

SE ZG568 / SS ZG568, Applied Machine Learning Lecture No. 14 [04- May-2025]

Topic of Discussion

Bias-Variance Trade Off

Definition

Bias: Bias refers to the **error introduced by approximating a real-world problem**, which may be very complex, **by a simplified model**.

A high-bias model is **too simple** to capture the underlying patterns in the data. It makes **strong assumptions**, leading to **systematic errors**.

Example: Trying to fit a straight line to data that clearly follows a curve — the model **underfits**.

Consequences of High Bias:

- Poor performance on training and test data
- Fails to capture relevant patterns
- Underfitting

Definition

Variance: Variance refers to the model's sensitivity to fluctuations in the training data.

Intuition:

A high-variance model is **too complex** and tries to fit every tiny variation in the training data — even noise.

Example:

Fitting a 10th-degree polynomial to just a few data points — the model overfits.

Consequences of High Variance:

- Excellent performance on training data
- Poor performance on test data
- Overfitting

Property	High Bias	High (too complex)	
Model Complexity	Low (too simple)		
Training Error	High	Low	
Test Error	High	High (because of overfitting)	
Problem	Underfitting	Overfitting	

Goal:

Find a model with the **right balance** — low enough bias to capture the signal, and low enough variance to generalize well.

Bias Variance Trade Off

Bias-Variance Trade-off: Model Fits

innova

MSE vs Degree of Polynomial

Principled Way of Doing ML

- Get Data
 - Encode data: Choose a good representation
 - Preprocessing: feature selection, dimensionality reduction
 - random split (Train-Test), fix random seed for reproducibility
- Generate *Hypothesis Class*: space of possible solutions (//)
 - make suitable model assumptions (application domain specific)
 - y = h(x) where $h \in \mathcal{H}$ (space of all solutions)
- Characterize Loss function: L(quess, actual)
- Finalize the algorithm find the best hyperparameters by doing crossvalidation on the training dataset
- 5. Run algorithm: Retrain the entire Training data using the best hyperparameter found during cross validation.
- Validate Result: Testing on unseen data
 - 0 - performance evaluation metrics (Linear Regression: R2)
 - 0 Classification: Confusion Matrix (Acc., Prec., Recall, Macro F1-score), RoC curves, AuC

Bias-Variance for Decision Tree

Tree Depth	Bias	Variance	Over/Underfit
Small (e.g., 1–3)	High	Low	Underfitting
Medium (e.g., 4–6)	Moderate	Moderate	Good Trade-off
Large (unpruned)	Low	High	Overfitting

Decision Tree: Bias Variance Trade

Off

Random Forest

Random Forest - Bagging

High Variance DT (Overfit) max_depth=None Test Acc: 0.87 (Error: 0.13)

Random Forest (n_estimators=100) max_depth=None Test Acc: 0.92 (Error: 0.08)

- The single deep Decision Tree (left) has a very jagged, complex boundary, fitting noise.
- The Random Forest (right), even though its internal trees are deep, has a much smoother boundary.
- This smoothness comes from averaging the predictions of many trees. It captures the general trend without fitting individual noisy points.
- Consequently, the Random Forest usually achieves better Testing Accuracy (0.92) compared to the severely overfit single tree (0.87), demonstrating reduced variance.

Bias Variance in k NN

lead

kNN Bias Variance Trade -Off

1. Low K (Left side, e.g., K=1):

- Training Error is very low (often zero for K=1). The model perfectly fits the training data.
 - Testing Error is high.
- The model is too complex locally (HIGH VARIANCE) and fits the noise (OVERFITTING). It doesn't generalize well.

2. Increasing K (Moving right):

- Training Error generally increases. As K gets larger, the model becomes smoother and cannot fit every training point perfectly.
- Testing Error decreases initially, reaches a minimum, and then starts to increase again.
- The point where Testing Error is minimized (around K=33 in this run) represents the 'optimal' K value, providing the best tradeoff.

3. High K (Right side):

- Training Error continues to increase and eventually levels off.
- Testing Error increases after the minimum point.
- The model becomes too simple (HIGH BIAS) and fails to capture the underlying pattern (UNDERFITTING). The decision boundary becomes overly smooth.

Important Note on Complexity for KNN:

- Unlike Decision Tree Depth, where higher depth means more complexity, for KNN, *smaller* K means *more* complexity (more flexible boundary),
- and *larger* K means *less* complexity (smoother, simpler boundary).
- The goal is still to find the 'sweet spot' that minimizes the Testing Error.

Regularized Least Squares

Linear Least Square Regression

$$y_1 = mx_1 + c + e_1$$

 $y_2 = mx_2 + c + e_2$
 $y_3 = mx_3 + c + e_3$
 $y_4 = mx_4 + c + e_4$
 $y_5 = mx_5 + c + e_5$
 $y_6 = mx_6 + c + e_6$
 $y_7 = mx_7 + c + e_7$
 $y_8 = mx_8 + c + e_8$

Via Calculus

$$\min_{x} ||Ax - b||_2^2$$

Regularized Least Square [Ridge Regression]

$$\min_{x} ||Ax - b||_{2}^{2} + \lambda ||x||_{2}^{2}$$

Ordinary Least Squares (OLS) solution:

$$\hat{w}_{\text{OLS}} = (A^T A)^{-1} A^T b$$

Ridge Regression solution:

$$\hat{w}_{\mathrm{ridge}} = (A^T A + \lambda I)^{-1} A^T b$$

Effect of Ridge Regression

- 1. Get Data
 - Encode data: Choose a good representation
 - Preprocessing: feature selection, dimensionality reduction
 - random split (Train-Test), fix random seed for reproducibility
- 2. Generate *Hypothesis Class*: space of possible solutions (//)
 - make suitable model assumptions (application domain specific)
 - y = h(x) where $h \in \mathcal{H}_{s}$ (space of all solutions)
- 3. Characterize Loss function: L(guess, actual)
- 4. Finalize the algorithm find the best hyperparameters by doing crossvalidation on the training dataset
- 5. Run algorithm: Retrain the entire Training data using the best hyperparameter found during cross validation.
- 6. Validate Result: Testing on unseen data
 - performance evaluation metrics (Linear Regression: R²)
 - O Classification: Confusion Matrix (Acc., Prec., Recall, Macro F1-score), RoC curves, AuC