Math 1410 Assignment #2 University of Lethbridge, Spring 2015

Sean Fitzpatrick

January 28, 2015

Due date: Wednesday, February 4th, by 5 pm.

For instructions on completing this assignment, please see Assignment #1.

Assigned problems

- 1. Recall that an $n \times n$ matrix A is symmetric if $A^T = A$, and antisymmetric if $A^T = -A$.
 - (a) Show that $B + B^T$ is symmetric for **any** $n \times n$ matrix B.
 - (b) Show that $B B^T$ is antisymmetric for **any** $n \times n$ matrix B.
 - (c) Given an arbitrary $n \times n$ matrix B, find a symmetric matrix U and an antisymmetric matrix V such that B = U + V.
- 2. For each of the following statements, either explain why it is true, or give an example showing that it is false:
 - (a) If $A \neq 0$ is a square matrix, then A is invertible.
 - (b) If A and B are both invertible, then A + B is invertible.
 - (c) If *A* and *B* are both invertible, then $(A^{-1}B)^T$ is invertible.
 - (d) If $A^4 = 3I_n$, then A is invertible. (Hint: can you find a matrix B such that $AB = I_n$?)
- 3. Simplify the following matrix product:

$$B^{-1}(AB^T)^T(BA^{-1})A$$

- 4. Let *A* and *B* be $n \times n$ invertible matrices.
 - (a) Show that $A^{-1} + B^{-1} = A^{-1}(A+B)B^{-1}$.
 - (b) Show that **if** A + B is invertible, then $A^{-1} + B^{-1}$ is also invertible, and find a formula for $(A^{-1} + B^{-1})^{-1}$.