B.Tech. DEGREE EXAMINATION, JULY 2022

Fourth Semester

18MAB203T - PROBABILITY AND STOCHASTIC PROCESSES

(For the candidates admitted from the academic year 2020 - 2021 and 2021 - 2022)

Note:

- (i) Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B should be answered in answer booklet.

Time: 21/2 Hours

Max. Marks: 75

e: 2	/2 Ho	urs			IVIUA.	1414	d ic.y.	
		PART - A	$(25 \times 1 = 25)$	Marks)	Marks	BL	СО	PO
			ALL Questie					
1.	The	second order moment about	A STATE OF THE PARTY OF THE PAR		1	1	1	1
	(A)		(B)	0				
	(C)	Var(X)	(D)	Mean(X)				
2.	If X	and Y are independent RV's	s then $\phi_{x+y}(a)$))=	1	1	1	1
	(A)	$\phi_{x}(\omega) + \phi_{y}(\omega)$	(B)	$\phi_x(\omega)\cdot\phi_y(\omega)$				
		$\phi_x(\omega) - \phi_y(\omega)$	(D)	$\phi_x(\omega)/\phi_y(\omega)$				
3.	If th	e cdf of a random variable)	X is given by F	$F(x) = 1 - e^{-\lambda x}; x \ge 0 \text{ and } 0 \text{ for } x < 0$	1	2	1	2
		n the pdf of X for x≥0 is						
		$e^{-\lambda x}$	(B)	$\lambda e^{-\lambda x}$				
		$-e^{-\lambda x}$	(D)	$\lambda e^{-\lambda x}$ $\lambda e^{\lambda x}$				
4.		en i trad	day dagaad bu	$P(X=x) = \frac{e^{-2}2^x}{x!}; x:0,1,\infty$ is	1	2	1	2
	The	variance of Poisson distribu						
	(A)	2	(B)	1/2				
	(C)	e^2	(D)	e^{-2}				
5.		pdf of Y given $Y=g(X)$ whatly monotonic function of x		tinuous RV with pdf $f_X(x)$ and $g(x)$ is	1	1	1	1
	(A)		(B)	1 dy				
		$f_X(x) \left \frac{dy}{dx} \right $		$\frac{1}{f_X(x)} \left \frac{dy}{dx} \right $ $f_X(x) \left \frac{dx}{dy} \right $				
	(C)	1 dx	(D)	dx				
		$\frac{1}{f_X(x)} \left \frac{dx}{dy} \right $		$f_X(x) \overline{dy} $				
6		e joint probability distribution			1	1	2	-1
	(A)	$\frac{\partial F(x,y)}{\partial x}$	(B)	$\partial F(x,y)$				
				- dy				
	(C)	$\partial^2 F(x, y)$	(D)	$\iint F(x,y) dxdy$				

 $\partial x \partial y$

7	IfV	and Y are two independent RV's the	n CO'	V(X,Y)=			4	
1.	(A)		(B)	-1				
	(C)		(D)	00				
	(0)	·						
8	Tf+h	e mean of X and Y is 5 and -3 respec	tively	then E(X+Y)=	1	2	2	2
0.	(A)		(B)	_2				
		-15	(D)					
	(C)	-13	(2)					
9	ICV	and Y have joint pdf $f(x, y) = x +$	200	$x < 1.0 < y < 1$, then $f_Y(x) =$	1	2	2	3
			y, 0					
	(A)	1+2y	(B)	<u>1+x</u>				
		2		$\frac{2}{1+y}$				
	(C)	1+2x	(D)	1+ y				
		2		2				
10.				_ X	1	2	2	2
	In th	ne transformation of two dimensional	rando	om variable if $U=x+y$ and $V=\frac{x}{x+y}$				
				279				
	then							
		UV		U/V				
	(C)	1-U	(D)	U(1-V)				
			1.1	t t - C - distribution in	1		3	1
11.		ment generating function is used to fit	nd the	bounds of a distribution in				
		Chebychev's inequality		Jensen's inequality Cauchy-Schwartz inequality				
	(C)	Chernoff bounds	(D)	Cauchy-Schwartz inequality				
12	103/	:	.h h	Markov inaquality P(Y>10)<2	1	2	3	2
12.	If X	is a random variable with mean 100,	The same of	by Markov inequality $P(X \ge 10) \le ?$				
	(A)		(B)					
	(C)	10	(D)	100				
		(-) (())			1	1	3	1
13.	If V	$Tar(X) = 0$, then $P\{X = E(X)\} = 0$						
	(A)	0	(B)	1				
	(C)	1/2	(D)	1/4				
14.	For any two RVs X and Y then $\{E(XY)\}^2 \le E(X^2) \cdot E(Y^2)$ represents the						3	L
	roi	any two RVS A and I men (E(AI)	,	c(v) c(v) represent an				
	(A)	Markov inequality		Jensen's inequality				
	(C)	Chebychev's inequality	(D)	Cauchy-Schwartz inequality				
15.	If X	is a random variable with mean zero		ariance σ², then for any value a>0,			3	1
	(A)	p(v)als o	(B)	$\sigma(w_{i}) = \sigma^{2}$				
		$P\{X \ge a\} \le \frac{\sigma}{\sigma + a}$		$P\{X \ge a\} \le \frac{\sigma^2}{\sigma + a}$				
	(0)	,	(D)	0 + 4				
	(C)	$P\{X \ge a\} \le \frac{\sigma^2}{\sigma^2 + a}$	(1)	$P\{X \ge a\} \le \frac{\sigma^2}{\sigma^2 + \sigma^2}$				
		$I\{\lambda \geq u\} \leq \frac{1}{\sigma^2 + a}$		$I(A = u) = \frac{1}{\sigma^2 + \sigma^2}$				
16.		t) is ergodic with zero mean and has	no per	nodic components then		2		
		$R_{XX}(\tau) =$						
	$ \tau \rightarrow$							
	(A)	Constant	(B)	Function of T				
	(C)	Zero	(D)	one				
17	P	-(-)-						1
		$r(\tau) =$						
	(A)	$R_{YX}(-\tau)$	(B)	$R_{XY}(-\tau)$				
		$R_{YX}(\tau)$	(D)					
		"IX (*)		$\sqrt{R_{XX}(\tau) \cdot R_{YY}(\tau)}$				

18.	of the time origin, the process is				1	1	4	1
		Linear	(B)	Time variant				
	(C)	Stationary	(D)	Constant				
19.	Give	n the autocorrelation function for a	station	nary ergodic process with no periodic	1	2	4	2
	comp	ponents is $R_{VV}(\tau) = 25 + \frac{4}{\sqrt{3}}$	the	who of				
		ponents is $R_{XX}(\tau) = 25 + \frac{4}{1 + 6\tau^2}$, me v	value of mean is				
	(A) (C)		(B)	25				
	(0)		(D)	2/3				
20.	Two random processes X(t) and Y(t) are uncorrelated with mean 5 and 4 respectively.					2	4	2
	Then their cross correlation $R_{XY}(t,t+\tau) =$							
	(A) (C)		(B)	0 20				
	(0)		(D)	20				
21.	If the output $Y(t_1)$ at a given time $t=t_1$, depends only on $X(t_1)$ and not on any other					1	5	1
	(A)	or future values of X(t), then the sys Memoryless system						
	(C)			Causal system Linear system				
22	The				1	•		,
22.	The mean-square value of the process $\{X(t)\}\$ if its autocorrelation function is given					2	5	2
		$R(\tau) = e^{-\tau^2/2} \text{ is}$						
	(A) (C)	1/2	(B) (D)	0				
	(C)		(D)					
23.	If $R(\tau) = e^{-2\lambda \tau }$ is the autocorrelation function of a random process X(t) then the					2	5	2
	spectral density of X(t) is							
	(A)	$\frac{2\lambda}{4\lambda^2 + \omega^2}$	(B)	$\frac{2\lambda^2}{4\lambda^2 + \omega^2}$ $\frac{\lambda}{4\lambda^2 + \omega^2}$				
		$4\lambda^2 + \omega^2$		$4\lambda^2 + \omega^2$				
	(C)	$\frac{4\lambda}{4\lambda^2+\omega^2}$	(D)	λ				
		$4\lambda^2 + \omega^2$		$4\lambda^2 + \omega^2$				
21	The mean square value of a WSS process is equal to the total area under the graph of					1	5	1
21.		Auto correlation		Cross correlation	1		,	
	(C)	Spectral density	(D)	Cross power spectral density				
25.	The power spectral density $S(\omega)$ of a continuous time random process $X(t)$ is defined					1	5	1
	as th	ne						
	(A) (C)	Fourier inverse transform of $R(\tau)$	(B)	Fourier transform of $R(\tau)$				
	(0)	Fourier sine transform of $R(\tau)$	(D)	Fourier cosine transform of $R(\tau)$				
		PART - B (5 × 10 =			Marks	BL	co	PO
26. a.	Cons	Answer ALL Q sider the experiment of tossing a fa		4 times. Define X=0 if 0 or 1 head	10	4	1	1,2
	appears, X=1 if 2 head appears, X=2 if 3 or 4 head appears. Analyze the situation and							
	define a suitable probability function for the above experiment. Compute the mean, variance and the distribution function for the defined probability function.							
	varia	and the distribution function for	ane de	inica probability function.				

(OR)

are three errors per 5 pages. Use Poisson distribution and estimate the number of pages with 0,1,2,3 errors and more than 3 errors in a book of 1000 pages. 27. a. Let X and Y each follows an exponential distribution with parameter 1 and are 10 1,2 independent. Assume X and Y are transformed to the random variables U and V by means of the transformation U=X-Y and V=Y. Estimate the pdf of U for the given transformation. (OR) b. In producing gallium-arsenide microchips, it is known that the ratio between gallium 10 2 12 and arsenide is independent of producing a high percentage of workable wafer, which are main components of microchips. Let X denote the ratio of gallium to arsenide and Y denote the percentage of workable micro wafers retrieved during a 1-hour period. X and Y are independent random variables with the joint density being known as $f(x,y) = \begin{cases} \frac{x(1+3y^2)}{4}; & 0 < x < 2, 0 < y < 1 \\ 0 & otherwise \end{cases}$ Estimate the average ratio of gallium to arsenide E(x) and the average percentage of workable microwafer retrieved during a 1-hour period E(Y). Compute the average of the product of X and Y and check if $E(XY)=E(X)\cdot E(Y)$. 28. a. If X denotes the sum of the numbers obtained when 2 dices are thrown, obtain an 10 upper bound for $P\{|X-7| \ge 4\}$. Compare the answer with the exact probability. b. The life time of a certain brand of a battery may be considered a RV with mean 1200h 10 1,2 and standard deviation 250h. Apply central limit theorem to estimate the probability that the average lifetime of 60 batteries exceeds 1250h. 29. a. Show that the process $X(t) = A\cos \lambda t + B\sin \lambda t$, where A and B are RVs is wide 10 1,2 sense stationary only on applying the condition E(A) = E(B) = 0(i) (ii) $E(A^2)=E(B^2)$ and (iii) E(AB)=0(OR) b. If {X(t)} and {Y(t)} are independent wide sense stationary processes with zero mean, 10 1,2 find the auto-correlation function of $\{Z(t)\}$, when Z(t) = a + bX(t) + cY(t)(i) Z(t) = aX(t)Y(t)(ii) 30. a. The auto correlation of the random binary transmission is given by 10 3 5 $R_{XX}(\tau) = \begin{cases} 1 - \frac{|\tau|}{T} & \text{for } |\tau| \leq T \\ 0 & \text{for } |\tau| > T \end{cases}$ Determine the power spectrum of the binary transmission. (OR) b. A wide sense stationary process X(t) is the input to a linear system with impulse 10 1,2 response $h(t) = 2e^{-7t}$; $t \ge 0$. If the auto correlation function of X(t) is

b. After correcting the proof up to 50 pages of a book, the proof reader found that there 10

 $R_{XX}(\tau) = e^{-4|\tau|}$, estimate the power spectral density of the output process.

3 1

1.2