Setting up

- No zoom chat
 - Questions will be answered at specific times
- Suppress distractions
 - Clear notifications
 - Turn off your phone, mails, Facebook...
- Get ready: Open a clean browser with only:
 - Your personal report
 - The course instructions: https://tinyurl.com/instructions-fund-of-ai

ARTIFICIAL NEURAL NETWORKS

Loïs Vanhée Associate professor Responsible and Ethical Artificial Intelligence loisv@cs.umu.se

5DV124,5DV201 Fundamentals of Artificial Intelligence

Department of Computing Science

What is generally said about neural networks?

NONSENSE

All problems can be solved with enough data

Neural networks can solve everything

Intelligence is solved

Tool thinking

Tool in the toolbox

Inners of the tool

Usage and costs

In the machine learning toolbox

Inner workings

Search Gradient descent

For math, algorithms details, re-check the references

Costs and issues

Sensitive to bias Fragile and hard to fix Very expensive

"panda"

57.7% confidence

Raises serious social issues

"nematode"

8.2% confidence

+.007 ×

"gibbon"

99.3 % confidence

Your turn to play!

Real-world skill tree

Intended learning outcomes

At the end of the session, you should be able to:

Define the key concepts of neural networks

Relate these key concepts with each other and other Al tools

Manipulate neural network on a pre-set concrete example

Sketch how to implement neural networks for a specific problem

Appraise how neural Networks can be applied in a given problem

Same as last time: discussions in small groups

- Breakout rooms for ~3x15 minutes
 - Discuss your answers for each part
 - Keep the conversation flowing
 - 10 minutes: break and questions
- Check the instructions, if it is not already open:
 - https://tinyurl.com/instructions-fund-of-ai

No chitchat, be effective

Part A

Relate these key concepts of neural networks other Al tools

Manipulate neural network on a pre-set concrete example

Sketch how to implement neural networks for a specific problem

 Appraise how neural Networks can be applied in a given problem

https://tinyurl.com/fundOfAl

Turn on your micro and camera when your question is picked up Please write your name

On an ideal white board (and in your mind in the exam)

If you cannot come up with, define and relate these concepts, consolidate them during the post-class

Neuron

Weight

Bias

Input/output layers

Hidden layers

Sigmoid function

Backpropagation

Convolutional NN

Deep NN

DFF, RNN, LSTM

Databases/ datafarms

High-performance computing

Pattern recognition

Test loss

Training loss

Features

Training data (cross-validation)

Overtraining/overfitting

Black box

Classification

Gradient

descent

Grounding

problem

Data

Data collection

Computation

time

Energy

expenses

Hardware

expenses

Second activity: Application

Define the key concepts of neural networks **Relate** these key concepts with each other and other Al tools

Manipulate neural network on a pre-set concrete example

Sketch how to implement neural networks for a specific problem

 Appraise how neural Networks can be applied in a given problem

https://tinyurl.com/fundOfAI

Turn on your micro and camera when your question is picked up

Third activity: Analysis

Define the key concepts of neural networks **Relate** these key concepts with each other and other Al tools

Manipulate neural network on a pre-set concrete example

Sketch how to implement neural networks for a specific problem

Appraise how neural Networks can be applied in a given problem

https://tinyurl.com/fundOfAI

Turn on your micro and camera when your question is picked up

© Randy Glasbergen www.glasbergen.com

"I probably remember 20% of the stuff I learned in school and forgot the other 90%."

Take home message

- Neural networks are vaguely inspired from human neurons but they are widely different.
- They just use data for greedily adjusting many parameters
- Neural networks excel for input recognition
- Neural network hype is a fallacy: they just fixed the last problem of a long chain
- Neural networks are fragile: unexplainable arbitrary answers
- Neural networks are a sensitive tool: financial costs (power games), prone to bias, they generate a lot of social inequality

Anchoring

https://tinyurl.com/fundOfAI-LR

This is anchoring:

State what you learned

Write your answers on a sheet of paper if you can (though it helps us to know what you learned)

Save your feedback for later