1 Problem 1 (20 pts)

Theoretical Task

In the coupled factorization, assume you have item features Y of dimensionality $n_y < d$, where d is the optimal rank of decomposition.

Which representation of coupled factorization form will be more economic in terms of memory usage for the item cold-start scenario:

• when mapping is applied to the latent item features;

$$\mathcal{L}_{coupled}(A,\Theta) = \|A - PQ^{\top}\|_{F}^{2} + \|X - PG^{\top}\|_{F}^{2} + \|Y - QW^{\top}\|_{F}^{2}$$

• when mapping is applied to the initial item features?

$$\mathcal{L}_{coupled}(A,\Theta) = \|A - PQ^{\top}\|_{F}^{2} + \|X - PG^{\top}\|_{F}^{2} + \|YW - Q\|_{F}^{2}$$

Where $X \in \mathbb{R}^{M \times m_x}$ is the matrix of user attributes;

 $Y \in \mathbb{R}^{N \times n_y}$ is the matrix of item features;

 $\Theta = \{P, Q, G, W\};$

 $P \in \mathbb{R}^{M \times d}$ is the matrix of latent user features;

 $Q \in \mathbb{R}^{N \times d}$ is the matrix of latent item features;

 $G \in \mathbb{R}^{m_y \times d}$ is the mapping from user features to user latent features;

 $W \in \mathbb{R}^{n_y \times d}$ is the mapping from item features to item latent features.

The first representation [1] requires less memory usage compared to the second representation [2] when mapping to latent item features. This is because the Y matrix in the first representation has a dimensionality of Nn_y and QW^T is of dimensionality $N \times n_y$, resulting in the need to store $N \times n_y$ values. On the other hand, the second representation [2] involves matrices W and Y of dimensionality $n_y d$ and Nn_y , respectively. When these matrices are multiplied, the resulting product YW has a dimensionality of $N \times d$. The matrices Q and YW together requires more memory $N \times d$. So more memory required for the second representation to store these parameters. Also to find optimal q^* we need to solve equation $qW^T = y^*$ in [1]. In [2] we need to solve q = yW. In second case we need to transpose, so again, second case need more memory.

As a result, when using coupled factorization and mapping to latent item features [1], the representation will have a more efficient memory usage in the item cold-start scenario.