DI/PPGI/UFES

3º Exercício Computacional de Algoritmos Numéricos I - 19/2 Interpolação Polinomial usando o Octave

Objetivos

• Observar o comportamento da interpolação polinomial

Comandos importantes - nível inicial:

• p = polyfit(x,y,n) – calcula o polinômio de ordem n da tabela de pontos (x_i, y_i) , sendo que x e y devem ter tamanho n+1.

p é um vetor contendo os coeficientes de $p_n(x) = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0$, ou seja, $p = [a_n \dots a_2 \ a_1 \ a_0]$

- polyout(p, "x") mostra o polinômio no formato $p = a_p x^p + a_{p-1} x^{p-1} + \dots + a_1 x + a_0$.
- x = linspace (x_a, x_b, tam) , gera um vetor x com $x_1 = x_a$, $x_{tam} = x_b$ e tam componentes igualmente espaçadas.
- y = polyval(p,x) calcula o valor do polinômio p em todas as componentes de x, gerando o vetor y.

Comandos importantes - nível intermediário:

• yf = interp1 (xp, yp, xf, opts) – interpola a tabela de pontos (xp,yp) pelo método "opts", gerando os valores do polinômio yf nos pontos xf (geralmente o tamanho de xf é maior que o tamanho de xp). O método default é a interpolação linear por partes. Exemplos de métodos de interpolação:

opts = "linear"— interpolação linear por partes.

opts = "cubic" - interpolação cúbica por partes.

opts = "spline" - interpolação cúbica por partes com uma suavidade especial

Resolva os exercícios a seguir:

1. Obtenha uma sequência de polinômios de interpolação de grau n=1,2,3,4,5,6 para a função

$$f(x) = 1./(x+10) + x.^3 + x.^2 - 3$$

tabelada no intervalo [-1,1]. (Dica: é necessário definir tabela de pontos para cada n). O que você pode dizer do erro cometido para cada ordem do polinômio interpolador?

2. A tabela abaixo relaciona o peso (y_i) de embriões de frangos desidratados em (gramas) com a sua idade xi em (dias).

	6										
y_i	0.029	0.052	0.079	0.125	0.181	0.261	0.425	0.738	1.130	1.882	2.812

- (a) Fazendo uma escolha adequado dos pontos de interpolação, obtenha o polinômio interpolador de grau n = 4, 6, 8.
- (b) Em um mesmo sistema de eixos (x, y) plotar os gráficos dos polinômios e os pontos tabelados. (IMPORTANTE: para plotar os polinômios considere um quantidade maior de pontos do que aqueles tabelados)
- (c) Para cada polinômio estime o peso do embrião em 8.5 dias.

- (d) Estime o dia em que o embrião estará com 0.3 gramas, considerando uma aproximação de ordem n=6.
- 3. interpolar a função y = sin(2 * pi * x/5) no intervalo [0, 10] usando diferentes métodos disponíveis no Octave: linear, spline, cubic.
- 4. Considere a função

$$f(x) = \frac{1.}{1 + 25x.^2}$$

no intervalo [-5, 5].

- (a) Construa o polinômio interpolador para n = 3, 5, 10.
- (b) Plote o gráfico da função e dos polinômios encontrados. (IMPORTANTE: para plotar os polinômios considere um quantidade maior de pontos do que aqueles tabelados)
- (c) Faça uma busca na internet para o termo "Fenômeno de Runge" e disuta os resultados.
- (d) Considere a função interp1 para aproximar a função por polinômios. Podemos obter resultados melhoresconsiderando diferentes tipos de interpolação?

Relatório

Escreva um relatório suscinto com suas conclusões sobre os objetivos listados acima. Entregar uma cópia em pdf (nome do arquivo AN192-EXE3-<nome1>) via email (luciac@inf.ufes.br) até 24/09/2019. O título do email deve ser AN192-EXE3-<nome1>.