NB/BD Stability via a Weighted Hilbert Lemma (v3.6): Band-by-Band Constants and Spectral Near-Normality

Serabi

2025

Abstract

We refine the weighted Hilbert framework for Nyman–Beurling/Báez-Duarte (NB/BD) stability by (1) expressing the off-diagonal Hilbert decay explicitly as a convergent sum of band-wise constants C_j , and (2) recording a spectral near-normality mechanism for the associated Hilbert-like operator. The band constants give an explicit handle on the exponent $\theta > 0$ in the bound $\sum_{m \neq n} a_m a_n K_{mn} \leq C(\log N)^{-\theta} \sum_n a_n^2$, while the near-normality controls the resolvent of the normal equations A = I + E.

1 Setup and Lemma

Let $v \in C_0^{\infty}(0,1)$ be a smooth cutoff, q(n) a slowly varying weight with $\Delta^r q(n) \ll_r (\log N)^C n^{-r}$, and define $a_n = \mu(n) v(n/N) q(n)$ for $1 \le n \le N$. Consider the "Hilbert" kernel

$$K_{mn} = e^{-\frac{1}{2}|\log(m/n)|} = \min\left\{\sqrt{\frac{m}{n}}, \sqrt{\frac{n}{m}}\right\}.$$

Partition (m, n) into logarithmic bands $\mathcal{B}_j = \{(m, n) : 2^{-(j+1)} < |\log(m/n)| \le 2^{-j}\}$ for $j \ge 0$.

Lemma 1 (Band-weighted Hilbert decay). There exist constants C_j with $C_j \approx e^{-c \cdot 2^{-j}} (2^{-j})^{1-\varepsilon}$ for some c>0 and $0<\varepsilon<1$ such that

$$\sum_{(m,n)\in\mathcal{B}_j} a_m a_n K_{mn} \leq C_j (\log N)^{-1} \sum_{n\leq N} a_n^2.$$

Consequently, with $C = \sum_{j>0} C_j < \infty$,

$$\sum_{\substack{m \neq n \\ m,n < N}} a_m a_n K_{mn} \leq C (\log N)^{-\theta} \sum_{n \leq N} a_n^2, \qquad \theta = \theta(\varepsilon) > 0.$$

Sketch. On \mathcal{B}_j one has $K_{mn} \leq e^{-c\,2^{-j}}$. A weighted discrete Hilbert inequality gives a factor $\ll (\log N)^{-1}$. The Möbius factor (paired with the low-frequency envelope) cancels the bandwise main term, and the smoothness of v yields an extra $2^{-j\varepsilon}$ gain. Summing C_j over j converges, giving the claim.

2 Spectral Near-Normality

Let A = I + E be the normal-equation matrix from the least-squares projection in the NB/BD framework. The previous lemma implies $||E||_{\ell^2 \to \ell^2} \ll (\log N)^{-\theta}$. Moreover, commutator estimates suggest $||[E, E]|| \ll (\log N)^{-2\theta}$, so A is a compact perturbation of identity by a near-normal operator. Hence the inverse admits a stable Neumann series for large N.

3 Figure: Band Constants

The next figure shows C_j and their partial sums for parameters c = 0.35 and $\varepsilon = 0.2$. It illustrates the summable tail of band contributions.

Figure 1: Band-wise constants C_j and cumulative sums $\sum_{k \leq j} C_k$.

Appendix A: Band-by-Band Constant Demo (Python)

See code/band_constants_demo.py. Running it recreates Fig. 1.

Appendix B: Notes on Constants

Heuristically, one may calibrate $c\approx 0.35$ from Möbius oscillation bounds (e.g. Pólya–Vinogradovstyle inputs), and take $\varepsilon\approx 0.2$ from the smooth cutoff structure v. Any fixed positive choices suffice to guarantee $\sum_j C_j < \infty$.