

Virtual Machine Migration and Its Applications

Che-Rung Lee National Tsing Hua University Feb 22 @ NYU

Outline

VM migration

Applications

Thursday, February 22, 2024 NYU Cloud Computing

What is a VM migration?

- Moving a VM from one physical machine to another one
- Cold migration: VM stops to execute any currently working program and copy the current states to the machine where the VM migrates.
- Live migration: During the migration process, the execution in VM might go on without stopping the execution of programs.

What to migrate?

- The VM status needs be moved to new physical machine
 - Register, memory, harddisk, ...
 - Data in cache are usually flushed before migration
 - Data in harddisk may not be attached to the physical machine
- VM managing information.
- Virtualized hardware info.

Two major metrics

- **Downtime**: the period during which the service is unavailable due to there being no currently executing instance of the VM
 - This period will be directly visible to clients of the VM as service interruption.
- Total migration time (duration): the duration between when migration is initiated and when the original VM may be finally discarded.
 - The source host may potentially be taken down for maintenance, upgrade or repair.

Basic methods

- Stop-and-copy (S-C)
- Demand-migration (D-M)
- Iterative precopy (I-P)

Live migration

Example: Live migration

Pre-copy migration: Round 1

Example: Live migration

Pre-copy migration: Round 2

Host A Host B 2024/2/22

Example: Live migration

Stop and copy: Final Round

Applications of VM migrations

Why VM migration?

- Resource consolidate
- Dynamic load balance
- Task remapping
- System maintenance
- Fault tolerance (High availability)

VM consolidation

Thursday, February 22, 2024 NYU, Cloud Computing 13

Dynamic load balance

- The load may be changed during the execution of parallel programs.
 - It is hard to re-distributed the workload during the program execution.
- Migrate the VMs to re-distribute the workload.

Task remapping

- The communication among VMs within a node is much faster than that of VMs between nodes.
- Ex: Suppose VMs of the same color communicate to each other frequently.

PM1

PM2

Server maintenance

- In cloud computing, people expect long running and nonstopping services.
 - High availability
- But servers (host machines) need maintenance or to be replaced.
 - Without VMs, services may need to be stopped for maintenance.
 - With VMs, before a maintenance, VMs can be migrated to other healthy servers.

Fault tolerance

- Unlike system maintenance, hardware failure are unexpected.
- Only a very short time can migrate a VM from physical machine 1 to physical machine 2.

- Our solution: Cuju
 - Collaborated with ITRI (Industrial Technology and Research Institute)

What is Cuju?

- Cuju is an ancient Chinese ball game that players keep a ball non-droppable.
- Don't drop the ball!

跳艺、鞠山、

Constantly backup

Fail over (Service uninterrupted)

Epoch-based fault tolerance

- Need to synchronize client (outside) and Backup side status
 - Release buffer only after the status of Backup side updated

Timer

Cuju features

- Cuju is an Open Source Project for Virtualization-based FT
 - Just follow the Install Guide on Github
- The world's only latency can bound to 10ms on Fault Tolerance mode
 - Current hypervisor-based fault tolerance systems all not considered the latency
- Unixbench scores close to VMWare (on FT mode)
 - https://github.com/kdlucas/byte-unixbench

Cuju Webpage

https://cuju-ft.github.io/cuju-web/home.html

Conclusion

- Virtualization is one of the key technologies for cloud computing.
 - On-demand self-service . Rapid elasticity
- Migration techniques help to solve lots of difficult problems
 - Dynamic provision, load balance, task mapping, scheduling,
- How to reduce the overhead of VMs and VM migration is still a challenging problem.
 - Container technology
 - Light weight VMs
 - VM templating