Hinweise zu den Standardfunktionsbausteinen der IEC61131stdfb

Verwendungshinweise Version 23. August 2012

Dipl.-Ing. Lars Evertz

Lehrstuhl für Prozessleittechnik Prof. Dr.-Ing. Ulrich Epple RWTH Aachen D-52064 Aachen, Deutschland Telefon +49 (0) 241 80 94339 Fax +49 (0) 241 80 92238 www.plt.rwth-aachen.de

Inhaltsverzeichnis

1	Einl	eitung	1
2	Erkl	lärung vorhandener Funktionsblöcke	3
	2.1	Benutzung des Datentyps OV_ANY	8
	2.2	Umgang mit Überläufen und undefinierten Operationen	9
Та	belle	enverzeichnis	11

1 Einleitung

Die Bibliothek **iec61131stdfb** stellt eine Reihe standardisierter Funktionsbausteine zur Verfügung. Diese Bausteine sind kompatibel zur gleichnamigen Norm (IEC61131-3 Stand 28.10.2010) implementiert. Unter den Bausteinen sind einfache Rechenoperationen, trigonometrische Funktionen, Potenzieren zur Euler'schen Zahl oder einer beliebigen Basis, natürlicher und 10er-Logarithmus vorhanden. Des Weiteren gibt es Bausteine zum Vergleichen von Werten, zu deren Demultiplexen oder Auswählen nach Maximum oder Minimum und zur Begrenzung eines Wertes nach oben und unten. Boolsche Logiken sind ebenso vorhanden. Außerdem gibt es Flankenerkennungen, FlipFlops, Zähler und Timer-Bausteine.

Mit dieser Auswahl an Bausteinen lassen sich die nahezu alle Funktionen im Leitsystem umsetzen. Zusätzliche Bausteine wie Integratoren, Differetiatoren und Regler sowie Totzeitglieder werden zukünftig noch hinzugefügt.

Dieses Dokument gibt Hinweise zu den Standardfunktionsbausteinen der iec61131stdfb Bibliothek. Insbesondere wird auf die Verwendung des Variablentyps OV_ANY und die Verbindungen zu anderen Funktionsblöcken eingegangen. Außerdem wird das Verhalten der mathematischen Funktionsbausteine bei undefinierten Rechenoperationen (z. B. Division durch 0) und bei Werteüberlauf beschrieben.

2 Erklärung vorhandener Funktionsblöcke

In der folgenden Tabelle 2.1 sind die vorhandenen Funktionsbausteine nach Verwendung aufgelistet. Nachfolgend wird auf die einzelnen Gruppen kurz eingegangen. Die einzelnen Funktionsblöcke sind weitestgehend selbsterklärend.

Angesehen vom Block *ABS* geben die Blöcke der Numerischen Funktionen ihr Ergebnis als SINGLE oder, wenn der Input DOUBLE ist, als DOUBLE zurück. Eine Ausgabe als Ganzzahl macht hier in den meisten Fällen keinen Sinn. Da die Berechnungen ohnehin mit Fließkommazahlen ausgeführt werden (müssen), würde sich aus Integern auch kein Vorteil in der Rechengeschwindigkeit ergeben.

Blöcke der Bereiche Grundarithmetik und numerische Funktionen können Wertebereichsüberschreitungen oder undefinierte Operationen teilweise abfangen. Sie reagieren auf diese Fälle durch setzen des Statusflags *Bad* der Ausgangsvariable. Genaueres hierzu findet sich in Kapitel 2.2.

Die Bitweise Logik arbeitet innerhalb der ANY-Variablen nur mit UINT, BYTES und BOOLs. Da die Verknüpfungen bitweise erfolgen, sind diese Typen ausreichend. BOOL wird zwar im Speicher wie eine unsigned int-Variable abgelegt, trotzdem wird nur zwischen zwei Werten (TRUE oder FALSE) unterschieden.

Auswahlfunktionen sind für alle Datentypen gültig. Bei Minimums- und Maximumsauswahl wird für BOOL'sche Variablen TRUE > FALSE angenommen. Zeichenketten werden mit ov_string_compare(...) verglichen. Die selben Vergleichskriterien sind für die Vergleichsfunktionen gültig. Auch hier sind alle Typen einsetzbar. Lediglich bei Vektoren wird nur ihre Länge verglichen (ein Vergleich der einzelnen Elemente würde einen BOOL'schen Vektor als Ausgang erfordern).

Die Variable ET der Timer-Blöcke gibt die verstrichene Zeit seit Auslösung an. Ist die über PT eingestellte Zeit erreicht wird jedoch nicht weiter gezählt. TP und TON werden durch eine steigende Flanke ausgelöst, TOFF durch eine fallende.

Bei Einschaltverzögerungen wird auf einer fallenden Flanke ET sofort sofort zurückgesetzt. Das gleiche gilt für steigende Flanken am Eingang einer Ausschaltverzögerung. Erreicht ET PT, so wird ein- bzw ausgeschaltet.

Tabelle 2.1: Liste der Funktionsblöcke der iec61131stdfb-Bibliothek.

Name	Beschreibung	Eingä	inge	Ausgä	nge
Typumwandl	ungen				
ANYtoANY	Typumwanlung von beliebigem Typ in den durch K spezifizierten (sofern Sinnvoll)	K IN	UINT ANY	OUT	ANY
Grundarithm	netik				
ADD	Addition zweier Variablen	IN1	ANY	OUT	ANY
ADD			ANY		
SUB	Subtrahiert IN2 von IN1		ANY	OUT	ANY
JOD	Subtramert II v2 von II v1	IN2	ANY		
MUL	Multiplikation zweier Variablen	IN1	ANY	OUT	ANY
	Waltiplikation Zweler variation	IN2	ANY		
DIV	Dividiert IN1 durch IN2		ANY	OUT	ANY
	2110000 211 00000 2112	IN2	ANY		
EXPT	Potenziert IN1 hoch IN2	IN1	ANY	OUT	ANY
		IN2	ANY		
MOD	Gibt den Rest der operation IN1 / IN2 an, nur	IN1	ANY	OUT	ANY
	gültig für Integer-Datentypen)	IN2	ANY		
MOVE	Verschiebt IN nach OUT (reicht durch)	IN	ANY	OUT	ANY
Numerische I	Funktionen	1		1	
ABS	Bildet den Absolutbetrag von IN	IN	ANY	OUT	ANY
SQRT	Bildet die Quadratwurzel von IN	IN	ANY	OUT	ANY
LN	Bildet den natürlichen Logarithmus von IN	IN	ANY	OUT	ANY
LOG	Bildet den Logarithmus zur Basis 10 von IN	IN	ANY	OUT	ANY
EXP	Potenziert zur Basis e (natürliche Exponentiation)	IN	ANY	OUT	ANY
SIN	Bildet den Sinus von IN (in Radian)	IN	ANY	OUT	ANY
COS	Bildet den Kosinus von IN (in Radian)	IN	ANY	OUT	ANY
TAN	Bildet den Tangens von IN (in Radian)	IN	ANY	OUT	ANY
ASIN	Bildet den Arkussinus (in Radian) von IN	IN	IN ANY		ANY
ACOS	Bildet den Arkuskosinus (in Radian) von IN	IN	ANY	OUT	ANY
ATAN	Bildet den Arkustangens (in Radian) von IN	IN	ANY	OUT	ANY
ATAN2	Bildet den Arkustangens (in Radian) von IN1 / IN2 (Winkel des Vektors (IN1 IN2) zur X-Achse)	IN1 IN2	ANY ANY	OUT	ANY

Bitverschie	ebungen				
SHL	Verschiebt die Bitfolge in IN um N Bits nach	IN	UINT	OUT	UINT
SIL	links. Füllt dabei rechts mit 0en auf.	N	UINT		
SHR	Verschiebt die Bitfolge in IN um N Bits nach	IN	UINT	OUT	UINT
эпк	rechts. Füllt dabei links mit 0en auf.	N	UINT		
	Rotiert die Bitfolge in IN um N Bits nach	IN	UINT	OUT	UINT
ROL	links. Die links überlaufenden Bits werden rechts nachgeschoben.	N	UINT		
	Rotiert die Bitfolge in IN um N Bits nach	IN	UINT	OUT	UINT
ROR	rechts. Die rechts überlaufenden Bits werden links nachgeschoben.	N	UINT		
Bitweise L	ogik				
AND	VanUNDat IN1 and IN2 hitmaiga	IN1	ANY	OUT	ANY
AND	VerUNDet IN1 und IN2 bitweise.	IN2	ANY		
OR	VerODERt IN1 und IN2 bitweise.	IN1	ANY	OUT	ANY
OK	VeroDERt IIVI und IIV2 bitweise.	IN2	ANY		
XOR	Bitweise Exklusiv-ODER Verknüpfung von	IN1	ANY	OUT	ANY
AUK	IN1 und IN2	IN2	ANY		
NOT	Negiert IN bitweise	IN	ANY	OUT	ANY
Auswahlfu	ınktionen				
	Reicht INO an OUT weiter, wenn $G == 0$.	IN0	ANY	OUT	ANY
SEL	Andernfalls wird IN1 weitergereicht.	IN1	ANY		
		G	BOOL		
MAX	Gibt den größeren Wert aus IN1 und IN2 an	IN1	ANY	OUT	ANY
	OUT weiter.	IN2	ANY		
MIN	Gibt den kleineren Wert aus IN1 und IN2 an	IN1	ANY	OUT	ANY
	OUT weiter.	IN2	ANY		
LIMIT	Begrenzt den Wertebreich von IN auf das	IN	ANY	OUT	ANY
	Intervall [MN MX].	MN	ANY		
		MX	ANY		
MUX		IN1	ANY	OUT	ANY
	Demultiplext IN1 bis IN8 auf OUT. K gibt	-			
-	die Nummer des Durchgereichten INx an.	IN8	ANY		
		K	UINT		

Vergleichsfur	nktionen				
C.T.	E 1. EDITE DI 1. 110	IN1	ANY	OUT	BOOL
GT	Ergibt TRUE, wenn IN1 größer als IN2	IN2	ANY		
GE.	Ergibt TRUE, wenn IN1 größer oder gleich	IN1	ANY	OUT	BOOL
GE	IN2	IN2	ANY		
	English TDLUE arrang INII plaigh INIO		ANY	OUT	BOOL
EQ	Ergibt TRUE, wenn IN1 gleich IN2	IN2	ANY		
	Ergibt TRUE, wenn IN1 kleiner oder gleich	IN1	ANY	OUT	BOOL
LE	IN2	IN2	ANY		
		IN1	ANY	OUT	BOOL
LT	Ergibt TRUE, wenn IN1 kleiner als IN2	IN2	ANY		
		IN1	ANY	OUT	BOOL
NE	Ergibt TRUE, wenn IN1 ungleich IN2	IN2	ANY		
Zähler					
	Zählt CV mit jeder steigenden Flanke in CU	CU	BOOL	Q	BOOL
CITY I	um 1 hoch. Wird PV überschritten wird		BOOL	CV	INT
CTU	zusätzlich Q auf TRUE gesetzt. Erreicht der Zähler PVmax, wird nicht weiter gezählt.	PV	INT		
	TRUE an R setzt den zähler auf 0 zurück.	PVma	x INT		
	Zählt CV mit jeder steigenden Flanke in CD	CD	BOOL	Q	BOOL
CTT	um 1 herunter. Wird 0 unterschritten wird zusätzlich Q auf TRUE gesetzt. Erreicht der		BOOL	CV	INT
CTD			INT		
	Zähler PVmin, wird nicht weiter gezählt. TRUE an LD setzt den zähler auf PV zurück.	PVmi	n INT		
	Kombiniert CTU und CTD. Steigende	CU	BOOL	QU	BOOL
	Flanken an CU erhöhen CV um 1, an CD	CD	BOOL	QD	BOOL
	verringern CV um 1. QU und QD werden	R	BOOL	CV	INT
CTUD	beim Überschreiten von PV bzw. beim unterschreiten von 0 gesetzt. Bei Über- bzw	LD	BOOL		
	Unterschreiten von PVmax bzw. PVmin wird	PV	INT		
	nicht weiter gezählt. TRUE an R setzt CV	PVma	x INT		
	auf 0, an LD auf PV zurück.		n INT		
Timer	1	I		I	
TD	Steigende Flanke an IN setzt Q für die in PT	IN	BOOL	Q	BOOL
TP	angegebene Zeitspanne.		TS(*)	ET	TS(*)
TON	E' - la la - e - e - e - e - e - e - e - e - e -	IN	BOOL	Q	BOOL
TON	Einschaltverzögerung	PT	TS(*)	ET	TS(*)
TOPE	A	IN	BOOL	Q	BOOL
TOFF	Ausschaltverzögerung	PT	TS(*)	ET	TS(*)
	1	L			

^(*) TS: TIME_SPAN: Variable für Zeitspannen

Bistabile Blö	cke				
CD	El. El		BOOL	Q1	BOOL
SR	FlipFlop mit Dominanz auf Set	R	BOOL		
RS	ElinElan mit Daminanz auf Baset	S	BOOL	Q1	BOOL
KS	FlipFlop mit Dominanz auf Reset	R1	BOOL		
Flankenerke	nnungen		,		
RTRIG	Setzt Q für einen Zyklus auf TRUE, wenn eine steigende Flanke er in CLK erkannt wird.	CLK	BOOL	Q	BOOL
FTRIG	Setzt Q für einen Zyklus auf TRUE, wenn eine fallende Flanke er in CLK erkannt wird.	CLK	BOOL	Q	BOOL
Funktionen f	für Zeichenketten				
LEN	Gibt die Länge einer Zeichenkette zurück.	IN1	STRING	OUT	UINT
LEFT	Gibt L Zeichen von der linken Seite von IN	IN	STRING	OUT	STRING
LLIT	an OUT weiter.	L	UINT		
RIGHT	Gibt L Zeichen von der rechten Seite von IN	IN	STRING	OUT	STRING
KIUIII	an OUT weiter.		UINT		
	Gibt L Zeichen ab dem P-ten Zeichen von IN an OUT weiter.	IN	STRING	OUT	STRING
MID		L	UINT		
			UINT		
CONCAT	Konkateniert IN1 und IN2.	IN1	STRING	OUT	STRING
CONCAI	Konkatement invi und invz.	IN2	STRING		
	Satat IN2 ab day Position day D tan Zajahang	IN1	STRING	OUT	STRING
INSERT	Setzt IN2 ab der Position des P-ten Zeichens in IN1 ein		STRING		
		P	UINT		
	Löscht L Zeichen ab dem P-ten Zeichen von	IN	STRING	OUT	STRING
DELETE	IN.	L	UINT		
		P	UINT		
		IN1	STRING	OUT	STRING
DELETE	Ersetzt L Zeichen ab der Position des P-ten	IN2	STRING		
	zeichens in IN1 durch IN2.		UINT		
		L	UINT		
FIND	Gibt die Position des ersten Auftretens von	IN1	STRING	OUT	UINT
IIID	IN2 in IN1 an.	IN2	STRING		

StateWatch StateWatch Uberwacht den Status der Variable IN. Der aktuelle Status wird in der Variable CurState ausgegeben. In HasState wird angegeben, ob IN überhaupt ein Status-Flag hat. Die Ausgänge CXxx geben die Aktuellen Statusflags wieder. Die Ausgänge HXxx bleiben bei Auftreten so lange gesetzt, bis sie über Reset zurückgesetzt werden. Der Ausgang CurState ist vom Typ UINT, OUT von Typ ANY. Alle anderen Ausgänge sind vom Typ BOOL. Aus Platzgründen sind die Typen rechts nicht angegeben. IN ANY CurState Reset BOOL HasState CGood CQuestionable CUnknown HBad HGood HQuestionable	Sonstige Funktionsblöcke							
HUnknown		Überwacht den Status der Variable IN. Der aktuelle Status wird in der Variable CurState ausgegeben. In HasState wird angegeben, ob IN überhaupt ein Status-Flag hat. Die Ausgänge CXxx geben die Aktuellen Statusflags wieder. Die Ausgänge HXxx bleiben bei Auftreten so lange gesetzt, bis sie über Reset zurückgesetzt werden. Der Ausgang CurState ist vom Typ UINT, OUT von Typ ANY. Alle anderen Ausgänge sind vom Typ BOOL. Aus Platzgründen sind die		121,1	CurSta HasSta CBad CGood CQues CUnkn HBad HGood HQues	te tte tte tionable town tionable		

Der Block *StateWatch* dient der Überwachung der Status-Flags von ANY-Variablen. Über die Ausgänge CXxx kann der Status der Variable im aktuellen Zyklus ausgelesen werden, zum Beispiel um in folgenden Blöcken auf eine ungültige (CBad == TRUE) Eingabe zu reagieren. Die Ausgänge HXxxx halten einen Aufgetretenen Status fest, bis sie über Reset zurückgesetzt werden. Sie können so als Rückmeldung an den operator dienen.

2.1 Benutzung des Datentyps OV_ANY

Der Datentyp OV_ANY ist in der Lage jeden im OV-System definierten Datentyp zu repräsentieren. Da die meisten Blöcke mit vielen verschiedenen Typen arbeiten können bietet sich der Einsatz des Typs OV_ANY hier an. Trotzdem unterstützt nicht jeder Block jeden Typ. Die Ausnahmen sind bereits in der Erklärung der Blöcke dargestellt, daher wird hier aus Wiederholung verzichtet.

Um Typensicherheit zu gewährleisten ist eine "Umschaltung"der Datentypen an den Eingängen der Bausteine nicht immer erlaubt. Um zu vermeiden, dass sich während der Laufzeit eines Programms Typenkonflikte ergeben, kann der Datentyp innerhalb der ANY-Struktur am Eingang eines Funktionsbausteins nur geändert werden, wenn der Funktionsbaustein über keine Verbindung zu anderen Funktionsbausteinen (fb_connection, oder davon abgeleitet) verfügt. Ist der Baustein verbunden, so führt ein Versuch der Änderung des Datentyps zu einer Feh-

Ist der Baustein verbunden, so führt ein Versuch der Anderung des Datentyps zu einer Fehlermeldung OV_ERR_NOACCESS. Das bedeutet, dass der Typ, mit dem ein Funktionsbaustein arbeiten soll festgelegt werden muss, bevor der Baustein mit anderen Verbunden wird. Dies kann durch einmalige Zuweisung eines Wertes umgesetzt werden. Bei Instantiierung ist für arithmetische und numerische Funktionsbausteine sowie für Vergleichsoperationen der Typ OV_SINGLE voreingestellt. Bitweise Logikbausteine sind auf OV_BOOL eingestellt.

2.2 Umgang mit Überläufen und undefinierten Operationen

Bei den mathematischen Funktionen kann es je nach Eingangsparametern zu undefinierten Operationen (z. B. Division durch 0) kommen. Solche Zustände werden erkannt und die Funktionsbausteine reagieren entsprechend.

Bei einer Division durch 0 von Realzahlen wird das Ergebnis für positive Dividenden auf +INF (positive Unendlichkeit) und für negative Dividenden auf -INF gesetzt. Wird 0 durch 0 geteilt, so ist das Ergebnis ebenfalls 0. In allen drei Fällen wird der Status der Ergebnisvariablen auf OV_ST_BAD gesetzt.

Eine Division durch 0 von Integern wird gar nicht erst ausgeführt, da es hierdurch, je nach FB-System zu einem Server-Absturz kommen kann. Das Ergenis wird, analog zu Realzahlen, auf den größtmöglichen bzw. kleinstmöglichen Integer-Wert oder 0 gesetzt. Auch hier wird der Status auf OV_ST_BAD gesetzt.

Wird versucht, einer numerische Funktion ein Parameter außerhalb des Definitionsbereiches zu übergeben (z. B. asin(2)) so reagiert die Funktion mit der Rückgabe des Wertes NaN (Not a Number) und Setzen des Status OV_ST_BAD.

Kommt es bei einer Rechenoperation zu einem Werteüber- oder -unterlauf, so wird dieser bei Realzahlen erkannt. Die Ausgangsvariable führt dann den Wert HUGE_VAL (+INF) bzw. -HUGE_VAL (-INF). Auch hier wird der Status auf OV_ST_BAD gesetzt.

Bei einer Rechnung mit Integern kann ein Über- oder Unterlauf nicht erkannt werden. Die überlaufenden Bits werden einfach verworfen. Eine Erkennung der Über- / Unterläufe wäre möglich durch die Berechnung als Fließkommazahl und anschließende Rückkonvertierung. Dies würde jedoch viel Rechenzeit erfordern, so dass die Rechnung nicht mehr schneller wäre, als der Umgang mit Realzahlen.

Tabellenverzeichnis

2.1	Liste der Funktionsblöcke der iec61131stdfb-Bibliothel	-							1
Z.I	Liste dei Fuliktionsblocke dei lecol 131stalb-biblionie	١.							-4