Mathematics for STAT 2032

Natural Logarithms

- 1. $\ln(xy) = \ln(x) + \ln(y)$
- 2. $\ln\left(\frac{x}{y}\right) = \ln(x) \ln(y)$
- $3. \quad \ln(x^n) = n \ln(x)$
- 4. $\ln(e^x) = e^{\ln(x)} = x$

Exponents

- $1. \quad (x^m)(x^n) = x^{m+n}$
- 2. $x^m / x^n = x^{m-n}$
- 3. $x^{-n} = \frac{1}{x^n}$
- 4. $x^0 = 1$
- 5. $(x^m)^n = x^{mn}$
- $6. \quad x^m y^m = (xy)^m$

Series

If a_t , t = 1, 2, 3,... is a sequence then $s_n = \sum_{t=1}^{n} a_t$ is a series.

The standard arithmetic series is

$$s_n = a + (a+d) + (a+2d) + \dots + (a+(n-1)d) = \sum_{t=1}^n a + (t-1)d$$

The summation formula for the n^{th} term of an arithmetic series is:

$$s_n = a + (a+d) + (a+2d) + \dots + (a+(n-1)d) = \frac{n}{2}(2a+(n-1)d)$$

Proof:

$$\begin{split} s_n &= a + \left(a + d\right) + \left(a + 2d\right) + \dots + \left(a + (n-1)d\right) \\ &= \left[a + \left(a + (n-1)d\right)\right] + \left[\left(a + d\right) + \left(a + (n-2)d\right)\right] + \left[\left(a + 2d\right) + \left(a + (n-3)d\right)\right] + \dots \\ &= \frac{n}{2} \left(2a + (n-1)d\right) \end{split}$$

The standard geometric series is $s_n = a + ar + ar^2 + ... + ar^{n-1} = \sum_{t=1}^{n} ar^{t-1}$

The summation formula for the n^{th} term of a geometric series is:

$$s_n = a + ar + ar^2 + ... + ar^{n-1} = \frac{a(1 - r^n)}{1 - r}$$
 where $r \neq 1$

Proof:

$$\begin{split} s_n &= a \left(1 + r + r^2 + \dots + r^{n-1} \right) \\ s_n (1 - r) &= a \left(1 + r + r^2 + \dots + r^{n-1} \right) - a \left(r + r^2 + \dots + r^{n-1} + r^n \right) \\ &= a - a r^n \\ &= a \left(1 - r^n \right) \\ s_n &= \frac{a \left(1 - r^n \right)}{1 - r} \end{split}$$

Quadratic Formula

To find the roots of the equation:

$$Ax^2 + Bx + C = 0$$

solve the following:

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

The Derivative and Differentiation

Consider a continuous smooth function y = f(x) and two points A and B on the graph of the function, where $A = (x_0, f(x_0))$ and $B = (x_1, f(x_1))$.

The slope of the line joining A and B is $\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{\Delta y}{\Delta x}$.

As Δx gets shorter and shorter, the slope of the line joining A and B approaches the slope of the tangent line at point x_0 .

We say that the derivative of y = f(x) at x_0 is the slope of the tangent line at the point x_0 :

$$\frac{dy}{dx}\Big|_{x_0} = f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

 $f'(x_0)$ is the derivative of y = f(x) at $x = x_0$.

Some rules of differentiation

In the following, a,b and c are constants.

1. If
$$f(x) = ax + b$$
, $f'(x) = a$

2. If
$$f(x) = ax^2 + bx + c$$
, $f'(x) = 2ax + b$

3. If
$$f(x) = x^n$$
, $f'(x) = nx^{n-1}$

4. If
$$h(x) = \sum_{i=1}^{n} g_i(x)$$
, $h'(x) = \sum_{i=1}^{n} g_i'(x)$

5. Product Rule: If
$$h(x) = f(x)g(x)$$
, $h'(x) = f'(x)g(x) + f(x)g'(x)$

6. Quotient Rule: If
$$h(x) = \frac{f(x)}{g(x)}$$
 and $g'(x) \neq 0$, $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$

7. If
$$f(x) = e^x$$
, $f'(x) = e^x$

8. If
$$f(x) = e^{g(x)}$$
, $f'(x) = g'(x)e^{g(x)}$

9. If
$$f(x) = \ln(x)$$
, $f'(x) = \frac{1}{x}$

10. If
$$f(x) = \ln(g(x))$$
, $f'(x) = \frac{g'(x)}{g(x)}$

11. L'Hopitals Rule: Suppose that as $x \to a$ both f(x) and g(x) either both tend to 0, both tend to $+\infty$ or both tend to $-\infty$. Then: $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Higher-order derivatives

If
$$y = f(x)$$
,

The first derivative is $\frac{dy}{dx} = f'(x)$

The second derivative is $\frac{d}{dx} \left[\frac{dy}{dx} \right] = \frac{d^2y}{dx^2} = f''(x)$

The third derivative is $\frac{d}{dx} \left[\frac{d^2 y}{dx^2} \right] = \frac{d^3 y}{dx^3} = f'''(x)$

Taylor Series Formula

The Taylor Series Formula will be used when we cover duration and convexity of cash flow sequences and Redington immunisation.

Consider the function y = f(x) is differentiable as many times as required. If we know $f(x_0)$ and the associated derivative values, the value of the function at the point x_1 can be approximated using the n^{th} order Taylor series approximation:

$$f(x_1) \cong f(x_0) + (x_1 - x_0)f'(x_0) + \frac{(x_1 - x_0)^2}{2!}f''(x_0) + \dots + \frac{(x_1 - x_0)^n}{n!}f^{(n)}(x_0)$$

where $f^{(n)}$ is the n^{th} derivative of y = f(x), and

$$n! = n(n-1)(n-2)...$$

eg. $5! = 5(4)(3)(2)(1) = 120$

For example, consider the exponential function e^x . Let $y = f(x) = e^x$ and set $x_0 = 0$. Using the Taylor series approximation, this can be written as:

$$e^{x_1} = f(x_1) \cong 1 + x_1 + \frac{(x_1)^2}{2!} + \dots$$

Integration

If
$$f(x) = \frac{d}{dx}F(x)$$
, then

$$F(x) + c = \int f(x)dx$$

Fundamental theorem of Integral Calculus

If the function f(x) is continuous on the closed interval [a,b] and if F(x) is any indefinite integral of f(x), then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Some rules of integration

In the following, a and b are constants.

1.
$$\int_{a}^{b} x^{n} dx = \frac{x^{n+1}}{n+1} \bigg|_{a}^{b} = \frac{b^{n+1} - a^{n+1}}{n+1}$$

2.
$$\int_{a}^{b} e^{x} dx = e^{x} \Big|_{a}^{b} = e^{b} - e^{a}$$

eg.
$$500 \int_{3}^{8} x^{4} dx = \frac{500x^{5}}{5} \bigg|_{3}^{8} = 100 \left(8^{5} - 3^{5} \right)$$

Probability and Statistics

The section on stochastic interest rate models will assume a basic knowledge of statistics. The main results that we will be using are summarised below:

For a **discrete random variable** \widetilde{X} , with probability function $p(x) = \Pr[\widetilde{X} = x]$, the mean is: $E[\widetilde{X}] = \sum x \cdot p(x)$

and the variance is:
$$Var\left[\widetilde{X}\right] = E\left[\widetilde{X}^2\right] - \left(E\left[\widetilde{X}\right]\right)^2 = \sum_x x^2 \cdot p(x) - \left(\sum_x x \cdot p(x)\right)^2$$

For a **continuous random variable** \widetilde{X} , with probability density function f(x), the probability $P[a < \widetilde{X} < b] = \int_a^b f(x) dx$.

$$\widetilde{X}$$
 has mean: $E\left[\widetilde{X}\right] = \int_{-\infty}^{\infty} x \cdot f(x) dx$

and variance:
$$Var\left[\widetilde{X}\right] = E\left[\widetilde{X}^2\right] - \left(E\left[\widetilde{X}\right]\right)^2 = \int_{-\infty}^{\infty} x^2 \cdot f(x) dx - \left(\int_{-\infty}^{\infty} x \cdot f(x) dx\right)^2$$

If a and b are constants then $Var[a\tilde{X} + b] = a^2 Var[\tilde{X}]$

The standard deviation of \tilde{X} is $\sqrt{Var[\tilde{X}]}$.

For a function
$$h(\cdot)$$
: $E[h(\widetilde{X})] = \int_{-\infty}^{\infty} h(x) \cdot f(x) dx$

If \tilde{X} and \tilde{Y} are independent random variables then $Var\left[\tilde{X}+\tilde{Y}\right]=Var\left[\tilde{X}\right]+Var\left[\tilde{Y}\right]$

We will also be using a number of continuous distributions:

Uniform distribution

$$f(x) = \frac{1}{b-a} \text{ for } a < x < b$$

$$E[\widetilde{X}] = \frac{a+b}{2}$$

$$Var[\widetilde{X}] = \frac{(b-a)^2}{12}$$

Normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right) \text{ for } -\infty < x < \infty$$

$$E[\widetilde{X}] = \mu$$

$$Var[\widetilde{X}] = \sigma^2$$

Recall that if \widetilde{X} is normally distributed with mean and variance as above, then

$$P\left[a < \widetilde{X} < b\right] = P\left[\frac{a - \mu}{\sigma} < \frac{\widetilde{X} - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right] = P\left[\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right]$$

where Z has a standard normal distribution (ie. normal distribution with mean 0 and variance 1).

Statistical tables can be used with a standard normal variable to find probabilities.