一、选择题

题号	1	2	3	4	5	6	7	8	9	10
答案	C	A	A	C	C	В	В	Α	Α	C

二、填空题

题号	答案	题号	答案
11	4.0 rad	12	62.5, 1.67 s
13	$\frac{1}{2}mgl$, $2g/(3l)$	14	g / l, g / (2l)
15	$\frac{1}{2}Ma$	16	$m(g-a)R^2/a$
17	$-rac{k\omega_0^2}{9J}$, $rac{2J}{k\omega_0}$	18	mv l
19	3 v ₀ / (2 <i>l</i>)	20	$\frac{6\nu_0}{\left(4+3M/m\right)l}$

三、计算题

21. 解:

由牛顿第二定律对物体列方程有:

对物体 3m: $3mg-T_1=3ma$ (1)

对物体 2m: $T_2-2mg=2ma$ (2)

由刚体定轴转动定律对滑轮列方程有:

对右侧滑轮: $T_1 r - T r = \frac{1}{2} m r^2 \alpha$ (3)

对左侧滑轮: $Tr-T_2r=\frac{1}{2}mr^2\alpha$ (4)

由运动学关系有: $a=r\alpha$ (5)

由 (1) 式可得: T₁=3mg-3ma (6)

由(2)式可得: T₂=2mg+2ma (7)

将 (5) 式和 (6) 式带入 (3) 式可得: $T=3mg-\frac{7}{2}ma$ (8)

将 (5) 式和 (7) 式带入 (4) 式可得: $T=2mg+\frac{5}{2}ma$ (9)

由(8)式和(9)式联立可得: $a = \frac{1}{6}g$, 代入(9)式可得 $T = \frac{29}{12} mg$

22. 解:

由牛顿第二定律对物体列方程:

对左侧物体有: $2mg-T_2=2ma_2$ (1)

对右侧物体有: $T_1-2mg=2ma_1$ (2)

由刚体定轴转动定律对滑轮列方程有:

$$T_2(2r) - T_1 r = 7mr^2 \tag{3}$$

由运动学关系有:
$$a_2=2r\alpha$$
 (4)

$$a_1 = r\alpha$$
 (5)

由(1)式和(4)式可得: $T_2=2mg-4mr\alpha$ (6)

由(2)式和(5)式可得: $T_1 = 2mg + 2mr\alpha$ (7)

将(6)式和(7)式代入(3)式可得:

$$\alpha = \frac{2g}{17r}$$

23. 解:撤去外加力矩后

由牛顿第二定律对物体列方程: mg-T=ma (1)

由刚体定轴转动定律对滑轮列方程: $TR=J\alpha$ (2)

由运动学关系有: $a=R\alpha$ (3)

由(1)、(2)、(3)式联立得: a = mgR/(mR + J/R) (4)

将
$$J = \frac{1}{2}MR^2$$
代入(4)式得: $a = \frac{mg}{m + \frac{1}{2}M} = 3.267 \text{ ms}^{-2}$

撤去外力矩后物体做匀加速运动,当圆盘开始作反方向转动时物体向上运动速度为零

$$v_0$$
-at=0

 $t = v_0 / a = 1.2/3.267 = 0.367 \text{ s}$

24. 解:

由牛顿第二定律对物体列方程: mg-T=ma (1)

由刚体定轴转动定律对滑轮列方程: $TR=J\alpha$ (2)

由运动学关系有: $a=R\alpha$ (3)

由(1)、(2)、(3)式联立得:

$$a=mg/(m+\frac{1}{2}M)$$

物体做匀加速运动,且 $\nu_0=0$

由 $v = v_{0+}at$ 可得: $v = at = mgt / (m + \frac{1}{2}M)$

25. 解:

(my-ma) /2=)

- (1) 由牛顿第二定律对物体列方程: mg-T=ma (1)
 - 由刚体定轴转动定律对滑轮列方程: $TR=J\alpha$

由运动学关系有: $a=R\alpha$ (3

由(1)、(2)、(3)式联立得:

$$\alpha = mgR / (mR^2 + J) = \frac{mgR}{mR^2 + \frac{1}{2}MR^2} = \frac{2mg}{(2m + M)R}$$
= 20 rad/s²

角加速度方向垂直纸面向外,与初角速度方向相反.

(2) 滑轮做匀角加速度转动,有 $\omega^2 = \omega_0^2 - 2\alpha\theta$

$$\underline{\underline{\omega}} = 0$$
 时, $\theta = \frac{\omega_0^2}{2\alpha} = 0.625 \text{ rad/s}^2$

物体上升的高度 $h=R\theta=0.125$ m

(3) 定滑轮的角速度变化到 ω =0 后滑轮改为逆时针转动,角加速度大小和方向保持不变. 物体回到原来位置时转过的角度和上升过程转过的角度相等

$$\pm \omega^2 = \omega_0^2 + 2\alpha\theta$$
, $\omega_0 = 0$ 有: $\omega = \sqrt{2\alpha\theta} = 5.0$ rad/s

角速度方向垂直纸面向外.

(2)

26. 解:

由牛顿第二定律对物体列方程: mg-T=ma (1)

由刚体定轴转动定律对滑轮列方程: $TR=J\alpha$ (2)

由运动学关系有: $a=R\alpha$ (3)

由(1)、(2)、(3)式联立得:

ad

$$a = mg / (m + \frac{1}{2}M) = \frac{5 \times 9.8}{5 + \frac{1}{2} \times 9.6} = 5 \text{ m/s}^2$$

物体做匀加速运动,且 $v_0=0$

a 4j-

由 $h=v_0t+\frac{1}{2}at^2$ 可得: (1)下落距离 $h=\frac{1}{2}at^2=22.5$ m

(2) 由(1)式可得: 张力 T=m(g-a)=24 N

- 27. 解:对由细棒和滑块组成的系统,细棒和滑块之间的相互作用力为内力,在碰撞过程
- 中,由于碰撞时间极短,所以细棒所受的摩擦力矩<<滑块的冲力矩.故可认为合外力矩为
- 零,因而系统的角动量守恒,即

$$m_2 v_1 l = -m_2 v_2 l + \frac{1}{3} m_1 l^2 \omega$$
 (1)

碰撞后细棒沿逆时针方向转动,角速度方向沿轴垂直水平桌面向上.细棒上质元 dm 所受摩擦力与细棒垂直:

$$d f = \mu g \frac{m_1}{l} dx (2)$$

质元 dm 所受摩擦力产生的相对固定点 O 的力矩方向垂直水平桌面向下:

$$dM_f = -\mu g \frac{m_1}{I} x \cdot dx \tag{3}$$

则整个细棒在转动过程中所受的摩擦力矩为:

$$M_f = \int_0^l -\mu g \frac{m_1}{l} x \cdot dx = -\frac{1}{2} \mu m_1 g l$$
 (4)

由角动量定理对细棒列方程有: $\int_0^t M_f \, \underline{\mathrm{d}} t = 0 - \frac{1}{3} m_l l^2 \omega \qquad (5)$

由(1)式可得:
$$\frac{1}{3}m_1l^2\omega = m_2(v_1+v_2)l$$
 (7)

将(7)式代入和(6)式解得:
$$t = 2m_2 \frac{v_1 + v_2}{\mu m_1 g}$$
 =2 s

28. 解:对子弹和木棒组成的系统,重力和桌面支持力对固定轴力矩为零,子弹和木棒之 间的相互作用力为内力,系统所受合外力矩为零.由于碰撞时间极短,因而系统的角动量守

$$m'vl = \left(\frac{1}{3}ml^2 + m'l^2\right)\omega \tag{1}$$

在恒阻力矩作用下有: $0-\omega^2=2\alpha\theta$

= 200

∴ 木棒能转过的角度 θ = =47.12 rad

