

TMA4245 Statistikk Eksamen mai 2017

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Oppgave 1

Kvalitetsavdelinga i ein fabrikk som produserer klokker ynskjer å sjå nøyare på dei defekte klokkene som av og til kjem frå produksjonen. Dei bestemmer seg for å nytta k=3 defekte klokker i inspeksjonen. Frå ei produksjonsline kjem det ein kontinuerleg straum av klokker og kvar klokke som vert produsert har sannsyn p for å vera defekt, uavhengig av kvarandre.

La X vere det minste talet på klokker ein må inspisera frå produksjonsstraumen frå produksjonslina for å identifisera eksakt k=3 defekte klokker. Me veit då at den tilfeldige variablen X er negativ-binomisk fordelt med sannsynsfordeling

$$b^*(x; k, p) = {\begin{pmatrix} x - 1 \\ k - 1 \end{pmatrix}} p^k (1 - p)^{x - k}$$
 ; $x = k, k + 1, \dots$

a) Anta i dette punktet at defektsannsynet er p = 0.1 og rekn ut sannsyna

$$P(X > 3),$$

 $P(X < 6),$
 $P(X > 6|X > 3).$

Defektsannsynet p er no anteke ukjend og skal estimerast. Kvalitetsavdelinga gjentar forsøket med å identifisera k=3 defekte klokker n gonger, og får eit tilfeldig utval: X_1, \ldots, X_n . Basert på dette tilfeldige utvalet ynskjer ein å estimera p.

b) Utlei sannsynsmaksimeringsestimatoren \hat{p} for p, basert på det tilfeldige utvalet.

Anta no at klokkefabrikken faktisk har to separate produksjonsliner, namngjeve høvesvis A og B og med ulike defektsannsyn p_A og p_B

Statistikaren i avdelinga får ein observasjon X=x på talet på klokker som må inspiserast før k=3 defekte er identifisert frå ei av de to produksjonslinene. Han veit ikkje om observajonen er henta frå produksjonsline A eller B, så han antar derfor i utgangspunktet sannsyn 0.5 for kvart av høvene.

c) Nytt Bayes sin regel til å utleia eit uttrykk for sannsynet for at observasjonen kjem frå produksjonsline A gjeve at X = x.

La så $p_A = 0.1$ og $p_B = 0.2$, samt x = 5, og rekn ut talsvaret for sannsynet for at observasjonen er frå produksjonsline A.

Oppgave 2

Ein bilprodusent vil evaluere slitasjen på bremseklossane på bilane som vert produsert. Ein definerer ein enkel lineær regresjonsmodell,

$$Y = k_0 - \beta x + \epsilon$$
,

der responsvariablen Y er tjukkleiken på bremseklossane, forklaringsvariablen x er talet på kilometer køyrd, k_0 er klosstjukkleiken for ein ny bil og β er slitasjeraten. Feilleddet ϵ antas å vera normalfordelt, $n(\epsilon; 0, \sigma)$. Me antar at k_0 er kjend, medan raten β og variansen σ^2 er ukjende modellparametrar som skal estimerast.

Bilprodusenten designar eit forsøk for å estimera β og σ^2 . Ei gruppe av n testsjåførar køyrer ulike bilar over eit varierande tal på kilometer og deretter målast klosstjukkleiken. Dette definerer eit tilfeldig utval frå modellen, $(x_1, Y_1), \ldots, (x_n, Y_n)$.

I Figur 1 presenterast tre plott av moglege utfall $(x_1, y_1), \ldots, (x_n, y_n)$ for n = 20.

Figur 1: Tre moglege utfall av forsøket i Oppgåve 2.

- a) For kva for eit av desse tre plotta i Figur 1 synast den enkle lineære regresjonsmodellen definert over å vera ein god modell? Grunngje svaret.
 - Kvifor er ikkje modellen god for dei to andre plotta?
 - Den enkle lineære regresjonsmodellen definert over må naudsynleg vere approksimativ og gyldig berre for eit intervall av forklaringsvariablen x. Forklar kort kvifor.
- b) Bruk anten minste kvadraters metode eller sannsynsmaksimeringsprinsippet til å utleia ein estimator $\hat{\beta}$ for β basert på det tilfeldige utvalet. Vis at estimatoren blir

$$\hat{\beta} = \frac{k_0 \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i Y_i}{\sum_{j=1}^{n} x_j^2}.$$

Utlei uttrykk for forventningsverdien og variansen til $\hat{\beta}$.

Som estimator for σ^2 basert på det tilfeldige utvalet er det rimeleg å nytta

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left[Y_i - (k_0 - \hat{\beta}x_i) \right]^2.$$

Vidare er det oppgjeve at $\hat{\beta}$ er normalfordelt, at

$$V = \frac{(n-1)\hat{\sigma}^2}{\sigma^2}$$

er kji-kvadratfordelt med (n-1) fridomsgrader, og at $\hat{\beta}$ og V er uavhengige tilfeldige variabler.

c) Utlei eit $100(1-\alpha)\%$ -konfidensintervall for β . Grei kort ut korleis konfidensintervallet kan nyttast til å testa om slitasjeraten er eksakt lik β_0 .

Oppgave 3

Ein bonde frå Sogn dyrkar eple. Han pakkar og sel epla i det som er nemnd '3-kilo-poser'. Talet på eple i kvar pose er sjølvsagt eit heiltal, så posane varierer naudsynleg i vekt. Ein tilfeldig pose veg X kilogram, der X er normalfordelt med forventning μ og varians σ^2 . Gå utifrå at μ er ukjend og la $\sigma^2 = 0.4^2$. Det er sjølvsagt ynskjeleg at forventninga μ er 3 kilogram.

Lageret til Rema 1000 på Sandmoen får eit stort billass med '3-kilo-poser' med eple frå bonden. Innkjøpsavdelingen på Rema 1000 ynskjer å kontrollera at posane er tunge nok. Dei tar eit tilfeldig utval på n=3 posar frå billasset, veg disse posane, og registrerer følgjande vekter: X_1, X_2, X_3 . Ein rimelig estimator for forventa vekt μ er

$$\hat{\mu} = \frac{1}{3} \sum_{i=1}^{3} X_i = \bar{X}.$$

a) Estimatoren $\hat{\mu}$ er normalfordelt, forklar kort med ord kvifor.

Utlei uttrykk for forventninga og variansen til denne normalfordelingen.

Er estimatoren $\hat{\mu}$ forventningsrett? Grunngje svaret.

Forklar kort med ord kva det inneber at ein estimator er forventningsrett.

Innkjøpsavdelinga ynskjer å sikra seg at forventa vekt av posane, μ , er minst 3 kilogram. Statistikaren i avdelinga formulerer vektkontrollen som eit hypotesetestingsproblem,

$$H_0: \mu = 3 \text{ mot } H_1: \mu < 3$$

og nyttar signifikansnivå $\alpha = 0.05$ i ein test med estimatoren $\hat{\mu}$ som testobservator.

- b) Utlei forkastningsområdet for $\hat{\mu}$ med omsyn til hypotesane definert over.
- ${f c})$ Utlei eit uttrykk for styrkefunksjonen for testen som blei definert i punkt ${f b}).$

Skisser grafisk korleis styrkefunksjonen ser ut.

Dersom forventa vekt μ er på kun 2.9 kilogram, så ynskjer statistikaren å avsløra at posane veg for lite med sannsyn minst 0.9. Rekn ut kor mange posar n det då må vere i det tilfeldige utvalet som hentast frå billasset.

Statistikaren fortset å leika seg litt med problemet etter arbeidstid. Han ser på den ordna versjonen av det tilfeldige utvalet, $X_{(1)}, X_{(2)}, X_{(3)}$ i stigande orden. Deretter definerer han ein alternativ estimator for μ ,

$$\tilde{\mu} = X_{(2)}$$

d) Utlei eit uttrykk for sannsynsfordelinga til estimatoren $\tilde{\mu}$. Vis at $\tilde{\mu}$ er ein forventningsrett estimator for μ .

Fasit

1. **a**) 0.999, 0.00856, 0.9924 **b**)
$$\widehat{p} = \frac{nk}{\sum_{i=1}^{n}} X_i$$
 c) 0.1366

2. **b**)
$$\mathrm{E}\left[\widehat{p}\right] = \beta$$
, $\mathrm{Var}\left[\widehat{\beta}\right] = \frac{\sigma^2}{\sum_{i=1}^n x_i^2}$

3. a)
$$\mathrm{E}\left[\widehat{\mu}\right] = \mu$$
, $\mathrm{Var}\left[\widehat{\mu}\right] = \frac{\sigma^2}{n}$, $\widehat{\mu}$ er forventningsrett b) Forkast H_0 dersom $\widehat{\mu} < 2.62$ c) 138 d) $f_{X_{(2)}}(x) = 6F_X(x)f_X(x)\left[1 - F_X(x)\right]$