MAC0122 PRINCÍPIOS DE DESENVOLVIMENTO DE ALGORITMOS FOLHA DE SOLUÇÃO

Nome: Henrique Maruiti										_ NUSP: 12610243							
Assinatura																	
Sua assinatura atesta a c a seguir o código de ético Exercício: T03 Hanoi	a da	uU_{s}^{2}	SP	em	suas	ativ	idaa	les a	$cad \hat{\epsilon}$	ìmica	s, in	cluir	ndo e		tivida		
SOLUÇÃO																	
Tabela de testes com	3 t	orr	es:														
número de discos(n)	1	2	3	4	5	6		7	8	9	1	0	11	12	?		
número de movimentos	1	3	7	15	31	63	12	7 2	255	511	102	3 2	2047	4095	5		
Tabela de testes com	4 t	orr	es:														
número de discos(n)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
número de movimentos	1	3	5	9	13	17	25	33	41	49	65	81	97	113	129		

1) Nas tabelas acima, foram considerados os mínimos de movimentos possíveis para a resolução do problema. No caso de Hanoi com 3 torres, é possível ver um padrão simples de 2^n-1 mínimo de movimentos para resolver cada caso de n discos. Levando em consideração que é possível fazer uma analogia entre o problema de 4 torres com o de 3 torres, já que não necessariamente é preciso usar as 4 torres para resolver os problemas, o que permite a possibilidade de travar uma torre com certa quantidades de discos enquanto manipula as outras sem o uso da mesma. Dessa forma, pode-se considerar separar a quantidade de discos em 2 blocos para trabalhar como 2 casos de hanoi de 4 torres e 1 caso de hanoi com 3 torres. Logo, pode-se deduzir que uma estimativa para quantidade de movimentos é $U_n = min(2*U_x + T_{n-x}) \rightarrow U_n \le 2*U_x + T_{n-x})$, onde x é qualquer valor natural menor ou igual a n. Por exemplo, supondo uma situação com 8 discos de hanoi:

- Bloco 1 = 1 e Bloco 2 = $7 \rightarrow 2 * 1 + 127 = 129 \rightarrow U_8 = 33 \le 129 \checkmark$
- Bloco 1 = 2 e Bloco 2 = $6 \rightarrow 2 * 3 + 63 = 69 \rightarrow U_8 = 33 \le 69 \checkmark$
- Bloco 1 = 3 e Bloco 2 = $5 \rightarrow 2 * 5 + 31 = 41 \rightarrow U_8 = 33 \le 41 \checkmark$
- Bloco 1 = 4 e Bloco 2 = $4 \rightarrow 2 * 9 + 15 = 33 \rightarrow U_8 = 33 \le 33 \checkmark$
- Bloco 1 = 5 e Bloco 2 = 3 \rightarrow 2 * 13 + 7 = 33 \rightarrow U_8 = 33 \leq 33 \checkmark
- Bloco 1 = 6 e Bloco 2 = 2 \rightarrow 2 * 17 + 3 = 37 \rightarrow U_8 = 33 \le 37 \sqrt{
- Bloco 1 = 7 e Bloco 2 = 1 \rightarrow 2 * 25 + 1 = 51 \rightarrow U_8 = 33 \leq 51 \checkmark
- 2) Por meio da análise da quantidade de discos com números triangulares das tabelas, aqueles que podem ser descritos da forma $a_n = \frac{n*(n-1)}{2}$, e da equação anterior encontra-se um padrão:

no hanoi de 4 torres, o número mínimo de movimentos do próximo número triangular de discos pode ser igual ao dobro do número triangular anterior somado ao numero de movimentos do hanoi de 3 torres com a quantidade de discos da diferença entre os números triangulares. De modo algébrico tem-se:

$$U_{\frac{n*(n+1)}{2}} \le (2*U_{\frac{n*(n-1)}{2}} + T_n) \to U_{\binom{n+1}{2}} \le 2*U_{\binom{n}{2}} + T_n$$

Para exemplificar isso:

- $n = 1 \rightarrow U_1 < 2 * U_0 + T_1 \rightarrow U_1 < 2 * 0 + 1 \rightarrow U_1 < 1 \checkmark$
- $n = 2 \rightarrow U_3 < 2 * U_1 + T_2 \rightarrow U_3 < 2 * 1 + 3 \rightarrow U_3 < 5 \checkmark$
- $n = 3 \rightarrow U_6 < 2 * U_3 + T_3 \rightarrow U_6 < 2 * 5 + 7 \rightarrow U_6 < 17 \checkmark$
- $n = 4 \rightarrow U_{10} \le 2 * U_6 + T_4 \rightarrow U_{10} \le 2 * 17 + 15 \rightarrow U_{10} \le 49 \checkmark$
- $n = 5 \rightarrow U_{15} < 2 * U_{10} + T_5 \rightarrow U_{15} < 2 * 49 + 31 \rightarrow U_{15} < 129 \checkmark$

Logo, $U_{\binom{n+1}{2}} \leq 2 * U_{\binom{n}{2}} + T_n$ é verdadeiro.

3) Analisando os dados da tabela de Hanoi com 4 torres, é nítido que o número de movimentos mínimos cresce de modo diferente quando passa por um número triangular. A guisa de exemplo, de o $1 \le n < 3$ a quantidade de movimento aumenta linearmente em 2, de $3 \le n < 6$ aumenta linearmente em 4, de $6 \le n < 10$ aumenta linearmente 8, e de $10 \le n < 15$ aumenta linearmente 16. Com esses dados, pode-se montar a seguinte função:

$$U_n = min \begin{cases} 2(n-1) + 1, & se \ 1 \le n \le 3 \\ 4(n-2) + 1, & se \ 3 \le n \le 6 \\ 8(n-4) + 1, & se \ 6 \le n \le 10 \\ 16(n-8) + 1, & se \ 10 \le n \le 15 \end{cases} \rightarrow U_n \le 2^n(n-2^{n-1}) + 1$$

Outra equação que pode ser feita vendo a equação formada anteriormente e a sequência formada pelos números triangulares (1,5,17,49,129) é:

$$U_{\binom{n+1}{2}} = \min \begin{cases} 2(n-1)+1, \ se \ n = 1 \\ 4(n-1)+1, \ se \ n = 2 \\ 8(n-1)+1, \ se \ n = 3 \\ 16(n-1)+1, \ se \ n = 4 \end{cases} \rightarrow U_{\binom{n+1}{2}} \le 2^n(n-1)+1$$

4) Testando a equação desenvolvida em 3) com as informações da tabela de teste:

$$U_{\binom{n+1}{2}} \le (n-1)2^n + 1$$

- $n = 1 \rightarrow U_1 \le (1-1)2^1 + 1 \rightarrow U_1 \le 0 * 2 + 1 \rightarrow U_1 \le 1 \checkmark$
- $n = 2 \rightarrow U_3 \le (2-1)2^2 + 1 \rightarrow U_3 \le 1 * 4 + 1 \rightarrow U_3 \le 5 \checkmark$
- $n = 3 \rightarrow U_6 < (3-1)2^3 + 1 \rightarrow U_6 < 2 * 8 + 1 \rightarrow U_6 < 17 \checkmark$
- $n = 4 \rightarrow U_{10} \le (4-1)2^4 + 1 \rightarrow U_{10} \le 3 * 16 + 1 \rightarrow U_{10} \le 49\checkmark$
- $n = 5 \rightarrow U_{15} < (5-1)2^5 + 1 \rightarrow U_{15} < 4 * 32 + 1 \rightarrow U_{15} < 129 \checkmark$

5) No caso de 55 discos e apenas 3 torres pode-se encontrar o número T de movimentos pela fórmula $T_n = 2^n - 1$, onde n representa a quantidade de discos.

$$T_{55} = 2^{55} - 1 \approx 2^{55} \rightarrow log 2^{55} \approx 16,55 \rightarrow T \ possui \ 17 \ dígitos$$

Usando a equação dada no item (ii):

$$\begin{cases} U_{\binom{n+1}{2}} \le (n-1)2^n + 1 \\ \binom{n+1}{2} = 55 \end{cases} \rightarrow \begin{cases} U_{\binom{n+1}{2}} \le (n-1)2^n + 1 \\ n = 10 \end{cases} \rightarrow U_{\binom{11}{2}} \le (10-1)2^{10} + 1 \rightarrow U_{55} \le 9215$$