Математический Анализ - 2 - Коллоквиум 1

Серёжа Рахманов | telegram, website

Версия от 05.10.2020 14:37

1. Дайте определения: числовой ряд, частичная сумма ряда, сумма ряда, сходящийся ряд, расходящийся ряд. Рассмотрим ряд с общим членом a_n . Докажите, что $a_n \to 0$.

Определение 1. Пусть a_n – последовательность, т.е. $\mathbb{N} \to \mathbb{R}$. Формальная бесконечная сумма: $a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{\infty} a_n$ называется рядом. $S_N = \sum_{n=1}^{\infty} a_n$ – частичная сумма, сумма ряда: $S = \lim_{N \to \infty} S_N$

Возможны 3 случая:

- (a) $\exists S \in \mathbb{R}$
- (b) $\exists S = \infty$
- (c) *∄S*

В первом случае говорят, что ряд сходится, иначе – что ряд расходится.

Замечание. Если ряд сходится, то $a_n \to 0$

Доказательство. $a_n = S_n - S_{n-1} \to 0$, т.к. $S_n \to S$ и $S_{n-1} \to S$

2. Сформулируйте критерий Коши сходимости числовой последовательности. Сформулируйте и докажите критерий Коши сходимости числового ряда.

Определение 2. a_n называется фундаментальной, если $\forall \varepsilon > 0 \ \exists N : \forall n > m > N, |S_n - S_m| < \varepsilon$

Теорема 0.1. S_n – $cxodumcs \Leftrightarrow S_n$ – $\phi y н даментальная$

Доказательство. $S_n - S_m = \sum_{k=m+1}^n a_k$ Тогда $\sum a_n$ – сходится $\Leftrightarrow \forall \varepsilon > 0 \; \exists N : \forall n > m > N \; |a_{m+1} + a_{m+2} + \cdots + a_n| < 0$

3. Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на неравенстве $a_n \leqslant b_n$.

 $a_n \leqslant b_n$ при всех $n \geqslant n_0$

Ряд
$$\sum b_n$$
 сходится \implies ряд $\sum a_n$ сходится

Ряд $\sum a_n$ расходится \implies ряд $\sum b_n$ расходится

4. Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на неравенстве $\frac{a_{n+1}}{a_n}\leqslant \frac{b_{n+1}}{b_n}.$

Ряд
$$\sum b_n$$
 сходится \implies ряд $\sum a_n$ сходится

Ряд
$$\sum a_n$$
 расходится \implies ряд $\sum b_n$ расходится

Доказательство.

$$a_{n_0+1} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+1}$$

$$a_{n_0+2} \leqslant \frac{a_{n_0+1}}{b_{n_0+1}} \cdot b_{n_0+2} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+2}$$

:

$$a_{n_0+k} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+k} \implies \sum_{n=n_0}^{N} a_n \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot \sum_{n=n_0}^{N} b_n$$

5. Сформулируйте и докажите признак сравнения положительных числовых рядов, основанный на пределе $\lim \frac{a_n}{b_n}$

$$\lim_{n\to\infty}\frac{a_n}{b_n}\in(0;+\infty)\implies \text{сходимость }\sum a_n\iff \text{сходимость }\sum b_n$$

Доказательство.

$$c = \lim_{n \to \infty} \frac{a_n}{b_n} > 0$$

$$\forall \varepsilon \ \exists n_0: \ c-\varepsilon \leqslant rac{a_n}{b_n} \leqslant c+\varepsilon, \ \mathrm{пр} \ n \geqslant n_0$$

Возьмём
$$c-\varepsilon>0 \implies (c-\varepsilon)\cdot b_n\leqslant a_n\leqslant (c+\varepsilon)\cdot b_n$$

Сходимость следует из правой части неравенства, а расходимость из левой.

6. Пусть последовательности $\{a_n\}$, $\{A_n\}$ таковы, что $a_n - (A_n - A_{n-1}) = c_n$ и ряд $\sum c_n$ сходится. Докажите, что существует C такое, что $a_1 + a_2 + \cdots + a_n = A_n + C + o(1)$.

7. Сформулируйте и докажите признак Лобачевского-Коши.

Предложение. Пусть
$$a_n > 0$$
 и $a_n \downarrow$

Тогда ряды
$$\sum a_n$$
 и $\sum 2^n \cdot a_{2^n}$ ведут себя одинаково

Доказательство.
$$a_1 + (a_2) + (a_3 + a_4) + (a_5 + \cdots + a_8) + \dots$$

$$a_2 \leqslant a_1$$

$$a_2 \leqslant a_2$$

$$a_3 + a_4 \leqslant 2a_2$$

$$a_3 + a_4 \geqslant 2a_4$$

$$a_5 + \dots + a_8 \leqslant 4a_4$$

$$a_5 + \cdots + a_8 \geqslant 4a_8$$

. . .

$$a_1 + \sum_{n=0}^{m-1} 2^n a_{2n} \leqslant \sum_{n=1}^{2^m} a_n \leqslant a_1 + \frac{1}{2} \sum_{n=0}^{m} 2^n a_{2n}$$

8. Примените признак Лобачевского-Коши к ряду $\sum_{n=2}^{\infty} \frac{1}{n \ln n \ln^p (\ln n)}, \, p > 0$

Рассмотрим данный нам ряд. Заметим, что $\frac{1}{n \ln n \ln^p(\ln n)}$ убывает, поскольку $n \ln n \ln^p(\ln n)$ является возрастающей функцией $(n, \ln n \text{ u } \ln^p(\ln n)$ сами по себе возрастают). Кроме того, $\forall n, n \geqslant 2, a_n > 0$, поскольку 1 > 0 и $n \ln n \ln^p(\ln n) > 0$. В таком случае, аналогично данному ряду будет вести себя ряд $\sum_{n=2}^{\infty} \frac{2^n}{2^n \ln 2^n \ln^p(\ln 2^n)} = \frac{1}{2^n \ln 2^n \ln^p(\ln 2^n)}$

$$\sum_{n=2}^{\infty} \frac{1}{\ln 2^n \ln^p (\ln 2^n)}, p > 0.$$

9. Сформулируйте теорему Штольца о пределе последовательности $\frac{p_n}{q_n},\,p_n,\,q_n\to 0.$

Теорема 0.2. (Штольца.) Если
$$p_n, q_n \to 0, q_n \downarrow u \; \exists lim \frac{p_{n+1} - p_n}{q_{n+1} - q_n}, \; mo \; lim \; \frac{p_n}{q_n} = lim \; \frac{p_{n+1} - p_n}{q_{n+1} - q_n}$$

10. Покажите на примере, как с помощью теоремы Штольца можно уточнить асимптотическую оценку для частичной суммы ряда.

11. Пусть $\sum a_n$, $\sum a'_n$ - сходящиеся положительные ряды. Говорят, что ряд $\sum a'_n$ сходится быстрее ряда $\sum a_n$, если $a'_n = o(a_n)$. Докажите, что в этом случае также $r'_n = o(r_n)$, где r_n , r'_n - остатки соответствующих рядов.

Рассмотрим остатки каждого из рядов. $r_n=S-S_N$, где S_N - частичная сумма ряда $\sum a_n$ и $S_N\to S$ при $N\to\infty$. Для $\sum a_n'$ аналогично $r_n'=S'-S_N'$, где S_N' - частичная сумма ряда $\sum a_n'$ и $S_N'\to S'$ при $N\to\infty$. Идёт речь о том, что ряд a_n' сходится быстрее ряда a_n , т.е. оба ряда сходятся и S=S'. Но, поскольку члены рядов находятся в отношении $a_n'=o(a_n)$, то мы можем сделать выводы о частичных суммах S_N и S_N' . $\forall N, S_N'=o(S_N)$, что указывает нам в результате на отношение между остатками $r_n'=o(r_n)$.

- 12. -
- 13. -
- 14. -
- 15. Сформулируйте признак Даламбера для положительного ряда

Теорема 0.3. Признак Даламбера. Пусть $a_n > 0$.

$$\overline{\lim} \frac{a_{n+1}}{a_n} < 1 \implies \mathit{psd} \sum a_n \mathit{cxodumcs}.$$

$$\underline{\lim} \frac{a_{n+1}}{a_n} > 1 \implies p$$
яд $\sum a_n p$ асходится.

16. Сформулируйте радикальный признак Коши для положительного ряда.

Теорема 0.4. Радикальный признак Коши. Пусть $a_n \geqslant 0$.

$$\overline{\lim} \sqrt[n]{a_n} < 1 \implies pяд \sum a_n \ cxoдится.$$

$$\underline{\lim} \sqrt[n]{a_n} > 1 \implies pяд \sum a_n pacxoдится.$$

17. Докажите, что всякий раз, когда признак Даламбера даёт ответ на вопрос о сходимости ряда, то радикальный признак Коши даёт тот же ответ на этот вопрос.

Пусть $a_n > 0$. Тогда:

$$\underline{\lim} \frac{a_{n+1}}{a_n} \leqslant \underline{\lim} \sqrt[n]{a_n} \leqslant \overline{\lim} \sqrt[n]{a_n} \leqslant \overline{\lim} \frac{a_{n+1}}{a_n}$$

Если
$$\overline{\lim} \frac{a_{n+1}}{a_n} < 1 \implies \overline{\lim} \sqrt[n]{a_n} < 1$$

Если
$$\underline{\lim} \frac{a_{n+1}}{a_n} > 1 \implies \underline{\lim} \sqrt[n]{a_n} > 1$$

Если
$$\varliminf \frac{a_n}{a_n} > 1 \implies \varliminf \sqrt[n]{a_n} > 1$$
Если $\exists \lim \frac{a_{n+1}}{a_n}$, то $\varlimsup \frac{a_{n+1}}{a_n} = \varliminf \frac{a_{n+1}}{a_n} \Rightarrow \exists \lim \sqrt[n]{a_n} = \varliminf \frac{a_{n+1}}{a_n}$

- 18. -
- 19. -
- 20. -
- 21. Сформулируйте признак Гаусса для положительного ряда. Приведите пример применения признака Гаусса.

Если
$$\exists \delta > 0, p: \frac{a_{n+1}}{a_n} = 1 - \frac{p}{n} + O\left(\frac{1}{n^{1+\delta}}\right)$$
 то:

$$p > 1 \implies$$
 ряд $\sum a_n$ сходится.

$$p \leqslant 1 \implies$$
 ряд $\sum a_n$ расходится.

- 22. -
- 23. -
- 24. Что такое улучшение сходимости положительного ряда? Покажите на примере как можно улучшить сходимость

Пусть у нас есть некоторый ряд $\sum a_n$ и он сходится медленно. В таких случаях для расчёта суммы ряда с необходимой точностью потребуется взять больше членов, что неудобно. Мы можем преобразовать наш ряд для улучшения сходимости, т.е. получить некоторый ряд $\sum a'_n$, который будет сходиться быстрее, чем исходный $\sum a_n$.

Пример. Пусть у нас есть ряд $S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 2} \approx \sum_{n=1}^{\infty} \frac{1}{n^2}$. Воспользуемся методом Куммера. Для улучшения

сходимости будем брать ряды вида
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1, \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}, \dots$$

В данном случае нам подойдёт первый ряд в этом списке, поскольку $\frac{1}{n^2} \sim \frac{1}{n(n+1)}$.

$$\begin{split} \sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} \right) &= S - 1 \implies S = 1 + \sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} \right). \\ \frac{1}{n^2 + 2} - \frac{1}{n(n+1)} &= \frac{1}{n^2} \cdot \left(\frac{1}{\frac{2}{n^2}} - \frac{1}{1 + \frac{1}{n}} \right) = \frac{1}{n^2} \cdot \left(1 - \frac{2}{n^2} + o\left(\frac{1}{n^2}\right) - 1 + \frac{1}{n} - \frac{1}{n^2} - o\left(\frac{1}{n^2}\right) \right) = \frac{1}{n^3} + o\left(\frac{1}{n^3}\right). \end{split}$$
 Получили ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$, который сходится быстрее, $1 + \sum_{n=1}^{\infty} \frac{1}{n^3} \approx \sum_{n=1}^{\infty} \frac{1}{n^2 + 2}.$