PRINCIPALES DISTRIBUCIONES DISCRETAS					
Distribución	Función de Probabilidad	Media	Varianza		
Uniforme Discreta UD(a, b)	$\frac{1}{b-a+1}$, $x = a, (a+1),, b$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$		
Bernouilli Be(p)	$p^{x}(1-p)^{1-x}, x=0 \text{ ó } 1$	p	p(1-p)		
Binomial Bi(n, p)	$\binom{n}{x} p^{x} (1-p)^{n-x}, x = 0, 1, 2, \dots, n$	np	np(1-p)		
Poisson Po(λ)	$\frac{e^{-\lambda} \lambda^{x}}{x!}$, $x = 0, 1, 2,$	λ	λ		
Geométrica Ge(p) = nº de pruebas hasta el primer éxito	$(1-p)^{x-1}p, x=1,2,$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$		
Geométrica Ge(p) = nº de fracasos hasta el primer éxito	$(1-p)^{x}p, x=0, 1, 2,$	<u>1-p</u> p	$\frac{(1-p)}{p^2}$		
Hipergeométrica H(N, n, p)	$\frac{\binom{n}{x}\binom{N-k}{n-x}}{\binom{N}{n}}, x = 0,1,,\min\{k,n\}$ $con p = \frac{k}{n}$	np	$np(1-p)\frac{N-n}{N-1}$		
Binomial Negativa BN(n, p)	$\binom{n+x-1}{x}p^{n}(1-p)^{x}, x=0,1,2,$	<u>n(1-p)</u> p	$\frac{n(1-p)}{p^2}$		

PRINCIPALES DISTRIBUCIONES CONTINUAS					
Distribución	Función de Densidad	Media	Varianza		
Uniforme Continua U[a, b]	$\frac{1}{b-a}$, $a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$		
Normal $N(\mu, \sigma)$	$\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < +\infty$	μ	σ^2		
Exponencial Exp(θ)	$\theta e^{-\theta x}, x > 0$	$\frac{1}{\theta}$	$\frac{1}{\theta^2}$		
Weibull W(α,β)	$\frac{\alpha}{\beta^{\alpha}} x^{\alpha-1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}} x \ge 0, \alpha \ge 0, y \beta \ge 0$	$\beta \Gamma \left(1 + \frac{1}{\alpha}\right)$	$\beta^2 \left(\Gamma \left(1 + \frac{2}{\alpha} \right) \cdot \left(\Gamma \left(1 + \frac{1}{\alpha} \right) \right)^2 \right)$		
Gamma Γ(a, p)	$\frac{a^{p}}{\Gamma(p)} e^{-ax} x^{p-1}, x > 0, a y p > 0$	$\frac{p}{a}$	$\frac{p}{a^2}$		
Beta $\beta(p,q)$	$\frac{1}{\beta(p,q)} x^{p-1} (1-x)^{q-1}, 0 \le x \le 1, p,q > 0$	$\frac{p}{p+q}$	$\frac{pq}{(p+q+1)(p+q)^2}$		
Chi-Cuadrado χ ² _n	$\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}e^{-\frac{x}{2}}x^{\frac{n}{2}-1}, x > 0$	n	2n		
t de Student t _n	$\frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, -\infty < t < +\infty$	0	n/n-2		

F de Fisher-Snedecor F _{n, m}	$\frac{\Gamma\left(\frac{n+m}{2}\right)\left(\frac{n}{m}\right)^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right)} \frac{x^{\frac{n}{2}-1}}{\left(1+\frac{n}{m}x\right)^{\frac{n+m}{2}}}, x > 0$	<u>m</u> m - 2	$\frac{2m^{2}(n+m-2)}{n(m-2)^{2}(m-4)}$
--	---	-------------------	---