CS6260 Discrete Math Cheatsheet

Set Definitions

- Z: Set of all integers
- \mathbb{Z}_+ : Set of all positive numbers including 0
- \mathbb{Z}_{-} : Set of all negative numbers
- $\mathbb{Z}_{\mathbb{N}}$: Set of positive numbers from 0 to N 1
- \mathbb{Z}_N^* : Set of all integers co-prime to N Note that if N is a prime this includes all numbers from 1 to N - 1 \Longrightarrow order is N - 1
- $\phi(N)$: order of group \mathbb{Z}_N^*
- Set of squares or Quadratic Residue: $\mathbf{QR}(\mathbb{Z}_p^*) = \{a \in \mathbb{Z}_p^* : a \text{ is a square mod p}\} = \{g^i : 0 \le i \le p-2 \text{ and i is even}\}$ for generator $g \in G$ and $p \ge 3$

Terms

- Order of a group: Number of elements in a group
- Order of a group element: smallest integer $n \ge 1$: $q^n = 1$
- Subgroup: Set $S\subseteq G$ is a sub-group if S is a group under the same operation as G
- Subgroup from group element: For any $g\in G$, $\langle g\rangle=\{g^0,g^1,\dots g^{o(g)-1}\}$ is a sub-group
- Generator: $g \in G$ is a generator if $\langle g \rangle = G$
- Cyclic Group: A group G is cyclic if it contains a generator
- Safe Prime: Prime p is a safe prime if p = 2q + 1, where q is also a prime
- Square or Quadratic Residue: a is a square modulo p if \exists b : $b^2 \equiv a \pmod{p}$

What is a Group

A group is a non-empty set on which a binary operation \cdot is defined. It satisfies the following properties:

- Closure: $\forall a, b \in G, a \cdot b \in G$
- Associativity: $\forall a, b, c \in G, a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Identity: $\forall a \in G, \exists \ \mathbf{1} \in G : a \cdot \mathbf{1} = \mathbf{1} \cdot a = a$
- Invertibility: $\forall a \in G, \exists \text{ unique } b \in G : a \cdot b = b \cdot a = 1$

Group Operations		
Operation	Definition	Running Time
Addition	a + b	O(a + b) i.e. Linear
Mult/Div/Mod	$a.b//\;q,r:\;a=qb+r\;//\;r$	O(a . b) i.e. Quadratic
Extended GCD	Returns d, a', N'	O(a . N) i.e. Quadratic
Mod Inverse	a' \pmod{N} ; a' from EXT_GCD	Quadratic
Exponentiation	$a^n = a \cdot a \cdot \dots$ n times	$O(2^{ n })$ i.e. Exponential
Fast Modular	$y_{ n } = 1; y_{ n -1} = y_{ n }^2 \cdot a^{b_{ n -1}}$	Cubic for \mathbb{Z}_p^*
exponentiation	12.1	-

Jacobi/Legendre Symbol

The Legendre or Jacobi symbol of a modulo p is defined as:

$$J_p(a) = \begin{cases} 1, & \text{if a is a square mod p} \\ 0, & \text{if a} \pmod{p} = 0 \\ -1, & \text{otherwise.} \end{cases}$$

Computing discrete logs

• For a general cyclic group $G=\langle g\rangle$ and $x\in G$ best algorithm is $\mathcal{O}(\sqrt{|G|})=$ exponential

Better algorithms for specific groups but no polynomial time algorithm known.

- For G = \mathbb{Z}_p^* , can compute in $O(e^{1.92(lnq)^{(\frac{1}{3}(ln(lnq))^{\frac{2}{3}}}})$
- For an elliptic curve group G with prime order p, can compute in $O(\sqrt{p})$

Computing cyclic groups

• FINDPRIME(K):

Randomly choose p from all k bit numbers until CHECKPRIME(p) and CHECKPRIME($\frac{p-1}{2}$) are true CHECKPRIME(p): O(|N|) randomized algorithm available

Probability of finding prime randomly from range 1 to N = $\frac{1}{ln(N)}$

• FINDGENERATOR(G):

For G = \mathbb{Z}_p^* , pick g at random from G -{1} until $g^2 \neq \mathbf{1}$ and $g^q \neq \mathbf{1}$

 \mathbb{Z}_p^* has q - 1 generators and choosing from set of p -2

 \implies probability of finding generator $=\frac{1}{2}$

Computing Legendre symbol

TEST_SQ(p,a) for any a and prime $p \ge 3$: $s \leftarrow a^{\frac{p-1}{2}} \pmod{p}$ If s = 1 return 1 else return -1

Useful properties

- $a^m = \mathbf{1} \ \forall a \in G \text{ and } m = |G|$
- $a^i = a^{i \pmod{m}} \ \forall a \in G \text{ and } i \in \mathbb{Z}$
- For $a,N\in G$ and (a,N) \neq (0,0), if d = gcd(a,N), \exists weights $a',N'\in\mathbb{Z}$: $d=a\cdot a'+N\cdot N'$
- If q, $r = INT_DIV(a,N)$, gcd(a,N) = gcd(N,r)
- S is a subgroup of G if $x, y^-1 \in S \forall x, y \in S$
- |S| divides |G| i.e. Order of S divides order of G
- If p is a prime, \mathbb{Z}_p^* is cyclic
- If m = |G| is a prime number for group G, G is cyclic
- If |G| is prime, then every $g \in G \{1\}$ is a generator
- It is "easy" to find a generator for \mathbb{Z}_p^* if prime factorization of p-1 is known, but not otherwise \implies easy to find if p is a safe prime
- $g \in \mathbb{Z}_p^*$ is a generator iff $g^2 \neq 1$ and $g^q \neq 1$
- \mathbb{Z}_p^* has q 1 generators

Useful properties

- $J_p(\mathbf{a}) = 1$ iff $Dlog_{g,\mathbb{Z}_p^*}(\mathbf{a})$ is even for generator $g \in \mathbb{Z}_p^*$
- For prime $p \geq 3$ and generator $g \in \mathbb{Z}_p^*$: $J_p(g^{xy} \pmod{p}) = 1$ iff $J_p(g^x \pmod{p}) = 1$ or $J_p(g^y \pmod{p}) = 1 \ \forall x, y \in \mathbb{Z}_p^*$ $\therefore |\mathbb{Z}_p^*| = p-1$
- For any $a, b \in \mathbb{Z}$, $J_n(a \cdot b) = J_n(a) \cdot J_n(b)$
- For any $a \in \mathbb{Z}_p^*$, $J_p(a^{-1}) = J_p(a)$
- A generator is always a non-square
- For $p \geq 3$ and generator $g \in \mathbb{Z}_p^*$, $|\operatorname{QR}(\mathbb{Z}_p^*)| = \frac{p-1}{2}$, i.e. half of the elements of the set are squares and half are non-squares.