性别决定和伴性遗传

一、染色体与性别决定

人类的染色体组型 (男性)

(一) 性染色体

(二) 几种类型的性别决定方式

- 1. X-Y型
- 2. Z-W型
- 3. X-0型
- 4. 单性生殖型

二、果蝇眼色的遗传

(一) 杂交实验

实验结果:

- 1. 白眼雄果蝇与红眼雌果蝇杂交, F₁代均为红眼果蝇。
- 2. F_1 代的雌雄果蝇自交 F_2 代出现性状分离。

红眼: 白眼=3:1。

3. F2代中雌果蝇全部为红眼,雄果蝇红眼: 白眼=1:1。

(二) 摩尔根的假设

- 1. 白眼性状由隐性基因(a)决定。
- 2. 等位基因 Aa 位于X染色体上,Y染色体上不携带该基因。

(三) 实验验证——测交实验

1. 红眼雄果蝇与野生型(纯合体)白眼雌果蝇杂交。

2. 红眼雌果蝇与野生型(纯合体)白眼雄果蝇杂交。

(四) 眼色基因定位与伴性遗传

- 1. 果蝇的眼色基因位于_____染色体。
- 2. 伴性遗传: 位于性染色体上的基因的传递方式, 其性状表现与性别相关联。

三、人类的伴性遗传

- (一) 红绿色盲
 - 1. 遗传特征
 - (1) 社会调查
 - (2) 家系调查
 - 2. 基因决定
 - 3. 致病基因的传递

(二) 抗维生素 D 佝偻病——伴 X 显性遗传

- 1. 致病基因位于
- 2. 传递特征

(三)外耳道多毛症——伴Y遗传

- 1. 致病基因位于
- 2. 遗传特征

方式为()

习题:

	A.	XY 型	B. Z	ZW 型	C.	XO 型		D.	ZO 型	
2.	可以	【作为 X 染色体和 Y	染色	体是同源染色体的	J最有	可力证据是	()			
	A.	在男性的体细胞中	, X ½	杂色体来自母亲,	Y 染	色体来自父	亲			
	В.	X 染色体和 Y 染色	体的	形态相似						
	C.	在减数第一次分裂	中X	染色体和 Y 染色体	体能领	多联会配对				
	D.	X 染色体上红绿色	盲基固	因的等位基因位于	Y柒	è 色体的相同	同座位上			
3.	猴的]下列各组细胞中,	肯定者	『有 Y 染色体的是	()				
	A.	受精卵和雄猴的上	皮细胞	佨						
	В.	精子和次级精母细	胞							
	C.	受精卵和初级精母	细胞							
	D.	初级精母细胞和雄	猴的_	上皮细胞						
4.	血友	无病属于伴 X 隐性遗	传病。	某人患血友病,	他的	岳父表现正	常,岳	母患	血友病,对其子女表	现
]预测正确的是(
	A.	儿子、女儿全部正	常		В.	儿子患病,	女儿正	常		
	C.	儿子正常,女儿患	病		D.	儿子和女儿	」中都有	可能	出现患者	
5.	决定	毛色的基因位于 X	染色体	本上,基因型为 bb	, BI	B 和 Bb 的新	苗分别为	黄、	黑和虎斑色。现有虎	斑
		E猫和黄色雄猫交配	,生下	下了三只虎斑色小					性别是()	
		雌雄各半				全为雄猫或	•			
		全为雌猫或三雌一								
6.					。男	孩的外祖父	、外祖	母和	祖母色觉都正常,祖	父
	为色	直。该男孩的色盲	基因来	(首)						
	A.	祖父	B. 社	且母	C.	外祖父		D.	外祖母	

1. 公鸡的体细胞中有一对同型的性染色体,母鸡的体细胞中有一对异型的性染色体,鸡的性别决定

- 7. 在鸡羽毛的性状中,芦花性状(B)对非芦花性状(b)为显性,现用非芦花公鸡和芦花母鸡交配时, F_1 代中的公鸡都是芦花鸡,母鸡都是非芦花鸡,对这个遗传现象的合理解释为(
 - A. 这是伴性遗传, 芦花基因位于 Z 染色体上
 - B. 这是伴性遗传, 芦花基因位于 W 染色体上
 - C. 这是伴性遗传, 芦花基因位于 X 染色体上
 - D. 芦花基因位于常染色体上
- 8. 下列的系谱图中,肯定是常染色体隐性遗传病的是()

9. 下列有关四个遗传系谱图的叙述, 正确的是()

- A. 四图都可能表示白化病遗传的家系
- B. 家系乙中患病男孩的父亲一定是该病基因携带者
- C. 肯定不是红绿色盲遗传的家系是甲、丙、丁
- D. 家系丁中这对夫妇若再生一个正常女儿的几率是 1/4
- 10. 自然状况下,鸡有时会发生性反转,如母鸡逐渐变为公鸡(性染色体不变)。如果性反转公鸡与正常母鸡交配,后代中正常母鸡与正常公鸡的比例是()
 - A. 1:0
- B. 1:1
- C. 2:1
- D. 3:1
- 11. 右图所示的红绿色盲患者家系中,女性患者Ⅲ-9 的性染色体只有一条 X 染色体,其他成员性染色体组成正常。Ⅲ-9 的红绿色盲致病基因来自于 ()
 - A. I-1
 - B. I-2
 - C. I-3
 - D. I -4

