Tema 1: Léxico de un algoritmo

- 1. Léxico de un algoritmo
 - Léxico de un algoritmo: INFORMACIONES + ACCIONES
 - Informaciones = Variables
 - Magnitudes que caracterizan un proceso algorítmico
 - CONSTRUIR UN ALGORITMO CONSISTE EN ELEGIR UN CONJUNTO DE INFORMACIONES Y OTRO DE ACCIONES, Y A CONTINUACIÓN DECIDIR EL MODO DE ORGANIZAR LAS ACCIONES EN EL TIEMPO PARA OBTENER EL RESULTADO DESEADO POR ACUMULACIÓN DE SUS EFECTOS.
 - Necesitamos una notación: notación algorítmica.
 - La notación algorítmica fija la forma de:
 - Describir las acciones.
 - Describir las informaciones.
 - Organizar las acciones en el tiempo.
 - Incluye acciones elementales.

Algoritmo:

- Léxico: informaciones u objetos y acciones
- Control: ordenar en el tiempo cómo actúan las acciones sobre los objetos

Abstracción:

- Mecanismo fundamental para dominar la complejidad cuando programamos. "Eliminar detalles innecesarios y considerar lo esencial". El léxico fija el nivel de abstracción.

• Construcción algoritmos:

- Fijar el léxico
- Organizar las acciones en el tiempo mediante: secuenciación, análisis de casos e iteración (recursión)

• Dada la especificación de un problema hay que:

- Elegir y nombrar las informaciones
- Asociar un tipo a cada información
- Elegir y nombrar las acciones
- Asociar una precondición y una postcondición a cada acción
- Tipo de DATO: dominio de valores y acciones que son posibles realizar sobre esos valores
- Precondición: requerimiento de la acción
- Postcondición: efecto de la acción

```
LÉXICO

// Declaraciones de tipos, variables, constantes y acciones v.: tipo
A.: una acción
PRE { precondición A.}
POST { postcondición A.}
LÉXICO
// Declaraciones de tipos, variables, constantes y
// acciones
ALGORITMO
// Secuencia de instrucciones
FIN

ALGORITMO
PRE { precondición algoritmo }
POST { postcondición algoritmo }
// Secuencia de instrucciones
FIN
```

2. Tipos de Datos primitivos

Un tipo de datos especifica un DOMINIO de valores y el conjunto de OPERACIONES que son aplicables a ese dominio.

- Nuestra notación incluye los tipos de Datos: Entero, Real, Booleano, Carácter, Intervalos de enteros, reales y carácter. Así como mecanismos para definir nuevos tipos de datos.
- Ejemplos:
- total: Entero;
- i, j: [1,100];
- letra: Carácter;
- esúltimo: Booleano
- Para cada tipo es preciso conocer:
- Dominio de los valores
- Operaciones definidas
- Sintaxis de los literales
- Sintaxis de las expresiones
- Enteros: cualquier valor entero positivo o negativo válido
- Reales: cualquier valor numérico real positivo o negativo válido. Utilizaremos el símbolo '.' (punto) para separar la parte entera de la parte decimal.
- Booleanos: los dos valores lógicos, Verdadero y Falso
- Caracteres: el dominio de este tipo está formado por los caracteres de un código válido y un literal se denota como un carácter encerrado entre apóstrofos.

Tipo de dato	Ejemplos de literales
Entero	0, 352, -342, 20050
Real	4.22, -23.44, 341.015
Booleano	Falso, Verdadero
Carácter	'A', 'a', '\$', '1', '+'

Tipo de dato	Operaciones	
Entero	\#\	(Entero \rightarrow Entero)
	+, -, *, DIV, MOD	(Entero x Entero → Entero)
	1	(Entero \times Entero \rightarrow Real)
	$<,>,=,\leq,\geq\;,\neq$	(Entero x Entero → Booleano
	Predecesor, Sucesor	(Entero \rightarrow Entero)
Real		(Real → Real)
	+, -, *, /	(Real x Real → Real)
	<, >, = , ≤, ≥, ≠	(Real x Real → Booleano)

Tipo de date)	Operaciones
Booleano	Y, O	(Booleano x Booleano→ Booleano)
	NO	(Booleano → Booleano)
Carácter	Car	(Entero → Carácter)
	Ord	(Carácter → Entero
	$<,>,=,\leq,\geq,\neq$	(Carácter x Carácter → Booleano
	Predecesor, Suceso	r (Carácter → Carácter

3. Acciones primitivas

- La acción de asignación: la asignación es la acción primitiva que caracteriza a los lenguajes imperativos
- Sintaxis: <nombre de la variable> ←<expresión>

 Semántica: Acción elemental de asignar a la variable cuyo nombre aparece a la izquierda del símbolo ← el resultado de evaluar la expresión de la derecha. La acción:

númeroAlumnos ←200;

Asigna a la variable númeroAlumnos el valor 200.

- 4. Organización de las acciones: análisis de casos
 - Técnica de descomposición

- Se basa en la partición del dominio de datos en subdominios (casos). Cada subproblema es la restricción del problema inicial al del subdominio considerado
- La descomposición puede estar guiada por la estructura de los datos o de los resultados
- La postcondición de cada subproblema debe cumplir la postcondición del problema inicial y la unión de las precondiciones de los subproblemas debe cubrir la precondición del problema inicial
- Enunciado: Dados dos números enteros calcular el mayor
- Especificación:
- x, y, z: entero
- Precondición: {x= Y = Y}
- Postcondición: {z = Max (X,Y)}
- Lectura de la especificación: Dados tres enteros x, y, z, tal que x contiene un valor X, e y un valor Y, después de la acción máximo obtenemos en z el máximo de los valores X e Y
- Análisis: existen 2 posibilidades. A) x>=y el máximo es x; B) x<y el máximo es y;
- La composición secuencial no nos da la posibilidad de tomar decisiones en función de los datos. NECESITAMOS UNA NUEVA COMPOSICIÓN: composición alternativa, o composición condicional.
- Problema: dados tres enteros diferentes, ordénense de menor a mayor
- Especificación: A) a, b, c, p, s, t: entero. B) Precondición { (a=X ∧ b=Y ∧ c=Z) ∧ (X ≠ Y ≠ Z ≠ X) }. C) Postcondición { (p, s, t) ∈ perm(X, Y, Z) ∧ p < s < t }

5. Tipos de datos no primitivos

- Las notaciones algorítmicas incluyen mecanismos para definir tipos estructurados. Los constructores de tipos más usuales son: tablas, registro (o producto de tipos) y secuencias.
- Producto de tipos o registro: Sus valores son una enumeración o agregación de otros tipos ya definidos.
- **Dominio:** n-tuplas de los tipos constituyentes
- Definición: nombre_del_tipo= TIPO < a1: T1; a2: T2; ...aN: TN >
- ax : denota el nombre de cada uno de los campos o elementos del registro
- T1, T2, ...TN: deben ser tipos ya existentes
- Cardinalidad: Ct= Ct1 * Ct2 * * CtN