

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 411 678 B2

(12)

NEW EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the opposition decision:
12.01.2000 Bulletin 2000/02

(51) Int Cl.7: **C12N 15/16, C12P 21/02,**
C12N 5/10, C07K 14/00

(45) Mention of the grant of the patent:
08.01.1992 Bulletin 1992/02

(21) Application number: **90118215.4**

(22) Date of filing: **03.12.1985**

(54) Method for the production of erythropoietin

Herstellungsverfahren für Erythropoietin

Méthode de production de l'érythropoïétine

(84) Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

(30) Priority: **04.12.1984 US 677813**
03.01.1985 US 688622
22.01.1985 US 693258

(43) Date of publication of application:
06.02.1991 Bulletin 1991/06

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
86900439.0 / 0 205 564

(73) Proprietor: **GENETICS INSTITUTE, INC.**
Cambridge, Massachusetts 02140 (US)

(72) Inventors:
• Fritsch, Edward
Concord, Massachusetts 01742 (US)
• Jacobs, Kenneth
Newton, Massachusetts 02160 (US)
• Hewick, Rodney M.
Lexington, Massachusetts 02173 (US)

(74) Representative:
Huber, Bernhard, Dipl.-Chem. et al
Patentanwälte
H. Weickmann, Dr. K. Fincke
F.A. Weickmann, B. Huber
Dr. H. Liska, Dr. J. Prechtel, Dr. B. Böhm
Postfach 86 08 20
81635 München (DE)

(56) References cited:
EP-A2- 843 086 547 **WO-A-85/03079**
GB-A- 2 171 304

- PROC. NATL. ACAD. SCI. USA, vol. 81, May 1984, pages 2708-2712; S. LEE-HUANG: "Cloning and expression of human erythropoietin cDNA in *Escherichia coli*"
- CHEMICAL ABSTRACTS, vol. 87, 1977, page 294, abstract no. 129775g, Columbus, Ohio, US; T. MIYAKE et al.: "Purification of human erythropoietin", & J. BIOL. CHEM. 1977, 252(15), 5558-64
- NATURE, vol. 313, 28th February 1985, pages 806-810; K. JACOBS et al.: "Isolation and characterization of genomic and cDNA clones of human erythropoietin"
- CHEMICAL ABSTRACTS, vol. 105, no. 19, 10th November 1986, page 203, abstract no. 166280c, Columbus, Ohio, US; & JP-A-86 12 288 (GENETICS INSTITUTE) 20-01-1986
- EXP. HEMATOL., vol. 12, 1984, page 357, abstract no. 1; F.K. LIN et al.: "Cloning and expression of monkey and human erythropoietin gene"
- Blood, Vol. 62, Nr 5, Suppl. No. 1, Abstract 392, p. 122a, 1983; Farber et al
- Clin. Res. 31(4), 769A, 1983; Farber
- Molecular and Cellular Biology, Vol. 4, No. 8, PP. 1469-1475, Aug. 1984; Yun-Fai Lau et al
- Journal of Molecular and Applied Genetics, Vol. 2, No. 3, pp. 497-506, 1984; Hsiung et al
- PNAS USA, Vol. 80, 1983, PP. 6838-6842; Anderson S. and Kingston I.B.
- Nucleic Acids Research, Vol. 11, No. 8, 1983, pp. 2325-2335; Jaye M. et al
- Blood, Vol. 77, 1991, pp. 2624-2632; Wasley et al
- Biotechnology, Vol. 9, 1991, pp. 1347-1355; Goochée et al
- Endocrinology, Vol. 116, 1985, pp. 2293-2299; Dordal et al
- Nature, Vol. 313, 1985, pp. 806-810; Jacobs et al

EP 0 411 678 B2

BEST AVAILABLE COPY

Remarks:

The file contains technical information submitted
after the application was filed and not included in this
specification

Description**FIELD OF THE INVENTION**

5 [0001] The present invention is directed to cloned genes for human erythropoietin that provide surprisingly high expression levels, to the expression of said genes and to the in vitro production of active human erythropoietin.

BACKGROUND OF THE INVENTION

10 [0002] Erythropoietin (hereinafter EPO) is a circulating glycoprotein, which stimulates erythrocyte formation in higher organisms. See, Carnot et al, Compt. Rend., 143 : 384 (1906). As such, EPO is sometimes referred to as an erythropoiesis stimulating factor.

15 [0003] The life of human erythrocytes is about 120 days. Thus, about 1/120 of the total erythrocytes are destroyed daily in the reticulo-endothelial system. Concurrently, a relatively constant number of erythrocytes are produced daily to maintain the level of erythrocytes at all times (Guyton, Textbook of Medical Physiology, pp 56-60, W.B. Saunders Co., Philadelphia (1976)).

20 [0004] Erythrocytes are produced by the maturation and differentiation of the erythroblasts in bone marrow, and EPO is a factor which acts on less differentiated cells and induces their differentiation to erythrocytes (Guyton, supra).

25 [0005] EPO is a promising therapeutic agent for the clinical treatment of anemia or, in particular, renal anemia. Unfortunately, the use of EPO is not yet common in practical therapy due to its low availability.

[0006] For EPO to be used as a therapeutic agent, consideration should be given to possible antigenicity problems, and it is therefore preferable that EPO be prepared from a raw material of human origin. For example, human blood or urine from patients suffering from aplastic anemia or like diseases who excrete large amounts of EPO may be employed. These raw materials however, are in limited supply. See, for example, White et al., Rec. Progr. Horm. Res., 16 : 219 (1960) ; Espada et al., Biochem. Med., 3 : 475 (1970) ; Fisher, Pharmacol. Rev., 24 : 459 (1972) and Gordon, Vitam. Horm. (N.Y.) 31 : 105 (1973), the disclosures of which are incorporated herein by reference.

30 [0007] The preparation of EPO products has generally been via the concentration and purification of urine from patients exhibiting high EPO levels, such as those suffering from aplastic anemia and like diseases. See for example, U.S. Patent Nos. 4,397,840 ; 4,303,650 and 3,865,801 the disclosures of which are incorporated herein by reference.

35 [0008] The limited supply of such urine is an obstacle to the practical use of EPO, and thus it is highly desirable to prepare EPO products from the urine of healthy humans. A problem in the use of urine from healthy humans is the low content of EPO therein in comparison with that from anemic patients. In addition, the urine of healthy individuals contains certain inhibiting factors which act against erythropoiesis in sufficiently high concentration so that a satisfactory therapeutic effect would be obtained from EPO derived therefrom only following significant purification.

40 [0009] EPO can also be recovered from sheep blood plasma, and the separation of EPO from such blood plasma has provided satisfactorily potent and stable water-soluble preparations. See, Goldwasser, Control Cellular Dif. Develop., Part A ; pp 487-494, Alan R. Liss, Inc., N.Y. (1981), which is incorporated herein by reference. Sheep EPO would however, be expected to be antigenic in humans.

45 [0010] Sugimoto et al., in U.S. Patent No. 4,377,513 describe one method for the mass production of EPO comprising the in vivo multiplication of human lymphoblastoid cells, including Namalwa, BALL-1, NALL-1 TALL-1 and JBL.

50 [0011] The reported production by others of EPO using genetic engineering techniques had appeared in the trade literature. However, neither an enabling disclosure nor the chemical nature of the product has yet been published. In contrast, the present application provides an enabling disclosure for the mass production of proteins displaying the biological properties of proteins displaying the biological properties of human EPO. It is also possible by such techniques to produce proteins which may chemically differ from authentic human EPO, yet manifest similar (and in some cases improved) properties. For convenience all such proteins displaying the biological properties of human EPO may be referred to hereinafter as EPO whether or not chemically identical thereto.

SUMMARY OF THE INVENTION

55 [0012] The present invention is directed to the method for producing recombinant human erythropoietin (hEPO) by the steps of

- (a) culturing, in a suitable medium, CHO cells which contain, operatively linked to an expression control sequence, a DNA sequence encoding hEPO, and
- (b) recovering and separating the recombinant hEPO produced from the cells and the medium,

characterized in that CHO cells are used which have the capability of producing N- and O-linked glycosylation, with incorporation of fucose and N-acetylgalactosamine, and that recombinant hEPO with N- and O-linked glycosylation is recovered and separated from the cells and the medium, an expression vector containing a gene that expresses surprisingly high levels of human, EPO, the expression thereof, and the mass production in vitro of active human EPO therefrom and, expression cells.

[0013] As described in greater detail *infra*, EPO was obtained in partially purified form and was further purified to homogeneity and digested with trypsin to generate specific fragments. These fragments were purified and sequenced. EPO oligonucleotides were designed based on these sequences and synthesized. These oligos were used to screen a human genomic library from which was isolated an EPO gene.

[0014] The EPO gene was verified on the basis of its DNA sequence which matched many of the tryptic protein fragments sequenced. A piece of the genomic clone was then used to demonstrate by hybridization that EPO mRNA could be detected in human fetal (20. week old) mRNA. A human fetal liver cDNA library was prepared and screened. Three EPO cDNA clones were obtained (after screening > 750,000 recombinants). Two of these clones were determined to be full length as judged by complete coding sequence and substantial 5-prime and 3-prime untranslated sequence. These cDNAs have been expressed in both SV-40 virus transformed monkey cells (the COS-1 cell line ; Gluzman, *Cell* 23 : 175-182 (1981)) and Chinese hamster ovary cells (the CHO cell line ; Urlaub, G. and Chasin.L. A *Proc Natl. Acad. Sci USA* 77 : 4216-4280 (1980)). The EPO produced from COS cells is biologically active EPO in vitro and in vivo. The EPO produced from CHO cells is also biologically active in vitro and in vivo.

[0015] The EPO cDNA clone has an interesting open reading frame of 14-15 amino acids (aa) with initiator and terminator from 20 to 30 nucleotides (nt) upstream of the coding region. A representative sample of *E. coli* transfected with the cloned EPO gene has been deposited with the American Type Culture Collection, Rockville, Maryland, where it is available under Accession Number ATCC 40153.

BRIEF DESCRIPTION OF DRAWINGS AND TABLES

[0016]

Table 1 is the base sequence of an 87 base pair exon of a human EPO gene ;
 Figure 1 illustrates the detection of EPO mRNA in human fetal liver mRNA ;
 Table 2 illustrates the amino acid sequence of an EPO protein deduced from the nucleotide sequence of lambda-HEPOFL13.;
 Table 3 illustrates the nucleotide sequence of the EPO cDNA in lambda-HEPOFL13 (shown schematically in Figure 2) and the amino acid sequence deduced therefrom ;
 Figure 3 illustrates the relative positions of DNA inserts of four independent human EPO genomic clones;
 Figure 4 illustrates a map of the apparent intron and exon structure of the human EPO gene ;
 Table 4 illustrates a DNA sequence of the EPO gene illustrated in Figure 4B;
 Figures 5A, 5B and 5C illustrate the construction of the vector 91023(B) ;
 Figure 6 illustrates SDS polyacrylamide gel analysis of EPO produced in COS-1 cells compared with native EPO;
 Table 5 illustrates the nucleotide and amino acid sequence of the EPO clone, lambda-HEPOFL6 ;
 Table 6 illustrates the nucleotide and amino acid sequence of the EPO clone, lambda-HEPOFL8;
 Table 7 illustrates the nucleotide and amino acid sequence of the EPO clone lambda-HEPOFL13 ;
 Figure 7 is a schematic illustration of the plasmid pRk1-4 ; and
 Figure 8 is a schematic illustration of the plasmid pdBPV-MMTneo (342-12).

45 DETAILED DESCRIPTION

[0017] The patent and scientific literature is replete with processes reportedly useful for the production of recombinant products. Generally, these techniques involve the isolation or synthesis of a desired gene sequence, and the expression of that sequence in either a prokaryotic or eucaryotic cell, using techniques commonly available to the skilled artisan. Once a given gene has been isolated, purified and inserted into a transfer vector (i.e., cloned), its availability in substantial quantity is assured. The vector with its cloned gene is transferred to a suitable micro-organism or cell line, for example, bacteria, yeast, mammalian cells such as, COS-1 (monkey kidney), CHO (Chinese hamster ovary), insect cell lines, and the like, wherein the vector replicates as the microorganism or cell line proliferates and from which the vector can be isolated by conventional means. Thus, there is provided a continuously renewable source of the gene for further manipulations, modifications and transfers to other vectors or other loci within the same vector.

[0018] Expression may often be obtained by transferring the cloned gene, in proper orientation and reading frame into an appropriate site in a transfer vector such that translational read-through from a prokaryotic or eucaryotic gene results in synthesis of a protein precursor comprising the amino acid sequence coded by the cloned gene linked to Met

or an amino-terminal sequence from the prokaryotic or eucaryotic gene. In other cases, the signals for transcription and translation initiation can be supplied by a suitable genomic fragment of the cloned gene. A variety of specific protein cleavage techniques may be used to cleave the protein precursor, if produced, at a desired point so as to release the desired amino acid sequence, which may then be purified by conventional means. In some cases, the protein containing the desired amino acid sequence is produced without the need for specific cleavage techniques and may also be released from the cells into the extracellular growth medium.

Isolation of a Genomic Clone of Human EPO

5 [0019] Human EPO was purified to homogeneity from the urine of patients afflicted with aplastic anemia as described infra. Complete digestion of this purified EPO with the protease trypsin, yielded fragments which were separated by reverse phase high performance liquid chromatography, recovered from gradient fractions, and subjected to micro-sequence analysis. The sequences of the tryptic fragments are underlined in Tables 2 and 3 and are discussed in more detail infra. Two of the amino acid sequences, Val-Asn-Phe-Tyr~~Ala~~-Trp-Lys and Val-Tyr-Ser-Asn-Phe-Leu-Arg, were 10 chosen for the design of oligonucleotide probes (resulting in an oligonucleotide pool 17 nt long and 32-fold degenerate, and an oligonucleotide pool 18 nt long and 128-fold degenerate, from the former tryptic fragment, as well as two pools 15 14 nt long, each 48-fold degenerate, from the latter tryptic fragment, respectively). The 32-fold degenerate 17 mer pool was used to screen a human genomic DNA library in a Ch4A vector (22) using a modification of the Woo and O'Malley in situ amplification procedure (47) to prepare the filters for screening.

10 [0020] As used herein, arabic numbers in parentheses, (1) through (61), are used to refer to publications that are listed in numerical order at the end of this specification.

15 [0021] Phage hybridizing to the 17 mer were picked, pooled in small groups and probed with the 14 mer and 18 mer pools. Phage hybridizing to the 17 mer, 18 mer and 14 mer pools were plaque purified and fragments were subcloned into M-13 vectors for sequencing by the dideoxy chain termination method of

20

25

30

35

40

45

50

55

TABLE 1

uittegatte en graalgec

5

10

15

20

25

30

35

40

45

50

55

2

5

10

15

20

25

30

33

4

4

5

55

Val	Glu	Val	Trp	Gln	Gly	Leu	Ala	Leu	Leu	Leu	Ser	Glu	Ala	Val	Ileu	Arg	Gly	Gln	Ala	Ala	Val	Ileu	Ala	Ileu		
Ileu	Val	Asn	Ser	Ser	Gln	Pro	Trp	Glu	Pro	Ileu	Gln	Ileu	Ileu	Ileu	Ileu	Asp	Vul	Ileu	Asp	Ileu	Ileu	Ileu	Ileu	Ileu	Ileu	
Gly	Ileu	Arg	Ser	Leu	Thr	Thr	Leu	Ileu	Arg	Ala	Ileu	Gly	Ala	Gln	Ileu	Glu	Ala	Ileu	Ala	Ileu	Ileu	Ileu	Ileu	Ileu	Ileu	
Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro	Ileu	Arg	Thr	Ileu	Thr	Ala	Asp	Thr	Ileu	Phe	Arg	Ileu	Ileu	Ileu	Ileu	Ileu	Ileu	
Ileu	Ileu	Arg	Vul	Tyr	Ser	Asn	Pro	Ileu	Arg	Thr	Ileu	Arg	Ileu	Ileu	Ileu	Ileu	Ileu	Ileu	Tyr	Thr	Gly	Ileu	Ileu	Ileu	Ileu	Ileu

GRADE 2 (CONT.)

5

10

15

20

25

30

50

TABLE 3

TABLE 3		Sequence of the 5' terminal region of the 16S rRNA of <i>Leptospira</i> ser. Serpentine												
:	ccctggccgg	ccctggggcc	ggggccgggg	ccctggccgg										
:	gggttacccgg	cgccggccgg	ggccggccgg											
:	ALA	TRP	LEU	TRP	LEU	LEU	SER	LEU	SER	LEU	PRO	LEU	PRO	VAL
:	TGG	TGG	CTC	TGG	CTC	CTG	TCC	CTG	TCC	CTG	CCT	CTG	CTG	CTG
:	CCC	CCC	CCC	CCC	CCC	CCC	CCC	CCC	CCC	CCC	CCC	CCC	CCC	CCC
1	Ala	Pro	Pro	Ala	Ileu	Ileu	Cys	Asp	Ser	Ala	Val	Ileu	Cys	Ala
2	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu
3	GAC	GAC	GAC	GAC	GAC	GAC	GAC	GAC	GAC	GAC	GAC	GAC	GAC	GAC
4	Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met
5	GTC	GTC	GAC	ACC	AAA	GTC	AAT	TTC	AAT	TTC	TAT	GGC	AAG	ACC
6	Val	Val	Val	Trp	Cln	Cly	Leu	Ala	Leu	Ser	Cly	Val	Cln	Cln
7	GTA	GAA	GTC	TCC	CAC	CCC	CTG	CCC	CTG	CTG	CTG	GTC	CCC	CCC
8	Leu	Val	Asn	Ser	Ser	Cln	Pro	Ileu	Glu	Pro	Leu	Cln	Ileu	Ala
9	TTC	GTC	AAC	TCT	TCC	CAG	CCC	TCC	CAG	CCC	CTC	CAT	AAA	Val
10	Cly	Lau	Arg	Ser	Ileu	Thr	Ileu	Ileu	Ileu	Ileu	Ileu	Gly	Ala	Gln
11	CCC	CTT	CCC	ACC	CTC	ACT	CCC	CTT	CCC	CCC	CCC	GCA	GCC	GCC
12	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Glu	Ala	Ser
13	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	GCT	GCT	GCT
14	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Glu	Ala	Ser
15	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	GCA	GCC	GCC
16	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Glu	Ala	Ser
17	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	GCA	GCC	GCC
18	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Glu	Ala	Ser
19	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	GCA	GCC	GCC
20	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Glu	Ala	Iys
21	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	CTG	GCA	GCC	GAC

TABLE 3 (CONT'D.)

50 Sanger and Coulson, (23) (1977). The sequence of the region hybridizing to the 32-fold degenerate 17 mer in one of the clones is shown in Table 1. This DNA sequence contains within an open reading frame, the nucleotides which could precisely code for the tryptic fragment used to deduce the 17 mer pool of oligonucleotides. Furthermore, analysis of the DNA sequence indicated that the 17 mer hybridizing region was contained within an 87 bp exon, bounded by potential splice acceptor and donor sites.

[0022] Positive confirmation that these two clones (designated herein, lambda-HEPO1 and lambda-HEPO2) are EPO genomic clones has been obtained by sequencing additional exons containing other tryptic fragment coding information.

Isolation of EPO cDNA Clones

[0023] Northern Analysis (56) of human fetal (20 week old) liver mRNA was conducted using a 95 nt single-stranded probe prepared from an M13 clone containing a portion of the 87 bp exon described in Table 1. As illustrated in Figure 1, a strong signal could be detected in fetal liver mRNA. The precise identification of this band as EPO mRNA was achieved by using the same probe to screen a bacteriophage lambda cDNA library of the fetal liver mRNA (25). Several hybridizing clones were obtained at a frequency of approximately 1 positive per 250,000 recombinants screened. The complete nucleotide and deduced amino acid sequences for these clones (lambda-HEPOFL13 and lambda-HEPOFL8) are shown in Tables 5 and 6. The EPO coding information is contained within 594 nt in the 5-prime half of the cDNA, including a very hydrophobic 27 amino acid leader and the 166 amino acid mature protein.

[0024] The identification of the N-terminus of the mature protein was based on the N-terminal sequence of the protein secreted in the urine of persons with aplastic anemia as illustrated herein (Table 1), and as published by Goldwasser (26), Sue and Sytkowski (27), and by Yangawa (21). Whether this N-terminus (Ala-Pro-Pro-Arg--) represents the actual N-terminus found on EPO in circulation or whether some cleavage occurs in the kidney or urine is presently unknown.

[0025] The amino acid sequences which are underlined in Tables 2 and 3 indicate those tryptic fragments or the portion of the N-terminus for which protein sequence information was obtained. The deduced amino acid sequence agrees precisely with the tryptic fragments which have been sequenced, confirming that the isolated gene encodes human EPO.

Structure and Sequence of the Human EPO Gene

[0026] The relative positions of the DNA inserts of four independent human EPO genomic clones are shown in Figure 3. Hybridization analysis of these cloned DNAs with oligonucleotide probes and with various probes prepared from the two classes of EPO cDNA clones positioned the EPO gene within the approximately 3.3 kb region shown by the darkened line in Figure 3. Complete sequence analysis of this region (see Example 4) and comparison with the cDNA clones, resulted in the map of the intron and exon structure of the EPO gene shown in Figure 4. The EPO gene is divided into 5 exons. Part of exon I, all of exons II, III and IV, and part of exon V, contain the protein coding information. The remainder of exons I and V encode the 5-prime and the 3-prime untranslated sequences respectively.

Transient Expression of EPO in COS Cells

[0027] To demonstrate that biologically active EPO could be expressed in an *in vitro* cell culture system, COS cell expression studies were conducted (58). The vector used for the transient studies, p91023(B), is described in Example 5. This vector contains the adenovirus major late promoter, an SV40 polyadenylation sequence, an SV40 origin of replication, SV40 enhancer, and the adenovirus VA gene. The cDNA insert in lambda-HE-POFL13 (see Table 6) was inserted into the p91023(B) vector, downstream of the adenovirus major late promoter. This new vector is identified as pPTFL13.

[0028] Twenty four hours after transfection of this construct into the M6 strain of COS-1 cells (Horowitz et al, *J. Mol. Appl. Genet.* 2:147-149(1983)), the cells were washed, changed to serum free media, and the cells were harvested 48 hrs. later. The level of release of EPO into the culture supernatant was then examined using a quantitative radioimmunoassay for EPO (55). As shown in Table 8, (Example 6) immunologically reactive EPO was expressed. The biological activity of the EPO produced from COS-1 cells was also examined. In a separate experiment, the vector containing EPO cDNA from lambda-HEPOFL13 was transfected into COS-1 cells and media harvested as described *supra*. EPO in the media was then quantified by either of two *in vitro* biological assays, ³H-thymidine and CFU-E (12, 29), and by either of two *in vivo* assays, hypoxic mouse and starved rat (30,31) (see Table 9, Example 7). These results demonstrate that biologically active EPO is produced in COS-1 cells. By Western blotting, using a polyclonal anti-EPO antibody, the EPO produced by COS cells has a mobility on SDS-polyacrylamide gels which is identical to that of native EPO prepared from human urine (Example 8). Thus, the extent of glycosylation of COS-1 produced EPO may be similar to that of native EPO.

[0029] Different vectors containing other promoters can also be used in COS cells or in other mammalian or eukaryotic cells. Examples of such other promoters useful in the practice of this invention include SV40 early and late promoters, the mouse metallothionein gene promoter, the promoter found in the long terminal repeats of avian or mammalian retroviruses, the baculovirus polyhedron gene promoter and others. Examples of other cell types useful in the practice of this invention include *E. coli*, yeast, mammalian cells such as CHO (Chinese hamster ovary), C127 (monkey epithelium), 3T3 (mouse fibroblast) CV-1 (African green monkey kidney), and the insect cells such as those from *Sophoptera frugiperda* and *Drosophila melanogaster*. These alternate promoters and/or cell types may enable regulation of the timing or level of EPO expression, producing a cell-specific type of EPO, or the growth of large quantities of EPO producing cells under less expensive, more easily controlled conditions.

[0030] An expression system which retains the benefits of mammalian expression but requires less time to produce a high-level expression cell line is composed of an Insect cell line and a DNA virus which reproduces in this cell line. The virus is a nuclear polyhedrosis virus. It has a double-stranded circular DNA genome of 128 kb. The nucleocapsid is rod-shaped and found packaged in two forms, the non-occluded form, a membrane budded virus and an occluded form, packaged in a protein crystal in the infected cell nucleus. These viruses can be routinely propagated in in vitro insect cell culture and are amendable to all routine animal virological methods. The cell culture media is typically a nutrient salt solution and 10% fetal calf serum.

[0031] In vitro, virus growth is initiated when a non-occluded virus (NOV) enters a cell and moves to the nucleus where it replicates. Replication is nuclear. During the initial phase (8-18 hrs. post-infection) of viral application, nucleocapsids are assembled in the nucleus and subsequently bud through the plasma membrane as NOVs, spreading the infection through the cell culture. In addition, some of the nucleocapsids subsequently (18 + hrs. post-infection) remain in the nucleus and are occluded in a protein matrix, known as the polyhedral inclusion body (PIB). This form is not infectious in cell culture. The matrix is composed of a protein known as polyhedrin, MW 33 kd. Each PIB is approximately 1 mm in diameter, and there can be as many as 100 PIBs per nucleus. There is clearly a great deal of polyhedrin produced late in the infection cycle, as much as 25% of total cellular protein.

[0032] Because the PIB plays no role in the in vitro replication cycle, the polyhedrin gene can be deleted from the virus chromosome with no effect on in vitro viability. In using the virus as an expression vector, we have replaced the polyhedrin gene coding region with the foreign DNA to be expressed, placing it under the control of the polyhedrin promoter. This results in a non-PIB forming virus phenotype.

[0033] This system has been utilized by several researchers the most noted being Pennock et al. and Smith et al. Pennock et al. (Gregory D. Pennock, Charles Shoemaker, and Lois K. Miller, Molecular and Cell Biology 3: 84. p. 399-406) have reported on the high level expression of a bacterial protein, β -galactosidase, when placed under the control of the polyhedrin promoter.

[0034] Another nuclear polyhedrosis virus-derived expression vector has been presented by Smith et al. (Gale E. Smith, Max D. Summers and M. J. Fraser, Molecular and Cell Biology, May 16, 1983, pp. 2156-2165). They have demonstrated the effectiveness of their vector through the expression of human B-interferon. The synthesized product was found to be glycosylated and secreted from insect cells, as would be expected. In Example 14, modifications to the plasmid containing the Autographa californica nuclear polyhedrosis virus (AcNPV) polyhedron gene are described which allow the easy insertion of the EPO gene into the plasmid so that it may be under the transcriptional control of the polyhedrin promoter. The resulting DNA is co-transfected with intact chromosome DNA from wild type AcNPV into insect cells. A genetic recombination event results in the replacement of the AcNPV polyhedrin gene region with the DNA from the plasmid. The resulting recombinant virus can be identified amongst the viral progeny by its possession of the DNA sequences of the EPO gene. This recombinant virus, upon reinfection of insect cells is expected to produce EPO.

[0035] Examples of EPO expression in CHO, C127 and 3T3, and insect cells are given in Examples 10 and 11 (CHO), 13 (C127 and 3T3) and 14 (insect cells).

[0036] Recombinant EPO produced in CHO cells as in Example 11 was purified by conventional column chromatographic methods. The relative amounts of sugars present in the glycoprotein were analyzed by two independent methods [(i) Reinhold, Methods in Enzymol. 50: 244-249 (Methanolysis) and (ii) Takemoto, H. et al., Anal. Biochem. 145: 245 (1985) (pyridyl amination, together with independent sialic acid determination)]. The results obtained by each of these methods were in excellent agreement. Several determinations were thus made, yielding the following average values wherein N-acetylglucosamine is, for comparative purposes, given a value of 1:

Sugar	Relative molar level
N-Acetylglucosamine	1
Hexoses:	1.4
Galactose	0.9
Mannose	0.5
N-Acetylneurameric acid	1
Fucose	0.2
N-Acetylgalactosamine	0.1

[0037] It is noteworthy that significant levels of fucose and N-acetylgalactosamine were reproducibly observed using both independent methods of sugar analysis. The presence of N-acetylgalactosamine indicates the presence of O-linked glycosylation on the protein. The presence of O-linked glycosylation was further indicated by SDS-PAGE analysis of the glycoprotein following digestion of the glycoprotein with various combinations of glycosidic enzymes. In particular,

following enzymatic removal of all N-linked carbohydrate on the glycoproteins using the enzyme peptide endo F N-glycosidase, the molecular weight of the protein was further reduced upon subsequent digestion with neuraminidase, as determined by SDS-PAGE analysis.

[0038] In vitro biological activity of the purified recombinant EPO was assayed by the method of G. Krystal, *Exp. Hematol.* 11 : 649 (1983) (spleen cell proliferation bioassay) with protein determinations calculated based upon amino acid compositional data. Upon multiple determinations, the in vitro specific activity of the purified recombinant EPO was calculated to be greater than 200,000 units/mg protein. The average value was in the range of about 275,000-300,000 units/mg. protein. Moreover, values higher than 300,000 have also been observed. The in vivo (polycythemic mouse assay, Kazal and Erslev, *Am. Clinical Lab. Sci.*, Vol. B, p. 91 (1975))/in vitro activity ratios observed for the recombinant material was in the range of 0.7-1.3.

[0039] It is interesting to compare the glycoprotein characterization presented above with the characterization for a recombinant CHO-produced EPO material previously reported in International Patent Application Publication No. WO 85102610 (published 20 June 1985). The corresponding comparative sugar analysis described on page 65 of that application reported a value of zero for fucose and for N-acetylgalactosamine and a hexoses : N-acetylgalactosamine ratio of 15.09 : 1. The absence of N-acetylgalactosamine indicates the absence of O-linked glycosylation in the previously reported glycoprotein. In contrast to that material, the recombinant CHO-produced EPO of this invention which is characterized above contains significant and reproducibly observable amounts of both fucose and N-acetylgalactosamine, contains less than one-tenth the relative amount of hexoses and is characterized by the presence of O-linked glycosylation. Furthermore, the high specific activity of the above-described CHO-derived recombinant EPO of this invention may be directly related to its characteristic glycosylation pattern.

[0040] The biologically active EPO produced by the prokaryotic or eucaryotic expression of the cloned EPO genes of the present invention can be used for the in vivo treatment of mammalian species by physicians and/or veterinarians. The amount of active ingredient will, of course, depend upon the severity of the condition being treated, the route of administration chosen, and the specific activity of the active EPO, and ultimately will be decided by the attending physician or veterinarian. Such amount of active EPO was determined by the attending physician is also referred to herein as an "EPO treatment effective" amount. For example, in the treatment of induced hypoproliferative anemia associated with chronic renal failure in sheep, an effective daily amount of EPO was found to be 10 units/kg for from 15 to 40 days. See Eschbach et al., *J. Clin. Invest.*, 74 : 434 (1984).

[0041] The active EPO may be administered by any route appropriate to the condition being treated. Preferably, the EPO is injected into the bloodstream of the mammal being treated. It will be readily appreciated by those skilled in the art that the preferred route will vary with the condition being treated.

[0042] While it is possible for the active EPO to be administered as the pure or substantially pure compound, it is preferable to present it as a pharmaceutical formulation or preparation.

[0043] The formulations of the present invention, both for veterinary and for human use, comprise an active EPO protein, as above described, together with one or more pharmaceutically acceptable carriers therefor and optionally other therapeutic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.

[0044] Desirably the formulation should not include oxidizing agents and other substances with which peptides are known to be incompatible. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired formulation.

[0045] Formulations suitable for parenteral administration conveniently comprise sterile aqueous solutions of the active ingredient with solutions which are preferably isotonic with the blood of the recipient. Such formulations may be conveniently prepared by dissolving solid active ingredient in water to produce an aqueous solution, and rendering said solution sterile may be presented in unit or multi-dose containers, for example sealed ampoules or vials.

[0046] EPO/cDNA as used herein includes the mature EPO/cDNA gene preceded by an ATG codon and EPO/cDNA coding for allelic variations of EPO protein. One allele is illustrated in Tables 2 and 3. The EPO protein includes the 1-methionine derivative of EPO protein (Met-EPO) and allelic variations of EPO protein. The mature EPO protein illustrated by the sequence in Table 2 begins with the sequence Ada.Pro.Pro.Arg..., the beginning of which is depicted by the number "1" in Table 2. The Met-EPO would begin with the sequence Met.Ala.Pro.Pro.Arg...

[0047] The following examples are provided to aid in the understanding of the present invention, the true scope of which is set forth in the appended claims. It is understood that modifications can be made in the procedures set forth, without departing from the spirit of the invention. All temperatures are expressed in degrees Celsius and are uncorrected. The symbol for micron or micro, e.g., microliter, micromole, etc., is "u", e.g., ul, um, etc.

EXAMPLES

Example I : Isolation of a Genomic Clone of EPO

5 [0048] EPO was purified from the urine of patients with aplastic anemia essentially as described previously (Miyake, et al., *J. Biol. Chem.*, **252**, 5558 (1977)) except that the phenol treatment was eliminated and replaced by heat treatment at 80 deg. for 5 min. to inactivate neuraminidase. The final step in the purification was fractionation on a C-4 Vydac at 80 deg. for 5 min. to inactivate neuraminidase. The final step in the purification was fractionation on a C-4 Vydac HPLC column (The Separations Group) using 0 to 95% acetonitrile gradient with 0.1% trifluoracetic acid (TFA) over 100 minutes. The position of EPO in the gradient was determined by gel electrophoresis and N-terminal sequence 10 analysis (21, 26, 27) of the major peaks. The EPO was eluted at approximately 53% acetonitrile and represented approximately 40% of the protein subjected to reverse phase - HPLC. Fractions containing EPO were evaporated to 100 µl, adjusted to pH 7.0 with ammonium bicarbonate digested to completion with 2% TPCK-treated trypsin (Worthington) for 18 hrs. at 37 deg. The trypic digestion was then subjected to reverse phase HPLC as described above. The optical density at both 280 and 214 nm was monitored. Well separated peaks were evaporated to near dryness, 15 and subjected directly to N-terminal amino acid sequence analysis (59) using an Applied Biosystems Model 480 A gas phase sequenator. The sequences obtained are underlined in Tables 2 and 3. As described herein supra, two of these tryptic fragments were chosen for synthesis of oligonucleotide probes. From the sequence, Val-Asn-Phe-Tyr-Ala-Trp-Lys (amino acids 46 through 52 in Tables 2 and 3), a 17 mer of 32 fold degeneracy

20

TTCCANGCGTAGAAGTT

and an 18 mer of 128 fold degeneracy

25

CCANGCGTAGAAGTTNAC

were prepared. From the sequence, Val-Tyr-Ser-Asn-Phe-Leu-Arg (amino acids 144 through 150 in Tables 2 and 3), two pools of 14 mers, each 32-fold degenerate

30

TACACCTAACCTCCT and TACACCTAACCTTCTT

35 which differ at the first position of the leucine codon were prepared. The oligonucleotides were labelled at the 5-prime end with ^{32}P using polynucleotide kinase (New England Biolabs) and gamma ^{32}P -ATP (New England Nuclear). The specific activity of the oligonucleotides varied between 1000 and 3000 Ci/mmol oligonucleotide. A human genomic DNA library in bacteriophage lambda (Lawn et al., 22) was screened using a modification of the *in situ* amplification procedure originally described by Woo et al., (47) (1978). Approximately 3.5×10^6 phages were plated at a density of 6000 phage per 150 mm petri dish (NZCYM media) and incubated at 37 deg. until the plaques were visible, but 40 small (approximately 0.5 mm). After chilling at 4 deg. for 1 hr., duplicate replicas of the plaque patterns were transferred to nylon membranes (New England Nuclear) and incubated overnight at 37 deg. on fresh NZCYM plates. The filters were then denatured and neutralized by floating for a 10 min. each on a thin film of 0.5 N NaOH - 1 M NaCl and 0.5 M Tris (pH 8) - 1 M NaCl respectively. Following vacuum baking at 80 deg. for 2 hrs., the filters were washed in 5 \times SSC, 0.5% SDS for 1 hr. and the cellular debris on the filter surface was removed by gentle scrapping with a wet tissue. 45 This scrapping reduced the background binding of the probe to the filters. The filters were then rinsed with H_2O and prehybridized for from 4 to 8 hrs. at 48 deg. in 3 M tetramethylammonium chloride, 10 mM NaPO₄ (pH 6.8), 5 \times Denhardt's, 0.5% SDS and 10 mM EDTA. The ^{32}P -labeled 17 mer was then added at a concentration of 0.1 pmol/ml and hybridization was carried out at 48 deg. for 72 hrs. Following hybridization the filters were washed extensively in 5 \times SSC (0.3M NaCl - 0.03M Na citrate, pH 7) at room temperature and then for 1 hr. in 3 M TMACl - 10 mM NaPO₄ (pH 6.8) at room temperature and from 5 to 15 min. at the hybridization temperature. Approximately 120 strong duplicate 50 signals were detected following 2 day autoradiography with an intensifying screen. The positives were picked, grouped in pools of 8, replated and rescreened in triplicate using one-half of the 14 mer pool on each of two filters and the 127 mer on the third filter. The conditions and the 17 mer for plating and hybridization were as described supra except that hybridization for the 14 mer was at 37 deg. Following autoradiography, the probe was removed from the 17 mer filter in 50% formamide for 20 min. at room temperature and the filter was rehybridized at 52 deg. with the 18 mer probe. Two independent phage hybridized to all three probes. DNA from one of these phage (designated herein, lambda HEPO1) was digested to completion with Sau3 A and subcloned into M13 for DNA sequence analysis using the dideoxy chain termination method of Sanger and Coulson, (23) (1977). The nucleotide sequence and deduced amino acid 55 chain termination method of Sanger and Coulson, (23) (1977). The nucleotide sequence and deduced amino acid

sequence of the open reading frame coding for the EPO tryptic fragment (underlined region) are described herein. Intron sequences are given in lower case letters ; exon sequences (87 nt) are given in upper case. Sequences which agree with consensus splice acceptor (a) and donor (d) sites are underlined. (See Table 4.)

5 Example 2 : Northern Analysis of Human Fetal Liver mRNA

[0049] 5 μ g of human fetal liver mRNA (prepared from a 20 week old fetal liver) and adult liver mRNA were electro

5

10

15

20

25

30

3

4

45

50

55

TABLE 4 (CONT.)

5

10

15

20

25

30

35

40 phoresed in a 0.8% agarose formaldehyde gel and transferred to nitrocellulose using the method of Derman et al.,
Cell, 23 : 731 (1981). A single-stranded probe was then prepared from an M 13 template containing the insert illustrated
in Table 1. The primer was a 20 mer derived from the same tryptic fragment as the original 17 mer probe. The probe
was prepared as previously described by Anderson et al., *PNAS*, (50) (1984) except that, following digestion with SmaI
(which produced the desired probe of 95 nt length containing 74 nt of coding sequence), the small fragment was purified
from the M13 template by chromatography on a sepharose C14B column in 0.1 N NaOH- 0.2 M NaCl. The filter was
hybridized to approximately 5×10^8 cpm of this probe for 12 hrs. at 68 deg., washed in 2 \times SSC at 68 deg. and
exposed for 6 days with an intensifying screen. A single marker mRNA of 1200 nt (indicated by the arrow) was run in
an adjacent lane. (Figure 1).

50 Example 3 : Fetal Liver cDNA

[0050] A probe identical to that described in Example 2 was prepared and used to screen a fetal liver cDNA library
prepared in the vector lambda-Ch21A (Toole et al., *Nature*, (25) (1984)) using standard plaque screening (Benton
Davis, *Science*, (54) (1978)) procedures. Three independent positive clones (designated herein, lambda-HEPOFL6
55 (1350 bp), lambda-HEPOFL8 (700 bp) and lambda-HEPOFL13 (1400 bp) were isolated following screening of $1 \times$
 10^6 plaques. The entire insert of lambda-HEPOFL13 and lambda-HEPOFL6 were sequenced following subcloning into
M13. (Tables 7 and 5, respectively). Only portions of lambda-HEPOFL8 were sequenced and the remainder assumed
to be identical to the other two clones. (Table 6). The 5-prime and 3-prime untranslated sequences are represented

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
88

by lower case letters. The coding region is represented by upper case letters.

TABLE 5

TABLE 5 (CONT'D.)

TABLE 6

5

10

15

20

25

30

35

40

45

50

55

Leu	Val	Asn	Ser	Ser	Gln	Pro	Trp	Glu	Pro	Leu	Gln	Leu	Val	Asp	Lys	Ala	Val
TTC	CTC	AAC	TCT	TCC	CAC	CCC	TCC	CAC	CCC	CTG	CAC	CAC	CAT	CTC	CAT	AAA	GTC
Gly	Leu	Arg	Ser	Leu	Thr	Thr	Leu	Leu	Arg	Ala	Leu	Gly	Ala	Glu	Ala	Ala	Ser
CCC	CCT	CCC	AGC	CTC	ACC	ACT	TTC	CTT	CCC	GCT	CTG	GCA	GCC	CAC	AAC	GAA	ATC
Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro	Leu	Arg	Thr	Ala	Thr	Asp	Thr	Arg	Lys
CCT	CCA	GAT	GGC	CCC	TCA	GCT	GCT	CCA	GTC	GCA	GCA	ACA	ATC	CCT	GAC	ACT	TTC
Leu	Pho	Arg	Val	Tyr	Ser	Asn	Phe	Leu	Arg	Gly	Lys	Leu	Lys	Leu	Tyr	Thr	Glu
TTC	TTC	CGA	CRC	TAC	TCC	ATT	TTC	CTC	GGC	CCA	AAC	CTG	CTG	TAC	ACA	CCC	GAC

TABLE 6 (CONT'D.)

TABLE 7

TABLE 7 (CONT'D.)

Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro	Leu	Ala	Thr	Ile	Thr	Ala	Asp	The	Phe	Avg	Lys
GCT	GCA	GAT	GAT	GCA	GCA	GCA	GCA	GCT	GCT	GCA	GTC	GTC	GTC	GCA	GAC	GCT	GAC	GCC	AAA
Ser	Leu	Arg	Val	Tyr	Ser	Asn	His	Leu	Arg	Cys	Leu	Ile	Leu	Tyr	Thr	Cys	Cys	Ala	
GTC	GCA	GTC	GTC	TAC	TAC	TCC	TCC	GAT	TTC	GTC	GTC	GTC	GTC	AAC	TAC	TAC	GCA	GCC	
140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	
50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210	220	230	
Met	Leu	Arg	Val	Tyr	Ser	Asn	His	Leu	Arg	Cys	Leu	Ile	Leu	Tyr	Thr	Cys	Cys	Ala	
GTC	GCA	GTC	GTC	TAC	TAC	TCC	TCC	GAT	TTC	GTC	GTC	GTC	GTC	AAC	TAC	TAC	GCA	GCC	
330	340	350	360	370	380	390	400	410	420	430	440	450	460	470	480	490	500	510	
Leu																			
GTC	GCA	GTC	GTC	GCA	GTC	GTC	GCA	GTC	GTC	GTC	GTC	GTC	GTC	GCA	GTC	GTC	GTC	GCA	
520	530	540	550	560	570	580	590	600	610	620	630	640	650	660	670	680	690	700	
Leu																			
GTC	GCA	GTC	GTC	GCA	GTC	GTC	GCA	GTC	GTC	GTC	GTC	GTC	GTC	GCA	GTC	GTC	GTC	GCA	
710	720	730	740	750	760	770	780	790	800	810	820	830	840	850	860	870	880	890	
Leu																			
GTC	GCA	GTC	GTC	GCA	GTC	GTC	GCA	GTC	GTC	GTC	GTC	GTC	GTC	GCA	GTC	GTC	GTC	GCA	
910	920	930	940	950	960	970	980	990	1000	1010	1020	1030	1040	1050	1060	1070	1080	1090	
Leu																			
GTC	GCA	GTC	GTC	GCA	GTC	GTC	GCA	GTC	GTC	GTC	GTC	GTC	GTC	GCA	GTC	GTC	GTC	GCA	

50 [0051] With reference to Tables 2 and 3, the deduced amino acid sequence shown below the nucleotide sequence is numbered beginning with 1 for the first amino acid of the mature protein. The putative leader peptide is indicated by all caps for the amino acid designations. Cysteine residues in the mature protein are additionally indicated by SH and potential N-linked glycosylation sites by an asterisk. The amino acids which are underlined indicate those residues identified by N-terminal protein sequencing or by sequencing tryptic fragments of EPO as described in Example 1.

55 Partial underlining indicates residues in the amino acid sequence of certain tryptic fragments which could not be determined unambiguously. The cDNA clones lambda-HEPOFL6, lambda-HE-POFL8 and lambda-HEPOFL13 have been deposited and are available from the American Type Culture Collection, Rockville, Maryland as Accession Numbers ATCC 40156, ATCC 40152 and ATCC 40153, respectively.

Example 4 : Genomic Structure of the EPO Gene

[0052] The relative sizes and positions of four independent genomic clones (lambda-HEPO1, 2, 3, and 6) from the HaeIII/AluI library are illustrated by the overlapping lines in Figure 3. The thickened line indicates the position of the EPO gene. A scale (in Kb) and the positions of known restriction endonuclease cleavage sites are shown. The region containing the EPO gene was completely sequenced from both strands using directed exonuclease III generated series of deletions through this region. A schematic representation of five exons coding for EPO mRNAs is shown in Figure 4. The precise 5-prime boundary of exon 1 is presently unknown. The protein coding portion of the exons are darkened. The complete nucleotide sequence of the region is shown in Table 4. The known limits of each exon are delineated by the solid vertical bars. Genomic clones lambda-HEPO1, lambda-HEPO2, lambda-HEPO3 and lambda HEPO6 have been deposited and are available from the American Type Culture Collection, Rockville, Maryland as Accession Numbers ATCC 40154, ATCC 40155, ATCC 40150, and ATCC 40151, respectively.

Example 5 : Construction of Vector p91023(b)

[0053] The transformation vector was pAdD26SVpA(3) described by Kaufman et al., *Mol. Cell Biol.*, 2: 1304 (1982). The structure of this vector is shown in Fig. 5A. Briefly, this plasmid contains a mouse dihydrofolate reductase (DFHR) cDNA gene that is under transcriptional control of the adenovirus 2 (Ad2) major late promoter. A 5-prime splice site is indicated in the adenovirus DNA and a 3-prime splice site, derived from an immunoglobulin gene, is present between the Ad2 major late promoter and the DFHR coding sequence. The SV40 early polyadenylation site is present downstream from the DFHR coding sequence. The prokaryotic derived section of pAdD26SVpA(3) is from pSVOD (Mellon et al., *Cell*, 27: 279 (1981)) and does not contain the pBR322 sequences known to inhibit replication in mammalian cells (Lusky et al., *Nature*, 293: 79 (1981)).

[0054] pAdD26SVpA(3) was converted to plasmid pCVSL2 as illustrated in Fig. 5A. pAdD26SVpA(3) was converted to plasmid pAdD26SVpA(3)(d) by the deletion of one of the two PstI sites in pAdD26SVpA(3). This was accomplished by a partial digestion with PstI using a deficiency of enzyme such that a subpopulation of linearized plasmids are obtained in which only one PstI site was cleaved, followed by treatment with Klenow, ligation to recircularize, and screening for deletion of the PstI site located 3-prime to the SV40 polyadenylation sequence.

[0055] The adenovirus tripartite leader and virus associated genes (VA genes) were inserted into pAdD26SVpA(3)(d) as illustrated in Fig. 5A. First, pAdD26SVpA(3)(d) was cleaved with Pvull to make a linear molecule opened within the 3-prime portion of the three elements comprising the tripartite leader. Then, pJAW 43 (Zain et al., *Cell*, 16: 851 (1979)) was digested with Xho 1, treated with Klenow, digested with Pvull, and the 140 bp fragment containing the second part of the third leader was isolated by electrophoresis on an acrylamide gel (6% in Tris borate buffer; Maniatis et al., *supra*). The 140 bp fragment was then ligated to the Pvull digested pAdD26SVpA(3)(d). The ligation product was used to transform *E. coli* to tetracycline resistance and colonies were screened using the Grunstein-Hogness procedure employing a ³²P labelled probe hybridizing to the 140 bp fragment. DNA was prepared from positively hybridizing colonies to test whether the Pvull site reconstructed was 5-prime or 3-prime of the inserted 140 bp DNA specific to the second and third adenovirus late leaders. The correct orientation of the Pvull site is on the 5-prime side of the 140 bp insert. This plasmid is designated tTPL in Fig. 5A.

[0056] The Ava II D fragment of SV40 containing the SV40 enhancer sequence was obtained by digesting SV40 DNA with Ava II, blunting the ends with the Klenow fragment of Pol ligating Xho 1 linkers to the fragments, digesting with Xho 1 to open the Xho 1 site, and isolating the fourth largest (D) fragment by gel electrophoresis. This fragment was then ligated to Xho 1 cut pTPL, yielding the plasmid pCVSL2-TPL. The orientation of the SV40 D fragment in pCVSL2-TPL was such that the SV40 late promoter was in the same orientation as the adenovirus major late promoter.

[0057] To introduce the adenovirus associated (VA) genes into the pCVSL2-TPL, first a plasmid pBR322 was constructed that contained the adenovirus type 2 Hind III B fragment. Adenovirus type 2 DNA was digested with Hind III and the B fragment was isolated by gel electrophoresis. This fragment was inserted into pBR322 which had previously been digested with Hind III. After transformation of *E. coli* to ampicillin resistance, recombinants were screened for insertion of the Hind III B fragment and the inserted orientation was determined by restriction enzyme digestion. pBR322 - Ad Hind III B contains the adenovirus type 2 Hind III B fragment in the orientation depicted in Fig. 5B.

[0058] As illustrated in Fig. 5B, the VA genes are conveniently obtained from plasmid pBR322 - Ad Hind III B by digestion with Hpa I, adding EcoRI linkers and digestion with EcoRI, followed by recovery of the 1.4 kb fragment. The fragment having EcoRI sticky ends is then ligated into the EcoRI site of PTL, previously digested with EcoRI. After transforming *E. coli* HB101 and selecting for tetracycline resistance, colonies were screened by filter hybridization to DNA specific for the VA genes. DNA was prepared from positively hybridizing clones and characterized by restriction endonuclease digestion. The resulting plasmid is designated p91023.

[0059] As illustrated in Fig. 5C, the two EcoRI sites in p91023 were removed by cutting p91023 to completion with

EcoRI, generating two DNA fragments, one about 7 kb and the other about 1.3 kb. The latter fragment contained the VA genes. The ends of both fragments were filled in using the Klenow fragment of poll and the two fragments were then ligated together. A plasmid p91023(A), containing the VA genes and similar to p91023, but deleted for the two EcoRI sites, was identified by Grunstein-Hogness screening with the Va gene fragment, and by conventional restriction site analysis.

[0060] The single PstI site in p91023(A) was removed and replaced with an EcoRI site. p91023(a) was cut to completion with PstI and treated with the Klenow fragment of poll to generate flush ends. EcoRI linkers were ligated to the blunted PstI site of p91023(A). The linear p91023(A), with EcoRI linkers attached at the blunted PstI site was separated from unligated linkers and digested to completion with EcoRI, and religated. A plasmid, p91023(B) as depicted in Figure 5C was recovered, and identified as having a structure similar to p91023(A), but with an EcoRI site in place of the former PstI site. Plasmid p91023(B) has been deposited and is available from the American Type Culture Collection, Rockville, Maryland as Accession Number ATCC 39754.

Example 6 :

[0061] The cDNA clones (lambda-EPOFL6 and lambda-EPOFL13; Example 3) were inserted into the plasmid p91023 (B) forming PPTFL6 and PPTFL13, respectively. 8 ug of each of the purified DNA's was then used to transfect 5×10^6 COS cells using the DEAE-dextran method (infra). After 12 hrs., the cells were washed and treated with Chloroquin (0.1 mM) for 2 hrs., washed again, and exposed to 10 ml media containing 10% fetal calf serum for 24 hrs. The media was changed to 4 ml serum free media and harvested 48 hrs. later.

[0062] Production of immunologically active EPO was quantified by a radioimmunoassay as described by Sherwood and Goldwasser (55). The antibody was provided by Dr. Judith Sherwood. The iodinated tracer was prepared from the homogeneous EPO described in Example 1. The sensitivity of the assay is approximately 1 ng/ml. The results are shown below in Table 8.

25

TABLE 8

VECTOR	LEVEL OF EPO RELEASED INTO THE MEDIA (ng/ml)
pPTFL13	330
pPTFL6	31

30

PTFL13 has been deposited and is available from the American Type Culture Collection, Rockville, Maryland under Accession No. ATCC 39990.

35 Example 7 :

[0063] EPO cDNA (lambda-HEPOFL13) was inserted into the p91023(B) vector and was transfected into COS-1 cells and harvested as described above (Example 6) except that the chloroquin treatment was omitted.

[0064] *In vitro* biologically active EPO was measured using either a colony forming assay with mouse fetal liver cells as a source of CFU-E or a 3 H-thymidine uptake assay using spleen cells from phenylhydrazine injected mice. The sensitivities of these assays are approximately 25 mUnits/ml. *In vivo* biologically active EPO was measured using either the hypoxic mouse or starved rat method. The sensitivity of these assays is approximately 100 mU/ml. No activity was detected in either assay from mock condition media. The results of EPO expressed by clone EPOFL13 are shown below in Table 9 wherein the activities reported are expressed in units/ml, using a commercial, quantified EPO (Toyobo, Inc.) as a standard.

45

TABLE 9

EPO Excreted from COS Cells Transfected with Type I EPO cDNA		
Assay	Activity	
RIA	100	ng/ml
cFU-E	2	0.5 U/ml
3 H-Thy	3.1	1.8 U/ml
hypoxic mouse	1	U/ml
starved rat	2	U/ml

50

55

Example 8 : SDS Polyacrylamide Gel Analysis of EPO from COS Cells

[0065] 180 ng of EPO released into the media of COS cells transfected with EPO (*lambda*-HEPOFL13) cDNA in the vector 91023(B) (*supra*) was electrophoresed on a 10% SDS Laemmli polyacrylamide gel and electrotransferred to nitrocellulose paper (Towbin et al., *Proc. Natl. Acad. Sci. USA* 76 : 4350 (1979)). The filter was probed with anti-EPO antibody as described in Table 8, washed, and reprobed with 125 I-staph A protein. The filter was autoradiographed for two days. Native homogeneous EPO was described in Example 1, either before (lane B) or after iodination (lane C) and were electrophoresed (see Figure 6). Markers used included 35 S methionine labelled, serum albumin (68,000 d) and ovalbumin (45,000 d).

Example 9 : Construction of RK1-4

[0066] The Barn HI-PvuII fragment from the plasmid PSV2DHFR (Subramani et al., *Mol. Cell. Biol.* 1: 854-864 (1981)) containing the SV40 early region promoter adjacent to the mouse dihydrofolate reductase (DHFR) gene, an SV40 enhancer, the small t antigen intron, and the SV40 polyadenylation sequence was isolated (fragment A). The remaining fragments were obtained from the vector p91023(A) (*supra*) as follows: p91023(A) was digested with *Pst* I at the single *Pst* I site near to the adenovirus promoter to linearize the plasmid and either ligated to synthetic *Pst* I to *Eco*RI converters and recircularized (creating the sites *Pst* I - *Eco*RI - *Pst* I at the original *Pst* I site; 91023(B')) or treated with the large fragment of DNA polymerase I to destroy the *Pst* I sites and ligated to a synthetic *Eco*RI linker and recircularized (creating an *Eco*RI site at the original *Pst* I site; 91023(B)). Each of the two resulting plasmids 91023(B) and 91023(B') were digested with *Xba* I and *Eco*RI to produce two fragments (F and G). By joining fragment F from p91023(B) and fragment G from p91023(B') and fragment G from p91023(B) and fragment F from p91023(B') two new plasmids were created which contained either an *Eco*RI - *Pst* I site or a *Pst* I - *Eco*RI site at the original *Pst* I site. The plasmid containing the *Pst* I - *Eco*RI site where the *Pst* I site is closest to the adenovirus major late promoter was termed p91023(C).

[0067] The vector p91023(C) was digested with *Xba*I to completion and the resulting linearized DNA with sticky ends was blunted by an end filling reaction with the large fragment of *E. coli* of DNA polymerase I. To this DNA was ligated a 340 bp *Hind* III *Eco*RI fragment containing the SV40 enhancer prepared as follows:

30 a 340 bp Hind III - EcoRI fragment containing the SV40 origin of replication and the enhancer was
[0068] The Hind III - Pvu II fragment from SV40 which contains the SV40 origin of replication and the enhancer was inserted into the plasmid c lac (Little et al., *Mol. Biol. Med.* 1: 473-488 (1983)). The c lac vector was prepared by digesting c lac DNA with BamHI, filling in the sticky end with the large fragment of DNA polymerase I and digesting the DNA with Hind III. The resulting plasmid (cSVHPIaC) regenerated the BamHI site by ligation to the Pvu II blunt end. The EcoRI - Hind III fragment was prepared from cSVHPIaC and ligated to the EcoRI - Hind III fragment of pSVOD (Mellon et al., *supra*) which contained the plasmid origin of replication and the resulting plasmid PSVHPOd was selected. The 340 bp EcoRI - Hind III fragment of PSVHPOd containing the SV40 origin/enhancer was then prepared, 35 blunted at both ends with the large fragment of DNA polymerase I, and ligated to the Xhol digested, blunted p91023 (c) vector described above. The resulting plasmid (p91023(C)/Xho/blunt plus ECORI/Hind III/blunt SV40 origin plus enhancer) in which the orientation of the Hind III - EcoRI fragment was such that the BamHI site within that fragment was nearest to the VA gene was termed pES105. The plasmid pES105 was digested with Bam HI and PvuII and also with PvuII alone and the BamHI - PvuII fragment containing the adenovirus major late promoter (fragment B) and the 40 PvuII fragment containing the plasmid resistance gene (tetracycline resistance) and other sequences (fragment C) were isolated. Fragments A, B and C were ligated and the resulting plasmid shown in Figure 7 was isolated and termed RK1-4. Plasmid RK1-4 has been deposited with the American Type Culture Collection, Rockville, Maryland, where it is available under Accession Number ATCC 39940.

45 Example 10 : Expression of EPO in CHO cells-Method I

and has been deposited with the American Type Culture Collection as Accession Number ATCC CRL8695. Currently, this clone is being subjected to stepwise selection in increasing concentrations of MTX, and will presumably yield cells which produce even higher levels of EPO. For pools which were negative by RIA, methotrexate resistant colonies obtained from the counterpart cultures which were grown in the presence of methotrexate (0.02 uM) were again re-assayed in pools for EPO by RIA. Those cultures which were not positive were subcloned and subjected to growth in further increasing concentrations of methotrexate.

[0070] Stepwise methotrexate (MTX) selection was achieved by repeated cycles of culturing the cells in the presence of increasing concentrations of methotrexate and selecting for survivors. At each round, EPO was measured in the culture supernatant by RIA and by *in vitro* biological activity. The levels of methotrexate used in each stepwise amplification were 0.02 uM, 0.1 uM, and .5 uM. As shown in Table 10 after 1 round of selection in .02 uM MTX significant levels of EPO were being released into the culture media.

TABLE 10

Level of EPO Released into the Media				
Sample		Assay	Alpha medium harvest	0.02 uM methotrexate in alpha medium harvest
4 4	Pool	RIA	17 ng/ml	50 ng/ml
4 4	Single Colony			
	Clone (.02-7)	RIA	-	460 ng/ml

Example 11 : Expression of EPO in CHO cells - Method II

[0071] DNA from the clone lambda HEPOFL13 was digested with EcoRI and the small RI fragment containing the EPO gene was subcloned into the EcoRI site of the plasmid RK14 (See Example 10). This DNA (RKFL13) was then used to transfect the DHFR-negative CHO cells directly (without digestion) and the selection and amplification was carried out as described in Example 10 above.

[0072] The RKFL13 DNA was also inserted into CHO cells by protoplast fusion and microinjection. Plasmid RKFL13 has been deposited and is available from the American Type Culture Collection, Rockville, Maryland under Accession No. ATCC 39989.

TABLE 11

Level of EPO Released into the Media				
Sample		Assay	alpha medium harvest	0.02uM methotrexate in alpha medium harvest
Colony Pool A		RIA	3 ng/ml	42 ng/ml (pool) 150 ng/ml (clone)
Single Colony clone (.02C-Z)		³ H-Thy RIA	-- --	1.5 U/ml 90 ng/ml
Microinjected pool (DEPO-1)		³ H-Thy RIA	60 ng/ml 1.8 U/ml	5.9 U/ml 160 ng/ml

[0073] The preferred single colony clone has been deposited and is available from the American Type Culture Collection, Rockville, Maryland under Accession Number ATCC CRL8695.

Example 12 : Expression of EPO Genomic Clone in COS-1 Cells

[0074] The vector used for expression of the EPO genomic clone is pSVOD (Mellon et al., *supra*). DNA from pSVOD was digested to completion with Hind III and blunted with the large fragment of DNA polymerase I. The EPO genomic clone lambda-HEPO3 was digested to completion with EcoRI and Hind III and the 4.0 kb fragment containing the EPO gene was isolated and blunted as above. The nucleotide sequence of this fragment from the Hind III site to a region

just beyond the polyadenylation signal is shown in Figure 4 and Table 4. The EPO gene fragment was inserted into the pSVOd plasmid fragment and correctly constructed recombinants in both orientations were isolated and verified. The plasmid CZ2-1 has the EPO gene in orientation "a" (i.e. with the 5' end of EPO nearest to the SV40 origin) and the plasmid CZ1-3 is in the opposite orientation (orientation "b").

5 [0075] The plasmids CZ1-3 and CZ2-1 were transfected into COS-1 cells as described in Example 7 and media was harvested and assayed for immunologically reactive EPO. Approximately 31 ng/ml of EPO was detected in the culture supernatant from CZ2-1 and 16-31 ng/ml from CZ1-3.

[0076] Genomic clones HEPO1, HEPO2, and HEPO6 can be inserted into COS cells for expression in a similar manner.

10

Example 13 : Expression In C127 and in 3T3 Cells Construction of pBPVEPO

[0077] A plasmid containing the EPO cDNA sequence under the transcriptional control of a mouse metallothionein promoter and linked to the complete bovine papilloma virus DNA was prepared as follows :

15

pEP049F

[0078] The plasmid SP6/5 was purchased from Promega Biotec. This plasmid was digested to completion with EcoRI and the 1340 bp EcoRI fragment from lambda-HEPOFL13 was inserted by DNA ligase. A resulting plasmid in which the 5' end of the EPO gene was nearest to the SP6 promoter (as determined by BglII and Hind III digestion) was termed pEP049F. In this orientation, the BamHI site in the PSP6/5 polylinker is directly adjacent to the 5' end of the EPO gene.

pMMTneo BPV

20 [0079] The plasmid pdBPV-mmtneo (342-12) (Law et al., Mol. and Cell Biol. 3 : 2110-2115 (1983)), illustrated in Figure 8, was digested to completion with BamHI to produce two fragments - a large fragment ~8 kb in length containing the BPV genome and a smaller fragment, ~6.5 kb in length, containing the pML2 origin of replication and ampicillin resistance gene, the metallothionein promoter, the neomycin resistance gene, and the SV40 polyadenylation signal. The digested DNA was recircularized by DNA ligase and plasmids which contained only the 6.8 kb fragment were identified by EcoRI and BamHI restrictions endonuclease digestion. One such plasmid was termed pMMTneo BPV.

25 [0080] pMMTneo BPV

pEP049f was digested to completion with BamHI and BglII and the approximately 700 bp fragment containing the entire EPO coding region was prepared by gel isolation. The BglII digested pMMTneo BPV and the 700 bp BamHI/BglII EPO fragment were ligated and resulting plasmids containing the EPO cDNA were identified by colony hybridization with an oligonucleotide d(GGTCATCTGTCCCCGTCC) probe which is specific for the EPO gene. Of the plasmids which were positive by hybridization analysis, one (pEPO15a) which had the EPO cDNA in the orientation such that the 5' end of the EPO cDNA was nearest the metallothionein promoter was identified by digestion with EcoRI and KpnI.

pBPV-EPO

30 [0081] The plasmid pEPO15A was digested to completion with BamHI to linearize the plasmid. The plasmid pdBPV-MMT neo(342-12) was also digested to completion with BamHI to produce two fragments of 6.5 and 8 kb. The 8 kb fragment which contained the entire Bovine Papilloma Virus genome, was gel isolated. pEPO15a/BamHI and the 8kb BamHI fragment were ligated together and a plasmid (pBPV-EPO) which contained the BPV fragment were identified by colony hybridization using an oligonucleotide probe d(P-CCA-CACCCGGTACACA-OH) which is specific for the BPV genome. Digestion of pBPV-EPO DNA with Hind III indicated that the direction of transcription of the BPV genome was the same as the direction of transcription of the metallothionein promoter (as in pdBPV-MMTne (342-12) see Figure 8). The plasmid pdBPV-MMTne(342-12) is available from the American Type Culture Collection, Rockville, Maryland under Accession No. ATCC 37224.

Expression

55

[0082] The following methods were used to express EPO.

Method I.

5 [0083] DNA pBPV-EPO was prepared and approximately 25 ug was used to transfect $\sim 1 \times 10^6$ C127 (Lowy et al., *J. of Virol.* 26 : 291-98 (1978)) CHO cells using standard calcium phosphate precipitation techniques (Graham et al., *Virology*, 52 : 456-67 (1973)). Five hrs. after transfection, the transfection media was removed, the cells were glycerol shocked, washed, and fresh α -medium containing 10% fetal bovine serum was added. Forty-eight hrs. later, the cells were trypsinized and split at a ratio of 1 : 10 in DME medium containing 500 ug/ml G418 (Southem et al., *Mol. Appl. GeneL* 1: 327-41 (1982)) and the cells were incubated for two-three weeks. G418 resistant colonies were then isolated individually into microtiter wells and grown until sub-confluent in the presence of G418. The cells were then washed, 10 fresh media containing 10% fetal bovine serum was added and the media was harvested 24 hours later. The conditioned media was tested and shown to be positive for EPO by radioimmunoassay and by *in vitro* biological assay.

Method II

15 [0084] C127 or 3T3 cells were cotransfected with 25 ug of pBPV-EPO and 2 ug of pSV2neo (Southern et al., *supra*) as described in Method I. This is approximately at 10-fold molar excess of the pBPV-EPO. Following transfection, the procedure is the same as in Method I.

Method III

20 [0085] C127 cells were transfected with 30 ug of pBPV-EPO as described in Method I. Following transfection and splitting (1 : 10), fresh media was exchanged every three days. After approximately 2 weeks, foci of BPV transformed cells were apparent. Individual foci were picked separately into 1 cm wells of a microtiter plate, grown to a sub-confluent monolayer and assayed for EPO activity or antigenicity in the conditioned media.

25 Example 14 : Expression in Insect cells Construction of pIVEV EPOFL13

30 [0086] The plasmid vector pIVEV has been deposited and is available from the American Type Culture Collection, Rockville, Maryland under Accession No. ATCC 39991. The vector was modified as follows :

35 pIVEVNI

[0087] pIVEV was digested with EcoRI to linearize the plasmid, blunted using the large fragment of DNA polymerase I and a single NotI linker

40
 GGCGGCCGCC
 CCGCCGGCGG

was inserted by blunt end ligation. The resultant plasmid is termed pIVEVNI.

pIVEVSI

45 [0088] pIVEV was digested with SmaI to linearise the plasmid and a single SfiI linker

GGGCCCCAGGGGCC
 CCCGGGGTCCCCGGG

50 was inserted by blunt end ligation. The resultant plasmid was termed pIVEVSI.

pIVEVSI BgKp

55 [0089] The plasmid pIVEVSI was digested with KpnI to linearize the plasmid and approximately 0 to 100 bp were removed from each end by digestion with the double-stranded exonuclease Bal 31. Any resulting ends which were not perfectly blunt were blunted using the large fragment of DNA polymerase I and the polylinker

5

was inserted by blunt end ligation. The polylinker was inserted in both orientations. A plasmid in which the polylinker is oriented such that the BgIII site within the polylinker is nearest to the polyhedron gene promoter is termed pIVEVSI-
 10 BgKp. A plasmid in which the KpnI site within the polylinker is nearest to the polyhedron gene promoter is termed pIVEVSIKpBg. The number of base pairs which were deleted between the original KpnI site in pIVEVSI and the poly-
 hedron promoter was not determined. The pIVEVSIKpBg has been deposited with and is available from the American
 Type Culture Collection, Rockville, Maryland under Accession No. ATCC 39988.

15 pIVEVSIKpBgN1

[0090] pIVEVSI was digested to completion with KpnI and PstI to produce two fragments. The larger fragment, which contained the plasmid origin of replication and the 3' end of the polyhedron gene was prepared by gel isolation (fragment A). pIVEVSIKpBg was digested to completion with PstI and KpnI to produce two fragments and the smaller fragment, which contained the polyhedron gene promoter and the polylinker was prepared by gel isolation (fragment B). Fragment A and B were then joined by DNA ligase to form the new plasmid pIVEVSIKpBgN1 which contains a partially deleted polyhedron gene into which a polylinker has been inserted and also contains a NotI site (replacing the destroyed EcoRI site) and a SfiI site which flank the polyhedron gene region.

25 pIVEPO

[0091] pIVEVSI BGKpN1 was digested to completion with EcoRI to linearize the plasmid and the 1340 bp EcoRI fragment from lambda-HEPOFL13 was inserted. Plasmids containing the EPO gene in the orientation such that the 5' end of the EPO gene is nearest the polyhedron promoter and the 3' end of the polyhedron gene were identified by digestion with BgIII. One of these plasmids in the orientation described above was designated pIVEPO.

30 Expression of EPO In Insect CELs

[0092] Large amounts of the pIVEPO plasmid were made by transforming the *E. coli* strain JM101-tgl. The plasmid DNA was isolated by cleared lysate technique (Maniatis and Fritsch, Cold Spring Harbor Manual) and further purified by CsCl centrifugation. Wild-type *Autographa californica* polyhedrosis virus (AcNPV) strain L-1 DNA was prepared by phenol extraction of virus particles and subsequent CsCl purification of the viral DNA.
 [0093] These two DNAs were then cotransfected into *Spodoptera frugiperda* cells IPLB-SF-21 (Vaughn et al., *In Vitro* Vol. B, pp. 213-17 (1977) using the Calcium phosphate transfection procedure (Potter and Miller, 1977). For each plate of cells being cotransfected, 1ug of wild-type AcNPV DNA and 10 ug of pIVEPO were used. The plates were incubated at 27°C for 5 days. The supernatant was then harvested and EPO expression in the supernatant was confirmed by radioimmunoassay and by *in vitro* biological assay.

40 Example 15 : Purification of EPO

[0094] COS-cell conditioned media (121) with EPO concentrations up to 200 ug/litre was concentrated to 600 ml using 10,000 molecular weight cutoff ultrafiltration membranes, such as a Millipore Pellican fitted with 5 sq. ft. of membrane. Assays were performed by RIA as described in Example 6. The retentate from the ultrafiltration was diafiltered against 4 ml. of 10 mM sodium phosphate buffered at pH 7.0. The concentrated and diafiltered condition media contained 2.5 mg of EPO in 380 mg of total protein. The EPO solution was further concentrated to 186 ml and the precipitated proteins were removed by centrifugation at 110,000 xg for 30 minutes.
 [0095] The supernatant which contained EPO (2.0 mg) was adjusted to pH 5.5 with 50% acetic acid, allowed to stir at 4°C for 30 minutes and the precipitate removed by centrifugation at 13,000 xg for 30 minutes.

55 Carboxymethyl Sepharose Chromatography

[0096] The supernatant from the centrifugation (20 ml) containing 200 ug of EPO (24 mg total protein) was applied to a column packed with CM-Sepharose (20 ml) equilibrated in 10 mM sodium acetate pH 5.5, washed with 40 ml of

the same buffer. EPO which bound to the CM-Sepharose was eluted with a 100 ml gradient of NaU(0-1) in 10 mM sodium phosphate pH 5.5. The fractions containing EPO (total of 50 ug in 2 mg of total proteins) were pooled and concentrated to 2 ml using Amicon YM10 ultrafiltration membrane.

5 Reverse phase-HPLC

[0097] The concentrated fractions from CM-Sepharose containing the EPO was further purified by reverse phase-HPLC using Vydac C4 column. The EPO was applied onto the column equilibrated in 10% solvent B (Solvent A was 0.1% CF₃CO₂H in water ; solvent B was 0.1% CF₃CO₂H in CF₃CN) at flow rate of 1 ml/min. The column was washed with 10% B for 10 minutes and the EPO was eluted with linear gradient of B (10-70% in 60 minutes). The fractions containing EPO were pooled (-40 ug of EPO in 120 ug of total proteins) and lyophilized. The lyophilized EPO was reconstituted in 0.1 M Tris-HCl at pH 7.5 containing 0.15 M NaCl and rechromatographed on the reverse phase HPLC. The fractions containing the EPO were pooled and analyzed by SDS-polyacrylamide (10%) gel electrophoresis (Lameli, U.K, Nature). The pooled fractions of EPO contained 15.5 ug of EPO in 25 ug of total protein.

10 [0098] The invention has been described in detail, including the preferred embodiments thereof. It will, however, be appreciated that those skilled artisans may make modifications and improvements upon consideration of the specification and drawings set forth herein, without departing from the spirit and scope of this invention as set forth in the appended claims.

20 REFERENCES

[0099]

- 1) Jacobson, L.O., Goldwasser, E. Fried, W., and Plzak, L.F., Trans. Assoc. Am. Physicians TO : 305-317 (1957).
- 25 2) Krantz, S.B. and Jacobson, L.O. Chicago : University of Chicago Press 1970, pp. 29-31.
- 3) Hammond, D and Winnick, S. Ann. N.Y. Acad. Sci. 230 : 219-227 (1974).
- 4) Sherwood, J.B. and Goldwasser, E., Endocrinology 103 : 866-870 (1978).
- 5) Fried, W. Blood 40: 671-677 (1972).
- 6) Fisher, J. J. Lab. and Clin. Med. 93 : 695-699 (1979).
- 30 7) Naughton, B.A., Kaplan, S.M., Roy, M., Burdowski, A.J., Gordon, A.S., and Piliero, S.J. Science 196: 301-302.
- 8) Lucarelli, G.P., Howard, D., and Stohlman, F., Jr. J. Clin. Invest 43 : 2195-2203 (1964).
- 9) Zanjani, E.D., Poster, J., Burlington, H., Mann, L.I., and Wasserman, L. R. J. Lab. Clin. Med. 89 : 640-644 (1977).
- 10) Krantz, S.B., Gallien-Lartigue, O., and Goldwasser, E. J. Biol. Chem. 238 : 4085-4090 (1963).
- 11) Dunn, C.D., Jarvis, J.H. and Greenman, J.M. Exp. Hematol. 3 : 65-78 (1975).
- 35 12) Krystal, G. Exp. Hematol. 11: 649-660 (1983)
- 13) Iscove, N.N. and Guilbert, L.J., M.J. Murphy, Jr. (Ed.) New York: Springer-Verlag, pp. 3-7 (1978).
- 14) Goldwasser, E., ICN UCLA Symposium, Control of Cellular Division and Development, A.R. Liss, Inc., pp. 487-494 (1981)
- 15) Cline, M.J. and Golde, D.W. Nature 277 : 177-181 (1979)
- 40 16) Metcalf, D., Johnson, G.R., and Burgess, A.W. Blood 55 : 138-(1980)
- 17) Krane, N. Henry Ford Hosp. Med. J. 31 : 177-181 (1983)
- 18) Eschbach, J., Madenovic, J., Garcia, J., Wahl, P., and Adamson, J.J. Clin. Invest. 74 : 434-441 (1984)
- 19) Anagnostou, A., Barone, J., Vedo, A., and Fried, W. Br.J. Hematol 37 : 85-91 (1977)
- 20) Miyake, T., Kung, C., and Goldwasser, E.J. Biol. Chem. 252: 5558-5564 (1977)
- 45 21) Yanagawa, S., Hirade, K., Ohnata, H., Sasaki, R., Chiba, H., Veda, M., and Goto, M.J. Biol. Chem. 259 : 2707-2710 (1984)
- 22) Lawn, R.M., Fritsch, E.F., Parker, R.C., Blake, G., and Maniatis, T. Cell 15 : 1157-(1978)
- 23) Sanger, F., Nicklen, S., and Coulson, A.R. Proc. Nat'l. Acad. Sci., U.S.A. 74 : 5463--- (1977)
- 24) Zanjanc, E.D., Ascensao, J.L., McGlave, P.B., Banisadre, M., and Ash, R.C. J. Clin. Invest. 67 : 1183-(1981)
- 50 25) Toole, J.J., Knopf, J.L., Wozney, J.M., Sultzman, LA. Buecker, J. L., Pittman, D.D., Kaufman, R.J., Brown, E., Shoemaker, C., Orr, E.C., Amphlett, G.W., Foster, W.B., Coe, M.L., Knutson, G.J., Fass, D.N., and Hewick, R. M. Nature in Press
- 26) Goldwasser, E. Blood Suppl. 1, 58, xiii (abstr) (1981)
- 27) Sue, J.M. and Sytkowdki, A.J. Proc. Natl. Acad. Sci. U.S.A. 80 : 3651-3655 (1983)
- 55 29) Bersch, N. and Golde, D.W., In Vitro Aspects of Erythropoiesis, M.J. Murphy (Ed.) New York : Springer-Verlag (1978)
- 30) Cotes, P.M. and Bangham, D.R. Nature 191 : 1065-(1961)
- 31) Goldwasser, E. and Gross, M. Methods in Enzymol 37 : 109-121 (1975)

32) Nabeshima, Y. -i, Fujii-Kuriyama, Y., Muramatsu, M., and Ogata, K. Nature 308: 333-338 (1984)

33) Young, RA, Hagencuhle, O. and Schibler, U. Cell 23 : 451-558 (1981)

34) Medford, R.M., Nguyen, H.T., Destree, AT., Summers, E. and Nadal-Ginard, B. Cell 38 : 409-421 (1984)

35) Ziff, E.B. Nature 287 : 491-499 (1980)

5 36) Early, P. Cell 20 : 313-319 (1980)

37) Sytkowski, A. Bio. Biop. Res. Comm. 96:143-149 (1980)

38) Murphy, M. and Miyake, T. Acta. Haematol. Jpn. 46 : 1380-1396 (1983)

39) Wagh, P.V. and Bahl, O.P. CRC Critical Reviews in Biochemistry 307-377 (1981)

10 40) Wang, F.F., Kung, C.K. -H. and Goldwasser, E. Fed. Proc. Fed. Am. Soc. Exp. Biol. 42: 1872 (abstr) (1983)

41) Lowy, P., Keighley, G. and Borsook, H. Nature 185 : 102-103 (1960)

42) VanLenten, L. and Ashwell, G. J. Biol. Chem. 247 : 4633-4640 (1972)

15 43) Lee-Huang, S. Proc. Natl Acad. Sci. U.S.A. 81 : 2708-2712 (1984)

44) Fyhrquist, F., Rosenlof, K., Gronhagen-Riska, C., Horning, L. and Tikkanen, I. Nature 308: 649-562 (1984)

45) Ohkubo, H., Kageyama, R., Vjihara, M., Hirose, T., Inayama, S., and Nakanishi, S. Proc. Nat'l Acad. Sci. U.S.
15 A. 80 : 2196-2200 (1983)

46) Suggs, S.V., Wallace, R.B., Hirose, T., Kawashima, E.H. and Itakura, K. Proc. Nat'l. Acad. Sci. U.S.A. - 78 :
6613-6617 (1981)

47) Woo, S.L.C., Dugaiczyk, A., Tsai, M. -J., Lai, E.C., Catterall, J.F. and O'Malley, B.W. Proc Nat'l.-Acad. Sci. U.
S.A. 75 : 3588- (1978)

20 48) Melchior, W.B. and VonHippel, P.H. Proc. Nat'l Acad. Soc. U.S.A. 70 : 298-302 (1973)

49) Orosz, J.M. and Wetmis, J.G. Biopolymers 16 ; 1183-1199 (1977)

50) Anderson, S and Kingston, I.B. Proc. Nat'l Acad. Sci. - U.S.A. 80 : 6836-6842 (1983)

51) Ullrich, A, Coussens, L., Hayflick, J.S. Dull, T.J., Gray, A., Tam, A.W., Lee, J., Yarden, Y., Libermann, TA.,
Schlessinger, J., Downward, J., Mayes, E.L.V., Whittle, H., Waterfield, M.D. and Seeburg, P.H. Nature 309 : 418-425
25 (1984)

52) Fisher, J. Proc. Soc. Exptl. Biol. and Med. 173 : 289-305 (1983)

53) Kozak, M. Nuc. Acid Res. 12: 857-872 (1984)

54) Benton, W.D. and Davis, R.W. Science 196: 180-182 (1977)

55) Sherwood, J.B. and Goldwasser, E. Blood 54 : 885-893 (1979)

30 56) Derman, E., Krauter, K., Walling, L., Weinberger, C., Ray, M., and Damell, J.T.. Cell 23 : 731- (1981)

57) Gluzman, Y. Cell 23 : 175-182 (1981)

58) Hewick, R.M., Hunkapiller, M.E., Hood, LE., and Dreyer, W.J. J. Biol. Chem. 256 : 7990-7997 (1981)

59) Towbin, H., Stachelin, T., and Gordon, J.. Proc. Nat'l Acad. Sci. 76 : 4380- (1979)

60) Carnott, P., Deflandre, C. C.R. Acad. Sci. Paris 143 : 432 - (1960).

35

Claims

40 **Claims for the following Contracting States : BE, CH, DE, FR, GB, IT, LI, LU, NL, SE**

1. Recombinant DNA plasmid vector containing cDNA encoding human EPO of clone lambda HEPOFL13 (ATCC 40153).

45 2. A mammalian cell transformed with the transfer vector of claim 1.

3. The cell of claim 2, wherein said mammalian cell is a 3T3, C127 or CHO cell.

50 4. A mammalian cell containing a plasmid which contains the entire bovine papilloma virus DNA and the cDNA sequence of Table 3 coding for human EPO.

5. The cell of claim 4, wherein said cell is a C127 or 3T3 cell.

6. The cell of claim 5, wherein said EPO DNA is under transcriptional control of a mouse metallothionein promoter.

55 7. The cell of claim 5, wherein said cell contains a plasmid comprising DNA from pdBPV-MMTneo (342-12) (ATCC 37224).

8. Method for producing recombinant human erythropoietin (hEPO) by the steps of

(a) culturing, in a suitable medium, CHO cells which contain, operatively linked to an expression control sequence, a DNA sequence encoding hEPO, and
5 (b) recovering and separating the recombinant hEPO produced from the cells and the medium,

characterized in that CHO cells are used which have the capability of producing N- and O-linked glycosylation, with incorporation of fucose and N-acetylgalactosamine, and that recombinant hEPO with N- and O-linked glycosylation is recovered and separated from the cells and the medium.

10

9. Method according to claim 8, wherein the recombinant hEPO has a glycosylation pattern comprising relative molar levels of hexoses to N-acetylglucosamine (NacGlc) of 1.4: 1, specifically galactose : NacGlc = 0.9 : 1 and mannose: NacGlc = 0.5: 1.

15

Claims for the following Contracting State : AT

1. A mammalian cell transformed with a transfer vector containing cDNA encoding human EPO of clone lambda HEPOFL13 (ATCC 40153).

20

2. The cell of claim 1, wherein said mammalian cell is a 3T3, C117 or CHO cell.

3. A mammalian cell containing a plasmid which contains the entire bovine papilloma virus DNA and the cDNA sequence of Table 3 coding for human EPO.

25

4. The cell of claim 3 wherein said cell is a C117 or 3T3 cell.

5. The cell of claim 4 wherein said EPO DNA is under transcriptional control of a mouse metallothionein promoter.

30

6. The cell of claim 4 wherein said cell contains a plasmid comprising DNA from pdBPV-MMT neo (342-12) (ATCC 37224)

7. Method for producing recombinant human erythropoietin (hEPO) by the steps of

35

(a) culturing, in a suitable medium, CHO cells which contain, operatively linked to an expression control sequence, a DNA sequence encoding hEPO, and
(b) recovering and separating the recombinant hEPO produced from the cells and the medium,

40

characterized in that CHO cells are used which have the capability of producing N- and O-linked glycosylation, with incorporation of fucose and N-acetylgalactosamine, and that recombinant hEPO with N- and O-linked glycosylation is recovered and separated from the cells and the medium.

8. Method according to claim 8, wherein the recombinant hEPO has a glycosylation pattern comprising relative molar levels of hexoses to N-acetylglucosamine (NacGlc) of 1.4: 1, specifically galactose : NacGlc = 0.9 : 1 and mannose: NacGlc = 0.5: 1.

Patentansprüche

50

Patentansprüche für folgende Vertragsstaaten : BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

1. Rekombinanter DNA Plasmidvektor, der für humanes EPO des Klons Lambda HEPOFL13 (ATCC 40153) kodierende cDNA enthält.

55

2. Säugerzelle, die mit dem Transfervektor nach Anspruch 1 transformiert ist.

3. Zelle nach Anspruch 2, worin die Säugerzelle eine 3T3-, C127-oder CHO-Zelle ist.

4. Sägerzelle, die ein Plasmid enthält, das die gesamte Rinder-Papillomavirus DNA und die für humanes EPO kodierende cDNA-Sequenz gemäß Tabelle 3 enthält.
5. Zelle nach Anspruch 4, worin die Zelle eine C127- oder 3T3-Zelle ist.
6. Zelle nach Anspruch 5, worin die EPO DNA unter transkriptionaler Kontrolle eines Maus-Metallothioneinpromotors ist.
7. Zelle nach Anspruch 5, worin die Zelle ein Plasmid enthält, das DNA aus pdBPV-MMTneo(342-12) (ATCC 37224) enthält.
- 10 8. Verfahren zur Herstellung von rekombinantern humanem Erythropoietin (hEPO) durch die Schritte:
 - (a) Kultivieren von CHO-Zellen, die eine für humanes Erythropoietin kodierende DNA-Sequenz enthalten, in einem geeigneten Medium, wobei die DNA-Sequenz operativ mit einer Expressionskontrollsequenz verknüpft ist, und
 - (b) Gewinnen und Abtrennen des rekombinanten hEPO von den Zellen und dem Medium,

15 dadurch gekennzeichnet, daß CHO-Zellen verwendet werden, welche die Fähigkeit zur Bildung von N- und O-verknüpfter Glykosylierung unter Einbau von Fucose und N-Acetylgalactosamin haben und daß rekombinantes hEPO mit N- und O-verknüpfter Glykosylierung gewonnen und von den Zellen und dem Medium abgetrennt wird.

- 20 9. Verfahren nach Anspruch 8, worin das rekombinante hEPO ein Glykosilierungsmuster hat, das relative molare Mengen von Hexosen zu N-Acetylglucosamin (NacGlc) von 1,4 : 1, insbesondere Galactose : NacGlc = 0,9 : 1 und Mannose : NacGlc = 0,5 : 1 umfaßt.
- 25

Patentansprüche für folgenden Vertragsstaat : AT

- 30 1. Sägerzelle, die mit einem Transfervektor transformiert ist, der für humanes EPO des Klons Lambda HEPOFL13 (ATCC 40153) kodierende cDNA enthält.
2. Zelle nach Anspruch 1, worin die Sägerzelle eine 3T3-, C127- oder CHO-Zelle ist.
- 35 3. Sägerzelle, die ein Plasmid enthält, das die gesamte Rinder-Papillomavirus DNA und die für humanes EPO kodierende cDNA-Sequenz gemäß Tabelle 3 enthält.
4. Zelle nach Anspruch 3, worin die Zelle eine C127- oder 3T3-Zelle ist.
- 40 5. Zelle nach Anspruch 4, worin die EPO DNA unter transkriptionaler Kontrolle eines Maus-Metallothioneinpromotors ist.
6. Zelle nach Anspruch 4, worin die Zelle ein Plasmid enthält, das DNA aus pdBPV-MMTneo(342-12) (ATCC 37224) enthält.
- 45 7. Verfahren zur Herstellung von rekombinantern humanem Erythropoietin (hEPO) durch die Schritte:
 - (a) Kultivieren von CHO-Zellen, die eine für humanes Erythropoietin kodierende DNA-Sequenz enthalten, in einem geeigneten Medium, wobei die DNA-Sequenz operativ mit einer Expressionskontrollsequenz verknüpft ist, und
 - (b) Gewinnen und Abtrennen des gebildeten rekombinanten hEPO von den Zellen und dem Medium,

50 dadurch gekennzeichnet, daß CHO-Zellen verwendet werden, welche die Fähigkeit zur Bildung von N- und O-verknüpfter Glykosylierung unter Einbau von Fucose und N-Acetylgalactosamin haben und daß rekombinantes hEPO mit N- und O-verknüpfter Glykosylierung gewonnen und von den Zellen und dem Medium abgetrennt wird.

- 55 8. Verfahren nach Anspruch 7, worin das rekombinante hEPO ein Glykosilierungsmuster hat, das relative molare Mengen von Hexosen zu N-Acetylglucosamin (NacGlc) von 1,4 : 1, insbesondere Galactose : NacGlc = 0,9 : 1 und

Mannose : Nacglc = 0,5 : 1 umfaßt.

Revendications

5

Revendications pour les Etats contractants suivants : BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

1. Vecteur plasmidique d'ADN recombiné contenant un ADNc codant l'EPO humaine du clone lambda HEPOFL13 (ATCC 40153).

2. Cellule de mammifère transformée avec le vecteur de transfert selon la revendication 1.

3. Cellule selon la revendication 2, dans laquelle ladite cellule de mammifère est une cellule 3T3, C127 ou CHO.

4. Cellule de mammifère contenant un plasmide qui contient l'ADN complet du virus du papillome bovin et la séquence d'ADNc du tableau 3 codant l'EPO humaine.

5. Cellule selon la revendication 4, dans laquelle ladite cellule est une cellule C127 ou 3T3.

6. Cellule selon la revendication 5, dans laquelle ledit ADN d'EPO est sous le contrôle transcriptionnel d'un promoteur de métallothionéine de souris.

7. Cellule selon la revendication 5, dans laquelle ladite cellule contient un plasmide comprenant un ADN issu de pdBPV-MMTneo(342-12) (ATCC 37224).

8. Procédé de production d'érythropoïétine humaine (hEPO) recombinée par les étapes consistant à :

30 a) cultiver dans un milieu approprié des cellules CHO qui contiennent une séquence d'ADN codant la hEPO, liée de façon active à une séquence de contrôle de l'expression, et
b) récupérer et séparer la hEPO recombinée produite à partir des cellules et du milieu,

35 caractérisé en ce que l'on utilise des cellules CHO qui sont capables de produire une glycosylation N- et O-liée, avec incorporation de fucose et de N-acétylgalactosamine, et en ce qu'une hEPO recombinée à glycosylation N- et O-liée est récupérée et séparée à partir des cellules et du milieu.

9. Procédé selon la revendication 8, dans lequel la hEPO recombinée a un motif de glycosylation comprenant des niveaux molaires relatifs d'hexoses à la N-acétylgalacosamine (Nacglc) de 1,4 : 1, spécifiquement de galactose: Nacglc = 0,9 : 1 et de mannose:Nacglc = 0,5 : 1.

40

Revendications pour l'Etat contractant suivant : AT

1. Cellule de mammifère transformée avec vecteur de transfert contenant un ADNc codant l'EPO humaine du clone lambda HEPOFL13 (ATCC 40153).

2. Cellule selon la revendication 1, dans laquelle ladite cellule de mammifère est une cellule 3T3, C127 ou CHO.

3. Cellule de mammifère contenant un plasmide qui contient l'ADN complet du virus du papillome bovin et la séquence d'ADNc du tableau 3 codant l'EPO humaine.

4. Cellule selon la revendication 3, dans laquelle ladite cellule est une cellule C127 ou 3T3.

5. Cellule selon la revendication 4, dans laquelle ledit ADN d'EPO est sous le contrôle transcriptionnel d'un promoteur de métallothionéine de souris.

6. Cellule selon la revendication 4, dans laquelle ladite cellule contient un plasmide comprenant un ADN issu de pdBPV-MMTneo(342-12) (ATCC 37224).

7. Procédé de production d'érythropoïétine humaine (hEPO) recombinée par les étapes consistant à

5 a) cultiver dans un milieu approprié des cellules CHO qui contiennent une séquence d'ADN codant la hEPO, liée de façon active à une séquence de contrôle de l'expression, et
b) récupérer et séparer la hEPO recombinée produite à partir des cellules et du milieu,

10 caractérisé en ce que l'on utilise des cellules CHO qui sont capables de produire une glycosylation N- et O-liée, avec incorporation de fucose et de N-acétylgalactosamine, et en ce qu'une hEPO recombinée à glycosylation N- et O-liée est récupérée et séparée à partir des cellules et du milieu.

15 8. Procédé selon la revendication 7, dans lequel la hEPO recombinée a un motif de glycosylation comprenant des niveaux molaires relatifs d'hexoses à la N-acétylglicosamine (Nacglc) de 1,4 : 1, spécifiquement de galactose: Nacglc = 0,9 : 1 et de mannose:Nacglc = 0,5 : 1.

15

20

25

30

35

40

45

50

55

FIG. I

FIG. 2

FIG. 3

FIG. 4

FIG. 5A

FIG. 5A'

FIG. 5B

FIG. 5C

FIG. 6

FIG. 7

FIG. 8

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)