

ELEKTROTEHNI KI FAKULTET BEOGRAD

RISC procesor 5 stepeni pipeline

student: Nikola Nenin

2010/0428

profesor: dr Veljko Milutinovi asistent: Živojin Šuštran

Beograd 15.09.2016.

RISC procesor sa 5-stepenim pipeline-om

Nikola Nenin

email: nn100428d@student.etf.rs

1. DEFINISANJE PROJEKTA

1.1 Uvod

Projekat iz predmeta *Ra unarski VLSI sistemi* nam prvenstveno služi za savladavanje osnovnih koncepata jezika VHDL, kao i sticanje iskustva u projektovanju i testiranju procesora kroz samostalan rad. Arhitektura procesora opisanog u projektnom zadatku bliska je sa arhitekturom modernih procesora koji su danas u upotrebi.

1.2 Ciljevi projekta

Cilj projekta jeste sticanje prakti nog iskustva u projektovanju hardvera koriš enjem alata Quatrus II i ModelSim firme Altera i jezika VHDL.

2. OPIS DIZAJNA

2.1 Zabeleške uz dizajn

Projektovan je 32-bitni procesor opšte namene koji je povezan sa dve keš memorije, instrukcijskom i memorijom za podatke.

Procesor sadrži proto nu obradu. Broj stepeni je 5. Sve hazarde je potrebno hardverski razrešiti uz poštavanje slede ih zahteva: 1) za instrukcije skoka se koristi prediktor skoka i 2) zaustavljati proto nu obradu samo kad prosle ivanje nije mogu e i kada postoji zavistnost po podacima. Pored traženih zahteva težiti ka što boljim performansama. Prediktor skoka treba da bude realizovan po principu keša sa dvobitnom šemom.

Jezgro ima 32 registara opšte namene širine 32-bita. Registri su obeleženi sa R0 – R31. Registri specijalne namene su: 1) PC je pokaziva na slede u instrukciju i 2) SP pokaziva na vrh steka. SP pokazuje na prvu slobodnu lokaciju i stek raste ka nižim adresama. Instrukcijski set dat je u slede em poglavlju. Prilikom generisanja izuzetka prekinuti rad procesora.

2.2 Faze dizajna

Procesor je dizajniran po fazama, svaka od 5 faza pipeline-a je dizajnirana posebno i testirana samostalno, tek nakon završetka svih faza su one povezane i napravljen je jedan entitet koji predstavlja procesor.

2.2.1 Interfejs izme u procesora i memorije

Za komunikaciju izmedju procesora i keš memorije za podatke koriste se adresne linije (addr), linije za upis podataka (data_rd) i linije za itanje podataka (data_wr). Radi organizacije itanja i upisa u memoriju uvedeni su dodatni kontrolni signali i to: rd i wr. Interfejs izme u procesora i keš memorije za instrukcije ine: adresne linije (pc) i linije za itanje podataka (word)

OP[31:29]	000	001	010	011	100	101
OP[28:26]		5-72-0008	1945/4945/0			150540
000	LOAD	ADD	AND	SHL	JMP	BEQ
001	STORE	SUB	OR	SHR	JSR	BNQ
010			XOR	SAR	RTS	BGT
011			NOT	ROL		BLT
100	MOV	ADDI		ROR	PUSH	BGE
101	MOVI	SUBI			POP	BLE
110						
111						

Tipovi operacija (Tabela 1)

2.2.2 Faze izvršavanja instrukcije

Izvršavanje instrukcija se vrši kroz 5 faza i to su slede e faze: faza dohvatanja instrukcije (IF), faza dekodovanja instrukcije (ID), faza izvršavanja instrukcije (EX), faza za pristup memoriji za podatke (MEM), faza za upis rezultata na odgovaraju u lokaciju ili u odgovaraju i registar (WB).

opcode	Rd	Rs1		im mediate	
opcode	Rd	Rs1	Rs2	Reser	ved
opcode	Rd	Rs1	Reserved		
opcode	Rd	Reserved	im m ediate		
opcode	Reserved	Rs 1	im mediate		
opcode	Rd	Reserved	immediate Reserved		ved
opcade	im m ed ia te	Rs1	Rs2	im m ec	liste
opcode	Rd	Reserved			
opcode	Reserved	Rs1	i i		
opcode					

Tipovi instrukcija (Tabela 2)

3. IMPLEMENTACIJA

Implementacija je izvedena koriste i alate Quartus II i ModelSim. Status nakon sinteze i analize pomo u Quartus II alata dat je u nastavku (Slika 1)

Flow Status	Successful - Thu Sep 15 20:53:22 2016
Quartus II 64-Bit Version	13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition
Revision Name	CPU
Top-level Entity Name	CPU
Family	Cyclone II
Device	EP2C70F896I8
Timing Models	Final
Total logic elements	7,691
Total combinational functions	5,539
Dedicated logic registers	2,628
Total registers	2628
Total pins	165
Total virtual pins	0
Total memory bits	Q
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Izveštaj sintetizovanog modela (Slika 1)

3.1 Hazardi

U toku izvršavanja instrukcija može do i do više razli itih hazarda i oni se mogu podeliti na 3 tipa: strukturalni hazardi, hazardi podataka i upravlja ki hazardi. Strukturalni hazardi nastaju zbog potrebe da se istovremeno pristupa istom resursu od strane razli itih instrukcija koje se nalaze u razli itim stepenima pipelinea. Hazardi podataka nastaju kada je pristup nekom podatku od strane neke instrukcije u nekom stepenu pipeline-a uslovljeno prethodnim pristupanjem tom istom podatku od strane neke druge instrukcije iz nekog drugog stepena pipeline-a. Upravlja ki hazardi nastaju zbog skokova i drugih instrukcija koje menjaju vrednost PC-a.

3.2 Prediktor skoka

Prediktor skoka (Slika 2) je poseban entitet u okviru realizacije dizajna procesora.

Dizajniran je u vidu tabele i može se na i u etri stanja: WEAK_TAKEN,WEAK_NOT_TAKEN, STRONG TAKEN,STRONG NOT TAKEN.

Dvobitna šema (Slika 2)

4. TESTIRANJE I VERIFIKACIJA

Simulacija je zamišljena u vidu procesa. Jedan koji pretstavlja beskona nu petlju u kojoj se na svakih 5ns generiše signal kloka procesora. Proces je startovanje sistema tako što se takt zadrži signal reset aktivan i nakon toga ugasi i zapo ne izvršavanje. Okruženje za testiranje je ModelSim gde se prati dijagram vremenski zavisnih signala u okviru implementacije sistema (Slika 3).

Vremenski dijagram (Slika 3)

4.1 Javni test

Test koji je dostavljen od strane predmetnog asistenta.

PC = 00001000 SUB R6, R6, R6 SUB R4, R4, R4 LOAD R6,R6 LOAD R5,R6 SUB R5,R5,#1 BGT R5, R4, -2 STORE R5,R6 HALT

4.2 Test svih instrukcija

Test koji proverava sve mogu e instrukcije u okviru zadate projektne specifikacije.

A9	MOVI	R0, 100
AA	LD	R1, R0, 0
AB	MOV	R2, R1
AC	ST	R2, R0, 1
AD	ADD	R3, R1, R2
AE		
	SUB	R4, R3, R2
AF	ADDI	R5, R2, 3
B0	SUBI	R6, R2, 2
B1	ST	R3, R0, 2
B2	ST	R4, R0, 3
B3	ST	R5, R0, 4
B4	ST	R6, R0, 5
B5	AND	R10, R3, R4
B6	OR	R11, R3, R4
B7	NOT	R12, R3, R4
B8	XOR	R13, R1, R2
B9	ST	R10, R0, 6
BA	ST	R11, R0, 7
BB	ST	R11, R0, 7 R12, R0, 8
BC	ST	R13, R0, 9
BD	JMP	R13, BF
BE	ST	R13, R0, 0
BF	SHL	R3, 1
C0	SHR	R4, 1
C1	SAR	R5, 2
C2	ROL	R6, 1
C3	ROR	R6, 1
C4	ST	R3, R0, A
C5	ST	R4, R0, B
C6	ST	R5, R0, C
C7	ST	R6, R0, D
C8	MOVI	R30, 1000
C9	MOVI	R19, 0
CA	PUSH	R13, 0
CB	POP	R20
CC	JSR	R30, 0
CD	BEQ	R1, R2, 1
CE	ST	R13, R0, 0
CF	BEQ	R1, R20, 1
D0	JSR	R30, 0
D1	BNQ	R1, R2, 1
D2	JSR	R30, 0
D3	BNQ	R1, R20, 1
D4	ST	R13, R0, 0
D5	BGT	R3, R4, 1
D6	ST	R13, R0, 0
D7	BLT	R3, R4, 1
D8	JSR	R30, 0
D9	BGE	R3, R4, 1
DA	ST	R13, R0, 0
DB	BLE	R3, R4, 1
DC	JSR	R30, 0
DD	BGE	R1, R2, 1

DE	ST	R13, R0, 0
DF	BLE	R1, R2, 1
E0	ST	R13, R0, 0
E1	HALT	
1000	ST	R20, R19, 0
1001	ADDI	R19, R19, 1
1002	ADDI	R20, R20, 1
1003	RTS	

4.3 Provera hazarda

Test koji služi za analizu i uspešno razrešavanje svih mogu ih hazarda koji se mogu na i u okviru implementacije.

0	MOVI	R0, 1000
1	LD	R1, R0, 0
2	ADDI	R1, R1, 1
3	MOV	R2, R1
4	MOV	R3, R2
5	ADD	R4, R1, R2
6	ST	R1, R0, 1
7	ST	R2, R0, 2
8	ST	R3, R0, 3
9	ST	R4, R0, 4
Α	HALT	

4.4 Sortiranje niza

Test koji za ulazni skup re i dati skup sortira neopadaju e.

```
0
         MOVI
                  R0, 0
         MOVI
                  R31, 1000
1
2
         MOVI
                  R30, 10
         JSR
                  R0, 1200
1200
                  R29, R31, 0
         LD
1201
         MOV
                  R19, R31
1202
         SUBI
                  R30, R30, 1
1203
         BEQ
                  R30, R0, 8
1204
         ADDI
                  R31, R31, 1
1205
         MOV
                  R2, R31
1206
         MOV
                  R1, R30
                  R0, 1300
1207
         ISR
1208
         BGE
                  R3, R29, 2
1209
         ST
                  R3, R19, 0
120A
         ST
                  R29, R13, 0
         JMP
120B
                  R0, 1200
120C
         RTS
1300
         LD
                  R3, R2, 0
         MOV
                  R13, R2
1301
                  R1, R1, 1
1302
         SUBI
1303
         BEQ
                  R1, R0, 7
1304
         ADDI
                  R2, R2, 1
1305
                  R4, R2, 0
         LD
1306
         BGE
                  R4, R3, 2
1307
         MOV
                  R3, R4
1308
         MOV
                  R13, R2
                  R1, R1, 1
1309
         SUBI
130A
         BNQ
                  R1, R0, -7
130B
         RTS
```

5. ZAKLJU AK

Ovaj projekat je omogu io jedan osnovni uvid u to kako se dizajnira procesor i koji su izazovi sa kojima se inženjeri susre u u tom procesu. Tako e je objedinio znanja iz domena arhitekture ra unara koja su sada dobila konkretnu primenu.

Ono što je nedostatak jeste to što ne oslikava u ptopunosti fizi ke karakteristike kola u vidu prirodnog kašnjenja koje nastaje zbog šuma.

6. LITERATURA

Spisak literature koriš en u izradi doma eg zadatka u IEEE formatu, npr:

- [1] V.A. Pedroni, Circuit Design with VHDL, Camebridge, MA, USA, The MIT Press, August 2004.
- [2] C. Talarico, VHDL guidelines for synthesis, SIEMENS Semiconductor group, Sophia-Antipolis, FRANCE
- [3] J. or evi , Arhitektura i organizacija ra unara Pipeline
- [4] http://esd.cs.ucr.edu/labs/tutorial/
- [5] http://esd.cs.ucr.edu/labs/tutorial/

7. PRILOZI

Skica šeme celokupnog sistema:

- 1. CPU
 - IF
 - ID
 - EX
 - MEM
 - WB
 - Hazard controler
 - Predictor
 - Register file
- 2. Instruction cache
- 3. Data cache

Svi detalji entiteta i signala su detaljno nacrtani uz sve potrebne signale na šemama koje se nalaze u okviru priloga ovog rešenja.