HRISHIKESH G KULKARNI - 21BAI1660

hrishikesh.gkulkarni2021@vitstudent.ac.in

ASSIGNMENT - 03

1. Downloaded the dataset from the given link!

import needed libraries

```
In [ ]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
```

2. Load the Dataset

```
In [ ]: df = pd.read_csv('penguins_size.csv')
    df.head()
```

Out[]:		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_
	0	Adelie	Torgersen	39.1	18.7	181.0	
	1	Adelie	Torgersen	39.5	17.4	186.0	
	2	Adelie	Torgersen	40.3	18.0	195.0	
	3	Adelie	Torgersen	NaN	NaN	NaN	
	4	Adelie	Torgersen	36.7	19.3	193.0	

168 124

Torgersen 52 Name: island, dtype: int64

Out[]: Biscoe

Dream Torgersen

3. Visualizations

Univariate

Out[]: <AxesSubplot: xlabel='body_mass_g', ylabel='Density'>


```
In [ ]: plt.figure(figsize=(9,9))
    plt.pie(df["species"].value_counts(),[0.1,0,0], labels = df["species"].unique(),
    plt.title('Species Percentage wrt total')
    plt.legend()
    plt.show()
```

Species Percentage wrt total


```
In [ ]: sns.barplot(x =df["sex"].value_counts().index,y =df["sex"].value_counts())
    plt.title('Number of each gender vs gender')
    plt.legend()
    plt.show()
```

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

Number of each gender vs gender

In []: sns.displot(df["flipper_length_mm"])

Out[]: <seaborn.axisgrid.FacetGrid at 0x1e087923070>


```
In [ ]: sns.displot(df["culmen_length_mm"])
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x1e088636e00>

In []: sns.displot(df["culmen_depth_mm"])

Out[]: <seaborn.axisgrid.FacetGrid at 0x1e09f8b2590>


```
In [ ]: plt.figure(figsize=(9,9))
    plt.pie(df["island"].value_counts(),[0.1,0,0], labels = df["island"].unique(),au
    plt.title('Islands percentage wrt Total')
    plt.legend()
    plt.show()
```


Bivariate

```
In [ ]: sns.scatterplot(x='species', y='culmen_length_mm', data=df)
    plt.show()
```



```
In []: mean_flipper_length = df.groupby('species')['flipper_length_mm'].mean()
    plt.figure(figsize=(8, 6))
    plt.bar(mean_flipper_length.index, mean_flipper_length.values)
    plt.xlabel('Species')
    plt.ylabel('Mean flipper Length (mm)')
    plt.title('Mean flipper Length by Species')
    plt.show()
```



```
In [ ]: sns.lineplot(x='species', y='culmen_length_mm', data=df)
    plt.show()
```


In []: sns.lineplot(x='culmen_length_mm', y='culmen_depth_mm', data=df)
plt.show()


```
In [ ]: island_gender_counts = df.groupby(['island', 'sex']).size().reset_index(name='cc
plt.figure(figsize=(10, 6))
sns.barplot(x='island', y='counts', hue='sex', data=island_gender_counts)
plt.xlabel('Island')
```

```
plt.ylabel('Count')
plt.title('Island vs. Gender')
plt.show()
```


Multivariate

In []: sns.pairplot(df)

Out[]: <seaborn.axisgrid.PairGrid at 0x1e0a12cc280>

In []: plt.figure(figsize=(9,9))
sns.heatmap(df.corr(), annot=True)

Out[]: <AxesSubplot: >

4. Perform Descriptive statistics of the dataset

In []:

Out[]:		culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
	count	342.000000	342.000000	342.000000	342.000000
	mean	43.921930	17.151170	200.915205	4201.754386
	std	5.459584	1.974793	14.061714	801.954536
	min	32.100000	13.100000	172.000000	2700.000000
	25%	39.225000	15.600000	190.000000	3550.000000
	50%	44.450000	17.300000	197.000000	4050.000000
	75%	48.500000	18.700000	213.000000	4750.000000
	max	59.600000	21.500000	231.000000	6300.000000

5. Check for missing values and deal with them

In []:	df.i	snull()					
Out[]:		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_r
	0	False	False	False	False	False	
	1	False	False	False	False	False	
	2	False	False	False	False	False	
	3	False	False	True	True	True	
	4	False	False	False	False	False	
	•••						
	339	False	False	True	True	True	
	340	False	False	False	False	False	
	341	False	False	False	False	False	
	342	False	False	False	False	False	
	343	False	False	False	False	False	
	344 rc	ows × 7 c	olumns				
							>
In []:	df.i	snull().	sum()				
Out[]:	species island culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g sex dtype: int64		_mm th_mm	0 0 2 2 2 2 2 10			
In []:	df.i	snull().	any()				
Out[]:	species island culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g sex dtype: bool		_mm	False False True True True True			
In []:							

In []:	df	head()					
Out[]:		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_
	0	Adelie	Torgersen	39.10	18.7	181.0	
	1	Adelie	Torgersen	39.50	17.4	186.0	
	2	Adelie	Torgersen	40.30	18.0	195.0	
	3	Adelie	Torgersen	44.45	17.3	197.0	
	4	Adelie	Torgersen	36.70	19.3	193.0	
4							•
In []:	df	isnull().any()				
Out[]:	species island culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g sex dtype: bool		th_mm ngth_mm g	False False False False False False False False			
In []:	df	head()					
Out[]:		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_
	0	Adelie	Torgersen	39.10	18.7	181.0	
	1	Adelie	Torgersen	39.50	17.4	186.0	
	2	Adelie	Torgersen	40.30	18.0	195.0	
	3	Adelie	Torgersen	44.45	17.3	197.0	
	4	Adelie	Torgersen	36.70	19.3	193.0	

6. Find out the outliers and replace them

```
In [ ]: sns.boxplot(df.culmen_length_mm)
Out[ ]: <AxesSubplot: >
```


In []: sns.boxplot(df.culmen_depth_mm)

Out[]: <AxesSubplot: >

In []: sns.boxplot(df.flipper_length_mm)

Out[]: <AxesSubplot: >

In []: sns.boxplot(df.body_mass_g)

Out[]: <AxesSubplot: >

No outliers in any of the numerical columns. No need to do anything

7. and 8.

target is 'species' which has a dtype of 'object, which is categorical so we must first perform encoding and then only we can check correlation of independent variables with the target

```
In [ ]: print(df['species'].dtype)
    object
```

So first, we will check for categorical columns and perform encoding. Secondly, we will check the correlation of independent variables with the target.

target varibles --> species

```
In [ ]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 344 entries, 0 to 343
       Data columns (total 7 columns):
            Column
                                Non-Null Count
                                                 Dtype
        0
            species
                                344 non-null
                                                 object
        1
            island
                                344 non-null
                                                 object
            culmen length mm
                                344 non-null
                                                 float64
            culmen_depth_mm
                                344 non-null
                                                 float64
            flipper length mm 344 non-null
                                                 float64
        5
                                                 float64
            body mass g
                                344 non-null
        6
            sex
                                344 non-null
                                                 object
       dtypes: float64(4), object(3)
       memory usage: 18.9+ KB
In [ ]: from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         df.sex = le.fit transform(df.sex)
         df.island = le.fit transform(df.island)
         df.species = le.fit transform(df.species)
        df.head()
In [ ]:
Out[]:
            species
                    island
                           culmen_length_mm culmen_depth_mm
                                                                  flipper_length_mm
                                                                                     body_ma
         0
                 0
                         2
                                         39.10
                                                             18.7
                                                                               181.0
                                                                                           37
         1
                 0
                         2
                                         39.50
                                                             17.4
                                                                               186.0
                                                                                           38
         2
                 0
                         2
                                         40.30
                                                             18.0
                                                                               195.0
                                                                                           32
         3
                 0
                         2
                                         44.45
                                                             17.3
                                                                               197.0
                                                                                           40
         4
                 0
                         2
                                         36.70
                                                             19.3
                                                                               193.0
                                                                                           34
         df.corr().species.sort values(ascending=False)
```

```
Out[]: species 1.000000
flipper_length_mm 0.850819
body_mass_g 0.747547
culmen_length_mm 0.728706
sex -0.003823
island -0.635659
culmen_depth_mm -0.741282
Name: species, dtype: float64
```

9. Split the data into independent and dependent variables

```
In [ ]: X = df.drop(columns=['species'], axis=1)
         y = df['species']
In [ ]: X
Out[]:
               island culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g s
            0
                    2
                                     39.10
                                                          18.7
                                                                             181.0
                                                                                           3750.0
                    2
                                     39.50
                                                                                           3800.0
                                                          17.4
                                                                             186.0
            2
                    2
                                     40.30
                                                          18.0
                                                                             195.0
                                                                                           3250.0
                    2
                                                                                           4050.0
                                     44.45
                                                          17.3
                                                                             197.0
                    2
                                                          19.3
            4
                                     36.70
                                                                             193.0
                                                                                           3450.0
                   0
         339
                                     44.45
                                                          17.3
                                                                             197.0
                                                                                           4050.0
                   0
         340
                                     46.80
                                                          14.3
                                                                             215.0
                                                                                           4850.0
                   0
         341
                                     50.40
                                                          15.7
                                                                             222.0
                                                                                           5750.0
         342
                   0
                                     45.20
                                                          14.8
                                                                             212.0
                                                                                           5200.0
                   0
                                     49.90
                                                          16.1
                                                                                           5400.0
         343
                                                                             213.0
```

344 rows × 6 columns

```
In [ ]: y
Out[]: 0
                0
                0
        1
        2
                0
        3
                0
        4
                0
        339
                2
         340
                2
        341
                2
        342
        343
        Name: species, Length: 344, dtype: int32
```

10. Scaling the data

```
In [ ]: from sklearn.preprocessing import MinMaxScaler
    scale =MinMaxScaler()
    X_scaled= pd.DataFrame(scale.fit_transform(X),columns =X.columns)
    X_scaled.head()
```

Out[]:		island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
	0	1.0	0.254545	0.666667	0.152542	0.291667	1.0
	1	1.0	0.269091	0.511905	0.237288	0.305556	0.5
	2	1.0	0.298182	0.583333	0.389831	0.152778	0.5
	3	1.0	0.449091	0.500000	0.423729	0.375000	1.0
	4	1.0	0.167273	0.738095	0.355932	0.208333	0.5
4							•

11. Split the data into training and testing

In []: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X_scaled,y,test_size=0.3,random)

In []: X_train

Out[]

:		island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	5
	258	0.0	0.432727	0.059524	0.610169	0.458333	
	332	0.0	0.414545	0.250000	0.694915	0.541667	
	121	1.0	0.203636	0.797619	0.440678	0.222222	
	61	0.0	0.334545	0.952381	0.389831	0.472222	
	70	1.0	0.050909	0.702381	0.305085	0.250000	
	•••						
	123	1.0	0.338182	0.642857	0.508475	0.326389	
	320	0.0	0.596364	0.226190	0.796610	0.597222	
	15	1.0	0.163636	0.559524	0.220339	0.277778	
	125	1.0	0.309091	0.702381	0.457627	0.361111	
	265	0.0	0.418182	0.095238	0.762712	0.611111	

240 rows × 6 columns

In []: X_test

Out[]:		island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	5
	229	0.0	0.534545	0.273810	0.728814	0.680556	
	80	1.0	0.090909	0.488095	0.288136	0.138889	
	327	0.0	0.774545	0.321429	0.796610	0.777778	
	6	1.0	0.247273	0.559524	0.152542	0.256944	
	309	0.0	0.727273	0.464286	0.983051	0.791667	
	•••						
	211	0.5	0.490909	0.750000	0.372881	0.229167	
	311	0.0	0.730909	0.476190	0.949153	0.750000	
	19	1.0	0.505455	1.000000	0.372881	0.416667	
	270	0.0	0.527273	0.130952	0.644068	0.597222	
	194	0.5	0.683636	0.714286	0.406780	0.236111	

104 rows × 6 columns

```
In [ ]: y_train
Out[]: 258
               2
        332
               2
        121
        61
               0
        70
        123
        320
               2
        15
        125
        265
        Name: species, Length: 240, dtype: int32
In [ ]: y_test
Out[]: 229
               2
        80
               0
        327
               2
        309
        211
        311
               2
        19
        270
        194
        Name: species, Length: 104, dtype: int32
```

12. Check the training and test data shape

```
In []: print("X_train shape -> ",X_train.shape)
    print("X_test shape -> ", X_test.shape)
    print("y_train shape -> ", y_train.shape)
    print("y_test shape -> ", y_test.shape)

X_train shape -> (240, 6)
    X_test shape -> (104, 6)
    y_train shape -> (240,)
    y_test shape -> (104,)
```

Completed - HRISHIKESH G KULKARNI (21BAI1660)

assignment03 completed

hrishikesh.gkulkarni2021@vitstudent.ac.in

