

1 CLAIMS:

1. A method for producing high purity tantalum comprising the steps of:
purifying K₂TaF₇ by a dissolution process;
reacting purified K₂TaF₇ with a reducing agent to produce tantalum powder;

5 and
reacting said tantalum powder with iodine in a container.

2. A method according to claim 1, wherein HF or a mixture of HF and H₂SO₄, is used in the dissolution of K₂TaF₇.

10 3. A method according to claim 1, wherein a solution containing KC1 is used to precipitate said K₂TaF₇ from the solution.

15 4. A method according to claim 1, wherein Nb and other metallic impurities in said K₂TaF₇, are reduced to levels lower than about 20 ppm, by weight.

20 5. A method according to claim 1, wherein W and Mo in said K₂TaF₇, are reduced to less than about 1 ppm, by weight.

25 6. A method according to claim 1, wherein said reducing agent is sodium.

7. A method according to claim 1, wherein said container has a reactant-contacting surface comprising a metal more electrochemically noble than tantalum according to the chloride electromotive series.

25 8. A method according to claim 7, wherein said reactant-contacting surface comprises molybdenum, tungsten or an alloy of molybdenum and tungsten.

30 9. A method according to claim 1, further comprising electron beam melting said tantalum to produce a high purity tantalum ingot.

10. A method for producing high purity tantalum comprising reacting impure tantalum with iodine gas in a container and decomposing tantalum iodides on a filament.

- 1 11. A method according to claim 10 wherein said container has a reactant-contacting surface comprising a metal more electrochemically noble than tantalum according to the chloride electromotive series.
- 5 12. A method according to claim 11 wherein said reactant-contacting surface comprises molybdenum, tungsten or an alloy of molybdenum and tungsten.
- 10 13. A method according to claim 10 wherein said filament comprises tantalum.
- 15 14. A method according to claim 10 further comprising electron-beam melting said tantalum to form a high-purity tantalum ingot.
- 20 15. High purity tantalum comprising tantalum and less than about 500 ppm, by weight, total metallic impurities.
- 25 16. High purity tantalum comprising less than about 50 ppm, by weight, tungsten or molybdenum.
- 30 17. High purity tantalum comprising less than about 20 ppm, by weight, tungsten or molybdenum.
- 35 18. High purity tantalum comprising less than about 5 ppm, by weight, each of tungsten and molybdenum.
- 15 19. High purity tantalum comprising less than 20 ppm, by weight, total of niobium, molybdenum and tungsten.
- 20 20. High purity tantalum comprising tantalum and less than 5 ppm, by weight, total of niobium, molybdenum and tungsten.
- 25 21. A sputtering target comprising high purity titanium according to claim 15.
- 30 22. A sputtering target comprising high purity titanium according to claim 16.
- 35 23. A sputtering target comprising high purity titanium according to claim 17.

- 1
24. A sputtering target comprising high purity titanium according to claim 18.
- 5
25. A sputtering target comprising high purity titanium according to claim 19.
26. A thin film produced by a sputtering target according to claim 15.
- 10
27. A thin film produced by a sputtering target according to claim 16.
28. A thin film produced by a sputtering target according to claim 17.
29. A thin film produced by a sputtering target according to claim 18.
30. A thin film produced by a sputtering target according to claim 19.

15
16
17
18
19
20
21
22
23

30

35