106010006 黃詩瑜 電機 21

Working Item	Specification	Simulation	Calculation	
Vdd	1.8-V			
Tail current(Imx)	Open for design(µA)#1	34.7230		
Differential-mode gain	9(V/V)	9.2782	9.2785422	
Input common mode	Open for design (VBS, V)	VBS:0.7		
		VBS1:0.48		
Common-mode gain	Open for design (V/V)	-57.0533m	-61.3153 <i>m</i>	
Input size	Open for design(W/L)	Mx1:50u/1.5u		
		Mx:50u/5u		
Differential gm	Open for design(mA/V)	352.7361m		
Load R	Open for design(Ohm)	29k		
Bandwidth	Open for design (MHz)#2	3.79705	3.662	
Linear range	Single-ended input amplitude(mV)#3	21.4	4.015	
FoM	(#2) x (#3) / (#1)	2.3401	0.4234	

(a)

Mx1: W=50u L=1.5u Mx: W=50u L=5u VBS=0.7V VBS1=0.48V Rd=29k(ohm)

small-signal transfer characteristics

v(vout1,vout2)/v+ = 9.2782 input resistance at v+ = 1.000e+20 output resistance at v(vout1,vout2) = 52.6079k

(b)

**** mosfets

subckt			
element	0:mx1a	0:mx1b	0:mx
model	$0:n_18.1$	$0:n_18.1$	$0:n_18.1$
region	Saturati	Saturati	Saturati
id	17.3615u	17.3615u	34.7230u
ibs	-968.9916a	-968.9916a	-5.198e-21
i bd	-4.6659f	-4.6659f	-968.9838a
vgs	430.7466m	430.7466m	480.0000m
vds	1.0273	1.0273	269.2534m
vbs	-269.2534m	-269.2534m	0.
vth	410.6667m	410.6667m	324.8238m
vdsat	72.1285m	72.1285m	147.4870m
vod	20.0799m	20.0799m	155.1762m
beta	10.2686m	10.2686m	3.0062m
gam eff	514.4938m	514.4938m	507.4460m
gm	352.7361u	352.7361u	377.8529u
gds	3.5344u	3.5344u	4.5115u
gmb	62.6927u	62.6927u	75.4141u
cdtot	60.6532f	60.6532f	97.8384f
cgtot	388.2851f	388.2851f	1.6549p
cstot	387.9204f	387.9204f	1.7093p
cbtot	203.6234f	203.6234f	541.7903f
cgs	309.7622f	309.7622f	1.4923p
cgd	17.7400f	17.7400f	26.5692f

測得 Waveform 斜率為 gain= -57.1m(V/V)

Equation					
File	Equation	Specification		Result	
riie	Equation	Min	Max	Value	Mean
D0:hw5c.sw0	gain			-57.1m	

利用 hspice measure 測得 gain= -57.0533m(V/V)

***** dc transfer curves tnom= 25.000 temp= 25.000 ****** dcgain= -57.0533m

手算 gain 值:

ro=222k(ohm) , gm=352.7361u(V/A)

$$\frac{\Delta Vout}{\Delta Vin} = \frac{-Rd}{2ro + \frac{1}{gm}} = \frac{-29k}{2X222k + \frac{1}{352.73621u}} = -0.0613153(\frac{V}{V})$$

與 hspice measure 測得 gain 值誤差:

$$\frac{57.0533m - (61.3153m)}{57.0533m}X100\% = 7.47\%$$

有一些誤差,原因是左右兩邊結構完全對稱,Vout1=Vout2 的理想情況下,才可以將 differential amplifer 視為兩個 half circuit,因為某些 variation 的問題,所以實際出來的模擬值會有誤差。

(d)

測得 Waveform 斜率為 gain= 10.5(V/V)

Equation						
File	Equation	Specification		Result		
riie	Equation	Min	Max	Value	Mean	
D0:hw5d.sw0	slope('0 par(diff)',0)			10.5		

利用 hspice measure 測得 gain=9.2782 (V/V)

**** small-signal transfer characteristics

```
v(vout1,vout2)/v+ = 9.2782
input resistance at v+ = 1.000e+20
output resistance at v(vout1,vout2) = 52.6079k
```

手算 gain 值:

$$gain = gm(ro//Rd) = \frac{gm}{\frac{1}{ro} + \frac{1}{Rd}}$$
, $ro \not \gg Mx1a \not = 0$, $gm \not \gg Mx1a \not = 0$

$$gain = \frac{gm}{\frac{1}{ro} + \frac{1}{Rd}} = \frac{325.7361u}{\frac{1}{283k} + \frac{1}{29k}} = 9.2785422$$

與 hspice measure 測得 gain 值誤差:

$$\frac{9.2782 - 9.2785422}{9.2782} X100\% = 0.000584\%$$

誤差極小,模擬值與手算值幾乎一樣

(e)

input =	0:v+	<pre>output = v(vout1,vo</pre>	ut2)
	(rad/sec)	poles (
real	imag	real	ımag
-22.0801x	0.	-3.51416x	0.
-23.8576x	0.	-3.79705x	0.
-526.232x	0.	-83.7525x	0.
-872.817x	-523.986x	-138.913x	-83.3949x
-872.817x	523.986x	-138.913x	83.3949x
zeros	(rad/sec)	zeros (hertz)
real	imag	real	imag
-22.0825x	0.	-3.51454x	0.
-698.132x	485.545x	-111.111x	77.2768x
-698.132x	-485.545x	-111.111x	-77.2768x
	0		0
8.46003g	0.	1.34645g	0.

手算:

$$gain = \frac{(C_{GD} - g_m)R}{as^2 + bs + 1}$$

$$R = Rd//ro = \frac{1}{\frac{1}{29k} + \frac{1}{283k}} = 2.63X10^4$$

gm = 352.7361u(V/A), Rs = 5k(ohm), Cgs = 309.7622f(F), Cgd = 17.74f(F)

$$a = R_s R (C_{GS} C_{GD} + C_{DB} C_{GD} + C_{GS} C_{DB} + C_{GD} C_L + C_{GS} C_L)$$

= $5kX2.63X10^4 (309.7622fX17.74f + 41.2fX17.74f + 309.7622fX41.2f + 17.74fX1.5p + 309.7622fX1.5p = 6.7096X10^{-17}$

$$b = (1 + g_m R)C_{GD}R_S + R_SC_{GS} + R(C_{DB} + C_{GD} + C_L)$$

$$= (1 + 352.7361uX2.63X10^4)17.74fX5k + 5kX309.7622f$$

$$+ 2.63X10^4(41.2f + 17.74f + 1.5p) = 4.346X10^{-8}$$

$$pole1 = \frac{1}{bX2X\pi} = \frac{1}{4.346X10^{-8}X2X\pi} = 3.662 \times 10^6 \text{(Hz)}$$

$$pole2 = \frac{b}{aX2X\pi} = \frac{4.346X10^{-8}}{6.7096X10^{-17}X2X\pi} = 1.03 \times 10^{8} (Hz)$$
$$zero = \frac{g_m}{C_{GD}X2X\pi} = \frac{352.7361u}{17.74fX2X\pi} = 2.1646 \times 10^{9} (Hz)$$

因為這個 differential circuit 上有許多寄生電容,產生很多 pole 和 zero,從.pz 檔可看到有 5 個 pole 和 4 個 zero,其中 pole1 和 zero1 幾乎重疊,所以兩個抵銷,手算結果的 pole1 在 3.662M(HZ)與.pz 的 pole2 在 3.797M(HZ)還蠻接近的,而 pole3/4/5 與 zero2/3 都很相近,2 個 pole 和 2 個 zero 抵銷後,會剩一個 pole,手算結果的 pole2 在 103M(HZ),在 pole3/4/5 與 zero2/35 之間,我認為很合理,.pz 的 zero4 和手算的 zero 有點差距,但是在能接受的範圍,整體來看只有 2 個 pole 和 1 個 zero 影響整個 bandwidth。

(f)

harmonic	frequency	fourier	normalized	phase	normalized
no	(hz)	component	component	(deg)	phase (deg)
1	10.0000k	124.9096m	1.0000	-90.1580	0.
2	20.0000k	31.0538u	248.6100u	-50.8016m	90.1071
3	30.0000k	115.0463u	921.0368u	-90.4578	-299.8293m
4	40.0000k	2.5307n	20.2604n	171.9430	262.1010
5	50.0000k	61.0016n	488.3661n	-90.6948	-536.8852m
6	60.0000k	183.5598p	1.4695n	-175.6228	-85.4648
7	70.0000k	72.9156p	583.7466p	74.9815	165.1394
8	80.0000k	100.6337p	805.6523p	23.9129	114.0708
9	90.0000k	46.5886p	372.9786p	-104.0390	-13.8811

total harmonic distortion = 0.0954 percent

頻率:100K(HZ) Vin (p-p)=27.6mV 振幅=13.8mV, Vout (p-p)=255mV 振幅=127.5mV

total harmonic distortion = 0.099305 percent

162.0975p

389.7459p

159.7193p

375.4179p

600.0000k

700.0000k

800.0000k

900.0000k

頻率:1M(HZ) Vin (p-p)=42.8mV 振幅=21.4m, Vout (p-p)=381mV 振幅=190.5mV

1.2701n -116.0721

2.9416n -162.4250

29.0518

80.7979

3.0538n

1.2515n

-24.4929

120.6309

172.3771

-70.8458

harmonic	frequency	fourier	normalized	phase	normalized
no	(hz)	component	component	(deg)	phase (deg)
1	1.0000x	190.6444m	1.0000	-105.4617	0.
2	2.0000x	77.8965u	408.5960u	-5.5683	99.8934
3	3.0000x	362.8724u	1.9034m	-129.0558	-23.5941
4	4.0000x	115.4543n	605.6003n	41.2401	146.7018
5	5.0000x	500.6749n	2.6262u	-141.9146	-36.4529
6	6.0000x	6.8067n	35.7037n	-98.3980	7.0637
7	7.0000x	35.0908n	184.0644n	38.6944	144.1560
8	8.0000x	3.5709n	18.7306n	50.0157	155.4773
9	9.0000x	22.4682n	117.8542n	-158.0375	-52.5758

total harmonic distortion = 0.099467 percent

頻率:10M(HZ) Vin (p-p)=38mV 振幅=19mV, Vout (p-p)=124mV 振幅=62mV

harmonic	frequency	fourier	normalized	phase	normalized
no	(hz)	component	component	(deg)	phase (deg)
1	10.0000x	61.7309m	1.0000	-166.1785	0.
2	20.0000x	42.2247u	684.0122u	-30.9186	135.2599
3	30.0000x	44.4948u	720.7866u	152.7018	318.8803
4	40.0000x	784.7430n	12.7123u	-123.2529	42.9256
5	50.0000x	22.0115n	356.5712n	142.6648	308.8433
6	60.0000x	224.0632n	3.6297u	-85.0626	81.1159
7	70.0000x	352.8835n	5.7165u	-65.8757	100.3028
8	80.0000x	78.0921n	1.2650u	-42.6355	123.5430
9	90.0000x	375.4828n	6.0826u	-31.3161	134.8624

total harmonic distortion = 0.0993807 percent

模擬出的 single-ended input amplitude value at 1MHz 為 21.4mV,手算的 linear range 值為 0.2Vov=0.2X20.0799m=4.015mV,兩者誤差非常多,推測是因為我為了符合下一題的 FoM,盡量將 電流減少,而 nmos 的狀態與 cutoff 太接近了,所以不能完全符合 current 在 saturation 的公式,且在推導公式的過程中利用了大量的近似,所以誤差才這麼多。

$$gain = gm(ro//Rd)$$
, $ro \not \equiv Mx1a \not \equiv \gamma$, $gm \not \equiv Mx1a \not \equiv \gamma$

$$gm = \mu Cox \frac{w}{L} Vov$$

$$ro = \frac{1}{\frac{1}{2}\mu Cox} \frac{W}{L} Vov^2 \lambda = \frac{1}{\lambda XId}$$

$$FoM = \frac{bandwidth \times linear\ range}{power} \propto \frac{\frac{1}{R_D}C \times V_{ov}}{I_D}$$

我先將 gain 調成大於 9,gain 正比於 Rd,所以將 Rd 設大,為了讓 gm 也增大,我將 Mx1/Mx 的 W/L 設大,再觀察 Vth 將 Vbs1 先設定在讓 Mx 保持在 saturation 的狀態,觀察.lis 檔 sweep 出的 Vbs 值再哪個地方會讓 gain 大於 9。

FoM 正比於 bandwidth 與 linear range,反比於 power,而 bandwidth 反比於 Rd*C,所以 Rd 不能太大,所以我將 Rd 減小一些,而 FoM 正比於 Vov,反比於 Id,微分後,FoM 反比於 2Vov,所以我將 Vbs 慢慢減小,FoM 就會上升,但因為 tail current 已經固定,所以 Mx1 的 source 端電壓會下降,造成 Mx 的 Vbs 下降,讓 Mx 跑到 linear region,所以 Vbs 不能調太小。降低 Mx1 的 W/L 也能增加 FoM,但是下降太多會讓 gain 變小,要隨時注意 gain 要保持在 9 以上。

```
.prot
.lib 'cic018.l' TT
 .unprot
 .option
+ post=1
+ACCURATE=1
 +runlvl=6
.option delmax = 1e-10
.temp 25
.param vs =0
Mx1a Yout1 VR1 Vx GND N_18 w=50u l=1.5u m=1
Mx1b Yout2 VR2 Vx GND N_18 w=50u l=1.5u m=1
Mx Vx VBS1 GND GND N_18 w=50u l=5u m=1
VBS VG GND dc = 0.7V

VBS1 VBS1 GND dc = 0.48V

V+ VG VG1 dc = vs ac =0.5 0

V- VG VG2 dc = -vs ac =0.5 180

VD VDD GND 1.8V
CL1 Vout1 GND 1.5pF
CL2 Vout2 GND 1.5pF
Rd1 VDD Vout1 29k
Rd2 VDD Vout2 29k
Rs1 VG1 VR1 5k
Rs2 VG2 VR2 5k
.tf V(Vout1, Vout2) V+
*b
. op
 *c
 .meas DC dcGain DERIV V(Vout1) at=0.7V
 .dc VBS 0 1.8 0.01
 .probe DC
.probe bd
+ gm = par('1/LX7(Mx1a)')
+ ro_mx1 = par('1/LX8(Mx1a)')
+ ro_mx = par('1/LX8(Mx)')
+ cdb = par('LX29(Mx1a)')
*d
*.alter
*.dc vs -1.8 1.8 0.01
*.probe DC Diff= par('(V(<u>vout1</u>)-V(<u>vout2</u>))')
*.ac dec 1k 1k 1000G
*.pz V(Vout1, Vout2) V+
*.probe ac Diffgain =par('(V(Vout1)-V(Vout2))/(V(VG1)-V(VG2))')
*f
*.alter
*V+ VG VG1 sin(0V 0.0135V 10k 0ns)

*V- VG VG2 dc =-vs ac =0

*.tran 0.1ns 1000us
*.four 10k v(vout1,vout2)
*.alter
*V+ VG VG1 sin(0V 0.0138V 100k 0ns)

*V- VG VG2 dc =-vs ac =0

*.tran 0.1ns 100us

*.four 100k v(vout1, vout2)
*.alter
*V+ VG VG1 sin(0V 0.0213V 1x 0ns)
*V- VG VG2 dc =-vs ac =0
*.tran 0.1ns 30us
*.four 1x v(vout1, vout2)
*.alter

*V+ VG VG1 sin(0V 0.019V 10x 0ns)

*V- VG VG2 dc =-vs ac =0

*.tran 0.1ns 1us
*.four 10x v(vout1, vout2)
 .end
```

***hw5