Mudit Aggarwal

mudit19063@iiitd.ac.in | +91-9910679251 | v1ator.github.io

FDUCATION

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY

NEW DELHI, INDIA

BACHELOR OF TECHNOLOGY | COMPUTER SCIENCE AND ENGINEERING

EXPECTED MAY 2023

- Cummulative GPA: 9.18/10
- Recieved Dean's Award for Academic Excellence

PUBLICATIONS AND PREPRINTS

- [1] Mudit Aggarwal and T Aaron Gulliver. A New Self-Shrinking Generator (submitted). 2022. URL: https://www.researchsquare.com/article/rs-2348688/v1, doi:10.21203/rs.3.rs-2348688/v1.
- [2] Mudit Aggarwal and Samrith Ram. Generating Functions for Straight Polyomino Tilings of Narrow Rectangles. *J. Integer Seq.*, 26(1):Art. 23.1.4, 12, 2023. URL:

https://cs.uwaterloo.ca/journals/JIS/VOL26/Ram/ram3.pdf.

RESEARCH EXPERIENCE

REED SOLOMON CODES AND THEIR VARIANTS | Undergraduate Thesis

Advisor: Dr. Anuradha Sharma

IIIT DELHI, INDIA

August 2022 - Present

- Working on generalising and finding variants to Reed-Solomon Codes, particularly **Twisted RS Codes**, that can be used to detect and correct **Insertion-Deletion errors** during transmission.
- Aiming to use the variants being developed to give error correcting codes for **DNA Sequences**.
- Using techniques from **Algebraic Coding Theory**, as well as Combinatorics, Finite Fields, Number Theory, Modern Algebra, and Linear Algebra.

GENERATING FUNCTIONS FOR TILING RECTANGLES

Advisor: Dr. Samrith Ram

IIIT DELHI, INDIA

May 2021 - November 2022

- Worked on finding multivariate generating functions for the number of ways to tile an $m \times n$ rectangle with an unlimited number of $k \times 1$ and $k \times k$ tiles, allowing for free rotations.
- Also worked on finding the generating functions for the number of tilings with constraints on the number of tiles.
- Using topics and techniques from Combinatorics, Generating Functions, Recurrences, and Number Theory.
- A paper [2] has been published in the Journal of Integer Sequences.

SHRINKING GENERATORS FOR CRYPTOGRAPHY | Mitacs Globalink Research Internship Advisor: Dr. Aaron Gulliver University of Victoria, Canada

May 2022 - November 2022

- Worked on finding new **Self-Shrinking Generators** for cryptography, while also generalising the notion of **LFSRs** by introducing **non-linearities** in them. This ensures **better security guarantees** in both theory and practice.
- Compared multiple types of such generators like LFSRs, Cellular Automata, Shrinking Generators, Modified Generators, etc. Additionally, analysing the security of these both **theoretically** as well as **practically**.
- A paper [1] has been submitted and is currently under review.

BOUNDED ARBORICITY GRAPH STREAMING

ADVISORS: DR. SAKET SAURABH & DR. AKANKSHA AGRAWAL Jan 2021 - May 2021 IMSc Chennai & IIT Madras, India (Remote)

- Worked with Sameep Dahal, Savit Gupta, and Agastya Vibhuti Jha on finding **small-space approximation algorithms** for graphs with a given bounded arboricity, in the streaming model.
- Proved results and small-space algorithms for **Vertex Cover**, **b-Matching**, and **Capacitative Matching** for weighted graphs under the streaming model, and unweighted graphs under the dynamic model.

SUNFLOWER LEMMA AND LIFTING THEOREMS

ADVISOR: DR. SAJIN KOROTH May 2022 - September 2022 University of Victoria, Canada

• Worked on improving the **gadget-size** guarantees of **lifting theorems** in communication complexity using the recent improvements in the **Erdos-Rado Sunflower Lemma**.

• Conversely, also used **randomised lifting theorems** and **decision tree complexity** to further the lower bounds on the size in the sunflower lemma.

WORKSHOPS

ALGORITHMS FOR BIG DATA AND ML | ACM WINTER SCHOOL 2020-21

Institute of Mathematical Sciences, Chennai

- The workshop was organised by **Dr. Saket Saurabh** and **Dr. Venkatesh Raman** on **Streaming Algorithms**.
- The main topics covered were: Chernoff bounds, Morris counter, Lower Bounds, AMS estimator, Sparse recovery, Johnson–Lindenstrauss lemma, Graph streaming and PAC learning.

ALGORITHMS AND LOWER BOUNDS | ACM WINTER SCHOOL 2021-22

IIT Madras and CMI, Chennai

- The workshop was organised by Dr. Akanksha Agrawal and Dr. G. Philip on Algorithmic Lower Bounds.
- The main topics covered were: Fast Fourier Transform, Linear Decision Trees, Polynomial Methods, Complexity Conjectures, and Reductions.

RELEVANT COURSEWORK

GRADUATE

Functional Analysis (A) [Class Rank 1] Abstract Algebra II (A)

Calculus on \mathbb{R}^n (A)

Approximation Algorithms (A)

Theory of Modern Cryptography (A)

 $\textbf{Topics in Number Theory} \ (\textbf{B})$

Applied Cryptography (B-)

Information Theory

Randomised Algorithms

Lattices in Computer Science

Measure and Probability Theory *

Algebraic Coding Theory *

Quantum Computing *

Communication Complexity *

UNDERGRADUATE

Discrete Maths (A+) [Class Rank 1] Real Analysis II (A) [Class Rank 1]

Abstract Algebra I (A)

Probability and Statistics (A)

Differential Equations (A)

Theory of Computation (A)

Data Structures and Algorithms (A)

 $Linear\,Algebra\,(\text{A-})$

Real Analysis I (A-)

Analysis & Design of Algorithms (A-)

Basic Electronics (A-)

Modern Algorithm Design (B)

Signals and Systems (B)

Combinatorics and Applications *

Multivariate Calculus *

Number Theory *

READING COURSES

COMBINATORICS AND REPRESENTATION THEORY (A)

Advisor: Dr. Samrith Ram

Monsoon Semester, 2022

- Studied an assortment of topics from **Combinatorics** and **Representation Theory**, using multiple texts.
- Main topics covered were Snake Oil, WZ Pairs, Gosper's Algorithm, Pólya-Redfield Theorem, Cycle Index, Symmetric Functions, Partitions, Weighted Objects, and Tableaux.
- Some texts used were *Generatingfunctionology* by Wilf, A = B by Zeilberger, Wilf, Petkovšek, A *Course in Enumeration* by Aigner, and *Bijective Combinatorics* by Loehr.

DIFFERENTIAL GEOMETRY WITH TOPOLOGY (A)

Advisor: Dr. Shilpak Banerjee

Summer Semester, 2021

- Studied Point-Set Topology from Topology by Munkres.
- Covered sections on **Differential Geometry** from *Elementary* Differential Geometry by Pressley.
- Also covered the required multivariable calculus and multivariable analysis prerequisites.
- Main topics included: Topology, Basis for topology, Metric Spaces, Connectedness, Compactness, Homeomorphisms, Curves and Surfaces, Parameterisations and Reparameterisations, Manifolds, Orientability of Surfaces, and Isometries.

ADVANCED LINEAR ALGEBRA *

Advisor: Dr. Samrith Ram

Winter Semester, 2022

- Studied **Linear Algebra** from *Linear Algebra* by Hoffman & Kunze, and *Linear Algebra Done Right* by Axler.
- Main topics included: Vector Spaces, Basis, Fields, Maxtrix Systems, Dual Spaces, Functionals, Cyclic Decompositions, Jordan Form, Canonical Forms, and Inner Product Spaces.

TEACHING ASSISTANTSHIPS

Functional Analysis Combinatorics and Applications 2x Abstract Algebra I Discrete Mathematics Multivariate Calculus

PROGRAMMING PROJECTS & SKILLS

QUADROTOR DRONE SIMULATOR

Cyborg: Robotics Club at IIITD

April 2020 - June 2020

• Created a quadrotor simulator in Python that takes quadrotor size, dynamics, and path points as input.

• Uses **Euler-Newtonian** rigid body dynamics, and a multi-loop **PID** controller to simulate the motion of the given quadrotor and give plots for the motion of the same, along with graphs of the errors.

COLOUR SWITCH

Monsoon Semester, 2020

Advanced Programming: Course Project

PROFICIENT IN: SageMath ● Julia ● LaTex ● Beamer ● Python ● C++ ● C ● Java

^{*}Course audited with instructor's permission