FÍSICA DO ESTADO SÒLIDO

Teste 1

1) (4v) O espectro de vibrações duma cadeia diatómica é dado por:

$$\omega^{2} = \frac{1}{2} \left(\omega_{1}^{2} + \omega_{2}^{2} \right) \pm \sqrt{\frac{1}{4} \left(\omega_{1}^{2} + \omega_{2}^{2} \right)^{2} - \omega_{1}^{2} \omega_{2}^{2} \sin^{2} \left(\frac{qb}{2} \right)}$$

onde $\omega_{1,2}^2 = 2f/M_{1,2}$, f é a rigidez das molas e $M_{1,2}$ são as massas atómicas.

- a) Faça um gráfico qualitativo do espectro $\omega(q)$.
- b) Qual é a largura do gap de frequências entre os ramos, óptico e acústico?
- c) Calcule as velocidades de grupo para os dois ramos no limite dos comprimentos de onda grandes $(q \rightarrow 0)$
- d) Como se modifica o espectro acima apresentado no caso $M_1 = M_2$? Faça um desenho explicativo.

- 2) (3v) É possível usar electrões em vez de raios X para obter difractogramas dos cristais. Considere um feixe de electrões com a energia cinética de 1 keV, a incidir numa folha metálica, policristalina. O metal tem a estrutura cúbica de corpo centrado com a constante da rede $a = 5.02 \,\mathrm{A}^{\circ}$.
- a) Calcule o comprimento de onda de de Broglie.
- b) Calcule o ângulo de Bragg θ para o primeiro máximo de difracção.

$$\frac{p^{2}}{2mo} = E = 1 keV = 1.6.10^{-16J}$$

$$p = \sqrt{2msE}; k = \frac{1}{5} \sqrt{2msE}$$

$$= \frac{1}{2.55.10^{-34J-9}} \sqrt{2.9.1.0 kg}.1.6.10^{-16J} = 1.7.10 m^{-1}$$

$$e) \lambda = \frac{2\pi}{2} = 3.7.10^{-11} m$$

$$b) n\lambda = 2d \sin \theta + \sin \theta, = \frac{\lambda}{2d}$$

$$Q \approx \sin \theta = 3.7.10^{-2}; \theta \approx 2.9$$

- 3) (3v) Difracção de neutrões pode ser usada para medir as curvas de dispersão de fonões, $\omega(q)$, nos cristais. Nesta técnica, os neutrões incidem num cristal, interagem ("colidem") com os fonões e ficam deflectidos.
- a) Escreva as relações de conservação do momento e da energia nos processos com criação e destruição de um fonão..
- b) Diga o que é preciso medir experimentalmente para obter $\omega(q)$.

q)
$$\frac{\mathcal{P}^2}{2M} - \frac{\mathcal{P}^{12}}{2M} = \frac{1}{2} + \frac{1}{2}$$

4) (2v) Quais são os principais tipos de ligação química nos sólidos cristalinos? Dê exemplos de materiais e os valores típicos da energia de coesão por átomo para cada um destes tipos de ligação.

5) (3v) A figura ao lado apresenta um plano cristalino numa rede cúbica. Os segmentos designados na figura são: $x_1=2$, $x_2=2$, $x_3=4$.

a) Quais são os índices de Miller deste plano?.

b) Qual é a distância entre os planos paralelos mais próximos desta família se a constante da rede é 1A°?

c) Qual é o menor comprimento de um vector da rede recíproca com estes índices de Miller? Desenhe este vector na figura.

Know = 20 = 60 = 60 A 0-1

6) (2v) Trace um gráfico qualitativo para a função de Bose-Einstein para fonões acústicos longitudinais com vectores de onda (q) pequenos em função de q para duas temperaturas diferentes, $T_1 < T_2$.

 $n(\omega) = \frac{1}{e^{\frac{1}{16}\omega} - 1}$ $to(q) = \frac{1}{e^{\frac{1}{16}\omega}}, \quad s_{e} - \frac{1}{e^{\frac{1}{16}\omega}}$ $n(q) = \frac{1}{e^{\frac{1}{16}\omega}} = \frac{1}{e^$

- 7) (3v) Utilizando os dados da figura e da tabela em baixo, compare as velocidades de ondas elásticas longitudinais em barras de silício e de germânio se o eixo de cada barra é dirigido
- a) segundo direcção (100);.
- b) segundo direcção (110).

	Si	Ge
Constante da rede, A°	5,43	5,66
Massa tómica, u. a.	28	72

