Design and Implementation of a Secure BLE Beacon System with Advanced Encryption Using ESP32

A. R. Zakaria Talukdar Computer Science and Engineering Assam University, Silchar Contacts:

E-mail: zakariatalukdar123@gmail.com GitHub: https://github.com/arrhenius975

January 28, 2025

Contents

1	Introduction	3
2	Hardware Overview 2.1 Key Components	9
	2.1 Key Components	٠
3	Software Architecture	3
	3.1 Core Components	
	3.2 Key Features	4
4	Implementation Details	4
	4.1 Beacon Configuration	4
	4.2 Encryption Implementation	4
	4.3 Storage Management	4
5	Build and Deployment	5
	5.1 Prerequisites	٦
	5.2 Build Instructions	Ę
6	Testing and Verification	Ę
	6.1 Test Cases	5
	6.2 Verification Tools	6
7	Power Management	6
	7.1 Power Optimization	6
8	Security Considerations	6
	8.1 Security Features	6
	8.2 Security Recommendations	6

9	Future Enhancements	7
10	Conclusion	7

1 Introduction

This document provides a comprehensive overview of a secure BLE beacon implementation using the ESP32-WROOM-32 module. The system features advanced encryption, persistent storage, and configurable parameters, making it suitable for secure location-based services and asset tracking applications.

2 Hardware Overview

2.1 Key Components

• Processor: ESP32 with dual-core Xtensa LX6 processor

• Memory:

- SRAM: 520 KB

- Flash: External flash support

- NVS: Non-volatile storage for configuration

• Wireless: Bluetooth 4.2 (BLE) support

• Security: Hardware encryption acceleration

3 Software Architecture

3.1 Core Components

- Beacon Manager:
 - UUID, Major, Minor value management
 - Advertisement interval control
 - TX power configuration
- Security Module:
 - AES-256 encryption
 - Secure key generation
 - Protected storage

• Storage Manager:

- NVS flash management
- Configuration persistence
- Key storage

3.2 Key Features

- Configurable beacon parameters
- Encrypted payload transmission
- Persistent configuration storage
- Comprehensive logging system
- Power-efficient operation

4 Implementation Details

4.1 Beacon Configuration

Listing 1: Beacon Configuration Structure

```
typedef struct {
    uint8_t uuid[16];
    uint16_t major;
    uint16_t minor;
    int8_t power;
    uint16_t adv_int_min;
    uint16_t adv_int_max;
    bool encryption_enabled;
} beacon_config_t;
```

4.2 Encryption Implementation

Listing 2: Encryption Function

4.3 Storage Management

Listing 3: Configuration Storage

```
esp_err_t beacon_storage_save_config(
    const beacon_config_t *config
```

5 Build and Deployment

5.1 Prerequisites

- ESP-IDF framework installed
- CMake build system
- ESP32 development board
- USB cable for programming

5.2 Build Instructions

1. Set up ESP-IDF environment:

```
. $IDF_PATH/export.sh # Linux/macOS
%IDF_PATH%\export.bat # Windows
```

2. Configure the project:

```
idf.py menuconfig
```

3. Build the project:

```
idf.py build
```

4. Flash to ESP32:

```
idf.py -p (PORT) flash
```

6 Testing and Verification

6.1 Test Cases

- Encryption Tests:
 - Key generation
 - Encryption/decryption
 - Key storage security

• Beacon Tests:

- Advertisement intervals
- Signal strength
- Battery efficiency

• Storage Tests:

- Configuration persistence
- NVS reliability
- Error handling

6.2 Verification Tools

- nRF Connect for Mobile
- LightBlue Explorer
- ESP-IDF Monitor

7 Power Management

7.1 Power Optimization

- BLE-only mode
- Configurable TX power
- Optimized advertising intervals
- Sleep mode support

8 Security Considerations

8.1 Security Features

- AES-256 encryption
- Secure key storage
- Protected configuration
- Regular key rotation

8.2 Security Recommendations

- Regular firmware updates
- Secure key management
- Physical access protection
- Monitoring for unauthorized access

9 Future Enhancements

- Over-the-Air (OTA) updates
- Enhanced encryption schemes
- Battery monitoring
- Remote configuration interface
- Integration with asset tracking systems

10 Conclusion

The implemented secure BLE beacon system provides a robust foundation for building secure location-based services. With its advanced encryption, configurable parameters, and efficient power management, it meets the requirements for both security and functionality in modern IoT applications.