Laboratorio Errori

Samuele Barrago, Daniele Sacco, Lorenzo Livio Vaccarecci

1 Primo esercizio

In questo esercizio vogliamo calcolare tramite la matricola del primo componente in ordine alfabetico, due semplici operazioni aritmetiche: a+(b+c) e (a+b)+c utilizzando variabili di tipo double.

1.1 Calcolo di a, b, c

Usando la matricola 5703117, indichiamo con d_0 l'ultima cifra della matricola e con d_1 la penultima.

$$a = (d_0 + 1) \cdot 10^i \text{ con } i = 0, 1, \dots, 6$$

 $b = (d_1 + 1) \cdot 10^{20}$
 $c = -b$

1.2 Analisi dei risultati

I risultati ottenuti sono i seguenti: $a=6.66667\cdot 10^6,\,b=8\cdot 10^{20}$ e $c=-8\cdot 10^{20}$.

$$(a+b) + c = 6.68467 \cdot 10^6$$

 $a + (b+c) = 6.66667 \cdot 10^6$

Come si può notare, i risultati sono diversi, ma non di molto.

Sappiamo che usando il tipo double, abbiamo la precisione di macchina: $u=2^{-52}\simeq 2.2\cdot 10^{-16}$ e questo è l'errore massimo che si può commettere.

Procediamo al calcolo dell'errore relativo:

$$\varepsilon_{relativo} = \left| \frac{6.68467 \cdot 10^6 - 6.66667 \cdot 10^6}{6.68467 \cdot 10^6} \right| = \frac{1.8 \cdot 10^4}{6.68467 \cdot 10^6} = 0.2693 \cdot 10^{-2}$$

2 Secondo esercizio

Consideriamo come valore "corretto" il valore restituito dalla funzione $\exp()$ della libreria standard di C++.

• Errore assoluto: |Taylor - exp|

• Errore relativo: $\left| \frac{Taylor - exp}{exp} \right|$

Alg	x	N	Taylor	$\exp()$	Errore assoluto	Errore relativo
1	0.5	3	1.64583	1.64872	0.00289	0.00175
1	0.5	10	1.64872	1.64872	0	0
1	0.5	50	1.64872	1.64872	0	0
1	0.5	100	1.64872	1.64872	0	0
1	0.5	150	1.64872	1.64872	0	0
1	30	3	4981	$1.06865 \cdot 10^{13}$	$1.06865 \cdot 10^{13}$	0.99999
1	30	10	$2.3883 \cdot 10^{8}$	$1.06865 \cdot 10^{13}$	$1.06863 \cdot 10^{13}$	0.99998
1	30	50	$1.06833 \cdot 10^{13}$	$1.06865 \cdot 10^{13}$	$3.2 \cdot 10^9$	$2.99443 \cdot 10^{-4}$
1	30	100	$1.06865 \cdot 10^{13}$	$1.06865 \cdot 10^{13}$	0	0
1	30	150	$1.06865 \cdot 10^{13}$	$1.06865 \cdot 10^{13}$	0	0
1	-0.5	3	0.604167	0.606531	0.00236	0.00390
1	-0.5	10	0.606531	0.606531	0	0
1	-0.5	50	0.606531	0.606531	0	0
1	-0.5	100	0.606531	0.606531	0	0
1	-0.5	150	0.606531	0.606531	0	0
1	-30	3	-4079	$9.35762 \cdot 10^{-14}$	4079	$4.35901 \cdot 10^{16}$
1	-30	10	$1.21255 \cdot 10^8$	$9.35762 \cdot 10^{-14}$	121255000	$1.29579 \cdot 10^{21}$
1	-30	50	$8.78229 \cdot 10^8$	$9.35762 \cdot 10^{-14}$	878229000	$9.38517 \cdot 10^{21}$
1	-30	100	$-3.42134 \cdot 10^{-5}$	$9.35762 \cdot 10^{-14}$	$3.42134 \cdot 10^{-5}$	365620746.4
1	-30	150	$-3.42134 \cdot 10^{-5}$	$9.35762 \cdot 10^{-14}$	$3.42134 \cdot 10^{-5}$	365620746.4
2	-0.5	3	0.607595	1.64872	1.04113	0.63147
2	-0.5	10	0.606531	1.64872	1.04219	0.63212
2	-0.5	50	0.606531	1.64872	1.04219	0.63212
2	-0.5	100	0.606531	1.64872	1.04219	0.63212
2	-0.5	150	0.606531	1.64872	1.04219	0.63212
2	-30	3	0.000201	$1.06865 \cdot 10^{13}$	1.06865×10^{13}	1
2	-30	10	$1.31395 \cdot 10^{-8}$	$1.06865 \cdot 10^{13}$	1.06865×10^{13}	1
2	-30	50	$9.36248 \cdot 10^{-14}$	$1.06865 \cdot 10^{13}$	1.06865×10^{13}	1
2	-30	100	$9.35762 \cdot 10^{-14}$	$1.06865 \cdot 10^{13}$	1.06865×10^{13}	1
2	-30	150	$9.35762 \cdot 10^{-14}$	$1.06865 \cdot 10^{13}$	1.06865×10^{13}	1

3 Terzo esercizio

Il più grande numero intero positivo d tale che

$$1 + 2^{-d} > 1$$

è:

- \bullet Doppia precisione: d=53
- Singola precisione: d = 24