Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 10 Martie 2012

CLASA a X-a Soluții și bareme orientative

Problema 1. Fie $f:[0,\infty)\to\mathbb{R}$ o funcție cu proprietatea

$$|f(x) - f(y)| \le |\sin x - \sin y|,$$

pentru orice $x, y \in [0, \infty)$. Demonstrați că f este mărginită și periodică, iar funcția $g: [0, \infty) \to \mathbb{R}$ definită prin g(x) = x + f(x) este monotonă.

$$|f(x) - f(x + 2\pi)| \le |\sin x - \sin(x + 2\pi)| = 0,$$

$$-1 \le \frac{f(x) - f(y)}{x - y} \le 1$$
 sau $0 \le \frac{x + f(x) - y - f(y)}{x - y}$,

Problema 2. a) Determinați toate soluțiile reale ale ecuației $2^x = x+1$; b) Se consideră funcția $f: \mathbb{R} \longrightarrow \mathbb{R}$ astfel încât

$$f(f(x)) = 2^x - 1$$
,

pentru orice $x \in \mathbb{R}$. Demonstrați că f(0) + f(1) = 1.

Gazeta Matematică

Solutie.

 Problema 3. Fie şirul de numere naturale $(a_n)_{n\geq 1}$ astel încât $a_n\leq n$, pentru orice $n\geq 1$ și

$$\sum_{k=1}^{n-1} \cos \frac{\pi a_k}{n} = 0,$$

pentru orice $n \geq 2$.

- a) Aflați a_2 .
- b) Determinați termenul general al șirului $(a_n)_n$ în funcție de $n \in \mathbb{N}^*$ Soluție.

Evident $a_1 = 1$

Din relația $\cos \frac{\pi a_1}{3} + \cos \frac{\pi a_2}{3} = 0$ se obținem $a_2 = 2 \dots 2$ puncte Prin inducție presupunem că $a_k = k, k = \overline{1, n-1}$ și din ipoteză obținem

$$\cos\frac{\pi a_n}{n+1} = -\sum_{k=1}^{n-1}\cos\frac{\pi k}{n+1}$$

$$z + z^{2} + z^{3} + \dots + z^{n} = \frac{z - z^{n+1}}{1 - z} = \frac{1 + z}{1 - z}.$$

$$\overline{\left(\frac{1+z}{1-z}\right)} = -\frac{1+z}{1-z},$$

deci $Re\frac{1+z}{1-z}=0$, adică

$$\sum_{k=1}^{n} \cos \frac{\pi k}{n+1} = 0.$$

Atunci

$$\cos\frac{\pi a_k}{n+1} = \cos\frac{\pi n}{n+1}.$$

Observație. Se acordă 3 puncte pentru orice modalitate de calcul a sumei $\sum_{k=1}^{n-1}\cos\frac{\pi k}{n+1}$.

Problema 4. Fie a și b două numere raționale astfel încât numărul complex z = a + ib să aibă modulul 1.

Arătați că modulul numărului complex $z_n = 1 + z + z^2 + \cdots + z^{n-1}$ este un număr rațional pentru orice n impar.

Soluție. Fie $z=\cos t+i\sin t,\,t\in[0,2\pi),\sin t,\cos t\in\mathbb{Q}.$ Pentru z=1 concluzia este trivială.

Dacă $z \neq 1$ avem

$$|z_n| = |1 + z + z^2 + \dots + z^{n-1}| = \left| \frac{z^n - 1}{z - 1} \right|.$$

Pentru $n = 2k + 1 \in \mathbb{N}$ avem

$$\left| \frac{z^n - 1}{z - 1} \right| = \left| \frac{\sin \frac{(2k+1)t}{2}}{\sin \frac{t}{2}} \right|.$$

Rămâne să arătăm că $x_k = \frac{\sin\frac{(2k+1)t}{2}}{\sin\frac{t}{2}}$ este număr rațional. Avem $x_{k+1} - x_k = 2\cos(k+1)t$ cu $x_0 = 1 \in \mathbb{Q}$. Cum $\cos(k+1)t = Re\ z^{k+1} = Re\ (a+ib)^{k+1} \in \mathbb{Q}$, prin inducție rezultă $x_k \in \mathbb{Q}$ pentru orice