YTOR

En yta kan anges på

EXPLICIT FORM z = f(x, y)

IMPLICIT FORM F(x, y, z) = 0

och

PARAMETER FORM med tre skalära ekvationer

$$x = f_1(s,t), \quad y = f_2(s,t), \quad z = f_3(s,t)$$

eller ekvivalent en vektorekvation

$$\vec{r}(s,t) = (x(s,t), y(s,t), z(s,t))$$

TANGENTPLANETS EKVATION

Om $\ \bar{N}=(A,B,C)$ är ytans normalvektor i punkten $\ P_0=(x_0,y_0,z_0)$

då är $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ tangentplanets ekvation i P_0 .

YTANS NORMALVEKTOR (eller normalriktning) \vec{N} i en punkt på ytan beräknas enligt följande:

1. Om ytan anges på **explicit form** z = f(x, y) då är

$$\vec{N} = (-f_x', -f_y', 1)$$

2. Om ytan anges på implicit form $F(x,y,z)=0\,$ då är

$$\vec{N} = (F_x', F_y', F_z')$$

3. Om ytan anges på parameterform form $\vec{r}(s,t) = (x(s,t), y(s,t), z(s,t))$ då är

$$\vec{N} = \frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t}$$

Uppgift 1. Bestäm en normal vektor och tangentplanets ekvation

- a) till ytan $z = x^2 + y^4$ i punkten $P_0(1,1,2)$
- b) till ytan (ellipsoid) $x^2 + 2y^2 + 3z^2 = 6$ i punkten $P_0(2,1,0)$.
- c) till ytan $\vec{r}(s,t)=(s+2t,1-3t,s+t^2)$) i punkten P_0 som svarar mot s= 1, t=0.

Lösning:

a) Ytan är given på explicit form och därför beräknar en normalvektor i en punkt enligt formeln

$$\vec{N} = (-f'_x, -f'_y, 1) = (-2x, -4y^3, 1).$$

I punkten $P_0(1,1,2)$ får vi därmed en normalvektor $\vec{N}(P_0) = (-2,-4,1)$.

Tangentplanets ekvation blir då -2(x-1)-4(y-1)+1(z-2)=0

Svar a) En normalvektor $\vec{N}(P_0) = (-2, -4, 1)$

Tangentplanets ekvation -2(x-1)-4(y-1)+1(z-2)=0

b) Ytan är given på implicit form och därför beräknar en normalvektor i en punkt enligt formeln

$$\vec{N} = (F_x', F_y', F_z') = (2x, 4y, 6z)$$

I punkten $P_0(2,1,0)$ har vi en normalvektor $\vec{N}(P_0) = (4,4,0)$.

Tangentplanets ekvation blir då 4(x-2)+4(y-1)=0 som kan förenklas till

$$x + y - 3 = 0$$

Svar b: $\vec{N}(P_0) = (4,4,0)$. Tangentplanets ekv: x + y - 3 = 0

c) Ytan är given på parameter form $\vec{r}(s,t) = (s+2t, 1-3t, s+t^2)$

och en normalvektor kan bestämmas med **hjälp av formeln** $\vec{N} = \frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t}$.

Först bestämmer vi

$$\frac{\partial \vec{r}}{\partial s} = (1,0,1)$$
 och

 $\frac{\partial \vec{r}}{\partial t}$ = (2,-3,2t) Vi substituerar värden s= 1, t=0 (som gäller för punkten P_0) och får

$$\frac{\partial \vec{r}}{\partial t}(P_0) = (2, -3, 0)$$

Nu är
$$\vec{N} = \frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 1 \\ 2 & -3 & 0 \end{vmatrix} = (3,2,-3)$$

Genom insättning s= 1, t=0 får vi punkten P_0 (1, 1,1).

Tangentplanets ekvation $\exists (x-1) + 2(y-1) - 3(z-1) = 0 \text{ eller } 3x + 2y - 3z - 2 = 0$

Svar c) $\vec{N} = (3,2,-3)$. Tangentplanets ekvation är 3x + 2y - 3z - 2 = 0

Uppgift 2. Låt K beteckna skärningskurvan mellan ytorna

$$x + 2y^2 + z^2 = 10$$
 och $x^2 + y^2 + 3z^2 = 8$.

Bestäm ekvationen för tangenten i punkten $P_0(1,2,1)$.

Lösning:

Låt \vec{N}_1 och \vec{N}_2 vara ytornas normalvektorer i punkten P₀.

Då är vektorn $\vec{T} = \vec{N}_1 \times \vec{N}_2$ parallell med tangentlinje i punkten P₀.

En normal vektor till ytan $x + 2y^2 + z^2 = 10$ är

(
$$F_x$$
', F_y ', F_z ') = (1,4 y ,2 z) och därför I punkten P₀ har vi \vec{N}_1 = (1,8,2)

En normal vektor till ytan $x^2 + y^2 + 3z^2 = 8$ är $\vec{N}_2 = (2,4,6)$

Därför $\vec{T}=\vec{N}_1 \times \vec{N}_2=(40,\!-2,\!-12)$ som vi kan ersätta med en parallell vektor (20,-1,-6)

Tangentlinjens ekvation är (x,y,z)=(1,2,1)+t(20,-1,-6).

Svar: (x,y,z)=(1,2,1)+t(20,-1,-6).

Uppgift 3. Bestäm konstanten A så att kurvan $\vec{r}(t) = (1 + t \cos t, 2 + t \sin t, t + 5)$ ligger på ytan $(x-1)^2 + (y-2)^2 - (z-A)^2 = 0$

Lösning:

Kurvan ligger på ytan om punkten $(1+t\cos t, 2+t\sin t, t+5)$ ligger på ytan för varje t.

Vi substituerar $x = 1 + t \cos t$, $y = 2 + t \sin t$, z = t + 5 i ytans ekvation och får

$$t^2 \cos^2 t + t^2 \sin^2 t - (t+5-A)^2 = 0 \Rightarrow t^2 - (t+5-A)^2 = 0$$

 $\Rightarrow -2(5-A)t - (5-A)^2 = 0$, som måste gälla för alla t.

Härav A=5.

Svar: A=5