- The Complete Decommissioning Chemical Engineering Building

Harwell Projects Department Ed Abel and Clive Hamblin Southern Division International Conference on Nuclear Decommissioning '98, London, 2-3 December 1998

Seven Storeys of Decommissioning

Internal Decommissioning B351 Life Cycle: 1950 - 1997+

Seven Storeys of Decommissioning

Seven Years

Seven Storeys of Decommissioning

Building Dimensions	nensions	Building Fabric	abric
Height x Width x Length	27 x 50 x 115m	Asbestos Cladding	$3,500 \mathrm{m}^2$
Enclosed Volume & Pit Volume	44,6000m ³ & 850m ³	Enclosed Volume & 44,6000m³ & Amount of Concrete Pit Volume 850m³ & Brickwork	4,000m³ & 900m³
Floor Area Covered by Lino	$3,600\mathrm{m}^2$	Amount of Structural Steel	1,200te
Lab & Office Area	4,030m ²	Length of Ductwork	4,200m
Area of Metal Floor 1,700m ² Plates	$1,700\mathrm{m}^2$	Length of Lagged pipework	2,500m
Total Floor Area	$10,351 \mathrm{m}^2$	Depth of Basemat	2.1m

Background (i)

- Design began in 1946
- New design in 1948, built 1950-1952
- · Galleries + big shielded cells & large Storage Pit
- · Experimental, not Preproduction (Windscale)

Seven Storeys of Decommissioning

Background (ii)

Seven Storeys of Decommissioning

Background (iii)

- became cannibalised for the 233U Pilot Plant Six The Large Cells
- fuel cutting, breakdown & dissolution as well as highly active effluents The Pit was used for

Seven Storeys of Decommissioning

Background (iv)

Suites of cubicles

- contained Homogeneous Aqueous Reactors ZETR and HAZEL
 - Many experiments on:
- fission product melting uranium/thorium MOX processing

Background (v)

- In the 1960s new work focused on vitrification, reprocessing, corrosion, separation technology and Na mass transfer
- Diversification into nonnuclear areas:
 - chemical processing
- pharmaceuticals desalination

 - heat transfer

Seven Storeys of Decommissioning

Reasons for Decommissioning

- UKAEA split into nine businesses, six in B351 A high cost building
- No long term prospect of commercial sponsor(s) Approximately 200
 - RDAs to manage
- Need for co-ordination
- Site license conditions

Seven Storeys of Decommissioning

Decommissioning Planning

- · Looked at options for retaining some parts of building
- · Analysed all areas for decommissioning and waste costs
- Considered mothballing with C&M and deferred decommissioning and with prompt decommissioning
- Concluded that best option was prompt decommissioning, as funding permitted

Seven Storeys of Decommissioning

The Decommissioning Programme

- Building Clearance
- FINGAL
- Mk I Gel Precipitation SEPP & U Evaporator
- CDFR Dissolver
- Main Active Ventilation
 - Building Demolition
- Waste Management

Analytical Laboratory (i)

- Refurbished in 1957
- · Chemical & radioactive hazards
- Dedicated ventilation
- · Legacy contamination
- Asbestos in roof spaces & voids
- Unsafe hidden wiring

Seven Storeys of Decommissioning

Analytical Laboratory (ii)

- Mix of in-house & competitive tender
- Archive research
- Cautious, piecewise approach to reduce risks
- Ductwork wrapped for local size reduction
- Segregation of wastes

Seven Storeys of Decommissioning

Analytical Laboratory - Work Phases

Work Phases

Carried out by

nce & radiological surveys Occupants, building surveyors

1st clearance & radiological surveys Service isolations Exposure of hidden bazards

Asbestos removal from pipe voids Decommissioning of fume cupboards & active ventilation Floor & wall scabbling
Cables stripped from roof voids
Asbestos removal from roof voids
Demolition (with main building)

Building electricians, Site Services
Decommissioning contractor
Specialised contractor
Contractor from Competitive Tender

Building electricians Specialised contractor Contractor from Competitive Tender

Term Contractor

M UKAEA

Seven Storeys of Decommissioning

Mild Steel Loop (i)

- High temperature & pressure corrosion loop
- Test sections still had Na sections from CDFR
- Isolated, but still left connected to mains
- Multiple feeds
- · Directly above Na Lab
- Marie Celeste effect

Mild Steel Loop (ii)

- Wiring stripped out (un- Disconnected & drained former drained of PCB · High current Transcnown feeds found)
- hydraulic shears (inactive trial for FINGAL work) Pipework cut out with
- Na sections removed when accessible

Seven Storeys of Decommissioning

FINGAL- abandoned vitrification cell (i)

- Used active liquors from Windscale (10¹⁵Bq) · Early 1960s plant
- Built into Storage Pit with shielded roof blocks Incidents led to cell and
- Abandoned in mid-60s in favour of Harvest and rotary calciners

Seven Storeys of Decommissioning

FINGAL (ii)

- block and y gate removed · FINGAL Flask, active
- Several controlled in-cell records for as-built details · Unproductive search of inspections + surveys
- · Intrusive survey from roof with cctv and telescopic β/γ probe
- tackle decommissioning · Planned approach to

M UKAEA

Seven Storeys of Decommissioning

FINGAL (III)

Cell contained Pb wall

>2.5m high with ~800

- Access limited to narrow contaminated and decrepit corridor and 0.75m door Ventilation system
 - large quantities of LLW No way to deal with

W UKAEA

FINGAL (iv)

Mobile Filtration Unit

- · HISO facility built in Pit and folding cranes used to 4000 cfm) fitted to RDP Modified stacker truck aid manual handling using 50 ton crane
 - · Improved tooling, audio & cctv communications

Seven Storeys of Decommissioning

FINGAL & Pit Concrete

- Roof blocks removed, cored & decontaminated
- Support walls broken down and disposed of
- · Wall bulk removal trials
- Remaining areas cleaned and scabbled/scarified

Seven Storeys of Decommissioning

MkI Gel Precipitation Lab (i)

- Used to prepare U/Th spheres for fuel studies
- Simple construction, could still use building · additional hazards of ventilation system
- nitric acid, organic solvents and ammonia
- adjacent structures and equipment contaminated

Seven Storeys of Decommissioning

Mkl Gel Precipitation Lab (ii)

- · Was U storage area and High Temperature Lab
 - main wall (14m x 14m) · Catch tray floor and contaminated
- · Temporary walls hid old contaminated items
- cctv used to monitor work Remote low-loss cabled
- · Cherry-picker for survey

SEPP & the Uranium Evaporator (i)

- during fuel reprocessing · Studies of U recovery
- 12m tall extraction columns 80m3 Cubicle with several over five floors
- Mixer Settler Cubicle
- concentrate uranyl nitrate · Evaporator Plant to
 - Contaminated TBP/OK

Seven Storeys of Decommissioning

Competitively Tendered SEPP & the Uranium Evaporator (ii)

- cubicles
 - · Working at height
- Confined spaces
- · Corrosive chemicals
- Evaporator contained & vented to building ducts

Seven Storeys of Decommissioning

SEPP & the Uranium Evaporator (iii)

- No easy disposal route for contaminated solvents
- packed into larger vessels Contaminated pipework • Solvent drained to two SEPP tanks until process and placed in HISOs
 - options determined
- Ion-exchange process developed for TBP/OK

UKAEA

Seven Storeys of Decommissioning

The CDFR Dissolver (i)

- Studies of dissolution of spent fast reactor breeder fuel in various dissolvers
- 100m3 ventilated cubicle with off-gas treatment
 - Large storage tanks for liquors (conc. HNO₃, NaOH, uranyl nitrate)
 - Substantial stainless steel dissolver

The CDFR Dissolver (ii)

- Competitively Tendered
- analysed and disposed of · "POCO" completed by contractors - liquors
- Decommissioning used cubicle containment + new ventilation
- · Most materials clean
- · In situ plasma cutting of main dissolver

Seven Storeys of Decommissioning

Main Active Ventilation System (i)

- (~4km and up to 3m x 3m) through building to two Plant Rooms · Mainly mild steel ducts
- Most with HEPA filters
- Runs tented to allow safe · Competitively Tendered
- · Old ducts insulated with cork and asbestos cement

Seven Storeys of Decommissioning

Main Active Ventilation System (ii)

Seven Storeys of Decommissioning

Main Active Ventilation System (iii)

- housings size reduced in special facility in B351 · All ductwork, fans and
 - Decontamination used when beneficial
- Cold cutting techniques developed and used (band saws, nibblers, etc)
- Flat-packed waste sent to B351 HISOs for disposal

Building Demolition - West Wing (i)

- Used as "safe" trial for main building
- Services disconnected & asbestos removed
- floor coverings, partitions, fume cupboards and duct-All equipment, cubicles, work removed
- surveyed, decontaminated · Floor plates and joists and removed

Seven Storeys of Decommissioning

Building Demolition - West Wing (ii)

- Asbestos wall cladding Roof demolished manually stripped
- Structural steel removed
- Proved need to lift plates
- Proved benefits of long range surveillance cctv for management control
- reach deployment of man-Proved benefits of long

Seven Storeys of Decommissioning

Building Demolition - Delay Tanks (i)

Complex to green field

North Delay Tank

etting removed most of

contamination

· High pressure water

 Up-ended tanks allowed decontamination work non-confined space

 Mass size reduction of tank by hydraulic shear

W UKAEA

Seven Storeys of Decommissioning

Building Demolition - Delay Tanks (ii)

eventually backfilled with Complex totally cleared, B351 rubble and capped · South Delay Tank Pit

selective flame cutting) to precautions burial levels Tanks also cleaned (by free release and special HP water jetting and

Pump house demolished

Main Building Demolition (i)

- Competitively Tendered
- 11m from Site Boundary) Environmental Impact Assessment (B351 was
- · Vibration, noise and dust control measures in ITT
- installed on masts, relayed to new Project Offices close to site Surveillance cctv

Seven Storeys of Decommissioning

Main Building Demolition (ii)

close, load-bearing access to North Side of building Storage Pit backfilled with this rubble to allow

frames via scaffolding and Asbestos cement panels removed from cladding

Seven Storeys of Decommissioning

Main Building Demolition (iii)

structures collapsed using progressive cutting of Main steel/concrete wrecking ball and steel

· Continuous radiological surveys and environmental monitoring

· Demolition completed in August 1997 but basemat and capped Pit on C&M

W UKAEA

Seven Storeys of Decommissioning

Main Building Demolition (iv)

Waste Management (i)

- sampling rigorously applied to help segregation and · Radiation monitoring and minimise volumes
- determined before work Waste fingerprints
- spectrometry identified • gross activity with β analysis and $\alpha\text{-}$ and $\gamma\text{-}$ compliance for Drigg isotopes and checked

M UKAEA

Seven Storeys of Decommissioning

Waste Management (ii)

- HISOs (non-compactable) 2001 bins (compactable),
 - material (U + Th) as contact handled ILW -1 tonne of nuclear
- FINGAL block as 5401 • 1000's of chemical ILW in own flask
- quantity bulk materials Audited disposals

W UKAEA

M. UKAEA

Seven Storeys of Decommissioning

Waste Management (iii)

and Delay and Storage Pits) Chemical waste sentenced • Materials recycled on the B351 site (backfill of ducts through AEAT's HDS

sold or to landfill via skips Non-hazardous wastes

ination techniques failed to LLW volumes close to estimates but decontamscale up adequately

Seven Storeys of Decommissioning

Disposals	Estimate (Including Actual HISOs) Plan	10.5 - 540	46.7 32.0 - 0	26.5 23.6 - 1,227	33.0 54.6 18.0 30	262.7 239.6 133.5 0	27.9 89.5 58.5 2,450	135.0 157.1 133.2 100	75.0 91.4 44.4 100	
LLW & ILW	Financial Esti Year from	1990/91	1991/92	1992/93 2	1993/94 3	1994/95 26	1995/96 2	1996/97 13	7 86/2661	TA HOL

Conclusions (i)

- B351 was complicated, contaminated and large
- Safe and successful decommissioning to plan and within budget
- Careful planning by resident management and direct control of all tasks minimised problems, reduced risks and costs
- Consistent standard of work was the result of continuity of the management team and a common approach to contractors

Seven Storeys of Decommissioning

Conclusions (ii)

- FINGAL drove choice of HISOs but this proved to be the best solution for B351 waste controlled size reductions for ventilation and easy cross-site transfers
- All tasks subject to rigorous safety assessments and controlled by Method Statements and Permits to Work
- All Contractors underwent site and building specific training
- There were no serious incidents or accidents

Seven Storeys of Decommissioning

Conclusions (iii)

- CCTV used where areas could not be easily observed - plant/duct inspections and inside containments
- Installed, controllable surveillance systems gave managers direct views of work in progress and allowed progress to be noted safely from a distance
- Techniques developed and used in this project and the lessons learnt have been applied to other UKAEA projects with equal success

Seven Storeys of Decommissioning

The Team

