EJEMPLO 5.3.4 Conjunto de vectores que generan \mathbb{R}^2 y \mathbb{R}^3

En la sección 4.1 se vio que los vectores $\mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ y $\mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ generan \mathbb{R}^2 . En la sección 4.3 se vio que $\mathbf{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ y $\mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ generan \mathbb{R}^3 .

Ahora se verá brevemente la generación de algunos otros espacios vectoriales.

EJEMPLO 5.3.5 n+1 vectores que generan a \mathbb{P}_n

Del ejemplo 5.3.3 se deduce que los monomios 1, x, x^2 , ..., x^n generan a \mathbb{P}_n .

EJEMPLO 5.3.6 Cuatro vectores que generan a M₂₂

$$\text{Como}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \text{ vemos que}\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{ generan a } \mathbb{M}_{22}.$$

EJEMPLO 5.3.7 Ningún conjunto finito de polinomios generan a *P*

Sea P el espacio vectorial de polinomios. Entonces ningún conjunto *finito* de polinomios genera a P. Para ver esto, suponga que p_1, p_2, \ldots, p_m son polinomios. Sea p_k el polinomio de mayor grado en este conjunto y sea $N = \operatorname{grado}(p_k)$. Entonces el polinomio $p(x) = x^{N+1}$ no se puede escribir como una combinación lineal de p_1, p_2, \ldots, p_m . Por ejemplo, si N = 3, entonces $x^4 \neq c_0 + c_1x + c_2x^2 + c_3x^3$ para cualesquiera escalares c_0, c_1, c_2 y c_3 .

Ahora se analizará otra forma de encontrar subespacios de un espacio vectorial V.

(D)

Definición 5.3.3

Espacio generado por un conjunto de vectores

Sea $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k, k$ vectores de un espacio vectorial V. El **espacio generado** por $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$ es el conjunto de combinaciones lineales $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$. Es decir

gen
$$\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} = \{\mathbf{v}: \mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots, + a_k \mathbf{v}_k\}$$
 (5.3.3)

donde a_1, a_2, \ldots, a_k son escalares arbitrarios.

Teorema 5.3.1 El espacio generado por vectores es un subespacio vectorial

Si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ son vectores en un espacio vectorial V, entonces gen $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ es un subespacio de V.

Demostración

La prueba es sencilla y se deja como ejercicio (vea el problema 5.3.16).