UNIVERSIDAD AUTONOMA de ENTRE RIOS

Facultad de Ciencia y Tecnología

Carrera: Licenciatura en Sistemas Informáticos

Cátedra: Investigación Operativa

Tema : Unidad 2 - Programación Lineal, Modelo directo – b) Guía de Trabajos Prácticos

b-1) Trabajos Prácticos Grupales

- 1) Resuelva por el método del gradiente el Trabajo Práctico Nro. 3, b-1) Trabajos Prácticos Grupales, Unidad 1 Modelos Matemáticos.
 - 2) Grafique la región e identifique los extremos factibles del siguiente problema matemático:

- 2.1) Siendo X₃ y X₄ la variables de holgura correspondientes a las restricciones (1) y (2) respectivamente, identifique las regiones definidas por los siguientes conjuntos de restricciones, independientemente de la región definida anteriormente:
- a) $X_3 >= 0$
- e) $X_4 = 1$
- b) $X_3 \le 0$
- f) $X_3 >= 0$ y $X_2 = 0$
- c) $X_4 = 0$ y $X_3 >= 0$
- g) $X_2 = 2 y X_3 = -1$
- d) $X_4 = 0$ y $X_3 \le 0$

- 3) Dados los siguientes modelos matemáticos,
 - a) Resuelva gráficamente.
 - b) Resuelva analíticamente (Método algebraico y método Simplex)

3.1)
$$\max_{s.a.} Z = 3X_1 + 2X_2$$
3.2) $\max_{s.a.} Z = 4X_1 + 2X_2$
3.3. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.4. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.5. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.6. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.7. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.8. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.9. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.1. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.2. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.3. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.3. $\max_{s.a.} Z = 4X_1 + 2X_2$
3.3. $\min_{s.a.} Z = 4X_1 + 2X_2$
3.4. $\min_{s.a.} Z = 4X_1 + 2X_2$
3.5. $\min_{s.a.} Z = 4X_1 + 2X_2$
3.6. $\min_{s.a.} Z = 4X_1 + 2X_2$
3.7. $\min_{s.a.} Z = 4X_1 + 2X_2$
3.8. $\min_{s.a.} Z = 4X_1 + 2X_2$
3.9. $\min_{s.a.} Z = 4X_1 + 2X_2$
3.1. $\min_{s.a.} Z = 4X_1 + 2X_2$
3.2. $\min_{s.a.} Z = 4X_1 + 2X_2$
3.3. $\min_{s.a.} Z = 4X_1 + 2X_2$
3. $\min_{s.a.} Z = 4X_1 + 2X_2$
4. $\min_{s.a.} Z = 4X_1 + 2X_2$
4.

3.3) mín
$$Z = 5X_1 + 8X_2$$
 3.4) máx $Z = 8X_1 + 6X_2$ s.a.
$$8X_1 + 4X_2 >= 24$$

$$10X_1 + 30X_2 >= 40$$

$$2X_1 + X_2 <= 8$$

$$2X_1 + X_2 <= 10$$

$$4X_1 + 3X_2 <= 24$$

$$X_1; X_2 >= 0$$

$$X_1; X_2 >= 0$$

4) Una compañía de transporte desea analizar las ganancias máximas que obtendrá en un período determinado en el envío de mercadería utilizando 2 camiones de los cuales se obtuvieron ciertos datos para este análisis. La mayor preocupación de la compañía parte de 3 recursos particulares que actualmente tienen en stock y desea aprovechar al máximo, siendo esto condición fundamental, ya que no está en los planes de la compañía la adquisición de nuevos recursos.

Los recursos son:

- Material de Lubricación, del cual cuenta con 18 unidades en stock, y se sabe que el camión 1 utiliza
 2 unidades, mientras que el camión 2 solamente 1
- Combustible, contando con 42 unidades en stock y sabiendo que el camión 1 utiliza 2 unidades mientras que el camión 2 utiliza 3 unidades.
- Material de Refrigeración, del cual cuenta con 24 unidades en stock y se sabe que el camión 1 utiliza 3 unidades, mientras que el camión 2 utiliza solo 1 unidad.

Resuelva el siguiente problema teniendo en cuenta que la rentabilidad que genera la utilización del camión 1 y 2 es de 3 y 2 unidades monetarias respectivamente.

- a) Formulación del modelo matemático
- b) Resolución por algún método gráfico
- c) Resuelva este modelo por los métodos analíticos vistos: Algebraico y Simplex

5) Una empresa dedicada a la manufactura de tabaco para pipa, produce dos tipos T₁ y T₂, como mezcla de 3 variedades.

La variedad A se adquiere a su vez a un productor extranjero, quien envía como mínimo 5.000 kg.

Las disposiciones aduaneras vigentes limitan la importación de esta variedad de tabaco a un tope máximo de 24.000 kg.

El tipo T₁ lleva 0,3 kg. de tabaco de la variedad A por cada kg. de T₁, en tanto que el tipo T₂ lleva 0,4 kg., también por kg. de T₂, de la misma variedad.

Con respecto a la variedad B, ambos tipos llevan respectivamente 0,2 y 0,3 kg. por kg., y hay en el deposito 30.000 kg. de esta variedad.

Por ultimo, de la variedad C se ha decidido adquirir una partida de 15.000 kg.; los tipos T₁ y T₂ llevan respectivamente, 0,2 y 0,1 kg. por kg. cada uno.

El beneficio esperado del tabaco de tipo T₁ es de \$ 200 por kg., y el de tipo T₂ es de \$ 300, también por kg.

Se pide determinar las cantidades de tabacos tipo T₁ y T₂ que deben prepararse a fin de maximizar el beneficio.

- 5.1) Modelar el problema, identificando las variables y restricciones del mismo.
- 5.2) Hallar gráficamente la solución optima.
- 5.3) Resolver por el Método Simplex.
- 6) Un fabricante de muebles se especializa en la construcción de bibliotecas y escritorios. Las bibliotecas le dejan una ganancia neta mensual de 8 \$ por unidad y los escritorios de 12 \$ por unidad. La fabricación de estos muebles consta de dos fases, cada una de las cuales la realizan grupos diferentes de empleados. Estas son ensamble y terminado.

La cantidad de horas disponibles mensualmente para cada una de estas fases esta limitada;

hs. hombre necesarias	Biblioteca	Escritorio	Total de hs. disponibles
Ensamble	1,60	4,80	480
Terminado	2,50	3,00	450

El fabricante desea saber que cantidad de cada mueble debe fabricar mensualmente para obtener la mayor ganancia.

Resolviendo el problema por el Método Simplex, los tableau inicial y final son:

	Base	Solución	A ₁	A ₂	A3	A4
Inicial	Х3	480	1,60	4,80	1	0
	X4	450	2,50	3	0	1
	Zj-Cj	1	-8	-12	0	0
Final	X2	66,67	0	1	0,35	-0,22
	X1	100	1	0	-0,42	0,67
	Zj-Cj	1.600	0	0	0,83	2,67

siendo X_1 el Nro. de bibliotecas producidas por mes y X_2 el Nro. de escritorios producidos por mes.

- 6.1) Plantear el modelo matemático
- 6.2) Resuelva el problema gráficamente y así verifique la solución dada analíticamente.

7) Una lata de 16 kilos de alimento para perro debe contener, cuando menos, las siguientes cantidades de proteínas, carbohidratos y grasas: proteínas, 3 kilos; carbohidratos, 5 kilos; grasas, 4 kilos. Es necesario mezclar distintas proporciones de 4 tipos de alimentos a fin de producir una lata de comida para perro, con el mínimo costo, que satisfaga este requerimiento. La tabla muestra el contenido y precio de 16 kilos de cada una de las diferentes mezclas de alimentos.

Formule y optimice un modelo matemático para el presente problema. Sugerencia: haga que X_i represente la proporción de alimento i por cada lata de comida para perro, i = 1, 2, 3 y 4.

Información sobre la mezcla de alimentos Contenido y precio por cada 16 kilos de alimento

Alimento	Proteínas (kilos)	Carbohidratos (kilos)	Grasas (kilos)	Precio (\$)
1	3	7	5	4
2	5	4	6	6
3	2	2	6	3
4	3	8	2	2

UNIVERSIDAD AUTONOMA de ENTRE RIOS Facultad de Ciencia y Tecnología

Carrera: Licenciatura en Sistemas Informáticos

Cátedra: Investigación Operativa

Tema : Unidad 2 - Programación Lineal, Modelo directo – b) Guía de Trabajos Prácticos

b-2) Trabajos Prácticos de auto evaluación/aprendizaje

1) Una ciudad desea combinar puestos de trabajo (empleos) y objetivos de protección al medio ambiente. Se disponen de 15.000.000 de um de fondos federales y 10.000.000 de um de fondos estatales.

Estos fondos pueden ser distribuidos para el control de la contaminación del agua de la ciudad, ya sea:

- a) Limpieza de calles.
- b) Tratamiento de aguas servidas.

La limpieza de calles genera 40 empleos por cada millón de um invertidas y el tratamiento de aguas servidas, 30 empleos por cada millón de um invertidas.

El Gobierno Federal financiara el 50 % de la limpieza de calles y el 75 % del costo del tratamiento de aguas servidas. Los costos restantes deben ser absorbidos por el Estado.

- 1.1) Determinar la forma con que la ciudad debe manejar los fondos asignados, generando la mayor cantidad de puestos de trabajo (empleos).
 - 2) Dado el siguiente problema de PL:

- 2.1) Obtener la solución gráficamente. Verificarla analíticamente.
- 2.2) Considerar la inclusión de una nueva restricción X₁ <= 3 y determinar, si existe, la nueva solución.

3) Una aleación especial se hace a partir de chatarras y de elementos puros que se agregan. Una de las chatarras tiene una composición según análisis de 60 % de hierro (Fe), 20 % de carbono © y 20 % de Silicio (Si) y cuesta 20 centavos el kg.

Otra de las chatarras dio por análisis 70 % de Fe, 20 % de C, 5 % de Si y 5 % de Níquel (Ni) y cuesta 25 centavos el kg.

La aleación debe tener la siguiente composición en %:

	Mínimo	Máximo
Fe	60	65
С	15	20
Si	15	20
Ni	5	8

Los elementos puros cuestan en centavos por kg.: Fe 30, C 20, Si 28 y Ni 50.

3.1) Plantear un modelo matemático para optimizar la mezcla al mínimo costo.

UNIVERSIDAD AUTONOMA de ENTRE RIOS Facultad de Ciencia y Tecnología

Carrera: Licenciatura en Sistemas Informáticos

Cátedra: Investigación Operativa

Tema : Unidad 2 - Programación Lineal, Modelo directo – b) Guía de Trabajos Prácticos

b-1) b-2) Trabajos Prácticos - Respuestas

b-1) Grupales

- 1) Solución óptima: F.O. = -18 $(X_1 = 0; X_2 = 4)$.
- 3) 3.1) Solución óptima única: F.O. = 18 $(X_1 = 4; X_2 = 3; X_3 = 4; X_4 = 0; X_5 = 0)$.
 - 3.2) Solución no acotada.
 - 3.3) Convexo abierto. Solución óptima única: F.O. = 17.2 (X1 = 2.8; X2 = 0.4; X3 = 0; X4 = 0).
 - 3.4) Soluciónes óptimas alternativas: F.O. = 48 (X1 = 3; X2 = 4; X3 = 0; X4 = 0; X5 = 0).
- **5)** 5.3) Solución óptima: F.O. = $18.000.000 (X_1 = 0; X_2 = 60.000; X_3 = 19.000; X_4 = 0; X_5 = 12.000; X_6 = 9.000)$.
- 6) 6.2) La solución gráfica verifica la dada analíticamente.

b-2) Auto aprendizaje/evaluación

- 1) Solución óptima: F.O. = 900 empleos ($X_1 = 15 \times 10^6 \text{ um}$; $X_2 = 10 \times 10^6 \text{ um}$).
- 2) 2.1) Solución no acotada.
 - 2.2) Solución óptima: F.O. = 13 empleos $(X_1 = 3; X_2 = 5)$.