Advanced Quantum Mechanics

Sheet 1

Tutorial session: Wednesday

Umur Can Kaya

assume | 1/7 is an eigenvec:
$$u^{\dagger}u = 1$$
, let $u = a + bi$ $\Rightarrow a^2 + b^2 = 1$

[1.1.b]
$$\hat{H} = E_g |g>(g) + E_i |i>(i) + E_e |e>(e) + D_i (|g>(i) + |i>(g)) + D_2(|i>(e) + |e>(i))$$

1.1.() H is orthogonal in
$$\{19\}$$
 and $\{12\}$: $\{1,1,1\}$

$$H = e^{-i\alpha t/h} |g\rangle\langle g| + e^{-i\beta t/h} |e\rangle\langle e|$$

$$\frac{1.1.d}{dt} \left(\hat{A} \right)_{|\psi(t)\rangle} (t) = \frac{i}{\pi} \left(\left[\hat{H}, \hat{A} \right] \right)_{|\psi(t)\rangle}$$

• if
$$[\hat{H}, \hat{A}] = 0 \Rightarrow \frac{d}{dt} (\hat{A}) \frac{(t)}{|\psi(t)\rangle} = 0 \Rightarrow (\hat{A})_{|\psi(t)\rangle}$$
 is time independent.

1.2	a																								
0	Spi	٨	of	a	1	elec	troi	1	Corr	b	e	a f	hy	Sicq	l	(la	iza	Fion	of	a 9	vbi	· f	whe	re	
	Spi	۸	~p	M.	J	م زم د	d	0w∩		state	eş	Cori	respi	nds	1	lo	11>	aл	d	lo)	ſ¢	spel	J:vel	y.	
•	Spin the		f ne 1									Can	. be	ે વ	۴	hy sī	a)	real,	·2a}	iv A	of	a 91	ubit	ín	
1.2	6.			w C	vithou Compa	t any	loss of	physi er of	cal gei real-va	neralit lued p	y, the $ \psi angle$ parame		of a qu $\frac{\theta}{2}\ket{0}$ + this	ubit ca $+e^{i\varphi}$ s:	an be in $\frac{\theta}{2} \mid 1$ ssion v	vith th	n as (t	$0, \varphi \in \mathbb{R}$	R)	valued		(1)			
																rigin for $ \psi\rangle$, a									
													,												
										/															

$$\begin{array}{c} \boxed{1.2.d} \quad |\psi\rangle = \cos\frac{1}{2}|o\rangle + e^{i\frac{\pi}{4}}\sin\frac{\pi}{2}|i\rangle \\ & i) \text{North pole} : \theta = \pi \implies |\psi\rangle = e^{i\frac{\pi}{4}}|i\rangle \\ & ii) \text{South pole} : \theta = \pi \implies |\psi\rangle = e^{i\frac{\pi}{4}}|i\rangle \\ & iii) \text{Equation} : \theta = \frac{\pi}{2} \implies |\psi\rangle = \frac{1}{4}|o\rangle + \frac{e^{i\frac{\pi}{4}}|i\rangle}{i\frac{\pi}{2}}|i\rangle \\ & \frac{1}{4} = \frac{\hbar}{2} \frac{\hbar}{4} \frac{\pi}{2} + \frac{\hbar}{2} \frac{\pi}{4} \frac{\pi}{2} = \frac{\hbar}{4} \frac{\hbar}{4} \frac{\pi}{4} \frac{\pi}{4} \frac{\pi}{4} \\ & \frac{\pi}{4} \frac{\pi}{4} \frac{\pi}{4} + \frac{\hbar}{4} \frac{\pi}{4} \frac{\pi}{$$

$$\frac{1}{3}\frac{1}{4}|x| = \sum_{n=0}^{\infty} \frac{1}{n^{n}} C_{n}|n\rangle = C_{n} \sum_{n=0}^{\infty} \frac{1}{n^{n}} |n\rangle$$

$$\frac{1}{3}|x| = \sum_{n=0}^{\infty} \frac{1}{n^{n}} C_{n} \hat{a}|n\rangle = \sum_{n=0}^{\infty} \frac{1}{n^{n}} C_{n} (n^{n}|n^{n}) = C_{n} \sum_{n=0}^{\infty} \frac{1}{n^{n}} (n^{n}|n^{n}) = A C_{n} \sum_{n=0}^{\infty} \frac{1}{n^{n}} |n\rangle$$

$$\frac{1}{3}|x| = \sum_{n=0}^{\infty} \frac{1}{n^{n}} C_{n} \hat{a}|n\rangle = \sum_{n=0}^{\infty} \frac{1}{n^{n}} C_{n} (n^{n}|n^{n}) = C_{n} \sum_{n=0}^{\infty} \frac{1}{n^{n}} |n\rangle$$

$$\frac{1}{3}|x| = \sum_{n=0}^{\infty} \frac{1}{n^{n}} C_{n} \hat{a}|n\rangle = \sum_{n=0}^{\infty} \frac{1}{n^{n}} \sum_{n=0}^{\infty} \frac{1}{n^{n}} (n^{n}|n^{n}) + A C_{n} \sum_{n=0}^{\infty} \frac{1}{n^{n}} |n\rangle$$

$$\frac{1}{3}|x| = \sum_{n=0}^{\infty} \frac{1}{n^{n}} C_{n} \hat{a}|n\rangle$$

$$\frac{1}{3}|x| = \sum_{n=0}^{\infty} \frac{1}{n^{n}} C_{n} \hat{a}|n\rangle$$

$$\frac{1}{3}|x| = \sum_{n=0}^{\infty} \frac{1}{n^{n}} C_{n} \hat{a}|n\rangle$$

$$\frac{1}{3}|x| = \sum_{n=0}^{\infty} \frac{1}{n^{n}} \sum_{n=0}^{\infty} \frac{1}{n^{n}} \hat{a}|n\rangle$$

$$\frac{1}{3}|x| = \sum_{n=0}^{\infty} \frac{1}{n^{n}} C_{n} \hat{a}|n\rangle$$

$$\frac{1}{3}|x| = \sum_{n=0}^{\infty} \frac{1}{n^{n}} \hat{a}|n\rangle$$

$$\frac{$$

$$\frac{13.9}{(\alpha + \alpha)} = N_{\alpha} (|\alpha\rangle + |-\alpha\rangle)$$

$$(\alpha | -\alpha\rangle = \sum_{n} \sum_{n} C_{\alpha}^{n} C_{-n} \frac{k^{n}}{|n|} \frac{(-\alpha)^{n}}{|n|} = C_{\alpha}^{n} C_{-n} \sum_{n} (-1)^{n} \frac{|\alpha|^{n}}{|n|} = e^{-|\alpha|} e^{|\alpha|^{2}} = e^{-|\alpha|^{3}}$$

$$\int_{0}^{\infty} \alpha > 1, \quad |C_{\alpha} + \alpha\rangle = |C_{\alpha} + \alpha\rangle + |C_{\alpha} + |C_{\alpha} + \alpha\rangle + |C_{\alpha} + \alpha\rangle + |C_{\alpha} + \alpha\rangle + |C_{\alpha} + \alpha\rangle + |C_{$$