Experiment - 01

Aim: To explore the descriptive statistics on the given dataset

Theory:

1. Introduction to Descriptive Statistics

Descriptive statistics summarize and describe the key features of a dataset, providing an overview of its structure and distribution. They include measures of central tendency (mean, median, and mode) and measures of variability (variance, standard deviation, range, IQR).

• Measures of Central Tendency:

- Mean: The average of all data points. It is sensitive to outliers.
- **Median**: The middle value when data is ordered. It is robust to outliers.
- Mode: The most frequently occurring value.

• Measures of Variability:

- Variance: Measures the spread of data around the mean in squared units.
- **Standard Deviation**: The square root of variance; indicates how much data deviates from the mean.
- IQR (Interquartile Range): Difference between the 3rd and 1st quartiles (Q3 Q1), robust against outliers.
- Coefficient of Variation (CV): Relative measure of variability calculated as standard deviation divided by the mean.

2. Measures of Shape

These include skewness and kurtosis, which describe the distribution's symmetry and peakedness.

- **Skewness**: Indicates the symmetry of data:
 - **Negative Skew**: The distribution has a long tail on the left side. The data values are concentrated on the right, and extremely small values pull the mean downward.
 - **Relationship**: Mean < Median < Mode.
 - Zero Skew: The distribution is symmetrical, appearing balanced on both sides of the central value. It often resembles a bell shape.
 - **Relationship**: Mean = Median = Mode.
 - **Positive Skew**: The distribution has a long tail on the right side. The data values are concentrated on the left, and extremely large values pull the mean upward.
 - **Relationship**: Mean > Median > Mode.
- **Kurtosis**: Reflects the sharpness of the peak in data:
 - High kurtosis: Distinct peak and heavy tails.
 - Low kurtosis: Flat peak and lighter tails.

Code:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load iris
# Load the Iris dataset
data = load iris()
iris df = pd.DataFrame(data.data, columns=data.feature names)
iris df['species'] = data.target
# Print basic information
print(iris df.shape)
print(iris df.head())
print(iris df.info())
print(iris df.isnull().sum())
print(iris df.describe())
# Calculate mean, median, and mode
mean = iris df['sepal length (cm)'].mean()
print("\nMean:", mean)
median = iris df['sepal length (cm)'].median()
print("Median:", median)
mode = iris df['sepal length (cm)'].mode()
print("Mode:", mode)
# Distribution plot
sns.histplot(iris df['sepal length (cm)'], bins=10, kde=True,
color='blue')
plt.title("Distribution Plot of Sepal Length (cm)")
plt.xlabel("Sepal Length (cm)")
plt.ylabel("Frequency")
plt.legend(labels=['sepal length (cm)'])
plt.show()
print(" ")
# Boxplot
sns.boxplot(x=iris_df['sepal length (cm)'], color='green')
plt.title("Boxplot of Sepal Length (cm)")
plt.xlabel("Sepal Length (cm)")
plt.show()
```

```
# Calculate other statistics
print("Min:", iris df['sepal length (cm)'].min())
print("Max:", iris df['sepal length (cm)'].max())
print("Range:", iris df['sepal length (cm)'].max() - iris df['sepal
length (cm)'].min())
print("Variance:", iris df['sepal length (cm)'].var())
print("Standard Deviation:", iris df['sepal length (cm)'].std())
# Interquartile Range (IQR)
Q1 = iris df['sepal length (cm)'].quantile(0.25)
Q2 = iris df['sepal length (cm)'].quantile(0.5)
Q3 = iris df['sepal length (cm)'].quantile(0.75)
IQR = Q3 - Q1
print("Q1:", Q1)
print("Q2 (Median):", Q2)
print("Q3:", Q3)
print("IQR:", IQR)
# Skewness and Kurtosis
print("Skewness:", iris df['sepal length (cm)'].skew())
print("Kurtosis:", iris df['sepal length (cm)'].kurt())
Output:
Basic Information: shape, head, info, isnull, describe
 (150, 5)
```

```
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) species
        5.1
                         3.5
                                         1.4
                                                           0.2
                                                                        ø
        4.9
                                          1.4
                                                           0.2
                                                                        0
1
                          3.0
2
        4.7
                          3.2
                                         1.3
                                                           0.2
                                                                        0
3
        4.6
                          3.1
                                         1.5
                                                           0.2
                                                                        0
        5.0
                                         1.4
                                                           0.2
                          3.6
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
# Column
                   Non-Null Count Dtype
   -----
0 sepal length (cm) 150 non-null float64
1 sepal width (cm) 150 non-null float64
2 petal length (cm) 150 non-null float64
3 petal width (cm) 150 non-null float64
4 species
                     150 non-null int64
dtypes: float64(4), int64(1)
```

None					
sepal length (cm)	0				
sepal width (cm) 0					
petal length (cm) 0					
petal width (cm)	0				
species	0				
dtype: int64					
sepal lengt	(cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
count 150.000000		150.000000	150.000000	150.000000	150.000000
mean 5.8433	33	3.057333	3.758000	1.199333	1.000000
std 0.828066		0.435866	1.765298	0.762238	0.819232
πίπ 4.300000		2.000000	1.000000	0.100000	0.000000
25% 5.100000		2.800000	1.600000	0.300000	0.000000
50% 5.80000	30	3.000000	4.350000	1.300000	1.000000
75% 6.4000	30	3.300000	5.100000	1.800000	2.000000
max 7.9000	3 0	4.400000	6.900000	2.500000	2.000000

Mean, Median and Mode for the column "Sepal Length"

Mean: 5.843333333333334

Median: 5.8 Mode: 0 5.0

Name: sepal length (cm), dtype: float64

Distribution plot for the column "Sepal Length"

Boxplot for the column "Sepal Length"

Boxplot of Sepal Length (cm)

Measures of dispersion or variability

Min: 4.3 Max: 7.9

Range: 3.60000000000000005 Variance: 0.6856935123042505

Standard Deviation: 0.8280661279778629

Q1: 5.1

Q2 (Median): 5.8

Q3: 6.4

IQR: 1.30000000000000007

Skewness: 0.3149109566369728 Kurtosis: -0.5520640413156395

Conclusion: Hence, we performed descriptive analysis on the iris dataset