

Analytical Geometry and Linear Algebra I, Lab 12

Affine Transformation
Bijection, injection and surjection

Video: formal definition

Affine Transformations

- * Combines linear transformations, and Translations
- * Properties
 - * Drigin does not necessarily map to origin

Formal definition

Classical representation:

$$\begin{bmatrix} x^* \\ y^* \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

System of equations representation:

$$\begin{cases} x^* = ax + by + x_0 \\ y^* = cx + dy + y_0 \end{cases}$$

Homogeneous representation:

$$\begin{bmatrix} x^* \\ y^* \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & x_0 \\ c & d & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Link to code + extra tasks

Affine Transformation

Properties

- *Collinearity between points*: three or more points which lie on the same line (called collinear points) continue to be collinear after the transformation.
- *Parallelism*: two or more lines which are parallel, continue to be parallel after the transformation.
- Convexity of sets: a convex set continues to be convex after the transformation.
 Moreover, the extreme points of the original set are mapped to the extreme points of the transformed set.
- Ratios of lengths of parallel line segments are the same after the transformation.

Video: formal definition

Projective Transformations

- * Combination of Affine transformations, and Projective warps
- * Properties!
 - * Origin does not necessarily map to origin
 - * Lines map to lines
 - * Parallel lines do not necessarily remain parallel

Task 1

Linear transformation of a real axis is given by f(x) = ax + b. (a) Find all fixed points of this transformation. (b) Find the transformation that is inverse for f.

Linear transformation of a real axis is given by f(x) = ax + b. (a) Find all fixed points of this transformation. (b) Find the transformation that is inverse for f.

Answer

(a) If $a \ne 1$ then there is one fixed point $x = \frac{b}{1-a}$; if a = 1 and b = 0 then all points are fixed; if a = 1 and $b \ne 0$ then there are no fixed points. (b) It exists only if $a \ne 0$: $x^* - b$

$$f(x^*) = \frac{x^* - b}{a}$$

An affine transformation is given by $x^* = 3x + 2y - 6$, $y^* = 4x - 3y + 1$. Find the images of (a) point M(-1; 5); (b) line 2x + 3y = 7.

An affine transformation is given by $x^* = 3x + 2y - 6$, $y^* = 4x - 3y + 1$. Find the images of (a) point M(-1; 5); (b) line 2x + 3y = 7.

- (a) (1; -18)
- (b) 18x 5y 6 = 0.

Two linear transformations of a real axis f and g are given by f(x) = ax + b, g(x) = cx + d. Find compositions of transformations fg and gf. What are the necessary and sufficient conditions for fg to be equal to gf?

Two linear transformations of a real axis f and g are given by f(x) = ax + b, g(x) = cx + d. Find compositions of transformations fg and gf. What are the necessary and sufficient conditions for fg to be equal to gf?

$$(fg)(x) = acx + ad + b; (gf)(x) = acx + bc + d; fg = gf \Leftrightarrow d(a-1) = b(c-1).$$

Injective and surjective (bijective)

$$\mathbb{R} \to \mathbb{R} : x \mapsto x$$
.

$$\mathbb{R}^+ \to \mathbb{R}^+ : x \mapsto x^2$$
, and thus also its inverse

$$\mathbb{R}^+ \to \mathbb{R}^+ : x \mapsto \sqrt{x}$$
..

Injective and non-surjective

$$\mathbb{R} \to \mathbb{R} : x \mapsto e^x$$
.

Non-injective and surjective

$$\mathbb{R} \to \mathbb{R} : x \mapsto x^3 - x$$
.

$$\mathbb{R} \to [-1,1]: x \mapsto \sin(x).$$

Non-injective and non-surjective

$$\mathbb{R} \to \mathbb{R} : x \mapsto \sin(x)$$
.

Bijection, injection and surjection

Injective and surjective (bijective)

$$\mathbb{R} \to \mathbb{R} : x \mapsto x$$
.

$$\mathbb{R}^+ \to \mathbb{R}^+ : x \mapsto x^2$$
, and thus also its inverse

$$\mathbb{R}^+ \to \mathbb{R}^+ : x \mapsto \sqrt{x}$$
..

Injective and non-surjective

$$\mathbb{R} \to \mathbb{R} : \mathbf{x} \mapsto \mathbf{e}^{\mathbf{x}}$$
.

Non-injective and surjective

$$\mathbb{R} \to \mathbb{R} : x \mapsto x^3 - x.$$

$$\mathbb{R} \rightarrow [-1, 1] : x \mapsto \sin(x)$$
.

Non-injective and non-surjective

$$\mathbb{R} \to \mathbb{R} : x \mapsto \sin(x)$$
.

Bijective

Injective-only

Surjective-only

General

Transformation of a plane is given by $x^* = x^2 - y^2$, $y^* = 2xy$. Is this transformation an (a) injection; (b) surjection; (c) bijection?

- (a): Not Injection. We can take 2 pairs (a, b), (-a, -b), which provides the same result
- (b): Surjection. Need to proof that it is a continuous function ()
- (c): Not Bijection. Because of (a)

In Computer Vision (CV)

$$\begin{bmatrix} \vec{y} \\ \mathbf{1} \end{bmatrix} = \left[\begin{array}{cc|c} A & \vec{b} \\ 0 & \dots & 0 \\ \end{array} \right] \left[\begin{matrix} \vec{x} \\ \mathbf{1} \end{matrix} \right]$$

is equivalent to the following

is equivalent to the following			
$ec{y} = A ec{x} + ec{b}.$			
Scale	$egin{bmatrix} c_x = 2 & 0 & 0 \ 0 & c_y = 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$		
Rotate	$\begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$	where $\theta=\frac{5}{6}=30^{\circ}$	
Shear	$\begin{bmatrix} 1 & c_x = 0.5 & 0 \\ c_y = 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$		

Transformation name	Affine matrix	Example
Identity (transform to original image)	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	***
Reflection	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	***

Video: intuition besides numbers 2D

Video

Applications

- Generation dataset for machine learning
- Camera calibration What Is Camera Calibration?
- Making panorama

Application in CV (1)

Point Features: how to build a panorama?

- Detect feature points in both images
- Find corresponding pairs

Affine Transformation

Application in CV (2)

SIFT features [Lowe et al., IJCV 2004]

- SIFT = Scale Invariant Feature Transform
 an approach for detecting and describing regions of interest in an image
- SIFT features are reasonably invariant to changes in: rotation, scaling, changes in viewpoint, illumination
- SIFT detector uses DoG kernel, SIFT descriptor is based on gradient orientations
- Very powerful in capturing + describing distinctive structure, but also computationally demanding

Main SIFT stages:

- 1. Extract keypoints + scale
- 2. Assign keypoint orientation
- 3. Generate keypoint descriptor

Find the image of an arbitrary point M which has position vector \mathbf{r} by the following transformations:

- (a) homothety with center $M_0(\mathbf{r}_0)$ and ratio $\lambda \neq 0$;
- (b) reflection across point $M_0(\mathbf{r}_0)$;
- (c) translation by vector **a**;
- (d) orthogonal projection onto the line $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$;
- (e) reflection across the line $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$;
- (f) dilation of factor $\lambda > 0$ from the line $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$.

(a)
$$r^* = r_0 + \lambda (r - r_0)$$
;
(b) $r^* = -r + 2r_0$;
(c) $r^* = r + a$;
(d) $r^* = r_0 + \frac{(r - r_0) \cdot a}{|a|^2} a$;
(e) $r^* = 2r_0 - r + 2\frac{(r - r_0) \cdot a}{|a|^2} a$;
(f) $r^* = \lambda r + (1 - \lambda)r_0 + (1 - \lambda)\frac{(r - r_0) \cdot a}{|a|^2} a$.

Find formulas for the following affine transformations:

- (a) orthogonal projection onto line x 3y + 1 = 0;
- (b) reflection across line 3x + 4y 1 = 0;
- (c) dilation from line x + y 2 = 0 of factor $\frac{1}{3}$;
- (d) dilation from line 2x y + 5 = 0 of factor 2.

Answer
(a)
$$x^* = \frac{9x + 3y - 1}{10}, y^* = \frac{3x + y + 3}{10};$$
(b) $x^* = \frac{7x - 24y + 6}{25}, y^* = -24x - 7y + 825;$
(c) $x^* = \frac{2x - y + 2}{3}, y^* = \frac{-x + 2y + 2}{3};$
(d) $x^* = \frac{9x - 2y + 10}{5}, y^* = \frac{-2x + 6y - 5}{5}.$

Find formulas for an affine mapping that transforms

- (a) points $A(\frac{3}{7}; 1)$, $B(1; \frac{1}{4})$, C(2; -1) into points $A^*(-4; 2)$, $B^*(-1; 6)$, $C^*(4; 13)$ respectively;
- (b) points A(0; 0), B(-1; 2), C(1; -2) into points $A^*(-1; -1)$, $B^*(0; 0)$, $C^*(1; 1)$ respectively;
- (c) points A(2; 0), B(3; -1), C(4; -2) into points A*(2; 1), B*(-2; -1), C*(-6; -3) respectively;
- (d) points A(-2; 0), B(2; -1), C(0; 4) into points $A^*(-2; 1)$, $B^*(2; 1)$, $C^*(0; 1)$ respectively.

- (a) $x^* = -4y$, $y^* = 7x 1$;
- (b) no solutions;
- (c) $x^* = px + (p + 4)y + 2 2p$, $y^* = qx + (q + 2)y + 1 2q$, where p and q are any real numbers;
- (d) no solutions (there exists a linear transformation that is not affine).

Find all invariant lines of an affine transformation given by

(a)
$$x^* = y$$
, $y^* = 1 - x$;

(b)
$$x^* = 2x + y - 3$$
, $y^* = -3x - y$;

(c)
$$x^* = 5x + 3y + 1$$
, $y^* = -3x - y$.

Find all invariant lines of an affine transformation given by

- (a) $x^* = y$, $y^* = 1 x$;
- (b) $x^* = 2x + y 3$, $y^* = -3x y$;
- (c) $x^* = 5x + 3y + 1$, $y^* = -3x y$.

- (a) no solutions;
- (b) x + y 3 = 0, 2x y + p = 0, where p can be any real number;
- (c) x + y + 1 = 0.

Reference material

- Bijection, injection and surjection (wiki)
- Affine transformation (wiki)
- The Math behind (most) 3D games Perspective Projection YouTube
- Affine transformations | Brilliant Math & Science Wiki
- OpenCV: Affine Transformations

