

```
2) Na valozu iz logickog kruga
                                                  10> H Z H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     { 2020.7
                                                  dane gulita stayetno e stanju...
                                           @10>,
                                                      0 1+>
                                                    d) 1->
                                                    e mista ad mavedenog.
                                                H \rightarrow Hadamardou querotor (*H = <math>\sqrt{2}\begin{bmatrix} 1 & 1 \\ 1-1 \end{bmatrix}, z = \begin{bmatrix} 1 & 0 \\ 0-1 \end{bmatrix})
                                                  H(0) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
                                                                                                      =\frac{1}{\sqrt{2}}(10)+11>)=1+>
                                                    ZHIO\rangle = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \overline{J}2 \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \overline{J}2 \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}
                                                                                                                           = \sqrt{2} \left( \begin{bmatrix} 1 \cdot 1 + 0 \cdot 0 \\ 0 \cdot 1 + (-1) \cdot 0 \end{bmatrix} + \begin{bmatrix} 1 \cdot 0 + 0 \cdot 1 \\ 0 \cdot 0 + (-1) \cdot 1 \end{bmatrix} \right) = \sqrt{2} \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)
                                                                                                                               =\frac{1}{12}(10)-112)=1-2
                                                    HZHIO\rangle = \sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \sqrt{2} \cdot \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \frac{1}{2} \cdot \left( \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)
                                                                                                                                          =\frac{1}{2}\left(\begin{bmatrix}1\\1\end{bmatrix}+\begin{bmatrix}0\\1\end{bmatrix}-\begin{bmatrix}0\\1\end{bmatrix}\right)=\frac{1}{2}\left(10\right)+11\right)-\left(10\right)-11\right)
                                                                                                                                         =\frac{1}{2} \cdot 2 \cdot |1\rangle = |1\rangle
                                                   \left(\begin{array}{c} * \mid 0 \rangle = \left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid 1 \rangle = \left[\begin{array}{c} 0 \\ 1 \end{array}\right], \mid + \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \mid - \rangle = \frac{1}{\sqrt{2}}\left(\left[\begin{array}{c} 1
```

(* HIO>= I+>, HIA>= I->, HI+>= IO>, HI->= IA>, ZIO> = IO>, ZIA>= -1A>)

2 Rasmatramo kiantni logički krug 10) H R(\$) H Kolika je upropitnost da u mjerenju dolijemo vrjednost 11>? 2019. (2 (1-cosp) $d \cos \phi$, $e \cos \phi^2$ $H_{10}\rangle = \sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \sqrt{2} \begin{bmatrix} 1 \cdot 1 + 1 \cdot 0 \\ 1 \cdot 1 + (-1) \cdot 0 \end{bmatrix} = \sqrt{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \sqrt{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $=\frac{1}{\sqrt{2}}(10)+11)=1+$ $R(\Phi)H(O) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\Phi} \end{bmatrix} \cdot \frac{1}{12} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \frac{1}{12} \left(\begin{bmatrix} 1 & 0 \\ 0 & e^{i\Phi} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & e^{i\Phi} \end{bmatrix} \right)$ $= \sqrt{2} \left(\left[1.1 + 0.0 \right] + \left[1.0 + 0.0 \right] \right) = \sqrt{2} \left(\left[1 \right] + e^{i\phi} \left[0 \right] \right)$ = \$\frac{1}{2}(10) + ei\psi 11>) $HR(\phi)HIO> = \frac{1}{2}\begin{bmatrix}1&1\\1&-1\end{bmatrix}\cdot\frac{1}{2}\left(\begin{bmatrix}1\\0\end{bmatrix}+\begin{bmatrix}0\\0\end{bmatrix}\right) = \frac{1}{2}\left(\begin{bmatrix}1&1\\1&-1\end{bmatrix}\begin{bmatrix}1\\1&-1\end{bmatrix}\begin{bmatrix}1\\1&-1\end{bmatrix}\begin{bmatrix}0\\0\end{bmatrix}\right)$ $=\frac{4}{2}\left(\left(\begin{bmatrix}1\\1\end{bmatrix}+\begin{bmatrix}0\\1\end{bmatrix}\right)+e^{i\phi}\left(\begin{bmatrix}1\\1\end{bmatrix}-\begin{bmatrix}0\\1\end{bmatrix}\right)=\frac{4}{2}\left(\left(10\right)+11\right)+e^{i\phi}\left(10\right)-11\right)$ $= \frac{1}{2} ((1 + e^{i\phi}) | 0) + (1 - e^{i\phi}) | 1) = \frac{1}{2} ((1 + \cos\phi + i\sin\phi) | 0) + (1 - \cos\phi - i\sin\phi) | 1)$ Py+1 = 1< 4/17)12 $<\psi| = kony. konylekoni \psi = \frac{1}{2}((1+cos\phi-van\phi)|0> + (1-cos\phi+van\phi)|1>)$ $P_{\psi \to 1} = 1(\frac{1}{2}((1+\cos\phi - \cos\phi) < 0) + (1-\cos\phi + \cos\phi) < 1)) \cdot (0.10) + 1.11))^2$ = stage umnožak vrjednosti uz <0|<10> te uz <1|<11>= $12(1-\cos\phi+\sin\phi)^2=\frac{1}{4}(1+2\cos\phi+\cos^2\phi+\sin^2\phi)=\frac{1}{4}(2-2\cos\phi)$ = $2(1-\cos\phi)$

2 Razmatramo kiantni logički krug
10> — H — Ø — H — X
ale p gerator O definiran o 10> → 10> i 11> → ei 11> pri cemu e pasa O realan broj. Kolika p geropatnost da u mprenji dobremo injednost O, ty da p qubit u stanju 10>?
000 00 00 00 00 00 00 00
$HIO\rangle = (+) = \sqrt{2}(10) + 11)$ (*HIO>=1+>, HIA>=1->, HI+>=10>, HI->=11>)
$\Phi_{10} = \Phi(\sqrt{2}(10) + 11) = \sqrt{2}(\Phi_{10}) + \Phi_{11}) = \sqrt{2}(10) + e^{-\Phi_{11}}$
$H\phi H O \rangle = H(\sqrt{2}(10) + e^{i\phi} 11 \rangle) = \sqrt{2}(H O \rangle + e^{i\phi} H 11 \rangle) = \sqrt{2}(1 + \gamma + e^{i\phi} - \gamma)$
$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} (10) + 1\rangle + e^{i\phi} \cdot \frac{1}{\sqrt{2}} (10) - 1\rangle \right) = \frac{1}{2} \left((1 + e^{i\phi}) 0\rangle + (1 - e^{i\phi}) 1\rangle \right)$
$= \frac{1}{2}((1+\cos\phi+\cos\phi)10) + (1-\cos\phi-\cos\phi)11)$
$= \psi\rangle \rightarrow \langle\psi = \frac{1}{2}((1+\cos\phi-i\alpha n\phi)\langle 0 + (1-\cos\phi+i\alpha n\phi)\langle 1)$
$P_{\psi \to 0} = \langle \psi 0 \rangle ^2 = \frac{1}{2}((1 + \cos \phi - i \cos \phi) < 0 + (1 - \cos \phi + i \sin \phi) < 1) \cdot (10) ^2$
$= \frac{1}{2}(1+\cos\phi - (\sin\phi)) ^2 = \frac{1}{4}(1+2\cos\phi + \cos^2\phi + \sin^2\phi) = \frac{1}{4}(2+2\cos\phi)$ $= \frac{1}{2}(1+\cos\phi)$
2 (17 (050)

3 Merenem stanja querta na vslasu is logickog kruga
10> H-?
vyldnot 0 dobriamo i 50% slučajela. 12 togo možemo zakljičiti da gerator označen ujitnikom zazgimo nje gerator
ω X, ei Y, 2 Z, (d) H, e S.
Gerotor H 2a ulasmo stanje 10> vraća izlasmo stanje 1+>, što je ujedno i ulasmo stanje mejosmatog geratora. Za gerator H također vrijedi H1+>=10> što 2mači da bi mjerenjem stanja gubita uijek dobili vrjednost 0. Zbog toga, gerator H sigumo mije mejosmati gerator.

5	Ako vota Uk predstavlaju implementaciju funkcije je sa sigstuma $f(0) = 1$ i $g(1) = 1$ te ako na islaznoj (desnoj) strani kiantnog logičkog kruga
	Up 10>
	mamo stanje 100>, možemo saključiti da na ulasu u knig
	au 100>. (B) 101>, 0 110>, d) 111>, e) takia situacija mije moguća.
	Za implementacy funkcie fingde
	y y⊕ k(x)
	Na temelji zadanog kruga zakljičijemo
	$ x\rangle = 0\rangle$ $ y \oplus f(x)\rangle = 0\rangle$ $ y \oplus 1\rangle = 0\rangle \rightarrow y\rangle = 1\rangle$
	ulasmo stange → 1x> @ 1y> = 10> @ 11> = 101>

(10) Za pohromu matričnog prikaza geenitog geratora 16-quirtnog kiantnog računala u memoriji (mpr. pri simulaciji isiootena kiantnog algoritma) potrebno je prikizno (uzmite da je siaki skalar matrice kompleksan broj te da za pohromu jednog realnog erga konstimo 8 ergtaa)... a 0,5 MB, e) 1 MB, d 35 GB, W 70 GB, e po (2motro) vise m = 16 $N = 2^{m} = 2^{16}$ matrichi prkaz geratora → matrica N×N → mot. 216 × 216 enga potrelno 16 bajtaa, onda je ukujno potrelno... 216. 216. 16 = 68,72. 109 B ≈ 70 GB Pretrazigemo li basu velicine 1010 Groverom, potrelno je racionalo o prelismo koliko querta? log2 (1010) = 33,22 → warma re 33 le 34 106, Groverou gerator mora delasti koliko juta? m = egg2(10€) = 19,93 ≈ 20 R = 12m = 1024 ≈ 1000