「離散数学・オートマトン」演習問題 11

2023/12/18

1 非決定性有限オートマトンから決定性有限オートマトンへ

課題 1 非決定性有限オートマトン $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ を考える。ここで

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{a, b\}$$

$$F = \{q_3\}$$

である。遷移関数は図に示す。このとき、同じ文字列を受理する決定性有限オートマトン を構成しなさい。

課題 2 非決定性有限オートマトン $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ を考える。ここで

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b\}$$

$$F = \{q_2\}$$

である。遷移関数は図に示す。このとき、同じ文字列を受理する決定性有限オートマトン を構成しなさい。

2 €動作のある非決定性有限オートマトンから決定性有限 オートマトンへ

課題 3 ϵ 動作のある非決定性有限オートマトン $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ を考える。ここで

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{a, b\}$$

$$F = \{q_4\}$$

である。遷移関数は図に示す。このとき、同じ文字列を受理する決定性有限オートマトン を構成しなさい。

課題 4 ϵ 動作のある非決定性有限オートマトン $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ を考える。ここで

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$F=\{q_3\}$$

である。遷移関数は図に示す。このとき、同じ文字列を受理する決定性有限オートマトン を構成しなさい。

