

Analyse des Données du sous projet BDA/DL par les Techniques de Data Mining, Machine Learning et Deep Learning et Activités Attendues par N. PASQUIER ou un le professeur qui le remplace

Nom du membre du Groupe 6:

Gao LIU

Pierric SCHOENDORF

Yimin CAO

Ziheng WANG

Table des matières

artie	e Machine Learning	6
1.	RStudio et langage R	6
2.	Nettoyage des données	8
2	2.1 Nettoyage des données : Clients	8
2	2.2 Nettoyage des données : Catalogue	9
2	2.3 Nettoyage des données : Immatriculations	.11
3.	Analyse exploratoire des données vues	12
4.	Identification des catégories de véhicules et application aux Immatriculations	. 17
5.	Fusion des données Clients et Immatriculations	. 18
6.	Modèle de classification et les tests dans différents algorithmes	19
ϵ	6.1 Situation 1 : normal	19
É	6.1.1 Algorithme : C50	19
É	6.1.2 Algorithme : naivebayes	20
É	6.1.3 Algorithme : Random Forest	. 21
É	6.1.4 Algorithme : NNET	21
É	6.1.5 Algorithme : Régression logistique multinomiale	. 22
e	6.2 Situation 2 : supprimer la colonne taux	.22
É	6.2.1 Algorithme : C50	22
É	6.2.2 Algorithme : Naivebayes	. 23
6	6.2.3 Algorithme : Random Forest	. 23
6	6.2.4 Algorithme : NNET	24
ϵ	6.3 Situation 3 : supprimer la colonne taux et la colonne âge	
ϵ	6.3.1 Algorithme : C50	25
ϵ	6.3.2 Algorithme : Naviebayes	. 26
ϵ	6.3.3 Algorithme : Random Forest	. 27
ϵ	6.3.4 Algorithme : NNET	28
E	6.4 Situation 4 : remplacer la colonne taux à la colonne taux_classe	
ϵ	6.4.1 Algorithme : C50	30
ϵ	6.4.2 Algorithme : Naviebayes	. 31
É	6.4.3 Algorithme : Random Forest	
É	6.4.4 Algorithme : NNET	32
	6.5 Situation 5 : remplacer la colonne taux et la colonne âge à la colonne taux_classe et	22
	âge_classe	
	6.5.1 Algorithme : C50	34

6.5.3	Algorithme : Random Forest	35
6.5.4	Algorithme : NNET	.36
	ısion des quatre algorithmes	
	/age de Marketing	
•	tion	

Table des figures

Figure 1 Connexion entre Hive et RStudio pour l'importation de tables	6
Figure 2 Récapitulatif des Clients	7
Figure 3 Récapitulatif des Immatriculations	7
Figure 4 Récapitulatif des Marketing	7
Figure 5 Récapitulatif des Catalogue	
Figure 6 Récapitulatif des Co2	7
Figure 7 Changement du nom et suppression de nulles	8
Figure 8 Respect de la contrainte de l'âge	
Figure 9 Corrige du nom de colonne et valeur erronées	8
Figure 10 Respect de la contrainte de taux	
Figure 11 Corrige du nom de colonne de client	9
Figure 12 Respect de la contrainte de nbEnfantsacharge	
Figure 13 Suppression de double	
Figure 14 Récapitulatif du tableau des Clients nettoyés	
Figure 15 Renommer les colonnes	
Figure 16 Convert to format demandé	
Figure 17 Suppression de nulles	
Figure 18 Nettoyage de caractère incorrect	
Figure 19 Récapitulatif du tableau du Catalogue nettoyé	
Figure 20 Corrige du nom de colonne	11
Figure 21 Convert to format demandé	
Figure 22 Suppression ID, convert format, suppression double, et corrige valeur erronée	
Figure 23 Récapitulatif du tableau des Immatriculations nettoyés	
Figure 24 Code de dessin de couleur de catalogue	
Figure 25 La répartition de la variable couleur	
Figure 26 Code de dessin de longueur de catalogue	
Figure 27 La répartition de la variable longueur	
Figure 28 Code de dessin de nbplaces de catalogue	
Figure 29 La répartition de la variable nbPlaces	
Figure 30 Code de dessin de nbPortes de catalogue	
Figure 31 La répartition de la variable nbPortes	
Figure 32 Code de dessin de puissance de catalogue	
Figure 33 La répartition de la variable puissance	
Figure 34 La répartition de la variable nbPortes de chaque type de longueur	
Figure 35 La répartition de la variable nbPlaces de chaque type de longueur	
Figure 36 La répartition de la variable puissance de chaque type de longueur	
Figure 37 Categories à partir de Catalogue	
Figure 38 Application de catégories aux Immatriculations	
Figure 39 Fusion de data frames et suppression de colonnes inutiles	
Figure 40 Convert to format	
Figure 41 Situation1_Séparation de l'échantillonnage d'apprentissage et test	
Figure 42 Formation de jeux d'apprentissage avec C5.0	
Figure 43 Prédiction de de jeu du test avec C50 et affichage des résultats prédits	
Figure 44 Situation1_C50 : Dessin de la matrice de mélange	
Figure 45 Situation1_C5.0 : calcul de l'AUC	
Figure 46 Formation de jeux d'apprentissage avec naivebayes	
Figure 47 Prédiction de de jeu du test avec naivebayes	20

Figure 48 Situation1_naivebayes : Dessin de la matrice de mélange	21
Figure 49 Situation1_Naivebayes : calcul de l'AUC	21
Figure 50 Formation de jeux d'apprentissage avec random forest	21
Figure 51 Formation de jeux d'apprentissage avec NNET	21
Figure 52 Formation de jeux d'apprentissage avec Régression logistique multinomiale	22
Figure 53 Situation2_Séparation de l'échantillonnage d'apprentissage et test	
Figure 54 Situation2_C50 résultat de prédiction	22
Figure 55 Situation2_C50 : calcul de l'AUC	22
Figure 56 Situation2_Naivebayes code	23
Figure 57 Situation2_ Naivebayes: calcul de l'AUC	23
Figure 58 Formation de jeux d'apprentissage avec random forest	23
Figure 59 Formation de jeux d'apprentissage avec NNET	24
Figure 60 Prédiction de de jeu du test avec NNET	24
Figure 61 Situation2_NNET : Dessin de la matrice de mélange	24
Figure 62 Situation2_NNET: calcul de l'AUC	
Figure 63 Situation3_Séparation de l'échantillonnage d'apprentissage et test	25
Figure 64 Situation3_C50 résultat de prédiction	25
Figure 65 Situation3_C50 : calcul de l'AUC	26
Figure 66 Situation3_Naivebayes résultat de prédiction	26
Figure 67 Situation3_Naivebayes : calcul de l'AUC	
Figure 68 Situation3_Random Forest résultat de prédiction	27
Figure 69 Situation3_ Random Forest : calcul de l'AUC	
Figure 70 Situation3_NNET résultat de prédiction	
Figure 71 Situation3_ NNET : calcul de l'AUC	
Figure 72 Le boxplot de taux	
Figure 73 Récapitulatif du taux	29
Figure 74 Récapitulatif du Clients_Immaticulations_traite	29
Figure 75 Situation4_Séparation de l'échantillonnage d'apprentissage et test	
Figure 76 Situation4_C50 résultat de prédiction	
Figure 77 Situation4_C50 : calcul de l'AUC	
Figure 78 Situation4_Naivebayes : résultat de prediction	
Figure 79 Situation4_ Naivebayes : calcul de l'AUC	31
Figure 80 Formation de jeux d'apprentissage avec random forest	31
Figure 81 Situation4_NNET résultat de prédiction	
Figure 82 Situation4_ NNET : calcul de l'AUC	32
Figure 83 Le boxplot d'âge	33
Figure 84 Récapitulatif d'âge	
Figure 85 Récapitulatif du Clients_Immatriculations_traite	
Figure 86 Situation5_Séparation de l'échantillonnage d'apprentissage et test	
Figure 87 Situation5 C50 code	
Figure 88 Situation5_Naivebayes code	
Figure 89 Situation5_ Naivebayes : calcul de l'AUC	
Figure 90 Situation5_Random Forest résultat de prédiction	
Figure 91 Situation5_ Random Forest: calcul de l'AUC	
Figure 92 Situation5_NNET résultat de prédiction	
Figure 93 Situation5_ NNET : calcul de l'AUC	
Figure 94 Renommer des colonnes de Marketing	
Figure 95 Convert to format demandé	
.,	

Figure 96 Création de class pour taux, corrige de valeurs, et convert to format demandé	38
Figure 97 Récapitulatif du tableau des Immatriculations nettoyés	38
Figure 98 Prédiction de Marketing avec NNET	39
Figure 99 Prédiction finale de Marketing	39
Liste des tableaux	
Tableau 1 Situation1_C50 : Calcul du rappel, de la précision et des taux d'erreur	20
Tableau 2 Situation1_Naivebayes : Calcul du rappel, de la précision et des taux d'erreur	21
Tableau 3 Situation2_C50 : Calcul du rappel, de la précision et des taux d'erreur	22
Tableau 4 Situation2_Naivebayes : Calcul du rappel, de la précision et des taux d'erreur	23
Tableau 5 Situation2_NNET : Calcul du rappel, de la précision et des taux d'erreur	24
Tableau 6 Situation3_C50 : Calcul du rappel, de la précision et des taux d'erreur	25
Tableau 7 Situation3_Naivebayes : Calcul du rappel, de la précision et des taux d'erreur	26
Tableau 8 Situation3_Random Forest : Calcul du rappel, de la précision et des taux d'erreur	27
Tableau 9 Situation3_NNET : Calcul du rappel, de la précision et des taux d'erreur	28
Tableau 10 Situation4_C50 : Calcul du rappel, de la précision et des taux d'erreur	30
Tableau 11 Situation4_Naivebayes : Calcul du rappel, de la précision et des taux d'erreur	31
Tableau 12 Situation4_NNET : Calcul du rappel, de la précision et des taux d'erreur	32
Tableau 13 Situation5_Naivebayes : Calcul du rappel, de la précision et des taux d'erreur	34
Tableau 14 Situation5_Random Forset : Calcul du rappel, de la précision et des taux d'erreur	35
Tableau 15 Situation5_NNET : Calcul du rappel, de la précision et des taux d'erreur	36
Tableau 16 Comparaison de l'AUC	37
Tableau 17 Comparaison des taux d'erreur	37

Partie Machine Learning

1. RStudio et langage R

Enfin, la dernière étape de ce projet consiste à charger les données présentes sur HIVE dans notre machine virtuelle à RStudio sous Windows. R est un langage de programmation utilisé pour le traitement de données et l'analyse statistique. Les commandes sont exécutées à l'aide d'instructions codées dans un langage relativement simple, les résultats sont affichés sous forme de texte et les graphiques sont visualisés directement. Le RStudio est particulièrement performant pour la manipulation de données, le calcul et la création de graphiques. Il possède notamment :

Un système de documentation intégré très bien conçu

Des procédures efficaces pour le traitement et le stockage de données

Une suite d'opérateurs pour des calculs sur des tableaux, notamment sur des matrices

Une vaste collection de procédures statistiques pour l'analyse de données

Des capacités graphiques évoluées

Un langage de programmation simple et efficace, incluant des conditions, des boucles, de la récursivité, ainsi que des possibilités d'entrée-sortie.

Afin de récupérer les données sur Hive, nous allons faire la connexion entre hive et RStudio.

On peut voir que les tables sur hive sont bien affichées sur RStudio.

Figure 1 Connexion entre Hive et RStudio pour l'importation de tables

On peut voir que les tables Clients, Immatriculations, Marketing, Catalogue et Co2 sont bien import sur RStudio à partir de notre Data Lake Hive.

Figure 2 Récapitulatif des Clients

```
Min. : 55
1st Qu.: 75
Median :150
                                         Length:2000001
Class:character
                                                                      Length:2000001
Class:character
                                                                                                                              Length:2000001
Class:character
  Class :character
 Mode :character
                                         Mode :character
                                                                      Mode :character
                                                                                                                               Mode :character
                                                                                               Mean
                                                                                                       :199
                                                                                               3rd Qu.:245
Max. :507
                                                                                             Max. :507
Na's :1
immatriculation.occasion immatriculation.prix
  immatriculation.nbplaces immatriculation.nbportes immatriculation.couleur
                                Min. :3.000
1st Qu.:5.000
Median :5.000
                                                               Length:2000001
Class:character
                                                                                             Length:2000001
 Min. :5
1st Qu.:5
                                                                                                                            Min. : 7500
1st Qu.: 18310
                                                                                             Class :character
Mode :character
                                                                                                                            Median: 25970
Mean: 35783
3rd Qu.: 49200
  Median :5
                                                               Mode :character
 Mean :5
3rd Qu.:5
Max. :5
NA's :1
                                Median :5.000
Mean :4.868
3rd Qu.:5.000
Max. :5.000
NA's :1
```

Figure 3 Récapitulatif des Immatriculations

```
> Marketing <- dbGetQuery(conn, "select * from Marketing")
> Summary(Marketing)
marketing.clientmarketingid marketing.age marketing.sexe Min. : 1 Length:21 Length:21 Length:21 Length:21 Length:21 Length:21 Length:21 Length:21 Class :character Mode : character M
```

Figure 4 Récapitulatif des Marketing

Figure 5 Récapitulatif des Catalogue

```
> Co2 <- dbGetQuery(conn, "select * from Co2")
> summary(Co2)
    co2.id
                  co2.marque_modele
                                                          co2.rejets_co2_g_km co2.cout_enerie
                                      co2.bonus_malus
                                                          Min. : 0.0
1st Qu.: 42.5
Min.
       : 2.0
                 Length:438
                                      Length:438
                                                                              Length:438
1st Qu.:116.0
                 Class :character
                                      Class :character
                                                                               Class :character
Median :230.0
                                                          Median :182.0
                 Mode :character
                                     Mode
                                           :character
                                                                               Mode :character
       :230.4
Mean
                                                          Mean
                                                                 :139.9
 3rd Qu.:345.0
                                                          3rd Qu.:197.0
Max. :459.0
NA's :1
                                                                 :262.0
                                                          Max.
                                                          NA's
                                                                 :3
```

Figure 6 Récapitulatif des Co2

2. Nettoyage des données

2.1 Nettoyage des données : Clients

Tout d'abord, nous renommons des colonnes. Ensuite, nous indiquons qu'il existe des lignes qui contient des valeurs manquantes (sous forme NA's), donc nous les supprimons. Nous remarquons certaines données sont sous forme character. Pour afficher des détails, nous les transformons au bon format.

```
> names(Clients)[1] <- "age"
> names(Clients)[2] <- "sexe"
> names(Clients)[3] <- "taux"
> names(Clients)[4] <- "situationfamiliale"
> names(Clients)[5] <- "nbenfantsacharge"
> names(Clients)[6] <- "deuxiemevoiture
> names(Clients)[7] <- "immatriculation"
> Clients_sans_na <- na.omit(Clients)
> Clients_sans_na <- droplevels(Clients_sans_na)
> Clients_sans_na$sexe <- as.factor(Clients_sans_na$sexe)
> Clients_sans_na$situationfamiliale <- as.factor(Clients_sans_na$situationfamiliale)
> Clients_sans_na$deuxiemevoiture <- as.logical(Clients_sans_na$deuxiemevoiture)</p>
> summary(Clients_sans_na)
      age
                                                        situationfamiliale nbenfantsacharge
 Min.
        :-1.00
                          :135274
                                    Min.
                                           : -1.0
                                                     En Couple :127206 Min.
                                                                                   :-1.000
 1st Qu.:27.00
                 F
                          : 58475
                                    1st Qu.: 421.0
                                                      Colibataire: 58795
                                                                             1st Qu.: 0.000
 Median :41.00 Masculin: 1398
                                                                            Median : 1.000
                                    Median : 522.0
                                                       seule
                                                                  : 9706
                         : 1356
                                                                  : 1263
        :43.69
                                           : 608.2
                                                       Mari�(e)
                                                                            Mean
 Mean
                 Homme
                                    Mean
                                                                                    : 1.249
                                                       Seul
 3rd Qu.:56.00
                  Femme
                               596
                                     3rd Qu.: 827.0
                                                                  :
                                                                      602
                                                                            3rd Qu.: 2.000
        :84.00
                  F∲minin :
                               580
                                     Max. :1399.0
                                                                       219
                                                                            Max.
                                                                                    : 4.000
 Max.
                  (Other):
                               600
                                                       (Other)
                                                                      488
 deuxiemevoiture immatriculation
 Mode :logical
                 Length:198279
 FALSE:172493
                  class :character
 TRUE :25786
                  Mode :character
```

Figure 7 Changement du nom et suppression de nulles

A partir de résumé de data frame Clients_sans_na, nous indiquons que le min de l'âge est -1, mais on a la contrainte [18, 84], donc nous récupérons l'âge est supérieur ou égal à 18 ans.

```
> Clients_traite1 <- subset(Clients_sans_na, age >= 18 )
> library(ggplot2)
> ggplot(Clients_traite1, aes(x=sexe))+geom_bar()
```

Figure 8 Respect de la contrainte de l'âge

La valeur de colonne de sexe a des formes différentes, nous pouvons remplacer Masculin et Homme par M, Femme et Féminin par F. Nous supprimons les lignes qui contiennent les valeurs comme "?", " et "N/D". En utilisant la function ggplot(), nous pouvons faire un diagramme de la répartition du variable sexe.

```
> Clients_traitel$sexe <- gsub("Masculin", "M", Clients_traitel$sexe)
> Clients_traitel$sexe <- gsub("Homme", "M", Clients_traitel$sexe)
> Clients_traitel$sexe <- gsub("Fomme", "F", Clients_traitel$sexe)
> Clients_traitel$sexe <- gsub("F\minin", "F", Clients_traitel$sexe)
> Clients_traitel$sexe <- gsub("F\minin", "F", Clients_traitel$sexe)
> Clients_traitel <- subset(Clients_traitel, Clients_traitel$sexe)
> Clients_traitel$sexe <- as.factor(Clients_traitel$sexe)
> ggplot(Clients_traitel, aes(x=sexe))+geom_bar()
```

Figure 9 Corrige du nom de colonne et valeur erronées

Et pour la variable taux, il faut se réunir dans cet intervalle [544, 74185], donc nous gardons ceux qui est supérieur ou égal à 544. Et nous corrigions les noms des colonnes au bon format.

```
> Clients_traite1 <- subset(Clients_traite1, taux >= 544 )
> ggplot(Clients_traite1, aes(x=situationfamiliale))+geom_bar()
```

Figure 10 Respect de la contrainte de taux

Nous remarquons qu'il existe des valeurs erronées ou manquantes(N/D), donc nous les supprimons. Et nous corrigions les noms de colonnes qui ont des caractères erronés.

```
> Clients_traite1 <- subset(Clients_traite1, Clients_traite1$situationfamiliale!="N/D" & Clients_traite1$situationfamiliale!="?" & Clients_traite1$situationfamiliale!="?" & Clients_traite1$situationfamiliale!="?" & Clients_traite1$situationfamiliale <- gsub("Colients_traite1$situationfamiliale <- gsub("Colients_traite1$situationfamiliale <- gsub("Divorcoe", Clients_traite1$situationfamiliale <- gsub("Divorcoe", Clients_traite1$situationfamiliale <- gsub("Marioo", "Marioo", Clients_traite1$situationfamiliale <- gsub("Marioo", "Marioo", Clients_traite1$situationfamiliale <- gsub("Marioo", "Marioo", Clients_traite1$situationfamiliale)
```

Figure 11 Corrige du nom de colonne de client

Nous indiquons que la contrainte de nbEnfantsacharge est [0,4], mais il existe des valeurs négatives, donc nous les supprimons. Et nous gardons ceux dont le texte au format « 9999 AA 99 » pour la colonne « immatriculation ».

```
> #nbenfantsacharge >=0
> Clients_traite1 <- subset(Clients_traite1, nbenfantsacharge >= 0 )
> #garder que des lignes en format 9999 AA 99 dans la colonne immatriculation
> clients_traite<- clients_traite1[grep("^\\d{4} [A-Z]{2} \\d{2}$", clients_traite1$immatriculation), ]
> summary(Clients_traite)
                                                           situationfamiliale nbenfantsacharge deuxiemevoiture immatriculation
Celibataire:23390 Min. :0.000 Mode :lonical Length:78740
 age
Min. :18.00
1st Qu.:27.00
                     sexe
F:23655
                                    Min. : 544.0
1st Qu.: 588.0
                                                                                                               Mode :logical Length:78740
FALSE:68482 Class :character
                                    Min.
                                                           Divorce
En Couple
                     M:55085
                                                                                        1st Qu.:0.000
                                                                                        Median :1.000
Mean :1.252
                                                                           :50716
 Median :41.00
                                    Median: 888.0
Mean: 899.2
                                                                                                               TRUE :10258
                                                                                                                                   Mode :character
                                                                          : 530
                                                 899.2
                                                           Marie(e)
 Mean
                                    Mean
 3rd Qu.:57.00
                                    3rd Qu.:1144.0
                                                           Seu1
                                                                              212
                                                                                        3rd Qu.:2.000
                                                           seule
                                                                           : 3856
           :84.00
                                              :1399.0
                                                                                                  :4.000
 Max.
                                    мах.
                                                                                        Max.
```

Figure 12 Respect de la contrainte de nbEnfantsacharge

Parce que l'immatriculation est unique, donc nous supprimons les doubles.

```
> doublons <- which(duplicated(Clients_traite$immatriculation))
> Clients_traite <- Clients_traite[-doublons,]</pre>
```

Figure 13 Suppression de double

Le tableau final des clients nettoyés est présenté cidessous.

```
doublons <- which(duplicated(Clients_traite$immatriculation))
Clients_traite <- Clients_traite[-doublons,]</pre>
> summary(Clients_traite)
age
Min.
                                                     situationfamiliale nbenfantsacharge deuxiemevoiture immatriculation
                   sexe
                                    taux
         :18.00 F:23653
                              Min. : 544.0
1st Qu.: 588.0
                                                  Celibataire:23389
                                                                                              Mode :logical Length:78734
                                                                          1st Qu.:0.000
 1st Ou.:27.00
                   M:55081
                                                  Divorce :
En Couple :
                                                                   36
                                                                                              FALSE: 68476
                                                                                                                class :character
                                                               :50711
 Median :41.00
                               Median : 888.0
                                                                           Median :1.000
                                                                                              TRUE :10258
                                                              : 530
: 212
 Mean
        :43.72
                              Mean
                                       : 899.2
                                                  Marie(e)
                                                                          Mean
                                                                                  :1.252
 3rd Qu.:57.00
                               3rd Qu.:1144.0
                                                  seul
                                                                           3rd Qu.:2.000
         :84.00
                              Max.
                                       :1399.0
                                                  Seule
                                                               . 3856
                                                                          Max.
```

Figure 14 Récapitulatif du tableau des Clients nettoyés

2.2 Nettoyage des données : Catalogue

Tout d'abord, nous changions les noms des colonnes.

```
> ## renommer des colonnes
> names(Catalogue)[1] <- "id"
> names(Catalogue)[2] <- "marque"
> names(Catalogue)[3] <- "nom"
> names(Catalogue)[4] <- "puissance"
> names(Catalogue)[5] <- "longueur"
> names(Catalogue)[6] <- "nbplaces"
> names(Catalogue)[7] <- "nbportes"
> names(Catalogue)[8] <- "couleur"
> names(Catalogue)[9] <- "occasion"
> names(Catalogue)[10] <- "prix"
>
```

Figure 15 Renommer les colonnes

Ensuite, pour afficher la quantité de données, nous transformons les données à vecteurs de données.

```
> Catalogue$marque <- as.factor(Catalogue$marque)
> Catalogue$nom <- as.factor(Catalogue$nom)
> Catalogue$longueur <- as.factor(Catalogue$longueur)
> Catalogue$couleur <- as.factor(Catalogue$couleur)
> Catalogue$occasion <- as.logical(Catalogue$cocasion)
> Catalogue$puissance<- as.integer(Catalogue$puissance)
> Catalogue$nbplaces<- as.integer(Catalogue$nbplaces)
> Catalogue$prix<- as.integer(Catalogue$prix)
> Catalogue$nbportes<- as.integer(Catalogue$nbportes)</pre>
```

Figure 16 Convert to format demandé

Et nous supprimons les lignes de données qui contiennent des valeurs manquantes (NA).

```
> Catalogue_sans_na <- na.omit(Catalogue)</pre>
> Catalogue_sans_na <- droplevels(Catalogue_sans_na)
> summary(Catalogue_sans_na)
       id
                                                                            longueur
                         marque
                                           nom
                                                      puissance
                  Renault: 40
          2.00
                                  1007 1.4
                                            : 10
                                                    Min.
                                                           : 55.0
                                                                    courte
                                                                               :60
       :
1st Qu.: 69.25
                 Volkswagen: 40
                                                    1st Qu.:109.0
                                   120i
                                             : 10
                                                                    longue
                                                                                : 90
Median :136.50
                  Audi
                           : 20
                                   9.3 1.8T
                                             : 10
                                                    Median :147.0
                                                                    moyenne
                                                                                :70
                                   A2 1.4
                                                          :157.6
Mean
      :136.50
                 BMW
                            : 20
                                             : 10
                                                    Mean
                                                                    tres longue:50
                           : 20
 3rd Qu.:203.75
                 Mercedes
                                   A200
                                             : 10
                                                    3rd Qu.:170.0
                                   A3 2.0 FSI: 10
                            : 15
Max.
       :271.00
                  Nissan
                                                    Max.
                                                           :507.0
                  (Other)
                           :115
                                   (Other)
                                             :210
   nbplaces
                   nbportes
                                  couleur
                                             occasion
                Min.
                       :3.000
                                            Mode :logical
                                                            Min.
Min.
       :5.000
                                 blanc:54
 1st Qu.:5.000
                1st Qu.:5.000
                                 bleu:54
                                            FALSE:160
                                                            1st Ou.: 16029
Median :5.000
                                 gris :54
                                                            Median : 20598
                Median :5.000
                                            TRUE :110
                                                                  : 26668
Mean :5.222
                Mean
                      :4.815
                                 noir:54
                                                            Mean
 3rd Qu.:5.000
                 3rd Qu.:5.000
                                 rouge:54
                                                            3rd Qu.: 30000
Max.
       :7.000
                       :5.000
                                                            Max.
                                                                   :101300
                Max.
```

Figure 17 Suppression de nulles

Nous aussi corrigions les valeurs des colonnes qui sont erronées.

```
> Catalogue_sans_na$longueur <- gsub("tr�s longue", "tres longue", Catalogue_sans_na$longue
ur)
> Catalogue_sans_na$longueur <- as.factor(Catalogue_sans_na$longueur)
```

Figure 18 Nettoyage de caractère incorrect

Le tableau final du Catalogue nettoyé est présenté cidessous.

```
> summary(Catalogue_traite)
       id
                         marque
                                                                            longueur
                  Renault
          2.00
                            : 40
                                   1007 1.4
                                             : 10
                                                    Min.
                                                            : 55.0
                                                                     courte
                                                                                :60
Min.
                  Volkswagen: 40
 1st Qu.: 69.25
                                   120i
                                                     1st Qu.:109.0
                                              : 10
                                                                     longue
                                                                                :90
                                   9.3 1.8T
Median :136.50
                  Audi
                            : 20
                                             : 10
                                                     Median :147.0
                                                                     moyenne
                                                                                :70
       :136.50
                  BMW
                             : 20
                                   A2 1.4
                                             : 10
                                                     Mean
                                                           :157.6
                                                                     tres longue:50
Mean
 3rd Qu.:203.75
                  Mercedes
                                   A200
                                                     3rd Qu.:170.0
                            : 20
                                              : 10
        :271.00
                  Nissan
                                   A3 2.0 FSI: 10
                                                           :507.0
                            : 15
                                                    Max.
Max.
                  (Other)
                            :115
                                    (Other)
                                             :210
    nbplaces
                    nbportes
                                  couleur
                                             occasion
                                            Mode :logical
Min.
       :5.000
                 Min.
                       :3.000
                                 blanc:54
                                                             Min.
 1st Qu.:5.000
                 1st Qu.:5.000
                                 bleu:54
                                            FALSE:160
                                                             1st Qu.: 16029
                 Median :5.000
                                 gris :54
                                            TRUE :110
Median : 5.000
                                                             Median : 20598
                 Mean :4.815
Mean :5.222
                                 noir:54
                                                             Mean
                                                                   : 26668
 3rd Qu.:5.000
                 3rd Qu.:5.000
                                 rouge:54
                                                             3rd Qu.: 30000
        :7.000
                 Max.
                        :5.000
                                                                    :101300
 Max.
                                                             Max.
```

Figure 19 Récapitulatif du tableau du Catalogue nettoyé

2.3 Nettoyage des données : Immatriculations

La première étape est comme avant de changer les noms des colonnes.

```
> ## renommer des colonnes
> names(Immatriculations)[1] <- "immatriculation "
> names(Immatriculations)[2] <- "marque"
> names(Immatriculations)[3] <- "nom"
> names(Immatriculations)[4] <- "puissance"
> names(Immatriculations)[5] <- "longueur"
> names(Immatriculations)[6] <- "nbplaces"
> names(Immatriculations)[7] <- "nbportes"
> names(Immatriculations)[8] <- "couleur"
> names(Immatriculations)[9] <- "occasion"
> names(Immatriculations)[10] <- "prix"
>
```

Figure 20 Corrige du nom de colonne

```
> Immatriculations$immatriculation <- as.factor(Immatriculations$immatriculation)
> Immatriculations$marque <- as.factor(Immatriculations$marque)
> Immatriculations$nom <- as.factor(Immatriculations$nom)
> Immatriculations$longueur <- as.factor(Immatriculations$longueur)
> Immatriculations$couleur <- as.factor(Immatriculations$couleur)
> Immatriculations$occasion <- as.logical(Immatriculations$occasion)
> Immatriculations_sans_na <- na.omit(Immatriculations)
> Immatriculations_sans_na <- droplevels(Immatriculations_sans_na)
> summarv(Immatriculations_sans_na)
```

Figure 21 Convert to format demandé

Pour la colonne « immatriculation », à partir du domaine de valeurs, nous gardons ceux dont le texte au format « 9999 AA 99 ».

```
> Immatriculations_sans_na <- Immatriculations_sans_na[,-1]
> Immatriculations_traite <- Immatriculations_sans_na
> Immatriculations_traite<- Immatriculations_traite[grep("^\\d{4} [A-Z]{2} \\d{2}$", Immatriculations_traite$immatriculation), ]
> #immatriculation double?
> doublons <- which(duplicated(Immatriculations_traite$immatriculation))
> Immatriculations_traite <- Immatriculations_traite[-doublons,]
> Immatriculations_traite$longueur <- gsub("tr$ slongue", "tres longue", Immatriculations_traite$longueur)
> Immatriculations_traite$longueur <- as.factor(Immatriculations_traite$longueur)
```

Figure 22 Suppression ID, convert format, suppression double, et corrige valeur erronée

Le tableau final des Immatriculations nettoyés est présenté ci-dessous.

```
> summary(Immatriculations_traite)
marque
BMW :264567 A2 1.4
                                                                                                                                        longueur
courte :494211
longue :489744
moyenne :207526
tres longue:605371
                                                                              nom
:255022
                                                                                                              puissance
                                                                                                                                                                                              nbplaces
                                                                                                                                                                                                                         nbportes
                                                                                                                                                                                                                 nbportes
Min. :3.000
1st Qu.:5.000
Median :5.000
Mean :4.868
3rd Qu.:5.000
                                                                                                         Min. : 55
1st Qu.: 75
Median :150
                                                                                                                                                                                       Min. :5
1st Qu.:5
Median :5
                                                                                                                                                                                                                                                     blanc:358278
bleu:360023
gris:360327
noir:359381
                         :262265
:225923
:169630
                                                                                   :230523
:169630
:111244
   Audi
Renault
                                               M5
                                               X-Type 2.5 V6 :169630
S80 T6 :111244
Vel Satis 3.5 V6:110671
   Jaguar :169630
Volkswagen:140117
                                                                                                         Mean
                                                                                                                          :199
                                                                                                                                                                                        Mean
                                                                                                          3rd Ou.:245
                                                                                                                                                                                        3rd Ou. : 5
                                                                                                                                                                                                                                                      rouge:358843
   Mercedes :134842
(Other) :599508
                                               5500
                                                                                    : 93180
                                                                                                         мах.
                                                                                                                          :507
                                                                                                                                                                                       мах.
                                                                                                                                                                                                                  Max.
                                                                                                                                                                                                                                  :5.000
   (Other) :599
occasion
Mode :logical
FALSE:1234892
                                     08 (other)
prix
Min. : 7500
1st Qu.: 18310
                                                                                    :826582
                                                                           :826582
immatriculation
1000 AD 49:
1000 AD 66:
1000 AE 54:
1000 AG 15:
                                      Median : 25970
Mean : 35778
   TRUE :561960
                                                                             1000 AG 13.
1000 AM 17:
1000 AQ 88:
(Other) :
                                      3rd Qu.: 49200
Max. :101300
```

Figure 23 Récapitulatif du tableau des Immatriculations nettoyés

3. Analyse exploratoire des données vues

Dans cette étape, nous allons faire des dessins pour afficher les données en vues. Les figures suivantes sont la répartition de la variable couleur, longueur, nbPlaces, nbPortes.

A partir du diagramme de couleur, nous remarquons que le besoin du client pour la couleur est équilibrant. Donc ce n'est pas nécessaire de considérer cette variable quand nous créons des catégories des voitures.

Figure 24 Code de dessin de couleur de catalogue

Figure 25 La répartition de la variable couleur

A partir du diagramme de longueur, le client qui choisit la voiture de longueur « longue » est plus que ceux qui choisissent les autres. Et nous considérons cette variable pour créer « categories » dans l'étape suivante.

Figure 26 Code de dessin de longueur de catalogue

Figure 27 La répartition de la variable longueur

A partir du diagramme de nbplaces, nous remarquons qu'il existe deux possibilités de nbPlaces : 5 et 7 et nbPlaces = 7 correspond à une situation spéciale pour la famille qui a plus de 5 personnes. Donc cette variable aura été utilisé pour créer des catégories de véhicules.

> ggplot(Catalogue_traite, aes(x=nbplaces))+geom_bar()

Figure 28 Code de dessin de nbplaces de catalogue

Figure 29 La répartition de la variable nbPlaces

A partir du diagramme de nbPortes, il existe une grande différence dans nbPortes. Donc nous pouvons utiliser cette variable pour créer des catégories de véhicules.

> ggplot(Catalogue_traite, aes(x=nbportes))+geom_bar()

Figure 30 Code de dessin de nbPortes de catalogue

Figure 31 La répartition de la variable nbPortes

A partir du diagramme de puissance, la puissance varie beaucoup pour les voitures différentes. Donc nous le considérons pour évaluer les catégories de voitures.

> ggplot(Catalogue_traite, aes(x=puissance))+geom_bar()

Figure 32 Code de dessin de puissance de catalogue

Figure 33 La répartition de la variable puissance

Nous pouvons aussi dessiner pour chaque type de longueur la répartition de la variable nbPortes, nbPlaces, et puissance.

Le diagramme de corrélation entre la longueur et nbPortes montre que les voitures à 5 portes existent pour toutes les longueurs, et que les voitures à 3 portes n'existent que pour la longueur="courte", ce qui nous permet de classer les voitures courtes dans une catégorie distincte.

Figure 34 La répartition de la variable nbPortes de chaque type de longueur

La corrélation entre longueur et nbPlaces montre qu'il n'y a que des voitures de 5 et 7 places pour toutes les voitures, et que les voitures de 7 places ne se trouvent que dans les voitures longues. Nous envisageons donc de diviser les voitures longues en deux catégories : les voitures longues à 5 places et les voitures longues à 7 places.

Figure 35 La répartition de la variable nbPlaces de chaque type de longueur

Enfin, nous considérons la relation entre la puissance et la longueur. Lorsque la puissance est supérieure à 250, seuls les modèles très longs sont disponibles, c'est pourquoi nous avons divisé ce cas en une catégorie distincte.

Nous observons ensuite une distribution plus concentrée de la puissance inférieure à 185, de sorte que nous utilisons la puissance 185 comme autre ligne de démarcation. Celle-ci est divisée en puissance inférieure à 185, puissance comprise entre 180 et 250 et puissance supérieure à 250(qui a été divisée en une catégorie distincte).

Figure 36 La répartition de la variable puissance de chaque type de longueur

Sur la base de la répartition de la puissance entre les modèles et de l'analyse précédente, nous avons finalement créé les catégories.

4. Identification des catégories de véhicules et application aux Immatriculations Les 3 critères pour créer la variable categories sont cités au-dessous :

- La longueur de la voiture
- La puissance de la voiture
- Le nombre de places

Nous créons categories de minicar (longueur= courte), compacte (longueur= moyenne), routière (longueur=longue, puissance<185, nbplaces=5), suv (longueur=longue, puissance<185, nbplaces=7), sportive (longueur=longue/très longue, 185<=puissance<250), berline (longueur=très longue, puissance>=250). Le code est comme dans la figure :

Figure 37 Categories à partir de Catalogue

Figure 38 Application de catégories aux Immatriculations

5. Fusion des données Clients et Immatriculations

D'abord nous créons un nouveau donnée appelé « Clients_Immatriculations » en fusionnant deux autres données « Immatriculations_traite » et « Clients_traite », en utilisant la colonne « immatriculation » comme clé de fusion.

Après nous supprimons la première colonne « immatriculation » et les colonnes qui ne sont pas pertinentes avec les prévisions ou qui font doubles colonnes de données.

```
> Clients_Immatriculations <- merge(Immatriculations_traite, Clients_traite, by ="immatriculation")
 > Clients Immatriculations <- Clients Immatriculations[.-1]
 > Clients Immatriculations <- subset(Clients Immatriculations. select = -marque)
> Clients_Immatriculations <- subset(Clients_Immatriculations, select = -marque)
> Clients_Immatriculations <- subset(Clients_Immatriculations, select = -nom)
> Clients_Immatriculations <- subset(Clients_Immatriculations, select = -puissance)
> Clients_Immatriculations <- subset(Clients_Immatriculations, select = -nbplaces)
> Clients_Immatriculations <- subset(Clients_Immatriculations, select = -nbportes)
> Clients_Immatriculations <- subset(Clients_Immatriculations, select = -couleur)
> Clients_Immatriculations <- subset(Clients_Immatriculations, select = -occasion)
> Clients_Immatriculations <- subset(Clients_Immatriculations, select = -prix)</pre>
  > summary(Clients_Immatriculations)
                                                                                         taux
Min. : 544.0
1st Qu.: 588.0
Median : 888.0
Mean : 899.2
   categories
berline :24326
                                                                    sexe
F:23653
                                                                                                                              situationfamiliale nbenfantsacharge deuxiemevoiture
Celibataire:23389 Min. :0.000 Mode:logical
                                     age
Min. :18.00
                                                                                                                                                                          1st Qu.:0.000
Median :1.000
                                      1st Qu.:27.00
Median :41.00
   compacte: 5706
minicar :24963
                                                                       M:55081
                                                                                                                               Divorce
En Couple
                                                                                                                                                             36
                                                                                                                                                                                                             FALSE: 68476
                                                                                                                                                      :50711
                                                                                                                                                                                                              TRUE :10258
                                      Mean :43.72
3rd Qu.:57.00
                                                                                                                                                      : 530
: 212
    Routiere: 8350
                                                                                                                               Marie(e)
                                                                                                                                                                          Mean
                                                                                                                                                                                        :1.252
                                                                                                                                                                           3rd Qu.:2.000
   sportive:15389
                                                                                            3rd Qu.:1144.0
                                                                                                                               seul
                                      Max.
                                                     :84.00
                                                                                                          :1399.0
                                                                                                                               seule
                                                                                                                                                      : 3856
```

Figure 39 Fusion de data frames et suppression de colonnes inutiles

6. Modèle de classification et les tests dans différents algorithmes

6.1 Situation 1: normal

Nous changeons tous les colonnes de données en facteurs et résume les données Clients_Immatriculations. Nous pouvons voir qu'il contient les colonnes suivantes : categories, age, sexe, taux, situationfamiliale, nbenfantsacharge et deuxiemevoiture.

```
> Clients_Immatriculations$age <- as.factor(Clients_Immatriculations$age)</p>
> Clients_Immatriculations$sexe <- as.factor(Clients_Immatriculations$sexe)
> Clients_Immatriculations$taux <- as.factor(Clients_Immatriculations$taux)</pre>
> Clients_ImmatriculationsStaux <- as.factor(Clients_ImmatriculationsStaux)
> Clients_Immatriculations$situationfamiliale <- as.factor(Clients_Immatriculations$situationfamiliale)
> Clients_Immatriculations$nbenfantsacharge <- as.factor(Clients_Immatriculations$nbenfantsacharge)
> Clients_Immatriculations$deuxiemevoiture <- as.factor(Clients_Immatriculations$deuxiemevoiture)
> Clients_Immatriculations$categories <- as.factor(Clients_Immatriculations$categories)
> summary(Clients_Immatriculations)
                                                                                   taux
: 506
                                                                                                         situationfamiliale nbenfantsacharge deuxiemevoiture
       categories
                                       age
                                                         sexe
  berline :24326
                                             2053
                                                         F:23653
                                                                          550
                                          : 2018
: 1988
  compacte: 5706
                              29
                                                         M:55081
                                                                          564
                                                                                       : 483
                                                                                                      Divorce
                                                                                                                               36
                                                                                                                                          1:13216
                                                                                                                                                                       TRUE :10258
  minicar :24963
                                                                                                      En Couple :50711
                                                                           581
                                                                                           480
                                                                                                                                          2:13129
                                                                                                                         : 530
: 212
  Routiere: 8350
                           18
                                           : 1986
                                                                           565
                                                                                       : 478
                                                                                                      Marie(e)
                                                                                                                                          3: 9192
                                                                           577
557
                                                                                       : 468
  sportive:15389
                                                                                                      seul
                              28
                                             1978
                                                                                            467
                                                                                                      seule
                                                                                                                         : 3856
                           (Other):66732
                                                                          (Other):75852
```

Figure 40 Convert to format

Enfin, nous créons deux jeux de données, un jeu d'apprentissage à 70 % et un jeu de test à 30 %, donc nous sélectionnons les lignes 1 à 55114 pour le jeu d'apprentissage et les lignes 55115 à 78734 pour le jeu de test.

```
> Clients_Immatriculations_traite_EA <- Clients_Immatriculations[1:55114,]
> Clients_Immatriculations_traite_ET <- Clients_Immatriculations[55115:78734,]</pre>
```

Figure 41 Situation1_Séparation de l'échantillonnage d'apprentissage et test

6.1.1 Algorithme: C50

Nous utilisons l'algorithme C5.0 pour la classification de catégories à partir de données Clients_Immatriculations.

D'abord nous créons un objet treec pour classifier les catégories en fonction des variables de Clients_Immatriculations_traite_EA. Nous pouvons voir le résultat suivant.

```
> treec <- C5.0(categories ~., Clients_Immatriculations_traite_EA)
> print(treec)

call:
C5.0.formula(formula = categories ~ ., data = Clients_Immatriculations_traite_EA)

Classification Tree
Number of samples: 55114
Number of predictors: 6

Tree size: 12

Non-standard options: attempt to group attributes
```

Figure 42 Formation de jeux d'apprentissage avec C5.0

Après nous prédisons les catégories pour le jeu de données Clients_Immatriculations_traite_ET à l'aide du modèle treec. Et nous obtenons le résultat suivant.

```
> test_treec <- predict(treec, Clients_Immatriculations_traite_ET, type = "class")
> table(test_treec)
test_treec
berline compacte minicar Routiere sportive
4701 1172 8075 4248 5424
```

Figure 43 Prédiction de de jeu du test avec C50 et affichage des résultats prédits

Nous créons une matrice de confusion pour comparer les catégories prédites par le modèle aux valeurs réelles, puis nous calculons manuellement son rappel, sa précision et son taux d'erreur et nous les avons présentés sous forme de tableau.

```
> table(Clients_Immatriculations_traite_ET$categories, test_treec)
          test_treec
           berline compacte minicar Routiere sportive
 berline
              4310
                          0
                                         1178
                                                  1792
                 0
                        593
                                1102
                                            0
 compacte
                                                    1
 minicar
                 4
                        578
                                6970
                                            0
                                                     1
 Routiere
                1
                                         2437
                                                     51
                          0
                                   1
 sportive
               386
                          1
                                   0
                                          633
                                                   3579
```

Figure 44 Situation1 C50 : Dessin de la matrice de mélange

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4310	0	2	1178	1792	0,591870365
compacte	0	593	1102	0	1	0,349646226
minicar	4	578	6970	0	1	0,922812128
Routiere	1	0	1	2437	51	0,978714859
sportive	386	1	0	633	3579	0,778212655
Précision	0,9168262	0,5059727	0,86315789	0,57368173	0,65984513	
taux d'erreur	0,2426334					

Tableau 1 Situation1 C50 : Calcul du rappel, de la précision et des taux d'erreur

Enfin, nous créons un objet c_prob qui stocke les probabilités de classification des catégories pour chaque observation dans l'ensemble de données Clients_Immatriculations_traite_ET. Et nous calculons l'aire sous la courbe (AUC) pour le modèle multiclasse en utilisant la fonction multiclass.roc pour évaluer la capacité du modèle à classer correctement les catégories. Nous pouvons obtenir que l'AUC est égale à 0,9418 pour ce test de l'algorithme C50.

```
> c_prob <- predict(treec, Clients_Immatriculations_traite_ET, type = "prob")
> c_auc <- multiclass.roc(Clients_Immatriculations_traite_ET$categories, c_prob)
> print(c_auc)

Call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = c_prob)

Data: multivariate predictor c_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Routiere, sportive.

Multi-class area under the curve: 0.9418
```

Figure 45 Situation1_C5.0 : calcul de l'AUC

6.1.2 Algorithme: naivebayes

Nous utilisons l'algorithme naive bayes pour prédire les catégories à partir de données Clients_Immatriculations. De la même manière que pour l'algorithme C50, nous obtenons les résultats prédits par l'algorithme naive bayes, qui sont présentés dans le tableau (nb_classe).

```
> nb_class <- predict(nb, Clients_Immatriculations_traite_ET, type = "class")
```

Figure 47 Prédiction de de jeu du test avec naivebayes

Nous obtenons également la matrice de confusion et calculons les taux de rappel, de précision et d'erreur.

```
> table( Clients_Immatriculations_traite_ET$categories, nb_class)
           nb_class
berline compacte minicar Routiere sportive
  berline
                4669
                              0
                                     364
                                               535
                                                        1714
                           876
927
  compacte
minicar
                                    819
5195
                                                          741
                                              1078
  Routiere
                 416
                                     254
                 713
                                     551
                                             157
                                                        3177
```

Figure 48 Situation1 naivebayes : Dessin de la matrice de mélange

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4669	0	364	535	1714	0,641170008
compacte	0	876	819	0	1	0,516509434
minicar	1430	927	5195	0	1	0,68780617
Routiere	416	1	254	1078	741	0,432931727
sportive	713	1	551	157	3177	0,690802348
Précision	0,6459602	0,48531856	0,72323542	0,60903955	0,56389776	
taux d'erreur	0,3651566					

Tableau 2 Situation1_Naivebayes : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,9201 pour ce test de l'algorithme naviebayes.

```
> nb_prob <- predict(nb, Clients_Immatriculations_traite_ET, type="prob")
> nb_auc <-multiclass.roc(Clients_Immatriculations_traite_ET$categories, nb_prob)
> print(nb_auc)

call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = nb_prob)

Data: multivariate predictor nb_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Routiere, sportive.

Multi-class area under the curve: 0.9201
```

Figure 49 Situation 1 Naivebayes : calcul de l'AUC

6.1.3 Algorithme: Random Forest

Nous avons essayé d'utiliser l'algorithme Random Forest, mais il était impossible de le détecter en raison du nombre de taux et de catégories d'âge.

```
> ## ---- Random Forest ----
> Clients_Immatriculations_traite_EA3 <- Clients_Immatriculations_traite_EA
> Clients_Immatriculations_traite_ET3 <- Clients_Immatriculations_traite_ET
>
> RF <- randomForest(categories ~ ., Clients_Immatriculations_traite_EA3)
Error in randomForest.default(m, y, ...):
    Can not handle categorical predictors with more than 53 categories.</pre>
```

Figure 50 Formation de jeux d'apprentissage avec random forest

6.1.4 Algorithme: NNET

Nous avons essayé d'utiliser l'algorithme NNET, mais il était impossible de le détecter en raison du nombre de taux et de catégories d'âge.

```
> ## ---- NNET ----
> nnet <- nnet(categories ~., Clients_Immatriculations_traite_EA, size=6, maxit=180, act.fct = "softmax")
Error in nnet.default(x, y, w, softmax = TRUE, ...) :
trop (5033) de pondérations
```

Figure 51 Formation de jeux d'apprentissage avec NNET

6.1.5 Algorithme: Régression logistique multinomiale

Nous avons essayé d'utiliser l'algorithme Régression logistique multinomiale, mais il était impossible de le détecter en raison du nombre de taux et de catégories d'âge.

```
> ## ---- un modèle de régression logistique multinomiale ----
> # Entraîner un modèle de régression logistique multinomiale
> model <- multinom(categories ~., data = Clients_Immatriculations_traite_EA)
Error in nnet.default(X, Y, w, mask = mask, size = 0, skip = TRUE, softmax = TRUE, :
    trop (4170) de pondérations</pre>
```

Figure 52 Formation de jeux d'apprentissage avec Régression logistique multinomiale

6.2 Situation 2 : supprimer la colonne taux

Nous considérons le cas où nous ne pouvions pas utiliser plus d'un algorithme en raison du nombre de catégories de variables. Nous avons décidé de diviser les cas de classification multiples, de comparer les résultats de détection et de choisir l'algorithme le plus approprié. Par conséquent, pour la situation 2, nous chosions de supprimer la colonne taux directement de ce jeu d'apprentissage et de ce jeu de test.

```
> Clients_Immatriculations_traite_EA <- subset(Clients_Immatriculations_traite_EA , select = -taux)
> Clients_Immatriculations_traite_ET <- subset(Clients_Immatriculations_traite_ET , select = -taux)
```

Figure 53 Situation2_Séparation de l'échantillonnage d'apprentissage et test

6.2.1 Algorithme: C50

Nous exécutons à nouveau l'algorithme C50 et obtenons les résultats suivants :

```
> table(test_treec)
test_treec
berline compacte minicar Routiere sportive
4701 775 8472 1911 7761
> table(Clients_Immatriculations_traite_ET$categories, test_treec)
           test_treec
            berline compacte minicar Routiere sportive
                          0
382
30
  berline
                               1313
                                             0
  compacte
  minicar
                                  7155
  Routiere
                386
  sportive
                                                       4212
```

Figure 54 Situation2_C50 résultat de prédiction

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4310	0	2	648	2322	0,591870365
compacte	0	382	1313	0	1	0,225235849
minicar	4	393	7155	0	1	0,947305706
Routiere	1	0	1	1263	1225	0,507228916
sportive	386	0	1	0	4212	0,915851272
Précision	0,9168262	0,49290323	0,84454674	0,66091052	0,54271357	1
taux d'erreur	0,2666384				101	

Tableau 3 Situation2_C50 : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,9039 pour ce test de l'algorithme C50.

```
> c_prob <- predict(treec, Clients_Immatriculations_traite_ET, type = "prob")
> c_auc <- multiclass.roc(Clients_Immatriculations_traite_ET$categories, c_prob)
> print(c_auc)

call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = c_prob)

Data: multivariate predictor c_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Routiere, sportive.

Multi-class area under the curve: 0.9039
```

Figure 55 Situation2_C50 : calcul de l'AUC

6.2.2 Algorithme: Naivebayes

Nous exécutons à nouveau l'algorithme Naivebayes et obtenons les résultats suivants :

```
> table(nb_class)
nb_class
 berline compacte minicar Routiere sportive
    6562
            1340
                     7165
                             1832
                                      6721
> table( Clients_Immatriculations_traite_ET$categories, nb_class)
          nb_class
          berline compacte minicar Routiere sportive
  berline
             4441
                         0
                               228
                                        620
                                               1993
  compacte
               0
                       670
                              1025
                                         0
                                                  1
             1465
                       669
                              5418
  minicar
                                          0
                                                  1
              103
                               119
  Routiere
                        1
                                       1212
                                                1055
              553
                         0
                               375
  sportive
                                          0
                                                3671
```

Figure 56 Situation2 Naivebayes code

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4441	0	228	620	1993	0,609859929
compacte	0	670	1025	0	1	0,39504717
minicar	1465	669	5418	0	1	0,717330862
Routiere	103	1	119	1212	1055	0,486746988
sportive	553	0	375	0	3671	0,798217004
Précision	0,6767754	0,5	0,75617585	0,66157205	0,54619848	
taux d'erreur	0,3475021					

Tableau 4 Situation 2 Naivebayes : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,8908 pour ce test de l'algorithme Naivebayes.

```
> nb_prob <- predict(nb, Clients_Immatriculations_traite_ET, type="prob")
warning message:
predict.naive_bayes(): more features in the newdata are provided as there are probability tables in the object. Calculation is p
erformed based on features to be found in the tables.
> # Installation du package
> nb_auc <-multiclass.roc(clients_Immatriculations_traite_ET$categories, nb_prob)
> print(nb_auc)

Call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = nb_prob)

Data: multivariate predictor nb_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar,
Routiere, sportive.
Multi-class area under the curve: 0.8908
```

Figure 57 Situation2_ Naivebayes: calcul de l'AUC

6.2.3 Algorithme: Random Forest

L'algorithme Random Forest n'a pas pu être mis en œuvre en raison du trop grand nombre de catégories d'âge.

```
> ## ---- Random Forest ----
> Clients_Immatriculations_traite_EA3 <- Clients_Immatriculations_traite_EA
> Clients_Immatriculations_traite_ET3 <- Clients_Immatriculations_traite_ET
>
> RF <- randomForest(categories ~ ., Clients_Immatriculations_traite_EA3)
Error in randomForest.default(m, y, ...):
    Can not handle categorical predictors with more than 53 categories.</pre>
```

Figure 58 Formation de jeux d'apprentissage avec random forest

6.2.4 Algorithme: NNET

Nous utilisons l'algorithme NNET pour prédire les catégories à partir de données Clients_Immatriculations. De la même manière que pour l'algorithme C50, nous obtenons les résultats prédits par l'algorithme NNET, qui sont présentés dans le tableau (nn_classe).

```
> ## ---- NNET ----
> nnet <- nnet(categories ~., Clients_Immatriculations_traite_EA, size=6, maxit=180, act.fct = "softmax")
# weights:
               503
initial value 95597.927624
iter 10 value 44649.881309
iter 20 value 36902.785769
iter 30 value 35251.401558
iter 40 value 33823.381033
iter 50 value 33354.436900
iter 60 value 33025.379932
       70 value 32866.801962
iter
       80 value 32777.690782
iter
iter
      90 value 32713.553218
iter 100 value 32674.754380 iter 110 value 32631.095213
iter 120 value 32591.460197
iter 130 value 32494.472288
iter 140 value 32435.962512
iter 150 value 32412.244723
iter 160 value 32391.396351
iter 170 value 32375.580918
iter 180 value 32366.681955
final value 32366.681955
stopped after 180 iterations
```

Figure 59 Formation de jeux d'apprentissage avec NNET

```
> nn_class <- predict(nnet, Clients_Immatriculations_traite_ET, type="class")

> table(nn_class)
nn_class
berline compacte minicar Routiere sportive
4769 764 8483 1873 7731
```

Figure 60 Prédiction de de jeu du test avec NNET

Nous obtenons également la matrice de confusion et calculons les taux de rappel, de précision et d'erreur.

Figure 61 Situation2_NNET : Dessin de la matrice de mélange

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4329	0	2	638	2313	0,594479539
compacte	0	366	1329	0	1	0,215801887
minicar	4	398	7150	0	1	0,946643718
Routiere	32	0	1	1235	1222	0,495983936
sportive	404	0	1	0	4194	0,911937378
Précision	0,9077375	0,47905759	0,84286219	0,65936999	0,54249127	
taux d'erreur	0,2686706					

Tableau 5 Situation2_NNET : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,9104 pour ce test de l'algorithme NNET.

```
> nn_prob <- predict(nnet, Clients_Immatriculations_traite_ET, type="raw")
> nn_auc <-multiclass.roc(Clients_Immatriculations_traite_ET$categories, nn_prob)
> print(nn_auc)

call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = nn_prob)

Data: multivariate predictor nn_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Routiere, sportive.

Multi-class area under the curve: 0.9104
```

Figure 62 Situation2_NNET: calcul de l'AUC

6.3 Situation 3 : supprimer la colonne taux et la colonne âge

Nous considérons le cas où l'algorithme Random Forest ne fonctionne pas en raison d'un trop grand nombre de catégories d'âge et, dans la situation 3, nous supprimons à la fois la colonne de taux et la colonne des âges.

```
> Clients_Immatriculations_traite_EA <- subset(Clients_Immatriculations_traite_EA , select = -taux)
> Clients_Immatriculations_traite_ET <- subset(Clients_Immatriculations_traite_ET , select = -taux)

> Clients_Immatriculations_traite_EA <- subset(Clients_Immatriculations_traite_EA , select = -age)
> Clients_Immatriculations_traite_ET <- subset(Clients_Immatriculations_traite_ET , select = -age)
```

Figure 63 Situation3 Séparation de l'échantillonnage d'apprentissage et test

6.3.1 Algorithme: C50

Nous exécutons à nouveau l'algorithme C50 et obtenons les résultats suivants :

Figure 64 Situation3_C50 résultat de prédiction

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4310	0	2	0	2970	0,591870365
compacte	0	0	1695	0	1	0
minicar	4	0	7548	0	1	0,999338011
Routiere	1	0	1	0	2488	0
sportive	386	0	1	0	4212	0,915851272
Précision	0,9168262	1	0,81626473	1	0,43548387	
taux d'erreur	0,3196444					

Tableau 6 Situation3_C50 : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,8686 pour ce test de l'algorithme C50.

```
> c_prob <- predict(treec, Clients_Immatriculations_traite_ET, type = "prob")
> c_auc <- multiclass.roc(Clients_Immatriculations_traite_ET$categories, c_prob)
> print(c_auc)

Call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = c_prob)

Data: multivariate predictor c_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Rou tiere, sportive.

Multi-class area under the curve: 0.8686
```

Figure 65 Situation3 C50: calcul de l'AUC

6.3.2 Algorithme: Naviebayes

Nous exécutons à nouveau l'algorithme Naviebayes et obtenons les résultats suivants :

```
> table(nb_class)
nb_class
berline compacte minicar Routiere sportive
   6562
                    10576
               0
                                        6482
> table( Clients_Immatriculations_traite_ET$categories, nb_class)
          nb_class
          berline compacte minicar Routiere sportive
 berline
                                848
                                                  1993
                          0
 compacte
                          0
                               1695
 minicar
              1465
                          0
                               6087
                                            0
                                714
                                                  1673
 Routiere
               103
                          0
                                            0
                               1232
 sportive
                          0
```

Figure 66 Situation3_Naivebayes résultat de prédiction

I tuvic buyes						
	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4441	0	848	0	1993	0,609859929
compacte	0	0	1695	0	1	0
minicar	1465	0	6087	0	1	0,805904938
Routiere	103	0	714	0	1673	0
sportive	553	0	1	0	2814	0,835510689
Précision	0,6767754	1	0,65136437	1	0,43412527	
taux d'erreur	0,4040824					

Tableau 7 Situation3 Naivebayes : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,8507 pour ce test de l'algorithme Naivebayes.

```
> nb_prob <- predict(nb, Clients_Immatriculations_traite_ET, type="prob")

Warning message:
predict.naive_bayes(): more features in the newdata are provided as there are probability tables in the object. Calculation is performed based on features to be found in the tables.

> # Installation du package
> nb_auc <-multiclass.roc(Clients_Immatriculations_traite_ET$categories, nb_prob)
> print(nb_auc)

Call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = nb_prob)

Data: multivariate predictor nb_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Ro utiere, sportive.
Multi-class area under the curve: 0.8507
```

Figure 67 Situation3 Naivebayes : calcul de l'AUC

6.3.3 Algorithme: Random Forest

Nous exécutons à nouveau l'algorithme Random Forest et obtenons les résultats suivants :

```
> table(result.RF)
result.RF
berline compacte minicar Routiere sportive
4707 0 9247 0 9666
> table(Clients_Immatriculations_traite_ET3$categories, result.RF)
result.RF
berline compacte minicar Routiere sportive
berline 4311 0 2 0 2969
compacte 0 0 1695 0 1
minicar 4 0 7548 0 1
Routiere 3 0 1 0 2486
sportive 389 0 1 0 4209
```

Figure 68 Situation3_Random Forest résultat de prédiction

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4311	0	2	0	2969	0,59200769
compacte	0	0	1695	0	1	0
minicar	4	0	7548	0	1	0,999338011
Routiere	3	0	1	0	2486	0
sportive	389	0	1	0	4029	0,911744739
Précision	0,91587	1	0,81626473	1	0,42473118	
taux d'erreur	0,3221843					

Tableau 8 Situation3_Random Forest : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,7011 pour ce test de l'algorithme Random Forest.

```
> rf_prob <- predict(RF, Clients_Immatriculations_traite_ET3, type="prob")
> RF_auc <-multiclass.roc(Clients_Immatriculations_traite_ET$categories, rf_prob)
> print (RF_auc)

Call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = rf_prob)

Data: multivariate predictor rf_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Ro utiere, sportive.

Multi-class area under the curve: 0.7011
```

Figure 69 Situation3_ Random Forest : calcul de l'AUC

6.3.4 Algorithme: NNET

Nous exécutons à nouveau l'algorithme Random Forest et obtenons les résultats suivants :

```
Nous exécutons a nouveau Laigurname Name Company of the Company of
                                                           compacte
minicar
Routiere
                                                                                                                                                                                                                                                                                                                                                                                  1
                                                        sportive
                                                                                                                                                                                                                                                        389
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      4209
```

Figure 70 Situation3_NNET résultat de prédiction

	berline	minicar	sportive	Rappel
berline	4306	2	2974	0,59132107
compacte	0	1695	1	
minicar	4	7548	1	0,99933801
Routiere	3	1	2486	
sportive	389	1	4209	0,91519896
Précision	0,9157805	0,81626473	0,4352187	
taux d'erreur	0,3199407			

Tableau 9 Situation3_NNET : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,871 pour ce test de l'algorithme NNET.

```
> nn_prob <- predict(nnet, Clients_Immatriculations_traite_ET, type="raw")
> nn_auc <-multiclass.roc(Clients_Immatriculations_traite_ET$categories, nn_prob)
> print(nn_auc)
Call: multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories,
Data: multivariate predictor nn_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Ro
utiere, sportive.
Multi-class area under the curve: 0.871
```

Figure 71 Situation3 NNET: calcul de l'AUC

6.4 Situation 4 : remplacer la colonne taux à la colonne taux classe

Dans la situation 4, nous reclassons les taux et remplaçons la colonne originale des taux pour la détection.

En examinant la distribution de taux dans le boxplot et les valeurs minimum, premier quartile, médiane, moyenne, troisième quartile et maximum résumées dans le résumé, nous décidons de créer une nouvelle colonne taux_classe et diviser taux en 4 catégories : tauxbas : taux < 588 ; tauxmoyen : 588 <= taux <= 899 ; tauxeleve : 899 < taux <= 1144 ; tauxtreseleve : taux > 1144.

Figure 72 Le boxplot de taux

```
> summary(Clients_Immatriculations$taux)
Min. 1st Qu. Median Mean 3rd Qu. Max.
544.0 588.0 888.0 899.2 1144.0 1399.0
```

Figure 73 Récapitulatif du taux

Nous supprimons ensuite la colonne taux d'origine et renommons taux_classe en taux. Les données finales Clients_Immatriculations, sont présentées ci-dessous.

```
> Clients_Immatriculations_traite <- Clients_Immatriculations
> Clients_Immatriculations_traite <- subset(Clients_Immatriculations_traite , select = -taux)
> names(Clients_Immatriculations_traite)[7] <- "taux"</pre>
situationfamiliale nbenfantsacharge deuxiemevoiture
Celibataire:23389 0:35312 FALSE:68476
                                                                                                                                                                        :19894
                                                                                                                                                   tauxbas
                                                                                                                                                   tauxeleve :18793
tauxmoyen :20378
tauxtreseleve :19669
                                                                 Divorce
En Couple
                                                                                        36
                                                                                                 1:13216
                                                                                                                           TRUE :10258
                                                                                   :50711
                                                                                      530
212
                                                                  Marie(e)
                                                                                                  3: 9192
 sportive:15389
                          21
                                     : 1979
                                                                  Seul
                                                                                                 4: 7885
                           (Other):66732
```

Figure 74 Récapitulatif du Clients_Immaticulations_traite

Nous créons ensuite deux ensembles de données pour l'apprentissage automatique.

```
> Clients_Immatriculations_traite_EA <- Clients_Immatriculations_traite[1:55114,]
> Clients_Immatriculations_traite_ET <- Clients_Immatriculations_traite[55115:78734,]
```

Figure 75 Situation4 Séparation de l'échantillonnage d'apprentissage et test

6.4.1 Algorithme: C50

Nous exécutons à nouveau l'algorithme C50 et obtenons les résultats suivants :

```
> treec <- C5.0(categories ~., Clients_Immatriculations_traite_EA)
> print(treec)

call:
    C5.0.formula(formula = categories ~ ., data = Clients_Immatriculations_traite_EA)

Classification Tree
Number of samples: 555114
Number of predictors: 6

Tree size: 50

Non-standard options: attempt to group attributes
> test_treec <- predict(treec, Clients_Immatriculations_traite_ET, type = "class")
> table(test_treec)

test_treec
berline compacte minicar Routiere sportive
    4701    1386    7661    3875    5797
> table(Clients_Immatriculations_traite_ET$categories, test_treec)
    test_treec
    berline compacte minicar Routiere sportive
berline d310    0    2    1076    1894
    compact    0    793    902    0    1
    minicar    4    792    6756    0    1
    Routiere    1    0    1    2267    221
    sportive    386    1    0    532    3680
```

Figure 76 Situation4_C50 résultat de prédiction

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4310	0	2	1076	1894	0,591870365
compacte	0	793	902	0	1	0,467570755
minicar	4	792	6756	0	1	0,894479015
Routiere	1	0	1	2267	221	0,910441767
sportive	386	1	0	532	3680	0,800173951
Précision	0,9168262	0,5	0,88186921	0,58503226	0,63481111	
taux d'erreur	0,2461473					

Tableau 10 Situation4_C50 : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,9399 pour ce test de l'algorithme C50.

```
> c_prob <- predict(treec, Clients_Immatriculations_traite_ET, type = "prob")
> c_auc <- multiclass.roc(Clients_Immatriculations_traite_ET$categories, c_prob)
> print(c_auc)

Call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = c_prob)

Data: multivariate predictor c_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Routier e, sportive.
Multi-class area under the curve: 0.9399
```

Figure 77 Situation4_C50 : calcul de l'AUC

6.4.2 Algorithme: Naviebayes

Nous exécutons à nouveau l'algorithme Naviebayes et obtenons les résultats suivants :

Figure 78 Situation4_Naivebayes : résultat de prediction

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4554	0	275	473	1980	0,625377644
compacte	0	746	949	0	1	0,439858491
minicar	1465	788	5299	0	1	0,701575533
Routiere	329	1	254	962	944	0,386345382
sportive	553	1	351	51	3643	0,792128724
Précision	0,6599044	0,48567708	0,74340629	0,6473755	0,55457452	
taux d'erreur	0,3563082					

Tableau 11 Situation4 Naivebayes : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,9201 pour ce test de l'algorithme Naivebayes.

Figure 79 Situation4_ Naivebayes : calcul de l'AUC

6.4.3 Algorithme: Random Forest

L'algorithme Random Forest n'a pas pu être mis en œuvre en raison du trop grand nombre de catégories d'âge.

```
> ## ---- Random Forest ----
> Clients_Immatriculations_traite_EA3 <- Clients_Immatriculations_traite_EA
> Clients_Immatriculations_traite_ET3 <- Clients_Immatriculations_traite_ET
>
> RF <- randomForest(categories ~ ., Clients_Immatriculations_traite_EA3)
Error in randomForest.default(m, y, ...):
    Can not handle categorical predictors with more than 53 categories.</pre>
```

Figure 80 Formation de jeux d'apprentissage avec random forest

6.4.4 Algorithme: NNET

Nous exécutons à nouveau l'algorithme NNET et obtenons les résultats suivants :

Figure 81 Situation4 NNET résultat de prédiction

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4316	0	4	1074	1888	0,592694315
compacte	0	803	892	0	1	0,473466981
minicar	4	842	6705	1	1	0,887726731
Routiere	29	2	0	2237	222	0,898393574
sportive	386	0	1	539	3673	0,798651881
Précision	0,91151	0,48755313	0,88200474	0,58088808	0,63491789	
taux d'erreur	0,2491956					

Tableau 12 Situation4_NNET : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,9486 pour ce test de l'algorithme NNET.

```
> nn_prob <- predict(nnet, Clients_Immatriculations_traite_ET, type="raw")
> nn_auc <-multiclass.roc(Clients_Immatriculations_traite_ET$categories, nn_prob)
> print(nn_auc)

call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = nn_prob)

Data: multivariate predictor nn_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Routiere, sportive.
Multi-class area under the curve: 0.9486
```

Figure 82 Situation4_ NNET : calcul de l'AUC

6.5 Situation 5 : remplacer la colonne taux et la colonne âge à la colonne taux_classe et âge classe

Dans la situation 5, nous reclassons les taux et remplaçons la colonne originale des taux et reclassons les âges et remplaçons la colonne originale des âges pour la détection.

La classification du taux_classe reste inchangée par rapport à la situation4.

En examinant la distribution de âge dans le boxplot et les valeurs minimum, premier quartile, médiane, moyenne, troisième quartile et maximum résumées dans le résumé, nous décidons de créer une nouvelle colonne âge_classe et diviser taux en 4 catégories : jeune : âge <27 ; âge moyen : 27<= âge <=44; adulte : 44< âge <= 51 et Aînés : âge > 51.

Figure 83 Le boxplot d'âge

```
> summary(Clients_ImmatriculationsSage)
Min. 1st Qu. Median Mean 3rd Qu. Max.
18.00 27.00 41.00 43.72 57.00 84.00
```

Figure 84 Récapitulatif d'âge

Nous supprimons ensuite la colonne taux et âge d'origine, renommons taux_classe en taux et renommons age_classe en age. Les données finales Clients_Immatriculations, sont présentées cidessous.

```
> Clients_Immatriculations_traite <- Clients_Immatriculations
> Clients_Immatriculations_traite <- subset(Clients_Immatriculations_traite , select = -age)
> Clients_Immatriculations_traite <- subset(Clients_Immatriculations_traite , select = -taux)</pre>
> names(Clients_Immatriculations_traite)[6]
> names(Clients_Immatriculations_traite)[7]
> summary(Clients_Immatriculations_traite)
                                                     situationfamiliale nbenfantsacharge deuxiemevoiture
Celibataire:23389 0:35312 FALSF:68476
 categories
berline :24326
compacte: 5706
minicar :24963
Routiere: 8350
                                  sexe
F:23653
                                                                                                                                                                          age
: 17023
                                                                                                                                                                                                                           :19894
:18793
                                                                                                                                                               adulte
                                                                                                                                                                                                tauxhas
                                                      Divorce
En Couple
                                                                                                                                TRUE :10258
                                                                                                                                                               agemoyen:23608
                                  M:55081
                                                                                                                                                                                                tauxeleve
                                                                            :50711
                                                                                               2:13129
                                                                                                                                                               Aînés
                                                                                                                                                                              :18413
                                                                                                                                                                                                tauxmoyen
                                                                                                                                                                                                                            :20378
                                                      Marie(e)
                                                                               530
212
                                                                                                                                                                              :19690
                                                                                                                                                                                                tauxtreseleve :19669
  sportive:15389
                                                      seule
                                                                               3856
```

Figure 85 Récapitulatif du Clients_Immatriculations_traite

Nous créons ensuite deux ensembles de données pour l'apprentissage automatique.

```
> Clients_Immatriculations_traite_EA <- Clients_Immatriculations_traite[1:55114,]
> Clients_Immatriculations_traite_ET <- Clients_Immatriculations_traite[55115:78734,]</pre>
```

Figure 86 Situation5 Séparation de l'échantillonnage d'apprentissage et test

6.5.1 Algorithme: C50

Nous exécutons à nouveau l'algorithme C50 mais nous pouvons voir que la taille de l'arbre = 0 et ne peut donc pas être prédite.

```
> treec <- C5.0(categories ~., Clients_Immatriculations_traite_EA)
c50 code called exit with value 1
> print(treec)

Call:
C5.0.formula(formula = categories ~ ., data = Clients_Immatriculations_traite_EA)

Classification Tree
Number of samples: 55114
Number of predictors: 6

Tree size: 0

Non-standard options: attempt to group attributes

> test_treec <- predict(treec, Clients_Immatriculations_traite_ET, type = "class")
Error in predict.C5.0(treec, Clients_Immatriculations_traite_ET, type = "class"):
    either a tree or rules must be provided</pre>
```

Figure 87 Situation5_C50 code

6.5.2 Algorithme: Naviebayes

Nous exécutons à nouveau l'algorithme Naviebayes et obtenons les résultats suivants :

```
> table(nb_class)
hb_class
berline compacte minicar Routiere sportive
7171 964 7559 1389 6537
> table( clients_Immatriculations_traite_ET$categories, nb_class)
              nb_class
               berline compacte minicar Routiere sportive
                                0
455
507
                                          228
1240
5580
  herline
                   4652
  compacte
minicar
                                 1
  Routiere
                                            246
                                          265
  sportive
                    636
                                                   101
                                                                    3596
```

Figure 88 Situation5_Naivebayes code

Naivebayes						
100	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4652	0	228	445	1957	0,638835485
compacte	0	455	1240	0	1	0,268278302
minicar	1465	507	5580	0	1	0,738779293
Routiere	418	1	246	843	982	0,338554217
sportive	636	1	265	101	3596	0,781909111
Précision	0,648724	0,4719917	0,73819288	0,60691145	0,55009943	
taux d'erreur	0,3596105					

Tableau 13 Situation5_Naivebayes : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,9156 pour ce test de l'algorithme Naivebayes.

Figure 89 Situation5 Naivebayes : calcul de l'AUC

6.5.3 Algorithme : Random Forest

Nous exécutons à nouveau l'algorithme Random Forest et obtenons les résultats suivants :

```
> table(result.RF)
result.RF
berline compacte minicar Routiere sportive
4704 507 8740 4176 5493
> table(Clients_Immatriculations_traite_ET35categories, result.RF)
result.RF
berline compacte minicar Routiere sportive
berline 4311 0 2 1177 1792
compacte 0 250 1445 0 1
minicar 4 257 7291 0 1
Routiere 2 0 1 2280 207
sportive 387 0 1 719 3492
```

Figure 90 Situation 5 Random Forest résultat de prédiction

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4311	0	2	1177	1792	0,59200769
compacte	0	250	1445	0	1	0,14740566
minicar	4	257	7291	0	1	0,965311797
Routiere	2	0	1	2280	207	0,915662651
sportive	387	0	1	719	3492	0,759295499
Précision	0,9164541	0,49309665	0,83421053	0,54597701	0,63571819	
taux d'erreur	0,2538527		**************************************			

Tableau 14 Situation5_Random Forset : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,8698 pour ce test de l'algorithme Random Forest.

```
> rf_prob <- predict(RF, Clients_Immatriculations_traite_ET3, type="prob")
> RF_auc <-multiclass.roc(Clients_Immatriculations_traite_ET$categories, rf_prob)
> print (RF_auc)

Call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = rf_prob)

Data: multivariate predictor rf_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Routier e, sportive.

Multi-class area under the curve: 0.8698
> |
```

Figure 91 Situation5_ Random Forest: calcul de l'AUC

6.5.4 Algorithme: NNET

Nous exécutons à nouveau l'algorithme NNET et obtenons les résultats suivants :

Figure 92 Situation5_NNET résultat de prédiction

	berline	compacte	minicar	Routiere	sportive	Rappel
berline	4310	0	2	1177	1793	0,591870365
compacte	0	521	1174	0	1	0,307193396
minicar	4	545	7003	0	1	0,927181252
Routiere	1	0	1	2280	208	0,915662651
sportive	386	1	0	718	3494	0,759730376
Précision	0,9168262	0,48828491	0,85611247	0,54610778	0,63561943	
taux d'erreur	0,2545301			2	2	\$ (2

Tableau 15 Situation5_NNET : Calcul du rappel, de la précision et des taux d'erreur

Nous pouvons obtenir que l'AUC est égale à 0,9453 pour ce test de l'algorithme NNET.

```
> nn_prob <- predict(nnet, Clients_Immatriculations_traite_ET, type="raw")
> nn_auc <-multiclass.roc(clients_Immatriculations_traite_ET$categories, nn_prob)
> print(nn_auc)

Call:
multiclass.roc.default(response = Clients_Immatriculations_traite_ET$categories, predictor = nn_prob)

Data: multivariate predictor nn_prob with 5 levels of Clients_Immatriculations_traite_ET$categories: berline, compacte, minicar, Routier e, sportive.
Multi-class area under the curve: 0.9453
```

Figure 93 Situation5 NNET: calcul de l'AUC

7. Conclusion des quatre algorithmes

Nous comparons les valeurs AUCs et les taux d'erreur des quatre algorithmes.

Nous examinons les 5 classifications. La situation 1 ne supprime ni ne modifie les données ; la situation 2 supprime la colonne taux ; la situation 3 supprime les colonnes taux et âge ; la situation 4 reclasse le taux et la situation 5 reclasse le taux et l'âge. Nous combinons tous les cas pour produire un tableau, et les deux tableaux suivants montrent que l'algorithme NNET dans la situation 4 a la valeur AUC la plus élevée, c'est 0.9486. La différence entre le taux d'erreur de l'algorithme NNET et le taux d'erreur le plus bas dans ce cas est très faible. Par conséquent, nous choisissons l'algorithme NNET dans la situation 4 pour prédire les données de marketing.

situation	1	2	3	4	5
C50	0,9418	0,9039	0,8686	0,9399	
naivebayes	0,9201	0,8908	0,8507	0,9201	0,9156
randomFor			0,7011		0,8698
nnet		0,9104	0,871	0,9486	0,9453

Tableau 16 Comparaison de l'AUC

situation	1	2	3	4	5
C50	0,2426334	0,2666384	0,3196444	0,2461473	
naivebayes	0,3651566	0,3475021	0,4040824	0,3563082	0,3596105
randomFores			0,3221843		0,2538527
nnet		0,2686706	0,3199407	0,2491956	0,2545301

Tableau 17 Comparaison des taux d'erreur

8. Nettoyage de Marketing

Tout d'abord, nous renommons les noms des colonnes de Marketing.

```
> ## renommer des Colonnes
> names(Marketing)[1] <- "id"
> names(Marketing)[2] <- "age"
> names(Marketing)[3] <- "sexe"
> names(Marketing)[4] <- "taux"
> names(Marketing)[5] <- "situationfamiliale"
> names(Marketing)[6] <- "nbenfantsacharge "
> names(Marketing)[7] <- "deuxiemevoiture"</pre>
```

Figure 94 Renommer des colonnes de Marketing

Ensuite, nous transformons les valeurs au format correct.

```
> MarketingSage <- as.factor(MarketingSage)
> MarketingSsexe <- as.factor(MarketingSsexe)
> MarketingStaux <- as.integer (MarketingStaux)
> MarketingSstuationfamiliale <- as.factor(MarketingSsituationfamiliale)
> MarketingSnbenfantsacharge <- as.factor(MarketingSnbenfantsacharge)
> MarketingSdeuxiemevoiture<- as.factor(MarketingSdeuxiemevoiture)
>
```

Figure 95 Convert to format demandé

Afin de pouvoir utiliser l'algorithme NNET de Situation4 pour prévoir le marketing, nous devons maintenir la cohérence des types et des structures de données. Nous créons donc une colonne Taux_classe pour le marketing afin de reclasser le taux, qui doit être cohérent avec la classification Taux de Situation4. Nous supprimons ensuite la colonne Taux d'origine et renommons la colonne Taux_classe en taux.

Enfin, supprimez la première colonne id, corrigez les caractères erronés et changez la forme des données en facteur.

Figure 96 Création de class pour taux, corrige de valeurs, et convert to format demandé

Le tableau final de Marketing nettoyés est présenté ci-dessous.

```
> summary(Marketing_traite)
age sexe situationfamiliale deuxiemevoiture nbenfantsacharge
        age
: 2
: 2
                    sexe
F: 9
                                                                                                                           taux
                             Lenath: 20
                                                          FALSE:15
                                                                                 0:12
                                                                                                          tauxbas
                                                                                                                              :14
                              Class :character
Mode :character
 35
59
19
                                                                                 1: 1
2: 3
3: 4
                                                                                                         tauxeleve : 2
tauxmoyen : 2
tauxtreseleve : 2
                    M:11
                                                          TRUE : 5
 21
  (Other):11
```

Figure 97 Récapitulatif du tableau des Immatriculations nettoyés

9. Prédiction

Après avoir nettoyé les données de marketing, nous avons utilisé l'algorithme NNET de Situation4 pour faire des prédictions. Les prédictions sont ensuite affichées dans un tableau (classpred).

Figure 98 Prédiction de Marketing avec NNET

Enfin, les prédictions sont fusionnées avec le tableau Marketing original, comme le montre la figure.

```
> resultat <- data.frame(Marketing_traite, classpred)</pre>
> View(resultat)
> show(resultat)
   age sexe situationfamiliale deuxiemevoiture nbenfantsacharge
                                                                            taux classpred
1
    48
                   Celibataire
                                          FALSE
                                                                0
                                                                         tauxbas
                                                                                   minicar
                                                                                   berline
    26
                     En Couple
                                                                3
                                                                        tauxbas
3
                     En Couple
                                                                                   berline
    80
          M
                                          FALSE
                                                                3
                                                                         tauxbas
4
                   Celibataire
    64
          M
                                          FALSE
                                                                0
                                                                         tauxbas
                                                                                  compacte
5
    22
          М
                     En Couple
                                           TRUE
                                                                3
                                                                         tauxbas
                                                                                   berline
6
    54
          F
                     En Couple
                                           TRUE
                                                                3
                                                                         tauxbas
                                                                                   berline
    59
          M
                    En Couple
                                           TRUE
                                                               0
                                                                       tauxmoyen
                                                                                   minicar
8
    22
          M
                                          FALSE
                                                                         tauxbas Routiere
                     En Couple
                                                               1
9
                   Celibataire
    35
          M
                                          FALSE
                                                                0
                                                                       tauxmoyen
                                                                                   minicar
11
   34
          F
                    En Couple
                                          FALSE
                                                                0
                                                                       tauxeleve
                                                                                  sportive
12
    60
          М
                     En Couple
                                                               0
                                           TRUE
                                                                         tauxbas
                                                                                   minicar
13
   59
          F
                    En Couple
                                          FALSE
                                                               2
                                                                         tauxbas Routiere
                     En Couple
                                                                                  sportive
                                                               O tauxtreseleve
14
   58
          M
                                          FALSE
          F
                  Celibataire
15
   21
                                          FALSE
                                                                O tauxtreseleve
                                                                                   minicar
16
   55
          M
                   Celibataire
                                          FALSE
                                                                0
                                                                         tauxbas compacte
17
   19
          F
                   Celibataire
                                                               0
                                                                         tauxbas
                                          FALSE
                                                                                  compacte
18
   27
          F
                     En Couple
                                          FALSE
                                                               2
                                                                        tauxbas Routiere
          F
19
  43
                   Celibataire
                                                                0
                                                                         tauxhas
                                          FALSE
                                                                                   minicar
20
   35
          Μ
                   Celibataire
                                          FALSE
                                                                0
                                                                         tauxbas
                                                                                  compacte
   79
                     En Couple
                                          FALSE
                                                                       tauxeleve Routiere
```

Figure 99 Prédiction finale de Marketing