### **ECN 6338 Cours 4**

Résolution de systèmes d'équations non-linéaires

William McCausland

2022-02-09

### Les problèmes univarié et multivarié

Problème univarié : trouvez  $x \in \mathbb{R}$  qui vérifie

$$f(x)=0,$$

où  $f: \mathbb{R} \to \mathbb{R}$ .

Problème multivarié : trouvez  $x \in \mathbb{R}^n$  qui vérifie

$$f(x)=0_n,$$

où  $f: \mathbb{R}^n \to \mathbb{R}^n$ .

Problème multivarié, élément par élément : trouvez  $(x_1, \dots, x_n)$  qui vérifie

$$f^1(x_1,\ldots,x_n)=0$$

$$f^n(x_1,\ldots,x_n)=0$$

### La résolution de systèmes d'équations et l'optimisation

La solution  $x^*$  au problème d'optimisation

$$\max_{x\in\mathbb{R}}f(x),$$

où  $f: \mathbb{R} \to \mathbb{R}$  et  $f \in C^2$ , est aussi la solution du système

$$\frac{\partial f(x)}{\partial x^{\top}} = 0.$$

Cependant, la résolution du système g(x) = 0,  $g \in C^1$ , est plus générale :

- La matrice jacobienne de g n'est pas forcément symmétrique
- La matrice jabobienne de  $\nabla f$  est la matrice hessienne symmétrique de g.

### Systèmes non-linéaires et le nombre de solutions

Dans le cas spécial f(x) = Ax - b = 0, où A est une matrice  $n \times n$ ,

- ▶ si le rang de A est de n, il y a une solution unique;
- ▶ si le rang de A est moins grand, il n'y a aucune solution :

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

ou il y a un nombre infini de solutions :

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Dans le cas général, il peut y avoir

- ▶ aucune solution, mème pour les fonctions f<sup>i</sup> très différentes,
- un nombre fini arbitraire de solutions,
- un nombre infini de solutions.

### Exemple: absence d'une solution

$$f^1(x_1, x_2) = x_2 - (x_1 + 1)^2, \quad f^2(x_1, x_2) = x_2 - (x_1 - 1)^2.$$



### Exemple: solutions multiples

$$f^{1}(x_{1}, x_{2}) = x_{1}^{2} + x_{2}^{2} - 1, \quad f^{2}(x_{1}, x_{2}) = 2x_{1}^{2} - x_{2} - 1.$$





# Illustration (Newton-Raphson, droite de sécante)



## Méthodes du type Dekker-Brent

Intrants à l'itération k+1: points  $a_k$ ,  $b_k$ ,  $b_{k-1}$   $(b-1=a_0)$  et valeurs  $f(a_k)$ ,  $f(b_k)$  et  $f(b_{k-1})$  tels que

- 1.  $|f(a_k)| \leq |f(b_k)|$  (point  $b_k$ , contrepoint  $a_k$ )
- 2.  $f(a_k)f(b_k) < 0$ .

### À l'iteration k+1:

- 1. Calculer  $m=\frac{1}{2}(a_k+b_k)$ .
- 2. Calculer s comme fonction de  $a_k$ ,  $b_k$ ,  $f(a_k)$ ,  $f(b_k)$ ,  $b_{k-1}$ ,  $f(b_{k-1})$ . (détails à venir)
- 3. Choisir entre  $b_{k+1} = s$  et  $b_{k+1} = m$ . (détails à venir)
- 4. Évaluer  $f(b_{k+1})$ , terminer si  $f(b_{k+1}) = 0$ .
- 5. Choisir entre  $a_{k+1} = a_k$  et  $a_{k+1} = b_k$  tel que  $f(a_{k+1})f(b_{k+1}) < 0$ . (Condition 2.)
- 6. Si  $|f(a_{k+1})| < f(b_{k+1})|$ , échanger  $a_{k+1}$  et  $b_{k+1}$ . (Condition 1.)
- 7. Si  $|a_{k+1} b_{k+1}| < \delta$ , terminer avec  $b_{k+1}$ .

Calculer s (étape 2) par interpolation linéaire (droite sécante)

$$s = b_k - \frac{b_k - b_{k-1}}{f(b_k) - f(b_{k-1})} f(b_k)$$

#### Notes:

- 1. s n'est pas une fonction de  $a_k$ .
- 2. Si on choisit s par interpolation linéaire, une condtion nécessaire pour choisir  $b_{k+1} = s$  (étape 3) est que s se trouve entre m et  $b_k$ .

## Calculer s (étape 2) par interpolation inverse quadratique

- ▶ Supposez que  $f(a_k)$ ,  $f(b_k)$  et  $f(b_{k-1})$  sont distinctes
- Voici une fonction quadratique g(y) qui passe par les points  $(f(a_k), a_k), (f(b_k), b_k)$  et  $(f(b_{k-1}), b_{k-1})$ :

$$g(y) = \frac{(y - f(a_k))(y - f(b_k))}{(f(b_{k-1}) - f(a_k))(f(b_{k-1} - f(b_k)))} b_{k-1}$$

$$+ \frac{(y - f(a_k))(y - f(b_{k-1}))}{(f(b_k) - f(a_k))(f(b_k) - f(b_{k-1}))} b_k$$

$$+ \frac{(y - f(b_{k-1}))(y - f(b_k))}{(f(a_k) - f(b_{k-1}))(f(a_k) - f(b_k))} a_k$$

- Notez que la fonction inverse  $f^{-1}(y)$  passe par les mêmes points.
- Défine s = g(0), un zéro de la fonction  $g^{-1}(x)$

# Calculer s par interpolation inverse quadratique (cont.)

$$s = \frac{f(a_k)f(b_k)}{(f(b_{k-1}) - f(a_k))(f(b_{k-1} - f(b_k)))}b_{k-1} + \frac{f(a_k)f(b_{k-1})}{(f(b_k) - f(a_k))(f(b_k) - f(b_{k-1}))}b_k + \frac{f(b_{k-1})f(b_k)}{(f(a_k) - f(b_{k-1}))(f(a_k) - f(b_k))}a_k$$

### Notes:

- 1. Habituellement, c'est une amélioration, mais on peut toujours utiliser l'interpolation linéaire quand k=1 où quand deux valeurs sont très près l'une à l'autre.
- 2. Si on choisit s par interpolation inverse quadratique, une condition nécessaire pour choisir  $b_{k+1} = s$  (étape 3) est que s se trouve entre  $\frac{3}{4}b_k + \frac{1}{4}a_k$  et  $b_k$ .

### Choisir entre s et m (étape 3)

- ▶  $b_{k+1} = m$  est plus sécure que  $b_{k+1} = s$ , mais le deuxième est habituellement meilleur.
- On ajoute aux conditions nécessaires déjà mentionnées pour choisir s d'autres conditions :
  - Après un pas de bisection (pour  $b_k$ ), on ajoute les conditions  $|b_k b_{k-1}| > \delta$  et  $\frac{1}{2}|b_k b_{k-1}| > |s b_k|$ .
  - Après un pas d'interpolation, on ajoute les conditions  $|b_{k-1} b_{k-2}| > \delta$  et  $\frac{1}{2}|b_{k-1} b_{k-2}| > |s b_k|$ .

### Méthode de Newton

ightharpoonup L'expansion linéaire de Taylor autour du point actuel  $x^k$  est

$$g(x) = f(x^k) + J(x^k)(x - x^k).$$

ightharpoonup Si la matrice jacobienne est inversible, il y a un zéro de g à

$$x^* = x^k - J(x^k)^{-1}f(x^k).$$