Primeira Lista de Exercícios

Lara de Andrade Oliveira

25-09-2022

Exercício 1

Ao desagregar os dados ao nível de submodelos, estamos impondo que as vendas são distribuídas entre os submodelos igualmente (já que não temos os dados de quantidade por submodelo). Isso pode introduzir um erro de medida, já que é esperado que modelos mais completos sejam mais caros e, portanto, vendam menos do que os modelos mais baratos. Assim, ao dar a todos os modelos a mesma quantidade, podemos estar subestimando as vendas dos modelos mais baratos e sobrestimando as do modelos mais caros. Isso acarretaria em um viés de atenuação.

Além disso, perdemos as variações de venda entre cada submodelo dadas as características como combustível, portas, câmbio e cilindradas. Isso pode levar a demandas mais inelásticas dentro de cada modelo.

Outra opção é estimar um modelo agregado ao nível do modelo, porém essa pode não ser também a melhor opção porque perderíamos muitas observações (de mais de 4300 para cerca de 500). Além disso, ao agregar todos os submodelos no mesmo modelo, podemos ter erros dependendo de qual "regra" usarmos para agregar as características. Por exemplo, dentro de um mesmo modelo, podemos ter submodelos com diferentes cilidradas e número de portas, nesse caso qual é o melhor a se fazer: usar a moda de cada característica ou a média (quando for uma característica numérica)?

Vamos analisar melhor cada um desses casos nos próximos exercícios.

Exercício 2

A omissão dos carros menos vendido pode gerar um problema, já que no modelo de escolha discreta assumimos que ou o indivíduo compra um carro ou nenhum, que é considerado um outside good. Como a base não considera os carros menos vendidos, eles seriam considerados dentro do outside good.

Dessa forma, perdemos a variação desses carros caso eles sejam substitutos dos carros que estão na base, de modo que um aumento no preço do carro que esta na base poderia

levar a um aumento na quantidade vendida do carro que está fora, mas, como é considerado outside good, perderíamos essa variação.

No entanto, talvez esse não fosse um problema tão procupante caso os 50 carros mais vendidos já representassem uma parcela significativa de todos os carros, de forma que os carros que se juntam ao outside good não teriam muito efeito sobre a demanda dos demais que estão na base.

Já na estimação logit, caso os 50 mais vendidos não sejam parte significativa do total, poderíamos ter uma superestimação da elasticidade cruzada entre os carros popularese o outside good.

Esse problema também aparece em Nevo (2001), que só dispunha das 25 marcas mais vendidas. Nesse caso, não são encontrados estimadores de sensibilidade de preço que são viesados. Porém, o caso de Nevo (2001) e o nosso são de mercados completamente diferentes, de modo que é possível que nesse trabalho encontremos problemas.

Exercício 3

Para conseguir a informação sobre quantas pessoas não compram carros, podemos pegar o tamanho do mercado. Seguindo o método utilizado no BLP(1995), podemos usar o total de domicílios no país como estimativa.

Já que temos dados dos carros vendidos entre 2003 e 2016, podemos usar os dados da Pnad para pegar o total de domicílios entre 2003-2009, 2011-2015. Os dados de 2010 são do censo e de 2016 da PnadC.

O cálculo do outside good é feito portanto da seguinte forma:

$$outsidegood = domic \'ilios_t - \sum_t vendas_t$$

onde $domicilios_t$ é o número de domicílios no ano t e $\sum_t vendas_t$ é o número total de venda de carros no ano t.

Os resultados estão descritos na tabela 1.

Exercício 4

O modelo logit a ser estimado é

$$ln(s_i) - ln(s_0) = \alpha Preco_i + \beta X_i + \epsilon_i$$

onde X_j é um vetor de caracterísit
cas do produto.

Além das características já listada na base, foram incluídas dummies para o tipo de combustível (gaslina, diesel, flex e álcool), cambio (automático ou mecânico), marca e número

Table 1: Mercado de Automóveis

	Vendas	Domicílios	Outside Good
2003	826567	49142171	48315604
2004	858360	51752528	50894168
2005	866667	53095391	52228724
2006	1040254	53113647	52073393
2007	1358176	54610413	53252237
2008	1561523	55769895	54208372
2009	1854800	57557140	55702340
2010	2183444	58051449	55868005
2011	2123568	58566292	56442724
2012	2198762	61292039	59093277
2013	2255334	63768289	61512955
2014	2065092	65129753	63064661
2015	1564185	67038765	65474580
2016	1216241	69223575	68007334

de portas (aqui, há diferença em como cada marca reporta o número de portas, algumas considerando o porta-malas e outras não, de modo que alguns carros podem ter 3 ou 5 portas. Assim, para montar as dummies, considerei que um carro com 3 portas é um carro com 2 portas e um de 5 portas é de 4 portas). Os resultados estão na Tabela 2 abaixo.

Os coeficientes de preço são negativos em todos os modelos, conforme pervê a teoria da demanda, no entanto parece estranho o coeficiente de cilindradas ser negativo, assim como o de Automático, uma vez que esperamos que essas seriam características preferidas pelos consumidores.

Table 2: Demanda Logit

	Depender	nt variable:		
$\ln(\mathrm{sj})\text{-}\ln(\mathrm{s0})$				
(1)	(2)	(3)	(4)	
-0.006***	-0.006***	-0.006***	-0.006***	
(0.001)	(0.001)	(0.001)	(0.001)	
-0.259**	-0.252^{**}	-0.243**	0.031	
(0.123)	(0.123)	(0.122)	(0.108)	
0.070	0.083	0.078	0.221	
(0.184)	(0.184)	(0.183)	(0.168)	
0.053	0.065	0.083	0.278***	
(0.119)	(0.119)	(0.120)	(0.105)	
-0.224***	-0.214***	-0.200***	-0.254***	
(0.050)	(0.050)	(0.050)	(0.045)	
	-0.080**		-0.079**	
	(0.036)		(0.034)	
		0.149***	0.257***	
		(0.046)	(0.041)	
-8.963***	-8.988***	-9.038***	-10.434***	
(0.128)	(0.128)	(0.130)	(0.170)	
Não	Não	Não	Sim	
4,351	4,351	4,351	4,351	
0.178	0.179	0.180	0.383	
0.177	0.177	0.178	0.379	
	-0.006*** (0.001) -0.259** (0.123) 0.070 (0.184) 0.053 (0.119) -0.224*** (0.050) -8.963*** (0.128) Não 4,351 0.178	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Note: *p<0.1; **p<0.05; ***p<0.01

Podemos fazer também o mesmo modelo porém considerando os dados agregados. Aqui, utilizamos a média dos preços, das cilidradas e do ipi e a moda dos combustíveis, do câmbio e das portas. Com a agregação perdemos modelos que utilizem o álcool, assim, a dummy aqui omitida é de carro flex.

Como no modelo desagregado, o coeficiente dos preços continua negativo, como era esperado, no entanto o coeficiente para Automático deixa de ser significativo e o de Cilindradas continua negativo. Ou seja, o modelo agregado não parece dar estimativas melhores.

Table 3: Demanda Logit no Modelo Agregado

$Dependent\ variable:$					
$\ln(\mathrm{sj})\text{-}\ln(\mathrm{s0})$					
(1)	(2)	(3)	(4)		
-0.005***	-0.006***	-0.006***	-0.007***		
(0.002)	(0.002)	(0.002)	(0.002)		
-0.423***	-0.422^{***}	-0.433***	-0.358***		
(0.090)	(0.090)	(0.089)	(0.085)		
0.244	0.229	0.194	-0.011		
(0.387)	(0.386)	(0.384)	(0.400)		
-0.850***	-0.888***	-0.770***	-0.948***		
(0.176)	(0.178)	(0.177)	(0.174)		
	0.149		-0.025		
	(0.094)		(0.103)		
		0.556***	0.473***		
		(0.192)	(0.178)		
-5.703***	-5.650***	-5.843***	-6.381***		
(0.191)	(0.193)	(0.195)	(0.414)		
Não	Não	Não	Sim		
498	498	498	498		
0.371	0.374	0.382	0.525		
0.366	0.368	0.375	0.503		
	-0.005*** (0.002) -0.423*** (0.090) 0.244 (0.387) -0.850*** (0.176) -5.703*** (0.191) Não 498 0.371	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Note:

*p<0.1; **p<0.05; ***p<0.01

Exercício 5

Vamos utilizar o IPI como instrumento para o preço. Para que ele seja um instrumento válido, precisa satisfazer duas condições: a condição de relevância e de exclusão. A condição de relevância pode ser testada pelo primeiro estágio da regressão (apresentado abaixo). Já a restrição de exclusão, para ser válida, precisamos que o IPI seja não correlacionado com o erro, ou seja, ele deve afetar a demanda somente por meio do preço, e não diretamente. Parece razoável supor que essa condição é válida, já que o aumento do imposto deve afetar o custo marginal do produto, não impactando a demanda diretamente.

Vamos primeiro analisar o primeiro estágio, ou seja, vamos regredir o preço no IPI e nas demais variáveis que estávamos usando para compor cada modelo. Os resultados estão apresentados na tabela 4.

Como esperado, Automático e Cilidradas têm coeficientes positivos e significantes. O coeficiente de IPI no preço também é significante em todos os modelos, porém parece estranho o sinal dele ser negativo. Isso pode ser devido ao fato de que, em vários anos, houve isenção do IPI. De qualquer forma, podemos concluir que IPI parece ser um bom instrumento por ser relevante e cumprir a restrição de exclusão. Agora podemos estimar o 2SLS.

Table 4: Primeiro Estágio

		Dependent	variable:			
	Preço					
	(1)	(2)	(3)	(4)		
IPI	-94.538***	-82.607***	-90.668***	-30.729*		
	(17.273)	(17.097)	(17.374)	(16.303)		
Gasolina	23.709***	22.073***	23.940***	19.494***		
	(3.338)	(3.300)	(3.339)	(3.008)		
Diesel	53.320***	50.508***	53.468***	18.101***		
	(4.969)	(4.914)	(4.968)	(4.711)		
Flex	1.669	0.215	2.226	1.804		
	(3.270)	(3.233)	(3.281)	(2.953)		
Cilindradas	71.510***	68.114***	71.718***	54.764***		
	(1.011)	(1.049)	(1.016)	(1.136)		
Automatico		10.133***		6.367***		
		(0.963)		(0.942)		
2 Portas			2.549**	-1.135		
			(1.267)	(1.152)		
Constant	-36.928***	-33.368***	-38.371***	26.673***		
	(3.564)	(3.536)	(3.634)	(4.864)		
Dummies de Marca	Não	Não	Não	Sim		
Observations	4,351	4,351	4,351	4,351		
\mathbb{R}^2	0.680	0.687	0.680	0.748		
Adjusted R ²	0.679	0.687	0.679	0.746		

Note:

*p<0.1; **p<0.05; ***p<0.01

Os resultados do 2SLS estão apresentados na tabela 5. Aqui já não temos o que é esperado pela lei da demanda: os preços apresentam coeficiente positivo e todos os demais regressores aparecem com coeficientes negativos. Vamos estimar também para a base agregada para ver se os resultados parecem fazer mais sentido.

Table 5: Regressão IV

	$Dependent\ variable:$					
		$\ln(sj)$	$-\ln(s0)$			
	(1)	(2)	(3)	(4)		
Preço	0.066***	0.078***	0.067***	0.219*		
-	(0.015)	(0.019)	(0.016)	(0.121)		
Gasolina	-1.914***	-2.042^{***}	-1.958***	-4.316^*		
	(0.434)	(0.506)	(0.459)	(2.434)		
Diesel	-3.913***	-4.282***	-3.998***	-3.874		
	(0.911)	(1.087)	(0.965)	(2.450)		
Flex	-0.142	-0.025	-0.165	-0.222		
	(0.268)	(0.297)	(0.275)	(0.724)		
Cilindradas	-5.175***	-5.705***	-5.289***	-12.345^*		
	(1.020)	(1.248)	(1.094)	(6.501)		
Automatico		-0.954***		-1.548*		
		(0.217)		(0.818)		
2 Portas			-0.093	0.468		
			(0.116)	(0.285)		
Constant	-5.942***	-5.838***	-5.835***	-16.008***		
	(0.680)	(0.780)	(0.745)	(3.186)		
Dummies de Marca	Não	Não	Não	Sim		
Observations	$4,\!351$	$4,\!351$	4,351	4,351		
\mathbb{R}^2	-3.043	-4.057	-3.177	-24.285		
Adjusted R ²	-3.048	-4.064	-3.183	-24.419		

Note:

*p<0.1; **p<0.05; ***p<0.01

Começamos novamente pelo primeiro estágio (Tabela 6). Agora o coeficiente do IPI aparece positivo, o que parece fazer mais sentido e os coeficientes de Cilidradas e Câmbio Automático têm sinal positivo (com excessão do último modelo, onde Automático aparece negativo, porém não significante).

Table 6: Primeiro Estágio do Modelo Agregado

	$Dependent\ variable:$					
	Preço					
	(1)	(2)	(3)	(4)		
IPI	133.164***	134.109***	139.669***	109.828***		
	(43.054)	(42.788)	(43.546)	(40.370)		
Gasolina	9.133***	9.002***	8.928***	8.551***		
	(2.244)	(2.231)	(2.253)	(2.099)		
Diesel	3.787	3.124	3.351	-35.724***		
	(9.406)	(9.351)	(9.416)	(9.520)		
Cilindradas	75.960***	73.277***	76.380***	68.640***		
	(2.679)	(2.844)	(2.712)	(2.878)		
Automatico		6.042***		-0.324		
		(2.253)		(2.475)		
2 Portas			4.751	1.446		
2 1 01000			(4.764)	(4.334)		
Constant	-60.776***	-57.910***	-62.230***	-0.929		
	(4.448)	(4.547)	(4.680)	(10.354)		
Dummies de Marca	Não	Não	Não	Sim		
Observations	498	498	498	498		
\mathbb{R}^2	0.749	0.753	0.749	0.814		
Adjusted \mathbb{R}^2	0.747	0.750	0.747	0.806		

Note: *p<0.1; **p<0.05; ***p<0.01

Os resultados do 2SLS para o modelo agregado estão na tabela 7. O preço apresenta coeficiente negativo, o que é condizente, e também obtemos resultados positivos e significantes para Cilindradas e Automatico, novamente com excessão do último modelo, quando incluímos todos os controles e dummies de marca. Portanto, os resultados com IV parecem fazer mais sentido, de forma que é possível que o viés estivesse atrapalhando nossos resultados anteriores.

Table 7: Regressão IV com dados Agregados

	Dependent variable:					
		ln(sj)-	$-\ln(s0)$			
	(1)	(2)	(3)	(4)		
Preço	-0.063***	-0.062***	-0.056***	-0.062**		
	(0.023)	(0.022)	(0.020)	(0.026)		
Gasolina	0.222	0.207	0.129	0.219		
	(0.300)	(0.291)	(0.267)	(0.300)		
Diesel	0.463	0.408	0.374	-1.934^*		
	(0.672)	(0.660)	(0.616)	(1.107)		
Cilindradas	3.693**	3.435**	3.223**	3.030		
	(1.829)	(1.731)	(1.624)	(1.845)		
Automatico		0.486**		-0.065		
		(0.207)		(0.173)		
2 Portas			0.679**	0.462		
			(0.310)	(0.299)		
Constant	-8.816***	-8.551***	-8.600***	-6.015^{***}		
	(1.279)	(1.191)	(1.147)	(0.714)		
Dummies de Marca	Não	Não	Não	Sim		
Observations	498	498	498	498		
\mathbb{R}^2	-0.869	-0.810	-0.569	-0.333		
Adjusted R ²	-0.884	-0.828	-0.585	-0.395		
Note:		*p<	0.1; **p<0.05	; ***p<0.01		

Exercício 6

Vamos computar agora as elasticidades-preço da demanda:

$$\frac{\partial log(s_j)}{\partial p_i} = \frac{\partial (\delta_j - log(\sum_{i=0}^J e^{\partial_j}))}{\partial p_j} = \begin{cases} \frac{-(-\alpha)e^{\delta_i}}{\sum_{i=0}^{\delta_j} e^{\delta_j}} = \alpha s_i & \text{se j} \neq i\\ -\alpha + \frac{\alpha e^{\delta_j}}{\sum_{i=0}^{\delta_j} e^{\delta_j}} = -\alpha (1 - s_j) & \text{se j} = i \end{cases}$$

Assim,

$$\eta_{ij} = \begin{cases} \alpha s_i p_j & \text{se j} \neq i \\ -\alpha p_j (1 - s_j) & \text{se j} = i \end{cases}$$

Os resultados estão apresentados nas tabelas abaixo. Para a elasticidade cruzada foi usado o ano de 2016 e o gráfico capta o efeito de que a elasticidade aumenta com as vendas (e portanto com o sj), mostrando uma relação aproximadamente linear.

Table 8: Elasticidade-Preço da Demanda - Gol

Ano	Elasticidade
2003	-3.116820
2004	-3.005022
2005	-3.090025
2006	-3.204914
2007	-3.340161
2008	-3.422849
2009	-3.102917
2010	-3.013886
2011	-3.059056
2012	-2.707115
2013	-2.658516
2014	-2.821950
2015	-2.644862
2016	-2.632463

Table 9: Elasticidade-Cruzada da Demanda - Gol $\left(2016\right)$

Modelo	Vendas	Elasticidade
2008	10692.000	0.0004069
208	10768.000	0.0004098
C3	11824.001	0.0004500
CITY	15422.000	0.0005870
CIVIC	20857.000	0.0007938
CLASSIC	11530.000	0.0004388
CLIO	10869.000	0.0004137
COBALT	22466.000	0.0008551
COMPASS	6599.000	0.0002512
COROLLA	64740.000	0.0024640
DUSTER	25373.008	0.0009657
ECOSPORT	28105.000	0.0010697
FIT	28438.998	0.0010824
FOCUS	6766.000	0.0002575
HB20	121616.001	0.0046287
HB20S	46023.000	0.0017516
HR-V	55758.000	0.0021221
IX35	10226.000	0.0003892
JETTA	8654.002	0.0003294
LOGAN	23706.999	0.0009023
MARCH	18375.994	0.0006994
MOBI	28731.000	0.0010935
ONIX	153370.980	0.0058373
PALIO	63996.010	0.0024357
PRISMA	66336.998	0.0025248
PUNTO	7709.000	0.0002934
RENEGADE	51563.001	0.0019625
SANDERO	63228.004	0.0024065
SENTRA	6288.000	0.0002393
SIENA	33478.000	0.0012742
SPIN	22982.000	0.0008747
TRACKER	8558.000	0.0003257
TUCSON	11203.000	0.0004264
UNO	34626.000	0.0013179
VERSA	21896.996	0.0008334
VOYAGE	26074.004	0.0009924

Figure 1: Elasticidade x Quantidade 2016

Exercício 7

Para calcular o custo marginal vamos utilizar o método utilizado no BLP, que é dado da seguinte forma:

$$\Pi = \max_{p_j} \sum_{j \in J_f} (p_j - mc_j) M_{s_j}$$

Assim, os produtos da firma f terão um preço que satisfaça a seguinte condição de primeira ordem:

$$s_j + \sum_{r \in J_f} (p_r - mc_r) \frac{\partial s_r}{\partial p_j} = 0$$

Dessa forma, as J condições de primeira ordem implicam um mark-up de $(p_j - mc_j)$ para cada bem. Como no BLS (95) foi definida uma matriz Δ J por J onde os elementos são dados por:

$$\Delta_{jr} = \begin{cases} -\frac{\partial s_r}{\partial p_j} & \text{se r e y são produzidos pela mesma firma} \\ 0 & \text{caso contrário} \end{cases}$$

Em termos matriciais temos que:

$$s(p,x,\xi;\theta) - \Delta(p,x,\xi;\theta)[p-mc] = 0$$

Assim, podemos estimar o custo marginal da seguinte forma:

$$mc = p - \Delta(p, x, \xi; \theta)^{-1} s(p, x, \xi; \theta)$$

A matriz Δ é dada da seguinte forma: na diagonal, os valores são dados por $-\alpha(s_j - s_j^2)$, $\alpha s_j s_k$ quando são da mesma marca e 0 caso contrário.

Os resultados para Custo Marginal e Markups (utilizando a base agregada) para o ano de 2016 estão na tabela 10. Os resultados implicam que, quanto menor é o preço, menores são as elasticidades em relação ao próprio preço, menores são os custos marginais e maiores os markups. Esse problema também aparece em BLP(95), e pode ocorrer porque há baixa variação em $\Delta(p, x, \xi; \theta)^{-1} s(p, s, \xi; \theta)$.

Table 10: Custo marginal dos modelos de automóveis (2016)

Modelo	Marca	Preço	Sj	CMg	Markup
2008	PEUGEOT	74405.20	0.0001545	58356.94	0.2156873
208	PEUGEOT	56625.92	0.0001556	40577.66	0.2834083
C3	CITROEN	54131.93	0.0001708	38085.91	0.2964244
CITY	HONDA	68537.75	0.0002228	52466.50	0.2344876
CIVIC	HONDA	89727.80	0.0003013	73656.55	0.1791112
CLASSIC	GM	33323.00	0.0001666	17213.33	0.4834398
CLIO	RENAULT	29702.67	0.0001570	13630.78	0.5410922
COBALT	GM	55402.88	0.0003245	39293.21	0.2907731
COMPASS	JEEP	108433.00	0.0000953	92376.23	0.1480801
COROLLA	TOYOTA	83003.17	0.0009352	66944.86	0.1934661
DUSTER	RENAULT	70001.62	0.0003665	53929.74	0.2295930
ECOSPORT	FORD	73237.09	0.0004060	57185.72	0.2191699
FIT	HONDA	63805.50	0.0004108	47734.25	0.2518788
FOCUS	FORD	80937.12	0.0000977	64885.76	0.1983190
GOL	VW	42268.40	0.0008291	26203.74	0.3800632
HB20	HYUNDAI	50040.38	0.0017569	33953.16	0.3214848
HB20S	HYUNDAI	55314.75	0.0006648	39227.53	0.2908306
HR-V	HONDA	87544.75	0.0008055	71473.50	0.1835776
IX35	HYUNDAI	113267.50	0.0001477	97180.28	0.1420286
JETTA	VW	83585.14	0.0001250	67520.48	0.1921952
LOGAN	RENAULT	48809.56	0.0003425	32737.67	0.3292774
MARCH	NISSAN	44870.36	0.0002655	28816.28	0.3577881
MOBI	FIAT	39023.00	0.0004150	22940.56	0.4121272
ONIX	GM	47001.71	0.0022156	30892.05	0.3427463
PALIO	FIAT	51307.85	0.0009245	35225.41	0.3134499
PRISMA	GM	51526.86	0.0009583	35417.19	0.3126460
PUNTO	FIAT	57782.55	0.0001114	41700.11	0.2783270
RENEGADE	JEEP	99382.43	0.0007449	83325.65	0.1615655
SANDERO	RENAULT	50618.43	0.0009134	34546.55	0.3175105
SENTRA	NISSAN	83199.83	0.0000908	67145.75	0.1929581
SIENA	FIAT	38661.00	0.0004836	22578.56	0.4159861
SPIN	GM	61227.88	0.0003320	45118.21	0.2631100
TRACKER	GM	79829.50	0.0001236	63719.83	0.2018009
TUCSON	HYUNDAI	69960.00	0.0001618	53872.78	0.2299489
UNO	FIAT	40471.44	0.0005002	24389.00	0.3973775
VERSA	NISSAN	54264.00	0.0003163	38209.92	0.2958514
VOYAGE	VW	50094.64	0.0003767	34029.97	0.3206863

Exercício 8

O modelo origianl utilizado em BLP (95) é:

$$u_{ijt} = x_{jt}\bar{\beta} + \xi_{jt} + \alpha \ln(y_i - p_j) + \sum_k \sigma_k x_{jtk} v_{ik} + \epsilon_{ijt}$$

No entanto, como não temos dados de renda, vamos utilizar um coeficiente aleatório no preço, utilizando assim $\alpha_i p_i$ no lugar de $\alpha \ln(y_i - p_i)$.

Como instrumento, vamos utilizar o IPI, e a soma das características (Flex, Gasolina e Cilindradas) entre os modelos da mesma marca e entre os carros de outras marcas. Foi utilizado o pacote do R BLPestimatoR.

Os resultados são mostrados nas tabelas 11 e 12:

2.4439884

-0.0004132

-0.7335969

-1.9438962

-1.5752310

Intercepto

Gasolina

Cilindradas

preco Flex

Estimativa Erro-Padrão Estatística-t

5.6953556

0.0003657

1.7247628

1.6920326

4.3813419

P-valor

0.6678362

0.2585796

0.6705946

0.2506167

0.7191974

0.4291195

-1.1297548

-0.4253321

-1.1488527

-0.3595316

Table 11: BLP - Coeficientes Lineares

|--|

	Estimativa	Erro-Padrão	Estatística-t	P-valor
Intercepto	-0.2082840	1.348366	-0.1544714	0.8772380
preco	0.0001807	0.000146	1.2374600	0.2159163
Flex	-0.3613032	2.857526	-0.1264392	0.8993843
Gasolina	0.1681113	10.066832	0.0166995	0.9866763
Cilindradas	0.8963080	1.212819	0.7390290	0.4598894

Na tabela 11 (Coeficientes Lineares) temos coeficiente negativo para o preço, conforme a teoria esperaria. No entanto, nenhum coeficiente é significante. Na tabela seguinte (Coeficientes Aleatórios) também não temos nenhum coeficiente significativo e o de preço se torna positivo.

Exercício 9

Vamos refazer os itens 6 e 7 utilizando as estimativas do BLP.

Começando pelo item 6, vamos reestimar as elaeticidades cruzadas para o ano de 2016. Agora, as elasticidades passam a ser dadas por Nevo (2000). Os resultados estão apresentados no gráfico abaixo e, diferentemente do que foi visto no exercício 6, aqui não temos uma relação tão clara de aumento da elasticidade com a quantidade vendida.

No entanto, os resultados aqui não parecem fazer muito sentido, já que a maior elasticidade cruzada para esse ano, com o Gol, foi o IX35, um modelo de carro muito mais caro, que não deveria ser o mais substituto para o Gol dentre todos da amostra.

Figure 2: Elasticidade x Quantidade (BLP) 2016

Agora vamos refazer o item 7 e vamos utilizar o mesmo método para calcular o Custo Marginal e foram utilizados os dados agregados. Os resultados estão na tabela 11.

Os markups continuam a ser maiores para os carros de menor preço, no entanto os números são bem menores daqueles encontrados no exercício 7. Os custos marginais estão bem mais próximos dos preços, o que nao é o esperado na realidade.

Table 13: Custo Marginal - BLP (2016)

Marca	Modelo	Sj	Preço	Cmg	Markup
PEUGEOT	2008	0.0001545	74405.20	71699.89	0.0377310
PEUGEOT	208	0.0001556	56625.92	54121.09	0.0462820
CITROEN	C3	0.0001708	54131.93	51706.59	0.0469058
HONDA	CITY	0.0002228	68537.75	65749.64	0.0424049
HONDA	CIVIC	0.0003013	89727.80	86627.22	0.0357922
GM	CLASSIC CLIO COBALT COMPASS COROLLA	0.0001666	33323.00	30837.33	0.0806058
RENAULT		0.0001570	29702.67	27404.90	0.0838453
GM		0.0003245	55402.88	52646.82	0.0523499
JEEP		0.0000953	108433.00	103246.71	0.0502320
TOYOTA		0.0009352	83003.17	80193.32	0.0350384
RENAULT	DUSTER	0.0003665	70001.62	67101.47	0.0432205
FORD	ECOSPORT	0.0004060	73237.09	70519.16	0.0385418
HONDA	FIT	0.0004108	63805.50	61077.20	0.0446698
FORD	FOCUS	0.0000977	80937.12	78110.21	0.0361914
HYUNDAI	HB20	0.0017569	50040.38	47141.06	0.0615031
HYUNDAI	HB20S	0.0006648	55314.75	52484.75	0.0539204
HONDA	HR-V	0.0008055	87544.75	83397.11	0.0497337
HYUNDAI	IX35	0.0001477	113267.50	109317.27	0.0361354
VW	JETTA	0.0001250	83585.14	76394.96	0.0941186
RENAULT	LOGAN	0.0003425	48809.56	46955.74	0.0394802
NISSAN	MARCH	0.0002655	44870.36	42587.31	0.0536087
FIAT	MOBI	0.0004150	39023.00	36810.49	0.0601055
GM	ONIX	0.0022156	47001.71	43899.03	0.0706778
FIAT	PALIO	0.0009245	51307.85	48499.32	0.0579086
GM	PRISMA	0.0009583	51526.86	48792.86	0.0560326
FIAT	PUNTO	0.0001114	57782.55	54830.57	0.0538381
JEEP	RENEGADE	0.0007449	99382.43	94747.48	0.0489190
RENAULT	SANDERO	0.0009134	50618.43	48785.89	0.0375630
NISSAN	SENTRA	0.0000908	83199.83	79078.55	0.0521163
FIAT	SIENA	0.0004836	38661.00	37276.33	0.0371461
GM	SPIN TRACKER TUCSON UNO VERSA VOYAGE	0.0003320	61227.88	57155.70	0.0712470
GM		0.0001236	79829.50	76187.21	0.0478071
HYUNDAI		0.0001618	69960.00	67396.15	0.0380415
FIAT		0.0005002	40471.44	38831.78	0.0422246
NISSAN		0.0003163	54264.00	51061.30	0.0627226
VW		0.0003767	50094.64	47439.80	0.0559622

Referências

- Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile prices in market equilibrium. Econometrica, 841-890.
- Nevo, A. (2000). A practitioner's guide to estimation of random-coefficients logit models of demand. Journal of Economics & Management Strategy, 9(4), 513-548.
- Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry. Econometrica, 69(2), 307-342