第五章 触发器(Flip-Flop)

5.1.1 基本SRFF

5.1.2 钟控SRFF

希望有 时钟沿触发能力

5.1.3 主从SRFF

希望有 可靠的沿触发能力

5.1.4 边沿SRFF

SR	Q*	
0 0	Q	
0 1	0	
10	1	
11	1 1	

JK	Q*
0 0	Q
0 1	0
1 0	1
11	Q'

D	O*
0	0
1	1

5.4 T触发器(TFF)

1)逻辑电路

2)特性表

3)逻辑符号

Α

В

Q3

5.5 触发器的逻辑功能及其描述方法

逻辑功能: SRFF, JKFF, DFF, TFF

$$S,R,Q \rightarrow Q^* = S+RQ$$
, $SR = O$

$$J,K,Q \rightarrow Q^* = JQ' + KQ$$

$$D,Q \rightarrow Q^* = D$$

$$T,Q \rightarrow Q^* = T \Theta Q$$

触发方式/电路结构:

电平触发(钟控) 脉冲触发(主从) 边沿触发

5.5.1 SRFF描述

1. 特性表

131274				
S	R	Q	Q*	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	~	1	
1	1	0	1 1	
1	1	1	1 1	

2. 状态转换图(Q)

= S+R'Q

4. 符号

5.5.2 JKFF描述

1. 特性表

J	K	Q	Q*
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

2. 状态转换图(Q)

4. 符号

5.5.3 **DFF描述**

1. 特性表

D	Q	Q*
0	0	0
0	1	0
1	0	1
1	1	1

2. 状态转换图(Q)

3. 特性方程

4. 符号

5.5.4 TFF描述

取反

1. 特性表

0

2. 状态转换图(Q)

3. 特性方程

$$Q*=TQ'+T'Q$$

4. 逻辑符号

5.5.5 触发器逻辑功能的转换

例1. 已有DFF,现在需要JKFF,要求用DFF及逻辑门改装出一个JKFF

$$D$$
触发器: $Q^* = D$

$$JK$$
触发器: $Q^* = JQ' + K'Q = ((JQ' + K'Q)')' = ((JQ')' (K'Q)')'$

$$K = JD = Q$$

$$CLK$$

例2. 已有D触发器 $\rightarrow SR$ 触发器

$$D$$
触发器: $Q^* = D$ SR 触发器: $Q^* = S + R'Q$ =((S+R'Q)')'=((S)'(R'Q)')'

此电路中 S=R=1 时, $Q^*=1$,以后也不会引起不定翻转

例3. 己有JK触发器→D触发器

$$JK$$
触发器: $Q^* = JQ' + K'Q$
 D 触发器: $Q^* = D =$
 U 比较得: $J = D$ $K = D'$

例4. 已有JK触发器 $\rightarrow T$ 触发器

JK触发器: $Q^* = JQ' + K'Q$

T触发器: $Q^* = TQ' + T'Q$

比较得: J=K=T

因此将JK触发器的J、K端连接在一起形成T触发器。

例5. 已有SR触发器→JK触发器

方法I: 驱动表法

1) 列驱动表

J	K	Q	Q*	S	R
0	0	0	0		
0	0	1	1		
0	1	0	0	-	
0	1	1	0		
1	0	0	1		
1	0	1	1		
1	1	0	1		
1	1	1	0	-	

状态转换图

2) K图化简得到驱动函数

$$S = JQ'$$

$\backslash KQ$					
J^{n}	2 00	01	11	_10_	
0	X	0	1	X	
1	0	0	1	0	
R					

$$R = KQ$$

例5. 已有SR触发器→JK触发器

方法II:特征方程法

$$SR$$
触发器: $Q^* = S + R'Q$
$$JK$$
触发器: $Q^* = JQ' + K'Q$
$$R = K$$

$$J=1,K=1,Q'=1$$
时, \rightarrow Q*=Q*'=1,破坏了JKFF的特性 \rightarrow $S=1,R=1\rightarrow$ 不定状态

由驱动表法
$$\begin{cases} S = JQ' \\ R = KQ \end{cases}$$

$$J=1,K=1,Q'=1$$
时, $\to S=1,R=0$

已有SR触发器 → 其他触发器,用驱动表法

练习 2 已有 D 触发器 → T 触发器

D触发器: $Q^* = D$ $T 触发器: Q^* = TQ'+T'Q = ((TQ'+R'Q)')'=((TQ')'(T'Q)')'$

总结: 不同类型触发器之间的转换

转换方法:

利用已有触发器和待求触发器的特性方程相等的原则,求出转换逻辑式。

转换步骤:

- (1) 写出已有触发器和待求触发器的特性方程。
- (2) 变换待求触发器的特性方程,使之形式与已有触 发器的特性方程一致。
- (3) 根据两个方程相等的原则求出转换逻辑式。
- (4) 根据转换逻辑式,画出电路图。

作业

5.18 (4) (12)

T边沿触发器