Class: CS112.L23.KHCL

Group: 10

HOMEWORK: THE SHORTEST PATH

Using Floyd Warshall's algorithm to solve the above problem

Following these steps to find the correct answer:

- 1. Remove all the self loops and parallel edges (keeping the lowest weight edge) from the graph
 - ⇒ Because the graph doesn't have any self loops or parallel edges so I'm gonna move to the next step
- 2. Using X_0 to represent the initial distance matrix:

		_ A	В	C	D	E	F	S	T _	_
	A	0	∞	∞	4	11	∞	∞	∞	
	В	∞	0	∞	9	5	16	∞	∞	
	C	∞	∞	0	∞	∞	2	∞	∞	
$X_0 =$	D	∞	∞	∞	0	∞	∞	∞	18	
	E	∞	∞	∞	∞	0	∞	∞	13	
	F	∞	∞	∞	∞	∞	0	∞	2	
	S	1	2	5	∞	∞	∞	0	∞	
	T	∞	0 -							

1

3.

Creating a new matrix X_i ($i \in \{S, A, B, C, D, E, F, T\}$) by using the current matrix X_0 . If we want to find the shortest path from the vertex \mathbf{i} to vertex \mathbf{j} that go through vertex \mathbf{k} , we need to replace all the elements in the matrix (except the elements in the column \mathbf{i} and the row \mathbf{j}) following the formula:

$$D_{k,i,j} = min~\{~D_{k\text{-}1,i,j}~or~D_{k\text{-}1,i,k} + D_{k\text{-}1,k,j}~\}$$
 if $d(i,\,k)+d(k,\,j) < d(i,\,j)$ then $d(i,j)=d(i,\,k)+d(k,j) \to Update~min$

- F: False, T: True
- All of the matrixs below can use to find all-pairs shortest path

• Through vertex A:

 $BC = B \rightarrow A \rightarrow C = d(B, A) + d(A, C) = \infty + \infty < \infty : F$ $SD = S \rightarrow A \rightarrow D = d(S, A) + d(A, D) = 1 + 4 < \infty : T \rightarrow Update \ SD = 5$ $SE = S \rightarrow A \rightarrow E = d(S, A) + d(A, E) = 1 + 11 < \infty : T \rightarrow Update \ SE = 12$ $\{BD, BE, BF, BS, BT, CB, CD, CE, CF, CS, CT, DB, DC, DE, DF, DS, DT, EB, EC, ED, EF, ES, ET, FB, FC, FD, FE, FT, SB, SC, SF, ST, TB, TC, TD, TE, TF, TS\} : F$

		_ A	В	C	D	E	F	S	T
	A	0	∞	∞	4	11	∞	∞	∞
	В	∞	0	∞	9	5	16	∞	∞
	C	∞	∞	0	∞	∞	2	∞	∞
$X_A =$	D	∞	∞	∞	0	∞	∞	∞	18
	Е	∞	∞	∞	∞	0	∞	∞	13
	F	∞	∞	∞	∞	∞	0	∞	2
	S	1	2	5	5	12	∞	0	∞
	T	$\lfloor \lfloor \infty \rfloor$	∞	∞	∞	∞	∞	∞	0

• Through vertex B:

SE = S \rightarrow B \rightarrow E = d(S, B) + d(B, E) = 2 + 5 < 12 : T \rightarrow Update SE=7 SF = S \rightarrow B \rightarrow F = d(S, B) + d(B, F) = 2 + 16 < ∞ : T \rightarrow Update SF=18 {AC, AD, AE, AF, AS, AT, CA, CD, CE, CF, CS, CT, DA, DC, DE, DF, DS, DT, EA, EC, ED, EF, ES, ET, FA, FC, FS, FE, FS, FT, SA, SC, SD, ST, TA, TC, TD, TE, TF, TS} : F

		A	В	C	D	E	F	S	T
	A	0	∞	∞	4	11	∞	∞	∞
	В	∞	0	∞	9	5	16	∞	∞
	C	∞	∞	0	∞	∞	2	∞	∞
$X_B =$	D	∞	∞	∞	0	∞	∞	∞	18
	E	∞	∞	∞	∞	0	∞	∞	13
	F	∞	∞	∞	∞	∞	0	∞	2
	S	1	2	5	5	7	18	0	∞
	T	$-\infty$	∞	∞	∞	∞	∞	∞	0 _

• Through vertex C:

 $SF = S \rightarrow C \rightarrow F = d(S, C) + d(C, F) = 5 + 2 < 18 : T \rightarrow Update SF = 7$ {AB, AD, AE, AF, AS, AT, BA, BD, BD, BE, BF, BS, BT, DA, DB, DE, DF, DS, DT, EA, EB, ED, EF, ES, ET, FA, FB, FD, FE, FS, FT, SA, SB, SD, SE, ST, TA, TB, TD, TE, TF, TS} : F

		A	В	C	D	E	F	S	T	_
	A	0	∞	∞	4	11	∞	∞	∞	
	В	∞	0	∞	9	5	16	∞	∞	
	C	∞	∞	0	∞	∞	2	∞	∞	
$X_C =$	D	∞	∞	∞	0	∞	∞	∞	18	
	E	∞	∞	∞	∞	0	∞	∞	13	
	F	∞	∞	∞	∞	∞	0	∞	2	
	S	1	2	5	5	7	7	0	∞	
	T	\bigcup_{∞}	∞	∞	∞	∞	∞	∞	0 -	

• Through vertex D:

TA, TB, TC, TE, TF, TS}: F

$$\begin{array}{l} AT = A \to D \to F = d(A,\,D) + d(D,\,T) = 4 + 18 < \infty : T \to Update \,\,AT = \\ 22 \\ BT = B \to D \to T = d(B,\,D) + d(D,\,T) = 9 + 18 < \infty : T \to Update \,\,BT = \\ 27 \\ ST = S \to D \to T = d(S,\,D) + d(D,\,T) = 5 + 18 < \infty : T \to Update \,\,ST = \\ 23 \\ \{AB,\,AC,\,AE,\,AF,\,AS,\,BA,\,BC,\,BE,\,BF,\,BS,\,CA,\,CB,\,CE,\,CF,\,CS,\,CT,\,EA,\,EB,\,EC,\,EF,\,ES,\,ET,\,FA,\,FB,\,FC,\,FE,\,FS,\,FT,\,SA,\,SB,\,SC,\,SE,\,SF, \end{array}$$

		A	В	C	D	E	F	S	T
	A	0	∞	∞	4	11	∞	∞	22
	В	∞	0	∞	9	5	16	∞	27
	C	∞	∞	0	∞	∞	2	∞	∞
$X_D =$	D	∞	∞	∞	0	∞	∞	∞	18
	E	∞	∞	∞	∞	0	∞	∞	13
	F	∞	∞	∞	∞	∞	0	∞	2
	S	1	2	5	5	7	7	0	23
	T	_ ∞	∞	∞	$ \infty $	∞	∞	∞	0

• Through vertex E:

 $BT = B \rightarrow E \rightarrow T = d(B, E) + d(E, T) = 5 + 13 < \infty : T \rightarrow Update BT = 18$

{AB, AC, AD, AF, AS, AT, BA, BC, BD, BF, BS, CA, CB, CD, CF, CS, CT, DA, DV, DC, DF, DS, DT, FA, FB, FC, FD, FS, FT, SA, SB, SC, SD, SF, TA, TB, TC, TD, TF, TS} : F

		A	В	C	D	E	F	S	T
	A	0	∞	∞	4	11	∞	∞	22
	В	∞	0	∞	9	5	16	∞	18
	C	∞	∞	0	∞	∞	2	∞	∞
$X_E =$	D	∞	∞	∞	0	∞	∞	∞	18
	Е	∞	∞	∞	∞	0	∞	∞	13
	F	∞	∞	∞	∞	∞	0	∞	2
	S	1	2	5	5	7	7	0	20
	\mathbf{T}	_ ∞	∞	∞	∞	∞	∞	∞	0

• Through vertex F:

 $ST = S \rightarrow F \rightarrow T = d(S, F) + d(F, T) = 7 + 2 < 20 : T \rightarrow Update ST = 9$ $CT = C \rightarrow F \rightarrow T = d(C, F) + d(F, T) = 2 + 2 < \infty : T \rightarrow Update CT = 4$ {AB, AC, AD, AE, AS, AT, BA, BC, BD, BE, BS, BT, CA, CB, CD, CE, CS, DA, DB, DC, DE, DS, DT, EA, FB, EC, ED, ES, ET, SA, SB, SC, SD, SE, TA, TB, TC, TD, TE, TS} : F

		A	В	C	D	E	F	S	T	
	A	0	∞	∞	4	11	∞	∞	22	
	В	∞	0	∞	9	5	16	∞	18	
	C	∞	∞	0	∞	∞	2	∞	4	
$X_F =$	D	∞	∞	∞	0	∞	∞	∞	18	
	E	∞	∞	∞	∞	0	∞	∞	13	
	F	$\bigcirc \infty$	∞	∞	∞	∞	0	∞	2	
	S	1	2	5	5	7	7	0	9	
	T	_ ∞	∞	∞	∞	∞	∞	∞	0 _	

• Through vertex S:

{AB, AC, AD, AE, AF, AT, BA, BC, BD, BE, BF, BT, CA, CB, CD, CE, CF, CT, DA, DB, DC, DE, DF, DT, EA, EB, EC, ED, EF, ET, FA, FB, FC, FD, FE, FT, TA, TB, TC, TD, TE, TF}: F

		A	В	C	D	E	F	S	T
	A	0	∞	∞	4	11	∞	∞	22
	В	∞	0	∞	9	5	16	∞	18
	C	∞	∞	0	∞	∞	2	∞	4
$X_S =$	D	∞	∞	∞	0	∞	∞	∞	18
	E	∞	∞	∞	∞	0	∞	∞	13
	F	∞	∞	∞	∞	∞	0	∞	2
	S	1	2	5	5	7	7	0	9
	T	$\bigcup_{i=1}^{\infty} \infty$	∞	∞	∞	∞	∞	∞	0

• Through vertex T:

{AB, AC, AD, AE, AF, AS, BA, BC, BD, BE, BF, BS, CA, CB, CD, CE, CF, CS, DA, DB, DC, DE, DF, DS, EA, EB, EC, ED, EF, ES, FA, FB, FC, FD, FE, FS, SA, SB, SC, SD, SE, SF}: F

		A	В	C	D	E	F	S	T
	A	0	∞	∞	4	11	∞	∞	22
	В	∞	0	∞	9	5	16	∞	18
	C	∞	∞	0	∞	∞	2	∞	4
$X_T =$	D	∞	∞	∞	0	∞	∞	∞	18
	E	∞	∞	∞	∞	0	∞	∞	13
	F	∞	∞	∞	∞	∞	0	∞	2
	S	1	2	5	5	7	7	0	9
	T		∞	∞	∞	∞	∞	∞	

Final matrix:

	A	В	C	D	E	F	S	T	
A	0	∞	∞	4	11	∞	∞	22	
В	∞	0	∞	9	5	16	∞	18	
C	∞	∞	0	∞	∞	2	∞	4	
D	∞	∞	∞	0	∞	∞	∞	18	
E	∞	∞	∞	∞	0	∞	∞	13	
F	∞	∞	∞	∞	∞	0	∞	2	
S	1	2	5	5	7	7	0	9	
T	∞	0							

Now, we can see that the shortest path from S to T is 9