

计分项目	报告分数	课堂表现	总分·
分值	70	30	100
得分			100

姓名: 草钇、 学号: 11910305 班级: 中文5 实验日期: 2020/11/6.

差动放大电路研究

1. 实验目的

- 加深对差动放大电路工作原理的理解, 学习差动放大电路静态工作点的测 试方法;
- 了解差动放大电路零漂产生的原因及抑制零漂的方法;
- 学习差动放大电路差模放大倍数、共模放大倍数和共模抑制比的测量方法。

2. 实验原理

图 1. 差动放大电路原理图

有分种技义等模拟电路实验报告

差动放大电路原理如图 1 所示,可以将其看成是由两个电路参数相同的单 管交流共射放大器组成的放大电路。差动放大电路对差模输入信号具有放大能 力,而对共模输入信号和零点漂移具有很强的抑制作用。差模信号是指电路的 两个输入端输入幅值相等、极性相反的信号, 共模信号是指电路的两个输入端 输入大小相等、极性相同的信号。

典型差动放大电路依靠发射极电阻R,的强烈负反馈作用来抑制零点漂移。 R_{E} 越大,其抑制能力越强,但 R_{E} 越大,就更需增加发射极的电压。为解决这 一矛盾,在差动放大电路中常用晶体管组成的恒流源电路来代替电阻 R_E 。如图 1 所示, 当开关打到 1 点时, 就构成典型的差动放大电路; 当开关打到 3 点时, 构成具有恒流源的差动放大电路,它用晶体管恒流源代替发射极电阻 R_{E} ,可以 进一步提高差动放大器抑制共模信号的能力。

差动放大电路的输入方式有单端输入和双端输入之分,输出方式有单端输 出和双端输出之分。无论输入采用何种方式,其双端输出的差模放大倍数 Ad 都等于单管电压放大倍数,而单端输出的差模放大倍数等于双端输出的一半(空 载时), 共模放大倍数 Ac 在理想情况下为零, 而实际中并不为零。

3. 实验器材

序号	名 称	型号与规格	数量	备	注
1	直流稳压电源	DP1308A	1		
2	数字万用表	DM3051	1		
3	函数信号发生器	DG1022	1		
4	示波器	TDS2012C	1		
5	面包板		1		
6	电阻、三极管	三极管S9013三个 100KΩ可调电阻1个 1KΩ可调电阻1个 30kΩ电阻2个 10kΩ电阻3个 5.1kΩ电阻3个	13		

4. 实验内容

1) 典型差动放大电路

a) 静态工作点的调整与测量

将两个输入端 Vi1, Vi2 的输入信号置为零(接地),接通±12 V 的直流电源,调节电位器 R_{P1} 使 $V_o=0$,即 $V_{C1}=V_{C2}$ (用数字万用 表直流电压档测量),然后分别测量晶体管 T1 和 T2 的基极、发射极、集电极对地电压,填入表 1 中。由于元件参数的离散,有的实验电路有可能最终只能调到 $V_{C1} \approx V_{C2}$ 。静态工作点调整得越对称,差动放大器的共模抑制比就越高。本实验所有表格中带阴影的空格

是需要测量的, 无阴影的是计算值

表 1. 静态工作点的调整与测量

参数	V_{B1} / mV	V_{C1}/V	V_{E1} / mV	V_{B2} / mV	V_{C2}/V	V_{E2} / mV	
$R_E = 10k\Omega$	-122	6.39	-605	-11.1	6.40	-601	

b) 差模放大倍数的测量

输入端 V_{i1} 的正端接信号源第一通道, V_{i2} 的正端接信号源的第二通道,调节信号源使第二通道的相位为 180 度(**设置好相位后,将**信号源两通道分别接入示波器的两个通道观察波形,如果不是相差 180 度,则需要进行两个通道的同步设置,对于 RIGOL 品牌的信号

源 DG1022,按一下信号源"同相位"软件菜单按钮,对于固纬品牌信号源 AFG2225,按 UTIL 按钮,设置 Dual Channel \rightarrow Tracking \rightarrow ON 进行设置),便组成双端输入差模放大电路。调节信号源为 f=1kHz, $V_{ip-p}=600mV$ (600 毫伏峰—峰值)的正弦信号,在输出无失真的情况下,用**数字万用表交流电压档**测量 V_O 、 V_{C1} 、 V_{C2} 及 R_E 上的电压降 V_{R_E} 信号的有效值(交流成分),将测量结果填入表 2 第一行中,并计算空载单端输出差模放大倍数 A_{d1} (A_{d2})及空载双端输出差模放大倍数 A_d 。

将输入信号 V_{l2} 调为零(**接地**),即组成单端输入差模放大电路, V_{l1} 接 f=1kHz, $V_{lp-p}=600mV$ (峰-峰值为 600 毫伏)的正弦信号,用**数字万用表交流电压档**测量 V_o 、 V_{C1} 、 V_{C2} 及 R_E 上的电压降 V_{R_E} 信号的有效值(交流成分),将测量结果填入表 2 第二行中,并计算空载单端输出差模放大倍数 A_{d1} 及空载双端输出差模放大倍数 A_d 。

c) 共模放大倍数的测量

将输入信号 V_{11} 和 V_{12} 的正端短接,信号源接入短接点和地之间,便组成共模放大电路,调节输入信号为f=1kHz, $V_{1p-p}=600mV$ (峰—峰值为 600 毫伏)的正弦信号,在输出电压无失真的情况下,用**数字万用表交流电压档**测量 V_{C1} 、 V_{C2} 及 R_E 上的电压降 V_{R_E} 信号的有效值,计算空载单端输出共模放大倍数 A_{e1} 、 A_{e2} 及空载双端输出共模放大系数 A_{e} (由于 $2R_E$ 的作用, V_{C1} 、 V_{C2} 本身就很微小, V_{O} 用表测量不准确,直接计算),将结果填入表 2 第三行中。同时计算**双端输入单端输出**的共模抑制比 K_{CMR} (用 dB 表示, $201\log(A_{O}/A_{e1})$)。

模拟电路实验报告

表 2	曲刑羊动场十中 99 会粉测。	
12 4.	典型差动放大电路参数测	壓

				74 2. 7	主生如从八电	四多奴州星						
	=1kHz, $=600mV$	V_{C1}	V_{C2}	V_{o}	V_{R_E}	A_{d1}	A_{c1}	A_{d2}	A_{c2}	A_d	A_c	
差模	双端输入	3.66V	3.63 V	7-22V	100 mil	-8.56	/	-8.62	/	-17.02	/	+ B(Kc
71.1	单端输入	1.83 V	\$.86 V	3.67 V	109.3mV	-8.79	0.61	/	-0.23	-17.58	1	2(roe
	共模	109.2mV	105.0ml	D.69mV	Q. 2063N	/	0.24	/	0.24	1	0.0016	_B(RU
				可以	A) X 44+A 111	44 **		. 10				7(110)2 11

双端输入单端输出的 $K_{CMR} = 31.04dB$

2(1+13) Re+Kg+

2) 具有恒流源的差动放大电路

a) 静态工作点的调整与测量

将开关拨向 3点,不接信号源,将输入端短接并接地,调节 R_{P1} 和 R_{P2} ,使 $V_{C1}=V_{C2}$,并等于上面开关 K 接 1点时的 V_{C1} 值。

b) 差模放大倍数的测量

输入端 V_n 的正端接信号源第一通道, V_{i2} 的正端接信号源的第二通道,调节信号源使第二通道的相位为 180 度 (同上,设置好相位后,将信号源两通道分别接入示波器的两个通道观察波形,如果不是相差 180 度,则需要进行两个通道的同步设置,对于 RIGOL 品牌的信号源 DG1022,按一下信号源"同相位"软件菜单按钮,对于固纬品牌信号源 AFG2225,按 UTIL 按钮,设置 Dual Channel \rightarrow Tracking

->0N 进行设置),便组成双端输入差模放大电路。调节信号源为 f=1kHz, $V_{ip-p}=600mV$ (峰-峰值为 600 毫伏)的正弦信号,在输出无失真的情况下,用**数字万用表交流电压档**测量 V_o 、 V_{C1} 、 V_{C2} 及 V_{C3} 的有效值,将测量结果填入表 3 第一行中,并计算空载单端输出差模放大倍数 A_{d1} (A_{d2}) 及空载双端输出差模放大倍数 A_d 。

c) 共模放大倍数的测量

将输入信号 V_{i1} 和 V_{i2} 的正端短接,信号源接入短接点和地之间,便组成共模放大电路,调节输入信号为f=1kHz, $V_{ip-p}=600mV$ (峰一峰值为 600 毫伏)的正弦信号,在输出电压无失真的情况下,用**数字万用表交流电压档**测量 V_o 、 V_{C1} 、 V_{C2} 及 V_{C3} 的有效值,计算空载单端输出共模放大倍数 A_{c1} 、 A_{c2} 及空载双端输出共模放大系数 A_{c} (由于 $2R_E$ 的作用, V_{C1} 、 V_{C2} 本身就很微小, V_o 用表测量不准确,直接计算),将结果填入表 3 第二行中。同时计算**双端输入单端输出**的共模抑制比 K_{CMR} (用 dB 表示, $20\log(A_{d1}/A_{c1})$)。

表 3. 具有恒流源的差动放大电路参数测量										
$f = 1kHz$, $V_{ip-p} = 600mV$	VC1 5-45) 3.661	1 3.62 V	7.21V	8 V C3 N	A_{d1}	A_{c1}	A_{d2}	A_{c2}	A_d	A_c
差模输入	#91¥	#	3-78	5 m	-8.56	1	-8.62	1	-17.0	1
共模输入	204.64AV	200.0mV	0.05 mV	204.0 mV	1	0.01	1	0.01	1	10-4
13-6mV										

有分科技义多 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY 模拟电路实验报告

5. 思考题

1. 差动放大器为什么具有高的共模抑制比?

