



Ш

VI

VII

A)  $\mathcal{A}_m$  Send attack mode vote  $\mathcal{V}_m$  to  $\mathcal{A}_{m+1}$ B)  $\mathcal{A}_{m+1}$  Collect all vote  $\mathcal{V}_{m \in G}$  determine attack mode  $m_t$ 

C)  $\mathcal{A}_m$  calculate uncertainty score  $u^m_{tar}$  of  $x^m_{tar}$ D)  $\mathcal{A}_m$  evaluate attack value of  $x^m_{tar}$ E)  $\mathcal{A}_m$  send high attack value uncertainty score  $u^m_{tar}$ 

F)  $\mathcal{A}_m$  randomly selects a large random number x G)  $\mathcal{A}_m$  calculates  $\mathrm{E}(\mathrm{K}_{\mathrm{pub}}^{\mathrm{m}},\mathrm{x})$  -  $\mathrm{u}_{\mathrm{tar}}^{\mathrm{m}}$  send to  $\mathcal{A}_{m+1}$ 

H)  $\mathcal{A}_{m+1}$  Select N numbers and randomly select a large prime number P  $y_u = D(E(x) - i + u), u = 1, 2, \dots$  N

> I)  $\mathcal{A}_{m+1}$  Verify if  $0 \le a \ne b \le N-1$ Satify  $||z_a - z_b|| \ge 2$

 $z_{u} = y_{u} \mod p, u = 1, 2, \dots, N$ 

J)  $A_{m+1}$  send  $p z_u, u = 1, ... N$  to  $A_m$ 

K)  $\mathcal{A}_m$  verify if  $z_i \equiv mod p$ 

then  $u_{tar}^m \le u_{tar}^{m+1}$  else  $u_{tar}^m \ge u_{tar}^{m+1}$ 

ıtation → Message Sending

- - - ➤ Local Computation