Chapter 5

Integrability

5.3 The Fundamental Theorem of Calculus

Exercise 5.3.3

- a) Answer is $-\frac{1}{2}$. Let $u=x^2+1$, du=2xdx, and use Change of Variables Rule.
- b) Answer is -4. Let $u = \sqrt{1 x^2}$, $u^2 = 1 x^2$, udu = -xdx, and use Change of Variables Rule.

Exercise 5.3.4

- a) Use Integration by Part.
- b) Use Integration by Part.
- c) Use Integration by Part.

Exercise 5.3.5

Set
$$g(x) = 1$$
, $\forall x \in [a, b]$

Exercise 5.3.6

Set

$$g(t) = \alpha \int_{a}^{t} f(x)dx + \beta \int_{t}^{b} f(x)dx$$

$$\implies g'(t) = \alpha f(t) - \beta f(t)$$

$$= (\alpha - \beta) f(t)$$

Exercise 5.3.9

$$\int_{f(a)}^{f(b)} f^{-1}(x) dx = \int_{a}^{b} f^{-1}(f(y)) f'(y) dy$$

Then, use Integration by Part to get the equation.

Exercise 5.3.10

$$f \circ \phi = (f \circ \phi)|\phi'||\frac{1}{\phi'}|$$

Use Change of Variables Rule and the fact that $\phi' \neq 0$ and both ϕ' and $\frac{1}{\phi'}$ are continuous on [a,b].

5.4 Improper Riemann Integration

Exercise 5.4.1

- a) $\frac{3}{2}$
- b) $\frac{1}{3}$
- c) $\frac{3}{2}$
- d) -1

Exercise 5.4.7

- a) Assume L>0 and use Comparison Theorem for Improper Integrals to lead a contradiction.
- b) ???

Exercise 5.4.8

Let

$$t = x^{n}$$

$$\implies dt = nx^{n-1}dx$$

$$\implies dx = \frac{dt}{nt^{\frac{n-1}{n}}}$$

Use Change of Variables Rule and the fact that f is absolutely integrable on $[1,\infty)$. i.e.

$$\int_{1}^{\infty} |f(x)| dx < \infty$$