
- Energy transformation technologies to extract useful work
- Environmental and economic aspects of energy transformation

Expected learning outcomes

- Explain current energy supply and needs issues
- Explain what energy resources are available
- Explain and analyse energy degradation paths
- Explain and analyse energy transformation technologies
- Reflect on energy transformation sustainability

Conventions and Standards

Units

- SI units (new from 2019)
- Conversion factors

Notation

- compromise between physics, thermodynamics, fluid mechanics, and heat transfer
- provided list of symbols

Auxiliary data

- isotope data
- steam-water properties

Energy

- Energy (lat. energi'a, gr. ενεργεια: action, drive) is an abstract concept, that can be traced back to Galileo Galilei time
- The concept has been further developed in XIX century, where several naturally occurring phenomena, such relationships between work, heat and motion, could be explained
- One of the fundamental observations was that of the energy preservation and impossibility of destroying or creation of it
- However, energy can be used when one form of energy is transformed into another one (or several other forms)

Energy

- Energy (E) is frequently defined as the ability to do work
- In physics, energy is a quantitative property that must be transferred to an object by doing a work on this object or by heating the object
 - thus work and heat are energy forms in transition
- Energy is a conserved quantity: the law of energy conservation states that energy cannot be created or destroyed; it can only be transformed from one form to another
 - for example, in a conservative mechanical system the total energy is conserved and consists of the kinetic and the potential energy, which can be transformed to each other

Energy Forms

- In physics we distinguish various forms of energy of macroscopic systems:
 - Internal energy
 - potential energy
 - kinetic energy
- Depending where in matter the energy is located, we distinguish:
 - chemical energy (located in atoms and/or molecules)
 - nuclear energy (located in nuclei)
- Primary versus secondary energy
 - primary energy: as present in the natural environment
 - secondary energy: various forms of energy as transformed

Energy Transformations

- Energy transformation is a process in which energy changes its form from one to another; e.g. from kinetic to thermal energy
- Certain energy transformations can be complete:
 - for example, the kinetic energy of a certain object moving with a given velocity and colliding with a stationary wall is completely transformed into heat
- However, there are energy transformations in which only limited amount of energy can be transformed from one form to another:
 - internal energy cannot be completely transformed into mechanical energy

- The SI unit of energy is joule, where 1 J = 1 newton x 1 meter = 1 kg m² s⁻²
- For practical purposes, more energy units are in use
- Depending on the application, we can distinguish energy units applicable to:
 - microscales (energies relevant to nuclear and atomic/molecular scales)
 - mesoscales (energies relevant to a human scale)
 - macroscales (energies relevant to a whole country or the whole world)

Nuclear and Atomic Physics

- 1 electron volt = 1 eV = 1.60219×10^{-19} J = 0.160219 attojoule (aJ)
- 1 MeV = 10⁶ eV
- Due to mass and energy equivalence, the energy can be expressed in mass units, and vice-versa
- 1 atomic mass unit = 1 amu = 1 u = $1.6605389 \times 10^{-27}$ kg = 931.494043 MeV/c²

Mesoscales

- 1 cal = 4.1870 J
- 1 Btu = 1.054350×10^3 J
- 1 kWh = 3.60 MJ (megajoule)
- 1 erg = 10^{-7} J = 10 μ J (microjoule)
- 1 MWd = 86.40 GJ (gigajoule)

Macroscales, fuel-oriented

- 1 tonne of oil equivalent = 1 toe = 11.63 MWh = 41.868
 GJ
- 1 barrel of oil equivalent = 1 boe = 0.1364 toe
- 1 tonne of coal equivalent = 1 tce = 0.70 toe
- 1 Ttoe = 1 tera toe = 10^{12} toe
- 1 Ptoe = 1 peta toe = 10^{15} toe
- 1 MWd = 86.4 GJ
 - Note: sometimes, when converting fuel-oriented units into electrical units (e.g. toe into MWh), an average efficiency of thermal generating units is applied. For example, with the efficiency 39%, 1 toe = 11.63 x 0.39 MWh = 4.5357 MWh. To avoid confusion, one should use MWh_e for the "electrical" energy

 Appendix E contains Tables with Energy Conversion Factors. Example below shows Table E.12. In particular, we note that 1 toe = 1.163e4 kWh = 11.63 MWh

Table E.12 Energy Conversion Factors at Mesoscale

$\downarrow \times \searrow = \rightarrow^a$	kJ	BTU	kWh	toe	tce
kJ^b	1	0.9478	2.778×10^{-4}	2.388×10^{-8}	3.4123×10^{-8}
BTU^c	1.055	1	2.931×10^{-4}	2.519×10^{-8}	3.600×10^{-8}
kWh^d	3600	3.412×10^{3}	1	8.597×10^{-5}	1.228×10^{-4}
toe^e	4.1868×10^{7}	3.9682×10^7	1.163×10^4	1	1.429
tce^f	2.93076×10^7	2.7780×10^7	8.141×10^{3}	0.7000	1

^a See Table E.5 for explanation.

^b A kilojoule (kJ) is equal to 1000 J.

^c A British Thermal Unit (BTU) was originally defined as the amount of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at a constant pressure of one atmosphere.

^d A kilowatt-hour (kWh) is equal to 3.6 GJ.

^e A ton of oil equivalent (toe) is defined by the International Energy Agency to be equal to 41.868 GJ.

^f A ton of coal equivalent (tce) is defined by the International Energy Agency to be equal to 29.3076 GJ.

Sustainable energy transformation

- Current status
 - Statistical data on energy supply and usage
- Sustainability goals

World Energy Supply

- By energy supply we mean extraction of the primary energy and its transformation into energy forms that are suitable for final usage
- By energy usage we mean transformation of useful (or secondary) energy into energy services (e.g. illumination, warm housing, food, transportation)

Energy Supply Chain

- Primary energy
 - crude oil, coal, uranium
- Transformation of the primary energy
 - refinery, power plant
- Energy forms proper for final use
 - fuel oil, electricity
- Energy usage
 - boiler, refrigerator, stove, electric motor, car
- Energy services
 - warm housing, food, clothes, goods, transportation

Key World Energy Statistics

Total Energy Supply

- TES Total Energy Supply is one of the key parameters given in statistics
- TES is made up of production + imports exports international marine bunkers – international aviation bunkers
- For the world total, international marine and aviation bunkers are not subtracted from TES

Total Energy Supply

World¹ TES from 1971 to 2018 by source (Mtoe)

1973

Other³

0.1%

Coal²

24.5%

Biofuels and

waste

10.5%

Vatura

gas

Hydro

1.8%_ Nuclear

0.9%

IEA Sankey Diagram

- Sankey can be accessed on: https://www.iea.org/Sankey/
- Can be used to visualize energy transformations for various regions/countries and energy sectors
- EXERCISE: use IEA Sankey diagram tool an arbitrary country and:
 - Plot the diagram of energy balance in 1975 and 2018
 - Plot the total final consumption versus time for time interval 1975 through 2018. Use units PJ and years on the plot axes
 - Make a similar plot for a fraction fossil fuels (%) used in transport

World Energy Balance

2015 (Mtoe)

Primary energy

Energy transformation

Energy consumption

World Energy Balance

2018 (Mtoe)

Sustainable Development

- Sustainability can be defined as a feature of a <u>process</u>
 <u>that can be maintained indefinitely</u> by replacing
 resources used with resources of equal or greater value
 without degrading the surrounding environment
- Sustainable development concept originates from ideas about sustainable forest management which were developed in Europe during the seventeenth and eighteenth centuries
- In September 2015, the United Nations
 General Assembly formally adopted the
 universal, integrated and transformative
 2030 Agenda for Sustainable Development

Sustainable Development

 Sustainable development (or sustainability) is often presented in terms of three pillars: the environment, the economy and the society

Environmental

(ecological) – including quality of air, water, food and shelter **Economic** – related to GDP (Gross Domestic Product) growth **Social** – including politics and culture

Sustainable Development Goals

A collection of 17 global goals set by United Nations Development Programme - Goal #7 concerns energy

Sustainable Energy

- Sustainable energy is energy that is consumed:
 - at insignificant rates compared to its supply
 - with manageable environmental effects
- Sustainable energy system should serve the needs of the present without compromising the ability of future generations to meet their energy needs
- Not all renewable energy (naturally replenished on human timescale) is sustainable:
 - sustainable energy must not compromise the system in which it
 is adopted to the point of being unable to provide for future need

R/P Ratio

- Reserve-to-production (R/P) ratio is calculated as a ratio of the reserves remaining at the end of any year divided by the production in that year
- Table 2.1 in Compendium contains R/P ratio for fossil fuels in 2018;
 - Oil 50
 - Natural gas 50.9
 - Coal (total) 132
- Similarly, Table 2.2 contains R/P ratio for uranium in 2017:
 - Uranium 291

Renewable Resources

- Renewable resources include:
 - Wind
 - Hydro (moving and stationary water with potential energy)
 - Solar
 - Bio
 - Geothermal
- All these resources have supply limits based on accessibility, economy, and needed raw materials

