EE5609 – Matrix Theory 2023 Practice Set 3 (For Lectures 7 and 8)

Lakshmi Prasad Natarajan

Solutions are not to be returned

Practice Set

Notation: Bold lower case letters will denote column vectors, and bold upper case letters are matrices. The symbol \mathbb{F} denotes either \mathbb{R} or \mathbb{C} .

- David Lay, Exercises 2.1:
 Questions 5-13, 15-16, 18-20.
- David Lay, Exercises 2.2:
 Questions 11–14, 16, 18–20, 27, 28, 38.
- 3. David Lay, Exercises 1.2: Questions 1–5.
- 4. Argue that the inverse of a permutation matrix P is P^T .
- 5. Householder Reflection. Let $\mathbf{u} \in \mathbb{C}^n$ be such that $\mathbf{u}^H \mathbf{u} = 1$. Define $\mathbf{Q} = \mathbf{I} 2\mathbf{u}\mathbf{u}^H$. This matrix is called Householder reflection. Show that $\mathbf{Q}^{-1} = \mathbf{Q}$.
- 6. Let X, Y, A be square $n \times n$ matrices where X and Y are invertible. Argue that A is invertible if and only if XAY is invertible.
- 7. Show that \boldsymbol{A} is invertible if and only if \boldsymbol{A}^T is invertible. (Similar statement holds for \boldsymbol{A}^H also).
- 8. In this question we will identify some conditions for a square matrix to be non-invertible.
 - (a) Suppose one of the rows of A is all-zero, then show that A is not invertible. Hint: We must argue that $AB \neq I$ for any choice of matrix B. One argument is as follows: since one of the rows of A is all-zero, can we say that one of the rows of AB is also all-zero? Observe that I does not have any all-zero row. Then can AB be equal to I, no matter how we choose B?
 - (b) Suppose one of the columns of \boldsymbol{A} is all-zero, then show that \boldsymbol{A} is not invertible.
 - (c) The above ideas can be generalized as follows. Suppose there exists a non-zero $\mathbf{x} \in \mathbb{F}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{0}$. Show that \mathbf{A} is not invertible. Hint: We can use proof by contradiction. If \mathbf{A} was invertible then we know that the

function $x \to Ax$ is one-to-one and onto. Does the given matrix satisfy this property?

(d) Similarly, show that if there exists $x \neq 0$ such that $x^T A = 0^T$, then A is not invertible. Hint: First show that A^T is not invertible.