WhileCC-approximability and Acceptability of Elementary Functions

Fateme Ghasemi Supervisor: Dr. Jeffery Zucker

April 2025

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about **partial** functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about **partial** functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about **partial** functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about **partial** functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about partial functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about **partial** functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about partial functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about partial functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

Definition (Acceptability)

A function $f: \mathbb{R} \to \mathbb{R}$ is acceptable if there exists a sequence X where

- lacksquare X is an effective open exhaustion for $\mathbf{dom}(f)$, and

Definition (Acceptability)

A function $f: \mathbb{R} \to \mathbb{R}$ is acceptable if there exists a sequence X where:

- lacksquare X is an effective open exhaustion for $\mathbf{dom}(f)$, and

Definition (Acceptability)

A function $f: \mathbb{R} \to \mathbb{R}$ is acceptable if there exists a sequence X where:

- f 0 X is an effective open exhaustion for ${f dom}(f)$, and
- ② f is effectively locally uniformly continuous w.r.t. X.

Definition (Acceptability)

A function $f: \mathbb{R} \to \mathbb{R}$ is acceptable if there exists a sequence X where:

- lacksquare X is an effective open exhaustion for $\mathbf{dom}(f)$, and
- 2 f is effectively locally uniformly continuous w.r.t. X.

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an **effective open exhaustion** for an open $U \subseteq \mathbb{R}$ if

- $U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i = 1, ..., k_l 1$, and
- \bullet the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an **effective open exhaustion** for an open $U \subseteq \mathbb{R}$ if

- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1,U_2,\ldots) of open sets is called an effective open exhaustion for an open $U\subseteq\mathbb{R}$ if

- $U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- ① the map $l \mapsto (a_1^l, b_1^l, ..., a_{k_l}^l, b_{k_l}^l)$ which delivers the sequence of stages $U_l = I_1^l \cup ... \cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1), (-2,2), \ldots, (-k,k), \ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an effective open exhaustion for an open $U \subseteq \mathbb{R}$ if

- $U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i = 1, ..., k_l 1$, and
- ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an effective open exhaustion for an open $U \subseteq \mathbb{R}$ if

- $\mathbf{0} \ U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1), (-2,2), \ldots, (-k,k), \ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an **effective open exhaustion** for an open $U \subseteq \mathbb{R}$ if

- $\mathbf{0} \ U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an effective open exhaustion for an open $U \subseteq \mathbb{R}$ if

- $\mathbf{0} \ U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1), (-2,2), \ldots, (-k,k), \ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an effective open exhaustion for an open $U \subseteq \mathbb{R}$ if

- $U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- **3** the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1), (-2,2), \ldots, (-k,k), \ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an effective open exhaustion for an open $U \subseteq \mathbb{R}$ if

- $U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- **1** the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Background - Effective Local Uniform Continuity

Definition ([Fu and Zucker, 2014])

A function f on U is effectively locally uniformly continuous w.r.t. an effective open exhaustion $(U_n)_{n\in\mathbb{N}}$ of U, if there is a recursive function $M:\mathbb{N}^2 \to \mathbb{N}$ such that for all $k,l\in\mathbb{N}$ and all $x,y\in U_l$:

$$|x - y| < 2^{-M(k,l)} \implies |f(x) - f(y)| < 2^{-k}$$

Background - Effective Local Uniform Continuity

Definition ([Fu and Zucker, 2014])

A function f on U is effectively locally uniformly continuous w.r.t. an effective open exhaustion $(U_n)_{n\in\mathbb{N}}$ of U, if there is a recursive function $M:\mathbb{N}^2 \twoheadrightarrow \mathbb{N}$ such that for all $k,l\in\mathbb{N}$ and all $x,y\in U_l$:

$$|x-y| < 2^{-M(k,l)} \implies |f(x) - f(y)| < 2^{-k}$$

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions $f,g\colon$

- (f+g)(x) = f(x) + g(x)
- $(f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = 1$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $(f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = 1$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The **elementary functions** on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

•
$$(f+g)(x) = f(x) + g(x)$$

$$(f \cdot g)(x) = f(x)g(x)$$

•
$$\operatorname{div}_f(x) = \frac{1}{f(x)}$$
 where $\frac{1}{0} = \frac{1}{f(x)}$

•
$$\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$$
 where $0 < n \in \mathbb{N}$

- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The **elementary functions** on \mathbb{R} are partial functions defined by expressions built up from

- o computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions $f,g\colon$

•
$$(f+g)(x) = f(x) + g(x)$$

$$(f \cdot g)(x) = f(x)g(x)$$

where
$$\frac{1}{0} = \uparrow$$

$$\bullet$$
 root_{n,f} $(x) = \sqrt[n]{f(x)}$

where
$$0 < n \in \mathbb{N}$$

$$\bullet \ \exp_f(x) = e^{f(x)}$$

$$\bullet \ \sin_f(x) = \sin(f(x))$$

•
$$\arcsin_f(x) = \arcsin(f(x))$$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- \bullet the variable x,

by applying (repeatedly) the basic operations below on elementary functions $f,g\colon$

•
$$(f+g)(x) = f(x) + g(x)$$

$$(f \cdot g)(x) = f(x)g(x)$$

$$ullet$$
 $\operatorname{div}_f(x) = rac{1}{f(x)}$ where $rac{1}{0} = \uparrow$

•
$$\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$$
 where $0 < n \in \mathbb{N}$

- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The **elementary functions** on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $\bullet (f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = \uparrow$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on $\ensuremath{\mathbb{R}}$ are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $(f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = \uparrow$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on $\ensuremath{\mathbb{R}}$ are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $(f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = \uparrow$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The **elementary functions** on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $\bullet \ (f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = \uparrow$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is **WhileCC**-approximable.
- f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem (Acceptability Theorem

All elementary functions are acceptable

WhileCC-programming Language

- Variables from \mathbb{R} , \mathbb{N} , \mathbb{B}
- Terms $t^s := r^s \mid F(t^{s_1} + t^{s_n})$
- Statements

$$\begin{split} S ::= \mathsf{skip} &\mid \mathsf{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ &\mid \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \ \mathsf{fi} \\ &\mid \mathsf{while} \ b \ \mathsf{do} \ S_0 \ \mathsf{od} \\ &\mid n := \mathsf{choose} \ (z : \mathsf{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

 $P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is **WhileCC**-approximable.
- f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem (Acceptability Theorem

All elementary functions are acceptable

WhileCC-programming Languages

• Variables from \mathbb{R} , \mathbb{N} , \mathbb{B}

Statements

$$\begin{split} S ::= \mathsf{skip} & \mid \mathsf{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ & \mid \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \ \mathsf{fi} \\ & \mid \mathsf{while} \ b \ \mathsf{do} \ S_0 \ \mathsf{od} \\ & \mid n := \mathsf{choose} \ (z : \mathsf{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

 $P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is **WhileCC**-approximable.
- f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem (Acceptability Theorem)

All elementary functions are acceptable.

WhileCC-programming Language

- ullet Variables from \mathbb{R} , \mathbb{N} , \mathbb{B}
- Terms $t^s ::= x^s \mid F(t_1^{s_1}, \dots, t_m^{s_m})$
- Statements

$$\begin{split} S ::= \mathsf{skip} & \mid \mathsf{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ & \mid \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \ \mathsf{fi} \\ & \mid \mathsf{while} \ b \ \mathsf{do} \ S_0 \ \mathsf{od} \\ & \mid n := \mathsf{choose} \ (z : \mathsf{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

 $P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$

Recall: Equivalence Theorem, [Fu and Zucker, 2014] WhileCC-programming Language:

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for dom(f), the following are equivalent:

- f is an α -computable function.
- f is WhileCC-approximable.
- f is GL-computable w.r.t. X.
- f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are **WhileCC**-approximable.

Theorem (Acceptability Theorem)

All elementary functions are acceptable.

- Variables from R. N. B
- Terms
- Statements

$$\begin{split} S ::= \mathsf{skip} &\mid \mathsf{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ &\mid \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \ \mathsf{fi} \\ &\mid \mathsf{while} \ b \ \mathsf{do} \ S_0 \ \mathsf{od} \\ &\mid n := \mathsf{choose} \ (z : \mathsf{nat}) : P(z, \bar{t}) \end{split}$$

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is WhileCC-approximable.
- \bullet f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem (Acceptability Theorem)

All elementary functions are acceptable.

WhileCC-programming Language:

Variables from ℝ, ℕ, ℍ

$$\begin{array}{c} \bullet \quad \text{Terms} \\ t^s ::= x^s \quad | \ F(t_1^{s_1}, \dots, t_m^{s_m} \end{array}$$

Statements

$$\begin{split} S ::= \mathsf{skip} & \mid \mathsf{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ & \mid \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \ \mathsf{fi} \\ & \mid \mathsf{while} \ b \ \mathsf{do} \ S_0 \ \mathsf{od} \\ & \mid n := \mathsf{choose} \ (z : \mathsf{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

 $P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is WhileCC-approximable.
- \bullet f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem (Acceptability Theorem)

All elementary functions are acceptable.

WhileCC-programming Language:

- Variables from \mathbb{R} , \mathbb{N} , \mathbb{B}
- Terms

$$t^s ::= x^s \mid F(t_1^{s_1}, \dots, t_m^{s_m})$$

Statements

$$\begin{split} S ::= \mathsf{skip} &\mid \mathsf{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ &\mid \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \ \mathsf{fi} \\ &\mid \mathsf{while} \ b \ \mathsf{do} \ S_0 \ \mathsf{od} \\ &\mid n := \mathsf{choose} \ (z : \mathsf{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

 $P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is **WhileCC**-approximable.
- \bullet f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem (Acceptability Theorem)

All elementary functions are acceptable.

WhileCC-programming Language:

• Variables from \mathbb{R} , \mathbb{N} , \mathbb{B}

 $\begin{tabular}{ll} \bullet & {\sf Terms} \\ t^s ::= x^s & | F(t_1^{s_1}, \dots, t_m^{s_m}) \\ \end{tabular}$

Statements

$$\begin{split} S ::= \mathsf{skip} &\mid \mathsf{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ &\mid \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \ \mathsf{fi} \\ &\mid \mathsf{while} \ b \ \mathsf{do} \ S_0 \ \mathsf{od} \\ &\mid n := \mathsf{choose} \ (z : \mathsf{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

 $P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is WhileCC-approximable.
- \bullet f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem (Acceptability Theorem)

All elementary functions are acceptable.

WhileCC-programming Language:

- Variables from \mathbb{R} , \mathbb{N} , \mathbb{B}
- $\begin{tabular}{ll} \bullet & {\sf Terms} \\ t^s ::= x^s & | F(t_1^{s_1}, \dots, t_m^{s_m}) \\ \end{tabular}$
- Statements

$$\begin{split} S ::= \mathsf{skip} &\mid \mathsf{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ &\mid \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \ \mathsf{fi} \\ &\mid \mathsf{while} \ b \ \mathsf{do} \ S_0 \ \mathsf{od} \\ &\mid n := \mathsf{choose} \ (z : \mathsf{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

 $P ::= \mathsf{proc}\ D\ \mathsf{begin}\ S\ \mathsf{end}$

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is **WhileCC**-approximable.
- \bullet f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem (Acceptability Theorem)

All elementary functions are acceptable.

WhileCC-programming Language:

• Variables from \mathbb{R} , \mathbb{N} , \mathbb{B}

$$\begin{tabular}{ll} \bullet & {\sf Terms} \\ t^s ::= x^s & | F(t_1^{s_1}, \dots, t_m^{s_m}) \\ \end{tabular}$$

Statements

$$\begin{split} S ::= \mathsf{skip} &\mid \mathsf{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ &\mid \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \ \mathsf{fi} \\ &\mid \mathsf{while} \ b \ \mathsf{do} \ S_0 \ \mathsf{od} \\ &\mid n := \mathsf{choose} \ (z : \mathsf{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

 $P ::= \mathsf{proc}\ D\ \mathsf{begin}\ S\ \mathsf{end}$

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is WhileCC-approximable.
- f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem (Acceptability Theorem: Part 1)

The domain of any elementary function has an effective open exhaustion.

Theorem (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is WhileCC-approximable.
- f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem (Acceptability Theorem: Part 1)

The domain of any elementary function has an effective open exhaustion.

Theorem (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable

This is the easiest part, yet occupies about 30 pages of my thesis ... @

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

This is the easiest part, yet occupies about 30 pages of my thesis . . . @

Theorem (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

This is the easiest part, yet occupies about 30 pages of my thesis ... ©

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)}$$
 and $g(x)=egin{cases} 0 & \text{if } -1\leq x\leq 1 \\ 1 & \text{otherwise} \end{cases}$

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x)=f(x)+g(x)$$
 is composed of

- Add(x,y) = x + y,
- $(f \times g)(x,y) = (f(x),g(y)),$
- Diag(x) = (x, x)

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)}$$
 and $g(x)=egin{cases} 0 & \text{if } -1\leq x\leq 1 \\ 1 & \text{otherwise} \end{cases}$

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x)=f(x)+g(x)$$
 is composed of

- \bullet Add(x,y) = x + y.
- $(f \times g)(x,y) = (f(x),g(y)),$
- Diag(x) = (x, x)

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)=\begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x)=f(x)+g(x)$$
 is composed of

- \bullet Add(x,y) = x + y.
- $(f \times g)(x, y) = (f(x), g(y)),$
- Diag(x) = (x, x)

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)=\begin{cases} 0 & \text{if } -1\leq x\leq 1\\ 1 & \text{otherwise} \end{cases}$$

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$
 is composed of

- \bullet Add(x,y) = x + y.
- $(f \times g)(x, y) = (f(x), g(y)),$
- Diag(x) = (x, x) \checkmark

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x) = id|_{(-1,1)}$$
 and $g(x) = \begin{cases} 0 & \text{if } -1 \le x \le 1 \\ 1 & \text{otherwise} \end{cases}$

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x)=f(x)+g(x)$$
 is composed of

- \bullet Add(x,y) = x + y.
- $(f \times g)(x, y) = (f(x), g(y)),$
- Diag(x) = (x, x) \checkmark

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x) = id|_{(-1,1)} \text{ and } g(x) = \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x)=f(x)+g(x)$$
 is composed of

- \bullet Add(x,y) = x + y.
- $(f \times g)(x, y) = (f(x), g(y)),$
- Diag(x) = (x, x) \checkmark

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$
 is composed of

- \bullet Add(x,y) = x + y.
- $(f \times g)(x, y) = (f(x), g(y)),$
- Diag(x) = (x, x) \checkmark

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$
 is composed of

- \bullet Add(x,y) = x + y,
- $(f \times g)(x, y) = (f(x), g(y)),$
- Diag(x) = (x, x) \checkmark

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$
 is composed of

- \bullet Add(x,y) = x + y.
- $(f \times g)(x, y) = (f(x), g(y)),$
- Diag(x) = (x, x) \checkmark

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{\mathbf{dom}}(f)$ has an effective open exhaustion \checkmark $\operatorname{\mathbf{dom}}(g)$ has an effective open exhaustion \checkmark $\operatorname{\mathbf{dom}}(f \circ g) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

Adding decomposition of + and \cdot

$$(f+g)(x)=f(x)+g(x)$$
 is composed of

- $\bullet \ Add(x,y) = x + y,$
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$
- Diag(x) = (x, x) \checkmark

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)=\begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\mathbf{dom}(f)$ has an effective open exhaustion \checkmark $\mathbf{dom}(g)$ has an effective open exhaustion \checkmark $\mathbf{dom}(f \circ g) = [-1, 1]$ has no open exhaustion X

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x)=f(x)+g(x) \ {\rm is \ composed \ of}$$

- \bullet Add(x,y) = x + y.
- $(f \times g)(x, y) = (f(x), g(y)),$
- Diag(x) = (x, x) \checkmark

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\mathbf{dom}(f)$ has an effective open exhaustion \checkmark $\mathbf{dom}(g)$ has an effective open exhaustion \checkmark $\mathbf{dom}(f \circ g) = [-1, 1]$ has no open exhaustion X

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$
 is composed of

- \bullet Add(x,y) = x + y.
- $(f \times g)(x, y) = (f(x), g(y)),$
- Diag(x) = (x, x) \checkmark

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{\mathbf{dom}}(f)$ has an effective open exhaustion \checkmark $\operatorname{\mathbf{dom}}(g)$ has an effective open exhaustion \checkmark $\operatorname{\mathbf{dom}}(f \circ g) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

Adding decomposition of + and \cdot

$$(f+g)(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$
 is composed of

- $\bullet \ Add(x,y) = x + y,$
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$
- Diag(x) = (x, x)

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+q)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\mathbf{dom}(f)$ has an effective open exhaustion \checkmark $\mathbf{dom}(g)$ has an effective open exhaustion \checkmark $\mathbf{dom}(f \circ g) = [-1, 1]$ has no open exhaustion X

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion. $f^{-1}(U)$ has an effective open exhaustion.

- Base cases √
- Composition √
- Addition and multiplication X

$$(f+g)(x)=f(x)+g(x)$$
 is composed of

- \bullet Add(x,y) = x + y.
- $(f \times g)(x, y) = (f(x), g(y)),$
- Diag(x) = (x, x) \checkmark

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ g) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition ✓
- Addition and multiplication X

Adding decomposition of + and \cdot

$$(f+g)(x)=f(x)+g(x) \ {\rm is \ composed \ of}$$

- Add(x,y) = x + y,
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$
- Diag(x) = (x, x)

Theorem (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)=\begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ g) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition ✓
- ullet Addition and multiplication $m{ imes}$

Adding decomposition of + and \cdot (f+q)(x)=f(x)+g(x) is composed of

- Add(x,y) = x + y,
- $\bullet (f \times g)(x,y) = (f(x), g(y)),$
- $Diag(x) = (x, x) \checkmark$

Theorem (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness

Definition (Local continuity witness

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) ||x - y|| < 2^{-N(a, b, k)} \implies |f(x) - f(y)|| < 2^{-k}.$$

- Base cases: Using WhileCC-approximability theorem
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem ✓

Theorem (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness

Definition (Local continuity witness)

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) \quad |x - y| < 2^{-N(a, b, k)} \implies |f(x) - f(y)| < 2^{-k}.$$

- Base cases: Using WhileCC-approximability theorem 🗸
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem √

Theorem (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness.

Definition (Local continuity witness

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) \quad |x - y| < 2^{-N(a, b, k)} \implies |f(x) - f(y)| < 2^{-k}.$$

- Base cases: Using WhileCC-approximability theorem √
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem √

Theorem (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness.

Definition (Local continuity witness)

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) \quad |x - y| < 2^{-N(a, b, k)} \implies |f(x) - f(y)| < 2^{-k}.$$

- Base cases: Using WhileCC-approximability theorem √
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem √

Theorem (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness.

Definition (Local continuity witness)

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) \quad |x - y| < 2^{-N(a, b, k)} \implies |f(x) - f(y)| < 2^{-k}.$$

- Base cases: Using WhileCC-approximability theorem √
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem ✓

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

Summary

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

We also presented an **alternative characterization** of acceptable functions using the **local continuity** witness concept.

Summary

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

We also presented an **alternative characterization** of acceptable functions using the **local continuity witness** concept.

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004]
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions.

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004]
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions.

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004]
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions.

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions.

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions.

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are WhileCC-approximable but not While*-approximable [Tucker and Zucker, 1999]?

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - **If not**, what is a model of computation that characterizes exactly the class of acceptable functions.

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are WhileCC-approximable but not While*-approximable [Tucker and Zucker, 1999]?

- All partial unary **WhileCC**-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - **If not**, what is a model of computation that characterizes exactly the class of acceptable functions.

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are WhileCC-approximable but not While*-approximable [Tucker and Zucker, 1999]?

- All partial unary **WhileCC**-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions.

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are WhileCC-approximable but not While*-approximable [Tucker and Zucker, 1999]?

- All partial unary **WhileCC**-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - **If not**, what is a model of computation that characterizes exactly the class of acceptable functions.

References

- Ming Quan Fu and Jeffery Zucker. Models of computation for partial functions on the reals. *Journal of Logical and Algebraic Methods in Programming*, 84(2):218–237, 11 2014. ISSN 2352-2208. doi:10.1016/j.jlamp.2014.11.001.
- M. Tenenbaum and H. Pollard. Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences. Dover Books on Mathematics. Dover Publications, 1985. ISBN 9780486649405. URL https://books.google.ca/books?id=iU4zDAAAQBAJ.
- John V. Tucker and Jeffery I. Zucker. Abstract versus concrete computation on metric partial algebras. *ACM Trans. Comput. Log.*, 5(4):611–668, 2004. doi:10.1145/1024922.1024924.
- J.V. Tucker and J.I. Zucker. Computation by 'While' programs on topological partial algebras. Theoretical Computer Science, 219(1):379–420, 1999. ISSN 0304-3975. doi:10.1016/S0304-3975(98)00297-7.
- J.V. Tucker and J.I. Zucker. Computable total functions on metric algebras, universal algebraic specifications and dynamical systems. *The Journal of Logic and Algebraic Programming*, 62(1): 71–108, 2005. ISSN 1567-8326. doi:10.1016/j.jlap.2003.10.001.

A HUGE Thank you!