University of New Brunswick Faculty of Computer Science

CS2333: Computability and Formal Languages

Homework Assignment 6, **Due Time, Date** 5:00 PM, March 14, 2022

	Student Name:	Matriculation Number:
	Instructor: Rongxing Lu The marking scheme is shown in the left margin and [100] constitutes full marks.	
[75]	For each of the following lanthose strings that are in the lanthose strings.	guages, draw the diagram for a nondeterministic PDA that accepts exactly nguage.

- (a) $L_1 = \{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i = j \text{ or } j = k\}.$ [25]
- (b) $L_2 = \{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i + j = k\}.$ [25]
- (c) $L_3 = \{a^{2n}b^{3n} \mid n \ge 0\}.$ [25]
- [25] 2. Show that the language

$$L = \{a^n b^j : n = j^2\}$$

is not context free.

Solutions.

- 1. For each of the following languages, draw the diagram for a nondeterministic PDA that accepts exactly those strings that are in the language.
 - (a) $L_1 = \{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i = j \text{ or } j = k\}.$

(b) $L_2 = \{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i + j = k\}.$

(c) $L_3 = \{a^{2n}b^{3n} \mid n \ge 0\}.$

2. Show that the language

$$L = \{a^n b^j : n = j^2\}$$

is not context free.

Proof by Contradiction. (We only need to find one counter example.)

Assume that L is context free.

Let p be the pumping length given by the pumping lemma. Choose s to be the string $a^{p^2}b^p$. Because sis a member of L and s has length more than p, the pumping lemma guarantees that s can be split into five pieces, s = uvxyz, where for any $i \ge 0$ the string uv^ixy^iz is in L.

For clarity, consider p = 3 as an example, then

$$s = a^{p^2}b^p = aaaaaaaaaabbb$$

According to the pumping lemma, three conditions should be satisfied, i) $uv^i xy^i z \in L$ for every $i \geq 0$; ii) |vy| > 0; and iii) $|vxy| \le p$. Therefore, based on ii) and iii), we first consider cases of y in the splitting of s = uvxyz. Clear, we will have several cases for |vy| = 2 and |vxy| = p = 3. We just take one case for a discussion.

$$s = a^{p^2}b^p = \underbrace{aaaaaaa}_{u}\underbrace{a}_{v}\underbrace{a}_{x}\underbrace{b}_{u}\underbrace{bb}_{z}$$

Consider $uv^i xy^i z$ as $uv^2 xy^2 z$ when i = 2, we have

$$uv^2xy^2z = \underbrace{aaaaaaa}_{u}\underbrace{aa}_{v^2}\underbrace{a}_{x}\underbrace{bb}_{y^2}\underbrace{bb}_{z}\notin L$$

Clearly, uv^2xy^2z is not in the form of $a^{p^2}b^p$, and thus the condition i) is not satisfied.

(For other cases, i.e.,
$$vxy$$
 are all in a -part $s=a^{p^2}b^p=\underbrace{aaaaa}_u\underbrace{a}_v\underbrace{a}_x\underbrace{a}_y\underbrace{abbb}_z$, or all in b -part $s=a^{p^2}b^p=\underbrace{aaaaaaaaa}_u\underbrace{b}_v\underbrace{b}_x\underbrace{b}_y\underbrace{c}_z$, we can easily see uv^2xy^2z is also not in the form of $a^{p^2}b^p$.)

Therefore, L is not context free.