- En IA déterministe
 - Construction de l'arbre
 - Pruning

- Arbres en classification
 - Arbres de décision sur des données
 - Pruning dans un arbre aléatoire

Construction de l'arbre

Arbre de décision A/B

Arbre de décision A/B

Principe

On cherche a optimiser la stratégie A à chaque étape, sachant que l'adversaire essaiera de trouver la pire réponse B en fonction de A.

$$G = Max_{A \in A} Min_{B \in \mathcal{B}(A)} G(A, B)$$

Matrice de paiement

	B1	B2	ВЗ	B4	B5
A1	+1	0	-2		
A2	-1			-2	+1
А3	+2			+4	0

Vertus et limites

Permet de résoudre exactement des jeux simples (Nim).

Vertus et limites

- Permet de résoudre exactement des jeux simples (Nim).
- Complexité en $O(a^p)$ où a est l'arité et p la profondeur.

Vertus et limites

- Permet de résoudre exactement des jeux simples (Nim).
- Complexité en $O(a^p)$ où a est l'arité et p la profondeur.
- Impossible de prévoir plus que quelques coups de profondeur.

Machine Learning XI : Arbres de Décision
En IA déterministe

Construction de l'arbre

Exercice

Construisez l'arbre de décision et la matrice des paiements associés au processus de pulvérisation des sommets d'un cube par des demi-espaces.

Pruning

- En IA déterministe
 - Construction de l'arbre
 - Pruning

- Arbres en classification
 - Arbres de décision sur des données
 - Pruning dans un arbre aléatoire

Pruning I: evaluation

On procède à des évaluations intermédiaires pour réduire la profondeur :

- Evaluation exacte d'une situation (scoring intermédiaire d'une manche),
- Evaluation approximative déterministe, basée sur des critères a priori (valeur des pièces restantes aux échecs),
- Evaluation approximative par apprentissage, basée sur la statistique de victoire conditionnelle à une situation (valeur d'un plateau de go).

Pruning II: bornes

- On effectue des prospection en profondeur (par ex. aléatoires)
- Qui nous permettent d'établir des bornes sur les paiements
- Et donc de couper les sous-arbres inefficaces

Pruning III: memoization

- On étudie tous les sous-arbres de faible profondeur
- On stocke les résultats dans un tableau
- Ces résultats deviennent les feuilles d'un arbre de plus faible profondeur

Apprentissage (exemple)

• On effectue un grand nombre de parties N.

Apprentissage (exemple)

- On effectue un grand nombre de parties N.
- Un sous-ensemble de ces parties N(X) ⊂ N passe par la situation X.

Apprentissage (exemple)

- On effectue un grand nombre de parties N.
- Un sous-ensemble de ces parties N(X) ⊂ N passe par la situation X.
- On définit le score de X comme étant le pourcentage de victoires finales (V) parmi N(X).

$$G(X) = \frac{N(V \cap X)}{N(X)} \sim P(V|X)$$

- En IA déterministe
 - Construction de l'arbre
 - Pruning

- Arbres en classification
 - Arbres de décision sur des données
 - Pruning dans un arbre aléatoire

Principe

Chaque noeud correspond à une décision conditionnelle. Soit C le chemin de la racine à i, les arêtes du noeud i sont des partitions sur les valueurs possibles de :

$$|X_i| \bigwedge_{c_i \in C} (X_j = c_j)$$

A chaque feuille on associe une prédiction :

$$|Y| \bigwedge_{c_i \in C} (X_j = c_j)$$

Estimateur

 $\tilde{T}_T(x)$ est la feuille obtenue en suivant le chemin $X_j = x_j$ à chaque noeud j de l'arbre T.

On cherche l'arbre T qui minimise le risque de l'estimateur associé $\tilde{f}_T(x)$

exercice

Quel(s) processus de décision associer au tableau suivant?

X1	X2	Х3	Υ
Т	F	Т	Т
Т	F	F	Т
Т	Т	F	F
Т	Т	Т	Т
F	Т	F	Т
F	F	Т	F
F	F	Т	F
F	F	Т	F

Evaluation I

ERM:

$$D(\tilde{f}_T) = \frac{1}{N} \sum_{i \in I} \left(LF(\tilde{f}_T(X_i), Y_i) \right)$$

Evaluation II

Entropie:

$$H(E,G) = -\sum_{y \in G} p(y) \log p(y)$$

avec

$$p(y) = \frac{|\{(X,Y) \in E \times G, Y = y\}|}{|E \times G|}$$

Evaluation II

Objectif: choisir un test qui réduit au maximum l'entropie.

$$\max H(E,G) - \sum \frac{|E_k \times F|}{|E \times G|} H(E_k, Y)$$

Où (E_k) est la partition résultant du branchement.

- En IA déterministe
 - Construction de l'arbre
 - Pruning

- Arbres en classification
 - Arbres de décision sur des données
 - Pruning dans un arbre aléatoire

Machine Learning XI : Arbres de Décision
Arbres en classification
Pruning dans un arbre aléatoire

Pas au programme cette année finalement