Skript Mathe 2

4. Juni 2018

Existenz von a bedeutet: Wenn x nahe genug bei X_0 ist, so ist auch f(x) sehr nahe an a.

Beweis:

$$(\Leftarrow): \text{Gelte (*). Sei } (X_n) \text{ in } D \setminus \{X_0\}, X_n \to X_0. \text{ Z.z.: } f(X_n) \to a$$
 Da $X_n \to X_0$, gibt es $N \in \mathbb{N}$ mit $|X_n - X_0| < \delta \quad \forall n \geq N \text{ (1.5)}$
$$(*) \Rightarrow |f(X_n) - a| < \epsilon \quad \forall n \geq N$$

$$\Rightarrow f(X_n) \xrightarrow[n \to \infty]{} q$$

(⇒): Mit Kontraposition: Gelte (*) nicht. ⇒ $\exists \epsilon > 0$ derart, dass für jedes $n \in \mathbb{N}$ ein $X_n \in D \setminus \{X_0\}$ existiert mit $|X_n - X_0| < \delta$ und $|f(X_n) - a| \ge \epsilon$. ⇒ $f(X_n) \not \to n$ für $X_n \to X_0$. \square

0.1 Beispiel

$$f: \mathbb{R} \to \mathbb{R}, f(x) = ax + b \text{ mit } a, b \in \mathbb{R}. \text{ Es ist } \lim_{x \to X_0} f(x) = f(X_0).$$

Prüfe mit $\epsilon - \delta$ –Kriterium:

Sei
$$\epsilon > 0$$
. Für $\delta = \frac{\epsilon}{|a|}$ ist
$$|f(x) - f(X_0)| = ax + b - aX_0 - b = |a| \cdot \underbrace{|x - X_0|}_{<\delta} < |a| \cdot \frac{\epsilon}{|a|} = \epsilon$$

0.2 Definition: Grenzwert II

Sei X_0 HP von $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$.

- 1. f hat in X_0 den Grenzwert $+\infty$ $(-\infty)$: $\Leftrightarrow f(X_n) \to +\infty(-\infty)$ für jede Folge (X_n) in $D \setminus \{X_0\}$ mit $X_n \to X_0$. Schreibweise: $\lim_{x \to X_0} f(x) = +\infty$ $(-\infty)$
- 2. Ist $\sup D = \infty$ (inf $D = -\infty$), so hat f(x)

Limes $a \in \mathbb{R}$ für $x \to \infty$ $(x \to -\infty)$; so hat f(x)Limes $a \in \mathbb{R}$ für $x \to \infty$ $(x \to -\infty)$: $\Leftrightarrow f(X_n) \to a$ für jede Folge in Dmit $X_n \to \infty$ $(X_n \to -\infty)$

0.3 Beispiele

- a) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{1}{x^2}$
 - 1. $\lim_{x\to 0} \frac{1}{x^2} = \infty$, da für jede Nullfolge (X_n) in $\mathbb{R} \setminus \{0\}$ gilt: $\underbrace{\frac{1}{X_n^2}}_{=0} \xrightarrow{n\to 0} +\infty$
 - 2. $\lim_{x \to \infty} \frac{1}{x^2} = 0$, da für jedes (X_n) in \mathbb{R} mit $X_n \to \infty$: $\frac{1}{X_n^2} \xrightarrow[n \to \infty]{} 0$
- b) Es gilt für jedes $m \in \mathbb{N}_0$:
 - 1. $\lim_{x \to \infty} \frac{\exp(x)}{x^m} = \infty$
 - $2. \lim_{x \to -\infty} x \cdot \exp(x) = 0$

Beweis:

1.
$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \ge \frac{X^{m+1}}{(k+1)!} \quad \forall x \ge 0$$

$$\Rightarrow \frac{\exp(x)}{x^m} \ge \frac{x^{m+1}}{(k+1)x^m} = \frac{x}{(k+1)!} \to \infty$$
for $x \to \infty$

2.
$$x^m \cdot \exp(x) = \frac{(-1)^m (-x)^m}{\exp(-x)} = (-1)^m \cdot \frac{1}{\left[\frac{\exp(-x)}{(-x)^m}\right] \xrightarrow{1.} \infty}$$
für $x \to -\infty$

0.4 Definition: Rechts-/Linksseitiger Grenzwert

- 1. Ist X_0 HP von $D \cap (X_0, \infty)$, so hat f in X_0 den rechtsseitigen Grenzwert $a \in \mathbb{R} : \Leftrightarrow f(X_n) \to a$ für jede Folge (X_n) in $D \cap (X_0, \infty)$ mit $X_n \to X_0$. Schreibweise: $\lim_{x \to X_0^+} f(x) = a$
- 2. Ist X_0 HP von $D \cap (-\infty, X_0)$, so hat f in X_0 den linksseitigen Grenzwert $a \in \mathbb{R} : \Leftrightarrow f(X_n) \to a$ für jede Folge (X_n) in $D \cap (-\infty, X_0)$ mit $X_n \to X_0$. Schreibweise: $\lim_{x \to X_0^-} f(x) = a$

0.5 Beispiel

$$f: \mathbb{R} \to \mathbb{R} \quad x \mapsto \begin{cases} -1 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

- $\lim_{x\to 0^+} f(x) = 1$, da $f(X_n) = 1 \to 1$ für (X_n) in $(0,\infty)$ und $(X_n) \to 0$
- $\lim_{x\to 0^-} f(x) = -1$, da $f(X_n) = -1 \to -1$ für (X_n) in $(-\infty, 0)$ und $(X_n) \to 0$

0.6 Bemerkung

Aus 5.11 ist ersichtlich: Der Grenzwert einer Funktion f in X_0 existiert \Leftrightarrow Der Links- und Rechtsseitige Grenzwert von f in X_0 existieren und übereinstimmen.

0.7 Beispiele

- a) $\lim_{x\to 0} \frac{1}{|x|} = \infty$, aber $\lim_{x\to 0} \frac{1}{x}$ existiert nicht, da $\lim_{x\to 0^+} \frac{1}{x} = +\infty \neq \lim_{x\to 0^-} \frac{1}{x} = -\infty$
- b) $\lim_{x\to\infty} x = \infty$, $\lim_{x\to-\infty} x = -\infty$

0.8 Definition: Stetigkeit

Sei $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$

a) f heißt stetig in $X_0 \in D$, falls

$$\underbrace{\lim_{x \to X_0} f(x)}_{A} \underbrace{= f(X_0)}_{B}$$

b) f heißt stetig, falls f in jedem Punkt $X_0 \in D$ stetig ist.

0.9 Bemerkung

- a) In 5.15a prüft man zwei Bedingungen: A) Der Grenzwert von f in X_0 existiert und B) ist gleich $f(X_0)$.
- b) Wegen 5.6 ist f in $X_0 \in D$ stetigt \Leftrightarrow

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in D : |x - X_0| < \delta \Rightarrow |f(x) - f(X_0)| < \epsilon$$

0.10 Beispiele

a) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$ ist in jedem $X_0 \in D$ stetig:

$$\lim_{x \to X_0} f(x) = f(X_0), \text{ da für } (X_n) \text{ in } D \setminus \{X_0\} \text{ gilt:}$$

$$\underbrace{f(X_n) = X_n^2 \to X_n^2 \to X_0^2}_{A} = \underbrace{f(x)}_{B}$$

b) Wegen 5.4 ist $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = ax + b stetig.

0.11 Satz

Sei $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$.

Gibt es ein k > 0 mit $|f(x) - f(X_0)| \le k \cdot |x - X_0| \quad \forall x \in D$, so ist f stetig in X_0 .

Beweis: Sei $\epsilon > 0$. Wähle $\delta = \frac{\epsilon}{\delta}$

$$\Rightarrow |f(x) - f(X_0)| \le k \cdot |\underbrace{x - X_0}_{<\delta}| < k \cdot \delta = \epsilon \quad \Box$$