Задачи для практических занятий

Математический анализ (базовый уровень) – 2 семестр

Занятие 5. Неопределенный интеграл

интегрирование тригонометрических и иррациональных функций

Составитель: Кольцова Т.Б.

Задачи со звёздочкой * рекомендуется решать в случае большого запаса времени.

І. Интегрирование тригонометрических функций: $\int \sin^n x \cdot \cos^m x \, dx$, $n, m \in \mathbb{Z}$.

1)
$$\int \sin^3 x \cos^2 x \, dx$$

OTBET:
$$\frac{1}{5}\cos^5 x - \frac{1}{3}\cos^3 x + C$$

2)
$$\int \frac{\cos^3 x}{\sqrt{\sin x}} dx$$

OTBET:
$$2\sqrt{\sin x} \left(1 - \frac{\sin^2 x}{5}\right) + C$$

3)
$$\int \cos^4 x \, dx$$

OTBET:
$$\frac{3}{8}x + \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C$$

4)
$$\int \frac{\sin^4 x}{\cos^2 x} dx$$

OTBET:
$$tg x + \frac{1}{4} \sin 2x - \frac{3}{2}x + C$$

II. Интегрирование тригонометрических функций: $\int tg^n x \, dx$, $\int ctg^n x \, dx$, $n \in \mathbb{N}$.

5)
$$\int tg^5 x dx$$

OTBET:
$$\frac{1}{4} tg^4 x - \frac{1}{2} tg^2 x - \ln|\cos x| + C$$

6)
$$\int \operatorname{ctg}^4 3x \, dx$$

ОТВЕТ:
$$x - \frac{1}{9} \operatorname{ctg}^3 3x + \frac{1}{3} \operatorname{ctg} 3x + C$$

III. Интегрирование тригонометрических функций вида: $\int R(a\sin^2 x + b\cos^2 x + c)dx$, где R(x) – рациональная функция, $a,b,c\in\mathbb{R}$.

7)
$$\int \frac{dx}{3+\cos^2 x}$$

Otbet:
$$\frac{1}{2\sqrt{3}} \operatorname{arctg} \left(\frac{\sqrt{3} \operatorname{tg} x}{2} \right) + C$$

IV. Интегрирование тригонометрических функций вида: $\int R(a \sin x + b \cos x + c) dx$, где R(x) – рациональная функция, $a,b,c \in \mathbb{R}$.

8)
$$\int \frac{dx}{5-4\sin x+3\cos x}$$

OTBET:
$$\frac{1}{2-tg^{\frac{\chi}{2}}} + C$$

9)*
$$\int \frac{dx}{1+tgx}$$

OTBET:
$$\frac{1}{2}(x + \ln|\sin x + \cos x|) + C$$

Задачи для практических занятий

Математический анализ (базовый уровень) — 2 семестр

V. Интегрирование иррациональных функций: $\int R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}, \sqrt[p]{\frac{ax+b}{cx+d}}, ...\right) dx$, где R(x) – рациональная функция, $a, b, c, d \in \mathbb{R}$.

$$10) \int \frac{dx}{1+\sqrt{x+1}}$$

Ответ:
$$2(\sqrt{x+1} - \ln(\sqrt{x+1} + 1)) + C$$

$$11) \int \frac{x dx}{\sqrt{x+1} + \sqrt[3]{x+1}}$$

OTBET:
$$\frac{2}{3}\sqrt{(x+1)^3} - \frac{3}{4}\sqrt[3]{(x+1)^4} + \frac{6}{7}\sqrt[6]{(x+1)^7} - (x+1) + \frac{6}{5}\sqrt[6]{(x+1)^5} - \frac{3}{2}\sqrt[3]{(x+1)^2} + C$$

$$12)^* \int \sqrt{\frac{1-x}{1+x}} \frac{dx}{x}$$

Ответ:
$$\ln \left| \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right| + 2 \arctan \sqrt{\frac{1-x}{1+x}} + C$$

VI. Тригонометрические подстановки:

$$\int R(x,\sqrt{a^2-x^2})dx$$
 (указание: подстановка $x=a\sin t$ или $x=a\cos t$),

$$\int R(x,\sqrt{a^2+x^2})dx$$
 (указание: подстановка $x=a \operatorname{tg} t$ или $x=a\operatorname{ctg} t$),

$$\int R(x,\sqrt{x^2-a^2})dx$$
 (указание: подстановка $x=rac{a}{\cos t}$ или $x=rac{a}{\sin t}$),

где R(x) – рациональная функция, $a \in \mathbb{R}$, $a \neq 0$.

$$13) \int \frac{\sqrt{4-x^2}}{x} dx$$

OTBET:
$$2 \ln \left| \frac{2 - \sqrt{4 - x^2}}{x} \right| + \sqrt{4 - x^2} + C$$

14)
$$\int \frac{dx}{x\sqrt{9+x^2}}$$

Ответ:
$$\frac{1}{3} \ln \left| \frac{\sqrt{9+x^2}-3}{x} \right| + C$$

Задачи для самостоятельного решения

15) Вывести формулы понижения степени для интегралов вида $I_n=\int \sin^n x \, dx$, вычислить $\int \sin^6 x \, dx$.

OTBET:
$$I_n = \frac{-\cos x \cdot \sin^{n-1} x}{n} + \frac{n-1}{n} I_{n-2}$$
,

$$I_6 = -\frac{1}{6}\cos x \sin^5 x - \frac{5}{24}\cos x \sin^3 x - \frac{5}{16}\cos x \sin x - \frac{5}{18}x + C$$

16)
$$\int \frac{dx}{\sin^3 x}$$

OTBET:
$$\frac{1}{2} \ln \left| \operatorname{tg} \frac{x}{2} \right| - \frac{\cos x}{2 \sin^2 x} + C$$

17)
$$\int \frac{dx}{\cos x \cdot \sqrt[3]{\sin^2 x}}$$

Ответ:
$$\frac{1}{4} \ln \left| \frac{(1+t)^3(1+t^3)}{(1-t)^3(1-t^3)} \right| - \frac{\sqrt{3}}{2} \operatorname{arctg} \frac{1-t^2}{t\sqrt{3}} + C$$
, где $t = \sqrt[3]{\sin x}$

18)
$$\int \sin 5x \cos x \, dx$$

Задачи для практических занятий

Математический анализ (базовый уровень) – 2 семестр

Указание: воспользуйтесь формулой $\sin \alpha \cos \beta = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$

OTBET:
$$-\frac{1}{8}\cos 4x - \frac{1}{12}\cos 6x + C$$

$$19) \int \frac{dx}{3+\sin^2 x + 2\cos^2 x}$$

OTBET:
$$\frac{1}{2\sqrt{5}} \operatorname{arctg} \left(\frac{2 \operatorname{tg} x}{\sqrt{5}} \right) + C$$

$$20) \int \frac{dx}{2\sin x - \cos x + 5}$$

Otbet:
$$\frac{1}{\sqrt{5}} \operatorname{arctg} \left(\frac{3 \operatorname{tg}_{2}^{x} + 1}{\sqrt{5}} \right) + C$$

21)
$$\int \frac{dx}{x(1+2\sqrt{x}+\sqrt[3]{x})}$$

OTBET:
$$\frac{3}{4} \ln \left| \frac{x \sqrt[3]{x}}{(1 + \sqrt[6]{x})^2 (1 - \sqrt[6]{x} + 2\sqrt[3]{x})^3} \right| - \frac{3}{2\sqrt{7}} \operatorname{arctg} \left(\frac{4 \sqrt[6]{x} - 1}{\sqrt{7}} \right) + C$$

22)
$$\int \frac{x^2 dx}{\sqrt{x^2 - 25}}$$

Otbet:
$$\frac{x}{2}\sqrt{x^2-25}+\frac{25}{2}\ln\left|\frac{x+\sqrt{x^2-25}}{5}\right|+C$$