Nonconvexity certificate in $b_i = 0$ case

Cases

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a quadratic map: $f_i(x) = x^T A_i x$, $A_i = A_i^T$. Consider $c \in \mathbb{R}^m$ and boundary points ∂F_c :

$$c \cdot f(x) \to \min_{c}$$

Where $A = \sum c_i A_i$. Assuming $A \geqslant 0$. Minimization leads to Ax = 0. The following cases hold:

- 1. RgA = n. x = 0 is a unique solution
- 2. RgA = n 1. $x = \alpha e$, $f(x) = \alpha^2 f(e)$
- 3. RgA = n 2. In this case $x = \alpha_1 e^1 + \alpha_2 e^2$. Consider $f(x) = \alpha_1^2 f_{11} + 2\alpha_1 \alpha_2 f_{12} + \alpha_2^2 f_{22}$.
 - (a) f_{11}, f_{22}, f_{12} are linearly independent. In this case ∂F_c is nonconvex
 - (b) $Rg||f_{11}f_{12}f_{22}|| = 1$. ∂F_c convex.

Result

If exist $c \in \mathbb{R}^m$:

- 1. RgA = n 2
- 2. $A \ge 0$
- 3. f_{ij} are linearly independent

Then $F = \operatorname{Im} f$ is nonconvex.