CSE 549: Computational Biology

Computer Science for Biology

Not actually simple to define constructively

Still debate whether certain areas constitute CS

Computer science is the scientific and practical approach to computation and its applications. It is the systematic study of the feasibility, structure, expression, and mechanization of the methodical procedures (or algorithms) that underlie the acquisition, representation, processing, storage, communication of, and access to information* ...

What isn't Computer Science?

Don't install operating systems (may develop them)

Don't set up the office network (may study / design network protocols)

Not about Hacking together a program or learning a web-framework — programming ≠ CS (may study formal languages and develop new programming languages, and programming is a skill many computer scientists learn / master.)

^{*}http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

Concerned with the development of provably **correct** and **efficient** computational procedures (algorithms & data structures) to answer **well-specified** problems.

To answer a computational question, we first need a well-formulated problem.

Input DNA

Reference genome.

How to assemble puzzle without the benefit of knowing what the finished product looks like?

Whole-genome "shotgun" sequencing starts by copying and fragmenting the DNA

("Shotgun" refers to the random fragmentation of the whole genome; like it was fired from a shotgun)

Input: GGCGTCTATATCTCGGCTCTAGGCCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCCTCA TTTTTT
GGCGTC TATATCT CGGCTCTAGGCCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

Assume sequencing produces such a large # fragments that almost all genome positions are *covered* by many fragments...

Reconstruct this

CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCCTCATTTTTT
CTCGGCTCTAGCCCCCTCATTTTT
TATCTCGACTCTAGGCCCCTCA
TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCTATATCTCG

From these

→ GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT1

...but we don't know what came from where

Reconstruct this

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTT
CTCGGCTCTAGCCCCTCATTTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

From these

→ GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

CTAGGCCCTCAATTTTT

From these

Concerned with the development of provably **correct** and **efficient** computational procedures (algorithms & data structures) to answer **well-specified** problems.

To answer a computational question, we first need a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

Concerned with the development of provably **correct** and **efficient** computational procedures (algorithms & data structures) to answer **well-specified** problems.

To answer a computational question, we first need a well-formulated problem.

Given: a collection R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

Not well-specified.

What makes one genome more likely than another? What constraints do we place on the space of solutions?

Concerned with the development of provably **correct** and **efficient** computational procedures (algorithms & data structures) to answer **well-specified** problems.

To answer a computational question, we first need a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The shortest genome (string), G, that contains all of them

Shortest Common Superstring

Given: a collection, $S = \{s_1, s_2, \dots, s_k\}$, of sequencing reads (strings)

Find*: The shortest possible genome (string), G, such that s_1, s_2, \ldots, s_k are all substrings of G

How, might we go about solving this problem?

^{*}for reasons we'll explore later, this isn't actually a great formulation for genome assembly.

Shortest common superstring

Given a collection of strings *S*, find *SCS*(*S*): the shortest string that contains all strings in *S* as substrings

Without requirement of "shortest," it's easy: just concatenate them

Example: S: BAA AAB BBA ABA ABB BBB AAA BAB

SCS(S): AAABBBABAA

─10 **─**

AAA
ABB
ABB
BBA
BAB
ABA
BAA

order 1: AAA AAB ABA ABB BAA BAB BBA BBB

AAA

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAAB

order 1: AAA AABA ABA ABB BAA BAB BBA BBB AAABA

order 1: AAA AAB ABB BAA BAB BBA BBB
AAABABB

order 1: AAA AAB ABA ABB BAA BAB BBA BBB

AAABABBAABABBBB ← superstring 1

order 1: AAA AAB ABA ABB BAA BAB BBA BBB

AAABABBAABABBBBB ← superstring 1

order 2: AAA AAB ABA BAB ABB BBB BAA BBA

AAABABBBAABBA ← superstring 2

Try all possible orderings and pick shortest superstring If *S* contains *n* strings, *n*! (*n* factorial) orderings possible

order 1: AAA AAB ABA ABB BAA BAB BBA BBB

AAABABBAABABBBBB ← superstring 1

order 2: AAA AAB ABA BAB ABB BBB BAA BBA

AAABABBBAABBA ← superstring 2

If *S* contains *n* strings, *n*! (*n* factorial) orderings possible

Shortest common superstring

Can we solve it?

Imagine a modified overlap graph where each edge has cost = - (length of overlap)

SCS corresponds to a path that visits every node once, minimizing total cost along path

That's the *Traveling Salesman Problem (TSP)*, which is NP-hard!

Shortest common superstring

Say we disregard edge weights and just look for a path that visits all the nodes exactly once

That's the *Hamiltonian Path* problem: NP-complete

Indeed, it's well established that SCS is NP-hard

Shortest common superstring & friends

Traveling Salesman, Hamiltonian Path, and Shortest Common Superstring are all NP-hard

For refreshers on Traveling Salesman, Hamiltonian Path, NP-hardness and NP-completeness, see Chapters 34 and 35 of "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein, or Chapters 8 and 9 of "Algorithms" by Dasgupta, Papadimitriou and Vazirani (free online: http://www.cs.berkeley.edu/~vazirani/algorithms)

Important note: The fact that we modeled SCS as NP-hard problems (TSP and HP) **does not** prove that (the decision version of) SCS is NP-complete. To do that, we must **reduce** a known NP-complete problem to **SCS**.

Given an instance I of a known hard problem, generate an instance I' of SCS such that if we can solve I' in polynomial time, then we can solve I in polynomial time. This *implies* that SCS is *at least* as hard as the hard problem.

This can be done e.g. with HAMILTONIAN PATH

Shortest Common Superstring

The fact that SCS is **NP-complete** means that it is unlikely that there exists *any* algorithm that can solve a general instance of this problem in time polynomial in n — the number of strings.

If we give up on finding the *shortest* possible superstring G, how does the situation change?

Shortest Common Superstring

There's a "greedy" *heuristic* that turns out to be an *approximation algorithm* (provides a solution within a constant factor of the the optimum)

At each step, chose the pair of strings with the maximum overlap, merge them, and return the merged string to the collection.

Greedy conjecture factor of 2-OPT *is* the worst case

Different approx. (not all greedy)

ratio	authors	year
	approximating SCS	
3	Blum, Jiang, Li, Tromp and Yannakakis [4]	1991
$2\frac{8}{9}$	Teng, Yao [23]	1993
$2\frac{5}{6}$	Czumaj, Gasieniec, Piotrow, Rytter [8]	1994
$2\frac{50}{63}$	Kosaraju, Park, Stein [15]	1994
$2\frac{3}{4}$	Armen, Stein [1]	1994
$2\frac{50}{69}$	Armen, Stein [2]	1995
$2\frac{2}{3}$	Armen, Stein [3]	1996
$2\tfrac{25}{42}$	Breslauer, Jiang, Jiang [5]	1997
$2\frac{1}{2}$	Sweedyk [21]	1999
$2\frac{1}{2}$	Kaplan, Lewenstein, Shafrir, Sviridenko [12]	2005
$2\frac{1}{2}$	Paluch, Elbassioni, van Zuylen [18]	2012
$2\frac{11}{23}$	Mucha [16]	2013

AAABBBA ← superstring, length=7

Greedy-SCS: in each round, merge pair of strings with maximal overlap. Stop when there's 1 string left. l = minimum overlap.

Algorithm in action (l = 1):

Input strings —— AAA AAB ABB BBA

Greedy-SCS: in each round, merge pair of strings with maximal overlap. Stop when there's 1 string left. l = minimum overlap.

Algorithm in action (l = 1):

Greedy-SCS: in each round, merge pair of strings with maximal overlap. Stop when there's 1 string left. l = minimum overlap.

Algorithm in action (l = 1):

Greedy-SCS: in each round, merge pair of strings with maximal overlap. Stop when there's 1 string left. l = minimum overlap.

Algorithm in action (l = 1):

Greedy-SCS: in each round, merge pair of strings with maximal overlap. Stop when there's 1 string left. l = minimum overlap.

Algorithm in action (l = 1):

Input strings——I AAA AAB ABB BBB BBA AAAB ABB BBB BBA AAAB ABB BBB BBA AAAB BBBA ABB

Greedy-SCS: in each round, merge pair of strings with maximal overlap. Stop when there's 1 string left. l = minimum overlap.

Algorithm in action (l = 1):

Greedy-SCS: in each round, merge pair of strings with maximal overlap. Stop when there's 1 string left. l = minimum overlap.

Algorithm in action (l = 1):

AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB
AAAB BBBA ABB
AAABB BBBA

Greedy-SCS: in each round, merge pair of strings with maximal overlap. Stop when there's 1 string left. l = minimum overlap.

Algorithm in action (l = 1):

AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB
AAABB BBBA
AAABB BBBA
AAABB BBBA
AAABBBBA

AAABBBA

That's the SCS

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

Note: approx. guarantee is on length of the superstring Actual result may be very different.

AAABBBA ← superstring, length=7

Greedy answer isn't necessarily optimal

Take-home message:

We are interested in *correct and efficient algorithms* for solving *well-specified* problems.

We must be careful about how we *pose* the problems.

Actually, shortest common superstring is a rather poor model for sequence assembly, due to repeats and errors.