2- (5)

2- (6) 20 分 转移错一处扣 2 分

3-(6)20分。没将条件写全对,每处扣2分

 $set(q_0)=\{x \mid x \in \Sigma^*, x 以 0 结尾, 且 x 以 10 结尾, 且 x 中不含 10110 子串\}$

 $set(q_1)=\{x \mid x \in \Sigma^*, x 以 1 结尾, 且不以 101、1011 结尾, 且 x 中不含 10110 子串\}$

 $set(q_2)=\{x \mid x \in \Sigma^*, x 是以 10 结尾, 且 x 中不含 10110 子串\}$

 $set(q_3)=\{x \mid x \in \Sigma^*, x 是以 101 结尾, 且 x 中不含 10110 子串\}$

 $set(q_4)=\{x \mid x \in \Sigma^*, x 是以 1011 结尾, 且 x 中不含 10110 子串\}$

set(q5)={x | x∈∑*, x 是包含形如 10110}

730分

设 DFA M=(Q, Σ , δ ,q0,F),证明:对于 \forall x,y \in Σ *,q \in Q, δ (q,xy)= δ (δ (q,x),y) 证明:

设 $x,y \in \Sigma^*, q \in Q,$ 现对 |y| 施归纳。

1) 当 | y | = 0 时, y = e,

由于对任意的 $q \in Q$,均有 $\delta(q, \epsilon) = q$ 所以, $\delta(q, x) = \delta(\delta(q, x), \epsilon)$ 另一方面, $x = x\epsilon$,使得下式成立 $\delta(q, x\epsilon) = \delta(q, x)$ 。

综合这两个等式得 $\delta(q,x\epsilon)=\delta(\delta(q,x),\epsilon)$ 。 即:结论对 |y|=0 成立。

2) 设结论对 | y | =n 成立,且 | ya | =n+1,

此时由 δ 的定义 $\delta(q,xya)=\delta(\delta(q,xy),a)$ 。

由归纳假设 $\delta(q,xy)=\delta(\delta(q,x),y)$ 。

从而 $\delta(q,xya)=\delta(\delta(q,xy),a)=\delta(\delta(\delta(q,x),y),a)$ 注意到 $\delta(q,x)$ 为一个状态,再由 δ 的定义 $\delta(\delta(\delta(q,x),y),a)=\delta(\delta(q,x),ya)$

所以, $\delta(q,xya)=\delta(\delta(q,x),ya)$ 表明结论对|ya|=n+1成立。

由归纳法原理,结论对任意的 $x,y \in \Sigma^*, q \in Q$ 成立。

830分

证明:对于任意的 DFAM1=(Q, Σ , δ , q0, F1),存在 DFAM2=(Q, Σ , δ , q0, F2),使得 L(M2)= Σ *-L(M1)。 证明:

1) 构造 M2。

设 DFAM₁=(Q,Σ,δ,q_0,F_1)。 取 DFAM₂=($Q,\Sigma,\delta,q_0,Q-F_1$)。

2) 证明 L(M₂)=Σ*-L(M₁)

对任意 x∈Σ*,

 $x\in L(M_2)=\Sigma^*-L(M_1)$ $\Leftrightarrow \delta(q_0,x)\in Q$ - F_1 $\Leftrightarrow \delta(q_0,x)\in Q$ 并且 $\delta(q_0,x)\notin F_1$ $\Leftrightarrow x\in \Sigma^*$ 并且 $x\notin L(M_1)$ $\Leftrightarrow x\in \Sigma^*-L(M_1)$