# CIS 631 Parallel Processing

# Lecture 11: Parallel Algorithms

Allen D. Malony

malony@cs.uoregon.edu

Department of Computer and Information Science University of Oregon





#### Acknowledgements

- □ Portions of the lectures slides were adopted from:
  - A. Grama, A. Gupta, G. Karypis, and V. Kumar, "Introduction to Parallel Computing," 2003.
  - O Chapters 8, 9, and 10

#### Outline

- ☐ Dense matrix algorithms
- □ Sorting algorithms
- ☐ Graph algorithms

#### Dense Matrix Algorithms

- ☐ Great deal of activity in algorithms and software for solving linear algebra problems
  - $\circ$  Solution of linear systems (Ax = b)
  - O Least-squares solution of over- or under-determined systems ( min ||Ax-b|| )
  - $\circ$  Computation of eigenvalues and eigenvectors ( $Ax = \lambda x$ )
  - O Driven by numerical problem solving in scientific computation
- □ Solutions involves various forms of matrix computations
- ☐ Focus on high-performance matrix algorithms
  - Key insight is to maximize computation to communication

#### Solving a System of Linear Equations

$$\Box Ax = b$$

$$a_{0,0}x_0 + a_{0,1}x_1 + \dots + a_{0,n-1}x_{n-1} = b_0$$
  
 $a_{1,0}x_0 + a_{1,1}x_1 + \dots + a_{1,n-1}x_{n-1} = b_1$ 

$$a_{1,0}x_0 + a_{1,1}x_1 + \dots + a_{1,n-1}x_{n-1} = b_1$$

$$A_{n-1,0}x_0 + a_{n-1,1}x_1 + \dots + a_{n-1,n-1}x_{n-1} = b_{n-1}$$

- ☐ Gaussian elimination (classic algorithm)
  - $\circ$  Forward elimination to Ux=y (*U* is upper triangular)
    - > Without or with partial pivoting
  - O Back substitution to solve for x
  - Parallel algorithms based on partitioning of A

#### Sequential Gaussian Elimination

```
procedure GAUSSIAN ELIMINATION (A, b, y)
    Begin
2.
        for k := 0 to n - 1 do /* Outer loop */
3.
4.
        begin
           for j := k + 1 to n - 1 do
5.
               A[k, j] := A[k, j]/A[k, k]; /* Division step */
6.
7.
           y[k] := b[k]/A[k, k];
8.
           A[k, k] := 1;
9.
           for i := k + 1 to n - 1 do
10.
           begin
11.
               for j := k + 1 to n - 1 do
12.
                  A[i, j] := A[i, j] - A[i, k] \times A[k, j]; /* Elimination step */
               b[i] := b[i] - A[i, k] \times y[k];
13.
14.
              A[i, k] := 0;
           endfor;
                           /*Line9*/
15.
        endfor;
16.
                           /*Line3*/
17. end GAUSSIAN ELIMINATION
```

#### Computation Step in Gaussian Elimination



$$5x + 3y = 22$$
  
 $8x + 2y = 13$ 
 $x = (22 - 3y) / 5$   
 $8(22 - 3y) / 5 + 2y = 13$ 
 $x = (22 - 3y) / 5$   
 $y = (13 - 176/5) / (24/5 + 2)$ 

# Rowwise Partitioning on Eight Processes

|                | _ |       |       |       |       |       |       |       |
|----------------|---|-------|-------|-------|-------|-------|-------|-------|
| $P_0$          | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
| $P_1$          | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| P <sub>2</sub> | 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| P <sub>3</sub> | 0 | 0     | 0     | (3,3) | (3,4) | (3,5) | (3,6) | (3,7) |
| P <sub>4</sub> | 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| P <sub>5</sub> | 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| P <sub>6</sub> | 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| P <sub>7</sub> | 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

| $P_0$          | 1 | (0,1) | (0,2) | (0,3) (0,4) (0,5) (0,6) (0,7)                                     |
|----------------|---|-------|-------|-------------------------------------------------------------------|
| $P_1$          | 0 | 1     | (1,2) | (1,3) (1,4) (1,5) (1,6) (1,7)                                     |
| $P_2$          | 0 | 0     | 1     | (2,3) (2,4) (2,5) (2,6) (2,7)                                     |
| P <sub>3</sub> | 0 | 0     | 0     | 1 (3,4) (3,5) (3,6) (3,7)                                         |
| $P_4$          | 0 | 0     | 0     | (4,3) <b>Y</b> (4,4) <b>Y</b> (4,5) <b>Y</b> (4,6) <b>Y</b> (4,7) |
| P <sub>5</sub> | 0 | 0     | 0     | (5,3) <b>Y</b> (5,4) <b>Y</b> (5,5) <b>Y</b> (5,6) <b>Y</b> (5,7) |
| P <sub>6</sub> | 0 | 0     | 0     | (6,3) <b>V</b> (6,4) <b>V</b> (6,5) <b>V</b> (6,6) <b>V</b> (6,7) |
| P <sub>7</sub> | 0 | 0     | 0     | (7,3)\$(7,4)\$(7,5)\$(7,6)\$(7,7)                                 |

#### (a) Computation:

(i) A[k,j] := A[k,j]/A[k,k] for k < j < n

(ii) A[k,k] := 1

#### (b) Communication:

One-to-all broadcast of row A[k,\*]

# Rowwise Partitioning on Eight Processes

| $P_0$          | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|----------------|---|-------|-------|-------|-------|-------|-------|-------|
| P <sub>1</sub> | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| P <sub>2</sub> | 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| P <sub>3</sub> | 0 | 0     | 0     | 1     | (3,4) | (3,5) | (3,6) | (3,7) |
| P <sub>4</sub> | 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| P <sub>5</sub> | 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| P <sub>6</sub> | 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| P <sub>7</sub> | 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

#### (c) Computation:

- (i)  $A[i,j] := A[i,j] A[i,k] \times A[k,j]$ for k < i < n and k < j < n
- (ii) A[i,k] := 0 for k < i < n

#### 2D Mesh Partitioning on 64 Processes



(a) Rowwise broadcast of A[i,k] for (k - 1) < i < n

| 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|---|-------|-------|-------|-------|-------|-------|-------|
| 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| 0 | 0     | 0     | 1     | (3,4) | (3,5) | (3,6) | (3,7) |
| 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

(c) Columnwise broadcast of A[k,j] for k < j < n</p>

|   |   |       |       |       |       | _     |       |       |
|---|---|-------|-------|-------|-------|-------|-------|-------|
| ı | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|   | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| I | 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| I | 0 | 0     | 0     | (3,3) | (3,4) | (3,5) | (3,6) | (3,7) |
| I | 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| I | 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| I | 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| I | 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

(b) A[k,j] := A[k,j]/A[k,k]for k < j < n

| ſ | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|---|---|-------|-------|-------|-------|-------|-------|-------|
|   | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| Γ | 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
|   | 0 | 0     | 0     | 1     | (3,4) | (3,5) | (3,6) | (3,7) |
| Γ | 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| ľ | 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| Γ | 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
|   | 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

(d)  $A[i,j] := A[i,j]-A[i,k] \times A[k,j]$ for k < i < n and k < j < n

#### Back Substitution to Find Solution

- 1. **procedure** BACK SUBSTITUTION (U, x, y)
- 2. begin
- 3. **for** k := n 1 **downto** 0 **do** /\* Main loop \*/
- 4. **begin**
- 5. x[k] := y[k];
- 6. **for** i := k 1 **downto** 0 **do**
- 7.  $y[i] := y[i] x[k] \times U[i, k];$
- 8. **endfor**;
- 9. end BACK SUBSTITUTION

#### Dense Linear Algebra (www.netlib.gov)

- ☐ Basic Linear Algebra Subroutines (BLAS)
  - Level 1 (vector-vector): vectorization
  - Level 2 (*matrix-vector*): vectorization, parallelization
  - Level 3 (*matrix-matrix*): parallelization
- □ LINPACK (Fortran)
  - O Linear equations and linear least-squares
- □ EISPACK (Fortran)
  - Eigenvalues and eigenvectors for matrix classes
- □ LAPACK (Fortran, C) (LINPACK + EISPACK)
  - O Use BLAS internally
- □ ScaLAPACK (Fortran, C, MPI) (scalable LAPACK)

#### Numerical Libraries

- □ PETSc (http://www.mcs.anl.gov/petsc/petsc-as)
- o data structures / routines for partial differential equations
- O MPI based
- □ SuperLU (http://crd.lbl.gov/~xiaoye/SuperLU/)
  - O Large sparse nonsymmetric linear systems



O Large sparse linear systems



- Toolkit for Advanced Optimization
- □ DOE ACTS (http://acts.nersc.gov/)
  - Advanced CompuTational Software







#### Sorting Algorithms

- ☐ Task of arranging unordered collection into order
- □ Permutation of a sequence of elements
- ☐ Internal versus external sorting
  - External sorting uses auxiliary storage
- □ Comparison-based
  - O Compare pairs of elements and exchange
  - $O(n \log n)$
- □ Noncomparison-based
  - Use known properties of elements
  - O(n)

#### Sorting on Parallel Computers

- □ Where are the elements stored?
  - O Need to be distributed across processes
  - Sorted order will be with respect to process order
- ☐ How are comparisons performed?
  - One element per process
    - > compare-exchange
    - > interprocess communication will dominate execution time
  - More than one element per process
    - > compare-split
- □ Sorting networks
  - Based on comparison network model
- ☐ Contrast with shared memory sorting algorithms

#### Single vs. Multi Element Comparision

☐ One element per processor



☐ Multiple elements per processor





#### Sorting Networks

- $\square$  Networks to sort *n* elements in less than  $O(n \log n)$
- ☐ Key component in network is a comparator
  - Increasing or decreasing comparator







(b)

□ Comparators connected in parallel and permute elements

### Sorting Network Design

- ☐ Multiple comparator stages (# stages, # comparators)
- □ Connected together by interconnection network
- □ Output of last stage is the sorted list



#### Bitonic Sort

- ☐ Create a *bitonic sequence* then sort the sequence
- □ Bitonic sequence
  - $\circ$  sequence of elements  $\langle a_0, a_1, ..., a_{n-1} \rangle$
  - $\circ < a_0, a_1, ..., a_i >$  is monotonically increasing
  - $\circ < a_i, a_{i+1}, ..., a_{n-1} >$  is monotonically decreasing
- □ Sorting using *bitonic splits* is called *bitonic merge*
- □ *Bitonic merge network* is a network of comparators
  - Implement bitonic merge
- ☐ Bitonic sequence is formed from unordered sequence
  - O Bitonic sort creates a bitonic sequence
  - Start with sequence of size two (default bitonic)

#### Bitonic Sort Network



## Bitonic Merge Network



#### Parallel Bitonic Sort on a Hypercube

- 1. **procedure** BITONIC SORT(*label*, *d*)
- 2. **begin**
- 3. **for** i := 0 **to** d 1 **do**
- 4. **for** j := i **downto** 0 **do**
- 5. **if** (i + 1)st bit of label = j th bit of label then
- 6.  $comp\ exchange\ max(j);$
- 7. else
- 8. *comp exchange min(j)*;
- 9. end BITONIC SORT

# Parallel Bitonic Sort on a Hypercube (Last stage)



#### **Bubble Sort and Variants**

- $\square$  Can easily parallelize sorting algorithms of  $O(n^2)$
- □ Bubble sort compares and exchanges adjacent elements
  - O(n) each pass
  - O(n) passes
  - Available parallelism?
- □ *Odd-even transposition sort* 
  - O Compares and exchanges odd and even pairs
  - After *n* phases, elements are sorted
  - Available parallelism?

#### Odd-Even Transposition Sort



Sorted

## Parallel Odd-Even Transposition Sort on Ring

```
procedure ODD-EVEN PAR(n)
 2.
     begin
        id := process' s label
 3.
        for i := 1 to n do
 4.
 5.
        begin
            if i is odd then
 6.
               if id is odd then
 7.
 8.
                   compare-exchange min(id + 1);
 9.
               else
 10.
                   compare-exchange max(id - 1);
 11.
            if i is even then
 12.
               if id is even then
 13.
                   compare-exchange min(id + 1);
 14.
               else
 15.
                   compare-exchange max(id - 1);
         end for
 16.
 17. end ODD-EVEN PAR
Lecture 9
```

#### Quicksort

- $\square$  *Quicksort* has average complexity of  $O(n \log n)$
- □ Divide-and-conquer algorithm
  - O Divide into subsequences where every element in first is less than or equal to every element in the second
  - Pivot is used to split the sequence
  - O Conquer step recursively applies quicksort algorithm
- ☐ Available parallelism?

#### Sequential Quicksort

```
procedure QUICKSORT (A, q, r)
 2.
     begin
 3.
        if q < r then
         begin
 4.
 5.
            x := A[q];
 6.
            s := q;
 7.
            for i := q + 1 to r do
 8.
               if A[i] \le x then
               begin
 9.
 10.
                  s := s + 1;
                  swap(A[s], A[i]);
 11.
 12.
               end if
 13.
            swap(A[q], A[s]);
            QUICKSORT (A, q, s);
 14.
            QUICKSORT (A, s + 1, r);
 15.
 16.
         end if
17. end QUICKSORT
```

#### Parallel Shared Address Space Quicksort



#### Parallel Shared Address Space Quicksort



#### Bucket Sort and Sample Sort

- □ *Bucket sort* is popular when elements (values) are uniformly distributed over an interval
  - Create *m* buckets and place elements in appropriate bucket
  - $\circ$   $O(n \log(n/m))$
  - $\circ$  If m=n, can use value as index to achieve O(n) time
- □ *Sample sort* is used when uniformly distributed assumption is not true
  - O Distributed to *m* buckets and sort each with quicksort
  - O Draw sample of size s
  - $\circ$  Sort samples and choose m-1 elements to be *splitters*
  - O Split into m buckets and proceed with bucket sort

#### Parallel Sample Sort



#### Graph Algorithms

- ☐ Graph theory important in computer science
- ☐ Many complex problems are graph problems
- $\Box G = (V, E)$ 
  - V finite set of points called vertices
  - E finite set of edges
  - $\circ e \in E$  is an pair (u,v), where  $u,v \in V$
  - Unordered and ordered graphs





### Graph Terminology

- $\square$  Vertex *adjacency* if (u,v) is an edge
- $\square$  *Path* from *u* to *v* if there is an edge sequence starting at *u* and ending at *v*
- $\square$  If there exists a path, v is reachable from u
- ☐ A graph is *connected* if all pairs of vertices are connected by a path
- ☐ A weighted graph associates weights with each edge
- $\square$  Adjacency matrix is an  $n \times n$  array A such that
  - $OA_{i,j} = 1$  if  $(v_i, v_j) \in E$ ; 0 otherwise
  - $\circ$  Can be modified for weighted graphs ( $\infty$  is no edge)

34

O Can represent as adjacency lists

# Graph Representations

□ Adjacency matrix



$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

□ Adjacency list





#### Minimum Spanning Tree

- $\square$  A *spanning tree* of an undirected graph G is a subgraph of G that is a tree containing all the vertices of G
- ☐ The *minimum spanning tree* (MST) for a weighted undirected graph is a spanning tree with minimum weight
- ☐ Prim's algorithm can be used
  - O Greedy algorithm
  - Selects an arbitrary starting vertex
  - O Chooses new vertex guaranteed to be in MST
  - $O(n^2)$
  - Prim's algorithm is iterative

## Prim's Minimum Spanning Tree Algorithm

```
1. procedure PRIM MST(V, E, w, r)
2. begin
3. VT := \{r\};
4. d[r] := 0;
5. for all v \in (V - VT) do
         if edge (r, v) exists set d[v] := w(r, v);
6.
         else set d[v] := \infty;
7.
8.
    while VT \neq V do
      begin
9.
10.
         find a vertex u such that d[u] := \min\{d[v]|v \in (V - VT)\};
11.
        VT := VT \cup \{u\};
12.
         for all v \in (V - VT) do
                                                                         *
13.
            d[v] := \min\{d[v], w(u, v)\};
14.
      endwhile
15. end PRIM MST
```

## Example: Prim's MST Algorithm

(a) Original graph



|     | a | b | $\mathcal{C}$ | d | e        | f        |
|-----|---|---|---------------|---|----------|----------|
| d[] | 1 | 0 | 5             | 1 | $\infty$ | $\infty$ |

|                            |          |          |          |          |          | -        |
|----------------------------|----------|----------|----------|----------|----------|----------|
| a<br>b<br>c<br>d<br>e<br>f | 0        | 1        | 3        | $\infty$ | $\infty$ | 3        |
| b                          | 1        | 0        | 5        | 1        | $\infty$ | $\infty$ |
| c                          | 3        | 5        | 0        | 2        | 1        | $\infty$ |
| d                          | $\infty$ | 1        | 2        | 0        | 4        | $\infty$ |
| e                          | $\infty$ | $\infty$ | 1        | 4        | 0        | 5        |
| f                          | 2        | $\infty$ | $\infty$ | $\infty$ | 5        | 0        |
|                            | ᆫ        |          |          |          |          | -        |

(b) After the first edge has been selected



# Example: Prim's MST Algorithm







## Parallel Formulation of Prim's Algorithm

- $\square$  Difficult to perform different iterations of the **while** loop in parallel because d[v] may change each time
- □ Can parallelize each iteration though
- $\square$  Partition vertices into p subsets  $V_i$ , i=0,...,p-1
- $\square$  Each process  $P_i$  computes

$$d_i[u] = min\{d_i[v] \mid v \in (V-V_T) \cap V_i\}$$

- ☐ Global minimum is obtained using all-to-one reduction
- $\square$  New vertex is added to  $V_T$  and broadcast to all processes
- $\square$  New values of d[v] are computed for local vertex
- $\square O(n^2/p) + O(n \log p)$  (computation + communication)

## Partitioning in Prim's Algorithm



### Single-Source Shortest Paths

- $\square$  Find shortest path from a vertex v to all other vertices
- ☐ The shortest path in a weighted graph is the edge with the minimum weight
- □ Weights may represent time, cost, loss, or any other quantity that accumulates additively along a path
- $\square$  Dijkstra's algorithm finds shortest paths from a vertex s
  - O Similar to Prim's MST algorithm
    - $\triangleright$  MST with vertex v as starting vertex
  - Incrementally finds shortest paths in greedy manner
  - O Keep track of minimum cost to reach a vertex from s
  - $\circ$   $O(n^2)$

## Dijkstra's Single-Source Shortest Paths Algorithm

**procedure** DIJKSTRA SINGLE SOURCE SP(*V*, *E*,*w*, *s*) begin 2.  $V_T := \{s\};$ 3. for all  $v \in (V - V_T)$  do 4. **if** (s, v) exists set l[v] := w(s, v); 5. 6. **else** set  $l[v] := \infty$ ; while  $V_T \neq V \operatorname{do}$ 7. 8. begin 9. find a vertex u such that  $l[u] := \min\{l[v] | v \in (V - V_T)\};$ 10.  $VT := V_T \cup \{u\};$ for all  $v \in (V - V_T)$  do 11.  $l[v] := \min\{l[v], l[u] + w(u, v)\};$ 12. 13. endwhile

14. end DIJKSTRA SINGLE SOURCE SP

## Parallel Formulation of Dijkstra's Algorithm

- □ Very similar to Prim's MST parallel formulation
- ☐ Use 1D block mapping as before
- □ All processes perform computation and communication similar to that performed in Prim's algorithm
- □ Parallel performance is the same
  - $O(n^2/p) + O(n \log p)$
  - Scalability
    - $> O(n^2)$  is the sequential time
    - $> O(n^2) / [O(n^2/p) + O(n \log p)]$

#### All Pairs Shortest Path

- ☐ Find the shortest path between all pairs of vertices
- $\square$  Outcome is a  $n \times n$  matrix  $D = \{d_{i,j}\}$  such that  $d_{i,j}$  is the cost of the shortest path from vertex  $v_i$  to vertex  $v_j$
- □ Dijsktra's algorithm
  - Execute single-source algorithm on each process
  - $\circ O(n^3)$
  - Source-partitioned formulation (use sequential algorithm)
  - Source-parallel formulation (use parallel algorithm)
- □ Floyd's algorithm
  - O Builds up distance matrix from the bottom up

## Floyd's All-Pairs Shortest Paths Algorithm

- 1. **procedure** FLOYD ALL PAIRS SP(*A*)
- 2. begin
- 3.  $D^{(0)} = A$ ;
- 4. **for** k := 1 **to** n **do**
- 5. **for** i := 1 **to** n **do**
- 6. **for** j := 1 **to** n **do**
- 7.  $d^{(k)}_{i,j} := \min d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j};$
- 8. end FLOYD ALL PAIRS SP

## Parallel Floyd's Algorithm

- 1. **procedure** FLOYD ALL PAIRS PARALLEL (A)
- 2. begin
- 3.  $D^{(0)} = A$ ;
- 4. **for** k := 1 **to** n **do**
- 5. forall  $P_{i,j}$ , where  $i, j \le n$ , do in parallel
- 6.  $d^{(k)}_{i,j} := \min d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j};$

47

7. end FLOYD ALL PAIRS PARALLEL

#### Parallel Graph Algorithm Library - Boost

- □ Parallel Boost Graph Library (Indiana University)
  - Generic C++ library for high-performance parallel and distributed graph computation



- Builds on the Boost Graph Library (BGL)
  - > offers similar data structures, algorithms, and syntax
- Research platform for parallel graph algorithms
- Provide solid implementations for solving large-scale graph problems
- O Boost Software License (BSD-like)
- D. Gregor and A. Lumsdaine, "The Parallel BGL: A Generic Library for Distributed Graph Computations, Parallel Object-Oriented Scientific Computing (POOSC), July 2005.

48

### Original BGL: Algorithms

- □ Searches (breadth-first, depth-first, A\*)
- ☐ Single-source shortest paths (Dijkstra, Bellman-Ford, DAG)
- ☐ All-pairs shortest paths (Johnson, Floyd-Warshall)
- ☐ Minimum spanning tree (Kruskal, Prim)
- ☐ Components (connected, strongly connected, biconnected)
- ☐ Maximum cardinality matching

- □ Max-flow (Edmonds-Karp, push-relabel)
- ☐ Sparse matrix ordering (Cuthill-McKee, King, Sloan, minimum degree)
- ☐ Layout (Kamada-Kawai, Fruchterman-Reingold, Gursoy-Atun)
- □ Betweenness centrality
- □ PageRank
- □ Isomorphism
- □ Vertex coloring
- ☐ Transitive closure
- □ Dominator tree

### Original BGL Summary

- ☐ The original BGL is large, stable, efficient
  - O Lots of algorithms, graph types
  - O Peer-reviewed code with many users, nightly regression testing, and so on
  - Performance comparable to FORTRAN.
- ☐ Who should use the BGL?
  - Programmers comfortable with C++
  - O Users with graph sizes from tens of vertices to millions of vertices

### BGL-Python

- □ Python is ideal for rapid prototyping:
  - O It's a scripting language (no compiler)
  - O Dynamically typed means less typing for you
  - Easy to use: you already know Python...
- ☐ BGL-Python provides access to the BGL from within Python
  - Similar interfaces to C++ BGL
  - Easier to learn than C++
  - Great for scripting, GUI applications
  - O help(bgl.dijkstra\_shortest\_paths)

#### The Parallel BGL

- ☐ A version of the C++ BGL for computational clusters
  - O Distributed memory for huge graphs
  - Parallel processing for improved performance
- ☐ An active research project
- □ Closely related to the original BGL
  - O Parallelizing BGL programs should be "easy"

A simple, directed graph...



distributed across 3 processors



### Parallel Graph Algorithms

- ☐ Breadth-first search
- ☐ Eager Dijkstra's singlesource shortest paths
- ☐ Crauser et al. singlesource shortest paths
- □ Depth-first search
- ☐ Minimum spanning tree (Boruvka, Dehne & Götz)

- □ Connected components
- ☐ Strongly connected components
- □ Biconnected components
- □ PageRank
- ☐ Graph coloring
- ☐ Fruchterman-Reingold layout
- ☐ Max-flow (Dinic's)

#### Parallel BGL in Python

- □ Preliminary support for the Parallel BGL in Python
  - O Just import boost.graph.distributed
  - Similar interface to sequential BGL-Python
- ☐ Several options for usage with MPI:
  - O Straight MPI: mpirun -np 2 python script.py
  - o pyMPI: allows interactive use of the interpreter
- ☐ Initially used to prototype our distributed Fruchterman-Reingold implementation.

#### Parallel BGL Summary

- ☐ The Parallel BGL is built for huge graphs
  - Millions to hundreds of millions of nodes
  - O Distributed-memory parallel processing on clusters
  - Future work will permit larger graphs...
- □ Parallel programming has a learning curve
  - O Parallel graph algorithms much harder to write
  - O Distributed graph manipulation can be tricky
- □ Parallel BGL is an active research library

http://osl.iu.edu/research/pbgl/

#### Next Class

- □ Algorithms for simulation
- ☐ Analytical modeling of parallel programs