$\textbf{Data Source}: \underline{\texttt{https://www.kaggle.com/vikasukani/diabetes-data-set?select=diabetes-dataset.csv}}$

Let's import Library

```
In [17]:
```

```
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import fl_score
import seaborn as sns
from sklearn.neighbors import KNeighborsClassifier
```

Let's read the data

```
In [2]:
```

```
data = pd.read_csv('diabetes-dataset.csv')
data.head()
```

Out[2]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	2	138	62	35	0	33.6	0.127	47	1
1	0	84	82	31	125	38.2	0.233	23	0
2	0	145	0	0	0	44.2	0.630	31	1
3	0	135	68	42	250	42.3	0.365	24	1
4	1	139	62	41	480	40.7	0.536	21	0

In [3]:

```
data.isnull().sum()
```

Out[3]:

Pregnancies	0			
Glucose	0			
BloodPressure	0			
SkinThickness	0			
Insulin	0			
BMI	0			
DiabetesPedigreeFunction				
Age	0			
Outcome	0			
dtype: int64				

In [4]:

```
data.isnull().any()
```

Out[4]:

Pregnancies	False
Glucose	False
BloodPressure	False
SkinThickness	False
Insulin	False
BMI	False
DiabetesPedigreeFunction	False
Age	False
Outcome	Folco

```
dtype: bool

In [5]:

data['Outcome'].value_counts()

Out[5]:
0  1316
1  684
```

0 indicates, human is not having diabetes and 1 indicates, human is having diabetes

Data Cleaning

Name: Outcome, dtype: int64

There are some factors where values are zero, Glucose values, for example, cannot be 0 for a human, Similarly, Blood Pressure, Skin Thickness, Insulin and BMI can not be zero for a human

```
In [6]:
non_zero = ['Glucose','BloodPressure','SkinThickness','Insulin','BMI']
for coloumn in non zero:
   data[coloumn] = data[coloumn].replace(0,np.NaN)
    mean = int(data[coloumn].mean(skipna = True))
    data[coloumn] = data[coloumn].replace(np.NaN, mean)
   print(data[coloumn])
0
       138.0
1
        84.0
       145.0
2
       135.0
4
       139.0
       75.0
1995
1996
       179.0
1997
        85.0
1998
      129.0
1999
        81.0
Name: Glucose, Length: 2000, dtype: float64
        62.0
        82.0
1
2
        72.0
       68.0
3
4
        62.0
       64.0
1995
1996
        72.0
1997
        78.0
1998
       110.0
        72.0
Name: BloodPressure, Length: 2000, dtype: float64
0
       35.0
       31.0
       29.0
2.
3
       42.0
4
       41.0
1995
       24.0
1996
       42.0
1997
       29.0
1998
       46.0
       15.0
1999
Name: SkinThickness, Length: 2000, dtype: float64
       153.0
       125.0
1
2
       153.0
       250.0
       480.0
4
1995
       55.0
```

```
130.0
1996
1997
        153.0
1998
        130.0
        76.0
1999
Name: Insulin, Length: 2000, dtype: float64
        33.6
        38.2
1
        44.2
3
        42.3
        40.7
        29.7
1995
1996
        32.7
1997
        31.2
        67.1
1998
1999
        30.1
Name: BMI, Length: 2000, dtype: float64
```

Observation: We have replaced the zero value with NaN and Nan value mean of cloumn

Data Visiualization

In [7]:

```
sns.pairplot(data,hue='Outcome')
```

Out[7]:

<seaborn.axisgrid.PairGrid at 0x2a23c9eb9e8>

In [8]:

```
sns.countplot(x='Outcome', data= data)
```

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x2a23f896cf8>

Taining Model

In [18]:

```
X = data.iloc[:,0:8]
Y = data.iloc[:,8]
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,stratify=Y)
```

In [19]:

```
x_train.head()
```

Out[19]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age
1337	5	130.0	82.0	29.0	153.0	39.1	0.956	37
423	2	115.0	64.0	22.0	153.0	30.8	0.421	21
1665	1	143.0	84.0	23.0	310.0	42.4	1.076	22
1796	9	164.0	78.0	29.0	153.0	32.8	0.148	45
105	1	126.0	56.0	29.0	152.0	28.7	0.801	21

In [20]:

 $x_{test.head()}$

Out[20]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
1980	17	163.0	72.0	41.0	114.0	40.9	0.817	47
197	3	107.0	62.0	13.0	48.0	22.9	0.678	23
1215	1	106.0	76.0	29.0	153.0	37.5	0.197	26
328	2	102.0	86.0	36.0	120.0	45.5	0.127	23
1915	2	142.0	82.0	18.0	64.0	24.7	0.761	21

```
In [21]:
y train.head()
Out[21]:
1337
       1
423
       0
1665
       0
1796
       1
105
       0
Name: Outcome, dtype: int64
In [22]:
y test.head()
Out[22]:
1980
       1
197
       1
1215
       0
328
       1
1915
      0
Name: Outcome, dtype: int64
In [23]:
import math
math.sqrt(len(y_test))
Out[23]:
20.0
We will take k values as odd because if it will be even it will create confusion between 2 classes
In [26]:
classifier = KNeighborsClassifier(n neighbors=21,metric = 'euclidean')
classifier.fit(x_train,y_train)
Out[26]:
KNeighborsClassifier(metric='euclidean', n neighbors=21)
In [28]:
y pred = classifier.predict(x test)
y pred
Out[28]:
array([1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1,
      1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0,
      0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
      0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
      1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
       0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1,
       0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
       0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0,
       0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1,
       0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1,
       0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
       0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
      1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,
      0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1,
      1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0,
```