SEQUENCE MODELS

Dr Usman Zia

July 2, 2024

Motivation: Need for Sequential Modeling

Why do we need Sequential Modeling?

Motivation: Need for Sequential Modeling

Input Data Examples of Sequence data Output This is RNN Speech Recognition Hello, I am usman. Hallo, ich bin Usman Machine Translation network Recurrent neural ? based ? model Language Modeling language Named Entity Recognition David lives in Munich **David** lives in **Munich location** person Sentiment Classification There is nothing to like in this movie. Video Activity Analysis **Punching**

Motivation: Need for Sequential Modeling

Inputs, Outputs can be different lengths in different examples

Example:

Sentence1: David lives in Munich

Sentence2: David Clark lives in Munich DE

Motivation: Need for Sequential Modeling

Inputs, Outputs can be different lengths in different examples

Example:

Sentence1: David lives in Munich

Sentence2: David Clark lives in Munich DE

Additional word 'PAD' i.e., padding

*FF-net: Feed-forward network

Motivation: Need for Sequential Modeling

Inputs, Outputs can be different lengths in different examples

Example:

Sentence1: David lives in Munich

Sentence2: David Clark lives in Munich DE

*FF-net: Feed-forward network

Sequential model: RNN

Motivation: Need for Sequential Modeling

Share Features learned across different positions or time steps

Example:

Sentence1: Market falls into bear territory → Trading/Marketing

Sentence2: Bear falls into market territory → UNK

Same uni-gram statistics

Motivation: Need for Sequential Modeling

Share Features learned across different positions or time steps

Example:

Sentence1: Market falls into bear territory → Trading/Marketing

Sentence2: Bear falls into market territory → UNK

No sequential or temporal modeling, i.e., order-less

Treats the two sentences the same

Motivation: Need for Sequential Modeling

Share Features learned across different positions or time steps

Sentence1: Market falls into bear territory → Trading/Marketing

Sentence2: Bear falls into market territory → UNK

Trading

Sequential model: RNN

Language concepts,

Word ordering,

Syntactic &

semantic

information

Motivation: Need for Sequential Modeling

Share Features learned across different positions or time steps

Sentence1: Market falls into bear territory → Trading/Marketing

Sentence2: Bear falls into market territory → UNK

Trading

Sequential model: RNN

Language concepts, Word ordering,

Syntactic & semantic information

Motivation: Need for Sequential Modeling

Machine Translation: Different Input and Output sizes, incurring sequential patterns

Encoder

Long Term and Short Dependencies

Short Term Dependencies

→ need recent information to perform the present task.

For example in a language model, predict the next word based on the previous ones.

"the clouds are in the?" → 'sky'

"the clouds are in the sky"

→ Easier to predict 'sky' given the context, i.e., short term dependency

Long Term Dependencies

- → Recent information suggests that the next word is probably the name of a language, but if we want to narrow down which language, we need the context of France, from further back.

Foundation of Recurrent Neural Networks

Goal

- > model long term dependencies
- connect previous information to the present task
- > model sequence of events with loops, allowing information to persist

Feed Forward NNets can not take time dependencies into account. Sequential data needs a Feedback Mechanism.

FF-net / CNN

Recurrent Neural Network (RNN)

Foundation of Recurrent Neural Networks

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

y RNN X

Notice: the same function and the same set of parameters are used at every time step.

Recurrent Neural Networks (RNNs)

The state consists of a single "hidden" vector h:

RNN Computational Graph

Initial hidden state Either set to all 0, Or learn it

h₀

 x_1

RNN Computational Graph

RNN Computational Graph

RNN Computational Graph

RNN Computational Graph

Re-use the same weight matrix at every time-step

RNN Computational Graph (Many to Many)

RNN Computational Graph (Many to One)

RNN Computational Graph (One to Many)

Recurrent Neural Networks (RNNs)

Use cases for RNNs

Example: Language Modeling

Given characters 1, 2, ..., t, model predicts character t

Training sequence: "hello"

Example: Language Modeling

Given characters 1, 2, ..., t, model predicts character t

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Training sequence: "hello"

Example: Language Modeling

Given characters 1, 2, ..., t, model predicts character t

$$\left|h_t= anh(W_{hh}h_{t-1}+W_{xh}x_t)
ight|$$

Training sequence: "hello"

Example: Language Modeling

Given characters 1, 2, ..., t, model predicts character t

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Training sequence: "hello"

Vocabulary: [h, e, l, o]

Given "h", predict "e"

Example: Language Modeling

Given characters 1, 2, ..., t, model predicts character t

$$\left|h_t= anh(W_{hh}h_{t-1}+W_{xh}x_t)
ight|$$

Training sequence: "hello"

Vocabulary: [h, e, l, o]

Given "he", predict "l"

Example: Language Modeling

Given characters 1, 2, ..., t, model predicts character t

$$\left|h_t= anh(W_{hh}h_{t-1}+W_{xh}x_t)
ight|$$

Training sequence: "hello"

Vocabulary: [h, e, l, o]

Given "hel", predict "l"

Example: Language Modeling

Given characters 1, 2, ..., t, model predicts character t

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Training sequence: "hello"

Vocabulary: [h, e, l, o]

Given "hell", predict "o"

Example: Language Modeling

At test-time ... ???

Training sequence: "hello"

Example: Language Modeling

At test-time, **generate** new text: sample characters one at a time, feed back to model

Training sequence: "hello"

Example: Language Modeling

At test-time, **generate** new text: sample characters one at a time, feed back to model

Training sequence: "hello"

Vocabulary: [h, e, l, o]

Example: Language Modeling

At test-time, **generate** new text: sample characters one at a time, feed back to model

Training sequence: "hello"

Vocabulary: [h, e, l, o]

Example: Language Modeling

So far: encode inputs as **one-hot-vector**

 $[w_{11} \ w_{12} \ w_{13} \ w_{14}]$ [1] $[w_{11}]$ $[w_{21} \ w_{22} \ w_{23} \ w_{14}]$ [0] = $[w_{21}]$ $[w_{31} \ w_{32} \ w_{33} \ w_{14}]$ [0] $[w_{31}]$ [0]

Matrix multiply with a one-hot vector just extracts a column from the weight matrix. Often extract this into a separate **embedding** layer

Example: Language Modeling

So far: encode inputs as **one-hot-vector**

$$[w_{11} w_{12} w_{13} w_{14}] [1] [w_{11}]$$

$$[w_{21} w_{22} w_{23} w_{14}] [0] = [w_{21}]$$

$$[w_{31} w_{32} w_{33} w_{14}] [0] [w_{31}]$$

$$[0]$$

Matrix multiply with a one-hot vector just extracts a column from the weight matrix. Often extract this into a separate **embedding** layer

Example: Image Captioning

Recurrent Neural Network

Convolutional Neural Network

Backpropagation Through Time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

Truncated Backpropagation Through Time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation Through Time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation Through Time

Bidirectional RNNs

- Bidirectional RNNs incorporate both forward and backward passes through sequential data
 - The output may not only depend on the previous elements in the sequence, but also on future elements in the sequence
 - It resembles two RNNs stacked on top of each other

$$\vec{h}_{t} = \sigma(\vec{W}^{(hh)}\vec{h}_{t-1} + \vec{W}^{(hx)}x_{t})$$

$$\dot{h}_{t} = \sigma(\vec{W}^{(hh)}\dot{h}_{t+1} + \vec{W}^{(hx)}x_{t})$$

$$y_{t} = f([\vec{h}_{t}; \dot{h}_{t}])$$

Outputs both past and future elements

A recurrent neural language model

How does this compare to n-gram models?

Improvements:

Remaining challenges:

- Model size: O(V), not O(Vⁿ)
- Sparsity (lack thereof)
- Sharing of representations across words
- Models long context

A recurrent neural language model

How does this compare to n-gram models?

Improvements:

- Model size: O(V), not O(Vⁿ)
- Sparsity (lack thereof)
- Sharing of representations across words
- Models long context

Remaining challenges:

- Softmax over large vocabulary
- High variance / overfitting
- Exploding and vanishing gradients

But what about that huge softmax over V?

- Same problem as word embeddings: don't want to score wrt entire vocab!
- Solutions:
 - Hierarchical softmax
 - Noise-contrastive estimation (NCE)
 - Adaptive softmax [Grave et al. 2017]

Problems learning RNNs

- In theory, should be able to propagate information over arbitrarily long contexts.
- In practice, RNNs suffer from vanishing gradients that decay to 0, or exploding gradients that increase towards infinity.

Problems learning RNNs

- In theory, should be able to propagate information over arbitrarily long contexts.
- In practice, RNNs suffer from vanishing gradients that decay to 0, or exploding gradients that increase towards infinity.
 - Exploding gradients mostly resolved by gradient clipping: thresholding gradient values, or rescaling them. Threshold/scale is a hyperparameter.

Figure: Goodfellow, Bengio and Courville. Deep Learning. MIT Press, 2016.

Problems learning RNNs

- In theory, should be able to propagate information over arbitrarily long contexts.
- In practice, RNNs suffer from vanishing gradients that decay to 0, or exploding gradients that increase towards infinity.
 - Exploding gradients mostly resolved by gradient clipping: thresholding gradient values, or rescaling them. Threshold/scale is a hyperparameter.
- Vanishing gradients mostly resolved by adding gating to the RNN composition function.
 - Sigmoid activation function in RNN leads to this problem.
 - Relu, in theory, avoids this problem but not in practice.

