[7] (9) 10/10/0, 10/0<sub>2</sub> -> ?10 Sum of  $= 2^{6} + 2^{4} + 2^{3} + 2^{1} + 2 + 2^{-3}$  $=64+16+8+2+0.5+0.125=90.625_{10}$ 

[8] (h) Highest possible number that can be represented by n bits -> 2"-1 n=9 -> highest possible decimal number  $=2^{9}-1=511$ 

9 (9) # of bits needed to represent 132, =? With n-bits, we can represent decimal numbers in the range 0: 2-1 So the question becomes: What is the value of n that guarantees that 132, belongs to the range 0:2<sup>n</sup>-1

 $\Rightarrow$  132,  $\leqslant$  2-1

 $\Rightarrow$  133  $\leq 2^n$ 

> log 133 ≤ n  $\Rightarrow \frac{\log 133}{\log 2} < n \Rightarrow n > 7.055 \Rightarrow n = 8$ 

minimum value

10 (e) Generate the binary sequence for 
$$64, \rightarrow 75$$
,  $64_{10} = 10000002$ 
 $65_{10} = 1000010$ 
 $= 1000010$ 
 $= 1000010$ 
 $= 1000010$ 
 $= 1000010$ 
 $= 1000010$ 
 $= 1000010$ 
 $= 1000010$ 
 $= 1000010$ 
 $= 1000010$ 

[12] (b) 
$$0.246_{10} = ?_2$$
 using  $6 \text{um-of-weights}$   
=  $0 + 0 + 0.125 + 0.0625 + 0.03125 + 0.015625 + ...$   
 $2^{-3}$   $2^{-4}$   $2^{-5}$   $2^{-6}$   
=  $0.0$   $0$ 

13 (f) 
$$59_{10} = ?_2$$
 using repeated division by 2  
 $59 \div 2 = 29$  1  
 $29 \div 2 = 14$  1  
 $14 \div 2 = 7$  0  
 $7 \div 2 = 3$  1  
 $3 \div 2 = 1$  1  
 $1 \div 2 = 0$  1 1 1 1 1 1 1

$$0.347 \times 2 = 0.694$$

$$0.694 \times 2 = 1.388$$

$$0.776 \times 2 = 1.552$$

$$0.416 + 2 = 0.832$$



0.010110001

[15] (e) +0101 [16] (f) [7] (d) XIIO [18] (b) Ø Ø