CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Previous lectures

Tru	ıth	table
p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Equivalence laws

Laws	Formula	Formula
Commutative laws	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associative laws	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \vee q) \vee r \equiv p \vee (q \vee r)$
Distributive laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Propositional logic: A formal language to express facts and argue about them

Valid arguments

 $\begin{array}{c} \mathsf{Premise}_1 \\ \mathsf{Premise}_2 \\ \vdots \\ \mathsf{Premise}_m \\ \vdots \\ \mathsf{Conclusion} \end{array}$

Inference

Name	Rule	Name	Rule	
Modus Ponens	$p \to q$	Elimination	$p \vee q$	$p \lor q$
	p		$\sim q$	$\sim p$
	∴ q		$\therefore p$	$\therefore q$
Modus Tollens	$p \to q$	Transitivity	$p \to q$	
	$\sim q$		$q \rightarrow r$	
	$\therefore \sim p$		$\therefore p \to r$	

Today

- Study propositions with quantifiers: for all integers a, b, and c, (a + b) +c = a + (b + c)
- Predicate
- Domain
- Quantifier

Quantifiers

Predicate

- A propositional function or predicate is a sentence that contains one or more variables
- A predicate is neither true nor false
- A predicate becomes a proposition when the variables are substituted with specific values
- The domain of a predicate variable is the set of all values that may be substituted for the variable

Examples

Symbol	Predicate	Domain	Propositions
p(x)	x > 5	$x \in \mathbb{R}$	$p(6), p(-3.6), p(0), \dots$
p(x,y)	x+y is odd	$x \in \mathbb{Z}, y \in \mathbb{Z}$	$p(4,5), p(-4,-4), \dots$

Predicate logic example

$$\forall x, P(x) \land Q(x)$$

- This statement asserts that for all objects x, both P(x) and Q(x) are true.
- The symbol ∀ is the universal quantifier, which means "for all". P(x) and Q(x) are predicates that are evaluated for each object x in the universe of discourse. The ∧ symbol represents the logical connective "and", which requires both P(x) and Q(x) to be true for the whole statement to be true.

Universal statement

- Let p(x) be a predicate and D be the domain of x
- A universal statement is a statement of the form

$$\forall x \in D, p(x)$$

- Forms:
 - "p(x) is true for all values of x"
 - "For all x, p(x)"
 - "For each x, p(x)"
 - "For every x, p(x)"
 - "Given any x, p(x)"

Existential statement

- Let p(x) be a predicate and D be the domain of x
- · An existential statement is a statement of the form

$$\exists x \in D, p(x)$$

- Forms:
 - "There exists an x such that p(x)"
 - "For some x, p(x)"
 - "We can find an x, such that p(x)"
 - "There is some x such that p(x)"
 - "There is at least one x such that p(x)"

Examples

Universal st.s	Domain
$\exists x \in D, x^2 \geq x$	$D = \{1, 2, 3\}$
$\exists x \in \mathbb{R}, x^2 \geq x$	\mathbb{R}

Universal conditional statement

A universal conditional statement is of the form

$$\forall x$$
, if $p(x)$ then $q(x)$

Examples

- $\forall x \in \mathbb{R}$, if x > 2 then $x^2 > 4$
- \forall real number x, if x is an integer then x is rational \forall integer x, x is rational
- $\forall x$, if x is a square then x is a rectangle \forall square x, x is a rectangle

Can be extended to existential conditional statement (\exists, \rightarrow)

Implicit quantifiers

Examples

- If a number is an integer, then it is a rational number Implicit meaning: \forall number x, if x is an integer, x is rational
- The number 10 can be written as a sum of two prime numbers Implicit meaning: \exists prime numbers p and q such that 10 = p+q
- If x>2, then $x^2>4$ Implicit meaning: \forall real x, if x>2, then $x^2>4$

Definition

• Let p(x) and q(x) be predicates and D be the common domain of x. Then implicit quant. symbols \Rightarrow , \Leftrightarrow are defined as:

$$p(x) \Rightarrow q(x) \equiv \forall x, p(x) \rightarrow q(x)$$

$$p(x) \Leftrightarrow q(x) \equiv \forall x, p(x) \leftrightarrow q(x)$$

Propositions with multiple quantifiers

$$\forall x \in D, \exists y \in E, \text{ such that } p(x, y)$$

$$\exists x \in D, \forall y \in E, \text{ such that } p(x, y)$$

$$\forall x \in D, \forall y \in E, \text{ such that } p(x, y)$$

$$\exists x \in D, \exists y \in E, \text{ such that } p(x, y)$$

Note: the order of quantifiers matter

- Every lock has a key
- For any lock L, there exists a key K, such that K can unlock L.
- There is a key for every lock
- There exists a key K, such that for any lock L, K can unlock L.

Exercise 1 translate to formal logic

Everyone can make mistake

Exercise 2 translate to formal logic

Nobody is perfect

Exercise 3 translate to formal logic

Every lock has a key

Exercise 4 translate to formal logic

There is a key for every lock

Exercise 5 translate to formal logic

Every nonzero real number has a reciprocal

The reciprocal of 4 is 1/4 (namely 0.25)

Solution

- Everyone can make mistake
 - for any person p, p can make mistake
- Nobody is perfect
 - there does not exist p, such that p is perfect
 - = for every person p, p is not perfect
- Every lock has a key
 - for every lock I, there is a key k such that k can unlock I
- There is a key for every lock
 - there is a key k, such that for every lock I, k can unlock I
- Every nonzero real number has a reciprocal
 - for any nonzero real number r, there exists a real number s, such that r * s = 1