EDA: GAMs

Virgilio Gonzenbach

1/13/2021

Objective

To inform the potential usage of a nonlinear method of harmonization (ComBat-GAM) by:

- 1. Visualizing nonlinear effects of age on various volumetric regions of interest (ROIs),
- 2. Modeling these nonlinear effects using Generative Additive Models (GAMs), and
- 3. Making comparisons between GAMs and their linear counter parts.

All modeling and visualization carried out in PNC data.

Note: All GAMs constrained to K=3 and FX=TRUE, where K denotes the number of basis functions and FX indicates the use of fixed degrees of freedom.

Age Descriptives

Distribution of Age by Sex in PNC data

Full dataset:

	n	mean	sd	median	\min	max
age	1185	15.12	3.742	15.33	8.083	23.08

Males:

	n	mean	sd	median	min	max
age	555	14.78	3.717	14.67	8.167	22.92

Females:

	n	mean	sd	median	min	max
age	630	15.42	3.741	15.75	8.083	23.08

Comparison of GAMs vs Linear models across all 145 ROIs

```
-Model 1: ROI = sex + age + age*sex
```

Number of regions for which models (GAM and linear model) significantly differed:

ROIs where GAM differed from linear model (adjusted for False Discovery Rate):

ROI_INDEX	ROI_NAME	HEMISPHERE	TISSUE_SEG
35	Brain Stem	Both	NONE
40	Right Cerebellum White Matter	Right	WM
41	Left Cerebellum White Matter	Left	WM
61	Right Ventral DC	Right	WM
62	Left Ventral DC	Left	WM
89	fornix right	Right	WM
90	fornix left	Left	WM
91	anterior limb of internal capsule right	Right	WM
92	anterior limb of internal capsule left	Left	WM

⁻Model 2: ROI = sex + s(age, by = sex), where s() denotes the smooth function(s) fitted separately within each sex.

Regions of Interest (Significant)

NULL

Pairwise correlations of significant ROIs (GAM)

Brain Stem

Brain Stem: Plot GAM

• Males: $R^2 = 0.178$

• Females: $R^2 = 0.112$

Brain Stem: Linear Models by Sex

Table 5:

	Table 5.	
	Depende	nt variable:
	Brain Ste	em Volume
	Males	Females
	(1)	(2)
Age	$0.410^{***} (0.334, 0.485)$	$0.283^{***} \ (0.207, \ 0.358)$
Age (Squared)	$-0.131^{***} (-0.207, -0.056)$	$-0.137^{***} (-0.213, -0.062)$
Constant	$0.000 \; (-0.075, 0.075)$	$0.000 \; (-0.074, 0.074)$
\mathbb{R}^2	0.182	0.116
\overline{Note} :		*p<0.05; **p<0.01; ***p<0.001

Stargazer

Brain Stem: GAM summary

```
## Family: gaussian
## Link function: identity
##
## Formula:
## Brain.Stem ~ s(age, by = sex, bs = "tp", k = K, fx = FX) + sex
##
## Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18317.03
                        72.28 253.43 <2e-16 ***
## sexMALE
              1630.40
                           105.67 15.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                   edf Ref.df
                                F p-value
                            2 39.73 <2e-16 ***
## s(age):sexFEMALE
                     2
## s(age):sexMALE
                     2
                            2 62.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.256 Deviance explained = 25.9%
## -REML = 10532 Scale est. = 3.27e+06 n = 1185
Compare with R-squared of the equivalent linear model (ICV \sim sex + age + age x sex): 0.244
Compare GAM and linear model directly:
## Analysis of Variance Table
## Model 1: Brain.Stem ~ scale(age) + sex * scale(age) + sex
## Model 2: Brain.Stem \sim s(age, by = sex, bs = "tp", k = K, fx = FX) + sex
## Res.Df
                  RSS Df Sum of Sq F Pr(>F)
## 1 1181 3933341148
     1179 3855353802 2 77987346 11.925 7.463e-06 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Cerebellum White Matter

Cerebellum WM: Plot GAM

Cerebellum WM: Linear Models by Sex

Table 6:					
	Depend	Dependent variable:			
	Cereb	pellum WM			
	Males	Females			
	(1)	(2)			
Age	$0.464^{***} (0.390, 0.537)$	$0.365^{***} (0.291, 0.438)$			
Age (Squared)	$-0.099^{**} (-0.173, -0.026)$	$-0.106^{**} (-0.179, -0.032)$			
Constant	$0.000 \; (-0.074, 0.074)$	$0.000 \ (-0.072, \ 0.072)$			
\mathbb{R}^2	0.222	0.161			
Note:		*p<0.05; **p<0.01; ***p<0.001 Stargazer			

R-squared of GAMs: - Males: $R^2 = 0.219$ - Females: $R^2 = 0.157$

Cerebellum WM: GAM summary

```
## Family: gaussian
## Link function: identity
##
## Formula:
## Cerebellum.WM ~ s(age, by = sex, bs = "tp", k = K, fx = FX) +
##
       sex
##
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 26961.2
                             118.6 227.35
                                             <2e-16 ***
                2151.8
                             173.4
                                    12.41
## sexMALE
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                    edf Ref.df
                                   F p-value
## s(age):sexFEMALE
                      2
                             2 61.15 <2e-16 ***
## s(age):sexMALE
                      2
                             2 76.27 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.25
                        Deviance explained = 25.3%
## -REML = 11116 Scale est. = 8.803e+06 n = 1185
Compare with R-squared of the equivalent linear model (Cerebellum.WM \sim \text{sex} + \text{age} + \text{age} \times \text{sex}): 0.244
Compare GAM and linear model directly:
## Analysis of Variance Table
## Model 1: Cerebellum.WM ~ scale(age) + sex * scale(age) + sex
## Model 2: Cerebellum.WM ~ s(age, by = sex, bs = "tp", k = K, fx = FX) +
##
       sex
##
    Res.Df
                   RSS Df Sum of Sq
## 1 1181 1.0501e+10
## 2 1179 1.0379e+10 2 122185165 6.94 0.001008 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Ventral Diencephalon

Ventral DC: Plot GAM

Ventral DC: Linear Models by Sex

Table 7:

Vo		
Ventral DC		
Males	Females	
(1)	(2)	
$0.370^{***} (0.292, 0.447)$	$0.247^{***} (0.170, 0.323)$	
$-0.099^* \ (-0.176, \ -0.022)$	$-0.124^{**} (-0.201, -0.048)$	
$0.000 \; (-0.077, 0.077)$	$-0.000 \; (-0.075, 0.075)$	
0.144	0.089	
	*p<0.05; **p<0.01; ***p<0.001 Stargazer	
	(1) $0.370^{***} (0.292, 0.447)$ $-0.099^* (-0.176, -0.022)$ $0.000 (-0.077, 0.077)$	

• Males: $R^2 = 0.141$

• Females: $R^2 = 0.085$

Ventral DC: GAM summary

```
## Family: gaussian
## Link function: identity
##
## Formula:
## Ventral.DC ~ s(age, by = sex, bs = "tp", k = K, fx = FX) + sex
##
## Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9070.02
                            33.46 271.09 <2e-16 ***
## sexMALE
                921.18
                            48.92 18.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                   edf Ref.df
                                F p-value
                            2 28.64 7.17e-13 ***
## s(age):sexFEMALE
                     2
## s(age):sexMALE
                     2
                            2 49.12 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.285 Deviance explained = 28.8%
## -REML = 9623.7 Scale est. = 7.0074e+05 n = 1185
Compare with R-squared of the equivalent linear model (Ventral.DC \sim sex + age + age x sex): 0.279
Compare GAM and linear model directly:
## Analysis of Variance Table
## Model 1: Ventral.DC ~ scale(age) + sex * scale(age) + sex
## Model 2: Ventral.DC \sim s(age, by = sex, bs = "tp", k = K, fx = FX) + sex
## Res.Df
                 RSS Df Sum of Sq F Pr(>F)
## 1 1181 836708505
     1179 826177475 2 10531031 7.5142 0.0005718 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Fornix

Fornix: Plot GAM

Females Males

• Males: $R^2 = 0.156$

• Females: $R^2 = 0.091$

Fornix: Linear Models by Sex

Table 8:

	Depend	lent variable:
		Fornix
	Males	Females
	(1)	(2)
Age	$0.389^{***} (0.313, 0.466)$	$0.260^{***} \ (0.184, \ 0.337)$
Age (Squared)	$-0.097^* \ (-0.174, \ -0.020)$	$-0.119^{**} (-0.195, -0.042)$
Constant	$0.000 \; (-0.076, 0.076)$	0.000 (-0.074, 0.074)
\mathbb{R}^2	0.158	0.095
Note:		*p<0.05; **p<0.01; ***p<0.001
		Stargazer

Fornix: GAM summary

```
## Family: gaussian
## Link function: identity
##
## Formula:
## Fornix \sim s(age, by = sex, bs = "tp", k = K, fx = FX) + sex
##
## Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 925.194
                            4.790 193.14 <2e-16 ***
## sexMALE
               92.724
                            7.004 13.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                               F p-value
                   edf Ref.df
                            2 27.79 1.6e-12 ***
## s(age):sexFEMALE
                     2
## s(age):sexMALE
                     2
                            2 60.77 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.214 Deviance explained = 21.7\%
## -REML = 7332.1 Scale est. = 14365
Compare with R-squared of the equivalent linear model (Fornix \sim \text{sex} + \text{age} + \text{age} \times \text{sex}): 0.208
Compare GAM and linear model directly:
## Analysis of Variance Table
## Model 1: Fornix ~ scale(age) + sex * scale(age) + sex
## Model 2: Fornix \sim s(age, by = sex, bs = "tp", k = K, fx = FX) + sex
## Res.Df
                RSS Df Sum of Sq F Pr(>F)
## 1 1181 17147447
## 2 1179 16935969 2
                          211479 7.3611 0.0006652 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Anterior Limb of Internal Capsule (ALIC)

ALIC: Plot GAM

• Males: $R^2 = 0.222$

• Females: $R^2 = 0.177$

ALIC: Linear Models by Sex

Table 9: $Dependent\ variable:$ Ant. Limb Internal Capsule Males Females (1) (2)0.465***(0.392, 0.539)0.390*** (0.318, 0.463) Age -0.109**(-0.183, -0.036)Age (Squared) -0.104**(-0.176, -0.031)Constant $0.000 \; (-0.073, \, 0.073)$ -0.000 (-0.071, 0.071) ${\bf R}^2$ 0.2250.180*p<0.05; **p<0.01; ***p<0.001 Note:

Stargazer

ALIC: GAM summary

```
## Family: gaussian
## Link function: identity
##
## Formula:
## Ant.Limb.Int.Capsule ~ s(age, by = sex, bs = "tp", k = K, fx = FX) +
##
      sex
##
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5533.21
                            25.88 213.76
                                            <2e-16 ***
                                            <2e-16 ***
## sexMALE
                494.16
                            37.85
                                    13.06
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                   edf Ref.df
                                  F p-value
## s(age):sexFEMALE
                     2
                            2 66.10 <2e-16 ***
## s(age):sexMALE
                     2
                            2 83.19 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.267
                       Deviance explained =
## -REML = 9321.2 Scale est. = 4.1941e+05 n = 1185
Compare with R-squared of the equivalent linear model (ALIC \sim sex + age + age x sex): 0.261
Compare GAM and linear model directly:
## Analysis of Variance Table
## Model 1: Ant.Limb.Int.Capsule ~ scale(age) + sex * scale(age) + sex
## Model 2: Ant.Limb.Int.Capsule ~ s(age, by = sex, bs = "tp", k = K, fx = FX) +
##
      sex
                 RSS Df Sum of Sq
##
    Res.Df
                                            Pr(>F)
## 1
     1181 500877664
## 2 1179 494488626 2
                          6389038 7.6166 0.0005168 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Intracranial Volume

ICV: Plot GAM

Females Males 10000001 10 15 20 age age

• Males: $R^2 = 0.013$

• Females: $R^2 = 0.002$

ICV: Linear Models by Sex

Table 10: Dependent variable: Intracranial Volume Males Females (2)(1)0.119** (0.037, 0.202) -0.052 (-0.132, 0.028)Age -0.053 (-0.136, 0.030)-0.069 (-0.149, 0.011)Age (Squared) Constant-0.000 (-0.083, 0.083)0.000 (-0.078, 0.078) \mathbb{R}^2 0.0170.006*p<0.05; **p<0.01; ***p<0.001 Note:Stargazer

ICV: GAM summary

```
## Family: gaussian
## Link function: identity
##
## Formula:
## raw.ICV \sim s(age, by = sex, bs = "tp", k = K, fx = FX) + sex
##
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1350162
                            5034 268.22
                                           <2e-16 ***
## sexMALE
                160982
                            7360 21.87
                                           <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                   edf Ref.df
                                 F p-value
                            2 1.525 0.21800
## s(age):sexFEMALE
                     2
## s(age):sexMALE
                     2
                            2 4.869 0.00783 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.291 Deviance explained = 29.4%
## -REML = 15535 Scale est. = 1.5862e+10 n = 1185
```

Model indicates ICV-to-Age relationship in males is approx. linear (EDF ≈ 1) and significant. In females, however, the relationship is closer to a quadratic term (EDF 2) and non-significant.

Compare with R-squared of the equivalent linear model (ICV \sim sex + age + age x sex): 0.291

Compare GAM and linear model directly:

White Matter

WM: Plot GAMs

• Males: $R^2 = 0.218$

• Females: $R^2 = 0.144$

$\operatorname{WM} \colon \operatorname{Linear} \, \operatorname{models} \, \operatorname{by} \, \operatorname{sex}$

Table 11:

	Table 11:			
	Deper	Dependent variable:		
	White	Matter Volume		
	Males	Females		
	(1)	(2)		
Age	$0.469^{***} (0.395, 0.542)$	$0.356^{***} (0.282, 0.430)$		
Age (Squared)	-0.053 (-0.127, 0.021)	$-0.086^* (-0.160, -0.012)$		
Constant	-0.000 (-0.074, 0.074)	-0.000 (-0.072, 0.072)		
\mathbb{R}^2	0.221	0.147		
Note:		*p<0.05; **p<0.01; ***p<0.001 Stargazer		

18

WM: GAM summary

```
## Family: gaussian
## Link function: identity
##
## Formula:
## WM \sim s(age, by = sex, bs = "tp", k = K, fx = FX) + sex
##
## Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
                            2003 229.84
## (Intercept) 460420
                                          <2e-16 ***
## sexMALE
                 56987
                            2929 19.46
                                         <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                  edf Ref.df
                               F p-value
                           2 51.2 <2e-16 ***
## s(age):sexFEMALE
                     2
## s(age):sexMALE
                     2
                           2 82.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.334 Deviance explained = 33.7%
## -REML = 14448 Scale est. = 2.5119e+09 n = 1185
```

Model indicates WM-to-Age relationship is nonlinear and statistically significant in both males and females. WM increases with age; but in females, growth stops at 20 years of age.

Compare with R-squared of the equivalent linear model (WM \sim sex + age + age x sex): 0.331

Compare GAM and linear model directly:

Gray Matter

GM: Plot GAMs

• Males: $R^2 = 0.057$

• Females: $R^2 = 0.16$

GM: Linear models by sex

Table 12:

	Table 12:	
	Depende	ent variable:
	Gray Ma	atter Volume
	Males	Females
	(1)	(2)
Age	$-0.244^{***} (-0.325, -0.163)$	$-0.411^{***} (-0.484, -0.337)$
Age (Squared)	$-0.032 \; (-0.113, 0.048)$	$-0.041 \; (-0.115, 0.032)$
Constant	$0.000 \; (-0.081, 0.081)$	-0.000 (-0.072, 0.072)
\mathbb{R}^2	0.061	0.163
Note:		*p<0.05; **p<0.01; ***p<0.001 Stargazer

20

GM: GAM summary

```
## Family: gaussian
## Link function: identity
##
## Formula:
## GM \sim s(age, by = sex, bs = "tp", k = K, fx = FX) + sex
##
## Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
                            2888 253.23 <2e-16 ***
## (Intercept) 731358
## sexMALE
                 93289
                            4223 22.09
                                         <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                   edf Ref.df
                                F p-value
                           2 55.88 < 2e-16 ***
## s(age):sexFEMALE
                     2
## s(age):sexMALE
                     2
                           2 19.52 4.55e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.366
                      Deviance explained = 36.9%
## -REML = 14880 Scale est. = 5.2216e+09 n = 1185
```

Model indicates GM-to-age relationship is linear and statistically significant for both males and females. GM decreases with age.

Compare with adj. R-squared of the equivalent linear model (WM \sim sex + age + age x sex): 0.366

Compare GAM and linear model directly:

Cerebrospinal Fluid (in ventricles only)

CSF: Plot GAMs

Compare with R-squared of GAM: - Males: $R^2=0.077$ - Females: $R^2=0.026$

CSF: Linear models by sex

Table 13:			
	$Dependent\ variable:$		
	Cerebrospinal	Fluid Volume	
	Males	Females	
	(1)	(2)	
Age	0.284^{***} (0.204, 0.364)	0.166^{***} (0.088, 0.245)	
Age (Squared)	$-0.002 \; (-0.082, 0.078)$	$-0.021 \; (-0.100, 0.058)$	
Constant	$-0.000 \; (-0.080, 0.080)$	0.000 (-0.077, 0.077)	
\mathbb{R}^2	0.081	0.030	
Note:	*p<	(0.05; **p<0.01; ***p<0.001	

Stargazer

22

CSF: GAM summary

```
## Family: gaussian
## Link function: identity
##
## Formula:
## CSF \sim s(age, by = sex, bs = "tp", k = K, fx = FX) + sex
##
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12863.1
                           249.3 51.589 < 2e-16 ***
## sexMALE
               1883.8
                           364.6 5.167 2.79e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                   edf Ref.df
                                  F p-value
                           2 9.239 0.000104 ***
## s(age):sexFEMALE
                     2
## s(age):sexMALE
                     2
                           2 25.171 1.97e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.0662
                       Deviance explained = 7.02%
## -REML = 11992 Scale est. = 3.8917e+07 n = 1185
```

Model indicates CSF-to-age relationship is linear and statistically significant in males and females. CSF increases with age.

Compare with adj. R-squared of the equivalent linear model (CSF \sim sex + age + age x sex): 0.0676 Compare GAM and linear model directly: