Contents

1	Bas	ic Terminologies	3			
	1.1	1	3			
	1.2	1	3			
	1.3	Histogram	3			
	1.4	Law of large numbers	4			
		0	4			
		1.4.2 Strong Law of large numbers	4			
2	Mea	asure of Central Tendency	5			
	2.1	Mean/Expected Value	5			
	2.2	Median	5			
	2.3	Mode	5			
3	Mea	asure of Spread	5			
	3.1	-	5			
	3.2	Standard Deviation	6			
	3.3	Inter Quartile Range(IQR)	6			
4	Pro	bability Distributions	6			
	4.1	Discrete Distributions	6			
	4.2	Continuous Distributions	7			
5	Discrete Probability Distributions 7					
	5.1		7			
			7			
			7			
			8			
	5.2		8			
		5.2.1 Probability Mass Function(PMF)	8			
		5.2.2 Statistical Parameters	9			
		5.2.3 Examples	9			
	5.3		0			
	5.4		0			
	5.5		0			
	5.6	Hypergeometric	0			
	5 7		Λ			

	5.8	Discrete Uniform	10
		5.8.1 Use cases	10
6	Sha	pe fo the Distributions	10
	6.1	Skewness	10
		6.1.1 Right-skewed	10
		6.1.2 Left-skewed	10
7	Eva	luation Metrics	10
	7.1	Mean Absolute Error	10
		7.1.1 Gradient of MAE	11
	7.2	Mean Squared Error	
		7.2.1 Gradient of MSE	
	7.3	Root Mean Squared Error(RMSE)	11
		7.3.1 Gradient of RMSE	
	7.4	R -Square (R^2)	
	7.5	Adjusted R^2	
	7.6	Huber Loss	
	7.7	MAPE	
8	TO	DO	12

Statistics For Data Science

Akash Tesla

July 2025

1 Basic Terminologies

1.1 Population

An entire set of items you want to study

1.2 Sample

A subset of population used to estimate statistical behavior of the whole population

1.3 Histogram

A histogram is a graphical representation of numerical data that groups the data into bins and displays the frequency of data points within each bin as bars

Figure 1: Example of a Histogram

1.4 Law of large numbers

As the number of trials (or samples) increases, the sample average (or empirical mean) will converge to the expected value (or population mean).

1.4.1 Weak Law of large numbers

The weak law states that the sample average of a sequence of independent identically distributed (i.i.d.) random variables converges in probability to the expected value as the number of samples goes to infinity

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} \mu \quad as \ n \to \infty$$

which means,

$$\forall \varepsilon > 0, \lim_{n \to \infty}^{n} \mathbf{p}(|\bar{X}_n - \mu| > \varepsilon) = 0$$

1.4.2 Strong Law of large numbers

The strong law states that the sample average of a sequence of i.i.d. random variables converges almost surely to the expected value as the number of samples goes to infinity

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{a.s.} \mu \quad as \ n \to \infty$$

Which means,

$$P(\lim_{n\to\infty}\bar{X}_n=\mu)=1$$

2 Measure of Central Tendency

2.1 Mean/Expected Value

Average of all data points, sensitive to outliers since a single large outlier could easily skew mean

$$\mu = \frac{\sum x_i}{n}$$

2.2 Median

The middle data point when data are stored, robust to outliers

2.3 Mode

The most frequent data point of the dataset

3 Measure of Spread

Range: Difference between minimum value and maximum value

$$Range = x_{max} - x_{min}$$

3.1 Variance

Average squared deviation

$$\sigma^2 = E[(X - \mu)^2]$$

$$\sigma^2 = E[(X - E[X])^2]$$

$$\sigma^2 = E[X^2] - (E[X])^2$$

$$\sigma^{2} = \frac{\sum (x_{i} - \mu)^{2}}{n} (Population)$$
$$s^{2} = \frac{\sum (\bar{x}_{i} - \mu)^{2}}{n - 1} (Sample)$$

3.2 Standard Deviation

Root of Variance

$$\sigma = \sqrt{\sigma^2}$$

3.3 Inter Quartile Range(IQR)

Difference between 75th Percentile/3rd Quartile and 25th Percentile/1st Quartile, it is used for outlier detection

$$IQR = Q_3 - Q_1$$

We calculate lower bounds and upper bounds to detect the outliers

lower bound =
$$Q1 - 1.5 * IQR$$

upper bound =
$$Q3 + 1.5 * IQR$$

the data points which values outside of the bounds is considered to be outliers, for more extreme detection 3*IQR is also used

4 Probability Distributions

4.1 Discrete Distributions

A discrete probability distribution describes the probability of occurrence of each value of a discrete random variable

- Discrete random variable: Countable values like 1,2,3
- Each individual value has an associated probability
- The sum of probabilities for all possible values is 1

$$\sum_{i} P(X = x_i) = 1$$

4.2 Continuous Distributions

5 Discrete Probability Distributions

5.1 Benoulli Distribution

The benouli distribution is a discrete probability distribution for a random variable which takes only two possibilities, Sucess or a failure

5.1.1 Probability Mass Function(PMF)

$$P(X = x) = \begin{cases} p & \text{if } x=1\\ 1-p & \text{if } x=0\\ 0 & \text{Otherwise} \end{cases}$$

Also written as

$$P(X = x) = p^{x}(1 - p)^{1-x}$$
, for $x \in \{0, 1\}$

5.1.2 Statistical Parameters

Mean

Mean is the expected value over many repetitions of the same single-trial experiment, thus it would be p since, p is probability of 1 appearing and (1-p) is probability of 0 appearing

$$\mu = 1 * (p) + 0 * (1 - p)$$
 $\mu = p$

Variance

Variance can be defined as $\sigma^2 = E(X^2) - (E(x))^2$, Refer Variance chapter. For Bernoulli distribution, $E(X^2) = p$, E(X) = p, substituting we get

$$\sigma^2 = p - p^2$$
$$\sigma^2 = p(1 - p)$$

Mode

Mode for Bernoulli would what ever the outcome which is more favored, which can be defined as

$$Mode = \begin{cases} 1 & \text{If } p > 0.5\\ 0 & \text{If } p < 0.5 \end{cases}$$

5.1.3 Examples

- Will it rain tomorrow?
- Will this patient recover?
- Will this product be defective?

Figure 2: Example of a Bernoulli Distribution

5.2 Binomial

Binomial Distribution is a discrete probability distribution that models the probability of obtaining a specific number of successes in a fixed number of independent trials(n), these independent trials are just Bernoulli trials, you could see the similarity between them in statistical parameters

5.2.1 Probability Mass Function(PMF)

$$P(X = x) = nCx * p^{x} * (1 - p)^{(n-x)}$$

where,

n - no of trials,

p - probability of success

x - number of success

5.2.2 Statistical Parameters

Mean

Mean represents Average number of success from your trails which would be number of trials (n) times probability of success (p)

$$\mu = n*p$$

Variance

Variance represents Expected variance between mean and data points

$$\sigma^2 = n * p * (1 - p)$$

Mode

$$Mode = \begin{cases} floor(n+1)p) & \text{if } (n+1)p \text{ is not an Integer} \\ floor((n+1)p), floor((n+1)(1-p)) & \text{if } (n+1)p \text{ is an Integer} \end{cases}$$

$$Mode(if p = 0.5) = \begin{cases} \frac{n}{2} & \text{if } (n+1)p \text{ is not an Integer} \\ \frac{(n-1)}{2}, \frac{(n+1)}{2} & \text{if } (n+1)p \text{ is an Integer} \end{cases}$$

5.2.3 Examples

- How many patients will recover out of 50?
- How many rainy days this month?
- How many defective products in a batch of 1000?

- 5.3 Negative-Binomial
- 5.4 Multinomial
- 5.5 Geometric
- 5.6 Hypergeometric
- 5.7 Poisson
- 5.8 Discrete Uniform
- 5.8.1 Use cases
 - When there is only one trial
 - When the outcome is binary True/False Yes/No

6 Shape fo the Distributions

6.1 Skewness

Measure of Asymmetry

6.1.1 Right-skewed

tail on the right (mean > median)

6.1.2 Left-skewed

tail on the left (mean < median)

7 Evaluation Metrics

7.1 Mean Absolute Error

$$MAE = \frac{1}{n} \sum |y_i - \hat{y}_i|$$

• Robust to outliers, treats all errors equally doesn't square the errors like RMSE,MSE..etc

- It's used when your model can tolerate moderate outliers
- Interpretability Has same unit as the thing you are predicting/easy to understand
- Gives out constant gradient (bad for gradient based loss function)

7.1.1 Gradient of MAE

$$\frac{d}{d\hat{y}}|y - \hat{y}| = \begin{cases} +1 & \text{if } \hat{y} < y \\ -1 & \text{if } \hat{y} > y \end{cases}$$
 undefined if $\hat{y} = y$

As you can see no matter how far the error is from true value it always gives a constant gradient as it treats every error as same stics

7.2 Mean Squared Error

$$MAE = \frac{1}{n} \sum (y_i - \hat{y}_i)^2$$

- Penalizes large errors/outliers
- Gives out strong gradient signals

7.2.1 Gradient of MSE

$$\frac{dMSE}{d\hat{y}} = -\frac{2}{n}(y - \hat{y})$$

It points in the direction of the error, and it grows linearly with size of the error Larger the gradient, when prediction are more wrong \longrightarrow model adjusts faster

7.3 Root Mean Squared Error(RMSE)

$$RMSE = \sqrt{MSE}$$

- It combines interpretability of MAE and sensitive to errors of MSE
- It has smooth gradient curves just like MSE, and it's preferred for gradient descent

7.3.1 Gradient of RMSE

$$\frac{dRMSE}{\hat{y}_i} = \frac{1}{n*RMSE}(\hat{y}_i - y_i)$$

- 1. The gradient strength changes with RMSE, if your RMSE is very large the gradient becomes small, and if your RMSE is very small the gradient becomes large.
- 2. It makes RMSE a Non-constantly scaled loss
- 3. MSE is preferred over RMSE in training, but RMSE is preferred while reporting for interpretability
- 7.4 R-Square(R^2)
- 7.5 Adjusted R^2
- 7.6 Huber Loss
- **7.7** MAPE

8 TODO

1. other eval metrics precision, recall, f1 etc..