UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

GEOMETRÍA PROYECTIVA (ejemplo)

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Segundo al cuarto

CLAVE: **0251**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Álgebra Superior I, Cálculo Diferencial

e Integral I, Geometría Analítica II, Geometría Moderna I.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): El curso de Geometría Proyectiva, además de desarrollar esta rama de la geometría por sí misma, proporciona conocimientos fundamentales para la geometría algebraica y las geometrías finitas así como para sus aplicaciones en mecánica cuántica, teoría de códigos, criptografía, geometría computacional y graficación y visión computarizadas entre otros.

NUM. HORAS	UNIDADES TEMÁTICAS
20	1. Geometría proyectiva sintética
	1.1 Proyecciones
	1.2 Modelos para el plano proyectivo real.
	1.3 Proyectividades y perspectividades. Teorema fundamental de la
	geometría proyectiva.
	1.4 Completación proyectiva de planos afines.
	1.5 Planos proyectivos finitos.
	1.6 Teorema de Desargues.
	1.7 Teorema de Pascal (optativo).

15	2. Geometría proyectiva analítica
	2.1 Coordenadas homogéneas.
	2.2 Condiciones de colinealidad.
	2.3 Ecuaciones de las cónicas.
	2.4 Comportamiento "al infinito".
	2.5 Geometría compleja: puntos circulares al infinito y rectas isotrópi-
	cas.
	2.6 Teorema de Euler. Tangente a una curva.
	2.7 Polos y polares respecto a cónicas.
	2.8 Cambios lineales de coordenadas.
10	3. Fundamentos de la geometría proyectiva
	3.1 Axiomas para planos afines (repaso).
	3.2 Algunos sistemas axiomáticos para planos y espacios proyectivos.
	3.3 Retícula de subespacios lineales.
	3.4 "Pappus \Longrightarrow Desargues".
	3.5 Teorema fundamental de la geometría proyectiva.
	3.6 Planos proyectivos sobre anillos de división y planos proyectivos
	no desarguesianos.
15	4. Geometría proyectiva tridimensional
	4.1 Axiomatización y coordenadas homogéneas.
	4.2 Retícula de subespacios lineales.
	4.3 Configuraciones de Reye y Bricard.
	4.4 Planos desarguesianos y espacios proyectivos de dimensiones su-
	periores.
	4.5 Transversales a dos y tres rectas. Generación de las cuádricas.
	4.6 Transformaciones proyectivas. Cambios de coordenadas.
	4.7 Generación proyectiva de las cónicas y las cuádricas.
	$4.8 \text{ Cuádricas en } P_c^3.$
20	5. Temas selectos (escoger dos)
	5.1 Configuraciones proyectivas.
	5.2 Introducción a la geometría algebraica.
	5.3 Cuádricas.
	5.4 Haces y redes de cónicas.
	5.5 Automorfismos del plano proyectivo.
	5.6 Aplicaciones a la graficación por computadora.
	5.7 Teoría de códigos.
	5.8 Criptografía.

BIBLIOGRAFÍA BÁSICA:

- 1. Baez, J. C., "The Octonians", Bulletin of the AMS, Vol. 39, No. 2, 2002: 145–205.
- 2. Beutelspacher, A., Rosenbaum, U., *Projective Geometry: From Foundations to Applications*, Cambridge: Cambridge University Press, 1998.
- 3. Coxeter, H. S. M., *Projective Geometry*, New York: Springer-Verlag, 1994.
- 4. Hartshorne, R., Foundations of Projective Geometry, New York: W. A. Benjamin, 1967.
- 5. Penna, M. A., *Projective Geometry and its Application to Computer Graphics*, New Jersey: Prentice-Hall, 1991.
- 6. Seidenberg, A., Elementos de Geometría Proyectiva, México: CECSA, 1965.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Eves, H., Estudio de las Geometrías, México: UTEHA, 1982.
- 2. Hilbert, D., Cohn Vossen, S., *Geometry and the Imagination*, México: Vínculos Matemáticos No. 150, Facultad de Ciencias, UNAM, 2000.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.