

IIC1253 — Matemáticas Discretas 1'2020

GUIA 3 Conjunto, relaciones y funciones

Los siguientes ejercicios son una recopilación de guías de ejercicios del curso de Matemáticas Discretas dictado por Marcelo Arenas y Jorge Pérez en años anteriores.

Teoría de conjuntos

1. Diga en cada caso si las afirmaciones son verdaderas o falsas y justifique. (A y B son conjuntos cualesquiera)

 $a) \emptyset = \{\emptyset\}$

 $b) \emptyset \in \{\emptyset\}$

 $c) \emptyset \subseteq \{\emptyset\}$

 $d) A \subseteq A \cup B$

 $e) \ A \subseteq B \Leftrightarrow A \cap B = A$

f) $A \notin \mathcal{P}(A)$

 $g) \emptyset \in \mathcal{P}(A)$

 $h) \emptyset \subseteq \mathcal{P}(A)$

 $i) \cap \mathcal{P}(A) = \emptyset$

 $j) \mid \mathcal{P}(A) = A$

J) (11) 1

k) $(A \setminus B) \subseteq A$

 $l) (A \setminus B) \subseteq B$

2. Sea x un elemento cualquiera. Diga en cada caso si las afirmaciones son verdaderas o falsas y justifique.

 $a) \{x\} \subseteq \{x\}$

b) $\{x\} \in \{x\}$

 $c) \{x\} \in \{x, \{x\}\}$

 $d) \{x\} \subseteq \{x, \{x\}\}$

 $e) \{\{x\}\} \not\subseteq \{x, \{x\}\}$

3. Demuestre cada una de las siguientes propiedades.

 $a) \bigcup \emptyset = \emptyset$

b) $\bigcup \{A\} = A$

c) Si $\mathcal{R} \subseteq \mathcal{S}$ entonces $\bigcup \mathcal{R} \subseteq \bigcup \mathcal{S}$

 $d) \ \bigcup (\mathcal{R} \cup \mathcal{S}) = \bigcup \mathcal{R} \cup \bigcup \mathcal{S}$

e) Para todo $A \in \mathcal{S}$ se cumple que $A \subseteq \bigcup \mathcal{S}$

f) Si $\mathcal{R} \subseteq \mathcal{S}$ entonces $\bigcap \mathcal{S} \subseteq \bigcap \mathcal{R}$

 $g) \cap \mathcal{R} \cap \cap \mathcal{S} \subseteq \cap (\mathcal{R} \cap \mathcal{S})$

h) Para todo $A \in \mathcal{S}$ se cumple que $\bigcap \mathcal{S} \subseteq A$

4. Para dos conjuntos A y B se define el siguiente operador entre A y B:

$$A + B = (A \setminus B) \cup (B \setminus A)$$

- a) Demuestre que $A + B = (A \cup B) \setminus (A \cap B)$ para todo par de conjuntos A y B.
- b) ¿Es + un operador conmutativo, asociativo, distributivo sobre \cup o distributivo sobre \cap ? Para cada respuesta de una demostración o un contra-ejemplo según sea el caso.

- 5. Sean A, B, C y D conjuntos. Para las siguientes afirmaciones, demuestre o de un contra-ejemplo.
 - a) $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$
 - $b) \ (A \setminus B) \setminus (C \setminus D) = (A \setminus C) \setminus (B \setminus D)$
 - $c) \ (A \setminus B) \times (C \setminus D) = (A \times C) \setminus (B \times D)$
- 6. Sea $S = \{1, ..., n\}$ un conjunto finito. Decimos que un conjunto $\mathcal{C} \subseteq \mathcal{P}(S)$ es una anti-cadena si para todo $A, B \in \mathcal{C}$ con $A \neq B$ se cumple que $A \nsubseteq B$ y $B \nsubseteq A$.
 - a) ¿Cuántas anti-cadenas puede uno formar para $S = \{1, 2, 3\}$? Explique su respuesta.
 - b) Un conjunto $\mathcal{A} = \{A_1, \ldots, A_m\} \subseteq \mathcal{P}(S)$ se dice que es un sistema separador de S si para todo $i \neq j$ en S, existen $A \in \mathcal{A}$ y $B \in \mathcal{A}$ tal que $i \in A$, $i \notin B$, $j \notin A$ y $j \in B$ (en otras palabras, $i \in A \setminus B$ y $j \in B \setminus A$). El conjunto dual $\mathcal{A}^* = \{B_1, \ldots, B_n\}$ de \mathcal{A} se define como $B_i = \{k \in \{1, \ldots, m\} \mid i \in A_k\}$ para todo $i \leq n$.

Demuestre que un conjunto \mathcal{A} es un sistema separador si, y solo si, $|\mathcal{A}^*| = n$ y \mathcal{A}^* es una anticadena.

Relaciones

- 1. Dibuje el diagrama de Hasse para cada uno de los siguientes órdenes parciales.
 - a) $(\mathcal{P}(\{1,2,3,4\}),\subseteq)$.
 - b) $(\{1,2,3,6,9,18\}, |)$.
- 2. Demuestre o refute la siguiente afirmación: "Si R es una relación simétrica y transitiva entonces también es refleja".
- 3. Dé un ejemplo de relaciones que sean
 - a) simétrica y refleja pero no transitiva.
 - b) refleja y transitiva pero no simétrica.
 - c) simétrica y transitiva pero no refleja.
- 4. El conjunto ∅ es una relación, ya que es subconjunto de cualquier conjunto. ¿Qué propiedades cumple ∅ como relación?
- 5. Sea A un conjunto con n elementos.
 - a) ¿Cuántas relaciones reflejas se pueden crear con elementos de A?
 - b) ¿Cuántas relaciones simétricas se pueden crear con elementos de A?
 - c) ¿Cuántas relaciones antisimétricas se pueden crear con elementos de A?
- 6. Sea A un conjunto con n elementos y R una relación antisimétrica sobre A.
 - a) ¿Cuál es la máxima cantidad de pares ordenados que puede contener R?
 - b) ¿Cuantas relaciones antisimétricas distintas sobre A tienen exactamente esa cantidad de pares?
- 7. Para cada una de las siguientes relaciones determine si es refleja, simétrica, antisimétrica o transitiva, demostrando o dando un contraejemplo en cada caso.
 - a) $R_{//}$ sobre el conjunto de todas las rectas de \mathbb{R}^2 , tales que la recta l_1 está relacionada con la recta l_2 si y sólo si l_1 es paralela a l_2 ($l_1R_{//}l_2 \Leftrightarrow l_1//l_2$).

- b) R_{\perp} sobre el conjunto de todas las rectas de \mathbb{R}^2 , tales que la recta l_1 está relacionada con la recta l_2 si y sólo si l_1 es perpendicular a l_2 ($l_1R_{\perp}l_2 \Leftrightarrow l_1\perp l_2$).
- c) R sobre $\mathbb{N} \times \mathbb{N}$ tal que (a,b)R(c,d) si y sólo si $a \leq c$. (Note que en este último caso la relación R es subconjunto de $(\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$.)
- 8. ¿Qué puede decir de la relación $R_{//} \circ R_{\perp}$ (la composición de las relaciones $R_{//}$ y R_{\perp} definidas en el ejercicio anterior), qué propiedades cumple, cómo se compara con $R_{//}$ y con R_{\perp} , etc.?
- 9. Sea $f: A \to B$ una función cualquiera de A en B. Sea R una relación sobre A tal que xRy si y sólo si f(x) = f(y). Demuestre que R es refleja, simétrica y transitiva.
- 10. Demuestre o refute (de un contraejemplo) cada una de las siguiente afirmaciones. En cada caso R_1 y R_2 son relaciones sobre un conjunto A cualquiera.
 - a) Si R_1 y R_2 son simétricas entonces $R_1 \cap R_2$ es simétrica.
 - b) Si R_1 y R_2 son reflejas entonces $R_1 \cup R_2$ es refleja.
 - c) Si R_1 y R_2 son transitivas entonces $R_1 \cap R_2$ es transitiva.
 - d) Si R_1 y R_2 son transitivas entonces $R_1 \circ R_2$ es transitiva.
- 11. Sean \leq_1 y \leq_2 dos relaciones de orden sobre un conjunto A. Se define la siguiente relación sobre el conjunto $A \times A$: $(a,b) \leq (c,d)$ si y sólo si $a \leq_1 c$ y $b \leq_2 d$. Demuestre que \leq es una relación de orden sobre $A \times A$.
- 12. Sea A un conjunto. Un preorden es una relación $\unlhd \subseteq A \times A$ tal que es refleja y transitiva (no necesariamente antisimétrica). Se define la relación $\sim_{\unlhd} \subseteq A \times A$ tal que $a \sim_{\unlhd} b$ si, y solo si, $a \unlhd b$ y $b \unlhd a$.
 - a) Demuestre que \sim_{\leq} es una relación de equivalencia. ¿Que representan las clases de equivalencia de \sim_{\leq} según \leq ? De una explicación en base al grafo de \leq .
 - b) Demuestre que $\sim \triangleleft$ es una relación de congruencia para \trianglelefteq .
 - c) Demuestre que $\leq_{\sim_{\preceq}}$ es un orden parcial para el conjunto A/\sim_{\preceq} . ¿Que representa $\leq_{\sim_{\preceq}}$ para las clases de equivalencia en A/\sim_{\preceq} ? De nuevo, de una explicación en base al grafo de \leq .
- 13. Muestre ejemplos de órdenes parciales (A, \preceq) y subconjuntos $S \subseteq A$ tales que:
 - a) S tiene exactamente cuatro elementos maximales.
 - b) S tiene exactamente tres elementos minimales.
 - c) S tiene máximo y mínimo.
 - d) Todos los elementos de S son maximales y minimales a la vez.
 - e) S tiene tres elementos maximales, tres elementos minimales, tiene un ínfimo y tiene un supremo.
- 14. Sea (A, \preceq) un orden parcial. Una sucesión infinita (x_0, x_1, x_2, \ldots) de elementos de A se dice estrictamente decreciente si se cumple que $x_n \neq x_{n+1}$ y que $x_{n+1} \preceq x_n$ para todo $n \in \mathbb{N}$. Demuestre que todo subconjunto no vacío de A tiene un elemento minimal si y sólo si no existen sucesiones infinitas estrictamente decrecientes en A.
- 15. ¿Cuántas relaciones de equivalencia existen sobre el conjunto {1, 2, 3, 4}?
- 16. Demuestre que para cada conjunto A, existe una relación de equivalencia \sim sobre A tal que A/\sim es un conjunto finito.
- 17. Sea A un conjunto. Demuestre que existen relaciones de equivalencia \sim_1 y \sim_2 sobre A tales que para toda relación de equivalencia \sim sobre A, se tiene que $\sim_1 \subseteq \sim \subseteq \sim_2$ (vale decir, para todo $(a,b) \in A \times A$, si $a \sim_1 b$, entonces $a \sim_b b$, y si $a \sim_b b$, entonces $a \sim_b b$).

- 18. Sea n un número natural mayor o igual a 2, y sea $A = \{1, ..., n\}$. Demuestre que el número de relaciones de equivalencia sobre A es estrictamente menor que el número de órdenes parciales sobre A.
- 19. Sea R una relación sobre $\mathbb{R} \times \mathbb{R}$ tal que (x,y)R(z,w) si y sólo si x=z.
 - a) Demuestre que R es una relación de equivalencia en $\mathbb{R} \times \mathbb{R}$.
 - b) Describa geométricamente las clases de equivalencia y las particiones inducidas por R.
- 20. Sea R una relación sobre $\mathbb{N} \times \mathbb{N}$ tal que (m,n)R(r,s) si y sólo si m+n=r+s.
 - a) Demuestre que R es una relación de equivalencia en $\mathbb{N} \times \mathbb{N}$.
 - b) Liste algunos elementos de las clases de equivalencia [(0,0)], [(1,3)], y [(7,3)].
 - c) Describa las clases de equivalencia y las particiones inducidas por R (puede hacer un dibujo como el de la figura 1.3 de los apuntes).
- 21. Así como en los apuntes se definió \mathbb{Z} a partir de una relación de equivalencia en $\mathbb{N} \times \mathbb{N}$, en este ejercicio definiremos el conjunto de los racionales \mathbb{Q} usando una relación de equivalencia en $\mathbb{Z} \times (\mathbb{N} \{0\})$. Definimos entonces la relación \uparrow tal que $(k_1, n_1) \uparrow (k_2, n_2)$ si y sólo si $k_1 \cdot n_2 = k_2 \cdot n_1$.
 - a) Demuestre que la relación \uparrow es de equivalencia sobre $\mathbb{Z} \times (\mathbb{N} \{0\})$.
 - b) Liste algunos elementos de las clases de equivalencia de [(0,2)], [(3,1)], y [(2,3)].
 - c) Formalmente los racionales se definen como $\mathbb{Q} = (\mathbb{Z} \times (\mathbb{N} \{0\}) / \uparrow$. Intuitivamente a qué número racional corresponde la clase de equivalencias [(k, n)]?
 - d) Se define la operación \odot entre clases de equivalencia de \uparrow tal que $[(k_1, n_1)] \odot [(k_2, n_2)] = [(k_1 \cdot k_2, n_1 \cdot n_2)]$. Intuitivamente la operación \odot representa a la multiplicación de racionales. Muestre un par de ejemplos de aplicación de \odot .
 - e) Defina la operación \oplus entre clases de equivalencia de \uparrow que capture la suma de números racionales.
- 22. Sea A un conjunto finito. Una relación $R \subseteq A \times A$ se dice que es un rectangulo si existen conjuntos $B, C \subseteq A$ tal que $R = B \times C$.
 - a) Demuestre que R es un rectangulo si, y solo si, para todo $a_1, b_1, a_2, b_2 \in A$ se cumple que:

si
$$(a_1, b_1) \in R$$
 y $(a_2, b_2) \in R$, entonces $(a_1, b_2) \in R$.

b) Un rectangulo R se dice simple si $R = B \times B$ para algún $B \subseteq A$. Demuestre que si R es una relación de equivalencia, entonces para algún $n \in \mathbb{N}$ existen rectangulos simples $R_1, \ldots, R_n \subseteq A \times A$ tal que:

$$R = \bigcup_{i=1}^{n} R_i$$

jes la otra dirección cierta? Demuestrelo o de un contra-ejemplo.

Funciones

- 1. Demuestre que si se tiene una bolsa con 5 pares de calcetines, cada par de un color distinto, si se sacan 6 calcetines al azar de la bolsa, necesariamente dos de los calcetines sacados comparten color.
- 2. Sea G = (V, E) un grafo finito. Demuestre que si un camino en G tiene mas de |V| vértices entonces G contiene un ciclo.
- 3. Sean A y B dos conjuntos finitos tales que |A| = n y |B| = m

- a) Demuestre formalmente que $|A \times B| = n \cdot m$ encontrando una función biyectiva h desde $A \times B$ al conjunto $\{0, 1, 2, \dots, (n \cdot m) 1\}$.
- b) ¿Cuántas relaciones binarias distintas de A en B existen?
- c) ¿Cuántas funciones de A en B existen?
- d) Si $n \leq m$ ¿cuántas funciones inyectivas de A en B existen?
- e) Si $n \ge m$ ¿cuántas funciones sobreyectivas de A en B existen?
- f) Si n=m ¿cuántas funciones biyectivas de A en B existen?