第十九章 热力学第一定律和第二定律 热力学定律-自然界中居支配地位的定律

热力学第一定律的创始人

英. 1818-1889 德. 1821-1894

德. 1814-1878

热力学第二定律的创始人

徳. 1822-1888

英. 1824-1907

结构框图

学时:9

第一节 热力学基本概念

- 一、热力学系统 外界
- 二、状态参量、热力学过程
- 三、系统内能
- 四、功和热量

- 一、热力学系统 外界
 - 1.热力学系统(系统)

定义:大量粒子组成的宏观、有限的体系。

2.外界:

定义:与系统相比邻的环境。

热力学: 研究热力学系统的状态及状态变化的学科。

二、状态参量 热力学过程

1.状态参量:描述系统宏观性质的物理量。

如: p、T、V、E ...

2.热力学过程(过程): 系统状态发生变化的过程。

非静态过程:过程的各个中间状态不是平衡态

热力学过程 准静态过程:过程进行得足够缓慢,过程的 (平衡过程)各个中间状态~平衡态。 整个

过程可由一组组状态参量描述。

驰豫时间: 系统由非平衡态过渡到平衡态所经历的时间。

例: 气体自由膨胀

气体等温膨胀

驰豫时间 <10⁻⁴ s

3.相平面 相图

相平面:以状态参量为坐标变量构成的坐标平面。

相点:每个状态对应的坐标平面上的点。

相图:相点在相平面上的运动轨迹。

各平衡态 对应 相平面中的点 (相点)

各平衡过程 ——相平面中的线 (相图)

例: 等温、等压、等体过程的相图

三、系统内能

1.系统内能E

广义: 系统内所有粒子各种能量总和。

包括:分子动能、分子间相互作用势能、化学能、

原 子能、核能.....但不包括系统整体机械能。

狭义: 所有分子热运动动能和分子间相互作用势能。

热力学中的系统内能从狭义上定义

注意:系统内能与理想气体内能的区别:

实际气体
$$E = E(T,V)$$

理想气体
$$E = \frac{M}{\mu} \frac{i}{2} RT = E(T)$$

2.内能E是状态函数

内能变化 $\Delta E = E_2(T,V) - E_1(T,V)$ 只与初末状态有关,与所经过的过程无关,可以在初、末态间任选最简便的过程进行计算。

3.内能变化方式 { 热传递

四、功和热量

1. 准静态过程的体积功

$$dA = \vec{F} \cdot d\vec{l} = pSdl = pdV$$

$$A = \int_{V_1}^{V_2} p \mathrm{d}V$$

讨论:

(1) 若 $\mathrm{d}V>0$ $\mathrm{d}A>0$,系统对外界做正功。 $\mathrm{d}V<0$ $\mathrm{d}A<0$,系统对外界做负功。 $\mathrm{d}V=0$ $\mathrm{d}A=0$,系统不做功。 $(\mathrm{d}A=p\mathrm{d}V)$

(2)求A的公式对非静态过程不适用。

$$A = \int_{V_1}^{V_2} \mathrm{d}A = \int_{V_1}^{V_2} \mathbf{p} \,\mathrm{d}V$$

(3) p - V 图上过程曲线下的面积等于整个过程中系统对外所做的功的大小。 p: $S = \begin{cases} A & A > 0 \\ |A|(=-A) & A < 0 \end{cases}$

示功图: p-V图上过程曲线下的面积

$$A = \int\limits_{V_1}^{V_2} oldsymbol{p} \, \mathrm{d} V$$

箭头顺着横坐标(V)正方向:

箭头逆着横坐标(V)正方向:

dA > 0, A > 0

dA < 0, A < 0

初末状态相同的封闭过程:

若箭头顺时针方向: A>0, $A=S_{\to H\Pi \oplus}$;

若箭头逆时针方向: A<0, $A=-S_{\to H\Pi \oplus}$ 。

(4)功是过程量。

$$A = A_1 + A_2 + A_3$$

= $A_1 + A_3 - |A_2|$ >0?,=0?,<0?
注意:

功是过程量,等于曲线下面积, 过程不同,曲线下面积不同。 (可正、可负、可零)

2.热量

热量Q:系统内分子与外界分子在界面处相互碰撞,平均动能大的分子对平均动能小的分子"做功"的总和。

注意:热量不是任何形式的能量,同时热量也是过程量,并且规定:系统从外界吸热时Q>0,系统向外界放热时Q<0。

★

比热c:单位质量的物质温度升高1K时从外界吸收的热量。 热容量C:系统温度升高1K时从外界吸收的热量。 C = Mc摩尔热容量 C_{μ} : 系统内1mol物质温度升高1K时,

从外界吸收的热量。 $C_{\mu} = \mu c$

定体摩尔热容:
$$C_v = \left(\frac{\mathrm{d}Q}{\mathrm{d}T}\right)_{\mathrm{d}V=0}$$

定压摩尔热容:
$$C_p = \left(\frac{\mathrm{d}Q}{\mathrm{d}T}\right)_{\mathrm{d}p=0}$$

设系统质量为M,摩尔质量为 μ ,则温度升高 ΔT 时系统从外界吸收的热量为:

$$Q = cM\Delta T = \frac{M}{\mu}C_{\mu} \cdot \Delta T$$

*

3. A 与 Q 比较

E改变	特点	能量转换	量度
做功	与宏观位移相联系 通过非保守力做功 实现	机械 → 热运动 运动	$oldsymbol{A}$
热传递	与温差相联系 通过分子碰撞实现	热运动 → 热运动	Q

在系统状态变化过程中,A、Q、 $\triangle E$ 间数量关系—— 包含热运动和机械运动范围的能量守恒定律

—— 热力学第一定律

*

第二节 热力学第一定律及其应用

一、热力学第一定律

二、对理想气体的应用

一、热力学第一定律

1.物理表述:

涉及热运动和机械运动范围的能量转换及守恒定律。

2.数学形式:

$$Q = (E_2 - E_1) + A$$

微小过程:

$$dQ = dE + dA$$

微小量 增量 微小量

准静态微小过程: dQ=dE+pdV

理想气体准静态微小过程:
$$dQ = \frac{M}{\mu} \frac{i}{2} R dT + p dV$$

3.其它表述:

第一类永动机是不可能制成的。

第一类永动机:系统不断经历状态变化后回到初态,不消耗内能,不从外界吸热,只对外界做功的机器。

即:
$$\Delta E = 0$$

$$Q = 0$$

上式与物理表述、数学形式矛盾, 因此:

第一类永动机是不可能制成的。

设系统为理想气体, 过程为准静态过程。

$$dV=0$$
 等体过程等值过程 $dp=0$ 等压过程 $dT=0$ 等温过程

绝热过程 — dQ = 0

- 1.等体过程(dV=0 V=C)
- (1)过程方程(查理定律)

$$\frac{\boldsymbol{p}_{\scriptscriptstyle 1}}{\boldsymbol{p}_{\scriptscriptstyle 2}} = \frac{\boldsymbol{T}_{\scriptscriptstyle 1}}{\boldsymbol{T}_{\scriptscriptstyle 2}}$$

$$A = \int p dV = 0$$

$$Q = \frac{M}{\mu} C_{\nu} \Delta T$$

$$\Delta E = \frac{M}{\mu} \frac{i}{2} R \Delta T$$

$$\Delta E = Q = \frac{M}{\mu} C_{v} \Delta T$$

吸热全部用于增加内能

J注意: $\Delta E = \frac{M}{\mu} C_{\nu} \Delta T$ 适用于一切过程

(3)定体摩尔热容

由
$$\Delta E = \frac{M}{\mu} \frac{i}{2} R \Delta T = \frac{M}{\mu} C_{\nu} \Delta T$$
 得 $C_{\nu} = \frac{i}{2} R$

单原子分子理想气体: $C_v = \frac{3}{2}R = 12.5 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

刚性双原子分子理想气体: $C_V = \frac{5}{2}R = 20.8 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

- 2.等压过程(dp = 0 p = C)
- (1)过程方程 (盖.吕萨克定律)

$$\frac{\boldsymbol{V}_{_{1}}}{\boldsymbol{V}_{_{2}}} = \frac{\boldsymbol{T}_{_{1}}}{\boldsymbol{T}_{_{2}}}$$

(2)热力学第一定律的具体形式

$$A = \int_{V_1}^{V_2} p dV = p(V_2 - V_1) = \frac{M}{\mu} R\Delta T$$

$$Q = \frac{M}{\mu} C_{p} \Delta T, \qquad \Delta E = \frac{M}{\mu} C_{v} \Delta T$$

$$\therefore Q = p\Delta V + \Delta E \stackrel{\Re}{\to} \frac{M}{\mu} C_{p} \Delta T = \frac{M}{\mu} C_{v} \Delta T + \frac{M}{\mu} R \Delta T$$

(3)定压摩尔热容

$$C_{p} = C_{v} + R$$
 \mathcal{L}_{p} \mathcal{L}_{p}

$$\therefore C_{p} = \frac{i}{2}R + R = \frac{i+2}{2}R$$

$$\gamma = \frac{C_p}{C_v} = \frac{i+2}{i} > 1 \qquad 泊松比$$

单原子分子理想气体
$$C_p = \frac{5}{2}R = 20.8 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$
 $\gamma = 1.67$

刚性双原子分子理想气体 $C_p = \frac{7}{2}R = 29.1 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ $\gamma = 1.40$

(1)过程方程(玻意耳—马略特定律) $p_{\cdot}V_{\cdot}=p_{\cdot}V_{\cdot}$

(2)热力学第一定律的具体形式

$$\Delta E = 0$$

$$A = \int_{V_1}^{V_2} p dV = \int_{V_1}^{V_2} \frac{M}{\mu} RT \frac{dV}{V} = \frac{M}{\mu} RT \ln \frac{V_2}{V_1}$$
$$= p_1 V_1 \ln \frac{V_2}{V_1} = p_2 V_2 \ln \frac{p_1}{p_2}$$

 $\therefore O = A$ 吸热全部用于对外做功!

$$\frac{Q}{M} = A \\
\frac{M}{\mu} C_T \Delta T = \frac{M}{\mu} RT \ln \frac{V_2}{V_1}$$

$$\therefore C_T = \infty$$

$$\Delta T = 0$$

$$4.$$
绝热过程($dQ = 0$)

特点: dQ=0 \neq 绝热材料

快速进行(如气体自由膨胀)

$$\therefore dQ = dE + dA = 0 \qquad \therefore \frac{M}{\mu} C_v dT + p dV = 0$$

$$\mathfrak{Z}: pV = \frac{M}{\mu}RT \qquad \therefore pdV + Vdp = \frac{M}{\mu}RdT$$
$$\therefore (C_{\nu} + R)pdV + C_{\nu}Vdp = 0$$

又:
$$\gamma = \frac{C_v + R}{C_v}$$
 则: $\gamma \frac{\mathrm{d}V}{V} + \frac{\mathrm{d}p}{p} = 0$

$$pV^{r}$$
 = 恒量

$$pV^{\scriptscriptstyle \gamma}$$
 = 恒量 $p^{\scriptscriptstyle \gamma-1}T^{\scriptscriptstyle -\gamma}$ = 恒量 $V^{\scriptscriptstyle \gamma-1}T$ = 恒量

$$V^{\gamma-1}T=$$
恒量

.....绝热方程或泊松方程

注意:绝热方程只对准静态过程适用

过pV图中某点(A)作:

等温线: pV=恒量

双曲线

绝热线: $pV^{\gamma} = 恒量$

 $\gamma > 1$ 比等温线陡

微观解释:由A点 (p_A,V_A) 压缩同样体积

$$p = nkT \qquad \begin{array}{c} \text{等温} \quad \because V \downarrow \quad n \uparrow \quad p \uparrow \\ \text{绝热} \quad \because V \downarrow \quad n \uparrow \quad p \uparrow \\ V \downarrow \quad T \uparrow \quad p \uparrow \end{array} \qquad \Delta p_{\mathrm{d}Q=0} > \Delta p_{\mathrm{d}T=0}$$

$$Q = 0$$

$$\Delta E = \frac{M}{\mu} C_{v} \Delta T$$

$$A = -\Delta E = -\frac{M}{\mu} C_{v} \Delta T = -\frac{M}{\mu} \cdot \frac{i}{2} R(T_{2} - T_{1})$$

$$= \frac{i}{2}(p_{1}V_{1} - p_{2}V_{2})$$

$$= \frac{p_{1}V_{1} - p_{2}V_{2}}{\gamma - 1}$$

$$\frac{1}{\gamma - 1} = \frac{i}{2}$$

$$(4) 摩 尔 热 容 \qquad Q = \frac{M}{\mu} C_{\text{\tiny é,h}} \Delta T = 0 \qquad \therefore C_{\text{\tiny é,h}} = 0$$

5.多方过程(一般情况)

$$dQ = dE + dA$$

$$\frac{M}{\mu} C_n dT = \frac{M}{\mu} C_v dT + p dV$$

$$p dV + V d p = \frac{M}{\mu} R dT$$

$$p dV + V d T = \frac{M}{\mu} R dT$$

其中
$$n = \frac{C_n - C_p}{C_n - C_v}$$
为多方指数,取值范围: $0 \sim \infty$

由 PV^n =恒量 微分得: nPdV + VdP = 0

则:

$$n=0$$
时: $dp=0$ 等压过程

$$n \to \infty$$
时: $dV = 0$ 等体过程

$$n=1$$
时: $dT=0$ 等温过程

$$n=\gamma$$
时: $Q=0$ 绝热过程

n为其它值时,为多方过程

复习:理想气体典型过程的主要公式 P₂₄₃表19.2.2

Physics *

过程	功 A	热量 Q	摩尔热容	单	双	多
等体	0	$\frac{M}{\mu}C_{_{V}}\Delta T$	$C_V = \frac{i}{2}R$	$\frac{3}{2}R$	$\frac{5}{2}R$	3 <i>R</i>
等压	$p\Delta V$	$\frac{M}{\mu}C_p\Delta T$	$C_p = \frac{i+2}{2}R$	$\frac{5}{2}R$	$\frac{7}{2}R$	4 <i>R</i>
	$p\Delta v$		泊松比 $\gamma = \frac{i+2}{i}$	<u>5</u> 3	7 5	$\frac{4}{3}$
等温	$\frac{M}{\mu}RT\ln\frac{V_2}{V_1}$	$\frac{M}{\mu}RT\ln\frac{V_2}{V_1}$				
	$\frac{M}{\mu}RT\ln\frac{p_1}{p_2}$	$\frac{M}{\mu}RT\ln\frac{p_1}{p_2}$	$C_T o \infty$			
绝热	$-\frac{M}{\mu}C_{V}\Delta T$					
	$\frac{p_1V_1-p_2V_2}{\gamma-1}$	0	$C_{ ext{ iny a}, ext{ iny a}} o 0$			

Physics *

6.小结:

 $\Delta E, A, Q$ 的求法

$$\Delta E = \begin{cases} \frac{M}{\mu} C_v \Delta T \\ \mathring{\mathbf{g}} \\ Q - A \end{cases} A: \begin{cases} \text{ 准静态过程 } \mathring{\mathbf{g}} \\ \text{ 非静态过程 } A = Q - \Delta E \end{cases}$$

练习1 (P₂₄₄19.2.4)

理想气体的下列过程,哪些是不可能发生的?

(1) 等体加热,内能减少,压强升高

(2) 等温压缩,压强升高,同时吸热

(3) 等压压缩,内能增加,同时吸热

(4) 绝热压缩,压强升高,内能增加

练习2(P₂₄₄例2)

理想气体自由膨胀,去掉隔板实现平衡后压强 p=?

解法1: 由绝热方程得:

$$p_{\scriptscriptstyle 0}(\frac{V}{2})^{\scriptscriptstyle \gamma}=pV^{\scriptscriptstyle \gamma}$$

$$p = \frac{p_0}{2^r}$$

解法2: 绝热过程
$$Q=0$$
 自由膨胀 $A=0$

$$\Delta E = 0 \quad \Delta T = 0 \quad T_{2} = T_{1}$$

$$(\vec{q} \vec{m} \vec{r}) + (\vec{r}) + (\vec{r})$$

$$\therefore p_0 \frac{V}{2} = pV \qquad p = \frac{p_0}{2}$$

注意:*绝热方程对非静态过程不适用。

* 理想气体自由膨胀为:绝热、非静态、初末态温度相等的过程。

练习3

绝热容器内被一隔板分成相等的两部分,左边充满理想气体 (内能 E_1 , 温度 T_1 , 分子平均碰撞频率 $\overline{Z_1}$, 平均速率 $\overline{V_1}$), 右边为真空。把隔板抽出,气体将充满整个容器,当气体达到平衡时,

气体的内能为: E_1

分子平均碰撞频率为: $\overline{z}_{1}/2$

答案:
$$E = \frac{M}{\mu} \frac{i}{2} RT = \frac{M}{\mu} \frac{i}{2} RT_1 = E_1$$
 $\bar{v} = \sqrt{\frac{8RT}{\pi\mu}} = \sqrt{\frac{8RT_1}{\pi\mu}} = \bar{v}_1$

$$\bar{z} = \sqrt{2}\pi d^2 n \, \bar{v} = \sqrt{2}\pi d^2 \frac{n_1}{2} \, \bar{v}_1 = \frac{\bar{z}_1}{2}$$