Homework 2 CMPSCI 370 Spring 2018, UMass Amherst

Due: March 2, 11:55 PM Instructor: Subhransu Maji TA: Matheus Gadelha

Guidelines

Plagiarism. We might reuse problem set questions from previous years, covered by papers and webpages, we expect the students not to copy, refer to, or look at the solutions in preparing their answers. We expect students to want to learn and not google for answers. Any instance of cheating will lead to zero credit for the homework, and possibly a failure grade for the entire course.

Collaboration. The homework must be done individually, except where otherwise noted in the assignments. 'Individually' means each student must hand in their own answers, and each student must write their own code in the programming part of the assignment. It is acceptable, however, for students to collaborate in figuring out answers and helping each other solve the problems. We will be assuming that you will be taking the responsibility to make sure you personally understand the solution to any work arising from such a collaboration.

Using other programming languages. We made the starter code available in Python and Matlab. You are free to use other languages such as Octave or Julia with the caveat that we won't be able to answer or debug non Matlab/Python questions.

Python requirements. We will be using Python 2.7. The Python starter code requires scipy and scikit-image for loading images, numpy for matrix operations (at least v1.12) and matplotlib to display the graphs and images. If you are not familiar with installing those libraries through some package manager (like pip), the easiest way of using them is installing Anaconda, which already includes all of them.

1 Light [30 points]

1.a Linearity [5 points]

Alice has a chandelier with 5 light bulbs sockets. Currently, she has 5 100-watt incandescent bulbs in the sockets. Each incandescent bulb is characterized by a spectrum $S_{\rm INC}(\lambda)$, for integer λ from 380 to 779, which gives the fraction of the total power output for each interval with wavelengths between λ and $\lambda+1$ nanometers. For example, if $S_{\rm INC}(523)=0.002$, then it means that the incandescent bulb outputs $0.002\times 100=.2$ watts in the range of 523-524 nanometer wavelengths. Eventually, she wants to replace the incandescent bulbs with fancy new light emitting diode (LED) bulbs (also 100-watt bulbs) that have a different spectrum $S_{\rm LED}(\lambda)$, but right now, she only has 3 of these. She replaces 3 of the 5 incandescent bulbs with the LED bulbs. Give a formula for the chandeliers new spectrum $S_{\rm TOTAL}$ in terms of the components of $S_{\rm INC}$ and $S_{\rm LED}$. The new spectrum should give the fraction of the total power at each 1 nanometer portion of the visible spectrum.

1.b Tristimulus theory [25 points]

Let F_1 , F_2 , and F_3 below represent the power spectra of 3 different colored flashlights, where each of the 10 values is the fraction of power produced in a 40nm range from 380nm to 780nm. (Note: some of the power will be in the non-visible spectrum).

```
F_1 = [\ 0.00,\ 0.01,\ 0.01,\ 0.02,\ 0.01,\ 0.02,\ 0.07,\ 0.29,\ 0.35,\ 0.12\ ]; F_2 = [\ 0.00,\ 0.01,\ 0.02,\ 0.11,\ 0.20,\ 0.25,\ 0.21,\ 0.10,\ 0.01,\ 0.00\ ]; F_3 = [\ 0.03,\ 0.10,\ 0.25,\ 0.27,\ 0.13,\ 0.02,\ 0.01,\ 0.01,\ 0.00,\ 0.00\ ];
```

For example, flashlight F1 produces 12 percent of its power in the range 740-780nm. Figure 1 shows the spectra of the three flashlights.

Let $S_r(\lambda)$, $S_g(\lambda)$, and $S_b(\lambda)$ represent the relative absorption spectra of the cone cells in your eye. This means that, of the power absorbed by a given type of cone cell, the fraction absorbed in a given range is given by these numbers.

```
S_r(\lambda) = [0.16, 0.26, 0.28, 0.15, 0.10, 0.03, 0.02, 0.00, 0.00, 0.00];

S_g(\lambda) = [0.00, 0.00, 0.04, 0.23, 0.34, 0.23, 0.15, 0.01, 0.00, 0.00];

S_b(\lambda) = [0.00, 0.00, 0.00, 0.00, 0.01, 0.04, 0.08, 0.23, 0.35, 0.29];
```

When a flashlight is 5 meters from a white screen, assume that it stimulates a cone cell response (relative to the maximum possible response from that cone) given by:

$$R_c^f = \sum_{i=1}^{10} F_f(i) \times S_c(i).$$

Here F_f is flashlight f, S_c is the absorption spectrum for cones of type c, and R_c^f is the response for cone cell type c and flashlight f. For example, from 5 meters away, the third flashlight F_3 generate a response from the green cone cells of

Figure 1: Three flashlight spectra. This image shows the three spectra of F_1 , F_2 , and F_3 .

$$R_g^3 = \sum_{i=1}^{10} F_3(i) \times S_g(i)$$

$$= 0.03 \times 0.00 + 0.10 \times 0.00 + 0.25 \times 0.04 + 0.27 \times 0.23 + 0.13 \times 0.34 + 0.02 \times 0.23 + 0.01 \times 0.15 + 0.01 \times 0.01 + 0.00 \times 0.00 + 0.00 \times 0.00$$

$$= 0.1225$$

Consider the response of all 3 cone cell types at once to a given flashlight f at a fixed distance from the white screen. We will call this variable R^f , and it will be a vector of 3 values:

$$R^f = \left[\begin{array}{c} R_r^f \\ R_g^f \\ R_b^f \end{array} \right]$$

Of course, the color that you see for a particular flashlight will be related to the cone cell responses \mathbb{R}^f produced by that flashlight. Due to the linearity of light and the approximate linearity of cone cell responses, you can model the responses of the cone cells to two flashlights, say 1 and 3, as

$$R^{1} + R^{3} = \begin{bmatrix} R_{r}^{1} + R_{r}^{3} \\ R_{q}^{1} + R_{g}^{3} \\ R_{b}^{1} + R_{b}^{3} \end{bmatrix}$$

1. **(10 points)** Let the matrix R be defined to be

$$R = \begin{bmatrix} R_r^1 & R_r^2 & R_r^3 \\ R_g^1 & R_g^2 & R_g^3 \\ R_b^1 & R_b^2 & R_b^3 \end{bmatrix}$$

Write a Matlab or Python function to compute the matrix R given F_1 , F_2 , F_3 , S_r , S_g , and S_b . Give the value of the matrix R here:

If we had a way to make each flashlight brighter or dimmer, then we could create novel color combinations. In particular, if we let b_1 be the brightness multiplier for flashlight 1, b_2 the brightness multiplier for flashlight 2, and b_3 the brightness multiplier for flashlight 3, then we can create arbitrary linear combinations of the 3 flashlights as

$$b_1 R^1 + b_R^2 + b_3 R^3 = \begin{bmatrix} b_1 R_r^1 + b_2 R_r^2 + b_3 R_r^3 \\ b_1 R_q^1 + b_2 R_g^2 + b_3 R_g^3 \\ b_1 R_b^1 + b_2 R_b^2 + b_3 R_b^3 \end{bmatrix}$$

Now suppose you want to create a combination of lights that results in a particular perceived color. For example, the color turquoise is perceived when the RGB cone cells have a response of

$$C_{\text{turquoise}} = \left[\begin{array}{c} 0.2896 \\ 0.8862 \\ 0.7471 \end{array} \right]$$

We need to solve the following set of equations

$$b_1 R_r^1 + b_2 R_r^2 + b_3 R_r^3 = C_r$$

$$b_1 R_g^1 + b_2 R_g^2 + b_3 R_g^3 = Cg$$

$$b_1 R_b^1 + b_2 R_b^2 + b_3 R_b^3 = Cb$$

This can be written in matrix form as

$$Rb = C$$
,

where R is the matrix defined previously, b is a vector of 3 multiplier values, and C is the 3 color components for the desired color. Fortunately, this is extremely easy to solve in Matlab! By multiplying both sides by the matrix inverse of R, we obtain

$$R^{-1}Rb = R^{-1}C,$$

and then simplifying,

$$b = R^{-1}C.$$

In Matlab, the inverse of a matrix can be obtained by simply raising the matrix to the power -1. In Python, you can use the function np.linalg.inv().

2. **(15 points)** Write a Matlab or Python function, which, given the matrix *R* and a set of desired color responses in the form of a vector *C* calculates the proper brightness multiplier weights *b* and returns

them as a single vector of 3 values. Using this code compute the multiplier weights for each flashlight so that you obtain:

Turquoise:

$$C_{\text{turquoise}} = \left[\begin{array}{c} 0.2896 \\ 0.8862 \\ 0.7471 \end{array} \right]$$

 b_1 : ______, b_2 : ______, b_3 : ______

Goldenrod (a slightly brownish yellow):

$$C_{\text{goldenrod}} = \left[\begin{array}{c} 0.8567 \\ 0.6874 \\ 0.1408 \end{array} \right]$$

 b_1 : _____, b_2 : _____, b_3 : _____

2 White balance [20 points]

White balance is the process of removing unrealistic color casts which appear because the light when the picture was taken (e.g. sunlight) does not match the color of the light you are viewing the picture in (e.g. LED bulb). Our eyes are very good at removing the effect of illumination to judge the true color of an object (a.k.a. color constancy). A simple way of modeling the effect of a light on a surface is to assume that the reflected color $I=(i_r,i_g,i_b)$ arises due to light of color $L=(l_r,l_g,l_b)$ interacting with paint of color $C=(c_r,c_g,c_b)$ satisfying $L\times C=I$, i.e.

$$(l_r \times c_r, l_q \times c_q, l_b \times c_b) = (i_r, i_q, i_b)$$

Assume $l_r, l_g, l_b \in [0, 1]$ is the fractional power of the light in each of the color channels. Given the light value L at a given pixel we can obtain its true color by dividing the measured intensity with the light

$$c_r = \frac{i_r}{l_r}; c_g = \frac{i_g}{l_g}; c_b = \frac{i_b}{l_b};$$

In general, computing L and C given I is ill-posed. For example, a red pixel of value I=(255,0,0) could be due to a white light L=(1,1,1) illuminating a red object C=(255,0,0), or red light L=(1,0,0) illuminating a white object C=(255,255,255). Both these satisfy $L\times C=I$.

In order to solve this problem certain priors on images and lights are needed. One such prior is the "gray world" assumption that states the average color of the image under white light is gray (Recall that any color (r, g, b) where r = g = b is gray). For the purposes of this homework we will assume that the average is (128, 128, 128) and that the light is uniform across all pixels.

• (5 points) Show that under the gray world assumption the color of the light *L* is given by

$$L = \left(\frac{r_{ave}}{128}, \frac{g_{ave}}{128}, \frac{b_{ave}}{128}\right),$$

where, r_{ave} , g_{ave} , b_{ave} are the average of the red, green, and blue channels of the image.

• (15 points) Thus, you can obtain the true color of a pixel as

$$c_r = i_r \times \frac{128}{r_{ave}}; c_g = i_g \times \frac{128}{g_{ave}}; c_b = i_b \times \frac{128}{b_{ave}};$$

Implement a function [L, C] = grayworld(I) that takes an image I and returns the light L and color image C using the above calculations. Run your code on the image included image wb_sardmen-incorrect.jp (Figure 2). Write down the value of L, include the code and a picture of the output C (using imagesc (C); in Matlab or plt.imshow(C); plt.show() in Python) in your solution. Notice that in Python, a white pixel has value (1.0, 1.0, 1.0) and the average can be assumed to be (0.5, 0.5, 0.5).

Light l_r : ______, l_g : ______, l_b :_____

Figure 2: Image with a color cast. Source http://www.cambridgeincolour.com/tutorials/white-balance.htm

3 Hybrid image [25 points]

A hybrid image is a sum of a low-pass filtered (i.e. blurry) version of the one image and a high-pass filtered (i.e. sharp) version of a second image. Recall that one can obtain a sharp image by subtracting the blurry version of an image from itself. Mathematically we have

$$I = \text{blurry}(I) + \text{sharp}(I).$$

The low-pass filtered image can be obtained by filtering an image with a Gaussian. In Matlab the function fspecial('gaussian', hsize, sigma) returns a Gaussian filter of standard deviation sigma approximated as a filter of size [hsize hsize]. In Python, we added a function gaussian(hsize, sigma) to utils.py that performs exactly the same way. A good rule of thumb is to set hsize = 6*sigma+1 since beyond 3*sigma the Gaussian is nearly zero. You can also obtain the filter using the formula of the Gaussian function. The filter2()/conv2() function in Matlab implements the 2 dimensional filtering/convolution function, i.e. C=filter2(im, g, 'same') filter a grayscale (single channel) image im with g and produces an output the same size as im. In Python, the function convolve from

Figure 3: Effect of filtering with a Gaussian. The bigger the sigma the more blurry it is.

scipy.ndimage.filters does the same, i.e convolve(im, g, mode='constant'). The filtering of a color image can be obtained by filtering each channel separately.

Thus a hybrid image of I_1 and I_2 can be obtained by

$$I_{hubrid} = blurry(I_1, \sigma_1) + sharp(I_2, \sigma_2) = I_1 * g(\sigma_1) + I_2 - I_2 * g(\sigma_2)$$
 (1)

where, $g(\sigma_1)$ and $g(\sigma_2)$ are Gaussian filters with parameters σ_1 and σ_2 and * denotes the filtering operator. Figure 3 shows the result of convolution with Gaussian filters with two different values of σ . The filters were obtained in Matlab by typing f = fspecial('gaussian', 6*s + 1, s) and f = gaussian(6*s + 1, s) in Python (remember to import the function from utils).

- (5 points) Implement the color filtering function C = filter2rgb (A, B) that returns the result of filtering of B with each of the channels of a color image A. The output C is a color image like the one shown in Figure 3 (second column) and should be the same size as A. Feel free to use any Matlab or Python functions including conv2/filter2 amd scipy.ndimage.filters.convolve, but make sure the output size is the same as input size by appropriate padding. Include the code in your submission.
- (20 points) Implement the function hybridImage (im1, im2, sigma1, sigma2) that computes the hybrid image using Equation 1. Use your code to generate at least one example of a hybrid image (see examples here http://cvcl.mit.edu/hybrid_gallery/gallery.html). You will have to tune the sigma1 and sigma2 to make it work on specific images. In order to visualize the hybrid image it is sometimes useful to show multiple copies of the image at different resolutions. The codebase includes a helper function vis_hybrid_image which can be used to create such a figure. In Python, matplotlib does not handle negative values in images like Matlab does, so remember to use np.clip to make sure that image values are between 0 and 1. Include the code, the two source images, the hybrid image displayed in the format below, as well as the parameters that worked for you. The top three submissions (not copied from the internet) will be given a prize!

Figure 4: Hybid image of the dog and cat. The large image looks like the cat while the small image looks like the dog. The image was created with $\sigma_1=4$ and $\sigma_2=10$.