

CSIT6000P Spatial and Multimedia Databases 2022 Spring

+ Learning Objectives

- What we will cover
 - Spatial data types and modelling
 - Spatial relationships, operations and queries
 - SDBMS architectures

Goals

- Understand how spatial data is different from the relational data
- Understand how these differences affect those relational techniques we learned before
- Understand what spatial DBMS is

+ Readings

- R. Güting, An Introduction to Spatial Database Systems, *The VLDB Journal*, 3:4, 1994
- Hanan Samet and Walid G. Aref, Spatial Data Models and Query Processing, in W. Kim (Ed), Modern Database Systems: The Object Model, Interoperability, and Beyond, 1995

+ Why Spatial DBMS?

- Huge amounts of spatial data, extensive and comprehensive
- Increasing needs to store, search and use spatial data, together with other data, efficiently, enterprisewide
- Alternatives?
 - File system-based solutions?
 - Application-based solutions?

+ Spatial Data

- A location is a place or position in a space
- Spatial data is any data with a location component
 - 2D space
 - Geographical space: GIS, urban planning
 - Graphics: CAD, VLSI design
 - 3D space
 - The universe, brain model, molecule structure
- Two types of spatial data
 - Those data about the space (e.g., road networks, maps)
 - Those data about objects in a space (e.g., location of shops, location of cars)

+ More Spatial Data

Natural area data

 Soil types, land use (industrial, agriculture, residential etc), vegetation, water (rivers, ponds etc)

Manmade area data

 Political and administrative boundaries, school districts, emergency service areas, land records data (lot boundaries, zoning, easements)

Network data

- Utilities (sewers, water pipes, powerlines etc)
- Roads (centrelines, curb lines, intersections etc)

+ Modelling Spatial Data

+ Vector Data

- A spatial object is described by a sequence of points
 - A point can be specified using latitude and longitude coordinate values

Advantages

- Suitable for processing & manipulation
- More compact, better rendering quality
- Query by spatial relationships (e.g., find all shops within 300 meters)

+ Raster Data

- A spatial object is described by a set of pixels
 - E.g., satellite imagery
- Advantages
 - Suitable for display
 - Query by colour, texture, etc.
 - Efficient for some type of processing, such as monitoring desertization using remote sensing images over time

+ Vector vs Raster Data

- Different representation of same data
- Suitability application-dependent
- Mutually convertible
 - Rasterization
 - Vectorization
- Often used together
 - E.g., overlay satellite image, road network, elevation data etc.
 - Hybrid mode for Google Earth/Google Map
- We deal with vector data in spatial databases

+ Geographical Coordinate Systems

- Location reference systems for spatial features on the earth surface
 - Different models can be selected to <u>approximate</u> the shape and size of the Earth
 - Points are described using longitude and latitude angles measured in degrees (called geographical coordinates)

© Encyclopædia Britannica, Inc.

+ Map Projection

- In cartography, a map projection is a way to flatten a globe's surface into a plane in order to make a map
 - Systematic transformation of the latitudes and longitudes of locations from the surface of the globe into locations on a plane
- Commonly used map projections
 - UTM (Universal Transverse Mercator)
 - Developed by Gerhardus Mercator, a Flemish Cartographer, in 1569
 - Badly distorts Greenland, Alaska, and Australia.
 - AMG (Australian Map Grid)
- Need spatial data (and metadata) standards to record the mapping parameters used
 - Spatial data must be aligned before they can be used together

+ Spatial Data Acquisition

- There are many publically available spatial datasets
 - Government sources, and other map providers such as Google
- Generating new data
 - Remote sensing data
 - Field data collection using GPS devices
 - Crowd-source data, such as OpenStreetMap

OpenStreetMap

openstreetmap.org

OpenStreetMap is a collaborative project to create a free editable geographic database of the world. The geodata underlying the maps is considered the primary output of the project. Wikipedia

Owner: Community-owned; supported by

OpenStreetMap Foundation

Created by: Steve Coast (Page in OSM wiki)

Users: 8,104,497

+ Remote Sensing

+ Spatial Data Accuracy

- Accuracy: how close the recorded location of a spatial feature is to its ground location?
- Scale: the ratio between distance on a map and the corresponding distance on the earth (e.g., 1:100,000)
- Resolution: the size of the smallest feature that can be represented in a surface
- Precision: how exactly the location is recorded (i.e., # of digits)

... errors can be introduced from many sources, such as data capturing devices and environments, data processing operations

+ Spatial DBMS

- A spatial DBMS is a DBMS
- It offers spatial data types in its data model and the query language
- It supports spatial data types in its implementation, providing at least spatial indexing and efficient spatial query processing algorithms

+ Alternative Names

- AM/FM System
 - Automated mapping and facilities management
- GIS (Geographical Information System)
- Land Information Systems
- Natural Resources Information Systems
- Spatial Data Management (or Handling) System
- Object-Relational Database Systems
 - Oracle has many types of data cartridges, including one for spatial data

+ GIS and Spatial Databases

GIS applications

- Data capture, editing, conversion, conflation
- Map generation
- Image processing
- Data analysis (in application areas)

Spatial DBMS

- Integrated management of spatial and non-spatial data
- Database support expected in a RDBMS, independent from applications
- RDBMS-comparable performance

+ SDBMS is a Multidiscipline Area

- Cartography
 - Display of visual information (or, you can call it visualization)
- Computer Science
 - Databases, computer graphics, image processing, machine learning
- Geography
 - Spatial analysis
- Mathematics
 - Geometry, graph theory
- Statistics
 - Models, analysis of error
- Photogrammetry, remote sensing, surveying...

+ History

- Canada: Geographic Information System (the 60's)
- Harvard: ODYSSEY project (the 70's)
 - ESRI: Arc/Info
- American Bureau of Census
 - 1970 census (only urban areas)
 - TIGER (entire country, from 1990)
- Australia
 - From CSIRO: SIRO-DBMS (SDM) (in the late 80's)
 - Many small GIS companies
- Main-stream DB vendors (late 1990's)
 - Oracle, Informix, IBM (DB2), Microsoft (MapPoint)
- And now, Google and many Internet companies...

+ Spatial Data Models

- Objects in space
 - Single objects
 - Point (city)
 - Line/polyline (river, cable, road)
 - Polygon or Region (forest, lake, city)
 - Spatially related collections of objects
 - Partition (land use, districts, land ownership)
 - Network (roads, rivers, electricity, phone)

The spatial extent, Euclidean or other types of spaces

+ The Underlying Space

- Euclidean space is continuous, computer numbers are finite and discrete
- Problems: numerical rounding errors and topological inconsistency and degeneracy

Is D on A?

Is D contained in the area below A & B?

A practical solution: for two points **a** and **b**, never ask if **a**=**b**; instead, test if $distance(\mathbf{a}, \mathbf{b}) < \varepsilon$

+ Representing Spatial Data

■ How can we use a relational database system to store spatial data?

```
Point(pID: INT, x: number, y: number)

Shop(sID: INT, loc: INT ...) // loc is an FK to point ID

River(rID: INT, pointID: INT, order: INT ...)

Lanuse(landID: INT, pointID: INT, order: INT ...)

Landuse(landID: INT, area: BLOB ...)
```

... do you see any problems for such representations?

+ A Better Way

Spatial data model

```
Shop(sID: INT, loc: POINT ...)
River(rID: INT, route: POLYLINE ...)
landuse(landID: INT, area: POLYGON ...)
```

... what do you expect from these data types?

+ Data Model in Oracle (I)

- Element, Geometry and Layer
- Element: the basic building block of a geometric feature
 - Point data: one coordinate, stored as an (x, y) pair
 - Line data: two coordinates representing the start and the end of a line segment
 - Polygon data: a sequence of coordinates, one vertex pair for each line segment of the polygon
 - Both boundary and the interior
 - Complex polygons: self-intersecting boundary, multiple connected components

+ Data Model in Oracle (II)

- Geometry: representation of a user's spatial feature, modelled as an ordered set of elements
 - Each geometry has a unique id, and can be associated with a set of attributes
 - Example: a geometry might describe a lake, represented as a polygon with nested polygons for islands, with attributes such as lake name, water capacity etc
- Layer: a collection of geometries having the same attribute set
 - Examples: soil types, road network, political boundaries, population density, crops

+ Data Model in DB2

+ Spatial Relationships

■ Topological relationship

- E.g., inside, intersect, adjacent
- Invariant under translation such as rotation and scaling

■ Directional relationship

- E.g., above, left
- May change with rotation

■ Metric relationship

- E.g., distance
- May change with scaling

+ Defining Spatial Relationship

Q: how to define a spatial relationship precisely?

+ Formal Definitions

- Better understanding of the complex semantics of spatial objects and operations at the designer's level
- Clarity and consistency at the user's level
- A step towards standardization

+ The 9-Intersection Matrix

$$\begin{pmatrix} A_b \cap B_b & A_b \cap B_i & A_b \cap B_e \\ A_i \cap B_b & A_i \cap B_i & A_i \cap B_e \\ A_e \cap B_b & A_e \cap B_i & A_e \cap B_e \end{pmatrix}$$

⁺ The 8 Spatial Relationships (I)

■ Complete, and mutually exclusive.

⁺ The 8 Spatial Relationships (I)

$$egin{pmatrix} A_b \cap B_b & A_b \cap B_i & A_b \cap B_e \ A_i \cap B_b & A_i \cap B_i & A_i \cap B_e \ A_e \cap B_b & A_e \cap B_i & A_e \cap B_e \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 disjoint contain inside equal

⁺ The 8 Spatial Relationships (I)

$$\begin{pmatrix} A_b \cap B_b & A_b \cap B_i & A_b \cap B_e \\ A_i \cap B_b & A_i \cap B_i & A_i \cap B_e \\ A_e \cap B_b & A_e \cap B_i & A_e \cap B_e \end{pmatrix}$$

$$egin{pmatrix} 1 & 0 & 1 \ 0 & 0 & 1 \ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$egin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix}$$

meet

cover

covered by overlap

meet

cover

covered by

overlap

+ Spatial Operations

Spatial relationships

- Topological and directional predicates
- Advanced ones: e.g., nearest neighbors, within-distance

Spatial functions

- Length (of lines), center, perimeter and area (of polygons)
- Distance between two spatial objects (e.g., point-to-point, point-to-line, polygon-to-polygon)

Spatial operations

Intersection, union, overlay, clipping

Spatial queries

 Similar to SQL, such as selection, projection, join, complex predicates, group-by and sub-queries

... spatial data types should come with these operation support

+ Containment Query

- Given a spatial object O, find all objects in the database that completely contain O
- When O is a point, the query is called Point Query

O is a polygon (O is the green one) and the red one is the query result.

O is a point (the green dot).

+ Region Query

- \blacksquare Given a region R, find all objects in the map that intersect R
- When *R* is a rectangle, the query is called Window Query

+ Within-Distance Query

+ K Nearest Neighbor (kNN) Query

+ Overlapping Query

+ Clipping Query

+ Amalgamation Query

+ Overlay Query

... also important applications in spatial OLAP and spatial data mining

+ Denoting SDT Values Input

- Problem: "Hong Kong" vs. the geometry of Hong Kong
- Define named atomic data type values

```
DEFINE Hong Kong
ELEMENT SELECT boundary
FROM city // city(name, boundary, ...)
WHERE name = "Hong Kong";
```

2. Use spatial constants

```
WHERE boundary inside POLYGON(100.2, 102.3; 1.5, 107; ....);
```

+ Fundamental DB Operations (I)

Selection

```
SELECT *
FROM river // river(name, route, ...)
WHERE route intersect ClearWaterBayRoad;
```

Join

```
SELECT river.name, road.name
FROM river, road // road(name, route, ...)
WHERE river.route intersect road.route;
```

+ Fundamental DB Operations (II)

Function applications

+ Fundamental DB Operations (III)

Other set operations

SELECT amalgamation(area), round(amount/100)*100

FROM rainfall //rainfall(area, date, amount)

WHERE date = '08/02/2021'

GROUP BY round(amount/100);

... man spatial operations are not standard, so you may need to define it.

For example, amalgamation takes a set of polygons and return the boundary of all polygons combined

+ Spatial Data Generalization

- Reduce level of details (LoDs) without reducing key characteristics of a spatial dataset
 - Improve processing efficiency
 - Essential to support operations on heterogeneous data
 - Adapt data to suit target device resolution
- Generalization of vector data is difficult
 - Non-algorithmic
 - Multiple criteria: metric, semantic, topological, gestalt

+ SDBMS Architectures

Requirements

- Representations for spatial data types
- Procedures for spatial operations, including spatial join algorithms
- Spatial index structures, and access operations
- Spatial query optimizer with cost functions & statistics
- Spatial query language, incorporating spatial data types, operations and graphical I/O

■ Three generations

 Using file systems; using standard RDBMS; integrated systems

+ 1st Generation: Using File System

Problems:

- no high level data definition
- no flexible querying
- no DBMS support (eg, TM)

+ 2nd Generation: Using RDBMS (I)

+ 2nd Generation: Using RDBMS (II)

Layered architecture:

- •representing SDT as a **set of tuples**, one tuple per point or line segment; or as **long fields** (ie, uninterpreted byte strings).
- mapping SDT into numbers and using B-Tree as index.
- right step towards integrated system
- poor spatial performance.

+ 3rd Generation: Part of ORDBMS

Integrated architecture:

- Future direction
- Possibility for users to extend the system
- Now a mature technology
- Performance still a problem for for complex queries
- •Transaction Management is hard (for long running transactions)

Spatial data stored as User Defined Data Types in DBMS with other data

+ SDBMS Implementation

- Continues space v discrete computer numbers
- High level query language (eg, SQL-like)
- Spatial query processing (at least spatial join)
- Spatial data access methods (indexing)
- Other DBMS issues
 - Query optimization
 - Transaction management
 - Integrity and consistency
 - Parallel processing
 - Spatial data warehousing and data mining

+ Spatial DB and Graph DB

- A graph database (GDB) is a database that uses graph structures for semantic queries with nodes, edges, and properties to represent and store data
 - For example: what's the different between a social network graph and a road network?
- GDB is related to SDB, but with quiet different focus
 - Oracle 12 combines spatial and graph into one data cartridge

+ Products and Systems

- Most GIS products don not handle databases aspects anymore
- Most famous one
 - Oracle Spatial (since 1994)
 - PostgresSQL (PostGIS since 2001)
 - Micorsoft SQL (since 2008)
 - Many NoSQL systems such as MonetDB, Redis, CouchDB
 - Many modern Hadoop-based systems such as GeoMeda
- Many spatial datasets are publicly available

... you can install a system, such as Oracle or PostGIS, and download some data to get hands-on experiences

+ Summary

- Spatial DBMS is still a DBMS
 - Data types and query languages may look different, but are still the same in essence
 - Just need to think data types in its intrinsic meaning
- If your job is to develop a database system to manage spatial data, this lecture gives you a good example
 - What about images? Videos? Graphs?
- You need to understand the concepts introduced
 - Spatial data, data types, operations, queries