



#### **Text Summarization**

Mentor: Mr. Narendra Kumar



Group: 4

#### Introduction

**Problem Statement & Planning** 

# Introduction Problem Statement

- Developing an automated text summarization system that can accurately and efficiently condense large bodies of text into concise summaries is essential for enhancing business operations.
- This project aims to deploy NLP techniques to create a robust text summarization tool capable of handling various types of documents across different domains.
- The system should deliver high-quality summaries that retain the core information and contextual meaning of the original text.

#### **INTENDED PLAN**



### **Background Research**

Literature Review & Findings

### **Background Research Literature Review**

| S. No 🔻 | Use-Case 🔻                                        | Paper Title                                                                     | Year | Method                                                                                          | Dataset <u></u>                                           | Results                                                                                                       | Limitations                                                                   |
|---------|---------------------------------------------------|---------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 1       | General text summarization                        | Text Summarization Using Deep Learning Techniques: A Review                     | 2023 | Deep Learning<br>(Seq2Seq, Attention,<br>Transformers)                                          | CNN/Daily Mail,<br>XSum                                   | Improved performance in capturing semantic relationships, better coherence                                    | Computationally<br>expensive, requires<br>large datasets                      |
| 2       | Implementation of the<br>Transformer architecture | Attention is all you need                                                       | 2023 | Transformer                                                                                     | WMT 2014<br>English-German,<br>WMT 2014<br>English-French | Introduced the Transformer architecture, significantly improving the performance of text summarization tasks. | Requires large<br>datasets and<br>computational<br>resources for<br>training. |
| 3       | Multi-document summarization                      | Surveying the<br>Landscape of Text<br>Summarization with<br>Deep Learning       | 2023 | Deep learning methods. Various techniques like RBMs and fuzzy logic employed for summarization. | CNN/DailyMail                                             | Incorporating transfer learning enhances summary quality and reduces data demand.                             | Complex models,<br>high computational<br>resources                            |
| 4       | Abstractive summarization                         | Pegasus: Pre-training<br>with gap-sentences for<br>abstractive<br>summarization | 2020 | Transformer (Pegasus)                                                                           | XSum,<br>CNN/DailyMail,<br>and Reddit TIFU                | Significant improvements in abstractive summarization quality                                                 | Resource-intensive                                                            |
| 5       | Extractive summarization                          | Text Summarization<br>with Pretrained<br>Encoders                               | 2019 | Intersentence<br>Transformer layers for<br>summarization                                        | CNN/Daily Mail,<br>NYT, Xsum,<br>DailyMail                | BERT-based models outperformed other approaches in abstractive summarization.                                 | High computational resources required                                         |

#### Research Selected Architecture



[2] Fig. :Transformer architecture:

#### Implementation methods:

- From Scratch
  - Build Model
    - NN
  - Initialize normalized W&B
  - Train model with extensive data
  - Hence,
    - Computationally Intensive
    - Sub-Optimal usage of resources
    - Out-of-scope
- Using Pre-trained model
  - Load Model & its parameters
  - Re-Train with specific dataset
  - Evaluate
  - Hence,
    - Innovation can be done at intended tasks
    - Optimal utilization of resources

# Proposal Workflow



Fig. : Proposed Workflow for Abstractive Text Summarization

# Proposal Workflow



Fig. : Proposed Workflow for Extractive Text Summarization

#### **Dataset**

- Merged selective dataset from
  - CNN, Daily Mail: News,
  - BillSum: Legal,
  - ArXiv : Scientific
  - Dialoguesum : Conversations.
- Completed data preprocessing
  - Removed
    - NULL records, punctation, stop-words
  - Lowercasing, lemmatization.

|       | text                                           | summary                                        |  |
|-------|------------------------------------------------|------------------------------------------------|--|
| 0     | section 1 liability business entity providing  | shield business entity civil liability relatin |  |
| 1     | section 1 short title act may cited human righ | human right information act requires certain f |  |
| 2     | section 1 short title act may cited jackie rob | jackie robinson commemorative coin act directs |  |
| 3     | section 1 nonrecognition gain rollover small b | amends internal revenue code provide temporari |  |
| 4     | section 1 short title act may cited native ame | native american energy act sec 3 amends energy |  |
|       |                                                |                                                |  |
| 62702 | person1 excuse mr green manchester arent perso | tan ling pick mr green easily recognized white |  |
| 62703 | person1 mister ewing said show conference cent | person1 person2 plan take underground together |  |
| 62704 | person1 help today person2 would like rent car | person2 rent small car 5 day help person1      |  |
| 62705 | person1 look bit unhappy today whats person2 w | person2s mom lost job person2 hope mom wont fe |  |
| 62706 | person1 mom im flying visit uncle lee family n | person1 asks person2s idea packing bag visitin |  |

62707 rows × 2 columns

| count | 62707.000000  |
|-------|---------------|
| mean  | 5211.270975   |
| std   | 7794.860686   |
| min   | 83.000000     |
| 25%   | 1275.000000   |
| 50%   | 3176.000000   |
| 75%   | 5684.500000   |
| max   | 323742.000000 |
|       |               |

Name: text, dtype: float64



| count | 62707    | . 000000 |         |
|-------|----------|----------|---------|
| mean  | 448      | .081937  |         |
| std   | 459      | .087443  |         |
| min   | 16       | . 000000 |         |
| 25%   | 154      | . 000000 |         |
| 50%   | 255      | . 000000 |         |
| 75%   | 618      | . 000000 |         |
| max   | 6014     | . 000000 |         |
| Name: | summary, | dtype:   | float64 |



<sup>\*</sup> In characters.

https://drive.google.com/drive/folders/1yH89iZmARdc-R7QY6pwfE8tbOJI n9K8?usp=sharing

# Proposal Model Training



Fig.: Fine-Tunning Overview

- Proposed implementation Two 2 Methods
  - Method 1 Native PyTorch Method
  - Method 2 Trainer Class Method

#### **Model Training (Method 1)**

- Load pre-trained transformer
  - Facebook's Bart Large
- OOP implementation of Dataset
  - Feature, Target
  - Tokenize
  - Padding, Truncate
  - Convert to Tensor
  - Pass to: DataLoader with batch size
- Training Loop
  - Adam optimizer
  - Forward pass & compute loss
  - Backward pass
  - Update params compute gradient
  - Update LR
  - Zero the gradients
  - Update total loss







Fig. : Screenshot

- Only minimal train loss of 1.3280.
  - But, produced inconsistent results.
  - Cannot be pushed into production.
- Raises the need for optimized training and eval loop for Transformer.

17-07-2024 GROUP 4

#### **Model Training (Method 2)**

- Trainer Method
- Implemented in src/bart.ipynb.
- A function was implemented for the dataset, to convert text data into model inputs and targets.
- Trainer class from transformer package was utilized for training and evaluation. Tainer is a simple but feature-complete training and eval loop for PyTorch, optimized for transformers.
- The model was trained with whole dataset for 10 epochs for 26:24:22 (HH:MM:SS) in 125420 steps.
- Training Loss = 17.4700
- Considered the performance metrics of the models trained by the forementioned methods. After the due analysis, the model trained using 'Method 2' was selected.







#### **Model Validation**

- Performance metrics ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
  - Overlap between generated summary and reference summary.
  - Best suited : evaluating 'Text Summarization' tasks.
  - Other options : BLEU.
- ROUGE-N: Measures the overlap of n-grams (contiguous sequences of n items) between the candidate summary and the reference summaries.
  - ROUGE-1:
    - Overlap of unigrams (single words).
  - ROUGE-2:
    - Overlap of bigrams (two-word sequences).
  - ROUGE-L:
    - Measures the longest common subsequence (LCS) between the candidate and reference summaries.
  - ROUGE-LSUM
    - (LCS Summary) variant of the ROUGE-L metric, specifically designed to evaluate the quality of summaries.
- Aimed to: implement custom evaluation function, using ROUGE based on model's inference.

Infosys Springboard Text-Summarization/src/evaluation.ipynb at main · MohanKrishnaGR/Infosys Springboard Text-Summarization (github.com)

Infosys Springboard Text-Summarization/src/rogue.ipynb at main · MohanKrishnaGR/Infosys Springboard Text-Summarization (github.com)





### **Comparative Analysis**

- Analysis of the transformer's performance metrics before and after Fine-Tuning.
- The transformer model shows significant improvements across all ROUGE metrics after fine-tuning.
- The most substantial gains observed in ROUGE-2 scores. (F1-score=61.32)
- This indicates that the fine-tuning process has notably enhanced the model's ability to generate more accurate and relevant summaries.
- The model is now more proficient at generating summaries that are precise, comprehensive, and contextually accurate.
- Will act as a powerful tool for a variety of Business applications that require efficient and effective text summarization.



17-07-2024 GROUP 4

# Proposal Testing





- Simple interface for the Deep Learning model, developed using Gradio.
- Gradio is an open-source
   Python package that
   allows us to quickly build a
   demo web-application
   for the trained models.
- Enables us to test and even deploy the trained model.

#### **Extractive Text Summarization**

- Rather than choosing computationally intensive deep-learning models, utilizing a rule based approach will result in optimal solution. Utilized a new-and-novel approach of combining the matrix obtained from TF-IDF and KMeans Clustering methodology.
- It is the expanded topic modeling specifically to be applied to multiple lower-level specialized entities (i.e., groups) embedded in a single document. It operates at the individual document and cluster level.
- The sentence closest to the centroid (based on Euclidean distance) is selected as the representative sentence for that cluster.
- Implementation: Preprocess text, extract features using TF-IDF, and summarize by selecting representative sentences.
- Source code for implentation & evaluation: src/Extractive\_Summarization.ipynb
- ROUGE1 (F-Measure) = 24.71



Fig.: Proposed Workflow for Extractive Text Summarization

17-07-2024 GROUP 4

### **Proposal Deployment**











# Proposal Deployment



- Implemented extractor modules for text extraction from URL, PDF, docx.
- Defined the API endpoints. (FastAPI)
  - Accepts: Text, URL, Files (PDF, docx)
  - Returns:
    - Abstractive & Extractive Summary
- Utilized 'jQuery' for a dynamic webpage.
- Containerized the entire application along with the deep-learning models.
  - Built the image & Pushed into docker hub.







- Drawback = Less computation for free-tier plan (t2.micro)
- Deployed the docker image using Azure Container Instance
- Integrated with GitHub actions CI/CD pipeline
- Advantage = 4 CPU cores for Free Trail





**GitHub Repository** 



Fig. : Screenshot of the GitHub repository.

Infosys Springboard Text-Summarization
GROUP 4

#### **Deployment - Ref. Links**



mohankrishnagr/infosys\_text-summarization - Docker Image | Docker Hub



- Text-Summarizer
  - http://text-summarizer.bqegenbyedfzhpa3.centralindia.azurecontainer.io:8000/
  - http://20.235.235.107:8000/

# Results CI/CD pipeline





Fig. : Screenshot of the CI/CD pipeline.

# Results Deployed Application



Fig. : Screenshot of the Deployed application – Text input.

# Results Deployed Application



Fig. : Screenshot of the Deployed application – PDF input.

# Results Deployed Application



Fig. : Screenshot of the Deployed application – DOCX input.

#### **Deployed Application**



Fig. : Screenshot of the Deployed application – URL input.



#### THANK YOU!!!

