Exercice 1 : Intégrales de Wallis.

Pour tout entier $n \in \mathbb{N}$, on note $W_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$.

- 1. (a) Justifier que, pour $n \in \mathbb{N}$, l'intégrale W_n est bien définie.
 - (b) Calculer W_0, W_1 et W_2 .
 - (c) Montrer que, pour tout $n \in \mathbb{N}$, $W_n \ge 0$. Existe-t-il un entier $n \in \mathbb{N}$ tel que $W_n = 0$?
 - (d) Montrer que la suite $(W_n)_{\mathbb{N}}$ est décroissante.
- 2. (a) À l'aide d'une intégration par partie, montrer que, pour $n \in \mathbb{N}$,

$$W_{n+2} = \frac{n+1}{n+2}W_n.$$

- (b) Montrer que la suite $(w_n)_{\mathbb{N}}$ définie pour $n \in \mathbb{N}$ par $w_n = (n+1)W_nW_{n+1}$ est constante. Quelle est la valeur de cette constante? *Indication : on calculera* w_0 .
- 3. (a) Justifier que, pour $n \ge 1$, $W_{n+1} \le W_n \le W_{n-1}$ et en déduire que $\sqrt{\frac{\pi}{2(n+1)}} \le W_n \le \sqrt{\frac{\pi}{2n}}$.
 - (b) En déduire l'existence et la valeur de $\lim_{n\to+\infty} \sqrt{n}W_n$.

Les intégrales de Wallis permettent d'obtenir l'équivalent de Stirling $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$. Cette magnifique formule (si, si...) se traduit par $n! = \left(\frac{n}{e}\right)^n \sqrt{2\pi n} + o(1)$ lorsque n tend vers $+\infty$. Nous allons utiliser cette formule pour comparer n! et n^n lorsque n tend vers $+\infty$.

4. Soit $(v_n)_{\mathbb{N}}$ la suite définie par $v_n = \frac{n!}{n^n}$. À l'aide de l'équivalent de Stirling, montrer que $\lim_{n \to +\infty} v_n = 0$.

Exercice 2 : Étude d'une suite.

Soit $u_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. En appliquant la formule de Taylor-Lagrange (ou la formule de Taylor-Lagrange avec reste intégral) à la fonction $x \mapsto \ln(1+x)$, montrer que u_n converge vers $\ln 2$.

Exercice 3 : Avec la trigonométrie, on tourne en rond...

- 1. Montrer que $\int_0^{\frac{\pi}{4}} \ln(\cos(x)) dx = \int_0^{\frac{\pi}{4}} \ln\left(\cos(\frac{\pi}{4} x)\right) dx.$
- 2. En déduire la valeur de $\int_0^{\frac{\pi}{4}} \ln(1+\tan(x))dx$. Indication : on exprimera $1+\tan(x)$ en fonction de $\cos(\frac{\pi}{4}-x)$ et $\cos(x)$.

Exercice 4 : Calculus comme disent les américains...

Calculer les intégrales suivantes.

$$\int_0^1 \arctan x \, dx; \quad \int_0^1 (x^2 + 1) \cos x \, dx; \quad \int_e^3 \frac{1}{x(\ln x)^3} \, dx; \quad \int_0^{\pi/2} \sin^3 x \, dx.$$

Exercice 5 : Limite via développements limités.

Calculer les limites à l'aide des développements limités.

$$\lim_{x \to 0} \frac{(1 - e^x)\sin(x)}{x^2 + x^3}, \quad \lim_{x \to 0} \frac{\ln(\cos(3x))}{\sin^2(2x)}, \quad \lim_{x \to +\infty} e^{-x} \left(\sin\left(\sqrt{x^2 + x}\right) - \sin\left(\sqrt{x^2 - x}\right)\right).$$

Exercice 6 : Somme de Riemann.

- 1. Expliciter le résultat concernant le calcul d'une intégrale par les sommes des Riemann pour une fonction f continue sur [a;b] dans le cas d'une subdivision régulière, i.e. de pas $\frac{b-a}{n}$. Préciser ce résultat lorsque a=0 et b=1.
- 2. Calculer $\lim_{n\to+\infty}\sum_{k=1}^n\frac{k}{n^2}$ et $\lim_{n\to+\infty}\sum_{k=1}^n\frac{1}{n+k}$.