Bidirectional Shift Registers

The parallel in/parallel out register employs both methods. Immediately following the simultaneous entry of all data bits, the bits appear on the parallel outputs.

RIGHT/ LEFT RIGHT/LEFT

Bidirectional Shift Registers

The parallel in/parallel out register employs both methods. Immediately following the simultaneous entry of all data bits, the bits appear on the parallel outputs.

Problem: Determine the state of the shift register after each clock pulse for the given RIGHT/LEFT control input waveform. Assume that $Q_0 = 1$, $Q_1 = 1$, $Q_2 = 0$, and $Q_3 = 1$ and that the serial data-input line is LOW.

The Johnson Counter

- In a Johnson counter the complement of the output of the last flip-flop is connected back to the D input of the first flip-flop.
- Notice that the 4-bit sequence has a total of eight states, or bit patterns, and that the 5-bit sequence has a total of ten states. In general, a Johnson counter will produce a modulus of 2n, where n is the number of stages in the counter.

0

Write the sequence of states for a 3-bit Johnson counter starting with 000.

	D.	Q,	02	
	0	0		
	1	6	6	
2			Ŏ	000 100 110
3)	111 011001 066