VLSI SYSTEM DESIGN LAB(ECE3001)

(BY PROF.JAGANNADHA NAIDU K)

TASK-2 CMOS INVETRER AND 2INPUT NOR GATE ANALYSIS

SLOT-L23+L24

NAME:SIDDHANT AGARWAL

REGISTER NO:-17BEC0431

TASK-2A

<u>AIM</u>:TO measure the voltage transfer characteristics of CMOS inverter and measure the time delay and average power dissipation.

CIRCUIT DIAGRAM

PLOTS:

DC TRANSFER CHARACTERISTICS

PARAMETRIC ANALYSIS FOR WP

TIME DELAY

POWER CLACULATION GRAPH USING .PWR SIGNAL

FOLLOWING ARE THE OBSERVATIONS TAKEN FROM ABOVE GRAPHS

(Rising falling delay) T_{pdrf}=7.483ps

(Falling rising delay) T_{pdfr}=3.91ps

Propagation delay= $(T_{pdrf}+T_{pdfr})/2 = 5.69ps$

Average power dissipation=636.5 X10^-9

INFERENCE

We GET $V_{IN}=V_{DD}/2=V_{OUT}$

At B_n=B_p

RESULT

(Rising falling delay) T_{pdrf}=7.483ps

(Falling rising delay) T_{pdfr}=3.91ps

Propagation delay= $(T_{pdrf}+T_{pdfr})/2 = 5.69ps$

Average power dissipation=636.5 X10^-9

TASK2-B

AIM: To examine the transient characteristic of CMOS 2 input NOR gate and also to calculate the delay and average power.

CIRCUIT DIAGRAM

When both A and B are varying(tphl)

When only A is varying and B is set to 0V dc(tphl)

When A is set to 0V dc and B is varying(tplh)

When A is varying and B is set to OV(tplh)

PLOTS

FUNCTIONALITY(WHERE A AND B ARE INPUTS AND Y IS OUTPUT)

CASE1: (00 TO 11)(T_{phl})

Case1 with .pwr signal

Case2 (00->10)(T_{phl})

Case2:with .pwr signal

Case2:calculated average power

Case3 (10->00)(T_{plh})

Case3:with .pwr and average power

Case4: (10->00)(T_{plh})

Case4:with .pwr signal

Case4: calculated average power

OBSERVATION

INPUT COMBINATIONS	SIGNAL MODE	TIME DELAY	AVERAGE POWER
00->11(A->Y)	Tp->high to low	9.4ps	2.18x10^-6
00->10(A->Y)	Tp->high to low	23.3ps	1.995x10^-6
01->00(B->Y)	Tp->low to high	7.6ps	1.35x10^-6
10->00(A->Y)	Tp->low to high	11ps	1.995x10^-6

INFERENCE:

When both the inputs are varying ,the average power is higher than other inputs.

Result:

<u>Case1:</u>time delay 9.4ps average power 2.18x10^-6

Case2: time delay 23.3ps average power 1.995x10^-6

Case3: time delay 7.6ps average power 1.35x10^-6

Case4: time delay 11ps average power 1.995x10^-6