Mathematik I Zahlentheorie I

Prof. Dr. Doris Bohnet Sommersemester 2020

Zeitplan Vorlesung

		Datum	Bemerkung	Inhalt
Grund- lagen			Selbststudium	Grundlagen: Mengen
			Selbststudium	Grundlagen: Relationen
			Selbststudium	Grundlagen: Abbildungen
Zahlen- theorie	1	22.04.	Einmalig Mi.	Wiederholung & Zusammenfassung Selbststudium
	2	27.04.		Zahlentheorie I
	3	28.04.		Zahlentheorie II
Algebra	4	04.05.		Gruppen
	5	11.05.		Ringe, Körper
	6	12.05.		Kryptographie
	7	18.05.		Vektorräume
Lineare Algebra	8	25.05.		Lineare Gleichungssysteme
	9	26.05.		Lineare Gleichungssysteme
	10	01.06.	Pfingstmontag	
	11	08.06.		Matrizen
	12	09.06.		Lineare Abbildungen

Lernziele

- Begriffe bzw. Aussagen kennen:
 - ✓ Teiler bzw. größter gemeinsamer Teiler (ggT)
 - ✓ Primzahl
 - √ natürliche, ganze, rationale und reelle Zahlenmengen
- und üben,
 - ✓ Beweise mit Hilfe der vollständigen Induktion durchzuführen;
 - ✓ mit Hilfe des euklidischen Algorithmus den ggT zweier ganzer Zahlen zu berechnen;
 - √ in Restklassen zu rechnen (Modulorechnung);
- ✓ (optional: Anwendung von ISBN-Prüfziffern und IBAN-Prüfziffern kennen.)

Wiederholung: Abbildungen

Dievicle Aldridungen J: f1,2,3} -> f1,2,3} Lijehtin gibt es?

3.2.1 = 3!

3.7ahultät

Vermudung: n! Þijehtire Aldildmagen von {1,...n} - □ {1,...n}

A(n) n∈ N

Beweisprinzip Vollständige Induktion

Satz: Seien A, B endliche Mengen mit |A| = |B| = n. Dann gibt es genau n! Verschiedene bijektive Abbildungen $f: A \to B$.

Johnson Jang: I.A. A (1)

f: f13 -0 f13, our eine bijohine All.

John Himsumusserung: IV. A(n) sei richig

fin ne N

John Himsumusserung: IV. A(n) = A(n+1)

f: f1.2, ... (n+1) -> f1, ..., n+1}

Lo n+1 ver. Punhle, and die (n+1) elsebildet

werden kom

also unter I.V: (n+1) on! = (n+1)! Albidoungen

Mathematik I-Prof. Dr. Doris Bohnet-Vorlesung 5

Beweisprinzip Vollständige Induktion

BSP:
$$\frac{n}{k} = n \frac{(n+1)}{2}$$

Unduktionsaufong: $n=1$: $\frac{1}{2} = k = 1 = \frac{1 \cdot (n+1)}{2}$

Unduktionsvoraussehung: $\frac{n}{k} = n \frac{(n+1)}{2}$ sei wahr für $n \in \mathbb{N}$

Unduktionsschiff: Wir Feigen die Aussage für $(n+1)$

unter Verwendung der $1 \cdot V$.

 $\frac{n+1}{2} = n \frac{n}{k} + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$
 $k=1$

Motivation - Verschlüsselungstechnik

Größter gemeinsamer Teiler

Eine natürliche Zahl d heißt **Teiler** einer Zahl $a \in \mathbb{Z}$, falls eine ganze Zahl $k \in \mathbb{Z}$ existiert, so dass:

$$a = k \cdot d$$

Man schreibt kurz: $d \mid a$

$$a = 42, 7142$$

Eine natürliche Zahld, die

- zwei Zahlen $a, b \in \mathbb{Z}$ teilt $(\underline{d} \mid \underline{a} \text{ und } \underline{d} \mid \underline{b})$, und
- für jeden Teiler d' von $a, b \in \mathbb{Z}$ gilt: $d' \leq \overline{d}$

heißt größter gemeinsamer Teiler von $a,b\in\mathbb{Z}$.

Man schreibt: ggT(a,b) = d

$$42 = 6.7$$

$$\alpha = k \cdot d$$

Zwei Zahlen $a, b \in \mathbb{Z}$ heißen **teilerfremd**, falls ggT(a, b) = 1 gilt.

$$a = 42$$
, $b = 24$
 99 7 $(24, 42) = 6$

$$24 = 2 \cdot 2 \cdot 2 \cdot 3$$

 $42 = 2 \cdot 3 \cdot 7$

Primzahl & Primfaktorzerlegung

Eine natürliche Zahl $p \ge 2$ heißt **Primzahl**, falls sie nur die Teiler 1 und p besitzt.

Jede natürliche Zahl $n \geq 2$ besitzt eine eindeutige **Primfaktorzerlegung**, d.h. es existieren Primzahlen $p_1 < 1$ $\cdots < p_k$ und natürliche Zahlen a_1, \ldots, a_k so dass

$$n = p_1^{a_1} \cdot p_2^{a_2} \cdot \dots \cdot p_k^{a_k} \qquad 2 = 2^3 \cdot 3$$

$$24 = 2^3 \cdot 3$$

gilt.

Beispiel:

Die Zahl 42 besitzt die Primfaktorzerlegung: $42 = 2 \cdot 3 \cdot 7$

Die Zahl 28 besitzt die Primfaktorzerlegung: $28 = 2^2 \cdot 7$

Die Zahl 48 besitzt die Primfaktorzerlegung: $48 = 2^4 \cdot 3$

Division mit Rest

Für beliebige Zahlen $a,b \in \mathbb{Z}$ gibt es genau eine Darstellung

$$a = bq + r$$

 $\text{mit } q,r \in \mathbb{Z}, 0 \le r < |b|.$

Man schreibt auch kurz: $a = r \mod b$

4+15:15:4=3R3

$$15 = 3 \mod 3$$
 $15 = 3 + 4$

Euklidischer Algorithmus - Beispiel

$$a = 127 = 70$$
 $b = 24 = 71$
 $127 = 5.24 + 7$
 $24 = 3.7 + 3$
 $70 \le 71$
 $7 = 2.3 + 1$
 113
 113
 113

Time and

$$\begin{aligned}
\tau_{j+1} \mid \tau_0 & \text{and} \\
\tau_{j+1} \mid \tau_1 & \tau_2 \\
\tau_{j+1} \mid \tau_j & \tau_{j+1} \\
\tau_{j+1} \mid \tau_j
\end{aligned}$$
The proof of Dr. Doris Robnet - Vorlesungsübersicht

Mathematik I.- Prof. Dr. Doris Robnet - Vorlesungsübersicht

Mathematik I - Prof. Dr. Doris Bohnet - Vorlesungsübersicht

Euklidischer Algorithmus

Man kann den größten gemeinsamen Teiler mit Hilfe des euklidischen Algorithmus iterativ berechnen:

 $\frac{\text{Input: } n, m \in \mathbb{Z}, m \leq n}{\text{Output: } ggT(n, m)}$

Algorithmus euklid(n, m)

Falls $n = k \cdot m$, setze ggT(n, m) = m und return.

Sonst: $n = k \cdot m + r$, r < m, setze n = m, m = r und rechne euklid(n, m).

Erweiterter euklidischer Algorithmus

 $\underline{\mathsf{Input:}}\, a,b \in \mathbb{Z}, a \leq b$

Output: ggT(a, b), x, y: d = ax + by

Setze $x_0 = 0$, $x_1 = 1$, $y_0 = 1$, $y_1 = 0$.

Algorithmus $euklid(a, b, x_0, x_1, y_0, y_1)$.

Falls $a = k \cdot b$, setze ggT(a, b) = b, $x = x_0$, $y = y_0$ und return.

Sonst: $r = a - k \cdot b$, r < b, $x_2 = x_0 - kx_1$, $y_2 = y_0 - ky_1$,

setze $a = b, b = r, x_2 = x_0 - kx_1, y_2 = y_1, y_1 = y_0$ und rechne $euklid(a, b, x_0, x_1, y_0, y_1)$.

Erweiterter euklidischer Algorithmus

$$a,b\in Z = b$$
 $ggT(a,b) = d$
 $a = 104, b = 47$ $\times_{1}y \in Z : d = a \times + by$
 $104, 47$ 100 12
 $104, 47$ 100 12
 $104, 47$ 100 12
 $104, 47$ 100 104
 $104, 47$ 100 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 $104, 47$ 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104 104
 104

Erweiterter euklidischer Algorithmus

Satz: Zwei Zahlen $a, b \in \mathbb{Z}$ sind teilerfremd $\Leftrightarrow \exists x, y \colon 1 = ax + by$.

Restklassen - Beispiel

$$n = 4$$
: $3:4 = 0 R3 = 0:84 + 3 = 3 \mod 4$
 $7:4 = 1 R3 = 1 - 4 + 3 = 3 \mod 4$
 $12:4 = 3 R0 = 3:4 + 0 = 0 \mod 4$

Agriculentielation

Aquivaleur blasse = Resthlasse

$$\begin{bmatrix}
0 \\
0
\end{bmatrix} = \begin{cases}
-12, -8, -4, 0, 4, 8, 12, \dots \end{cases}$$

$$\begin{bmatrix}
3 \\
3
\end{bmatrix} = \begin{cases}
-9, -5, -1, 3, 7, 44, 5, \dots \end{cases}$$

$$\begin{bmatrix}
4 \\
1
\end{bmatrix} = \begin{cases}
-12, -4, -7, -3, 1, 5, 9, 13, \dots \end{cases}$$

$$\begin{bmatrix}
4 \\
1
\end{bmatrix} = \begin{bmatrix}
0
\end{bmatrix}$$
Mathematik I - Prof. Dr. Doris Bohnet - Vorlesungsübersicht

Restklassen

Auf \mathbb{Z} ist für jedes $n \notin \mathbb{N}$ eine Äquivalenzrelation definiert durch:

$$a \equiv_n b \Leftrightarrow a = b \bmod n$$

Man liest: "a gleich b modulo n".

Die Äquivalenzbeziehung \equiv_n besitzt genau n Äquivalenzklassen:

$$\overline{\mathbb{D}} = \{a \in \mathbb{Z} \mid a = 0 \bmod n \}, [1] = \{a \in \mathbb{Z} \mid a = 1 \bmod n \}, \dots, [\underline{n-1}] = \{a \in \mathbb{Z} \mid a = (n-1) \bmod n \}$$

Wir nennen diese Äquivalenzklassen Restklassen und schreiben kurz für die Menge der Äquivalenzklassen:

$$\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}, |\mathbb{Z}_n| = n$$

Beispiel:

Es gibt nur eine Restklasse von 1, deswegen ist $\mathbb{Z}_1 = \{[0]\} = \mathbb{Z}$.

Es gibt zwei Restklassen von 2, deswegen ist $\mathbb{Z}_2 = \{[0], [1]\}$. Die Restklassen enthalten die geraden bzw. ungeraden Zahlen.

Modulorechnung (Rechnen mit Restklassen)

Seien $n_1 = a \mod m$, $n_2 = b \mod m$.

Addition:

$$(n_1+n_2) = (a+b) \mod m$$

Multiplikation:

$$(n_1 \cdot n_2) = (a \cdot b) \bmod m$$

Beispiel:

Wir berechnen 7⁶⁶ mod 13.

$$7^{2} \mod 13 = 10$$
 $7^{4} \mod 13 = 100 \mod 13 = 9$
 $7^{8} \mod 13 = 81 \mod 13 = 3$
 $7^{16} \mod 13 = 9 \mod 13 = 9$
 $7^{32} \mod 13 = 81 \mod 13 = 3$
 $7^{64} \mod 13 = 9 \mod 13 = 9$

Dann ist $7^{66} \mod 13 = 7^{64} \mod 13 \cdot 7^2 \mod 13 = 9 \cdot 10 \mod 13 = 12$

Modulorechnung (Rechnen mit Restklassen)

Beispiel:Teilbarkeitsregeln.

$$a = \sum_{i} a_{i} 10^{i}$$

$$a \mod 3 = \sum_{i} a_{i} 10^{i} \mod 3 = \sum_{i} a_{i} \mod 3 \cdot 1^{i} = 0 \Leftrightarrow \left(\sum_{i} a_{i}\right) \mod 3 = 0$$

Anwendung: Prüfziffern

Eine ISBN-Nummer besteht aus 13 Ziffern, die letzte Ziffer ist eine Prüfziffer. Die Prüfziffer berechnet sich aus der Modulorechnung wie folgt:

ISBN: $a_1 a_2 \dots a_9$

Prüfziffer: Man wählt die Prüfziffer a_{13} , so dass

$$(1 \cdot a_1 + 3 \cdot a_2 + 1 \cdot a_3 + \dots + 3 \cdot a_{12} + 1 \cdot a_{13}) mod \ 10 = 0$$

Beispiel:

Wir überprüfen die ISBN-Nummer

Prüfziffer: $(9+3\cdot 7+8+3\cdot 3+5+3\cdot 4+0+3\cdot 8+9+3\cdot 1+0+3\cdot 6) mod\ 10=118\ mod\ 10=8$ Also ist die Prüfziffer 2.

Anwendung: Prüfziffern

Vertippt man sich an einer Stelle, beispielsweise

Berechnet sich die Prüfziffer als wegen

$$(9+3\cdot 7+9+3\cdot 3+5+3\cdot 4+0+3\cdot 8+9+3\cdot 1+0+3\cdot 6) mod\ 10=119\ mod\ 10=9$$
 als 1. Also wird dieser Tippfehler erkannt.

Vertauschen wir aus Versehen zwei Ziffern

Prüfziffer: $(9+3\cdot 7+3+3\cdot 8+5+3\cdot 4+0+3\cdot 8+9+3\cdot 1+0+3\cdot 6) mod\ 10=128\ mod\ 10=8$

Also ist die Prüfziffer 2.

Der Fehler wird nicht erkannt.