Aggregating of Adaptive Forecasting Algorithms

A. A. Romanenko

Moscow Institute of Physics and Technology

9 November 2016 · Moscow, Russia

Plan

- Competitive Online Prediction
 - Online Predictions
 - Examples of games
 - Idea of Aggregating Algorithm
 - Wellcome to Aggregating Algorithm
 - Superpredictions and aggregation function
 - Mixability of some games
 - Making Prediction: Substitution Function
- Experiments with Real Data
 - Parameters of Aggregating Algorithm
 - Comparison with Base Algorithms and Other Compositions
 - Comparison with Base Algorithms

Online Learning

Definition

Game G comprises $\langle \Omega, \Gamma, \lambda \rangle$ where Ω is a set of outcomes, Γ is a prediction set and $\lambda : \Omega \times \Gamma \to \mathbb{R}^+ \cup \{\infty\}$ is a loss function.

Online learning protocol

For
$$t = 0, ..., T, ...$$

- **1** predict value $\hat{x}_{t+1} \in \Gamma$;
- **2** obtain outcome $x_{t+1} \in \Omega$;
- 3 calculate loss $\lambda(x_{t+1}, \hat{x}_{t+1})$.

Definition (loss process)

A loss process is cumulative loss at step T Loss_A(T) = $\sum_{t=1}^{T} \lambda(x_t, \hat{x}_t^A)$.

Time Series Prediction Problem

An outcome space and a prediction space: $\Omega = \Gamma = [Y_1, Y_2] \subset \mathbb{R}$.

Definition

Time series is a sequence of elements from $\Omega^T: X=(x_1,\ldots,x_T)$, where $x_t\in\Omega$, $t=\overline{1,T}$. Element $x_t\in\Omega$ is a point of the time series.

Time series

Simple games

Простейшие примеры игр:

- ullet двоичные (бинарные) игры $\Omega = \{0,1\}$, $\Gamma = [0,1]$;
- ullet квадратичная игра $\lambda(\omega,\gamma)=(\omega-\gamma)^2$;
- абсолютная игра $\lambda(\omega, \gamma) = |\omega \gamma|$;
- логарифмическая игра

$$\lambda(\omega, \gamma) = \begin{cases} -\log_2(1-\gamma), & \omega = 0; \\ -\log_2(\gamma), & \omega = 1. \end{cases}$$

ullet простая предсказательная игра $\Omega = \Gamma = \{0,1\},$

$$\lambda(\omega, \gamma) = \begin{cases} 0, & \omega = \gamma; \\ 1, & \omega \neq \gamma. \end{cases}$$

Asymmetric Linear and Square Games

• Game $G = \langle [Y_1, Y_2], [Y_1, Y_2], \lambda \rangle$ where

$$\lambda(x,\hat{x}) = egin{cases} k_1\cdot|x-\hat{x}|, & x-\hat{x}<0 \ k_2\cdot|x-\hat{x}|, & x-\hat{x}\geqslant 0 \ & ext{where} & k_1>0, k_2>0 \end{cases}$$

linear loss function

square loss function

Потери важнее прогнозов

Бинарная квадратичная игра $\Omega=\{0,1\},\ \Gamma=[0,1],\lambda=(\omega-\gamma)^2;$

- 💶 Задача 1
 - базовый алгоритм 1 строит константный прогноз 0;
 - ullet как построить прогноз композиции ${\mathfrak A}$, чтобы

$$\mathsf{Loss}_{\mathfrak{A}} \leqslant \frac{1}{2}\mathsf{Loss}_{1}?$$

- Ответ: ???
- Задача 2
 - ullet базовый алгоритм 1 получает средний штраф $rac{1}{2}$
 - как построить прогноз композиции 🎗, чтобы

$$\mathsf{Loss}_{\mathfrak{A}} \leqslant \frac{1}{2} \mathsf{Loss}_{1}$$
?

ullet Ответ: строить константный прогноз $\frac{1}{2}$

Резюме: важнее смотреть на потери, а не на сам прогноз

Смешивание алгоритмов прогнозирования

- пусть имеется N алгоритмов прогнозирования
- ullet $\lambda(y_t,\hat{y}_{j,t})$ потери алгоритма j при прогнозе элемента y_t
- ullet Loss $_{j}(T)=\sum_{t=1}^{T}\lambda(y_{t},\hat{y}_{j,t})$ суммарные потери алгоритма j к моменту времени T

Задача: как смешать прогнозы базовых алгоритмов, чтобы

$$\mathsf{Loss}_{\mathfrak{M}}(T) \preceq \mathsf{Loss}_{j}(T), \ \forall j = \overline{1, N}?$$

Идея: ориентироваться в каждый момент времени t на накопленные потери $\mathsf{Loss}_j(t)$ каждого базового алгоритма j

Среднее Колмогорова как обобщение среднего арифметического

Среднее Колмогорова:

$$M(x_1,\ldots,x_n)=\varphi^{-1}\left(\frac{1}{n}\sum_{k=1}^n\varphi(x_k)\right)=\varphi^{-1}\left(\frac{\varphi(x_1)+\ldots+\varphi(x_n)}{n}\right)$$

- $\varphi(x) = x \Rightarrow M(x_1, \dots, x_n) = \frac{x_1 + \dots + x_n}{n}$ среднее арифметическое;
- $\varphi(x) = x^{-1} \Rightarrow M(x_1, \dots, x_n) = \frac{n}{1/x_1 + \dots + 1/x_n}$ среднее гармоническое;
- $\varphi(x) = \log(x) \Rightarrow M(x_1, \dots, x_n) = \sqrt[n]{x_1 \cdot \dots \cdot x_n}$ среднее геометрическое;
- $\varphi(x) = e^x \Rightarrow \ln\left(\frac{1}{n}\sum_{k=1}^n e^{(x_k)}\right)$

Какой выбрать функцию агрегирования (смешивания), чтобы по ней строить предсказания?

Идея агрегирующего алгоритм В. Вовка

- "усреднять" (смешивать) не прогнозы, а потери;
- взвешивать потери в экспоненциальном пространстве $p_j \sim \exp^{-\eta \mathrm{Loss}_j(T)};$

Итоговая композиция AA строится на основе функции смешивания (generalized function):

$$g(y) = \log_{\beta} \left(\sum_{j=1}^{N} \frac{1}{N} \beta^{\mathsf{Loss}_{j}(T) + \lambda(y, \hat{y}_{j, T+1})} \right)$$

где $eta=e^{-\eta}\in (0,1)$, $\eta\in (0,\infty)$ — скорость обучения (learning rate)

Super-prediction (супер-предсказание)

Введём несколько терминов

• назовём бабка-предсказанием любую функцию вида

$$f(\omega): \Omega \to [0, +\infty];$$

• задание множества предсказаний Γ и функции потерь λ выдаляет из них допустимое (реальное) предсказание:

$$\lambda(\cdot,\gamma):\Omega\to[0,+\infty];$$

• назовём супер-предсказанием те бабка-предсказания, которые мажорируют некоторое допустимое предсказание:

$$\exists \gamma \in \Gamma \colon \lambda(\omega, \gamma) \leqslant g(\omega), \forall \omega \in \Omega;$$

Example of super-prediction

квадратичная игра $\lambda(\omega, \gamma) = (\omega - \gamma)^2$

логарифмическая игра

абсолютная игра $\lambda(\omega, \gamma) = |\omega - \gamma|$

простая предсказательная игра

$$\lambda(\omega, \gamma) = \begin{cases} -\log_2(1-\gamma), & \omega = 0 \end{cases}$$

Super-prediction set for squared game

Game
$$G = \langle [Y_1, Y_2], [Y_1, Y_2], \lambda = (\omega - \gamma)^2 \rangle$$

Main theoretical result

Theorem (V. Vovk)

If
$$g(\omega) = c(\beta) \cdot \log_{\beta} \left(\sum_{j=1}^{N} \frac{1}{N} \beta^{\mathsf{Loss}_{j}(T) + \lambda(\omega, \hat{\gamma}_{j, T+1})} \right)$$

$$c(\beta) \cdot g(\omega) - super-prediction;$$

That means

• in all observable games: $\exists \gamma \in \Gamma \ \forall \omega \in \Omega$

$$\lambda(\omega, \gamma) \leqslant c(\beta) \cdot \log_{\beta} \left(\sum_{j=1}^{N} \frac{1}{N} \beta^{\mathsf{Loss}_{j}(T) + \lambda(\omega, \hat{\gamma}_{j, T+1})} \right)$$

- $c(\beta) \geqslant 1$
- if $c(\beta) = 1$ for some $\beta \in (0,1)$ then game is (called) mixable

Mixable Games

- ullet бинарная логарифмическая игра смешиваемая $(eta\geqslant 1/2)$
- ullet бинарная квадратичная игра $\Omega=\{0,1\}$, $\Gamma=[0,1]$ смешиваемая $(eta\geqslant 1)$;
- ullet квадратичная игра $\langle \Omega = \Gamma = [Y_2, Y_2], \lambda = (\omega \gamma)^2
 angle$ смешиваемая

$$\beta \geqslant \exp\left(-\frac{2}{(Y_2 - Y_1)^2}\right);$$

ullet квадратичная игра несимметричная игра $\langle \Omega = \Gamma = [Y_2, Y_2]$ смешиваемая

$$\beta \geqslant \exp\left(-\frac{1}{2 \cdot K \cdot (Y_2 - Y_1)^2}\right),$$

$$K = \frac{2k_1 - k_2 - k^*}{3(k_1 - k_2)} \cdot \frac{k_1 - 2k_2 + k^*}{3(k_1 - k_2)} \cdot \frac{k_1 + k_2 + k^*}{3}, k^* = \sqrt{(k_1 - k_2)^2 + k_1 \cdot k_2}$$

Not-Mixable Games

• простая бинарная игра не смешиваемая

$$c(\beta) = (\ln \beta) / \left(\ln \frac{1+\beta}{2} \right)$$

- ullet бинарная абсолютная игра не смешиваемая $c(eta) = \left(\lneta
 ight)/\left(2\lnrac{1+eta}{2}
 ight)$
- абсолютная игра $\Omega=\Gamma=[Y_2,Y_2],\lambda(\omega,\gamma)=|\omega-\gamma|$ не смешиваемая

$$c(\beta) = ((Y_2 - Y_1) \ln \beta) / \left(2 \ln \frac{1 + \beta^{(Y_2 - Y_1)}}{2} \right)$$

• абсолютная несимметричная игра не смешиваемая $c(\beta) = \frac{\frac{k_1 k_2 (Y_2 - Y_1) \ln(\beta)}{k_1 \ln\left(\frac{k_1}{k_1 + k_2} \frac{1 - \beta(k_1 + k_2) (Y_2 - Y_1)}{1 - \beta(k_1) (Y_2 - Y_1)}\right) + k_2 \ln\left(\frac{k_2}{k_1 + k_2} \frac{1 - \beta(k_1 + k_2) (Y_2 - Y_1)}{1 - \beta(k_2) (Y_2 - Y_1)}\right)}$

Idea of Substitution Function

Условие выбора S(g):

$$\lambda(Y_1, S(g)) \in [0, g(Y_1)]; \quad \lambda(Y_2, S(g)) \in [0, g(Y_2)]$$

Substitution Function for Squared Game

$$S(g) = \arg\min_{\hat{\chi}} \sup_{\chi} \left(rac{\lambda(\chi, \hat{\chi})}{g(\chi)}
ight)$$

$$S(g) = \frac{Y_2\sqrt{g(Y_1)} + Y_1\sqrt{g(Y_2)}}{\sqrt{g(Y_1)} + \sqrt{g(Y_2)}}$$

$$S(g)=rg\min_{\hat{x}}\|u-v\|_\infty$$
, где $u=(g(Y_1),g(Y_2)),$ $v=((\hat{x}-Y_1)^2,(\hat{x}-Y_2)^2)$

$$S(g) = \frac{g(Y_1) - g(Y_2)}{2(Y_2 - Y_1)} + \frac{Y_1 + Y_2}{2}$$

Substitution Function for Asymmetric Squared Game

$$S(g) = \arg\min_{\hat{x}} \sup_{x} \left(\frac{\lambda(x, \hat{x})}{g(x)} \right)$$

$$S_1(g) = \frac{Y_2\sqrt{k_2g(Y_1)} + Y_1\sqrt{k_1g(Y_2)}}{\sqrt{k_2g(Y_1)} + \sqrt{k_1g(Y_2)}}$$

$$S(g) = rg \min_{\hat{x}} \|u - v\|_{\infty}$$
, where $u = \left(g(Y_1), g(Y_2)\right)$, $v = \left(\lambda(Y_1, \hat{x}), \lambda(Y_2, \hat{x})\right)$

$$S_{2}(g) = \frac{k_{2}Y_{1} - k_{1}Y_{2}}{k_{1} - k_{2}} - \frac{\sqrt{k_{2}k_{1}(Y_{1} - Y_{2})^{2} + g(Y_{1}) - g(Y_{2})}}{k_{1} - k_{2}}$$

Substitution Function for Asymmetric Linear Game

$$S(g) = \arg\min_{\hat{x}} \sup_{x} \left(rac{\lambda(x,\hat{x})}{g(x)}
ight)$$

$$S(g) = \frac{Y_2 k_2 g(Y_1) + Y_1 k_2 g(Y_2)}{k_2 g(Y_1) + k_1 g(Y_2)}$$

$$S(g) = rg \min_{\hat{x}} \|u - v\|_{\infty}$$
, где $u = ig(g(Y_1), g(Y_2)ig)$, $v = ig(\lambda(Y_1, \hat{x}), \lambda(Y_2, \hat{x})ig)$

$$S(g) = \frac{c(\beta)(g(Y_1) - g(Y_2))}{(k_1 + k_2)} + \frac{k_1 Y_1 + k_2 Y_2}{k_1 + k_2}$$

Агрегирующий алгоритм В. Вовка

Прогнозы композиций AA_1 и AA_2

Инициализация: веса базовых алгоритмов $ho_{j,0}=1/N$

Для
$$t=0,\ldots,T-1$$

- **①** получить предсказания экспертов $\hat{y}_{j,t+1}, \forall j = \overline{1,N};$
- 2 построить функцию смешивания:

$$g(x) = \log_{\beta} \left(\sum_{j=1}^{N} p_{j,t} \cdot \beta^{\lambda(y,\hat{y}_{j,t+1})} \right)$$

$$\hat{y}_{AA_1,t+1} = \frac{Y_2\sqrt{g(Y_1)} + Y_1\sqrt{g(Y_2)}}{\sqrt{g(Y_1)} + \sqrt{g(Y_2)}};$$

$$\hat{y}_{AA_2,t+1} = \frac{g(Y_1) - g(Y_2)}{2(Y_2 - Y_1)} + \frac{Y_1 + Y_2}{2};$$

- **1** получить исход y_{t+1} ; вычислить ошибку $\lambda(y_{t+1}, \hat{y}_{t+1})$;
- $oldsymbol{0}$ пересчитать веса экспертов $extit{p}_{j,t+1} = eta^{\lambda(y_{t+1},\hat{y_j},t+1)} \cdot extit{p}_{j,t}.$

Loss Process Estimation

- Consider base forecast algorithms $\{A^1, \ldots, A^N\}$.
- Assign $p_0^j = 1/N$ where $j = \overline{1, N}$.
- ullet Get appropriate eta and S(g)
- We obtain a composition AA.
- Time complexity of the composition is O(NT).

Theorem

The loss process AA in a asymmetric loss game G for $\forall (x_1, ..., x_T) \in [Y_1, Y_2]^T$, $\forall \{A^1, ..., A^M\}$ satisfies inequality:

$$\mathsf{Loss}_{\mathcal{A}\mathcal{A}}(T)\leqslant \min_{i=1,\dots,M}\mathsf{Loss}_{\mathcal{A}^i}(T)+O\left(\mathsf{In}(N)\right). \tag{1}$$

Data Description

- 1913 time series from retail nets;
- Length of time series varies from 50 to 1500 points;
- Base algorithms: Exponential Smoothing (ES), Brown's Linear model (BL), Theil-Wage model (TW);
- Training set for base algorithm: 200 time series;
- Training set for parameters of compositions: 1000 time series.

Initial Distribution of Expert Weights

Let
$$\{AA^j\}_{j=1}^N$$
 be a set of compositions with different ρ_0 , $N\approx 10^4$ $L_1(T)=\frac{1}{T}\Big(\max_{j=\overline{1,N}}\mathsf{Loss}_{AA^j}(T)-\min_{j=\overline{1,N}}\mathsf{Loss}_{AA^j}(T)\Big),$ $L_2(T)=\frac{1}{T}\Big(\max_{j=\overline{1,N}}\mathsf{Loss}_{AA^j}(T)-\min_{j=\overline{1,10}}\mathsf{Loss}_{AA^j}(T)\\\max_{j=\overline{1,N}}\mathsf{Loss}_{AA^j}(T)+\min_{j=\overline{1,10}}\mathsf{Loss}_{AA^j}(T)\Big).$

Idea of Substitution Function

Optimal Substitution Function

An experiment with real data (1 of 200 time series), $k_1 = 1$, $k_2 = 2$

In the next slides: AA_1 corresponds to S_1 , AA_2 corresponds to S_2

Theoretical Bounds

Table: MSE of AA_1 and the best expert averaged by 1000 time series

k_1/k_2	1	2	5	10	15	20
AA_1	21.69	32.24	57.33	94.17	110.4	139.9
BE	22.05	32.63	58.24	95.23	111.5	140.6
TB	25.16	38.2	71.80	99.44	141.1	179.7

Comparison with Base Algorithms Example 1

An experiment with real data (1 of 1000 time series)

$$MSE = \frac{1}{T}Loss(T)$$

Comparison with Base Algorithms Example 2

An experiment with real data (1 of 1000 time series)

$$\mathsf{MSE} = \frac{1}{T}\mathsf{Loss}(T)$$

Comparison with Other Compositions

Table: Comparison of compositions under a symmetric loss function, MSE

М	AFTER	IW	LAWR	ВІ	AA_1	AA_2
10	6,57	6,66	6,74	6,75	6,43	6,37
25	6,50	6,62	6,92	6,71	6,39	6,31
40	6,55	6,57	6,90	6,66	6,35	6,37
	100%	100%	105%	103%	95%	97%

Table: Comparison of compositions under an asymmetric loss function

k_1/k_2	AA_1	AA_2	QR
2	2344	2375	2804
10	2694	2863	4978
100	7700	8605	12223

Conclusion

- Aggregating Algorithm is based on loss process mixing rather forecasts
- it is possible to build theoretical assessment
- compositions based on the aggregating algorithm are adaptive and not time-consming
- theoretical bound of loss process slightly exceeds the actual loss process of compositions
- Compositions based on the aggregating algorithm can be applied in practice for different loss functions