Bisection, Newton-Raphson, Secant, False-Position, and Modified Secant

Athena Ballensky CS 3010.02 Project 3

All of the variables used to calculate the root were of the data type double. I chose to use the double data type because I needed to select within the floating point category of data types to allow for values after the decimal point, and I also wanted a data type capable of handling very large values. Between the two floating point options, float and double, double was larger.

Function #1

Bisection

n	а	b	С	f(a)	f(b)	f(c)	error
0	0.000	1.000	0.500	-5.000	3.000	1.175	1.000
1	0.000	0.500	0.250	-5.000	1.175	-1.275	1.000
2	0.250	0.500	0.375	-1.275	1.175	0.098	0.333
3	0.250	0.375	0.313	-1.275	0.098	-0.550	0.200
4	0.313	0.375	0.344	-0.550	0.098	-0.217	0.091
5	0.344	0.375	0.359	-0.217	0.098	-0.057	0.043
6	0.359	0.375	0.367	-0.057	0.098	0.021	0.021
7	0.359	0.367	0.363	-0.057	0.021	-0.018	0.011
8	0.363	0.367	0.365	-0.018	0.021	0.001	0.005
Bisecti	ion Method: The r	root 0.365 has bee	en found between	0.000 and 1.000	for function #1	in 9 iterations.	

n	a	b	С	f(a)	f(b)	f(c)	error
0	1.000	2.000	1.500	3.000	-0 .4 00	1.975	1.000
1	1.500	2.000	1.750	1.975	-0.400	0.863	0.143
2	1.750	2.000	1.875	0.863	-0.400	0.238	0.067
3	1.875	2.000	1.938	0.238	-0.400	-0.081	0.032
4	1.875	1.938	1.906	0.238	-0.081	0.079	0.016
5	1.906	1.938	1.922	0.079	-0.081	-0.001	0.008
Bisect	tion Method: The r	root 1.922 has bee	en found between	1.000 and 2.000	for function #1	in 6 iterations.	

For the example below, no root was found with the starting guesses x = 2 and x = 3. Because the Bisection method is a bracketing method, the root can only be identified if it is in between the two guesses. Since there is no root in between x = 2 and x = 3 for function #1, no root was found.

n	a	b	С	f(a)	f(b)	f(c)	error
0	2.000	3.000	2.500	-0 .4 00	-3 .2 00	-2 . 625	1.000
1	2.500	3.000	2.750	-2.625	-3.200	-3.212	0.091
2	2.750	3.000	2.875	-3.212	-3.200	-3.293	0.043
3	2.875	3.000	2.938	-3.293	-3.200	-3.270	0.021
4	2.938	3.000	2.969	-3.270	-3.200	-3.241	0.011
5	2.969	3.000	2.984	-3.241	-3.200	-3.222	0.005
6	2.984	3.000	2.992	-3.222	-3.200	-3.211	0.003
7	2.992	3.000	2.996	-3.211	-3.200	-3.206	0.001
8	2.996	3.000	2.998	-3.206	-3.200	-3.203	0.001
Bisecti	ion Method: There	are no roots between	ween 2.000 and 3	.000 for function	#1.		
n	a	b	С	f(a)	f(b)	f(c)	error
0	3.000	4.000	3 . 500	-3 .2 00	6.600	-0 . 625	1.000
1	3.500	4.000	3.750	-0.625	6.600	2.313	0.067
2	3.500	3.750	3.625	-0.625	2.313	0.687	0.034
3	3.500	3.625	3.563	-0.625	0.687	-0.007	0.018
Bisec	tion Method: The	root 3.563 has be	en found betweer	3.000 and 4.000	for function #2	l in 4 iterations	

False Position

n	a	b	С	f(a)	f(b)	f(c)	error
0	0.000	1.000	0 . 625	-5.000	3 . 000	1.980	1.000
1	0.000	0.625	0.448	-5.000	1.980	0.758	0.396
2	0.000	0.448	0.389	-5.000	0.758	0.230	0.152
3	0.000	0.389	0.372	-5.000	0.230	0.065	0.046
4	0.000	0.372	0.367	-5.000	0.065	0.018	0.013
5	0.000	0.367	0.366	-5.000	0.018	0.005	0.004
False I	Position Method: Th	ne root 0.366 ha	is been found betw	een 0.000 and 1	.000 for function	ı #1 in 6 iterat:	ions.
n	а	b	С	f(a)	f(b)	f(c)	error
0	1.000	2.000	1.882	3.000	-0 .4 00	0.201	1.000
1	1.882	2.000	1.922	0.201	-0.400	0.000	0.020
False P	Position Method: Th	ne root 1.922 ha	as been found bet	ween 1.000 and	2.000 for functi	on #1 in 2 iter	ations.

For the example below, no root was found with the starting guesses x = 2 and x = 3. Because the False Position method is a bracketing method, the root can only be identified if it is in between the two guesses. Since there is no root in between x = 2 and x = 3 for function #1, no root was found.

n	a	b	c f(a) f(b)	f(c)	error	
False	Position Method: f	(a) = -0.400 and f(b)	= -3.200 have the	same sign. No root is	bracketed between	2.000 and 3.000 f	or function #1.
n	а	b	С	f(a)	f(b)	f(c)	error
0	3.000	4.000	3.327	-3.200	6.600	-1.969	1.000
2	3.327 3.481	4.000 4.000	3.481 3.537	-1 . 969 -0 . 796	6.600 6.600	-0 . 796 -0 . 267	0.044 0.016
3 4	3.537 3.555	4.000 4.000	3.555 3.561	-0.267 -0.084	6.600 6.600	-0.084 -0.026	0.005 0.002
5 False	3.561 Position Method	4.000 1: The root 3.562 h	3.562 nas been found be	-0.026 tween 3.000 and 4.0	6.600 000 for function	-0.008 n #1 in 6 iterat	0.000 cions.

Newton Raphson

n x_n	x_n+1	f(x_n)	f(x_n+1)	f'(x_n)	error	
0 0.000 1 0.282	0.282 0.359	-5 . 000 -0 . 889	-0.889 -0.058	17.700 11.569	1.000	
2 0.359 Newton Raphson Method	0.365 d: The root 0.365 ha	-0.058 as been found wit	-0.000 h a starting gue	10.067 ss of x = 0.000	0.226 for the function #1	in 3 iterations.

The example below demonstrates the methodology I used to determine divergence. I had conditions checking if the current x value was equal to NaN, if the current value was equal to infinity, if the error was greater than the maximum diverging error, or if f'(x) was zero. In this case, the large relative approximate error triggered the divergence message and returned the method.

n	x_n	x_n+1		f(x_n)	f(x_n+1)	f'(x_n)	error
0	1.000	-9.00	 0	3.000	-2570.000	0.300	1.000
1	-9.000	-5.40	2	-2570.000	-757.341	714.300	1.185
2	-5.402	-3.02	9	-757.341	-221.608	319.203	1.971
3	-3.029	-1.48	7	-221.608	-63.756	143.656	2.633
4	-1.487	-0.51	7	-63.756	-17.563	65.756	4.857
5	-0.517	0.042		-17.563	-4.279	31.409	36.486
Newton	Raphson Method	d: Error. This	equation	is diverging.			
	x_n	x_n+1	f(x_n)	f(x_n+1)	f'(x n)	error	
0	2.000	1.922	 -0.400			1.000	
0 Newton R	2.000 Raphson Method: Th	1.922 e root 1.922 has	-0.400 been found		-5.100	 1.000 for the function #1	l in 1 iterations.
				0.001	-5.100		l in 1 iterations.
Newton R				0.001	-5.100		l in 1 iterations.
Newton R	aphson Method: Th	e root 1.922 has	been found	0.001 with a starting gue	-5.100 ess of x = 2.000 f	for the function #1	l in 1 iterations.
Newton R	x_n	e root 1.922 has x_n+1	f(x_n)	0.001 with a starting gue $f(x_n+1)$	-5.100 ess of x = 2.000 f	For the function #1 error	l in 1 iterations.
Newton R	x_n 3.000	x_n+1 5.133	f(x_n) -3.200	0.001 with a starting gud f(x_n+1) 48.090	-5.100 ess of x = 2.000 f f'(x_n) 	for the function #1 error 1.000	l in 1 iterations.
Newton R	x_n 3.000 5.133	x_n+1 5.133 4.270	f(x_n) -3.200 48.090	0.001 with a starting gue f(x_n+1) 48.090 12.956	-5.100 ess of x = 2.000 f f'(x_n) 	error 1.000 0.297	l in 1 iterations.
Newton R	x_n 3.000 5.133 4.270	x_n+1 5.133 4.270 3.793	f(x_n) -3.200 48.090 12.956	0.001 with a starting gue f(x_n+1) 48.090 12.956 2.948	-5.100 ess of x = 2.000 f f'(x_n) 	error 1.000 0.297 0.353	l in 1 iterations.
	x_n 3.000 5.133 4.270 3.793	x_n+1 5.133 4.270 3.793 3.600	f(x_n) -3.200 48.090 12.956 2.948	0.001 with a starting gue f(x_n+1) 48.090 12.956 2.948 0.398	-5.100 ess of x = 2.000 f f'(x_n) 1.500 55.687 27.172 15.263	error 1.000 0.297 0.353 0.186	l in 1 iterations.

Secant

n	x_i-1	x_i	x_i+1	f(x_i-1)	f(x_i)	f(x_i+1)	error
1	0.000	1.000	0 . 625	-5.000	3.000	1.980	0.600
2	1.000	0.625	-0.103	3.000	1.980	-6.958	7.042
3	0.625	-0.103	0.464	1.980	-6.958	0.890	1.223
4	-0.103	0.464	0.399	-6.958	0.890	0.329	0.161
5	0.464	0.399	0.362	0.890	0.329	-0.036	0.104
6	0.399	0.362	0.365	0.329	-0.036	0.001	0.010
Secant	Method: The root	0.365 has been fo	ound with the st	arting guesses x	= 0.000 and x =	1.000 for functi	ion #1 in 6 iteration

Looking at the two examples below, note that with the Secant method, unlike the two bracketing methods of Bisection and False Position, several variations of x values will yield a correct result for the root. This is one of the benefits of the Secant method.

n	x_i-1	x_i	x_i+1	f(x_i-1)	f(x_i)	f(x_i+1)	error	
1 2 Secant	2.000	1.882	1.922	3.000 -0.400 tarting guesses x	0.201	0.000	0.020	ions.
n	x_i-1	x_i	x_i+1	f(x_i-1)	f(x_i)	f(x_i+1)	error	
1 2 3 Secant	3.000 1.857	1.857 1.964	1.964 1.922	-0.400 -3.200 0.329 arting guesses x =	0.329 -0.214	-0.214 0.001	0.054 0.022	ons.
n	x i-1			f(x i-1)			error	.01131
1 2 3	3.000 4.000	4.000 3.327	3.327 3.481 3.586	-3.200 6.600	6.600 -1.969	-1.969 -0.796	0.202 0.044	
4 5	3.481 3.586	3.586 3.561	3.561 3.563	-0.796	0.248 -0.019	-0.019 -0.000	0.007 0.001	ions.

Modified Secant

The NaN value for $f(x_i+1)$ triggered the divergence message and caused the return of the program.

า	x_i	x_i	1 1	f(x_i)	f(x_i+1)	f'(x_i)	error
o Mofif	0.000 ied Secant Metho	NaN od: Error. Th		-5.000 is diverging.	NaN	17.700	Nan
n	x_i	x_i+1	f(x_i)	f(x_i+1)	f'(x_i)	error	
 0	1.000	-11.336	3.000	-4622.118	0.300	1.088	
1	-11.336	-6.947	-4622.118	-1362.937	1053.916	0.632	
2	-6.947	-4.042	-1362.937	-399.770	469.776	0.719	
3	-4.042	-2.138	-399.770	-115.859	210.310	0.891	
4	-2.138	-0.917	-115.859	-32.616	95.150	1.331	
5	-0.917	-0.176	-32.616	-8.498	44.206	4.199	
j	-0.176	0.212	-8.498	-1.757	22.015	1.833	
,	0.212	0.348	-1.757	-0.174	13.012	0.391	
3	0.348	0.365	-0.174	-0.001	10.285	0.047	
Modifi	ed Secant Method: Th	ne root 0.365 ha	s been found wit	th a starting gues	ss of x = 1.000 f	or the function #1 in	9 iterations.
n	x_i	x_i+1	f(x_i)	f(x_i+1)	f'(x_i)	error	
0 0	2.000	1.921	-0.400	0.001	-5 .1 00	0.041	
						for the function #1 in	1 iterations
100113	ica sceance recitour r	1 000 11321 110	is been round in	en a ocal criig gae	55 51 X 21000	TOT CITE TURNELISM III III	T Teel delone
	x_i	x_i+1	f(x_i)	f(x_i+1)	f'(x_i)	error	
)	3 . 000	4.893	-3 .2 00	35 . 763	1.500	0.387	
	4.893	4.138	35.763	9.604	46.838	0.182	
	4.138	3.737	9.604	2.133	23.599	0.107	
	3.737	3.589	2.133	0.278	14.053	0.041	
	3.589	3.564	0.278	0.013	11.003	0.007	
	3.564	3.563	0.013	0.000	10.523	0.000	
						or the function #1 in	

Graphs

The graph of function #1 crosses the x-axis 3 times from x = -2 to x = 5, signifying the existence of the three roots x = 0.365, x = 1.922, and x = 3.563.

Function #1

In the graph below, some lines come to a halt faster than others because the associated methods were able to determine the root in fewer iterations.

Function #1 - Iteration vs Error

x = 0.365

For the root x = 1.922, many of the lines are missing from the graph below because the actual root was identified so rapidly that only one point was available for the error—below the minimum of two points to plot a line.

Function #1 - Iteration vs Error

x = 1.922

Compared to the other roots, the process of finding x = 3.563 was the most similar amongst the different methods. One thing I noticed while programming is that modifying the desired error from .1% to 1% resulted in almost none of the methods finding x = 3.563, but still finding the other two roots. This suggests to me that x = 3.563 is a comparably tricky root for these methods to identify, and requires extra precision.

Function #1 - Iteration vs Error

Function #2

Because of the simpler nature of function #2 in the range of x = 120 to x = 130, with a continuously increasing curve and only one root, none of my divergence tests or other error messages were triggered.

n	a	b	С	f(a)	f(b)	f(c)	error
0	120.000	130.000	125.000	-0.568	0.265	-0.134	1.000
1	125.000	130.000	127.500	-0.134	0.265	0.070	0.020
2	125.000	127.500	126.250	-0.134	0.070	-0.031	0.010
3	126.250	127.500	126.875	-0.031	0.070	0.020	0.005
4	126.250	126.875	126.563	-0.031	0.020	-0.006	0.002
Bisecti	on Method: The ro	ot 126.563 has bee	n found betwee	en 120.000 and 130	.000 for functi	on #2 in 5 itera	tions.
n	a	b	С	f(a)	f(b)	f(c)	error
0	120.000	130.000	126.816	-0.568	0.265	0.015	1.000
1	120.000	126.816	126.642	-0.568	0.015	0.001	0.001
False P	osition Method: T	he root 126.642 ha	s been found b	oetween 120.000 ar	d 130.000 for f	unction #2 in 2	iterations.
n	x_n	x_n+1	f(x_n)	f(x_n+1)	f'(x_n)	error	
0				-0.008			
Newton	Raphson Method: T	he root 126.540 ha	is been found v	vith a starting gu	less of $x = 130$.	000 for the func	tion #2 in 1 iterations.
n	x_i-1	x_i	x_i+1	f(x_i-1)	f(x_i)	f(x_i+1)	error
Secant I	Method: The root	126.627 has been f	ound with the	starting guesses	x = 120.000 and	x = 130.000 for	function #2 in 2 iterations.
n	x_i	x_i+1	f(x_i)	f(x_i+1)	f'(x_i)	error	
0	130.000	126.504	0.265	-0.010	0.077	0.028	
1			-0.010	0.000	0.081	0.001	
Modifie	d Secant Method:	The root 126.634 h	as been found	with a starting g	uess of $x = 130$.000 for the fun	ction #2 in 2 iterations.

Graphs

Function #2

Note that for the graph below, the line for the Newton method is not shown because the Newton method identified the root x = 126.632 in just one iteration. The Bisection method required the most iterations, which is to be expected given that my two starting values were x = 120 and x = 130, which is a larger range of numbers than I would normally supply.

Function #1 - Iteration vs Error

x = 126.632

