Working with Reasoning Models

How and when to use LLMs for thinking and reasoning

Instructor: Lucas B. Nicolosi Soares

- 1. What is a Reasoning LLM?
- 2. Reasoning Models vs Traditional LLMs

- 1. What is a Reasoning LLM?
- 2. Reasoning Models vs Traditional LLMs
- 3. Why use a Reasoning LLM?

- 1. What is a Reasoning LLM?
- 2. Reasoning Models vs Traditional LLMs
- 3. Why use a Reasoning LLM?
- 4. When to use a Reasoning LLM?

- 1. What is a Reasoning LLM?
- 2. Reasoning Models vs Traditional LLMs
- 3. Why use a Reasoning LLM?
- 4. When to use a Reasoning LLM?
- 5. How to Use a Reasoning LLM?

- 1. What is a Reasoning LLM?
- 2. Reasoning Models vs Traditional LLMs
- 3. Why use a Reasoning LLM?
- 4. When to use a Reasoning LLM?
- 5. How to Use a Reasoning LLM?
- 6. Limitations of Reasoning LLMs

- 1. What is a Reasoning LLM?
- 2. Reasoning Models vs Traditional LLMs
- 3. Why use a Reasoning LLM?
- 4. When to use a Reasoning LLM?
- 5. How to Use a Reasoning LLM?
- 6. Limitations of Reasoning LLMs
- 7. Choosing a Reasoning LLM

- 1. What is a Reasoning LLM?
- 2. Reasoning Models vs Traditional LLMs
- 3. Why use a Reasoning LLM?
- 4. When to use a Reasoning LLM?
- 5. How to Use a Reasoning LLM?
- 6. Limitations of Reasoning LLMs
- 7. Choosing a Reasoning LLM
- 8. Hands-on with Reasoning LLMs

Traditional LLMS

How?

How?

How an LLM is Trained - Busy Person Guide

How an LLM is Trained - Busy Person Guide

• Language models designed for complex, multi-step problems

- Language models designed for complex, multi-step problems
- Generate intermediate reasoning steps or "thought processes"

- Language models designed for complex, multi-step problems
- Generate intermediate reasoning steps or "thought processes"
- Break down tasks into logical sub-steps

- Language models designed for complex, multi-step problems
- Generate intermediate reasoning steps or "thought processes"
- Break down tasks into logical sub-steps
- Similar to human step-by-step problem solving

- Language models designed for complex, multi-step problems
- Generate intermediate reasoning steps or "thought processes"
- Break down tasks into logical sub-steps
- Similar to human step-by-step problem solving
- More accurate and explainable results on challenging tasks:
 - Mathematical problems
 - Logic puzzles
 - Code debugging

Q&A & Break

Reasoning Models vs Traditional LLMs

• Direct pattern-based prediction

- Direct pattern-based prediction
- One-shot "I'm feeling lucky" approach

- Direct pattern-based prediction
- One-shot "I'm feeling lucky" approach
- Quick but less reliable on complex tasks

- Direct pattern-based prediction
- One-shot "I'm feeling lucky" approach
- Quick but less reliable on complex tasks
- No explicit reasoning steps

- Direct pattern-based prediction
- One-shot "I'm feeling lucky" approach
- Quick but less reliable on complex tasks
- No explicit reasoning steps

Reasoning LLMs

• Step-by-step problem solving

- Direct pattern-based prediction
- One-shot "I'm feeling lucky" approach
- Quick but less reliable on complex tasks
- No explicit reasoning steps

- Step-by-step problem solving
- Chain-of-thought (CoT) approach

- Direct pattern-based prediction
- One-shot "I'm feeling lucky" approach
- Quick but less reliable on complex tasks
- No explicit reasoning steps

- Step-by-step problem solving
- Chain-of-thought (CoT) approach
- More methodical but slower

- Direct pattern-based prediction
- One-shot "I'm feeling lucky" approach
- Quick but less reliable on complex tasks
- No explicit reasoning steps

- Step-by-step problem solving
- Chain-of-thought (CoT) approach
- More methodical but slower
- Shows intermediate steps

Q&A & Break

1. Chain-of-Thought Reasoning

- 1. Chain-of-Thought Reasoning
 - Internal dialogue approach

1. Chain-of-Thought Reasoning

- Internal dialogue approach
- Step-by-step problem solving

1. Chain-of-Thought Reasoning

- Internal dialogue approach
- Step-by-step problem solving
- "Thinking aloud" in text

1. Chain-of-Thought Reasoning

- Internal dialogue approach
- Step-by-step problem solving
- "Thinking aloud" in text

2. **Self-Consistency**

1. Chain-of-Thought Reasoning

- Internal dialogue approach
- Step-by-step problem solving
- "Thinking aloud" in text

2. **Self-Consistency**

Verifies own answers

1. Chain-of-Thought Reasoning

- Internal dialogue approach
- Step-by-step problem solving
- "Thinking aloud" in text

2. **Self-Consistency**

- Verifies own answers
- Revisits problematic solutions

1. Chain-of-Thought Reasoning

- Internal dialogue approach
- Step-by-step problem solving
- "Thinking aloud" in text

2. **Self-Consistency**

- Verifies own answers
- Revisits problematic solutions

3. Structured Outputs

1. Chain-of-Thought Reasoning

- Internal dialogue approach
- Step-by-step problem solving
- "Thinking aloud" in text

2. **Self-Consistency**

- Verifies own answers
- Revisits problematic solutions

3. Structured Outputs

Organized reasoning steps

1. Chain-of-Thought Reasoning

- Internal dialogue approach
- Step-by-step problem solving
- "Thinking aloud" in text

2. **Self-Consistency**

- Verifies own answers
- Revisits problematic solutions

3. Structured Outputs

- Organized reasoning steps
- Numbered thoughts

1. Chain-of-Thought Reasoning

- Internal dialogue approach
- Step-by-step problem solving
- "Thinking aloud" in text

2. **Self-Consistency**

- Verifies own answers
- Revisits problematic solutions

3. Structured Outputs

- Organized reasoning steps
- Numbered thoughts
 - Traceable calculations

Why use a Reasoning LLM?

Demand for AI models is concentrated on releases from top AI labs; model reasoning quality and price are the primary decision drivers for choosing models

Artificial Analysis AI Review

• Background tasks where latency isn't critical

- Background tasks where latency isn't critical
- Complex problems requiring deeper thinking

- Background tasks where latency isn't critical
- Complex problems requiring deeper thinking
- Tasks benefiting from extensive reasoning

- Background tasks where latency isn't critical
- Complex problems requiring deeper thinking
- Tasks benefiting from extensive reasoning
- Research and planning-heavy workflows

- Complex Problem Solving
 - Mathematical proofs
 - Logic puzzles
 - Multi-step reasoning

• Complex Problem Solving

- Mathematical proofs
- Logic puzzles
- Multi-step reasoning

• Deep Analysis

- Research papers
- Document analysis
- Meeting notes interpretation

Complex Problem Solving

- Mathematical proofs
- Logic puzzles
- Multi-step reasoning

Deep Analysis

- Research papers
- Document analysis
- Meeting notes interpretation

Planning & Agency

- Workflow planning
- Agentic systems
- Strategic decision-making

• Data Analysis

- Medical diagnostics
- Complex data interpretation
- Anomaly detection

• Data Analysis

- Medical diagnostics
- Complex data interpretation
- Anomaly detection

• Background Processing

- Batch processing workflows
- Overnight analysis jobs

• Data Analysis

- Medical diagnostics
- Complex data interpretation
- Anomaly detection

• Background Processing

- Batch processing workflows
- Overnight analysis jobs

Evaluation Tasks

- LLM as judge
- Quality assessment
- Verification workflows

Q&A & Break

How to Use a Reasoning LLM?

Whiteboard - How to Use a Reasoning LLM?

Hands-on - How to Use a Reasoning LLM?

How to Prompt Reasoning LLMs

Q&A & Break

Limitations of Reasoning LLMs

• **Increased latency**: Extended thinking process leads to significantly longer response times

- **Increased latency**: Extended thinking process leads to significantly longer response times
- **Higher resource requirements**: Often require more computational resources

- **Increased latency**: Extended thinking process leads to significantly longer response times
- **Higher resource requirements**: Often require more computational resources
- **Cost implications**: More tokens and processing time translate to higher operational costs

- **Increased latency**: Extended thinking process leads to significantly longer response times
- **Higher resource requirements**: Often require more computational resources
- **Cost implications**: More tokens and processing time translate to higher operational costs
- **Scalability challenges**: Multiple concurrent requests become more resource-intensive

• **Domain-specific limitations**: Performance varies considerably across different subject areas

- **Domain-specific limitations**: Performance varies considerably across different subject areas
- **Brittleness with novel problems**: May struggle with problem types not encountered during training

- **Domain-specific limitations**: Performance varies considerably across different subject areas
- **Brittleness with novel problems**: May struggle with problem types not encountered during training
- **Inconsistent depth of reasoning**: Quality of reasoning can vary within the same model

- **Domain-specific limitations**: Performance varies considerably across different subject areas
- **Brittleness with novel problems**: May struggle with problem types not encountered during training
- **Inconsistent depth of reasoning**: Quality of reasoning can vary within the same model
- Over-confidence in incorrect reasoning: May present flawed reasoning with high confidence

• **Bounded knowledge**: Limited to training data available at model development time

- **Bounded knowledge**: Limited to training data available at model development time
- **Context window constraints**: Struggle with very lengthy problems despite large context windows

- **Bounded knowledge**: Limited to training data available at model development time
- **Context window constraints**: Struggle with very lengthy problems despite large context windows
- **Information integration challenges**: Difficulty maintaining coherence across extensive reasoning chains

- **Bounded knowledge**: Limited to training data available at model development time
- **Context window constraints**: Struggle with very lengthy problems despite large context windows
- Information integration challenges: Difficulty maintaining coherence across extensive reasoning chains
- **Limited transfer learning**: Reasoning in one domain doesn't always transfer to other domains

Limitations of Reasoning LLMs

 \mathbb{X}

Your LLM isn't doing math - it's using clever pattern matching tricks.

LLMs perform arithmetic using neither robust algorithms nor memorization; rather, they rely on a "bag of heuristics", as proposed in this paper.

Do LLMs solve reasoning tasks using Show more

ARITHMETIC WITHOUT ALGORITHMS: LANGUAGE MODELS SOLVE MATH WITH A BAG OF HEURISTICS

Faith and Fate: Limits of Transformers on Compositionality

Nouha Dziri^{1*}, Ximing Lu^{1,2*}, Melanie Sclar^{2*}, Ximing Lorraine Li¹1, Liwei Jiang^{1,2*}, Bill Yuchen Lin^{1†}, Peter West^{1,2}, Chandra Bhagavatula¹, Ronan Le Bras¹, Jena D. Hwang¹, Soumya Sanyal³, Sean Welleck^{1,2}, Xiang Ren^{1,2*}, Allyson Ettinger^{1,4}, Zaid Harchaoui^{1,2}, Yejin Chol^{1,2}

¹Allen Institute for Artificial Intelligence ²University of Washington ³University of Southern California ⁴University of Chicago

nouhad@allenai.org, ximinglu@allenai.org, msclar@cs.washington.edu

Abstract

Transformer large language models (LLMs) have sparked admiration for their exceptional performance on tasks that demand intricate multi-step reasoning. Yet, these models simultaneously show failures on surprisingly trivial problems. This begs the question: Are these errors incidental, or do they signal more substantial limitations? In an attempt to demystify transformer LLMs, we investigate the limits of these models across three representative compositional tasks-multi-digit multiplication, logic grid puzzles, and a classic dynamic programming problem. These tasks require breaking problems down into sub-steps and synthesizing these steps into a precise answer. We formulate compositional tasks as computation graphs to systematically quantify the level of complexity, and break down reasoning steps into intermediate sub-procedures. Our empirical findings suggest that transformer LLMs solve compositional tasks by reducing multi-step compositional reasoning into linearized subgraph matching, without necessarily developing systematic problem-solving skills. To round off our empirical study, we provide theoretical arguments on abstract multi-step reasoning problems that highlight how autoregressive generations' performance can rapidly decay with increased task complexity.

https://arxiv.org/pdf/2305.18654

Reasoning or Reciting? Exploring the Capabilities and Limitations of Language Models Through Counterfactual Tasks

Zhaofeng Wu[®] Linlu Qiu[®] Alexis Ross[®] Ekin Akyürek[®] Boyuan Chen[®]
Bailin Wang[®] Najoung Kim[®] Jacob Andreas[®] Yoon Kim[®]

[®]MIT [®]Boston University
zfw@csail.mit.edu

28 Mar 2024

arXiv:2307.02477v3 [cs.CL]

Figure 1: GPT-4's performance on the default version of various tasks (blue) and counterfactual counterparts (orange). The shown results use 0-shot chain-of-thought prompting (§4; Kojima et al., 2023). GPT-4 consistently and substantially underperforms on counterfactual variants compared to default task instantiations.

Dziri et al. (2023)

Wu et al. (2024)

Q&A & Break

Choosing a Reasoning LLM

Whiteboard - Choosing a Reasoning LLM

Hands-on with Reasoning LLMs

Connect With Me

Twitter/X

Email: lucasenkrateia@gmail.com