CSCL 01A G3/01

ASA TM X-62,256

(NASA-TM-X-62256) AN EXPERIMENTAL INVESTIGATION OF THREE OBLIQUE-WING AND BODY COMBINATIONS AT MACH NUMBERS BETWEEN 0.60 AND 1.40 (NASA) 173 p HC \$10.75

N73-32926

Unclas 19792

AN EXPERIMENTAL INVESTIGATION OF THREE OBLIQUE-WING AND BODY COMBINATIONS AT MACH NUMBERS BETWEEN 0.60 AND 1.40

Lawrence A. Graham, Robert T. Jones and Frederick W. Boltz

Ames Research Center Moffett Field, California 94035

April 1973

CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1.
NOMENCIATURE	2
TEST FACILITY	14
MODEL DESCRIPTION	5
TESTING AND PROCEDURE	5
RESULTS AND DISCUSSION	5
REFERENCES	7
TABLES ,	
1. MODEL GEOMETRY	8
2. WING GEOMETRIC DATA	9
3. BODY DIMENSIONAL DATA	16
4. TEST CONDITIONS	22
5. INDEX OF DATA FIGURES	23
FIGURES	
1. AXIS SYSTEMS	24
2. OBLIQUE-WING/BODY MODEL DETAILS AND PHOTOGRAPH	25
3. WING-SECTION DRAWINGS	30
), DATA	31

(THIS PAGE INTENTIONALLY LEFT BLANK)

AN EXPERIMENTAL INVESTIGATION OF THREE OBLIQUE-WING AND BODY

COMBINATIONS AT MACH NUMBERS BETWEEN 0.60 AND 1.40

By Lawrence A. Graham, Robert T. Jones and Frederick W. Boltz

Ames Research Center

SUMMARY

An experimental investigation was conducted in the Ames 11- by 11-Foot Transonic Wind Tunnel to determine the aerodynamic characteristics of three oblique high aspect ratio wings in combination with a high fineness-ratio Sears-Haack body. The three wings had the same elliptical planform and base line curvature but had different airfoil sections. One wing had an airfoil section designed to have a lift coefficient of 1.0 at a Mach number of 0.7, another to have shock-free supersonic flow over the upper surface, and the other to have a lift coefficient of 1.3 at a Mach number of 0.6.

Longitudinal and lateral-directional stability data were obtained at wing yaw angles of 0°, 45°, 50°, and 60° over a test Mach number range from 0.6 to 1.4 for angles of attack between -7° and 9°. Reynolds numbers for the study were 4 and 6 million per foot. Flow-visualization studies were made to examine the nature of the flow on the wing surfaces.

Notable differences were found in the aerodynamic characteristics of the three wing-body combinations, particularly in the lateral-directional characteristics. The aerodynamic efficiency of the three wing-body combinations was in most instances about the same, with two of the wings generally exhibiting slightly higher maximum values. The other wing was slightly more efficient at Mach numbers where supercritical flow existed on the wings.

INTRODUCTION

Theoretical predictions and indications related to the oblique-wing concept have been extensively discussed (as in references 1 and 2) and recently investigated experimentally in the NASA-Ames 11- by 11-Foot Transonic Wind Tunnel.

Theory indicates that in order to achieve maximum efficiency the oblique angle of the wing must be varied with Mach number in such a way that the component of velocity normal to the long axis of the wing remains subsonic

and below the "drag rise" Mach number of the wing sections. The sections taken in the planes perpendicular to the long axis then have a "subsonic" shape with a rounded leading edge and camber to produce a high lift coefficient at a high critical Mach number. Three wings, having different airfoil sections in the planes perpendicular to the long axis of the wing, have been tested in the Ames 11- by 11-Foot Transonic Wind Tunnel. All wings have the same elliptical planform with an elliptic axis ratio of 10 to 1, an unswept aspect ratio of 12.7 and a thickness-chord ratio of 0.1.

One wing has an airfoil section derived by the well known NACA "4 digit" formula (see reference (3)). The shape parameters for the airfoil were selected on the basis of previous wind tunnel experience with the intention of achieving as high a lift coefficient as possible at a critical Mach number of 0.7. The section has a relatively blunt leading edge with a radius of 2 percent of the chord.

Another airfoil tested was designed by Bauer, Garabedian and Korn of the Courant Institute, New York University using a hodograph method to obtain a shock-free supersonic zone over the upper surface. Data on this airfoil are given as example 1 (figure 5 in Reference (4)).

The other airfoil was designed for purely subsonic flow at a Mach number Of 0.60. This airfoil has more camber and a design lift coefficient of 1.3 (based on the normal component velocity).

NOMENCLATURE

The axis systems and sign convention are shown in figure 1. Lift and drag are presented in the stability-axis coordinate system and all other forces and moments are presented in the body-axis coordinate system. Because the data were computer plotted the corresponding plot symbol, where used, is given together with the conventional symbol.

	Plot	
Symbol	Symbol	<u>Definition</u>
Ъ		wing span
е		wing chord
c _{root}		wing root chord
c_{D}	CD	drag coefficient, drag/qS

c _{l}	CBL	rolling-moment coefficient, rolling moment/qSb
$^{\mathrm{c}}_{\mathrm{L}}$	CL	lift coefficient, lift/qS
C _m	CLM	pitching-moment coefficient, pitching moment/qScroot
C _n	CYN	yawing-moment coefficient, yawing moment/qSb
$\mathtt{C}^{\mathtt{A}}$	CY	side-force coefficient, side force/qS
Н		maximum vertical distance from wing reference plane to wing base line at 0.4c for W_1
L		longitudinal distance along the body from body maximum diameter
(L/D)	L/D	lift-drag ratio
М	MACH	free-stream Mach number
q		free-stream dynamic pressure
Re	rn/l	unit Reynolds number, million per foot
S		wing area
t ·		wing thickness
W		body width
x		Cartesian coordinate
Y - Uр	·	maximum distance from wing base line to wing upper surface measured perpendicular to the wing base line
Y-Lo		maximum distance from wing base line to wing lower surface measured perpendicular to the wing base line
Z-Up		vertical distance from wing chord to wing upper surface
Z-Lo		vertical distance from wing chord to wing lower surface
Z	_	Cartesian coordinate
α	ALPHA	angle of attack

β	BETA	angle of sideslip
Λ	LAMBDA	angle between a perpendicular to the body longitudinal axis and the 0.25 chord line of the wing measured in a horizontal plane
φ		angle between vertical plane and the intersection of the circular portion of the body with the rectangular portion of the body

Subscripts

max		maximum value
0		zero trailing edge deflection
1		denotes original wing
2		denotes wing number 2, wing with 0.013c leading edge radius
4		denotes wing number 4, wing with 0.005c leading edge radius
	Con	figuration Code
W	W	wing
F	F	trailing edge segment
В	В	body

TEST FACILITY

The tests were conducted in the Ames 11- by 11-Foot Transonic Wind Tunnel, which is a variable density, closed return, continuous flow type. This tunnel has an adjustable nozzle (two flexible walls) and a slotted test section to permit transonic testing over a Mach number range continously variable from 0.4 to 1.4.

MODEL DESCRIPTION

The model consisted of an elliptical planform wing mounted on top of a Sears-Haack body as shown in figure 2(a). Pertinent dimensions of the wings investigated and of the Sears-Haack body, which was common to all configurations, are given in tables 1 through 3 and in figures 2(a) through (d). A photograph of the model is shown in figure 2(e). The wing was pivoted in the horizontal plane about the 0.4 root chord point to obtain oblique angles of 0°, 45°, 50°, and 60°as shown in figure 2(a).

All wings had elliptical planforms with a straight 25-percent chord line (fig. 2(a)). Wing number 1, W_1 , (see ref. 1) had an NACA 3610-02,40 airfoil section (fig. 2(d)) perpendicular to the unswept chord line. The second wing tested (wing number 2, W_2) had an airfoil section (fig. 3 (a)) designed using a hodograph method to obtain a shock-free supersonic zone over the upper surface. The third wing tested (wing number 4, W_h) had a subsonic airfoil section (fig. 3(b)) designed for a lift coefficient of 1.3 at a Mach number of 0.60. Airfoil coordinates for the three wings are given in table 2.

TESTING AND PROCEDURE

The models were sting mounted through the base of the model body as shown in figures 2(a) and 2(c), and force and moment data were obtained from an internally mounted six-component strain-gage balance. The moment center was on the body center line and longitudinally at the wing pivot point $(0.4c_{\rm root})$. Tests were conducted at Reynolds numbers of 4 and 6 million per foot. The angle-of-attack range, selected to define maximum lift-to-drag ratio for each configuration, was nominally \pm 8 degrees. Six component force and moment data were obtained for the wing at oblique angles of 0° , 45° , 50° , and 60° .

The measured balance data were adjusted to a condition corresponding to free-stream static pressure on the model base. The Mach number range for each oblique angle tested is shown in table 4.

RESULTS AND DISCUSSION

A complete index to the data figures is given in table 5. Among the noteworthy results of these experiments are the exceptionally high lift-drag ratios obtained in the transonic and low supersonic speed ranges.

Lift-to-drag ratios for the three wings are shown in figures 4 through 7 for the test Mach numbers and wing-sweep angles. Wing number 2 shows a maximum L/D value of 31 for M = 0.80 and zero wing sweep (fig. 4, pg. 21). Wing numbers 1 and 4 both had a maximum L/D value of 11 at M = 1.40 and 60° of wing sweep (fig. 7, pg. 140).

Wing number 2, which was designed to operate with shock-free supersonic flow over the upper surface showed the expected behavior. At zero wing sweep this airfoil extended the useful Mach number from 0.70 to approximately 0.80. At 60° sweep, however, the crosswise component of Mach number at M = 1.40 is only 0.70, not sufficient to achieve the design condition of this wing. Further refinement of airfoil selection for such oblique wings will depend on the extension of three dimensional wing theory beyond the linearized formulas now in use and probably also on more detailed wind tunnel studies.

Another noteworthy feature of the test results is the remarkably small shift of center of pressure for wing sweep variations from 0° to 60° . Comparing the pitching moment of the straight wing at M = 0.70 (fig. 4, pg. 9) with that of the same wing turned 60° shows only moderate changes in spite of the fact that the fore and aft dimension (streamwise chord) of the wing increased almost ten-fold when the wing was swept.

A similar result can be observed in the rolling moment measurements. Figure 4, page 13 shows rolling moments measured on the wings in the unyawed position. Presumably such moments arise from accidental manufacturing irregularities of the models. Figure 7, page 104 shows rolling moments of the same wings turned 60°. In the normal flight range these are only slightly greater than those developed on the straight, supposedly symmetrical wings. At larger angles of attack, however, effects of premature stalling of the downstream tip are observed on the oblique wings. This behavior may be compared with the premature tip stalling encountered with more conventional swept-back wings. With conventional swept-back wings stalling of the tips causes the airplane to pitch up. With the oblique wing only one tip stalls and the airplane may be expected to roll.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, California 94035

April 2, 1973

REFERENCES

- 1. Graham, Lawrence A.; Jones, Robert T.; and Boltz, Frederick W.: An Experimental Investigation of an Oblique-Wing and Body Combination at Mach Numbers Between 0.60 and 1.4. NASA TM X-62,207, December 1972.
- 2. Jones, R. T.: New Design Goals and a New Shape for the SST. Astronautics and Aeronautics, December, 1972.
- 3. Abbott, Ira H.; and Von Doenhoff, Albert E.: Theory of Wing Sections. Dover Publications 60-1601, New York, 1959.
- 4. Bauer, F.; Garabedian, P.; and Korn, D.: Supercritical Wing Section. Lecture Notes in Economics and Mathematical Systems, No. 66. Springer Verlag, Berlin, Heidelberg, New York, 1972.

TABLE 1. - MODEL GEOMETRY

Во	dy (Sears-Haack)	•	
	Length Closed Cut-off Maximum Diameter		45.25 in 36.00 in 3.37 in
Wi	ng		
	Planform 10:1 ellipse about c/4 Span (reference) Area (reference) Root chord Aspect ratio Maximum t/c Incidence 0.25c sweep Maximum thickness location, percent	chord	60.00 in 278.00 in ² 6.00 in 12.7 0.10 0° 0° 40
	Section W W W W 2		NACA 3610-02,40 0.013c nose radius 0.005c nose radius

TABLE 2. - WING GEOMETRIC DATA*

Wing 1, W₁

Semi-				
Span	Chord	Y - Up/c	Y-Lo/c	Н/с
0.000	6.000	.0775	.0298	•0000
1.000	5•997	.0775	.0298	0002
2.000	5•9 ⁸ 7	•0775	.0298	-,0008
3.000	5.970	.0775	.0298	0017
4.000	5.946	•0775	.0298	 0029
5.000	5.915	•0775	•0298	0042
6.000	5.879	•0775	.0298	 0056
7.000	5.834	•0775	•0298	0072
8.000	5.783	.0775	.0298	0090
9.000	5.724	.0775	.0298	0107
10.000	5.657	.0775	.0298	0124
10.986	5.583	.0775	.0298	0140
11.850	5.512	•0775	.0298	0154
12.635	5.442	.0775	.0298	0162
13.356 14.024	5•373	•0775	.0298	0175
14.645	5.304	•0775	.0298	0185
15.226	5.237 5.170	•0775	.0298	0193
15.772	5.104	•0775 •0775	.0298 .0298	 0199
16.286	5.039	•0775	.0298	0206
16.772	4.975	•0775	.0298	0210 0213
17.233	4.911	.0775	.0298	~.0213 ~.0218
17.671	4.849	•0775	.0298	0221
18.087	4.787	.0775	.0298	0221
18.483	4.726	•0775	.0298	0222
18.862	4.666	.0775	.0298	 0225
19.224	4.606	.0775	.0298	0224
19.570	4.548	.0775	.0298	0224
19.902	4.490	.0775	.0298	0225
20.220	4.432	.0775	.0298	0223
20.977	4.289	.0775	.0298	0219
21.533	4.178	•0775	.0298	0215
22.046	4.069	.0775	.0298	0209
22.523	3.963	.0775	.0298	0202
22.966	3.860	.0775	.0298	0194
23.379	3 . 760	•0775	.0298	 0186
23.763	3.662	.0775	.0298	0177

^{*} Semispan and chord are in inches

TABLE 2. - WING GEOMETRIC DATA - Continued.

Wing 1, W₁

Semi- Span	Chord	Y-Up/c	Y-Lo/c	н/с
24.123	3.567	.0775	.0298	0168
24.459	3.474	•0775	.0298	0158
24.773	3.384	.0775	.0298	0148
25.068	3.296	.0775	.0298	0137
25.344	3.210	•0775	.0298	0125
25.604	3.127	•0775	.0298	 0112
25.848	3.046	•0775	.0298	 00 <u>9</u> 8
26.077	2.966	•0775	.0298	0088
26,293	2.889	•0775	.0298	 0076
26.495	2.814	.0775	.0298	0060
26.686	2.741	.0775	.0298	0047
26.866	2.670	.0775	.0298	 003 ¹ 4
27.036	2,600	.0758	.0292	 0023
27.196	2,533	.0738	.0284	0008
27.347	2,467	.0721	.0276	.0008
27.489	2.403	.0703	.0270	.0022
27.624	2.340	.0688	.0265	.0034
27.751	2.279	.0671	.0259	.0048
27.870	2.220	.0653	.0252	.0063
27.984	2.163	.0643	.0245	.0079
28.091	2.106	.0613	.0237	.0095
28.345	1.965	•0590	.0229	.0137
28.524	1.859	.0565	.0221	.0167
28.684	1.758	.0546	.0210	.0205
28.825	1.662	.0529	.0205	.0241
28.952	1.572	.0515	.0197	.0274
29.064	1.487	.0504	.0195	.0309
29.164	1.406	.0491	.0185	.0349
29.254	1.330	.0481	.0180	.0383 .0429
29.333	1.258	•0469	.0183	.0429
29.405	1.190	.0462	.0176 .0178	.0516
29.468	1.125	.0453 .0442		•0555
29.529	1.064	·0440	.0169	.0624
29.600	•977		.0174	
29.700	.846 .co	.0449 .0448	.0165	•0757 •0968
29.800	.692		.0173 .0163	.1431
29.900	. 489	.0450	.0000	∞ • ∓42∓
30.000 '	.000	•0000.	•0000	ω

TABLE 2. - WING GEOMETRIC DATA - Continued.

			· -		
x/c	z/c	x/c	z/c	x/c	z/c
000259	.002799	.014919	.020037	.044480	.032330
000253	.003206	.014942	.020032	.044901	.032450
000245	•003358	.016227	.020802	•045314	.032567
 000236	.003508	.016719	.021082	.045720	.032681
000225	.003655	.017617	•020584	.046122	.032792
000213	.003800	.018626	.022130	.046523	.032902
000198	.003941	•019108	.022389	.046935	033011
000183	.004080	.020538	.023127	•047351	.033125
000 156	.004281	.020582	.023202	.047772	.033236
000117	.004537	.022320	.024010	.048201	•033349
 000068	.004814	.023832	.024723	.048640	.033462
- .000004	.005114	.024277	.024927	.049093	.033578
.000077	.005437	.025427	.025443	.049562	.033696
.000181	.005788	.026636	.025968	.050049	.033818
.000313	.006172	.027858	.026482	.050556	.033943
.000482	.006592	.031474	.027994	.051086	.034072
- . 000690	.007047	.031980	.028189	.051640	.034205
.000939	.007531	.032497	.028386	.052221	.034343
.001226	.008037	.032945	.028555	.052829	.034485
.001500	.008482	.033498	.028761	.053467	.014633 .034785
.001816	.008963	.034020	.028953	.054135	
.002177	.009476	.034543	.029143	.054835	.034943 .035106
.002581	.010017	.035082	.029337	.055566 .056330	.035273
.003024	.010576	•035537	.029499	.057127	.035445
•003584	.011242 .011420	.036082 .036601	.029691 .029872	•057955	.035623
.003741	.011512	.037112	.030047	.058816	.035803
.003823 .004052	.011764	.037619	.030047	.059707	.035987
.004092	.012016	.03/019	.030423	.060629	.036175
.004200	.012520	.038942	.030619	.061578	.036366
.005286	.013023	.039521	.030809	.062555	.036559
.005821	.013524	.040086	.030991	.063556	.036754
.006380	.014024	.040636	.031166	.064581	.036954
.006993	.014548	.041171	.031335	.065628	.037148
.007703	.015127	.041689	.031496	066694	•037346
.008523	.015766	.042191	.031650	.067779	•037543
.009472	.016473	.042677	.031798	.0 <i>6</i> 8883	.037743
.010371	.017251	.043148	.031939	.070005	.037942
.011837	.018106	.043605	.032074	.071146	.038140
.013283	.019037	.044048	.032204	.072311	.038339

TABLE 2. - WING GEOMETRIC DATA - Continued.

x/c	z/c	x/c	z/c	x/c	z/c
.073503	.038540	.420081	.058866	•950000	.030800
•074730	.038742	.437854	.059084	955000	.029550
.076001	.038949	455795	.059249	•960000	.028400
.077328	.039260	.473858	.059360	•965000	.027150
.078729	•039379	•491996	.059416	970000	.026000
.080223	.039609	.5101.63	.059416	•975000	.024800
.081835	.039851	.528315	.059362	•980000	.023150
.083594	.040110	• 546409	.059253	.985000	.021750
.085532	.040390	• 564404	.059088	•990000	.020000
.087689	.040654	.582260	.058870	• 995000	.018350
.090107	•040976	•599941	.058599	1.000000	.016250
.092832	.041331	.617410	.058275	1.000000	.011500
.095916	.041721	.634633	•057900	•996930	.012309
.099411	.042151	.651577	•057474	•992183	.013346
:103374	.042623	.668211	.056998	. 984458	.014902
.107860	.043139	.684502	.056473	.974208	.016590
.112926	•043700	.708417	•055897	.969617	.017227
.118625	.044307	•7 15 919	.055271	.964869	.017799
.125010	.044957	•730965	.054590	• 959372	.018372
.132127	.045650	•745497	.053849	•953100	.018917
.140017	.046380	.7 59430	. 053 03 6	•946064	.019625
.148713	•047144	. 772646	.052143	•938325	.020235
.158242	.047936	.785031	.051216	•935056	.020502
.168619	•048749	.796561	.050304	•930826	.020947
.179851	.049576	.807278	.049408	.918220	.021598
•191936	.050410	.817242	.048524	•902981	.021796
.204859	.051244	.826502	.047657	.892173	.021526
.218596	.052066	·835095	.046812	.888918	•021610
.233111	.052876	.874772	.042382	.880800	.021338
.248369	.053661	.881389	.041550	• <u>8</u> 73936	.021038
.261499	.054286	.886521	.040890	•867ó17	.020651
.275210	.054893	.893973	.039903	.860072	.020179
.289481	.055476	.898775	.039245	• <u>8</u> 53133	•019744
.304289	.056033	•905727	.038267	.839225	.018253
.319605	.056559	•907539	.038022	.829378	.016944
•335396	.057049	.917272	.036560	.82 <u>1</u> 363	.015678
.351625	.057502	.923762	•035541	.816907	.014932
.368251	.057912	•932355	.034142	.808726	.013456
.385233	.058278	936350	.033414	.804319	.012614
.402526	.058597	•946280	. 0316 7 5	•799694	.011703

TABLE 2. - WING GEOMETRIC DATA - Continued.

			-		
x/c	z/c	x/c	z/c	x/c	z/c
.794844	.010726	.511412	03513 9	.121072	037610
:789767	.009690	.502244	~. 035896	.116816	037243
784463	•008599	.492898	036626	.113390	 036946
•778938	.007454	.483403	037324	.105636	036223
•773195	•006281	•473787	037990	.103263	035985
.770172	.005655	.464063	038623	098167	035466
767702	.005121	.454281	039217	.097820	 035434
.762277	.004017	• 4444445	039774	.093341	 034950
.760899	•003714	•434573	040292	.088930	034484
.756939	.002880	.419722	041001	982042	033633
•751239	.001707	. 4 04842	041625	.078825	033212
.747425	.000931	.389941	042168	.071082	032134
.746296	.000679	375014	-:0426 32	.066312	031417
.741604	000291	.360044	043017	.064241	031090
. 736259°	001371	.342450	0 43369	. 060793	030528
·735732	001500	.327538	043585	.058050	030061
.729835	 002691	.326625	 043595	.055317	029577
.727639	003147	.316009	0 43698	.053273	029201
.722656	004155	.310610	043734	.051242	028817
.718286	 005 0 28	.3 07293	 043753	.049218	028421
.716080	005470	•294383	0 43786	.047205	028014
-713785	005940	. 291384	0 43785	.045207	027596
.707523	007170	.279420	043752	.043227	027167
.706231	- .007440	.277862	043743	.041267	026727
.698425	008951	.264209	 043634	.039329	026276
.696716	009296	.24 8682	043426	.037419	025814
. <i>6</i> 87638	011037	.245962	043375	.035541	025341
.687600	011037	.233501	043129	•033698	024858
.679061	012627	.229561	04303 8	.03 2960	024651
.674766	+. 013 <u>4</u> 35	.217370	042719	•032547	 024546
.658057	016407	.203264	042270	.031022	024119
.643 396	018887	.194206	041935	.029605	023700
.627219	021469	.185170	041562	.029466	023667
.609744	 024068	.176128	041149	.027631	023102
•591249	 026591	.167067	040695	.027484	023056
•591100	026613	.157951	040190	.027462	023057
•575291	028602	.151106	039779	.026683	022817
557428	 030667	.143697	039302	.025394	022392
.•537560	032741	.136226	038784	.024693	022149
•520372	034358	. 128686	038222	.024151	 021972

TABLE 2. - WING GEOMETRIC DATA - Continued.

TABLE 2. - WING GEOMETRIC DATA - Concluded.

Wing 4, W4

x/c	z/c	x/c	z/c	x/c	z/c
•99596	02586	.01149	00620	.00709	.01538
.98615	 02306	.00943	00570	.01197	.01878
.96854	 01899	.00774	00519	.02179	.02443
.94348	 01488	.00674	00481	.03187	.02928
•91595	01191	.00592	00445	.04250	•03373
.89717	01051	.00467	00382	.06373	.04113
87054	00923	.00343	00308	•09353	•04969
82243	00837	.00257	00249	•13389	.05882
.77611	00873	.00165	00176	•17545	.06612
74682	00927	•0010 ¹ 4	00120	.22415	.07277
.71655	01008	.00048	00058	.28227	.07863
.68122	01118	0.00000	0.00000	.34741	.08291
.65330	01209	00045	.00079	• դե շ դեր	.08502
.61351	01340	00073	.00146	.481 <i>6</i> 8	.08487
•57465	 01459	00086	.00191	•55738	.08191
•54359	01545	00097	•00244	.62052	.07704
.50010	01647	00103	.00290	•68276	.06982
•45495	01727	00106	•00345	.72012	. 06433
. 38597	01791	00104	.00403	•75413	.05845
.31761	01781	00098	. 00463	. 823 <u>1</u> 8	•014135
. 25034	01714	00077	.00572	<u>.</u> 85663	.03610
.19880	01620	00052	. 00653	. 891 1 5	.02678
.13965	01462	00021	.00732	•92448	.01698
•09339	01288	00026	.00830	•95410	.00764
.06022	01116	 00073	.00909	-97175	.00178
.0 3967	00970	.00163	.01033	•99163	00516
. 02583	00837	.00276	.01161	.99988	00810
.01539	00694	•00464	.01340	1.00000	01725

TABLE 3. - BODY DIMENSIONAL DATA

.L	x	Dia	Area	W	z	Φ.
.00	22.62	3.036	8.909	3.036	.000	90.0
. 10	22.52	3.036	8.909	3 .03 6	.000	90.0
.20	22.42	3.035	8.908	3.035	.000	90.0
.30	22.32	3.035	8.907	3.035	.000	90.0
. 40	22.22	3.035	8.905	3.035	.000	90.0
. 50	22.12	3.034	8.903	3.034	.000	90.0
. 60	22.02	3.033	8.900	3.033	.000	90.0
. 70	21.92	3.032	8.896	3.032	.000	90.0
.80	21.82	3.032	8.892	3.032	.000	90.0
.90	21.72	3.030	8.888	3.030	.000	90.0
1.00	21.62	3.029	8.883	3.029	.000	90.0
1.10	21.52	3.028	8.878	3.028	.000	90.0
1.20	21.42	3.026	8.872	3.026	.000	90.0
1.30	21.32	3.025	8.865	3.025	.000	90.0
1.40	21,22	3.023	8.858	3.023	.000	90.0
1.50	21.12	3.021	8.850	3.021	.000	90.0
1.60	21.02	3.019	8.842	3.019	.000	90.0
1.70	20.92	3.017	8.834	3.017	.000	90 .0
1.80	20.82	3.015	8.825	3.015	.000	90.0
1.90	20.72	3.013	8.815	3.013	.000	90.0
2.00	20.62	3.010	8.805	3.010	.000	90.0
2.10	20.52	3.008	8.794	3.008	.000	90.0
2.20	20.42	3.005	8.783	3.005	.000	90.0
2.30	20.32	3,002	8.771	3.002	.000	90.0
2.40	20.22	2,999	8.759	2.999	.000	90.0
2.50	20.12	2.996	8.746	2.996	.000	90.0
2.60	20.02	2,993	8.733	2.993	.000	90.0
2.70	19.92	2.989	8.719	2.989	.000	90.0
2.80	19.82	2.986	8.705	2.986	.000	90.0
2.90	19.72	2.982	8.690	2.982	.000	90.0
3.00	19.62	2.979	8.675	2.979	.000	90.0
3.10	19.52	2,975	8.659	2.925	.000	90.0
3.20	19.42	2.971	8.643	2.971	.000	90.0
3.30	19.32	2.967	8.626	2.967	.000	90.0
3.40	19.22	2.962	8.609	2.962	.000	90.0
3 .50	19.12	2.958	8.591	2.958	.000	90.0
3,60	19.02	2.953	8.573	2.953	.000	90.0
3.70	18.92	2.949	8.554	2.949	.000	90.0

^{*} All dimensions are inches except Area, in^2 , and Φ , degrees

TABLE 3. - BODY DIMENSIONAL DATA - Continued.

L	x	Dia	Area	W	z	Φ.
3.80	18.82	2.944	8.535	2.944	.000	90.0
3,90	18.72	2.039	8.515	2.939	.000	90.0
4.00	18.62	2.934	8.495	2.934	.000	90.0
4.10	18.52	2.929	8.474	2.929	.000	90.0
4.20	18.42	2.924	8.452	2.924	.000	90.0
4.30	18.32	2.918	8.431	2.918	.000	90.0
4.40	18.22	2.913	8,400	2.913	.000	90.0
4.50	18.12	2.907	8.386	2.907	.000	90.0
4.60	18.02	2.902	8.362	2.900	.059	87.7
4.70	17.92	2.899	8.338	2.889	. 119	85.3
4.80	17.82	2.896	8.314	2.878	.160	83.7
4.90	17.72	2.894	8,289	2.867	.199	82.1
5.00	17.62	2.891	8.264	2.854	.230	80.0
5.10	17.52	2.889	8.239	2.841	.262	79.6
5.20	17.42	2.886	8.212	2.828	.289	78,4
5.30	17.32	2.884	8.186	2.813	.318	77.3
5.40	17.22	2.882	8.158	2.798	346 ه	76.1
5.50	17.12	2.880	8.131	2.782	.372	75.0
5,60	17.02	2.877	8.103	2.766	.397	74.0
5.70	16.92	2.875	8.074	2.748	.423	72.9
5.80	16.82	2.873	8.045	2.730	.448	71.8
5.90	16.72	2.872	8.016	2.711	.474	70.7
6.00	16.62	2.870	7.986	2.691	.499	69.7
6.10	16.52	2.868	7.955	2.671	.523	68.6
6.20	16.42	2.866	7.924	2.649	• 547	67.6
6.30	16.32	2.864	7.893	2.627	.571	66.5
6.40	16.22	2.863	7.861	2.604	£596	65.4
6.50	16.12	2.861	7.829	2.580	.619	64.4
6.60	16.02	2.859	7.796	2.554	.642	63.3
6.70	15.92	2.857	7.763	2.528	.665	62.2
6.80	15.82	2.856	7.729	2.501	.689	61.1
6.90	15.72	2.854	7.695	2.473	.712	60.1
7.00	15.62	2.853	7.660	2.444	.736	59.0
7.10	15.52	2.851	7 .62 5	2.414	.758	57.9
7.20	15.42	2.849	7.590	2.383	.781	56.8
7.30	15.32	2.848	7 . 55 4	2.350	.804	55.6
7.40	15.22	2.846	7.518	2.317	.827	54.5
7.50	15.12	2.854	7.481	2.282	.857	53.1

TABLE 3. - BODY DIMENSIONAL DATA - Continued.

L	x	Dia	Are a	W	Ż	Φ ,
7.60	15.02	2.861	7.444	2.245	.887	51.7
7.70	14.92	2.867	7.406	2.207	.915	50.3
7.80	14.82	2.873	7.368	2.168	943	49.0
7.90	14.72	2.878	7.330	2.127	.969	47.7
8.00	14.62	2.883	7.291	2.085	.996	46.3
8.10	14.52	2.888	7.252	2.040	1.022	44.9
8.20	14.42	2.891	7.212	1.994	1.047	43.6
8.30	14.32	2.895	7 .17 2	1.946 1.895	1.072	42.2 40.8
8.40	14.22	2.898	7.131 7.090	1.843	1.096 1.120	39.4
8.50	14.10	2.900		1.787	1.143	38.0
8.60	14.02	2.902	7.049 7.007	1.729	1.166	36.6
8.70	13.92	2.903 2.904	6.965	1.668	1.189	35.0
8.80	13.82			1.603	1.211	33.5
8.90	13.72 13.62	2.905 2.903	6.923 6.880	1.534	1.232	31.9
9.00 9.10	13.52	2.903	6.836	1.461	1.254	30.2
9.10	13.42	2.901	6.793	1.383	1.275	28.5
9.20	13.42	2.899	6.749	1.298	1.296	26.6
9.40	13.32	2.996	6.704	1.207	1.316	24.6
9.40	13.12	2.892	6.659	1.106	1.336	22.5
9.60	13.12	2.888	6.614	.992	1.356	20.1
9.70	12.92	2.883	6.568	.863	1.376	17.4
9.80	12.82	2.877	6.522	.707	1.394	14.2
9.90	12.72	2.870	6.476	.502	1.413	10.1
10.00	12.62	2.861	6.429	.000	1.431	.0
10.10	12.52	2.851	6.382	•	•	
10.20	12.42	2.840	6.335			
10.30	12.32	2.829	6.287			
10.40	12.22	2.819	6.239			
10.50	12.12	2.808	6.191			
10.60	12.02	2.796	6.142			
10.70	11.92	2.785	6.093			
10.80	11.82	2.774	6.044			
10.90	11.72	2.763	5.994			
11:00	11.62	2.751	5.944			
11.10	11.52	2.739	5.893			
11.20	11.42	2.727	5.843			
11.30	11.32	2.716	5 .792			

TABLE 3. - BODY DIMENSIONAL DATA - Continued.

L	. x	Dia	Area
11.40	11.22	2.704	5.740
11.50	11.12	2.691	5.689
11.60	11.02	2.679	5.637
11.70	10.92	2,667	5.585
11.80	10.82	2,654	5.532
11.90	10.72	2.641	5.480
12.00	10.62	2.629	5.427
12,10	10.52	2.616	5.373
12 .20	10.42	2.603	5.320
12.30	10.32	2.589	5.266
12.40	10.22	2.576	5.212
12.50	10.12	2.563	5.158
12.6 0	10.02	2.549	5.103
12.70	9.92	2.535	5.048
12.80	9.82	2.521	4.993
12.90	9.72	2.507	4.938
13.00	9.62	2.4 9 3	4.883
13.10	9.52	2.479	4.827
13.20	9.42	2.465	4.771 4.715
13.30	9.32	2.450	
13.40	9.22	2.436	4.659
13.50	9.12	2.421	4.602
13.60	9.02	2.406	4.546 4.489
13.70	8.92	2.391	4.432
13.80	8.82	2.375 2.360	4.432
13.90	8.72	2.345	4.317
14.00	8.62		4.260
14.10	8.52	2.329	4.202
14.20	8.42	2.313	4.144
14.30	8.32	2.297 2.281	4.086
14.40	8.22 8.12	2.265	4.028
14.50		2,248	
14.60	8.02	2.232	3.970 3.912
14.70	7.92	2.215	3.853
14.80	7.82	2.198	3.795
14.90	7. 72 7.62	2.181	3.736
15.00		2.164	3.677
15.10	7.52	£ . 104	3.0//

TABLE 3. - BODY DIMENSIONAL DATA - Continued.

L	×	Dia	Area
15.20	7.42	2.146	3.619
15.30	7.32	2.129	3.560
15.40	7.22	2.111	3.501
15.50	7.12	2.093	3.442
15.60	7.02	2.075	3,383
15.70	6 .92	2.057	3.324
15.80	6.82	2.039	3.265
15.90	6.72	2.020	3,206
16.00	6.62	2.002	3.147
16.10	6.52	1.983	3.088
16,20	6.42	1.964	3.029
16.30	6.32	1.944	2.970
16.40	6.22	1.925	2.911.
16.50	6.12	1.905	2.852
16.60	6.02	1.886	2.793
16.70	5.92	1.866	2.734
16.80	5.82	1.845	2,675
16.90	5.72	1.825	2.616
17.00	5 .6 2	1.805	2.558
17.10	5.52	1.784	2,499
17.20	5.42	1.763	2.441
17.30	5.32	1.742	2.382
17.40	5.22	1.720	2.324
17.50	5.12	1.699	2,266
17.60	5.02	1.677	2.208
17.70	4.92	1.655	2.151
17.80	4.82	1.633	2.093
17.90	4.72	1,610	2.036
18.00	4.62	1.587	1.979
18.10	4.52	1.564	1.922
18.20	4.42	1.541	1,866
18.30	4.32	1.518	1.809
18.40	4.22	1.494	1.753
18.50	4.12	1.470	1.697
18.60	4.02	1.446	1.642
18.70	3.92	1.421	1.587
18.80	3.82	1.397	1.532
18.90	3,72	1.372	1.478

TABLE 3. - BODY DIMENSIONAL DATA - Concluded.

L x Dia A	rea
	. 4 2 4
	. 370
	.317
	.264
	212
	160
19.60 3.02 1.188 1.	. 108
	057
19.80 2.82 1.132 1.	QQ7
	957
	908
	860
20.20 2.42 1.017	812
20.30 2.32 .987 20.40 2.22 .956	765
20.40 2.22 .956	718
20.50 2.12 .926	673
20.60 2.02 .894	628
20.70 1.92 .862	584
	541
20.90 1.72 .797	499
21.00 1.62 .763 .	457
24.10 1.52 .729	417
21.20 1.42 .694	378
21.30 1.32 .658	340
21.40 1.22 .621	303
21.50 1.12 .583	267
21.60 1.02 .545	233
	200
	Ľ 69
	40
22.00 .62 .378 .1	12
	86
• • • • • • • • • • • • • • • • • • •	63
	42
	24
	10
	01
	00

Configuration	Λ	Re/10 ⁶ , per ft.						. Numbe			·		- 10
	deg.	per ft.	0.60	0.70	0.80	0.95	0.98	1.05	1.10	1.15	1,20	1.30	1.40
W _l F _o B	0	6	x	х	х								·
	45	6		x	х	х	х	x		:			
	50	6			х	х	х		х	х	х		
W _l F _o B	60	6			х	×			х		x	х	x
W ₂ F _O B	0	4	х	x	х								
	45	4 .	·	х	x	х	ж	x	x	x			
	50	4			х	х	х		х	х	х	х	
W ₂ F _O B	60	4			×	x			х		x	х	x
W ₄ F _O B	0	6	x	х	х								
	45	6	x	х	х	х	X.	х					
	50	6			х	х	х		x	х	x		
W ₄ F _O B	60	6			х	х		х	х		ж	х	х

TABLE 5. - INDEX OF DATA FIGURES

Figure	Title	Page
4	Effect of wing airfoil section for an oblique wing angle of 0 degrees.	1 ,
5	Effect of wing airfoil section for an oblique wing angle of 45 degrees.	22
6	Effect of wing airfoil section for an oblique wing angle of 50 degrees.	5 7
7	Effect of wing airfoil section for an oblique wing angle of 60 degrees.	99

Note:

1. Positive directions of force coefficients, moment coefficients, and angles are indicated by arrows

Figure 1.- Axis systems.

Note: All dimensions are in inches except as noted

(a) Model drawing

Figure 2.- Oblique-wing/body model details and photograph.

(b) Wing planform and base line curvature

Figure 2.- Continued.

(c) Body dimensional data

Figure 2.- Continued.

<u>t</u>	Camber	$\underline{\mathbf{z}}$ - $\mathbf{u}_{\mathbf{p}}$	Z-Lo
С	С	С	c
.01203	.00008	.00609	00594
. 033 9 4	.00078	. 01 77 5	01619
.04849	•00195	.02619	02230
.06119	•00389	.03449	02671
.06891	.00582	.04027	02864
.07446	.00772	•044 9 5	02951
.08250	.01144	.05269	02981
.08852	.01498	•05924	02928
.09689	.02129	.06974	02715
.10000	.02621	.07621	 023 79
	.02925	.07749	01899
•	. 02 9 95	.07275	01285
, ,	.02 7 85	.06182	00613
	.02246	•04531	00038
	•01334	.02461	.00207
.00400	.00000	.00200	00200
	.03394 .04849 .06119 .06891 .07446 .08250 .08852	.01203 .00008 .03394 .00078 .04849 .00195 .06119 .00389 .06891 .00582 .07446 .00772 .08250 .01144 .08852 .01498 .09689 .02129 .10000 .02621 .09647 .02925 .08560 .02995 .06796 .02785 .04568 .02246	.01203 .00008 .00609 .03394 .00078 .01775 .04849 .00195 .02619 .06119 .00389 .03449 .06891 .00582 .04027 .07446 .00772 .04495 .08250 .01144 .05269 .08852 .01498 .05924 .09689 .02129 .06974 .10000 .02621 .07621 .09647 .02925 .07749 .08560 .02995 .07275 .06796 .02785 .06182 .04568 .02246 .04531 .02255 .01334 .02461

(d) ing section drawing and tabulated airfoil section data for wing number 1, \mbox{W}_{1}

Figure 2.- Continued.

(e) Photograph of the model in the Ames 11- by 11-Foot Wind Tunnel, $\Lambda = 60^{\circ}$ Figure 2. - Concluded.

(a) Wing number 2, W₂ (see table 2 for section coordinates)

(b) Wing number 4, W₄ (see table 2 for section coordinates)

Figure 3.- Wing-section drawings.

DATA

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .60

PAGE

Rs No

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .60

PAGE 2

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .60

PAGE 3

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE (A)MACH =.60 PAGĘ

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .60

PAGE 5

3

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .60

PAGE 6

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE PAGE (A)MACH = .60

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .70

PAGE 8

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .70

PAGE 9

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .70

PAGE 10

BETA LAMBDA RN/L 0,000 0,000 6,000 0,000 0,000 4,000 0,000 0,000 6,000

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .70

PAGE 11

7

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .70

PAGE 12

1/2

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .70

PAGE 13

LAMBDA BETA RN/L

(2AE039) W2 F0 B 0.000 0.000 6,000 4,000 6.000 0,000 0.000

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF O DEGREE (A)MACH = .70PAGE

-0.6 | 8

0.000 0.000

0.000

0.000

0,000

4.000 6.000

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .80

PAGE 15

ANGLE OF ATTACK, ALPHA, DEGREES

BETA LAMBDA RN/L 0.000 0.000 6.000 0.000 0.000 4.000 0.000 0.000 6.000

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .80

PAGE 16

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .80

PAGE 17

RN/L

6.000

4.000

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .80

PAGE 18

CONFIGURATION DESCRIPTION

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .80

PAGE 19

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .80

PAGE 20

FIGURE 4 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 0 DEGREE

(A)MACH = .80

PAGE 21

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .70

PAGE 22

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .70

PAGE 23

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .70

PAGE 24

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .70

PAGE 25

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .70

PAGE 26

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .70

PAGE 27

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .70

PAGE 28

W4 FO B

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES (A)MACH = .80 PAGE 29

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .80

PAGE 30

(3AE041) (3AE066)

RN/L LAMBDA

0.000 45.000 0.000 45.000 0.000 45.000

BETA

6,000 4,000

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES PAGE 31 (A)MACH =.80

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .80

PAGE 32

W1 F0 B W2 F0 B W4 F0 B (3AE005) Q (3AE041) A (3AE066) \$

BETA 0.000 45.000 0.000 45.000 0.000 45.000 6.000 4.000 6.000

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES PAGE 33 (A)MACH =.80

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .80

PAGE 34

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .80

PAGE 35

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .95

PAGE 36

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

[A]MACH = .95

PAGE 37

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .95

PAGE 38

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .95

PAGE 39

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .95

PAGE 40

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .95

PAGE 41

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .95

PAGE 42

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .98

PAGE 43

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .98

PAGE 44

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .98

PAGE 45

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .98

PAGE 46

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .98

PAGE 47

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

[A]MACH = .98

PAGE 48

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = .98

PAGE 49

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = 1.05

PAGE 50

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = 1.05

PAGE 51

BETA LAMBDA RN/L 0.000 45.000 6.000 0.000 45.000 4.000 0.000 45.000 6.000

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = 1.05

PAGE 52

Cr Od DATA SET SYMBOL CONFIGURATION DESCRIPTION (6AEO05) (6AEO41) (6AEO66) W1 FO B W2 F0 B

BETA 0.000 45.000 0.000 45.000 0.000 45.000 6.000 4.000

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES PAGE 53 (A)MACH = 1.05

ANGLE OF ATTACK. ALPHA, DEGREES

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = 1.05

PAGE 54

6.000

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES PAGE 55 (A)MACH = 1.05

FIGURE 5 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 45 DEGREES

(A)MACH = 1.05

PAGE 56

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .80

PAGE 57

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .80

PAGE 58

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .80

PAGE 59

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .80

PAGE 60

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

[A]MACH = .80

PAGE 61

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .80

PAGE 62

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .80

PAGE 63

DATA SET SYMBOL CONFIGURATION DESCRIPTION

(4AE007) W1 F0 B

(4AE042) W2 F0 B

(4AE068) W4 F0 B

BETA LAMBDA RN/L 0.000 50.000 6.000 0.000 50.000 4.000 0.000 50.000 6.000

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .95

PAGE 64

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .95

PAGE 65

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .95

PAGE 66

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .95

PAGE 67

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .95

PAGE 68

RN/L 0.000 50.000 6.000 50,000 0,000 4,000 0.000 6,000

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES (A)MACH = .95PAGE 69

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .95

PAGE 70

102

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .98

PAGE 71

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .98

PAGE 72

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .98

PAGE 73

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .98

PAGE 74

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .98

PAGE 75

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .98

PAGE 76

DATA SET SYMBOL CONFIGURATION DESCRIPTION

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = .98

PAGE 77

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.10

PAGE 78

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.10

PAGE 79

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.10

PAGE 80

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES PAGE 81 (A)MACH = 1.10

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.10

PAGE 82

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.10

PAGE 83

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.10

PAGE 84

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.15

PAGE 85

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.15

PAGE 86

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.15

PAGE 87

0.000

6.000

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES PAGE 88 (A)MACH = 1.15

(BAED68)

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES PAGE 89 (A)MACH = 1.15

.016

-.016_[8

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.15

PAGE 90

ANGLE OF ATTACK, ALPHA, DEGREES

12

8

10

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

- (A)MACH = 1.15

PAGE 91

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.20

PAGE 92

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.20

PAGE 93

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.20

PAGE 94

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.20

PAGE 95

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.20

PAGE 96

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES

(A)MACH = 1.20

PAGE 97

W4 FO B

FIGURE 6 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 50 DEGREES 98 PAGE (A)MACH = 1.20

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .80

PAGE 99

.25

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .80

PAGE 100

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .80

PAGE 101

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .80

PAGE 102

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .80

PAGE 103

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .80

PAGE 104

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .80

PAGE 105

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .95

PAGE 106

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .95

PAGE 107

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .95

PAGE - 108

 DATA SET SYMBOL
 CONFIGURATION DESCRIPTION
 BETA
 LAMBDA
 RN/L

 (4AED12)
 W1 FD B
 0.000
 60.000
 6.000

 (4AED43)
 W2 FD B
 0.000
 60.000
 4.000

 (4AED67)
 W4 FD B
 0.000
 60.000
 6.000

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .95

PAGE 109

. .

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

[A]MACH = .95

PAGE 110

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .95

PAGE 111

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = .95

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.10

PAGE 113

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.10

PAGE 114

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.10

PAGE 115

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.10

PAGE 116

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.10

PAGE 117

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.10

PAGE 118

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.10

PAGE 119

BETA LAMBDA RN/L 0.000 60.000 6.000 0.000 60.000 4.000 0.000 60.000 6.000

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.20

PAGE 120

150

(9AED67)

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES PAGE 121 (A)MACH = 1.20

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.20

PAGE 122

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES PAGE 123 (A)MACH = 1.20

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.20

PAGE 124

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.20

PAGE 125

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.20

PAGE 126

DATA SET SYMBOL CONFIGURATION DESCRIPTION

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.30

PAGE 127

.25

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.30

PAGE 128

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.30

PAGE 129

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.30

PAGE 130

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES PAGE 131 (A)MACH = 1.30

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.30

PAGE 132

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.30

PAGE 133

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.40

PAGE 134

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.40

PAGE 135

6.000

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES (A)MACH = 1.40PAGE 136

W4 FD B

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES (A)MACH = 1.40PAGE 137

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.40

PAGE 138

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.40

PAGE 139

FIGURE 7 EFFECT OF WING AIRFOIL SECTION FOR AN OBLIQUE WING ANGLE OF 60 DEGREES

(A)MACH = 1.40

PAGE 140