Pseudorandomness (II)

601.642/442: Modern Cryptography

Fall 2020

Recap: Pseudorandom Generator

- A deterministic function $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ is a **PRG** if its output distribution is **computationally indistinguishable** from the uniform distribution.
- In other words, the **advantage** of \mathcal{A} in distinguishing between the uniform distribution and the output distribution of G is **negligible**.

Game Based Definition of PRG

Game Based Definition of PRG

$$\Pr[b' = 1 | b = 1] \approx \Pr[b' = 1 | b = 0]$$

$$\left| \Pr[b' = 1 | b = 1] - \Pr[b' = 1 | b = 0] \right| \leqslant \nu(n)$$

$$\left| \Pr[\mathcal{A}(1^n, r) = 1 | s \stackrel{\$}{\leftarrow} \{0, 1\}^n, r := G(s)] - \Pr[\mathcal{A}(1^n, r) = 1 | r \stackrel{\$}{\leftarrow} \{0, 1\}^{\ell(n)}] \right| \leqslant \nu(n)$$

Illustrating PRG $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$

• From a relative perspective, the PRG's output distribution is tiny. Out of the $2^{2\lambda}$ strings in $\{0,1\}^{2\lambda}$, only 2^{λ} are possible outputs of G. These strings make up $2^{\lambda}/2^{2\lambda} = 1/2^{\lambda}$ fraction of $\{0,1\}^{2\lambda}$ — a negligible fraction!

Illustrating PRG $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$

- From a relative perspective, the PRG's output distribution is tiny. Out of the $2^{2\lambda}$ strings in $\{0,1\}^{2\lambda}$, only 2^{λ} are possible outputs of G. These strings make up $2^{\lambda}/2^{2\lambda} = 1/2^{\lambda}$ fraction of $\{0,1\}^{2\lambda}$ a negligible fraction!
- From an absolute perspective, the PRG's output distribution is huge. There are 2^{λ} possible outputs of G, which is an **exponential amount!** This is large enough that an efficient adversary cannot distinguish it from the set $\{0,1\}^{2\lambda}$.

Pseudorandom OTP

Pseudorandom One-Time Pad

Let n be the security parameter and $\ell(\cdot)$ be a polynomial. Let $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ be a PRG, and let the message space and ciphertext space be $\{0,1\}^{\ell(n)}$.

- $\bullet \ \operatorname{KeyGen}(1^n) \coloneqq k \leftarrow_{\$} \{0,1\}^n$
- $\operatorname{Enc}(k,m) := c = G(k) \oplus m$
- $\operatorname{Dec}(k,c) := m = G(k) \oplus c$

One-Time Computational Security

We consider the following <u>computational</u> notion of security.

One-Time Computational Security

We say that an encryption scheme is one-time perfectly computationally secure if $\forall m_0, m_1 \in \mathcal{M}$ chosen by an adversary, the following distributions are identical computationally indistinguishable:

Lemma

Pseudorandom OTP satisfies one-time computational security.

Proof. We need to show that $\forall m_0, m_1 \in \{0, 1\}^{\ell(n)}$ chosen by an adversary, the following two distributions are computationally indistinguishable:

Lemma

Pseudorandom OTP satisfies one-time computational security.

Proof. We need to show that $\forall m_0, m_1 \in \{0, 1\}^{\ell(n)}$ chosen by an adversary, the following two distributions are computationally indistinguishable:

$$\bullet \mathcal{H}_1 := \left\{ c := m_0 \oplus G(k); \ k \xleftarrow{\$} \{0, 1\}^n \right\}$$

Lemma

Pseudorandom OTP satisfies one-time computational security.

Proof. We need to show that $\forall m_0, m_1 \in \{0, 1\}^{\ell(n)}$ chosen by an adversary, the following two distributions are computationally indistinguishable:

- **2** $\mathcal{D}_2 := \{c := m_1 \oplus G(k); k \leftarrow \{0, 1\}^n\}$

- $\bullet \mathcal{H}_1 := \left\{ c := m_0 \oplus G(k); \ k \xleftarrow{\$} \{0, 1\}^n \right\}$
- $2 := \left\{ c := m_0 \oplus r; \ r \xleftarrow{\$} \{0, 1\}^{\ell(n)} \right\}$

Lemma

Pseudorandom OTP satisfies one-time computational security.

Proof. We need to show that $\forall m_0, m_1 \in \{0, 1\}^{\ell(n)}$ chosen by an adversary, the following two distributions are computationally indistinguishable:

- ② $\mathcal{D}_2 := \{c := m_1 \oplus G(k); k \leftarrow \{0,1\}^n\}$

- $\bullet \mathcal{H}_1 := \left\{ c := m_0 \oplus G(k); \ k \stackrel{\$}{\leftarrow} \{0, 1\}^n \right\}$
- **3** $\mathcal{H}_3 := \left\{ c := m_1 \oplus r; \ r \overset{\$}{\leftarrow} \{0, 1\}^{\ell(n)} \right\}$

Lemma

Pseudorandom OTP satisfies one-time computational security.

Proof. We need to show that $\forall m_0, m_1 \in \{0, 1\}^{\ell(n)}$ chosen by an adversary, the following two distributions are computationally indistinguishable:

- $2 := \left\{ c := m_0 \oplus r; \ r \overset{\$}{\leftarrow} \{0, 1\}^{\ell(n)} \right\}$
- **3** $\mathcal{H}_3 := \left\{ c := m_1 \oplus r; \ r \overset{\$}{\leftarrow} \{0, 1\}^{\ell(n)} \right\}$
- $\bullet \mathcal{H}_4 := \left\{ c := m_1 \oplus G(k); \ k \xleftarrow{\$} \{0, 1\}^n \right\}$

- $\bullet \mathcal{H}_1 := \left\{ c := m_0 \oplus G(k); \ k \stackrel{\$}{\leftarrow} \{0, 1\}^n \right\}$
- $\mathcal{H}_2 := \left\{ c := m_0 \oplus r; \ r \overset{\$}{\leftarrow} \{0, 1\}^{\ell(n)} \right\}$

•
$$\mathcal{H}_1 := \left\{ c := m_0 \oplus G(k); \ k \overset{\$}{\leftarrow} \{0, 1\}^n \right\}$$

$$\mathcal{H}_2 := \left\{ c := m_0 \oplus r; \ r \overset{\$}{\leftarrow} \{0, 1\}^{\ell(n)} \right\}$$

$$\bullet \mathcal{H}_4 := \left\{ c := m_1 \oplus G(k); \ k \stackrel{\$}{\leftarrow} \{0, 1\}^n \right\}$$

• $\mathcal{H}_1 \approx_c \mathcal{H}_2$: From the security of PRG, we know that

$$\{G(k);\ k \overset{\$}{\leftarrow} \{0,1\}^n\} \approx_c \{r;\ r \overset{\$}{\leftarrow} \{0,1\}^{\ell(n)}\}$$

From closure property of computational indistinguishability, we get

$$\{m_0 \oplus G(k); \ k \overset{\$}{\leftarrow} \{0,1\}^n\} \approx_c \{m_0 \oplus r; \ r \overset{\$}{\leftarrow} \{0,1\}^{\ell(n)}\}$$

$$\bullet \mathcal{H}_1 := \left\{ c := m_0 \oplus G(k); \ k \xleftarrow{\$} \{0, 1\}^n \right\}$$

$$\bullet \mathcal{H}_4 := \left\{ c := m_1 \oplus G(k); \ k \xleftarrow{\$} \{0, 1\}^n \right\}$$

- $\bullet \mathcal{H}_1 := \left\{ c := m_0 \oplus G(k); \ k \xleftarrow{\$} \{0, 1\}^n \right\}$
- $\mathcal{H}_2 := \left\{ c := m_0 \oplus r; \ r \overset{\$}{\leftarrow} \{0, 1\}^{\ell(n)} \right\}$

- $\mathcal{H}_2 \equiv \mathcal{H}_3$: \mathcal{H}_2 is an OTP encryption of m_0 and \mathcal{H}_3 is an OTP encryption of m_1 . Therefore, \mathcal{H}_2 and \mathcal{H}_3 are identical because of the one-time perfect security of OTP.

- $\bullet \mathcal{H}_1 := \left\{ c := m_0 \oplus G(k); \ k \xleftarrow{\$} \{0, 1\}^n \right\}$
- $\mathcal{H}_2 := \left\{ c := m_0 \oplus r; \ r \xleftarrow{\$} \{0, 1\}^{\ell(n)} \right\}$

- $\mathcal{H}_2 \equiv \mathcal{H}_3$: \mathcal{H}_2 is an OTP encryption of m_0 and \mathcal{H}_3 is an OTP encryption of m_1 . Therefore, \mathcal{H}_2 and \mathcal{H}_3 are identical because of the one-time perfect security of OTP.
- $\mathcal{H}_3 \approx_c \mathcal{H}_4$: Similar to $\mathcal{H}_1 \approx_c \mathcal{H}_2$.

- $\bullet \mathcal{H}_1 := \left\{ c := m_0 \oplus G(k); \ k \xleftarrow{\$} \{0, 1\}^n \right\}$
- $\mathcal{H}_2 := \left\{ c := m_0 \oplus r; \ r \xleftarrow{\$} \{0, 1\}^{\ell(n)} \right\}$
- **3** $\mathcal{H}_3 := \left\{ c := m_1 \oplus r; \ r \overset{\$}{\leftarrow} \{0, 1\}^{\ell(n)} \right\}$
- $\mathcal{H}_2 \equiv \mathcal{H}_3$: \mathcal{H}_2 is an OTP encryption of m_0 and \mathcal{H}_3 is an OTP encryption of m_1 . Therefore, \mathcal{H}_2 and \mathcal{H}_3 are identical because of the one-time perfect security of OTP.
- $\mathcal{H}_3 \approx_c \mathcal{H}_4$: Similar to $\mathcal{H}_1 \approx_c \mathcal{H}_2$.

$$\mathcal{H}_1 \approx_c \mathcal{H}_2 \equiv \mathcal{H}_3 \approx_c \mathcal{H}_4$$

By hybrid lemma, \mathcal{H}_1 is computationally indistinguishable to \mathcal{H}_4 .

 $How\ to\ construct\ PRGs?$

• We will now show that once you can construct a PRG with tiny stretch (even 1 bit), you can also construct arbitrary polynomial stretch PRG.

- We will now show that once you can construct a PRG with tiny stretch (even 1 bit), you can also construct arbitrary polynomial stretch PRG.
- <u>Intuition</u>: Iterate the one-bit stretch PRG poly times

- We will now show that once you can construct a PRG with tiny stretch (even 1 bit), you can also construct arbitrary polynomial stretch PRG.
- <u>Intuition</u>: Iterate the one-bit stretch PRG poly times

- We will now show that once you can construct a PRG with tiny stretch (even 1 bit), you can also construct arbitrary polynomial stretch PRG.
- <u>Intuition</u>: Iterate the one-bit stretch PRG poly times

Construction of $G_{poly}:\{0,1\}^n \to \{0,1\}^{\ell(n)}$

Let $G: \{0,1\}^n \to \{0,1\}^{n+1}$ be a one-bit stretch PRG.

$$\begin{array}{rcl}
s & = & x_0 \\
G(x_0) & = & x_1 \| b_1 \\
& \vdots \\
G(x_{\ell(n)-1}) & = & x_{\ell(n)} \| b_{\ell(n)} \\
\end{array}$$

$$G_{poly}(s) := b_1 \dots b_{\ell(n)}$$

• We want to show $\left\{G_{poly}(s); s \stackrel{\$}{\leftarrow} \{0,1\}^n\right\} \approx_c \left\{r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell(n)}\right\}$

- We want to show $\left\{G_{poly}(s); s \stackrel{\$}{\leftarrow} \{0,1\}^n\right\} \approx_c \left\{r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell(n)}\right\}$
- Consider the following hybrid experiments:

- We want to show $\left\{G_{poly}(s); s \stackrel{\$}{\leftarrow} \{0,1\}^n\right\} \approx_c \left\{r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell(n)}\right\}$
- Consider the following hybrid experiments:

- We want to show $\left\{G_{poly}(s); s \stackrel{\$}{\leftarrow} \{0,1\}^n\right\} \approx_c \left\{r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell(n)}\right\}$
- Consider the following hybrid experiments:

Experiment \mathcal{H}_1	Experiment \mathcal{H}_2	Experiment $\mathcal{H}_{\ell(n)}$
$s = x_0$	$s = x_0$	$s = X_0$
$G(x_0) = x_1 b_1 $	$s_1 u_1=x_1 u_1$	$s_1 u_1 = x_1 u_1$
$G(x_1) = x_2 b_2 $	$G(x_1) = x_2 b_2$	$s_2 u_2 = x_2 u_2$
		•••
• • •		
$G(x_{\ell(n)-1}) = x_{\ell(n)} b_{\ell(n)}$	$G(X_{\ell(n)-1}) = x_{\ell(n)} b_{\ell(n)}$	$s_{\ell(n)} u_{\ell(n)} = x_{\ell(n)} u_{\ell(n)} $

Output $G(s) := b_1 b_2 \dots b_{\ell(n)}$ Output $G(s) := u_1 b_2 \dots b_{\ell(n)}$ Output $G(s) := u_1 u_2 \dots u_{\ell(n)}$

- We want to show $\left\{G_{poly}(s); s \stackrel{\$}{\leftarrow} \{0,1\}^n\right\} \approx_c \left\{r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell(n)}\right\}$
- Consider the following hybrid experiments:

Output
$$G(s) := b_1 b_2 \dots b_{\ell(n)}$$
 Output $G(s) := u_1 b_2 \dots b_{\ell(n)}$ Output $G(s) := u_1 u_2 \dots u_{\ell(n)}$

• In order to show that G_{poly} is a PRG, it suffices to show that $\mathcal{H}_1 \approx_c \mathcal{H}_{\ell(n)}$.

Output
$$G(s) := b_1 b_2 \dots b_{\ell(n)}$$
 Output $G(s) := u_1 b_2 \dots b_{\ell(n)}$ Output $G(s) := u_1 u_2 \dots u_{\ell(n)}$

• $\mathcal{H}_1 \approx_c \mathcal{H}_2$: From the security of PRG, we know that

$$\{G(s); s \stackrel{\$}{\leftarrow} \{0,1\}^n\} \approx_c \{s_1 || u_1 \stackrel{\$}{\leftarrow} \{0,1\}^{n+1}\}$$

Indistinguishability of \mathcal{H}_1 and \mathcal{H}_2 follows from the closure property of computational indistinguishability.

Output
$$G(s) := b_1 b_2 \dots b_{\ell(n)}$$
 Output $G(s) := u_1 b_2 \dots b_{\ell(n)}$ Output $G(s) := u_1 u_2 \dots u_{\ell(n)}$

• $\mathcal{H}_1 \approx_c \mathcal{H}_2$: From the security of PRG, we know that

$$\{G(s); s \stackrel{\$}{\leftarrow} \{0,1\}^n\} \approx_c \{s_1 || u_1 \stackrel{\$}{\leftarrow} \{0,1\}^{n+1}\}$$

Indistinguishability of \mathcal{H}_1 and \mathcal{H}_2 follows from the closure property of computational indistinguishability.

• Similarly, $\forall i \in [\ell(n) - 1], \mathcal{H}_i \approx_c \mathcal{H}_{i+1}$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めぬぐ

Output
$$G(s) := b_1 b_2 \dots b_{\ell(n)}$$
 Output $G(s) := u_1 b_2 \dots b_{\ell(n)}$ Output $G(s) := u_1 u_2 \dots u_{\ell(n)}$

• $\mathcal{H}_1 \approx_c \mathcal{H}_2$: From the security of PRG, we know that

$$\{G(s); s \stackrel{\$}{\leftarrow} \{0,1\}^n\} \approx_c \{s_1 || u_1 \stackrel{\$}{\leftarrow} \{0,1\}^{n+1}\}$$

Indistinguishability of \mathcal{H}_1 and \mathcal{H}_2 follows from the closure property of computational indistinguishability.

- Similarly, $\forall i \in [\ell(n) 1], \mathcal{H}_i \approx_c \mathcal{H}_{i+1}$.
- By Hybrid lemma, $\mathcal{H}_1 \approx_c \mathcal{H}_{\ell(n)}$.

- So far, we have only considered security proofs in the "forward" direction.
- A more classical (although initially potentially confusing) way is to prove security by arriving at a contradiction.
- First, we establish the following definitions.

- So far, we have only considered security proofs in the "forward" direction.
- A more classical (although initially potentially confusing) way is to prove security by arriving at a contradiction.
- First, we establish the following definitions.

Definition (Non-Negligible Functions)

A function $\nu(n)$ is non-negligible if $\exists c$, such that $\forall n_0, \exists n > n_0, \\ \nu(n) \geqslant \frac{1}{n^c}$.

- So far, we have only considered security proofs in the "forward" direction.
- A more classical (although initially potentially confusing) way is to prove security by arriving at a contradiction.
- First, we establish the following definitions.

Definition (Non-Negligible Functions)

A function $\nu(n)$ is non-negligible if $\exists c$, such that $\forall n_0, \exists n > n_0, \\ \nu(n) \geqslant \frac{1}{n^c}$.

Lemma (Alternate way to state Hybrid Lemma)

Let X^1, \ldots, X^m be distribution ensembles for $m = \mathsf{poly}(n)$. Suppose there exists a distinguisher/adversary \mathcal{A} that distinguishes between X^1 and X^m with probability μ . Then $\exists i \in [m-1]$, such that \mathcal{A} distinguishes between X^i and X^{i+1} with advantage at least μ/m .

• So far, we have proved statements of the following form.

"If G is a one-bit stretch PRG, then G_{poly} is a poly-bit stretch PRG."

- So far, we have proved statements of the following form.
 - "If G is a one-bit stretch PRG, then G_{poly} is a poly-bit stretch PRG."
- Let's now think about the **contrapositve** of these statements.
 - "If G_{poly} is a **not** poly-bit stretch PRG, then G is **not** a one-bit stretch PRG."

- So far, we have proved statements of the following form. "If G is a one-bit stretch PRG, then G_{poly} is a poly-bit stretch
- Let's now think about the **contrapositve** of these statements.

 "If G_{poly} is a **not** poly-bit stretch PRG, then G is **not** a one-bit stretch PRG."

PRG"

• If G_{poly} is not a PRG, then there exists a n.u. PPT adversary \mathcal{A} who can distinguish between its output on a random input and a uniformly sampled string with some **non-negligible** advantage μ .

- So far, we have proved statements of the following form. "If G is a one-bit stretch PRG, then G_{poly} is a poly-bit stretch
- Let's now think about the **contrapositve** of these statements.

 "If G_{poly} is a **not** poly-bit stretch PRG, then G is **not** a one-bit stretch PRG."

PRG"

• If G_{poly} is not a PRG, then there exists a n.u. PPT adversary \mathcal{A} who can distinguish between its output on a random input and a uniformly sampled string with some **non-negligible** advantage μ .

- So far, we have proved statements of the following form.
 - "If G is a one-bit stretch PRG, then G_{poly} is a poly-bit stretch PRG."
- Let's now think about the **contrapositve** of these statements. "If G_{poly} is a **not** poly-bit stretch PRG, then G is **not** a one-bit stretch PRG."
- If G_{poly} is not a PRG, then there exists a n.u. PPT adversary \mathcal{A} who can distinguish between its output on a random input and a uniformly sampled string with some **non-negligible** advantage μ .

Can we somehow use A to also break security of G?