

#### Mean encoding: definition

 Mean encoding implies replacing the category by the average target value for that category





### Mean encoding: example





#### Mean encoding: Advantages

- Straightforward to implement
- Does not expand the feature space
- Creates monotonic relationship between categories and target



#### Mean encoding: Limitations

- May lead to over-fitting
- Difficult to implement together with cross-validation with current libraries
- If 2 categories show the same mean of target, they
  will be replaced by the same number => potential
  loss of value



## Mean encoding with Category Encoders

#### ★ Category Encoders

latest

Search docs

**Backward Difference Coding** 

BaseN

Binary

CatBoost Encoder

Hashing

**Helmert Coding** 

James-Stein Encoder

Leave One Out

M-estimate

One Hot

Ordinal

**Polynomial Coding** 

**Sum Coding** 

Docs » Target Encoder

View page source

#### **Target Encoder**

class category\_encoders.target\_encoder.TargetEncoder(verbose=0, cols=None, drop\_invariant=False, return\_df=True, handle\_missing='value', handle\_unknown='value', min\_samples\_leaf=1, smoothing=1.0)

[source]

Target encoding for categorical features.

For the case of categorical target: features are replaced with a blend of posterior probability of the target given particular categorical value and the prior probability of the target over all the training data.

For the case of continuous target: features are replaced with a blend of the expected value of the target given particular categorical value and the expected value of the target over all the training data.

**Parameters** 

verbose: int

integer indicating verbosity of the output. O for none.





# THANK YOU

www.trainindata.com