

Deciphering Compositionality Compositionality in Shift Operations on the Alphabet

Berend Jansen & Tom Lotze

Artificial Intelligence - University of Amsterdam

Introduction

Compositionality: The meaning of an expression can be derived from the meaning of its constituents and syntactic rules to combine them [1].

The notion of compositionality in language is essential for deeper language understanding and language modelling. This research aims to give more insight into compositionality in neural sequence-to-sequence models, by training and evaluating on a new artificial language.

Approach

- Our compositional language allows shift operations on letters in the alphabet.
- Train two models (LSTM and Transformer) on the generated data and perform two compositionality tests: substitutivity & localism.

Artificial language

- Shift ciphering alphabetical strings
- Syntax by PCFG (left table)
- Semantics by interpretation rules (right table)

Generated dataset

- Data generation using PCFG
- 100.000 (sequence, label)-pairs
- No duplicates
- Split: 85% / 5% / 10% (training, validation, test)
- On average 12.4 tokens (std: 12.9) per sample

Experiments & Results

Models & General Performance

LSTM model (OpenNMT, 50k training steps)

- 2 encoder- & decoder layers of size 500
- Word embedding size 500

Transformer model (OpenNMT, 30k training steps)

- 4 encoder- & decoder layers of size 512
- Transformer feed forward of size 2048
- Word embedding size 512

Surprisingly, the LSTM outperforms the Transformer on longer sequences.

Common mistakes: often multiple "R", "@" or "#" operators, one of them is not applied. Possible reason is that these operators can cancel out.

Substitutivity

Synonymity between "F1/F2/F3" and "SHIFT a/b/c" Two synonymous datasets "F" vs. "SHIFT"

- Two versions: Clean (only "F" or "SHIFT") and complete (including other operators)
- PCFG generation with sequence validation

Dataset	LSTM accuracy	LSTM consistency	Transformer accuracy	Transformer consistency
Clean "F"	0.9784	0.7671	0.9633	0.9514
Clean "SHIFT"	0.7678		0.9471	
Complete "F"	0.9415	0.9519	0.9332	0.9535
Complete "SHIFT"	0.9312		0.9257	

- Clean dataset: LSTM performs worse on SHIFT dataset
- Complete dataset: high consistency scores

Localism

Additive: Force recursive processing using "+"

Sequence format: "S + S + S"

Process constituents separately and solve merged outcomes **vs**. process original sequence at once.

- Both models perform slightly better if they are forced to process the input recursively
- High consistency: Model works relatively locally

In the top plot we barely see attention for the "#", whereas in the correctly predicted bottom constituent there is some attention on the "#".

Sequential: Force the model to sequentially apply the operators on previous outcome.

Model	Original accuracy	Sequential accuracy	Consistency
LSTM	0.8605	0.976	0.8555
Transformer	0.8605	0.993	0.8625

There is a relatively large performance gap between the forced sequential approach and the general approach, so we conclude that the model is not fully sequential.

Conclusion

- This research compares the capacity of an LSTM and Transformer model to exhibit compositional behaviour. On the **main task**, both model perform similarly. Surprisingly, the LSTM model scores slightly better on longer sequences.
- In terms of **substitutivity**, especially the Transformer is able to learn synonymous operator combinations, attested by the high consistency score of 95.2%. The LSTM on the other hand only scores 76.7%.
- Two forms of **localism** were tested: Local processing in additive operators is observed in both models. However, forced sequential processing of all other operators improves performance significantly, suggesting the models do not process every operator locally.
- Attention plots show that errors on complete sequences might occur because an operator is forgotten by the network. Forced recursive processing often solves this issue.

Discussion

- The Transformer model is known to be sensitive to hyperparameters, further tuning might lead to better performance.
- More compositionality tests could be performed on this artificial language.
- Another interesting aspect would be to analyze the embedding space, to investigate whether the model learns the sequence of the alphabet.

^[1] Partee, B. (1995). Lexical semantics and compositionality. An invitation to cognitive science: Language, 1:311–360.