Curve e Superfici per il Design Laboratorio 5 - Curve parametriche

Prof. Nicola Parolini

21 Novembre 2019

Materiali

Nella cartella con il materiale di oggi troverete:

- Questa presentazione
 (Materiale Didattico/Laboratori/lab
 5/lab5_testo.pdf);
- ► L'eseguibile del FranzPlot (Software/Franzplot 19.08 - Windows.exe)

Esercizio 1: Curve con FranzPlot - Il comando parametric curve

Sia data la seguente curva:

$$c: \begin{cases} x = \cos(t) \\ y = 2\sin(t) \\ z = 0.5 \end{cases}$$

con $t \in [0, 2\pi]$.

Vogliamo rappresentarla con FranzPlot attraverso l'elemento 'parametric curve'.

Esercizio 1: Curve con FranzPlot - i

Come avevamo visto nel caso del plot di rette, anche oggi faremo uso dei seguenti nodi:

- ▶ Geometries > Curve
- Parameters > Interval
- ► Geometry Renderer

A differenza della visualizzazione di una retta, questa volta sarà fondamentale assegnare i valori corretti all'inizio e la fine dell'intervallo.

Esercizio 1 - ii

Il parametro "quality" indica quanti punti saranno usati dal FranzPlot per approssimare la curva (o la superficie)

Esercizio 2: Rotazione di un punto

Sia dato il punto P(0, 1, 1).

- Scrivere la generica matrice R di rotazione intorno l'asse Z
- ▶ Applicare a P una trasformazione parametrica di rotazione intorno l'asse Z, con parametro $\theta \in [0, \pi]$, e scrivere la curva parametrica ottenuta. Di che curva si tratta?
- ▶ Rappresentare il punto *P* e la curva ottenuta in FranzPlot .
- Cosa cambierebbe se la rotazione fosse intorno l'asse Y? E se fosse intorno l'asse X?
- Usando FranzPlot , ottenere la stessa curva applicando una trasformazione parametrica

Esercizio 3: Spirale conica

Determinare la curva parametrica che descrive il filo avvolto sul cono (da primitive).

Esercizio 3-ii

La curva è data dalla rotazione di un punto intorno all'asse, con raggio variabile, composta con una traslazione lungo lo stesso asse, quindi si tratta di un'elica conica.

$$C: \begin{cases} x(t) = at \cos t \\ y(t) = at \sin t \\ z(t) = ct + d \qquad t_{I} \le t \le 0 \end{cases}$$

Il rapporto fra a e c è legato alla semiapertura del cono. Usiamo valori di t negativi per disegnare il tratto inferiore dell'elica conica e d per traslare il vertice lungo z.

Esercizio 4: Sole/Terra/Luna

L'equazione parametrica della circonferenza, ad esempio:

$$C: \begin{cases} x(t) = a\cos t \\ y(t) = a\sin t \\ z(t) = 0 \end{cases}$$

è utile anche per descrivere l'orbita dei corpi celesti.

Ponendo il sole al centro del sistema di riferimento, scrivere la curva che descrive il moto di un pianeta e di un suo satellite.

Suggerimento

Per ogni valore del parametro t, il moto del satellite rispetto al pianeta può essere visto come una rotazione attorno al centro degli assi traslato della posizione del pianeta.

Rappresentare lo stesso sistema utilizzando punti e/o sfere ed il nodo time transform.

Esercizio 4 - ii

Una curva come quella in figura è qualitativamente l'unico tipo di curva osservabile?

Esercizio 5

Determinare la forma della equazione parametrica che descrive questa curva.