Тема I: Многочлены

§ 5. Неприводимые многочлены над полем вычетов

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Постановка задачи

Поле вычетов по простому модулю p — это поле \mathbb{F}_p , элементами которого служат числа $0,1,\dots,p-1$ (вычеты, т.е. остатки от деления на p). Операции в \mathbb{F}_p определяются так: сумма (произведение) вычетов a и b — это остаток от деления на p обычной суммы (соответственно, обычного произведения) чисел a и b.

Неприводимые многочлены над полями вычетов имеют множество практических применений для передачи, хранения и защиты информации.

Например, шифр «Кузнечик» (стандарт ГОСТ 34.12-2018, введен в действие в качестве стандарта Российской Федерации с 1 июня 2019 г.) использует неприводимый над \mathbb{F}_2 многочлен $x^8+x^7+x^6+x+1$. Американский стандарт AES (Advanced Encryption Standard) использует неприводимый над \mathbb{F}_2 многочлен $x^8+x^4+x^3+x+1$.

В этой лекции обсудим неприводимые многочлены над \mathbb{F}_p . Самый первый вопрос таков. Всякий неприводимый над \mathbb{C} многочлен линеен, а всякий неприводимый над \mathbb{R} многочлен имеет степень $\leqslant 2$. А степень неприводимого над \mathbb{Q} многочлена может быть любой. Как обстоит дело со степенями неприводимых многочленов над \mathbb{F}_p ? Докажем, что для любого простого числа p над полем вычетов \mathbb{F}_p существуют неприводимые многочлены любой степени.

Идея

Начнем с простых соображений. Пусть p=2. Над \mathbb{F}_2 есть 2 многочлена 1-й степени, 4 многочлена 2-й степени, 8 многочленов 3-й степени, \dots , 2^n многочленов n-й степени.

Многочлены 1-й степени неприводимы. Приводимые многочлены 2-й степени должны быть произведениями неприводимых, но из двух многочленов 1-й степени можно составить только три произведения 2-й степени. Поэтому из четырех многочленов 2-й степени один должен быть неприводим!

Приводимые многочлены 3-й степени должны быть произведениями неприводимых 1-й и/или 2-й степени. Из двух многочленов 1-й степени и одного многочлена 2-й степени можно составить только шесть произведений 3-й степени. Поэтому из восьми многочленов 3-й степени два должны быть неприводимыми!

Возникает такая идея: доказать существование неприводимых многочленов n-й степени, подсчитав, что произведений неприводимых многочленов меньших степеней не хватит, чтобы получить все 2^n многочленов n-й степени.

Чтобы реализовать эту идею (сразу для всех полей вычетов \mathbb{F}_p), удобно воспользоваться одним классическим приемом комбинаторики.

Нумераторы

Пусть f – унитарный неприводимый многочлен степени m над полем \mathbb{F}_p . Обозначим через A_k число многочленов степени k вида f^{α} , $\alpha=0,1,2,\ldots$. 1. если m|k.

Ясно, что
$$A_k = \begin{cases} 1, & \text{если} & m|k, \\ 0, & \text{если} & m \nmid k. \end{cases}$$
 Рассмотрим формальный ряд

$$A(z) := \sum_{k=0}^{\infty} A_k z^k = 1 + z^m + z^{2m} + \dots = \frac{1}{1 - z^m}.$$

Он называется *нумератором* множества $\{f^{\alpha}\}$.

Пусть $B(z):=\sum_{k=0}^\infty B_k z^k$ — нумератор множества $\{g^\beta\}$, где g — другой унитарный неприводимый многочлен над \mathbb{F}_p . Рассмотрим множество $C:=\{f^\alpha g^\beta\}$ и обозначим через C_k число многочленов степени k в C. Ясно, что если $\deg f^\alpha g^\beta=k$, а $\deg f^\alpha=i$, то $\deg g^\beta=k-i$. Поэтому $C_k=\sum_i A_i B_{k-i}$, откуда $C(z):=\sum_{k=0}^\infty C_k z^k=A(z)B(z)$.

Примеры: нумератор множества всех многочленов над \mathbb{F}_2 , разлагающихся на линейные множители, равен $\frac{1}{(1-z)^2}$; нумератор множества всех многочленов над \mathbb{F}_2 , разлагающихся на неприводимые множители степени $\leqslant 2$, равен $\frac{1}{(1-z)^2} \cdot \frac{1}{1-z^2}$.

Число неприводимых многочленов данной степени над \mathbb{F}_p

Если I_m – число унитарных неприводимых многочленов степени m над \mathbb{F}_p , то

$$P(z) := \prod_{m=1}^{\infty} \frac{1}{(1-z^m)^{I_m}}$$

есть нумератор множества всех многочленов над \mathbb{F}_p , разлагающихся на унитарные неприводимые множители. Но по теореме о разложении многочлена на неприводимые множители, каждый унитарный многочлен над \mathbb{F}_p однозначно разлагается на унитарные неприводимые множители! Поэтому P(z) – нумератор множества всех унитарных многочленов, т.е.

$$P(z) = 1 + pz + p^2 z^2 + \dots + p^k z^k + \dots = \frac{1}{1 - pz}.$$

Итак,

$$\frac{1}{1 - pz} = \prod_{m=1}^{\infty} \frac{1}{(1 - z^m)^{I_m}}.$$

Отсюда.

$$1 - pz = \prod_{m=1}^{\infty} (1 - z^m)^{I_m}.$$

Число неприводимых многочленов данной степени над \mathbb{F}_p (2)

$$1 - pz = \prod_{m=1}^{\infty} (1 - z^m)^{I_m}.$$
$$1 - pz = \prod_{m=1}^{\infty} (1 - z^m)^{I_m}.$$

Возьмем логарифмическую производную обеих частей $\left((\ln y)' = \frac{y'}{y}\right)$.

$$\frac{-p}{1-pz} = \sum_{m=1}^{\infty} \frac{-mI_m z^{m-1}}{1-z^m}.$$

Умножим обе части на -z:

$$\frac{pz}{1-pz} = \sum_{m=1}^{\infty} m I_m \frac{z^m}{1-z^m}.$$

Развернув суммы прогрессий в обеих частях, получим

$$\sum_{k=1}^{\infty} p^k z^k = \sum_{m=1}^{\infty} m I_m \sum_{m|k} z^k = \sum_{k=1} \left(\sum_{m|k} m I_m \right) z^k.$$

Приравняв коэффициенты при z^k , получим

Число неприводимых многочленов данной степени над \mathbb{F}_p (3)

$$\sum_{m|k} mI_m = p^k$$

Отсюда $I_1=p$ (что, впрочем, и так ясно).

При
$$k=2$$
 имеем $I_1+2I_2=p^2$, откуда $I_2=rac{p^2-p}{2}>0.$

При
$$k=3$$
 имеем $I_1+3I_3=p^3$, откуда $I_3=\frac{p^3-p}{3}>0.$

Вообще, при простом k имеем $I_1+kI_k=p^k$, откуда $I_k=rac{p^k-p}{k}$.

При любом k имеем $I_k \leq \frac{p^k-p}{k}$. С другой стороны,

$$p^k = \sum_{m \mid k} m I_m = k I_k + \sum_{m \mid k, \; m \leq \frac{k}{2}} m I_m < k I_k + \sum_{j=1}^{\lfloor \frac{k}{2} \rfloor} p^j < k I_k + p^{\lfloor \frac{k}{2} \rfloor + 1}.$$

Отсюда
$$I_k>rac{p^k-p^{\lfloor rac{k}{2}\rfloor+1}}{k}=rac{p^k}{k}\left(1-p^{-\lceil rac{k}{2}\rceil+1}
ight)\geq 0.$$
 Итак, $I_k>0.$

Формула обращения Мёбиуса

Доказав, что $I_k>0$ при всех k, мы доказали, что для любого простого числа p над полем вычетов \mathbb{F}_p существуют неприводимые многочлены любой степени. Нетрудно получить и явную формулу для числа I_k . ϕ ункция Мёбиуса $\mu\colon \mathbb{N}\to \{-1,0,1\}$ определяется так:

$$\mu(d) := \begin{cases} 1, & \text{если} \ d = 1, \\ (-1)^k, & \text{если} \ d - \text{произведение} \ k \text{ различных простых чисел}, \\ 0, & \text{если} \ d \text{ делится на квадрат простого числа}. \end{cases}$$

Нам понадобится такое свойство функции Мёбиуса:

$$\sum_{d\mid n}\mu(d)=\begin{cases} 1, & \text{если} \quad n=1,\\ 0, & \text{если} \quad n>1. \end{cases}$$

Доказательство. Случай n=1 тривиален. Если n>1, то пусть p_1,\dots,p_k — все различные простые делители числа n. Отличные от нуля слагаемые суммы $\sum_{d\mid n}\mu(d)$ отвечают подмножествам множества $\{p_1,\dots,p_k\}$. У любого непустого конечного множества подмножеств с четным и нечетным числом поровну (объясните, почему!). Поэтому слагаемых, равных 1, в сумме $\sum_{d\mid n}\mu(d)$ столько же, сколько слагаемых, равных -1, а следовательно, сумма равна 0.

Формула обращения Мёбиуса (2)

Теперь несложно доказать весьма полезную формулу:

Формула обращения Мёбиуса

Пусть функции $G\colon \mathbb{N} \to \mathbb{N}$ и $f\colon \mathbb{N} \to \mathbb{N}$ таковы, что

$$G(n) = \sum_{d|n} f(d). \tag{*}$$

Тогда $f(n) = \sum_{d \mid n} \mu(d) G\left(\frac{n}{d}\right)$.

 $extcolor{L}$ оказательство. Подставим в $\sum_{d|n} \mu(d) G\left(\frac{n}{d}\right)$ выражение для G из (\star) :

$$\sum\nolimits_{d\mid n}\mu(d)G\left(\frac{n}{d}\right)=\sum\nolimits_{d\mid n}\mu(d)\sum\nolimits_{\delta\mid\frac{n}{d}}f(\delta).$$

Ясно, что $\delta | \frac{n}{d}$, если и только если $\delta d | n$, если и только если $d | \frac{n}{\delta}$. Поэтому

$$\sum\nolimits_{d\mid n}\mu(d)\sum\nolimits_{\delta\mid\frac{n}{d}}f(\delta)=\sum\nolimits_{\delta\mid n}f(\delta)\sum\nolimits_{d\mid\frac{n}{\delta}}\mu(d)=f(n),$$

поскольку
$$\sum_{d|\frac{n}{\delta}}\mu(d)=egin{cases} 1, & \text{если} & \frac{n}{\delta}=1, \\ 0, & \text{если} & \frac{n}{\delta}>1. \end{cases}$$

Число неприводимых многочленов данной степени над \mathbb{F}_p (4)

Напомним формулу, доказанную выше:

$$\sum_{d|n} dI_d = p^n.$$

Она принимает вид (\star) , если положить $G(n):=p^n$, $f(d):=dI_d$. По формуле обращения Мёбиуса $f(n)=\sum_{d\mid n}\mu(d)G\left(\frac{n}{d}\right)$, т.е.

$$nI_n = \sum_{d|n} \mu(d) p^{\frac{n}{d}}.$$

Окончательно,

$$I_n = \frac{1}{n} \sum_{d|n} \mu(d) p^{\frac{n}{d}}$$

Пример: число неприводимых многочленов 10-й степени над \mathbb{F}_2 равно $\frac{1}{10}\sum_{d|10}\mu(d)2^{\frac{10}{d}}$. Делители 10 суть 1, 2, 5, 10; имеем $\mu(1)=\mu(10)=1$, $\mu(2)=\mu(5)=-1$. Поэтому

$$\frac{1}{10} \sum_{d \mid 10} \mu(d) 2^{\frac{10}{d}} = \frac{1}{10} \left(2^{10} - 2^5 - 2^2 + 2 \right) = \frac{1}{10} \left(1024 - 32 - 4 + 2 \right) = 99.$$

Разложение на неприводимые множители над \mathbb{F}_p

Для задачи распознавания неприводимости, в которой дан унитарный многочлен f степени n над \mathbb{F}_p и требуется узнать, неприводим ли f над \mathbb{F}_p , есть эффективный алгоритм (тест Рабина, 1980). Он допускает имплементацию за время $O(n^2 \log n \log p)$ при условии, что известно разложение числа n на простые множители.

Для задачи факторизации над \mathbb{F}_p , в которой дан многочлен f степени n над \mathbb{F}_p и требуется разложить f на неприводимые над \mathbb{F}_p множители, существуют достаточно эффективные рандомизированные алгоритмы, среднее время работы которых полиномиально зависит от n и $\log p$ (например, алгоритм Кантора—Цассенхауза, 1981, для нечетных p). Имеется также детерминированный алгоритм со средним временем работы, полиномиальным от n и $\log p$, но требующий $O(n^2\sqrt{p})$ времени в худшем случае (алгоритм Шоупа, 1990). Вопрос о существовании детерминированного алгоритма, гарантированно работающего за время, полиномиальное от n и $\log p$, является важной открытой проблемой.