§ 10 无关性、基与维数

向量空间的基底个数是否唯一

n维的空间,要有n个无关的向量才能有唯一的解

行是空间的维数 列是空间的向量数

一维、二维、三维空间的确切定义

10.1 引言

给定 $A\mathbf{x} = \mathbf{0}$. 其中 $A \neq m \times n$ 阶矩阵,两个要素:

- (1) A 的列向量中无关向量个数(列秩) = A 的行向量中无关向量个 数(行秩) = 真正起作用方程个数 = r.
- (2)解空间中无关解向量个数 = s = 自由变量个数.

列空间的个数

零空间的个数 等式: r+s=n=A 的列数

等式直观地理解:给定r个方程,n个未知量,则能求出r个解, 剩下 n-r 个变量自由变化.

10.1 引言

求解: $A\mathbf{x} = \mathbf{0}$.

行变换 列对换
$$A \longrightarrow U_0 \longrightarrow R = \begin{pmatrix} I_r & F \\ 0 & 0 \end{pmatrix}$$

设 $F = (c_{ij})_{r \times (n-r)}$,则 $R\mathbf{y} = \mathbf{0}$ 有 n - r个无关解向量

$$\eta_1 = \begin{pmatrix} -c_{1,r+1} \\ \vdots \\ -c_{r,r+1} \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \eta_{n-r} = \begin{pmatrix} -c_{1n} \\ \vdots \\ -c_{rn} \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

10.1 引言

设 U_0 的 i_1, \dots, i_r 列形如 $\begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$,即 i_k 列 = $\begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ 第 k 分量

则 $P_{1,i_1}P_{2,i_2}\cdots P_{r,i_r}$ 是 U_0 到 R 的列对换. 将 η_1, \dots, η_r 的 i_1, \dots, i_r 各分量变到 $1, \dots, r$ 分量得 $\alpha_1, \dots, \alpha_r$ 为 $A\mathbf{x} = \mathbf{0}$ 的基础解系.

这次课我们确切刻划空间中无关向量个数的概念.

我们经常说 \mathbb{R}^2 是 2 维的, \mathbb{R}^3 是 3 维的,这是因为我们可以在其中建立一个坐标系.

例如, \mathbb{R}^2 对应右边一个坐标系,它是 2 维的,

因为任一向量
$$\binom{a}{b} = \alpha_1 + \alpha_2$$

$$\alpha_1 = a \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \, \alpha_2 = b \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

而
$$\binom{1}{0}$$
, $\binom{0}{1}$ 是 x, y 轴上两向量,线性无关.

 \mathbb{R}^3 对应右边如图坐标系,任一向量 $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$

可分解成 $\alpha_1 + \alpha_2 + \alpha_3$,

$$\alpha_1 = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \alpha_2 = b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \alpha_3 = c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

而
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 是 x, y, z 轴上无关三向量.

一般地, \mathbb{R}^n 是一个 n 维向量空间, 因为

$$\textbf{(1)} \ \vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \cdots, \vec{e_n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} 线性无关,构成一个 n 维坐标系, $\vec{e_i} \in \mathbb{R}^n$.$$

(2)任一向量
$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n$$
 均是 $\vec{e_1}, \dots, \vec{e_n}$ 的线性组合,

又例: \mathbb{R}^2 中也可以用非直角坐标系,例如 x'y' 夹角 45° , xy 夹角 90° .

$$\vec{\alpha} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 在 $x0y$ 坐标系中.

在新坐标系 x'0y' 中,设 x', y' 轴上单位向量为 \vec{e}_1, \vec{e}_2 . 则 $\vec{\alpha}_1 = \vec{e}_1, \vec{\alpha}_2 = \sqrt{2}\vec{e}_2$,即 $\vec{\alpha} = \vec{e}_1 + \sqrt{2}\vec{e}_2$,我们说 $\vec{\alpha}$ 对应点 P 在新坐标系下的坐标为 $(1, \sqrt{2})$.

10.3 无关性、基与维数

现在,我们推广 \mathbb{R}^n 的维数到一般向量空间的维数(dimension).

定义:设 V 是一个向量空间, $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$, $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ 是线性无关的(linearly independent) \iff 若 $a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n = \mathbf{0}$, 其中 $a_i \in \mathbb{R}$,则 $a_1 = \dots = a_n = 0$.

 $\{\mathbf v_1,\cdots,\mathbf v_n\}$ 是 V 的一个基(basis) \iff (1) $\mathbf v_1,\cdots,\mathbf v_n$ 线性无关;

(2) $\forall \alpha \in V, \alpha \in \mathbf{v}_1, \dots, \mathbf{v}_n$ 的线性组合.

我们说 V 的维数(dimension)是 n =基中向量个数.

(记作 dim V = n)

10.3 无关性、基与维数

例:
$$M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{R} \right\}$$
 是一个向量空间.

它有一个基
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
, 基不唯一,

$$\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$
 也是一个基.

$$dim M_2(\mathbb{R}) = 4.$$

10.3 无关性、基与维数

例: $S = \{3 \times 3$ 阶实对称阵 } 是一个向量空间,它有自然的一组基

$$\left\{ E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, E_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

$$\forall \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} = aE_1 + bE_2 + cE_3 + dE_4 + eE_5 + fE_6.$$

dim S = 6.

问题: 任两个基中向量一样多吗?

定理:设 V 是一个向量空间, $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ 是一组基, $\{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ 是另一组基,则 m=n.

证明:假设 $m \neq n$,且m < n.根据基的定义,

 $= (\mathbf{v}_1, \cdots, \mathbf{v}_n) A$

同理,

$$\mathbf{v}_{1} = b_{11}\mathbf{w}_{1} + \dots + b_{1m}\mathbf{w}_{m}$$

$$\mathbf{v}_{2} = b_{21}\mathbf{w}_{1} + \dots + b_{2m}\mathbf{w}_{m}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{v}_{n} = b_{n1}\mathbf{w}_{1} + \dots + b_{nm}\mathbf{w}_{m}$$

$$= (\mathbf{w}_{1}, \dots, \mathbf{w}_{m}) \begin{pmatrix} b_{11} & \dots & b_{n1} \\ \vdots & \ddots & \vdots \\ b_{1m} & \dots & b_{nm} \end{pmatrix}_{m \times n}$$

$$= (\mathbf{w}_{1}, \dots, \mathbf{w}_{m}) B$$

总结,我们有 $(\mathbf{w}_1, \dots, \mathbf{w}_m) = (\mathbf{v}_1, \dots, \mathbf{v}_n) A$ $(\mathbf{v}_1, \dots, \mathbf{v}_n) = (\mathbf{w}_1, \dots, \mathbf{w}_m) B.$

于是 $(\mathbf{w}_1, \dots, \mathbf{w}_m) = (\mathbf{w}_1, \dots, \mathbf{w}_m)BA, \ (\mathbf{v}_1, \dots, \mathbf{v}_n) = (\mathbf{v}_1, \dots, \mathbf{v}_n)AB.$

因为
$$\{\mathbf{w}_1, \dots, \mathbf{w}_m\}$$
和 $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ 均线性无关,则 $BA = I_m, AB = I_n$. 人 $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ 均线性无关,则 但这不可能. 因为我们假设 $m < n$,则 $dim\ N(B) = n - r(B) \ge n - m > 0$, 故 $B\mathbf{x} = \mathbf{0}$ 有非零解,进而 $AB\mathbf{x} = \mathbf{0}$ 有非零解,因此 AB 不可逆, $AB \ne I_n$.

命题: \mathbb{R}^n 中任意 n+1 个向量线性相关.

证明:设 $\alpha_1, \dots, \alpha_{n+1}$ 为 \mathbb{R}^n 中n+1个线性无关列向量,它可扩充成 \mathbb{R}^n 中一组基,由前面定理,得证.

或直接证明:

$$(\alpha_1, \cdots, \alpha_{n+1}) \xrightarrow{\text{行变换}} (U_0)_{n \times (n+1)} \xrightarrow{\text{列对换}} R = \begin{pmatrix} I & F \\ 0 & 0 \end{pmatrix}$$

R 不可能有 n+1 个无关列.

注:一般地,给定 \mathbb{R}^n 中若干列向量 $\alpha_1, \dots, \alpha_m$,考虑矩阵

$$A = (\alpha_1, \cdots, \alpha_m) \xrightarrow{\text{free}} U_0$$

列线性无关,即 $\{\alpha_{i_1},\cdots,\alpha_{i_r}\}$ 是C(A)的一组基.

设
$$rank U_0 = r$$
, 且 i_1, \dots, i_r 列为列向量 $\begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, 则 A 的 i_1, \dots, i_r

例:设 $\mathbf{v}_1, \dots, \mathbf{v}_n$ 是 \mathbb{R}^n 的一组基,A 是一个 $n \times n$ 可逆矩阵,则 $A\mathbf{v}_1, \dots, A\mathbf{v}_n$ 也是 \mathbb{R}^n 的一组基.

证明: 设 $c_1 A \mathbf{v}_1 + \cdots + c_n A \mathbf{v}_n = \mathbf{0}, c_i \in \mathbb{R},$

则 $A(c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n) = \mathbf{0}.$

A 可逆 $\Longrightarrow c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n = \mathbf{0}.$

 $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ 线性无关,则 $c_1 = \dots = c_n = 0$.

因此, $A\mathbf{v}_1, \dots, A\mathbf{v}_n$ 线性无关.

任一向量 $\alpha \in \mathbb{R}^n, A^{-1}\alpha \in \mathbb{R}^n,$ 则 $\exists a_i \in \mathbb{R}, A^{-1}\alpha = a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n.$

 $\mathbb{P} \quad \alpha = a_1 A \mathbf{v}_1 + \dots + a_n A \mathbf{v}_n.$

10.5 关于秩的不等式

回到我们的两个基本空间C(A) 和N(A).

C(A) 的基来自于主列 dim C(A) = r(A).

N(A)的基来自于自由列 $\dim N(A) = n - r(A)$.

应用:

(1) $r(AB) \le min(r(A), r(B))$.

证明: r(AB) = dim C(AB).

 $C(AB) \subset C(A) \implies \dim C(AB) \le \dim C(A) = r(A)$

则 $r(AB) \leq r(A)$. 不知(AB)与(B)

同理, $r(B^TA^T) \leq r(B^T) \Longrightarrow r(AB) \leq r(B)$.

10.5 关于秩的不等式

最后一步,用了

$$r(A) = r(A^T) \longrightarrow \gamma \left(\bigcup_{i} \right) \stackrel{\mathcal{L}}{\longrightarrow} r \left(\bigcup_{i} \right)$$

(3)
$$r(A+B) \le r(A) + r(B)$$
.

提示:
$$C(A+B) \subset C(A|B) = \{\sum_{i=1}^{n} a_i \alpha_i + b_i \beta_i | a_i, b_i \in \mathbb{R} \}.$$