High Energy Neutrino Parameter Estimation

Peter B. Denton

IAP

August 24, 2018

with Klaes Møller

Overview/Motivation

- 1. GRAND will measure the cosmogenic flux (in most cases).
- 2. What next? What can we learn once it is measured?
 - ▶ Minimal input from other experiments
- 3. Expect a degeneracy between redshift evolution and composition
 - ► Can this be broken?
- 4. What experimental parameters will help?

Means of determining UHECR parameters

Composition:

- 1. $X_{\text{max}} (X_{\text{max}}^{\mu})$
- 2. Anisotropy (known sources/B fields)
- 3. Cosmogenic neutrino flux

Redshift evolution:

- 1. Provides an indication of the sources
- 2. UHECR measurements constrain local normalization
- 3. Cosmogenic neutrinos are a function of the total flux to high redshift

Method

- 1. CRPropa3
- 2. Fit normalization and γ to Auger's high energy spectrum consistent at $< 2\sigma$ (stat)
- 3. Two parameters:
 - Redshift evolution slope: $\rho(z) = (1+z)^m$ up to z=1
 - Composition proxy: $(1 \alpha_S)I_p + \alpha_S I_{Fe}$
- 4. Take $\Delta \log_{10} E_{\nu} = 0.25 \begin{pmatrix} +78\% \\ -44\% \end{pmatrix}$

Flavor Ratio

Converting EECR Composition from Source to Earth

Event Rate

N increases with m and decreases with α_S .

2D Projections: Degeneracy

2D Projections: Degeneracy

2D Projections: Degeneracy

1D Projection with Input

1D Projection with Input

With hadronic modeling uncertainties

Without hadronic modeling uncertainties

Other issues

- 1. Other high energy astrophysical sources
 - ▶ Connecting with IceCube and KM3NeT is important
- 2. BSM:
 - ▶ Oscillation: Decay, NSI, unitarity, . . .
 - ▶ Particle: DM decay/annihilation, . . .
 - ► Fundamental: LIV, ...

Other issues

- 1. Other high energy astrophysical sources
 - ▶ Connecting with IceCube and KM3NeT is important
- 2. BSM:
 - ▶ Oscillation: Decay, NSI, unitarity, . . .
 - ▶ Particle: DM decay/annihilation, . . .
 - ► Fundamental: LIV, ...

Theory effort:

- 1. Absorption \rightarrow cross sections
- 2. Air shower spectrum to neutrino spectrum: unfolding
- 3. Anisotropy exposure with multiple sites
- 4. ...

Wrap-up

- 1. Degeneracy between composition and redshift evolution slope
 - ▶ with EECR spectrum input.
- 2. With additional information we could reach:
 - $\Delta \alpha_S = 0.05 \to \Delta \langle \ln A \rangle_{\oplus} \sim 0.2$ Compare with $\Delta \langle \ln A \rangle_{\oplus} \simeq 0.4$ excluding hadronic
 - with redshift evolution information
 - $\Delta m = 0.4$
 - \triangleright with $X_{\rm max}$ information
- 3. Good neutrino energy resolution not too important, but!
- 4. Connection with IceCube flux is very important

Backups

Intermediate elements

Peter B. Denton (Niels Bohr Institute)