Homework 4 Hodgkin & Huxley Model

Stefan Röhrl

Technische Universität München, Arcisstraße 21, Munich, Germany Email: stefan.roehrl@tum.de

I. TIME CONSTANTS AND STEADY STATE VALUES

Wie in der Vorlesung gezeigt wurde gelten für die Gating Variablen folgende Differentialgleichung mit $x \in \{m, n, h\}$

$$\dot{x} = -(\alpha_x + \beta_x) \cdot \left(x - \frac{\alpha_x}{\alpha_x + \beta_x}\right) \tag{1}$$

Möchte man Gleichung (1) nun auf die Form aus der Angabe bringen, ergeben sich für τ_x und x_∞ folgende Gleichungen:

$$\tau_x = \frac{1}{\alpha_x + \beta_x} \tag{2}$$

$$x_{\infty} = \frac{\alpha_x}{\alpha_x + \beta_x} \tag{3}$$

Figure 1. Zeitkonstanten τ_{∞} über V bei $6.3^{\circ}C$

II. HODGKIN & HUXLEY NEURON MODEL

- 1) bla
- 2) bla

Figure 2. Zeitkonstanten τ_x über V bei $28^{\circ}C$

Figure 3. Steady State Gating Variablen x_{∞} bei $6.3^{\circ}C$ und $28^{\circ}C$

Figure 4. Stimulusstromdichte bei $6.3^{\circ}C$

Figure 5. Membran
potential bei $6.3^{\circ}C$

Figure 6. Gating Konstanten bei $6.3^{\circ}C$

Figure 7. Stromdichten bei $6.3^{\circ}C$

Figure 8. Phasenportrait bei $6.3^{\circ}C$

Figure 9. Stimulusstromdichte bei $28^{\circ}C$

Figure 10. Membran
potential bei $28^{\circ}C$

Figure 11. Gating Konstanten bei $28^{\circ}C$

Figure 12. Stromdichten bei $28^{\circ}C$

Figure 13. Phasenportrait bei $28^{\circ}C$