Exercise, 01.02

- 1. Fix $n \geq 1$, r > 0, and $\lambda = \rho e^{i\phi}$. What is the maximum modulus of $z^n + \lambda$ over the disk $\{|z| < r\}$? Where does $z^n + \lambda$ attains its maximum modulus over this disk?
- 2. a) Determine whose image under mapping the largest disk around the origin whose image under mapping $w = z^2 + z$ is one to one.
 - b) The same problem for $w = e^z$.
- 3. Use the maximum principle to prove the fundamental theorem of algebra that each polynomial of degree $n \geq 1$ has a zero by applying the max principle to 1/p(z) on a disk of large radius.
- 4. Assume f(z) be a bounded functions in the right half plane and that f extends continuously to the imaginary axis. Let also $|f(iy)| \leq 1$ for all points iy on the imaginary axis. Prove that then $|f(z)| \leq 1$ in the right half-plane. Hint For small $\epsilon > 0$ consider the function $(1+z)^{-\epsilon}f(z)$ in a large asemidisk.