Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1.	(Currently Amended) An apparatus for detecting a heart sound of a living
subject, com	prising:
	a memory device which stores heart-sound characteristic information which is
characteristic	c of a heart sound of the subject;
	a heart sound sensor which is adapted to be worn on a body portion of the
subject that i	s distant from a chest of the subject and which detects, from the body portion, a
physical sign	nal containing a heart-sound-component and supplies the physical signal; and
	a pressure-pulse-wave sensor which is adapted to be worn on a limb of the
subject, dete	cts a pressure pulse wave which is produced from an artery of the limb and is
propagated fi	rom the artery to the pressure-pulse-wave sensor, and produces a pressure-pulse-
wave signal	representing the detected pressure pulse wave and containing a heart-sound
component;	and
	a heart-sound determining means for determining, based on the heart-sound
characteristic	c information stored in the memory device, the heart-sound component contained
in the physic	al-pressure-pulse-wave_signal.
2.	(Currently Amended) An apparatus according to claim 1, further comprising:
	a heart-sound microphone which is adapted to be worn on a chest of the
subject and d	letects, in advance, the heart sound of the subject; and
	a heart-sound characteristic-information obtaining means for obtaining the
heart-sound	characteristic information from the heart sound detected in advance by the heart-
sound micro	phone from the chest of the subject, wherein:

wherein the heart-sound characteristic-information obtaining means
obtains the heart-sound characteristic information eomprises-comprising a heart-sound
frequency range consisting of a plurality of frequencies which are predetermined by
subjecting, to a frequency analysis, the heart sound detected in advance by the heart-sound
microphone from the chest of the subject, and
<u>wherein</u> the heart-sound determining means extracts, comprises a first
heart-sound determining means for extracting from the physical-pressure-pulse-wave signal,
the heart-sound component having the plurality of frequencies of the heart-sound frequency
range.
3. (Currently Amended) An apparatus according to claim 1, <u>further comprising:</u>
a heart-sound microphone which is adapted to be worn on a chest of the
subject and detects, in advance, the heart sound of the subject; and
a heart-sound-characteristic-information obtaining means for obtaining the
heart-sound characteristic information from the heart sound detected in advance by the heart-
sound microphone from the chest of the subject, wherein:
wherein-the heart-sound-characteristic-information obtaining means
obtains the heart-sound characteristic information eomprises comprising a first portion of the
heart sound detected in advance by the heart-sound microphone from the chest of the subject,
said first portion being detected during a predetermined time interval, and
wherein the heart-sound determining means comprises a second heart-
sound determining means for determining determines, as the heart-sound component, a second
portion of the physical-pressure-pulse-wave signal supplied by the heart-soundpressure-pulse-
wave sensor, said second portion having a length corresponding to the predetermined time
interval and having a waveform best approximating a waveform of said first portion of the
heart sound

4. (Currently Amended) An apparatus according to claim 1, <u>further comprising:</u>
a heart-sound microphone which is adapted to be worn on a chest of the
subject and detects, in advance, the heart sound of the subject; and
a heart-sound-characteristic-information obtaining means for obtaining the
heart-sound characteristic information from the heart sound detected in advance by the heart-
sound microphone from the chest of the subject, wherein:
wherein-the heart-sound-characteristic-information obtaining means
comprises a frequency-time analyzing means for subjecting, to a frequency-time analysis, the
heart sound detected in advance by the heart-sound microphone from the chest of the subject,
and thereby providing a frequency-time analyzed signal,
wherein the heart-sound-characteristic-information obtaining means
obtains the heart-sound characteristic information comprises comprising a first portion of the
heart sound detected in advance by the heart-sound microphone from the chest of the subject,
said first portion having a plurality of frequencies of a heart-sound frequency range which is
predetermined based on a-the frequency-time analyzed signal of the heart sound, provided by
the frequency-time analyzing means, and being detected during a predetermined time interval,
and
wherein the heart-sound determining means determines, comprises:
a first heart-sound determining means for extracting, from the
pressure-pulse-wave signal, a signal component having the plurality of frequencies of the
heart-sound frequency range, and
a second heart-sound determining means for determining, as the
heart-sound component, a second portion of the physical signal supplied by the heart-sound
sensorsignal component extracted by the first heart-sound determining means, said second
portion having the plurality of frequencies of the heart-sound frequency range, having a

length corresponding to the predetermined time interval, and having a waveform best approximating a waveform of said first portion of the heart sound.

5. (Currently Amended) An apparatus according to claim 2, further comprising:

a heart-sound microphone which is adapted to be worn on the chest of the

subject and detects, in advance, the heart sound of the subject; and

a frequency-time analyzing means for subjecting, to a frequency-time analysis,

the heart sound detected in advance by the heart-sound microphone from the chest of the

subject, and thereby providing a frequency-time analysis signal; and

a heart-sound-frequency-range determining means for determining the heart-sound frequency range based on the frequency-time analyzed signal provided by the frequency-time analyzing means by subjecting, to the frequency analysis, the heart sound detected in advance by the heart sound microphone from the chest of the subject.

- 6. (Currently Amended) An apparatus according to claim 3, further comprising:

 a heart sound microphone which is adapted to be worn on the chest of the subject and detects, in advance, the heart sound of the subject; and a waveform determining means for determining, from the heart sound detected in advance by the heart-sound microphone from the chest of the subject, the waveform of said first portion which is detected during the time interval between a first predetermined periodic point of the heart sound and a second predetermined periodic point thereof.
- 7. (Currently Amended) An apparatus according to claim 1, further comprising:

 a heart-sound microphone which is adapted to be worn on the a chest of the subject and detects, in advance, the heart sound of the subject; and

a heart-sound-characteristic-information obtaining means for obtaining the heart-sound-characteristic-informationheart-sound characteristic information from the heart sound detected in advance by the heart-sound microphone from the chest of the subject.

- 8. (Original) An apparatus according to claim 7, wherein the heart-sound-characteristic-information obtaining means comprises a frequency-time analyzing means for subjecting, to a frequency-time analysis, the heart sound detected in advance by the heart-sound microphone from the chest of the subject, and thereby providing a frequency-time analyzed signal.
- 9. (Currently Amended) An apparatus according to claim 8, wherein the heart-sound-characteristic-information obtaining means further comprises a heart-sound-frequency-range determining means for determining, from the frequency-time analyzed signal, a heart-sound frequency range consisting of a plurality of frequencies corresponding to a plurality of signal magnitudes which are greater than a reference value, the heart-sound frequency range providing the heart-sound characteristic information.
- 10. (Currently Amended) An apparatus according to claim 9, wherein the heart-sound-characteristic-information obtaining means further comprises a waveform determining means for determining, as the heart-sound-characteristic-information heart-sound characteristic information, a waveform of a first portion of the heart sound detected in advance from the chest of the subject, said first portion having the plurality of frequencies of the heart-sound frequency range, and being detected during a time interval between a first predetermined periodic point of the heart sound and a second predetermined periodic point thereof.
 - 11. (Canceled)
 - 12. (New) An apparatus according to claim 1, wherein:

the heart-sound determining means determines, as the heart-sound component, a second heart sound of the subject, and

the apparatus further comprises a pulse-wave-propagation-velocity determining means for (a) determining a first timing when the second heart sound is detected by the pressure-pulse-wave sensor, and a second timing when a notch of the pressure pulse wave that corresponds to the second heart sound is detected by the pressure-pulse-wave sensor, (b) determining a time difference of the first and second timings, and (c) determining, based on the determined time difference, a pulse-wave propagation velocity at which the pressure pulse wave is propagated from a heart of the subject to the limb of the subject.