MATH3802 Chapter 4: Model fitting

with thanks to Stuart Barber for previous years' slides and notes Peter Thwaites

March 2017

MATH3802 Chapter 4: Model fitting

L-4.1 Model selection

4.1 Model selection

- How to choose between AR, MA, ARMA, and ARIMA?
- We know

ρ_k	$ ho_k=0$ $\forall k>q$	$\rho_{k} = \alpha_{1}\rho_{k-1} + \dots + \alpha_{p}\rho_{k-p}$	$ARMA(p,q) \mid As \ for \ AR(p)$, except for the first q values
Model	MA(q)	AR(p)	ARMA(p, q)

- This makes it easy to identify MA(q).
- How to spot AR(p)?

 $-\cdots - \alpha_p y^p$. Then for AR(p), **Lemma 4.1** Let y_1,\ldots,y_p be the roots of $lpha(y) = 1 - lpha_1 y$.

$$\rho_k = \sum_{j=1}^p \frac{c_j}{y_j^k},\tag{1}$$

for suitable constants c_1, \ldots, c_p .

How to recognise solutions to (1)?

MATH3802 Chapter 4: Model fitting

L4.1 Model selection

We have

$$o_k = \sum_{j=1}^p \frac{c_j}{y_j^k}.$$
 (1)

 $AR(1) \rho_k = \alpha^k$. Hence

exponential decay $(\alpha > 0)$ or exponential decay with alternating signs $(\alpha < 0)$.

AR(p), p>1 Damped oscillations with

$$\rho_k = c^k \cos(\phi k).$$

for some constants $\phi, c, |c| < 1$.

ARIMA(p,d,q) Here, ρ_k decays very slowly; difference until ρ_k indicates AR, MA, or ARMA.

Partial autocorrelation

Definition 4.1 (Partial autocorrelation) For $k=1,2,\ldots$, use the Yule-Walker equations to fit an AR(k) model (using ρ_1,\ldots,ρ_k), obtaining coefficients $\alpha_{k1},\ldots,\alpha_{kk}$. Then α_{kk} is called the *lag-k* partial autocorrelation (pacf) of $\{X_t\}$.

One can show that the pacf satisfies

Model α_{kk}

AR(p) cut off after lag p

 $\mathsf{MA}(q)$, $\mathsf{ARMA}(p,q)$ exponential decay / damped oscillations

MATH3802 Chapter 4: Model fitting L4.1 Model selection

Results

• if X_1,\ldots,X_n is MA(q), then for k>q

$$\widehat{
ho}_k \sim N\left(0, \frac{1}{n}\left[1+2\sum_{j=1}^q \widehat{
ho}_j^2
ight]
ight).$$

• If X_1, \ldots, X_n is $\mathsf{AR}(p)$, then for k > p

$$\widehat{lpha}_{kk} \sim N\left(0, \frac{1}{n}\right).$$

Run the R script sim.arima.R, available in the VLE

4.2 Parameter estimation

So far, we have assumed our stationary processes are zero mean.

We can cope with a non-zero mean μ for $\{X_t\}$ by modelling $Y_t=X_t-\mu$. For example, our AR(1) model becomes

$$X_t - \mu = \alpha(X_{t-1} - \mu) + \varepsilon_t$$

$$t=1,2,\ldots,n.$$

We estimate μ by $\widehat{\mu}=n^{-1}\sum_{t=1}^n X_t$, subtract $\widehat{\mu}$ from the observations to estimate $\{Y_t\}$ and proceed with fitting a model to the $\{Y_t\}$.

MATH3802 Chapter 4: Model fitting

L4.2 Parameter estimation

Method of moments

Choose parameters such that the means and correlations for model and sample coincide. For $\mathsf{AR}(p)$ models, this gives the Yule-Walker

Example 4.1 (AR(1)) From the YW equations, $\widehat{lpha}_1=\widehat{
ho}_1.$

We can estimate $\sigma_{arepsilon}^2$ via the method of moments. Assuming $\{X_t\}$ is stationary,

$$\widehat{\sigma}_{\varepsilon}^2 = \widehat{\sigma}_X^2 (1 - \widehat{\alpha}_1^2).$$

We estimate σ_X^2 by the sample variance, ie $\widehat{\sigma}_X^2 = s_{\chi}^2$.

Least squares estimation (LSE)

Choose parameters to minimise the residual sum of squares

Example 4.2 (AR(1)) We estimate α by minimising

$$S(\alpha) = \sum_{t=1}^{n} (X_t - \alpha X_{t-1})^2.$$

Hence

$$\widehat{\alpha} \approx \widehat{\rho}_1 \qquad \widehat{\sigma}_{\varepsilon}^2 \approx s_X^2 (1 - \widehat{\alpha}^2)$$

— the same as MOM.

MATH3802 Chapter 4: Model fitting L4.2 Parameter estimation

Maximum likelihood estimation (MLE)

To use this method, we need to assume a distribution for the ε_t . We then minimise the *likelihood* $L(\alpha|X) = f(X|\alpha)$.

Example 4.3 (AR(1)) Assume

$$X_0 = 0, X_t = \alpha X_{t-1} + \varepsilon_t, \varepsilon_t \sim N(0, \sigma^2).$$

We get

$$\widehat{lpha}pprox\widehat{
ho}_{1}\qquad \widehat{
ho}_{arepsilon}^{2}pprox \mathsf{s}_{\mathsf{X}}^{2}(1-\widehat{lpha}^{2}),$$

ie, for the AR(1) process with normally distributed innovations, the MLE and LSE are the same.

4.3 Invertibility

Consider the MA(1) process $X_t = \varepsilon_t + \beta \varepsilon_{t-1}$ where ε is a white noise process with variance σ_{ε}^2 .

Using the method of moments,

$$\widehat{eta} = rac{1 \pm \sqrt{1 - 4 \widehat{
ho}_1^2}}{2 \widehat{
ho}_1}, \qquad \widehat{\sigma}_{arepsilon}^2 = s_X^2/(1 + \widehat{eta}^2).$$

How can we distinguish between these solutions?

MATH3802 Chapter 4: Model fitting L-4.3 Invertibility

AR representation

Write X_t as $X_t = (1+eta B)arepsilon_t$ where B is the backshift operator.

$$X_t = \varepsilon_t + \beta X_{t-1} - \beta^2 X_{t-2} + \beta^3 X_{t-3} - \cdots$$

Consider two cases:

- $\frac{1}{|\beta|} > 1$
- $\frac{2}{|\beta|} < 1.$

Case 1 is unrealistic so requiring $|\beta| < 1$ seems sensible. This condition is called invertibility; requiring it means we use

$$\widehat{\beta} = \frac{1 - \sqrt{1 - 4\widehat{\rho}_1^2}}{2\widehat{\rho}_1}$$

since then $|\widehat{eta}| < 1$.

MATH3802 Chapter 4: Model fitting L4.3 Invertibility

Invertible

MATH3802 Chapter 4: Model fitting L4.3 Invertibility

Non invertible

MA(q)

For a general MA(q) process $X_t=eta(B)arepsilon$, where

$$\beta(y) = 1 + \beta_1 y + \beta_2 y^2 + \dots + \beta_q y^q.$$

Suppose eta(y)=0 has roots $y_1^{-1},\dots,y_q^{-1}.$ Then

$$\varepsilon_t = \sum_{i=0}^{\infty} h_i X_{t-i}$$

for
$$h_i = \sum_{k=1}^q c_k y_k^i$$
, for some $\{c_k\}$ (cf prop. 3.1).

Hence we require all the roots of eta(y) lie outside the unit circle.

MATH3802 Chapter 4: Model fitting

L4.3 Invertibility

Equivalent processes

The 2^q processes found using

$$\beta_{(1)}(B) = (1 - By_1)(1 - By_2) \cdots (1 - By_q)$$

$$\beta_{(2)}(B) = (1 - By_1^{-1})(1 - By_2) \cdots (1 - By_q)$$

$$\beta_{(3)}(B) = (1 - By_1)(1 - By_2^{-1}) \cdots (1 - By_q)$$
:

all have the same acf, but only one is invertible.

 $\beta_{(2^q)}(B) = (1 - By_1^{-1})(1 - By_2^{-1})\cdots(1 - By_q^{-1})$