Class 10 – Logistic Regression

Prof. Pedram Jahangiry

UtahStateUniversity

Road map

Prof. Pedram Jahangiry

Topics

Part I

- 1. Linear probability model (LPM) vs Logistic regression
- 2. Sigmoid function
- 3. Logistic regression

Part II

- 1. Classification performance metrics
 - a) Accuracy,
 - b) Precision,
 - c) Recall,
 - d) F1 score,
 - e) ROC and AUC.

		Predictions		
		0 negative	1 positive	
Actual	0 negative	TN	FP	
Act	1 positive	FN	TP	

Classification

5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 - -10.0 -

- Qualitative variables can be either nominal or ordinal.
- Qualitative variables are often referred to as **categorical**.
- Classification is the process of predicting categorical variables.
- Classification problems are quite common, perhaps even more than regression problems.

Examples:

- Financial instrument tranches (investment grade or junk)
- Online transactions (fraudulent or not)
- Loan application (approved or denied)
- Credit card default (default or not)
- Car insurance customers (high, medium, low risk)

Credit card default example

➤ Goal: Build a classifier that performs well in both train and test set.

Part I Logistic Regression

Linear Probability Model (LPM) vs Logistic Regression

Starting with simple LPM: $y = \beta_0 + \beta_1 bal + \epsilon$ where, Y = 1 for default and 0 otherwise.

$$E(Y = 1|bal) = Pr(Y = 1|bal) = P(x) = \beta_0 + \beta_1 bal$$

- It seems that simple regression is perfect for this task,
- But what are the caveats?

Sigmoid Function

• We need a monotone mapping function that has a range of [0,1]

Logistic Regression (Model)

• The model:

$$f_{w,b}(X) = \frac{1}{1 + e^{-(WX + b)}}$$

- In case of two classes, $f_{w,b}(X) = \Pr(Y = 1|x) = p(x)$.
- A bit of rearrangement gives

- This monotone transformation is called the \log odds or \log transformation of p(x).
- Logistic regression ensures that our estimates always lie between 0 and 1

Logistic regression fit (Decision boundary)

• Depending on how we define WX + b, we can get any of the following fits from logistic regression classifier.

Logistic Regression (Maximum Likelihood)

- In logistic regression, instead of minimizing the average loss, we maximize the likelihood of the training data according to our model. This is called maximum likelihood estimation.
- A fantastic visualization!
- Can you do the same visualization with the S curve?

$$L_{w,b} = \prod_{i} f_{w,b}(x_i)^{y_i} \left(1 - f_{w,b}(x_i)\right)^{1-y_i}$$

Logistic Regression (Objective function)

Maximizing the likelihood function:

$$Max \{L_{w,b} = \prod_{i} f_{w,b}(x_i)^{y_i} (1 - f_{w,b}(x_i))^{1-y_i} \}$$

- **Solution**: In practice, it is more convenient to maximize the log-likelihood function. This log-likelihood maximization, gives us w^* and b^* . There is no closed form solution to this optimization problem. We need to use gradient descent.
- We are now ready to make predictions.

$$f_{w^*,b^*}(X) = \frac{1}{1+e^{-(W^*X+b^*)}}$$

• Depending on how we define the probability threshold, we can classify the observations. In practice, the <u>choice of the threshold</u> could be different depending on the problem.

Logistic regression output for credit card default example

$$P(default|bal,inc) = \frac{1}{1 + e^{-(b + w_1(bal) + w_2(inc))}}$$

		Predictions (Decision boundary)		
		0 No Default	1 Default	
Actual	0 No Default	TN=1933	FP=3	
	1 Default	FN=44	TP=20	

Prof. Pedram Jahangiry 13

Part II Classification Performance Metrics

Confusion Matrix

		Predictions		
		0 negative	1 positive	
len	0 negative	TN	FP*	
Actual	1 positive	FN**	TP	

FP* Type I error FN** Type II eror

		predicted class			
		class 1	class 2	class 3	
actual class	class 1	True positives			
	class 2		True positives		
	class 3			True positives	

Accuracy, Precision, Recall and F1score

$$Accuracy = \frac{TN + TP}{TN + TP + FN + FP}$$

While **recall** expresses the ability to find all **relevant** instances in a dataset, **precision** expresses the proportion of the data points our model says was relevant were actually relevant.

$$Recall = \frac{TP}{TP + FN}$$

$$F1 Score = 2 * \frac{PR}{P+R}$$

F1 uses the **harmonic** mean instead of a simple average because it punishes extreme values.

ROC (Receiver Operating Characteristic)

		Predictions		
		0 negative	1 positive	
Actual	0 negative	TN	FP	False Positive Rate = $\frac{FP}{FP + TN}$
	1 positive	FN	TP	True Positive Rate = $\frac{TP}{TP + FN}$

\Rightarrow AUC

18

Some other classification metrics

True conditi		dition				
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True posit	uracy (ACC) = tive + Σ True negative otal population
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, $Power = \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	= <u>LR+</u> = <u>LR-</u>	2 · Precision · Recall Precision + Recall

Students' questions

- 1) Are we treating (classifying) $\hat{y} = 0.51$ and $\hat{y} = 0.99$ the same?
- 2) Does it make sense to have non-linear decision boundaries in logistic regression?
- 3) Is logistical regression useful for anything beyond probability prediction?
- 4) What do ROC and AUC tell us about our predictions?

