We claim as our invention:

1	1)	A solenoid-based propulsion system comprising:
2		A) at least one multiple wire coil set solenoid;
3		B) a magnetic object, at least a portion of which reciprocally moves
4		within the multiple wire coil set solenoid; and
5		D) an energizing control system connected to multiple wire coil sets of
6		the solenoid that controls the dwell angle for each wire coil set.
1	2)	A solenoid-based propulsion system of claim 1 wherein the dwell angle for each
2		wire coil set of the multiple wire coil set solenoid is adjustable.
1	3)	A solenoid-based propulsion system of claim 1 wherein the dwell angles are
2		different for each wire coil set of a multiple wire coil set solenoid.
1	4)	A solenoid-based propulsion system of claim 1 wherein the energy control system
2		is comprised of an electronic timer to coordinate the energizing of the wire coil
3		sets.
1	5)	A solenoid-based propulsion system of claim 1, wherein the energizing control
2		system skip energizes selected wire coil sets at selected times
1	6)	A solenoid-based propulsion system of claim 1, wherein the multiple wire coil set
2		solenoid has an opened ended tube through which the magnetic object will be
3		unilaterally and completely propelled out of tube when all the wire coil sets are
4		de-energized.
1	7)	A solenoid-based propulsion system of claim 6, wherein the wire coil set closest
2		to the open end of the tube is the last to be de-energized.
1	8)	A solenoid-based propulsion system of claim 1 wherein the one multiple wire coil
2		set solenoid contains a centering magnet.
1	9)	A solenoid-based propulsion system of claim 1 wherein the energizing control
2		system is comprised of an audio signal generator that energizes the wire coil sets.
1	10)	A solenoid-based propulsion system comprising:
2		A) at least one tube with an exterior and an interior;
3		B) multiple wire coil sets wrapped around the exterior of the tube;
4		C) a magnetic object which reciprocally moves within at least a portion of
5		the interior of the tube; and

6		D) an energy control system connected to wire coil sets of the multiple
7		wire coil set solenoid that skip energizes select wire coil sets at
8		selected times.
1	11)	A solenoid-based propulsion system of claim 1, wherein the energy control
2		system controls the dwell angle of energized wire coil sets.
1	12)	A solenoid-based propulsion system of claim 1, wherein the energy control
2		system is further comprised of an audio signal generator that energizes the wire
3		coil sets.
1	13)	A solenoid-based propulsion system of claim 1, wherein water and air tight
2		compartments contain the energizing control system and wire coil sets while the
3		interior of the tube and the magnetic object connected to a conversion mechanism
4		are vented to the outside atmosphere.
1	14)	A methodology for operating a solenoid-based propulsion system comprising:
2		A) placing an magnetic object inside an open ended tube that has at least
3		one multiple wire coil solenoid wrapped around it exterior;
4		B) centering the magnetic object within the midpoint of its reciprocal
5		movement
6		C) alternatively energizing the wire coil sets of the multiple wire coil
7		solenoid;
8		C) reciprocally moving the magnetic object in a reciprocal movement.
1	15)	A methodology for solenoid-based propulsion of claim 15 wherein the additional
2		step of activating the trigger switch unilaterally propels the magnetic object out of
3		the open end of the tube.
1	16)	A methodology for solenoid-based propulsion of claim 15 wherein activating of a
2	,	trigger switch that stops the reciprocal movement of the magnetic object to
3		unilaterally propel the magnetic object totally out through the muzzle of the tube.
4	17)	A methodology for solenoid-based propulsion of claim 14 wherein the additional
5		step of activating a frequency signal generator
1	18)	A methodology for solenoid-based propulsion of claim 14 wherein the additional
2		step is adjusting the propulsion magnet.

- 1 19) A methodology for solenoid-based propulsion of claim 15 wherein the additional step is adjusting the dwell angles for the wire coil sets.
- A methodology for solenoid-based propulsion of claim 15 wherein the additional step is adjusting the dwell angles for the wire coil sets.