Design Information

Command line:

```
ind line: map -a LatticeXP -p LFXP3C -t TQFP100 -s 4 -oc Commercial
lab09_impl1.ngd -o lab09_impl1_map.ncd -pr lab09_impl1.prf -mp
lab09_impl1.mrp -lpf
       Laboy_Imput.mip -ipf
C:/lscc/diamond/3.11_x64/bin/nt64/impl1/lab09_impl1_symplify.lpf -lpf
C:/lscc/diamond/3.11_x64/bin/nt64/lab09.lpf -gui -msgset
C:/lscc/diamond/3.11_x64/bin/nt64/promote.xml
Target Vendor: LATTICE
Target Device: LFXP3CTQFP100
Target Performance: 4
Mapper: mg5g00, version: Diamond (64-bit) 3.11.2.446
Mapped on: 05/11/20 16:21:22
Design Summary
    Number of registers:
                                        20 out of 3258 (1%)
                                           20 out of 3072 (1%)
0 out of 186 (0%)
17 out of 1536 (1%)
        PFU registers:
         PIO registers:
     Number of SLICEs:
                                            17 out of 1536 (1%)
0 out of 384 (0%)
0 out of 1536 (0%)
         SLICEs as Logic/ROM:
SLICEs as RAM:
          SLICEs as Carry:
                                            25 out of 3072 (1%)
     Number of LUT4s:
         Number used as logic LUTs:
         Number used as distributed RAM:
Number used as ripple logic:
                                                                  0
          Number used as shift registers:
     Number of PIO sites used: 25 out of 62 (40%) Number of PIO FIXEDDELAY: 0
     Number of DQSDLLs: 0 out of 2 (0%)
Number of PLLs: 0 out of 2 (0%)
Number of block RAMs: 0 out of 6 (0%)
     Number of GSRs: 1 out of 1 (100%)
     JTAG used : No Readback used : No
     Oscillator used : No
Startup used : No
     Notes:-
       1. Total number of LUT4s = (Number of logic LUT4s) + 2*(Number of distributed RAMs) + 2*(Number of ripple logic)
          2. Number of logic LUT4s does not include count of distributed RAM and
        ripple logic.
     Number of clocks:
        Net ul.present_state[4]: 4 loads, 0 rising, 4 falling (Driver:
        ul/present_state[4] )
Net clk_c: 8 loads, 8 rising, 0 falling (Driver: PIO clk )
       Net u1/N_52_lo: 2 loads, 2 rising, 0 falling (Driver: v10 Net u1/N_52_lo: 2 loads, 2 rising, 0 falling (Driver: u1/present_state_RNIRO9D[0])
     Number of Clock Enables: 0
     Number of local set/reset loads for net rst_bar_c merged into GSR: 15 Number of LSRs: 1
        Net u1/un3_rst_bar: 2 loads, 2 LSLICEs
     Number of nets driven by tri-state buffers: 0 Top 10 highest fanout non-clock nets:
        Net u1/bit addr[2]: 9 loads
        Net dord_c: 8 loads
        Net u1/bit_addr[1]: 7 loads
Net u1/bit_addr[0]: 6 loads
Net u1/present_state[2]: 6 loads
        Net temp_send_en: 4 loads
Net data_out_c[1]: 3 loads
Net data_out_c[2]: 3 loads
        Net data_out_c[3]: 3 loads
Net data_out_c[4]: 3 loads
     Number of warnings: 3
     Number of errors:
```

Design Errors/Warnings

```
WARNING - map: Using local reset signal 'rst_bar_c' to infer global GSR net. WARNING - map: IO buffer missing for top level port cpha...logic will be
       discarded.
WARNING - map: IO buffer missing for top level port spi_rxen...logic will be
       discarded.
```

IO (PIO) Attributes

IO Name	Direction	Levelmode IO_TYPE	IO Register	FIXEDDELAY
data_out[0]	OUTPUT	LVCMOS25		! !
rst_bar	INPUT	LVCMOS25	 	! !
ss_bar	OUTPUT	LVCMOS25	 	
sck	OUTPUT	LVCMOS25	 	! !
mosi	OUTPUT	LVCMOS25	 	
data_out[7]	OUTPUT	LVCMOS25		
data_out[6]	OUTPUT	LVCMOS25	 	
data out [5]	LOUTRUT	T VCMOS 25		++

uata_out[3]	001101	IVCMO323
data_out[4]	OUTPUT	LVCMOS25
data_out[3]	OUTPUT	LVCMOS25
data_out[2]	OUTPUT	LVCMOS25
data_out[1]	OUTPUT	LVCMOS25
+	+	++
data_in[7]	INPUT	LVCMOS25
data_in[6]	INPUT	LVCMOS25
data_in[5]	INPUT	LVCMOS25
data_in[4]	INPUT	LVCMOS25
data_in[3]	INPUT	LVCMOS25
data_in[2]	INPUT	LVCMOS25
data_in[1]	INPUT	LVCMOS25
data_in[0]	INPUT	LVCMOS25
miso	INPUT	LVCMOS25
dord	INPUT	LVCMOS25
cpol	INPUT	LVCMOS25
send	INPUT	LVCMOS25
clk	INPUT	LVCMOS25
•		

Removed logic

```
Block VCC undriven or does not drive anything - clipped. Block GND undriven or does not drive anything - clipped. Block u0/GND undriven or does not drive anything - clipped. Block u0/CCC undriven or does not drive anything - clipped. Block u1/GND undriven or does not drive anything - clipped. Block u1/VCC undriven or does not drive anything - clipped. Block u2/CCD undriven or does not drive anything - clipped. Block u2/VCC undriven or does not drive anything - clipped. Block u2/VCC undriven or does not drive anything - clipped. Signal rst_bar_c i was merged into signal rst_bar_c Signal v2/CN was merged into signal u1.present_state[4] Signal VCC undriven or does not drive anything - clipped. Block rst_bar_pad_RNIIJBB was optimized away. Block u2/g_1_.CN was optimized away.
```

GSR Usage

GSR Component:

The local reset signal 'rst_bar_c' of the design has been inferred as Global
Set Reset (GSR). The reset signal used for GSR control is 'rst_bar_c'.

GSR Property:

The design components with GSR property set to ENABLED will respond to global set reset while the components with GSR property set to DISABLED will

not.

Run Time and Memory Usage

Total CPU Time: 0 secs Total REAL Time: 0 secs Peak Memory Usage: 27 MB

Copyright (c) 1991-1994 by NeoCAD Inc. All rights reserved.

Copyright (c) 1995 AT&T Corp. All rights reserved.

Copyright (c) 1995-2001 Lucent Technologies Inc. All rights reserved.

Copyright (c) 2001 Agere Systems All rights reserved.

Copyright (c) 2002-2019 Lattice Semiconductor Corporation, All rights reserved.