Lösungshinweise zur 2. Übung

Differential- und Integralrechnung für Informatiker

(A 6)

a) Für alle $n \in \mathbb{N}^*$ ist $x_n > 0$ und

$$\frac{x_n}{x_{n+1}} = \frac{4^n}{(n+3)!} \cdot \frac{(n+4)!}{4^{n+1}} = \frac{n+4}{4} > 1,$$

also ist die Folge streng fallend. Somit ist sie nach oben beschränkt. Da alle Folgenglieder positiv sind, ist die Folge auch nach unten beschränkt, und somit beschränkt.

- b) Die Folge ist nicht monoton, da $x_1 < x_2$ und $x_2 > x_3$ ist. Die Folge ist beschränkt, da $x_n \in (-1,1)$, für alle $n \in \mathbb{N}^*$.
- c) Für alle $n \in \mathbb{N}^*$ ist $x_n = 1 \frac{1}{n^2 + 1}$. Daraus, dass die Folge $(n^2 + 1)_{n \in \mathbb{N}^*}$ streng wachsend ist, schließt man, dass die Folge $\left(-\frac{1}{n^2 + 1}\right)_{n \in \mathbb{N}^*}$ ebenfalls streng wachsend ist. Also ist $(x_n)_{n \in \mathbb{N}^*}$ streng wachsend. Es folgt, dass diese Folge nach unten beschränkt ist. Aus $x_n < 1$, für alle $n \in \mathbb{N}^*$, ergibt sich, dass $(x_n)_{n \in \mathbb{N}^*}$ auch nach oben beschränkt, also beschränkt ist.

(A7)

a) Die Folge $(x_n)_{n\in\mathbb{N}}$, definiert, für $n\in\mathbb{N}$, durch

$$x_n = \begin{cases} 3, & n = 2k \\ n, & n = 2k + 1 \end{cases}$$

ist nach oben unbeschränkt und hat eine gegen 3 konvergierende Teilfolge.

- b) Die Folge $(-n)_{n\in\mathbb{N}}$ hat als Grenzwert $-\infty$. Sie ist also nach unten unbeschränkt und jede ihrer Teilfolgen hat (nach **Th4** aus der 2. Vorlesung) den gleichen Grenzwert. Also hat diese Folge keine konvergente Teilfolge.
- c) Ist $a \in \mathbb{R}$, so wähle man beispielsweise $a_n = n + a$ und $b_n = n$, für alle $n \in \mathbb{N}$. Dann ist $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \infty$ und $\lim_{n \to \infty} (a_n b_n) = a$.

Ist $a = \infty$, dann wähle man beispielsweise $a_n = 2n$ und $b_n = n$, für alle $n \in \mathbb{N}$. Dann ist $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \infty$ und $\lim_{n \to \infty} (a_n - b_n) = \infty$.

Ist $a = -\infty$, dann wähle man beispielsweise $a_n = n$ und $b_n = 2n$, für alle $n \in \mathbb{N}$. Dann ist $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \infty$ und $\lim_{n \to \infty} (a_n - b_n) = -\infty$.

(A 8)

a)
$$\lim_{n \to \infty} \frac{2 - (-2)^n}{3^n + 7} = \lim_{n \to \infty} \left(\frac{2}{3^n + 7} - \left(-\frac{2}{3} \right)^n \cdot \frac{1}{1 + \frac{7}{3^n}} \right) = 0.$$

b)
$$\lim_{n\to\infty} (\sin(2023))^n = 0$$
, da $q := \sin(2023) \in (-1,1)$.

c)
$$\lim_{n \to \infty} \left(8 - \frac{5n^4 + 1}{n^2 - 2n^5} \right)^2 = 64.$$

d) Es gelten

$$\lim_{n \to \infty} \sqrt{9n^6 + 2n + 1} - 3n^3 = \lim_{n \to \infty} \frac{2n + 1}{\sqrt{9n^6 + 2n + 1} + 3n^3} = \lim_{n \to \infty} \frac{1}{n^2} \cdot \frac{2 + \frac{1}{n}}{\sqrt{9 + \frac{2}{n^5} + \frac{1}{n^6}} + 3} = 0.$$

e)
$$\lim_{n \to \infty} \sqrt{n^2 + 3} - \sqrt{n^3 + 1} = \lim_{n \to \infty} \sqrt{n^3 + 1} \cdot \left(\sqrt{\frac{n^2 + 3}{n^3 + 1}} - 1\right) = -\infty.$$

f)
$$\lim_{n \to \infty} \left(\frac{n^3 + 5n + 1}{n^2 - 1} \right)^{\frac{1 - 5n^4}{6n^4 + 1}} = \infty^{-\frac{5}{6}} = 0.$$

g)
$$\lim_{n \to \infty} \left(2 + \frac{4^n + (-5)^n}{7^n + 1} \right)^{2n^3 - n^2} = 2^\infty = \infty.$$

h) Aus $1+2+\cdots+n=\frac{n(n+1)}{2}, \forall n \in \mathbb{N}^*, \text{ folgt}$

$$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^2} = \lim_{n \to \infty} \frac{n^2 + n}{2n^2} = \frac{1}{2}.$$

i)
$$\lim_{n \to \infty} \left(\frac{n^3 + 4n + 1}{2n^3 + 5} \right)^{\frac{-2n^4 + 1}{n^4 + 3n + 1}} = \left(\frac{1}{2} \right)^{-2} = 4.$$

j)
$$\lim_{n \to \infty} \left(\frac{n^5 + 3n + 1}{2n^5 - n^4 + 3} \right)^{\frac{3n - n^4}{n^3 + 1}} = \left(\frac{1}{2} \right)^{-\infty} = \infty.$$