

Amendments to the Specification:

Please replace paragraph 0001 with the following rewritten paragraph:

[0001] This application is a continuation of allowed U.S. Patent Application 10/310,390 filed December 5, 2002 and published May 8, 2003 as US-2003-0085684-A1, which claims priority to provisional application number 60/402,323 filed August 9, 2002. This application is a continuation in part of copending application serial number 10/042,898 filed January 9, 2002 entitled "Method and Apparatus for Amplitude Limiting Battery Temperature Spikes" and copending application serial number 10/014,757 filed November 7, 2001 entitled "Electrochemical Battery Safety Method, Device and System", each of which is incorporated herein in its entirety by reference, including all disclosures submitted therewith.

Please replace paragraph 0038 with the following rewritten paragraph:

[0038] Figure 7 illustrates the use of implanted magnetic material and a Hall effect sensor for precisely locating the secondary coil. Here, a layer of magnetic material 400 is placed directly under the secondary charging coil 404. The magnetic material 400 is made in such a way that the highest or lowest magnetic strength is in the exact center 406 and located in the center of the secondary coil 404. Fabricating such a layer of magnetic material is well known in the art. The primary charger coil 408 incorporates a linear output sensor or Hall effect sensor 414 at its center point. The sensor 414 is interpretatively interoperatively connected to a sensor circuit 418, which provides feedback to the user, indicating the highest or lowest magnetic flux when the primary charger coil 408 is precisely located at the center of the secondary charging coil 404. Feedback to the user may be in the form of a visual signal (e.g., dynamic graph, progressive lights, etc.) and/or audible signal device 418 to indicate the relative position of the primary charger coil 408 to the secondary charging coil 404 and when it is properly aligned for the most efficient inductive charging. The preferred embodiment would use maximum magnetic field in the center of the secondary charging coil 404 and a display located directly on the primary coil unit 408. However, the display and/or an audible signal device may be remotely located on a remote unit 420 communicating with the primary charging coil unit either by direct connection or by telemetric connection (RF, IR, etc.).