Corrigé de la feuille d'exercices 13

Dérivabilité 1

Exercice 1. • Soit $x \in I \setminus \{0\}$, on a :

$$\frac{f(a+x) - f(a-x)}{2x} = \frac{1}{2} \frac{f(a+x) - f(a)}{x} + \frac{1}{2} \frac{f(a-x) - f(a)}{-x}$$

Or,
$$f$$
 est dérivable en a .
Ainsi, $\lim_{x\to 0} \frac{f(a+x)-f(a-x)}{2x} = \frac{f'(a)}{2} + \frac{f'(a)}{2} = f'(a)$.
Soit $x\in I\setminus\{a\}$, on a :

• Soit $x \in I \setminus \{a\}$, on

$$\frac{f(x)g(a) - f(a)g(x)}{x - a} = \frac{f(x) - f(a)}{x - a}g(a) + \frac{g(a) - g(x)}{x - a}f(a)$$

Or,
$$f$$
 et g sont dérivables en a .
Ainsi, $\lim_{x\to a} \frac{f(x)g(a) - f(a)g(x)}{x-a} = f'(a)g(a) - g'(a)f(a)$.

• Soit $h \in \mathbb{R}^*$ tel que $a + h^2$, $a + h \in I$.

$$\frac{f(a+h^2) - f(a+h)}{h} = h \frac{f(a+h^2) - f(a)}{h^2} - \frac{f(a+h) - f(a)}{h}$$

Or, f est dérivable en a, par opération sur les limites, on obtient :

$$\lim_{h \to 0} \frac{f(a+h^2) - f(a+h)}{h} = 0 \times f'(a) - f'(a) = -f'(a).$$

1. On a: $\forall x > 0$, $\frac{f_n(x) - f_n(0)}{x - 0} = \frac{\sqrt{x^{n+1} + x^n}}{x}$. Ainsi, on a: Exercice 2.

$$\forall x > 0, \ \frac{f_n(x) - f_n(0)}{x - 0} = \sqrt{x^{n-1} + x^{n-2}}$$

Si n = 1, on a : $\forall x > 0$, $\frac{f_1(x) - f_1(0)}{x - 0} = \sqrt{1 + \frac{1}{x}}$ et $\lim_{x \to 0} \sqrt{1 + \frac{1}{x}} = +\infty$. Ainsi, f_1 n'est pas dérivable en 0. Si n = 2, on a : $\forall x > 0$, $\frac{f_2(x) - f_2(0)}{x - 0} = \sqrt{1 + x}$ et $\lim_{x \to 0} \sqrt{1 + x} = 1$. Ainsi, f_2 est dérivable en 0 et $f_2'(0) = 1$. Si n > 2, on a : $\forall x > 0$, $\frac{f_2(x) - f_2(0)}{x - 0} = \sqrt{x^{n-2}(1 + x)}$ et $\lim_{x \to 0} \sqrt{x^{n-2}(1 + x)} = 0$. Ainsi, f_2 est dérivable en 0 et $f_2'(0) = 0$.

2. g n'est pas dérivable en 0. En effet, on a :

$$\forall x \in \mathbb{R}^*, \frac{g(x) - g(0)}{x - 0} = \sin(\frac{1}{x}).$$

Or, $\sin(\frac{1}{x})$ n'admet pas de limite en 0. Posons $u: x \mapsto \sin(\frac{1}{x})$.

Pour tout $n \in \mathbb{N}^*$, on pose $x_n = \frac{1}{2\pi n}$ et $y_n = \frac{1}{\frac{\pi}{2} + 2\pi n}$. Les suites (x_n) et (y_n) convergent vers 0, mais on a :

$$\forall n \in \mathbb{N}, \ u(x_n) = \sin(2\pi n) = 0 \quad \text{ et } \quad u(y_n) = \sin(\frac{\pi}{2}) = 1.$$

Ainsi, $\lim_{n \to +\infty} u(x_n) = 0$ et $\lim_{n \to +\infty} u(y_n) = 1$. Donc u n'admet pas de limite en 0.

3. h est dérivable en 0. En effet, on a :

$$\forall x \in \mathbb{R}^*, \ \frac{h(x) - h(0)}{x - 0} = x \sin(\frac{1}{x})$$

Or, $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$ comme produit d'une fonction bornée avec une fonction qui tend vers 0. Ainsi, h est dérivable en 0 et on h'(0) = 0.

- Exercice 3. 1. f est définie et dérivable sur $\left[\frac{\pi}{2},\pi\right[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s'annule pas. De plus : $\forall x \in \left[\frac{\pi}{2},\pi\right[,\,f'(x)=-\frac{1}{\sin^2(x)}\cos(x).\,$ Or : $\forall x \in \left[\frac{\pi}{2},\pi\right[,\,f'(x)\leq 0\,$ et f'(x) ne s'annule qu'en $\frac{\pi}{2}$. Ainsi, f est strictement décroissante sur $\left[\frac{\pi}{2},\pi\right[.$ De plus, f est continue sur $\left[\frac{\pi}{2},\pi\right[.$ f réalise donc une bijection de $\left[\frac{\pi}{2},\pi\right[$ sur $f(\left[\frac{\pi}{2},\pi\right[).\,$ Or, on sait que $\lim_{x\to\pi}f(x)=+\infty$ et $f(\frac{\pi}{2})=1.\,$ Ainsi, f réalise une bijection de $\left[\frac{\pi}{2},\pi\right[$ sur $\left[1,+\infty\right[.$
 - 2. f est bijective de $\left[\frac{\pi}{2}, \pi\right[$ sur $[1, +\infty[$. f est dérivable sur $\left[\frac{\pi}{2}, \pi\right[$ et on a :

$$\forall x \in \left[\frac{\pi}{2}, \pi\right[, \ f'(x) \neq 0 \quad \Longleftrightarrow \quad x \in \left]\frac{\pi}{2}, \pi\right[.$$

Ainsi, f^{-1} est dérivable sur $f\left(\left[\frac{\pi}{2},\pi\right]\right)=\left[1,+\infty\right[$. Soit $x\in\left[1,+\infty\right[$, on a :

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = -\frac{\sin^2(f^{-1}(x))}{\cos(f^{-1}(x))}$$

De plus, on sait que $f(f^{-1}(x)) = x$ donc $\frac{1}{\sin(f^{-1}(x))} = x$. Ainsi, $\sin^2(f^{-1}(x)) = \frac{1}{x^2}$.

On a alors $\cos^2(f^{-1}(x)) = \frac{x^2 - 1}{x}$. De plus, $f^{-1}(x) \in \left[\frac{\pi}{2}, \pi\right]$ donc $\cos(f^{-1}(x)) > 0$. Ainsi, $\cos(f^{-1}(x)) = \sqrt{\frac{x^2 - 1}{x^2}}$. Finalement, on a :

$$\forall x \in]1, +\infty[, (f^{-1})'(x) = \frac{1}{x^2 \sqrt{\frac{x^2 - 1}{x^2}}} = \frac{\sqrt{x^2}}{x^2 \sqrt{1 - x^2}} = \frac{x}{x^2 \sqrt{1 - x^2}} = \frac{1}{x\sqrt{1 - x^2}}.$$

Exercice 4. Soit f une fonction dérivable sur \mathbb{R} .

- 1. Raisonnons par double implication.
 - Supposons que f est paire. Alors, on a : $\forall x \in \mathbb{R}$, f(x) = f(-x). En dérivant cette relation, on trouve : $\forall x \in \mathbb{R}$, f'(x) = -f'(-x) donc f' impaire.
 - Supposons désormais f' impaire. Ainsi, on a : $\forall x \in \mathbb{R}$, f'(-x) = -f'(x). En intégrant cette relation, on obtient : $\forall x \in \mathbb{R}$, $\int_0^x f'(-t)dt = \int_0^x -f'(t)dt$. Donc : $\forall x \in \mathbb{R}$, -f(-x) + f(0) = -f(x) + f(0). Puis : $\forall x \in \mathbb{R}$, f(-x) = f(x). f est donc paire.
- 2. Supposons f est impaire. Alors : $\forall x \in \mathbb{R}$, f(-x) = -f(x). En dérivant cette relation, on obtient : $\forall x \in \mathbb{R}$, -f'(-x) = -f'(x). Donc : $\forall x \in \mathbb{R}$, f'(-x) = f'(x). Ainsi, f' est paire. La réciproque est fausse parce qu'on n'a pas nécessairement f(0) = 0. Posons par exemple $f : x \mapsto \sin x + 1$. On a $f' = \cos \operatorname{donc} f'$ est paire mais f n'est pas impaire.
- 3. Supposons que f est périodique. Ainsi, il existe $T \in \mathbb{R}^*$ tel que : $\forall x \in \mathbb{R}$, f(x+T) = f(x). En dérivant cette relation, on obtient : $\forall x \in \mathbb{R}$, f(x+T) = f(x). Ainsi, f' est aussi périodique. La réciproque est fausse. Posons par exemple $g: x \mapsto x + \cos x$. $g' = -\sin \operatorname{donc} g'$ est périodique. En revanche, g n'est pas périodique.

Exercice 5. 1. Soit $x \in \mathbb{R}$, on a $f\left(\frac{x}{2}\right) = f(f(f(x))) = (f \circ f)(f(x)) = \frac{f(x)}{2}$.

- 2. En dérivant la relation précédente, on a : $\forall x \in \mathbb{R}, \ \frac{1}{2}f'(\frac{x}{2}) = \frac{1}{2}f'(x)$. Donc : $\forall x \in \mathbb{R}, \ f'\left(\frac{x}{2}\right) = f'(x)$.
- 3. Soit $x \in \mathbb{R}$, montrons par récurrence que : $\forall n \in \mathbb{N}, f'(x) = f'\left(\frac{x}{2^n}\right)$.
 - Pour n = 0, $f'\left(\frac{x}{2^n}\right) = f'\left(\frac{x}{2^0}\right) = f'(x)$.
 - Soit $n \in \mathbb{N}$, supposons que $f'(x) = f'\left(\frac{x}{2^n}\right)$. D'après la question précédente, on a $f'\left(\frac{x}{2^n}\right) = f'\left(\frac{x}{2^{n+1}}\right)$. D'où par hypothèse de récurrence : $f'(x) = f'\left(\frac{x}{2^{n+1}}\right)$
 - Ainsi, on a prouvé que : $\forall n \in \mathbb{N}, \ f'(x) = f'\left(\frac{x}{2^n}\right) \quad (**).$

Or, $\lim_{n\to+\infty}\frac{x}{2^n}=0$ et f' est continue en 0 donc $\lim_{n\to+\infty}f'\left(\frac{x}{2^n}\right)=f'(0)$. Avec (**), on a : f'(x)=f'(0).

Ainsi, f' est constante.

4. Raisonnons par analyse-synthèse. Analyse: supposons qu'il existe $f: \mathbb{R} \to \mathbb{R}$ telle que : $\forall x \in \mathbb{R}, f \circ f(x) = \frac{x}{2}$. Alors, d'après les questions précédentes, il existe $a \in \mathbb{R}$ tel que : $\forall x \in \mathbb{R}, f'(x) = a$. Alors, il existe $b \in \mathbb{R}$ tel que : $\forall x \in \mathbb{R}, \ f(x) = ax + b.$

De plus, d'après la question 2, $f(0) = \frac{f(0)}{2}$. Donc f(0) = 0.

Ainsi, b = 0.

De plus, :

$$\forall x \in \mathbb{R}, \frac{f(x)}{2} = \frac{x}{2} = f(f(x)) = af(x) = a^2x.$$

D'où $a^2 = \frac{1}{2}$. Donc $a = \pm \frac{\sqrt{2}}{2}$. Synthèse : posons $f_1 : x \mapsto \frac{\sqrt{2}}{2}x$ et $f_2 : x \mapsto -\frac{\sqrt{2}}{2}x$.

$$f_1 \circ f_1(x) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} x = \frac{x}{2}$$

et

$$f_2 \circ f_2(x) = \left(-\frac{\sqrt{2}}{2}\right) \times \left(-\frac{\sqrt{2}}{2}x\right) = \frac{x}{2}$$

Ainsi, f_1 et f_2 sont bien solutions.

L'ensemble des fonctions vérifiant la propriété de l'énoncé est donc $\{x \mapsto \pm \frac{\sqrt{2}}{2}x\}$.

Dérivées n-ièmes et fonctions de classe \mathcal{C}^n ou \mathcal{C}^∞ 2

Exercice 6. φ est le produit de fonctions de classe \mathcal{C}^{∞} sur \mathbb{R} donc φ est de classe \mathcal{C}^{∞} sur \mathbb{R} . Posons: $f: x \mapsto x^2 + 1$ et $g: x \mapsto e^{3x}$, on a alors:

$$\forall x \in \mathbb{R}, \ f'(x) = 2x, \quad f''(x) = 2 \quad \text{ et } \forall k \ge 3, \ f^{(k)}(x) = 0$$

Par récurrence, on montre que : $\forall k \in \mathbb{N}$, on a $g^{(k)}(x) = 3^k e^{3x}$.

Soit $n \geq 2$, on utilise alors la formule de Leibniz.

Soit $x \in \mathbb{R}$, on a:

$$f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)$$

$$= \binom{n}{0} f^{(0)}(x) g^{(n)}(x) + \binom{n}{1} f'(x) g^{(n-1)}(x) + \binom{n}{2} f''(x) g^{(n-2)}(x) + \sum_{k=3}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)$$

$$= (x^{2} + 1) 3^{n} e^{3x} + 2nx 3^{n-1} e^{3x} + 2 \frac{n(n-1)}{2} 3^{n-2} e^{3x}$$

On remarque que la relation reste valable pour n = 0 et n = 1.

Exercice 7. Calculons de deux façons différentes le terme dominant de $f^{(n)}$. f est classe \mathcal{C}^{∞} sur \mathbb{R} comme produit de fonctions qui le sont.

Soit $x \in \mathbb{R}$, par la formule de Leibniz, on a :

$$f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} \frac{n!}{(n-k)!} x^{n-k} \frac{n!}{k!} (x+1)^k = n! \sum_{k=0}^{n} \binom{n}{k}^2 x^{n-k} (x+1)^k.$$

Ainsi, le terme de plus haut degré est $n! \sum_{k=1}^{n} {n \choose k}^2 x^k$.

Or le terme de plus haut degré dans f(x) est x^{2n} dont la dérivée d'ordre n est $\frac{(2n)!}{n!}x^n$.

Ainsi, le terme coefficient dominant de $f^{(n)}(x)$ est $\frac{(2n)!}{n!}x^n$.

Finalement, on obtient : $n! \sum_{k=0}^{n} \binom{n}{k}^2 = \frac{(2n)!}{n!} \operatorname{donc} \sum_{k=0}^{n!} \binom{n}{k}^2 = \frac{(2n)!}{(n!)^2} = \binom{2n}{n}$.

Exercice 8. f est le produit de fonctions de classe C^{∞} sur \mathbb{R} donc f est de classe C^{∞} sur \mathbb{R} . Posons $h: x \mapsto x^3 + x^2 + 1$ et $q: x \mapsto e^{-x}$, on a alors:

$$\forall x \in \mathbb{R}, \ h'(x) = 3x^2 + 2x \quad h''(x) = 6x + 2 \quad h'''(x) = 6 \quad \text{et } \forall k \ge 4, \ h^{(k)}(x) = 0$$

De même, on montre par récurrence que : $\forall k \in \mathbb{N}$, on a $g^{(n)}(x) = (-1)^n e^{-x}$.

Soit $n \geq 3$, on utilise la formule de Leibniz.

Soit $x \in \mathbb{R}$, on a:

$$\begin{split} f^{(n)}(x) &= \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k)}(x) \\ &= \binom{n}{0} h^0(x) g^{(n)}(x) + \binom{n}{1} h'(x) g^{(n-1)}(x) + \binom{n}{2} h''(x) g^{(n-2)}(x) + \binom{n}{3} h'''(x) g^{(n-3)}(x) + \sum_{k=4}^{n} \binom{n}{k} h^{(k)}(x) g^{(n-k)}(x) \\ &= (x^3 + x^2 + 1)(-1)^n e^{-x} + n(3x^2 + 2x)(-1)^{n-1} e^{-x} + (6x + 2) \frac{n(n-1)}{2} (-1)^{n-2} e^{-x} + 6 \frac{n(n-1)(n-2)}{6} (-1)^{n-3} e^{-x} \\ &= (-1)^n e^{-x} \left(x^3 + (1 - 3n) x^2 + (3n^2 - 5n) x + 1 + n(n-1)(3 - n) \right) \end{split}$$

On remarque que la relation reste valable pour n = 0, n = 1 et n = 2

Exercice 9. Pour tout $n \in \mathbb{N}$, les fonctions f_n sont de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* .

•
$$\forall x \in \mathbb{R}_+^*, f_0(x) = e^{1/x} \text{ et } \forall x \in \mathbb{R}_+^*, f_0^{(1)}(x) = -\frac{1}{x^2} e^{1/x}$$

•
$$\forall x \in \mathbb{R}_+^*$$
, $f_1(x) = xe^{1/x}$ et $\forall x \in \mathbb{R}_+^*$, $f_1^{(2)}(x) = \frac{1}{x^3}e^{1/x}$.

•
$$\forall x \in \mathbb{R}_+^*, f_2(x) = x^2 e^{1/x} \text{ et } \forall x \in \mathbb{R}_+^*, f_2^{(3)}(x) = -\frac{1}{x^4} e^{1/x}.$$

Montrons par récurrence que : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ f_n^{(n+1)}(x) = \frac{(-1)^{n+1}}{x^{n+1}}x^{1/x}$.

- Pour n=0, on a : $\forall x \in \mathbb{R}$, $f_0^{(1)}(x) = \frac{-1}{r^2}e^{1/x}$ donc la propriété est vraie pour n=0.
- Soit $n \in \mathbb{N}$, supposons que : $\forall x \in \mathbb{R}$, $f_n^{(n+1)}(x) = \frac{(-1)^{n+1}}{x^{n+2}}e^{1/x}$. On remarque: $\forall x \in \mathbb{R}, \ f_{n+1}(x) = x^{n+1}e^{1/x} = xf_n(x)$

D'après la formule de Leibniz, on a :

$$\forall x \in \mathbb{R}, \ f_{n+1}^{(n+2)}(x) = \sum_{k=0}^{n+2} \binom{n+2}{k} f_n^{(n+2-k)}(x) \times id^{(k)}(x)$$

Or, on a: $\forall k \geq 2, \forall x \in \mathbb{R}, Id_{(k)}(x) = 0.$

Donc on a:
$$\forall x \in \mathbb{R}, \ f_{n+1}^{(n+2)}(x) = \sum_{k=0}^{1} {n+2 \choose k} f_n^{n+2-k}(x) Id^{(k)}(x).$$

$$\forall x \in \mathbb{R}, \ f_{n+1}^{(n+2)}(x) = x f_n^{(n+2)}(x) + (n+2) f_n^{(n+1)}(x)$$

Or, $f_n^{(n+2)}$ est la dérivée de $f_n^{(n+1)}$

Soit $x \in \mathbb{R}$, on a:

$$\begin{split} f_n^{(n+2)}(x) &= -\frac{(-1)^{n+1}(n+2)}{x^{n+3}}e^{1/x} + \frac{(-1)^{n+1}}{x^{n+2}} \times \frac{-1}{x^2}e^{1/x} \\ &= -(n+2)\frac{(-1)^{n+1}}{x^{n+3}}e^{1/x} + \frac{(-1)^n}{x^{n+4}}e^{1/x} \end{split}$$

D'où:

$$\begin{split} f_{n+1}^{(n+2)}(x) &= x \left(-(n+2) \frac{(-1)^{n+1}}{x^{n+3}} e^{1/x} + \frac{(-1)^n}{x^{n+4}} e^{1/x} \right) + (n+2) \frac{(-1)^{(n+1)}}{x^{n+2}} e^{1/x} \\ &= -(n+2) \frac{(-1)^{n+1}}{x^{n+2}} e^{1/x} + \frac{(-1)^n}{x^{n+3}} e^{1/x} + (n+2) \frac{(-1)^{(n+1)}}{x^{n+2}} e^{1/x} \\ &= \frac{(-1)^n}{x^{n+3}} e^{1/x} \\ &= \frac{(-1)^{n+2}}{x^{n+3}} e^{1/x} \end{split}$$

• On a donc prouvé par récurrence que :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f_n^{(n+1)}(x) = \frac{(-1)^{n+1}}{x^{n+2}} e^{1/x}.$$

Exercice 10. Posons $f: t \mapsto \ln t$ et $g: t \mapsto t^{n-1}$. f et g sont de classe C^{∞} sur \mathbb{R}_{+}^{*} .

Commençons par prouver par récurrence que : $\forall k \in \mathbb{N}^*, \forall t \in \mathbb{R}_+^*, \ \ln^{(k)}(t) = \frac{(-1)^{k-1}(k-1)!}{t^k}$

- Pour k = 1, on a : $\forall t \in \mathbb{R}_+^*$, $\ln'(t) = \frac{1}{t}$ donc la formule est vraie pour k = 1.
- Soit $k \in \mathbb{N}^*$, supposons que : $\forall t \in \mathbb{R}_+^*$, $\ln^{(k)}(t) = \frac{(-1)^{k-1}(k-1)!}{t^k}$. Soit $t \in \mathbb{R}$, En dérivant l'égalité de l'hypothèse de récurrence, on obtient : $\ln^{(k+1)}(t) = (-1)^{k-1}(k-1)! \times \frac{-k}{t^{k+1}}$. Donc : $\ln^{(k+1)}(t) = \frac{(-1)^k k!}{t^{k+1}}$.
- On a donc prouvé par récurrence que : $\forall k \in \mathbb{N}^*, \ \forall t \in \mathbb{R}_+^*, \ \ln^{(k)}(t) = \frac{(-1)^{k-1}(k-1)!}{t^{k-1}}$.

De plus, on a : $\forall k \in \llbracket 0, n-1 \rrbracket$, $\forall t \in \mathbb{R}, \ g^{(k)}(t) = \frac{(n-1)!}{(n-1-k)!} t^{n-1-k}$ et $g^{(n)} = 0$. Soit $t \in \mathbb{R}_+^*$, d'après la formule de Leibniz, on a alors :

$$f^{(n)}(t) = \sum_{k=0}^{n} \binom{n}{k} \ln^{(k)}(t) g^{(n-k)}(t)$$

$$= \sum_{k=1}^{n} \binom{n}{k} \ln^{(k)}(t) g^{(n-k)}(t)$$

$$= \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^{k-1}(k-1)!}{t^k} \frac{(n-1)!}{(k-1)!} t^{k-1}$$

$$= \frac{(n-1)!}{t} \sum_{k=1}^{n} \binom{n}{k} (-1)^{k-1}$$

$$= -\frac{(n-1)!}{t} \sum_{k=1}^{n} \binom{n}{k} (-1)^{k}$$

$$= -\frac{(n-1)!}{t} \left(\sum_{k=0}^{n} \binom{n}{k} (-1)^{k} - 1 \right)$$

$$= -\frac{(n-1)!}{t} ((1-1)^{n} - 1) = \frac{(n-1)!}{t}$$

Ainsi, on a:

$$\forall n \in \mathbb{N}^*, \ \forall t \in \mathbb{R}_+^*, \ f^{(n)}(t) = \frac{(n-1)!}{t}$$

Exercice 11. Calculons dans un premier temps les dérivées n-ièmes de $f: x \mapsto e^{ix}$. f est infiniment dérivable sur \mathbb{R} . Et on a : $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f^{(n)}(x) = i^n e^{ix} = \left(e^{i\frac{\pi}{2}}\right)^n e^{ix} = e^{i\frac{n\pi}{2}}e^{ix}$ d'après la formule de Moivre. On obtient finalement que :

$$x \in \mathbb{R}, \ f^{(n)}(x) = e^{i\left(x + \frac{n\pi}{2}\right)}.$$

Ainsi, en prenant les parties réelles et imaginaires, on obtient : $\cos^{(n)}: x \mapsto \cos\left(x + \frac{n\pi}{2}\right)$ et $\sin^{(n)}: x \mapsto \sin\left(x + \frac{n\pi}{2}\right)$.

Exercice 12. 1. On commence par linéariser \cos^3 et \sin^3 .

Soit $x \in \mathbb{R}$, on a:

$$f_1(x) = \cos^3 x = \left(\frac{e^{ix} + \frac{e^{-ix}}{2}}{2}\right)^3$$
 d'après la formule d'Euler
$$= \frac{e^{3ix} + e^{-3ix} + 3e^{ix} + 3e^{-ix}}{8}$$
 d'après le binôme de Newton
$$= \frac{1}{4} \left(\cos(3x) + 3\cos(x)\right)$$

$$= \frac{1}{4} \operatorname{Re} \left(e^{3ix} + 3e^{ix}\right)$$

Ainsi : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ f_1^{(n)}(x) = \frac{1}{4} \text{Re} \left((3i)^n e^{3ix} + 3(i^n) e^{ix} \right). \text{ Or, } i^n = e^{in\frac{\pi}{2}}.$ Soit $n \in \mathbb{N}, x \in \mathbb{R}$, on a :

$$f_1^{(n)}(x) = \frac{1}{4} \operatorname{Re} \left(3^n e^{i(3x + n\frac{\pi}{2})} + 3e^{i(x + n\frac{\pi}{2})} \right)$$
$$= \frac{1}{4} \left(3^n \cos \left(3x + n\frac{\pi}{2} \right) + 3\cos \left(x + n\frac{\pi}{2} \right) \right)$$

On a donc:

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ f_1^{(n)}(x) = \frac{1}{4} \left(3^n \cos \left(3x + n\frac{\pi}{2} \right) + 3\cos \left(x + n\frac{\pi}{2} \right) \right)$$

2. On remarque que : $\forall x \in \mathbb{R}$, $f_2(x) = \operatorname{Im}(e^{(1+i)x})$. On prouve alors par récurrence que : $\forall n \in \mathbb{N}$, $\forall x \in \mathbb{R}$, $f^{(n)}(x) = \operatorname{Im}((1+i)^n e^{(1+i)x})$. Or, $(1+i)^n = (\sqrt{2}e^{i\frac{\pi}{4}})^n = (\sqrt{2})^n e^{in\frac{\pi}{4}}$. Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on a :

$$f_2^{(n)}(x) = \operatorname{Im}\left((\sqrt{2})^n e^{in\frac{\pi}{4}} e^{(1+i)x}\right)$$
$$= (\sqrt{2})^n e^x \sin\left(x + n\frac{\pi}{4}\right)$$

Finalement, on a prouvé que :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f_2^{(n)}(x) = (\sqrt{2})^n e^x \sin\left(x + n\frac{\pi}{4}\right)$$

3 Propriétés des fonctions dérivables

Exercice 13. Supposons que f ne soit pas constante (cas évident).

Il existe donc $a \neq 0$ tel que $f(a) \neq f(0)$.

Supposons par exemple f(a) > f(0).

Posons $\epsilon = f(a) - f(0) > 0$.

Il existe A>0 tel que : $\forall x\in [0,+\infty[,\ x\geq A\Longrightarrow |f(x)-f(0)|\leq \epsilon$ Ainsi, pour tout $x\in [A,+\infty[,\ f(x)\leq f(0)+\epsilon=f(a)]$. La fonction f est continue sur le segment [0,A] donc il existe $d\in [0,A]$ tel que : $\forall x\in [0,A],\ f(x)\leq f(d)$. Ainsi, on a :

$$\forall x \in [0, +\infty[, f(x) \le \max(f(a), f(d)) = f(x_0)]$$

avec $x_0 = a$ ou $x_0 = d$.

De plus, $\max(f(a), f(d)) \ge f(a) > f(0)$ donc $\max(f(a), f(d)) \ne f(0)$. Ainsi, $x_0 \ne 0$.

Ainsi, f admet un maximum en x_0 qui est atteint en un point de $]0,+\infty[$ et f est dérivable en x_0 d'où $f'(x_0)=0$.

Exercice 14. Posons: $\begin{array}{ccc} h & [a,b] & \to & \mathbb{R} \\ x & \mapsto & x^{\lambda}f(x) \end{array}$

h est continue sur [a,b] et dérivable sur]a,b[en tant que produit de fonctions qui le sont. De plus, h(a)=h(b)=0. Ainsi, d'après le théorème de Rolle, il existe $c\in]a,b[$ tel que h'(c)=0. Or, $h'(c)=\lambda c^{\lambda-1}f(c)+c^{\lambda}f'(c)$. De plus, $c\neq 0$. Ainsi, on obtient que $\lambda f(c)+cf'(c)=0$. D'où $f'(c)=-\lambda \frac{f(c)}{c}$.

Exercice 15. 1. Pour tout $l \in [0, \min(k, n)]$, on considère la propriété $\mathcal{P}(l) : \ll f^{(l)}$ admet au moins k - l zéros dans $l \gg 1$.

• Pour $l=0, \mathcal{P}(0)$ est vraie. Ceci correspond à l'hypothèse faite sur f.

- Soit $l \in [0, \min(k, n) 1]$, supposons $\mathcal{P}(l)$ vraie. Ainsi, $f^{(l)}$ admet au moins k-l zéros dans I. Soit $x_1 < ... < x_{k-l}$ tels que $f^{(l)}(x_1) = ... = f^{(l)}(x_{k-l}) = 0$. f est n fois dérivable sur I et l < n-1 donc $f^{(l)}$ est dérivable sur I et donc aussi continue sur I. Soit $i \in [1, k-l-1]$, $f^{(l)}$ est continue sur $[x_i, x_{i+1}]$ et dérivable sur $[x_i, x_{i+1}]$. De plus, $f'(x_i) = f'(x_{i+1})$. D'après le théorème de Rolle il existe $y_i \in]x_i, x_{i+1}[$ tel que $f^{(l+1)}(y_i)$. De plus, les y_i sont 2 à 2 distincts pour $i \in [1, k-l-1]$ car les intervalles x_i, x_{i+1} sont 2 à 2 disjoints pour $i \in [1, k-l-1]$. Ainsi, on a trouvé k-(l+1) zéros de $f^{(l+1)}$. Donc $\mathcal{P}(l+1)$ est vraie.
- On a donc prouvé que pour tout $l \in [0, \min(k, n)]$, $f^{(l)}$ admet au moins k l zéros dans I.
- 2. Il suffit d'appliquer la question précédente à k = n + 1 et l = n ce qui est possible car k et l vérifie bien 0 < l < ket $0 \le l \le n$.

Exercice 16. Soit $T \in \mathbb{R}^*$. Soit f une fonction dérivable et T-périodique.

On sait que : $\forall n \in \mathbb{Z}, f(nT) = f((n+1)T).$

Soit $n \in \mathbb{N}$. f est continue sur [nT, (n+1)T], dérivable sur [nT, (n+1)T]. Ainsi, d'après le théorème de Rolle, il existe $x_n \in]nT, (n+1)T[$ tel que $f'(x_n) = 0.$

Tous les x_n pour $n \in \mathbb{N}$ sont distincts car les intervalles [nT, (n+1)T] pour $n \in \mathbb{N}$ sont disjoints. Ainsi, f' s'annule une infinité de fois.

Exercice 17. Posons $h: x \mapsto f(x) - x$.

h(-1) = h(0) = h(1) = 0. De plus, h est continue sur [-1,0] et sur [0,1]. h est dérivable sur [-1,0] et sur [0,1]. Ainsi, d'après le théorème de Rolle appliquée sur]-1,0[et]0,1[, il existe $\alpha \in]-1,0[$ et $\beta \in]0,1[$ tels que $h'(\alpha)=0$ et $h'(\beta) = 0$. De plus, h' est continue sur $[\alpha, \beta]$, dérivable sur $[\alpha, \beta]$. Ainsi, d'après le théorème de Rolle, il existe $c \in]\alpha, \beta[\subset] -1, 1[$ tel que h''(c) = 0. Or, 0 = h''(c) = f''(c). ce qui permet de conclure.

Exercice 18. 1. Si M=0 alors on a : $\forall x \in [a,b], f''(x)=0$. Donc en intégrant deux fois, on obtient qu'il existe $A, B \in \mathbb{R}$ tels que : $\forall x \in \mathbb{R}, \ f(x) = Ax + B \text{ donc } f \text{ est affine.}$

2. Soit $x \in]a, b[$, posons $h: t \mapsto \frac{(x-a)(x-b)}{2}f(t) - \frac{(t-a)(t-b)}{2}f(x)$.

On commence par remarquer que $f(a) = \frac{(x-a)(x-b)}{2}f(a) = 0$, $f(b) = \frac{(x-a)(x-b)}{2}f(b) = 0$ et f(x) = 0.

Or, h est continue sur [a,x] et [x,b] et dérivable sur]a,x[et]x,b[. Ainsi, d'après le théorème de Rolle appliqué sur]a,x[et]x,b[, il existe $\alpha_x\in]a,x[$ et $\beta_x\in]x,b[$ tels que $h'(\alpha_x)=0$ et $h'(\beta_x)=0$.

De plus, h' est continue sur $[\alpha_x, \beta_x]$ et dérivable sur $]\alpha_x, \beta_x[$ donc d'après le théorème de Rolle,

il existe
$$\gamma_x \in]\alpha_x, \beta_x[\subset]a, b[$$
 tel que $h''(c_x) = 0$.
Or, $h''(c_x) = \frac{(x-a)(x-b)}{2}f''(c_x) - f(x)$. D'où $\frac{(x-a)(x-b)}{2}f''(c_x) = f(x)$.

Si x = a, ou x = b, pour tout $c \in]a, b[$, on a $f(a) = f(b) = 0 = \frac{(x - a)(x - b)}{2}f(c)$.

3. f est de classe C^2 sur [a,b] donc f'' est continue sur le segment [a,b] donc bornée. Ainsi, il existe $M \in \mathbb{R}$ tel que : $\forall x \in [a, b], |f''(x)| \le M.$

Soit $x \in [a, b]$. D'après la question précédente, il existe $c_x \in]a, b[$ tel que : $f(x) = \frac{(x-a)(x-b)}{2}f''(c_x)$. On a donc:

$$|f(x)| = \left| \frac{(x-a)(x-b)}{2} f''(c_x) \right|$$

$$= \frac{|x-a||x-b|}{2} |f''(c_x)|$$

$$\leq \frac{(x-a)(b-x)}{2} M \operatorname{car} a \leq x \leq b$$

Ainsi, on a prouvé que :

$$\forall x \in [a, b], |f(x)| \le \frac{(x - a)(b - x)}{2} M$$

On a donc également :

$$\forall x \in]a,b], \frac{|f(x)|}{x-a} \le \frac{(b-x)}{2}M \le \frac{b-a}{2}M$$

Donc:

$$\forall x \in]a,b], \ \left| \frac{f(x)}{x-a} \right| \le \frac{b-a}{2}M$$

Comme f est dérivable, le membre de gauche tend vers |f'(a)| lorsque x tend vers a. Ainsi, en passant à la limite, on obtient:

$$|f'(a)| \le \frac{M}{2}(b-a)$$

cice 19. 1. On commence par remarquer que : $\forall x \in [0,1], \frac{1}{x} + a - 1 \in [a, +\infty[$. Ainsi, g est bien définie et est continue sur]0,1[en tant que composée de fonctions qui le sont. Exercice 19.

De plus, $\lim_{x\to 0^+} \frac{1}{x} = +\infty$ et $\lim_{x\to +\infty} f(x) = f(a)$. D'où par composition, $\lim_{x\to 0^+} g(x) = f(a) = g(0)$. Ainsi, g est continue en 0. Finalement : $\forall x \in]0,1[,\frac{1}{x}+a-1\in]a,+\infty[,$ donc g est dérivable sur]0,1[en tant que composée de fonctions qui le sont.

2. D'après la question précédente, g est continue sur [0,1], dérivable sur [0,1] et g(0)=f(a)=g(1). D'après le théorème de Rolle, il existe $x_0 \in]0,1[$ tel que $g'(x_0)=0.$

Posons $c = \frac{1}{x_0} + a - 1$. On a c > a. De plus, $0 = g'(x_0) = \frac{-1}{x_0^2} \times f'\left(\frac{1}{x_0} + a - 1\right)$ d'où $f'(c) = f'\left(\frac{1}{x_0} + a - 1\right) = 0$ ce qui permet de conclure.

Exercice 20 (Règle de l'Hôpital). 1. Posons $h: x \mapsto f(x)(g(b) - g(a)) - g(x)(f(b) - f(a))$.

h est continue sur [a,b] et dérivable sur [a,b] en tant que combinaison linéaire de fonctions qui le sont. De plus, h(a) = f(a)g(b) - g(a)f(b) et h(b) = -f(b)g(a) + g(b)f(a) = h(a). Donc d'après le théorème de Rolle, il existe $c \in]a, b[$ tel que h'(c) = 0. On a alors : f'(c)(g(b) - g(a)) - g'(c)(f(b) - f(a)) = 0 donc f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)) = 0.

2. Supposons que $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = l$. Soit $x \in]x_0, x_0 + \alpha[$. f est continue sur $[x, x_0]$ et dérivable sur $]x, x_0[$ donc d'après la question précédente, il existe $c_x \in]x, x_0[$ tel que $f'(c_x)(g(x) - g(x_0)) = g'(c_x)(f(x) - f(x_0))$. Montrons que $g(x) \neq g(x_0)$.

Par l'absurde, si $g(x) = g(x_0)$ alors d'après le théorème de Rolle (g est continue sur $[x_0, x]$ et dérivable sur $]x_0,x[)$, il existe $\gamma_x\in]x_0,x[$ tel que $g'(\gamma_x)=0$. Absurde au vu de l'hypothèse sur g. Ainsi, $g(x) \neq g(x_0)$ et g' ne s'annule.

D'où $\frac{f(x) + g(x_0)}{g(x) - g(x_0)} = \frac{f'(c_x)}{g'(c_x)}$. Or, $c_x \in [x_0, x]$. Ainsi, par théorème d'encadrement, $\lim_{x \to x_0} c_x = x_0$. D'où par composition, $\lim_{x \to x_0^+} \frac{f'(c_x)}{g'(c_x)} = l$. Donc $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = l$.

On procède de même pour montrer que $\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{g(x)-g(x_0)}=l.$

Ainsi, $\lim_{x\to x_0}\frac{f(x)-f(x_0)}{g(x)-g(x_0)}=l.$

• Posons $f: x \mapsto x - \sin(x)$ et $g: x \mapsto x^3$. For a solution of the first part of the following formula $x \in [-2\pi, 2\pi] = [-$

• Posons $f: x \mapsto \ln(1+x) - x$ et $g: x \mapsto x^2$.

 $f \text{ et } g \text{ dérivable sur }] - \frac{1}{2}, \frac{1}{2} [\text{ et pour tout } x \in] - \frac{1}{2}, \frac{1}{2} [\setminus \{0\}, \ f'(x) = \frac{1}{1+x} - 1 = \frac{-x}{1+x} \text{ et } g'(x) = 2x \neq 0.$ De plus, $\lim_{x \to 0} \frac{-x}{(1+x) \times 2x} = \lim_{x \to 0} \frac{-1}{2(1+x)} = -\frac{1}{2}.$ Ainsi, $\lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} = -\frac{1}{2}.$

Exercice 21. • f est continue sur \mathbb{R}_+^* comme produit de fonctions qui le sont. De plus, $\lim_{x\to 0} f(x) = 0$ par croissance

On peut donc prolonger f en 0 en posant f(0) = 0. On note toujours f le prolongement.

• On sait d"jà que f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* par composition. De plus, f est désormais continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* . Soit $x \in \mathbb{R}_+^*$, $f'(x) = 2x \ln x + x$. Ainsi, $\lim_{x \to 0} f'(x) = 0$ par croissance comparée. Donc d'après le théorème de la limite de la dérivée, f est de classe \mathcal{C}^1 sur \mathbb{R}_+ , et f'(0) = 0 par le théorème précédent.

Exercice 22. • f est \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} et sur \mathbb{R}_{-}^{*} .

• f est C^0 sur $\mathbb R$ si et seulement si $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0)$ si et seulement si 1=c. Ainsi, il faut que c=1 pour que f soit continue. On suppose cette condition satisfaite dans la suite.

• On a:

$$\forall x \in \mathbb{R}_{-}^*, \ f'(x) = e^x \quad \text{ et } \quad \forall x \in \mathbb{R}_{+}^*, \ f'(x) = 2ax + b.$$

f est continue sur \mathbb{R} dérivable sur \mathbb{R}^* et on a $\lim_{x\to 0^-} f'(x) = 1$ et $\lim_{x\to 0^+} f'(x) = b$. Ainsi, d'après le théorème de la limite de la dérivée, si b=1 alors f sera \mathcal{C}^1 sur \mathbb{R} et f'(0)=1. On suppose cette condition satisfaite.

• On a:

$$\forall x \in \mathbb{R}_{-}^{*}, \ f''(x) = e^{x} \quad \text{ et } \quad \forall x \in \mathbb{R}_{+}^{*}, \ f''(x) = 2a.$$

f' est continue sur \mathbb{R} dérivable sur \mathbb{R}^* et on a $\lim_{x\to 0^-} f''(x) = 1$ et $\lim_{x\to 0^+} f''(x) = 2a$. Ainsi, d'après le théorème de la limite de la dérivée, si 2a=1 alors f' sera \mathcal{C}^1 sur \mathbb{R} donc f sera de classe \mathcal{C}^2 sur \mathbb{R} et f''(0)=1. On suppose cette condition satisfaite.

On peut donc conclure que si $a = \frac{1}{2}$, b = 1 et c = 1 alors f est de classe C^2 .

En revanche, quelque soit les valeurs de $a,b,c\in\mathbb{R},$ on a :

$$\forall x \in \mathbb{R}_{+}^{*}, f'''(x) = e^{x}$$
 et $\forall x \in \mathbb{R}_{+}^{*}, f'''(x) = 0$.

Or, $\lim_{x\to 0^-} f'''(x) = 1$ alors que $\lim_{x\to 0^+} f'''(x) = 0$ ainsi, il n'existe aucune valeur de a, b et c telle que la fonction soit \mathcal{C}^3 .

Exercice 23. On a $\lim_{x\to 0} -\frac{1}{x^2} = -\infty$ et $\lim_{X\to -\infty} e^X = 0$ donc par composition, $\lim_{x\to 0} f(x) = 0$.

Ainsi, f est prolongeable par continuité en 0 en posant f(0) = 0.

On note encore f le prolongement.

f est alors continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* .

De plus, on a : $\forall x \in \mathbb{R}_+^*$, $f'(x) = \frac{2}{x^3} e^{-1/x^2} = 2 \frac{\left(\frac{1}{x^2}\right)^{3/2}}{e^{1/x^2}}$.

Or, $\lim_{x\to 0}\frac{1}{x^2}=+\infty$ et $\lim_{x\to +\infty}\frac{X^{3/2}}{e^X}=0$ par croissances comparées. Ainsi, $\lim_{x\to 0}f'(x)=0$ donc d'après le théorème de la limite de la dérivée, f est dérivable en 0 et on a f'(0)=0.

Exercice 24. • Résolvons $xy' - (1+x)y = -x^2$ sur $I_1 = \mathbb{R}_+^*$ et $I_2 = \mathbb{R}_-^*$. Soit $k \in \{1, 2\}$.

- Sur I_k , (E) équivaut à $y' \frac{(1+x)}{x}y = -x$.
- On résout (E_0) $y' \left(1 + \frac{1}{x}\right)y = 0$ sur I_k . Une primitive sur I_k de $x \mapsto \left(1 + \frac{1}{x}\right)$ est $x \mapsto x + \ln(|x|)$,

donc les solutions sur I_k de (E_0) sont : $\begin{matrix} I_k & \to & \mathbb{R} \\ x & \mapsto & \lambda e^{x+\ln|x|} = \lambda |x|e^x \end{matrix}$, $\lambda \in \mathbb{R}$.

Comme x ne change pas de change de signe sur I_k , quitte à changer λ en $-\lambda$, on peut conclure que les solutions sur I_k de (E_0) sont $\begin{cases} I_k & \to & \mathbb{R} \\ x & \mapsto & \lambda x e^x \end{cases}$, $\lambda \in \mathbb{R}$.

- La fonction $\begin{matrix} I_k & \to & \mathbb{R} \\ x & \mapsto & x \end{matrix}$ est solution particulière de $y' \left(1 + \frac{1}{x}\right)y = -x$.
- Ainsi, les solutions de $y' \left(1 + \frac{1}{x}\right)y$ sur I_k sont :

$$\begin{array}{ccc} I_k & \to & \mathbb{R} \\ x & \mapsto & x + \lambda x e^x & , \lambda \in \mathbb{R}. \end{array}$$

 $\bullet\,$ Il reste à étudier s'il existe une solution sur $\mathbb{R}.$

 $y \text{ solution sur } \mathbb{R} \text{ de } (E) \iff \begin{cases} \exists \lambda_1 \in \mathbb{R}, \forall x \in \mathbb{R}_+^*, \ y(x) = x + \lambda_1 x e^x \\ \exists \lambda_2 \in \mathbb{R}, \forall x \in \mathbb{R}_+^*, \ y(x) = x + \lambda_2 x e^x \\ y(0) = 0 \\ y \text{ est continue et dérivable en } 0 \end{cases}$

Continuité en 0 :

On a $\lim_{x\to 0^-} y(x) = \lim_{x\to 0^-} (x + \lambda_1 x e^x) = 0 = y(0)$ et $\lim_{x\to 0^+} y(x) = \lim_{x\to 0^+} (x + \lambda_2 x e^x) = 0 = y(0)$. Ainsi, y est continue en 0. (aucune condition sur λ_1 ou λ_2).

Dérivabilité en 0 :

y est continue sur \mathbb{R} et dérivable sur \mathbb{R}^* . De plus : $\forall x \in \mathbb{R}^*_-, \ f'(x) = 1 + \lambda_1 e^x (1+x)$ donc $\lim_{x \to 0^-} f'(x) = 1 + \lambda_1$.

De même, on a : $\forall x \in \mathbb{R}_{+}^{*}$, $f'(x) = 1 + \lambda_{2}e^{x}(1+x)$ donc $\lim_{x \to 0+} f'(x) = 1 + \lambda_{2}$.

Si $\lambda_1 = \lambda_2$, f' tend vers $1 + \lambda_1$ lorsque x tend vers 0 donc d'après le théorème de la limite de la dérivée, f est dérivable en 0 et on a $f'(0) = 1 + \lambda_1$.

Finalement, l'équation (E) admet pour solutions sur \mathbb{R} les fonctions :

$$y: \quad \mathbb{R} \quad \rightarrow \quad \mathbb{R}$$
$$\quad x \quad \mapsto \quad x + \lambda x e^x \qquad , \lambda \in \mathbb{R}$$

• Commençons par résoudre $xy' - 2y = (x-1)(x+1)^3$ sur $I_1 = \mathbb{R}_+^*$ et $I_2 = \mathbb{R}_+^*$. Exercice 25. Soit $k \in \{1, 2\}$

- On sait que : $\forall x \in I_k, x \neq 0$. Ainsi, sur cet intervalle (E) équivaut à $y' \frac{2}{x}y = \frac{(x-1)(x+1)^3}{r}$.
- On résout $y' \frac{2}{r}y = 0$ sur I_k . Une primitive sur I_k de $x \mapsto -\frac{2}{x}$ est $x \mapsto -2 \ln |x|$, donc les solutions sur I_k de $y' - \frac{2}{x}y = 0$ sont $\begin{cases} I_k \to \mathbb{R} \\ x \mapsto \lambda e^{2\ln|x|} = \lambda |x|^2 = \lambda x^2 \end{cases}$, $\lambda \in \mathbb{R}$.
- D'après la méthode de variation de la constante, on cherche une solution particulière de $y' \frac{2}{r}y =$ $\frac{(x-1)(x+1)^3}{x} \text{ de la forme} \quad \begin{array}{ccc} y: & I_k & \to & \mathbb{R} \\ & x & \mapsto & \lambda(x)x^2 \end{array} \text{ où } \lambda \text{ est dérivable.}$

$$y' - \frac{2}{x}y = \frac{(x-1)(x+1)^3}{x} \iff \forall x \in I_k, \lambda'(x)x^2 = \frac{(x-1)(x+1)^3}{x}$$

$$\iff \forall x \in I_k, \ \lambda'(x) = \frac{(x-1)(x+1)^3}{x^3}$$

$$\iff \forall x \in I_k, \ \lambda'(x) = \frac{(x-1)(x^3+3x^2+3x+1)}{x^3}$$

$$\iff \forall x \in I_k, \ \lambda'(x) = \frac{x^4+2x^3-2x-1}{x^3}$$

$$\iff \forall x \in I_k, \ \lambda'(x) = x+2-\frac{2}{x^2}-\frac{1}{x^3}$$

Or, $x \mapsto \frac{x^2}{2} + 2x + \frac{2}{x} + \frac{1}{2x^2}$ est une primitive de $x \mapsto x + 2 - \frac{2}{x} - \frac{1}{x^3}$. Donc $\begin{array}{ccc} I_k & \to & \mathbb{R} \\ x & \mapsto & \frac{x^4}{2} + 2x^3 + 2x + \frac{1}{2} \end{array} \text{ est solution particulière de } y' - \frac{2}{x}y = \frac{(x-1)(x+1)^3}{x}.$

• Ainsi, les solutions de $y' - \frac{2}{x}y = \frac{(x-1)(x+1)^3}{x}$ sur I_k sont :

$$I_k \rightarrow \mathbb{R}$$

$$x \mapsto \lambda x^2 + \frac{x^4}{2} + 2x^3 + 2x + \frac{1}{2} \quad , \lambda \in \mathbb{R}.$$

• Il reste à étudier s'il existe une solution sur \mathbb{R} .

$$y \text{ solution sur } \mathbb{R} \text{ de } (E) \iff \begin{cases} \exists \lambda_1 \in \mathbb{R}, \forall x \in \mathbb{R}_-^*, \ y(x) = \lambda_1 x^2 + \frac{x^4}{2} + 2x^3 + 2x + \frac{1}{2} \\ \exists \lambda_2 \in \mathbb{R}, \forall x \in \mathbb{R}_+^*, \ y(x) = \lambda_2 x^2 + \frac{x^4}{2} + 2x^3 + 2x + \frac{1}{2} \\ y(0) = \frac{1}{2} \\ y \text{ est continue et dérivable en } 0 \end{cases}$$

$$y: \mathbb{R} \to \mathbb{R}$$
 Soit $\lambda_1, \lambda_2 \in \mathbb{R}$ et
$$x \mapsto \begin{cases} \lambda_1 x^2 + \frac{x^4}{2} + 2x^3 + 2x + \frac{1}{2} & \text{si } x < 0 \\ \lambda_2 x^2 + \frac{x^4}{2} + 2x^3 + 2x + \frac{1}{2} & \text{si } x > 0 \\ \frac{1}{2} & \text{si } x = 0 \end{cases}.$$

Continuité en
$$0$$
:
On a $\lim_{x\to 0^-} y(x) = \frac{1}{2} = y(0)$ et $\lim_{x\to 0^+} y(x) = \frac{1}{2} = y(0)$.
Ainsi, y est continue en 0 (aucune condition sur λ_1 ou λ_2).

<u>Dérivabilité en 0 :</u>

y est continue sur \mathbb{R} et dérivable sur \mathbb{R}^* . De plus : $\forall x \in \mathbb{R}^*$, $f'(x) = 2\lambda_1 x + 2x^3 + 6x^2 + 2$ donc $\lim_{x \to 0^-} f'(x) = 2\lambda_1 x + 2x^3 + 6x^2 + 2$

De même, on a : $\forall x \in \mathbb{R}_+^*$, $f'(x) = 2\lambda_2 x + 2x^3 + 6x^2 + 2$ donc $\lim_{x \to 0+} f'(x) = 2$.

f' tend vers 2 lorsque x tend vers 0 donc d'après le théorème de la limite de la dérivée, f est dérivable en 0 et on a f'(0) = 2.

Finalement, l'équation (E) admet pour solutions sur \mathbb{R} les fonctions :

$$y: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \lambda_1 x^2 + \frac{x^4}{2} + 2x^3 + 2x + \frac{1}{2} & \text{si } x < 0 \\ \lambda_2 x^2 + \frac{x^4}{2} + 2x^3 + 2x + \frac{1}{2} & \text{si } x \ge 0 \end{cases}, \lambda_1, \lambda_2 \in \mathbb{R}$$

• Résolvons (E) $xy' - 2y = x^4$ sur $I_1 = \mathbb{R}^*_-$ et $I_2 = \mathbb{R}^*_-$ Exercice 26. Soit $k \in \{1, 2\}$.

- On sait que : $\forall x \in I_k, x \neq 0$. Ainsi, sur cet intervalle (E) équivaut à $y' \frac{2}{x}y = x^3$.
- On résout (E_0) $y' \frac{2}{x}y = 0$ sur I_k . Une primitive sur I_k de $x \mapsto \frac{2}{x}$ est $x \mapsto 2 \ln |x|$, donc les solutions sur I_k de (E_0) sont $\begin{cases} I_k \to \mathbb{R} \\ x \mapsto \lambda e^{2\ln|x|} = \lambda |x|^2 = \lambda x^2 \end{cases}$, $\lambda \in \mathbb{R}$.
- D'après la méthode de variation de la constante, on cherche une solution particulière de $y' \frac{2}{x}y = x^3$ de la forme $y: I_k \to \mathbb{R}$ $x \mapsto \lambda(x)x^2$ où λ est dérivable.

$$y' - \frac{2}{x}y = x^3 \iff \forall x \in I_k, \lambda'(x)x^2 = x^3$$

 $\iff \forall x \in I_k, \lambda'(x) = x$

Or, $x \mapsto \frac{x^2}{2}$ est une primitive de $x \mapsto x$.

Donc $I_k \stackrel{\sim}{\to} \mathbb{R}$ $x \mapsto \frac{x^4}{2}$ est solution particulière de $y' - \frac{2}{x}y = x^3$.

• Ainsi, les solutions de $xy' - 2y = x^4$ sur I_k sont :

$$I_k \to \mathbb{R}$$
 $x \mapsto \frac{x^4}{2} + \lambda x^2 , \lambda \in \mathbb{R}.$

• Il reste à étudier s'il existe une solution sur \mathbb{R} .

$$y \text{ solution sur } \mathbb{R} \text{ de } (E) \iff \begin{cases} \exists \lambda_1 \in \mathbb{R}, \forall x \in \mathbb{R}_-^*, \ y(x) = \lambda_1 x^2 + \frac{x^4}{2} \\ \exists \lambda_2 \in \mathbb{R}, \forall x \in \mathbb{R}_+^*, \ y(x) = \lambda_2 x^2 + \frac{x^4}{2} \\ y(0) = 0 \\ y \text{ est continue et dérivable en } 0 \end{cases}$$

Continuité en 0 :

On a $\lim_{x\to 0^-} y(x) = 0 = y(0)$ et $\lim_{x\to 0^+} y(x) = 0 = y(0)$.

Ainsi, y est continue en 0. (aucune condition sur λ_1 ou λ_2).

<u>Dérivabilité en 0 :</u>

y est continue sur \mathbb{R} et dérivable sur \mathbb{R}^* . De plus : $\forall x \in \mathbb{R}^*_-, \ f'(x) = 2\lambda_1 x + 2x^3$ donc $\lim_{x \to 0^-} f'(x) = 0$.

De même, on a : $\forall x \in \mathbb{R}_+^*$, $f'(x) = 2\lambda_2 x + 2x^3$ donc $\lim_{x \to 0+} f'(x) = 0$.

f' tend vers 0 lorsque x tend vers 0 donc d'après le théorème de la limite de la dérivée, f est dérivable en 0 et

Finalement, l'équation (E) admet pour solutions sur \mathbb{R} les fonctions :

$$y: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \lambda_1 x^2 + \frac{x^4}{2} & \text{si } x < 0 \\ \lambda_2 x^2 + \frac{x^4}{2} & \text{si } x \ge 0 \end{cases}, \lambda_1, \lambda_2 \in \mathbb{R}$$

• Posons $I_1 =]-\infty, 0[, I_2 =]0, 1[$ et $I_3 =]1, +\infty[$. Exercice 27.

Soit $k \in \{1, 2, 3\}$. Ainsi, x(x-1)y' + (2x-1)y = 1 est équivalente sur I_k à $y' + \frac{(2x-1)}{x(x-1)}y = \frac{1}{x(x-1)}$

• On résout $y' + \frac{(2x-1)}{x(x-1)}y = 0$ sur I_k .

Une primitive sur]0,1[de $x \mapsto \frac{(2x-1)}{x(x-1)}$ est $x \mapsto \ln |x(x-1)|$.

Les solutions de $y' + \frac{(2x-1)}{x(x-1)}y = 0$ sont :

$$I_k \to \mathbb{R}$$
 $x \mapsto \lambda e^{-\ln|x(1-x)|} = \frac{\lambda}{|x(1-x)|}, \lambda \in \mathbb{R}.$

Comme $x \mapsto x(1-x)$ garde un signe constant sur I_k et quitte à remplacer λ en $-\lambda$, les solutions sur I_k de (E)

$$\begin{array}{ccc} I_k & \to & \mathbb{R} \\ x & \mapsto & \frac{\lambda}{x(1-x)} \end{array}, \ \lambda \in \mathbb{R}.$$

• D'après la méthode de variation de la constante, on cherche une solution particulière de
$$y' + \frac{(2x-1)}{x(x-1)}y = \frac{1}{x(x-1)} \text{ de la forme} \qquad \begin{array}{c} y: \quad I_k \quad \to \quad \mathbb{R} \\ x \quad \mapsto \quad \frac{\lambda(x)}{x(1-x)} \end{array} \text{ où λ est dérivable.}$$

$$y' + \frac{(2x-1)}{x(x-1)}y = \frac{1}{x(x-1)} \iff \forall x \in I_k, \frac{\lambda'(x)}{x(1-x)} = \frac{1}{x(x-1)}$$
$$\iff \forall x \in I_k, \ \lambda'(x) = -1$$

Or, $x \mapsto -x$ est une primitive sur I_k de $x \mapsto -1$.

Or, $x \mapsto -x$ est une primate x = x. $I_k \to \mathbb{R}$ Donc $x \mapsto -\frac{x}{x(1-x)} = \frac{1}{x-1}$ est solution particulière sur I_k de $y' + \frac{(2x-1)}{x(x-1)}y = \frac{1}{x(x-1)}$.

• Ainsi, les solutions de $y' + \frac{(2x-1)}{x(x-1)}y = \frac{1}{x(x-1)}$ sur I_k sont :

$$I_k \to \mathbb{R}$$
 $x \mapsto \frac{\lambda - x}{x(1-x)}$, $\lambda \in \mathbb{R}$.

• Il reste à étudier s'il existe une solution sur \mathbb{R} .

$$y \text{ solution sur } \mathbb{R} \text{ de } (E) \iff \begin{cases} \exists \lambda_1 \in \mathbb{R}, \forall x \in]-\infty, 0[, \ y(x) = \frac{\lambda_2 - x}{x(1-x)} \\ \exists \lambda_2 \in \mathbb{R}, \forall x \in]0, 1[, \ y(x) = \frac{\lambda_1 - x}{x(1-x)} \\ \exists \lambda_3 \in \mathbb{R}, \forall x \in]1, +\infty[, \ y(x) = \frac{\lambda_3 - x}{x(1-x)} \\ y(0) = -1 \\ y(1) = 1 \\ y \text{ est continue et dérivable en } 0 \text{ et en } 1 \end{cases}$$

$$y: \mathbb{R} \to \mathbb{R}$$
 Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ et
$$x \mapsto \begin{cases} \frac{\lambda_1 - x}{x(1 - x)} & \text{si } x < 0 \\ \frac{\lambda_2 - x}{x(1 - x)} & \text{si } x \in]0, 1[\\ \frac{\lambda_3 - x}{x(1 - x)} & \text{si } x > 1 \\ -1 & \text{si } x = 01 & \text{si } x = 1 \end{cases}$$

Continuité en 0 :

Continuité en
$$0$$
:
On a $\lim_{x\to 0} \lambda_1 - x = \lambda_1$ et $\lim_{x\to 0} x(1-x) = 0$.
Si $\lambda_1 \neq 0$ alors $\lim_{x\to 0^-} y(x) = \pm \infty$.
Si $\lambda_1 = 0$, on a : $\forall x \in]-\infty, 0[, \ y(x) = -\frac{1}{1-x} \text{ donc } \lim_{x\to 0^-} y(x) = -1 = y(0)$.
De même, $\lim_{x\to 0^+} y(x) = \begin{cases} -1 = y(0) & \text{si } \lambda_2 = 0 \\ \pm \infty & \text{si } \lambda_2 \neq 0 \end{cases}$.
Ainsi, y est continue en 0 si et seulement si $\lambda_1 = \lambda_2 = 0$.
On considère désermais que $\lambda_1 = \lambda_2 = 0$.

De même,
$$\lim_{x\to 0^+} y(x) = \begin{cases} -1 = y(0) & \text{si } \lambda_2 = 0 \\ \pm \infty & \text{si } \lambda_2 \neq 0 \end{cases}$$

On considère désormais que $\lambda_1 = \lambda_2 = 0$

Continuité en 1 :

On a $\lim_{x\to 1^-} y(x) = -\infty$. Ainsi, y n'est pas continue en 1.

Finalement, l'équation (E) n'admet donc aucune solution sur \mathbb{R} .

Exercice 28. Soit $k \in \mathbb{N}^*$. On pose f = ln. f est continue sur [k, k+1], dérivable sur]k, k+1[. Et : $\forall t \in]k, k+1[$, $f'(t) = \frac{1}{t}$. Ainsi : $\forall t \in]k, k+1[$, $\frac{1}{k+1} \leq f'(t) \leq \frac{1}{k}$. Ainsi, d'après l'inégalité des accroissements

finis, on a:

$$\frac{1}{k+1} \le f(k+1) - f(k) \le \frac{1}{k}$$

D'où:

$$\frac{1}{k+1} \le \ln\left(\frac{k+1}{k}\right) \le \frac{1}{k}.$$

Exercice 29. 1. Soit $x \in \mathbb{R}_+^*$. On commence par remarquer que

$$\left(\frac{1+x}{x}\right)^x \le e \le \left(\frac{1+x}{x}\right)^{x+1} \iff x \ln\left(\frac{1+x}{x}\right) \le 1 \le (x+1) \ln\left(\frac{1+x}{x}\right)$$

ln est continue sur [x, x + 1], dérivable sur]x, x + 1[. Et : $\forall t \in]x, x + 1[$, $\ln'(t) = \frac{1}{t}$.

Ainsi : $\forall t \in]x, x + 1[, \frac{1}{r+1} \le \ln'(t) \le \frac{1}{z}.$

Ainsi, d'après l'inégalité des accroissements finis, on a : $\frac{1}{x+1} \le \ln(x+1) - \ln(x) \le \frac{1}{x}$

Donc:

$$\frac{1}{x+1} \le \ln\left(\frac{x+1}{x}\right) \le \frac{1}{x}$$

Ainsi, on a : $x \ln \left(\frac{1+x}{x} \right) \le 1 \le (x+1) \ln \left(\frac{1+x}{x} \right)$ donc par équivalence, on obtient que :

$$\forall x \in \mathbb{R}_+^*, \ \left(\frac{1+x}{x}\right)^x \le e \le \left(\frac{1+x}{x}\right)^{x+1}$$

- 2. Montrons par récurrence que : $\forall n \in \mathbb{N}^*, \ \frac{(n+1)^n}{n!} \leq e^n \leq \frac{(n+1)^{n+1}}{n!}.$
 - Pour $n=1,\,2\leq e\leq 4$ donc la propriété est vraid
 - Soit $n \in \mathbb{N}^*$, supposons $\frac{(n+1)^n}{n!} \le e^n \le \frac{(n+1)^{n+1}}{n!}$. (1) En utilisant la question précédente pour x = n+1, on a :

$$\left(\frac{2+n}{n+1}\right)^{n+1} \le e \le \left(\frac{2+n}{n+1}\right)^{n+2} \tag{2}$$

Ainsi, en multipliant (1) et (2), on obtient:

$$\frac{(2+n)^{n+1}}{(n+1)n!} \le e^{n+1} \le \frac{(2+n)^{n+2}}{(n+1)n!}$$

Donc:

$$\frac{(2+n)^{n+1}}{(n+1)!} \le e^{n+1} \le \frac{(2+n)^{n+2}}{(n+1)!}$$

ce qui prouve la propriété au rang n+1

• Ainsi, on a : $\forall n \in \mathbb{N}^*, \frac{(n+1)^n}{n!} \le e^n \le \frac{(n+1)^{n+1}}{n!}$

Exercice 30. 1. Soit $x \in]0, +\infty[$. On pose : $f: t \mapsto \ln(1+t)$. f est continue sur [0, x], dérivable sur]0, x[. Et on a : $\forall t \in]0, x[, f'(t) = \frac{1}{1+t}$. Ainsi : $\forall t \in]0, x[, \frac{1}{1+x} \leq f'(t) \leq 1$. Ainsi, d'après l'inégalité des accroissements finis, on a:

$$\frac{x}{x+1} \le f(x) - f(0) \le x$$

D'où:

$$\frac{x}{x+1} \le \ln(1+x) \le x$$

 $\operatorname{car} f(0) = \ln(1) = 0.$

Soit $x \in]-1,0[$. On pose toujours : $f:t\mapsto \ln(1+t)$. f est continue sur [x,0], dérivable sur]x,0[. Et on a : $\forall t\in]x,0[$, $f'(t)=\frac{1}{1+t}$. Ainsi : $\forall t\in]x,0[$, $1\leq f'(t)\leq \frac{1}{1+x}$.

Ainsi, d'après l'inégalité des accroissements finis, on a :

$$(0-x) \le f(0) - f(x) \le \frac{(0-x)}{x+1}$$

D'où:

$$-x \le -\ln(1+x) \le \frac{-x}{x+1}$$

En multipliant par -1 et en changeant le sens des inégalités, on obtient le résultat souhaité.

Si x = 0, le résultat est immédiat car tous les termes sont nuls.

2. Soit $(x,y) \in [0,1[^2$ tels que x < y. arcsin est continue sur [x,y], dérivable sur]x,y[. Et $: \forall t \in]x,y[$, $\arcsin'(t) = \frac{1}{\sqrt{1-t^2}}$. Ainsi $: \forall t \in]x,y[$, $\frac{1}{\sqrt{1-x^2}} \le \arcsin'(t) \le \frac{1}{\sqrt{1-y^2}}$. Ainsi, d'après l'inégalité des accroissements finis, on a

$$\frac{y-x}{\sqrt{1-x^2}} \le \arcsin(y) - \arcsin(x) \le \frac{y-x}{\sqrt{1-y^2}}$$

Exercice 31. Par définition de la limite, il existe A > 0 tel que :

$$\forall x \ge A, |f'(x) - l| \le \frac{\epsilon}{2}.$$

Soit x > A. Posons $g: t \mapsto f(t) - lt$. g est continue sur [A, x], dérivable sur [A, x]. De plus $: \forall t \in]x, A[, |g'(t)| = f(x)$ $|f'(t)-l|\leq \frac{\epsilon}{2}.$ Ainsi, d'après l'inégalité des accroissements finis on a :

$$|g(x) - g(A)| \le \frac{\epsilon}{2}|x - A|.$$

Ainsi:

$$|f(x) - lx - f(A) + lA| \le \frac{\epsilon}{2}(x - A).$$

Ainsi:

$$|f(x) - lx| \le |f(x) - lx - f(A) + lA| + |f(A) - lA| \le \frac{\epsilon}{2}(x - A) + |f(A) - lA|.$$

On a alors:

$$\left| \frac{f(x)}{x} - l \right| = \left| \frac{f(x) - lx}{x} \right| \le \frac{\epsilon}{2} \frac{(x - A)}{x} + \frac{|f(A) - lA|}{x}$$

Ainsi:

$$\forall x > A, \ \left| \frac{f(x)}{x} - l \right| \le \frac{\epsilon}{2} + \frac{|f(A) - lA|}{x}.$$

Or $\lim_{x \to +\infty} \frac{|f(A) - A|}{x} = 0$ donc il existe $B \ge 0$ tel que :

$$\forall x \ge B, \ \frac{|f(A) - A|}{x} \le \frac{\epsilon}{2}.$$

Soit $x \ge \max(A, B)$, on a alors :

$$\left| \frac{f(x)}{x} - l \right| \le \epsilon.$$

Ainsi, par définition de la limite $\lim_{x \to +\infty} \frac{f(x)}{x} = l$.

Exercice 32. 1. Posons $f: x \mapsto 2 + \frac{1}{2}\sin x$.

 $u_0 \in \mathbb{R}$ donc $u_1 \in \left[\frac{3}{2}, \frac{5}{2}\right]$ car sin à valeurs dans [-1, 1]. De plus, $\left[\frac{3}{2}, \frac{5}{2}\right]$ est stable par f car sin à valeurs dans [-1, 1].

Posons $g: x \mapsto f(x) - x$. $g\left(\frac{3}{2}\right) = f\left(\frac{3}{2}\right) - \frac{3}{2} \ge 0$ et $g\left(\frac{5}{2}\right) = f\left(\frac{5}{2}\right) - \frac{5}{2} \le 0$. De plus, g est continue sur

 $\left[\frac{3}{2}, \frac{5}{2}\right]$ donc d'après le théorème des valeurs intermédiaires, il existe $c \in \left[\frac{3}{2}, \frac{5}{2}\right]$ tel que g(c) = 0. Donc f(c) = c.

Ainsi, f admet au moins un point fixe dans $\left[\frac{3}{2}, \frac{5}{2}\right]$.

Enfin, f est dérivable sur $\left[\frac{3}{2}, \frac{5}{2}\right]$ et on a :

$$\forall x \in \left[\frac{3}{2}, \frac{5}{2}\right], |f'(x)| = \left|\frac{1}{2}\cos(x) \le \frac{1}{2}.$$

Ainsi, d'après l'inégalité des accroissements finis, f est $\frac{1}{2}$ lipschitzienne donc contractante.

Ainsi, le point fixe de f sur $\left[\frac{3}{2}, \frac{5}{2}\right]$ est unique et la suite (u_n) converge vers c.

2. Posons $f: x \mapsto \cos(x)$.

 $u_0 \in \mathbb{R}$ donc $u_1 \in [-1, 1]$ car cos à valeurs dans [-1, 1]. De plus, [-1, 1] est stable par f car cos à valeurs dans [-1, 1].

Posons $g: x \mapsto f(x) - x$. $g(-1) = f(-1) + 1 \ge 0$ et $g(1) = f(1) - 1 \le 0$. De plus, g est continue sur [-1, 1] donc d'après le théorème des valeurs intermédiaires, il existe $c \in [-1, 1]$ tel que g(c) = 0. Donc f(c) = c. Ainsi, f admet au moins un point fixe dans [-1, 1].

Enfin, f est dérivable sur [-1,1] et pour tout $x \in [-1,1]$, $|f'(x)| = |-\sin(x)| \le \sin(1)$. Ainsi, d'après l'inégalité des accroissements finis, f est $\sin(1) < 1$ lipschitzienne donc contractante.

Ainsi, le point fixe de f sur [-1,1] est unique et la suite (u_n) converge vers c.

Exercice 33. Posons $f: x \mapsto e^{-x}$.

f est décroissante sur \mathbb{R} . Ainsi, $\forall x \in \left[\frac{1}{e}, 1\right]$, $f(-1) \leq f(x) \leq f(0)$ donc : $\forall x \in \left[\frac{1}{e}, 1\right]$, $e^{-1} \leq f(x) \leq 1$. Ainsi, $f(x) \in \left[\frac{1}{e}, 1\right]$. Donc $\left[\frac{1}{e}, 1\right]$ est stable par f. De plus, $u_0 \in \left[\frac{1}{e}, 1\right]$. Ainsi, par récurrence, on $a : \forall n \in \mathbb{N}, \ u_n \in \left[\frac{1}{e}, 1\right]$. Posons $g : x \mapsto f(x) - x$. $g\left(\frac{1}{e}\right) = f\left(\frac{1}{e}\right) - \frac{1}{e} \geq 0$ et $g(1) = f(1) - 1 \leq 0$. De plus, g est continue sur $\left[\frac{1}{e}, 1\right]$ donc d'après le théorème des valeurs intermédiaires, il existe $c \in \left[\frac{1}{e}, 1\right]$ tel que g(c) = 0. Donc f(c) = c. Ainsi, f admet au

moins un point fixe dans $\left[\frac{1}{e}, 1\right]$.

De plus, f est dérivable sur $\left[\frac{1}{e},1\right]$ et : $\forall x \in \left[\frac{1}{e},1\right], |f'(x)| = |-e^{-x}| = e^{-x} \le e^{-1/e}.$

Ainsi, d'après l'inégalité des accroissements finis, on en déduit que f est $e^{-1/e}$ -lipschitzienne donc contractante.

Ainsi, le point fixe de f dans $\left[\frac{1}{e},1\right]$ est unique et (u_n) converge vers ce point fixe.

De plus toujours d'après l'inégalité des accroissements finis, on a :

$$\forall (x,y) \in \left[\frac{1}{e}, 1\right], |f(x) - f(y)| \le e^{-1/e}|x - y|.$$

Ainsi, on a : $\forall n \in \mathbb{N}, |u_{n+1} - l| \le e^{-1/e} |u_n - l|.$

Par récurrence, on obtient donc : $\forall n \in \mathbb{N}, |u_n - l| \le e^{-n/e}|u_0 - l|$. Or, $u_0 = 1$ et $l \in \left[\frac{1}{e}, 1\right]$. Ainsi, $|u_0 - l| \le (1 - \frac{1}{e})$.

Ainsi, il suffit de calculer u_N pour $N \in \mathbb{N}$ tel que $e^{-N/e}(1-\frac{1}{e}) \leq 10^{-3}$. Or,

$$\begin{split} e^{-N/e}(1-\frac{1}{e}) & \leq 10^{-3} & \iff & e^{-N/e} \leq \frac{1}{10^3(1-e^{-1})} \\ & \iff & -\frac{N}{e} \leq \ln\left(\frac{1}{10^3(1-e^{-1})}\right) \\ & \iff & \frac{N}{e} \geq \ln\left(10^3(1-e^{-1})\right) \\ & \iff & N \geq e\ln\left(10^3(1-e^{-1})\right) \end{split}$$

 $N = |e \ln (10^3 (1 - e^{-1}))| + 1$ convient donc.

Exercice 34. 1. Soit x > 0, $-1 \le \sin(x) \le 1$ d'où $1 - \frac{1}{2} \le f(x) \le 1 + \frac{1}{2} = \frac{3}{2}$. Ainsi : $\forall x > 0$, $\frac{1}{2} \le f(x) \le \frac{3}{2}$. Donc : $\forall x > 0$, f(x) > 0.

L'intervalle \mathbb{R}_+^* est donc stable par f et $u_0 \in \mathbb{R}_+^*$ donc $(u_n)_{n \in \mathbb{N}}$ est bien définie et à valeurs dans \mathbb{R}_+^* (preuve par récurrence, voir cours sur les suites).

- 2. Soit $n \ge 2$, on a $u_n = f(u_{n-1})$ et comme $n 1 \ge 1$, $u_{n-1} = f(u_{n-2})$. Or, $u_{n-2} \in \mathbb{R}_+^*$. Ainsi, $f(u_{n-2}) \in \left[1 - \frac{1}{2}, 1 + \frac{1}{2}\right] = \left[\frac{1}{2}, \frac{3}{2}\right]$. Ainsi, $\frac{1}{u_{n-1}} \in \left[\frac{2}{3}, 2\right] \subset [0, \pi]$ donc $\sin\left(\frac{1}{u_{n-1}}\right) \ge 0$. D'où $1 \le 1 + \frac{1}{2}\sin\left(\frac{1}{u_{n-1}}\right) \le 1 + \frac{1}{2} = \frac{3}{2}$. Donc $u_n \in \left[1, \frac{3}{2}\right]$.
- 3. Posons $g: x \mapsto f(x) x$. $g\left(\frac{3}{2}\right) = f\left(\frac{3}{2}\right) \frac{3}{2} \le 0$ et $g(1) = f(1) 1 \ge 0$. De plus, g est continue sur $\left[1, \frac{3}{2}\right]$ donc d'après le théorème des valeurs intermédiaires, il existe $c \in \left[1, \frac{3}{2}\right]$ tel que g(c) = 0. Donc f(c) = c. Ainsi, f admet au moins un point fixe dans $\left[1, \frac{3}{2}\right]$.

De plus, on a : $\forall x \in [1, \frac{3}{2}], |f'(x)| = \frac{1}{2} \times \left| -\frac{1}{x^2} \cos\left(\frac{1}{x}\right) \right|.$

Ainsi, on a : $\forall x \in \left[1, \frac{3}{2}\right]$, $|f'(x)| = \frac{1}{2} \left|\frac{1}{x^2}\right| \times \left|\cos\left(\frac{1}{x}\right)\right| \le \frac{1}{2}$. Ainsi, d'après l'inégalité des accroissements finie, f est contractante. Ainsi, f admet un unique point fixe sur $\left[1, \frac{3}{2}\right]$.

4. D'après la question précédente, on a prouvé que f est $\frac{1}{2}$ lipschitzienne donc contractante. Ainsi, $(u_n)_{n\in\mathbb{N}}$ converge vers l'unique point fixe de f.