NMMB331 - HW1 Jan Oupický

1

 \mathbf{a}

2

a

3

Let's denote $x=\gcd(m,d), y=\gcd(2^m-1,2^d-1)$. We know that $y|2^m-1$ and $y|2^d-1 \implies 2^m \equiv 1$ $(y), 2^n \equiv 1$ $(y) \implies ord_{\mathbb{Z}_y}(2)|m, ord_{\mathbb{Z}_y}(2)|d \implies ord_{\mathbb{Z}_y}(2)|\gcd(m,d)=x$. Therefore $2^x \equiv 1$ $(y) \iff \gcd(2^m-1,2^d-1)|2^x-1$.

Let's denote $x = \gcd(m,d), y = \gcd(2^m - 1, 2^d - 1)$. Assume that $a|2^m - 1, 2^d - 1 \iff 2^m \equiv 1 \ (a), 2^n \equiv 1 \ (a) \iff ord_{\mathbb{Z}_a}(2)|m,d \iff ord_{\mathbb{Z}_a}(2)|\gcd(m,d) = x \iff 2^x \equiv 1 \ (a)$. There have been equivalences everywhere so we have shown $a|2^m - 1, 2^d - 1 \iff a|2^x - 1$. Therefore $2^m - 1, 2^d - 1$ and $2^x - 1$ have the same divisors and ultimately the same greatest one.