# **AKD**®

## **CAN-BUS Communication**



Edition: V, November 2018 Valid from firmware version 1.18 Part Number 903-200004-00 Original Documentation





#### **Record of Document Revisions**

| Revision   | Remarks                                                                                                                                                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Table with lifecycle information of this document see "Record of Document Revisions" (→ p. 181)                                                                                                                                     |
| R, 09/2016 | Object 6077 updated, chapter "Important Parameters" updated. Added objects 35B8h, 35BDh, 6087h, 53C7h, 53D5h, 53D6h, 53D7h, 5403h, 5404h, 5405h, and 5406h. Added new homing methods -7 to -5 for Object 6098h.                     |
| T, 03/2017 | CANopen Emergency Messages and Error Codes (→ p. 41) updated.<br>Added objects 5375h (→ p. 153), "5377h" (→ p. 153), and 5379h (→ p. 153).                                                                                          |
| U, 10/2017 | CANopen Emergency Messages and Error Codes (→ p. 41) updated. Added Cyclic sync velocity mode (csv) and Cyclic sync torque mode (cst) to object 6040h. Added Object 207fh Maximum Velocity (→ p. 1). Added objects 541fh and 5420h. |
| V, 11/2018 | Updated warning symbols.                                                                                                                                                                                                            |

#### **Trademarks**

- AKD is a registered trademark of Kollmorgen Corporation
- SyngNet is a registered trademark of Motion Engineering Inc.
- EnDat is a registered trademark of Dr. Johannes Heidenhain GmbH
- EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH
- Ethernet/IP is a registered trademark of ODVA, Inc.
- Ethernet/IP Communication Stack: copyright (c) 2009, Rockwell Automation
- sercos<sup>®</sup> is a registered trademark of sercos<sup>®</sup> international e.V.
- HIPERFACE is a registered trademark of Max Stegmann GmbH
- PROFINET is a registered trademark of PROFIBUS and PROFINET International (PI)
- SIMATIC is a registered trademark of SIEMENS AG
- Windows is a registered trademark of Microsoft Corporation

## **Current patents**

- US Patent 8,154,228 (Dynamic Braking For Electric Motors)
- US Patent 8,214,063 (Auto-tune of a Control System Based on Frequency Response)

#### Technical changes which improve the performance of the device may be made without prior notice!

This document is the intellectual property of Kollmorgen. All rights reserved. No part of this work may be reproduced in any form (by photocopying, microfilm or any other method) or stored, processed, copied or distributed by electronic means without the written permission of Kollmorgen.

## 1 Table of Contents

| 1 Table of Contents                                     | 3  |
|---------------------------------------------------------|----|
| 2 General                                               | 9  |
| 2.1 About this Manual                                   | 10 |
| 2.2 Target Group                                        | 10 |
| 2.3 Symbols Used                                        | 11 |
| 2.4 Abbreviations used                                  | 12 |
| 3 Installation and Setup                                | 13 |
| 3.1 Important instructions                              | 14 |
| 3.2 CAN-Bus Interface (X12/X13)                         | 14 |
| 3.2.1 CAN-Bus activation with AKD-CC models             | 16 |
| 3.2.2 Baud rate for CAN-Bus                             | 17 |
| 3.2.3 Node Address for CAN-Bus                          | 17 |
| 3.2.4 CAN-Bus Termination                               | 18 |
| 3.2.5 CAN-Bus Cable                                     | 18 |
| 3.2.5.1 CAN-Bus Wiring                                  | 19 |
| 3.3 Guide to Setup                                      | 20 |
| 3.4 Important Configuration Parameters                  | 21 |
| 4 CANopen Basics                                        | 23 |
| 4.1 Basic Features implemented by CANopen               | 24 |
| 4.2 Transmission Rate and Procedure                     | 24 |
| 4.3 Response to BUSOFF Communication Faults             | 24 |
| 5 CANopen Communication Profile                         | 25 |
| 5.1 General Description of CAN                          | 26 |
| 5.2 Construction of the Communication Object Identifier | 27 |
| 5.3 Definition of the Used Data Types                   | 28 |
| 5.3.1 Basic data types                                  | 28 |
| 5.3.1.1 Unsigned Integer                                | 28 |
| 5.3.1.2 Signed Integer                                  | 29 |
| 5.3.2 Mixed data types                                  | 29 |
| 5.3.3 Extended data types                               | 30 |
| 5.3.3.1 Octet String                                    | 30 |
| 5.3.3.2 Visible String                                  | 30 |
| 5.4 Communication Objects                               | 30 |
| 5.4.1 Network Management Objects (NMT)                  | 31 |
| 5.4.2 Synchronization Object (SYNC)                     | 31 |
| 5.4.3 Time-Stamp Object (TIME)                          | 31 |
| 5.4.4 Emergency Object (EMCY)                           | 32 |
| 5.4.4.1 Application of the Emergency Object             | 32 |
| 5.4.4.2 Composition of the Emergency Object             | 32 |
| 5.4.5 Service Data Objects (SDO)                        | 33 |
| 5.4.5.1 Composition of the Service Data Object          |    |
| 5.4.5.2 Initiate SDO Download Protocol                  | 35 |
| 5.4.5.3 Download SDO Segment Protocol                   | 35 |

| 5.4.5.4 Initiate SDO Upload Protocol                            | 35 |
|-----------------------------------------------------------------|----|
| 5.4.5.5 Upload SDO Segment Protocol                             | 35 |
| 5.4.5.6 Abort SDO Protocol                                      | 35 |
| 5.4.6 Process Data Object (PDO)                                 | 36 |
| 5.4.6.1 Transmission modes                                      | 37 |
| 5.4.6.2 Trigger modes                                           | 37 |
| 5.4.7 Nodeguard                                                 |    |
| 5.4.8 Heartbeat                                                 | 39 |
| 6 CANopen Drive Profile                                         | 40 |
| 6.1 CANopen Emergency Messages and Error Codes                  | 41 |
| 6.2 General Definitions                                         | 47 |
| 6.2.1 General objects                                           | 47 |
| 6.2.1.1 Object 1000h: Device Type (DS301)                       | 47 |
| 6.2.1.2 Object 1001h: Error register (DS301)                    | 48 |
| 6.2.1.3 Object 1002h: Manufacturer Status Register (DS301)      | 49 |
| 6.2.1.4 Object 1003h: Predefined Error Field (DS301)            | 50 |
| 6.2.1.5 Object 1005h: COB-ID of the SYNC Message (DS301)        | 51 |
| 6.2.1.6 Object 1006h: Communication Cycle Period (DS301)        | 51 |
| 6.2.1.7 Object 1008h: Manufacturer Device Name (DS301)          | 52 |
| 6.2.1.8 Object 1009h: Manufacturer Hardware Version             | 52 |
| 6.2.1.9 Object 100Ah: Manufacturer Software Version (DS301)     | 52 |
| 6.2.1.10 Object 100Ch: Guard Time (DS301)Response monitoring    |    |
| 6.2.1.11 Object 100Dh: Lifetime Factor (DS301)                  | 53 |
| 6.2.1.12 Object 1010h: Store Parameters (DS301)                 | 54 |
| 6.2.1.13 Object 1011h: Restore Default Parameters DS301         | 55 |
| 6.2.1.14 Object 1012h: COB-ID of the Time Stamp (DS301)         | 56 |
| 6.2.1.15 Object 1014h: COB-ID for Emergency Message (DS301)     | 56 |
| 6.2.1.16 Object 1016h: Consumer Heartbeat Time                  | 57 |
| 6.2.1.17 Object 1017h: Producer Heartbeat Time                  | 58 |
| 6.2.1.18 Object 1018h: Identity Object (DS301)                  | 58 |
| 6.2.1.19 Object 1026h: OS Prompt                                | 60 |
| 6.2.2 Manufacturer specific objects                             | 61 |
| 6.2.2.1 Object 2000h: System Warnings                           | 61 |
| 6.2.2.2 Object 2001h: System Faults                             | 61 |
| 6.2.2.3 Object 2002h: Manufacturer status bytes                 | 62 |
| 6.2.2.4 Object 2011h: DRV.RUNTIME in seconds                    | 62 |
| 6.2.2.5 Object 2012h: Fault history: Fault numbers              | 63 |
| 6.2.2.6 Object 2013h: Fault history: Time stamps                | 64 |
| 6.2.2.7 Object 2014-2017h: 1st-4th Mask 1 to 4 for Transmit-PDO | 65 |
| 6.2.2.8 Object 2018h: Firmware Version                          | 66 |
| 6.2.2.9 Object 2026h: ASCII Channel                             | 67 |
| 6.2.2.10 Object 20A0h: Latch position 1, positive edge          | 68 |
| 6.2.2.11 Object 20A1h: Latch position 1, negative edge          | 68 |
| 6.2.2.12 Object 20A2h: Latch position 2, positive edge          | 68 |
| 6.2.2.13 Object 20A3h: Latch position 2, negative edge          | 69 |
| 6.2.2.14 Object 20A4h: Latch Control Register                   | 69 |

| 6.2.2.15 Object 20A5h: Latch Status Register                                | 70 |
|-----------------------------------------------------------------------------|----|
| 6.2.2.16 Object 20A6h: Latch position 1, positive or negative edge          | 70 |
| 6.2.2.17 Object 20A7h: Latch position 2, positive or negative edge          | 71 |
| 6.2.2.18 Object 20B8h: Reset of changed input information                   | 71 |
| 6.2.2.19 Object 345Ah: Brake Control                                        | 72 |
| 6.2.2.20 Object 3474h: Parameters for digital inputs                        | 74 |
| 6.2.2.21 Object 3475h: Parameters for digital outputs                       | 75 |
| 6.2.2.22 Object 3496h: Fieldbus synchronization parameters                  | 76 |
| 6.2.3 Profile specific objects                                              | 78 |
| 6.2.3.1 Object 60B8h: Touch probe function                                  | 78 |
| 6.2.3.2 Object 60B9h: Touch probe status                                    | 79 |
| 6.2.3.3 Object 60BAh: Touch probe 1 positive edge                           | 80 |
| 6.2.3.4 Object 60BBh: Touch probe 1 negative edge                           | 80 |
| 6.2.3.5 Object 60BCh: Touch probe 2 positive edge                           | 80 |
| 6.2.3.6 Object 60BDh: Touch probe 2 negative edge                           | 81 |
| 6.2.3.7 Object 60D0h: Touch probe source                                    | 81 |
| 6.2.3.8 Object 60FDh: Digital inputs (DS402)                                |    |
| 6.2.3.9 Object 60FEh: Digital outputs (DS402)                               |    |
| 6.2.3.10 Object 6502h: Supported drive modes (DS402)                        |    |
| 6.3 PDO Configuration                                                       |    |
| 6.3.1 Receive PDOs (RXPDO)                                                  |    |
| 6.3.1.1 Objects 1400-1403h: 1st - 4th RxPDO communication parameter (DS301) |    |
| 6.3.1.2 Objects 1600-1603h: 1st - 4th RxPDO mapping parameter (DS301)       |    |
| 6.3.1.3 Default RXPDO definition                                            |    |
| 6.3.2 Transmit PDOs (TXPDO)                                                 | 89 |
| 6.3.2.1 Objects 1800-1803h: 1st - 4th TxPDO communication parameter (DS301) |    |
| 6.3.2.2 Objects 1A00-1A03h: 1st - 4th TxPDO mapping parameter (DS301)       |    |
| 6.3.2.3 Default TXPDO definition                                            |    |
| 6.4 Device Control (dc)                                                     |    |
| 6.4.1 State Machine (DS402)                                                 |    |
| 6.4.1.1 States of the State Machine                                         |    |
| 6.4.1.2 Transitions of the state machine                                    |    |
| 6.4.2 Object Description                                                    |    |
| 6.4.2.1 Object 6040h: Control word (DS402)                                  |    |
| 6.4.2.2 Object 6041h: Status word (DS402)                                   |    |
| 6.4.2.3 Object 605Ah: Quick stop option code (DS402)                        |    |
| 6.4.2.4 Object 6060h: Modes of Operation (DS402)                            |    |
| 6.4.2.5 Object 6061h: Modes of Operation Display (DS402)                    |    |
| 6.5 Factor Groups (fg) (DS402)                                              |    |
| 6.5.1 General Information                                                   |    |
| 6.5.1.1 Factors                                                             |    |
| 6.5.1.2 Relationship between Physical and Internal Units                    |    |
| 6.5.2 Objects for velocity scaling                                          |    |
| 6.5.2.1 Object 204Ch: PV Scaling Factor                                     |    |
| 6.5.3 Objects for position calculation                                      |    |
| 6.5.3.1 Object 608Fh: Position encoder resolution (DS402)                   |    |

| 6.5.3.2 Object 6091h: Gear Ratio (DS402)                                   | 102 |
|----------------------------------------------------------------------------|-----|
| 6.5.3.3 Object 6092h: Feed constant (DS402)                                | 104 |
| 6.5.4 Objects for additional feedback sensor systems                       |     |
| 6.5.4.1 Object 60E9h: Additional feed constant – feed                      | 105 |
| 6.5.4.2 Object 60EEh: Additional feed constant - driving shaft revolutions |     |
| 6.5.4.3 Object 60E8h: Additional gear ratio – motor shaft revolutions      |     |
| 6.5.4.4 Object 60EDh: Additional gear ratio – driving shaft revolutions    |     |
| 6.5.4.5 Object 60E4h: Additional position actual value                     |     |
| 6.6 Profile Velocity Mode (pv) (DS402)                                     |     |
| 6.6.1 General Information                                                  | 110 |
| 6.6.1.1 Objects that are defined in this section                           | 110 |
| 6.6.1.2 Objects that are defined in other sections                         | 110 |
| 6.6.2 Object description                                                   | 110 |
| 6.6.2.1 Object 606Ch: Velocity actual value (DS402)                        | 110 |
| 6.6.2.2 Object 60FFh: Target velocity (DS402)                              |     |
| 6.7 Profile Torque Mode (tq) (DS402)                                       |     |
| 6.7.1 General Information                                                  |     |
| 6.7.1.1 Objects that are defined in this section                           | 111 |
| 6.7.1.2 Objects that are defined in other sections                         |     |
| 6.7.2 Object description                                                   | 111 |
| 6.7.2.1 Object 2071h: Target Current                                       |     |
| 6.7.2.2 Object 2077h: Current Actual Value                                 | 112 |
| 6.7.2.3 Object 6071h: Target torque (DS402)                                | 112 |
| 6.7.2.4 Object 6073h: Max current (DS402)                                  |     |
| 6.7.2.5 Object 6077h: Torque actual value (DS402)                          |     |
| 6.7.2.6 Object 6087h Torque slope (DS402)                                  | 113 |
| 6.7.2.7 Object 60E0h: Positive Torque Limit Value                          | 113 |
| 6.7.2.8 Object 60E1h: Negative Torque Limit Value                          |     |
| 6.8 Position Control Function (pc) (DS402)                                 |     |
| 6.8.1 General Information                                                  |     |
| 6.8.1.1 Objects that are defined in this section                           |     |
| 6.8.1.2 Objects that are defined in other sections                         |     |
| 6.8.2 Object Description                                                   |     |
| 6.8.2.1 Object 6063h: position actual value* (DS402)                       | 115 |
| 6.8.2.2 Object 6064h: position actual value (DS402)                        |     |
| 6.8.2.3 Object 6065h: Following error window                               | 116 |
| 6.8.2.4 Object 60F4h: Following error actual value (DS402)                 | 116 |
| 6.8.2.5 Object 60FCh: Position demand internal value (DS402)               | 117 |
| 6.9 Interpolated Position Mode (ip) (DS402)                                | 117 |
| 6.9.1 General information                                                  | 117 |
| 6.9.1.1 Objects defined in this section                                    |     |
| 6.9.2 Object description                                                   |     |
| 6.9.2.1 Object 60C0h: Interpolation sub mode select                        |     |
| 6.9.2.2 Object 60C1h: Interpolation data record                            |     |
| 6.9.2.3 Object 60C2h: Interpolation time period                            |     |
| 6.9.2.4 Object 60C4h: Interpolation data configuration                     |     |
|                                                                            |     |

| 6.10 Homing Mode (hm) (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 6.10.1 General information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122                                                                     |
| 6.10.1.1 Objects that are defined in this section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122                                                                     |
| 6.10.1.2 Objects that are defined in other sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122                                                                     |
| 6.10.2 Object Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122                                                                     |
| 6.10.2.1 Object 607Ch: Homing offset (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122                                                                     |
| 6.10.2.2 Object 6098h: Homing method (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123                                                                     |
| 6.10.2.3 Object 6099h: Homing speeds (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124                                                                     |
| 6.10.2.4 Object 609Ah: Homing acceleration (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 126                                                                     |
| 6.10.2.5 Homing Mode Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 126                                                                     |
| 6.11 Profile Position Mode (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 127                                                                     |
| 6.11.1 General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 127                                                                     |
| 6.11.1.1 Objects that are defined in this section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127                                                                     |
| 6.11.1.2 Objects that are defined in other sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127                                                                     |
| 6.11.2 Object Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 127                                                                     |
| 6.11.2.1 Object 607Ah: Target position (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 127                                                                     |
| 6.11.2.2 Object 607Dh: Software position limit (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128                                                                     |
| 6.11.2.3 Object 6081h: Profile velocity (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129                                                                     |
| 6.11.2.4 Object 6083h: Profile acceleration (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129                                                                     |
| 6.11.2.5 Object 6084h: Profile deceleration (DS402)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129                                                                     |
| 6.11.2.6 Functional Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130                                                                     |
| 6.11.2.7 Object 60B1h: Velocity Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 132                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122                                                                     |
| 6.11.2.8 Object 60B2h: Torque Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |
| 6.11.2.8 Object 60B2h: Torque Offset  7 Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133                                                                     |
| 7 Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133<br>133                                                              |
| 7 Appendix 7.1 Object Dictionary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |
| 7 Appendix 7.1 Object Dictionary 7.1.1 Float Scaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |
| 7 Appendix 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133<br>133<br>133<br>133                                                |
| 7 Appendix 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 133<br>133<br>133<br>133                                                |
| 7 Appendix 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |
| 7 Appendix 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls                                                                                                                                                                                                                                                                                                                                                                                                      | 133 133 133 133 133 136 154 159                                         |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.2 Examples: Operating the State Machine                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls 7.2.1.2 Example: Operating the State Machine 7.2.1.3 Example: Jog Mode via SDO                                                                                                                                                                                                                                                                                                                       | 133 133 133 133 133 136 154 159 159 159 159                             |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls 7.2.1.2 Example: Operating the State Machine 7.2.1.3 Example: Jog Mode via SDO 7.2.1.4 Example: Torque Mode via SDO                                                                                                                                                                                                                                                                                  | 133                                                                     |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls 7.2.1.2 Example: Operating the State Machine 7.2.1.3 Example: Jog Mode via SDO 7.2.1.4 Example: Torque Mode via SDO 7.2.1.5 Example: Jog Mode via PDO                                                                                                                                                                                                                                                | 133 133 133 133 136 154 159 159 159 161 161                             |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls 7.2.1.2 Example: Operating the State Machine 7.2.1.3 Example: Jog Mode via SDO 7.2.1.4 Example: Torque Mode via SDO 7.2.1.5 Example: Jog Mode via PDO 7.2.1.6 Example: Torque Mode via PDO                                                                                                                                                                                                           |                                                                         |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls 7.2.1.2 Example: Operating the State Machine 7.2.1.3 Example: Jog Mode via SDO 7.2.1.4 Example: Torque Mode via SDO 7.2.1.5 Example: Jog Mode via PDO                                                                                                                                                                                                                                                | 133 133 133 133 136 154 159 159 159 161 161 161 162 164                 |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls 7.2.1.2 Example: Operating the State Machine 7.2.1.3 Example: Jog Mode via SDO 7.2.1.4 Example: Torque Mode via SDO 7.2.1.5 Example: Jog Mode via PDO 7.2.1.6 Example: Torque Mode via PDO 7.2.1.7 Example: Homing via SDO 7.2.1.8 Example: Using the Profile Position Mode                                                                                                                          | 133 133 133 133 133 136 154 159 159 159 161 161 161 162 164 165         |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls 7.2.1.2 Example: Operating the State Machine 7.2.1.3 Example: Jog Mode via SDO 7.2.1.4 Example: Torque Mode via SDO 7.2.1.5 Example: Jog Mode via PDO 7.2.1.6 Example: Torque Mode via PDO 7.2.1.7 Example: Homing via SDO 7.2.1.8 Example: Using the Profile Position Mode 7.2.1.9 Example: ASCII Communication                                                                                     | 133 133 133 133 136 154 159 159 159 161 161 161 162 164 165 167         |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls 7.2.1.2 Example: Operating the State Machine 7.2.1.3 Example: Jog Mode via SDO 7.2.1.4 Example: Torque Mode via SDO 7.2.1.5 Example: Jog Mode via PDO 7.2.1.6 Example: Torque Mode via PDO 7.2.1.7 Example: Homing via SDO 7.2.1.8 Example: Homing via SDO 7.2.1.9 Example: ASCII Communication 7.2.1.10 Test for SYNC telegrams                                         | 133                                                                     |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls 7.2.1.2 Example: Operating the State Machine 7.2.1.3 Example: Jog Mode via SDO 7.2.1.4 Example: Torque Mode via SDO 7.2.1.5 Example: Jog Mode via PDO 7.2.1.6 Example: Torque Mode via PDO 7.2.1.7 Example: Homing via SDO 7.2.1.8 Example: Using the Profile Position Mode 7.2.1.9 Example: ASCII Communication 7.2.1.10 Test for SYNC telegrams 7.2.1.11 Some aspects of the Compare functionality | 133 133 133 133 133 136 154 159 159 159 161 161 161 162 164 165 170 171 |
| 7.1 Object Dictionary 7.1.1 Float Scaling 7.1.2 Effectiveness of PDO set-points 7.1.3 Communication SDOs 7.1.4 Manufacturer specific SDOs 7.1.5 Profile specific SDOs 7.1.5 Profile specific SDOs 7.2 Examples 7.2.1 Examples, setup 7.2.1.1 Basic testing of the connection to the AKD controls 7.2.1.2 Example: Operating the State Machine 7.2.1.3 Example: Jog Mode via SDO 7.2.1.4 Example: Torque Mode via SDO 7.2.1.5 Example: Jog Mode via PDO 7.2.1.6 Example: Torque Mode via PDO 7.2.1.7 Example: Homing via SDO 7.2.1.8 Example: Homing via SDO 7.2.1.9 Example: ASCII Communication 7.2.1.10 Test for SYNC telegrams                                         | 133                                                                     |

| a | Record of Document Revisions | 191   |
|---|------------------------------|-------|
| J | Record of Document Revisions | . 101 |

## 2 General

| 2.1 | About this Manual  | 10   |
|-----|--------------------|------|
|     | Target Group       |      |
| 2.3 | Symbols Used       | 11   |
| 2.4 | Abbreviations used | . 12 |

## 2.1 About this Manual

This manual, AKD CAN-Bus Communication, This manual describes the installation, setup, range of functions, and software protocol for the CANopen AKD product series. All AKD CANopen drives have built-in CANopen functionality; therefore an additional option card is not required.

A digital version of this manual (pdf format) is available on the DVD included with your drive. Manual updates can be downloaded from the Kollmorgen website.

Related documents for the AKD series include:

- AKD Installation Manual. This manual provides instructions for installation and drive setup.
- AKD User Guide. This manual describes how to use your drive in common applications. It
  also provides tips for maximizing your system performance with the AKD. The User
  Guide includes the Parameter and Command Reference Guide which provides documentation for the parameters and commands used to program the AKD.
- Accessories Manual. This manual provides documentation for accessories like cables and regen resistors used with AKD. Regional versions of this manual exist.

#### Additional documentation:

- CAN Application (CAL) for Industrial Applications (publisher CiA e.V.)
- Draft Standards 301 (from Version 4.0), 402 (publisher CiA e.V.)
- CAN Specification Version 2.0 (publisher CiA e.V.)
- ISO 11898 ... Controller Area Network (CAN) for high-speed communication

## 2.2 Target Group

This manual addresses personnel with the following qualifications:

- Installation: only by electrically qualified personnel.
- Setup: only by qualified personnel with extensive knowledge of electrical engineering and drive technology.
- Programming: software developers, project-planners.

The qualified personnel must know and observe the following standards:

- ISO 12100, IEC 60364 and IEC 60664
- National accident prevention regulations

## 2.3 Symbols Used

| Symbol           | Indication                                                                                       |
|------------------|--------------------------------------------------------------------------------------------------|
| ▲ DANGER         | Indicates a hazardous situation which, if not avoided, will result in death or serious injury.   |
| <b>▲</b> WARNING | Indicates a hazardous situation which, if not avoided, could result in death or serious injury.  |
| ▲ CAUTION        | Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury. |
| NOTICE           | Indicates situations which, if not avoided, could result in property damage.                     |
| NOTE             | This symbol indicates important notes.                                                           |
| $\triangle$      | Warning of a danger (general). The type of danger is specified by the text next to the symbol.   |
| 4                | Warning of danger from electricity and its effects.                                              |
|                  | Warning of danger from suspended loads.                                                          |
|                  | Warning of danger from high temperature.                                                         |
|                  | Warning of danger from automatic start.                                                          |

## 2.4 Abbreviations used

| Abbreviation | Meaning                                    |
|--------------|--------------------------------------------|
| BTB/RTO      | Ready to operate (standby)                 |
| СОВ          | Communication Object                       |
| COB-ID       | Communication Object Identifier            |
| EEPROM       | Electrically erasable/programmable memory  |
| EMC          | Electromagnetic compatibility              |
| EMCY         | Emergency Objects                          |
| ISO          | International Standardization Organization |
| km           | 1000 m                                     |
| LED          | Light-emitting diode                       |
| LSB          | Low significant Byte (or Bit)              |
| MB           | Megabyte                                   |
| MSB          | Main significant Byte (or Bit)             |
| NMT          | Network Management Objects                 |
| NSTOP        | Limit switch for negative (left) rotation  |
| PC           | Personal Computer                          |
| PDO          | Process Data Object                        |
| PSTOP        | Limit switch for positive (right) rotation |
| RAM          | Volatile memory                            |
| ROD          | Incremental position encoder               |
| RXPDO        | Receive PDO                                |
| SDO          | Service Data Object                        |
| SYNC         | Synchronization Objects                    |
| TXPDO        | Transmit PDO                               |

## 3 Installation and Setup

| 3.1 | Important instructions             | 14 |
|-----|------------------------------------|----|
| 3.2 | CAN-Bus Interface (X12/X13)        | 14 |
| 3.3 | Guide to Setup                     | 20 |
| 3.4 | Important Configuration Parameters | 21 |

## 3.1 Important instructions





## High Voltage up to 900 V!

There is a danger of serious personal injury or death by electrical shock or electrical arcing. Capacitors can still have dangerous voltages present up to 7 minutes after switching off the supply power. Control and power connections can still be live, even if the motor is not rotating.

- Never remove electrical connections to the drive while it is live.
- To be sure, measure the voltage in the DC bus link and wait until it has fallen below 50 V.





#### **Automatic Restart!**

Risk of death or serious injury for humans working in the machine. Drives with CAN-Bus are remote-controlled machines. They can start to move at any time without previous warning. The drive might restart automatically after power on, voltage dip or interruption of the supply voltage, depending on the parameter setting.

- Place a warning sign ("WARNING: Possible Automatic Start" or similar) to the machine.
- Ensure, that power on is not possible, while humans are in a dangerous zone of the machine.

#### NOTICE

Install the drive as described in the *Installation Manual*. The wiring for the analog setpoint input and the positioning interface, as shown in the wiring diagram in the *Installation Manual*, is not required.

#### NOTICE

The drive's status must be monitored by the PLC to acknowledge critical situations. Wire the FAULT contact in series into the emergency stop circuit of the installation. The emergency stop circuit must operate the supply contactor.

#### NOTE

It is permissible to use the setup software to alter the settings of the drive. Any other alterations will invalidate the warranty. Because of the internal representation of the position-control parameters, the position controller can only be operated if the final limit speed of the drive does not exceed:

| rotary                                 | linear                                        |
|----------------------------------------|-----------------------------------------------|
| at sinusoidal² commutation: 7500 rpm   | at sinusoidal <sup>2</sup> commutation: 4 m/s |
| at trapezoidal commutation: 12000 rpm. | at trapezoidal commutation: 6.25 m/s          |

#### NOTE

All the data on resolution, step size, positioning accuracy etc. refer to calculatory values. Non-linearities in the mechanism (backlash, flexing, etc.) are not taken into account. If the final limit speed of the motor must be altered, then all the parameters that were previously entered for position control and motion blocks must be adapted.

## 3.2 CAN-Bus Interface (X12/X13)

Two 6-pin RJ-25 connectors X12/X13 are used for CAN-Bus connection.



| Conn. | Pin | Signal                        | Conn. | Pin | Signal                        |
|-------|-----|-------------------------------|-------|-----|-------------------------------|
| X12   | 1   | Internal Termination Resistor | X13   | 1   | Internal Termination Resistor |
| X12   | 2   | CAN Shield                    | X13   | 2   | CAN Shield                    |
| X12   | 3   | CANH in                       | X13   | 3   | CANH out                      |
| X12   | 4   | CANL in                       | X13   | 4   | CANL out                      |
| X12   | 5   | GND                           | X13   | 5   | GND                           |
| X12   | 6   | Internal Termination Resistor | X13   | 6   | Internal Termination Resistor |

### 3.2.1 CAN-Bus activation with AKD-CC models

AKD-CC drive models are Drives, which support EtherCAT and CAN fieldbus types within one common software. These CC drive models allow selecting a fieldbus support by setting the DRV.TYPE parameter to a certain value. CC drive models are delivered with EtherCAT set active.

To activate CANopen, the DRV.TYPE parameter must be changed

- 1. by software: connect the PC to the AKD and change the parameter DRV.TYPE in the WorkBench terminal screen (see DRV.TYPE parameter documentation) or
- 2. by hardware: with the rotary switches S1 & S2 at the front and the button B1 on the top side of the Drive.

The following steps are needed for changing the fieldbus type from EtherCAT to CAN with the rotary switches.

1. Set the rotary switches on the front side of the AKD to the value of 89.



Set S1 to 8 and S2 to 9

Press the button B1 for about 3 seconds (starts DRV.NVSAVE).

Press B1 for 3 seconds.



The seven segment display shows **Cn** during the process of changing DRV.TYPE to CAN.

Do not switch off the 24[V] power supply while the seven segment shows Cn!

- Wait until the seven segment display goes back to the original state, no the drive is prepared for CAN.
- 4. Power cycle the drive by switching the 24 V power supply **off** and then **on** again.

NOTE

The seven segment display shows Er (Error) in case that the DRV.TYPE instruction failed. In this case please power cycle the drive and contact the Kollmorgen customer support for further help.

#### 3.2.2 Baud rate for CAN-Bus

The user can decide to use a fixed baud rate or an auto baud detection algorithm for the startup behavior of the drive. The transmission rate can be set via the parameter

**FBUS.PARAM01**. The parameter FBUS.PARAM01 can either be set via WorkBench or via a special mechanism with the rotary switches in the AKD front.

| Baud rate [kBit/s] | FBUS.PARAM01 | Upper rotary switch S1 | Lower rotary switch S2 |
|--------------------|--------------|------------------------|------------------------|
| auto detect        | 0            | 9                      | 0                      |
| 125                | 125          | 9                      | 1                      |
| 250                | 250          | 9                      | 2                      |
| 500                | 500          | 9                      | 3                      |
| 1000               | 1000         | 9                      | 4                      |

In case of a fix baud rate, the drive sends the boot up message with the baud rate saved in the drive's non volatile memory after a power cycle. In case of auto baud detection, the drive listens for a valid CAN frame on the bus. When a valid frame is received, the drive sends the boot up message with the measured bit time. The baud rate can either be stored afterwards to non volatile memory via object 1010 sub 1, or the auto baud mechanism is used always.

For setting the baud rate with rotary switches, follow the procedure below:

- 1. Disable the drive.
- 2. Set the rotary switches to either 90 to 94 (see above table).



Set S1 to 9 and S2 to either 0 or 4

 Push the button B1 on the AKD for at least 3 seconds until the rotary switch setting is displayed on the AKD-display.
 Press B1 for 3 seconds.



4. When the display blinks with the set rotary switch setting stop pushing B1 and wait until the blinking stops. During that time the parameter FBUS.PARAM01 is set to the new value and all parameters are stored to the non volatile memory. The new setting will be taken with the next power-up of the drive.

If an error occurred, the following error messages will flash 5 times:

- E1 Drive is enabled
- E2 Non-volatile storage of the new setting failed
- E3 Invalid rotary switch selection

#### 3.2.3 Node Address for CAN-Bus

NOTE

After changing the node address, you must turn off the 24 V auxiliary supply for the drive and then turn it on again.

During setup, use the rotary switches on the AKD front panel to preset the station address for communication.



The rotary switches on the front of the AKD (S1&S2) correspond to the CAN node address. The S1&S2 switches also correspond to the IP address setting of the drive. Both CAN and IP network address schemes have to be configured to account for this dependence if both TCP/IP and CAN networks are running at the same time in an application. Example:

| S1 (MSB) | S2 (LSB) | CAN address | IP address   |
|----------|----------|-------------|--------------|
| 4        | 5        | 45          | 192.168.0.45 |

The IP address setting can be decoupled from the rotary switches using WorkBench (Settings -> Fieldbus-> TCP/IP).

### 3.2.4 CAN-Bus Termination

The last bus device on both ends of the CAN-Bus system must have termination resistors. The AKD has built-in 132 ohms resistors that can be activated by connecting pins 1 and 6. An optional termination plug is available for AKD (*P-AKD-CAN-TERM*). The optional termination plug is an RJ-12 connector with an enclosed wire jumper between pins 1&6. The termination plug should be inserted into the X13 connector of the last drive in the CAN network.

#### 3.2.5 CAN-Bus Cable

To meet ISO 11898, a bus cable with a characteristic impedance of 120 ohms should be used. The maximum usable cable length for reliable communication decreases with increasing transmission speed. As a guide, you can use the following values which Kollmorgen has measured; however, these values are not assured limits:

Characteristic impedance: 100–120 ohms
Cable capacitance max.: 60 nF/km
Lead loop resistance: 159.8 ohms/km

| Transmission Rate (kBaud) | 1,000 | 500 | 250 |
|---------------------------|-------|-----|-----|
| Maximum Cable Length (m)  | 10    | 70  | 115 |

Lower cable capacitance (max. 30 nF/km) and lower lead resistance (loop resistance, 115 ohms/ 1000 m) make it possible to achieve greater distances. The characteristic impedance  $150 \pm 5 \text{ ohms}$  requires terminating resistor  $150 \pm 5 \text{ ohms}$ .

## 3.2.5.1 CAN-Bus Wiring



## 3.3 Guide to Setup

NOTICE

Only professional personnel with extensive knowledge of control and drive technology are allowed to setup the drive.





#### **Automatic Restart!**

Risk of death or serious injury for humans working in the machine. Drives with CAN-Bus are remote-controlled machines. They can start to move at any time without previous warning. The drive might restart automatically after power on, voltage dip or interruption of the supply voltage, depending on the parameter setting.

- Place a warning sign ("WARNING: Possible Automatic Start" or similar) to the machine.
- Ensure, that power on is not possible, while humans are in a dangerous zone of the machine.

#### NOTE

Refer to chapter "Important Configuration Parameters" (→ p. 21) for fieldbus parameter setting (FBUS.PARAMx).

- Check assembly/installation. Check that all the safety instructions in the product manual for the drive and this manual have been observed and implemented. Check the setting for the station address and baud rate.
- 2. Connect PC,start WorkBench. Use the setup software WorkBench to set the parameters for the drive.
- Setup basic functions. Start up the basic functions of the drive and optimize the current, speed and position controllers. This section of the setup is described in the in the online help of the setup software.
- 4. Save parameters. When the parameters have been optimized, save them in the drive.
- Start up communication. The altered parameters will only become effective after a reboot (switch off 24V and switch on again). Adjust the transmission rate of the AKD to match the master.
- 6. Test communication. Check for the bootup-message, when you switch on the drive. Do an SDO read access on index 0x1000 subindex 0 (DeviceType).
- 7. Setup position controller. Setup the position controller, as described in the WorkBench online help.

## 3.4 Important Configuration Parameters

The AKD holds several fieldbus-specific, general purpose parameters. Some of them contain the following relevant data:

#### FBUS.PARAM01:

Sets the baud rate for the CANbus. Supported baud rates are 125, 250, 500 and 1000 kBaud. On AKD-C, FBUS.PARAM01 sets and stores the EtherCAT station alias for the ESC (EtherCAT slave controller) of string 2.

#### FBUS.PARAM02:

This parameter activates the synchronization feature of the AKD. The DC feature must be activated in order to allow the AKD to get synchronized with the master. Only works when FBUS.TYPE = 3 (CANopen).

Drive internal PLL (phase locked loop) functionality: enabled (1),

Drive internal PLL functionality: disabled (0).

### FBUS.PARAM03:

This parameter contains the Configured Station Alias address of the AKD. An EEPROM emulation write access to the Configured Station Alias address forces the AKD to store the drive parameters automatically using the DRV.NVSAVE command. On AKD-C,

FBUS.PARAM03 sets and stores the EtherCAT station alias for the ESC (EtherCAT slave controller) of string 1.

#### FBUS.PARAM04:

This parameter enables (1) or disables (0) the synchronization supervision of the CANOpen or EtherCAT fieldbus.

Default values for this parameter are as follows:

CANopen drive: disabled (0) EtherCAT drive: enabled (1)

Synchronization supervision is active when FBUS.PARAM 04 = 1 and the first CANOpen Sync message or first EtherCAT frame is received. When more than three CANOpen sync messages or seven EtherCAT frames have not been received and the drive is enabled, fault F125 ("Synchronization lost"), occurs.

## FBUS.PARAM05:

| Bit 0 | 1 | Faults can only be reset using DS402 control word bit 7.                                                                                                                                                           |
|-------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 0 | The reset can also be done via telnet or digital input and the DS402 state machine reflects this condition.                                                                                                        |
| Bit 1 | 1 | The state of the hardware enable does not change the state machine state Operation Enable.                                                                                                                         |
|       | 0 | If the state Operation Enable or Switched on is active it falls back to the state switched On Disabled, if the Hardware enable goes to 0.                                                                          |
| Bit 2 | 1 | WorkBench/Telnet can not software enable the drive, when CANopen/EtherCAT are Operational.                                                                                                                         |
|       | 0 | WorkBench/Telnet can software enable the drive.                                                                                                                                                                    |
|       |   | NOTE: During commissioning this bit should be set to 1 to avoid influences to DS402 power stage state machine. The field bus should not be in operation as well to avoid influence to test functions of Workbench. |
| Bit 3 | 1 | DS402-state machine is not influenced, if the software-enable is taken away via Telnet.                                                                                                                            |
|       | 0 | DS402-state machine is influenced, if the software-enable is taken away via Telnet.                                                                                                                                |

| Bit 4                         | 1 | Scaling is done via special DS402 - objects (independent on units)                                                                 |
|-------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------|
|                               | 0 | Scaling for position, velocity and acceleration objects is done via UNIT                                                           |
|                               |   | parameters.                                                                                                                        |
| Bit 5                         | 1 | FBUS.PARAM03 defines the station alias address if not 0. If                                                                        |
| (EtherCAT                     |   | FBUS.PARAM03 set to 0, the address will be taken from rotary switches                                                              |
| only)                         |   | instead, if they are not 0. The EtherCAT master has the ability to use the alias address, selected by the drive, or issue its own. |
|                               | _ | The rotary switches define the station alias address if not 0. If the rotary                                                       |
|                               | U | switches are set to 0, the address will be taken from FBUS.PARAM03                                                                 |
|                               |   | instead, if it is not 0.                                                                                                           |
| Bit 6                         | 1 | Bit 0 of parameter MT.CNTL (object 35B9 sub 0) can be accessed.                                                                    |
|                               | 0 | Bit 0 of parameter MT.CNTL (object 35B9 sub 0) is exclusively used for                                                             |
|                               |   | DS402 controlword.                                                                                                                 |
| Bit 7                         | 1 | All capture objects (0x20A0-0x20A3, 0x20A6, 0x20A7, 0x60BA to                                                                      |
|                               |   | 0x60BD) are scaled like object 0x6063.                                                                                             |
|                               | 0 | All capture objects (0x20A0-0x20A3, 0x20A6, 0x20A7, 0x60BA to                                                                      |
|                               |   | 0x60BD) are scaled like object 0x6064.                                                                                             |
| Bit 8                         | 1 | DS402-state SWITCHED ON means power stage disabled.                                                                                |
|                               | 0 | DS402-state SWITCHED ON means power stage enabled.                                                                                 |
| Bit 9                         | 1 | SDO content of object 0x6063 is the same as PDO content.                                                                           |
|                               | 0 | SDO content of object 0x6063 depends on AKD unit parameters.                                                                       |
| Bit 10                        | 1 | State "Switch On" can be reached without the high-level voltage being act-                                                         |
| (Bit 10 is act-               |   | ive.                                                                                                                               |
| ive only,<br>if Bit 8 is set) | 0 | State "Switch On" can only be reached when the high-level voltage is active of the drive will story in "Poods to Switch On"        |
|                               | 4 | ive; otherwise the drive will stay in "Ready to Switch On".                                                                        |
| Bit 11                        | 1 | No emergency messages over CANopen are triggered when a drive warning occurs.                                                      |
|                               | 0 | Emergency messages over CANopen are triggered when a drive warning                                                                 |
|                               |   | occurs.                                                                                                                            |
| Bit 12                        |   | reserved                                                                                                                           |
| Bit 13                        | 1 | Downloaded parameter file is stored automatically to nonvolatile memory.                                                           |
| (EtherCAT                     | 0 | Downloaded parameter file is not stored automatically to nonvolatile                                                               |
| only)                         |   | memory.                                                                                                                            |

## FBUS.PARAM06 to FBUS.PARAM10:

Reserved.

## 4 CANopen Basics

| 4.1 | Basic Features implemented by CANopen   | . 24 |
|-----|-----------------------------------------|------|
| 4.2 | Transmission Rate and Procedure         | .24  |
| 4.3 | Response to BUSOFF Communication Faults | .24  |

## 4.1 Basic Features implemented by CANopen

It is assumed that the basic operating functions of the communication profile are known and available as reference documentation. When working with the position controller that is integrated in AKD, the following functions are available:

#### Setup and general functions:

- · Homing, set reference point
- · Provision of a digital setpoint for speed and torque control
- Support of the following modes of the CANopen Profile DS402:
  - o Profile position mode, Profile torque mode, Profile velocity mode
  - Homing mode
  - Interpolated position mode
  - o Cyclic synchronous position mode

#### Positioning functions:

- Execution of a motion task from the motion block memory of the drive
- Execution of a direct motion task
- · Absolute trajectory, ip-Mode or csp-Mode

#### Data transfer functions:

- Transmit a motion task to the drive's motion block memory. A motion task consists of these elements:
  - Position setpoint (absolute task) or path setpoint (relative task)
  - Speed setpoint
  - Acceleration time, braking time
  - Type of motion task (absolute/relative)
  - Number of a following task (with or without pause)
- Read a motion task from the motion block memory of the drive
- · Read actual values
- Read the error register (Emergency error codes)
- Read the status register
- · Read/write control parameters

## 4.2 Transmission Rate and Procedure

- Bus connection and bus medium: CAN-standard ISO 11898 (CAN high-speed)
- Transmission rate: max. 1Mbit/s
- Possible settings for the drive: 125 (default), 250, 500 and 1000 kbit/s
- Setting FBUS.PARAM01 to 0 enables the automatic baud rate detection.
- The baud rate is set with the AKD parameter FBUS.PARAM01. It gets effective by saving this parameter to NVRAM and re-starting the drive.

## 4.3 Response to BUSOFF Communication Faults

The communication fault BUSOFF is directly monitored and signaled by Level 2 (CAN controller). This message may have various causes. A few examples:

- · Telegrams are transmitted, although there is no other CAN node connected
- · CAN nodes have different transmission rates
- · The bus cable is faulty
- Faulty cable termination causes reflections on the cable.

A BUSOFF is only signaled by the AKD, if another CAN node is connected and at least one object was successfully transmitted to start off with. The BUSOFF condition is signaled by the error message 702. If the output stage is enabled at the moment when this fault occurs, the output stage is disabled.

## **5 CANopen Communication Profile**

| 5.1 | General Description of CAN                          | 26   |
|-----|-----------------------------------------------------|------|
| 5.2 | Construction of the Communication Object Identifier | 27   |
| 5.3 | Definition of the Used Data Types                   | 28   |
| 5.4 | Communication Objects                               | . 30 |

## 5.1 General Description of CAN

This chapter describes the basic services and communication objects of the CANopen communication profile DS 301, which are used in the AKD.

#### NOTE

It is assumed that the basic operating functions of the communication profile are known, and available as reference documentation.

The transmission method that is used here is defined in ISO 11898 (Controller Area Network CAN for high-speed communication).

The Layer-1/2 protocol (Physical Layer/Data Link Layer) that is implemented in all CAN modules provides, amongst other things, the requirements for data.

Data transport or data request is made by means of a data telegram (Data Frame) with up to 8 bytes of user data, or by a data request telegram (Remote Frame).

Communication objects (COBs) are labeled by an 11-bit Identifier (ID) that also determines the priority of objects.

A Layer-7 protocol (Application Layer) was developed, to decouple the application from the communication. The service elements that are provided by the Application Layer make it possible to implement an application that is spread across the network. These service elements are described in the CAN Application Layer (CAL) for Industrial Applications.

The communication profile CANopen and the drive profile are mounted on the CAL.

The basic structure of a communication object is shown in the following diagram:

| S | COB-ID | R CTRL | Data Segment | CRC | A | EOM |
|---|--------|--------|--------------|-----|---|-----|
| 0 |        | T      |              |     | c |     |
| М |        | R      |              |     | K |     |

SOM Start of message

COB-ID Communication Object Identifier (11-bit)

RTR Remote Transmission Request
CTRL Control Field (e.g. Data Length Code)

Data Segment 0 to 8byte (Data-COB)

Obyte (Remote-COB)

CRC Cyclic Redundancy Check

ACK Acknowledge slot EOM End of message

## 5.2 Construction of the Communication Object Identifier

The following diagram shows the layout of the COB Identifier (COB-ID). The Function Code defines the interpretation and priority of the particular object.

|   | 10            | 9 | 8 | 7 | 6 | 5  | 4    | 3   | 2 | 1 | 0 |
|---|---------------|---|---|---|---|----|------|-----|---|---|---|
| ľ | Function-Code |   |   |   |   | Мо | dule | -ID |   |   |   |

#### Bit 0 .. 6

Module ID (drive's CAN-bus address, range 1 to 127; is set up in WorkBench or the drive,)

### Bit 7 to 10

Function Code (number of the communication object that is defined in the server)

#### NOTE

If an invalid station number (=0) is set, then the module will be set internally to 1.

The following tables show the default values for the COB Identifier after switching on the drive. The objects, which are provided with an index (Communication Parameters at Index), can have a new ID assigned after the initialization phase. The indices in brackets are optional.

Predefined broadcast objects (send to all nodes):

| Object | Object Function code |         | ılting | Communication |  |            |
|--------|----------------------|---------|--------|---------------|--|------------|
|        |                      | COB-IDs |        |               |  | parameters |
|        | (binary)             | Dec.    | Hex.   | at index      |  |            |
| NMT    | 0000                 | 0       | 0      | _             |  |            |
| SYNC   | 0001                 | 128     | 80     | (1005)        |  |            |
| TIME   | 0010                 | 256     | 100    | not supported |  |            |

Predefined Peer-to-Peer objects (node sends to node):

| Object    | Function code | Resulting<br>COB-IDs |        | Communication parameters | Priority |
|-----------|---------------|----------------------|--------|--------------------------|----------|
|           | (binary)      | Dec.                 | Hex.   | at index                 |          |
| EMERGENCY | 0001          | 129255               | 81FF   | _                        | high     |
| TPDO 1    | 0011          | 385511               | 1811FF | 1800                     |          |
| RPDO 1    | 0100          | 513639               | 20127F | 1400                     |          |
| TPDO 2    | 0101          | 641767               | 2812FF | 1801                     |          |
| RPDO 2    | 0110          | 769895               | 30137F | 1401                     |          |
| TPDO 3    | 0110          | 8971023              | 3813FF | 1802                     |          |
| RPDO3     | 1000          | 10251151             | 40147F | 1402                     |          |
| TPDO 4    | 1001          | 11531279             | 4814FF | 1803                     |          |
| RPDO4     | 1010          | 12811407             | 50157F | 1403                     |          |
| SDO (tx*) | 1011          | 14091535             | 5815FF |                          |          |
| SDO (rx*) | 1100          | 15371663             | 60167F |                          |          |
| Nodeguard | 1110          | 17931919             | 70177F | (100E)                   | low      |

\*tx = direction of transmission: AKD => Master rx = direction of transmission: Master => AKD

## 5.3 Definition of the Used Data Types

This chapter defines the data types that are used. Each data type can be described by bit-sequences. These bit-sequences are grouped into "Octets" (bytes). The so-called "Little – Endian" format (a.k.a. Intel format) is used for numerical data types (see also: DS301 Application Layer "General Description of Data Types and Encoding Rules").

## 5.3.1 Basic data types

## 5.3.1.1 Unsigned Integer

Data in the basic data type UNSIGNEDn define exclusively positive integers. The value range is from 0 to  $2^n$ -1. The bit sequence b =  $b_0$  to  $b_{n-1}$  defines the value UNSIGNEDn(b) =  $b_{n-1}$   $2^{n-1}$  + to +  $b_1$   $2^1$  +  $b_0$   $2^0$ 

Example: the value 266 = 10Ah is transmitted in the data type UNSIGNED16, in the form of two octets ( $1^{st}$  octet = 0Ah,  $2^{nd}$  octet = 01h).

Transmission syntax for the data type UNSIGNEDn

| Octet number | 1.                               | 2.                                | 3.                                 | 4.                                 |
|--------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------------|
| UNSIGNED8    | b <sub>7</sub> to b <sub>0</sub> |                                   |                                    |                                    |
| UNSIGNED16   | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> |                                    |                                    |
| UNSIGNED24   | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> |                                    |
| UNSIGNED32   | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> | b <sub>31</sub> to b <sub>24</sub> |
| UNSIGNED40   | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> | b <sub>31</sub> to b <sub>24</sub> |
| UNSIGNED48   | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> | b <sub>31</sub> to b <sub>24</sub> |
| UNSIGNED56   | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> | b <sub>31</sub> to b <sub>24</sub> |
| UNSIGNED64   | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> | b <sub>31</sub> to b <sub>24</sub> |

| Octet number | 5.                                 | 6.                                 | 7.                                 | 8.                                 |
|--------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| UNSIGNED8    |                                    |                                    |                                    |                                    |
| UNSIGNED16   |                                    |                                    |                                    |                                    |
| UNSIGNED24   |                                    |                                    |                                    |                                    |
| UNSIGNED32   |                                    |                                    |                                    |                                    |
| UNSIGNED40   | b <sub>39</sub> to b <sub>32</sub> |                                    |                                    |                                    |
| UNSIGNED48   | b <sub>39</sub> to b <sub>32</sub> | b <sub>47</sub> to b <sub>40</sub> |                                    |                                    |
| UNSIGNED56   | b <sub>39</sub> to b <sub>32</sub> | b <sub>47</sub> to b <sub>40</sub> | b <sub>55</sub> to b <sub>48</sub> |                                    |
| UNSIGNED64   | b <sub>39</sub> to b <sub>32</sub> | b <sub>47</sub> to b <sub>40</sub> | b <sub>55</sub> to b <sub>48</sub> | b <sub>63</sub> to b <sub>56</sub> |

## 5.3.1.2 Signed Integer

Data in the basic data type INTEGERn define both positive and negative integers.

The value range is from  $-2^{n-1}-1$  to  $2^{n-1}-1$ . The bit sequence  $b=b_0$  to  $b_{n-1}$  defines the value INTEGERn(b) =  $b_{n-2}$   $2^{n-2}$  + to +  $b_1$   $2^1$  +  $b_0$   $2^0$  with  $b_{n-1}$  = 0

Negative numbers are represented as 2's complement, which means:

INTEGERn(b) = -INTEGERn(b) - 1 with  $b_{n-1} = 1$ 

Example: the value -266 = FEF6h is transmitted in the data type INTEGER16, in the form of two octets (1st octet = F6h, 2nd octet = FEh).

Transmission syntax for the data type INTEGERn

| Octet number | 1.                               | 2.                                | 3.                                 | 4.                                 |
|--------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------------|
| INTEGER8     | b <sub>7</sub> to b <sub>0</sub> |                                   |                                    |                                    |
| INTEGER16    | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> |                                    |                                    |
| INTEGER24    | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> |                                    |
| INTEGER32    | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> | b <sub>31</sub> to b <sub>24</sub> |
| INTEGER40    | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> | b <sub>31</sub> to b <sub>24</sub> |
| INTEGER48    | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> | b <sub>31</sub> to b <sub>24</sub> |
| INTEGER56    | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> | b <sub>31</sub> to b <sub>24</sub> |
| INTEGER64    | b <sub>7</sub> to b <sub>0</sub> | b <sub>15</sub> to b <sub>8</sub> | b <sub>23</sub> to b <sub>16</sub> | b <sub>31</sub> to b <sub>24</sub> |

| Octet number | 5.                                 | 6.                                 | 7.                                 | 8.                                 |
|--------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| INTEGER8     |                                    |                                    |                                    |                                    |
| INTEGER16    |                                    |                                    |                                    |                                    |
| INTEGER24    |                                    |                                    |                                    |                                    |
| INTEGER32    |                                    |                                    |                                    |                                    |
| INTEGER40    | b <sub>39</sub> to b <sub>32</sub> |                                    |                                    |                                    |
| INTEGER48    | b <sub>39</sub> to b <sub>32</sub> | b <sub>47</sub> to b <sub>40</sub> |                                    |                                    |
| INTEGER56    | b <sub>39</sub> to b <sub>32</sub> | b <sub>47</sub> to b <sub>40</sub> | b <sub>55</sub> to b <sub>48</sub> |                                    |
| INTEGER64    | b <sub>39</sub> to b <sub>32</sub> | b <sub>47</sub> to b <sub>40</sub> | b <sub>55</sub> to b <sub>48</sub> | b <sub>63</sub> to b <sub>56</sub> |

## 5.3.2 Mixed data types

Mixed data types combine basic data types (INTEGERn, UNSIGNEDn, REAL). Two types of mixed data are distinguished:

- STRUCT: This data type is composed of elements with different data types.
- ARRAY: This data type is composed of elements of the same data type.

## 5.3.3 Extended data types

Extended data types are derived from basic data types and mixed data types. The types of extended data that are supported are defined below.

### 5.3.3.1 Octet String

The data type OCTET\_STRING is defined with the data type ARRAY. Length is the length of the octet string.

| A | ARRAY[length] OF UNSIGNED8 | OCTET_STRINGlength |
|---|----------------------------|--------------------|

## 5.3.3.2 Visible String

The data type VISIBLE\_STRING can be defined with the data type UNSIGNED8 or the data type ARRAY. Permissible values are 00h and the range from 20h to 7Eh. The data are interpreted as 7 bit ASCII code (as per ISO 646-1973(E)). Length is the length of the visible string.

| UNSIGNED8                     | VISIBLE_CHAR         |
|-------------------------------|----------------------|
| ARRAY[length] OF VISIBLE_CHAR | VISIBLE_STRINGlength |

## 5.4 Communication Objects

Communication objects are described with the help of service elements and protocols. Two basic types of service elements are used.

- Unconfirmed services PDO
- Confirmed services SDO

All services require faultless operation of the Data Link and Physical Layer.

AKD supports communication objects that are described in detail in the following sections:

- Network Management Objects (NMT)
- Synchronization Object (SYNC)
- Emergency Object (EMCY)
- Process Data Object (PDO)
- Service Data Object (SDO)
- Nodeguard/Heartbeat

## 5.4.1 Network Management Objects (NMT)

The followind diagram describes the NMT telegram:

# NMT Master NMT Slave(s) Start Remote Node



The drive supports the following network management functions:

#### cs = 129, reset node:

Causes a communication re-start. Resets all communication/mapping parameters.

#### cs = 130, reset communication node:

Causes a stop of PDO-communication, gives a new bootup-message

#### cs = 1, start remote node:

Starts the CAN node. I.e. the PDOs of the drive are enabled for operation. From this moment, transmit-PDOs will be transmitted under event-control, and cyclical process data operation can commence.

#### cs = 2, stop remote node:

Stops the CAN node, I.e. the drive no longer responds to any received PDOs or transmits any PDOs.

## 5.4.2 Synchronization Object (SYNC)

The SYNC object usually is used as a periodic Broadcast Object and provides the basic clock for the bus. SYNC has a high priority, to ensure constant time intervals. The usage of this protocol is explained in the appendix from page . You can use the SYNC object to start motion task of several axes simultaneously for example.

### 5.4.3 Time-Stamp Object (TIME)

This communication object is not supported by the AKD.

## 5.4.4 Emergency Object (EMCY)

EMCY is event-triggered and generated by an internal fault/error situation. This object is transmitted afresh for every error. Since the error codes are device-dependent, they are described in the Chapter ""CANopen Emergency Messages and Error Codes" (→ p. 41)". The last 10 Emergency error codes can be read via object 1003.

#### 5.4.4.1 Application of the Emergency Object

The reaction in the event of an error or fault depends on the error class and is therefore variable. For this reason, the reaction is described with the aid of an error state machine. The error conditions error-free and error occurred are distinguished. Defined transitions:

**Transition 0**: After initialization, the error-free status is taken up if no errors are detected. No error signal is generated in this condition.

**Transition 1**: The AKD detects an internal error and indicates this in the first three bytes of the emergency telegram (error code in Bytes 0,1 and error register in Byte 2).

**Transition 2**: One error has been reset, but not all. The EMCY telegram contains error code 0000 and the error register indicates the remaining errors that are present. The manufacture-specific area is set to zero.

**Transition 3**: A new error has occurred. The AKD remains in the error status and transmits an EMCY Object with the corresponding error code. The new error code is entered into bytes 0 and 1.

**Transition 4**: All errors have been reset. The EMCY telegram contains the error code 0000, The error register does not indicate any other errors. The manufacture-specific area is set to zero.



## 5.4.4.2 Composition of the Emergency Object

The Emergency Object is composed of 8 bytes, divided as follows:



If an Emergency Object is generated, the error condition is then signaled to the state machine (error free/error occurred) by the generation of a second Emergency Object. Only the first four bytes are relevant in this case (Emergency Error code, Error register, Category). Byte 0/1 contains the Emergency Error Code (0000) and Byte 2 indicates if a possible further error is present. If the error register contains 00, the error status is error-free. Byte 3 contains the category. The interpretations of the error numbers (error code) and the error categories are described in the section Emergency Messages. The error register is defined by object 1001.

## 5.4.5 Service Data Objects (SDO)

SDOs are used to implement access to the Object Dictionary. The SDOs are required for parametrerization and for status polling. Access to an individual object is made with a multiplexer via the Index and Subindex of the Object Dictionary. The following communication protocols are supported by AKD:

- Initiate SDO Download Protocol
- Download SDO Segment Protocol
- Initiate SDO Upload Protocol
- Upload SDO Segment Protocol
- Abort SDO Transfer Protocol

The definitions of the individual communication services and protocols can be found in DS301.

Examples of the usage of SDOs can be found in the appendix from → p. 159.



Since a SDO is a confirmed service, the system must always wait for the SDO response telegram before it is allowed to transmit a new telegram.

### 5.4.5.1 Composition of the Service Data Object

An SDO consists of the following components:



## 1. The control byte (Byte 1):

The control byte determines whether the SDO should write or read the content of the entry in the Object Dictionary. A description of the complete Object Dictionary for AKD→ p. 133. Data exchange with the AKD is governed by the *CMS multiplexed domain protocols* standard, as described in the CAN standard DS 202.

To read data, the control byte must be written in the manner shown below:



ccs => client command specifier (ccs = 2 => initiate upload request)

X => free data

So a value of 0100 0000 (binary) or 40h must be transmitted in the control byte.

The drive sends back a corresponding response byte:



scs =>server command specifier (scs = 2 => initiate upload response)

n = only valid for e = s = 1, if this is so, n contains the number of bytes that do not contain data

X =>free data

If reading is successfull, the response byte always has set the bits 0 and 1 (e = s = 1).

Encoded byte length in the SDO response:

0x43 - 4 bytes

0x47 - 3 bytes

0x4B - 2 bytes

0x4F - 1 byte.

If an error occurs, scs is set to 4, the response byte is 0x80 and the error information is in the four byte data field. The decoding of the error see page 1

To write data, the control byte must be written in the manner shown below:

| Client  |                                          | Initiate Domain Download |   |   |    |   |   |   |    |    |    |    | Server |    |    |            |
|---------|------------------------------------------|--------------------------|---|---|----|---|---|---|----|----|----|----|--------|----|----|------------|
|         | Byte 1                                   |                          |   |   |    | 2 | 3 | 4 | 5  | 6  | 7  | 8  |        |    |    |            |
| request | 7                                        | 6                        | 5 | 4 | 3  | 2 | 1 | 0 | 70 | 70 | 70 | 70 | 70     | 70 | 70 | indication |
| =>      | ccs=1 X n e s m d                        |                          |   |   | => |   |   |   |    |    |    |    |        |    |    |            |
|         | => => => => => => => => => => => => => = |                          |   |   |    |   |   |   |    |    |    |    |        |    |    |            |

n,e and s are defined like in the reading case, m: index + Subindex, d: 4 bytes data field The data length of an object can be taken from the object dictionary in the appendix. The control byte should be:

0x23 for a 4-byte access

0x27 for a 3-byte access

0x2B for a 2-byte access

0x2F for a 1-byte access

| Client  | <= | <= <= <= <= <= <= <= <= <= <= <= <= <= < |        |   |   |   |   |   |     |    | Server |      |      |    |    |          |
|---------|----|------------------------------------------|--------|---|---|---|---|---|-----|----|--------|------|------|----|----|----------|
|         |    | Byte 1 2 3 4 5 6 7                       |        |   |   |   |   |   |     | 8  |        |      |      |    |    |          |
| confirm | 7  | 6                                        | 5      | 4 | 3 | 2 | 1 | 0 | 70  | 70 | 70     | 70   | 70   | 70 | 70 | response |
| <=      | s  | cs=                                      | cs=3 X |   |   |   |   |   | min |    |        | rese | rved |    | <= |          |

#### 2. Index (Bytes 2 and 3):

The Index is the main entry in the Object Dictionary, and divides the parameters into groups. (Example: Index 1018h is the Identity Object). As for all CAN data, the Index is stored with the bytes in reverse order.

For example: Index 6040h means Byte 2 = 40h, Byte 3 = 60h)

### 3. Subindex (Byte 4):

The Subindex divides the parameters within a group of parameters.

### 4. Data field (Bytes 5 to 8):

These components are used for the exchange of user data. In read-request telegrams to the AKD they are set to 0. They have no content in a write confirmation from the AKD if the transfer was successful, but if the write operation was faulty they contain an error → p. 41.

#### 5.4.5.2 Initiate SDO Download Protocol

The Initiate SDO Download protocol is used for write access to objects with up to 4 bytes of user data (expedited transfer) or to initiate a segment transfer (normal transfer).

## 5.4.5.3 Download SDO Segment Protocol

The Download SDO Segment protocol is used for write access to objects with more than 4 bytes of user data (normal transfer).

## 5.4.5.4 Initiate SDO Upload Protocol

The SDO Upload protocol is used for read access to objects with up to 4 bytes of user data (expedited transfer) or to initiate a segment transfer (normal transfer).

## 5.4.5.5 Upload SDO Segment Protocol

The Upload SDO Segment protocol is used for read access to objects with more than 4 bytes of user data (normal transfer).

#### 5.4.5.6 Abort SDO Protocol

The Abort SDO protocol breaks off SDO transmission, and indicates the error that caused the break in transmission through an abort code (error code). The error code is in the format of an UNSIGNED32 value. The following table shows possible reasons for an abort SDO.

| Abort Code | Description                                                         |
|------------|---------------------------------------------------------------------|
| 0504 0000h | SDO timeout                                                         |
| 0504 0001h | Command specifier invalid                                           |
| 0504 0002h | SDO segmented: invalid blocksize                                    |
| 0504 0004h | SDO segmented: invalid block CRC                                    |
| 0504 0005h | SDO segmented: out of memory                                        |
| 0601 0001h | Attempted read access to a write-only object                        |
| 0601 0002h | Attempted write access to a read-only object                        |
| 0602 0000h | Object does not exist in Object Dictionary                          |
| 0604 0041h | Object cannot be mapped to a PDO                                    |
| 0604 0042h | Size and number of mapped objects exceed permissible PDO length     |
| 0604 0043h | General parameter incompatibility                                   |
| 0606 0000h | SDO hardware fault                                                  |
| 0607 0010h | Data type incompatible, length of service parameter is incompatible |
| 0609 0011h | Subindex does not exist                                             |
| 0609 0030h | Outside value range for the parameter (only for write access)       |
| 0609 0031h | Parameter value too high                                            |
| 0609 0032h | Parameter value too low                                             |
| 0800 0020h | Data cannot be transmitted or saved                                 |
| 0800 0022h | Data cannot be transmitted or saved because of device status        |

Abort Codes not listed above are reserved.

## 5.4.6 Process Data Object (PDO)

PDOs are used for real-time data communication. PDOs can, for instance, be used to set up controllers similar to analog drives. Instead of +/-10VDC setpoints and ROD feedback, digital speed setpoints and position feedback are attained via PDOs in this case.

Transmission is carried out unconfirmed without a protocol "overhead". This communication object uses the unconfirmed communication service.

PDOs are defined via the Object Dictionary for the AKD. Mapping is made during the configuration phase, with the help of SDOs. Length is defined with the mapped objects.

The definition of the PDO service and protocol can be found in DS301. Examples of the usage of PDOs can be found in the appendix → p. 159.

Basically, two types of PDOs can be distinguished, depending on the direction of transmission:

- Transmit-PDOs (TPDOs) (AKD => Master)
   The TPDOs transmit data from AKD to control system (for example actual value objects, instrument status).
- Receive-PDOs (RPDOs) (Master =>AKD)
   The RPDOs receive data from control system to AKD (for example setpoints).

AKD supports four independent PDO channels for each direction of transmission. The channels are labeled by the channel numbers 1 to 4.

There are two parameter sets each for the configuration of each of the four possible PDOs, and they can be set up through the corresponding SDOs:

- 1. Mapping parameters, to determine which data are available (mapped) in the selected PDO and to define, which data are contained.
- 2. Communication parameters, that define whether the PDOs operate in synchronized mode, or event-driven (objects 1400h to 1403h, 1800h to 1803h).

#### 5.4.6.1 Transmission modes

The following PDO transmission modes are distinguished:

- Synchronous transmission
- · Asynchronous transmission

The pre-defined SYNC Object is transmitted periodically (bus clock), to synchronize the drives. Synchronous PDOs are transmitted within a pre-defined time window immediately following the SYNC Object.

The transmission modes are set up with the aid of the PDO communication parameters.



#### 5.4.6.2 Trigger modes

Three different trigger modes are distinguished:

- Event driven: The transmission of the telegrams is triggered by an object-specific event.
- **Time driven**: If event driven signals put a high strain on the bus, you can determine the period of time after which a PDO can be transmitted again via the inhibit time (Communication parameter, Subindex 03h)
- Event Timer driven: If a PDO shall be sent within a defined time interval, even if it doesn't change, this interval can be defined by a special SDO.

## 5.4.7 Nodeguard

The Node Guarding protocol is a functional monitoring for the drive. It requires that the drive is accessed at regular intervals by the CANopen master.

The maximum time interval that is permitted between two Nodeguard telegrams is given by the product of the Guard Time (Object 100Ch) and the Life Time Factor (Object 100Dh). If one of these two values is 0, then the response monitoring is de-activated.

If the drive is not accessed within the time defined by objects 100Ch and 100Dh, then fault F129 (response monitoring) appears on the drive, the drive is braked to a stop, and any other movement is prevented.

The time sequence for node guarding is as shown below:



t = toggle Bit, changes its status with every slave telegram

s = status of the NMT slave state machine

Node guarding is carried out by the Master through RTR telegrams with the COB-ID 700h + slave node address.

#### 5.4.8 Heartbeat

The Heartbeat Protocol defines an Error Control Service without need for remote frames. A Heartbeat Producer transmits a Heartbeat message cyclically. One or more Heartbeat Consumer receive the indication. The relationship between producer and consumer is configurable via Object 1016h/1017h. The Heartbeat Consumer guards the reception of the Heartbeat within the Heartbeat Consumer Time. If the Heartbeat is not received within the Heartbeat Consumer Time a Heartbeat Event will be generated.

Heartbeat protocol:



# 6 CANopen Drive Profile

| 6.1  | CANopen Emergency Messages and Error Codes | 41  |
|------|--------------------------------------------|-----|
| 6.2  | General Definitions                        | 47  |
| 6.3  | PDO Configuration                          | 85  |
| 6.4  | Device Control (dc)                        | 93  |
| 6.5  | Factor Groups (fg) (DS402)                 | 100 |
| 6.6  | Profile Velocity Mode (pv) (DS402)         | 110 |
| 6.7  | Profile Torque Mode (tq) (DS402)           | 111 |
| 6.8  | Position Control Function (pc) (DS402)     | 115 |
| 6.9  | Interpolated Position Mode (ip) (DS402)    | 117 |
| 6.10 | 0 Homing Mode (hm) (DS402)                 | 122 |
| 6.11 | 1 Profile Position Mode (DS402)            | 127 |

# 6.1 CANopen Emergency Messages and Error Codes

Emergency messages are triggered by internal equipment errors. They have a high ID-priority to ensure quick access to the bus. An emergency message contains an error field with predefined error/fault numbers (2 bytes), an error register (1byte), the error category (1 byte), and additional information. Error numbers 0000h to 7FFFh are defined in the communication or drive profile. Error numbers FF00h to FFFFh have manufacturer-specific definitions.

| Error                          | Fault/                           | Description                                    |  |  |  |
|--------------------------------|----------------------------------|------------------------------------------------|--|--|--|
| Code                           | Warning                          | 2003.154.01.                                   |  |  |  |
| 0x0000                         | 0                                | Emergency error free.                          |  |  |  |
| 0x1080                         | -                                | General Warning.                               |  |  |  |
| 0x1081                         | -                                | General Error.                                 |  |  |  |
| 0x3110                         | F523                             | DC Bus link over voltage FPGA.                 |  |  |  |
| 0x3120                         | F247                             | DC Bus link voltage exceed allowed thresholds. |  |  |  |
| 0x3130                         | F503                             | DC Bus link capacitor overload.                |  |  |  |
| 0x3180                         | n503                             | Warning: DC Bus link capacitor overload.       |  |  |  |
| 0x3210                         | F501                             | DC Bus link over-voltage.                      |  |  |  |
| 0x3220                         | F502                             | DC Bus Link under-voltage.                     |  |  |  |
| 0x3280                         | n502                             | Warning: DC Bus Link under-voltage.            |  |  |  |
| 0x3281                         | n521                             | Warning: Dynamic Braking I <sup>2</sup> T.     |  |  |  |
| 0x3282                         | F519                             | Regen short circuit.                           |  |  |  |
| 0x3283                         | n501                             | Warning: DC Bus link over-voltage.             |  |  |  |
| 0x4210                         | F234                             | Excessive temperature, device (control board). |  |  |  |
| 0x4310                         | F235                             | Excessive temperature, drive (heat sink).      |  |  |  |
| 0x4380                         | F236                             | Power temperature sensor 2 high.               |  |  |  |
| 0x4381                         | F237                             | Power temperature sensor 3 high.               |  |  |  |
| 0x4382                         | F535                             | Power board overtemperature.                   |  |  |  |
| 0x4390                         | n234                             | Warning: Control temperature sensor 1 high.    |  |  |  |
| 0x4391                         | n235                             | Warning: Power temperature sensor 1 high.      |  |  |  |
| 0x4392                         | n236                             | Warning: Power temperature sensor 2 high.      |  |  |  |
| 0x4393                         | n237                             | Warning: Power temperature sensor 3 high.      |  |  |  |
| 0x4394                         | n240                             | Warning: Control temperature sensor 1 low.     |  |  |  |
| 0x4395                         | n241                             | Warning: Power temperature sensor 1 low.       |  |  |  |
| 0x4396                         | n242                             | Warning: Power temperature sensor 2 low.       |  |  |  |
| 0x4397                         | n243                             | Warning: Control temperature sensor 1 low.     |  |  |  |
| 0x4398                         | F240                             | Control temperature sensor 1 low.              |  |  |  |
| 0x4399                         | F241                             | Power temperature sensor 1 low.                |  |  |  |
| 0x439A                         | F242                             | Power temperature sensor 2 low.                |  |  |  |
| 0x439B                         | F243                             | Power temperature sensor 3 low.                |  |  |  |
| 0x5113                         | F512                             | 5V0 under voltage.                             |  |  |  |
| 0x5114 F505 1V2 under voltage. |                                  | 1V2 under voltage.                             |  |  |  |
| 0x5115 F507 2V5 under voltage. |                                  | 2V5 under voltage.                             |  |  |  |
| 0x5116 F509 3V3 under voltage. |                                  | 3V3 under voltage.                             |  |  |  |
| 0x5117                         | 0x5117 F514 +12V0 under voltage. |                                                |  |  |  |
| 0x5118                         | 5118 F516 -12V0 under voltage.   |                                                |  |  |  |
| 0x5119                         | F518                             | Analog 3V3 under voltage.                      |  |  |  |
| 0x5180                         | F504                             | 1V2 over voltage.                              |  |  |  |
| 0x5181                         | F506                             | 2V5 over voltage.                              |  |  |  |

| Email  | E14/            | Description                                                 |  |  |
|--------|-----------------|-------------------------------------------------------------|--|--|
| Error  | Fault/          | Description                                                 |  |  |
| Ox5182 | Warning<br>F508 | 3V3 over voltage.                                           |  |  |
| 0x5183 | F510            | 5V0 over voltage.                                           |  |  |
| 0x5183 | F510            | +12V0 over voltage.                                         |  |  |
| 0x5185 | F515            | -12V0 over voltage.                                         |  |  |
| 0x5186 |                 |                                                             |  |  |
|        | F517            | Analog 3V3 over voltage.                                    |  |  |
| 0x5530 | F105            | Hardware memory, non-volatile memory stamp invalid.         |  |  |
| 0x5580 | F106            | Hardware memory, non-volatile memory data.                  |  |  |
| 0x5589 | F124            | Cogging compensation non volatile memory data error (CRC).  |  |  |
| 0x5590 | F204            | Control board EEPROM read failed.                           |  |  |
| 0x5591 | F205            | Control board EEPROM corrupted serial num stamp.            |  |  |
| 0x5592 | F206            | Control board EEPROM corrupted serial num data.             |  |  |
| 0x5593 | F207            | Control board EEPROM corrupted parameter stamp.             |  |  |
| 0x5594 | F208            | Control board EEPROM corrupted parameter data.              |  |  |
| 0x5595 | F219            | Control board EEPROM write failed.                          |  |  |
| 0x55A0 | F209            | Power board EEPROM read failed.                             |  |  |
| 0x55A1 | F210            | Power board EEPROM corrupted serial num stamp.              |  |  |
| 0x55A2 | F212            | Power board EEPROM corrupted serial num data.               |  |  |
| 0x55A3 | F213            | Power board EEPROM corrupted parameter stamp.               |  |  |
| 0x55A4 | F214            | Power board EEPROM corrupted parameter data.                |  |  |
| 0x55A5 | F230            | Power board EEPROM write failed.                            |  |  |
| 0x55A6 | F232            | Power board EEPROM invalid data.                            |  |  |
| 0x55B0 | F248            | ption board EEPROM corrupted.                               |  |  |
| 0x55B1 | F249            | ption board upstream checksum.                              |  |  |
| 0x55B2 | F250            | Option board upstream checksum.                             |  |  |
| 0x55B3 | F251            | Option board watchdog.                                      |  |  |
| 0x55B8 | F252            | Firmware and option board FPGA types are not compatible.    |  |  |
| 0x55B9 | F253            | Firmware and option board FPGA versions are not compatible. |  |  |
| 0x55C0 | F621            | Control Board CRC fault.                                    |  |  |
| 0x55C1 | F623            | Power Board CRC fault.                                      |  |  |
| 0x55C2 | F624            | Power Board Watchdog fault.                                 |  |  |
| 0x55C3 | F625            | Power Board Communication fault.                            |  |  |
| 0x55C4 | F626            | Power Board FPGA not configured.                            |  |  |
| 0x55C5 | F627            | Control Board Watchdog fault.                               |  |  |
| 0x55C6 | n103            | Warning: Resident FPGA .                                    |  |  |
| 0x55C7 | n104            | Warning: Operational FPGA .                                 |  |  |
| 0x6080 | F631            | Issue command timed out                                     |  |  |
| 0x6380 | F532            | Drive motor parameters setup incomplete.                    |  |  |
| 0x6381 | F120            | Failed to set default parameters.                           |  |  |
| 0x7180 | F301            | Motor overheat.                                             |  |  |
| 0x7182 | F305            | Motor Brake open circuit.                                   |  |  |
| 0x7183 | F306            | Motor Brake short circuit.                                  |  |  |
| 0x7184 | F307            | Motor Brake applied during enable state.                    |  |  |
| 0x7185 | F436            | EnDAT overheated.                                           |  |  |
| 0x7186 | n301            | Warning: Motor overheated.                                  |  |  |
| 0x7187 | F308            | Voltage exceeds motor rating.                               |  |  |
|        |                 | · · · · · · · · · · · · · · · · · · ·                       |  |  |

| 0x7188         F560         Regen near capacity, could not prevent over voltage.           0x7189         F312         Brake released when it should be applied.           0x7305         F417         Broken wire in primary feedback.           0x7380         F402         Feedback 1 Analog signal amplitudefault.           0x7381         F403         Feedback 1 EnDat communication fault.           0x7382         F404         Feedback 1 BiSS watchdog.           0x7383         F405         Feedback 1 BiSS watchdog.           0x7384         F406         Feedback 1 BiSS sensor.           0x7385         F407         Feedback 1 SFD configuration.           0x7386         F408         Feedback 1 SFD UART overrun.           0x7387         F409         Feedback 1 SFD UART parity.           0x7388         F410         Feedback 1 SFD UART parity.           0x7389         F411         Feedback 1 SFD UART parity.           0x7380         F415         Feedback 1 SFD transfer timeout.           0x7381         F416         Feedback 1 SFD transfer incomplete.           0x7382         F417         Feedback 1 SFD transfer incomplete.           0x7381         F418         Feedback 1 failed to set feedback.           0x7382         F418         Feedback 1 failed                                             | Error  | Fault/  | Description                                                     |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-----------------------------------------------------------------|--|--|
| 0x7189         F312         Brake released when it should be applied.           0x7305         F417         Broken wire in primary feedback.           0x7380         F402         Feedback 1 Analog signal amplitudefault.           0x7381         F403         Feedback 1 EnDat communication fault.           0x7381         F404         Feedback 1 BiSS watchdog.           0x7384         F405         Feedback 1 BiSS multi cycle.           0x7385         F407         Feedback 1 BiSS sensor.           0x7385         F407         Feedback 1 SFD LORT overrun.           0x7386         F408         Feedback 1 SFD UART overrun.           0x7387         F409         Feedback 1 SFD UART parity.           0x7388         F410         Feedback 1 SFD UART parity.           0x7389         F412         Feedback 1 SFD Transfer timeout.           0x7380         F413         Feedback 1 SFD Transfer incomplete.           0x7381         F416         Feedback 1 SFD Transfer incomplete.           0x7381         F416         Feedback 1 SFD single corrupted position.           0x7382         F418         Feedback 1 power supply fault.           0x7393         r414         Warning: SFD single corrupted position.           0x7394         F439         Feedback 1 since d                                             |        | Warning |                                                                 |  |  |
| 0x7305         F417         Broken wire in primary feedback.           0x7380         F402         Feedback 1 Analog signal amplitudefault.           0x7381         F403         Feedback 1 EnDat communication fault.           0x7382         F404         Feedback 1 BiSS watchdog.           0x7383         F405         Feedback 1 BiSS watchdog.           0x7385         F407         Feedback 1 BiSS sensor.           0x7386         F408         Feedback 1 SFD UART overrun.           0x7387         F409         Feedback 1 SFD UART frame.           0x7388         F410         Feedback 1 SFD UART parity.           0x7380         F412         Feedback 1 SFD Transfer timeout.           0x7381         F415         Feedback 1 SFD Transfer incomplete.           0x7382         F415         Feedback 1 SFD Transfer incomplete.           0x7381         F416         Feedback 1 SFD Transfer incomplete.           0x7382         F417         Feedback 1 Feedback 1 SFD Transfer incomplete.           0x7383         F416         Feedback 1 Feedback 1 SFD Transfer incomplete.           0x7384         F417         Feedback 1 Feedback 1 SFD Transfer incomplete.           0x7385         F416         Feedback 1 Feedback 1 SFD Transfer incomplete.           0x7386         F410                                    | ****   |         |                                                                 |  |  |
| 0x7380         F402         Feedback 1 EnDat communication fault.           0x7381         F403         Feedback 1 EnDat communication fault.           0x7382         F404         Feedback 1 BiSS watchdog.           0x7383         F405         Feedback 1 BiSS watchdog.           0x7385         F407         Feedback 1 BiSS sensor.           0x7386         F408         Feedback 1 SFD UART overrun.           0x7387         F409         Feedback 1 SFD UART overrun.           0x7388         F410         Feedback 1 SFD UART overrun.           0x7389         F412         Feedback 1 SFD UART pairty.           0x7380         F413         Feedback 1 SFD UART pairty.           0x7381         F413         Feedback 1 SFD UART pairty.           0x7382         F415         Feedback 1 SFD UART pairty.           0x7383         F416         Feedback 1 SFD URRT overrun.           0x7385         F417         Feedback 1 SFD URRT pairty.           0x7386         F418         Feedback 1 SFD URRT overrun.           0x7387         F421         Feedback 1 SFD URRT overrun.           0x7388         F417         Feedback 1 SFD URRT overrun.           0x7387         F418         Feedback 1 SFD URRT overrun.           0x7388 <td< td=""><td>****</td><td>_</td><td>• •</td></td<>                                   | ****   | _       | • •                                                             |  |  |
| 0x7381         F403         Feedback 1 EnDat communication fault.           0x7382         F404         Feedback 1 illegal hall state.           0x7383         F405         Feedback 1 BiSS watchdog.           0x7384         F406         Feedback 1 BiSS multi cycle.           0x7385         F407         Feedback 1 SFD configuration.           0x7387         F408         Feedback 1 SFD UART overrun.           0x7388         F410         Feedback 1 SFD UART frame.           0x7388         F412         Feedback 1 SFD UART frame.           0x7388         F413         Feedback 1 SFD transfer timeout.           0x7380         F415         Feedback 1 SFD Transfer incomplete.           0x7381         F416         Feedback 1 SFD transfer incomplete.           0x7382         F416         Feedback 1 SFD single corrupted position.           0x7381         F401         Feedback 1 failed to set feedback.           0x7392         F541         Feedback 1 failed to set feedback.           0x7393         F419         Encoder init procedure failed.           0x7394         F463         Falled to read motor parameters from feedback device.           0x7395         F421         SFD position sensor fault.           0x7396         n423         Warning: Tamagawa                                             |        |         |                                                                 |  |  |
| 0x7382         F404         Feedback 1 BiSS watchdog.           0x7383         F405         Feedback 1 BiSS watchdog.           0x7385         F407         Feedback 1 BiSS sensor.           0x7386         F408         Feedback 1 SFD configuration.           0x7387         F409         Feedback 1 SFD UART overrun.           0x7388         F410         Feedback 1 SFD UART parity.           0x7380         F412         Feedback 1 SFD URRT parity.           0x7381         F413         Feedback 1 SFD mult. corrupt position.           0x7382         F415         Feedback 1 SFD Transfer timeout.           0x7381         F416         Feedback 1 SFD Transfer incomplete.           0x7382         F415         Feedback 1 SFD Transfer incomplete.           0x7385         F416         Feedback 1 SFD Transfer incomplete.           0x7386         F416         Feedback 1 SFD Transfer incomplete.           0x7387         F417         Feedback 1 Feedback 1 SFD Transfer incomplete.           0x7388         F418         Feedback 1 Feedback 1 SFD Transfer incomplete.           0x7389         F419         Encoder init procedure failed.           0x7390         n414         Warning: SFD single corrupted position.           0x7391         F421         SFD positio                                             |        |         | J J ,                                                           |  |  |
| 0x7383         F405         Feedback 1 BISS watchdog.           0x7384         F406         Feedback 1 BISS multi cycle.           0x7385         F407         Feedback 1 SFD configuration.           0x7386         F408         Feedback 1 SFD UART overrun.           0x7387         F409         Feedback 1 SFD UART frame.           0x7388         F410         Feedback 1 SFD UART frame.           0x7388         F412         Feedback 1 SFD UART parity.           0x738A         F413         Feedback 1 SFD Transfer incomptee.           0x738D         F416         Feedback 1 SFD Transfer incomptee.           0x738E         F418         Feedback 1 SFD Transfer incomptee.           0x738D         F416         Feedback 1 SFD Transfer incomptee.           0x738E         F418         Feedback 1 Power supply fault.           0x738D         F418         Feedback 1 Power supply fault.           0x738D         F401         Feedback 1 Power supply fault.           0x739D         r414         Warning: SFD single corrupted position.           0x739D         r414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedba                                             |        | -       |                                                                 |  |  |
| 0x7384         F406         Feedback 1 BISS multi cycle.           0x7385         F407         Feedback 1 BISS sensor.           0x7386         F408         Feedback 1 SFD UART overrun.           0x7387         F409         Feedback 1 SFD UART overrun.           0x7388         F410         Feedback 1 SFD UART parity.           0x7389         F412         Feedback 1 SFD UART parity.           0x738A         F413         Feedback 1 SFD UART parity.           0x738D         F416         Feedback 1 SFD Transfer incomplete.           0x738E         F418         Feedback 1 SFD Transfer incomplete.           0x738F         F401         Feedback 1 power supply fault.           0x738F         F401         Feedback 1 failed to set feedback.           0x739B         F419         Feedback 1 failed to set feedback.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Non volatile memory error, multiturn overflow.           0x7396         n423         Warning: Non volati                                             |        |         |                                                                 |  |  |
| 0x7385         F407         Feedback 1 BISS sensor.           0x7386         F408         Feedback 1 SFD configuration.           0x7387         F409         Feedback 1 SFD UART overrun.           0x7388         F410         Feedback 1 SFD UART frame.           0x738A         F412         Feedback 1 SFD UART parity.           0x738A         F413         Feedback 1 SFD mult. corrupt position.           0x738D         F416         Feedback 1 SFD Transfer incomplete.           0x738E         F418         Feedback 1 SFD transfer incomplete.           0x738F         F401         Feedback 1 SFD single corrupted position.           0x7390         n414         Warning: SFD single corrupted position.           0x7391         F419         Encoded nit procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multiturn overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x73                           |        |         | 9                                                               |  |  |
| 0x7386         F408         Feedback 1 SFD configuration.           0x7387         F409         Feedback 1 SFD UART overrun.           0x7388         F410         Feedback 1 SFD UART farme.           0x7389         F412         Feedback 1 SFD UART parity.           0x7380         F413         Feedback 1 SFD ualt. corrupt position.           0x738D         F416         Feedback 1 SFD Transfer incomplete.           0x738D         F417         Feedback 1 SFD transfer incomplete.           0x738E         F418         Feedback 1 SFD single corrupted position.           0x739D         n414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Tamagawa encoder battery.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468 </td <td></td> <td></td> <td>•</td>  |        |         | •                                                               |  |  |
| 0x7387         F409         Feedback 1 SFD UART overrun.           0x7388         F410         Feedback 1 SFD UART frame.           0x7389         F412         Feedback 1 SFD UART parity.           0x7380         F413         Feedback 1 SFD mult. corrupt position.           0x738D         F416         Feedback 1 SFD Transfer incomplete.           0x738E         F418         Feedback 1 SFD Transfer incomplete.           0x738F         F401         Feedback 1 failed to set feedback.           0x7390         r414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         r451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multitum overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468         F82.Source not set.           0x739A         F46                                    |        |         |                                                                 |  |  |
| 0x7388         F410         Feedback 1 SFD UART frame.           0x7389         F412         Feedback 1 SFD UART parity.           0x738A         F413         Feedback 1 SFD transfer timeout.           0x738C         F415         Feedback 1 SFD mult. corrupt position.           0x738D         F416         Feedback 1 SFD Transfer incomplete.           0x738E         F418         Feedback 1 power supply fault.           0x738F         F401         Feedback 1 failed to set feedback.           0x7390         n414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multiturn overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468         FB2.Source not set.           0x7394         F46                                    |        |         | •                                                               |  |  |
| 0x7389         F412         Feedback 1 SFD UART parity.           0x738A         F413         Feedback 1 SFD transfer timeout.           0x738D         F416         Feedback 1 SFD mult. corrupt position.           0x738E         F418         Feedback 1 SFD Transfer incomplete.           0x738F         F401         Feedback 1 failed to set feedback.           0x7390         n414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multiturn overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468         FB2.Source not set.           0x739A         F469         FB1.ENCRES is not power of two.           0x739B         F423         Non volatile memory error, multiturn overflow.           0x739C                           |        |         |                                                                 |  |  |
| 0x738A         F413         Feedback 1 SFD transfer timeout.           0x738C         F415         Feedback 1 SFD mult. corrupt position.           0x738D         F416         Feedback 1 SFD Transfer incomplete.           0x738E         F418         Feedback 1 power supply fault.           0x739F         F401         Feedback 1 failed to set feedback.           0x7390         n414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multiturn overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468         FB2.Source not set.           0x7399         F469         FB1.ENCRES is not power of two.           0x7390         F467         Hiperface DSL fault.           0x7390         F452<                                    |        |         |                                                                 |  |  |
| 0x738C         F415         Feedback 1 SFD mult. corrupt position.           0x738D         F416         Feedback 1 SFD Transfer incomplete.           0x738E         F418         Feedback 1 power supply fault.           0x738F         F401         Feedback 1 failed to set feedback.           0x7390         n414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multiturn overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468         FB2.Source not set.           0x7399         F468         FB2.Source not set.           0x7390         F452         Non volatile memory error, multiturn overflow.           0x739C         F467         Hiperface DSL fault.           0x739E         F45                                    |        |         | , ,                                                             |  |  |
| 0x738D         F416         Feedback 1 SFD Transfer incomplete.           0x738E         F418         Feedback 1 power supply fault.           0x739F         F401         Feedback 1 failed to set feedback.           0x7390         n414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multitum overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468         FB2.Source not set.           0x739A         F469         FB1.ENCRES is not power of two.           0x739B         F423         Non volatile memory error, multiturn overflow.           0x739C         F467         Hiperface DSL fault.           0x739E         F465         Excessive shock detected by feedback device.           0x73A1 <td></td> <td></td> <td></td> |        |         |                                                                 |  |  |
| 0x738E         F418         Feedback 1 power supply fault.           0x738F         F401         Feedback 1 failed to set feedback.           0x7390         n414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multiturn overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468         FB2.Source not set.           0x739A         F469         FB1.ENCRES is not power of two.           0x739B         F423         Non volatile memory error, multiturn overflow.           0x739C         F467         Hiperface DSL fault.           0x739D         F452         Multiturn overflow not supported with this feedback.           0x73A0         F453         Tamagawa encoder: communication transfer incomplete.      <               |        |         | ·                                                               |  |  |
| 0x738F         F401         Feedback 1 failed to set feedback.           0x7390         n414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multiturn overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468         FB2.Source not set.           0x739A         F469         FB1.ENCRES is not power of two.           0x739B         F423         Non volatile memory error, multiturn overflow.           0x739C         F467         Hiperface DSL fault.           0x739E         F465         Excessive shock detected by feedback device.           0x73A0         F453         Tamagawa encoder: communication timeout.           0x73A1         F454         Tamagawa encoder: communication transfer incomplete.                    |        |         | ·                                                               |  |  |
| 0x7390         n414         Warning: SFD single corrupted position.           0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multiturn overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468         FB2.Source not set.           0x739A         F469         FB1.ENCRES is not power of two.           0x739B         F423         Non volatile memory error, multiturn overflow.           0x739C         F467         Hiperface DSL fault.           0x739D         F452         Multiturn overflow not supported with this feedback.           0x739E         F465         Excessive shock detected by feedback device.           0x73A1         F454         Tamagawa encoder: communication transfer incomplete.           0x73A2         F456         Tamagawa encoder: communication UART over |        |         |                                                                 |  |  |
| 0x7391         F419         Encoder init procedure failed.           0x7392         F534         Failed to read motor parameters from feedback device.           0x7393         F421         SFD position sensor fault.           0x7394         F463         Tamagawa encoder: overheat.           0x7395         n451         Warning: Tamagawa encoder battery.           0x7396         n423         Warning: Non volatile memory error, multiturn overflow.           0x7397         F471         Operation in Position Mode with Halls Only feedback not allowed           0x7398         F135         Homing is needed.           0x7399         F468         FB2. Source not set.           0x739A         F469         FB1.ENCRES is not power of two.           0x739B         F423         Non volatile memory error, multiturn overflow.           0x739C         F467         Hiperface DSL fault.           0x739D         F452         Multiturn overflow not supported with this feedback.           0x739E         F465         Excessive shock detected by feedback device.           0x73A0         F453         Tamagawa encoder: communication transfer incomplete.           0x73A1         F454         Tamagawa encoder: communication CRC.           0x73A2         F456         Tamagawa encoder: communication UART overru |        |         |                                                                 |  |  |
| 0x7392       F534       Failed to read motor parameters from feedback device.         0x7393       F421       SFD position sensor fault.         0x7394       F463       Tamagawa encoder: overheat.         0x7395       n451       Warning: Tamagawa encoder battery.         0x7396       n423       Warning: Non volatile memory error, multiturn overflow.         0x7397       F471       Operation in Position Mode with Halls Only feedback not allowed         0x7398       F135       Homing is needed.         0x7399       F468       FB2. Source not set.         0x739A       F469       FB1.ENCRES is not power of two.         0x739B       F423       Non volatile memory error, multiturn overflow.         0x739C       F467       Hiperface DSL fault.         0x739D       F452       Multiturn overflow not supported with this feedback.         0x739E       F465       Excessive shock detected by feedback device.         0x73A0       F453       Tamagawa encoder: communication timeout.         0x73A1       F454       Tamagawa encoder: communication transfer incomplete.         0x73A2       F456       Tamagawa encoder: communication Start timeout.         0x73A3       F457       Tamagawa encoder: communication UART overrun.         0x73A5       F459                                                     |        |         |                                                                 |  |  |
| 0x7393F421SFD position sensor fault.0x7394F463Tamagawa encoder: overheat.0x7395n451Warning: Tamagawa encoder battery.0x7396n423Warning: Non volatile memory error, multiturn overflow.0x7397F471Operation in Position Mode with Halls Only feedback not allowed0x7398F135Homing is needed.0x7399F468FB2.Source not set.0x739AF469FB1.ENCRES is not power of two.0x739BF423Non volatile memory error, multiturn overflow.0x739CF467Hiperface DSL fault.0x739DF452Multiturn overflow not supported with this feedback.0x739EF465Excessive shock detected by feedback device.0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication CRC.0x73A2F456Tamagawa encoder: communication UART overrun.0x73A3F457Tamagawa encoder: communication UART overrun.0x73A4F458Tamagawa encoder: communication UART framing.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: contouring error.0x73A7F461Tamagawa encoder: contouring error.0x73A9F464Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                            |        |         | ·                                                               |  |  |
| 0x7394F463Tamagawa encoder: overheat.0x7395n451Warning: Tamagawa encoder battery.0x7396n423Warning: Non volatile memory error, multiturn overflow.0x7397F471Operation in Position Mode with Halls Only feedback not allowed0x7398F135Homing is needed.0x7399F468FB2.Source not set.0x739AF469FB1.ENCRES is not power of two.0x739BF423Non volatile memory error, multiturn overflow.0x739CF467Hiperface DSL fault.0x739DF452Multiturn overflow not supported with this feedback.0x739EF465Excessive shock detected by feedback device.0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication CRC.0x73A2F456Tamagawa encoder: communication UART overrun.0x73A3F457Tamagawa encoder: communication UART overrun.0x73A4F458Tamagawa encoder: communication UART framing.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: contouring error.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multitum error.                                                                                                                                                                                                                                                                                                 |        |         | ·                                                               |  |  |
| 0x7395n451Warning: Tamagawa encoder battery.0x7396n423Warning: Non volatile memory error, multiturn overflow.0x7397F471Operation in Position Mode with Halls Only feedback not allowed0x7398F135Homing is needed.0x7399F468FB2.Source not set.0x739AF469FB1.ENCRES is not power of two.0x739BF423Non volatile memory error, multiturn overflow.0x739CF467Hiperface DSL fault.0x739DF452Multiturn overflow not supported with this feedback.0x739EF465Excessive shock detected by feedback device.0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication transfer incomplete.0x73A2F456Tamagawa encoder: communication CRC.0x73A3F457Tamagawa encoder: communication UART overrun.0x73A4F458Tamagawa encoder: communication UART framing.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                    |        |         | ·                                                               |  |  |
| 0x7396n423Warning: Non volatile memory error, multitum overflow.0x7397F471Operation in Position Mode with Halls Only feedback not allowed0x7398F135Homing is needed.0x7399F468FB2.Source not set.0x739AF469FB1.ENCRES is not power of two.0x739BF423Non volatile memory error, multitum overflow.0x739CF467Hiperface DSL fault.0x739DF452Multitum overflow not supported with this feedback.0x739EF465Excessive shock detected by feedback device.0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication CRC.0x73A2F456Tamagawa encoder: communication Start timeout.0x73A3F457Tamagawa encoder: communication UART overrun.0x73A4F458Tamagawa encoder: communication UART framing.0x73A5F459Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multitum error.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0x7394 | F463    |                                                                 |  |  |
| 0x7397F471Operation in Position Mode with Halls Only feedback not allowed0x7398F135Homing is needed.0x7399F468FB2.Source not set.0x739AF469FB1.ENCRES is not power of two.0x739BF423Non volatile memory error, multiturn overflow.0x739CF467Hiperface DSL fault.0x739DF452Multiturn overflow not supported with this feedback.0x739EF465Excessive shock detected by feedback device.0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication CRC.0x73A2F456Tamagawa encoder: communication UART overrun.0x73A3F457Tamagawa encoder: communication UART overrun.0x73A4F458Tamagawa encoder: communication UART framing.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0x7395 | n451    | Warning: Tamagawa encoder battery.                              |  |  |
| 0x7398 F135 Homing is needed. 0x7399 F468 FB2.Source not set. 0x739A F469 FB1.ENCRES is not power of two. 0x739B F423 Non volatile memory error, multiturn overflow. 0x739C F467 Hiperface DSL fault. 0x739D F452 Multiturn overflow not supported with this feedback. 0x739E F465 Excessive shock detected by feedback device. 0x73A0 F453 Tamagawa encoder: communication timeout. 0x73A1 F454 Tamagawa encoder: communication transfer incomplete. 0x73A2 F456 Tamagawa encoder: communication Start timeout. 0x73A3 F457 Tamagawa encoder: communication UART overrun. 0x73A4 F458 Tamagawa encoder: communication UART framing. 0x73A5 F459 Tamagawa encoder: over speed. 0x73A7 F461 Tamagawa encoder: contouring error. 0x73A8 F462 Tamagawa encoder: counting overflow. 0x73A9 F464 Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x7396 | n423    | Warning: Non volatile memory error, multiturn overflow.         |  |  |
| 0x7399F468FB2.Source not set.0x739AF469FB1.ENCRES is not power of two.0x739BF423Non volatile memory error, multiturn overflow.0x739CF467Hiperface DSL fault.0x739DF452Multiturn overflow not supported with this feedback.0x739EF465Excessive shock detected by feedback device.0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication CRC.0x73A2F456Tamagawa encoder: communication start timeout.0x73A3F457Tamagawa encoder: communication UART overrun.0x73A4F458Tamagawa encoder: communication UART framing.0x73A5F459Tamagawa encoder: over speed.0x73A6F460Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x7397 | F471    | Operation in Position Mode with Halls Only feedback not allowed |  |  |
| 0x739A F469 FB1.ENCRES is not power of two.  0x739B F423 Non volatile memory error, multiturn overflow.  0x739C F467 Hiperface DSL fault.  0x739D F452 Multiturn overflow not supported with this feedback.  0x739E F465 Excessive shock detected by feedback device.  0x73A0 F453 Tamagawa encoder: communication timeout.  0x73A1 F454 Tamagawa encoder: communication transfer incomplete.  0x73A2 F456 Tamagawa encoder: communication CRC.  0x73A3 F457 Tamagawa encoder: communication start timeout.  0x73A4 F458 Tamagawa encoder: communication UART overrun.  0x73A5 F459 Tamagawa encoder: communication UART framing.  0x73A6 F460 Tamagawa encoder: over speed.  0x73A7 F461 Tamagawa encoder: contouring error.  0x73A8 F462 Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0x7398 | F135    | Homing is needed.                                               |  |  |
| 0x739BF423Non volatile memory error, multiturn overflow.0x739CF467Hiperface DSL fault.0x739DF452Multiturn overflow not supported with this feedback.0x739EF465Excessive shock detected by feedback device.0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication transfer incomplete.0x73A2F456Tamagawa encoder: communication CRC.0x73A3F457Tamagawa encoder: communication start timeout.0x73A4F458Tamagawa encoder: communication UART overrun.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0x7399 | F468    | FB2.Source not set.                                             |  |  |
| 0x739CF467Hiperface DSL fault.0x739DF452Multiturn overflow not supported with this feedback.0x739EF465Excessive shock detected by feedback device.0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication transfer incomplete.0x73A2F456Tamagawa encoder: communication CRC.0x73A3F457Tamagawa encoder: communication start timeout.0x73A4F458Tamagawa encoder: communication UART overrun.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x739A | F469    | FB1.ENCRES is not power of two.                                 |  |  |
| 0x739DF452Multiturn overflow not supported with this feedback.0x739EF465Excessive shock detected by feedback device.0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication transfer incomplete.0x73A2F456Tamagawa encoder: communication CRC.0x73A3F457Tamagawa encoder: communication start timeout.0x73A4F458Tamagawa encoder: communication UART overrun.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x739B | F423    | Non volatile memory error, multiturn overflow.                  |  |  |
| 0x739EF465Excessive shock detected by feedback device.0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication transfer incomplete.0x73A2F456Tamagawa encoder: communication CRC.0x73A3F457Tamagawa encoder: communication start timeout.0x73A4F458Tamagawa encoder: communication UART overrun.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x739C | F467    | Hiperface DSL fault.                                            |  |  |
| 0x73A0F453Tamagawa encoder: communication timeout.0x73A1F454Tamagawa encoder: communication transfer incomplete.0x73A2F456Tamagawa encoder: communication CRC.0x73A3F457Tamagawa encoder: communication start timeout.0x73A4F458Tamagawa encoder: communication UART overrun.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0x739D | F452    | Multiturn overflow not supported with this feedback.            |  |  |
| 0x73A1F454Tamagawa encoder: communication transfer incomplete.0x73A2F456Tamagawa encoder: communication CRC.0x73A3F457Tamagawa encoder: communication start timeout.0x73A4F458Tamagawa encoder: communication UART overrun.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0x739E | F465    | Excessive shock detected by feedback device.                    |  |  |
| 0x73A1F454Tamagawa encoder: communication transfer incomplete.0x73A2F456Tamagawa encoder: communication CRC.0x73A3F457Tamagawa encoder: communication start timeout.0x73A4F458Tamagawa encoder: communication UART overrun.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0x73A0 | F453    | Tamagawa encoder: communication timeout.                        |  |  |
| 0x73A2F456Tamagawa encoder: communication CRC.0x73A3F457Tamagawa encoder: communication start timeout.0x73A4F458Tamagawa encoder: communication UART overrun.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |         | -                                                               |  |  |
| 0x73A3 F457 Tamagawa encoder: communication start timeout. 0x73A4 F458 Tamagawa encoder: communication UART overrun. 0x73A5 F459 Tamagawa encoder: communication UART framing. 0x73A6 F460 Tamagawa encoder: over speed. 0x73A7 F461 Tamagawa encoder: contouring error. 0x73A8 F462 Tamagawa encoder: counting overflow. 0x73A9 F464 Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         | ·                                                               |  |  |
| 0x73A4F458Tamagawa encoder: communication UART overrun.0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |         |                                                                 |  |  |
| 0x73A5F459Tamagawa encoder: communication UART framing.0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         | ·                                                               |  |  |
| 0x73A6F460Tamagawa encoder: over speed.0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |         | 1 -                                                             |  |  |
| 0x73A7F461Tamagawa encoder: contouring error.0x73A8F462Tamagawa encoder: counting overflow.0x73A9F464Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0x73A6 | F460    |                                                                 |  |  |
| 0x73A8 F462 Tamagawa encoder: counting overflow. 0x73A9 F464 Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x73A7 | F461    | <u> </u>                                                        |  |  |
| 0x73A9 F464 Tamagawa encoder: multiturn error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |         | · ·                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x73A9 | F464    |                                                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0x73AA | F451    | Tamagawa encoder: battery.                                      |  |  |

| Error<br>Code                                                                                  | Fault/<br>Warning                                                 | Description                                                                               |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| 0x73B0                                                                                         | F486                                                              | Motor velocity exceeds emulated encoder maximum speed.                                    |  |  |
| 0x73B8                                                                                         | F420                                                              | FB3 EnDat communication fault.                                                            |  |  |
| 0x73C0                                                                                         | F473                                                              | Wake and Shake. Insufficient movement.                                                    |  |  |
| 0x73C1                                                                                         | F475                                                              | Wake and Shake. Excessive movement.                                                       |  |  |
| 0x73C2                                                                                         | F476                                                              | Wake and Shake. Fine-coarse delta too large.                                              |  |  |
| 0x73C3                                                                                         | F478                                                              | Wake and Shake. Overspeed.                                                                |  |  |
| 0x73C4                                                                                         | F479                                                              | Wake and Shake. Loop angle delta too large.                                               |  |  |
| 0x73C5                                                                                         | F482                                                              | Commutation not initialized.                                                              |  |  |
| 0x73C6                                                                                         | F483                                                              | Motor U phase missing.                                                                    |  |  |
| 0x73C7                                                                                         | F484                                                              | Motor V phase missing.                                                                    |  |  |
| 0x73C8                                                                                         | F485                                                              | Motor W phase missing.                                                                    |  |  |
| 0x73C9                                                                                         | n478                                                              | Warning: Wake and Shake. Overspeed.                                                       |  |  |
| 0x73D0                                                                                         | F487                                                              | Wake and Shake. Validating positive movement failed.                                      |  |  |
| 0x73D1                                                                                         | F489                                                              | Wake and Shake. Validating negative movement failed.                                      |  |  |
| 0x73D2                                                                                         | F490                                                              | Wake and Shake. Validating commutation angle time out.                                    |  |  |
| 0x73D3                                                                                         | F491                                                              | Wake and Shake. Validating commutation angle moved too far.                               |  |  |
| 0x73D4                                                                                         | F492                                                              | Wake and Shake. Validating commutation angle required more than MOTOR.ICONT.              |  |  |
| 0x73D5                                                                                         | F493                                                              | Invalid commutation detected, motor accelerates in wrong direction.                       |  |  |
| 0x8130                                                                                         | F129                                                              | Life Guard Error or Heartbeat Error.                                                      |  |  |
| 0x8180                                                                                         | n702                                                              | Warning: Fieldbus communication lost.                                                     |  |  |
| 0x8280                                                                                         | n601                                                              | Warning: Modbus data rate is too high.                                                    |  |  |
| 0x8311                                                                                         | F304                                                              | Motor foldback.                                                                           |  |  |
| 0x8331                                                                                         | F524                                                              | Drive foldback.                                                                           |  |  |
| 0x8380                                                                                         | n524                                                              | Warning: Drive foldback.                                                                  |  |  |
| 0x8381                                                                                         | n304                                                              | Warning: Motor foldback.                                                                  |  |  |
| 0x8382                                                                                         | n309                                                              | Warning: Motor I²t load.                                                                  |  |  |
| 0x8383 n580 Warning: Using derivate of position when using sensorless f type in position mode. |                                                                   | Warning: Using derivate of position when using sensorless feedback type in position mode. |  |  |
| 0x8384                                                                                         | n581                                                              | Warning: Zero velocity when using induction sensorless feedback type in position mode.    |  |  |
| 0x8385                                                                                         | n495                                                              | Warning: Failed to process recorder cogging compensation table.                           |  |  |
| 0x8480                                                                                         | F302                                                              | Over speed.                                                                               |  |  |
| 0x8481                                                                                         | F703                                                              | Emergency timeout occurred while axis should disable.                                     |  |  |
| 0x8482                                                                                         | F480                                                              | Fieldbus command velocity too high.                                                       |  |  |
| 0x8483                                                                                         | F481                                                              | Fieldbus command velocity too low.                                                        |  |  |
| 0x8582                                                                                         | 8582 n107 Warning: Positive software position limit is exceeded.  |                                                                                           |  |  |
| 0x8583                                                                                         | x8583 n108 Warning: Negative software position limit is exceeded. |                                                                                           |  |  |
| 0x8611                                                                                         | 0x8611 F439 Following error (user).                               |                                                                                           |  |  |
| 0x8685                                                                                         | x8685 F138 Instability during autotune.                           |                                                                                           |  |  |
| 0x8686                                                                                         | n151 Warning: Not enough distance to move; Motion Exception.      |                                                                                           |  |  |
| 0x8687                                                                                         | n152                                                              | Warning: Not enough distance to move; Following Motion Exception.                         |  |  |
| 0x8688                                                                                         | n153                                                              | Warning: Velocity Limit Violation, Exceeding Max Limit.                                   |  |  |
| 0x8689                                                                                         | n154                                                              | Warning: Following Motion Failed; Check Motion Parameters.                                |  |  |
| 0x868A                                                                                         | n156                                                              | Warning: Target Position crossed due to Stop command.                                     |  |  |

| Error         | Fault/  | Description                                                       |  |  |
|---------------|---------|-------------------------------------------------------------------|--|--|
| Error<br>Code | Warning |                                                                   |  |  |
| 0x86A0        | n157    | Warning: Homing Index pulse not found.                            |  |  |
| 0x86A1        | n158    | Warning: Homing Reference Switch not found.                       |  |  |
| 0x86A2        | n159    | Warning: Failed to set motion task parameters.                    |  |  |
| 0x86A3        | n160    | Warning: Motion Task Activation Failed.                           |  |  |
| 0x86A4        | n161    | Warning: Homing Procedure Failed.                                 |  |  |
| 0x86A5        | F139    | Target Position Over Short due to invalid Motion task activation. |  |  |
| 0x86A6        | n163    | Warning: MT.NUM exceeds limit.                                    |  |  |
| 0x86A7        | n164    | Warning: Motion task is not initialized.                          |  |  |
| 0x86A8        | n165    | Warning: Motion task target position is out.                      |  |  |
| 0x86A9        | n167    | Warning: Software limit switch traversed.                         |  |  |
| 0x86AA        | n168    | Warning: Invalid bit combination in the motion task control word. |  |  |
| 0x86AB        | n169    | Warning: 1:1 profile cannot be triggered on the fly.              |  |  |
| 0x86AC        | n170    | Warning: Customer profile table is not initialized.               |  |  |
| 0x86AD        | n171    | Warning: Motion task activation is currently pending              |  |  |
| 0x86AE        | n135    | Warning: Homing is needed.                                        |  |  |
| 0x86AF        | n174    | Warning: Homing maximum distance exceeded                         |  |  |
| 0x86B0        | F438    | Following error (numeric).                                        |  |  |
| 0x86B6        | n179    | Teaching of Cogging compensation stopped before finishing         |  |  |
| 0x86B7        | n180    | Cogging compensation not active. Axis needs to be homed first.    |  |  |
| 0x8780        | F125    | Fieldbus synchronization lost.                                    |  |  |
| 0x8781        | n125    | Warning: Fieldbus synchronization lost.                           |  |  |
| 0x8AF0        | n137    | Warning: Homing and feedback mismatch.                            |  |  |
| 0xFF00        | F701    | Fieldbus runtime.                                                 |  |  |
| 0xFF01        | F702    | Fieldbus communication lost.                                      |  |  |
| 0xFF02        | F529    | Iu current offset limit exceeded.                                 |  |  |
| 0xFF03        | F530    | Iv current offset limit exceeded.                                 |  |  |
| 0xFF04        | F521    | Regen over power.                                                 |  |  |
| 0xFF07        | F525    | Output over current.                                              |  |  |
| 0xFF08        | F526    | Current sensor short circuit.                                     |  |  |
| 0xFF09        | F128    | MPOLES/FPOLES not an integer.                                     |  |  |
| 0xFF0A        | F531    | Power stage fault.                                                |  |  |
| 0xFF0B        | F602    | Safe torque off.                                                  |  |  |
| 0xFF0C        | F131    | Secondary feedback A/B line break.                                |  |  |
| 0xFF0D        | F130    | Secondary feedback supply over current.                           |  |  |
| 0xFF0E        | F134    | Secondary feedback illegal state.                                 |  |  |
| 0xFF0F        | F245    | External fault.                                                   |  |  |
| 0xFF10        | F136    | Firmware and FPGA versions are not compatible.                    |  |  |
| 0xFF11        | F101    | Firmware type mismatch.                                           |  |  |
| 0xFF12        | n439    | Warning: Following error (user).                                  |  |  |
| 0xFF13        | n438    | Warning: Following error (numeric).                               |  |  |
| 0xFF14        | n102    | Warning: Operational FPGA is not a default FPGA.                  |  |  |
| 0xFF15        | n101    | Warning: The FPGA is a laboratory FPGA.                           |  |  |
| 0xFF16        | n602    | Warning: Safe torque off.                                         |  |  |
| 0xFF17        | F132    | Secondary feedback Z line break.                                  |  |  |
| 0xFF18        | n603    | Warning: OPMODE incompatible with CMDSOURCE.                      |  |  |

| Error  | Fault/  | Description                                           |
|--------|---------|-------------------------------------------------------|
| Code   | Warning |                                                       |
| 0xFF19 | n604    | Warning: EMUEMODE incompatible with DRV.HANDWHEELSRC. |

## 6.2 General Definitions

This chapter describes objects with a general validity (e.g. Object 1000h Device Type). The next section explains the free configuration of Process Data Objects ("free mapping").

#### 6.2.1 General objects

# 6.2.1.1 Object 1000h: Device Type (DS301)

This object describes the device type (servo drive) and device functionality (DS402 drive profile). Definition:

| MSB |                        |      |    |    |                       | LSB |
|-----|------------------------|------|----|----|-----------------------|-----|
|     | Additional information |      |    |    | Device profile number |     |
|     | Mode bits              | Туре |    |    | 402d=192h             |     |
| 31  | 24                     | 23   | 16 | 15 |                       | 0   |

The device profile number is DS402, the type is 2 for drives, the mode bits 28 to 31 are manufacturer specific and may be changed from its actual value of 0. A read access delivers 0x00020192 at the moment.

| Index         | 1000h        |
|---------------|--------------|
| Name          | device type  |
| Object code   | VAR          |
| Data type     | UNSIGNED32   |
| Category      | mandatory    |
| Access        | R/O          |
| PDO mapping   | not possible |
| Value range   | UNSIGNED32   |
| Default value | no           |

# 6.2.1.2 Object 1001h: Error register (DS301)

This object is an error register for the device. The device can map internal errors into this byte. It is a part of an Emergency object.

| Index         | 1001h          |
|---------------|----------------|
| Name          | Error register |
| Object code   | VAR            |
| Data type     | UNSIGNED8      |
| Category      | mandatory      |
| Access        | R/O            |
| PDO mapping   | not possible   |
| Value range   | UNSIGNED8      |
| Default value | no             |

Error reasons to be signaled: If a bit is set to 1 the specified error has occurred. The generic error is signaled at any error situation.

| Bit                                               | Description | Bit                                        | Description             |  |
|---------------------------------------------------|-------------|--------------------------------------------|-------------------------|--|
| 0 generic error 4 communication error (overrun, e |             | communication error (overrun, error state) |                         |  |
| 1                                                 | current     | 5                                          | device profile specific |  |
| 2                                                 | voltage     | 6                                          | reserved (always 0)     |  |
| 3                                                 | temperature | 7                                          | manufacturer specific   |  |

# 6.2.1.3 Object 1002h: Manufacturer Status Register (DS301)

The manufacturer status register contains important drive informations.

| Index         | 1002h                        |
|---------------|------------------------------|
| Name          | Manufacturer Status Register |
| Object code   | VAR                          |
| Data type     | UNSIGNED32                   |
| Category      | optional                     |
| Access        | R/O                          |
| PDO mapping   | possible                     |
| Value range   | UNSIGNED32                   |
| Default value | no                           |

The following table shows the bit assignment for the status register:

| Bit | Description                                  | Bit | Description                           |
|-----|----------------------------------------------|-----|---------------------------------------|
| 0   | 1 = Movement (positioning, homing) active    | 16  | 1 = Homing move active                |
| 1   | reference position set                       | 17  | reserved                              |
| 2   | 1 = reference switch high (home-position)    | 18  | reserved                              |
| 3   | 1 = In Position                              | 19  | 1 = Emergency stop active             |
| 4   | reserved                                     | 20  | reserved                              |
| 5   | reserved                                     | 21  | reserved                              |
| 6   | reserved                                     | 22  | reserved                              |
| 7   | Active Disabel activated                     | 23  | 1 = Homing move finished              |
| 8   | Warning active                               | 24  | Power stage deactivating              |
| 9   | 1 = target velocity reached (pp- or pv-Mode) | 25  | 1 = digital input 1 set               |
| 10  | reserved                                     | 26  | 1 = digital input 2 set               |
| 11  | 1 = Homing error                             | 27  | 1 = digital input 3 set               |
| 12  | reserved                                     | 28  | 1 = digital input 4 set               |
| 13  | 1 = Safe Torque Off selected                 | 29  | 1 = digital input hardware enable set |
| 14  | 1 = Power stage enabled                      | 30  | 1 = Wake and Shake action is required |
| 15  | 1 = Error state                              | 31  | Braking, 1 = set points not accepted  |

## 6.2.1.4 Object 1003h: Predefined Error Field (DS301)

The object 1003h provides an error history with a maximum size of 10 entries.

Subindex 0 contains the number of errors which have occured since the last reset of the error history, either by startup of the drive or resetting the error history by writing 0 to subindex 0.

A new Emergency-message is written into subindex 1 shifting the old entries one subindex higher. The old content of subindex 8 is lost.

The UNSIGNED32-information written to the subindizes is defined in the field Error Code in the description of the Emergency Messages (→ p. 41).

| Index         | 1003h                          |
|---------------|--------------------------------|
| Name          | pre-defined Error Field        |
| Object code   | ARRAY                          |
| Data type     | UNSIGNED32                     |
| Category      | optional                       |
| Subindex      | 0                              |
| Description   | highest sub-index supported    |
| Data type     | UNSIGNED8                      |
| Category      | mandatory                      |
| Access        | R/W                            |
| PDO mapping   | not possible                   |
| Value range   | 0 to 10                        |
| Default value | 0                              |
| Subindex      | 1 to 10                        |
| Description   | Standard error field (→ p. 41) |
| Category      | optional                       |
| Access        | R/O                            |
| PDO mapping   | not possible                   |
| Value range   | UNSIGNED32                     |
| Default value | no                             |
|               |                                |

## 6.2.1.5 Object 1005h: COB-ID of the SYNC Message (DS301)

This object defines the COB-Id of the synchronisation object (SYNC).

| Index         | 1005h                       |
|---------------|-----------------------------|
| Name          | COB-ID for the SYNC message |
| Object code   | VAR                         |
| Data type     | UNSIGNED32                  |
| Category      | conditional                 |
| Access        | R/W                         |
| PDO mapping   | not possible                |
| Value range   | UNSIGNED32                  |
| Default value | 0x80                        |

## Bit coded information:

| Bit           | Value | Meaning                          |
|---------------|-------|----------------------------------|
| 31 (MSB)      | Х     | _                                |
| 30            | 0     | Device not generate SYNC message |
|               | 1     | Device generates SYNC message    |
| 29            | 0     | 11 Bit ID (CAN 2.0A)             |
|               | 1     | 29 Bit ID (CAN 2.0B)             |
| 28 to 11      | Х     | _                                |
|               | 0     | if Bit 29=0                      |
| 10 to 0 (LSB) | Х     | Bit 0 to 10 of SYNC COB-ID       |

The device does not support the generation of SYNC-messages and only the 11-bit IDs. So the bits 11 to 30 are always 0.

#### 6.2.1.6 Object 1006h: Communication Cycle Period (DS301)

This object can be used to define the period (in  $\mu s$ ) for the transmission of the SYNC telegram.

| Index         | 1006h                             |
|---------------|-----------------------------------|
| Name          | Period of the communication cycle |
| Object code   | VAR                               |
| Data type     | UNSIGNED32                        |
| Category      | 0                                 |
| Access        | R/W                               |
| PDO mapping   | not possible                      |
| Value range   | UNSIGNED32                        |
| Default value | 00h                               |

## 6.2.1.7 Object 1008h: Manufacturer Device Name (DS301)

The device name consists of four ASCII characters in the form Yzzz, whereby Y stands for the mains voltage (L, M, H or U, e.g. H for High Voltage) zzz stands for the power stage current.

| Index         | 1008h                    |
|---------------|--------------------------|
| Name          | Manufacturer Device Name |
| Object code   | VAR                      |
| Data type     | Visible String           |
| Category      | Optional                 |
| Access        | const                    |
| PDO mapping   | not possible             |
| Value range   |                          |
| Default value | no                       |

#### 6.2.1.8 Object 1009h: Manufacturer Hardware Version

This object will be supported in the future.

| Index         | 1009h                         |
|---------------|-------------------------------|
| Name          | manufacturer hardware version |
| Object code   | VAR                           |
| Data type     | Visible String                |
| Category      | Optional                      |
| Access        | const                         |
| PDO mapping   | not possible                  |
| Value range   | -                             |
| Default value | no                            |

#### 6.2.1.9 Object 100Ah: Manufacturer Software Version (DS301)

The object contains the manufacturer software version (here: the CANopen-part of the drive firmware).

| Index         | 100Ah                         |
|---------------|-------------------------------|
| Name          | Manufacturer Software Version |
| Object code   | VAR                           |
| Data type     | Visible String                |
| Category      | Optional                      |
| Access        | const                         |
| PDO mapping   | not possible                  |
| Value range   | 0.01 to 9.99                  |
| Default value | no                            |

#### 6.2.1.10 Object 100Ch: Guard Time (DS301)Response monitoring

The arithmetical product of the Objects 100Ch Guard Time and 100Dh Lifetime Factor is the response monitoring time. The Guard Time is given in milliseconds. The response monitoring is activated with the first Nodeguard object. If the value of the object Guard Time is set to zero, then the response monitoring is inactive.

| Index         | 100Ch                                              |
|---------------|----------------------------------------------------|
| Name          | Guard Time                                         |
| Object code   | VAR                                                |
| Data type     | UNSIGNED16                                         |
| Category      | conditional; mandatory, if heartbeat not supported |
| Access        | R/W                                                |
| PDO mapping   | not possible                                       |
| Value range   | UNSIGNED16                                         |
| Default value | 0                                                  |

## 6.2.1.11 Object 100Dh: Lifetime Factor (DS301)

The product of Guard Time and Life Time Factor gives the life time for the nodeguarding protocol. If it's 0, the protocol is not used.

| Index         | 100Dh                                                |
|---------------|------------------------------------------------------|
| Name          | Lifetime Factor                                      |
| Object code   | VAR                                                  |
| Data type     | UNSIGNED8                                            |
| Category      | conditional; (mandatory, if heartbeat not supported) |
| Access        | R/W                                                  |
| PDO mapping   | not possible                                         |
| Value range   | UNSIGNED8                                            |
| Default value | 0                                                    |

#### 6.2.1.12 Object 1010h: Store Parameters (DS301)

This object supports the saving of parameters to a flash EEPROM. Only the subindex 1 for saving of all parameters, which can also be saved in the parameter files via the GUI, is supported.

| Index         | 1010h                         |
|---------------|-------------------------------|
|               |                               |
| Name          | store parameters (DRV.NVSAVE) |
| Object code   | ARRAY                         |
| Data type     | UNSIGNED32                    |
| Category      | optional                      |
| Subindex      | 0                             |
| Name          | highest sub-index supported   |
| Object code   | VAR                           |
| Data type     | UNSIGNED8                     |
| Category      | mandatory                     |
| Access        | R/O                           |
| PDO Mapping   | not possible                  |
| Value range   | 1                             |
| Default value | 1                             |
| Subindex      | 1                             |
| Name          | save all parameters           |
| Object code   | VAR                           |
| Data type     | UNSIGNED32                    |
| Category      | mandatory                     |
| Access        | R/W                           |
| PDO Mapping   | not possible                  |
| Value range   | UNSIGNED32                    |
| Default value | 1                             |
|               |                               |

#### Data definition:

| Bit     | Value | Meaning                                      |
|---------|-------|----------------------------------------------|
| 31 to 2 | 0     | reserved (=0)                                |
| 1       | 0     | Device does not save parameters autonomously |
|         | 1     | Device does save parameters autonomously     |
| 0       | 0     | Device does not save parameters on command   |
|         | 1     | Device does save parameters on command       |

By read access to subindex 1 the drive provides information about its storage functionality.

This drive provides a constant value of 1 by read access, i.e. all parameters can be saved by writing to Object 1010 sub 1. In general the drive does not save parameters autonomously with the exception of e.g. the special treatment of the homing of multiturn absolute encoders.

Storing of parameters is only done if a special signature ("save") is written to subindex 1. "save" is equivalent to the unsigned 32 - number 65766173h.

#### 6.2.1.13 Object 1011h: Restore Default Parameters DS301

With this object the default values of parameters according to the communication or device profile are restored. The AKD gives the possibility to restore all default values.

| 1011h                                       |
|---------------------------------------------|
| restore default parameters                  |
| ARRAY                                       |
| UNSIGNED32                                  |
| optional                                    |
| 0                                           |
| highest sub-index supported                 |
| VAR                                         |
| UNSIGNED8                                   |
| mandatory                                   |
| R/O                                         |
| not possible                                |
| 1                                           |
| 1                                           |
| 1                                           |
| restore all default parameters (DRV.RSTVAR) |
| VAR                                         |
| UNSIGNED32                                  |
| mandatory                                   |
| R/W                                         |
| not possible                                |
| UNSIGNED32                                  |
| 1 (device restores parameter)               |
|                                             |

Restoring default parameters to the RAM will be done, if a special signature ("load") is written to subindex 1. "load" has to be transmitted as unsigned32 - number 64616F6Ch.

# 6.2.1.14 Object 1012h: COB-ID of the Time Stamp (DS301)

This object defines the COB-Id of the time stamp.

| Index         | 1012h                    |
|---------------|--------------------------|
| Name          | COB-ID for thetime stamp |
| Object code   | VAR                      |
| Data type     | UNSIGNED32               |
| Category      | optional                 |
| Access        | R/W                      |
| PDO mapping   | not possible             |
| Value range   | UNSIGNED32               |
| Default value | 100h                     |

## Bit coded information:

| Bit           | Content  | Value     | Meaning                             |
|---------------|----------|-----------|-------------------------------------|
| 31 (MSB)      | consume  | 0         | Drive does not consume time message |
|               |          | 1         | Drive does consume time message     |
| 30            | produce  | 0         | Drive does not produce time message |
|               |          | 1         | Drive does produce time message     |
| 29            | frame    | 0         | Value fixed to 0                    |
| 28 to 11      | reserved | _         | reserved                            |
| 10 to 0 (LSB) | CAN-ID   | 0h - 800h | COB-ID of the time stamp            |

# 6.2.1.15 Object 1014h: COB-ID for Emergency Message (DS301)

This object defines the COB-ID of the Emergency message.

| Index         | 1014h                                             |
|---------------|---------------------------------------------------|
| Name          | COB-ID emergency message                          |
| Object code   | VAR                                               |
| Data type     | UNSIGNED32                                        |
| Category      | conditional; mandatory, if Emergency is supported |
| Access        | R/O                                               |
| PDO mapping   | not possible                                      |
| Value range   | UNSIGNED32                                        |
| Default value | 80h + Node - ID                                   |

#### 6.2.1.16 Object 1016h: Consumer Heartbeat Time

The consumer heartbeat time defines the expected heartbeat cycle time (ms) and must be higher than the corresponding producer heartbeat time configured on the device producing this heartbeat. Monitoring starts after the reception of the first heartbeat. If the consumer heartbeat time is 0 ms the corresponding entry is not used.

| Index         | 1016h                       |
|---------------|-----------------------------|
| Name          | consumer heartbeat time     |
| Object code   | ARRAY                       |
| Data type     | UNSIGNED32                  |
| Category      | optional                    |
| Subindex      | 0                           |
| Description   | highest sub-index supported |
| Data type     | UNSIGNED8                   |
| Category      | mandatory                   |
| Access        | R/O                         |
| PDO Mapping   | not possible                |
| Value range   | 1                           |
| Default value | 1                           |
| Subindex      | 1                           |
| Description   | Consumer heartbeat time     |
| Category      | mandatory                   |
| Access        | R/W                         |
| PDO Mapping   | not possible                |
| Value range   | unsigned 32                 |
| Default value | 0                           |

#### Definition of the entry value of Subindex 1

|            | MSB         |            |       |      |    | LSB            |   |
|------------|-------------|------------|-------|------|----|----------------|---|
| Value      | reserved (v | /alue: 00) | Node  | e-ID |    | heartbeat time |   |
| Encoded as | -           |            | UNSIG | NED8 |    | UNSIGNED16     |   |
| Bit        | 31          | 24         | 23    | 16   | 15 |                | 0 |

# 6.2.1.17 Object 1017h: Producer Heartbeat Time

The producer heartbeat time defines the cycle time of the heartbeat in ms. If it's 0, it is not used.

| Index         | 1017h                                                   |
|---------------|---------------------------------------------------------|
| Name          | Producer heartbeat time                                 |
| Object code   | VAR                                                     |
| Data type     | UNSIGNED16                                              |
| Category      | conditional;<br>mandatory, if guarding is not supported |
| Access        | R/W                                                     |
| PDO mapping   | not possible                                            |
| Value range   | UNSIGNED16                                              |
| Default value | 0                                                       |

## 6.2.1.18 Object 1018h: Identity Object (DS301)

The Identity Object contains general device information.

| Index         | 1018h                       |
|---------------|-----------------------------|
| Name          | Identity Object             |
| Object code   | RECORD                      |
| Data type     | Identity                    |
| Category      | mandatory                   |
| Subindex      | 0                           |
| Description   | highest sub-index supported |
| Data type     | UNSIGNED8                   |
| Category      | mandatory                   |
| Access        | R/O                         |
| PDO mapping   | not possible                |
| Value range   | 1 to 4                      |
| Default value | 4                           |

Subindex 1 is a unique number for a device manufacturer.

| Subindex      | 1                  |
|---------------|--------------------|
| Description   | Vendor ID          |
| Category      | mandatory          |
| Access        | R/O                |
| PDO mapping   | not possible       |
| Value range   | UNSIGNED32         |
| Default value | 0x6Ah (Kollmorgen) |

Subindex 2 contains four ASCII - characters, which determine the voltage range and current class of the device. The voltage range is one character L, M or H for low, medium and high voltage. The next three characters are showing the continuos current of the drive.

| Subindex      | 2                          |
|---------------|----------------------------|
| Description   | Product Code               |
| Category      | optional                   |
| Access        | R/O                        |
| PDO mapping   | not possible               |
| Value range   | e.g. M006 for an MV6 drive |
| Default value | no                         |

Subindex 3 consists of two revision numbers:

- the major revision number in the upper word containing the CAN-version
- the minor revision number is not used in the AKD. The firmware version can be retrieved as a string via object 0x100A or as numbers voa object 0x2018 subindex 1 to 4.

E.g. a value of 0x0014 0000 means CAN-version 0.20.

| Subindex      | 3               |
|---------------|-----------------|
| Description   | Revision Number |
| Category      | optional        |
| Access        | R/O             |
| PDO mapping   | not possible    |
| Value range   | UNSIGNED32      |
| Default value | no              |

Subindex 4 gives the serial number of the drive. This number contains the following information in it:

- bits 0..14: Board serial number (production in week of year)
- bits 15..20: week of production
- bits 21..24: year of production 2009
- bits 25..31: ASCII-code of MFR-ID

| Subindex      | 4             |
|---------------|---------------|
| Description   | Serial Number |
| Category      | optional      |
| Access        | R/O           |
| PDO mapping   | not possible  |
| Value range   | UNSIGNED32    |
| Default value | no            |

# 6.2.1.19 Object 1026h: OS Prompt

The OS prompt is used to build up an ASCII - communication channel to the drive.

| Index         | 1026h                       |  |
|---------------|-----------------------------|--|
| Name          | OS Prompt                   |  |
| Object code   | ARRAY                       |  |
| Data type     | UNSIGNED8                   |  |
| Category      | optional                    |  |
| Subindex      | 0                           |  |
| Description   | highest sub-index supported |  |
| Data type     | UNSIGNED8                   |  |
| Category      | mandatory                   |  |
| Access        | R/O                         |  |
| PDO mapping   | not possible                |  |
| Value range   | 2                           |  |
| Default value | 2                           |  |

Subindex 1 is used to send one character to the drive.

| Subindex      | 1            |
|---------------|--------------|
| Description   | StdIn        |
| Category      | mandatory    |
| Access        | W            |
| PDO mapping   | not possible |
| Value range   | UNSIGNED8    |
| Default value |              |

Subindex 2 is used to receive one character from the drive.

| Subindex      | 2            |
|---------------|--------------|
| Description   | StdOut       |
| Category      | mandatory    |
| Access        | R/O          |
| PDO mapping   | not possible |
| Value range   | UNSIGNED8    |
| Default value | 0            |

## 6.2.2 Manufacturer specific objects

# 6.2.2.1 Object 2000h: System Warnings

This object is used to show up to three actual warnings with their AKD- specific warning number.

| Index         | 2000h                         |
|---------------|-------------------------------|
| Name          | System Warnings               |
| Object code   | ARRAY                         |
| Data type     | UNSIGNED32                    |
| Subindex      | 0                             |
| Description   | highest sub-index supported   |
| Category      | mandatory                     |
| Access        | R/O                           |
| PDO mapping   | not possible                  |
| Value range   | 3                             |
| Default value | 3                             |
| Subindex      | 1 to 3                        |
| Description   | DRV.WARNING1 to DRV.WARNINGS3 |
| Mode          | independent                   |
| Access        | R/O                           |
| PDO mapping   | not possible                  |
| Unit          | _                             |
| Value range   | 0 to 999                      |
| Default value | 0                             |

## 6.2.2.2 Object 2001h: System Faults

This object is used to show up to ten actual faults with their AKD-specific fault number.

| Index         | 2001h                       |
|---------------|-----------------------------|
| Name          | System Faults               |
| Object code   | ARRAY                       |
| Data type     | UNSIGNED32                  |
| Subindex      | 0                           |
| Description   | highest sub-index supported |
| Category      | mandatory                   |
| Access        | R/O                         |
| PDO mapping   | not possible                |
| Value range   | 0xA                         |
| Default value | 0xA                         |
| Subindex      | 1 to A                      |
| Description   | DRV.FAULT1 to DRV.FAULT10   |
| Mode          | independent                 |
| Access        | R/O                         |
| PDO mapping   | not possible                |
| Unit          | _                           |
| Value range   | 0 to 999                    |
| Default value | 0                           |

# 6.2.2.3 Object 2002h: Manufacturer status bytes

This objects delivers the information of the manufacturer status (object 0x1002 sub 0) as four separate, mappable, bytes.

| Index         | 2002h                                                    |
|---------------|----------------------------------------------------------|
| Name          | Manufacturer status bytes                                |
| Object code   | ARRAY                                                    |
| Data type     | UNSIGNED8                                                |
| Subindex      | 0                                                        |
| Description   | highest sub-index supported                              |
| Category      | mandatory                                                |
| Access        | R/O                                                      |
| PDO mapping   | not possible                                             |
| Value range   | 0x4                                                      |
| Default value | 0x4                                                      |
| Subindex      | 1 to 4                                                   |
| Description   | Manufacturer status byte 1 to Manufacturer status byte 4 |
| Mode          | independent                                              |
| Access        | R/O                                                      |
| PDO mapping   | possible                                                 |
| Unit          | <u></u>                                                  |
| Value range   | 0 to 0xFF                                                |
| Default value | -                                                        |

## 6.2.2.4 Object 2011h: DRV.RUNTIME in seconds

This object delivers the runtime of the drive in seconds.

| Index         | 2011h                  |
|---------------|------------------------|
| Name          | DRV.RUNTIME in seconds |
| Object code   | VAR                    |
| Data type     | UNSIGNED32             |
| Access        | R/O                    |
| Unit          | _                      |
| Value range   | UNSIGNED32             |
| Default value | 0                      |

# 6.2.2.5 Object 2012h: Fault history: Fault numbers

This object delivers the 20 latest entries of the fault numbers of the fault history table. The latest event can be read via sub-index 1. With new events the list is shifted to higher sub-indices.

| Index         | 2012h                                                                        |
|---------------|------------------------------------------------------------------------------|
| Name          | Fault history: Fault numbers                                                 |
| Object code   | ARRAY                                                                        |
| Data type     | UNSIGNED32                                                                   |
| Subindex      | 0                                                                            |
| Description   | highest sub-index supported                                                  |
| Category      | mandatory                                                                    |
| Access        | R/O                                                                          |
| PDO mapping   | not possible                                                                 |
| Value range   | 0x14h                                                                        |
| Default value | 0x14h                                                                        |
| Subindex      | 1 to 20                                                                      |
| Description   | Nth-latest entry in fault number list of fault history table (DRV.FAULTHIST) |
| Mode          | independent                                                                  |
| Access        | R/O                                                                          |
| PDO mapping   | not possible                                                                 |
| Unit          | <u> </u>                                                                     |
| Value range   | 0 - 999                                                                      |
| Default value | 0                                                                            |

# 6.2.2.6 Object 2013h: Fault history: Time stamps

This object delivers the 20 latest entries of the fault time stamps of the fault history table in seconds related to DRV.RUNTIME. The latest event can be read via sub-index 1. With new events the list is shifted to higher sub-indices.

| Index         | 2013h                                                                            |
|---------------|----------------------------------------------------------------------------------|
| Name          | Fault history: Time stamps                                                       |
| Object code   | ARRAY                                                                            |
| Data type     | UNSIGNED32                                                                       |
| Subindex      | 0                                                                                |
| Description   | highest sub-index supported                                                      |
| Category      | mandatory                                                                        |
| Access        | R/O                                                                              |
| PDO mapping   | not possible                                                                     |
| Value range   | 0x14h                                                                            |
| Default value | 0x14h                                                                            |
| Subindex      | 1 to 20                                                                          |
| Description   | Nth-latest entry in fault time stamp list of fault history table (DRV.FAULTHIST) |
| Mode          | independent                                                                      |
| Access        | R/O                                                                              |
| PDO mapping   | not possible                                                                     |
| Unit          | _                                                                                |
| Value range   | UNSIGNED32                                                                       |
| Default value | _                                                                                |

## 6.2.2.7 Object 2014-2017h: 1st-4th Mask 1 to 4 for Transmit-PDO

In order to reduce the bus loading with event-triggered PDOs, masking can be used to switch off the monitoring for individual bits in the PDO. In this way it can be arranged, for instance, that actual position values are only signaled once per turn.

This Object masks the PDO-channels 1 to 4. If only two bytes have been defined in a PDO, then it masks just two bytes, although 4 bytes of mask information have been transmitted. An activated bit in the mask means that monitoring is active for the corresponding bit in the PDO.

| Index         | 2014h              |
|---------------|--------------------|
|               | 2015h              |
|               | 2016h              |
|               | 2017h              |
| Name          | tx_mask 1 to 4     |
| Object code   | ARRAY              |
| Data type     | UNSIGNED32         |
| Subindex      | 1                  |
| Description   | tx_mask1 to 4_low  |
| Mode          | independent        |
| Access        | R/W                |
| PDO mapping   | not possible       |
| Unit          | <u> </u>           |
| Value range   | UNSIGNED32         |
| Default value | FFFFFFFh           |
| Subindex      | 2                  |
| Description   | tx_mask1 to 4_high |
| Mode          | independent        |
| Access        | R/W                |
| PDO mapping   | not possible       |
| Unit          | <u> </u>           |
| Value range   | UNSIGNED32         |
| Default value | FFFFFFFh           |
|               |                    |

# 6.2.2.8 Object 2018h: Firmware Version

This object gives all information regarding the firmware version.

Example: Firmware version  $M_01_00_01_005$  would show the numbers 1, 0, 1, 5 in the subindices 1 to 4.

| Index         | 2018h            |
|---------------|------------------|
| Name          | firmware version |
| Object code   | ARRAY            |
| Data type     | UNSIGNED16       |
| Subindex      | 1                |
| Description   | major version    |
| Mode          | independent      |
| Access        | R/O              |
| PDO mapping   | not possible     |
| Unit          | _                |
| Value range   | UNSIGNED16       |
| Default value | 0                |
| Subindex      | 2                |
| Description   | minor version    |
| Mode          | independent      |
| Access        | R/O              |
| PDO mapping   | not possible     |
| Unit          | _                |
| Value range   | UNSIGNED16       |
| Default value | 0                |
| Subindex      | 3                |
| Description   | revision         |
| Mode          | independent      |
| Access        | R/O              |
| PDO mapping   | not possible     |
| Unit          | _                |
| Value range   | UNSIGNED16       |
| Default value | 0                |
| Subindex      | 4                |
| Description   | branch revision  |
| Mode          | independent      |
| Access        | R/O              |
| PDO mapping   | not possible     |
| Unit          | _                |
| Value range   | UNSIGNED16       |
| Default value | 0                |

# 6.2.2.9 Object 2026h: ASCII Channel

This object is used to build up an ASCII - communication channel to the drive with 4-byte ASCII-strings.

| Index         | 2026h                       |
|---------------|-----------------------------|
| Name          | ASCII Channel               |
| Object code   | ARRAY                       |
| Data type     | Visible String              |
| Category      | optional                    |
| Subindex      | 0                           |
| Description   | highest sub-index supported |
| Data type     | UNSIGNED8                   |
| Category      | mandatory                   |
| Access        | R/O                         |
| PDO mapping   | not possible                |
| Value range   | 2                           |
| Default value | 2                           |

Subindex 1 is used to send four ASCII-characters to the drive.

| Subindex      | 1              |
|---------------|----------------|
| Description   | Command        |
| Category      | mandatory      |
| Access        | wo             |
| PDO mapping   | no             |
| Value range   | Visible String |
| Default value | _              |

Subindex 2 is used to receive four characters from the drive.

| Subindex      | 2              |
|---------------|----------------|
| Description   | Response       |
| Category      | mandatory      |
| Access        | R/O            |
| PDO mapping   | no             |
| Value range   | Visible String |
| Default value | -              |

#### 6.2.2.10 Object 20A0h: Latch position 1, positive edge

This object is used to output the position or a time, depending on CAP0.MODE, at which the first positive edge occurred on a signal, which can be configured with CAP0.TRIGGER. The latch enable must be active for that purpose(see object 20A4 and 20A5). With CAP0.MODE = 3 the latched position of the encoder index pulse is transferred via this object.

| Index              | 20A0h                                                         |
|--------------------|---------------------------------------------------------------|
| Name               | Latch position 1 positive edge CAP0.PLFB, Time capture CAP0.T |
| Object code        | VAR                                                           |
| Data type          | INTEGER32                                                     |
| Category           | optional                                                      |
|                    |                                                               |
| Access             | R/O                                                           |
| Access PDO mapping | R/O possible                                                  |
|                    |                                                               |
| PDO mapping        | possible                                                      |

#### 6.2.2.11 Object 20A1h: Latch position 1, negative edge

This object is used to output the position or a time, depending on CAP0.MODE, at which the first negative edge occurred on a signal, which can be configured with CAP0.TRIGGER. The latch enable must be active for that purpose(see object 20A4 and 20A5).

| Index         | 20A1h                                                         |
|---------------|---------------------------------------------------------------|
| Name          | Latch position 1 negative edge CAP0.PLFB, Time capture CAP0.T |
| Object code   | VAR                                                           |
| Data type     | INTEGER32                                                     |
| Category      | optional                                                      |
| Access        | R/O                                                           |
| PDO mapping   | possible                                                      |
| Value range   | INTEGER32                                                     |
| Float scaling | var                                                           |
| Default value | 0                                                             |

#### 6.2.2.12 Object 20A2h: Latch position 2, positive edge

This object is used to output the position or a time, depending on CAP1.MODE, at which the first positive edge occurred on a signal, which can be configured with CAP1.TRIGGER. The latch enable must be active for that purpose(see object 20A4 and 20A5).

| Index                 | 20A2h                                                         |  |
|-----------------------|---------------------------------------------------------------|--|
| Name                  | Latch position 2 positive edge CAP1.PLFB, Time capture CAP1.T |  |
| Object code           | VAR                                                           |  |
| Data type             | INTEGER32                                                     |  |
| Category              | optional                                                      |  |
|                       |                                                               |  |
| Access                | R/O                                                           |  |
| Access<br>PDO mapping | R/O possible                                                  |  |
|                       |                                                               |  |
| PDO mapping           | possible                                                      |  |

#### 6.2.2.13 Object 20A3h: Latch position 2, negative edge

This object is used to output the position or a time, depending on CAP1.MODE, at which the first negative edge occurred on a signal, which can be configured with CAP1.TRIGGER. The latch enable must be active for that purpose(see object 20A4 and 20A5).

| Index         | 20A3h                                                         |
|---------------|---------------------------------------------------------------|
| Name          | Latch position 2 negative edge CAP1.PLFB, Time capture CAP1.T |
| Object code   | VAR                                                           |
| Data type     | INTEGER32                                                     |
| Category      | optional                                                      |
| Access        | R/O                                                           |
| PDO mapping   | possible                                                      |
| Value range   | INTEGER32                                                     |
| Float scaling | var                                                           |
| Default value | 0                                                             |

## 6.2.2.14 Object 20A4h: Latch Control Register

The latch control register is used to enable the latch monitoring of the capture engines 0 and 1. The latch is enabled with a 1 signal and disabled with a 0 signal. Whether or not a latch event has occurred can be recognised by the latch status register (object 20A5).

| Index         | 20A4h                  |  |
|---------------|------------------------|--|
| Name          | Latch Control Register |  |
| Object code   | VAR                    |  |
| Data type     | UNSIGNED16             |  |
| Category      | optional               |  |
| Access        | rww                    |  |
| PDO mapping   | possible               |  |
| Value range   | 0 to 15                |  |
| Default value | 0                      |  |

| Bit      | Value (bin)       | Value (hex) | Description                           |
|----------|-------------------|-------------|---------------------------------------|
| 0        | 00000000 00000001 | xx01        | Enable extern latch 1 (positive rise) |
| 1        | 00000000 00000010 | xx02        | Enable extern latch 1 (negative rise) |
| 2        | 00000000 00000100 | xx04        | Enable extern latch 2 (positive rise) |
| 3        | 00000000 00001000 | xx08        | Enable extern latch 2 (negative rise) |
| 4 to 7   |                   |             | Reserve                               |
| 8        | 00000001 00000000 | 01xx        | Read external latch 1 (positive rise) |
| 9        | 00000010 00000000 | 02xx        | Read external latch 1 (negative rise) |
| 10       | 00000011 00000000 | 03xx        | Read external latch 2 (positive rise) |
| 11       | 00000100 00000000 | 04xx        | Read external latch 2 (negative rise) |
| 12 to 15 |                   |             | Reserve                               |

#### 6.2.2.15 Object 20A5h: Latch Status Register

The latch status register is used to look for the states of the capture engines 0 and 1.

| Index         | 20A5h                 |  |
|---------------|-----------------------|--|
| Name          | Latch Status Register |  |
| Object code   | VAR                   |  |
| Data type     | UNSIGNED16            |  |
| Category      | optional              |  |
| Access        | rwr                   |  |
| PDO mapping   | possible              |  |
| Value range   | -                     |  |
| Default value | 0                     |  |

| Bit    | Value             | Value | Description                                        |
|--------|-------------------|-------|----------------------------------------------------|
|        | (bin)             | (hex) |                                                    |
| 0      | 00000000 00000001 | zz01  | External latch 1 valid (positive rise)             |
| 1      | 00000000 00000010 | zz02  | External latch 1 valid (negative rise)             |
| 2      | 0000000 00000100  | zz04  | External latch 2 valid (positive rise)             |
| 3      | 00000000 00001000 | zz08  | External latch 2 valid (negative rise)             |
| 4 to 7 |                   |       | Reserve                                            |
| 8      | 00000001 00000000 | z1zz  | Acknowledge value external latch 1 (positive rise) |
| 9      | 00000010 00000000 | z2zz  | Acknowledge value external latch 1 (negative rise) |
| 10     | 00000011 00000000 | z3zz  | Acknowledge value external latch 2 (positive rise) |
| 11     | 00000100 00000000 | z4zz  | Acknowledge value external latch 2 (negative rise) |
| 12     | 00010000 00000000 | 1zzz  | State Digital Input 4                              |
| 13     | 00100000 00000000 | 2zzz  | State Digital Input 3                              |
| 14     | 01000000 00000000 | 4zzz  | State Digital Input 2                              |
| 15     | 10000000 00000000 | 8zzz  | State Digital Input 1                              |

#### 6.2.2.16 Object 20A6h: Latch position 1, positive or negative edge

This object is used to output the position or a time, depending on CAP0.MODE, at which the first positive or negative edge occurred on a signal, that can be configured with CAP0.TRIGGER. Latch enable must be active for that purpose (see object 20A4 and 20A5).

| Index         | 20A6h                                           |
|---------------|-------------------------------------------------|
| Name          | Latch position 1 positive or negative CAP0.PLFB |
| Object code   | VAR                                             |
| Data type     | INTEGER32                                       |
| Category      | optional                                        |
| Access        | ro                                              |
| PDO mapping   | possible                                        |
| Value range   | INTEGER32                                       |
| Float scaling | var                                             |
|               |                                                 |

#### 6.2.2.17 Object 20A7h: Latch position 2, positive or negative edge

This object is used to output the position or a time, depending on CAP1.MODE, at which the first positive or negative edge occurred on a signal, that can be configured with CAP1.TRIGGER. Latch enable must be active for that purpose (see object 20A4 and 20A5).

| Index         | 20A7h                                           |
|---------------|-------------------------------------------------|
| Name          | Latch position 2 positive or negative CAP1.PLFB |
| Object code   | VAR                                             |
| Data type     | INTEGER32                                       |
| Category      | optional                                        |
| Access        | ro                                              |
| PDO mapping   | possible                                        |
| Value range   | INTEGER32                                       |
| Float scaling | var                                             |
| Default value | 0                                               |

#### 6.2.2.18 Object 20B8h: Reset of changed input information

This object is used in PDOs to reset the state change information for the digital inputs shown in the Bits 24 to 30 in the object 60FD. Bit 0 to 6 are used to reset the information of the digital input 1 to 7.

| Index         | 20B8h                              |  |
|---------------|------------------------------------|--|
| Name          | Reset of changed input information |  |
| Object code   | VAR                                |  |
| Data type     | UNSIGNED16                         |  |
| Category      | optional                           |  |
| Access        | rw                                 |  |
| PDO mapping   | possible                           |  |
| Value range   | UNSIGNED16                         |  |
| Default value | 0                                  |  |

#### 6.2.2.19 Object 345Ah: Brake Control

These objects implement the possibility to control the brake directly, overriding the drive logic. When the brake state is controlled by the fieldbus, the drive state (enabled, disabled, faulted) will have no effect on the brake - the fieldbus will be in control.

#### NOTICE

Applying or releasing the brake at the wrong time can be a safety hazard and can destroy your mechanic as well as drive or motor. Unexpected behaviour might be possible. It is the responsibility of the customer using this mode to use this function appropriately.

When fieldbus control is disabled, the drive will control the brake as defined by existing AKD brake related parameters. As soon as fieldbus control is enabled, the Brake Command received over the field bus will take effect. So, if the Brake Command is set to APPLY and the current state is RELEASE, the brake will begin to apply .

The default value of the fieldbus control will be disabled, so that the drive is always in control until the fieldbus is operational. It is recommended that this bit remain 0 except for special operating conditions where the fieldbus will control the brake. When fieldbus communication is lost, the drive will regain control of the brake if the fieldbus had previously taken control.

| Enable Field-<br>bus Control | Serious Failur<br>econdition<br>present |     | Fieldbus Con-<br>trol Status | Controlled<br>by | Final<br>Brake<br>State |
|------------------------------|-----------------------------------------|-----|------------------------------|------------------|-------------------------|
| 0                            | х                                       | х   | 0                            | Drive            | Drive                   |
| 1*                           | no                                      | 0   | 1                            | Fieldbus         | Applied                 |
| 1*                           | no                                      | 1   | 1                            | Fieldbus         | Released                |
| х                            | yes                                     | any | 0                            | Drive            | Drive                   |

<sup>1\*</sup> indicates that a rising edge was seen since the last time the drive applied the brake

| Index       | 345Ah         |
|-------------|---------------|
| Name        | Brake Control |
| Object code | ARRAY         |
| Data type   | UNSIGNED16    |
| Category    | optional      |

#### Defined sub-indices

| Subindex      | 0                           |  |
|---------------|-----------------------------|--|
| Name          | highest sub-index supported |  |
| Data type     | UNSIGNED8                   |  |
| Category      | mandatory                   |  |
| Access        | R/O                         |  |
| PDO Mapping   | not possible                |  |
| Value Range   | 2                           |  |
| Default Value | 2                           |  |

| Subindex      | 1                     |
|---------------|-----------------------|
| Name          | Brake Control Command |
| Category      | optional              |
| Access        | R/W                   |
| PDO Mapping   | possible              |
| Value Range   | UNSIGNED16            |
| Default Value | 0                     |

With subindex 1 the brake is controlled. Bit definition:

| Bit | Name            | Description                                                                                                                                                                                                                                                                                               |
|-----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Enable fieldbus | 0 - brake is not controlled via this object                                                                                                                                                                                                                                                               |
|     | control         | 1 - enable fieldbus control via this object. This function works edge triggered, i.e. this bit has to have a 0 -> 1 transition to activate the brake control functionality. After a fault the functionality is reset and has to be activated again. The activation can be controlled by subindex 2 bit 0. |
| 1   | Brake Command   | This command bit is only active, if the functionality was activated via bit 0. The function is as follows:  0 - apply the brake  1 - release the brake                                                                                                                                                    |

| Subindex      | 2                     |
|---------------|-----------------------|
| Name          | Brake Status Response |
| Category      | optional              |
| Access        | R/O                   |
| PDO Mapping   | possible              |
| Value Range   | UNSIGNED16            |
| Default Value | 0                     |

With subindex 2 the brake status can be checked. Bit definition:

| Bit | Name                       | Description                                                                                                                                                                                                                                                                                                                                                                              |
|-----|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Fieldbus control<br>Status | 0 - brake control via 0x345A is disabled or not possible due to drive failure. 1 - enable fieldbus control via this object. This function works edge triggered, i.e. this bit has to have a 0 -> 1 transition to activate the brake control functionality. After a fault the functionality is reset and has to be activated again. The activation can be controlled by subindex 2 bit 0. |
| 1   | Brake Status               | 0 - apply the brake 1 - release the brake Note: When the brake is applied or released, there is a time delay MOTOR.TBRAKEAPP or MOTOR.TBRAKEREL, after the receipt of the command before this status bit changes. The status is always reported: it is not affected by fieldbus control.                                                                                                 |
| 2   | STO Status                 | 0 - STO is not active (drive may be enabled) 1 - STO is active (drive can not be enabled)                                                                                                                                                                                                                                                                                                |
| 3   | HW Enable Status           | 0 - HW enable is disabled, drive function can not be enabled<br>1 - HW enable is enabled, drive function can be enabled                                                                                                                                                                                                                                                                  |

### 6.2.2.20 Object 3474h: Parameters for digital inputs

This set of objects is used to set extended parameters for some digital input functions. The parameters can be used for different DINx.MODEs. Therefore the scaling might be different or no scaling is used at all.

Two subindices build an access object to one of these parameters, because they are 64-bit numbers internally, e.g. object 3474 sub 1 gives access to the low 32 bits of DIN1.PARAM whereas 3474 sub 8 gives access to the high 32 bits.

If access to the whole 64 bit number is needed the higher bits must be written first. The access to the lower 32 bits then writes the parameter. If the to be written value fits into 32 bit, only the lower part needs to be written. The most-significant bit is then taken as sign-bit for the number.

| Index         | 3474h                            |
|---------------|----------------------------------|
| Name          | DINx.PARAM                       |
| Object code   | Array                            |
| Data type     | UNSIGNED32                       |
| Category      | optional                         |
| Subindex      | 0                                |
| Description   | highest sub-index supported      |
| Category      | mandatory                        |
| Access        | R/O                              |
| PDO mapping   | not possible                     |
| Value range   | 0xE                              |
| Default value | 0xE                              |
| Subindex      | 1 to 7                           |
| Description   | DINx.PARAM low 32 bits, x = 1 7  |
| Category      | optional                         |
| Access        | R/W                              |
| PDO mapping   | not possible                     |
| Value range   | UNSIGNED32                       |
| Default value | 0                                |
| Subindex      | 8 to 0xE                         |
| Description   | DINx.PARAM high 32 bits, x = 1 7 |
| Category      | optional                         |
| Access        | R/W                              |
| PDO mapping   | not possible                     |
| Value range   | UNSIGNED32                       |
| Default value | 0                                |

## 6.2.2.21 Object 3475h: Parameters for digital outputs

This set of objects is used to set extended parameters for some digital output functions. The parameters can be used for different DOUTx.MODEs. Therefore the scaling might be different or no scaling is used at all.

Two subindices build an access object to one of these parameters, because they are 64-bit numbers internally, e.g. object 3475 sub 1 gives access to the low 32 bits of DOUT1.PARAM whereas 3475 sub 3 gives access to the high 32 bits.

If access to the whole 64 bit number is needed the higher bits must be written first. The access to the lower 32 bits then writes the parameter. If the to be written value fits into 32 bit, only the lower part needs to be written. The most-significant bit is then taken as sign-bit for the number.

| Index         | 3475h                            |
|---------------|----------------------------------|
| Name          | DOUTx.PARAM                      |
| Object code   | Array                            |
| Data type     | UNSIGNED32                       |
| Category      | optional                         |
| Subindex      | 0                                |
| Description   | highest sub-index supported      |
| Category      | mandatory                        |
| Access        | R/O                              |
| PDO mapping   | not possible                     |
| Value range   | 0x4                              |
| Default value | 0x4                              |
| Subindex      | 1 to 2                           |
| Description   | DOUTx.PARAM low 32 bits, x = 1 2 |
| Category      | optional                         |
| Access        | R/W                              |
| PDO mapping   | not possible                     |
| Value range   | UNSIGNED32                       |
| Default value | 0                                |
| Subindex      | 3 to 4                           |
| Description   | DOUTx.PARAM high 32 bits, x = 12 |
| Category      | optional                         |
| Access        | R/W                              |
| PDO mapping   | not possible                     |
| Value range   | UNSIGNED32                       |
| Default value | 0                                |

#### 6.2.2.22 Object 3496h: Fieldbus synchronization parameters

This set of objects is used to set or read parameters for the fieldbus synchronization used in the interpolated position mode (7) and the cyclic-modes 8 etc. The synchronization between a fieldbus master and the AKD is similar in all the supported fieldbus systems.

The AKD internal 16[kHz] interrupt function is responsible for calling the PLL function. This PLL function is called once per fieldbus cycle (set by object 60C2 sub 1 and 2). If the fieldbus sample period is for example 1[ms], the PLL code is called every 16th time of the 16[kHz] IRQ of the AKD.

Once in a fieldbus sample the SYNC-telegram must arrive, which resets a PLL counter in the Drive. After some time the already mentioned PLL function is called and reads back the time from that PLL counter.

Depending on the measured time the PLL function extends (in case that the measured time is too low) or lowers (in case that the measured time is too high) the sample time of the upcoming 16[kHz] tasks for one fieldbus sample by a selectable value (object 3496 sub 4) in order to move the PLL function closer to the expected distance (object 3496 sub 1).

Beside the objects mentioned here the parameter FBUS.SAMPLEPERIOD is important, which is set by object 60C2 sub 1 and 2. This setting is required in order to share the fieldbus sample time with the slave. This information is e.g. needed for being able to call the AKD internal PLL function once per fieldbus sample.

| Index         | 3496h                           |
|---------------|---------------------------------|
| Name          | FBUS synchronization parameters |
| Object code   | Array                           |
| Data type     | UNSIGNED32                      |
| Category      | optional                        |
| Subindex      | 0                               |
| Description   | highest sub-index supported     |
| Category      | mandatory                       |
| Access        | R/O                             |
| PDO mapping   | not possible                    |
| Value range   | 0x4                             |
| Default value | 0x4                             |
| Subindex      | 1                               |
| Description   | FBUS.SYNCDIST                   |
| Category      | optional                        |
| Access        | R/W                             |
| PDO mapping   | not possible                    |
| Value range   | UNSIGNED32                      |
| Default value | 320000 [ns]                     |
|               |                                 |

Sub 1 is the expected time distance in nano seconds between clearing the PLL counter and calling the PLL function.

| Subindex      | 2            |
|---------------|--------------|
| Description   | FBUS.SYNCACT |
| Category      | optional     |
| Access        | R/W          |
| PDO mapping   | not possible |
| Value range   | UNSIGNED32   |
| Default value | 320000 [ns]  |

Sub 2 is the actual time distance in nano seconds between clearing the PLL counter and calling the PLL function.

| Subindex      | 3            |
|---------------|--------------|
| Description   | FBUS.SYNCWND |
| Category      | optional     |
| Access        | R/W          |
| PDO mapping   | not possible |
| Value range   | UNSIGNED32   |
| Default value | 70000 [ns]   |

Sub 3 is a window, which is used in order to consider the drive as being synchronized. The AKD is considered as synchronized in the following case:

FBUS.SYNCDIST - FBUS.SYNCWND < FBUS.SYNCACT < FBUS.SYNCDIST + FBUS.SYNCWND

| Subindex      | 4             |
|---------------|---------------|
| Description   | FBUS.COMPTIME |
| Category      | optional      |
| Access        | R/W           |
| PDO mapping   | not possible  |
| Value range   | UNSIGNED32    |
| Default value | 150 [ns]      |

Sub 4 value indicates the time, which is used for extending or lowering the sample rate of the AKD internal 16[kHz] IRQ, which is responsible for calling the PLL function. The default sample time is 32 \* 1/16[kHz] = 2[ms].

The sample time of the AKD high prior interrupt is determined by  $62.5[\mu s] - FBUS.COMPTIME$  if FBUS.SYNCACT > FBUS.SYNCDIST.

The sample time of the AKD high prior interrupt is determined by 62.5[µs] + FBUS.COMPTIME if FBUS.SYNCACT < FBUS.SYNCDIST.

## 6.2.3 Profile specific objects

## 6.2.3.1 Object 60B8h: Touch probe function

This object indicates the configured function of the touch probe.

| Index         | 60B8h                |
|---------------|----------------------|
| Name          | Touch probe function |
| Object code   | Variable             |
| Data type     | UNSIGNED16           |
| Category      | optional             |
| Access        | R/W                  |
| PDO Mapping   | yes                  |
| Value range   | UNSIGNED16           |
| Default value | 0                    |

Definition of the possible functions:

| Bit    | Value | Meaning                                                      |
|--------|-------|--------------------------------------------------------------|
| 0      | 0     | Switch off touch probe 1                                     |
|        | 1     | Enable touch probe 1                                         |
| 1      | 0     | Trigger first event                                          |
|        | 1     | Continuous                                                   |
| 3, 2   | 00b*  | Trigger with touch probe 1 input                             |
|        | 01b   | Trigger with zero impulse signal or position encoder         |
|        | 10b   | Touch probe source as defined in object 60D0h, sub-index 01h |
|        | 11b   | reserved                                                     |
| 4      | 0     | Switch off sampling at positive edge of touch probe 1        |
|        | 1     | Enable sampling at positive edge of touch probe 1            |
| 5      | 0     | Switch off sampling at negative edge of touch probe 1        |
|        | 1     | Enable sampling at negative edge of touch probe 1            |
| 6, 7   | -     | User-defined (e.g. for testing)                              |
| 8      | 0     | Switch off touch probe 2                                     |
|        | 1     | Enable touch probe 2                                         |
| 9      | 0     | Trigger first event                                          |
|        | 1     | continuous                                                   |
| 11, 10 | 00b   | Trigger with touch probe 2 input                             |
|        | 01b   | Trigger with zero impulse signal or position encoder         |
|        | 10b   | Touch probe source as defined in object 60D0h, sub-index 02h |
|        | 11b   | reserved                                                     |
| 12     | 0     | Switch off sampling at positive edge of touch probe 2        |
|        | 1     | Enable sampling at positive edge of touch probe 2            |
| 13     | 0     | Switch off sampling at negative edge of touch probe 2        |
|        | 1     | Enable sampling at negative edge of touch probe 2            |
| 14, 15 | -     | User-defined (e.g. for testing)                              |

<sup>\*</sup> b = binary

If both edges are selected at the same time (bit 4=1 and bit 5=1 for probe 1 or bit 12=1 and bit 13=1 for probe 2), the first edge (positive or negative) triggers the probe function. The position, latched at this edge, is taken over for both edges (positive and negative).

# 6.2.3.2 Object 60B9h: Touch probe status

This object indicates the status of the touch probe.

| Index         | 60B9h              |  |  |  |
|---------------|--------------------|--|--|--|
| Name          | Touch probe status |  |  |  |
| Object code   | Variable           |  |  |  |
| Data type     | UNSIGNED16         |  |  |  |
| Category      | optional           |  |  |  |
| Access        | R/O                |  |  |  |
| PDO Mapping   | yes                |  |  |  |
| Value range   | UNSIGNED16         |  |  |  |
| Default value | 0                  |  |  |  |

### Definition of the status:

| Bit      | Value | Meaning                                     |  |
|----------|-------|---------------------------------------------|--|
| 0        | 0     | Touch probe 1 is switched off               |  |
|          | 1     | Touch probe 1 is enabled                    |  |
| 1        | 0     | Touch probe 1 no positive edge value stored |  |
|          | 1     | Touch probe 1 positive edge position stored |  |
| 2        | 0     | Touch probe 1 no negative edge value stored |  |
|          | 1     | Touch probe 1 negative edge position stored |  |
| 3 to 5   | 0     | reserved                                    |  |
| 6, 7     | -     | User-defined (e.g. for testing)             |  |
| 8        | 0     | Touch probe 2 is switched off               |  |
|          | 1     | Touch probe 2 is enabled                    |  |
| 9        | 0     | Touch probe 2 no positive edge value stored |  |
|          | 1     | Touch probe 2 positive edge position stored |  |
| 10       | 0     | Touch probe 2 no negative edge value stored |  |
|          | 1     | Touch probe2 negative edge position stored  |  |
| 11 to 13 | 0     | reserved                                    |  |
| 14, 15   | -     | User-defined (e.g. for testing)             |  |

## 6.2.3.3 Object 60BAh: Touch probe 1 positive edge

This object provides the position value of the touch probe 1 at positive edge.

| Index         | 0BAh                        |  |  |  |
|---------------|-----------------------------|--|--|--|
| Name          | Touch probe 1 positive edge |  |  |  |
| Object code   | Variable                    |  |  |  |
| Data type     | INTEGER32                   |  |  |  |
| Category      | optional                    |  |  |  |
| Access        | R/O                         |  |  |  |
| PDO Mapping   | yes                         |  |  |  |
| Value range   | INTEGER32                   |  |  |  |
| Default value | no                          |  |  |  |

## 6.2.3.4 Object 60BBh: Touch probe 1 negative edge

This object provides the position value of the touch probe 1 at negative edge.

| Index         | 60BBh                       |  |  |  |
|---------------|-----------------------------|--|--|--|
| Name          | Touch probe 1 negative edge |  |  |  |
| Object code   | ariable                     |  |  |  |
| Data type     | INTEGER32                   |  |  |  |
| Category      | optional                    |  |  |  |
| Access        | R/O                         |  |  |  |
| PDO Mapping   | yes                         |  |  |  |
| Value range   | INTEGER32                   |  |  |  |
| Default value | no                          |  |  |  |

## 6.2.3.5 Object 60BCh: Touch probe 2 positive edge

This object provides the position value of the touch probe 2 at positive edge.

| Index         | BCh                         |  |  |  |
|---------------|-----------------------------|--|--|--|
| Name          | Touch probe 2 positive edge |  |  |  |
| Object code   | Variable                    |  |  |  |
| Data type     | INTEGER32                   |  |  |  |
| Category      | optional                    |  |  |  |
| Access        | R/O                         |  |  |  |
| PDO Mapping   | yes                         |  |  |  |
| Value range   | INTEGER32                   |  |  |  |
| Default value | no                          |  |  |  |

## 6.2.3.6 Object 60BDh: Touch probe 2 negative edge

This object provides the position value of the touch probe 2 at negative edge.

| Index         | BDh                         |  |  |  |
|---------------|-----------------------------|--|--|--|
| Name          | Touch probe 2 negative edge |  |  |  |
| Object code   | Variable                    |  |  |  |
| Data type     | INTEGER32                   |  |  |  |
| Category      | optional                    |  |  |  |
| Access        | R/O                         |  |  |  |
| PDO Mapping   | yes                         |  |  |  |
| Value range   | INTEGER32                   |  |  |  |
| Default value | no                          |  |  |  |

## 6.2.3.7 Object 60D0h: Touch probe source

This object provides the source of the touch probe function, when the dedicated bits 2/3 or 10/11 of the touch probe function (object 60B8h) are set accordingly.

| Index         | 60D0h                       |  |  |  |
|---------------|-----------------------------|--|--|--|
| Name          | Touch probe source          |  |  |  |
| Object code   | Array                       |  |  |  |
| Data type     | Integer 16                  |  |  |  |
| Category      | optional                    |  |  |  |
| Subindex      | 0                           |  |  |  |
| Description   | Highest sub-index supported |  |  |  |
| Category      | mandatory                   |  |  |  |
| Access        | R/O                         |  |  |  |
| PDO mapping   | not possible                |  |  |  |
| Value range   | 2                           |  |  |  |
| Default value | 2                           |  |  |  |
| Subindex      | 1                           |  |  |  |
| Description   | Touch probe 1 source        |  |  |  |
| Category      | mandatory                   |  |  |  |
| Access        | R/W                         |  |  |  |
| PDO mapping   | not possible                |  |  |  |
| Value range   | -11 to -1, 1 to 5           |  |  |  |
| Default value | 1                           |  |  |  |
| Subindex      | 2                           |  |  |  |
| Description   | Touch probe 2 source        |  |  |  |
| Category      | mandatory                   |  |  |  |
| Access        | R/W                         |  |  |  |
| PDO mapping   | not possible                |  |  |  |
| Value range   | -11 to -1, 1 to 5           |  |  |  |
| Default value | 1                           |  |  |  |

Value description:

| Value     | Description                               | Value | Description         |
|-----------|-------------------------------------------|-------|---------------------|
| 1         | Touch Probe 1 Input                       | 3     | Touch Probe 3 Input |
| 2         | Touch Probe 2 Input                       | 4     | Touch Probe4 Input  |
| -1 to -11 | AKD Input related to CAPx.TRIGGER 0 to 10 |       |                     |

## 6.2.3.8 Object 60FDh: Digital inputs (DS402)

This index defines simple digital inputs for drives. The manufacturer bits 16 to 22 display the actual state of the digital inputs 1 to 7 (DINx.STATE). The manufacturer bits 24 to 30 latch a state change of the digital inputs 1 to 7. Bits 24 to 30 can be reset with object"20B8h" ( $\rightarrow$  p. 71).

| Index         | 60FDh          |
|---------------|----------------|
| Name          | digital inputs |
| Object code   | VAR            |
| Data type     | UNSIGNED32     |
| Category      | optional       |
| Access        | R/O            |
| PDO mapping   | possible       |
| Value range   | UNSIGNED32     |
| Default value | 0              |

| 31           | 16       | 15     | 4   | 3      | 2              | 1                    | 0                    |
|--------------|----------|--------|-----|--------|----------------|----------------------|----------------------|
| manufacturer | specific | reser\ | /ed | enable | home<br>switch | pos. limit<br>switch | neg. limit<br>switch |
| MSB          |          |        |     |        |                |                      | LSB                  |

## 6.2.3.9 Object 60FEh: Digital outputs (DS402)

This index defines simple digital outputs for drives. The manufacturer bits 16 and 17 are show the actual status of the digital outputs 1 and 2.

| Index               | 60FEh        |                 |           |    |          |        |           |
|---------------------|--------------|-----------------|-----------|----|----------|--------|-----------|
| Name                | digita       | digital outputs |           |    |          |        |           |
| Object code         | Array        |                 |           |    |          |        |           |
| Data type           | UNS          | IGNED32         |           |    |          |        |           |
| Category            | optio        | nal             |           |    |          |        |           |
| Subindex            | 0            |                 |           |    |          |        |           |
| Description         | highe        | st sub-index    | supported |    |          |        |           |
| Category            |              | latory          |           |    |          |        |           |
| Access              | R/O          |                 |           |    |          |        |           |
| PDO mapping         | not po       | ossible         |           |    |          |        |           |
| Value range         | 2            |                 |           |    |          |        |           |
| Default value       | 2            |                 |           |    |          |        |           |
| Subindex            | 1            | 1               |           |    |          |        |           |
| Description         | physi        | cal outputs     |           |    |          |        |           |
| Category            | mand         | mandatory       |           |    |          |        |           |
| Access              | R/W          | R/W             |           |    |          |        |           |
| PDO mapping         | possi        | possible        |           |    |          |        |           |
| Value range         | UNSIGNED32   |                 |           |    |          |        |           |
| Default value       | 0            |                 |           |    |          |        |           |
| Subindex            | 2            | 2               |           |    |          |        |           |
| Description         | bit ma       | ask             |           |    |          |        |           |
| Category            | optio        | optional        |           |    |          |        |           |
| Access              | R/W          |                 |           |    |          |        |           |
| PDO mapping         | not possible |                 |           |    |          |        |           |
| Value range         | UNSIGNED32   |                 |           |    |          |        |           |
| Default value       | 0            |                 |           |    |          |        |           |
| 31 18               |              | 17              | 16        | 15 |          | 1      | 0         |
| manufacturer specit | fic          | DOUT2           | DOUT1     |    | reserved |        | set brake |
| MSB                 | T            |                 |           |    |          | $\Box$ | LSB       |

## 6.2.3.10 Object 6502h: Supported drive modes (DS402)

A drive can support more then one and several distinct modes of operation. This object gives an overview of the implemented operating modes in the device. This object is read only.

| Index         | 6502h                  |  |  |  |
|---------------|------------------------|--|--|--|
| Name          | supported drive modes  |  |  |  |
| Object code   | VAR                    |  |  |  |
| Data type     | UNSIGNED32             |  |  |  |
| Category      | optional               |  |  |  |
| Access        | R/O                    |  |  |  |
| PDO mapping   | not possible           |  |  |  |
| Value range   | UNSIGNED32             |  |  |  |
| Default value | 0xE5 (csp ip hm pv pp) |  |  |  |

|   | 31                | 16 | 15    | 11  | 10    | 9   | 8   | 7   | 6  | 5  | 4        | 3  | 2  | 1  | 0   |
|---|-------------------|----|-------|-----|-------|-----|-----|-----|----|----|----------|----|----|----|-----|
|   | manufac<br>specif |    | resei | ved | cstca | cst | csv | csp | ip | hm | reserved | tq | pv | vl | pp  |
| 1 | MSB               |    |       |     |       |     |     |     |    |    |          |    |    |    | LSB |

## 6.3 PDO Configuration

PDOs are used for process data communication.

There are two types of PDOs: Receive PDOs (RPDOs) and transmit PDOs (TPDOs). The content of the PDOs is pre-defined ( $\rightarrow$  p. 86 and  $\rightarrow$  p. 89). If the data content is not appropriate for a special application the data objects in the PDOs can be remapped freely.

One data entry in the PDOs looks like this:

| MSB            |                  | LSB                         |
|----------------|------------------|-----------------------------|
| index (16 bit) | Subindex (8 bit) | data length in bits (8 bit) |

The configuration procedure for a free mapping of a PDO looks like this (example for TPDO1):

1. Stop possible transmission of the PDO.

| COB-ID | Control | Index    |           | Sub-  |             |                   |
|--------|---------|----------|-----------|-------|-------------|-------------------|
|        | byte    | Low byte | High byte | index | Data        | Comment           |
| 601    | 23      | 00       | 18        | 01h   | 81 01 00 C0 | Switch-off COB-Id |

2. Delete the actual mapping of the PDO by writing a 0 to the subindex 0 of the mapping Object.

| ĺ | COB-ID | Control | Inc      | lex       | Sub-  |             |                       |  |
|---|--------|---------|----------|-----------|-------|-------------|-----------------------|--|
| ı |        | byte    | Low byte | High byte | index | Data        | Comment               |  |
| I | 601    | 2F      | 00       | 1A        | 00h   | 00 00 00 00 | Delete actual mapping |  |

3. Build the mapping with object dictionary objects (→ p. 133) which are mappable, e.g.

| COB-ID | Control | Inc      | lex       | Sub-  |             |                     |
|--------|---------|----------|-----------|-------|-------------|---------------------|
|        | byte    | Low byte | High byte | index | Data        | Comment             |
| 601    | 23      | 00       | 1A        | 01h   | 10 00 41 60 |                     |
|        |         |          |           |       |             | CANopen statusword  |
|        |         |          |           |       |             | with 16 bits        |
| 601    | 23      | 00       | 1A        | 02h   | 20 00 02 10 | 2nd entry:          |
|        |         |          |           |       |             | Manufacturer status |
|        |         |          |           |       |             | with 32 bits        |

4. Write the number of mapped objects to subindex 0 of the mapping Object.

| COB-ID | Control | Index    |           | Sub-  |      |                                            |
|--------|---------|----------|-----------|-------|------|--------------------------------------------|
|        | byte    | Low byte | High byte | index | Data | Comment                                    |
| 601    | 2F      | 00       | 1A        | 00h   |      | Check for the right highest sub-index sup- |
|        |         |          |           |       |      | ported                                     |

Mapping shall be done before the network management is switched to OPERATIONAL.

## 6.3.1 Receive PDOs (RXPDO)

Four Receive PDOs can be configured in the drive:

- configuration of the communication (Objects 1400-1403h)
- configuration of the PDO-contents (mapping, Objects 1600-1603h)

## 6.3.1.1 Objects 1400-1403h: 1st - 4th RxPDO communication parameter (DS301)

1400h to 1403h for RxPDO 1 to 4

| Index              | 1400h                 |  |  |  |
|--------------------|-----------------------|--|--|--|
|                    | 1401h                 |  |  |  |
|                    | 1402h                 |  |  |  |
|                    | 1403h                 |  |  |  |
| Name               | receive PDO parameter |  |  |  |
| Object code        | RECORD                |  |  |  |
| Data type          | PDO CommPar           |  |  |  |
| Category mandatory |                       |  |  |  |

#### Defined sub-indices

| Defined Sub-indices |                             |                             |  |  |  |  |
|---------------------|-----------------------------|-----------------------------|--|--|--|--|
| Subindex            | 0                           | )                           |  |  |  |  |
| Name                | highest sub-index supported |                             |  |  |  |  |
| Data type           | UNSIGNED8                   |                             |  |  |  |  |
| Category            | mandatory                   |                             |  |  |  |  |
| Access              | R/O                         |                             |  |  |  |  |
| PDO Mapping         | not possible                | not possible                |  |  |  |  |
| Value Range         | 2                           |                             |  |  |  |  |
| Default Value       | 2                           |                             |  |  |  |  |
| Subindex            | 1                           |                             |  |  |  |  |
| Name                | COB-ID used by PDO          |                             |  |  |  |  |
| Category            | mandatory                   |                             |  |  |  |  |
| Access              | R/W                         |                             |  |  |  |  |
| PDO Mapping         | not possible                |                             |  |  |  |  |
| Value Range         | UNSIGNED32                  |                             |  |  |  |  |
| Default Value       | Index 1400h: 200h + Node-ID | Index 1401h: 300h + Node-ID |  |  |  |  |
|                     | Index 1402h: 400h + Node-ID | Index 1403h: 500h + Node-ID |  |  |  |  |

#### Subindex 1 contains the COB-Id of the PDO as a bit coded information:

| Bit      | Value | Meaning                                                                  |
|----------|-------|--------------------------------------------------------------------------|
| 31       | 0     | PDO exists/is valid                                                      |
|          | 1     | PDO does not exist/is not valid                                          |
| 30       | 0     | RTR allowed on this PDO, not to be used (Can in Automation organisation) |
|          | 1     | RTR not allowed on this PDO                                              |
| 29       | 0     | 11 bit-ID (CAN 2.0A)                                                     |
|          | 1     | 29 bit-ID (CAN 2.0B), not supported                                      |
| 28 to 11 | Х     | Identifier-bits with 29 bit-ID, not relevant                             |
| 10 to 0  | Х     | Bits 10-0 of COB-ID                                                      |

| Subindex      | 2                 |
|---------------|-------------------|
| Name          | transmission type |
| Category      | mandatory         |
| Access        | R/W               |
| PDO Mapping   | not possible      |
| Value Range   | UNSIGNED8         |
| Default Value | FFh               |

Subindex 2 contains the transmission type of the PDO. There are two ways of setting:

- the value FFh or 255 for event-triggered PDO, which is directly interpreted by reception and taken into actions,
- values from 0 to 240, which cause a SYNC-telegram-controlled interpretation of the PDO contents. Values of 1 to 240 mean, that 0 to 239 SYNC-telegrams are ignored, before one is interpreted. The value 0 means, that only the next SYNC-telegram is interpreted.

## 6.3.1.2 Objects 1600-1603h: 1st - 4th RxPDO mapping parameter (DS301)

1600h to 1603h for RxPDO 1 to 4.

|               | 1000Ht0 1003Ht0HXF DO 1104.                                 |  |  |  |  |  |
|---------------|-------------------------------------------------------------|--|--|--|--|--|
| Index         | 1600h                                                       |  |  |  |  |  |
|               | 1601h                                                       |  |  |  |  |  |
|               | 1602h                                                       |  |  |  |  |  |
|               | 1603h                                                       |  |  |  |  |  |
| Name          | receive PDO mapping                                         |  |  |  |  |  |
| Object Code   | RECORD                                                      |  |  |  |  |  |
| Data Type     | PDO Mapping                                                 |  |  |  |  |  |
| Category      | mandatory                                                   |  |  |  |  |  |
| Subindex      | 0                                                           |  |  |  |  |  |
| Name          | highest sub-index supported                                 |  |  |  |  |  |
| Data type     | UNSIGNED8                                                   |  |  |  |  |  |
| Category      | mandatory                                                   |  |  |  |  |  |
| Access        | R/W                                                         |  |  |  |  |  |
| PDO Mapping   | not possible                                                |  |  |  |  |  |
| Value Range   | 0: PDO is not active                                        |  |  |  |  |  |
|               | 1 - 8: PDO activated, mappings are taken only byte-wise     |  |  |  |  |  |
| Default Value | PDO1: 1                                                     |  |  |  |  |  |
|               | PDO2: 2                                                     |  |  |  |  |  |
|               | PDO3: 2                                                     |  |  |  |  |  |
|               | PDO4: 2                                                     |  |  |  |  |  |
| Subindex      | 1 - 8                                                       |  |  |  |  |  |
| Name          | PDO - mapping for the n-th application object               |  |  |  |  |  |
| Category      | Conditional, depends on number and size of object be mapped |  |  |  |  |  |
| Access        | R/W                                                         |  |  |  |  |  |
| PDO Mapping   | not possible                                                |  |  |  |  |  |
| Value Range   | UNSIGNED32                                                  |  |  |  |  |  |
| Default Value | See below                                                   |  |  |  |  |  |
|               |                                                             |  |  |  |  |  |

## 6.3.1.3 Default RXPDO definition

## RXPDO 1:

| Subindex | Value       | Meaning               |
|----------|-------------|-----------------------|
| 0        | 1           | One PDO-mapping entry |
| 1        | 60 40 00 10 | Control word          |

#### RXPDO 2:

| Subindex | Value       | Meaning                 |
|----------|-------------|-------------------------|
| 0        | 2           | Two PDO-mapping entries |
| 1        | 60 40 00 10 | Control word            |
| 2        | 60 60 00 08 | Modes of Operation      |

## RXPDO 3:

| Subindex | Value       | Meaning                   |
|----------|-------------|---------------------------|
| 0        | 2           | Two PDO-mapping entries   |
| 1        | 60 40 00 10 | Control word              |
| 2        | 60 7A 00 20 | Target Position (Mode PP) |

## RXPDO 4:

| Subindex | Value       | Meaning                   |
|----------|-------------|---------------------------|
| 0        | 2           | Two PDO-mapping entries   |
| 1        | 60 40 00 10 | Control word              |
| 2        | 60 FF 00 20 | Target Velocity (Mode PV) |

## **6.3.2 Transmit PDOs (TXPDO)**

Four Transmit PDOs can be configured in the drive:

- configuration of the communication (Objects 1800-1803h)
- configuration of the PDO-contents (mapping, Objects 1A00-1A03h)

## 6.3.2.1 Objects 1800-1803h: 1st - 4th TxPDO communication parameter (DS301)

1800h to 1803h for TxPDO 1 to 4.

| Index 1800h   |                                                                                                                   |  |
|---------------|-------------------------------------------------------------------------------------------------------------------|--|
| muex          | 1801h                                                                                                             |  |
|               | 1802h                                                                                                             |  |
|               | 1802h<br>1803h                                                                                                    |  |
| Names         |                                                                                                                   |  |
| Name          | transmit PDO parameter                                                                                            |  |
| Object code   | RECORD                                                                                                            |  |
| Data type     | PDO CommPar                                                                                                       |  |
| Category      | mandatory                                                                                                         |  |
| Subindex      | 0                                                                                                                 |  |
| Name          | highest sub-index supported                                                                                       |  |
| Data type     | UNSIGNED8                                                                                                         |  |
| Category      | mandatory                                                                                                         |  |
| Access        | R/O                                                                                                               |  |
| PDO Mapping   | not possible                                                                                                      |  |
| Value Range   | 5                                                                                                                 |  |
| Default Value | 5                                                                                                                 |  |
| Subindex      | 1                                                                                                                 |  |
| Name          | COB-ID used by PDO                                                                                                |  |
| Category      | mandatory                                                                                                         |  |
| Access        | R/W                                                                                                               |  |
| PDO Mapping   | not possible                                                                                                      |  |
| Value Range   | UNSIGNED32                                                                                                        |  |
| Default Value | Index 1800h: 180h + Node-IDIndex 1801h: 280h + Node-ID<br>Index 1802h: 380h + Node-ID Index 1803h: 480h + Node-ID |  |
| Subindex      | 2                                                                                                                 |  |
| Name          | transmission type                                                                                                 |  |
| Category      | mandatory                                                                                                         |  |
| Access        | R/W                                                                                                               |  |
| PDO Mapping   | not possible                                                                                                      |  |
| Value Range   | UNSIGNED8                                                                                                         |  |
| Default Value | FFh                                                                                                               |  |
| Subindex      | 3                                                                                                                 |  |
| Name          | inhibit time                                                                                                      |  |
| Category      | optional                                                                                                          |  |
| Access        | R/W                                                                                                               |  |
| PDO Mapping   | not possible                                                                                                      |  |
| Value Range   | UNSIGNED16 (n*1/10ms)                                                                                             |  |
| Default Value | Oh                                                                                                                |  |

| Subindex                   | 4                        |
|----------------------------|--------------------------|
| Name                       | reserved                 |
| Category                   | optional                 |
| Access                     | R/W                      |
| PDO Mapping                | not possible             |
| Value Range                | 0                        |
| Default Value              | 0                        |
|                            |                          |
| Subindex                   | 5                        |
| Subindex<br>Name           | 5 event timer            |
|                            | -                        |
| Name                       | event timer              |
| Name<br>Category           | event timer optional     |
| Name<br>Category<br>Access | event timer optional R/W |

Subindex 1 contains the COB-Id of the PDO as a bit coded information:

| Bit-Number | Value | Meaning                                      |
|------------|-------|----------------------------------------------|
| 31         | 0     | PDO exists/is valid                          |
|            | 1     | PDO does not exist/is not valid              |
| 30         | 0     | RTR allowed on this PDO, not supported       |
|            | 1     | RTR not allowed on this PDO, not supported   |
| 29         | 0     | 11 bit-ID (CAN 2.0A)                         |
|            | 1     | 29 bit-ID (CAN 2.0B), not supported          |
| 28 to 11   | Х     | Identifier-bits with 29 bit-ID, not relevant |
| 10 to 0    | Х     | Bits 10-0 of COB-ID                          |

Subindex 2 contains the transmission type of the PDO. There are two ways of setting:

- A value of FFh or 255d for an event-triggered PDO, which is sent immediately after a
  change in the mapped application objects. Setting of Subindex 3 or 5 has an influence on
  the sending of a PDO. With Subindex 3 you can configure, in which minimal time the so
  configured Transmit-PDOs are sent, if PDO-data contents change (reduction of bus-load).
  With Subindex 5 (event time) a timer is used, which is reset with every event-triggered
  sending of this PDO. If there is no change of the PDO-content in this time, the PDO is
  sent caused by this timer event.
- Values from 0 to 240 cause a SYNC-Telegram controlled sending of the PDO.
- Values from 1 to 240 define how often the SYNC-telegram leads to a sending of a PDO.
- The value 0 means, that only the next SYNC-telegram leads to a sending of the so configured PDOs.

## 6.3.2.2 Objects 1A00-1A03h: 1st - 4th TxPDO mapping parameter (DS301)

1A00h to 1A03h for TxPDO 1 to 4.

| Index         | 1A00h                                                       |
|---------------|-------------------------------------------------------------|
|               | 1A01h                                                       |
|               | 1A02h                                                       |
|               | 1A03h                                                       |
| Name          | transmit PDO mapping                                        |
| Object Code   | RECORD                                                      |
| Data Type     | PDO Mapping                                                 |
| Category      | mandatory                                                   |
| Subindex      | 0                                                           |
| Name          | number of mapped application objects in PDO                 |
| Data type     | UNSIGNED8                                                   |
| Category      | mandatory                                                   |
| Access        | R/W                                                         |
| PDO Mapping   | not possible                                                |
| Value Range   | 0: PDO is not active                                        |
|               | 1 - 8: PDO activated, mappings are taken only byte-wise     |
| Default Value | PDO1: 1                                                     |
|               | PDO2: 2                                                     |
|               | PDO3: 2<br>PDO4: 2                                          |
|               |                                                             |
| Subindex      | 1 - 8                                                       |
| Name          | PDO - mapping for the n-th application object               |
| Category      | Conditional, depends on number and size of object be mapped |
| Access        | R/W                                                         |
| PDO Mapping   | not possible                                                |
| Value Range   | UNSIGNED32                                                  |
| Default Value | See below                                                   |
|               |                                                             |

## 6.3.2.3 Default TXPDO definition

## TXPDO 1:

| Subindex | Value       | Meaning               |
|----------|-------------|-----------------------|
| 0        | 1           | One PDO-mapping entry |
| 1        | 60 41 00 10 | Status word           |

## TXPDO 2:

|   | Subindex | Value       | Meaning                    |
|---|----------|-------------|----------------------------|
| ı | 0        | 2           | Two PDO-mapping entries    |
| ı | 1        | 60 41 00 10 | Status word                |
| ı | 2        | 60 61 00 08 | Modes of Operation display |

## TXPDO 3:

| Subindex | Value       | Meaning                 |
|----------|-------------|-------------------------|
| 0        | 2           | Two PDO-mapping entries |
| 1        | 60 41 00 10 | Status word             |
| 2        | 60 64 00 20 | Position actual value   |

## TXPDO 4:

| Subindex | Value       | Meaning                 |
|----------|-------------|-------------------------|
| 0        | 2           | Two PDO-mapping entries |
| 1        | 60 41 00 10 | Status word             |
| 2        | 60 6C 00 20 | Velocity actual value   |

## 6.4 Device Control (dc)

The device control of the AKD can be used to carry out all the motion functions in the corresponding modes. The control of the AKD is implemented through a mode-dependent state machine. The state machine is controlled through the control word (→ p. 95).

The mode setting is made through the object "Modes of Operation" ( $\rightarrow$  p. 99). The states of the state machine can be revealed by using the status word ( $\rightarrow$  p. 96).

### 6.4.1 State Machine (DS402)



#### 6.4.1.1 States of the State Machine

| State                      | Description                                                                                                                                            |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Not Ready for Switch<br>On | AKD is not ready to switch on, there is no operational readiness (BTB/RTO) signaled from the controller program.                                       |
| Switch On Disable          | AKD is ready to switch on, parameters can be transferred, the DC-link voltage can be switched on, motion functions cannot be carried out yet.          |
| Ready to Switch On         | DC-link voltage may be switched on, parameters can be transferred, motion functions cannot be carried out yet.                                         |
| Switched On                | DC-link voltage must be switched on, parameters can be transferred, motion functions cannot be carried out yet, output stage is switched on (enabled). |
| Operation Enable           | No fault present, output stage and motion functions are enabled.                                                                                       |
| Quick Stop Active          | Drive has been stopped with the emergency ramp, output stage is enabled, motion functions are not enabled.                                             |
| Fault Reaction Active      | A fault has occured, the drive is stopped with the quickstop ramp.                                                                                     |
| Fault                      | A fault is active, the drive has been stopped and disabled.                                                                                            |

#### 6.4.1.2 Transitions of the state machine

The state transitions are affected by internal events (e.g. switching off the DC-link voltage) and by the flags in the control word (bits 0,1,2,3,7).

| Tran-  | Event                                                                                                                              | Action                                                                                                                                                                                                                                  |
|--------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sition |                                                                                                                                    |                                                                                                                                                                                                                                         |
| 0      | Reset                                                                                                                              | Initialization                                                                                                                                                                                                                          |
| 1      | Initialization completed successfully. AKD is ready to operate.                                                                    | none                                                                                                                                                                                                                                    |
| 2      | Bit 1 Disable Voltage and Bit 2 Quick Stop<br>are set in the control word (Shutdown com-<br>mand). DC-link voltage may be present. | none                                                                                                                                                                                                                                    |
| 3      | Bit 0 is also set (Switch On)                                                                                                      | Output stage is switched on (enabled), provided that the hardware enable is present (logical AND). Drive has torque.                                                                                                                    |
| 4      | Bit 3 is also set (Enable Operation)                                                                                               | Motion function is enabled, depending on the mode that is set.                                                                                                                                                                          |
| 5      | Bit 3 is canceled (Disable Operation)                                                                                              | Motion function is inhibited. Drive is stopped, using the relevant ramp (mode-dependent). The present position is maintained.                                                                                                           |
| 6      | Bit 0 is canceled (Shutdown)                                                                                                       | Output stage is disabled. Drive has no torque.                                                                                                                                                                                          |
| 7      | Bits 1 and 2 are canceled (Quick Stop/Disable Voltage)                                                                             | none                                                                                                                                                                                                                                    |
| 8      | Bit 0 is canceled (Shutdown)                                                                                                       | Output stage is disabled. No torque.                                                                                                                                                                                                    |
| 9      | Bit 1 is canceled (Disable Voltage)                                                                                                | Output stage is disabled. No torque.                                                                                                                                                                                                    |
| 10     | Bits 1 and 2 are canceled (Quick Stop/Disable Voltage)                                                                             | Output stage is disabled. No torque.                                                                                                                                                                                                    |
| 11     | Bit 2 is canceled<br>(Quick Stop)                                                                                                  | Drive is stopped with the emergency braking ramp. The output stage remains enabled. Setpoints are canceled (motion block number, digital setpoint, speed for jogging or homing). Bit 2 must be set again to perform any further motion. |
| 12     | Bit 1 is canceled (Disable Voltage)                                                                                                | Output stage is disabled. No torque.                                                                                                                                                                                                    |
| 13     | Fault reaction active                                                                                                              | Execute appropriate fault reaction                                                                                                                                                                                                      |
| 14     | Fault reaction is completed                                                                                                        | Drive function is disabled. The power section may be switched off.                                                                                                                                                                      |
| 15     | "Fault Reset" command received from host                                                                                           | A reset of the fault condition is carried out if no fault exists currently on the drive. After leaving the state Fault the Bit7 'Reset Fault' of the controlword must be cleared by the host.                                           |
| 16     | Bit 2 is set                                                                                                                       | Motion function is enabled again.                                                                                                                                                                                                       |

NOTE

If the drive is operated through the control word/status word, then no control commands may be sent through another communication channel (ASCII channel, RS232).

## 6.4.2 Object Description

## 6.4.2.1 Object 6040h: Control word (DS402)

The control commands are built up from the logical combination of the bits in the control word and external signals (e.g enable output stage). The definitions of the bits are shown below:

| Index         | 6040h        |
|---------------|--------------|
| Name          | control word |
| Object code   | VAR          |
| Data type     | UNSIGNED16   |
| Access        | R/W          |
| PDO mapping   | possible     |
| Unit          | -            |
| Value range   | 0 to 65535   |
| EEPROM        | no           |
| Default value | 0            |

### Bit assignment im control word

| Bit | Name                                    | Bit | Name                  |
|-----|-----------------------------------------|-----|-----------------------|
| 0   | Switch on                               | 8   | Pause/halt            |
| 1   | Disable Voltage                         | 9   | reserved              |
| 2   | Quick Stop                              | 10  | reserved              |
| 3   | Enable Operation                        | 11  | reserved              |
| 4   | Operation mode specific                 | 12  | reserved              |
| 5   | Operation mode specific                 | 13  | Manufacturer-specific |
| 6   | Operation mode specific                 | 14  | Manufacturer-specific |
| 7   | Reset Fault (only effective for faults) | 15  | Manufacturer-specific |

#### Commands in the control word

| Command           | Bit 7<br>Fault<br>Reset | Bit 3<br>Enable<br>Operation | Bit 2<br>Quick<br>Stop | Bit 1<br>Disable<br>Voltage | · · | Transitions  |
|-------------------|-------------------------|------------------------------|------------------------|-----------------------------|-----|--------------|
| Shutdown          | Х                       | Х                            | 1                      | 1                           | 0   | 2, 6, 8      |
| Switch on         | Х                       | Х                            | 1                      | 1                           | 1   | 3            |
| Disable Voltage   | Х                       | Х                            | Х                      | 0                           | Х   | 7, 9, 10, 12 |
| Quick Stop        | Х                       | Х                            | 0                      | 1                           | Х   | 7, 10, 11    |
| Disable Operation | Х                       | 0                            | 1                      | 1                           | 1   | 5            |
| Enable Operation  | Х                       | 1                            | 1                      | 1                           | 1   | 4, 16        |
| Fault Reset       | 1                       | Х                            | Х                      | Х                           | Х   | 15           |

Bits marked by an X are irrelevant.

#### Mode-dependent bits in the control word

The following table shows the mode-dependent bits in the control word. Only manufacturer-specific modes are supported at present. The individual modes are set by Object  $6060_h$  Modes of operation.

| Operation mode                  | No. | Bit 4                  | Bit 5                      | Bit 6                 |
|---------------------------------|-----|------------------------|----------------------------|-----------------------|
| Profile Position Mode (pp)      | 01h | new_setpoint           | change_set_<br>immediately | absolute/<br>relative |
| Profile Velocity Mode (pv)      | 03h | reserved               | reserved                   | reserved              |
| Profile Torque Mode (tq)        | 04h | reserved               | reserved                   | reserved              |
| Homing Mode (hm)                | 06h | homing_operation_start | reserved                   | reserved              |
| Interpolated Position Mode (ip) | 07h | Enable Interpolation   | reserved                   | reserved              |
| Cyclic sync position Mode (csp) | 08h | reserved               | reserved                   | reserved              |
| Cyclic sync velocity mode (csv) | 09h | reserved               | reserved                   | reserved              |
| Cyclic sync torque mode (cst)   | 0ah | reserved               | reserved                   | reserved              |

Description of the remaining bits in the control word

The remaining bits in the control word are described below.

**Bit 8 Pause** If Bit 8 is set, then the drive halts (pauses) in all modes. The setpoints (speed for homing or jogging, motion task number, setpoints for digital mode) for the individual modes are retained.

Bit 9,10 These bits are reserved for the drive profile (DS402).

Bit 13, 14, 15 These bits are manufacturer-specific, and reserved at present.

## 6.4.2.2 Object 6041h: Status word (DS402)

The momentary state of the state machine can be read out with the aid of the status word.

| Index         | 6041h       |
|---------------|-------------|
| Name          | Status word |
| Object code   | VAR         |
| Data type     | UNSIGNED16  |
| Access        | R/W         |
| PDO mapping   | possible    |
| Unit          | _           |
| Value range   | 0 to 65535  |
| EEPROM        | yes         |
| Default value | 0           |

#### Bit assignment in the status word

| Bit | Name               | Bit | Name                               |  |
|-----|--------------------|-----|------------------------------------|--|
| 0   | Ready to switch on | 8   | STO – Safe Torque Off              |  |
| 1   | Switched on        | 9   | Remote                             |  |
| 2   | Operation enabled  | 10  | Target reached                     |  |
| 3   | Fault              | 11  | Internal limit active              |  |
| 4   | Voltage enabled    | 12  | Operation mode specific (reserved) |  |
| 5   | Quick stop         | 13  | Operation mode specific (reserved) |  |
| 6   | Switch on disabled | 14  | Manufacturer-specific (reserved)   |  |
| 7   | Warning            | 15  | Manufacturer-specific (reserved)   |  |

#### States of the state machine

| State                  | Bit 6     | Bit 5      | Bit 3 | Bit 2     | Bit 1    | Bit 0     |
|------------------------|-----------|------------|-------|-----------|----------|-----------|
|                        | switch on | quick stop | fault | operation | switched | ready to  |
|                        | disabled  |            |       | enabled   | on       | switch on |
| Not ready to switch on | 0         | Х          | 0     | 0         | 0        | 0         |
| Switch on disabled     | 1         | Х          | 0     | 0         | 0        | 0         |
| Ready to switch on     | 0         | 1          | 0     | 0         | 0        | 1         |
| Switched on            | 0         | 1          | 0     | 0         | 1        | 1         |
| Operation enabled      | 0         | 1          | 0     | 1         | 1        | 1         |
| Fault                  | 0         | Х          | 1     | 0         | 0        | 0         |
| Fault reaction active  | 0         | Х          | 1     | 1         | 1        | 1         |
| Quick stop active      | 0         | 0          | 0     | 1         | 1        | 1         |

Bits marked by X are irrelevant

Description of the remaining bits in the status word

Bit 4: voltage enabled The DC-link voltage is present if this bit is set.

**Bit 7:** warning There are several possible reasons for Bit 7 being set and this warning being produced. The reason of a warning can be seen by the Error code of the Emergency message, which is sent on the bus caused by this warning.

**Bit 9:**The remote-bit is set by the telnet command FBUS.REMOTE. The default state is 1 indicating that the power stage shall be only controlled by the DS402 control word. For special actions via telnet like tuning or commutation finding, FBUS.REMOTEshall be set to 0 via telnet to inform the fieldbus master.

**Bit 10:** target\_reached This is set when the drive has reached the target position. In profile position mode the position window is set via MT.TPOSWND, in homing mode via HOME.TPOSWND.

**Bit 11**: internal\_limit\_active This bit specifies that a movement was or is limited. In different modes, different warnings cause the bit to be set. The following assignments exist:

| Mode of operation | Warnings which set Bit 11    |
|-------------------|------------------------------|
| all               | n04, n06, n07, n10, n11, n14 |
| 0x1 (PP), 0x88    | n03, n08, n09, n20           |

#### Mode-dependent bits in the status word

The following table shows the mode-dependent bits in the status word. The individual modes are set by "Object 6060h: Modes of Operation (DS402)" (→ p. 99).

| Operation mode                  | No. | Bit 12                                                                         | Bit 13          |
|---------------------------------|-----|--------------------------------------------------------------------------------|-----------------|
| Profile Position Mode (pp)      | 01h | setpoint acknowledge                                                           | following error |
| Homing Mode (hm)                | 06h | homing attained                                                                | homing error    |
| Interpolated Position Mode (ip) | 07h | ip mode active                                                                 | following error |
| Cyclic sync position Mode (csp) | 08h | This bit stays on 1 as long as the drive is following the position set-points. | following error |
| Cyclic sync velocity mode (csv) | 09h | This bit stays on 1 as long as the drive is following the position set-points. | reserved        |
| Cyclic sync torque mode (cst)   | 0ah | This bit stays on 1 as long as the drive is following the position set-points. | reserved        |

## 6.4.2.3 Object 605Ah: Quick stop option code (DS402)

This object defines the action, which is taken as quick stop function.

| Index         | 605Ah                  |
|---------------|------------------------|
| Name          | Quick stop option code |
| Object code   | VAR                    |
| Data type     | INTEGER16              |
| Category      | optional               |
| Access        | R/W                    |
| PDO mapping   | not possible           |
| Value range   | 1, 2, 5, 6             |
| Default value | 2                      |

## Supported codes:

| Bit | Description                                                      |
|-----|------------------------------------------------------------------|
| 1   | Slow down on slow down ramp and transit into Switch On Disabled  |
| 2   | Slow down on quick stop ramp and transit into Switch On Disabled |
| 5   | Slow down on slow down ramp and stay in Quick Stop Active        |
| 6   | Slow down on quick stop ramp and stay in Quick Stop Active       |

### 6.4.2.4 Object 6060h: Modes of Operation (DS402)

This object is used to set the mode, which can be read out by Object 6061h. Two types of operating mode are used:

- manufacturer-specific operating modes
- operating modes as per CANopen drive profile DS402

These operating modes are defined in the CANopen drive profile DS402. After the mode has been changed, the corresponding setpoint must be set once more (for instance, the homing velocity in the mode homing\_setpoint). If the position or jogging mode is stored, then the Homing mode is set after a RESET of the drive.

NOTE

An operating mode only becomes valid when it can be read by Object 6061h.





#### **Automatic Start!**

Risk of death or serious injury for humans working in the machine. The drive could move unexpectedly. When the drive is enabled, a mode change is only permissible at zero speed.

- Never change the mode while the motor is running!
- Set the speed setpoint to 0 before changing over.

| Index         | 6060h                               |
|---------------|-------------------------------------|
| Name          | mode of operation                   |
| Object code   | VAR                                 |
| Data type     | INTEGER8                            |
| Category      | mandatory                           |
| Access        | R/W                                 |
| PDO mapping   | possible                            |
| Value range   | -3, -2, -1, 1, 3, 4, 6, 7, 8, 9, 10 |
| Default value | _                                   |

Supported modes (negative values are manufacturer specific modes):

| Value (hex) | Mode                             |
|-------------|----------------------------------|
| -3          | Electronic gearing mode          |
| -2          | Analog velocity mode             |
| -1          | Analog current mode              |
| 1           | Profile position mode            |
| 3           | Profile velocity mode            |
| 4           | Profile torque mode              |
| 6           | Homing mode                      |
| 7           | Interpolated position mode       |
| 8           | Cyclic synchronous position mode |
| 9           | Cyclic synchronous velocity mode |
| 10          | Cyclic synchronous torque mode   |

### 6.4.2.5 Object 6061h: Modes of Operation Display (DS402)

This object can be used to read the mode that is set by Object 6060h. An operating mode only becomes valid when it can be read by Object 6061h (see also Object 6060h).

| Index         | 6061h                               |
|---------------|-------------------------------------|
| Name          | mode of operation display           |
| Object code   | VAR                                 |
| Data type     | INTEGER8                            |
| Category      | mandatory                           |
| Access        | R/O                                 |
| PDO mapping   | possible                            |
| Value range   | -3, -2, -1, 1, 3, 4, 6, 7, 8, 9, 10 |
| Default value | _                                   |

### 6.5 Factor Groups (fg) (DS402)

The "factor groups" define the units of position-, velocity- and acceleration setpoints. These values are converted into drive-specific parameters.

Two types of scalings can be used depending on the configuration bit 4 in FBUS.PARAM05:

Scaling analog to Telnet. Then you should set the UNIT.PROTARY = 3, UNIT.VROTARY
 and

UNIT.ACCROTARY = 3.

2. Scaling only with DS402 - scaling factors independent of the scalings used via Telnet. Therefore use the settings via the objects 204C / 6091/6092.

NOTE

The drive parameters for the unit definitions should be set as follows:

UNIT.PROTARY= 3 (UNIT.PIN/UNIT.POUT)

UNIT.VROTARY = 3 (UNIT.PIN/UNIT.POUT/s)

UNIT.ACCROTARY = 3 (c UNIT.PIN/UNIT.POUT/s<sup>2</sup>)

#### 6.5.1 General Information

#### 6.5.1.1 Factors

You can convert between physical dimensions and sizes, and the internal units used in the device (increments). Several factors can be implemented. This chapter describes how these factors influence the system, how they are calculated and which data are necessary to build them.

#### 6.5.1.2 Relationship between Physical and Internal Units

The factors defined in the factor group set up a relationship between device-internal units (increments) and physical units.

The factors are the result of the calculation of two parameters called dimension index and notation index. The dimension index indicates the physical dimension, the notation index indicates the physical unit and a decimal exponent for the values. These factors are directly used to normalize the physical values.

The notation index can be used in two ways:

- For a unit with decimal scaling and notation index < 64, the notation index defines the exponent/decimal place of the unit.
- For a unit with non-decimal scaling and notation index > 64, the notation index defines the subindex of the physical dimension of the unit.

## 6.5.2 Objects for velocity scaling

### 6.5.2.1 Object 204Ch: PV Scaling Factor

This object shall indicate the configured numerator and denominator of the pv scaling factor. The pv scaling factor serves to modify the resolution or directing range of the specified setpoint. It is aso included in calculation of the vI velocity demand, and vI velocity actual value. It does not influence the velocity limit function and the ramp function. The value shall have no physical unit and shall be given in the range from -32 768 to +32 767, but the value of 0 shall not be used.

The velocity scaling factor is only active, when bit 4 of FBUS.PARAM05 is set to 1. Otherwise velocities are scaled as 1/1000 rpm.

| Index         | 204Ch                         |
|---------------|-------------------------------|
| Name          | pv scaling factor             |
| Object code   | ARRAY                         |
| Data type     | INTEGER32                     |
| Category      | optional                      |
| Subindex      | 0                             |
| Description   | highest sub-index supported   |
| Data type     | UNSIGNED8                     |
| Category      | mandatory                     |
| Access        | R/O                           |
| PDO mapping   | not possible                  |
| Value range   | 2                             |
| Default value | no                            |
| Subindex      | 1                             |
| Description   | pv scaling factor numerator   |
| Category      | optional                      |
| Access        | R/W                           |
| PDO mapping   | not possible                  |
| Value range   | INTEGER32                     |
| Default value | +1                            |
| Subindex      | 2                             |
| Description   | pv scaling factor denominator |
| Category      | optional                      |
| Access        | R/W                           |
| PDO mapping   | not possible                  |
| Value range   | INTEGER32                     |
| Default value | +1                            |
|               |                               |

## 6.5.3 Objects for position calculation

### 6.5.3.1 Object 608Fh: Position encoder resolution (DS402)

The position encoder resolution defines the ratio of encoder increments per motor revolution on the CANopen end. Encoder increments are set either directly by subindex 1 (only powers of 2 available) or implicit by writing to the parameter FB1.PSCALE.

| Index         | 608Fh                       |
|---------------|-----------------------------|
| Name          | Position encoder resolution |
| Object Code   | ARRAY                       |
| Data Type     | UNSIGNED 32                 |
| Category      | optional                    |
| Subindex      | 0                           |
| Name          | highest sub-index supported |
| Data type     | UNSIGNED8                   |
| Category      | mandatory                   |
| Access        | R/O                         |
| PDO Mapping   | not possible                |
| Value Range   | 2                           |
| Default Value | 2                           |
| Subindex      | 1                           |
| Name          | Encoder increments          |
| Category      | mandatory                   |
| Access        | R/W                         |
| PDO Mapping   | not possible                |
| Value Range   | UNSIGNED 32                 |
| Default Value | 2^20                        |
| Subindex      | 2                           |
| Name          | Motor revolutions           |
| Category      | mandatory                   |
| Access        | R/W                         |
| PDO Mapping   | not possible                |
| Value Range   | UNSIGNED 32                 |
| Default Value | 1                           |

### 6.5.3.2 Object 6091h: Gear Ratio (DS402)

The gear ratio defines the ratio of feed in position units per driving shaft revolutions. This includes the gear if present.

gear ratio = motor shaft revolutions / driving shaft revolutions

| Index       | 6091h       |
|-------------|-------------|
| Name        | Gear Ratio  |
| Object Code | ARRAY       |
| Data Type   | UNSIGNED 32 |
| Category    | optional    |
| Subindex    | 0           |

| Name          | highest sub-index supported |
|---------------|-----------------------------|
| Data type     | UNSIGNED8                   |
| Category      | mandatory                   |
| Access        | R/O                         |
| PDO Mapping   | not possible                |
| Value Range   | 2                           |
| Default Value | 2                           |
| Subindex      | 1                           |
| Name          | Motor revolution            |
| Category      | mandatory                   |
| Access        | R/W                         |
| PDO Mapping   | not possible                |
| Value Range   | UNSIGNED 32                 |
| Default Value | 1                           |
| Subindex      | 2                           |
| Name          | Shaft revolutions           |
| Category      | mandatory                   |
| Access        | R/W                         |
| PDO Mapping   | not possible                |
| Value Range   | UNSIGNED 32                 |
| Default Value | 1                           |

## 6.5.3.3 Object 6092h: Feed constant (DS402)

The feed constant defines the ratio of feed in position units per driving shaft revolutions. This includes the gear if present.

| •                           |
|-----------------------------|
| 6092h                       |
| Feed constant               |
| ARRAY                       |
| UNSIGNED 32                 |
| optional                    |
| 0                           |
| highest sub-index supported |
| UNSIGNED8                   |
| mandatory                   |
| R/O                         |
| not possible                |
| 2                           |
| 2                           |
| 1                           |
| Feed                        |
| mandatory                   |
| R/W                         |
| not possible                |
| UNSIGNED 32                 |
| 1                           |
| 2                           |
| Shaft revolutions           |
| mandatory                   |
| R/W                         |
| not possible                |
| UNSIGNED 32                 |
| 1                           |
|                             |

## 6.5.4 Objects for additional feedback sensor systems

The AKD supports additional sensors for position control / surveillance.

### 6.5.4.1 Object 60E9h: Additional feed constant – feed

This object provides the feed for the additional feed constant calculation. This object shall be used with the corresponding subindex of the object 60EEh (driving shaft revolutions for the additional feed constant calculation). The value of the object 60E4h is calculated analog to the feed constant calculation for the actual position 6064h via object 6092h.

| Index         | 60E9h                               |
|---------------|-------------------------------------|
| Name          | Additional feed constant – feed     |
| Object code   | ARRAY                               |
| Data type     | UNSIGNED32                          |
| Category      | optional                            |
| Subindex      | 0                                   |
| Description   | highest sub-index supported         |
| Category      | mandatory                           |
| Access        | R/O                                 |
| PDO mapping   | not possible                        |
| Value range   | 3                                   |
| Default value | 3                                   |
| Subindex      | 1                                   |
| Description   | 1st additional feed constant – feed |
| Category      | mandatory                           |
| Access        | R/W                                 |
| PDO mapping   | not possible                        |
| Value range   | UNSIGNED32                          |
| Default value | 1                                   |
| Subindex      | 2                                   |
| Description   | 2nd additional feed constant – feed |
| Category      |                                     |
| Access        | R/W                                 |
| PDO mapping   | not possible                        |
| Value range   | UNSIGNED32                          |
| Default value | 1                                   |
| Subindex      | 3                                   |
| Description   | 3rd additional feed constant – feed |
| Category      | optional                            |
| Access        | R/W                                 |
| PDO mapping   | not possible                        |
| Value range   | UNSIGNED32                          |
| Default value | 1                                   |

### 6.5.4.2 Object 60EEh: Additional feed constant - driving shaft revolutions

This object provides the driving shaft revolutions for the additional feed constant calculation. This object shall be used with the corresponding subindex of the object 60E9h (feed for the additional feed constant calculation). The value of the object 60E4h is calculated analog to the feed constant calculation for the actual position 6064h via object 6092h.

| Index         | 60EEh                                                    |
|---------------|----------------------------------------------------------|
| Name          | Additional feed constant - driving shaft revolutions     |
| Object code   | ARRAY                                                    |
| Data type     | UNSIGNED32                                               |
| Category      | optional                                                 |
| Subindex      | 0                                                        |
| Description   | highest sub-index supported                              |
| Category      | mandatory                                                |
| Access        | R/O                                                      |
| PDO mapping   | not possible                                             |
| Value range   | 3                                                        |
| Default value | 3                                                        |
| Subindex      | 1                                                        |
| Description   | 1st additional feed constant – driving shaft revolutions |
| Category      | mandatory                                                |
| Access        | R/W                                                      |
| PDO mapping   | not possible                                             |
| Value range   | UNSIGNED32                                               |
| Default value | 1                                                        |
| Subindex      | 2                                                        |
| Description   | 2nd additional feed constant – driving shaft revolutions |
| Category      |                                                          |
| Access        | R/W                                                      |
| PDO mapping   | not possible                                             |
| Value range   | UNSIGNED32                                               |
| Default value | 1                                                        |
| Subindex      | 3                                                        |
| Description   | 3rd additional feed constant – driving shaft revolutions |
| Category      | optional                                                 |
| Access        | R/W                                                      |
| PDO mapping   | not possible                                             |
| Value range   | UNSIGNED32                                               |
| Default value | 1                                                        |

### 6.5.4.3 Object 60E8h: Additional gear ratio – motor shaft revolutions

This object provides the motor shaft revolutions for the additional gear ratio calculation. This object shall be used with the corresponding subindex of the object 60EDh (driving shaft revolutions for the additional gear ratio calculation). The value of the object 60E4h is calculated analog to the gear ration calculation for the actual position 6064h via object 6091h.

| COLOP                                           |
|-------------------------------------------------|
| 60E8h                                           |
| Additional gear ratio – motor shaft revolutions |
| ARRAY                                           |
| UNSIGNED32                                      |
| optional                                        |
| 0                                               |
| highest sub-index supported                     |
| mandatory                                       |
| R/O                                             |
| not possible                                    |
| 3                                               |
| 3                                               |
| 1                                               |
| 1st additional gear ratio - motor shaft         |
| mandatory                                       |
| R/W                                             |
| not possible                                    |
| UNSIGNED32                                      |
| 1                                               |
| 2                                               |
| 2nd additional gear ratio - motor shaft         |
|                                                 |
| R/W                                             |
| not possible                                    |
| UNSIGNED32                                      |
| 1                                               |
| 3                                               |
| 3rd additional gear ratio - motor shaft         |
| optional                                        |
| R/W                                             |
| not possible                                    |
| UNSIGNED32                                      |
| 1                                               |
|                                                 |

### 6.5.4.4 Object 60EDh: Additional gear ratio – driving shaft revolutions

This object provides the driving shaft revolutions for the additional gear ratio calculation. This object shall be used with the corresponding subindex of the object 60E8h (motor shaft revolutions for the additional gear ratio calculation). The value of the object 60E4h is calculated analog to the gear ration calculation for the actual position 6064h via object 6091h.

|               | <u> </u>                                          |
|---------------|---------------------------------------------------|
| Index         | 60EDh                                             |
| Name          | Additional gear ratio – driving shaft revolutions |
| Object code   | ARRAY                                             |
| Data type     | UNSIGNED32                                        |
| Category      | optional                                          |
| Subindex      | 0                                                 |
| Description   | highest sub-index supported                       |
| Category      | mandatory                                         |
| Access        | R/O                                               |
| PDO mapping   | not possible                                      |
| Value range   | 3                                                 |
| Default value | 3                                                 |
| Subindex      | 1                                                 |
| Description   | 1st additional gear ratio - driving shaft         |
| Category      | mandatory                                         |
| Access        | R/W                                               |
| PDO mapping   | not possible                                      |
| Value range   | UNSIGNED32                                        |
| Default value | 1                                                 |
| Subindex      | 2                                                 |
| Description   | 2nd additional gear ratio - driving shaft         |
| Category      |                                                   |
| Access        | R/W                                               |
| PDO mapping   | not possible                                      |
| Value range   | UNSIGNED32                                        |
| Default value | 1                                                 |
| Subindex      | 3                                                 |
| Description   | 3rd additional gear ratio - driving shaft         |
| Category      | optional                                          |
| Access        | R/W                                               |
| PDO mapping   | not possible                                      |
| Value range   | UNSIGNED32                                        |
| Default value | 1                                                 |
|               | <u> </u>                                          |

### 6.5.4.5 Object 60E4h: Additional position actual value

This object provides the additional position actual values. The values are given in user-defined position units. The value is calculated analog to the calculation for the actual position 6064h via object 6091h and 6092h, but for this with the factors given by the objects 60E8h, 60E9h, 60EDh and 60EEh.

| 60E4h                                |
|--------------------------------------|
| Additional position actual value     |
| ARRAY                                |
| INTEGER32                            |
| optional                             |
| 0                                    |
| highest sub-index supported          |
| mandatory                            |
| R/O                                  |
| not possible                         |
| 3                                    |
| 3                                    |
| 1                                    |
| 1st additional position actual value |
| mandatory                            |
| R/W                                  |
| not possible                         |
| INTEGER32                            |
| 1                                    |
| 2                                    |
| 2nd additional position actual value |
|                                      |
| R/W                                  |
| not possible                         |
| INTEGER32                            |
| 1                                    |
| 3                                    |
| 3rd additional position actual value |
| optional                             |
| R/W                                  |
| not possible                         |
| INTEGER32                            |
| 0                                    |
|                                      |

## 6.6 Profile Velocity Mode (pv) (DS402)

### 6.6.1 General Information

The profile velocity mode enables the processing of velocity setpoints and the associated accelerations.

## 6.6.1.1 Objects that are defined in this section

| Index | Object | Name                  | Туре      | Access |
|-------|--------|-----------------------|-----------|--------|
| 606Ch | VAR    | velocity actual value | INTEGER32 | R/O    |
| 60FFh | VAR    | target velocity       | INTEGER32 | R/W    |

## 6.6.1.2 Objects that are defined in other sections

| Index | Object | Name                   | Туре       | Section               |
|-------|--------|------------------------|------------|-----------------------|
| 6040h | VAR    | control word           | INTEGER16  | dc (→ p. 95)          |
| 6041h | VAR    | status word            | UNSIGNED16 | dc (→ p. 96)          |
| 6063h | VAR    | position actual value* | INTEGER32  | pc ( <b>→</b> p. 115) |
| 6083h | VAR    | profile acceleration   | UNSIGNED32 | pp (→ p. 129)         |
| 6084h | VAR    | profile deceleration   | UNSIGNED32 | pp (→ p. 129)         |

## 6.6.2 Object description

# 6.6.2.1 Object 606Ch: Velocity actual value (DS402)

The object velocity actual value represents the actual speed.

| Index         | 606Ch                                                      |
|---------------|------------------------------------------------------------|
| Name          | velocity actual value, VL.FB                               |
| Object code   | VAR                                                        |
| Data type     | INTEGER32                                                  |
| Mode          | pv                                                         |
| Access        | R/O                                                        |
| PDO mapping   | possible                                                   |
| Unit          | velocity units (SDO is in user units and the PDO is in RPM |
| Value range   | (-2 <sup>31</sup> ) to (2 <sup>31</sup> -1)                |
| Default value | _                                                          |
| Float scaling | 1000:1                                                     |
| EEPROM        | no                                                         |

### 6.6.2.2 Object 60FFh: Target velocity (DS402)

The speed setpoint (target velocity) represents the setpoint for the ramp generator.

| Index         | 60FFh                                       |
|---------------|---------------------------------------------|
| Name          | target velocity, VL.CMDU                    |
| Object code   | VAR                                         |
| Data type     | INTEGER32                                   |
| Mode          | pv                                          |
| Access        | R/W                                         |
| PDO mapping   | possible                                    |
| Unit          | increments                                  |
| Value range   | (-2 <sup>31</sup> ) to (2 <sup>31</sup> -1) |
| Default value | -                                           |
| Float scaling | 1000:1                                      |
| EEPROM        | no                                          |

## 6.7 Profile Torque Mode (tq) (DS402)

#### 6.7.1 General Information

The profile torque mode enables the processing of torque setpoints and the associated current

#### 6.7.1.1 Objects that are defined in this section

| Index | Object | Name                 | Туре       | Access |
|-------|--------|----------------------|------------|--------|
| 2071h | VAR    | Target current       | INTEGER32  | R/W    |
| 2077h | VAR    | Current actual value | INTEGER32  | R/O    |
| 207fh | VAR    | Maximum velocity     | UNSIGNED32 | R/W    |
| 6071h | VAR    | Target torque        | INTEGER16  | R/W    |
| 6073h | VAR    | Max current          | UNSIGNED16 | R/W    |
| 6077h | VAR    | Torque actual value  | INTEGER16  | R/O    |
| 6087h | VAR    | Torque slope         | UNSIGNED32 | R/W    |

## 6.7.1.2 Objects that are defined in other sections

None.

### 6.7.2 Object description

### 6.7.2.1 Object 2071h: Target Current

This parameter can be used alternatively to the DS402 parameter 6071h and is the input to the torque controller. The value is scaled in mA (milli Amperes).

| Index       | 2071h          |
|-------------|----------------|
| Name        | Target current |
| Object code | VAR            |
| Data type   | INTEGER 32     |
| Category    | optional       |
| Access      | RW             |

| PDO mapping   | possible                             |
|---------------|--------------------------------------|
| Value range   | depends on DRV.IPEAK and MOTOR.IPEAK |
| Default value | 0                                    |

## 6.7.2.2 Object 2077h: Current Actual Value

This parameter can be used alternatively to the DS402 parameter 6077h. The value is scaled in mA (milli Amperes).

| Index         | 2077h                                |
|---------------|--------------------------------------|
| Name          | Current actual value                 |
| Object code   | VAR                                  |
| Data type     | INTEGER 32                           |
| Category      | optional                             |
| Access        | RO                                   |
| PDO mapping   | possible                             |
| Value range   | depends on DRV.IPEAK and MOTOR.IPEAK |
| Default value | 0                                    |

## 6.7.2.3 Object 6071h: Target torque (DS402)

This parameter is the input value for the torque controller in profile torque mode and the value is given per thousand (1‰) of rated torque.

| Index         | 6071h                                   |
|---------------|-----------------------------------------|
| Name          | Target torque                           |
| Object code   | VAR                                     |
| Data type     | INTEGER16                               |
| Category      | conditional; mandatory, if tq supported |
| Access        | R/W                                     |
| PDO mapping   | possible                                |
| Value range   | INTEGER16                               |
| Default value | 0                                       |

### 6.7.2.4 Object 6073h: Max current (DS402)

This value represents the maximum permissible torque creating current in the motor and is given per thousand (1‰) of rated current.

| Index         | 6073h        |
|---------------|--------------|
| Name          | Max current  |
| Object code   | VAR          |
| Data type     | UNSIGNED16   |
| Category      | optional     |
| Access        | R/W          |
| PDO mapping   | not possible |
| Value range   | UNSIGNED16   |
| Default value | 0            |

### 6.7.2.5 Object 6077h: Torque actual value (DS402)

The torque actual value corresponds to the instantaneous torque in the drive motor. The value is given per thousand (1‰) of rated torque. This object reflects the actual current (DRV.ICONT).

| Index         | 6077h               |
|---------------|---------------------|
| Name          | Torque actual value |
| Object code   | VAR                 |
| Data type     | INTEGER16           |
| Category      | optional            |
| Access        | R/O                 |
| PDO mapping   | possible            |
| Value range   | INTEGER16           |
| Default value | 0                   |

#### 6.7.2.6 Object 6087h Torque slope (DS402)

This object defines the rate of change of torque. The value is given in units of per thousand of rated torque per second. The minimum rate settable for the AKD is equivalent to the value of DRV.ICONT (= 1000 per mille) per  $\sim 420 \text{ milliseconds}$  equivalent to a value of  $\sim 2385 \text{ per mille}$  / second.

| Index         | 6087h                         |
|---------------|-------------------------------|
| Name          | Torque slope                  |
| Object code   | VAR                           |
| Data type     | UNSIGNED32                    |
| Category      | mandatory, if tq is supported |
| Access        | R/W                           |
| PDO mapping   | possible                      |
| Value range   | UNSIGNED32                    |
| Default value | -                             |

### 6.7.2.7 Object 60E0h: Positive Torque Limit Value

The object gives the configured maximum motor torque in positive direction. The value is given per thousand (1 ‰) of rated torque.

| Index         | 60E0h                                             |
|---------------|---------------------------------------------------|
| Name          | Positive Torque Limit Value                       |
| Object code   | Variable                                          |
| Data type     | UINTEGER16                                        |
| Category      | optional                                          |
| Access        | R/O                                               |
| PDO Mapping   | yes                                               |
| Value range   | UINTEGER16 (limited by DRV.IPEAK and MOTOR.IPEAK) |
| Default value | 0                                                 |

### 6.7.2.8 Object 60E1h: Negative Torque Limit Value

The object gives the configured maximum motor torque in negative direction. The value is given per thousand (1 ‰) of rated torque.

| Index | 60E1h |
|-------|-------|

| Name          | Negative Torque Limit Value                       |
|---------------|---------------------------------------------------|
| Object code   | Variable                                          |
| Data type     | UINTEGER16                                        |
| Category      | optional                                          |
| Access        | R/O                                               |
| PDO Mapping   | yes                                               |
| Value range   | UINTEGER16 (limited by DRV.IPEAK and MOTOR.IPEAK) |
| Default value | 0                                                 |

## 6.8 Position Control Function (pc) (DS402)

#### 6.8.1 General Information

This section describes the actual position values that are associated with the position controller of the drive. They are used for the profile position mode.

## 6.8.1.1 Objects that are defined in this section

| Index | Object | Name                           | Туре       | Access |
|-------|--------|--------------------------------|------------|--------|
| 6063h | VAR    | position actual value*         | INTEGER32  | R      |
| 6064h | VAR    | position actual value          | INTEGER32  | R      |
| 6065h | VAR    | following error window         | UNSIGNED32 | R/W    |
| 60F4h | VAR    | following error actual value   | INTEGER32  | R      |
| 60FCh | VAR    | position demand internal value | INTEGER32  | R      |

## 6.8.1.2 Objects that are defined in other sections

| Index | Object | Name                    | Туре       | Section       |
|-------|--------|-------------------------|------------|---------------|
| 607Ah | VAR    | target position         | INTEGER32  | pp (→ p. 127) |
| 607Ch | VAR    | home-offset             | INTEGER32  | hm (→ p. 122) |
| 607Dh | ARRAY  | software position limit | INTEGER32  | pp (→ p. 128) |
| 6040h | VAR    | control word            | INTEGER16  | dc (→ p. 95)  |
| 6041h | VAR    | status word             | UNSIGNED16 | dc (→ p. 96)  |

## 6.8.2 Object Description

### 6.8.2.1 Object 6063h: position actual value\* (DS402)

The object position actual value provides the momentary actual position in increments. If FB1.EXTENDEDMULTITURN is configured, the saved extended multiturn position will be returned

The resolution is defined with Object 608F as power-of-two number.

| Index         | 6063h                                          |
|---------------|------------------------------------------------|
| Name          | position actual value                          |
| Object code   | VAR                                            |
| Data type     | INTEGER32                                      |
| Mode          | pc, pp                                         |
| Access        | R/W                                            |
| PDO mapping   | possible                                       |
| Unit          | increments (1 turn = 2 <sup>FB1.PSCALE</sup> ) |
| Value range   | (-2 <sup>31</sup> ) to (2 <sup>31</sup> -1)    |
| Default value | 2 <sup>20</sup>                                |
| EEPROM        | no                                             |

#### 6.8.2.2 Object 6064h: position actual value (DS402)

The object position actual value provides the actual position (PL.FB). If FB1.EXTENDEDMULTITURN is configured, the saved extended multiturn position will be returned. The resolution can be altered by the gearing factors of the position controller (Object 6091/6092).

| Index         | 6064h                                       |
|---------------|---------------------------------------------|
| Name          | position actual value, PL.FB                |
| Object code   | VAR                                         |
| Data type     | INTEGER32                                   |
| Mode          | pp, csp                                     |
| Access        | R/W                                         |
| PDO mapping   | possible                                    |
| Unit          | position units                              |
| Value range   | (-2 <sup>31</sup> ) to (2 <sup>31</sup> -1) |
| Default value | <u> </u>                                    |
| EEPROM        | no                                          |

## 6.8.2.3 Object 6065h: Following error window

The following error window defines a range of tolerated position values symmetrically to the position demand value. A following error might occur when a drive is blocked, unreachable profile velocity occurs, or at wrong closed loop coefficients. If the value of the following error window is 0, the following control is switched off.

| Index         | 6065h                  |
|---------------|------------------------|
| Name          | Following error window |
| Object code   | VAR                    |
| Data type     | UNSIGNED32             |
| Category      | optional               |
| Access        | R/W                    |
| PDO mapping   | not possible           |
| Value range   | UNSIGNED32             |
| Default value | 0                      |

## 6.8.2.4 Object 60F4h: Following error actual value (DS402)

This object returns the current value of the following error in units defined by the user.

| Index         | 60F4h                        |
|---------------|------------------------------|
| Name          | Following error actual value |
| Object code   | VAR                          |
| Data type     | Integer32                    |
| Category      | optional                     |
| Access        | R/O                          |
| PDO mapping   | possible                     |
| Value range   | INTEGER32                    |
| Default value | 0                            |

### 6.8.2.5 Object 60FCh: Position demand internal value (DS402)

This object provides the output of the trajectory generator in position modes. The value is consistent in scaling to the actual internal position value (6063h) and the first setpoint in object 60C1h.

| Index         | 60FCh                          |
|---------------|--------------------------------|
| Name          | Position demand internal value |
| Object code   | VAR                            |
| Data type     | INTEGER32                      |
| Category      | optional                       |
| Access        | R/O                            |
| PDO mapping   | possible                       |
| Value range   | INTEGER32                      |
| Default value | 0                              |

## 6.9 Interpolated Position Mode (ip) (DS402)

#### 6.9.1 General information

The interpolated position mode is implemented in a simple, straightforward way. Single position setpoints must be transmitted in the interpolation time period and are taken over on every defined SYNC - telegram sent. A linear interpolation is used between the setpoints. Examples can be found from page → p. 173.

#### 6.9.1.1 Objects defined in this section

| Index | Object | Name                                    | Туре                                    | Access |
|-------|--------|-----------------------------------------|-----------------------------------------|--------|
| 60C0h | VAR    | Interpolation sub mode select           | INTEGER16                               | R/W    |
| 60C1h | ARRAY  | Interpolation data record               | INTEGER32                               | R/W    |
| 60C2h | RECORD | Interpolation time period               | Interpolation time period               | R/W    |
| 60C4h | RECORD | Interpolation data configuration record | Interpolation data configuration record | R/W    |

## 6.9.2 Object description

## 6.9.2.1 Object 60C0h: Interpolation sub mode select

In the AKD, linear interpolation between position setpoints is supported.

| Index         | 60C0h                         |
|---------------|-------------------------------|
| Name          | Interpolation sub mode select |
| Object code   | VAR                           |
| Data type     | INTEGER16                     |
| Category      | optional                      |
| Access        | R/W                           |
| PDO mapping   | not possible                  |
| Value range   | 0                             |
| Default value | 0                             |

### Value description

| Value(decimal) | Description                                |
|----------------|--------------------------------------------|
| 0              | Linear interpolation with a constant time. |

### 6.9.2.2 Object 60C1h: Interpolation data record

In the AKD, a single setpoint (target position, Subindex 1) is supported for the linear interpolation. After the last item of an interpolation data record is written to the devices input buffer, the buffer pointer is automatically incremented to the next buffer.

| Index         | 60C1h                                                                                  |
|---------------|----------------------------------------------------------------------------------------|
| Name          | Interpolation data record                                                              |
| Object code   | ARRAY                                                                                  |
| Data type     | INTEGER32                                                                              |
| Category      | optional                                                                               |
| Subindex      | 0                                                                                      |
| Description   | highest sub-index supported                                                            |
| Data type     | UNSIGNED8                                                                              |
| Category      | mandatory                                                                              |
| Access        | R/O                                                                                    |
| PDO mapping   | not possible                                                                           |
| Value range   | 1                                                                                      |
| Default value | 1                                                                                      |
| Subindex      | 1                                                                                      |
| Description   | Interpolation target position in counts, the first parameter of interpolation function |
| Category      | mandatory                                                                              |
| Access        | R/W                                                                                    |
| PDO mapping   | possible                                                                               |
| Value range   | INTEGER32                                                                              |
| Default value | no                                                                                     |

### NOTE

A set-point value of the Interpolation data record is only taken, if beside the state machine state "Operation Enable"also the bit 4 of the DS402 controlword (Enable Interpolation, see "Object 6040h: Control word (DS402)" ( $\rightarrow$  p. 95)) is set.

### 6.9.2.3 Object 60C2h: Interpolation time period

The interpolation time period is used for the PLL (phase locked loop) synchronized position modes. The unit (subindex 1) of the time is given in 10interpolation time index seconds. Only multiples of 1 ms are allowed. The two values define the internal AKD parameter FBUS.SAMPLEPERIOD (given in multiples of 62.5 Mikroseconds). Both values must be written to set a new interpolation time period. FBUS.SAMPLEPERIOD will only be updated then.

| 60C2h                                          |
|------------------------------------------------|
| Interpolation time period                      |
| RECORD                                         |
| Interpolation time period record (0080h)       |
| optional                                       |
| 0                                              |
| highest sub-index supported, FBUS.SAMPLEPERIOD |
| mandatory                                      |
| R/O                                            |
| not possible                                   |
| 2                                              |
| 2                                              |
| 1                                              |
| Interpolation time units                       |
| mandatory                                      |
| R/W                                            |
| not possible                                   |
| UNSIGNED8                                      |
| 2                                              |
| 2                                              |
| Interpolation time index                       |
| mandatory                                      |
| R/W                                            |
| not possible                                   |
| INTEGER8                                       |
| -3                                             |
|                                                |

# 6.9.2.4 Object 60C4h: Interpolation data configuration

In the AKD, for linear interpolation, only the value 1 in Subindex 5 is possible.

| Index         | 60C4h                                           |  |
|---------------|-------------------------------------------------|--|
| Name          | Interpolation data configuration                |  |
| Object code   | RECORD                                          |  |
| Data type     | Interpolation data configuration record (0081h) |  |
| Category      | optional                                        |  |
| Subindex      | 0                                               |  |
| Description   | highest sub-index supported                     |  |
| Category      | mandatory                                       |  |
| Access        | R/O                                             |  |
| PDO mapping   | not possible                                    |  |
| Value range   | 6                                               |  |
| Default value | 6                                               |  |
| Subindex      | 1                                               |  |
| Description   | Maximum buffer size                             |  |
| Category      | mandatory                                       |  |
| Access        | R/O                                             |  |
| PDO mapping   | not possible                                    |  |
| Value range   | UNSIGNED32                                      |  |
| Default value | 10                                              |  |
| Subindex      | 2                                               |  |
| Description   | Actual buffer size                              |  |
| Category      | mandatory                                       |  |
| Access        | R/O                                             |  |
| PDO mapping   | possible                                        |  |
| Value range   | 0 to 9                                          |  |
| Default value | 9                                               |  |
| Subindex      | 3                                               |  |
| Description   | Buffer organization                             |  |
| Category      | mandatory                                       |  |
| Access        | R/W                                             |  |
| PDO mapping   | not possible                                    |  |
| Value range   | UNSIGND8                                        |  |
| Default value | 0                                               |  |

| Subindex      | 4                   |
|---------------|---------------------|
| Description   | Buffer position     |
| Category      | mandatory           |
| Access        | R/W                 |
| PDO mapping   | not possible        |
| Value range   | UNSIGNED16          |
| Default value | 0                   |
| Subindex      | 5                   |
| Description   | Size of data record |
| Category      | mandatory           |
| Access        | W                   |
| PDO mapping   | not possible        |
| Value range   | 1 to 254            |
| Default value | 1                   |
| Subindex      | 6                   |
| Description   | Buffer clear        |
| Category      | mandatory           |
| Access        | W                   |
| PDO mapping   | not possible        |
| Value range   | UNSIGNED8           |
| Default value | 0                   |

## 6.10 Homing Mode (hm) (DS402)

#### 6.10.1 General information

This section describes the various parameters which are required to define a homing mode.

### 6.10.1.1 Objects that are defined in this section

| Index | Object | Name                                     | Туре       | Access |
|-------|--------|------------------------------------------|------------|--------|
| 607Ch | VAR    | HOME.P: home offset                      | INTEGER32  | R/W    |
| 6098h | VAR    | HOME.MODE, HOME.DIR:homing method        | INTEGER8   | R/W    |
| 6099h | ARRAY  | HOME.V: homing speeds                    | UNSIGNED32 | R/W    |
| 609Ah | VAR    | HOME.ACC, HOME.DEC: homing accel./decel. | UNSIGNED32 | R/W    |

## 6.10.1.2 Objects that are defined in other sections

| Index | Object | Name         | Туре       | Section      |
|-------|--------|--------------|------------|--------------|
| 6040h | VAR    | control word | INTEGER16  | dc (→ p. 95) |
| 6041h | VAR    | status word  | UNSIGNED16 | dc (→ p. 96) |

## 6.10.2 Object Description

## 6.10.2.1 Object 607Ch: Homing offset (DS402)

The reference offset (home offset) is the difference between the zero position for the application and the zero point of the machine. All subsequent absolute motion tasks take account of the reference offset.

| Index              | 607Ch               |
|--------------------|---------------------|
| Name               | home offset, HOME.P |
| Object code        | VAR                 |
| Data type          | INTEGER32           |
| Mode               | hm                  |
|                    |                     |
| Access             | R/W                 |
| Access PDO mapping | R/W not possible    |
|                    | · ·                 |
| PDO mapping        | not possible        |

## 6.10.2.2 Object 6098h: Homing method (DS402)

| Index         | 6098h                              |
|---------------|------------------------------------|
| Name          | homing method, HOME.MODE, HOME.DIR |
| Object code   | VAR                                |
| Data type     | INTEGER8                           |
| Mode          | hm                                 |
| Access        | R/W                                |
| PDO mapping   | not possible                       |
| Unit          | position units                     |
| Value range   | -128 to 127                        |
| Default value | 0                                  |

### Description of the homing methods

Choosing a homing method by writing a value to homing method (Object 6098h) will clearly establish:

- the homing signal (P-Stop, N-Stop, reference switch)
- the direction of actuation

and where appropriate

• the position of the index pulse.

The reference position is give by the reference offset (Object 607Ch).

A detailed description of the types of homing movement can be found in the description of WorkBench.

The following homing methods are supported:

| The following florting flethous are supported. |                                                                                                                                                     |                                       |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Method as per DS402                            | Brief description: Homing                                                                                                                           | command                               |  |
| -128 to -8                                     | reserved                                                                                                                                            | _                                     |  |
| -7                                             | , , ,                                                                                                                                               | HOME.MODE=18,<br>HOME.DIR=0           |  |
| -6                                             |                                                                                                                                                     | HOME.MODE=18,<br>HOME.DIR = 1         |  |
| -5                                             | set reference point at actual position and store value in NVRAM                                                                                     | HOME.MODE=17,<br>HOME.DIR not changed |  |
| -4                                             | find reference switch with fast velocity (6099h sub1) and home on reference switch with low velocity (6099h sub 2), positive count direction        | HOME.MODE=16,<br>HOME.DIR=0           |  |
| -3                                             | find reference switch with fast velocity (6099h sub<br>1) and home on reference switch with low velocity<br>(6099h sub 2), negative count direction | HOME.MODE=16,<br>HOME.DIR=0           |  |
| -2 to -1                                       | reserved                                                                                                                                            | _                                     |  |
| 0                                              | reserved                                                                                                                                            | _                                     |  |
| 1                                              | homing to negative limit switch, with zeroing, negative count direction                                                                             | HOME.MODE=2,<br>HOME.DIR=0            |  |
| 2                                              | homing to positive limit switch, with zeroing, positive count direction                                                                             | HOME.MODE=2,<br>HOME.DIR=1            |  |
| 3 to 7                                         | not supported                                                                                                                                       | _                                     |  |
| 8                                              | homing to reference switch, with zeroing, positive count direction                                                                                  | HOME.MODE=5,<br>HOME.DIR=1            |  |
| 9 to 11                                        | not supported                                                                                                                                       | _                                     |  |

| Method as per DS402 | Brief description: Homing                                                                                                   | command                      |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 12                  | homing to reference switch, with zeroing, negative count direction                                                          | HOME.MODE=5,<br>HOME.DIR=0   |
| 13 to 14            | not supported                                                                                                               | _                            |
| 15 to 16            | reserved                                                                                                                    | _                            |
| 17                  | homing to negative limit switch, without zeroing, negative count direction                                                  | HOME.MODE=1,<br>HOME.DIR=0   |
| 18                  | homing to negative limit switch, without zeroing, positive count direction                                                  | HOME.MODE=1,<br>HOME.DIR=1   |
| 19 to 23            | not supported                                                                                                               | -                            |
| 24                  | homing to reference switch, without zeroing, positive count direction                                                       | HOME.MODE=4,<br>HOME.DIR=1   |
| 25 to 27            | not supported                                                                                                               | _                            |
| 28                  | homing to reference switch, without zeroing, negative count direction                                                       | HOME.MODE=4,<br>HOME.DIR=0   |
| 29 to 30            | not supported                                                                                                               | _                            |
| 31 to 32            | reserved                                                                                                                    | -                            |
| 33                  | homing within a single turn, negative count direction. If the feedback has an index pulse, HOME.MODE 11 will be used.       | HOME.MODE=7,11<br>HOME.DIR=0 |
| 34                  | homing within a single turn, positive count direction.<br>If the feedback has an index pulse, HOME.MODE<br>11 will be used. | HOME.MODE=7,11<br>HOME.DIR=1 |
| 35                  | set reference point at present position                                                                                     | HOME.MODE=0,<br>HOME.DIR=0   |
| 36 to 127           | reserved                                                                                                                    |                              |

# 6.10.2.3 Object 6099h: Homing speeds (DS402)

| · ·           | Lancai                                      |
|---------------|---------------------------------------------|
| Index         | 6099h                                       |
| Name          | homing speeds                               |
| Object code   | ARRAY                                       |
| Data type     | UNSIGNED32                                  |
| Subindex      | 1                                           |
| Description   | speed during search for switch, HOME.V      |
| Mode          | hm                                          |
| Access        | R/W                                         |
| PDO mapping   | not possible                                |
| Unit          | velocity units                              |
| Value range   | 0 to (2 <sup>32</sup> -1)                   |
| Default value | equivalent 60 rpm                           |
| Subindex      | 2                                           |
| Description   | speed during search for zero, HOME.FEEDRATE |
| Mode          | hm                                          |
| Access        | R/W                                         |
| PDO mapping   | not possible                                |
| Unit          | velocity units                              |

| Value range   | 0 to (2 <sup>32</sup> -1) |
|---------------|---------------------------|
| Default value | 50% of Object 6099 sub 1  |

## 6.10.2.4 Object 609Ah: Homing acceleration (DS402)

| Index              | 609Ah               |
|--------------------|---------------------|
| Name               | homing acceleration |
| Object code        | VAR                 |
| Data type          | UNSIGNED32          |
| Mode               | hm                  |
|                    |                     |
| Access             | R/W                 |
| Access PDO mapping | R/W not possible    |
|                    |                     |
| PDO mapping        | not possible        |

### 6.10.2.5 Homing Mode Sequence

The homing movement is started by setting Bit 4 (positive edge). The successful conclusion is indicated by Bit 12 in the status word (" Object 6041h: Status word (DS402)" (→ p. 96)). Bit 13 indicates that an error occurred during the homing movement. In this case, the error code must be evaluated (error register: " Object 1001h: Error register (DS301)" (→ p. 48)," Object 1003h: Predefined Error Field (DS301)" (→ p. 50), manufacturer status: " Object 1002h: Manufacturer Status Register (DS301)" (→ p. 49)).

| Bit 4  | Meaning                         |
|--------|---------------------------------|
| 0      | homing inactive                 |
| 0 => 1 | start homing movement           |
| 1      | homing active                   |
| 1 => 0 | interruption of homing movement |

| Bit 13 | Bit 12 | Meaning                                                         |
|--------|--------|-----------------------------------------------------------------|
| 0      | 0      | reference point not set, or homing movement not yet finished    |
| 0      | 1      | reference point set, homing movement finished                   |
| 1      | 0      | homing movement could not be successfully concluded (lag error) |
| 1      | 1      | impermissible state                                             |

## 6.11 Profile Position Mode (DS402)

#### 6.11.1 General Information

The overall structure for this mode is shown in this figure:



The special handshake procedure for the control word and status word is described in "Functional Description" (→ p. 130)

#### 6.11.1.1 Objects that are defined in this section

| Index | Object | Name                    | Туре       | Access |
|-------|--------|-------------------------|------------|--------|
| 607Ah | VAR    | target position         | INTEGER32  | R/W    |
| 607Dh | ARRAY  | software position limit | INTEGER32  | R/W    |
| 6081h | VAR    | profile velocity        | UNSIGNED32 | R/W    |
| 6083h | VAR    | profile acceleration    | UNSIGNED32 | R/W    |
| 6084h | VAR    | profile deceleration    | UNSIGNED32 | R/W    |

#### 6.11.1.2 Objects that are defined in other sections

| ı | Index | Object | Name         | Type       | Section      |
|---|-------|--------|--------------|------------|--------------|
| ı | 6040h | VAR    | control word | INTEGER16  | dc (→ p. 95) |
| ı | 6041h | VAR    | status word  | UNSIGNED16 | dc (→ p. 96) |

### 6.11.2 Object Description

#### 6.11.2.1 Object 607Ah: Target position (DS402)

The object target position defines the target position for the drive. The target position is interpreted as a relative distance or an absolute position, depending on Bit 6 of the control word. The type of relative movement can be further defined by the manufacturer-specific parameter 35B9h Subindex 0. Other properties like following motion tasks can be set with this object as well. The mechanical resolution is set via the scaling objects 6091h and 6092h.

| Index         | 607Ah                                         |
|---------------|-----------------------------------------------|
| Name          | target position, MT.P                         |
| Object code   | VAR                                           |
| Data type     | INTEGER32                                     |
| Mode          | pp, csp                                       |
| Access        | R/W                                           |
| PDO mapping   | possible                                      |
| Unit          | user-defined                                  |
| Value range   | -(2 <sup>31</sup> -1) to (2 <sup>31</sup> -1) |
| Default value | ·                                             |

### 6.11.2.2 Object 607Dh: Software position limit (DS402)

Software position limit contains the sub-parameters min position limit and max position limit. New target positions are checked against these limits. The limits are relative to the machine home position, which is the result of homing (including the home offset (Object 607Ch)). As default the software position limits are switched off. Changed values must be saved and the drive must be restarted to take enable the new the software limits.

| Index         | 607Dh                                |
|---------------|--------------------------------------|
| Name          | Software position limit, SWLS.LIMIT0 |
| Object code   | ARRAY                                |
| Data type     | INTEGER32                            |
| Category      | optional                             |
| Subindex      | 0                                    |
| Description   | highest sub-index supported          |
| Category      | mandatory                            |
| Access        | R/O                                  |
| PDO mapping   | not possible                         |
| Value range   | 2                                    |
| Default value | 2                                    |
| Subindex      | 1                                    |
| Description   | min position limit 1, SWLS.LIMIT0    |
| Category      | mandatory                            |
| Access        | R/W                                  |
| PDO mapping   | not possible                         |
| Value range   | INTEGER32                            |
| Default value | 0 (switched off)                     |
| Subindex      | 2                                    |
| Description   | Min Position Limit 2, SWLS.LIMIT1    |
| Category      | mandatory                            |
| Access        | R/W                                  |
| PDO mapping   | not possible                         |
| Value range   | INTEGER32                            |
| Default value | 0 (switched off)                     |

## 6.11.2.3 Object 6081h: Profile velocity (DS402)

The profile velocity is the final velocity that should be reached after the acceleration phase of a motion task.

| Index         | 6081h                     |
|---------------|---------------------------|
| Name          | profile velocity, MT.V    |
| Object code   | VAR                       |
| Data type     | UNSIGNED32                |
| Mode          | pp                        |
| Access        | R/W                       |
| PDO mapping   | possible                  |
| Unit          | speed units               |
| Value range   | 0 to (2 <sup>32</sup> -1) |
| Default value | 10                        |

## 6.11.2.4 Object 6083h: Profile acceleration (DS402)

The acceleration ramp (profile acceleration) is given in units that are defined by the user (position units per s²). The position units are scaled via the objects 6091 and 6092. This object is connected to the AKD-parameter DRV.ACC in the Profile Velocity Mode and to the motion task parameter MT.ACC in all other modes.

| Index         | 6083h                                                           |
|---------------|-----------------------------------------------------------------|
| Name          | profile acceleration, MT.ACC (DRV.ACC in Profile Velocity Mode) |
| Object code   | VAR                                                             |
| Data type     | UNSIGNED32                                                      |
| Mode          | pp, pv                                                          |
| Access        | R/W                                                             |
| PDO mapping   | possible                                                        |
| Unit          | acceleration units                                              |
| Value range   | 0 to (2 <sup>32</sup> -1)                                       |
| Default value | 0                                                               |

#### 6.11.2.5 Object 6084h: Profile deceleration (DS402)

The braking/deceleration ramp is handled in the same way as the acceleration ramp (" Object 6083h: Profile acceleration (DS402)" (→ p. 129)).

| Index            | 6084h                                                           |
|------------------|-----------------------------------------------------------------|
| Name             | profile deceleration, MT.DEC (DRV.DEC in Profile Velocity Mode) |
| Object code      | VAR                                                             |
| Data type        | UNSIGNED32                                                      |
| Mode             | pp, pv                                                          |
| Access           | R/W                                                             |
|                  |                                                                 |
| PDO mapping      | possible                                                        |
| PDO mapping Unit | possible deceleration units                                     |
|                  | i i                                                             |

#### 6.11.2.6 Functional Description

Two different ways to apply target positions to a drive are supported by this device profile.

#### Set of setpoints:

After reaching the target\_position, the drive device immediately processes the next target position, which results in a move where the velocity of the drive normally is not reduced to zero after achieving a setpoint. With AKD, this is only possible if trapezoidal ramps are used.

#### Single setpoints:

After reaching the target\_position, the drive device signals this status to a host computer and then receives a new setpoint. After reaching a target\_position, the velocity is normally reduced to zero before starting a move to the next setpoint.

The two modes are controlled by the timing of the bits for new\_setpoint and change\_set\_immediately in the control word, and setpoint\_acknowledge in the status word. These bits allow the setting up of a request-response mechanism in order to prepare a set of setpoints while another set is still being processed in the drive unit. This minimizes reaction times within a control program on a host computer.



The figures show the difference between the set\_of\_setpoints mode and the single setpoint mode. The initial status of the bit change\_set\_immediately in the control word determines which mode is used. To keep these examples simple, only trapezoidal moves are used.

If the bit change\_set\_immediately is "0" a single setpoint is expected by the drive (1). After data is applied to the drive, a host signals that the data is valid by changing the bit new\_setpoint to "1" in the control word (2). The drive responds with setpoint\_acknowledge set to "1" in the status word (3) after it has recognized and buffered the new valid data. Now the host can release new\_setpoint (4) and subsequently the drive will signal through setpoint\_acknowledge = "0" its ability to accept new data again (5).

In the figure below this mechanism results in a velocity of zero after ramping down to reach a target\_position X1 at t1. After signaling to the host, that the setpoint has been reached as described above, the next target position is processed at t2 and reached at t3.



With change\_set\_immediately set to "1" (6), the host instructs the drive to apply a new set-point immediately after reaching the previous one. The relative timing of the other signals is unchanged. This behavior causes the drive to process the next setpoint X2 in advance, and to hold its velocity when it reaches the target\_position X1 at t1. The drive then moves immediately to the next target\_position X2 that has already been calculated.



| Bits in | the control word:             | Bits in the status word: |                      |  |  |  |
|---------|-------------------------------|--------------------------|----------------------|--|--|--|
| Bit 4   | new_setpoint (positive edge!) | Bit 12                   | setpoint acknowledge |  |  |  |
| Bit 5   | change_set_immediately        | Bit 13                   | lag/following error  |  |  |  |
| Bit 6   | absolute/relative             |                          |                      |  |  |  |

## Notes on motion task type relative:

If Bit 6 is set, then the motion task type is relative, and activated according to the last target position or actual position. If other types of relative motion are required, these must be activated in advance through the manufacture specific object 35B9h Subindex 0 (MT.CNTL).

#### Notes on profile position mode:

Functional description for the profile position mode

The drive profile DS402 distinguishes between two methods of moving to a target position. These two methods are controlled by the bits for new\_setpoint and change\_set\_immediately in the control word, and setpoint\_acknowledge in the status word. These bits can be used to prepare a motion task while another is still being carried out (handshake).

#### Moving to several target positions without an intermediate halt

After the target position has been reached, the drive moves immediately to the next target position. This requires that new setpoints are signaled to the drive. This is done through a positive transition of the new\_setpoint bit. In this case, the setpoint\_acknowledge bit must not be active (=1) in the status word (see also Handshake DS402).

The velocity is not reduced to zero when the first setpoint is reached.

#### Moving to a single target position

The drive moves to the target position, whereby the velocity is reduced to zero. Reaching the target position is signaled by the bit for target\_reached in the status word.

## 6.11.2.7 Object 60B1h: Velocity Offset

This object provides the offset of the velocity value in cyclic synchronous position mode. It is scaled via the object 204Ch.

| Index         | 60B1h           |
|---------------|-----------------|
| Name          | Velocity Offset |
| Object code   | VAR             |
| Data type     | INTEGER32       |
| Category      | optional        |
| Access        | R/W             |
| PDO mapping   | possible        |
| Value range   | INTEGER32       |
| Default value | 0               |

## 6.11.2.8 Object 60B2h: Torque Offset

This object (IL.BUSFF )provides the offset of the commanded torque from a bus network connected to the drive. Scaling is 1/1000 of rated torque.

| Index         | 60B2h         |
|---------------|---------------|
| Name          | Torque Offset |
| Object code   | VAR           |
| Data type     | INTEGER16     |
| Category      | optional      |
| Access        | R/O           |
| PDO mapping   | possible      |
| Value range   | INTEGER16     |
| Default value | 0             |

# 7 Appendix

## 7.1 Object Dictionary

The following tables describe all objects reachable via SDO or PDO. (i.p. = in preparation).

#### **Abbreviations:**

U = UNSIGNED RO = Read only
INT = INTEGER RW = Read and Write
VisStr = Visible String WO = Write only
const = Constant

## 7.1.1 Float Scaling

The scaling applied to objects which match floating-point parameters in WorkBench/Telnet are listed in the column "Float Scaling."

For example, index 607Ah is listed as 1:1 - this means that commanding a value of 1000 in SDO 607Ah is equivalent to entering MT.P 1000.000 in WorkBench. On the other hand, index 3598h is listed as 1000:1 - this means that commanding a value of 1000 in SDO 3598h is equivalent to entering IL.KP 1.000 in WorkBench.

A few parameters are listed as variable (var), because the scaling depends on other settings.

# 7.1.2 Effectiveness of PDO set-points

Some objects are having effect only in the state machine state "Operation Enabled", which is controlled by the DS402 control word. They are marked with an asterisk (\*) at the PDO mapping.

#### 7.1.3 Communication SDOs

| Index | Sub-    | Data   | Float | Access | PDO  | Description                                        | ASCII object |
|-------|---------|--------|-------|--------|------|----------------------------------------------------|--------------|
|       | index   | Type   | Scale |        | map. |                                                    |              |
| 1000h | 0       | U32    |       | RO     | no   | Device type                                        |              |
| 1001h | 0       | U8     |       | RO     | no   | Error register                                     |              |
| 1002h | 0       | U32    |       | RO     | yes  | Manufacturer-specific status register              | <u> </u>     |
| 1003h |         | ARRAY  |       |        |      | Pre-defined error field                            |              |
| 1003h | 0       | U8     |       | RW     | no   | Number of errors                                   | <u> </u>     |
| 1003h | 1 to 10 | U32    |       | RO     | no   | standard error field                               |              |
| 1005h | 0       | U32    |       | RW     | no   | COB—ID SYNC message                                | <u> </u>     |
| 1006h | 0       | U32    |       | RW     | no   | Communication cycle period                         | <u> </u>     |
| 1008h | 0       | VisStr | Ī     | const  | no   | Manufacturer device name                           | <u> </u>     |
| 1009h | 0       | VisStr | Ī     | const  | no   | Manufacturer hardware version                      | <u> </u>     |
| 100Ah | 0       | VisStr |       | const  | no   | Manufacturer software version                      |              |
| 100Ch | 0       | U16    |       | RW     | no   | Guard time                                         |              |
| 100Dh | 0       | U8     | Ī     | RW     | no   | Lifetime factor                                    | _            |
| 1010h |         | ARRAY  | Ī     |        |      | Save parameters                                    | _            |
| 1010h | 0       | U8     | ĺ     | RO     | no   | highest sub-index                                  | _            |
| 1010h | 1       | U32    |       | RW     | no   | Saves the drive parameters from the RAM to the NV. | DRV.NVSAVE   |
| 1011h |         | ARRAY  |       |        |      | Load parameters                                    | <u> </u>     |
| 1011h | 0       | U8     |       | RO     | no   | highest sub-index                                  | <u> </u>     |
| 1011h | 1       | U32    |       | RW     | no   | Loads default parameters to the RAM.               | DRV.RSTVAR   |

| Index | Sub-   | Data   | Float | Access |      | Description                                              | ASCII object |
|-------|--------|--------|-------|--------|------|----------------------------------------------------------|--------------|
| 40406 | index  | Туре   | Scale | D\A/   | map. | COD ID for the Times Of the series                       |              |
| 1012h | 0      | U32    |       | RW     | no   | COB—ID for the Time Stamp                                | <del> </del> |
| 1014h | 0      | U32    |       | RW     | no   | COB—ID for the Emergency Object  Consumer heartbeat time | <del> </del> |
| 1016h |        | RECORD |       | D0     |      |                                                          |              |
| 1016h | 0      | U8     |       | RO     | no   | highest sub-index                                        | <del> </del> |
| 1016h | 1      | U32    |       | RW     | no   | Consumer heartbeat time                                  |              |
| 1017h | 0      | U16    |       | RW     | no   | Producer heartbeat time                                  |              |
| 1018h |        | RECORD |       |        |      | Identity Object                                          | -            |
| 1018h | 0      | U8     |       | RO     | no   | highest sub-index                                        | -            |
| 1018h | 1      | U32    |       | RO     | no   | Vendor ID                                                | -            |
| 1018h | 2      | U32    |       | RO     | no   | Product Code                                             | -            |
| 1018h | 3      | U32    |       | RO     | no   | Revision number                                          | -            |
| 1018h | 4      | U32    |       | RO     | no   | Serial number                                            |              |
| 1026h |        | ARRAY  |       |        |      | OS prompt                                                | <u> -</u>    |
| 1026h | 0      | U8     |       | RO     | no   | highest sub-index                                        | <u> -</u>    |
| 1026h | 1      | U8     |       | WO     | no   | StdIn                                                    | <u> -</u>    |
| 1026h | 2      | U8     |       | RO     | no   | StdOut                                                   | <u> -</u>    |
| 1400h |        | RECORD |       |        |      | RXPDO1 communication parameter                           | <u> -</u>    |
| 1400h | 0      | U8     |       | RO     | no   | highest sub-index                                        | -            |
| 1400h | 1      | U32    |       | RW     | no   | RXPDO1 COB — ID                                          | -            |
| 1400h | 2      | U8     |       | RW     | no   | Transmission type RXPDO1                                 |              |
| 1401h |        | RECORD |       |        |      | RXPDO2 communication parameter                           | -            |
| 1401h | 0      | U8     |       | RO     | no   | highest sub-index                                        | <u> -</u>    |
| 1401h | 1      | U32    |       | RW     | no   | RXPDO2 COB—ID                                            |              |
| 1401h | 2      | U8     |       | RW     | no   | Transmission type RXPDO2                                 | <u> -</u>    |
| 1402h |        | RECORD |       |        |      | RXPDO3 communication parameter                           | <u> </u> -   |
| 1402h | 0      | U8     |       | RO     | no   | highest sub-index                                        | <u> -</u>    |
| 1402h | 1      | U32    |       | RW     | no   | RXPDO3 COB—ID                                            | <u> -</u>    |
| 1402h | 2      | U8     |       | RW     | no   | Transmission type RXPD03                                 |              |
| 1403h |        | RECORD |       |        |      | RXPDO4 communication parameter                           | -            |
| 1403h | 0      | U8     |       | RO     | no   | highest sub-index                                        | -            |
| 1403h | 1      | U32    |       | RW     | no   | RXPDO4 COB—ID                                            |              |
| 1403h | 2      | U8     |       | RW     | no   | Transmission type RXPDO4                                 | -            |
| 1600h |        | RECORD |       |        |      | RXPDO1 mapping parameter                                 |              |
| 1600h | 0      | U8     |       | RO     | no   | highest sub-index                                        | -            |
| 1600h | 1 to 8 | U32    |       | RW     | no   | Mapping for n—th application object                      |              |
| 1601h |        | RECORD |       |        |      | RXPDO2 mapping parameter                                 |              |
| 1601h | 0      | U8     |       | RO     | no   | highest sub-index                                        |              |
| 1601h | 1 to 8 | U32    |       | RW     | no   | Mapping for n—th application object                      |              |
| 1602h |        | RECORD |       |        |      | RXPDO3 mapping parameter                                 | <u> </u>     |
| 1602h | 0      | U8     |       | RO     | no   | highest sub-index                                        |              |
| 1602h | 1 to 8 | U32    |       | RW     | no   | Mapping for n—th application object                      | 1-           |
| 1603h |        | RECORD |       |        |      | RXPDO4 mapping parameter                                 | 1-           |
| 1603h | 0      | U8     |       | RO     | no   | highest sub-index                                        | 1-           |
| 1603h | 1 to 8 | U32    |       | RW     | no   | Mapping for n—th application object                      | 1_           |

| Index | Sub-   | Data   | Float | Access | PDO  | Description                          | ASCII object |
|-------|--------|--------|-------|--------|------|--------------------------------------|--------------|
|       | index  | Туре   | Scale |        | тар. |                                      |              |
| 1800h |        | RECORD |       |        |      | TXPDO1 communication parameter       | -            |
| 1800h | 0      | U8     |       | RO     | no   | highest sub-index                    | -            |
| 1800h | 1      | U32    |       | RW     | no   | TXPDO1 COB—ID                        | <u> -</u>    |
| 1800h | 2      | U8     |       | RW     | no   | Transmission type TXPDO1             | <u> -</u>    |
| 1800h | 3      | U16    |       | RW     | no   | Inhibit time                         | <u> </u>     |
| 1800h | 4      | U8     |       | const  | no   | reserved                             | <u> </u>     |
| 1800h | 5      | U16    |       | RW     | no   | Event timer                          | <u> </u>     |
| 1801h |        | RECORD |       |        |      | TXPDO2 communication parameter       | <u> -</u>    |
| 1801h | 0      | U8     |       | RO     | no   | highest sub-index                    | -            |
| 1801h | 1      | U32    |       | RW     | no   | TXPDO2 COB—ID                        | -            |
| 1801h | 2      | U8     |       | RW     | no   | Transmission type TXPDO2             |              |
| 1801h | 3      | U16    |       | RW     | no   | Inhibit time                         |              |
| 1801h | 4      | U8     |       | const  | no   | reserved                             |              |
| 1801h | 5      | U16    |       | RW     | no   | Event timer                          |              |
| 1802h |        | RECORD |       |        |      | TXPDO3 communication parameter       |              |
| 1802h | 0      | U8     |       | RO     | no   | highest sub-index                    |              |
| 1802h | 1      | U32    |       | RW     | no   | TXPDO3 COB—ID                        |              |
| 1802h | 2      | U8     |       | RW     | no   | Transmission type TXPDO3             | <u> </u>     |
| 1802h | 3      | U16    |       | RW     | no   | Inhibit time                         | <u> </u>     |
| 1802h | 4      | U8     |       | const  | no   | reserved                             | <u> </u>     |
| 1802h | 5      | U16    |       | RW     | no   | Event timer                          | <u> </u>     |
| 1803h |        | RECORD |       |        |      | TXPDO4 communication parameter       | <u> </u>     |
| 1803h | 0      | U8     |       | RO     | no   | highest sub-index                    | <u> </u>     |
| 1803h | 1      | U32    |       | RW     | no   | TXPDO4 COB—ID                        | <u> </u>     |
| 1803h | 2      | U8     |       | RW     | no   | Transmission type TXPDO4             | <u> </u>     |
| 1803h | 3      | U16    |       | RW     | no   | Inhibit time                         | <u> </u>     |
| 1803h | 4      | U8     |       | const  | no   | reserved                             |              |
| 1803h | 5      | U16    |       | RW     | no   | Event timer                          |              |
| 1A00h |        | RECORD |       |        |      | Mapping parameter TXPDO1             |              |
| 1A00h | 0      | U8     |       | RO     | no   | highest sub-index                    |              |
| 1A00h | 1 to 8 | U32    |       | RW     | no   | Mapping for n—th application object  |              |
| 1A01h |        | RECORD |       |        |      | Mapping parameter TXPDO2             | <u> </u>     |
| 1A01h | 0      | U8     |       | RO     | no   | highest sub-index                    |              |
| 1A01h | 1 to 8 | U32    |       | RW     | no   | Mapping for n—th application object  | <u> </u>     |
| 1A02h |        | RECORD |       |        |      | Mapping parameter TXPDO3             |              |
| 1A02h | 0      | U8     |       | RO     | no   | highest sub-index                    |              |
| 1A02h | 1 to 8 | U32    |       | RW     | no   | Mapping for n—th application object  | 1—           |
| 1A03h |        | RECORD |       |        |      | Mapping parameter TXPDO4             | 1—           |
| 1A03h | 0      | U8     |       | RO     | no   | highest sub-index                    | 1—           |
| 1A03h | 1 to 8 | U32    |       | RW     | no   | Mapping for n—the application object | -            |

# 7.1.4 Manufacturer specific SDOs

Objects 2000h to 3999h

| Index | Sub-     | Data          | Float | Access |      | Description                       | ASCII object  |
|-------|----------|---------------|-------|--------|------|-----------------------------------|---------------|
| 2000h | index    | Type<br>ARRAY | Scale |        | map. | System Warnings                   |               |
| 2000h | 0        | U8            |       | RO     | no   | highest sub-index                 |               |
| 2000h | 1        | U32           |       | RO     | no   | System Warning 1                  | DRV.WARNING1  |
| 2000h | 2        | U32           |       | RO     | no   | System Warning 2                  | DRV.WARNING2  |
| 2000h | 3        | U32           |       | RO     | no   | System Warning 3                  | DRV.WARNING3  |
| 2001h |          | ARRAY         |       | 110    | 110  | System Faults                     | _             |
| 2001h | 0        | U8            |       | RO     | no   | highest sub-index                 |               |
| 2001h | 1        | U32           |       | RO     | no   | System Fault 1                    | DRV.FAULT1    |
| 2001h | 2        | U32           |       | RO     | no   | System Fault 2                    | DRV.FAULT2    |
| 2001h | 3        | U32           |       | RO     | no   | System Fault 3                    | DRV.FAULT3    |
| 2001h | 4        | U32           |       | RO     | no   | System Fault 4                    | DRV.FAULT4    |
| 2001h | 5        | U32           |       | RO     | no   | System Fault 5                    | DRV.FAULT5    |
| 2001h | 6        | U32           |       | RO     | no   | System Fault 6                    | DRV.FAULT6    |
| 2001h | 7        | U32           |       | RO     | no   | System Fault 7                    | DRV.FAULT7    |
| 2001h | 8        | U32           |       | RO     | no   | System Fault 8                    | DRV.FAULT8    |
| 2001h | 9        | U32           |       | RO     | no   | System Fault 9                    | DRV.FAULT9    |
| 2001h | A        | U32           |       | RO     | no   | System Fault 10                   | DRV.FAULT10   |
| 2002h | - 1      | ARRAY         |       | 110    | 110  | Manufacturer status bytes         | _             |
| 2002h | 0        | U8            |       | RO     | no   | highest sub-index                 | _             |
| 2002h | 1        | U8            |       | RO     | yes  | Manufacturer status bytes 1       | _             |
| 2002h | 2        | U8            |       | RO     | yes  | Manufacturer status bytes 2       | _             |
| 2002h | 3        | U8            |       | RO     | yes  | Manufacturer status bytes 3       | _             |
| 2002h | 4        | U8            |       | RO     | yes  | Manufacturer status bytes 4       | _             |
| 2011h |          | VAR           |       | RO     |      | DRV.RUNTIME in seconds            | DRV.RUNTIME   |
| 2012h |          | ARRAY         |       |        |      | Fault history: Fault numbers      | DRV.FAULTHIST |
| 2012h | 0        | U8            |       | RO     | no   | highest sub-index                 | _             |
| 2012h | 1 to 20  | U32           |       | RO     | no   | Nth-latest entry in fault num-    | _             |
|       |          |               |       |        |      | ber list of fault history table   |               |
| 2013h |          | ARRAY         |       |        |      | Fault history: Time stamps        | DRV.FAULTHIST |
| 2013h | 0        | U8            |       | RO     | no   | highest sub-index                 | _             |
| 2013h | 1 to 20  | U32           |       | RO     | no   | Nth-latest entry in fault time    | _             |
|       | $\Box$   |               |       |        |      | stamp list of fault history table |               |
| 2014h | $\Box$   | ARRAY         |       |        |      | Mask TxPDO Channel 1              |               |
| 2014h | 1        | U32           |       | RW     | no   | Mask (Byte 03)                    |               |
| 2014h | 2        | U32           |       | RW     | no   | Mask (Byte 47)                    |               |
| 2015h |          | ARRAY         |       |        |      | Mask TxPDO Channel 2              |               |
| 2015h | 1        | U32           |       | RW     | no   | Mask (Byte 03)                    |               |
| 2015h | 2        | U32           |       | RW     | no   | Mask (Byte 47)                    |               |
| 2016h | $\sqcup$ | ARRAY         |       |        |      | Mask TxPDO Channel 3              |               |
| 2016h | 1        | U32           |       | RW     | no   | Mask (Byte 03)                    |               |
| 2016h | 2        | U32           |       | RW     | no   | Mask (Byte 47)                    |               |
| 2017h |          | ARRAY         |       |        |      | Mask TxPDO Channel 4              |               |
| 2017h | 1        | U32           |       | RW     | no   | Mask (Byte 03)                    | _             |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map. | Description                                    | ASCII object              |
|-------|---------------|--------------|----------------|--------|-------------|------------------------------------------------|---------------------------|
| 2017h | 2             | U32          | Joans          | RW     | no          | Mask (Byte 47)                                 | _                         |
| 2018h |               | ARRAY        |                |        |             | Firmware version                               | _                         |
| 2018h | 0             | U16          |                | const  | no          | highest sub-index                              | _                         |
| 2018h | 1             | U16          |                | const  | no          | Major version                                  | _                         |
| 2018h | 2             | U16          |                | const  | no          | Minor version                                  | _                         |
| 2018h | 3             | U16          |                | const  | no          | Revision                                       | _                         |
| 2018h | 4             | U16          |                | const  | no          | Branch version                                 | _                         |
| 2026h |               | ARRAY        |                |        |             | ASCII Channel                                  | _                         |
| 2026h | 0             | U8           |                | RO     | no          | highest sub-index                              | _                         |
| 2026h | 1             | VisStr       |                | WO     | no          | Command                                        | _                         |
| 2026h | 2             | VisStr       |                | RO     | no          | Response                                       | _                         |
| 2031h | 0             | VisStr       |                | RW     | no          | Drive Name, length 10 bits                     | DRV.NAME                  |
| 2032h | 0             | VisStr       |                | RW     | no          | Drive custom identifier string, length 32 byte | DRV.CUSTOM-<br>IDENTIFIER |
| 204Ch |               | ARRAY        |                |        |             | pv scaling factor                              | _                         |
| 204Ch | 0             | U8           |                | RO     | no          | highest sub-index                              | _                         |
| 204Ch | 1             | INT32        |                | RW     | no          | pv scaling factor numerator                    | _                         |
| 204Ch | 2             | INT32        |                | RW     | no          | pv scaling factor denominator                  | _                         |
| 2050h | 0             | INT32        | 1:1            | RO     | yes         | Position, secondary feedback                   | DRV.HANDWHEEL             |
| 2071h | 0             | INT32        |                | RW     | yes*        | Target current                                 | -                         |
| 2077h | 0             | INT32        |                | RO     | yes         | Current actual value                           | -                         |
| 2077h | 0             | UINT32       |                | RW     | yes         | Maximum velocity in CST,<br>PT-mode            | -                         |
| 20A0h | 0             | INT32        | var            | RO     | yes         | Latch position 1, positive edge                | CAP0.PLFB, CAP0.T         |
| 20A1h | 0             | INT32        | var            | RO     | yes         | Latch position 1, negative edge                | CAP0.PLFB , CAP0.T        |
| 20A2h | 0             | INT32        | var            | RO     | yes         | Latch position 2, positive edge                | CAP1.PLFB , CAP1.T        |
| 20A3h | 0             | INT32        | var            | RO     | yes         | Latch position 2, negative edge                | CAP1.PLFB , CAP1.T        |
| 20A4h | 0             | U16          |                | RW     | yes         | Latch control register                         | _                         |
| 20A5h | 0             | U16          |                | RW     | yes         | Latch status register                          | _                         |
| 20A6h | 0             | INT32        | var            | RO     | yes         | Gets captured position value                   | CAP0.PLFB                 |
| 20A7h | 0             | INT32        | var            | RO     | yes         | Gets captured position value                   | CAP1.PLFB                 |
| 20B8h | 0             | U16          |                | RW     | yes         | Clear changed digital input information        | _                         |
| 3405h |               | ARRAY        |                |        |             | VL.ARTYPE                                      | _                         |
| 3405h | 0             | U8           |                | RO     | no          | highest sub-index                              | _                         |
| 3405h | 1             | U8           |                | RW     | no          | Calculation method for BiQuad filter 1         | VL.ARTYPE1                |
| 3405h | 2             | U8           |                | RW     | no          | Calculation method for BiQuad filter 2         | VL.ARTYPE2                |
| 3405h | 3             | U8           |                | RW     | no          | Calculation method for BiQuad filter 3         | VL.ARTYPE3                |
| 3405h | 4             | U8           |                | RW     | no          | Calculation method for BiQuad filter 4         | VL.ARTYPE4                |
| 3406h |               | ARRAY        |                |        |             | VL BiQuad                                      |                           |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map. | Description                                                  | ASCII object  |
|-------|---------------|--------------|----------------|--------|-------------|--------------------------------------------------------------|---------------|
| 3406h | 0             | U8           |                | RO     | no          | highest sub-index                                            | _             |
| 3406h | 1             | U32          | 1000:1         | RW     | no          | Natural frequency of pole of anti-resonance (AR) filter 1    | VL.ARPF1      |
| 3406h | 2             | U32          | 1000:1         | RW     | no          | Natural frequency of pole of anti-resonance (AR) filter 2    | VL.ARPF2      |
| 3406h | 3             | U32          | 1000:1         | RW     | no          | Natural frequency of pole of anti-resonance (AR) filter 3    | VL.ARPF3      |
| 3406h | 4             | U32          | 1000:1         | RW     | no          | Natural frequency of pole of anti-resonance (AR) filter 4    | VL.ARPF4      |
| 3406h | 5             | U32          | 1000:1         | RW     | no          | Q of pole of anti-resonance<br>(AR) filter 1                 | VL.ARPQ1      |
| 3406h | 6             | U32          | 1000:1         | RW     | no          | Q of pole of anti-resonance<br>(AR) filter 2                 | VL.ARPQ2      |
| 3406h | 7             | U32          | 1000:1         | RW     | no          | Q of pole of anti-resonance<br>(AR) filter 3                 | VL.ARPQ3      |
| 3406h | 8             | U32          | 1000:1         | RW     | no          | Q of pole of anti-resonance<br>(AR) filter 4                 | VL.ARPQ4      |
| 3406h | 9             | U32          | 1000:1         | RW     | no          | Natural frequency of zero of anti-resonance (AR) filter 1    | VL.ARZF1      |
| 3406h | А             | U32          | 1000:1         | RW     | no          | Natural frequency of zero of anti-resonance (AR) filter 2    | VL.ARZF2      |
| 3406h | В             | U32          | 1000:1         | RW     | no          | Natural frequency of zero of anti-resonance (AR) filter 3    | VL.ARZF3      |
| 3406h | С             | U32          | 1000:1         | RW     | no          | Natural frequency of zero of anti-resonance (AR) filter 4    | VL.ARZF4      |
| 3406h | D             | U32          | 1000:1         | RW     | no          | Q of zero of anti-resonance filter 1                         | VL.ARZQ1      |
| 3406h | E             | U32          | 1000:1         | RW     | no          | Q of zero of anti-resonance filter 2                         | VL.ARZQ2      |
| 3406h | F             | U32          | 1000:1         | RW     | no          | Q of zero of anti-resonance filter 3                         | VL.ARZQ3      |
| 3406h | 10            | U32          | 1000:1         | RW     | no          | Q of zero of anti-resonance filter 4                         | VL.ARZQ4      |
| 3407h |               | STRUCT       |                |        |             | Velocity Filter                                              | _             |
| 3407h | 0             | U8           |                | RO     | no          | highest sub-index                                            | _             |
| 3407h | 1             | INT32        | 1000:1         | RW     | no          | 10 Hz filtered VL.FB                                         | VL.FBFILTER   |
| 3407h | 2             | U32          | 1000:1         | RW     | no          | Gain for the velocity feed-<br>forward                       | VL.KVFF       |
| 3407h | 3             | U32          |                | RW     | no          | Gain for the acceleration feed-<br>forward                   | VL.KBUSFF     |
| 3407h | 4             | U32          | 1:1            | RW     | no          | Sets the velocity error                                      | VL.ERR        |
| 3412h | 0             | INT8         |                | RW     | no          | Type of regen resistor                                       | REGEN.TYPE    |
| 3414h | 0             | U8           |                | RW     |             | Returns and sets the regen resistor fault level temperature. | REGEN.WATTEXT |
| 3415h | 0             | U32          | 1000:1         | RO     | no          | Thermal regen resistor time constant                         | REGEN.TEXT    |

| Index  | Sub-  | Data   | Float  | Access |      | Description                                                         | ASCII object                  |
|--------|-------|--------|--------|--------|------|---------------------------------------------------------------------|-------------------------------|
| 0.4465 | index | 7 .    | Scale  | DO     | map. | Cata waxay waxistada a al                                           | DECEM DOWED                   |
| 3416h  | 0     | U32    |        | RO     | no   | Gets regen resistor's cal-<br>culated power                         | REGEN.POWER                   |
| 3417h  | 0     | U32    |        | RO     | no   | Returns a filtered version of 3416h                                 | REGEN.POWER-<br>FILTERED      |
| 3420h  | 0     | U16    | 1000:1 | RW     | no   | Sets the foldback fault level.                                      | IL.FOLDFTHRESH                |
| 3421h  | 0     | U32    | 1000:1 | RW     | no   | Sets the user value for the fold-                                   | IL.FOLDFTHRESHU               |
|        |       |        |        |        |      | back fault level.                                                   |                               |
| 3422h  | 0     | U32    | 1000:1 |        | no   | Sets friction compensation value.                                   | IL.FRICTION                   |
| 3423h  | 0     | INT32  | 1000:1 |        | no   | A constant current command added to compensate for gravity.         | IL.OFFSET                     |
| 3424h  | 0     | U16    |        |        | no   | Enables/disables the integrator part of the PI loop.                | IL.INTEN (Password Protected) |
| 3425h  | 0     | U32    | 1000:1 | RO     | no   | Reads the overall foldback current limit                            | IL.IFOLD                      |
| 3426h  | 0     | U32    | 1000:1 | RW     | no   | Sets current loop acceleration feedforward gain value               | IL.KACCFF                     |
| 3427h  |       | RECORD |        |        |      | Motor protection parameters                                         | _                             |
| 3427h  | 0     | U8     |        | RO     | no   | highest sub-index                                                   | _                             |
| 3427h  | 1     | U8     |        | RW     | no   |                                                                     | IL.MIMODE                     |
| 3427h  | 2     | U8     |        | RW     | no   |                                                                     | IL.MI2TWTHRESH                |
| 3427h  | 3     | U32    |        | RW     | yes  |                                                                     | IL.MI2T                       |
| 3430h  | 0     | U8     |        | RW     | no   | Sets the direction for absolute motion tasks.                       | PL.MODPDIR                    |
| 3431h  | 0     | U16    |        | RW     | no   | Sets the motion task in the drive                                   | MT.SET                        |
| 3440h  |       | ARRAY  |        |        |      | Controlled stop parameters                                          | _                             |
| 3440h  | 0     | U8     |        | RO     | no   | highest sub-index                                                   | _                             |
| 3440h  | 1     | U32    | 1:1    | RW     | no   | Sets the deceleration value for a controlled stop.                  | CS.DEC                        |
| 3440h  | 2     | U32    | 1:1    | RW     | no   | Sets the velocity threshold for a controlled stop.                  | CS.VTHRESH                    |
| 3440h  | 3     | U32    |        | RW     | no   | Sets the time value for the drive velocity to be within CS.VTHRESH. | CS.TO                         |
| 3441h  | 0     | U8     |        | RO     | no   | Controlled stop state                                               | CS.STATE                      |
| 3443h  | 0     | U16    |        | RO     | no   | Returns the possible reason for a drive disable                     | DRV.DIS                       |
| 3444h  | 0     | U16    | 1000:1 | RO     | no   | Maximum current for dynamic braking                                 | DRV.DBILIMIT                  |
| 3445h  | 0     | U32    |        | RO     | no   | Emergency timeout for braking                                       | DRV.DISTO                     |
| 3450h  | 0     | U8     |        | WO     | no   | Release or enable brake                                             | MOTOR.BRAKERLS                |
| 3451h  | 0     | U8     |        | RW     | no   | Determines which drive parameters are calculated automatically.     | MOTOR.AUTOSET                 |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map. | Description                                            | ASCII object    |
|-------|---------------|--------------|----------------|--------|-------------|--------------------------------------------------------|-----------------|
| 3452h | 0             | U16          | Ocarc          | RW     | no          | Sets the motor maximum                                 | MOTOR.VOLTMAX   |
|       |               |              |                |        |             | voltage                                                |                 |
| 3453h | 0             | U32          |                | RW     | no          | Sets the motor temperature warning level               | MOTOR.TEMPWARN  |
| 3454h | 0             | U32          | 1000:1         | RW     | no          | Sets the thermal constant of the motor coil            | MOTOR.CTF0      |
| 3455h | 0             | U32          | 1000:1         | RW     | no          | Sets the line-to-line motor Lq                         | MOTOR.LQLL      |
| 3456h | 0             | U32          | 1000:1         | RW     | no          | Sets the stator winding resistance phase-phase in ohms | MOTOR.R         |
| 3457h |               | RECORD       |                |        |             | Induction Motor parameter                              | _               |
| 3457h | 0             | U8           |                | RO     | no          | highest sub-index                                      | _               |
| 3457h | 1             | INT32        | 1000:1         | RW     | no          | Configuration of induction motor's rated velocity.     | MOTOR.VRATED    |
| 3457h | 2             | U16          |                | RW     | no          | Configuration of induction motor's rated voltage.      | MOTOR.VOLTRATED |
| 3457h | 3             | U16          |                | RW     | no          | Sets the minimum voltage for V/f Control.              | MOTOR.VOLTMIN   |
| 345Ah |               | ARRAY        |                |        |             | Brake Control                                          | _               |
| 345Ah | 0             | U8           |                | RO     | no          | highest sub-index                                      | _               |
| 345Ah | 1             | U16          |                | RW     | yes         | Brake Control Command                                  | _               |
| 345Ah | 2             | U16          |                | RO     | yes         | Brake Status Response.                                 | _               |
| 3460h |               | RECORD       |                |        |             | Capture engines parameters                             | _               |
| 3460h | 0             | U8           |                | RO     | no          | highest sub-index                                      | _               |
| 3460h | 1             | U8           |                | RW     | no          | Specifies the trigger source for the position capture. | CAP0.TRIGGER    |
| 3460h | 2             | U8           |                | RW     | no          | Specifies the trigger source for the position capture. | CAP1.TRIGGER    |
| 3460h | 3             | U8           |                | RW     | no          | Selects the captured value.                            | CAP0.MODE       |
| 3460h | 4             | U8           |                | RW     | no          | Selects the captured value.                            | CAP1.MODE       |
| 3460h | 5             | U8           |                | RW     | no          | Controls the precondition logic.                       | CAP0.EVENT      |
| 3460h | 6             | U8           |                | RW     | no          | Controls the precondition logic.                       | CAP1.EVENT      |
| 3460h | 7             | U8           |                | RW     | no          | Selects the capture pre-<br>condition edge.            | CAP0.PREEDGE    |
| 3460h | 8             | U8           |                | RW     | no          | Selects the capture pre-<br>condition edge.            | CAP1.PREEDGE    |
| 3460h | 9             | U8           |                | RW     | no          | Sets the precondition trigger.                         | CAP0.PRESELECT  |
| 3460h | Α             | U8           |                | RW     | no          | Sets the precondition trigger.                         | CAP1.PRESELECT  |
| 3460h | В             | U8           |                | RW     | no          | Selects the feedback source for the capture engine 0.  | CAP0.FBSOURCE   |
| 3460h | С             | U8           |                | RW     | no          | Selects the feedback source for the capture engine 1.  | CAP1.FBSOURCE   |
| 3470h |               | RECORD       |                |        |             |                                                        | _               |
| 3470h | 0             | U8           |                | RO     | no          | highest sub-index                                      | _               |
| 3470h | 1             | INT8         |                | RW     | no          | Sets the analog output mode.                           | AOUT.MODE       |
| 3470h | 2             | INT16        | 1000:1         | RW     | yes         | Reads the analog output value.                         | AOUT.VALUE      |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map. | Description                                  | ASCII object |
|-------|---------------|--------------|----------------|--------|-------------|----------------------------------------------|--------------|
| 3470h | 3             | INT16        | 1000:1         | RW     | yes         | Reads and writes the analog output value.    | AOUT.VALUEU  |
| 3470h | 4             | INT16        | 1000:1         | RO     | yes         | Reads the value of the analog input signal.  | AIN.VALUE    |
| 3470h | 5             | U32          | 1000:1         | RW     | no          | Sets velocity scale factor for analog output | AOUT.VSCALE  |
| 3471h | 0             | U32          | 1:1            | RW     | no          | Sets the analog position scale factor        | AOUT.PSCALE  |
| 3472h | 0             | U32          | 1:1            | RW     | no          | Sets analog pscale factor                    | AIN.PSCALE   |
| 3474h |               | ARRAY        |                |        |             | DINx.PARAM                                   | _            |
| 3474h | 0             | U8           |                | RO     | no          | highest sub-index                            | _            |
| 3474h | 1             | U32          |                | RW     | no          | Lower 32-bit part of input parameter 1       | DIN1.PARAM   |
| 3474h | 2             | U32          |                | RW     | no          | Lower 32-bit part of input parameter 2       | DIN2.PARAM   |
| 3474h | 3             | U32          |                | RW     | no          | Lower 32-bit part of input parameter 3       | DIN3.PARAM   |
| 3474h | 4             | U32          |                | RW     | no          | Lower 32-bit part of input parameter 4       | DIN4.PARAM   |
| 3474h | 5             | U32          |                | RW     | no          | Lower 32-bit part of input parameter 5       | DIN5.PARAM   |
| 3474h | 6             | U32          |                | RW     | no          | Lower 32-bit part of input parameter 6       | DIN6.PARAM   |
| 3474h | 7             | U32          |                | RW     | no          | Lower 32-bit part of input parameter 7       | DIN7.PARAM   |
| 3474h | 8             | U32          |                | RW     | no          | Higher 32-bit part of input para-<br>meter 1 | DIN1.PARAM   |
| 3474h | 9             | U32          |                | RW     | no          | Higher 32-bit part of input parameter 2      | DIN2.PARAM   |
| 3474h | А             | U32          |                | RW     | no          | Higher 32-bit part of input parameter 3      | DIN3.PARAM   |
| 3474h | В             | U32          |                | RW     | no          | Higher 32-bit part of input para-<br>meter 4 | DIN4.PARAM   |
| 3474h | С             | U32          |                | RW     | no          | Higher 32-bit part of input para-<br>meter 5 | DIN5.PARAM   |
| 3474h | D             | U32          |                | RW     | no          | Higher 32-bit part of input para-<br>meter 6 | DIN6.PARAM   |
| 3474h | E             | U32          |                | RW     | no          | Higher 32-bit part of input parameter 7      | DIN7.PARAM   |
| 3475h |               | ARRAY        |                |        |             | DOUTx.PARAM                                  | _            |
| 3475h | 0             | U8           |                | RO     | no          | highest sub-index                            | _            |
| 3475h | 1             | U32          |                | RW     | no          | Lower 32-bit part of output parameter 1      | DOUT1.PARAM  |
| 3475h | 2             | U32          |                | RW     | no          | Lower 32-bit part of output parameter 2      | DOUT2.PARAM  |
| 3475h | 3             | U32          |                | RW     | no          | Higher 32-bit part of output parameter 1     | DOUT1.PARAM  |

| Index  | Sub-  | Data   | Float  | Access |      | Description                                                                                   | ASCII object    |
|--------|-------|--------|--------|--------|------|-----------------------------------------------------------------------------------------------|-----------------|
| 0.4751 | index | Туре   | Scale  | D)A/   | map. | 11 1 201 11 1 5 1 1                                                                           | DOLLTO DADAM    |
| 3475h  | 4     | U32    |        | RW     | no   | Hogher 32-bit part of output parameter 2                                                      | DOUT2.PARAM     |
| 3480h  | 0     | U32    | 1000:1 | RW     | no   | Integral gain of position reg-<br>ulator PID loop                                             | PL.KI           |
| 3481h  |       | ARRAY  |        |        |      | PL.INTMAX                                                                                     | _               |
| 3481h  | 0     | U8     |        | RO     | no   | highest sub-index                                                                             | _               |
| 3481h  | 1     | U32    | 1:1    | RW     | no   | Input saturation                                                                              | PL.INTINMAX     |
| 3481h  | 2     | U32    | 1:1    | RW     | no   | Output saturation                                                                             | PL.INTOUTMAX    |
| 3482h  | 0     | INT32  | 1:1    | RO     | no   | Maximum value of following error in homing                                                    | HOME.PERRTHRESH |
| 3483h  | 0     | INT32  | 1:1    | RW     | no   | Sets the position error warning level                                                         | PL.ERRWTHRESH   |
| 3484h  | 0     | INT32  | 1:1    | RW     | no   | Specification of an additional movement after homing is completed.                            | HOME.DIST       |
| 3490h  | 0     | INT32  | 1:1    | RW     | no   | Position feedback offset                                                                      | FB1.OFFSET      |
| 3491h  | 0     | U32    |        | RO     | no   | Location of index pulse on EEO                                                                | DRV.EMUEMTURN   |
| 3492h  | 0     | U32    |        | RO     | no   | Motion status of the drive                                                                    | DRV.MOTIONSTAT  |
| 3493h  | 0     | U8     |        | RO     | no   | Direction of EEO (emulated encoder output)                                                    | DRV.EMUEDIR     |
| 3494h  |       | RECORD |        |        |      | WS parameters                                                                                 | _               |
| 3494h  | 0     | U8     |        | RO     | no   | highest sub-index                                                                             | _               |
| 3494h  | 1     | INT16  | 1000:1 | RW     | no   | Sets maximum current used for wake and shake                                                  | WS.IMAX         |
| 3494h  | 2     | INT32  | 1:1    | RW     | no   | Sets the maximum movement required for wake and shake                                         | WS.DISTMAX      |
| 3494h  | 3     | U16    |        | RW     | no   | Sets the delay for wake and shake between loops in mode 0                                     | WS.TDELAY3      |
| 3494h  | 4     | INT32  | 1:1    | RW     | no   | Defines the maximum allowed velocity for Wake & Shake                                         | WS.VTHRESH      |
| 3494h  | 5     | U8     |        | RO     | no   | Reads wake and shake status                                                                   | WS.STATE        |
| 3494h  | 6     | U8     |        | RW     | no   | Arm Wake and Shake to start                                                                   | WS.ARM          |
| 3495h  | 0     | U16    | 1000:1 | RW     | no   | Voltage level for undervoltage warning.                                                       | VBUS.UVWTHRESH  |
| 3496h  |       | ARRAY  |        |        |      | FBUS synchronization parameters                                                               | _               |
| 3496h  | 0     | U8     |        | RO     | no   | highest sub-index                                                                             | _               |
| 3496h  | 1     | U32    |        | RW     | no   | expected time distance<br>between clearing the PLL<br>counter and calling the PLL<br>function | FBUS.SYNCDIST   |
| 3496h  | 2     | U32    |        | RW     | no   | actual time distance between clearing the PLL counter and calling the PLL function            | FBUS.SYNCACT    |

| Seing synchronized   Seing s | )  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Ing or lowering the sample rate of the internal 16[kHz] IRQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Set-point for stepper motor out put through the emulated encoder output (EEO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| against other communication channels (Telnet, Modbus)   3499h   0   INT32   RW   yes   Set-point for stepper motor out put through the emulated encoder output (EEO)   34A0h   ARRAY   PLS Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Set-point for stepper motor out put through the emulated encoder output (EEO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON |
| Description   Substitute   Su |    |
| 34A0h         ARRAY         PLS Position           34A0h         0         U8         RO         no         highest sub-index         —           34A0h         1         INT32         1:1         RW         no         Limit switch 1 compare value         PLS.P1           34A0h         2         INT32         1:1         RW         no         Limit switch 2 compare value         PLS.P2           34A0h         3         INT32         1:1         RW         no         Limit switch 3 compare value         PLS.P3           34A0h         4         INT32         1:1         RW         no         Limit switch 4 compare value         PLS.P4           34A0h         5         INT32         1:1         RW         no         Limit switch 5 compare value         PLS.P5           34A0h         6         INT32         1:1         RW         no         Limit switch 6 compare value         PLS.P6           34A0h         7         INT32         1:1         RW         no         Limit switch 7 compare value         PLS.P7           34A0h         8         INT32         1:1         RW         no         Limit switch 8 compare value         PLS.P8           34A1h         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MD |
| 34A0h         1         INT32         1:1         RW         no         Limit switch 1 compare value         PLS.P1           34A0h         2         INT32         1:1         RW         no         Limit switch 2 compare value         PLS.P2           34A0h         3         INT32         1:1         RW         no         Limit switch 3 compare value         PLS.P3           34A0h         4         INT32         1:1         RW         no         Limit switch 4 compare value         PLS.P4           34A0h         5         INT32         1:1         RW         no         Limit switch 5 compare value         PLS.P5           34A0h         6         INT32         1:1         RW         no         Limit switch 6 compare value         PLS.P6           34A0h         7         INT32         1:1         RW         no         Limit switch 7 compare value         PLS.P7           34A0h         8         INT32         1:1         RW         no         Limit switch 8 compare value         PLS.P8           34A1h         ARRAY         PLS Width         —           34A1h         1         INT32         1:1         RW         no         Sets Limit Switch 1 Width         PLS.WIDTH1 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 34A0h         2         INT32         1:1         RW         no         Limit switch 2 compare value         PLS.P2           34A0h         3         INT32         1:1         RW         no         Limit switch 3 compare value         PLS.P3           34A0h         4         INT32         1:1         RW         no         Limit switch 4 compare value         PLS.P4           34A0h         5         INT32         1:1         RW         no         Limit switch 5 compare value         PLS.P5           34A0h         6         INT32         1:1         RW         no         Limit switch 7 compare value         PLS.P6           34A0h         7         INT32         1:1         RW         no         Limit switch 7 compare value         PLS.P7           34A0h         8         INT32         1:1         RW         no         Limit switch 8 compare value         PLS.P8           34A1h         ARRAY         PLS Width         —           34A1h         1         INT32         1:1         RW         no         Sets Limit Switch 1 Width         PLS.WIDTH1           34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 2 Width         PLS.WIDTH3 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 34A0h         3         INT32         1:1         RW         no         Limit switch 3 compare value         PLS.P3           34A0h         4         INT32         1:1         RW         no         Limit switch 4 compare value         PLS.P4           34A0h         5         INT32         1:1         RW         no         Limit switch 5 compare value         PLS.P5           34A0h         6         INT32         1:1         RW         no         Limit switch 6 compare value         PLS.P6           34A0h         7         INT32         1:1         RW         no         Limit switch 7 compare value         PLS.P6           34A0h         8         INT32         1:1         RW         no         Limit switch 8 compare value         PLS.P7           34A1h         ARRAY         PLS Width         —           34A1h         ARRAY         PLS Width         —           34A1h         1         INT32         1:1         RW         no         Sets Limit Switch 1 Width         PLS.WIDTH1           34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 3 Width         PLS.WIDTH3           34A1h         4         INT32         1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 34A0h         4         INT32         1:1         RW         no         Limit switch 4 compare value         PLS.P4           34A0h         5         INT32         1:1         RW         no         Limit switch 5 compare value         PLS.P5           34A0h         6         INT32         1:1         RW         no         Limit switch 6 compare value         PLS.P6           34A0h         7         INT32         1:1         RW         no         Limit switch 7 compare value         PLS.P7           34A0h         8         INT32         1:1         RW         no         Limit switch 8 compare value         PLS.P8           34A1h         ARRAY         PLS Width         —           34A1h         O         U8         RO         no         highest sub-index         —           34A1h         1         INT32         1:1         RW         no         Sets Limit Switch 1 Width         PLS.WIDTH1           34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 3 Width         PLS.WIDTH3           34A1h         4         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH5           34A1h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 34A0h         5         INT32         1:1         RW         no         Limit switch 5 compare value         PLS.P5           34A0h         6         INT32         1:1         RW         no         Limit switch 6 compare value         PLS.P6           34A0h         7         INT32         1:1         RW         no         Limit switch 7 compare value         PLS.P7           34A0h         8         INT32         1:1         RW         no         Limit switch 8 compare value         PLS.P8           34A1h         ARRAY         PLS Width         —           34A1h         O         U8         RO         no         highest sub-index         —           34A1h         1         INT32         1:1         RW         no         Sets Limit Switch 1 Width         PLS.WIDTH1           34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 3 Width         PLS.WIDTH3           34A1h         3         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH4           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH5           34A1h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 34A0h         6         INT32         1:1         RW         no         Limit switch 6 compare value         PLS.P6           34A0h         7         INT32         1:1         RW         no         Limit switch 7 compare value         PLS.P7           34A0h         8         INT32         1:1         RW         no         Limit switch 8 compare value         PLS.P8           34A1h         ARRAY         PLS Width         —           34A1h         0         U8         RO         no         highest sub-index         —           34A1h         1         INT32         1:1         RW         no         Sets Limit Switch 1 Width         PLS.WIDTH1           34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 2 Width         PLS.WIDTH3           34A1h         3         INT32         1:1         RW         no         Sets Limit Switch 4 Width         PLS.WIDTH4           34A1h         4         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH5           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 34A0h         7         INT32         1:1         RW         no         Limit switch 7 compare value         PLS.P7           34A0h         8         INT32         1:1         RW         no         Limit switch 8 compare value         PLS.P8           34A1h         ARRAY         PLS Width         —           34A1h         0         U8         RO         no         highest sub-index         —           34A1h         1         INT32         1:1         RW         no         Sets Limit Switch 1 Width         PLS.WIDTH1           34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 2 Width         PLS.WIDTH3           34A1h         3         INT32         1:1         RW         no         Sets Limit Switch 4 Width         PLS.WIDTH4           34A1h         4         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH5           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 34A0h         8         INT32         1:1         RW         no         Limit switch 8 compare value         PLS.P8           34A1h         ARRAY         PLS Width         —           34A1h         0         U8         RO         no         highest sub-index         —           34A1h         1         INT32         1:1         RW         no         Sets Limit Switch 1 Width         PLS.WIDTH1           34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 2 Width         PLS.WIDTH2           34A1h         3         INT32         1:1         RW         no         Sets Limit Switch 4 Width         PLS.WIDTH3           34A1h         4         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH5           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 34A1h         ARRAY         PLS Width         —           34A1h         0         U8         RO         no         highest sub-index         —           34A1h         1         INT32         1:1         RW         no         Sets Limit Switch 1 Width         PLS.WIDTH1           34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 2 Width         PLS.WIDTH2           34A1h         3         INT32         1:1         RW         no         Sets Limit Switch 3 Width         PLS.WIDTH3           34A1h         4         INT32         1:1         RW         no         Sets Limit Switch 4 Width         PLS.WIDTH5           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 34A1h         0         U8         RO         no         highest sub-index         —           34A1h         1         INT32         1:1         RW         no         Sets Limit Switch 1 Width         PLS.WIDTH1           34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 2 Width         PLS.WIDTH2           34A1h         3         INT32         1:1         RW         no         Sets Limit Switch 3 Width         PLS.WIDTH3           34A1h         4         INT32         1:1         RW         no         Sets Limit Switch 4 Width         PLS.WIDTH4           34A1h         5         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH5           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 34A1h         1         INT32         1:1         RW         no         Sets Limit Switch1 Width         PLS.WIDTH1           34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 2 Width         PLS.WIDTH2           34A1h         3         INT32         1:1         RW         no         Sets Limit Switch 3 Width         PLS.WIDTH3           34A1h         4         INT32         1:1         RW         no         Sets Limit Switch 4 Width         PLS.WIDTH4           34A1h         5         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH5           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 34A1h         2         INT32         1:1         RW         no         Sets Limit Switch 2 Width         PLS.WIDTH2           34A1h         3         INT32         1:1         RW         no         Sets Limit Switch 3 Width         PLS.WIDTH3           34A1h         4         INT32         1:1         RW         no         Sets Limit Switch 4 Width         PLS.WIDTH4           34A1h         5         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH5           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 34A1h         3         INT32         1:1         RW         no         Sets Limit Switch 3 Width         PLS.WIDTH3           34A1h         4         INT32         1:1         RW         no         Sets Limit Switch 4 Width         PLS.WIDTH4           34A1h         5         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH5           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 34A1h         4         INT32         1:1         RW         no         Sets Limit Switch 4 Width         PLS.WIDTH4           34A1h         5         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH5           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 34A1h         5         INT32         1:1         RW         no         Sets Limit Switch 5 Width         PLS.WIDTH5           34A1h         6         INT32         1:1         RW         no         Sets Limit Switch 6 Width         PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 34A1h 6 INT32 1:1 RW no Sets Limit Switch 6 Width PLS.WIDTH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 34A1h 7 INT32 1:1 RW no Sets Limit Switch 7 Width PLS.WIDTH7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 34A1h 8 INT32 1:1 RW no Sets Limit Switch 8 Width PLS.WIDTH8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 34A2h ARRAY PLS Time —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 34A2h 0 U8 RO no highest sub-index —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 34A2h 1 U16 RW no Sets limit switch 1 time PLS.T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 34A2h 2 U16 RW no Sets limit switch 2 time PLS.T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 34A2h 3 U16 RW no Sets limit switch 3 time PLS.T3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 34A2h 4 U16 RW no Sets limit switch 4 time PLS.T4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 34A2h         5         U16         RW         no         Sets limit switch 5 time         PLS.T5           34A2h         6         U16         RW         no         Sets limit switch 6 time         PLS.T6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 34A2h 7 U16 RW no Sets limit switch 7 time PLS.17  34A2h 8 U16 RW no Sets limit switch 8 time PLS.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 34A3h ARRAY PLS Configuration —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 34A3h 0 U8 RO no highest sub-index —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 34A3h 1 U16 RW no Enables the limit switches PLS.EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 34A3h 2 U16 RW no Resets limit switches PLS.RESET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map. | Description                  | ASCII object     |
|-------|---------------|--------------|----------------|--------|-------------|------------------------------|------------------|
| 34A3h | 3             | U16          | Ocuic          | RW     | no          | Selects limit switch mode    | PLS.MODE         |
| 34A3h | 4             | U16          |                | RW     | no          | Reads the limit switch state | PLS.STATE        |
| 34A4h | 0             | U8           |                | RW     | no          | Sets limit switch units      | PLS.UNITS        |
| 34A8h | 0             | INT32        |                | RW     | no          | Sets the Compare 0 modulo    | CMP0.MODVALUE    |
|       |               |              |                |        |             | value                        |                  |
| 34A9h |               | ARRAY        |                |        |             | Compare0 modulo bounds       | _                |
| 34A9h | 0             | U8           |                | RO     | no          | highest sub-index            | _                |
| 34A9h | 1             | U8           |                | RW     | no          | Compare0 modulo bound 1      | CMP0.MODBOUND1   |
| 34A9h | 2             | U8           |                | RW     | no          | Compare0 modulo bound 2      | CMP0.MODBOUND2   |
| 34AAh |               | ARRAY        |                |        |             | CMP0 setpoints               | _                |
| 34AAh | 0             | U8           |                | RO     | no          | highest sub-index            | _                |
| 34AAh | 1             | INT32        |                | RW     | no          | Compare0 setpoint 0          | CMP0.SETPOINT 0  |
| 34AAh | 2             | INT32        |                | RW     | no          | Compare0 setpoint 1          | CMP0.SETPOINT 1  |
| 34AAh | 3             | INT32        |                | RW     | no          | Compare0 setpoint 2          | CMP0.SETPOINT 2  |
| 34AAh | 4             | INT32        |                | RW     | no          | Compare0 setpoint 3          | CMP0.SETPOINT 3  |
| 34AAh | 5             | INT32        |                | RW     | no          | Compare0 setpoint 4          | CMP0.SETPOINT 4  |
| 34AAh | 6             | INT32        |                | RW     | no          | Compare0 setpoint 5          | CMP0.SETPOINT 5  |
| 34AAh | 7             | INT32        |                | RW     | no          | Compare0 setpoint 6          | CMP0.SETPOINT 6  |
| 34AAh | 8             | INT32        |                | RW     | no          | Compare0 setpoint 7          | CMP0.SETPOINT 7  |
| 34ABh |               | ARRAY        |                |        |             | CMP0 widths                  | -                |
| 34ABh | 0             | U8           |                | RO     | no          | highest sub-index            |                  |
| 34ABh | 1             | INT32        |                | RW     | no          | Compare0 width 0             | CMP0.WIDTH 0     |
| 34ABh | 2             | INT32        |                | RW     | no          | Compare0 width 1             | CMP0.WIDTH 1     |
| 34ABh | 3             | INT32        |                | RW     | no          | Compare0 width 2             | CMP0.WIDTH 2     |
| 34ABh | 4             | INT32        |                | RW     | no          | Compare0 width 3             | CMP0.WIDTH 3     |
| 34ABh | 5             | INT32        |                | RW     | no          | Compare0 width 4             | CMP0.WIDTH 4     |
| 34ABh | 6             | INT32        |                | RW     | no          | Compare0 width 5             | CMP0.WIDTH 5     |
| 34ABh | 7             | INT32        |                | RW     | no          | Compare0 width 6             | CMP0.WIDTH 6     |
| 34ABh | 8             | INT32        |                | RW     | no          | Compare0 width 7             | CMP0.WIDTH 7     |
| 34ACh |               | ARRAY        |                |        |             | CMP0 widthtype               | <u> -</u>        |
| 34ACh | 0             | U8           |                | RO     | no          | highest sub-index            | _                |
| 34ACh | 1             | U8           |                | RW     | no          | Compare0 widthtype 0         | CMP0.WIDTHTYPE 0 |
| 34ACh | 2             | U8           |                | RW     | no          | Compare0 widthtype 1         | CMP0.WIDTHTYPE 1 |
| 34ACh | 3             | U8           |                | RW     | no          | Compare0 widthtype 2         | CMP0.WIDTHTYPE 2 |
| 34ACh | 4             | U8           |                | RW     | no          | Compare0 widthtype 3         | CMP0.WIDTHTYPE 3 |
| 34ACh | 5             | U8           |                | RW     | no          | Compare0 widthtype 4         | CMP0.WIDTHTYPE 4 |
| 34ACh | 6             | U8           |                | RW     | no          | Compare0 widthtype 5         | CMP0.WIDTHTYPE 5 |
| 34ACh | 7             | U8           |                | RW     | no          | Compare0 widthtype 6         | CMP0.WIDTHTYPE 6 |
| 34ACh | 8             | U8           |                | RW     | no          | Compare0 widthtype 7         | CMP0.WIDTHTYPE 7 |
| 34ADh |               | ARRAY        |                |        |             | CMP0 modes                   |                  |
| 34ADh | 0             | U8           |                | RO     | no          | highest sub-index            | -                |
| 34ADh | 1             | U8           |                | RW     | no          | Compare0 mode 0              | CMP0.MODE 0      |
| 34ADh | 2             | U8           |                | RW     | no          | Compare0 mode 1              | CMP0.MODE 1      |
| 34ADh | 3             | U8           |                | RW     | no          | Compare0 mode 2              | CMP0.MODE 2      |
| 34ADh | 4             | U8           |                | RW     | no          | Compare0 mode 3              | CMP0.MODE 3      |

| Index   | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map. | Description                     | ASCII object    |
|---------|---------------|--------------|----------------|--------|-------------|---------------------------------|-----------------|
| 34ADh   | 5             | U8           |                | RW     | no          | Compare0 mode 4                 | CMP0.MODE 4     |
| 34ADh   | 6             | U8           |                | RW     | no          | Compare0 mode 5                 | CMP0.MODE 5     |
| 34ADh   | 7             | U8           |                | RW     | no          | Compare0 mode 6                 | CMP0.MODE 6     |
| 34ADh   | 8             | U8           |                | RW     | no          | Compare0 mode 7                 | CMP0.MODE 7     |
| 34B0h   |               | ARRAY        |                |        |             | USER.DWORDS for writing         | _               |
|         |               |              |                |        |             | of feedback memory              |                 |
| 34B0h   | 0             | U8           |                | RO     | no          | highest sub-index               | _               |
| 34B0h   | 1             | U32          |                | RW     | no          | FB1.USERDWORD1                  | FB1.USERDWORD1  |
| 34B0h   | 2             | U32          |                | RW     | no          | FB1.USERDWORD2                  | FB1.USERDWORD2  |
| 34B1h   |               | ARRAY        |                |        |             | USER.WORDS for writing of       | -               |
|         |               |              |                |        |             | feedback memory                 |                 |
| 34B1h   | 0             | U8           |                | RO     | no          | highest sub-index               | _               |
| 34B1h   | 1             | U16          |                | RW     | no          | FB1.USERWORD1                   | FB1.USERWORD1   |
| 34B1h   | 2             | U16          |                | RW     | no          | FB1.USERWORD2                   | FB1.USERWORD2   |
| 34B1h   | 3             | U16          |                | RW     | no          | FB1.USERWORD3                   | FB1.USERWORD3   |
| 34B1h   | 4             | U16          |                | RW     | no          | FB1.USERWORD4                   | FB1.USERWORD4   |
| 34B2h   |               | ARRAY        |                |        |             | USER.BYTES for writing of       | -               |
|         |               |              |                |        |             | feedback memory                 |                 |
| 34B2h   | 0             | U8           |                | RO     | no          | highest sub-index               | _               |
| 34B2h   | 1             | U8           |                | RW     | no          | FB1.USERBYTE1                   | FB1.USERBYTE1   |
| 34B2h   | 2             | U8           |                | RW     | no          | FB1.USERBYTE2                   | FB1.USERBYTE2   |
| 34B2h   | 3             | U8           |                | RW     | no          | FB1.USERBYTE3                   | FB1.USERBYTE3   |
| 34B2h   | 4             | U8           |                | RW     | no          | FB1.USERBYTE4                   | FB1.USERBYTE4   |
| 34B2h   | 5             | U8           |                | RW     | no          | FB1.USERBYTE5                   | FB1.USERBYTE5   |
| 34B2h   | 6             | U8           |                | RW     | no          | FB1.USERBYTE6                   | FB1.USERBYTE6   |
| 34B2h   | 7             | U8           |                | RW     | no          | FB1.USERBYTE7                   | FB1.USERBYTE7   |
| 34B2h   | 8             | U8           |                | RW     | no          | FB1.USERBYTE8                   | FB1.USERBYTE8   |
| 34B8h   | 0             | INT32        |                | RW     | no          | Sets the Compare 1 modulo value | CMP1.MODVALUE   |
| 34B9h   |               | ARRAY        |                |        |             | Compare1 modulo bounds          | _               |
| 34B9h   | 0             | U8           |                | RO     | no          | highest sub-index               | _               |
| 34B9h   | 1             | U8           |                | RW     | no          | Compare1 modulo bound 1         | CMP1.MODBOUND1  |
| 34B9h   | 2             | U8           |                | RW     | no          | Compare1 modulo bound 2         | CMP1.MODBOUND2  |
| 34BAh   |               | ARRAY        |                |        |             | CMP1 setpoints                  | <u> </u>        |
| 34BAh   | 0             | U8           |                | RO     | no          | highest sub-index               | _               |
| 34BAh   | 1             | INT32        |                | RW     | no          | Compare1 setpoint 0             | CMP1.SETPOINT 0 |
| 34BAh   | 2             | INT32        |                | RW     | no          | Compare1 setpoint 1             | CMP1.SETPOINT 1 |
| 34BAh   | 3             | INT32        |                | RW     | no          | Compare1 setpoint 2             | CMP1.SETPOINT 2 |
| 34BAh   | 4             | INT32        |                | RW     | no          | Compare1 setpoint 3             | CMP1.SETPOINT 3 |
| 34BAh   | 5             | INT32        |                | RW     | no          | Compare1 setpoint 4             | CMP1.SETPOINT 4 |
| 34BAh   | 6             | INT32        |                | RW     | no          | Compare1 setpoint 5             | CMP1.SETPOINT 5 |
| 34BAh   | 7             | INT32        |                | RW     | no          | Compare1 setpoint 6             | CMP1.SETPOINT 6 |
| 34BAh   | 8             | INT32        |                | RW     | no          | Compare1 setpoint 7             | CMP1.SETPOINT 7 |
| 34BBh   |               | ARRAY        |                |        |             | CMP1 widths                     |                 |
| 34BBh   | 0             | U8           |                | RO     | no          | highest sub-index               | _               |
| U 10011 |               |              |                |        |             |                                 | <u> </u>        |

| Index          | Sub-<br>index | Data<br>Type | Float<br>Scale | Access   | PDO<br>map.            | Description                                             | ASCII object                            |
|----------------|---------------|--------------|----------------|----------|------------------------|---------------------------------------------------------|-----------------------------------------|
| 34BBh          | 1             | INT32        | Ocale          | RW       | no                     | Compare1 width 0                                        | CMP1.WIDTH 0                            |
| 34BBh          | 2             | INT32        |                | RW       | no                     | Compare1 width 1                                        | CMP1.WIDTH 1                            |
| 34BBh          | 3             | INT32        |                | RW       | RW no Compare1 width 2 |                                                         | CMP1.WIDTH 2                            |
| 34BBh          | 4             | INT32        |                | RW       | no                     | Compare1 width 3                                        | CMP1.WIDTH 3                            |
| 34BBh          | 5             | INT32        |                | RW       | no                     | Compare1 width 4                                        | CMP1.WIDTH 4                            |
| 34BBh          | 6             | INT32        |                | RW       | no                     | Compare1 width 5                                        | CMP1.WIDTH 5                            |
| 34BBh          | 7             | INT32        |                | RW       | no                     | Compare1 width 6                                        | CMP1.WIDTH 6                            |
| 34BBh          | 8             | INT32        |                | RW       | no                     | Compare1 width 7                                        | CMP1.WIDTH 7                            |
| 34BCh          |               | ARRAY        |                |          |                        | CMP1 widthtype                                          | -                                       |
| 34BCh          | 0             | U8           |                | RO       | no                     | highest sub-index                                       | -                                       |
| 34BCh          | 1             | U8           |                | RW       | no                     | Compare1 widthtype 0                                    | CMP1.WIDTHTYPE 0                        |
| 34BCh          | 2             | U8           |                | RW       | no                     | Compare1 widthtype 1                                    | CMP1.WIDTHTYPE 1                        |
| 34BCh          | 3             | U8           |                | RW       | no                     | Compare1 widthtype 2                                    | CMP1.WIDTHTYPE 2                        |
| 34BCh          | 4             | U8           |                | RW       | no                     | Compare1 widthtype 3                                    | CMP1.WIDTHTYPE 3                        |
| 34BCh          | 5             | U8           |                | RW       | no                     | Compare1 widthtype 4                                    | CMP1.WIDTHTYPE 4                        |
| 34BCh          | 6             | U8           |                | RW       | no                     | Compare1 widthtype 5                                    | CMP1.WIDTHTYPE 5                        |
| 34BCh          | 7             | U8           |                | RW       | no                     | Compare1 widthtype 6                                    | CMP1.WIDTHTYPE 6                        |
| 34BCh          | 8             | U8           |                | RW       | no                     | Compare1 widthtype 7                                    | CMP1.WIDTHTYPE 7                        |
| 34BDh          |               | ARRAY        |                |          |                        | CMP1 modes                                              | _                                       |
| 34BDh          | 0             | U8           |                | RO       | no                     | highest sub-index                                       | _                                       |
| 34BDh          | 1             | U8           |                | RW       | no                     | Compare1 mode 0                                         | CMP1.MODE 0                             |
| 34BDh          | 2             | U8           |                | RW       | no                     | Compare1 mode 1                                         | CMP1.MODE 1                             |
| 34BDh          | 3             | U8           |                | RW       | no                     | Compare1 mode 2                                         | CMP1.MODE 2                             |
| 34BDh          | 4             | U8           |                | RW       | no                     | Compare1 mode 3                                         | CMP1.MODE 3                             |
| 34BDh          | 5             | U8           |                | RW       | no                     | Compare1 mode 4                                         | CMP1.MODE 4                             |
| 34BDh          | 6             | U8           |                | RW       | no                     | Compare1 mode 5                                         | CMP1.MODE 5                             |
| 34BDh          | 7             | U8           |                | RW       | no                     | Compare1 mode 6                                         | CMP1.MODE 6                             |
| 34BDh          | 8             | U8           |                | RW       | no                     | Compare1 mode 7                                         | CMP1.MODE 7                             |
| 34C0h          |               | ARRAY        |                | D0       |                        | Compare0 handling                                       | _                                       |
| 34C0h          | 0             | U8           |                | RO       | no                     | highest sub-index                                       |                                         |
| 34C0h          | 2             | U16          |                | RW       | no                     | Compare0 arm setpoints                                  | CMP0.ARM 07<br>CMP0.STATE 07            |
| 34C0h          | 2             | U16<br>ARRAY |                | RW       | no                     | Compared states                                         | CMP0.STATE U7                           |
| 34C1h          | 0             |              |                | BO       | no                     | Compare1 handling highest sub-index                     | <del>-</del>                            |
| 34C1h<br>34C1h | 0             | U8<br>U16    |                | RO<br>RW | no                     | Compare1 arm setpoints                                  | CMP1.ARM 07                             |
| 34C1h          | 2             | U16          |                | RW       | no                     | Compare 1 arm serpoints  Compare 1 states               | CMP1.ARM 07                             |
| 3501h          | 0             | INT32        | 1:1            | RW       | no<br>no               | Acceleration ramp                                       | DRV.ACC, also see                       |
| 330111         |               | 111132       | 1.1            |          | 110                    | Acceleration ramp                                       | "6083h" (→ p. 155)                      |
| 3502h          | 0             | INT32        | 1:1            | RW       | no                     | Acceleration ramp for hom-<br>ing/jog modes             | HOME.ACC                                |
| 3506h          | 0             | INT32        |                |          | no                     | Action that hardware enable digital input will perform. | DRV.HWENMODE                            |
| 3509h          | 0             | INT32        | 1000:1         | RO       | no                     | Analog input voltage                                    | AIN.VALUE                               |
| 3522h          | 0             | INT32        | 1:1            | RW       | no                     | Deceleration rate                                       | DRV.DEC, also see<br>"6084h" (→ p. 155) |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map.                      | Description                                                                                           | ASCII object    |
|-------|---------------|--------------|----------------|--------|----------------------------------|-------------------------------------------------------------------------------------------------------|-----------------|
| 3524h | 0             | INT32        | 1:1            | RW     | no                               | Deceleration ramp for hom-<br>ing/jog modes                                                           | HOME.DEC        |
| 352Ah | 0             | INT32        |                | RW     |                                  |                                                                                                       | DRV.DIR         |
| 3533h | 0             | U32          |                | RO     | no                               | Resolution of motor encoder                                                                           | FB1.ENCRES      |
| 3534h | 0             | U32          |                | RO     | no                               | Mode of EEO connector                                                                                 | DRV.EMUEMODE    |
| 3535h | 0             | U32          |                | RO     | no                               | Resolution of EEO                                                                                     | DRV.EMUERES     |
| 3537h | 0             | U32          |                | RO     | no                               | Location of EEO index pulse                                                                           | DRV.EMUEZOFFSET |
| 353Bh | 0             | INT32        |                | RO     | no                               | Selection of the feedback type                                                                        | FB1.SELECT      |
| 3542h | 0             | U32          | 1000:1         | RW     | no                               | Position Control Loop: Proportional Gain                                                              | PL.KP           |
| 3548h | 0             | U32          | 1000:1         | RW     | no                               | Velocity Control Loop: Proportional Gain                                                              | VL.KP           |
| 354Bh | 0             | INT32        | 1000:1         | RW     | no                               | Sets the velocity loop velocity feedforward gain value                                                | VL.KVFF         |
| 354Dh | 0             | INT32        | 1000:1         | RW     | no                               | Velocity Control Loop: I-Integration Time                                                             | VL.KI           |
| 3558h | 0             | INT32        | 1000:1         | RO     | no                               | Current Monitor                                                                                       | IL.FB           |
| 3559h | 0             | INT32        | 1000:1         | RO     | no                               | Drive Ifold                                                                                           | IL.DIFOLD       |
| 355Ah | 0             | INT32        | 1000:1         | RW     | no                               | I2T Warning                                                                                           | IL.FOLDWTHRESH  |
| 3562h | 0             | INT32        |                | RW     | no                               | Function of Digital Input 1                                                                           | DIN1.MODE       |
| 3565h | 0             | INT32        |                | RW     | V no Function of Digital Input 2 |                                                                                                       | DIN2.MODE       |
| 3568h | 0             | INT32        |                | RW     | no                               | Function of Digital Input 3                                                                           | DIN3.MODE       |
| 356Bh | 0             | INT32        |                | RW     | no                               | Function of Digital Input 4                                                                           | DIN4.MODE       |
| 356Eh | 0             | INT32        | 1000:1         | RW     | no                               | Application Peak Current, positive direction                                                          | IL.LIMITP       |
| 356Fh | 0             | INT32        | 1000:1         | RW     | no                               | Application Peak Current, negative direction                                                          | IL.LIMITN       |
| 3586h | 0             | U32          |                | RW     | no                               | Sets the motor temperature fault level                                                                | MOTOR.TEMPFAULT |
| 3587h | 0             | INT32        |                | RW     | no                               | Select Motor Holding Brake                                                                            | MOTOR.BRAKE     |
| 358Eh | 0             | U32          | 1000:1         | RW     | no                               | Motor Continuous Current Rating                                                                       | MOTOR.ICONT     |
| 358Fh | 0             | U32          | 1000:1         | RW     | no                               | Motor Peak Current Rating                                                                             | MOTOR.IPEAK     |
| 3593h | 0             | U32          | 1000:1         | RW     | no                               | Sets the torque constant of the motor                                                                 | MOTOR.KT        |
| 3596h | 0             | U32          | 1000:1         | RO     | no                               | Sets the proportional gain of<br>the d-component current PI-<br>regulator as a percentage of<br>IL.KP | IL.KPDRATIO     |
| 3598h | 0             | INT32        | 1000:1         | RW     | no                               | Absolute Gain of Current Control loop                                                                 | IL.KP           |
| 359Ch | 0             | U32          |                | RW     | no                               | Sets the motor phase.                                                                                 | MOTOR.PHASE     |
| 359Dh | 0             | U32          |                | RW     | no                               | Sets the number of motor poles                                                                        | MOTOR.POLES     |
| 35A3h | 0             | U32          |                | RW     | no                               | Sets the maximum motor speed                                                                          | MOTOR.VMAX      |
| 35A4h | 0             | INT32        | 1000:1         | RW     | no                               | Maximum motor current                                                                                 | IL.MIFOLD       |
| 35ABh | 0             | U32          | 1000:1         | RW     | no                               | Sets the motor inertia                                                                                | MOTOR.INERTIA   |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map.                                                            | Description                                                  | ASCII object     |
|-------|---------------|--------------|----------------|--------|------------------------------------------------------------------------|--------------------------------------------------------------|------------------|
| 35AFh | 0             | U32          |                | RW     |                                                                        |                                                              | DOUT1.MODE       |
| 35B2h | 0             | U32          |                | RW     | RW no Sets the digital output 2 mode                                   |                                                              | DOUT2.MODE       |
| 35B4h | 0             | INT32        |                | RW     | no                                                                     | Operating Mode                                               | DRV.OPMODE       |
| 35B8h | 0             | U32          |                | RW     | no                                                                     | Table number for motion task                                 | MT.TNUM          |
| 35B9h | 0             | INT32        |                | RW     | no                                                                     | Control for Motion Task 0                                    | MT.CNTL          |
| 35BCh | 0             | INT32        |                | RW     | no                                                                     | Next Task Number for Motion<br>Task 0                        | MT.MTNEXT        |
| 35BDh | 0             | U32          |                | RW     | no                                                                     | Time to next motion task                                     | MT.TNEXT         |
| 35C2h | 0             | INT32        |                | RW     | no                                                                     | Select regen resistor                                        | REGEN.REXT       |
| 35C5h | 0             | INT32        | 1:1            | RO     | no                                                                     | Actual Following Error                                       | PL.ERR           |
| 35C6h | 0             | INT32        | 1:1            | RW     | no                                                                     | In-Position Window (profile position mode)                   | MT.TPOSWND       |
| 35C7h | 0             | INT32        | 1:1            | RW     | no                                                                     | Max. Following Error                                         | PL.ERRFTHRESH    |
| 35CAh | 0             | INT32        |                | RW     | no                                                                     | Position Resolution (Numerator)                              | UNIT.PIN         |
| 35CBh | 0             | INT32        |                | RW     | no                                                                     | Position Resolution (Denom-inator)                           | UNIT.POUT        |
| 35D2h | 0             | U32          |                | RO     | no                                                                     | Mechanical Position                                          | FB1.MECHPOS      |
| 35E2h | 0             | U32          | 1:1            | RW     | no Sets the current limit during homing procedure to a mechanical stop |                                                              | HOME.IPEAK       |
| 35EBh | 0             | INT32        |                | WO     | no                                                                     | Save Data in EEPROM                                          | DRV.NVSAVE       |
| 35F0h | 0             | INT32        |                | WO     | no                                                                     | Set Reference Point                                          | HOME.SET         |
| 35FEh | 0             | INT32        |                | WO     | no                                                                     | Stop Motion Task                                             | DRV.STOP         |
| 35FFh | 0             | U32          |                | RW     | no                                                                     | Selects between disable immediately or stop and then disable | DRV.DISMODE      |
| 3610h | 0             | INT32        |                | RO     | no                                                                     | Ambient Temperature                                          | DRV.TEMPERATURES |
| 3611h | 0             | INT32        |                | RO     | no                                                                     | Heat Sink Temperature                                        | DRV.TEMPERATURES |
| 3612h | 0             | INT32        |                | RO     | no                                                                     | Motor Temperature                                            | MOTOR.TEMP       |
| 3617h | 0             | U32          | 1:1            | RW     | no                                                                     | Undervoltage mode                                            | VBUS.UVMODE      |
| 3618h | 0             | INT32        | 1:1            | RO     | no                                                                     | Actual Velocity                                              | VL.FB            |
| 361Ah | 0             | INT32        |                | RO     | no                                                                     | DC-bus voltage                                               | VBUS.VALUE       |
| 361Dh | 0             | U32          | 1000:1         | RW     | / no Voltage level for undervoltage fault                              |                                                              | VBUS.UVFTHRESH   |
| 3622h | 0             | INT32        | 1:1            | RW     | no                                                                     | Max. Velocity                                                | VL.LIMITP        |
| 3623h | 0             | INT32        | 1:1            | RW     |                                                                        |                                                              | VL.LIMITN        |
| 3627h | 0             | INT32        | 1:1            | RW     |                                                                        |                                                              | VL.THRESH        |
| 3629h | 0             | INT32        | 1000:1         | RW     | , ,                                                                    |                                                              | AIN.VSCALE       |
| 3656h | 0             | U64          | 1:1            | RW     | · ·                                                                    |                                                              | FB1.ORIGIN       |
| 3659h | 0             | INT32        |                | RW     | no                                                                     | Type of acceleration setpoint for the system                 | UNIT.ACCROTARY   |
| 365Bh | 0             | INT32        |                | RW     | no                                                                     | Presetting for motion task that is processed later           | MT.NUM           |
| 365Fh | 0             | INT32        |                | RW     | no                                                                     | Systemwide Definition of Velo-<br>city/Speed                 | UNIT.VROTARY     |

| Index  | Sub-<br>index | Data          | Float<br>Scale | Access |                                                               | Description                                           | ASCII object      |
|--------|---------------|---------------|----------------|--------|---------------------------------------------------------------|-------------------------------------------------------|-------------------|
| 3660h  | Index<br>0    | Type<br>INT32 | Scale          | RW     | RW no Set Resolution of the Position U                        |                                                       | UNIT.PROTARY      |
| 366Eh  | 0             | INT32         |                | RW     | no                                                            | Disable Delaytime with Hold-                          | MOTOR.TBRAKEAPP   |
| 300EII |               | 110132        |                | KVV    | TIO                                                           | ing Brake                                             | WOTOR. I BRAREAPP |
| 366Fh  | 0             | INT32         |                | RW     | no                                                            | Enable Delaytime with Hold-<br>ing Brake              | MOTOR.TBRAKERLS   |
| 3683h  | 0             | U16           |                | RW     | no                                                            | Delay for wake and shake timing                       | WS.TDELAY1        |
| 3685h  | 0             | U16           |                | RW     | no                                                            | Sets delay for wake and shake timing                  | WS.TDELAY2        |
| 36D0h  | 0             | U16           |                | RW     | no                                                            | Sets wake and shake current-<br>vector appliance time | WS.T              |
| 36D1h  | 0             | U32           | 1:1            | RW     | RW no Sets the minimum movement V required for wake and shake |                                                       | WS.DISTMIN        |
| 36D7h  | 0             | U32           | 1000:1         | RW     | RW no Sets homing auto move flag                              |                                                       | HOME.AUTOMOVE     |
| 36E2h  | 0             | U8            |                | RW     | no Sets the number of repetitions for wake and shake          |                                                       | WS.NUMLOOPS       |
| 36E5h  | 0             | U32           |                | RW     | no                                                            | CAN baud rate selection                               | FBUS.PARAM01      |
| 36E6h  | 0             | U32           |                | RW     | no                                                            | pll synchronization                                   | FBUS.PARAM02      |
| 36E7h  | 0             | U32           |                | RW     | no                                                            | -                                                     | FBUS.PARAM03      |
| 36E8h  | 0             | U32           |                | RW     | no                                                            | SYNC surveillance                                     | FBUS.PARAM04      |
| 36E9h  | 0             | U32           |                | RW     | no                                                            | -                                                     | FBUS.PARAM05      |
| 36EAh  | 0             | U32           |                | RW     | no                                                            | -                                                     | FBUS.PARAM06      |
| 36EBh  | 0             | U32           |                | RW     | no                                                            | -                                                     | FBUS.PARAM07      |
| 36ECh  | 0             | U32           |                | RW     | no                                                            | -                                                     | FBUS.PARAM08      |
| 36EDh  | 0             | U32           |                | RW     | no                                                            | -                                                     | FBUS.PARAM09      |
| 36EEh  | 0             | U32           |                | RW     | V no -                                                        |                                                       | FBUS.PARAM10      |
| 36F6h  | 0             | INT32         |                | RW     | no Function of Digital Input 5                                |                                                       | DIN5.MODE         |
| 36F9h  | 0             | INT32         |                | RW     | no Function of Digital Input 6                                |                                                       | DIN6.MODE         |
| 36FCh  | 0             | U32           |                | RW     | no                                                            | Function of Digital Input 7                           | DIN7.MODE         |
| 3856h  | 0             | INT32         | 1:1            | RW     | no                                                            | velocity window for profile pos-<br>ition mode        | MT.TVELWND        |

## Objects 5000h to 5999h

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map. | Description                                    | ASCII object   |
|-------|---------------|--------------|----------------|--------|-------------|------------------------------------------------|----------------|
| 5000h | 0             | UINT32       |                | RW     | no          | Analog input low-pass filter cutoff frequency. | AIN.CUTOFF     |
| 5001h | 0             | UINT32       |                | RW     | no          | Analog input signal dead-<br>band.             | AIN.DEADBAND   |
| 5002h | 0             | UINT32       |                | RW     | no          | Analog current scale factor.                   | AIN.ISCALE     |
| 5003h | 0             | UINT32       |                | RW     | no          | Analog input offset.                           | AIN.OFFSET     |
| 5009h | 0             | UINT32       |                | RW     | no          | Analog current scale factor.                   | AOUT.ISCALE    |
| 500Bh | 0             | UINT32       |                | RW     | no          | Analog output offset.                          | AOUT.OFFSET    |
| 5013h | 0             | UINT32       |                | RW     | no          | Controls how often the excitation is updated.  | BODE.EXCITEGAP |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map. | Description                                                                      | ASCII object     |
|-------|---------------|--------------|----------------|--------|-------------|----------------------------------------------------------------------------------|------------------|
| 5015h | 0             | UINT32       | o cuii c       | RW     | no          | Current command value used during the Bode procedure.                            | BODE.IAMP        |
| 5016h | 0             | UINT32       |                | RW     | no          | Sets whether the excitation uses current or velocity excitation type.            | BODE.INJECTPOINT |
| 5019h | 0             | UINT32       |                | RW     | no          | Length of the PRB signal before it repeats.                                      | BODE.PRBDEPTH    |
| 5060h | 0             | UINT32       |                | RW     | no          | Sets the fault relay mode.                                                       | DOUT.RELAYMODE   |
| 5080h | 0             | UINT32       |                | RW     | no          | Default state of the software enable.                                            | DRV.ENDEFAULT    |
| 5083h | 0             | UINT32       |                | RW     | no          | Continuous rated current value.                                                  | DRV.ICONT        |
| 5084h | 0             | UINT32       |                | RW     | no          | Peak rated current value.                                                        | DRV.IPEAK        |
| 5085h | 0             | UINT32       |                | RW     | no          | Current that will be used during the DRV.ZERO procedure.                         | DRV.IZERO        |
| 508Ch | 0             | UINT32       |                | RW     | no          | Number of Biss Sensor (Position) Bits for the BiSS Mode C encoder in use.        | FB1.BISSBITS     |
| 508Fh | 0             | UINT32       |                | RW     | no          | Initial feedback value as signed or unsigned.                                    | FB1.INITSIGNED   |
| 5096h | 0             | UINT32       |                | RW     | no          | Current value used during<br>the phase finding procedure<br>(PFB.PFIND=1)        | FB1.PFINDCMDU    |
| 5097h | 0             | UINT32       |                | RW     | no          | Number of feedback poles.                                                        | FB1.POLES        |
| 5099h | 0             | UINT32       |                | RW     | no          | Resolver nominal trans-<br>formation ratio.                                      | FB1.RESKTR       |
| 509Ah | 0             | UINT32       |                | RW     | no          | Electrical degrees of phase lag in the resolver.                                 | FB1.RESREFPHASE  |
| 509Ch | 0             | UINT32       |                | RW     | no          | Controls tracking calibration algorithm.                                         | FB1.TRACKINGCAL  |
| 50B1h | 0             | UINT32       |                | RW     | no          | Number of successful syn-<br>chronized cycles needed to<br>lock the PLL.         | FBUS.PLLTHRESH   |
| 50BBh | 0             | UINT32       |                | RW     | no          | Denominator of the electronic gearing ratio; active in opmode 2 (position) only. | GEAR.IN          |
| 50BCh | 0             | UINT32       |                | RW     | no          | Electronic gearing mode; active in opmode 2 (position) only.                     | GEAR.MODE        |
| 50BEh | 0             | UINT32       |                | RW     | no          | Numerator of the electronic gearing ratio; active in opmode 2 (position) only.   | GEAR.OUT         |
| 50C5h | 0             | UINT32       |                | RW     | no          | Homing direction                                                                 | HOME.DIR         |
| 50CBh | 0             | UINT32       |                | RW     | no          | Homing mode                                                                      | HOME.MODE        |
| 50E2h | 0             | UINT32       |                | RW     | no          | Current loops fieldbus injected feed-forward gain                                | IL.KBUSFF        |
| 50FBh | 0             | UINT32       |                | RW     | no          | Motor pitch.                                                                     | MOTOR.PITCH      |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map. | Description                                                                                                                        | ASCII object   |
|-------|---------------|--------------|----------------|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 50FEh | 0             | UINT32       |                | RW     | no          | Type of thermal resistor inside the motor.                                                                                         | MOTOR.RTYPE    |
| 5104h | 0             | UINT32       |                | RW     | no          | Motor type.                                                                                                                        | MOTOR.TYPE     |
| 510Eh | 0             | UINT32       |                | RW     | no          | Motion task to be triggered after an emergency stop procedure; active in opmode 2 (position) only.                                 | MT.EMERGMT     |
| 5121h | 0             | UINT32       |                | RW     | no          | Type of following error warning and fault usage.                                                                                   | PL.ERRMODE     |
| 5128h | 0             | UINT32       |                | RW     | no          | Feedback source for the position loop.                                                                                             | PL.FBSOURCE    |
| 5175h | 0             | UINT32       |                | RW     | no          | Service motion current 1; active in opmode 0 (torque) only.                                                                        | SM.I1          |
| 5176h | 0             | UINT32       |                | RW     | no          | Service motion current 2; active in opmode 0 (torque) only.                                                                        | SM.12          |
| 5177h | 0             | UINT32       |                | RW     | no          | Service motion mode.                                                                                                               | SM.MODE        |
| 5179h | 0             | UINT32       |                | RW     | no          | Service motion time 1.                                                                                                             | SM.T1          |
| 517Ah | 0             | UINT32       |                | RW     | no          | Service motion time 2.                                                                                                             | SM.T2          |
| 517Eh | 0             | UINT32       |                | RW     | no          | Enables and disables soft-<br>ware travel limit switches.                                                                          | SWLS.EN        |
| 5184h | 0             | UINT32       |                | RW     | no          | Linear accel-<br>eration/deceleration units.                                                                                       | UNIT.ACCLINEAR |
| 5187h | 0             | UINT32       |                | RW     | no          | Linear position units.                                                                                                             | UNIT.PLINEAR   |
| 518Ah | 0             | UINT32       |                | RW     | no          | Linear velocity units.                                                                                                             | UNIT.VLINEAR   |
| 518Eh | 0             | UINT32       |                | RW     | no          | Voltage level for over voltage warning.                                                                                            | VBUS.OVWTHRESH |
| 51AEh | 0             | UINT32       |                | RW     | no          | Feedback source for the velo-<br>city loop; active in opmodes<br>1 (velocity) and 2 (position)<br>only.                            | VL.FBSOURCE    |
| 51B0h | 0             | UINT32       |                | RW     | no          | Mode of velocity generation (Observer, d/dt); active in opmodes 1 (velocity) and 2 (position) only.                                | VL.GENMODE     |
| 51B3h | 0             | UINT32       |                | RW     | no          | Scales the observer velocity signal; active in opmodes 1 (velocity) and 2 (position) only.                                         | VL.KO          |
| 51B8h | 0             | UINT32       |                | RW     | no          | Ratio of the estimated load<br>moment of inertia relative to<br>the motor moment of inertia;<br>active in opmodes 1 and 2<br>only. | VL.LMJR        |
| 51BAh | 0             | UINT32       |                | RW     | no          | Bandwidth of the observer in Hz.                                                                                                   | VL.OBSBW       |
| 51BBh | 0             | UINT32       |                | RW     | no          | Observer operating mode.                                                                                                           | VL.OBSMODE     |
| 51CBh | 0             | UINT32       |                | RW     | no          | Filter mode for Digital In 1.                                                                                                      | DIN1.FILTER    |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map.                            | Description                                                                              | ASCII object        |
|-------|---------------|--------------|----------------|--------|----------------------------------------|------------------------------------------------------------------------------------------|---------------------|
| 51CCh | 0             | UINT32       | Ocaro          | RW     | no                                     | Filter mode for Digital In 2.                                                            | DIN2.FILTER         |
| 51CDh | 0             | UINT32       |                | RW     | RW no Filter mode for Digital In 3.    |                                                                                          | DIN3.FILTER         |
| 51CEh | 0             | UINT32       |                | RW     | RW no Filter mode for Digital In 4.    |                                                                                          | DIN4.FILTER         |
| 51CFh | 0             | UINT32       |                | RW     | no                                     | Filter mode for Digital In 5.                                                            | DIN5.FILTER         |
| 51D0h | 0             | UINT32       |                | RW     | no                                     | Filter mode for Digital In 6.                                                            | DIN6.FILTER         |
| 51D1h | 0             | UINT32       |                | RW     | no                                     | Filter mode for Digital In 7.                                                            | DIN7.FILTER         |
| 51E7h | 0             | UINT32       |                | RW     | no                                     | Modbus User Units Input parameter                                                        | MODBUS.PIN          |
| 51E8h | 0             | UINT32       |                | RW     | no                                     | Modbus User Units Output parameter.                                                      | MODBUS.POUT         |
| 51E9h | 0             | UINT32       |                | RW     | no                                     | Feedback Resolution (per rev) over Modbus.                                               | MODBUS.PSCALE       |
| 51ECh | 0             | UINT32       |                | RW     | no                                     | Secondary feedback (FB2) resolution.                                                     | FB2.ENCRES          |
| 51EDh | 0             | UINT32       |                | RW     | no                                     | Mode for the second feed-<br>back inputs and high speed<br>digital inputs.               | FB2.MODE            |
| 51EEh | 0             | UINT32       |                | RW     | no                                     | Source for the second feed-back input.                                                   | FB2.SOURCE          |
| 51EFh | 0             | UINT32       |                | RW     | N no Brake apply timeout f tical axis. |                                                                                          | MOTOR.TBRAKETO      |
| 51F0h | 0             | UINT32       |                | RW     | no                                     | i.p.                                                                                     | MODBUS.MSGLOG       |
| 520Ch | 0             | UINT32       |                | RW     | no                                     | Scaling mode for Modbus values.                                                          | MODBUS.SCALING      |
| 520Dh | 0             | UINT32       |                | RW     | no                                     | Encoder output pulse width for modes 6 to 7.                                             | DRV.EMUEPULSE-WIDTH |
| 520Eh | 0             | UINT32       |                | RW     | no                                     | Enable/disable motor velocity vs. maximum emulated encoder velocity monitoring function. | DRV.EMUECHECK-SPEED |
| 5251h | 0             | UINT32       |                | RW     | no                                     | Analog input deadband mode.                                                              | AIN.DEADBANDMODE    |
| 5252h | 0             | UINT32       |                | RW     | no                                     | Analog input mode                                                                        | AIN.MODE            |
| 5253h | 0             | UINT32       |                | RW     | no                                     | Direction of IOs from X9.                                                                | DIO10.DIR           |
| 5254h | 0             | UINT32       |                | RW     | no                                     | Inverting the output voltage of the IO, when in the output direction.                    | DIO10.INV           |
| 5255h | 0             | UINT32       |                | RW     | no                                     | Direction of IOs from X9.                                                                | DIO11.DIR           |
| 5256h | 0             | UINT32       |                | RW     | no                                     | Inverting the output voltage of the IO, when in the output direction.                    | DIO11.INV           |
| 5257h | 0             | UINT32       |                | RW     | no                                     | Direction of IOs from X9.                                                                | DIO9.DIR            |
| 5258h | 0             | UINT32       |                | RW     | no                                     | Inverting the output voltage of the IO, when in the output direction.                    | DIO9.INV            |
| 5259h | 0             | UINT32       |                | RW     | no                                     | Fault Action for Fault 130.                                                              | FAULT130.ACTION     |
| 525Ah | 0             | UINT32       |                | RW     | no                                     | Fault Action for Fault 131.                                                              | FAULT131.ACTION     |
| 525Bh | 0             | UINT32       |                | RW     | no                                     | Fault Action for Fault 132.                                                              | FAULT132.ACTION     |

| Index | Sub-<br>index | Data<br>Type | Float<br>Scale | Access | PDO<br>map. | Description                                                                                    | ASCII object        |
|-------|---------------|--------------|----------------|--------|-------------|------------------------------------------------------------------------------------------------|---------------------|
| 525Ch | 0             | UINT32       |                | RW     | no          | Fault Action for Fault 133.                                                                    | FAULT134.ACTION     |
| 525Dh | 0             | UINT32       |                | RW     | no          | Fault Action for Fault 702.                                                                    | FAULT702.ACTION     |
| 525Eh | 0             | UINT32       |                | RW     | no          | Method of acquiring IP<br>Address.                                                             | IP.MODE             |
| 525Fh | 0             | UINT32       |                | RW     | no          | Load inertia.                                                                                  | LOAD.INERTIA        |
| 5260h | 0             | UINT32       |                | RW     | no          | Motor back EMF constant.                                                                       | MOTOR.KE            |
| 5261h | 0             | UINT32       |                | RW     | no          | Changing voltage thresholds.                                                                   | VBUS.HALFVOLT       |
| 5262h | 0             | UINT32       |                | RW     | no          | Direction for the second feedback input (X9 and X7).                                           | FB2.DIR             |
| 5263h | 0             | UINT32       |                | RW     | no          | Feedback for handwheel operation.                                                              | DRV.HANDWHEELSRC    |
| 5264h | 0             | UINT32       |                | RW     | no          | Delay time between inactive<br>Hardware Enable input and<br>drive disable.                     | DRV.HWENDELAY       |
| 5265h | 0             | UINT32       |                | RW     | no          | Index into the Current Loop<br>Gain Scheduling Table.                                          | IL.KPLOOKUPINDEX    |
| 5266h | 0             | UINT32       |                | RW     | no          | Value of the current loop gain scheduling index.                                               | IL.KPLOOKUPVALUE    |
| 5267h | 0             | UINT32       |                | RW     | no          | Fault Action for Fault 451.                                                                    | FAULT451.ACTION     |
| 5268h | 0             | UINT32       |                | RW     | no          | Brake Immediately in the case of a drive disable.                                              | MOTOR.BRAKEIMM      |
| 5352h | 0             | UINT16       |                | RW     | no          | Amount of time a com-<br>munication error must be<br>present before an W&S-fault<br>is thrown. | WS.CHECKT           |
| 535Ch | 0             | UINT16       |                | RW     | no          | Sets the calming time of the motor for Wake & Shake mode 1.                                    | WS.TSTANDSTILL      |
| 535Dh | 0             | UINT16       |                | RW     | no          | Time for the ramp up current in Wake & Shake mode 1.                                           | WS.TIRAMP           |
| 5360h | 0             | UINT16       |                | RW     | no          | Rotor time constant.                                                                           | MOTOR.IMTR          |
| 5361h | 0             | UINT8        |                | RW     | no          | Sets the feedback source for<br>the current loop for<br>MOTOR.TYPE4.                           | IL.FBSOURCE         |
| 5362h | 0             | UINT32       |                | RW     | no          | The direct-axis current set point used for induction machine closed-loop control.              | MOTOR.IMID          |
| 5375h | 0             | INT32        |                | RO     | no          | The last actual position<br>before the AKD was<br>switched off (24 V)                          | FB1.INITPSAVED      |
| 5377h | 0             | UINT32       |                | RW     | no          | Initial position comparison window                                                             | FB1.INITPWINDOW     |
| 5379h | 0             | UINT8        |                | RO     | no          | Result of initial position check                                                               | FB1.INITPSTATUS     |
| 538Bh | 0             | UINT16       |                | RW     | no          |                                                                                                | DRV.EMUESTEPMODE () |
| 538Ch | 0             | UINT16       |                | RW     | no          |                                                                                                | DRV.EMUESTEPSTATUS  |
| 538Dh | 0             | UINT16       |                | RW     | no          |                                                                                                | DRV.EMUESTEPVMAX    |

| Index | Sub-  | Data   | Float | Access | PDO  | Description                                                                                  | ASCII object         |
|-------|-------|--------|-------|--------|------|----------------------------------------------------------------------------------------------|----------------------|
|       | index | Type   | Scale |        | тар. |                                                                                              |                      |
| 538Fh | 0     | INT8   |       | RW     | no   | Compare engine 0 source                                                                      | CMP0.SOURCE          |
| 5390h | 0     | INT8   |       | RW     | no   | Compare engine 1 source                                                                      | CMP1.SOURCE          |
| 5394h | 0     | U16    |       | RW     | no   | Compare engine 0 output mask                                                                 | CMP0.OUTMASK         |
| 539Bh | 0     | U16    |       | RW     | no   | Compare engine 1 output mask                                                                 | CMP1.OUTMASK         |
| 53A6h | 0     | U8     |       | RW     | no   | Compare engine 0 modulo enable                                                               | CMP0.MODEN           |
| 53ADh | 0     | U8     |       | RW     | no   | Compare engine 1 modulo enable                                                               | CMP1.MODEN           |
| 53B1h | 0     | U32    |       | RW     | no   | Compare engine 0 advance                                                                     | CMP0.ADVANCE         |
| 53B2h | 0     | U32    |       | RW     | no   | Compare engine 1 advance                                                                     | CMP1.ADVANCE         |
| 53C7h | 0     | UINT32 |       | RW     | no   | Sets the fault display mode                                                                  | DRV.FAULTDISPLAYMODE |
| 53D5h | 0     | UINT32 |       | RW     | no   | Sets the delay time for PL.CMD                                                               | PL.PDELAY            |
| 53D6h | 0     | UINT32 |       | RW     | no   | Sets the delay time for the velocity feedforward integrator component                        | VL.FFDELAY           |
| 53D7h | 0     | INT8   |       | RW     | no   | Allows a surface permanent magnet motor to operate as an interior permanent magnet motor     | MOTOR.FIELDWEAKENING |
| 5403h | 0     | UINT32 |       | RW     | no   | Toggles between HOME.IPEAK and current loop limits during homing                             | HOME.IPEAKACTIVE     |
| 5404h | 0     | UINT32 |       | RW     | no   | Scaling factor (numerator) for<br>the command<br>DRV.EMUESTEPCMD                             | DRV.EMUESTEPCMDPIN   |
| 5405h | 0     | UINT32 |       | RW     | no   | Scaling factor (denominator) for the command DRV.EMUESTEPCMD                                 | DRV.EMUESTEPCMDPOUT  |
| 5406h | 0     | UINT32 |       | RW     | no   | Sets the target position window for the homing procedure; active in opmode 2 (position) only | HOME.TPOSWND         |
| 541fh | 0     | UINT8  |       | RW     | no   | Disables the automatic<br>Wake & Shake in special<br>cases                                   | WS.FORCEOFF          |
| 5420h | 0     | UINT8  |       | RW     | no   | Defines the behavior of fault 314.                                                           | FAULT314.ACTION      |

## 7.1.5 Profile specific SDOs

| Index | Sub-<br>index | Data Type | Float<br>Scale | Access | PDO<br>map. | Description            | ASCII object |
|-------|---------------|-----------|----------------|--------|-------------|------------------------|--------------|
| 6040h | 0             | U16       |                | WO     | yes         | Control word           | _            |
| 6041h | 0             | U16       |                | RO     | yes         | Status word            | _            |
| 605Ah | 0             | INT16     |                | RW     | no          | Quick stop option code | _            |

| Index | Sub-<br>index | Data Type | Float<br>Scale | Access | PDO<br>map. | Description                              | ASCII object      |
|-------|---------------|-----------|----------------|--------|-------------|------------------------------------------|-------------------|
| 6060h | 0             | INT8      |                | RW     | yes         | Modes of operation                       | _                 |
| 6061h | 0             | INT8      |                | RO     | yes         | Modes of operation display               | _                 |
| 6063h | 0             | INT32     |                | RO     | yes         | Position actual value (increments)       | _                 |
| 6064h | 0             | INT32     | 1:1            | RO     | yes         | Position actual value (position units)   | PL.FB             |
| 6065h | 0             | U32       | 1:1            | RW     | no          | Following error window                   | PL.<br>ERRFTHRESH |
| 606Bh | 0             | INT32     | 1:1            | RO     | no          | Velocity demand value                    | VL.CMD            |
| 606Ch | 0             | INT32     | 1000:1         | RO     | yes         | Velocity actual<br>value (PDO in<br>RPM) | VL.FB             |
| 606Dh | 0             | U16       |                | RW     | yes         | Velocity window                          |                   |
| 606Eh | 0             | U16       |                | RW     | yes         | Velocity window time                     |                   |
| 6071h | 0             | INT16     |                | RW     | yes*        | Target torque                            | _                 |
| 6072h | 0             | U16       |                | RW     | yes*        | Max torque                               | _                 |
| 6073h | 0             | U16       |                | RW     | no          | Max current                              |                   |
| 6077h | 0             | INT16     |                | RO     | yes         | Torque actual value                      | DRV.ICONT         |
| 607Ah | 0             | INT32     | 1:1            | RW     | yes         | Target position                          | MT.P              |
| 607Ch | 0             | INT32     | 1:1            | RW     | no          | Reference offset                         | HOME.P            |
| 607Dh |               | ARRAY     |                |        |             | Software position limit                  |                   |
| 607Dh | 0             | U8        |                | RO     | no          | highest sub-index                        |                   |
| 607Dh | 1             | INT32     | 1:1            | RW     | no          | Software position limit 1                | SWLS.LIMIT0       |
| 607Dh | 2             | INT32     | 1:1            | RW     | no          | Software position limit 2                | SWLS.LIMIT1       |
| 6081h | 0             | U32       | 1:1            | RW     | yes         | Profile Velocity                         | MT.V              |
| 6083h | 0             | U32       | 1:1            | RW     | yes         | Profile Accel-<br>eration                | MT.ACC , DRV.ACC  |
| 6084h | 0             | U32       | 1:1            | RW     | yes         | Profile Decel-<br>eration                | MT.DEC , DRV.DEC  |
| 6087h | 0             | U32       |                | RW     | yes         | Torque slope                             | _                 |
| 608Fh |               | ARRAY     |                |        |             | Position encoder resolution              | _                 |
| 608Fh | 0             | U8        |                | RO     | no          | highest sub-index                        |                   |
| 608Fh | 1             | U32       |                | RW     | no          | Encoder incre-<br>ments                  | _                 |
| 608Fh | 2             | U32       |                | RW     | no          | Motor revolutions                        |                   |
| 6091h |               | ARRAY     |                |        |             | Gear ratio                               |                   |
| 6091h | 0             | U8        |                | RO     | no          | highest sub-index                        | _                 |
| 6091h | 1             | U32       |                | RW     | no          | Motor revolution                         |                   |

| Index  | Sub-<br>index | Data Type | Float<br>Scale | Access |      | Description                      | ASCII object          |
|--------|---------------|-----------|----------------|--------|------|----------------------------------|-----------------------|
| 6091h  | 2             | U32       | Scale          | RW     | map. | Shaft revolutions                |                       |
| 6092h  |               | ARRAY     |                | 1000   | 110  | Feed constant                    | _                     |
| 6092h  | 0             | U8        |                | RO     | no   | highest sub-index                |                       |
| 6092h  | 1             | U32       |                | RW     | no   | Feed                             | UNIT.PIN              |
| 6092h  | 2             | U32       |                | RW     | no   | Shaft revolutions                |                       |
| 6098h  | 0             | INT8      |                | RW     | no   | Homing type                      | HOME.MODE , HOME.DIR  |
| 6099h  |               | ARRAY     |                |        |      | Homing velocity                  | _                     |
| 6099h  | 0             | U8        |                | RO     | no   | highest sub-index                | _                     |
| 6099h  | 1             | U32       | 1:1            | RW     | no   | Speed while                      | HOME.V                |
|        |               |           |                |        |      | searching for limit              |                       |
| 6099h  | 2             | U32       |                | RW     | no   | Speed while                      | HOME.                 |
| 009911 |               | 032       |                | '\\\   | 110  | searching for zero               | FEEDRATE              |
|        |               |           |                |        |      | mark                             |                       |
| 609Ah  | 0             | U32       | 1:1            | RW     | no   | Homing accel-<br>eration         | HOME.ACC , HOME.DEC   |
| 60B1h  | 0             | INT32     | 1:1            | RW     | yes* | Velocity offset                  | VL.BUSFF              |
| 60B2h  | 0             | INT16     |                | RW     | yes* | Torque offset                    |                       |
|        |               |           |                |        |      | (PDO only)                       |                       |
| 60B8h  | 0             | U16       |                | RW     | yes  | Touch probe func-                | _                     |
|        |               |           |                |        |      | tion                             |                       |
| 60B9h  | 0             | U16       |                | RW     | yes  | Touch probe status               | _                     |
| 60BAh  | 0             | INT32     |                | RW     | yes  | Touch probe 1 pos-<br>itive edge | _                     |
| 60BBh  | 0             | INT32     |                | RW     | yes  | Touch probe 1 negative edge      | _                     |
| 60BCh  | 0             | INT32     |                | RW     | yes  | Touch probe 2 pos-<br>itive edge | _                     |
| 60BDh  | 0             | INT32     |                | RW     | yes  | Touch probe 2 neg-               | _                     |
| OODDII | U             | 114132    |                | IXVV   | yes  | ative edge                       | _                     |
| 60C0h  | 0             | INT16     |                | RW     | no   | Interpolation sub-               | _                     |
| 00045  |               | ADDAY     |                |        |      | mode select                      |                       |
| 60C1h  |               | ARRAY     |                |        |      | Interpolation data record        | <del>-</del>          |
| 60C1h  | 0             | U8        |                | RO     | no   | highest sub-index                | _                     |
| 60C1h  | 1             | INT32     |                | RW     | yes* | Interpolation target position    | _                     |
| 60C1h  | 2             | U32       |                | RW     | yes  | Interpolation time               | _                     |
| 60C1h  | 3             | INT32     |                | RW     | yes  | Interpolation target velocity    | _                     |
| 60C2h  |               | RECORD    |                |        |      | Interpolation time period        | _                     |
| 60C2h  | 0             | U8        |                | RO     | no   | highest sub-index                | FBUS.<br>SAMPLEPERIOD |
| 60C2h  | 1             | U8        |                | RW     | no   | Interpolation time units         |                       |

| Index | Sub-<br>index | Data Type | Float<br>Scale | Access | PDO<br>map. | Description                                         | ASCII object              |
|-------|---------------|-----------|----------------|--------|-------------|-----------------------------------------------------|---------------------------|
| 60C2h | 2             | INT8      |                | RW     | no          | Interpolation time index                            | _                         |
| 60C4h |               | RECORD    |                |        |             | Interpolation data configuration                    | _                         |
| 60C4h | 0             | U8        |                | RO     | no          | highest sub-index                                   | _                         |
| 60C4h | 1             | U32       |                | RO     | no          | Maximum buffer size                                 | _                         |
| 60C4h | 2             | U32       |                | RO     | yes         | Actual buffer size                                  | _                         |
| 60C4h | 3             | U8        |                | RW     | no          | Buffer organization                                 | _                         |
| 60C4h | 4             | U16       |                | RW     | no          | Buffer position                                     | _                         |
| 60C4h | 5             | U8        |                | WO     | no          | Siza of data record                                 | _                         |
| 60C4h | 6             | U8        |                | WO     | no          | Buffer clear                                        | _                         |
| 60D0h |               | ARRAY     |                |        |             | Touch probe source                                  | _                         |
| 60D0h | 0             | U8        |                | RO     | no          | highest sub-index                                   | -                         |
| 60D0h | 1             | INT16     |                | RW     | no          | Touch probe 1 source                                | _                         |
| 60D0h | 2             | INT16     |                | RW     | no          | Touch probe 2 source                                | _                         |
| 60E0h | 0             | UINT16    |                | RO     | yes*        | Positive torque limit value                         | IL.LIMITP                 |
| 60E1h | 0             | UINT16    |                | RO     | yes*        | Negative torque limit value                         | IL.LIMITN                 |
| 60E4h |               | ARRAY     |                |        |             | Additional position actual value                    | _                         |
| 60E4h | 0             | U8        |                | RO     | no          | highest sub-index                                   | _                         |
| 60E4h | 1             | INT32     |                | RW     | no          | 1st additional position actual value                | _                         |
| 60E4h | 2             | INT32     |                | RW     | no          | reserved                                            | _                         |
| 60E4h | 3             | INT32     |                | RW     | no          | 3rd additional position actual value                | _                         |
| 60E8h |               | ARRAY     |                |        |             | Additional gear ratio - motor shaft revolutions     | _                         |
| 60E8h | 0             | U8        |                | RO     | no          | highest sub-index                                   | _                         |
| 60E8h | 1             | U32       |                | RW     | no          | 1st additional gear ratio - motor shaft revolutions | DS402.1ADDPOSGEARMOTORREV |
| 60E8h | 2             | U32       |                | RW     | no          | 2nd additional gear ratio - motor shaft revolutions | DS402.2ADDPOSGEARMOTORREV |
| 60E8h | 3             | U32       |                | RW     | no          | 3rd additional gear ratio - motor shaft revolutions | DS402.3ADDPOSGEARMOTORREV |
| 60E9h |               | ARRAY     |                |        |             | Additional feed con-<br>stant - feed                | _                         |
| 60E9h | 0             | U8        |                | RO     | no          | highest sub-index                                   | _                         |

| Index | Sub-  | Data Type | Float  | Access | PDO      | Description                            | ASCII object                 |
|-------|-------|-----------|--------|--------|----------|----------------------------------------|------------------------------|
|       | index |           | Scale  |        | тар.     |                                        |                              |
| 60E9h | 1     | U32       |        | RW     | no       | 1st additional feed                    | DS402.                       |
|       |       |           |        |        |          | constant - feed                        | 1ADDPOSFCFEED                |
| 60E9h | 2     | U32       |        | RW     | no       | 2nd additional gear                    | DS402.2ADDPOSFCFEED          |
|       |       |           |        |        |          | ratio - motor shaft                    |                              |
| COEOR | 2     | 1120      |        | DW     |          | revolutions                            | DS402.                       |
| 60E9h | 3     | U32       |        | RW     | no       | 3rd additional feed constant - feed    | 3ADDPOSFCFEED                |
| 60EDh |       | ARRAY     |        |        |          | Additional gear                        | JADDI GGI GI EED             |
|       |       |           |        |        |          | ratio - driving shaft                  |                              |
|       |       |           |        |        |          | revolutions                            |                              |
| 60EDh | 0     | U8        |        | RO     | no       | highest sub-index                      | _                            |
| 60EDh | 1     | U32       |        | RW     | no       | 1st additional gear                    | DS402.1ADDPOSGEARSHAFTREV    |
|       |       |           |        |        |          | ratio - driving shaft                  |                              |
|       |       |           |        |        |          | revolutions                            |                              |
| 60EDh | 2     | U32       |        | RW     | no       | 2nd additional gear                    | DS402.2ADDPOSGEARSHAFTREV    |
|       |       |           |        |        |          | ratio - driving shaft                  |                              |
| 00551 |       | 1100      |        |        |          | revolutions                            |                              |
| 60EDh | 3     | U32       |        | RW     | no       | 3rd additional gear                    | DS402.3ADDPOSGEARSHAFTREV    |
|       |       |           |        |        |          | ratio - driving shaft<br>revolutions   |                              |
| 60EEh |       | ARRAY     |        |        |          | Additional feed con-                   | _                            |
|       |       |           |        |        |          | stant - driving shaft                  |                              |
|       |       |           |        |        |          | revolutions                            |                              |
| 60EEh | 0     | U8        |        | RO     | no       | highest sub-index                      | _                            |
| 60EEh | 1     | U32       |        | RW     | no       | 1st additional feed                    | DS402.                       |
|       |       |           |        |        |          | constant - driving                     | 1ADDPOSFCFSHAFTREV           |
|       |       |           |        |        |          | shaft revolutions                      |                              |
| 60EEh | 2     | U32       |        | RW     | no       | 2nd additional feed                    |                              |
|       |       |           |        |        |          | constant - driving                     | 2ADDPOSFCFSHAFTREV           |
| 00551 |       | 1100      |        | D)4/   |          | shaft revolutions                      | D0 400                       |
| 60EEh | 3     | U32       |        | RW     | no       | 3rd additional feed constant - driving | DS402.<br>3ADDPOSFCFSHAFTREV |
|       |       |           |        |        |          | shaft revolutions                      | JADDFOSFCFSHAFTREV           |
| 60F4h | 0     | INT32     |        | RO     | yes      | Following error                        | PL.ERR                       |
|       | Ū     | 111102    |        | 110    | , 55     | actual value                           |                              |
| 60FCh | 0     | INT32     |        | RO     | yes      | Position demand                        | PL.CMD                       |
|       |       |           |        |        | <b> </b> | internal value                         |                              |
| 60FDh | 0     | U32       |        | RO     | yes      | Digital inputs                         | DIN1.MODE TO DIN6.MODE       |
| 60FEh |       | ARRAY     |        |        |          | Digital outputs                        |                              |
| 60FEh | 0     | U8        |        | RO     | no       | highest sub-index                      |                              |
| 60FEh | 1     | U32       |        | RW     | yes      | Physical outputs                       |                              |
| 60FEh | 2     | U32       |        | RW     | no       | Bit mask                               |                              |
| 60FFh | 0     | INT32     | 1000:1 | RW     | yes*     | Target velocity                        | VL.CMDU                      |
| 6502h | 0     | U32       |        | RO     | no       | Supported drive                        | _                            |
|       |       |           |        |        |          | modes                                  |                              |

#### 7.2 Examples

#### 7.2.1 Examples, setup

All examples are valid for the AKD. All values are hexadecimal.

#### 7.2.1.1 Basic testing of the connection to the AKD controls

When the AKD is switched on, a boot-up message is transmitted over the bus. The telegram continues to be transmitted, as long as it has not yet found a suitable receiver in the bus system.

If a CAN master is unable to recognize this message, then the following measures can be taken to test communication:

- Check the bus cable: correct characteristic impedance, correct termination resistors at both ends?
- With a multimeter: check the quiescent level of the bus cables CAN-H and CAN-L against CAN-GND (approx. 2.5 V).
- With an oscilloscope: check the output signals on CAN-H and CAN-L at the AKD. Are signals being transmitted on the bus? The voltage difference between CAN-H and CAN-L for a logical "0" is approx. 2-3 V.
- Does signal transmission stop if the master is connected?
- · Check the master hardware.
- · Check the master software!

#### 7.2.1.2 Example: Operating the State Machine

NOTE

The state machine must be used sequentially during boot-up period. Leaving out a state (except for state "switched on") is not possible.

When the AKD is switched on and the boot-up message has been detected, communication via SDOs can be initiated. For example: all the parameters can be read out or written to, or the state machine for the drive can be controlled.

The state of the state machine can be obtained through the query of Object 6041h Sub 0. Directly after switch-on, a value will be returned, such as 0240h. This corresponds to the status "Switch on disabled".

The following data would then be visible on the CAN bus:

| СОВ | Control         | Index |     | Sub-  | Data        | Comment           |
|-----|-----------------|-------|-----|-------|-------------|-------------------|
| ID  | byte            | LSB   | MSB | index |             |                   |
| 603 | 40              | 41    | 60  | 00h   | 40 00 00 00 |                   |
| 583 | 4B              | 41    | 60  | 00h   | 40 02 00 00 | response telegram |
|     | 2 bytes of data |       |     |       | status      |                   |

If the supply power is present and the hardware enable is at the High level (24 V to DGND) then you can try to switch the drive to the state "Switched on" by writing the Control word (Object 6040 Sub 0). If this is successful, there will be a positive acknowledgement in the SDO reply (control byte 0 in the data field = 60h).

#### Switch on

The messages then appear as follows:

| СОВ | Control | Index |     | Sub-  | Data        | Comment           |
|-----|---------|-------|-----|-------|-------------|-------------------|
| ID  | byte    | LSB   | MSB | index |             |                   |
| 603 | 2B      | 40    | 60  | 00h   | 06 00 00 00 | Shut down         |
| 583 | 60      | 40    | 60  | 00h   | 00 00 00 00 | response telegram |
| 603 | 2B      | 40    | 60  | 00h   | 07 00 00 00 | Switch on         |
| 583 | 60      | 40    | 60  | 00h   | 00 00 00 00 | response telegram |

control word = 0x0007 meaning: Bit 0, Bit 1, Bit 2 set => Switch On, Disable Voltage off, Quick Stop off

### Status query 2

The new status can then be queried again, and returns the following result:

| СОВ | Control |     |     | Sub-  | Data        | Comment           |
|-----|---------|-----|-----|-------|-------------|-------------------|
| ID  | byte    | LSB | MSB | index |             |                   |
| 603 | 40      | 41  | 60  | 00h   |             | query status      |
| 583 | 4B      | 41  | 60  | 00h   | 33 02 00 00 | response telegram |

Status = 0x0233 meaning:

Bit 0, Bit 1, Bit 5 set => ready to Switch On,

Bit 9 set => remote, operation possible via RS232

## 7.2.1.3 Example: Jog Mode via SDO

The motor shall work with constant velocity.

| СОВ | Control | Inc | dex | Sub-  | Data        | Comment                              |
|-----|---------|-----|-----|-------|-------------|--------------------------------------|
| ID  | byte    | LSB | MSB | index |             |                                      |
| 603 | 2F      | 60  | 60  | 00h   | 03 00 00 00 | Mode of operation "Profile Velocity" |
| 583 | 60      | 60  | 60  | 00h   | 00 00 00 00 | response telegram                    |
| 603 | 23      | FF  | 60  | 00h   | 00 00 00 00 | setpoint=0                           |
| 583 | 60      | FF  | 60  | 00h   | 00 00 00 00 | response telegram                    |
| 603 | 2B      | 40  | 60  | 00h   | 06 00 00 00 | shutdown                             |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                    |
| 603 | 2B      | 40  | 60  | 00h   | 07 00 00 00 | switch on                            |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                    |
| 603 | 2B      | 40  | 60  | 00h   | 0F 00 00 00 | enable operation                     |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                    |
| 603 | 23      | FF  | 60  | 00h   | 00 41 00 00 | velocity setpoint                    |
| 583 | 60      | FF  | 60  | 00h   | 00 00 00 00 | response telegram                    |
| 603 | 2B      | 40  | 60  | 00h   | 0F 01 00 00 | Intermediate Stop                    |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                    |

### 7.2.1.4 Example: Torque Mode via SDO

The motor shall work with constant torque. CAN data:

| СОВ | Control | Inc | dex | Sub-  | Data        | Comment                    |
|-----|---------|-----|-----|-------|-------------|----------------------------|
| ID  | byte    | LSB | MSB | index |             |                            |
| 603 | 2F      | 60  | 60  | 00h   | 04 00 00 00 | Mode of operation "Torque" |
| 583 | 60      | 60  | 60  | 00h   | 00 00 00 00 | response telegram          |
| 603 | 2B      | 71  | 60  | 00h   | 00 00 00 00 | setpoint=0                 |
| 583 | 60      | 71  | 60  | 00h   | 00 00 00 00 | response telegram          |
| 603 | 2B      | 40  | 60  | 00h   | 06 00 00 00 | shutdown                   |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram          |
| 603 | 2B      | 40  | 60  | 00h   | 07 00 00 00 | switch on                  |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram          |
| 603 | 2B      | 40  | 60  | 00h   | 0F 00 00 00 | enable operation           |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram          |
| 603 | 2B      | 71  | 60  | 00h   | 90 01 00 00 | setpoint 400 mA            |
| 583 | 60      | 71  | 60  | 00h   | 00 00 00 00 | response telegram          |
| 603 | 2B      | 40  | 60  | 00h   | 0F 01 00 00 | intermediate Stop          |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram          |

## 7.2.1.5 Example: Jog Mode via PDO

It is useful to disable unused PDOs. In Operation Mode "Digital Velocity" a digital speed setpoint is transmitted via RXPDO. Actual position and actual speed is read via a TXPDO triggered by SYNC.

|     | Control    |    |            | Cul           | Data        | 0                                                                                                    |
|-----|------------|----|------------|---------------|-------------|------------------------------------------------------------------------------------------------------|
| COB |            |    | dex<br>MSB | Sub-<br>index | Data        | Comment                                                                                              |
| 603 | byte<br>2F | 60 | 60         | 00h           | 03 00 00 00 | mode of operation "Profile Velocity"                                                                 |
| 583 | 60         | 60 | 60         | 00h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 00 | 14         | 01h           | 03 02 00 C0 | disable RXPDO 1                                                                                      |
|     |            |    |            | 01h           |             |                                                                                                      |
| 583 | 60         | 00 | 14         |               | 00 00 00 00 | response telegram                                                                                    |
| 603 | 2F         | 00 | 16         | 00h           | 00 00 00 00 | delete entries for RXPDO 1                                                                           |
| 583 | 60         | 00 | 16         | 00h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 00 | 16         | 01h           | 20 00 FF 60 | mapping RXPDO1, Object 60FF,<br>Subindex 0 speed setpoint, data length<br>32bit                      |
| 583 | 60         | 00 | 16         | 01h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 2F         | 00 | 16         | 00h           | 01 00 00 00 | confirm number of mapped objects                                                                     |
| 583 | 60         | 00 | 16         | 00h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 00 | 14         | 01h           | 03 02 00 00 | enable RXPDO 1                                                                                       |
| 583 | 60         | 00 | 14         | 01h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 00 | 18         | 01h           | 83 01 00 C0 | disable TXPDO 1                                                                                      |
| 583 | 60         | 00 | 18         | 01h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 2F         | 00 | 1A         | 00h           | 00 00 00 00 | delete entries for TXPDO 1                                                                           |
| 583 | 60         | 00 | 1A         | 00h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 00 | 1A         | 01h           | 20 00 64 60 | mapping TXPDO1/1, Object6064,<br>Subindex 0 current position value in SI<br>units, data length 32bit |
| 583 | 60         | 00 | 1A         | 01h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 00 | 1A         | 02h           | 20 00 6C 60 | mapping TXPDO1/2, Object606C,<br>Subindex 0 current speed value, data<br>length 32bit                |
| 583 | 60         | 00 | 1A         | 02h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 2F         | 00 | 1A         | 00h           | 02 00 00 00 | check number of mapped objects                                                                       |
| 583 | 60         | 00 | 1A         | 00h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 00 | 18         | 01h           | 83 01 00 00 | enable TXPDO1                                                                                        |
| 583 | 60         | 00 | 18         | 01h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 2F         | 00 | 18         | 02h           | 01 00 00 00 | set TXPDO1 to synchronous, trans-<br>mission with every SYNC                                         |
| 583 | 60         | 00 | 18         | 02h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 01 | 18         | 01h           | 83 02 00 C0 | disable TPDO2                                                                                        |
| 583 | 60         | 01 | 18         | 01h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 02 | 18         | 01h           | 83 03 00 C0 | disable TPDO3                                                                                        |
| 583 | 60         | 02 | 18         | 01h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 03 | 18         | 01h           | 83 04 00 C0 | disable TPDO4                                                                                        |
| 583 | 60         | 03 | 18         | 01h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 01 | 14         | 01h           | 03 03 00 C0 | disable RPDO2                                                                                        |
| 583 | 60         | 01 | 14         | 01h           | 00 00 00 00 | response telegram                                                                                    |
| 603 | 23         | 02 | 14         | 01h           | 03 04 00 C0 | disable RPDO3                                                                                        |

| СОВ | Control | Index |     | Sub-  | Data        | Comment                               |
|-----|---------|-------|-----|-------|-------------|---------------------------------------|
| ID  | byte    | LSB   | MSB | index |             |                                       |
| 583 | 60      | 02    | 14  | 01h   | 00 00 00 00 | response telegram                     |
| 603 | 23      | 03    | 14  | 01h   | 03 05 00 C0 | disable RPDO4                         |
| 583 | 60      | 03    | 14  | 01h   | 00 00 00 00 | response telegram                     |
| 000 |         |       |     |       | 01 03       | enable NMT                            |
| 603 | 2B      | 40    | 60  | 00h   | 06 00 00 00 | shutdown                              |
| 583 | 60      | 40    | 60  | 00h   | 00 00 00 00 | response telegram                     |
| 603 | 2B      | 40    | 60  | 00h   | 07 00 00 00 | switch on                             |
| 583 | 60      | 40    | 60  | 00h   | 00 00 00 00 | response telegram                     |
| 603 | 2B      | 40    | 60  | 00h   | 0F 00 00 00 | enable operation                      |
| 583 | 60      | 40    | 60  | 00h   | 00 00 00 00 | response telegram                     |
| 203 |         |       |     |       | 00 40 00 00 | velocity setpoint                     |
| 080 |         |       |     |       |             | send SYNC                             |
| 183 |         |       |     |       | FE 45 01 00 | response telegram, 4 byte position, 4 |
|     |         |       |     |       | A6 AB 1A 00 | byte actual velocity                  |
| 603 | 2B      | 40    | 60  | 00h   | 0F 01 00 00 | intermediate stop                     |
| 583 | 60      | 40    | 60  | 00h   | 00 00 00 00 | response telegram                     |

## 7.2.1.6 Example: Torque Mode via PDO

It is useful to disable unused PDOs. The first  $TX\_PDO$  shall transmit the actual current value with every SYNC.

| СОВ | Control | Ind | lex | Sub- | Data        | Comment                                                                      |
|-----|---------|-----|-----|------|-------------|------------------------------------------------------------------------------|
| ID  | byte    |     | MSB |      |             |                                                                              |
| 603 | 2F      | 60  | 60  | 00h  | 04 00 00 00 | Mode of operation "Torque"                                                   |
| 583 | 60      | 60  | 60  | 00h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 00  | 14  | 01h  | 03 02 00 C0 | disable RXPDO1                                                               |
| 583 | 60      | 00  | 14  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 2F      | 00  | 16  | 00h  | 00 00 00 00 | delete entry for the first RXPDO                                             |
| 583 | 60      | 00  | 16  | 00h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 00  | 16  | 01h  | 10 00 71 60 | mapping RXPDO1, Object6071,Subindex 0 current setpoint, data length 16bit    |
| 583 | 60      | 00  | 16  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 2F      | 00  | 16  | 00h  | 01 00 00 00 | check number of mapped objects                                               |
| 583 | 60      | 00  | 16  | 00h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 00  | 14  | 01h  | 03 02 00 00 | enable RXPDO1                                                                |
| 583 | 60      | 00  | 14  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 00  | 18  | 01h  | 83 03 00 C0 | disable TXPDO1                                                               |
| 583 | 60      | 00  | 18  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 2F      | 00  | 1A  | 00h  | 00 00 00 00 | delete entry for TXPDO1                                                      |
| 583 | 60      | 00  | 1A  | 00h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 00  | 1A  | 01h  | 10 00 77 60 | mapping TXPDO1, Object6077,Subindex 0 actual current value, Data length16bit |
| 583 | 60      | 00  | 1A  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 2F      | 00  | 1A  | 00h  | 01 00 00 00 | number of mapped objects                                                     |
| 583 | 60      | 00  | 1A  | 00h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 00  | 18  | 01h  | 83 03 00 00 | enable TXPDO1                                                                |
| 583 | 60      | 00  | 18  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 2F      | 00  | 18  | 02h  | 01 00 00 00 | set TXPDO1 to synchronous, trans-<br>mission with every SYNC                 |
| 583 | 60      | 00  | 18  | 02h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 01  | 18  | 01h  | 83 02 00 C0 | disable TPDO2                                                                |
| 583 | 60      | 01  | 18  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 02  | 18  | 01h  | 83 03 00 C0 | disable TPDO3                                                                |
| 583 | 60      | 02  | 18  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 03  | 18  | 01h  | 83 04 00 C0 | disable TPDO4                                                                |
| 583 | 60      | 03  | 18  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 01  | 14  | 01h  | 03 03 00 C0 | disable RPDO2                                                                |
| 583 | 60      | 01  | 14  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 02  | 14  | 01h  | 03 04 00 C0 | disable RPDO3                                                                |
| 583 | 60      | 02  | 14  | 01h  | 00 00 00 00 | response telegram                                                            |
| 603 | 23      | 03  | 14  | 01h  | 03 05 00 C0 | disable RPDO4                                                                |
| 583 | 60      | 03  | 14  | 01h  | 00 00 00 00 | response telegram                                                            |
| 000 |         |     |     |      | 01 03       | enable NMT                                                                   |

| СОВ | Control | Inc | lex | Sub-  | Data        | Comment                    |
|-----|---------|-----|-----|-------|-------------|----------------------------|
| ID  | byte    | LSB | MSB | index |             |                            |
| 603 | 2B      | 40  | 60  | 00h   | 06 00 00 00 | shutdown                   |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram          |
| 603 | 2B      | 40  | 60  | 00h   | 07 00 00 00 | switch on                  |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram          |
| 603 | 2B      | 40  | 60  | 00h   | 0F 00 00 00 | enable operation           |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram          |
| 203 |         |     |     |       | 12 02       | setpoint 530 per mille     |
| 080 |         |     |     |       |             | send SYNC                  |
| 183 |         |     |     |       | 19 02       | actual value 537 per mille |
| 603 | 2B      | 40  | 60  | 00h   | 0F 01 00 00 | intermediate stop          |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram          |

#### 7.2.1.7 Example: Homing via SDO

When the AKD is operated as a linear axis, a reference/homing point must be defined before positioning tasks can be executed. This must be done by executing a homing run in the Homing mode (0x6).

This example shows the procedure in the Homing mode.

Now some of the parameters that affect the homing movement are set via the bus. If you can be absolutely certain that no-one has altered the parameters in the servoamplifier, then this part can be omitted, since the servoamplifier save the data in non-volatile memory. The inputs must be configured as limit switches.

Because the dimension parameters are not finally defined in DS402, you must select these units:

UNIT.PROTARY = 3 UNIT.VROTARY = 3 UNIT.ACCROTARY = 3

The basic setup of the servoamplifier must be done with the help of the setup software before starting the homing run. The resolution has been set to  $10000 \, \mu \text{m/turn}$  in this example.

| СОВ | Control | Inc | dex | Sub-  | Data        | Comment                                                        |
|-----|---------|-----|-----|-------|-------------|----------------------------------------------------------------|
| ID  | byte    | LSB | MSB | index |             |                                                                |
| 703 | 00      |     |     |       |             | boot-up message                                                |
| 603 | 40      | 41  | 60  | 00h   | 00 00 00 00 | read profile status                                            |
| 583 | 4B      | 41  | 60  | 00h   | 40 02 00 00 | response : 0240h                                               |
| 603 | 23      | 99  | 60  | 01h   | 10 27 00 00 | v <sub>ref</sub> =10000 counts/s until limit switch is reached |
| 583 | 60      | 99  | 60  | 01h   | 00 00 00 00 | response telegram                                              |
| 603 | 23      | 99  | 60  | 02h   | 88 13 00 00 | v <sub>ref</sub> =5000 counts/s from limit switch to zero mark |
| 583 | 60      | 99  | 60  | 02h   | 00 00 00 00 | response telegram                                              |
| 603 | 23      | 9A  | 60  | 00h   | 10 27 00 00 | Decel. and Accel. ramp 1000counts/s²                           |
| 583 | 60      | 9A  | 60  | 00h   | 00 00 00 00 | response telegram                                              |
| 603 | 23      | 7C  | 60  | 00h   | A8 61 00 00 | Reference offset 25000counts                                   |
| 583 | 60      | 7C  | 60  | 00h   | 00 00 00 00 | response telegram                                              |

## Homing type (6098h)

| СОВ | Control | Inc | dex | Sub-  | Data        | Comment                                                  |
|-----|---------|-----|-----|-------|-------------|----------------------------------------------------------|
| ID  | byte    | LSB | MSB | index |             |                                                          |
| 603 | 2F      | 60  | 60  | 00h   | 06 00 00 00 | mode of operation = homing                               |
| 583 | 60      | 60  | 60  | 00h   | 00 00 00 00 | response telegram                                        |
| 603 | 40      | 41  | 60  | 00h   | 00 00 00 00 | read profile status, response: 0250h<br>Voltage Enabled  |
| 583 | 4B      | 41  | 60  | 00h   | 40 02 00 00 | response : 0240h                                         |
| 603 | 2B      | 40  | 60  | 00h   | 06 00 00 00 | Control word Transition_2,"ready to switch on". Shutdown |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                                        |
| 603 | 2B      | 40  | 60  | 00h   | 07 00 00 00 | Transition_3, "switch on". switch on                     |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                                        |
| 603 | 2B      | 40  | 60  | 00h   | 0F 00 00 00 | Transition_4,"operation enable"                          |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                                        |
| 603 | 40      | 41  | 60  | 00h   | 00 00 00 00 | read profile status                                      |
| 583 | 4B      | 41  | 60  | 00h   | 37 02 00 00 | response telegram                                        |
| 603 | 2B      | 40  | 60  | 00h   | 1F 00 00 00 | Homing_operation_start                                   |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                                        |
| 603 | 40      | 41  | 60  | 00h   | 00 00 00 00 | read profile status                                      |
| 583 | 4B      | 41  | 60  | 00h   | 37 02 00 00 | response: homing not finished                            |
| 603 | 40      | 41  | 60  | 00h   | 00 00 00 00 | read profile status                                      |
| 583 | 4B      | 41  | 60  | 00h   | 37 16 00 00 | response:homing finished                                 |

Bit 12 in SDO 6041 indicates, whether homing is finished. Reading of the profile status is not necessary.

## 7.2.1.8 Example: Using the Profile Position Mode

This example shows the operation of the Profile position mode. The PDOs are set as follows:

#### First RPDO

No special mapping necessary, because the default mapping enters the controlword RXPDO1.

#### Second RPDO

| СОВ | Control | Ind | dex | Sub-  | Data        | Comment                        |
|-----|---------|-----|-----|-------|-------------|--------------------------------|
| ID  | byte    | LSB | MSB | index |             |                                |
| 603 | 23      | 01  | 14  | 01h   | 03 03 00 C0 | disable RPDO 2                 |
| 583 | 60      | 01  | 14  | 01h   | 00 00 00 00 | response telegram              |
| 603 | 2F      | 01  | 16  | 00h   | 00 00 00 01 | RPDO2: delete mapping          |
| 583 | 60      | 01  | 16  | 00h   | 00 00 00 00 | response telegram              |
| 603 | 23      | 01  | 16  | 01h   | 20 00 7A 60 | RPDO2, entry 1:                |
|     |         |     |     |       |             | target_position                |
| 583 | 60      | 01  | 16  | 01h   | 00 00 00 00 | response telegram              |
| 603 | 23      | 01  | 16  | 02h   | 20 00 81 60 | RPDO2, entry 2:                |
|     |         |     |     |       |             | profile_velocity               |
| 583 | 60      | 01  | 16  | 02h   | 00 00 00 00 | response telegram              |
| 603 | 2F      | 01  | 16  | 00h   | 02 00 00 00 | enter number of mapped objects |
| 583 | 60      | 01  | 16  | 00h   | 00 00 00 00 | response telegram              |
| 603 | 23      | 01  | 14  | 01h   | 03 03 00 00 | enable RPDO2                   |
| 583 | 60      | 01  | 14  | 01h   | 00 00 00 00 | response telegram              |

#### **First TPDO**

| СОВ | Control | Ind | dex | Sub-  | Data        | Comment                            |
|-----|---------|-----|-----|-------|-------------|------------------------------------|
| ID  | byte    | LSB | MSB | index |             |                                    |
| 603 | 23      | 00  | 18  | 01h   | 83 01 00 C0 | disable TPDO1                      |
| 583 | 60      | 00  | 18  | 01h   | 00 00 00 00 | response telegram                  |
| 603 | 2F      | 00  | 1A  | 00h   | 00 00 00 01 | TPDO1: delete mapping              |
| 583 | 60      | 00  | 1A  | 00h   | 00 00 00 00 | response telegram                  |
| 603 | 23      | 00  | 1A  | 01h   | 10 00 41 60 | TPDO1, entry 1: profile statusword |
| 583 | 60      | 00  | 1A  | 01h   | 00 00 00 00 | response telegram                  |
| 603 | 2F      | 00  | 1A  | 00h   | 01 00 00 00 | enter number of mapped objects     |
| 583 | 60      | 00  | 1A  | 00h   | 00 00 00 00 | response telegram                  |
| 603 | 23      | 00  | 18  | 01h   | 83 01 00 00 | enable TPDO1                       |
| 583 | 60      | 00  | 18  | 01h   | 00 00 00 00 | response telegram                  |

## **Second TPDO**

| СОВ | Control | Ind | dex | Sub-  | Data        | Comment                        |
|-----|---------|-----|-----|-------|-------------|--------------------------------|
| ID  | byte    | LSB | MSB | index |             |                                |
| 603 | 23      | 01  | 18  | 01h   | 83 03 00 C0 | disable TPDO2                  |
| 583 | 60      | 01  | 18  | 01h   | 00 00 00 00 | response telegram              |
| 603 | 2F      | 01  | 1A  | 00h   | 00 00 00 01 | TPDO2: delete mapping          |
| 583 | 60      | 01  | 1A  | 00h   | 00 00 00 00 | response telegram              |
| 603 | 23      | 01  | 1A  | 01h   | 20 00 64 60 | TPDO2, entry 1:                |
|     |         |     |     |       |             | position_actual_value          |
| 583 | 60      | 01  | 1A  | 01h   | 00 00 00 00 | response telegram              |
| 603 | 23      | 01  | 1A  | 02h   | 20 00 6C 60 | TPDO2, entry 2:                |
|     |         |     |     |       |             | velocity_actual_value          |
| 583 | 60      | 01  | 1A  | 02h   | 00 00 00 00 | response telegram              |
| 603 | 2F      | 01  | 1A  | 00h   | 02 00 00 00 | enter number of mapped objects |
| 583 | 60      | 01  | 1A  | 00h   | 00 00 00 00 | response telegram              |
| 603 | 23      | 01  | 18  | 01h   | 83 03 00 00 | enable TPDO2                   |
| 583 | 60      | 01  | 18  | 01h   | 00 00 00 00 | response telegram              |

The second TPDO should be sent with every SYNC by the servoamplifier.

| COB | Control | Index |     | Sub-  | Data        | Comment               |
|-----|---------|-------|-----|-------|-------------|-----------------------|
| ID  | byte    | LSB   | MSB | index |             |                       |
| 603 | 2F      | 01    | 18  | 02h   | 01 00 00 00 | TPDO2 with every SYNC |
| 583 | 60      | 01    | 18  | 02h   | 00 00 00 00 | response telegram     |

### Disable unused TPDOs.

| COB | Control | Index |     | Sub-  | Data        | Comment           |
|-----|---------|-------|-----|-------|-------------|-------------------|
| ID  | byte    | LSB   | MSB | index |             |                   |
| 603 | 23      | 02    | 18  | 01h   | 83 03 00 C0 | disable TPDO3     |
| 583 | 60      | 02    | 18  | 01h   | 00 00 00 00 | response telegram |
| 603 | 23      | 03    | 18  | 01h   | 83 04 00 C0 | disable TPDO4     |
| 583 | 60      | 03    | 18  | 01h   | 00 00 00 00 | response telegram |

### Disable unused RPDOs.

| СОВ | Control | Index |     | Sub-  | Data        | Comment           |
|-----|---------|-------|-----|-------|-------------|-------------------|
| ID  | byte    | LSB   | MSB | index |             |                   |
| 603 | 23      | 02    | 14  | 01h   | 03 04 00 C0 | disable RPDO3     |
| 583 | 60      | 02    | 14  | 01h   | 00 00 00 00 | response telegram |
| 603 | 23      | 03    | 14  | 01h   | 03 05 00 C0 | disable RPDO4     |
| 583 | 60      | 03    | 14  | 01h   | 00 00 00 00 | response telegram |

Define mechanical resolution via Object 6092h, Subindex 01h and 02h.

| СОВ | Control | Index |     | Sub-  | Data        | Comment           |
|-----|---------|-------|-----|-------|-------------|-------------------|
| ID  | byte    | LSB   | MSB | index |             |                   |
| 603 | 23      | 93    | 60  | 01h   | 00 00 10 00 | 2E20 increments   |
| 583 | 60      | 93    | 60  | 01h   | 00 00 00 00 | response telegram |
| 603 | 23      | 93    | 60  | 02h   | A0 8C 00 00 | 3600 user units   |
| 583 | 60      | 93    | 60  | 02h   | 00 00 00 00 | response telegram |

After defining the PDOs they can be released with the NMT.

| COB-ID | Data  | Comment        |
|--------|-------|----------------|
| 000    | 01 03 | enable NMT     |
| 183    | 40 02 | profile status |

Now the homing can be set and started.

| СОВ | Control | Ind | dex | Sub-  | Data        | Comment                                        |
|-----|---------|-----|-----|-------|-------------|------------------------------------------------|
| ID  | byte    | LSB | MSB | index |             |                                                |
| 603 | 2F      | 60  | 60  | 00h   | 06 00 00 00 | Operation mode = homing                        |
| 583 | 60      | 60  | 60  | 00h   | 00 00 00 00 | response telegram                              |
| 603 | 2F      | 98  | 60  | 00h   | 0C 00 00 00 | homing type 12, negative direction (DS402)     |
| 583 | 60      | 98  | 60  | 00h   | 00 00 00 00 | response telegram                              |
| 603 | 23      | 99  | 60  | 01h   | 40 19 01 00 | homing speed<br>72000 units/s=2s <sup>-1</sup> |
| 583 | 80      | 99  | 60  | 01h   | 31 00 09 06 | response telegram                              |
| 603 | 2B      | 40  | 60  | 00h   | 06 00 00 00 | Transition_2,"ready to switch on".Shutdown     |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                              |
| 183 |         |     |     |       | 21 02       | response telegram                              |
| 603 | 2B      | 40  | 60  | 00h   | 07 00 00 00 | Transition_3,"switch on".Switch on             |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                              |
| 183 |         |     |     |       | 33 02       | response telegram                              |
| 603 | 2B      | 40  | 60  | 00h   | 0F 00 00 00 | Control word: Operation Enable                 |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                              |
| 183 |         |     |     |       | 37 02       | response telegram                              |
| 603 | 2B      | 40  | 60  | 00h   | 1F 00 00 00 | start homing                                   |
|     |         |     |     |       |             | response telegram                              |
|     |         |     |     |       |             | response: target reached                       |
|     |         |     |     |       |             | response: homing attained                      |
| 583 | 60      | 40  | 60  | 00h   | 00 00 00 00 | response telegram                              |
| 183 |         |     |     |       | 37 06       |                                                |
| 183 |         |     |     |       | 37 16       |                                                |

Finish homing with Control word 1\_RPDO.

| COB-ID | Data  | Comment |
|--------|-------|---------|
| 203    | 0F 00 |         |

Switch to Profile Position Mode and set ramps for positioning.

| СОВ | Control | Index |     | Sub-  | Data        | Comment                  |
|-----|---------|-------|-----|-------|-------------|--------------------------|
| ID  | byte    | LSB   | MSB | index |             |                          |
| 603 | 2F      | 60    | 60  | 00h   | 01 00 00 00 | Profile Positioning Mode |
| 583 | 60      | 60    | 60  | 00h   | 00 00 00 00 | response telegram        |
| 603 | 23      | 83    | 60  | 00h   | 32 00 00 00 | 50ms acceleration time   |
| 583 | 60      | 83    | 60  | 00h   | 00 00 00 00 | response telegram        |
| 603 | 23      | 84    | 60  | 00h   | 32 00 00 00 | 50ms deceleration time   |
| 583 | 60      | 84    | 60  | 00h   | 00 00 00 00 | response telegram        |

### Setpoint.

| COB-ID | Data        | Comment                           |
|--------|-------------|-----------------------------------|
| 303    | A0 8C 00 00 | Pos 8CA0 =36000μm ; V= 20000 μm/s |
|        | 20 4E 00 00 |                                   |
| 080    |             | send a SYNC                       |
| 283    | BB F8 FF FF | response telegram                 |

Set controlword with "new setpoint" by bit (bit 4).

| COB-ID | Data  | Comment |
|--------|-------|---------|
| 203    | 1F 00 |         |

### Wait

| COB-ID | Data  | Comment              |
|--------|-------|----------------------|
| 183    | 37 12 | setpoint acknowledge |

Reset controlword with "new setpoint" by bit (bit 4) reset.

| COB-ID | Data  | Comment                    |
|--------|-------|----------------------------|
| 203    | 0F 00 |                            |
| 183    | 37 02 | reset Setpoint acknowledge |

#### Wait.

| COB-ID | Data        | Comment                                |
|--------|-------------|----------------------------------------|
| 183    | 37 06       | response: target reached               |
| 080    |             | SYNC                                   |
| 283    | 92 FC FF FF | response: 92 FC position , FF FF speed |

### 7.2.1.9 Example: ASCII Communication

The following example reads the active faults from the drive (ASCII command DRV.FAULTS).

| СОВ | Control | Ind | Index |       | Data        | Comment                   |
|-----|---------|-----|-------|-------|-------------|---------------------------|
| ID  | byte    | LSB | MSB   | index |             |                           |
| 601 | 23      | 26  | 20    | 01h   | 44 52 56 2E | send ASCII code "DRV."    |
| 581 | 60      | 26  | 20    | 01h   | 00 00 00 00 | response telegram         |
| 601 | 23      | 26  | 20    | 01h   | 46 41 55 4C | send ASCII code "FAUL"    |
| 581 | 60      | 26  | 20    | 01h   | 00 00 00 00 | response telegram         |
| 601 | 23      | 26  | 20    | 01h   | 54 53 0D 0A | send ASCII code "TS\r\n"  |
| 581 | 60      | 26  | 20    | 01h   | 00 00 00 00 | response telegram         |
| 601 | 40      | 26  | 20    | 02h   | 00 00 00 00 | read response             |
| 581 | 43      | 26  | 20    | 02h   | 3E 4E 6F 20 | read ASCII code ">No"     |
| 601 | 40      | 26  | 20    | 02h   | 00 00 00 00 | read response             |
| 581 | 43      | 26  | 20    | 02h   | 66 61 75 6C | read ASCII code "FAUL"    |
| 601 | 40      | 26  | 20    | 02h   | 00 00 00 00 | read response             |
| 581 | 43      | 26  | 20    | 02h   | 74 73 20 61 | read ASCII code "ts a"    |
| 601 | 40      | 26  | 20    | 02h   | 00 00 00 00 | read response             |
| 581 | 43      | 26  | 20    | 02h   | 63 64 69 76 | read ASCII code "ctiv"    |
| 601 | 40      | 26  | 20    | 02h   | 00 00 00 00 | read response             |
| 581 | 43      | 26  | 20    | 02h   | 66 0A 0D 0A | read ASCII code "e\n\r\n" |

### 7.2.1.10 Test for SYNC telegrams

#### Configuration

- Assign Target Position and Profile Velocity to a PDO (2nd receive-PDO)
- Assign Actual Position to a PDO (1st transmit-PDO), generated with every 2nd SYNC.
- Assign Status word and Manufacturer Status to a PDO (2nd transmit-PDO), generated with every 3rd SYNC.

Telegrams with the corresponding responses:

| СОВ |      |     | Sub- | Data  | Comment     |                                       |
|-----|------|-----|------|-------|-------------|---------------------------------------|
| ID  | byte | LSB | MSB  | index |             |                                       |
| 603 | 23   | 01  | 14   | 01h   | 03 03 00 C0 | disable RPDO 2                        |
| 583 | 60   | 01  | 14   | 01h   | 00 00 00 00 | response telegram                     |
| 603 | 2F   | 01  | 16   | 00h   | 00 00 00 00 | RPDO2: delete mapping                 |
| 583 | 60   | 01  | 16   | 00h   | 00 00 00 00 | response telegram                     |
| 603 | 23   | 01  | 16   | 01h   | 20 00 7A 60 | RPDO2, entry 1: target position       |
| 583 | 60   | 01  | 16   | 01h   | 00 00 00 00 | response telegram                     |
| 603 | 23   | 01  | 16   | 02h   | 20 00 81 60 | RPDO2, entry 2: profile velocity      |
| 583 | 60   | 01  | 16   | 02h   | 00 00 00 00 | response telegram                     |
| 603 | 2F   | 01  | 16   | 00h   | 02 00 00 00 | RPDO2: enter number of mapped objects |
| 583 | 60   | 01  | 16   | 00h   | 00 00 00 00 | response telegram                     |
| 603 | 23   | 01  | 14   | 01h   | 03 03 00 00 | enable RPDO2                          |
| 583 | 60   | 01  | 14   | 01h   | 00 00 00 00 | response telegram                     |
| 603 | 23   | 00  | 18   | 01h   | 83 01 00 C0 | disable TPDO1                         |
| 583 | 60   | 00  | 18   | 01h   | 00 00 00 00 | response telegram                     |
| 603 | 2F   | 00  | 1A   | 00h   | 00 00 00 00 | TPDO1: delete mapping                 |
| 583 | 60   | 00  | 1A   | 00h   | 00 00 00 00 | response telegram                     |
| 603 | 23   | 00  | 1A   | 01h   | 20 00 64 60 | TPDO1: entry 1: Actual Position       |
| 583 | 60   | 00  | 1A   | 01h   | 00 00 00 00 | response telegram                     |
| 603 | 2F   | 00  | 1A   | 00h   | 01 00 00 00 | TPDO1: enter number of mapped objects |
| 583 | 60   | 00  | 1A   | 00h   | 00 00 00 00 | response telegram                     |
| 603 | 2F   | 00  | 18   | 02h   | 02 00 00 00 | TPDO1: send with every 2nd SYNC       |
| 583 | 60   | 00  | 18   | 02h   | 00 00 00 00 | response telegram                     |
| 603 | 23   | 00  | 18   | 01h   | 83 01 00 00 | enable TPDO1                          |
| 583 | 60   | 00  | 18   | 01h   | 00 00 00 00 | response telegram                     |
| 603 | 23   | 01  | 18   | 01h   | 83 03 00 C0 | disable TPDO2                         |
| 583 | 60   | 01  | 18   | 01h   | 00 00 00 00 | response telegram                     |
| 603 | 2F   | 01  | 1A   | 00h   | 00 00 00 00 | TPDO2: delete mapping                 |
| 583 | 60   | 01  | 1A   | 00h   | 00 00 00 00 | response telegram                     |
| 603 | 23   | 01  | 1A   | 01h   | 10 00 41 60 | TPDO2: entry 1: Status word           |
| 583 | 60   | 01  | 1A   | 01h   | 00 00 00 00 | response telegram                     |
| 603 | 23   | 01  | 1A   | 02h   | 20 00 02 10 | TPDO2: entry 2: Manufacturer Status   |
| 583 | 60   | 01  | 1A   | 02h   | 00 00 00 00 | response telegram                     |
| 603 | 2F   | 01  | 16   | 00h   | 02 00 00 00 | TPDO2: enter number of mapped objects |
| 583 | 60   | 01  | 16   | 00h   | 00 00 00 00 | response telegram                     |
| 603 | 2F   | 01  | 18   | 02h   | 03 00 00 00 | TPDO2: send with every 3rd SYNC       |
| 583 | 60   | 01  | 18   | 02h   | 00 00 00 00 | response telegram                     |
| 603 | 23   | 00  | 18   | 01h   | 83 03 00 00 | enable TPDO                           |
| 583 | 60   | 00  | 18   | 01h   | 00 00 00 00 | response telegram                     |

#### **SYNC-Object**

| COB-ID | Comment                                                   |
|--------|-----------------------------------------------------------|
| 080    | Object 181 (TPDO 1) appears at every 2 <sup>nd</sup> SYNC |
|        | Object 281 (TPDO 2) appears at every 3 <sup>rd</sup> SYNC |

#### **Emergency-Object**

If, for instance, the resolver connector is disconnected, a serious error will be caused in the controller. This results in an Emergency telegram.

| COB | Emergency error |      | Error    |             |                                                       |
|-----|-----------------|------|----------|-------------|-------------------------------------------------------|
| ID  | Low             | High | register |             |                                                       |
| 081 | 10              | 43   | 08       | 00 00 00 00 | motor temperature, temperature, manufacturer specific |
| 081 | 00              | 00   | 88       | 00 00 00 00 | response telegram                                     |

#### 7.2.1.11 Some aspects of the Compare functionality

The AKD Position Compare feature allows the drive's digital outputs to be turned on or off depending on one or more feedback positions. The AKD supports two independent compare engines (CMP0, CMP1).

The position scaling of position related Compare commands (CMPx.SETPOINT, CMPx.WIDTH, CMPx.MODVALUE, CMPx.MODBOUND1/2) depends on the setting of CMPx.SOURCE.

| CMPx.SOURCE | Used position scaling                                                                                                                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 = FB1     | The compare position values are scaled like FB1.P (object 60E4h sub 1) via the 1st additional gear ratio and feed constant (objects 60E9h, 60EEh, 60EDh, 60E8h).      |
| 1 = FB2     | The compare position values are scaled like FB2.P (object 60E4h sub2) via the 2nd additional gear ratio and feed constant (objects 60E9h, 60EEh, 60EDh, 60E8h sub 2). |
| 2 = FB3     | The compare position values are scaled like FB3.P (object 60E4h sub3) via the 3rd additional gear ratio and feed constant (objects 60E9h, 60EEh, 60EDh, 60E8h sub 3). |
| 3 = PL      | The compare position values are scaled like PL.FB (object 60E4h sub 0) via the gear ratio and feed constant (objects 6091h sub 1 and 2, 6092h sub 1 and 2).           |

### 7.2.2 Examples, special applications

#### 7.2.2.1 Example: External Trajectory with Interpolated Position Mode

This example shows the possible application for giving two axes position setpoints within one PDO.

Controller structure for the position controller within the drive:



Position + Status
TPDO with actual position
in increments and
manufacturer status

All data are hexadecimal. In the example, the two axes in the system have the station addresses 1 and 2.

Before you begin this procedure, the axes should be homed (just for this example).

The common PDO contains 2 IP (interpolated position) – setpoints and can be transmitted simultaneously to two stations, whereby each station can extract the relevant data. The other data can be made ignored by using dummy entries (Object 2100 sub 0). For this purpose both axes must react on the same RPDO-COB-ID.

#### Action

Do the RPDO2-mapping for both axis:

Axis 1:

| COB | Control | Ind | dex | Sub-  | Data        | Comment                               |  |
|-----|---------|-----|-----|-------|-------------|---------------------------------------|--|
| ID  | byte    | LSB | MSB | index |             |                                       |  |
| 601 | 23      | 01  | 14  | 01h   | 01 03 00 C0 | disable RPDO2                         |  |
| 581 | 60      | 01  | 14  | 01h   | 00 00 00 00 | response telegram                     |  |
| 601 | 2F      | 01  | 16  | 00h   | 00 00 00 00 | RPDO2: delete mapping                 |  |
| 581 | 60      | 01  | 16  | 00h   | 00 00 00 00 | response telegram                     |  |
| 601 | 23      | 01  | 16  | 01h   | 20 01 C1 60 | RPDO2, entry 1: IP setpoint axis 1    |  |
| 581 | 60      | 01  | 16  | 01h   | 00 00 00 00 | response telegram                     |  |
| 601 | 23      | 01  | 16  | 02h   | 20 00 00 21 | RPDO2, entry 2: Dummy entry 4 bytes   |  |
| 581 | 60      | 01  | 16  | 02h   | 00 00 00 00 | response telegram                     |  |
| 601 | 2F      | 01  | 16  | 00h   | 02 00 00 00 | RPDO2, enter number of mapped objects |  |
| 581 | 60      | 01  | 16  | 00h   | 00 00 00 00 | response telegram                     |  |
| 601 | 23      | 01  | 14  | 01h   | 01 03 00 00 | enable RPDO2                          |  |
| 581 | 60      | 01  | 14  | 01h   | 00 00 00 00 | response telegram                     |  |

Axis 2:

| СОВ | Control | Ind | dex | Sub-  | Data        | Comment                               |  |
|-----|---------|-----|-----|-------|-------------|---------------------------------------|--|
| ID  | byte    | LSB | MSB | index |             |                                       |  |
| 602 | 23      | 01  | 14  | 01h   | 02 03 00 C0 | disable RPDO2                         |  |
| 582 | 60      | 01  | 14  | 01h   | 00 00 00 00 | response telegram                     |  |
| 602 | 2F      | 01  | 16  | 00h   | 00 00 00 00 | RPDO2: delete mapping                 |  |
| 582 | 60      | 01  | 16  | 00h   | 00 00 00 00 | response telegram                     |  |
| 602 | 23      | 01  | 16  | 02h   | 20 00 00 21 | RPDO2, entry 1: Dummy entry 4 bytes   |  |
| 582 | 60      | 01  | 16  | 02h   | 00 00 00 00 | response telegram                     |  |
| 602 | 23      | 01  | 16  | 01h   | 20 01 C1 60 | RPDO2, entry 2: IP setpoint axis 2    |  |
| 582 | 60      | 01  | 16  | 01h   | 00 00 00 00 | response telegram                     |  |
| 602 | 2F      | 01  | 16  | 00h   | 02 00 00 00 | RPDO2, enter number of mapped objects |  |
| 582 | 60      | 01  | 16  | 00h   | 00 00 00 00 | response telegram                     |  |
| 602 | 23      | 01  | 16  | 01h   | 01 03 00 00 | RPDO2: Set COB-ID identical to axis 1 |  |
| 582 | 60      | 01  | 16  | 01h   | 00 00 00 00 | response telegram                     |  |
| 602 | 23      | 01  | 14  | 01h   | 02 02 00 00 | enable RPDO2                          |  |
| 582 | 60      | 01  | 14  | 01h   | 00 00 00 00 | response telegram                     |  |

Now both axis react to the same COB-identifier 0x301, axis 1 takes byte 0 to 3 as IP set-point, axis 2 takes byte 4 to 7. The second TPDOs shall contain the actual position in increments and the manufacturer status.

Mapping configuration for axis 1:

| СОВ | Control | Ind | dex | Sub-  | Data        | Comment                                 |  |
|-----|---------|-----|-----|-------|-------------|-----------------------------------------|--|
| ID  | byte    | LSB | MSB | index |             |                                         |  |
| 601 | 23      | 01  | 18  | 01h   | 81 03 00 C0 | disable TPDO2                           |  |
| 581 | 60      | 01  | 18  | 01h   | 00 00 00 00 | response telegram                       |  |
| 601 | 2F      | 01  | 1A  | 00h   | 00 00 00 00 | TPDO2: delete mapping                   |  |
| 581 | 60      | 01  | 1A  | 00h   | 00 00 00 00 | response telegram                       |  |
| 601 | 23      | 01  | 1A  | 01h   | 20 00 63 60 | TPDO2, entry 1: actual position (incre- |  |
|     |         |     |     |       |             | ments)                                  |  |
| 581 | 60      | 01  | 1A  | 01h   | 00 00 00 00 | response telegram                       |  |
| 601 | 23      | 01  | 1A  | 02h   | 20 00 02 10 | TPDO2, entry 2: Dummy entry 4 bytes     |  |
| 581 | 60      | 01  | 1A  | 02h   | 00 00 00 00 | response telegram                       |  |
| 601 | 2F      | 01  | 1A  | 00h   | 02 00 00 00 | TPDO2, enter number of mapped           |  |
|     |         |     |     |       |             | objects                                 |  |
| 581 | 60      | 01  | 1A  | 00h   | 00 00 00 00 | response telegram                       |  |
| 601 | 23      | 01  | 18  | 01h   | 81 03 00 00 | enable TPDO2                            |  |
| 581 | 60      | 01  | 18  | 01h   | 00 00 00 00 | response telegram                       |  |

The same must be done for axis 2.

Here it is assumed that both drives accept new trajectory values with every SYNC command, and must return their incremental position and manufacturer status values. The communication parameters must be set accordingly.

Axis 1:

| COB | Control | Index |     | Sub-  | Data        | Comment                              |  |
|-----|---------|-------|-----|-------|-------------|--------------------------------------|--|
| ID  | byte    | LSB   | MSB | index |             |                                      |  |
| 601 | 2F      | 01    | 14  | 02h   | 01 00 00 00 | RPDO2 axis 1, reaction on every sync |  |
| 581 | 60      | 01    | 14  | 02h   | 00 00 00 00 | response telegram                    |  |
| 602 | 2F      | 01    | 14  | 02h   | 01 00 00 00 | RPDO2 axis 2, reaction on every sync |  |
| 582 | 60      | 01    | 14  | 02h   | 00 00 00 00 | response telegram                    |  |
| 601 | 2F      | 01    | 18  | 02h   | 01 00 00 00 | TPDO2 axis 1, reaction on every sync |  |
| 581 | 60      | 01    | 18  | 02h   | 00 00 00 00 | response telegram                    |  |
| 602 | 2F      | 01    | 18  | 02h   | 01 00 00 00 | TPDO2 axis 2, reaction on every sync |  |
| 582 | 60      | 01    | 18  | 02h   | 00 00 00 00 | response telegram                    |  |

The other Tx-PDOs 3 and 4 should be switched off to minimize bus-load:

| COB | Control | Index   |    | Sub-  | Data        | Comment           |
|-----|---------|---------|----|-------|-------------|-------------------|
| ID  | byte    | LSB MSB |    | index |             |                   |
| 601 | 23      | 02      | 18 | 01h   | 81 03 00 C0 | Switch off TPDO3  |
| 581 | 60      | 02      | 18 | 01h   | 00 00 00 00 | response telegram |
| 601 | 23      | 03      | 18 | 01h   | 81 04 00 C0 | Switch off TPDO4  |
| 581 | 60      | 03 18   |    | 01h   | 00 00 00 00 | response telegram |

The same must be done for axis 2.

In order to be able to make trajectory movements, both drives must be operating in the appropriate mode. This is set through Index 6060h:

| СОВ | Control | Index   |    | Sub-  | Data        | Comment                |  |
|-----|---------|---------|----|-------|-------------|------------------------|--|
| ID  | byte    | LSB MSB |    | index |             |                        |  |
| 601 | 2F      | 60      | 60 | 00h   | 07 00 00 00 | Set IP mode for axis 1 |  |
| 581 | 60      | 60      | 60 | 00h   | 00 00 00 00 | response telegram      |  |
| 602 | 2F      | 60      | 60 | 00h   | 07 00 00 00 | Set IP mode for axis 2 |  |
| 582 | 60      | 60      | 60 | 00h   | 00 00 00 00 | response telegram      |  |

The cycle interval for the IP-mode shall be 1 ms. This must be defined with Object 60C1 sub 1 and 2:

| СОВ | Control | Index |         | Sub- | Data        | Comment                                                               |  |
|-----|---------|-------|---------|------|-------------|-----------------------------------------------------------------------|--|
| ID  | byte    | LSB   | LSB MSB |      |             |                                                                       |  |
| 601 | 2F      | C2    | 60      | 01h  | 01 00 00 00 | Interpolation time unit 1                                             |  |
| 581 | 60      | C2    | 60      | 01h  | 00 00 00 00 | response telegram                                                     |  |
| 601 | 2F      | C2    | 60      | 02h  | FD 00 00 00 | Interpolation time index -3<br>-> Cycle time = 1 * 10 <sup>-3</sup> s |  |
| 581 | 60      | C2    | 60      | 02h  | 00 00 00 00 | response telegram                                                     |  |

The same must be done for axis 2.

To start up the axes, the drives must be put into the operational status (operation enable) and the network management functions must be started.

The network management functions enable the application of the Process Data Objects (PDOs) and are initia lized by the following telegram for both axes:

Switch the NMT (Network Management) state machine to operation enable:

| COB-ID | Command specifier (CS) | Node-ID | Comment                 |
|--------|------------------------|---------|-------------------------|
| 0      | 1                      | 1       | NMT enable for all axes |

Next, power is applied to each drive, and they are put into the operation enable condition. This should be done in steps with waiting for the appropriate reaction of the drive (e.g. axis 1):

| COB-ID | Data  | Comment                  |  |  |  |
|--------|-------|--------------------------|--|--|--|
| 201    | 06 00 | Shutdown command         |  |  |  |
| 181    | 31 02 | State Ready_to_switch_on |  |  |  |
| 201    | 07 00 | Switch_on command        |  |  |  |
| 181    | 33 02 | State Switched_on        |  |  |  |
| 201    | 0F 00 | Enable_operation command |  |  |  |
| 181    | 37 02 | State Operation_enabled  |  |  |  |
| 201    | 1F 00 | Enable IP-mode           |  |  |  |
| 181    | 37 12 | IP-mode enable           |  |  |  |

The configuration above now enables a cyclical sequence, as shown in the diagram:



 $t_{cycle}$  1 ms per axis at 1 MBaud

RPDO 2 can now be used to supply trajectory data for both axes, e.g.:

|   | COB-ID | Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 |
|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| ı | 301    | F4     | 01     | 00     | 00     | E8     | 03     | 00     | 00     |

In this example, the first axis receives a trajectory value of 500 increments (Bytes 0 to 3) and the second axis receives a trajectory value of 1000 increments.

The axes accept these values, and the positioning is made when the next SYNC telegram is received.

### SYNC telegram



Afterwards, both axes send back their incremental positions and the contents of their status registers when the SYNC Object with the COB-ID for the 2<sup>nd</sup>TPDO is received.

| СОВ | Byte |                                                   |
|-----|------|------|------|------|------|------|------|------|---------------------------------------------------|
| ID  | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | Comment                                           |
| 181 | 23   | 01   | 00   | 00   | 00   | 00   | 03   | 44   | position + manufacturer status register for axis1 |
| 182 | A5   | 02   | 00   | 00   | 00   | 00   | 03   | 44   | position + manufacturer status register for axis2 |

If an error occurs during operation, the axis transmits an Emergency message, which could appear like this:

### **Emergency Object**

| CC | )B | Emergency error |    | Error    |          |             |                                                                |
|----|----|-----------------|----|----------|----------|-------------|----------------------------------------------------------------|
| Ш  | D  | Low High        |    | register | Category |             |                                                                |
| 30 | 31 | 10              | 43 | 08       | 01       | 00 00 00 00 | motor temperature, tem-<br>perature, manufacturer-<br>specific |
| 30 | 31 | 00              | 00 | 08       | 00       | 00 00 00 00 | response telegram                                              |



This page intentionally left blank.

|                                                                                                                                                                                                                                                                                | 3474h                                                             | 7                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Indov                                                                                                                                                                                                                                                                          | 3475h                                                             |                                                                                 |
| Index                                                                                                                                                                                                                                                                          | 3496h                                                             |                                                                                 |
| 1                                                                                                                                                                                                                                                                              | 6                                                                 |                                                                                 |
| 1000h 47                                                                                                                                                                                                                                                                       | 6040h                                                             | (                                                                               |
| •••••                                                                                                                                                                                                                                                                          | 6041h                                                             |                                                                                 |
| 1001h                                                                                                                                                                                                                                                                          | 605Ah                                                             | 9                                                                               |
| 1002h                                                                                                                                                                                                                                                                          | 6060h                                                             |                                                                                 |
| 1003h                                                                                                                                                                                                                                                                          | 6061h                                                             |                                                                                 |
| 1005h51                                                                                                                                                                                                                                                                        | 6063h                                                             |                                                                                 |
| 1006h51                                                                                                                                                                                                                                                                        | 6064h                                                             |                                                                                 |
| 1008h                                                                                                                                                                                                                                                                          | 6065h                                                             |                                                                                 |
| 1009h                                                                                                                                                                                                                                                                          | 606Ch                                                             |                                                                                 |
| 100Ah                                                                                                                                                                                                                                                                          | 6071h                                                             |                                                                                 |
| 100Ch53                                                                                                                                                                                                                                                                        | 6073h                                                             |                                                                                 |
| 100Dh53                                                                                                                                                                                                                                                                        | 6077h                                                             |                                                                                 |
| 1010h54                                                                                                                                                                                                                                                                        | 607Ah                                                             |                                                                                 |
| 1011h55                                                                                                                                                                                                                                                                        | 607Ch                                                             |                                                                                 |
| 1012h56                                                                                                                                                                                                                                                                        | 607Dh                                                             |                                                                                 |
| 1014h56                                                                                                                                                                                                                                                                        | 6081h                                                             |                                                                                 |
| 1016h57                                                                                                                                                                                                                                                                        | 6083h                                                             |                                                                                 |
| 1017h58                                                                                                                                                                                                                                                                        | 6084h                                                             |                                                                                 |
| 1018h58                                                                                                                                                                                                                                                                        | 608Fh                                                             |                                                                                 |
| 1026h60                                                                                                                                                                                                                                                                        |                                                                   |                                                                                 |
| 1400-1403h86                                                                                                                                                                                                                                                                   | 6091h                                                             |                                                                                 |
| 1600-1603h87                                                                                                                                                                                                                                                                   | 6092h                                                             |                                                                                 |
| 1800-1803h89                                                                                                                                                                                                                                                                   | 6098h                                                             |                                                                                 |
| 1A00-1A03h91                                                                                                                                                                                                                                                                   | 6099h                                                             |                                                                                 |
|                                                                                                                                                                                                                                                                                | 609Ah                                                             |                                                                                 |
| 2                                                                                                                                                                                                                                                                              | 60B1h                                                             |                                                                                 |
|                                                                                                                                                                                                                                                                                | 60B2h                                                             |                                                                                 |
| 2000h                                                                                                                                                                                                                                                                          | 60B8h                                                             |                                                                                 |
| 2001h                                                                                                                                                                                                                                                                          | 60B9h                                                             |                                                                                 |
| 2002h62                                                                                                                                                                                                                                                                        | 60BAh                                                             |                                                                                 |
| 2011h62                                                                                                                                                                                                                                                                        | 60BBh                                                             |                                                                                 |
| 2012h63                                                                                                                                                                                                                                                                        | 60BCh                                                             |                                                                                 |
| 2013h64                                                                                                                                                                                                                                                                        | 60BDh                                                             | 8                                                                               |
| 2014-2017h65                                                                                                                                                                                                                                                                   | 60C0h                                                             |                                                                                 |
| 2018h66                                                                                                                                                                                                                                                                        | 60C1h                                                             |                                                                                 |
| 2026h                                                                                                                                                                                                                                                                          | 60C2h                                                             |                                                                                 |
|                                                                                                                                                                                                                                                                                |                                                                   |                                                                                 |
| 204Ch101                                                                                                                                                                                                                                                                       | 60C4h                                                             |                                                                                 |
|                                                                                                                                                                                                                                                                                | 60D0h                                                             | 8                                                                               |
| 2071h111                                                                                                                                                                                                                                                                       | 60D0h<br>60E0h                                                    | {<br>.1'                                                                        |
| 2071h                                                                                                                                                                                                                                                                          | 60D0h<br>60E0h<br>60E1h                                           | 8<br>.1′<br>.1′                                                                 |
| 2071h       111         2077h       112         20A0h       68                                                                                                                                                                                                                 | 60D0h<br>60E0h<br>60E1h<br>60E4h                                  | 8<br>.1′<br>.1′<br>.1(                                                          |
| 2071h       111         2077h       112         20A0h       68         20A1h       68                                                                                                                                                                                          | 60D0h<br>60E0h<br>60E1h<br>60E4h<br>60E8h                         | 8<br>.1′<br>.1′<br>.10                                                          |
| 2071h       111         2077h       112         20A0h       68         20A1h       68         20A2h       68                                                                                                                                                                   | 60D0h<br>60E0h<br>60E1h<br>60E4h<br>60E8h<br>60E9h                |                                                                                 |
| 2071h       111         2077h       112         20A0h       68         20A1h       68         20A2h       68         20A3h       69                                                                                                                                            | 60D0h<br>60E0h<br>60E1h<br>60E4h<br>60E8h<br>60E9h                |                                                                                 |
| 2071h       111         2077h       112         20A0h       68         20A1h       68         20A2h       68         20A3h       69         20A4h       69                                                                                                                     | 60D0h<br>60E0h<br>60E1h<br>60E4h<br>60E8h<br>60E9h<br>60EDh       | 1'<br>1'<br>10<br>10<br>10<br>10                                                |
| 2071h       111         2077h       112         20A0h       68         20A1h       68         20A2h       68         20A3h       69         20A4h       69         20A5h       70                                                                                              | 60D0h 60E0h 60E1h 60E4h 60E8h 60E9h 60EDh 60EEh                   | 10<br>10<br>10<br>10<br>10<br>10                                                |
| 2071h       111         2077h       112         20A0h       68         20A1h       68         20A2h       68         20A3h       69         20A4h       69         20A5h       70         20A6h       70                                                                       | 60D0h 60E0h 60E1h 60E4h 60E8h 60E9h 60EDh 60EEh 60F4h             | 10<br>10<br>10<br>10<br>10<br>10<br>11                                          |
| 2071h       111         2077h       112         20A0h       68         20A1h       68         20A2h       68         20A3h       69         20A4h       69         20A5h       70         20A6h       70         20A7h       71                                                | 60D0h 60E0h 60E1h 60E4h 60E8h 60E9h 60EDh 60EEh                   | 10<br>10<br>10<br>10<br>10<br>10<br>11                                          |
| 2071h       111         2077h       112         20A0h       68         20A1h       68         20A2h       68         20A3h       69         20A4h       69         20A5h       70         20A6h       70         20A7h       71                                                | 60D0h 60E0h 60E1h 60E4h 60E8h 60E9h 60EDh 60EEh 60F4h 60FCh 60FDh | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 |
| 204Ch       101         2071h       111         2077h       112         20A0h       68         20A1h       68         20A2h       68         20A3h       69         20A4h       69         20A5h       70         20A6h       70         20A7h       71         20B8h       71 | 60D0h 60E0h 60E1h 60E4h 60E8h 60E9h 60EDh 60EEh 60F4h 60FCh       | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 |

| A                                                      | Mixed data types                    | 29  |
|--------------------------------------------------------|-------------------------------------|-----|
| Abbreviations12                                        | N                                   |     |
| В                                                      | Network Management Object Nodeguard |     |
| Basic data types28                                     | Nodeguard                           |     |
| Basic testing159                                       | 0                                   |     |
| C                                                      | Object Dictionary                   |     |
| CANbus                                                 | Operating mode                      | 99  |
| Baud rate                                              | P                                   |     |
| Cable                                                  | •                                   |     |
| CANopen interface                                      | PDO configuration                   | 85  |
| Node address                                           | Position Control Function           |     |
| Termination18                                          | Process Data Object                 |     |
| Communication Objects30                                | Profile Position Mode               |     |
| Control word95                                         | Profile specific objects            |     |
|                                                        | Profile torque mode                 |     |
| D                                                      | Profile Velocity Mode               | 110 |
| Data types28                                           | R                                   |     |
| Device control93                                       | Receive PDOs                        | 96  |
| Document Revisions181                                  | Response monitoring                 |     |
| E                                                      | Response monitoring                 |     |
| _                                                      | S                                   |     |
| Emergency Messages41                                   | SDO abort codes                     | 25  |
| Emergency Object                                       | Service Data Object                 |     |
| Examples                                               | Signed Integer                      |     |
| setup                                                  | Status machine                      |     |
| special applications                                   | Status word                         |     |
| Extended data types00                                  | Symbols used                        |     |
| F                                                      | Synchronization Object              |     |
| Factor Groups100                                       | Т                                   |     |
| Fieldbus21                                             |                                     |     |
| Fieldbus Parameters                                    | Target group                        |     |
|                                                        | Time Stamp Object                   |     |
| G                                                      | Transmission modes                  |     |
| <b>.</b>                                               | Transmit PDOs                       |     |
| General definitions 47 General objects 47              | Trigger modes                       | 37  |
| Н                                                      | U                                   |     |
| "                                                      | Unsigned Integer                    | 28  |
| Heartbeat         39           Homing Mode         122 |                                     |     |
| I.                                                     |                                     |     |
| Interpolated position mode117                          |                                     |     |
| •                                                      |                                     |     |
| M                                                      |                                     |     |
| Manufacturer specific objects61                        |                                     |     |

## 9 Record of Document Revisions

| Revision   | Remarks                                                                                                                                                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - ,11/2009 | Beta launch version                                                                                                                                                                                                                 |
| -, 12/2009 | Objects 2018&60FE added, Object dictionary, formatting updated                                                                                                                                                                      |
| A, 04/2010 | Termination connector "optional", several new objects, Object dictionary split                                                                                                                                                      |
| B, 07/2010 | Part number added, several new objects, object dictionary expanded                                                                                                                                                                  |
| C, 01/2011 | HW Rev. C, new objects, object dictionary expanded                                                                                                                                                                                  |
| D, 04/2011 | Object dictionary updated, baudrate setup                                                                                                                                                                                           |
| E, 10/2011 | Cover layout & error table & object dictionary updated, objects 3474 & 3475 & 3496 & 6091 added                                                                                                                                     |
| F, 03/2012 | Touch Probe objects 60B8 to 60BD & 60D0 added, object 2071 & 2077 added, PVT interpolation added, 60C0 & 60C1 & 60C4 & 6041 bit 9 updated, object dictionary updated, error codes updated, object 1011h added                       |
| G, 08/2012 | Object dictionary updated, error codes updated                                                                                                                                                                                      |
| H, 11/2012 | Object dictionary updated, error codes updated, new object 345A                                                                                                                                                                     |
| J, 05/2013 | Objects 2000,2002,60B1,60B2 added, Object dictionary, formatting acc. to 82079                                                                                                                                                      |
| K, 09/2013 | Scaling 60FFh, object dictionary updated                                                                                                                                                                                            |
| L, 12/2013 | Error codes extended, object dictionary updated                                                                                                                                                                                     |
| M, 05/2014 | Object 1012 added, object dictionary updated, PVT removed                                                                                                                                                                           |
| N, 12/2014 | Object 60C2 corrected, object dictionary updated with CMP objects, CMP hints added (see setup examples), examples corrected, object 2011h-2012h-2013h added                                                                         |
| P, 11/2015 | Object 60C1/60D0/20A4/20A5 updated, objects 605A/60E0/60E1/60FC added, object dictionary updated , mode dependant bits in 6041 added                                                                                                |
| R, 09/2016 | Object 6077 updated, chapter "Important Parameters" updated. Added objects 35B8h, 35BDh, 6087h, 53C7h, 53D5h, 53D6h, 53D7h, 5403h, 5404h, 5405h, and 5406h. Added new homing methods -7 to -5 for Object 6098h.                     |
| T, 03/2017 | CANopen Emergency Messages and Error Codes (→ p. 41) updated. Added objects 5375h (→ p. 153), "5377h" (→ p. 153), and 5379h (→ p. 153).                                                                                             |
| U, 10/2017 | CANopen Emergency Messages and Error Codes (→ p. 41) updated. Added Cyclic sync velocity mode (csv) and Cyclic sync torque mode (cst) to object 6040h. Added Object 207fh Maximum Velocity (→ p. 1). Added objects 541fh and 5420h. |
| V, 11/2018 | Updated warning symbols.                                                                                                                                                                                                            |



#### About KOLLMORGEN

Kollmorgen is a leading provider of motion systems and components for machine builders. Through world-class knowledge in motion, industry-leading quality and deep expertise in linking and integrating standard and custom products, Kollmorgen delivers breakthrough solutions that are unmatched in performance, reliability and ease-of-use, giving machine builders an irrefutable marketplace advantage.



Join the Kollmorgen Developer Network for product support. Ask the community questions, search the knowledge base for answers, get downloads, and suggest improvements.

# North America KOLLMORGEN

201 West Rock Road Radford, VA 24141, USA

Web:www.kollmorgen.comMail:support@kollmorgen.comTel.:+1 - 540 - 633 - 3545

+1 - 540 - 639 - 4162

# South America KOLLMORGEN

Fax:

Avenida João Paulo Ablas, 2970 Jardim da Glória, Cotia – SP CEP 06711-250, Brazil

Web: <a href="www.kollmorgen.com">www.kollmorgen.com</a>
<a href="mailto:contato@kollmorgen.com">contato@kollmorgen.com</a>

**Tel.:** +55 11 4615-6300

# **Europa KOLLMORGEN Europe GmbH**

Pempelfurtstr. 1

40880 Ratingen, Germany

 Web:
 www.kollmorgen.com

 Mail:
 technik@kollmorgen.com

 Tel.:
 +49 - 2102 - 9394 - 0

 Fax:
 +49 - 2102 - 9394 - 3155

## China and SEA KOLLMORGEN

Floor 4, Building 9, No. 518, North Fuquan Road, Changning District, Shanghai 200335, China

Web: www.kollmorgen.cn

Mail: sales.china@kollmorgen.com

**Tel.:** +86 - 400 661 2802