Enoncés: Barbara Tumpach

Structure de groupe - Permutations

Le but de cette feuille d'exercices est de se familiariser avec la notion de groupe et d'apprendre à calculer la signature d'une permutation.

Exercice 1

On munit l'ensemble $G = \{a, b, c, d\}$ d'une loi de composition interne dont la table de Pythagore est

*	a	b	c	d
a	c	a	c	a
b	c a	d	c	b
c	c a	c	c	c
d	a	b	c	d

(La première ligne se lit $a \star a = a$, $a \star b = a$, $a \star c = c$,...)

- 1. Cette loi possède-t-elle un élément neutre?
- 2. Cette loi est-elle commutative?
- 3. Cette loi est-elle associative?
- 4. Est-ce une loi de groupe?

[002727]

Exercice 2

On définit une permutation σ de l'ensemble $\{1,2,\ldots,15\}$ par la suite finie des entiers $\sigma(1), \sigma(2),\ldots,\sigma(15)$. Par exemple

signifie $\sigma(1) = 2, \sigma(2) = 7$, etc. . . Soient

- 1. Pour i = 1, ..., 4,
 - décomposer σ_i en cycles à supports disjoints.
 - déterminer l'ordre de σ_i .
 - déterminer la signature de σ_i .
- 2. Calculer les puissances successives du cycle $\sigma = (10\ 15\ 11\ 13)$. Quel est l'inverse de σ_1 ?
- 3. Calculer σ_2^{2008} .
- 4. Déterminer, sans fatigue excessive, la signature de

$$\sigma_3 \circ \sigma_4 \circ \sigma_3^{-4} \circ \sigma_4^3 \circ \sigma_3 \circ \sigma_4 \circ \sigma_3 \circ \sigma_4 \circ \sigma_3^{-1} \circ \sigma_4^{-6}.$$

5. Combien y a-t-il de permutations g de $\{1, \dots, 15\}$ telles que $\sigma_1 \circ g = g \circ \sigma_1$?

[002728]

Exercice 3

- 1. Montrer que les ensembles G suivants, munis des lois \star données, sont des groupes. Préciser quel est l'élément neutre de G et quel est l'inverse d'un élément quelconque $x \in G$.
 - (a) $G = \mathbb{Z}, \star = 1$ 'addition des nombres;
 - (b) $G = \mathbb{Q}^*$ (ensemble des rationnels non nuls), $\star = \text{la multiplication des nombres}$;
 - (c) $G = \mathbb{Q}^{+*}$ (ensemble des rationnels strictement positifs), $\star = \text{la multiplication des nombres}$;
 - (d) $G = \mathbb{R}, \star = 1$ 'addition des nombres;
 - (e) $G = \mathbb{R}^{+*}, \star = \text{la multiplication des nombres};$
 - (f) $G = \mathbb{C}, \star = 1$ 'addition des nombres;
 - (g) $G = \mathbb{C}^*, \star = \text{la multiplication des nombres}$;
 - (h) $G = \{z \in \mathbb{C}, |z| = 1\}, \star = \text{la multiplication des nombres};$
 - (i) $G = \{e^{i\frac{2\pi k}{n}}, k = 0, 1, \dots, n-1\}, \star = \text{la multiplication des nombres } (n \text{ est un entier fixé});$
 - (j) G = 1'ensemble des bijections d'un ensemble non vide $E, \star = 1$ a composition des applications;
 - (k) G = 1'ensemble des isométries de l'espace euclidien \mathbb{R}^3 (muni du produit scalaire standard), $\star = 1$ composition des applications;
 - (1) G = 1'ensemble des isométries du plan euclidien \mathbb{R}^2 (muni du produit scalaire standard) qui préservent une figure donnée, $\star = 1$ composition des applications.
- 2. Donner un morphisme de groupes entre $(\mathbb{R},+)$ et (\mathbb{R}^{+*},\cdot) ;
- 3. Donner un morphisme de groupes entre (\mathbb{R}^{+*},\cdot) et $(\mathbb{R},+)$;
- 4. Donner un morphisme de groupes surjectif entre $(\mathbb{C},+)$ et (\mathbb{C}^*,\cdot) ;

[002729]

Exercice 4

Dire pour quelle(s) raison(s) les opérations \star suivantes ne munissent pas les ensembles G donnés d'une structure de groupe?

- (a) $G = \mathbb{N}, \star = 1$ 'addition des nombres;
- (b) $G = \mathbb{N}^*, \star = \text{la multiplication des nombres}$;
- (c) $G = \mathbb{R}, \star = \text{la multiplication des nombres};$

[002730]

