Seminario 2

Primera Ley de la termodinámica

2.1. Gases Ideales

Ecuación de estado del gas ideal

$$pV = nRT (2.1)$$

Donde:

- P: presión del gas [Pa]
- V: volumen del gas [m³]
- n: cantidad de sustancia [mol]
- $R = 8.314 \,\mathrm{J\,mol}^{-1} \,\mathrm{K}^{-1}$: constante universal de los gases
- \blacksquare T: temperatura absoluta [K]

Masa molar y moles

- \blacksquare Mol (n): cantidad de sustancia que contiene $N_A=6{,}022\times10^{23}$ partículas.
- Masa molar (M): masa de un mol de sustancia, en g/mol.
- Ejemplos:
 - $M_H = 1,008 \, \text{g/mol}$
 - $M_O = 16,00 \,\mathrm{g/mol}$
 - $M_{H_2O} = 2(1,008) + 16,00 = 18,016 \,\mathrm{g/mol}$
- Relación con la masa (m):

$$n = \frac{m}{M}$$

Problemas Resueltos

1.Un gas ideal ocupa un volumen de $V_1 = 30$ litros cuando su temperatura es $T_1 = 27$ °C y su presión es P = 2 atm. Determinar su volumen final V_2 si la temperatura disminuye a $T_2 = -13$ °C, manteniéndose constante la presión.

Datos:

$$V_1 = 30 \,\mathrm{L}, \quad T_1 = 27^{\circ} \mathrm{C} = 300 \,\mathrm{K}, \quad T_2 = -13^{\circ} \mathrm{C} = 260 \,\mathrm{K}, \quad V_2 = ?$$

Solución:

Dado que la presión se mantiene constante, se trata de un proceso **isobárico**, para el cual se aplica la Ley de Charles:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Sustituyendo los valores numéricos:

$$\frac{30}{300} = \frac{V_2}{260} \quad \Rightarrow \quad V_2 = \frac{30 \cdot 260}{300} = 26 \,\text{litros}$$

Respuesta: $V_2 = 26 \, \text{litros}$

2.Una botella de oxígeno contiene $10\,\mathrm{m}^3$ de gas a una temperatura de $0^\circ\mathrm{C}$ y a una presión de $P_1=2,73\,\mathrm{atm}$. ¿Cuál será la presión cuando el gas se calienta hasta $40^\circ\mathrm{C}$, manteniendo constante el volumen?

Datos:

$$V = \text{constante}, \quad T_1 = 0^{\circ} \text{C} = 273 \,\text{K}, \quad P_1 = 2{,}73 \,\text{atm}, \quad T_2 = 40^{\circ} \text{C} = 313 \,\text{K}, \quad P_2 = ?$$

Solución:

Como el volumen no varía, se trata de un proceso isócoro. Por tanto, se aplica la ley de Gay-Lussac:

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Sustituyendo los valores conocidos:

$$\frac{2,73}{273} = \frac{P_2}{313}$$
 \Rightarrow $P_2 = \frac{2,73 \cdot 313}{273} = 3,13 \text{ atm}$

Respuesta:
$$P_2 = 3.13 \,\mathrm{atm}$$

3.Un gas ideal con presión inicial de $p_0 = 4$ Pa se expande de manera adiabática hasta expandir su volumen hasta octuplicar su volumen $V_2 = 8V_1$. Determinar la presión final. Se da: $\gamma = \frac{4}{3}$.

Datos:

$$P_1 = 4 \,\text{Pa}, \quad V_1 = V, \quad V_2 = 8V, \quad \gamma = \frac{4}{3}, \quad P_2 = ?$$

Relación para un proceso adiabático:

$$P_1V_1^{\gamma} = P_2V_2^{\gamma}$$

Sustituimos los valores conocidos:

$$4 \cdot V^{\gamma} = P_2 \cdot (8V)^{\gamma}$$

Factorizamos V^{γ} en ambos lados:

$$4V^{\gamma} = P_2 \cdot 8^{\gamma} \cdot V^{\gamma}$$

Cancelamos V^{γ} :

$$4 = P_2 \cdot 8^{\gamma}$$

Usamos que $\gamma = \frac{4}{3}$ y $8 = 2^3$, por lo tanto:

$$8^{\gamma} = (2^3)^{4/3} = 2^4 = 16$$

Finalmente, despejamos la presión final:

$$P_2 = \frac{4}{16} = \boxed{0.25 \, \text{Pa}}$$

5. Dos litros de un gas monoatómico ideal se expanden mediante un pistón hasta alcanzar un volumen de 6 L. Si la presión se mantiene constante e igual a la presión atmosférica $P_0 = 10^5 \,\mathrm{Pa}$, ¿cuánto calor recibió el gas?

Solución:

Como el proceso es **isobárico** (presión constante), aplicamos la expresión del calor transferido en este tipo de procesos:

$$Q = nC_p \Delta T$$

Para un gas monoatómico ideal:

$$C_p = \frac{5}{2}R \quad \Rightarrow \quad Q = n\left(\frac{5}{2}R\right)\Delta T = \frac{5}{2}nR\Delta T$$

Usando la ecuación del gas ideal PV = nRT, se puede escribir:

$$nR\Delta T = P\Delta V \quad \Rightarrow \quad Q = \frac{5}{2}P\Delta V$$

Sustituyendo los datos:

$$V_1 = 2\,\mathrm{L} = 2\times 10^{-3}\,\mathrm{m}^3, \quad V_2 = 6\,\mathrm{L} = 6\times 10^{-3}\,\mathrm{m}^3, \quad P = 10^5\,\mathrm{Pa}$$

$$\Delta V = V_2 - V_1 = (6 - 2) \times 10^{-3} = 4 \times 10^{-3} \,\mathrm{m}^3$$

$$Q = \frac{5}{2} \cdot 10^5 \cdot 4 \times 10^{-3} = 2.5 \times 10^5 \cdot 4 \times 10^{-3}$$

$$Q = 1000 \,\mathrm{J}$$

Respuesta: $Q = 1000 \,\mathrm{J}$

Problema 6. Variación de la cantidad de aire respirado con la altitud

¿Cuál es el porcentaje de aire menos que se respira al ascender desde el nivel del mar $(P_{\text{atm}} = P_0, T_0 = 21^{\circ}\text{C})$ hasta la sierra, donde $T = -3^{\circ}\text{C}$ y $P = 0.9 P_0$?

Solución:

Datos:

$$T_0 = 21^{\circ}\text{C} = 294 \text{ K}, \quad T_s = -3^{\circ}\text{C} = 270 \text{ K}, \quad P_s = 0.9 P_0$$

Supuesto: El volumen de aire inspirado (capacidad torácica) se mantiene constante: V = cte. Además, se asume que el aire se comporta como un gas ideal. Aplicamos la ecuación de estado:

A nivel del mar:

$$P_0V = n_0RT_0 \tag{1}$$

En la sierra:

$$P_s V = n_s R T_s \quad \Rightarrow \quad 0.9 P_0 V = n_s R \cdot 270 \tag{2}$$

Dividiendo (1) entre (2):

$$\frac{P_0 V}{0.9 P_0 V} = \frac{n_0 R T_0}{n_s R T_s} \quad \Rightarrow \quad \frac{1}{0.9} = \frac{n_0 \cdot 294}{n_s \cdot 270}$$

Despejando n_s :

$$n_s = \frac{n_0 \cdot 0.9 \cdot 270}{294} = 0.98 \, n_0$$

Conclusión: En la sierra, una persona respira el 98% del aire que respiraría al nivel del mar. Por lo tanto, se respira un:

 $2\,\%$ menos de aire

2.2. Primera ley de la termodinámica

$$Q = \Delta U + W \tag{2.2}$$

donde: Q denota el calor , ΔU la variación de su energía interna y W el trabajo efectuado por el sistema .

Variación de la energía interna

$$\Delta U = nc_v \Delta T \tag{2.3}$$

donde: c_v calor especifíco a volumen constante.

Procesos Termodinámicos Especiales

Proceso	Condiciones	Resultados principales
Isobárico	P = cte	$W = P\Delta V$
		$\Delta U = Q - P\Delta V$
Isocórico	V = cte	W = 0
		$\Delta U = Q$
Isotérmico	T = cte (gas ideal)	$\Delta U = 0$
		$Q = W = nRT \ln \left(\frac{V_f}{V_i} \right)$
Adiabático	Q = 0	$ \Delta U = -W PV^{\gamma} = \text{cte} $
		$\gamma = \frac{C_p}{C_v}$

Problemas resueltos

1. Diez kilogramos de nitrógeno son calentados desde 20 °C hasta 150 °C, manteniendo constante la presión. Hallar, en kilocalorías:

- a) La cantidad de calor suministrado.
- b) El cambio de energía interna.
- c) El trabajo realizado.

Considere:

$$C_p = 0.25 \, \frac{\text{Kcal}}{\text{kg} \cdot {}^{\circ}\text{C}}$$
 $C_v = 0.18 \, \frac{\text{Kcal}}{\text{kg} \cdot {}^{\circ}\text{C}}$

Datos:

$$m = 10 \text{ kg}$$

$$T_1 = 20^{\circ} \text{C}$$

$$T_2 = 150^{\circ} \text{C}$$

$$C_p = 0.25 \frac{\text{Kcal}}{\text{kg} \cdot {}^{\circ} \text{C}}$$

$$C_v = 0.18 \frac{\text{Kcal}}{\text{kg} \cdot {}^{\circ} \text{C}}$$

Solución: Como se trata de un proceso isobárico:

a) Calor suministrado al sistema Q

$$Q = m \cdot C_p \cdot (T_2 - T_1)$$

$$Q = 10 \cdot 0.25 \cdot (150 - 20) = 10 \cdot 0.25 \cdot 130 = \boxed{325 \,\text{Kcal}}$$

b) Cambio en la energía interna ΔU

$$\Delta U = m \cdot C_v \cdot (T_2 - T_1)$$

$$\Delta U = 10 \cdot 0.18 \cdot (150 - 20) = 10 \cdot 0.18 \cdot 130 = 234 \text{ Kcal}$$

c) Trabajo realizado W

Usando la Primera Ley de la Termodinámica:

$$Q = \Delta U + W \Rightarrow W = Q - \Delta U$$
$$W = 325 - 234 = \boxed{91 \text{ Kcal}}$$

2.Una vasija contiene una masa $m=2\,\mathrm{kg}$ de un gas ideal no especificado. Inicialmente, el sistema se encuentra a una presión $P_1=6\,\mathrm{atm}$ y a una temperatura $T_1=27\,^\circ\mathrm{C}$. El gas es sometido a un proceso de calentamiento a volumen constante hasta alcanzar una temperatura final de $T_2=127\,^\circ\mathrm{C}$.

Se solicita determinar:

- (a) El calor total suministrado al sistema, Q, en unidades de kcal.
- (b) El trabajo realizado por el gas durante el proceso, W, en kcal.
- (c) El incremento en la energía interna, ΔU , en kcal.
- (d) La presión final del gas, P_2 , en unidades de 10^5 Pa.

Considérese el calor específico a volumen constante del gas: $C_V = 2.5 \,\mathrm{kcal \, kg^{-1} \, \circ C^{-1}}$.

Solución

Datos:

$$\begin{split} m &= 2 \, \text{kg}, \\ P_1 &= 6 \times 10^5 \, \text{Pa}, \\ T_1 &= 27 \, ^{\circ}\text{C} + 273 \, \text{K} = 300 \, \text{K}, \\ T_2 &= 127 \, ^{\circ}\text{C} + 273 \, \text{K} = 400 \, \text{K}, \\ C_V &= 2.5 \, \text{kcal} \, \text{kg}^{-1} \, ^{\circ}\text{C}^{-1}. \end{split}$$

(a) Calor suministrado al gas

Como el proceso es isócoro (a volumen constante), el calor entregado se calcula mediante:

$$Q = m \cdot C_V \cdot (T_2 - T_1)$$

Observando que el cambio de temperatura es el mismo en grados Celsius o Kelvin:

$$Q = (2\,\mathrm{kg}) \cdot \left(2.5\,\frac{\mathrm{kcal}}{\mathrm{kg}\cdot{}^{\circ}\mathrm{C}}\right) \cdot (127-27)\,{}^{\circ}\mathrm{C} = 500\,\mathrm{kcal}$$

(b) Trabajo realizado por el sistema

En un proceso isócoro, el volumen permanece constante, por lo tanto el trabajo realizado es:

$$W = 0$$

(c) Incremento de energía interna del sistema

Aplicando la primera ley de la termodinámica:

$$Q = \Delta U + W$$

Sustituyendo los valores conocidos:

$$\Delta U = Q - W = 500 \, \text{kcal} - 0 = 500 \, \text{kcal}$$

(d) Presión final del gas

Dado que el volumen es constante y se trata del mismo gas, se puede usar la ley de Gay-Lussac:

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Despejando P_2 :

$$P_2 = P_1 \cdot \frac{T_2}{T_1} = 6 \times 10^5 \,\mathrm{Pa} \cdot \frac{400}{300} = 8 \times 10^5 \,\mathrm{Pa}$$

$$P_2 = 8 \times 10^5 \, \mathrm{Pa}$$

3.Un sistema contiene una masa de $10\,\mathrm{kg}$ de gas dióxido de carbono (CO₂). El gas es sometido a un proceso isobárico durante el cual su energía interna disminuye en $650\,\mathrm{kJ}.$ Determinar el trabajo neto efectuado sobre el sistema durante dicho proceso.

Considérese:

$$C_V = 0.65 \,\mathrm{kJ \, kg^{-1} \, K^{-1}}, \qquad C_P = 0.85 \,\mathrm{kJ \, kg^{-1} \, K^{-1}}.$$

Solución Datos:

$$m = 10 \text{ kg}$$

 $\Delta U = -650 \text{ kJ}$
 $C_V = 0.65 \text{ kJ kg}^{-1} \text{ K}^{-1}$
 $C_P = 0.85 \text{ kJ kg}^{-1} \text{ K}^{-1}$

Primera ley de la termodinámica

Para un proceso isobárico, la primera ley se expresa como:

$$Q = W + \Delta U$$

Despejando el trabajo:

$$W = Q - \Delta U$$

Como el calor en un proceso isobárico se puede calcular mediante:

$$Q = mC_P \Delta T$$

entonces el trabajo se expresa como:

$$W = mC_P \Delta T - \Delta U \tag{1}$$

Cálculo de la variación de temperatura

Dado que la variación de energía interna se relaciona con la temperatura en procesos de volumen constante mediante:

$$\Delta U = mC_V \Delta T$$

despejamos:

$$\Delta T = \frac{\Delta U}{mC_V} = \frac{-650}{10 \times 0.65} = -100 \,\mathrm{K}$$
 (2)

Cálculo del trabajo efectuado

Sustituyendo la ecuación (2) en la ecuación (1):

$$W = 10 \cdot 0.85 \cdot (-100) - (-650)$$
$$W = -850 + 650$$
$$W = -200 \,\text{kJ}$$

Conclusión

$$W = -200 \,\mathrm{kJ}$$

El signo negativo indica que el trabajo fue realizado sobre el sistema.

Problemas propuestos

1. Una masa de aire de 2 kg se encuentra inicialmente a una presión de 1 bar y una temperatura de 27 °C.Primero, el gas es calentado en un proceso isocórico hasta que su presión se duplica. A continuación, se lo somete a un proceso isobárico durante el cual su volumen se duplica. Determinar el calor total transferido al sistema durante ambos procesos, en kJ.

Considere los valores siguientes:

$$C_V = 0.7 \,\mathrm{kJ \, kg^{-1} \, K^{-1}}, \qquad C_P = 1,004 \,\mathrm{kJ \, kg^{-1} \, K^{-1}}$$

2.Un recipiente rígido de volumen constante $V = 0.03 \,\mathrm{m}^3$ contiene aire a una presión inicial $P_1 = 2.87 \times 10^5 \,\mathrm{Pa}$ y una temperatura inicial $T_1 = 300 \,\mathrm{K}$. Se suministra calor al sistema hasta que la presión alcanza un valor final de $P_2 = 5.74 \times 10^5 \,\mathrm{Pa}$. Determinar el calor total añadido al gas durante el proceso.

Considere los siguientes valores:

$$\bar{R} = \frac{R}{M} = 287 \,\mathrm{J\,kg}^{-1} \,\mathrm{K}^{-1}, \qquad C_V = 0.7 \,\mathrm{kJ\,kg}^{-1} \,\mathrm{K}^{-1}$$

- **3.**En el sistema mostrado se tiene una masa de aire encerrada. El pistón es de masa despreciable y se desplaza libremente sin fricción. Se lleva a cabo un proceso en el que se suministra calor al sistema mientras se hace funcionar un ventilador en su interior. Como resultado del proceso:
 - El trabajo neto realizado por el sistema es de 20 kJ.
 - El trabajo aportado al sistema por el ventilador es de 4,8 kJ.
 - La presión exterior (atmosférica) es de 1 bar.
 - El área del pistón es de $0.5 \,\mathrm{m}^2$.

Determinar el desplazamiento del pistón (en metros) como consecuencia del proceso.

Figura 2.1: Sistema