The Dirichlet Distributions

[Prerequisite probability background: Univariate gamma and beta distributions multivariate change of variables formulas, calculus of conditioning.]

For any positive integer k, and any $a_1 > 0, \ldots, a_k > 0$, the Dirichlet distribution $Dir(a_1, \ldots, a_k)$ denotes the distribution associated with the pdf

$$f(\omega) = \frac{1}{D(a_1, \dots, a_k)} \omega_1^{a_1 - 1} \cdots \omega_k^{a_k - 1}, \quad \omega \in \Delta_k,$$

where Δ_k is the k-dimensional simplex: $\{\omega=(\omega_1,\ldots,\omega_k)\in\mathbb{R}^k:\omega_l\geq 0,\sum_{l=1}^k\omega_l=1\}$. The normalizing constant, derived first by Dirichlet, equals $\frac{\Gamma(a_1)\cdots\Gamma(a_k)}{\Gamma(a_1+\cdots+a_k)}$. It is also possible to define the Dirichlet distribution through the pdf on the first k-1 variables. A $W=(W_1,\ldots,W_k)\in\Delta_k$ has the $Dir(a_1,\ldots,a_k)$ distribution if and only if the pdf of (W_1,\ldots,W_{k-1}) is proportional to $w_1^{a_1-1}\cdots w_{k-1}^{a_{k-1}-1}(1-w_1-\cdots-w_{k-1})^{a_k-1}$.

Clearly, the Dirichlet distribution is an extension of the beta distribution to explain probabilities of two or more disjoint events. And in particular, $W = (W_1, W_2) \sim Dir(a, b)$ is same as saying $W_1 \sim Be(a, b)$, $W_2 = 1 - W_1$.

Below are some interesting connections with gamma and beta distributions, which lead to a better understanding of a Dirichlet random vector. Lemma 5 shows a very interesting "regenerative property".

Lemma 1. If $X_l \sim Ga(a_l, 1)$, l = 1, ..., k, then $S := X_1 + \cdots + X_k \sim Ga(\sum_{l=1}^k a_l, 1)$, $W := (X_1/S, ..., X_k/S) \sim Dir(a_1, ..., a_k)$ and $S \perp W$.

Proof. Follows from a change of variable formula to the transformation $(X_1, \ldots, X_k) \mapsto (X_1, \ldots, X_{k-1}, S)$.

Corollary 2. If $(W_1, \ldots, W_k) \sim Dir(a_1, \ldots, a_k)$ and the indices $\{1, \ldots, k\}$ are partitioned into two disjoint subsets A and B then $(\sum_{l \in A} W_l, \sum_{l \in B} W_l) \sim Be(\sum_{l \in A} a_l, \sum_{l \in B} a_l)$.

Proof. Follows directly from the gamma representation result of Lemma 1. \Box

Like beta is conjugate to binomial, the Dirichlet distributions are conjugate to the multinomial models:

Lemma 3. If $Z|W \sim Mult(k, W)$, $W \sim Dir(a_1, \ldots, a_k)$ then $Z \sim Mult(k, (\frac{a_1}{\sum_l a_l}, \ldots, \frac{a_k}{\sum_l a_l}))$ and $W|Z \sim Dir(a_1 + I(Z = 1), \ldots, a_k + I(Z = k))$.

Proof. The conditional distribution results follows easily since $f(w|z=j) \propto f(w)w_j$. For the marginal property, notice that $P(Z=j) = EP(Z=j|W) = EW_j = a_j / \sum_l a_l$ by Corollary 2.

Lemma 4. If $W \sim Dir(a_1, \ldots, a_k)$ and $Y \sim Be(b, a_1 + \cdots + a_k)$ then $((1 - Y)W, Y) \sim Dir(a_1, \ldots, a_k, b)$.

Proof. By the previous lemma, we can identify $W = (X_1/S, \ldots, X_k/S)$, Y = V/(V+S) where $X_l \sim Ga(a_l, 1)$, $S = X_1 + \cdots + X_k$ and $V \sim Ga(b, 1)$, independently of X. Hence $((1-Y)W,Y) = (X_1/(V+S), \ldots, X_k/(V+S), V/(V+S)) \sim Dir(a_1, \ldots, a_k, b)$, again by Lemma 1.

Lemma 5. Let $a_1, \ldots, a_k > 0$ and $a := a_1 + \cdots + a_k$. If $W \sim Dir(a_1, \ldots, a_k)$, $Z \sim Mult(k, (a_1, \ldots, a_k)/a)$ and $Y \sim Be(1, a)$, $W \perp Y \perp Z$, then $(1-Y)W+Ye_Z \sim Dir(a_1, \ldots, a_k)$ where $e_j \in \Delta_k$ denotes the canonical vector with all zeros except a one on the j-th coordinate.

Proof. By Lemma 4, $((1-Y)W,Y) \sim Dir(a_1,\ldots,a_k,1)$. So by Corollary 2, given Z=j the conditional distribution of $(1-Y)W+Ye_Z$ is $Dir(a_1,\ldots,a_{j-1},a_j+1,a_{j+1},\ldots,a_k)$. Also, by definition $Z \sim Mult(k,(a_1/\sum_l a_l,\ldots,a_k/\sum_l a_l))$. Since the marginal of Z and the conditional of $\{(1-Y)W+Ye_Z\}|Z$ uniquely defines the distribution of W, we must have $(1-Y)W+Ye_Z \sim Dir(a_1,\ldots,a_k)$ by Lemma 3.