

## FAKE NEWS DETECTION

DEEP LEARNING PROJECT

PRESENTED BY CS22B1043 Ishank Kumar CS22B1082 Thallapally Nimisha

## OVERVIEW

#### Objective:

Develop and evaluate models to classify news articles as fake or real.

#### Dataset:

- Text-based news dataset with labeled samples (fake.csv & real.csv)
- Identified common structural patterns like newswire headers and image credits, and experimented with:
  - Keeping these patterns to observe potential influence on model behavior.
  - Removing them to prevent the model from learning nonsemantic, superficial cues.

## Data Preprocessing Approaches:

- Standard NLP cleaning (lowercasing, punctuation removal, etc.)
- Tokenization & padding for deep learning models
- Two variations: with and without the common line

#### OVERVIEW

#### Models Explored:

- Logistic Regression (baseline)
- BiLSTM (Bidirectional Long Short-Term Memory)
- BiGRU (Bidirectional Gated Recurrent Unit)
- Transformer-based model (Custom Transformer)

#### Key Goals:

- Compare traditional vs. deep learning approaches
- Evaluate the impact of pre-processing variations
- Identify the most effective model for fake news classification

#### DATASET SUMMARY

#### **ISOT** Fake News Dataset

- Purpose: Classify news articles as real or fake.
- Source:
  - Real news: Collected from Reuters.com (~12,600 articles).
  - Fake news: Gathered from unreliable sources flagged by Politifact and Wikipedia (~12,600 articles).
- Timeframe: Articles primarily from 2016–2017.
- Content Fields: Each article includes title, text, label, and date.
- Key Focus Areas: Majority of articles are on politics and world news.

| News Type | Total Articles | Major Subjects                           |
|-----------|----------------|------------------------------------------|
| Real      | 21,417         | World, Government, Middle-East           |
| Fake      | 23,481         | US Politics, Left-News, General Politics |

Note: Original punctuation and errors in fake news articles were retained to preserve real-world characteristics.

#### Initial Steps:

- Merged fake.csv and real.csv datasets
- Labelled data: 0 = Fake, 1 = Real
- Identified a common repeated line in both files

#### Cleaning Steps:

- Removed URLs, special characters, and extra whitespace
- Lowercased all text
- Tokenized and padded sequences for DL models

#### Two Variants Created:

- 1. With the header and footer patterns
- 2. Without the header and footer patterns

#### 1. Initial Cleaning

- Removed Duplicates
  - Ensured unique articles in the dataset to avoid biased learning.
- Removed Null Entries
  - Eliminated rows with missing values to maintain consistency and avoid runtime errors during training.

#### 2. Pattern-Based Cleaning

- Start Pattern: Datelines & Attribution Headers
  - Many articles started with newswire headers like:
  - "WASHINGTON (Reuters) ..."
  - These do not contribute to content semantics and were removed.
- End Pattern: Image References
  - Articles often ended with metadata or image credits such as:
  - o "...featured image via Shutterstock."
  - Regex used:
  - o r'([^.]\*?(images|image|capture|featured|via)[^.]\*\.)\s\*\$'
  - Last sentence removed if it matched this pattern.

#### • Issue:

- These patterns were dataset-specific and did not carry semantic information.
- Risk: Model learns these superficial cues instead of meaningful content.

#### 3. Removed Very Short Articles

- Dropped texts with length ≤ 6 words
  - These were often headlines, broken entries, or noise.
  - Such short texts lack context and meaningful features for training an LSTM model.

#### 4. Final Output

- Cleaned dataset with semantically rich and unique text.
- Prevented the model from overfitting on structural noise (like headers or captions).
- Ensures model focuses on actual content rather than formatting artifacts.
- Improved the model's ability to learn from semantic content, not superficial cues.

| Split      | Count | True  | Fake  | Percentage |
|------------|-------|-------|-------|------------|
| Train      | 27366 | 14836 | 12530 | 70         |
| Test       | 7820  | 4240  | 3580  | 20         |
| Validation | 3910  | 2120  | 1790  | 10         |

# DATASET SPLIT OVERVIEW

**Total Samples:** 

44898 (True - 21417, Fake - 23481)

After dropping NAN and duplicates:

39105

After removing common patterns:

39105

Removes lines with <= 6 words:

39096

Final dataset size:

39096 (True - 21196, Fake - 17900)

#### LOGISTIC REGRESSION

|             | 0.9844  |        |        |          |         |
|-------------|---------|--------|--------|----------|---------|
| Classificat | tion Re | port:  |        |          |         |
|             | pre     | cision | recall | fl-score | support |
| Fak         | ke      | 0.99   | 0.98   | 0.98     | 3580    |
| Rea         | al      | 0.98   | 0.99   | 0.99     | 4240    |
| accurac     | ·v      |        |        | 0.98     | 7820    |
| macro av    | -       | 0.98   | 0.98   | 0.98     | 7820    |
| weighted av | _       | 0.98   | 0.98   | 0.98     | 7820    |
| weighted di | · 9     | 0.50   | 0.50   | 0.50     | 7020    |



\*False higher performance (Dataset specific)

#### LOGISTIC REGRESSION



### BILSTM ARCHITECTURE



#### BI-LSTM

| Precision: ( | 0.9830    |        |          |         |  |
|--------------|-----------|--------|----------|---------|--|
| Classificat  | -         |        |          |         |  |
|              | precision | recall | fl-score | support |  |
| Fake         | e 0.97    | 0.99   | 0.98     | 3580    |  |
| Rea          | 1 0.99    | 0.98   | 0.98     | 4240    |  |
| accuracy     | v         |        | 0.98     | 7820    |  |
|              |           | 0.98   | 0.98     | 7820    |  |
| weighted av  | -         | 0.98   | 0.98     | 7820    |  |
|              |           |        |          |         |  |
| macro av     | g 0.98    |        |          |         |  |



#### **BI-LSTM**







## BIGRU ARCHITECTURE

#### BI-GRU

| Evaluation  | Matrice   |      |        |          |         |
|-------------|-----------|------|--------|----------|---------|
| Evaluation  |           |      |        |          |         |
| Accuracy:   | 0.9884    |      |        |          |         |
| Precision:  | 0.9929    |      |        |          |         |
| AUC:        | 0.9994    |      |        |          |         |
| EER:        | 0.0108    |      |        |          |         |
|             |           |      |        |          |         |
| Classificat | tion Deno | rt.  |        |          |         |
| Ctassiiica  | •         |      | 11     | £1       |         |
|             | precis    | sion | recatt | fl-score | support |
|             |           |      |        |          |         |
| Fal         | ke (      | 9.98 | 0.99   | 0.99     | 3580    |
| Rea         | al (      | 9.99 | 0.99   | 0.99     | 4240    |
|             |           |      |        |          |         |
| accura      | rv        |      |        | 0.99     | 7820    |
|             | _         | 0.00 | 0.00   |          |         |
| macro av    | _         | 9.99 | 0.99   | 0.99     | 7820    |
| weighted a  | vg (      | 9.99 | 0.99   | 0.99     | 7820    |
|             |           |      |        |          |         |
|             |           |      |        |          |         |



**BI-GRU** 







# TRANSFORMER ARCHITECTURE

#### TRANSFORMER

|              | .9910       |        |          |         |  |
|--------------|-------------|--------|----------|---------|--|
| Classificati | ion Report: |        |          |         |  |
|              | precision   | recall | fl-score | support |  |
| Fake         | 0.99        | 0.99   | 0.99     | 3580    |  |
|              |             |        |          |         |  |
| Real         | 0.99        | 0.99   | 0.99     | 4240    |  |
|              |             |        |          |         |  |
| accuracy     | /           |        | 0.99     | 7820    |  |
| macro avg    | 0.99        | 0.99   | 0.99     | 7820    |  |
| weighted avo | ,           | 0.99   | 0.99     | 7820    |  |
| weighted dvg | 0.33        | 0.33   | 0.33     | 7020    |  |
|              |             |        |          |         |  |



#### TRANSFORMER





#### HYPERPARAMETER TUNING

| Model       | Batch Slze              | Optimizer | EER    | AUC    |
|-------------|-------------------------|-----------|--------|--------|
| Di LCTM     | 32                      | Adam      | 0.0278 | 0.9923 |
| Bi-LSTM     | 64                      | Adam      | 0.0160 | 0.9948 |
|             | 32                      | Adam      | 0.0132 | 0.9986 |
|             | 64                      | Adam      | 0.0108 | 0.9994 |
| Bi-GRU      | 128                     | Adam      | 0.0281 | 0.9922 |
|             | 32                      | RMSProp   | 0.0158 | 0.9980 |
|             | 64                      | RMSProp   | 0.0111 | 0.9983 |
|             | 64<br>(token len = 907) | Adam      | 0.0094 | 0.9992 |
| Transformer | 64<br>(token len = 500) | Adam      | 0.0108 | 0.9987 |
|             | 32                      | RMSProp   | 0.0125 | 0.9993 |

## SUMMARY

| Metric           | Logistic<br>Regression                   | Bi-LSTM                                  | Bi-GRU                                   | Transformer                          |
|------------------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------|
| Accuracy         | 0.9844                                   | 0.9830                                   | 0.9884                                   | 0.9884                               |
| Precision        | 0.9800                                   | 0.9902                                   | 0.9929                                   | 0.9904                               |
| AUC              | 0.9985                                   | 0.9948                                   | 0.9994                                   | 0.9992                               |
| EER              | 0.0144                                   | 0.0160                                   | 0.0108                                   | 0.0094                               |
| F1-Score         | 0.98 (avg)                               | 0.98 (avg)                               | 0.99 (avg)                               | 0.99 (avg)                           |
| Fake Class (F1)  | 0.98                                     | 0.98                                     | 0.99                                     | 0.99                                 |
| Real Class (F1)  | 0.99                                     | 0.98                                     | 0.99                                     | 0.99                                 |
| Confusion Matrix | TP: 3494<br>FP: 86<br>FN: 36<br>TN: 4204 | TP: 3539<br>FP: 41<br>FN: 92<br>TN: 4148 | TP: 3550<br>FP: 30<br>FN: 61<br>TN: 4179 | TP:3539<br>FP:49<br>FN:21<br>TN:4211 |

- Bi-GRU and Transformer are the top performers, both with F1-score of 0.99.
- Transformer has the lowest EER (0.0094) and fewest false negatives, making it highly reliable.
- Bi-GRU leads in precision (0.9929) and AUC (0.9994), showing strong class separation.
- Logistic Regression captures surfacelevel patterns but lacks semantic understanding, leading to good performance on specific datasets that may not generalize well.
- Bi-LSTM shows higher errors, especially in detecting real news (FN = 92).
- Overall, Transformer and Bi-GRU are the most effective, with Transformer better at minimizing errors and Bi-GRU better at precision.

## CONCLUSION

- Transformer and Bi-GRU deliver the best overall performance across all metrics.
- Transformer excels in minimizing errors, with the lowest EER and false negatives, making it highly reliable for real-world detection.
- Bi-GRU achieves the highest precision and AUC, indicating strong confidence and class separation.
- Logistic Regression performs well by learning surface-level patterns, not semantic meaning which explains its good metrics, but makes it highly dataset-specific and less generalizable
- Bi-LSTM is competitive but has higher misclassification rates, especially for real news.
- Recommendation: Choose Transformer for balanced reliability or Bi-GRU for slightly better precision depending on the application context.

## Thank You