	AV314 - Communication Systems I
	Lecture 31 15/10/2019 Note that this rectuse was given using the board in class. So the actual contents of this rectuse note may differ from what was covered in class.
	Revicw: - CTRP (X(+)), t∈IR - DTRP (Xn), n∈Z
	$(x(t)) \rightarrow h(t) \qquad (x_n) \rightarrow h_n \rightarrow (y_n)$ $LTI \qquad LSI$ $Y(t) = \int_{-\infty}^{\infty} \chi(z) \cdot h(t-z) \cdot dz \qquad Y_n = \sum_{k=-\infty}^{\infty} \chi_k h_{n-k}$ $R. v \text{ at hime } t$ $R. v \text{ at hime } n.$
	R. V at hime t. R. V at hime n. Can we characterize FDI) of (Y(E)) as a function of FDD of (X(E)) and the impulse response h(E)?
	example: (X(t)) is IID. h(t) is S(t) + S(t-1)
(a)	impostant to note that the structure of the FDD is not preserved here.
<u>(A)</u>	Important to note that getting the joint distribution is not that easy. In applications (csp. like computation of SNR) summary statistics are enough. So we now ask whether it is possible to find out summary statistics we will answer this below. FDD structures which are preserved by LTI filtering. If (x(f)) is strictly stationary then (y(f)) is stationary. (also for DT)
_	If $(\chi(t))$ is W85 then $(\gamma(t))$ is W55. enample: (why on ould this property hold for SS $(\chi(t))$?) Let $(\chi(t))$ be 85 and $h(t) = S(t) + S(t-1)$ Ken $\gamma(t) = \chi(t) + \chi(t-1)$
	The distribution of $Y(t)$ is determined by the joint distrof $\chi(t)$, $\chi(t+1)$
	We can think who ut (9(t)) is FDDs in the same manner. (roing unto the details of this invariance property for WSS processes will be useful for us.
	Invariance pety for WSS process: $(\chi(f)) \longrightarrow h(f) \longrightarrow (\gamma(f))$ $WSS ?$
	$(X(t)) \text{ WSS} \rightarrow \hat{a}) $
	$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u) \cdot h(v) \cdot \not\equiv \chi(t_1 - u) \cdot \chi(t_2 - v) \cdot du \cdot dv.$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u) \cdot h(v) \cdot R_{\chi}(t_1 - t_2 - u + v) \cdot du dv \begin{cases} \text{from here it can be} \\ \text{seen that } K_{13} \text{ is a} \\ \text{function of } t_1 - t_2 \end{cases}$ Let $\omega = v - u$
	$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(v-\omega) \cdot h(v) \cdot R_{\times} (b_1-b_2+\omega) \cdot d\omega dv$ $= \int_{-\infty}^{\infty} R_{\times} (t_1-b_2+\omega) \cdot \int_{-\infty}^{\infty} h(v) \cdot h(v-\omega) \cdot dv \cdot d\omega$ $= \int_{-\infty}^{\infty} A_{\times} (t_1-b_2-\omega) \cdot \int_{-\infty}^{\infty} h(v) \cdot h(v+\omega) \cdot dv d\omega$ $= \int_{-\infty}^{\infty} A_{\times} (t_1-b_2-\omega) \cdot \int_{-\infty}^{\infty} h(v) \cdot h(v+\omega) \cdot dv d\omega$
	$0R = \int A_{x} (t_{1}-t_{2}-\omega) \cdot \int h(v) \cdot h(v+\omega) \cdot dv d\omega$ $= \int A_{x} (t_{1}-t_{2}-\omega) \cdot g(\omega) \cdot d\omega = (R_{x}*g) = R_{y}(t_{1}-t_{2})$