Unidade Acadêmica de Sistemas e Computação / UFCG Teoria dos Grafos - 2022.2 Prof^a Patrícia Machado

Exercício Prático 03

Prazo para a Entrega: Definido na Programação de Aulas e na Tarefa do Classroom para esta prática

Formato de Entrega: Através do formulário anexado a Tarefa do Classroom para esta prática

Reposição: Prazo definido na programação de aulas

Objetivo: Realizar consultas em uma base de dados a ser criada no Neo4J.

Passos:

Criação do Sandbox

Estes passos devem ser realizados apenas uma vez para dar início a execução do roteiro.

Caso ainda não tenha um "Blank Sandbox" ativo:

- Acessar o link: https://sandbox.neo4j.com/
- Clicar em "Launch the free sandbox" e efetuar login
- Clicar em +New Project
- Na janela Select a Project, rolar a tela e, em Pre Built Data, selecionar "Blank Sandbox" e clicar em +Create
- Aguardar a criação do projeto
- Para iniciar seu trabalho com o Sandbox criado, clique em "Open"
- Aguarde novamente a criação e carga do BD. Algumas mensagens de erro podem ocorrer por problemas na conexão, mas com algum tempo, tudo será devidamente carregado. Caso solicitado, realize novamente o login.

Caso já tenha um "Blank Sandbox" ativo:

- Como esta atividade irá criar um BD relativamente grande, é importante iniciá-la com um sandbox vazio.
- Clique no sandbox e escolha a opção "Terminate" e execute o bloco anterior para criar um novo. Esta opção apagará todo o trabalho realizado no sandbox anterior.

Atenção:

- O sandbox mantém todos os dados que foram criados de uma sessão para a outra no prazo de 3 dias. Mas, as consultas em si, não ficam gravadas.
- Sendo assim, lembrar de salvar todas as consultas em um arquivo texto à parte.

Criação da Base de Dados

Nesta atividade, utilizamos uma pequena base de dados de um serviço de IOT, onde estão registrados dispositivos instalados por empresas que podem ser acessados/controlados através de um IP. Copie, cole no prompt do Neo4J e execute todo o trecho de código abaixo de uma só vez de "WITH ["cam.csv" ... até);) para criar o grafo com o qual iremos trabalhar.

```
WITH ["cam.csv", "sqwebcam.csv"] AS files
UNWIND files AS file
LOAD CSV WITH HEADERS FROM
"https://raw.githubusercontent.com/johnymontana/neo4j-datasets/master/iot/data/" + file AS row
CREATE (d:Device)
SET d:Camera
SET d.banner = row.Banner,
  d.operating system = row.'Operating System',
  d.timestamp = row.Timestamp
MERGE (ip:IP {address: row.IP})
MERGE (p:Port {portip: row.Port + "-" + row.IP})
SET p.port = row.Port
MERGE (d)-[:LISTENING_ON]->(p)
MERGE (p)-[:ON]->(ip)
FOREACH ( IN CASE WHEN row.Organization IS NOT NULL THEN [1] ELSE [] END |
  MERGE (org:Organization {name: row.Organization})
  MERGE (org)-[:OWNS]->(ip)
)
FOREACH ( IN CASE WHEN row.City IS NOT NULL AND row.Country IS NOT NULL THEN [1] ELSE
[] END [
  MERGE (city:City {id: row.City + "-" + row.Country})
  SET city.name = row.City
  MERGE (country:Country {name: row.Country})
  MERGE (ip)-[:IN CITY]->(city)
  MERGE (ip)-[:IN COUNTRY]->(country)
  MERGE (city)-[:IN_COUNTRY]->(country)
)
FOREACH ( IN CASE WHEN row.Country IS NOT NULL AND row.City IS NULL THEN [1] ELSE []
END |
  MERGE (country:Country {name: row.Country})
  MERGE (ip)-[:IN_COUNTRY]->(country)
);
```

Resultado esperado:

Added 6207 labels, created 4943 nodes, set 9368 properties, created 6144 relationships, completed after 17134 ms.

Para visualizar o esquema de dados criado, copie e cole no prompt:

CALL db.schema.visualization()

Resposta esperada:

Neste BD, temos os seguintes tipos de nós: Country, City, IP, Organization, Port, Device e Camera. Câmeras (Camera) ou outros dispositivos (Device) estão ligados a portas (Port) através da relação LISTENING_ON. Toda porta está associada a um IP (IP) através da relação ON. Organizações (Organization) são proprietárias de IPs e esta relação é estabelecida através do relacionamento OWNS. Os IP estão registrados em um país (Country) através da relação IN_COUNTRY e podem também ter uma cidade (City) específica associada, relação IN_CITY. Mas alguns IPs estão registrados apenas no país. Toda cidade está associada a um país através da relação IN_CITY.

Para visualizar os atributos de cada tipo de nó e relacionamento, clique no tipo na palette à direita.

Note que uma mesma empresa pode possuir IPs de diferentes países/cidades. Todo IP pode ter mais de uma porta associada.

Roteiro de Consultas

1) Escreva uma consulta que retorna todos os IPs da organização "InfoWest". O resultado deve apresentar a organização, relacionamentos e IPs.

Saída esperada:

Caso não esteja visualizando o endereço IP no nó do tipo IP, clique no tipo a esquerda e escolha o atributo address (vide imagem abaixo).

2) Escreva uma consulta que retorna as empresas que têm mais de 10 IPs com dispositivos acoplados. A saída deve ser uma tabela com nome da empresa e a quantidade de IPs em ordem crescente pelo nome da empresa.

Saída Esperada (Formato Text):

oname	qtde
"Comcast Cable"	11
"Deutsche Telekom AG"	96
"02 Czech Republic"	11
"Orange Polska"	16
"Rostelecom"	11
"Telecom Italia"	27

 "Telefonica de Espana" 	14
"Telekom Austria"	16
"UPC Ceska Republica, s.r.o."	11
"WIND Telecomunicazioni S.p.A"	13

3) Escreva uma consulta que retorna todas as câmeras instaladas no país "Germany". A saída deve ser uma tabela com endereço IP, porta e timestamp da câmera, ordenada por IP e porta.

Saída Esperada (Formato Text):

ip.address	p.port	d.timestamp
"109.230.225.38"	 "554" 	"2016-12-25T13:39:35.992548"
"145.255.50.188"	"554"	"2016-12-28T08:56:46.322599"
"145.255.51.62"	"554"	"2016-12-20T09:56:51.122074"
"176.199.122.236"	"554"	"2016-12-16T14:10:25.425356"
"178.15.224.42"	"554"	"2016-12-28T05:03:24.761254"
"178.201.108.72"	"554"	"2016-12-19T12:34:34.522871"
"178.201.212.43"	 "554" 	"2016-12-30T02:17:01.637816"
"178.3.34.149"	"554"	"2016-12-17T19:06:25.085064"

. .

... (143 records)

4) Escreva uma consulta que retorna os endereços IP de cada país com algum dispositivo na escuta (LISTENING_ON). A consulta deve retornar uma tabela com o nome do país e a coleção de IPs, ordenada pelo nome do país.

Saída Esperada (Formato Text):

cname	ips
"Albania"	["91.187.113.54", "80.91.116.145"]
 "Argentina" 	["181.92.119.53", "190.190.28.32", "190.97.30.218", "181.169.202.26", "201.251.133.115", "186.1.213.236", "152.170.110.58", "186.133.37.129"
	, "190.103.17.153", "186.139.28.69", "190.247.148.12", "181.16.108.108 ", "200.63.92.83", "190.103.17.91", "190.93.56.60", "181.171.15.7", "1
	86.22.74.181", "190.184.222.102", "181.45.31.48", "24.232.193.57", "19 0.246.189.18", "186.133.30.103", "201.253.42.194", "190.225.78.217", " 191.81.147.66", "190.93.61.122"]

 "Australia" 	["110.174.7.162", "203.59.175.4", "120.151.13.207", "115.70.231.183", "101.176.111.176", "124.178.246.113", "124.190.27.219", "120.29.242.13 3", "110.142.229.180", "59.167.214.47"]
"Austria"	["85.199.24.82", "178.112.125.182", "85.236.234.19", "188.22.54.140", "62.46.113.253", "185.21.237.101", "93.82.0.55", "85.238.180.133", "84 .20.185.33", "178.189.177.247", "194.166.238.228", "82.192.10.143", "9 3.82.62.203", "91.135.170.13", "193.81.201.72", "212.60.183.4", "178.1 89.238.30", "62.99.208.82", "91.113.98.219", "85.13.45.106", "176.61.1 79.94", "91.135.173.38", "188.23.249.118", "178.189.189.163", "212.60. 179.250", "77.118.35.201", "193.83.254.224", "178.113.77.47", "178.189 .186.52", "193.81.201.192", "88.116.200.138"]

. . .

... (72 records)

5) Escreva uma consulta que apresente os números de porta usados nos diferentes paises e a sua incidência. A resposta deve ser uma tabela com nome do país, porta e a quantidade de portas com aquele número para o país.

Saída esperada:

country.name	p.port	count(p)
"Albania"	"554" 	2
"Argentina"	 "554" 	 24
"Argentina"	 "80" 	2
"Australia"	 "554" 	5
"Australia"	"80" 	2
"Australia"	"82"	1
"Australia"	"8080"	1
"Australia"	"8888" 	1
"Austria"	 "554" 	30
	i	

. . .

168 records

6) Organizações que possuem IPs em diferentes países. A consulta deve retornar uma tabela com os nomes das organizações sem repetição, em ordem crescente.

Saída Esperada (Formato Text):

org.name

"AT&T Internet Services"

"Bhb Cable Tv D.o.o"

"Cogent Communications"

"Orange"

"Sure Guernsey Limited"