一、实验背景及目的

学习完叠加原理和网络函数这一章的理论知识,为了进一步加深对叠加原理的理解,现在对叠加原理进行验证。

采用软件仿真,对叠加原理的使用情况进行验证,电路中使用多个独立源,通过不同的电流电压数据来对单个电路进行验证,同时也对叠加原理的适用条件进行验证,增强对叠加原理的记忆;采用控制变量的方法,从多个方面来验证叠加原理的正确性,避免随机性。

二、实验环境

Multisim 14.0 , Windows10

三、实验原理

1. 叠加原理的理论依据

含有单一激励的线性电路中,任一支路的响应都与此激励成正比关系。

2. 叠加原理

在线性电路中,任一支路的响应可以看成是电路中每一个独立电源单独作用 于电路时,在该支路产生的响应的代数和。

叠加原理只适用于线性电路,对于非线性电路并不适用。当只考虑单个电源作用时,其余电源置为 0,即电压源看做是短路,电流源看作是开路;电路中的受控源需保留;功率不能进行叠加计算(功率为电压和电流的乘积,对应的是电源的二次函数,故不能简单进行叠加); u, i 叠加时要注意各个分量的参考方向。

3. 实验方法

采用多次测量的方法对同一电路进行验证。通过改变电流源的电流大小和电 压源的电压大小,去观测同一支路上的响应是否满足叠加原理的关系。

对于同一电路,可以对不同支路上的响应进行观测(例如电压,电流)。

四、实验过程

1. 电路设计

电路中含有两个电压源和一个电流源,三个阻值均为 2Ω 的电阻。为了方便 去测量单个独立源作用时,支路上的响应,在设计电路的时候,根据电压源看 做是短路(用导线替代),电流源看作是开路(断开电路)的原则,设计如图 1

所示电路。

图 1 叠加原理验证电路

2. 电路等效及求解

图 1 中的电路可以等效于 6V 的电压源,12V 的电压源和 3A 的电流源分别单独作用时之和。这里以求解通过 R1 的电流 i 为例进行计算。假设在图 2 中通过 R_1 的电流为 i_1 ,在图 3 中通过 R_1 的电流为 i_2 ,在图 3 中通过 R_1 的电流为 i_3 。

(下图中电表的示数均是未仿真前的示数)

图 2 中的电路只有 6V 的电压源作用,其余电源置 0 后,等效于 R_2 和 R_3 并联 后再和 R_1 串联。此时 $R^{'}=R_2R_3/(R_2+R_3)=1$ Ω ,则 $i_1=u_1/(R_1+R^{'})=2A$ 。

图 2 6V 电压源单独作用的等效电路

图 3 中的电路只有 3A 的电流源单独作用,其余电源置 0 后,等效于 R_2 和 R_3 的等效电路再和 R_1 并联。此时 $R'=R_2R_3/(R_2+R_3)=1\Omega$,则 $i_2=R'i/(R_1+R')=1A$

图 3 3A 的电流源单独作用的等效电路

图 4 中的电路只有 12V 的电压源单独作用,其余电源置 0 后,等效于 R_1 和 R_2 的等效电路并联后和 R_3 串联。 $R_1 = R_1 R_2/(R_1 + R_2) = 1$ Ω 则 $i_3 = u_2/(R_1 + R_3)/2 = 2A$ 。

图 4 12V 的电压源单独作用的等效电路

五、实验结果

1. 不同支路的实验结果

启动软件仿真,图 1 的仿真结果如下,电流 i 为-1A, 负号表示方向与之前假设的方向相反。

图 2 仿真结果如下, 电流 i₁为 2A。与理论计算结果一致。

图 3 仿真结果如下,电流 i₂为-1A。与理论计算结果一致。

图 4 仿真结果如下, 电流 i₃为-2A。与理论计算结果一致。

 R_1 所在支路上电流 $i=i_1+i_2+i_3$,满足叠加原理。同时在 R_2 所在支路上的电流也满足叠加原理。

2. 不同激励源大小的实验结果

使用三种激励源方案,测量不同的电源作用下的 R_1 所在支路的电流结果如下表所示

激励源方案 1	电压源 u ₁ =5V	电流源 i _s =2A	电压源 u₂=10V
i=-0.667A	i ₁ =1.667A	i ₂ =-0.667A	i₃=-1.667A

激励源方案 2	电压源 u1=4V	电流源 is=4A	电压源 u2=9V
i=-1.5A	i ₁ =1.333A	i ₂ =-1.333A	i₃=-1.5A
激励源方案3	电压源 u ₁ =3V	电流源 i _s =5A	电压源 u₂=7V
i=-1.834A	i ₁ =1A	i ₂ =-1.667A	i₃=-1. 167A

经过验证,以上三种激励源的方案均满足叠加原理。

综上通过以上两种验证方案,验证了叠加原理的正确性。

六、总结反思

本次实验针对设计好的电路,从多个角度对叠加原理进行了验证,很好地证明了叠加原理的正确性。

通过本次实验,我对 Multisim 软件的使用更加熟练。从电路的设计到绘制成图,再到仿真过程验证叠加原理,学会了对电表的相关电学特性的设置,例如电流表的内阻趋于 0,电压表的内阻趋于无穷大,同时我对这些基本的电学物理规律也有了更进一步的理解,加深了印象。

