DG-Enhancement of Triangulated Categories

Problems with Triangulated and Derived Categories and What to do About It

Jendrik Stelzner

For this talk chain complexes has differential of degree +1.

1 Problems with Triangulated Categories

1.1 The Abelianess of Triangulated Categories

Definition 1. An abelian category \mathcal{A} is **semisimple abelian** or simply **semisimple** if every short exact sequence in \mathcal{A} splits.

Lemma 2. In a triangulated category every epimorphism splits.

Proof. Let $f: x \to y$ be an epimorphism in a triangulated category \mathcal{T} . We may complete f to a distinguished triangle

$$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} \Sigma(x)$$
.

The composition of any two morphisms in a distinguished triangle vanishes, so gf = 0. It follows that g = 0 since f is an epimorphism. By applying the homological functor $\mathcal{T}(y, -)$ to this distinguished triangle we arrive at the following long exact sequence:

$$\cdots \to \mathcal{T}(y,x) \xrightarrow{f_*} \mathcal{T}(y,y) \xrightarrow{0} \mathcal{T}(y,z) \to \cdots$$

We find that for $id_y \in \mathcal{T}(y,y)$ there exists some $s \in \mathcal{T}(y,x)$ with $id_y = f_*(s) = fs$. \square

Corollary 3. A triangulated category that is abelian is already semisimple. \Box

We see from Corollary 3 that most triangulated categories are not abelian.

Proposition 4. For an abelian category \mathcal{A} the following conditions on \mathcal{A} and its derived category $\mathbf{D}(\mathcal{A})$ are equivalent:

- (1) The derived category $\mathbf{D}(A)$ is abelian.
- (2) The derived category $\mathbf{D}(\mathcal{A})$ is semisimple abelian.
- (3) The abelian category A is semisimple.

If these equivalent conditions are satisfied then $\mathbf{D}(\mathcal{A}) \simeq \mathcal{A}^{\mathbb{Z}}$ via the homology functor $H^* \colon \mathbf{D}(\mathcal{A}) \to \mathcal{A}^{\mathbb{Z}}$ with quasi-inverse $\mathcal{A}^{\mathbb{Z}} \to \mathbf{Ch}(\mathcal{A}) \to \mathbf{D}(\mathcal{A})$.

Proof.

(3) \Longrightarrow (1): We realize $\mathbf{D}(\mathcal{A})$ by first passing from the category of chain complexes $\mathbf{Ch}(\mathcal{A})$ to its homotopy category $\mathbf{K}(\mathcal{A})$ and then localizing at the class of quasi-isomorphisms.

Every chain complex $X \in \mathrm{Ob}(\mathbf{Ch}(\mathcal{A}))$ splits¹ since \mathcal{A} is semisimple and can thus be decomposed as $X = X' \oplus X''$ where X' is split acyclic and X'' has zero differential. In the homotopy category $\mathbf{K}(\mathcal{A})$ the chain complex X' becomes zero as it is split acyclic and hence contractible. Every isomorphism class in $\mathbf{K}(\mathcal{A})$ is therefore represented by a chain complex with zero differential, i.e. an object of $\mathcal{A}^{\mathbb{Z}}$. No two morphisms between such chain complexes become identified in $\mathbf{K}(\mathcal{A})$ so that the categories $\mathbf{K}(\mathcal{A})$ and $\mathcal{A}^{\mathbb{Z}}$ are equivalent. We note that this equivalence is indeed given by $\mathbf{H}^* \colon \mathbf{K}(\mathcal{A}) \to \mathcal{A}^{\mathbb{Z}}$.

We also see that a quasi-isomorphism between chain complexes with zero differentials must already be an isomorphism. We therefore see that $\mathbf{D}(\mathcal{A})$ is just $\mathbf{K}(\mathcal{A})$ again.

- $(1) \implies (2)$: This follows from Corollary 3.
- (2) \Longrightarrow (3) We first observe that an abelian category \mathcal{B} is semisimple if and only if every morphism $f \colon x \to y$ in \mathcal{B} admits a **pseudoinverse** $g \colon y \to x$ satisfying fgf = f and gfg = g: If every morphism f in \mathcal{B} admits such a pseudoinverse g then it follows for every epimorphism f in \mathcal{B} from fgf = f that $fg = \mathrm{id}$ so that f splits. If on the other hand \mathcal{B} is semisimple and $f \colon x \to y$ is any morphism in \mathcal{B} then we have decompositions $x = x' \oplus \ker(f)$ and $y = y' \oplus \mathrm{im}(f)$ with f inducing an isomorphism $x' \to \mathrm{im}(f)$. The inverse $\mathrm{im}(f) \to x'$ composed with the projection $y \to \mathrm{im}(f)$ and the inclusion $x' \to x$ then give the desired pseudoinverse $g \colon y \to x$.

By assumption every morphism in $\mathbf{D}(\mathcal{A})$ admits a pseudoinverse. Every morphism f in \mathcal{A} hence admits a pseudoinverse g in $\mathbf{D}(\mathcal{A})$ (where we regard \mathcal{A} as chain complexes concentrated in degree 0) which becomes the pseudoinverse $H_0(g)$ to f in \mathcal{A} . This shows that every morphism in \mathcal{A} admits a pseudoinverse, so that \mathcal{A} is semisimple. \square

¹Recall that a chain complex X is **split** if it can be (up to isomorphism) degreewise decomposed as $X^n = B^n \oplus H^n \oplus B^{n+1}$ such that the differential of X is with respect to this decomposition given by $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Then $Z^n(X) = B^n \oplus H^n$, $B^n(X) = B^n$ and $H^n(X) \cong H^n$. The claimed decomposition $X = X' \oplus X''$ is then given degreewise by $(X')^n = B^n \oplus B^{n+1}$ with differential $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $(X'')^n = H^n$.

1.2 Non-Functoriality of Cones

Triangulated categories do in general not admit functorial cones. As a consequence of this we see that for a triangulated category \mathcal{T} and a (small) index category I the diagram category \mathcal{T}^I does in general not inherit a triangulated structure from \mathcal{T} :

Given a morphism $f: D \to D'$ in \mathcal{T}^I we would otherwise like to compute its cone for the inherited triangulated structure of \mathcal{T}^I pointwise, i.e. for any morphism $e: i \to j$ in I we want the following commutative diagram:

$$D(i) \xrightarrow{f_i} D'(i) \longrightarrow \operatorname{cone}_{\mathcal{T}}(f)(i)$$

$$D(e) \downarrow \qquad \qquad \downarrow^{D'(e)} \qquad \qquad \downarrow^{\operatorname{cone}(f)(e)}$$

$$D(j) \xrightarrow{f_j} D'(j) \longrightarrow \operatorname{cone}_{\mathcal{T}}(f)(j)$$

The vertical dashed arrow comes from (TR3). But by the missing functoriality of the cone in \mathcal{T} these diagrams do not assemble into a functor cone $(f): I \to \mathcal{T}$.

The missing functoriality of the cone is in general unfixable, as the following result asserts:

Proposition 5. Let \mathcal{T} be an idempotent complete triangulated category. If \mathcal{T} admits functorial cones then \mathcal{T} is abelian and semisimple.

1.3 Difference between $D(A)^I$ and $D(A^I)$

One might suspect that for $\mathcal{T} = \mathbf{D}(\mathcal{A})$, where \mathcal{A} is some abelian category, the above problems can be fixed by using an equivalence $\mathbf{D}(\mathcal{A})^I \simeq \mathbf{D}(\mathcal{A}^I)$. (Note that the category \mathcal{A}^I is again abelian.) The problem is that there is in general no such equivalence.

Take for example $\mathcal{A} = k\text{-}\mathbf{Vect}$ and let $I = (\bullet \to \bullet)$ be the arrow category. The abelian category \mathcal{A} is semisimple whence $\mathbf{D}(\mathcal{A})$ and then also $\mathbf{D}(\mathcal{A})^I$ is again abelian by Proposition 4. But the functor category \mathcal{A}^I is equivalent to the category of representations of the quiver $\bullet \to \bullet$ and therefore not abelian. (The path algebra of this quiver is isomorphic to the algebra of upper triangular matrices of size 2, which is not semisimple.) The derived category $\mathbf{D}(\mathcal{A}^I)$ is thus not again abelian. This shows that $\mathbf{D}(\mathcal{A})^I$ is abelian but $\mathbf{D}(\mathcal{A}^I)$ is not abelian, which entails that these categories are not equivalent.

1.4 (Non-)Existence of Limits and Colimits

A triangulated category \mathcal{T} is in general neither complete nor cocomplete.

We see for example that in the category $\mathbf{D}(\mathbb{Z}) = \mathbf{D}(\mathbf{Mod}_{\mathbb{Z}})$ the nonzero morphism $f \colon \mathbb{Z}/2 \to \mathbb{Z}/4$ does not admit a cokernel: Suppose otherwise that $c \colon \mathbb{Z}/4 \to C$ is a such a cokernel. Then c is a split epimorphism in $\mathbf{D}(\mathbb{Z})$ by Lemma 2. It follows that $\mathrm{H}^0(c) \colon \mathbb{Z}/4 \to \mathrm{H}^0(C)$ is a split epimorphism in $\mathbf{Mod}_{\mathbb{Z}}$. But $\mathbb{Z}/4$ is indecomposable, so it follows that $\mathrm{H}^0(c) = 0$ or $\mathrm{H}^0(c)$ is an isomorphism.

If $H^0(c) = 0$ then we consider the nonzero morphism $g: \mathbb{Z}/4 \to \mathbb{Z}/2$. It follows from $g \circ f = 0$ that g factors trough c in $\mathbf{D}(\mathbb{Z})$ and therefore factors through $H^0(c)$ in $\mathbf{Mod}_{\mathbb{Z}}$. But this is not possible since $H^0(c) = 0$ while $g \neq 0$.

Suppose now that $H^0(c)$ is an isomorphism. It follows from $c \circ f = 0$ in $\mathbf{D}(\mathbb{Z})$ that $H^0(c) \circ f = 0$ in $\mathbf{Mod}_{\mathbb{Z}}$. It now further follows that f = 0 which is wrong.

2 Solution: Working Derived

We give a first approach to circumventing the above problems. We denote for any category \mathcal{C} by $\mathbf{Mor}(\mathcal{C})$ its morphism category. We have $\mathbf{Mor}(\mathcal{C}) \cong \mathcal{C}^I$ for the arrow category $I = (\bullet \to \bullet)$.

2.1 Functorial Cones

We have seen that for a triangulated category \mathcal{T} there exists in general no cone functor $\mathbf{Mor}(\mathcal{T}) \to \mathcal{T}$, i.e. no cone functor $\mathcal{T}^I \to \mathcal{T}$ for $I = (\bullet \to \bullet)$. But if $\mathcal{T} = \mathbf{D}(\mathcal{A})$ for some abelian category \mathcal{A} then we have seen above that the categories $\mathcal{T}^I = \mathbf{D}(\mathcal{A})^I$ and $\mathbf{D}(\mathcal{A}^I)$ are in general not equivalent. We can therefore instead try to construct a cone functor cone: $\mathbf{D}(\mathcal{A}^I) \to \mathbf{D}(\mathcal{A})$.

This is indeed possible: We start with the usual cone functor

$$C \colon \mathbf{Mor}(\mathbf{Ch}(\mathcal{A})) \to \mathbf{Ch}(\mathcal{A})$$

which assigns to each morphism $f: X \to Y$ in $\mathbf{Ch}(\mathcal{A})$ the usual mapping cone

$$C(f) = \left(X[1] \oplus Y, \begin{bmatrix} -d_X & 0 \\ f & d_Y \end{bmatrix} \right)$$

and to each morphism $(g,h): f \to f'$ in $\mathbf{Mor}(A)$, i.e. every commutative diagram

$$\begin{array}{ccc}
X & \xrightarrow{g} & X' \\
f \downarrow & & \downarrow f' \\
Y & \xrightarrow{h} & Y'
\end{array}$$

in Ch(A) the induced morphism

$$C(g,h) \colon C(f) \xrightarrow{\begin{bmatrix} g & 0 \\ 0 & h \end{bmatrix}} C(f')$$
.

This functor is additive, and under the identification

$$\mathbf{Mor}(\mathbf{Ch}(\mathcal{A})) \cong \mathbf{Ch}(\mathcal{A})^I \cong \mathbf{Ch}(\mathcal{A}^I) \cong \mathbf{Ch}(\mathbf{Mor}(\mathcal{A}))$$

this cone functor C respect quasi-isomorphisms: The quasi-isomorphism in $\mathbf{Ch}(\mathcal{A}^I)$ correspond to a pointwise quasi-isomorphism in $\mathbf{Ch}(\mathcal{A})^I$. If $(g,h)\colon f\to f'$ in $\mathbf{Ch}(\mathcal{A})^I$ is such a pointwise quasi-isomorphism, i.e. if both g and h are quasi-isomorphism, then

$$0 \longrightarrow Y \xrightarrow{\begin{bmatrix} 0 \\ 1 \end{bmatrix}} C(f) \xrightarrow{\begin{bmatrix} -1 & 0 \end{bmatrix}} X[1] \longrightarrow 0$$

$$\downarrow h \qquad \qquad \downarrow C(g,h) \qquad \qquad \downarrow g$$

$$0 \longrightarrow Y' \xrightarrow{\begin{bmatrix} 0 \\ 1 \end{bmatrix}} C(f') \xrightarrow{\begin{bmatrix} -1 & 0 \end{bmatrix}} X'[1] \longrightarrow 0$$

is a commutative diagram with short exact rows. We get an induced ladder diagram whose rows are the long exact cone sequences and where h and g induce vertical isomorphisms. It follows from the five lemma that C(g,h) also induces isomorphisms in homology, i.e. is a quasi-isomorphism. It follows that the cone functor C descends to an additive functor

$$C \colon \mathbf{D}(\mathbf{Mor}(\mathcal{A})) \to \mathbf{D}(\mathcal{A})$$

where $\mathbf{D}(\mathcal{A}^I) = \mathbf{D}(\mathbf{Mor}(\mathcal{A})).$

2.2 Colimits and Limits

Let I be an index category and let $\Delta \colon \mathcal{C} \to \mathcal{C}^I$ be the constant diagram functor. Recall that the existence of (co)limits of I-shaped diagrams in \mathcal{C} is equivalent to Δ admitting adjoints

$$\operatorname{colim}_I \dashv \Delta \dashv \lim_I$$
.

That a derived category $\mathbf{D}(\mathcal{A})$ does in general not admit (co)limits can be circumvented by considering **homotopy** (co)limits instead:

The constant diagram functor $\Delta \colon \mathbf{Ch}(\mathcal{A}) \to \mathbf{Ch}(\mathcal{A})^I \cong \mathbf{Ch}(\mathcal{A}^I)$ is additive and respects quasi-isomorphisms and hence descends to an additive functor

$$\Delta \colon \mathbf{D}(\mathcal{A}) \to \mathbf{D}(\mathcal{A}^I)$$
.

If A admits all (co)limits of shape I then it follows that the functor Δ admits adjoints

$$\operatorname{hocolim} \dashv \Delta \dashv \operatorname{holim}_{I}$$
.

2.3 Description as Total Derived Functors

The above constructions can be understood in terms of total derived functors: Let \mathcal{A} and \mathcal{B} be abelian categories and let $F: \mathbf{Ch}(\mathcal{A}) \to \mathbf{Ch}(\mathcal{B})$ be an additive functor, so that we have the following:

$$\begin{array}{ccc} \mathbf{Ch}(\mathcal{A}) & \stackrel{F}{\longrightarrow} & \mathbf{Ch}(\mathcal{B}) \\ \downarrow^{\gamma} & & \downarrow^{\gamma} \\ \mathbf{D}(\mathcal{A}) & & \mathbf{D}(\mathcal{B}) \end{array}$$

A total left derived functor of the functor F is a pair (LF, ε) consisting of a functor $LF: \mathbf{D}(A) \to \mathbf{D}(B)$ together with a natural transformation $\varepsilon: LF\gamma \Rightarrow \gamma F$ which is terminal with this properties (in a suitable sense).

$$\begin{array}{ccc}
\mathbf{Ch}(\mathcal{A}) & \xrightarrow{F} & \mathbf{Ch}(\mathcal{B}) \\
\downarrow^{\gamma} & & \downarrow^{\gamma} \\
\mathbf{D}(\mathcal{A}) & \xrightarrow{\mathbf{L}F} & \mathbf{D}(\mathcal{B})
\end{array}$$

By replacing "terminal" with "inital" we arrive at the definition of a **total right derived functor** RF. If F is respects quasi-isomporphisms, i.e. is exact, then LF (resp. RF) is simply the induced induced functor $\mathbf{D}(\mathcal{A}) \to \mathbf{D}(\mathcal{B})$ and ε is the identity transformation.

One can rephase the above constructions in the language of total derived functors:

(1) The cone functor $C: \mathbf{D}(\mathbf{Mor}(\mathcal{A})) \to \mathbf{D}(\mathcal{A})$ constructed above is the total left derived of the cokernel functor

$$\operatorname{coker} \colon \mathbf{Ch}(\mathbf{Mor}(\mathcal{A}))) \cong \mathbf{Mor}(\mathbf{Ch}(\mathcal{A})) \to \mathbf{Ch}(\mathcal{A}) \,.$$

(2) Let I be an index category and suppose that \mathcal{A} admits all (co)limits of shape I. Then the constant diagram functor $\Delta_{\mathbf{Ch}(\mathcal{A})} : \mathbf{Ch}(\mathcal{A}) \to \mathbf{Ch}(\mathcal{A})^I$ admits the adjoints

$$\operatorname{colim}_I\dashv\Delta\dashv \lim_I.$$

The functors

$$\operatorname*{colim}_{I}, \operatorname*{lim}_{I} \colon \mathbf{Ch}(\mathcal{A}^{I}) \cong \mathbf{Ch}(\mathcal{A})^{I} \to \mathbf{Ch}(\mathcal{A})$$

admit total derived functors

$$\operatorname{Lcolim}_I, \operatorname{Rlim}_I \colon \mathbf{D}(\mathcal{A}^I) \to \mathbf{D}(\mathcal{A}) \,.$$

These are precisely the functors $hocolim_I$ and $holim_I$ introduced above. Hence the adjunction

$$\operatorname*{colim}_{I}\dashv\Delta\dashv\operatorname*{lim}_{I}.$$

descends to a derived adjunction

$$\underset{I}{\operatorname{hocolim}} = \underset{I}{\operatorname{Lcolim}} \dashv \Delta \dashv \underset{I}{\operatorname{Rlim}} = \underset{I}{\operatorname{holim}} \;.$$

3 Solution: DG-Enhancement

In the following we denote by k some commutative ring.

A dg enhancement of category \mathcal{T} is, roughly speaking, a dg-category \mathcal{A} together with an equivalence $\mathcal{T} \simeq H^0(\mathcal{A})$. If the category \mathcal{T} carries additional structures which we want to be respected by this equivalence, then we need to make sure that the homotopy category $H^0(\mathcal{A})$ does carry such a structure itself. If \mathcal{T} is a triangulated category then this leads us to the notion of a pretriangulated dg-category.

3.1 Review on DG-Categories

A dg-category \mathcal{A} consists of a class of objects $\mathrm{Ob}(\mathcal{A})$, for any two objects $x,y\in\mathcal{A}$ a chain complex $\mathcal{A}(x,y)$, for any three objects $x,y,z\in\mathrm{Ob}(\mathcal{A})$ a morphism of chain complexes

$$(-)\circ(-)\colon \mathcal{A}(y,z)\otimes\mathcal{A}(x,y)\to\mathcal{A}(x,z)$$

satisfying the usual associativity diagram, and for every object $x \in \text{Ob}(\mathcal{A})$ an element $1_x \in Z^0(\mathcal{A}(x,y))$ satisfying the usual identity diagrams. As an example we enrich $\mathbf{Ch}(k)$ into a dg-category $\underline{\mathbf{Ch}}(k)$ with $\underline{\mathbf{Ch}}(k)(X,Y) = \underline{\mathrm{Hom}}(X,Y)$ being the usual Hom-chain complex.

To any dg-category \mathcal{A} we can associated the k-linear categories $Z^0(\mathcal{A})$ and $H^0(\mathcal{A})$ that are given by $Ob(Z^0(\mathcal{A})) = Ob(H^0(\mathcal{A})) = Ob(\mathcal{A})$ and

$$Z^{0}(A)(x,y) = Z^{0}(A(x,y))$$
 and $H^{0}(A)(x,y) = H^{0}(A(x,y))$.

As an example we have $Z^0(\underline{\mathbf{Ch}}(k)) = \mathbf{Ch}(k)$ and $H^0(\underline{\mathbf{Ch}}(k)) = \mathbf{K}(k)$.

This examples motivates that one should think about $Z^0(A)$ as the **underlying** k-linear category of A, and as the elements of $Z^0(A(x,y))$ as the "actual morphisms" from x to y. The category $H^0(A)$ is the **homotopy category** of A.

A dg-functor $F: \mathcal{A} \to \mathcal{B}$ is given by a map $F: \mathrm{Ob}(\mathcal{A}) \to \mathrm{Ob}(\mathcal{B})$ and morphisms of chain complexes $F_{x,y}: \mathcal{A}(x,y) \to \mathcal{B}(F(x),F(y))$ for any two objects $x,y \in \mathrm{Ob}(\mathcal{A})$, satisfying the usual axioms. Every dg-functor $F: \mathcal{A} \to \mathcal{B}$ induces k-linear functors $Z^0(\mathcal{A}) \to Z^0(\mathcal{B})$ and $H^0(\mathcal{A}) \to H^0(\mathcal{B})$.

A dg-natural transformation $\alpha \colon F \Rightarrow G$ between dg-functors $F,G \colon \mathcal{A} \to \mathcal{B}$ assigns to is a family $\alpha = (\alpha_x)_{x \in \mathrm{Ob}(\mathcal{A})}$ of "actual morphisms" $\alpha_x \in \mathrm{Z}^0(\mathcal{B}(F(x),G(x)))$ with $\alpha_y \circ F(f) = G(f) \circ \alpha_x$ for every $f \in \mathcal{A}(x,y)$. We get a k-linear abelian category $\mathrm{dgFun}(\mathcal{A},\mathcal{B})$ whose objects are dg-functors $\mathcal{A} \to \mathcal{B}$ and whose morphisms are dg-natural transformations. This k-linear category can be enriched in a dg-category $\mathrm{dgFun}(\mathcal{A},\mathcal{B})$. Then in particular

$$Z^{0}(\underline{\mathbf{dgFun}}(\mathcal{A},\mathcal{B})) = \underline{\mathbf{dgFun}}(\mathcal{A},\mathcal{B}),$$

so that $\mathbf{dgFun}(\mathcal{A}, \mathcal{B})$ is the underlying k-linear category of $\mathbf{dgFun}(\mathcal{A}, \mathcal{B})$.

For a dg-category \mathcal{A} a **(right) dg-A-module** is a dg-functor $M: \mathcal{A}^{\mathrm{op}} \to \underline{\mathbf{Ch}}(k)$. This means that at every object $x \in \mathrm{Ob}(\mathcal{A})$ we have a chain complex M_x , and for every $f \in \mathcal{A}(x,y)^i$ we have associated a map $M(f): M(y) \to M(x)$ of degree i such that $M(g \circ f) = (-1)^{ij} M(f) \circ M(g)$ for all $f \in \mathcal{A}(x,y)^i$ and $g \in \mathcal{A}(y,z)^j$. The category of dg- \mathcal{A} -modules is given by

$$\mathbf{dgMod}_{A} = \mathbf{dgFun}(\mathcal{A}^{\mathrm{op}}, \underline{\mathbf{Ch}}(k))$$

and its dg-enrichement is given by

$$\underline{\mathbf{dgMod}}_{\mathcal{A}} = \underline{\mathbf{dgFun}}(\mathcal{A}^{\mathrm{op}}, \underline{\mathbf{Ch}}(k)).$$

The category $\mathbf{dgMod}_{\mathcal{A}}$ is abelian, complete and cocomplete, and all (co)limits are computed pointwise.

3.2 Review on Frobenius Exact Structures

The abelian category $\mathbf{Ch}(k)$ admits a Frobenius exact structure \mathcal{S}_k whose associated \mathcal{S}_k -stable triangulated category is precisely $\mathbf{K}(k)$. For every chain complex X its \mathcal{S}_k -injective envelope is given by the chain complex

$$IX = \left(X \oplus X[1], \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right)$$

which fits into the short exact sequence

$$0 \to X \xrightarrow{i_X} IX \xrightarrow{p_X} X[1] \to 0 \tag{1}$$

belonging to S_k , where

$$i_X = \begin{bmatrix} 1 \\ d_X \end{bmatrix}$$
 and $p_X = \begin{bmatrix} -d_X & 1 \end{bmatrix}$.

The k-linear situation

$$I, [1]: \mathbf{Ch}(k) \to \mathbf{Ch}(k), \qquad i: \mathrm{id} \Rightarrow I, p: I \Rightarrow [1]$$

extends into the dg-world as

$$I, [1]: \underline{\mathbf{Ch}}(k) \to \underline{\mathbf{Ch}}(k), \qquad i: \mathrm{id} \Rightarrow I, p: I \Rightarrow [1]$$

and by applying $\mathbf{dgFun}(\mathcal{A}^{\mathrm{op}}, -)$ we arrive at the k-linear situation

$$I, [1]: \mathbf{dgMod}_{A} \to \mathbf{dgMod}_{A}, \quad i: id \Rightarrow I, p: I \Rightarrow [1].$$

We get for every dg-A-module M a short exact sequence of dg-A-modules

$$0 \to M \xrightarrow{i_M} IM \xrightarrow{p_M} M[1] \to 0 \tag{2}$$

that gives at every point $x \in \text{Ob}(A)$ the short exact sequence of chain complexes

$$0 \to M_x \xrightarrow{i_{M_x}} IM_x \xrightarrow{p_{M_x}} M_x[1] \to 0$$

from (1) with $X = M_x$. The short exact sequence (2) belongs to a Frobenus exact structure $\mathcal{S}_{\mathcal{A}}$ on $\mathbf{dgMod}_{\mathcal{A}}$ whose stable triangulated category is precisely the homotopy category $\mathrm{H}^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$, with $i_M \colon M \to IM$ being an $\mathcal{S}_{\mathcal{A}}$ -injective envelope of M for every dg - \mathcal{A} -module M. This description of $\mathrm{H}^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ and its triangulated structure has two consequences we will need:

(1) A morphsim $f: M \to N$ in $\mathbf{dgMod}_{\mathcal{A}}$ vanishes in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ if and only it factors through some $\mathcal{S}_{\mathcal{A}}$ -injective object I of $\mathbf{dgMod}_{\mathcal{A}}$, i.e. if there exists in $\mathbf{dgMod}_{\mathcal{A}}$ a commutative diagram of the following form:

The morphism $M \to I$ factors through the morphism $i_M : M \to IM$ since we have by the definition of an $\mathcal{S}_{\mathcal{A}}$ -injective object the following diagram:

$$\begin{array}{c} I & \longleftarrow \\ \uparrow & & \swarrow \\ 0 & \longrightarrow M \xrightarrow{i_M} IM \xrightarrow{p_M} M[1] & \longrightarrow 0 \end{array}$$

It follows that f already factors through $i_M: M \to IM$.

(2) We get a description of the distinguished triangles in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ from Happel's theorem: Let

be be a commutative diagram in $\mathbf{dgMod}_{\mathcal{A}}$ whose rows are contained in $\mathcal{S}_{\mathcal{A}}$ and where the left hand square is a pushout square. Then the resulting sequence

$$M \xrightarrow{f} N \xrightarrow{g} P \xrightarrow{h} M[1]$$

in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ is a distinguished triangle. (And every distinguished triangle is up to isomorphism of this form.)

3.3 Pretriangulated DG-Categories

Definition 6. A dg-functor $F: \mathcal{A} \to \mathcal{B}$ is **dg-fully faithful** if for every two objects $x, y \in \mathcal{A}$ the morphism of chain complexes $F_{x,y}: \mathcal{A}(x,y) \to \mathcal{B}(F(x),F(y))$ is an isomorphism.

Proposition 7 (dg-Yoneda embedding). Let \mathcal{A} be a dg-category. Then the mapping

$$\mathcal{A} \to \underline{\mathbf{dgMod}}_{A}, \quad x \mapsto \mathcal{A}(-,x) = \mathcal{A}^{\mathrm{op}}(x,-)$$

extends (in the usual way) to a dg-fully faithful dg-functor.

Definition 8. A dg-category A is **pretriangulated** if the fully faithful k-linear functor

$$\operatorname{H}^0(\mathcal{A}) \to \operatorname{H}^0(\operatorname{\mathbf{\underline{dgMod}}}_{\mathcal{A}})$$

that is induced by the Yoneda embedding $\mathcal{A} \to \underline{\mathbf{dgMod}}_{\mathcal{A}}$ identifies \mathcal{A} with a triangulated subcategory of $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$.

The above definition ensures that for a pretriangulated dg-category \mathcal{A} its homotopy category $H^0(\mathcal{A})$ does carry in a canonical way the structure of a triangulated category.

Definition 9. A **dg-enhancement** of a triangulated category \mathcal{T} is a pretriangulated category \mathcal{A} together with an equivalence of triangulated categories $\mathcal{T} \simeq H^0(\mathcal{A})$.

A dg-enhancement of a triangulated category \mathcal{T} allows us to identity \mathcal{T} with a full triangulated subcategory of $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ for some dg-category \mathcal{A} . We can then try to understand the original triangulated category \mathcal{T} through the "higher structure" of the dg-category \mathcal{A} .

3.4 Cones as Derived Cokernels

Recall that if $f: x \to y$ is a morphism in an (pre)additive category \mathcal{A} then its cokernel (which does not need to exists) can be thought of in two equivalent ways:

- A morphism $\operatorname{coker}(f) \to z$ into any other object is "the same" as a morphism $g \colon y \to z$ with gf = 0.
- The cokernel coker(f) is the pushout of the following diagram:

$$\begin{array}{c}
x \xrightarrow{f} y \\
\downarrow \\
0
\end{array}$$

In a triangulated category \mathcal{T} we do in general have neither cokernels nor pushouts. But given a dg-enhancement $\mathcal{T} \simeq H^0(\mathcal{A})$ for some pretriangulated dg-category \mathcal{A} we can identify \mathcal{T} with a full triangulated subcategory of $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$. We can then do the desired calculations in the abelian category $\underline{\mathbf{dgMod}}_{\mathcal{A}} = Z^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ which is (co)complete.

More precisely, given a fixed morphism $f: M \to N$ in $\mathbf{dgMod}_{\mathcal{A}}$ we try to understand all morphisms $g: N \to P$ in $\mathbf{dgMod}_{\mathcal{A}}$ for which the composition $g \circ f$ vanishes in $\mathrm{H}^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$. We have previously seen that $g \circ f$ vanishes if and only if $g \circ f$ factors through $i_M: M \to IM$. We are hence interested in the pushout of the diagram

$$M \xrightarrow{f} N$$

$$i_{M} \downarrow$$

$$IM$$

in $\mathbf{dgMod}_{\mathcal{A}}$. This pushout is computed pointwise, hence we want to compute for every $x \in \mathrm{Ob}(\mathcal{A})$ the pushout

$$M_{x} \xrightarrow{f_{x}} N_{x}$$

$$\downarrow i_{M_{x}} \downarrow IM_{x}$$

in the category $\mathbf{Ch}(k)$ where

$$IM_x = \left(M_x \oplus M_x[1], \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right) \quad \text{and} \quad i_{M_x} = \begin{bmatrix} 1 \\ d_{M_x} \end{bmatrix} \,.$$

Lemma 10. Every morphism of chain complexes $f: X \to Y$ results in the pushout

$$X \xrightarrow{f} Y$$

$$i_X \downarrow \qquad \qquad \qquad \qquad \downarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$IX \xrightarrow{\begin{bmatrix} -d_X & 1 \\ f & 0 \end{bmatrix}} C(f)$$

where C(f) denotes the usual mapping cone.

Proof. We calculate the pushout as

$$\begin{pmatrix} X \oplus X[1] \oplus Y, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & d_Y \end{bmatrix} \end{pmatrix} / \left\langle \begin{bmatrix} x \\ d(x) \\ -f(x) \end{bmatrix} \middle| x \in X \right\rangle$$

$$\cong \begin{pmatrix} X[1] \oplus Y, \begin{bmatrix} -d_X & 0 \\ f & d_Y \end{bmatrix} \end{pmatrix}$$

$$= C(f)$$

as claimed. \Box

Remark 11. The above result is (a posteri) not surprising: It is a standard statement from homological algebra that for a morphism of chain complexes $f: X \to Y$ the data of a morphism $h: C(f) \to Z$ is the same as that of a morphism $g: Y \to Z$ together with a null homotopy of the composition $g \circ f: X \to Z$. Whence C(f) corepresents morphisms going out of Y whose composition with f are zero "up to homotopy".

We hence find that the pushout

$$\begin{array}{ccc} M & \stackrel{f}{\longrightarrow} N \\ \downarrow i_M & & \downarrow \\ IM & \longrightarrow C(f) \end{array}$$

is given by $(C(f))_x = C(f_x)$ at every $x \in \text{Ob}(\mathcal{A})$, i.e. the dg- \mathcal{A} -module C(f) is pointwise given by the usual mapping cone of chain complexes.

We see that C(f) is actually the cone of f in the triangulated category $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$: We have the following commutative diagram in which the left hand side is a pushout, and where the upper row is exact and contained in the Frobenius exact structure $\mathcal{S}_{\mathcal{A}}$:

$$0 \longrightarrow M \xrightarrow{i_M} IM \xrightarrow{p_M} M[1] \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$N \longrightarrow C(f)$$

It follows from the standard lemma of homological algebra that we can extend the above diagram to a commutative diagram

whose row are exact. It follows from the axioms of a Frobenius exact structure that the lower row is again contained in $\mathcal{S}_{\mathcal{A}}$. We have seen in the previous review on Frobenius exact structures that

$$M \xrightarrow{f} N \to C(f) \to M[1]$$

is therefore a distinguished triangle in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$. This entails that C(f) is a cone of f in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$.

We have thus seen that one can think about the cone in $H^0(\underline{\mathbf{dgMod}}_{\mathcal{A}})$ as a kind of "derived cokernel" of f, coming from a pushout in $\mathbf{dgMod}_{\mathcal{A}}$ that was choosen as a "cokernel up to homotopy".

3.5 Extending to $\underline{\mathrm{dgMod}}_{A}$

The object C(f) of the dg-category $\mathcal{B} := \underline{\mathbf{dgMod}}_{\mathcal{A}}$ gives a corepresentable dg-functor, i.e. left dg-module

$$\widehat{C} := \mathcal{B}(C(f), -) \colon \mathcal{B} \to \mathbf{Ch}(k)$$
.

At every object $P \in \text{Ob}(\mathcal{B})$ this left dg-module is given by the chain complex $\widehat{C}(P)$ which is given as a graded module by

$$\widehat{C}(P) = \mathcal{B}(N, P)[1] \oplus \mathcal{B}(M, P)$$

and whose differential is

$$d_{\widehat{C}(P)} = \begin{bmatrix} d_{\mathcal{B}(N,P)} & 0 \\ (-) \circ f & -d_{\mathcal{B}(M,P)} \end{bmatrix} \,.$$

For any two objects $P, Q \in \text{Ob}(\mathcal{B})$ the morphism of chain complexes

$$\widehat{C}_{P,Q} \colon \mathcal{B}(P,Q) \to \mathcal{B}(\widehat{C}(P),\widehat{C}(Q))$$

is given by

$$q \mapsto ((a,b) \mapsto (q \circ a, (-1)^{|g|} q \circ b)$$
.

We note that these formulae make sense in any dg-category. We can therefore define for every dg-category \mathcal{B} and every $f \in \mathbb{Z}^0(\mathcal{B}(x,y))$ a left dg- \mathcal{B} -module $C \colon \mathcal{B} \to \mathbf{Ch}(k)$ by the same expressions as above. One can then define a **cone** of f in \mathcal{B} as a representing object for this dg-functor. This allows us to talk about cones of morphisms in dg-categories.