Introduction to Deep RL

Sean SinclairCornell University

Success of RL

Backgammon

Mujoco Simulator

AlphaGo Zero

Focused on game playing + robotics

[Silver2017,Tesauro1995]

Previously saw algorithms designed with value and policy iteration for tabular (discrete) MDPs.

Model-Based

- Maintain estimates of reward and transition
- Plug estimates into Bellman equations for estimated V^* , Q^*
- Play greedy w.r.t. Q*
- Time complexity / storage scales S^2A

Model Free

- Only maintain estimates of V^* , Q^* using fixed point
- Play greedy w.r.t. Q^*
- Better time complexity / storage

Previously saw algorithms designed with value and policy iteration for tabular (discrete) MDPs.

However, even if problem is tabular:

MemoryError: Unable to allocate 31.9 GiB for an array with shape (3094, 720, 1280, 3) and data type float32

H = 3

S = 3094*720

A = 1280

Previously saw algorithms designed with value and policy iteration for tabular (discrete) MDPs.

However, even if problem is tabular:

MemoryError: Unable to allocate 31.9 GiB for an array with shape (3094, 720, 1280, 3) and data type float32

function approximation + state aggregation help alleviate these issues by appealing to ML generalization

H = 3 S = 3094*720A = 1280

This workshop focuses on RL for Operations

We care about:

Want to use RL in large-scale OR problems

- Most problems have enormous state/action spaces

- Most problems have enormous state/action spaces
- Require representations (of models, state-action values, values, policies) that can generalize

- Most problems have enormous state/action spaces
- Require representations (of models, state-action values, values, policies) that can generalize
- Represent quantities with a parameterized function instead of a table

- Most problems have enormous state/action spaces
- Require representations (of models, state-action values, values, policies) that can generalize
- Represent quantities with a parameterized function instead of a table

$$s \longrightarrow \overline{V}_{\theta}(s)$$
 $s \longrightarrow \overline{\pi}_{\theta}(s)$

- Well developed theory for linear value function estimators for known features
- Works well if features are right

- Well developed theory for linear value function estimators for known features
- Works well if features are right
- Local representations (Kernel + discretization approaches) have nice properties (convergence results) but don't scale well

- Well developed theory for linear value function estimators for known features
- Works well if features are right
- Local representations (Kernel + discretization approaches)
 have nice properties (convergence results) but don't scale well
- Alternative: use deep neural networks:
 - uses distributed representation instead of local
 - "universal function approximator"

- Well developed theory for linear value function estimators for known features
- Works well if features are right
- Local representations (Kernel + discretization approaches)
 have nice properties (convergence results) but don't scale well
- Alternative: use deep neural networks:
 - uses distributed representation instead of local
 - "universal function approximator"

Alternative: use deep neural networks:

- uses distributed representation instead of local
- "universal function approximator"

Alternative: use deep neural networks:

- uses distributed representation instead of local
- "universal function approximator"

We will not focus on network representation choices, etc, until days 3+4. Consider arbitrary "parametric" representation (with gradients) for now

High level approach

Use a deep neural network to represent:

- Value function
- Policy
- Model of rewards and transitions
- "universal function approximator"

Optimize loss function via stochastic gradient descent (SGD)

High level approach

Use a deep neural network to represent:

- Value function
- Policy
- Model of rewards and transitions
- "universal function approximator"

Optimize loss function via stochastic gradient descent (SGD)

DQN

- Use neural network representation of value function
- Fits estimates using least squares

REINFORCE / VPG

- Uses neural network representation of policy
- Fits estimates using policy gradient loss

High level approach

Use a deep neural network to represent:

- Value function
- Policy
- Model of rewards and transitions
- "universal function approximator"

Optimize loss function via stochastic gradient descent (SGD)

DQN

- Use neural network representation of value function
- Fits estimates using least squares

REINFORCE / VPG

- Uses neural network representation of policy
- Fits estimates using policy gradient loss

DQN

Use a deep neural network to represent:

- Value function
- Policy
- Model of rewards and transitions
- "universal function approximator"

Optimize loss function via stochastic gradient descent (SGD)

DQN

Use a deep neural network to represent value function:

Question: Which representation is better?

DQN

Use a deep neural network to represent value function:

Question: Which representation is better?

$$\pi_{\theta}(s) = \max_{a} \overline{Q}_{\theta}(s, a)$$

The Bellman Optimality Equations note that:

$$V^{*}(s) = \max_{a} [r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [V^{*}(S')]]$$
$$Q^{*}(s, a) = r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [V^{*}(S')]$$

The Bellman Optimality Equations note that:

$$V^{*}(s) = \max_{a} [r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [V^{*}(S')]]$$
$$Q^{*}(s, a) = r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [V^{*}(S')]$$

Or using that
$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} Q^*(S', a')]$$

The Bellman Optimality Equations note that:

$$V^*(s) = \max_{a} [r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [V^*(S')]]$$
$$Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [V^*(S')]$$

Or using that $V^*(s) = \max_a Q^*(s, a)$

$$Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} Q^*(S', a')]$$

Subtract off and plug in parametric estimates

$$0 = \overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])$$

Subtract off and plug in parametric estimates

$$0 = \overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot \mid s, a)} [\max_{a'} Q^*(S', a')])$$

Which objective function? Minimize MSE

$$L(\theta) = \mathbb{E}_{\pi_{\theta}} [(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])^2]$$

Subtract off and plug in parametric estimates

$$0 = \overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot \mid s, a)} [\max_{a'} Q^*(S', a')])$$

Which objective function? Minimize MSE

$$L(\theta) = \mathbb{E}_{\pi_{\theta}} [(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])^{2}]$$

"Fixed Target"

Subtract off and plug in parametric estimates

$$0 = \overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot \mid s, a)} [\max_{a'} Q^*(S', a')])$$

Which objective function? Minimize MSE

$$L(\theta) = \mathbb{E}_{\pi_{\theta}}[(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)}[\max_{a'} \overline{Q}_{\theta}(S', a')])^{2}]$$
"Fixed Target"

Note: If $L(\theta) = 0$ then satisfy fixed point, so optimal

[Mnih2013]

Which objective function? Minimize MSE

$$L(\theta) = \mathbb{E}_{\pi_{\theta}} [(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])^{2}]$$

Which objective function? Minimize MSE

$$L(\theta) = \mathbb{E}_{\pi_{\theta}} [(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])^{2}]$$

Assume tabular representation, "fixed target", single sample from T

Which objective function? Minimize MSE

$$L(\theta) = \mathbb{E}_{\pi_{\theta}} [(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])^{2}]$$

Assume tabular representation, "fixed target", single sample from T

$$L(\theta) = \mathbb{E}_{\pi_{\theta}}[(\theta(s, a) - (r(s, a) + \gamma \max_{a'} \overline{Q}_{\theta}(s', a'))^2]$$

Which objective function? Minimize MSE

$$L(\theta) = \mathbb{E}_{\pi_{\theta}} [(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])^{2}]$$

Assume tabular representation, "fixed target", single sample from T

$$L(\theta) = \mathbb{E}_{\pi_{\theta}}[(\theta(s, a) - (r(s, a) + \gamma \max_{a'} \overline{Q}_{\theta}(s', a'))]^2]$$

Using gradient descent then....

$$\theta(s, a) = \theta(s, a) - \alpha \nabla_{s, a} J(\theta)$$

$$= \theta(s, a) - \alpha \left(r(s, a) + \gamma \max_{a'} \overline{Q}(s', a') - \theta(s, a) \right) (-1)$$

$$= (1 - \alpha)\theta(s, a) + \alpha (r(s, a) + \gamma \max_{a'} \overline{Q}(s', a'))$$

Which objective function? Minimize MSE

$$L(\theta) = \mathbb{E}_{\pi_{\theta}} [(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])^{2}]$$

Assume tabular representation, "fixed target", single sample from T

$$L(\theta) = \mathbb{E}_{\pi_{\theta}}[(\theta(s, a) - (r(s, a) + \gamma \max_{a'} \overline{Q}_{\theta}(s', a'))]^2]$$

Using gradient descent then....

$$\begin{aligned} \theta(s, a) &= \theta(s, a) - \alpha \nabla_{s, a} J(\theta) \\ &= \theta(s, a) - \alpha \left(r(s, a) + \gamma \max_{a'} \overline{Q}(s', a') - \theta(s, a) \right) (-1) \\ &= (1 - \alpha)\theta(s, a) + \alpha (r(s, a) + \gamma \max_{a'} \overline{Q}(s', a')) \end{aligned}$$

Recovers standard Q-Learning rules from earlier

Nonstationary Target

Typically in supervised learning the "ground truth" is fixed

Nonstationary Target

Typically in supervised learning the "ground truth" is fixed

Typically in supervised learning the "ground truth" is fixed

Typically in supervised learning the "ground truth" is fixed

$$L^{1}(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\left(\overline{Q}_{\theta}(s, a) - \left(r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)}\left[\max_{a'} \overline{Q}_{\theta^{1}}(S', a')\right]\right)^{2}\right]$$

SGD Step for θ^2

$$L^{1}(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\left(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)}\left[\max_{a'} \overline{Q}_{\theta^{1}}(S', a')\right]\right)^{2}\right]$$

SGD Step for θ^2

$$L^{2}(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\left(\overline{Q}_{\theta}(s, a) - \left(r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)}\left[\max_{a'} \overline{Q}_{\theta^{2}}(S', a')\right]\right)^{2}\right]$$

SGD Step for θ^3

$$L^{1}(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\left(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot \mid s, a)}\left[\max_{a'} \overline{Q}_{\theta^{1}}(S', a')\right]\right)^{2}\right]$$

SGD Step for θ^2

$$L^{2}(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\left(\overline{Q}_{\theta}(s, a) - \left(r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot \mid s, a)}\left[\max_{a'} \overline{Q}_{\theta^{2}}(S', a')\right]\right)^{2}\right]$$

SGD Step for θ^3

$$L^{3}(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\left(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)}\left[\max_{a'} \overline{Q}_{\theta^{3}}(S', a')\right]\right)^{2}\right]$$

SGD Step for θ^4

Like a dog chasing its own tail...

Converges to true Q^* using tabular representation

Diverges in neural networks due to:

- spurious correlation in samples
- "nonstationary target"

$$L(\theta) = \mathbb{E}_{\pi_{\theta}} [(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])^{2}]$$

Converges to true Q^* using tabular representation

Diverges in neural networks due to:

- spurious correlation in samples
- nonstationary target

$$L(\theta) = \mathbb{E}_{\pi_{\theta}} [(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])^2]$$

Converges to true Q^* using tabular representation

Diverges in neural networks due to:

- spurious correlation in samples
- nonstationary target

$$L(\theta) = \mathbb{E}_{\pi_{\theta}} [(\overline{Q}_{\theta}(s, a) - (r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [\max_{a'} \overline{Q}_{\theta}(S', a')])^{2}]$$

Loss Function

Converges to true Q^* using tabular representation

Diverges in neural networks due to:

- spurious correlation in samples
- nonstationary target

Converges to true Q^* using tabular representation

Diverges in neural networks due to:

- spurious correlation in samples
- nonstationary target

Other issue in practice:

$$L(\theta) = \frac{1}{N} \sum_{i} (\overline{Q}_{\theta}(s_i, a_i) - (r_i + \gamma \max_{a'} \overline{Q}_{\theta}(s_{i+1}, a'))^2$$

Other issue in practice:

$$L(\theta) = \frac{1}{N} \sum_{i} (\overline{Q}_{\theta}(s_i, a_i) - (r_i + \gamma \max_{a'} \overline{Q}_{\theta}(s_{i+1}, a'))^2$$

Other issue in practice:

$$L(\theta) = \frac{1}{N} \sum_{i} (\overline{Q}_{\theta}(s_i, a_i) - (r_i + \gamma \max_{a'} \overline{Q}_{\theta}(s_{i+1}, a'))^2$$

$$\frac{1}{N} \sum_{i} \max_{a'} \overline{Q}_{\theta}(s_{i+1}, a')$$
 is biased for $\max_{a'} \mathbb{E}_{S' \sim T(\cdot | s, a')} [\overline{Q}_{\theta}(S', a')]$

[Hessel2017]

Other issue in practice:

$$L(\theta) = \frac{1}{N} \sum_{i} (\overline{Q}_{\theta}(s_i, a_i) - (r_i + \gamma \max_{a'} \overline{Q}_{\theta}(s_{i+1}, a'))^2$$

$$\frac{1}{N} \sum_{i} \max_{a'} \overline{Q}_{\theta}(s_{i+1}, a')$$
 is biased for $\max_{a'} \mathbb{E}_{S' \sim T(\cdot | s, a')}[\overline{Q}_{\theta}(S', a')]$

Same value used both to select and evaluate an action, more likely to select overestimated values resulting in overoptimistic estimates

Different versions of DQN fix this in two ways via:

Experience Replay

- Collects datasets which are recycled when calculating loss
- Eliminates spurious correlation in samples

Fixed Q-Targets

- Fixes the target in the MSE loss
- Many choices of potential fixed targets

Experience Replay

Store dataset (called replay buffer) from prior experience

Sample batch on \mathcal{D} and update loss

$$L(\theta) = \frac{1}{N} \sum_{i} (\overline{Q}_{\theta}(s_i, a_i) - (r_i + \gamma \max_{a'} \overline{Q}_{\theta}(s_{i+1}, a'))^2$$

[Hessel2017]

Experience Replay

Sample batch on \mathcal{D} and update loss

$$L(\theta) = \frac{1}{N} \sum_{i} (\overline{Q}_{\theta}(s_i, a_i) - (r_i + \gamma \max_{a'} \overline{Q}_{\theta}(s_{i+1}, a'))^2$$

- Uniformly at random
- Weighted by loss
- Weighted by policy performance
- -

Fixed Q Targets

Fix weights θ^- for target:

$$L(\theta) = \frac{1}{N} \sum_{i} (\overline{Q}_{\theta}(s_i, a_i) - (r_i + \gamma \max_{a'} \overline{Q}_{\theta^-}(s_{i+1}, a'))^2$$

Compute Q-learning targets with respect to "old" parameters

- 1. Use current policy (potentially with ϵ exploration) to collect data
- 2. Store transitions (s_t, a_t, r_t, s_{t+1}) in replay data \mathcal{D}
- 3. Sample batch of transitions from \mathcal{D}
- 4. Update loss with respect to old parameters using SGD

$$L(\theta) = \frac{1}{N} \sum_{i} (\overline{Q}_{\theta}(s_i, a_i) - (r_i + \gamma \max_{a'} \overline{Q}_{\theta^{-}}(s_{i+1}, a'))^2$$

Double DQN

Same value used both to select and evaluate an action, more likely to select overestimated values resulting in overoptimistic estimates

Fix: Double DQN.

Learn two value functions with different parameters by assigning each data randomly to update one of the two estimates

Double DQN

Two sets of weights θ_1 , θ_2

- 1. Use current policy π_{θ_1} (potentially with ϵ exploration) to collect data
- 2. Store transitions (s_t, a_t, r_t, s_{t+1}) in replay data $\mathcal{D}_1, \mathcal{D}_2$
- 3. Sample batch of transitions from \mathcal{D}_i
- 4. Update loss with respect to opposite parameters using SGD

$$J(\theta) = \frac{1}{N} \sum_{i} (\overline{Q}_{\theta_1}(s_i, a_i) - (r_i + \gamma \max_{a'} \overline{Q}_{\theta_2}(s_{i+1}, a'))^2$$

[Hasselt2015]

Dueling DQN

[Wang2015]

DQN++++

[Hessel2017]

Use a deep neural network to represent:

- Value function
- Policy
- Model of rewards and transitions
- "universal function approximator"

Optimize loss function via stochastic gradient descent (SGD)

DQN

- Use neural network representation of value function
- Fits estimates using least squares

REINFORCE / VPG

- Uses neural network representation of policy
- Fits estimates using policy gradient loss

Focus on REINFORCE – simplest policy based algorithm. Works for on-policy and off-policy data, and in arbitrary domains.

Many flavors and modifications – similar to DQN

REINFORCE / VPG

- Uses neural network representation of policy
- Fits estimates using policy gradient loss

Focus on REINFORCE – simplest policy based algorithm. Works for on-policy and off-policy data, and in arbitrary domains.

Many flavors and modifications – similar to DQN

REINFORCE / VPG

- Uses neural network representation of policy
- Fits estimates using policy gradient loss

Focus on REINFORCE – simplest policy based algorithm. Works for on-policy and off-policy data, and in arbitrary domains.

Goal: Maximize $\sup_{\theta \in \Theta} \mathbb{E}[V^{\pi_{\theta}}(s_0)]$

Focus on REINFORCE – simplest policy based algorithm. Works for on-policy and off-policy data, and in arbitrary domains.

Goal: Maximize $\sup_{\theta \in \Theta} \mathbb{E}\left[V^{\pi_{\theta}}(s_0)\right] = J(\theta)$

Refer to $J(\theta)$ as objective, can be modified for finite horizon + average cost

Goal: Maximize $\sup_{\theta \in \Theta} \mathbb{E}\left[V^{\pi_{\theta}}(s_0)\right] = J(\theta)$

Any optimization algorithm could be applied:

- Zero-Order (Gradient-Free)
- First-Order (Gradient-Based)
- Second Order (Hessian-Based)

Gradient Free

Goal: Maximize
$$\sup_{\theta \in \Theta} \mathbb{E}\left[V^{\pi_{\theta}}(s_0)\right] = J(\theta)$$

Evolutionary Algorithms or Grid Search

For
$$t = 0, 1, 2, ...$$

Sample:
$$\epsilon_1, \ldots, \epsilon_N \sim N(0, I)$$

Compute Returns:
$$F_i = J(\theta_t + \sigma \epsilon_i)$$

Update:
$$\theta_{t+1} = \theta_t + \alpha \frac{1}{N\sigma} \sum_{i=1}^{N} F_i \epsilon_i$$

Gradient Free

Goal: Maximize
$$\sup_{\theta \in \Theta} \mathbb{E}\left[V^{\pi_{\theta}}(s_0)\right] = J(\theta)$$

Evolutionary Algorithms or Grid Search

For
$$t = 0, 1, 2, ...$$

Sample:
$$\epsilon_1, \ldots, \epsilon_N \sim N(0, I)$$

Compute Returns:
$$F_i = J(\theta_t + \sigma \epsilon_i)$$

Update:
$$\theta_{t+1} = \theta_t + \alpha \frac{1}{N\sigma} \sum_{i=1}^{N} F_i \epsilon_i$$

"Scalable" via strong parallelization, difficult for neural networks due to dimension

Policy Gradient

Goal: Maximize
$$\sup_{\theta \in \Theta} \mathbb{E}\left[V^{\pi_{\theta}}(s_0)\right] = J(\theta)$$

What even is $\nabla J(\theta)$?

Policy Gradient

Goal: Maximize
$$\sup_{\theta \in \Theta} \mathbb{E}\left[V^{\pi_{\theta}}(s_0)\right] = J(\theta)$$

What even is $\nabla J(\theta)$?

Policy Gradient Theorem:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)]$$

Can evaluate using Monte-Carlo roll outs under current policy

REINFORCE

Goal: Maximize
$$\sup_{\theta \in \Theta} \mathbb{E}\left[V^{\pi_{\theta}}(s_0)\right] = J(\theta)$$

For each episode

Sample: $(s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T) \sim \pi_{\theta}$

Compute Returns: $G_t = \sum_{\tau \geq t} \gamma^{\tau - t} r_{\tau}$

Update: $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \log \pi_{\theta}(s_{\tau} \mid a_{\tau}) G_{\tau}$ $\tau = 1, ..., T$

Policy Gradient

Goal: Maximize
$$\sup_{\theta \in \Theta} \mathbb{E}\left[V^{\pi_{\theta}}(s_0)\right] = J(\theta)$$

What even is $\nabla J(\theta)$?

Policy Gradient Theorem:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)]$$

Two issues:

- Variance in gradient due to log probabilities
- "Double Expectation"

Double Expectation

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)]$$
 Expectation over trajectories Expectation over policy

Double Expectation

Can plug in a variety of terms into $Q^{\pi_{\theta}}$, similar to DQN

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)]$$

Biggest Issue: Variance in policy gradient objective due to:

- Credit assignment
- Log probabilities (opt policy is deterministic...)
- Different distribution of trajectory when applying updates using batches $r_2 = 0.7$

[Machado2020]

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)]$$

Biggest Issue: Variance in policy gradient objective due to:

- Credit assignment
- Log probabilities (opt policy is deterministic...)
- Different distribution of trajectory when applying updates

 $r_2 = 0.7$ using batches

Fix One: Clipping probabilities to $[\epsilon, 1 - \epsilon]$

Fix Two: State dependent baseline, i.e.

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) (Q^{\pi_{\theta}}(s, a) - b(s))]$$

Form of control variate

Fix One: Clipping probabilities to $[\epsilon, 1 - \epsilon]$

Fix Two: State dependent baseline, i.e.

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) (Q^{\pi_{\theta}}(s, a) - b(s))]$$

Form of control variate

Typically use: $\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) (Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s))]$

$$A^{\pi_{\theta}}(s,a)$$

Advantage Function

Fix One: Clipping probabilities to $[\epsilon, 1 - \epsilon]$

Fix Two: State dependent baseline, i.e.

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) (Q^{\pi_{\theta}}(s, a) - b(s))]$$

Form of control variate

Typically use: $\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) (Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s))]$

Using neural network for advantage function makes actor-critic algorithm

 $A^{\pi_{ heta}}(s,a)$ Advantage Function

[Machado2020]

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)]$$

Biggest Issue: Variance in policy gradient objective due to:

- Credit assignment
- Log probabilities (opt policy is deterministic...)
- Different distribution of trajectory when applying updates using batches

[Machado2020]

PG+++

Per usual, many flavours and modifications with improved empirical performance.

TRPO: add on KL divergence constraint on policy updates

PPO: add on clipping of the ratio with KL regularization

[Schulman2015, Schulman2017]

High level approach

Use a deep neural network to represent:

- Value function
- Policy
- Model of rewards and transitions
- "universal function approximator"

Optimize loss function via stochastic gradient descent (SGD)

DQN

- Use neural network representation of value function
- Fits estimates using least squares

REINFORCE / VPG

- Uses neural network representation of policy
- Fits estimates using policy gradient loss

Introduction to Deep RL

Sean SinclairCornell University

References

[Machado2020] Marlos C. Machado. "The True Impact of Baselines in Policy Gradient Methods." Blog Post, 2020.

[Schulman2015] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, Pieter Abbeel "<u>Trust Region Policy Optimization</u>". *ICML*, 2020. [Hessel2017] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, David Silver "<u>Rainbow: Combining Improvements in Deep Reinforcement Learning</u>". *AAAI*, 2018.

[Schulman2017] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov. "Proximal Policy Optimization Algorithms". ArXiV, 2017.

[Mnih2013] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller. "Playing Atari with Deep Reinforcement Learning". ArXiV, 2013.

References

[Silver2017] David Silver et a. "Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm." ArXiV, 2017.

[Tesauro1995] Gerald Tesauro. "Temporal Difference Learning and TD-Gammon". Communications of the ACM, 1995.

[Hasselt2015] Hado Van Hasselt, Arthur Guez, David Silver. "Deep Reinforcement Learning with Double Q-Learning". AAAI, 2016.

[Wang2015] Ziju Wang et al. "<u>Dueling Network Architectures for Deep</u> Reinforcement Learning." *ArXiV*, 2015.

[Williams1992] Ronald J Williams. "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning." Machline Learning, 1992.

[Vikhar2016] Pradnya A Vikhar. "<u>Evoluationary algorithms: A Critical Review</u> and its Future Prospects." *NeurIPS*, 2016.

References

[Salimans2017] Tim Salimans et a. "Evolution Strategies as a Scalable Alternative to Reinforcement Learning." NeurIPS, 2017.