Methods and Models for Solution of Optimization Problems in Logistics

Assignment 1: Integer Optimization Problems

Mathematical models are taken from the lectures (if not specified in the report). In some problems mathematical models from lectures are changed in an obvious way to fit the problem.

Problem 1. Fixed Cost Problem Code: .mod set SITES; set POL; param fixed $\{SITES\} >= 0$; param cost $\{SITES\} >= 0$; param rate $\{SITES, POL\} >= 0;$ param required $\{POL\} >= 0$; var Build {SITES} binary; var Water $\{SITES\} >= 0;$ minimize Total Cost: sum {i in SITES} (fixed[i] * Build[i] + cost[i] * Water[i]); subject to Builded {i in SITES}: Water[i] <= 1000000000 * Build[i]; subject to Polutants { j in POL}: sum {i in SITES} Water[i] * rate[i,j] >= required[j]; .dat data: set SITES := 12 3; set POL := 1 2; param fixed := 1 100002 60000 3 40000; param cost := 1202 30 3 40; param required := 1 80000 2 50000; param rate(tr): 1 2 3 := 0.4 0.25 0.2

2

0.2

0.25;

0.3

```
.run
model my/1.1/fc.mod;
data my/1.1/fc.dat;

option solver cplex;
option cplex_options 'sensitivity';
option omit_zero_rows 1;
solve;

display Total_Cost > my/1.1/fc.sol;
display Build > my/1.1/fc.sol;
display Water > my/1.1/fc.sol;
exit;

.sol
Total_Cost = 4010000

Build [*] :=
1 1
;
```

Water [*] := 1 2e+05

The cheapest solution is to build only one pollution control station in the 1^{st} site. The cost is 4010000.

Problem 2. Vendor Selection Problem

2.1 Mathematical Model

AMPL names:

Formulation

$$(2.1) \ \min \sum_{j \in J} f_j y_j + \sum_{i \in P} \sum_{j \in J} c_{ij} X_{ij}$$

Total_Cost

st

$$(2.2) \sum_{i \in J} X_{ij} = d_i, \forall i \in P$$

Demand{p in PRODUCTS}

(2.3)
$$0 \le X_{ij} \le d_i y_j, \forall i \in P, \forall j \in J$$

VendorUsing{p in PRODUCTS, j in VENDORS}

Notation

Sets:

P - set of products J - set of vendors PRODUCTS VENDORS

Parametrs:

 $d_i = \text{demand for product } i, i \in P$ $c_{ij} = \text{cost of purchase one unit of product } i$ from vendor $j, i \in P, j \in J$ $f_i = \text{fixed cost of establishing business with vendor } j, j \in J$

demand{p in PRODUCTS}
cost{p in PRODUCTS, j in VENDORS}
fixed{j in VENDORS}

Variables:

 $X_{ij}=$ amount of product i to buy from vendor $j,\,i\in P,j\in J$ $y_j=$ to select(1) or not(0) vendor $j,j\in J$

Buy{p in PRODUCTS, j in VENDORS} UseVendor{j in VENDORS}

Description

The objective function (2.1) expresses the total cost of purchasing all products and establishing business with vendors. Constraints (2.2) represent a family of constraints, one for each product: demand has to be satisfied. The limits for purchase are defined in bounds (2.3).

Problem size

The resulting model has following dimensions:

- 16 variables (12 integer + 4 binary)
- 3 constraints
- 12 bounds,

AMPL Code

File exam5.2.mod:

set PRODUCTS; set VENDORS; param demand {PRODUCTS} >= 0; param fixed {VENDORS} >= 0; param cost {PRODUCTS, VENDORS} >= 0; var UseVendor {VENDORS} binary; var Buy {PRODUCTS, VENDORS} >= 0; minimize Total_Cost:

```
sum {j in VENDORS} UseVendor[j]*fixed[j] + sum {p in PRODUCTS} sum {j in VENDORS} cost[p,j]*Buy[p, j];
subject to Demand{p in PRODUCTS}:
sum {j in VENDORS} Buy[p,j] = demand[p];
subject to VendorUsing {p in PRODUCTS, j in VENDORS}:
Buy[p,j] \le demand[p]*UseVendor[j];
File exam5.2.dat:
data;
set PRODUCTS := 1 2 3;
set VENDORS := 1 2 3 4;
param demand := 1 80 2 70 3 40;
param fixed := 1 400 2 500 3 300 4 150;
param cost(tr): 1 2 3:=
1 20 40 50
2 48 15 26
3 26 35 18
4 24 50 35;
File exam5.2.run:
model exam5.2.mod;
Alexandr Reznik Exam 5
data exam5.2.dat;
option solver cplex;
option cplex_options 'sensitivity';
option omit_zero_rows 1;
solve;
display Total_Distance > exam5.2.sol;
display UseVendor > exam5.2.sol;
display Buy > exam5.2.sol;
exit;
File exam5.2.sol:
Total Distance = 4570
UseVendor [*] :=
11
2 1
3 1
Buy :=
1 1 80
2 2 70
3 3 40
```

The minimal total cost is 4570. It can be achived whith establishing business with vendors 1, 2 and 3 and buying 80 units of product 1 from vendor 1

70 units of product 2 from vendor 2

40 units of product 3 from vendor 3.

Problem 3. Knapsack Problem

4

5

6

7

8

150

80

120

200

220

```
Code:
.mod
param N \ge 0;
param M \ge 0;
param value \{1..N\} >= 0;
\#param budget \{1..N\} >= 0;
\#param staff \{1..N\} >= 0;
param weight {1..M, 1..N};
#param budget_limit;
#param staff_limit;
param limit {1..M};
param not_with {1..N, 1..N} binary default 0;
param with {1..N, 1..N} binary default 0;
var Use {1..N} binary;
maximize Total_Profit:
       sum {i in 1..N} Use[i] * value[i];
subject to Constraints {i in 1..M}:
       sum{j in 1..N} Use[j] * weight[i,j] <= limit[i];</pre>
subject to Not_With {i in 1..N, j in 1..N: not_with[i,j] == 1}:
       Use[j] * Use[i] \le 0;
subject to With \{i \text{ in } 1..N, j \text{ in } 1..N : with }[i,j] == 1\}:
       Use[i] \leftarrow Use[i];
.dat
data;
param N := 15;
param M := 2;
param value :=
1
       600
2
       400
3
        100
```

```
9
       90
10
       380
11
       290
12
       130
13
       80
14
       270
15
       280;
param weight(tr):
              2:=
       1
       35
              5
1
2
       34
              3
3
       26
              4
4
       12
              2
              2
5
       10
              2
6
       18
7
       32
              4
8
       11
              1
9
       10
              1
              5
10
       22
              3
       27
11
              2
12
       18
13
       16
              2
              4
14
       29
15
       22
              3;
param limit := 1 225 2 28;
param not_with :=
1 10 1
561
651
10 1 1
11 15 1
15 11 1;
param with :=
3 15 1
4 15 1
871
13 2 1
14 2 1;
.run
model my/1.3/kp.mod;
data my/1.3/kp.dat;
option solver cplex;
option cplex_options 'sensitivity';
option omit_zero_rows 1;
solve;
```

```
display Total_Profit > my/1.3/kp.sol;
display Use > my/1.3/kp.sol;
exit;
.sol
\overline{\text{Total\_Profit}} = 2460
Use [*] :=
 1 1
2 1
4 1
6 1
 7 1
8 1
 9 1
12 1
14 1
15 1
```

The highest achievable NVP is 2460. Projects 1, 2, 4, 6, 7, 8, 9, 12, 14, 15 should be selected.

Problem 4. Bin Packing Problem

Code:

```
.mod
\overline{\text{param M}} >= 0;
param N \ge 0;
param weight \{1..M\} >= 0;
param limit;
var UseBin {1..N} binary;
var Put {1..M, 1..N} binary;
minimize Bins:
       sum {j in 1..N} UseBin[j];
subject to Items {i in 1..M}:
       sum\{j \text{ in } 1..N\} Put[i,j] = 1;
subject to BinLimit {j in 1..N}:
       sum{i in 1..M} weight[i] * Put[i,j] <= limit * UseBin[j];</pre>
.dat
data;
param M := 17;
param N := 8;
param weight :=
       252
1
2
       252
3
       252
4
       252
5
       228
6
       228
7
       228
8
       180
9
       180
10
       180
11
       140
12
       140
13
       140
14
       120
15
       120
16
       120
17
       120;
param limit := 600;
```

```
model my/1.4/bp.mod;
data my/1.4/bp.dat;
option solver cplex;
option cplex_options 'sensitivity';
option omit_zero_rows 1;
solve;
display Bins > my/1.4/bp.sol;
display UseBin > my/1.4/bp.sol;
display Put > my/1.4/bp.sol;
exit;
.sol
\overline{\text{Bins} = 6}
UseBin [*] :=
1 1
2 1
3 1
4 1
5 1
6 1
Put :=
1 1 1
2 1 1
3 2 1
4 2 1
5 3 1
6 3 1
7 4 1
8 4 1
9 4 1
105 1
113 1
12 5 1
13 5 1
145 1
15 6 1
166 1
176 1
```

The minimal number of bins is 6.

Bin	1	2	3	4	5	6
Items	1, 2	3,4	5,6,11	7,8,9	12,13,14	15, 16, 17

Problem 5. Lot Sizing Problem

data my/1.5/ls.dat;

option solver cplex;

```
Code:
.mod
\overline{\text{param T}} >= 0;
param demand \{1..T\} >= 0;
param capacity \{1..T\} >= 0;
param setup;
param holding;
var Use {1..T} binary;
var Prod \{1..T\} >= 0;
var Inv \{0...T\} >= 0;
minimize TotalCost:
       sum {t in 1..T} (Use[t] * setup + holding * Inv[t]);
subject to Inventory {t in 1..T}:
       Inv[t] = Inv[t-1] + Prod[t] - demand[t];
subject to Production {t in 1..T}:
       Prod[t] <= capacity[t] * Use[t];</pre>
subject to InitInv:
       Inv[0] = 0;
.dat
data;
param T := 6;
param: demand capacity :=
       335
               600
1
2
       200
               600
3
       140
               600
4
       440
               400
5
       300
               200
6
       200
               200;
param setup := 200;
param holding := 0.3;
model my/1.5/ls.mod;
```

```
option cplex_options 'sensitivity';
option omit_zero_rows 1;
solve;

display TotalCost > my/1.5/ls.sol;
display Prod > my/1.5/ls.sol;
display Inv > my/1.5/ls.sol;
display Use > my/1.5/ls.sol;
exit;

.sol

TotalCost = 1052
```

```
Prod [*] :=
1 535
3 480
4 400
6 200
;

Inv [*] :=
1 200
3 340
4 300
;

Use [*] :=
1 1
3 1
4 1
6 1
;
```

The cheapest solution's cost is 1052. The solution is the following.

Day	0	1	2	3	4	5	6
Setup		Yes	No	Yes	Yes	No	Yes
production							
Produce		535	0	480	400	0	200
Inventory	0	200		340	300	0	0

Problem 6. Job Sequencing Problem Code: .mod param $N \ge 0$; param M; param procTime $\{1..N\} >= 0$; param goal $\{1..N\} >= 0$; param weight $\{1..N\} >= 0$; var Before {1..N, 1..N} binary; var Start $\{1..N\} >= 0$; var Delay $\{1..N\} >= 0$; minimize WeightedDelay: sum {i in 1..N} weight[i] * Delay[i]; subject to Del {i in 1..N}: Delay[i] >= Start[i] + procTime[i] - goal[i]; subject to OrderBefore {i in 1..N, j in 1..N: i<>j}: $Start[i] + procTime[i] \le Start[j] + M * (1 - Before[i,j]);$ subject to OrderAfter {i in 1..N, j in 1..N: i<> j}: Start[j] + procTime[j] <= Start[i] + M * Before[i,j];</pre> .dat data; param N := 4; param M := 1000; param: procTime goal weight := 8 1 6 1 2 4 4 1 3 5 12 2 16 2; model my/1.6/js.mod;

```
data my/1.6/js.dat;

option solver cplex;
option cplex_options 'sensitivity';
option omit_zero_rows 1;
solve;

display Start > my/1.6/js.sol;
```

```
display Delay > my/1.6/js.sol;
display Before > my/1.6/js.sol;
exit;
.sol
Start [*] :=
1 17
3 4
4 9
Delay [*] :=
1 15
4 1
Before :=
2 1 1
23 1
24 1
3 1 1
34 1
4 1 1
Solution:
The minimum weighted delay is 17.
```

Job sequence is $2 \rightarrow 3 \rightarrow 4 \rightarrow 1$.