

2015 届高一年级开学测试数学试卷

请把本试卷所有题目的答案填写在答题卡上!

一、单项选择题(每小题3分,共30分)

- 1. 若 a, b, c 为三角形 $\triangle ABC$ 的三边长,则代数式 $a^2 b^2 c^2 + 2bc$ 的值 ()
 - A. 大于0

B. 大于或等于0

C. 小于0

D. 小于或等于0

- 2. 已知 a, b 均为正数,则关于 x 的方程 $4x^2 2(a b)x ab = 0$ 的根状况为 ()
 - A. 无实根

B. 有两个不等实根

C. 有两个相等的实根

D. 有实根

- 3. 下列方程中,有两个相等的实数根的是(
 - A. $2y^2 + 5 = 6y$

B. $x^2 + 5 = 2\sqrt{5}x$

C. $\sqrt{3}x^2 \cdot \sqrt{2}x + 2 = 0$

- D. $3x^2 2\sqrt{6}x + 1 = 0$
- 4. 关于x的方程 $ax^2 2x + 1 = 0$,如果a < 0,那么根的情况是()
 - A. 有两个相等的实数根

B. 有两个不相等的实数根

C. 没有实数根

D. 不能确定

- 5. 若关于x的方程 $a(x+1)+(a^2-12)x=3$ 有无穷多个解,则实数a应满足的条件为()
 - A. a=3
- B. $a \neq 3$
- C. a = -3
- D. $a \neq -3$
- 6. 梯形的两条对角线将其中位线分为三等分,则该梯形上下底长度之比为()
 - A. 1:2
- B. 1:3
- C. 2:3
- D. 3:5
- 7. 如图, $\angle ACB = 90^{\circ}$, $CD \perp AB$ 于点 D, 以 BD 为直径的圆与交 BC 于点 E, 则 ()

A. $CE \cdot CB = AD \cdot DB$

B. $CE \cdot CB = AD \cdot AB$

C. $AD \cdot AB = CD^2$

- D. $CE \cdot EB = CD^2$
- 8. 已知 Rt $\triangle ABC$ 中, $\angle C = 90^{\circ}$,AB = 5,BC = 4 ,以 BC 为直径的圆交 AB 于 D ,则 BD 的长为 ()

- A. 4
- B. $\frac{9}{5}$
- C. $\frac{12}{5}$
- D. $\frac{16}{5}$

- 9. sin150°的值为()
- A. $-\frac{1}{2}$ B. $\frac{1}{2}$ C. $-\frac{\sqrt{3}}{2}$ D. $\frac{\sqrt{3}}{2}$
- 10. 已知集合 $M = \{0, 1, 3\}$,集合 $N = \{x | x = 3a, a \in M\}$,则 $M \cup N = ($
 - A. $\{0\}$

- B. {0, 3} C. {1, 3, 9} D. {0, 1, 3, 9}
- 二、不定项选择题(在题目给出的几个选项中,至少有一项正确,每小题4分,共24分)
- 11. 设方程 $x^2 + px + q$ 两根之比为1:2, 根的判别式 $\Delta = 1$, 则 p, q 的值分别为(

 - A. p=3, q=2 B. p=-3, q=-2 C. p=-3, q=2 D. p=3, p=-2
- 12. 记实数 x_1 , x_2 , …, x_n 中的最大数为 $\max\{x_1, x_2, ..., x_n\}$,最小值为 $\min\{x_1, x_2, ..., x_n\}$. 设 $\triangle ABC$ 的三边边长分别为 a, b, c, 且 $a \le b \le c$. 定义 $\triangle ABC$ 的倾斜度为 $t = \max \left\{ \frac{a}{b}, \frac{b}{c}, \frac{c}{a} \right\}$,
 - $\min \left\{ \frac{a}{b}, \frac{b}{c}, \frac{c}{a} \right\}$. 若 $\triangle ABC$ 为等腰三角形,则 t 的值为(
 - A. $\frac{1}{3}$ B. $\frac{1}{2}$ C. 1
- D. $\frac{3}{2}$
- 13. 若 $(x^2+y^2)(x^2+y^2-1)-12=0$,则 x^2+y^2 的值为()
 - A. 4
- B. -4
- C. 3
- D. -3
- 14. 己知|a|=1, |b|=2, |c|=3, 且a>b>c, 则a-b+c= ()
 - A. -2 B. -1
- C. 0
- D. 1

- A. $\begin{cases} x=1 \\ y=2 \end{cases}$ B. $\begin{cases} x=-1 \\ y=-2 \end{cases}$ C. $\begin{cases} x=-1 \\ y=2 \end{cases}$ D. $\begin{cases} x=1 \\ y=-2 \end{cases}$
- 16. 已知a > b > 0,则下列不等式成立的是(

 - A. $a^2 < b^2$ B. $\frac{1}{a} > \frac{1}{b}$ C. |a| < |b| D. $2^a > 2^b$

- 三、单项选择题——能力测试部分(17-26 小题,每小题 3 分 27-30 小题,每小题 4 分,本部分共 46 分)
- 17. 阅读右面的程序框图,运行相应的程序,输出的结果为(

- A. -2 B. $\frac{1}{2}$
- C. -1
- D. 2

- 18. $\left(x^2 \frac{2}{x}\right)^3$ 的展开式中的常数项为(
 - A. 12
- B. -12
- C. 6
- D. -6
- 19. 在 Rt \triangle ABC 中, CD 是斜边上的高线, AC:BC = 3:1 ,则 $S_{\triangle ABC}$: $S_{\triangle ACD}$ 为(

- A. 4:3
- B. 9:1
- C. 10:1
- D. 10:9
- 20. 如上图,平行四边形 ABCD 中, AE:EB=m:n ,若 $\triangle AEF$ 的面积等于 a ,则 $\triangle CDF$ 的面积等于
 - A. $\frac{m^2}{n^2}a$
- B. $\frac{n^2}{m^2}a$ C. $\frac{(m+n)^2}{m^2}a$ D. $\frac{(m+n)^2}{n^2}a$
- 21. 阅读如图所示的程序框图,如果输入的n的值为6,那么运行相应程序,输出的n的值为(

A. 3	B. 5	C. 10	D. 16

- 22. 某中学从 4 名男生和 3 名女生中推荐 4 人参加社会公益活动, 若选出的 4 人中既有男生又有女生, 则不同的选法共有()
 - A. 140种
- B. 120种
- C. 35种
- D. 34种
- 23. 六个人站成一堆, 其中甲、乙必须站在两端, 且丙、丁相邻, 则不同站法的种数为()
- B. 18
- C. 24
- **24.** 某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨 100%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用) 为()
 - A. 略有盈利

B. 略有亏损

C. 没有盈利也没有亏损

- D. 无法判断盈亏情况
- 25. 某工厂分别生产甲、乙两种产品 1 箱时所需要的煤、电以及获得的纯利润如下表所示.

	煤 (吨)	电 (千度)	纯利润 (万元)
1 箱甲产品	3	1	2
1 箱乙产品	1	1	1

若生产甲、乙两种产品可使用的煤不超过120吨,电不超过60千度,则可获得的最大纯利润和是 ()

- A. 60万元 B. 80万元
- C. 90万元
- D. 100 万元
- 26. 要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm、60cm、 80cm 三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有()
 - A. 1种
- B. 2种
- C. 3种
- D. 4种
- 27. 如果某年年份的各位数字之和为7,我们称该年为"七巧年". 例如,年份2014的各位数字之和为 7, 所以 2014 年恰为"七巧年", 那么从 2000 年到 2999 年中"七巧年"共有()
 - A. 24 个
- B. 21 个
- C. 19 个
- D. 18 个

28. 某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝,甲: 我没有偷; 乙: 丙是小偷; 丙: 丁是小偷; 丁: 我没有偷. 根据以上条件,可以判断珠宝的人是()

A. 甲

В. Z

C. 丙

D. -

29. 某棵果树前n年的总产量 S_n 与n之间的关系如图所示,从目前记录的结果看,前m年的年平均产

量最高, *m* 的值为(

A. 5

B. 7

C. 9

D. 11

30. 有语文、数学两学科,成绩评定为"优秀""合格""不合格"三种. 若 A 同学每科成绩不低于 B 同学,且至少有一科成绩比 B 高,则称" A 同学比 B 同学成绩好."现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生()

A. 2

B. 3

C. 4

D. 5

2015 届高一年级开学测试数学试卷参考答案与解析

1. 【答案】A

【解析】原式可化为 $a^2 - (b^2 - 2bc + c^2) = a^2 - (b - c)^2 = (a + b - c)(a + c - b)$ 在 $\triangle ABC$ 中由于两边之和大于第三边,故原式的值大于 0

2. 【答案】B

【解析】 $\Delta = 4(a-b)^2 + 16ab = 4(a+b)^2 > 0$,则原方程有两个不等实根。

3. 【答案】B

【解析】有相等实数根时,判别式 $\Delta=0$,经计算解得B选项 $\Delta=0$

4. 【答案】B

【解析】由题意得 $\Delta = \sqrt{4-4a}$, 因为a < 0, 所以判别式 $\Delta > 0$, 故原方程有两个不相等实根

5. 【答案】A

【解析】原式可化为 $(a^2+a-12)x+a=3$,因关于x的方程有无穷多个解,故x项系数应为0,且最后的式子两端应为3=3,故最终解得a=3

6. 【答案】A

【解析】设上底长为a, 下底长为b, 中位线长为c, 则有 $c = \frac{1}{2}(a+b)$, 且中位线被三等分故 $EF = \frac{2}{3}c$

∵ F 为 BC 边上的中点且 EF // CD

$$\therefore EF = \frac{1}{2}CD$$

$$\mathbb{R}$$
: $EF = \frac{2}{3}c$, $CD = b$, $c = \frac{1}{2}(a+b)$

$$\therefore b = \frac{4}{3}c, \ a = \frac{2}{3}c$$

$$\therefore \frac{a}{b} = \frac{1}{2}$$

7. 【答案】A

【解析】该题考察射影定理,A 选项中,在 $\triangle CDB$ 中,根据射影定理有 $CD^2 = CE \cdot CB$,在 $\triangle ABC$ 中有 $CD^2 = AD \cdot DB$,故 A 正确

8. 【答案】D

【解析】连接CD,因为 $\angle BDC$ 为圆周角,故 $CD \perp AB$. 在 $Rt \triangle ABC$ 中,运用勾股定理,解得AC=3 由面积相等关系解得 $CD=\frac{12}{5}$ 在 $Rt \triangle BCD$ 中,由勾股定理解得 $BD=\frac{16}{5}$

9. 【答案】B

【解析】
$$\sin 150^\circ = \sin (180^\circ - 30^\circ) = \sin 30^\circ = \frac{1}{2}$$

10. 【答案】D

【解析】 $N = \{0, 3, 9\}$ 故 $M \cup N = \{0, 1, 3, 9\}$

11. 【答案】AC

【解析】设方程两根分别为 x_1 、 x_2 ,且不妨设 $x_2=2x_1$,根据韦达定理解得 $x_1+x_2=-p$, $x_1x_2=q$,代入

化简得
$$p=-3x_1$$
 $q=2x_1^2$ 根据判别式 $\Delta=\sqrt{p^2-4q}=1$ 可解得 $x_1=\pm 1$,所以两组根分别是 $\begin{cases} x_1=1\\ x_2=2 \end{cases}$

或
$$\begin{cases} x_1 = -1 \\ x_2 = -2 \end{cases}$$
,反代入 p , q 最终解得 $\begin{cases} p = 3 \\ q = 2 \end{cases}$ $\begin{cases} p = -3 \\ q = 2 \end{cases}$

12. 【答案】C

【解析】因为 $\triangle ABC$ 为等腰三角形,故三边边长可设为a, b, b, 故最大值最小值只能取 $\frac{a}{b}$ 或 $\frac{b}{a}$, 故 t=1

13. 【答案】A

【解析】令 $t=x^2+y^2$,则原式可化为 $t^2-t-12=0$ 解一元二次方程得 $t_1=4$, $t_2=-3$,因t取值范围为大于或等于 0,故t=4

14. 【答案】AC

【解析】由题意得,a, b, c 共有两种取值情况 a=1, b=-2, c=-3 或 a=-1, b=-2, c=-3 ,所以 a-b+c=0 或 -2

15. 【答案】AB

【解析】

将原式展开为
$$x^2y^2 + 4x^2 + y^2 + 4 - 8xy = 0$$

并整理化简为
$$[(xy)^2 - 4xy + 4] + (4x^2 - 4xy + y^2) = 0$$

$$\mathbb{E}[(xy-2)^2 + (2x-y)^2] = 0$$

故
$$xy = 2$$
, $2x = y$

解得
$$x=\pm 1$$

所以原方程解为
$$\begin{cases} x=1 \\ y=2 \end{cases} \begin{cases} x=-1 \\ y=-2 \end{cases}$$

16.【答案】D

【解析】因为
$$a > b > 0$$
,故 $a^2 > b^2$, $\frac{1}{a} < \frac{1}{b}$, $|a| > |b|$

17. 【答案】C

【解析】
$$i=0$$
, $A=2$; $i=1$, $A=\frac{1}{2}$; $i=2$, $A=-1$; $i=3$, $A=2$; $i=4$, $A=\frac{1}{2}$; $i=5$, $A=-1$; $i=6$, $A=2$ 根据以上分析我们发现循环周期为 3, $i=2013$, $A=2$; $i=2014$, $A=\frac{1}{2}$; $i=2015$, $A=-1$,所以输出结果为 -1

18. 【答案】A

【解析】将这个式子写成 $\left(x^2-\frac{2}{x}\right)\left(x^2-\frac{2}{x}\right)$ $\left(x^2-\frac{2}{x}\right)$ 的形式,故要得到常数项需要在一个括号中取 x^2 剩

下两个括号取
$$-\frac{2}{x}$$
,同时这个 x^2 可以在三个括号内取,故常数项为 $3 \cdot x^2 \cdot \left(-\frac{2}{x}\right)^2 = 12$

19. 【答案】C

【解析】由题意易知 $\triangle BCD$ 和 $\triangle ACD$ 相似,故面积比为相似比的平方 $S_{\triangle BCD} = 9S_{\triangle ACD}$,又因为

$$S_{\wedge ABC} = S_{\wedge BCD} + S_{\wedge ACD}$$
, If $V \cup S_{\wedge ABC} : S_{\wedge ACD} = 10:1$

20. 【答案】C

【解析】由题意易知 $\triangle AEF$ 和 $\triangle CDF$ 相似,故面积比为相似比的平方 $\frac{S_{\triangle CDF}}{S_{\triangle AEF}} = \frac{\left(m+n\right)^2}{m^2}$,故

$$S_{\triangle CDF} = \frac{\left(m+n\right)^2}{m^2}a$$

21. 【答案】B

【解析】输入n=6, i=0; 第一次循环n=3, i=1; 第二次循环n=10, i=2; n=5, i=3此时 3 不小于 3, 故输出此时n=5

22. 【答案】D

【解析】由题意得,既有女生又有男生的选法为1女3男: 3×4=12种; 2女2男: 3×6=18种; 3女1男: 1×4=4种,共34种

23. 【答案】C

- 【解析】由于甲、乙必须站在两端,可先不考虑这二人; 丙、丁必须相邻,故可以将丙丁看做一个整体,即为将丙丁看做1个人.故此时问题简化为了3个人站队,共有6种站法.因丙丁有先后顺序,故种数乘2,共12种;且甲乙在两端也有前后共2种站法,所以总站法再次乘2,共24种.
- 24.【答案】B(题目中写每次上涨100%,可能题目有问题,故以下解析为上涨10%)

【解析】设成本为 1, 则经历 n次涨停和 n次跌停之后的成本为 $1 \times (1+0.1)^n \times (1-0.1)^n = 1 \times 0.99^n = 0.99^n$, 所以最终略有亏损

25. 【答案】C

【解析】设生产甲产品 x 吨,生产乙产品 y 吨,由题意得不等式组 $\begin{cases} 3x+y \leq 120 \\ x+y \leq 60 \end{cases}$ 设利润为 z ,则 z=2x+y ,在平面直角坐标系中画出这三条直线,所求利润最大值在 z=2x+y 在 y 轴截距最大处取到,故 z 最大值在 $\begin{cases} x=30 \\ y=30 \end{cases}$ 处取到为 90 万元

26. 【答案】C

【解析】20分别可以对应50、60、80、故有3种

27. 【答案】B

【解析】由于第一个数字是 2, 所以剩下 3 个数字之和必须为 5, 分别有一下 5 种组合:第一种:0、0、5, 共有 3 种排列方法;第二种:0、1、4, 共有 6 种排列方法;第三种:0、2、3 共有 6 种排

列方法;第四种:1、1、3;共有3种排列方法;第五种:2、2、1:共有3种排列方法.最终一共有21个"七巧年"

28. 【答案】A

【解析】若甲说的是真话:则丁说的是假话,即小偷为丁,则丙说的也是真话与题意矛盾,故甲说的是假话.同样,如果丁说的是真话,则甲说的是假话,即小偷是甲,此时剩下3个人说的都是假话,符合题意.若乙或丙说的是真话,则甲和丁说的都是假话,由于只有一个小偷,甲和丁不可能都为小偷,故,乙和丙说的都是假话.最终偷珠宝的是甲

29. 【答案】C

【解析】设年平均产量为k,则 $k = \frac{S_n}{n}$,将 S_n 看做是n的正比例函数,则k最大时,为斜率最大的时候,根据图可以看出,当n = 9时斜率最大,所以m = 9

30. 【答案】B

【解析】根据题意分析,不存在两个成绩都是不及格的情况.设优秀是A,合格是B,不合格是C.则最多的情况这三个人的数学语文成绩分别为A、C; C, A; B, B.

