# $\begin{array}{c} {\rm EE413} \\ {\rm Lab~005} \end{array}$ the Operational Amplifier

Jonas Sjöberg Esther Hedlund

Data Performed: 26 November 2014 Instructor: TODO

### Abstract

"This lab is meant to show the practical use of the operational amplifier in analog circuit design. Several common circuit configurations will be discussed."

# Contents

| 1 | Circuit prototyping setup                     | 2           |
|---|-----------------------------------------------|-------------|
| 2 | Inverting DC Amplifier 2.1 Theory             | 2<br>2<br>3 |
| 3 | Inverting AC Amplifier 3.1 Oscilloscope shots |             |
| 4 | Non-inverting DC Amplifier 4.1 Measurements   | <b>4</b>    |
| 5 | Non-inverting AC Amplifier 5.1 Measurements   | <b>4</b>    |
| 6 | Active full wave rectifier                    | 4           |
| 7 | Results                                       | 6           |

#### Circuit prototyping setup 1

The circuit was build on a solderless breadboard, using through-hole parts. A classic 741 op amp was used with a  $\pm$ 15V power supply.

#### Inverting DC Amplifier 2

#### 2.1 Theory



Figure 1: Inverting DC amplifier

The basic topology for an inverting amplifier is shown in Figure 1. Gain, Av, can be expressed as a ratio of the feedback impedance to the input impedance. A fraction of the output is fed back, causing the op amp to compensate and in effect amplify.

$$A_v = \frac{R_2}{R_1} \tag{1}$$

The circuit gain for ideal components is therefore; For  $R_2 = 100k\Omega$ :

$$A_v = \frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$$

$$= \frac{100k\Omega}{10k\Omega} = 10$$
(3)

$$=\frac{100k\Omega}{10k\Omega}=10\tag{3}$$

$$= 20 \times \log \frac{10}{1} = 20dB \tag{4}$$

For  $R_2 = 10k\Omega$ :

$$A_v = \frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$$

$$= \frac{10k\Omega}{10k\Omega} = 10$$
(6)

$$=\frac{10k\Omega}{10k\Omega}=10\tag{6}$$

$$= 20 \times \log \frac{1}{1} = 0dB \tag{7}$$

In both cases, the signal phase is inverted 180°.

#### 2.2 Measurements

Measured values for the test setup.

| Uout (V) | Av (ggr)         |
|----------|------------------|
| +1.087   | -10.54           |
| +10.236  | -10.15           |
| -10.104  | -10.06           |
|          | +1.087 $+10.236$ |

Table 1:  $R2 = 100k\Omega$ 

| Uin (V) | Uout (V) | Av (ggr) |
|---------|----------|----------|
| -0.1051 | +0.1051  | -1       |
| -1.008  | +1.008   | -1       |
| +1.004  | -1.004   | -1       |

Table 2: R2 =  $10k\Omega$ 

#### Inverting AC Amplifier 3

#### 3.1 Oscilloscope shots

#### 3.2 Measurements

 ${\it Measured amplification} = --{\it Measured phase} = 180 \; {\it Theoretical amplifier} =$ Theoretical phase =



Figure 2: Inverting AC amplifier

# 4 Non-inverting DC Amplifier

Av = 1 + R2/R1

## 4.1 Measurements

| Uin (V) | Uout (V)    | Av (ggr) |
|---------|-------------|----------|
| +0.1007 | +0.2164 2   | .15      |
| +1.002  | $+2.048\ 2$ | .04      |
| -1.005  | -2.03 2     | .019     |

Table 3:  $R2 = 10k\Omega$ 

| Uin (V) | Uout (V) | Av (ggr) |
|---------|----------|----------|
| +0.1009 | +1.178   | 11.67    |
| +1.1013 | +11.3    | 11.15    |
| -1.004  | -11.09   | 11.05    |

Table 4:  $R2 = 100k\Omega$ 

## 5 Non-inverting AC Amplifier

## 5.1 Measurements

```
Input signal amplitude =
Output signal amplitude =
Measured amplification =
Measured phase =
Theoretical amplification = Theoretical phase =
```



Figure 3: Non-inverting DC amplifier



Figure 4: Non-inverting AC amplifier

recovery and rise time faster when D1 biases on. This improves circuit response times.



Figure 5: Active full wave rectifier

# 7 Results

TODO