Review Quiz (True or False?)
$0 A^2 = A \Leftrightarrow A(A-I) = 0 \Leftrightarrow A = 0 \text{ or } A = I$
② $AB = I$ \iff $A = B^{-1}$ & $B = A^{-1}$. ⑤ $A : \overline{m}vertible$ \iff $A^{-1} : \overline{m}vertible$
Theorem
Let A be an $n \times n$ matrix. The following are equivalent.
The reduced row echelon form of A is I_n . A can be expressed as a product of elementary matrices. We can find
• A is invertible. • $Ax = 0$ has only the trivial solution.
• $A\mathbf{x} = \mathbf{b}$ has only the trivial solution. • $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$.
• $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $\mathbf{b} \in \mathbb{R}^n$.
If A is invertible, then the reduced row echelon
form of [AII] is [IIA-1].
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
For $S \subseteq \mathbb{R}^n$ with $S \neq \emptyset$,
S is a subspace of 1R" if it satisfies
(i) $w, w \in S \Rightarrow w + w \in S$ (closed under +)
(19) wes, ker \Rightarrow kwes. (closed under scalar
multiplication)
eg.) for a IR": trivial subspaces of IR"
NH
Note that every subspace of IR contains 0.

Let $\mathbf{v}_1, \dots, \mathbf{v}_s$ be vectors in \mathbb{R}^n . Then the set of all linear combinations of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_s$ is a subspace of \mathbb{R}^n .

O Since
$$0 \in W$$
, $W \neq \phi$.

$$\Rightarrow$$
 $x+y=(t_1+c_1)W_1+\cdots+(t_s+c_s)W_s\in W$

Let $W = \{ \mathbf{x} \mid \mathbf{x} = t_1 \mathbf{v}_1 + \dots + t_s \mathbf{v}_s, \forall t_i \in \mathbb{R} \}$. The subspace W is called the *span* of $\mathbf{v}_1, \dots, \mathbf{v}_s$ and is denoted by

$$W = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_s\}.$$

We also say that the vectors $\mathbf{v}_1, \dots, \mathbf{v}_s$ span W.

e.g.)
$$\mathbb{R}^{n} = \text{span } \{ e_{1}, e_{2}, \dots, e_{n} \}, e_{i} := (0, \dots, 0, 1, 0, \dots, 0) \}$$

$$\mathbb{R}^n = \operatorname{span} \left\{ \mathbb{R}^n : \mathbb{R}^n : \mathbb{R}^n : \mathbb{R}^n \right\} = \mathbb{R}^n$$

If $A\mathbf{x} = \mathbf{0}$ is a homogeneous linear system with n unknowns, then its solution set is a subspace of \mathbb{R}^n .

pf) Let
$$S = \{ x \in \mathbb{R}^n \mid A \times = 0 \}$$
. The solution space of the system $A \times = 0$
Since $0 \in S$, $S \neq \Phi$.

If
$$x_1, x_2 \in S$$
, then $A(x_1 + x_2) = Ax_1 + Ax_2 = 0$

Ø\

If
$$x \in S$$
 & $k \in \mathbb{R}$, then $A(kx) = kAx = k \cdot 0 = 0$.

$$\begin{bmatrix} 0 & 0 & -2 & 0 & 7 \\ 2 & 4 & -10 & 6 & 12 \\ 2 & 4 & -5 & 6 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

leading variables: x_1, x_3, x_5 free variables: $x_1 = s$, $x_4 = t$ (s.t. (R) general sol.: $x_1 = -2s - 3t$, $x_2 = s$, $x_5 = s$, $x_4 = t$, $x_5 = s$

$$(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}) = s(-2, 1, 0, 0, 0) + t(-3, 0, 0, 1, 0)$$

:. The solution set of the tinear system (*) is spanned by
$$(-2, (0,0,0))$$
 and $(-3,0,0,1,0)$

Note that there are only three kinds of subspaces in R. (four) 1. 203 e. Lines passing thru the origin 3. \mathbb{R}^2 (3. Planes passing thru. the origin 4. \mathbb{R}^3 The solution space of a homogeneous thear system in two unknowns is one of the following types (three) 1. 603 e. Lines passing thru the origin 3. R² (3. Planes passing thru. the origin

Theorem

pf) (a) (€) Trivial

- If A is a matrix with n columns, then the solution space of Ax = 0 is all of Rⁿ if and only if A = 0.
 If A and B are matrices with n columns, then A = B if and only if
- 2 If A and B are matrices with n columns, then A=B if and only if $A\mathbf{x}=B\mathbf{x}$ for every $\mathbf{x}\in\mathbb{R}^n$.

(
$$\Rightarrow$$
) Since $Ae_{\lambda} = 0 \quad \forall \quad \bar{\imath} = (, \dots, n),$

$$A = AI = A[e_1 e_2 \dots e_n] = [Ae_1 Ae_2 \dots Ae_n]$$

$$= [0 \quad 0 \quad \dots \quad 0] = 0$$

Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_s} \subseteq \mathbb{R}^n$, $s \ge 2$. Then S is linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the other vectors in S.

Pf) (
$$\Rightarrow$$
) = c_1, \dots, c_s , not all zero, st.

$$c_1v_1+\dots+c_sv_s=0.$$

WLOG, WMA $c_1 \neq 0.$

Then $v_1 = \left(-\frac{c_2}{c_1}\right)v_2+\dots+\left(-\frac{c_s}{c_1}\right)v_s.$

(\rightleftharpoons) WLOG, WMA $v_1 := c_2v_2+\dots+c_sv_s=0.$

Then $-v_1 + c_2v_2 + \dots + c_sv_s=0.$

S is linearly dependent.

Suppose that we three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^n such that at least one of them is a linear combination of the other two. Then they lie in a plane through the origin. The converse is also true.

Suppose that
$$S = \{v_1, \dots, w_s\}$$
 is linearly independent in IRⁿ.

Set $A := [v_1, w_3, \dots, w_s]$. Then
$$A \begin{bmatrix} c_1 \\ \vdots \\ c_s \end{bmatrix} = c_1 w_1 + c_2 w_2 + \dots + c_s w_s.$$

Theorem

A homogeneous linear system $A\mathbf{x}=\mathbf{0}$ has only the trivial solution if and only if the column vectors of A are linearly independent.

A set with more than n vectors in \mathbb{R}^n is linearly dependent.

$$S = \left\{ \begin{array}{cccc} w_1, & \cdots, & w_2 \end{array} \right\}, \quad s \neq m \quad \longleftrightarrow \quad A = \left[\begin{array}{cccc} w_1 & w_2 & \cdots & w_n \\ w_1 & w_2 & \cdots & w_n \end{array} \right]$$

$$\Rightarrow \# \text{ leading variables} \leq m$$

Theorem

Let A be an $n \times n$ matrix. The following are equivalent.

- **1** The reduced row echelon form of A is I_n .
- ② A can be expressed as a product of elementary matrices.
- **1** *A* is invertible.
- $\mathbf{0}$ $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **5** $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$.
- **6** $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $\mathbf{b} \in \mathbb{R}^n$.
- The column vectors of A are linearly independent.
- **3** The row vectors of A are linearly independent.

. X - Abbreviation

iff
$$\iff$$
 if and only if WLDG \iff without loss of generality

WMA
$$\iff$$
 we may assume

ETS
$$\iff$$
 Enough to show