半加法器(half adder)

1. 決定輸入變數與輸出變數的數目

輸入變數:加數與被加數,x代表加數以及y代

表被加數。

輸出變數:和與進位, 5表示和以及○表示進

位。

半加法器(half adder)

輸入變數:加數與被加數,x代表加數以及y代表被加數。

輸出變數:和與進位,S表示和以及C表示進位。

х	y	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

半加法器(half adder)

全加法器(full adder)

x	у	z	S	C
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

全加法器(full adder)

$$S = x'y'z + x'yz' + xy'z' + xyz$$
$$C = xy + xz + yz.$$

二進位加法器(binary adder)

4位元的二進位漣波進位加法器

A是被加數,B是加數,它們的下標代表了位元的權重,例如被加數 $A = A_3 A_2 A_1 A_0$, A_0 、 A_1 、 A_2 和 A_3 分別代表十進位數值的1、2、4和8, 必須是0,輸出S代表A和B相加的總和。

二進位加法器(binary adder)

4位元的二進位漣波進位加法器的操作範例:

二進位減法運算

- 減法運算方式: A-B=A+(-B)=A+(B之2的補數)。
- ■電腦中儲存負值通常採用2的補數之方式儲存。
- ■1的補數:先取此負值的絕對值之二進位的表示後,再對此值做反向(即1變0,0變1)。
- 2的補數: 1的補數+1。

二進位加法器/減法器 (binary adder/subtractor)

M=0時,電路執行加法運算; M=1時,電路執行減法運算。

二進位加法器/減法器 (binary adder/subtractor)

M=0時, $B_i \oplus 0 = B_i$ 以及 $C_0 = 0$,此時每一個XOR閘的輸出為 B_i ,因此每一個全加法器執行 $A_i + B_i$ 的運算,所以電路執行加法運算。

二進位加法器/減法器 (binary adder/subtractor)

M=1時, $B \oplus 1 = B'$ 以及 $C_0 = 1$,此時4個XOR閘的輸出為B的1的補數,再把 $C_0 = 1$ 加入B的1的補數得B之2的補數,因此4個全加法器執行A+(B之2的補數)的運算,所以電路執行減法運算。

半減法器(half subtractor)

X	У	差 (D)	借位 (B)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

全減法器(full subtractor)

x	у	B_i	D	B_{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

1's補數減法器

SR Latch (1/4)

- 由二個NOR構成的正緣觸發SR正反器
- S=1,Q設爲1; R=1,Q設爲0

S	R	Q	\overline{Q}	
1	0	1	0	Catatata
0	0	1	0	Set state
0	1	0	1	
0	0	0	1	Reset state
1	1	0	0	Undefined

(b) Function table

SR Latch (2/4)

• 正緣觸發的時序圖

Fig. 4-5 Logic Simulation of SR Latch Behavior

SR Latch (3/4)

· 下圖的SR正反器由二個NAND構成,具有 回饋電路,不同前者的是,以負緣觸發

0 1 1 0 Set sta	
Set Sta	at o
1 1 1 0	ate
1 0 0 1	
1 1 0 1 Reset	state
0 0 1 1 Undefi	ined

(b) Function table

SR Latch (4/4)

· 具有控制訊號的SR正反器

С	S	R	Next state of Q
0	Χ	Χ	No change
1	0	0	No change
1	0	1	Q = 0; Reset state
1	1	0	Q = 1; Set state
1	1	1	Undefined

(b) Function table

D Latch (1/2)

D Latch (2/2)

• 負緣觸發D正反器 的時序圖

移位相加乘法運算

移位相加乘法運算

		1 () 1	0	•	Y	
×		1 1	0	1	3	X	
0 0	0 0	0 (0 0	0			
+		1 (0 1	0			
0	0 0	0	1 0	1	0		
+		0	0 0	0			
	0 0	0	0 1	0	1	0	
+		1 (0 1	0			
	0	0	1 1	0	0	1	0
+		1 () 1	0			
	1	0 (0 0	0	0	1	0

或可執行Y位置不變 右移P_i 1個bit位置

$$P_{i+1} = P_i + X_i \times 2^i Y$$

$$P_{i+1} = P_i + 2^i X_i \times Y$$

移位相加乘法運算

乘法運算暫存器配置

被乘數載入Q,乘數載入M,清除 A為O,設定計數器為N (視程式與記憶體為幾bit運算) 右移A:Q一個位元,使 最右邊的bit進入CY CY=0CY=1判别CY A=A+M計數器減1 $N\neq 1$ 判別計數器 N=0右移A:Q一個位元 **END**

移位除法運算

除法運算暫存器配置

- 1.恢復式除法 (restoring division)
- 2.非恢復式除法 (nonrestoring division)

恢復式除法 (restoring division)

除數 (M)	A	被除數(Q)	N	
00000101	00000000	00100110 01001100	8	左移A:Q
	<u>- 00000101</u> 11111011	_		A ← A-M A<0,恢復除數
	$\frac{+\ 00000101}{00000000}$	01001100	7	$A \leftarrow A + M$
	00000000 - 00000101	10011000		左移A:Q A←A-M
	11111011 + 00000101	_		A<0,恢復除數 A ← A+M
	000000000000000000000000000000000000	1001100 <mark>0</mark> 00110000	6	左移A:Q
	- 00000101 11111100	_		A ← A-M A<0,恢復除數
	+ 00000101	00110000	5	$A \leftarrow A + M$
	- 00000010 - 00000101 11111101	01100000		左移A:Q A←A-M

		N	
11111101	_		A<0,恢復除數
+ 00000101	_		$A \leftarrow A+M$
00000010	01100000	4	左移A:Q
00000100	1100000		
- 00000101			$A \leftarrow A-M$
11111111	_		A<0,恢復除數
+ 00000101			$A \leftarrow A+M$
		2	
$0000100 \\ 0001001$	1100000 1000000	3	左移A:Q
- 00001001	1000000		A ← A-M
	_	_	
00000100	10000001	2	A>0
00001001	00000010		左移A:Q
- 00000101			$A \leftarrow A-M$
00000100	00000011	1	A>0
00001000	00000110		左移A:Q
- 00000101			$A \leftarrow A-M$
00000011	00000111	0	A>0
餘數	商		

非恢復式除法 (nonrestoring division)

除數 (M)	A	被除數(Q)	N	
00000101	00000000	00100110 01001100	8	左移A:Q
	- 00000000 - 00000101 11111011	- 01001100 - 01001100	7	A ← A-M A<0
	11110110 + 00000101	10011000		左移A:Q
	11111011 11110111	1001100 <mark>0</mark> 00110000	6	A ← A+M A<0 左移A:Q
	+ 00000101 11111100 11111000	- 0011000 <mark>0</mark> 01100000	5	A ← A+M A<0 左移A:Q
	+ 00000101 11111101 11111010	- 0110000 <mark>0</mark> 11000000	4	A ← A+M A<0 左移A:Q
	+ 00000101 11111111 11111111	- 1100000 <mark>0</mark> 10000000	3	A ← A+M A<0 左移A:Q
	+ 00000101 00000100	10000001	2	A ← A+M A>0

$0000100 \\ 0001001$	10000001 00000010	2	A>0 左移A:Q
- 00000101	_		A ← A-M
00001000	0000001 <mark>1</mark> 00000110	1	A>0 左移A:Q
- 00000101	_		A ← A-M
00000011	00000111	0	A>0
餘數	商		