Universidade Federal do Rio Grande – Sistemas de Informação 1ª Lista de exercícios – estruturas de controle – AED I – 2020

Prof. Alessandro de Lima Bicho Prof. Edwilson Vaz Prof. Marcelo Malheiros

Observação: apresente as soluções por meio de fluxogramas.

- 1) Ler dois números. Somar os números lidos e, após, multiplicar o resultado da soma pelo primeiro número lido. Apresentar o resultado final.
- 2) Ler um número inteiro. Apresentar o seu antecessor e o seu sucessor.
- 3) Ler um número inteiro. Apresentar o seu dobro e o seu triplo.
- 4) Ler 5 (cinco) números. Somar os números lidos e, após, multiplicar o resultado da soma pelo primeiro número lido. Apresentar o resultado final.
- 5) Ler 5 (cinco) números inteiros. Exibir o antecessor e o sucessor de cada número.
- 6) Faça um algoritmo que apresente o maior de dois números introduzidos por teclado.
- 7) Faça um algoritmo que apresente o maior de três números introduzidos por teclado. Obs.: os três números introduzidos são diferentes entre si).
- 8) Faça um algoritmo que verifique se um determinado número é par ou impar.
- 9) Faça um algoritmo para multiplicar dois números, sem o recurso da operação de multiplicação.
- 10) Faça um algoritmo que, ao receber os valores da largura e do comprimento de uma figura geométrica, detecte se esta é um quadrado ou um retângulo.
- 11) Imagine que em uma disciplina a nota final é obtida da seguinte forma: trabalho tem peso 25% e a prova tem peso 75%. Faça um algoritmo que calcule a nota final desta disciplina. Se a nota for inferior a 7,0, o algoritmo deve apresentar a mensagem "Está em exame.". Caso contrário, deve apresentar a mensagem: "Aprovado com a nota X".
- 12) A partir da altura, do sexo e do peso informados pelo usuário, construa um algoritmo que calcule o peso ideal e a variação (em valor absoluto e percentual). Após, informe se a pessoa está com peso elevado, normal ou inferior, levando-se em consideração o peso normal como uma variação de 8% para mais ou para menos. Utilize as seguintes fórmulas:
- a) para homens: (72,7 * h) 58
- b) para mulheres: (62.1 * h) 44.7
- 13) Uma aproximação da fórmula de conversão de Fahrenheit para Celsius é: Celsius_{aprox} = (Fahrenheit 30) / 2.

Como dado de entrada, o usuário informará uma temperatura em Fahrenheit, sendo maior ou igual a zero. Escreva um algoritmo que determine o valor equivalente em Celsius_{aprox}, e verifique se este valor difere por mais de quatro graus do valor equivalente exato para Celsius. O valor equivalente exato para Celsius é Celsius_{exato} = (Fahrenheit - 32)/1,8.

- 14) Sabe-se que um automóvel viaja a uma velocidade média de 88 quilômetros por hora, por 4 (quatro) horas. Escreva um algoritmo que mostre a distância percorrida, em quilômetros, ao final de cada ½ (meia) hora, do início ao final da viagem.
- 15) Construa um algoritmo que, informadas três medidas *a*, *b* e *c* pelo usuário, verifique se elas podem ser lados de um triângulo. Se não puderem ser, primeiramente o algoritmo deve informar isso. Se for possível serem lados de triângulo, deve dizer qual tipo de triângulo pode ser construído com essas medidas (isósceles, escaleno ou equilátero). A condição para formar um triângulo: comprimento do maior segmento seja inferior à soma dos comprimentos dos dois menores.
- 16) Construa um algoritmo para calcular as raízes de uma equação do 2° grau $(Ax^2 + Bx + C)$, sendo que os valores de A, B e C são informados pelo usuário.
- 17) Construa um algoritmo que calcula a quantidade de litros de combustível gastos em uma viagem utilizando-se um automóvel que faz 14 km/litro. Para realizar este cálculo, o usuário deverá fornecer o tempo gasto da viagem e a velocidade média durante a mesma. O algoritmo deverá apresentar, como resultado, a distância percorrida e a quantidade de litros utilizada para a viagem.
- 18) Sobre o salário bruto de um funcionário, são descontados 8% de INSS, 10% de IR (Imposto de Renda) e, sobre o restante, 0,5% referente à filiação sindical. Ao ser fornecido o valor do salário bruto do funcionário, calcule:
- Os descontos de INSS, IR e filiação sindical;
- O total dos descontos:
- O salário líquido.
- 19) Calcular a média aritmética final de um aluno, considerando que são realizadas duas provas e dois trabalhos, cujas notas são informadas pelo usuário. Tanto as provas como os trabalhos valem, no máximo, 10 pontos. As provas tem peso de 70% da nota final e os trabalhos tem peso 30% da nota final. No final do processamento, informar a média final do aluno, e verificar se o mesmo obteve uma média maior do que 7,0.
- 20) Ler, a partir do usuário, a idade de uma pessoa (expressa em anos, meses e dias exemplo: 30 anos, 5 meses e 10 dias) e mostrá-la expressa apenas em dias. Assumir que cada mês possui 30 dias e o número de dias de um ano é sempre igual a 365.
- 21) Criar um algoritmo que auxilie vendedores. A partir de um valor total informado para uma venda, mostrar:
- o total a pagar, considerando um desconto de 10%, se for à vista;
- o valor de cada parcela, no parcelamento de 3x sem juros;
- a comissão do vendedor, no caso da venda ser a vista (5% sobre o valor com desconto);
- a comissão do vendedor, no caso da venda ser parcelada (7% sobre o valor total).
- 22) Um motorista deseja colocar no seu tanque X reais de combustível. Escreva um algoritmo para ler o preço do litro do combustível e o valor do pagamento. Ao final, exibir quantos litros ele conseguiu colocar no tanque.

- 23) Uma fábrica de camisetas produz os tamanhos pequeno, médio e grande, cada uma sendo vendida respectivamente por 10, 12 e 15 reais. Construa um algoritmo em que o usuário forneça a quantidade de camisetas pequenas, médias e grandes referentes a uma venda, e a máquina informe quanto será o valor arrecadado.
- 24) João recebeu seu salário de R\$ 1200,00 e precisa pagar duas contas (C1 = R\$ 200,00 e C2 = R\$120,00) que estão atrasadas. Como as contas estão atrasadas, João terá de pagar multa de 2% sobre cada conta. Faça um algoritmo que calcule e mostre quanto restará do salário do João.
- 25) Desenvolva um fluxograma e um algoritmo em portugol que receba a velocidade de um veículo em km/h e exiba para o usuário esta velocidade em m/s.

Ohs :

De km/h para m/s divide-se por 3,6.

De m/s para km/h multiplica-se por 3,6.

- 26) Num dia de sol, você deseja medir a altura de um prédio, porém, a trena não é suficientemente longa. Assumindo que seja possível medir sua sombra e a do prédio no chão, e que você lembre a sua altura, faça um algoritmo para ler os dados necessários e calcular a altura do prédio.
- 27) Dada a quantidade de alunos de uma turma, uma lista com o número de matrícula e a média desses alunos, faça um algoritmo que escreva as matrículas dos alunos que tenham a maior nota e a menor nota.
- 28) Dado um número positivo, desenvolva um algoritmo que escreva todos os números positivos menores que esse número.
- 29) Construa um algoritmo que calcula e mostra a tabela de depreciação para "n" anos de um determinado equipamento, a partir das informações fornecidas pelo usuário do valor da compra do equipamento e da taxa de depreciação por ano. Por exemplo, uma máquina comprada por R\$28.000,00, se deprecia a uma taxa de R\$4.000,00, por ano. A tabela de depreciação seria de sete anos, apresentando os seguintes valores:

Ano	Depreciação	Valor no fim do ano	Depreciação Acumulada
1	4000	24000	4000
2	4000	20000	8000
3	4000	16000	12000
4	4000	12000	16000
5	4000	8000	20000
6	4000	4000	24000
7	4000	0	28000

Verifique que o equipamento não pode ter valor negativo e, neste caso, será necessário que o usuário informe um valor maior que zero. No último ano, a depreciação pode ser maior que o valor residual do equipamento.

30) Os seguintes dados foram coletados em uma recente viagem de automóvel.

Houdinend (Kill)	Litios (i)
22495	Tanque cheio
22841	36,6 (a partir desta linha, quant. abastecida)
23185	33,9
23400	31,5
	22495 22841 23185

23772	33,0
24055	36,6
24434	44,1
24804	42,9
25276	45.6

- a) Escreva um algoritmo que receba a quilometragem e o consumo em litros em cada abastecimento, e calcule o consumo médio por quilômetro de cada segmento da viagem. O consumo médio é obtido com a diferença de quilometragem entre dois abastecimentos, dividindo-a pelo número de litros do último abastecimento.
- b) Também deve calcular e mostrar o consumo médio cumulativo ao final de cada trecho (a cada abastecimento). O consumo médio cumulativo é calculado com a diferença entre a quilometragem de um abastecimento e a quilometragem do início da viagem, dividindo-a pela soma dos litros de todos os abastecimentos até então.

Perceba que o usuário não deve informar uma quilometragem menor que a anterior. Para encerrar a leitura da quilometragem, o usuário deve informar a quilometragem zero.

- 31) Em um berçário, existe um fichário com informações sobre os bebês recém-nascidos. Cada ficha contém o número de identificação, o nome e o peso do bebê. Fazer um algoritmo que leia estas informações e verifique:
- a) o número, nome e o peso do bebê mais gordo;
- b) o número, nome e o peso do bebê mais magro;
- c) a média de peso dos bebês.

Para encerrar a leitura do fichário, o número da identificação deve ser zero.

32) Com base na tabela abaixo, escreva um algoritmo que leia os códigos de cada item e a quantidade consumida. A seguir, calcule e mostre o valor total da conta a pagar.

Código	Especificação	Preço unitário
1	Cachorro Quente	R\$ 4,00
2	X-Salada	R\$ 4,50
3	X-Bacon	R\$ 5,00
4	Torrada Simples	R\$ 2,00
5	Refrigerante	R\$ 1,50

A leitura será encerrada com um código diferente daqueles utilizados na tabela.

- 33) Faça um programa que, ao ler a quantidade de segundos de um dia, apresente o resultado na forma hh:mm:ss; por exemplo, para 34247s deve ser impresso 09:30:47. Note que deve haver uma mensagem de erro caso a quantidade de segundos seja maior que aqueles correspondentes às 24 horas do dia.
- 34) Escreva um algoritmo que leia informações sobre um grupo de 250 pessoas e calcule alguns dados estatísticos. Para cada pessoa do grupo, deve-se ler o nome da pessoa, a altura, o peso e o sexo ("F" para feminino e "M" para masculino). Calcular e escrever:
- a) A quantidade total de homens e mulheres e o percentual de cada;
- b) A média de peso das pessoas por sexo (somatório dos pesos de todas as pessoas pela quantidade de pessoas).

- 35) Um cubo de gelo, exposto a uma determinada temperatura, perde metade de sua massa a cada 50 segundos. Dada a massa inicial, em gramas, proponha um algoritmo que determine o tempo necessário para que a massa do cubo seja menor que 0,5 grama. Ao final, escreva o tempo calculado em horas, minutos e segundos. Considere que a massa inicial deverá ser um valor maior ou igual a 0,5 grama.
- 36) Faça um algoritmo que imprima os números primos entre 100 e 1000.