Appendix

Table 1. Blind denoising MSE results of our DIP network, Lasso in the DCT basis, sym4 wavelet denoising, and Wiener Filter on audio data. Univariate time series of a whale call, speech, and a drum beat were perturbed with AWGN with 0 mean and standard deviations 0.1,0.15, and 0.2.

МЕТНОО	WHALE			SPEECH			ВЕАТ		
	$\sigma = 0.1$	$\sigma = 0.15$	$\sigma = 0.2$	$\sigma = 0.1$	$\sigma = 0.15$	$\sigma = 0.2$	$\sigma = 0.1$	$\sigma = 0.15$	$\sigma = 0.2$
OURS LASSO WAVELET WIENER	0.0038 0.0499 0.0032 0.0260	0.0058 0.0522 0.0054 0.0297	0.0133 0.0584 0.0075 0.0362	0.0059 0.0104 0.0047 0.0138	0.0094 0.0131 0.0078 0.0184	0.0284 0.0197 0.0116 0.0251	0.0029 0.0062 0.0008 0.0052	0.0038 0.0088 0.0012 0.0096	0.0043 0.0151 0.0017 0.0171

Table 2. Blind denoising MSE results of our DIP network, Lasso in the DCT basis, sym4 wavelet denoising, and Wiener Filter on artificial chirp signals. Univariate time series of chirps with a 500 hz, 300 hz, and 100 hz frequency shift were perturbed with AWGN with 0 mean and standard deviations 0.1,0.15, and 0.2.

МЕТНОО	500 HZ			300 нz			100 нz		
	$\sigma = 0.1$	$\sigma = 0.15$	$\sigma = 0.2$	$\sigma = 0.1$	$\sigma = 0.15$	$\sigma = 0.2$	$\sigma = 0.1$	$\sigma = 0.15$	$\sigma = 0.2$
OURS LASSO WAVELET WIENER	0.0092 0.0049 0.0045 0.1693	0.0109 0.0086 0.0104 0.1793	0.0689 0.0161 0.0189 0.1893	0.0086 0.0032 0.0053 0.1703	0.0087 0.0062 0.0108 0.1788	0.0290 0.0136 0.0215 0.1894	0.0078 0.0015 0.0060 0.1696	0.0071 0.0040 0.0128 0.1789	0.0114 0.0106 0.0213 0.1882

МЕТНОО			O3		
	m = 10	m = 25	m = 50	m = 75	m = 150
OURS	0.2185	0.1835	0.1594	0.1519	0.1433
LASSO	0.2063	0.2036	0.1578	0.1496	0.1396
NLM-VAMP	DNC	DNC	DNC	DNC	DNC
WIENER-VAMP	DNC	DNC	DNC	DNC	0.1485
			NO2		
	$\overline{m=10}$	m = 25	m = 50	m = 75	m = 150
OURS	0.2060	0.2051	0.1594	0.1533	0.1372
Lasso	0.2062	0.2059	0.1552	0.1492	0.1297
NLM-VAMP	DNC	DNC	DNC	DNC	DNC
WIENER-VAMP	DNC	DNC	DNC	DNC	0.1400
			СО		
	$\overline{m=10}$	m = 25	m = 50	m = 75	m = 150
OURS	0.2496	0.2474	0.2468	0.2307	0.1161
Lasso	0.2540	0.2534	0.2522	0.2471	0.1107
NLM-VAMP	DNC	DNC	DNC	DNC	DNC
WIENER-VAMP	DNC	0.3126	0.2747	0.2695	DNC

Table 4. MSE results for reconstructing a signal from m=100,500,1000,2000, and 4000 DCT coefficient measurements of artificial chirp signals with n=16,384 and linear phase shifts of 500 hz, 300 hz, and 100 hz. We compare our DIP method to Lasso in the DCT basis, NLM-VAMP, and Wiener-VAMP. The best MSE value for each test is bolded. DNC indicates that the algorithm did not converge.

МЕТНОО	500 HZ							
	$\overline{m = 100}$	m = 500	m = 1000	m = 2000	m = 4000			
OURS LASSO NLM-VAMP WIENER-VAMP	0.5013 0.4973 DNC DNC	0.5003 0.4872 DNC DNC	0.4844 0.4676 DNC 0.6357	0.4552 0.4367 DNC 0.4625	0.3919 0.3725 DNC 0.4055			
			300 HZ	Z				
	m = 100	m = 500	m = 1000	m = 2000	m = 4000			
OURS LASSO NLM-VAMP WIENER-VAMP	0.4998 0.4972 DNC DNC	0.4949 0.4896 DNC DNC	0.4749 0.4657 DNC 0.6437	0.4506 0.4356 DNC 0.4619	0.4053 0.3812 DNC 0.4177			
			100 HZ					
	$\overline{m = 100}$	m = 500	m = 1000	m = 2000	m = 4000			
OURS LASSO NLM-VAMP WIENER-VAMP	0.5009 0.4959 DNC DNC	0.4858 0.4864 DNC DNC	0.4517 0.4551 DNC DNC	0.4255 0.4261 DNC 0.4562	0.3923 0.3665 DNC 0.3997			

Figure 1. Test loss for recovery from random Gaussian projections on hourly sensor readings of NO2 in the air with n=1024 and varying numbers of measurement by our method, Lasso in the DCT basis, NLM-VAMP, and Wiener-VAMP.

Figure 2. Test loss for recovery from random Gaussian projections on hourly sensor readings of O3 in the air with n = 1024 and varying numbers of measurement by our method, Lasso in the DCT basis, NLM-VAMP, and Wiener-VAMP.

Figure 3. Test loss for recovery from random Gaussian projections on an audio signal of a whale call with n=16,384 and varying numbers of measurement by our method, Lasso in the DCT basis, NLM-VAMP, and Wiener-VAMP.

Figure 4. Test loss for recovery from random Gaussian projections on an audio signal of speech with n=16,384 and varying numbers of measurement by our method, Lasso in the DCT basis, NLM-VAMP, and Wiener-VAMP.

Figure 5. Test loss for recovery from random Gaussian projections on an artificial chirp signal with a 500 hz frequency sweep with n=16,384 and varying numbers of measurement by our method, Lasso in the DCT basis, NLM-VAMP, and Wiener-VAMP.

Figure 6. Test loss for recovery from random Gaussian projections on an artificial chirp signal with a 300 hz frequency sweep with n=16,384 and varying numbers of measurement by our method, Lasso in the DCT basis, NLM-VAMP, and Wiener-VAMP.

Figure 7. Test loss for recovery from random Gaussian projections on an artificial chirp signal with a 100 hz frequency sweep with n=16,384 and varying numbers of measurement by our method, Lasso in the DCT basis, NLM-VAMP, and Wiener-VAMP.

Figure 8. Test loss for imputation on an audio signal of a drum beat with n=16,384 and varying numbers of measurement by our method, Lasso in the DCT basis, Kalman state-space imputation, and spline interpolation.

Figure 9. Test loss for imputation on an audio signal of a whale call with n=16,384 and varying numbers of measurement by our method, Lasso in the DCT basis, Kalman state-space imputation, and spline interpolation.

Figure 10. Test loss for imputation on hourly sensor readings of O3 in the air with n=1024 and varying numbers of measurement by our method, Lasso in the DCT basis, Kalman state-space imputation, and spline interpolation.

Figure 11. Test loss for imputation on hourly sensor readings of NO2 in the air with n = 1024 and varying numbers of measurement by our method, Lasso in the DCT basis, Kalman state-space imputation, and spline interpolation.

Figure 12. Test loss for imputation on hourly sensor readings of CO in the air with n=1024 and varying numbers of measurement by our method, Lasso in the DCT basis, Kalman state-space imputation, and spline interpolation.

Figure 13. Test loss for imputation on an artificial chirp signal with a 300 hz frequency sweep with n = 16,384 and varying numbers of measurement by our method, Lasso in the DCT basis, Kalman state-space imputation, and spline interpolation.

Figure 14. Test loss for imputation on an artificial chirp signal with a 100 hz frequency sweep with n=16,384 and varying numbers of measurement by our method, Lasso in the DCT basis, Kalman state-space imputation, and spline interpolation.