Data Hygiene

Remco R. Bouckaert remco@cs.auckland.ac.nz

Centre of Computational Evolution, University of Auckland Max Planck Institute for the Science of Human History Computer Science Department, Waikato University

Indo European – quality control

- Ascertainment correction bug
 - found after publication
- Calibrations wrongly scaled
 - found by visualising prior in DensiTree
- IELex export broken
 - found after innovations were generated
- Languages set changed, constraints broken
 - found after setting up different analysis

Open questions:

- Are priors correctly coded (tree priors, tip & clade calibrations)?
- Who has the time to check? Unrewarding, tedious work + fatigue (I stopped checking after the nth IELex export)
- Automating sanity checks to the rescue?

Automated sanity check 1 – cognate patterns

word list

language	hand	mother	father	
English	hand	mother	father	
Dutch	hand	moeder	vader	
German	hand	mutter	vater	
French	main	mère	père	
Spanish	mano	madre	padre	
Dhudhuroa	?	papa	mama	

cognate list

cognate not							
language	hand	mano	mother	papa	father	mama	
English	1	0	1	0	1	0	
Dutch	1	0	1	0	1	0	
German	1	0	1	0	1	0	
French	0	1	1	0	1	0	
Spanish	0	1	1	0	1	0	
Dhudhuroa	?	?	0	1	0	1	

Multiple language covered by duplicate pattern

1 stab (Bengali Hindi Oriya) 11 12 2 stone (Breton Cornish Welsh) 6 12 3 there (Ancient Greek Greek Greek Lesbos) 5 12

4 tree (Friulian Romansh) 18 19 5 vomit (Nepali Sindhi) 12 14 6 woods (Tocharian A Tocharian B) 15 16

Single language covered by duplicate pattern

1 all (Assamese) 27 28

. .

6 at (Armenian) 36 41 42 45

. .

34 breast (Shughni) 13 16 17 18

. . .

234 woman (Shughni) 24 25

Automated sanity check 2 – Spanning trees

Automated sanity check 2 – Spanning trees

Spanning tree of cognate having branch \geq 6000km

- 31 dirty 1391 6203 2 (Tocharian_B) (French, Provencal, Old_Irish, Irish, Scottish_Gaelic)
- 34 dry 2492 6607 2 (Tocharian_A, Tocharian_B) (Catalan, Spanish)
- 37 ear 2255 6261 2 (Tocharian_A, Tocharian_B) (Old_Irish, Welsh, Irish, Scottish_Gaelic)
- 57 fly 2504 6610 2 (Tocharian_A, Tocharian_B) (Old_Irish)
- 131 rub 1738 6595 2 (Nepali, Bihari, Kashmiri, Sinhalese) (Old_Irish, Irish)
- 155 split 2956 6471 2 (Assamese, Oriya) (Old_Prussian, Frisian, German)
- 164 sun 2299 6261 2 (Tocharian_A, Tocharian_B) (Old_Irish, Irish, Scottish_Gaelic)

Use BEAST 2 Babel package, SpanningTree app

1. BEAUti menu File/Launch App

2. Fill in the form

Alternative: from a terminal

/path/to/beast/bin/appstore SpanningTree -nexus file.nex
-cognate labels.txt -kml languages.kml -background world-map.png
-maximumDistance 4000

Results are reported in the terminal used to launch SpanninTree

File format

Cognate file: Nexus file 1 I_group, 2 I_cognate_62, matrix 3 I_cognate_4343, [...some comments] 4 I_lexeme_28404, [...more comments] 5 I_lexeme_28780, 'Hittite' 010001101010... 6 all_group, 'Luvian' 001101010000... 7 all_cognate_175, 'Lycian' 001101010000... 8 all_cognate_351, 9 all_cognate_543, 'Ancient_Greek' 010011000000. 10 all_cognate_566, 11 all_cognate_682, end; 12 all_cognate_748,

Automated sanity checks 3 - Distribution of singletons

Total number of 1s = 20494Singletons = 2750 = 13.4% of data

	total	#languages	average	cognate class size ma X	min
	#singletons		#singletons	#singletons	#singleto
Germanic	268	17	15.76	47	3
Slavik	367	16	22.94	68	2
Gaelic	138	6	23	30	17
Romance	347	15	23.13	48	6
Indo-Iranian	1053	29	36.31	111	2
Greek	577	15	38.46	81	7
All	2750	98	28.06	111	2

Greek & Indo-Iranian needs most attention

Babel package CognateStats app 1. BEAUti menu File/Launch App 2. Fill in the form

/path/to/beast/bin/appstore CognateStats -nexusFile file.nex

Output;

- a list of columns that are singletons
- a distribution of cognate patterns
- a list of duplicate cognate patterns

Sanity check 4 – (approx) most likely cognate on branches

Babel package

Set up analysis in BEAUti Add logger by editing XML

Use DensiTree to visualise the tree. Interactive, or batch CLI:

```
java -jar DensiTree.jar -linecolortag site -linecolorlegend
   -b 10 -geo 1024x1024 -asPDF water.pdf water.trees
```

Sanity check 5 – alternative analyses

Disclaimer: All with wrong calibrations due to newly introduced languages

- grid of hyperpriors on birth death rate bounds
 - posterior root height always higher than prior
- Remove 486 duplicate columns (486 out of 20494 = 2.3% removed) treeHeight 8.16 [6.95 9.65]
- Remove 486 duplicate columns + randomly knock out 1011 1s (1497 out of 20494 = 7.3% removed) treeHeight 8.09 [6.70 9.51]
- Remove 486 duplicate columns + randomly knock out 2022 1s (2508 out of 20494 = 12.3% removed) treeHeight 8.06 [6.79 9.35]
- Remove 486 duplicate columns + randomly knock out 4044 1s (4530 out of 20494 = 22.2% removed) treeHeight 7.59 [6.46 8.86]
- Remove all singletons analysis (2750 out of 20494 = 13.4% removed) treeHeight 8.09 [6.70 9.69]
- Pseudo Dollo Covarion fits better than Covarion treeHeight 8.7 [7.7, 9.7]
- Phylogegraphy analysis points to Anatolian on summary tree
 - spherical diffusion
 - spherical diffusion + low rate through Caucasus
 - random walk on graph + Caucasus blocked

Any of these tend to bring out unexpected problems (e.g. newly added languages)

Summary

- Quality control is hard, since nobody has complete overview (not even over IE data alone!)
- Quality control is tedious, unrewarding + danger of analysis fatigue
- Unit tests for any software are mandatory, but not sufficient
- Automated sanity checks can help

Open questions:

- What else can we do to assure we do what we say we do?
- What about sanity checks for non-lexical data?
- What can be done to ensure tools are used (and make it worth developing them more)?

Installing BEAST packages

- BEAUti menu 'File/Manage packages', Press 'Package repositories'
- Add repository https://raw.githubusercontent.com/CompEvol/CBAN/master/ packages-extra.xml

• Select package & press install button

BEAST package Babel – use to set up Change et al.

```
Prepare nexus
Specify partitions begin assumptions;
charset I = 1-5:
charset all = 6-39;
charset and = 40-75:
charset animal = 76-101;
end:
Specify calibrations
#Define monophyletic clades
begin sets;
taxset germanic = oldnorse oldhighgerman oldprussian oldenglish;
taxset tocharian = tocharian<sub>a</sub>tocharian<sub>b</sub>;
taxset anatolian = hittite lycian luvian;
end:
# Define time calibrations on tips, and clades.
begin assumptions;
calibrate oldnorse = normal(775,40)
calibrate avestan = normal(2500,50)
calibrate germanic = normal(1875,67)
end;
```

BEAST package Babel – use to set up Change et al.

In BEAUti select template

- BinaryCTMC
- BinaryCovarion
- SDollo (maybe not a good idea)

then import alignment.

Make sure ascertainment columns (first column of each partition) are in the alignment.

BEAST package LanguageSeqGen

Simulate language data along a tree

- CTMC
- BinaryCovarion
- SDollo

Allows borrowing

BEAST package correlated characters

Substitution model that tells whether two (binary) characters are independent or not

Watts et al. Nature (2016)

Questions?