

A Brief Introduction to the QAOA

Andreas Bärtschi **CCS-3 Information Sciences**

CPAIOR 2024

LA-UR-24-25452

Quantum Approximate Optimization Algorithm (QAOA) / Quantum Alternating Operator Ansatz (QAOA+)

- 1. A heuristic to solve unconstrained / constrained combinatorial optimization problems
- 2. Either approximately (metric: approximation ratio) or exactly (metric: probability of sampling optimal solution)

Agenda

01

Quantum Approximate Optimization Algorithm

- Quantum subroutine
- Cost Hamiltonian
- Optimization Goals
- Parameter Finding

02

Quantum Alternating Operator Ansatz

- Quantum subroutine
- State Preparation
- Mixer Design
- Conclusion and Summary

03

Deep Dive: Hamming weight constraint

Quantum Approximate Optimization Algorithm (QAOA)

Quantum Approximate Optimization Algorithm

Farhi, Goldstone, Gutmann (arXiv:1411.4028)

The Quantum Approximate Optimization Algorithm (QAOA) is a heuristic for unconstrained combinatorial optimization. It prepares a state

$$|\beta,\gamma\rangle = e^{-i\beta_p \sum X_i} e^{-i\gamma_p H_C} \cdots e^{-i\beta_1 \sum X_i} e^{-i\gamma_1 H_C} |+^n\rangle$$

from which one would like to sample good solutions with high probability. QAOA is specified by

- the initial state $|+^n\rangle$, the uniform superposition over all basis states,
- a Cost Hamiltonian H_C used to phase basis states proportional to their cost C(x): $|x\rangle \mapsto e^{-i\gamma C(x)}|x\rangle$ and to evaluate the expectation value of the QAOA state, $\langle \beta, \gamma | H_C | \beta, \gamma \rangle$,
- a Transverse Field Mixer $\sum_{i=1}^{n} X_i$, used to interfere states in order to boost good solutions,
- p rounds with individual angle parameters $\beta_1, \dots, \beta_n, \gamma_1, \dots, \gamma_n$.

QAOA quantum subroutine / circuit

Sample solutions from a QAOA circuit with classically determined parameters:

Cost Hamiltonian: Construction

MaxCUT on G = (V, E), n = |V|, m = |E|

x_1x_5	Val	x_1x_5	Val
00000	0	01000	3
00001	2	01001	5
00010	2	01010	3
00011	2	01011	3
00100	3	01100	4
00101	3	01101	4
00110	5	01110	4
00111	3	01111	3

Cost Hamiltonian: Construction

MaxCUT on G = (V, E), n = |V|, m = |E|

- given by *n* binary variables $x \in \{0,1\}^n$
- 2. Transform to spin variables $s \in \{1, -1\}^n$ using $x_i = (1 - s_i)/2$
- Replace terms with qubit operators: spin variables by Pauli-Z, constants by Identities I

1. Start with Cost function
$$C(x)$$
 on states x given by n binary variables $x \in \{0,1\}^n$
$$C(x): \sum_{\{u,v\} \in E} x_u \oplus x_v = \sum_{\{u,v\} \in E} x_u + x_v - 2x_u x_v$$

$$C(s): \sum_{\{u,v\} \in E} \frac{1 - s_u s_v}{2} = \frac{m}{2} - \sum_{\{u,v\} \in E} \frac{s_u s_v}{2}$$

$$H_C$$
: $\sum_{\{u,v\}\in E} \frac{I - Z_u Z_v}{2} = \frac{m}{2}I - \sum_{\{u,v\}\in E} \frac{Z_u Z_v}{2}$

Cost Hamiltonian: Implementation

MaxCUT on G = (V, E), n = |V|, m = |E|

Implement $e^{-i\gamma H_C}$ term by term: $H_C = \sum_{\{u,v\}\in E} \frac{I-Z_uZ_v}{2}$

Optimization Goals

- Approximate Optimization
 Provable or numerically observed good approximation ratios from the expectation value ⟨β, γ|H_C|β, γ⟩/max C(x)
 e.g. for MaxCut on large-girth 3-regular graphs (Caha, Kliesch, Koenig, arXiv:2203.00717)
- Exact Optimization
 Provable or numerically observed "large" overlap (success probability) with an optimum solution e.g. for finding a satisfiable assignment to satisfiable E8-SAT formula of increasing sizes (Boulebnane, Montanaro, arXiv:2208.06909)

Parameter Finding: Methods and Challenges

- Classical optimizer in an outer loop with quantum part as a subroutine: gradient descent, basin hopping, derivative-free methods Challenge: barren plateaus, rugged parameter landscapes
- Parameter transfer from smaller instances Challenge: saturation at low depth QAOAs on small instances
- Interpolation from smaller number of rounds Challenge: local minima, overhead
- Linear ramp, discretizations of adiabatic schedules Challenge: requires large number of QAOA rounds
- Fixed angles approaches Challenge: not generalizable to other problems

Quantum Alternating
Operator Ansatz
(QAOA+)

Quantum Alternating Operator Ansatz

Hadfield, Wang, O'Gorman, Rieffel, Venturelli, Biswas (arXiv:1709.03489)

The Quantum Alternating Operator Ansatz (QAOA+) is a heuristic for combinatorial optimization. It prepares a state

$$|\boldsymbol{\beta}, \boldsymbol{\gamma}\rangle = U_M(\beta_p)U_P(\gamma_p)\cdots U_M(\beta_1)U_P(\gamma_1)U_S|0^n\rangle$$

from which one would like to sample good solutions with high probability.

QAOA+ is specified by

- an initial state preparation unitary U_s preparing some superposition of feasible states.
- a phase separator unitary $U_{P}(\gamma)$. used to phase basis states by some function f of their cost C(x): $|x\rangle \mapsto e^{-i\gamma f(C(x))}|x\rangle$,
- a mixer unitary $U_M(\beta)$, preserving and interfering feasible solutions, e.g., $e^{-i\beta H_M}$ with H_M adjacency matrix with connected component of all feasible states,
- p rounds with individual angle parameters $\beta_1, ..., \beta_n, \gamma_1, ..., \gamma_n$.

QAOA+ quantum subroutine / circuit

Sample solutions from a QAOA circuit with classically determined parameters:

State Preparation for k-Densest Subgraph

Maximize number of edges in a subgraph induced by k vertices (here k = 3, n = 4).

Caveat: Uniform superpositions of feasible states are often beneficial (arXiv:2006.00354) but can not always be implemented efficiently (e.g. for Maximum Independent Set).

Mixer Design for k-Densest Subgraph

Mixers must preserve and provide transitions in the feasible Hamming-Weight k subspace. For example: Mixer Hamiltonian H_M that is an adjacency matrix of a graph on all states, in which the feasible states form a connected component:

$$U_M(\beta) = e^{-i\beta H_M}$$

• Ring Mixer
$$H_M = \frac{1}{2} \sum_{j=i+1} X_i X_j + Y_i Y_j$$

• Clique Mixer
$$H_M = \frac{1}{2} \sum_{j>i} X_i X_j + Y_i Y_j$$

• Grover Mixer
$$H_M = |D_k^n\rangle\langle D_k^n|$$

$$H_{XY} = \frac{1}{2}(X_1X_2 + Y_1Y_2) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$e^{-i\beta/2(X_1X_2 + Y_1Y_2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\beta/2 & -i\sin\beta/2 & 0 \\ 0 & -i\sin\beta/2 & \cos\beta/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

More ad-hoc mixer unitaries, not necessarily based on Hamiltonians, are also possible, as are Hamiltonian-inspired "partial" mixers.

Conclusion and Summary

- QAOA(+) offers a fairly general framework for combinatorial optimization.
- Interplay between
 - Mixers.
 - Phase Separators.
 - State preparation.
- Runtime determined by
 - Circuit implementation,
 - Scaling in the number of rounds p,
 - Complexity of parameter finding procedure.
- NISQ-friendly only for hardware-native Quadratic Unconstrained Binary Optimization problems, though some error mitigation strategies exist.

Deep Dive: Hamming weight constraint

Phase Separator design

Phase Separators phase states $|x\rangle$ by a function of their cost: $U_P(\gamma)|x\rangle = e^{-i\gamma}f(c(x))|x\rangle$

- Objective value phase separator: f(C(x)) = C(x)
- Threshold value phase separator: $f(C(x)) = \delta_{th}(C(x)) = 1$ iff C(x) > th, else 0.

For Grover Mixer, for p fixed, find threshold th with binary search with $\beta_i = \gamma_i = \pi$. Same for other mixers, but angle finding there is more difficult.

Circuit implementations

Graph Size n, Hamming weight k, maximum degree D, arithmetic precision ϵ

•	•	•	•	•
Unitaries $oldsymbol{U}_{S}, oldsymbol{U}_{P}, oldsymbol{U}_{M}$	Depth on Linear Nearest Neighbor	Depth on Full Connectivity	Number of Ancillas	Comment
$U_S 0\rangle = \text{Dicke State } D_k^n\rangle$	$\mathcal{O}(n)$	$\mathcal{O}(k\log\frac{n}{k})$	-	
Ojective-V Phase Separator	$\mathcal{O}(n)$	$\mathcal{O}(D)$	-	
Threshold Phase Separator	$\mathcal{O}(n^2 \log n)$ $\mathcal{O}(n \log n)$	$ \mathcal{O}(n^2 \log n) $ $ \mathcal{O}(D \log n) $	$\mathcal{O}(\log n)$ $\mathcal{O}(n\log n)$	compute objective value to compare to threshold $\it th$.
Ring Mixer $H_M = \sum_{j=i+1} X_i X_j + Y_i Y_j$	$ \mathcal{O}(n)$	$\mathcal{O}(\log n)$	- -	
Clique Mixer $H_M = \sum_{j>i} X_i X_j + Y_i Y_j$	$\mathcal{O}(n \operatorname{polylog} \frac{n}{\epsilon})$ $\mathcal{O}(n^3 \log n)$	$\mathcal{O}(n \operatorname{polylog} \frac{n}{\epsilon})$ $\mathcal{O}(n^3 \log n)$	$\mathcal{O}(\operatorname{polylog} \frac{n}{\epsilon})$ $\mathcal{O}(\log n)$	Schur Transform to get decomposition into total angular momentum and z -component.
Grover Mixer $H_M = D_k^n\rangle\langle D_k^n $	$\mathcal{O}(n)$	$\frac{\mathcal{O}(n)}{\mathcal{O}(k\log\frac{n}{k})}$	$-\frac{n}{\mathcal{O}(\frac{n}{k})}$	

Performance for fixed n

Clique-Obj
Clique-Th
Grover-Obj
Grover-Th
Ring-Obj
Ring-Th

Approximation ratio average over 12 random $G_{n,p=0.5}$ graph instances for different Mixer / Phase Separator combinations with $k = \frac{n}{2}$.

Performance for fixed *n*

Clique-Obj
Clique-Th
Grover-Obj
Grover-Th
Ring-Obj
Ring-Th

Approximation ratio average over 12 random $G_{n,p=0.5}$ graph instances for different Mixer / Phase Separator combinations with $k = \frac{n}{2}$.

Performance for fixed n

Clique-Obj
Clique-Th
Grover-Obj
Grover-Th
Ring-Obj
Ring-Th

Approximation ratio average over 12 random $G_{n,p=0.5}$ graph instances for different Mixer / Phase Separator combinations with $k = \frac{n}{2}$.

Performance for growing *n*

How does the necessary number of rounds to reach 99% approximation ratio scale?

QAOA is above $\langle \beta, \gamma | H_C | \beta, \gamma \rangle - 1$ after $m \log m$ samples with probability 1 - 1/m. How many rounds would a Grover Search with marked states above take?

Thank you!

