Package 'HighFreq'

November 7, 2021

```
Type Package
Title High Frequency Time Series Management
Version 0.1
Date 2018-09-12
Author Jerzy Pawlowski (algoquant)
Maintainer Jerzy Pawlowski < jp3900@nyu.edu>
Description Functions for chaining and joining time series, scrubbing bad data,
     managing time zones and alligning time indices, converting TAQ data to OHLC
     format, aggregating data to lower frequency, estimating volatility, skew, and
     higher moments.
License MPL-2.0
Depends xts,
     quantmod,
     rutils
Imports xts,
     quantmod,
     rutils,
     RcppRoll,
     Rcpp
LinkingTo Rcpp, RcppArmadillo
SystemRequirements GNU make, C++11
Remotes github::algoquant/rutils,
VignetteBuilder knitr
LazyData true
ByteCompile true
Repository GitHub
URL https://github.com/algoquant/HighFreq
RoxygenNote 7.1.1.9001
Encoding UTF-8
```

2 R topics documented:

R topics documented:

agg_ohlc	
agg_stats_r	
back_test	
calc_cvar	
calc_eigen	
calc_endpoints	. 10
calc_hurst	. 11
calc_hurst_ohlc	. 12
calc_inv	13
calc_kurtosis	. 15
calc_lm	16
calc_mean	. 17
calc_ranks	
calc_reg	
calc_scaled	
calc_skew	
calc_startpoints	
calc_var	
calc_var_ag	
calc_var_ohlc	
calc_var_ohlc_ag	
calc_var_ohlc_r	
calc_var_vec	
calc_weights	
diff_it	
diff_vec	
hf_data	
lag_it	
lag_vec	
lik_garch	
mult_vec_mat	
random_ohlc	
random_taq	
remove_jumps	
roll_apply	
roll_backtest	
roll_conv	
roll_count	
roll_fun	
roll_hurst	
roll_kurtosis	
roll_mean	
roll_ohlc	
roll_reg	
roll_scale	
roll_sharpe	
roll_skew	62
roll_stats	64
roll_sum	65
roll sumen	66

agg_ohlc 3

roll_var
roll_var_ohlc
roll_var_vec
roll_vec
roll_vecw
roll_vwap
roll_wsum
roll_zscores
run_covar
run_max
run_mean
run_min
run_returns
run_sharpe
run_skew
run_var
run_variance
run_zscores
save_rets
save_rets_ohlc
save_scrub_agg
save_taq
scrub_agg
scrub_taq
season_ality
sim_ar
sim_df
sim_garch
sim_ou
sim_schwartz
which_extreme
which_jumps

 ${\sf agg_ohlc}$

Aggregate a time series of data into a single bar of OHLC data.

Description

Aggregate a time series of data into a single bar of OHLC data.

Usage

agg_ohlc(tseries)

Arguments

tseries

A time series or a matrix with multiple columns of data.

4 agg_stats_r

Details

The function agg_ohlc() aggregates a time series of data into a single bar of *OHLC* data. It can accept either a single column of data or four columns of *OHLC* data. It can also accept an additional column containing the trading volume.

The function agg_ohlc() calculates the *open* value as equal to the *open* value of the first row of tseries. The *high* value as the maximum of the *high* column of tseries. The *low* value as the minimum of the *low* column of tseries. The *close* value as the *close* of the last row of tseries. The *volume* value as the sum of the *volume* column of tseries.

For a single column of data, the *open*, *high*, *low*, and *close* values are all the same.

Value

A *matrix* containing a single row, with the *open*, *high*, *low*, and *close* values, and also the total *volume* (if provided as either the second or fifth column of tseries).

Examples

```
## Not run:
# Define matrix of OHLC data
oh_lc <- coredata(rutils::etf_env$VTI[, 1:5])
# Aggregate to single row matrix
ohlc_agg <- HighFreq::agg_ohlc(oh_lc)
# Compare with calculation in R
all.equal(drop(ohlc_agg),
    c(oh_lc[1, 1], max(oh_lc[, 2]), min(oh_lc[, 3]), oh_lc[NROW(oh_lc), 4], sum(oh_lc[, 5])),
    check.attributes=FALSE)
## End(Not run)</pre>
```

agg_stats_r

Calculate the aggregation (weighted average) of a statistical estimator over a OHLC time series using R code.

Description

Calculate the aggregation (weighted average) of a statistical estimator over a *OHLC* time series using R code.

Usage

```
agg_stats_r(oh_lc, calc_bars = "run_variance", weight_ed = TRUE, ...)
```

Arguments

	additional parameters to the function calc_bars.
oh_lc	An OHLC time series of prices and trading volumes, in xts format.
calc_bars	A <i>character</i> string representing a function for calculating statistics for individual <i>OHLC</i> bars.
weight_ed	<i>Boolean</i> argument: should estimate be weighted by the trading volume? (default is TRUE)

back_test 5

Details

The function agg_stats_r() calculates a single number representing the volume weighted average of statistics of individual *OHLC* bars. It first calls the function calc_bars to calculate a vector of statistics for the *OHLC* bars. For example, the statistic may simply be the difference between the *High* minus *Low* prices. In this case the function calc_bars would calculate a vector of *High* minus *Low* prices. The function agg_stats_r() then calculates a trade volume weighted average of the vector of statistics.

The function agg_stats_r() is implemented in R code.

Value

A single *numeric* value equal to the volume weighted average of an estimator over the time series.

Examples

```
# Calculate weighted average variance for SPY (single number)
vari_ance <- agg_stats_r(oh_lc=HighFreq::SPY, calc_bars="run_variance")
# Calculate time series of daily skew estimates for SPY
skew_daily <- apply.daily(x=HighFreq::SPY, FUN=agg_stats_r, calc_bars="run_skew")</pre>
```

back_test

 $\begin{tabular}{ll} Simulate (backtest) a rolling portfolio optimization strategy, using $$ RcppArmadillo. \end{tabular}$

Description

Simulate (backtest) a rolling portfolio optimization strategy, using RcppArmadillo.

Usage

```
back_test(
 excess,
 returns,
  startp,
  endp,
  lambda,
 method = "rank_sharpe",
 eigen_thresh = 0.001,
  eigen_max = 0L,
 conf_lev = 0.1,
 alpha = 0,
  scale = TRUE,
  vol_target = 0.01,
  coeff = 1,
 bid_offer = 0
)
```

6 back_test

Arguments

returns	A <i>time series</i> or a <i>matrix</i> of returns data (the returns in excess of the risk-free rate).
excess	A <i>time series</i> or a <i>matrix</i> of excess returns data (the returns in excess of the risk-free rate).
startp	An integer vector of start points.
endp	An integer vector of end points.
lambda	A <i>numeric</i> decay factor for averaging the portfolio weights. (The default is lambda = θ - no averaging.)
coeff	A <i>numeric</i> multiplier of the weights. (The default is 1)
bid_offer	A <i>numeric</i> bid-offer spread (the default is 0)
method	A <i>string</i> specifying the method for calculating the weights (see Details) (the default is method = "rank_sharpe")
eigen_thresh	A <i>numeric</i> threshold level for discarding small singular values in order to regularize the inverse of the returns matrix (the default is 0.001).
eigen_max	An <i>integer</i> equal to the number of singular values used for calculating the shrinkage inverse of the returns matrix (the default is \emptyset - equivalent to eigen_max equal to the number of columns of returns).
conf_lev	The confidence level for calculating the quantiles (the default is $conf_{ev} = 0.75$).
alpha	The shrinkage intensity between \emptyset and 1. (the default is \emptyset).
scale	A $Boolean$ specifying whether the weights should be scaled (the default is scale = TRUE).
vol_target	A numeric volatility target for scaling the weights (the default is 0.001)

Details

The function back_test() performs a backtest simulation of a rolling portfolio optimization strategy over a *vector* of endp.

It performs a loop over the end points endp, and subsets the *matrix* of excess returns excess along its rows, between the corresponding end point and the start point. It passes the subset matrix of excess returns into the function calc_weights(), which calculates the optimal portfolio weights. The arguments eigen_max, alpha, method, and scale are also passed to the function calc_weights().

It then recursively averages the current weights w_i with the weights from the previous rebalancing period w_{i-1} , using the decay factor lambda = λ :

$$w_i = (1 - \lambda)w_i + \lambda w_{i-1}$$

The purpose of averaging the weights is to reduce their variance to improve their out-of-sample performance. It is equivalent to extending the portfolio holding period beyond the rebalancing period.

The function back_test() then multiplies the weights times the future portfolio returns, to calculate the out-of-sample strategy returns.

The function back_test() multiplies the out-of-sample strategy returns by the coefficient coeff (with default equal to 1), which allows simulating either a trending strategy (if $co_eff = 1$), or a reverting strategy (if $co_eff = -1$).

calc_cvar 7

The function back_test() calculates the transaction costs by multiplying the bid-offer spread bid_offer times the absolute difference between the current weights minus the weights from the previous period. Then it subtracts the transaction costs from the out-of-sample strategy returns.

The function back_test() returns a *time series* (column *vector*) of strategy returns, of the same length as the number of rows of returns.

Value

A column *vector* of strategy returns, with the same length as the number of rows of returns.

Examples

```
## Not run:
# Calculate the ETF daily excess returns
re_turns <- na.omit(rutils::etf_env$re_turns[, 1:16])</pre>
# risk_free is the daily risk-free rate
risk_free <- 0.03/260
ex_cess <- re_turns - risk_free
# Define monthly end points without initial warmpup period
end_p <- rutils::calc_endpoints(re_turns, inter_val="months")</pre>
end_p \leftarrow end_p[end_p > 0]
len_gth <- NROW(end_p)</pre>
# Define 12-month look-back interval and start points over sliding window
look_back <- 12
start_p <- c(rep_len(1, look_back-1), end_p[1:(len_gth-look_back+1)])</pre>
# Define shrinkage and regularization intensities
al_pha <- 0.5
eigen_max <- 3
# Simulate a monthly rolling portfolio optimization strategy
pnl_s <- HighFreq::back_test(ex_cess, re_turns,</pre>
                             start_p-1, end_p-1,
                             eigen_max = eigen_max,
                             alpha = al_pha
pnl_s <- xts::xts(pnl_s, index(re_turns))</pre>
colnames(pnl_s) <- "strat_rets"</pre>
# Plot dygraph of strategy
dygraphs::dygraph(cumsum(pnl_s),
  main="Cumulative Returns of Max Sharpe Portfolio Strategy")
## End(Not run)
```

calc_cvar

Calculate the Value at Risk (VaR) or the Conditional Value at Risk (CVaR) of an xts time series of returns, using R code.

Description

Calculate the Value at Risk (VaR) or the Conditional Value at Risk (CVaR) of an xts time series of returns, using R code.

Usage

```
calc_cvar(tseries, method = "var", con_fi = pnorm(-2))
```

8 calc_evar

Arguments

tseries An xts time series of returns with multiple columns.

Method A string specifying the type of risk measure (the default is method = "var" - see Details).

Con_fi The confidence level for calculating the quantile (the default is con_fi = pnorm(-2) = 0.02275).

Details

The function calc_cvar() calculates the Value at Risk (VaR) or the Conditional Value at Risk (CVaR) of an xts time series of returns, using R

The Value at Risk (VaR) and the Conditional Value at Risk (CVaR) are measures of the tail risk of returns.

If method = "var" then $calc_cvar()$ calculates the Value at Risk (VaR) as the quantile of the returns as follows:

$$\alpha = \int_{-\infty}^{\text{VaR}(\alpha)} f(r) \, \mathrm{d}r$$

Where α is the confidence level for calculating the quantile, and f(r) is the probability density (distribution) of returns.

If method = "cvar" then calc_cvar() calculates the Value at Risk (VaR) as the Expected Tail Loss (ETL) of the returns as follows:

$$CVaR = \frac{1}{\alpha} \int_0^{\alpha} VaR(p) dp$$

Where α is the confidence level for calculating the quantile.

Value

A vector with the risk measures of the columns of the input time series tseries.

```
## Not run:
# Calculate VTI and XLF returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("VTI", "XLF")])
# Calculate VaR
all.equal(HighFreq::calc_cvar(re_turns),
    sapply(re_turns, quantile, probs=pnorm(-2)), check.attributes=FALSE)
# Calculate CVaR
all.equal(HighFreq::calc_cvar(re_turns, method="cvar", con_fi=0.02),
    sapply(re_turns, function(x) mean(x[x < quantile(x, 0.02)])),
    check.attributes=FALSE)
## End(Not run)</pre>
```

calc_eigen 9

calc_eigen	Calculate the eigen decomposition of the covariance matrix of returns data using RcppArmadillo.
	data using RcppArmadillo.

Description

Calculate the eigen decomposition of the covariance matrix of returns data using RcppArmadillo.

Usage

```
calc_eigen(tseries)
```

Arguments

tseries

A time series or matrix of returns data.

Details

The function calc_eigen() first calculates the covariance *matrix* of tseries, and then calculates the eigen decomposition of the covariance *matrix*.

Value

A list with two elements: a *vector* of eigenvalues (named "values"), and a *matrix* of eigenvectors (named "vectors").

```
## Not run:
# Create matrix of random data
da_ta <- matrix(rnorm(5e6), nc=5)</pre>
# Calculate eigen decomposition
ei_gen <- HighFreq::calc_eigen(scale(da_ta, scale=FALSE))</pre>
# Calculate PCA
pc_a <- prcomp(da_ta)</pre>
# Compare PCA with eigen decomposition
all.equal(pc_a$sdev^2, drop(ei_gen$values))
all.equal(abs(unname(pc_a$rotation)), abs(ei_gen$vectors))
# Compare the speed of Rcpp with R code
summary(microbenchmark(
  Rcpp=HighFreq::calc_eigen(da_ta),
  Rcode=prcomp(da_ta),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

10 calc_endpoints

calc_endpoints	Calculate a vector of end points that divides a vector into equal intervals.
----------------	--

Description

Calculate a vector of end points that divides a vector into equal intervals.

Usage

```
calc_endpoints(length, step = 1L, stub = 0L)
```

Arguments

length	An <i>integer</i> equal to the length of the vector to be divided into equal intervals.
step	The number of elements in each interval between neighboring end points.
stub	An <i>integer</i> value equal to the first end point for calculating the end points.

Details

The end points are a vector of integers which divide a vector of length equal to length into equally spaced intervals. If a whole number of intervals doesn't fit over the vector, then calc_endpoints() adds a stub interval at the end.

The first end point is equal to the argument step, unless the argument stub is provided, and then it becomes the first end point.

For example, consider the end points for a vector of length 20 divided into intervals of length step=5: 0,5,10,15,20. In order for all the differences between neighboring end points to be equal to 5, the first end point is set equal to 0. But 0 doesn't correspond to any vector element, so calc_endpoints() doesn't include it and it only retains the non-zero end points equal to: 5,10,15,20.

Since indexing in C++ code starts at 0, then calc_endpoints() shifts the end points by -1 and returns the vector equal to 4,9,14,19.

If stub = 1 then the first end point is equal to 1 and the end points are equal to: 1,6,11,16,20. The extra stub interval at the end is equal to 4 = 20 - 16. And calc_endpoints() returns 0,5,10,15,19. The first value is equal to 0 which is the index of the first element in C++ code.

If stub = 2 then the first end point is equal to 2, with an extra stub interval at the end, and the end points are equal to: 2,7,12,17,20. And calc_endpoints() returns 1,6,11,16,19.

The function calc_endpoints() is similar to the function rutils::calc_endpoints() from package rutils.

But the end points are shifted by -1 compared to R code because indexing starts at 0 in C++ code, while it starts at 1 in R code. So if calc_endpoints() is used in R code then 1 should be added to it.

This works in R code because the vector element corresponding to index 0 is empty. For example, the R code: (4:1)[c(0,1)] produces 4. So in R we can select vector elements using the end points starting at zero.

In C++ the end points must be shifted by -1 compared to R code, because indexing starts at 0: -1,4,9,14,19. But there is no vector element corresponding to index -1. So in C++ we cannot select vector elements using the end points starting at -1. The solution is to drop the first placeholder end point.

calc_hurst 11

Value

A vector of equally spaced *integers* representing the end points.

Examples

```
# Calculate end points without a stub interval
HighFreq::calc_endpoints(length=20, step=5)
# Calculate end points with a final stub interval
HighFreq::calc_endpoints(length=23, step=5)
# Calculate end points with initial and final stub intervals
HighFreq::calc_endpoints(length=20, step=5, stub=2)
# Calculate end points with initial and final stub intervals
HighFreq::calc_endpoints(length=20, step=5, stub=24)
```

calc_hurst

Calculate the Hurst exponent from the volatility ratio of aggregated returns.

Description

Calculate the Hurst exponent from the volatility ratio of aggregated returns.

Usage

```
calc_hurst(tseries, step = 1L)
```

Arguments

tseries A time series or a matrix of prices.

step The number of periods in each interval between neighboring end points.

Details

The function calc_hurst() calculates the Hurst exponent from the ratios of the volatilities of aggregated returns.

The aggregated volatility σ_t scales (increases) with the length of the aggregation interval Δt raised to the power of the *Hurst exponent H*:

$$\sigma_t = \sigma \Delta t^H$$

Where σ is the daily return volatility.

The *Hurst exponent H* is equal to the logarithm of the ratio of the volatilities divided by the logarithm of the time interval Δt :

$$H = \frac{\log \sigma_t - \log \sigma}{\log \Delta t}$$

The function calc_hurst() calls the function calc_var_ag() to calculate the aggregated volatility σ_t .

Value

The Hurst exponent calculated from the variance of aggregated returns.

12 calc_hurst_ohlc

Examples

```
## Not run:
# Calculate the log prices
price_s <- na.omit(rutils::etf_env$price_s[, c("XLP", "VTI")])</pre>
price_s <- log(price_s)</pre>
# Calculate the Hurst exponent from 21 day aggregations
calc_hurst(price_s, step=21)
## End(Not run)
```

calc_hurst_ohlc

Calculate the Hurst exponent from the volatility ratio of aggregated OHLC prices.

Description

Calculate the Hurst exponent from the volatility ratio of aggregated OHLC prices.

Usage

```
calc_hurst_ohlc(
  ohlc,
  step = 1L,
  method = "yang_zhang",
  lag_close = 0L,
  scale = TRUE,
  in_dex = 0L
)
```

Arguments

ohlc

A time series or a matrix of OHLC prices.

step

The number of periods in each interval between neighboring end points.

method

A character string representing the price range estimator for calculating the variance. The estimators include:

- "close" close-to-close estimator,
- "rogers_satchell" Rogers-Satchell estimator,
- "garman_klass" Garman-Klass estimator,
- "garman_klass_yz" Garman-Klass with account for close-to-open price jumps,
- "yang_zhang" Yang-Zhang estimator,

(The default is the method = "yang_zhang".)

lag_close

A vector with the lagged close prices of the OHLC time series. This is an optional argument. (The default is $lag_close = 0$).

scale

Boolean argument: Should the returns be divided by the time index, the number of seconds in each period? (The default is scale = TRUE).

A vector with the time index of the time series. This is an optional argument (the default is $in_dex = 0$).

in_dex

calc_inv 13

Details

The function calc_hurst_ohlc() calculates the Hurst exponent from the ratios of the volatilities of aggregated *OHLC* prices.

The aggregated volatility σ_t scales (increases) with the length of the aggregation interval Δt raised to the power of the *Hurst exponent H*:

$$\sigma_t = \sigma \Delta t^H$$

Where σ is the daily return volatility.

The *Hurst exponent H* is equal to the logarithm of the ratio of the volatilities divided by the logarithm of the time interval Δt :

$$H = \frac{\log \sigma_t - \log \sigma}{\log \Delta t}$$

The function calc_hurst_ohlc() calls the function calc_var_ohlc_ag() to calculate the aggregated volatility σ_t .

Value

The Hurst exponent calculated from the variance ratio of aggregated OHLC prices.

Examples

```
## Not run:
# Calculate the log ohlc prices
oh_lc <- log(rutils::etf_env$VTI)
# Calculate the Hurst exponent from 21 day aggregations
calc_hurst_ohlc(oh_lc, step=21)
## End(Not run)</pre>
```

calc_inv

Calculate the shrinkage inverse of a matrix of data using Singular Value Decomposition (SVD).

Description

Calculate the shrinkage inverse of a matrix of data using Singular Value Decomposition (SVD).

Usage

```
calc_inv(tseries, eigen_thresh = 0.01, eigen_max = 0L)
```

Arguments

tseries A time series or matrix of data.

eigen_thresh A numeric threshold level for discarding small singular values in order to regu-

larize the inverse of the matrix tseries (the default is 0.01).

eigen_max An integer equal to the number of singular values used for calculating the shrink-

age inverse of the matrix tseries (the default is eigen_max = 0 - equivalent to

eigen_max equal to the number of columns of tseries).

14 calc_inv

Details

The function calc_inv() calculates the shrinkage inverse of the matrix tseries using Singular Value Decomposition (SVD).

The function calc_inv() first performs Singular Value Decomposition (*SVD*) of the matrix tseries. The *SVD* of a matrix *A* is defined as the factorization:

$$A = U \Sigma V^T$$

Where U and V are the left and right *singular matrices*, and Σ is a diagonal matrix of *singular values* $\Sigma = {\sigma_i}$.

The inverse A^{-1} of the matrix A can be calculated from the SVD matrices as:

$$A^{-1} = V \Sigma^{-1} U^T$$

The *regularized inverse* of the matrix A is given by:

$$A^{-1} = V_n \Sigma_n^{-1} U_n^T$$

Where U_n , V_n and Σ_n are the SVD matrices with the rows and columns corresponding to zero singular values removed.

The function calc_inv() applies regularization by discarding the smallest singular values σ_i that are less than the threshold level eigen_thresh times the sum of all the singular values:

$$\sigma_i < eigen_thresh \cdot (\sum \sigma_i)$$

It then discards additional singular values so that only the largest eigen_max singular values remain. It calculates the shrinkage inverse from the *SVD* matrices using only the largest singular values up to eigen_max. For example, if eigen_max = 3 then it only uses the 3 largest singular values. This has the effect of dimension shrinkage.

If the matrix tseries has a large number of small singular values, then the number of remaining singular values may be less than eigen_max.

Value

A *matrix* equal to the shrinkage inverse of the matrix tseries.

```
## Not run:
# Calculate ETF returns
re_turns <- na.omit(rutils::etf_env$re_turns)
# Calculate covariance matrix
cov_mat <- cov(re_turns)
# Calculate shrinkage inverse using RcppArmadillo
in_verse <- HighFreq::calc_inv(cov_mat, eigen_max=3)
# Calculate shrinkage inverse from SVD in R
s_vd <- svd(cov_mat)
eigen_max <- 1:3
inverse_r <- s_vd$v[, eigen_max] %*% (t(s_vd$u[, eigen_max]) / s_vd$d[eigen_max])
# Compare RcppArmadillo with R
all.equal(in_verse, inverse_r)
## End(Not run)</pre>
```

calc_kurtosis 15

	Calculate the kurtosis of the columns of a time series or a matrix using RcppArmadillo.
--	---

Description

Calculate the kurtosis of the columns of a time series or a matrix using RcppArmadillo.

Usage

```
calc_kurtosis(tseries, method = "moment", conf_lev = 0.75)
```

Arguments

tseries A time series or a matrix of data.

method A string specifying the type of the kurtosis model (the default is method = "moment" - see Details).

conf_lev The confidence level for calculating the quantiles (the default is conf_lev =

0.75).

Details

The function calc_kurtosis() calculates the kurtosis of the columns of the *matrix* tseries using RcppArmadillo C++ code.

If method = "moment" (the default) then calc_kurtosis() calculates the fourth moment of the data. But it doesn't de-mean the columns of tseries because that requires copying the matrix tseries, so it's time-consuming.

If method = "quantile" then it calculates the skewness κ from the differences between the quantiles of the data as follows:

$$\kappa = \frac{q_{\alpha} - q_{1-\alpha}}{q_{0.75} - q_{0.25}}$$

Where α is the confidence level for calculating the quantiles.

If method = "nonparametric" then it calculates the kurtosis as the difference between the mean of the data minus its median, divided by the standard deviation.

If the number of rows of tseries is less than 3 then it returns zeros.

The code examples below compare the function calc_kurtosis() with the kurtosis calculated using R code.

Value

A single-row matrix with the kurtosis of the columns of tseries.

```
## Not run:
# Define a single-column time series of returns
re_turns <- na.omit(rutils::etf_env$re_turns$VTI)
# Calculate the moment kurtosis
HighFreq::calc_kurtosis(re_turns)
# Calculate the moment kurtosis in R</pre>
```

16 calc_lm

```
calc_kurtr <- function(x) {</pre>
  x \leftarrow (x-mean(x))
  sum(x^4)/var(x)^2/NROW(x)
} # end calc_kurtr
all.equal(HighFreq::calc_kurtosis(re_turns),
  calc_kurtr(re_turns), check.attributes=FALSE)
\mbox{\#} Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::calc_kurtosis(re_turns),
  Rcode=calc_kurtr(re_turns),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
# Calculate the quantile kurtosis
HighFreq::calc_kurtosis(re_turns, method="quantile", conf_lev=0.9)
# Calculate the quantile kurtosis in R
calc_kurtq <- function(x, a=0.9) {</pre>
   quantile_s <- quantile(x, c(1-a, 0.25, 0.75, a), type=5)
   (quantile_s[4] - quantile_s[1])/(quantile_s[3] - quantile_s[2])
} # end calc_kurtq
all.equal(drop(HighFreq::calc_kurtosis(re_turns, method="quantile", conf_lev=0.9)),
  calc_kurtq(re_turns, a=0.9), check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
summary(microbenchmark(
  Rcpp=HighFreq::calc_kurtosis(re_turns, method="quantile"),
  Rcode=calc_kurtq(re_turns),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
# Calculate the nonparametric kurtosis
HighFreq::calc_kurtosis(re_turns, method="nonparametric")
# Compare HighFreq::calc_kurtosis() with R nonparametric kurtosis
all.equal(drop(HighFreq::calc_kurtosis(re_turns, method="nonparametric")),
  (mean(re_turns)-median(re_turns))/sd(re_turns),
  check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
summary(microbenchmark(
  Rcpp=HighFreq::calc_kurtosis(re_turns, method="nonparametric"),
  Rcode=(mean(re_turns)-median(re_turns))/sd(re_turns),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

calc_lm

Perform multivariate linear regression using least squares and return a named list of regression coefficients, their t-values, and p-values.

Description

Perform multivariate linear regression using least squares and return a named list of regression coefficients, their t-values, and p-values.

Usage

```
calc_lm(response, predictor)
```

calc_mean 17

Arguments

response A single-column *time series* or a *vector* of response data.

predictor A time series or a matrix of predictor data.

Details

The function calc_lm() performs the same calculations as the function lm() from package *stats*. It uses RcppArmadillo C++ code so it's several times faster than lm(). The code was inspired by this article (but it's not identical to it): http://gallery.rcpp.org/articles/fast-linear-model-with-armadillo/

Value

A named list with three elements: a *matrix* of coefficients (named "coefficients"), the *z-score* of the last residual (named "z_score"), and a *vector* with the R-squared and F-statistic (named "stats"). The numeric *matrix* of coefficients named "coefficients" contains the alpha and beta coefficients, and their *t-values* and *p-values*.

Examples

```
## Not run:
# Calculate historical returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("XLF", "VTI", "IEF")])</pre>
# Response equals XLF returns
res_ponse <- re_turns[, 1]</pre>
\mbox{\#} Predictor matrix equals VTI and IEF returns
predic_tor <- re_turns[, -1]</pre>
# Perform multivariate regression using lm()
reg_model <- lm(res_ponse ~ predic_tor)</pre>
sum_mary <- summary(reg_model)</pre>
# Perform multivariate regression using calc_lm()
reg_arma <- HighFreq::calc_lm(response=res_ponse, predictor=predic_tor)</pre>
# Compare the outputs of both functions
all.equal(reg_arma$coefficients[, "coeff"], unname(coef(reg_model)))
all.equal(unname(reg_arma$coefficients), unname(sum_mary$coefficients))
all.equal(unname(reg_arma$stats), c(sum_mary$r.squared, unname(sum_mary$fstatistic[1])))
# Compare the speed of RcppArmadillo with R code
summary(microbenchmark(
  Rcpp=HighFreq::calc_lm(response=res_ponse, predictor=predic_tor),
  Rcode=lm(res_ponse ~ predic_tor),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

calc_mean

Calculate the mean (location) of the columns of a time series or a matrix using RcppArmadillo.

Description

Calculate the mean (location) of the columns of a time series or a matrix using RcppArmadillo.

18 calc_mean

Usage

```
calc_mean(tseries, method = "moment", conf_lev = 0.75)
```

Arguments

tseries A time series or a matrix of data.

method A string specifying the type of the mean (location) model (the default is method

= "moment" - see Details).

conf_lev The confidence level for calculating the quantiles (the default is conf_lev =

0.75).

Details

The function calc_mean() calculates the mean (location) values of the columns of the *time series* tseries using RcppArmadillo C++ code.

If method = "moment" (the default) then calc_mean() calculates the location as the mean - the first moment of the data.

If method = "quantile" then it calculates the location μ as the sum of the quantiles as follows:

$$\mu = q_{\alpha} + q_{1-\alpha}$$

Where α is the confidence level for calculating the quantiles.

If method = "nonparametric" then it calculates the location as the median.

The code examples below compare the function calc_mean() with the mean (location) calculated using R code.

Value

A single-row matrix with the mean (location) of the columns of tseries.

```
## Not run:
# Calculate historical returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("XLP", "VTI")])</pre>
# Calculate the column means in RcppArmadillo
HighFreq::calc_mean(re_turns)
# Calculate the column means in R
sapply(re_turns, mean)
# Compare the values
all.equal(drop(HighFreq::calc_mean(re_turns)),
  sapply(re_turns, mean), check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::calc_mean(re_turns),
  Rcode=sapply(re_turns, mean),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
# Calculate the quantile mean (location)
HighFreq::calc_mean(re_turns, method="quantile", conf_lev=0.9)
# Calculate the quantile mean (location) in R
colSums(sapply(re_turns, quantile, c(0.9, 0.1), type=5))
# Compare the values
```

calc_ranks 19

```
all.equal(drop(HighFreq::calc_mean(re_turns, method="quantile", conf_lev=0.9)),
  colSums(sapply(re_turns, quantile, c(0.9, 0.1), type=5)),
  check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
summary(microbenchmark(
  Rcpp=HighFreq::calc_mean(re_turns, method="quantile", conf_lev=0.9),
  Rcode=colSums(sapply(re_turns, quantile, c(0.9, 0.1), type=5)),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
# Calculate the column medians in RcppArmadillo
HighFreq::calc_mean(re_turns, method="nonparametric")
# Calculate the column medians in R
sapply(re_turns, median)
# Compare the values
all.equal(drop(HighFreq::calc_mean(re_turns, method="nonparametric")),
  sapply(re_turns, median), check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
summary(microbenchmark(
  Rcpp=HighFreq::calc_mean(re_turns, method="nonparametric"),
  Rcode=sapply(re_turns, median),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

calc_ranks

Calculate the ranks of the elements of a single-column time series or a vector using RcppArmadillo.

Description

Calculate the ranks of the elements of a single-column time series or a vector using RcppArmadillo.

Usage

```
calc_ranks(tseries)
```

Arguments

tseries

A single-column time series or a vector.

Details

The function calc_ranks() calculates the ranks of the elements of a single-column *time series* or a *vector*. It uses the RcppArmadillo function arma::sort_index(). The function arma::sort_index() calculates the permutation index to sort a given vector into ascending order.

Applying the function arma::sort_index() twice: arma::sort_index(arma::sort_index()), calculates the *reverse* permutation index to sort the vector from ascending order back into its original unsorted order. The permutation index produced by: arma::sort_index(arma::sort_index()) is the *reverse* of the permutation index produced by: arma::sort_index().

The ranks of the elements are equal to the *reverse* permutation index. The function calc_ranks() calculates the *reverse* permutation index.

20 calc_reg

Value

An *integer vector* with the ranks of the elements of the tseries.

Examples

```
## Not run:
# Create a vector of random data
da_ta <- round(runif(7), 2)</pre>
# Calculate the ranks of the elements in two ways
all.equal(rank(da_ta), drop(HighFreq::calc_ranks(da_ta)))
# Create a time series of random data
da_ta <- xts::xts(runif(7), seq.Date(Sys.Date(), by=1, length.out=7))</pre>
# Calculate the ranks of the elements in two ways
all.equal(rank(coredata(da_ta)), drop(HighFreq::calc_ranks(da_ta)))
# Compare the speed of RcppArmadillo with R code
da_ta <- runif(7)</pre>
library(microbenchmark)
summary(microbenchmark(
  Rcpp=calc_ranks(da_ta),
  Rcode=rank(da_ta),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

calc_reg

Perform multivariate regression using different methods, and return a vector of regression coefficients, their t-values, and the last residual z-score.

Description

Perform multivariate regression using different methods, and return a vector of regression coefficients, their t-values, and the last residual z-score.

Usage

```
calc_reg(
  response,
  predictor,
  method = "least_squares",
  eigen_thresh = 0.001,
  eigen_max = 0L,
  conf_lev = 0.1,
  alpha = 0
)
```

Arguments

response A single-column time series or a vector of response data.

predictor A time series or a matrix of predictor data.

calc_reg 21

method	A <i>string</i> specifying the type of the regression model the default is method = "least_squares" - see Details).
eigen_thresh	A <i>numeric</i> threshold level for discarding small singular values in order to regularize the inverse of the predictor matrix (the default is 0.001).
eigen_max	An <i>integer</i> equal to the number of singular values used for calculating the shrinkage inverse of the predictor matrix (the default is 0 - equivalent to eigen_max equal to the number of columns of predictor).
conf_lev	The confidence level for calculating the quantiles (the default is $conf_{lev} = 0.75$).
alpha	The shrinkage intensity between 0 and 1. (the default is 0).

Details

The function calc_reg() performs multivariate regression using different methods, and returns a vector of regression coefficients, their t-values, and the last residual z-score.

The length of the return vector depends on the number of columns of predictor. The number of regression coefficients is equal to the number of columns of predictor plus 1. The number of t-values is equal to the number of coefficients. And there is only 1 z-score. So if the number of columns of predictor is equal to n, then the return vector will have 2n+3 elements.

For example, if the predictor matrix has 2 columns of data, then calc_reg() returns a vector with 7 elements: 3 regression coefficients (including the intercept coefficient), 3 corresponding t-values, and 1 z-score.

If method = "least_squares" (the default) then it performs the standard least squares regression, the same as the function calc_reg(), and the function lm() from package *stats*. It uses RcppArmadillo C++ code so it's several times faster than lm().

If method = "regular" then it performs shrinkage regression. It calculates the shrinkage inverse of the predictor matrix from its singular value decomposition. It applies dimension regularization by selecting only the largest singular values equal in number to eigen_max.

If method = "quantile" then it performs quantile regression (not implemented yet).

Value

A vector with the regression coefficients, their t-values, and the last residual z-score.

```
## Not run:
# Calculate historical returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("XLF", "VTI", "IEF")])</pre>
# Response equals XLF returns
res_ponse <- re_turns[, 1]</pre>
# Predictor matrix equals VTI and IEF returns
predic_tor <- re_turns[, -1]</pre>
# Perform multivariate regression using lm()
reg_model <- lm(res_ponse ~ predic_tor)</pre>
sum_mary <- summary(reg_model)</pre>
co_eff <- sum_mary$coefficients</pre>
# Perform multivariate regression using calc_reg()
reg_arma <- drop(HighFreq::calc_reg(response=res_ponse, predictor=predic_tor))</pre>
# Compare the outputs of both functions
all.equal(reg_arma[1:(2*(1+NCOL(predic_tor)))],
  c(co_eff[, "Estimate"], co_eff[, "t value"]), check.attributes=FALSE)
```

22 calc_scaled

```
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
   Rcpp=HighFreq::calc_reg(response=res_ponse, predictor=predic_tor),
   Rcode=lm(res_ponse ~ predic_tor),
   times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

calc_scaled

Scale (standardize) the columns of a matrix of data using RcppArmadillo.

Description

Scale (standardize) the columns of a *matrix* of data using RcppArmadillo.

Usage

```
calc_scaled(tseries, use_median = FALSE)
```

Arguments

tseries A time series or matrix of data.

use_median A Boolean argument: if TRUE then the centrality (central tendency) is calculated

as the median and the dispersion is calculated as the median absolute deviation (MAD). If use_median = FALSE then the centrality is calculated as the mean and the dispersion is calculated as the standard deviation (the default is FALSE)

Details

The function calc_scaled() scales (standardizes) the columns of the tseries argument using RcppArmadillo.

If the argument use_median is FALSE (the default), then it performs the same calculation as the standard R function scale(), and it calculates the centrality (central tendency) as the *mean* and the dispersion as the *standard deviation*.

If the argument use_median is TRUE, then it calculates the centrality as the *median* and the dispersion as the *median absolute deviation (MAD)*.

If the number of rows of tseries is less than 3 then it returns tseries unscaled.

The function calc_scaled() uses RcppArmadillo C++ code and is about 5 times faster than function scale(), for a *matrix* with 1,000 rows and 20 columns.

Value

A *matrix* with the same dimensions as the input argument tseries.

calc_skew 23

Examples

```
## Not run:
# Create a matrix of random data
re_turns <- matrix(rnorm(20000), nc=20)
scale_d <- calc_scaled(tseries=re_turns, use_median=FALSE)
scale_d2 <- scale(re_turns)
all.equal(scale_d, scale_d2, check.attributes=FALSE)
# Compare the speed of Rcpp with R code
library(microbenchmark)
summary(microbenchmark(
   Rcpp=calc_scaled(tseries=re_turns, use_median=FALSE),
   Rcode=scale(re_turns),
   times=100))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)</pre>
```

calc_skew

Calculate the skewness of the columns of a time series or a matrix using RcppArmadillo.

Description

Calculate the skewness of the columns of a *time series* or a *matrix* using RcppArmadillo.

Usage

```
calc_skew(tseries, method = "moment", conf_lev = 0.75)
```

Arguments

tseries A time series or a matrix of data.

method A *string* specifying the type of the skewness model (the default is method =

"moment" - see Details).

conf_lev The confidence level for calculating the quantiles (the default is conf_lev =

0.75).

Details

The function calc_skew() calculates the skewness of the columns of a *time series* or a *matrix* of data using RcppArmadillo C++ code.

If method = "moment" (the default) then calc_skew() calculates the skewness as the third moment of the data.

If method = "quantile" then it calculates the skewness ς from the differences between the quantiles of the data as follows:

$$\varsigma = \frac{q_{\alpha} + q_{1-\alpha} - 2 * q_{0.5}}{q_{\alpha} - q_{1-\alpha}}$$

Where α is the confidence level for calculating the quantiles.

If method = "nonparametric" then it calculates the skewness as the difference between the mean of the data minus its median, divided by the standard deviation.

24 calc_skew

If the number of rows of tseries is less than 3 then it returns zeros.

The code examples below compare the function calc_skew() with the skewness calculated using R code.

Value

A single-row matrix with the skewness of the columns of tseries.

```
## Not run:
# Define a single-column time series of returns
re_turns <- na.omit(rutils::etf_env$re_turns$VTI)</pre>
# Calculate the moment skewness
HighFreq::calc_skew(re_turns)
# Calculate the moment skewness in R
calc_skewr <- function(x) {</pre>
  x <- (x-mean(x))
  sum(x^3)/var(x)^1.5/NROW(x)
} # end calc_skewr
all.equal(HighFreq::calc_skew(re_turns),
  calc_skewr(re_turns), check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::calc_skew(re_turns),
  Rcode=calc_skewr(re_turns),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
# Calculate the quantile skewness
HighFreq::calc_skew(re_turns, method="quantile", conf_lev=0.9)
\# Calculate the quantile skewness in R
calc_skewq \leftarrow function(x, a = 0.75) {
   quantile_s <- quantile(x, c(1-a, 0.5, a), type=5)
   (quantile_s[3] + quantile_s[1] - 2*quantile_s[2])/(quantile_s[3] - quantile_s[1])
} # end calc_skewq
all.equal(drop(HighFreq::calc_skew(re_turns, method="quantile", conf_lev=0.9)),
  calc_skewq(re_turns, a=0.9), check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
summary(microbenchmark(
  Rcpp=HighFreq::calc_skew(re_turns, method="quantile"),
  Rcode=calc_skewq(re_turns),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
# Calculate the nonparametric skewness
HighFreq::calc_skew(re_turns, method="nonparametric")
# Compare HighFreq::calc_skew() with R nonparametric skewness
all.equal(drop(HighFreq::calc_skew(re_turns, method="nonparametric")),
  (mean(re_turns)-median(re_turns))/sd(re_turns),
  check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
summary(microbenchmark(
  Rcpp=HighFreq::calc_skew(re_turns, method="nonparametric"),
  Rcode=(mean(re_turns)-median(re_turns))/sd(re_turns),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

calc_startpoints 25

calc_startpoints	Calculate a vector of start points by lagging (shifting) a vector of end points.
------------------	--

Description

Calculate a vector of start points by lagging (shifting) a vector of end points.

Usage

```
calc_startpoints(endp, look_back)
```

Arguments

endp An *integer* vector of end points.

look_back The length of the look-back interval, equal to the lag (shift) applied to the end

points.

Details

The start points are equal to the values of the vector endp lagged (shifted) by an amount equal to look_back. In addition, an extra value of 1 is added to them, to avoid data overlaps. The lag operation requires appending a beginning warmup interval containing zeros, so that the vector of start points has the same length as the endp.

For example, consider the end points for a vector of length 25 divided into equal intervals of length 5: 4,9,14,19,24. (In C++ the vector indexing starts at 0 not 1, so it's shifted by -1.) Then the start points for look_back = 2 are equal to: 0,0,5,10,15. The differences between the end points minus the corresponding start points are equal to 9, except for the warmup interval.

Value

An integer vector with the same number of elements as the vector endp.

```
# Calculate end points
end_p <- HighFreq::calc_endpoints(25, 5)
# Calculate start points corresponding to the end points
start_p <- HighFreq::calc_startpoints(end_p, 2)</pre>
```

26 calc_var

calc_var	Calculate the dispersion (variance) of the columns of a time series or a matrix using RcppArmadillo.
	0 11

Description

Calculate the dispersion (variance) of the columns of a *time series* or a *matrix* using RcppArmadillo.

Usage

```
calc_var(tseries, method = "moment", conf_lev = 0.75)
```

Arguments

tseries A time series or a matrix of data.

method A string specifying the type of the dispersion model (the default is method = "moment" - see Details).

conf_lev The confidence level for calculating the quantiles (the default is conf_lev =

0.75).

Details

The dispersion is a measure of the variability of the data. Examples of dispersion are the variance and the Median Absolute Deviation (*MAD*).

The function calc_var() calculates the dispersion of the columns of a *time series* or a *matrix* of data using RcppArmadillo C++ code.

If method = "moment" (the default) then calc_var() calculates the dispersion as the second moment of the data σ^2 (the variance).

If method = "moment" then calc_var() performs the same calculation as the function colVars() from package matrixStats, but it's much faster because it uses RcppArmadillo C++ code.

If method = "quantile" then it calculates the dispersion as the difference between the quantiles as follows:

$$\mu = q_{\alpha} - q_{1-\alpha}$$

Where α is the confidence level for calculating the quantiles.

If method = "nonparametric" then it calculates the dispersion as the Median Absolute Deviation (MAD):

$$MAD = median(abs(x - median(x)))$$

It also multiplies the $M\!AD$ by a factor of 1.4826, to make it comparable to the standard deviation.

If method = "nonparametric" then calc_var() performs the same calculation as the function stats::mad(), but it's much faster because it uses RcppArmadillo C++ code.

If the number of rows of tseries is less than 3 then it returns zeros.

Value

A row vector equal to the dispersion of the columns of the matrix tseries.

calc_var_ag 27

Examples

```
## Not run:
# Calculate VTI and XLF returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("VTI", "XLF")])</pre>
# Compare HighFreq::calc_var() with standard var()
all.equal(drop(HighFreq::calc_var(re_turns)),
  apply(re_turns, 2, var), check.attributes=FALSE)
# Compare HighFreq::calc_var() with matrixStats
all.equal(drop(HighFreq::calc_var(re_turns)),
  matrixStats::colVars(re_turns), check.attributes=FALSE)
# Compare the speed of RcppArmadillo with matrixStats and with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::calc_var(re_turns),
  matrixStats=matrixStats::colVars(re_turns),
  Rcode=apply(re_turns, 2, var),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
# Compare HighFreq::calc_var() with stats::mad()
all.equal(drop(HighFreq::calc_var(re_turns, method="nonparametric")),
  sapply(re_turns, mad), check.attributes=FALSE)
# Compare the speed of RcppArmadillo with stats::mad()
summary(microbenchmark(
  Rcpp=HighFreq::calc_var(re_turns, method="nonparametric"),
  Rcode=sapply(re_turns, mad),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

calc_var_ag

Calculate the variance of returns aggregated over end points.

Description

Calculate the variance of returns aggregated over end points.

Usage

```
calc_var_ag(tseries, step = 1L)
```

Arguments

tseries A time series or a matrix of prices.

step The number of periods in each interval between neighboring end points.

Details

The function calc_var_ag() calculates the variance of returns aggregated over end points.

It first calculates the end points spaced apart by the number of periods equal to the argument step. Then it calculates the aggregated returns by differencing the prices tseries calculated at the end points. Finally it calculates the variance of the returns.

28 calc_var_ohlc

If there are extra periods that don't fit over the length of tseries, then calc_var_ag() loops over all possible stub intervals, then it calculates all the corresponding variance values, and averages them.

For example, if the number of rows of tseries is equal to 20, and step=3 then 6 end points fit over the length of tseries, and there are 2 extra periods that must fit into stubs, either at the beginning or at the end (or both).

The aggregated volatility σ_t scales (increases) with the length of the aggregation interval Δt raised to the power of the *Hurst exponent H*:

$$\sigma_t = \sigma \Delta t^H$$

Where σ is the daily return volatility.

The function calc_var_ag() can therefore be used to calculate the *Hurst exponent* from the volatility ratio.

Value

The variance of aggregated returns.

Examples

```
## Not run:
# Calculate the log prices
price_s <- na.omit(rutils::etf_env$price_s[, c("XLP", "VTI")])
price_s <- log(price_s)
# Calculate the daily variance of percentage returns
calc_var_ag(price_s, step=1)
# Calculate the daily variance using R
sapply(rutils::diff_it(price_s), var)
# Calculate the variance of returns aggregated over 21 days
calc_var_ag(price_s, step=21)
# The variance over 21 days is approximately 21 times the daily variance
21*calc_var_ag(price_s, step=1)
## End(Not run)</pre>
```

calc_var_ohlc

Calculate the variance of OHLC prices using different price range estimators.

Description

Calculate the variance of *OHLC* prices using different price range estimators.

Usage

```
calc_var_ohlc(
  ohlc,
  method = "yang_zhang",
  lag_close = 0L,
  scale = TRUE,
  in_dex = 0L
)
```

calc_var_ohlc 29

Arguments

ohlc A time series or a matrix of OHLC prices.

method A *character* string representing the price range estimator for calculating the variance. The estimators include:

• "close" close-to-close estimator,

• "rogers_satchell" Rogers-Satchell estimator,

• "garman_klass" Garman-Klass estimator,

• "garman_klass_yz" Garman-Klass with account for close-to-open price jumps,

• "yang_zhang" Yang-Zhang estimator,

(The default is the method = "yang_zhang".)

lag_close A vector with the lagged close prices of the OHLC time series. This is an op-

tional argument. (The default is $lag_close = 0$).

scale Boolean argument: Should the returns be divided by the time index, the number

of seconds in each period? (The default is scale = TRUE).

in_dex A vector with the time index of the time series. This is an optional argument

(the default is $in_dex = 0$).

Details

The function calc_var_ohlc() calculates the variance from all the different intra-day and day-over-day returns (defined as the differences of *OHLC* prices), using several different variance estimation methods.

The input *OHLC time series* ohlc is assumed to be the log prices.

The default method is "yang_zhang", which theoretically has the lowest standard error among unbiased estimators. The methods "close", "garman_klass_yz", and "yang_zhang" do account for close-to-open price jumps, while the methods "garman_klass" and "rogers_satchell" do not account for close-to-open price jumps.

If scale is TRUE (the default), then the returns are divided by the differences of the time index (which scales the variance to the units of variance per second squared). This is useful when calculating the variance from minutely bar data, because dividing returns by the number of seconds decreases the effect of overnight price jumps. If the time index is in days, then the variance is equal to the variance per day squared.

If the number of rows of ohlc is less than 3 then it returns zero.

The optional argument in_dex is the time index of the *time series* ohlc. If the time index is in seconds, then the differences of the index are equal to the number of seconds in each time period. If the time index is in days, then the differences are equal to the number of days in each time period.

The optional argument lag_close are the lagged *close* prices of the *OHLC time series*. Passing in the lagged *close* prices speeds up the calculation, so it's useful for rolling calculations.

The function calc_var_ohlc() is implemented in RcppArmadillo C++ code, and it's over 10 times faster than calc_var_ohlc_r(), which is implemented in R code.

Value

A single *numeric* value equal to the variance of the *OHLC time series*.

30 calc_var_ohlc_ag

Examples

```
## Not run:
# Extract the log OHLC prices of SPY
oh_lc <- log(HighFreq::SPY)</pre>
# Extract the time index of SPY prices
in_dex <- c(1, diff(xts::.index(oh_lc)))</pre>
# Calculate the variance of SPY returns, with scaling of the returns
HighFreq::calc_var_ohlc(oh_lc,
method="yang_zhang", scale=TRUE, in_dex=in_dex)
# Calculate variance without accounting for overnight jumps
HighFreq::calc_var_ohlc(oh_lc,
method="rogers_satchell", scale=TRUE, in_dex=in_dex)
# Calculate the variance without scaling the returns
HighFreq::calc_var_ohlc(oh_lc, scale=FALSE)
# Calculate the variance by passing in the lagged close prices
lag_close <- HighFreq::lag_it(oh_lc[, 4])</pre>
all.equal(HighFreq::calc_var_ohlc(oh_lc),
  HighFreq::calc_var_ohlc(oh_lc, lag_close=lag_close))
# Compare with HighFreq::calc_var_ohlc_r()
all.equal(HighFreq::calc_var_ohlc(oh_lc, in_dex=in_dex),
  HighFreq::calc_var_ohlc_r(oh_lc))
\# Compare the speed of Rcpp with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::calc_var_ohlc(oh_lc),
  Rcode=HighFreq::calc_var_ohlc_r(oh_lc),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

calc_var_ohlc_ag

Calculate the variance of aggregated OHLC prices using different price range estimators.

Description

Calculate the variance of aggregated *OHLC* prices using different price range estimators.

Usage

```
calc_var_ohlc_ag(
  ohlc,
  step = 1L,
  method = "yang_zhang",
  lag_close = 0L,
  scale = TRUE,
  in_dex = 0L
)
```

Arguments

ohlc A time series or a matrix of OHLC prices.

step The number of periods in each interval between neighboring end points.

calc_var_ohlc_ag 31

method A *character* string representing the price range estimator for calculating the variance. The estimators include:

• "close" close-to-close estimator,

• "rogers_satchell" Rogers-Satchell estimator,

• "garman_klass" Garman-Klass estimator,

• "garman_klass_yz" Garman-Klass with account for close-to-open price jumps,

• "yang_zhang" Yang-Zhang estimator,

(The default is the method = "yang_zhang".)

lag_close A vector with the lagged close prices of the OHLC time series. This is an op-

tional argument. (The default is $lag_close = 0$).

scale Boolean argument: Should the returns be divided by the time index, the number

of seconds in each period? (The default is scale = TRUE).

in_dex A vector with the time index of the time series. This is an optional argument

(the default is $in_dex = 0$).

Details

The function calc_var_ohlc_ag() calculates the variance of *OHLC* prices aggregated over end points.

It first calculates the end points spaced apart by the number of periods equal to the argument step. Then it aggregates the *OHLC* prices to the end points. Finally it calculates the variance of the aggregated *OHLC* prices.

If there are extra periods that don't fit over the length of ohlc, then calc_var_ohlc_ag() loops over all possible stub intervals, it calculates all the corresponding variance values, and it averages them.

For example, if the number of rows of ohlc is equal to 20, and step=3 then 6 end points fit over the length of ohlc, and there are 2 extra periods that must fit into stubs, either at the beginning or at the end (or both).

The aggregated volatility σ_t scales (increases) with the length of the aggregation interval Δt raised to the power of the *Hurst exponent H*:

$$\sigma_t = \sigma \Delta t^H$$

Where σ is the daily return volatility.

The function calc_var_ohlc_ag() can therefore be used to calculate the *Hurst exponent* from the volatility ratio.

Value

The variance of aggregated *OHLC* prices.

```
## Not run:
# Calculate the log ohlc prices
oh_lc <- log(rutils::etf_env$VTI)
# Calculate the daily variance of percentage returns
calc_var_ohlc_ag(oh_lc, step=1)
# Calculate the variance of returns aggregated over 21 days
calc_var_ohlc_ag(oh_lc, step=21)
# The variance over 21 days is approximately 21 times the daily variance
21*calc_var_ohlc_ag(oh_lc, step=1)</pre>
```

32 calc_var_ohlc_r

End(Not run)

calc_var_ohlc_r

Calculate the variance of an OHLC time series, using different range estimators for variance.

Description

Calculate the variance of an *OHLC* time series, using different range estimators for variance.

Usage

```
calc_var_ohlc_r(oh_lc, method = "yang_zhang", scal_e = TRUE)
```

Arguments

oh_lc

An OHLC time series of prices in xts format.

method

A *character* string representing the method for estimating variance. The methods include:

- "close" close to close,
- "garman_klass" Garman-Klass,
- "garman_klass_yz" Garman-Klass with account for close-to-open price jumps,
- "rogers satchell" Rogers-Satchell,
- "yang_zhang" Yang-Zhang,

(default is "yang_zhang")

scal_e

Boolean argument: should the returns be divided by the number of seconds in each period? (default is TRUE)

Details

The function calc_var_ohlc_r() calculates the variance from all the different intra-day and day-over-day returns (defined as the differences of *OHLC* prices), using several different variance estimation methods.

The default method is "yang_zhang", which theoretically has the lowest standard error among unbiased estimators. The methods "close", "garman_klass_yz", and "yang_zhang" do account for close-to-open price jumps, while the methods "garman_klass" and "rogers_satchell" do not account for close-to-open price jumps.

If scal_e is TRUE (the default), then the returns are divided by the differences of the time index (which scales the variance to the units of variance per second squared.) This is useful when calculating the variance from minutely bar data, because dividing returns by the number of seconds decreases the effect of overnight price jumps. If the time index is in days, then the variance is equal to the variance per day squared.

The function calc_var_ohlc_r() is implemented in R code.

Value

A single *numeric* value equal to the variance.

calc_var_vec 33

Examples

```
# Calculate the variance of SPY returns
HighFreq::calc_var_ohlc_r(HighFreq::SPY, method="yang_zhang")
# Calculate variance without accounting for overnight jumps
HighFreq::calc_var_ohlc_r(HighFreq::SPY, method="rogers_satchell")
# Calculate the variance without scaling the returns
HighFreq::calc_var_ohlc_r(HighFreq::SPY, scal_e=FALSE)
```

calc_var_vec

Calculate the variance of a a single-column time series or a vector using RcppArmadillo.

Description

Calculate the variance of a a single-column time series or a vector using RcppArmadillo.

Usage

```
calc_var_vec(tseries)
```

Arguments

tseries

A single-column time series or a vector.

Details

The function calc_var_vec() calculates the variance of a *vector* using RcppArmadillo C++ code, so it's significantly faster than the R function var().

Value

A numeric value equal to the variance of the vector.

```
## Not run:
# Create a vector of random returns
re_turns <- rnorm(1e6)
# Compare calc_var_vec() with standard var()
all.equal(HighFreq::calc_var_vec(re_turns),
    var(re_turns))
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
    Rcpp=HighFreq::calc_var_vec(re_turns),
    Rcode=var(re_turns),
    times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)</pre>
```

34 calc_weights

	rulate the optimal portfolio weights for different types of objective tions.
--	--

Description

Calculate the optimal portfolio weights for different types of objective functions.

Usage

```
calc_weights(
  returns,
  method = "rank_sharpe",
  eigen_thresh = 0.001,
  eigen_max = 0L,
  conf_lev = 0.1,
  alpha = 0,
  scale = TRUE,
  vol_target = 0.01
)
```

Arguments

returns	A <i>time series</i> or a <i>matrix</i> of returns data (the returns in excess of the risk-free rate).
method	A <i>string</i> specifying the method for calculating the weights (see Details) (the default is method = "rank_sharpe")
eigen_thresh	A <i>numeric</i> threshold level for discarding small singular values in order to regularize the inverse of the returns matrix (the default is 0.001).
eigen_max	An <i>integer</i> equal to the number of singular values used for calculating the shrinkage inverse of the returns matrix (the default is \emptyset - equivalent to eigen_max equal to the number of columns of returns).
conf_lev	The confidence level for calculating the quantiles (the default is $conf_lev = 0.75$).
alpha	The shrinkage intensity between \emptyset and 1. (the default is \emptyset).
scale	A <i>Boolean</i> specifying whether the weights should be scaled (the default is scale = TRUE).
vol_target	A numeric volatility target for scaling the weights (the default is 0.001)

Details

The function calc_weights() calculates the optimal portfolio weights for different types of methods, using RcppArmadillo C++ code.

If method = "rank_sharpe" (the default) then it calculates the weights as the ranks (order index) of the trailing Sharpe ratios of the asset returns.

If method = "rank" then it calculates the weights as the ranks (order index) of the last row of the returns.

diff_it 35

If method = "max_sharpe" then calc_weights() calculates the weights of the maximum Sharpe portfolio, by multiplying the inverse of the covariance *matrix* times the mean column returns.

If method = "min_var" then it calculates the weights of the minimum variance portfolio under linear constraints.

If method = "min_varpca" then it calculates the weights of the minimum variance portfolio under quadratic constraints (which is the highest order principal component).

If scale = TRUE (the default) then the weights are scaled so that the resulting portfolio has a volatility equal to vol_target.

calc_weights() calculates the shrinkage inverse of the covariance *matrix* of returns from its eigen decomposition. It applies dimension regularization by selecting only the largest eigenvalues equal in number to eigen_max.

In addition, calc_weights() applies shrinkage to the columns of returns, by shrinking their means to their common mean value. The shrinkage intensity alpha determines the amount of shrinkage that is applied, with alpha = 0 representing no shrinkage (with the column means of returns unchanged), and alpha = 1 representing complete shrinkage (with the column means of returns all equal to the single mean of all the columns).

Value

A column *vector* of the same length as the number of columns of returns.

```
## Not run:
# Calculate covariance matrix of ETF returns
re_turns <- na.omit(rutils::etf_env$re_turns[, 1:16])</pre>
ei_gen <- eigen(cov(re_turns))</pre>
# Calculate shrinkage inverse of covariance matrix
eigen_max <- 3
eigen_vec <- ei_gen$vectors[, 1:eigen_max]</pre>
eigen_val <- ei_gen$values[1:eigen_max]</pre>
in_verse <- eigen_vec %*% (t(eigen_vec) / eigen_val)</pre>
# Define shrinkage intensity and apply shrinkage to the mean returns
al_pha <- 0.5
col_means <- colMeans(re_turns)</pre>
col_means <- ((1-al_pha)*col_means + al_pha*mean(col_means))</pre>
# Calculate weights using R
weight_s <- in_verse %*% col_means</pre>
n_col <- NCOL(re_turns)</pre>
weights_r <- weights_r*sd(re_turns %*% rep(1/n_col, n_col))/sd(re_turns %*% weights_r)</pre>
# Calculate weights using RcppArmadillo
weight_s <- drop(HighFreq::calc_weights(re_turns, eigen_max, alpha=al_pha))</pre>
all.equal(weight_s, weights_r)
## End(Not run)
```

36 diff_it

Description

Calculate the row differences of a a time series or a matrix using RcppArmadillo.

Usage

```
diff_it(tseries, lagg = 1L, pad_zeros = TRUE)
```

Arguments

tseries A time series or a matrix.

lagg An *integer* equal to the number of rows (time periods) to lag when calculating

the differences (the default is lagg = 1).

pad_zeros Boolean argument: Should the output matrix be padded (extended) with zeros,

in order to return a matrix with the same number of rows as the input? (the

default is pad_zeros = TRUE)

Details

The function diff_it() calculates the differences between the rows of the input *matrix* tseries and its lagged version.

The argument lagg specifies the number of lags applied to the rows of the lagged version of tseries. For positive lagg values, the lagged version of tseries has its rows shifted *forward* (down) by the number equal to lagg rows. For negative lagg values, the lagged version of tseries has its rows shifted *backward* (up) by the number equal to -lagg rows. For example, if lagg=3 then the lagged version will have its rows shifted down by 3 rows, and the differences will be taken between each row minus the row three time periods before it (in the past). The default is lagg = 1.

The argument pad_zeros specifies whether the output *matrix* should be padded (extended) with the rows of the initial (warmup) period at the front, in order to return a *matrix* with the same number of rows as the input tseries. The default is pad_zeros = TRUE. The padding operation can be time-consuming, because it requires the copying of data.

The function diff_it() is implemented in RcppArmadillo C++ code, which makes it much faster than R code.

Value

A *matrix* containing the differences between the rows of the input *matrix* tseries.

```
## Not run:
# Create a matrix of random data
da_ta <- matrix(sample(15), nc=3)
# Calculate differences with lagged rows
HighFreq::diff_it(da_ta, lagg=2)
# Calculate differences with advanced rows
HighFreq::diff_it(da_ta, lagg=-2)
# Compare HighFreq::diff_it() with rutils::diff_it()
all.equal(HighFreq::diff_it(da_ta, lagg=2),
    rutils::diff_it(da_ta, lagg=2),
    check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark()</pre>
```

diff_vec 37

```
Rcpp=HighFreq::diff_it(da_ta, lagg=2),
Rcode=rutils::diff_it(da_ta, lagg=2),
times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

diff_vec

Calculate the differences between the neighboring elements of a single-column time series or a vector.

Description

Calculate the differences between the neighboring elements of a single-column *time series* or a *vector*.

Usage

```
diff_vec(tseries, lagg = 1L, pad_zeros = TRUE)
```

Arguments

tseries A single-column *time series* or a *vector*.

lagg An *integer* equal to the number of time periods to lag when calculating the dif-

ferences (the default is lagg = 1).

pad_zeros Boolean argument: Should the output vector be padded (extended) with ze-

ros, in order to return a vector of the same length as the input? (the default is

pad_zeros = TRUE)

Details

The function diff_vec() calculates the differences between the input *time series* or *vector* and its lagged version.

The argument lagg specifies the number of lags. For example, if lagg=3 then the differences will be taken between each element minus the element three time periods before it (in the past). The default is lagg = 1.

The argument pad_zeros specifies whether the output *vector* should be padded (extended) with zeros at the front, in order to return a *vector* of the same length as the input. The default is pad_zeros = TRUE. The padding operation can be time-consuming, because it requires the copying of data.

The function diff_vec() is implemented in RcppArmadillo C++ code, which makes it several times faster than R code.

Value

A column *vector* containing the differences between the elements of the input vector.

38 hf_data

Examples

```
## Not run:
# Create a vector of random returns
re_turns <- rnorm(1e6)
# Compare diff_vec() with rutils::diff_it()
all.equal(drop(HighFreq::diff_vec(re_turns, lagg=3, pad=TRUE)),
    rutils::diff_it(re_turns, lagg=3))
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
    Rcpp=HighFreq::diff_vec(re_turns, lagg=3, pad=TRUE),
    Rcode=rutils::diff_it(re_turns, lagg=3),
    times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)</pre>
```

hf_data

High frequency data sets

Description

hf_data.RData is a file containing the datasets:

SPY an xts time series containing 1-minute OHLC bar data for the SPY etf, from 2008-01-02 to 2014-05-19. SPY contains 625,425 rows of data, each row contains a single minute bar.

TLT an xts time series containing 1-minute OHLC bar data for the TLT etf, up to 2014-05-19.

VXX an xts time series containing 1-minute OHLC bar data for the VXX etf, up to 2014-05-19.

Usage

```
data(hf_data) # not required - data is lazy load
```

Format

Each xts time series contains OHLC data, with each row containing a single minute bar:

Open Open price in the bar

High High price in the bar

Low Low price in the bar

Close Close price in the bar

Volume trading volume in the bar

Source

```
https://wrds-web.wharton.upenn.edu/wrds/
```

References

Wharton Research Data Service (WRDS)

lag_it 39

Examples

```
# data(hf_data) # not required - data is lazy load
head(SPY)
chart_Series(x=SPY["2009"])
```

lag_it

Apply a lag to the rows of a time series or a matrix using RcppArmadillo.

Description

Apply a lag to the rows of a *time series* or a *matrix* using RcppArmadillo.

Usage

```
lag_it(tseries, lagg = 1L, pad_zeros = TRUE)
```

Arguments

tseries A time series or a matrix.

lagg An *integer* equal to the number of periods to lag (the default is lagg = 1).

pad_zeros Boolean argument: Should the output be padded with zeros? (The default is

pad_zeros = TRUE.)

Details

The function lag_it() applies a lag to the input *matrix* by shifting its rows by the number equal to the argument lagg. For positive lagg values, the rows are shifted *forward* (down), and for negative lagg values they are shifted *backward* (up).

The output *matrix* is padded with either zeros (the default), or with rows of data from tseries, so that it has the same dimensions as tseries. If the lagg is positive, then the first row is copied and added upfront. If the lagg is negative, then the last row is copied and added to the end.

As a rule, if tseries contains returns data, then the output *matrix* should be padded with zeros, to avoid data snooping. If tseries contains prices, then the output *matrix* should be padded with the prices.

Value

A *matrix* with the same dimensions as the input argument tseries.

```
## Not run:
# Create a matrix of random returns
re_turns <- matrix(rnorm(5e6), nc=5)
# Compare lag_it() with rutils::lag_it()
all.equal(HighFreq::lag_it(re_turns), rutils::lag_it(re_turns))
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
    Rcpp=HighFreq::lag_it(re_turns),</pre>
```

40 lag_vec

```
Rcode=rutils::lag_it(re_turns),
times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

lag_vec

Apply a lag to a single-column time series or a vector using RcppArmadillo.

Description

Apply a lag to a single-column time series or a vector using RcppArmadillo.

Usage

```
lag_vec(tseries, lagg = 1L, pad_zeros = TRUE)
```

Arguments

tseries A single-column *time series* or a *vector*.

lagg An *integer* equal to the number of periods to lag. (The default is lagg = 1.)

pad_zeros Boolean argument: Should the output be padded with zeros? (The default is

pad_zeros = TRUE.)

Details

The function lag_vec() applies a lag to the input *time series* tseries by shifting its elements by the number equal to the argument lagg. For positive lagg values, the elements are shifted forward in time (down), and for negative lagg values they are shifted backward (up).

The output *vector* is padded with either zeros (the default), or with data from tseries, so that it has the same number of element as tseries. If the lagg is positive, then the first element is copied and added upfront. If the lagg is negative, then the last element is copied and added to the end.

As a rule, if tseries contains returns data, then the output *matrix* should be padded with zeros, to avoid data snooping. If tseries contains prices, then the output *matrix* should be padded with the prices.

Value

A column vector with the same number of elements as the input time series.

```
## Not run:
# Create a vector of random returns
re_turns <- rnorm(1e6)
# Compare lag_vec() with rutils::lag_it()
all.equal(drop(HighFreq::lag_vec(re_turns)),
   rutils::lag_it(re_turns))
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark()</pre>
```

lik_garch 41

```
Rcpp=HighFreq::lag_vec(re_turns),
Rcode=rutils::lag_it(re_turns),
times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

lik_garch

Calculate the log-likelihood of a time series of returns assuming a GARCH(1,1) process.

Description

Calculate the log-likelihood of a time series of returns assuming a *GARCH*(1,1) process.

Usage

lik_garch(omega, alpha, beta, returns, minval = 1e-06)

Arguments

omega Parameter proportional to the long-term average level of variance.

alpha The weight associated with recent realized variance updates.

beta The weight associated with the past variance estimates.

returns A single-column *matrix* of returns.

minval The floor value applied to the variance, to avoid zero values. (The default is

minval = 0.000001.)

Details

The function $lik_garch()$ calculates the log-likelihood of a time series of returns assuming a GARCH(1,1) process.

It first estimates the rolling variance of the returns argument using function sim_garch():

$$\sigma_i^2 = \omega + \alpha r_i^2 + \beta \sigma_{i-1}^2$$

Where r_i is the time series of returns, and σ_i^2 is the estimated rolling variance. And ω , α , and β are the *GARCH* parameters. It applies the floor value minval to the variance, to avoid zero values. So the minimum value of the variance is equal to minval.

The function lik_garch() calculates the log-likelihood assuming a normal distribution of returns conditional on the variance σ_{i-1}^2 in the previous period, as follows:

$$likelihood = -\sum_{i=1}^{n} \left(\frac{r_i^2}{\sigma_{i-1}^2} + \log(\sigma_{i-1}^2)\right)$$

Value

The log-likelihood value.

42 mult_vec_mat

Examples

```
## Not run:
# Define the GARCH model parameters
al_pha <- 0.79
be_ta <- 0.2
om_ega <- 1e-4*(1-al_pha-be_ta)
# Calculate historical VTI returns
re_turns <- na.omit(rutils::etf_env$re_turns$VTI)
# Calculate the log-likelihood of VTI returns assuming GARCH(1,1)
HighFreq::lik_garch(omega=om_ega, alpha=al_pha, beta=be_ta, returns=re_turns)
## End(Not run)</pre>
```

mult_vec_mat

Multiply in place (without copying) the columns or rows of a matrix times a vector, element-wise.

Description

Multiply in place (without copying) the columns or rows of a matrix times a vector, element-wise.

Usage

```
mult_vec_mat(vector, matrix, by_col = TRUE)
```

Arguments

vector A vector.
matrix A matrix.

by_col A Boolean argument: if TRUE then multiply the columns, otherwise multiply the

rows (the default is by_col = TRUE.)

Details

The function mult_vec_mat() multiplies the columns or rows of a *matrix* times a *vector*, elementwise.

If the number of *vector* elements is equal to the number of matrix columns, then it multiplies the columns by the *vector*, and returns the number of columns. If the number of *vector* elements is equal to the number of rows, then it multiplies the rows, and returns the number of rows.

If the *matrix* is square and if by_col is TRUE then it multiplies the columns, otherwise it multiplies the rows.

It accepts *pointers* to the *matrix* and *vector*, and replaces the old *matrix* values with the new values. It performs the calculation in place, without copying the *matrix* in memory (which greatly increases the computation speed). It performs an implicit loop over the *matrix* rows and columns using the *Armadillo* operators each_row() and each_col(), instead of performing explicit for() loops (both methods are equally fast).

The function mult_vec_mat() uses RcppArmadillo C++ code, so when multiplying large *matrix* columns it's several times faster than vectorized R code, and it's even much faster compared to R when multiplying the *matrix* rows.

random_ohlc 43

Value

A single *integer* value, equal to either the number of *matrix* columns or the number of rows.

Examples

```
## Not run:
# Multiply matrix columns using R
mat_rix <- matrix(round(runif(25e4), 2), nc=5e2)</pre>
vec_tor <- round(runif(5e2), 2)</pre>
prod_uct <- vec_tor*mat_rix</pre>
# Multiply the matrix in place
HighFreq::mult_vec_mat(vec_tor, mat_rix)
all.equal(prod_uct, mat_rix)
# Compare the speed of Rcpp with R code
library(microbenchmark)
summary(microbenchmark(
    Rcpp=HighFreq::mult_vec_mat(vec_tor, mat_rix),
    Rcode=vec_tor*mat_rix,
    times=10))[, c(1, 4, 5)] # end microbenchmark summary
# Multiply matrix rows using R
mat_rix <- matrix(round(runif(25e4), 2), nc=5e2)</pre>
vec_tor <- round(runif(5e2), 2)</pre>
prod_uct <- t(vec_tor*t(mat_rix))</pre>
# Multiply the matrix in place
HighFreq::mult_vec_mat(vec_tor, mat_rix, by_col=FALSE)
all.equal(prod_uct, mat_rix)
# Compare the speed of Rcpp with R code
library(microbenchmark)
summary(microbenchmark(
    Rcpp=HighFreq::mult_vec_mat(vec_tor, mat_rix, by_col=FALSE),
    Rcode=t(vec_tor*t(mat_rix)),
    times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

random_ohlc

Calculate a random OHLC time series of prices and trading volumes, in xts format.

Description

Calculate a random *OHLC* time series either by simulating random prices following geometric Brownian motion, or by randomly sampling from an input time series.

Usage

```
random_ohlc(
  oh_lc = NULL,
  re_duce = TRUE,
  vol_at = 6.5e-05,
  dri_ft = 0,
```

44 random_taq

```
in_dex = seq(from = as.POSIXct(paste(Sys.Date() - 3, "09:30:00")), to =
    as.POSIXct(paste(Sys.Date() - 1, "16:00:00")), by = "1 sec"),
    ...
)
```

Arguments

oh_lc	An <i>OHLC</i> time series of prices and trading volumes, in <i>xts</i> format (default is <i>NULL</i>).
vol_at	The volatility per period of the in_dex time index (default is 6.5e-05 per second, or about 0.01=1.0% per day).
dri_ft	The drift per period of the in_dex time index (default is 0.0).
in_dex	The time index for the <i>OHLC</i> time series.
re_duce	<i>Boolean</i> argument: should oh_lc time series be transformed to reduced form? (default is TRUE)

Details

If the input oh_lc time series is *NULL* (the default), then the function random_ohlc() simulates a minutely *OHLC* time series of random prices following geometric Brownian motion, over the two previous calendar days.

If the input oh_lc time series is not *NULL*, then the rows of oh_lc are randomly sampled, to produce a random time series.

If re_duce is TRUE (the default), then the oh_lc time series is first transformed to reduced form, then randomly sampled, and finally converted to standard form.

Note: randomly sampling from an intraday time series over multiple days will cause the overnight price jumps to be re-arranged into intraday price jumps. This will cause moment estimates to become inflated compared to the original time series.

Value

An xts time series with the same dimensions and the same time index as the input oh_1c time series.

Examples

```
# Create minutely synthetic OHLC time series of random prices
oh_lc <- HighFreq::random_ohlc()
# Create random time series from SPY by randomly sampling it
oh_lc <- HighFreq::random_ohlc(oh_lc=HighFreq::SPY["2012-02-13/2012-02-15"])</pre>
```

random_taq	Calculate a random TAQ time series of prices and trading volumes, in
	xts format.

Description

Calculate a *TAQ* time series of random prices following geometric Brownian motion, combined with random trading volumes.

remove_jumps 45

Usage

```
random_taq(
  vol_at = 6.5e-05,
  dri_ft = 0,
  in_dex = seq(from = as.POSIXct(paste(Sys.Date() - 3, "09:30:00")), to =
    as.POSIXct(paste(Sys.Date() - 1, "16:00:00")), by = "1 sec"),
  bid_offer = 0.001,
    ...
)
```

Arguments

bid_offer	The bid-offer spread expressed as a fraction of the prices (default is 0.001=10bps).
vol_at	The volatility per period of the in_dex time index (default is $6.5e-05$ per second, or about $0.01=1.0\%$ per day).
dri_ft	The drift per period of the in_dex time index (default is 0.0).
in_dex	The time index for the <i>TAQ</i> time series.

Details

The function random_taq() calculates an xts time series with four columns containing random prices following geometric Brownian motion: the bid, ask, and trade prices, combined with random trade volume data. If in_dex isn't supplied as an argument, then by default it's equal to the secondly index over the two previous calendar days.

Value

An *xts* time series, with time index equal to the input in_dex time index, and with four columns containing the bid, ask, and trade prices, and the trade volume.

Examples

```
# Create secondly TAQ time series of random prices
ta_q <- HighFreq::random_taq()
# Create random TAQ time series from SPY index
ta_q <- HighFreq::random_taq(in_dex=index(HighFreq::SPY["2012-02-13/2012-02-15"]))</pre>
```

remove_jumps

Remove overnight close-to-open price jumps from an OHLC time series, by adding adjustment terms to its prices.

Description

Remove overnight close-to-open price jumps from an *OHLC* time series, by adding adjustment terms to its prices.

Usage

```
remove_jumps(oh_lc)
```

46 roll_apply

Arguments

oh_lc

An OHLC time series of prices and trading volumes, in xts format.

Details

The function remove_jumps() removes the overnight close-to-open price jumps from an *OHLC* time series, by adjusting its prices so that the first *Open* price of the day is equal to the last *Close* price of the previous day.

The function remove_jumps() adds adjustment terms to all the *OHLC* prices, so that intra-day returns and volatilities are not affected.

The function remove_jumps() identifies overnight periods as those that are greater than 60 seconds. This assumes that intra-day periods between neighboring rows of data are 60 seconds or less.

The time index of the oh_lc time series is assumed to be in *POSIXct* format, so that its internal value is equal to the number of seconds that have elapsed since the *epoch*.

Value

An *OHLC* time series with the same dimensions and the same time index as the input oh_lc time series.

Examples

```
# Remove overnight close-to-open price jumps from SPY data
oh_lc <- remove_jumps(HighFreq::SPY)</pre>
```

roll_apply

Apply an aggregation function over a rolling look-back interval and the end points of an OHLC time series, using R code.

Description

Apply an aggregation function over a rolling look-back interval and the end points of an *OHLC* time series, using R code.

Usage

```
roll_apply(
  x_ts,
  agg_fun,
  look_back = 2,
  end_points = seq_along(x_ts),
  by_columns = FALSE,
  out_xts = TRUE,
  ...
)
```

roll_apply 47

Arguments

• • •	additional parameters to the function agg_fun.
x_ts	An OHLC time series of prices and trading volumes, in xts format.
agg_fun	The name of the aggregation function to be applied over a rolling look-back interval.
look_back	The number of end points in the look-back interval used for applying the aggregation function (including the current row).
by_columns	<i>Boolean</i> argument: should the function agg_fun() be applied column-wise (individually), or should it be applied to all the columns combined? (default is FALSE)
out_xts	Boolean argument: should the output be coerced into an xts series? (default is TRUE)
end_points	An integer vector of end points.

Details

The function roll_apply() applies an aggregation function over a rolling look-back interval attached at the end points of an *OHLC* time series.

The function roll_apply() is implemented in R code.

HighFreq::roll_apply() performs similar operations to the functions rollapply() and period.apply() from package xts, and also the function apply.rolling() from package PerformanceAnalytics. (The function rollapply() isn't exported from the package xts.)

But HighFreq::roll_apply() is faster because it performs less type-checking and skips other overhead. Unlike the other functions, roll_apply() doesn't produce any leading *NA* values.

The function roll_apply() can be called in two different ways, depending on the argument end_points. If the argument end_points isn't explicitly passed to roll_apply(), then the default value is used, and roll_apply() performs aggregations over overlapping intervals at each point in time.

If the argument end_points is explicitly passed to roll_apply(), then roll_apply() performs aggregations over intervals attached at the end_points. If look_back=2 then the aggregations are performed over non-overlapping intervals, otherwise they are performed over overlapping intervals.

If the argument out_xts is TRUE (the default) then the output is coerced into an *xts* series, with the number of rows equal to the length of argument end_points. Otherwise a list is returned, with the length equal to the length of argument end_points.

If out_xts is TRUE and the aggregation function agg_fun() returns a single value, then roll_apply() returns an xts time series with a single column. If out_xts is TRUE and if agg_fun() returns a vector of values, then roll_apply() returns an xts time series with multiple columns, equal to the length of the vector returned by the aggregation function agg_fun().

Value

Either an *xts* time series with the number of rows equal to the length of argument end_points, or a list the length of argument end_points.

```
# extract a single day of SPY data
oh_lc <- HighFreq::SPY["2012-02-13"]
inter_val <- 11  # number of data points between end points
look_back <- 4  # number of end points in look-back interval</pre>
```

48 roll_backtest

roll_backtest

Perform a backtest simulation of a trading strategy (model) over a vector of end points along a time series of prices.

Description

Perform a backtest simulation of a trading strategy (model) over a vector of end points along a time series of prices.

Usage

```
roll_backtest(
   x_ts,
   train_func,
   trade_func,
   look_back = look_forward,
   look_forward,
   end_points = rutils::calc_endpoints(x_ts, look_forward),
   ...
)
```

Arguments

	additional parameters to the functions train_func() and trade_func().
x_ts	A time series of prices, asset returns, trading volumes, and other data, in <i>xts</i> format.
train_func	The name of the function for training (calibrating) a forecasting model, to be applied over a rolling look-back interval.
trade_func	The name of the trading model function, to be applied over a rolling look-forward interval.
look_back	The size of the look-back interval, equal to the number of rows of data used for training the forecasting model.
look_forward	The size of the look-forward interval, equal to the number of rows of data used for trading the strategy.
end_points	A vector of end points along the rows of the x_ts time series, given as either integers or dates.

roll_conv 49

Details

The function roll_backtest() performs a rolling backtest simulation of a trading strategy over a vector of end points. At each end point, it trains (calibrates) a forecasting model using past data taken from the x_ts time series over the look-back interval, and applies the forecasts to the trade_func() trading model, using out-of-sample future data from the look-forward interval.

The function trade_func() should simulate the trading model, and it should return a named list with at least two elements: a named vector of performance statistics, and an xts time series of out-of-sample returns. The list returned by trade_func() can also have additional elements, like the in-sample calibrated model statistics, etc.

The function roll_backtest() returns a named list containing the lists returned by function trade_func(). The list names are equal to the *end_points* dates. The number of list elements is equal to the number of *end_points* minus two (because the first and last end points can't be included in the backtest).

Value

An xts time series with the number of rows equal to the number of end points minus two.

Examples

```
## Not run:
# Combine two time series of prices
price_s <- cbind(rutils::etf_env$XLU, rutils::etf_env$XLP)</pre>
look_back <- 252
look_forward <- 22</pre>
# Define end points
end_points <- rutils::calc_endpoints(price_s, look_forward)</pre>
# Perform back-test
back_test <- roll_backtest(end_points=end_points,</pre>
    look_forward=look_forward,
    look_back=look_back,
    train_func = train_model,
    trade_func = trade_model,
    model_params = model_params,
    trading_params = trading_params,
    x_ts=price_s)
## End(Not run)
```

roll_conv

Calculate the rolling convolutions (weighted sums) of a time series with a column vector of weights.

Description

Calculate the rolling convolutions (weighted sums) of a time series with a column vector of weights.

Usage

```
roll_conv(tseries, weights)
```

50 roll_count

Arguments

tseries A *time series* or a *matrix* of data. weights A *column vector* of weights.

Details

The function roll_conv() calculates the convolutions of the *matrix* columns with a *column vector* of weights. It performs a loop over the *matrix* rows and multiplies the past (higher) values by the weights. It calculates the rolling weighted sums of the past values.

The function roll_conv() uses the RcppArmadillo function arma::conv2(). It performs a similar calculation to the standard R function

filter(x=tseries, filter=weight_s, method="convolution", sides=1), but it's over 6 times faster, and it doesn't produce any leading NA values.

Value

A *matrix* with the same dimensions as the input argument tseries.

Examples

```
## Not run:
# First example
# Calculate a time series of returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("IEF", "VTI")])</pre>
# Create simple weights equal to a 1 value plus zeros
weight_s <- matrix(c(1, rep(0, 10)), nc=1)
# Calculate rolling weighted sums
weight_ed <- HighFreq::roll_conv(re_turns, weight_s)</pre>
# Compare with original
all.equal(coredata(re_turns), weight_ed, check.attributes=FALSE)
# Second example
# Calculate exponentially decaying weights
weight_s <- \exp(-0.2*(1:11))
weight_s <- matrix(weight_s/sum(weight_s), nc=1)</pre>
# Calculate rolling weighted sums
weight_ed <- HighFreq::roll_conv(re_turns, weight_s)</pre>
# Calculate rolling weighted sums using filter()
filter_ed <- filter(x=re_turns, filter=weight_s, method="convolution", sides=1)</pre>
# Compare both methods
all.equal(filter_ed[-(1:11), ], weight_ed[-(1:11), ], check.attributes=FALSE)
## End(Not run)
```

roll_count

Count the number of consecutive TRUE elements in a Boolean vector, and reset the count to zero after every FALSE element.

Description

Count the number of consecutive TRUE elements in a Boolean vector, and reset the count to zero after every FALSE element.

roll_fun 51

Usage

```
roll_count(tseries)
```

Arguments

tseries

A Boolean vector of data.

Details

The function roll_count() calculates the number of consecutive TRUE elements in a Boolean vector, and it resets the count to zero after every FALSE element.

For example, the Boolean vector FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, T

Value

An *integer vector* of the same length as the argument tseries.

Examples

```
## Not run:
# Calculate the number of consecutive TRUE elements
drop(HighFreq::roll_count(c(FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TR
```

roll_fun

Calculate a matrix of estimator values over a rolling look-back interval attached at the end points of a time series or a matrix.

Description

Calculate a *matrix* of estimator values over a rolling look-back interval attached at the end points of a *time series* or a *matrix*.

Usage

```
roll_fun(
   tseries,
   fun = "calc_var",
   startp = 0L,
   endp = 0L,
   step = 1L,
   look_back = 1L,
   stub = 0L,
   method = "moment",
   conf_lev = 0.75
)
```

52 roll_fun

Arguments

tseries	A time series or a matrix of data.
fun	A <i>string</i> specifying the estimator function (the default is fun = "calc_var".)
startp	An <i>integer</i> vector of start points (the default is $startp = 0$).
endp	An <i>integer</i> vector of end points (the default is endp = \emptyset).
step	The number of time periods between the end points (the default is step = 1).
look_back	The number of end points in the look-back interval (the default is look_back = 1).
stub	An <i>integer</i> value equal to the first end point for calculating the end points (the default is $stub = 0$).
method	A <i>string</i> specifying the type of the model for the estimator (the default is method = "moment".)
conf_lev	The confidence level for calculating the quantiles (the default is $conf_{lev} = 0.75$).

Details

The function roll_fun() calculates a *matrix* of estimator values, over rolling look-back intervals attached at the end points of the *time series* tseries.

The function roll_fun() performs a loop over the end points, and at each end point it subsets the time series tseries over a look-back interval equal to look_back number of end points.

It passes the subset time series to the function specified by the argument fun, which calculates the statistic. See the functions $calc_*()$ for a description of the different estimators.

If the arguments endp and startp are not given then it first calculates a vector of end points separated by step time periods. It calculates the end points along the rows of tseries using the function calc_endpoints(), with the number of time periods between the end points equal to step time periods.

For example, the rolling variance at 25 day end points, with a 75 day look-back, can be calculated using the parameters step = 25 and look_back = 3.

The function roll_fun() is implemented in RcppArmadillo C++ code, so it's many times faster than the equivalent R code.

Value

A *matrix* with the same number of columns as the input time series tseries, and the number of rows equal to the number of end points.

```
## Not run:
# Define time series of returns using package rutils
re_turns <- na.omit(rutils::etf_env$re_turns$VTI)
# Calculate the rolling variance at 25 day end points, with a 75 day look-back
var_rollfun <- HighFreq::roll_fun(re_turns, fun="calc_var", step=25, look_back=3)
# Calculate the rolling variance using roll_var()
var_roll <- HighFreq::roll_var(re_turns, step=25, look_back=3)
# Compare the two methods
all.equal(var_rollfun, var_roll, check.attributes=FALSE)
# Define end points and start points</pre>
```

roll_hurst 53

```
end_p <- HighFreq::calc_endpoints(NROW(re_turns), step=25)</pre>
start_p <- HighFreq::calc_startpoints(end_p, look_back=3)</pre>
# Calculate the rolling variance using RcppArmadillo
var_rollfun <- HighFreq::roll_fun(re_turns, fun="calc_var", startp=start_p, endp=end_p)</pre>
# Calculate the rolling variance using R code
var_roll <- sapply(1:NROW(end_p), function(it) {</pre>
  var(re_turns[start_p[it]:end_p[it]+1, ])
}) # end sapply
# Compare the two methods
all.equal(drop(var_rollfun), var_roll, check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::roll_fun(re_turns, fun="calc_var", startp=start_p, endp=end_p),
  Rcode=sapply(1:NROW(end_p), function(it) {
    var(re_turns[start_p[it]:end_p[it]+1, ])
  }),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

roll_hurst

Calculate a time series of Hurst exponents over a rolling look-back interval.

Description

Calculate a time series of *Hurst* exponents over a rolling look-back interval.

Usage

```
roll_hurst(oh_lc, look_back = 11)
```

Arguments

oh_lc An *OHLC* time series of prices in *xts* format.

look_back The size of the look-back interval, equal to the number of rows of data used for

aggregating the OHLC prices.

Details

The function roll_hurst() calculates a time series of *Hurst* exponents from *OHLC* prices, over a rolling look-back interval.

The *Hurst* exponent is defined as the logarithm of the ratio of the price range, divided by the standard deviation of returns, and divided by the logarithm of the interval length.

The function roll_hurst() doesn't use the same definition as the rescaled range definition of the *Hurst* exponent. First, because the price range is calculated using *High* and *Low* prices, which produces bigger range values, and higher *Hurst* exponent estimates. Second, because the *Hurst* exponent is estimated using a single aggregation interval, instead of multiple intervals in the rescaled range definition.

The rationale for using a different definition of the *Hurst* exponent is that it's designed to be a technical indicator for use as input into trading models, rather than an estimator for statistical analysis.

54 roll_kurtosis

Value

An xts time series with a single column and the same number of rows as the argument oh_lc.

Examples

```
# Calculate rolling Hurst for SPY in March 2009
hurst_rolling <- roll_hurst(oh_lc=HighFreq::SPY["2009-03"], look_back=11)
chart_Series(hurst_rolling["2009-03-10/2009-03-12"], name="SPY hurst_rolling")</pre>
```

roll_kurtosis

Calculate a matrix of kurtosis estimates over a rolling look-back interval attached at the end points of a time series or a matrix.

Description

Calculate a *matrix* of kurtosis estimates over a rolling look-back interval attached at the end points of a *time series* or a *matrix*.

Usage

```
roll_kurtosis(
  tseries,
  startp = 0L,
  endp = 0L,
  step = 1L,
  look_back = 1L,
  stub = 0L,
  method = "moment",
  conf_lev = 0.75
)
```

Arguments

tseries	A time series or a matrix of data.
startp	An <i>integer</i> vector of start points (the default is $startp = 0$).
endp	An <i>integer</i> vector of end points (the default is endp = \emptyset).
step	The number of time periods between the end points (the default is $step = 1$).
look_back	The number of end points in the look-back interval (the default is look_back = 1).
stub	An <i>integer</i> value equal to the first end point for calculating the end points (the default is $stub = 0$).
method	A <i>string</i> specifying the type of the kurtosis model (the default is method = "moment" - see Details).
conf_lev	The confidence level for calculating the quantiles (the default is $conf_lev = 0.75$).

roll_kurtosis 55

Details

The function roll_kurtosis() calculates a *matrix* of kurtosis estimates over rolling look-back intervals attached at the end points of the *time series* tseries.

The function roll_kurtosis() performs a loop over the end points, and at each end point it subsets the time series over a look-back interval equal to look_back number of end points.

It passes the subset time series to the function calc_kurtosis(), which calculates the kurtosis. See the function calc_kurtosis() for a description of the kurtosis methods.

If the arguments endp and startp are not given then it first calculates a vector of end points separated by step time periods. It calculates the end points along the rows of tseries using the function calc_endpoints(), with the number of time periods between the end points equal to step time periods.

For example, the rolling kurtosis at 25 day end points, with a 75 day look-back, can be calculated using the parameters step = 25 and look_back = 3.

The function roll_kurtosis() is implemented in RcppArmadillo C++ code, so it's many times faster than the equivalent R code.

Value

A *matrix* of kurtosis estimates with the same number of columns as the input time series tseries, and the number of rows equal to the number of end points.

```
## Not run:
# Define time series of returns using package rutils
re_turns <- na.omit(rutils::etf_env$re_turns$VTI)</pre>
# Define end points and start points
end_p <- 1 + HighFreq::calc_endpoints(NROW(re_turns), step=25)</pre>
start_p <- HighFreq::calc_startpoints(end_p, look_back=3)</pre>
# Calculate the rolling kurtosis at 25 day end points, with a 75 day look-back
kurto_sis <- HighFreq::roll_kurtosis(re_turns, step=25, look_back=3)</pre>
# Calculate the rolling kurtosis using R code
kurt_r <- sapply(1:NROW(end_p), function(it) {</pre>
 HighFreq::calc_kurtosis(re_turns[start_p[it]:end_p[it], ])
}) # end sapply
# Compare the kurtosis estimates
all.equal(drop(kurto_sis), kurt_r, check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::roll_kurtosis(re_turns, step=25, look_back=3),
  Rcode=sapply(1:NROW(end_p), function(it) {
    HighFreq::calc_kurtosis(re_turns[start_p[it]:end_p[it], ])
  }),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

56 roll_mean

roll_mean	Calculate a matrix of mean (location) estimates over a rolling look-
	back interval attached at the end points of a time series or a matrix.

Description

Calculate a *matrix* of mean (location) estimates over a rolling look-back interval attached at the end points of a *time series* or a *matrix*.

Usage

```
roll_mean(
   tseries,
   startp = 0L,
   endp = 0L,
   step = 1L,
   look_back = 1L,
   stub = 0L,
   method = "moment",
   conf_lev = 0.75
)
```

Arguments

tseries	A time series or a matrix of data.
startp	An <i>integer</i> vector of start points (the default is $startp = 0$).
endp	An <i>integer</i> vector of end points (the default is endp = \emptyset).
step	The number of time periods between the end points (the default is step = 1).
look_back	The number of end points in the look-back interval (the default is look_back = 1).
stub	An <i>integer</i> value equal to the first end point for calculating the end points (the default is $stub = 0$).
method	A $\it character$ string representing the type of mean measure of (the default is method = "moment").

Details

The function roll_mean() calculates a *matrix* of mean (location) estimates over rolling look-back intervals attached at the end points of the *time series* tseries.

The function roll_mean() performs a loop over the end points, and at each end point it subsets the time series tseries over a look-back interval equal to look_back number of end points.

It passes the subset time series to the function calc_mean(), which calculates the mean (location). See the function calc_mean() for a description of the mean methods.

If the arguments endp and startp are not given then it first calculates a vector of end points separated by step time periods. It calculates the end points along the rows of tseries using the function calc_endpoints(), with the number of time periods between the end points equal to step time periods.

roll_ohlc 57

For example, the rolling mean at 25 day end points, with a 75 day look-back, can be calculated using the parameters step = 25 and look_back = 3.

The function roll_mean() with the parameter step = 1 performs the same calculation as the function roll_mean() from package RcppRoll, but it's several times faster because it uses RcppArmadillo C++ code.

The function roll_mean() is implemented in RcppArmadillo C++ code, so it's many times faster than the equivalent R code.

If only a simple rolling mean is required (not the median) then other functions like roll_sum() or roll_vec() may be even faster.

Value

A *matrix* of mean (location) estimates with the same number of columns as the input time series tseries, and the number of rows equal to the number of end points.

Examples

```
## Not run:
# Define time series of returns using package rutils
re_turns <- na.omit(rutils::etf_env$re_turns$VTI)</pre>
# Calculate the rolling means at 25 day end points, with a 75 day look-back
means <- HighFreq::roll_mean(re_turns, step=25, look_back=3)</pre>
# Compare the mean estimates over 11-period look-back intervals
all.equal(HighFreq::roll_mean(re_turns, look_back=11)[-(1:10), ],
  drop(RcppRoll::roll_mean(re_turns, n=11)), check.attributes=FALSE)
# Define end points and start points
end_p <- HighFreq::calc_endpoints(NROW(re_turns), step=25)</pre>
start_p <- HighFreq::calc_startpoints(end_p, look_back=3)</pre>
# Calculate the rolling means using RcppArmadillo
means <- HighFreq::roll_mean(re_turns, startp=start_p, endp=end_p)</pre>
# Calculate the rolling medians using RcppArmadillo
medianscpp <- HighFreq::roll_mean(re_turns, startp=start_p, endp=end_p, method="nonparametric")</pre>
# Calculate the rolling medians using R
medians = sapply(1:NROW(end_p), function(i) {
  median(re_turns[start_p[i]:end_p[i] + 1])
}) # end sapply
all.equal(medians, drop(medianscpp))
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
 Rcpp=HighFreq::roll_mean(re_turns, startp=start_p, endp=end_p, method="nonparametric"),
  Rcode=sapply(1:NROW(end_p), function(i) {median(re_turns[start_p[i]:end_p[i] + 1])}),
  times=10))[, c(1, 4, 5)]
## End(Not run)
```

roll_ohlc

Aggregate a time series to an OHLC time series with lower periodicity.

Description

Given a time series of prices at a higher periodicity (say seconds), it calculates the *OHLC* prices at a lower periodicity (say minutes).

58 roll_reg

Usage

```
roll_ohlc(tseries, endp)
```

Arguments

tseries A time series or a matrix with multiple columns of data.

endp An integer vector of end points.

Details

The function roll_ohlc() performs a loop over the end points *endp*, along the rows of the data tseries. At each end point, it selects the past rows of the data tseries, starting at the first bar after the previous end point, and then calls the function agg_ohlc() on the selected data tseries to calculate the aggregations.

The function roll_ohlc() can accept either a single column of data or four columns of *OHLC* data. It can also accept an additional column containing the trading volume.

The function roll_ohlc() performs a similar aggregation as the function to.period() from package xts.

Value

A matrix with OHLC data, with the number of rows equal to the number of endp minus one.

Examples

```
## Not run:
# Define matrix of OHLC data
oh_lc <- rutils::etf_env$VTI[, 1:5]
# Define end points at 25 day intervals
end_p <- HighFreq::calc_endpoints(NROW(oh_lc), step=25)
# Aggregate over end_p:
ohlc_agg <- HighFreq::roll_ohlc(tseries=oh_lc, endp=end_p)
# Compare with xts::to.period()
ohlc_agg_xts <- .Call("toPeriod", oh_lc, as.integer(end_p+1), TRUE, NCOL(oh_lc), FALSE, FALSE, colnames(oh_lc]
all.equal(ohlc_agg, coredata(ohlc_agg_xts), check.attributes=FALSE)
## End(Not run)</pre>
```

roll_reg

Calculate a matrix of regression coefficients, their t-values, and z-scores, at the end points of the predictor matrix.

Description

Calculate a *matrix* of regression coefficients, their t-values, and z-scores, at the end points of the predictor matrix.

roll_reg 59

Usage

```
roll_reg(
  response,
  predictor,
  startp = 0L,
  endp = 0L,
  step = 1L,
  look_back = 1L,
  stub = 0L,
  method = "least_squares",
  eigen_thresh = 0.001,
  eigen_max = 0L,
  conf_lev = 0.1,
  alpha = 0
)
```

Arguments

response	A single-column time series or a vector of response data.
predictor	A time series or a matrix of predictor data.
startp	An <i>integer</i> vector of start points (the default is $startp = 0$).
endp	An <i>integer</i> vector of end points (the default is endp = \emptyset).
step	The number of time periods between the end points (the default is step = 1).
look_back	The number of end points in the look-back interval (the default is look_back = 1).
stub	An <i>integer</i> value equal to the first end point for calculating the end points (the default is $stub = 0$).
method	A <i>string</i> specifying the type of the regression model the default is method = "least_squares" - see Details).
eigen_thresh	A <i>numeric</i> threshold level for discarding small singular values in order to regularize the inverse of the predictor matrix (the default is 0.001).
eigen_max	An <i>integer</i> equal to the number of singular values used for calculating the shrinkage inverse of the predictor matrix (the default is 0 - equivalent to eigen_max equal to the number of columns of predictor).
conf_lev	The confidence level for calculating the quantiles (the default is $conf_lev = 0.75$).
alpha	The shrinkage intensity between 0 and 1. (the default is 0).

Details

The function roll_reg() calculates a *matrix* of regression coefficients, their t-values, and z-scores at the end points of the predictor matrix.

The function roll_reg() performs a loop over the end points, and at each end point it subsets the time series predictor over a look-back interval equal to look_back number of end points.

It passes the subset time series to the function calc_reg(), which calculates the regression data.

If the arguments endp and startp are not given then it first calculates a vector of end points separated by step time periods. It calculates the end points along the rows of predictor using the

60 roll_scale

function calc_endpoints(), with the number of time periods between the end points equal to step time periods.

For example, the rolling regression at 25 day end points, with a 75 day look-back, can be calculated using the parameters step = 25 and look_back = 3.

Value

A *matrix* with the same number of rows as predictor, and a number of columns equal to 2n+3, where n is the number of columns of predictor.

Examples

```
## Not run:
# Calculate historical returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("XLP", "VTI")])</pre>
# Define monthly end points and start points
end_p <- xts::endpoints(re_turns, on="months")[-1]</pre>
look_back <- 12
start_p <- c(rep(1, look_back), end_p[1:(NROW(end_p)-look_back)])</pre>
# Calculate rolling betas using RcppArmadillo
reg_stats <- HighFreq::roll_reg(response=re_turns[, 1], predictor=re_turns[, 2], endp=(end_p-1), startp=(star</pre>
beta_s <- reg_stats[, 2]</pre>
# Calculate rolling betas in R
betas_r <- sapply(1:NROW(end_p), FUN=function(ep) {</pre>
  da_ta <- re_turns[start_p[ep]:end_p[ep], ]</pre>
  drop(cov(da_ta[, 1], da_ta[, 2])/var(da_ta[, 2]))
}) # end sapply
# Compare the outputs of both functions
all.equal(beta_s, betas_r, check.attributes=FALSE)
## End(Not run)
```

roll_scale

Perform a rolling scaling (standardization) of the columns of a matrix of data using RcppArmadillo.

Description

Perform a rolling scaling (standardization) of the columns of a matrix of data using RcppArmadillo.

Usage

```
roll_scale(matrix, look_back, use_median = FALSE)
```

Arguments

use_median

A *Boolean* argument: if TRUE then the centrality (central tendency) is calculated as the *median* and the dispersion is calculated as the *median absolute deviation* (*MAD*). If use_median is FALSE then the centrality is calculated as the *mean* and the dispersion is calculated as the *standard deviation* (the default is use_median

= FALSE)

matrix

A matrix of data.

roll_sharpe 61

look_back The length of the look-back interval, equal to the number of rows of data used in the scaling.

Details

The function roll_scale() performs a rolling scaling (standardization) of the columns of the matrix argument using RcppArmadillo. The function roll_scale() performs a loop over the rows of matrix, subsets a number of previous (past) rows equal to look_back, and scales the subset matrix. It assigns the last row of the scaled subset *matrix* to the return matrix.

If the argument use_median is FALSE (the default), then it performs the same calculation as the function roll::roll_scale(). If the argument use_median is TRUE, then it calculates the centrality as the *median* and the dispersion as the *median absolute deviation (MAD)*.

Value

A *matrix* with the same dimensions as the input argument matrix.

Examples

```
## Not run:
mat_rix <- matrix(rnorm(20000), nc=2)
look_back <- 11
rolled_scaled <- roll::roll_scale(data=mat_rix, width = look_back, min_obs=1)
rolled_scaled2 <- roll_scale(matrix=mat_rix, look_back = look_back, use_median=FALSE)
all.equal(rolled_scaled[-1, ], rolled_scaled2[-1, ])
## End(Not run)</pre>
```

roll_sharpe

Calculate a time series of Sharpe ratios over a rolling look-back interval for an OHLC time series.

Description

Calculate a time series of Sharpe ratios over a rolling look-back interval for an *OHLC* time series.

Usage

```
roll_sharpe(oh_lc, look_back = 11)
```

Arguments

oh_lc An *OHLC* time series of prices in *xts* format.

look_back The size of the look-back interval, equal to the number of rows of data used for

aggregating the OHLC prices.

Details

The function roll_sharpe() calculates the rolling Sharpe ratio defined as the ratio of percentage returns over the look-back interval, divided by the average volatility of percentage returns.

foll_skew

Value

An xts time series with a single column and the same number of rows as the argument oh_lc.

Examples

```
# Calculate rolling Sharpe ratio over SPY
sharpe_rolling <- roll_sharpe(oh_lc=HighFreq::SPY, look_back=11)</pre>
```

roll_skew

Calculate a matrix of skewness estimates over a rolling look-back interval attached at the end points of a time series or a matrix.

Description

Calculate a *matrix* of skewness estimates over a rolling look-back interval attached at the end points of a *time series* or a *matrix*.

Usage

```
roll_skew(
   tseries,
   startp = 0L,
   endp = 0L,
   step = 1L,
   look_back = 1L,
   stub = 0L,
   method = "moment",
   conf_lev = 0.75
)
```

Arguments

tseries	A time series or a matrix of data.
startp	An <i>integer</i> vector of start points (the default is $startp = 0$).
endp	An <i>integer</i> vector of end points (the default is endp = \emptyset).
step	The number of time periods between the end points (the default is step = 1).
look_back	The number of end points in the look-back interval (the default is look_back = 1).
stub	An <i>integer</i> value equal to the first end point for calculating the end points (the default is $stub = 0$).
method	A $string$ specifying the type of the skewness model (the default is method = "moment" - see Details).
conf_lev	The confidence level for calculating the quantiles (the default is $conf_lev = 0.75$).

roll_skew 63

Details

The function roll_skew() calculates a *matrix* of skewness estimates over rolling look-back intervals attached at the end points of the *time series* tseries.

The function roll_skew() performs a loop over the end points, and at each end point it subsets the time series tseries over a look-back interval equal to look_back number of end points.

It passes the subset time series to the function calc_skew(), which calculates the skewness. See the function calc_skew() for a description of the skewness methods.

If the arguments endp and startp are not given then it first calculates a vector of end points separated by step time periods. It calculates the end points along the rows of tseries using the function calc_endpoints(), with the number of time periods between the end points equal to step time periods.

For example, the rolling skewness at 25 day end points, with a 75 day look-back, can be calculated using the parameters step = 25 and look_back = 3.

The function roll_skew() is implemented in RcppArmadillo C++ code, so it's many times faster than the equivalent R code.

Value

A *matrix* of skewness estimates with the same number of columns as the input time series tseries, and the number of rows equal to the number of end points.

```
## Not run:
# Define time series of returns using package rutils
re_turns <- na.omit(rutils::etf_env$re_turns$VTI)</pre>
# Define end points and start points
end_p <- 1 + HighFreq::calc_endpoints(NROW(re_turns), step=25)</pre>
start_p <- HighFreq::calc_startpoints(end_p, look_back=3)</pre>
# Calculate the rolling skewness at 25 day end points, with a 75 day look-back
skew_ness <- HighFreq::roll_skew(re_turns, step=25, look_back=3)</pre>
# Calculate the rolling skewness using R code
skew_r <- sapply(1:NROW(end_p), function(it) {</pre>
 HighFreq::calc_skew(re_turns[start_p[it]:end_p[it], ])
}) # end sapply
# Compare the skewness estimates
all.equal(drop(skew_ness), skew_r, check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::roll_skew(re_turns, step=25, look_back=3),
  Rcode=sapply(1:NROW(end_p), function(it) {
    HighFreq::calc_skew(re_turns[start_p[it]:end_p[it], ])
  }),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

64 roll_stats

roll_stats	Calculate a vector of statistics over an OHLC time series, and calculate a rolling mean over the statistics.
	tute a roung mean over the statistics.

Description

Calculate a vector of statistics over an *OHLC* time series, and calculate a rolling mean over the statistics.

Usage

```
roll_stats(
  oh_lc,
  calc_stats = "run_variance",
  look_back = 11,
  weight_ed = TRUE,
  ...
)
```

Arguments

	additional parameters to the function calc_stats.
oh_lc	An OHLC time series of prices and trading volumes, in xts format.
calc_stats	The name of the function for estimating statistics of a single row of <i>OHLC</i> data, such as volatility, skew, and higher moments.
look_back	The size of the look-back interval, equal to the number of rows of data used for calculating the rolling mean.
weight_ed	Boolean argument: should statistic be weighted by trade volume? (default TRUE)

Details

The function roll_stats() calculates a vector of statistics over an *OHLC* time series, such as volatility, skew, and higher moments. The statistics could also be any other aggregation of a single row of *OHLC* data, for example the *High* price minus the *Low* price squared. The length of the vector of statistics is equal to the number of rows of the argument oh_lc. Then it calculates a trade volume weighted rolling mean over the vector of statistics over and calculate statistics.

Value

An xts time series with a single column and the same number of rows as the argument oh_lc.

```
# Calculate time series of rolling variance and skew estimates
var_rolling <- roll_stats(oh_lc=HighFreq::SPY, look_back=21)
skew_rolling <- roll_stats(oh_lc=HighFreq::SPY, calc_stats="run_skew", look_back=21)
skew_rolling <- skew_rolling/(var_rolling)^(1.5)
skew_rolling[1, ] <- 0
skew_rolling <- rutils::na_locf(skew_rolling)</pre>
```

roll_sum 65

roll_sum

Calculate the rolling sums over a time series or a matrix using Rcpp.

Description

Calculate the rolling sums over a *time series* or a *matrix* using *Rcpp*.

Usage

```
roll_sum(tseries, look_back = 1L)
```

Arguments

tseries A time series or a matrix.

look_back The length of the look-back interval, equal to the number of data points included

in calculating the rolling sum (the default is look_back = 1).

Details

The function roll_sum() calculates the rolling sums over the columns of the data tseries.

The function roll_sum() returns a *matrix* with the same dimensions as the input argument tseries.

The function roll_sum() uses the fast RcppArmadillo function arma::cumsum(), without explicit loops. The function roll_sum() is several times faster than rutils::roll_sum() which uses vectorized R code.

Value

A matrix with the same dimensions as the input argument tseries.

```
## Not run:
# Calculate historical returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("VTI", "IEF")])
# Define parameters
look_back <- 22
# Calculate rolling sums and compare with rutils::roll_sum()
c_sum <- HighFreq::roll_sum(re_turns, look_back)
r_sum <- rutils::roll_sum(re_turns, look_back)
all.equal(c_sum, coredata(r_sum), check.attributes=FALSE)
# Calculate rolling sums using R code
r_sum <- apply(zoo::coredata(re_turns), 2, cumsum)
lag_sum <- rbind(matrix(numeric(2*look_back), nc=2), r_sum[1:(NROW(r_sum) - look_back),])
r_sum <- (r_sum - lag_sum)
all.equal(c_sum, r_sum, check.attributes=FALSE)
## End(Not run)</pre>
```

66 roll_sumep

roll_sumep

Calculate the rolling sums at the end points of a time series or a matrix.

Description

Calculate the rolling sums at the end points of a time series or a matrix.

Usage

```
roll_sumep(
  tseries,
  startp = 0L,
  endp = 0L,
  step = 1L,
  look_back = 1L,
  stub = 0L
)
```

Arguments

tseries	A time series or a matrix.
startp	An <i>integer</i> vector of start points (the default is $startp = 0$).
endp	An <i>integer</i> vector of end points (the default is endp = 0).
step	The number of time periods between the end points (the default is step = 1).
look_back	The number of end points in the look-back interval (the default is look_back = 1).
stub	An <i>integer</i> value equal to the first end point for calculating the end points.

Details

The function roll_sumep() calculates the rolling sums at the end points of the *time series* tseries. The function roll_sumep() is implemented in RcppArmadillo C++ code, which makes it several times faster than R code.

Value

A *matrix* with the same number of columns as the input time series tseries, and the number of rows equal to the number of end points.

```
## Not run:
# Calculate historical returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("VTI", "IEF")])
# Define end points at 25 day intervals
end_p <- HighFreq::calc_endpoints(NROW(re_turns), step=25)
# Define start points as 75 day lag of end points
start_p <- HighFreq::calc_startpoints(end_p, look_back=3)
# Calculate rolling sums using Rcpp
c_sum <- HighFreq::roll_sumep(re_turns, startp=start_p, endp=end_p)</pre>
```

roll_var 67

```
# Calculate rolling sums using R code
r_sum <- sapply(1:NROW(end_p), function(ep) {
colSums(re_turns[(start_p[ep]+1):(end_p[ep]+1), ])
}) # end sapply
r_sum <- t(r_sum)
all.equal(c_sum, r_sum, check.attributes=FALSE)
## End(Not run)</pre>
```

roll_var

Calculate a matrix of dispersion (variance) estimates over a rolling look-back interval attached at the end points of a time series or a matrix.

Description

Calculate a *matrix* of dispersion (variance) estimates over a rolling look-back interval attached at the end points of a *time series* or a *matrix*.

Usage

```
roll_var(
  tseries,
  startp = 0L,
  endp = 0L,
  step = 1L,
  look_back = 1L,
  stub = 0L,
  method = "moment",
  conf_lev = 0.75
)
```

Arguments

tseries	A time series or a matrix of data.
startp	An <i>integer</i> vector of start points (the default is $startp = 0$).
endp	An <i>integer</i> vector of end points (the default is endp = \emptyset).
step	The number of time periods between the end points (the default is $step = 1$).
look_back	The number of end points in the look-back interval (the default is look_back = 1).
stub	An <i>integer</i> value equal to the first end point for calculating the end points (the default is $stub = 0$).
method	A <i>character</i> string representing the type of the measure of dispersion (the default is method = "moment").

68 roll_var

Details

The function roll_var() calculates a *matrix* of dispersion (variance) estimates over rolling look-back intervals attached at the end points of the *time series* tseries.

The function roll_var() performs a loop over the end points, and at each end point it subsets the time series tseries over a look-back interval equal to look_back number of end points.

It passes the subset time series to the function calc_var(), which calculates the dispersion. See the function calc_var() for a description of the dispersion methods.

If the arguments endp and startp are not given then it first calculates a vector of end points separated by step time periods. It calculates the end points along the rows of tseries using the function calc_endpoints(), with the number of time periods between the end points equal to step time periods.

For example, the rolling variance at 25 day end points, with a 75 day look-back, can be calculated using the parameters step = 25 and look_back = 3.

The function roll_var() with the parameter step = 1 performs the same calculation as the function roll_var() from package RcppRoll, but it's several times faster because it uses RcppArmadillo C++ code.

The function roll_var() is implemented in RcppArmadillo C++ code, so it's many times faster than the equivalent R code.

Value

A *matrix* dispersion (variance) estimates with the same number of columns as the input time series tseries, and the number of rows equal to the number of end points.

```
## Not run:
# Define time series of returns using package rutils
re_turns <- na.omit(rutils::etf_env$re_turns$VTI)</pre>
# Calculate the rolling variance at 25 day end points, with a 75 day look-back
vari_ance <- HighFreq::roll_var(re_turns, step=25, look_back=3)</pre>
# Compare the variance estimates over 11-period look-back intervals
all.equal(HighFreq::roll_var(re_turns, look_back=11)[-(1:10), ],
  drop(RcppRoll::roll_var(re_turns, n=11)), check.attributes=FALSE)
# Compare the speed of HighFreq::roll_var() with RcppRoll::roll_var()
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::roll_var(re_turns, look_back=11),
  RcppRoll=RcppRoll::roll_var(re_turns, n=11),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
# Compare the speed of HighFreq::roll_var() with TTR::runMAD()
summary(microbenchmark(
    Rcpp=HighFreq::roll_var(re_turns, look_back=11, method="quantile"),
    TTR=TTR::runMAD(re_turns, n = 11),
    times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

69 roll_var_ohlc

roll_var_ohlc	Calculate a vector of variance estimates over a rolling look-back interval attached at the end points of a time series or a matrix with OHLC
	price data.

Description

Calculate a vector of variance estimates over a rolling look-back interval attached at the end points of a time series or a matrix with OHLC price data.

Usage

```
roll_var_ohlc(
  ohlc,
  startp = 0L,
  endp = 0L,
  step = 1L,
  look_back = 1L,
  stub = 0L,
  method = "yang_zhang",
  scale = TRUE,
  in_dex = 0L
)
```

Arguments

ohlc	A time series or a matrix with OHLC price data.
startp	An <i>integer</i> vector of start points (the default is $startp = 0$).
endp	An <i>integer</i> vector of end points (the default is endp = \emptyset).
step	The number of time periods between the end points (the default is step = 1).
look_back	The number of end points in the look-back interval (the default is look_back = 1).
stub	An <i>integer</i> value equal to the first end point for calculating the end points (the default is $stub = 0$).
method	A <i>character</i> string representing the price range estimator for calculating the variance. The estimators include:
	• "close" close-to-close estimator,
	 "rogers_satchell" Rogers-Satchell estimator,
	 "garman_klass" Garman-Klass estimator,
	• "garman_klass_yz" Garman-Klass with account for close-to-open price jumps,
	 "yang_zhang" Yang-Zhang estimator,
	(The default is the "yang_zhang" estimator.)
scale	<i>Boolean</i> argument: Should the returns be divided by the time index, the number of seconds in each period? (The default is scale = TRUE.)
in_dex	A <i>vector</i> with the time index of the <i>time series</i> . This is an optional argument (the default is $in_{dex=0}$).

70 roll_var_ohlc

Details

The function roll_var_ohlc() calculates a *vector* of variance estimates over a rolling look-back interval attached at the end points of the *time series* ohlc.

The input *OHLC time series* ohlc is assumed to contain the log prices.

The function roll_var_ohlc() performs a loop over the end points, subsets the previous (past) rows of ohlc, and passes them into the function calc_var_ohlc().

At each end point, the variance is calculated over a look-back interval equal to look_back number of end points. In the initial warmup period, the variance is calculated over an expanding look-back interval.

If the arguments endp and startp are not given then it first calculates a vector of end points separated by step time periods. It calculates the end points along the rows of ohlc using the function calc_endpoints(), with the number of time periods between the end points equal to step time periods.

For example, the rolling variance at daily end points with an 11 day look-back, can be calculated using the parameters step = 1 and look_back = 1 (Assuming the ohlc data has daily frequency.)

Similarly, the rolling variance at 25 day end points with a 75 day look-back, can be calculated using the parameters step = 25 and look_back = 3 (because 3*25 = 75).

The function roll_var_ohlc() calculates the variance from all the different intra-day and day-over-day returns (defined as the differences between *OHLC* prices), using several different variance estimation methods.

The default method is "yang_zhang", which theoretically has the lowest standard error among unbiased estimators. The methods "close", "garman_klass_yz", and "yang_zhang" do account for close-to-open price jumps, while the methods "garman_klass" and "rogers_satchell" do not account for close-to-open price jumps.

If scale is TRUE (the default), then the returns are divided by the differences of the time index (which scales the variance to the units of variance per second squared.) This is useful when calculating the variance from minutely bar data, because dividing returns by the number of seconds decreases the effect of overnight price jumps. If the time index is in days, then the variance is equal to the variance per day squared.

The optional argument in_dex is the time index of the *time series* ohlc. If the time index is in seconds, then the differences of the index are equal to the number of seconds in each time period. If the time index is in days, then the differences are equal to the number of days in each time period.

The function roll_var_ohlc() is implemented in RcppArmadillo C++ code, so it's many times faster than the equivalent R code.

Value

A column *vector* of variance estimates, with the number of rows equal to the number of end points.

roll_var_vec 71

```
in_dex=in_dex, scale=TRUE)
# Daily OHLC prices
oh_lc <- rutils::etf_env$VTI</pre>
in_dex <- c(1, diff(xts::.index(oh_lc)))</pre>
\# Rolling variance at 5 day end points, with a 20 day look-back (20=4*5)
var_rolling <- HighFreq::roll_var_ohlc(oh_lc,</pre>
                                step=5, look_back=4,
                                method="yang_zhang",
                                in_dex=in_dex, scale=TRUE)
# Same calculation in R
n_rows <- NROW(oh_lc)</pre>
lag_close = HighFreq::lag_it(oh_lc[, 4])
end_p <- drop(HighFreq::calc_endpoints(n_rows, 3)) + 1</pre>
start_p <- drop(HighFreq::calc_startpoints(end_p, 2))</pre>
n_pts <- NROW(end_p)</pre>
var_rollingr <- sapply(2:n_pts, function(it) {</pre>
  ran_ge <- start_p[it]:end_p[it]</pre>
  sub_ohlc = oh_lc[ran_ge, ]
  sub_close = lag_close[ran_ge]
  sub_index = in_dex[ran_ge]
 HighFreq::calc_var_ohlc(sub_ohlc, lag_close=sub_close, scale=TRUE, in_dex=sub_index)
}) # end sapply
var_rollingr <- c(0, var_rollingr)</pre>
all.equal(drop(var_rolling), var_rollingr)
## End(Not run)
```

roll_var_vec

Calculate a vector of variance estimates over a rolling look-back interval for a single-column time series or a column vector, using RcppArmadillo.

Description

Calculate a *vector* of variance estimates over a rolling look-back interval for a single-column *time* series or a *column vector*, using RcppArmadillo.

Usage

```
roll_var_vec(tseries, look_back = 1L)
```

Arguments

tseries A single-column time series or a column vector.

look_back The length of the look-back interval, equal to the number of *vector* elements

used for calculating a single variance estimate (the default is look_back = 1).

Details

The function roll_var_vec() calculates a *vector* of variance estimates over a rolling look-back interval for a single-column *time series* or a *column vector*, using RcppArmadillo C++ code.

The function roll_var_vec() uses an expanding look-back interval in the initial warmup period, to calculate the same number of elements as the input argument tseries.

72 roll_vec

The function roll_var_vec() performs the same calculation as the function roll_var() from package RcppRoll, but it's several times faster because it uses RcppArmadillo C++ code.

Value

A column vector with the same number of elements as the input argument tseries.

Examples

```
## Not run:
# Create a vector of random returns
re_turns <- rnorm(1e6)
# Compare the variance estimates over 11-period look-back intervals
all.equal(drop(HighFreq::roll_var_vec(re_turns, look_back=11))[-(1:10)],
    RcppRoll::roll_var(re_turns, n=11))
# Compare the speed of RcppArmadillo with RcppRoll
library(microbenchmark)
summary(microbenchmark(
    Rcpp=HighFreq::roll_var_vec(re_turns, look_back=11),
    RcppRoll=RcppRoll::roll_var(re_turns, n=11),
    times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)</pre>
```

roll_vec

Calculate the rolling sums over a single-column time series or a column vector using Rcpp.

Description

Calculate the rolling sums over a single-column time series or a column vector using Rcpp.

Usage

```
roll_vec(tseries, look_back)
```

Arguments

tseries A single-column *time series* or a *column vector* (a single-column matrix).

look_back The length of the look-back interval, equal to the number of elements of data

used for calculating the sum.

Details

The function roll_vec() calculates a *column vector* of rolling sums, over a *column vector* of data, using fast *Rcpp* C++ code. The function roll_vec() is several times faster than rutils::roll_sum() which uses vectorized R code.

Value

A *column vector* of the same length as the argument tseries.

roll_vecw 73

Examples

```
## Not run:
# Define a single-column matrix of returns
re_turns <- zoo::coredata(na.omit(rutils::etf_env$re_turns$VTI))</pre>
# Calculate rolling sums over 11-period look-back intervals
sum_rolling <- HighFreq::roll_vec(re_turns, look_back=11)</pre>
# Compare HighFreq::roll_vec() with rutils::roll_sum()
all.equal(HighFreq::roll_vec(re_turns, look_back=11),
         rutils::roll_sum(re_turns, look_back=11),
         check.attributes=FALSE)
# Compare the speed of Rcpp with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::roll_vec(re_turns, look_back=11),
  Rcode=rutils::roll_sum(re_turns, look_back=11),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

roll_vecw

Calculate the rolling weighted sums over a single-column time series or a column vector using RcppArmadillo.

Description

Calculate the rolling weighted sums over a single-column *time series* or a *column vector* using RcppArmadillo.

Usage

```
roll_vecw(tseries, weights)
```

Arguments

tseries A single-column *time series* or a *column vector* (a single-column matrix).

weights A column vector of weights.

Details

The function roll_vecw() calculates the rolling weighted sums of a *column vector* over its past values (a convolution with the *column vector* of weights), using RcppArmadillo. It performs a similar calculation as the standard R function

stats::filter(x=series,filter=weight_s,method="convolution",sides=1), but it's over 6 times faster, and it doesn't produce any NA values.

Value

A *column vector* of the same length as the argument tseries.

74 roll_vwap

Examples

```
## Not run:
# First example
# Define a single-column matrix of returns
re_turns <- zoo::coredata(na.omit(rutils::etf_env$re_turns$VTI))</pre>
# Create simple weights
weight_s <- matrix(c(1, rep(0, 10)))
# Calculate rolling weighted sums
weight_ed <- HighFreq::roll_vecw(tseries=re_turns, weights=weight_s)</pre>
# Compare with original
all.equal(zoo::coredata(re_turns), weight_ed, check.attributes=FALSE)
# Second example
# Create exponentially decaying weights
weight_s <- matrix(exp(-0.2*1:11))
weight_s <- weight_s/sum(weight_s)</pre>
# Calculate rolling weighted sums
weight_ed <- HighFreq::roll_vecw(tseries=re_turns, weights=weight_s)</pre>
# Calculate rolling weighted sums using filter()
filter_ed <- stats::filter(x=re_turns, filter=weight_s, method="convolution", sides=1)
# Compare both methods
all.equal(filter_ed[-(1:11)], weight_ed[-(1:11)], check.attributes=FALSE)
# Compare the speed of Rcpp with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::roll_vecw(tseries=re_turns, weights=weight_s),
  Rcode=stats::filter(x=re_turns, filter=weight_s, method="convolution", sides=1),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

roll_vwap

Calculate the volume-weighted average price of an OHLC time series over a rolling look-back interval.

Description

Performs the same operation as function VWAP() from package TTR, but using vectorized functions, so it's a little faster.

Usage

```
roll_vwap(oh_lc, close = oh_lc[, 4, drop = FALSE], look_back)
```

Arguments

oh_lc An *OHLC* time series of prices in *xts* format.

close A time series of close prices.

look_back The size of the look-back interval, equal to the number of rows of data used for

calculating the average price.

roll_wsum 75

Details

The function roll_vwap() calculates the volume-weighted average closing price, defined as the sum of the prices multiplied by trading volumes in the look-back interval, divided by the sum of trading volumes in the interval. If the argument close is passed in explicitly, then its volume-weighted average value over time is calculated.

Value

An xts time series with a single column and the same number of rows as the argument oh_lc.

Examples

```
# Calculate and plot rolling volume-weighted average closing prices (VWAP)
prices_rolling <- roll_vwap(oh_lc=HighFreq::SPY["2013-11"], look_back=11)
chart_Series(HighFreq::SPY["2013-11-12"], name="SPY prices")
add_TA(prices_rolling["2013-11-12"], on=1, col="red", lwd=2)
legend("top", legend=c("SPY prices", "VWAP prices"),
bg="white", lty=c(1, 1), lwd=c(2, 2),
col=c("black", "red"), bty="n")
# Calculate running returns
returns_running <- run_returns(x_ts=HighFreq::SPY)
# Calculate the rolling volume-weighted average returns
roll_vwap(oh_lc=HighFreq::SPY, close=returns_running, look_back=11)</pre>
```

roll_wsum Calculate the rolling weighted sums over a time series or a matrix using Rcpp.

Description

Calculate the rolling weighted sums over a *time series* or a *matrix* using *Rcpp*.

Usage

```
roll_wsum(tseries, endp = NULL, look_back = 1L, stub = NULL, weights = NULL)
```

Arguments

tseries	A time series or a matrix.
endp	An <i>integer</i> vector of end points (the default is endp = NULL).
look_back	The length of the look-back interval, equal to the number of data points included in calculating the rolling sum (the default is $look_back = 1$).
stub	An $integer$ value equal to the first end point for calculating the end points (the default is stub = NULL).
weights	A <i>column vector</i> of weights (the default is weights = NULL).

76 roll_wsum

Details

The function roll_wsum() calculates the rolling weighted sums over the columns of the data tseries.

The function roll_wsum() calculates the rolling weighted sums as convolutions of the columns of tseries with the *column vector* of weights using the RcppArmadillo function arma::conv2(). It performs a similar calculation to the standard R function

stats::filter(x=re_turns,filter=weight_s,method="convolution",sides=1), but it can be many times faster, and it doesn't produce any leading NA values.

The function roll_wsum() returns a *matrix* with the same dimensions as the input argument tseries.

The arguments weights, endp, and stub are optional.

If the argument weights is not supplied, then simple sums are calculated, not weighted sums.

If either the stub or endp arguments are supplied, then the rolling sums are calculated at the end points.

If only the argument stub is supplied, then the end points are calculated from the stub and look_back arguments. The first end point is equal to stub and the end points are spaced look_back periods apart.

If the arguments weights, endp, and stub are not supplied, then the sums are calculated over a number of data points equal to look_back.

The function roll_wsum() is also several times faster than rutils::roll_sum() which uses vectorized R code.

Technical note: The function roll_wsum() has arguments with default values equal to NULL, which are implemented in Rcpp code.

Value

A *matrix* with the same dimensions as the input argument tseries.

```
## Not run:
# First example
# Calculate historical returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("VTI", "IEF")])</pre>
# Define parameters
look_back <- 22
# Calculate rolling sums and compare with rutils::roll_sum()
c_sum <- HighFreq::roll_sum(re_turns, look_back)</pre>
r_sum <- rutils::roll_sum(re_turns, look_back)</pre>
all.equal(c_sum, coredata(r_sum), check.attributes=FALSE)
# Calculate rolling sums using R code
r_sum <- apply(zoo::coredata(re_turns), 2, cumsum)</pre>
lag_sum <- rbind(matrix(numeric(2*look_back), nc=2), r_sum[1:(NROW(r_sum) - look_back), ])</pre>
r_sum <- (r_sum - lag_sum)</pre>
all.equal(c_sum, r_sum, check.attributes=FALSE)
# Calculate rolling sums at end points
stu_b <- 21
c_sum <- HighFreq::roll_wsum(re_turns, look_back, stub=stu_b)</pre>
end_p <- (stu_b + look_back*(0:(NROW(re_turns) %/% look_back)))</pre>
end_p <- end_p[end_p < NROW(re_turns)]</pre>
r_sum <- apply(zoo::coredata(re_turns), 2, cumsum)</pre>
```

roll_zscores 77

```
r_sum <- r_sum[end_p+1, ]
lag_sum <- rbind(numeric(2), r_sum[1:(NROW(r_sum) - 1), ])</pre>
r_sum <- (r_sum - lag_sum)</pre>
all.equal(c_sum, r_sum, check.attributes=FALSE)
# Calculate rolling sums at end points - pass in end_p
c_sum <- HighFreq::roll_wsum(re_turns, endp=end_p)</pre>
all.equal(c_sum, r_sum, check.attributes=FALSE)
# Create exponentially decaying weights
weight_s <- exp(-0.2*(1:11))
weight_s <- matrix(weight_s/sum(weight_s), nc=1)</pre>
# Calculate rolling weighted sum
c_sum <- HighFreq::roll_wsum(re_turns, weights=weight_s)</pre>
# Calculate rolling weighted sum using filter()
filter_ed <- filter(x=re_turns, filter=weight_s, method="convolution", sides=1)</pre>
all.equal(c_sum[-(1:11), ], filter_ed[-(1:11), ], check.attributes=FALSE)
# Calculate rolling weighted sums at end points
c_sum <- HighFreq::roll_wsum(re_turns, endp=end_p, weights=weight_s)</pre>
all.equal(c_sum, filter_ed[end_p+1, ], check.attributes=FALSE)
# Create simple weights equal to a 1 value plus zeros
weight_s <- matrix(c(1, rep(0, 10)), nc=1)
# Calculate rolling weighted sum
weight_ed <- HighFreq::roll_wsum(re_turns, weights=weight_s)</pre>
# Compare with original
all.equal(coredata(re_turns), weight_ed, check.attributes=FALSE)
## End(Not run)
```

roll_zscores

Calculate a vector of z-scores of the residuals of rolling regressions at the end points of the predictor matrix.

Description

Calculate a *vector* of z-scores of the residuals of rolling regressions at the end points of the predictor matrix.

Usage

```
roll_zscores(
  response,
  predictor,
  startp = 0L,
  endp = 0L,
  step = 1L,
  look_back = 1L,
  stub = 0L
```

78 roll_zscores

Arguments

response A single-column time series or a vector of response data. predictor A time series or a matrix of predictor data. startp An *integer* vector of start points (the default is startp = 0). An *integer* vector of end points (the default is endp = 0). endp The number of time periods between the end points (the default is step = 1). step look back The number of end points in the look-back interval (the default is look_back =

stub An integer value equal to the first end point for calculating the end points (the

default is stub = 0).

Details

The function roll_zscores() calculates a vector of z-scores of the residuals of rolling regressions at the end points of the time series predictor.

The function roll_zscores() performs a loop over the end points, and at each end point it subsets the time series predictor over a look-back interval equal to look_back number of end points.

It passes the subset time series to the function calc_lm(), which calculates the regression data.

If the arguments endp and startp are not given then it first calculates a vector of end points separated by step time periods. It calculates the end points along the rows of predictor using the function calc_endpoints(), with the number of time periods between the end points equal to step time periods.

For example, the rolling variance at 25 day end points, with a 75 day look-back, can be calculated using the parameters step = 25 and look_back = 3.

Value

A column *vector* of the same length as the number of rows of predictor.

```
## Not run:
# Calculate historical returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("XLF", "VTI", "IEF")])</pre>
# Response equals XLF returns
res_ponse <- re_turns[, 1]</pre>
# Predictor matrix equals VTI and IEF returns
predic_tor <- re_turns[, -1]</pre>
# Calculate Z-scores from rolling time series regression using RcppArmadillo
look_back <- 11
z_scores <- HighFreq::roll_zscores(response=res_ponse, predictor=predic_tor, look_back)</pre>
\# Calculate z-scores in R from rolling multivariate regression using lm()
z_scoresr <- sapply(1:NROW(predic_tor), function(ro_w) {</pre>
  if (ro_w == 1) return(0)
  start_point <- max(1, ro_w-look_back+1)</pre>
  sub_response <- res_ponse[start_point:ro_w]</pre>
  sub_predictor <- predic_tor[start_point:ro_w, ]</pre>
  reg_model <- lm(sub_response ~ sub_predictor)</pre>
  resid_uals <- reg_model$residuals</pre>
  resid_uals[NROW(resid_uals)]/sd(resid_uals)
}) # end sapply
```

run_covar 79

```
# Compare the outputs of both functions
all.equal(z_scores[-(1:look_back)], z_scoresr[-(1:look_back)],
    check.attributes=FALSE)
## End(Not run)
```

run_covar

Calculate the rolling covariance of two streaming time series of returns.

Description

Calculate the rolling covariance of two streaming time series of returns.

Usage

```
run_covar(tseries, lambda)
```

Arguments

tseries A *time series* or a *matrix* with two columns of returns data.

lambda A numeric decay factor.

Details

The function run_covar() calculates the rolling covariance of two streaming *time series* of returns by recursively weighing the products of their present returns with past covariance estimates, using the decay factor λ :

$$\sigma_t^{12} = (1 - \lambda)r_t^1 r_t^2 + \lambda \sigma_{t-1}^{12}$$

Where σ_t^{12} is the covariance estimate at time t, and r_t^1 and r_t^2 are the streaming returns data.

The above formula slightly overestimates the covariance because it doesn't subtract the mean values from the returns. But it's a very good approximations for daily returns.

The value of the decay factor λ should be in the range between 0 and 1. If λ is close to 1 then the decay is weak and past values have a greater weight, and the rolling covariance values have a stronger dependence on past values. This is equivalent to a long look-back interval. If λ is much less than 1 then the decay is strong and past values have a smaller weight, and the rolling covariance values have a weaker dependence on past values. This is equivalent to a short look-back interval.

The above recursive formula is convenient for processing live streaming data because it doesn't require maintaining a buffer of past data. The formula is equivalent to a convolution with exponentially decaying weights, but it's faster.

The function run_covar() returns three columns of data: the covariance and the variances of the two columns of the argument tseries. This allows calculating the rolling correlation.

The function run_covar() performs the same calculation as the standard R function stats::filter(x=series,filter=weight_s,method="recursive"), but it's several times faster.

Value

A *matrix* with three columns of data: the covariance and the variances of the two columns of the argument tseries.

80 run_max

Examples

```
## Not run:
# Calculate historical returns
re_turns <- zoo::coredata(na.omit(rutils::etf_env$re_turns[, c("IEF", "VTI")]))
# Calculate the rolling covariance
lamb_da <- 0.9
covars <- HighFreq::run_covar(re_turns, lambda=lamb_da)
# Calculate rolling covariance using R code
filter_ed <- (1-lamb_da)*filter(re_turns[, 1]*re_turns[, 2],
    filter=lamb_da, init=as.numeric(re_turns[1, 1]*re_turns[1, 2])/(1-lamb_da),
    method="recursive")
all.equal(covars[, 1], unclass(filter_ed), check.attributes=FALSE)
# Calculate the rolling correlation
correl <- covars[, 1]/sqrt(covars[, 2]*covars[, 3])
## End(Not run)</pre>
```

run_max

Calculate the rolling maximum of streaming time series data.

Description

Calculate the rolling maximum of streaming time series data.

Usage

```
run_max(tseries, lambda)
```

Arguments

tseries A *time series* or a *matrix*.

lambda A *numeric* decay factor.

Details

The function run_max() calculates the rolling maximum of streaming *time series* data by recursively weighing present and past values using the decay factor λ .

It first calculates the rolling mean of streaming data:

$$\mu_t = (1 - \lambda)p_t + \lambda\mu_{t-1}$$

Where μ_t is the mean value at time t, and p_t is the streaming data.

It then calculates the rolling maximums of streaming data, p_t^{max} :

$$p_t^{max} = max(p_t, p_{t-1}^{max}) + (1 - \lambda)(\mu_{t-1} - p_{t-1}^{max})$$

The second term pulls the maximum value down to the mean value, allowing it to gradually "forget" the maximum value from the more distant past.

The value of the decay factor λ should be in the range between 0 and 1. If λ is close to 1 then the decay is weak and past values have a greater weight, and the rolling maximum values have a

run_mean 81

stronger dependence on past values. This is equivalent to a long look-back interval. If λ is much less than 1 then the decay is strong and past values have a smaller weight, and the rolling maximum values have a weaker dependence on past values. This is equivalent to a short look-back interval.

The above recursive formula is convenient for processing live streaming data because it doesn't require maintaining a buffer of past data.

The function run_max() returns a *matrix* with the same dimensions as the input argument tseries.

Value

A *matrix* with the same dimensions as the input argument tseries.

Examples

```
## Not run:
# Calculate historical prices
price_s <- zoo::coredata(quantmod::Cl(rutils::etf_env$VTI))
# Calculate the rolling maximums
lamb_da <- 0.9
maxs <- HighFreq::run_max(price_s, lambda=lamb_da)
# Plot dygraph of VTI prices and rolling maximums
da_ta <- cbind(quantmod::Cl(rutils::etf_env$VTI), maxs)
colnames(da_ta) <- c("prices", "max")
col_names <- colnames(da_ta)
dygraphs::dygraph(da_ta, main="VTI Prices and Rolling Maximums") %>%
    dySeries(name=col_names[1], label=col_names[1], strokeWidth=2, col="blue") %>%
    dySeries(name=col_names[2], label=col_names[2], strokeWidth=2, col="red")
## End(Not run)
```

run_mean

Calculate the rolling mean of streaming time series data.

Description

Calculate the rolling mean of streaming time series data.

Usage

```
run_mean(tseries, lambda)
```

Arguments

tseries A *time series* or a *matrix*.

lambda A *numeric* decay factor.

82 run_min

Details

The function run_mean() calculates the rolling mean of streaming *time series* data by recursively weighing present and past values using the decay factor λ :

$$\mu_t = (1 - \lambda)p_t + \lambda\mu_{t-1}$$

Where μ_t is the mean value at time t, and p_t is the streaming data.

The value of the decay factor λ should be in the range between 0 and 1. If λ is close to 1 then the decay is weak and past values have a greater weight, and the rolling mean values have a stronger dependence on past values. This is equivalent to a long look-back interval. If λ is much less than 1 then the decay is strong and past values have a smaller weight, and the rolling mean values have a weaker dependence on past values. This is equivalent to a short look-back interval.

The above recursive formula is convenient for processing live streaming data because it doesn't require maintaining a buffer of past data. The formula is equivalent to a convolution with exponentially decaying weights, but it's faster.

The function run_mean() performs the same calculation as the standard R function stats::filter(x=series,filter=lamb_da,method="recursive"), but it's several times faster. The function run_mean() returns a *matrix* with the same dimensions as the input argument tseries.

Value

A *matrix* with the same dimensions as the input argument tseries.

Examples

```
## Not run:
# Calculate historical prices
price_s <- zoo::coredata(quantmod::Cl(rutils::etf_env$VTI))</pre>
# Calculate the rolling means
lamb_da <- 0.9
means <- HighFreq::run_mean(price_s, lambda=lamb_da)</pre>
# Calculate rolling means using R code
filter_ed <- (1-lamb_da)*filter(price_s,
  filter=lamb_da, init=as.numeric(price_s[1, 1])/(1-lamb_da),
  method="recursive")
all.equal(means, unclass(filter_ed), check.attributes=FALSE)
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::run_mean(price_s, lambda=lamb_da),
 Rcode=filter(price_s, filter=lamb_da, init=as.numeric(price_s[1, 1])/(1-lamb_da), method="recursive"),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

run_min

Calculate the rolling minimum of streaming time series data.

Description

Calculate the rolling minimum of streaming time series data.

run_min 83

Usage

```
run_min(tseries, lambda)
```

Arguments

tseries A *time series* or a *matrix*. lambda A *numeric* decay factor.

Details

The function run_min() calculates the rolling minimum of streaming *time series* data by recursively weighing present and past values using the decay factor λ .

It first calculates the rolling mean of streaming data:

$$\mu_t = (1 - \lambda)p_t + \lambda\mu_{t-1}$$

Where μ_t is the mean value at time t, and p_t is the streaming data.

It then calculates the rolling minimums of streaming data, p_t^{min} :

$$p_t^{min} = min(p_t, p_{t-1}^{min}) + (1 - \lambda)(\mu_{t-1} - p_{t-1}^{min})$$

The second term pulls the minimum value up to the mean value, allowing it to gradually "forget" the minimum value from the more distant past.

The value of the decay factor λ should be in the range between 0 and 1. If λ is close to 1 then the decay is weak and past values have a greater weight, and the rolling minimum values have a stronger dependence on past values. This is equivalent to a long look-back interval. If λ is much less than 1 then the decay is strong and past values have a smaller weight, and the rolling minimum values have a weaker dependence on past values. This is equivalent to a short look-back interval.

The above recursive formula is convenient for processing live streaming data because it doesn't require maintaining a buffer of past data.

The function run_min() returns a *matrix* with the same dimensions as the input argument tseries.

Value

A *matrix* with the same dimensions as the input argument tseries.

```
## Not run:
# Calculate historical prices
price_s <- zoo::coredata(quantmod::Cl(rutils::etf_env$VTI))
# Calculate the rolling minimums
lamb_da <- 0.9
mins <- HighFreq::run_min(price_s, lambda=lamb_da)
# Plot dygraph of VTI prices and rolling minimums
da_ta <- cbind(quantmod::Cl(rutils::etf_env$VTI), mins)
colnames(da_ta) <- c("prices", "min")
col_names <- colnames(da_ta)
dygraphs::dygraph(da_ta, main="VTI Prices and Rolling Minimums") %>%
    dySeries(name=col_names[1], label=col_names[1], strokeWidth=2, col="blue") %>%
    dySeries(name=col_names[2], label=col_names[2], strokeWidth=2, col="red")
## End(Not run)
```

84 run_returns

prices.	run_returns	Calculate single period percentage returns from either TAQ or OHLC prices.
---------	-------------	--

Description

Calculate single period percentage returns from either TAQ or OHLC prices.

Usage

```
run_returns(x_ts, lagg = 1, col_umn = 4, scal_e = TRUE)
```

Arguments

x_ts	An xts time series of either TAQ or OHLC data.
lagg	An integer equal to the number of time periods of lag. (default is 1)
col_umn	The column number to extract from the <i>OHLC</i> data. (default is 4, or the <i>Close</i> prices column)
scal_e	<i>Boolean</i> argument: should the returns be divided by the number of seconds in each period? (default is TRUE)

Details

The function run_returns() calculates the percentage returns for either *TAQ* or *OHLC* data, defined as the difference of log prices. Multi-period returns can be calculated by setting the lag parameter to values greater than 1 (the default).

If scal_e is TRUE (the default), then the returns are divided by the differences of the time index (which scales the returns to units of returns per second.)

The time index of the x_ts time series is assumed to be in *POSIXct* format, so that its internal value is equal to the number of seconds that have elapsed since the *epoch*.

If scal_e is TRUE (the default), then the returns are expressed in the scale of the time index of the x_ts time series. For example, if the time index is in seconds, then the returns are given in units of returns per second. If the time index is in days, then the returns are equal to the returns per day.

The function run_returns() identifies the x_ts time series as *TAQ* data when it has six columns, otherwise assumes it's *OHLC* data. By default, for *OHLC* data, it differences the *Close* prices, but can also difference other prices depending on the value of col_umn.

Value

A single-column xts time series of returns.

```
# Calculate secondly returns from TAQ data
re_turns <- HighFreq::run_returns(x_ts=HighFreq::SPY_TAQ)
# Calculate close to close returns
re_turns <- HighFreq::run_returns(x_ts=HighFreq::SPY)
# Calculate open to open returns
re_turns <- HighFreq::run_returns(x_ts=HighFreq::SPY, col_umn=1)</pre>
```

run_sharpe 85

run_sharpe	Calculate time series of point Sharpe-like statistics for each row of a OHLC time series.

Description

Calculate time series of point Sharpe-like statistics for each row of a *OHLC* time series.

Usage

```
run_sharpe(oh_lc, method = "close")
```

Arguments

oh_lc An *OHLC* time series of prices in *xts* format.

method A character string representing method for estimating the Sharpe-like exponent.

Details

The function run_sharpe() calculates Sharpe-like statistics for each row of a *OHLC* time series. The Sharpe-like statistic is defined as the ratio of the difference between *Close* minus *Open* prices divided by the difference between *High* minus *Low* prices. This statistic may also be interpreted as something like a *Hurst exponent* for a single row of data. The motivation for the Sharpe-like statistic is the notion that if prices are trending in the same direction inside a given time bar of data, then this statistic is close to either 1 or -1.

Value

An xts time series with the same number of rows as the argument oh_lc.

Examples

```
# Calculate time series of running Sharpe ratios for SPY
sharpe_running <- run_sharpe(HighFreq::SPY)</pre>
```

run_skew	Calculate time series of point skew estimates from a OHLC time series,
	assuming zero drift.

Description

Calculate time series of point skew estimates from a OHLC time series, assuming zero drift.

Usage

```
run_skew(oh_lc, method = "rogers_satchell")
```

Arguments

oh_lc An *OHLC* time series of prices in *xts* format.

method A *character* string representing method for estimating skew.

86 run_var

Details

The function run_skew() calculates a time series of skew estimates from *OHLC* prices, one for each row of *OHLC* data. The skew estimates are expressed in the time scale of the index of the *OHLC* time series. For example, if the time index is in seconds, then the skew is given in units of skew per second. If the time index is in days, then the skew is equal to the skew per day.

Currently only the "close" skew estimation method is correct (assuming zero drift), while the "rogers_satchell" method produces a skew-like indicator, proportional to the skew. The default method is "rogers_satchell".

Value

A time series of point skew estimates.

Examples

```
# Calculate time series of skew estimates for SPY
sk_ew <- HighFreq::run_skew(HighFreq::SPY)</pre>
```

run_var

Calculate the rolling variance of streaming time series of returns.

Description

Calculate the rolling variance of streaming time series of returns.

Usage

```
run_var(tseries, lambda)
```

Arguments

tseries A *time series* or a *matrix* of returns.

lambda A *numeric* decay factor.

Details

The function run_var() calculates the rolling variance of a streaming *time series* of returns by recursively weighing the squared present returns with past variance estimates, using the decay factor λ :

$$\sigma_t^2 = (1 - \lambda)r_t^2 + \lambda \sigma_{t-1}^2$$

Where σ_t^2 is the variance estimate at time t, and r_t are the streaming returns data.

The above formula for σ^2 slightly overestimates the variance because it doesn't subtract the means before squaring the returns. But it's a very good approximation for daily returns.

The value of the decay factor λ should be in the range between 0 and 1. If λ is close to 1 then the decay is weak and past values have a greater weight, and the rolling variance values have a stronger dependence on past values. This is equivalent to a long look-back interval. If λ is much less than 1 then the decay is strong and past values have a smaller weight, and the rolling variance values have a weaker dependence on past values. This is equivalent to a short look-back interval.

run_variance 87

The above recursive formula is convenient for processing live streaming data because it doesn't require maintaining a buffer of past data. The formula is equivalent to a convolution with exponentially decaying weights, but it's faster.

The function run_var() performs the same calculation as the standard R function stats::filter(x=series,filter=weight_s,method="recursive"), but it's several times faster.

The function run_var() returns a *matrix* with the same dimensions as the input argument tseries.

Value

A *matrix* with the same dimensions as the input argument tseries.

Examples

```
## Not run:
# Calculate historical returns
re_turns <- zoo::coredata(na.omit(rutils::etf_env$re_turns$VTI))</pre>
# Calculate the rolling variance
lamb_da <- 0.9
vars <- HighFreq::run_var(re_turns, lambda=lamb_da)</pre>
# Calculate rolling variance using R code
filter_ed <- (1-lamb_da)*filter(re_turns^2, filter=lamb_da,</pre>
  init=as.numeric(re_turns[1, 1])^2/(1-lamb_da),
  method="recursive")
all.equal(vars, unclass(filter_ed), check.attributes=FALSE)
\# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::run_var(re_turns, lambda=lamb_da),
 Rcode=filter(re_turns^2, filter=lamb_da, init=as.numeric(re_turns[1, 1])^2/(1-lamb_da), method="recursive"
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

run_variance

Calculate a time series of point estimates of variance for an OHLC time series, using different range estimators for variance.

Description

Calculates the point variance estimates from individual rows of *OHLC* prices (rows of data), using the squared differences of *OHLC* prices at each point in time, without averaging them over time.

Usage

```
run_variance(oh_lc, method = "yang_zhang", scal_e = TRUE)
```

Arguments

oh_lc An *OHLC* time series of prices in *xts* format.

method A *character* string representing the method for estimating variance. The meth-

ods include:

88 run_variance

- "close" close to close.
- "garman klass" Garman-Klass,
- "garman_klass_yz" Garman-Klass with account for close-to-open price jumps,
- "rogers_satchell" Rogers-Satchell,
- "yang_zhang" Yang-Zhang,

(default is "yang_zhang")

scal_e *Boolean* argument: should the returns be divided by the number of seconds in each period? (default is TRUE)

Details

The function run_variance() calculates a time series of point variance estimates of percentage returns, from *OHLC* prices, without averaging them over time. For example, the method "close" simply calculates the squares of the differences of the log *Close* prices.

The other methods calculate the squares of other possible differences of the log *OHLC* prices. This way the point variance estimates only depend on the price differences within individual rows of data (and possibly from the neighboring rows.) All the methods are implemented assuming zero drift, since the calculations are performed only for a single row of data, at a single point in time.

The user can choose from several different variance estimation methods. The methods "close", "garman_klass_yz", and "yang_zhang" do account for close-to-open price jumps, while the methods "garman_klass" and "rogers_satchell" do not account for close-to-open price jumps. The default method is "yang_zhang", which theoretically has the lowest standard error among unbiased estimators.

The point variance estimates can be passed into function roll_vwap() to perform averaging, to calculate rolling variance estimates. This is appropriate only for the methods "garman_klass" and "rogers_satchell", since they don't require subtracting the rolling mean from the point variance estimates.

The point variance estimates can also be considered to be technical indicators, and can be used as inputs into trading models.

If scal_e is TRUE (the default), then the variance is divided by the squared differences of the time index (which scales the variance to units of variance per second squared.) This is useful for example, when calculating intra-day variance from minutely bar data, because dividing returns by the number of seconds decreases the effect of overnight price jumps.

If scal_e is TRUE (the default), then the variance is expressed in the scale of the time index of the *OHLC* time series. For example, if the time index is in seconds, then the variance is given in units of variance per second squared. If the time index is in days, then the variance is equal to the variance per day squared.

The time index of the oh_lc time series is assumed to be in *POSIXct* format, so that its internal value is equal to the number of seconds that have elapsed since the *epoch*.

The function run_variance() performs similar calculations to the function volatility() from package TTR, but it assumes zero drift, and doesn't calculate a running sum using runSum(). It's also a little faster because it performs less data validation.

Value

An xts time series with a single column and the same number of rows as the argument oh_lc.

run_zscores 89

Examples

```
# Create minutely OHLC time series of random prices
oh_lc <- HighFreq::random_ohlc()
# Calculate variance estimates for oh_lc
var_running <- HighFreq::run_variance(oh_lc)
# Calculate variance estimates for SPY
var_running <- HighFreq::run_variance(HighFreq::SPY, method="yang_zhang")
# Calculate SPY variance without overnight jumps
var_running <- HighFreq::run_variance(HighFreq::SPY, method="rogers_satchell")</pre>
```

run_zscores

Calculate the z-scores of rolling regressions of streaming time series of returns.

Description

Calculate the z-scores of rolling regressions of streaming *time series* of returns.

Usage

run_zscores(response, predictor, lambda, demean = TRUE)

Arguments

response A single-column *time series* or a single-column *matrix* of response data.

predictor A time series or a matrix of predictor data.

lambda A *numeric* decay factor.

demean A Boolean specifying whether the weights should be scaled (the default is demean

= TRUE).

Details

The function run_zscores() calculates the vectors of *betas* β_t and the residuals ϵ_t of rolling regressions by recursively weighing the current estimates with past estimates, using the decay factor λ :

$$\sigma_t^2 = (1 - \lambda)r_t^{p^2} + \lambda \sigma_{t-1}^2$$

$$\sigma_t^{cov} = (1 - \lambda)r_t^r r_t^p + \lambda \sigma_{t-1}^{cov}$$

$$\beta_t = (1 - \lambda)\frac{\sigma_t^{cov}}{\sigma_t^2} + \lambda \beta_{t-1}$$

$$\epsilon_t = (1 - \lambda)(r_t^r - \beta_t r_t^p) + \lambda \epsilon_{t-1}$$

Where σ_t^{cov} is the vector of covariances between the response and predictor returns, at time t; σ_t^2 is the vector of predictor variances, and r_t^r and r_t^p are the streaming returns of the response and predictor data.

The above formulas for σ^2 and σ^{cov} are approximate because they don't subtract the means before squaring the returns. But they're very good approximations for daily returns.

The matrices σ^2 , σ^{cov} , β have the same dimensions as the input argument predictor.

90 run_zscores

If the argument demean = TRUE (the default) then the *z-scores* z_t are calculated as equal to the residuals ϵ_t minus their means μ_{ϵ} , divided by their volatilities σ^{ϵ} :

$$z_t = \frac{\epsilon_t - \mu_\epsilon}{\sigma^\epsilon}$$

If the argument demean = FALSE then the z-scores are only divided by their volatilities without subtracting their means:

$$z_t = \frac{\epsilon_t}{\sigma^{\epsilon}}$$

The value of the decay factor λ should be in the range between 0 and 1. If λ is close to 1 then the decay is weak and past values have a greater weight, and the rolling *z-score* values have a stronger dependence on past values. This is equivalent to a long look-back interval. If λ is much less than 1 then the decay is strong and past values have a smaller weight, and the rolling *z-score* values have a weaker dependence on past values. This is equivalent to a short look-back interval.

The above recursive formula is convenient for processing live streaming data because it doesn't require maintaining a buffer of past data. The formula is equivalent to a convolution with exponentially decaying weights, but it's faster to calculate.

The function run_zscores() returns multiple columns of data. If the matrix predictor has n columns then run_zscores() returns a matrix with 2n+1 columns. The first column contains the *z-scores*, and the remaining columns contain the *betas* and the *variances* of the predictor data.

Value

A matrix with the z-scores, betas, and the variances of the predictor data.

```
## Not run:
# Calculate historical returns
re_turns <- na.omit(rutils::etf_env$re_turns[, c("XLF", "VTI", "IEF")])</pre>
# Response equals XLF returns
res_ponse <- re_turns[, 1]</pre>
# Predictor matrix equals VTI and IEF returns
predic_tor <- re_turns[, -1]</pre>
# Calculate the running z-scores
lamb_da <- 0.9
zscores <- HighFreq::run_zscores(response=res_ponse, predictor=predic_tor, lambda=lamb_da)</pre>
# Plot the running z-scores
da_ta <- cbind(cumsum(res_ponse), zscores[, 1])</pre>
colnames(da_ta) <- c("XLF", "zscores")</pre>
col_names <- colnames(da_ta)</pre>
dygraphs::dygraph(da_ta, main="Z-Scores of XLF Versus VTI and IEF") %>%
  dyAxis("y", label=col_names[1], independentTicks=TRUE) %>%
  dyAxis("y2", label=col_names[2], independentTicks=TRUE) %>%
 dySeries(name=col_names[1], axis="y", label=col_names[1], strokeWidth=1, col="blue") %>%
  dySeries(name=col_names[2], axis="y2", label=col_names[2], strokeWidth=1, col="red")
## End(Not run)
```

save_rets 91

save_rets

Load, scrub, aggregate, and rbind multiple days of TAQ data for a single symbol. Calculate returns and save them to a single '*.RData' file.

Description

Load, scrub, aggregate, and rbind multiple days of TAQ data for a single symbol. Calculate returns and save them to a single '*.RData' file.

Usage

```
save_rets(
   sym_bol,
   data_dir = "E:/mktdata/sec/",
   output_dir = "E:/output/data/",
   look_back = 51,
   vol_mult = 2,
   period = "minutes",
   tzone = "America/New_York"
)
```

Details

The function save_rets loads multiple days of TAQ data, then scrubs, aggregates, and rbinds them into a OHLC time series. It then calculates returns using function run_returns(), and stores them in a variable named 'symbol.rets', and saves them to a file called 'symbol.rets.RData'. The TAQ data files are assumed to be stored in separate directories for each 'symbol'. Each 'symbol' has its own directory (named 'symbol') in the 'data_dir' directory. Each 'symbol' directory contains multiple daily '*.RData' files, each file containing one day of TAQ data.

Value

A time series of returns and volume in xts format.

Examples

```
## Not run:
save_rets("SPY")
## End(Not run)
```

save_rets_ohlc

Load OHLC time series data for a single symbol, calculate its returns, and save them to a single '*.RData' file, without aggregation.

Description

Load *OHLC* time series data for a single symbol, calculate its returns, and save them to a single '*.RData' file, without aggregation.

92 save_scrub_agg

Usage

```
save_rets_ohlc(
   sym_bol,
   data_dir = "E:/output/data/",
   output_dir = "E:/output/data/")
```

Details

The function save_rets_ohlc() loads *OHLC* time series data from a single file. It then calculates returns using function run_returns(), and stores them in a variable named 'symbol.rets', and saves them to a file called 'symbol.rets.RData'.

Value

A time series of returns and volume in xts format.

Examples

```
## Not run:
save_rets_ohlc("SPY")
## End(Not run)
```

save_scrub_agg

Load, scrub, aggregate, and rbind multiple days of TAQ data for a single symbol, and save the OHLC time series to a single '*.RData' file.

Description

Load, scrub, aggregate, and rbind multiple days of *TAQ* data for a single symbol, and save the *OHLC* time series to a single '*.RData' file.

Usage

```
save_scrub_agg(
   sym_bol,
   data_dir = "E:/mktdata/sec/",
   output_dir = "E:/output/data/",
   look_back = 51,
   vol_mult = 2,
   period = "minutes",
   tzone = "America/New_York"
)
```

Arguments

```
sym_bol A character string representing symbol or ticker.

data_dir A character string representing directory containing input '*.RData' files.

output_dir A character string representing directory containing output '*.RData' files.
```

save_taq 93

Details

The function save_scrub_agg() loads multiple days of TAQ data, then scrubs, aggregates, and rbinds them into a OHLC time series, and finally saves it to a single '*.RData' file. The OHLC time series is stored in a variable named 'symbol', and then it's saved to a file named 'symbol.RData' in the 'output_dir' directory. The TAQ data files are assumed to be stored in separate directories for each 'symbol'. Each 'symbol' has its own directory (named 'symbol') in the 'data_dir' directory. Each 'symbol' directory contains multiple daily '*.RData' files, each file containing one day of TAQ data.

Value

An OHLC time series in xts format.

Examples

```
## Not run:
# set data directories
data_dir <- "C:/Develop/data/hfreq/src/"
output_dir <- "C:/Develop/data/hfreq/scrub/"
sym_bol <- "SPY"
# Aggregate SPY TAQ data to 15-min OHLC bar data, and save the data to a file
save_scrub_agg(sym_bol=sym_bol, data_dir=data_dir, output_dir=output_dir, period="15 min")
## End(Not run)</pre>
```

save_taq

Load and scrub multiple days of TAQ data for a single symbol, and save it to multiple '*.RData' files.

Description

Load and scrub multiple days of TAQ data for a single symbol, and save it to multiple '*.RData' files

Usage

```
save_taq(
  sym_bol,
  data_dir = "E:/mktdata/sec/",
  output_dir = "E:/output/data/",
  look_back = 51,
  vol_mult = 2,
  tzone = "America/New_York"
)
```

Details

The function save_taq() loads multiple days of TAQ data, scrubs it, and saves the scrubbed TAQ data to individual '*.RData' files. It uses the same file names for output as the input file names. The TAQ data files are assumed to be stored in separate directories for each 'symbol'. Each 'symbol' has its own directory (named 'symbol') in the 'data_dir' directory. Each 'symbol' directory contains multiple daily '*.RData' files, each file containing one day of TAQ data.

94 scrub_agg

Value

a TAQ time series in xts format.

Examples

```
## Not run:
save_taq("SPY")
## End(Not run)
```

scrub_agg

Scrub a single day of TAQ data, aggregate it, and convert to OHLC format.

Description

Scrub a single day of TAQ data, aggregate it, and convert to OHLC format.

Usage

```
scrub_agg(
  ta_q,
  look_back = 51,
  vol_mult = 2,
  period = "minutes",
  tzone = "America/New_York"
)
```

Arguments

period

The aggregation period.

Details

The function scrub_agg() performs:

- index timezone conversion,
- data subset to trading hours,
- removal of duplicate time stamps,
- · scrubbing of quotes with suspect bid-offer spreads,
- scrubbing of quotes with suspect price jumps,
- cbinding of mid prices with volume data,
- aggregation to OHLC using function to.period() from package xts,

Valid 'period' character strings include: "minutes", "3 min", "5 min", "10 min", "15 min", "30 min", and "hours". The time index of the output time series is rounded up to the next integer multiple of 'period'.

Value

A OHLC time series in xts format.

scrub_taq 95

Examples

```
# Create random TAQ prices
ta_q <- HighFreq::random_taq()
# Aggregate to ten minutes OHLC data
oh_lc <- HighFreq::scrub_agg(ta_q, period="10 min")
chart_Series(oh_lc, name="random prices")
# scrub and aggregate a single day of SPY TAQ data to OHLC
oh_lc <- HighFreq::scrub_agg(ta_q=HighFreq::SPY_TAQ)
chart_Series(oh_lc, name=sym_bol)</pre>
```

scrub_taq

Scrub a single day of TAQ data in xts format, without aggregation.

Description

Scrub a single day of TAQ data in xts format, without aggregation.

Usage

```
scrub_taq(ta_q, look_back = 51, vol_mult = 2, tzone = "America/New_York")
```

Arguments

ta_q TAQ A time series in xts format.

tzone The timezone to convert.

Details

The function $scrub_taq()$ performs the same scrubbing operations as $scrub_agg$, except it doesn't aggregate, and returns the TAQ data in xts format.

Value

A TAQ time series in xts format.

```
ta_q <- HighFreq::scrub_taq(ta_q=HighFreq::SPY_TAQ, look_back=11, vol_mult=1)
# Create random TAQ prices and scrub them
ta_q <- HighFreq::random_taq()
ta_q <- HighFreq::scrub_taq(ta_q=ta_q)
ta_q <- HighFreq::scrub_taq(ta_q=ta_q, look_back=11, vol_mult=1)</pre>
```

96 sim_ar

	-		
season	аI	1	Ťν

Perform seasonality aggregations over a single-column xts time series.

Description

Perform seasonality aggregations over a single-column xts time series.

Usage

```
season_ality(x_ts, in_dex = format(zoo::index(x_ts), "%H:%M"))
```

Arguments

x_ts A single-column xts time series.

in_dex A vector of *character* strings representing points in time, of the same length as

the argument x_ts.

Details

The function season_ality() calculates the mean of values observed at the same points in time specified by the argument in_dex. An example of a daily seasonality aggregation is the average price of a stock between 9:30AM and 10:00AM every day, over many days. The argument in_dex is passed into function tapply(), and must be the same length as the argument x_ts.

Value

An xts time series with mean aggregations over the seasonality interval.

Examples

```
# Calculate running variance of each minutely OHLC bar of data
x_ts <- run_variance(HighFreq::SPY)
# Remove overnight variance spikes at "09:31"
in_dex <- format(index(x_ts), "%H:%M")
x_ts <- x_ts[!in_dex=="09:31", ]
# Calculate daily seasonality of variance
var_seasonal <- season_ality(x_ts=x_ts)
chart_Series(x=var_seasonal, name=paste(colnames(var_seasonal),
    "daily seasonality of variance"))</pre>
```

sim_ar

Simulate autoregressive returns by recursively filtering a matrix of innovations through a matrix of autoregressive coefficients.

Description

Simulate *autoregressive* returns by recursively filtering a *matrix* of innovations through a *matrix* of *autoregressive* coefficients.

sim_ar 97

Usage

```
sim_ar(coeff, innov)
```

Arguments

innov A single-column *matrix* of innovations.

coeff A single-column *matrix* of *autoregressive* coefficients.

Details

The function sim_ar() recursively filters the *matrix* of innovations innov through the *matrix* of *autoregressive* coefficients coeff, using fast RcppArmadillo C++ code.

The function $sim_ar()$ simulates an *autoregressive* process AR(n) of order n:

$$r_i = \varphi_1 r_{i-1} + \varphi_2 r_{i-2} + \ldots + \varphi_n r_{i-n} + \xi_i$$

Where r_i is the simulated output time series, φ_i are the *autoregressive* coefficients, and ξ_i are the standard normal *innovations*.

The order n of the *autoregressive* process AR(n), is equal to the number of rows of the *autoregressive* coefficients coeff.

The function sim_ar() performs the same calculation as the standard R function filter(x=innov,filter=co_eff,method="recursive"), but it's several times faster.

Value

A single-column matrix of simulated returns, with the same number of rows as the argument innov.

```
## Not run:
# Define AR coefficients
co_eff \leftarrow matrix(c(0.2, 0.2))
# Calculate matrix of innovations
in_nov <- matrix(rnorm(1e4, sd=0.01))</pre>
# Calculate recursive filter using filter()
filter_ed <- filter(in_nov, filter=co_eff, method="recursive")</pre>
# Calculate recursive filter using RcppArmadillo
re_turns <- HighFreq::sim_ar(co_eff, in_nov)</pre>
# Compare the two methods
all.equal(as.numeric(re_turns), as.numeric(filter_ed))
# Compare the speed of RcppArmadillo with R code
library(microbenchmark)
summary(microbenchmark(
  Rcpp=HighFreq::sim_ar(co_eff, in_nov),
  Rcode=filter(in_nov, filter=co_eff, method="recursive"),
  times=10))[, c(1, 4, 5)] # end microbenchmark summary
## End(Not run)
```

98 sim_df

	٠			
S	٦.	m	d	Н
0	1	ш	u	П

Simulate a Dickey-Fuller process using Rcpp.

Description

Simulate a *Dickey-Fuller* process using *Rcpp*.

Usage

```
sim_df(eq_price, volat, theta, coeff, innov)
```

Arguments

volat The volatility of returns. eq_price The equilibrium price.

theta The strength of mean reversion.

coeff A single-column *matrix* of *autoregressive* coefficients.

innov A single-column *matrix* of innovations (random numbers).

Details

The function sim_df() simulates the following *Dickey-Fuller* process:

$$r_i = \theta \left(\mu - p_{i-1} \right) + \varphi_1 r_{i-1} + \ldots + \varphi_n r_{i-n} + \sigma \xi_i$$
$$p_i = p_{i-1} + r_i$$

Where r_i and p_i are the simulated returns and prices, θ , μ , and σ are the *Ornstein-Uhlenbeck* parameters, φ_i are the *autoregressive* coefficients, and ξ_i are the standard normal *innovations*. The recursion starts with: $p_1 = r_1 = \sigma \, \xi_1$.

The Dickey-Fuller process is a combination of an Ornstein-Uhlenbeck process and an autoregressive process. The order n of the autoregressive process AR(n), is equal to the number of rows of the autoregressive coefficients coeff.

The function sim_df() simulates the *Dickey-Fuller* process using fast *Rcpp* C++ code.

The function sim_df() returns a single-column *matrix* representing the *time series* of returns.

Value

A single-column matrix of simulated returns, with the same number of rows as the argument innov.

```
## Not run:
# Define the Ornstein-Uhlenbeck model parameters
eq_price <- 1.0
sig_ma <- 0.01
the_ta <- 0.01
# Define AR coefficients
co_eff <- matrix(c(0.2, 0.2))
# Calculate matrix of standard normal innovations
in_nov <- matrix(rnorm(1e3))</pre>
```

sim_garch 99

```
# Simulate Dickey-Fuller process using Rcpp
re_turns <- HighFreq::sim_df(eq_price=eq_price, volat=sig_ma, theta=the_ta, co_eff, innov=in_nov)
plot(cumsum(re_turns), t="1", main="Simulated Dickey-Fuller Prices")
## End(Not run)</pre>
```

sim_garch Simulate or estimate the rolling variance under a GARCH(1,1) process using Rcpp.

Description

Simulate or estimate the rolling variance under a GARCH(1,1) process using Rcpp.

Usage

sim_garch(omega, alpha, beta, innov, is_random = TRUE)

Arguments

omega	Parameter proportional to the long-term average level of variance.
alpha	The weight associated with recent realized variance updates.
beta	The weight associated with the past variance estimates.
innov	A single-column <i>matrix</i> of innovations.
is_random	Boolean argument: Are the innovations random numbers or historical returns? (The default is is_random = TRUE.)

Details

The function $sim_garch()$ simulates or estimates the rolling variance under a GARCH(1,1) process using Rcpp.

If is_random = TRUE (the default) then the innovations innov are treated as random numbers ξ_i and the GARCH(1,1) process is given by:

$$r_i = \sigma_{i-1} \xi_i$$

$$\sigma_i^2 = \omega + \alpha r_i^2 + \beta \sigma_{i-1}^2$$

Where r_i and σ_i^2 are the simulated returns and variance, and ω , α , and β are the *GARCH* parameters, and ξ_i are standard normal *innovations*.

The long-term equilibrium level of the simulated variance is proportional to the parameter ω :

$$\sigma^2 = \frac{\omega}{1 - \alpha - \beta}$$

So the sum of α plus β should be less than 1, otherwise the volatility becomes explosive.

If is_random = FALSE then the function $sim_garch()$ estimates the rolling variance from the historical returns. The innovations innov are equal to the historical returns r_i and the GARCH(1,1) process is simply:

$$\sigma_i^2 = \omega + \alpha r_i^2 + \beta \sigma_{i-1}^2$$

Where σ_i^2 is the rolling variance.

100 sim_ou

The above should be viewed as a formula for *estimating* the rolling rolling variance from the historical returns, rather than simulating them. It represents exponential smoothing of the squared returns with a decay factor equal to β .

The function sim_garch() simulates the *GARCH* process using fast *Rcpp* C++ code.

Value

A *matrix* with two columns and with the same number of rows as the argument innov. The first column are the simulated returns and the second column is the variance.

Examples

```
## Not run:
# Define the GARCH model parameters
al_pha <- 0.79
be_ta <- 0.2
om_ega <- 1e-4*(1-al_pha-be_ta)
# Calculate matrix of standard normal innovations
in_nov <- matrix(rnorm(1e3))</pre>
# Simulate the GARCH process using Rcpp
\verb|garch_data| <- \verb|HighFreq::sim_garch(omega=om_ega, alpha=al\_pha, beta=be_ta, innov=in\_nov)|
# Plot the GARCH rolling volatility and cumulative returns
plot(sqrt(garch_data[, 2]), t="l", main="Simulated GARCH Volatility", ylab="volatility")
plot(cumsum(garch_data[, 1]), t="1", main="Simulated GARCH Cumulative Returns", ylab="cumulative returns")
# Calculate historical VTI returns
re_turns <- na.omit(rutils::etf_env$re_turns$VTI)</pre>
# Estimate the GARCH volatility of VTI returns
garch_data <- HighFreq::sim_garch(omega=om_ega, alpha=al_pha, beta=be_ta,</pre>
  innov=re_turns, is_random=FALSE)
# Plot dygraph of the estimated GARCH volatility
dygraphs::dygraph(xts::xts(sqrt(garch_data[, 2]), index(re_turns)),
  main="Estimated GARCH Volatility of VTI")
## End(Not run)
```

sim_ou

Simulate an Ornstein-Uhlenbeck process using Rcpp.

Description

Simulate an *Ornstein-Uhlenbeck* process using *Rcpp*.

Usage

```
sim_ou(init_price, eq_price, volat, theta, innov)
```

Arguments

volat The volatility of returns.
init_price The initial price.
eq_price The equilibrium price.

theta The strength of mean reversion.

innov A single-column *matrix* of innovations (random numbers).

sim_schwartz 101

Details

The function sim_ou() simulates the following *Ornstein-Uhlenbeck* process:

$$r_i = p_i - p_{i-1} = \theta (\mu - p_{i-1}) + \sigma \xi_i$$

 $p_i = p_{i-1} + r_i$

Where r_i and p_i are the simulated returns and prices, θ , μ , and σ are the *Ornstein-Uhlenbeck* parameters, and ξ_i are the standard normal *innovations*. The recursion starts with the initial price: $p_1 = init_price$.

The function $sim_ou()$ simulates the percentage returns as equal to the difference between the equilibrium price μ minus the latest price p_{i-1} , times the mean reversion parameter θ , plus a random innovation proportional to the volatility σ . The log prices are calculated as the sum of returns (not compounded), so they can become negative.

The function sim_ou() simulates the *Ornstein-Uhlenbeck* process using fast *Rcpp* C++ code.

The function sim_ou() returns a single-column *matrix* representing the *time series* of simulated returns.

Value

A single-column *matrix* of simulated prices, with the same number of rows as the argument innov.

Examples

```
## Not run:
# Define the Ornstein-Uhlenbeck model parameters
eq_price <- 1.0
sig_ma <- 0.01
the_ta <- 0.01
in_nov <- matrix(rnorm(1e3))
# Simulate Ornstein-Uhlenbeck process using Rcpp
price_s <- HighFreq::sim_ou(init_price=0, eq_price=eq_price, volat=sig_ma, theta=the_ta, innov=in_nov)
plot(price_s, t="1", main="Simulated Ornstein-Uhlenbeck Prices", ylab="prices")
## End(Not run)</pre>
```

sim_schwartz

Simulate a Schwartz process using Rcpp.

Description

Simulate a Schwartz process using Rcpp.

Usage

```
sim_schwartz(eq_price, volat, theta, innov)
```

Arguments

volat The volatility of returns. eq_price The equilibrium price.

theta The strength of mean reversion.

innov A single-column *matrix* of innovations (random numbers).

102 which_extreme

Details

The function sim_schwartz() simulates a *Schwartz* process using fast *Rcpp* C++ code.

The *Schwartz* process is the exponential of the *Ornstein-Uhlenbeck* process, and similar comments apply to it. The prices are calculated as the exponentially compounded returns, so they are never negative. The log prices can be obtained by taking the logarithm of the prices.

The function sim_schwartz() simulates the percentage returns as equal to the difference between the equilibrium price μ minus the latest price p_{i-1} , times the mean reversion parameter θ , plus a random innovation proportional to the volatility σ .

The function sim_schwartz() returns a single-column *matrix* representing the *time series* of simulated returns.

Value

A single-column matrix of simulated returns, with the same number of rows as the argument innov.

Examples

```
## Not run:
# Define the Schwartz model parameters
eq_price <- 2.0
sig_ma <- 0.01
the_ta <- 0.01
in_nov <- matrix(rnorm(1e3))
# Simulate Schwartz process using Rcpp
re_turns <- HighFreq::sim_schwartz(eq_price=eq_price, volat=sig_ma, theta=the_ta, innov=in_nov)
plot(exp(cumsum(re_turns)), t="1", main="Simulated Schwartz Prices", ylab="prices")
## End(Not run)</pre>
```

which_extreme

Calculate a Boolean vector that identifies extreme tail values in a single-column xts time series or vector, over a rolling look-back interval.

Description

Calculate a *Boolean* vector that identifies extreme tail values in a single-column *xts* time series or vector, over a rolling look-back interval.

Usage

```
which_extreme(x_ts, look_back = 51, vol_mult = 2)
```

Arguments

x_ts A single-column xts time series, or a numeric or Boolean vector.

look_back The number of data points in rolling look-back interval for estimating rolling

quantile.

vol_mult The quantile multiplier.

which_jumps 103

Details

The function which_extreme() calculates a *Boolean* vector, with TRUE for values that belong to the extreme tails of the distribution of values.

The function which_extreme() applies a version of the Hampel median filter to identify extreme values, but instead of using the median absolute deviation (MAD), it uses the 0.9 quantile values calculated over a rolling look-back interval.

Extreme values are defined as those that exceed the product of the multiplier times the rolling quantile. Extreme values belong to the fat tails of the recent (trailing) distribution of values, so they are present only when the trailing distribution of values has fat tails. If the trailing distribution of values is closer to normal (without fat tails), then there are no extreme values.

The quantile multiplier vol_mult controls the threshold at which values are identified as extreme. Smaller quantile multiplier values will cause more values to be identified as extreme.

Value

A Boolean vector with the same number of rows as the input time series or vector.

Examples

```
# Create local copy of SPY TAQ data
ta_q <- HighFreq::SPY_TAQ
# scrub quotes with suspect bid-offer spreads
bid_offer <- ta_q[, "Ask.Price"] - ta_q[, "Bid.Price"]
sus_pect <- which_extreme(bid_offer, look_back=51, vol_mult=3)
# Remove suspect values
ta_q <- ta_q[!sus_pect]</pre>
```

which_jumps

Calculate a Boolean vector that identifies isolated jumps (spikes) in a single-column xts time series or vector, over a rolling interval.

Description

Calculate a *Boolean* vector that identifies isolated jumps (spikes) in a single-column *xts* time series or vector, over a rolling interval.

Usage

```
which_jumps(x_ts, look_back = 51, vol_mult = 2)
```

Details

The function which_jumps() calculates a *Boolean* vector, with TRUE for values that are isolated jumps (spikes).

The function which_jumps() applies a version of the Hampel median filter to identify jumps, but instead of using the median absolute deviation (MAD), it uses the 0.9 quantile of returns calculated over a rolling interval. This is in contrast to function which_extreme(), which applies a Hampel filter to the values themselves, instead of the returns. Returns are defined as simple differences between neighboring values.

104 which_jumps

Jumps (or spikes), are defined as isolated values that are very different from the neighboring values, either before or after. Jumps create pairs of large neighboring returns of opposite sign.

Jumps (spikes) must satisfy two conditions:

- 1. Neighboring returns both exceed a multiple of the rolling quantile,
- 2. The sum of neighboring returns doesn't exceed that multiple.

The quantile multiplier vol_mult controls the threshold at which values are identified as jumps. Smaller quantile multiplier values will cause more values to be identified as jumps.

Value

A Boolean vector with the same number of rows as the input time series or vector.

```
# Create local copy of SPY TAQ data
ta_q <- SPY_TAQ
# Calculate mid prices
mid_prices <- 0.5 * (ta_q[, "Bid.Price"] + ta_q[, "Ask.Price"])
# Replace whole rows containing suspect price jumps with NA, and perform locf()
ta_q[which_jumps(mid_prices, look_back=31, vol_mult=1.0), ] <- NA
ta_q <- xts:::na.locf.xts(ta_q)</pre>
```