Technische Grundlagen der Informatik Übungsblatt 7

Aufgabe 1.

Lösung.

(a)

(1) Direct Mapped Cache

Adresslänge $log_2(32 \text{ GiB} = 35 \text{ bit})$

Tag $log_2(32 \text{ GiB}) - log_2(256 \text{ KiB}) \approx 17 \text{ bit}$

Index 256 KiB \div 128 byte = 2048 Blöcke = 2^{11}

Offset $log_2(128 \text{ byte}) = 7 \text{ bit}$

(2) 4-Way Set Associative Cache

Adresslänge $log_2(32 \text{ GiB} = 35 \text{ bit})$

Tag $log_2(32 \text{ GiB}) - log_2(256 \text{ KiB}) \approx 17 \text{ bit}$

Index 256 KiB \div 128 byte = 2048 Blöcke = 2^{11}

Offset $log_2(128 \text{ byte}) = 7 \text{ bit}$

(3) Fully Associative Cache

Adresslänge $log_2(32 \text{ GiB} = 35 \text{ bit})$

Tag $log_2(32 \text{ GiB}) - log_2(128 \text{ byte}) \approx 28 \text{ bit}$

Index 0 bit

Offset $log_2(128 \text{ byte}) = 7 \text{ bit}$

(b)

$$0xBADCODED = (1011\ 1010\ 1101\ 1100\ 0000\ 1101\ 1110\ 1101)_2$$
$$0x12345432 = (0001\ 0010\ 0011\ 0100\ 0101\ 0100\ 0011\ 0010)_2$$

(1) Direct Mapped Cache

(1)

Tag	Index	Offset
00010111010110111	00000011011	1101101
2EB7	1B	6D

(2)

Tag	Index	Offset
10010001101	00010101000	0110010
048D	A8	32

(2) 4-Way Set Associative Cache

(1)

Tag	Index	Offset
0001011101011011100	000011011	1101101
BADC	1B	6D

(2)

Tag	Index	Offset
00010010001101000	010101000	0110010
2468	A8	32

(3) Fully Associative Cache

(1)

Tag	Offset
0001011101011011100000011011	1101101
175B81B	6D

(2)

Tag	Offset
1001000110100010101000	0110010
2468A8	32

(c)

Direct Mapped Cache

17 bit
$$Tag + 1 Valid + 1 Dirty = 19 bit \cdot 2048 = 38912 bit = 4864 byte$$

4-Way Set Associative Cache

17 bit
$$Tag + 1 Valid + 1 Dirty + 3 bit = 22 bit \cdot 2048 = 45056 bit = 5632 byte$$

Fully Associative Cache

28 bit
$$Tag + 1$$
 Valid $+ 1$ Dirty $+ 10$ bit $= 40$ bit $= 5$ byte

Aufgabe 2.

Lösung.

t	Adresse	Tag	Offset	h/m	r/w	Tag	V	a	Tag	V	a
t_0	-	-	-	-	-	000000	0	0	000000	0	0
t_1	-	-	-	-	-	000000	0	0	000000	0	0
t_2	-	-	-	-	-	000000	0	0	000000	0	0
t_3	0x23	001000	11	m	W	001000	0	0	000000	0	0
t_4	0x11	000100	01	m	W	001000	1	1	000100	0	0
t_5	0x11	000100	01	h	r	001000	1	0	000100	1	1
t_6	0x33	001100	11	m	W	001100	1	0	000100	1	1
t_7	0x11	000100	01	h	r	001100	1	1	000100	1	0
t_8	0x23	001000	11	m	r	001000	1	0	000100	1	1
t_9	0x11	000100	01	h	W	001000	1	1	000100	1	0

Die *miss rate* ist gleich $4/7 \approx 57\%$

Aufgabe 3.

Lösung.

(a) Es können maximal 2 Blöcke
 \cdot 4 Sets \cdot 16 Datenwörter = 128 byte an Nutzdaten gespeichert werden.

(b)

	7	6	5	4	3	2	1	0	
MSB	Tag	Tag	Index	Index	Offset	Offset	Offset	Offset	LSB

(c)

Adresse	Adresse					Anzahl
(dezimal)	(binär)	Hit/Miss	Set	Block	Inhalt	Zugriffe
65	0100 0001	Miss	0	0	mem[64-79]	1
77	0100 1101	Hit	0	0	mem[64-79]	2
111	0110 1111	Miss	2	0	mem[96-111]	1
222	1101 1110	Miss	1	0	mem[208-223]	1
42	0010 1010	Miss	2	1	mem[32-47]	1
121	0111 1001	Miss	3	0	mem[112-127]	1
110	0110 1110	Hit	2	0	mem[96-111]	2
48	0011 0000	Miss	3	1	mem[48-63]	1
163	1010 0011	Miss	2	1	mem[160-175]	1
208	1101 0000	Hit	1	0	mem[208-223]	2
242	1111 0010	Miss	3	0	mem[240-255]	1
220	1101 1100	Hit	1	0	mem[208-223]	3
78	0100 1110	Hit	0	0	mem[64-79]	3
120	0111 1000	Miss	3	0	mem[112-127]	1
51	0011 0011	Hit	3	1	mem[48-63]	2

- (d) Die *Hit-Rate* ist 6/15 = 40%
- (e) Es wurden 25% nicht beschrieben.

Aufgabe 5.

Lösung.

(a)

L1-Cache: $100000 \cdot 0.1 = 10000$ Misses

L2-Cache: $100000 \cdot 0.04 = 4000$ Misses

$$3 \cdot 10^9/s = 3 \cdot 10^6/ms = 3 \cdot 10^3/\mu s = 3/ns$$

$$t_{L1} = 3/3 = 1ns$$

$$t_{L2} = 45/3 = 15ns$$

$$t_{main} = 150/3 = 50ns$$

$$t_{eff_L1} = 0.9 \cdot 3 + 0.1 \cdot 150 = 17.7 \text{ Taktzyklen}$$

$$t_{eff_L2} = \underbrace{0.9 \cdot 3}_{90\% \text{ L1}} + \underbrace{0.1 \cdot 0.96 \cdot 45}_{10\% \text{ L2}} + \underbrace{\left(1 - 0.9 - 0.1 \cdot 0.96\right) \cdot 150}_{0.04\% \text{ Hauptspeicher}} = 7.62 \text{ Taktzyklen}$$

$$17.7 \div 7.62 \approx 2.32$$

Die effektive Speicherzugriffszeit verbessert sich durch den L2-Cache ca. um das 2.32-fache.

Aufgabe 6.

Lösung.

Page-Nr	Frame-Nr	Present-Bit	Zeitpunkt
000	00	0	
001	10	1	t_3
010	00	1	t_1, t_5
011	00	0	
100	11	1	t_4
101	00	0	
110	00	0	
111	01	1	t_2

- (a) Virtuelle Adressen sind 20 Bit, physische Adressen 17 bit lang.
- (b) Es sind 2^{17} byte physischer Speicher und 2^{20} byte virtueller Speicher adressierbar.

(c)

Page-Nr	Offset
00100	110101000111011

Page-Nummer: 0x04 Offset: 0x6A3B

Frame-Nummer: 0x0

physische Adresse: 0x06A3B

(d)

Page-Nr	Frame-Nr	Present-Bit	Zeitpunkt
000	00	$0 \rightarrow 1$	t_7
001	10	1	t_3
010	00	$1 \rightarrow 0$	t_1, t_5
011	00	0	
100	11	1	t_4
101	00	0	
110	00	$0 \rightarrow 1$	t_6
111	01	$1 \rightarrow 0$	t_2

Aufgabe 7.

Lösung.

(a) Virtuelle Adresse: 3 bit Page-Nummer, 12 bit Offset. Physische Adresse: 2 bit Frame-Nummer, 12 bit Offset.

Page-Nr	Frame-Nr	Present-Bit	#Zugriffe
000	XX	0	000
001	XX	0	000
010	XX	0	000
011	XX	0	000
100	XX	0	000
101	XX	0	000
110	XX	0	000
111	XX	0	000

(b)

Frame	Frame-Nr	phys. Adressbereich
0	00	00000FFF
1	01	10001FFF
2	10	20002FFF
3	11	30003FFF

(c)

Adresse (hex)	Adresse (binär)	Page-Nr
0x4CAD	010 0	2
0x178A	000 1	0
0x2431	001 0	1
0x2B0B	001 0	1
0x4000	010 0	2
0x7DEA	011 1	3
0x6BAC	011 0	3
0x4FB1	010 0	2

Reihenfolge der Zugriffe (Page-Nummern): $2 \to 0 \to 1 \to 1 \to 2 \to 3 \to 3 \to 2$

- Bei den ersten drei Zugriffen treten *Page-Faults* auf, die Pages werden in die Frames 1, 2 und 3 geladen (Frame 0 durch OS blockiert).
- Page 1 ist bereits geladen, erhöhe Zugriffe auf 2.
- Page 2 ist bereits geladen, erhöhe Zugriffe auf 2.
- Page $3 \to Page\text{-}Fault \to \text{kommt}$ in Frame 2, weil Page 0 niedrigste Zugriffe.
- Page 3 bereits geladen \rightarrow Zugriffe auf 2.
- Page 2 bereits geladen \rightarrow Zugriffe auf 3.

Die Page-Table schaut daher zu Ende so aus:

Page-Nr	Frame-Nr	Present-Bit	#Zugriffe
000	10	$1 \rightarrow 0$	001
001	11	1	$001 \rightarrow 010$
010	01	1	$001 \rightarrow 010 \rightarrow 011$
011	10	$0 \rightarrow 1$	$001 \rightarrow 010$
100	XX	0	000
101	XX	0	000
110	XX	0	000
111	XX	0	000