Regression

In unserer Analyse haben wir ausschließlich lineare Regressionsmodelle verwendet, um die Daten zu modellieren. Dabei wurden die Variablen Age, Height, BMI, Weight, FoodConsumption und Activity berücksichtigt. Andere verfügbare Daten, wie beispielsweise jene, die lediglich aus den Datensätzen (1) und (2) bestanden, wurden nicht einbezogen, da sie für die Modellierung als nicht aussagekräftig eingeschätzt wurden.

Training eines LR-Modells

Wir haben in diesem Abschnitt das Ziel, die Daten zu modellieren und dadurch zu analysieren.

1.py						
	Age	Height	Weight	BMI	FoodConsumption	Activity
count	1610.000000	1610.000000	1610.000000	1610.000000	1610.000000	1610.000000
mean	33.115528	167.741615	73.504745	25.990435	5.824845	6.614907
std	9.835076	7.979873	17.096973	5.149009	1.707041	1.881387
min	18.000000	150.000000	38.760000	17.000000	1.000000	1.000000
25%	25.000000	161.000000	59.800000	21.700000	5.000000	5.000000
50%	32.000000	168.000000	70.400000	27.500000	6.000000	7.000000
75%	41.000000	174.000000	85.180000	27.500000	7.000000	8.000000
max	54.000000	193.000000	130.370000	35.000000	11.000000	12.000000

BMI: Ein BMI über 24,9 zählt als übergewichtig. Somit lässt sich ablesen, dass mehr als die Hälfte übergewichtig sind. Außerdem liegt der Durchschnittswert bei 25,99 und somit im Bereich des Übergewichts.

Activity: Bei Activity steht eine hohe Zahl für mehr Aktivität. Somit lässt sich sagen, dass mehr als die hälfte Aktiv tätig sind.

FoodConsumption: Bei FoodConsumption steht eine niedrige Zahl für "gut". Somit lässt sich sagen, dass Durchschnittlich mehr als die Hälfte zu viel Essen Konsumiert.

Interpretation eines LR-Modells

Aus der Analysesicht kann man entweder mit einem Modell beginnen, das alle Features enthält, und es dann schrittweise verfeinern, oder man beginnt mit einem künstlich einfachen Modell als Vergleichspunkt. Annahme: Geringere Aktivität führt zu höherem BMI.

Dan Mandahi				DMT				0.001
Dep. Variable: Model: Method: Date: Time: No. Observations:				BMI	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:			0.001
				0LS				0.000 1.452 0.228 -4921.7 9847.
			Least Squa					
			ri, 03 Jan 2 21:52					
Df Residuals:			1610 1608		BIC:			9858.
Df Model:	• •			.000	DIC:			90301
Covariance Type:			nonrobust					
=======		coef	std err		t	P> t	[0.025	0.975]
Intercept	26.	5342	0.469	5	 5.558	0.000	25.614	27.454
Activity	-0.	0822	0.068	_:	1.205	0.228	-0.216	0.052
Omnibus:		134.	134.723 Durbin-Watson:			 0.376		
Prob(Omnibus):			0.000		Jarque-Bera (JB):			93.346
Skew:		0.479		Prob(JB):			5.37e-21	
Kurtosis:			2.311		Cond. No.			25.6

R-squared-Wert: Korrelationen gelten ab r=0.6 als "stark". Somit ist R-squared von 0.001 schwach.

P-Wert: Der p-Wert liegt mit 0,23 deutlich über 0,05. Somit ist die Nullhypothese, dass der Acitivty-Wert keine Auswirkung auf den BMI hat, nicht zu verwerfen.

Koeffizienten: Das Modell sagt voraus, dass für jeden Activity-Wert, der BMI um 0,08 sinkt.

		OLS Regres	sion Results			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	BMI OLS Least Squares Fri, 03 Jan 2025 21:06:17 1610 1604 5 nonrobust		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-likelihood: AIC: BIC:		0.991 0.991 3.487e44 0.00 -1140.9 2294. 2326.	
	coef	std err	t	P> t	[0.025	0.975]
Intercept Activity FoodConsumption Age Height Weight	51.8728 0.0250 0.0203 0.0074 -0.3105 0.3492	0.311 0.007 0.008 0.002 0.002 0.001	166.775 3.687 2.533 4.702 -160.121 312.746	0.000 0.000 0.011 0.000 0.000	51.263 0.012 0.005 0.004 -0.314 0.347	52.483 0.038 0.036 0.016 -0.307 0.351
Omnibus: Frob(Omnibus): Skew: Kurtosis:		218.558 0.000 -0.689 5.832	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.141 665.748 2.72e-145 4.73e+03	

Jeder Wert ist relevant, da der p-Wert jeweils unter 0.05 liegt. Der R-squared liegt bei 0.991, somit ist die Korrelation "stark". Dies könnte an "Height" und "Weight" liegen, da der BMI-Wert daraus resultiert. Als nächstes werden diese Werte außer Acht gelassen.

		OLS Regres:	sion Results			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Fri, 03	BMI OLS t Squares Jan 2025 21:07:05 1610 1606 3 nonrobust	R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	:: tistic):	0.428 0.427 400.7 2.80e-194 -4472.6 8953. 8975.	
	coef	std err	t	P> t	[0.025	0.975]
Intercept Activity FoodConsumption Age	9.3957 0.3070 0.9658 0.2699	0.610 0.053 0.059 0.010	15.409 5.770 16.474 25.788	0.000 0.000 0.000 0.000	8.200 0.203 0.851 0.249	10.592 0.411 1.081 0.290
Omnibus: Prob(Omnibus): Skew: KGrasss:		43.685 0.000 0.392 3.296	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		0.786 47.034 6.12e-11 224.	

In diesem Modell werden nur "Activity", "FoodConsumption" und "Age" betrachtet. Hierbei bleibt jeder p-Wert relevant. Jedoch hat sich R-squared deutlich verschlechtert, aber dennoch ist die Korrelation "stark". Gemessen an R-squared ist also Bild 2 > Bild 3 > Bild 1.

```
ANOVA results

df_resid ssr df_diff ss_diff F Pr(>F)

0 1608.0 42619.793893 0.0 NaN NaN NaN

1 1606.0 24396.163048 2.0 18223.630845 37579.391518 0.0

2 1604.0 388.919334 2.0 24007.243714 49505.920005 0.0
```

Modellvergleich mit ANOVA

Vergleich von Bild 3 mit Bild 1:

Der Vergleich in der zweiten Zeile zeigt einen signifikanten p-Wert (Pr(>F) = 0.0), was bedeutet, dass Bild 3 eine signifikante Verbesserung gegenüber Bild 1 darstellt.

Vergleich von Bild 2 mit Bild 3:

Der Vergleich in der dritten Zeile hat ebenfalls einen signifikanten p-Wert (Pr(>F) = 0.0), was darauf hinweist, dass Bild 2 eine signifikante Verbesserung gegenüber Bild 2 darstellt.

Schlussfolgerung:

Da sowohl der Vergleich von Bild 3 mit Bild 1 als auch der Vergleich von Bild2 mit Bild3 signifikant ist, können wir sagen: Bild 2 ist besser als Bild 2 somit auch besser als Bild1.