

¡Felicitaciones! ¡Aprobaste!

Calificación recibida 100 % Para Aprobar 80 % o más

Ir al siguiente elemento

Problem Set #1

Calificación de la entrega más reciente: 100 %

1/1 punto

Which of the following greedy rules is guaranteed to always compute an optimal solution?

solution-so-far and deleting from future consideration all requests that conflict with i.

- At each iteration, pick the remaining request with the earliest start time.
- At each iteration, pick the remaining request with the fewest number of conflicts with other remaining requests (breaking ties arbitrarily).
- \bigcirc At each iteration, pick the remaining request which requires the least time (i.e., has the smallest value of t_i-s_i) (breaking ties arbitrarily).
- At each iteration, pick the remaining request with the earliest finish time.

Let R_j denote the requests with the j earliest finish times. Prove by induction on j that this greedy algorithm selects the maximum-number of non-conflicting requests from S_j .

2. We are given as input a set of n jobs, where job j has a processing time p_j and a deadline d_j . Recall the definition of $completion\ times\ C_j$ from the video lectures. Given a schedule (i.e., an ordering of the jobs), we define the $lateness\ l_j$ of job j as the amount of time C_j-d_j after its deadline that the job completes, or as 0 if $C_j \le d_j$. Our goal is to minimize the maximum lateness, $\max_j l_j$.

1 / 1 punto

Which of the following greedy rules produces an ordering that minimizes the maximum lateness? You can assume that all processing times and deadlines are distinct.

- \bigcirc Schedule the requests in increasing order of processing time p_i
- igcirc Schedule the requests in increasing order of the product $d_i \cdot p_i$
- O None of the other answers are correct.
- lacktriangle Schedule the requests in increasing order of deadline d_j

✓ Correcto

Proof by an exchange argument, analogous to minimizing the weighted sum of completion times.

3. In this problem you are given as input a graph T=(V,E) that is a tree (that is, T is undirected, connected, and acyclic). A perfect matching of T is a subset $F\subset E$ of edges such that every vertex $v\in V$ is the endpoint of exactly one edge of F. Equivalently, F matches each vertex of T with exactly one other vertex of T. For example, a path graph has a perfect matching if and only if it has an even number of vertices.

 $1\,/\,1\,\text{punto}$

Consider the following two algorithms that attempt to decide whether or not a given tree has a perfect matching. The *degree* of a vertex in a graph is the number of edges incident to it. (The two algorithms differ only in the choice of v in line 5.)

Algorithm A:

```
While T has at least one vertex:

If T has no edges:
halt and output "T has no perfect matching."

Else:
Let v be a vertex of T with maximum degree.
Choose an arbitrary edge e incident to v.
Delete e and its two endpoints from T.

[end of while loop]
Halt and output "T has a perfect matching."
```

Algorithm B:

```
While T has at least one vertex:

If T has no edges:
halt and output "T has no perfect matching."

Else:
Let v be a vertex of T with minimum non-zero degree.
Choose an arbitrary edge e incident to v.
Delete e and its two endpoints from T.

[end of while loop]
Halt and output "T has a perfect matching."
```

	8 [end of while loop] 9 Halt and output "T has a perfect matching."		
	Is either algorithm correct?		
	Both algorithms always correctly determine whether or not a given tree graph has a perfect matching.	G X	
	Neither algorithm always correctly determines whether or not a given tree graph has a perfect matching.		
	Algorithm A always correctly determines whether or not a given tree graph has a perfect matching; algorithm B does not.		
	Algorithm B always correctly determines whether or not a given tree graph has a perfect matching; algorithm A does not.		
	\odot Correcto Algorithm A can fail, for example, on a three-hop path. Correctness of algorithm B can be proved by induction on the number of vertices in T . Note that the tree property is used to argue that there must be a vertex with degree 1; if there is a perfect matching, it must include the edge incident to this vertex.		
ı.	Consider an undirected graph $G=(V,E)$ where every edge $e\in E$ has a given cost c_e . Assume that all edge costs are positive and distinct. Let T be a minimum spanning tree of G and P a shortest path from the vertex s to the vertex t . Now suppose that the cost of every edge e of G is increased by 1 and becomes c_e+1 . Call this new graph G' . Which of the following is true about G' ?	ng	1/1 pur
	$lacklacklack$ T must be a minimum spanning tree but P may not be a shortest $s ext{-}t$ path.	GX	
	$igcup T$ may not be a minimum spanning tree and P may not be a shortest $s ext{-}t$ path.		
	$igcap T$ is always a minimum spanning tree and P is always a shortest $s ext{-}t$ path.		
	$igcup T$ may not be a minimum spanning tree but P is always a shortest $s ext{-}t$ path.		
	 Correcto The positive statement has many proofs (e.g., via the Cut Property). For the negative statement, 		
	think about two different paths from s to t that contain a different number of edges.		
	Suppose T is a minimum spanning tree of the connected graph G . Let H be a connected induced subgraph of G . (i.e., H is obtained from G by taking some subset $S \subseteq V$ of vertices, and taking all edges of E that have both endpoints in S . Also, assume H is connected.) Which of the following is true about the edges of T that lie in H ? You can assume that edge costs are distinct, if you wish. [Choose the strongest true statement.]	G _K	1 / 1 pun
	lacklacklacklacklacklacklacklack		
	igcup For every G and H , these edges form a minimum spanning tree of H		
	$igcup$ For every G and H and spanning tree T_H of H , at least one of these edges is missing from T_H		
	\bigcap For every G and H , these edges form a spanning tree (but not necessary minimum-cost) of H		

⊘ Correcto

Proof via the Cut Property (cuts in ${\cal G}$ correspond to cuts in ${\cal H}$ with only fewer crossing edges).