

AGENDA

Hoje vamos realizar mais exercícios de provas antigas da Olimpíada Brasileira de Informática, agora no nível 2.

PISODEDUAS CORES

Um arquiteto projetou uma pequena área que tem formato retangular e piso feito com ladrilhos quadrados de dimensões 20cm x 20cm. Ladrilhos de duas cores serão usados: o centro da área será formado por ladrilhos brancos e exatamente uma fileira de ladrilhos pretos serão colocados em cada lateral da área, como nas figuras abaixo

PISODEDUAS CORES

- (A) 2500 brancos e 200 pretos
- (B) 2200 brancos e 300 pretos
- (C) 2405 brancos e 95 pretos
- (D) 2304 brancos e 196 pretos
- (E) 400 brancos e 2100 pretos

Resolução: PISO DE DUAS CORES

Questão 1. Se a área tem 10,0m x 10,0m quais os números mínimos de ladrilhos necessários para cobrir o piso?

Sabemos que cada ladrilho tem 20cm x 20cm. Como queremos cobrir uma área de 10m x 10m, precisamos descobrir quantos ladrilhos cabem em cada direção (largura e comprimento).

A ideia é simples:

- Se sabemos as dimensões da área, podemos dividir esse valor pelo tamanho de um ladrilho para ver quantos cabem.
- Por exemplo, se temos 100cm de largura e cada ladrilho tem 20cm, então podemos encaixar 100 ÷ 20 = 5 ladrilhos na largura. Podemos verificar isso na figura de exemplo da questão.

Esse raciocínio vale tanto para o comprimento quanto para a largura!

Resolução: PSODEDUAS CORES

Vamos fazer isso para as dimensões da questão:

Primeiramente, é necessário trabalhar com todas as dimensões na mesma unidade de medida (Lembre-se: 1,0 m = 100 cm):

 $10,0 \text{ m} = (10 \times 100) \text{ cm} = 1000 \text{ cm}$

Agora, podemos obter o total de ladrilhos para a largura:

total de ladrilhos = largura piso = 100% = 50 ladrilhos

Como o comprimento do piso é igual a largura, teremos também 50 ladrilhos.

Com o total de ladrilhos na largura e comprimento, descobrimos o total de ladrilhos utilizados no piso:

 $50 \times 50 = 2500 ladrilhos$

Resolução: PISO DE DUAS CORES

Sabemos que o arquiteto quer colocar uma fileira de ladrilhos pretos ao longo das laterais do piso. Isso significa que:

- A primeira e a última linha serão pretas → 50 ladrilhos em cada uma.
- A primeira e a última coluna também serão pretas \rightarrow 50 ladrilhos em cada uma.

Se somarmos todas as bordas:

$$50 + 50 + 50 + 50 = 200$$

Mas os 4 cantos foram contados duas vezes (pois aparecem nas linhas e colunas ao mesmo tempo). Então, subtraímos 4 ladrilhos:

Ou seja, usaremos 196 ladrilhos pretos para formar a borda.

Agora que sabemos que o total de ladrilhos é 2500 e que 196 deles são pretos. Então, o restante será branco:

2500 - 196 = 2304

Ou seja, usaremos 2304 ladrilhos brancos para preencher o centro do piso.

Resposta:
Letra (D)
2304 brancos
e 196 pretos

QUADRADOS

Uma série de diagramas com quadrados é construída usando palitos de fósforo, como mostrado na figura abaixo.

QUADRADOS

Questão 1. Quantos quadrados há no diagrama de número 25?

- (A) 71
- (B) 75
- (C) 79
- (D) 97
- (E) 100

Questão 2. Quantos palitos de fósforo são necessários para construir o diagrama de número 11?

- (A) 124
- (B) 135
- (C) 140
- (D) 144
- (E) 154

QUADRADOS

Questão 2. Quantos palitos de fósforo são necessários para construir o diagrama de número 11?

Para resolver a Questão 1, vamos preencher uma tabela que nos ajudará a observar o padrão do total de quadrados a cada diagrama.

Número do Diagrama	Total de Quadrados
1	1
2	
3	
•••	•••

QUADRADOS

Para resolver a Questão 1, vamos preencher uma tabela que nos ajudará a observar o padrão do total de quadrados a cada diagrama.

Número do Diagrama	Total de Quadrados
1	1
2	5
3	
•••	•••

QUADRADOS

Para resolver a Questão 1, vamos preencher uma tabela que nos ajudará a observar o padrão do total de quadrados a cada diagrama.

Número do Diagrama	Total de Quadrados	
1	1	
2	5	
3	9	
•••	•••	

QUADRADOS

Observe que a cada diagrama adicionamos 4 quadrados nas extremidades. Então:

- No diagrama 1: 1 quadrado
- No diagrama 2: 1 + 4 = 5 quadrados
- No diagrama 3: 5 + 4 = 1 + 4 + 4 = 9 quadrados

Note que, a partir do segundo diagrama, sempre somamos 4 quadrados ao total anterior. Isso sugere um padrão que podemos representar matematicamente!

Se chamarmos o número do diagrama de "x", podemos definir uma função "f(x)" que nos forneça o total de quadrados no diagrama correspondente. Vamos determinar essa função para descrever a relação entre "x" e o número total de quadrados.

CODE LAB TEEN

Número do Diagrama	Total de Quadrados			
1	1			
2	5 +42			
3	9			
•••	•••			

QUADRADOS

Pensando nisso, observe novamente que

- No diagrama 1: 1 = 1 + 4x0 = 1 quadrado
- No diagrama 2: 1 + 4 = 1 + 4x1 = 5 quadrados
- No diagrama 3: 1 + 4 + 4 = 1 + 4x2 = 9 quadrados

Assim, conseguimos generalizar esse padrão por:

$$f(x) = 1 + 4(x-1)$$

Agora ficou fácil! Para obtermos o total de quadrados no diagrama 25 basta usar x = 25 em nossa fórmula.

Portanto,

$$f(25) = 1 + 4(25-1) = 1 + 4x24 = 1 + 96 = 97$$

Resposta:

Letra (D) 97

Número do Diagrama	Total de Quadrados		
1	1		
2	5 +4		
3	9		
•••	•••		

QUADRADOS

Questão 2. Quantos palitos de fósforo são necessários para construir o diagrama de número 11?

Para resolver a Questão 2, iremos fazer o mesmo processo feito na Questão 1. Mas, agora, avaliaremos o total de fósforos.

Número do Diagrama	Total de Fósforos
1	4
2	
3	
•••	•••

QUADRADOS

Para resolver a Questão 2, iremos fazer o mesmo processo feito na Questão 1. Mas, agora, avaliaremos o total de fósforos.

Número do Diagrama	Total de Fósforos
1	4
2	16
3	
•••	•••

QUADRADOS

Para resolver a Questão 2, iremos fazer o mesmo processo feito na Questão 1. Mas, agora, avaliaremos o total de fósforos.

Número do Diagrama	Total de Fósforos
1	4
2	16
3	28
•••	•••

QUADRADOS

Agora, a cada diagrama adicionamos 12 fósforos nas extremidades. Então:

- No diagrama 1: 4 fósforos
- No diagrama 2: 4 + 12 = 16 fósforos
- No diagrama 3: 16 + 12 = 4 + 12 + 12 = 28
 fósforos

Adotando o número do diagrama de "x", definimos uma função "f(x)" que nos forneça o total de fósforos no diagrama correspondente.

Assim como na questão anterior, observamos que:

- No diagrama 1: 4 + 12x0 = 4 fósforos
- No diagrama 2: 4 + 12 = 4+12x1 = 16 fósforos
- No diagrama 3: 16 + 12 = 4 + 12 + 12 = 4 + 12x2 =
 = 28 fósforos

Número do Diagrama	Total de Fósforos
1	4
2	16 +13
3	28
•••	•••

QUADRADOS

Então, conseguimos generalizar esse padrão por:

$$f(x) = 4 + 12(x-1)$$

Portanto, usando x = 11

$$f(25) = 4 + 12(11-1) = 4 + 12x10 = 4 + 120 = 124$$

Resposta:

Letra (A) 124

Número do Diagrama	Total de Fósforos		
1	4		
2	16 +12		
3	28		
•••	•••		

CANTINAS

A escola é enorme e tem quatro cantinas, A, B, C e D, onde os alunos podem almoçar. Numa certa semana, de segunda-feira a sexta-feira, quatro estudantes, Edu, Jéssica, Marisa e Rui, vão almoçar em uma das quatro cantinas. Nenhum par desses quatro estudantes almoça na mesma cantina no mesmo dia e as seguintes restrições devem ser obedecidas:

- Nenhum estudante pode almoçar na mesma cantina mais do que duas vezes durante a semana.
- Marisa é a única estudante que almoça na cantina A em dois dias da semana, e um dos dias em que ela almoça na cantina A é quinta-feira.
- Rui almoça na cantina B na segunda-feira e na terça-feira.
- Jéssica almoça na cantina D na terça-feira e na quarta-feira.
- Edu almoça na cantina A na sexta-feira.

CANTINAS

Restrições

Questão 1. Qual das seguintes alternativas é sempre verdadeira?

- (A) Rui não almoça na cantina C.
- (B) Marisa almoça apenas nas cantinas A, C e D.
- (C) Todos os estudantes almoçam na cantina D.
- (D) Todos os estudantes almoçam na cantina C.
- (E) Todos os estudantes almoçam na cantina A.

Questão 2. Se Rui almoça na cantina C na quinta-feira e Edu almoça na cantina C na segunda-feira, qual das seguintes alternativas é sempre verdadeira?

- (A) Edu almoça na cantina B na quinta-feira.
- (B) Jéssica almoça na cantina C na sexta-feira.
- (C) Marisa almoça na cantina C na quarta-feira.
- (D) Rui almoça na cantina C na sexta-feira.
- (E) Rui almoça na cantina D na sexta-feira.

- Nenhum par desses quatro estudantes almoça na mesma cantina no mesmo dia
- Nenhum estudante pode almoçar na mesma cantina mais do que duas vezes durante a semana.
- Marisa é a única estudante que almoça na cantina A em dois dias da semana, e um dos dias em que ela almoça na cantina A é quinta-feira.
- Rui almoça na cantina B na segunda-feira e na terça-feira.
- Jéssica almoça na cantina D na terça-feira e na quarta-feira.
- Edu almoça na cantina A na sexta-feira.

CANTINAS

Restrições

	Segunda	Terça	Quarta	Quinta	Sexta
Edu					
Jéssica					
Marisa					
Rui					

- Nenhum par desses quatro estudantes almoça na mesma cantina no mesmo dia
- Nenhum estudante pode almoçar na mesma cantina mais do que duas vezes durante a semana.
- Marisa é a única estudante que almoça na cantina A em dois dias da semana, e um dos dias em que ela almoça na cantina A é quinta-feira.
- Rui almoça na cantina B na segunda-feira e na terça-feira.
- Jéssica almoça na cantina D na terça-feira e na quarta-feira.
- Edu almoça na cantina A na sexta-feira.

CANTINAS

Restrições

	Segunda	Terça	Quarta	Quinta	Sexta
Edu					
Jéssica					
Marisa				A	
Rui					

- Nenhum par desses quatro estudantes almoça na mesma cantina no mesmo dia
- Nenhum estudante pode almoçar na mesma cantina mais do que duas vezes durante a semana.
- Marisa é a única estudante que almoça na cantina A em dois dias da semana, e um dos dias em que ela almoça na cantina A é quinta-feira.
- Rui almoça na cantina B na segunda-feira e na terça-feira.
- Jéssica almoça na cantina D na terça-feira e na quarta-feira.
- Edu almoça na cantina A na sexta-feira.

CANTINAS

Restrições

	Segunda	Terça	Quarta	Quinta	Sexta
Edu					
Jéssica					
Marisa				A	
Rui	В	В			

- Nenhum par desses quatro estudantes almoça na mesma cantina no mesmo dia
- Nenhum estudante pode almoçar na mesma cantina mais do que duas vezes durante a semana.
- Marisa é a única estudante que almoça na cantina A em dois dias da semana, e um dos dias em que ela almoça na cantina A é quinta-feira.
- Rui almoça na cantina B na segunda-feira e na terça-feira.
- Jéssica almoça na cantina D na terça-feira e na quarta-feira.
- Edu almoça na cantina A na sexta-feira.

CANTINAS

Restrições

	Segunda	Terça	Quarta	Quinta	Sexta
Edu					
Jéssica		D	D		
Marisa				A	
Rui	В	В			

- Nenhum par desses quatro estudantes almoça na mesma cantina no mesmo dia
- Nenhum estudante pode almoçar na mesma cantina mais do que duas vezes durante a semana.
- Marisa é a única estudante que almoça na cantina A em dois dias da semana, e um dos dias em que ela almoça na cantina A é quinta-feira.
- Rui almoça na cantina B na segunda-feira e na terça-feira.
- Jéssica almoça na cantina D na terça-feira e na quarta-feira.
- Edu almoça na cantina A na sexta-feira.

CANTINAS

Restrições

	Segunda	Terça	Quarta	Quinta	Sexta
Edu					A
Jéssica		D	D		
Marisa				A	
Rui	В	В			

- Nenhum par desses quatro estudantes almoça na mesma cantina no mesmo dia
- Nenhum estudante pode almoçar na mesma cantina mais do que duas vezes durante a semana.
- Marisa é a única estudante que almoça na cantina A em dois dias da semana, e um dos dias em que ela almoça na cantina A é quinta-feira.
- Rui almoça na cantina B na segunda-feira e na terça-feira.
- Jéssica almoça na cantina D na terça-feira e na quarta-feira.
- Edu almoça na cantina A na sexta-feira.

CANTINAS

Para a Questão 1, vamos tentar preencher toda a tabela com as respectivas cantinas, sempre respeitando as restrições.

	Segunda	Terça	Quarta	Quinta	Sexta
Edu					A
Jéssica		D	D		
Marisa				A	
Rui	В	В			

Questão 1. Qual das seguintes alternativas é sempre verdadeira?

- (A) Rui não almoça na cantina C.
- (B) Marisa almoça apenas nas cantinas A, C e D.
- (C) Todos os estudantes almoçam na cantina D.
- (D) Todos os estudantes almoçam na cantina C.
- (E) Todos os estudantes almoçam na cantina A.

CANTINAS

Vamos começar por Terça, já que temos duas cantinas direcionadas.

	Segunda	Terça	Quarta	Quinta	Sexta
Edu					A
Jéssica		D	D		
Marisa				A	
Rui	В	В			

900

CANTINAS

Lembre-se que <u>Marisa é a única em que almoça na cantina A em dois</u> <u>dias diferentes</u>. Assim, Edu <u>não</u> pode almoçar na cantina A na terça.

			_		
	Segunda	Terça	Quarta	Quinta	Sexta
Edu		С			A
Jéssica		D	D		
Marisa		A		A	
Rui	В	В			

CANTINAS

Vamos avaliar Segunda:

Observe que, como <u>Marisa é a única na qual pode almoçar duas vezes</u> <u>na cantina A,</u> neste caso, nós poderemos destinar a <u>cantina A somente</u> <u>para Jéssica</u>.

	Segunda	Terça	Quarta	Quinta	Sexta
Edu		C			A
Jéssica	A	D	D		
Marisa		A		A	
Rui	В	В			

CANTINAS

Para Edu e Marisa, tanto C ou D satisfazem as restrições (desde que sejam escolhidas individualmente).

	Segunda	Terça	Quarta	Quinta	Sexta
Edu	C/D	C			A
Jéssica	A	D	D		
Marisa	D/C	A		A	
Rui	В	В			

CANTINAS

Avaliando Quarta:

Pela restrição da cantina A com Marisa, neste caso, Rui é o único em que pode almoçar na cantina A.

	Segunda	Terça	Quarta	Quinta	Sexta
Edu	C/D	C			A
Jéssica	A	D	D		
Marisa	D/C	A		A	
Rui	В	В	A		

CANTINAS

Veja só! Preenchendo até aqui, já encontramos a solução. Podemos <u>afirmar</u> que <u>todos os estudantes almoçam na cantina A</u>.

	Segunda	Terça	Quarta	Quinta	Sexta
Edu	C/D	C			A
Jéssica	A	D	D		
Marisa	D/C	A		A	
Rui	В	В	A		

CANTINAS

Resposta: Letra (E)

Todos os estudantes almoçam na cantina A.,

	Segunda	Terça	Quarta	Quinta	Sexta
Edu	C/D	C			A
Jéssica	A	D	D		
Marisa	D/C	A		A	
Rui	В	В	A		

900

CANTINAS

Para a Questão 2, vamos incluir as novas restrições e tentar preencher o restante da tabela para obter uma solução.

	Segunda	Terça	Quarta	Quinta	Sexta
Edu	C				A
Jéssica		D	D		
Marisa				A	
Rui	В	В		C	

Questão 2. Se <u>Rui almoça na cantina C na</u> <u>quinta-feira e Edu almoça na cantina C na segunda-feira</u>, qual das seguintes alternativas é sempre verdadeira?

- (A) Edu almoça na cantina B na quinta-feira.
- (B) Jéssica almoça na cantina C na sextafeira.
- (C) Marisa almoça na cantina C na quartafeira.
- (D) Rui almoça na cantina C na sexta-feira.
- (E) Rui almoça na cantina D na sexta-feira.

CANTINAS

Novamente, vamos começar por Terça, já que vimos que a única opção válida é Edu almoçar na cantina C e Marisa almoçar na cantina A.

	Segunda	Terça	Quarta	Quinta	Sexta	0
Edu	C	С			A	
Jéssica		D	D			00
Marisa		A		A		
Rui	В	В		C		

CANTINAS

Avaliando Segunda:

Veja que nos resta as cantinas A e D para direcionar a um estudante. Observe também que Jéssica já almoça duas vezes na cantina D. Assim:

	Segunda	Terça	Quarta	Quinta	Sexta
Edu	C	C			A
Jéssica	A	D	D		
Marisa	D	A		A	
Rui	В	В		C	

CANTINAS

Avaliando Quarta:

Como vimos no exercício anterior, na quarta, Rui deve almoçar na cantina A.

	Segunda	Terça	Quarta	Quinta	Sexta
Edu	C	C			A
Jéssica	A	D	D		
Marisa	D	A		A	
Rui	В	В	A	C	

CANTINAS

Avaliando Quarta:

Agora, nos resta as cantinas B e C para serem destinadas a um aluno. Veja que Edu já almoça duas vezes na cantina C. Então:

	Segunda	Terça	Quarta	Quinta	Sexta
				Q amou	
Edu	C	C	В		A
Jéssica	A	D	D		
Marisa	D	A	С	A	
Rui	В	В	A	C	

CANTINAS

Portanto, já obtemos nossa solução! Veja que Marisa almoça na cantina C na quarta-feira.

Segunda	Terça	Quarta	Quinta	Sexta
C	C	В		A
Α	D	D		
D	Α	C	A	
В	В	Α	C	
	C A D	C C A D A	C C B A D C	C C B A D D D A C A

CANTINAS

Resposta: Letra (C)

Marisa almoça na cantina C na quarta-feira.

	Segunda	Terça	Quarta	Quinta	Sexta
Edu	C	C	В		A
Jéssica	A	D	D		
Marisa	D	A	C	A	
Rui	В	В	A	C	

MEDIAEMEDIANA

A média de três números inteiros A, B e C é (A + B + C)/3. A mediana de três números inteiros é o número que ficaria no meio se os três números fossem ordenados em ordem não-decrescente. Por exemplo, se A = 11, B = 4 e C = 6, a média vale (11+4+6)/3 = 7 e a mediana vale 6 (pois ordenando os três números obtemos [4, 6, 11]).

Questão 1. Se A = 22 e B = 10 qual o menor valor inteiro possível para C tal que a média e a mediana de A, B e C sejam iguais.?

- (A) -4
- (B) -2
- (C) 2
- (D) 22
- (E) 34

MEDIAEMEDIANA

A mediana é o valor central quando os números são organizados em ordem crescente. Dependendo do valor de C, temos três casos:

3.Se C >= 22 → ordem: 10, 22, C → mediana = 22 Como queremos o menor inteiro para que a média seja igual a mediana, deveremos utilizar a ordem em que tenhamos o menor valor da mediana.

Assim, utilizaremos C <= 10.

A média é calculada por

$$\frac{C + 10 + 22}{3} = \frac{C + 32}{3} = 10$$

Obtendo o valor de C:

Resposta: Letra (B) -2

Contem para gente o que você achou da aula de hoje:

https://forms.gle/Q1BYFnKxjyKuCC647

CODELAB TEEN