

Resumen-Tema-1.pdf

ferluque

ESTADÍSTICA DESCRIPTIVA E INTROD A LA PROBABILIDAD

1º Doble Grado en Ingeniería Informática y Matemáticas

Facultad de Ciencias
Universidad de Granada

saboteas a tu propia persona? cómo?? escríbelo **aquí** y táchalo

manual de instrucciones: escribe sin filtros y una vez acabes, táchalo (si lo compartes en redes mencionándonos, te llevas 10 coins por tu cara bonita)

Tema 1

Conceptos básicos

- Fenómeno determinístico: mismas condiciones = mismos resultados
- Fenómeno aleatorio: mismas condiciones \neq mismos resultados
- Población: conjunto de unidades con alguna(s) característica(s) en común, sobre la que obtener información
- Muestra: subconjunto de la población
- Carácter: propiedad a estudiar (debe observarse en todos los individuos de la población):
 - o Modalidad: "Variantes" del carácter
 - Puede ser cualitativo o cuantitativo
- Escalas de medida:
 - \circ Nominal: $x_A=x_b$ ó $x_A
 eq x_b$
 - \circ *Ordinal*: Nominal + $x_A < x_b$ ó $x_A > x_B$

 - o De razón: Ordinal + A es $x_A x_B$ veces superior (o inferior) a B

Variables

Pueden ser **discretas** (el paso de un valor a otro representa un salto) o **continuas** (pueden tomar cualquier valor posible entre dos valores)

Frecuencia absoluta del valor x_i (n_i) : Número total de individuos de la población que presenta el valor x_i

Frecuencia relativa del valor x_i (f_i): Proporción de individuos que presentan el valor x_i

Frecuencia absoluta acumulada del valor x_i (N_i): Número total de individuos de la población que presentan un valor menor o igual que x_i

Frecuencia relativa acumulada del valor x_i (F_i): Proporción de individuos que presentan un valor menor o igual que x_i

La distribución de frecuencias de una variable estadística unidimensional serán los pares (modalidad, frecuencia) $\{(x_i,n_i\dots);i=1,\dots,k\}$

Tablas estadísticas

Variables discretas y atributos

Modalidades	Frec. Abs.	Frec. Rel.	Frec. Abs. Acum.	Frec. Rel. Acum.
<i>x</i> ₁	n_1	f_1	$N_1 = n_1$	$F_1 = f_1$
<i>X</i> ₂	n_2	f_2	$N_2 = n_1 + n_2$	$F_2 = f_1 + f_2$
:	:	:	:	:
Xi	ni	fi	$N_i = n_1 + n_2 + \cdots + n_i$	$F_i = f_1 + f_2 + \cdots + f_i$
:	:	:	:	:
x_k	n _k	f_k	$N_k = n_1 + n_2 + \cdots + n_k = n$	$F_k = f_1 + f_2 + \cdots + f_k = 1$

Variables continuas

Intervalos	Marcas	Amplitud	Frec. Abs.	Frec. Rel.	Frec. Acum.
		$a_1=e_1-e_0$	n_1	f_1	$N_1 = n_1$
$(e_1, e_2]$	$c_2 = \frac{e_1 + e_2}{2}$	$a_2=e_2-e_1$	n_2	f_2	$N_2 = n_1 + n_2$
:	Ė	:	:	:	:
$(e_{i-1},e_i]$	Ci	ai	n _i	fi	$N_i = n_1 + n_2 + \cdots + n_i$
:	i	:	<u> </u>	:	1
$(e_{k-1},e_k]$	c_k	a_k	n_k	f_k	$N_k = n_1 + n_2 + \cdots + n_k = n$

Representaciones gráficas

Atributos

- Diagrama de sectores
- Diagrama de rectángulos (o barras)
- Pictograma

Variables discretas

- Diagrama **de barras** (rectángulos para las continuas) (n_i en función de x_i)
- Curva acumulativa o de distribución (o función de distribución) (N_i en función de x_i ; en este caso la función será escalonada, y valdrá el valor $N_i \ \forall x \in [x_i, x_{i+1})$). Además, su dominio es $\mathbb R$ y vale $0 \ \forall x < x_1$ y $1 \ \forall x \geq x_k$

Variables continuas

- ullet Histograma: Rectángulos de base $a_i=x_{i+1}-x_i$, y altura $h_i=rac{n_i(o\;f_i)}{a_i}$
- Poligonal de frecuencias: Unir los puntos centrales de los techos de las columnas del histograma
- Curva acumulativa o de distribución (o función de distribución):

$$F(e_i) = \sum_{j=1}^i f_j$$

Para ello suponemos equidistribución de frecuencias en el intervalo. De nuevo su dominio es \mathbb{R} y $F(e)=0\ \forall x< x_0$ y $F(e)=1\ \forall x\geq x_k$

Serie Original **8 de junio** solo en

Medidas de posición

Media aritmética

$$ar{x} = rac{1}{n} \sum_{i=1}^k x_i n_i$$

Si es continua,
$$x_i=c_i=rac{e_i-e_{i-1}}{2}$$

$$x_1 < \bar{x} < x_k$$

Media de las desviaciones respecto de la media es 0

Si
$$Y=aX+B\Rightarrow ar{y}=aar{x}+b$$

Media de los cuadrados de las desviaciones es mínima respecto de la media y es la varianza σ_x^2

Media geométrica

Para variables que tienen efectos acumulativos en el tiempo (como el interés)

$$G=\sqrt[n]{\prod_{i=1}^k x_i^{n_i}}$$

Logaritmo de G es la media aritmética de los logaritmos de la variable

$$log G = \sum_{i=1}^{k} f_i log x_i$$

Media armónica

Magnitudes que son cocientes de dos magnitudes (velocidad). Inversa de la media aritmética de los valores inversos de la variable

$$H = rac{n}{\sum_{i=1}^k rac{n_i}{x_i}}$$

Media cuadrática

Promedios sobre superficies

$$Q = \sqrt{\sum_{i=1}^k f_i x_i^2}$$

Mediana

Valor de la variable que divide a la población en dos partes iguales.

Variables discretas

$$x_i \ / \ N_{i-1} < rac{n}{2} \le N_i$$

• Si
$$N_i > \frac{n}{2} \Rightarrow Me = x_i$$

$$\begin{array}{ll} \bullet & \mathrm{Si} \; N_i > \frac{n}{2} \; \Rightarrow Me = x_i \\ \bullet & \mathrm{Si} \; N_i = \frac{n}{2} \Rightarrow Me = \frac{x_{i+1} - x_i}{2} \end{array}$$

Variables continuas

$$I_i = (e_{i-1},\ e_i]\ /\ N_{i-1} < rac{n}{2} < N_i$$

- ullet Si $N_i>rac{n}{2}\Rightarrow$ Se interpolará según **la curva de distribución**
- Si $N_i = \frac{n}{2} \Rightarrow Me = e_i$

× / × / × / × / × / × /

DESFOCATE CON WIDLY

saboteas a tu propia persona? cómo?? escríbelo **aquí** y táchalo

manual de instrucciones: escribe sin filtros y una vez acabes, táchalo (si lo compartes en redes mencionándonos, te llevas 10 coins por tu cara bonita)

Valor que más se repite

 $\it Variables \ discretas: El \ que \ tenga \ mayor \ n_i$

Variables continuas: En el intervalo que mayor h_i tenga, interpolamos según el histograma

Percentiles

El percentil de orden r, es un valor de la variable P_r tal que el r% de los individuos presentan un valor de la variable menor o igual que P_r

Se hace exactamente igual que con la **mediana**, solo que sustituimos $\frac{n}{2}$ por $\frac{nr}{100}$

Medidas de dispersión

Absolutas

- Recorrido: $R = x_k x_1$
- Recorrido intercuartílico: $RI = Q_3 Q_1$
- Desviación absoluta media respecto a \overline{x} : $D_{\overline{x}} = \frac{\sum_{i=1}^{k} |x_i \overline{x}| n_i}{n}$
- ullet Desviación absoluta media respecto a Me: $D_{Me} = rac{\sum_{i=1}^k |x_i Me| n_i}{n}$
- Varianza: $\sigma_x^2=rac{\sum_{i=1}^k{(x_i-ar{x})^2n_i}}{n}$ Siempre positiva. Mínima dispersión cuadrática. Si $Y=aX+b\Rightarrow~\sigma_y^2=a^2\sigma_x^2$
- Desviación típica: $\sigma_x=+\sqrt{\sigma_x^2}$ Si $Y=aX+b\Rightarrow \sigma_y=|a|\sigma_x$ $D_{Me}< D_{\bar{x}}<\sigma_x$

Relativas

- ullet Coeficiente de apertura: $C_A=rac{x_k}{x_1}$
- Recorrido relativo: $R_R = rac{x_k x_1}{ar{x}}$
- ullet Recorrido semi-intercuartílico: $R_{SI}=rac{Q_3-Q_1}{Q_3+Q_1}$
- Coeficiente de variación de Pearson: $CV(X) = rac{\sigma_x}{|ar{x}|}$
- ullet Índice de dispersión respecto a la mediana: $V_{Me}=rac{D_{Me}}{Me}$

Momentos

Sea $r \in \mathbb{N}$ se llama **momento de orden r respecto al valor "a"** a la cantidad:

$$_{a}m_{r}=\sum_{i=1}^{k}f_{i}(x_{i}-a)^{r}$$

No centrales: a=0

$$m_r = \sum_{i=1}^k f_i x_i^r$$

Centrales: $a=\bar{x}$

$$\mu_r = \sum_{i=1}^k f_i (x_i - ar{x})^r$$

Relaciones

$$\mu_2 = \sigma_x^2 = m_2 - m_1^2$$

 $\mu_3 = m_3 - 3m_2m_1 - 2m_1^3$

 $\mu_4 = m_4 - 4 m_3 m_1 + 6 m_1^2 m_2 - 3 m_1^4$

 $m_2 = \mu_2 - m_1^2$

...

Medidas de asimetría

Coeficiente de asimetría de Fisher

$$\gamma_1(X) = rac{\mu_3}{\sigma_x^3} = \sum_{i=1}^k {(rac{x_i - ar{x}}{\sigma_x})^3}$$

- Si $\gamma_1(X)>0$: Asimétrica por la derecha
- Si $\gamma_1(X)=0$: Es simétrica
- Si $\gamma_1(X) < 0$: Asimétrica por la izquierda

Coeficiente de asimetría de Pearson

$$A_p=rac{ar{x}-Mo}{\sigma_x}$$
 ; $A_p^*=rac{3(ar{x}-Me)}{\sigma_x}$

Con la misma interpretación que $\gamma_1(X)$

Medidas de forma

Coeficiente de curtosis de Fisher

$$\gamma_2(X)=rac{\mu_4}{\sigma_x^4}-3$$

- Platicúrtica si $\gamma_2(X) < 0$
- Mesocúrtica si $\gamma_2(X)=0$
- Leptocúrtica si $\gamma_2(X)>0$

Coeficiente de curtosis de Kelley

$$K=rac{1}{2}rac{Q_3-Q_1}{D_9-D_1}-0,263$$

Igual que el coeficiente de Fisher