Team 16

Albina Kelmendi Belinda Darko Shanty Behl Xavier Chauvris

Elements Presented

```
#Importing and viewing the data
library(readxl)
air_france <- read_excel("C:/Users/xavie/Downloads/Air France Case Spreadsheet Supplement.xls",
           sheet = 2)
#Viewing Results
View(air france)
# Exploring the data set
# Displaying the characteristics of each feature
summary(air_france)
#Checking the number of missing values in the table
apply(X = is.na(air_france), MARGIN = 2, FUN = sum) #Bid Strategy has 1224 missing values
#Counting the number of "N/A" values on the whole data frame
#install.packages("stringr")
#library(stringr)
#Counting number of N/A values per vector
sum(str_count(air_france$`Publisher ID`, "N/A"))
sum(str count(air france$`Publisher Name`, "N/A"))
sum(str_count(air_france$`Keyword ID`, "N/A"))
sum(str_count(air_france$Keyword, "N/A"))
sum(str count(air france$`Match Type`, "N/A")) #Column has a category N/A with 48 observations
sum(str_count(air_france$Campaign, "N/A"))
sum(str_count(air_france$`Keyword Group`, "N/A"))
sum(str count(air france$Category, "N/A"))
sum(str_count(air_france$`Keyword Type`, "N/A"))
```

```
# Massaging the data set
#Publisher name and ID are the same
#Analyzing number of categories
table(air france$`Publisher Name`)
#Creating new factors with numerical values
summary(air_france$`Publisher Name`) #Verifying type of data
air_france$publisher <- air_france$`Publisher Name` #Creating new column with existing data
air france$publisher[air france$publisher == "Google - Global"] <- 1
air_france$publisher[air_france$publisher == "Google - US"] <- 2
air france$publisher[air france$publisher == "MSN - Global"] <- 3
air france$publisher[air france$publisher == "MSN - US"] <- 4
air france$publisher[air france$publisher == "Overture - Global"] <- 5
air_france$publisher[air_france$publisher == "Overture - US"] <- 6
air france$publisher[air france$publisher == "Yahoo - US"] <- 7
#Verifying new column
table(air_france$`Publisher Name`)
table(air france$publisher)
#Converting publisher into numeric
air france$publisher <- as.numeric(air france$publisher)
#Converting Match Type categories
#Number of category
table(air france$`Match Type`)
# Creating new column
air france$match cat <- air france$`Match Type`
# Reassigning values
air france$match cat[air france$match cat == "N/A"] <- 0
air_france$match_cat[air_france$match_cat == "Advanced"] <- 1
air_france$match_cat[air_france$match_cat == "Broad"] <- 2
air_france$match_cat[air_france$match_cat == "Exact"] <- 3
air_france$match_cat[air_france$match_cat == "Standard"] <- 4
```

```
#Converting to numeric
air france$match cat <- as.numeric(air france$match cat)
table(air france$Campaign)
table(air france$`Keyword Group`)
table(air_france$Category)
table(air france$`Bid Strategy`)
# Creating new column
air france$has bid strat <- air france$`Bid Strategy`
# #Reassigning values
air france$has bid strat[air france$has bid strat == "Pos 3-6"] <- 1
air_france$has_bid_strat[air_france$has_bid_strat == "Position 1-3"] <- 1
air_france$has_bid_strat[air_france$has_bid_strat == "Position 1-2 Target"] <- 1
air france$has bid strat[air france$has bid strat == "Position 1 -2 Target"] <- 1
air_france$has_bid_strat[air_france$has_bid_strat == "Position 1-4 Bid Strategy"] <- 1
air_france$has_bid_strat[air_france$has_bid_strat == "Postiion 1-4 Bid Strategy"] <- 1
air france$has bid strat[air france$has bid strat == "Position 2-5 Bid Strategy"] <- 1
air_france$has_bid_strat[air_france$has_bid_strat == "Position 5-10 Bid Strategy"] <- 1
air_france$has_bid_strat[is.na(air_france$`Bid Strategy`)] <- 0</pre>
#Checking results
table(air_france$has_bid_strat)
#Converting vector as numeric
air france$has bid strat<- as.numeric(air france$has bid strat)
# Checking the number of category for remaining character variables
table(air_france$`Keyword Type`)
table(air france$Status)
#Creating new column
air_france$status_int <- air_france$Status
air france$status int[air france$status int == "Deactivated"] <- 1
air_france$status_int[air_france$status_int == "Live"] <- 2
air france$status int[air france$status int == "Paused"] <- 3
air france$status int[air france$status int == "Sent"] <- 4
air_france$status_int[air_france$status_int == "Unavailable"] <- 5
#Checking results
table(air_france$status_int)
```

```
#Converting vector as a numeric
air_france$status_int <- as.numeric(air_france$status_int)</pre>
# Chekcking final result
View(air_france)
#Existing Metrics for the campaign
# Average Cost per Click (CPC)
# Engine Click Through Rate (CTR)
# Transaction Conversion Rate (TCR)
# Creating Net Revenue Variable
air_france$net_revenue <- air_france$Amount - air_france$`Total Cost`
#checking results and missing values
View(air_france)
sum(is.na(air_france$net_revenue))
# After a quick scan, we see observation 338 is an outlier that will affect the data
# 1 observation remove out of 4510 will not have any impact on the final result
# Removing observation 338
air_france <- air_france[-338,]
# Checking Result
View(air_france)
# UDF
# Normalizing UDF
norm <- function(x){
normalized <- (x-min(x))/(max(x)-min(x))
return(normalized)
}#Closing loop
# Return On Advertising UDF (ROA)
roa <- function(a,b,c){</pre>
revenues <- sum(b)
```

```
costs <- sum(c)
 ROA <- (revenues)/costs
return(ROA)
}#closing loop
# ROA for each Publisher
#Yahoo
yahoo_roa <- round(roa(a=air_france$`Publisher Name`[which(air_france$`Publisher Name`=="Yahoo -
US")],
         b=air france$Amount[which(air france$`Publisher Name`=="Yahoo - US")],
         c=air_france$`Total Cost`[which(air_france$`Publisher Name`=="Yahoo - US")]),2)
#Google US
google_us_roa <- round(roa(a=air_france$`Publisher Name`[which(air_france$`Publisher
Name'=="Google - US")],
           b=air france$Amount[which(air france$`Publisher Name`=="Google - US")],
           c=air_france$`Total Cost`[which(air_france$`Publisher Name`=="Google - US")]),2)
#Google Global
google global roa <- round(roa(a=air france$`Publisher Name`[which(air france$`Publisher
Name`=="Google - Global")],
             b=air france$Amount[which(air france$`Publisher Name`=="Google - Global")],
             c=air_france$`Total Cost`[which(air_france$`Publisher Name`=="Google - Global")]),2)
#MSN Global
msn_global_roa <- round(roa(a=air_france$`Publisher Name`[which(air_france$`Publisher
Name`=="MSN - Global")],
               b=air_france$Amount[which(air_france$`Publisher Name`=="MSN - Global")],
               c=air france$'Total Cost'[which(air france$'Publisher Name'=="MSN - Global")]),2)
#MSN US
msn us roa <- round(roa(a=air france$`Publisher Name`[which(air france$`Publisher Name`=="MSN -
US")],
               b=air france$Amount[which(air france$`Publisher Name`=="MSN - US")],
               c=air france$`Total Cost`[which(air france$`Publisher Name`=="MSN - US")]),2)
```

overture_global_roa <- round(roa(a=air_france\$`Publisher Name`[which(air_france\$`Publisher Name`="Overture - Global")],

 $b=air_france\$Amount[which(air_france\$`Publisher Name`=="Overture - Global")], \\ c=air_france\$`Total Cost`[which(air_france\$`Publisher Name`=="Overture - Overture -$

#Overture US

Global")]),2)

overture_us_roa <- round(roa(a=air_france\$`Publisher Name`[which(air_france\$`Publisher Name`="Overture - US")],

b=air_france\$Amount[which(air_france\$`Publisher Name`=="Overture - US")], c=air_france\$`Total Cost`[which(air_france\$`Publisher Name`=="Overture - US")]),2)

#Implementing everything in data frame

#Transposing

publisher_roa_transpose = t(publisher_roa)

#Converting to a data frame

publisher_roa_transpose <- as.data.frame(publisher_roa_transpose)</pre>

#Renaming V1 column for readability purpose

colnames(publisher_roa_transpose)[colnames(publisher_roa_transpose)=="V1"] <- "ROA"

_	ROA [‡]
google_global_roa	7.69
google_us_roa	4.93
yahoo_roa	19.10
overture_global_roa	6.69
overture_us_roa	2.45
msn_global_roa	11.97
msn_us_roa	11.28

```
#Yahoo
yahoo nrc <- round(roa(a=air france$`Publisher Name`[which(air france$`Publisher Name`=="Yahoo -
US")],
            b=air france$net revenue[which(air france$`Publisher Name`=="Yahoo - US")],
            c=air_france$Clicks[which(air_france$`Publisher Name`=="Yahoo - US")]),2)
#Google US
google_us_nrc <- round(roa(a=air_france$`Publisher Name`[which(air_france$`Publisher
Name`=="Google - US")],
              b=air_france$net_revenue[which(air_france$`Publisher Name`=="Google - US")],
              c=air_france$Clicks[which(air_france$`Publisher Name`=="Google - US")]),2)
#Google Global
google global nrc <- round(roa(a=air france$`Publisher Name`[which(air france$`Publisher
Name`=="Google - Global")],
                b=air france$net revenue[which(air france$`Publisher Name`=="Google - Global")],
                c=air france$Clicks[which(air france$`Publisher Name`=="Google - Global")]),2)
#MSN Global
msn global nrc <- round(roa(a=air france$`Publisher Name`[which(air france$`Publisher
Name`=="MSN - Global")],
              b=air_france$net_revenue[which(air_france$`Publisher Name`=="MSN - Global")],
              c=air france$Clicks[which(air france$`Publisher Name`=="MSN - Global")]),2)
#MSNUS
msn us nrc <- round(roa(a=air france$`Publisher Name`[which(air france$`Publisher Name`=="MSN -
US")],
            b=air france$net revenue[which(air france$`Publisher Name`=="MSN - US")],
            c=air_france$Clicks[which(air_france$`Publisher Name`=="MSN - US")]),2)
#Overture Global
overture global nrc <- round(roa(a=air france$`Publisher Name`[which(air france$`Publisher
Name`=="Overture - Global")],
                 b=air france$net revenue[which(air france$`Publisher Name`=="Overture -
Global")],
                 c=air_france$Clicks[which(air_france$`Publisher Name`=="Overture - Global")]),2)
```

#Overture US

overture_us_nrc <- round(roa(a=air_france\$`Publisher Name`[which(air_france\$`Publisher Name`="Overture - US")],

b=air_france\$net_revenue[which(air_france\$`Publisher Name`=="Overture - US")], c=air_france\$Clicks[which(air_france\$`Publisher Name`=="Overture - US")]),2)

#Implementing everything in data frame

#Transposing

publisher_nrc_transpose = t(publisher_nrc)

#Converting to a data frame

publisher_nrc_transpose <- as.data.frame(publisher_nrc_transpose)</pre>

#Renaming V1 column for readability purpose

colnames(publisher_nrc_transpose)[colnames(publisher_nrc_transpose)=="V1"] <- "NRC"

\$	NRC *
yahoo_nrc	18.34
msn_us_nrc	15.31
msn_global_nrc	11.89
google_global_nrc	11.09
google_us_nrc	7.24
overture_global_nrc	6.01
overture_us_nrc	1.72

Correlation Table

data.frame(colnames(air_france))

#Select only numerical features based on index air_france_corr <- air_france[,c(12:23)]

#Display Pearson correlation table

cor(air_france_corr, air_france\$net_revenue, method="pearson")

	[,1]
Search Engine Bid	0.101726967
Clicks	0.789419333
Click Charges	0.482530250
Avg. Cost per Click	-0.052656172
Impressions	0.069240486
Engine Click Thru %	0.011393196
Avg. Pos.	-0.030183801
Trans. Conv. %	0.015157029
Total Cost/ Trans.	0.006181546
Amount	0.996898609
Total Cost	0.482530250
Total Volume of Bookings	0.992107817

Renaming columns

#Renaming columns to fit into pivot tables

```
colnames(air_france)[colnames(air_france)=="net_revenue"] <- "netrevenue" colnames(air_france)[colnames(air_france)=="Publisher Name"] <- "Publishername" colnames(air_france)[colnames(air_france)=="Total Volume of Bookings"] <- "Bookings" colnames(air_france)[colnames(air_france) == "Match Type"] <- "matchtype" colnames(air_france)[colnames(air_france) == "Search Engine Bid"] <- "SEB" colnames(air_france)[colnames(air_france) == "Click Charges"] <- "ClickCharges" colnames(air_france)[colnames(air_france) == "Avg. Cost per Click"] <- "ACPC" colnames(air_france)[colnames(air_france) == "Total Cost/ Trans."] <- "TCPT" colnames(air_france)[colnames(air_france) == "Total Cost"] <- "TotalCost" colnames(air_france)[colnames(air_france) == "Engine Click Thru %"] <- "ECTR" colnames(air_france)[colnames(air_france) == "Trans. Conv. %"] <- "TCR"
```


Campaign performance by amount, impressions, and net revenue campaign_perf <- air_france%>% group_by(Campaign)%>% select(Amount, Impressions, Campaign, netrevenue)%>% summarise(sum(Amount), sum(Impressions), sum(netrevenue))

‡	Campaign	sum(Amount)	sum(Impressions)	netrevenue [‡]
1	Air France Branded	2349870.90	1263310	2206793.0758
2	Air France Brand & French Destinations	788641.90	573159	701627.3630
3	Unassigned	777517.95	34961215	571246.0134
4	Air France Global Campaign	467981.95	1540074	405922.5002
5	Paris & France Terms	136393.55	658281	33796.1753
6	Western Europe Destinations	42103.90	588324	5921.5376
7	Geo Targeted New York	35580.15	73166	26040.4750
8	Google_Yearlong 2006	22373.70	1803463	-59585.7873
9	Geo Targeted Chicago	7144.25	12690	5562.5750
10	Geo Targeted Houston	7065.20	25338	5072.4125
11	French Destinations	6223.70	59351	-2208.0375
12	Geo Targeted DC	5191.80	19875	3920.4375
13	Geo Targeted San Francisco	3822.45	25788	1733.0375
14	Geo Targeted Seattle	2817.75	5458	1643.5000
15	Geo Targeted Boston	2461.60	16137	1065.4250
16	Geo Targeted Los Angeles	2183.65	18633	383.6625
17	General Terms	1977.95	144298	1371.4750
18	Geo Targeted Detroit	923.95	9648	204.9250
19	Geo Targeted Miami	470.05	7219	-168.4750
20	Geo Targeted Philadelphia	434.35	7643	-311.6250
21	Geo Targeted Atlanta	170.00	4428	-95.2500
22	Business Class	144.50	41878	-3124.5500
23	Geo Targeted Cincinnati	0.00	676	-33.7500
24	Outside Western Europe	0.00	8622	-597.8375

#Amount generated from each publisher publisher_rev <- air_france%>% group_by(Publishername)%>% select(netrevenue, Publishername)%>% summarise(sum(netrevenue))

÷	Publishername [‡]	sum(netrevenue)
1	Google - US	1391423.9
2	Yahoo - US	836091.1
3	Google - Global	808603.1
4	Overture - Global	365788.8
5	Overture - US	205457.2
6	MSN - US	165451.3
7	MSN - Global	133363.9

#Amount generated from each publisher publisher_cost <- air_france%>% group_by(Publishername)%>% select(TCPT, Publishername)%>% summarise(mean(TCPT))

‡	Publishername [‡]	тсрт 🔻
1	Google - Global	70.896472
2	Overture - US	43.660687
3	Google - US	25.129017
4	Overture - Global	16.468699
5	MSN - Global	11.165817
6	Yahoo - US	7.956570
7	MSN - US	5.157714

#Best match type by net revenue
match_netrev <- air_france%>%
 group_by(matchtype)%>%
 select(matchtype, netrevenue)%>%
 summarise(sum(netrevenue))

\$	matchtype [‡]	netrevenue
1	Broad	1511034.276
2	Advanced	1139786.538
3	Exact	984339.625
4	Standard	267550.600
5	N/A	3468.238

#Best match type by number of bookings match_booking <- air_france%>% group_by(matchtype)%>% select(matchtype, Bookings)%>% summarise(sum(Bookings))

‡	matchtype [‡]	Bookings
1	Broad	1763
2	Advanced	987
3	Exact	850
4	Standard	336
5	N/A	2

#Volume of Bookings for each publisher
booking_perf <- air_france%>%
 group_by(Publishername)%>%
 select(Bookings, Publishername)%>%
 summarise(sum(Bookings))

÷	Publishername [‡]	Bookings *
1	Google - US	1549
2	Google - Global	797
3	Yahoo - US	662
4	Overture - Global	372
5	Overture - US	289
6	MSN - US	140
7	MSN - Global	129

#Net revenue generated from each publisher
nrev_perf <- air_france%>%
 group_by(Publishername)%>%
 select(netrevenue, Publishername)%>%
 summarise(mean(netrevenue))

÷	Publishername [‡]	mean(netrevenue)
1	Google - Global	2057.5142
2	MSN - US	1688.2787
3	MSN - Global	1347.1100
4	Yahoo - US	1316.6789
5	Google - US	672.1854
6	Overture - Global	661.4626
7	Overture - US	310.8278

#Number of impressions for each publisher
impression_perf <- air_france%>%
 group_by(Publishername)%>%
 select(Impressions, Publishername)%>%
 summarise(mean(Impressions))

÷	Publishername [‡]	mean(Impressions)
1	Overture - Global	32366.595
2	Overture - US	25813.144
3	Google - Global	4601.338
4	Google - US	1862.652
5	MSN - US	1735.918
6	Yahoo - US	1469.835
7	MSN - Global	1413.929

#Total Cost per transaction, and average cost per click for each publisher publisher_click <- air_france%>% group_by(Publishername)%>% select(Publishername, TCPT, ACPC)%>% summarise(mean(TCPT), mean(ACPC))

‡	Publishername [‡]	mean(TCPT)	mean(ACPC)
1	MSN - US	5.157714	2.8674701
2	Google - US	25.129017	2.3850934
3	Google - Global	70.896472	2.2249594
4	MSN - Global	11.165817	2.1529982
5	Yahoo - US	7.956570	1.9988757
6	Overture - Global	16.468699	0.8047588
7	Overture - US	43.660687	0.7639206

```
# Normalization of features
# Normalizing all numeric features
# Clicks
air_france$clicks_norm <- norm(x=air_france$Clicks)</pre>
# Clicks charges
air france$clicks charge norm <- norm(x=air france$ClickCharges)
# Average Cost Per Click
air_france$avg_cpc_norm <- norm(x=air_france$ACPC)</pre>
# Impressions
air france$impressions norm <- norm(x=air france$Impressions) #
# Engine Click Thru Rate
air_france$ectr_norm <- norm(x=air_france$ECTR)</pre>
# Avg Pos
air france$avg pos norm <- norm(x=air france$`Avg. Pos.`)
# Trans. COnv. Rate
air_france$trans_conv_norm <- norm(x=air_france$TCR)
# Total cost/trans
air_france$cost_trans_norm <- norm(x=air_france$TCPT)
# Amount
air_france$amount_norm <- norm(x=air_france$Amount)</pre>
# Total Cost
air_france$tot_cost_norm <- norm(x=air_france$TotalCost)</pre>
# Total Volume of Bookings
air_france$tot_booking_norm <- norm(x=air_france$Bookings)</pre>
```

```
# Logistic Regression
air_france$binom_roa<- c() #assigning empty vector to new object
#Creating udf to create binomial variable
for(i in 1:nrow(air france)){
if(air_france$netrevenue[i]>0){
 air france$binom netrevenue[i] <- "1"
else {air_france$binom_netrevenue[i] <- "0"}</pre>
}#Closing udf
#Converting binomial variable to a numeric
air france$binom netrevenue <- as.numeric(air france$binom netrevenue)
#Creating training index
train index <- sample(1:nrow(air france), size=0.8*nrow(air france))
air france train <- air france[train index,] #Train data set
air_france_test <- air_france[-train_index,] #Test data set</pre>
#Running logit regression
air france logit <- glm(binom netrevenue ~ Clicks+Impressions+TotalCost+TCPT,
           data=air_france_train, family = "binomial")
#Checking result of regression
summary(air_france_logit)
```

```
Call:
glm(formula = binom_netrevenue ~ Clicks + Impressions + TotalCost +
TCPT, family = "binomial", data = air_france_train)

Deviance Residuals:
Min 1Q Median 3Q Max
-6.8877 -0.3265 -0.3232 -0.3225 2.4765

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.933e+00 7.680e-02 -38.188 < 2e-16 ***
Clicks 4.527e-03 5.625e-04 8.049 8.35e-16 ***
Impressions -3.672e-06 6.870e-07 -5.345 9.03e-08 ***
TotalCost -1.001e-03 2.272e-04 -4.406 1.05e-05 ***
TCPT 5.041e-04 2.534e-04 1.990 0.0466 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1816.8 on 3606 degrees of freedom
Residual deviance: 1557.4 on 3602

Number of Fisher Scoring iterations: 7
```

Normalized Logistic Regression

#Running logit regression

air_france_logit_norm <- glm(binom_netrevenue ~ clicks_norm+impressions_norm+tot_cost_norm+ cost_trans_norm, data=air_france_train, family = "binomial")

#Checking results summary(air_france_logit_norm)

Visualization Libraries

#Importing library library(ggplot2)

#install.packages("RColorBrewer")
library("RColorBrewer")

display.brewer.all(colorblindFriendly = FALSE)

#install.packages('dplyr')

library(dplyr)

#install.packages('forcats')

library(forcats)

#install.packages('viridis')

library(viridis)

#install.packages('hrbrthemes') library(hrbrthemes)

#Changing names

colnames(campaign_perf)[colnames(campaign_perf)=="sum(netrevenue)"] <- "netrevenue"

#Checking Results colnames(campaign perf)

#Calling bar graph

campaign_perf%>% #calling data frame to use
mutate(Campaign = fct_reorder(Campaign, netrevenue))%>% #ordering data
ggplot(aes(x=(netrevenue), y=as.factor(Campaign)))+ #assigning variables to axis
geom_bar(stat="identity", fill="#f68060")+ #defining type of bar chart
ggtitle("Campaign Net Revenue")+ #graph title
xlab("Total Net Revenue")+ #x axis label
ylab("Campaign") #y axis label

#Checking columns name colnames(match_booking)

#Changing columns name colnames(match_booking)=="sum(Bookings)"] <- "Bookings"

Volume of Booking For Each Match Type

Match type Net Revenue

#Checking columns name colnames(match_netrev)

#Changing columns name

colnames(match_netrev)[colnames(match_netrev)=="sum(netrevenue)"] <- "netrevenue"

#Building bar chart

match_netrev%>% #Data frame to take values from mutate(matchtype = fct_reorder(matchtype, -netrevenue))%>% #Ordering values ggplot(aes(x=(netrevenue), y=as.factor(matchtype)))+geom_bar(stat="identity", fill="#f68060")+ #Chart characteristics

coord_flip()+
ggtitle("Net Revenue For Each Match Type")+
xlab("Net Revenue")+
ylab("Match Type")

#Chart title
#X axis title
#Y axis title

#Reversing order

Net Revenue For Each Match Type

Publisher TCPT

#Checking columns name colnames(publisher_cost)

#Changing columns name colnames(publisher_cost)=="mean(TCPT)"] <- "TCPT"

#Checking results colnames(publisher_cost)

#Building bar chart

publisher_cost%>% #calling data frame to use from mutate(Publishername = fct_reorder(Publishername, TCPT))%>% #ordering data ggplot(aes(x=(TCPT), y=as.factor(Publishername)))+ #assigning variables to axis geom_bar(stat="identity", fill="#f68060")+ #defining type of bar chart ggtitle("Publisher Avergae Total Cost Per Transaction ")+ #graph title xlab("Average Total Cost Per Transaction")+ #x axis label ylab("Publisher") #y axis label

Publisher Avergae Total Cost Per Transaction

Publisher Bookings

#Checking columns name colnames(booking_perf)

#Changing columns name

colnames(booking_perf)[colnames(booking_perf)=="sum(Bookings)"] <- "Bookings"

#Checking results

colnames(booking_perf)

#Pie chart

booking_perf%>% #Data frame to take values from mutate(Publishername = fct reorder(Publishername, Bookings))%>% **#Order values** ggplot(aes(x="", y=Bookings, fill=as.factor(Publishername)))+ #Specification of feature geom_bar(stat="identity", width=1)+ #Configuration of bar chart to fit with pie chart coord_polar("y", start=0)+ #Creating pie chart theme_void()+ #Deleting potential background noise geom text(aes(y=Bookings, label=Bookings),position = position stack(vjust = .5), color="black", size=4)+ #Position and characteristics of legend scale_fill_brewer(palette="RdYIBu")+ #Colors of pie chart ggtitle("Publishers Total Volume Of Bookings") #Pie chart title

Publishers Total Volume Of Bookings

Environment

Data	
o air_france	4509 obs. of 40 variable
O air_france_corr	4509 obs. of 12 variable
<pre>o air_france_logit</pre>	List of 30
<pre>air_france_logit_norm</pre>	List of 30
<pre>air_france_test</pre>	902 obs. of 40 variables
O air_france_train	3607 obs. of 40 variable
<pre>booking_perf</pre>	7 obs. of 2 variables
O campaign_perf	24 obs. of 4 variables
<pre>impression_perf</pre>	7 obs. of 2 variables
<pre>match_booking</pre>	5 obs. of 2 variables
match_netrev	5 obs. of 2 variables
<pre>nrev_perf</pre>	7 obs. of 2 variables
<pre>publisher_click</pre>	7 obs. of 3 variables
<pre>publisher_cost</pre>	7 obs. of 2 variables
<pre>publisher_nrc</pre>	1 obs. of 7 variables
<pre>publisher_nrc_transpose</pre>	7 obs. of 1 variable
<pre>publisher_rev</pre>	7 obs. of 2 variables
<pre>publisher_roa</pre>	1 obs. of 7 variables
<pre>publisher_roa_transpose</pre>	7 obs. of 1 variable

Values	
google_global_nrc	11.09
google_global_roa	7.69
google_us_nrc	7.24
google_us_roa	4.93
i	4509L
msn_global_nrc	11.89
msn_global_roa	11.97
msn_us_nrc	15.31
msn_us_roa	11.28
overture_global_nrc	6.01
overture_global_roa	6.69
overture_us_nrc	1.72
overture_us_roa	2.45
train_index	int [1:3607] 808 2561 2763 27 2479 2389 3996 1863 2501 3026
yahoo_nrc	18.34
yahoo_roa	19.1
Functions	
norm	function (x)
roa	function (a, b, c)