1 Partial orders, examples of partial orders. Least/greatest, minimal/maximal elements in partial orders, upper/lower boundary, supremum/infimum of a set. Posets and losets

Определение

Бинарное отношение $r\subseteq A^2$ называется отношением **частичного порядка**, или просто **частичным порядком**, если оно рефлексивно, антисимметрично и транзитивно. Другими словами, оно должно удовлетворять следующим свойствам:

- 1. рефлексивность: $\forall a \in A \ (a, a) \in r$
- 2. антисимметричность: $\forall a, b \in A \ (a, b) \in r, (b, a) \in r \Rightarrow a = b$
- 3. транзитивность: $\forall a, b, c \in A \ (a, b) \in r, \ (b, c) \in r \Rightarrow (a, c) \in r$

Для обозначения отношения частичного порядка обычно используются следующие символы: \leq , \subseteq , \preceq , \sqsubseteq , Если такой символ используется в качестве r, то вместо $(a,b) \in \leq$ можно использовать более общие обозначения $a \leq b$ и называть \leq просто частичным порядком.

Важный частный случай частичного порядка, также называемый линейным порядком..

Определение

Частичный порядок \leq на множестве A называется **линейным поряд- ком**, если выполняется следующее свойство:

$$\forall a,b \in A \ (a,b) \in r$$
 или $(b,a) \in r$

Примеры частичных порядков

Пример 1

Обычное отношение \leq на действительных числах $\mathbb R$ является линейным порядком.

Пример 2

Пусть A - множество. Тогда бинарное отношение \subseteq_A на множестве $\mathcal{P}(A)$ будет частичным порядком, но не линейным в общем случае.

Пример 3

Определим отношение делимости | на множестве натуральных чисел $\mathbb{N} = \{1, 2, 3, \ldots\}$ как:

$$n|m \Leftrightarrow n$$
 делит m

Тогда | является частичным порядком на N.

Определение

Пусть \leq - частичный порядок на множестве $A, X \subseteq A$. Элемент $a \in X$ называется

- наибольшим в X, тогда и только тогда, когда для любого $b \in X$ верно, что $a \geqslant b$
- наименьшим в X, тогда и только тогда, когда для любого $b \in X$ верно, что $b \geqslant a$

Замечание

Наибольший элемент может не существовать. пример: рассмотрим натуральные числа N. Не существует наибольшего элемента из N. Кроме того, не существует наименьшего элемента из множества всех целых чисел.

Предложение

Пусть \leq - частичный порядок на множестве $A, X \subseteq A$. Тогда, если наименьший элемент из X существует, то он единственен. То же верно и для наибольшего элемента.

Доказательство

Пусть $a_1, a_2 \in X$ - два наименьших элемента из X. Тогда по определению $a_1 \leq a_2$ и $a_2 \leq a_1$. Отношение частичного порядка антисимметрично, поэтому $a_1 = a_2$.

- \bullet Если существует наименьший элемент из X, то он обозначается как $\min(X)$
- Если существует наибольший элемент из X, то он обозначается как $\max(X)$

Определение

Пусть \leq - частичный порядок на множестве $A, X \subseteq A$. Элемент $a \in X$ называется

- минимальным из X, тогда и только тогда, когда $\forall b \in X (b \le a \Rightarrow b = a)$
- максимальным из X, тогда и только тогда, когда $\forall b \in X (a \leq b \Rightarrow b = a)$

Замечание

Минимальный/максимальный элемент может не существовать, и даже если он существует, он может не быть единственным.

Определение

Пусть \leq - частичный порядок на множестве $A, X \subseteq A$. Элемент $a \in A$ называется

- верхней границей X из A, тогда и только тогда, когда для любых $b \in X, \ b \le a$
- нижней границей X из A, тогда и только тогда, когда для любых $b \in X, \ a \leq b$

Введем следующие обозначения:

- $X \uparrow A \rightleftharpoons \{b|b \in A, b$ верхняя граница X из $A\}$ множество всех верхних границ X из A
- $X\downarrow A \rightleftharpoons \{b|b\in A,b$ нижняя граница X из $A\}$ множество всех нижних границ X из A,

Отметим, что множества $X\uparrow A$ и $X\downarrow A$ всегда существуют, но могут быть пустыми.

Определение

Пусть \leq - частичный порядок на множестве $A, X \subseteq A$. Элемент a называется

- точной верхней границей или **супремум** X из A, тогда и только тогда, когда $a = \min(X \uparrow A)$
- точной нижней границей или **инфимум** X из A, тогда и только тогда, когда $a = \max(X \downarrow A)$

Отметим, что супремум и инфимум не всегда существуют. Если супремум существует, он единственен. То же верно и для инфимума. Теперь введём следующие обозначения

- \bullet $\sup_A(X)$ супремум множества X из A, если он существует
- ullet $\inf_A(X)$ инфимум множества X из A, если он существует

Если из контекста понятно, какой A имеется в виду, можно просто писать $\sup(X)$ и $\inf(X)$ вместо $\sup_A(X)$ и $\inf_A(X)$.

Примеры верхних и нижних граней

Пример 1

Пусть \leq - обычный линейный порядок на множестве действительных чисел \mathbb{R} . Рассмотрим множество $X = \{\frac{1}{n} | n \in \mathbb{N}\}$. Тогда $X \downarrow \mathbb{R} = \{a | a \in \mathbb{R}, a \leq 0\}$, и $\inf_{\mathbb{R}}(X) = \max(X \downarrow \mathbb{R}) = 0$.

Пример 2

Пусть \leq - линейный порядок на \mathbb{R} . Рассмотрим множества $X=\{1-\frac{1}{n}|n\in\mathbb{N}\}$ и $Y=\{a|a\in\mathbb{R},0< a<1\}$. Тогда

- $X \uparrow \mathbb{R} = \{a | a \in \mathbb{R}, a \ge 1\}$
- $X \uparrow Y = \emptyset$

следовательно,

- $\sup_{\mathbb{R}}(X) = 1$
- $\sup_{Y}(X)$ не существует и $X \subseteq Y$

Пусть \leq - частичный порядок на $A, X \subseteq A$. Тогда

- если существует $a = \max(X)$, то $\sup_A(X) = a$
- если существует $b = \min(X)$, то $\inf_A(X) = b$

Доказательство

Докажем первое утверждение. Пусть $a = \max(X)$. Это означает, что $\forall c \in X$ верно, что $c \leq a$, т.е. $a \in (X \uparrow A)$. Предположим, что $a \neq b = \sup_A(X) = \min(X \uparrow A)$. Тогда b < a. Так как b - верхняя граница X, $a \leq b$ - противоречие. Второе утверждение доказывается аналогично.

Определение

Пусть \leq - частичный порядок на множестве A. Тогда пара (A, \leq) называется **частично упорядоченным множеством**, сокращённо **чум**.

Определение

Пусть $\mathcal{A}(A, \leq)$ - чум. Если \leq - линейный порядок на A, то \mathcal{A} называется **линейно упорядоченным множеством**, сокращённо **лум**.

2 Redexes, normal form of a λ -term. Church-Rosser theorem (without proof)

Определение

 λ -терм t находится в **нормальной форме**, если он не содержит подтерма s, такого, что существует некоторый α -эквивалентный к s терм s', образующий β или η редекс в t.

Дальнейшая редукция терма в нормальной форме невозможна, поскольку он не имеет редексов.

Примеры нормальных форм

- $I = \lambda x.x$ находится в нормальной форме
- (f(tsr)) находится в нормальной форме
- $(f((\lambda x.(gxh))sr))$ не находится в нормальной форме, потому что он имеет редекс $(\lambda x.(gxh))s$

Теорема (Черча-Россера)

Дан некоторый λ -терм t, если для каких-либо термов s' и s'' верно, что $t \Rightarrow s'$ и $t \Rightarrow s''$, то существует такой λ -терм q, что $s' \Rightarrow q$ и $s'' \Rightarrow q$.

Теорема Чёрча-Россера говорит нам, что порядок, в котором мы применяем редукции к терму, в некотором смысле, не имеет значения: из любого множества промежуточных λ -термов в процессе переписывания можно получить точно такой же терм.

3 Homomorphisms, epimorphisms and isomorphisms of structures

Определение

Пусть $\mathcal{M}_1 = (M_1, \sigma), \mathcal{M}_2 = (M_2, \sigma)$ - две структуры сигнатуры $\sigma = (P, F)$, и $\phi : M_1 \to M_2$ - всюду определенное отображение из носителя \mathcal{M}_1 в носитель \mathcal{M}_2 . Тогда ϕ называется **гомоморфизмом**, тогда и только тогда, когда

- $f^{\mathcal{M}_2}(\phi(\bar{a})) = \phi(f^{\mathcal{M}_1}(\bar{a}))$ для любого $f^n \in F$ и для любого кортежа $\bar{a} \in M_1^n$
- $\bar{a}\in p^{\mathcal{M}_1}\Rightarrow \phi(\bar{a})\in p^{\mathcal{M}_2}$ для любого $p^n\in P$ и для любого кортежа $\bar{a}\in M_1^n$

Если ϕ сюръективно, то ϕ называется **сюръективным гомоморфизмом** или **эпиморфизмом**. Если ϕ биективно, и

• $\bar{a} \in p^{\mathcal{M}_1} \Leftrightarrow \phi(\bar{a}) \in p^{\mathcal{M}_2}$ для любого предиката $p^n \in P$ и для любого кортежа $\bar{a} \in M_1^n$

то ϕ называется **изоморфизмом** и обозначается следующим образом: $\phi: \mathcal{M}_1 \stackrel{\simeq}{\to} \mathcal{M}_2$.

Определение

Две структуры \mathcal{M}_1 и \mathcal{M}_2 называются **изоморфными**, тогда и только тогда, когда между ними существует изоморфизм $f: \mathcal{M}_1 \stackrel{\simeq}{\to} \mathcal{M}_2$. Обозначается следующим образом: $\mathcal{M}_1 \cong \mathcal{M}_2$.

Изоморфизм структуры $\mathcal M$ на себя $f:\mathcal M\stackrel{\cong}{\to}\mathcal M$ называется **автоморфизмом**.

Лемма

Для любых структур \mathcal{M} , \mathcal{N} и \mathcal{K} сигнатуры σ :

- 1. если $f: \mathcal{M} \stackrel{\simeq}{\to} \mathcal{N}$, то $f^{-1}: \mathcal{N} \stackrel{\simeq}{\to} \mathcal{M}$
- 2. если $f: \mathcal{M} \xrightarrow{\simeq} \mathcal{N}$ и $g: \mathcal{N} \xrightarrow{\simeq} \mathcal{K}$, то $f \circ g: \mathcal{M} \xrightarrow{\simeq} \mathcal{K}$
- 3. $id_M: \mathcal{M} \stackrel{\simeq}{\to} \mathcal{M}$

Доказательство

По определению.

Пример гомоморфизма

Гомоморфизм кольца целых чисел

Рассмотрим структуру $\mathbb{Z}=(Z,\sigma_{\mathbb{Z}})$ - кольцо целых чисел, где $\sigma_{\mathbb{Z}}=\{+^2,\cdot^2,0,1\}$. Пусть $0< n\in\omega$ - некоторое положительное натуральное число. Определим отображение $f:Z\to Z_n$ следующим образом:

$$f: Z \ni k \to [k]_{\sim_n} \in Z_n$$

Тогда f является гомоморфизмом.

Автоморфизм групп подстановок

Пусть $f \in S(A)$ - некоторая биекция множества A на A. Определим отображение $in_f: S(A) \to S(A)$ следующим образом: для любой $g \in S(A)$ возьмём

$$in_f(g) \rightleftharpoons f \circ g \circ f^{-1}$$

Тогда in_f является автоморфизмом группы S(A) (так называемым **внут- ренним** автоморфизмом).