Заметки к семинарам по методам оптимальных решений

https://github.com/bdemeshev/optimal-solution-pro зеркало: https://gitlab.com/bdemeshev/optimal-solution-pro

12 апреля 2024 г.

Содержание

1	Картинки на плоскости
2	Оптимизация на плоскости
3	Симплекс-метод
4	Двойственность
5	Решения
Хэ	штэги
Ис	точники мудрости

При везении подсказку, ответ или решение можно найти, кликнув по номеру задачи.

1. Картинки на плоскости

Линейная оболочка (linear span):

$$Span(v_1, v_2, v_3) = \{x_1v_1 + x_2v_2 + x_3v_3 \mid x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, x_3 \in \mathbb{R}\}\$$

Конус (сопе):

Cone
$$(v_1, v_2, v_3) = \{x_1v_1 + x_2v_2 + x_3v_3 \mid x_1 \ge 0, x_2 \ge 0, x_3 \ge 0\}$$

Выпуклая линейная оболочка (convex linear hull):

$$\mathrm{Hull}(v_1, v_2, v_3) = \mathrm{Convex}(v_1, v_2, v_3) = \left\{ x_1 v_1 + x_2 v_2 + x_3 v_3 \mid x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0, \sum x_i = 1 \right\}$$

- **1.1** Рассмотрим точки на плоскости, A = (0,0), B = (5,3) и C = (5,-3).
 - а) Нарисуйте точки 0.5B + 0.5C, 0.9A + 0.1B, 3B 2C.
 - б) Нарисуйте точки $\frac{1}{3}A + \frac{1}{3}B + \frac{1}{3}C$, 0.1A + 0.45B + 0.45C, 0.9A + 0.05B + 0.05C.
- **1.2** Рассмотрим точки на плоскости, A = (1, 2), B = (3, 4) и C = (5, 1).
 - а) Нарисуйте Hull(A, B), Hull(A, B, C).
 - б) Нарисуйте Cone(A), Cone(A, B), Cone(A, B, C).
 - в) Нарисуйте Span(A), Span(A, B).
 - r) Нарисуйте A + Span(B), Cone(A) + Cone(B).
 - д) Нарисуйте Hull(A, B) + Cone(C), Hull(A) + Cone(B, C), Hull(A, C) + Cone(B, C).
- **1.3** Рассмотрим точки на плоскости A = (1, 2), B = (5, 2), C = (1, 4), D = (5, 4).
 - а) Запишите E = (1,3) как выпуклую линейную комбинацию точек A, B, C и D.
 - б) Запишите F=(3,3) как выпуклую линейную комбинацию точек $A,\,B,\,C$ и D всеми возможными способами.
 - в) Можно ли записать G=(6,3) как выпуклую линейную комбинацию точек $A,\,B,\,C$ и D?
 - г) Сколькими способами можно записать H=(4,3) как выпуклую линейную комбинацию $A,\,B,\,C$ и D?
 - д) Сколькими способами можно записать I=(4,3) как выпуклую линейную комбинацию A,B и D?
 - е) Сколькими способами можно записать J=(4,2) как выпуклую линейную комбинацию A,B,C и D?
 - ж) Сколькими способами можно записать K=(4,2) как выпуклую линейную комбинацию $A,\,C$ и D?
- **1.4** а) Нарисуйте семейство прямых $ax_1 + 5x_2 = 10$ на плоскости (x_1, x_2) .
 - б) Нарисуйте семейство прямых $2x_1 + x_2 = d$ на плоскости (x_1, x_2) .

2. Оптимизация на плоскости

2.1

2.1. Оптимизация на плоскости с параметром

2.2 Решите задачу линейного программирования при всех значениях c:

$$\begin{cases} cx_1 + x_2 \to \max \\ 2x_1 + 3x_2 \leqslant 6 \\ x_1 \geqslant 0 \\ x_2 \geqslant 0 \end{cases}$$

2.3 Решите задачу линейного программирования при всех значениях a:

$$\begin{cases} x_1 + 3x_2 \to \max \\ 2x_1 + ax_2 \leqslant 6 \\ x_1 \geqslant 0 \\ x_2 \geqslant 0 \end{cases}$$

3. Симплекс-метод

Решение x системы Ax = b называется допустимым, если все $x_i \geqslant 0$. Решение x системы Ax = b называется базисным, если столбцы $\operatorname{col}_i A$ при $x_i \neq 0$ линейно независимы.

Терминология

3.1 Рассмотрим систему уравнений

$$\begin{cases} 2x_1 + 3x_2 + x_3 = 8\\ x_1 - x_2 + x_4 = 9 \end{cases}$$

Есть несколько векторов, $x_a=(0,0,0,0)$, $x_b=(0,0,8,9)$, $x_c=(1,0,6,8)$, $x_d=(1,-9,33,-1)$, $x_e=(0,-9,35,0)$.

- а) Какие векторы являются решениями системы?
- б) Какие векторы являются базисными решениями системы?
- в) Какие векторы являются допустимыми решениями при условии, что все $x_i\geqslant 0$?
- 3.2 Рассмотрим систему уравнений

$$\begin{cases} x_1 + 3x_2 + x_3 = 10 \\ 2x_1 + x_2 + x_4 = 11 \end{cases}$$

Есть несколько векторов, $x_a = (1, 2, 3, 4)$, $x_b = (0, 0, 10, 11)$, $x_c = (1, 0, 9, 9)$, $x_d = (6, -1, 7, 0)$, $x_e = (0, 11, -23, 0)$.

а) Какие векторы являются решениями системы?

- б) Какие векторы являются базисными решениями системы?
- в) Какие векторы являются допустимыми решениями при условии, что все $x_i \geqslant 0$?
- 3.3 Рассмотрим систему ограничений в канонической форме:

$$\begin{cases} 2x_1 + 5x_2 + x_3 = 8 \\ x_1 - 6x_2 + x_4 = 15 \\ -x_1 + 2x_2 + x_5 = 11 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0. \end{cases}$$

- а) Найдите хотя бы одно базисное допустимое решение системы.
- б) Найдите все базисные допустимые решения системы.
- 3.4 Рассмотрим систему ограничений в канонической форме:

$$\begin{cases} 2x_1 + 5x_2 - x_3 = 8 \\ x_1 - 6x_2 + x_4 = 15 \\ -x_1 + 2x_2 + x_5 = 11 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0, x_4 \geqslant 0, x_5 \geqslant 0. \end{cases}$$

- а) Найдите хотя бы одно базисное допустимое решение системы.
- б) Найдите все базисные допустимые решения системы.

Приятная стартовая точка

3.5 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 + x_2 \to \max \\ x_1 + 3x_2 \leqslant 9 \\ 2x_1 + x_2 \leqslant 8 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.6 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 + 2x_2 + 3x_3 \to \max \\ x_1 + x_2 + 2x_3 \leqslant 10 \\ 2x_1 + x_2 + x_3 \leqslant 5 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.

- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.7 Рассмотрим задачу линейного программирования:

$$\begin{cases} 2x_1 - 3x_2 \to \min \\ x_1 + x_2 \leqslant 10 \\ 2x_1 + x_2 \leqslant 5 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.8 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 + x_2 + x_3 \to \max \\ 2x_1 + x_2 + 3x_3 \leqslant 10 \\ x_1 - x_2 + x_3 \leqslant 6 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.9 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 - 2x_2 + 3x_3 \to \min \\ 3x_1 + 2x_2 + x_3 \leqslant 10 \\ x_1 + x_2 - x_3 \leqslant 5 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.

Поиск стартовой точки

3.10 Рассмотрим задачу линейного программирования:

$$\begin{cases} 3x_1 + x_3 \to \max \\ x_1 + 2x_2 + x_3 = 30 \\ x_1 - 2x_2 + 2x_3 = 18 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0 \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу с искусственными переменными.
- в) Найдите хотя бы одно решение задачи симплекс-методом.

Особые случаи

Пустое допустимое множество

3.11 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + x_2 \to \max \\ x_1 + x_2 \leqslant 1 \\ x_1 + x_2 \geqslant 2 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Решите задачу графически.
- б) Решите задачу симплекс-методом.

Неограниченная задача

3.12 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + x_2 \to \max \\ x_1 + x_2 \geqslant 1 \\ x_1 \geqslant x_2 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Решите задачу графически.
- б) Решите задачу симплекс-методом.

Неединственное решение

3.13 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + x_2 \to \max \\ x_1 + x_2 \leqslant 1 \\ x_1 \geqslant x_2 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Решите задачу графически.
- б) Приведите задачу к каноническому виду.
- в) Найдите хотя бы одно решение задачи симплекс-методом.
- г) Выпишите все решения задачи симплекс-методом.
- д) Выпишите все базисные допустимые решения задачи.
- е) Запишите ответ в виде выпуклой линейной оболочки.

3.14 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 - x_2 \to \min \\ x_1 + x_2 \geqslant 1 \\ x_1 \geqslant x_2 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Решите задачу графически.
- б) Приведите задачу к каноническому виду.
- в) Найдите хотя бы одно оптимальное решение задачи симплекс-методом.
- г) Выпишите все решения задачи симплекс-методом в параметрическом виде.
- д) Выпишите все базисные оптимальные решения задачи.
- е) Запишите оптимальные решения в виде суммы выпуклой линейной оболочки и конуса.

3.15 Рассмотрим симплекс-табличку

	x_1	x_2	x_3	x_4	b
x_1	1	0	-1	3	5
x_2	0	1	-2	7	6
$\min z$	0	0	0	-3	12 - z

- а) Найдите хотя бы одно оптимальное решение.
- б) Выпишите все решения в параметрическом виде.
- в) Выпишите все базисные оптимальные решения задачи.
- г) Выпишите все решения, используя выпуклую линейную оболочки и конус.

3.16 Рассмотрим симплекс-табличку

	x_1	x_2	x_3	x_4	b
x_1	1	0	-1	3	5
x_2	0	1	3	7	6
$\max z$	0	0	0	-3	16+z

- а) Найдите хотя бы одно оптимальное решение.
- б) Выпишите все решения в параметрическом виде.
- в) Выпишите все базисные оптимальные решения задачи.
- г) Выпишите все решения, используя выпуклую линейную оболочки и конус.

3.17 Рассмотрим симплекс-табличку

	x_1	x_2	x_3	x_4	b
x_1	1	0	-1	-2	5
x_2	0	1	3	-1	6
$\min z$	0	0	0	0	20 - z

а) Найдите хотя бы одно оптимальное решение.

- б) Выпишите все решения в параметрическом виде.
- в) Выпишите все базисные оптимальные решения задачи.
- г) Выпишите все решения, используя выпуклую линейную оболочки и конус.

3.18 Рассмотрим симплекс-табличку

	x_1	x_2	x_3	x_4	b
$\overline{x_1}$	1	0	2	-3	2
x_2	0	1	1	0	6
$\min z$	0	0	0	-2	5-z

- а) Найдите хотя бы одно допустимое решение.
- б) Найдите все допустимые решения.
- в) Найдите базисные допустимые решения.
- г) Найдите хотя бы одно оптимальное решение.
- д) Найдите все оптимальные решения.
- е) Найдите базисные оптимальные решения.

3.19 Рассмотрим задачу

$$\begin{cases} 2x_1 + 2x_2 + x_3 \to \max \\ x_1 + x_2 + x_3 \leqslant 10 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Найдите хотя бы одно допустимое решение.
- б) Найдите все допустимые решения.
- в) Найдите базисные допустимые решения.
- г) Найдите хотя бы одно оптимальное решение.
- д) Найдите все оптимальные решения.
- е) Найдите базисные оптимальные решения.

4. Двойственность

Двойственные задачи в стандартной форме:

$$z = c_1x_1 + c_2x_2 + c_3x_3 \rightarrow \min \qquad \leftrightarrow \qquad u = b_1y_1 + b_2y_2 \rightarrow \max$$

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \geqslant b_1 \qquad \leftrightarrow \qquad y_1 \geqslant 0$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \geqslant b_2 \qquad \leftrightarrow \qquad y_2 \geqslant 0$$

$$x_1 \geqslant 0 \qquad \leftrightarrow \qquad a_{11}y_1 + a_{21}y_2 \leqslant c_1$$

$$x_2 \geqslant 0 \qquad \leftrightarrow \qquad a_{12}y_1 + a_{22}y_2 \leqslant c_2$$

$$x_3 \geqslant 0 \qquad \leftrightarrow \qquad a_{13}y_1 + a_{23}y_2 \leqslant c_3$$

Двойственные задачи в стандартной форме с векторами:

$$z = c^T x \to \min \qquad \leftrightarrow \qquad \qquad u = b^T y \to \max$$

$$Ax \geqslant b \qquad \leftrightarrow \qquad \qquad y \geqslant 0$$

$$x \geqslant 0 \qquad \leftrightarrow \qquad \qquad A^T y \leqslant c$$

Двойственность между равенствами и переменными с произвольными значениями:

$$\begin{array}{lll} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 & \leftrightarrow & y_1 \in \mathbb{R} \\ x_2 \in \mathbb{R} & \leftrightarrow & a_{12}y_1 + a_{22}y_2 = c_2 \end{array}$$

Двойственность в оптимальной точке:

$$y_j^* \neq 0 \quad \Rightarrow \quad a_{j1}x_1^* + a_{j2}x_2^* + a_{j3}x_3^* = b_j$$

$$a_{1i}y_1^* + a_{2i}y_2^* \neq c_i \quad \Rightarrow \quad x_i^* = 0$$

4.1 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + 3x_2 + x_3 - x_4 \to \max \\ x_1 + x_2 + x_3 + x_4 \leqslant 6 \\ x_1 - x_2 + 2x_3 - 2x_4 \leqslant 10 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0, x_4 \geqslant 0 \end{cases}$$

- а) Выпишите двойственную задачу.
- б) Решите двойственную задачу.
- в) Найдите решение исходной задачи.
- 4.2 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + 3x_2 + x_3 - x_4 \to \min \\ x_1 + x_2 + x_3 + x_4 \geqslant 6 \\ x_1 - x_2 + 2x_3 - 2x_4 \geqslant 10 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0, x_4 \geqslant 0 \end{cases}$$

- а) Выпишите двойственную задачу.
- б) Решите двойственную задачу.
- в) Найдите решение исходной задачи.
- 4.3 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + 3x_2 + x_3 - x_4 \to \min \\ x_1 + x_2 + x_3 + 3x_4 \geqslant 6 \\ x_1 - x_2 + 2x_3 - 2x_4 = 10 \\ x_1 \geqslant 0, x_3 \geqslant 0, x_4 \geqslant 0 \end{cases}$$

- а) Выпишите двойственную задачу.
- б) Решите двойственную задачу.
- в) Найдите решение исходной задачи.

4.4 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + 3x_2 + x_3 - x_4 \to \min \\ x_1 + x_2 + x_3 + 3x_4 = 6 \\ x_1 - x_2 + 2x_3 - 2x_4 = 10 \\ x_1 \geqslant 0, x_3 \geqslant 0, x_4 \geqslant 0 \end{cases}$$

- а) Выпишите двойственную задачу.
- б) Решите двойственную задачу.
- в) Найдите решение исходной задачи.

5. Решения

1.1.

1.2.

1.3.

a)
$$E = 0.5A + 0B + 0.5C + 0D$$

б) Например, F = 0A + 0.5B + 0.5C + 0D = 0.5A + 0B + 0C + 0.5D = 0.25A + 0.25B + 0.25C + 0.25D. Для нахождения всех способов надо решить систему:

$$\alpha A + \beta B + \gamma C + \delta D = E\alpha + \beta + \gamma + \delta = 1$$

$$\left(\begin{array}{ccc|c}
1 & 5 & 1 & 5 & 3 \\
2 & 2 & 4 & 4 & 3 \\
1 & 1 & 1 & 1 & 1
\end{array}\right) \to \dots \to \left(\begin{array}{ccc|c}
0 & 1 & 0 & 1 & 1/2 \\
0 & 0 & 1 & 1 & 1/2 \\
1 & 0 & 0 & -1 & 0
\end{array}\right)$$

Система имеет бесконечное количество решений.

Все способы, $F = \alpha A + (0.5 - \alpha)B + (0.5 - \alpha)C + \alpha D$, где $\alpha \in [0; 0.5]$.

- в) Нельзя, так как $G \notin Hull(A, B, C, D)$.
- г) Есть ∞ способов.
- д) Есть 1 способ. Решаем систему уравнений $I=t_1A+t_2B+(1-t_1-t_2)D$. Получаем, что I=0.25A+0.25B+0.5D.
- е) Есть 1 способ, J = 0.25A + 0.75B.
- **ж**) 0

1.4.

2.1.

2.2.

2.3.

3.1.

J.1.			
вектор	решение	базисное решение	допустимое решение
$x_a = (0, 0, 0, 0)$	нет	нет	нет
$x_b = (0, 0, 8, 9)$	да	да	да
$x_c = (1, 0, 6, 8)$	да	нет	да
$x_d = (1, -9, 33, -1)$	да	нет	нет
$x_e = (0, -9, 35, 0)$	да	да	нет

	вектор	решение	базисное решение	допустимое решение
	$x_a = (1, 2, 3, 4)$	нет	нет	нет
3.2.	$x_b = (0, 0, 10, 11)$	да	да	да
	$x_c = (1, 0, 9, 9)$	да	нет	да
	$x_d = (6, -1, 7, 0)$	да	нет	нет
	$x_e = (0, 11, -23, 0)$	да	да	нет

3.3.

a)
$$x = (0, 0, 8, 15, 11)$$

б)

3.4.

а) Решение x=(0,0,-8,15,11) является базисным и не является допустимым. Подойдёт, например, x=(4,0,0,11,15).

б)

3.6.

3.7.

		x_1	x_2	x_3	x_4	b	
	x_3	1	1	1	0	10	x = (0, 0, 10, 5), x = 0
	x_4	2	1	0	1	5 '	x = (0, 0, 10, 5), z = 0.
	$\min z$	-2	3	0	0	-z	
		x_1	x_2	x_3	x_4	b	
	x_3	-1	0	1	-1	5	$m = (0.5.5.0) \sim -15$
-	x_2	2	1	0	1	5	, x = (0, 5, 5, 0), z = -15.
	$\min z$	-8	0	0	-3	-z $-$	

3.9.

		x_1	x_2	x_3	x_4	x_5	b	
5	x_4	3						a = (0, 0, 0, 10, 5), x = 0
3	x_5	1	1*	-1	0	1	5 '	x = (0, 0, 0, 10, 5), z = 0.
m	$\operatorname{in} z$	-1	2	-3	0	0	-z	
		x_1	x_2	x_3	x_4	x_5	b	
	$\overline{x_4}$	1	0	3	1	-2	0	(0.5.0.0.0)
3	x_2	1	1	-1	0	1	5	, x = (0, 5, 0, 0, 0), z = -10.

3.10.

3.11.

3.12.

 x_1	x_2	x_3	x_4	y_1	b	_
		$-1/2 \\ -1/2$,	,	,	- , неограниченна задача
_	_	1 0	_			-

3.13.

		x_1	x_2	x_3	x_4	b			
	x_1	1	0	1/2	-1/2	1/2	-	x = (1/2, 1/2, 0, 0), z = 1	
	x_2	0	1	1/2	$1/2^*$	1/2	,	w (1/2, 1/2, 0, 0), ~ 1	•
	$\max z$	0	0	-1	0	z-1			

3.14.

3.15.
$$z = 15$$

а) Например, A = (5, 6, 0, 0).

б)

$$\begin{cases} x_3 \geqslant 0 \\ x_1 = 5 + x_3 \\ x_2 = 6 + 2x_3 \\ x_4 = 0 \end{cases}$$

- B) A = (5, 6, 0, 0)
- г) $x \in A + \text{Cone}(u)$, где A = (5, 6, 0, 0), u = (1, 2, 1, 0).
- 3.16. z = -16
- а) Например, A = (5, 6, 0, 0).

б)

$$\begin{cases} x_3 \in [0; 2] \\ x_1 = 5 + x_3 \\ x_2 = 6 - x_3 \\ x_4 = 0 \end{cases}$$

- B) A = (5, 6, 0, 0), B = (7, 0, 2, 0).
- г) $x \in \text{Convex}(A, B)$, где A = (5, 6, 0, 0), B = (7, 0, 2, 0).
- **3.17.** z = 20
- а) Например, A = (5, 6, 0, 0).

б)

$$\begin{cases}
(x_3, x_4) \in S \\
S = \{(x_3, x_4) \mid x_3 \ge 0, x_4 \ge 0, 6 - 3x_3 + x_4 \ge 0\} \\
x_1 = 5 + x_3 + 2x_4 \\
x_2 = 6 - 3x_3 + x_4
\end{cases}$$

- B) A = (5, 6, 0, 0), B = (7, 0, 2, 0).
- r) $x \in \text{Convex}(A, B) + \text{Cone}(u, v)$, rge A = (5, 6, 0, 0), B = (7, 0, 2, 0), u = (2, 1, 0, 1), v = (7, 0, 1, 3).

3.18.

а) Например, A = (2, 6, 0, 0).

б) Convex(A, B, C) + Cone(u), где A = (2, 6, 0, 0), B = (0, 5, 1, 0), C = (0, 0, 6, 10/3), u = (3, 0, 0, 1).

B)
$$A = (2, 6, 0, 0), B = (0, 5, 1, 0), C = (0, 0, 6, 10/3)$$

г) Например, A = (2, 6, 0, 0).

д) Convex(A, B), где A = (2, 6, 0, 0), B = (0, 5, 1, 0)

e)
$$A = (2, 6, 0, 0), B = (0, 5, 1, 0)$$

3.19.

а) Например, A = (0, 0, 0).

б) Convex(A, B, C, D), где A = (0, 0, 0), B = (10, 0, 0), C = (0, 10, 0), D = (0, 0, 10).

B)
$$A = (0,0,0), B = (10,0,0), C = (0,10,0), D = (0,0,10).$$

г) Например, B = (10, 0, 0).

д) Convex(B, C), где B = (10, 0, 0), C = (0, 10, 0).

e) B = (10, 0, 0), C = (0, 10, 0).

4.1.

a)

$$\begin{cases} 6y_1 + 10y_2 \to \min \\ y_1 + y_2 \geqslant 1 \\ y_1 - y_2 \geqslant 3 \\ y_1 + 2y_2 \geqslant 1 \\ y_1 - 2y_2 \geqslant -1 \\ y_1 \geqslant 0, y_2 \geqslant 0 \end{cases}$$

 $6) y_1 = 3, y_2 = 0, u = 18$

B)
$$x_1 = 0, x_2 = 6, x_3 = 0, x_4 = 0, z = 18$$

4.2.

a)

$$\begin{cases} 6y_1 + 10y_2 \to \max \\ y_1 + y_2 \leqslant 1 \\ y_1 - y_2 \leqslant 3 \\ y_1 + 2y_2 \leqslant 1 \\ y_1 - 2y_2 \leqslant -1 \\ y_1 \geqslant 0, y_2 \geqslant 0 \end{cases}$$

6) $y_1 = 0, y_2 = 1/2, u = 5$

в) $x_1=0, x_2=0, x_3=5+x_4, x_4\geqslant 1/2, z=5$. Можно записать ответ в виде $x\in A+\mathrm{Cone}(u)$, где A=(0,0,5.5,0.5), u=(0,0,1,1).

4.3.

a)

$$\begin{cases} 6y_1 + 10y_2 \to \max \\ y_1 + y_2 \leqslant 1 \\ y_1 - y_2 = 3 \\ y_1 + 2y_2 \leqslant 1 \\ 3y_1 - 2y_2 \leqslant -1 \\ y_1 \geqslant 0 \end{cases}$$

б) Пустое допустимое множество.

в) Неограниченная задача.

4.4.

a)

$$\begin{cases} 6y_1 + 10y_2 \to \max \\ y_1 + y_2 \leqslant 1 \\ y_1 - y_2 = 3 \\ y_1 + 2y_2 \leqslant 1 \\ 3y_1 - 2y_2 \leqslant -1 \end{cases}$$

 $6) \ y_1 = -7, y_2 = -10, u = -142$

B) $x_1 = 0, x_2 = -42, x_3 = 0, x_4 = 16, z = -142$

Источники мудрости