Chapitre

Espaces vectoriels de dimension finie

Dans tout ce ce chapitre, E est un R-espace vectoriel.

4. Familles de vecteurs

π Dé

Définition 1.1

Soit I un ensemble. On appelle famille de vecteurs de E, une collection de vecteurs de E indexée sur I.

$$F = \{v_i, i \in I\}$$

avec $\forall i \in I, v_i \in E$. C'est comme un array.

Exemple : $\{v_1=(1.0.1), v_2=(2.1.0), v_3=(1.01)\}$ est une famille finie de vecteurs de \mathbb{R}^3 avec $I=\{1,2,3,4,5\}$

Exemple $\{X^k, k \in \mathbb{N}\}$ est une famille infinie dénombrable de vecteurs de $\mathbb{R}[X]$.

Exemple : $\{\alpha, \alpha^3\}$ est infinie et indénombrable de vecteur \mathbb{R}^2 .

 $\hat{\pi}$

Définition 1.2

On note Card(F) = Card(I) le cardinal de F.

 $\hat{\pi}$

Définition 1.3 : Combinaison linéaire de vecteur d'une famille

Soit F une famille de vecteurs de E, indexée sur I. On appelle combinaison linéaire de vecteurs de F tout vecteur de E s'écrivant $\lambda_1 \cdot v_{i1} + \lambda_2 \cdot v_{i2} + \cdots + \lambda_n \cdot v_{in}$ avec $N \leq Card(I) \in \mathbb{N}, i_k \in I$ et $i_p \neq i_q$ Si $p \neq q$.

Si N=o, la combinaison linéaire vaut le vecteur nul.

On note Vect(F) l'ensemble du résultat des combinaisons linéaires de F (qui vérifient $Vect(F) \subset E$).

Proposition 1.1

Soit F une famille de vecteurs de E. Alors un Vect(F) est un sev de F

Proposition 1.2

Vect(F) est le plus petit sev de E contenant tous les vecteurs de F

Preuve 1.1

Soit E l'ensemble des sev de E $W=\{GsevdeE, \forall i\in I, v_i\in G\}$. On note $H=\bigcap_{G\in E}$. Alors on sait que H est un sev de E tel que $H\in W, \forall G\in W, H\subset G$.

Montrons pas double inclusion.

H est contenu dans Vect(F).

Soit $i \in I$, $v_i = 1 \cdot v_i$ qui est une combinaison linéaire à 1 élément.

 $\mathrm{Donc}\ Vec(F)\subset W\Rightarrow H\subset vect(F).$

Montrons l'inclusion contraire.

Soit $u \in vect(F)$.

Donc $\exists N \in \mathbb{N}, tqu = \lambda_1 v_{i1} + \cdots + \lambda_n v_{in}$.

 $H \in W, \forall k \in \{1, \dots, N\}, v_{ik} \in H \Rightarrow \lambda v \in H \Rightarrow \lambda v + \dots \Rightarrow u \in H.$ Donc $Vect(F) \subset H$.

Définition 1.4 : Famille génératrice

MATHÉMATIQUES & Espaces vectoriels de dimension finie, Familles de vecteurs

Soit F une famille de vecteurs de E et G un sev de E.

On dit que F est une famille génétratrice de G ss Vect(F) = G.

On dit que F est une famille génératrice si Vect(F) = E.

Exemple : $F=\{(1.0.0),(0.1.0),(0.1.1)\}$ est une famille génératrice de R3. Tous les vecteurs peuvent sé'écrire comme une combinaison linéaire des 3 vecteurs.