MSP430 Clock System and Timer

TA: Yin Wang

CSU610 SWARM, Spring 2007

CCIS, Northeastern University

Outline

MSP430 basic clock module

MSP430 Timer A

Timer A examples

MSP430 Basic Clock Module

- Clock Sources:
 - LFXT1CLK: Low-frequency/high-frequency oscillator
 - XT2CLK : Optional high-frequency oscillator
 - DCOCLK : Internal digitally controlled oscillator (DCO)
- Tmote Sky Configuration:
 - LFXT1CLK: 32.768KHz crystal
 - XT2CLK : N/A
 - DCOCLK : Built-in DCO with configurable range from

<100KHz to 4MHz

MSP430 Basic Clock Module

- Clock Signals:
 - ACLK: Auxiliary clock. The signal is sourced from LFXT1CLK with a divider of 1, 2, 4, or 8. (The calibration program for the serial link sets the divider to 4, but after the calibration it can be changed to any other values.) ACLK can be used as the clock signal for Timer A and Timer B.
 - MCLK: Master clock. The signal can be sourced from LFXT1CLK, XT2CLK (if available), or DCOCLK with a divider of 1, 2, 4, or 8.
 MCLK is used by the CPU and system.
 - **SMCLK**: Sub-main clock. The signal is sourced from either XT2CLK (if available), or DCOCLK with a divider of 1, 2, 4, or 8. SMCLK can be used as the clock signal for Timer A and Timer B.

DCOCTL, DCO Control Register

7	6	5	4	3	2	1	0
	DCOx				MODx		
rw-0	rw-1	rw-1	rw-0	rw-0	rw-0	rw-0	rw-0

DCOx	Bits 7-5	DCO frequency select. These bits select which of the eight discrete DCO frequencies of the RSELx setting is selected.
MODx	Bits 4-0	Modulator selection. These bits define how often the f _{DCO+1} frequency is used within a period of 32 DCOCLK cycles. During the remaining clock cycles (32–MOD) the f _{DCO} frequency is used. Not useable when DCOx=7.

BCSCTL1, Basic Clock System Control Register 1

7	6	5	4	3	2	1	0
XT2OFF	хтѕ	DIV	/Ax	XT5V		RSELx	
rw-(1)	rw-(0)	rw-(0)	rw-(0)	rw-0	rw−1	rw-0	rw-0

XT2OFF	Bit 7	XT2 off. This bit turns off the XT2 oscillator 0 XT2 is on 1 XT2 is off if it is not used for MCLK or SMCLK.
XTS	Bit 6	LFXT1 mode select. 0 Low frequency mode 1 High frequency mode
DIVAx	Bits 5-4	Divider for ACLK 00 /1 01 /2 10 /4 11 /8
XT5V	Bit 3	Unused. XT5V should always be reset.
RSELx	Bits 2-0	Resistor Select. The internal resistor is selected in eight different steps. The value of the resistor defines the nominal frequency. The lowest nominal frequency is selected by setting RSELx=0.

BCSCTL2, Basic Clock System Control Register 2

7	6	5	4	3	2	1	0
SE	LMx	DIV	/Mx	SELS	DIV	'Sx	DCOR
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-0	rw-0	rw-0	rw-0

SELMx	Bits 7-6	Select MCLK. These bits select the MCLK source. 00 DCOCLK 01 DCOCLK 10 XT2CLK when XT2 oscillator present on-chip. LFXT1CLK when XT2 oscillator not present on-chip. 11 LFXT1CLK
DIVMx	BitS	Divider for MCLK
	5-4	00 /1
		01 /2
		10 /4
		11 /8
SELS	Bit 3	Select SMCLK. This bit selects the SMCLK source. DCOCLK XT2CLK when XT2 oscillator present on-chip. LFXT1CLK when XT2 oscillator not present on-chip.
DIVSx	BitS	Divider for SMCLK
	2-1	00 /1
		01 /2
		10 /4
		11 /8
DCOR	Bit 0	DCO resistor select
		0 Internal resistor
		1 External resistor

MSP430 Timer_A

- A 16-bit counter
- 4 modes of operation Stop, Up, Continuous, Up/Down
- 3 capture/compare registers (CCRx)
- 2 interrupt vectors TACCR0 and TAIV

le

Modes of Operation: Up Mode

Modes of Operation: Continuous Mode

Modes of Operation: Up/Down Mode

Timer_A Interrupt Vectors

- TACCR0 interrupt vector for CCIFG of CCR0
- TAIV interrupt vector for TAIFG and CCIFGs of CCR1,CCR2

TACTL, Timer_A Control Register (PART 1)

15	14	13	12	11	10	9	8
		Unu	sed			TASS	SELx
rw-(0)							

Unused	Bits 15-10	Unused
TASSELX	Bits 9-8	Timer_A clock source select 00 TACLK 01 ACLK 10 SMCLK 11 INCLK

• TACTL, Timer_A Control Register (PART 2)

7	6	5	4	3	2	1	0
ID	x	МС	:x	Unused	TACLR	TAIE	TAIFG
rw-(0)	rw-(0)	r _W -(0)	rw-(0)	rw-(0)	w-(0)	rw-(0)	rw-(0)

IDx	Bits 7-6	Input divider. These bits select the divider for the input clock. 00 /1 01 /2 10 /4 11 /8
MCx	Bits 5-4	Mode control. Setting MCx = 00h when Timer_A is not in use conserves power. O Stop mode: the timer is halted Up mode: the timer counts up to TACCR0 Continuous mode: the timer counts up to 0FFFFh Up/down mode: the timer counts up to TACCR0 then down to 0000h
Unused	Bit 3	Unused
TACLR	Bit 2	Timer_A clear. Setting this bit resets TAR, the TACLK divider, and the count direction. The TACLR bit is automatically reset and is always read as zero.
TAIE	Bit 1	Timer_A interrupt enable. This bit enables the TAIFG interrupt request. Interrupt disabled Interrupt enabled
TAIFG	Bit 0	Timer_A interrupt flag 0 No interrupt pending 1 Interrupt pending

TACCTLx, Capture/Compare Control Register

15	14	13	12	11	10	9	8
CI	Мх	cc	ISx	scs	scci	Unused	CAP
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r-(0)	r-(0)	rw-(0)
7	6	5	4	3	2	1	0
	OUTMODx			CCI	оит	cov	CCIFG
rw-(0)	rw-(0)	rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	rw-(0)

CAP Bit 8 Capture mode

0 Compare mode

1 Capture mode

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

CCIFG Bit 0 Capture/compare interrupt flag

0 No interrupt pending

1 Interrupt pending

• TAIV, Timer_A Interrupt Vector Register

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
r0	r0	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
0	0	0	0		TAIVx		0
r0	r0	r0	r0	r-(0)	r-(0)	r-(0)	r0

TAIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
00h	No interrupt pending	-	
02h	Capture/compare 1	TACCR1 CCIFG	Highest
04h	Capture/compare 2	TACCR2 CCIFG	
06h	Reserved	_	
08h	Reserved	-	
0Ah	Timer overflow	TAIFG	
0Ch	Reserved	_	
0Eh	Reserved	-	Lowest

Example 1

Continuous Mode

Output pin P6.0 with toggle rate = 32768/(2*50) = 328Hz

```
#include "include/include h"
#include "include/hardware.h"
void main (void)
    WDTCTL = WDTPW + WDTHOLD;
                                          // Stop WDT
    P6DIR = 0x01;
                                          // P6.0 output
    CCTL0 = CCIE:
                                          // CCR0 interrupt enabled
    CCR0 = 50;
    TACTL = TASSEL 1 + MC 2;
                                          // ACLK, contmode
                                          // Enable the global interrupt
                                                                         OR
    eint();
                                          // Enter low power mode
    LPM0;
                                                              _BIS_SR(LPM0_bits + GIE);
// Timer_A TACCR0 interrupt vector handler
interrupt (TIMERA0 VECTOR) TimerA procedure(void){
    P6OUT ^{=} 0x01:
                                          // Toggle P6.0
    CCR0 += 50;
                                          // Add offset to CCR0
```


Example 2

Up Mode

Output pin P6.0 with toggle rate = 32768/(2*50) = 328Hz

```
#include "include/include.h"
#include "include/hardware.h"
void main (void)
   WDTCTL = WDTPW + WDTHOLD:
                                      // Stop WDT
   P6DIR = 0x01;
                                      // P6.0 output
   CCTL0 = CCIE;
                                      // CCR0 interrupt enabled
   CCR0 = 50-1; ?
   TACTL = TASSEL_1 + MC_1;
                                     // ACLK, upmode
   _BIS_SR(LPM0_bits + GIE);
                                      // Enable the global interrupt and enter LPM0
// Timer A TACCR0 interrupt vector handler
interrupt (TIMERA0_VECTOR) TimerA_procedure ( void ){
   P6OUT ^= 0x01:
                                      // Toggle P6.0
```


Example 3

Continuous Mode

```
Output pin P6.0 with toggle rate = 32768/(2*5) = 3277Hz
Output pin P6.1 with toggle rate = 32768/(2*50) = 328Hz
Output pin P6.2 with toggle rate = 32768/(2*500) = 32.79Hz
Output pin P6.3 with toggle rate = 32768/(2*65536) = 0.25Hz
```

```
#include "include/include h"
#include "include/hardware.h"
void main ( void )
   WDTCTL = WDTPW + WDTHOLD:
                                          // Stop WDT
    P6DIR = 0x0F;
                                          // P6.0, P6.1, P6.2 and P6.3 output
    CCTL0 = CCIE:
                                          // CCR0 interrupt enabled
    CCTL1 = CCIE:
                                          // CCR0 interrupt enabled
                                          // CCR0 interrupt enabled
    CCTL2 = CCIE:
    CCR0 = 0:
    CCR1 = 0:
    CCR2 = 0:
    TACTL = TASSEL_1 + MC_2+ TAIE;
                                         // ACLK, contmode, TAIE enabled
    _BIS_SR(LPM0_bits + GIE);
                                          // Enable the global interrupt and enter LPM0
```



```
// Timer A TACCR0 interrupt vector handler
interrupt (TIMERA0_VECTOR) TimerA0_procedure ( void ){
   P6OUT ^= 0x01:
                                       // Toggle P6.0
   CCR0 += 5;
                                       // Add offset to CCR0
// Timer A TAIV interrupt vector handler
interrupt (TIMERA1_VECTOR) TimerA1_procedure ( void ){
   switch(TAIV)
          case 2: P6OUT ^= 0x02; // Toggle P6.1
                 CCR1 += 50:
                              // Add offset to CCR1
                 break;
          case 4: P6OUT ^{=} 0x04; // Toggle P6.2
                 CCR2 += 500; // Add offset to CCR2
                 break:
          case 10: P6OUT ^= 0x08;
                                       // Toggle P6.3
                  break:
```