REC'D 0 2 SEP 2004

WIPO

PCT

13. 7. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 7月11日

出 願 番 号 Application Number:

特願2003-273378

[ST. 10/C]:

[JP2003-273378]

出 願 人
Applicant(s):

松下電器產業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1 (a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 8月19日

【書類名】 特許願

【整理番号】 2900655348

【提出日】平成15年 7月11日【あて先】特許庁長官殿【国際特許分類】H03L 1/00

【発明者】

【住所又は居所】 神奈川県横浜市港北区綱島東四丁目3番1号 パナソニックモバ

イルコミュニケーションズ株式会社内

【氏名】 李 継峰

【特許出願人】

【識別番号】 000005821

【氏名又は名称】 松下電器産業株式会社

【代理人】

【識別番号】 100105050

【弁理士】

【氏名又は名称】 鷲田 公一

【手数料の表示】

【予納台帳番号】 041243 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9700376

【請求項1】

所定サイズのウィンドウに対して複数の処理系統で並列に復号演算を行う復号装置であって、

前記ウィンドウ内において前記複数の処理系統数だけ前の時点の前方確率から現時点の 前方確率を順次演算する前方確率演算手段と、

前記ウィンドウ内において前記複数の処理系統数だけ後の時点の後方確率から現時点の 後方確率を順次演算する後方確率演算手段と、

前記前方確率および前記後方確率を用いて尤度情報を演算する尤度演算手段と、 を有することを特徴とする復号装置。

【請求項2】

前記後方確率演算手段は、

前記ウィンドウより後の時点のデータをトレーニングデータとして現時点の後方確率を 演算することを特徴とする請求項1記載の復号装置。

【請求項3】

前記後方確率演算手段は、

前記複数の処理系統で共通のトレーニングデータを用いることを特徴とする請求項2記載の復号装置。

【請求項4】

請求項1から請求項3のいずれかに記載の復号装置を有することを特徴とする基地局装置。

【請求項5】

請求項1から請求項3のいずれかに記載の復号装置を有することを特徴とする移動局装置。

【請求項6】

所定サイズのウィンドウに対して複数の処理系統で並列に復号演算を行う復号方法であって、

前記ウィンドウ内において前記複数の処理系統数だけ後の時点の後方確率から現時点の 後方確率を順次演算するステップと、

前記ウィンドウ内において前記複数の処理系統数だけ前の時点の前方確率から現時点の 前方確率を順次演算するステップと、

前記前方確率が演算されるごとに前記前方確率および前記後方確率を用いて尤度情報を 演算するステップと、

を有することを特徴とする復号方法。

【曹類名】明細書

【発明の名称】復号装置および復号方法

【技術分野】

[0001]

本発明は、復号装置および復号方法に関し、特に、Max-Log-MAPアルゴリズムを用いたターボ復号を行う復号装置および復号方法に関する。

【背景技術】

[0002]

近年、第四世代移動体通信に採用される方式の最も有力な候補として、VSF-OFCDM (Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplex ing:可変拡散率直交周波数・符号分割多重)が注目されている。VSF-OFCDMが採用された場合には、およそ50-100MHzの帯域幅を用いて、100Mbps以上の最大伝送速度を実現することが可能となる。このような超高速な通信方式には、誤り訂正方式としてターボ符復号の適用が有効である。

[0003]

ターボ符復号方式は、送信データに対して、畳み込み符号化とインタリーブを併用し、 復号時に繰り返し復号することを特徴としている。繰り返し復号処理をすることにより、 ランダム誤りはもちろんのこと、バースト誤りに対しても優れた誤り訂正能力を示すこと が知られている。

[0004]

以下、ターボ復号の手順について簡単に説明する。

[0005]

ターボ復号の処理手順は、大きく前方確率算出、後方確率算出、および尤度情報算出に 分けられる。

[0006]

前方確率 α の算出は、下記の式(1)により状態ごとに行われる。

[0007]

【数1】

$$\log \alpha_k(m) = \log \sum_{m' \ni (m' \to m)} e^{\log \alpha_{k-1}(m') + \log \gamma_k(b)} \cdot \cdot \cdot \stackrel{\sim}{\Longrightarrow} (1)$$

上式(1)において、 $log\alpha$ は対数領域での前方確率、kは時点、mおよびm、は状態遷移トレリス上における状態をそれぞれ示している。すなわち、式(1)の左辺は、時点kの状態mにおける前方確率を自然対数で示している。また、上式(1)において、 $log\gamma$ は対数領域での移行確率、m、 $\exists (m'\rightarrow m)$ は状態mへ遷移可能なすべての状態m、b は送信信号の組み合わせ、すなわちシステマチックビットとパリティビットの取り得る組み合わせを示している。

[0008]

式 (1) から明らかなように、前方確率 α_k は、前時点 (k-1) における前方確率 α_k -1から算出される。

[0009]

次に、後方確率 β の算出は、下記の式(2)により状態ごとに行われる。

[0010]

【数2】

$$\log \beta_k(m) = \log \sum_{m' \exists (m' \to m)} e^{\log \beta_{k+1}(m') + \log \gamma_{k+1}(b)} \cdot \cdot \cdot \overrightarrow{\pi} (2)$$

計算法は前方確率とほぼ同様であるが、大きく異なる点は、後方確率 β_k は、後時点(k+1)における後方確率 β_{k+1} から算出される点である。つまり、前方確率は、時間軸上の順方向に計算していくのに対して、後方確率は、時間軸上の逆方向に計算していくことになる。

[0011]

次に、尤度情報L(uk)の算出は、下記の式(3)によって行われる。

[0012]

【数3】

$$L(u_k) = \log \frac{\sum_{u_k=0}^{n} e^{\log \alpha_{k-1}(m') + \log \beta_k(m) + \log \gamma_k(b)}}{\sum_{u_k=1}^{n} e^{\log \alpha_{k-1}(m') + \log \beta_k(m) + \log \gamma_k(b)}} \cdot \cdot \cdot \overrightarrow{\pi}_{k}$$
(3)

式(3)において、分子は送信信号中のシステマチックビット $u_k = 0$ となるすべての状態遷移の組み合わせにおける演算を表し、分母は $u_k = 1$ となるすべての状態遷移の組み合わせにおける演算を表す。

[0013]

上式(1)~(3)の計算は、非常に煩雑であるため、ターボ復号の1つのアルゴリズムであるMax-Log-MAPアルゴリズムにおいては、式(4)に示す近似式が用いられる。

[0014]

【数4】

$$\log(e^A + e^B) = \max(A, B) + \log(1 + e^{-|A-B|})$$
 · ·式 (4)

式 (4) を用いて式 (1) および式 (2) を変形すると、それぞれ以下の式 (5) および式 (6) のようになる。

[0015]

【数5】

$$\alpha_{k}(m) = \max_{m'} \left(\alpha_{k-1}(m') + \gamma_{k-1}(m', m) \right) \qquad \cdot \cdot \cdot \stackrel{\mathbf{T}}{\mathbf{T}} (5)$$

$$\beta_{k}(m) = \max_{m'} \left(\beta_{k+1}(m') + \gamma_{k+1}(m', m) \right) \qquad \cdot \cdot \stackrel{\mathbf{T}}{\mathbf{T}} (6)$$

さらに、これらの式 (5), (6) を用いて式 (3) を変形すると、以下の式 (7) のようになる。

[0016]

【数6】

$$L(u_{k}) = \max_{\substack{(m',m)u_{k}=0\\ (m',m)u_{k}=1}} (\alpha_{k-1}(m') + \beta_{k}(m) + \gamma_{k}(m',m)) - \max_{\substack{(m',m)u_{k}=1\\ (m',m)u_{k}=1}} (\alpha_{k-1}(m') + \beta_{k}(m) + \gamma_{k}(m',m)) \cdot \cdot \cdot \ddagger (7)$$

 $Max-Log-MAPアルゴリズムを用いたターボ復号においては、式(7)を用いて算出された尤度情報 <math>L(u_k)$ が閾値 0 と比較され、尤度情報 $L(u_k)$ が 0 以上であれば、時点 k で送信されたシステマチックビット $u_k=1$ と硬判定され、尤度情報 $L(u_k)$ が 0 未満であれば、時点 k で送信されたシステマチックビット $u_k=0$ と硬判定される。

[0017]

ここで、式(7)に示したように、時点kにおける尤度情報算出のためには、時点(k-1)における前方確率 α_{k-1} 、ならびに時点kにおける後方確率 β_k および移行確率 γ_k が必要となる。このとき、時点1-k における各時点での前方確率および後方確率を それぞれ算出し、その後、尤度情報を算出する場合は、全状態の全時点での確率値を記憶 する必要があるため、メモリ量は膨大なものとなる。

[0018]

このメモリ量を削減するためには、例えば以下のような算出手順を取ることが考えられる。すなわち、まず後方確率を時点k~1について算出し、メモリへ蓄積する。次に時点ごとに前方確率を算出し、この前方確率および先に算出した後方確率より、尤度情報を逐次的に算出する。この方法によれば、算出された前方確率が即座に尤度情報の算出に用いられるため、前方確率の蓄積は行われず、前方確率の蓄積の分だけメモリ量を削減することができる。

[0019]

[0020]

さらに、スライディングウィンドウ法において、確率値および尤度情報の演算をパラレルに行うことにより、演算の高速化を図ることができる。すなわち、例えば図 5 (a) に示すように、全系列nWのデータがn個のウィンドウに分割される場合、このウィンドウを並列に処理することにより、演算の高速化を図ることができる。例えば図 5 (b) に示すように、#1および#2の2つの処理系統によって並列に演算を行うことにより、演算時間を半分にすることができる。

【非特許文献 1】Andrew J. Viterbi, "An Intuitive Justification and a Simpli fied Implementation of the MAP Decoder for Convolutional Codes", IEEE J. Se 1. Areas Commun., vol.16, no.2, pp.260-264, Feb.1998

【発明の開示】

【発明が解決しようとする課題】

[0021]

しかしながら、上述のようにパラレルにスライディングウィンドウ法を行う場合でも、ウィンドウサイズに対応する処理遅延が生じるという問題がある。特に、Max-Log-MAPアルゴリズムを用いて尤度情報 $L(u_k)$ を算出する場合、時点kが小さい方から順に算出する必要があるが、尤度情報 $L(u_k)$ の算出に必要な確率値は、各ウィンドウ内ではシリアルに算出されるため、ウィンドウを並列に処理しても、結局尤度情報 $L(u_k)$ の算出には遅延が生じることになる。

[0022]

この問題について、図6を参照して具体的に説明する。

[0 0 2 3]

図 6 は、スライディングウィンドウ法のウィンドウサイズが 6 4 である場合に、 2 つの処理系統 + 1 , + 2 によって尤度情報 L (u_k) を算出するタイミングの例を示す図である。図 6 (a) は、後方確率 β_k を算出するタイミングを示し、図 6 (b) は、前方確率 α_k を算出するタイミングを示し、図 6 (c) は、尤度情報 L (u_k) を算出するタイミングを示している。

[0024]

図 6 (a) において、後方確率 $\beta_{63}\sim\beta_0$ および後方確率 $\beta_{127}\sim\beta_{64}$ を算出するために、それぞれトレーニング区間が設けられている。トレーニング区間の先頭(ここでは、 β_{95} および β_{159})は、常に 0 と仮定され、トレーニング区間内で上記の式(6)の演算が行われることにより、ウィンドウ内の後方確率 $\beta_{63}\sim\beta_0$ および後方確率 $\beta_{127}\sim\beta_{64}$ を正しく算出することができる。したがって、トレーニング区間としては、少なくとも 2 0 程度のサイズが必要となる。

[0025]

図 6 (a)においては、時刻T1で後方確率 β 0, β 64の算出が完了する。各処理系統 # 1, # 2 は、引き続き後方確率 β 191~ β 128 および後方確率 β 255~ β 192を算出する。 【 0 0 2 6 】

そして、図 6 (b) に示すように、時刻 T 1 から前方確率 α 0 α α 63 および α 64 α α 127 の算出が開始される。このとき、前方確率 α 64 α α 127 の算出に関しては、 α 32 α 0 と仮定し、 α 32 α α 63 がトレーニング区間となっている。

[0027]

一方、図6 (c) に示すように、時刻T1から尤度情報L (uo) ~L (u63) の算出

[0028]

しかし、時刻T1において、後方確率 β 64~ β 127が既に算出されており、前方確率 α 64も算出されているにも拘わらず、処理系統#2は、尤度情報L(u64)を算出することができずに待機する。これは、上述したように尤度情報L(u164)は、時点 μ 16分から順に算出される必要があるが、時刻 μ 16分では、尤度情報 μ 16分であり、尤度情報 μ 16分であり、尤度情報 μ 16分であり、尤度情報 μ 16分である。

[0029]

したがって、図 6 (c)に示すように、時刻T1から処理系統#1によって尤度情報L(u_0)~L(u_{63})が算出され、時刻T2から処理系統#2によって尤度情報L(u_{64})~L(u_{127})が順次算出される。

[0030]

つまり、後方確率および前方確率の算出は完了しているにも拘わらず、尤度情報の算出 に際して並列処理を行うことができず、ウィンドウサイズに対応する処理遅延が生じてし まう。この処理遅延を小さくするためには、ウィンドウサイズを小さくすれば良いが、ウ ィンドウサイズを小さくした場合には、ウィンドウ数が増加することになり、これに伴っ てトレーニング区間に対する処理量が増大する。トレーニング区間は、実際の復号には寄 与しない区間であるため、トレーニング区間に対する処理量が増大すれば、全体の処理量 は増大し、結果として回路規模が増大することがある。

[0031]

本発明は、かかる点に鑑みてなされたものであり、処理量および回路規模の増大を抑制 しつつ、高速に尤度情報を算出することができる復号装置および復号方法を提供すること を目的とする。

【課題を解決するための手段】

[0032]

本発明の復号装置は、所定サイズのウィンドウに対して複数の処理系統で並列に復号演算を行う復号装置であって、前記ウィンドウ内において前記複数の処理系統数だけ前の時点の前方確率から現時点の前方確率を順次演算する前方確率演算手段と、前記ウィンドウ内において前記複数の処理系統数だけ後の時点の後方確率から現時点の後方確率を順次演算する後方確率演算手段と、前記前方確率および前記後方確率を用いて尤度情報を演算する尤度演算手段と、を有する構成を採る。

[0033]

この構成によれば、処理系統数だけ前後の時点の前方確率および後方確率から現時点の前方確率および後方確率を演算するため、各ウィンドウ内においても複数の処理系統が並列に確率値の演算を行うことができ、確率値が演算されるごとに後段の尤度演算を行って、処理量および回路規模の増大を抑制しつつ、高速に尤度情報を算出することができる。

[0034]

本発明の復号装置は、前記後方確率演算手段は、前記ウィンドウより後の時点のデータをトレーニングデータとして現時点の後方確率を演算する構成を採る。

[0035]

この構成によれば、処理対象のウィンドウより後の時点のデータをトレーニングデータ として現時点の後方確率を演算するため、任意のウィンドウに関して後方確率の演算処理 を行うことができる。

[0036]

本発明の復号装置は、前記後方確率演算手段は、前記複数の処理系統で共通のトレーニングデータを用いる構成を採る。

[0037]

この構成によれば、複数の処理系統で共通のトレーニングデータを用いるため、トレー

[0038]

本発明の基地局装置は、上記のいずれかに記載の復号装置を有する構成を採る。

[0039]

この構成によれば、上記のいずれかに記載の復号装置と同様の作用効果を基地局装置において実現することができる。

[0040]

本発明の移動局装置は、上記のいずれかに記載の復号装置を有する構成を採る。

[0041]

この構成によれば、上記のいずれかに記載の復号装置と同様の作用効果を移動局装置において実現することができる。

[0042]

本発明の復号方法は、所定サイズのウィンドウに対して複数の処理系統で並列に復号演算を行う復号方法であって、前記ウィンドウ内において前記複数の処理系統数だけ後の時点の後方確率から現時点の後方確率を順次演算するステップと、前記ウィンドウ内において前記複数の処理系統数だけ前の時点の前方確率から現時点の前方確率を順次演算するステップと、前記前方確率が演算されるごとに前記前方確率および前記後方確率を用いて尤度情報を演算するステップと、を有するようにした。

[0043]

この方法によれば、処理系統数だけ前後の時点の前方確率および後方確率から現時点の前方確率および後方確率を演算するため、各ウィンドウ内においても複数の処理系統が並列に確率値の演算を行うことができ、確率値が演算されるごとに後段の尤度演算を行って、処理量および回路規模の増大を抑制しつつ、高速に尤度情報を算出することができる。

【発明の効果】

[0044]

本発明によれば、処理量および回路規模の増大を抑制しつつ、高速に尤度情報を算出することができる。

【発明を実施するための最良の形態】

[0045]

本発明の骨子は、ウィンドウ単位で並列処理を行うとともに、ウィンドウ内における演算処理も並列に行うことである。

[0046]

以下、本発明の一実施の形態について、図面を参照して詳細に説明する。

[0047]

図1は、本発明の一実施の形態に係る復号装置の全体構成を示すプロック図である。同図に示す復号装置は、インタリーバ100、復号器110、インタリーバ120、復号器130、デインタリーバ140、デインタリーバ150、硬判定部160、および誤り検出部170を有している。なお、図1に示す復号装置は、ターボ符号化によって得られる情報ビットそのものであるシステマチックビットxa、情報ビットを畳み込み符号化して得られるパリティビットxb、および情報ビットをインタリーブ後に畳み込み符号化して得られるパリティビットxcに、それぞれ通信路における雑音が付加されたシステマチックビットya、パリティビットyb、およびパリティビットycを復号するものとする。

[0048]

インタリーバ100は、システマチックビット yaをインタリープする。インタリーバ100によるインタリープは、符号化側におけるインタリープと同様にして行われる。

[0049]

復号器110は、軟入力軟出力の復号器であり、前回の復号結果から得られる事前情報 尤度Leとシステマチックビットyaとパリティビットybとを用いて復号を行い、復号結 果をインタリーバ120へ出力する。復号器110による復号については、後に詳述する [0050]

インタリーバ120は、復号器110の復号結果をインタリーブする。インタリーバ1 20によるインタリーブは、符号化側におけるインタリーブと同様にして行われる。

[0051]

復号器130は、軟入力軟出力の復号器であり、インタリーバ120から出力される事前情報尤度とインタリーバ100から出力されるシステマチックビット yaとパリティビット ycとを用いて復号を行い、復号結果をデインタリーバ140およびデインタリーバ150へ出力する。

[0052]

デインタリーバ140およびデインタリーバ150は、復号器130の復号結果をデインタリーブする。デインタリーバ140およびデインタリーバ150によるデインタリーブは、インタリーバ100またはインタリーバ120によるインタリーブを元に戻すようにして行われる。

[0053]

硬判定部160は、デインタリーバ150から出力される尤度情報を硬判定し、0または1の硬判定値を出力する。具体的には、硬判定部160は、デインタリーバ150から出力される尤度情報を閾値である0と比較し、尤度情報が0以上であれば硬判定値として1を出力し、尤度情報が0未満であれば硬判定値として0を出力する。

[0054]

誤り検出部170は、硬判定結果に付加されているCRC (Cyclic Redundancy Check) などの誤り検出符号を用いて誤り検出を行い、復号データを出力する。

[0055]

次いで、図2および図3を用いて、上記のように構成された復号装置における復号器の動作について具体的に説明する。

[0056]

図2は、復号器110の内部構成を示すプロック図である。同図に示すように、復号器110は、移行確率演算部111、後方確率演算部112、前方確率演算部113、記憶部114、および尤度演算部115を有している。なお、復号器130も復号器110と同様の内部構成を有しているものとする。また、以下の復号動作は、所定サイズのウィンドウ単位で行われるものとする。

[0057]

まず、前回の復号結果から得られる事前情報尤度 L_e 、システマチックビット y_a 、およびパリティビット y_b が移行確率演算部 1 1 1 へ入力され、移行確率が演算される。以下では、時点 k において状態遷移トレリス上の状態m から状態mへ移行する移行確率を γ k (m, m) と表記する。

[0058]

算出された移行確率 γ_k (m', m)は、後方確率演算部 1 1 2 および前方確率演算部 1 1 3 α 出力され、それぞれ後方確率および前方確率が算出される。以下では、時点 k の状態mにおける後方確率を β_k (m) と表記し、時点 k の状態mにおける前方確率を α_k (m) と表記する。

[0059]

ここで、後方確率演算部 1 1 2 および前方確率演算部 1 1 3 による確率値の算出について説明する。

[0060]

上述したように、前方確率 α_k (m) および後方確率 β_k (m) は、式(5), (6) によって算出される。式(5), (6) は、それぞれ以下の式(8), (9) のように変形することができる。

[0061]

【数7】

$$\alpha_{k-1}(m) = \max_{m} (\alpha_{k-2}(m') + \gamma_{k-2}(m',m)) \quad \cdot \cdot : 式 (8)$$

$$\beta_{k+1}(m) = \max_{m} (\beta_{k+2}(m') + \gamma_{k+2}(m',m)) \quad \cdot \cdot : 式 (9)$$

これらの式(8), (9)を再度式(5), (6)へ代入すると、以下の式(10), (11) が得られる。

[0062]

【数8】

$$\alpha_{k}(m) = \max_{m'} \left(\max_{m'} (\alpha_{k-2}(m'') + \gamma_{k-2}(m'', m')) + \gamma_{k-1}(m', m) \right)$$

$$= \max_{m'} \left(\alpha_{k-2}(m'') + \max_{m'} (\gamma_{k-2}(m'', m') + \gamma_{k-1}(m', m)) \right)$$

$$= \max_{m'} (\alpha_{k-2}(m'') + \mu_{k-2}(m'', m)) \quad \cdot \cdot \cdot \stackrel{\rightarrow}{\Rightarrow} (1 \ 0)$$

$$\stackrel{\rightarrow}{\Rightarrow} ($$

式(10)は、時点 k の前方確率 α_k を時点(k-2)の前方確率 α_{k-2} から算出することを示し、式(11)は、時点 k の後方確率 β_k を時点(k+2)の後方確率 β_{k+2} から算出することを示している。

[0063]

後方確率演算部 1 1 2 および前方確率演算部 1 1 3 は、それぞれ式(1 0),(1 1 を用いて、2 つの処理系統で並列に後方確率および前方確率を演算する。つまり、例えば後方確率演算部 1 1 2 における後方確率の演算においては、一方の処理系統が後方確率 β_{k+2} から後方確率 β_k を算出する間に、他方の処理系統が並行して後方確率 β_{k+1} から後方確率 β_{k-1} を算出する。具体的に k=1 の場合を考えると、k=1 k=1 k=1

[0064]

算出された後方確率は、ウィンドウ単位で記憶部 114 へ記憶される。また、後方確率と同様に、前方確率演算部 113 においても、2 つの処理系統によって、前方確率 α_k と前方確率 α_{k+1} が並行して算出される。前方確率が算出されると、尤度演算部 115 によって、前方確率および記憶部 114 に記憶されている後方確率が用いられ、上述した式(7)によって尤度情報が算出される。

[0065]

[0066]

以下、図3を参照して、尤度情報を算出するタイミングについて、具体的に説明する。 【0067】

おいて、後方確率 β 0および後方確率 β 1が算出される。

[0068]

図3 (b) は、前方確率演算部 1 1 3 における 2 つの処理系統# 1 , # 2 による前方確率 α_k の算出タイミングを示している。同図に示すように、処理系統# 1 は、時刻 T 1 から前方確率 $\alpha_0 \sim \alpha_{126}$ のうち時点 k が偶数であるものを順次算出していく。同様に、処理系統# 2 は、時刻 T 1 から前方確率 $\alpha_1 \sim \alpha_{127}$ のうち時点 k が奇数であるものを順次算出していく。

[0069]

図3(c)は、尤度演算部 1 1 5 における 2 つの処理系統 # 1 , # 2 による尤度情報 L (u_k) の算出タイミングを示している。同図に示すように、処理系統 # 1 は、時刻 \mathbb{T} 1 において尤度情報 L (u_0) を算出する。そして、処理系統 # 2 は、時刻 \mathbb{T} 1 において前方確率 α_0 および既に記憶部 1 1 4 に記憶されている後方確率 β_1 を用いて尤度情報 L (u_1) を算出する。

[0070]

このように従来とは異なり、処理系統#2は尤度情報L(u_k)の算出を待機することが無く、並行処理を行うことができる。このため、図3(c)と図6(c)とを比較すれば明らかなように、尤度情報L(u_k)の演算を大幅に高速化することができる。

[0071]

このように、本実施の形態によれば、処理系統数(ここでは 2)だけ前または後の時点の確率値から現時点での確率値を算出する演算を、各処理系統で並列に行うため、確率値を用いた尤度情報の算出における処理遅延が無く、処理量および回路規模の増大を抑制しつつ、高速に尤度情報を算出することができる。

[0072]

なお、本実施の形態においては、トレーニング区間のサイズを32とし、ウィンドウサイズを64として説明したが、本発明はこれらのサイズに限定されない。トレーニング区間のサイズとしては、約20程度以上であれば良い。

[0073]

また、本実施の形態においては、2つの処理系統で並列に演算する場合について説明したが、処理系統数は2以上であればいくつでも良い。この場合には、式(10),(11)と同様の考え方で、前方確率および後方確率を処理系統数だけ前および後の時点の前方確率および後方確率で表す式を用いれば良い。すなわち、処理系統数をm(mは2以上の整数)とすれば、前方確率 α_k および後方確率 β_k をそれぞれ前方確率 α_{k-m} および後方確率 β_{k+m} で表す式を用いて確率値を演算すれば良い。

[0074]

また、例えば図4に示すように、トレーニング区間についてはいずれか1つの処理系統のみにおいて連続した演算を行い、このトレーニング結果をすべての処理系統で共通して用いることにより、装置全体の演算量をさらに削減することができる。

【図面の簡単な説明】

[0075]

- 【図1】本発明の一実施の形態に係る復号装置の全体構成を示すブロック図
- 【図2】一実施の形態に係る復号器の内部構成を示すプロック図
- 【図3】一実施の形態に係る復号動作のタイミングの例を示す図
- 【図4】一実施の形態に係る復号動作のタイミングの他の例を示す図
- 【図5】 ウィンドウを用いた処理を説明するための図
- 【図6】スライディングウィンドウ法による復号動作のタイミングの例を示す図

【符号の説明】

[0076]

100、120 インタリーバ

110 復号器

111 移行確率演算部

- 112 後方確率演算部
- 113 前方確率演算部
- 114 記憶部
- 115 尤度演算部
- 130 復号器
- 140、150 デインタリーバ
- 160 硬判定部
- 170 誤り検出部

出証特2004-3074556

【課題】 処理量および回路規模の増大を抑制しつつ、高速に尤度情報を算出すること。

【選択図】 図2

特願2003-273378

出願人履歴情報

識別番号

[000005821]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

大阪府門真市大字門真1006番地

氏 名 松下電器産業株式会社