Univerzita Tomáše Bati ve Zlíně

Ústav elektrotechniky a měření

Diody a usměrňovače

Přednáška č. 2

Milan Adámek

adamek@ft.utb.cz
U5 A711
+420576035251

Voltampérová charakteristika diody

Voltampérová charakteristika diody

V-A charka v semilogaritmickém tvaru (technická dokumentace)

Měření VA charakteristiky diody

a) Pomocí ampérmetru a voltmetru

Měření VA charakteristiky diody

b) Pomocí osciloskopu

Mezní hodnoty diod

Platí: Ztrátový výkon v propustném směru = ztrátový výkon v závěrném směru

Dynamický odpor diody

Směrnice tečny v pracovním bodě určuje dynamický odpor diody

$$R = \frac{U}{I}$$

$$r = \frac{\Delta U}{\Delta I}$$

- R stejnosměrný odpor
- U stejnosměrné napětí
- I stejnosměrný proud
- r dynamický (diferenciální) odpor
- ΔU napěťová změna
- ΔI proudová změna

Pracovní bod diody

Pracovní bod uvádí na VA charce pracovní napětí a proud, které odpovídají nastaveným hodnotám díky použitým hodnotám součástek

Pracovní bod diody

b) Příklad nelineárního děliče napětí

Průraz závěrné vrstvy diody

- k průrazu diody dojde díky velkému přiloženému závěrnému napětí – tzv. průrazné napětí
- dioda se po průrazu stává vodivou i v závěrném směru díky tomu:
 - přiložené napětí vytrhne valenční elektrony stanou se volné jde o Zenerův jev (Zener – americký fyzik)
 - uvolněné valenční elektrony vyrazí další elektrony jde o lavinový jev (Avalenche efekt)

□ standardní diody – po překročení průrazného napětí jsou poničeny □ stabilizační diody (Zenerovy) – využívají průrazného proudu, průrazné napětí je Zenerovo napětí

Konstrukční provedení polovodičových diod

• vlastnosti polovodičových diod závisí na materiálu, krystalické struktuře a na typu a koncentraci dotující příměsi

		vlastnosti		
veličina	křemíkové diody	germaniové diody	Schottkyho diody	
závěrné napětí	velké (až 400 V u přepěťových ochranných diod)	malé (asi do 100 V)	malé (asi do 70 V)	
nejvyšší přípustná teplota přechodu	relativně velká (asi 190°C)	relativně malá (asi 90°C)	relativně velká (asi 190°C)	
max. ztrátový výkon	velký	střední	velký	
citlivost na krátkodobé přetížení			velká	
prahové napětí	ové napětí asi 0,7 V		asi 0,4 V	
proud v závěrném směru	velmi malý	malý	velmi malý	

Konstrukční provedení polovodičových diod

typ diody řez vrstvami diody		vlastnosti	použití		
slitinová dioda	P např. Al N Si kontakt katody	velká plocha přechodu, velké provozní proudy, velká kapacita přechodu, obtížná hromadná výroba	výkonové diody, výkonové Z-diody do 10 V		
jednoduchá difuzní dioda	kontakt anody	velká plocha přechodu, velké provozní proudy, velká kapacita přechodu, snadná hromadná výroba	výkonové diody, výkonové Z-diody nad 10 V, varikapy (kapacitní diody)		
planární dioda	kontakt anody SiO ₂ N kontakt katody	technologie integrovaných obvodů s vývody v jedné rovině, malé rozměry, malý zpětný proud, parametry vhodné pro vf techniku	univerzální diody, Z-diody, varikapy, PIN diody, Schottkyho diody, vf-diody,		
epitaxní planární dioda	SiO ₂ N ⁺ N	díky silné dotaci základu katody velmi malý odpor v propustném směru a jinak jako planární dioda	spínací diody		
hrotová dioda	kovový hrot P Ge nosič	pro malé proudy, velmi malá kapacita přechodu, krátká doba zotavení, vhodné pro vf techniku	ve vf obvodech s malými proudy, rychlé spínací diody		

Pozn. planus = rovina, epi = nad, taxis = uspořádání

a) nízkofrekvenční diody

- vyrobeny technologií difuzní, planární nebo epitaxní
- velká plocha přechodu
- snese velké proudy, naopak velká zotavovací doba

b) univerzální diody

- vyrobeny epitaxní technologií
- pro střední a větší proudy (1A, 3A, 6A)
- středně velká kapacita přechodu

c) vysokofrekvenční signálové diody

- v obvodech MHz až GHz.
- krátká doba zpětného zotavení
- malá kapacita přechodu

- c) vysokofrekvenční signálové diody
 - hrotové germániové diody wolframový hrot přitavený na germániovou N destičku

- Schottkyho diody
 - kov (Al, Pt) se dotýká epitaxni vrstvy N na polovodiči Si nebo GaAs
 - Schottkyho jev záporné elektrony v polovodiči indukují na povrchu kovu kladný náboj stejné velikosti
 - má velký závěrná proud, vynikající dynamické parametry

- výkonové usměrňovací diody
 - pro spínání velkých proudů při napětích nad 100V
 - robustní konstrukce s velkou plochou přechodu
 - velké kontaktní plochy na elektrodách odvod tepla

- e) přepěťove ...
 - unipolární transil velmi rychlá Zenerova dioda, která snese krátkodobě velký závěrný proud
 - bipolární transil jde o dva antiparalelně zapojené

unipolární transily

Zapouzdření a označení diod

tvar pouzdra (skutečná velikost)	označení katody	poznámky
katoda	kroužek je blíže katody, označení barevným kódem je blíže katody	univerzální usměrňovací diody, Schottkyho diody, Zenerovy diody, transily
katoda	výstupek na pouzdře je blíže katody	varikapy, diody PIN, Schottkyho diody
katoda	katoda je spojena s kovovým pouzdrem	usměrňovací a Zenerovy diody pro střední výkony
katoda	Je-li katoda na kovovém pouzdře, není označena. Je-li na pouzdře anoda, je katoda označena.	usměrňovací a Zenerovy diody pro velké výkony

Označení polovodičových součástek

příl	klad:	B 1.	A 	Y 3.	89 písmeno	
pr	první písmeno (označení materiálu polovodiče)					
A B C	german křemík III. – V. i např. galiuma	materiál	D R			
dru	druhé písmeno (typ součástky)					
ABCD FHL P	HF-tran: Hallův g HF-výko	zistor nový zistor zistor jenerátor nový zistor	Q R S T Y Z	spínac řízený usměri výkono	usměrňovač í tranzistor výkonový	
tře	třetí písmeno a číslice					
3. písmeno označuje (obchodně) průmyslové typy. Čísla pak slouží k číslování podle typů a hodnot						

Zkoušení polovodičových součástek

Zkoušení	Přímý směr	Zpětný směr		
pomocí				
ohmmetru	Δ +	×∞Ω		
ampér- metru a voltmetru	1N4148 + 100Ω 15 V U _F	1N4148 + V 10kΩ 75 V U _R		

Usměrňovače

Obecná struktura síťového zdroje

• ochrana proti přepětí, transformátor napětí, usměrňovač, vyhlazovací filtr, stabilizátor

Jednocestný usměrňovač

Jednocestný usměrňovač

výstup bez filtračního kondenzátoru

výstup s filtračním kondenzátorem C malé

výstup s filtračním kondenzátorem C velké

Dvojcestný usměrňovač

název označení	schéma zapojení usměrňovače	průběh výstupního napětí	U _{di} bez <i>C</i>	/U ₁ s C	$P_{\rm T}/P_{\rm d}$	I_{Z}
jednopulzní zapojení E1	1 _Z + U _{di} + U _{di}	$ \begin{array}{c c} T & S & C \\ \hline & bez & C \end{array} $	0,45	1,41	3,1	$I_{ m d}$
dvojpulzní uzlové zapojení M2	IZ + Udii + Id		0,45	0,71	1,5	<u>I_d</u> 2
dvojpulzní můstkové zapojení B2	Iz A Udi		0,9	1,41	1,23	<u>I_d</u> 2
šestipulzní můstkové zapojení B6	1 ₂		1,35	1,41	1,1	$\frac{I_{d}}{3}$

C kapacita, I stejnosměrný proud, I_Z proud větve, P_d stejnosměrný výkon, P_T typový výkon transformátoru, T perioda síťového kmitočtu, U_1 vstupní napětí, U_{de} velikost ideálního stejnosměrného napětí

Dvojcestný usměrňovač

výstup bez filtračního kondenzátoru

výstup s filtračním kondenzátorem C malé

výstup s filtračním kondenzátorem C velké

Integrovaná verze můstkového usměrňovače

Příklad realizace můstkového usměrňovače

Brumové napětí

- představuje střídavou složku v usměrněném signálu
- je charakterizováno amplitudou u_p a frekvencí f_p
- projevuje se nepříznivě, např. šuměním ve sluchátku
- částečně se odstraní filtračním kondenzátorem