UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

SEL0630 - Aplicações de Microprocessadores II R3V - Remote 3D Viewer

Autor(es): Davi Diório Mendes 7546989

Henrique Alberto Rusa 7593714

Professor: Evandro Luis Linhari Rodrigues

Resumo

Texto em um parágrafo apenas - deve conter "tudo"resumidamente (introdução, método(s), resultados e conclusões), de tal forma que seja possível compreender a proposta e o que foi alcançado.

Palavras-Chave: palavra1, palavra2, palavra3, palavra4, palavra5.

Sumário

1	Intr	dução	7
	1.1	Objetivos	7
	1.2	Motivação (opcional)	8
	1.3	Justificativas/relevância(opcional)	8
	1.4	Organização do Trabalho(opcional)	8
2	Eml	asamento Teórico	9
	2.1	Estereoscopia	9
	2.2	Sistemas Embarcados	10
	2.3	Sistemas Distribuídos	10
	2.4	WebServices REST	10
	2.5	Dead Reckoning	11
	2.6	Rotação dos Eixos	11
3	Mat	riais e Métodos	13
	3.1	Materiais	13
		3.1.1 Intel Galileo	13
		3.1.2 Smartphone Android	14
		3.1.3 IPCam	14
		3.1.4 Flask	15
	3.2	Métodos	16
		3.2.1 MJPEG	17
		3.2.2 Dead Reckoning	17
		3.2.3 Applicação Cliente	18
4	Resi	Itados e Discussões	19
	4 1	Streaming de Imagem	19

	4.2 Dead Reckoning	19
	4.3 Frontend	19
5	Conclusão ou Conclusões	21
A	Complementos importantes do texto	25
В	Apresentação do Trabalho	27
I	Anexo 1	29
II	Anexo 2	31
	§	

Introdução

Realmente introduz o leitor indicando quais são as direções do trabalho? apresenta o tema e o objeto do trabalho e contém as Referências do Estado da arte (quem está fazendo e em que nível os trabalhos da área estão hoje) [1].

Outra referência para a bibliografia [2].

Segundo [3] há uma sequência lógica para a redação da monografia como apresenta em [4]. Referência para a figura 1.1.

Figura 1.1: Logo da EESC.

1.1 Objetivos

Objetivos do trabalho.

1.2 Motivação (opcional)

Descrever a motivação do trabalho.

1.3 Justificativas/relevância(opcional)

Justificativa do trabalho.

1.4 Organização do Trabalho(opcional)

Este trabalho está distribuído em XXX capítulos, incluindo esta introdução, dispostos conforme a descrição que segue:

Capítulo 2: Descreve
Capítulo 3: Discorre sobre
Capítulo 4: Apresenta

Embasamento Teórico

Na fase de projeto do sistema R3V proposto foram elencados conhecimentos e fundamentos necessários para o desenvolvimento do mesmo. Com isso em mente, pode-se discursar melhor sobre os tópicos mais relevantes do sistema, permitindo que o leitor aprofunde-se devidamente para que, ao final, os objetivos do projeto sejam melhor discutidos e compreendidos.

Neste capítulo pretende-se analisar os conceitos de estereoscopia, sistemas embarcados, sistemas distribuídos e *dead reckoning*.

2.1 Estereoscopia

A simulação de imagens em três dimensões (visão espacial) é associada ao conceito da estereoscopia. Para isso, o cérebro humano necessita adiquirir duas imagens, cada qual com um leve deslocamento lateral (angular), e com estas calcular a profundidade dos objetos.

Existem também técnicas de percepção do espaço tri-dimensional que avaliam sombras, sobreposição de objetos numa cena e vários outros parâmetros, possibilitando verificar a disposição dos elementos no espaço.

Entretanto, existe uma diferença fundamental entre percepção e simulação do espaço tri-dimensioanl para o usuário, apresentadas a seguir.

- Percepção Tri-dimensonal: O usuário consegue perceber a disposição dos elementos numa imagem (profundidade relativa, distância relativa entre objetos) somente a partir da análise de uma imagem que possui indicativos como sombra, iluminação e outros.
- Simulação Tri-dimensonal: O usuário tem a sensação de que os objetos possuem dimensões reais, com tamanho e profundidade bem definidos; a distância entre elementos é percebida,

entretanto não mais pela sombra, mas pela própria projeção da simulação em si.

Portanto, enquanto o usuário pode perceber a terceira dimensão em valores relativos (objetos mais próximos ou mais afastados, maiores ou menores), a simulação do espaço tri-dimensioanl é realizada pela sobreposição de imagens com mesmo ponto focal mas deslocadas levemente uma da outra, possibilitando a reconstrução, pelo cérebro, da profundidade dos elementos.

2.2 Sistemas Embarcados

Segundo White (2011, p.1) a definição de sistemas embarcados varia de pessoas para pessoas. Para alguém acostumado a lidar com servidores, programação para dispositivos móveis pode ser considerada como um desenvolvimento embarcado. Por outro lado, para aquele acostumado a trabalhar com microcontroladores de 8-bits, qualquer coisa com um sistema operacional não parece muito embarcado. Mas ela enuncia a definição: "um sistema embarcado é um sistema computadorizado construído propositadamente para sua aplicação" citar aqui.

Desta forma podemos realçar a diferença entre sistemas computacionais e sistemas embarcados. Enquanto sistemas computacionas são desenvolvidos para atuar em computadores de propósito geral, sistemas embarcados são desenvolvidos de forma a serem embarcados em *hardware* com propósitos específicos, visando a aplicação.

2.3 Sistemas Distribuídos

Sistemas distribuídos é algo de difícil definição. Cada autor utiliza uma definição diferente, embora todas remetam que há computadores, ou outro dispositivo com capacidade de processamento, trabalhando em conjunto. Vamos tomar por definição: "Um sistema distribuído é aquele no qual os componentes localizados em computadores interligados em rede se comunicam e coordenam suas ações apenas passando mensagens." (COULOURIS, 2007, p. 15).

2.4 WebServices REST

Hoje a internet não é mais simplesmente uma ferramenta de difusão de informação. Diversos serviços são prestados através dos *Web Services*. Normalmente envolvem um processo burocrático rigoroso, como requisições SOAP ou outros tipos de mensagem, conforme o protocolo seguido. A idéia de um *WebService REST* é de prover serviços diretamente sobre o protocolo HTTP, sem a necessidade de adicionar uma camada de protocolo de serviço. Serviços *REST* estão se popularizando cada vez mais, dada a baixa complexidade do sistema e fácil integração por parte dos usuários.

2.5 Dead Reckoning

A tecnologia provê diversos sistemas de posicionamento por sensores, *beacons* (referências fixas no espaço), equivalência entre mapas e outros. Entretanto, pode-se distinguir duas metodologias utilizadas: posicionamento relativo e absoluto.

- Absoluto: Se vale de técnicas de sensoreamento com referências fixas, previamente implementadas, o que adiciona um custo muito alto para cosntrução e manutenção destes sistemas espalhados pelo terreno em questão.
- Relativo: Propõe uma formulação mais elegante, se valendo de sensores e parâmetros intrínsecos da implementação. Com isso, pode-se estimar a posição atual do elemento de acordo com movimentações perceptíveis ao sistema.

Dead reckoning é uma implementação de posicionamento relativo que permite o programador avaliar os diversos sensores para se estimar a localização entre os períodos de tempos avaliados. Note que as duas implementações de posicionamento possuem suas vantagens e desvantagens, sendo que uma estimativa de localização (posição relativa) adiciona erros às medidas, enquanto que a outra possui as referências extremamente precisas (posição absoluta).

2.6 Rotação dos Eixos

A decomposição dos movimentos de rotação de um usuário utilizando um óculos de virtualização é realizada com movimentos angulares, descritas pelos valores *pitch*, *yaw* e *roll*.

A figura 2.1 apresenta a orientação das rotações descritas anteriormente.

Figura 2.1: Representação dos movimentos de visão de um usuário (visto em: https://s3.amazonaws.com/static.oculus.com/website/2013/05/oculus_head_model.jpg)

Materiais e Métodos

Neste seção irá se discursar sobre os materiais e métodos utilizados no desenvolvimento do projeto *R3V*. Os materiais englobam todos os dispositivos físicos e produtos lógicos (bibliotecas de código, etc) utilizados no desenvolvimento do projeto proposto. Os métodos apresentam como e por meio de qual técnica alguns processos do sistema foram desenvolvidos, abstraindo o produto e focando na maneira com que foi implementado.

3.1 Materiais

A seguir são apresentados os materiais relevantes para o projeto proposto (*R3V*), sendo eles: placa de desenvolvimento Intel Galileo, *smarthphone Android*, IPCam (câmera controlada por rede) e Flask (servidor python).

3.1.1 Intel Galileo

A placa de desenvolvimento Intel[®] Galileo (figura 3.1), projetada e vendida pela Intel[®], foi criada com base no processador Intel[®] Quark SoC X1000 de aplicação com o intuito de ser compatível com os *shields* de Arduino.

O processador provê para o usuário final uma arquitetura de 32 bits e *clock* de 400 MHz, conectores Ethernet 10/100, PCI-Express *mini-card*, USB 2.0, USB cliente (usado para programação) e botões de *reboot* e *reset*.

Como apresentado anteriormente, a placa possui diversas interfaces de conexão para viabilizar a comunicação com um computador, outro Arduino e até outros microcontroladores.

A Galileo suporta programação através da IDE do Arduino como também a utilização de um sistema operacional embarcado instalado em seu *hardware*.

Galileo Front Galileo Back

Figura 3.1: desenvolvimento Galileo Imagem de vida placa são frontal (Galileo Front), visão de trás (Galileo Back) (visto em: http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-g1-datasheet.html)

A sua aplicação dentro do projeto desenvolvido é prover um *webservice* REST através do *framework* Flask.

3.1.2 Smartphone Android

Atualmente, os *smartphones* Android vem sendo uma ótima plataforma para desenvolvimento. Já integrado com diversos sensores e dispositivos de entrada e saída; como acelerômetro, GPS, câmera, microfone, sistema de som, tela, entre outros; além de disponibilizar uma sólida ferramenta de desenvolvimento, a Android SDK.

Dos *hardwares* providos pelo *smartphone* foi utilizado na aplicação os sensores inerciais, a fim de obter os angulos de euler da orientação do dispositivo; a tela, para a exibição da interface gráfica e a conexão *wifi*, para comunicação com a Intel Galileo. A forma como estes recursos foram utilizados será abordada na exposição da aplicação Android.

3.1.3 IPCam

Para o *streaming* de video, uma câmera IP foi utilizada afim de disponibilizar um serviço em rede e desacoplar o dispositivo do servidor (placa de desenvolvimento Intel[®] Galileo). Este *hardware* provê, através de um protocolo *http*, um serviço que executa diversas operações através de *scripts* CGI. As intertfaces CGI da câmera apresentam três níveis diferenciados de permissão, sendo eles: visitante, operador e administrador. A funcionalidade utilizada pelo projeto somente requisitou acesso de operador (usuário e senha fornecidos pelo professor).

Além de serviços de video, a câmera em questão possui *scripts* para monitoramento, detecção de movimento, movimentação da mesma e diversos outros.

O projeto R3V utilizou-se de dois scripts, chamados: decoder_control.cgi e videostream.cgi.

O *script videostream.cgi* realiza a captura e envio do video através da rede para o cliente, enquanto que o *decoder_control.cgi* controla a movimentação da câmera em sua base. Abaixo (tabela 3.1) se destaca os comandos de movimentação que foram utilizados no projeto.

Tabela 3.1: Comandos utilizados no projeto R3V da câmera IPCam FOSCAM

Comando	Descrição
0	Move a câmera para baixo
2	Move a câmera para cima
4	Move a câmera para a esquerda
6	Move a câmera para a direita
25	Coloca a câmera no seu centro (implementação própria)
90	Move a câmera para a diagonal esquerda inferior
91	Move a câmera para a diagonal direita inferior
92	Move a câmera para a digonal esquerda superior
93	Move a câmera para a diagonal direita superior

Para mais informações sobre o funcionamento da câmera utilizada consulte o manual do fabricante: [5].

3.1.4 Flask

"O Flask é um microframework para python, baseado no *Werkzeug*, *Jinja2* e boas intenções" **referência para página do flask**. Com o *Flask* podemos facilmente criar um *backend* para processar as requisições à Intel Galileo, implementando assim um *WebService* REST.

Para utilizarmos o Flask, atrelamos um método python a uma determinada URL. Assim conseguimos recuperar dados transmitidos através da requisição HTTP, processá-los e retornarmos uma resposta. Através do Flask, o R3V provê três serviços: *streaming* de vídeo de uma câmera IP, movimentação desta câmera e *dead reckoning* do movimento da câmera. A seguir abordamos melhor o provisionamento de cada um destes serviços.

Através da URL <*endereço_da_intel_galileo*>/camstream/ provemos o serviço de *streaming* de vídeo. Este endereço retorna um *stream* MJPEG ouseja, uma sequência de imagens JPEG. Este serviço recupera as imagens da câmera pelo mesmo serviço de MJPEG. Desta forma ele atua somente como um *proxy*, encapsulando o serviço de *stream* de vídeo da própria câmera IP.

Através da URL <*endereço_da_intel_galileo*>/camposition/cam_step/?move=<direção> provemos o serviço de movimentação da câmera IP em passos de cinco graus. No parâmatro direção deve-se informar o código da direção que se deve atuar. As direções são mapeadas conforme a tabela 3.2.

Tabela 3.2: XABLAU

Taucia 3.2. AADLAU		
Código	Direção	
0	abaixo	
2	acima	
4	esquerda	
6	direita	
90	diagonal esquerda abaixo	
91	diagonal direita abaixo	
92	diagonal esquerda acima	
93	diagonal direita acima	

Através da URL <*endereço_da_intel_galileo*>/camposition/set_zero/ inicializamos o sistema de *dead reckoning* do movimento da câmera, tomando a posição atual da câmera como zero graus de rotação em torno do eixo *x* e zero graus de rotação em torno do eixo *y*.

Através da URL <endereço_da_intel_galileo>/camposition/?pitch=<x>&yaw=<y> provemos o serviço de movimentação da câmera com dead reckoning do movimento. No parâmetro x deve-se atribuir qual a posição angular desejada em torno do eixo x. No parâmetro y deve-se atribuir qual a posição angular desejada em torno do eixo y. O serviço de movimentação por dead reckoning só aceita posições angulares para pitch entre 80 e -30 graus e posições angulares para yaw entre 100 e -100 graus.

Desta forma temos a Intel Galileo provendo os servições de *streaming*, *movimentação* e *dead reckoning* da posição de uma câmera IP.

3.2 Métodos

No desenvolvimento de um projeto várias técnicas são utilizadas para implementar diversos componentes necessários para o correto funcionamento do sistema, tendo em vista eficiência e qualidade no produto final.

Nesta seção serão apresentados todos os métodos, implementações e comportamentos dos componentes desenvolvidos para se construir o sistema R3V. Com isso, irá se discursar um pouco sobre

streaming de video (MJPEG), mapeamento de movimento (dead reckoning) e o servidor desenvolvido.

3.2.1 MJPEG

3.2.2 Dead Reckoning

Uma das estruturas fundamentais do comportamento geral do sistema R3V se compõe do mapeamento e controle dos movimentos do usuário, afim de proporcionar uma fluidez na movimentação da câmera no lado da IPCam.

Utilizando os conceitos de *dead reckoning* (posicionamento de acordo com leitura de sensores e estimativa de movimento), uma transformação matemática foi aplicada aos resultados do sensor inercial (acelerômetro) adiquiridos através do aplicativo do *smartphone*, resultando em um discretização do espaço de visão do usuário. Isso se deve ao fato de que a IPCam possui somente movimentos bem definidos e não responde a movimentos fora de seus comandos pré-definidos.

Através do SDK do Cardboard da Google[®] foi possível adiquirir os movimentos angulares denominados pitch e yaw, que correspondem a movimentos em torno de um eixo bem definido (eixo x e y respectivamente).

A transformação realizou a conversão do movimento para um valor da superfície de uma esfera (quadrante), por meio de uma função trigonométrica. Assim

$$arctan(\frac{y}{x}) \qquad x > 0$$

$$arctan(\frac{y}{x}) + \pi \quad x < 0 \text{ and } y \ge 0$$

$$arctan(\frac{y}{x}) - \pi \quad x < 0 \text{ and } y < 0$$

$$\frac{\pi}{2} \qquad x = 0 \text{ and } y > 0$$

$$-\frac{\pi}{2} \qquad x = 0 \text{ and } y < 0$$

$$undefined \qquad x = 0 \text{ and } y = 0$$

O resultado de arctan2(x,y) retorna um valor entre $[-\pi,\pi]$. Este valor apresenta o quadrante o qual a visão do usuário está olhando no momento. Portanto, foi possível discretizar o espaço do campo de visão em segmentos, onde o mapeamento da visão possibilita, através dos comandos padrões da câmera IPCam, simular um movimento natural do usuário no dispositivo ligado em rede.

Uma ressalva a se fazer a este método é que o sistema necessita armazenar o valor da última posição para que se possa realizar o cálculo do deslocamento angular da câmera. Com isso, foi possível se rastrear e mapear o campo de visão com o movimento do usuário.

3.2.3 Applicação Cliente

A android SDK provê meios de criar interfaces gráficas, desenvolver aplicativos internacionalizáveis (em diversas línguas), aplicativos com processamento paralelo, comunicação interprocesso, conexão com servidores HTTP, e muitas outras funcionalidades. Neste projeto nos interessa a criação de uma interface gráfica para utilizar o *smartphone* no Google Cardboard, o acesso aos sensores inerciais (acelerômetro, giroscópio e magnetômetro) e a comunicação com servidores HTTP.

Para a interface gráfico, o necessário é podermos exibir uma imagem em cada metade da tela, com o celular em orientação paisagem. Ambas as imagens deve ser a mesma, de forma a dar o aspecto tridimensional quando no *cardboard*. Para nos beneficiarmos de algumas facilidades da *Cardboard SDK*, discutidas adiante, foi necessário manter a interface de renderizador gráfico da *cardboard*, mas uma nova interface foi sobreposta sobre a padrão. No código fonte.

Resultados e Discussões

Aqui se mostra o que o trabalho permitiu produzir, e às vezes o que pode ser comparado com outros trabalhos - aqui ficam claras se as propostas do trabalho são relevantes ou não, pois devem permitir a discussão do trabalho.

Deve responder: Os resultados estão claros em bom número (nem muito nem pouco) que permitam avaliar realmente a proposta e o que foi produzido.

- 4.1 Streaming de Imagem
- 4.2 Dead Reckoning
- 4.3 Frontend

Conclusão ou Conclusões

"Fecha"com os objetivos? (respondem aos objetivos?)

Valorizam (ou não) o trabalho realizado. Normalmente é uma parte do trabalho "um pouco desprezada", pois o autor já está "cansado....".

Mas é aqui o lugar que se pode medir se o trabalho tem ou não valor.

Trabalhos futuros

É uma orientação sobre as possibilidades de continuação do desenvolvimento do trabalho.

Referências Bibliográficas

- [1] Autor da referência 1. Título da referência 1, 2007.
- [2] Google. http://www.google.com.br/, Acesso em: 04 de dezembro de 2014.
- [3] E.L.L. Rodrigues. Dicas, cuidados e orientações para a elaboração de texto para tcc, 2015.
- [4] Enzo Bertini Vieira e Lara Bertini Vieira. Sistema autônomo de vigilância baseado em dados biológicos com registro de dados na nuvem via smartphone, 2014.
- [5] Shenzhen Foscam Technology. IP Camera CGI. 37 pp.

Apêndice A

Complementos importantes do texto

Observe as diretrizes de redação no site do Depto.

http://www.sel.eesc.usp.br/informatica/graduacao/tcc/tcc_-_diretrizes_EESC_v_2010.pdf).

Aqui são colocadas as informações de autoria própria, porém entendidas como complemento da informação contida no corpo do trabalho. São colocadas aqui para não "carregar"demais o texto.

Atenção para as **Referências Bibliográficas**: todas as referências citadas no texto. Observar as Diretrizes, pois lá estão os formatos corretos de citação.

Outras observações IMPORTANTES (leia isso com atenção)

NUNCA copie texto de outro autor sem a devida forma de citação (ver em diretrizes); a cópia configura plágio! Com a Internet e/ou outras ferramentas dedicadas, é muito fácil identificar se houve cópia de texto.

- ⇒ figura que não é de sua autoria deve conter a fonte;
- ⇒ no texto, toda primeira vez que aparecer algum protocolo, procedimento, nome técnico, sigla, abreviatura, etc, além de explicar o que é, é necessário citar a referência. Exemplo: ...um giroscópio (referência) é um tipo de sensor...
- ⇒ capriche nas figuras (uma figura bem composta quase não precisa de texto para explicá-la);
- ⇒ procure manter uma "uniformidade de notação"para o texto todo;
- ⇒ não tenha medo de citar os trabalhos de outros autores (isso é imprescindível);
- ⇒ evite muitas referências de sites, pois são voláteis;

- ⇒ NÃO USE O WIKIPEDIA COMO REFERÊNCIA;
- \Rightarrow todas as palavras escritas em inglês (ou em outras línguas) devem estar em itálico;
- ⇒ todas as figuras e tabelas devem ser referenciadas no texto;
- ⇒ todas as obras citadas nas referências bibliográficas devem estar citadas no texto;
- ⇒ códigos de programas devem estar em Apêndices, pois servem para comprovar o desenvolvimento e facilitar a reprodução do trabalho;

Apêndice B

Apresentação do Trabalho

Como tem-se até 30 minutos para fazer a apresentação deve-se dimensionar a quantidade de slides para isso. Cada um tem seu "timming"com relação à quantidade de informação versus tempo disponível para apresentação.

Os slides devem ser sempre muito mais visuais que textuais, ou seja, não se deve colocar frases e "ficar lendo"as mesmas. Os slides devem apresentar uma forma "clean"para que sirva apenas de guia para a apresentação do trabalho.

Não carregue de texto os slides...

Anexo I

Anexo 1

Material que não é de sua autoria, mas que são importantes e devem fazer parte da monografia para auxiliar e esclarecer o leitor;

Anexo II

Anexo 2

Texto do Anexo 2.