Lec 10: Logistic Regression

Ailin Zhang

Agenda

- Wrap up matrix decomposition
- Logistic Regression
- Maximum Likelihood
- Gradient Ascent
- Iterated Reweighed Least Squares (IRLS)

Linear Regression by QR

We rotate the matrix (XY) by QR decomposition, by applying the Householder reflections for j=1,...,p,

$$\begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} \xrightarrow{Q^{\top}} \begin{bmatrix} R & \mathbf{Y}^* \end{bmatrix} = \begin{bmatrix} R_1 & \mathbf{Y}_1^* \\ 0 & \mathbf{Y}_2^* \end{bmatrix},$$

where R_1 is a upper triangular squared matrix.

To solve the least squares problem,

$$\min_{\beta} \|\mathbf{Y}^* - R\beta\|^2 = \min_{\beta} \left(\|Y_1^* - R_1\beta\|^2 + \|\mathbf{Y}_2^*\|^2 \right),$$

the solution $\hat{\beta} = R_1^{-1} \mathbf{Y}_1^*$ and $\mathrm{RSS} = \|\mathbf{Y}_2^*\|^2$.

Since R_1 is an upper triangular matrix, we can solve the elements of $\hat{\beta}$ in reverse order $\hat{\beta}_p, \hat{\beta}_{p-1}, \dots, \hat{\beta}_1$. It is numerically stable and efficient.

Python Code

```
n = 100
p = 5
X = np.random.random_sample((n, p))
beta = np.array(range(1, p+1))
Y = np.dot(X, beta) + np.random.standard_normal(n)

Z = np.hstack((np.ones(n).reshape((n, 1)), X, Y.reshape((n, 1))))
_, R = qr(Z)
R1 = R[:p+1, :p+1]
Y1 = R[:p+1, p+1]
beta = np.linalg.solve(R1, Y1)
## You should also know how to code this up by yourself!
print(beta)
```

Singular Value Decomposition

Definition

Let $\lambda_1,\ldots,\lambda_n$ denote the eigenvalues of A^TA , with repetitions. Order these so that $\lambda_1\geq \lambda_2\geq \cdots \geq \lambda_n\geq 0$. Let $\sigma_i=\sqrt{\lambda_i}$, so that $\sigma_1\geq \sigma_2\geq \cdots \geq \sigma_n\geq 0$.

The numbers $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ defined above are called the **singular values** of A.

Singular Value Decomposition

Let A be an $m \times n$ matrix with singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$. Let r denote the number of nonzero singular values of A, or equivalently the rank of A.

A singular value decomposition of A is a factorization

$$A = U\Sigma V^T$$

where:

- U is an $m \times m$ orthogonal matrix.
- V is an $n \times n$ orthogonal matrix.
- Σ is an $m \times n$ matrix whose i^{th} diagonal entry equals the i^{th} singular value σ_i for i = 1, ..., r. All other entries of Σ are zero.

How to solve SVD

Theorem

Let A be an $m \times n$ matrix. Then A has a (not unique) singular value decomposition $A = U \Sigma V^T$, where U and V are as follows:

- The columns of V are orthonormal eigenvectors v_1, \ldots, v_n of $A^T A$, where $A^T A v_i = \sigma_i^2 v_i$.
- If $i \le r$, so that $\sigma_i \ne 0$, then the i^{th} column of U is $\sigma_i^{-1} A v_i$. These columns are orthonormal, and the remaining columns of U are obtained by arbitrarily extending to an orthonormal basis for \mathbb{R}^m .

Proof: We just have to check that if U and V are defined as above, then $A = U \Sigma V^T$.

Lemma

- **a.** $||Av_i|| = \sigma_i$.
- **b.** If $i \neq j$ then Av_i and Av_j are orthogonal.

Proof. We compute

$$(Av_i) \cdot (Av_j) = (Av_i)^T (Av_j) = v_i^T A^T A v_j = v_i^T \sigma_j^2 v_j = \sigma_j^2 (v_i \cdot v_j).$$

- If i = j, then since $||v_i|| = 1$, this calculation tells us that $||Av_i||^2 = \sigma_j^2$, which proves (a).
- If $i \neq j$, then since $v_i \cdot v_j = 0$, this calculation shows that $(Av_i) \cdot (Av_j) = 0$

Proof

If $x \in \mathbb{R}^n$, then the components of $V^T x$ are the dot products of the rows of V^T with x, so

$$V^{T}x = \begin{pmatrix} v_{1} \cdot x \\ v_{2} \cdot x \\ \vdots \\ v_{n} \cdot x \end{pmatrix}, \text{Then, } \Sigma V^{T}x = \begin{pmatrix} \sigma_{1}v_{1} \cdot x \\ \sigma_{2}v_{2} \cdot x \\ \vdots \\ \sigma_{r}v_{r} \cdot x \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

$$U\Sigma V^{T}x = (\sigma_{1}v_{1} \cdot x) \sigma_{1}^{-1}Av_{1} + \dots + (\sigma_{r}v_{r} \cdot x) \sigma_{r}^{-1}Av_{r}$$
$$= (v_{1} \cdot x) Av_{1} + \dots + (v_{r} \cdot x) Av_{r}$$

Proof

Since $Av_i = 0$ for i > r we can rewrite the above as

$$U\Sigma V^{T}x = (v_{1} \cdot x) Av_{1} + \dots + (v_{n} \cdot x) Av_{n}$$

$$= Av_{1}v_{1}^{T}x + \dots + Av_{n}v_{n}^{T}x$$

$$= A(v_{1}v_{1}^{T} + \dots + v_{n}v_{n}^{T})x$$

$$= Ax.$$

Logistic Regression

Consider a dataset with n training examples, where $X_i^{\top} = (x_{i1}, \dots, x_{ip})$ consists of p predictors or features, $y_i \in \{0, 1\}$ is the outcome or class label.

obs	$X_{n\times p}$	$ \mathbf{Y}_{n\times 1} $
1	X_1^{\top}	<i>y</i> ₁
2	$X_2^{ op}$	<i>y</i> ₂
n	X_n^{\top}	Уn

We assume $y_i \sim \text{Bernoulli}(p_i)$, i.e., $\Pr(y_i = 1) = p_i$, and we assume

$$\operatorname{logit}(p_i) = \log \frac{p_i}{1 - p_i} = X_i^{\top} \beta.$$

Logistic Regression

$$\operatorname{logit}(p_i) = \log \frac{p_i}{1 - p_i} = X_i^{\top} \beta.$$

Let $\eta_i = X_i^{\top} \beta$ be the score, then

$$p_i = \sigma(\eta_i) = rac{1}{1 + e^{-\eta_i}} = rac{1}{1 + e^{-X_i^{ op}eta}} = rac{e^{X_i^{ op}eta}}{1 + e^{X_i^{ op}eta}},$$

where the function $\sigma(\eta_i)$ is the sigmoid function, which is the inverse of the logit function.

Maximum Likelihood

The likelihood function is

$$L(\beta) = \prod_{i=1}^n \Pr(y_i|p_i)$$

$$L(\beta) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i} = \prod_{i=1}^{n} \frac{e^{y_i X_i^{\top} \beta}}{1 + e^{X_i^{\top} \beta}}.$$

The log-likelihood is

$$I(\beta) = \log L(\beta) = \sum_{i=1}^{n} \left[y_i X_i^{\top} \beta - \log(1 + \exp X_i^{\top} \beta) \right].$$

The maximum likelihood is to find the most plausible explanation to the observed data.

Gradient Ascent

To find the maximum of $I(\beta)$, we first calculate the gradient

$$I'(\beta) = \sum_{i=1}^n \left[y_i X_i - \frac{e^{X_i^\top \beta}}{1 + e^{X_i^\top \beta}} X_i \right] = \sum_{i=1}^n (y_i - p_i) X_i.$$

We use gradient ascent to iteratively update β ,

$$\beta^{(t+1)} = \beta^{(t)} + \gamma_t \sum_{i=1}^n (y_i - p_i) X_i,$$

where γ is the learning rate. This is a hill climbing algorithm, where each step we take the steepest direction uphill.

Gradient Descent

If we minimize a loss function such as $-I(\beta)$, then we use the **gradient descent** algorithm, which means each step we take the steep direction downhill.

$$\beta^{(t+1)} = \beta^{(t)} + \gamma_t \sum_{i=1}^n (y_i - p_i) X_i,$$

The algorithm learns from mistakes by trial and error. If a mistake is made such that p_i is very different from y_i , then β accumulates X_i if $y_i - p_i$ is positive, and $-X_i$ is $y_i - p_i$ is negative.

Python Code

```
def logistic(x, y, num_iteration=1000, learning_rate=1e-2):
    r, c = x.shape
    p = c + 1
    X = \text{np.hstack}((\text{np.ones}((r,1)), x))
    beta = 2*np.random.randn(p, 1)-1
    for i in range(num iteration):
        pr = sigmoid(X.dot(beta))
        beta = beta + learning_rate* X.T.dot(y-pr)
        # px1 = pxn nx1
    return beta
def sigmoid(x):
    return 1.0 / (1 + np.exp(-x))
n = 1000
p = 5
\bar{X} = np.random.normal(0, 1, (n, p))
beta = np.ones((p, 1))
Y = np.random.uniform(0, 1, (n, 1)) < sigmoid(np.dot(X, beta)).reshape((n, 1))
logistic_beta = logistic(X, Y)
```

Iterated Reweighed Least Squares (IRLS)

Figure 1: Second order approximation

Iterated Reweighed Least Squares (IRLS) Derivation

$$I(\beta) = \log L(\beta) = \sum_{i=1}^{n} \left[y_i X_i^{\top} \beta - \log(1 + \exp X_i^{\top} \beta) \right].$$

Let
$$L(\eta_i) = y_i X_i^{\top} \beta - \log(1 + \exp X_i^{\top} \beta)$$

Perform Taylor expansion, $L(\eta_i) = L(\hat{\eta}_i) + L'(\eta_i)\Delta\eta_i + \frac{1}{2}L''(\eta_i)\Delta\eta_i^2$

Iterated Reweighed Least Squares (IRLS)

$$I(\beta) = -\sum_{i=1}^{n} \hat{w}_i (\hat{y}_i - x_i^T \Delta \beta)^2.$$

Where $w_i = p_i(1-p_i)$, $\hat{y_i} = \frac{\hat{e_i}}{\hat{w_i}}$

Recall linear regression:

$$\sum_{i=1}^{n} (y_i - x_i^T \beta)^2.$$

$$\beta^{(t+1)} = \beta_t + \left(\sum_{i=1}^n w_i X_i X_i^{\top}\right)^{-1} \left(\sum_{i=1}^n w_i X_i \hat{y}_i\right)$$

$$= \left(\sum_{i=1}^n w_i X_i X_i^{\top}\right)^{-1} \left[\sum_{i=1}^n w_i X_i \left(X_i^{\top} \beta^{(t)} + \frac{y_i - p_i}{w_i}\right)\right].$$

Iterated Reweighed Least Squares (IRLS)

Consider the flow:

$$\beta^{(t)} \to \eta_i = X_i^\top \beta^{(t)} \to p_i = \sigma(\eta_i) \to w_i = p_i(1-p_i) \to \bar{y}_i = \eta_i + \frac{y_i - p_i}{w_i}$$

$$ightarrow ilde{X}_i = X_i \sqrt{w_i}, ilde{y}_i = \overline{y}_i \sqrt{w_i}
ightarrow eta^{(t+1)}.$$

we can rewrite the equation above as follows:

$$\beta^{(t+1)} = \left(\sum_{i=1}^{n} w_i X_i X_i^{\top}\right)^{-1} \left(\sum_{i=1}^{n} w_i X_i \hat{y}_i\right)$$
$$= \left(\sum_{i=1}^{n} \tilde{X}_i \tilde{X}_i^{\top}\right)^{-1} \left(\sum_{i=1}^{n} \tilde{X}_i \tilde{y}_i\right).$$

Python Code

```
import numpy as np
from scipy import linalg
def mylogistic(_x, _y):
    x = _x.copy()
    y = _y.copy()
    r, c = x.shape
    beta = np.zeros((c, 1))
    epsilon = 1e-6
    while True:
        eta = np.dot(x, beta)
        pr = sigmoid(eta)
        w = pr * (1 - pr)
        z = eta + (y - pr) / w
        sw = np.sqrt(w)
        mw = np.repeat(sw, c, axis=1)
        x \text{ work} = mw * x
        y_work = sw * z
        beta_new, _, _, _ = np.linalg.lstsq(x_work, y_work)
        err = np.sum(np.abs(beta_new - beta))
        beta = beta new
        if err < epsilon:
            break
```

return beta