Semirigid Domain is a generalization of a GUFD. And to display another feature of Semirigid Domains we prove the

following Theorem 2.Let R be a Semirigid Domain, then there exists a family $\Phi = \{P_{\bf k}\}\ (\alpha \in I \text{ an index set}) \text{ of prime ideals}$ of R such that

(1) $R_{p\alpha}$ is a valuation domain for each $\alpha \in I$

(2) each non zero non unit $x \in \mathbb{R}$ is contained in only a finite number of members of Φ

(3) $P_{\alpha_1} \cap P_{\alpha_2}$ does not contain a non zero prime ideal if $\alpha_1 \neq \alpha_2 \cdot \alpha_j \in I$

 $(\eta) \quad H = \bigcap H_{p} \quad \alpha \in I.$

Proof . By part(3) of Lemma 1, in an HCF domain R, corresponding to each rigid non unit r, there exists a prime ideal $P(r) = \{ \ x \in R \mid (x,r) \neq 1 \ \} \text{ associated to r, and by } (\mu) \text{ of Lemma 1, } P(r) = P(s) \text{ iff s is a rigid non unit non co-prime to r.}$

Now let Γ be a set of mutually co-prime rigid non unitary of the given Semirigid domain R, where $\alpha \in I$ an index set. According to the above observation we have a family of prime ideals $\Phi = \{ P(r_{\alpha}) (=P_{\alpha}) \mid r_{\alpha} \in \Gamma ; \alpha \in I \}$, and by part (5) of Lemma 1, $R_P = R_P(r_{\alpha})$ is a valuation domain for each

. Φ that is (1) holds for the selected family Φ .

Since k is a Semirigid Domain, each non zero non unit being a product of a finite number of mutually co-prime rigid non units is a member of at most a finite number of elements of Φ , that is (2) also holds for Φ .

Now let Q be a non zero prime ideal contained in the intersection $P_{\alpha_1} \cap P_{\alpha_2} \equiv P(P_{\alpha_1}) \cap P(P_{\alpha_2})$, ($P_{\alpha_1} \neq P_{\alpha_2}$) and let $x \in Q$. Then since x is semirigid