# Resampling Techniques, Bootstrap and Blocking

#### Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no

Department of Physics and Center fo Computing in Science Education, University of Oslo, Oslo, Norway

March 21, 2025

#### Overview of week March 17-21, 2025

### Topics.

- 1. Reminder from last week about statistical observables, the central limit theorem and bootstrapping, see notes from last week
- 2. Resampling Techniques, emphasis on Blocking
- 3. Discussion of onebody densities (whiteboard notes)

#### Why resampling methods?

## Statistical analysis.

- Our simulations can be treated as *computer experiments*. This is particularly the case for Monte Carlo methods
- The results can be analysed with the same statistical tools as we would use analysing experimental data.
- As in all experiments, we are looking for expectation values and an estimate of how accurate they are, i.e., possible sources for errors.

#### Statistical analysis

- As in other experiments, many numerical experiments have two classes of errors:
  - 1. Statistical errors

© 1999-2025, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license

- 2. Systematical errors
- Statistical errors can be estimated using standard tools from statistics
- Systematical errors are method specific and must be treated differently from case to case.

#### And why do we use such methods?

As you will see below, due to correlations between various measurements, we need to evaluate the so-called covariance in order to establish a proper evaluation of the total variance and the thereby the standard deviation of a given expectation value.

The covariance however, leads to an evaluation of a double sum over the various stochastic variables. This becomes computationally too expensive to evaluate. Methods like the Bootstrap, the Jackknife and/or Blocking allow us to circumvent this problem.

#### Central limit theorem

Last week we derived the central limit theorem with the following assumptions:

**Measurement** i. We assumed that each individual measurement  $x_{ij}$  is represented by stochastic variables which independent and identically distributed (iid). This defined the sample mean of of experiment i with n samples as

$$\overline{x}_i = \frac{1}{n} \sum_j x_{ij}.$$

and the sample variance

$$\sigma_i^2 = \frac{1}{n} \sum_j (x_{ij} - \overline{x}_i)^2.$$

#### Further remarks

Note that we use n instead of n-1 in the definition of variance. The sample variance and the sample mean are not necessarily equal to the exact values we would get if we knew the corresponding probability distribution.

#### Running many measurements

Adding m measurements i. With the assumption that the average measurements i are also defined as iid stochastic variables and have the same probability function p, we defined the total average over m experiments as

$$\overline{X} = \frac{1}{m} \sum_{i} \overline{x}_{i}.$$

and the total variance

$$\sigma_m^2 = \frac{1}{m} \sum_i \left( \overline{x}_i - \overline{X} \right)^2.$$

These are the quantities we used in showing that if the individual mean values are iid stochastic variables, then in the limit  $m \to \infty$ , the distribution for  $\overline{X}$  is given by a Gaussian distribution with variance  $\sigma_m^2$ .

## Adding more definitions

The total sample variance over the mn measurements is defined as

$$\sigma^2 = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \overline{X})^2.$$

We have from the equation for  $\sigma_m^2$ 

$$\overline{x}_i - \overline{X} = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X}),$$

and introducing the centered value  $\tilde{x}_{ij} = x_{ij} - \overline{X}$ , we can rewrite  $\sigma_m^2$  as

$$\sigma_m^2 = \frac{1}{m} \sum_i (\overline{x}_i - \overline{X})^2 = \frac{1}{m} \sum_{i=1}^m \left[ \frac{i}{n} \sum_{j=1}^n \tilde{x}_{ij} \right]^2.$$

#### Further rewriting

We can rewrite the latter in terms of a sum over diagonal elements only and another sum which contains the non-diagonal elements

$$\sigma_m^2 = \frac{1}{m} \sum_{i=1}^m \left[ \frac{i}{n} \sum_{j=1}^n \tilde{x}_{ij} \right]^2$$
$$= \frac{1}{mn^2} \sum_{i=1}^m \sum_{j=1}^n \tilde{x}_{ij}^2 + \frac{2}{mn^2} \sum_{i=1}^m \sum_{j< k}^n \tilde{x}_{ij} \tilde{x}_{ik}.$$

The first term on the last rhs is nothing but the total sample variance  $\sigma^2$  divided by m. The second term represents the covariance.

#### The covariance term

Using the definition of the total sample variance we have

$$\sigma_m^2 = \frac{\sigma^2}{m} + \frac{2}{mn^2} \sum_{i=1}^m \sum_{j < k}^n \tilde{x}_{ij} \tilde{x}_{ik}.$$

The first term is what we have used till now in order to estimate the standard deviation. However, the second term which gives us a measure of the correlations between different stochastic events, can result in contributions which give rise to a larger standard deviation and variance  $\sigma_m^2$ . Note also the evaluation of the second term leads to a double sum over all events. If we run a VMC calculation with say  $10^9$  Monte carlo samples, the latter term would lead to  $10^{18}$  function evaluations. We don't want to, by obvious reasons, to venture into that many evaluations.

Note also that if our stochastic events are iid then the covariance terms is zero.

## Rewriting the covariance term

We introduce now a variable d = |j - k| and rewrite

$$\frac{2}{mn^2} \sum_{i=1}^m \sum_{j< k}^n \tilde{x}_{ij} \tilde{x}_{ik},$$

in terms of a function

$$f_d = \frac{2}{mn} \sum_{i=1}^{m} \sum_{k=1}^{n-d} \tilde{x}_{ik} \tilde{x}_{i(k+d)}.$$

We note that for d=0 we have

$$f_0 = \frac{2}{mn} \sum_{i=1}^{m} \sum_{k=1}^{n} \tilde{x}_{ik} \tilde{x}_{i(k)} = \sigma^2!$$

#### Introducing the correlation function

We introduce then a correlation function  $\kappa_d = f_d/\sigma^2$ . Note that  $\kappa_0 = 1$ . We rewrite the variance  $\sigma_m^2$  as

$$\sigma_m^2 = \frac{\sigma^2}{m} \left[ 1 + 2 \sum_{d=1}^{n-1} \kappa_d \right].$$

The code here shows the evolution of  $\kappa_d$  as a function of d for a series of random numbers. We see that the function  $\kappa_d$  approaches 0 as  $d \to \infty$ .

In this case, our data are given by random numbers generated for the uniform distribution with  $x \in [0,1]$ . Even with two random numbers being far away, we note that the correlation function is not zero.

#### Computing the correlation function

This code is best seen with the jupyter-notebook

```
#!/usr/bin/env python
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import random
# initialize the rng with a seed, simple uniform distribution
random.seed()
m = 10000
samplefactor = 1.0/m
x = np.zeros(m)
MeanValue = 0.
VarValue = 0.
for i in range (m):
    value = random.random()
    x[i] = value
    MeanValue += value
    VarValue += value*value
MeanValue *= samplefactor
VarValue *= samplefactor
Variance = VarValue-MeanValue*MeanValue
STDev = np.sqrt(Variance)
print("MeanValue =", MeanValue)
print("Variance =", Variance)
print("Standard deviation =", STDev)
# Computing the autocorrelation function
autocorrelation = np.zeros(m)
darray = np.zeros(m)
for j in range (m):
sum = 0.0
    darray[j] = j
    for k in range (m-j):
        sum += (x[k]-MeanValue)*(x[k+j]-MeanValue )
    autocorrelation[j] = (sum/Variance)*samplefactor
# Visualize results
plt.plot(darray, autocorrelation, 'ro')
plt.axis([0,m,-0.2, 1.1])
plt.xlabel(r'$d$')
plt.ylabel(r'$\kappa_d$')
plt.title(r'autocorrelation function for RNG with uniform distribution')
plt.show()
```

#### Resampling methods: Blocking

The blocking method was made popular by Flyvbjerg and Pedersen (1989) and has become one of the standard ways to estimate the variance  $var(\hat{\theta})$  for exactly one estimator  $\hat{\theta}$ , namely  $\hat{\theta} = \overline{X}$ , the mean value.

Assume  $n=2^d$  for some integer d>1 and  $X_1,X_2,\cdots,X_n$  is a stationary time series to begin with. Moreover, assume that the series is asymptotically uncorrelated. We switch to vector notation by arranging  $X_1,X_2,\cdots,X_n$  in an n-tuple. Define:

$$\hat{X} = (X_1, X_2, \cdots, X_n).$$

## Why blocking?

The strength of the blocking method is when the number of observations, n is large. For large n, the complexity of dependent bootstrapping scales poorly, but the blocking method does not, moreover, it becomes more accurate the larger n is.

## **Blocking Transformations**

We now define the blocking transformations. The idea is to take the mean of subsequent pair of elements from X and form a new vector  $X_1$ . Continuing in the same way by taking the mean of subsequent pairs of elements of  $X_1$  we obtain  $X_2$ , and so on. Define  $X_i$  recursively by:

$$(\boldsymbol{X}_0)_k \equiv (\boldsymbol{X})_k$$

$$(\boldsymbol{X}_{i+1})_k \equiv \frac{1}{2} \Big( (\boldsymbol{X}_i)_{2k-1} + (\boldsymbol{X}_i)_{2k} \Big) \quad \text{for all} \quad 1 \le i \le d-1 \quad (1)$$

#### **Blocking transformations**

The quantity  $X_k$  is subject to k blocking transformations. We now have d vectors  $X_0, X_1, \dots, X_{d-1}$  containing the subsequent averages of observations. It turns out that if the components of X is a stationary time series, then the components of  $X_i$  is a stationary time series for all  $0 \le i \le d-1$ 

We can then compute the autocovariance (or just covariance), the variance, sample mean, and number of observations for each i. Let  $\gamma_i, \sigma_i^2, \overline{X}_i$  denote the covariance, variance and average of the elements of  $X_i$  and let  $n_i$  be the number of elements of  $X_i$ . It follows by induction that  $n_i = n/2^i$ .

#### **Blocking Transformations**

Using the definition of the blocking transformation and the distributive property of the covariance, it is clear that since h = |i - j| we can define

$$\gamma_{k+1}(h) = cov ((X_{k+1})_i, (X_{k+1})_j)$$

$$= \frac{1}{4} cov ((X_k)_{2i-1} + (X_k)_{2i}, (X_k)_{2j-1} + (X_k)_{2j})$$

$$= \frac{1}{2} \gamma_k (2h) + \frac{1}{2} \gamma_k (2h+1) \text{ h} = 0$$

$$= \frac{1}{4} \gamma_k (2h-1) + \frac{1}{2} \gamma_k (2h) + \frac{1}{4} \gamma_k (2h+1) \text{ else}$$
(3)

The quantity  $\hat{X}$  is asymptotically uncorrelated by assumption,  $\hat{X}_k$  is also asymptotic uncorrelated. Let's turn our attention to the variance of the sample mean  $\text{var}(\overline{X})$ .

## Blocking Transformations, getting there

We have

$$\operatorname{var}(\overline{X}_k) = \frac{\sigma_k^2}{n_k} + \underbrace{\frac{2}{n_k} \sum_{h=1}^{n_k-1} \left(1 - \frac{h}{n_k}\right) \gamma_k(h)}_{=e_t} = \underbrace{\frac{\sigma_k^2}{n_k} + e_k}_{=e_t} \quad \text{if} \quad \gamma_k(0) = \sigma_k^2. \tag{4}$$

The term  $e_k$  is called the **truncation error**:

$$e_k = \frac{2}{n_k} \sum_{h=1}^{n_k-1} \left( 1 - \frac{h}{n_k} \right) \gamma_k(h).$$
 (5)

We can show that  $var(\overline{X}_i) = var(\overline{X}_i)$  for all  $0 \le i \le d-1$  and  $0 \le j \le d-1$ .

# Blocking Transformations, final expressions

We can then wrap up

$$n_{j+1}\overline{X}_{j+1} = \sum_{i=1}^{n_{j+1}} (\hat{X}_{j+1})_i = \frac{1}{2} \sum_{i=1}^{n_j/2} (\hat{X}_j)_{2i-1} + (\hat{X}_j)_{2i}$$

$$= \frac{1}{2} \left[ (\hat{X}_j)_1 + (\hat{X}_j)_2 + \dots + (\hat{X}_j)_{n_j} \right] = \underbrace{\frac{n_j}{2}}_{=n_{j+1}} \overline{X}_j = n_{j+1} \overline{X}_j. \quad (6)$$

By repeated use of this equation we get  $var(\overline{X}_i) = var(\overline{X}_0) = var(\overline{X})$  for all  $0 \le i \le d-1$ . This has the consequence that

$$\operatorname{var}(\overline{X}) = \frac{\sigma_k^2}{n_k} + e_k \quad \text{for all} \quad 0 \le k \le d - 1.$$
 (7)

## More on the blocking method

Flyvbjerg and Petersen demonstrated that the sequence  $\{e_k\}_{k=0}^{d-1}$  is decreasing, and conjecture that the term  $e_k$  can be made as small as we would like by making k (and hence d) sufficiently large. The sequence is decreasing. It means we can apply blocking transformations until  $e_k$  is sufficiently small, and then estimate  $\operatorname{var}(\overline{X})$  by  $\widehat{\sigma}_k^2/n_k$ .

For an elegant solution and proof of the blocking method, see the recent article of Marius Jonsson (former MSc student of the Computational Physics group).

## Example code form last week

- # 2-electron VMC code for 2dim quantum dot with importance sampling # Using gaussian rng for new positions and Metropolis- Hastings # Added energy minimization

```
from math import exp, sqrt
from random import random, seed, normalvariate
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from scipy.optimize import minimize
import sys
import os
# Where to save data files
PROJECT_ROOT_DIR = "Results"
DATA_ID = "Results/EnergyMin"
if not os.path.exists(PROJECT_ROOT_DIR):
        os.mkdir(PROJECT_ROOT_DIR)
if not os.path.exists(DATA_ID):
        os.makedirs(DATA_ID)
def data_path(dat_id):
        return os.path.join(DATA_ID, dat_id)
outfile = open(data_path("Energies.dat"),'w')
# Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,alpha,beta):
        r1 = r[0,0]**2 + r[0,1]**2
        r2 = r[1,0]**2 + r[1,1]**2
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
        deno = r12/(1+beta*r12)
        return exp(-0.5*alpha*(r1+r2)+deno)
# Local energy for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,alpha,beta):
        r1 = (r[0,0]**2 + r[0,1]**2)
        r2 = (r[1,0]**2 + r[1,1]**2)
        r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
        deno = 1.0/(1+beta*r12)
        deno2 = deno*deno
         \texttt{return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-deno2*(alpha*r12-deno2+2*beta*deno-deno2*) } \\  \texttt{return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-deno2*) } \\  \texttt{return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-deno2*) } \\  \texttt{return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-deno2*) } \\  \texttt{return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-deno2*) } \\  \texttt{return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-deno2*) } \\  \texttt{return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-deno2*) } \\  \texttt{return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha*(r1 +
# Derivate of wave function ansatz as function of variational parameters
def DerivativeWFansatz(r,alpha,beta):
        WfDer = np.zeros((2), np.double)
        r1 = (r[0,0]**2 + r[0,1]**2)
        r2 = (r[1,0]**2 + r[1,1]**2)
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
         deno = \bar{1.0}/(1+beta*r12)
        deno2 = deno*deno
        WfDer[0] = -0.5*(r1+r2)
        WfDer[1] = -r12*r12*deno2
        return WfDer
# Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
def QuantumForce(r,alpha,beta):
```

```
r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
         deno = 1.0/(1+beta*r12)
         return qforce
# Computing the derivative of the energy and the energy
def EnergyDerivative(x0):
          # Parameters in the Fokker-Planck simulation of the quantum force
         D = 0.5
         TimeStep = 0.05
          # positions
         PositionOld = np.zeros((NumberParticles,Dimension), np.double)
         PositionNew = np.zeros((NumberParticles, Dimension), np.double)
          # Quantum force
         QuantumForceOld = np.zeros((NumberParticles, Dimension), np.double)
         QuantumForceNew = np.zeros((NumberParticles, Dimension), np.double)
         energy = 0.0
         DeltaE = 0.0
         alpha = x0[0]
         beta = x0[1]
         EnergyDer = 0.0
         DeltaPsi = 0.0
         DerivativePsiE = 0.0
          #Initial position
         for i in range(NumberParticles):
                   for j in range(Dimension):
                             PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)
         wfold = WaveFunction(PositionOld, alpha, beta)
         QuantumForceOld = QuantumForce(PositionOld,alpha, beta)
          #Loop over MC MCcycles
         for MCcycle in range(NumberMCcycles):
                    #Trial position moving one particle at the time
                    for i in range(NumberParticles):
                              for j in range (Dimension):
                                       \label{eq:positionNew} \textbf{PositionNew}[\textbf{i},\textbf{j}] = \textbf{PositionOld}[\textbf{i},\textbf{j}] + \textbf{normal} \textbf{variate}(0.0,1.0) * \textbf{sqrt}(\textbf{TimeStep}) + \textbf{variate}(0.0,1.0) 
                                                                                                QuantumForceOld[i,j]*TimeStep*D
                              wfnew = WaveFunction(PositionNew,alpha,beta)
                             QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
                             GreensFunction = 0.0
                             for j in range(Dimension):
                                       GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
                                                                                               (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])
                                                                                              PositionNew[i,j]+PositionOld[i,j])
                             GreensFunction = exp(GreensFunction)
                             ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
                              #Metropolis-Hastings test to see whether we accept the move
                              if random() <= ProbabilityRatio:</pre>
                                       for j in range(Dimension):
                                                 PositionOld[i,j] = PositionNew[i,j]
QuantumForceOld[i,j] = QuantumForceNew[i,j]
                                       wfold = wfnew
                   DeltaE = LocalEnergy(PositionOld,alpha,beta)
                   DerPsi = DerivativeWFansatz(PositionOld,alpha,beta)
```

qforce = np.zeros((NumberParticles,Dimension), np.double)

```
DeltaPsi += DerPsi
        energy += DeltaE
        DerivativePsiE += DerPsi*DeltaE
    # We calculate mean values
    energy /= NumberMCcycles
   DerivativePsiE /= NumberMCcycles
    DeltaPsi /= NumberMCcycles
    EnergyDer = 2*(DerivativePsiE-DeltaPsi*energy)
   return EnergyDer
# Computing the expectation value of the local energy
def Energy(x0):
    # Parameters in the Fokker-Planck simulation of the quantum force
   D = 0.5
   TimeStep = 0.05
    # positions
   PositionOld = np.zeros((NumberParticles, Dimension), np.double)
   PositionNew = np.zeros((NumberParticles, Dimension), np.double)
    # Quantum force
    QuantumForceOld = np.zeros((NumberParticles, Dimension), np.double)
    QuantumForceNew = np.zeros((NumberParticles, Dimension), np.double)
    energy = 0.0
   DeltaE = 0.0
    alpha = x0[0]
   beta = x0[1]
    #Initial position
   for i in range(NumberParticles):
        for j in range(Dimension):
            PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)
   wfold = WaveFunction(PositionOld, alpha, beta)
    QuantumForceOld = QuantumForce(PositionOld,alpha, beta)
    #Loop over MC MCcycles
   for MCcycle in range(NumberMCcycles):
        #Trial position moving one particle at the time
        for i in range(NumberParticles):
            for j in range(Dimension):
                PositionNew[i,j] = PositionOld[i,j] + normal variate(0.0,1.0) * sqrt(TimeStep) + Volume  

                                        QuantumForceOld[i,j]*TimeStep*D
            wfnew = WaveFunction(PositionNew,alpha,beta)
            QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
            GreensFunction = 0.0
            for j in range(Dimension):
                GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
                                       (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])
                                       PositionNew[i,j]+PositionOld[i,j])
            GreensFunction = exp(GreensFunction)
            ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
            #Metropolis-Hastings test to see whether we accept the move
            if random() <= ProbabilityRatio:</pre>
                for j in range(Dimension):
                    PositionOld[i,j] = PositionNew[i,j]
                    QuantumForceOld[i,j] = QuantumForceNew[i,j]
                wfold = wfnew
        DeltaE = LocalEnergy(PositionOld,alpha,beta)
        energy += DeltaE
        if Printout:
```

```
outfile.write('%f\n' %(energy/(MCcycle+1.0)))
    # We calculate mean values
    energy /= NumberMCcycles
    return energy
#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
# seed for rng generator
seed()
# Monte Carlo cycles for parameter optimization
Printout = False
NumberMCcycles= 10000
# guess for variational parameters
x0 = np.array([0.9,0.2])
# Using Broydens method to find optimal parameters
res = minimize(Energy, x0, method='BFGS', jac=EnergyDerivative, options={'gtol': 1e-4, 'disp': True
x0 = res.x
# Compute the energy again with the optimal parameters and increased number of Monte Cycles
NumberMCcycles= 2**19
Printout = True
FinalEnergy = Energy(x0)
EResult = np.array([FinalEnergy,FinalEnergy])
outfile.close()
#nice printout with Pandas
import pandas as pd
from pandas import DataFrame
data ={'Optimal Parameters':x0, 'Final Energy':EResult}
frame = pd.DataFrame(data)
print(frame)
```

#### Resampling analysis

mu = mean(x)

The next step is then to use the above data sets and perform a resampling analysis using the blocking method The blocking code, based on the article of Marius Jonsson is given here

```
# Common imports
import os

# Where to save the figures and data files
DATA_ID = "Results/EnergyMin"

def data_path(dat_id):
    return os.path.join(DATA_ID, dat_id)

infile = open(data_path("Energies.dat"),'r')

from numpy import log2, zeros, mean, var, sum, loadtxt, arange, array, cumsum, dot, transpose, disfrom numpy.linalg import inv

def block(x):
    # preliminaries
    n = len(x)
    d = int(log2(n))
    s, gamma = zeros(d), zeros(d)
```

```
# estimate the auto-covariance and variances
    # for each blocking transformation
    for i in arange(0,d):
        n = len(x)
        \# estimate autocovariance of x
        gamma[i] = (n)**(-1)*sum((x[0:(n-1)]-mu)*(x[1:n]-mu))
         # estimate variance of x
        s[i] = var(x)
        # perform blocking transformation

\mathbf{x} = 0.5*(\mathbf{x}[0::2] + \mathbf{x}[1::2])
    \# generate the test observator M_k from the theorem
    M = (cumsum(((gamma/s)**2*2**arange(1,d+1)[::-1])[::-1])))
    \# we need a list of magic numbers
    q =array([6.634897,9.210340, 11.344867, 13.276704, 15.086272, 16.811894, 18.475307, 20.090235
    # use magic to determine when we should have stopped blocking
    for k in arange(0,d):
        if(M[k] < q[k]):
            break
    if (k >= d-1):
    print("Warning: Use more data")
return mu, s[k]/2**(d-k)
x = loadtxt(infile)
(mean, var) = block(x)
std = sqrt(var)
import pandas as pd
from pandas import DataFrame
data ={'Mean':[mean], 'STDev':[std]}
frame = pd.DataFrame(data,index=['Values'])
print(frame)
```