Контрольная работа по дисциплине «Электроника»

УСИЛИТЕЛЬ НИЗКОЙ ЧАСТОТЫ НА ТРАНЗИСТОРЕ

Цель работы: изучить схемы усилителей, их особенности и методику расчета усилителя на транзисторе, включенном по схеме с ОЭ; ознакомится с параметрами усилительных каскадов и порядком их расчета.

1. Краткие сведения из теории

Усилителем называется электронное устройство, у которого коэффициент усиления по мощности больше единицы.

Параметры усилительного каскада: коэффициенты усиления по напряжению ($K_U = U_{\text{вых}}/U_{\text{вх}}$), току ($K_I = I_{\text{вых}}/I_{\text{вх}}$), мощности ($K_P = P_{\text{вых}}/P_{\text{вх}}$); номинальная выходная мощность — наибольшая мощность, которую усилитель передает нагрузке без заметных искажений сигнала; входное ($R_{\text{вх}} = U_{\text{вх}}/I_{\text{вх}}$) и выходное ($R_{\text{вых}} = U_{\text{вых}}/I_{\text{вых}}$) сопротивления; чувствительность; полоса пропускания; коэффициент полезного действия; коэффициенты частотных, фазовых, нелинейных искажений и др.

Усилительные каскады различаются между собой по способу включения транзистора. Различают три вида усилительных каскадов — ОЭ, ОБ и ОК (эмиттерный повторитель). Схемы каскадов и временные диаграммы их работы приведены на рис. 2.1: с ОЭ — a, δ ; с ОБ — b, ϵ ; с ОК — δ , e.

Каскад с ОЭ. Источник усиливаемого входного переменного напряжения $U_{\text{вх}}$ подключается к входной базовой цепи транзистора. Конденсаторы C_1 , C_2 (разделительные) служат для разделения при постоянном токе цепи источника усиливаемого сигнала и входной цепи транзистора, а также коллекторной цепи транзистора и цепи нагрузки $R_{\text{н}}$.

Схема подачи смещения на базу осуществляется фиксированным током через резистор R_6 от источника E_{κ} . С помощью резисторов R_6 и R_{κ} задается режим работы транзистора по постоянному току. При отсутствии $U_{\text{вх}}$ в базе транзистора протекает постоянный ток покоя $I_{\text{об}}$ от источника E_{κ} через R_6 . Напряжение U_{69} незначительно $(0,1-0,3\ B-$ для германиевых транзисторов, $0,3-1\ B-$ для кремниевых). Так как потенциал базы отрицателен по отношению к потенциалу эмиттера, то переход открыт и можно считать, что $I_{\text{об}} \approx E_{\kappa}/R_6$. Ток покоя в цепи коллектора определяется через коэффициент β по формуле: $I_{\text{ок}} = \beta I_{\text{об}}$. Проходя через $R_{\text{н}}$, ток покоя создает на нагрузке падение напряжения $U_{\text{вых}}$. Тогда напряжение покоя на коллекторе транзистора $U_{\text{ок}} \approx E_{\kappa} - I_{\text{ок}} R_{\text{н}}$.

При подаче на базу положительной полуволны переменного входного напряжения (см. рис. 2.1, б) ток I_{κ} уменьшается, так как призакрывается эмиттерный переход, и, соответственно, отрицательное напряжение $U_{\kappa 9}$ увеличивается по абсолютной величине.

Рис. 2.1. Схемы усилительных каскадов и временные диаграммы их работы: a, b – схема включения с ОЭ; b, b – с ОБ; b, b – с ОК

При этом на резисторе $R_{\rm H}$ формируется отрицательная полуволна напряжения значительно большей амплитуды, чем полуволна амплитуды $U_{\rm Bx}$. При поступлении отрицательной полуволны напряжения $U_{\rm Bx}$ транзистор приоткрывается, напряжение на нем по абсолютной величине снижается, а на $R_{\rm K}$ формируется положительная полуволна. Таким образом, напряжения $U_{\rm Bux}$ и $U_{\rm Bx}$ находятся в противофазе, т. е. сдвинуты на 180° относительно друг друга.

Каскад с ОЭ усиливает входной сигнал по току, напряжению и имеет максимальное среди всех каскадов усиление по мощности. Входное сопротивление незначительно, так как переход Б — Э во входной цепи смещен в прямом направлении ($R_{\rm Bx} \approx 200-2000\,{\rm OM}\,$ для незначительных сигналов). Выходное сопротивление значительно, так как определяется в основном сопротивлением в цепи коллектора $R_{\rm K}$.

Каскад с ОБ. В этой схеме входной сигнал подается в эмиттерную цепь. Для создания тока покоя I_{o9} (режима по постоянному току) использован дополнительный источник напряжения смещения ($E_{cm}I_{o9}\approx E_{cm}/R_{cm}\cdot U_{96}$), которое мало, так как переход открыт, поэтому ток покоя коллектора определяется

по формуле: $I_{ok} = \alpha I_{o9} = \alpha E_{cm}/R_{cm}$, где α — коэффициент передачи эмиттерного тока. С приходом положительной полуволны U_{Bx} (см. рис. 2.1, z) суммарный (постоянный и переменный) ток I_{5} увеличивается и, следовательно, транзистор открывается больше, увеличивается ток I_{k} , уменьшается по абсолютной величине напряжение U_{69} . На сопротивлении R_{H} формируется положительная полуволна напряжения с амплитудой, большей, чем амплитуда напряжения U_{Bx} . Входной ток I_{5} протекает в цепи с незначительным сопротивлением R_{bx} , а выходной I_{k} — в цепи со значительным сопротивлением резисторов R_{k} и R_{H} . При поступлении отрицательной полуволны U_{Bx} на R_{H} формируется также отрицательная полуволна U_{Bbix} большей амплитуды. Таким образом, полярность и фаза напряжений U_{Bbix} и U_{Bx} совпадают, т. е. каскад с ОБ не инвертирует фазу.

Каскад с ОБ усиливает входной сигнал по напряжению и мощности. Усиления по току нет, так как ($\alpha = I_{\text{вых}}/I_{\text{вх}}$) < 1. Эффект усиления по напряжению и мощности тем выше, чем больше α , $R_{\text{к}}$ и $R_{\text{н}}$. Входное сопротивление каскада с ОБ меньше, чем входное сопротивление каскада с ОЭ, а выходное примерно равно сопротивлению $R_{\text{к}}$.

Каскад с ОК. Основное отличие каскада с ОК от каскадов с ОЭ и ОБ в том, что нагрузка включена в цепь эмиттера транзистора (этим вводится отрицательная обратная связь по току, которая существенно сказывается на параметрах каскада). Начальное смещение (выбор точки покоя транзистора) задается током от источника E_{κ} через резистор R_{6} . В усилительном каскаде с ОК все напряжение $U_{\text{вых}}$ введено последовательно во входную цепь, т. е. имеется стопроцентная отрицательная обратная связь. При положительной полуволне напряжения $U_{\text{вх}}$ уменьшаются суммарный ток базы, ток $I_{\text{э}}$ (закрывается эмиттерный р-п-переход), снижается по абсолютной величине U_э общей точки. На нагрузке формируется положительная причем $|U_{\text{вых}}| \approx |U_{\text{вх}}|$. Каскад с ОК полуволна напряжения (см. рис. 2.1, е), сохраняет фазу входного сигнала, усиливает его по току ($K_i \approx \beta + 1$) и мощности. Усиления по напряжению нет, так как изменение U_{rx} почти полностью передается на выход через переход Б - Э, имеющий незначительное сопротивление, – он открыт по сравнению с сопротивлениями R_3 и $R_{\rm H}$. Усиление по мощности достигается за счет усиления тока. Входное сопротивление каскада по переменному току значительно (десятки – сотни килоом), а выходное составляет всего единицы – десятки ом.

Эмиттерный повторитель используют для согласования каскадов, имеющих незначительное $R_{\rm Bx}$ и существенное $R_{\rm Bhx}$ сопротивления (например, схема с ОБ), и в качестве конечного (выходного) каскада усилителей, работающих на низкоомную нагрузку.

2. Схема рассчитываемого усилителя

Усилители с ОЭ обеспечивают наибольшее усиление по мощности, однако схема такого усилителя отличается существенной температурной нестабильностью, т. е. изменением начального положения рабочей точки усилительного каскада (в режиме покоя при отсутствии переменного входного сигнала) с изменением температуры окружающей среды. На стабильность работы каскада с изменением температуры основное влияние оказывают

изменение обратного коллекторного тока $\Delta I_{\kappa o}$, которое наиболее значительно;

смещение входной характеристики (напряжения ΔU_{69}); изменение коэффициента передачи тока эмиттера $\Delta \alpha$.

Для оценки дестабилизирующего действия вводится параметр — коэффициент нестабильности: $S = \Delta I_{\text{ок}}/\Delta I_{\text{ко}}$, где $\Delta I_{\text{ко}}$ — конечное приращение прямого коллекторного тока при изменении температуры:

$$\Delta I_{\kappa o} = I_{\kappa o}(e^{0.077\Delta t} - 1),$$

где $\Delta I_{\kappa o}$ – температурное изменение обратного коллекторного тока;

 Δt – заданный диапазон изменения температуры;

 $I_{\text{ко}}$ – обратный ток коллектора при $t=20^{\circ}\text{C}$ (измеряется или принимается по справочным данным).

Расчетная схема усилительного каскада с ОЭ приведена на рис. 2.2, в нее для стабилизации рабочей точки транзистора включена цепь эмиттерной стабилизации, состоящая из резисторов R_6 , R_9 и шунтирующего конденсатора C_9 . В схеме уменьшается смещение на базу фиксированным напряжением между базой и эмиттером с помощью делителя напряжения на резисторах R_1 , R_6 . Совокупность элементов R_9 и C_9 называется цепочкой автоматического регулирования смещения. Шунтирующий конденсатор C_9 исключает возникновение отрицательной обратной связи по переменному току, снижает потери $U_{\text{вых}}$, увеличивает коэффициент усиления по напряжению K_{u} и КПД усилителя.

Использование отрицательной обратной связи по постоянному току с делителем напряжения для создания смещения на базе обеспечивает получение относительно невысокого коэффициента нестабильности (S=1-10, в идеальном случае S=0).

Рис. 2.2. Схема усилительного каскада с ОЭ

Рис. 2.3. График зависимости изменения входного тока от времени

3. Задание к контрольной работе

- 1. Номер варианта определяется по последней цифре шифра.
- 2. Произвести расчет усилительного каскада (см. рис. 2.2).

Исходные данные:

1) тип транзистора, его h-параметры в схеме включения с ОБ, статические характеристики в схеме включения с ОЭ (таблица 1, ПРИЛОЖЕНИЕ 2);

Таблица 1 Выбор типа биполярного транзистора

Номер	Тип транзи-		<i>h</i> -паран	метры	Предельные значения				
вари- анта	стора	<i>h</i> _{11б} , Ом	h_{126}	h_{216}	<i>h</i> _{22б} , См	<i>U</i> _{кэ} , В	<i>I</i> _к , мА	$P_{ m доп}, \ { m MBT}$	
1	МП42А	30	2.10-3	-0,96	1.10-6	15	40	200	
2	МП39	30	1.10-3	-0,93	1.10-6	15	40	150	
3	МП41	35	1.10-3	-0,97	1.10-6	15	40	150	
4	МП113	50	1.10-3	-0,96	1.10-6	10	20	150	
5	МП111	50	$0.5 \cdot 10^{-3}$	-0,93	1.10-6	20	20	150	
6	МП39Б	32	1.10-3	-0,96	1.10-6	15	40	150	
7	МП36А	20	5·10 ⁻³	-0,96	2.10-6	15	40	150	
8	П401	20	2.10-3	-0,98	2.10-6	10	10	50	
9	МП41А	25	$2 \cdot 10^{-3}$	-0,98	1.10-6	15	40	150	
0	МП25	25	3.10-3	-0,93	2.10-6	15	25	150	

2) напряжение источника электропитания E_{κ} , B (таблица 2);

Выбор напряжения источника питания

Номер вари- анта	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
E_{κ} , B	14	11	12	9	18	13	14	7	11	12	12	13	14	8	16
Номер вари- анта	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
E_{κ} , B	11	12	8	13	14	13	12	11	7	14	14	13	9	12	11

3) нижняя $f_{_{\rm H}}$ и верхняя $f_{_{\rm B}}$ частотные границы режима неискаженного усиления класса A, $f_{_{\rm H}}$ = 100 Γ ц, $f_{_{\rm B}}$ = 10000 Γ ц.

3.1. Порядок расчета параметров усилителя

Существует несколько методов расчета основных параметров, характеризующих работу усилителя. Наиболее простым является графоаналитический метод, при котором выбор рабочей точки производится графически, а расчет других параметров — аналитически.

1. Выбор местоположения рабочей точки в режиме покоя с учетом требований ее температурной стабильности.

Выбор местоположения рабочей точки выполняется на выходных и входных характеристиках транзистора.

В ПРИЛОЖЕНИИ 1 на примере подробно рассмотрен процесс выбора рабочей точки.

2. Расчет h₃-параметров

$$h_{119} = h_{116} / (1 + h_{216});$$

$$h_{129} = (h_{116} h_{226} - h_{126} h_{216} - h_{126}) / (1 + h_{216});$$

$$h_{219} = -h_{216} / (1 + h_{216});$$

$$h_{229} = h_{226} / (1 + h_{216}).$$
(1)

Для схемы включения транзистора с общим эмиттером определить входное сопротивление транзистора $r_{\rm BX\ TPAH3}=h_{119}$ и коэффициент передачи тока $\beta=h_{219}$.

- 3. Расчет усилителя
- 1) рассчитывается сопротивление R_3 :

$$R_9 = (0,2,...,0,3) E_K / I_{90}.$$
 (2)

Обратите внимание: 0,2,..., 0,3 – это любое число от 0,2 до 0,3, включая 0,2 и 0,3.

$$I_{90} = I_{60} + I_{k0}; (3)$$

где $I_{\kappa 0}$ и I_{60} — выходной и входной токи транзистора в режиме покоя (координаты рабочей точки P в системе входных и выходных характеристик).

Значения $I_{\kappa 0}$ и I_{60} принимаются из графика и подставляются в выражение (3) в основных единицах измерения тока (в амперах).

Сопротивления будут получаться в Ом и кОм.

2) задавшись значением сопротивления

$$R_1 = (2,...,5)r_{\text{BX TPaH3}}$$
 (4)

Обратите внимание: 2,...,5 – это любое число от 2 до 5, включая 2 и 5.

3) определяется ток делителя:

$$I_{\text{дел}} = (I_{90}R_9 + U_{690}) / R_1;$$
 (5)

4) вычисляется сопротивление цепи делителя:

$$R_2 = (E_{\rm K} - I_{\rm Дел} R_1) / (I_{\rm Дел} + I_{\rm 60});$$
 (6)

5) рассчитывается сопротивление резистора:

$$R_{K} = (E_{K} - U_{K90} - I_{90}R_{9}) / I_{K0},$$
(7)

6) эквивалентное сопротивление базовой цепи по переменному току

$$R_6 = R_1 R_2 / (R_1 + R_2).$$
 (8)

7) вычисляется емкость конденсаторов $C_{\mathfrak{p}1},\,C_{\mathfrak{p}2}$ и $C_{\mathfrak{z}}$,:

$$C_9 = 10^7 / [(1,...,2)2\pi f_H R_9];$$

$$C_{p1} = C_{p2} = 10^7 / [(1, ..., 2)2\pi f_H R_{KACK BX}],$$

где
$$C_9$$
, C_{p1} и C_{p2} – в мк Φ . (9)

Результаты расчета по формулам (9) уже получатся в мкФ.

8) входное и выходное сопротивление усилительного каскада

$$R_{\text{Kack BX}} = R_6 r_{\text{BX TPaH3}} / (R_6 + r_{\text{BX TPaH3}});$$

$$R_{\text{Kack BMX}} = R_{\text{K}} / (1 + h_{229} R_{\text{K}}).$$
 (10)

9) коэффициенты усиления каскада без учета внешней нагрузки

$$K_I = I_{\text{BMX}} / I_{\text{BX}} \approx \beta;$$

$$K_U = -(\beta R_{\text{K}}) / R_{\text{Kack BX}};$$
(11)

$$K_P = K_I K_U. \tag{12}$$

Для самопроверки: K_I , $K_U >>1$ (десятки – сотни).

10) расчет КПД.

Полезная выходная мощность каскада

$$P_{\text{BMX}} = 0.5 (U_{m \text{ BMX}})^2 / R_{\text{K}}$$

Полная мощность, расходуемая источником питания,

$$P_0 = I_{30}E_K + I_{\text{nen}}^2 \cdot (R_1 + R_2) + I_{60}^2 R_2.$$

Электрический КПД усилительного каскада

$$\eta_9 = (P_{\text{BbIX}} / P_0) \ 100\%.$$
(13)

 $U_{m \text{ вых}}$ определяется по графику 2.2 по оси U_{κ_9} (см. ПРИЛОЖЕНИЕ 1).

КПД может получиться разный, в зависимости от построений, примерно от 1 до 30 %.

11)

Коэффициент нестабильности каскада по коллекторному току (желательно, чтобы он был меньше)

$$S = \beta / (1 + \beta \gamma)$$
 или $S \approx 1 + R_6 / R_3$,

$$S \approx (R_6 + R_9) / [(1 + h_{216}) R_6 + R_9],$$

где $\gamma = R_2 / (R_6 + R_2)$.

4. Содержание контрольной работы

- 1) Титульный лист.
- 2) Цель работы.
- 3) Графики входных и выходных характеристик с необходимыми построениями на них.
 - 4) Расчетная схема усилителя.
 - 5) Расчетные формулы и расчет по ним с пояснениями.

5. Контрольные вопросы

- 1) В чем состоит сущность графоаналитического метода расчета параметров усилительного каскада?
- 2) Какие характеристики имеют усилительные каскады с различными схемами включения транзистора?
 - 3) Каково назначение элементов усилителя?
- 4) В каком каскаде (с ОБ, ОЭ или ОК) меняется на нагрузке полярность входного напряжения?

Выбираем свой номер варианта из таблиц 1 и 2 (для примера я выполню 9 вариант).

Выбор типа	биполярного	транзистора
------------	-------------	-------------

Номер	Тип транзи-		<i>h</i> -парам	Предельные значения				
вари- анта	стора	h ₁₁₆ ,	h_{126}	h_{216}	h ₂₂₆ ,	<i>U</i> _{кэ} , В	<i>I</i> _K ,	$P_{\text{доп}}$,
	2.577.42.4	Ом	3		См		мA	мВт
1	МП42А	30	$2 \cdot 10^{-3}$	-0,96	1.10-6	15	40	200
2	МП39	30	1.10-3	-0,93	1.10-6	15	40	150
3	МП41	35	1.10-3	-0,97	1·10 ⁻⁶	15	40	150
4	МП113	50	1.10-3	-0,96	1·10 ⁻⁶	10	20	150
5	МП111	50	$0.5 \cdot 10^{-3}$	-0,93	1·10 ⁻⁶	20	20	150
6	МП39Б	32	1.10-3	-0,96	1·10 ⁻⁶	15	40	150
7	МП36А	20	5·10 ⁻³	-0,96	2.10-6	15	40	150
8	П401	20	2.10-3	-0,98	2·10 ⁻⁶	10	10	50
9	МП41А	25	2.10^{-3}	-0,98	1·10 ⁻⁶	15	40	150
0	МП25	25	3·10 ⁻³	-0,93	2.10-6	15	25	150

Выбор напряжения источника питания

Номер вари- анта	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
E_{κ} , B	14	11	12	9	18	13	14	7	11	12	12	13	14	8	16
Номер вари- анта	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
E_{κ} , B	11	12	8	13	14	13	12	11	7	14	14	13	9	12	11

Находим в приложении графики характеристик для транзистора в соответствии с вариантом.

Рис. П.З.1. Входные характеристики биполярных транзисторов МПЗ9, МПЗ9Б, МП41, МП41А, МП42А в схеме с ОЭ

Рис. П.З.4. Выходные характеристики транзистора МП41А в схеме с ОЭ

На выходных характеристиках отмечаем заданное по варианту значение $E\kappa=11~B.$

Затем отмечаем там же точку перегиба А на верхней характеристике.

Проводим через эти две точки (А и Ек) нагрузочную прямую.

Находим точку пересечения нагрузочной прямой с нижней характеристикой транзистора – точку В.

Делим отрезок AB пополам и округляем до ближайшей характеристики (неважно выше или ниже середины отрезка она лежит), ставим точку P — пересечение нагрузочной прямой и характеристики, соответствующей середине AB.

Переносим точку P на входные характеристики. Для этого смотрим значение I_6 справа для линии, на которой стоит точка P. У меня это 0,4. Ищем это значение на вертикальной оси входной характеристики, проводим перпендикуляр до кривой $U_{\kappa 9}$ =-5 B и ставим точку P.

На входных характеристиках выбираем по возможности прямолинейный участок максимальной длины и отмечаем точки A' и B' (в данном примере точка P попала почти на перегиб характеристики, поэтому отрезок A'B' получился коротким. А так чем он длиннее, тем лучше).

Через значения токов базы $I_{\text{б}}$ переносим точки A' и B' на выходные характеристики.

Иногда точка A' может совпасть с точкой A или точка B' — с точкой B. Это допускается в виде исключения.

По графикам определяем координаты рабочей точки Р, они потом потребуются в расчетах.

 $\bar{I_{60}}$ =0,4 mA; $\bar{U_{690}}$ =0,275 B.

 $I_{\kappa 0}$ =28 mA; $U_{\kappa > 0}$ =4,2 B.

Строим синусоиды (период одинаковый на всех графиках!). Синусоида всегда идет сначала из точки Р к точке А, потом через точку Р к В!

Рисунок 2.1 – Входные характеристики транзистора

Рисунок 2.2 – Выходные характеристики транзистора

В контрольную работу вставляем только итоговые графики (рисунки 2.1 и 2.2).

ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ БИПОЛЯРНЫХ ТРАНЗИСТОРОВ

Рис. П.3.1. Входные характеристики биполярных транзисторов МП39, МП39Б, МП41, МП41A, МП42A в схеме с ОЭ

Рис. П.3.2. Выходные характеристики транзистора МПЗ9 в схеме с ОЭ

Рис. П.3.3. Выходные характеристики биполярных транзисторов МП39Б, МП41 в схеме с ОЭ

Рис. П.3.4. Выходные характеристики транзистора МП41А в схеме с ОЭ

Рис. П.3.5. Выходные характеристики транзистора МП42А в схеме с ОЭ

Рис. П.3.6. Входные характеристики транзисторов МП111 и МП113 в схеме с ОЭ

Рис. П.3.7. Выходные характеристики транзистора МП111 в схеме с ОЭ

Рис. П.3.8. Выходные характеристики транзистора МП113 в схеме с ОЭ

Рис. П.3.10. Выходные характеристики транзистора П401 в схеме с ОЭ

Рис. П.3.9. Входная характеристика транзистора П401 в схеме с ОЭ

Рис. П.3.11. Входные характеристики транзисторов МП25 и МП36A в схеме с ОЭ

Рис. П.3.12. Выходные характеристики транзистора МП25 в схеме с ОЭ

Рис. П.3.13. Выходные характеристики транзистора МП36А в схеме с ОЭ