Solvers, Synthesis, and Learning

Sanjit A. Seshia

EECS Department UC Berkeley

Acknowledgments to several Ph.D. students, postdoctoral researchers, and collaborators, and to the students of EECS 219C, Spring 2015, UC Berkeley

SAT/SMT Summer School July 17, 2015

Connections in this Lecture

Outline

- Formal Synthesis & Applications
- Syntax-Guided Synthesis (SyGuS)
- Inductive Synthesis
 - Counterexample-Guided Inductive Synthesis (CEGIS)
- Conclusion

Formal Methods ≈ Computational Proof Methods

- Formal Methods is about Provable Guarantees
 - Specification/Modeling ≈ Statement of Conjecture/Theorem
 - Verification ≈ Proving/Disproving the Conjecture
 - Synthesis ≈ Generating (parts of) Conjecture/Proof

Formal Synthesis

- Given:
 - Class of Artifacts C
 - Formal (mathematical) Specification
- Find $f \in C$ that satisfies ϕ
- Example:
 - C: all affine functions f of $x \in R$
 - ϕ : $\forall x$. f(x) ≥ x + 42

Artifacts Synthesized in Verification

- Inductive invariants
- Abstraction functions / abstract models
- Auxiliary specifications (e.g., pre/post-conditions, function summaries)
- Environment assumptions / Env model / interface specifications
- Interpolants
- Ranking functions
- Intermediate lemmas for compositional proofs
- Theory lemma instances in SMT solving
- Patterns for Quantifier Instantiation

• ...

Example Verification Problem

- Transition System
 - Init: I

$$x = 1 \land y = 1$$

– Transition Relation: δ

$$x' = x+y \wedge y' = y+x$$

- Property: $\Psi = G (y \ge 1)$
- Attempted Proof by Induction:

$$y \ge 1 \land x' = x + y \land y' = y + x \implies y' \ge 1$$

$$x = 1 \land y = 1 \Rightarrow \phi \land y \ge 1$$

$$\phi \land y \ge 1 \land x' = x + y \land y' = y + x \Rightarrow \phi' \land y' \ge 1$$

Example Verification Problem

- Transition System
 - Init: I

$$x = 1 \land y = 1$$

Transition Relation: δ

$$x' = x+y \wedge y' = y+x$$

- Property: $\Psi = G (y \ge 1)$
- Attempted Proof by Induction:

$$y \ge 1 \land x' = x + y \land y' = y + x \implies y' \ge 1$$

$$x \ge 1 \land y \ge 1 \land x' = x + y \land y' = y + x \implies x' \ge 1 \land y' \ge 1$$

■ Safety Verification → Invariant Synthesis

One Reduction from Verification to Synthesis

NOTATION

Transition system $M = (I, \delta)$ Safety property $\Psi = G(\psi)$

VERIFICATION PROBLEM

Does M satisfy Ψ?

SYNTHESIS PROBLEM

Synthesize of s.t.

$$I \Rightarrow \phi \wedge \psi$$

$$\phi \wedge \psi \wedge \delta \Rightarrow \phi' \wedge \psi'$$

Two Reductions from Verification to Synthesis

NOTATION

Transition system M = (I, δ), S = set of states Safety property Ψ = $G(\psi)$

VERIFICATION PROBLEM

Does M satisfy Ψ?

SYNTHESIS PROBLEM #1

Synthesize • s.t.

$$I \Rightarrow \phi \wedge \psi$$

$$\phi \wedge \psi \wedge \delta \Rightarrow \phi' \wedge \psi'$$

SYNTHESIS PROBLEM #2

Synthesize
$$\alpha: S \to \hat{S}$$
 where $\alpha(M) = (\hat{I}, \hat{\delta})$ s.t. $\alpha(M)$ satisfies Ψ iff M satisfies Ψ

Reducing Specification to Synthesis

- Formal Specifications difficult for non-experts
- Tricky for even experts to get right!
- Yet we need them!

"A design without specification cannot be right or wrong, it can only be surprising!"

- paraphrased from [Young et al., 1985]
- Specifications are crucial for effective testing, verification, synthesis, ...

Reduction of Specification to Synthesis

- VERIFICATION: Given (closed) system M, and specification φ, does M satisfy φ?
- SYNTHESIS PROBLEM: Given (closed) system M and class of specifications C, find "tightest" specification φ in C such that M satisfies φ.
 - Industrial Tech. Transfer Story: Requirement Synthesis for Automotive Control Systems [Jin, Donze, Deshmukh, Seshia, HSCC 2013, TCAD 2015]
 - http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jin-tcad15.html
 - Implemented in Breach toolbox by A. Donze

Recent Efforts in Program Synthesis

Common theme to many recent efforts:

- Sketch (Solar-Lezama et al)
- Implicit Programming (Kuncak et al)
- Oracle-guided program synthesis (Jha et al)
- * FlashFill (Gulwani et al)
- Super-optimization (Schkufza et al)
- Invariant generation (Many recent efforts...)
- * TRANSIT for protocol synthesis (Udupa et al)
- Auto-grader (Singh et al)
- ٠...

Further Reading for this Tutorial

- R. Alur et al., "Syntax-Guided Synthesis", FMCAD 2013.
 http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-alur-fmcad13.html
- S. A. Seshia, "Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis.", DAC 2012

http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-dac12.html

S. Jha and S. A. Seshia, "A Theory of Formal Synthesis via Inductive Learning"

http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jha-arxiv15.html

Lecture notes of EECS 219C: "Computer-Aided Verification" class at UC Berkeley, available at:

http://www.eecs.berkeley.edu/~sseshia/219c/

Two Central Questions

- Is there a core computational problem for formal synthesis?
 - Shared by many different synthesis problems

SYNTAX-GUIDED SYNTHESIS

Is there a common theory of formal synthesis techniques?

ORACLE-GUIDED INDUCTIVE SYNTHESIS (Counterexample-Guided Inductive Synthesis – CEGIS)

Syntax-Guided Synthesis

Formal Synthesis (recap)

- Given:
 - Formal Specification ∅
 - Class of Artifacts C
- Find $f \in C$ that satisfies ϕ

Syntax-Guided Synthesis (SyGuS)

Given:

- An SMT formula
 on UF + T (where T is some combination of theories)
- Typed uninterpreted function symbols f₁,..,f_k in φ
- Grammars G, one for each function symbol f_i
- Generate expressions e₁,...,e_k from G s.t.
 - ϕ [f₁,...,f_k \leftarrow e₁,...,e_k] is valid in T

SyGuS ≠ ∃∀ SMT

Exists-Forall SMT

$$\exists f \forall x \phi(f,x)$$

SyGuS (abusing notation slightly)

$$\exists \ f \in G \ \forall \ x \ \phi(f,x)$$

Sometimes SyGuS is solved by reduction to EF-SMT

SyGuS Example 1

- Theory QF-LIA
 - Types: Integers and Booleans
 - Logical connectives, Conditionals, and Linear arithmetic
 - Quantifier-free formulas
- Function to be synthesized f(int x, int y): int
- Specification: $x \le f(x, y) \land y \le f(x, y) \land (f(x, y) = x \lor f(x, y) = y)$
- Grammar

LinExp := x | y | Const | LinExp + LinExp | LinExp - LinExp

Is there a solution?

SyGuS Example 2

- Theory QF-LIA
 - Types: Integers and Booleans
 - Logical connectives, Conditionals, and Linear arithmetic
 - Quantifier-free formulas
- Function to be synthesized f(int x, int y): int
- Specification: $x \le f(x, y) \land y \le f(x, y) \land (f(x, y) = x \lor f(x, y) = y)$
- Grammar

Term := x | y | Const | If-Then-Else (Cond, Term, Term) Cond := Term <= Term | Cond & Cond | ~Cond | (Cond)

Is there a solution?

From SMT-LIB to SYNTH-LIB

```
(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int
   ((Start Int (x y 0 1 (+ Start Start)(- Start Start)
                (ite StartBool Start Start)))
    (StartBool Bool ((and StartBool StartBool)
                     (or StartBool StartBool)
                     (not StartBool)
                     (<= Start Start)))))
(declare-var x Int)
(declare-var y Int)
(constraint (>= (max2 x y) x))
(constraint (>= (max2 x y) y))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))
(check-synth)
```

Basic demo

Invariant Synthesis via SyGuS

▶ Find • s.t.

$$x = 1 \land y = 1 \Rightarrow \phi \land y \ge 1$$

$$\phi \land y \ge 1 \land x' = x + y \land y' = y + x \Rightarrow \phi' \land y' \ge 1$$

Syntax-Guidance: Grammar expressing simple linear predicates of the form $S \ge 0$ where S is an expression defined as:

$$S ::= 0 | 1 | x | y | S + S | S - S$$

Demo

More Demos (time permitting)

- Impact of Grammar definition
 - Expression size
 - Symmetries
- Visit http://www.sygus.org for publications, benchmarks and sample solvers

Other Considerations

- Let-Expressions (for common sub-expressions)
 - Example:

```
S ::= let [t := T] in t * t
T ::= x | y | 0 | 1 | T + T | T - T
```

Cost constraints/functions (for "optimality" of synthesized function)

Inductive Synthesis

Induction vs. Deduction

- Induction: Inferring general rules (functions) from specific examples (observations)
 - Generalization
- Deduction: Applying general rules to derive conclusions about specific instances
 - (generally) Specialization
- Learning/Synthesis can be Inductive or Deductive or a combination of the two

Machine Learning

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

- Tom Mitchell [1998]

Machine Learning: Typical Setup

Given:

- Domain of Examples D
- Concept class C
 - Concept is a subset of D
 - C is set of all concepts
- Criterion Ψ ("performance measure")

Find using only examples from D, $f \in C$ meeting Ψ

Formal Inductive Synthesis

Given:

- Class of Artifacts C
- Formal specification \(\phi \)
- Set of (labeled) examples E (or source of E)
- Find using only E an f ∈ C that satisfies φ
- Example:
 - C: all affine functions f of $x \in R$
 - $E = \{(0,42), (1,43), (2,44)\}$
 - ϕ : $\forall x. f(x) \ge x + 42$

Counterexample-Guided Inductive Synthesis (CEGIS)

[Solar-Lezama, Tancau, Bodik, Seshia, Saraswat, ASPLOS'06]

CEGIS vs. SyGuS

- SyGuS is a family of PROBLEMS
- CEGIS is a family of SOLUTIONS
- All SyGuS solvers (available today) use some form of CEGIS

Counterexample-Guided Abstraction Refinement is CEGIS (for abstractions)

Lazy SMT Solving performs CEGIS (of Lemmas)

Example: CEGIS for SyGuS

- Specification: $x \le f(x,y) \land y \le f(x,y) \land (f(x,y) = x \lor f(x,y) = y)$
- Grammar

Term := $x \mid y \mid 0 \mid 1 \mid \text{If-Then-Else (Cond, Term, Term)}$

Cond := Term <= Term | Cond & Cond | ~Cond | (Cond)

Example: CEGIS for SyGuS

- Specification: $x \le f(x, y) \land y \le f(x, y) \land (f(x, y) = x \lor f(x, y) = y)$
- Grammar

Term := $x \mid y \mid 0 \mid 1 \mid \text{If-Then-Else (Cond, Term, Term)}$

Cond := Term <= Term | Cond & Cond | ~Cond | (Cond)

Example: CEGIS for SyGuS

• Specification: $x \le f(x, y) \land y \le f(x, y) \land (f(x, y) = x \lor f(x, y) = y)$

Grammar

Term := $x \mid y \mid 0 \mid 1 \mid \text{If-Then-Else (Cond, Term, Term)}$

Cond := Term <= Term | Cond & Cond | ~Cond | (Cond)

Example: CEGIS for SyGuS

• Specification: $x \le f(x, y) \land y \le f(x, y) \land (f(x, y) = x \lor f(x, y) = y)$

Grammar

Term := $x \mid y \mid 0 \mid 1 \mid \text{If-Then-Else (Cond, Term, Term)}$

Cond := Term <= Term | Cond & Cond | ~Cond | (Cond)

Examples:

Candidate
$$f(x,y) = ITE(x \le y, y, x)$$

SYNTHESIZE

VERIFY

Verification Succeeds!

Three Flavors of SyGuS Solvers

- All use CEGIS, differ in implementation of "Synthesis" step
- Enumerative [Udupa et al., PLDI 2013]
 - Enumerate expressions in increasing order of "syntactic simplicity" with heuristic optimizations
- Symbolic [Jha et al., ICSE 2010, PLDI 2011]
 - Encode search for expressions as SMT problem
 - Similar approach used in SKETCH [Solar-Lezama'08]
- Stochastic [Schkufza et al., ASPLOS 2013]
 - Markov Chain Monte Carlo search method over space of expressions
- See [Alur et al., FMCAD 2013] paper for more details

Theoretical Aspects of Inductive Synthesis

CEGIS = Learning from Examples & Counterexamples

Comparison*

[see also, Jha & Seshia, 2015]

Feature	Formal Inductive Synthesis	Machine Learning
Concept/Program Classes	Programmable, Complex	Fixed, Simple
Learning Algorithms	General-Purpose Solvers	Specialized
Learning Criteria	Exact, w/ Formal Spec	Approximate, w/ Cost Function
Oracle-Guidance	Common (can control Oracle)	Rare (black-box oracles)

^{*} Between typical inductive synthesizer and machine learning algo

Oracle-Guided Inductive Synthesis

Given:

- Domain of Examples D
- Concept Class C
- Oracle O that can answer queries of type Q
- Find, by only querying O, an $f \in C$ that satisfies ϕ

Common Oracle Query Types

Positive Witness

 $x \in \phi$, if one exists, else \bot

Negative Witness

 $x \notin \phi$, if one exists, else \bot

Membership: Is $x \in \emptyset$?

Yes / No

Equivalence: Is $f = \phi$?

Yes / No + $x \in \phi \oplus f$

Subsumption/Subset: Is $f \subseteq \phi$?

Yes / No + $x \in f \setminus \phi$

Distinguishing Input: $f, X \subseteq f$

f' s.t. f' \neq f \wedge X \subseteq f', if it exists; o.w. \perp

LEARNER

ORACLE

Examples of OGIS

- L* algorithm to learn DFAs: counterexample-guided
 - Membership + Equivalence queries
- CEGIS used in SKETCH/SyGuS solvers
 - (positive) Witness + Equivalence/Subsumption queries
- CEGIS for Hybrid Systems
 - Requirement Mining [HSCC 2013]
 - Reactive Model Predictive Control [HSCC 2015]
- Two different examples:
 - Learning Programs from Distinguishing Inputs [Jha et al., ICSE 2010]
 - Learning LTL Properties for Synthesis from Counterstrategies [Li et al., MEMOCODE 2011]

Revisiting the Comparison

Query Types for CEGIS

LEARNER

Positive Witness

 $x \in \phi$, if one exists, else \bot

ORACLE

Equivalence: Is
$$f = \phi$$
?

Yes / No + $x \in \phi \oplus f$

Subsumption: Is $f \subseteq \phi$?

Yes / No + $x \in f \setminus \phi$

 Finite memory vs Infinite memory

 Type of counterexample given

Concept class: Any set of recursive languages

Questions

 Convergence: How do properties of the learner and oracle impact convergence of CEGIS? (learning in the limit for infinite-sized concept classes)

Sample Complexity: For finite-sized concept classes, what upper/lower bounds can we derive on the number of oracle queries, for various CEGIS variants?

Problem 1: Bounds on Sample Complexity

Teaching Dimension

[Goldman & Kearns, '90, '95]

The minimum number of (labeled) examples a teacher must reveal to uniquely identify any concept from a concept class

Teaching a 2-dimensional Box

Teaching Dimension

The minimum number of (labeled) examples a teacher must reveal to uniquely identify any concept from a concept class

$$TD(C) = \max_{c \in C} \min_{\sigma \in \Sigma(c)} |\sigma|$$

where

- C is a concept class
- c is a concept
- σ is a teaching sequence (uniquely identifies concept c)
- Σ is the set of all teaching sequences

Theorem: *TD(C)* is lower bound on Sample Complexity

- CEGIS: TD gives a lower bound on #counterexamples needed to learn any concept
- Finite TD is necessary for termination
 - If C is finite, TD(C) ≤ |C|-1
- Finding Optimal Teaching Sequence is NP-hard (in size of concept class)
 - But heuristic approach works well ("learning from distinguishing inputs")
- Open Problems: Compute TD for common classes of SyGuS problems

Problem 2: Convergence of Counterexampleguided loop with positive witness and membership/subsumption queries

Learning $-1 \le x \le 1 \land -1 \le y \le 1$ (C = Boxes around origin)

Learning $-1 \le x, y \le 1$ from Minimum Counterexamples (dist from origin)

Types of Counterexamples

Assume there is a function size: $D \rightarrow N$

- Maps each example x to a natural number
- Imposes total order amongst examples
- CEGIS: Arbitrary counterexamples
 - Any element of f ⊕ φ
- MinCEGIS: Minimal counterexamples

 - Motivated by debugging methods that seek to find small counterexamples to explain errors & repair

Types of Counterexamples

Assume there is a function size: $D \rightarrow N$

- CBCEGIS: Constant-bounded counterexamples (bound B)
 - An element x of $f \oplus \phi$ s.t. size(x) < B
 - Motivation: Bounded Model Checking, Input Bounding, Context bounded testing, etc.
- PBCEGIS: Positive-bounded counterexamples
 - An element x of $f \oplus \phi$ s.t. size(x) is no larger than that of any positive example seen so far
 - Motivation: bug-finding methods that mutate a correct execution in order to find buggy behaviors

Summary of Results

[Jha & Seshia, SYNT'14; TR'15]

Open Problems

For Finite Domains: What is the impact of type of counterexample and buffer size to store counterexamples on the speed of termination of CEGIS?

For Specific Infinite Domains (e.g., Boolean combinations of linear real arithmetic): Can we prove termination of CEGIS loop?

Summary

- Formal Synthesis and its Applications
- Syntax-Guided Synthesis
 - Problem Definition
 - Demo
- Inductive Synthesis
 - Counterexample-guided inductive synthesis
 - General framework: Oracle-Guided Inductive Synthesis
 - Theoretical analysis
- Lots of potential for future work!