Devoir à rendre le 16/11/2020

Exercice 1 : Soit a un réel strictement positif différent de 1. On appelle logarithme de base a la fonction \ln_a de $\mathbb{R}^{+\star}$ dans \mathbb{R} qui à x fait correspondre $\ln_a(x) = \frac{\ln(x)}{\ln(a)}$.

- 1. Étudier la monotonie de la fonction \ln_a .
- 2. Pour tout couple $(x,y) \in \mathbb{R}^{+\star}$ et $n \in \mathbb{N}$, montrer que l'on a on a

$$\ln_a(xy) = \ln_a(x) + \ln_a(y)$$

$$\ln_a\left(\frac{1}{x}\right) = -\ln_a(x)$$

$$\ln_a\left(\frac{x}{y}\right) = \ln_a(x) - \ln_a(y)$$

$$\ln_a(x^n) = n \ln_a(x)$$

$$\ln_a(a^n) = n$$

- 3. Montrer que la fonction \ln_a est une bijection de $\mathbb{R}^{+\star}$ dans \mathbb{R} .
- 4. Déterminer \exp_a la réciproque du logarithme de base a.

Exercice 2:

- 1. Soit $(x, y) \in \mathbb{R}^2$. Montrer que $\operatorname{sh}(x + y) = \operatorname{ch}(x)\operatorname{sh}(y) + \operatorname{sh}(x)\operatorname{ch}(y)$.
- 2. Soit $(x,y) \in \mathbb{R}^2$. Calculer les sommes suivantes

$$\sum_{k=0}^{n} \operatorname{sh}(kx+y) \quad \text{et} \quad \sum_{k=0}^{n} \binom{n}{k} \operatorname{sh}(kx+y)$$

Exercice 3: Soit $f: x \mapsto \arccos(\operatorname{th} x) + 2\arctan(e^x)$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Montrer que f est dérivable sur son ensemble de définition.
- 3. Tracer le graphe de f.