

ИССЛЕДОВАНИЕ ВЛИЯНИЯ РАЗЛИЧНЫХ ПАРАМЕТРОВ ТАБЛИЦ В РАБОТЕ С ОЧЕРЕДЯМИ СООБЩЕНИЙ НА ОСНОВЕ БАЗЫ ДАННЫХ

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВЫСОКОНАГРУЖЕННЫХ СИСТЕМ

ВВЕДЕНИЕ

ЦЕЛЬ
ИССЛЕДОВАНИЯ

Изучение влияния различных параметров таблиц в работе с очередями сообщений на основе базы данных.

ЗАДАЧИ И ЭТАПЫ ИССЛЕДОВАНИЯ

- Разработка библиотеки для взаимодействия с базой данных в качестве брокера сообщений.
- Подготовка базы данных для проведения экспериментов.
- Проектирование и реализация двух сервисов -Producer и Consumer, обеспечивающих передачу и прием данных через брокера сообщений.
- Оптимизация базы данных
- Тестирование различных параметров таблицы и их влияния на эффективность системы.

РАЗРАБОТКА БИБЛИОТЕКИ ДЛЯ ВЗАИМОДЕЙСТВИЯ С БАЗОЙ ДАННЫХ В КАЧЕСТВЕ БРОКЕРА СООБЩЕНИЙ

db-queue

Библиотека для взаимодействия с базой данных в качестве брокера сообщений

spring-boot-starter-db-queue

Библиотека для Spring Boot для легкой интеграции db-queue и конфигурирования consumer и producer

ЗАДАЧА 2

ПОДГОТОВКА БАЗЫ ДАННЫХ ДЛЯ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ

Для брокера сообщений на основе базы данных было принято решение использовать PostgreSQL в связи с её распространенностью.

В ходе этого этапа был выбран способ деплоя и сконфигурирована база данных

РЕАЛИЗАЦИЯ двух сервисов - PRODUCER И

ОПТИМИЗАЦИЯ БАЗЫ ДАННЫХ

НАЗВАНИЕ ТАБЛИЦЫ	Индекс	Чистка "мёртвых" кортежей	Настройка параметров хранения (fillfactor)	Партициони рование
queue_tasks_1				
queue_tasks_2	Done	Done		
queue_tasks_3	Done	Done	Done	
queue_tasks_4	Done	Done	Done	6 секций
queue_tasks_5	Done	Done	Done	8 секций

РЕЗУЛЬТАТЫ

КОНФИГУРАЦИЯ	Batch	RPS	Изменение	Изменение в %
queue_tasks_1	1	344,69	0	0
queue_tasks_1	10	1222,82	888,12	256,35
queue_tasks_2	10	1275,85	941,15	281,20
queue_tasks_3	10	1230,76	896,06	267,73
queue_tasks_4	10	1310,81	976,11	291,64
queue_tasks_5	10	1314,12	979,42	292,63
queue_tasks_5	20	1289,58	954,88	285,30

Как можно заметить самым эффективным вариантом оказалось использование сетапа таблицы queue_tasks_5 с записью/чтением батчами по 10 записей.

РЕЗУЛЬТАТЫ

ТЕСТИРОВАНИЕ

Результаты тестирования показали стабильную работу системы при максимальной нагрузке.

Показатели нагрузки в течение тестирования и анализ метрик позволяют сделать выводы о эффективности и устойчивости разработанного подхода.

Рисунок 1. Задержка (min/avg/max)

Рисунок 2. Кол-во запросов в секунду

ПРЕИМУЩЕСТВА

- Низкая стоимость масштабирования.
- _____ Достойная пропускная способность.
- Гибкая платформа для реализации разных способов взаимодействия с очередью сообщений.

НЕДОСТАТКИ

- Является антипаттерном в большинстве случаев.
- Наличие сложности
 организации совместной
 работы нескольких
 сервисов.

ЗАКЛЮЧЕНИЕ

ВЫВОДЫ

ОПИСАНИЕ ИССЛЕДОВАНИЯ

Было проведено сравнение различных способов оптимизации таблиц для очереди ообщений и походов к чтению/ записи.

РЕЗУЛЬТАТ

Наиболее эффективным способом оптимизации очереди оказалось партиционирование таблицы. Тем не менее использование такого подхода по-прежнему распространено для решения ряда задач.

СПАСИБО ЗА ВНИМАНИЕ!