Triacs logic level

BT137-600

GENERAL DESCRIPTION

Passivated, sensitive gate triac in a plastic envelope, intended for use in general purpose bidirectional switching and phase control applications. This device is intended to be interfaced directly to microcontrollers, logic integrated circuits and other low power gate trigger circuits.

ABSOLUTE MAXIMUM RATINGS ($Ta = 25^{\circ}$)

Parameter	Symbol	Тур	Unit	
Repetitive peak off-state voltages	$V_{ m DRM} \ V_{ m RRM}$	600	V	
RMS on-state current	I _{T(RMS)}	8.0	Α	
Non-repetitive peak on-state current	I _{TSM}	65	А	
Max. Operating Junction Temperature	T _j	110	$^{\circ}$	
Storage Temperature	T _{stg}	-45~150	$^{\circ}$	

Phone: 86-510-83880883 Fax: 86-510-83883883

ELECTRICAL CHARACTERISTICS (Ta = 25° C)

Par	ameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Repetitive peak off-state voltages		$V_{DRM} \ V_{RRM}$	I _D =0.1mA	600	_	_	V
RMS on-state current		I _{T(RMS)}	full sine wave; $T_{mb} \leqslant 107 ^{\circ}\text{C}$		8.0		Α
On-state voltage	е	V _T	I _T = 10A	_	1.3	1.65	V
Holding current		I _H	$V_D = 12 \text{ V}; I_{GT} = 0.1 \text{ A}$	_	2.5	20	mA
Gate trigger T current T	T2+G+	- I _{GT}	$V_D = 12 \text{ V}; I_T = 0.1 \text{ A}$	_	2.5	10	mA
	T2+G-			_	4.0	10	
	T2-G-			_	5.0	10	
	T2-G+			_	11	25	
-	T2+G+	- I _L	$V_D = 12 \text{ V}; I_{GT} = 0.1 \text{ A}$	_	3.0	25	
	T2+G-			_	14	35	mA
	T2-G-			_	3.0	25	
	T2-G+			_	4.0	35	
Gate trigger voltage		V _{GT}	$V_D = 12 \text{ V}; I_T = 0.1 \text{ A}$	_	0.7	1.5	V