

Quantifying Area Methane Sources With Satellite Observations

Yuzhong Zhang 张 羽 中

zhangyuzhong@westlake.edu.cn

With

Harvard University D. J. Jacob, H. Nesser, D. Varon, M.P. Sulprizio

EDF R. Gautam, M. Omara, D. Lyon, D. Zavala, R. Alvarez, S. P. Hamburg

SRON I. Aben, S. Pandey, J.D. Maasakkers, P. Sadavarte, A. Lorente, S. Houweling

Regional / Area Methane Sources

Clustered methane sources in an area of 50 – 500 km

- Understand dynamics of a particular source - Support regional advocacy & policy making

Rice Paddies Oil/Gas Field Wetlands

Satellite-based Emission Quantification

TROPOMI – Sentinel-5P

Launched in 2017

Gapless mapping

1 day global coverage

Precision better than 1%

- ~7 km spatial resolution
- Suitable for regional / area source quantification

Spectral Signal

Methane concentration

Methane Emissions

Atmospheric Inversion

$$J(x) = (x - \underline{x_a})^{\mathsf{T}} \mathbf{S_a^{-1}} (x - x_a) + \gamma (\underline{y} - \mathbf{K}x)^{\mathsf{T}} \mathbf{S_0^{-1}} (y - \underline{\mathbf{K}x})$$
Prior Satellite Forward model: sensitivity to emissions

Uncertainty of observations & model

Atmospheric Inversion of TROPOMI Data: Permian Basin

Zhang et al., Science Advances, 2020

Methane Column

TROPOMI 5/2018-3/2019

Inversion

Atmospheric

CH₄ Emission Flux

Basin Total: 2.7 Tg a⁻¹

>2x higher than bottomup estimate

Spatial Distribution [0.25 degree]

Temporal Changes [Monthly]

Fast Methods To Quantify Area Sources

- Fast screening & tracking
- Large volume of satellite data

Atmospheric Inversion

- Full account of wind information
- Sensitivity computation
 - Multiple model runs expensive

Model Enhancement Scaling

$$E = \frac{\Delta XCH_{4,obs}}{\Delta XCH_{4,model}} \cdot E_{model}$$

- Only 1 forward model run
- Requires prior emission

Kort et al., 2014 Pandey et al., 2019

Mass Balance Method

$$E = C \cdot \Delta XCH_4 \cdot u$$

- No model run needed
- No prior emissions needed
- Area mean wind speed

Buchwitz et al., 2017 Schneising et al., 2020

of model runs Wind information Prior information

Computation speed Ease of implementation

Quantifying Area Methane Sources From Satellite Data

Yuzhong Zhang 张 羽 中

