# Problemas de programação linear de solução impossível

Marcus Magalhães Maria Luisa Vinícius Rodrigues Souza

Novembro 2018

## 1 Introdução

Um problema de otimização linear não tem solução quando não é possível respeitar todas as restrições simultaneamente. Caso se tente representar graficamente o conjunto de soluções compatíveis, será verificado que ele é vazio. Essa situação também pode ser detectada pelo método simplex de duas fases, quando ao final da fase I, permanece alguma variável artificial na base.

## 2 Exemplo

Max 
$$z = x_1 + x_2$$
  
sujeito a  
 $5x_1 + 2x_2 \le 20$   
 $2x_1 - x_2 \ge 2$   
 $3x_1 + 5x_2 \ge 30$   
 $x_1, x_2 \ge 0$ 

#### Solução pelo método simplex duas fases

Modelando o problema na forma do simplex

$$\begin{array}{l} \text{Max z} = x_1 + x_2 - Ma_1 - Ma_2 \\ \text{sujeito a} \\ 5x_1 + 2x_2 + s_1 = 20 \\ 2x_1 - x_2 - s_2 + a_1 = 2 \\ 3x_1 + 5x_2 - s_3 + a_2 = 30 \\ x_1, x_2 \geq 0 \end{array}$$

| Çį | Var. básica    | X <sub>1</sub> | X <sub>2</sub> | M <sub>1</sub> | M <sub>2</sub> | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | ₿j  | BJ/AIJ |
|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----|--------|
| 0  | S <sub>1</sub> | 5              | 2              | 0              | 0              | 1              | 0              | 0              | 20  | 4      |
| -1 | a1             | 2              | -1             | 1              | 0              | 0              | -1             | 0              | 2   | 1      |
| -1 | a <sub>2</sub> | 3              | 5              | 0              | 1              | 0              | 0              | -1             | 30  | 10     |
|    | Z              | -5             | -4             | -1             | -1             | 0              | 1              | 1              | -32 |        |
|    | C-Z            | 5              | 4              | 0              | 0              | 0              | -1             | 1              |     | ·      |

Figure 1: Primeira tabela - Fase I

| Çj | Var. básica    | X <sub>1</sub> | X <sub>2</sub> | M <sub>1</sub> | M <sub>2</sub> | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | ₿j    | BJ/AIJ |
|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|--------|
| 0  | X <sub>2</sub> | 0              | 1              | -5/9           | 0              | 2/9            | 5/9            | 0              | 10/3  | -6     |
| 0  | X <sub>1</sub> | 1              | 0              | 2/9            | 0              | 1/9            | -2/9           | 0              | 8/3   | 12     |
| -1 | a <sub>2</sub> | 0              | 0              | 19/9           | 1              | -13/9          | -19/9          | -1             | 16/3  | 48/19  |
|    | Z              | 0              | 0              | -19/9          | -1             | 13/9           | 19/9           | 1              | -16/3 |        |
|    | C-Z            | 0              | 0              | 10/9           | 0              | -13/9          | -19/9          | -1             |       |        |

Figure 2: Segunda tabela - Fase I

| Çį | Var. básica    | X <sub>1</sub> | X <sub>2</sub> | M <sub>1</sub> | M <sub>2</sub> | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | ₿j    | BJ/AIJ |
|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|--------|
| 0  | X <sub>2</sub> | 0              | 1              | -5/9           | 0              | 2/9            | 5/9            | 0              | 10/3  | -6     |
| 0  | X <sub>1</sub> | 1              | 0              | 2/9            | 0              | 1/9            | -2/9           | 0              | 8/3   | 12     |
| -1 | a <sub>2</sub> | 0              | 0              | 19/9           | 1              | -13/9          | -19/9          | -1             | 16/3  | 48/19  |
|    | z              | 0              | 0              | -19/9          | -1             | 13/9           | 19/9           | 1              | -16/3 |        |
|    | C-Z            | 0              | 0              | 10/9           | 0              | -13/9          | -19/9          | -1             |       |        |

Figure 3: Terceira tabela - Fase I

| Çį | Var. básica    | X <sub>1</sub> | X <sub>2</sub> | M <sub>1</sub> | M <sub>2</sub> | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | ₿j     | Bj/Aij |
|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------|--------|
| 0  | X <sub>2</sub> | 0              | 1              | 0              | 5/19           | -3/19          | 0              | -5/19          | 90/19  |        |
| 0  | X <sub>1</sub> | 1              | 0              | 0              | -2/19          | 5/19           | 0              | 2/19           | 40/19  |        |
| -1 | a <sub>1</sub> | 0              | 0              | 1              | 9/19           | -13/19         | -1             | -9/19          | 48/19  |        |
|    | Z              | 0              | 0              | -1             | -9/19          | 13/19          | 1              | 9/19           | -48/19 |        |
|    | C-Z            | 0              | 0              | 0              | -10/19         | -13/19         | -1             | -9/19          |        |        |

Figure 4: Quarta tabela - Fase I

Esse problema não tem solução, ja que a variável artifical  $a_1$  permanece na base.

### Solução pelo método gráfico



# 3 Bibliografia

TAHA, Hamdy A. Pesquisa Operacional. 8a edição. Pearson, 2008.

 ${\it LOESCH},$  Claudio; HEIN, Nelson. Pesquisa Operacional - Fundamentos e Modelos. 1a edição. Saraiva, 2002.