PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-200889

(43) Date of publication of application: 02.09.1991

(51)Int.Cl.

CO9K 11/06 H05B 33/14

(21)Application number: 02-049796

(71)Applicant : RICOH CO LTD

(22)Date of filing: 28.02.1990

(72)Inventor: OTA MASABUMI

ONUMA TERUYUKI KAWAMURA FUMIO SAKON HIROTA

TAKAHASHI TOSHIHIKO

(30)Priority

Priority number: 01168826

Priority date: 30.06.1989

30.06.1989

Priority country: JP

JP

(54) ELECTROLUMINESCENT ELEMENT

01168827

(57)Abstract:

PURPOSE: To obtain an electroluminescent element capable of giving luminescence with high luminance over a long period of time even with a low driving voltage by putting an organic compound layer consisting of a specified luminescent material between an anode and a cathode.

CONSTITUTION: A luminescent material shown by formula I (wherein R1 and R2 are each alkyl, a carbocyclic aromatic ring, a heterocyclic aromatic rings, etc.; Ar1 and Ar2 are each a carbocyclic aromatic ring, a heterocyclic aromatic ring, etc.; and (n) is 1, 2 or 3) or formula II (wherein X is CH2CH2, CH=CH, O, S, etc.; R1, R2, R3, and R4 are each alkyl, a carbocyclic aromatic ring, a heterocyclic aromatic ring, etc.; Ar1 is a carbocyclic aromatic ring, a heterocyclic aromatic ring, etc.) (e.g. a compound of formula III or IV) is prepared. An organic compound layer consisting of the luminescent material, if necessary, laminated on an organic compound layer containing other organic

$$R_{\bullet} = R - A r_{\bullet} + CH = CO \ln A r_{\bullet}$$

$$R_{\bullet} = R_{\bullet}$$

$$R_{\bullet} = R_{\bullet}$$

$$R_{\bullet} = R_{\bullet}$$

compound is put between an anode and a cathode, thus producing an electroluminescent element.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

⑫ 公 開 特 許 公 報 (A) 平3-200889

®Int. Cl. 3

識別記号

庁内整理番号

40公開 平成3年(1991)9月2日

C 09 K 11/06 H 05 B 33/14

Z 7043-4H 8112-3K

審査請求 未請求 請求項の数 1 (全9頁)

64発明の名称 電界発光素子

> 顧 平2-49796 204年

223出 願 平2(1990)2月28日

❷平1(1989)6月30日❷日本(JP)劉特願 平1-168826 優先権主張

❸平1(1989)6月30日國日本(JP)動特願 平1-168827

@発 明 客 太田 正 文 東京都大田区中馬込1丁目3番6号 株式会社リコー内 @発 者 大 沼 照 行 東京都大田区中馬込1丁目3番6号 株式会社リコー内 明 何発 明 者 ZET 村 史 生 ・ 東京都大田区中馬込1丁目3番6号 株式会社リコー内 72発 明 者 左 沂 洋 太 東京都大田区中馬込1丁目3番6号 株式会社リコー内 ②発 明 檻 俊 彦 東京都大田区中馬込1丁目3番6号 株式会社リコー内 者 高 勿出 顎 株式会社リコー 東京都大田区中馬込1丁目3番6号

79代理人 弁理士 池浦 敏明 外1名

1. 発明の名称

電界発光素子

2.特許請求の範囲

(1) 陽極および陰極と、これらの間に挟持された 一層または複数層の有機化合物層より構成される 電界発光素子において、前記有機化合物層のうち 少なくとも一層が、下記一般式(1)又は一般式 (II)で表わされる有機化合物を構成成分とする層 であることを特徴とする電界発光素子。

$$R_{1} = N - A r_{1} - (CH = CH)_{\overline{n}} A r_{2}$$
 (1)

(式中、R1,R2は、置換もしくは未置換のアルキル基、置 換もしくは未置換の炭素環式芳香環、置 機もしくは未置機の複素環式芳香環であ り、さらに、

R.とR.は共同で、環を形成していてもよい。 Ar,及びAr,は関換もしくは未置換の炭素療式芳香療、 置換もしくは未置換の複素環式芳香環を

示す.

nは1,2,3の整数を表わす。)

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_3 \\
R_4
\end{array}$$

(式中、Xは~CH_CH_-、-CH=CH-、-O-、-S-、-N-R. であり、

R」, R2, R3及びR4は、 製換もしくは未置換のアル キル基、重換もしくは未置換の炭 **素環式芳香環、置換もしくは未置** 換の複素環式芳香環であり、さら L*

R.とRaは共同で、環を形成していてもよい。 Ar,は置換もしくは未置換の炭素環式芳香環、 觀換もしくは未置換の複素環式芳

香棚を示す。)

3.発明の詳細な説明 〔産業上の利用分野〕

本発明は発光性物質からなる発光層を有し、電界を印加することにより電界印加エネルギーを直接光エネルギーに変換でき、従来の白熱灯、蛍光灯あるいは発光ダイオード等とは異なり大面積の面状発光体の実現を可能にする電界発光素子に関する。

[従来の技術]

電界発光素子はその発光励起機構の違いから、(1) 発光層内での電子や正孔の局所的な移動により発光体を励起し、交流電界でのみ発光する真性電界発光素子と、(2)電極からの電子と正孔の注意界発光素子と、(2)電極からの電子と正孔の注入とその発光層内での再結合により発光体を励起し、直流電界で作動するキャリア注入型電界発光素子の二つに分けられる。(1)の真性電界発光型の発光性一般に2nsにNn、Cu等を添加した無機化合物を発光体とするものであるが、驅動に200V以上の高い立と、輝度や耐久性も不十分である等の多くの問題点を有する。

(2)のキャリア注入型電昇発光素子は発光層と

材料としてはフタロペリノンが例示されている。

これらの例は有機化合物を、ホール輸送材料、 発光材料あるいは電子輸送材料として用いるため には、これらの有機化合物の各種特性を探求し、 かかる特性を効果的に組み合わせて電界発光素素 とする必要性を意味し、換音すれば広い範囲の有 機化合物の研究開発が必要であることを示している。

[発明が解決しようとする課題]

本発明は上記の実情に鑑みてなされたものであり、その目的は発光波長に多様があり、種々の発 色色相を呈すると共に耐久性に優れた電界発光素 して難膜状有機化合物を用いるようになってから高輝度のものが得られるようになった。たとえば、特開昭59-194393、米国特許4,539,507、特開昭63-26469 2には、陽極、有機質ホール注入輸入帯、有機質電子注入性発光帯および陰極から成る電界充光票としては、例えば、有機質ホール注入輸送用が料としては、例えば、有機度ホール注入輸送用材料としては芳香族三級アミンが、また有機質電子注入性発光材料としてはアルミニウムトリスオキシン等が代表的な例としてあげられている。

また、Jpn. Journal of Applied Physics, vol. 27, P713-715には陽極、有機質ホール輸送層、発光層、有機質電子輸送層および陰極から成る電界発光表子が報告されており、これらに使用される材料としては有機質ホール輸送材料としては、N, N'-ジフェニル-N, N'-ピス(3-メチルフェニル)-1, 1'-ピフェニル-4, 4'-ジアミンが、また、有機質電子輸送材料としては、3,4,8,10-ペンレンテトラカルボン酸ビスペンズイミダゾールが、また発光

子を提供することにある。

[課題を解決するための手段]

$$\begin{array}{c}
R_1 \\
N - A r_1 + CH = CH + \pi A r_2
\end{array}$$
(1)

(式中、R₁,R₂は、重換もしくは未置換のアルギル 基、置換もしくは未置換の炭素類 式労香環、置換もしくは未置換の 複素類式芳香環であり、さらに、

R.とR.は共同で、顆を形成していてもよい。

Ara 及びAra は置換もしくは未置換の炭素領式 芳香順、置換もしくは未置換の複 素環式芳香類を示す。

nは1,2,3の整数を表わす。)

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$

$$N-A r_1-CH= X$$

$$R_4$$

(式中、Xは-CH_aCH_a-、-CH≃CH-、-O-. -S-、-N-| | R₁

R1,R2,R2及びR2は、置換もしくは未置換のアルキル基、置換もしくは未置換の 炭素環式芳香漿、置換もしくは 未置換の複素環式芳香類であり、 さらに、

R,とR。は共间で、環を形成していてもよい。 Araは智換もしくは未置換の炭素環式芳香療、

> 置換もしくは未置換の複素環式 芳香環を示す。)

 R_1 , R_2 , R_3 , R_4 及び R_4 として用いられるアルキル基は、 好ましくは $C_1 \sim C_{2.0}$ とりわけ $C_2 \sim C_{2.0}$ の直鎖または分 枝鎖のアルキル基であり、これらのアルキル基は さらにハロゲン原子、水酸基、シアノ基、アルコ キシ基、置換又は無置換のフェニル基を含有して も良い。また一般式(1)又は一般式(1)における R_1 , R_2 , R_3 , R_4 , Ar_1 , Ar_2 の置換基としては以下のも のを挙げることができる。

- (1) ハロゲン原子、トリフルオロメチル基、シア ノ基、ニトロ基
- (2) アルキル基: 好ましくはC₁~C₁。とりわけC₁~C₁。の直鎖または分収値のアルキル基であり、これらのアルキル基は更に、水酸基、シアノ基、C₁~C₁。のアルコキシ基、フェニル基またはハロゲン原子、C₁~C₁。のアルキル基若しくはC₁~C₁。のアルコキシ基で置換されたフェニル基を含有しても良い。
- (3) アルコキシ基(-0R*);R*は(2)で定義したアル キル基を表わす。
- (4) アリールオキシ基;アリール基としてフェニ

すなわち、本発明の世界発光素子は隔極及び陰極の間に一度または複数層の有機化合物による薄膜を挟持して成るものであり、特に薄膜のうちの少なくとも一層を構成する主要化合物として前記一般式(1)又は一般式(1)で示される有機化合物を用いるものである。

Ar. として用いられる炭素環式あるいは複素環式芳香環の例としては、フェニレン、ナフチレン、フランジイル、チオフェンジイル、ピリジンジイル、キノリンジイル、ベンゾフランジイル等が挙げられる。

ル基、ナッチル基が挙げられ、これらはC₁ ~ C₁ * のアルコキシ基、C₁ ~ C₂ * のアルキル基またはハロゲン原子を置換基として含有しても良い。

- (5) アルキルメルカプト基(-SR*);R*は(2)で定義 したアルキル基を表わす。
- (6) -N R*; 式中R*及びR*は各々独立に水兼原子、
- (7) アルコキシカルポニル基(-COOR*);R*は(2)で

定義したアルキル基または(4)で定義したア リール基を表わす。

(8)アシル基(-COR*)、スルホニル基(-SO_aR*)、

、R* イル基(-SO₂N_{、R}*) ;式中R*、R*及びR*は上

記で定義した意味を**扱わす。但しR*及びR*に**おいてアリール基上の炭素原子と共同で環を 形成する場合を除く。

(9)メチレンジオキシ基またはメチレンジチオ基等のアルキレンジオキシ基またはアルキレンジチオ基

本発明における電界発光表子は、以上で説明した有機化合物を真空蒸着法、溶液塗布法等により有機化合物全体で2mmより小さい厚みさらに好ましくは0.05mmへ0.5mmの厚さに薄膜化し発光層を形成し陽極及び陰極で挟持することにより構成される。

以下、図面に沿って本発明を更に詳細に説明す

電子輸送性化合物の組み合わせにより発光層を形成するものであり、これは上記の機能分離の考えをさらに進めたタイプのものと考えることができる。

このタイプの電界発光素子はホール輸送性、電子輸送性及び発光性の各特性に適合した化合物を適宜組み合わせることによって得ることができるので、化合物の対象範囲が極めて広くなるため、その選定が容易となるばかりでなく、発光液長を異にする種々の化合物が使用できるので、素子の発光色相が多様化するといった多くの利点を有する。

本発明の化合物はいずれも発光特性の優れた化合物であり必要により第1回、第2回及び第3回の 様な構成をとることができる。

また本発明においては、前記一般式(I)又は一般式(I)の置換基の種類を適宜遵定することによりホール輸送性の優れた化合物あるいは電子輸送性の優れた化合物の両者の提供を可能とする。

従って、第2因及び第3回の構成の場合発光層形成成分として、前記一般式(1)及び/又は一般式

& .

第1図は本発明の電界発光素子の代表的な例で あって、基板上に陽極、発光層及び陰極を順次設 けた構成のものである。

第1回に係る電界発光素子は使用する化合物が 単一でホール輸送性、電子輸送性、発光性の特性 を有する場合あるいは各々の特性を有する化合物 を混合して使用する場合に特に有用である。

第2図はホール輸送性化合物と電子輸送性化合物との組み合わせにより発光層を形成したものである。この構成は有機化合物の好ましい特性を組み合わせるものであり、ホール輸送性あること性あることである。など、一般である。なお、このタイプの電界発光を行なおお、このタイプの電界発光を行るが発光するのである。なお、このタイプの電界発光をある。なお、このタイプの電界発光をある。なお、このタイプの電界発光をある。なお、このタイプの電界発光をある。なお、このタイプの電界発光をある。なお、このタイプの電界発光を表してある。

第3回は、ホール輸送性化合物、発光性化合物、

(目)で示される化合物の2種類以上用いても良い。本発明においては、発光層形成成分として前記一般式(I)で示される化合物を用いるものであるが、必要に応じて、ホール輸送性化合物として芳香族第三級アミンあるいはN,N'-ジフェニル-N,N'-ビス(3-メチルフェニル)-1,1'-ビフェニル-4.4'-ジアミン等を、また電子輸送性化合物として、アルミニウムトリスオキシ、またはペリレンテトラカルボン酸誘導体等を用いることができる。

メチルメタクリレート、ポリメチルアクリレート、ポリエステル、ポリカーボネート、ポリアミド等を挙げることができる。また、電福からの電荷注入効率を向上させるために、電荷注入輸送層を電極との間に別に設けることも可能である。

階極材料としてはニッケル、金、白金、パラジウムやこれらの合金或いは酸化銅(Sn0x)、酸化鍋インジウム(ITO)、沃化鯛などの仕事関数の大きな金属やそれらの合金、化合物、更にはポリ(3-メチルチオフェン)、ポリピロール等の導電性ポリマーなどを用いることができる。

一方、陰極材料としては、仕事関数の小さな観、 鰡、鉛、マグネシウム、マンガン、アルミニウム、 或いはこれらの合金が用いられる。陽極及び陰極 として用いる材料のうち少なくとも一方は、素子 の発光波長領域において十分透明であることが望ま ましい。具体的には80%以上の光透過率を有する ことが望ましい。

本発明においては、透明陽極を透明基板上に形成し、第1回~第3回の機な構成とすることが好ま

機化合物層(発光層)を形成した。すなわち式(B-1)で示される化合物を含んだタンタル製ポードを担度コントローラーにより制御し、蒸着速度が2人/sとなるように保った。蒸着時の真空度は0.7×10でtorr、基板温度は20℃であった。ITO上に生成した凝着層の膜厚は500人であった。

つぎに、前記発光層上に電子輸送物質である下記式(T-1)で示されるオキサジアゾール誘導体を、加熱温度が設定され、蒸着速度の制御できる抵抗加熱源で蒸着して膜厚500人の電子輸送層を形成した。すなわち下記式(T-1)で示される化合物を含んだボードの温度を創御し、蒸着速度を2人/sに保った。

次に、この電子輸送層上に膜厚1500 AのMar-Agによる陰極を蒸着した。このようにして得られた発光素子に外部電源を接続して、電流を流したところ、陽極側にプラスのパイアス電圧を印加した場合に、明瞭な発光が確認された。また素子は湿度を十分に除去した状態において空気中で作動させることが可能であった。

しいが、場合によってはその逆の構成をとっても 良い。また透明基板としてはガラス、プラスチッ クフィルム等が使用できる。

また、本発明においては、この様にして得られた電界発光崇子の安定性の向上、特に大気性の水分に対する保護のために、別に保護層を設けたり、 素子全体をセル中に入れ、シリコンオイル等を封 入するようにしても良い。

(実施例)

以下、実施例により本発明を更に詳細に説明する。

実施例1

陽極として厚さ500点のインジウム-スズ酸化物 (ITO)の薄膜の形成されたガラス基板 (HOYA製)を中性洗剤により洗浄し、次いでエタノール中で約10分間超音波洗浄した。これを沸騰したエタノール中に約1分間入れ、取り出した後、すぐに送風乾燥を行った。つぎにガラス基板上に下記式(B-1)で示される化合物を、加熱温度が設定され、蒸着速度の制御できる抵抗加熱温で蒸着して蛍光性有

実施例2

発光物質として下記式(B-2)で示される化合物 を用いた以外は実施例1と同様にして発光素子を 作製した。得られた発光素子は層極側にプラスの バイアス電圧を印加した場合に明瞭な発光を呈し た。

更に、この発光素子は湿度を十分に除去した状態において空気中で作動させることが可能であった。

実施例3

発光物質として下記式(E-3)で示される化合物

を用いた以外は実施例1と同様にして発光素子を 作製した。符られた発光素子は陽極側にプラスの パイアス電圧を印加した場合に明瞭な発光を呈し た。

更に、この発光菓子は温度を十分に除去した状態において空気中で作動させることが可能であった。

(E-3)

実施例4

発光物質として下記式(E-4)で示される化合物を用いた以外は実施例1と同様にして発光素子を作製した。得られた発光素子は陽極偏にプラスのパイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は温度を十分に除去した状態において空気中で作動させることが可能であった。

を用いた以外は実施例1と同様にして発光素子を作製した。得られた発光素子は陽極側にプラスのバイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は温度を十分に除去した状態において空気中で作動させることが可能であった。

(E-6)

実施例 7

発光物質として下記式(E-7)で示される化合物を用いた以外は実施例1と同様にして発光素子を作製した。得られた発光素子は陽極側にプラスのパイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は温度を十分に除去した状態において空気中で作動させることが可能であった。

(E-4)

実施例5

発光物質として下記式(B-5)で示される化合物を用いた以外は実施例1と同様にして発光素子を作製した。得られた発光素子は陽極例にプラスのパイアス健圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は温度を十分に除去した状態において空気中で作動させることが可能であった。

(E-5)

実施例 6

発光物質として下記式(E-5)で示される化合物

(E-7)

実施例 B

発光物質として下記式(B-8)で示される化合物を用いた以外は実施例1と同様にして発光素子を作製した。特られた発光素子は陽極偏にプラスのバイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は湿度を十分に除去した状態において空気中で作動させることが可能であった。

(E-8)

实施例 8

発光物質として下記式(R-9)で示される化合物を用いた以外は実施例1と同様にして発光素子を作製した。得られた発光素子は陽極側にプラスのパイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は温度を十分に除去した状態において空気中で作動させることが可能であった。

(E-9)

実施例10

発光物費として下記式(B-10)で示される化合物を用いた以外は実施例1と同様にして発光素子を作製した。得られた発光素子は勝種側にプラスのバイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は温度を十分に除去した状 盤において空気中で作動させることが可能であっ

を用いた以外は実施例1と例様にして発光素子を作表した。得られた発光素子は階種側にプラスのバイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光兼子は鑑度を十分に除去した状態において空気中で作動させることが可能であった。

(E-12)

実施例13

発光物質として下記式(B-13)で示される化合物を用いた以外は実施例1と同様にして発光素子を作製した。得られた発光素子は陽極側にプラスのバイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子はಪ度を十分に除去した状態において空気中で作動させることが可能であっ

た。 (B-10)

実施例11

発光物質として下記式(8-11)で示される化合物 を用いた以外は実施例1と同様にして発光素子を 作製した。得られた発光素子は傷傷側にプラスの パイアス電圧を印加した場合に明瞭な発光を呈し た。

更に、この発光素子は湿度を十分に除去した状態において空気中で作動させることが可能であった。

(E-11)

実施例12

発光物質として下記式(B-12)で示される化合物

た.

(E-7)

実施例14

厚さ1.1mmの無アルカリ硼硅酸ガラスを基板として用い、十分に洗浄を行なった後陽極として金を約200人素者した。次に正孔輸送層として下記式(T-2)で表わされる化合物を真空蒸着により蒸港し、800人の正孔輸送層を形成した。

(T-2)

次いで発光層として12-フタロペリノン誘導体

を約1500人の厚さに蒸着した。更に電子輸送層と してペリレン誘導体

を約1000 A その上に蒸着形成した。更にその上に 陰極としてアルミニウムを約1000 A 蒸着し、第1 図のような構造の素子を作製した。なお材料は、 すべて抵抗加熱により蒸着させた。陽極及び陰極 よりりード線を引き出し、直流電流源に接続して 電流を通じたところ、明瞭がEL-発光が期割され た。

実施例15

正孔輸送物質として下記式(T-3)で示される化合物を用いた以外は実施例14と同様にして発光素子を作製した。得られた発光素子は陽極側にプラスのパイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は温度を十分に除去した状 像において空気中で作動させることが可能であっ

合物を用いた以外は実施例14と関様にして発光素子を作製した。得られた発光素子は陽極側にプラスのパイアス電圧を印加した場合に明瞭な発光を 呈した。

更に、この発光素子は温度を十分に除去した状態において空気中で作動させることが可能であった。

(T-5)

実施例18

正孔輸送物質として下記式(T-6)で示される化合物を用いた以外は実施例14と同様にして発光素子を作製した。得られた発光素子は陽極側にプラスのバイアス電圧を印加した場合に明瞭な発光を 呈した。

更に、この発光素子は温度を十分に除去した状 態において空気中で作動させることが可能であっ た。 た・

(T-3)

$$H_3C-\bigcirc -CH=CH-\bigcirc -N-\bigcirc -N$$
 C_3H_4

実施例16

正孔輸送物質として下記式(T-4)で示される化合物を用いた以外は実施例14と四様にして発光素子を作製した。 得られた発光素子は陽極例にプラスのパイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は温度を十分に除去した状態において空気中で作動させることが可能であった。

(T-4)

実施例17

正孔輸送物費として下記式(T-5)で示される化

(T-6)

$$\bigcirc -N \bigcirc -N < C_x H_s$$

実施例19

正孔輸送物質として下記式(T-7)で示される化合物を用いた以外は実施例14と同様にして発光業子を作製した。得られた発光素子は陽極側にプラスのパイアス電圧を印加した場合に明瞭な発光を最した。

更に、この発光素子は温度を十分に除去した状態において空気中で作動させることが可能であった。

(7-7)

実施例20

正孔輸送物質として下記式(T-8)で示される化 合物を用いた以外は実施例14と同様にして発光素 子を作製した。得られた発光素子は陽極側にプラスのパイアス電圧を印加した場合に明瞭な発光を 呈した。

更に、この発光素子は極度を十分に除去した状態において空気中で作動させることが可能であった。

(T-8)

$$O = CH - O - N < CH_1 - O - C$$

$$CH_2 - O - C$$

実施例21

正孔輸送物質として下記式(T-9)で示される化合物を用いた以外は実施例14と同様にして発光素子を作製した。得られた発光素子は陽極偏にプラスのバイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は湿度を十分に除去した状 態において空気中で作動させることが可能であっ た。

本発明の電界発光素子は有機化合物層の構成材料として前記一般式(I)又は一般式(I)で示される化合物を用いたことから、低い駆動電圧でも長期間にわたって輝度の高い発光を得ることが出来ると共に種々の発色色調を呈し、しかもその耐久性にも優れたものである。

4. 図面の簡単な説明

第1回~第3回は本発明に係る代表的な電界発光 素子の模式断面図である。

> 特許出願人 株式会社 リ コ ー 代 選 人 弁 理 士 池 補 敏 明 (ほか1名)

(T-9)

実施例22

正孔線送物質として下記式(T-10)で示される化合物を用いた以外は実施例14と同様にして発光素子を作製した。得られた発光素子は階極側にプラスのバイアス電圧を印加した場合に明瞭な発光を呈した。

更に、この発光素子は湿度を十分に除去した状態において空気中で作動させることが可能であった。

(T-10)

(発明の効果)

第 2 図

