BAB 3

DIFERENSIAL FUNGSI

3.1 Diferensial (turunan) Fungsi Aljabar

Berikut ini akan diberikan rumus-rumus dasar turunan dari bentuk fungsi aljabar. Rumus dasar turunan aljabar ini merupakan bentuk yang paling sederhana yang harus dipahami oleh pembaca agar untuk nantinya dapat menurunkan bentuk-bentuk fungsi yang lain. Jika sebuah fungsi dimisalkan adalah y = f(x) maka turunan pertama dari fungsi tersebut dituliskan y' = f(x) atau boleh juga $\frac{dy}{dx}$ yang artinya y diturunkan terhadap variabel x.

Rumus-rumus dasar fungsi aljabar.

- Jika y = a maka turunannya y' = 0
- Jika y = ax maka turunannya y' = a
- Jika $y = ax^n$ maka turunannya $y' = a.nx^{n-1}$
- Iika $y = f^n(x)$ maka turunannya $y' = n. f'(x). f^{n-1}(x)$
- Jika y = u.v maka turunannya y' = u'.v + v'.u
- Jika $y = \frac{u}{v}$ maka turunannya $y' = \frac{u'.v v'.u}{v^2}$

Catatan:

- u dan v yang terdapat pada formula diatas adalah merupakan sebuah fungsi, dan formula ini ke depannya nanti akan sangat sering digunakan, sehingga diharapkan pembaca harus mengerti cara penggunaannya dengan baik dan benar.
- Dua rumus terakhir diatas sering disebut rumus turunan untuk perkalian dan bentuk pembagian fungsi dan rumus ini sangat sering dipergunakan untuk menyelesaikan persoalan yang lebih kompleks.
- Turunan berarti pangkat dari variabel yang ada dikurangi dengan satu, sedangkan pangkat awalnya dipindahkan sebagai koefisien variabel.
- Turunan setiap bilangan konstan adalah nol

Berikut akan diberikan contoh soal yang lengkap dengan pembahasannya secara detail sehingga dapat diikuti langkah demi langkah dalam penyelesaiannya.

Contoh soal 1.

Tentukan turunan pertama dari fungsi-fungsi berikut

a.
$$y = 2x^3 - 15x + 17$$

b.
$$y = (2x^2 + 7x)^5$$

c.
$$y = (3x + 5)(x^2 - 3)^3$$

d.
$$y = \frac{x-3}{3x+1}$$

Jawab dan pembahasan

a.
$$y' = \frac{dy}{dx} = 2.3x^{3-1} - 15.1x^{1-1} + 0 = 6x^2 - 15$$

b.
$$y' = \frac{dy}{dx} = 5.(2.2.x + 7)(2x^2 + 7x)^4 = 5(4x + 7)(2x^2 + 7x)^4 = (20x + 35)(2x^2 + 7x)^4$$

c. Misalkan u = (3x + 5) maka turunannya u' = 3

$$v = (x^2 - 3)^3$$
 maka turunannya $v' = 3(2x)(x^2 - 3)^2 = 6x(x^2 - 3)^2$

Subtitusi $y' = \frac{dy}{dx} = u' \cdot v + v' \cdot u$ maka akan diperoleh:

$$\frac{dy}{dx} = y' = (3)(x^2 - 3)^3 + (6x(x^2 - 3)^2)(3x + 5) = (x^2 - 3)^2(18x^2 + 30x)$$

d. Misalkan u=(x-3) maka turunannya u'=1

$$v = (3x + 1)$$
 maka turunannya $v' = 3$

Subtitusikan
$$y' = \frac{u'.v-v'.u}{v^2} = \frac{1.(3x+1)-3(x-3)}{(3x+1)^2} = \frac{10}{(3x+1)^2}$$

3.2 Diferensial Fungsi Logaritma

Bentuk umum turunan fungsi logaritma dapat dituliskan sebagai berikut.

- $y = \ln x$ maka turunannya $y' = \frac{1}{x}$
- $y = a \ln u$ maka turunannya $y' = \frac{a.uv}{u}$

dimana u adalah sebuah fungsi.

Contoh soal 2.

Tentukan turunan pertama dari fungsi $y = 2 \ln(5x + 1)$

Jawab dan pembahasan

Persoalan ini dapat diselesaikan dengan melakukan permisalan sebagai berikut.

Misalkan U = 5x + 1 maka turunannya U' = 5

Kemudian dari rumus
$$y' = \frac{a \cdot u'}{u}$$
 akan diperoleh $y' = \frac{2.5}{5x+1} = \frac{10}{5x+1}$

3.3 Diferensial Fungsi Eksponensial

Berikut ini akan akan diberikan formula untuk menentukan turunan dari fungsi eksponensial.

- $y = e^x$ maka turunannya adalah $y' = e^x$
- $y = ae^u$ maka turunannya adalah $y' = a.u'.e^u$ dimana u adalah sebuah fungsi dan a adalah konstanta

Contoh soal 3.

Tentukan turunan dari fungsi $y = 3e^{5x-2}$

Jawab dan pembahasan

Misalkan bentuk pangkat adalah U = 5x - 2 maka U' = 5 sehingga turunan fungsi y adalah:

$$y' = \frac{dy}{dx} = 3.5.e^{5x-2} = 15e^{5x-2}$$

3.4 Diferensial Bentuk Fungsi $f(x) = f(x)^{g(x)}$

Berikut akan diturunkan langkah untuk mendapatkan rumus turunan untuk penyelesaian soal berbentuk $f(x)^{g(x)}$. Contoh berikut adalah langkah menjabarkan untuk mencari turunan fungsi berbentuk $f(x)^{g(x)}$.

Contoh soal 4.

Tentukan turunan dari fungsi $y = f(x)^{g(x)}$

Jawab dan pembahasan

$$y = f(x)^{g(x)}$$
 (Logaritmakan bagian kiri dan kanan persamaan)

$$\ln y = \ln f(x)^{g(x)}$$

$$ln y = g(x) ln f(x)$$

$$\frac{1}{y}dy = g(x).d\ln f(x) + \ln f(x).dg(x)$$

$$dy = y \left[\frac{g(x)}{y(x)} \cdot df(x) + \ln f(x) \cdot dg(x) \right]$$

$$dy = f(x)^{g(x)} \left[\frac{g(x)}{y(x)} \cdot \frac{df(x)}{dx} + \ln f(x) \cdot \frac{dg(x)}{dx} \right]$$

$$dy = f(x)^{g(x)} \left[\frac{g(x)}{y(x)} \cdot f'(x) + \ln f(x) \cdot g'(x) \right]$$

Jika dimisalkan f(x) = u dan g(x) = v maka secara umum bentuk y' dapat dituliskan sebagai berikut.

Jika
$$y=u^v$$
 maka turunannya adalah $y'=u^v\left[u'.\frac{v}{u}.+v'.\ln u\right]$

Contoh soal 5.

Tentukan turunan dari fungsi $y = (2x)^{3x}$

Jawab dan pembahasan

Agar lebih mudah, penyelesaian dilakukan dengan permisalan sebagai berikut.

Misal u = 2x maka turunannya adalah u' = 2

v = 3x maka turunannya adalah v' = 3

Subtitusikan ke persamaan $y' = u^v \left[u' \cdot \frac{v}{u} \cdot + v' \cdot \ln u \right] = (2x)^{3x} \left[2 \cdot \frac{3x}{2x} + 3 \cdot \ln 2x \right] = (2x)^{3x} [3 + 3 \cdot \ln 2x]$ maka diperoleh turunan dari fungsi y:

$$y' = \frac{dy}{dx} = (2x)^{3x} \left[2 \cdot \frac{3x}{2x} + 3 \cdot \ln 2x \right] = (2x)^{3x} [3 + 3\ln 2x]$$

3.5 Diferensial Bentuk Fungsi $f(x) = a^u$

Berikut akan diberikan formula untuk menentukan turunan dari fungsi konstanta berpangkat variabel x (fungsi).

- $y = a^x$ maka turunannya adalah $y' = a^x \cdot \ln a$
- $y = ca^u$ maka turunannya adalah $y' = c.u'.a^u. \ln a$ dimana A = konstanta dan u adalah sebuah fungsi.

Contoh soal 6.

Tentukan turunan pertama dari fungsi $y = 3^{5x-1}$

Jawab dan pembahasan

Agar penyelesaian sesuai dengan formula, maka dimisalkan:

$$u=5x-1$$
 maka $u'=5$ sehingga dengan rumus $y'=c.u'.a^u.\ln a$ maka diperoleh $y'=5.3^{5x-1}.\ln 3$

3.6 Rumus-rumus Dasar Turunan Fungsi Trigonometri

Setelah dapat dipahami materi yang disampaikan di atas, maka selanjutnya akan dibahas mengenai penentuan turunan fungsi dalam bentuk fungsi trigonometri.

No	Fungsi	Turunan
1	$y = \sin x$	$y' = \cos x$
2	$y = \cos x$	$y' = -\sin x$
3	$y = \tan x$	$y' = sec^2x$
4	$y = \cot x$	$y' = -cosec^2x$
5	$y = \sec x$	$y' = \sec x \cdot \tan x$
6	y = cosec x	$y' = -cosec \ x \cdot cotan \ x$

Contoh soal 1.

Tentukan turunan dari fungsi $y = 2 \sin(5x^2 - 7x + 8)$

Jawab dan pembahasan

Penyelesaian dilakukan dengan memisalkan yang dalam sinus sebagai sebuah fungsi U, sehingga $U = 5x^2 - 7x + 8$ maka $\frac{du}{dx} = U' = 10x - 7$ dan $y = 2\sin U$ maka $y' = \frac{dy}{du} = 2\cos U$ sehingga diperoleh:

$$y' = \frac{dy}{dx} = \frac{dy}{du}x\frac{du}{dx} = 2\cos U \cdot (10x - 7) = 2 \cdot (10x - 7)\cos(5x^2 - 7x + 8) = (20x - 14)\cos(5x^2 - 7x + 8)$$

Contoh soal 2.

Tentukan turunan dari fungsi $y = -15x \cdot \cos e^x$

Jawab dan pembahasan

Misalkan u=-15x maka turunan nya adalah u'=-15 $v=\cos e^x \text{ maka turunan nya adalah } v'=-e^x \sin e^x$ $y'=u'.v+v'.u=-15\cos e^x+-e^x \sin e^x (-15)=-15\cos e^x+15xe^x \sin e^x$

Contoh soal 3.

Tentukan turunan dari fungsi $y = 3 \tan \sqrt{x^2 - 4x}$

Jawab dan pembahasan

Misalkan $u = \sqrt{x^2 - 4x} = (x^2 - 4x)^{\frac{1}{2}}$ maka turunan nya adalah $u' = \frac{du}{dx} = \frac{1}{2}$. $(2x - 4x)^{-\frac{1}{2}}$ dan $y = 3 \tan u$ maka turunannya $\frac{dy}{du} = 3 \sec^2 u$ sehingga diperoleh:

$$y' = \frac{dy}{dx} = \frac{dy}{du} x \frac{du}{dx} = 3 \sec^2 u \cdot \left(\frac{1}{2} \cdot (2x - 4)(x^2 - 4x)^{-\frac{1}{2}}\right) = (3x - 6)(x^2 - 4x)^{-\frac{1}{2}} \sec^2 \sqrt{x^2 - 4x} = \frac{3x - 6}{\sqrt{x^2 - 4x}} \sec^2 \sqrt{x^2 - 4x}$$