Chapter 2 Divide & Conquer

Lesson 3 Recursive functions

- Factorial: O(n)
- Fibonacci
- Ackermann Function
- Integer Partion
- Tower of Hanoi: $O(2^n)$

Lesson 4 Concept of D&C

D&C

- Design Philosophy
- Applicable Conditions (Properties)
 - o sub-problems with small input size
 - o can be divided into k subproblems
 - o solutions can be merged to give the final solution
 - o sub-problems mutually independent
 - no common sub-subproblems
- Basic Steps
- Computation Complexity

Algorithms & Problems

- Binary Search $(O(\log n))$
- Merge Sort $(O(n \log n))$
- Quick Sort $(O(n \log n))$
 - Worst: $O(n^2)$
 - Average : $O(n \log n)$
- Chessboard Coverage
 - number of L-shaped dominoes: $\frac{4^k-1}{3}$
 - $\circ T(n) = O(4^k)$

Lesson 5 D&C Algorithms

Algorithms

- Element Selection: O(n)
 - \circ Worst: $O(n^2)$
 - Average: O(n)
- Selection in Expected Linear Time
 - \circ $\lceil n/5 \rceil$ medians
 - \circ find median x in the medians
 - o $\frac{3(n-5)}{10}$ elements < x
 - reduce at least 1/4
- Closest Pair of Points: $O(n \log n)$
- ullet Large Integer Multipication: $O(n^2) o O(n^{1.59})$
- ullet Strassen ALG: $O(n^{\log 7}) o O(n^{2.81})$