Algdat – Øving 6

Vektede Grafer - Ingebrigt Hovind

Valgte å implementere Dijkstras algoritme, prøvde først rekursivt, men fant ut at denne ikke kunne håndtere skandinaviagrafen (etter mine utregninger så ville det ha tatt 50 timer på maskinen min). Implementerte derfor Dijkstra med en vanlig løkke samtidig som jeg optimaliserte på andre steder, for eksempel ved å ikke gi sette nodene inn i heapen før etter at de ble funnet. Dette gikk mye bedre slik at programmet håndterer nå alle grafene fint, inkludert skandinaviagrafen

N/A i utskriftene betyr at noden ikke kan nås fra den gitte startnoden.

VG1

Start i 1:

6\$./main Grafer/vg1.txt 1				
	•	avstand		
0	N/A			
1	start	0		
2	3	3		
3	1	2		

Start i 0:

VG2 – start i 7

32 - S l	ait i 1	
ving6\$./main Graf	er/vg2.txt 7
index	forgjenger	avstand
Θ	N/A	
1	N/A	
2	6	17
3	19	23
4	49	19
5	25	9
2 3 4 5	33	16
7	start	Θ
8	15	799
9	36	88
10	N/A	
11	18	857
12	20	796
13	7	3
14	28	13
15	20	795
16	N/A	
17	6	18
18	28	790
19	24	19
20	18	794
21	5	9
22	36	14
23	N/A	
24	21	16
25	7	7
26	28	21
27	15	798
28	21	13
29	38	29
30	N/A	
31	25	9
32	45	836
33	36	13
34	14	21
35	43	105
36	5	12
37	28	20
38	34	29
39	12	877
40	49	11
41	N/A	
42	N/A	
43	6	28
44	19	20
45	20	803
46	31	11
47	21	11
48	24	17
49	21	11