13a_AssciationRuleOverview

January 18, 2024

1 Market Basket Analysis/Association Rules Mining Overview

1.1 What is it?

- Searching for common items(pairs, tuples) in transactions
 - frequent itemsets
- If we see A in a transaction, we also see B x% of the time
 - rules/assciation rules
- Where do we use it
 - Often when events can be grouped together
 - * Shopping transaction contains many items
 - · Eggs, fish, bread, etc.
 - * Observing any of these items in a transaction we can think of as an event (probability)
 - * We may be interested in understanding which events tend to happen together
 - · e.g. Which items tend to be bought together
 - · From this, we can derive insights
 - Other examples:
 - * Pages visited on a website (in a browsing session)
 - · % of people who go to the homepage & the about page in the same session
 - * Customer service touchpoints (fo a single query)
 - · % who use the chatbot
 - · % who phoned up
- Identifying frequent itemsets
 - An itemset is a set of items
 - i.e. some events that occur together
 - e.g. $\{Bread, Cheese\}$
 - We often want to know how many itemsets CONTAIN a specific itemset
- Rules
 - A rule is a statement of the form $\{X\} \to \{Y\}$
 - * $\{X\}$ denotes an itemset containing item X
 - * A transaction when shopping may contain many items, e.g. {eggs, bread, fish, ...}
 - * A rule is of the form $\{X\} \to \{Y\}$
 - To be read, when we see X, we also see Y ... (some % of the time, with some degree of confidence)
 - * e.g. $\{eggs\} \rightarrow \{bread\}, 0.8$
 - · When we see eggs in a transaction, we also see bread 80% of the time
 - * e.g. $\{eggs, butter\} \rightarrow \{bread\}, 0.7$

· When we see eggs AND butter in a transaction, we also see bread 70% of the time

1.1.1 Metrics

1.2Support

- Proportion of all itemsets containing a specific itemset
 - e.g. $Support(\{X\})$ is the proportion of all itemsets containing the item X
 - e.g. $Support(\{X,Y\})$ is the proportion of all itemsets containing the itemset (i.e. both items) X, Y
- $Support(\{X\}) = \frac{\# \text{ containing X}}{\# \text{ total number of itemsets}}$ If $Support(\{Bread\}) = 0.8 \text{ then } 80\% \text{ of transaction contain } bread$
- Support = Probability of observing X

1.3Confidence

- Tells us the proportion of the time that, when we see X, we go on to see Y
 - $-Confidence(\{X\} \to \{Y\})$ is proportion of the time that, when we see X, we go on to see Y
 - e.g. $Confidence(\{Bread\} \rightarrow \{Eggs\})$ is proportion of the time that, when we see Bread, we go on to see Eqqs

$$Confidence(\{X\} \rightarrow \{Y\}) = \frac{\# \text{ containing X and Y}}{\# \text{ containing X}} = \frac{Support(\{X,Y\})}{Support(\{X\})}$$

- e.g. $Confidence(\{Bread\} \rightarrow \{Eggs\}) = 1$ means that whenever someone purchases Bread, they also purchase eggs
- e.g. $Confidence(\{Cheese\} \rightarrow \{Wine\}) = 0$ means that whenever someone purchases Cheese, they never purchase wine
- e.g. $Confidence(\{Milk\} \rightarrow \{Flour\}) = 0.5$ means that whenever someone purchases Milk, they also purchase flour 50% of the time

1.4 Lift

$$Lift(\{X\} \rightarrow \{Y\}) = \frac{Confidence(\{X\} \rightarrow \{Y\})}{Support\{Y\}} = \frac{Support(\{X,Y\})}{Support(\{X\}) \times Support(\{Y\})}$$

- Numerator = Proportion of the time we actually see X & Y together
- Denominator = Proportion of the time we would expect to see X & Y together IF they were unrelated (independent)
- Actual times we see X, Y $\overline{\text{Expected amount to see X, Y}}$ Lift tells us how much more (or less) often we see X and Y together than we would expect to if they were unrelated (independent)
- e.g. $Lift(\{Bread\} \rightarrow \{Eqgs\}) = 2$ means that we see Bread and Eqgs together 2 times more often than we would expect to if they were unrelated (independent)
- e.g. $Lift(\{Cheese\} \rightarrow \{Wine\}) = 1$ means that we see Cheese and Wine together as often as we would expect to if they were unrelated
- e.g. $Lift(\{Milk\} \rightarrow \{Flour\}) = 0.5$ means that we see Milk and Flour together 0.5 times as often as we would expect to if they were unrelated

1.5 Goals

- Association => Not necessarily causal rule mining
- We need ways to do the following
 - Come up with good rules
 - Come up with sets of items that frequently occur together
 - Evaluate strength of rules
 - * Support (= proportion of transaction containing itemset == probability of observing set)
 - * Confidence (Evaluate strength of rule == conditional probability)
 - * Lift (How much more than randomly do we see a rule happen)

[]: