Al-Isra University

Faculty of IT

Department of Computer Science

جامعة الإسراء كلية تكنولوجيا المعلومات قسم هندسة البرمجيات

Department:	Assignment: Submission Deadline:	
cs	<u>#2</u>	
Semester:	Year:	<u>Instructor</u>
Second	2023/2024	Dr. Dimah Fraihat
Course No.:	Course Name:	Section:
	Computer Design and Organisation	<u>1</u>
Student No.:	Student Name:	Submission date :

Question No.	Mark	
	Max	Score
1	2	
2	2	
3	3	
4	3	
Total Mark	10	

1) Convert (50.375)₁₀ to binary number (show your work)

Solution:

50	2	0	
25	2	1	
12	2	0	
6	2	0	П
3	2	1	П
1	2	1	

0.375	2	0.75	0	
0.75	2	1.5	1	
0.5	2	1.0	1	7

 $(50.375)_{10} = (110010.011)_2$

2) Convert (ABC2)₁₆ to its equivalent in Octal (show your work)

Solution:

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
C	1100
D	1101
E	1110
F	1111

0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111

 $(ABC2)_{16} = (1010\ 1011\ 1100\ 0010)_2$ $(1010\ 1011\ 1100\ 0010)_2 = (25341)_8$ $(ABC2)_{16} = (25341)_8$

.....

3) Convert -0.375 base 10 to binary (show your work) using both one's and two's complement.

Converting to Binary (One's Complement):

convert the integer part (0) to binary = 0.

convert the fractional part (0.375) to binary:

0.375	2	0.75	0	
0.75	2	1.5	1	
0.5	2	1.0	1	7

$$\rightarrow$$
 (0.375)₁₀ = (0.011)₂

One's Complement \rightarrow (- 0.375)₁₀ = (1.100)₂

Converting to Binary (Two's Complement):

$$\rightarrow$$
 (0.375)₁₀ = (0.011)₂

$$\rightarrow$$
 (-0.375)₁₀ = (1.100)₂

Two's Complement \rightarrow (- 0.375)₁₀ = (1.101)₂

4) Find the <u>1's complement</u> , <u>2's complement</u> , and <u>sign magnitude</u> representations of the number 00010010
Solution:
One's complement:
00010010 → 11101101
<u>Tow's complement:</u>
00010010 → 11101101
11101101 + 1 = 11101110
Sign magnitude:

0 00010010

5) Represent binary -0.0111 in IEEE format

Solution:

$$0.0111 \rightarrow 1.11 \times 2^{-2}$$

Sign bit = 1

Exponent = -2 + 127 = 125 in binary is 01111101