

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMACINIŲ SISTEMŲ INŽINERIJOS STUDIJŲ PROGRAMA

Antra užduotis (Vieno neurono mokymas sprendžiant klasifikavimo uždavinį)

Laboratorinio darbo ataskaita

Atliko: Klaidas Kubilius

VU el. p.: klaidas.kubilius@mif.stud.vu.lt

Vilnius

1. DARBO EIGA

1.1. Duomenys

Buvo naudojama krūties vėžio duomenų aibė, kurią sudarė 699 įrašai ir 11 požymių (įskaitant ID ir klasę). Pašalinus trūkstamas reikšmes, įrašų skaičius sumažėjo iki 683. Taip pat klasių žymės buvo pakeistos: 2 (nepiktybinis navikas) ir 4 (piktybinis navikas) konvertuotos į 0 ir 1.

Požymiai:

• Clump Thickness: 1 - 10

• Uniformity of Cell Size: 1 - 10

• Uniformity of Cell Shape: 1 - 10

• Marginal Adhesion: 1 - 10

• Single Epithelial Cell Size: 1 - 10

• Bare Nuclei: 1 - 10

• Bland Chromatin: 1 - 10

• Normal Nucleoli: 1 - 10

• Mitoses: 1 - 10

1.2. Duomenų padalijimas

Paruoša duomenų aibė buvo padalinta į tris dalis: mokymo (80 %), validacijos (10 %) ir testavimo (10 %) rinkinius. Rinkinys padalijamas į 80 % ir 20 % dalis, kur 80 % duomenų atsitiktinai priskiriama mokymo rinkiniui. Likę 20 % duomenų toliau padalijami į dvi lygias dalis – 10 % validacijos rinkiniui ir 10 % testavimo rinkiniui, taip pat atsitiktinai parenkant įrašus.

- Mokymo rinkinys naudojamas modelio mokymui, svorių ir parametrų atnaujinimui.
- Validacijos rinkinys padeda įvertinti modelio našumą mokymo metu ir yra naudojamas hiperparametrų derinimui. Po kiekvienos mokymo iteracijos modelis tikrinamas su validacijos duomenimis, siekiant nustatyti, ar jis nėra per daug pritaikytas mokymo duomenims (pernelyg išmokęs) ir ar geba generalizuoti žinias naujiems duomenims.
- Testavimo rinkinys skirtas galutiniam modelio vertinimui po mokymo ir validavimo.

1.3. Svoriai ir poslinkis

Generuojami atsitiktiniai skaičiai pagal vienodą paskirstymą tarp 0 ir 1. Kiekvienas svoris yra paskirtas atsitiktinai intervale. Pradinis poslinkis yra 0.

1.4. Gradientiniai nusileidimai

• **Mokymo epocha** – tai neuronų mokymo proceso dalis, kurios metu apdorojamas visas mokymo duomenų rinkinys vieną kartą.

• **Paketinis gradientinis nusileidimas** – taikant paketinį gradientinio nusileidimo algoritmą (batch gradient descent) svoriai keičiami pagal formulę:

$$w_k := w_k - \eta \nabla E(W) := w_k - \eta \frac{1}{m} \sum_{i=1}^m \nabla E_i(W)$$

Taikant šį metodą, vienos iteracijos metu panaudojami visi mokymo duomenys. Pirmiausia į neuroną perduodame visus mokymo duomenis ir apskaičiuojame kiekvieno duomenų įrašo paklaidos funkcijos gradientą. Tada imame gradientų vidurkį ir atnaujiname svorius (ir poslinkį) naudodami apskaičiuotą vidurkį. Paketinio gradientinio nusileidimo atveju viena epocha atitinka vieną iteraciją.

• **Stochastinis gradientinis nusileidimas** – algoritme tikras funkcijos *E W* gradientas aproksimuojamas gradientu, gautu pagal vieną mokymo duomenų įrašą:

$$w_k := w_k - \eta \nabla E(W)$$

Siekiama, kad paklaida būtų minimali i-tajam mokymo duomenų įrašui. Taikant stochastinį gradientinį nusileidimą, vienos iteracijos metu panaudojamas tik vienas mokymo duomenų įrašas. Kiekvienam įrašui skaičiuojamas gradientas ir atnaujinami svoriai (ir poslinkis). Stochastinio gradientinio nusileidimo atveju viena epocha atitinka m iteracijų, čia m yra mokymo duomenų kiekis.

1.5. Tyrimo rezultatai

Atlikti tyrimai su paketiniu gradientiniu nusileidimu ir stochastiniu gradientiniu nusileidimu ir skirtingais mokymo greičiais.

• **Metodas:** Paketinis gradientinis nusileidimas.

• Mokymosi greitis: 0.1.

• Epochu skaičius: 1000.

• **Svoriai**: 0,064; 0,472; 0,329; 0,055; -0,332; 0,376; 0,0404; 0,209; 0,109.

• **Poslinkis**: -4,453.

• **Testavimo paklaida**: 0,092.

• Testavimo tikslumas: 94,20%.

• Mokymo laikas: 0,13 sekundės.

1.1 pav. Mokymo ir validavimo paklaida ir tikslumas epochų metu (Paketinis)

Pastebimas staigus paklaidos sumažėjimas ir tikslumo augimas pirmosiose epochose. Vėliau tiek mokymo, tiek validacijos paklaidos toliau pamažu mažėja, tačiau vis lėčiau, o tikslumo augimas taip pat sulėtėja.

1.2 pav. Testavimo tikslumas keičiant mokymo greitį (Paketinis)

Pastebimas nedidelis testavimo tikslumo sumažėjimas, didinant mokymo greitį, kelių procentų skirtumu.

• **Metodas:** Stochastinis gradientinis nusileidimas.

• Mokymosi greitis: 0.1.

• Epochų skaičius: 1000.

• **Svoriai**: 0,712; 0,639; 1,069; 0,168; 0,117; 0,801; 0,411; 0,63; 0,802.

• **Poslinkis**: -15.804.

Testavimo paklaida: 0,0402.Testavimo tikslumas: 95,65%.

• Mokymo laikas: 12,28 sekundės. (Apie 94 kartus didesnis už paketinį).

1.3 pav. Mokymo ir validavimo paklaida ir tikslumas epochų metu (Stochastinis)

Kaip ir paketinio gradientinio nusileidimo metode pastebimas staigus paklaidos sumažėjimas ir tikslumo augimas pirmosiose epochose. Vėliau tiek mokymo, tiek validacijos paklaidos toliau pamažu mažėja, tačiau vis lėčiau, o tikslumo augimas taip pat sulėtėja. Esminis skirtumas, kad stochastiniame metode, dėl didesnio duomenų šurmulio ir dažnesnio svorių atnaujinimo, linijos turi bangas, kurios atspindi didesnį svyravimą tarp epochų.

1.4 pav. Testavimo tikslumas keičiant mokymo greitį (Stochastinis)

Taikant stochastinį gradientinį nusileidimo metodą ir keičiant mokymo greitį testavimo tisklumas beveik nesikeičia.

1.6. Geriausi rezultatai

Buvo surastas paketinio gradientinio nusileidimo geriausias variantas tarp šių mokymo greičių: 0,001, 0,01, 0,05, 0,1, 0,4, 0,8.

- Geriausias mokymosi greitis: 0,05.
- Epochu skaičius: 1000.
- Mokymo paklaida paskutinėje epochoje: 0,0984.
- Validavimo paklaida paskutinėje epochoje: 0,1196.
- Mokymo tikslumas paskutinėje epochoje: 0,9634.
- Validavimo tikslumas paskutinėje epochoje: 0,9559.
- Testavimo paklaida: 0,0290.
- Testavimo tikslumas: 0,9710.

1.1 lentelė. Testavimo duomenų įrašų palyginimas

Testavimo įrašas 1	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 2	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 3	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 4	Nustatyta klase: 0	Tikroji klase: 0

Testavimo įrašas 5	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 6	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 7	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 8	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 9	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 10	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 11	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 12	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 13	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 14	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 15	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 16	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 17	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 18	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 19	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 20	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 21	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 22	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 23	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 24	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 25	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 26	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 27	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 28	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 29	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 30	Nustatyta klase: 1	Tikroji klase: 0
Testavimo įrašas 31	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 32	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 33	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 34	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 35	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 36	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 37	Nustatyta klase: 0	Tikroji klase: 1
Testavimo įrašas 38	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 39	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 40	Nustatyta klase: 0	Tikroji klase: 0

Testavimo įrašas 41	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 42	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 43	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 44	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 45	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 46	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 47	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 48	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 49	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 50	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 51	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 52	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 53	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 54	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 55	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 56	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 57	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 58	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 59	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 60	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 61	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 62	Nustatyta klase: 1	Tikroji klase: 1
Testavimo įrašas 63	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 64	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 65	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 66	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 67	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 68	Nustatyta klase: 0	Tikroji klase: 0
Testavimo įrašas 69	Nustatyta klase: 0	Tikroji klase: 0

Buvo surastas stochastinio gradientinio nusileidimo geriausias variantas tarp šių mokymo greičių: 0,001, 0,01, 0,05, 0,1, 0,4, 0,8.

• Geriausias mokymosi greitis: 0,001.

• Epochu skaicius: 1000.

• Mokymo paklaida paskutineje epochoje: 0,0964.

• Validavimo paklaida paskutineje epochoje: 0,1154.

• Mokymo tikslumas paskutinėje epochoje: 0,9689.

• Validavimo tikslumas paskutinėje epochoje: 0,9559.

• Testavimo paklaida: 0,0435.

• Testavimo tikslumas: 0,9565.

1.2 lentelė. Testavimo duomenų įrašų palyginimas

10		
Testavimo įrašas 1	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 2	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 3	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 4	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 5	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 6	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 7	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 8	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 9	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 10	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 11	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 12	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 13	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 14	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 15	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 16	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 17	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 18	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 19	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 20	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 21	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 22	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 23	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 24	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 25	Nustatyta klasė: 1	Tikroji klasė: 1
L		1

Testavimo įrašas 26	Nustatyta klasė: 1	Tikroji klasė: 0
Testavimo įrašas 27	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 28	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 29	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 30	Nustatyta klasė: 1	Tikroji klasė: 0
Testavimo įrašas 31	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 32	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 33	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 34	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 35	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 36	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 37	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 38	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 39	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 40	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 41	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 42	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 43	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 44	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 45	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 46	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 47	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 48	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 49	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 50	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 51	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 52	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 53	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 54	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 55	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 56	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 57	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 58	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 59	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 60	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 61	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 62	Nustatyta klasė: 1	Tikroji klasė: 1
Testavimo įrašas 63	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 64	Nustatyta klasė: 0	Tikroji klasė: 0

Testavimo įrašas 65	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 66	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 67	Nustatyta klasė: 1	Tikroji klasė: 0
Testavimo įrašas 68	Nustatyta klasė: 0	Tikroji klasė: 0
Testavimo įrašas 69	Nustatyta klasė: 0	Tikroji klasė: 0

Didesnį tiksluma turėjo paketinis gradientis nusileidimas, bet tik keliais procentais. Geriausi mokymo greičiai tarp metodų skiriasi žymiai.

2. IŠVADOS

- Mokymosi greitis stochastiniam metodui turėjo mažesnę įtaka palyginus su paketiniu metodu.
- Skirtumas tarp metodų tikslumo ir paklaidos yra mažas, bet stochastinio metodo mokymo laikas yra žymiai ilgesnis už paketinio. Atsižvelgus į laiko ribojimą geriau būtų paketinis.
- Paketinio metodo atveju didėjant mokymo greičiu tikslumas taip pat didėja, o stochastinio metodu atveju skirtumai tarp mokymo greičio labai maži.
- Po kelių šimtų epochų mokymo tikslumo didėjimas tampa nereikšmingas, nes modelis pasiekia konvergenciją.

3. PAPILDOMA

Generuota ChatGPT:

- Gramatinėm klaidom taisyti ataskaitoje
- Stochastinio metodo kodui

4. PRIEDAI

4.1. Kodas

```
import numpy as np
import pandas as pd
import time
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.model selection import train test split
# Sigmoidinė aktyvavimo funkcija
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
# Sigmoidinės funkcijos išvestinė
def sigmoid derivative(x):
   return x * (1 - x)
# Funkcija, skirta modelio mokymui su batch ar stochastic metodu
def train_model(X_train, y_train, X_val, y_val, learning_rate, epochs, n_features,
method='batch'):
   w = np.random.uniform(0, 1, (n features, 1))
   b = 0.0
    # Laiko matavimas
    start time = time.time()
    # Saugojimui
    train losses, val losses = [], []
    train accuracies, val accuracies = [], []
    m = len(X train) # Mokymo duomenų dydis
    epoch = 0
    while epoch < epochs:
        gradientSum = np.zeros(n_features) # Masyvas, kuriame saugomi gradientų sumos
        if method == 'batch':
            # Batch mokymo metodas
            z = np.dot(X train, w) + b # Funkcija Xw + b
            y pred = sigmoid(z) # Priskiria arčiausiai 0 arba 1
            error = y pred - y train # Netikslumas tarp prognozės ir tikros reikšmės
            gradient_w = np.dot(X_train.T, error) / len(X_train) # Svorium gradientas
            gradient b = np.mean(error)
                                           # Poslinkio gradientas
            w -= learning_rate * gradient_w # Atnaujina svorius
            b -= learning rate * gradient b # Atnaujina poslinkį
        elif method == 'stochastic':
            # Stochastic mokymo metodas
            X_train, y_train = shuffle(X_train, y_train) # Duomenų maišymas
            for i in range(len(X train)):
                xi = X_train[i].reshape(1, -1) # Paimama i-oji treniravimo duomenų
eilutė ir paverčiama 2D eilutės vektoriumi
                yi = y_train[i].reshape(1, -1) # Paimama i-oji tikroji reikšmė ir
paverčiama 2D eilutės vektoriumi
                linear_output = np.dot(xi, w) + b # Funkcija Xw + b
                y_pred = sigmoid(linear_output) # Priskiria arčiausiai 0 arba 1
                error = yi - y_pred # Netikslumas tarp prognozės ir tikros reikšmės
                w_gradient = np.dot(xi.T, error * sigmoid_derivative(y_pred)) #
Svorių gradientas
                b_gradient = np.sum(error * sigmoid_derivative(y_pred)) # Poslinkio
gradientas
```

```
# Svorių ir poslinkio atnaujinimas
                w += learning rate * w gradient
                b += learning_rate * b_gradient
        # Klasifikavimo tikslumo ir paklaidos skaičiavimas
        train_output = sigmoid(np.dot(X_train, w) + b) # Apskaičiuojama prognozė
mokymo duomenims
        train predictions = (train output >= 0.5).astype(int)
        train accuracy = np.mean(train predictions == y train)
        train_loss = np.mean(np.abs(y_train - train_output))
        val output = sigmoid(np.dot(X val, w) + b) # Apskaičiuojama prognozė
validacijos duomenims
        val predictions = (val output >= 0.5).astype(int)
        val_accuracy = np.mean(val_predictions == y_val)
        val_loss = np.mean(np.abs(y_val - val_output))
        # Išsaugoti paklaidas ir tikslumus
        train_losses.append(train_loss)
        val losses.append(val loss)
        train accuracies.append(train accuracy)
        val accuracies.append(val accuracy)
        epoch += 1
        # Kiekvienos 100 epochų metu išvedami rezultatai
        if epoch % 100 == 0:
            print(f"Epochos {epoch}: Mokymo paklaida {train_loss:.4f}, Mokymo
tikslumas {train accuracy * 100:.2f}%")
            print(f"Epochos {epoch}: Validacijos paklaida {val_loss:.4f}, Validacijos
tikslumas {val_accuracy * 100:.2f}%")
    # Laiko skaičiavimas
    end time = time.time()
    training time = end time - start time
    return w, b, train losses, val losses, train accuracies, val accuracies,
training time
# Duomenų įkėlimas ir paruošimas
file path = "cleaned_breast_cancer.csv"
df = pd.read csv(file path)
X = df.drop(columns=["Class"]).values
y = df["Class"].values.reshape(-1, 1)
# Duomenų padalijimas į mokymo, validacijos ir testavimo rinkinius
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.2,
random state=100)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5,
random state=100)
# Modelio parametrai
learning_rate = 0.1
epochs = 1000
n_features = X_train.shape[1] #požymiai
method = 'stochastic' # Pasirinkti mokymo metoda: batch arba stochastic
# Mokymas
w, b, train_losses, val_losses, train_accuracies, val_accuracies, training_time =
train model(
   X_train, y_train, X_val, y_val, learning_rate, epochs, n_features, method)
# Testavimas
test output = sigmoid(np.dot(X test, w) + b)
test_predictions = (test_output >= 0.5).astype(int)
```

```
test accuracy = np.mean(test predictions == y test)
test loss = np.mean(np.abs(y test - test output))
# Rezultatų išvedimas
print("Galutiniai svoriai:", w.flatten())
print("Galutinis poslinkis:", b)
print(f"Testavimo paklaida: {test_loss:.4f}")
print(f"Testavimo tikslumas: {test accuracy * 100:.2f}%")
print(f"Mokymo laikas: {training_time:.2f} sekundes")
# Grafikai
plt.figure(figsize=(12, 5))
# Paklaidos grafikas
plt.subplot(1, 2, 1)
plt.plot(range(epochs), train_losses, label="Mokymo paklaida")
plt.plot(range(epochs), val losses, label="Validacijos paklaida")
plt.xlabel("Epochos")
plt.ylabel("Paklaida")
plt.title("Mokymo ir Validacijos Paklaida")
plt.legend()
# Tikslumo grafikas
plt.subplot(1, 2, 2)
plt.plot(range(epochs), train_accuracies, label="Mokymo tikslumas")
plt.plot(range(epochs), val accuracies, label="Validacijos tikslumas")
plt.xlabel("Epochos")
plt.ylabel("Tikslumas")
plt.title("Mokymo ir Validacijos Tikslumas")
plt.legend()
plt.show()
# Įvairūs mokymosi greičiai
learning rates = [0.001, 0.01, 0.05, 0.1, 0.4, 0.8] # Skirtingi mokymosi greičiai
test_accur_lr = []
# Saugo validavimo tikslumus ir kitus reikalingus duomenis
val accuracies = [] # Saugo validavimo tikslumus
train losses all = [] # Saugo visus mokymo praradimus
val_losses_all = []  # Saugo visus validavimo praradimus
train_accuracies_all = [] # Saugo visus mokymo tikslumus
val accuracies all = []
                          # Saugo visus validavimo tikslumus
for lr in learning_rates:
    # skirtingi mokymosi greičiai
    w, b, train_losses, val_losses, train_accuracies, val_accuracies_temp,
training_time = train_model(
        X_train, y_train, X_val, y_val, lr, epochs, n_features, method)
    # Išsaugome praradimus ir tikslumus visoms epochoms
    train losses all.append(train losses)
    val losses all.append(val losses)
    train_accuracies_all.append(train_accuracies)
    val_accuracies_all.append(val_accuracies_temp)
    # Išsaugome paskutinės epochos validavimo tikslumą
    val_accuracies.append(val_accuracies_temp[-1] if val_accuracies_temp else 0)
    # Testavimas
    test output = sigmoid(np.dot(X test, w) + b)
    test predictions = (test output >= 0.5).astype(int)
    test accuracy = np.mean(test_predictions == y_test)
    test_accur_lr.append(test_accuracy)
# Surasti geriausią rezultatą pagal validavimo duomenis
```

```
best idx = np.argmax(val accuracies) # Indeksas, kurio validavimo tikslumas
didžiausias
best lr = learning rates[best idx] # Geriausias mokymosi greitis
# Gautos reikšmės
best train loss = train losses all[best idx][-1] # Paskutinės epochos mokymo paklaida
best_val_loss = val_losses_all[best_idx][-1]  # Paskutinės epochos validavimo paklaida
best_train_acc = train_accuracies_all[best_idx][-1]  # Paskutinės epochos mokymo
tikslumas
best_val_acc = val_accuracies_all[best_idx][-1] # Paskutinės epochos validavimo
tikslumas
# Paklaida testavimo duomenims
test output = sigmoid(np.dot(X test, w) + b)
test predictions = (test output >= 0.5).astype(int)
\texttt{test\_loss} = \texttt{np.mean((test\_predictions - y\_test)} \ ** \ 2) \ \# \ \texttt{Testavimo paklaida}
test_accuracy = np.mean(test_predictions == y_test) # Testavimo tikslumas
# Geriausi rezultatai
print(f"Geriausias mokymosi greitis: {best_lr}")
print(f"Epochu skaicius: {epochs}")
print(f"Mokymo paklaida paskutineje epochoje: {best train loss:.4f}")
print(f"Validavimo paklaida paskutineje epochoje: {best val loss:.4f}")
print(f"Mokymo tikslumas paskutineje epochoje: {best train acc:.4f}")
print(f"Validavimo tikslumas paskutineje epochoje: {best val acc:.4f}")
print(f"Testavimo paklaida: {test_loss:.4f}")
print(f"Testavimo tikslumas: {test accuracy:.4f}")
# Kiekvieno testavimo įrašo prognozės
for i, (pred, actual) in enumerate(zip(test predictions, y test)):
    print(f"Testavimo irasas {i + 1}: Nustatyta klase: {pred}, Tikroji klase:
{actual}")
#Stulpeline diagrama mokymosi greičiui
plt.figure(figsize=(8, 6))
bars = plt.bar([str(lr) for lr in learning rates], test accur lr, color='blue')
plt.xlabel('Mokymosi Greitis')
plt.ylabel('Testavimo tikslumas')
plt.title('Testavimo tikslumas pagal mokymosi greiti')
for bar, accuracy in zip(bars, test_accur_lr):
    yval = bar.get height()
    plt.text(bar.get x() + bar.get width() / 2, yval / 2, f'{accuracy:.2f}',
ha='center', va='center', color='white')
plt.show()
```