DRIZZLE: LOW LATENCY EXECUTION FOR APACHE SPARK

Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout

WHO AMI?

PhD candidate, AMPLab UC Berkeley

Dissertation: System design for large scale machine learning

Apache Spark PMC Member. Contributions to Spark core, MLlib, SparkR

LOW LATENCY: SPARK STREAMING

"How to choose right DStream batch interval"
From https://goo.gl/6UX0FW

"Delivering low latency, high throughput, and stability simultaneously: * Right now, our own tests indicate you can get at most two of these characteristics out of Spark Streaming at the same time."

From https://goo.gl/wGCrtE

"Getting the best performance out of a Spark Streaming application on a cluster requires a bit of tuning...Reducing the processing time of each batch of data by efficiently using cluster resources. Setting the right batch size such that the batches of data can be processed as fast as they are received...." From spark.apache.org/docs/latest/streaming-programming-guide

Large Scale Stream Processing Goals

LARGE SCALE STREAM PROCESSING: PERFORMANCE

Straggler Mitigation

Fault Tolerance

Elasticity

Query Optimization

Execution Models

COMPUTATION MODELS: RECORD-AT-A-TIME

COMPUTATION MODELS: BATCH PROCESSING

Centralized task scheduling

Lineage, Parallel Recovery

Adaptable: Elasticity, Straggler Mitigation

Google FlumeJava

BATCH PROCESSING

RECORD-AT-A-TIME

Sync checkpoints, Lineage for partial results Fault tolerance

Chandy-Lamport checkpoints,
Process pairs

Micro-batch boundaries

Straggler Mitigation
Elasticity
Query Optimization

Checkpoint, restart (stateful operators)

~1 seconds

Latency

~10 milliseconds

Can we achieve low latency with Apache Spark?

DESIGN INSIGHT

Fine-grained execution

Data Processing

with

Coarse-grained scheduling

Coordination

DRIZZLE

BACKGROUND: STREAMING ON SPARK

DAG SCHEDULING

SCALING BATCH COMPUTATION

Median-task time breakdown

Cluster: 4 core, r3.xlarge machines

Workload: Sum of 10k numbers per-core

DAG SCHEDULING

Same DAG structure for many iterations

Can reuse scheduling decisions

GROUP SCHEDULING

Schedule a **group** of iterations at once

1 stage in each iteration

Fault tolerance, scheduling at group boundaries

HOW MUCH DOES THIS HELP?

Single Stage Job, 100 iterations - Varying Drizzle group size

Workload: Sum of 10k numbers per-core

DRIZZLE

COORDINATING SHUFFLES: EXISTING SYSTEMS

- Task
- Intermediate Data
- ----> Data Message
- Control Message

Driver sends metadata

Tasks pull data

COORDINATING SHUFFLES: PRE-SCHEDULING

- Task
- Pre-scheduled task
- Intermediate Data
- ----> Data Message
- Control Message

Pre-schedule down-stream tasks on executors

Trigger tasks once dependencies are met

MICRO-BENCHMARK: 2-STAGES

100 iterations - Breakdown of pre-scheduling, group-scheduling

EXTENSIONS

Group size auto tuning

Query optimization

Iterative ML algorithms

Fault tolerance

EXTENSIONS

Group size auto tuning

Query optimization

Iterative ML algorithms

Fault tolerance

GROUP SCHEDULING TRADE-OFFS

group=1 → Batch processing

Higher overhead Smaller window for fault tolerance

group=N → Parallel operators

Lower overhead Larger window for fault tolerance

GROUP SCHEDULING — AUTO TUNING

Goal: Smallest group such that overhead is between fixed threshold

Tuning algorithm

- Measure scheduler delay, execution time per group
- If overhead > threshold, **multiplicatively** increase group size
- If overhead < threshold, **additively** decrease group size

Similar to AIMD schemes used in TCP congestion control

QUERY OPTIMIZATION

Predicate Push Down Vectorization

...

Operator Selection

Data Layout

•••

MLLIB ALGORITHMS

Iterative patterns →
Gradient Descent
PCA

Similar structure to streaming!

Model stored, updated as shared state Parameter server integration

EVALUATION

Yahoo! Streaming Benchmark

Experiments

- Latency
- Throughput
- Fault tolerance

Comparing Spark 2.0, Flink 1.1.1, Drizzle Amazon EC2 r3.xlarge instances

STREAMING BENCHMARK - PERFORMANCE

Yahoo Streaming Benchmark: 20M JSON Ad-events / second, 128 machines Event Latency: Difference between window end, processing end

INTRA-BATCH QUERY OPTIMIZATION

Yahoo Streaming Benchmark: 20M JSON Ad-events / second, 128 machines
Optimize execution of each micro-batch by pushing down aggregation

WEAK-SCALING THROUGHPUT

Yahoo Streaming Benchmark: 150,000 events/sec per machine

Weak scaling from 4 to 128 machines (600k to 19.2M events/s)

FAULT TOLERANCE

Inject machine failure at 240 seconds

OPEN SOURCE UPDATE

Spark Scheduler Improvements

- SPARK-18890, SPARK-18836, SPARK-19485
- Addresses serialization, RPC bottlenecks etc.

Design discussion to integrate Drizzle: SPARK-19487

Open source code at: https://github.com/amplab/drizzle-spark

CONCLUSION

Low latency during execution and while adapting

Drizzle: Decouple execution from centralized scheduling

Amortize overheads using group scheduling, pre-scheduling

Source Code: https://github.com/amplab/drizzle-spark

Shivaram Venkataraman shivaram@cs.berkeley.edu