Homotopy Theory and Characteristic Classes

CUI Jiaqi East China Normal University

February 26, 2025

Abstract

This is the notes of a course given by Prof. Ma Langte in 25spring at Shanghai Jiaotong University.

Contents

Ι	Homotopy Theory	1
1	Cofibrations and Fibrations 1.1 Cofibrations	$4\\6\\7$
II	1.2 Fibrations	9 12
II	I Characteristic Classes	12

Part I

Homotopy Theory

Let **TOP** be the category of topological spaces. Then we can take a quotient of **TOP** and get the homotopy category $h-\mathbf{TOP}$. The quotient may bring more algebraic structures. For example, Mor (S^1, X) , the homotopy classes of maps from S^1 to X, is the fundamental group of X. Our goal is to study functors from hmotopy category to some algebraic categories.

Let \mathbf{TOP}^o be the pointed topological category, where the sum is wedge sum $(X, x_0) \land (Y, y_0) = X \sqcup Y/x_0 \sim y_0$ and the product is the smash product $(X, x_0) \lor (Y, y_0) = X \times Y/\{x_0\} \times Y \cup X \times \{y_0\}$. Similarly, we can take a quotient to get $h - \mathbf{TOP}^o$.

Let $\mathbf{TOP}(2)$ be the category of pairs and $h - \mathbf{TOP}(2)$ be its quotient.

Fix $K \in \text{Ob}(\mathbf{TOP})$. Let's consider \mathbf{TOP}^K , the category of spaces under K. Its objects are maps $f \colon K \to X$ and morphisms are maps $\alpha \colon X \to Y$ such that $\alpha \circ f = g$.

If $K = \{*\}$ is a single point set, then $\mathbf{TOP}^{\{*\}} = \mathbf{TOP}^o$ is the pointed topological category. Take X = K. A morphism from $f: K \to X$ to id: $K \to K$ is $r: X \to K$ such that $r \circ f = \mathrm{id}$.

When $K \subset X$, $f = i : K \hookrightarrow X$, we say that r is a retraction.

We have $r: X \to K$ is a deformation retraction, if and only if $i \circ r \simeq \mathrm{id}_X$ rel K, if and only if $r: X \to K$ is a homotopy equivalence in \mathbf{TOP}^K .

Fix $B \in \text{Ob}(\mathbf{TOP})$. Let's consider \mathbf{TOP}_B , the category of spaces over B, where the objects are $p: X \to B$ and morphisms are $f: X \to Y$ such that $p = q \circ f$.

Take X = B. A morphism from id: $B \to B$ to $q: Y \to B$ is $s: B \to Y$ such that $q \circ s = \mathrm{id}_B$.

Then s is called a section of q.

Similarly, we can define $h - \mathbf{TOP}^K$ and $h - \mathbf{TOP}_B$.

1 Cofibrations and Fibrations

1.1 Cofibrations

Definition 1.1. A map $i: A \to X$ has the homotopy extension property (HEP) for a space Y if for all homotopy $h: A \times I \to Y$ and $f: X \to Y$ with $f \circ i(a) = h(a, 1)$, there exists $H: X \times I \to Y$ satisfies

We say $i: A \to X$ is a cofibration if it has HEP for each $Y \in Ob(\mathbf{TOP})$.

Recall the mapping cylinder: if $i: A \to X$ is a map, then $Z(i) := (A \times I) \sqcup X/(a,1) \sim i(a)$.

Proposition 1.2. Given a map $i: A \to X$. The followings are equivalent:

- 1. $i: A \to X$ is a cofibration.
- 2. i has HEP for Z(i).
- 3. The map

$$s: Z(i) \to X \times I$$
$$(a,t) \mapsto (i(a),t),$$
$$x \mapsto (x,1)$$

has a retraction.

Proof. $(1)\Longrightarrow(2)$ is only by definition.

(2) \Longrightarrow (1): By definition, there exists $K \colon X \times I \to Z(i)$ such that the following diagram is commutative.

For any Y and homotopy $h: A \times I \to Y$ and $f: X \to Y$ with $f \circ i(a) = h(a, 1)$, we define

$$F: Z(i) \to Y$$

 $(a,t) \mapsto h(a,t)$
 $x \mapsto f(x).$

Then $F \circ K$ is as desired.

(2) \Longrightarrow (3): We can easily check that the extension $K: X \times I \to Z(i)$ in the proof of (2) \Longrightarrow (1) is a retraction of s.

(3) \Longrightarrow (2): Let r be a retraction of s. For any homotopy $h: A \times I \to Z(i)$ and $f: X \to Z(i)$ with $f \circ i(a) = h(a, 1)$, we define

$$\sigma \colon Z(i) \to Z(i)$$

$$(a,t) \mapsto h(a,t)$$

$$x \mapsto f(x).$$

Then we can verify that $H = \sigma \circ r \colon X \times I \to Z(i)$ extends h.

Corollary 1.3. When $A \subset X$ is a close subset, $i: A \hookrightarrow X$ is the inclusion map. Then $i: A \to X$ is a cofibration $\iff Z(i) = A \times I \cup X \times \{1\}$ is a retraction of $X \times I$.

Therefore, we can construct many cofibrations. For example, let (X, A) be a manifold with boundary, then $i \colon A \hookrightarrow X$ is a cofibration.

1.1.1 Push-Out of Cofibration

Given a commutative diagram,

$$\begin{array}{c|c}
A & \xrightarrow{f} & B \\
\downarrow j & & \downarrow J \\
X & \xrightarrow{F} & Y
\end{array}$$

the push-out of j along f is the initial object of this diagram, i.e. $j \colon B \to Y, \ F \colon X \to Y, \ \text{s.t.} \ \forall Z$ with $J' \colon B \to Z, \ F' \colon X \to Z$ satisfying $J' \circ f = F' \circ j, \ \exists ! \ \text{map} \ p \colon Y \to Z$ such that the diagram is commutative.

In our setting, we can construct $Y = X \sqcup B/f(a) \sim j(a)$ directly.

Proposition 1.4. If $j: A \to X$ is a cofibration, then the push-out of j along $f: B \to Y$ is also a cofibration.

Proof. For any $Z, g: Y \to Z, h: B \times I \to Z$ such that $g \circ J = h \circ (i_1 \times id)$, we need to find $H: Y \times I \to Z$ such that the following diagram is commutative.

Because $j\colon A\to X$ is a cofibration, we have $G\colon X\times I\to Z$ such that the following diagram is commutative.

Using the fact that $J \times \mathrm{id} \colon B \times I \to Y \times I$ is also the push-out of $j \times \mathrm{id} \colon A \times I \to X \times I$ along $f \times \mathrm{id} \colon A \times I \to B \times I$, we have unique $H \colon Y \times I \to Z$ such that the following diagram is commutative.

The $H: Y \times I \to Z$ is the extension of $h: B \times I \to Z$, as desired.

In terms of categorical language, let $\Pi(A,B)$ be a category, whose objects are continue maps from A to B and morphisms are homotopy of maps from A to B. Consider $\mathbf{COF}^B \subset \mathbf{TOP}^B$ the subcategory of cofibrations under B (i.e. $J \colon B \to Y$). Then we have homotopy category $h - \mathbf{COF}^B$. Given a cofibration $i \colon A \to X$, we get a contravariant functor

$$\beta \colon \Pi(A,B) \to h - \mathbf{COF}^B$$
.

In fact, we only need to check that if $f_0 \simeq f_1 \colon A \to B$, then we get a morphism from $J_0 \colon B \to Y_0$ to $J_1 \colon B \to Y_1$. Firstly, consider the homotopy $J_0 \circ f_t \colon A \times I \to Y_0$, we get its extension $\Psi \colon X \times I \to Y_0$.

Then by the universal property of the push-out $J_1: B \to Y_1$ of i along f_1 for $J_0: B \to Y_0$ and $\Psi_1: X \to Y_0$, we get a map $K: Y_1 \to Y_0$, as desired.

1.1.2 Replacing a Map by a Cofibration

Given a map $f: X \to Y$, consider the mapping cylinder Z(f). We can notice that Z(f) is the push-out.

$$X \xrightarrow{f} Y$$

$$\downarrow s$$

$$X \times I \xrightarrow{a} Z(f)$$

We also have a map

$$q \colon Z(f) \to Y$$

 $(x,t) \mapsto f(x).$

Note that by Proposition 1.2, $i_1: X \hookrightarrow X \times I$ is a cofibration $\iff X \times \{1\} \times I \cup X \times I \times \{1\}$ is a retraction of $X \times I \times I$, we have $s: Y \to Z(f)$ is a cofibration.

Proposition 1.5. Let

$$j: X \to Z(f)$$

 $x \mapsto (x, 0),$

we have

- 1. $j: X \to Z(f)$ is a cofibration.
- 2. $s \circ q \simeq \mathrm{id}_{Z(f)}$ rel Y.
- 3. If f is a cofibration, then $q: Z(f) \to Y$ is a homotopy equicalence in \mathbf{TOP}^X .

Proof. (1). We construct a retraction $R: Z(f) \times I \to X \times I \cup Z(f) \times \{1\}$ as follow. Let $R': I \times I \to I \times \{1\} \cup \{0\} \times I$ be a retraction. Then we define

$$R \colon Z(f) \times I \to X \times I \cup Z(f) \times \{1\}$$
$$((x,s),t) \mapsto (x,R'(s,t))$$
$$(y,t) \mapsto (y,1)$$

is as desired. By Proposition 1.2, $j: X \to Z(f)$ is a cofibration.

(2). The homotopy

$$h_t \colon Z(f) \to Z(f)$$

 $(x, \sigma) \mapsto (x, (1-t)\sigma + t)$

is as desired.

(3). By Proposition 1.2, there is a retraction $r: Y \times I \to Z(f)$. Define

$$g \colon Y \to Z(f)$$

 $y \mapsto r(y, 1).$

One can verifies that g is the homotopy inverse of q.

Summery 1. Any map $f: X \to Y$ factors into

$$X \xrightarrow{j} Z \xrightarrow{q} Y$$

where $j\colon X\to Z$ is a cofibration and $q\colon Z\to Y$ is a homotopy equivalence. Moreover, such a factorization is unique up to homotopy equivalence. In particular, we can choose Z=Z(f). We define $C_f=Z(f)/\operatorname{im} j$ as the homotopy cofibre of f, i.e. $C_f=X\times I\sqcup Y/(x,0)\sim *,(x,1)\sim f(x)$, is called the mapping cone of f.

$$X \xrightarrow{f} Y \xrightarrow{s} C_f$$

1.1.3 The Cofibre Sequence (Puppe's Sequence)

To get finer structure, we work in \mathbf{TOP}^o . Given a map $f: (X, x_0) \to (Y, y_0)$, we get an induced map

$$f^* : [Y, B]^o \to [X, B]^o$$

 $[\alpha] \mapsto [f \circ \alpha],$

where $[X, B]^o$ is the homotopy class of basepoint preserving maps. In particular, we have the constant map

$$[*]: X \to B$$

 $x \mapsto b_0.$

Definition 1.6. We say a sequence

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$$

in \mathbf{TOP}^o is h-coexact if $\forall (B, b_0) \in \mathrm{Ob}(\mathbf{TOP}^o)$,

$$[Z,B]^o \xrightarrow{g^*} [Y,B]^o \xrightarrow{f^*} [X,B]^o$$

is exact, i.e. $(f^*)^{-1}([*]) = \text{im } g^*$.

In **TOP**^o, we consider the reduced mapping cone $CX := X \times I/X \times \{0\} \cup \{x_0\} \times I$. The basepoint of CX is $X \times \{0\} \cup \{x_0\} \times I$. And we consider the reduced mapping cone: For $f : (X, x_0) \to (Y, y_0)$, $C(f) := CX \vee Y/(x, 1) \sim f(x)$. It is equivalent to the following push-out diagram.q

$$X \xrightarrow{f} Y$$

$$\downarrow_{i_1} \qquad \qquad \downarrow_{f_1}$$

$$CX \longrightarrow C(f)$$

In fact, f_1 maps y to (y, 1).

We will also use symbol X instead of (X, x_0) in **TOP**^o for short.

Proposition 1.7. The sequence

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f)$$

is h-coexact.

Proof. Consider the following sequence

$$[C(f), B]^o \xrightarrow{f_1^*} [Y, B]^o \xrightarrow{f^*} [X, B]^o$$

for any (B, b_0) .

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f)$$

Assume that $[\alpha] \in [Y,B]^o$ s.t. $[\alpha \circ f] = [*] \in [X,B]^o$, i.e. $\alpha \circ f$ is null-homotopic. This is equivalent that there exists a map $h \colon CX \to B$. The mapping cone C(f) is the push-out of

$$X \xrightarrow{f} Y$$

$$\downarrow_{i_1} \qquad \qquad \downarrow_{f_1}$$

$$CX \longrightarrow C(f)$$

Using the universal property of push-out, we have the following commutative diagram,

i.e. $\alpha = \beta \circ f_1$. Therefore $[\alpha] = f_1^*[\beta]$ and this proposition follows.

Iterate the procedure, we get a long h-coexact sequence:

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f) \xrightarrow{f_2} C(f_1) \xrightarrow{f_3} C(f_2) \longrightarrow \cdots$$

Consider the injection $j_1: CY \to C(f_1)$, we have that

$$C(f_1)/j_1(CY) = X \times I/X \times \partial I \cup \{x_0\} \times I = \Sigma X$$

is the reduced suspension of X. Then we get a quotient map

$$q(f)\colon C\left(f_1\right)\to \Sigma X.$$

Claim 1. q(f) is a homotopy equivalence.

Denote by $s(f): \Sigma X \to C(f_1)$ the homotopy inverse of q(f). Then our original sequence becomes

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f) \xrightarrow{f_2} C(f_1) \xrightarrow{f_3} C(f_2)$$

$$\downarrow^{q(f)} \downarrow^{q(f)}$$

$$\Sigma X$$

Consider the following diagram.

$$C(f_1) \xrightarrow{f_3} C(f_2)$$

$$q(f) \downarrow s(f) \qquad \qquad \downarrow q(f_1)$$

$$\sum X \xrightarrow{q(f_1) \circ f_3 \circ s(f)} Y$$

Claim 2. Consider $\tau \colon \Sigma X \to \Sigma X$ which maps (x,t) to (x,1-t), we have $q(f_1) \circ f_3 \circ s(f) \simeq \Sigma f \circ \tau$

To prove it, denote $p(f_1) = q(f_1) \circ f_3$. In fact, $p(f_1)$ retracts the left triangle, i.e. CX to a point.

In the following diagram, s(f) is the union of id and $f \times id$, i.e. id maps the left triangle of ΣX to the left triangle of $C(f_1)$, $f \times id$ maps the right triangle of ΣX to the right triangle of $C(f_1)$. Then $\Sigma f = p(f_1) \circ s(f)$ naturally. Notice that τ flips ΣX left and right. Therefore, by symmetry, we have $p(f_1) \circ s(f) \simeq \Sigma f \circ \tau$, as desired.

Now we get

$$X \xrightarrow{\quad f \quad} Y \xrightarrow{\quad f_1 \quad} C(f) \xrightarrow{p(f) \quad} \Sigma X \xrightarrow{\quad \Sigma f \quad} \Sigma Y \xrightarrow{\quad (\Sigma f)_1} C(\Sigma f)$$

Claim 3. There is a homeomorphism $\tau_1 \colon C(\Sigma f) \to \Sigma C(f)$ such that the following diagram is commutative.

$$\Sigma Y \xrightarrow{(\Sigma f)_1} C(\Sigma f)$$

$$\downarrow^{\tau_1}$$

$$\Sigma C(f)$$

In fact, regard both $C(\Sigma f)$ and $\Sigma C(f)$ as the quotient spaces of $X \times I \times I$ unioned with Y, τ_1 is induced from interchanging the two I-factors.

As conclusion, we have

Theorem 1.8 (Puppe's Sequence). The sequence

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f) \xrightarrow{p(f)} \Sigma X \xrightarrow{\Sigma f} \Sigma Y \xrightarrow{\Sigma f_1} \Sigma C(f) \xrightarrow{p(\Sigma f)} \Sigma^2 X \longrightarrow \Sigma^2 Y \longrightarrow \cdots$$

is h-coexact.

1.2 Fibrations

Definition 1.9. A map $p: E \to B$ has the homotopy lifting property (HLP) for the space X if \forall homotopy $h: X \times I \to B$ and $a: X \to E$ s.t. $p \circ a(x) = h(x, 0)$, there exists a homotopy $H: X \times I \to E$

s.t. $p \circ H = h$. H is called a lifting of h.

$$X \xrightarrow{a} E$$

$$\downarrow i_0 \qquad \downarrow f \qquad \downarrow p$$

$$X \times I \xrightarrow{h} B$$

A map $p: E \to B$ is called a fibration if it has HLP for all spaces X.

Definition 1.10. Given maps $f: A \to B$ and $p: E \to B$. The pull-back of p along f is the terminal object of the following diagram,

$$\begin{array}{ccc}
f^*E & \longrightarrow E \\
\downarrow & & \downarrow p \\
A & \xrightarrow{f} B
\end{array}$$

i.e. for any $C, g: C \to E, h: C \to A$, there exists unique r such that the following diagram is commutative.

Explicity,

$$f^*E = \{(a, e) \in A \times E : f(a) = p(e)\}$$

and $\pi \colon f^*E \to A$ is the projection.

Denote $B^I = \text{Map}(I, B)$. Consider the pull-back

$$W(p) \coloneqq \left\{ (x, w) \in E \times B^I : p(x) = w(0) \right\}$$

which is given by the pull-back

$$W(p) \xrightarrow{k} B^{I}$$

$$\downarrow b \qquad \qquad \downarrow e^{0}$$

$$E \xrightarrow{n} B$$

where e^0 maps w to w(0).

Proposition 1.11. Given a map $p: E \to B$, the followings are equivalence:

- 1. $p: E \to B$ is a fibration.
- 2. p has HLP for W(p).

3.

$$r \colon E^I \to W(p)$$

 $\alpha \mapsto (\alpha(0), p \circ \alpha)$

admits a section.

Proof. $(1)\Longrightarrow(2)$ is by definition.

(2) \Longrightarrow (3): Because W(p) is a pull-back, by its universal property, we have the following diagram and we want to find s such that $r \circ s = \mathrm{id}$.

Notice that Map $(W(p), E^I) = \text{Map}(W(p) \times I, E)$, because p has HLP for W(p), we have the following commutative diagram.

$$W(p) \xrightarrow{b} E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow p$$

$$W(p) \times I \xrightarrow{k} B$$

We have $b \circ r \circ s = e^0 \circ s = b$ and $k \circ r \circ s = p^I s = k$. Using the universal property (uniqueness) of pull-back W(p) for W(p), we must have $r \circ s = \mathrm{id}$, i.e. s is a section of r.

(3) \Longrightarrow (1): Let s be the section of r. For any X, a, h as in the definition of fibration, we want to find H such that the following diagram is commutative.

$$X \xrightarrow{a} E$$

$$\downarrow i_0 \qquad \downarrow p$$

$$X \times I \xrightarrow{h} B$$

Using the universal property of pull-back W(p), we have unique f such that the following diagram is commutative, where $h\colon X\to B^I$ is the same as $h\colon X\times I\to B$.

Then because Map $(W(p), E^I) = \text{Map}(W(p) \times I, E)$, one can check that $H = s \circ f$ is as desired. In fact,

$$p \circ H(x,t) = (p \circ H(x))(t) = (k \circ r \circ s \circ f(x))(t) = (k \circ \operatorname{id} \circ f(x))(t) = h(x,t)$$

and $H \circ i_0 = a$ is similar.

Proposition 1.12. If $p: E \to B$ is a fibration, then $f^*E \to A$ is also a fibration.

Proof. In the following diagram, F is induced by HLP for fibration $p: E \to B$ and then H is induced by universal property of pull-back f^*E .

$$X \xrightarrow{a} f^*E \xrightarrow{} E$$

$$\downarrow i_0 \downarrow H \xrightarrow{\pi} F \downarrow \pi \qquad \downarrow p$$

$$X \times I \xrightarrow{h} A \xrightarrow{f} B$$

Part II Generalized Homology

Part III Characteristic Classes