Automated Crater Detection and Classification with Machine Learning

Final Presentation
by
Sihang Zhao

GC67:Automated Crater Detection and Classification with Machine Learning

About Me

ZHAO, Sihang

- BEng Computer Science
- MSc ACSE (if this project goes well...)

Favourtite ACSE Module:

- Computational Mathematics
- Machine Learning

Research Interest:

- NLP
- Machine Learning
- Pokémon
- Texas hold'em
- Meme

Source: photo by Miss XU, Weiyu July, 2022

Introduction of Crater Detection Task:

We want to...

- Counting craters on Mars
- Design a crater detection algorithm (CDA)

Because...

- Craters contains rich information
- Detecting all the craters manually is impossible

Short Introduction of Object Detection (OD) Algorithm:

The Model in this work: YOLO V5[3]

Input: Images

Output: Bounding boxes

Loss Function: GIoU

How True positive is given:

Example
Threshold: 0.5

Algorithm 1: Generalized Intersection over Union

input : Two arbitrary convex shapes: $A,B\subseteq\mathbb{S}\in\mathbb{R}^n$ output: GIoU

1 For A and B, find the smallest enclosing convex object C, where $C\subseteq \mathbb{S}\in \mathbb{R}^n$

$$2 IoU = \frac{|A \cap B|}{|A \cup B|}$$

$$3 GIoU = IoU - \frac{|C \setminus (A \cup B)|}{|C|}$$

Training source description:

class	х	У	W	h
0	0.5348557692 307693	0.3161057692 307692	0.1850961538 4615385	0.185096153 84615385
0	0.828125	0.4182692307 692308	0.0649038461 5384616	0.067307692 3076923

- 3,556 tiles with 7048 labeled craters. 100m/pixel 416*416 pixels each image
- latitudinal band from 35°N to 35°S of the equator selected by [2]Benedix et al.

GC67:Automated Crater Detection and Classification with Machine Learning

Problem description:

Existing dataset is not perfect:

- Small craters are hard to identify
- Some labels are deviated from the craters
- Unlabelled craters in training set -> Poor training effect
- Unlabelled craters in test set -> Irresponsible evaluation

Source: THEMIS[1] images annotated by Sihang

Size-Frequency Distribution:

 False Negative cases are small craters

My solution: Metamorphic Crater Generator (MCG)

- Generating the metamorphic craters with different sizes
- Pasting them into the particular position

GC67:Automated Crater Detection and Classification with Machine Learning

Tricks of MCG Implementation

The trick to make natural edges

- Poisson Fusion[5]
- Making the "best" masks

[5] P. P'erez, M. Gangnet, and A. Blake, "Poisson image editing," in ACM SIGGRAPH 2003 Papers, 2003, pp. 313–318.

Result of MCG Augmentation:

- train/std_train_std_test
- train/aug_train_std_test
- train/std_train_aug_test
- 🔽 🔘 train/aug_train_aug_test
- 1. An improvement can be observed, which is intuitive (This model is better at identifying more small craters)
- We can obvious the decline of neally all the score especially recall rate and mAP 0.5

For craters in smaller sizes

Table 1.1 The Comparison between YOLO V5 with default hyperparameters and the CDA given by Benedix et al. YOLO V5 are tested on our divided test set.

Crater size	1.5~	10 km	All diam			
Model	V5 default	Benedix et al.	V5 Default	Benedix et al.		
Absolute Count Each Set	448	296048	648	669486		
True Positive	376	229413	547	564790		
Recall Rate	83.929%	77.492%	84.414%	84.362%		

Table 1.2 The Comparison between YOLO V5 with and without MCG augmentation, evaluated on standard test set and MCG augmented test set.

Crater size	1.5~10 km		Smaller than 1.5 km				
Model	V5 default	MCG Trained	V5 Default	MCG Trained	V5 Default and MCG test	MCG Trained and MCG test	
Absolute Count Each Set	448	448	148	148	268	268	
True Positive	376	404	108	116	191	226	
Recall Rate	83.929%	90.179%	72.973%	78.378%	71.271%	84.323%	

Pros and Cons of MCG:

Pros:

- Novelty
- Generalizability
- Flexibility

Cons:

The unlabelled craters are still existing

source: @TEMPLATES_FOR_MEMES
Produced by Sihang

New idea: Training - Iteration Strategy (TIS) based on MCG

Avoid check the unlabelled craters manually

Eliminate the adverse effects of FFP cases

Source: Examples of the THEMIS[1] images which are annotated and processed by Sihang

GC67:Automated Crater Detection and Classification with Machine Learning

Result of Training - Iteration Strategy (TIS):

Table 2 The Comparison between YOLO V5 with default hyperparameters, YOLO V5 trained by our MCG training-iteration strategy, and the CDA given by Benedix et al.

Crater size	Smaller than 1.5 km		1.5 ~10km			All diam		
Model	Default	MCG-T-I	Benedix	Default	MCG-T-I	Benedix	Default	MCG-T-I
Absolute Count Each Set	148	148	296048	448	448	148	648	648
True Positive	108	116	229413	376	412	116	547	558
Recall Rate	72.973%	78.378%	77.492%	83.929%	91.964%	78.378%	84.414%	86.111%
mAP_0.5				74.606%	76.668%		88.738%	89.657%
Precision			73.322%	71.282%	75.054%	90.1132%	86.926%	92.983%

Disscussions of Training-Iteration Strategy (Compared With Active Learning) and MCG:

Pros:

- No Manually Check anymore
- The result is good

Cons:

- The Model cannot learn new features
- Risk of overfitting

*Some further ideas:

- Using ensemble to bring in new features
- Using active learning and TIS together
- · While using MCG in TIS, do some changes
- Crater with different sizes may have different features

Reference

- [1] P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger et al., "The thermal emission imaging system (themis) for the mars 2001 odyssey mission," Space Science Reviews, vol. 110, no. 1, pp. 85–130, 2004
- [2] G. Benedix, A. Lagain, K. Chai, S. Meka, S. Anderson, C. Norman, P. Bland, J. Paxman, M. Towner, and T. Tan, "Deriving surface ages on mars using automated crater counting," Earth and Space Science, vol. 7, no. 3, p. e2019EA001005, 2020.
- [3] https://github.com/ultralytics/yolov5
- [4]https://blog.csdn.net/weixin_41735859/article/details/89288493
- [5] P. P'erez, M. Gangnet, and A. Blake, "Poisson image editing," in ACM SIGGRAPH 2003 Papers, 2003, pp. 313–318.

Thank you

"The hills melted like wax at the presence of the lord." Psalm 97:5.

Wouldn't the creation and weathering of craters, and even the birth and annihilation of planets, look like butter melting on a hot pan if we were to observe them from the perspective of infinite time

All the mysteries of the universe would then look like short videos on tiktoks Millions of years will be several mere moments

However, our time is limited, and even quite short, which is why we need this project and why I developed MCG :)

Image: Craters generated by MCG and their "parents"