Сигнатурные алгоритмы вычисления базисов Грёбнера для решения полиномиальных систем

Галкин Василий galkin-vv@yandex.ru

Московский государственный университет имени М.В. Ломоносова Механико-математический факультет

Цели работы

Основная цель — создание теоретического фундамента для применения сигнатурных алгоритмов вычисления базиса Грёбнера к решению приближённых систем полиномиальных уравнений.

- Анализ сигнатурных алгоритмов
 - ▶ Определение свойств многочленов, выбираемых F5
 - Доказательство остановки F5
 - Формулировка простого аналога
- ▶ Применение к приближённым вычислениям
 - Строгая формулировка задачи приближённого решения системы
 - ▶ Классификация необратимых приближённых элементов
 - Вероятностный модулярный метод для определения класса необратимого элемента
 - Метод замены мономов переменными (TSV) для перемещения необратимых старших элементов

Сигнатурные алгоритмы

Сходства с алгоритмом Бухбергера

- ▶ Содержат очередь редуцируемых многочленов
- Каждый её элемент или отбрасывается правилами, или редуцируется

Вычисляют сигнатуру и используют её

- Разрешены только редукции, сохраняющие сигнатуры, с использованием удовлетворяющих критериям редукторов
- Правила отбрасывания элементов очереди анализируют сигнатуры

Сигнатурные алгоритмы – одни из наиболее эффективных для вычисления базиса Грёбнера.

Доказательство остановки сигнатурных алгоритмов

- ► F5 (J.-C. Faugère, 2002), F5B (Y. Sun, D. Wang, 2010), F5C (C. Eder, J. Perry, 2009)
 - остановка доказана только для регулярного случая
- ► G2V(S. Gao, Y. Guan, F. Volny IV, 2010), GVW(S. Gao, F. Volny IV, M. Wang, 2010)
 - ▶ по сравнению с F5 критерии отбрасывают меньше многочленов
 - остановка не доказана
- AP(A. Arri, J. Perry, 2011), TRB-MJ (L. Huang, 2010), SB (B. Roune, M. Stillman, 2012)
 - по сравнению с F5 позволяют использовать больше редукторов
 - сложное доказательство остановки, на основе редуцируемости всех S-пар, также применимое к GVW

Вопрос эффективности открыт, проблема остановки F5 актуальна

Свойства многочленов в F5

Применяемые алгоритмом F5 критерии могут быть упрощены

- Свойства редуцируемых S-пар
 - Все редуцируемые алгоритмом S-пары имеют в качестве старшей части многочлен, однозначно определяемый как последний из полученных многочленов в некотором множестве.
 - ▶ Все редуцируемые алгоритмом S-пары имеют в качестве младшей части многочлен, однозначно определяемый как многочлен с минимальной по \prec «дробью» $\frac{S}{HM}$ в множестве потенциальных редукторов.
- ▶ Свойство используемого редуктора
 - Среди непустого множества потенциальных редукторов, сохраняющих сигнатуру, критерии алгоритма выберут ровно один многочлен с минимальной по \prec «дробью» $\frac{\mathcal{S}}{\mathrm{HM}}$.

Следствие

Если существует редуктор, отбрасываемый критериями, то существует и не отбрасываемый критериями редуктор.

F5 останавливается

Определение

Цепь многочленов с сигнатурой: последовательность $\left\{h_i\right\}, \mathcal{S}(h_{i-1})|\mathcal{S}(h_i)$

Доказательство.

- 1. Если алгоритм не останавливается он получит бесконечную цепь с возрастающим $\frac{\mathcal{S}}{\text{HM}}$
- 2. В бесконечной цепи найдутся $\mathrm{HM}(h_i)|\mathrm{HM}(h_j)$
- 3. h_i сигнатурный редуктор для h_j
- 4. Если есть сигнатурный редуктор, то есть и сигнатурный редуктор, удовлетворяющий критериям
- 5. Это противоречит тому, что h_j не было редуцировано

Алгоритм SingleStepSignatureGroebner

 $<_{
m H}$ — порядок на многочленах с сигнатурой, сравнивающий дроби $rac{\mathcal{S}}{
m HM}$

Вход: многочлены $\{f_1,\ldots,f_m\}$ с сигнатурами.

Переменные:

В – очередь многочленов, ожидающих анализа

R – промежуточный базис до определённой сигнатуры, включающий сизигии

Результат:

R – базис Грёбнера идеала (f_1,\ldots,f_m)

Код алгоритма

- 1. $B \leftarrow \{$ входные многочлены f_1, \dots, f_m с их сигнатурами $\}$
- 2. $R \leftarrow \{$ известные сизигии, в частности тривиальные $\}$
- 3. do while $B \neq \emptyset$:
 - $3.1 \ (\sigma, p') \leftarrow$ элемент B с \prec -минимальной сигнатурой
 - 3.2 $B \leftarrow B \setminus \{b \in B, S(b) = \sigma\}$
 - 3.3 $p \leftarrow$ Сигнатурно_редуцировать (σ, p') по R
 - 3.4 $R \leftarrow R \cup \{(\sigma, p)\}$
 - 3.5 if $p \neq 0$:
 - 3.5.1 $\mathbf{for}\{r \in R | 0 \neq r <_{\mathsf{H}} (\sigma, p)\} : B \leftarrow B \cup \{\frac{\mathrm{LCM}(\mathrm{HM}(r), \mathrm{HM}(p))}{\mathrm{HM}(r)}r\}$
 - 3.5.2 $\mathbf{for}\{r \in R | r >_{\mathsf{H}} (\sigma, p)\} : B \leftarrow B \cup \{\frac{\mathrm{LCM}(\mathrm{HM}(r), \mathrm{HM}(p))}{\mathrm{HM}(p)} (\sigma, p)\}$
 - 3.6 $B \leftarrow B \setminus \{b \in B | \exists r \in R \ r <_H b \ и \ есть делимость <math>\mathcal{S}(r) | \mathcal{S}(b) \}$

Доказательства остановки и корректности основаны на формулировках инвариантов для различных этапов

Алгоритмы вычисления базиса Грёбнера с приближёнными входными данными над $\mathbb R$

Вопрос о приближённом базисе Грёбнера в $\mathbb R$ возникает из задачи решения полиномиальных систем, которые могут быть заданы приближённо

- Символические вычисления (исчерпывающий базис) рост символических коэффициентов
- ▶ Вычисления над \mathbb{Q} рост длины численных коэффициентов
- Вычисления с оценкой точности проблемы нулей
 - Определение численными методами
 - Определение модулярными методами
 - Изменение порядка на мономах

Приближённые числа

Определения

Приближённым (комплексным) числом называется пара $(a, \varepsilon), \ a \in \mathbb{C}, \ \varepsilon \in \mathbb{R}$

Специализацией приближённого числа а называется $\mathbf{a}_0 \in \mathbb{C}, \, |\mathbf{a}_0 - \mathbf{a}| < arepsilon$

Формализация задачи поиска базиса Грёбнера: ищем множество, содержащее решения при любых специализациях входных данных.

Операции с приближёнными числами

Сложение
$$(a_1, \varepsilon_1) + (a_2, \varepsilon_2) = (a_1 + a_2, \varepsilon_1 + \varepsilon_2)$$

Умножение $(a_1, \varepsilon_1) \times (a_2, \varepsilon_2) = (a_1 a_2, \varepsilon_1 |a_2| + \varepsilon_2 |a_1| + \varepsilon_1 \varepsilon_2)$
Вычитание на основе сложения и умножения на -1:

$$(\mathbf{a}_1, \varepsilon_1) - (\mathbf{a}_2, \varepsilon_2) = (\mathbf{a}_1 - \mathbf{a}_2, \varepsilon_1 + \varepsilon_2)$$

Обращение определяется только для приближённых чисел, для которых 0 не является специализацией, что эквивалентно $|a|-\varepsilon>0$:

$$\frac{1}{(a,\varepsilon)} = \left(\frac{1}{a}, \frac{\varepsilon}{|a|(|a|-\varepsilon)}\right)$$

Классификация необратимых приближённых элементов

Определения

символический ноль — при любой специализации входных данных соответствующие вычисления дают точный ноль. ноль, индуцированный входными данными — некоторые, но не все, специализации дают точный ноль ноль, внесённый вычислениями — не существует специализации, дающей точный ноль

Модулярный метод

- Вычислениями по произвольному модулю определяется предположительная комбинация входных элементов для элемента базиса
- ▶ Поиск аналога в приближённом случае сводится к решению линейной системы
- Тест на символический ноль при решении системы в приближённых числах
 - ▶ Точное символические вычисления над ℚ с заменой неточных входных значений на переменные
 - Вероятностное модулярные вычисления в конечном поле с заменой неточных входных значений на произвольные элементы конечного поля

Расхождение между символическими и модулярными вычислениями

- Q-многочлен тождественно обнуляется по выбранному модулю
 - Оценка на максимальный коэффициент для определения максимального числа простых чисел, на которые могут делиться все коэффициенты
- ▶ Модулярная специализация Q-многочлена имеет корень
 - Оценка на максимальную степень, ограничивающая число корней

Итоговая оценка на модуль

Оценка предлагает диапазон простых чисел, в котором доля чисел, могущих привести к расхождению не более 2α .

- ▶ Начало диапазона $P_0 > \sqrt{rac{R2^RV}{lpha}}$.
- lacktriangle Количество простых чисел в диапазоне $N_p>rac{R2^{\kappa}\log_{P_0}2Z_0}{lpha}$
 - R число строк в системе
 - V количество приближённых коэффициентов во входных данных
 - Z_0 максимальный числитель точного \mathbb{Q} -коэффициента во входных данных

Метод TSV

TSV (J.-C. Faugère, Y. Liang, 2011): Комбинирование алгоритмов нахождения базисов Грёбнера и приближённых вычислений. При получении старшего необратимого элемента в качестве коэффициента при $x_1^{i_1} \cdots x_m^{i_m}$:

- ▶ Добавляется новая переменная у, младше всех остальных
- ▶ Для того, чтоб страший член редуцировался, идеал расширяется $I^e = (I, x_1^{j_1} \cdots x_m^{j_m} y')$
- В случае сигнатурных алгоритмов выполняется перезапуск с самого начала, поскольку сигнатура добавленного многочлена меньше текущей, а алгоритмы требуют обработки в порядке возрастания сигнатур для своей корректной работы

Применение TSV без перезапуска алгоритмов

Взвешенный порядок \prec_w на сигнатурах с параметром – вектором мономов $w=(w_1,\ldots,w_m)$:

$$(t_1, i_1) \prec_w (t_2, i_2) \Longleftrightarrow \begin{bmatrix} t_1 w_{i_1} < t_2 w_{i_2} \\ t_1 w_{i_1} = t_2 w_{i_2}, i_1 < i_2 \end{bmatrix}.$$

- ▶ Добавляется новая переменная у, младше всех остальных
- Во входные данные вводится дополнительный многочлен $x_1^{j_1} \cdots x_m^{j_m} y'$ для того, чтоб страший член редуцировался
- Параметр весов сигнатур расширяется мономов w, выбранным так, чтоб добавленный многочлен имел сигнатуру «точно перед текущей»
- Алгоритм продолжается без перезапуска

Использование результата TSV для решения системы

- lacktriangle Строится алгоритм SingleStepSignatureGroebner для $\mathbb C$
 - ▶ Модулярные вычисления для классификации нулей
 - ▶ Если необратимость устранить не удалось, применяется метод TSV
- На основе найденного базиса в расширенном TSV идеале многочленов I^e строится оператор нормальной формы $\phi:I \to I$ как композиция
 - ▶ Вложения $Id^e: I \rightarrow I^e$
 - ▶ Оператора нормальной формы в $\it I^e$ редукции по базису Грёбнера $\it \phi^e:\it I^e\to\it I^e$
 - ▶ Отображения $I^e o I$, индуцируемого заменами $y' \mapsto x_1^{i_1} \cdots x_m^{i_m}$
- Для решения полиномиальной системы применяется метод матриц действия, использующий лишь оператор нормальной формы ϕ .

Основные результаты

- ▶ Доказана остановка F5 [1, 2]
- ▶ Предложен алгоритм SingleStepSignatureGroebner, корректность и остановка которого доказаны без использования понятия S-пар [3, 4]
- Дана классификация необратимых приближённых элементов
- ▶ Построена методика применения сигнатурного алгоритма SingleStepSignatureGroebner для приближённых вычислений над $\mathbb C$

Публикации

- Галкин В. В. Остановка Алгоритма F5 // Вестник МГУ. 201?
- Galkin V. Termination of Original F5 // ArXiv e-prints. 2012. March. 1203.2402.
- Галкин В. В. Простой итеративный алгоритм вычисления базисов Грёбнера, основанный на сигнатурах // Вестник МГУ.—
 201?
- Galkin V. Simple signature-based Groebner basis algorithm //
 ArXiv e-prints. —
 2012. May. —
 1205.6050.

Пример символического нуля

Пример

 $poly(f_1) =$

```
\begin{array}{llll} \operatorname{poly}(f_2) = & y^2z^2 + xz + 1, & \mathcal{S}(f_2) = (1,2) \\ \operatorname{poly}(f_3) = & y^3z + xy + 1, & \mathcal{S}(f_3) = (1,3) \\ \operatorname{poly}(f_4) = & \operatorname{poly}(f_1) = y^2z + a, & \mathcal{S}(f_4) = (1,1) \\ \operatorname{poly}(f_5) = & \operatorname{poly}(f_2) - z\operatorname{poly}(f_4) = xz - az + 1, & \mathcal{S}(f_5) = (1,2) \\ \operatorname{poly}(f_6) = & \operatorname{poly}(f_3) - y\operatorname{poly}(f_4) = xy - ay + 1, & \mathcal{S}(f_6) = (1,3) \\ \operatorname{poly}(f_7) = & z\operatorname{poly}(f_6) - y\operatorname{poly}(f_5) = (a-a)yz + z - y, & \mathcal{S}(f_7) = (z,3) \end{array}
```

 $S(f_1) = (1,1)$

 v^2z+a

Пример индуцированного или внесённого нуля

Пример

$$\begin{aligned} & \operatorname{poly}(f_1) = & y^2z + z^2 + az, & \mathcal{S}(f_1) = (1,1) \\ & \operatorname{poly}(f_2) = & xyz, & \mathcal{S}(f_2) = (1,2) \\ & \operatorname{poly}(f_3) = & xy^2 + bx + 1, & \mathcal{S}(f_3) = (1,3) \\ & \operatorname{poly}(f_4) = & \operatorname{poly}(f_1) = y^2z + z^2 + az, & \mathcal{S}(f_4) = (1,1) \\ & \operatorname{poly}(f_5) = & \operatorname{poly}(f_2) = xyz, & \mathcal{S}(f_5) = (1,2) \\ & \operatorname{poly}(f_6) = & \operatorname{poly}(f_3) = xy^2 + bx + 1, & \mathcal{S}(f_6) = (1,3) \\ & \operatorname{poly}(f_7) = & -(y\operatorname{poly}(f_5) - x\operatorname{poly}(f_4)) = xz^2 + axz, & \mathcal{S}(f_7) = (y,2) \end{aligned}$$

$$& \operatorname{poly}(f_8) = (z\operatorname{poly}(f_6) - x\operatorname{poly}(f_4)) + \operatorname{poly}(f_7) = \\ & = \left((xy^2z + bxz + z) - (xy^2z + xz^2 + axz) \right) + xz^2 + axz = ((b-a)+a)xz + z, \\ & \mathcal{S}(f_8) = (z,3) \end{aligned}$$