MATH 6321

Theory of Functions of a Real Variable Spring 2025

First name:	Last name: _	 Points:	

Assignment 8, due Thursday, April 3, 10am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $1 \leq p < \infty$ and q be the conjugate exponent. Let μ be a σ -finite measure on X. Show that if $g: X \to \mathbb{C}$ is measurable and for each $f \in L^p(\mu)$, we have $fg \in L^1(\mu)$, then $g \in L^q(\mu)$. Hint: Consider $X = \cup_{i=1}^{\infty} X_j$ with $\mu(X_j) < \infty$ and $E_n = \{x \in X_n : |g(x)| \leq n\}$ to turn g into 'nicer' functions $g_n = g\chi_{E_n}$.

Problem 2

Let (X,\mathcal{M},μ) be a measure space. A set $\Phi\subset L^1(\mu)$ is called *uniformly integrable* if for each $\varepsilon>0$, there is $\delta>0$ such that if $E\in\mathcal{M}$ satisfies $\mu(E)<\delta$, then for each $f\in\Phi$, $\left|\int_E f d\mu\right|<\varepsilon$. Show that if $\mu(X)<\infty$, $f_n\to f$ μ -a.e., $\{f_n:n\in\mathbb{N}\}$ is uniformly integrable, and $|f(x)|<\infty$ for almost every $x\in X$, then $f\in L^1(\mu)$ and $\|f_n-f\|_1\to 0$. Hint: Use Egoroff and Fatou, splitting f_n into positive and negative real and imaginary parts.

Problem 3

Let μ be a finite measure on X, $(f_n)_{n=1}^\infty$ a sequence of functions in $L^1(\mu)$ that converges almost everywhere to a function $f: X \to \mathbb{C}$, and for some p > 1, there is $C \ge 0$ such that $\|f_n\|_p^p \le C$. Show that then $f \in L^1(\mu)$ and $\|f_n - f\|_1 \to 0$.