Notebook

May 4, 2025

```
import pandas as pd
import numpy as np
import mysql.connector
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.stats.api as sms
import statsmodels.api as sm
from scipy import stats as st

from dotenv import load_dotenv
import os
#pip install pandas mysql-connector-python
#pip install python-dotenv
```

0.0.1 Importing data

```
[38]: load_dotenv()

conn = mysql.connector.connect(
    host = 'localhost',
    user = 'root',
    passwd = os.getenv('MYSQL_PASSWORD'),
    database = 'e_master_card'
)
```

```
[]: df_cust = pd.read_sql('select * from customers', conn)
df_trans= pd.read_sql('select * from transactions', conn)
df_credit = pd.read_sql('select * from credit_profiles', conn)
```

C:\Users\gaurav malik\AppData\Local\Temp\ipykernel_17028\2980546640.py:2: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.

```
df_trans= pd.read_sql('select * from transactions', conn)
```

0.0.2 Customer Table Analysis

448699

449346

1

1

```
[211]: df_cust.describe()
       # findings:
       #annual income cannot be 0
       # age cannot be 135
[211]:
                                          annual_income
                   cust_id
                                     age
       count
              1000.000000
                            1000.000000
                                            1000.000000
               500.500000
                                          132439.799000
       mean
                              36.405000
       std
               288.819436
                              15.666155
                                          113706.313793
       min
                  1.000000
                               1.000000
                                               0.000000
       25%
               250.750000
                              26.000000
                                           42229.750000
       50%
                              32.000000
                                          107275.000000
               500.500000
       75%
               750.250000
                              46.000000
                                          189687.500000
       max
              1000.000000
                             135.000000
                                          449346.000000
      0.0.3 Observations:
         • Outliers present in data
         • For ex: age= 1, 135 not possible
[41]: df_cust.isna().sum()
                          0
[41]: cust_id
                          0
       name
       gender
                          0
                          0
       age
       location
                          0
       occupation
                          0
                          0
       annual_income
       marital_status
                          0
       dtype: int64
[43]: df_cust['annual_income'].value_counts().sort_index(ascending=True)
[43]: annual_income
       0
                  50
       2
                   3
       20
                   1
                   6
       50
       5175
                   1
                  . .
       447655
                   1
       448071
                   1
       448510
                   1
```

Name: count, Length: 944, dtype: int64

- No null values in annual income
- But income cannot be 0, 2,20 replacing annual income of <=50 with median

[55]: df_cust[df_cust['annual_income'] <= 50]

[55]:	cust_id	name	gender	age	location	occupation	\
14	15	Sanjana Malik	Female	25	Rural	Artist	
31	32	Veer Mistry	Male	50	City	Business Owner	
82	83	Reyansh Mukherjee	Male	27	City	Freelancer	
97	98	Virat Puri	Male	47	Suburb	Business Owner	
102	103	Aarav Shah	Male	32	City	Data Scientist	
155	156	Kiaan Saxena	Male	24	City	Fullstack Developer	
170	171	Advait Verma	Male	52	City	Business Owner	
186	187	Samar Sardar	Male	53	City	Consultant	
192	193	Ishan Joshi	Male	37	Suburb	Data Scientist	
227	228	Advait Mukherjee	Male	48	City	Business Owner	
232	233	Aditya Goel	Male	26	City	Freelancer	
240	241	Aaryan Bose	Male	24	Suburb	Freelancer	
262	263	Vivaan Tandon	Male	53	Suburb	Business Owner	
272	273	Kunal Sahani	Male	50	Suburb	Business Owner	
275	276	Ananya Bali	Female	47	City	Consultant	
312	313	Ritvik Gupta	Male	50	City	Consultant	
315	316	Amara Jha	Female	25	City	Data Scientist	
316	317	Yuvraj Saxena	Male	47	City	Consultant	
333	334	Avani Khanna	Female	29	City	Data Scientist	
340	341	Priya Sinha	Female	33	Rural	Fullstack Developer	
402	403	Arnav Singh	Male	60	City	Business Owner	
404	405	Arnav Banerjee	Male	26	City	Data Scientist	
409	410	Kiaan Jain	Male	45	Rural	Consultant	
440	441	Rudra Bose	Male	36	Suburb	Data Scientist	
446	447	Aahan Gambhir	Male	60	City	Business Owner	
449	450	Anika Rathod	Female	24	Suburb	Fullstack Developer	
461	462	Kunal Nair	Male	33	City	Data Scientist	
474	475	Neha Verma	Female	28	City	Data Scientist	
502	503	Samar Dewan	Male	38	Suburb	Data Scientist	
508	509	Advait Das	Male	55	City	Business Owner	
516	517	Rehan Kulkarni	Male	29	Rural	Fullstack Developer	
530	531	Aarya Ver	Male	32	City	Business Owner	
536	537	Ritvik Patil	Male	33	City	Data Scientist	
543	544	Advait Batra	Male	54	City	Consultant	
592	593	Priya Gandhi	Female	32	City	Business Owner	
599	600	Ishan Goswami	Female	38	City	Consultant	
603	604	Kunal Malhotra	Male	25	Suburb	Fullstack Developer	
608	609	Kriti Lalwani	Female	25	City	Data Scientist	
633	634	Rudra Mehtani	Male	26	City	Data Scientist	
634	635	Anaya Dutta	Female	21	\mathtt{City}	Freelancer	

644	645	Dhruv Das	Male	64	City	Business Owner
648	649	Kunal Rathore	Male	41	City	Consultant
650	651	Gauri Mittal	Female	47	Rural	Consultant
664	665	Ayush Khanna	Male	32	Rural	Fullstack Developer
681	682	Arya Jaiswal	Male	37	Suburb	Data Scientist
686	687	Vihaan Jaiswal	Male	40	City	Business Owner
688	689	Dhruv Dewan	Male	26	City	Artist
693	694	Aditi Mehrotra	Female	37	Suburb	Data Scientist
694	695	Rohan Mehta	Male	28	City	Data Scientist
696	697	Ishan Negi	Male	47	City	Consultant
744	745	Swara Kaul	Female	39	City	Data Scientist
784	785	Rohan Jain	Male	27	City	Data Scientist
788	789	Vihaan Singhal	Male	20	City	Fullstack Developer
791	792	Sara Mhatre	Female	38	City	Data Scientist
817	818	Akshay Mehrotra	Male	47	City	Consultant
932	933	Avinash Tiwari	Male	35	City	Data Scientist
955	956	Aahan Gandhi	Male	39	Suburb	Business Owner
956	957	Priya Malik	Female	24	City	Artist
995	996	Manya Vasudeva	Female	26	City	Freelancer
998	999	Amara Rathore	Female	47	City	Business Owner

annual	income	marital	status

marroar_boacab	ammaar_income	
Married	0	14
Married	50	31
Single	0	82
Married	0	97
Married	0	102
Married	0	155
Single	0	170
Single	0	186
Married	0	192
Married	0	227
Married	0	232
Married	0	240
Married	50	262
Married	0	272
Single	0	275
Married	0	312
Married	0	315
Married	50	316
Married	50	333
Married	50	340
Married	0	402
Single	0	404
Married	0	409
Married	0	440
Married	0	446

```
449
                   0
                             Married
461
                   0
                             Married
474
                   0
                              Single
502
                   0
                              Single
508
                   0
                             Married
516
                   0
                              Single
530
                   0
                             Married
                   0
536
                             Married
                   2
543
                             Married
592
                  50
                             Married
599
                   0
                              Single
603
                   0
                             Married
608
                   0
                              Single
633
                   2
                             Married
634
                   0
                             Married
644
                   0
                              Single
648
                   0
                             Married
650
                   0
                             Married
664
                   0
                             Married
681
                   0
                             Married
686
                   2
                             Married
688
                   0
                             Married
693
                   0
                             Married
694
                   0
                             Married
696
                  20
                             Married
744
                   0
                             Married
784
                   0
                              Single
788
                   0
                              Single
791
                   0
                              Single
817
                   0
                              Single
932
                   0
                             Married
955
                   0
                             Married
956
                   0
                             Married
995
                             Married
998
                             Married
```

0.0.4 Replacing income according to occupation median

```
df_cust = df_cust.drop(columns='median_income')
```

```
[66]: sns.histplot(df_cust['annual_income'])
```

[66]: <Axes: xlabel='annual_income', ylabel='Count'>


```
[70]: sns.boxplot(df_cust['annual_income'])
```

[70]: <Axes: ylabel='annual_income'>

0.0.5 Category wise annual income

C:\Users\gaurav malik\AppData\Local\Temp\ipykernel_17028\2079269613.py:9:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same

effect.

sns.barplot(data=mean_incomes, x=col, y='annual_income', palette='tab10',
ax=axes[idx])

C:\Users\gaurav malik\AppData\Local\Temp\ipykernel_17028\2079269613.py:9:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=mean_incomes, x=col, y='annual_income', palette='tab10',
ax=axes[idx])

C:\Users\gaurav malik\AppData\Local\Temp\ipykernel_17028\2079269613.py:9:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=mean_incomes, x=col, y='annual_income', palette='tab10',
ax=axes[idx])

C:\Users\gaurav malik\AppData\Local\Temp\ipykernel_17028\2079269613.py:9:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=mean_incomes, x=col, y='annual_income', palette='tab10',
ax=axes[idx])

• We can see annual income of business owners is high, followed by Data Scientists

0.0.6 Outlier treatment of age

• only keeping age between 15 and 80

0.0.7 Visualization

Age group distribution

0.0.8 We can see age group 26-48 spend most

0.0.9 Location wise gender distribution

```
[238]: grouped = df_cust.groupby(['location','gender']).size().unstack()
grouped.plot(kind='bar', stacked=True, colormap='Set2')

plt.title('Gender Distribution by Location')
plt.xlabel('Location')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.legend(title='Gender')
plt.tight_layout()
plt.show()
```


0.0.10 Credit score table

df_c	redit[df_	credit['cust_i	d'].dupli	cated(keep=	False)]	
	cust_id	credit_score	credit_u	tilisation	outstanding_debt	\
516	517	308		NaN	NaN	
517	517	308		0.113860	33.0	
569	569	344		NaN	NaN	
570	569	344		0.112599	37.0	
607	606	734		NaN	NaN	
608	606	734		0.193418	4392.0	
664	662	442		NaN	NaN	
665	662	442		0.856039	266.0	
	credit_i	nquiries_last_	6_months	credit_lim	it	
516			NaN	N	aN	
517			3.0	500	.0	
569			NaN	N	aN	
570			0.0	500	.0	
607			NaN	N	aN	
608			1.0	40000	.0	

```
664
                                         NaN
                                                        NaN
       665
                                         2.0
                                                      500.0
  []: # Dropping some duplicates
       df_credit = df_credit.drop_duplicates(subset='cust_id',keep='last')
[242]: df_credit.isna().sum()
                                            0
[242]: cust_id
       credit score
                                            0
       credit_utilisation
                                            0
       outstanding debt
                                            0
       credit_inquiries_last_6_months
                                            0
       credit limit
                                           65
       dtype: int64
  []:
[173]: df_credit[pd.isna(df_credit['credit_limit'])]
       # using credit limit to fill nan values for creditlimit,
       # bcz as credit score increase credit limit increase
[173]:
            cust_id credit_score
                                    credit_utilisation
                                                          outstanding_debt
       10
                  11
                                679
                                                0.557450
                                                                     9187.0
       35
                  36
                                790
                                                                     4261.0
                                                0.112535
       37
                  38
                                514
                                                0.296971
                                                                      238.0
       45
                  46
                                761
                                                                    24234.0
                                                0.596041
       64
                  65
                                734
                                                                    13631.0
                                                0.473715
       . .
                                479
                                                0.487555
                                                                      320.0
       912
                909
       931
                928
                                311
                                                0.832244
                                                                      316.0
       948
                945
                                526
                                                0.272734
                                                                      227.0
       954
                951
                                513
                                                0.175914
                                                                      131.0
       957
                954
                                783
                                                0.867421
                                                                    46451.0
            credit_inquiries_last_6_months
                                              credit_limit
       10
                                         2.0
                                                        NaN
       35
                                         1.0
                                                        NaN
       37
                                         2.0
                                                        NaN
       45
                                         2.0
                                                        NaN
       64
                                         0.0
                                                        NaN
       . .
       912
                                         3.0
                                                        NaN
                                                        NaN
       931
                                         2.0
       948
                                                        NaN
                                         1.0
       954
                                         3.0
                                                        NaN
       957
                                         0.0
                                                        NaN
```

[65 rows x 6 columns]

```
[176]: sns.scatterplot(data= df_credit, x='credit_limit',y='credit_score')
    plt.title("Credit Score and Credit Limit Relationship")
    plt.grid(True)
    plt.show()
```


0.0.11 Creating credit score range bins

• Created credit score bins to impute nan values with correct credit limit

C:\Users\gaurav malik\AppData\Local\Temp\ipykernel_17028\2812713241.py:1:
FutureWarning: The default of observed=False is deprecated and will be changed
to True in a future version of pandas. Pass observed=False to retain current
behavior or observed=True to adopt the future default and silence this warning.
 median_credit_limit = df_credit.groupby(['credit_score_range'],as_index=False)
['credit_limit'].median().rename(\

• Obervation: Outstanding_debt cannot be more than credit limit

```
[250]: sns.boxplot(df_credit['outstanding_debt'])
[250]: <Axes: ylabel='outstanding_debt'>
```


• Outlier treatment in outstanding dept, replacing with credit limit

0.0.12 Transaction Table

• Replacing Nan with mode in platform

```
[]: df_trans['platform'] = df_trans['platform'].fillna(df_trans['platform'].
      →mode()[0])
[]: 0
               Flipkart
                Alibaba
     1
     2
                Shopify
     3
                Shopify
     4
                 Amazon
     499995
                 Amazon
     499996
                 Meesho
     499997
                 Amazon
     499998
               Flipkart
```

```
499999
            Amazon
Name: platform, Length: 500000, dtype: object
```

• Replacing nan values in amount according to groups: platform, product category etc.

```
[381]: zero_median = df_trans[(df_trans['platform'] == 'Amazon') & \
       (df_trans['product_category'] == 'Electronics') &\
          (df_trans['payment_type'] == 'Credit Card') & \
               (df_trans['tran_amount'] > 0 )
              ].groupby(['platform','product_category','payment_type'])\
               ['tran amount'].median().reset index().rename(columns= {'tran amount':
        [390]: df_trans = df_trans.
        →merge(zero_median,on=['platform','product_category','payment_type'],how='left')
      df_trans['tran_amount'] = df_trans.apply(lambda x: x['median_amount'] \
        if (x['product_category'] == 'Electronics') &\
          (x['payment_type'] == 'Credit Card') & \
            (x['platform'] == 'Amazon') & \
               (x['tran_amount'] == 0 ) else x['tran_amount'],axis=1)
      df_trans = df_trans.drop(columns='median_amount')
[393]: sns.boxplot(df_trans['tran_amount'])
[393]: <Axes: ylabel='tran_amount'>
```


0.0.13 Outliers in Transaction Table using IQR


```
[404]: df_trans.shape
[404]: (500000, 7)
[401]: df_trans['payment_type'].value_counts()/len(df_trans['payment_type']) * 100
[401]: payment_type
       Phonepe
                      28.8456
       Credit Card
                      27.9556
                      21.8436
       Gpay
       Debit Card
                      11.9000
                       8.6446
       Net Banking
       Cash
                       0.8106
       Name: count, dtype: float64
  []: cust_trans = df_cust.merge(df_trans, on ='cust_id', how = 'inner')
       payment_type_grouped_cust_trans = cust_trans.

¬groupby(['age_group','payment_type']).size().reset_index(name='count')

       payment_type_grouped_cust_trans = payment_type_grouped_cust_trans.

¬pivot(index='age_group', columns='payment_type', values='count')
```

```
payment_type_grouped_cust_trans.plot(kind='bar', colormap='Set2')
plt.title('Age Group wise payment method')
plt.show()
```



```
[436]: product_category_grouped_cust_trans = cust_trans.

sproupby(['age_group','product_category']).size().reset_index(name='count')

product_category_grouped_cust_trans = product_category_grouped_cust_trans.

spivot(index='age_group', columns='product_category', values='count')
```

```
[437]: fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(16, 6))
       # Plot payment type on first subplot
       product_category_grouped_cust_trans.plot(kind='bar', colormap='Set2',_
        \Rightarrowax=axes[0])
       axes[0].set_title('Product Category by Age Group')
       axes[0].set_xlabel('Age Group')
       axes[0].set_ylabel('Transaction Count')
       axes[0].tick_params(axis='x', rotation=0)
       # Plot platform on second subplot
       platform_grouped_cust_trans.plot(kind='bar', colormap='Set3', ax=axes[1])
       axes[1].set_title('Platform by Age Group')
       axes[1].set_xlabel('Age Group')
       axes[1].set_ylabel('Transaction Count')
       axes[1].tick_params(axis='x', rotation=0)
       plt.tight_layout()
       plt.show()
```


0.0.14 Important Observation:

- 26-48 and 49-65 age group are already using credit card, so it wont make any sense to
- target those group for credit card, so we have made decision to target 18-25 group for
- campaign

```
[450]: cat_cols = ['platform' , 'product_category', 'payment_type']

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(16, 10)) # 2x2 grid for 4\(\text{\subset}\) \(\text{\subset}\) plots

axes = axes.flatten() # flatten 2D array of axes into 1D for easy indexing
```

C:\Users\gaurav malik\AppData\Local\Temp\ipykernel_17028\1672318693.py:10:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=mean_tran_amount, x=col, y='tran_amount', palette='tab10',
ax=axes[idx])

C:\Users\gaurav malik\AppData\Local\Temp\ipykernel_17028\1672318693.py:10:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=mean_tran_amount, x=col, y='tran_amount', palette='tab10',
ax=axes[idx])

C:\Users\gaurav malik\AppData\Local\Temp\ipykernel_17028\1672318693.py:10:
FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=mean_tran_amount, x=col, y='tran_amount', palette='tab10',
ax=axes[idx])

0.1 AB Testing

- Null Hypothesis: The new credit card does not increase the average number of transactions.
- Alternate Hypothesis: The new credit card increases the average number of transactions.

```
[73]: alpha = 0.05 # 5% significance
power = 0.8 # Strong
effect_size= 0.4 # mean1 - mean 2 /SD

sms.tt_ind_solve_power(
    effect_size=effect_size,
    alpha=alpha,
    power = power,
    ratio =1
)
```

[73]: 99.08032514658997

- [37]: ## Out of 100 test group, after 2 months, 40 people got converted to new credit \Box \Box card, than you form control group of 40 people

0.2 Conclusion

• Since the p-value is less than the significance level (), we reject the null hypothesis. This suggests that the new credit card leads to a statistically significant increase in average transactions. Therefore, we recommend releasing the new credit card.

This notebook was converted with convert.ploomber.io