Optimization Methods

Fall 2019

Homework 1

Instructor: Lijun Zhang Name: Weikang Li, StudentId: 181220031

Notice

 \bullet The submission email is: njuoptfall2019@163.com.

• Please use the provided LATEX file as a template. If you are not familiar with LATEX, you can also use Word to generate a **PDF** file.

Problem 1: Norms

A function $f: \mathbb{R}^n \to \mathbb{R}$ with dom $f = \mathbb{R}^n$ is called a *norm* if

• f is nonnegative: $f(x) \ge 0$ for all $x \in \mathbb{R}^n$

• f is definite: f(x) = 0 only if x = 0

• f is homogeneous: f(tx) = |t| f(x), for all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$

• f satisfies the triangle inequality: $f(x+y) \leq f(x) + f(y)$, for all $x, y \in \mathbb{R}^n$

We use the notation f(x) = ||x||. Let $||\cdot||$ be a norm on \mathbb{R}^n . The associated dual norm, denoted $||\cdot||_*$, is defined as

$$||z||_* = \sup\{z^T x | ||x|| \le 1\}$$

a) Prove that $\|\cdot\|_*$ is a valid norm.

b) Prove that the dual of the Euclidean norm (ℓ_2 -norm) is the Euclidean norm, *i.e.*, prove that

$$||z||_{2*} = \sup\{z^T x | ||x||_2 \le 1\} = ||z||_2$$

(*Hint:* Use Cauchy–Schwarz inequality.)

Solution. a). To prove a valid norm, we need to validate the character according to the definition.

- f is nonnegative: Without loss of generality, we let x = 0, it is obvious that $||z||_* = \sup\{z^T x | ||x|| \le 1\} \ge 0$ for all $z \in \mathbb{R}^n$
- f is definite: f(z) = 0 means $\sup\{z^T x | ||x|| \le 1\} = 0$, so $z^T x \le 0$, it is easy to see that this will hold only if x = 0
- f is homogeneous: From above we have f is nonnegative, so:

$$f(tz) = ||tz||_* = \sup\{(tz)^T x |||x|| \le 1\} = |t| \sup\{z^T x |||x|| \le 1\} = |t|||z||_* = |t|f(z)$$

 \bullet f satisfies the triangle inequality:

$$f(y+z) = \sup\{(y+z)^T x | ||x|| \le 1\}$$

$$= \sup\{y^T x + z^T x | ||x|| \le 1\}$$

$$\le \sup\{y^T x | ||x|| \le 1\} + \sup\{z^T x | ||x|| \le 1\}$$

$$= f(y) + f(z)$$

, for all $y, z \in \mathbb{R}^n$

b). To prove $||z||_{2*} = \sup\{z^Tx|||x||_2 \le 1\} = \sup\{|z^Tx||||x||_2 \le 1\} = ||z||_2$: According to the Cauchy-Schwarz inequality, we have:

$$|z^T x| \le ||z||_2 ||x||_2 \le ||z||_2.$$

So we just need to prove that the maximum value of $|z^Tx|$ is $||z||_2$. Without loss of generality, we let x = kz: if k = 0, trivial.

if $k \neq 0$, it is obvious that $||z||_2 ||x||_2 = ||z||_2$ only if $||x||_2 = ||kz||_2 = k||z||_2 = 1$, so $k = \frac{1}{||z||_2}$.

Problem 2: Affine and Convex Sets

Affine sets C_a and convex C_c sets are the sets satisfying the constraints below:

$$\theta x_1 + (1 - \theta)x_2 \in C_a$$
s.t. $x_1, x_2 \in C_a$ (1)

$$\theta x_1 + (1 - \theta)x_2 \in C_c$$

s.t. $x_1, x_2 \in C_c, 0 \le \theta \le 1$ (2)

- a) Is the set $\{\alpha \in \mathbb{R}^k | p(0) = 1, |p(t)| \le 1 \text{ for } \alpha \le t \le \beta\}$, where $p(t) = \alpha_1 + \alpha_2 t + \dots + \alpha_k t^{k-1}$, affine?
- b) Determine if each set below is convex.
 - 1) $\{(x,y) \in \mathbf{R}_{++}^2 | x/y \le 1\}.$
 - 2) $\{(x,y) \in \mathbf{R}_{++}^2 | x/y \ge 1\}.$
 - 3) $\{(x,y) \in \mathbf{R}^2 | xy < 1\}.$
 - 4) $\{(x,y) \in \mathbf{R}^2_+ | xy \ge 1\}.$
 - 5) $\{(x,y) \in \mathbf{R}^2 | y = \tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}} \}.$

Solution. a). Not affine: We suppose that α_1, α_2 in the set, without loss of generality we set $\alpha_{1,1}, \alpha_{2,1} = 1$, then we have :

$$|\alpha_{1,1} + \alpha_{1,2}t + \dots + \alpha_{1,k}t^{k-1}| \le 1$$

 $|\alpha_{2,1} + \alpha_{2,2}t + \dots + \alpha_{2,k}t^{k-1}| \le 1$

for $\theta \in \mathbb{R}$:

$$\theta \alpha_1 + (1 - \theta)\alpha_2 = \theta(\alpha_{1,1}, \alpha_{1,2}, \cdots, \alpha_{1,k}) + (1 - \theta)(\alpha_{2,1}, \alpha_{2,2}, \cdots, \alpha_{2,k})$$

in this case,

$$|p(t)| = |\theta|\alpha_{1,1} + \alpha_{1,2}t + \dots + \alpha_{1,k}t^{k-1}| + (1-\theta)|\alpha_{2,1} + \alpha_{2,2}t + \dots + \alpha_{2,k}t^{k-1}|$$

let $\theta=2$, $|\alpha_{1,1}+\alpha_{1,2}t+\cdots+\alpha_{1,k}t^{k-1}|=1$, $|\alpha_{2,1}+\alpha_{2,2}t+\cdots+\alpha_{2,k}t^{k-1}|=-1$, it is obvious that |p(t)|>1, so $\theta\alpha_1+(1-\theta)\alpha_2$ is not in the set, which means the set is not convex.

- b). 1) Convex;
- 2) Convex;
- 3) Not convex: Consider a combination z of two points $x(\frac{1}{2},2)$ and $y(2,\frac{1}{2})$ in the set, and let $\theta=\frac{1}{2}$. Therefore, from $z=\theta x+(1-\theta)y$ we have $z(\frac{5}{4},\frac{5}{4})$. It is obvious that $z\not\in\{(x,y)\in\mathbf{R}_+^2|xy\leq 1\}$
- 4) Convex;
- 5) Not convex: Consider a combination z of two points x(0,0) and $y(-\infty,-1)$ in the set. Therefore, from $z=\theta x+(1-\theta)y$. It is obvious that for any $0\leq\theta\leq 1,\ z\notin\{(x,y)\in\mathbf{R}^2|y=\tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}\}$.

Problem 3: Examples

a) Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \left\{ x \in \mathbb{R}^n \middle| x^\top A x + b^\top x + c \le 0 \right\},\tag{3}$$

with $A \in \mathbb{S}^n, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

- 1) Show that C is convex if $A \succeq 0$.
- 2) Is the following statement true? The intersection of C and the hyperplane defined by $g^{\top}x + h = 0$ is convex if $A + \lambda g g^{\top} \succeq 0$ for some $\lambda \in \mathbb{R}$.
- b) The polar of $C \subseteq \mathbb{R}^n$ is defined as the set

$$C^{\circ} = \{ y \in \mathbb{R}^n | y^{\top} x \le 1 \text{ for all } x \in C \}$$

- 1) Show that C° is convex.
- 2) What is a polar of a polyhedra?
- 3) What is the polar of the unit ball for a norm $||\cdot||$?
- 4) Show that if C is closed and convex, with $0 \in C$, then $(C^{\circ})^{\circ} = C$

Solution. a) 1) To prove the set C is convex, an approach is to prove the intersection of C and any lines is convex. Let the line is defined as the set $\{x_0 + tv \mid t \in \mathbb{R}\}, v, x_0 \in \mathbb{R}^n$. Therefore, we have:

 $(x_0 + tv)^T A(x_0 + tv) + b^T (x_0 + tv) + c \le 0$

let:

$$\alpha = v^T A v, \quad \beta = b^T v + 2 x_0^T A v, \quad \gamma = c + b^T x_0 + x_0^T A x_0$$

the intersection is:

$$\{x_0 + tv \mid \alpha t^2 + \beta t + \gamma < 0\}$$

If the line intersects the set, the above inequality has a solution. Let's consider only the case where t is solvable. if $A \succeq 0$, so $\alpha = v^T at \geq 0$: when $\alpha = 0$:

- $\beta = 0, \gamma \leq 0 : t \in \mathbb{R}$
- $\beta \geq 0$: $t \leq \frac{-\gamma}{\beta}$
- $\beta \leq 0$: $t \geq \frac{-\gamma}{\beta}$

when $\alpha > 0$: $t_1 \le t \le t_2$ (t_1, t_2 is two roots of the parabola)

Therefore, the intersection of C and any lines defined above is convex, so C is convex.

2) Let the set of hyperplanes $H = \{x \mid g^T x + h = 0\}$, we define $\delta = g^T v$, $\epsilon = g^T x_0 + h$. Assuming that $x_0 \in H$, which means $\epsilon = g^T x_0 + h = 0$.

So, the intersection of $C \cap H$ and lines defined above is:

$$\{x_0 + tv \mid \alpha t^2 + \beta t + \gamma < 0, \, \delta t = 0\}$$

If $\delta \neq 0$, so t = 0, the intersection is $\{x\}$;

If $\delta = 0$, the intersection is $\{x_0 + tv \mid \alpha t^2 + \beta t + \gamma \leq 0\}$, from above we have: this is convex if $\alpha \geq 0 \Rightarrow v^T A v \geq 0$. This will hold if $A + \lambda g g^\top \succeq 0$ for some $\lambda \in \mathbb{R}$, which means:

$$v^T A v = v^T (A + \lambda g g^\top) v \ge 0$$

- b) 1) According to the definition, it is obvious that the polar is the intersection of halfspaces $\{y \mid y^T x \leq 1\}$, so it is convex.
- 2) According to the definition of the polar and polyhedra, it is easy to see that the polar of a polyhedra is still

a polyhedra.

3) According to the definition of the unit ball and the polar of a set:

$$\mathcal{B} = \{ x \in \mathbb{R}^n \mid ||x|| \le 1 \},$$

$$\therefore \mathcal{B}^{\circ} = \{ y \in \mathbb{R}^n | y^{\top} x \le 1 \text{ for all } x \in \mathcal{B} \} = \{ y \in \mathbb{R}^n | \sup \{ y^T x | \|x\| \le 1 \} \le 1 \} = \{ y \in \mathbb{R}^n | \|y\|_* \le 1 \}$$

4) Assume that $x \in C$ and $y \in C^{\circ}$, so $y^{T}x \leq 1$, also we have $x^{T}y \leq 1$ for all $y \in C^{\circ}$, which means $x \in (C^{\circ})^{\circ}$, so $C \subseteq (C^{\circ})^{\circ}$.

Assume that $x \in (C^{\circ})^{\circ}$ and $x \notin C$, According to the Separation Theorem of Hyperplane, there must be a seperating hyperplane for C and $\{x\}$, which means for $z \in C$, $a^Tz \le b$; $a^Tx > b$; because $0 \in C$, we have $b \ge 0$. Without loss of generality, we let $z \in C$, $a^Tz \le 1$; $a^Tx > 1$. Therefore, $a \in C^{\circ}$. From the assumption above, we have $x \in (C^{\circ})^{\circ}$, which means $x^Ta \le 1$ i.e. $a^Tx \le 1$, which is contradicted with hypothesis. Therefore, $(C^{\circ})^{\circ} = C$

Problem 4: Operations That Preserve Convexity

Suppose $\phi: \mathbb{R}^n \to \mathbb{R}^m$ and $\psi: \mathbb{R}^m \to \mathbb{R}^p$ are the linear-fractional functions

$$\phi(x) = \frac{Ax+b}{c^{\top}x+d}, \psi(y) = \frac{Ey+f}{g^{\top}y+h}, \tag{4}$$

with domains **dom** $\phi = \{x|c^{\top}x + d > 0\}$, **dom** $\psi = \{y|g^{\top}y + h > 0\}$. We associate with ϕ and ψ the matrices

$$\begin{bmatrix} A & b \\ c^{\mathsf{T}} & d \end{bmatrix}, \begin{bmatrix} E & f \\ g^{\mathsf{T}} & h \end{bmatrix}, \tag{5}$$

respectively.

Now, consider the composition Γ of ϕ and ψ , i.e., $\Gamma(x) = \psi(\phi(x))$, with domain

$$\mathbf{dom}\Gamma = \{x \in \mathbf{dom} \ \phi | \phi(x) \in \mathbf{dom} \ \psi\}. \tag{6}$$

Show that Γ is linear-fractional, and that the matrix associate with it is the product

$$\begin{bmatrix} E & f \\ g^{\top} & h \end{bmatrix} \begin{bmatrix} A & b \\ c^{\top} & d \end{bmatrix} . \tag{7}$$

Solution. According to the definition: $\Gamma(x) = \psi(\phi(x))$, therefore we have, for $x \in \text{dom } \Gamma$,

$$\begin{split} \Gamma(x) &= \frac{E((Ax+b)/c^{\top}x+d) + f}{g^{\top}(Ax+b)/(c^{\top}x+d) + h} \\ &= \frac{EAx + Eb + fc^{\top}x + fd}{g^{\top}Ax + g^{\top}b + hc^{\top}x + hd} \\ &= \frac{(EA + fc^{\top})x + (Eb + fd)}{(g^{\top}A + hc^{\top})x + (g^{\top}b + hd)} \end{split}$$

As can be seen from the form of the upper form, Γ is linear-fractional function, and associated with the product matrix:

 $\begin{bmatrix} E & f \\ g^{\top} & h \end{bmatrix} \begin{bmatrix} A & b \\ c^{\top} & d \end{bmatrix}.$

Problem 5: Generalized Inequalities

Let K^* be the dual cone of a convex cone K. Prove the following

- 1) K^* is indeed a convex cone.
- 2) $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$.

Solution. a) According to the definition of K^* : $\{y \mid x^Ty \geq 0, \, \forall x \in K\}$ we found that K^* is the intersection of a set of homogeneous halfspaces (all halfspaces are convex). Therefore, K^* is indeed a convex cone.

b) According to the definition : $y \in K_2^*$ infers $x^Ty \ge 0$ for all $x \in K_2$. Meanwhile, $K_2 \supseteq K_1$, which infers $x^Ty \ge 0$ for all $x \in K_1$. Therefore, $K_2^* \subseteq K_1^*$.