МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и инворматики Кафедра информационных систем управления

Отчет по лабораторной работе 5 Вариант 35

Выполнил: Карпович Артём Дмитриевич студент 3 курса 7 группы

> Преподаватель: Кваша Дарья Юрьевна

Задача сетевого планирования.

- 1. Построить сетевой график для максимальной $(t_{\rm nec})$ продолжительности всех его работ, рассчитать наиболее ранние и наиболее поздние сроки наступления событий, найти критический путь, определить полные и независимые резервы времени всех работ и коэффициенты напряженности некритических дуг.
- 2. Для трехпараметрической модели найти ожидаемое время выполнения проекта, определить вероятность выполнения проекта не позднее заданного срока, найти интервал гарантированного (с вероятностью P=0,9973) времени выполнения проекта, оценить максимально возможный срок выполнения проекта с заданной надежностью. Выполнить те же расчеты для двухпараметрической модели. Сравнить результаты.
- 3. Считая $t_{\text{пес}}$ продолжительностью работы с минимальной допустимой интенсивностью $(t_{\text{пес}} = t_{max})$, а $t_{\text{опт}}$ продолжительностью работы с максимальной возможной интенсивностью $(t_{\text{опт}} = t_{min})$, найти оптимальный по стоимости вариант выполнения проекта.

Минимизировать стоимость проекта при минимально возможном сроке его исполнения.

Работа	Опирается на работы	$t_{ m nec}$	$t_{ m Bep}$	$t_{\text{опт}}$	Стоимость сокращения работы на один день, s_k
b_1	_	9	5	3	5
b_2	_	8	6	4	8
b_3	b_1	9	6	2	4
b_4	b_1	10	7	2	6
b_5	b_2	8	4	2	7
b_6	b_2	9	6	1	4
b_7	b_3	5	2	1	5
b_8	b_4, b_5	6	4	1	9
b_9	b_6	7	4	2	5
b_{10}	b_6, b_7, b_8	12	9	5	9
b_{11}	$b_6, b_7, b_8 b_6, b_7, b_8$	9	6	2	7
b_{12}	b_9, b_{10}	10	8	5	6

Директивный (заданный) срок выполнения проекта $T_{\text{дир}}=35$ дней. Заданная надежность $\gamma=0,95$. Стоимость одного дня проекта равна 10 денежным единицам: S=10.

Решение

Задание 1

Сначала строим структурный сетевой график.

После чего посчитаем сроки наступления события для каждой вершины по формулам

$$T_p(i) = max(T_p(j) + t_{ji}),$$

$$T_{\pi}(i) = min(T_{\pi}(j) - t_{ji})$$

Событие	T_p	T_n	R_i
	•		(резерв времени)
*0	0	0	0
*1	9	9	0
2	8	11	3
*3	19	19	0
4	18	20	2
*5	25	25	0
*6	47	47	0
*7	37	37	0
*8	32	32	0

Критический путь проходит через события с нулевым резервом времени, т. е. через события $0,\,1,\,3,\,5,\,6,\,7,\,8.$

Найдем резервы времени работ. Полный резерв времени работ найдем по формуле

$$r_{\Pi}(b_k) = r_{\Pi}(i,j) = T_{\Pi}(j) - T_p(i) - t_{ij}.$$

Независимый резерв времени работ найдем по формуле

$$r_{\text{H}}(b_k) = r_{\text{H}}(i,j) = T_{\text{p}}(j) - T_{\text{II}}(i) - t_{ij}.$$

Работа	r_n	$r_{\scriptscriptstyle \rm H}$
$* b_1 = (0,1)$	0	0
$b_2 = (0,2)$	3	0
$b_3 = (1,4)$	2	0
$* b_4 = (1,3)$	0	0
$b_5 = (2,3)$	3	0
$b_6 = (2,5)$	8	5
$b_7 = (4,5)$	2	0
$*b_8 = (3,5)$	0	0
$*b_9 = (5,8)$	0	0
$*b_{10} = (5,7)$	0	0
$b_{11} = (5,6)$	13	13
$*b_{12} = (7,6)$	0	0
$* \varphi = (8,7)$	0	0

Работа $\varphi = (8,7)$ — фиктивная работа. Критические работы $-b_1, b_4, b_8, b_9, b_10, b_12$. Критические пути выделим более жирными стрелками.

Так же из этого графа можем получить критическое время $T_{\rm kp}=47.$

Посчитаем резервы времени и коэффициенты напряженности некритических дуг по формулам:

$$R(b) = b - a,$$

$$N(b) = 1 - \frac{R(b)}{a}.$$

			Резерв	Коэффициент
Некритические	а	b	времени	напряженности
дуги			дуги,	дуги,
			R(b)	N(b)
(0, 2, 5, 6)	47	26	19	0.6
(0, 2, 3)	19	16	3	0.84
(1, 4, 5, 6)	38	23	15	0.605

Задание 2

Построим таблицу, содержащую ожидаемую продолжительность работ для трехпараметрической модели, для двух параметрической модели и вычислим дисперсии. Формулы, соответсвенно, следующие:

$$\begin{split} t_{\text{OM}} &= \frac{t_{\text{пес}} + 4t_{\text{вер}} + t_{\text{ОПТ}}}{6}, \\ t_{\text{OM}}^* &= \frac{3t_{\text{пес}} + 2t_{\text{ОПТ}}}{5}, \\ \sigma^2(t_{\text{OM}}) &= \left(\frac{t_{\text{пес}} - t_{\text{ОПТ}}}{6}\right)^2. \end{split}$$

Работа	t_{ox}	t_{ox}^*	σ^2
b_1	5	7	1
b_2	6	6	0.44
b_3	6	6	1.36
b_4	7	7	1.78
b_5	4	6	1
b_6	5	6	1.36
b_7	2	4	0.44
b_8	5	4	0.69
b_9	4	5	0.69
b_{10}	9	9	1.36
b_{11}	6	6	1.36
b_{12}	7	8	0.69

Таким образом трехпараметрическая модель сведена к однопараметрической. Теперь можно построить сетевой график и рассчитать его временные характеристики.

Дисперсия критического пути:

$$\sigma_{\text{\tiny KP}}^2 = \sigma^2(b_1) + \sigma^2(b_4) + \sigma^2(b_8) + \sigma^2(b_9) + \sigma^2(b_10) + \sigma^2(b_12) = 1 + 1.78 + 0.69 + 0.69 + 1.36 + 0.69 = 6.21$$

Среднеквадратическое отклонение критического пути

$$\sigma_{\rm KD} \approx 2.49$$

Найдем вероятность того, что проект будет выполнен не позднее заданного срока ($_{\rm диp}=35$):

$$P(t_{\rm kp} < 35) = 0.5 + \Phi\left(\frac{35 - 33}{2.49}\right) = 0.5 + \Phi(0.8) \approx 0.7881$$

Таким образом, имеются неплохие шансы (79%) выполнить проект в заданный срок. Найдем интервал гарантированного времени выполнения проекта. Воспользуемся правилом «трех сигм»:

$$3\sigma = 7.47 \approx 7$$

Т. е. с вероятностью почти 0,9973 проект будет выполнен за 35 ± 7 дней. Максимально возможный срок выполнения проекта с надежностью 0.95:

$$P(|t_{\mathrm{Kp}} - 35| \leq z_{0.95} * 2.49) = 2\Phi(z_{0.95}) = 0.95$$
, тогда $\Phi(z_{0.95}) = 0.475, \ z_{0.95} = 1.96,$

$$P(|t_{\text{kp}} - 35|4.88) = P(30.12 \le t_{\text{kp}} \le 39.88) = 0.95$$

С надежностью 0.95 проект будет завершен в период от 30 до 40 дней.

Задание 3

Работа	$t_{ m nec}$	t _{ont}	S_w
b_1	9	3	5
b_2	8	4	8
b_3	9	2	4
b_4	10	2	6
b_5	8	2	7
b_6	9	1	4
b_7	5	1	5
b_8	6	1	9
b_9	7	2	5
b ₁₀	12	5	9
\overline{b}_{11}	9	2	7
b_{12}	10	5	6

Таким образом, $T_{\rm kp}=47$, а стоимость проекта $S(t_{max})=10\cdot 47=470$.

Рассмотрим возможности сокращения стоимости проекта за счет увеличения интенсивности работ на критическом пути. Найдем резервы некритических дуг:

$$R(0,2,5,6)=47-9-9-8=21,$$
 $R(0,2,3)=19-8-8=3$ — Наименьший резерв, $R(1,4,5,6)=47-9-5-9=24.$

Рассмотрим варианты сокращения работ на нашем критическом пути. Обозначим через Δ_k величину сокращения стоимости проекта при сокращении продолжительности работы b_k на

1 день, через t_k^c – количество дней, на которое можно сократить работу b_k , а через $\Sigma \Delta_k$ – суммарное сокращение стоимости проекта при сокращении продолжительности работы b_k на дней.

 $\Delta_k = S - S_k$, где S – стоимость одного дня проекта, а S_k – стоимость сокращения продолжительности работы b_k на 1 день. Если $\Delta_k < 0$, то стоимость проекта возрастает.

В нашем случае дано, что S=10 ден. ед.

Работа	t_{max}	t_{min}	s_k	Δ_k		$\sum \Delta_k$
b_1	9	3	5	5	4	20
b_4	10	2	6	4	3	12
b_8	6	1	9	1	0	0

Выгоднее всего сокращать работу b_1 . Каждый день сокращения ее продолжительности сокращает стоимость проекта на 5 денежных единиц, но продолжительность этой работы может быть сокращена максимум на 4 дня. Но, поскольку у нас есть всего 3 дня возможного сокращения критического пути, то работу следует сократить на 3 дня.

Общее сокращение стоимости проекта составит при этом 15 денежных единиц.