数据挖掘作业1数据探索性分析与预处理

姓名: 韩林洁 学号: 2620170052 日期: 2018-4-15

数据分析要求

1、数据可视化和摘要

数据摘要

对标称属性,给出每个可能取值的频数,

数值属性,给出最大、最小、均值、中位数、四分位数及缺失值的个数。

2、数据的可视化

针对数值属性,

绘制直方图,用 qq 图检验其分布是否为正态分布。

绘制盒图,对离群值进行识别

3、数据缺失的处理

观察数据集中缺失数据,分析其缺失的原因。

分别使用下列四种策略对缺失值进行处理:

将缺失部分剔除

用最高频率值来填补缺失值

通过属性的相关关系来填补缺失值

通过数据对象之间的相似性来填补缺失值

解答内容

```
用 python, 用到的库有:
import operator
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pandas import Series, DataFrame
import matplotlib
```

一、对于 Building_Permits 数据集 (new1.py):

Step1 读取数据

```
db='Building_Permits.csv'
#读取 csv 文件, 生成 data frame
data=pd.read_csv(db,low_memory=False)
# 定义两类数据: 标称型和数值型
frame1=DataFrame(data,columns=['Date'])
frame2=DataFrame(data,columns=['Number of Existing Stories'])
#查看前十条数据内容(截图未显示全部数据)
print(data.iloc[:10])
```

\	Permit Type Definition	Permit Type	Permit Number						
	sign - erect	4	201505065519	0					
	sign - erect	4	201604195146	1					
	additions alterations or repairs	3	201605278609	2					
	otc alterations permit	8	201611072166	3					
	demolitions	6	201611283529	4					
	otc alterations permit	8	201706149344	5					
	otc alterations permit	8	201706300814	6					
	otc alterations permit	8	M803667	7					
	otc alterations permit	8	M804227	8					
	otc alterations permit	8	M804767	9					

Step 2 数据摘要

对标称属性,给出每个可能取值的频数

```
for i in range(35):
print('频数为:\n',frame1.iloc[:,[i]].apply(pd.value_counts),'\n')
```

new1 E:\python3. 6.3\python. exe C:/Users/migushu/PycharmProjects/untitled 频数为: Permit Type Definition 178844 otc alterations permit 14663 additions alterations or repairs 2892 sign - erect new construction wood frame 950 600 demolitions 511 wall or painted sign 349 new construction grade or quarry or fill or excavate 91

针对数值属性,数值属性,给出最大、最小、均值、中位数、四分位数及缺失值的个数,用 describe() 函数获取最大、最小、均值、中位数、四分位数 statistics=frame2.describe() statistics.loc['null']=data.shape[0]-statistics.loc['count']

	Number of Existing Stories	Number of Proposed Stories	Estimated Cost	\setminus
count	156116.000000	156032.000000	1.608340e+05	
mean	5. 705773	5.745043	1.689554e+05	
std	8. 613455	8.613284	3.630386e+06	
min	0.000000	0.000000	1.000000e+00	
25%	2.000000	2.000000	3.300000e+03	
50%	3.000000	3.000000	1.100000e+04	
75%	4. 000000	4. 000000	3.500000e+04	
max	78.000000	78.000000	5.379586e+08	
nul1	42784. 000000	42868.000000	3.806600e+04	

针对数值属性,绘制直方图 ./image1/histogram.png

```
fig = plt.figure(figsize = (20,11))
```

i = 1

for item in frame2:

```
ax = fig.add\_subplot(3, 5, i)
```

data[item].plot(kind = 'hist', title = item, ax = ax)

i += 1

 $plt.subplots_adjust(wspace = 0.3, hspace = 0.3)$

针对数值属性, 绘制盒图, 对离群值进行识别 ./image1/boxplot.png fig = plt.figure(figsize = (20,12)) i = 1

for item **in** frame2:

```
ax = fig.add\_subplot(3, 5, i)

data[item].plot(kind = 'box')

i += 1
```


Step 3 处理缺失值

1. 将缺失部分剔除

DataTable_filtrated[i] = DataTable_filtrated[i].dropna()

绘制可视化图 ./imagel/missing_data_delete.png

for i **in** frame2:

```
ax = fig.add_subplot(3, 5, n)

DataTable_filtrated[i] = DataTable_filtrated[i].dropna() # ##/$

ax.set_title(i)

data[i].plot(ax=ax, alpha=0.5, kind='hist', label='origin', legend=True)

DataTable_filtrated[i].plot(ax=ax, alpha=0.5, kind='hist', label='filtrated',
```

```
legend=True)
# pyplot.show()
ax.axvline(data[i].mean(), color='r')
ax.axvline(DataTable_filtrated[i].mean(), color='b')
n += 1
plt.subplots_adjust(wspace=0.3, hspace=0.3)
```


2. 用最高频率值来填补缺失值

plt.subplots_adjust(wspace=0.3, hspace=0.3)

```
MostFrequentElement = data[i].value_counts().idxmax();
DataTable_filtrated[i] = DataTable_filtrated[i].fillna(value=MostFrequentElement); # 众数
填补
绘制可视化图 ./imagel/missing data most.png
for i in frame2:
    ax = fig.add\_subplot(4, 5, n)
    MostFrequentElement = data[i].value_counts().idxmax();
    DataTable_filtrated[i] = DataTable_filtrated[i].fillna(value=MostFrequentElement); #
众数填补缺失值
    ax.set_title(i)
    data[i].plot(ax=ax, alpha=0.5, kind='hist', label='origin', legend=True)
    DataTable_filtrated[i].plot(ax=ax, alpha=0.5, kind='hist', label='filtrated',
legend=True)
    # pyplot.show()
    ax.axvline(data[i].mean(), color='r')
    ax.axvline(DataTable_filtrated[i].mean(), color='b')
    n += 1
```


3. 通过属性的相关关系来填补缺失值,用插值法 绘制可视化图 ./imagel/missing_data_corelation.png

for i **in** frame2:

```
ax = fig.add_subplot(4, 5, n)

DataTable_filtrated[i].interpolate(inplace=True) # 插值

ax.set_title(i)

data[i].plot(ax=ax, alpha=0.5, kind='hist', label='origin', legend=True)

DataTable_filtrated[i].plot(ax=ax, alpha=0.5, kind='hist', label='filtrated', legend=True)

ax.axvline(data[i].mean(), color='r')

ax.axvline(DataTable_filtrated[i].mean(), color='b')

n += 1
```


二、对于 NFL Play by Play 2009-2017 (v4)数据集(new2.py):

Step1 读取数据

```
db='Play.csv'
#读取 csv 文件,生成 data frame
data=pd.read_csv(db,low_memory=False)
```

plt.subplots_adjust(wspace=0.3, hspace=0.3)

定义两类数据: 标称型和数值型

frame1=DataFrame(data,columns=['Date','GameID','Drive','qtr','down','time']) frame2=DataFrame(data,columns=['TimeSecs','PlayTimeDiff','yrdln'])

#查看前十条数据内容

print(data.iloc[:10])

2	1		0 (77						
Е:	\python3.6.3	\python. exe	C:/User	s/m1g		ycharmP	rojects/unt	itled//new	2. p
	Date	GameID	Drive	qtr	down	time	TimeUnder	TimeSecs	\
0	2009-09-10	2009091000	1	1	NaN	15:00	15	3600.0	
1	2009-09-10	2009091000	1	1	1.0	14:53	15	3593.0	
2	2009-09-10	2009091000	1	1	2.0	14:16	15	3556.0	
3	2009-09-10	2009091000	1	1	3.0	13:35	14	3515.0	
4	2009-09-10	2009091000	1	1	4.0	13:27	14	3507.0	
5	2009-09-10	2009091000	2	1	1.0	13:16	14	3496.0	
6	2009-09-10	2009091000	2	1	2.0	12:40	13	3460.0	
7	2009-09-10	2009091000	2	1	3.0	12:11	13	3431.0	
8	2009-09-10	2009091000	2	1	4.0	11:34	12	3394.0	
9	2009-09-10	2009091000	3	1	1.0	11:24	12	3384.0	

Step 2 数据摘要

对标称属性,给出每个可能取值的频数

for i in range(35):

print('频数为:\n',frame1.iloc[:,[i]].apply(pd.value_counts),'\n')

LIU rows x 频数为:	102 columns]
	Date
2016-01-03	2872
2012-01-01	2825
2017-01-01	2819
2017-12-31	2801
2011-01-02	2772
2014-12-28	2771
2012-12-30	2737
2013-12-29	2729
2010-01-03	2716
2009-09-20	2674
2011-09-25	2663
2010-09-26	2644

针对数值属性,数值属性,给出最大、最小、均值、中位数、四分位数及缺失值的个数,用 describe () 函数获取最大、最小、均值、中位数、四分位数 statistics=frame2.describe() statistics.loc['null']=data.shape[0]-statistics.loc['count']

	TimeSecs	PlayTimeDiff	yrdln	yrdline100	\
count	407464.000000	407244.000000	406848.000000	406848.000000	
mean	1695. 268944	20.576762	28. 488327	48.644081	
std	1062.801012	17.969326	12.946471	25.070416	
min	-900.000000	0.000000	1.000000	1.000000	
25%	778. 000000	5. 000000	20.000000	30.000000	
50%	1800.000000	17.000000	30.000000	49.000000	
75%	2585. 000000	37.000000	39.000000	70.000000	
max	3600.000000	943.000000	50.000000	99. 000000	
nul1	224. 000000	444. 000000	840.000000	840.000000	

```
针对数值属性,绘制直方图 ./image2/histogram.png
```

```
fig = plt.figure(figsize = (20,11))
```

i = 1

for item in frame2:

```
ax = fig.add\_subplot(8, 5, i)
```

data[item].plot(kind = 'hist', title = item, ax = ax)

i += 1

 $plt.subplots_adjust(wspace = 0.3, hspace = 0.3)$

针对数值属性,绘制盒图,对离群值进行识别 ./image2/boxplot.png

$$fig = plt.figure(figsize = (20,12))$$

i = 1

for item **in** frame2:

ax = fig.add_subplot(3, 5, i)
data[item].plot(kind = 'box')

i += 1

Step 3 处理缺失值

4. 将缺失部分剔除

DataTable_filtrated[i] = DataTable_filtrated[i].dropna()

绘制可视化图 ./image2/missing data delete.png

```
for i in frame2:
    ax = fig.add_subplot(8, 5, n)
    DataTable_filtrated[i] = DataTable_filtrated[i].dropna() # 删除
    ax.set_title(i)
    data[i].plot(ax=ax, alpha=0.5, kind='hist', label='origin', legend=True)
    DataTable_filtrated[i].plot(ax=ax, alpha=0.5, kind='hist', label='filtrated', legend=True)
    # pyplot.show()
    ax.axvline(data[i].mean(), color='r')
    ax.axvline(DataTable_filtrated[i].mean(), color='b')
    n += 1
plt.subplots_adjust(wspace=0.3, hspace=0.3)
```


5. 用最高频率值来填补缺失值

```
MostFrequentElement = data[i].value counts().idxmax();
DataTable_filtrated[i] = DataTable_filtrated[i].fillna(value=MostFrequentElement); # 众数
填补
绘制可视化图 ./image2/missing_data_most.png
for i in frame2:
    ax = fig.add\_subplot(8, 5, n)
    MostFrequentElement = data[i].value_counts().idxmax();
    DataTable_filtrated[i] = DataTable_filtrated[i].fillna(value=MostFrequentElement); #
众数填补缺失值
    ax.set_title(i)
    data[i].plot(ax=ax, alpha=0.5, kind='hist', label='origin', legend=True)
    DataTable_filtrated[i].plot(ax=ax, alpha=0.5, kind='hist', label='filtrated',
legend=True)
    # pyplot.show()
    ax.axvline(data[i].mean(), color='r')
    ax.axvline(DataTable_filtrated[i].mean(), color='b')
```


6. 通过属性的相关关系来填补缺失值,用插值法 绘制可视化图 ./image2/missing_data_corelation.png

for i **in** frame2:

ax.set_title(i)
data[i].plot(ax=ax, alpha=0.5, kind='hist', label='origin', legend=True)

DataTable_filtrated[i].plot(ax=ax, alpha=0.5, kind='hist', label='filtrated',

legend=True)

```
\begin{split} & ax.axvline(data[i].mean(),\,color=\textbf{'r'})\\ & ax.axvline(DataTable\_filtrated[i].mean(),\,color=\textbf{'b'})\\ & n += 1 \end{split}
```

plt.subplots_adjust(wspace=0.3, hspace=0.3)

