第3节角的取舍(★★☆)

强化训练

1. (2022・雅安期末・★★) 记 △ABC 的内角 A、B、C 的对边分别为 a、b、c, $(a^2-b^2+c^2)\tan B = \sqrt{3}ac$,

则 B =____.

答案: $\frac{\pi}{3}$ 或 $\frac{2\pi}{3}$

解析: 所给等式中有 $a^2-b^2+c^2$ 这一结构, 想到余弦定理推论,

由余弦定理推论, $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$, 所以 $a^2 + c^2 - b^2 = 2ac\cos B$,

代入 $(a^2-b^2+c^2)\tan B = \sqrt{3}ac$ 可得 $2ac\cos B\tan B = \sqrt{3}ac$,所以 $\sin B = \frac{\sqrt{3}}{2}$,

又 $0 < B < \pi$, 所以 $B = \frac{\pi}{3}$ 或 $\frac{2\pi}{3}$. (无其它条件限制, 两个解都可取)

2. (2022 • 台州期末 • ★★)在 $\triangle ABC$ 中, $a=3\sqrt{2}$, c=3 , $A=45^\circ$,则 $\triangle ABC$ 的最大内角为()

 $(A) 105^{\circ}$

(B) 120° (C) 135° (D) 150°

答案: A

解析: 已知两边一对角, 可用正弦定理先求另一边对角,

由正弦定理, $\frac{a}{\sin A} = \frac{c}{\sin C}$, 所以 $\sin C = \frac{c \sin A}{a} = \frac{3 \sin 45^{\circ}}{3\sqrt{2}} = \frac{1}{2}$,

本题给了a和c,应由大边对大角来判断C能否取钝角,

因为a>c,所以A>C,从而C为锐角,故 $C=30^{\circ}$,所以 $B=180^{\circ}-A-C=105^{\circ}$,故选A.

3. (★★★) 已知 △ABC 的内角 A、B、C 的对边分别为 a、b、c,若 a=1, a+b+c=3,且

 $c \sin A \cos B + a \sin B \cos C = \frac{\sqrt{3}}{2} a$,则 ΔABC 的面积为(

(A) $\frac{\sqrt{3}}{4}$ $\frac{3\sqrt{3}}{4}$ (B) $\frac{3\sqrt{3}}{4}$ (C) $\frac{2\sqrt{3}}{2}$ (D) $\frac{\sqrt{3}}{4}$

答案: D

解析: 等式 $c \sin A \cos B + a \sin B \cos C = \frac{\sqrt{3}}{2} a$ 中每一项都有边,可先用正弦定理边化角,

因为 $c\sin A\cos B + a\sin B\cos C = \frac{\sqrt{3}}{2}a$,所以 $\sin C\sin A\cos B + \sin A\sin B\cos C = \frac{\sqrt{3}}{2}\sin A$,

又 $0 < A < \pi$, 所以 $\sin A > 0$, 从而 $\sin C \cos B + \sin B \cos C = \frac{\sqrt{3}}{2}$, 故 $\sin(C + B) = \frac{\sqrt{3}}{2}$,

因为 $\sin(C+B) = \sin(\pi-A) = \sin A$,所以 $\sin A = \frac{\sqrt{3}}{2}$,结合 $0 < A < \pi$ 可得 $A = \frac{\pi}{3}$ 或 $\frac{2\pi}{3}$,

此处两个解都能取吗?由于只有边长的条件,故分析边的大小,先假设可取钝角,看行不行,

若 A 为钝角,则 a 为唯一的最长边,所以 a>b , a>c ,从而 a+b+c<3a=3 ,矛盾,故 $A=\frac{\pi}{3}$,

有了a和A,结合b+c=3-a=2,可用余弦定理来沟通b+c和bc,求得bc,再求面积,

由余弦定理, $a^2 = b^2 + c^2 - 2bc\cos A$, 所以 $b^2 + c^2 - bc = 1$, 故 $(b+c)^2 - 3bc = 1$ ①,

又b+c=2,代入式①可求得bc=1,所以 $S_{\Delta ABC}=\frac{1}{2}bc\sin A=\frac{\sqrt{3}}{4}$.

【反思】由于题目给的都是边长条件,通过角度限定舍根有难度,所以考虑用边长舍根.

4. $(2022 \cdot 全国乙卷节选 \cdot \star \star \star \star)$ 记 ΔABC 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\sin C \sin(A-B) = \sin B \sin(C-A)$, 若 A = 2B, 求 C.

解: (有A=2B,可代入已知的三角等式中,将其化简)

因为A = 2B,且 $\sin C \sin(A - B) = \sin B \sin(C - A)$,所以 $\sin C \sin B = \sin B \sin(C - 2B)$ ①,

(观察发现可约去 $\sin B$, 先通过分析B的范围,来看看 $\sin B$ 是否可能为0)

由 A=2B 可得 A>B, 所以 B 为锐角,故 $\sin B>0$, 所以式①可化为 $\sin C=\sin(C-2B)$,

(要由此式得到 C和 C-2B 的关系,得研究此二角的范围)

因为 $0 < B < \frac{\pi}{2}$,所以 $-\pi < -2B < 0$,又 $0 < C < \pi$,所以两不等式相加可得 $-\pi < C - 2B < \pi$ ②,

又因为 $\sin C > 0$,所以 $\sin(C-2B) > 0$,结合②可得 $0 < C-2B < \pi$,所以C = C-2B或 $C + (C-2B) = \pi$,

若C=C-2B,则B=0,不合题意,舍去;

若
$$C+(C-2B)=\pi$$
,则 $B=C-\frac{\pi}{2}$,又 $A=2B$,所以 $A=2C-\pi$,

故
$$A+B+C=(2C-\pi)+(C-\frac{\pi}{2})+C=\pi$$
,解得: $C=\frac{5\pi}{8}$.

5. $(\star\star\star\star)$ 已知锐角 $\triangle ABC$ 的三个内角 A, B, C 的对边分别是 a, b, c, 且 $\frac{a+b}{\cos A+\cos B}=\frac{c}{\cos C}$, 求角 C.

解:(已知的等式左右都有齐次的边,可边化角)

因为 $\frac{a+b}{\cos A + \cos B} = \frac{c}{\cos C}$,所以 $\frac{\sin A + \sin B}{\cos A + \cos B} = \frac{\sin C}{\cos C}$,故 $\sin A \cos C + \sin B \cos C = \sin C \cos A + \sin C \cos B$,

(观察可发现将相同角的项组合,能用差角公式合并)

所以 $\sin A \cos C - \sin C \cos A = \sin C \cos B - \sin B \cos C$,故 $\sin(A - C) = \sin(C - B)$ ①,

(要由上式研究角的关系,得分析角的范围)因为∆ABC是锐角三角形,所以 $A,B,C ∈ (0,\frac{\pi}{2})$,

从而
$$A-C \in (-\frac{\pi}{2}, \frac{\pi}{2})$$
, $C-B \in (-\frac{\pi}{2}, \frac{\pi}{2})$, 结合 $y = \sin x$ 在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 上 〉 知式①等价于 $A-C = C-B$,

所以 A+B=2C ,又 $A+B=\pi-C$,所以 $\pi-C=2C$,故 $C=\frac{\pi}{3}$.

《一数•高考数学核心方法》