Base Graphics (part 3)

Graphics

Gaston Sanchez

CC BY-NC-SA 4.0

R Coding Compendium

About

This is the third part on the traditional system for creating graphics in R.

Plots from scratch

Customizing Annotations

It is also possible to create a plot from scratch. Although this procedure is less documented, it is extremely flexible and powerful:

- call plot.new() to start a new plot frame
- call plot.window() to define coordinates
- then call low-level functions:
- typical options involve axis()
- ▶ then title() (title, subtitle)
- ▶ after that call other function: e.g. points(), lines(), etc

```
plot.new()
plot.window(xlim = c(0, 10), ylim = c(-2, 4), xaxs = "i")
axis(side = 1, col.axis = "grey30")
axis(side = 2, col.axis = "grey30", las = 1)
title(main = "Main Title",
      col.main = "tomato",
      sub = "Plot Subtitle",
      col.sub = "orange",
      xlab = "x-axis".
      vlab = "v-axis",
      col.lab = "blue",
      font.lab = 3)
box("figure", col = "grey90")
```



```
set.seed(5)
x \leftarrow rnorm(200)
y \leftarrow x + rnorm(200)
plot.new()
plot.window(xlim = c(-4.5, 4.5), xaxs = "i",
             ylim = c(-4.5, 4.5), yaxs = "i")
z \leftarrow lm(y \sim x)
abline(h = -4:4, v = -4:4, col = "lightgrey")
abline(a = coef(z)[1], b = coef(z)[2], lwd = 2, col = "red")
points(x, y)
axis(side = 1)
axis(side = 2, las = 1)
box()
title(main = "A Fitted Regression Line")
```

A Fitted Regression Line

Creating a Plot from Scratch

- Start a new plot with plot.new()
- ▶ plot.new() opens a new (empty) plot frame
- plot.new() chooses a default plotting region

Setting Up Coordinates

After starting with plot.new(), use plot.window() to set up the coordinate system for the plotting frame

```
# axis limits (0,1)x(0,1)
plot.window(xlim = c(0, 1), ylim = c(0, 1))
```

By default plot.window() produces axis limits which are expanded by 6% over those actually specified.

The default limits expansion can be turned-off by specifying xaxs = "i" and/or yaxs = "i"

```
plot.window(xlim, ylim, xaxs = "i")
```

Aspect Ratio Control

Another important argument is asp, which allows us to specify the **aspect ratio**

```
plot.window(xlim, ylim, xaxs = "i", asp = 1)
```

asp = 1 means that unit steps in the x and y directions produce equal distances in the x and y directions on the plot.

(Important for avoiding distortion of circles that look like ellipses)

Drawing Axes

The 'axis() function can be used to draw axes at any of the four sides of a plot.

- side = 1 below the graph
- ▶ side = 2 to the left of the graph
- side = 3 above the graph
- ▶ side = 4 to the right of the graph

Customizing Axes

Axes can be customized via several arguments (see ?axis)

- location of tick-marks
- ► labels of axis
- colors
- sizes
- text fonts
- text orientation

Plot Annotation

The function title() allows us to include labels in the margins

- main main title above the graph
- sub subtitle below the graph
- xlab label for the x-axis
- ylab label for the y-axis

Customizing Annotations

The annotations can be customized with additional arguments for the fonts, colors, and size (expansion)

- ▶ font.main, col.main, cex.main
- ▶ font.sub, col.sub, cex.sub
- font.lab, col.lab, cex.lab

Drawing Arrows

Arrows can be drawn with the function:

```
arrows(x0, y0, x1, y1, code = int,
    length = num, angle = num)
```

- ► The x0, y0, x1, y1 arguments give the start and end coordinates.
- code=1 head at the start, code=2 head at the end, code=3 head at both ends
- length of the arrow head and angle to the shaft

Drawing Arrows

```
plot.new()
plot.window(xlim = c(0, 1), ylim = c(0, 1))
arrows(0.05, 0.075, 0.45, 0.9, code = 1)
arrows(0.55, 0.9, 0.95, 0.075, code = 2)
arrows(0.1, 0, 0.9, 0, code = 3)
text(0.5, 1, "A", cex = 1.5)
text(0, 0, "B", cex = 1.5)
text(1, 0, "C", cex = 1.5)
```


Drawing Rectangles

Rectangles can be drawn with the function:

```
rect(x0, y0, x1, y1, col = str, border = str)
```

- ➤ x0, y0, x1, y1 give the coordinates of diagonally opposite corners of the rectangles/
- col specifies the color of the interior.
- border specifies the color of the border/

Plotting Regions

Adjusting the Margins

Margins can be adjusted with the par() function in various ways:

- ▶ In inches: par(mai = c(2, 2, 1, 1))
- In lines of text: par(mar = c(4, 4, 2, 2))
- ► Width and Height in inches: par(pin = c(5, 4))

```
# simple scatter-plot
op \leftarrow par(mar = c(5, 4, 3, 1))
plot(mtcars$mpg, mtcars$hp, type = "n", las = 1,
     xlab = "miles per gallon", ylab = "horsepower")
# grid lines
abline(v = seq(from = 10, to = 30, by = 5), col = 'gray')
abline(h = seq(from = 50, to = 300, by = 50), col = 'gray')
# points
points(mtcars$mpg, mtcars$hp, pch = 19, col = "blue")
# text (point labels)
text(mtcars$mpg, mtcars$hp, labels = rownames(mtcars),
    pos = 4, col = "gray50")
# t.i.t.l.e.
title("Miles Per Galon -vs- Horsepower")
# reset graphical margins
par(op)
```

Miles Per Galon -vs- Horsepower

Donation

If you find any value and usefulness in this set of slides, please consider making a one-time donation in any amount (via paypal). Your support really matters.

Donate

https://www.paypal.com/donate?business=ZF6U7K5MW25W2¤cy_code=USD