Hashing

Hashing Tables

- Motivation: symbol tables
 - A compiler uses a *symbol table* to relate symbols to associated data
 - o Symbols: variable names, procedure names, etc.
 - o Associated data: memory location, call graph, etc.
 - For a symbol table (also called a *dictionary*), we care about search, insertion, and deletion
 - We typically don't care about sorted order

Hash Tables - contd.

- More formally:
 - Given a table *T* and a record *x*, with key (= symbol) and satellite data, we need to support:
 - \circ Insert (T, x)
 - \circ Delete (T, x)
 - \circ Search(T, x)
 - We want these to be fast, but don't care about sorting the records
- The structure we will use is a *hash table*
 - Supports all the above in O(1) expected time!

Hashing: Keys

- In the following discussions we will consider all keys to be (possibly large) natural numbers
- How can we convert floats to natural numbers for hashing purposes?
- How can we convert ASCII strings to natural numbers for hashing purposes?

Direct Addressing

- Suppose:
 - The range of keys is 0..m-1
 - Keys are distinct
- The idea:
 - Set up an array T[0..m-1] in which
 - This is called a *direct-address table*
 - o Operations take O(1) time!
 - So what's the problem?

The Problem With Direct Addressing

- Direct addressing works well when the range *m* of keys is relatively small
- But what if the keys are 32-bit integers?
 - Problem 1: direct-address table will have 2³² entries, more than 4 billion
 - Problem 2: even if memory is not an issue, the time to initialize the elements to NULL may be
- Solution: map keys to smaller range 0..*m*-1
- This mapping is called a *hash function*

Resolving Collisions

- How can we solve the problem of collisions?
- Solution 1: *chaining*
- Solution 2: open addressing

Resolving Collisions – contd.

- How can we solve the problem of collisions?
- Open addressing
 - To insert: if slot is full, try another slot, and another, until an open slot is found (*probing*)
 - To search, follow same sequence of probes as would be used when inserting the element
- Chaining
 - Keep linked list of elements in slots
 - Upon collision, just add new element to list

Open Addressing

- Basic idea (details in Section 11.4):
 - To insert: if slot is full, try another slot, ..., until an open slot is found (*probing*)
 - To search, follow same sequence of probes as would be used when inserting the element
 - o If reach element with correct key, return it
 - o If reach a NULL pointer, element is not in table
- Good for fixed sets (adding but no deletion)
 - Example: spell checking
- Table needn't be much bigger than *n*

Analysis of Chaining

- Assume *simple uniform hashing*: each key in table is equally likely to be hashed to any slot
- Given n keys and m slots in the table: the load factor $\alpha = n/m =$ average # keys per slot
- What will be the average cost of an unsuccessful search for a key?

Analysis of Chaining

- Assume *simple uniform hashing*: each key in table is equally likely to be hashed to any slot
- Given *n* keys and *m* slots in the table, the load factor $\alpha = n/m =$ average # keys per slot
- What will be the average cost of an unsuccessful search for a key? A: $O(1+\alpha)$

Analysis of Chaining

- Assume *simple uniform hashing*: each key in table is equally likely to be hashed to any slot
- Given n keys and m slots in the table, the load factor $\alpha = n/m =$ average # keys per slot
- What will be the average cost of an unsuccessful search for a key? A: $O(1+\alpha)$
- What will be the average cost of a successful search?

Analysis of Chaining

- Assume *simple uniform hashing*: each key in table is equally likely to be hashed to any slot
- Given *n* keys and *m* slots in the table, the load factor $\alpha = n/m =$ average # keys per slot
- What will be the average cost of an unsuccessful search for a key? A: $O(1+\alpha)$
- What will be the average cost of a successful search? A: $O(1 + \alpha/2) = O(1 + \alpha)$

Analysis of Chaining Continued

- So the cost of searching = $O(1 + \alpha)$
- If the number of keys n is proportional to the number of slots in the table, what is α ?
- A: $\alpha = O(1)$
 - In other words, we can make the expected cost of searching constant if we make α constant

Choosing A Hash Function

- Clearly choosing the hash function well is crucial
 - What will a worst-case hash function do?
 - What will be the time to search in this case?
- What are desirable features of the hash function?
 - Should distribute keys uniformly into slots
 - Should not depend on patterns in the data

Hash Functions: The Division Method

- $h(k) = k \mod m$
 - In words: hash k into a table with m slots using the slot given by the remainder of k divided by m
- What happens to elements with adjacent values of k?
- What happens if m is a power of 2 (say 2^{P})?
- What if m is a power of 10?
- Upshot: pick table size m = prime number not too close to a power of 2 (or 10)

Hash Functions: The Multiplication Method

- For a constant A, 0 < A < 1:
- $h(k) = \lfloor m(kA \lfloor kA \rfloor) \rfloor$

What does this term represent?

Hash Functions: The Multiplication Method

- For a constant A, 0 < A < 1:
- $h(k) = \lfloor m (kA \lfloor kA \rfloor) \rfloor$ Fractional part of kA
- Choose $m = 2^P$
- Choose A not too close to 0 or 1
- Knuth: Good choice for $A = (\sqrt{5} 1)/2$

Hash Functions: Worst Case Scenario

- Scenario:
 - You are given an assignment to implement hashing
 - You will self-grade in pairs, testing and grading your partner's implementation
 - In a blatant violation of the honor code, your partner:
 - Analyzes your hash function
 - Picks a sequence of "worst-case" keys, causing your implementation to take O(n) time to search
- What's an honest CS student to do?

Hash Functions: Universal Hashing

- As before, when attempting to foil an malicious adversary: randomize the algorithm
- *Universal hashing*: pick a hash function randomly in a way that is independent of the keys that are actually going to be stored
 - Guarantees good performance on average, no matter what keys adversary chooses

Universal Hashing - contd.

- When attempting to foil an malicious adversary, randomize the algorithm
- *Universal hashing*: pick a hash function randomly when the algorithm begins (*not* upon every insert!)
 - Guarantees good performance on average, no matter what keys adversary chooses
 - Need a family of hash functions to choose from

Universal Hashing

- Let ς be a (finite) collection of hash functions
 - ...that map a given universe U of keys...
 - \blacksquare ...into the range $\{0, 1, ..., m 1\}$.
- *ς* is said to be *universal* if:
 - for each pair of distinct keys $x, y \in U$, the number of hash functions $h \in \varsigma$ for which h(x) = h(y) is $|\varsigma|/m$
 - In other words:
 - With a random hash function from ζ , the chance of a collision between x and y is exactly 1/m $(x \neq y)$

Universal Hashing

- Theorem 11.3:
 - Choose *h* from a universal family of hash functions
 - Hash *n* keys into a table of *m* slots, $n \le m$
 - Then the expected number of collisions involving a particular key *x* is less than 1
 - Proof:
 - For each pair of keys y, z, let $c_{yx} = 1$ if y and z collide, 0 otherwise
 - $E[c_{yz}] = 1/m$ (by definition)
 - Let C_x be total number of collisions involving key x

$$\circ E[C_x] = \sum_{\substack{y \in T \\ y \neq x}} E[c_{xy}] = \frac{n-1}{m}$$

• Since $n \le m$, we have $E[C_x] < 1$

A Universal Hash Function

- Choose table size *m* to be prime
- Decompose key x into r+1 bytes, so that $x = \{x_0, x_1, ..., x_r\}$
 - Only requirement is that max value of byte $\leq m$
 - Let $a = \{a_0, a_1, ..., a_r\}$ denote a sequence of r+1 elements chosen randomly from $\{0, 1, ..., m-1\}$
 - Define corresponding hash function $h_a \in \varsigma$.

$$h_a(x) = \sum_{i=0}^r a_i x_i \bmod m$$

• With this definition, ς has m^{r+1} members

A Universal Hash Function

- ζ is a universal collection of hash functions (Theorem 11.4)
- How to use:
 - \blacksquare Pick r based on m and the range of keys in U
 - Pick a hash function by (randomly) picking the *a*'s
 - Use that hash function on all keys

Open Addressing

- Basic idea (details in Section 11.4):
 - To insert: if slot is full, try another slot, ..., until an open slot is found (*probing*)
 - To search, follow same sequence of probes as would be used when inserting the element
 - o If reach element with correct key, return it
 - o If reach a NULL pointer, element is not in table
- Good for fixed sets (adding but no deletion)
 - Example: spell checking
- Table needn't be much bigger than *n*

Open addressing

- Store all elements in the table
- Probe the hash table in event of a collision
- Key idea: probe sequence is NOT the same for each element, depends on initial key
- h: U x $\{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$
- Permutation requirement
 - h(k,0), h(k,1), ..., h(k,m-1) is a permutation of (0, ..., m-1)

Operations

- Insert, search straightforward
- Why can we not simply mark a slot as deleted?
 - If keys need to be deleted, open addressing may not be the right choice

Probing schemes

- uniform hashing: each of m! permutations equally likely
 - not typically achieved
- linear probing: $h(k,i) = (h'(k) + i) \mod m$
 - Clustering effect
 - Only m possible probe sequences are considered
- quadratic probing: $h(k,i) = (h'(k)+ci+di^2) \mod m$
 - constraints on c, d, m
 - better than linear probing as clustering effect is not as bad
 - Only m possible probe sequences are considered, and keys that map to same position do have identical probe sequences
- double hashing: $h(k,i) = (h(k) + iq(k)) \mod m$
 - q(k) must be relatively prime wrt m
 - m² probe sequences considered
 - Much closer to uniform hashing

Search time

- Preliminaries
 - n elements, m slots, $\alpha = n/m$ with $n \le m$
 - Assumption of uniform hashing
- Expected search time on a miss
 - Given that h(k,i) is non-empty, what is the probability that h(k,i+1) is empty?
 - What is expected search time then?
- Expected insertion time is essentially the same. Why?
- Expected search time on a hit
 - Expected search time for ith element added is
 - If entry was i+1st element added, expected search time is 1/(1-i/m) = m/(m-i)
 - Sum this for all i, divide by n, and you get $1/\alpha (H_m H_{m-n})$
 - This can be bounded by $1/\alpha \ln 1/(1-\alpha)$

The End