Regular expressions

R	L(R)
arepsilon	$\{arepsilon\}$
\emptyset	\emptyset
a	$\{\mathtt{a}\}$ (for any $\mathtt{a}\in\Sigma$)
$R_1 + R_2$	$L(R_1) \cup L(R_2)$
R_1R_2	$\{xy \mid x \in L(R_1), y \in L(R_2)\}$
R_1^*	$\{x_1 \dots x_n \mid n \in \mathbb{N}_0, x_1, \dots, x_n \in L(R_1)\}.$

Closure under union and concatenation

Theorem: If L_1 and L_2 are regular languages, then the following two languages are also regular:

- 1. $L_1 \cup L_2$,
- 2. $L_1L_2 = \{xy \mid x \in L_1, y \in L_2\}.$

Proof: Let R_1, R_2 be regular expressions such that $L(R_1) = L_1, L(R_2) = L_2$. Then

$$L_1 \cup L_2 = L(R_1) \cup L(R_2) = L(R_1 + R_2)$$

and

$$L_1L_2 = L(R_1)L(R_2) = L(R_1R_2).$$

Closure under complementation

Theorem: If $L \subseteq \Sigma^*$ is a regular language, then the following language is also regular:

$$L^{\complement} = \{ x \in \Sigma^* \mid x \notin L \}.$$

Proof: Let M be a DFA that recognises L. Let M' be the DFA obtained from M by making all states that are not final states of M final states of M' and vice versa. Then M' recognises L^{\complement} :

M' accepts string x

- \iff the computation of M' on input x ends in a final state of M'
- \iff the computation of M' on input x does not end in a final state of M
- \iff the computation of M on input x does not end in a final state of M
- \iff M does not accept x
- $\iff x \in L^{\complement}.$

Example

A DFA for the language

$$L = \{x \texttt{aba} \mid x \in \{\texttt{a}, \texttt{b}\}^*\}.$$

A DFA for L^{\complement} .

Closure under intersection and difference

Theorem: If L_1 and L_2 are regular languages, then the following two languages are also regular:

- 1. $L_1 \cap L_2$,
- 2. $L_1 \setminus L_2 = \{x \mid x \in L_1 \text{ and } x \notin L_2\}.$

Proof: We use the facts that

$$L_1 \cap L_2 = \left(L_1^{\complement} \cup L_2^{\complement}\right)^{\complement}$$
 (by DeMorgan's rule)

and

$$L_1 \setminus L_2 = L_1 \cap L_2^{\complement} = \left(L_1^{\complement} \cup L_2\right)^{\complement}.$$

Constructions

Problem: Suppose we are given DFAs for L_1 and L_2 .

How do we construct DFAs for

$$L_1^{\complement}$$
, $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 \setminus L_2$?

Complementation

We have already seen a construction.

Union

- 1. Compute an NFA with ε -transitions.
- 2. Convert it to a DFA.

Intersection and difference

Combine the constructions for complementation and union.

Example

Construct a DFA for

$$L(M_1) \cap L(M_2) = (L(M_1)^{\complement} \cup L(M_2)^{\complement})^{\complement}.$$

Step 1: Construct DFAs for $L(M_1)^{\complement}$ and $L(M_2)^{\complement}$.

Step 2: Construct an NFA with ε -transitions for $L(M_1)^{\complement} \cup L(M_2)^{\complement}$.

Step 3: Convert the NFA with ε -transitions for $L(M_1)^{\complement} \cup L(M_2)^{\complement}$ to a DFA.

δ	a	Ъ
$\boxed{\{0,p0,q0\}}$	$\{p1,q1\}$	$\{p0,q4\}$
$\{p1,q1\}$	$\{p1,q4\}$	$\{p2,q2\}$
$\{p0,q4\}$	$\{p1,q4\}$	$\{p0, q4\}$
$\{p1,q4\}$	$\{p1,q4\}$	$\{p2,q4\}$
$\{p2,q2\}$	$\{p3,q3\}$	$\{p0,q4\}$
$\{p2,q4\}$	$\{p3,q4\}$	$\{p0,q4\}$
$\{p3,q3\}$	$\{p1,q3\}$	$\{p2,q3\}$
$\{p3,q4\}$	$\{p1,q4\}$	$\{p2,q4\}$
$\{p1,q3\}$	$\{p1,q3\}$	$\{p2,q3\}$
$\{p2,q3\}$	$\{p3,q3\}$	$\{p0,q3\}$
$\{p0,q3\}$	$\{p1,q3\}$	$\{p0,q3\}$

Step 4: Complement the DFA for $L(M_1)^{\complement} \cup L(M_2)^{\complement}$.

Result:

$$(Q, \Sigma, \{0, p0, q0\}, \{\{p3, q3\}\}, \delta),$$

where

$$Q = \{\{0, p0, q0\}, \{p1, q1\}, \{p0, q4\}, \{p1, q4\}, \{p2, q2\}, \{p2, q4\}, \{p3, q3\}, \{p3, q4\}, \{p1, q3\}, \{p2, q3\}, \{p0, q3\}\},$$

Union vs. Intersection vs. Difference

The automata we construct for $L(M_1) \cap L(M_2)$, $L(M_1) \cup L(M_2)$, and $L(M_1) \setminus L(M_2)$ only differ in their final states:

Intersection: Final states (of the powerset automaton) are states that contain a final state of M_1 and a final state of M_2 .

Union: Final states (of the powerset automaton) are states that contain a final state of M_1 or a final state of M_2 .

Difference: Final states (of the powerset automaton) are states that contain a final state of M_1 but not a final state of M_2 .

Minimal DFAs

For every DFA M there exists a DFA M^\prime such that

- L(M) = L(M').
- M' has fewer states then any other automaton M'' with L(M'') = L(M). Thus M' is an optimal, **minimal** DFA for the language L(M).
- M' is unique up to re-naming states.
- \bullet M' can be computed by an efficient algorithm.

No analogous result holds for NFAs.

Equivalence testing

Theorem: $L(M) = \emptyset$ iff there is no path in M from the initial state to any final state.

Lemma: $L_1 = L_2$ iff $L_1 \setminus L_2 = \emptyset$ and $L_2 \setminus L_1 = \emptyset$.

Theorem: There is an efficient algorithm that decides whether $L(M_1) = L(M_2)$.

Proof: Construct DFAs for $L_1 \setminus L_2$ and $L_2 \setminus L_1$, and test if both have a path from the initial state to a final state.

Equations for regular expressions

We can manipulate regular expressions using the following identities.

1.
$$R + R = R = R + \emptyset$$

2.
$$R + S = S + R$$

3.
$$(R+S)+T=R+(S+T)$$

4.
$$(RS)T = R(ST) = RST$$

5.
$$R\varepsilon = \varepsilon R = R$$

6.
$$R\emptyset = \emptyset R = \emptyset$$

7.
$$(R+S)T = RT + ST$$

8.
$$R(S+T) = RS + RT$$

9.
$$R^*R^* = (R^*)^* = R^* = RR^* + \varepsilon$$

10.
$$RR^* = R^*R$$

11.
$$\varepsilon^* = \emptyset^* = \varepsilon$$

12.
$$(R+S)^* = (R^*S^*)^*$$

= $(R^*S)^*R^* = (R^* + S^*)^*$

13.
$$(RS)^*R = R(SR)^*$$

The regular expressions on either side of the "=" signs represent the same regular language. These identities are **schematic**, i.e., the names R, S and T stand for any regular expressions.

Example

$$0(10)^*1 + (01)^* = (01)(01)^* + (01)^*$$
 (13 with $R = 1$ and $S = 0$.)
$$= (01)(01)^* + (01)(01)^* + \varepsilon$$
 (9 with $R = (01)$.)
$$= (01)(01)^* + \varepsilon$$
 (1 with $R = (01)(01)^*$.)
$$= (01)^*$$
 (9 with $R = (01)$ again.)

Justification of the equations

Example: $(RS)^*R = R(SR)^*$

```
w \in L((RS)^*R)
   \iff \exists v \in L((RS)^*), z \in L(R): w = vz
   \iff \exists n \in \mathbb{N}_0, v_1, \dots, v_n \in L(RS), z \in L(R): w = v_1 v_2 \dots v_n z
   \iff \exists n \in \mathbb{N}_0, x_1, \dots, x_n \in L(R), y_1, \dots, y_n \in L(S), z \in L(R):
                                                            w = x_1 y_1 x_2 y_2 \dots x_n y_n z
   \iff \exists x \in L(R), n \in \mathbb{N}_0, y_1', \dots, y_n' \in L(S), z_1, \dots, z_n \in L(R):
                                                            w = x y_1 z_1 y_2 z_2 \dots y_n z_n
   \iff \exists x \in L(R), \in \mathbb{N}_0, u_1, \dots, u_n \in L(SR): w = xu_1 \dots u_n
   \iff \exists x \in L(R), u \in L((SR)^*): w = xu
   \iff w \in L(R(SR)^*).
```