一、单项选择题(本大题共 15 小题,每小题 1 分,共 15 分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.一个连通的无向图 G, 如	如果它的所有结	点的度数都是	是偶数, 那	『么它具有	ī一条()
A.汉密尔顿回路	I	3.欧拉回路				
C.汉密尔顿通路	Ι) .初级回路				
2.设 G 是连通简单平面图	, G 中有 11 个J	页点5个面,	则G中的	边是()	
A.10 B.12	(C.16	D.14			
3.在布尔代数 L 中,表达	式 $(a \land b) \lor (a \land b)$	\land c) \lor (b \land c)	的等价式	是()	
$A.b \land (a \lor c)$						
$B.(a \land b) \lor (a' \land b)$						
$C.(a \lor b) \land (a \lor b \lor c) \land (b \lor c)$	/c)					
$D.(b \lor c) \land (a \lor c)$						
4.设 i 是虚数, • 是复数乘	法运算,则 G =<	<{1,-1,i,-i}, •	>是群,	下列是 G 的	的子群是()
A. $\{1\}$, • >	В	$\langle \{-1\}, \bullet \rangle$				
C. $\langle \{i\}, \bullet \rangle$	D.	$\langle \{-i\}, \bullet \rangle$				
5.设 Z 为整数集, A 为集行	合,A 的幂集为	P(A),+,-,/	为数的加	、减、除证	运算,∩为	集合的交
运算,下列系统中是代	式数系统的有()				
A. $\langle Z, +, / \rangle$	F	3. $\langle Z, / \rangle$				
C. $\langle Z, -, / \rangle$	D	$P(A), \cap$	>			
6.下列各代数系统中不含在	有零元素的是()				
A. 〈Q, *〉Q 是全体有理	数集,*是数的	乘法运算				
B. 〈Mn(R),*〉,Mn(R)是全	c体 n 阶实矩阵绰	集合,*是矩阵	车乘法运算	拿		
C. 〈Z, 。 〉, Z 是整数第			y∈Z			
D. 〈Z, +〉, Z 是整数集,	+是数的加法运	算				
7.设 A={1,2,3},A 上二元	关系 R 的关系	图如下:				
R具有的性质是					ア′	
A.自反性			2 04			
B.对称性			/.	<i>,</i>		
C.传递性				*		
D.反自反性				13	•	
0 /T A (1) A L = ===	学	/1 1 \ / \ \ 1	回坐云	D 6674461	THE CONT	I.
8.设 A={a,b,c}, A 上二元号						Ė()
$A.R \cup I_A$ $B.J$		-	-			+ν Lib
9.设 X={a,b,c},Ix 是 X 上 等价关系,R 应取()			(c,a), (b	,a	Ŋ X 上的
A. $\{\langle c,a\rangle, \langle a,c\rangle\}$	B.{	$\langle c,b \rangle$, $\langle b,a \rangle$	}			
C.{ $\langle c,a \rangle$, $\langle b,a \rangle$ }	D.	$\{ \langle a,c \rangle, \langle c,l \rangle \}$	o> }			
10.下列式子正确的是()					
A. $\emptyset \in \emptyset$	$B.\emptyset\subseteq\emptyset$	$C.\{\varnothing\}\subseteq$	Ø	D.{ ∅	$\{i \in \emptyset\}$	
11.设解释 R 如下:论域	D 为实数集,a	a=0,f(x,y)=x-y	y,A(x,y):x	<y.下列公< td=""><td>式在 R 下</td><td>为真的是</td></y.下列公<>	式在 R 下	为真的是
()						
$A.(\forall x)(\forall y)(\forall z)(A(x))$	$(x,y) \rightarrow A(f(x,z),f(x,z))$	(y,z))				
B.(\forall x)A(f(a,x),a)						
C.($\forall x$)($\forall y$) (A(f(x,y),x))						

27.(5)设A={a,b},P(A)是A的幂集,⊕是对称差运

算,可以验证<**P**(A),⊕>是群。设n是正整数,求({a}⁻¹{b}{a})ⁿ⊕{a}⁻ⁿ{b}ⁿ{a}ⁿ

28.(6 分)设 A={1,2,3,4,5},A 上偏序关系

R={ $\langle 1, 2 \rangle$, $\langle 3, 2 \rangle$, $\langle 4, 1 \rangle$, $\langle 4, 2 \rangle$, $\langle 4, 3 \rangle$, $\langle 3, 5 \rangle$, $\langle 4, 5 \rangle$ } $\cup I_A$;

(1)作出偏序关系 R 的哈斯图

(2)令 $B=\{1,2,3,5\}$,求 B 的最大,最小元,极大、极小元,上界,下确界,下界,下确界。 29.(6 分)求 $_{\Box}$ ($P \rightarrow Q$)⇔($P \rightarrow Q$)的主合取范式并给出所有使命题为真的赋值。

30.(5 分)设带权无向图 G 如下,求 G 的最小生成树 T 及 T 的权总和,要求写出解的过程。

31.(4 分)求公式¬ (($\forall x$)F(x,y)→($\exists y$)G(x,y)) \lor ($\exists x$)H(x)的前束范式。

四、证明题 (共 20 分)

- 32.(6 分)设 T 是非平凡的无向树,T 中度数最大的顶点有 2 个,它们的度数为 $k(k \ge 2)$,证明 T 中至少有 2k-2 片树叶。
- 33.(8 分)设 A 是非空集合,F 是所有从 A 到 A 的双射函数的集合,。是函数复合运算。证明:〈F,。〉是群。
- 34.(6 分)在个体域D= $\{a_1,a_2,\cdots,a_n\}$ 中证明等价式: $(\exists x)(A(x)\rightarrow B(x))\Leftrightarrow (\forall x)A(x)\rightarrow (\exists x)B(x)$

五、应用题(共15分)

35.(9 分)如果他是计算机系本科生或者是计算机系研究生,那么他一定学过 DELPHI 语言而且学过 C++语言。只要他学过 DELPHI 语言或者 C++语言,那么他就会编程序。因此如果他是计算机系本科生,那么他就会编程序。请用命题逻辑推理方法,证明该推理的有效结论。

36.(6 分)一次学术会议的理事会共有 20 个人参加,他们之间有的相互认识但有的相互不认识。但对任意两个人,他们各自认识的人的数目之和不小于 20。问能否把这 20 个人排在圆桌旁,使得任意一个人认识其旁边的两个人?根据是什么?

参考答案

一、单项选择题(本大题共15小题,每小题1分,共15分)

1.B	2.D	3.A	4.A	5.D
6.D	7.D	8.C	9.D	10.B
11.A	12.A	13.C	14.B	15.C

 $M(x) \rightarrow D(x)$

二、填空题

 $23.(M(x) \rightarrow D(x))$

16.0 1 17.1 0 18.单位元 1 19.x∩y x∪y 20.入射 满射 21. [x]_R= [y]_R 22.A(x) B(y) 24.可满足式 永假式(或矛盾式)

25.陈述句 真值

三、计算题

$$26. M = \begin{cases} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{cases}$$

$$M^{2} = \begin{cases} 2 & 1 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 \end{cases}$$

$$\sum_{i=1}^{4} \sum_{j=1}^{4} M_{ij}^{2} = 18, \qquad \sum_{i=1}^{4} M_{ij}^{2} = 6$$

G中长度为2的路总数为18,长度为2的回路总数为6。

27. 当n是偶数时, $\forall x \in P(A), x^n = \emptyset$

当n是奇数时, $\forall x \in P(A), x^n = x$

于是: 当n是偶数,(
$$\{a\}^{-1}$$
 $\{b\}$ $\{a\}^{n}$ $\{a\}^{-n}$ $\{b\}^{n}$ $\{a\}^{n}$ $=\emptyset\oplus(\{a\}^{-1})^{n}$ $\{b\}^{n}$ $\{a\}^{n}=\emptyset\oplus\emptyset=\emptyset$

当 n 是奇数时,

$$(\{a\}^{-1} \{b\} \{a\})^n \oplus \{a\}^{-n} \{b\}^n \{a\}^n$$

$$= \{a\}^{-1} \{b\} \{a\} \oplus (\{a\}^{-1})^n \{b\}^n \{a\}^n$$

$$= \{a\}^{-1} \{b\} \{a\} \oplus \{a\}^{-1} \{b\} \{a\} = \emptyset$$

28.(1)偏序关系 R 的哈斯图为

(2)B 的最大元: 无, 最小元: 无;

极大元: 2, 5, 极小元: 1, 3

下界: 4, 下确界 4;

上界:无,上确界:无

29.原式
$$\Leftrightarrow$$
(\lnot ($P \rightarrow Q$) \rightarrow ($P \rightarrow \lnot$ Q)) \land (($P \rightarrow \lnot$ Q) $\rightarrow \lnot$ ($P \rightarrow Q$))

$$((P {\rightarrow} Q) \bigvee (P {\rightarrow} \neg \ Q)) \bigwedge (\neg \ (P {\rightarrow} \neg \ Q) \bigvee \neg \ (P {\rightarrow} Q))$$

$$(\lnot \ P \lor Q \lor \lnot \ P \lor \lnot \ Q) \land (\lnot \ (\lnot \ P \lor \lnot \ Q) \lor (P \land \lnot \ Q))$$

$$(\lnot \ (P \land \lnot \ Q) \lor (P \land \lnot \ Q))$$

$$(P \land Q) \lor (P \land \neg Q)$$

$$P \land (Q \lor \neg Q)$$

$$P \lor (Q \land \neg Q)$$

$$(P \lor Q) \land (P \lor \neg Q)$$

命题为真的赋值是 P=1,Q=0 和 P=1,Q=1

$$30. \Leftrightarrow e_1 = (v_1, v_3),$$
 $e_2 = (v_4, v_6)$
 $e_3 = (v_2, v_5),$ $e_4 = (v_3, v_6)$
 $e_5 = (v_2, v_3),$ $e_6 = (v_1, v_2)$
 $e_7 = (v_1, v_4),$ $e_8 = (v_4, v_3)$

 $e_9 = (v_3, v_5), e_{10} = (v_5, v_6)$

令a_i为e_i上的权,则

 $a_1 < a_2 < a_3 < a_4 < a_5 = a_6 = a_7 = a_8 < a_9 = a_{10}$

取 a_1 的 $e_1 \in T$, a_2 的 $e_2 \in T$, a_3 的 $e_3 \in T$, a_4 的 $e_4 \in T$, a_5 的 $e_5 \in T$,即,

T的总权和=1+2+3+4+5=15

31.原式 \Leftrightarrow \neg ($\forall x_1 F(x_1, y) \rightarrow \exists y_1 G(x, y_1)$) $\lor \exists x_2 H(x_2)$ (换名)

$$\Leftrightarrow \neg \exists x_1 \exists y_1 (F(x_1,y) \rightarrow G(x,y_1)) \lor \exists x_2 H(x_2)$$

$$\Leftrightarrow \forall x_1 \forall y_1 \neg (F(x_1,y_1) \rightarrow G(x,y_1)) \lor \exists x_2 H(x_2)$$

$$\Leftrightarrow \forall x_1 \forall y_1 \exists x_2 (\neg (F(x_1,y_1) \rightarrow G(x,y_1)) \lor H(x_2)$$

四、证明题

32.设 T 中有 x 片树叶,y 个分支点。于是 T 中有 x+y 个顶点,有 x+y-1 条边,由握手定理知 T 中所有顶点的度数之的

$$\sum_{i=1}^{x+y} d(v_i) = 2(x+y-1)_{\circ}$$

又树叶的度为 1, 任一分支点的度大于等于 2 且度最大的顶点必是分支点,于是

$$\sum_{i=1}^{x+y} d(v_i) \ge x \cdot 1 + 2(y-2) + k + k = x + 2y + 2K - 4$$

从而 $2(x+y-1) \ge x+2y+2k-4$

 $x \ge 2k-2$

- 33.从定义出发证明:由于集合 A 是非空的,故显然从 A 到 A 的双射函数总是存在的,如 A 上恒等函数,因此 F 非空
 - (1) ∀ f,g ∈ F,因为 f 和 g 都是 A 到 A 的双射函数,故 f ∘ g 也是 A 到 A 的双射函数,从而集合 F 关于运算 ∘ 是封闭的。
 - (2) \forall f,g,h∈F,由函数复合运算的结合律有 f∘(g∘h)=(f∘g)∘h 故运算∘是可结合的。
 - (3)A上的恒等函数 I_A 也是A到A的双射函数即 $I_A \in F$,且 $\forall f \in F \cap I_A \circ f = f \circ I_A = f$,故 $I_A \in F$, o 中的幺元

由此上知〈F,。〉是群

 $34.证明(\exists x)(A(x) \rightarrow B(x)) \Leftrightarrow \exists x(\neg A(x) \lor B(x))$

- $\Leftrightarrow (\lnot \ A(a_1) \lor B(a_1)) \lor (\lnot \ A(a_2) \lor B(a_2)) \lor \cdots \lor (\lnot \ A(a_n) \lor B(a_n)))$
- $\Leftrightarrow (\neg A(a_1) \lor A(a_2) \lor \cdots \lor \neg A(a_n) \lor (B(a_1) \lor B(a_2) \lor \cdots \lor (B(a_n))$
- $\Leftrightarrow \neg (A(a_1) \land A(a_2) \land \cdots \land A(a_n)) \lor (\neg B(a_1) \lor B(a_2) \lor \cdots \lor (B(a_n))$
- $\Leftrightarrow \neg (\forall x)A(x) \lor (\exists x)B(x) \Leftrightarrow (\forall x)A(x) \rightarrow (\exists x)B(x)$

五、应用题

- 35.令 p: 他是计算机系本科生
 - q: 他是计算机系研究生
 - r: 他学过 DELPHI 语言
 - s:他学过 C++语言
 - t:他会编程序

前提:
$$(p \lor q) \rightarrow (r \land s), (r \lor s) \rightarrow t$$

结论: p→t

证①p P(附加前提)

 $2p \lor q$ T1I

③ $(p \lor q) \rightarrow (r \land s)$ P(前提引入)

 $4r \land s$ T23I

⑦(r∨s)→t P(前提引入)

8t T561

36.可以把这 20 个人排在圆桌旁, 使得任一人认识其旁边的两个人。

根据:构造无向简单图 $G=\langle V,E\rangle$,其中 $V=\{v_1,v_2,\cdots,V_{20}\}$ 是以 20 个人为顶点的集合,E中的边是若任两个人 v_i 和 v_i 相互认识则在 v_i 与 v_i 之间连一条边。

 $\forall V_i \in V, d(v_i)$ 是与 v_i 相互认识的人的数目,由题意知 $\forall v_i, v_j \in V$ 有 $d(v_i) + d(v_j) \ge 20$,于是G中存在汉密尔顿回路。

设 $C=V_{i1}V_{i2}\cdots V_{i20}V_{i1}$ 是G中一条汉密尔顿回路,按这条回路的顺序按其排座位即符合要求。