DO NOT DETACH FROM BOOK.

1	1	PERIODIC TABLE OF THE ELEMENTS												18			
1														2			
H	2											13	14	15	16	17	He 4.00
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg			_		_			4.0			Al	Si	P	S	Cl	Ar
22.99	24.30	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.95	(97)	101.1	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.2	192.2	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	\dagger_{Ac}	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Fl	Uup	Lv	Uus	Uuo
(223)	(226)	(227)	(267)	(270)	(271)	(270)	(277)	(276)	(281)	(282)	(285)	(285)	(289)	(288)	(293)	(294)	(294)

*Lanthanoid Series

†Actinoid Series

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)		151.97		158.93	162.50	164.93	167.26	168.93	173.05	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

AP® CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

L, mL = liter(s), milliliter(s)

g = gram(s)

nm = nanometer(s) atm = atmosphere(s) mm Hg = millimeters of mercury

J, kJ = joule(s), kilojoule(s)

V = volt(s)mol = mole(s)

ATOMIC STRUCTURE

$$E = h \nu$$

$$c = \lambda v$$

E = energy

v = frequency

 λ = wavelength

Planck's constant, $h = 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$

Speed of light, $c = 2.998 \times 10^8 \,\text{m s}^{-1}$

Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$

Electron charge, $e = -1.602 \times 10^{-19}$ coulomb

EQUILIBRIUM

$$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$
, where $a A + b B \rightleftharpoons c C + d D$

$$K_p = \frac{(P_{\rm C})^c (P_{\rm D})^d}{(P_{\rm A})^a (P_{\rm R})^b}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_b = \frac{[OH^-][HB^+]}{[B]}$$

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$$

= $K_a \times K_b$

$$\mathrm{pH}\,=-\mathrm{log}\,[\mathrm{H}^+]\,,\;\mathrm{pOH}=-\mathrm{log}\,[\mathrm{OH}^-]$$

$$14 = pH + pOH$$

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

$$pK_a = -\log K_a, pK_b = -\log K_b$$

Equilibrium Constants

 K_c (molar concentrations)

 K_p (gas pressures)

 K_a (weak acid)

 K_b (weak base)

 K_w (water)

KINETICS

$$\ln[A]_t - \ln[A]_0 = -kt$$

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$$

$$t_{1/2} = \frac{0.693}{k}$$

k = rate constant

t = time

 $t_{1/2}$ = half-life

GASES, LIQUIDS, AND SOLUTIONS

$$PV = nRT$$

$$P_A = P_{\text{total}} \times X_A$$
, where $X_A = \frac{\text{moles A}}{\text{total moles}}$

$$P_{total} = P_{A} + P_{B} + P_{C} + \dots$$

$$n = \frac{m}{M}$$

$$K = {}^{\circ}C + 273$$

$$D = \frac{m}{V}$$

$$KE$$
 per molecule = $\frac{1}{2}mv^2$

Molarity, M = moles of solute per liter of solution

$$A=abc$$

P = pressure

V = volume

T = temperature

n = number of moles

m = mass

M = molar mass

D = density

KE = kinetic energy

v = velocity

A = absorbance

a = molar absorptivity

b = path length

c = concentration

Gas constant, $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

 $= 0.08206 L atm mol^{-1} K^{-1}$

 $= 62.36 \text{ L torr mol}^{-1} \text{ K}^{-1}$

1 atm = 760 mm Hg = 760 torr

STP = 273.15 K and 1.0 atm

Ideal gas at STP = 22.4 L mol^{-1}

THERMODYNAMICS/ELECTROCHEMISTRY

$$q = mc\Delta T$$

$$\Delta S^{\circ} = \sum S^{\circ} \text{ products} - \sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_f^{\circ} \text{ products} - \sum \Delta H_f^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_f^{\circ} \text{ products} - \sum \Delta G_f^{\circ} \text{ reactants}$$

$$\Lambda G^{\circ} = \Lambda H^{\circ} - T \Lambda S^{\circ}$$

$$= -RT \ln K$$

$$= -nFE^{\circ}$$

$$I = \frac{q}{t}$$

q = heat

m = mass

c =specific heat capacity

T = temperature

 S° = standard entropy

 $H^{\circ} = \text{standard enthalpy}$

 G° = standard Gibbs free energy

n = number of moles

 E° = standard reduction potential

I = current (amperes)

q = charge (coulombs)

t = time (seconds)

Faraday's constant, F = 96,485 coulombs per mole of electrons

$$1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$$