In [16]: # Data Analysis & Wrangling

import pandas as pd import numpy as np import random as rnd

Visualization

import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline

```
In [17]: # Read The Dataset

CreditCard = pd.read_csv("E:/Data Sets/creditcard.csv")
print(CreditCard)
```

```
Time
                       ۷1
                                  V2
                                           V3
                                                     ٧4
                                                              V5 \
0
                -1.359807
                           -0.072781 2.536347 1.378155 -0.338321
            0.0
1
                            0.266151 0.166480
                                               0.448154 0.060018
            0.0
                 1.191857
2
                -1.358354
                          -1.340163 1.773209
                                               0.379780 -0.503198
            1.0
3
                 -0.966272
                           -0.185226 1.792993 -0.863291 -0.010309
            1.0
4
            2.0
                 -1.158233
                            0.877737 1.548718 0.403034 -0.407193
                      . . .
                                 . . .
284802 172786.0 -11.881118
                           10.071785 -9.834783 -2.066656 -5.364473
284803 172787.0 -0.732789
                           -0.055080 2.035030 -0.738589 0.868229
284804 172788.0
                 1.919565
                          -0.301254 -3.249640 -0.557828 2.630515
                            0.530483 0.702510 0.689799 -0.377961
284805 172788.0 -0.240440
284806 172792.0 -0.533413 -0.189733 0.703337 -0.506271 -0.012546
             V6
                      V7
                                V8
                                         V9
                                                       V21
                                                                V22 \
                                             . . .
0
       0.462388 0.239599 0.098698 0.363787
                                             ... -0.018307 0.277838
1
      -0.082361 -0.078803 0.085102 -0.255425
                                             ... -0.225775 -0.638672
2
       1.800499 0.791461 0.247676 -1.514654
                                             ... 0.247998 0.771679
3
       1.247203 0.237609 0.377436 -1.387024
                                             ... -0.108300 0.005274
       0.095921 0.592941 -0.270533 0.817739
                                             ... -0.009431 0.798278
4
284802 -2.606837 -4.918215 7.305334 1.914428
                                                  0.213454
                                                           0.111864
                                             . . .
284803 1.058415 0.024330 0.294869
                                   0.584800
                                                  0.214205 0.924384
284804 3.031260 -0.296827 0.708417 0.432454
                                                  0.232045 0.578229
284805 0.623708 -0.686180 0.679145 0.392087
                                             . . .
                                                  0.265245 0.800049
284806 -0.649617 1.577006 -0.414650 0.486180
                                                  0.261057 0.643078
            V23
                     V24
                               V25
                                         V26
                                                  V27
                                                                Amount \
                                                           V28
                         0.128539 -0.189115 0.133558 -0.021053
0
      -0.110474 0.066928
                                                                149.62
1
       0.101288 -0.339846 0.167170 0.125895 -0.008983
                                                                  2.69
                                                     0.014724
       0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
                                                                378.66
3
      -0.190321 -1.175575 0.647376 -0.221929 0.062723
                                                      0.061458
                                                                123.50
      -0.137458 0.141267 -0.206010 0.502292 0.219422
                                                                 69.99
                                                      0.215153
                                                                   . . .
284802 1.014480 -0.509348 1.436807 0.250034 0.943651
                                                      0.823731
                                                                  0.77
24.79
284804 -0.037501 0.640134 0.265745 -0.087371 0.004455 -0.026561
                                                                 67.88
284805 -0.163298 0.123205 -0.569159 0.546668 0.108821 0.104533
                                                                 10.00
284806 0.376777 0.008797 -0.473649 -0.818267 -0.002415 0.013649
                                                                217.00
       Class
```

localhost:8888/notebooks/Credit Card Dataset.ipynb

0

0

[284807 rows x 31 columns]

In [18]: # Viewing The Data First 10 Rows From The CreditCard Dataset

CreditCard.head(10)

Out[18]:

	Time	V1	V2	V3	V4	V5	V6	V 7	V8	V9	 V21	V22	V23	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.110474	0.06
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.101288	-0.33
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.909412	-0.68
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.190321	-1.17
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.137458	0.14
5	2.0	-0.425966	0.960523	1.141109	-0.168252	0.420987	-0.029728	0.476201	0.260314	-0.568671	 -0.208254	-0.559825	-0.026398	-0.37
6	4.0	1.229658	0.141004	0.045371	1.202613	0.191881	0.272708	-0.005159	0.081213	0.464960	 -0.167716	-0.270710	-0.154104	-0.78
7	7.0	-0.644269	1.417964	1.074380	-0.492199	0.948934	0.428118	1.120631	-3.807864	0.615375	 1.943465	-1.015455	0.057504	-0.64
8	7.0	-0.894286	0.286157	-0.113192	-0.271526	2.669599	3.721818	0.370145	0.851084	-0.392048	 -0.073425	-0.268092	-0.204233	1.01
9	9.0	-0.338262	1.119593	1.044367	-0.222187	0.499361	-0.246761	0.651583	0.069539	-0.736727	 -0.246914	-0.633753	-0.120794	-0.38

10 rows × 31 columns

--

Out[13]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	
284787	172769.0	-1.029719	-1.110670	-0.636179	-0.840816	2.424360	-2.956733	0.283610	-0.332656	-0.247488	 0.353722	0.488487	0.29
284788	172770.0	2.007418	-0.280235	-0.208113	0.335261	-0.715798	-0.751373	-0.458972	-0.140140	0.959971	 -0.208260	-0.430347	0.41
284789	172770.0	-0.446951	1.302212	-0.168583	0.981577	0.578957	-0.605641	1.253430	-1.042610	-0.417116	 0.851800	0.305268	-0.14
284790	172771.0	-0.515513	0.971950	-1.014580	-0.677037	0.912430	-0.316187	0.396137	0.532364	-0.224606	 -0.280302	-0.849919	0.30
284791	172774.0	-0.863506	0.874701	0.420358	-0.530365	0.356561	-1.046238	0.757051	0.230473	-0.506856	 -0.108846	-0.480820	-0.07
284792	172774.0	-0.724123	1.485216	-1.132218	-0.607190	0.709499	-0.482638	0.548393	0.343003	-0.226323	 0.414621	1.307511	-0.05
284793	172775.0	1.971002	-0.699067	-1.697541	-0.617643	1.718797	3.911336	-1.259306	1.056209	1.315006	 0.188758	0.694418	0.16
284794	172777.0	-1.266580	-0.400461	0.956221	-0.723919	1.531993	-1.788600	0.314741	0.004704	0.013857	 -0.157831	-0.883365	0.08
284795	172778.0	-12.516732	10.187818	-8.476671	-2.510473	-4.586669	-1.394465	-3.632516	5.498583	4.893089	 -0.944759	-1.565026	0.89
284796	172780.0	1.884849	-0.143540	-0.999943	1.506772	-0.035300	-0.613638	0.190241	-0.249058	0.666458	 0.144008	0.634646	-0.04
284797	172782.0	-0.241923	0.712247	0.399806	-0.463406	0.244531	-1.343668	0.929369	-0.206210	0.106234	 -0.228876	-0.514376	0.27
284798	172782.0	0.219529	0.881246	-0.635891	0.960928	-0.152971	-1.014307	0.427126	0.121340	-0.285670	 0.099936	0.337120	0.25
284799	172783.0	-1.775135	-0.004235	1.189786	0.331096	1.196063	5.519980	-1.518185	2.080825	1.159498	 0.103302	0.654850	-0.34
284800	172784.0	2.039560	-0.175233	-1.196825	0.234580	-0.008713	-0.726571	0.017050	-0.118228	0.435402	 -0.268048	-0.717211	0.29
284801	172785.0	0.120316	0.931005	-0.546012	-0.745097	1.130314	-0.235973	0.812722	0.115093	-0.204064	 -0.314205	-0.808520	0.05
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	 0.213454	0.111864	1.01
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	 0.214205	0.924384	0.01
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	 0.232045	0.578229	-0.03
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	 0.265245	0.800049	-0.16
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	 0.261057	0.643078	0.37

20 rows × 31 columns

4

```
In [21]: # I Wanted To See The Description Of The Dataset While Rounding Up The Floated Fraction To 2 Decimals.
# I Also Transpose The Result To Be Able To See The Entire Columns
round(CreditCard.describe(), 2).T
#CreditCard.round(2)
```

Out[21]:

	count	mean	std	min	25%	50%	75%	max
Time	284807.0	94813.86	47488.15	0.00	54201.50	84692.00	139320.50	172792.00
V1	284807.0	0.00	1.96	-56.41	-0.92	0.02	1.32	2.45
V2	284807.0	-0.00	1.65	-72.72	-0.60	0.07	0.80	22.06
V3	284807.0	-0.00	1.52	-48.33	-0.89	0.18	1.03	9.38
V4	284807.0	0.00	1.42	-5.68	-0.85	-0.02	0.74	16.88
V5	284807.0	0.00	1.38	-113.74	-0.69	-0.05	0.61	34.80
V6	284807.0	0.00	1.33	-26.16	-0.77	-0.27	0.40	73.30
V7	284807.0	-0.00	1.24	-43.56	-0.55	0.04	0.57	120.59
V8	284807.0	0.00	1.19	-73.22	-0.21	0.02	0.33	20.01
V9	284807.0	-0.00	1.10	-13.43	-0.64	-0.05	0.60	15.59
V10	284807.0	0.00	1.09	-24.59	-0.54	-0.09	0.45	23.75
V11	284807.0	0.00	1.02	-4.80	-0.76	-0.03	0.74	12.02
V12	284807.0	0.00	1.00	-18.68	-0.41	0.14	0.62	7.85
V13	284807.0	0.00	1.00	-5.79	-0.65	-0.01	0.66	7.13
V14	284807.0	-0.00	0.96	-19.21	-0.43	0.05	0.49	10.53
V15	284807.0	-0.00	0.92	-4.50	-0.58	0.05	0.65	8.88
V16	284807.0	-0.00	0.88	-14.13	-0.47	0.07	0.52	17.32
V17	284807.0	-0.00	0.85	-25.16	-0.48	-0.07	0.40	9.25
V18	284807.0	0.00	0.84	-9.50	-0.50	-0.00	0.50	5.04
V19	284807.0	0.00	0.81	-7.21	-0.46	0.00	0.46	5.59
V20	284807.0	0.00	0.77	-54.50	-0.21	-0.06	0.13	39.42
V21	284807.0	-0.00	0.73	-34.83	-0.23	-0.03	0.19	27.20
V22	284807.0	-0.00	0.73	-10.93	-0.54	0.01	0.53	10.50
V23	284807.0	-0.00	0.62	-44.81	-0.16	-0.01	0.15	22.53
V24	284807.0	0.00	0.61	-2.84	-0.35	0.04	0.44	4.58

	count	mean	std	min	25%	50%	75%	max
V25	284807.0	-0.00	0.52	-10.30	-0.32	0.02	0.35	7.52
V26	284807.0	-0.00	0.48	-2.60	-0.33	-0.05	0.24	3.52
V27	284807.0	0.00	0.40	-22.57	-0.07	0.00	0.09	31.61
V28	284807.0	-0.00	0.33	-15.43	-0.05	0.01	0.08	33.85
Amount	284807.0	88.35	250.12	0.00	5.60	22.00	77.16	25691.16
Class	284807.0	0.00	0.04	0.00	0.00	0.00	0.00	1.00

```
7/20/24, 11:56 PM
                                                                     Credit Card Dataset - Jupyter Notebook
      In [22]: # Checking For Any NaN or Null Values In The Columns Of The Dataset
                CreditCard.isna().sum()
      Out[22]: Time
                           0
                ٧1
                           0
                V2
                           0
                V3
                ٧4
                V5
                ۷6
                ٧7
                ٧8
                V9
                V10
                V11
                V12
                V13
                V14
                V15
                V16
                V17
                V18
                V19
```

dtype: int64

V20 V21 V22 V23 V24 V25 V26 V27 V28 Amount Class

Out[23]: 1081

In [24]: # Dropping Or Deleting The Duplicated Data Values

CreditCard.drop_duplicates()

Out[24]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.11(
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.10
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.909
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.19(
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.137
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	 0.213454	0.111864	1.014
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	 0.214205	0.924384	0.012
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	 0.232045	0.578229	-0.037
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	 0.265245	0.800049	-0.160
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	 0.261057	0.643078	0.376

283726 rows × 31 columns

4

```
In [25]: # Checking The Class Of Identified Legit & Fraudulent Transactions
CreditCard["Class"].value_counts()
```

Out[25]: Class

0 2843151 492

Name: count, dtype: int64

```
In [32]: import seaborn as sb
import matplotlib.pyplot as plt

ax = sb.countplot(data = CreditCard, x ="Class", width = 0.5)
ax.set_title("Distribution of Transaction")
plt.xlabel("Type of Transaction")
plt.ylabel("Number of Transaction")

# Add bar LabeLs
for p in ax.patches:
    ax.annotate(f"{p.get_height():.0f}", (p.get_x() + p.get_width() / 2, p.get_height()), ha="center", va="center")

plt.show()
```



```
In [33]: plt.figure(figsize = (20, 12))
    ax = sb.heatmap(CreditCard.corr(), annot = True, fmt = '.2f')

for i in range(CreditCard.shape[1] + 1):
    ax.axvline(i, color = 'black', lw = 2)
    ax.axvline(i, color = 'black', lw = 2)

#Plt.tight_Layout()
plt.show()
```


- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

```
In [35]: # Create A Function That Seperates The Class Of Transactions Between Fraud & Legit Transactions

def split_data_by_class(CreditCard):
    legit = CreditCard[CreditCard["Class"] == 0]
    fraud = CreditCard[CreditCard["Class"] == 1]
    return legit, fraud

# Example Usage

legit_df, fraud_df = split_data_by_class(CreditCard)
```

```
In [36]: legit_df.info()
```

<class 'pandas.core.frame.DataFrame'> Index: 284315 entries, 0 to 284806 Data columns (total 31 columns): Column Non-Null Count Dtvpe 0 Time 284315 non-null float64 1 V1 284315 non-null float64 2 V2 284315 non-null float64 3 V3 284315 non-null float64 284315 non-null float64 V4 5 V5 284315 non-null float64 284315 non-null float64 6 V6 7 284315 non-null float64 V7 8 V8 284315 non-null float64 V9 9 284315 non-null float64 284315 non-null float64 V10 10 V11 284315 non-null float64 11 12 V12 284315 non-null float64 13 V13 284315 non-null float64 V14 284315 non-null float64 14 15 V15 284315 non-null float64 16 V16 284315 non-null float64 V17 17 284315 non-null float64 18 V18 284315 non-null float64 19 V19 284315 non-null float64 V20 20 284315 non-null float64 V21 21 284315 non-null float64 22 V22 284315 non-null float64 23 V23 284315 non-null float64 V24 24 284315 non-null float64 284315 non-null float64 25 V25 V26 284315 non-null float64 26 V27 27 284315 non-null float64 28 V28 284315 non-null float64 Amount 284315 non-null float64 30 Class 284315 non-null int64 dtypes: float64(30), int64(1)

memory usage: 69.4 MB

```
In [37]: fraud_df.info()
```

<class 'pandas.core.frame.DataFrame'> Index: 492 entries, 541 to 281674 Data columns (total 31 columns): Column Non-Null Count Dtype Time 0 492 non-null float64 1 V1 492 non-null float64 492 non-null float64 2 V2 3 V3 492 non-null float64 ٧4 float64 4 492 non-null 492 non-null float64 5 V5 float64 6 V6 492 non-null 7 ۷7 float64 492 non-null 8 V8 492 non-null float64 V9 float64 9 492 non-null V10 float64 10 492 non-null V11 float64 11 492 non-null V12 float64 12 492 non-null 13 V13 492 non-null float64 V14 float64 14 492 non-null V15 492 non-null float64 15 V16 float64 16 492 non-null V17 float64 17 492 non-null 18 V18 492 non-null float64 float64 19 V19 492 non-null V20 492 non-null float64 20 V21 21 492 non-null float64 float64 22 V22 492 non-null 23 V23 492 non-null float64 V24 float64 24 492 non-null float64 25 V25 492 non-null 492 non-null float64 V26 26 V27 492 non-null float64 27 28 V28 492 non-null float64 492 non-null Amount float64 int64 30 Class 492 non-null

dtypes: float64(30), int64(1)

memory usage: 123.0 KB

In [38]: |legit_df.describe().T

Out[38]:

	count	mean	std	min	25%	50%	75%	max
Time	284315.0	94838.202258	47484.015786	0.000000	54230.000000	84711.000000	139333.000000	172792.000000
V1	284315.0	0.008258	1.929814	-56.407510	-0.917544	0.020023	1.316218	2.454930
V2	284315.0	-0.006271	1.636146	-72.715728	-0.599473	0.064070	0.800446	18.902453
V3	284315.0	0.012171	1.459429	-48.325589	-0.884541	0.182158	1.028372	9.382558
V4	284315.0	-0.007860	1.399333	-5.683171	-0.850077	-0.022405	0.737624	16.875344
V5	284315.0	0.005453	1.356952	-113.743307	-0.689399	-0.053457	0.612181	34.801666
V6	284315.0	0.002419	1.329913	-26.160506	-0.766847	-0.273123	0.399619	73.301626
V7	284315.0	0.009637	1.178812	-31.764946	-0.551442	0.041138	0.571019	120.589494
V8	284315.0	-0.000987	1.161283	-73.216718	-0.208633	0.022041	0.326200	18.709255
V9	284315.0	0.004467	1.089372	-6.290730	-0.640412	-0.049964	0.598230	15.594995
V10	284315.0	0.009824	1.044204	-14.741096	-0.532880	-0.091872	0.455135	23.745136
V11	284315.0	-0.006576	1.003112	-4.797473	-0.763447	-0.034923	0.736362	10.002190
V12	284315.0	0.010832	0.945939	-15.144988	-0.402102	0.141679	0.619207	7.848392
V13	284315.0	0.000189	0.995067	-5.791881	-0.648067	-0.013547	0.662492	7.126883
V14	284315.0	0.012064	0.897007	-18.392091	-0.422453	0.051947	0.494104	10.526766
V15	284315.0	0.000161	0.915060	-4.391307	-0.582812	0.048294	0.648842	8.877742
V16	284315.0	0.007164	0.844772	-10.115560	-0.465543	0.067377	0.523738	17.315112
V17	284315.0	0.011535	0.749457	-17.098444	-0.482644	-0.064833	0.399922	9.253526
V18	284315.0	0.003887	0.824919	-5.366660	-0.497414	-0.002787	0.501103	5.041069
V19	284315.0	-0.001178	0.811733	-7.213527	-0.456366	0.003117	0.457499	5.591971
V20	284315.0	-0.000644	0.769404	-54.497720	-0.211764	-0.062646	0.132401	39.420904
V21	284315.0	-0.001235	0.716743	-34.830382	-0.228509	-0.029821	0.185626	22.614889
V22	284315.0	-0.000024	0.723668	-10.933144	-0.542403	0.006736	0.528407	10.503090
V23	284315.0	0.000070	0.621541	-44.807735	-0.161702	-0.011147	0.147522	22.528412
V24	284315.0	0.000182	0.605776	-2.836627	-0.354425	0.041082	0.439869	4.584549

	count	mean	std	min	25%	50%	75%	max
V25	284315.0	-0.000072	0.520673	-10.295397	-0.317145	0.016417	0.350594	7.519589
V26	284315.0	-0.000089	0.482241	-2.604551	-0.327074	-0.052227	0.240671	3.517346
V27	284315.0	-0.000295	0.399847	-22.565679	-0.070852	0.001230	0.090573	31.612198
V28	284315.0	-0.000131	0.329570	-15.430084	-0.052950	0.011199	0.077962	33.847808
Amount	284315.0	88.291022	250.105092	0.000000	5.650000	22.000000	77.050000	25691.160000
Class	284315.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

In [39]: fraud_df.describe().T

Out[39]:

	count	mean	std	min	25%	50%	75%	max
Time	492.0	80746.806911	47835.365138	406.000000	41241.500000	75568.500000	128483.000000	170348.000000
V1	492.0	-4.771948	6.783687	-30.552380	-6.036063	-2.342497	-0.419200	2.132386
V2	492.0	3.623778	4.291216	-8.402154	1.188226	2.717869	4.971257	22.057729
V3	492.0	-7.033281	7.110937	-31.103685	-8.643489	-5.075257	-2.276185	2.250210
V4	492.0	4.542029	2.873318	-1.313275	2.373050	4.177147	6.348729	12.114672
V5	492.0	-3.151225	5.372468	-22.105532	-4.792835	-1.522962	0.214562	11.095089
V6	492.0	-1.397737	1.858124	-6.406267	-2.501511	-1.424616	-0.413216	6.474115
V7	492.0	-5.568731	7.206773	-43.557242	-7.965295	-3.034402	-0.945954	5.802537
V8	492.0	0.570636	6.797831	-41.044261	-0.195336	0.621508	1.764879	20.007208
V9	492.0	-2.581123	2.500896	-13.434066	-3.872383	-2.208768	-0.787850	3.353525
V10	492.0	-5.676883	4.897341	-24.588262	-7.756698	-4.578825	-2.614184	4.031435
V11	492.0	3.800173	2.678605	-1.702228	1.973397	3.586218	5.307078	12.018913
V12	492.0	-6.259393	4.654458	-18.683715	-8.688177	-5.502530	-2.974088	1.375941
V13	492.0	-0.109334	1.104518	-3.127795	-0.979117	-0.065566	0.672964	2.815440
V14	492.0	-6.971723	4.278940	-19.214325	-9.692723	-6.729720	-4.282821	3.442422
V15	492.0	-0.092929	1.049915	-4.498945	-0.643539	-0.057227	0.609189	2.471358
V16	492.0	-4.139946	3.865035	-14.129855	-6.562915	-3.549795	-1.226043	3.139656
V17	492.0	-6.665836	6.970618	-25.162799	-11.945057	-5.302949	-1.341940	6.739384
V18	492.0	-2.246308	2.899366	-9.498746	-4.664576	-1.664346	0.091772	3.790316
V19	492.0	0.680659	1.539853	-3.681904	-0.299423	0.646807	1.649318	5.228342
V20	492.0	0.372319	1.346635	-4.128186	-0.171760	0.284693	0.822445	11.059004
V21	492.0	0.713588	3.869304	-22.797604	0.041787	0.592146	1.244611	27.202839
V22	492.0	0.014049	1.494602	-8.887017	-0.533764	0.048434	0.617474	8.361985
V23	492.0	-0.040308	1.579642	-19.254328	-0.342175	-0.073135	0.308378	5.466230
V24	492.0	-0.105130	0.515577	-2.028024	-0.436809	-0.060795	0.285328	1.091435

	count	mean	std	min	25%	50%	75%	max
V25	492.0	0.041449	0.797205	-4.781606	-0.314348	0.088371	0.456515	2.208209
V26	492.0	0.051648	0.471679	-1.152671	-0.259416	0.004321	0.396733	2.745261
V27	492.0	0.170575	1.376766	-7.263482	-0.020025	0.394926	0.826029	3.052358
V28	492.0	0.075667	0.547291	-1.869290	-0.108868	0.146344	0.381152	1.779364
Amount	492.0	122.211321	256.683288	0.000000	1.000000	9.250000	105.890000	2125.870000
Class	492.0	1.000000	0.000000	1.000000	1.000000	1.000000	1.000000	1.000000

In [40]: # Sampling The Legit Transaction To A Match a 492 Rows
new_legit_df = legit_df.sample(n = 494)

In [41]: print(new_legit_df)

```
Time
                      V1
                                V2
                                         V3
                                                   ٧4
                                                            V5
                                                                      V6 \
265733 162024.0 1.974207 -0.387430 -0.451689 0.134795 -0.515102 -0.229197
61753
        49972.0 -0.758607 0.449404 1.065224 -1.031592 1.919861 4.114126
80912
        58712.0 -1.271449 0.119183 2.663678 -0.376898 -1.099947 0.683283
71661
        54388.0 1.127480 -0.023485 0.704488 0.767368 -0.421560
123351
        76892.0 0.726659 -1.082094 0.922459 0.348667 -0.974547 0.963774
. . .
                                        . . .
189145 128276.0 0.438663 -3.829177 -1.439196 0.026570 -2.114516 -0.477849
247375 153555.0 2.003203 -0.905000 -0.621291 -1.596843 -0.715603 -0.317958
277346 167601.0 2.043279 0.107894 -1.707238 0.438046 0.380913 -0.895351
      128570.0 -0.086611 -0.499212 1.049712 -1.573742 -0.259965 -0.932601
189809
4618
         3980.0 -0.831683 1.600308 1.395368 0.453966 0.081371 -0.847971
             V7
                      V8
                                V9
                                             V21
                                                       V22
                                                                V23 \
                                   . . .
265733 -0.633304 0.147492 1.236572 ... -0.098344 -0.216356 0.310272
61753 -0.474848 1.218376 0.161696
                                   ... -0.135367 -0.305711 -0.271313
80912
       0.612386 0.301021 0.269563 ... 0.334883 0.889258 0.135969
71661 -0.251870 0.122076 0.216395
                                    ... 0.012993 0.327089 -0.055351
123351 -0.701790 0.469820 0.928445
                                    ... -0.022200 -0.209063 -0.023710
                                             . . .
                               . . .
189145 0.228858 -0.278248
                         0.250504
                                        0.314252 -1.077135 -0.329995
                                   . . .
247375 -0.735025 -0.108139 2.292791 ... 0.058700 0.409572 0.052608
277346 0.203800 -0.240379 0.495955
                                    ... -0.353709 -0.949931 0.330885
189809 -0.380530 -0.021664 1.547456
                                   ... 0.337319 1.140715 0.307814
       0.717814 -0.370201 1.434830
4618
                                   ... -0.473444 -0.767179 0.022050
            V24
                     V25
                               V26
                                        V27
                                                  V28 Amount
                                                             Class
265733 -0.551677 -0.391564 -0.910489 0.051991 -0.043761
                                                         1.00
61753
       1.033032 0.392411 0.382671 0.298780 0.130677
                                                       11.50
80912
       0.142221 0.354853 0.569772 0.238929 0.146259
                                                       209.00
71661
       0.307961 0.483801 0.435412 0.002703 0.000866
                                                         5.47
                                                                  0
123351 -0.222476 -0.122534 0.935237 -0.039644 0.028365
                                                                  0
                                                       188.45
189145 -0.039156 -0.864277 -0.659462 -0.163278 0.107499
                                                       894.42
                                                                  0
247375 -0.930707 -0.189862 -0.254123 0.054057 -0.030343
                                                        58.97
16.99
                                                                  0
189809 0.050595 -1.612195 -0.356134 0.356488 0.317420
                                                        29.02
4618
       0.263935 -0.484123 0.065505 0.241210 0.109369
                                                         2.15
```

[494 rows x 31 columns]

```
In [42]: # Combine The Fraud & The Datasets
           combine df = pd.concat([new legit df, fraud df], axis = 0)
          # View The Combined Fraud & Legit Datasets
           combine df
Out[43]:
                                    V1
                                              V2
                                                        V3
                                                                  V4
                                                                             V5
                                                                                       V6
                                                                                                           V8
                                                                                                                     V9 ...
                                                                                                                                  V21
                                                                                                                                            V22
                       Time
                                                                                                 V7
            265733 162024.0
                              1.974207
                                        -0.387430
                                                 -0.451689
                                                            0.134795 -0.515102 -0.229197
                                                                                           -0.633304
                                                                                                     0.147492
                                                                                                                1.236572 ... -0.098344
                                                                                                                                       -0.216356
                                                                                                                                                  0.3102
                                                                                                                        ... -0.135367
             61753
                     49972.0
                             -0.758607
                                        0.449404
                                                  1.065224 -1.031592
                                                                       1.919861
                                                                                 4.114126
                                                                                           -0.474848
                                                                                                     1.218376
                                                                                                                0.161696
                                                                                                                                       -0.305711
                                                                                                                                                 -0.2713
             80912
                     58712.0 -1.271449
                                        0.119183
                                                   2.663678
                                                            -0.376898
                                                                      -1.099947
                                                                                 0.683283
                                                                                           0.612386
                                                                                                     0.301021
                                                                                                                0.269563 ...
                                                                                                                             0.334883
                                                                                                                                        0.889258
                                                                                                                                                  0.1359
             71661
                     54388.0
                              1.127480
                                        -0.023485
                                                             0.767368
                                                                      -0.421560
                                                                                 0.089989
                                                                                           -0.251870
                                                                                                     0.122076
                                                                                                                0.216395
                                                                                                                                        0.327089
                                                   0.704488
                                                                                                                         ...
                                                                                                                             0.012993
                                                                                                                                                 -0.0553
            123351
                     76892.0
                              0.726659
                                       -1.082094
                                                   0.922459
                                                             0.348667
                                                                      -0.974547
                                                                                 0.963774
                                                                                           -0.701790
                                                                                                     0.469820
                                                                                                                0.928445
                                                                                                                             -0.022200
                                                                                                                                       -0.209063
                                                                                                                                                 -0.0237
                    169142.0 -1.927883
                                        1.125653
                                                 -4.518331
                                                            1.749293 -1.566487 -2.010494
                                                                                           -0.882850
                                                                                                      0.697211 -2.064945 ...
                                                                                                                             0.778584
                                                                                                                                       -0.319189
                                                                                                                                                  0.6394
            280143 169347.0
                              1.378559
                                        1.289381
                                                  -5.004247
                                                             1.411850
                                                                       0.442581 -1.326536
                                                                                          -1.413170
                                                                                                     0.248525 -1.127396 ...
                                                                                                                                                 -0.1456
                                                                                                                             0.370612
                                                                                                                                        0.028234
            280149 169351.0 -0.676143
                                        1.126366
                                                 -2.213700
                                                             0.468308 -1.120541 -0.003346
                                                                                          -2.234739
                                                                                                     1.210158 -0.652250 ...
                                                                                                                             0.751826
                                                                                                                                        0.834108
                                                                                                                                                  0.1909
            281144 169966.0 -3.113832
                                        0.585864
                                                  -5.399730
                                                             1.817092
                                                                      -0.840618 -2.943548
                                                                                          -2.208002
                                                                                                     1.058733
                                                                                                               -1.632333 ...
                                                                                                                             0.583276
                                                                                                                                       -0.269209
                                                                                                                                                 -0.456^{\circ}
                                                                                                                0.577829 ... -0.164350 -0.295135
                              1.991976
                                                                       1.151147 -0.096695
                                                                                           0.223050 -0.068384
                                        0.158476 -2.583441
                                                             0.408670
           986 rows × 31 columns
          # Viewing The New Combine Data
In [44]:
           combine df["Class"].value counts()
Out[44]: Class
                 494
                 492
```

Name: count, dtype: int64

```
In [45]: # Visualizing The New Combine Data
import seaborn as sb
import matplotlib.pyplot as plt

ax = sb.countplot(data = combine_df, x ="Class", width = 0.5)
ax.set_title("Distribution of Transaction")
plt.xlabel("Type of Transaction")
plt.ylabel("Number of Transaction")

# Add bar LabeLs
for x in ax.containers:
    ax.bar_label(i)

plt.show()
```

```
AttributeError
                                          Traceback (most recent call last)
Cell In[45], line 13
     11 # Add bar labels
     12 for x in ax.containers:
            ax.bar label(i)
---> 13
     15 plt.show()
File ~\anaconda3\Lib\site-packages\matplotlib\axes\ axes.py:2714, in Axes.bar label(self, container, labels, fmt, la
bel type, padding, **kwargs)
            return 1 if x >= 0 else -1
   2710
   2712 _api.check_in_list(['edge', 'center'], label_type=label_type)
-> 2714 bars = container.patches
   2715 errorbar = container.errorbar
   2716 datavalues = container.datavalues
AttributeError: 'int' object has no attribute 'patches'
```



```
In [46]: x = combine_df.drop(columns = "Class", axis = 1)
y = combine_df['Class']
```

In [47]: x

Out[47]:

	Time	V1	V2	V3	V4	V5	V6	V 7	V8	V9	 V20	V21	\
265733	162024.0	1.974207	-0.387430	-0.451689	0.134795	-0.515102	-0.229197	-0.633304	0.147492	1.236572	 -0.290591	-0.098344	-0.2160
61753	49972.0	-0.758607	0.449404	1.065224	-1.031592	1.919861	4.114126	-0.474848	1.218376	0.161696	 0.282982	-0.135367	-0.305
80912	58712.0	-1.271449	0.119183	2.663678	-0.376898	-1.099947	0.683283	0.612386	0.301021	0.269563	 0.544463	0.334883	0.8892
71661	54388.0	1.127480	-0.023485	0.704488	0.767368	-0.421560	0.089989	-0.251870	0.122076	0.216395	 -0.101155	0.012993	0.3270
123351	76892.0	0.726659	-1.082094	0.922459	0.348667	-0.974547	0.963774	-0.701790	0.469820	0.928445	 0.196459	-0.022200	-0.209(
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	0.697211	-2.064945	 1.252967	0.778584	-0.319 ⁻
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	0.248525	-1.127396	 0.226138	0.370612	0.0282
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	1.210158	-0.652250	 0.247968	0.751826	0.834
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	1.058733	-1.632333	 0.306271	0.583276	-0.2692
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-0.068384	0.577829	 -0.017652	-0.164350	-0.295

986 rows × 30 columns

In [48]: y

Out[48]: 265733

Name: Class, Length: 986, dtype: int64

```
In [50]: # Importing The Model Building Libraries

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

In [51]: # Splitting & Training The Datasets x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 5)

In [52]: print(x_train)

```
Time
                       ۷1
                                V2
                                          V3
                                                    V4
                                                              V5
                                                                        V6 \
269075 163516.0 2.271188 -0.481887 -1.666204 -1.095342 0.043503 -0.938331
159254 112381.0 2.025281 -0.131606 -1.421224 0.079675 0.203822 -0.560311
208606
      137193.0 2.002944 -0.116406 -0.972243 0.453323 -0.161306 -0.416279
278609 168320.0 -0.428184 1.548500 -0.295260 0.613493 0.520980 0.730037
42009
        40919.0 -2.740483 3.658095 -4.110636 5.340242 -2.666775 -0.092782
. . .
                                          . . .
175681 122442.0 2.002072 -0.477963 -0.293072 0.481426 -0.915512 -0.716347
        84730.0 -1.178840 -2.091563 1.321520 -0.548771 -1.500015 -0.570644
142461
88307
        62080.0 -1.599457 2.607720 -2.987193 3.064156 -2.497914 -0.541103
284623 172617.0 2.038001 -0.089042 -2.260703 0.095598 0.697565 -1.111463
191267 129186.0 0.290155 0.049243 -0.740524 2.865463 1.395294 -0.535163
             V7
                       V8
                                 V9
                                              V20
                                                        V21
                                                                  V22 \
                                    . . .
269075 -0.089118 -0.428072 -0.882930
                                    ... 0.075132 0.037109 0.092434
159254 0.005475 -0.088744 0.583915
                                   ... -0.264670 0.318212 1.003712
208606 -0.477768 0.044646 1.047847 ... -0.172185 -0.340028 -0.913069
278609 -0.257539 -2.362050 -0.473266
                                     ... -0.099233 2.085477 -1.044427
42009 -4.388699 -0.280133 -2.821895
                                     ... 0.185325 2.417495 -0.097712
                                               . . .
175681 -0.676667 -0.034583 1.325683
                                    ... -0.261841 0.234757 0.843774
142461 0.231241 -0.211763 -2.836147 ... 1.060681 -0.046149 -0.654341
88307 -2.277786 1.268166 -1.997331
                                     ... 0.225333 0.662933 0.184087
284623 0.734825 -0.482797 0.017646 ... -0.055889 0.084980 0.173524
191267 0.142543 -0.222770 -1.463691 ... 0.247580 0.337349 1.018191
            V23
                      V24
                                V25
                                          V26
                                                   V27
                                                                  Amount
                                                             V28
269075 0.200103 0.506221 0.039206 -0.335699 -0.044277 -0.055951
                                                                    9.99
159254 0.022232 0.710926 0.278382 -0.467728 -0.001156 -0.058464
                                                                    1.00
      0.452291 0.467572 -0.616831 0.098869 -0.021057 -0.011901
                                                                    6.50
208606
278609 0.353363 -1.039268 -1.032648 0.597424 0.571382 0.293567
                                                                    0.89
42009
       0.382155 -0.154757 -0.403956 0.277895 0.830062 0.218690
                                                                  112.33
. . .
                                                                     . . .
175681 0.133598 0.086810 -0.250919 0.643172 -0.030009 -0.051378
                                                                    5.99
142461 1.153665 0.301179 -0.391794 -0.286919 0.018805
                                                        0.188031
                                                                  390.00
88307 -0.089452 -0.506000 -0.062259 -0.052714 0.322854 0.135268
                                                                  180.00
284623 -0.014877 0.543928 0.249404 0.705467 -0.141402 -0.067495
                                                                   66.30
191267 0.303550 0.833886 -1.222306 2.745261 -0.220402 0.168233
                                                                   7.18
```

[739 rows x 30 columns]

In [53]: print(x_test)

```
Time
                       V1
                                 V2
                                           V3
                                                    ٧4
                                                              V5
                                                                        V6 \
       151972.0 -6.618211 3.835943 -6.316453 1.844111 -2.476892 -1.886718
243547
67262
        52439.0 -15.128164 -4.759922 -4.388698 2.968675 1.412581 1.017313
43773
        41646.0 -3.240187 2.978122 -4.162314 3.869124 -3.645256 -0.126271
119714
        75556.0 -0.734303 0.435519 -0.530866 -0.471120 0.643214 0.713832
125491
        77691.0
                 1.453135 -0.897291 0.165177 -1.606075 -0.915341 -0.190063
. . .
            . . .
                       . . .
                  4888
         4416.0
                -4.221221 2.871121 -5.888716 6.890952 -3.404894 -1.154394
154697 102625.0
212516 138894.0 -1.298443 1.948100 -4.509947 1.305805 -0.019486 -0.509238
213092 139107.0 -4.666500 -3.952320 0.206094 5.153525 5.229469 0.939040
174607 121987.0 -3.083586 -5.493558 -1.380488 -0.720477 4.448321 -4.769857
             V7
                        V8
                                 V9
                                               V20
                                                         V21
                                                                   V22 \
                                     . . .
                  0.613470 -1.482121
                                    ... -0.953827
243547 -3.817495
                                                    1.636622 0.038727
67262 -9.760064 -14.018265 -0.041771
                                    ... -7.348950 -10.738634 4.198538
43773 -4.744730 -0.065331 -2.168366
                                    ... -0.224043
                                                    2.601441 0.231910
119714 -1.234572 -2.551412 -2.057724
                                     ... 0.864536
                                                   -1.004877 1.150354
125491 -0.801854 -0.030195 -2.396045
                                     ... -0.293676
                                                   -0.577895 -1.348865
. . .
            . . .
4888
       0.351693
                 -0.401452 1.263447
                                     ... -0.061922
                                                   -0.274584 -0.250811
154697 -7.739928
                 2.851363 -2.507569
                                     ... -0.227882
                                                   1.620591 1.567947
                 1.283545 -2.515356
                                     ... 0.250415
                                                    1.178032 1.360989
212516 -2.643398
213092 -0.635033 -0.704506 -0.234786
                                     ... -2.286137
                                                   -0.664263 1.821422
                                    ... 1.577776
174607 -0.980379 -0.423880 -1.171931
                                                   1.279182 2.018716
            V23
                      V24
                               V25
                                         V26
                                                  V27
                                                                 Amount
                                                            V28
243547 0.278218 0.786670 0.063895 0.154707 -2.042403 1.405141
                                                                  57.73
       7.441508 -1.163202 1.156147 0.022968 3.416390 -2.723858
67262
                                                                   1.18
      -0.036490 0.042640 -0.438330 -0.125821 0.421300
                                                                 172.32
43773
                                                       0.003146
119714 -0.152555 -1.386745 0.004716 0.219146 -0.058257
                                                       0.158048
                                                                  29.95
125491 0.255947 -0.373492 0.045295 -0.611944 0.032547
                                                       0.010199
                                                                  20.00
. . .
                                                                   . . .
4888
       0.474237 0.549103 -1.324774 -0.103604 -0.221122 -0.350267
                                                                   0.89
154697 -0.578007 -0.059045 -1.829169 -0.072429 0.136734 -0.599848
                                                                   7.59
212516 -0.272013 -0.325948 0.290703 0.841295 0.643094 0.201156
                                                                   0.01
213092 0.113563 -0.759673 -0.502304 0.630639 -0.513880 0.729526
                                                                  22.47
174607 1.376520 0.567477 -0.920750 -0.234729 -0.156569 0.196564
                                                                 249.29
```

[247 rows x 30 columns]

```
In [54]: print(y_train)
         269075
                   0
         159254
                   0
         208606
                   0
         278609
         42009
                   1
         175681
         142461
         88307
                   1
         284623
                   0
         191267
                   1
         Name: Class, Length: 739, dtype: int64
In [55]: print(y_test)
         243547
                   1
         67262
                   0
         43773
                   1
         119714
                   1
         125491
                   0
         4888
                   0
         154697
         212516
                   1
         213092
                   1
         174607
         Name: Class, Length: 247, dtype: int64
In [56]: print(x_train.shape, x_test.shape)
         (739, 30) (247, 30)
In [57]: model = LogisticRegression()
```

```
In [58]: model.fit(x train, y train)
Out[58]:
          ▼ LogisticRegression
          LogisticRegression()
In [60]: model.fit(x test, y test)
Out[60]:
          ▼ LogisticRegression
          LogisticRegression()
In [64]: x train predict = model.predict(x train)
         training data accuracy = accuracy score(x train predict, y train)
         print("The model's training data accuracy is: {:.2f}%".format(training data accuracy * 100))
         The model's training data accuracy is: 91.34%
In [67]: x test predict = model.predict(x test)
         test data accuracy = accuracy score(x test predict, y test)
         print("The model's test data accuracy is: {:.2f}%".format(test data accuracy * 100))
         The model's test data accuracy is: 91.09%
 In [ ]:
```