Conditional Models

Emorie D Beck 9/7/2017

Workspace

Packages

```
library(psych)
library(sjPlot)
library(broom)
library(lme4)
library(MuMIn)
library(merTools)
library(reghelper)
library(stargazer)
library(stargazer)
library(lsmeans)
library(multcompView)
library(plyr)
library(tidyverse)
```

Background

Basic Syntex

From last week:

- Level 1: $Y_{ij} = \beta_{0j} + \varepsilon ij$
- Level 2: $\beta_{0j} = \gamma_{00} + U_{0j}$

Sample Data

The National Longitudinal Study of Youths 1979 Child and Young Adult Sample (NLSYCYA) is a longitudinal study conducted by the National Bureau of Labor Statistics. The sample includes the children of the original 1979 sample. Here, we are going to use a subset of the more than 11,000 variables available that include the following.

Item Name	Description	Time-Varying?
PROC_CID	Participant ID	No
Dem_DOB	Year of Date of Birth	No
groups	Jail, Community Service, None	No
DemPWeight	Weight Percentile at age 10	No
age	Age of participant	Yes
Year	Year of Survey	Yes
age0	Age of participant (centered)	Yes
SensSeek	Sensation-Seeking Composite	Yes

Item Name	Description	Time-Varying?
CESD	CESD Depression Composite	Yes

data_path <- "https://github.com/longitudinal-data/1-descriptives-and-graphs-emoriebeck/raw/master/Cond
load(url(paste(data_path, "sample.RData", sep = "/")))</pre>

head(sample_dat)

```
## # A tibble: 6 x 8
     PROC_CID
                                               CESD SensSeek DemPweight
##
                age year age0
                                   groups
##
        <dbl> <dbl> <dbl> <dbl> <
                                   <fctr>
                                                        <dbl>
                                                                   <dbl>
                                              <dbl>
                               2 CommServ 0.4285714 3.666667
## 1
         1601
                 16
                     2006
                                                               0.8159399
## 2
                               4 CommServ 2.0000000 3.000000
         1601
                 18
                     2008
                                                               0.8159399
## 3
         9102
                 16
                     2012
                                     None 0.1818182 3.333333
                                                               0.6712397
## 4
         9501
                 14
                     2000
                               0
                                     Jail 0.5000000 3.000000
                                                               0.5477584
## 5
         9501
                 18
                     2004
                               4
                                     Jail 0.4285714 3.000000
                                                               0.5477584
## 6
                 22
                     2008
                               8
                                     Jail 0.4285714 3.000000
         9501
                                                               0.5477584
```

Simple Growth Curve Model

- Level 1: $Y_{ij} = \beta_{0j} + \beta_{1j} * time_{ij} + \varepsilon ij$
- Level 2:
 - $-\beta_{0j} = \gamma_{00} + U_{0j}$
 - $-\beta_{1j} = \gamma_{10} + U_{1j}$

Simple Growth Curve

In R

```
mod0 <- lmer(SensSeek ~ age0 + (1|PROC_CID), data = sample_dat)</pre>
## Linear mixed model fit by REML ['lmerMod']
## Formula: SensSeek ~ ageO + (1 | PROC_CID)
##
     Data: sample_dat
##
## REML criterion at convergence: 3404.2
## Scaled residuals:
                1Q Median
                                3Q
##
       Min
## -3.6782 -0.5396 0.0276 0.4739 3.2174
##
## Random effects:
   Groups Name
                         Variance Std.Dev.
   PROC_CID (Intercept) 0.1349
                                  0.3673
                         0.2003
                                  0.4475
##
## Number of obs: 2084, groups: PROC_CID, 924
##
## Fixed effects:
                Estimate Std. Error t value
## (Intercept) 2.765851
                           0.020067 137.83
## age0
              -0.005879
                           0.003407
## Correlation of Fixed Effects:
      (Intr)
## age0 -0.611
```

Conditional Models: Adding Predictors

Let's see if we can better predict participants' change in sensation seeking over time by adding covariates.

Predictor	Continuous	Categorical
Time Invariant Time Varying	Weight for Age CESD Scores	Group Depression

Time Invariant Predictors

Time Invariant Predictors: Continuous

The basic equation, specifying a random intercept and slope:

- Level 1: $Y_{ij} = \beta_{0j} + \beta_{1j} * time_{1j} + \varepsilon ij$
- Level 2:

$$-\beta_{0j} = \gamma_{00} + \gamma_{01} * X_{2j} + U_{0j}$$
$$-\beta_{1j} = \gamma_{10} + \gamma_{11} * X_{2j} + U_{1j}$$

But we need to break this down to see that adding additional predictors results in interaction terms:

$$\begin{split} Y_{ij} &= \gamma_{00} + \gamma_{01} * X_{2j} + U_{0j} + (\gamma_{10} + \gamma_{11} * X_{2j} + U_{1j}) * X_{1j} + \varepsilon ij \\ Y_{ij} &= \gamma_{00} + \gamma_{01} * X_{2j} + \gamma_{10} * X_{1j} + \gamma_{11} * X_{2j} * X_{1j} + U_{0j} + U_{1j} * X_{1j} + \varepsilon ij \end{split}$$

We can also fit this with intercepts depending on weight, but without the change (slope) dependent on weight: $Y_{ij} = \gamma_{00} + \gamma_{01} * X_{2j} + U_{0j} + (\gamma_{10} + U_{1j}) * X_{1j} + \varepsilon ij \; Y_{ij} = \gamma_{00} + \gamma_{01} * X_{2j} + \gamma_{10} * X_{1j} + U_{0j} + U_{1j} * X_{1j} + \varepsilon ij$

Continuous Example - Weight for Age Percentile

```
describe(sample_dat$DemPweight)
```

Simple Growth Curve

Time Invariant Predictors: Categorical

Categorical Example - 2 level group

Let's start with the basic syntax:

- Level 1: $Y_{ij} = \beta_{0j} + \beta_{1j} * time_{1j} + \varepsilon ij$
- Level 2:

$$-\beta_{0j} = \gamma_{00} + \gamma_{01} * X_{2j} + U_{0j}$$

$$- \beta_{1j} = \gamma_{10} + \gamma_{11} * X_{2j} + U_{1j}$$

Now let's swap that out for a 2 group sample from the present data:

• Level 1:
$$Y_{ij} = \beta_{0j} + \beta_{1j} * age0_{ij} + \varepsilon ij$$

• Level 2:

$$-\beta_{0j} = \gamma_{00} + \gamma_{01} * groupsNone + U_{0j}$$

$$-\beta_{1j} = \gamma_{10} + \gamma_{11} * groupsNone + U_{1j}$$

Variable	D1
Jail	0
None	1

And plot it.

2 Group Time Invariant Conditional Growth Models

And model it:

Random effects:

```
mod2g <- lmer(SensSeek ~ age0 + groups + age0*groups + (age0|PROC_CID),</pre>
              data = sample_dat %>% filter(groups != "CommServ"))
summary(mod2g)
## Linear mixed model fit by REML ['lmerMod']
## Formula: SensSeek ~ age0 + groups + age0 * groups + (age0 | PROC_CID)
      Data: sample_dat %>% filter(groups != "CommServ")
##
## REML criterion at convergence: 2607.6
##
## Scaled residuals:
              1Q Median
      Min
                                3Q
                                       Max
## -3.2324 -0.4860 0.0463 0.4643 3.0578
##
```

```
Groups
                         Variance Std.Dev. Corr
             Name
    PROC_CID (Intercept) 0.1613721 0.40171
##
##
             age0
                         0.0008963 0.02994 -0.31
##
   Residual
                         0.1897644 0.43562
## Number of obs: 1573, groups: PROC_CID, 689
##
## Fixed effects:
                    Estimate Std. Error t value
## (Intercept)
                    2.717417
                               0.036423
                   -0.003998
                                           -0.63
## age0
                               0.006382
## groupsJail
                    0.093497
                                           1.94
                               0.048257
## age0:groupsJail -0.007432
                               0.008272
                                           -0.90
##
  Correlation of Fixed Effects:
##
               (Intr) age0
## age0
               -0.624
## groupsJail -0.755 0.471
## age0:grpsJl 0.481 -0.772 -0.623
```

Categorical Example - 3 level group

2 Group Time Invariant Conditional Growth Models

- Level 1: $Y_{ij} = \beta_{0j} + \beta_{1j} * age0_{ij} + \varepsilon ij$
- Level 2:

$$-\beta_{0j} = \gamma_{00} + \gamma_{01} * D1 + \gamma_{02} * D2 + U_{0j}$$

$$-\beta_{1j} = \gamma_{10} + \gamma_{11} * D1 + \gamma_{12} * D2 + U_{1j}$$

D1	D2
0	0
1	0
0	1
	0 1

```
mod3g <- lmer(SensSeek ~ age0 + groups + age0*groups +</pre>
               (age0|PROC_CID), data = sample_dat)
summary(mod3g)
## Linear mixed model fit by REML ['lmerMod']
## Formula: SensSeek ~ age0 + groups + age0 * groups + (age0 | PROC_CID)
##
     Data: sample_dat
##
## REML criterion at convergence: 3418.7
##
## Scaled residuals:
      Min 1Q Median
                              3Q
                                     Max
## -3.2994 -0.5006 0.0368 0.4533 3.0815
##
## Random effects:
## Groups Name
                       Variance Std.Dev. Corr
## PROC_CID (Intercept) 0.1446194 0.38029
                   0.0008903 0.02984 -0.23
## Residual
                       0.1888364 0.43455
## Number of obs: 2084, groups: PROC_CID, 924
##
## Fixed effects:
                       Estimate Std. Error t value
##
## (Intercept)
                      2.717703 0.035554
                                           76.44
                      -0.004101
                                0.006376
                                            -0.64
## age0
## groupsJail
                     0.092594 0.047097
                                             1.97
## groupsCommServ
                     0.035192 0.053386
                                            0.66
                    -0.007181 0.008265
## age0:groupsJail
                                           -0.87
## age0:groupsCommServ 0.005939
                                             0.60
                                0.009871
## Correlation of Fixed Effects:
##
             (Intr) age0
                           grpsJl grpsCS ag0:gJ
              -0.619
## age0
## groupsJail -0.755 0.467
## gropsCmmSrv -0.666 0.412 0.503
## age0:grpsJl 0.478 -0.772 -0.618 -0.318
## ag0:grpsCmS 0.400 -0.646 -0.302 -0.612 0.498
```

Side Notes: Practical Applications

Side Note: 1me4 helper functions

```
vcov(mod2g)
VarCorr(mod2g)
fixef(mod2g)
head(ranef(mod2g)[[1]])
head(coef(mod2g)[[1]])
confint.merMod(mod2g, method = "boot")
```

```
reghelper::ICC(mod2g)
MuMIn::r.squaredGLMM(mod2g)
vcov(mod2g)
## 4 x 4 Matrix of class "dpoMatrix"
                     (Intercept)
                                          age0
                                                  groupsJail age0:groupsJail
                   0.0013266680 -1.449788e-04 -0.0013266680
                                                               1.449788e-04
## (Intercept)
## age0
                  -0.0001449788 4.072833e-05 0.0001449788
                                                              -4.072833e-05
                  -0.0013266680 1.449788e-04 0.0023287011 -2.486054e-04
## groupsJail
## age0:groupsJail 0.0001449788 -4.072833e-05 -0.0002486054
                                                                6.842322e-05
VarCorr (mod2g)
##
   Groups
             Name
                        Std.Dev. Corr
   PROC_CID (Intercept) 0.401711
##
##
                        0.029938 -0.313
             age0
##
                         0.435620
   Residual
fixef(mod2g)
##
       (Intercept)
                                        groupsJail age0:groupsJail
                              age0
##
       2.717416961
                      -0.003997618
                                       0.093496648
                                                      -0.007431764
head(ranef(mod2g)[[1]])
##
         (Intercept)
                              age0
## 9102
          0.2825889 -0.0036110312
          0.1582912 0.0013310875
## 9501
## 9502
         0.1542974 -0.0003923893
## 9503
         0.1411350 0.0002529397
## 10001 0.1814453 -0.0008900323
## 12802 0.2999653 -0.0027624589
head(coef(mod2g)[[1]])
##
         (Intercept)
                             ageO groupsJail ageO:groupsJail
## 9102
           3.000006 -0.007608649 0.09349665
                                                -0.007431764
## 9501
           2.875708 -0.002666530 0.09349665
                                                -0.007431764
           2.871714 -0.004390007 0.09349665
## 9502
                                                -0.007431764
                                                -0.007431764
           2.858552 -0.003744678 0.09349665
## 9503
           2.898862 -0.004887650 0.09349665
## 10001
                                                -0.007431764
           3.017382 -0.006760077 0.09349665
                                                -0.007431764
## 12802
confint.merMod(mod2g, method = "boot", nsim = 10)
##
                         2.5 %
                                     97.5 %
                   0.37825912 0.442446652
## .sig01
                  -0.59786608 -0.087752901
## .sig02
## .sig03
                   0.02074286 0.050678276
## .sigma
                   0.41349474 0.459740673
## (Intercept)
                   2.61954063 2.822716922
## age0
                   -0.01474274 0.004169720
## groupsJail
                   0.02965519 0.221246440
## age0:groupsJail -0.02043541 0.001165393
All units of the random effects are in standard deviation units (which means you need to square them to get the
variance!!)
```

- .sig01 = sd of random intercept = $\sqrt{\tau_{00}}$
- .sig02 = correlation between slope and intercept = $\sqrt{\tau_{10}}$
- .sig03 = sd of random slope = $\sqrt{\tau_{11}}$

• .sigma = residual variance = $\hat{\sigma}$

```
reghelper::ICC(mod2g)
## [1] 0.4609468
```

Conditional R^2 : How much variance fixed + random effects explain Marginal R^2 : how much variance the fixed effects explain

explained here

```
MuMIn::r.squaredGLMM(mod2g)

## R2m R2c
## 0.005234242 0.452019164
```

Side Note: Creating MLM Tables

There are lots of helpful packages for this, including stargazer and sjPlot, which are demonstrated below.

```
stargazer::stargazer(mod2g)
sjPlot::sjt.lmer(mod2g)
```

The problem is that stargazer() doesn't include all the terms we want, and sjt.lmer() only renders html. Embedded in the .Rmd version of these slides is some code that should help you to extract the terms you need and create a table using dplyr and tidyr that you can render in LATEX using stargazer.

But let's understand where those variables came from. To do so, we'll use the broom package in R to grab the terms we need.

Description	Math Notation
Fixed Effect Intercept	γ_{00}
Fixed Effect Group Intercept	γ_{01}
Fixed Effect Age Slope	γ_{10}
Fixed Effect Group Slope	γ_{11}
Individual Random Intercepts	U_{0j}
Variance of Random Intercepts	$ au_{00}$
Random Age Slopes	U_{10}
Variance of Random Age Slopes	$ au_{11}$
Correlation b/w Random Slopes and Intercepts	$ au_{10}$
Residual Variance	$\hat{\sigma}^2$
Intraclass Correlation	ICC
Conditional \mathbb{R}^2	R_c^2
Marginal \mathbb{R}^2	R_m^2

```
broom::tidy(mod2g)
broom::glance(mod2g)
```

```
##
                              term
                                       estimate
                                                 std.error statistic
## 1
                       (Intercept) 2.717416961 0.036423454 74.6062393
## 2
                              age0 -0.003997618 0.006381875 -0.6264017
## 3
                        groupsJail 0.093496648 0.048256617 1.9374887
## 4
                   age0:groupsJail -0.007431764 0.008271833 -0.8984423
## 5
           sd_(Intercept).PROC_CID 0.401711448
                                                                    NA
                                                         NΑ
                 sd_age0.PROC_CID 0.029938129
                                                         NΑ
                                                                    NA
## 7 cor_(Intercept).age0.PROC_CID -0.312526843
                                                         NΑ
                                                                    NA
```

```
## 8
           sd Observation.Residual 0.435619527
                                                          NΑ
                                                                      NA
##
        group
## 1
        fixed
## 2
        fixed
## 3
        fixed
## 4
        fixed
## 5 PROC_CID
## 6 PROC CID
## 7 PROC_CID
## 8 Residual
##
                  logLik
                               AIC
                                        BIC deviance df.residual
         sigma
## 1 0.4356195 -1303.786 2623.571 2666.457 2579.802
```

Below is code that *should* work for all models. Just run the function and save it as an R object. You can use this with papaja and the apa_table() function pretty easily. The trick is that if you are not using the papaja template, the proper LaTeX packages may not be loaded. You can get around this by attaching a .tex file calling the packages under "in_header: header.tex" in your YAML header. The YAML header of this .Rmd file contains the necessary syntax and the header.tex file with the proper packages.

```
## here's some code to make a table. You shouldn't need to modify anything here
# unless you add additional random effects terms
## fixed effects first ##
table_fun <- function(model){</pre>
    fixed <- broom::tidy(mod2g) %>% filter(group == "fixed") %>%
    select(term, estimate)
  ## add random effects ##
 rand <- broom::tidy(mod2g) %>% filter(group != "fixed") %>%
    select(term, estimate)
  ## get confidence intervals ##
  CI <- data.frame(confint.merMod(mod2g, method = "boot", nsim = 10)) %>%
    mutate(term = rownames(.)) %>% setNames(c("lower", "upper", "term"))
  ## Get ICC & R2 values ##
  ICC <- reghelper::ICC(mod2g)</pre>
 R2 <- MuMIn::r.squaredGLMM(mod2g)
  ## format the fixed effects
 fixed <- fixed %>% left_join(CI %>% filter(!grepl(".sig", term))) %>%
    mutate(type = "Fixed Parts")
 rand <- rand %>%
   mutate(term = mapvalues(term, unique(term),
            c("\$\tau\{00\}\$", "\$\tau_{11}\$", "\$\tau_{10}\$", "\$\hat{\sigma^2}\$")),
           estimate = estimate^2) %>%
   left_join(
      CI %>% filter(grepl(".sig", term)) %>%
        mutate(term = mapvalues(term, unique(term),
            c("$\tau{00}$", "$\tau_{10}$", "$\tau_{11}$", "$\hat{\sigma^2}$")),
            lower = lower^2, upper = upper^2)) %>%
   mutate(type = "Random Parts")
  mod_terms <- tribble(</pre>
    ~term, ~estimate, ~type,
    "ICC", ICC, "Model Terms",
    "$R^2_m$", R2[1], "Model Terms",
    "$R^2_c$", R2[2], "Model Terms"
 tab <- fixed %>%
```

```
full_join(rand) %>%
  mutate(CI = sprintf("(%.2f, %.2f)", lower, upper)) %>%
  select(-lower, -upper) %>%
  full_join(mod_terms) %>%
  mutate(estimate = sprintf("%.2f", estimate)) %>%
  select(type, everything())
}

# you can use this with papaja and the apa_table function pretty easily
# the trick is that if you are not using the papaja template, the proper
# LaTeX packages may not be loaded. You can get around this by attaching
# a .tex file calling the packages under "in_header: header.tex" in your YAML
# header the YAML header of this .Rmd file contains the necessary syntax and
# the header.tex file with the proper packages
tab <- table_fun(mod2g)
```

Basic: kable()

```
options(knitr.kable.NA = '')
knitr::kable(tab, caption = "Ugly MLM Table Example")
```

Table 6: Ugly MLM Table Example

type	term	estimate	CI
Fixed Parts	(Intercept)	2.72	(2.65, 2.74)
Fixed Parts	age0	-0.00	(-0.01, 0.01)
Fixed Parts	groupsJail	0.09	(0.04, 0.18)
Fixed Parts	age0:groupsJail	-0.01	(-0.03, -0.00)
Random Parts	$\tau 00$	0.16	(0.14, 0.19)
Random Parts	$ au_{11}$	0.00	(0.00, 0.00)
Random Parts	$ au_{10}$	0.10	(1.00, 0.00)
Random Parts	$\hat{\sigma^2}$	0.19	(0.17, 0.20)
Model Terms	ICC	0.46	
Model Terms	R_m^2	0.01	
Model Terms	R_c^2	0.45	

More Advanced: kable() + kableExtra

Table 7: Ugly MLM Table Example

	Model 1
term	estimate CI

Table 8: MLM Table Example

term	estimate	CI
Fixed		
(Intercept)	2.72	(2.65, 2.74)
age0	-0.00	(-0.01, 0.01)
groupsJail	0.09	(0.04, 0.18)
age0:groupsJail	-0.01	(-0.03, -0.00)
Random		
$\tau 00$	0.16	(0.14, 0.19)
$ au_{11}$	0.00	(0.00, 0.00)
$ au_{10}$	0.10	(1.00, 0.00)
$\hat{\sigma^2}$	0.19	(0.17, 0.20)
ICC	0.46	
R_m^2	0.01	
R_c^{2}	0.45	

Fixed		
Intercept	2.72	(2.65, 2.74)
age0	-0.00	(-0.01, 0.01)
groupsJail	0.09	(0.04, 0.18)
age0:groupsJail	-0.01	(-0.03, -0.00)
Random		
$\tau 00$	0.16	(0.14, 0.19)
$ au_{11}$	0.00	(0.00, 0.00)
$ au_{10}$	0.10	(1.00, 0.00)
$\hat{\sigma^2}$	0.19	(0.17, 0.20)
Model		
ICC	0.46	
R_m^2	0.01	
R_c^2	0.45	

Alternative: papaja + apa_table()

Side Note: Plotting

Lazy Method: sjPlot + sjt.int()

 ${\bf Categorical}$

Interaction effect of groups and age0 on SensSeek

Continuous

sjp.int(mod1b, type = "eff", p.kr = F, swap.pred = T, mdrt.values = "meansd")

Interaction effect of DemPweight and age0 on SensSeek

More advanced: expand.grid() + fixef() + ggplot2()

Categorical

```
# example for categorical
fixed.frame <-
 data.frame(
   expand.grid(
      # here, you add values for your time variable and predictors
      age0 = seq(0,10,2),
      groupsNone = c(0,1))) %>%
  # now take care of interactions and add an intercept
 mutate('age0:groupsNone' = age0*groupsNone,
         Intercept = 1) %>%
  # reordering everything
 select(Intercept, everything())
# multiplying to get values for model frame
fixed.frame$value <- as.vector(as.matrix(fixed.frame) %*% fixef(mod2g))</pre>
fixed.frame %>%
 mutate(groups = factor(groupsNone, levels = c(0,1), labels = c("Jail", "None")),
         age = age0 + 14) \%
 ggplot(aes(x = age, y = value, color = groups)) +
    geom_line(size = 2) +
    labs(x = "Age", y = "Sensation Seeking Composite",
         title = "2 Group Time Invariant Conditional Growth Models") +
   theme_classic() +
    theme(axis.text = element_text(face = "bold", size = rel(1.2)),
```

```
axis.title = element_text(face = "bold", size = rel(1.2)),
legend.title = element_text(face = "bold", size = rel(1.2)),
plot.title = element_text(face = "bold", size = rel(1.2), hjust = .5))
```

2 Group Time Invariant Conditional Growth Models

Continuous

```
# example for continuous
fixed.frame <- sample_dat %>%
  summarise(mean = mean(DemPweight, na.rm = T),
            sd = sd(DemPweight, na.rm = T))
fixed.frame <-
  data.frame(
    expand.grid(
      # here, you add values for your time variable and predictors
      age0 = seq(0,10,2),
      DemPweight = c(fixed.frame$mean-fixed.frame$sd,
                     fixed.frame$mean,
                     fixed.frame$mean+fixed.frame$sd))) %>%
  # now take care of interactions and add an intercept
  mutate(`age0:DemPweight` = age0*DemPweight,
         Intercept = 1) %>%
  # reordering everything
  select(Intercept, everything())
# multiplying to get values for model frame
fixed.frame$value <- as.vector(as.matrix(fixed.frame) %*% fixef(mod1b))</pre>
fixed.frame %>%
```

Continuous Invariant Conditional Growth Models

Side Note: Comparisons with 1smeans

The 1smeans package has a lot of useful functions. They are listed below. Then I'll demonstrate them in turn.

```
# create a reference grid
ref.grid2g <- ref.grid(mod2g)
# create the lsmeans object
lsgroups <- lsmeans(ref.grid2g, "groups")
# compact letter display
cld(lsgroups, alpha = .10)
# plot
plot(lsgroups)
# contrasts of the ref.grid object
contrast(ref.grid2g, method = "eff")
# comparisons</pre>
```

```
groups.sum <- summary(lsgroups, infer = c(TRUE,TRUE),</pre>
                      level = .90, adjust = "bon", by = "groups")
# create a reference grid
(ref.grid2g <- ref.grid(mod2g))</pre>
## 'ref.grid' object with variables:
##
       age0 = 3.9123
       groups = None, Jail
# create the lsmeans object
(lsgroups <- lsmeans(ref.grid2g, "groups"))</pre>
    groups 1smean
                            SE
                                    df lower.CL upper.CL
## None
         2.701777 0.02855972 701.42 2.645704 2.757850
         2.766199 0.02480113 676.80 2.717505 2.814892
##
## Degrees-of-freedom method: satterthwaite
## Confidence level used: 0.95
# compact letter display
cld(lsgroups, alpha = .10)
                                    df lower.CL upper.CL .group
    groups 1smean
                            SE
          2.701777 0.02855972 701.42 2.645704 2.757850 1
          2.766199 0.02480113 676.80 2.717505 2.814892
##
## Degrees-of-freedom method: satterthwaite
## Confidence level used: 0.95
## significance level used: alpha = 0.1
# plot
plot(lsgroups)
      Jail
groups
    None
               2.65
                                     2.70
                                                           2.75
                                                                                 2.80
                                                Ismean
```

```
# contrasts of the ref.grid object
contrast(ref.grid2g, method = "eff")
##
    contrast
                                     estimate
                                                       SE
                                                              df t.ratio
    3.91226954863318, None effect -0.03221079 0.01891265 690.74 -1.703
##
    {\tt 3.91226954863318, Jail\ effect}\quad {\tt 0.03221079\ 0.01891265\ 690.74}
##
    p.value
##
     0.0890
##
     0.0890
##
## P value adjustment: fdr method for 2 tests
# comparisons
(groups.sum <- summary(lsgroups, infer = c(TRUE, TRUE),
          level = .90, adjust = "bon", by = "groups"))
## groups = None:
##
      lsmean
                     SE
                             df lower.CL upper.CL t.ratio p.value
    2.701777 0.02855972 701.42 2.654739 2.748816 94.601 <.0001
##
##
## groups = Jail:
##
     lsmean
                     SE
                             df lower.CL upper.CL t.ratio p.value
   2.766199 0.02480113 676.80 2.725351 2.807047 111.535 <.0001
## Degrees-of-freedom method: satterthwaite
## Confidence level used: 0.9
```

Time Varying Predictors

Time Varying Predictors: Continuous

Next, we'll add in a time-varying predictor. Maybe it's not that our participants sensation seeking is moderated by early life experiences of jail or court-ordered community service. Instead, their sensation seeking is moderated by depression.

How does this look?

```
• Level 1: Y_{ij} = \beta_{0j} + \beta_{1j} * time + \beta_{2j} * CESD + \varepsilon ij

• Level 2:

-\beta_{0j} = \gamma_{00} + \gamma_{01} + U_{0j}
-\beta_{1j} = \gamma_{10} + U_{1j}
-\beta_{2j} = \gamma_{20}
```

To Interaction or Not - That Is the Question

```
• Level 1: Y_{ij} = \beta_{0j} + \beta_{1j} * age0 + \beta_{2j} * CESD + \varepsilon ij

• Level 2:

 - \beta_{0j} = \gamma_{00} + \gamma_{01} + U_{0j} 
 - \beta_{1j} = \gamma_{10} + U_{1j} 
 - \beta_{2j} = \gamma_{20} 
Y_{ij} = \gamma_{00} + \gamma_{01} + U_{0j} + (\gamma_{10} + U_{1j}) * age0 + \gamma_{20} * CESD
```

Example: Does depression influence changes in sensation seeking over time?

```
modTV1 <- lmer(SensSeek ~ age0 + CESD + (age0|PROC_CID), data = sample_dat)</pre>
summary(modTV1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: SensSeek ~ age0 + CESD + (age0 | PROC_CID)
     Data: sample_dat
##
## REML criterion at convergence: 3391.9
## Scaled residuals:
     Min 1Q Median
                            30
##
                                    Max
## -3.4390 -0.5035 0.0363 0.4423 3.1508
##
## Random effects:
## Groups Name
                       Variance Std.Dev. Corr
## PROC_CID (Intercept) 0.1412389 0.37582
                      0.0008117 0.02849 -0.21
##
            age0
## Residual
                       0.1892164 0.43499
## Number of obs: 2084, groups: PROC_CID, 924
##
## Fixed effects:
              Estimate Std. Error t value
## (Intercept) 2.710845 0.025121 107.91
        -0.006475 0.003553 -1.82
## age0
## CESD
              0.078617 0.021519 3.65
##
## Correlation of Fixed Effects:
      (Intr) age0
## age0 -0.467
## CESD -0.604 -0.036
# example for continuous
# note MEANS ARE AT AGEO = 0
fixed.frame <- sample_dat %>%
 filter(age0 == 0) %>%
  summarise(mean = mean(CESD, na.rm = T),
            sd = sd(CESD, na.rm = T))
fixed.frame <-
  data.frame(
    expand.grid(
      # here, you add values for your time variable and predictors
      age0 = seq(0,10,2),
      CESD = c(fixed.frame$mean-fixed.frame$sd,
                      fixed.frame$mean,
                      fixed.frame$mean+fixed.frame$sd))) %>%
  # now take care of interactions and add an intercept
  mutate(Intercept = 1) %>%
  # reordering everything
  select(Intercept, everything())
# multiplying to get values for model frame
fixed.frame$value <- as.matrix(fixed.frame) %*% as.vector(fixef(modTV1))</pre>
```

Continuous Time Varying Conditional Growth Models

Time Varying Predictors: Categorical

Next, we'll add in a time-varying predictor. Maybe it's not that our participants sensation seeking is moderated by early life experiences of jail or court-ordered community service. Instead, their sensation seeking is moderated by depression.

How does this look?

- Level 1: $Y_{ij} = \beta_{0j} + \beta_{1j} * time + \beta_{2j} * depressed + \varepsilon ij$
- Level 2:
 - $-\beta_{0j} = \gamma_{00} + \gamma_{01} + U_{0j}$
 - $-\beta_{1j} = \gamma_{10} + U_{1j}$

```
-\beta_{2j} = \gamma_{20}
# creating a dummy variable for time varying categorical depression
sample_dat <- sample_dat %>%
  mutate(depressed =
          factor(ifelse(CESD \le 1.5, 0, 1), levels = c(0,1),
                 labels = c("Depressed", "Not Depressed")))
modTV2 <- lmer(SensSeek ~ age0 + depressed + (age0|PROC_CID),</pre>
              data = sample_dat)
summary(modTV2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: SensSeek ~ age0 + depressed + (age0 | PROC_CID)
##
     Data: sample_dat
##
## REML criterion at convergence: 3401
## Scaled residuals:
      Min
##
           1Q Median
                             3Q
                                      Max
## -3.3686 -0.5094 0.0363 0.4522 3.1406
##
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## PROC_CID (Intercept) 0.1427349 0.37780
##
            age0 0.0008415 0.02901 -0.21
## Residual
                        0.1895332 0.43535
## Number of obs: 2084, groups: PROC_CID, 924
## Fixed effects:
##
                          Estimate Std. Error t value
## (Intercept)
                         2.760189 0.020388 135.38
## age0
                        -0.006154 0.003564 -1.73
## depressedNot Depressed 0.068617 0.039992
                                               1.72
## Correlation of Fixed Effects:
             (Intr) age0
              -0.599
## age0
```

dprssdNtDpr -0.174 -0.024