openAR

OpenCV based Augmented Reality

Introduction

Computer Vision for HCI

Improved extraction of data from real world unlike traditional codes

- Real-time implementation
- Execution on streaming and still image
- Deterministic approach
- Implementation in C/C++

2D markers and recognition

Two Dimensional bit pattern is used as fiduciary marker.

Bit array marker corresponds to a unique Identification number.

Improved detection with addition of Error correcting bits.

Sample 16 bit Marker

Implementation

Image Capture

Grayscale conversion

Adaptive Threshold

Threshold by Otsu method

Connected component Analysis

Connectivity

Corner Detection

Marker Classification

Marker Decoding

16 bit Binary Data-

1	0	1	1
0	0	0	1
0	1	0	0
1	1	1	0

Marker Validation

Augmentation (Overlay image)

Augmentation (cont'd.)

Key features

Simple, Fast and Accurate

Increased performance by reducing the use of template matching

Cross-platform library used as backbone

Thank You