Notes on Set Theory

Qi'ao Chen

December 9, 2019

Contents

1	Fore	word	2
2	Models of Set - Sertraline		2
	2.1	Some mathematical logic	2
	2.2	Cumulative Hierarchy	3
	2.3	Relativization	5
	2.4	Absoluteness	6
	2.5	Relative consistence of axiom of foundation	8

1 Foreword

Notes for the entrance examination

2 Models of Set - Sertraline

2.1 Some mathematical logic

Theorem 2.1 (Gödels second incompleteness theorem). If a consistent recursive axiom set T contains **ZFC**, then

$$T \not\vdash \operatorname{Con}(t)$$

especially, **ZFC** $\not\vdash$ Con(**ZFC**)

Definition 2.2. Suppose (M, E_M) and (N, E_N) are two models of set theory, then

- 1. if for any formula σ , $M \models \sigma$ if and only if $N \models \sigma$, then M and N are **elementary equivalent**, denoted by $M \equiv N$
- 2. If bijection $f: M \to N$ satisfies: for any $a, b \in M$, aE_Mb iff $f(a)E_Nf(b)$, then $f: M \cong N$ is an **isomorphism**
- 3. If $M \subseteq N$ and $E_M = E_N \upharpoonright M$, then M is N's submodel
- 4. If M is isomorphic to a submodel of N by injection f, and for any formula $\varphi(x_1,\ldots,x_n)$, for any $a_1,\ldots,a_n\in M$, $M\models\varphi[a_1,\ldots,a_n]$ iff $N\models\varphi[f(a_1),\ldots,f(a_n)]$, then f is called an **elementary embedding** from M to N, written as $f:M\prec N$
- 5. If $M \subseteq N$ and $M \prec N$, then M is a **elementary submodel** of N

Lemma 2.3. Suppose $N \models \mathbf{ZFC}, M \subseteq N$, then $M \prec N$ iff $\forall \varphi(x, x_1, \dots, x_n)$, $\forall (a_1, \dots, a_n) \in M$, if $\exists a \in N \text{ s.t. } N \models \varphi[a, a_1, \dots, a_n]$, then $\exists a \in M \text{ s.t. } M \models \varphi[a, a_1, \dots, a_n]$

Definition 2.4. Suppose $(M, E) \models \mathbf{ZFC}$

- 1. $h_{\varphi}: M^n \to M$ is φ 's **Skolem function** if $\forall a_1, \ldots, a_n \in M$, if $\exists a \in M$ s.t. $M \models \varphi[a, a_1, \ldots, a_n]$, then $M \models \varphi[h_{\varphi}(a_1, \ldots, a_n), a_1, \ldots, a_n]$ requires **AC**
- 2. Let $\mathcal{H} = \{h_{\varphi} \mid \varphi \text{ is a formula on set theory}\}$. For any $S \subseteq M$, **Skolem** hull $\mathcal{H}(S)$ is the smallest set consisting of S and closed under \mathcal{H}

Lemma 2.5. $N \models \mathbf{ZFC}, S \subseteq N$, if $M = \mathcal{H}(S)$, then $M \prec N$

Theorem 2.6 (Löwenheim-Skolem theorem). Suppose $N \models \mathbf{ZFC}$ and is infinite, then there is a model M s.t. $|M| = \omega$ and $M \prec N$

2.2 Cumulative Hierarchy

This section works in \mathbf{ZF}^- (a.k.a. \mathbf{ZF} – axiom of foundation)

Definition 2.7. For any α , define sequence V_{α}

- 1. $V_0 = \emptyset$
- 2. $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$
- 3. For any limit ordinal λ , $V_{\lambda} = \bigcup_{\beta < \lambda} V_{\beta}$

And
$$\mathbf{WF} = \bigcup_{\alpha \in \mathbf{On}} V_{\alpha}$$

Lemma 2.8. For any ordinal α

- 1. V_{α} is transitive
- 2. if $\xi \leq \alpha$, then $V_{\xi} \subseteq V_{\alpha}$
- 3. if κ is inaccessible cardinal, then $|V_{\kappa}|=\kappa$

Proof. 1. Obviously $\kappa \leq V_{\kappa}$. Since κ is inaccessible, then for any $\alpha < \kappa$, $|V_{\alpha}| < \kappa$.

Definition 2.9. For any set $x \in WF$,

$$rank(x) = \min\{\beta \mid x \in V_{\beta+1}\}\$$

Lemma 2.10. 1. $V_{\alpha} = \{x \in \mathbf{WF} \mid rank(x) < \alpha\}$

- 2. WFis transitive
- 3. For any $x, y \in WF$, if $x \in y$, then rank(x) < rank(y)
- 4. for any $y \in \mathbf{WF}$, $rank(y) = sup\{rank(x) + 1 \mid x \in y\}$

Lemma 2.11. Suppose α is an ordinal

1. $\alpha \in \mathbf{WF}$ and $\operatorname{rank}(\alpha) = \alpha$

2.
$$V_{\alpha} \cap \mathbf{On} = \alpha$$

Lemma 2.12. 1. If $x \in \mathbf{WF}$, then $\bigcup x, \mathcal{P}(x), \{x\} \in \mathbf{WF}$, and their ranks are all less than $\mathrm{rank}(x) + \omega$

- 2. If $x,y \in \mathbf{WF}$, then $x \times y, x \cup y, x \cap y, \{x,y\}, (x,y), x^y \in \mathbf{WF}$, and their ranks are all less than $\mathrm{rank}(x) + \mathrm{rank}(y) + \omega$
- 3. $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \in V_{\omega+\omega}$
- 4. for any set x, $x \in \mathbf{WF}$ iff $x \subset \mathbf{WF}$

Lemma 2.13. Suppose AC

- 1. for any group G, there exists group $G' \cong G$ in **WF**
- 2. for any topological space T, there exists $T' \cong T$ in **WF**

Definition 2.14. Binary relation < on set A is **well-founded** if for any nonempty $X \subseteq A$, X has minimal element under <

Theorem 2.15. If $A \in WF$, then \in is a well-founded relation on A

Lemma 2.16. If set *A* is transitive and \in is well-founded on *A*, then $A \in \mathbf{WF}$

Lemma 2.17. For any set x, there is a smallest transitive set $\operatorname{trcl}(x)$ s.t. $x \subseteq \operatorname{trcl}(x)$

Proof.

$$x_0 = x$$

$$x_{n+1} = \bigcup_{n < \omega} x_n$$

$$\operatorname{trcl}(x) = \bigcup_{n < \omega} x_n$$

trcl(x) is called **transitive closure** of x

Lemma 2.18. Without axiom of power set

- 1. if x is transitive, then trcl(x) = x
- 2. if $y \in x$, then $trcl(y) \subseteq trcl(x)$
- 3. $\operatorname{trcl}(x) = x \cup \bigcup \{\operatorname{trcl}(y) \mid y \in x\}$

Theorem 2.19. For any set X, the following are equivalent

- 1. $X \in \mathbf{WF}$
- 2. $\operatorname{trcl}(X) \in \mathbf{WF}$
- 3. \in is a well-founded relation on trcl(X)

Theorem 2.20. The following propositions are equivalent

- 1. Axiom of foundation
- 2. For any set X, \in is a well-founded relation on X
- 3. V = WF

2.3 Relativization

Definition 2.21. Let **M** be a class φ a formula, the **relativization** of φ to **M** is $\varphi^{\mathbf{M}}$ defined inductively

$$(x \in y)^{\mathbf{M}} \leftrightarrow x = y$$
$$(x \in y)^{\mathbf{M}} \leftrightarrow x \in y$$
$$(\varphi \to \psi)^{\mathbf{M}} \leftrightarrow \varphi^{\mathbf{M}} \to \psi^{\mathbf{M}}$$
$$(\neg \varphi)^{\mathbf{M}} \leftrightarrow \neg \varphi^{\mathbf{M}}$$
$$(\forall x \varphi)^{\mathbf{M}} \leftrightarrow (\forall x \in \mathbf{M})\varphi^{\mathbf{M}}$$

Note $\varphi^{\mathbf{V}} = \varphi$ and

$$f^{\mathbf{M}} = \{(x_1, \dots, x_n, x_{n+1}) \in \mathbf{M} \mid \varphi^{\mathbf{M}}(x_1, \dots, x_n, x_{n+1})\}$$

Definition 2.22. For any theory T, any class \mathbf{M} , $\mathbf{M} \models T$ iff for any axiom φ of T, $\varphi^{\mathbf{M}}$ holds

Theorem 2.23 (ZF $^-$). WF \models ZF

Proof. • Axiom of existence

 $(\exists x(x=x))^{\mathbf{M}} \leftrightarrow \exists x \in \mathbf{M}(x=x)$, which is equivalent to \mathbf{M} being nonempty

• Axiom of extensionality

$$\forall X \forall Y \forall u ((u \in X \leftrightarrow u \in Y) \to X = Y)^{\mathbf{M}} \Leftrightarrow$$
$$\forall X \in \mathbf{M} \forall Y \in \mathbf{M} \forall u \in \mathbf{M} ((u \in X \leftrightarrow u \in Y) \to X = Y)$$

Lemma 2.24. If \mathbf{M} is transitive, then axiom of extensionality holds in \mathbf{M}

• Axiom schema of specification

$$\forall X \in \mathbf{M} \exists Y \in \mathbf{M} \forall u \in \mathbf{M} (u \in Y \leftrightarrow u \in X \land \varphi^{\mathbf{M}}(u))$$

Since for any $X \in \mathbf{WF}$, $\mathcal{P}(X) \subseteq \mathbf{WF}$

- Axiom of paring
- Axiom of union
- Axiom of power set

$$\forall X \in \mathbf{M} \exists Y \in \mathbf{M} \forall u \in \mathbf{M} (u \in Y \leftrightarrow (u \subseteq X)^{\mathbf{M}})$$

and

$$(u \subseteq X)^{\mathbf{M}} \leftrightarrow \forall x \in \mathbf{M}(x \in u \to x \in X) \leftrightarrow u \cap \mathbf{M} \subseteq X$$

- Axiom of foundation
- Axiom schema of replacement

2.4 Absoluteness

Definition 2.25. For any formula $\psi(x_1, \ldots, x_n)$ and any class $\mathbf{M}, \mathbf{N}, \mathbf{M} \subseteq \mathbf{N}$, if

$$\forall x_1 \dots \forall x_n \in \mathbf{M}(\psi^{\mathbf{M}}(x_1, \dots, x_n) \leftrightarrow \psi^{\mathbf{N}}(x_1, \dots, x_n))$$

then $\psi(x_1,\ldots,x_n)$ is **absolute** for **M**,cn. If $\mathbf{N}=\mathbf{V}$, then ψ is **absolute** for **M**

Lemma 2.26. Suppose $\mathbf{M} \subseteq \mathbf{N}$ and φ, ψ are formulas, then

- 1. if φ , ψ are absolute for **M**,cn, then so are $\neg \varphi$, $\varphi \rightarrow \psi$
- 2. if φ doesn't contain any quantifiers, then φ is absolute for any **M**
- 3. if **M**,**N**are transitive and φ is absolute for them, then so are $\forall x \in y\varphi$

Definition 2.27. Δ_0 formula

1. $x = y, x \in y$ are Δ_0 formulas

- 2. if φ , ψ are Δ_0 , then so are $\neg \varphi$, $\varphi \rightarrow \psi$
- 3. if φ is Δ_0 , y is any set, then $(\forall x \in y)\varphi$ is Δ_0

If φ is Δ_0 , then $\exists x_1 \dots \exists x_n \varphi$ is Σ_1 formula, $\forall x_1 \dots \forall x_n \varphi$ is Π_1

Lemma 2.28. $\mathbf{M} \subseteq \mathbf{N}$ are both transitive, $\psi(x_0, \dots, x_n)$ is a formula, then

- 1. if ψ is Δ_0 , then it's absolute for **M**,cn
- 2. if ψ is Σ_1 , then

$$\forall x_1 \dots x_n (\psi^{\mathbf{M}}(x_1, \dots, x_n) \to \psi^{\mathbf{N}}(x_1, \dots, x_n))$$

3. if ψ is Π_1 , then

$$\forall x_1 \dots x_n (\psi^{\mathbf{N}}(x_1, \dots, x_n) \to \psi^{\mathbf{M}}(x_1, \dots, x_n))$$

Lemma 2.29. If $\mathbf{M} \subseteq \mathbf{N}$, $\mathbf{M} \models \Sigma$, $\mathbf{N} \models \Sigma$ and

$$\Sigma \vdash \forall x_1 \dots \forall x_n (\varphi(x_1, \dots, x_n) \leftrightarrow \psi(x_1, \dots, x_n))$$

then φ is absolute for M,Nif and only if ψ is absolute for M,N

Definition 2.30. Suppose $\mathbf{M} \subseteq \mathbf{N}$, $f(x_1, \dots, x_n)$ is a function. f is **absolute** for \mathbf{M} and \mathbf{N} if and only if $\varphi(x_1, \dots, x_n, x_{n+1})$ defining f is absolute.

Theorem 2.31. Following relations and functions can be defined in \mathbf{ZF}^- Pow – Inf and are equivalent to some Δ_0 formulas. So they are absolute for any transitive model $\mathbf{Mon}\ \mathbf{ZF}^-$ – Pow – Inf

- 1. $x \in y$
- 2. x = y
- 3. $x \subset y$
- 4. $\{x,y\}$
- 5. \x\
- 6. (x, y)
- *7*. ∅
- 8. $x \cup y$

- 9. x y
- 10. $x \cap y$
- 11. x^+
- 12. x is a transitive set
- 13. $\bigcup x$
- 14. $\bigcap x (\bigcap \emptyset = \emptyset)$

Lemma 2.32. Absoluteness is closed under operation composition

Theorem 2.33. Following relations and functions are absolute for any transitive model Mon \mathbf{ZF}^- – Pow – Inf

- 1. z is an ordered pair
- 2. $A \times B$
- 3. R is a relation
- 4. dom(R)
- 5. ran(R)
- 6. f is a function
- 7. f(x)
- 8. *f* is injective

2.5 Relative consistence of axiom of foundation