RS&NLP选修 Lesson-02

前情提要

- 根据业务场景不同,推荐系统可以演化得差异很大。因此,要注意学习算法背后的思想,做到融会贯通
- · 实例: 视频相关推荐。拆解和抽象为机器学习问题,进而用SGNS的方式去解决
- · NLP和RS是算法的两个重要应用 方向,其背后的思想可以找到很 多相通和借鉴之处
- 理论提升: 和矩阵分解的等价性

回顾: 视频相关推荐

- · 分为3个步骤:
 - · Step1 构建序列: 预处理用户的行为日志, 使之适配算法
 - · Step2 求解相似性: 利用skip-gram with negative sampling计算 item之间的相似性
 - · Step3 Faiss建立索引:利用索引库为item建立索引,供线上推荐使用

Step1 构建序列

· Input: 曝光/点击日志

· Output: 点击序列

Step2 求解相似性

· Input: 点击序列

Output: item -> vector

Step3-1 建立索引

Input: item -> vector

· Output: 索引文件

Step3-2 用索引查找

• Input: 索引文件, key

· Output: key的最近邻

Index factory

Method	Class name	index_factory	Main parameters	Bytes/vector	Exhaustive	Comments
Exact Search for L2	IndexFlatL2	Flat	d	4*d	yes	brute-force
Exact Search for Inner Product	IndexFlatIP	Flat	d	4*d	yes	also for cosine (normalize vectors beforehand)
Hierarchical Navigable Small World graph exploration	IndexHNSWFlat	'HNSWx,Flat`	d, M	4*d + 8 * M	no	
Inverted file with exact post-verification	IndexIVFFlat	IVFx,Flat	quantizer, d, nlists, metric	4*d	no	Take another index to assign vectors to inverted lists
Locality-Sensitive Hashing (binary flat index)	IndexLSH	-	d, nbits	nbits/8	yes	optimized by using random rotation instead of random projections
Scalar quantizer (SQ) in flat mode	IndexScalarQuantiz er	SQ8	d	d	yes	4 bit per component is also implemented, but the impact on accuracy may be inacceptable
Product quantizer (PQ) in flat mode	IndexPQ	PQx	d, M, nbits	M (if nbits=8)	yes	
IVF and scalar quantizer	IndexIVFScalarQua ntizer	IVFx,SQ4 "IVFx,SQ8"	quantizer, d, nlists, qtype	SQfp16: 2 * d, SQ8: d or SQ4: d/2	no	there are 2 encodings: 4 bit per dimension and 8 bit per dimension
IVFADC (coarse quantizer+PQ on residuals)	IndexIVFPQ	IVFx,PQy	quantizer, d, nlists, M, nbits	M+4 or M+8	no	the memory cost depends on the data type used to represent ids (int or long), currently supports only nbits <= 8
IVFADC+R (same as IVFADC with re- ranking based on codes)	IndexIVFPQR	IVFx,PQy+z	quantizer, d, nlists, M, nbits, M_refine, nbits_refine	M+M_refine+4 or M+M_refine+8	no	

根据需求去选择 具体算法

PQ算法

Annoy算法

HNSW算法

选择索引算法时的一些指导原则

- 有多少向量需要建索引
- ·索引database更新的频率需要如何
- 召回率是否满足需求
- 索引算法所支持的距离度量是否适配

基于SGNS做召回的局限性

- 无监督方式,不是直接优化目标
- · 没法结合side information

深度语义匹配模型DSSM

- 主要贡献
 - 利用点击数据(有监督)
 - 利用深度学习(学习能力强)
 - · Word hashing (解决大词表问题)

纸上得来终觉浅,绝知此事要躬行

TensorFlow还用介绍吗

TensorFlow 是一个端到端开源机器学习平台

用TF实现DSSM都需要做什么

- 设计和定义模型结构
- 构造训练数据
- · 使用GPU进行训练
- 导出训练好的模型
- · 导出embedding向量

设计和定义网络结构

构造训练数据

- 数据下载
- 格式介绍
- 处理成什么样

一些必要的辅助函数(代码)

如何使用GPU (代码)

"关于模型的讨论。"

基于DNN的模型有什么缺点

- 同等看待用户的行为,而没有考虑到上下文
- 无法充分反映用户的兴趣

什么叫卷积

$$(fst g)(n)=\sum_{ au=-\infty}^{\infty}f(au)g(n- au)$$

CNN用于图像

CNN用于NLP

CNN改进后的结构

"在TF里修改模型结构。"

下一步做什么

- · 模型serving
- 确保线上线下数据分布的一致性
- badcase分析
- 调整方案

思考

- 为何深度学习有效
- 如何对行为的时序建模
- 不用深度学习怎么做

总结&回顾

- · 承接上回: 高维空间向量搜索算法 (PQ/Annoy/HNSW)
- · SGNS框架的局限性
- · 用TF实现一个DSSM模型
- · 如何利用CNN结构进行改进
- 理论提升