

"Autonomous Robots"

Algorithms to allow a robot to act autonomously: control architectures, behaviour-based robotics, path planning, robot learning.

- Professors:
 - Marc Carreras (<u>marc.carreras@udg.edu</u>)
 - Eduard Vidal lab & project
 - Lydia E. Kavraki (Rice University) seminar
- **Duration**: 5 ECTS (European Credit Transfer System)
 - $5 \cdot 25 = 125$ hours (with and without professor)
- Theory: Monday, 12-14h, III-03
 - 12 sessions (2 hours each)
 - Structure: 12:10-13:00 → lecture

13:00-13:10 → break

13:10-14:00 → lecture

- Laboratory: Thursday, 12-14h, Robotics Laboratory PII (RL)
 - 10 sessions (2 hours each)

Timetable

	Monday	Tuesday	Wednesday	Thursday	Friday
08:00 - 09:00					
09:00 - 10:00					
10:00 - 11:00					
11:00 - 12:00					
12:00 - 13:00	AR - T (III-03)			AR - P (RL)	
13:00 - 14:00	AR - 1 (111-03)			AIX - F (IXL)	
14:00 - 15:00					
15:00 - 16:00					
16:00 - 17:00					
17:00 - 18:00					
18:00 - 19:00					
19:00 - 20:00					

Course Outline:

- 1. Overview of Control Architectures
- 2. Behaviour-based architectures
- 3. Path planning
 - Bug algorithms
 - Configuration space
 - Potential functions
 - Topological maps
 - Graph search
 - Cell Decompositions
 - Sampling-based algorithms

Laboratory:

P1*: Potential Functions – Wavefront planner

P2*: Sampling-based algorithms – RRT

P3[^]: Mapping and planning with Turtlebot

P4*: Topological maps – Visibility graph

P5*: Graph Search – A* algorithm

*Done individually

^Done in groups

Project:

- Goal: to propose, implement and test a high-level controller for controlling a mobile robot with fixed and moving obstacles.
- Implementation in simulation and then with real robot
- Groups of 2-3 students
- Task: plan trajectories, execute them and avoid unexpected obstacles
- Duration: from March 20th till May 22nd

Calendar

		THEORY	PRACTICE (LABORATORY)		
Week	Date	Contents	Date	Contents	
1	06/02/17	Introduction and BBR	09/02/17		
2	13/02/17	Bug algorithms / Q space / Potential functions	16/02/17	P1 - Potential functions	
3	20/02/17	Sampling-based algorithms	23/02/17		
4	27/02/17	Sampling with constraints (JDH)	02/03/17	P2 - Sampling-based algorithms	
5	06/03/17	Topological maps	09/03/17	P3: Mapping and planning with Turtlebot	
6	13/03/17	Graph Search	16/03/17	P3: Mapping and planning with Turtlebot	
7	20/03/17	Project proposal	23/03/17	P3: Mapping and planning with Turtlebot	
8	27/03/17	Cell decomposition and view planning (EV)	30/03/17	P4 - Topological maps	
9	03/04/17	Project revision	06/04/17		
10	10/04/17	EASTER HOLIDAYS	13/04/17	EASTER HOLIDAYS	
11	17/04/17	EASTER HOLIDAYS	20/04/17	P5 - Graph search	
12	24/04/17	Project revision	27/04/17		
13	01/05/17	HOLIDAY	04/05/17	Project preparation with Turtlebot	
14	08/05/17	Project revision	11/05/17	Project preparation with Turtlebot	
15	16/05/17		18/05/17	Project preparation with Turtlebot	
16	22/05/17	Project presentation	25/05/17		
17	29/05/17	EXAM Weeks	01/06/17	EXAM Weeks	
18	05/06/17	EXAM Weeks	08/06/17		

Evaluation based on:

30% laboratory → Each practical exercise will require the programming of some functions that must be submitted through the web page.

40% project → Original project about autonomous robots.

30% exam → Theoretical and practical exam.

Bibliography:

Principles of Robot Motion: Theory, Algorithms, and Implementations. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun MIT Press, Boston, 2005

Arkin (1998). **Behavior-based Robotics**. MIT Press. Sutton, Richard S., Barto, Andrew G. (cop. 1998). *Reinforcement learning: an introduction*. Cambridge, Mass.: MIT Press.

Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, MIT Press, Cambridge, MA, 1998