5 锁存器和触发器

- 5.1 双稳态电路
- 5.2 SR锁存器
- 5.3 D锁存器
- 5.4 触发器的电路结构和工作原理
- 5.5 触发器的逻辑功能
- 5.6 用Verilog HDL描述锁存器和触发器

A

电平敏感

SR锁存器

D锁存器

边沿敏感

结构与原理

常用触发器

教学基本要求

- 1、掌握锁存器、触发器的电路结构和工作原理
- 2、熟练掌握SR触发器、JK触发器、D触发器及T触发器的逻辑功能
- 3、正确理解锁存器、触发器的动态特性

概述

1、时序逻辑电路与锁存器、触发器:

时序逻辑电路:

工作特征: 时序逻辑电路的工作特点是任意时刻的输出状态不

仅与该当前的输入信号有关,而且与此前电路的状态有关。

结构特征:由组合逻辑电路和存储电路组成,电路中存在反馈。

锁存器和触发器是构成时序逻辑电路的基本逻辑单元。

2、锁存器与触发器

共同点:

具有0和1两个稳定状态,一旦状态被确定,就能自行保持。一个锁存器或触发器能存储一位二进制码。

不同点:

锁存器---对脉冲电平敏感的存储电路, 在特定输入脉冲电平作用下改变状态。

触发器---对脉冲边沿敏感的存储电路,在时钟脉冲的上升沿或下降沿的变化瞬间改变状态。

5.1 双稳态电路

5.1.1 双稳态的概念

5.1.2 最基本的双稳态电路

5.1 双稳态电路

5.1.1 双稳态的概念

5.1.2 最基本的双稳态电路

1. 电路结构 G_1 电路有两个互补的输出端 Q端的状态定义为电路输出状态。

2、数字逻辑分析

——电路具有记忆1位二进制数据的功能。

3. 模拟特性分析

$$v_{01} = v_{12}$$
 $v_{11} = v_{02}$

5.2 SR锁存器

5.2.1 基本SR 锁存器

5.2.2 门控SR锁存器

5.2 SR锁存器

5.2.1基本SR 锁存器

1. 工作原理

现态: R、S信号作用前Q端的 次态: R、S信号作用后Q端的 状态, 现态用Q "表示。 状态, 次态用Q "十1表示。

1. 工作原理

R=0、S=1 置1

无论现态Q "为0或1,锁存器的次态为1态。信号消失后新的状态将被记忆下来。

无论现态Q "为0或1,锁存器的次态为0态。 信号消失后新的状态将被记忆下来。

若现态 $Q^{n}=1$

若现态 $Q^{n}=0$

无论现态Q "为0或1,触发器的次态 Q "、Q 都为0。

触发器的输出既不是0态,也不是1态

当S、R 同时回到0时,由于两个与非门的延迟时间无法确定,使得触发器最终稳定状态也不能确定。

约束条件: SR = 0

工作波形

2. 基本SR锁存器的动态特性

 t_{pLH} 和 t_{pHL} 分别为输出由高到低和由低到高时,相对于输入的延迟时间。

脉冲宽度 t_W :如果输入脉冲宽度 $< t_W$,Q未越过介稳态点,S端信号撤出,会使输出状态不稳定。图中 t_{W1} 和 t_{W2} 均 $> t_W$ 。

3. 用与非门构成的基本SR锁存器

a.电路图

b. 功能表

c.国标逻辑符号

	Y/V				
${R}$	$\frac{1}{S}$		\overline{Q}		
1	1	不变	不变		
1	0	1	0		
0	1	0	1		
0	0	1	1		

约束条件:

$$\overline{S} + \overline{R} = 1$$

例运用基本SR锁存器消除机械开关触点抖动引起的脉冲输出。

去抖动电路工作原理

开关起始状态:接B, $\overline{R} = 0$ $\overline{S} = 1$ Q = 0 悬空时 $\overline{R} = X$ $\overline{S} = 1$ Q不变

开关接A时振动,Q=1

开关转接A, $\overline{R} = 1 \overline{S} = 0 Q = 1$

S悬空时 $\overline{S} = X \overline{R} = 1$ Q不变

开关接 B振动

5.2.2 门控SR 锁存器

1. 电路结构

简单SR锁存器

国标逻辑符号

使能信号控制门电路

2、工作原理

$$E=0$$
: 状态不变

$$E=1: Q_3 = S Q_4 = R$$

状态发生变化。

$$S=0$$
, $R=0$: $Q^{n+1}=Q^n$

$$S=1$$
, $R=0$: $Q^{n+1}=1$

$$S=0$$
, $R=1$: $Q^{n+1}=0$

$$S=1$$
, $R=1$: $Q^{n+1}=\Phi$

例:逻辑门控SR锁存器的E、S、R的波形如下图虚线上边所示,锁存器的原始状态为Q=0,试画出 Q_3 、 Q_4 、Q和 \overline{Q} 的波形。

5.3 D锁存器

5.3.1 D锁存器的电路结构

5.3.2 典型的D 锁存器集成电路

5.3.3 D 锁存器的动态特性

5.3.1 D锁存器的电路结构

- 1. 传输门控D锁存器
- (1) 逻辑电路图

逻辑符号

(2)工作原理

(a) E=1时

TG₁导通, TG₂断开 O=D

(b) E=0时

TG₂导通, TG₁断开 Q不变

(3) 逻辑功能

D锁存器的功能表

	E	D	Q	\mathbb{Q}	功能
	0	XX	不变	不变	保持
	1/	0	0	1	置0
1	1	1	1	0	置1

$$E=1$$

Q不变

$$Q = \mathbf{D}$$

(4) 工作波形

2. 逻辑门控D锁存器

逻辑电路图

D锁存器的功能表

E	<i>D</i> ///	Q	$ar{oldsymbol{arrho}}$	功能
	×	不变	不变	保持
1	0	0	1	置0
1	1	1	0	置1

$$E=0$$

Q不变

$$E=1$$

$$D=0$$

$$S=0$$
 $R=1$

$$Q = 0$$

$$D=1$$

$$S = 1$$
 $R = 0$

$$Q = 1$$

5.3.2 典型的D锁存器集成电路

74HC/HCT373 八D锁存器

74HC/HCT373的功能表

工作档式	输入		内部锁存器	输出	
工作模式	\overline{OE}	LE	D_n	状 态	Q_n
使能和读锁存	L	H	L	&\\L	L
器 (传送模式)	L	Н	H	H	Н
锁存和读锁存	L	LX	L*	L	L
器	L	XI)	H*	H	Н
锁存和禁止输	HX	×	X	×	高阻
出	, H	×	X	×	高阻

 $L*和H*表示门控电平LE由高变低之前瞬间<math>D_n$ 的逻辑电平。

5.3.3 D锁存器的动态特性

定时图:表示电路动作过程中,对各输入信号的时间要求以及输出对输入信号的响应时间。

有建立时间 t_{SII} 、保持时间 t_{II} 、脉冲宽度 t_{W} 等。

5.4 触发器的电路结构和工作原理

- 5.4.1 主从D触发器的电路结构和工作原理
- 5.4.2 典型主从D触发器集成电路
- 5.4.3 主从D触发器的动态特性
- 5.4.4 其他电路结构的触发器

5.4 触发器的电路结构和工作原理

1. 锁存器与触发器

锁存器在E的高(低)电平期间 对信号敏感

触发器在CP的上升沿(下降 沿)对信号敏感

在VerilogHDL中对锁存器与 触发器的描述语句是不同的

5.4 触发器的电路结构和工作原理

5.4.1 主从D触发器的电路结构和工作原理

1. 电路结构

主锁存器与从锁存器结 构相同

 TG_1 和 TG_4 的工作状态相同

TG₂和TG₃的工作状态相同

2. 工作原理

(1) CP=0时:

$$\overline{C}$$
 =1, C =0,

TG₁导通,TG₂断开——输入信号D 送入主锁存器。

Q'跟随D端的状态变化,使Q'=D。

 TG_3 断开, TG_4 导通——从锁存器维持在原来的状态不变。

2. 工作原理

(2) CP由0跳变到1:

$$\overline{C}$$
 =0, C =1,

 TG_1 断开, TG_2 导通——输入信号D 不能送入主锁存器。

主锁存器维持原态不变。

 TG_3 导通, TG_4 断开——主锁存器Q'的信号送Q端。

触发器的状态仅仅取决于CP信号上升沿到达前瞬间的D信号

5.4.2 典型主从D触发器集成电路

74HC/HCT74中D触发器的逻辑图

$\overline{R_D}$ 、 $\overline{S_D}$ 的直接置1和直接置0的作用

当
$$CP=0$$
 $\overline{R}=0,\overline{S}=1$ 时, $Q=0$

同理,可分析当 $\overline{R}=1,\overline{S}=0$ 时, $Q=1,\overline{Q}=0$

5.4.2 典型主从D触发器集成电路

$$ar{R}=0$$
 $ar{S}=1$ $CP=1$ $ar{R}=0$ $ar{S}=1$ $Q=0$ $CP=1$

同理,可分析当 $\overline{R}=1,\overline{S}=0$ 时,Q=1,Q=0

5.4.2 典型主从D触发器集成电路

$$CP=1$$
或 $CP=0$ $\bar{R}=0$ $\bar{S}=1$ $Q=0$ $CP=1$ 或 $CP=0$ $\bar{R}=1$ $\bar{S}=0$ $Q=1$

 \bar{R}_D 、 \bar{S}_D 的直接置1和直接置0的作用与CP无关

74HC/HCT74的逻辑符号和功能表

74HC/HCT74的功能表

1S — • 1C — 1D — 1R — • • • • • • • • • • • • • • • • • •	S >C1 1D R	1 <u>0</u>	
2S — ○ 2C — 2D — 2R — ○	S >C2 2D R	$2Q$ $\circ2\overline{Q}$	X

国标逻辑符号

输入			输出		
\overline{S}_{D}	$\overline{R}_{ m D}$	CP	D	Q	\overline{Q}
L/\h	, H	X	X	Н	L
H	L	×	×	L	Н
L	L	×	×	H	H
$\overline{\overline{S}}_{\mathrm{D}}$	$\overline{R}_{\mathrm{D}}$	CP	D	Q^{n+1}	\overline{Q}^{n+1}
Н	Н	1	L	L	Н
H	H	1	Н	H	L

具有直接置1、直接置0,正边沿触发的D功能触发器

5.4.3 主从D触发器的动态特性

动态特性反映其触发器对输入信号和时钟信号间的时间要求,以及输出状态对时钟信号响应的延迟时间。

 $建立时间t_{SU}$,保证与D相关的电路建立起稳定的状态,使触发器状态得到正确的转换。

保持时间 $t_{\rm H}$: 保证D状态可靠地传送到Q

触发脉冲宽度tw: 保证内部各门正确翻转。

传输延迟时间 t_{PLH} 和 t_{PHL} :时钟脉冲CP上升沿至输出端新状态稳定建立起来的时间

最高触发频率 f_{cmax} :触发器内部都要完成一系列动作,需要一定的时间延迟,所以对于CP最高工作频率有一个限制。

5.4.4 其他电路结构的触发器

2、工作原理

$$CP = 0$$

$$Q_4 = \overline{D} \quad Q_1 = D$$

$$Q^{n+1}=Q^n$$

D信号存于 Q_4

D 信号进入触发器, 为状态刷新作好准备

当CP由0跳变为1

$$Q^{n+1} = D$$

在CP脉冲的上升沿,触发器按此前的D信号刷新

当CP = 1

D信号不影响 \overline{S} 、 \overline{R} 的状态,Q的状态不变

在CP脉冲的上升沿到来瞬间使触发器的状态变化

当CP = 1

在CP脉冲的上升沿到来瞬间使触发器的状态变化

5.5 触发器的逻辑功能

- 5.5.1 D 触发器
- 5.5.2 JK 触发器
- 5.5.2 T触发器
- 5.5.3 SR 触发器
- 5.5.4 D触发器功能的转换

5.5 触发器的逻辑功能

不同逻辑功能的触发器国际逻辑符号

D触发器

T触发器

JK 触发器

RS触发器

5.5.1 D 触发器

1. 特性表

D	Q^n	Q^{n+1}
0	0	0
0	1	0
1	0 - 7/1/	1
1		1

2. 特性方程

$$Q^{n+1} = D$$

3. 状态图

5.5.2 JK 触发器

1.特性表

J	K	Q^{n}	Q^{n+1}	说 明
0	0	0	0	状态不变
0	1 1	0	0	置の
1 1	0	0	1	置 1
1 1	1 1	0 1	1	翻转

2.特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

3.状态转换图

例5.4.1 设下降沿触发的JK触发器时钟脉冲和J、K信号的波形

如图所示试画出输出端Q的波形。设触发器的初始状态为0。

5.5.3 T触发器

逻辑符号

特性方程

$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n$$

特性表

T	$Q^{\rm n}$	Q^{n+1}	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

状态转换图

4. T'触发器

时钟脉冲每作用一次,触发器翻转一次。

5.5.4 SR 触发器

1. 特性表

Q^n	S	R	Q^{n+1}
0	0	0	0
0	0	1	0
0	1	0	1,
0	1	1	不确定
1	0	0	X 1
1	0	1) T	0
1	1	1 0	1
1	1	1	不确定

2. 特性方程

$$Q^{n+1} = S + \overline{RQ}^{n}$$

$$SR=0$$
 (约束条件)

3. 状态图

5.5.5 D触发器功能的转换

1.D 触发器构成JK 触发器(不考)

2. D 触发器构成 T 触发器

3. D 触发器构成 T' 触发器

小 结

- 锁存器和触发器都是具有存储功能的逻辑电路,是构成时序电路的基本逻辑单元。每个锁存器或触发器都能存储1位二值信息。
- 锁存器是对脉冲电平敏感的电路,它们在一定电平作用下改变状态。
- 触发器是对时钟脉冲边沿敏感的电路,它们在时钟脉冲的上升沿或下降沿作用下改变状态。
- •触发器按逻辑功能分类有D触发器、JK触发器、T(T') 触发器和SR触发器。它们的功能可用特性表、特性方程和状态图来描述。触发器的电路结构与逻辑功能没有必然联系。

5.6 用Verilog HDL描述锁存器和触发器

5.6.1 时序电路建模基础

5.6.2 锁存器和触发器的Verilog建模

5.6.1 时序电路建模基础

Verilog行为级描述用关键词initial或always,但 initial是面向仿真,不能用于逻辑综合,本书不介绍。 always是无限循环语句,其用法为:

always@(事件控制表达式(或敏感事件表))

begin

块内局部变量的定义;

过程赋值语句;

end

敏感事件分为电平敏感事件和边沿触发事件:

电平敏感事件(如锁存器):

always@(sel or a or b)

sel、a、b中任意一个电平发生变化,后面的过程赋值语句将执行一次。

边沿敏感事件(如触发器):

always@(posedge CP or negedge CR)

CP的上升沿或CR的下降沿来到,后面的过程语句就会执行。

过程赋值语句有阻塞型和非阻塞型:

阻塞型用"="表示,语句块 内部多条语句顺序执行。

begin

B=**A**;

C=B+1;

end

非阻塞型用 "〈="表示,语句块 内部的语句并行执行。

begin

 $B \le A;$

 $C \leq B+1;$

end

假设A, B, C均为2比特的变量,初值为A=1, B=0, C=3,在某一时刻过程语句块被执行

多条语句顺序执行。结果为:

B=1;

C=2;

多条语句并行执行。结果为:

B=1;

C=1;

5.6.2 锁存器和触发器的Verilog建模实例

```
module D_latch (Q, D, E); //D锁存器的描述
 output Q;
 input D, E;
 reg Q;
 always @(E or D)
  if (E) Q \le D; //Same as: if (E== 1)
endmodule
module DFF (Q, D, CP); //D触发器的描述
 output Q;
 input D, CP;
 reg Q;
 always @(posedge CP)
   \mathbf{Q} \leq \mathbf{D};
endmodule
```


>>

-<-

作业

- > 5.2.1
- > 5.2.3
- **>** 5.2.6
- > 5.5.1

- > 5.5.8
- > 5.5.9
- > 5.6.3