kaggle Q Search

Competitions Datasets Notebooks Discussion Courses

Importing necessary library

```
In [1]:
         import pandas as <u>pd</u>
         import numpy as <u>np</u>
         import multiprocessing
         import warnings
         import matplotlib.pyplot as plt
         import seaborn as sns
         import lightgbm as lgb
         import qc
         from time import time
         import datetime
         from tqdm import tqdm_notebook
         from sklearn.preprocessing import LabelEncoder
         from sklearn.model_selection import KFold, TimeSeries
         Split
         from sklearn.metrics import <a href="mailto:roc_auc_score">roc_auc_score</a>
         warnings.simplefilter('ignore')
         sns.set()
         %matplotlib inline
```

Importing datasets

```
In [2]:
    sub = pd.read_csy("../input/ieee-fraud-detection/samp
    le_submission.csv")

In [3]:
    train_id = pd.read_csy("../input/ieee-fraud-detectio
    n/train_identity.csv")
    train_tr = pd.read_csy("../input/ieee-fraud-detectio
    n/train_transaction.csv")

In [4]:
    train_id.head(5)
Out[4]:
```

	TransactionID	id_01	id_02	id_03	id_04	id_05	id_06	id_07	ic
0	2987004	0.0	70787.0	NaN	NaN	NaN	NaN	NaN	١
1	2987008	-5.0	98945.0	NaN	NaN	0.0	-5.0	NaN	٨
2	2987010	-5.0	191631.0	0.0	0.0	0.0	0.0	NaN	١
3	2987011	-5.0	221832.0	NaN	NaN	0.0	-6.0	NaN	Ν
4	2987016	0.0	7460.0	0.0	0.0	1.0	0.0	NaN	١

5 rows × 41 columns

```
In [5]:
    train_id.head(5)
```

Out[5]:

	TransactionID	id_01	id_02	id_03	id_04	id_05	id_06	id_07	ic
0	2987004	0.0	70787.0	NaN	NaN	NaN	NaN	NaN	Ν
1	2987008	-5.0	98945.0	NaN	NaN	0.0	-5.0	NaN	١
2	2987010	-5.0	191631.0	0.0	0.0	0.0	0.0	NaN	٨
3	2987011	-5.0	221832.0	NaN	NaN	0.0	-6.0	NaN	٨
4	2987016	0.0	7460.0	0.0	0.0	1.0	0.0	NaN	٨
4									•

5 rows × 41 columns

```
In [6]:
    train_id.shape, train_tr.shape

Out[6]:
    ((144233, 41), (590540, 394))

In [7]:
    test_id = pd.read_csv("../input/ieee-fraud-detection/
    test_identity.csv")
    test_tr = pd.read_csv("../input/ieee-fraud-detection/
    test_transaction.csv")

In [8]:
    test_id.shape, test_tr.shape

Out[8]:
    ((141907, 41), (506691, 393))
```

Merging transaction and Identity

```
In [9]:
    train = pd.merge(train_tr, train_id, on='TransactionI
    D', how='left')
    test = pd.merge(test_tr, test_id, on='TransactionID',
    how='left')

    del test_id, test_tr, train_id, train_tr
    gc.collect()
Out[9]:
```

15

```
In [10]:
         train.head(5)
```

Out[10]:

	TransactionID	isFraud	TransactionDT	TransactionAmt	ProductCD	card
0	2987000	0	86400	68.5	W	1392
1	2987001	0	86401	29.0	W	2755
2	2987002	0	86469	59.0	W	4663
3	2987003	0	86499	50.0	W	1813
4	2987004	0	86506	50.0	Н	4497
4						-

5 rows × 434 columns

```
In [11]:
         train.shape, test.shape
Out[11]:
         ((590540, 434), (506691, 433))
```

From below we can see that there are a lot of features with almost 99% nan values

```
In [12]:
        train.isna().sum()
Out[12]:
        TransactionID
                            0
        isFraud
                             0
        TransactionDT
                            0
        TransactionAmt
                            0
        ProductCD
                           0
                   449555
        id_36
        id_37
                      449555
        id_38
                      449555
       DeviceType
DeviceInfo
                      449730
                      471874
        Length: 434, dtype: int64
```

Sorting features on basis of TransactionDT

```
In [13]:
         train = train.sort_values('TransactionDT')
```

Taking all features

```
In [14]:
    useful_features = [col for col in train.columns]
```

From below we can see that length of features is 434

```
In [15]:
         len(useful_features)
Out[15]:
         434
In [16]:
         train.shape
Out[16]:
         (590540, 434)
In [17]:
         train.isna().sum()
Out[17]:
         TransactionID
         isFraud
                                0
         TransactionDT
                                0
         TransactionAmt
                                0
         ProductCD
                                0
         id_36
                          449555
         id_37
                          449555
         id_38
                           449555
         DeviceType
                           449730
         DeviceInfo
                           471874
         Length: 434, dtype: int64
```

Displaying all the columns

	IransactionID	ıs⊦raud	I ransaction D I	IransactionAmt	ProductCD	card
0	2987000	0	86400	68.5	W	1392
1	2987001	0	86401	29.0	W	2755
2	2987002	0	86469	59.0	W	4663
3	2987003	0	86499	50.0	W	1813
4	2987004	0	86506	50.0	Н	4497
5	2987005	0	86510	49.0	W	5937
6	2987006	0	86522	159.0	W	1230
7	2987007	0	86529	422.5	W	1269
8	2987008	0	86535	15.0	Н	2803
9	2987009	0	86536	117.0	W	1739
4						-

```
In [21]:
    target = train["isFraud"]
    train.drop(["isFraud"], axis=1, inplace=True)
```

Concatinating train and test as one dataframe

```
In [22]:
    train = pd.concat([train,test])

In [23]:
    train.drop(["TransactionID", "TransactionDT"], axis=1
        , inplace=True)
    train.shape

Out[23]:
    (1097231, 431)
```

Here I will treat all features as categorical except TransationAmt

```
In [24]:
    neglect = ["TransactionAmt"]

In [25]:
    useful_features = [col for col in train.columns if col l not in neglect]
```

This block of code count every features and drop original features

Dropping below features as these seems to be repeating

```
In [26]:
    dropping1 =["D8_count_dist", "V138_count_dist", "V139
    _count_dist", "V140_count_dist", "V141_count_dist", "V146_count_dist", "V147_count_dist", "V144_count_dist", "V144_count_dist",
```

```
8_count_dist", "V149_count_dist", "V144_count_dist",\
           "V145_count_dist", "V150_count_dist", "V15
1_count_dist", "V152_count_dist", "V153_count_dist",\
           "V154_count_dist", "V155_count_dist", "V15
6_count_dist", "V157_count_dist", "V158_count_dist",\
           "V159_count_dist", "V160_count_dist", "V16
1_count_dist", "V162_count_dist", "V163_count_dist",\
           "V164_count_dist", "V165_count_dist", "V16
6_count_dist", "V168_count_dist", "V170_count_dist",\
           "V171_count_dist", "V172_count_dist", "V17
3_count_dist", "V174_count_dist", "V175_count_dist",\
           "V176_count_dist", "V177_count_dist", "V17
8_count_dist", "V179_count_dist", "V180_count_dist",\
           "V181_count_dist", "V182_count_dist", "V18
3_count_dist", "V184_count_dist", "V185_count_dist",\
           "V186_count_dist", "V187_count_dist", "V18
8_count_dist", "V189_count_dist", "V190_count_dist",\
           "V191_count_dist", "V192_count_dist", "V19
3_count_dist", "V194_count_dist", "V195_count_dist",\
           "V196_count_dist", "V197_count_dist", "V19
8_count_dist", "V199_count_dist", "V200_count_dist",\
           "V201_count_dist", "V202_count_dist", "V20
3_count_dist", "V204_count_dist", "V205_count_dist",\
           "V206_count_dist", "V207_count_dist", "V20
8_count_dist", "V209_count_dist", "V210_count_dist",\
           "V211_count_dist", "V212_count_dist", "V21
3_count_dist", "V214_count_dist", "V215_count_dist",\
           "V216_count_dist", "V218_count_dist", "V21
9_count_dist", "V221_count_dist", "V222_count_dist",\
           "V223_count_dist", "V224_count_dist", "V22
5_count_dist", "V226_count_dist", "V227_count_dist",\
           "V228_count_dist", "V229_count_dist", "V23
0_count_dist", "V231_count_dist", "V232_count_dist",\
           "V233_count_dist", "V234_count_dist", "V23
5_count_dist", "V236_count_dist", "V237_count_dist",\
           "V205_count_dist", "V205_count_dist", "V20
5_count_dist", "V205_count_dist", "V205_count_dist",\
           "V238_count_dist", "V239_count_dist", "V24
0_count_dist", "V241_count_dist", "V242_count_dist",\
           "V243_count_dist", "V244_count_dist", "V24
5_count_dist", "V246_count_dist", "V247_count_dist", \
           "V248_count_dist", "V249_count_dist", "V25
0_count_dist", "V251_count_dist", "V252_count_dist",\
           "V253_count_dist", "V254_count_dist", "V25
5_count_dist", "V256_count_dist", "V257_count_dist",\
           "V258_count_dist", "V259_count_dist", "V26
0_count_dist", "V261_count_dist", "V262_count_dist",\
           "V263_count_dist", "V264_count_dist", "V26
5_count_dist", "V266_count_dist", "V267_count_dist",\
           "V268_count_dist", "V269_count_dist", "V27
0_count_dist", "V271_count_dist", "V272_count_dist",\
           "V273_count_dist", "V274_count_dist", "V27
5_count_dist", "V276_count_dist", "V277_count_dist",\
           "V278_count_dist", "V323_count_dist", "V32
4_count_dist", "V325_count_dist", "V326_count_dist",\
           "V327_count_dist", "V328_count_dist", "V32
9_count_dist", "V330_count_dist", "V331_count_dist",\
```

"V332 count dist". "V333 count dist". "V33

V140_000110_0150 , V14/_000110_0150 , V14

```
4_count_dist", "V335_count_dist", "V336_count_dist",\
                     "V237_count_dist", "V238_count_dist", "V23
         9_count_dist", "id_04_count_dist", "id_06_count_dist"
         , \
                     "id_08_count_dist", "id_10_count_dist", "i
         d_22_count_dist", "id_27_count_dist", "id_29_count_di
         st",\
                     "id_36_count_dist", "id_37_count_dist", "i
         d_38_count_dist"]
In [27]:
         dropping = []
         for i in dropping1:
             dropping.append(i.replace("_count_dist", ""))
In [28]:
         dropping
Out[28]:
         ['D8',
          'V138',
          'V139',
          'V140',
          'V141',
          'V146',
          'V147',
          'V148',
          'V149',
          'V144',
          'V145',
          'V150',
          'V151',
          'V152',
          'V153',
          'V154',
          'V155',
          'V156',
          'V157',
          'V158',
          'V159',
          'V160',
          'V161',
          'V162',
          'V163',
          'V164',
          'V165',
          'V166',
          'V168',
          'V170',
          'V171',
          'V172',
          'V173',
          'V174',
          'V175',
          'V176',
          'V177',
          'V178',
```

```
'V179',
'V180',
'V181',
'V182',
'V183',
'V184',
'V185',
'V186',
'V187',
'V188',
'V189',
'V190',
'V191',
'V192',
'V193',
'V194',
'V195',
'V196',
'V197',
'V198',
'V199',
'V200',
'V201',
'V202',
'V203',
'V204',
'V205',
'V206',
'V207',
'V208',
'V209',
'V210',
'V211',
'V212',
'V213',
'V214',
'V215',
'V216',
'V218',
'V219',
'V221',
'V222',
'V223',
'V224',
'V225',
'V226',
'V227',
'V228',
'V229',
'V230',
'V231',
'V232',
'V233',
'V234',
```

'V235',
'V236',
'V237',
'V205',

- VZU5 ,
- 'V205',
- 'V205',
- 'V205',
- 'V238',
- 'V239',
- 'V240',
- 'V241',
- 'V242',
- 'V243',
- 'V244',
- 'V245',
- 'V246',
- 'V247',
- 'V248',
- 'V249',
- 'V250',
- 'V251',
- 'V252',
- 'V253',
- 'V254',
- 'V255',
- 'V256',
- 'V257',
- 'V258',
- 'V259',
- 'V260',
- 'V261',
- 'V262',
- 'V263',
- 'V264',
- 'V265',
- 'V266',
- 'V267',
- 'V268',
- 'V269',
- 'V270',
- 'V271',
- 'V272',
- 'V273',
- 'V274',
- 'V275',
- 'V276',
- 'V277',
- 'V278',
- 'V323',
- 'V324',
- 'V325',
- 'V326',
- 'V327',
- 'V328',
- 'V329',
- 'V330',
- 'V331',
- 'V332',
- 'V333',
- 'V334',
- 'V335', 1/12261

```
v J J U ,
          'V237',
           'V238',
          'V239',
          'id_04',
          'id_06',
          'id_08',
          'id_10',
          'id_22',
          'id_27',
          'id_29',
          'id_36',
          'id_37',
          'id_38']
In [29]:
         train = train.drop(dropping, axis=1)
In [30]:
         i=0
         for feature in useful_features:
                 # Count encoded separately for train and test
             train[feature + '_count_dist'] = np.log(train[fea
         ture].map(train[feature].value_counts(dropna=False)))
             train.drop([feature], axis=1,inplace=True)
             print("Done" + str(i))
             i+=1
         Done0
         Done1
         Done2
         Done3
         Done4
         Done5
         Done6
         Done7
         Done8
         Done9
         Done10
         Done11
         Done12
         Done13
         Done14
         Done15
         Done16
         Done17
         Done18
         Done19
         Done20
         Done21
         Done22
         Done23
         Done24
         Done25
         Done26
```

```
Done27
        Done28
        Done29
        Done30
        Done31
        Done32
        Done33
        KeyError
                                                      Traceback
         (most recent call last)
        /opt/conda/lib/python3.6/site-packages/pandas/core/in
        dexes/base.py in get_loc(self, key, method, toleranc
        e)
            2896
                              try:
IEEE_fraud_Play_with_Count_lightGbm_[0.9428]
Python notebook using data from IEEE-CIS Fraud Detection · 12 views · 36m ago
        ine.get_loc()
        ine.get_loc()
        bs.hashtable.PyObjectHashTable.get_item()
```

Ver

P Copy and Edit

```
pandas/_libs/index.pyx in pandas._libs.index.IndexEng
pandas/_libs/index.pyx in pandas._libs.index.IndexEng
pandas/_libs/hashtable_class_helper.pxi in pandas._li
pandas/_libs/hashtable_class_helper.pxi in pandas._li
bs.hashtable.PyObjectHashTable.get_item()
KeyError: 'D8'
During handling of the above exception, another excep
tion occurred:
KeyError
                                          Traceback
(most recent call last)
<ipython-input-30-eccd76ef1c1f> in <module>
      3
      4
                # Count encoded separately for train
and test
----> 5
            train[feature + '_count_dist'] = np.log(t
rain[feature].map(train[feature].value_counts(dropna=
False)))
            train.drop([feature], axis=1,inplace=True
     6
)
      7
            print("Done" + str(i))
/opt/conda/lib/python3.6/site-packages/pandas/core/fr
ame.py in __getitem__(self, key)
  2978
                    if self.columns.nlevels > 1:
  2979
                        return self._getitem_multilev
el(key)
-> 2980
                    indexer = self.columns.get_loc(ke
y)
                    if is integer(indexer):
  2981
```

```
2982
                                    indexer = [indexer]
         /opt/conda/lib/python3.6/site-packages/pandas/core/in
         dexes/base.py in get_loc(self, key, method, toleranc
         e)
             2897
                                    return self._engine.get_loc(k
         ey)
             2898
                               except KeyError:
         -> 2899
                                    return self._engine.get_loc(s
         elf._maybe_cast_indexer(key))
             2900
                           indexer = self.get_indexer([key], met
         hod=method, tolerance=tolerance)
             2901
                           if indexer.ndim > 1 or indexer.size >
         1:
         pandas/_libs/index.pyx in pandas._libs.index.IndexEng
         ine.get_loc()
                                                \blacksquare
                                                               4
                             Notebook
                                               Data
                                                              Output
                                                                            Comments
         pandas/_libs/hashtable_class_helper.pxi in pandas._li
         bs.hashtable.PyObjectHashTable.get_item()
         pandas/_libs/hashtable_class_helper.pxi in pandas._li
         bs.hashtable.PyObjectHashTable.get_item()
         KeyError: 'D8'
In [31]:
         len(dropping)
Out[31]:
         168
 Below we can see that all I am left with is count
In [32]:
         train.head(4)
Out[32]:
            TransactionAmt
                         D9
                              D10
                                    D11
                                          D12
                                               D13
                                                     D14
                                                          D15
                                                                 M1
                                                                 Т
         0
           68.5
                         NaN
                              13.0
                                    13.0
                                          NaN
                                               NaN
                                                     NaN
                                                          0.0
            29.0
                              0.0
                                    NaN
                                               NaN
                                                     NaN
                                                          0.0
                                                                 NaN
                         NaN
                                          NaN
            59.0
                                                                 Т
                              0.0
                                    315.0
                                                     NaN
                                                           315.0
                         NaN
                                          NaN
                                               NaN
         3
            50.0
                         NaN
                              84.0
                                    NaN
                                          NaN
                                               NaN
                                                     NaN
                                                           111.0
                                                                 NaN
```

```
In [33]: train.shape

Out[33]: (1097231, 271)
```

Again seperating data into train and test

```
In [36]:
    X = train.iloc[:590540, :]
    test = train.iloc[590540:, :]

In [37]:
    y=target
```

Train test and split

```
In [38]:
    # Training and Validation Set
    #from sklearn.model_selection import train_test_split
    #X_train, X_valid, y_train, y_valid = train_test_split
    (train, target, test_size=0.20, random_state=23)
```

Lightgbm

```
In [39]:
    from catboost import CatBoostRegressor
    categorical_var = np.where(train.dtypes != np.float)[
    0]
    print('\nCategorical Variables indices : ',categoricall_var)

    Categorical Variables indices : [ 8 9 10 11 12 13 14 15 16 214 217 218 224 228 229 230 232 233 234 235 236]

In [40]:
    del train

In [41]:
    params = {'num_leaves': 491,
        'min_child_weight': 0.03454472573214212,
        'facture function': 0.2377454001646042
```

```
leature_fraction: 0.3/9/454081040243,
'bagging_fraction': 0.4181193142567742,
'min_data_in_leaf': 106,
'objective': 'binary',
'max_depth': -1,
'learning_rate': 0.006883242363721497,
"boosting_type": "gbdt",
"bagging_seed": 11,
"metric": 'auc',
"verbosity": -1,
'reg_alpha': 0.3899927210061127,
'reg_lambda': 0.6485237330340494,
'random_state': 47
}
```

```
In [42]:
         folds = TimeSeriesSplit(n_splits=5)
         aucs = list()
         feature_importances = pd.DataFrame()
         feature_importances['feature'] = X.columns
         training_start_time = time()
         for fold, (trn_idx, test_idx) in enumerate(folds.spli
         t(X, y):
             start_time = time()
             print('Training on fold {}'.format(fold + 1))
             trn_data = lgb.Dataset(X.iloc[trn_idx], label=y.i
         loc[trn_idx])
            val_data = lgb.Dataset(X.iloc[test_idx], label=y.
         iloc[test_idx])
             clf = lgb.train(params, trn_data, 10000, valid_se
         ts = [trn_data, val_data], verbose_eval=1000, early_s
         topping_rounds=500)
             feature_importances['fold_{{}}'.format(fold + 1)] =
         clf.feature_importance()
             aucs.append(clf.best_score['valid_1']['auc'])
             print('Fold {} finished in {}'.format(fold + 1, s
         tr(datetime.timedelta(seconds=time() - start_time))))
         print('-' * 30)
         print('Training has finished.')
         print('Total training time is {}'.format(str(datetime
         .timedelta(seconds=time() - training_start_time))))
         print('Mean AUC:', np.mean(aucs))
         print('-' * 30)
```

Training on fold 1

```
abel=y.iloc[trn_idx])
           val_data = lgb.Dataset(X.iloc[test_idx],
     13
label=y.iloc[test_idx])
---> 14 clf = lgb.train(params, trn_data, 10000,
valid_sets = [trn_data, val_data], verbose_eval=1000
, early_stopping_rounds=500)
    15
     16
            feature_importances['fold_{}'.format(fold
+ 1)] = clf.feature_importance()
/opt/conda/lib/python3.6/site-packages/lightgbm/engin
e.py in train(params, train_set, num_boost_round, val
id_sets, valid_names, fobj, feval, init_model, featur
e_name, categorical_feature, early_stopping_rounds, e
vals_result, verbose_eval, learning_rates, keep_train
ing_booster, callbacks)
   195
            # construct booster
   196
           try:
--> 197
               booster = Booster(params=params, trai
n_set=train_set)
   198
               if is_valid_contain_train:
   199
                    booster.set_train_data_name(train
_data_name)
/opt/conda/lib/python3.6/site-packages/lightgbm/basi
c.py in __init__(self, params, train_set, model_file,
silent)
  1550
                    self.handle = ctypes.c_void_p()
  1551
                    _safe_call(_LIB.LGBM_BoosterCreat
e (
-> 1552
                        train_set.construct().handle,
  1553
                        c_str(params_str),
  1554
                        ctypes.byref(self.handle)))
/opt/conda/lib/python3.6/site-packages/lightgbm/basi
c.py in construct(self)
   999
                                        init score=se
lf.init_score, predictor=self._predictor,
                                        silent=self.s
ilent, feature_name=self.feature_name,
-> 1001
                                        categorical_f
eature=self.categorical_feature, params=self.params)
   1002
                    if self.free_raw_data:
  1003
                        self.data = None
/opt/conda/lib/python3.6/site-packages/lightgbm/basi
c.py in _lazy_init(self, data, label, reference, weig
ht, group, init_score, predictor, silent, feature_nam
e, categorical_feature, params)
   727
feature_name.
   728
categorical_feature,
--> 729
self.pandas_categorical)
   730
               label = _label_from_pandas(label)
   731
                self.data_has_header = False
```

```
c.py in _data_from_pandas(data, feature_name, categor
         ical_feature, pandas_categorical)
             275
                            msg = ("DataFrame.dtypes for data
         must be int, float or bool.\n"
             276
                                   "Did not expect the data t
        vpes in fields ")
         --> 277
                            raise ValueError(msg + ', '.join(
         bad_fields))
             278
                       data = data.values.astype('float')
             279
                    else:
         ValueError: DataFrame.dtypes for data must be int, fl
         oat or bool.
         Did not expect the data types in fields M1, M2, M3, M \,
         4, M5, M6, M7, M8, M9, id_12, id_15, id_16, id_23, id
         _28, id_30, id_31, id_33, id_34, id_35, DeviceType, D
         eviceInfo
In [43]:
         feature_importances['average'] = feature_importances
        [['fold_{}'.format(fold + 1) for fold in range(folds.
        n_splits)]].mean(axis=1)
         feature_importances.to_csv('feature_importances.csv')
        plt.figure(figsize=(16, 16))
         sns.barplot(data=feature_importances.sort_values(by=
         'average', ascending=False).head(50), x='average', y=
         'feature');
         plt.title('50 TOP feature importance over {} folds av
         erage'.format(folds.n_splits));
         _____
         KeyError
                                                   Traceback
         (most recent call last)
         <ipython-input-43-1195e33b4c10> in <module>
         ---> 1 feature_importances['average'] = feature_impo
         rtances[['fold_{{}}'.format(fold + 1) for fold in range
         (folds.n_splits)]].mean(axis=1)
              2 feature_importances.to_csv('feature_importanc
         es.csv')
               3
               4 plt.figure(figsize=(16, 16))
               5 sns.barplot(data=feature_importances.sort_val
         ues(by='average', ascending=False).head(50), x='avera
         ge', y='feature');
         /opt/conda/lib/python3.6/site-packages/pandas/core/fr
         ame.py in __getitem__(self, key)
```

/opt/conda/lib/python3.6/site-packages/lightgbm/basi

This kernel has been released under the Apache 2.0 open source license.

Data

Data Sources

▼ IEEE-CIS Fraud Detection

■ sample_submission.csv	507k x 2
■ test_identity.csv	142k x 41
test_transaction.csv test_transaction.csv	507k x 393
■ train_identity.csv	144k x 41
	591k x 394

IEEE-CIS Fraud Detection

Can you detect fraud from customer transactions? Last Updated: 2 months ago

About this Competition

In this competition you are predicting the probability that an online transaction is fraudulent, as denoted by the binary target <code>isFraud</code>.

The data is broken into two files identity and transaction, which are joined by TransactionID. Not all transactions have corresponding identity information.

Categorical Features - Transaction

- ProductCD
- card1 card6
- addr1, addr2
- P_emaildomain
- R_emaildomain
- M1 M9

Categorical Features - Identity

- DeviceType
- DeviceInfo
- id_12 id_38

The TransactionDT feature is a timedelta from a given reference datetime (not an actual timestamp).

You can read more about the data from this post by the competition host.

Output Files

New Dataset

New Notebook

Download All

X

Output Files

■ ieee_cis_fraud_detection_1.csv

About this file

This file was created from a Kernel, it does not have a description.

1	Transactio nID	isFraud		
2	3663549	0.5		
3	3663550	0.5		
4	3663551	0.5		
5	3663552	0.5		
6	3663553	0.5		
7	3663554	0.5		
8	3663555	0.5		
9	3663556	0.5		
10	3663557	0.5		
11	3663558	0.5		
12	3663559	0.5		
13	3663560	0.5		
14	3663561	0.5		
15	3663562	0.5		
16	3663563	0.5		
17	3663564	0.5		
18	3663565	0.5		
19	3663566	0.5		
20	3663567	0.5		
21	3663568	0.5		
22	3663569	0.5		
23	3663570	0.5		
24	3663571	0.5		
25	3663572	0.5		
26	3663573	0.5		
27	3663574	0.5		
28	3663575	0.5		
29	3663576	0.5		
30	3663577	0.5		
31	3663578	0.5		

Comments (0)

Click here to comment...

