МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Кафедра	Систем Управле	ения и Информатики	Группа	P4135
	ПОЯСНИТ	ЕЛЬНАЯ ЗАПИСКА	4	
к расч	етно-исследова	ательской работе ма	гистран	ТОВ
	ПО	дисциплине		
Интел	лектуальное управ	вление в условиях неопред	целенност	И
Автор РИРМ		Артемов К.	(1	юдпись)
Руководитель		(фамилия, и.о.) Ушаков А.В.	(1	юдпись)
3		(фамилия, и.о.)	<u> </u>	·
	20 г.	Санкт-Петербург,	20	Γ.
Курсовая работ	а выполнена с оценкой			

Дата защиты " ____ " ____ 20 ____ г.

САНКТ – ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

КАФЕДРА СИСТЕМ УПРАВЛЕНИЯ И ИНФОРМАТИКИ

«УТВЕРЖДАЮ» Зав.кафедрой А.А.Бобцов

ЗАДАНИЕ

на расчетно – исследовательскую работу (РИРМ)магистрантов по дисциплине **ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВЛЕНИЕ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ**

СТУДЕНТУ: Артемову Кириллу, группа Р4135, кафедра СУиИ

РУКОВОДИТЕЛЬ: д.т.н., профессор А.В.Ушаков
1.ТЕМА РИРМ: ИССЛЕДОВАНИЕ ПАРАМЕТРИЧЕСКОЙ ЧУВСТВИТЕЛЬНОСТИ ОБЪЕКТОВ И СИСТЕМ, СИНТЕЗ НЕАДАПТИВНЫХ И АДАПТИВНЫХ АЛГОРИТМОВ, ОБЕСПЕЧИВАЮЩИХ НЕОБХОДИМУЮ РОБАСТНОСТЬ ИХ ДИНАМИЧЕСКИХ ПОКАЗАТЕЛЕЙ
2. СРОКИ выполнения РИРМ . 17 – я неделя семестра (30 мая 2017 года)
2.00 HEDWALHUE 2A HALHUG
3.СОДЕРЖАНИЕ ЗАДАНИЯ:
3.1. Построить МТЧ непрерывного ОУ(НОУ) ; с использованием матрицы управляемости агреги-рованной системы ранжировать параметры q_i по потенцииальной чувствительности 3.2. Построить МТЧ дискретного ОУ(ДОУ) к вариации интервала дискретности. 3.3. Построить МТЧ спроектированной непрерывной системы(СНС) по каждому из параметров и для значения $ \Delta q_j = 0.3$; выделить доминирующие параметры по степени их влияния на величину σ перерегулирования и длительность t_n переходного процесса; 3.4. Построить матрицу функций модальной чувствительности (МФМЧ) и выделить неблагоприятное сочетание вариаций параметров. 3.5. Методом модального управления (МУ), базовый алгоритм которого дополняется
контролем нормы $\ F_o\ $ медианной составляющей интервальной матрицы $[F]$
спроектированной системы для целей вычисления оценки $\delta_I F$ ее относительной интервальности. Исследовать свойство робастностной устойчивости полученной системы с помощью метода В.Л. Харитонова. 3.6. Оценить алгебраическую реализуемость неадаптивного и адаптивного управления, обеспечивающего параметрическую инвариантность выхода системы, и синтезировать их.
3.7.ВАРИАНТ ЗАДАНИЯ (ВПИСАТЬ СВОЙ)1.1A-1.2A-2.1Б-2.2Б-3A-4-A5A-6A-7A
4.СОДЕРЖАНИЕ пояснительной записки (перечень подлежащих разработке вопросов):

4.1.Введение.Постановка задачи	
4.2.Построение МТЧ НОУи результаты ее исследования	
4.3.Построение МТЧ ДОУи и результаты ее исследования	
4.4.Построение МТЧ СНС и результаты ее исследования	
4.5.Построение МФМЧ и результаты ее исследования	
4.6.Построение медианного МУ НОУ и оценка его результатов	
4.7. Синтез неадаптивного и адаптивного управления, обеспечивающего парам инвариантность выхода СНС относительно неопределенности НОУ	иетрическую
4.8.Заключение	
4.9.Литература	
4.10.Приложение	
5.ИСХОДНЫЕ материалы и пособия к РИРМ:	
5.1. Никифоров В.О., Слита О.В., Ушаков А.В. Интеллектуальное управлени неопределенности: учебное пособие. СПб.: СПбГУИТМО, 2011.	е в условиях
5.2. Никифоров В.О., Ушаков А.В. Управление в условиях неопределенности: чуга адаптация и робастность. СПб.: СПбГИТМО(ТУ), 2002.	зствительность,
5.3. Никифоров В.О. Адаптивное и робастное управление с компенсацией возмущени 2003.	йСПб.: Наука,
5.4. Дударенко Н.А., Слита О.В., Ушаков А.В. Математические основы соврем управления: аппарат метода пространства состояний: учебное пособие. / Под А.В. – СПб: СПбГУ ИТМО, 2008. – 323 с.	
6.ДАТА выдачи задания на РИРМ <u> </u>	
РУКОВОДИТЕЛЬ	
7.ДАТА начала выполнения РИРМ	
$CTV\Pi FHT$	
СТУДЕНТ	

Содержание

В	Введение.Постановка задачи 5				
1	Пос	строение МТЧ НОУ	6		
	1.1	Непрерывный ОУ в форме BCB	6		
	1.2	Модель траекторной чувствительности НОУ	7		
	1.3	Ранжирование параметров	8		
2	Пос	строение МТЧ ДОУ	12		
	2.1	Переход к дискретному описанию ОУ	12		
\mathbf{C}	писо	к использованных источников	13		

Подп. и дата							
Инв. № дубл.							
Взам. инв. №							
Подп. и дата	Изм. Лист	№ докум.	Подп.	Дата	КСУИ.06.4135.0	001 ПЗ	
Инв. № подл.	изм. Лист Разраб. Пров. Н. контр. Утв.	м докум. Артемов К. Ушаков А.В.	подп.	дата	РИРМ "Интеллектуальное управление в условиях неопределенности" Пояснительная записка	Униве <u>г</u> Каф	Лист Листов 4 13 оситет ИТМО едра СУиИ р. Р4135

Введение. Постановка задачи

Задан непрерывный объект управления (НОУ) с помощью передаточной функции (ПФ) «вход-выход (ВВ)»

$$\Phi(s,q) = \frac{b_0(1+q_1)s + b_1(1+q_2)}{(a_0(1+q_3)s + a_1(1+q_4))(a_2(1+q_5)s^2 + a_3(1+q_6)s + a_4(1+q_7))}$$
(1)

где $q_{10}=q_{20}=q_{30}=q_{40}=q_{50}=q_{60}=q_{70}=0$ — номинальные значения параметров $q_{j0},j=\overline{1,7}.$

Необходимо проделать работу в соответствии с заданием на расчетноисследовательскую работу магистранта (РИРМ). Исходные данные для варианта №6 ААББАААА указаны в таблице 1.

Таблица 1 – Исходные данные

1.1. Значения параметров ПФ	$b_0 = 3; b_1 = 0.4; a_0 = 2; a_1 =$
	$0.6; a_2 = 0; a_3 = 6; a_4 = 10$
1.2. Базис описания НОУ	канонический управляемый
2.1. Интервал дискретности	$\Delta t = 0.03c$
2.2. Метод перехода к ДОУ	с помощью интегральной моде-
	ли ВСВ НОУ
3. Характеристическая частота	$\omega_0 = 3c^{-1}$
5. Граничные (угловые) значения пара-	$q_{\underline{j}} = -0.2; \overline{q_{\overline{j}}} = 0.2$
метра q_j	
6. Относительная интервальность мат-	$\delta_{IR}F = 0.02$
рицы состояния системы	
7. Величина параметрической неопреде-	$q_{\underline{j}} = -0.2; \overline{q_{\overline{j}}} = 0.2$
ленности	

Изм.	Лист	№ докум.	Подп.	Дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

КСУИ.06.4135.001 ПЗ

1 Построение МТЧ НОУ

- 1) Записать непрерывный ОУ (НОУ) в форме «вход-состояние-выход (ВСВ)» в требуемом базисе;
- 2) Построить модель траекторной чувствительности (МТЧ) НОУ;
- 3) Произвести ранжирование параметров по потенциальной чувствительности к ним выхода ОУ с использованием матрицы управляемости агрегированной системы;

Оценить, какое из дополнительных движений, вызванных вариацией, потребует максимальных затрат управления при обеспечении его асимптотической сходимости к нулю.

1.1 Непрерывный ОУ в форме ВСВ

Заданный ОУ описывается ПФ

$$\Phi(s,q) = \frac{3(1+q_1)s + 0.4(1+q_2)}{(2(1+q_3)s + 0.6(1+q_4))(6(1+q_6)s + 10(1+q_7))}$$
(1.1)

Для составления векторно-матричного описания ОУ запишем $\Pi\Phi$ в фор-

 $\Phi(s,q) = \frac{\frac{(1+q_1)}{4(1+q_3)(1+q_6)}s + \frac{(1+q_2)}{30(1+q_3)(1+q_6)}}{s^2 + \frac{20(1+q_3)(1+q_7) + 3.6(1+q_4)(1+q_6)}{12(1+q_3)(1+q_6)}s + \frac{(1+q_2)}{2(1+q_3)(1+q_6)}}$

В каноническом управляемом базисе векторно-матричное представление ОУ принимает вид:

$$\begin{cases} \dot{x}(t,q) = A(q)x(t,q) + Bu(t) \\ y(t,q) = C(q)x(t,q) \end{cases}$$
(1.2)

в котором

ме

Инв. № дубл.

Взам. инв. №

$$A(q) = \begin{bmatrix} 0 & 1 \\ -\frac{(1+q_4)(1+q_7)}{2(1+q_3)(1+q_6)} & -\frac{20(1+q_3)(1+q_7)+3.6(1+q_4)(1+q_6)}{12(1+q_3)(1+q_6)} \end{bmatrix}$$
(1.3)

Изм. Лист № докум. Подп. Дата

 $KCУИ.06.4135.001\ \Pi 3$

Лист 6

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{1.4}$$

$$C(q) = \left[\frac{(1+q_2)}{30(1+q_3)(1+q_6)} \frac{(1+q_1)}{4(1+q_3)(1+q_6)} \right]$$
 (1.5)

1.2 Модель траекторной чувствительности НОУ

ПФ номинального ОУ, когда параметры $q_j = 0, j = \overline{1,7}$, представляет собой

$$\Phi(s,0) = \frac{\frac{1}{4}s + \frac{1}{30}}{s^2 + \frac{236}{120}s + \frac{1}{2}}$$
(1.6)

Матрицы модели ВСВ номинального ОУ имеют реализации

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{1}{2} & -\frac{236}{120} \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} \frac{1}{30} & \frac{1}{4} \end{bmatrix}$$

Введем обозначения

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

$$A_{q_j} = \frac{\partial A(q)}{\partial q_j} \Big|_{q=q_0}; B_{q_j} = \frac{\partial B(q)}{\partial q_j} \Big|_{q=q_0}; C_{q_j} = \frac{\partial C(q)}{\partial q_j} \Big|_{q=q_0};$$

$$A(q)|_{q=q_0} = A; B(q)|_{q=q_0} = B; C(q)|_{q=q_0} = C;$$

$$x(t,q)|_{q=q_0} = x(t); y(t,q)|_{q=q_0} = y(t);$$

$$\frac{\partial x(t,q)}{\partial q_j} \Big|_{q=q_0} = \sigma_j(t); \frac{\partial y(t,q)}{\partial q_j} \Big|_{q=q_0} = \eta_j(t);$$

Теперь для j-й модели траекторной чувствительности получим представление МТЧ

$$\begin{cases} \dot{\sigma}_j(t) = A\sigma_j(t) + A_{q_j}x(t) + B_{q_j}u(t); \sigma_j(0) = 0\\ \eta_j(t) = C\sigma_j(t) + C_{q_j}x(t) \end{cases}$$

$$(1.7)$$

МТЧ будет генерировать функции траекторной чувствительности $\sigma_j(t)$ по состоянию и $\eta_j(t)$ по выходу, если ее дополнить моделью номинального ОУ 1.2.

Изм. Лист № докум. Подп. Дата

КСУИ.06.4135.001 ПЗ

На состояние заданного ОУ влияют p=6 (далее, под записью $j=\overline{1,p}$ будет подразумеваться, что j=1,2,3,4,6,7) параметров: q_1,q_2,q_3,q_4,q_6,q_7 . Вычислим матрицы моделей траекторной чувствительности

$$A_{q_1} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}; B_{q_1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C_{q_1} = \begin{bmatrix} 1 \\ 0 & \overline{4} \end{bmatrix}; \tag{1.8}$$

$$A_{q_2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}; B_{q_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C_{q_2} = \begin{bmatrix} \frac{1}{30} & 0 \end{bmatrix}; \tag{1.9}$$

$$A_{q_3} = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{36}{120} \end{bmatrix}; B_{q_3} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C_{q_3} = \begin{bmatrix} -\frac{1}{30} & -\frac{1}{4} \end{bmatrix};$$
 (1.10)

$$A_{q_4} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{2} & -3.6 \end{bmatrix}; B_{q_4} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C_{q_4} = \begin{bmatrix} 0 & 0 \end{bmatrix};$$
 (1.11)

$$A_{q_6} = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{20}{12} \end{bmatrix}; B_{q_6} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C_{q_6} = \begin{bmatrix} -\frac{1}{30} & -\frac{1}{4} \end{bmatrix};$$
 (1.12)

$$A_{q_7} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{2} & -\frac{20}{12} \end{bmatrix}; B_{q_7} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C_{q_7} = \begin{bmatrix} 0 & 0 \end{bmatrix};$$
 (1.13)

1.3 Ранжирование параметров

Сконструируем агрегированную систему с составным вектором $\tilde{x}_j = col\{x, \sigma_j\}$ размерности $\dim \tilde{x} = 2n$, которая объединением 1.7 и 1.2, получает представление

$$\dot{\tilde{x}}_j(t) = \tilde{A}_j \tilde{x}_j(t) + \tilde{B}_j u(t); \tilde{x}_j(0) = col\{x(0), 0\}$$
(1.14)

$$x(t) = \tilde{C}_{x_i} \tilde{x}_j; \tag{1.15}$$

$$y(t) = \tilde{C}_j \tilde{x}_j(t); \tag{1.16}$$

$$\sigma_j(t) = \tilde{C}_{\sigma_j} \tilde{x}_j(t); \tag{1.17}$$

$$\eta_j(t) = \tilde{C}_{\eta_j} \tilde{x}_j(t) \tag{1.18}$$

Изм.	Лист	№ докум.	Подп.	Дата

Взам. инв. № Инв. № дубл.

Подп. и дата

KCVM.06.4135.001 FI3

где

$$j = \overline{1, p}, \tilde{A}_j = \begin{bmatrix} A & 0 \\ A_{q_j} & A \end{bmatrix}, \tilde{B}_j = \begin{bmatrix} B \\ B_{q_j} \end{bmatrix},$$

$$\tilde{C}_{x_j} = \begin{bmatrix} I_{n \times n} & O_{n \times n} \end{bmatrix}, \tilde{C}_j = \begin{bmatrix} C & 0_{m \times n} \end{bmatrix}, \tilde{C}_{\sigma_j} = \begin{bmatrix} 0_{n \times n} & I_{n \times n} \end{bmatrix}, \tilde{C}_{\eta_j} = \begin{bmatrix} C_{q_j} & C \end{bmatrix}.$$

Составим необходимые матрицы

$$\tilde{A}_{1,2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{236}{120} & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -\frac{1}{2} & -\frac{236}{120} \end{bmatrix}; \tilde{A}_3 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{236}{120} & 0 & 0 \\ 0 & 1 & 0 & 1 \\ \frac{1}{2} & \frac{36}{120} & -\frac{1}{2} & -\frac{236}{120} \end{bmatrix};$$

$$\tilde{A}_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{236}{120} & 0 & 0 \\ 0 & 1 & 0 & 1 \\ -\frac{1}{2} & -3.6 & -\frac{1}{2} & -\frac{236}{120} \end{bmatrix}; \tilde{A}_{6} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{236}{120} & 0 & 0 \\ 0 & 1 & 0 & 1 \\ \frac{1}{2} & \frac{20}{12} & -\frac{1}{2} & -\frac{236}{120} \end{bmatrix};$$

$$\tilde{A}_{7} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{236}{120} & 0 & 0 \\ 0 & 1 & 0 & 1 \\ -\frac{1}{2} & -\frac{20}{12} & -\frac{1}{2} & -\frac{236}{120} \end{bmatrix}; \tilde{B}_{1,2,3,4,6,7} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix};$$

Инв. № подл.

Изм. Лист № докум. Подп. Дата

КСУИ.06.4135.001 ПЗ

$$\tilde{C}_{x_{1,2,3,4,6,7}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}; \tilde{C}_{1,2,3,4,6,7} = \begin{bmatrix} \frac{1}{30} & \frac{1}{4} & 0 & 0 \end{bmatrix}; \\
\tilde{C}_{\sigma_{1,2,3,4,6,7}} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \\
\tilde{C}_{\eta_{1}} = \begin{bmatrix} 0 & \frac{1}{4} & \frac{1}{30} & \frac{1}{4} \end{bmatrix}; \tilde{C}_{\eta_{2}} = \begin{bmatrix} \frac{1}{30} & 0 & \frac{1}{30} & \frac{1}{4} \end{bmatrix}; \\
\tilde{C}_{\eta_{3}} = \begin{bmatrix} -\frac{1}{30} & -\frac{1}{4} & \frac{1}{30} & \frac{1}{4} \end{bmatrix}; \tilde{C}_{\eta_{4}} = \begin{bmatrix} 0 & 0 & \frac{1}{30} & \frac{1}{4} \end{bmatrix}; \\
\tilde{C}_{\eta_{6}} = \begin{bmatrix} -\frac{1}{30} & -\frac{1}{4} & \frac{1}{30} & \frac{1}{4} \end{bmatrix}; \tilde{C}_{\eta_{7}} = \begin{bmatrix} 0 & 0 & \frac{1}{30} & \frac{1}{4} \end{bmatrix};$$

Для ранжирования параметров по возможным затратам ресурсов управления для достижения нечувствительности траектории проектируемой системы к этим вариациям проведем анализ управляемости системы 1.14 по ее выходу η_i .

Требования к ресурсам управления заметно снижаются, если изначально ограничиться задачей обеспечения траекторной нечувствительности выхода проектируемой системы. На уровне требований к структурным свойствам агрегированной системы 1.14 задача сводится к контролю управляемости тройки матриц $(\tilde{C}_{\eta_j}, \tilde{A}_j, \tilde{B}_j)$ и количественной оценке эффекта управления по переменной η_j при приложении управления u(t) фиксированной нормы с помощью сингулярных чисел матрицы управляемости

$$\tilde{W}_{y\eta_j} = \begin{bmatrix} \tilde{C}_{\eta_j} \tilde{B}_j & \tilde{C}_{\eta_j} \tilde{A}_j \tilde{B}_j & \tilde{C}_{\eta_j} \tilde{A}_j^2 \tilde{B}_j & \cdots & \tilde{C}_{\eta_j} \tilde{A}_j^{2n-1} \tilde{B}_j \end{bmatrix}$$
(1.19)

Взам. инв. $\mathbb{N}^{\underline{b}} \mid \underline{M}$ нв. $\mathbb{N}^{\underline{b}}$ дубл.

Подп. и дата

Инв. № подл.

КСУИ.06.4135.001 ПЗ

Лист

С учетом n=2, рассчитаем матрицы управляемости \tilde{W}_{η_j}

$$\tilde{W}_{y\eta_1} = \begin{bmatrix} 0.5 & -0.9166667 & 1.4277778 & -2.120463 \end{bmatrix}, \tag{1.20}$$

$$\tilde{W}_{y\eta_2} = \begin{bmatrix} 0.25 & -0.3916667 & 0.5202778 & -0.5982130 \end{bmatrix}, \tag{1.21}$$

$$\tilde{W}_{y\eta_3} = \begin{bmatrix} 0 & 0.1083333 & -0.3505556 & 0.8681759 \end{bmatrix}, \tag{1.22}$$

$$\tilde{W}_{y\eta_4} = \begin{bmatrix} 0.25 & -1.325 & 3.8808333 & -9.3064722 \end{bmatrix}, \tag{1.23}$$

$$\tilde{W}_{y\eta_6} = \begin{bmatrix} 0 & 0.45 & -1.6488889 & 4.3117963 \end{bmatrix}, \tag{1.24}$$

$$\tilde{W}_{y\eta_7} = \begin{bmatrix} 0.25 & -0.8416667 & 2.0441667 & -4.4350093 \end{bmatrix}$$
 (1.25)

Вычислим для полученных матриц управляемости сингулярные числа

$$\alpha\{\tilde{W}_{y\eta_1}\} = 2.7613747, \alpha\{\tilde{W}_{y\eta_2}\} = 0.9189399,$$
 (1.26)

$$\alpha\{\tilde{W}_{y\eta_3}\} = 0.9425257, \alpha\{\tilde{W}_{y\eta_4}\} = 10.172975,$$
 (1.27)

$$\alpha\{\tilde{W}_{y\eta_6}\} = 4.6382024, \alpha\{\tilde{W}_{y\eta_7}\} = 4.9617363 \tag{1.28}$$

Ранги матриц \tilde{W}_{η_j} равны $rang(\tilde{W}_{\eta_j})=1$, что совпадает с размерностью m=1 вектора выхода. Таким образом, выбором закона управления можно обеспечить сходимость $\lim_{t\to\infty}\Delta y(t,q_0,\Delta q_j)=0; j=\overline{1,p}$ с заданным темпом. Сингулярные числа матриц \tilde{W}_{η_j} принимают значения 1.26–1.28. Проранжируем параметры q_j в порядке увеличения затрат ресурсов на управление

1) q_4

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

- 2) q_7
- 3) q_6
- 4) q_1
- 5) q_3
- 6) q_2

Отсюда следует, что асимптотическая сходимость к нулю дополнительного движения $\Delta y(t,q_0,\Delta q_2)$ будет требовать наибольших затрат на управление, чем сходимость остальных дополнительных движений, с тем же темпом.

Изм. Лист № докум. Подп. Дата

КСУИ.06.4135.001 ПЗ

Лист

2 Построение МТЧ ДОУ

- 1) Перейти к дискретному описанию ОУ с помощью интегральной модели ВСВ НОУ;
- 2) Построить модель траекторной чувствительности (МТЧ) дискретного ОУ (ДОУ) к вариации интервала дискретности;

2.1 Переход к дискретному описанию ОУ

ДОУ представляет собой дискретную по времени с интервалом дискретности длительности Δt выборку из непрерывных процессов по вектору состояния x(t,q) и выходу y(t,q) при фиксированном на интервале $t\in [\Delta t k, \Delta t (k+1)]$ значении управления $u(t)=u(\Delta t k)=u(k)$.

$$\begin{cases} x(k+1,q) = \overline{A}(q)x(k,q) + \overline{B}(q)u(k) \\ y(k,q) = \overline{C}(q)x(k,q) \end{cases}$$
 (2.1)

где матрицы непрерывного 1.2 и дискретного 2.1 ОУ связаны следующими функциональными соотношениями

$$\overline{A}(q) = e^{A(q)\Delta t}; \overline{B}(q) = A^{-1}(q)(e^{A(q)\Delta t} - I)B(q); \overline{C}(q) = C(q)$$
(2.2)

Общий вид интегральной модели ВСВ НОУ имеет вид

$$x(t) = \Phi(t)x(0) + \int_0^t \Phi(t,\tau)Bu(\tau)d\tau$$
 (2.3)

$$y(t) = C\Phi(t)x(0) + \int_0^t C\Phi(t,\tau)Bu(\tau)d\tau$$
 (2.4)

где
$$\Phi(t) = e^{At}, \Phi(t,\tau) = \Phi(t)\Phi^{-1}(\tau) = e^{A(t-\tau)}.$$

Используя интегральную запись модели BCB непрерывного динамического объекта, нетрудно получить связь между матрицами модели BCB дискретного и непрерывного объектов в форме

Инв. № подл.

KCVN.06.4135.001 II3 Список использованных источников Инв. № дубл. Взам. инв. № Подп. и дата Инв. № подл. Лист $KCУИ.06.4135.001\ \Pi 3$ 13 Подп. Изм. Лист $N_{\overline{o}}$ докум. Дата