La ley de la multiplicación

En muchas aplicaciones, es útil reescribir la formula para la probabilidad condicionada de otra manera

$$P(A \cap B) = P(A|B)P(B).$$

Esta fórmula es conocida como la leu de la multiplicación

Vamos a repartir dos naipes de una baraja española. ¿Cuál es la probabilidad de que ambos sean oros?

Posemos intentar resolver este problema a traves de la combinatoria utilizando la probabilidad hipergeometrica ...

1

Eiemplo

En la evaluacion de un programa de capacitacion de ventas, una empresa descubrio que de los 50 vendedores que recibieron un bono el año anterior, 20 habian acudido a un programa especial de capacitacion en ventas. La empresa tiene 200 empleados. Sea B el suceso de que un vendedora recibiera un bono y S el suceso de que acudieron al programa especial. Hallar P (B), P (S|B) y P $(B \cap S)$.

pero es mucho mas fácil utilizando la probabilidad condicionada.

Sea A el suceso de que la segunda carta es oro y B el suceso de que el primer naine es de oros.

$$P(A \cap B) = P(A|B)P(B)$$

$$= P(A|B) \times \frac{10}{40} \text{ porque en principio hay 40 naipes y 10 oros}$$

$$= \frac{9}{39} \times \frac{10}{40} \text{ porque quedan 39 naipes y 9 oros}$$

$$= \frac{3}{52}$$

2

En la evaluación de un programa de capacitación de ventas, una empresa descubrio que de los 50 vendedores que recibieron un bono el año anterior, 20 habian acudido a un programa especial de capacitación en ventas. La empresa tiene 200 empleados. Sea B el suceso de que un vendedora recibiera un bono y S el suceso de que acudieron al programa especial. Hallar P (B), P (S|B) y P $(B \cap S)$.

$$P(B) = {50 \atop 200} = {1 \atop 4}, P(S|B) = {20 \atop 50} = {2 \atop 5} \text{ y luego,}$$

$$P(B \cap S) = P(S \cap B) = P(S|B)P(B) = {1 \over 10}.$$

3

La ley de la probabilidad total

Recordamos que para dos sucesos, A y B, se tiene

$$A = (A \cap B) \cup (A \cap \overline{B})$$

 $P(A) = P(A \cap B) + P(A \cap B)$ y, por la ley de multiplicacion

= P(A|B)P(B) + P(A|B)P(B)

Teor'a Estad'istica Elemental I

5

Ejemplo

El 42% de la población activa de cierto país está formada por mujeres. Se sabe que un 24% de las mujeres y un 16% de los hombres estanen el paro.

¿Cuales la probabilidad de que una persona elegida al azar de la poblacion activa en esta pais este en el paro?

Sea M el suceso de que la persona fuese mujer y H hombre. Luego,

$$P(M) = 0.42$$
 $P(H) = P(M) = 1 - 0.42 = 0.58.$

Sea P el suceso de que la persona este en el paro. Entonces

$$P(P|M) = 0.24$$
 $P(P|H) = 0.16$.

Ejemplo

El 42% de la población activa de cierto país está formada por mujeres. Se sabe que un 24% de las mujeres u un 16% de los hombres est´anen el paro.

¿Cu'ales la probabilidad de que una persona elegida al azar de la poblaci'on activa en esta pais est'een el paro?

6

Utilizando la ley de la probabilidad total tenemos

$$P(P) = P(P|M)P(M) + P(P|H)P(H)$$

= 0.24 × 0.42 + 0.16 × 0.58
= 0.1936

A menudo, es util representar el problema en forma de diagrama. Hay dos metodos posibles; el uso de diagramas de Venn y los arboles de probabilidad.

El teorema de Bayes

Volvemos al ejemplo sobre el paro. Supongamos que se elige un adulto al azar para rellenar un formulario y se observa que no tiene trabajo. ?Cual es la probabilidad de que la persona elegida sea mujer?

El teorema de Bayes

Volvemos al ejemplo sobre el paro. Supongamos que se elige un adulto al azar para rellenar un formulario y se observa que no tiene trabajo. ?Cual es la probabilidad de que la persona elegida sea mujer?

Queremos calcular

$$P(M|P) = \frac{P(M \cap P)}{P(P)}$$

$$= \frac{P(P|M)P(M)}{P(P)}$$

$$= \frac{0.24 \times 0.42}{0.1936}$$

$$\approx 0.521$$

9