CSE 360-Computer Architecture

Lecture-3

Computer Components

Dr. Shamim Akhter

Associate Professor

Department of Computer Science and Engineering

email: shamimakhter@ewubd.edu

Von Neumann Architecture

Based on three(3) key concepts:

 Data and instruction are stored in a single read-write memory.

 Memory contents are addressable by location, without regard to the type of data.

Execution occurs in a sequential fashion.

• From one instruction to the next.

Von Neumann Kitchen

Where is the Program?

High-level language program (in C)

Stored Program Concept

Assembly language program (for MIPS)

The idea that instructions and data of many types can be stored in memory as numbers.

Binary machine language program (for MIPS)

```
swap(int v[], int k)
{int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```



```
swap:
muli $2, $5,4
add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
ir $31
```


Where Does It All Begin?

• In a register called *program counter (PC)*.

 PC contains the memory address of the next instruction to be executed.

 In the beginning, PC contains the address of the memory location where the program begins.

How Does It Run?

Instruction Cycle State Diagram

Program Execution Concept

Programming connects various components in the desired configuration. Two different approaches

(b) Programming in software

Computer Components

Computer Modules with Interconnection Structure

Example of a Program Execution @ Hypothetical Machine

Program counter (PC) = Address of instruction Instruction register (IR) = Instruction being executed Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from memory 0010 = Store AC to memory 0101 = Add to AC from memory

(d) Partial list of opcodes

Bus Interconnection

- What is BUS?
 - A bus (group of electrical lines/wires) is a shared transmission medium, that carries computer signals.
 - Computer signals: 1 bit memory address, a sequence of data bits, or timing control that turns a device on or off.

Chapter 4 @Computer Organization and Architecture, William Stallings

Bus Structure

Multiple Bus Configuration

Element of Bus Design: Bus Width

- Data
- Address
- Control

Element of Bus Design: Type

- Dedicated
- Multiplexed

Chapter 4 @Computer Organization and Architecture, William Stallings

Element of Bus Design: Arbitration

Centralized:

- an arbitration circuit (bus controller/ arbiter) receives requests from the contending bus masters and then decides which of them is to be given control of the bus.
- may be part of CPU or separate.

• Distributed:

- No central controller each module may claim the bus
- Each module contains access control logic and the modules act together to share the bus.

Element of Bus Design: Timing

Chapter 4 @Computer Organization and Architecture, William Stallings

Element of Bus Design: Timing

Asynchronous Read

Asynchronous Write

Chapter 4 @Computer Organization and Architecture, William Stallings