ÜNİTE - IV

FONKSİYONLAR

ARA SINAV ÇIKABİLECEK SORU ADEDİ: 3-4 Sorudur

FİNAL/BÜTÜNLEME ÇIKABİLECEK SORU ADEDİ: 1-2 Sorudur

UNİTE İÇERİĞİ

Bu ünitede fonsiyon kavramı, fonksiyonun tanımı ve değer kümelerini, görüntü kümelerinin bulunmasını göreceksiniz.

Ayrıca fonksiyonun özelliklerini, fonksiyonlarla ilgili işlemler,bileşke ve ters fonksiyonu ve fonksiyon çeşitlerini öğreneceksiniz.

FONKSİYON

MINAT

A kümesinin her elemanını B kümesinin yalnız bir elemanına görüntüleyen bağıntılara fonksiyon(işlevi) denir.

UYARI

Her fonksiyon bir bağıntıdır. Fakat her bağıntı fonksiyon

f: A → B Fonksiyonu için;

📤 A kümesinde (tanım kümesi) açıkta eleman yoktur.

A kümesinin her elemanının B kümesinde(Değer kümesi) yalnız bir görüntüsü vardır.

Kartezyen eksenlerindeki bir eğrinin x deń y'ye bir fonksiyon olup olmadığını anlamak için x eksenine dik (y eksenine paralel) doğrular çizilir. Çizilen doğrular eğriyi (grafiği) birden çok noktadan kesiyorsa verilen eğri x den y'ye bir fonksiyon değildir.

UYARI

 $S(A) = m \text{ ve } S(B) = n \text{ olmak üzere, } A \text{ dan } B \text{ 'ye tanımlayacak fonksiyon sayısı: } (f: A <math>\longrightarrow B$) S(F) = S(B). S(A)'dır.

FONKSİYONLARDA DEĞER BULMA

Verilen bir fonksiyonda x yerine bir sayı yazılarak fonksiyonun o noktasındaki değerini bulmaktır.

$$f: R \rightarrow R$$
 $f(x) = 3x + 7$ fonksiyonu için $f(3)$ sayısı kaçtır?

$$f(3) = 3.3 + 7 = 9 + 7 = 16$$

$$f(3) = 16' dir.$$

Tanım Kümesi

Not

Görüntü kümesi değer kümesinin alt kümesidir.

UYARI

BİR FONKSİYONUN TANIM VE DEĞER KÜMESİ

f(x) = 2x + 5 fonksiyonu için tanım kümesi $A = \{-1, 0, 2\}$ ise değer kümesini bulunuz?

$$f(A) = B$$

$$f(-1) = 2(-1) + 5 = -2 + 5 = 3$$

$$f(0) = 2.(0) + 5 = 5$$

$$f(1) = 2(1) + 5 = 7$$

$$B = \{3, 5, 7\}$$

RASYONEL FONKSİYON

$$f(x) = \frac{x^2 + 3x + 5}{x - 2}$$
, $g(x) = x^{-3}$, $h(x) = \frac{1}{x^{-3} + 1}$, $k(x) = \frac{x^5 + 1}{x - 1}$

gibi fonksiyonlara Rasyonel Fonksiyon denir.

UYARI

$$n \in Z^+$$
 ve $x^{-n} = \frac{1}{x^n}$ rasyonel fonksiyondur.

UYARI

 $\sqrt[5]{x^2} = x^{\frac{2}{5}}$ rasyonel fonksiyon değildir.

Not

Rasyonel fonksiyonlarda paydayı sıfır (0) yapan değer ifadeyi tanımsız yapar.

$$f(x) = \frac{5x^2 + 7}{2x - 6}$$

 $f(x) = \frac{5x^2 + 7}{2x - 6}$ Fonksiyonunun tanımsız olduğu noktayı bulunuz.

$$2x - 6 = 0$$
 ise

$$2x = 6$$

$$x = 3' t \ddot{u}r$$
.

$$f(x) = \frac{x^3 + 2x + 7}{x^2 - 1}$$

Fonksiyonunun tanım kümesi nedir?

$$x^2 - 1 = 0$$
 ise

$$\sqrt{x^2} = \sqrt{1}$$

$$x = \mp 1$$

 $R - \{-1, 1\}$ Tanım kümesidir.

$$f(x) = \frac{5}{x^2 - 5x}$$

$f(x) = \frac{5}{x^2 - 5x}$ Fonksiyonunu tanımsız yapan noktaların kümesi nedir?

$$x^{2} - 5x = 0$$

$$\times (\times - 5) = 0$$

$$x = 0$$
 veya $x - 5 = 0$

$$x = 5$$

{ 0,5 }

$$f(x) = \sqrt{2x-1}$$

Fonksiyonunun tanım aralığı nedir ?

$$2x - 1 \ge 0$$

$$2x \ge 1$$

$$x \ge \frac{1}{2}$$

$$f(x) = \sqrt{3-x}$$

 $f(x) = \sqrt{3-x}$ Fonksiyonunun tanım aralığı nedir?

$$3 - x \ge 0$$

$$f(x) = \sqrt{25 - x^2}$$

 $f(x) = \sqrt{25-x^2}$ Fonksiyonunun tanım aralığı nedir?

$$25 - x^2 \ge 0$$

$$\sqrt{25} \geq \sqrt{x^2}$$

$$-5 \le x \le 5$$

$$f(x) = \sqrt{x^2 - 1}$$

Fonksiyonunun tanım aralığı nedir?

$$x^2 - 1 \ge 0$$

$$\sqrt{x^2} \geq \sqrt{1}$$

$$| \times | \ge 1$$

$$x \ge 1$$
, $x \le -1$

$$f(x) = \frac{5x^2 + 3}{\sqrt{x + 5}}$$
 Fonk

$$f(x) = \frac{5x^2 + 3}{\sqrt{x + 5}}$$
 Fonksiyonunun tanım aralığı nedir?

$$\times + 5 > 0$$

$$f(x) = \frac{4x^3 + 2x}{\sqrt{3x - 12}}$$
 Fonksiyonunun tanım aralığı nedir?

$$3 \times - 12 > 0$$

$$f(x) = \frac{5}{\sqrt{3-2x}}$$

Fonksiyonunun tanım aralığı nedir?

$$3 - 2x > 0$$

$$\frac{3}{2} > \frac{2x}{2} \qquad -\infty \frac{4}{\sqrt{\frac{3}{2}}}$$

$$(-\infty, \frac{3}{2})$$

$$\frac{3}{2}$$
 > \times

$$f(x) = \frac{x^2}{\sqrt{x^2 + 2x - 3}}$$
 Fonksiyonunun tanım

aralığı nedir ?

$$x^2 + 2x - 3 > 0$$

$$(x + 3) = 0$$
 $(x - 1) = 0$

$$(x + 3) \cdot (x - 1) > 0$$

x = 1

$$5 - x^2 > 0$$

$$\sqrt{5}$$
 > $\sqrt{x^2}$

$$f(x) = \frac{3x+1}{\sqrt{5-x^2}}$$
 Fonksiyonunun tanım aralığı

$$-\sqrt{5} < \times < \sqrt{5}$$

$$(-\sqrt{5},\sqrt{5})$$

$$f(x) = \frac{x^2}{\sqrt{4-x^2}}$$

 $f(x) = \frac{x^2}{\sqrt{4-x^2}}$ Fonksiyonunun tanım aralığı nedir?

$$4 - x^2 > 0$$

$$\sqrt{4}$$
 > $\sqrt{x^2}$

$$-2 < x < 2$$
 (-2, 2)

$$f(x) = \sqrt{x+5} - \sqrt{3x-6}$$
 Fonksiyonunun tanım aralığı nedir?

$$x + 5 \ge 0$$
 ve $3x - 6 \ge 0$

$$x \ge -5$$

$$\frac{3x}{3} \ge \frac{6}{3}$$

$$x \ge 2$$

$$\delta RNEK$$
 $f(x) = \sqrt{-2} - x + \sqrt{3} - x$ Fonksiyonunun tanım

aralığı nedir ?

$$-2-x \ge 0$$
 ve $3-x \ge 0$

-2≥x ve 3≥x

 $6 \ge x$

f (x) =
$$\sqrt{12-2x} + \sqrt[4]{3x+21}$$
 Fonksiyonunun tanım aralığı nedir ?

$$12 - 2x \ge 0$$
 ve $3x + 21 \ge 0$

$$\frac{12}{2} \ge \frac{2x}{2} \qquad \text{ve} \quad \frac{3x}{3} \ge -\frac{21}{3}$$

FONKSİYON ÇEŞİTLERİ

İÇİNE FONKSİYON

f: A → B olmak üzere, değer kümesinde açıkta eleman varsa Bu fonksiyona İçine Fonksiyon denir.

ÖRTEN FONKSİYON

f: A → B olmak üzere, değer kümesinde açıkta eleman yoksa Bu fonksiyona Örten Fonksiyon denir.

BİREBİR FONKSİYON

Tanım kümesinin her eleman değer kümesinde yalnız bir elemanla eşleşiyorsa bu tür fonksiyonlara Bire bir Fonksiyon denir.

1-1'dir

UYARI

$$x_1 \neq x_2 \longrightarrow_f (x_1) \neq_f (x_2)$$

$$f'(x_1) = f(x_2) \longrightarrow x_1 = x_2$$

Kartezyen eksenlerde verilen bir eğrinin x den y'ye birebir fonksiyon olup olmadığını anlamak için x eksenine paralel doğrular çizilir. Çizilen paralel doğrular eğriyi birden fazla noktadan kesiyorsa fonksiyon 1 - 1 değildir. Eğriyi tek bir noktada kesiyorsa fonksiyon 1 - 1'dir.

BİREBİR - İÇİNE FONKSİYON

Hem birebir hemde içine fonksiyona denir.

 $f: A \longrightarrow B$ fonksiyonu 1 - 1, içine ise S(B) > S(A)

BİREBİR ÖRTEN FONKSİYON

Hem birebir hemde örten fonksiyondur.

 $f: A \longrightarrow B$ fonksiyonu 1 - 1, ve örten ise S(A) = S(B)

SABİT FONKSİYON

Tanım kümesinin her elemanı değer kümesinin bir tek elemanına eşleyen fonksiyona sabit fonksiyon denir.

BİRİM FONKSİYON

Tanım kümesinin her elemanı değer kümesinde kendisine eşleyen fonksiyona denir. I ile gösterilir.

f: A → B birim fonksiyon ise;

$$f(x) = x \text{ veya } I(x) = x$$

EŞİT FONKSİYON

f: $A \rightarrow B$ ve g: $A \rightarrow B$ fonksiyonları için $\forall x \in A$ f (x) = g(x) ise f ve g fonksiyonlara Eşit Fonksiyon denir.

CİFT VE TEK FONKSİYON

- 1) $\forall x \in A$ igin f(-x) = f(x) ise f fonksiyonu gift fonksiyondur.
- 2) $\forall x \in A$ igin f(-x) = -f(x) ise f fonksiyonu tek fonksiyondur.

FONKSİYONLARDA İŞLEMLER

$$\bullet$$
 f: A \longrightarrow R g: B \longrightarrow R için $A \cap B \neq \varphi$, g(x) $\neq 0$

1)
$$(f + g) x = f(x) + g(x)$$

2)
$$(f - g) x = f(x) - g(x)$$

3)
$$(f.g) x = f(x).g(x)$$

4)
$$(\frac{f}{g}) \times = \frac{f(x)}{g(x)}$$

5)
$$(k. f)(x) = k. f(x)$$

BİR FONKSİYONUN TERSİ

- ♣ f: A→B birebir ve örten bir fonksiyon olmak üzere;
- 📤 f-1: B A fonksiyonuna f'in ters fonksiyonu denir.
- ∔ f⁻¹ (×) ile gösterilir.
- + f(x) = y ise f-1(y) = x
- + f:R-R ve f(x) = ax + b doğrusal fonksiyonları için;
- $4 f^{-1}: R \longrightarrow R \quad \text{ve} \quad f^{-1}(x) = \frac{x-b}{a} \quad a \neq 0$

T: R
$$\longrightarrow$$
 R ve $f(x) = \frac{cx + b}{a}$

$$f^{-1}: R \longrightarrow R$$
 ve $f^{-1}(x) = \frac{ax - b}{c}$

$$f: R - \left\{-\frac{d}{c}\right\} \longrightarrow R - \left\{\frac{a}{c}\right\}$$

$$f(x) = \frac{ax + b}{cx + d} \quad \text{ise} \quad f^{-1}(x) = -\frac{dx + b}{cx - a}$$

Not

y = f(x) ile $y = f(x)^1$ fonksiyonlarının koordinat düzlemindeki görüntüleri y = x doğrusuna göre simetriktir.

BİLEŞKE FONKSİYON

ÖZELLİKLERİ

- 1) (fog) o h = fo (g o h) (Birleşme özelliği)
- 2) $fof^{-1} = f(f^{-1}) = I = f^{-1}of$
- 3) $f \circ I = I \circ f = f$
- 4) $(f^{-1})^{-1} = f$
- 5) $(fog)^{-1} = g^{-1}o f^{-1}$

FONKSİYONLARIN GRAFİKLERİ

$$y = ax^2 + bx + c \text{ ve } a > 0 \text{ ise;}^{-\infty}$$

Artandir.

Minimum Noktasi

$$y = ax^2 + bx + c$$
 ve a < 0 ise;
 $-\infty$

Azalandır.

 $y = ax^3 + bx^2 + c + d ve a > 0 ise;$

$$y = ax^3 + bx^2 + c + d ve a < 0 ise;$$

PARÇALI FONKSİYON

TANIM

Birden fazla fonksiyonun bir araya gelmesine Parçalı Fonksiyon denir.

UYARI

Parçalı fonksiyonlarda işlem yapılırken herbir parçası için yanında belirtilen özellikler için geçerlidir. Eğer parçalı, fonksiyon grafik şeklinde verilmiş ise bölgesi için geçerlidir.

MUTLAK (SALT) DEĞER FONKSİYONU

y = f(x) = a.|x| + b şeklindeki fonksiyonlar.

$$y = - |x| - 4$$

$$y = |x + 1|$$

$$y = |x - 2| + 5$$

$$y = |x-2| - 3$$

$$y = - |x + 4| + 8$$

$$y = - | \times + 1 | - 1$$

$$y = - |x|$$

