

Introducción a Ciencia de la Computación Práctica Calificada 3 Pregrado 2020-I Profesor Henry Gallegos Lab 1.02

Indicaciones específicas:

- Esta evaluación contiene 7 páginas (incluyendo esta página) con 3 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta y tu código de estudiante. Por ejemplo:
 - 1. p1 2020010202.py
 - 2. p2 2020010202.py
 - 3. p3 2020010202.py
- Luego deberás incluir estos archivos en una carpeta con nombre pc3; para que finalmente envíes esta carpeta comprimida pc3.zip a www.gradescope.com

Competencias:

- Para los alumnos de la carrera de Ciencia de la Computación
 - Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- Para los alumnos de las carreras de Ingeniería
 - Capacidad de aplicar conocimientos de ingeniería (**nivel 2**).

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	6	
2	7	
3	7	
Total:	20	

- 1. (6 points) Implemente un algoritmo que cuente vocales, consonantes y digitos de la siguiente forma:
 - Solicite al usuario que ingrese una frase.
 - Cuente y guarde en un diccionario la cantidad de vocales, de consonantes y de digitos que hay en la frase.
 - Imprima el diccionario como en los ejemplos

Algunos ejemplos de diálogo de este programa serían:

Listing 1: Ejemplo 1

Input: estoy programado en el 2020

vocales: 8 consonantes: 11 digitos: 4

Listing 2: Ejemplo 1

Input: ICC CS1100

vocales: 1
consonantes: 4
digitos: 4

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algo-	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
ritmo	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	re- quiere (0pts)
	quiere (4pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correctas	las sentencias son cor-
	hay errores de sintáxis	y no hay errores de sin-	rectas (0pts)
	(1pts)	táxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)

2. (7 points) Implemente un algoritmo, con una función recursiva que resuelva la siguiente sumatoria:

$$H(n,d) = \frac{1}{d} + \frac{2}{d} + \frac{3}{d} + \dots + \frac{n}{d}$$

- El programa debe solicitar que se ingrese el número n, y el número d,
- Luego debe calcular e imprimir el valor de H(n,d) usando la función recursiva implementada,
- Al final del código en un comentario, analize y escriba la complejidad algoritmica de su codigo.

Algunos ejemplos de diálogo de este programa serían:

Listing 3: Ejemplo 1

Input n: 3
Input d: 2
Output: 3

Listing 4: Ejemplo 1

Input n: 5
Input d: 5
Output: 3

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algo-	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
ritmo	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts)
	quiere (3pts)	quiere (1.5pts)	
Sintáxis	Todas las sentencias	Más de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correctas	las sentencias son cor-
	hay errores de sintáxis	y no hay errores de sin-	rectas (0pts)
	(1pts)	táxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)
Funciones	Se implementan y usan		Las funciones no es-
	correctamente todas		tán implementadas o
	las funciones requeri-		usadas correctamente
	das (1pts)		(0pts)
Com-	Es correcta la comple-		No describe o es in-
plejidad	jidad algorítmica señal-		correcta la compleji-
Algorit-	ada (1pts)		dad algorítmica señal-
mica			ada. (0pts)

3. (7 points) Dada la siguiente matriz de números:

4	5	6	3
8	2	3	6
3	5	4	9
1	4	6	7
3	4	5	3
2	3	3	4

- Escribir la matriz en el programa principal.
- Solicite al usuario un número de columna, y el programa debe imprimir la suma de todos los números de esa columna.
- Solicite al usuario un número de fila y columna, y el programa debe:

Calcular e imprimir la suma de todos los números que estan alrededor de esa posición de fila y columna.

Calcula e imprimir el menor número que esta alrededor de esa posición de fila v columna.

 Al final del código en un comentario, analize y escriba la complejidad algoritmica de su codigo, y si utilizó funciones, entonces analize la complejidad algoritmica para cada función.

Considere los 8 números alrededor de la posición de fila y columna, evite que consulte fuera del rango de la matriz.

Algunos ejemplos de diálogo de este programa serían:

Listing 5: Ejemplo 1

```
Ingrese columna: 2
La suma de la columna 2 es: 27
Ingrese fila: 2
Ingrese columna: 0
La suma alrededor de 2,0 es: 20
El menor numero alrededor de 2,0 es: 1
```

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algo-	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
ritmo	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts)
	quiere (3pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correctas	las sentencias son cor-
	hay errores de sintáxis	y no hay errores de sin-	rectas (0pts)
	(1pts)	táxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)
Iteración	Recorre adecuada-		No recorre los elemen-
	mente los elementos de		tos de la matriz de
	la matriz (1pts)		forma programática y
			solo funciona en al-
			gunos casos (0 pts).
Com-	Es correcta la comple-		No describe o es in-
plejidad	jidad algorítmica señal-		correcta la compleji-
Algorit-	ada (1pts)		dad algorítmica señal-
mica			ada. (0pts)