

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

Question Number	Scheme					
1 (a)	$2\times36=$	$72 8 \times 4 = 32$	M1 A1			
			(2)			
(b)	$[13] + \frac{(26)^{-1}}{2}$	$\frac{04-184)}{120} \times 2 \qquad \qquad \boxed{[13] + \frac{(204.5-184)}{120}} \times 2$	M1			
		$=\frac{40}{3}$ = awrt 13.3	A1			
			(2)			
(c)	Symmetr	rically distributed/No skew as the mean ≈ median	B1 (1)			
	22	120	(1)			
(d)	•	$+\frac{120}{2}[=220]$	M1			
	'220' × '		M1			
	$\frac{365}{1258}$ or	awrt 0.29 awrt 0.29	A1			
			(3)			
		Notes	Total 8			
(a)	M1 For any equivalent method to find either frequency Maybe implied by either correct frequency Also maybe implied by two frequencies which add to 104 Also maybe implied by a correct scale on the fd axis, at least 3 labels					
	A1	For 72 and 32				
(b)	For any equivalent method to find the median e.g. $\frac{Q_2 - 13}{15 - 13} = \frac{204 - 184}{304 - 184} \text{ or } \frac{15 - Q_2}{Q_2 - 13} = \frac{304 - 204}{204 - 184}$ allow working downwards [15] $-\frac{(304 - 204)}{120} \times 2$					
	A1	awrt 13.3				
(c)	For a correct identification of skew [which must either be symmetric/no skew or (slight) negative skew] with a correct supporting reason. Condone mean < median so negative skew Allow use of 'their median' in the comparison provided 'their median' 13.2 Allow Q ₁ = awrt 10.8 or awrt 10.9 and Q ₃ = awrt 15.1 and Q ₂ - Q ₁ > Q ₃ - Q ₂ so negative skew. Comments referring only to the diagram (being symmetrical therefore no skew) send to review					
(d)	M1	For a correct method to find the number of plants between 8cm and 14cm (may be sight of 220)				
	M1	For $\frac{n}{408} \times \frac{n-1}{407}$ or $\left(\frac{n}{408}\right)^2$ with 210 ,, n ,, 230				
	A1	awrt 0.29 may see $\frac{3025}{10404}$ from $\left(\frac{220}{408}\right)^2$				

Question Number	Scheme					
2 (a)(i)	Mean = 71.83 awrt 71.8					
(ii)	Standard deviation = $\sqrt{\frac{62802}{12} - \left(\frac{862}{12}\right)^2}$ or variance = $\frac{62802}{12} - \left(\frac{862}{12}\right)^2$					
	√73.47	= 8.571 8.57 * (to 3s.f.)	A1*			
				(3)		
(b)		$2 - \frac{862^2}{12} \left[= \frac{2645}{3} = 881.66 \right]$	M1			
	$r = \frac{1}{\sqrt{413}}$	512.67 .67×'881.66'	M1			
	= 0.8489		A1			
				(3)		
(c)	Mean =	$\frac{5}{9} \times ('71.8' - 32)$	M1			
	= 22.11	awrt 22.1	A1ft			
	Standard	deviation = $\frac{5}{9} \times 8.57$	M1			
	= 4.76	awrt 4.76	A1			
				(4)		
(d)	r = '0.8	3489' / same (as for x and y)	M1			
	r not affe	ected by (linear) coding oe	A1			
		N	TD 4	(2)		
(a)(i)	B1	Notes awrt 71.8 Allow $\frac{431}{6}$ oe	Total	112		
(a)(i)	DI	A correct method to find the standard deviation or the variance $\frac{1}{6}$ ft their mean for M	1 only			
(ii)	M1	Also allow s.d. = $\sqrt{\frac{S_{xx}}{n}}$	omy			
	Must see at least one simplification of working and the given answer 8.57. e.g. $\sqrt{73.47}$ or 8.572 or 8.571 or $\frac{23\sqrt{5}}{6}$ or $\sqrt{\frac{2645}{36}}$ therefore s.d. = 8.57* (to 3s.f.) A1* $\sqrt{\frac{62802}{12}}_{-71.8^2} \text{ scores M1A0 (use of 71.8 or 71.83 always scores M1A0).}$ To get required accuracy must see at least 71.833 used i.e. $\sqrt{\frac{62802}{12}}_{-71.833^2}$					
(b)	M1	A correct method to find S_{xx} (implied by awrt 882)				
	M1	A correct method to find PMCC using their value of S_{xx}				
	A1	awrt 0.849				
(c)	M1	A correct method to find the mean ft their mean in part (a)				
	A1ft	awrt 22.1 ft their mean in part (a)				
	M1	A correct method to find the standard deviation (do not isw if any further calculation is done after multiplying by $\frac{5}{9}$)				
	A1	awrt 4.76				
(d)	M1	r = their part (b) provided -1,, their part (b),, 1 allow 2 s.f. on the ft				
	A1 Any correct reasoning but M1 must be scored. Allow e.g. 'addition/subtraction and multiplication/division does not affect r',					

Question Number		Scheme	Marks		
3 (a)	$1-p$, $\frac{7}{8}$ and $\frac{9}{10}$ in the correct place on tree diagram				
			(1)		
(b)	$\frac{1}{8}p + \frac{1}{10}$	(1-p) = 0.11	M1 A1ft		
	$p = \frac{2}{5}$		A1		
			(3)		
(c)	$\frac{2}{5} \times \frac{1}{8} =$	$\frac{1}{20}$	M1 A1ft		
			(2)		
(d)	$P(Y12 R) = \frac{\frac{2}{5} \times \frac{7}{8}}{1 - 0.11} \text{ or } P(Y12 R) = \frac{\frac{2}{5} \times \frac{7}{8}}{\frac{2}{5} \times \frac{7}{8} + \frac{3}{5} \times \frac{9}{10}}$				
	$=\frac{35}{89}$		A1		
			(2)		
		Notes	Total 8		
(a)	B1	For a fully correct tree diagram with all 3 correct labels. Allow if $1-p$ is seen and crossed out/replaced with a numerical probability.			
(b)	M1	For $\frac{1}{8}p$ or $\frac{1}{10}$ ' $(1-p)$ ' seen in an equation for p			
	A1ft	For a fully correct equation in p or correct ft equation based on their tree diagram			
	A1	oe correct answer scores 3 out of 3			
(c)	M1	For $p \times \frac{1}{8}$ ft their p, provided p is a probability			
	A1ft	For a correct answer ft their <i>p</i> , provided <i>p</i> is a probability. Correct answer scores 2 out of 2			
(d)	M1	For a correct ratio of probabilities. Can ft their <i>p</i> , provided <i>p</i> is a probability			
	A1	For $\frac{35}{89}$ (Allow awrt 0.393)			

Question Number		Scheme	Marks			
4 (a)	LQ = 28 or UQ = 48					
	'48'+1.5('48'-'28')[=78]					
		so, 90 is an outlier*	A1*			
	707 70		(3)			
(b)	$b = \frac{1733}{1667}$	$\frac{5.6}{7.6}$ [=1.04]	M1			
	a = 38.2 - b'(42.2)[= -5.72]					
		2+1.04 f *	M1 A1*			
			(3)			
(c)	For ever	ry extra mark (oe) in French/f, Spanish/s goes up (oe) by [on average] 1.04	B1			
			(1)			
(d) (i)		$5.72 + 1.04 \times 55 = 51.48$ awrt 51.5	M1 A1			
(ii)	s = -5	$5.72 + 1.04 \times 18 = 13$	A1			
			(3)			
(e)	 The first estimate is an interpolation/The second estimate is an extrapolation 55 is within the range of data/18 is not within the range of data 55 is closer to the mean/18 is further away from the mean 					
	so 51.5 is the more reliable estimate					
		Notes	(2) Total 12			
(a)	B1	For either LQ or UQ correct (may be seen in calculation for M1)	10tal 12			
(u)	M1	Correct use of $Q_3 + 1.5 \times (Q_3 - Q_1)$ ft their LQ and their UQ provided their UQ > the	heir LO			
	A1*	For both LQ and UQ correct and identifying 90>78 or 90 is an outlier Answer is given so no incorrect working can be seen				
(b)	M1	For a correct method to find the gradient				
	M1					
	A1*	Cao (dep on both M marks) must see printed answer $s = -5.72 + 1.04 f$				
()		For a correct numerical interpretation of the gradient in context which must include	marks at			
(c)	B1	least once				
(d) (i)	M1	For a correct substitution into the regression equation. May be seen in (i) or (ii) or implied by one correct answer				
	A1	awrt 51.5 Allow 51 or 52				
(ii)	A1	13 or awrt 13.0				
(e)	For any equivalent correct reason Ignore extraneous non-contradictory comments For the second bullet point must be clear that they are referring to French marks (24,, f,, 68). Do not allow comments that refer to the range of Spanish marks e.g. "51.5' is within the range of data/13' is not within the range of data'					
<u> </u>		Do not allow '55 is closer to the median (than 18)'				
	A1	For clearly identifying the estimate from part (d)(i): 51.5 or 55 or (i) or 'the first esti	mata, ata			

Question Number		Scheme					
5 (a)	$P(X < 38.8) = P\left(Z < \frac{38.8 - 40}{4}\right) \left[= P\left((Z < -0.3)\right)\right]$ $= 1 - 0.6179 = 0.3821*$						
			(2)				
(b)	P(Qualit	$f(y) = 1 - (0.3821)^3 \text{ or } 1 - 0.3821 + 0.3821 \times (1 - 0.3821) + 0.3821^2 \times (1 - 0.3821)$	M1				
		[=0.9442]					
	$P(X > 44) = P\left(Z > \frac{44 - 40}{4}\right) [= P((Z > 1))]$						
	[=1-0.8413]=0.1587						
	$P(X > 44 \text{ on 2nd attempt} Qualify}) = \frac{0.3821 \times '0.1587'}{'0.9442'}$						
	0.06422 awrt 0.0642						
		Notes	Total 7				
(a)	M1	For standardising using 38.8, 40 and 4 (allow ±)					
	A1*	Must see $1 - 0.6179$ or we must see 0.38209 or 0.38208 or better					
		Answer is given so no incorrect working can be seen (but condone poor probability r	notation)				
(b)	(b) M1 For a correct method to find the probability of qualifying M1 For standardising using 44, 40 and 4 (implied by 1 – 0.8413 or awrt 0.1587)						
	A1	awrt 0.16					
	M1 For a correct ratio of probabilities ft their 0.1587 and their 0.9442. Use of 0.6179 in the denominator is M0						
	A1	awrt 0.0642					

Question Number		Scheme				
6 (a)	P(B A) =					
	$0.3 = \frac{P}{}$	$\frac{(B \cap A)}{x} \Rightarrow P(B \cap A) = 0$	0.3x	M1		
	$P(A \cup B)$	$P(A) = P(A) + P(B) - P(A \cap B)$	1	M1		
	0.65 = x	$+ y - 0.3x \Longrightarrow 0.65 = 0.7x + y$,			
	14x + 20	0y = 13*		A1*		
	D/D C	W D(D) D(C) D(D	0. 0	(3)		
(b)(i)		$P(B) = P(B) + P(C)$ or $P(B \cap B)$	$\Delta C = 0$	M1		
	$0.85 = \frac{1}{2}$	x+2y		A1		
(ii)	Attempt	to solve the 2 equations sim	ultaneously	M1		
	x = 0.5	y = 0.3		A1		
			I	(4)		
	P(B A) = 0.3 and		$P(A) \times P(B) = '0.5' \times '0.3'$ and			
(c)	$P(B A) = 0.3$ and $P(A \cap B) = 0.3 \times '0.5'$ or $P(A \cap B) = '0.5' + '0.3' - 0.65$			M1		
		A1ft				
	So, A and B are statistically independent					
			Notes	(2) Total 9		
(a)	Use of $P(B A) = \frac{P(B \cap A)}{P(A)}$ assuming independence is M0 e.g. $P(B \cap A) = P(B) \times P(A)$					
		a = 0.3x (may be seen on a Venn diagram)				
			$P(B) - P(A \cap B)$ with substitution of $P(A \cup B)$, $P(A \cap B)$) and $P(B)$		
	M1	(the equation may be seen in a Venn diagram) 0.65 = x + y - 0.3x implies M1M1				
	A1*	Answer is given so no incorrect working can be seen				
(b)(i)	(b)(i) Use of $P(B \cup C) = P(B) + P(C)$ or sight of $P(B \cap C) = 0$					
	A1	Any correct second equation in <i>x</i> and <i>y</i> which need not be simplified.				
(ii)	M1	method to eliminate x or y				
	A1	For $x = 0.5$ and $y = 0.3$				
	For finding all of the probabilities needed for a test for independence (probabilities r labelled) ft their values of x and y					
		M1 $P(B A)$ and $P(B)$ or $P(A), P(B)$ and $P(A \cap B)$				
(c)	M1		•			
(c)	M1	P(B A) and $P(B)$ or $P(A A)$	•			

Question Number	Scheme					Marks	
	$\frac{k+4}{8} = 1 [k=4*]$						B1*
	_						(1)
(b)	$\mathbf{P}(X=x)$	$\begin{array}{c c} & 1 \\ \hline x) & \frac{1}{13} \end{array}$	$\frac{2}{\frac{7}{26} - \frac{1}{13}} = \frac{5}{26}$	$\frac{15}{26} - \frac{7}{26} = \frac{4}{13}$	$\frac{4}{1 - \frac{15}{26}} = \frac{11}{26}$		M1 M1 A1
(a)	4						(3) B1ft
(c)	4						
							(1)
(d)	$E(X) = 1 \times \cdot$	$\frac{1}{13} + 2 \times \frac{5}{26} + 3 \times \frac{4}{13}$	$\frac{11}{26} = \frac{40}{13}$	Y $P(Y = y)$	$ \begin{array}{c cccc} 7 & 20 \\ \hline & 5 \\ \hline & 26 \\ \end{array} $	$ \begin{array}{c cccc} & 33 & 46 \\ \hline & 4 & 11 \\ \hline & 13 & 26 \\ \end{array} $	M1
	$E(X^2) = 1^2$	$\times \frac{1}{13} + 2^2 \times \frac{5}{26} + 3^2 \times \frac{1}{26} \times \frac{1}{2$	$\frac{4}{13} + 4^2 \times \frac{11}{26} = \frac{13}{13}$	$E(Y) = 7 \times \frac{1}{13} + \frac{1}{13}$	$20 \times \frac{5}{26} + 33 \times \frac{4}{13}$	$\frac{1}{3}$ '+ 46×' $\frac{11}{26}$ '[= 34]	M1
	$Var(X) = \frac{135}{13} - \left(\frac{40}{13}\right)^2 \left[= \frac{155}{169} \right]$ $E(Y^2) = 7^2 \times \frac{1}{13} + 20^2 \times \frac{5}{26} + 33^2 \times \frac{4}{13} + 46^2 \times \frac{11}{26} = 1311$						M1
	Var(13 <i>X</i>	$-6) = 13^2 \times '\frac{155}{169}$	<u>5</u> .	Var(13X - 6)	5) = '1311'- '34	1' ²	M1
			= 155	5			A1
			N.	otes			(5) Total 10
(a)	B1*	$\frac{k+4}{8} = 1 \text{ oe}$	Allow verification		1 provided they	y conclude $k = 4$	Total To
(b)	M1	For a correct met	hod to find one pro				
(0)			one correct probabine to find a secon			r - A	
	M1	(implied by any t	wo correct probabi	lities from $x = 2$,			
	A1	For a fully correct probability distribution.					
(a)	Need not be in a table, but 1, 2, 3 and 4 must be associated with correct probability Must be consistent with the highest probability in their distribution in part (b)						
(c)	If no distribution is found, then the answer must be 4						
(d)	For a correct method to find E(X) (implied by awrt 3.08) ft their table use of $\sum xF(x)$ is M0 or for a correct probability distribution for $13X - 6$ ft their probabilities in (b)						() IS MU
	M1	For a correct met	hod to find $E(X^2)$ (sethod to find $E(Y)$	(implied by awrt 1	•		(x) is M0
	M1		$E(X)^2$ ft their $E(X)$		or		
	1411		nod to find $E(Y^2)$ f	t their table			
	M1	Use of $13^2 \text{Var}(X)$		(12) · · · · · · · · · · · · · · · · · · ·			
			$-E(Y)^2$ ft their $E(Y)$	(Y^2) and their $E(Y)$			
	A1	Cao					

Question Number		Sc	heme		Marks	
	P(X > X)	(u+2k)=0.2	or	$P(X < \mu - 2k) = 0.2$		
8 (a)		$<\mu+2k$) = 0.8	or	$P(X > \mu - 2k) = 0.8$	M1	
	$\frac{\mu+2k-6}{6}$	$\frac{\mu}{}$ = 0.8416	or	$\frac{\mu - 2k - \mu}{6} = -0.8416$	M1 A1	
	k = 2.52	48		av	wrt 2.52 A1	
					(4)	
(b)	$P\left(Y > \frac{3}{2}A\right)$	$u \Rightarrow P \left(Z > \frac{\frac{3}{2}\mu - \mu}{\sigma} \right)$	$\Rightarrow P\left(Z > \frac{\frac{1}{2}\mu}{\sigma}\right)$		M1	
	$\mu = \frac{3}{2}\sigma^2 =$ or	$\Rightarrow P\left(Z > \frac{\frac{1}{2}\left(\frac{3}{2}\sigma^2\right)}{\sigma}\right)$	$\left[= P\left(Z > \frac{3}{4}\sigma\right) \right]$			
	$\sigma = \sqrt{\frac{2\mu}{3}}$	$\Rightarrow P\left(Z > \frac{\frac{1}{2}\mu}{\sqrt{\frac{2\mu}{3}}}\right) = \left[P\right]$	$\left(Z > \frac{1}{2}\sqrt{\frac{3\mu}{2}}\right)$		M1	
	σ	k and $2\mu = 3\sigma^2$ $5 \text{ or } \frac{1}{2}\sqrt{\frac{3\mu}{2}} = 1.5 \text{ or}$	2 2		241	
	$\frac{1}{4}\sigma'=1.$	5 or $\frac{1}{2}\sqrt{\frac{1}{2}} = 1.5$ or	$3\sigma^2 = 6\sigma$		M1	
	$\mu = 6$ onl	y, $\sigma = 2$ only			A1 A1	
					(5)	
		D 0.1	Notes		Total 9	
(a)	M1	Also may be implied l		tements which may be seen on a dia	agram	
				etting = to z value, where $0.8 < z <$: 0.9	
	M1					
	A1	For a fully correct star	ndardisation with	a compatible z value. $ z $ must be 0	.8416 or better	
	A1	awrt 2.52 (Allow 2.52	5) Answer only	2.52 is M1M1A0A1 Answer only 2	2.5248 is M1M1A1A1	
(b)	M1	For standardising usin	$\frac{3}{2}\mu$, μ and σ			
	M1	For substitution of μ	$=\frac{3}{2}\sigma^2$ into their	standardisation or setting up two ec	quations in μ and σ	
	M1	For their expression for	or σ only or μ	only used with ±1.5		
	A1	$\mu = 6 \text{ or } \sigma = 2$				
	A1	$\mu = 6$ and $\sigma = 2$ mu	st reject any other	er values if found		