习题 2.3

1. 利用夹逼定理求下列数列的极限:

(1)
$$\lim_{n\to\infty} \left[\frac{1}{n^2} + \frac{1}{(n+1)^2} + \cdots + \frac{1}{(2n)^2} \right];$$

(2)
$$\lim_{n\to\infty} \left[\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right];$$

(3)
$$\lim_{n\to\infty} \frac{(2n-1)!!}{(2n)!!}$$
;

(4)
$$\lim_{n\to\infty} \left[\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \frac{3}{n^2+n+3} + \dots + \frac{n}{n^2+n+n} \right].$$

2. 设
$$A = \max\{a_1, a_2, \dots, a_m\}$$
, $(a_i > 0, i = 1, 2, \dots, m)$, 证明: $\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = A$.

3. 直三棱锥 PABC 如图 2-13 所示,底为三角形 ABC,高为 \overline{PA} ,试用柱体体积公式: V=底面积×高,构造两个数列 $\{V_n\}$, $\{\overline{V}_n\}$,使得三棱锥的体积 V_{PABC} 满足: $V_n < V_{PABC} < \overline{V}_n$,并用夹逼定理得到直三棱锥 PABC 的体积公式

$$V_{PABC} = \frac{1}{3} \, S_{ABC} \, \cdot \overline{PA} \, .$$

(1)
$$a_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \frac{1}{3^3+1} + \dots + \frac{1}{3^n+1};$$

(2)
$$a_n = \frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \dots + \frac{2n+1}{n^2(n+1)^2};$$

(3)
$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2};$$

(4)
$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots + \frac{1}{n^n}$$
.

(1)
$$a_1 = 1$$
, $a_{n+1} = 1 + \frac{a_n}{1 + a_n}$, $n = 1, 2, \dots$;

(2)
$$a_1 > 0, a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) (n = 1, 2, \dots);$$

(3)
$$a_1 > 10, a_{n+1} = \sqrt{6 + a_n} \quad (n = 1, 2, \dots);$$

(4)
$$a_1 = \sqrt{2}$$
, $a_{n+1} = \sqrt{2a_n}$ $(n = 1, 2, \dots)$.

图 2-13