







#### Solution Outline\_\_\_ Power Supply Relay module soil Water pump Soil moisture sensor Display Arduino Board Temperature Temperature sensor Light Controller Wireless Mobile Application medium

#### Key Benefits \_\_\_\_

- Automated Plant Care
- Optimized Environment
- Refregy Efficiency
- Remote Monitoring
- increased Plant Productivity
- \* Time Savings







#### Main Objective

To provide a convenient and efficient solution for growing and maintaining fresh herbs indoors while ensuring consistent care and optimal growing conditions without the need for constant manual intervention, the main objective of an automated plant caring system for kitchen herbs is established.



#### Sub Objectives

- ✓ Soil Moisture sensor implementation
- ✓ Develop Product Monitoring Application
- ✓ water pumping system Implementation
- Light controller unit implementation & Display the main information



### Auto Watering System \_



An auto watering system for home plant care operates by utilizing sensors to monitor soil moisture levels and activating a water delivery mechanism, such as a pump or drip irrigation system, to provide water to plants when needed, ensuring optimal hydration without manual intervention.



### Monitoring Application \_\_\_\_



Utilizing sensors, the Plant Buddy tracks temperature, humidity, and soil moisture levels, providing real-time data directly to your mobile device.











#### Light Control System \_\_\_\_









## **GANTT Chart**



| 1. Initiation of the project               | 12d | 02/05/24 | 02/16/24 | 1. Initiation of the project               |
|--------------------------------------------|-----|----------|----------|--------------------------------------------|
| 1.1. Requirement gathering                 | 7d  | 02/05/24 | 02/11/24 | 1.1. Requirement gathering                 |
| 1.2. Requirement analysis                  | 5d  | 02/12/24 | 02/16/24 | 1.2. Requirement analysis                  |
| - 2. Design Phase                          | 6d  | 02/16/24 | 02/22/24 | 2. Design Phase                            |
| 2.1. Design the hardware architecture      | 4d  | 02/16/24 | 02/19/24 | 2.1. Design the hardware architecture      |
| 2.2. Develop software architecture         | 4d  | 02/18/24 | 02/21/24 | 2.2. Develop software architecture         |
| 2.3. Create wireframes for user interfaces | 3d  | 02/19/24 | 02/21/24 | 2.3. Create wireframes for user interfaces |
| Project charter submission                 | 0   | 02/22/24 | 02/22/24 | ♦ Project charter submission               |
| 3. Project proposal                        | 16d | 02/23/24 | 03/09/24 | 3. Project proposal                        |
| 3.1. Product implementation discussion     | 16d | 02/23/24 | 03/09/24 | 3.1. Product implementation discussion     |
| 3.2. Presentation design                   | 8d  | 03/01/24 | 03/08/24 | 3.2. Presentation design                   |
| Project proposal presentation              | 0   | 03/09/24 | 03/09/24 | ♦ Project proposal presentation            |
| 4. Purchasing and component Testing        | 13d | 03/12/24 | 03/24/24 | 4. Purchasing and component Testing        |
| 4.1. Component test                        | 5d  | 03/12/24 | 03/16/24 | 4.1. Component test                        |
| 4.2. Compatibility test                    | 8d  | 03/17/24 | 03/24/24 | 4.2. Compatibility test                    |
| - 5. Prototype                             | 26d | 03/26/24 | 04/20/24 | 5. Prototype                               |
| 5.1. Prototype for each hardware component | 16d | 03/26/24 | 04/10/24 | 5.1. Prototype for each hardware component |
| 5.2. Learn about software modules          | 22d | 03/26/24 | 04/16/24 | 5.2. Learn about software modules          |
| 5.3. SRS report creation                   | 5d  | 04/16/24 | 04/20/24 | 5.3. SRS report creation                   |
| SRS submission                             | 0   | 04/20/24 | 04/20/24 | ♦ SRS submission                           |

| 6. Development and Implementation              | 7d  | 04/21/24 | 04/28/24 |
|------------------------------------------------|-----|----------|----------|
| 6.1. Integrate hardware components             | 4d  | 04/21/24 | 04/24/24 |
| 6.2. Develop software modules                  | 3d  | 04/22/24 | 04/24/24 |
| 6.3. Integrate hardware and software component | 3d  | 04/25/24 | 04/27/24 |
| Final prototype                                | 0   | 04/28/24 | 04/28/24 |
| - 7. Testing and Quality Assurance             | 5d  | 04/29/24 | 05/04/24 |
| 7.1. Conduct system testing                    | 2d  | 04/29/24 | 04/30/24 |
| 7.2. Identify and fix defects                  | 3d  | 04/30/24 | 05/02/24 |
| 7.3. Validate compliance                       | 5d  | 04/29/24 | 05/03/24 |
| Progress presentation                          | 0   | 05/04/24 | 05/04/24 |
| 8. Final product Implementation                | 11d | 05/05/24 | 05/15/24 |
| 8.1. Final product assemble                    | 7d  | 05/05/24 | 05/11/24 |
| 8.2. Usability testing                         | 5d  | 05/11/24 | 05/15/24 |
| - 9. Project Closure                           | 3d  | 05/16/24 | 05/19/24 |
| Final product                                  | 0   | 05/16/24 | 05/16/24 |
| Final presentation                             | 0   | 05/18/24 | 05/18/24 |
| Final report submission                        | 0   | 05/19/24 | 05/19/24 |
|                                                | _   |          |          |





| Student Name<br>& ID         | Role                                                                                                 | Function Name                                                       | Facilities                                                                            |
|------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Lakshan T.R<br>IT22344342    | <ul> <li>Project manager</li> <li>QA Engineer</li> <li>Embedded System</li> <li>Engineer</li> </ul>  | Soil Moisture sensor implementation                                 | <ul><li>Arduino</li><li>Wires</li><li>Moisture Sensor</li></ul>                       |
| Rangana W.P.M<br>IT22365200  | <ul> <li>QA Engineer</li> <li>Business Analyst</li> <li>Embedded System</li> <li>Engineer</li> </ul> | Light controller unit implementation & Display the main information | <ul><li>Arduino</li><li>Wires</li><li>Temperature</li><li>Sensor &amp; LEDS</li></ul> |
| Devinda M.C.G<br>IT22360328  | <ul> <li>Designer</li> <li>Cloud Engineer</li> <li>Embedded System</li> <li>Engineer</li> </ul>      | Develop Product Monitoring Application                              | <ul><li>Laptop</li><li>Arduino</li><li>Mobile Phone</li></ul>                         |
| Rajapaksha K.V<br>IT22895264 | <ul> <li>Project manager</li> <li>QA Engineer</li> <li>Embedded System</li> <li>Engineer</li> </ul>  | water pumping system Implementation                                 | <ul><li>Arduino</li><li>Wires</li><li>Water Pump</li><li>Realay Module</li></ul>      |



# Software & Hardware Components

#### Hardware

**NodeMCU ESP8266** 

Soil Moisture Sensor

**Breadboard & Wires** 

**Temperature Sensor** 

Relay module x 2

**Motor Pump** 

**LEDS** 

Laptop

Software

**Arduino IDE** 

**Blynk Platform** 









