1-8 Set Theory: Axioms and Operations

魏恒峰

hfwei@nju.edu.cn

2019年11月26日

2/38

Gottlob Frege (1848–1925)

"Basic Laws of Arithmetic" (1893 & 1903)

Gottlob Frege (1848–1925)

"Basic Laws of Arithmetic" (1893 & 1903)

对于一个科学工作者来说,最不幸的事情莫过于: 当他的工作 接近完成时, 却发现那大厦的基础已经动摇。

— 《附录二》,1902

Bertrand Russell (1872–1970)

Bertrand Russell (1872–1970)

Bertrand Russell (1872–1970)

Bertrand Russell (1872–1970)

4/38

我们将集合理解为任何将我们思想中那些确定而彼此独立的对 象放在一起而形成的聚合。

— Georg Cantor 《超穷数理论基础》

Georg Cantor (1845–1918)

我们将集合理解为任何将我们思想中那些确定而彼此独立的对 象放在一起而形成的聚合。

Georg Cantor《超穷数理论基础》

Georg Cantor (1845–1918)

Theorem (概括原则)

For any predicate $\psi(x)$, there is a set X:

$$X = \{x \mid \psi(x)\}$$

For any predicate $\psi(x)$, there is a set X:

$$X = \{x \mid \psi(x)\}.$$

For any predicate $\psi(x)$, there is a set X:

$$X = \{x \mid \psi(x)\}.$$

Definition (Russell's Paradox)

$$\psi(x) \triangleq "x \notin x"$$

For any predicate $\psi(x)$, there is a set X:

$$X = \{x \mid \psi(x)\}.$$

Definition (Russell's Paradox)

$$\psi(x) \triangleq "x \notin x"$$

$$R = \{x \mid x \notin x\}$$

For any predicate $\psi(x)$, there is a set X:

$$X = \{x \mid \psi(x)\}.$$

Definition (Russell's Paradox)

$$\psi(x) \triangleq "x \notin x"$$

$$R = \{x \mid x \notin x\}$$

 $Q: R \in R$?

Q: 既然朴素集合论存在悖论, 你是如何做作业的?

Theorem (Russell's Paradox)

 $\{x \mid x \notin x\}$ is **not** a set.

Axiomatic Set Theory (ZFC)

Ernst Zermelo (1871–1953)

Abraham Fraenkel (1891–1965)

First-order Language for Sets $\mathcal{L}_{Set} = \{\in\}$

```
Parentheses: (,)
   Variables: x, y, z, \cdots
Connectives: \land, \lor, \neg, \rightarrow, \leftrightarrow
 Quantifiers: \forall, \exists
    Equality: =
  Constants:
   Functions:
  Predicates: ∈
```

First-order Language for Sets $\mathcal{L}_{Set} = \{\in\}$

```
Parentheses: (,)
   Variables: x, y, z, \cdots
Connectives: \land, \lor, \neg, \rightarrow, \leftrightarrow
 Quantifiers: \forall, \exists
    Equality: =
  Constants:
   Functions:
 Predicates: ∈
```

First-order Language for Sets $\mathcal{L}_{Set} = \{\in\}$

```
Parentheses: (,)
   Variables: x, y, z, \cdots
Connectives: \land, \lor, \neg, \rightarrow, \leftrightarrow
 Quantifiers: \forall, \exists
    Equality: =
  Constants:
   Functions:
  Predicates: \in
```

Everything we consider in \mathcal{L}_{Set} is a set.

 $Q: What is "\in"?$

Q: What are "sets"?

 $Q: What is "\in"?$

Q: What are "sets"?

We don't define them directly.

We only describe their properties in an axiomatic way.

- To draw a straight line from any point to any point.
- To extend a finite straight line continuously in a straight line.
- (3) To describe a circle with any center and radius.
- That all right angles are equal to one another.
- (5) The parallel postulate.

Definition (\notin)

$$x \notin A \triangleq \neg (x \in A).$$

Definition (\notin)

$$x \notin A \triangleq \neg (x \in A).$$

Definition (\subseteq)

$$A \subseteq B \triangleq \forall x (x \in A \implies x \in B)$$

Axiom (Axiom of Extensionality)

If two sets have exactly the same members, then they are equal.

$$\forall A \ \forall B \ (\forall x (x \in A \iff x \in B) \implies A = B).$$

$$\forall A \ \forall B \ (A \subseteq B \land B \subseteq A \implies A = B).$$

Axiom (Axiom of Extensionality)

If two sets have exactly the same members, then they are equal.

$$\forall A \ \forall B \ (\forall x (x \in A \iff x \in B) \implies A = B).$$

 $\forall A \ \forall B \ (A \subseteq B \land B \subseteq A \implies A = B).$

$$\forall A \ \forall B \ (A \subseteq B \land B \subseteq A \iff A = B).$$

Axiom (Empty Set Axiom)

There is a set having no members:

$$\exists B \ \forall x (x \notin B).$$

Axiom (Empty Set Axiom)

There is a set having no members:

$$\exists B \ \forall x (x \notin B).$$

Theorem (Uniqueness of Empty Set)

There is only one empty set.

Axiom (Empty Set Axiom)

There is a set having no members:

$$\exists B \ \forall x (x \notin B).$$

Theorem (Uniqueness of Empty Set)

There is only one empty set.

Definition ("\(\emptyset{"} \))

 $\emptyset \triangleq$ the unique unique empty set.

For any sets x and y, there is a set having as members just x and y:

$$\forall x \ \forall y \ \exists B \ (\forall z (z \in B \iff z = x \lor z = y)).$$

For any sets x and y, there is a set having as members just x and y:

$$\forall x \ \forall y \ \exists B \ \big(\forall z (z \in B \iff z = x \lor z = y) \big).$$

Definition (" $\{x,y\}$ ")

 $\{x,y\} \triangleq$ the unique set obtained by paring x and y.

For any sets x and y, there is a set having as members just x and y:

$$\forall x \ \forall y \ \exists B \ \big(\forall z (z \in B \iff z = x \lor z = y) \big).$$

Definition (" $\{x,y\}$ ")

 $\{x,y\} \triangleq$ the unique set obtained by paring x and y.

Theorem

$${x,y} = {y,x}.$$

For any sets x and y, there is a set having as members just x and y:

$$\forall x \ \forall y \ \exists B \ (\forall z (z \in B \iff z = x \lor z = y)).$$

Definition (" $\{x,y\}$ ")

 $\{x,y\} \triangleq$ the unique set obtained by paring x and y.

Theorem

$${x,y} = {y,x}.$$

Definition (" $\{x\}$ ")

$$\{x\} \triangleq \{x, x\}.$$

Axiom (Union Axiom (Simplified Version))

For any sets x and y, there is a set whose members are the elements belonging either to x or to y (or both):

$$\forall x \ \forall y \ \exists B \ (\forall z (z \in B \iff z \in x \lor z \in y)).$$

Axiom (Union Axiom (Simplified Version))

For any sets x and y, there is a set whose members are the elements belonging either to x or to y (or both):

$$\forall x \ \forall y \ \exists B \ \big(\forall z (z \in B \iff z \in x \lor z \in y) \big).$$

Definition (" $x \cup y$ ")

 $x \cup y \triangleq$ the unique set obtained by unioning x and y.

Definition (" $\{x, y\}$ ")

 $\{x,y\} \triangleq$ the unique set obtained by paring x and y.

Definition (" $\{x\}$ ")

$$\{x\} \triangleq \{x, x\}.$$

Definition (" $\{x,y\}$ ")

 $\{x,y\} \triangleq$ the unique set obtained by paring x and y.

Definition (" $\{x\}$ ")

$$\{x\} \triangleq \{x, x\}.$$

Definition (" $\{x, y, z\}$ ")

$$\{x,y,z\} \triangleq \{x,y\} \cup \{z\}.$$

Definition ("
$$\{x,y\}$$
")

 $\{x,y\} \triangleq$ the unique set obtained by paring x and y.

Definition (" $\{x\}$ ")

$$\{x\} \triangleq \{x, x\}.$$

Definition (" $\{x, y, z\}$ ")

$$\{x, y, z\} \triangleq \{x, y\} \cup \{z\}.$$

We can use pairing and union together to form finite sets.

For any set A, there is a set B such that:

$$\forall x \ (x \in B \iff x \ belongs \ to \ some \ member \ of \ A).$$

$$\forall x (x \in B \iff \exists y \in A(x \in y)).$$

For any set A, there is a set B such that:

$$\forall x \ (x \in B \iff x \ belongs \ to \ some \ member \ of \ A).$$

$$\forall x (x \in B \iff \exists y \in A(x \in y)).$$

Definition (" $\bigcup A$ " (Arbitrary Union))

 $A \triangleq A$ the unique set obtained by unioning A.

For any set A, there is a set B such that:

$$\forall x \ (x \in B \iff x \ belongs \ to \ some \ member \ of \ A).$$

$$\forall x \big(x \in B \iff \exists y \in A (x \in y) \big).$$

Definition (" $\bigcup A$ " (Arbitrary Union))

 $| A \triangleq$ the unique set obtained by unioning A.

Theorem

$$\bigcup \{x,y\} = x \cup y.$$

For any set A, there is a set B such that:

$$\forall x \ (x \in B \iff x \ belongs \ to \ some \ member \ of \ A).$$

$$\forall x (x \in B \iff \exists y \in A(x \in y)).$$

Definition (" $\bigcup A$ " (Arbitrary Union))

 $A \triangleq A$ the unique set obtained by unioning A.

Theorem

$$\bigcup \{x,y\} = x \cup y.$$

Theorem

$$\bigcup \emptyset = \emptyset.$$

Axiom (Replacement Axioms (Simplified Version: Subset Axioms; Separation Axioms))

Let ψ be a predicate. For any set u, there is a set B which is a subset of u such that each element x of B satisfies $\psi(x)$:

$$\forall u \; \exists B \; (\forall x (x \in B \iff x \in u \land \psi(x))).$$

Definition (" $\{x \in u \mid \psi(x)\}$ ")

 $\{x \in u \mid \psi(x)\} \triangleq \text{ the unique set obtained by separating from } u \text{ with } \psi.$

Axiom (Replacement Axioms (Simplified Version: Subset Axioms; Separation Axioms))

Let ψ be a predicate. For any set u, there is a set B which is a subset of u such that each element x of B satisfies $\psi(x)$:

$$\forall u \; \exists B \; \big(\forall x (x \in B \iff x \in u \land \psi(x)) \big).$$

Definition (" $\{x \in u \mid \psi(x)\}$ ")

 $\{x \in u \mid \psi(x)\} \triangleq \text{ the unique set obtained by separating from } u \text{ with } \psi.$

Definition (" $u \cap v$ ")

$$u \cap v \triangleq \{x \in u \mid x \in v\}.$$

Theorem (" $\bigcap A$ " (Arbitrary Intersection))

For any nonempty set A, there is a unique set B such that

 $\forall x \ (x \in B \iff x \ belongs \ to \ every \ member \ of \ A).$

$$\forall x \ (x \in B \iff \forall y \in A(x \in y)).$$

Theorem (" $\bigcap A$ " (Arbitrary Intersection))

For any nonempty set A, there is a unique set B such that

 $\forall x \ (x \in B \iff x \ belongs \ to \ every \ member \ of \ A).$

$$\forall x \ (x \in B \iff \forall y \in A(x \in y)).$$

Proof.

Let c be a fixed member of A.

Theorem (" $\cap A$ " (Arbitrary Intersection))

For any nonempty set A, there is a unique set B such that

 $\forall x \ (x \in B \iff x \ belongs \ to \ every \ member \ of \ A).$

$$\forall x \ (x \in B \iff \forall y \in A(x \in y)).$$

Proof.

Let c be a fixed member of A.

 $\bigcap A \triangleq \{x \in c \mid x \text{ belongs to every other member of } A\}.$

Theorem (" $\cap A$ " (Arbitrary Intersection))

For any nonempty set A, there is a unique set B such that

$$\forall x \ (x \in B \iff x \ belongs \ to \ every \ member \ of \ A).$$

$$\forall x \ (x \in B \iff \forall y \in A(x \in y)).$$

Proof.

Let c be a fixed member of A.

$$\bigcap A \triangleq \{x \in c \mid x \text{ belongs to every other member of } A\}.$$

 $\bigcap \emptyset$ is **not** a set.

There is no universal set.

There is no universal set.

$$\frac{\exists B}{\exists B} (\forall x (x \in B)).$$

Proof.

There is no universal set.

$$\frac{1}{2}B(\forall x(x \in B)).$$

Proof.

$$B = \{x \in A \mid x \not\in x\}$$

There is no universal set.

$$\frac{1}{2}B(\forall x(x \in B)).$$

Proof.

$$B = \{x \in A \mid x \notin x\}$$

$$B \in B \iff B \in A \land B \not\in B$$

There is no universal set.

$$\frac{1}{B}B(\forall x(x \in B)).$$

Proof.

$$B = \{x \in A \mid x \notin x\}$$

$$B \in B \iff B \in A \land B \notin B$$

$$B \notin A$$

There is no universal set.

$$\frac{1}{B}B(\forall x(x \in B)).$$

Proof.

$$B = \{x \in A \mid x \notin x\}$$

$$B \in B \iff B \in A \land B \not\in B$$

$$B \notin A$$

$$B \in A \implies (B \in B \iff B \notin B)$$

$$u \setminus v \triangleq \{x \in u \mid x \notin v\}.$$

$$u \setminus v \triangleq \{x \in u \mid x \notin v\}.$$

Theorem (No "Absolute Complement")

For any set B, the following is **not** a set:

$$\{x \mid x \notin B\}.$$

$$u \setminus v \triangleq \{x \in u \mid x \notin v\}.$$

Theorem (No "Absolute Complement")

For any set B, the following is **not** a set:

$$\{x \mid x \notin B\}.$$

Proof.

By Contradiction.

$$u \setminus v \triangleq \{x \in u \mid x \notin v\}.$$

Theorem (No "Absolute Complement")

For any set B, the following is **not** a set:

$$\{x \mid x \notin B\}.$$

Proof.

By Contradiction.

 $\{x \mid x \notin B\} \cup B$ would be a universal set.

$$u \setminus v \triangleq \{x \in u \mid x \notin v\}.$$

Theorem (No "Absolute Complement")

For any set B, the following is **not** a set:

$$\{x \mid x \notin B\}.$$

Proof.

By Contradiction.

 $\{x \mid x \notin B\} \cup B \text{ would be a universal set.}$

We can never look for objects "not in B" unless we know where to start looking. — UD (Chapter 6; Page 64)

Axiom (Power Set Axiom)

For any set A, there is a set whose members are the subsets of A:

$$\forall A \; \exists B \; \forall x (x \in B \iff x \subseteq A).$$

Axiom (Power Set Axiom)

For any set A, there is a set whose members are the subsets of A:

$$\forall A \; \exists B \; \forall x (x \in B \iff x \subseteq A).$$

Definition (" $\mathcal{P}(A)$ ")

 $\mathcal{P}(A) \triangleq \text{ the unique power set of } A.$

Axiom (Power Set Axiom)

For any set A, there is a set whose members are the subsets of A:

$$\forall A \; \exists B \; \forall x (x \in B \iff x \subseteq A).$$

Definition (" $\mathcal{P}(A)$ ")

 $\mathcal{P}(A) \triangleq \text{ the unique power set of } A.$

The is *not* correct!

$$\mathcal{P}(A) \triangleq \{x \mid x \subseteq A\}$$

Set Operations (I)

Theorem 7.4. Let X denote a set, and A, B, and C denote subsets of X. Then

- 1. $\emptyset \subseteq A$ and $A \subseteq A$.
- 2. $(A^c)^c = A$.
- 3. $A \cup \emptyset = A$.
- 4. $A \cap \emptyset = \emptyset$.
- 5. $A \cap A = A$.
- 6. $A \cup A = A$.
- 7. $A \cap B = B \cap A$. (Commutative property)
- 8. $A \cup B = B \cup A$. (Commutative property)
- 9. $(A \cup B) \cup C = A \cup (B \cup C)$. (Associative property)
- 10. $(A \cap B) \cap C = A \cap (B \cap C)$. (Associative property)
- 11. $A \cap B \subseteq A$.
- 12. $A \subseteq A \cup B$.
- 13. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. (Distributive property)
- 14. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. (Distributive property)
- 15. $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$. (DeMorgan's law) (When X is the universe we also write $(A \cup B)^c = A^c \cap B^c$.)
- 16. $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$. (DeMorgan's law)
- (When X is the universe we also write $(A \cap B)^c = A^c \cup B^c$.)
- 17. $A \setminus B = A \cap B^c$.
- 18. $A \subseteq B$ if and only if $(X \setminus B) \subseteq (X \setminus A)$.

(When X is the universe we also write $A \subseteq B$ if and only if $B^c \subseteq A^c$.)

- 19. $A \subseteq C$ and $B \subseteq C$ if and only if $A \cup B \subseteq C$.
- 20. $C \subseteq A$ and $C \subseteq B$ if and only if $C \subseteq A \cap B$.
- 21. $A \cup B = A$ if and only if $B \subseteq A$.
- 22. $A \cap B = B$ if and only if $B \subseteq A$.

Theorem (Distributive Property (Theorem 7.4 (13)))

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Theorem (Distributive Property (Theorem 7.4 (13)))

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proof.

If $x \in A \cup (B \cap C)$, then $x \in A$ or $x \in B \cap C$. Suppose first that $x \in A$. Then $x \in A \cup B$ and $x \in A \cup C$. In this first case, we see that $x \in (A \cup B) \cap (A \cup C)$. Now suppose that $x \in B \cap C$. Then $x \in B$ and $x \in C$. Since $x \in B$, we see that $x \in A \cup B$. Since we also have $x \in C$. we see that $x \in A \cup C$. Therefore, $x \in (A \cup B) \cap (A \cup C)$ in this case as well. In either case $x \in (A \cup B) \cap (A \cup C)$ and we may conclude that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

To complete the proof, we must now show that $(A \cup B) \cap (A \cup C) \subseteq$ $A \cup (B \cap C)$. So if $x \in (A \cup B) \cap (A \cup C)$, then $x \in A \cup B$ and $x \in A \cup C$. It is, once again, helpful to break this into two cases, since we know that either $x \in A$ or $x \notin A$. Now if $x \in A$, then $x \in A \cup (B \cap C)$. If $x \notin A$, then the fact that $x \in A \cup B$ implies that x must be in B. Similarly, the fact that $x \in A \cup C$ implies that x must be in C. Therefore, $x \in B \cap C$. Hence $x \in A \cup (B \cap C)$. In either case $x \in A \cup (B \cap C)$ and we may conclude that $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Since we proved containment in both directions we may conclude that the two sets are equal.

Theorem (Distributive Property (Theorem 7.4 (13)))

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proof.

If $x \in A \cup (B \cap C)$, then $x \in A$ or $x \in B \cap C$. Suppose first that $x \in A$. Then $x \in A \cup B$ and $x \in A \cup C$. In this first case, we see that $x \in (A \cup B) \cap (A \cup C)$. Now suppose that $x \in B \cap C$. Then $x \in B$ and $x \in C$. Since $x \in B$, we see that $x \in A \cup B$. Since we also have $x \in C$. we see that $x \in A \cup C$. Therefore, $x \in (A \cup B) \cap (A \cup C)$ in this case as well. In either case $x \in (A \cup B) \cap (A \cup C)$ and we may conclude that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

To complete the proof, we must now show that $(A \cup B) \cap (A \cup C) \subseteq$ $A \cup (B \cap C)$. So if $x \in (A \cup B) \cap (A \cup C)$, then $x \in A \cup B$ and $x \in A \cup C$. It is, once again, helpful to break this into two cases, since we know that either $x \in A$ or $x \notin A$. Now if $x \in A$, then $x \in A \cup (B \cap C)$. If $x \notin A$, then the fact that $x \in A \cup B$ implies that x must be in B. Similarly, the fact that $x \in A \cup C$ implies that x must be in C. Therefore, $x \in B \cap C$. Hence $x \in A \cup (B \cap C)$. In either case $x \in A \cup (B \cap C)$ and we may conclude that $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Since we proved containment in both directions we may conclude that the two sets are equal.

Theorem (DeMorgan's Law (Theorem 7.4 (15)))

Let X denote a set, and $A, B \subseteq X$.

$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$$

Theorem (DeMorgan's Law (Theorem 7.4 (15)))

Let X denote a set, and $A, B \subseteq X$.

$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$$

$$Q:A,B\subseteq X$$
?

Theorem (DeMorgan's Law)

Let A, B, C be three sets.

$$C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$$

Set Operations (II)

$$\bigcup_{i=1}^{n} A_j \triangleq A_1 \cup A_2 \cup \dots \cup A_n$$

$$\bigcup_{j=1}^{n} A_j \triangleq A_1 \cup A_2 \cup \dots \cup A_n \qquad \bigcap_{j=1}^{n} A_j \triangleq A_1 \cap A_2 \cap \dots \cap A_n$$

$$\bigcup_{j=1}^{n} A_j \triangleq A_1 \cup A_2 \cup \dots \cup A_n$$

$$\bigcup_{j=1}^{n} A_j \triangleq A_1 \cup A_2 \cup \dots \cup A_n \qquad \bigcap_{j=1}^{n} A_j \triangleq A_1 \cap A_2 \cap \dots \cap A_n$$

$$\bigcup_{j=1}^{\infty} A_j \triangleq A_1 \cup A_2 \cup \cdots$$

$$\bigcup_{j=1}^{\infty} A_j \triangleq A_1 \cup A_2 \cup \cdots \qquad \bigcap_{j=1}^{\infty} A_j \triangleq A_1 \cap A_2 \cap \cdots$$

$$\bigcup_{i=1}^{n} A_j \triangleq A_1 \cup A_2 \cup \dots \cup A_n$$

$$\bigcup_{j=1}^{n} A_j \triangleq A_1 \cup A_2 \cup \dots \cup A_n \qquad \bigcap_{j=1}^{n} A_j \triangleq A_1 \cap A_2 \cap \dots \cap A_n$$

$$\bigcup_{j=1}^{\infty} A_j \triangleq A_1 \cup A_2 \cup \cdots \qquad \bigcap_{j=1}^{\infty} A_j \triangleq A_1 \cap A_2 \cap \cdots$$

$$\bigcap_{j=1}^{\infty} A_j \triangleq A_1 \cap A_2 \cap \cdots$$

$$\bigcup_{\alpha \in I} A_{\alpha} \triangleq \left\{ x \mid \exists \alpha \in I : x \in A_{\alpha} \right\} \qquad \bigcap_{\alpha \in I} A_{\alpha} \triangleq \left\{ x \mid \forall \alpha \in I : x \in A_{\alpha} \right\}$$

$$\bigcap_{\alpha \in I} A_{\alpha} \triangleq \left\{ x \mid \forall \alpha \in I : x \in A_{\alpha} \right\}$$

Theorem (DeMorgan's Law (UD Exercise 8.9))

$$X\setminus \bigcup_{\alpha\in I}A_\alpha=\bigcap_{\alpha\in I}(X\setminus A_\alpha)$$

$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$$

Theorem (DeMorgan's Law (UD Exercise 8.9))

$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} (X \setminus A_{\alpha})$$

$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$$

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus \{-n, -n+1, \cdots, 0, \cdots, n-1, n\})$$

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus \{-n, -n+1, \cdots, 0, \cdots, n-1, n\})$$

$$X_n = \{-n, -n+1, \cdots, 0, \cdots, n-1, n\}$$

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus \{-n, -n+1, \cdots, 0, \cdots, n-1, n\})$$

$$X_n = \{-n, -n+1, \cdots, 0, \cdots, n-1, n\}$$

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus X_n)$$

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus \{-n, -n+1, \cdots, 0, \cdots, n-1, n\})$$

$$X_n = \{-n, -n+1, \cdots, 0, \cdots, n-1, n\}$$

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus X_n)$$

$$= \mathbb{R} \setminus \left(\mathbb{R} \setminus \bigcup_{n \in \mathbb{Z}^+} X_n\right)$$

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus \{-n, -n+1, \cdots, 0, \cdots, n-1, n\})$$

 $X_n = \{-n, -n+1, \cdots, 0, \cdots, n-1, n\}$

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus X_n)$$

$$= \mathbb{R} \setminus (\mathbb{R} \setminus \bigcup_{n \in \mathbb{Z}^+} X_n)$$

$$= \mathbb{R} \setminus (\mathbb{R} \setminus \mathbb{Z})$$

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus \{-n, -n+1, \cdots, 0, \cdots, n-1, n\})$$

 $X_n = \{-n, -n+1, \cdots, 0, \cdots, n-1, n\}$

$$A = \mathbb{R} \setminus \bigcap_{n \in \mathbb{Z}^+} (\mathbb{R} \setminus X_n)$$
$$= \mathbb{R} \setminus \left(\mathbb{R} \setminus \bigcup_{n \in \mathbb{Z}^+} X_n\right)$$
$$= \mathbb{R} \setminus \left(\mathbb{R} \setminus \mathbb{Z}\right)$$
$$= \mathbb{Z}$$

Set Operations (III)

 $\mathcal{P}(X)$

$$S \in \mathcal{P}(X) \iff S \subseteq X$$

$$\{\emptyset,\{\emptyset\}\}\in\mathcal{P}(\mathcal{P}(\mathcal{P}(S)))$$

$$\{\emptyset, \{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S)))$$

$$\{\emptyset, \{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S))) \iff \{\emptyset, \{\emptyset\}\} \subseteq \mathcal{P}(\mathcal{P}(S))$$

$$\{\emptyset, \{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S)))$$

$$\{\emptyset,\{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S))) \iff \{\emptyset,\{\emptyset\}\} \subseteq \mathcal{P}(\mathcal{P}(S))$$

$$\{\emptyset\} \in \mathcal{P}(\mathcal{P}(S))$$

$$\emptyset \in \mathcal{P}(\mathcal{P}(S))$$

$$\{\emptyset, \{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S)))$$

$$\{\emptyset,\{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S))) \iff \{\emptyset,\{\emptyset\}\} \subseteq \mathcal{P}(\mathcal{P}(S))$$

$$\{\emptyset\} \in \mathcal{P}(\mathcal{P}(S))$$

$$\emptyset \in \mathcal{P}(\mathcal{P}(S))$$

$$\iff \emptyset \subseteq \mathcal{P}(S)$$

$$\{\emptyset, \{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S)))$$

$$\{\emptyset,\{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S))) \iff \{\emptyset,\{\emptyset\}\} \subseteq \mathcal{P}(\mathcal{P}(S))$$

$$\{\emptyset\} \in \mathcal{P}(\mathcal{P}(S))$$

$$\emptyset \in \mathcal{P}(\mathcal{P}(S))$$

$$\iff \{\emptyset\} \subseteq \mathcal{P}(S)$$

$$\iff \emptyset \subseteq \mathcal{P}(S)$$

$$\{\emptyset, \{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S)))$$

$$\{\emptyset, \{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S))) \iff \{\emptyset, \{\emptyset\}\} \subseteq \mathcal{P}(\mathcal{P}(S))$$

$$\{\emptyset\} \in \mathcal{P}(\mathcal{P}(S))$$

$$\emptyset \in \mathcal{P}(\mathcal{P}(S))$$

$$\iff \{\emptyset\} \subseteq \mathcal{P}(S)$$

$$\iff \emptyset \subseteq \mathcal{P}(S)$$

$$\iff \emptyset \in \mathcal{P}(S)$$

$$\{\emptyset, \{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S)))$$

$$\{\emptyset,\{\emptyset\}\} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(S))) \iff \{\emptyset,\{\emptyset\}\} \subseteq \mathcal{P}(\mathcal{P}(S))$$

$$\{\emptyset\} \in \mathcal{P}(\mathcal{P}(S))$$

$$\emptyset \in \mathcal{P}(\mathcal{P}(S))$$

$$\iff \{\emptyset\} \subseteq \mathcal{P}(S)$$

$$\iff \emptyset \subseteq \mathcal{P}(S)$$

$$\iff \emptyset \in \mathcal{P}(S)$$

$$\iff \emptyset \subseteq S$$

$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

$$x\in \mathcal{P}(A)\cap \mathcal{P}(B)$$

$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

$$x \in \mathcal{P}(A) \cap \mathcal{P}(B)$$
 $\iff x \in \mathcal{P}(A) \land x \in \mathcal{P}(B)$

$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

$$x \in \mathcal{P}(A) \cap \mathcal{P}(B)$$

$$\iff x \in \mathcal{P}(A) \land x \in \mathcal{P}(B)$$

$$\iff x \subseteq A \land x \subseteq B$$

$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

$$x \in \mathcal{P}(A) \cap \mathcal{P}(B)$$

$$\iff x \in \mathcal{P}(A) \land x \in \mathcal{P}(B)$$

$$\iff x \subseteq A \land x \subseteq B$$

$$\iff x \subseteq A \cap B$$

$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

$$x \in \mathcal{P}(A) \cap \mathcal{P}(B)$$

$$\iff x \in \mathcal{P}(A) \land x \in \mathcal{P}(B)$$

$$\iff x \subseteq A \land x \subseteq B$$

$$\iff x \subseteq A \cap B$$

$$\iff x \in \mathcal{P}(A \cap B)$$

$$\bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha}) = \mathcal{P}(\bigcap_{\alpha \in I} A_{\alpha})$$

$$\bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha}) = \mathcal{P}(\bigcap_{\alpha \in I} A_{\alpha})$$

$$x \in \bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha})$$

$$\bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha}) = \mathcal{P}(\bigcap_{\alpha \in I} A_{\alpha})$$

$$x \in \bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha})$$

$$\iff \forall \alpha \in I : x \in \mathcal{P}(A_{\alpha})$$

$$\bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha}) = \mathcal{P}(\bigcap_{\alpha \in I} A_{\alpha})$$

$$x \in \bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha})$$

$$\iff \forall \alpha \in I : x \in \mathcal{P}(A_{\alpha})$$

$$\iff \forall \alpha \in I : x \subseteq A_{\alpha}$$

$$\bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha}) = \mathcal{P}(\bigcap_{\alpha \in I} A_{\alpha})$$

$$x \in \bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha})$$

$$\iff \forall \alpha \in I : x \in \mathcal{P}(A_{\alpha})$$

$$\iff \forall \alpha \in I : x \subseteq A_{\alpha}$$

$$\iff x \subseteq \bigcap_{\alpha \in I} A_{\alpha}$$

$$\bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha}) = \mathcal{P}(\bigcap_{\alpha \in I} A_{\alpha})$$

$$x \in \bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha})$$

$$\iff \forall \alpha \in I : x \in \mathcal{P}(A_{\alpha})$$

$$\iff x \subseteq \bigcap_{\alpha \in I} A_{\alpha}$$

$$\iff x \in \mathcal{P}(\bigcap_{\alpha \in I} A_{\alpha})$$

Video:

Message To Future Generations — Bertrand Russell

Thank You!