MATH-241 Calculus	Ι
Homework 4	

Created by Rukiyah Walker Spring 2023

QUESTION 1

(1 pts)

We use the Intermediate Value Theorem to:

- A. To show that a function is continuous.
- B. To show that for a continuous function f(x), a solution to f(x) = 0 exists.
- C. To show that a function is discontinuous.
- D. To show that $\lim_{x\to a} f(x)$ does not exist.

QUESTION 2

(1 pts)

What do we need to check in order to use the Intermediate Value Theorem?

- A. Our function f(x) is continuous on the closed interval [a, b].
- B. $f(a) \neq f(b)$.
- C. $f(a) \leq N \leq f(b)$, where N is some number.
- D. All of the above.

QUESTION 3

(1 pts)

The derivative of a function f is:

A.
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- B. The value a, when f(a) = 0.
- C. When the limit of a function does not exist.
- D. The value at which a function is discontinuous.

_ Question 4

(1 pts)

What is one interpretation of the average rate of change?

A. Instantaneous velocity.

B.
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- C. The average change in position with respect to time.
- D. The derivative of a function f.

QUESTION 5	(1 pts)
What is the instantaneous rate of change?	
A. The derivative of a function f .	
B. Acceleration.	
C. The point at which a function is discontinuous.	
D. When a function $f(x) = 0$.	
Question 6	(1 pts)
The derivative of a function f is equal to 0 when:	
A. The graph of the function crosses the x -axis.	
B. When the slope of the tangent line is 0.	
C. At the point $x = 0$.	
D. The derivative does not exist.	
What does $\frac{dy}{dx} _{x=a} = f'(a)$ mean?	(1 pts)
A. The average rate of change is equal to $f'(a)$.	
B. The derivative of y divided by the derivative of x is equal to $f'(a)$.	
C. $f(x) = f'(a)$ when $x = a$.	
D. The derivative of a function f at the point $x = a$ is equal to $f'(a)$.	
Question 8	(1 pts)
Suppose we have a function f that represents the position of a particle. The a the particle can be represented by:	acceleration of
A. The velocity.	
B. $f'(x)$.	
C. The second derivative of the function.	
D. The instantaneous rate of change.	

Is the function, represented by the graph above, differentiable? Why?

A. No, since the slope of the tangent line is equal to $\pm \infty$.

B. Yes, since
$$\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$$
.

C. Yes, since there is no jump discontinuity.

D. No, since
$$\lim_{x\to a} f(x) = 0$$

(1 pts)

Suppose we have the function $f(x) = x^3 - x^2$.

Using the power and difference rules for derivatives, what is f'(x)?

A.
$$3x^3 - 2x^2$$

B.
$$3x^2 - 2x$$

C.
$$3x - 2x$$

D.
$$3x^4 - 2x^3$$