

Ciência de Dados

Licenciatura Engenharia Informática 2° Semestre – 2021/2022

Ricardo Jesus Ferreira ricardojesus.ferreira@my.istec.pt

Database Schemas

- Base de dados Relacional
- Base de dados não Relacional
- Data Warehouse
- Data Lake
- Data Mart
- OLTP Online Transactional Processing
- OLAP Online Analytical Processing

RDBMS

RDBMS

- O modelo relacional organiza a informação em tabelas
- Essas tabelas possuem relações entre si
- Isto permite que um utilizador crie uma "nova" tabela com base numa query realizada em uma ou múltiplas tabelas

Como funciona

RDBMS

- Integridade Referencial
 - Uma chave estrangeira tem que ter uma chave primaria correspondente
 - Quando uma informação na tabela principal for eliminada todos a informação relacionada terá que ser removida
 - Caso uma chave primaria seja alterada, todas as suas referencias terão que ser alteradas

SQL

SQL

SQL – Structured Query Language

- Linguagem declarativa
 - Serve para comunicar com a base de dados
 - Permite criar, atualizar, obter ou apagar informação da BD
 - Utiliza as chaves para realizar as relações entre as tabelas

SQL Statement

 Mostrar todas as transações do cliente com o CustomerID=1

```
Select * FROM Costumer
JOIN Sales ON
Costumer.CostumerID=Trans
action.CostumerID WHERE
Costumer = 001
```


SQL - Index

- RDBMS utilizam indexes
- Os indexes otimizam a performance das queries à DB
- Maior parte das *queries* são feitas com base nos indexes
- Estes indexes são tipicamente associados a *queires* frequentes e à união entre tabelas (JOIN)

Non-RDBMS

Non-RDBMS

- Não existe o conceito Tabela
- Não existe o conceito Chave Primária
- Não existe o conceito Chave Estrangeira
- Este modelo utiliza uma mecanismo de armazenamento especifico para o tipo de dados a serem guardados

Document

- Uma base de dados de documentos armazena a recolha de documentos, onde cada documento é composto por campos e dados.
- Os dados podem ser valores simples ou elementos complexos, tais como listas e coleções.
- Os documentos são identificados por chaves únicas

Key	Document
1001	<pre>{ "CustomerID": 99, "OrderItems": [</pre>
1002	{ "CustomerID": 220, "OrderItems": [

Column

 As bases de dados de família de colunas organizam os dados em linhas e colunas

CustomerID	Column Family: Identity
001	First name: Mu Bae Last name: Min
002	First name: Francisco Last name: Vila Nova Suffix: Jr.
003	First name: Lena Last name: Adamcyz Title: Dr.

CustomerID	Column Family: Contact Info		
001	Phone number: 555-0100 Email: someone@example.com		
002	Email: vilanova@contoso.com		
003	Phone number: 555-0120		

Key-value

 Uma BD chave/valor associa cada valor de dados a uma chave única.

> Opaque to data store

Key	Value		
AAAA	1101001111010100110101111		
AABAB	1001100001011001101011110		
DFA766	0000000000101010110101010		
FABCC4	1110110110101010100101101		

Graph

- As bases de dados de grafos armazenam dois tipos de informações, nodes e edges
- Os nodes especificam relações entre nós
- Os edges indicam uma relação podendo ter uma direção que indica a sua natureza

RDBMS vs Non-RDBMS

- Microsoft SQL Server
- Oracle Database
- MySQL
- IBM DB2
- SQL Server Express
- PostgreSQL
- SQLite
- •

- MongoDB
- Apache Cassandra
- Redis
- Couchbase
- Neo4j
- GraphQL
- •

Resumo

RDBMS

- Funciona com dados estruturados
- Relações baseadas em indexes promovendo a integridade dos dados
- Possibilidade de criar indexes promovendo a rapidez na consulta dos dados
- Possibilidade de escrever instruções complexas para análise, manipulação e reporting
- A integridade estrutural dos dados promove a integridade aplicacional

Non-RDBMS

- Consegue-se armazenar bastante informação com uma estrutura menos coesa
- Oferecem major flexibilidade e escalabilidade
- Oferecem *schema-free*
- Conseguem armazenar todo o tipo de dados incluindo os dados não estruturados

Data Warehouse

Data Warehouse

- Repositório central onde são guardados todos os dados
- Permite a uma organização centralizar todos os dados e com base nisso elaborar análises avançadas
- Os provedores de *cloud* já possuem este serviços com recursos extremamente avançados

Data Warehouse - Tiers

- Superior
 - Interface de Frontend
- Média
 - Servidor OLAP favorece a performance
- Inferior
 - Recolhe, trata e transforma os dados provenientes de diversas fontes

Data Lake

- Repositório com diferentes fontes e de diferentes formatos
- Igual ao Data Warehouse mas sem as BD relacionais
- Mais versátil Permite outro tipo de análise de dados

• Construído em Apache Hadoop

Data Mart

- Subset/tipo de *Data Warehouse*
- Criado com o propósito de responder às necessidades de determinados utilizadores
- Maior agilidade e rapidez na pesquisa de informação

Por exemplo: Marketing

Data Mart – Benefícios

- Sistema menos dispendioso
- Acesso a dados mais simples
- Acesso a informações com mais performance
- Manutenção mais simples
- Simples e rápida implementação

Data Mart – Tipos

Dependent Data Warehouse

Independent Data Mart

Hybrid Data Mart

www.educba.com

Dependente

 Parte de uma data warehouse já existente. Construída com o objetivo de dividir o grande problema

Independente

 Contruída para acesso rápido a informação. Não existe uma data warehouse criada

Hibrida

 Combinação de diversas data warehouses

OLTP e OLAP

OLTP – Online Transaction Processing

OLAP – Online Analytical Processing

OLTP - Online Transaction Processing

Update, Insert, Delete são os comandos mais executados

DE TECNOLOGIAS

AVANCADAS

- OLTP permite transações em tempo real e em larga escala
- As queries OLTP são curtas, simples e requerem menos tempo de processamento
- Exemplo: Compra de voos, compras online, levantamentos multibando

OLAP – Online Analytical Processing

- Usado para obtenção de dados, com alta performance, que foram guardados centralmente
- Armazena os dados que foram inseridos pelo OLTP
- Permite que os utilizadores realizem uma análise multidimensional de dados
- Exemplo: data mining, cenários preditivos, analise matemática, etc...

OLTP vs OLAP

Characteristics	OLTP (Transactional sys-	OLAP (decision support
	tem)	system)
Application	Ordinary management, production	Analysis / Decision-support
Users	Information system experts	Decision-makers
Data schema	Entity / Relationship	Star / Snowflake / Constellation
Normalization	Frequent	Scare
Data	Up to date / Raw	Archived / Aggregated
Up dating	Immediate / Real time	Delay or postpone
Queries	Simple / Regular / Prede- fine / Predictable	Complex / Irregular / Non- Predictable / Ad-hoc
Query language	SQL, QBE, QUEL	MDX, XQuery, XMLA
Analysis axis	Uni- or bi-directional	Multidimensional or multi- axes
Operations	Modification / Up to date / Cancelling / Insertion	Lecture / Cross analysis / Refreshment
Data size	Mega or Gigabytes	Tera, Peta or Zetabytes

OLTP vs OLAP

OLTP characteristics:

- Many transactions
- Latency sensitive
- Small payloads
- Balanced read/write or Heavy write workloads

OLAP characteristics:

- Few transactions
- Throughput sensitive
- Large (return) payloads
- Heavy read workloads (including full table scans)

Schemas Concepts

Star

Snowflake

Star Schema

Date Time Stamp

- Contém uma tabela de facts que relaciona eventos de negocio específicos.
- Esta tabela reside no centro de toda as tabelas
- De forma geral não existe dependências entre as tabelas dimension. Requer menos JOINS
- Esta estrutura é extremamente eficiente para análise de dados em *datasets* com grande volumes de dados

Snowflake Schema

- Extensão do modelo Star, mas com mais tabelas dimension.
- Existe uma maior normalização dos dados, potenciando a integridade dos dados e reduzindo a redundância.
- Requer menos espaço de armazenamento das tabelas dimension
- Modelo mais complexo e de difícil manutenção

Pequenas alterações

Type 1: Update Changes

Supplier_Key	Supplier_Code	Supplier_Name	Supplier_State
123	ABC	Acme Supply Co	CA

Supplier_Key	Supplier_Code	Supplier_Name	Supplier_State
123	ABC	Acme Supply Co	IL

Type 2: Keep Historical

Supplier_Key	Supplier_Code	Supplier_Name	Supplier_State	Start_Date	End_Date
123	ABC	Acme Supply Co	CA	01-Jan-2000	21-Dec-2004
124	ABC	Acme Supply Co	IL	22-Dec-2004	

Os dados mudam e a informação que queremos obter também muda!

Type 3: Preserve Limited History

Supplier_Key	Supplier_Code	Supplier_Name	Original_Supplier_State	Effective_Date	Current_Supplier_State
123	ABC	Acme Supply Co	CA	22-Dec-2004	IL

37

Tipo 1

Chave Dimensão	Código Item	Nome Setor	Nome Responsável
001	25	Coordenação de Produtos	Carlos José

Chave Dimensão	Código Item	Nome Setor	Nome Responsável
001	25	Coordenação de Produtos	João Pereira

 Re-escreve um novo valor na tabela

Não mantém o histórico

 Usado quando o antigo valor não é importante para a informação

Tipo 2

 Adiciona uma nova linha de informação

Chave Dimensão	Código Item	Nome Setor	Nome Responsável
001	25	Coordenação de Produtos	Carlos José

Mantém o histórico

 Forma mais utilizada porque permite realizar análises com base na evolução ocorrida

Chave Dimensão	Código Item	Nome Setor	Nome Responsável
001	25	Coordenação de Produtos	Carlos José
002	25	Coordenação de Produtos	João Pereira

Tipo 3

Chave Dimensão	Código Item	Nome Setor	Nome Responsável
001	25	Coordenação de Produtos	Carlos José

 Cria uma nova coluna, mantendo a informação original

Mantém o histórico

Chave Dimensão	Código Item	Nome Setor	Nome Responsável	Nome Responsável Atual
001	25	Coordenação de Produtos	Carlos José	João Pereira

 Porém, quando os restantes atributos forem alterados irá perder informação relativa ao histórico

Bibliografia

- B. Gomez, (2020) "Resolviendo problemas de Big Data", Alfaomega.
- D. Insua, (2019) "Big data: Conceptos, tecnologías y aplicaciones", CSIC.
- H. Jones, (2019) "Analítica de datos", HJ,...
- J. Somed, (2020)"Big Data Analytics", JLC.
- D. Petković (2020)"Microsoft® SQL Server® 2019 A Beginner's Guide Seventh Edition", McGraw Hill.