Плоские графы

- **1.** (а) Докажите формулу Эйлера: для любого связного плоского графа с n вершинами, e ребрами и f гранями имеет место равенство n e + f = 2.
 - (b) Найдите аналог формулы Эйлера для плоского графа с k компонентами связности.
- 2. Применения формулы Эйлера. Докажите следующие утверждения:
 - (a) Для любого плоского связного графа без петель и кратных ребер, имеющего более двух вершин, выполнены соотношения $2e \geqslant 3f$ и $e \leqslant 3n-6$.
 - (b) Графы K_5 и $K_{3,3}$ невозможно нарисовать на плоскости без самопересечений.
 - (с) В любом плоском графе есть вершина степени не более 5.
 - (d) Если каждая вершина плоского связного графа имеет степень d, а граница каждой грани состоит из ровно $k\geqslant 3$ ребер, то $\frac{1}{d}+\frac{1}{k}=\frac{1}{2}+\frac{1}{e}$.
- **3.** Докажите, что вершины планарного графа можно так раскрасить в шесть цветов, что никакие две одноцветные вершины не соединены ребром (то есть любой планарный граф шестидольный). А в пять цветов?
- **4.** Нарисуйте графы K_5 и $K_{3,3}$ без самопересечений
 - (а) на торе;
 - (b) на ленте Мёбиуса.

Два графа называются *гомеоморфными*, если от одного можно перейти к другому при помощи операций добавления и удаления проходных вершин, то есть вершин степени 2.

Граф H называется *минором* графа G, если существует подграф $G_1 \subset G$, который при помощи операций стягивания ребра можно свести к графу H.

Критерии планарности. Граф планарен тогда и только тогда, когда

- (Понтрягина–Куратовского) он не содержит подграфа, гомеоморфного K_5 или $K_{3,3}$.
- (Вагнера) графы K_5 и $K_{3,3}$ не являются его минорами.

Плоские графы

- **1.** (а) Докажите формулу Эйлера: для любого связного плоского графа с n вершинами, e ребрами и f гранями имеет место равенство n-e+f=2.
 - (b) Найдите аналог формулы Эйлера для плоского графа с k компонентами связности.
- 2. Применения формулы Эйлера. Докажите следующие утверждения:
 - (a) Для любого плоского связного графа без петель и кратных ребер, имеющего более двух вершин, выполнены соотношения $2e \geqslant 3f$ и $e \leqslant 3n-6$.
 - (b) Графы K_5 и $K_{3,3}$ невозможно нарисовать на плоскости без самопересечений.
 - (с) В любом плоском графе есть вершина степени не более 5.
 - (d) Если каждая вершина плоского связного графа имеет степень d, а граница каждой грани состоит из ровно $k\geqslant 3$ ребер, то $\frac{1}{d}+\frac{1}{k}=\frac{1}{2}+\frac{1}{e}$.
- 3. Докажите, что вершины планарного графа можно так раскрасить в шесть цветов, что никакие две одноцветные вершины не соединены ребром (то есть любой планарный граф шестидольный). А в пять цветов?
- **4.** Нарисуйте графы K_5 и $K_{3,3}$ без самопересечений
 - (а) на торе;
 - (b) на ленте Мёбиуса.

Два графа называются *гомеоморфными*, если от одного можно перейти к другому при помощи операций добавления и удаления проходных вершин, то есть вершин степени 2.

Граф H называется *минором* графа G, если существует подграф $G_1 \subset G$, который при помощи операций стягивания ребра можно свести к графу H.

Критерии планарности. Граф планарен тогда и только тогда, когда

- (Понтрягина–Куратовского) он не содержит подграфа, гомеоморфного K_5 или $K_{3,3}$.
- (Вагнера) графы K_5 и $K_{3,3}$ не являются его минорами.