CSIE5431 ADL HW2

陳禹翰 B10705050

October 22, 2024

Q1: Model (2%)

Model (1%)

Describe the model architecture and how it works on text summarization.

Model Architecture

Encoder-Decoder Structure

- **Encoder**: The encoder processes the input text and generates hidden states that capture the contextual information.
- Decoder: The decoder uses these hidden states to produce the output text. It
 employs self-attention mechanisms to focus on relevant parts of the input while
 generating each token in the output.

Components

- **Self-Attention Mechanism**: This allows the model to weigh the importance of different words in the input sequence when generating outputs.
- Feed-Forward Networks: Each layer in both encoder and decoder contains feedforward networks that further process the attention outputs.
- Task-Specific Heads: The T5ForConditionalGeneration class includes an additional linear layer (lm_head) on top of the decoder to generate the final output tokens based on the decoder's hidden states.

Text-to-Text Framework

T5's unique feature is its text-to-text framework, where every NLP task is treated as converting one piece of text into another. For instance:

- **Input**: "summarize: The quick brown fox jumps over the lazy dog."
- Output: "A fox jumps over a dog."

This allows for a unified approach across different tasks, simplifying model training and application 56.

How T5 Works for Text Summarization

- **Input Preparation**: The input text is prefixed with a task descriptor (e.g., "summarize:") to inform the model of the desired operation.
- Tokenization: The input is tokenized using a specific tokenizer that converts text into numerical IDs compatible with the model.

– Forward Pass:

- * The tokenized input is fed into the encoder, which generates hidden states.
- * These states are passed to the decoder, which generates output tokens sequentially.
- Output Generation: The model produces a sequence of tokens that represent the summary. This is done through autoregressive generation, where each token is generated based on previously generated tokens and the encoder's hidden states.
- Decoding Strategy: Various strategies can be employed during decoding, such as greedy search or beam search, to enhance output quality and coherence.

Preprocessing (1%)

Describe your preprocessing (e.g., tokenization, data cleaning, etc.).

For my preprocessing steps in this text summarization project, I first load the dataset from a file, where each line contains a JSON object with the article's main text and its corresponding title. Here's how I approach the process:

1. Data Loading and Limiting:

- I read the dataset line by line, and for each line, I convert the JSON object into a dictionary. I store each dictionary in a list.
- If I want to limit the number of training samples, I use the max_train argument to stop reading more lines after reaching the desired amount.

2. Tokenization:

- I use a tokenizer to convert the main text of the article (input) and the title (target summary) into token sequences.
- For each article's main text, I tokenize it with a fixed maximum input length (max_input_length). If the text exceeds this length, I truncate it; if it's shorter, I pad it to ensure uniform input sizes across the dataset.
- Similarly, I tokenize the title with a maximum output length (max_output_length),
 truncating or padding it as necessary to create a consistent target summary length.

3. Attention Masks and Input Preparation:

- Along with tokenization, I generate attention masks, which allow the model to focus on non-padded tokens during training.
- The tokenized input and output sequences, as well as the attention masks, are returned in PyTorch tensor format to ensure compatibility with the model during training.

Q2: Training (2%)

Hyperparameter (1%)

Describe the hyperparameters you use and how you decide on them.

Name	Value	Reason/Description	
Model	"google/mt5-small"	Multilingual support	
Batch Size	24	Maximize memory usage, bigger batch size for	
		better training stability	
Learning Rate	5e-5	Common starting point for transformers	
Epochs	8	Save every epoch, select optimal model, con-	
		serve resources.	
Max Input Length	512	Handles long documents like news articles	
Max Output Length	100	Ensures concise summaries	
Gradient Accumulation	5	Increases batch size without memory overflow	
Steps			
Validation Split	10%	Tracks performance on unseen data	
FP16	Disabled	Avoids instability	
Adafactor	Enabled	Memory efficiency	

Table 1: Hyperparameters for Text Summarization

Learning Curves (1%)

Plot the learning curves (ROUGE versus training steps).

- Training Loss Per Batch

- Validation Loss Per Epoch

- ROUGE Scores Per Epoch

Epoch	ROUGE-1 F1	ROUGE-2 F1	ROUGE-L F1
5	0.2323	0.0872	0.2106
6	0.2337	0.0869	0.2117
7	0.2182	0.0805	0.1967

Table 2: Public data ROUGE F1 Scores for Epochs $5,\,6,\,$ and 7

Q3: Generation Strategies (6%)

Strategies (2%)

Describe the detail of the following generation strategies: Greedy, Beam Search, Top-k Sampling, Top-p Sampling, Temperature.

Strategy	Value	Description	
Beam Search	num_beams=5	Explores 5 sequences at once, improves coherence	
Early Stopping	early_stopping=True	Stops when end token is generated	
Temperature	temperature=1.0	Controls randomness, 1.0 keeps it neutral	
Nucleus Sampling	top_p=0.95	Samples from the top 95% cumulative probability	
		tokens	
Top-k Sampling	top_k=50	Limits choices to top 50 most probable tokens to	
		control variability	

Table 3: Generation Strategies and their Values

Hyperparameters (4%)

Try at least 2 settings of each strategy and compare the results. What is your final generation strategy? (You can combine any of them).

Default Strategy:

- num_beams=5,
- early_stopping=True,
- temperature=1.0,
- top_p=0.95,
- top_k=50

Strategy	ROUGE-1 F1	ROUGE-2 F1	ROUGE-L F1
Default	0.2337	0.0869	0.2117
Temperature $= 0$	0.2182	0.0805	0.1967
Greedy	0.2043	0.0666	0.1838
Num Beams $= 3$	0.2315	0.0836	0.2096
Num Beams $= 10$	0.2355	0.0887	0.2134
Num Beams $= 15$	0.2365	0.0897	0.2140
Num Beams $= 20$	0.2367	0.0901	0.2140
Top-k = 30	0.2337	0.0869	0.2117
Top-k = 70	0.2337	0.0869	0.2117
Top-p = 50	0.2337	0.0869	0.2117
Top-p = 75	0.2337	0.0869	0.2117

Table 4: ROUGE F1 Scores for Different Generation Strategies in Epoch 6

From my test results, we can see that setting temperature to 0 or using Greedy Algorithm is no better than the default setting, and making changes to top-k or top-p does not make

so much of a difference. However, it seems that num_beams indeed matters. The higher num_beams is, the higher the score. Moreover, the increase of f1-score seems to converges at num_beams=20.

Hence, the final strategy I will choose is

- num_beams=20.
- early_stopping=True,
- temperature=1.0,
- $top_p=0.95,$
- top_k=50

Bonus: Applied GPT-2 on Summarization (2%)

• Model (1%)

Describe GPT-2 architecture and hyperparameters you use.

GPT-2 architecture

GPT-2, developed by OpenAI, is a generative pre-trained transformer model characterized by its large scale and capability for various natural language processing tasks. Below is a detailed overview of its architecture and functional components.

Transformer Decoder

- * **Type**: GPT-2 is a **decoder-only** transformer model, which means it utilizes only the decoder part of the transformer architecture as described in the "Attention is All You Need" paper.
- * Layers: The model consists of multiple layers (12 in the smallest version, up to 48 in larger variants), each containing:
 - Multi-Head Self-Attention Mechanism: This allows the model to attend to different parts of the input sequence simultaneously, enhancing its ability to understand context.
 - Feed-Forward Neural Networks: Each layer includes a feed-forward network that processes the output from the attention mechanism.

Key Features

- * Parameters: The largest GPT-2 model contains 1.5 billion parameters, significantly larger than its predecessor, GPT-1, which had around 117 million parameters.
- * Context Length: GPT-2 can process sequences of up to 1024 tokens, doubling the context length compared to GPT-1's 512 tokens.
- * Vocabulary Size: The vocabulary consists of **50,257 unique tokens**, allowing for nuanced language generation.

• Compare to T5 Model (1%)

Observe the loss, ROUGE score, and output texts. What differences can you find?

Feature	GPT-2	google/mt5-small
Type	Decoder-only	Encoder-decoder
Parameters	Up to 1.5 billion	Approximately 300 million
Training Data	WebText (8 million pages)	C4 dataset
Objective	Next-token prediction	Text-to-text transformation
Attention Mechanism	Masked self-attention	Self-attention in both encoder & decoder
Context Length	Up to 1024 tokens	Variable, optimized for tasks

Table 5: Comparison of GPT-2 and google/mt5-small Features

While both models leverage transformer architectures, GPT-2 focuses on generating coherent text through a unidirectional approach, whereas google/mt5-small employs a bidirectional encoder-decoder framework that allows it to perform a broader range of NLP tasks effectively. This fundamental difference in architecture underpins their respective strengths in handling language-related tasks.