* * *	业年级	学号	姓名	3	授课教师
* *	分数		ΞΞ	四	总分
* *	评阅人				
	71 04.75				
-	、填空题(每小题 3 分共 18	分)		
- I was	1. 已知 z =	$\ln(\sqrt{x}+\sqrt{y})$, \mathbb{Q}	$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = $	•	
			Ca Cy		
2	2. 已知函数	z = z(x, v)由方程	$z = e^{2x-3z} + 2y \text{ m}$	⇒ mu 2 ∂z . ∂)z
		(4,0)	12 - C + 2 y 1/11)	$\frac{\partial}{\partial x} + \frac{\partial}{\partial x} + \frac{\partial}{\partial x}$	by =
		1			
3	. 函数 <i>u</i> = -	$\sqrt{r^2 + v^2 + z^2}$ 在	点(1,1,1)处的梯度 g	radu =	•
		$\sqrt{x} + y + z$			
1	计直线 /	$\int 2x + y = 4$	点(2,-1,-1)的平面大		
	、 丛且以上:	$y + 2z = 0^{(X)}$	点(2,-1,-1)的平面力	万程为	*
1					
5	极限 lim(1	$(1+\frac{1}{xy})^{\frac{x^2}{x+y^2}} = $			
	$x \to \infty$	xy	*		
1					
6.	曲面e ^z -	$z^2 + xy = 3 \text{त.}$	2,1,0) 处的切平面方	程为	
		每小题 4 分共 16 分			•
1	10 W (1	$xy\frac{x^2-y^2}{x^2}$	$x^2 + y^2 \neq 0$ 在点		
1.	函数 $J(x, j)$	$y) = \begin{cases} x^2 + y^2 \end{cases}$	在点	((0,0)处().
		(0,	$x^2 + y^2 = 0,$		
	(A) 不连约	卖;	(B) 连续	但偏导数不存在	Έ:
Distance of the last	(C) 偏导数	存在但不可微;			,
			(D) 可微		
2.	函数 <i>u</i> = -	(2) 在)	点(1,1,1)处最大方向	导数为().
	١	$ x^2+y^2+z^2 $			·
授课	1	命题教师或命	《高等微积分A》	院系负责	
the error	1	题负责人签字	课程组	人签字	年月日
教师	1			8 / JTT 7	

* * *

(D) $\frac{1}{2}$.

3. 设D由 $x^2 + y^2 = 2y$ 围成的圆域,则二重积分 $I = \iint x^2 dx dy = ($).

(A) 2π ; (B) $\frac{\pi}{4}$; (C) π ; (D) $\frac{\pi}{2}$.

4. 圆弧r=1以外而圆弧 $r=2\cos\theta$ 以内的图形的面积等于(

(A) $\frac{\pi}{6} + \frac{1}{2}$; (B) $\frac{\pi}{3} - \frac{\sqrt{3}}{2}$; (C) $\frac{\pi}{6} - \frac{1}{2}$; (D) $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$.

三、计算题(共66分)

1. (10 分) 已知 f(u,v) 有二阶连续偏导数且 $z = f(x,\frac{x}{v})$, 求 $\frac{\partial z}{\partial r},\frac{\partial^2 z}{\partial v^2}$.

2. (10 分) 设x + y + z = 0, $x^2 + y^2 + z^2 = 1$ 确定隐函数x = x(z)与y = y(z), 求 $\frac{dx}{dz}$, $\frac{dy}{dz}$.

3. (10分) 已知f可微且f(0) = 0, f'(0) = 1, 求极限

$$I = \lim_{t \to 0^+} \frac{1}{t^3} \iint_{x^2 + y^2 \le t^2} f(\sqrt{x^2 + y^2}) dx dy.$$

4. (9 分) 求抛物面 $z = \frac{1}{2}(x^2 + y^2)$ 在 $0 \le z \le 2$ 之间部分的面积.

5. (9分) 设 Ω 是由曲面 $x^2 + y^2 = z^2$ 与平面z = 1所围区域,计算三重积分:

$$I = \iiint_{\Omega} \sqrt{x^2 + y^2} \, dv \,.$$

6. (9 分) 设 Ω : $\begin{cases} x^2 + y^2 + z^2 \le R^2, \\ z \ge 0. \end{cases}$, 计算三重积分 $I = \iiint (3x + 4y + 3z^2) dv.$

7. (9 分) 求曲线
$$L: \begin{cases} \frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1 \\ x^2 + y^2 = 1 \end{cases}$$
 上与 xoy 坐标平面距离最近的点.

2011春季高数 I-2 期中

$$-. 1. \sqrt{1-x^2-y^2} = 2. \frac{f_1'}{1+f_1'+f_2'} dx + \frac{f_2'}{1+f_1'+f_2'} dy = 3. \int_0^1 dy \int_{y^2}^y f(x,y) dx$$

$$\frac{\partial^2 u}{\partial z^2} = \frac{\partial^2 u}{\partial z} = \frac{\partial^2 u}{\partial$$

2. 拿式两边对区求导得

$$\begin{cases} \frac{dx}{dz} + \frac{dy}{dz} = -1 \\ x\frac{dx}{dz} + y\frac{dy}{dz} = -2 \end{cases}$$

$$\frac{dx}{dz} = \frac{\begin{vmatrix} -1 & 1 \\ -z & y \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix}} = \frac{z-y}{y-x}, \quad \frac{dy}{dz} = \frac{\begin{vmatrix} 1 & -1 \\ x & -z \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix}} = \frac{x-z}{y-x}.$$

3. 在平面TI: 3X+4Y-Z=26上任取一点(X, Y, Z), 它到原点的距离为

$$\int \frac{\partial L}{\partial x} = 2x + 3\lambda = 0$$