MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Aceitar ou rejeitar uma hipótese estatística.

Hipótese Estatística

Suposição

H ₀	Hipótese nula	descrição
H_1	Hipótese alternativa	descrição

Tipos de erro:

- Erro tipo I : Rejeitar hipótese quando é verdadeira
 - (α = nível de significância)
- Erro tipo II : Aceitar hipótese quando ela é falsa
 - (β)

Passo 1

Interprete a situação de modo a obter a média μ;

Passo 2

Construa as hipóteses, dizendo se é bilateral ou unilateral, considerando a média em questão;

Passo 3

Obtenha o grau de significância;

Passo 4

Verifique qual o tipo de distribuição mais apropriado (normal ou t-Student);

Passo 5

Calcule a estatística de teste, usando:

$$\circ \qquad Z = \frac{\bar{x} - \mu}{\sigma/\sqrt{\pi}} \text{ (para a normal)}$$

$$Z = rac{ar{x} - \mu}{\sigma/\sqrt{n}}$$
 (para a normal)
$$t = rac{ar{x} - \mu}{s/\sqrt{n}}$$
 (para a t-Student)

Passo 6

Interprete a estatística de teste para verificar se a hipótese nula será ou não rejeitada. Se z ou t corresponder a valores da região crítica, rejeite H₀, caso contrário, não rejeite H₀.

Tipos de teste:

Bilateral $H_0: \mu = \mu_0$

Unilateral

Exemplo do livro:

- H_0 : $\mu = 20$
- H_1 : $\mu > 20$
- Variância da população $(\sigma^2) = 16$
- Amostra (n) = 16
- $\alpha = 5\%$

$$Z = \frac{x_c - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Ou

$$1,64 = \frac{x_c - 20}{\frac{4}{\sqrt{16}}}$$

Logo:

$$X_c = 21,64$$

Exemplo do livro:

- Rejeita H_0 quando x > 21,64
- NÃO rejeitar H_0 : $x \le 21,64$

"Com o nível de significância α = ?, não se pode rejeitar

Porquê??

Como saber qual distribuição utilizar?

Teste de Hipóteses para duas amostras

Deseja-se testar duas amostras agora...

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$t = \frac{x_1 - x_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Obs.: para t-Student, o grau de liberdade é o menor entre os valores de n_1-1 e n_2-1 .
- Obs. 2: considere que o teste acima é válido para amostras de populações diferentes. Não será cobrado testes para amostras da mesma população (amostras dependentes), pois a estimação da variância é feita de outra forma.

Teste de Hipóteses p/ duas amostras

Tipos de teste:

Bilateral

$$H_0$$
: $\mu_1 - \mu_2 = 0$

 H_a : $\mu_1 - \mu_2 \neq 0$

Unilateral

Exercícios

1) Uma fábrica de automóveis anuncia que seus carros consomem, em média, 10 litros de gasolina por 100 quilômetros, com desvio padrão de 0,8 litros. Uma revista desconfia que o consumo é maior e resolve testar essa afirmação. Para tal, analisa 35 automóveis dessa marca, obtendo como consumo médio 10,2 litros por 100 quilômetros. Considerando que o consumo siga o modelo Normal, o que a revista pode concluir sobre o anúncio da fábrica ao nível de 1%?

Exercícios

2) De duas populações normais X_1 e X_2 com variâncias 25, levantaram-se duas amostras de tamanhos $n_1=9$ e $n_2=16$, obtendo-se:

$$\sum_{i=1}^{n_1} X_{1i} = 27$$

$$\sum_{i=1}^{n_2} X_{2j} = 32$$

Teste as seguintes hipóteses ao nível de 10%:

$$H_0$$
: $\mu_1 - \mu_2 = 0$

$$H_a: \mu_1 - \mu_2 \neq 0$$

Resolução

- 1. Primeiro precisamos calcular as médias de x1 e x2: $\overline{x_1} = \frac{27}{9}$ e $\overline{x_2} = \frac{32}{16}$
- 2. O teste é bilateral dada as hipóteses H_o : $\mu_1 \mu_2 = 0$ e H_a : $\mu_1 \mu_2 \neq 0$
- 3. Então buscando na tabela Z, o valor para lpha=10% então z_{lpha} = 1,64.

Montamos o gráfico:

4. Encontramos então o Z utilizando a fórmula:

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \rightarrow z = \frac{3 - 2}{\sqrt{\frac{27}{9} + \frac{25}{16}}} \rightarrow z = \frac{1}{2,082} \rightarrow z = 0,48$$

Logo como o Z não está na Região Crítica, não rejeitamos a Ho, ou seja, a diferença entre as médias a um nível de 10% não é significante como dizia na Ha.

Exercícios

3) Examinaram-se 2 classes de 40 e 50 alunos de um mesmo período de um curso. Na primeira, o *grau médio* foi de 7,4 com *desvio padrão* de 0,8. Na segunda, a *média* foi de 7,8 com *desvio padrão* de 0,7. Há uma diferença significativa entre os aproveitamentos das 2 classes?

Resolução

1. Primeiro precisamos montar as hipóteses. Como ele quer saber se a diferença é significante termos que:

Ho: $\mu 1 - \mu 2 = 0$ Ha: $\mu 1 - \mu 2 != 0$

O contrário do que se quer testar
O que se quer testar

2. O teste é bilateral dada as hipóteses. 3. Como a questão não nos forneceu o valor de α , podemos adotar $\alpha=5\%$, como nosso padrão. Então buscando na tabela Z, o valor para $\alpha=5\%$ é z_{α} = 1,96.Montamos o gráfico:

4. Encontramos então o Z utilizando a ivillula.

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \rightarrow z = \frac{7,4 - 7,8}{\sqrt{\frac{0,8^2}{40} + \frac{0,7^2}{50}}} \rightarrow z = \frac{-0,4}{0,16} \rightarrow z - 2,49$$

Como o Z está na Região Crítica, rejeitamos a Ho, ou seja, a diferença entre as médias das notas a um nível de 5% é sim significante como dizia na Ha.

Dúvidas

