تاریخ: ۲ اردیبهشت ۱۴۰۰

مدت امتحان: ٣ ساعت

امتحان میان ترم درس جبر خطی کاربردی

١٠ فرض كنيد

$$Q = \begin{pmatrix} 1 & 7 & 7 & 7 \\ 7 & 7 & 7 & 9 \\ 1 & 7 & 7 & 9 \\ 7 & 7 & 7 & 7 \end{pmatrix}.$$

رتبه (رنک) و پوچی ماتریس Q و یک پایه برای فضای سطری Q و یک پایه برای هسته Q پیدا کنید. (کلیه جزییات محاسبات را بنویسید.)

- ۲. تبدیل خطی $T:\mathbb{R}_{\mathsf{r}}[x] \to \mathbb{R}_{\mathsf{r}}[x]$ در نظر بگیرید. همچنین پایه $T:\mathbb{R}_{\mathsf{r}}[x] \to \mathbb{R}_{\mathsf{r}}[x]$ در نظر بگیرید. $\mathbb{R}_{\mathsf{r}}[x]$ را در نظر بگیرید. $\mathbb{R}_{\mathsf{r}}[x]$ را در نظر بگیرید. $\mathbb{R}_{\mathsf{r}}[x]$ فضای برداری همه چندجملهای های از درجه حداکثر $\mathbb{R}_{\mathsf{r}}[x]$ است.)
 - الف) ماتریس نمایش T در این پایهها یعنی $[T]_{\mathcal{B}_1,\mathcal{B}_1}$ را بدست آورید.
 - ب) رتبه (رنک) و پوچی T را بدست آورید.
- یک پایه $b \neq \circ$ فرض کنید $\mathbf{v} = [a,b,c]^t \in \mathbb{R}^n$ یک بردار دلخواه باشد که $\mathbf{v} = [a,b,c]^t \in \mathbb{R}^n$ یک پایه برای \mathbb{R}^n است.
- \mathcal{B}' باشد، ماتریس تبدیل پایه از پایه قدیمی \mathcal{B} به پایه استاندارد \mathbb{R}^r باشد، ماتریس تبدیل پایه از پایه قدیمی به پایه جدید \mathcal{B} باشد، ماتریس تبدیل پایه از پایه قدیمی به پایه جدید برعکس را بدست آورید.
- ج) میدانیم که مختصات دوران نقطه $u=[u_1,u_r,u_r]^t$ حول محور u به اندازه زاویه u در جهت میدانیم که مختصات دوران نقطه u'=Ru بدست می آید که

$$R = \begin{pmatrix} \cos \theta & -\sin \theta & \circ \\ \sin \theta & \cos \theta & \circ \\ \circ & \circ & 1 \end{pmatrix}.$$

. با کمک $(v=[a,b,c]^t\in\mathbb{R}^{\mathsf{r}}$ با ناتریس دوران حول بردار θ را بدست $(v=[a,b,c]^t\in\mathbb{R}^{\mathsf{r}}$ به اندازه زاویه

۱۰ فرض کنید V فضای برداری همه توابع حقیقی پیوسته روی بازه [-1,1] باشد که با ضرب داخلی زیر مجهز شده است،

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x)g(x) dx.$$

را زیرفضای تولید شده توسط توابع ۱ $v_{
m r}=x$ ، $v_{
m r}=x^{
m r}$ و $v_{
m r}=x^{
m r}$ در نظر بگیرید. با کمک الگوریتم W بدست آورید.

۵. فرض کنید $W_{\mathsf{T}} \oplus W_{\mathsf{T}} \oplus W_{\mathsf{T}}$ ماتریس P را ماتریس تصویر روی $W_{\mathsf{T}} \oplus W_{\mathsf{T}}$ در نظر بگیرید (یعنی x داریم $x \in \mathbb{R}^n$ تصویر x روی x در راستای x است). ثابت کنید

$$R(P) = N(I - P) = W_{r}$$
, $R(I - P) = N(P) = W_{r}$.