Page 85: 2, 7, 9, 13, 16, 32

Exercise 2

Suppose that $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$ are cyclic groups of orders 6, 8, and 20, respectively. Find all generators of $\langle a \rangle$, $\langle b \rangle$, and $\langle c \rangle$.

$\langle a \rangle$	a^{1}, a^{5}
$\langle b \rangle$	b^1, b^3, b^5, b^7
$\langle c \rangle$	$c^{1}, c^{3}, c^{7}, c^{9}, c^{11}, c^{13}, c^{17}, c^{19}$

Exercise 7

Find an example of a noncyclic group, all of whose proper subgroups are cyclic.

$$U(8) = \{1, 3, 5, 7\}$$
 works.

$$\langle 1 \rangle = \{1\}, \langle 3 \rangle = \{3, 1\}, \langle 5 \rangle = \{5, 1\}, \langle 7 \rangle = \{7, 1\}$$

Exercise 9

How many subgroups does Z_{20} have? List a generator for each of these subgroups. Suppose that $G = \langle a \rangle$ and |a| = 20. How many subgroups does G have? List a generator for each of these subgroups. Six.

Z_{20}	19	
Z_{10}	9	
Z_5	4	
Z_4	3	
Z_2	1	
Z_1	0	

Exercise 13

In Z_{24} , find a generator for $\langle 21 \rangle \cap \langle 10 \rangle$. Suppose that |a| = 24. Find a generator for $\langle a^{21} \rangle \cap \langle a^{10} \rangle$. In general, what is a generator for the subgroup $\langle a^m \rangle \cap \langle a^n \rangle$?

$$\langle 21 \rangle = \{0, 21, 18, 15, 12, 9, 6, 3\}$$

$$\langle 10 \rangle = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22\}$$

$$\langle 21 \rangle \cap \langle 10 \rangle = \{0, 6, 12, 18\}$$

Generator: 6

$$\langle \mathbf{a}^{21} \rangle = \{ \mathbf{a}^0, \, \mathbf{a}^{21}, \, \mathbf{a}^{18}, \, \mathbf{a}^{15}, \, \mathbf{a}^{12}, \, \mathbf{a}^9, \, \mathbf{a}^6, \, \mathbf{a}^3 \}$$

$$\langle \mathbf{a}^{10} \rangle = \{ \mathbf{a}^0, \, \mathbf{a}^{10}, \, \mathbf{a}^{20}, \, \mathbf{a}^6, \, \mathbf{a}^{16}, \, \mathbf{a}^2, \, \mathbf{a}^{12}, \, \mathbf{a}^{22}, \, \mathbf{a}^8, \, \mathbf{a}^{18}, \, \mathbf{a}^4, \, \mathbf{a}^{14} \}$$

$$\langle \mathbf{a}^{21} \rangle \cap \langle \mathbf{a}^{10} \rangle = \{ \mathbf{a}^0, \, \mathbf{a}^{18}, \, \mathbf{a}^{12}, \, \mathbf{a}^6 \}$$

Generator for $\langle \mathbf{a}^m \rangle \cap \langle \mathbf{a}^n \rangle$ in \mathbf{Z}_{24} : $\mathbf{a}^{lcm(m,n)}$

Exercise 16

Complete the statement: $|a| = |a^2|$ if and only if |a| = 1 or ∞

Exercise 32

Determine the subgroup lattice for \mathbf{Z}_{12} . Generalize to \mathbf{Z}_{p^2q} , where p and q are distinct primes.

