Assignment 1

a. Construct the truth table for the two-bit-comparator

A1	A0	B1	В0	A_greater_than_B	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	1	A > B (A = 1, B = 0)
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	0	
1	0	0	0	1	A > B (A = 2, B = 0)
1	0	0	1	1	A > B (A = 2, B = 1)
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	1	A > B (A = 3, B = 0)
1	1	0	1	1	A > B (A = 3, B = 1)
1	1	1	0	1	A > B (A = 3, B = 2)
1	1	1	1	0	

b. Write the sum of product form of the function from the truth table.

 $A_greater_than_B = A1'A0B1'B0' + A1A0'B1'B0' + A1A0'B1'B0 + A1A0B1'B0' + A1A0B1'B0 + A1A0B1B0'.$

c. Simplify the function as much as possible:

			B1	В0	
		00	01	11	10
	00				
A1A0	01	1			
711710	11	i	1		1
	10	1	1		

 $A_greater_than_B = A0B1'B0' + A1A0B0' + A1B1'$

d. Design a logic diagram for the simplified function:

e. Run the simulation of the logic diagram using Simulation Waveform Editor tool:

f. Write the Verilog structural description (gate - entry modelling) for the simplified function

g. Run the simulation of the Verilog code using Simulation Waveform Editor tool:

h. Write a Verilog testbench for the Verilog code to test the model:

Assignment 2

a)
$$AB(C+D)+AB(C+D)$$

1. Simplify boolean expression

2. Boolean/Logic Expression:

$$Z = A \cdot B$$

3. Construct the truth table:

A	В	AB
0	0	0
0	1	0
1	0	0
1	1	1

4. Write the sum of product form of the function from the truth table:

$$Z = AB$$

5. Design a logic diagram for the simplified function

6. Run the simulation of the logic diagram using Simulation Waveform Editor tool:

- b) AB'C + B + BD' + ABD' + A'C
- 1. Simplify boolean expression

$$AB(C+D)+AB(C+D)$$

$$= B(1+D'+AD')+AB'C+A'C$$

$$= B(1+D'(1+A))+AB'C+A'C$$

$$= AB'C+A'C+B$$

$$=$$
 AB'C+A'C(B+B')+B

$$=$$
 AB'C+A'B'C+A'BC+B

$$= B'C(A+A')+B(A'C+1)$$

$$= B'C+B$$

$$= B'C+B(1+C)$$

$$= B'C+B+BC$$

$$= C(B'+B)+B$$

$$= B+C$$

2. Boolean/Logic Expression:

$$Z = B + C$$

3. Construct the truth table:

A	В	Z = B or C
0	0	0
0	1	1
1	0	1
1	1	1

4. Write the sum of product form of the function from the truth table:

$$Z = B + C$$

5. Design a logic diagram for the simplified function

6. Run the simulation of the logic diagram using Simulation Waveform Editor tool:

Assignment 3

a)

1. Write the Boolean expressions:

$$(A + AB) (B + BC) (C + AB)$$

2. Simplify boolean expression:

$$(A + AB) (B + BC) (C + AB)$$

= $(A + (1 + B)) (B(1 + C)) (C + AB)$
= $A.1.B.1.(C + AB)$
= $AB(C + AB)$

$$=$$
 ABC + AB.AB

$$= ABC + AB$$

$$= AB(C + 1)$$

$$= AB$$

3. Construct the truth table:

A	В	Z = A and B
0	0	0
0	1	0
1	0	0
1	1	1

4. Write the sum of product form of the function from the truth table:

$$Z = AB$$

5. Design a logic diagram for the simplified function:

6. Run the simulation of the logic diagram using Simulation Waveform Editor tool:

Name	Value at	0 ps		40.0 ns		80.0 ns		120 _i 0 ns		160 _, 0 ns	200.0
∨ Z	0 ps B 000	0 ps	000	X	010	X	100	X	111	X	000
HA I	В 0										
HA I	ВО										
HA I	В 0										

b)

1. Write the Boolean expressions:

$$((A' + (A + B))(B' + (B + C)))'$$

2. Simplify boolean expression:

$$((A' + (A + B)) (B' + (B + C)))'$$

$$= (A' + (A + B)') + (B' + (B + C)')$$

$$= (A'' + (A + B)'') + (B'' + (B + C)'')$$

$$= A + AB + B + BC$$

$$= A (1 + B) + B (1 + C)$$

$$= A + B$$

3. Construct the truth table:

A	В	Z = A or B
0	0	0
0	1	1
1	0	1
1	1	1

4. Write the sum of product form of the function from the truth table:

$$Z = A + B$$

5. Design a logic diagram for the simplified function:

6. Run the simulation of the logic diagram using Simulation Waveform Editor tool:

	Name	Value at 0 ps	0 ps		40.0 ns		80.0 ns		120 _i 0 ns		160 _, 0 ns
S	∨ Z	B 000		000		011		101		111	X
in_	HA	B 0									
in_	HA	B 0									
out	HA	B 0									

Assignment 4

a) Σ m(0, 2, 3, 4, 5, 6)

1. Construct the truth table:

A	В	C	Z
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

2. Write the Sum Of Product form:

$$Z_{SOP} = A'B'C' + A'BC' + A'BC + AB'C' + AB'C + ABC'$$

3. Write the Product Of Sum form:

$$Z_{POS} = (A + B + C') (A' + B' + C')$$

4. Simplify the function as much as possible

		ВС					
		00	01	11	10		
Λ	0	1		1	1		
A	1	1	1		1		

$$\Rightarrow$$
 Z = C' + A'B + AB'
= C' + (A \bigoplus B)

5. Design a logic diagram for the simplified function

6. Run the simulation of the logic diagram using Simulation Waveform Editor tool

		O P3	11										
*	~ Z	B 0001	0001	0010	0101	0111	1001	1011	1101	1110	(0001)
in_	HA	B 0											_
in_	HA	B 0											_
in	HA	B 0											
out	HA	B 1											•

b) $\Pi M(0, 1, 2, 3, 4, 7)$

1. Construct the truth table:

A	В	C	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

2. Write the Sum Of Product form:

$$Z_{SOP} = AB'C + ABC'$$

3. Write the Product Of Sum form:

$$Z_{POS} = (A + B + C) (A + B + C') (A + B' + C) (A + B' + C') (A' + B + C) (A' + B' + C')$$

4. Simplify the function as much as possible

		BC			
		00	01	11	10
A	0				
	1		1		1

$$\Rightarrow$$
 Z = AB'C + ABC'

5. Design a logic diagram for the simplified function

6. Run the simulation of the logic diagram using Simulation Waveform Editor tool

Assignment 5

a) Σ m (0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13)

1. Construct the truth table:

A	В	C	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

2. Write the Sum Of Product form:

$$\begin{split} Z_{SOP} &= \text{A'B'C'D'} + \text{A'B'C'D} + \text{A'B'CD'} + \text{A'B'CD} + \text{A'BC'D} + \text{A'BCD} + \text{AB'C'D'} + \\ &\quad \text{AB'C'D} + \text{AB'CD'} + \text{ABC'D'} + \text{ABC'D} \end{split}$$

3. Write the Product Of Sum form:

$$Z_{POS} = (A + B' + C + D) (A + B' + C' + D) (A' + B + C' + D') (A' + B' + C' + D)$$

$$(A' + B' + C' + D')$$

4. Simplify the function as much as possible

		CD			
		00	01	11	10
AB	00	1	1	1	1
	01		1	1	
	11	1	1		
	10	1	1		1

$$\Rightarrow$$
 Z = A'D + AC' + B'D'

5. Design a logic diagram for the simplified function

6. Run the simulation of the logic diagram using Simulation Waveform Editor tool

b) Π M(2, 8, 9, 10, 11, 12, 14)

1. Construct the truth table:

A	В	С	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

2. Write the Sum Of Product form:

$$\begin{split} Z_{SOP} = \text{A'B'C'D'} + \text{A'B'C'D} + \text{A'B'CD} + \text{A'BC'D'} + \text{A'BCD'} + \text{A'BCD'} + \text{A'BCD} + \\ \text{ABC'D} + \text{ABCD} \end{split}$$

3. Write the Product Of Sum form:

$$Z_{POS} = (A + B + C' + D) (A' + B + C + D) (A' + B + C + D') (A' + B + C' + D)$$

 $(A' + B + C' + D') (A' + B' + C + D) (A' + B' + C' + D)$

4. Simplify the function as much as possible

		CD			
		00	01	11	10
AB	00	1	1	1	
	01	1	1	1	1
	11		1	1	
	10				

$$=> Z = A'C' + A'D + BD + A'B$$

5. Design a logic diagram for the simplified function

6. Run the simulation of the logic diagram using Simulation Waveform Editor tool

