02. Estudio de los esfuerzos en un punto

secciones 2.7 a 2.10

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales
Departamento de Ingeniería Civil
Mecánica Tensorial

2023a

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Álvarez, 2022).

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Esfuerzos normales y tangenciales sobre un plano

Entendamos el vector del esfuerzo normal σ_n como la proyección del vector de esfuerzos q sobre el vector normal al plano \hat{n} :

$$oldsymbol{\sigma}_n = ext{Proy } oldsymbol{q}/oldsymbol{\hat{n}} = rac{\langle oldsymbol{q}, oldsymbol{\hat{n}}
angle}{\langle oldsymbol{\hat{n}}, oldsymbol{\hat{n}}
angle} oldsymbol{\hat{n}}$$

Esfuerzos normales y tangenciales sobre un plano

en 3D

Código

- 02_07.ipynb
- El valor del esfuerzo normal:

$$\sigma_n = \sigma_x \alpha^2 + \sigma_y \beta^2 + \sigma_z \gamma^2 + 2\tau_{xz} \alpha \gamma + 2\tau_{yz} \beta \gamma + 2\tau_{xy} \alpha \beta$$

• El valor del esfuerzo tangencial o cortante:

$$\tau_n^2 = (\sigma_x \alpha + \tau_{xy} \beta + \tau_{xz} \gamma)^2 + (\tau_{xy} \alpha + \sigma_y \beta + \tau_{yz} \gamma)^2 + (\tau_{xz} \alpha + \tau_{yz} \beta + \sigma_z \gamma)^2 - \sigma_n^2$$

Esfuerzos normales y tangenciales sobre un plano en 2D

$$\sigma_x' \to \sigma_n \qquad \tau_{x'y'} \to \tau_n$$

• El valor del esfuerzo normal:

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$= \sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta + 2\tau_{xy}$$

• El valor del esfuerzo tangencial o cortante:

$$\tau_n(\theta) = \tau_{xy} \cos 2\theta - \frac{\sigma_x - \sigma_y}{2} \sin 2\theta$$

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
- 4 2.10. La analogía del bombillo y la caja
- Referencias

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Tensiones y direcciones principales en dos dimensiones

Tensiones y direcciones principales en dos dimensiones

Código

• 02_08_01_ejemplo_01.ipynb

Ejemplo

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Tensiones y direcciones principales en tres dimensiones

Código

• 02_08_02.ipynb

Tensiones y direcciones principales en dos dimensiones

Código

• 02_08_02_ejemplos.ipynb

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Método de Newton-Raphson

para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica

Estudio autónomo

Sería interesante:

- ¿Cómo lo programo en Python o Matlab?
- ¿Ya está implementado en Python o Matlab? ¿Cómo funciona?

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Ortogonalidad de las direcciones principales

Estudio autónomo

• Verifique la ortogonalidad de los vectores propios del ejercicio anterior

Código

• 02_08_04_ejemplo.ipynb

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
- 4 2.10. La analogía del bombillo y la caja
- Referencias

Círculo de Mohr

Estudio autónomo

Prestar atención a:

- Significado físico y matemático.
- Construcción e interpretación de los ángulos.
- Aplicación de la función atan2

Código

- 02_09_04_ejemplo.ipynb
- circulo mohr 2d.py

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
- 4 2.10. La analogía del bombillo y la caja
- Referencias

La analogía del bombillo y la caja

Estudio autónomo

Prestar atención a:

• La analogía del bombillo y la caja :)

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Referencias

Álvarez, D. A. (2022). *Teoría de la elasticidad*, volume 1. Universidad Nacional de Colombia.

Links

- Lista de resproducción: 02 Esfuerzos o Tensiones
- Repositorio del curso: github/medio_continuo