

GnA DNA Intern Project Forecasting SPARC Request Volumes

Meeting Agenda

Things I Learned

Regression, SQL, Starburst, Time Series Models

Project Overview

Forecasting SPARC Service Request Volume

Data Analysis and Model Selection

EDA (Exploratory Data Analysis), Regression, Fourier series modeling & final model selection

Model Tuning

Hyperparameter Tuning

Results

Accuracy and performance on historicals and 90-day forecast windows

Things I learned

Regression, SQL, Starburst, Time Series Models

- Time Series Models
 - o Trend, Seasonality, Confidence Intervals
- Data Analysis
 - o Periodogram, Seasonality, Trends, Volumes
- Querying Data via SQL
- Data Cleaning
- Hyperparameters and Impacts Thereof,
- Evaluating Model performance
 - o MAPE, Percent Error, Accuracy across windows (90-days, etc.)

High Level Project Overview

Impetus

 A value proposition to demonstrate the potential benefits of a demand forecast for SPARC request volumes

Problem

 SPARC ticket volumes can fluctuate based on system outages, new software offerings, organization changes and hiring patterns

Proposed Solution

- Build a demand forecast model to help inform the business of potential volumes
- Provide a solution that can incorporate external variables such as user hardware updates, software launches, new country rollouts, shifts in work patterns (*remote* vs office), etc.

Potential Benefits

- Headcount projections (required personnel to handle volume) and business cost calculations thereof
- Accommodate what-if scenarios by correlating ticket inflow with external factors and applying them to projections

Exploratory Data Analysis

- Pulled data down from Starburst via SQL
- Removed duplicates
- Broke down data into regions
- Analyzed Gilead vs Kite
- Cleaned data by removing spikes/ outliers
- The top 5 countries by volume represented 86% of the overall volume

Exploratory Data Analysis, cont. Seasonality (Month, Week, Day)

Examined seasonality across all significant intervals

- Quarters, Months, Weeks
- As well as across the top 5 countries and 4 regions

Exploratory Data Analysis, cont.

Periodicity

Netherlands

 The variance in the data by country/region indicated a model would be required that could accommodate more than simple trend and growth factors for SPARC tickets

- Examining the unique seasonality patterns within the data's subsets helped identify that segregating the data by the top 5 countries, and remaining countries by region would compensate for the unique seasonality patterns within regions that would impact demand
 - Some areas had unique periodicity, i.e Netherlands
 - Netherlands and US pictured

Model Selection

- Tested 9 Different Algorithms
- All model testing leveraged Fourier weights for seasonality (month, week and day of year) informed by the EDA using a deterministic process
 - AutoARIMA
 - Croston Classic
 - Dynamic Optimized Theta
 - Generalized Additive (GAM)
 - Historic Average
 - Holt Winters
 - Linear Regression
 - Random Forest Regression
 - Seasonal Naïve
- *Highest Performance (MAPE) was with:*
 - *GAM model (prophet model from Meta)*
 - Benefits:
 - Robust seasonality
 - Accommodates exogeneous regressors (holidays, etc.)
 - Robust trend weights with changepoint inflection markers
 - Numerous hyper-parameters for tuning

GAM (prophet)

Hyperparameter Optimization

- Method: Bayesian Optimization
 - Faster model tuning as well as potentially improved accuracy for the model compared to traditional methods (e.g., random or grid searching)
 - Treats tuning like a regression problem by iterating through value combinations
 - Each run uses values incrementally close to the best previous or far removed to explore the range of values
 - Concentrates on trying combinations of 'good' values across the individual parameters
 - Other methods are limited by either:
 - A finite number of suggested values we enter and the more values we suggest, the longer the run time
 - Random selection of values (i.e., not concentrating on combinations near previous good values)
 - Allows us to re-train the model quickly while still maximizing accuracy

Results and Evaluating Model Performance

The layered (9 variable) forecast resulted in performance of:

- Tuned Model:
 - o Fit w/ MAPE of 3.7%
 - St Dev of 2.7%
- Forecast results on a 90-day Horizon measured across chained windows:
 - E.g. when predicting a month's volume a quarter ahead from historicals (actuals through Dec, predict Mar)
 - o Mean accuracy 92.5%, St Dev 3.2%

Chained Window Forecasts

