

Inexact proximal-gradient algorithm in the Wasserstein space: links and differences from the Hilbert case

Emanuele Naldi

(Joint work with Simone Di Marino and Silvia Villa)

MaLGa- Machine learning Genova Center University of Genoa

18 September 2025

Outline

Inexact JKO

Inexact proximal-gradient

Towards nonexpansivity of the proximal map

Inexact JKO

Given $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ consider

$$J_{\tau}(\mu) = \operatorname*{arg\,min}_{\nu \in \mathcal{P}_2(\mathbb{R}^d)} \mathcal{G}(\nu) + \frac{1}{2\tau} W_2^2(\nu, \mu), \tag{1}$$

and the algorithm defined by $\mu_{n+1} \approx J_{\tau}(\mu_n)$.

Inexact proximal point algorithm

Inexact proximal point algorithm

Given $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ consider

$$J_{\tau}(\mu) = \underset{\nu \in \mathcal{P}_2(\mathbb{R}^d)}{\arg \min} \mathcal{G}(\nu) + \frac{1}{2\tau} W_2^2(\nu, \mu), \tag{1}$$

and the algorithm defined by $\mu_{n+1} = J_{\tau}(\mu_n)$.

Given $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ consider

$$J_{\tau}(\mu) = \underset{\nu \in \mathcal{P}_2(\mathbb{R}^d)}{\arg \min} \mathcal{G}(\nu) + \frac{1}{2\tau} W_2^2(\nu, \mu), \tag{1}$$

and the algorithm defined by $\mu_{n+1} = J_{\tau}(\mu_n)$.

Theorem (N., Savaré '22)

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ proper, lower semicontinuous, convex along generalized geodesics and $\arg\min \mathcal{G} \neq \emptyset$. Then the sequence $\mu_n \to \mu^* \in \arg\min \mathcal{G}$ narrowly.

Given $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ consider

$$J_{\tau}(\mu) = \underset{\nu \in \mathcal{P}_2(\mathbb{R}^d)}{\arg \min} \mathcal{G}(\nu) + \frac{1}{2\tau} W_2^2(\nu, \mu), \tag{1}$$

and the algorithm defined by $\mu_{n+1} = J_{\tau}(\mu_n)$.

Theorem (N., Savaré '22)

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ proper, lower semicontinuous, convex along generalized geodesics and $\arg\min \mathcal{G} \neq \emptyset$. Then $\mu_n \stackrel{w,2}{\longrightarrow} \mu^* \in \arg\min \mathcal{G}$.

Given $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ consider

$$J_{\tau}(\mu) = \underset{\nu \in \mathcal{P}_2(\mathbb{R}^d)}{\arg \min} \mathcal{G}(\nu) + \frac{1}{2\tau} W_2^2(\nu, \mu), \tag{1}$$

and the algorithm defined by $\mu_{n+1} = J_{\tau}(\mu_n)$.

Theorem (N., Savaré '22)

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ proper, lower semicontinuous, convex along generalized geodesics and $\arg\min \mathcal{G} \neq \emptyset$. Then $\mu_n \stackrel{w,2}{\rightharpoonup} \mu^* \in \arg\min \mathcal{G}$.

To prove this we used

- Opial property in Wasserstein spaces [N. and Savaré, 2022]
- Every lower semicontinuous and geodesically convex functional is sequentially lower semicontinuous w.r.t. the topology $\tau_{w.2}$ [N. and Savaré, 2022]

Topological setting

Let $C_2^w(\mathbb{R}^d)$ be the space defined by

$$C_2^w(\mathbb{R}^d) := \left\{ f: \mathbb{R}^d \to \mathbb{R} \ \big| \ f \ \text{is continuous and} \ \lim_{\|x\| \to \infty} \frac{f(x)}{1 + \|x\|^2} = 0 \right\},$$

endowed with the norm $\|f\|_{C_2^w(\mathbb{R}^d)}:=\sup_{x\in\mathbb{R}^d}\frac{|f(x)|}{1+\|x\|^2}.$ The space

$$\mathcal{M}_2(\mathbb{R}^d) = \left\{ \mu \in \mathcal{M}(\mathbb{R}^d) \mid \int_{\mathbb{R}^d} ||x||^2 d|\mu|(x) < +\infty \right\},\,$$

with the norm $\|\mu\|_{\mathcal{M}_2(\mathbb{R}^d)} = \int_{\mathbb{R}^d} 1 + \|x\|^2 d|\mu|(x)$ is the dual of $C_2^w(\mathbb{R}^d)$.

Topological setting

Let $C_2^w(\mathbb{R}^d)$ be the space defined by

$$C_2^w(\mathbb{R}^d) := \left\{ f: \mathbb{R}^d \to \mathbb{R} \ \big| \ f \ \text{is continuous and} \ \lim_{\|x\| \to \infty} \frac{f(x)}{1 + \|x\|^2} = 0 \right\},$$

endowed with the norm $\|f\|_{C_2^w(\mathbb{R}^d)}:=\sup_{x\in\mathbb{R}^d}\frac{|f(x)|}{1+\|x\|^2}.$ The space

$$\mathcal{M}_2(\mathbb{R}^d) = \left\{ \mu \in \mathcal{M}(\mathbb{R}^d) \mid \int_{\mathbb{R}^d} ||x||^2 \, d|\mu|(x) < +\infty \right\},\,$$

with the norm $\|\mu\|_{\mathcal{M}_2(\mathbb{R}^d)} = \int_{\mathbb{R}^d} 1 + \|x\|^2 d|\mu|(x)$ is the dual of $C_2^w(\mathbb{R}^d)$.

We consider the weak-* topology on this space restricted to $\mathcal{P}_2(\mathbb{R}^d)$. We denote the convergence by $\mu_n \stackrel{w,2}{\rightharpoonup} \mu$.

- The topology is finer than the narrow topology
- It implies convergence in p-Wasserstein distance for any $p \in [1, 2)$.

A generalized geodesic between $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$ (with base $\nu \in \mathcal{P}_2(\mathbb{R}^d)$) is a curve $(\mu_t)_{t \in [0,1]}$ in $\mathcal{P}_2(\mathbb{R}^d)$ defined by

$$\mu_t = (\pi_t^{2 \to 3})_{\#} \gamma \quad t \in [0, 1],$$

where $\pi_t^{2 \to 3} := (1-t)\pi^2 + t\pi^3$, $\gamma \in \Gamma(\nu, \mu_0, \mu_1)$, $\pi_\#^{1,2} \gamma \in \Gamma_{\mathrm{opt}}(\nu, \mu_0)$ and $\pi_\#^{1,3} \gamma \in \Gamma_{\mathrm{opt}}(\nu, \mu_1)$.

Definition (Convexity)

 $\mathcal G$ is convex along (generalized) geodesics if for every $\mu_0,\mu_1,\nu\in\mathcal P_2(\mathbb R^d)$ there exists a (generalized) geodesic $(\mu_s)_{s\in[0,1]}$ between μ_0 and μ_1 (with base ν), along which

$$\mathcal{G}(\mu_s) \leq (1-s)\mathcal{G}(\mu_0) + s\mathcal{G}(\mu_1)$$
 for every $s \in [0,1]$.

A generalized geodesic between $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$ (with base $\nu \in \mathcal{P}_2(\mathbb{R}^d)$) is a curve $(\mu_t)_{t \in [0,1]}$ in $\mathcal{P}_2(\mathbb{R}^d)$ defined by

$$\mu_t = (\pi_t^{2 \to 3})_{\#} \gamma \quad t \in [0, 1],$$

where $\pi_t^{2 \to 3} := (1-t)\pi^2 + t\pi^3$, $\gamma \in \Gamma(\nu, \mu_0, \mu_1)$, $\pi_\#^{1,2} \gamma \in \Gamma_{\mathrm{opt}}(\nu, \mu_0)$ and $\pi_\#^{1,3} \gamma \in \Gamma_{\mathrm{opt}}(\nu, \mu_1)$.

Definition (Convexity)

 $\mathcal G$ is convex along (generalized) geodesics if for every $\mu_0,\mu_1,\nu\in\mathcal P_2(\mathbb R^d)$ there exists a (generalized) geodesic $(\mu_s)_{s\in[0,1]}$ between μ_0 and μ_1 (with base ν), along which

$$\mathcal{G}(\mu_s) \leq (1-s)\mathcal{G}(\mu_0) + s\mathcal{G}(\mu_1)$$
 for every $s \in [0,1]$.

A generalized geodesic between $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$ (with base $\nu \in \mathcal{P}_2(\mathbb{R}^d)$) is a curve $(\mu_t)_{t \in [0,1]}$ in $\mathcal{P}_2(\mathbb{R}^d)$ defined by

$$\mu_t = (\pi_t^{2 \to 3})_{\#} \gamma \quad t \in [0, 1],$$

where $\pi_t^{2 \to 3} := (1-t)\pi^2 + t\pi^3$, $\gamma \in \Gamma(\nu, \mu_0, \mu_1)$, $\pi_\#^{1,2} \gamma \in \Gamma_{\mathrm{opt}}(\nu, \mu_0)$ and $\pi_\#^{1,3} \gamma \in \Gamma_{\mathrm{opt}}(\nu, \mu_1)$.

Definition (Convexity)

 \mathcal{G} is convex along (generalized) geodesics if for every $\mu_0, \mu_1, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ there exists a (generalized) geodesic $(\mu_s)_{s \in [0,1]}$ between μ_0 and μ_1 (with base ν), along which

$$\mathcal{G}(\mu_s) \leq (1-s)\mathcal{G}(\mu_0) + s\mathcal{G}(\mu_1)$$
 for every $s \in [0,1]$.

A generalized geodesic between $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$ (with base $\nu \in \mathcal{P}_2(\mathbb{R}^d)$) is a curve $(\mu_t)_{t \in [0,1]}$ in $\mathcal{P}_2(\mathbb{R}^d)$ defined by

$$\mu_t = (\pi_t^{2 \to 3})_{\#} \gamma \quad t \in [0, 1],$$

where $\pi_t^{2 \to 3} := (1-t)\pi^2 + t\pi^3$, $\gamma \in \Gamma(\nu, \mu_0, \mu_1)$, $\pi_\#^{1,2} \gamma \in \Gamma_{\mathrm{opt}}(\nu, \mu_0)$ and $\pi_\#^{1,3} \gamma \in \Gamma_{\mathrm{opt}}(\nu, \mu_1)$.

Definition (Convexity)

 \mathcal{G} is convex along (generalized) geodesics if for every $\mu_0, \mu_1, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ there exists a (generalized) geodesic $(\mu_s)_{s \in [0,1]}$ between μ_0 and μ_1 (with base ν), along which

$$\mathcal{G}(\mu_s) \leqslant (1-s)\mathcal{G}(\mu_0) + s\mathcal{G}(\mu_1)$$
 for every $s \in [0,1]$.

Theorem

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \cup \{+\infty\}$ proper, lower semicontinuous and convex along generalized geodesics with $\arg\min \mathcal{G} \neq \emptyset$. Then, for each $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, it holds

$$W_2^2(J_\tau(\mu), \nu) - W_2^2(\mu, \nu) \le 2\tau \left(\mathcal{G}(\nu) - \mathcal{G}(J_\tau(\mu))\right) - W_2^2(J_\tau(\mu), \mu)$$

Theorem

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \cup \{+\infty\}$ proper, lower semicontinuous and convex along generalized geodesics with $\arg\min \mathcal{G} \neq \emptyset$. Then, for each $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, it holds

$$W_2^2(J_{\tau}(\mu), \nu) - W_2^2(\mu, \nu) \le 2\tau \left(\mathcal{G}(\nu) - \mathcal{G}(J_{\tau}(\mu))\right) - W_2^2(J_{\tau}(\mu), \mu)$$

Theorem

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \cup \{+\infty\}$ proper, lower semicontinuous and convex along generalized geodesics with $\arg\min \mathcal{G} \neq \emptyset$. Then, for each $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, it holds

$$W_2^2(J_\tau(\mu), \nu) - W_2^2(\mu, \nu) \le 2\tau \left(\mathcal{G}(\nu) - \mathcal{G}(J_\tau(\mu))\right) - W_2^2(J_\tau(\mu), \mu)$$

Theorem (Di Marino, N., Villa)

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ proper, lower semicontinuous and convex along generalized geodesics with $\arg\min \mathcal{G} \neq \emptyset$. Let $\{\mu_n\}_n$ satisfying

$$W_2(\mu_{n+1}, J_\tau(\mu_n)) \leqslant \epsilon_n, \quad \text{for all } n \in \mathbb{N},$$
 (2)

with $\sum_n \epsilon_n < +\infty$ and ϵ_n not increasing. Then

$$\mathcal{G}(J_{\tau}(\mu_n)) - \inf \mathcal{G} = O\left(\frac{1}{n}\right), \quad \text{as } n \to \infty,$$

and $\mu_n \stackrel{w,2}{\rightharpoonup} \mu^* \in \arg\min \mathcal{G}$.

Let $\mathcal{G}:\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}\cup\{+\infty\}$ be proper, lower semicontinuous, and convex along generalized geodesics, with $\arg\min\mathcal{G}\neq\varnothing$. Let $\{\epsilon_n\}_n\subset\mathbb{R}_{\geqslant 0}$ with $\sum_{n=0}^\infty\epsilon_n<\infty$ and let $\{\tau_n\}_n\subset\mathbb{R}_{\geqslant 0}$ with $\sum_{i=0}^\infty\tau_i=\infty$. Define $\sigma_n:=\sum_{i=0}^{n-1}\tau_i$, for $n\in\mathbb{N}$. Let $\{\mu_n\}_n$ be a sequence satisfying

$$W_2(\mu_{n+1}, J_{\tau_n}(\mu_n)) \leqslant \epsilon_n$$
, for all $n \in \mathbb{N}$.

1. It holds the rate

$$\mathcal{G}(\bar{\beta}_n) - \inf \mathcal{G} = O\left(\frac{1}{\sigma_n}\right), \quad \text{as } n \to \infty,$$

where $\bar{\beta}_n := J_{\tau_{j_n}}(\mu_{j_n})$ with $j_n = \arg\min_{i=0,\dots,n-1} \{\mathcal{G}(J_{\tau_i}(\mu_i))\}$, defines the sequence of the best iterates.

2. If $\sum_{n=1}^{\infty} \frac{\sigma_n}{\tau_n} \epsilon_{n-1}^2 < \infty$, then

$$\mathcal{G}(J_{\tau_n}(\mu_n)) - \inf \mathcal{G} = O\left(\frac{1}{\sigma_n}\right), \quad \text{as } n \to \infty,$$

and $\mu_n \stackrel{w,2}{\rightharpoonup} \mu^* \in \arg\min \mathcal{G}$.

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ proper, lower semicontinuous and convex along generalized geodesics with $\arg\min \mathcal{G} \neq \emptyset$. Let $\{\mu_n\}_n$ satisfying

$$\mathcal{G}(\mu_{n+1}) + \frac{1}{2\tau} W_2^2(\mu_{n+1}, \mu_n) \leqslant \mathcal{G}(J_\tau(\mu_n)) + \frac{1}{2\tau} W_2^2(J_\tau(\mu_n), \mu_n) + \epsilon_n^2.$$
(3)

with $\sum_n \epsilon_n < +\infty$ and ϵ_k not increasing. Then

$$\mathcal{G}(\mu_n) - \inf \mathcal{G} = O\left(\frac{1}{n}\right), \quad \text{as } n \to \infty,$$

and $\mu_n \stackrel{w,2}{\rightharpoonup} \mu^* \in \arg\min \mathcal{G}$.

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ proper, lower semicontinuous and convex along generalized geodesics with $\arg\min \mathcal{G} \neq \emptyset$. Let $\{\mu_n\}_n$ satisfying

$$\mathcal{G}(\mu_{n+1}) + \frac{1}{2\tau} W_2^2(\mu_{n+1}, \mu_n) \leqslant \mathcal{G}(J_\tau(\mu_n)) + \frac{1}{2\tau} W_2^2(J_\tau(\mu_n), \mu_n) + \epsilon_n^2.$$
(3)

with $\sum_n \epsilon_n < +\infty$ and ϵ_k not increasing. Then

$$\mathcal{G}(\mu_n) - \inf \mathcal{G} = O\left(\frac{1}{n}\right), \quad \text{as } n \to \infty,$$

and $\mu_n \stackrel{w,2}{\rightharpoonup} \mu^* \in \arg\min \mathcal{G}$.

Condition (3) implies also (2).

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ proper, lower semicontinuous and convex along generalized geodesics with $\arg\min \mathcal{G} \neq \emptyset$. Let $\{\mu_n\}_n$ satisfying

$$\mathcal{G}(\mu_{n+1}) + \frac{1}{2\tau} W_2^2(\mu_{n+1}, \mu_n) \leqslant \mathcal{G}(J_\tau(\mu_n)) + \frac{1}{2\tau} W_2^2(J_\tau(\mu_n), \mu_n) + \epsilon_n^2.$$
(3)

with $\sum_n \epsilon_n < +\infty$ and ϵ_k not increasing. Then

$$\mathcal{G}(\mu_n) - \inf \mathcal{G} = O\left(\frac{1}{n}\right), \quad \text{as } n \to \infty,$$

and $\mu_n \stackrel{w,2}{\rightharpoonup} \mu^* \in \arg\min \mathcal{G}$.

- Condition (3) implies also (2).
- Here, the proof is more straightforward than the previous one.

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ proper, lower semicontinuous and convex along generalized geodesics with $\arg\min \mathcal{G} \neq \emptyset$. Let $\{\mu_n\}_n$ satisfying

$$\mathcal{G}(\mu_{n+1}) + \frac{1}{2\tau} W_2^2(\mu_{n+1}, \mu_n) \leqslant \mathcal{G}(J_\tau(\mu_n)) + \frac{1}{2\tau} W_2^2(J_\tau(\mu_n), \mu_n) + \epsilon_n^2.$$
(3)

with $\sum_n \epsilon_n < +\infty$ and ϵ_k not increasing. Then

$$\mathcal{G}(\mu_n) - \inf \mathcal{G} = O\left(\frac{1}{n}\right), \quad \text{as } n \to \infty,$$

and $\mu_n \stackrel{w,2}{\rightharpoonup} \mu^* \in \arg\min \mathcal{G}$.

- Condition (3) implies also (2).
- Here, the proof is more straightforward than the previous one.
- We do not need further assumptions on \mathcal{G} to get rates on $\{\mathcal{G}(\mu_n)\}_n$.

Outline

Inexact JKO

Inexact proximal-gradient

Towards nonexpansivity of the proximal map

Consider the problem

$$\min_{\mu \in \mathcal{P}_2(X)} \mathcal{G}(\mu) = \int F \, d\mu + \mathcal{H}(\mu),$$

- (A1) $F \colon \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable with L-Lipschitz continuous gradient and convex
- (A2) $\mathcal{H}\colon \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \cup \{+\infty\}$ is proper, lower semicontinuous and convex along generalized geodesics
- (A3) $dom(\mathcal{H}) \subset \mathcal{P}_2^r(\mathcal{X})$.

Consider the problem

$$\min_{\mu \in \mathcal{P}_2(X)} \mathcal{G}(\mu) = \int F \, d\mu + \mathcal{H}(\mu),$$

- (A1) $F \colon \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable with L-Lipschitz continuous gradient and convex
- (A2) $\mathcal{H}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \cup \{+\infty\}$ is proper, lower semicontinuous and convex along generalized geodesics
- (A3) dom $(\mathcal{H}) \subset \mathcal{P}_2^r(\mathcal{X})$.

Define the operator $\mathcal{T}:=J_{\tau\mathcal{H}}\circ (I-\tau\nabla F)_{\#}$ and consider a scheme that satisfy

$$W_2(\mu_{n+1}, \mathcal{T}(\mu_n)) \leqslant \epsilon_n, \quad \text{for all } n \in \mathbb{N}.$$
 (4)

Consider the problem

$$\min_{\mu \in \mathcal{P}_2(X)} \mathcal{G}(\mu) = \int F \, d\mu + \mathcal{H}(\mu),$$

- (A1) $F \colon \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable with L-Lipschitz continuous gradient and convex
- (A2) $\mathcal{H}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \cup \{+\infty\}$ is proper, lower semicontinuous and convex along generalized geodesics
- (A3) $dom(\mathcal{H}) \subset \mathcal{P}_2^r(\mathcal{X})$.

Define the operator $\mathcal{T}:=J_{\tau\mathcal{H}}\circ (I-\tau\nabla F)_{\#}$ and consider a scheme that satisfy

$$W_2(\mu_{n+1}, \mathcal{T}(\mu_n)) \leqslant \epsilon_n, \quad \text{for all } n \in \mathbb{N}.$$
 (4)

We know by [Salim, Korba and Luise, 2020] that for all $\mu, \nu \in \mathcal{P}_2^r(\mathbb{R}^d)$ it holds

$$W_2^2(\mathcal{T}(\mu), \nu) \leqslant W_2^2(\mu, \nu) - 2\tau(\mathcal{G}(\mathcal{T}(\mu)) - \mathcal{G}(\nu))$$
(5)

Consider the problem

$$\min_{\mu \in \mathcal{P}_2(X)} \mathcal{G}(\mu) = \int F \, d\mu + \mathcal{H}(\mu),$$

- (A1) $F \colon \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable with L-Lipschitz continuous gradient and convex
- (A2) $\mathcal{H}:\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}\cup\{+\infty\}$ is proper, lower semicontinuous and convex along generalized geodesics
- (A3) $dom(\mathcal{H}) \subset \mathcal{P}_2^r(\mathcal{X})$.

Define the operator $\mathcal{T}:=J_{\tau\mathcal{H}}\circ (I-\tau\nabla F)_{\#}$ and consider a scheme that satisfy

$$W_2(\mu_{n+1}, \mathcal{T}(\mu_n)) \leqslant \epsilon_n, \quad \text{for all } n \in \mathbb{N}.$$
 (4)

Actually, it is possible to prove that for all $\mu, \nu \in \mathcal{P}_2^r(\mathbb{R}^d)$ it holds

$$W_2^2(\mathcal{T}(\mu), \nu) \leq W_2^2(\mu, \nu) - 2\tau(\mathcal{G}(\mathcal{T}(\mu)) - \mathcal{G}(\nu)) - (1 - \gamma L)W_2^2(\mu, \mathcal{T}(\mu)).$$

Consider the problem

$$\min_{\mu \in \mathcal{P}_2(X)} \mathcal{G}(\mu) = \int F \, d\mu + \mathcal{H}(\mu),$$

- (A1) $F: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable with L-Lipschitz continuous gradient and convex
- (A2) $\mathcal{H}:\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}\cup\{+\infty\}$ is proper, lower semicontinuous and convex along generalized geodesics
- (A3) $dom(\mathcal{H}) \subset \mathcal{P}_2^r(\mathcal{X})$.

Define the operator $\mathcal{T}:=J_{\tau\mathcal{H}}\circ (I-\tau\nabla F)_{\#}$ and consider a scheme that satisfy

$$W_2(\mu_{n+1}, \mathcal{T}(\mu_n)) \leqslant \epsilon_n, \quad \text{for all } n \in \mathbb{N}.$$
 (4)

Actually, it is possible to prove that for all $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ it holds

$$W_2^2(\mathcal{T}(\mu),\nu) \leqslant W_2^2(\mu,\nu) - 2\tau(\mathcal{G}(\mathcal{T}(\mu)) - \mathcal{G}(\nu)) - (1-\gamma L)W_2^2(\mu,\mathcal{T}(\mu)).$$

Convergence [Di Marino, N., Villa]

Theorem (Convergence with distance error)

Let $\mathcal{H}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and F satisfying (A1)-(A3) and suppose $\arg \min \mathcal{G} \neq \emptyset$. Let $\mu^0 \in \mathcal{P}_2^r(X)$, $\tau < 1/L$ and $\{\mu_n\}_n$ satisfying

$$\mu_{n+1} \in \mathcal{P}_2^r(X), \quad W_2\left(\mu_{n+1}, J_{\tau\mathcal{H}}((I - \tau \nabla F)_{\#}(\mu^k))\right) \leqslant \epsilon_n, \quad \text{for all } k \in N,$$

with $\sum_n \epsilon_n < +\infty$ and ϵ_n not increasing. Then $\mathcal{G}(\mathcal{T}(\mu_n)) - \inf \mathcal{G} = O\left(\frac{1}{n}\right)$, as $n \to \infty$, and $\mu_n \stackrel{w,2}{\longrightarrow} \mu^* \in \arg \min \mathcal{G}$.

Convergence [Di Marino, N., Villa]

Theorem (Convergence with distance error)

Let $\mathcal{H}:\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}$ and F satisfying (A1)-(A3) and suppose $\arg\min\mathcal{G}\neq\varnothing$. Let $\mu^0\in\mathcal{P}_2^r(X)$, $\tau<1/L$ and $\{\mu_n\}_n$ satisfying

$$\underline{\mu_{n+1} \in \mathcal{P}_2^r(X)}, \quad W_2\left(\mu_{n+1}, J_{\tau\mathcal{H}}((I - \tau \nabla F)_{\#}(\mu^k))\right) \leqslant \epsilon_n, \quad \text{for all } k \in N,$$

with $\sum_n \epsilon_n < +\infty$ and ϵ_n not increasing. Then $\mathcal{G}(\mathcal{T}(\mu_n)) - \inf \mathcal{G} = O\left(\frac{1}{n}\right)$, as $n \to \infty$, and $\mu_n \stackrel{w,2}{\longrightarrow} \mu^* \in \arg \min \mathcal{G}$.

Convergence [Di Marino, N., Villa]

Theorem (Convergence with distance error)

Let $\mathcal{H}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ and F satisfying (A1)-(A3) and suppose $\arg\min \mathcal{G} \neq \emptyset$. Let $\mu^0 \in \mathcal{P}_2^r(X)$, $\tau < 1/L$ and $\{\mu_n\}_n$ satisfying

$$W_2\left(\mu_{n+1}, J_{\tau\mathcal{H}}((I - \tau \nabla F)_{\#}(\mu^k))\right) \leqslant \epsilon_n, \quad \text{for all } k \in N,$$

with $\sum_n \epsilon_n < +\infty$ and ϵ_n not increasing. Then $\mathcal{G}(\mathcal{T}(\mu_n)) - \inf \mathcal{G} = O\left(\frac{1}{n}\right)$, as $n \to \infty$, and $\mu_n \stackrel{w,2}{\longrightarrow} \mu^* \in \arg \min \mathcal{G}$.

Theorem (Convergence with variational error)

Let $\{\nu^k\}_n$, $\{\mu_n\}_n$ satisfy $\nu_{n+1}=(I-\tau\nabla F)_\#(\mu^k)$ and

$$\mathcal{H}(\mu_{n+1}) + \frac{1}{2\tau} W_2^2(\mu_{n+1}, \nu_{n+1}) \leqslant \mathcal{H}(J_\tau(\nu_{n+1})) + \frac{1}{2\tau} W_2^2(J_\tau(\nu_{n+1}), \nu_{n+1}) + \epsilon_n^2.$$

with ϵ_n as above. Then $\mathcal{G}(\mu_n) - \inf \mathcal{G} = O\left(\frac{1}{n}\right)$, as $n \to \infty$, and $\mu_n \stackrel{w,2}{\longrightarrow} \mu^* \in \arg\min \mathcal{G}$.

Outline

Inexact JKO

Inexact proximal-gradient

Towards nonexpansivity of the proximal map

Hilbert case

• If g proper, convex, lsc and and $\tau \in (0, +\infty)$, then the proximity operator is firmly-nonexpansive:

$$\|\operatorname{prox}_{\tau g}(x) - \operatorname{prox}_{\tau g}(y)\|^2 \leqslant \|x - y\|^2 - \|(I - \operatorname{prox}_{\tau g})(x) - (I - \operatorname{prox}_{\tau g})(y)\|^2.$$

• If f,g proper, convex, lsc, ∇f L-Lipschitz and $\tau \in (0,2/L)$, then the operator $T := \operatorname{prox}_{\tau g} \circ (I - \tau \nabla f)$ is α -averaged for some $\alpha \in (0,1)$:

$$||T(x) - T(y)||^2 \le ||x - y||^2 - \frac{1 - \alpha}{\alpha} ||(I - T)(x) - (I - T)(y)||^2.$$

Wasserstein case

Location problem: given $\mu \in \mathcal{P}_2(\mathbb{R}^d)$, we search for

$$\arg\min\left\{W_2(\nu,\mu)\mid\nu\in\mathcal{P}_2(\mathbb{R}^d),\ \#\operatorname{supp}(\nu)\leqslant2\right\}$$

Wasserstein case

Location problem: given $\mu \in \mathcal{P}_2(\mathbb{R}^d)$, we search for

$$\operatorname{arg\,min} \left\{ W_2(\nu,\mu) \mid \nu \in \mathcal{P}_2(\mathbb{R}^d), \ \# \operatorname{supp}(\nu) \leqslant 2 \right\}$$

In this case it is clear that $W_2(J_\tau(\mu_1), J_\tau(\mu_2)) \leqslant W_2(\mu_1, \mu_2)$.

Wasserstein case

Given the set

$$K_1 := \{ \rho \in L_1^+(\Omega) \mid \int \rho(x) \, dx = 1, \ \rho \leqslant 1 \},$$

and $P_{K_1}(\nu) = \arg\min\{W_2(\rho, \nu) \mid \rho \in K_1\}.$

- In [De Philippis, Mészáros, Santambrogio and Velichkov, 2016] it is proven that P_{K_1} is locally $\frac{1}{2}$ -Hölder.
- In [Remark 5.1] they say that Lipschitzianity is still open.

Wasserstein case [Cavagnari, Savaré and Sodini, 2023]

Definition (λ -totally convex functionals)

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ be a proper function. \mathcal{G} is totally convex if for every $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$ and $\gamma \in \Gamma(\mu_0, \mu_1)$ it holds

$$\mathcal{G}(\pi_{\#}^t \gamma) \leqslant (1-s)\mathcal{G}(\mu_0) + s\mathcal{G}(\mu_1)$$
 for every $s \in [0,1]$.

Wasserstein case [Cavagnari, Savaré and Sodini, 2023]

Definition (λ -totally convex functionals)

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ be a proper function. \mathcal{G} is totally convex if for every $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$ and $\gamma \in \Gamma(\mu_0, \mu_1)$ it holds

$$\mathcal{G}(\pi_{\#}^t \gamma) \leqslant (1-s)\mathcal{G}(\mu_0) + s\mathcal{G}(\mu_1)$$
 for every $s \in [0,1]$.

Theorem

Let \mathcal{G} proper, lsc and totally convex, one can show that it holds

$$W_2(J_\tau(\mu), J_\tau(\nu)) \leqslant W_2(\mu, \nu), \quad \text{for all } \mu, \nu \in \mathcal{P}_2(X).$$

Wasserstein case [Cavagnari, Savaré and Sodini, 2023]

Definition (λ -totally convex functionals)

Let $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ be a proper function. \mathcal{G} is totally convex if for every $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$ and $\gamma \in \Gamma(\mu_0, \mu_1)$ it holds

$$\mathcal{G}(\pi_{\#}^t \gamma) \leqslant (1-s)\mathcal{G}(\mu_0) + s\mathcal{G}(\mu_1)$$
 for every $s \in [0,1]$.

Theorem

Let G proper, lsc and totally convex, one can show that it holds

$$W_2(J_\tau(\mu), J_\tau(\nu)) \leq W_2(\mu, \nu), \quad \text{for all } \mu, \nu \in \mathcal{P}_2(X).$$

Examples:

- Potential energy and internal energy are totally convex
- The indicator function of $\{\nu \in \mathcal{P}_2(\mathbb{R}^d) \mid \# \operatorname{supp}(\nu) \leq 2\}$ is not totally convex
- The indicator function of K_1 is not totally convex

How many are they?

Theorem (Many! Cavagnari, Savaré, Sodini)

Assume that $d \geqslant 2$, $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ is a proper l.s.c. geodesically convex functional such that the discrete measures are dense in energy, i.e., for every $\mu \in \text{dom}(\mathcal{G})$ there exists a sequence $\{\mu_n\}_n$ of discrete measures such that

$$\mu_n \to \mu$$
 and $\mathcal{G}(\mu_n) \to \mathcal{G}(\mu)$.

Then G is totally convex.

How many are they?

Theorem (Many! Cavagnari, Savaré, Sodini)

Assume that $d \geqslant 2$, $\mathcal{G}: \mathcal{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ is a proper l.s.c. geodesically convex functional such that the discrete measures are dense in energy, i.e., for every $\mu \in \text{dom}(\mathcal{G})$ there exists a sequence $\{\mu_n\}_n$ of discrete measures such that

$$\mu_n \to \mu$$
 and $\mathcal{G}(\mu_n) \to \mathcal{G}(\mu)$.

Then G is totally convex.

Theorem (But not so many...)

Let $\mathcal{G}:\mathcal{P}_2(\mathbb{R}^d) \to (-\infty,+\infty]$ proper, lower semicontinuous and totally convex. Then

$$\mathcal{G}(\delta_{M(\mu)}) \leqslant \mathcal{G}(\mu)$$
 for every $\mu \in \mathcal{P}(\mathbb{R}^d)$.

In particular, if $\mu \in \arg \min \mathcal{G}$ it also holds $\delta_{M(\mu)} \in \arg \min \mathcal{G}$.

Full result

Definition (Convex order on measures)

Given $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$, μ and ν are in convex order $\mu \leqslant_{\mathbb{C}} \nu$ if $\int_{\mathbb{R}^d} f d\mu \leqslant \int_{\mathbb{R}^d} f d\nu$ for any f continuous, convex and in $L^1(\nu)$.

Theorem (Di Marino, Farinelli, N.)

Let $\mathcal{G}:\mathcal{P}_2(\mathbb{R}^d)\to (-\infty,+\infty]$ proper, lower semicontinuous and totally convex. Then for any $\mu,\nu\in\mathcal{P}_2(\mathbb{R}^d)$ satisfying $\mu\leqslant_C \nu$, we have

$$\mathcal{G}(\mu) \leqslant \mathcal{G}(\nu).$$

Consequences [Di Marino, Farinelli, N.]

Lemma (Prox of deltas are deltas)

Let \mathcal{G} be proper, lower semicontinuous and totally convex, then for every $x \in \mathbb{R}^d$ there exists y_x such that $\text{prox}_{\tau\mathcal{G}}(\delta_x) = \delta_{y_x}$.

Consequences [Di Marino, Farinelli, N.]

Lemma (Prox of deltas are deltas)

Let \mathcal{G} be proper, lower semicontinuous and totally convex, then for every $x \in \mathbb{R}^d$ there exists y_x such that $\operatorname{prox}_{\tau\mathcal{G}}(\delta_x) = \delta_{y_x}$.

Proposition

Let \mathcal{G} be proper, lower semicontinuous and convex along (outer) generalized geodesics with $D(\mathcal{G}) \subset \mathcal{P}_2^r(\mathbb{R}^d)$. Then it cannot exist a sequence of totally convex functionals $\{\mathcal{G}_n\}_n$ such that $\operatorname{prox}_{\tau\mathcal{G}_n}(\mu) \to \operatorname{prox}_{\tau\mathcal{G}}(\mu)$ for every $\mu \in \mathcal{P}_2(\mathbb{R}^d)$.

Consequences [Di Marino, Farinelli, N.]

Lemma (Prox of deltas are deltas)

Let \mathcal{G} be proper, lower semicontinuous and totally convex, then for every $x \in \mathbb{R}^d$ there exists y_x such that $\operatorname{prox}_{\tau \mathcal{G}}(\delta_x) = \delta_{y_x}$.

Proposition

Let \mathcal{G} be proper, lower semicontinuous and convex along (outer) generalized geodesics with $D(\mathcal{G}) \subset \mathcal{P}_2^r(\mathbb{R}^d)$. Then it cannot exist a sequence of totally convex functionals $\{\mathcal{G}_n\}_n$ such that $\operatorname{prox}_{\tau\mathcal{G}_n}(\mu) \to \operatorname{prox}_{\tau\mathcal{G}}(\mu)$ for every $\mu \in \mathcal{P}_2(\mathbb{R}^d)$.

Proposition

Let \mathcal{G}^{τ} be the Moreau envelope of \mathcal{G} defined by

$$\mathcal{G}^{\tau}(\mu) := \inf_{\nu \in \mathcal{P}_2(\mathbb{R}^d)} \mathcal{G}(\nu) + \frac{1}{2\tau} W_2^2(\mu, \nu).$$

Let $\mathcal{G}:\mathcal{P}(\mathbb{R}^d)\to\mathbb{R}\cup\{+\infty\}$ be the negative entropy. Then, the function \mathcal{G}^τ cannot be geodesically convex.

Thank you for your attention!

References

Simone Di Marino, Sara Farinelli, Emanuele Naldi.
Lipschitz properties of proximity operators in the Wasserstein space.
Work in progress (Just started!).

