DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

Pojem funkce

- Reálná funkce
- □ V oboru M, kde $M \in \mathbb{R}$, je definována reálná funkce, jestliže je dán předpis, podle kterého každému $x \in M$ je přiřazeno právě jedno číslo y
- $lue{}$ Oboru M potom říkáme definiční obor funkce.
 - \times x je argument funkce (nezávislá proměnná).
 - × y je funkční hodnota (závislá proměnná).
 - \times definičním oborem funkce je většinou interval $\langle a, b \rangle$
 - x funkce je většinou dána předpisem (analyticky) nebo grafem.

Druhy funkcí

Elementární funkce

$$y = f(x) \rightarrow y = kx + q$$

Algebraické funkce

$$y = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_n x^n + a_{n-1} x^{n-1} + \dots + b_0}$$

- Transcendentní funkce
 - × goniometrické, hyperbolické, mocninné, exponenciální, logaritmické
 - × cyklometrické funkce

$$y = \arcsin(x)$$

× integrální rovnice

$$g(x) = \int_{a} b f(x) dx$$

Spojitost funkce

- Cauchyho definice
- f(x) je spojitá v bodě a, pokud k libovolnému číslu $\epsilon>0$ existuje takové $\delta>0$, že pro všechna x z δ -okolí bodu a (tj. $|x-a|<\delta$) platí

$$|f(x) - f(a)| < \varepsilon$$

tj.
$$f(x)$$
 z ϵ -okolí $f(a)$

ať je ϵ jakkoliv malé, vždy můžeme zvolit δ tak malé, aby to bylo ještě blíže f(a)

Spojitost funkce

- Heineho věta
- Funkce f definovaná na okolí bodu a je v bodě a spojitá, právě když pro každou posloupnost čísel $\{x_n\}$ z uvedeného okolí bodu a, pro kterou

$$\lim_{n\to\infty} x_n = a$$

tj. $x_n \to a$

(a $x_n \neq a$) platí

$$\lim_{n\to\infty} f(x_n) = f(a)$$

tj. $f(x_n) \to f(a)$

Spojitost funkce

Weierstrassova věta:

- □ Je-li funkce f spojitá na intervalu $\langle a, b \rangle$, potom existuje na intervalu
- \blacksquare minimum funkce $f = \min(f(\langle a, b \rangle))$ a
- maximum funkce $f = \max(f(\langle a, b \rangle))$

Bolzanova věta:

- Je-li funkce f spojitá na intervalu $\langle a,b \rangle$, a f(a) > 0, f(b) < 0 nebo obráceně f(a) < 0, f(b) > 0, potom existuje
- aspoň jeden bod $\xi \in (a, b)$, pro který platí $f(\xi) = 0$

Cauchyho definice

Číslo $A \in \mathbb{R}$ je limitou funkce $f: \mathbb{R} \to \mathbb{R}$ v bodě $a \in R$, jestliže k libovolnému $\varepsilon > 0$ existuje takové $\delta > 0$, že pro všechna $x \in D(f)$ taková, že $|x - a| < \delta$ (x leží v prstencovém okolí bodu a) platí

$$|f(x) - A| < \varepsilon$$

- Heineho definice
- lacktriangle Bod $c \in \mathbb{R}$ je hromadným bodem definičního oboru funkce f
- Potom číslo $\lambda \in \mathbb{R}$ bude limitou funkce f v bodě c

$$\lim_{x \to c} f(x) = \lambda$$

 $lue{}$ pokud platí pro každou posloupnost x_n :

$$x_n \to c \quad \Rightarrow \quad f(x_n) \to \lambda$$

- \Box Funkce má v hromadném bodě svého definičního oboru c nejvýše jednu limitu
- lacktriangle Funkce f je v bodě c spojitá právě tehdy, když

$$f(c) = \lim_{x \to c} f(x)$$

$$\lim_{x \to c} |f(x)| = \left| \lim_{x \to c} f(x) \right|$$

- lacktriangle Bod $c \in \mathbb{R}$ je hromadným bodem definičního oboru funkce f
- $lue{}$ Funkce má v bodě c limitu zprava i zleva rovnu číslu λ

$$\lim_{x \to c^{-}} f(x) = \lambda, \qquad \lim_{x \to c^{+}} f(x) = \lambda$$

$$\lim_{x \to c^{+}} f(x) = -\infty$$

$$\lim_{x \to c^{-}} f(x) = +\infty$$

Derivace – historie

- Euklidés (300 př.n.l, Řecko)
- Archimédes (287 212 př.n.l, Řecko)
 - pravidla pro počítání s nekonečně malými proměnnými pro zjištění objemu a plochy (Ostomachion)
- Aryabhata (500 n.l., Indie)
 - × nekonečně malé veličiny pro studium pohybu Měsíce
- Bhaskar II (1114 1185 n.l., Indie)
 - x dnešní Rolleova věta
- Isaac Newton (1642-1727, Anglie)
 - spolu s Leibnizem moderní pojetí diferenciálního počtu
 - vztah mezi derivací a integrací
 - x fyzikální interpretace
- Gottfried Wilhelm Leibniz (1646-1716, Německo)
 - × moderní pojetí diferenciálního počtu
 - \times současné značení (dy/dx)
- Cauchy, Riemann, Weierstrass
 - x teoretické základy diferenciálního počtu

Derivace v příkladech

- Vědecké a technické aplikace
 - × Klasická mechanika tělesa:

$$\mathbf{F}(\mathbf{r}) = m \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}t^2}$$

× Ohřev vody ve slunečním kolektoru:

$$\frac{\mathrm{d}T_i}{\mathrm{d}t} = a - (b+c)T_i + bT_{i-1}$$

- Bezpečnostní aplikace
- Šíření požáru:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}t}$$

- Sociální aplikace
- Ekonomické aplikace
- Ostatní aplikace

Geometrický význam derivace

- Chceme zjistit **změnu** funkce f(x) v bodě x, pokud se posuneme o krok h na ose x.
- Změnu vyjádříme pomocí směrnice přímky

$$x s_1: y = kx \to k = \frac{y}{x}$$

$$k_{s1} = \frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

lacktriangle Cílem je získat směrnici odpovídající tečně t v bodě [x,f(x)]

Geometrický význam derivace

Bod x + h přiblížíme k bodu x a získám směrnici sečny s_2

$$k_{s2} = \frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

Limitním přibližováním bodu x + h k bodu x získám směrnici tečny t

$$k_t = \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Definice derivace

- Derivace funkce v bodě
- ullet Funkce f je definována na okolí bodu c. Pokud má funkce vlastní limitu

$$\lim_{h\to 0} \frac{f(c+h) - f(c)}{h}$$

pak je funkce v bodě c diferencovatelná, hodnotu limity označujeme jako f' a nazýváme ji derivací funkce f v bodě c

- ullet Je-li funkce f na intervalu J diferencovatelná, pak je i na tomto intervalu spojitá
- Funkce f je třídy \mathbb{C}^k na intervalu J, pokud existují na intervalu J všechny derivace funkce až do řádu k

Metody výpočtů derivací funkcí

Nechť funkce f a g jsou diferencovatelné v nějakém bodě x_0 společného definičního oboru D. Potom v tomto bodě jsou diferencovatelné i funkce

cf,
$$f \pm g$$
, $f.g$, $\frac{f}{g}$ $(g \neq 0)$

a platí

$$(cf)' = cf$$

$$(f \pm g)' = f' + g'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$g \neq 0$$

Pro derivaci složené funkce platí

$$(f(g(x)))' = f'(g(x))g'(x)$$

Diferenciální počet

Lokální extrém

× funkce f definovaná v okolí bodu c má v bodě lokální maximum, resp. minimum, pokud platí pro každý bod x z okolí bodu c, že $f(x) \le f(c)$, resp. $f(x) \ge f(c)$

Je-li funkce f v bodě c diferencovatelná a má v bodě lokální maximum, resp. minimum, potom platí, že f'(c)=0

Nástroje diferenciálního počtu

- Rolleova věta (Bhaskar II Indie)
 - × Nechť f je spojitá funkce na uzavřeném intervalu $\langle a,b\rangle$ a nechť pro každý bod x otevřeného intervalu (a,b) existuje derivace f'(x) a nechť f(a)=f(b). Pak existuje bod c v otevřeném intervalu (a,b), pro nějž platí

$$f'(c) = 0$$

- Lagrangeova věta o střední hodnotě
- Taylorova věta
- L'Hospitalovo pravidlo
 - limita podílu dvou funkcí je rovna limitě podílu derivací těchto funkcí
 - za určitých podmínek

Lagrangeova věta o střední hodnotě

□ Funkce f je spojitá na uzavřeném intervalu $\langle a,b \rangle$, diferencovatelná na otevřeném intervalu (a,b). Potom existuje alespoň jeden bod $\xi \in (a,b)$, pro který platí:

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Přírůstek funkce (aproximace funkce tečnou)

$$f(x) = f(a) + f'(a)(x - a)$$

$$f(a+h) = f(a) + f'(a)h$$

- Aproximace přímkou (tečnou)
 - \times tečna a funkce v bodě a stejná hodnota i derivace
 - × chyba rychle roste
 - × funkce se kroutí, přímka ne

$$f(x) = f(a) + f'(a)(x - a)$$

- Aproximace parabolou
 - + požadavek stejného kroucení (2. derivace)

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2$$

Aproximace kubikou

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \frac{f'''(a)}{6}(x - a)^3$$

- Aproximace složitých funkcí pomocí jednodušších (polynom)
- Funkční hodnota polynomu je výsledkem elementárních operací

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

- Derivace polynomu je opět polynom
- Odhad chyby aproximace

- Motivace
- \Box Hledáme funkci g, která nejlépe aproximuje funkci f, tak aby platilo:

$$f(c) = g(c),$$
 $f'(c) = g'(c),$, $f^{(n)}(c) = g^{(n)}(c)$

□ Funkci f(x) cheeme nahradit polynomem g(x)

$$g(x) = a_0 + a_1(x - c) + a_2(x - c)^2 + \dots + a_n(x - c)^n$$

a podmínky

$$f(c) = g(c),$$
 $f'(c) = g'(c),$..., $f^{(n)}(c) = g^{(n)}(c)$

stupeň	polynom	podmínka (+ všechny předchozí)	koeficienty (+ všechny předchozí)
0	$g(x) = a_0$	g(c) = f(c)	$a_0 = f(c)$
1	$g(x) = a_0 + a_1(x - c)$	g'(c) = f'(c)	$a_1 = f'(c)$
2	$g(x) = a_0 + a_1(x - c) + a_2(x - c)^2$	g''(c) = f''(c)	$a_2 = \frac{f''(c)}{2}$
•••	•••		•••
n	$f(x) = f(c) + \frac{f'(c)}{1!}(x - c) + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n$	$g^{(n)}(c) = f^{(n)}(c)$	$a_n = \frac{f^{(n)}(c)}{n!}$

Taylorova věta

Pokud má funkce f(x) v okolí bodu c konečné derivace do (n+1). řádu, můžeme ji vyjádřit (rozvinout) jako mocninnou řadu (Taylorovu)

$$f(x) = f(c) + \frac{f'(c)}{1!}(x - c) + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + O_{n+1}(x) =$$

$$= \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x - c)^k + O_{n+1}(x)$$

- Maclaurinova řada
 - × pokud se jedná o rozvoj v okolí bodu 0

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \dots + \frac{f^{(n)}(0)}{n!}x^n + O_{n+1}(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!}x^k + O_{n+1}(x)$$

- Taylorův polynom
 - x přibližné vyjádření hodnot funkce
 - můžeme zanedbat členy s vyššími derivacemi

- Definiční obor
- Intervaly monotónnosti
- Má-li f derivaci $f'(x) \neq 0$ v každém bodě otevřeného intervalu (a, b), pak je funkce f na tomto intervalu monotónní
 - × pro f'(c) > 0 rostoucí
 - \times pro f'(c) < 0 klesající
 - × (c libovolný bod intervalu)
- Lokální extrémy
- Jestliže funkce f'(c)=0 a $f''(c)\neq 0$, pak má funkce f(c) v bodě c lokální extrém
 - \times pro f''(c) > 0 ostré lokální minimum
 - × pro f''(c) < 0 maximum
- Intervaly ryzí konvexity (konkavity), body inflexe
- Funkce f je spojitá na intervalu f a pro každý bod z tohoto intervalu platí, že f''(c) > 0, resp. f''(c) < 0
- Potom je funkce na intervalu ryze konvexní, resp. konkávní
- Jestliže f''(c) = 0 a $f''' \neq 0$, potom má funkce v bodě c inflexi

- **Funkce**
- Definiční obor
- První derivace
 - × řešíme
- - × rostoucí na $(-\infty, -1)$ a $(1, \infty)$, klesající na (-1, 1)

 $f(x) = x^3 - 3x$

$$Df = \mathbb{R}$$

$$f'(x) = 3x^2 - 3$$

$$f'(x) = 3x^2 - 3 = 0 \rightarrow x^2 = 1, x \in \{-1, 1\}$$

- Intervaly monotónnosti $f'(x) = 3x^2 3 > 0$, resp. < 0

- Lokální extrémy
 - \times kandidáti $x \in \{-1, 1\}$
 - × přesvědčíme se pomocí 2. derivace

- Spočteme 2. derivaci
 - × řešíme

$$f''(x) = 6x$$

$$f''(x) = 6x = 0 \quad \rightarrow \quad x = 0$$

- Intervaly ryzí konvexity (konkavity) f''(x) = 6x > 0, resp. < 0

 - × konvexní na $(0,\infty)$, konkávní na $(-\infty,0)$
- Hodnoty druhé derivace f''(x) ve stacionárních bodech

$$f''(x) = 6x \rightarrow f''(-1) = -6 < 0, f''(1) = 6 > 0$$

 \times f(x) má v bodech $x \in \{-1,1\}$ ostré lokální maximum, resp. minimum

- Pokud f'(c)=0 a f''(c)=0, může a nemusí mít funkce v bodě c lokální extrém. Počítáme další derivace $f^{(n)}(c)$, dokud $f^{(n)}(c)>0$, resp. $f^{(n)}(c)<0$
- Pokud první nenulová derivace bude
 - × lichá: jedná se o inflexní bod
 - × sudá: ostrý lokální extrém

$$f(x) = x^{3} f(0) = 0$$

$$f'(x) = 3x^{2} f'(0) = 0$$

$$f''(x) = 6x f''(0) = 0$$

$$f^{(3)}(x) = 6 f^{(3)}(0) = 6$$

$$f(x) = x^{4} f(0) = 0$$

$$f'(x) = 4x^{3} f'(0) = 0$$

$$f''(x) = 12x^{2} f''(0) = 0$$

$$f^{(3)}(x) = 24x f^{(3)}(0) = 0$$

$$f^{(4)}(x) = 24 f^{(4)}(0) = 24$$

Asymptoty grafu funkce

ullet Přímka y=kx+q se nazývá šikmá asymptota grafu funkce, pokud platí:

$$\lim_{x \to +\infty} [f(x) - kx - q] = 0 \qquad \text{resp.} \qquad \lim_{x \to -\infty} [f(x) - kx - q] = 0$$

a svislá asymptota, pokud má funkce f(x) v bodě x alespoň jednu jednostrannou nevlastní limitu

Příklady k procvičení

- Úprava výrazů pomocí symbolické matematiky
- ullet Řešení rovnice $ax^2+bx+c=0$ pomocí symbolické matematiky
- Řešení soustavy rovnic pomocí symbolické matematiky. Porovnání s metodami numerické matematiky a vestavěnými funkcemi
- Výpočet limit pomocí symbolické matematiky
- Výpočet derivace pomocí symbolické a numerické matematiky

Úprava výrazů - cvičení

Pomocí symbolických manipulací upravte následující výraz

$$\frac{1 - \frac{x}{y}}{\frac{x - y^2}{x}}$$

DOPLNIT VÝRAZY

Řešení rovnice - cvičení

Pomocí symbolických manipulací vyřešte kvadratickou rovnic

$$ax^2 + bx + c = 0$$

Uvažujte takové sady koeficientů (a,b,c), aby byly zohledněny všechny možnosti řešení rovnice

Řešení soustavy rovnic – cvičení

- $lue{}$ Nagenerujte náhodně soustavu N rovnic a vyřešte ji pomocí:
 - x Iterační metody
 - × Cramerova pravidla
 - Symbolické matematiky
- Jednotlivá řešení porovnejte z hlediska rychlosti a stability

$$x_i = \frac{d_{Ai}}{d_A}$$
 $x^{i+1} = D^{-1}[b - (L+U)x^i]$

Limita funkce jedné proměnné – cvičení

Pomocí symbolické matematiky vypočítejte následující limity

$$\lim_{x \to 3} \frac{2x^3 - 1}{x^2 - 2x + 10}$$

$$\lim_{x \to 2^{-}} \frac{x^2 + x - 2}{x - 2}$$

$$\lim_{x\to 0}e^{\frac{1}{\sin x}}$$

$$\lim_{x \to e} \frac{\ln x - 1}{x - e}$$

Derivace funkce jedné proměnné

Analytický výpočet derivace

$$f' = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

Přibližný výpočet derivace - numerická derivace

$$f' = \frac{f(c+h) - f(c)}{h} + O(h^2)$$

Numerická derivace

- Odhad derivace funkce provádíme, když
 - × nemáme k dispozici analytický tvar funkce
 - y funkce je zadána tabulkou nebo polem hodnot
 - × funkce je zadána body v grafu
- Vzorce pro numerický odhad derivace lze získat pomocí
 - × Taylorova rozvoje
 - × derivací interpolačního polynomu
- Každý vzorec pro numerickou derivaci obsahuje chybový člen vyjádřený ve tvaru mocniny kroku h
 - × Čím bude mocnina vyšší, tím bude odhad přesnější a naopak
 - (chyba metody)
 - imes Čím bude h vyšší, tím bude odhad méně přesný
 - (chyba zaokrouhlovací)
 - \times Zahrnutím více bodů z okolí x lze odhad zpřesnit

Dvoubodová numerická derivace

Z Maclaurinova tvaru Taylorova rozvoje plyne, že

$$f(h) = f(0) + \sum_{i=1}^{\infty} \frac{f^{(i)}(0)}{n!} h^{i} = f(0) + f'(0)h + \frac{f''(0)}{2} h^{2}! + \dots$$

Mějme body x_0 a $x_1=x_0+h$. Poté bude rozvoj pro $f(x_0+h)$ a $f(x_0-h)$ vypadat následovně.

$$f(x_0 + h) = f(x_0) + f'(x_0)h$$

$$f(x_0 - h) = f(x_0) - f'(x_0)h$$

ullet a dvoubodová derivace funkce f v bodě x_0 , bude mít tvar

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h}$$

Dvoubodová numerická derivace

Pro zpřesnění odhadu derivace v bodě x_0 lze využít hodnoty funkcí v obou krajních bodech, a to odečtením rovnic $f(x_0+h)$ a $f(x_0-h)$

$$f(x_0 + h) = f(x_0) + f'(x_0)h$$

$$f(x_0 - h) = f(x_0) - f'(x_0)h$$

Po úpravě dostaneme

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

Vícebodová numerická derivace

- Pro odvození vzorce pro numerickou derivaci využijeme v tomto případě interpolační polynom $P_n(x)$ řádu n
- Mějme funkci f(x) definovanou ve třech ekvidistantně rozdělených uzlových bodech $\{x_0, x_1, x_2\}$ s krokem h.
- Poté platí, že hodnotu derivace funkce lze nahradit hodnotou derivace interpolačního polynomu řádu n $P_n(x)$ tak, že

$$f'(x) \doteq P'_n(x)$$

V uzlových bodech se hodnoty derivace funkce a interpolačního polynomu můžou lišit. Tato situace bude výraznější tím více, čím vyšší řád polynomu budeme pro interpolaci používat

Vícebodová numerická derivace

- Nastíníme odvození odhadu numerické derivace funkce zadané třemi body $x_0=x_1-h$, x_1 a $x_2=x_1+h$ s využitím interpolačního polynomu třetího řádu
- Interpolačním polynomem rozumíme funkci

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{n-1} x^{n-1}$$

Pro polynom třetího řádu dostaneme soustavu rovnic ve tvaru:

$$f(x_1 - h) = a_0 + a_1(x_1 - h) + a_2(x_1 - h)^2$$

$$f(x_1) = a_0 + a_1(x_1) + a_2(x_1)^2$$

$$f(x_1 + h) = a_0 + a_1(x_1 + h) + a_2(x_1 + h)^2$$

lacktriangle odvodíme vyjádření pro koeficienty a_1 a a_2 a výsledné vyjádření polynomu zderivujeme

Vícebodová numerická derivace

$$a_2 = \frac{f(x_1 + h) - 2f(x_1 + h) + f(x_1 - h)}{2h^2}$$
$$a_1 = a_2h - 2a_2x_1 + \frac{f(x_1) - f(x_1 - h)}{h}$$

- Nyní si můžeme vybrat, v jakém bodě chceme derivaci odhadnout, dosadíme koeficienty a_1 , a_2 a rovnice zderivujeme
- Výsledkem jsou následující rovnice

$$f'(x_1 - h) = \frac{-3f(x_1 - h) + 4f(x_1) - f(x_1 + h)}{2h}$$
$$f'(x_1) = \frac{f(x_1 + h) - f(x_1 - h)}{2h}$$
$$f'(x_1 + h) = \frac{f(x_1 - h) - 4f(x_1) + 3f(x_1 + h)}{2h}$$

Numerický odhad derivace – cvičení

- Porovnejte dva numerické odhady derivace funkce $f(x) = \sin(x)$ na intervalu $\langle 0, \pi \rangle$ s přesným řešením získaným například pomocí symbolické matematiky
- Interval rozdělte na $n = \{4, 8, 12, 16, 20, 30\}$ subintervalů
- Spočítejte celkovou chybu derivace jako

$$globErr = \sum_{i=1}^{n} |f' - f'(x_i)|$$

		$f'(x) = \frac{f(x+h) - f(x)}{h}$	$f'(x) = \frac{f(x+h) - f(x-h)}{h}$
n = 4	h = 0.785	E1 = 0.845	E2 = 0.299
n = 8	h = 0.393	E1 = 0.900	E2 = 0.140
n = 12	h = 0.262	E1 = 0.928	E2 = 0.091
	*** *		
n = 30	h = 0.105	E1 = 0.968	E2 = 0.036
n = 80	h = 0.039	E1 = 0.998	E2 = 0.013

Numerický odhad derivace – cvičení

Pro výše uvedený příklad proveďte také odhad derivace ve třech bodech, například

$$f'(x_1 + h) = \frac{f(x_1 - h) - 4f(x_1) + 3f(x_1 + h)}{2h}$$

a porovnejte přesnost s dvoubodovým odhadem