

浙江大学物理化学实验

交流电桥法测定电解质溶液电导 & BET 法 测固体比表面积

实

验

报

告

参加学生: 叶青杨(3210100360)

指导老师: 方文军杨林颜

浙江大学化学实验教学中心 2023 年 11 月 16 日

交流电桥法测定电解质溶液电导 & BET 法测固体比表面积

叶青杨 (3210100360), 指导教师: 方文军

一、原理

电导的单位为 S 或者 Ω^{-1} , 溶液的电导计算为:

$$G = \kappa \frac{A}{1}$$

 κ 为电导率,单位为 $\mathbf{S}\cdot\mathbf{m}^{-1}$, $\frac{1}{A}$ 为电导池常数 \mathbf{K}_{cell} 摩尔电导率为 $\Lambda_{\mathbf{m}}$,单位为 $\mathbf{S}\cdot\mathbf{m}^{2}\cdot\mathbf{mol}^{-1}$

$$\Lambda_{\mathbf{m}} = \kappa/\mathbf{c}$$

对强电解质溶液的稀溶液, 遵循科尔劳施稀释定律:

$$\Lambda_{\mathbf{m}} = \Lambda_{\mathbf{m}}^{\infty} - \mathbf{A}\sqrt{\mathbf{c}}$$

注意实验得到的得到的

$$G_{aq} = G_{H_2O} + G_{salt}$$

交流电桥的电路略,调节 R_3 ,当示波器波形趋于稳定的直线,且通过检零器 (灵敏电流表)的电流为0时,电桥达到平衡,此时

$$\frac{R_1}{R_2} = \frac{R_x}{R_3}$$

 R_x 即为所求的电阻。

BET 法测固体比表面积: 采用康塔公司的比表面积和孔径分析仪,通过液氮容量法(N2 吸脱附法)和 BET 方程测定和计算分子筛的比表面积

BET 方程:

$$\frac{p}{v(p_0-p)} = \frac{1}{v_m C} + \frac{C-1}{v_m C} \times \frac{p}{p_0}$$

p: N2 的分压; p0: 液氮温度下,氮气的饱和蒸气压; v: 样品的实际吸附量; C: 与样品吸附能力有关的常数; 以 $p/v(p_0-p)$ 对 p/p_0 作图,根据直线的斜率和截距,可以求出单分子层吸附量 v_m 和常数 C

1 试剂与仪器

1.1 试剂

0.02 mol·L⁻¹KCl 标准溶液

1.2 仪器

DF1022B 信号发生器; XJ4328 型示波器; 电导率仪; 电导电极; 恒温槽; 50 mL 移液管; 100 mL 容量瓶; 试管

二、实验

2 实验步骤[1]

1. 测试电路

将电导电极置于一个待测溶液,连接好电路,测试示波器,测到稳定的明显的正弦信号

2. 测定电解池常数

恒温槽调至 25° C,以 0.02M 的 KCl 溶液测定电导率,测定不同 $R_1: R_2$ 下的 R_3 ,平行测定三次,得到相近数据,取平均值作为结果。

3. 测定 KCI 溶液的电导

梯度稀释得到 0.02/2, 0.02/4, 0.02/8, 0.02/16mol·L⁻¹ 的 KCl 溶液,使用交流 电桥法测出电阻,每个溶液在不同 $\mathbf{R}_1:\mathbf{R}_2$ 下平行测量三次。

为了防止溶液相互污染,对整个实验进行一次重复测量,两次测试单独拟合计算。其中,第一组为未严格遵守从稀到浓规则的结果,第二组严格遵守从稀到浓。

4. 测定去离子水的电导率

使用电导率仪测定去离子水的电导率。

结束实验,关闭电源,拆除导线,整理实验台。

BET 法:

脱气处理: 真空或是流动法对样品加热处理。其目的是为了让吸附气体不被 阻挡的吸附在样品表面

样品分析:将脱气后的样品放入分析站自动进行分析操作,最终得到等温线数据计算:将由分析站得到的等温线在软件中进行数据处理,得到比表面,孔径分布等信息

3 实验结果与分析

水浴温度为 25.0 摄氏度 固定 $R_1 = 420 \Omega$ 实验测定的水的电导为 $4.2 \mu S/cm$

表 1 第一组测定的 R_3/Ω 原始数据

	浓度/0.02 M					
	1	1/2	1/4	1/8	1/16	
1:1	213.0	418.0	853.0	1599	2865	
1:2	433.0	836.0	1680	3250	5470	
2:1	109.0	210.0	424.0	810.0	1412	

根据未稀释的数据计算出的 $G_{aq}=4.633\times 10^{-3}S$

$$\begin{split} \frac{l}{A} &= \frac{\kappa}{G} = \frac{\kappa}{G_{aq} - G_{H_2O}} = \frac{\kappa}{G_{aq} - \kappa_{H_2O}\frac{A}{l}} \\ \frac{l}{A} &= \frac{0.2765 \; S \cdot m^{-1}}{4.633 \times 10^{-3} \; S - 4.2 \times 10^{-4} \; S \cdot m^{-1} \times \frac{A}{l}} \\ K_{cell} &= \frac{l}{A} = 59.77 \; m^{-1} \end{split}$$

根据公式进行换算 $G=rac{1}{R}-\kappa_{H_2O}/K_{cell}$, $\kappa=G\cdot K_{cell}=rac{K_{cell}}{R}-\kappa_{H_2O}$ $\Lambda_m=\kappa/c$

表 2 第一组计算出的摩尔电导率/ $S \cdot m^2 \cdot mol^{-1}$

测量臂 $R_1:R_2$	浓度/0.02 M					
	1	1/2	1/4	1/8	1/16	
1:1	0.01401	0.01426	0.01393	0.01478	0.01635	
1:2	0.01378	0.01426	0.01415	0.01454	0.01715	
2:1	0.01369	0.01419	0.01401	0.01459	0.01660	
平均	0.01383	0.01423	0.01403	0.01464	0.01669	

表 3 第二组测定的 R_3/Ω 原始数据

测量臂 $R_1:R_2$	浓度/0.02 M					
	1	1/2	1/4	1/8	1/16	
1:1	217.0	419.0	816.0	1599	2940	
1:2	435.0	836.0	1640	3220	6050	
2:1	108.0	208.0	409.0	801.0	1520	

表 4 第二组换算出的摩尔电导率/S·m²·mol⁻¹

测量臂 R ₁ : R ₂	浓度/0.02 M					
	1	1/2	1/4	1/8	1/16	
1:1	0.01375	0.01422	0.01457	0.01478	0.01593	
1:2	0.01372	0.01426	0.01449	0.01468	0.01547	
2:1	0.01381	0.01433	0.01453	0.01476	0.01539	
平均	0.01376	0.01427	0.01453	0.01474	0.01559	

作为对比,如果我们不考虑水的电导的影响,我们可以同样得到一组数据。此时计算出的 $\mathbf{K}_{cell}=\mathbf{58.46}~\mathbf{m}^{-1}$ 。

表 5 不进行水的电导修正的第一组的摩尔电导率/ $S \cdot m^2 \cdot mol^{-1}$

测量臂 R ₁ : R ₂	浓度/0.02 M					
	1	1/2	1/4	1/8	1/16	
1:1	0.01372	0.01399	0.01371	0.01462	0.01632	
1:2	0.01350	0.01399	0.01392	0.01439	0.01710	
2:1	0.01341	0.01392	0.01379	0.01443	0.01656	
平均	0.01354	0.01396	0.01380	0.01448	0.01666	

表 6 不进行水的电导修正的第二组的摩尔电导率 $/S \cdot m^2 \cdot mol^{-1}$

测量臂 R ₁ : R ₂	浓度/0.02 M					
	1	1/2	1/4	1/8	1/16	
1:1	0.01347	0.01395	0.01433	0.01462	0.01591	
1:2	0.01344	0.01399	0.01426	0.01452	0.01546	
2:1	0.01353	0.01405	0.01429	0.01460	0.01538	
平均	0.01348	0.01400	0.01429	0.01458	0.01558	

对各组的平均值进行拟合,得到图 1。我们不难发现,水的电导的修正对实验结果的影响有限,而更大的误差来自于组与组之间数据的差异,第一组可能存在溶液间的污染问题,导致最低浓度组的摩尔电导率严重偏高。组 2 最终得到了线性较好的实验结果,最终可以选取 $\Lambda_m^\infty = 0.01576 \mathbf{S} \cdot \mathbf{m}^2 \cdot \mathbf{mol}^{-1}$ 作为最终结果。

电导率对 \sqrt{x} 作图 电导率对 \sqrt{x} 作图

图 1 根据四份实验数据拟合科尔劳施定律结果

在上一份实验报告中,我们错误的使用了十倍大小的水的电导率进行修正,得到了不理想的实验结果,也因此说明,如果我们使用更稀的溶液进行实验,水的电导的重要性会进一步上升,对水的电导的修正会变得更加重要。

BET 法测定分子筛比表面积

图 2 BET 法测定分子筛比表面积的结果

与预期(PPT 上的说明)不太一致的是,C constant 均为负值,且相关系数未达到 0.9999(对所有组均符合),实验测得的表面积为 417.872 \mathbf{m}^2/\mathbf{g} ,与预期较为一致。

四、参考文献

[1] 王国平,张培敏,王永尧.中级化学实验 [M].北京:科学出版社,2017.