

Lista de exercícios 2

Questão 1 (Burden et al. (2017), Exercícios 1.2(2)). Calcule os erros absoluto e relativo de cada aproximação \tilde{p} para o valor exato p, dados a seguir.

(a)
$$p = e^{10}$$
 e $\tilde{p} = 22.000$

(b)
$$p = 10^{\pi} e \tilde{p} = 1.400$$

(c)
$$p = 8! \text{ e } \tilde{p} = 39.900$$

(d)
$$p = 9! \text{ e } \tilde{p} = \sqrt{18\pi} (9/e)^9$$

(a)
$$EA(\tilde{p}) = |22000 - e^{10}| \approx 26,466$$

 $ER(\tilde{p}) = \frac{EA(\tilde{p})}{|p|} \approx 1,20 \times 10^{-3}$

(L)
$$EA(\tilde{p}) = |1400 - 10^{7}| \approx 14,544$$

 $ER(\tilde{p}) \approx 1,050 \times 10^{-2}$

(c)
$$EA(\tilde{p}) = |39900 - 8!| \approx 420$$

 $ER(\tilde{p}) \approx 1,042 \times 10^{2}$

(d)
$$EA(\tilde{p}) = |\sqrt{18\pi} (9/e)^9 - 9!| \approx 3343,127$$

 $ER(\tilde{p}) \approx 9,213 \times 10^{-3}$

Questão 2 (Burden et al. (2017), Exercícios 1.2(4)). Determine o maior intervalo no qual \tilde{p} deve estar contido a fim de aproximar p com quatro dígitos significativos exatos para cada valor de p abaixo.

(a) π

(b) *e*

(c) $\sqrt{2}$

(d) $\sqrt[3]{7}$

EM CADA HEM, DEVENOS RESOLVEN:

$$\frac{|\tilde{p}-p|}{|p|} < 5 \times 10^4 \Rightarrow |\tilde{p}-p| < |p| 5 \times 10^4$$

(a) 3,140026 p < 3,14316

(b) 2,71692 ≤ p ≤ 2,71964

(c) 1,41351 & P & 1,41492

(d) $1,91197 \le \tilde{p} \le 1,91389$

OBSENVAÇÃO. DO ITEM (a), TEMOS QUE:

D QUE NOS FARIA CONCLUIR, POPL EXEMPLO, QUE $\hat{p}=3,14002$ POSSUI 3 DÍGITOS EXATOS À DINEITA DA VIRGULA. NO ENTANTO, LEVANDO EM CONGIDENAÇÃO O ENMO RELATIVO, \hat{p} POSSUI 4 DÍGITOS SIGNIFICATIVOS EXATOS (À DINEITA DA VÍNGULA).

Período 2022.2

Questão 3. Para cada função a seguir, (i) aproxime o valor de f(a) usando o polinômio de Taylor de primeira ordem para f definido em torno de x_0 , (ii) calcule o erro relativo correspondente e (iii) obtenha um limitante para o erro de truncamento dessa aproximação para valores de x em um intervalo de tamanho unitário centrado em a.

(a)
$$f(x) = \ln x$$
; $a = 1.5$; $x_0 = 1$.

(b)
$$f(x) = \sqrt{x}$$
; $a = 9.5$; $x_0 = 9$.

(a)

$$P_{1}(x) = f(1) + f'(1)(x-1) = x-1$$

(ii)

$$P_{3}(1,5) = 0.5$$

 $ER(0.5) = \frac{|0.5 - |1.5|}{|1.1.5|} \approx 2.3315 \times 10^{-1}$

$$|P_{1}(x) - f(x)| = \frac{1}{2} \cdot |f''(\xi) \cdot (x - x_{0})^{2}|$$

$$= \frac{1}{2} \cdot \frac{1}{\xi^{2}} \cdot (x - 1)^{2} \quad 1 \le x \le 2$$

$$\le \frac{1}{2}$$

(i)
$$P_{i}(x) = f(9) + f'(9)(x-9) = 3 + \frac{1}{6}(x-9)$$

(ii)
$$P_3(9,5) = 3 + \frac{1}{12} = \frac{39}{12} \approx 3,0833$$

$$ER(9,5) = \frac{|37/2 - \sqrt{9,5}|}{|\sqrt{9,5}|} \approx 3,65 \times 10^{-4}$$

$$\begin{aligned} |P_{1}(x) - f(x)| &= \frac{1}{2} \cdot |f''(\xi) \cdot (x - x_{0})^{2}| \\ &= \frac{1}{2} \cdot \frac{1}{4 \xi^{3/2}} \cdot (x - 9)^{2}, \quad 9 \le x \le 10 \\ &\le \frac{1}{8} \cdot \frac{1}{3^{3}} \approx 4,63 \times 10^{-3} \end{aligned}$$

Período 2022.2

Questão 4 (Burden et al. (2017), Exercícios 1.1(18)). Sejam $f(x) = (1-x)^{-1}$, com x < 1, e $P_n(x)$ seu polinômio de Taylor de ordem n definido em torno de $x_0 < 1$.

- (a) Determine a expressão de $P_n(x)$ para $x_0 = 0$.
- (b) Determine o valor de n necessário para que $P_n(x)$ aproxime f(x) com precisão de 10^{-6} para $x \in \left[0, \frac{1}{2}\right]$.

$$f''(x) = 0!(1-x)^{-1}$$

$$f''(x) = 2!(1-x)^{-3}$$

$$f'''(x) = 3!(1-x)^{-4}$$

$$f_{(u+3)}(x) = (u+1)i(1-x)^{-2}$$

$$f_{(u)}(x) = \mu i(1-x)^{-(u+1)}$$

$$f_{(u)}(x) = 4i(1-x)^{-2}$$

SUBSTITUINDO X=X=0:

$$f''(x) = 0!$$

$$f''(x) = 3!$$

$$\int^{(n)}(x)=4!$$

$$\int^{(n)}(x)=h!$$

$$P_{n}(x) = \int (x_{0}) + \int (x_{0})(x - x_{0}) + \frac{\int (x_{0})(x - x_{0})^{2} + \frac{\int (x_{0})(x - x_{0})^{2}$$

OBSENVE QUE $P_n(x)$ É uma progressão Geométhica DE RAZÃO q=x E ELEMENTO INICIAL $\alpha_1=1$. ENTÃO:

$$P_n(x) = \frac{\alpha_1(1-q^{h+1})}{1-q} = \frac{1-x^{h+1}}{1-x}$$

ASSIM, O EURO DE THUNCAMENTO FICANÁ:

$$R_n(x) = P_n(x) - f(x) = \frac{J - x^{n+1}}{1 - x} - \frac{J}{J - x} = -\frac{x^{n+1}}{1 - x}$$

INEMOS CALCULAN O MÁXIMO DA EXPRESSÃO ACIMA, AO INVÉS DE UTILIZAN A FÓRMULA DE LAGRANGE. PANA O & X & 1/2, SABENDS QUE:

$$\left| R_{n}(x) \right| = \left| -\frac{x^{n+1}}{1-x} \right| = \frac{x^{n+1}}{1-x} \tag{*}$$

DEMUANDO (*):

$$\left(\frac{x^{n+1}}{1-x}\right)^{1} = \frac{x^{n}(-nx+n+1)}{(1-x)^{2}}$$

PANA 0 8 0 5 1/2:

$$\frac{x^{h} \cdot (-nx+n+1)}{(1-x)^{2}} \geqslant 0 \implies 0 \text{ maximb DE } \frac{x^{n+1}}{1-x} \text{ occurre}$$

$$= x = \frac{1}{2}.$$

PONTAUTO,
$$\left| R_{n}(x) \right| \leq \frac{x^{n+1}}{1-x} = \frac{1}{2^{n}}$$

MESOLVENDO:

OBTEMOS N>19,93... > N=20

Período 2022.2

Questão 5. Um sistema de ponto flutuante é dado por $\beta = 2$, t = 2, $e_{\min} = -1$, $e_{\max} = 1$.

- (a) Liste todos os números desse sistema.
- (b) Converta os números (i) 1/3, (ii) 2/3, (iii) 0,9 et (iv) 9,6 para esse sistema.

forma GENAL:
$$\pm (d_0, d_1)_2 \times 2^e$$

(a) Nonnais:

$$\pm (1,0)_2 \times 2^{-1}$$
 $\pm (1,0)_2 \times 2^0$ $\pm (1,0)_2 \times 2^1$ $\pm (1,1)_2 \times 2^0$ $\pm (1,1)_2 \times 2^0$

SUB-NORMAIS:
$$\pm (0.1)_2 \times 2^{-1}$$

(6)

(i)

$$\frac{1}{3} \times 2 = \frac{2}{3} \times 1 \Rightarrow 0 \times 2$$

$$\frac{2}{3} \times 2 = \frac{4}{3} \gg 1 \Rightarrow 1 \times 2$$

$$\frac{1}{3} \times 2 = \frac{2}{3}$$

$$\frac{1}{3} = (0,04010\overline{1})_{2} \times 2^{-1}$$

$$= (1,010\overline{1})_{2} \times 2^{-1}$$

$$= (0,4010\overline{1})_{2} \times 2^{-1}$$

$$= (0,4010\overline{1})_{2} \times 2^{-1}$$

$$= (0,4010\overline{1})_{2} \times 2^{-1}$$

(iii)
$$\frac{2}{3} \times 2 = \frac{4}{3} \times 1 \Rightarrow 1 \times 2'$$
 $\frac{2}{3} = (0,1010\overline{10})_2$ $= (1,0\overline{1010})_2 \times 2'$ $\approx +(1,1)_2 \times 2'$ $\approx +(1,1)_2 \times 2'$

(iii)
$$0.9 \times 2 = 1.8 \times 1$$
 Com 1950,
 $0.8 \times 2 = 1.6 \times 1$ $(0.9)_{10} = (0.1100)_{2}$
 $0.6 \times 2 = 1.2 \times 1$ $= (1.1100)_{2} \times 2^{-1}$
 $0.2 \times 2 = 0.4 \times 1$ $\approx (1.1+0.1)_{2} \times 2^{-1}$
 $0.4 \times 2 = 0.8 \times 1$ $= (10.0)_{2} \times 2^{-1}$
 $0.8 \times 2 = 1.6$ $= (1.0)_{2} \times 2^{-1}$

(iv) O LIMITE P/ OVERFLOW É:
$$+(1,1)_2 \times 2' + \underline{1}.(0,1)_2 \times 2' = 3 + 0.5 = 3.5$$

SE
$$\infty$$
 7, 3,5, ENTÃO $fl(x) = +\infty$.
LOGO, $fl(9,6) = +\infty$.

Questão 6 (Cheney e Kincaid (2008), Problemas 2.1). Sabe-se que a operação aritmética de ponto flutuante $a \oplus (b \oplus c)$ pode ter o resultado diferente de $(a \oplus b) \oplus c$, isto é, a operação de adição não é associativa. Exemplifique isso por meio de um exemplo.

CONSIDERE O SISTEMA:

TOMANDO

$$a = b = +(9,9)_{10} \times 10^{1}$$

$$c = -(9,9)_{10} \times 10^{1}$$

tenemos:

$$(a \oplus b) \oplus C = +\infty$$

Questão 7. Realize as operações a seguir considerando um formato decimal normalizado com precisão de três dígitos, com o intervalo de expoentes válidos ilimitado. Calcule o erro absoluto e o erro relativo tomando o valor exato constituído de pelo menos cinco algarismos de precisão.

(a)
$$133 \oplus 0.921$$

(c)
$$(121 \ominus 0,327) \ominus 119$$

(b)
$$133 \ominus 0.499$$

(d)
$$(121 \ominus 119) \ominus 0.327$$

(a)
$$\int L(133) = J_1 33 \times 10^2$$
, $\int L(0,921) = 9,23 \times 10^4$
 $133 \oplus 9921 = \int L(1,33 \times 10^2 + 9,21 \times 10^4)$
 $= \int L(J_1 33) = J_1 34 \times 10^2$

(b)
$$|33 \ominus 0,499 = fl(1,33 \times 10^2 - 4,99 \times 10^1)$$

= $fl(1,32|501 \times 10^2) = J_133 \times 10^2$

- (c) $(12160,327)6119 = 2,00 \times 10^{\circ}$ Valor exato = 1,6730 EA = 0,327 $ER = 1,9546 \times 10^{-1}$
- (d) $(1210119) \oplus 0.327 = 1.67 \times 10^{\circ}$ EXATO = $1.673 \times 10^{\circ}$ EA = 3×10^{-3} ER = 1.7932×10^{-3}

Questão 8. O sistema de precisão dupla do IEEE é um sistema numérico binário caracterizado por ter uma precisão de 53 bits, $e_{\min} = -1022$ e $e_{\max} = 1023$. Neste contexto, é verdade que $1/3 \oplus 2/3$ é diferente de 1 quando usamos:

- (a) arredondamento para o mais próximo?
- (b) arredondamento em direção ao zero?

DA QUESTÃO 5, CONCLUÍNOS QUE:
$$fl(1/3) = +(1_10101...01)_2 \times 2^{-2}$$

$$fl(2/3) = +(1_10101...01)_2 \times 2^{-1}$$

COM 1550,

$$f(1/3) + f(1/3) = + (1,111...13 | 1)_{2} \times 2^{\frac{1}{2}}$$
 $f(1/3) + f(1/3) = + (1,111...13 | 1)_{2} \times 2^{\frac{1}{2}}$
 $f(1,111...13)_{2} \times 2^{\frac{1}{2}}$

Questão 9 (Adaptado de REAMAT/UFRGS, Exemplo 2.7.2; Ascher e Greif (2011), Exercícios 2.5(15-16)).

(a) Calcule as raízes da equação:

$$x^2 + 300x - 0.014 = 0$$

aplicando a fórmula de Bhaskara, considerando um sistema decimal com precisão de seis dígitos.

- (b) Sabendo que os valores exatos das raízes com seis dígitos são $\xi_{7} = -3,00000 \times 10^{2}$ e $\xi_{3} = 4,66667 \times 10^{-5}$, discuta o que pode ter ocorrido com o resultado do item (a).
- (c) Proponha uma solução para contornar esta dificuldade, calculando os novos valores e seus respectivos erros relativos. [Dica: utilize as Equações 1.1, 1.2 e 1.3 do livrotexto.]
- (d) Implemente a fórmula de Bhaskara e o método escolhido no item (c) em funções denominadas bhaskara e proposto, respectivamente. Essas funções devem ter como entrada números reais a, b e c em precisão dupla e retornar as raízes do polinômio quadrático $ax^2 + bx + c$. Avalie o desempenho das funções implementadas nos seguintes casos:

(i)
$$a = 1, b = -10^5, c = 1.$$

(ii)
$$a = 6 \times 10^{30}$$
, $b = 5 \times 10^{30}$, $c = -4 \times 10^{30}$.

(iii)
$$a = 10^{-30}$$
, $b = -10^{30}$, $c = 10^{30}$.

(a)
$$\Delta = L \otimes L \oplus 4 \otimes \alpha \otimes c = 9,00001 \times 10^4$$

 $\xi_1 = (-L \oplus 1\Delta) \oslash (2 \otimes \alpha) = 40,00000 \times 10^{emin}$
 $\xi_2 = (-L \oplus 1\Delta) \oslash (2 \otimes \alpha) = -3,00000 \times 10^2$

(b) COMO b>0 $\in -b \approx \sqrt{\Delta}$, A EXPRESSÃO PANA O CÁLCULO DE ξ TEVE UMA SUBMAÇÃO DE NÚMEROS MUITO PRÓXIMOS, LEVANDO A UMA PENDA DE PRECISÃO

(C) CONFORME DESCRITO NA REFERENCIA APONTADA, FAREMOS:

SE
$$b < 0$$
:
$$\xi_{i} = (-b \oplus \sqrt{\Delta}) \otimes (2 \otimes \alpha)$$

$$\xi_{i} = (-2 \otimes c) \otimes (b \oplus \sqrt{\Delta})$$
SE $w \hat{A} 0$:
$$\xi_{i} = (-2 \otimes c) \otimes (b \oplus \sqrt{\Delta})$$

$$\xi_{i} = (-2 \otimes c) \otimes (b \oplus \sqrt{\Delta})$$

$$\xi_{i} = (-b \oplus \sqrt{\Delta}) \otimes (2 \otimes \alpha)$$

P) $\alpha = J$, $b = 300 \ge 0$ $\in c = -0.014$, A NAIZ $\xi_1 \le 0.0000$: $\xi_1 = (-2 \le c) \emptyset (b \oplus V \Delta')$ $= -2.80000 \times 10^{-2} \emptyset (3.00000 \times 10^2 \oplus 3.00000 \times 10^2)$ $= -4.66667 \times 10^{-5}$

$$En(\xi_1) \approx 8,69841 \times 10^{-9}$$
 $ER(\xi_2) = 0$

Cálculo Numérico Prof. Vicente Helano

Período 2022.2

Questão 10 (Ascher e Greif (2011), Exercícios 3.6(2)). O polinômio $P(x) = (x-2)^9$ pode ser escrito em ao menos três formas distintas:

$$P(x) = (x-2)^9$$

$$= x^9 - 18x^8 + 144x^7 - 672x^6 + 2016x^5 - 4032x^4 + 5376x^3 - 4608x^2 + 2304x - 512$$
(2)

$$= -512 + x(2304 + x(-4608 + x(5376 + x(-4032 + x(2016 + x(-672 + x(144 + x(-18 + x)))))))).$$
(3)

As duas primeiras expressões são conhecidas na álgebra como as formas *fatorada* e *expandida*. Já a última é a famosa *regra de Hörner*, bastante conhecida por quem lida com métodos numéricos.

- (a) Implemente essas três formas de se calcular o valor de P(x) em funções denominadas fatorada, expandida e horner. Elas devem ser avaliadas em 161 pontos regularmente espaçados no intervalo [1,92;2,08]. Plote os resultados em três figuras separadas usando a matplotlib.
- (b) Explique as diferenças observadas nos gráficos obtidos.