CS 181 - Homework 1

Lexi Ross & Ye Zhao

February 14, 2013

- 1 Decision Tree & ID3
- 2 ID3 with Pruning
- 3 Boosting

3.1 Information gain criterion using weights

In order to take into account weights when calculating the information gain of a given attribute, we use the following formula to calculate the entropy of the labels:

$$H(\text{labels}) = \sum_{c=1}^{C} \frac{W_c}{W} \log_2 \frac{W}{W_c}$$

Where

$$W_c = \sum_{n=1}^{N} I(y_n = c) w_n$$

and

$$W = \sum_{n=1}^{N} w_n$$

We chose this information gain criterion because it came from the lecture slides, and it is a natural extension of the formula for unweighted label entropy. Instead of looking at the ratio of the number of examples possessing a given label to the total number of examples, we sum the weights of these examples. In other words, unweighted entropy is a specific case of weighted entropy, where the weight of each example is 1.

3.2 Effect of maximum depth of weak learner

Max. depth	Boosting rounds	Dataset	Test performance
1	10	non-noisy	0.89
1	10	noisy	0.82
1	30	non-noisy	0.91
1	30	noisy	0.84
2	10	non-noisy	0.87
2	10	noisy	0.81
2	30	non-noisy	0.87
2	30	noisy	0.79

Interestingly, increasing the max depth of the weak learner worsens the testing accuracy when controlling for both boosting rounds and noise level. The gap is significantly larger for 30 rounds of boosting than for 10 rounds, suggesting that overfitting is taking place, increasing in magnitude with each round of AdaBoost. It appears that a max depth of 1 (i.e. a decision stump) is the optimal weak learner to use. Something else interesting happens with a max depth of two: in the non-noisy dataset, a training error of zero is achieved within the first ten rounds of boosting (in fact, it is achieved in the very first round). Because we exit from AdaBoost once we find a tree that perfectly fits the training data, we subject ourselves to the dangers of overfitting***. Indeed, the largest discrepancy between the training accuracy and test accuracy occurs in this case. In addition, for cases like these, adding rounds of AdaBoost does not improve test accuracy.

3.3 Cross-validated test performance over different numbers of boosting rounds

For

both datasets, test performance fluctuates greatly during the first 10-12 rounds and then improves slightly before remaining at a fairly constant value for the last 10 rounds. As we would expect, the noisy dataset sees more variation between rounds, including in later rounds; this is indicative of invalid data points being classified incorrectly by accurate weak learners and subsequently gaining a lot of weight. For this reason, noise is particularly bad for boosting. We were initially surprised that performance did not increase monotonically with each round, as it should in theory, but our implementation of AdaBoost (and the weighting computations in dtree.py) do not guarantee that the redistribution of weights will lead to a strictly more accurate learner with a higher tree weight, particularly when it comes to test data. The accuracy did improve overall from 1 to 30 rounds (for

both datasets), which was expected: more rounds of boosting should lead to better results, because boosting is particularly resistant to over fitting.

3.4 Boosting vs. ID3 with and without pruning

Without pruning, ID3 gives a cross-validated test performance of 0.87 on the non-noisy dataset. Using optimal parameters (30 rounds, max depth of 1), boosting can significantly improve that performance – to 0.91. However, when max depth was increased to 2, boosting merely matched the raw ID3 performance.

3.5 Test vs. training performance over different numbers of boosting rounds

When testing the non-noisy dataset with weak learners of max depth 1, the training accuracy starts off extremely high (0.953333) and increases slightly every several rounds, reaching a steady state at 9 rounds with 0.957778. The testing performance, on the other hand, starts at 0.88 and increases every several rounds at a faster rate than the training performance (although test performance is always worse than training performance). Interestingly, test performance reaches and maintains its maximum at 12 rounds, 3 rounds later than the training performance stopped increasing. This speaks to the remarkable property of AdaBoost that allows it to improve test performance even after training performance has maxed out (again, its resistance to over fitting).