\mathbf{X}_{AB} \mathbf{X}_{BC} \mathbf{X}_{DE} \mathbf{X}_{FD} \mathbf{X}_{BD} \mathbf{X}_{CE}

Matrice di congruenza

$$\begin{bmatrix} u_F & v_{BD} & \phi_{DB}b & \phi_{CE}b \end{bmatrix} \\ u_A & \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \\ v_{EC} & \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Soluzione del sistema

$$\begin{bmatrix} u_F \\ v_{BD} \\ \phi_{DB}b \\ \phi_{CE}b \end{bmatrix} = \begin{bmatrix} \phi_{CE}b \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

 \mathbf{x}_{AB} \mathbf{x}_{CD} \mathbf{x}_{EC} \mathbf{x}_{DB}

Matrice di congruenza

Soluzione del sistema

$$\begin{bmatrix} u_F \\ v_{CA} \\ \phi_{AC} b \\ \phi_{DB} b \end{bmatrix} = \begin{bmatrix} \phi_{DB} b \\ -1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

$u_{AAB} = \delta$	$u_{CCD} = \delta$	$u_{EEC} = 0$	$u_{DDB} = 2\delta$	$u_{CCA} = \delta$	$u_{FFA} = \delta$
$V_{AAB} = 0$	$v_{CCD} = 0$	$V_{EEC} = 0$	$V_{DDB} = 0$	$V_{CCA} = -\delta$	$V_{FFA} = 0$
$\phi_{\Delta\Delta B} = 0$	$\varphi_{CCD} = \delta/b$	$\varphi_{EEC} = \delta/b$	$\phi_{DDR} = 0$	$\varphi_{CCA} = \delta/b$	$\phi_{FF\Delta} = 0$

 \mathbf{x}_{AB} \mathbf{x}_{CD} \mathbf{x}_{ED} \mathbf{x}_{DB}

 \mathbf{x}_{FC}

D C

Matrice di congruenza

Soluzione del sistema

$$\begin{bmatrix} \phi_F b \\ v_{CD} \\ \phi_{DC} b \\ \phi_{AB} b \end{bmatrix} = \begin{bmatrix} \phi_{AB} b \\ -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

$u_{AAB} = 2\delta$	$u_{CCD} = \delta$	$u_{EED} = \delta$	$u_{DDB} = \delta$	$u_{CCA} = \delta$	$u_{FFC} = 0$
$V_{AAB} = 0$	$V_{CCD} = -\delta$	$V_{EED} = 0$	$V_{DDB} = 0$	$v_{CCA} = 0$	$V_{FFC} = 0$
$\phi_{\Delta\Delta B} = 0$	$\varphi_{CCD} = -\delta/b$	$\phi_{EED} = 0$	$\phi_{DDR} = 0$	$\varphi_{CCA} = -\delta/b$	$\phi_{\text{FFC}} = -\delta/b$

 \mathbf{X}_{AB} \mathbf{X}_{CB} \mathbf{X}_{DE} \mathbf{X}_{FC} \mathbf{X}_{CD} \mathbf{X}_{BE}

B C

Matrice di congruenza

$$\begin{bmatrix} \phi_F b & v_{CB} & \phi_{DE} b & u_{ED} \end{bmatrix} \\ v_A & \begin{bmatrix} -1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ u_{BC} & 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} \phi_F b \\ v_{CB} \\ \phi_{DE} b \\ u_{ED} \end{bmatrix} = \begin{bmatrix} u_{ED} \\ -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

$_{AAB} = \delta$	$u_{CCB} = \delta$	$u_{DDE} = 2\delta$	$u_{FFC} = 0$	$u_{CCD} = \delta$	$u_{BBE} = \delta$
$_{AAB} = 0$	$V_{CCB} = \delta$	$V_{DDE} = 0$	$V_{FFC} = 0$	$V_{CCD} = 0$	$V_{BBE} = 0$
$\Delta_{\Delta AB} = 0$	$\phi_{CCB} = \delta/b$	$\varphi_{DDE} = 0$	$\phi_{FFC} = \delta/b$	$\varphi_{CCD} = \delta/b$	$\phi_{BBF} = 0$

Soluzione del sistema $\begin{bmatrix} v_F \\ u_{BD} \\ \phi_{DB} b \\ \phi_{CE} b \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}$

 $\label{eq:solutione} \begin{aligned} & \text{Solutione del sistema} \\ & \begin{bmatrix} v_F \\ u_{CA} \\ \phi_{AC} b \\ \phi_{DB} b \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \end{aligned}$

 $\begin{array}{c} \text{Soluzione del sistema} \\ \begin{bmatrix} \phi_F b \\ u_{CD} \\ \phi_{DC} b \\ \phi_{AB} b \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$

MECCANISMO Es.N.007 SPOSTAMENTI CINEMATICA Es.N.007

MECCANISMO Es.N.008 SPOSTAMENTI CINEMATICA Es.N.008

B D

Matrice di congruenza

Soluzione del sistema

$$\begin{bmatrix} u_F \\ u_{BD} \\ \phi_{DB} b \\ \phi_{CE} b \end{bmatrix} = \begin{bmatrix} \phi_{CE} b \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

$u_{AAB} = 0$	$u_{BBC} = -\delta$	$u_{DDE} = -2\delta$	$u_{FFD} = -2\delta$	$u_{BBD} = -2\delta$	$u_{CCE} = -2\delta$
$V_{AAB} = 0$	$V_{BBC} = 0$	$V_{DDE} = \delta$	$V_{FFD} = \delta$	$V_{BBD} = 0$	$V_{CCE} = 0$
$\varphi_{AAB} = \delta/b$	$\phi_{BBC} = \delta/b$	$\phi_{DDF} = 0$	$\varphi_{\text{FFD}} = 0$	$\varphi_{BBD} = \delta/b$	$\phi_{CCF} = 0$

C A

Matrice di congruenza

Soluzione del sistema

$$\begin{bmatrix} u_F \\ u_{CA} \\ \phi_{AC}b \\ \phi_{DB}b \end{bmatrix} = \begin{bmatrix} \phi_{DB}b \\ -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}$$

$u_{AAB} = \delta$	$u_{CCD} = 1/2\delta$	$u_{EEC} = 0$	$u_{DDB} = \delta$	$u_{CCA} = \delta$	$u_{FFA} = \delta$
$V_{AAB} = 1/2\delta$	$V_{CCD} = 0$	$V_{EEC} = 0$	$V_{DDB} = 0$	$v_{CCA} = 0$	$V_{FFA} = 1/2\delta$
$\phi_{AAB} = 0$	$\varphi_{CCD} = 1/2\delta/b$	$\phi_{\text{EEC}} = 1/2\delta/b$	$\varphi_{DDB} = 0$	$\varphi_{CCA} = 1/2\delta/b$	$\phi_{FFA} = 0$

D C

Matrice di congruenza

Soluzione del sistema

$$\begin{bmatrix} \phi_F b \\ u_{CD} \\ \phi_{DC} b \\ \phi_{AB} b \end{bmatrix} = \begin{bmatrix} \phi_{AB} b \\ -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$u_{AAB} = -2\delta$	$u_{CCD} = -2\delta$	$u_{EED} = -2\delta$	$u_{DDB} = -2\delta$	$u_{CCA} = -\delta$	$u_{FFC} = 0$
$V_{AAB} = 0$	$V_{CCD} = 0$	$V_{EED} = -\delta$	$V_{DDB} = -\delta$	$V_{CCA} = 0$	$V_{FFC} = 0$
$\phi_{AAB} = 0$	$\varphi_{CCD} = \delta/b$	$\phi_{EED} = 0$	$\varphi_{\text{DDB}} = 0$	$\varphi_{CCA} = \delta/b$	$\varphi_{FFC} = \delta/b$

B C

Matrice di congruenza

$$\begin{bmatrix} \phi_{\text{F}} b & u_{\text{CB}} & \phi_{\text{DE}} b & v_{\text{ED}} \end{bmatrix} \\ v_{\text{A}} & \begin{bmatrix} -1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 0 \\ \phi_{\text{A}} b & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \phi_F b \\ u_{CB} \\ \phi_{DE} b \\ v_{ED} \end{bmatrix} = \begin{bmatrix} V_{ED} \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

Tracciare il meccanismo o i meccanismi della struttura. Tracciare le mappe degli spost. orizzontali e verticali. Calcolare il meccanismo o i meccanismi della struttura. Rappresentare schema della struttura e matrice di congruenza. $J_{YZ} - x_{YZ} - \theta_{YZ} \quad \text{riferimento locale asta YZ con origine in Y.}$ Piano di scorrimento del vincolo con inclinazione assegnata.

@ Adolfo Zavelani Rossi, Politecnico di Milano, versione 12.05

$u_{AAB} = \delta$	$u_{CCB} = \delta$	$u_{DDE} = \delta$	$u_{FFC} = 0$	$u_{CCD} = 1/2\delta$	$u_{BBE} = \delta$
$V_{AAB} = -1/2\delta$	$v_{CCB} = 0$	$V_{DDE} = 0$	$V_{FFC} = 0$	$V_{CCD} = 0$	$V_{BBE} = -1/2\delta$
$\phi_{AAB} = 0$	$\varphi_{CCB} = 1/2\delta/b$	$\phi_{DDE} = 0$	$\varphi_{FFC} = 1/2\delta/b$	$\varphi_{CCD} = 1/2\delta/b$	$\phi_{BBE} = 0$

Soluzione del sistema $\begin{bmatrix} v_F \\ v_{BD} \\ \phi_{DB} b \\ \phi_{CE} b \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}$

Svolgere l'analisi cinematica (geometrica e analitica). Tracciare il meccanismo o i meccanismi della struttura. Tracciare le mappe degli spost. orizzontali e verticali. Calcolare il meccanismo o i meccanismi della struttura. Rappresentare schema della struttura e matrice di congruenza. $J_{\gamma Z}$ - $x_{\gamma Z}$ - $\theta_{\gamma Z}$ riferimento locale asta YZ con origine in Y. Piano di scorrimento del vincolo con inclinazione assegnata. @ Adolfo Zavelani Rossi, Politecnico di Milano, versione 12.05

Soluzione del sistema $\begin{bmatrix} v_F \\ v_{CA} \\ \phi_{AC} b \\ \phi_{DB} b \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}$

Svolgere l'analisi cinematica (geometrica e analitica). Tracciare il meccanismo o i meccanismi della struttura. Tracciare le mappe degli spost. orizzontali e verticali. Calcolare il meccanismo o i meccanismi della struttura. Rappresentare schema della struttura e matrice di congruenza. $J_{\gamma Z}$ - $x_{\gamma Z}$ - $\theta_{\gamma Z}$ riferimento locale asta YZ con origine in Y. Piano di scorrimento del vincolo con inclinazione assegnata. @ Adolfo Zavelani Rossi, Politecnico di Milano, versione 12.05

$u_{AAB} = 1/2\delta$	$u_{CCD} = 0$	$u_{EEC} = 0$	$u_{DDB} = 0$	$u_{CCA} = 0$	$u_{FFA} = 1/2\delta$
$V_{AAB} = \delta$	$V_{CCD} = 1/2\delta$	$V_{EEC} = 0$	$V_{DDB} = \delta$	$V_{CCA} = \delta$	$V_{FFA} = \delta$
$\phi_{AAB} = 0$	$\phi_{CCD} = 1/2\delta/b$	$\phi_{\text{EEC}} = 1/2\delta/b$	$\phi_{\text{DDB}} = 0$	$\varphi_{CCA} = 1/2\delta/b$	$\phi_{FFA} = 0$

 $\label{eq:matricedicongruenza} \begin{bmatrix} \phi_F b & v_{CD} & \phi_{DC} b & \phi_{AB} b \end{bmatrix} \\ u_E & \begin{bmatrix} -1 & -1/2 & -1/2 & 0 \\ 1 & 0 & 1 & 0 \\ \phi_{BA} b & 0 & 0 & -1 & 1 \end{bmatrix}$

$$\begin{array}{c} \text{Soluzione del sistema} \\ \begin{bmatrix} \phi_F b \\ v_{CD} \\ \phi_{DC} b \\ \phi_{AB} b \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Svolgere l'analisi cinematica (geometrica e analitica). Tracciare il meccanismo o i meccanismi della struttura. Tracciare le mappe degli spost. orizzontali e verticali. Calcolare il meccanismo o i meccanismi della struttura. Rappresentare schema della struttura e matrice di congruenza. $J_{\gamma Z}$ - $x_{\gamma Z}$ - $\theta_{\gamma Z}$ riferimento locale asta YZ con origine in Y. Piano di scorrimento del vincolo con inclinazione assegnata. @ Adolfo Zavelani Rossi, Politecnico di Milano, versione 12.05

MECCANISMO Es.N.015 SPOSTAMENTI CINEMATICA Es.N.015

$u_{AAB} = 1/2\delta$	$u_{CCB} = 0$	$u_{DDE} = 0$	$u_{FFC} = 0$	$u_{CCD} = 0$	$u_{BBE} = 1/2\delta$
$V_{AAB} = -\delta$	$V_{CCB} = -\delta$	$V_{DDE} = -\delta$	$V_{FFC} = 0$	$V_{CCD} = -1/2\delta$	$V_{BBE} = -\delta$
$\phi_{AAB} = 0$	$\phi_{CCB} = 1/2\delta/b$	$\phi_{DDE} = 0$	$\phi_{FFC} = 1/2\delta/b$	$\phi_{CCD} = 1/2\delta/b$	$\phi_{BBE} = 0$

 \mathbf{X}_{AB} \mathbf{X}_{BC} \mathbf{X}_{DE} \mathbf{X}_{FD} \mathbf{X}_{BD} \mathbf{X}_{CE}

Matrice di congruenza

$$\begin{bmatrix} u_{F} & \phi_{BD}b & v_{DB} & \phi_{CE}b \end{bmatrix} \\ u_{A} & \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Soluzione del sistema

$$\begin{bmatrix} u_F \\ \phi_{BD}b \\ v_{DB} \\ \phi_{CE}b \end{bmatrix} = \begin{bmatrix} \phi_{CE}b \\ 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

 \mathbf{x}_{AB} \mathbf{x}_{CD} \mathbf{x}_{EC} \mathbf{x}_{DB}

Matrice di congruenza

$$\begin{bmatrix} u_F & \phi_{CA}b & v_{AC} & \phi_{DB}b \end{bmatrix} \\ u_E & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Soluzione del sistema

$$\begin{bmatrix} u_F \\ \phi_{CA}b \\ v_{AC} \\ \phi_{DB}b \end{bmatrix} = \begin{bmatrix} (\phi_{DB}b) \\ -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

$u_{AAB} = \delta$	$u_{CCD} = \delta$	$u_{EEC} = 0$	$u_{DDB} = 2\delta$	$u_{CCA} = \delta$	$u_{FFA} = \delta$
$V_{AAB} = 0$	$V_{CCD} = 0$	$V_{EEC} = 0$	$V_{DDB} = 0$	$V_{CCA} = 0$	$V_{FFA} = 0$
$\varphi_{AAB} = 0$	$\varphi_{CCD} = \delta/b$	$\phi_{\text{EEC}} = \delta/b$	$\phi_{DDB} = 0$	$\varphi_{CCA} = 0$	$\phi_{FFA} = 0$

 \mathbf{x}_{AB} \mathbf{x}_{CD} \mathbf{x}_{ED} \mathbf{x}_{DB}

 \mathbf{x}_{FC}

D C

Matrice di congruenza

Soluzione del sistema

$$\begin{bmatrix} \phi_{F}b \\ \phi_{CD}b \\ v_{DC} \\ \phi_{AB}b \end{bmatrix} = \begin{bmatrix} (\phi_{AB}b) \\ -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Svolgere l'analisi cinematica (geometrica e analitica). Tracciare il meccanismo o i meccanismi della struttura. Tracciare le mappe degli spost. orizzontali e verticali. Calcolare il meccanismo o i meccanismi della struttura. Rappresentare schema della struttura e matrice di congruenza. $J_{YZ} - x_{YZ} - \theta_{YZ} \quad \text{riferimento locale asta YZ con origine in Y.}$ @ Adolfo Zavelani Rossi, Politecnico di Milano, versione 12.05

 \mathbf{X}_{AB} \mathbf{X}_{CB} \mathbf{X}_{DE} \mathbf{X}_{FC} \mathbf{X}_{CD} \mathbf{X}_{BE}

B C

Matrice di congruenza

$$\begin{bmatrix} \phi_F b \\ \phi_{CB} b \\ \phi_{DE} b \\ u_{ED} \end{bmatrix} = \begin{bmatrix} u_{ED} \\ -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Svolgere l'analisi cinematica (geometrica e analitica). Tracciare il meccanismo o i meccanismi della struttura. Tracciare le mappe degli spost. orizzontali e verticali. Calcolare il meccanismo o i meccanismi della struttura. Rappresentare schema della struttura e matrice di congruenza. $J_{YZ} - x_{YZ} - \theta_{YZ} \quad \text{riferimento locale asta YZ con origine in Y.}$ @ Adolfo Zavelani Rossi, Politecnico di Milano, versione 12.05

$_{AAB} = \delta$	$u_{CCB} = \delta$	$u_{DDE} = 2\delta$	$u_{FFC} = 0$	$u_{CCD} = \delta$	$u_{BBE} = \delta$
$_{AAB} = 0$	$V_{CCB} = 0$	$V_{DDE} = 0$	$V_{FFC} = 0$	$V_{CCD} = 0$	$V_{BBE} = 0$
$_{\Lambda\Lambda R} = 0$	$\varphi_{CCR} = 0$	$\phi_{DDE} = 0$	$\phi_{EEC} = \delta/b$	$\varphi_{CCD} = \delta/b$	$\phi_{RRE} = 0$

$$\begin{array}{c} \text{Soluzione del sistema} \\ \begin{bmatrix} v_F \\ \phi_{BD}b \\ u_{DB} \\ \phi_{CE}b \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

Svolgere l'analisi cinematica (geometrica e analitica). Tracciare il meccanismo o i meccanismi della struttura. Tracciare le mappe degli spost. orizzontali e verticali. Calcolare il meccanismo o i meccanismi della struttura. Rappresentare schema della struttura e matrice di congruenza. $J_{YZ} - x_{YZ} - \theta_{YZ} \ riferimento locale asta YZ con origine in Y.$ @ Adolfo Zavelani Rossi, Politecnico di Milano, versione 12.05

 Svolgere l'analisi cinematica (geometrica e analitica). Tracciare il meccanismo o i meccanismi della struttura. Tracciare le mappe degli spost. orizzontali e verticali. Calcolare il meccanismo o i meccanismi della struttura. Rappresentare schema della struttura e matrice di congruenza. $J_{YZ} - x_{YZ} - \theta_{YZ} \ riferimento locale asta YZ con origine in Y.$ @ Adolfo Zavelani Rossi, Politecnico di Milano, versione 12.05

 Svolgere l'analisi cinematica (geometrica e analitica). Tracciare il meccanismo o i meccanismi della struttura. Tracciare le mappe degli spost. orizzontali e verticali. Calcolare il meccanismo o i meccanismi della struttura. Rappresentare schema della struttura e matrice di congruenza. $J_{YZ} - x_{YZ} - \theta_{YZ} \quad \text{riferimento locale asta YZ con origine in Y.}$ @ Adolfo Zavelani Rossi, Politecnico di Milano, versione 12.05

-1

Matrice di congruenza Soluzione del sistema $\phi_{F}b \phi_{CB}b \phi_{DE}b v_{ED}$ $\varphi_F b$ $\phi_{\text{CB}}b$ $\phi_{\text{DE}}b$

Svolgere l'analisi cinematica (geometrica e analitica). Tracciare il meccanismo o i meccanismi della struttura. Tracciare le mappe degli spost. orizzontali e verticali. Calcolare il meccanismo o i meccanismi della struttura. Rappresentare schema della struttura e matrice di congruenza. J_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y. @ Adolfo Zavelani Rossi, Politecnico di Milano, versione 12.05

