Corrigé examen Math 1 - Session Janvier 2022

Exercice 1

- 1) La fonction $f\left(x\right)=e^{\left(1+\frac{1}{x}\right)\ln\left(x\right)}$ est bien définie sur $\mathbb{R}_{+}^{*}.$
- 2) La limite de $\left(1+\frac{1}{x}\right)\ln\left(x\right)$ lorsque $x\longrightarrow 0$ vaut $-\infty$ et par suite $\lim_{x\to 0}f(x)=0$.

On peut donc prolonger f par continuité en 0 par f(0) = 0.

- 3) On remarque que $\frac{f(x)}{x} = x^{\frac{1}{x}} = e^{\frac{1}{x}\ln(x)}$ et donc $\lim_{x \to 0} \frac{f(x)}{x} = 0$.
- 4) Pour x > 0, on étudie la fonction $g(x) = \ln(x) (1+x)$. Sa dérivée vaut $g'(x) = \frac{1}{x} 1$ qui s'annule en x = 1. La fonction g présente un maximum en x = 1, qui vaut -2. La fonction g est donc négative pour tout réel x > 0. Par suite, $\forall x > 0$; $\ln(x) \le (1+x)$.
- 5) La limite de $\left(1+\frac{1}{x}\right)\ln\left(x\right)$ lorsque $x\longrightarrow +\infty$ est égale à $+\infty$ et par suite $\lim_{x\to +\infty}f(x)=+\infty$.
- 6) Pour tout x > 0, on a

$$f'(x) = \left[-\frac{1}{x^2} \ln(x) + \left(1 + \frac{1}{x} \right) \frac{1}{x} \right] f(x) = \frac{1}{x^2} \left[(1+x) - \ln(x) \right] f(x) > 0, \ \forall x > 0$$

Donc f est croissante.

x	0	$+\infty$
f'(x)		+
f(x)	0	+∞

7) La limite de $\frac{\ln(x)}{x}$ quand $x \longrightarrow +\infty$ vaut 0 par croissance comparée. Par suite, $e^{\frac{\ln(x)}{x}} - 1 = \frac{\ln(x)}{x} + \frac{\ln(x)}{x} \varepsilon \left(\frac{\ln(x)}{x}\right)$, avec $\varepsilon(t) \longrightarrow 0$ quand $t \longrightarrow 0$.

1

Donc
$$\frac{e^{\frac{\ln(x)}{x}}-1}{\frac{\ln(x)}{x}}=1+\varepsilon\left(\frac{\ln(x)}{x}\right)$$
. Ainsi, on a $\lim_{t\to\infty}\frac{e^{\frac{\ln(x)}{x}}-1}{\frac{\ln(x)}{x}}=1$

Exercice 3

Il est à remarquer que $f(x,y)=\frac{2x^2+4xy+y^2}{x+y},$ en effet

$$f(x,y) = \frac{2x^3 - 3xy^2 + 2x^2y - y^3}{x^2 - y^2} = \frac{(x-y)(2x^2 + 4xy + y^2)}{(x-y)(x+y)} = \frac{2x^2 + 4xy + y^2}{x+y}$$

1) $(x,y) \in \mathcal{D}_f \iff y \neq -x$, donc $\mathcal{D}_f = \{(x,y) \in \mathbb{R}^2 : y \neq -x\}$. Soit tout le plan privé de la droite d'équation y = -x.

2) On pose $x = r \cos \theta$ et $y = r \sin \theta$ avec $r \in [0, 1]$ et $\theta \in [0, \pi]$.

 $\lim_{(0,0)} f(x,y) = \lim_{r \to 0} \frac{2r^2 \cos^2 \theta + 4r^2 \cos \theta \sin \theta + r^2 \sin \theta}{r \cos \theta + r \sin \theta} = \lim_{r \to 0} \frac{r(2\cos^2 \theta + 4\cos \theta \sin \theta + \sin^2 \theta)}{\cos \theta + \sin \theta} = 0 \quad \forall \theta \in [0,\pi]. \text{ Donc, } f(x,y) \text{ admet une limite finie en } (0,0) \text{ et vaut } 0. \text{ Ainsi, } f(x,y) \text{ est prolongeable par continuité en } (0,0).$

3) La fonction f est homogène de degré k=1, en effet, pour tout $\lambda>0$, on a

$$f(\lambda x, \lambda y) = \frac{2(\lambda x)^2 + 4(\lambda x)(\lambda y) + (\lambda y)^2}{(\lambda x) + (\lambda y)} = \frac{\lambda^2 (2x^2 + 4xy + y^2)}{\lambda (x + y)} = \lambda^1 f(x, y)$$

4) Dérivées partielles premières:

$$f'_x = \frac{2x^2 + 4xy + 3y^2}{(x+y)^2}$$
$$f'_y = \frac{2x^2 + 2xy + y^2}{(x+y)^2}$$

4) Théorème d'Euler: $xf'_x + yf'_y = kf(x, y)$.

$$xf'_x + yf'_y = x\frac{2x^2 + 4xy + 3y^2}{(x+y)^2} + y\frac{2x^2 + 2xy + y^2}{(x+y)^2} = \frac{2x^3 + 4x^2y + 3xy^2}{(x+y)^2} + \frac{2x^2y + 2xy^2 + y^3}{(x+y)^2}$$
$$= \frac{(x+y)(2x^2 + 4xy + y^2)}{(x+y)^2} = \frac{2x^2 + 4xy + y^2}{x+y} = f(x,y)$$

5) Les points critiques:

$$\begin{cases} f'_x = 0 \\ f'_y = 0 \end{cases} \iff \begin{cases} 2x^2 + 4xy + 3y^2 = 0 & (1) \\ 2x^2 + 2xy + y^2 = 0 & (2) \end{cases}$$

 $(1)-(2)\Longrightarrow 2y(x+y)=0\Longrightarrow y=0, \text{ car }y\neq -x. \text{ Donc }y=0 \text{ et }x=0. \text{ Or, le point } O(0,0)\notin \mathcal{D}_f. \text{ Ainsi, la fonction }f \text{ n'admet pas des points critiques.}$

2

Exercice 4

Le lagrangien s'écrit: $L(x, y, \lambda) = f(x, y) - \lambda(x + 3y - 8) = \ln(e^{-x} + 3e^{-y}) - \lambda(x + 2y - 8)$.

Condition du premier ordre:

$$\begin{cases} L'_x = 0 \\ L'_y = 0 \\ L'_\lambda = 0 \end{cases} \iff \begin{cases} \frac{-e^{-x}}{e^{-x} + 3e^{-y}} = \lambda & (1) \\ \frac{-3e^{-y}}{e^{-x} + 3e^{-y}} = 3\lambda & (2) \\ x + 3y - 8 = 0 & (3) \end{cases}$$

$$\underbrace{\frac{(2)}{(1)}} \Longrightarrow \frac{3e^{-y}}{e^{-x}} = 3 \Longrightarrow e^{x-y} = 1 \Longrightarrow x = y.$$

$$(3) \Longrightarrow 4x = 8$$
. Soit $x = 2 = y$ et $\lambda = \frac{1}{4}$.

Condition du second ordre:

$$L_{xx}'' = \frac{e^{-x}(e^{-x} + 3e^{-x}) - e^{-x}e^{-x}}{(e^{-x} + 3e^{-y})^2} \Longrightarrow L_{xx}''(2,2) = \frac{3}{16}.$$

$$L_{yy}^{\prime\prime} = \frac{3e^{-y}(e^{-x} + 3e^{-x}) - 9e^{-y}e^{-y}}{(e^{-x} + 3e^{-y})^2} \Longrightarrow L_{yy}^{\prime\prime}(2,2) = \frac{3}{16}.$$

$$L''_{xy} = L''_{yx} = \frac{-3e^{-x}e^{-x}}{(e^{-x} + 3e^{-y})^2} \Longrightarrow L''_{xy}(2,2) = -\frac{3}{16}.$$

Ainsi,
$$\mathcal{H}(2,2) = \begin{vmatrix} \frac{3}{16} & -\frac{3}{16} & 1\\ -\frac{3}{16} & \frac{3}{16} & 3\\ 1 & 3 & 0 \end{vmatrix} = -3 < 0$$
. Donc le point $A(2,2)$ est un **minimum**.