Technische Universität München

Ferienkurs Lineare Algebra 1

Gruppen, Ringe, Körper und Vektorräume

Aufgaben mit Musterlösung

22. März 2011

Tanja Geib

Sei (G, \cdot) eine Gruppe mit neutralem Element e, und es gelten für alle $g \in G$ die Gleichung $g^2 = e$. Beweisen Sie, dass (G, \cdot) eine abelsche Gruppe ist.

$L\ddot{o}sung$:

Zu zeigen ist $gh = hg \ \forall g, h \in G$.

Da $gh \in G$ gilt (gh)(gh) = e und es folgt, $e = (gh)(gh) \Leftrightarrow ge = gghgh \Leftrightarrow ge = ehgh \Leftrightarrow g = hgh \Leftrightarrow hg = egh \Leftrightarrow hg = gh$.

Aufgabe 2

Betrachten Sie den \mathbb{R} -Vektorraum $V = \{f : \mathbb{R} \to \mathbb{R}\}$ mit der üblichen punktweisen Addition und skalaren Multiplikation und die Mengen

$$G = \{ f \in V : \ f(x) = f(-x) \ \forall x \in \mathbb{R} \}$$

$$U = \{ f \in V : \ f(x) = -f(-x) \ \forall x \in \mathbb{R} \}$$

Beweisen Sie: G und U sind \mathbb{R} -Vektorräume.

$L\ddot{o}sung:$

Es reicht die Kriterien für einen UVR zu überprüfen. ES folgt wegen $0 \in G \cap U$, dass $G \neq \emptyset$ und $U \neq \emptyset$. Ferner gilt für $g, g' \in G$ sowie $x \in \mathbb{R}$

$$(g+g')(x) = g(x) + g'(x) = g(-x) + g'(-x) = (g+g')(-x)$$

und für $u, u' \in U$, sowie $x \in \mathbb{R}$

$$(u+u')(x) = u(x) + u'(x) = -u(-x) - u'(-x) = -(u+u')(-x)$$

G und U sind somit abgeschlossen bzgl der Addition.

Die Abgeschlossenheit bzgl der Multiplikation folgt aus

$$(\lambda g)(x) = \lambda g(x) = \lambda g(-x) = (\lambda g)(-x)$$

und

$$(\lambda u)(x) = \lambda u(x) = -\lambda u(-x) = -(\lambda u)(-x)$$

für alle $x \in \mathbb{R}$, $u \in U$, $g \in G$ und $\lambda \in \mathbb{R}$.

Es sei G eine Gruppe. Zeigen Sie: G ist genau dann abelsch, wenn die Abbildung $\varphi: G \to G, \ x \mapsto x^2$ ein Homomorphismus ist.

$L\ddot{o}sung:$

" \Rightarrow ": Sei G abelsch. $\Rightarrow \forall a, b \in G$: $\varphi(ab) = (ab)^2 = abab \stackrel{G \ abelsch}{=} aabb = a^2b^2 = \varphi(a)\varphi(b) \Rightarrow \varphi Homomorphismus.$

 \Leftarrow : Sei φ ein Homomorphismus. \Rightarrow $(ab)^2 = abab \stackrel{\varphi Homomorphismus}{=} a^2b^2 \, \forall a,b \in G \Rightarrow abab = aabb \, \forall a,b \in G \Rightarrow a^{-1}(abab)b^{-1} = a^{-1}(aabb)b^{-1} \, \forall a,b \in G \Rightarrow ba = ab \, \forall a,b \in G$, also G abelsch.

Aufgabe 4

Im \mathbb{R} -Vektorraum $V := \mathbb{R}^3$ seien Unterräume U_1 und U_2 gegeben durch

$$U_1 = span((-1, 2, 3), (-1, 5, 5))$$

$$U_2 = span((2, -2, 1), (-1, 3, -2))$$

Bestimmen Sie die Dimensionen $dim(U_1), dim(U_2), dim(U_1 + U_2)$ und $dim(U_1 \cap U_2)$.

$L\ddot{o}sung:$

$$\{(-1,2,3),(-1,5,5)\}$$
 l.u., also Basis von $U_1 \Rightarrow dim(U_1) = 2$.

$$\{(2,-2,1),(-1,3,-2)\}$$
 l.u., also Basis von $U_2 \Rightarrow dim(U_2) = 2$.

Schreibe die erzeugenden Vektoren (-1,2,3),(-1,5,5),(2,-2,1),(-1,3,-2) in die Zeilen einer Matrix und bestimme den Rang:

$$\begin{pmatrix} -1 & 2 & 3 \\ -1 & 5 & 5 \\ 2 & -2 & 1 \\ -1 & 3 & -2 \end{pmatrix} auf Zeilenstufen form bringen : \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

also rang(A)=3. $\Rightarrow dim(U_1 + U_2) = 3$.

Es gilt allgemein: $dim(U_1) + dim(U_2) = dim(U_1 + U_2) + dim(U_1 \cap U_2)$. Es folgt also $dim(U_1 \cap U_2) = 1$.

Beantworten Sie folgende Fragen durch Ankreuzen mit "Ja" oder "Nein". Es sind keine Begründungen anzugeben.

Sind die folgenden Aussagen richtig?	
Jeder Vektorraum hat eine Basis.	□ Ja □ Nein
Die Menge $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$ ist ein Unterraum	□ Ja □ Nein
des \mathbb{R} -Vektorraumes \mathbb{R}^3 .	
Eine linear unabhängige Teilmenge eines Vektorraumes enthält	□ Ja □ Nein
niemals den Nullvektor.	
Die Komposition $g \circ f$ zweier injektiver Abbildungen $f: A \to B$	□ Ja □ Nein
und $g: B \to C$ (A,B,C Mengen) ist immer injektiv.	
Die Vereinigung zweier Unterräume eines Vektorraumes ist stets	□ Ja □ Nein
wieder ein Unterraum.	
Der Durchschnitt zweier Unterräume eines Vektorraumes ist stets	□ Ja □ Nein
wieder ein Unterraum.	

$L\ddot{o}sung:$

Sind die folgenden Aussagen richtig?	Lösung
Jeder Vektorraum hat eine Basis.	Ja
Die Menge $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$ ist ein Unterraum	Nein
des \mathbb{R} -Vektorraumes \mathbb{R}^3 .	
Eine linear unabhängige Teilmenge eines Vektorraumes enthält	Ja
niemals den Nullvektor.	
Die Komposition $g \circ f$ zweier injektiver Abbildungen $f: A \to B$	Ja
und $g: B \to C$ (A,B,C Mengen) ist immer injektiv.	
Die Vereinigung zweier Unterräume eines Vektorraumes ist stets	Nein
wieder ein Unterraum.	
Der Durchschnitt zweier Unterräume eines Vektorraumes ist stets	Ja
wieder ein Unterraum.	

Aufgabe 6

Welche der folgenden Aussagen sind richtig, welche falsch? Begründen Sie jeweils kurz Ihre Antwort.

- (a) $\mathbb{N}_0:=\{0\}\cup\mathbb{N}$ ist mit der üblichen Addition eine Gruppe.
- (b) Dei Menge $M:=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=z^2\}$ ist ein Unterraum des \mathbb{R} -Vektorraums $\mathbb{R}^3.$

(c) Die Matrix
$$A := \begin{pmatrix} -12 & 0 & 34 & -10 \\ 5 & -50 & 6 & 1 \\ -66 & 2 & 3 & 4 \end{pmatrix} \in \mathbb{C}^{3\times 4}$$
 hat den Rang 4.

$L\ddot{o}sung:$

- (a) Aussage falsch, denn: angenommen \mathbb{N}_0 wäre Gruppe. $\Rightarrow 0$ ist neutrales Element von \mathbb{N}_0 und 1 besitzt ein additives Inverses. \Rightarrow es existiert ein $m \in \mathbb{N}_0$ mit m+1=0. Da dieses nicht existiert, dh $(\mathbb{N}_0, +)$ ist nicht abgeschlossen bzgl der Inversen, ist $(\mathbb{N}_0, +)$ keine Gruppe.
- (b) Aussage falsch, denn: $(1,0,1), (0,1,1) \in M$, aber $(1,0,1) + (0,1,1) = (1,1,2) \notin M$.
- (c) Aussage falsch, denn: $Rang(A) = Zeilenrang(A) \le Anzahl Zeilen von A = 3$.

Aufgabe 7

Welche der folgenden Abbildungen φ sind Gruppehomomorphismen? Bestimmen Sie gegebenenfalls $Kern(\varphi)$ und $Bild(\varphi)$. Antworten nur kurz begründen.

- (a) $\varphi: (\mathbb{R}, +) \to (\mathbb{R} \setminus \{0\}, \cdot), \ x \mapsto e^{3x}$.
- (b) $\varphi: (Aut(\{1,2,3\}), \circ) \to (Aut(\{1,2,3\}), \circ), \ \pi \mapsto (2\ 1\ 3) \circ \pi.$
- (c) $\varphi: (\mathbb{Z}_4, \oplus_4) \to (\mathbb{Z}_4, \oplus_4), x \mapsto x \oplus_4 x.$
- (d) $\varphi: (\mathbb{R}, +) \to (\mathbb{R}, +), x \mapsto x^2$.

$L\ddot{o}sung:$

- (a) ist Homomorphismus, da $\forall x, x' \in \mathbb{R}$: $\varphi(x + x') = e^{3(x+x')} = e^{3x} \cdot e^{3x'} = \varphi(x) \cdot \varphi(x')$. Es ist: $Kern(\varphi) = \{x \in \mathbb{R} : e^{3x} = 1\} = \{0\}$ und $Bild(\varphi) = \{e^{3x} : x \in \mathbb{R}\} = \mathbb{R}_{>0}$.
- (b) kein Homomorphismus, da $\varphi(id) = (2\ 1\ 3) \neq id$.
- (c) ist Homomorphismus, da $\forall x, x' \in \mathbb{Z}_4$: $\varphi(x \oplus_4 x') = (x \oplus_4 x') \oplus_4 (x \oplus_4 x') = (x \oplus_4 x) \oplus_4 (x' \oplus_4 x') = \varphi(x) \oplus_4 \varphi(x')$. Es ist: $Kern(\varphi) = \{x \in \mathbb{Z}_4 : \varphi(x) = 0\} = \{x \in \mathbb{Z}_4 : x \oplus_4 x = 0\} = \{0, 2\}$ und $Bild(\varphi) = \{x \oplus_4 x : x \in \mathbb{Z}_4\} = \{0, 2\}$.
- (d) kein Homomorphismus, da $\varphi(1+1)=\varphi(2)=4$ und $\varphi(1)+\varphi(1)=1+1=2.$

Es sei $K:=\{0,1,a,b\}$ eine Menge mit 4 paarweise verschiedenen Elementen. Füllen Sie die folgenden Tabellen so aus, dass K zusammen mit den Abbildungen $+:K\times K\to K$ und $\cdot:K\times K\to K$ ein Körper ist. Begründen Sie kurz.

+	0	1	a	b
0				
1				
a				
b				

•	0	1	a	b
0				
1				
a				
b				

$L\ddot{o}sung:$

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

Wichtig: da es sich um einen Körper handelt, ist (K, +) eine abelsche Gruppe. Ebenfalls ist $(K \setminus \{0\}, \cdot)$ eine abelsche Gruppe. Allgemeine Kommentare: $0 \cdot x = 0 \ \forall x \in K$, es muss $1 + a \in \{0, b\}$ und $1 + b \in \{0, a\}$ sein. 0 ist das neutrale Element der Addition. 1 ist das neutrale Element der Multiplikation. Die restlichen werden durch die Tafeln in ihrem Additions- und Multiplikationsverhalten neu definiert.

	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

Im \mathbb{R} -Vektorraum $V=\mathbb{R}^3$ seien die Unterräume U_1 und U_2 gegeben durch

$$U_1 = span\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}) = \{a \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} : a, b \in \mathbb{R}\},$$

$$U_2 = span\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}) = \{a \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + b \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} : a, b \in \mathbb{R}\},$$

Geben Sie einen Vektor u an mit $U_1 \cap U_2 = span(u)$ und zeigen Sie $V = U_1 + U_2$.

$L\ddot{o}sung:$

Man stellt die Gleichung auf für $U_1 \cap U_2$:

$$a \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = c \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + d \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Daraus folgt a = c, b = d, sowie a - b = c - d. Es ist also a = b = c = d. Es ist folglich

$$U_1 \cap U_2 = \{a \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + a \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} : a \in \mathbb{R}\} = \{a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} : a \in \mathbb{R}\} = span\{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\}$$

Dh es ist zum Beispiel u = (1, 1, 0).

Es ist nun zu zeigen, dass $V = U_1 + U_2$. Offensichtlich gilt $U_1 + U_2 \subseteq V$. Es bleibt zu zeigen, dass auch $V \subseteq U_1 + U_2$:

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0,5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + 0,5 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \in U_1 + U_2$$

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0,5 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + 0,5 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \in U_1 + U_2$$

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0, 5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - 0, 5 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \in U_1 + U_2$$

Alle Basisvektoren liegen in $U_1 + U_2$, es gilt demnach, dass $U_1 + U_2$ Untervektorraum. Es folgt, dass alle Linearkombinationen der Basisvektoren liegen auch in $U_1 + U_2$. Es folgt: $V \subseteq U_1 + U_2$. Insgesamt also $V = U_1 + U_2$.

Aufgabe 10

Gegeben seien der Vektorraum \mathbb{R}^3 und die Vektoren

$$x_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ x_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ x_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \ x_4 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

- (a) Entscheiden Sie für folgenden Mengen jeweils, ob sie linear abhängig sind:
- (i) $\{x_1, x_2, x_3\}$, (ii) $\{x_1, x_2, x_4\}$, (iii) $\{x_1, x_2, x_3, x_4\}$, (iv) $\{x_2, x_3, x_4\}$, (v) $\{x_1+x_2, x_3\}$.
- (b) Für welche der Mengen kann man $y=\begin{pmatrix}2\\3\\5\end{pmatrix}$ als Linearkombination schreiben?

$L\ddot{o}sung:$

(a) (i) l.u., denn seien $\lambda_i \in \mathbb{R}$ mit

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0.$$

- (ii),(iv),(v): linear unabhängig, analog zu (i).
- (iii) linear abhängig: Es gilt $-2x_1 + x_2 2x_3 = x_4$.
- (b) (i) $y \in span(x_1, x_2, x_3)$, da $y = 2x_1 + 3x_2$.
- (ii) $y \in span(x_1, x_2, x_4)$, siehe (i).

(iii) $y \in span(x_1, x_2, x_3, x_4)$, siehe (i).

(iv)
$$y = 4x_2 - 2x_3 - x_4 \in span(x_2, x_3, x_4)$$

(v) $y \notin span(x_1 + x_2, x_3)$, es ist dazu die Nebenrechnung zu betrachten:

$$\begin{pmatrix} 2\\3\\5 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1\\1\\2 \end{pmatrix} + \lambda_2 \begin{pmatrix} -1\\0\\0 \end{pmatrix}$$

Man sieht in der 2. und 3. Zeile, dass dies nicht gehen kann.

Aufgabe 11

Beantworten Sie folgende Fragen durch Ankreuzen mit "Ja" oder "Nein". Es sind keine Begründungen anzugeben.

Es sei K ein Körper.

Gelten folgende Aussagen für jeden K-Vektorraum V?	
$(V \setminus \{0\}, \cdot)$ ist eine kommutative Gruppe	□ Ja □ Nein
(K, \cdot) ist kommutative Gruppe.	□ Ja □ Nein
$\forall \lambda, \mu \in K, v \in V \text{ gilt } (\lambda \mu)v = \mu(\lambda)v.$	□ Ja □ Nein
$\forall \lambda, \mu \in K, v \in V \text{ gilt } \lambda(v + \mu) = \lambda v + \lambda \mu.$	□ Ja □ Nein

$L\ddot{o}sung:$

Gelten folgende Aussagen für jeden K-Vektorraum V?	Lösung
$(V \setminus \{0\}, \cdot)$ ist eine kommutative Gruppe	Nein
(K,\cdot) ist kommutative Gruppe.	Nein
$\forall \lambda, \mu \in K, v \in V \text{ gilt } (\lambda \mu)v = \mu(\lambda)v.$	Ja
$\forall \lambda, \mu \in K, v \in V \text{ gilt } \lambda(v + \mu) = \lambda v + \lambda \mu.$	Nein

Zu (i): Multiplikation von zwei Vektoren ist nicht definiert. Zu (ii): 0 hat kein Inverses bzgl Multiplikation. Zu (iii): folgt aus Definition. Zu (iv): Addition von Vektor und Skalar nicht definiert.

Aufgabe 12

Beantworten Sie folgende Fragen durch Ankreuzen mit "Ja" oder "Nein". Es sind keine Begründungen anzugeben. Wir betrachten die Menge

$$M = v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, v_6 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix} \subseteq \mathbb{R}^4.$$

Lineare Algebra Ferienkurs

Sind die folgenden Aussagen wahr?	
$span(v_2, v_3, v_5) = span(v_3, v_5)$	□ Ja □ Nein
$span(v_2, v_3, v_5) = span(v_1, v_3, v_5)$	□ Ja □ Nein
$span(v_1, v_5, v_6) = span(v_1, v_2, v_3, v_4, v_5, v_6)$	□ Ja □ Nein
$span(v_1, v_2, v_4) = span(v_2, v_3, v_5, v_6)$	□ Ja □ Nein

$L\ddot{o}sung$:

Sind die folgenden Aussagen wahr?	
$span(v_2, v_3, v_5) = span(v_3, v_5)$	Ja
$span(v_2, v_3, v_5) = span(v_1, v_3, v_5)$	Nein
$span(v_1, v_5, v_6) = span(v_1, v_2, v_3, v_4, v_5, v_6)$	Ja
$span(v_1, v_2, v_4) = span(v_2, v_3, v_5, v_6)$	Nein

Zu (i): da $v_2=v_3+v_5$. Zu (ii): das aufgestellte LGS ist nicht lösbar. Zu (iii): es ist zu zeigen, dass v_2,v_3,v_4 darstellbar als Linearkombination von v_1,v_5,v_6 ist. Zu (iv): v_3 lässt sich nicht als Linearkombination von v_1,v_2,v_4 darstellen.