```
In [1]: # Assignment - A10 | Name : Pratik Pingale | Roll No : 19C0056
In [2]: import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns

df = pd.read_csv('iris.csv')
df.head()
```

Out[2]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	setosa
	1	2	4.9	3.0	1.4	0.2	setosa
	2	3	4.7	3.2	1.3	0.2	setosa
	3	4	4.6	3.1	1.5	0.2	setosa
	4	5	5.0	3.6	1.4	0.2	setosa

How many features are there and what are their types (e.g., numeric, nominal)?

```
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype		
0	Id	150 non-null	int64		
1	SepalLengthCm	150 non-null	float64		
2	SepalWidthCm	150 non-null	float64		
3	PetalLengthCm	150 non-null	float64		
4	PetalWidthCm	150 non-null	float64		
5	Species	150 non-null	object		
dtypes: float64(4),		int64(1), object(1)			

memory usage: 7.2+ KB

Hence the dataset contains 4 numerical columns and 1 object column

```
In [4]: np.unique(df["Species"])
Out[4]: array(['setosa', 'versicolor', 'virginica'], dtype=object)
In [5]: df.describe()
```

	lo		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	
	count	150.000000	150.000000	150.000000	150.000000	150.000000	
	mean	75.500000	5.843333	3.054000	3.758667	1.198667	
	std	43.445368	0.828066	0.433594	1.764420	0.763161	
	min	1.000000	4.300000	2.000000	1.000000	0.100000	
	25%	38.250000	5.100000	2.800000	1.600000	0.300000	
	50%	75.500000	5.800000	3.000000	4.350000	1.300000	
	75 %	112.750000	6.400000	3.300000	5.100000	1.800000	
	max	150.000000	7.900000	4.400000	6.900000	2.500000	

Out[5]:

Create a histogram for each feature in the dataset.

```
In [6]: import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt

fig, axes = plt.subplots(2, 2, figsize=(12, 6), constrained_layout = True)

for i in range(4):
    x, y = i // 2, i % 2
    axes[x, y].hist(df[df.columns[i + 1]])
    axes[x, y].set_title(f"Distribution of {df.columns[i + 1][:-2]}")
```


Create a boxplot for each feature in the dataset.

```
In [7]: data_to_plot = [df[x] for x in df.columns[1:-1]]
fig, axes = plt.subplots(1, figsize=(12,8))
bp = axes.boxplot(data_to_plot)
```


If we observe closely for the box 2, interquartile distance is roughly around **0.75** hence the values lying beyond this range of (third quartile + interquartile distance) i.e. roughly around **4.05** will be considered as outliers. Similarly outliers with other boxplots can be found.