

11.Übungsblatt zur Vorlesung Optimierung B

Abgabe spätestens in der Übung am 27.01.12

Aufgabe 1: 2 Punkte

Es sei $A := (a_{i,j})_{1 \le i \le n, 1 \le j \le m}$ die Inzidenzmatrix eines ungerichteten Graphens G, also

$$a_{i,j} = \begin{cases} 1, & \text{falls } v_i \text{ mit } e_j \text{ inzidiert,} \\ 0, & \text{sonst.} \end{cases}$$

Zeige: A ist genau dann total unimodular, wenn G bipartit ist.

Aufgabe 2: 1 Punkte

Sei $A=\begin{pmatrix}1&-1\\1&1\end{pmatrix}$ und $b=\begin{pmatrix}0\\0\end{pmatrix}$. Zeige, dass das System $Ax\leq b$ nicht TDI ist, aber dass das System TDI wird, falls man noch die redundante Ungleichung $x_1\leq 0$ zu $Ax\leq b$ hinzufügt. Hinweis: Betrachte den Zielfunktionsvektor $c=(1,0)^t$.

Aufgabe 3: 1.5+1.5 Punkte

Sei $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ und $\beta \in \mathbb{Q}$.

- a) $Ax \leq b$ sei ein TDI System und die Ungleichung $a^tx \leq \beta$ mit $a \in \mathbb{Q}^n$ folge aus $Ax \leq b$. Zeige, dass dann das System $Ax \leq b$, $a^tx \leq \beta$ ebenfalls TDI ist.
- b) Das System $Ax \leq b$, $a^t x \leq \beta$ mit $a \in \mathbb{Z}^n$ sei TDI. Zeige, dass dann das System $Ax \leq b$, $a^t x = \beta$ ebenfalls TDI ist.

Aufgabe 4: 2 Punkte

Es sei $Ax \leq b, x \geq 0$ ein Ungleichungssystem mit $A \in \mathbb{R}^{m \times n}$ und $b \in \mathbb{R}^n$. Angenommen für alle $c \in \mathbb{Z}^m$, für die $\min\{y^Tb \mid y^TA \geq c, y \geq 0\}$ eine optimale Lösung besitzt, existiert eine optimale Lösung y^* derart, dass genau die Zeilen a_i von A, für die gilt $y_i^* \neq 0$, eine vollständig unimodulare Matrix formen. Zeige, dass dann $Ax \leq b, x \geq 0$ TDI ist.

Aufgabe 5: 2 Punkte

Es sei $A := [a_1 \ a_2 \ A'']$ eine ganzzahlige $(m \times n)$ -Matrix und $b \in \mathbb{R}^m$, desweiteren sei $A' := [a_1 + a_2 \ A'']$ eine $(m \times (n-1))$ -Matrix. Zeige:

 $A'x' \le b$ ist genau dann TDI, wenn $Ax \le b$, $x = (x_1, x_2, ..., x_n)$, $x_1 - x_2 = 0$ ebenfalls TDI ist.

Viel Erfolg!