Lecture 21: Adversarial Networks

CS109B Data Science 2

Pavlos Protopapas and Mark Glickman

How vulnerable are Neural Networks?

Uses of Neural Networks

How vulnerable are Neural Networks?

Explaining Adversarial Examples

[Goodfellow et. al '15]

- 1. Robust attacks with FGSM
- 2. Robust defense with Adversarial Training

Explaining Adversarial Examples

Some of these adversarial examples can even fool humans:

Attacking with Fast Gradient Sign Method (FGSM)

Attacking with Fast Gradient Sign Method (FGSM)

$$x + \lambda \cdot \operatorname{sign}(\nabla_{\mathbf{x}} \mathbf{L}) \Rightarrow \mathbf{x}^*$$

$$+ \mathbf{L} = \mathbf{L}$$

Defending with Adversarial Training

- 1. Generate adversarial examples
- 2. Adjust labels

Defending with Adversarial Training

- 1. Generate adversarial examples
- 2. Adjust labels

Defending with Adversarial Training

- 1. Generate adversarial examples
- 2. Adjust labels
- 3. Add them to the training set
- 4. Train new network

Attack methods post GoodFellow 2015

- FGSM [Goodfellow et. al '15]
- JSMA [Papernot et. al '16]
- C&W [Carlini + Wagner '16]
- Step-LL [Kurakin et. al '17]
- I-FGSM [Tramer et. al '18]

White box attacks

"Black Box" Attacks [Papernot et. al '17]

Examine inputs and outputs of the model

Train a model that performs the same as the black box

Train a model that performs the same as the black box

Panda
Gibbon
Ostrich

Now attack the model you just trained with "white" box attack

Use those adversarial examples to the "black" box

CleverHans

A Python library to benchmark machine learning systems' vulnerability to adversarial examples.

https://github.com/tensorflow/cleverhans

http://www.cleverhans.io/

More Defenses

Mixup:

- Mix two training examples
- Augment training set

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j$$
$$\tilde{y} = \lambda y_i + (1 - \lambda) y_j$$

Smooth decision boundaries:

 Regularize the derivatives wrt to x

Physical attacks

- Object Detection
- Adversarial Stickers

Thank you.

