$O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks

Tianyu Pang, Shuicheng Yan, Min Lin Sea Al Lab

Slater Determinant

Antisymmetric wavefunction Ansatz:

$$\psi_{ ext{single}}(x) = egin{array}{cccc} \phi_1(x_1) & \cdots & \phi_1(x_N) \ dots & & dots \ \phi_N(x_1) & \cdots & \phi_N(x_N) \ \end{array} = \det[\phi_i(x_j)].$$

The model family of ψ_{single} is *not* universal since ϕ_i only depends on a **single electron**.

Fermionic Neural Network

Pfau et al. (2020) propose Fermionic neural network (FermiNet) using **multi-electron** functions ϕ_i :

$$\psi_{\text{Fermi}}(x) = \det \left[\phi_i(x_j; \{x_{\setminus j}\}) \right].$$

The model family of ψ_{Fermi} is proved to be universal

Lemma 1. (Universality by Pfau et al. (2020)) For any antisymmetric function $\Psi(x)$, there exist multi-electron functions ϕ_1, \dots, ϕ_N , such that $\forall x$, there is $\psi_{Fermi}(x) = \Psi(x)$.

• Reducing $O(N^3)$ Computation to $O(N^2)$

To avoid the $O(N^3)$ computation the of determinant, we construct a family of **pairwise Ansatz**:

$$\psi_{\text{pair}}(x) = \prod_{1 \leq i < j \leq N} \mathcal{A} \circ F(x_i, x_j; \{x_{\setminus \{i, j\}}\}),$$

where \mathcal{A} is an antisymmetrizer,

Lemma 2. (Antisymmetry) $\psi_{pair}(x)$ is antisymmetric under the permutation of any two elements x_m and x_n in x.

• Instantiation from Han et al. (2019)

Han et al. (2019) propose a special form of pairwise construction using a **two-electron** function:

$$\psi_{\operatorname{Han}}(x) = \phi_C(x) \cdot \prod_{1 \le i < j \le N} (\phi_B(x_j, x_i) - \phi_B(x_i, x_j)).$$

Theorem 1. (Discontinuity) There exist ground-state wavefunctions $\Psi^g(x)$, such that if there is $\forall x$, $\psi_{Han}(x) = \Psi^g(x)$, then either ϕ_B or ϕ_C must be discontinuous on \mathbb{R}^{dN} .

Achieving Continuous Universality

The form of ψ_{Han} leads to discontinuity, which is difficult to approximate using neural networks. We provide another instantiation to achieve continuous universality using **multi-electron** functions:

$$\psi'_{\text{pair}}(x) = \prod_{1 \le i < j \le N} (\phi_B(x_j; \{x_{\setminus j}\}) - \phi_B(x_i; \{x_{\setminus i}\})).$$

Theorem 2. (Continuous universality) For any groundstate wavefunction $\Psi^g(x)$, there exist a continuous multielectron function ϕ_B , such that $\forall x$, $\psi'_{pair}(x) = \Psi^g(x)$.

Corollary 1. (Universality) For any antisymmetric function $\Psi(x)$, there exist a multi-electron function ϕ_B , such that $\forall x, \psi'_{pair}(x) = \Psi(x)$.

Connection with FermiNet

The form of ψ'_{pair} is actually a special case of ψ_{Fermi}

Extension

We can use more (e.g., two) multi-electron functions

$$\psi_{\text{pair}}''(x) = \prod_{1 \leq i < j \leq N} \begin{vmatrix} \phi_A(x_i; \{x_{\setminus i}\}) & \phi_A(x_j; \{x_{\setminus j}\}) \\ \phi_B(x_i; \{x_{\setminus i}\}) & \phi_B(x_j; \{x_{\setminus j}\}) \end{vmatrix}.$$

Note that $\psi_{\text{pair}}^{"}$ becomes $\psi_{\text{pair}}^{'}$ when $\phi_A = 1$, thus similar (continuous) universality holds for $\psi_{\text{pair}}^{"}$.

Initial experiments

Table 1. Ground state energy. The values of 'Exact' column come from Chakravorty et al. (1993). The values of ' ψ'_{pair} ' and ' ψ''_{pair} ' are averaged on the last 1,000 iterations with sampling stride of 10.

Atom	$\psi_{ m pair}^{\prime\prime}$	$\psi_{ m pair}'$	Exact
Li	-7.4782	-7.4781	-7.47806032
Be	-14.6673	-14.6664	-14.66736
В	-24.5602	-24.4475	-24.65391
C	-37.3531	-37.2785	-37.8450
N	-53.1855	-53.0626	-54.5892

ICML | 2022