§1 实数

数学分析研究的是实 数集上定 的函数,因此我们首先要掌握实数 基本概念与性质.

- 一、实数的十进制小数表示
- 二、实数的大小
- 三、实数的四则运算
- 四、实数的阿基米德性
- 五、实数的稠密性
- 六、实数与数轴上的点一一对应
- 七、实数的绝对值与三角形不等式

记号与术语

R:实数集 N:自然数集(包含0)

 R_{\perp} :正实数集 N_{\perp} :正整数集

R_:负实数集 ∀:任意

Q:有理数集 3:存在

Z:整数集

一、实数的十进制小数表示

1. 任何一个实数都可以用十进制小数表示.

若
$$x \in \mathbf{R}_{+}$$
,则 $x = a_{0}.a_{1}a_{2}...a_{n}...$;
$$x \in \mathbf{R}_{-}$$
,则 $x = -a_{0}.a_{1}a_{2}...a_{n}...$
其中 $a_{0} \in \mathbf{N}$, $a_{n} \in \{0, 1, 2, ..., 9\}$, $n = 1, 2, ...$

2. 有限小数 $x = a_0.a_1a_2...a_k$ (其中 $a_k \neq 0$), 又可表示为 $x = a_0.a_1a_2...a_{k-1}(a_k - 1)99...$ $= a_0.a_1a_2...a_{k-1}(a_k - 1)\dot{9}.$

若实数都用无限小数表示,则表达式是唯一的.

即: 若
$$x = a_0 \cdot a_1 a_2 \cdots a_n \cdots$$
, $y = b_0 \cdot b_1 b_2 \cdots b_n \cdots$,

则
$$x = y \Leftrightarrow a_n = b_n, n = 0, 1, 2, \cdots$$
.

用无限小数表示实数, 称为正规表示.

3. Q =
$$\{x \mid x = \frac{m}{n}, \text{其中 } m, n \in \mathbb{Z}, n \neq 0\}$$
表示有理数集.

 $\forall x \in \mathbb{Q}, x$ 可用循环十进制小数表示,

如
$$\frac{1}{7}=0.142857.$$

定义:实数x的n位不足近似;x的n位过剩近似.

4. 无理数为无限不循环小数.

如:
$$\pi = 3.1415926\cdots$$
; $x = 0.1010010001\cdots$.

二、实数的大小

定义1 $\forall x, y \in \mathbf{R}_+$, 若

$$x = a_0 \cdot a_1 a_2 \cdots a_n \cdots, y = b_0 \cdot b_1 b_2 \cdots b_n \cdots$$

是正规的十进制小数表示, 规定

$$x > y \Leftrightarrow a_0 > b_0$$
 或 $\exists n \in \mathbb{N}_+$, 使

$$a_0.a_1a_2\cdots a_n=b_0.b_1b_2\cdots b_n$$
, $\overline{m}a_{n+1}>b_{n+1}$.

$$\forall x, y \in \mathbf{R}_{-},$$
 规定 $x > y \Leftrightarrow -x < -y$.

$$\forall x \in \mathbf{R}_+, y \in \mathbf{R}_-, \text{ 规定 } y < 0 < x.$$

实数的大小关系有以下性质:

(1) x > y, x = y, x < y.

三者必有其中之一成立,且只有其中之一成立.

(2) 若 x > y, y > z, 则 x > z.

即大小关系具有传递性.

注: 两个实数x > y的等价条件也可以由命题(课本 P2)给出。

三、实数的四则运算

有理数集 Q 对加、减、乘、除(除数不为 0) 是封闭的.

实数集 R 对加、减、乘、除(除数不为 0) 亦是封闭的.

实数的四则运算与大小关系,还满足:

- (1) $\forall x, y \in \mathbb{R}, \lambda \in \mathbb{R}_+,$ 若 x < y, 则 $\lambda x < \lambda y$.

四、实数的阿基米德性

实数具有阿基米德性:

$$\forall a,b \in \mathbb{R}_+, \exists n \in \mathbb{N}_+,$$
使得 $nb > a$.

理由如下:设

$$a = a_0 \cdot a_1 a_2 \cdots a_n \cdots$$
, $a_0 = k \in \mathbb{N}$,

则 $a \leq k+1 < 10^{k+1}$.

设 $b = b_0 \cdot b_1 b_2 \cdots b_n \cdots$, b_p 为第一个不为零的正整数,

证 令a=1,由阿基米德性、 $\exists n \in \mathbb{N}_+$,使nb>1,即

$$\frac{1}{n} < b$$
.

阿基米德 (Archimedes, 287B.C.-212B.C., 希腊)

五、实数的稠密性

- 1. 任意两个不相等的实数 a 与 b 之间,必有另一个实数 c. 例如 $c = \frac{a+b}{2}$.
- 2. 任意两个不相等的实数 a 与 b 之间,既有有理数又有无理数.

证 若 a < b, 则由例 1, 存在 $n \in \mathbb{N}_+$, 使

$$\frac{1}{n} < \frac{1}{2}(b-a).$$

设 k 是满足 $\frac{k}{n} \le a$ 的最大的正整数,即 $\frac{k+1}{n} > a$.

于是,
$$a < \frac{k+1}{n} < \frac{k+2}{n} < b$$
, 则 $\frac{k+1}{n}$, $\frac{k+2}{n}$ 是

a 与b 之间的有理数,而 $\frac{k+1}{n} + \frac{\pi}{4n}$ 是 a 与b 之间的无理数.

例2 若 $a,b \in \mathbb{R}$,对 $\forall \varepsilon > 0$, $a < b + \varepsilon$, 则 $a \le b$.

证 倘若a > b,设 $\varepsilon = a - b > 0$,则 $a = b + \varepsilon$,与 $a < b + \varepsilon$ 矛盾.

六、实数与数轴上的点一一对应

实数集 R与数轴上的点可建立一一对应关系.

1. 这种对应关系,粗略地可这样描述:

设 P 是数轴上的一点 (不妨设在0的右边), 若 P 在整数 n与 n+1之间,则 $a_0=n$.

把(n,n+1]十等分,若点 P 在第i 个区间,则 $a_1 = i$. 类似可得到 a_n , $n = 2, 3, \cdots$. 这时,令点 p 对应于 $a_0.a_1a_2\cdots a_n\cdots$.

反之,任何一实数也对应数轴上一点.

2.实数集与数轴上点的一一对应关系反映了实数的 完备性. 我们将在后面有关章节中作进一步讨论.

七、实数的绝对值与三角形不等式

1. 实数 a 的绝对值 | a | 定义为:

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}.$$

2. 实数的绝对值性质:

(1) $|a| = |-a| \ge 0$; 当且仅当a = 0时 |a| = 0.

 $(2) - |a| \le a \le |a|$.

(3) $|a| < h \Leftrightarrow -h < a < h$, $|a| \le h \Leftrightarrow -h \le a \le h$.

$$(4)|a|-|b| \le |a+b| \le |a|+|b|$$
 (三角形不等式).

$$(5)|ab|=|a||b|.$$

$$(6)\left|\frac{a}{b}\right| = \frac{|a|}{|b|}(b \neq 0).$$

3. 三角形不等式 $|a|-|b| \le |a+b| \le |a|+|b|$ 的证明:

由
$$-|a| \le a \le |a|, -|b| \le b \le |b|$$
得

$$-(|a|+|b|) \le a+b \le |a|+|b|,$$

即 $|a+b| \leq |a| + |b|$.

又
$$|a|=|a-b+b|\leq |a-b|+|b|$$
,即 $|a|-|b|\leq |a+b|$.

作业题

课本第4页:1(1);3;5(1)