Minicurso Introdução à Plataforma Arduino

MINISTRANTES: ALCIMAR FRANCELINO DE MEDEIROS NATHECIA DA CUNHA SANTOS

Quem somos?

 Alcimar Medeiros, tem 26 anos, graduando em licenciatura em informática pelo IFRN. Amante das tecnologias, Arduino, Raspberry Pi e jogador 2048 nas horas vagas.

 Nathecia Cunha, tem 18 anos, estudante de Informática no IFRN, Tec. Redes de Computadores pelo IMD e entusiasta na área maker, apaixonada por Arduino, Tecnologias e Unicórnios.

Sumário

- Arduino
 - Introdução
 - Funcionamento
- Eletrônica Básica
 - Corrente
 - Tensão
 - Resistência
 - Circuito
- Ambiente de Desenvolvimento
 - Programação
- Exercícios práticos

A Final de Contas o Que é o Arduino?

- Plataforma Open-Source de prototipagem eletrônica com hardware e software flexíveis e fáceis de usar.
- Dividido em dois componentes:
 - A Placa -> Hardware, Construir Projetos
 - IDE Arduino -> Software, Código.

Funcionamento:

- Portas:
 - 14 Entradas e Saídas Digitais;
 - 6 Entradas Analógicas;
- Alimentação:
 - VCC 5 Volts;
 - GND Terra;
- Botão Reset
- 32KB Para Programas;
- Comunicação USB;

PROJETOS

Eletrônica Básica:

- Corrente (amp)
- Tensão (volt)
- Resistência (ohm)

Eletrônica Básica:

- Circuito Aberto;
- Circuito fechado;

Componentes:

LED - Light Emitting Diode: Emite luz quando se passa corrente.

Resistor:
Limita a passagem de corrente pelo circuito, impedindo um curto.

Protoboard:
Uma placa de tamanho variado, com
diversos furos interligados para

diversos furos interligados para prototipagem rápida. Os furos podem conectar componentes em série ou paralelo.

Fios/Jumpers: Conectam dois pontos no circuito

IDE - INTEGRATED DEVELOPMENT

ENVIRONMENT

Ambiente de Desenvolvimento:

- Ambiente de programação para arduino.
- INTERFACE:
 - Verificar
 - Carregar
 - Novo
 - Abrir
 - Salvar
- FUNÇÔES:
 - Void Setup;
 - Void Loop;

Comandos:

tipos: Comparadores Funções: Serial.begin(9600) int && boolean pinMode(porta, definição) char digitalWrite(porta, valor) unsigned int string digitalRead(porta) void analogWrite(porta, valor) float analogRead(porta) >= delay(milisegundos) Serial.println("texto") Operadores Estruturas Condicionais / loops If() else() for()

Não tenho Arduino, como irei praticar?

https://circuits.io/

Vamos começar?

Exercício 1 - BLINK

- Objetivo: Fazer o LED piscar através da oscilação de sinal digital.
- Materiais:
 - LED
 - Protoboard
 - Jumpers
 - Resistor 220 ohm
 - Arduino

Exercício 1 - BLINK

Exercício 1 - BLINK


```
void setup()
    pinMode(13, OUTPUT);
void loop()
    digitalWrite(13, HIGH);
    delay(1000);
    digitalWrite(13, LOW);
    delay(1000);
```

Exercício 2 - Semáforo

- Objetivo: Replique o código de 1 único LED para 3 LEDs. Monte na sua protoboard as cores dos LEDs conforme um SEMÁFORO de trânsito.
- Materiais:
 - 3 LED's
 - Protoboard
 - Jumpers
 - 3 Resistores 220 ohm
 - Arduino

Exercício 2 - Semáforo

Exercício 2 - Semáforo


```
void setup() {
pinMode (2, OUTPUT);// verde
pinMode (3, OUTPUT);// amarelo
pinMode (4, OUTPUT);// vermelho
void loop() {
digitalWrite (2, HIGH);// verde
delay (4000);
digitalWrite (2,LOW);
digitalWrite (3, HIGH); // amarelo
delay (2000);
digitalWrite (3,LOW);
digitalWrite (4, HIGH); //vermelho
delay (4000);
digitalWrite (4,LOW);
delay (2000);
```

Exercício 3 - FADE

- Objetivo: Fazer o LED piscar através da oscilação de sinal digital.
- Materiais:
 - LED
 - Protoboard
 - Jumpers
 - Resistor 220 ohm
 - Arduino

Exercício 3 - FADE

Exercício 3 - FADE


```
1 int led - 13;
 2 void setup() {
 4 void loop() {
     for (int i = 0; i \leftarrow 255; i+-5) {
       analogWrite(led, i);
       delay(30);
       for (int i = 255; i >= 0; i-=5) {
10
       analogWrite(led, i);
       delay(30);
13 }
```

Exercício 4 - Botão

- Objetivo: Ligar/Desligar um LED ao apertar o botão.
- Materiais:
 - Protoboard
 - Jumpers
 - Resistor 220 ohm
 - Arduino
 - Push-button

Push-button: um simples componente abre-fecha circuito

Exercício 4 - Botão

Exercício 4 - Botão


```
const int ledPin = 13;
const int Botao = 2;
int EstadoBotao = 0;
void setup()
    pinMode(ledPin, OUTPUT);
    pinMode(Botao, INPUT);
void loop()
    EstadoBotao = digitalRead(Botao);
    if (EstadoBotao == HIGH){
    digitalWrite(ledPin, HIGH);
    else{
digitalWrite(ledPin, LOW);
```

Exercício 5 - Intensidade de um LED

- Objetivos: Montar um circuito capaz de modificar a intensidade da luz através da porta PWM.
- Materiais:
 - LED
 - Protoboard
 - Jumpers
 - Resistor 220 ohm
 - Arduino
 - Potenciômetro

 Potenciômetros: são resistores que possuem resistência ajustável, ao girar o eixo central. Nesse exemplo, usaremos o potenciômetro como regulador de tensão sob o LED.

Exercício 5 - Intensidade de um LED

Exercício 5 - Intensidade de um LED


```
#define potPin 0
#define ledPin 10
int valPot = 0;
void setup()
   pinMode(ledPin,OUTPUT);
void loop()
   valPot = analogRead(potPin);
   valPot = map(valPot, 0, 1023, 0, 255);
   analogWrite(ledPin,valPot);
```

Exercício 6 - Servo motor

- Objetivo: Mover o servomotor ao rotacionar o eixo do potenciômetro.
- Materiais:
 - Potenciômetro
 - Protoboard
 - Jumpers
 - Arduino
 - Servomotor

• Servomotor: um componente, eletromecânico, que apresenta movimento proporcional a um comando. O eixo dos servo motores possui a liberdade de cerca de 180° graus.

Exercício 6 - Servo motor

Exercício 6 - Servo motor


```
#include <Servo.h>
Servo myservo;
int potpin = 0;
int val;
void setup()
    myservo.attach(11);
void loop()
    val = analogRead(potpin);
    val = map(val, 0, 1023, 0, 179);
    myservo.write(val);
    delay(250);
```


CONTATO

alcimarbm

🚺 nathecia

alcimar_bmx

nathecia

o alcimar_bmx

o natheciacunha

OBRIGADO!