EXAM III – Solutions

Answer all of the following problems. Each problem is worth 20 points. Fully justify each answer.

- 1. Prove that the following polynomials are irreducible.
 - (a) $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$.

To show $f(x) = x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$, we first note that f(x) has no roots in \mathbb{Z}_2 since f(0) = 1 and f(1) = 1. So, by the Factor Theorem, f(x) has no linear factors. Also, by Theorem 4.2, f(x) has no degree 3 factors. So we check the irreducible degree 2 factors. By results in class, we know $x^2 + x + 1$ is the only irreducible degree 2 polynomial in $\mathbb{Z}_2[x]$ (it is the only one without roots), hence we divide f(x) by $x^2 + x + 1$ and we get a remainder of x + 1. Therefore $x^2 + x + 1$ is not a factor of f(x), hence f(x) is irreducible.

(b) $x^4 - 7x^3 + 5x^2 - 3x - 9$ is irreducible in $\mathbb{Q}[x]$.

We reduce $g(x) = x^4 - 7x^3 + 5x^2 - 3x - 9$ modulo 2 to get $\bar{g}(x) = x^4 + x^3 + x^2 + x + 1$, which was shown to be irreducible in $\mathbb{Z}_2[x]$ in Part (a). Therefore, by Theorem 4.24, g(x) is irreducible in $\mathbb{Q}[x]$.

(c) $x^8 + 6x^5 - 12x^3 + 18x^2 - 24x - 60$ is irreducible in $\mathbb{Q}[x]$.

Here we can use Eisenstein's Criterion with p=3. Indeed, $3 \not| 1, 3 | 6, 3 | -12, 3 | 24$, and 3 | 60, but $3^2 \not| 60$. Therefore, by Eisenstein's Criterion, $x^8 + 6x^5 - 12x^3 + 18x^2 - 24x - 60$ is irreducible in $\mathbb{Q}[x]$.

2. Find all monic irreducible polynomials of degree 2 in $\mathbb{Z}_3[x]$. Justify why each of these polynomials are irreducible and why these are the only irreducibles.

By Corollary 4.18, a polynomial of degree 2 in $\mathbb{Z}_3[x]$ is irreducible if and only if it has no roots in \mathbb{Z}_3 . There are 9 monic polynomials of degree 2 in $\mathbb{Z}_3[x]$ of which three have no constant, hence zero would be a root of these three. This leaves six possibilities: $x^2 + 1, x^2 + 2, x^2 + x + 1, x^2 + x + 2, x^2 + 2x + 1, x^2 + 2x + 2$. We test these six for roots.

f(x)	$x^2 + 1$	$x^2 + 2$	$x^2 + x + 1$	$x^2 + x + 2$	$x^2 + 2x + 1$	$x^2 + 2x + 2$
f(1)	2	0	0	1	1	2
f(2)	2	0	1	2	0	1

Therefore, there are exactly three monic degree 2 polynomials without roots, $x^2 + 1$, $x^2 + x + 2$, and $x^2 + 2x + 2$, hence by Corollary 4.18 these are the only monic degree 2 irreducible polynomials in $\mathbb{Z}_2[x]$.

3. Factor $x^6 + x^4 + 2x^2 + 2 \in \mathbb{Z}_3[x]$ into a product of irreducibles. Say why each of the factors you have are irreducible.

Let $f(x) = x^6 + x^4 + 2x^2 + 2 \in \mathbb{Z}_3[x]$. Then f(1) = 6 = 0 and f(2) = 90 = 0, so by the Factor Theorem, (x - 1) = (x + 2) and (x - 2) = (x + 1) are factors of f(x). After doing long division, we get that $f(x) = (x + 1)(x + 2)(x^4 + 2x^2 + 1)$. But $x^4 + 2x^2 + 1 = (x^2 + 1)(x^2 + 1)$. So we get $f(x) = (x + 1)(x + 2)(x^2 + 1)^2$. We further note each linear factor is irreducible since it is of degree 1, and $x^2 + 1$ is irreducible by Problem 2.

4. Let

$$R = \mathbb{Z}_3[x]/(x^2 + 2x + 2).$$

Determine how many congruence classes there are in R and list a representative of each congruence class.

By Corollary 5.5, there is one congruence class in R for each polynomial of degree 1, degree 0, and the zero polynomial. Hence there are $3^2 = 9$ of these. They are: [0], [1], [2], [x], [x+1], [x+2], [2x], [2x+1], [2x+2].

5. Use the Euclidean Algorithm to find the greatest common divisor of $f(x) = x^4 + 3x^3 + 4x^2 + 2$ and $g(x) = x^3 + 4x^2 + 2$ in $\mathbb{Z}_5[x]$. Show all work.

To use the Euclidean Algorithm, we do a series of divisions. From our first division, we get

$$q_1(x) = x + 4$$
 and $r_1(x) = 3x^2 + 3x + 4$.

Then we divide q(x) by $r_1(x)$ and we get

$$q_2(x) = 2x + 1$$
 and $r_2(x) = 4x + 3$.

Now we divide $r_1(x)$ by $r_2(x)$ and we get

$$q_2(x) = 2x + 3$$
 and $r_3(x) = 0$.

Therefore, the greatest common divisor is the monic associate of $r_2(x)$, which is 4(4x + 3) = 16x + 12 = x + 2.