00A0

# Chapter 11: Parametric and Polar Curves

# Illya Starikov

June 30, 2025

# Contents

| 11.1 | Parametric Equations          |  |  |  |   |  |  |   |  |  | 3  |
|------|-------------------------------|--|--|--|---|--|--|---|--|--|----|
| 11.2 | Polar Coordinates             |  |  |  |   |  |  |   |  |  | 4  |
| 11.3 | Calculus in Polar Coordinates |  |  |  | _ |  |  | _ |  |  | 12 |

# 11.1 Parametric Equations

#### Forward or Positive Orientation

The direction in which a parametric curve is generated as the parameter increases is called the **forward**, or **positive**, **orientation** of the curve.

#### Derivative for Parametric Curves

Let x = g(t) and y = h(t), where g and h are differentiable on an interval [a, b]. Then

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{y'(t)}{x'(t)} \tag{1}$$

provided  $\frac{dx}{dt} \neq 0$ .

#### 11.2 Polar Coordinates

#### Introduction

- Up to now we have only studied in a Cartesian coordinate system.
  - A Cartesian coordinate system is just a plane described by Cartesian (or, algebraic) equations and points in a finite dimensions.
    - \* One Dimension: Lines.
    - \* Two Dimensions:  $x^2$ .
    - \* Three, Four: Upper-level Calculus and Physics.
- Let's define an alternative coordinate system polar coordinate.
  - coordinates are constants on circles and rays.
  - Useful for navigation, position, and gravitation fields.

#### **Defining Polar Coordinates**

Pole The origin of the coordinate system.

**Polar Axis** Synonymous for the positive x-axis.

**Polar Coordinates** A polar coordinates P has the form  $(r, \theta)$ .

**Radial Coordinate** The radial coordinate r describes the *signed*, or *directed*, distance from the origin to P.

Angular Coordinate The angular coordinate  $\theta$  describes an angle whose initial side is the positive x-axis and whose terminal side lies on the ray passing through the origin and P.

#### Notes

- Positive angle measurements are measured *counterclockwise* from the origin.
- Every point has multiple representations.
  - Angles are periodic, so multiples of  $2\pi$  gives the same angle.

– Coordinates may be negative. So  $(r, \theta)$  can be represented as  $(-r, \theta + \pi)$  and  $(-r, \theta - \pi)$ 



In summary,

- $(r, \theta + 2\pi)$  represents the same point as  $(r, \theta)$
- $P(r,\theta)$  and  $P'(-r,\theta)$  are reflections through the origin.

# Examples

Graph the following points in polar coordinates:

- $Q(1, \frac{5\pi}{3})$
- $R(-2, \frac{3\pi}{2})$
- $S(3, -\frac{9\pi}{4})$ 
  - Now give two alternative representations.
  - $-S'(3,\frac{1\pi}{4})$
  - $-S''(-3,-\frac{5\pi}{4})$



# Converting Between Cartesian and Polar Coordinates

- We sometimes need to convert between Cartesian and polar coordinates.
- Let's turn this problem into a right triangle.



A point with polar coordinates  $(r, \theta)$  has Cartesian coordinates (x, y), where

$$x = r\cos\theta \quad \text{and} \quad y = r\sin\theta$$
 (2)

A point with Cartesian coordinates (x, y) has polar coordinates  $(r, \theta)$ , where

$$r^2 = x^2 + y^2$$
 and  $\tan \theta = \frac{y}{x}$  (3)

### Examples

#### BE SURE TO GRAPH POINTS IN CARTESIAN FIRST.

#### Polar to Cartesian

Express the point with the following polar coordinates in Cartesian coordinates:  $P(3, \frac{2\pi}{3})$ 

$$x = r \cos \theta$$
  $y = r \sin \theta$   
 $= 3 \cos(2\pi/3)$   $= 3 \sin(2\pi/3)$   
 $= -3(1/2)$   $= 3(\sqrt{3}/2)$   
 $= -3/2$   $= 3\sqrt{3}/2$ 

#### Polar to Cartesian

Express the point with the following polar coordinates in Cartesian coordinates:  $Q(e, -\frac{\pi}{4})$ 

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$= e \cos(-\pi/4)$$

$$= e(\sqrt{2}/2)$$

$$= e\sqrt{2}/2$$

$$= -e(\sqrt{2}/2)$$

$$= -e\sqrt{2}/2$$

#### Cartesian To Polar

Express the point with the following Polar coordinates to Cartesian coordinates: R(1,-1)

$$\tan \theta = y/x$$
 $r = \sqrt{x^2 + y^2}$ 
 $= \sqrt{1^2 + (-1)^2}$ 
 $= \sqrt{2}$ 
 $\tan \theta = y/x$ 
 $= -1/1$ 
 $= -1$ 
 $\theta = -\pi/4 \text{ or } 7\pi/4.$ 

Therefore, two possible solutions are:  $(\sqrt{2}, -\pi/4)$  or  $(\sqrt{2}, 7\pi/4)$ 

#### Cartesian To Polar

Express the point with the following Polar coordinates to Cartesian coordinates:  $S(1, \sqrt{3})$ 

$$r = \sqrt{x^2 + y^2}$$
  $\tan \theta = y/x$   
 $= \sqrt{(\sqrt{3})^2 + (1)^2}$   $= \sqrt{(3)}/1$   
 $= 2$   $\theta = \pi/3 \text{ or } 4\pi/3.$ 

Therefore, two possible solutions are:  $(2, \pi/3)$  or  $(2, 4\pi/3)$ .

#### Basic Curves in Polar Coordinates

- A curve in polar coordinates is the set of **points** that satisfy an equation in r and  $\theta$ .
- This makes graphing some things easier than others.
- Look at r=3 is the set of all points that satisfy being away from the origin of 3 units.
  - This is because  $\theta$  is not specified, it's arbitrary. Basically,  $\theta$  is the function.

- In general, r = a,  $\forall a \in \mathbb{R}^+$  describes a circle.
- Taking the converse, let r be arbitrary.
  - If the r is arbitrary, and we specify the angle, what do you think we get?
  - A line!
  - Take  $\sqrt{2}/2$ .

#### Polar to Cartesian Graph Example

Convert the polar equation  $r = 6 \sin \theta$  to Cartesian coordinates and describe the corresponding graph.

$$r^2 = 6r\sin\theta \tag{4}$$

$$x^{2} + y^{2} = 6y$$
 (5)  

$$0 = x^{2} + y^{2} - 6y$$
 (6)

$$0 = x^2 + y^2 - 6y (6)$$

$$= x^2 + (y^2 - 6y + 9) - 9 (7)$$

$$= x^2 + (y-3)^2 - 9 (8)$$

We recognize this to be the equation of a circle, centered at (0,3) at 3. We can also generalize this.

#### Circle in Polar Coordinates

- The equation r = a describes a circle of radius |a| centered at (0,0).
- The equation  $r = 2a\sin\theta$  describes a circle of radius |a| centered at (0, a).
- The equation  $r = 2a\cos\theta$  describes a circle of radius |a| centered at (a, 0).



### **Graphing In Polar Coordinates**

Graph the polar equation  $r = f(\theta) = 1 + \sin \theta$ 

| $\theta$       | $r = 1 + \sin\theta$ |
|----------------|----------------------|
| 0              | 1                    |
| $\pi/6$        | 3/2                  |
| $\pi/2$        | 2                    |
| $5\pi/6$       | $^{3/_{2}}$          |
| $\pi$          | 1                    |
| $^{7\pi}/_{6}$ | 1/2                  |
| $3\pi/2$       | 0                    |
| $11\pi/6$      | 1/2                  |
| $2\pi$         | 1                    |
|                |                      |



The resulting curve is known as a **cardioid**.

# Cartesian-to-Polar Method for Graphing $r = f(\theta)$

- 1. Graph  $r = f(\theta)$  as if r and  $\theta$  were Cartesian coordinates with  $\theta$  on the horizontal axis and r on the vertical axis. Be sure to choose an interval in  $\theta$  on which the entire polar curve is produced.
- 2. Use the Cartesian graph in Step 1 as a guide to sketch the points  $(r, \theta)$  on the final *polar* curve.

## Example

With the alternate graphing method, graph  $r = 1 + \sin \theta$ .



## **Symmetry In Polar Equations**

**Symmetry about the x-axis** occurs if the point  $(r, \theta)$  is on the graph whenever  $(r, -\theta)$  is on the graph.

Symmetry about the y-axis occurs if the point  $(r, \theta)$  is on the graph whenever  $(r, \pi - \theta) = (-r, -\theta)$  is on the graph.

Symmetry about the origin occurs if the point  $(r, \theta)$  is on the graph whenever  $(-r, \theta) = (r, \theta + \pi)$  is on the graph.

# 11.3 Calculus in Polar Coordinates

#### Slope of a Tangent Line

Let f be a differentiable function at  $\theta_0$ . The slope of the line tangent to the curve  $r = f(\theta)$  at the point  $(f(\theta_0, \theta_0))$  is

$$\frac{dy}{dx} = \frac{f'(\theta_0)\sin\theta_0 + f(\theta_0)\cos\theta_0}{f'(\theta_0)\cos\theta_0 - f(\theta_0)} \tag{9}$$

#### Area of Regions in Polar Coordinates

Let R be the region bounded by the graphs of  $r = f(\theta)$  and  $r = g(\theta)$ , between  $\theta = \alpha$  and  $\theta = \beta$ , where f and g are continous and  $f(\theta) \ge g(\theta) \ge 0$  on  $[\alpha, \beta]$ . The area of R is

$$\int_{\alpha}^{\beta} \frac{1}{2} (f(\theta)^2 - g(\theta)^2) d\theta \tag{10}$$