МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА № 3

по дисциплине «Основы теории управления» «Частотные характеристики»

Студент	AC-21-1		Станиславчук С.М.
		подпись, дата	
Руководит	ель		
Старший п	преподаватель		Болдырихин О.В.
		подпись, дата	

Липецк 2023 г.

Цель работы и рассматриваемые вопросы

Цель работы — изучение частотных характеристик систем управления. **Задание 1.**

Частотные характеристики системы первого порядка. Создать схему системы первого порядка. На вход системы подавать гармонические сигналы единичной амплитуды и разной частоты. Производить измерения амплитуды и сдвига фазы выходного сигнала по окончании переходного процесса. По передаточной функции получить частотные характеристики, сопоставить теоретические и экспериментальные результаты. Результаты представить в виде таблицы и графиков расчетных и экспериментальных характеристик: АФЧХ, АЧХ, ФЧХ, ЛЧХ.

Задание 2.

Частотные характеристики системы второго порядка. Создать схему системы второго порядка. На вход системы подавать гармонические сигналы единичной амплитуды и разной частоты. Производить измерения амплитуды и сдвига фазы выходного сигнала по окончании переходного процесса. По передаточной функции получить частотные характеристики, сопоставить теоретические и экспериментальные результаты. Результаты представить в виде таблицы и графиков расчетных и экспериментальных характеристик: АФЧХ, АЧХ, ФЧХ, ЛЧХ.

Вариант 8:

_		-
8	$W(s) = k_{\scriptscriptstyle H} \frac{1}{\tau s + 1},$	$W(s) = \frac{\omega_0^2}{s^2 + 2\delta s + \omega_0^2},$
	$k_{\rm H}=1,5,\ \tau=0,4$	$\omega_0 = 1500, \ \delta = 1200$
_		2

Ход работы

Задание 1

На рисунке 1 представлена схема для задания 1.

Рисунок 1 – Схема для задания 1

На вход в систему подаются гармонические сигналы единичной амплитуды и

разной частоты:

$$x_1(t) = \sin \omega t$$

Передаточная функция:

$$W(s) = k_{\rm H} \frac{1}{\tau s + 1}, k_{\rm H} = 1.5; \ \tau = 0.4$$

Для фильтра нижних частот частотная передаточная функция или амплитуднофазовая частотная характеристика (АФЧХ) будет выглядеть следующим образом:

$$h(t) = L^{-1} \left\{ \frac{1}{s} * W(s) \right\} = L^{-1} \left\{ \frac{1}{s} * k_{H} \frac{1}{\tau s + 1} \right\} = \frac{k_{H}}{\tau} L^{-1} \left\{ \frac{1}{s(s + \frac{1}{\tau})} \right\} = k_{H} \left(1 - e^{-\frac{t}{\tau}} \right)$$

$$= 1,5 \left(1 - e^{-\frac{t}{0,4}} \right)$$

$$w(t) = \frac{dh(t)}{dt} = \frac{15}{4e^{5t/2}}$$

$$W(i\omega) = \int_{0}^{\infty} w(t)e^{-i\omega t} dt = \int_{0}^{\infty} \frac{15}{4e^{5t/2}} e^{-i\omega} dt = \frac{75}{50 + 2\omega^{2}} - i\frac{15\omega}{50 + 2\omega^{2}}$$

Модуль АФЧХ – амплитудная частотная характеристика (АЧХ) будет выглядеть следующим образом:

$$A(\omega) = |W(i\omega)| = \sqrt{R^2(\omega) + I^2(\omega)} = \sqrt{(\frac{75}{50 + 2\omega^2})^2 + (-\frac{15\omega}{50 + 2\omega^2})^2} = \frac{15}{2\sqrt{25 + \omega^2}}$$

Аргумент АФЧХ – фазовая частотная характеристика (ФЧХ) будет выглядеть следующим образом:

$$\varphi(\omega) = argW(i\omega) = arctg\left(\frac{\frac{15\omega}{50 + 2\omega^2}}{\frac{75}{50 + 2\omega^2}}\right) = arctg(\frac{\omega}{5})$$

Логарифмическая амплитудная частотная характеристика (ЛЧХ) будет выглядеть следующим образом:

$$L(\omega) = 20 \lg A(\omega) = 20 \lg \left(\frac{15}{2\sqrt{25 + \omega^2}}\right) = 17.5 - 10 \lg (25 + \omega^2)$$

В таблице 1 представлены измеренные и расчетные значения.

Таблица 1 - Измеренные и расчетные значения для первого задания

Частота	Измеренное	Рассчитанное	Измеренное	Рассчитанное
входного	значение	значение усиления	значение сдвига	значение сдвига
сигнала ω,	усиления	амплитуды Αр(ω)	фазы φи(ω), рад	фазы φр(ω), рад
рад/с	амплитуды			
	Аи(ω)			
6,2831853	-0.59368	-0,59291	0,0628	0,06274937
12,5663706	-5.12159	-5,12123	0,12515	0,12500844
18,8495559	-8.30094	-8,3001	0,18526	0,18630952
25,1327412	-10.6725	-10,6721	0,24635	0,2462276
31,4159265	-12.5509	-12,5504	0,30257	0,3043958
37,6991118	-14.1013	-14,1011	0,36045	0,36051516
43,9822971	-15.4205	-15,4201	0,41236	0,41435855
50,2654824	-16.567	-16,5669	0,46597	0,46576921
56,5486677	-17.5819	-17,581	0,51366	0,51465538
62,831853	-18.49	-18,4898	0,56104	0,56098212
69,1150383	-19.3135	-19,3129	0,60496	0,6047619
75,3982236	-20.0658	-20,065	0,64602	0,64604487
81,6814089	-20.7581	-20,7575	0,68505	0,68490968
87,9645942	-21.3991	-21,3989	0,72156	0,72145528

На рисунке 2 представлен график AФЧX – амплитудно-фазовой частотной характеристики.

Рисунок 2 - График АФЧХ – амплитудно-фазовой частотной характеристики

На рисунке 3 представлен график ЛЧХ – логарифмическая амплитудная частотная характеристика.

Рисунок 3 - График ЛЧХ — логарифмической амплитудной частотной характеристики

На рисунке 4 представлен график AЧX — амплитудная частотная характеристика.

Рисунок 4 - График АЧХ – амплитудная частотная характеристика

На рисунке 5 представлен график ФЧХ – фазовая частотная характеристика.

Рисунок 5 - График ФЧХ – фазовая частотная характеристика

Задание 2.

На рисунке 6 изображена схема для второго задания.

Рисунок 6 - Схема для второго задания

На вход в систему подаются гармонические сигналы единичной амплитуды и разной частоты:

$$x_1(t) = sinwt$$

Передаточная функция:

$$W(s) = \frac{w_0^2}{s^2 + 26s + w_0^2}, w_0 = 1500, 6 = 1200$$

Амплитудно-фазовая частотная характеристика (АФЧХ) будет выглядеть следующим образом:

$$W(s) = \frac{w_0^2}{(iw)^2 + 26iw + w_0^2} = \frac{w_0^2}{-w^2 + 26iw + w_0^2}$$

$$= \frac{-w_0^2(w^2 + 26iw + w_0^2)}{(w^2 - 26iw + w_0^2)(w^2 + 26iw + w_0^2)}$$

$$= \frac{-w_0^2w^2 - 2ww_0^26i + w_0^4}{w^4 - 2w^2w_0^2 + w_0^4 + 4w^26^2} =$$

$$= \frac{-w_0^2w^2 + w_0^4}{w^4 - 2w^2w_0^2 + w_0^4 + 4w^26^2} + i\frac{-2ww_0^26}{w^4 - 2w^2w_0^2 + w_0^4 + 4w^26^2} =$$

$$= \frac{-2250000w^2 + 5.0625 * 10^{12}}{w^4 - 4.5 * 10^6 * w^2 + 5.0625 * 10^{12} + 4 * 1.44 * 10^6 * w^2}$$

$$+ i\frac{-54 * 10^8w}{w^4 - 4.5 * 10^6 * w^2 + 5.0625 * 10^{12} + 1.44 * 10^6 * w^2}$$

Модуль $A\Phi 4X$ — амплитудная частотная характеристика (A4X) будет выглядеть следующим образом:

$$A(\omega) = |W(i\omega)| = \sqrt{R^2(\omega) + I^2(\omega)} = \frac{\omega_0^2}{\sqrt{\omega^4 - 2\omega^2\omega_0^2 + \omega_0^4 + 4\omega^26^2}} = \frac{2.25 * 10^6}{\sqrt{\omega^4 - 2.88 * 10^6\omega^2 + 5.0625 * 10^{12} + 4 * 1.44 * 10^6 * w^2}}$$

Аргумент АФЧХ – фазовая частотная характеристика (ФЧХ) будет выглядеть следующим образом:

$$\varphi(\omega) = argW(i\omega) = arctg \left(\frac{-2ww_0^2 6}{\frac{w^4 - 2w^2w_0^2 + w_0^4 + 4w^2 6^2}{-w_0^2 w^2 + w_0^4}} \right) =$$

$$= arctg \left(-\frac{2\omega 6}{-\omega^2 + \omega_0^2} \right) = arctg \left(-\frac{2400\omega}{-\omega^2 + 2.25 * 10^6} \right)$$

Логарифмическая амплитудная частотная характеристика (ЛЧХ) будет выглядеть следующим образом:

$$L(\omega) = 20lgA(\omega) = 20lg\left(\frac{\omega_0^2}{\sqrt{\omega^4 - 2\omega^2\omega_0^2 + \omega_0^4 + 4\omega^26^2}}\right) =$$

$$= 40 lg(\omega_0) - 10 lg(\omega^4 - 2\omega^2\omega_0^2 + \omega_0^4 + 4\omega^26^2) =$$

$$= 40 lg(1500) - 10 lg(\omega^4 - 4.5 * 10^6\omega^2 + 5.0625 * 10^{12} + 4 * 1.44 * 10^6 * w^2)$$

В таблице 2 представлены измеренные и расчетные значения.

Таблица 2 - Измеренные и расчетные значения для второго задания

Частота входного сигнала ω , рад/с	Измеренное значение усиления амплитуды $Au(ω)$	Рассчитанное значение усиления амплитуды $ Ap(\omega) $	Измеренное значение сдвига фазы ω и(ω), рад	Рассчитанное значение сдвига фазы ωp(ω), paд
0,3142	0,99999897	0,9999987507	-0,001736	-0,001746
0,6283	0,99999889	0,9999950046	-0,003486	-0,003491
0,9425	0,99999875	0,9999887593	-0,005241	-0,005236
1,2566	0,99999856	0,9999800189	-0,006971	-0,006981
1,5708	0,99999831	0,999968778	-0,008721	-0,008726
1,885	0,99999801	0,9999550393	-0,010477	-0,010472
2,1991	0,99999765	0,9999388087	-0,012206	-0,012216
2,5133	0,99999723	0,9999200762	-0,013957	-0,013962
2,8274	0,99999676	0,999898854	-0,015696	-0,015706
3,1416	0,99999624	0,9998751293	-0,017446	-0,017451
3,4558	0,99999566	0,9998489088	-0,019201	-0,019196
3,7699	0,99999502	0,9998202027	-0,0060217	-0,020940
4,0841	0,99999433	0,9997889933	-0,0065244	-0,022685
4,3982	0,99999358	0,9997553012	-0,0070269	-0,024428
4,7124	0,99999278	0,9997191056	-0,0075295	-0,026172

На рисунке 7 представлен график AФЧX – амплитудно-фазовой частотной характеристики.

Рисунок 7 - График АФЧХ

На рисунке 8 представлен график ЛЧХ – логарифмическая амплитудная частотная характеристика.

Рисунок 8 - График ЛЧХ

На рисунке 9 представлен график АЧХ – амплитудная частотная характеристика.

Рисунок 9 - График АЧХ

На рисунке 10 представлен график ФЧХ – фазовая частотная характеристика.

Рисунок 10 - График ФЧХ

Вывод:

Таким образом, при выполнении данной лабораторной работы мы установили, что при гармоническом воздействии в устойчивых системах после окончания переходного процесса выходная величина также изменяется по гармоническому закону, но с другими амплитудой и фазой, отношение амплитуд выходной и выходной величин равно модулю, сдвиг фазы равен аргументу частотной передаточной функции, АФЧХ –комплексная величина и включает мнимую и действительную часть, АЧХ показывает изменение отношения амплитуд, ФЧХ – сдвиг фазы выходной величины относительно входной в зависимости от частоты входного гармонического воздействия, ЛЧХ – представление частотного отклика линейной системы