Eight Discipline Report (8D Report)

To:**	8D report No.: **
From: : Chicony Power Technology	RMA claim No.: **
cc:	Chicony Power P/N: A085A001P
	Customer P/N:**
Submit date: **	Product description: 85W adapter
Receive date: **	

Subject:<u>EMI Issue</u>

Keywords/關鍵字:EMI(CE)、Diode

D1.) 問題解決成員:Use Team Approach

主持者 (Team Leader): Wade_Lo 內部成員 (Internal Team Members):

CQS: Maria Chen

QE: Nono Cheng

MFG: Xiaohui Du

PE: Yong Liu

Sales: Kedy_Chang

外部成員 (External Team Member):

D2.)問題說明:Problem Description:

(Note: Use who, what, when, where, why, how, how many to specify the Customer's problem.)

- There are total 11pcs EMI Conduction testing failures happen in Jul.2021.
- CPT find more Lots ADP samples to do the EMI Conduction testing, a few samples of the Lots still failed.

NG Sample: 3749B Input:100Vac/60Hz

Load : 5A EMI: +11.17dB

Trace	Frequency	Level	Limit	Delta Limit	Commen t
	(MHz)	(dBµV)	(dBµV)	(dB)	
1 QP	0.15	70.21 *	66.00	4.21	L1 on
2 AV	0.1635	41.93	55.28	-13.35	L1 on
1 QP	0.222	73.91 *	62.74	11.17	L1 on
2 AV	0.2265	57.29 *	52.58	4.71	L1 on
1 QP	0.2715	67.03 *	61.07	5.96	L1 on
2 AV	0.2715	48.61	51.07	-2.46	L1 on
1 QP	0.3165	64.98 *	59.80	5.18	L1 on
2 AV	0.3165	47.02	49.80	-2.78	L1 on
1 QP	0.4515	55.12	56.85	-1.73	L1 on
2 AV	0.456	38.15	46.77	-8.62	L1 on

Lot	NG数/測定数	NG S/N
19X	0/10	
203	0/5	
204	0/5	
205	1/5	6532AM120505747A
206	0/5	
207	1/5	6532AM120708240A
208	3/5	6532AM120816470A 6532AM120811751A 6532AM120816501A
以下为R3		<u>5552AMI2561050IA</u> 生产)数据:
2021.04	5/10	1.PS端退回4pcs不良 2.另有7pcs不良仍在客户PS端

D3.)內部或客戶的暫時解決辦法及實施日期:Implement and Verify Containment Action:

(Note: Internal / external containment action effectiveness and date.)

Production has been halted to investigate the root cause of defects and implement corrective actions.

D4.)不良原因確認: Define and Verify Root Causes:

(Note: Identify and verify all suspect causes, which needs explain why the problem occurred.)

Root Causes

Pi filter's resonant frequency design didn't consider component tolerance. It causes EMI issue if PFC switching frequency is very close to resonant frequency.

Red Trace L2:54uH Blue Trace= L2:49uH

If PFC switching frequency operated at resonant frequency (40KHz), the noise would be amplified.

If PFC switching frequency is very close to resonant frequency of pi filter. It will cause filter capability reduction. For this case, The 54uH and 49uH have 7dB gap at same switching frequency

Simulation condition

When L2 over about 2A, the EMI will be happened EMI issue as bottom picture.

					-
Bons	0A	0.5A	1A	1.5A	-2A
ltem	uH	uH	uH	uH	uH
RD_NG-2	100	86	73	60	49
Magnetic_1	103	93	80	66	54
Magnetic_2	112	98	82	67	54

Calculation Condition:

Formula of Pi filter Design :

Pi L-C Filter Analysis:

$$\begin{array}{lll} \text{C1_old} := 0.68 \cdot 10^{-6} \text{F} & \text{C2_old} := 0.68 \cdot 10^{-6} \text{F} \\ \\ \text{L2_old} := 110 \cdot 10^{-6} \text{H} & \text{L3_old} := 300 \cdot 10^{-6} \text{H} \\ \\ \text{Xc1_old(fsw)} := \frac{1}{i \, \omega(\text{fsw}) \cdot \text{C1_old}} & \text{Xc2_old(fsw)} := \frac{1}{i \, \omega(\text{fsw}) \cdot \text{C2_old}} \\ \\ \text{XL2_old(fsw)} := i \, \omega(\text{fsw}) \cdot \text{L2_old} & \text{XL3_old(fsw)} := i \, \omega(\text{fsw}) \cdot \text{L3_old} \end{array}$$

Gain=V2/V1

$$\begin{aligned} \text{Gain_old(fsw)} := \frac{\frac{\text{Xc2_old(fsw)} \cdot (\text{XL2_old(fsw)} + \text{Xc1_old(fsw)})}{\text{Xc2_old(fsw)} + \text{XL2_old(fsw)} + \text{Xc1_old(fsw)}} \cdot \frac{\text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)}} \cdot \frac{\text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}} \cdot \frac{\text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{XL2_old(fsw)}} \cdot \frac{\text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{XL2_old(fsw)}} \cdot \frac{\text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{XL2_old(fsw)}} \cdot \frac{\text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{XL2_old(fsw)}} \cdot \frac{\text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)}} \cdot \frac{\text{Xc1_old(fsw)}}{\text{Xc1_old(fs$$

• EMI Performance Relation with Pi Filter and Switching frequency

Below table is calculation result with different conditions.

From table we can find if L2 inductance is higher, then Pi filter can have good attenuation.

Different source of bridge diode will cause just a little increasing in PFC switching frequency.

Condition	Switching Frequency	L2 Inductance	Pi Filter Gain	V1	V2
EMI OK (BD1 with LITEOM)	41.6KHz	<u>54uH</u>	-14.22dB	52.25dB	38.03dB
EMI NG (BD1 with LITEOM)	40.2KHz	49uH	+12.71dB	52.25dB	64.96dB
EMI NG Change BD1 from LITEON to TSC	41.1KHz	49uH	-3.35dB	52.25dB	48.90dB
EMI NG Change BD1 from LITEON to SHINDENGEN	41.4KHz	49uH	-5.64dB	52.25dB	46.61dB

PS:

EMI Performance Relation with V2 and EMI result

Condition	V2	EMI Result
EMI OK (BD1 with LITEON)	38.03dB	-9.91dB
EMI NG (BD1 with LITEON)	64.96dB	+10.28dB
EMI NG Change BD1 from LITEON to TSC	48.90dB	-6.28dB
EMI NG Change BD1 from LITEON to SHINDENGEN	46.61dB	-7.4dB

^{1,} Compare #1 and #2, we can find L2 Inductance change a little, but the result have big deviation. 2, Compare #3 and #4, we can find BD1 just impact a little in V2

Calculated EMI ok unit

EMI OK (BD1 with Liteon Diode)

$$\begin{aligned} \text{fsw} &\coloneqq 41.6 \cdot 10^3 \text{Hz} \end{aligned} \quad \text{V1} &\coloneqq 410 \quad 20 \cdot \log(\left| \text{V1} \right|) = 52.256 \\ \text{C1_old} &\coloneqq 0.671 \cdot 10^{-6} \text{F} \end{aligned} \qquad \text{C2_old} &\coloneqq 0.675 \cdot 10^{-6} \text{F} \\ \omega(\text{fsw}) &\coloneqq 2 \cdot \pi \cdot \text{fsw} \end{aligned} \qquad \text{L2_old} &\coloneqq 54 \cdot 10^{-6} \text{H} \qquad \text{L3_old} &\coloneqq 298 \cdot 10^{-6} \text{H} \\ \text{Xc1_old}(\text{fsw}) &\coloneqq \frac{1}{i \, \omega(\text{fsw}) \cdot \text{C1_old}} & \text{Xc2_old}(\text{fsw}) &\coloneqq \frac{1}{i \, \omega(\text{fsw}) \cdot \text{C2_old}} \\ \text{XL2_old}(\text{fsw}) &\coloneqq i \, \omega(\text{fsw}) \cdot \text{L2_old} & \text{XL3_old}(\text{fsw}) \cdot \text{L3_old} \end{aligned} \qquad \text{Xc2_old}(\text{fsw}) \cdot \text{L3_old} \\ \text{Gain_old} &\coloneqq \frac{\frac{\text{Xc2_old}(\text{fsw}) \cdot (\text{XL2_old}(\text{fsw}) + \text{Xc1_old}(\text{fsw})}{\text{Xc2_old}(\text{fsw}) + \text{Xc1_old}(\text{fsw})} \cdot \frac{\text{Xc1_old}(\text{fsw})}{\text{Xc1_old}(\text{fsw}) + \text{Xc1_old}(\text{fsw})} = 0.195 \\ \text{Gain_old_dB} &\coloneqq 20 \cdot \log(\left| \text{Gain_old} \right|) = -14.22 \\ \text{V2} &\coloneqq \text{V1} \cdot \text{Gain_old} & 20 \cdot \log(\left| \text{V2} \right|) = 38.036 \end{aligned}$$

Calculated EMI NG unit

EMI NG (BD1 with Liteon Diode)

Calculated EMI NG and bridge change

EMI NG's BD1 change to TSC bridge

$$\begin{aligned} &\text{fsw} \coloneqq 41.1 \cdot 10^3 \text{Hz} \end{aligned} \quad \text{V1} \coloneqq 410 \quad 20 \cdot \log(\left| \text{V1} \right|) = 52.256 \\ &\text{C1_old} \coloneqq 0.671 \cdot 10^{-6} \text{F} \qquad \qquad \boxed{ \text{C2_old} \coloneqq 0.675 \cdot 10^{-6} \text{F} } \\ &\text{ω(fsw)} \coloneqq 2 \cdot \pi \cdot \text{fsw} \qquad \boxed{ \text{L2_old} \coloneqq 49 \cdot 10^{-6} \text{H} } \qquad \text{L3_old} \coloneqq 298 \cdot 10^{-6} \text{H} \\ &\text{$\text{Xc1_old}(fsw)} \coloneqq \frac{1}{i \, \omega(\text{fsw}) \cdot \text{C1_old}} \qquad &\text{$\text{Xc2_old}(fsw)} \coloneqq \frac{1}{i \, \omega(\text{fsw}) \cdot \text{C2_old}} \\ &\text{$\text{XL2_old}(fsw)} \coloneqq i \, \omega(\text{fsw}) \cdot \text{L2_old} \qquad &\text{$\text{XL3_old}(fsw)} \coloneqq i \, \omega(\text{fsw}) \cdot \text{L3_old} \\ &\text{$\text{Gain_old}} \coloneqq \frac{\frac{\text{Xc2_old}(\text{fsw}) \cdot (\text{XL2_old}(\text{fsw}) + \text{Xc1_old}(\text{fsw})}{\text{Xc2_old}(\text{fsw}) + \text{Xc1_old}(\text{fsw})} \cdots \frac{\text{Xc1_old}(\text{fsw})}{\text{Xc1_old}(\text{fsw})} = 0.6 \\ &\text{$\text{Gain_old_dB}} \coloneqq 20 \cdot \log(\left| \text{Gain_old} \right|) = -3.35 \end{aligned} \qquad \begin{aligned} &\text{noise reduced between NG + L} \\ &\text{bridge & NG + TSC bridge:} \end{aligned}$$

64.968dB-48.906dB=16.062dB

EMI NG's BD1 change to **SHINDENGEN** bridge

V2 := V1-Gain_old 20-log(|V2|) = 48.906

Parameter study of BD1

If BD1 used lower trr, it will cause higher delta Vpk in ACIN to cause sampling voltage deviation and longer ton as bottom left drawing. The longer ton will impact PFC switching frequency about 1KHz decreasing.

*****Additional

Condition	Switching Frequency	L2 Inductance	Pi Filter Attenuation	V1	V2
EMI OK	41.6KHz	54uH	-12.55dB	52.25dB	39.7dB
EMI NG	40.2KHz	49uH	+12.71dB	52.25dB	64.96dB
EMI NG Change BD1 from LITEON to TSC	41.1KHz	49uH	-3.35dB	52.25dB	48.90dB
EMI NG Change BD1 from LITEON to SHINDENGEN	41.4KHz	49uH	-5.64dB	52.25dB	46.61dB

- The L2 captured frequency and ACIN pin: Fig.1 L2=54uH: f=41.6kHz, VACIN pin= 499mV
- Different L2 make a difference ACIN pin sensed voltage lead to a minor frequency shift.

L2=49uH BD1 difference comparison

- The three BD1 captured frequency and ACIN pin: Fig.1 BD1=LITEON, f=40.2kHz,VACIN pin= 455mV Fig.2 BD1=SH: f=41.4kHz, VACIN pin= 493mV Fig.3 BD1=TSC: f=41.1kHz, VACIN pin= 491mV
- Different BD1 make a difference ACIN pin sensed voltage lead to a minor frequency shift.

The difference of ACIN pin voltage

According to the "major items lead to switching frequency shift" analyze, the voltage difference on ACIN pin represent the sampling ratio (k_{in_t}) has changed. Therefore, the actual freewheeling conduction time t_{off} is changed, too.

$$\Delta_{t_{off}} = (\frac{V_{IN}(n)}{V_{O}(n) - V_{IN}(n)} \times \frac{k_{out_t} \times V_{O}(n) - k_{iu_t} \times V_{IN}(n)}{k_{out_t} \times V_{O}(n)} - \frac{k_{iu_t} \times V_{IN}(n)}{k_{out_t} \times V_{O}(n)}) \times T_{S}$$

The value Δt_{off_1} of Fig.1 = 0.3327us. The Δt_{off_2} of Fig.2 = -0.3999us. The Δt_{off_3} of Fig.3 = -0.2299us. If we use the Fig.1 frequency 40.2kHz as base.

The Fig.2 frequency shift will become: $\frac{1}{40.2\text{kHz}}$ - $(\Delta t_{\text{off}_1} - \Delta t_{\text{off}_2})$ = 24.143us => 41.42kHz

Use 4 pcs separated diode with different Trr to replace bridge diode Low Trr will cause the large noise spike and cause EMI fail

BD1 Analysis:

Vendor Analysis data

	Test item	Trr (ns)	VF (V) @ 2A	VF (V) @ 4A	IR (uA) @ 10A	VR (V) @ 10uA
	1	2855	0.886	0.937	0.133	1347
TSC	2	2692	0.888	0.941	0.126	1413
150	3	2728	0.886	0.939	0.128	1438
	4	2740	0.884	0.935	0.131	1413
	1	2617	0.881	0.932	0.344	1469
LT 3732B	2	2655	0.881	0.931	0.292	1564
LI 3/32B	3	2793	0.879	0.93	0.248	1508
	4	2180	0.881	0.933	0.27	1612
	1	2720	0.882	0.932	0.341	1398
LT NO. 4	2	2572	0.881	0.931	0.386	1221
LT NO.4	3	1834	0.884	0.938	0.403	1331
	4	1442	0.883	0.936	0.339	1529

NG Sample BD1 has lower Trr parameter

Found V2 Max by Simulation

Condition	Switching Frequency	L2 Inductance	C1/C2	Pi Filter Gain	V1	V2 (Max)
EMI worst result	42.11KHz	43.6	0.68	+50.7dB	52.25dB	102.99dB

fsw :=
$$42.11 \cdot 10^3$$
Hz V1 := 410 $20 \cdot \log(|V1|) = 52.256$

$$C1_old := 0.68 \cdot 10^{-6}F$$
 $C2_old := 0.68 \cdot 10^{-6}F$

$$\omega(fsw) := 2 - \pi - fsw$$
 L2_old := 43.6·10⁻⁶H L3_old := 300·10⁻⁶H

$$Xc1_old(fsw) := \frac{1}{i \omega(fsw) \cdot C1_old}$$

$$Xc2_old(fsw) := \frac{1}{i \omega(fsw) \cdot C2 \text{ old}}$$

$$XL2_old(fsw) := i \omega(fsw) \cdot L2_old$$

$$XL3_old(fsw) := i \omega(fsw) \cdot L3_old$$

$$\label{eq:Gain_old} \text{Gain_old} := \frac{\frac{\text{Xc2_old(fsw)} \cdot (\text{XL2_old(fsw)} + \text{Xc1_old(fsw)})}{\text{Xc2_old(fsw)} + \text{XL2_old(fsw)} + \text{Xc1_old(fsw)}} \cdot \frac{\text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{XL3_old(fsw)} + \frac{\text{Xc2_old(fsw)} \cdot (\text{XL2_old(fsw)} + \text{Xc1_old(fsw)})}{\text{Xc2_old(fsw)} + \text{XL2_old(fsw)} + \text{Xc1_old(fsw)}} \cdot \frac{\text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{XL2_old(fsw)}} = 344.48 \\ \frac{\text{XL3_old(fsw)} + \frac{\text{Xc2_old(fsw)} \cdot (\text{XL2_old(fsw)} + \text{Xc1_old(fsw)})}{\text{Xc2_old(fsw)} + \text{XL2_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc2_old(fsw)} \cdot (\text{XL2_old(fsw)} + \text{Xc1_old(fsw)})}{\text{Xc2_old(fsw)} + \text{XL2_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}{\text{Xc1_old(fsw)} + \text{Xc1_old(fsw)}}} = 344.48 \\ \frac{\text{Xc1_old(fsw)} + \frac{\text{X$$

Switching frequency vs input voltage

Input voltage for Switching frequency effect (5A)

Input Voltage	Switching frequency
90VAC	50KHz
95Vac	50KHz
100Vac	42.37KHz Close to resonance frequency
105Vac	45.45KHz
110Vac	46.3KHz

錯誤! 連結無效。

Above table show to us, at 100Vac, the switching frequency is more close to resonance frequency.

D5.)改善措施:Corrective Action Verification:

(Note: Be make sure the corrective actions is effective in process as well as able to fix the customer complaint problem)

- Chicony stop production and shipment. Chicony total Q hold 13Kpcs stocks to be screened.
- Increasing capacitance of C1&C2 can reduce the resonant frequency of Pi filter to keep away from PFC minimum switching frequency.

D6.)改善措施實施日期:Implement Permanent Corrective Actions:

(Note: Be provide the phase-in date or lot# of corrective actions implementation in process)

immediately

D7.)預防再發生措施:Prevent Recurrence:

(Note: Modified the management, operating systems, practices, and procedures to prevent recurrence for the problems as well as lessons learned cases.)

Same as D5

D8.)確認並感謝問題解決成員:Check and Congratulate the Team:

(Note: Recognize the collective efforts of the team.)

Thanks to you all!!!

CQS: Maria Chen SQE: Nono Cheng MFG: Xiaohui Du PE: Yong Liu Sales: Kedy_Chang

Signature Cf_Liu

Team Leader:	
	Name – Title
Signature by Approver:	Wade_Lo
	Name-Title