Orthogonal matrices and Gram-Schmidt

In this lecture we finish introducing orthogonality. Using an orthonormal basis or a matrix with orthonormal columns makes calculations much easier. The Gram-Schmidt process starts with any basis and produces an orthonormal basis that spans the same space as the original basis.

Orthonormal vectors

The vectors $\mathbf{q}_1, \mathbf{q}_2, ... \mathbf{q}_n$ are *orthonormal* if:

$$\mathbf{q}_i^T \mathbf{q}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

In other words, they all have (normal) length 1 and are perpendicular (ortho) to each other. Orthonormal vectors are always independent.

Orthonormal matrix

If the columns of $Q = [\mathbf{q}_1 \dots \mathbf{q}_n]$ are orthonormal, then $Q^TQ = I$ is the identity.

Matrices with orthonormal columns are a new class of important matrices to add to those on our list: triangular, diagonal, permutation, symmetric, reduced row echelon, and projection matrices. We'll call them "orthonormal matrices".

A square orthonormal matrix Q is called an *orthogonal matrix*. If Q is square, then $Q^TQ = I$ tells us that $Q^T = Q^{-1}$.

For example, if $Q = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ then $Q^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Both Q and Q^T

are orthogonal matrices, and their product is the identity.

The matrix
$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 is orthogonal. The matrix $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ is

not, but we can adjust that matrix to get the orthogonal matrix $Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

We can use the same tactic to find some larger orthogonal matrices called *Hadamard* matrices:

An example of a rectangular matrix with orthonormal columns is:

$$Q = \frac{1}{3} \left[\begin{array}{cc} 1 & -2 \\ 2 & -1 \\ 2 & 2 \end{array} \right].$$

We can extend this to a (square) orthogonal matrix:

$$\frac{1}{3} \left[\begin{array}{rrr} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{array} \right].$$

These examples are particularly nice because they don't include complicated square roots.

Orthonormal columns are good

Suppose *Q* has orthonormal columns. The matrix that projects onto the column space of *Q* is:

$$P = Q^T (Q^T Q)^{-1} Q^T.$$

If the columns of Q are orthonormal, then $Q^TQ = I$ and $P = QQ^T$. If Q is square, then P = I because the columns of Q span the entire space.

Many equations become trivial when using a matrix with orthonormal columns. If our basis is orthonormal, the projection component \hat{x}_i is just $\mathbf{q}_i^T \mathbf{b}$ because $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ becomes $\hat{\mathbf{x}} = Q^T \mathbf{b}$.

Gram-Schmidt

With elimination, our goal was "make the matrix triangular". Now our goal is "make the matrix orthonormal".

We start with two independent vectors ${\bf a}$ and ${\bf b}$ and want to find orthonormal vectors ${\bf q}_1$ and ${\bf q}_2$ that span the same plane. We start by finding orthogonal vectors ${\bf A}$ and ${\bf B}$ that span the same space as ${\bf a}$ and ${\bf b}$. Then the unit vectors ${\bf q}_1 = \frac{{\bf A}}{||{\bf A}||}$ and ${\bf q}_2 = \frac{{\bf B}}{||{\bf B}||}$ form the desired orthonormal basis.

Let A = a. We get a vector orthogonal to A in the space spanned by a and b by projecting b onto a and letting B = b - p. (B is what we previously called e.)

$$\mathbf{B} = \mathbf{b} - \frac{\mathbf{A}^T \mathbf{b}}{\mathbf{A}^T \mathbf{A}} \mathbf{A}.$$

If we multiply both sides of this equation by \mathbf{A}^T , we see that $\mathbf{A}^T\mathbf{B} = 0$.

What if we had started with three independent vectors, \mathbf{a} , \mathbf{b} and \mathbf{c} ? Then we'd find a vector \mathbf{C} orthogonal to both \mathbf{A} and \mathbf{B} by subtracting from \mathbf{c} its components in the \mathbf{A} and \mathbf{B} directions:

$$C = c - \frac{A^T c}{A^T A} A - \frac{B^T c}{B^T B} B.$$

For example, suppose $\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$. Then $\mathbf{A} = \mathbf{a}$ and:

$$\mathbf{B} = \begin{bmatrix} 1\\0\\2 \end{bmatrix} - \frac{\mathbf{A}^T \mathbf{b}}{\mathbf{A}^T \mathbf{A}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
$$= \begin{bmatrix} 1\\0\\2 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
$$= \begin{bmatrix} 0\\-1\\1 \end{bmatrix}.$$

Normalizing, we get:

$$Q = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & 0\\ 1/\sqrt{3} & -1/\sqrt{2}\\ 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix}.$$

The column space of Q is the plane spanned by \mathbf{a} and \mathbf{b} .

When we studied elimination, we wrote the process in terms of matrices and found A = LU. A similar equation A = QR relates our starting matrix A to the result Q of the Gram-Schmidt process. Where L was lower triangular, R is upper triangular.

Suppose $A = [\mathbf{a}_1 \ \mathbf{a}_2]$. Then:

If R is upper triangular, then it should be true that $\mathbf{a}_1^T \mathbf{q}_2 = 0$. This must be true because we chose \mathbf{q}_1 to be a unit vector in the direction of \mathbf{a}_1 . All the later \mathbf{q}_i were chosen to be perpendicular to the earlier ones.

were chosen to be perpendicular to the earlier ones. Notice that $R = Q^T A$. This makes sense; $Q^T Q = I$. MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.