

Pagina 1 din 10

Subiect 1. Măsurători în spațiu!	Parţial	Punctaj
1. Barem subject 1		10
A. a) Pentru cazul clasic:	0,25	
$V_r = V_B - V_A$	0,25	
Rezultă:		
$v_r = \frac{1}{12}c \cong 0{,}083c$	0,25	
Pentru cazul relativist aplicăm legea lui Einstein de compunere a vitezelor		
$\vec{u}(u_x, u_y, u_z) = \vec{u}(v_A, 0, 0) \text{ si } \vec{v}(v_x, v_y, v_z) = \vec{v}(v_B, 0, 0) :$		
$u_{a} - v \qquad v_{b} - v_{p}$		
$u'_{x} = \frac{u_{x} - V}{1 - \frac{V}{c^{2}} \cdot u_{x}} = \frac{V_{A} - V_{B}}{1 - \frac{V_{A} \cdot V_{B}}{c^{2}}}$		
$1-\frac{1}{c^2}\cdot u_x$ $1-\frac{A}{c^2}$		
$\sqrt{\left(\right) ^{2}}$		
$u_{y} \cdot \sqrt{1-\left(\begin{array}{c} \mathbf{v} \\ - \end{array}\right)}$	0,50	
$u'_{y} = \frac{u_{y} \cdot \sqrt{1 - \left(\frac{\mathbf{v}}{c}\right)^{2}}}{1 - \frac{\mathbf{v}}{c^{2}} \cdot u_{x}} = 0$	0,50	
$1-\frac{V}{2}\cdot u_{x}$		1,50
<u> </u>		
$u'_{z} = \frac{u_{z} \cdot \sqrt{1 - \left(\frac{\mathbf{v}}{c}\right)^{2}}}{1 - \frac{\mathbf{v}}{c^{2}} \cdot u_{x}} = 0$		
$u_z \cdot \sqrt{1-\left(\frac{-}{c}\right)}$		
$u_z = \frac{1}{V} = 0$		
$1-\frac{1}{c^2}\cdot u_x$		
Deci:		
$u' = \int u'^2 + u'^2 + u'^2 = \left V_A - V_B \right $	0,25	
$u' = \sqrt{u'_{x}^{2} + u'_{y}^{2} + u'_{z}^{2}} = \frac{v_{A} - v_{B}}{1 - \frac{v_{A} \cdot v_{B}}{2}}$		
c-		
Rezultă:		
$u' = \frac{1}{6}c \cong 0.166c$	0,25	
$u = \frac{c = 0,100c}{6}$		
A. b) Pentru cazul clasic:	0,25	
$v_{r} = v_{A} + v_{B}$	0,23	
Rezultă:		
$v_r = \frac{17}{12}c \cong 1,416c$ (imposibil!)	0,25	
12		
Pentru cazul relativist aplicăm legea lui Einstein de compunere a vitezelor		
$\vec{u}(u_x, u_y, u_z) = \vec{u}(v_A, 0, 0) \text{ si } \vec{v}(v_x, v_y, v_z) = \vec{v}(-v_B, 0, 0)$:		
$u_{z} - v \qquad v_{A} + v_{D}$		1,50
$u'_{x} = \frac{u_{x} - V}{1 - \frac{V}{c^{2}} \cdot u_{x}} = \frac{V_{A} + V_{B}}{1 + \frac{V_{A} \cdot V_{B}}{c^{2}}}$		
$1-\frac{1}{c^2}\cdot u_x$ $1+\frac{A}{c^2}$	0.40	
	0,50	
$\sqrt{\left(\mathbf{v}\right)^2}$		
$u_{y} \cdot \sqrt{1 - \left(\frac{v}{c}\right)}$		
$u'_{y} = \frac{u_{y} \cdot \sqrt{1 - \left(\frac{\mathbf{v}}{c}\right)^{2}}}{1 - \frac{\mathbf{v}}{c^{2}} \cdot u_{x}} = 0$		
$1-\frac{\mathbf{v}}{c^2}\cdot u_{\mathbf{x}}$		
c ⁻]

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 2 din 10

Pagina 2 din 10		
$u'_{z} = \frac{u_{z} \cdot \sqrt{1 - \left(\frac{\mathbf{v}}{c}\right)^{2}}}{1 - \frac{\mathbf{v}}{c^{2}} \cdot u_{x}} = 0$		
Deci: $u' = \sqrt{u'_x^2 + u'_y^2 + u'_z^2} = \frac{V_A + V_B}{1 + \frac{V_A \cdot V_B}{c^2}}$	0,25	
Rezultă: $u' = \frac{17}{18}c \cong 0,944c$	0,25	
A. c) Pentru cazul clasic: $v_r = \sqrt{v_A^2 + v_B^2}$	0,25	
Rezultă: $v_r = \frac{\sqrt{145}}{12}c = 1,003c \text{ (imposibil!)}$	0,25	
Pentru cazul relativist aplicăm legea lui Einstein de compunere a vitezelor $\vec{u}\left(u_x, u_y, u_z\right) = \vec{u}(v_A, 0, 0) \text{ și } \vec{v}\left(v_x, v_y, v_z\right) = \vec{v}\left(0, v_B, 0\right):$ $u'_x = \frac{u_x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}}{1 - \frac{v}{c^2} \cdot u_y} = v_A \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}$ $u'_y = \frac{u_y - v}{1 - \frac{v}{c^2} \cdot u_y} = -v_B$ $u'_z = \frac{u_z \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}}{1 - \frac{v}{c^2} \cdot u_y} = 0$	0,50	1,50
Deci: $u' = \sqrt{u'_x^2 + u'_y^2 + u'_z^2} = \sqrt{v_A^2 + v_B^2 - \left(\frac{v_A \cdot v_B}{c}\right)^2}$	0,25	
Rezultă: $u' = \frac{\sqrt{109}}{12}c \cong 0,870c$	0,25	
A. d) Pentru cazul clasic: $v_{r} = \sqrt{v_{A}^{2} + v_{B}^{2} - 2v_{A} \cdot v_{B} \cdot \cos \alpha}$	0,25	
Rezultă: $v_r = \frac{\sqrt{145 - 72\sqrt{3}}}{12}c \approx 0,375c$	0,25	1,50

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe judeţ 15 februrie 2014

Barem

Pagina 3 din 10		_
Pentru cazul relativist aplicăm legea lui Einstein de compunere a vitezelor $\vec{u}(u_x, u_y, u_z) = \vec{u}(v_{Bx}, v_{By}, 0) = \vec{u}(v_{By} \cdot \cos \alpha, v_{By} \cdot \sin \alpha, 0)$ și $\vec{v}(v_x, v_y, v_z) = \vec{v}(v_{Ay}, 0, 0)$:		
$u'_{x} = \frac{u_{x} - v}{1 - \frac{v}{c^{2}} \cdot u_{x}} = \frac{v_{B} \cdot \cos \alpha - v_{A}}{1 - \frac{v_{A}}{c^{2}} \cdot v_{B} \cdot \cos \alpha}$ $u'_{y} = u_{y} \cdot \sqrt{1 - \left(\frac{v}{c}\right)^{2}} \cdot \frac{1}{1 - \frac{v}{c^{2}} \cdot u_{x}} = \frac{v_{B} \cdot \sin \alpha \cdot \sqrt{1 - \left(\frac{v_{A}}{c}\right)^{2}}}{1 - \frac{v_{A}}{c^{2}} \cdot v_{B} \cdot \cos \alpha}$	0,50	
$u'_{z} = \frac{u_{z} \cdot \sqrt{1 - \left(\frac{\mathbf{v}}{c}\right)^{2}}}{1 - \frac{\mathbf{v}}{c^{2}} \cdot u_{x}} = 0$		
Deci: $u' = \sqrt{u'_{x}^{2} + u'_{y}^{2} + u'_{z}^{2}} = \sqrt{\frac{v_{A}^{2} + v_{B}^{2} - 2v_{A} \cdot v_{B} \cdot \cos \alpha - \left(\frac{v_{A} \cdot v_{B} \cdot \sin \alpha}{c}\right)^{2}}{\left(1 - \frac{v_{A} \cdot v_{B} \cdot \cos \alpha}{c^{2}}\right)^{2}}}$	0,25	
Rezultă: $u' = \frac{\sqrt{17 - 9\sqrt{3}}}{4 - \sqrt{3}} \cdot \frac{2c\sqrt{2}}{3} \approx 0,494c$	0,25	
B. a) Perioada oscilațiilor pentru corpul de masă m_1 cunoscută este: $T_1 = 2\pi \sqrt{\frac{m_1}{k}}$	0,25	
După atașarea corpului de masă m_2 , perioada oscilațiilor sistemului este: $T_2=2\pi\sqrt{\frac{m_1+m_2}{k}}$	0,25	
Corpul de masă m_2 se determină din relația: $m_2 = m_1 \cdot \left[\left(\frac{T_2}{T_1} \right)^2 - 1 \right]$	0,50	1,50
Unde: $T_2 = T_1 \cdot (1+f)$	0,25	
Rezultă: $m_2 = m_1 \cdot f \cdot (f+2)$	0,25	
B. b) Conservarea energiei: $m_1 \cdot c^2 + \frac{k \cdot A^2}{2} = \frac{m_1 \cdot c^2}{\sqrt{1 - \left(\frac{\mathbf{v}}{c}\right)^2}} + \frac{k \cdot x^2}{2}$	0,25	

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 4 din 10

Perioada oscilațiilor corpului de masă m_1 în cazul relativist este:		
$T_{1}' = 4 \int_{0}^{A} \frac{dx}{v} = \int_{0}^{A} \frac{m_{1} \cdot c^{2} + \frac{k}{2} \cdot (A^{2} - x^{2})}{c \cdot \sqrt{\frac{k}{2} \cdot (A^{2} - x^{2}) \cdot \left[2m_{1} \cdot c^{2} + \frac{k}{2} \cdot (A^{2} - x^{2}) \right]}} \cdot dx$ unde:	0,25	
$\mathbf{v} = c \cdot \frac{\sqrt{\frac{k}{2} \cdot (A^2 - x^2) \cdot \left[2m_1 \cdot c^2 + \frac{k}{2} \cdot (A^2 - x^2) \right]}}{m_1 \cdot c^2 + \frac{k}{2} \cdot (A^2 - x^2)}; \ x = A \cdot \sin \varphi; \ dx = A \cdot \cos \varphi \cdot d\varphi$		1,50
Deci:		
$T_{1}' = \frac{4}{c} \cdot \sqrt{\frac{2}{k}} \cdot \int_{0}^{\pi/2} \frac{m_{1} \cdot c^{2} + \frac{k}{2} \cdot A^{2} \cdot \cos^{2} \varphi}{\sqrt{2m_{1} \cdot c^{2} + \frac{k}{2} \cdot A^{2} \cdot \cos^{2} \varphi}} \cdot d\varphi$	0,25	
Utilizând aproximația:		
$\sqrt{2m_1 \cdot c^2 + \frac{k}{2} \cdot A^2 \cdot \cos^2 \varphi} \cong \sqrt{2m_1 \cdot c^2} \cdot \left(1 + \frac{k}{8m_1 \cdot c^2} \cdot A^2 \cdot \cos^2 \varphi\right) \text{ pentru } c^{-4} \cong 0.$	0,50	
Obţinem:	0,50	
$T_1' = \frac{4}{c^2 \cdot \sqrt{m_1 \cdot k}} \cdot \int_0^{\pi/2} \left(m_1 \cdot c^2 + \frac{k}{2} \cdot A^2 \cdot \cos^2 \varphi \right) \cdot \left(1 - \frac{k}{8m_1 \cdot c^2} \cdot A^2 \cdot \cos^2 \varphi \right) \cdot d\varphi$		
Rezultă:		
$T_1' = 2\pi \sqrt{\frac{m_1}{k}} \cdot \left[1 + \frac{3}{16} \cdot \left(\frac{A}{c} \right)^2 \cdot \frac{k}{m_1} \right]$	0,25	
Oficiu		1

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 15 februrie 2014

Barem

Pagina 5 din 10

Pagina 5 din 10	T	ı
Subiect 2. Particule în câmpuri electrice și magnetice	Parţial	Punctaj
Barem subject 2		10
A. a) Aplicăm principiul al II-lea al mecanicii clasice:	0,25	
$m \cdot \vec{a} = -e \cdot \vec{E} - e \cdot \vec{v} \times \vec{B}$		
Proiectăm relația pe axele de coordonate: $m_1 a_1 = a_1 y_1 \cdot B$		
$m \cdot a_{x} = e \cdot \mathbf{v}_{y} \cdot B$	0,25	
$m \cdot a_{y} = e \cdot E - e \cdot v_{x} \cdot B$	0,23	
$m \cdot a_z = 0$		
Obţinem:		
$\mathbf{v}_{\mathbf{x}} = \frac{E}{B} - \frac{m}{e \cdot B} \cdot a_{\mathbf{y}}$		
$a_{x} = \frac{dv_{x}}{dt} = -\frac{m}{e \cdot B} \cdot \frac{da_{y}}{dt}$	0,25	
$\mathbf{v}_{y} = \frac{m \cdot a_{x}}{e \cdot B} = -\left(\frac{m}{e \cdot B}\right)^{2} \cdot \frac{\mathrm{d}a_{y}}{\mathrm{d}t}$		
Rezultă ecuația:		
$\frac{\mathrm{d}^2 \mathrm{v}_{\mathrm{y}}}{\mathrm{d}t^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot \mathrm{v}_{\mathrm{y}} = 0$	0,50	2,50
Cu soluția:		
$\mathbf{v}_{y} = A \cdot \sin \omega \cdot t = \frac{E}{B} \cdot \sin \frac{e \cdot B}{m} \cdot t$	0,25	
Derivând în raport cu timpul, obținem:		
$a_{y} = \omega \cdot A \cdot \cos \omega \cdot t = \frac{e \cdot E}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$	0,50	
$\mathbf{v}_{\mathbf{x}} = \frac{E}{B} - \frac{m}{e \cdot B} \cdot \frac{e \cdot E}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t = \frac{E}{B} \cdot \left(1 - \cos \frac{e \cdot B}{m} \cdot t\right)$		
În final:		
$\mathbf{v}_{x} = \frac{U}{d \cdot B} \cdot \left(1 - \cos \frac{e \cdot B}{m} \cdot t \right)$		
U . $e\cdot B$	0,50	
$\mathbf{v}_{y} = \frac{U}{d \cdot B} \cdot \sin \frac{e \cdot B}{m} \cdot t$		
$v_z = 0$		
A. b) Din expresia vitezei pe axa y obținem ecuația diferențială:		
$dy = \left(\frac{U}{d \cdot B} \cdot \sin \frac{e \cdot B}{m} \cdot t\right) \cdot dt$	0,50	
Cu soluția:		
$y = \frac{m \cdot U}{e \cdot d \cdot B^2} \left(1 - \cos \frac{e \cdot B}{m} \cdot t \right)$	0,50	
		2,00
Se obține astfel, relația: $v_x = \frac{eB}{m} y$	0,25	2,00

Aplicând teorema variației energiei cinetice între momentul inițial și un moment ulterior, se obține :	0.50	
$\frac{m}{2}\left(\mathbf{v}_{x}^{2}+\mathbf{v}_{y}^{2}\right)=eEy$	0,50	
	1	i .

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe judeţ 15 februrie 2014

Pagina 6 din 10

Rezultă: $v_{z} = \sqrt{\frac{e^{-}U}{m \cdot d}} \left(2 - \frac{e^{-}d \cdot B^{2}}{m \cdot U} \cdot y \right) \cdot y $ 0,25 B. a) Aplicâm teorema de variație a impulsului: $d(m \cdot \hat{\mathbf{v}}) = c \cdot \left(\hat{\mathbf{v}} \cdot \hat{\mathbf{B}} \right) dt$ unde: $m = \frac{m_{c}}{\sqrt{1 - \left(\frac{v}{c} \right)^{2}}} $ 0,25 Deoarece $ \hat{\mathbf{v}} $ este constant pentru particulele care se deplasează în câmp magnetic, obținem: $m \cdot \frac{d\hat{\mathbf{v}}}{dt} = e \cdot (\hat{\mathbf{v}} \times \hat{\mathbf{B}}) $ 0,25 Proiectâm relația pe axele de coordonate: $m \cdot \frac{d\hat{\mathbf{v}}}{dt} = e \cdot \hat{\mathbf{v}} \cdot \hat{\mathbf{B}} $ 1) 0,25 Derivâm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{d\hat{\mathbf{v}}'_{x}}{dt^{2}} + \left(\frac{e \cdot B}{m}\right)^{2} \cdot \mathbf{v}_{x} = 0$ 0,25 cu soluția: $v_{x} = A \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ 0,25 Înlocuim $\mathbf{v}_{x} = \frac{P}{m} \cdot \sin \frac{e^{-B}}{m} \cdot t$ în relația (1) și obținem: $v_{x} = \frac{P}{m} \cdot \sin \frac{e^{-B}}{m} \cdot t$ 1. Integrând, obținem relația $y = \frac{Am}{eB} \cos \omega t$ 2.50 Ecuațiile anterioare arată că traiectoria particulei este un are de cere cu raza $R = \frac{Am}{eB}$ 0,50 Pentru un unghi mic, avem: $\alpha_{B} \approx \frac{v_{x}}{e^{B}} \approx \frac{\ell}{R}$ Rezultă: $P = \frac{e^{-B \cdot \ell}}{\alpha_{a}}$ 0,25 B. b) Aplicâm teorema de variație a energiei: $W = W_{a} + e \cdot E \cdot y$ 0,25 Unde: $W = \sqrt{m_{b}^{2} \cdot c^{2} + p_{b}^{2} \cdot c^{2}}$ (la momentul înițial $t_{x} = 0$)	Pagina 6 din 10		
B. a) Aplicim teorema de variație a impulsului: $d\left(m \cdot \vec{v}\right) = e \cdot \left(\vec{v} \times \vec{B}\right) dt$ unde: $m = \frac{m_s}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$ 0,25 Deoarece $ \vec{v} $ este constant pentru particulele care se deplasează în câmp magnetic, obținem: $m \cdot \frac{\vec{w} \cdot \vec{v}}{dt} = e \cdot (\vec{v} \times \vec{B})$ 0,25 Proiectăm relația pe axele de coordonate: $m \cdot \frac{dv_s}{dt} = e \cdot v_s \cdot B \qquad (1)$ 0,25 $m \cdot \frac{dv_s}{dt} = e \cdot v_s \cdot B \qquad (2)$ Derivâm in rapport cu timpul relația (1) și inlocuind în (2) obținem ecuația: $\frac{d^2v_s}{dt^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot v_s = 0$ 0,25 cu soluția: $v_s = A \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega s$ 0,25 $x = \frac{Am}{eB} \sin \omega s$ 0,25 $x = \frac{Am}{eB} \cos \omega s$ Înlocuim $v_s = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ în relația (1) și obținem: $v_s = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $y_s = \frac{Am}{eB} \cos \omega s$ 0,50 $x = \frac{Am}{eB} \cos \omega s$ Ecuațiile anterioare arată că traiectoria particulei este un are de cerc cu raza $R = \frac{Am}{eB}$ 0,50 $x = \frac{e \cdot B \cdot \ell}{eB}$ 0,50 Pentru un unghi mic, avem: $\alpha_s \approx \frac{v_s}{v_s} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{a_s}$ 0,25 $y = \frac{e \cdot B \cdot \ell}{B \cdot k} = \frac{0}{a_s}$ 0,25 $y = \frac{2,00}{B \cdot k}$ Di Aplicâm teorema de variație a energiei: $w = \sqrt{m_s^2 \cdot c^2 \cdot e^2} \cdot (\text{la momentul } \ell \cdot \text{când particulai iese din câmp})$ 0,50	Rezultă:		
$d\left(m\cdot \vec{\mathbf{v}}\right) = e^{\cdot \left(\vec{\mathbf{v}} \cdot \vec{B}\right)} dt$ unde: $m = \frac{m_o}{\sqrt{1 - \left(\frac{\mathbf{v}}{c}\right)^2}}$ Deoarece $ \vec{\mathbf{v}} $ este constant pentru particulele care se deplasează în câmp magnetic, obținem: $m \cdot \frac{d\vec{\mathbf{v}}}{dt} = e \cdot (\vec{\mathbf{v}} \times \vec{B})$ 0,25 $m \cdot \frac{d\vec{\mathbf{v}}}{dt} = e \cdot \mathbf{v}_{\vec{\mathbf{v}}} \cdot \vec{B}$ (1) $m \cdot \frac{d\mathbf{v}_{\vec{\mathbf{v}}}}{dt} = e \cdot \mathbf{v}_{\vec{\mathbf{v}}} \cdot \vec{B}$ (2) $Derivâm în raport cu timpul relația (1) şi înlocuind în (2) obținem ecuația: \frac{d^2\mathbf{v}_{\vec{\mathbf{v}}}}{d^2\mathbf{v}_{\vec{\mathbf{v}}}} + \frac{e \cdot B}{m}^{-2} \cdot \mathbf{v}_{\vec{\mathbf{v}}} = 0 cu soluția: \mathbf{v}_{\vec{\mathbf{v}}} = \mathbf{A} \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t Integrând, obținem relația: \mathbf{x} = \frac{Am}{s} \sin \omega t 0,25 \mathbf{n} = \frac{Am}{s} \sin \omega t 1 note lația (1) şi obținem: \mathbf{v}_{\vec{\mathbf{v}}} = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t în relația (1) şi obținem: \mathbf{v}_{\vec{\mathbf{v}}} = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t în relația (1) şi obținem: \mathbf{v}_{\vec{\mathbf{v}}} = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t în relația (1) şi obținem: \mathbf{v}_{\vec{\mathbf{v}}} = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t în relația (1) şi obținem: \mathbf{v}_{\vec{\mathbf{v}}} = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t în relația (1) şi obținem: \mathbf{v}_{\vec{\mathbf{v}}} = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t în relația (1) şi obținem: \mathbf{v}_{\vec{\mathbf{v}}} = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t în relația (1) şi obținem: \mathbf{v}_{\vec{\mathbf{v}}} = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t în relația (1) şi obținem: \mathbf{v}_{\vec{\mathbf{v}}} = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t 0,50 Pentru un unghi mic, avem: \alpha_{\vec{\mathbf{n}}} \approx \frac{\mathbf{v}_{\vec{\mathbf{v}}}}{\mathbf{v}_{\vec{\mathbf{v}}}} \approx \frac{P}{R} 0,50 Pentru un unghi mic, avem: \alpha_{\vec{\mathbf{n}}} \approx \frac{\mathbf{v}_{\vec{\mathbf{v}}}}{\mathbf{v}_{\vec{\mathbf{v}}}} \approx \frac{P}{R} 0,50 Pentru un unghi mtocrema de variație a energici: \mathbf{w} = \mathbf{w}_{\vec{\mathbf{v}}} + e \cdot E \cdot \mathbf{y} 0,25 Unde: \mathbf{w} = \sqrt{m_0^2 \cdot e^2 \cdot P^2 \cdot e^2} (la momentul t când particula iese din câmp)$	$\mathbf{v}_{\mathbf{y}} = \sqrt{\frac{e \cdot U}{m \cdot d} \left(2 - \frac{e \cdot d \cdot B^2}{m \cdot U} \cdot \mathbf{y} \right) \cdot \mathbf{y}}$	0,25	
unde: $m = \frac{m_u}{\sqrt{1-\left(\frac{v}{c}\right)^2}}$ Decarece $ \vec{v} $ este constant pentru particulele care se deplasează în câmp magnetic, obținem: $m \cdot \frac{d\vec{v}}{dt} = e \cdot (\vec{v} \times \vec{B})$ Proiectăm relația pe axele de coordonate: $m \cdot \frac{d\vec{v}}{dt} = e \cdot v_y \cdot B \qquad (1)$ $m \cdot \frac{d\vec{v}}{dt} = e \cdot v_y \cdot B \qquad (2)$ Derivâm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{d^3 v_v}{dt^2} + \left(\frac{e \cdot B}{m}\right)^3 \cdot v_y = 0$ cu soluția: $v_x = A \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{s} \sin \omega t$ Înlocuim $v_x = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t \text{ in relația (1) și obținem:}$ $v_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \text{ in relația (1) și obținem:}$ $v_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \text{ in relația (1) și obținem:}$ $v_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \text{ in relația (1) și obținem:}$ Pentru un unghi mic, avem: $\alpha_{\beta} \approx \frac{v_y}{v_x} \approx \frac{\ell}{R}$ Rezultă: $P = \frac{e \cdot B \cdot \ell}{\alpha_{\beta}}$ 0,50 B. b) Aplicâm teorema de variație a energiei: $W = \sqrt{m_b^2 \cdot c^2 \cdot p^2 \cdot c^3} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,060	B. a) Aplicăm teorema de variație a impulsului:		
unde: $m = \frac{m_u}{\sqrt{1-\left(\frac{v}{c}\right)^2}}$ Decarece $ \vec{v} $ este constant pentru particulele care se deplasează în câmp magnetic, obținem: $m \cdot \frac{d\vec{v}}{dt} = e \cdot (\vec{v} \times \vec{B})$ Proiectăm relația pe axele de coordonate: $m \cdot \frac{d\vec{v}}{dt} = e \cdot v_y \cdot B \qquad (1)$ $m \cdot \frac{d\vec{v}}{dt} = e \cdot v_y \cdot B \qquad (2)$ Derivâm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{d^3 v_v}{dt^2} + \left(\frac{e \cdot B}{m}\right)^3 \cdot v_y = 0$ cu soluția: $v_x = A \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{s} \sin \omega t$ Înlocuim $v_x = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t \text{ in relația (1) și obținem:}$ $v_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \text{ in relația (1) și obținem:}$ $v_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \text{ in relația (1) și obținem:}$ $v_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \text{ in relația (1) și obținem:}$ Pentru un unghi mic, avem: $\alpha_{\beta} \approx \frac{v_y}{v_x} \approx \frac{\ell}{R}$ Rezultă: $P = \frac{e \cdot B \cdot \ell}{\alpha_{\beta}}$ 0,50 B. b) Aplicâm teorema de variație a energiei: $W = \sqrt{m_b^2 \cdot c^2 \cdot p^2 \cdot c^3} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,060	$d(m \cdot \vec{\mathbf{v}}) = e \cdot (\vec{\mathbf{v}} \times \vec{B}) dt$		
$m = \frac{m_0}{\sqrt{1 - \left(\frac{v}{V}\right)^2}}$ Deoarece $ \vec{v} $ este constant pentru particulele care se deplasează în câmp magnetic, obținem: $m \cdot \frac{d\vec{v}}{dt} = e \cdot (\hat{\mathbf{v}} \times \vec{B})$ Proiectăm relația pe axele de coordonate: $m \cdot \frac{dv_*}{dt} = e \cdot \mathbf{v}_* \cdot B \qquad (1)$ $m \cdot \frac{dv_*}{dt} = e \cdot \mathbf{v}_* \cdot B \qquad (2)$ Derivâm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{d^3 \mathbf{v}_*}{dt^3} + \left(\frac{e \cdot B}{m}\right)^2 \cdot \mathbf{v}_* = 0$ cu soluția: $\mathbf{v}_* = \mathbf{A} \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ $1 \cdot \mathbf{n} \cdot \mathbf$			
Deoarece $ \vec{\mathbf{v}} $ este constant pentru particulele care se deplasează în câmp magnetic, obținem: $m \cdot \frac{d\vec{\mathbf{v}}}{dt} = e \cdot (\vec{\mathbf{v}} \times \vec{B})$ Proiectâm relația pe axele de coordonate: $m \cdot \frac{d\mathbf{v}}{dt} = e \cdot \mathbf{v}_y \cdot B \qquad (1)$ $m \cdot \frac{d\mathbf{v}}{dt} = e \cdot \mathbf{v}_y \cdot B \qquad (2)$ Derivâm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{d^2\mathbf{v}_x}{dt^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot \mathbf{v}_x = 0$ cu soluția: $\mathbf{v}_x = \mathbf{A} \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{m} \sin \omega t$ $1 \cdot \mathbf{v}_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația (1) și obținem: $\mathbf{v}_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația y = $\frac{Am}{eB} \cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_g \approx \frac{\mathbf{v}_y}{\mathbf{v}_x} \approx \frac{\ell}{R}$ Rezultă: $P = \frac{e \cdot B \cdot \ell}{\alpha_n}$ Q.25 $\mathbf{B}. \mathbf{b}. \mathbf{b}. \mathbf{a}$ Dațicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^2 + P^2 \cdot c^2}$ (la momentul t când particulai iese din câmp)	222	0,25	
Deoarece $ \vec{\mathbf{v}} $ este constant pentru particulele care se deplasează în câmp magnetic, obținem: $m \cdot \frac{d\vec{\mathbf{v}}}{dt} = e \cdot (\vec{\mathbf{v}} \times \vec{B})$ Proiectâm relația pe axele de coordonate: $m \cdot \frac{d\mathbf{v}}{dt} = e \cdot \mathbf{v}_y \cdot B \qquad (1)$ $m \cdot \frac{d\mathbf{v}}{dt} = e \cdot \mathbf{v}_y \cdot B \qquad (2)$ Derivâm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{d^2\mathbf{v}_x}{dt^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot \mathbf{v}_x = 0$ cu soluția: $\mathbf{v}_x = \mathbf{A} \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{m} \sin \omega t$ $1 \cdot \mathbf{v}_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația (1) și obținem: $\mathbf{v}_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația y = $\frac{Am}{eB} \cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_g \approx \frac{\mathbf{v}_y}{\mathbf{v}_x} \approx \frac{\ell}{R}$ Rezultă: $P = \frac{e \cdot B \cdot \ell}{\alpha_n}$ Q.25 $\mathbf{B}. \mathbf{b}. \mathbf{b}. \mathbf{a}$ Dațicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^2 + P^2 \cdot c^2}$ (la momentul t când particulai iese din câmp)	$m = \frac{\sigma}{\sqrt{\left(v\right)^2}}$		
Deoarece $ \vec{\mathbf{v}} $ este constant pentru particulele care se deplasează în câmp magnetic, obținem: $m \cdot \frac{d\vec{\mathbf{v}}}{dt} = e \cdot (\vec{\mathbf{v}} \times \vec{B})$ Proiectâm relația pe axele de coordonate: $m \cdot \frac{d\mathbf{v}}{dt} = e \cdot \mathbf{v}_y \cdot B \qquad (1)$ $m \cdot \frac{d\mathbf{v}}{dt} = e \cdot \mathbf{v}_y \cdot B \qquad (2)$ Derivâm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{d^2\mathbf{v}_x}{dt^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot \mathbf{v}_x = 0$ cu soluția: $\mathbf{v}_x = \mathbf{A} \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{m} \sin \omega t$ $1 \cdot \mathbf{v}_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația (1) și obținem: $\mathbf{v}_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația y = $\frac{Am}{eB} \cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_g \approx \frac{\mathbf{v}_y}{\mathbf{v}_x} \approx \frac{\ell}{R}$ Rezultă: $P = \frac{e \cdot B \cdot \ell}{\alpha_n}$ Q.25 $\mathbf{B}. \mathbf{b}. \mathbf{b}. \mathbf{a}$ Dațicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^2 + P^2 \cdot c^2}$ (la momentul t când particulai iese din câmp)	$\sqrt{1-\left(\frac{v}{c}\right)}$		
$m \cdot \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} = e \cdot (\hat{\mathbf{v}} \times \hat{\mathbf{B}})$ Proiectâm relația pe axele de coordonate: $m \cdot \frac{\mathbf{d} \mathbf{v}}{\mathrm{d} t} = e \cdot \mathbf{v}_{\mathbf{v}} \cdot B \qquad (1)$ $m \cdot \frac{\mathbf{d} \mathbf{v}}{\mathrm{d} t} = e \cdot \mathbf{v}_{\mathbf{v}} \cdot B \qquad (2)$ Derivâm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{d^{2} \mathbf{v}_{\mathbf{x}}}{\mathrm{d} t^{2}} + \left(\frac{e \cdot B}{m}\right)^{2} \cdot \mathbf{v}_{\mathbf{x}} = 0$ cu soluția: $\mathbf{v}_{\mathbf{x}} = \mathbf{A} \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{e} \sin \omega t$ \mathbf{n} Înlocuim $\mathbf{v}_{\mathbf{x}} = \frac{Am}{e} \cdot \cos \frac{e \cdot B}{m} \cdot t$ în relația (1) și obținem: $\mathbf{v}_{\mathbf{y}} = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $\mathbf{v}_{\mathbf{y}} = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ în relația (1) și obținem: $\mathbf{v}_{\mathbf{y}} = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $\mathbf{v}_{\mathbf{y}} = \frac{Am}{e} \cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_{\mathbf{y}} \approx \frac{\mathbf{v}_{\mathbf{y}}}{\mathbf{v}_{\mathbf{x}}} \approx \frac{\ell}{R}$ Rezultă: $P = \frac{e \cdot B \cdot \ell}{\alpha_{\mathbf{y}}}$ Q.25 B. b) Aplicâm teorema de variație a energiei: $W = \mathbf{w}_{\mathbf{y}} + e \cdot E \cdot \mathbf{y}$ 2,00 Unde: $W = \sqrt{m_{\mathbf{y}}^{2} \cdot \mathbf{c}^{2} + p^{2} \cdot \mathbf{c}^{2}} \text{ (la momentul } t \text{ când particulai iese din câmp)}$			
Proiectâm relația pe axele de coordonate: $m \cdot \frac{d\mathbf{v}_{\star}}{dt} = e \cdot \mathbf{v}_{\star} \cdot \mathbf{B} \qquad 0,25$ $m \cdot \frac{d\mathbf{v}_{\star}}{dt} = e \cdot \mathbf{v}_{\star} \cdot \mathbf{B} \qquad 0,25$ $m \cdot \frac{d\mathbf{v}_{\star}}{dt} = -e \cdot \mathbf{v}_{\star} \cdot \mathbf{B} \qquad 0,25$ $m \cdot \frac{d\mathbf{v}_{\star}}{dt} = -e \cdot \mathbf{v}_{\star} \cdot \mathbf{B} \qquad 0,25$ Derivâm în raport cu timpul relația (1) și inlocuind în (2) obținem ecuația: $\frac{d^{2}\mathbf{v}_{\star}}{dt^{2}} + \left(\frac{e \cdot \mathbf{B}}{m}\right)^{2} \cdot \mathbf{v}_{\star} = 0$ cu soluția: $\mathbf{v}_{\star} = \mathbf{A} \cdot \cos \omega \cdot \mathbf{t} = \frac{P}{m} \cdot \cos \frac{e \cdot \mathbf{B}}{m} \cdot \mathbf{t}$ Integrând, obținem relația: $\mathbf{x} = \frac{Am}{eB} \sin \omega \mathbf{t}$ 0,25 $\mathbf{n} \cdot \mathbf{n} \cdot n$	Deoarece v este constant pentru particulele care se deplaseaza in camp magnetic, obținem:	0.07	
Proiectâm relația pe axele de coordonate: $m \cdot \frac{d\mathbf{v}_{+}}{dt} = e \cdot \mathbf{v}_{+} \cdot B \qquad (1)$ $m \cdot \frac{d\mathbf{v}_{+}}{dt} = e \cdot \mathbf{v}_{+} \cdot B \qquad (2)$ Derivăm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{d^{2}\mathbf{v}_{+}}{dt^{2}} + \left(\frac{e \cdot B}{m}\right)^{2} \cdot \mathbf{v}_{+} = 0$ cu soluția: $\mathbf{v}_{+} = \mathbf{A} \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ $\mathbf{v}_{+} = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t \text{ în relația (1) și obținem:}$ $\mathbf{v}_{+} = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația $y = \frac{Am}{eB} \cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ $\mathbf{e} = \frac{e \cdot B \cdot \ell}{\alpha_{R}}$ Rezultă: $P = \frac{e \cdot B \cdot \ell}{\alpha_{R}}$ $\mathbf{e} = e \cdot B \cdot $	$m \cdot \frac{d\vec{\mathbf{v}}}{d\vec{\mathbf{v}}} = e \cdot (\vec{\mathbf{v}} \times \vec{B})$	0,25	
$m \cdot \frac{d\mathbf{v}_x}{dt} = e \cdot \mathbf{v}_y \cdot B \qquad (1)$ $m \cdot \frac{d\mathbf{v}_y}{dt} = -e \cdot \mathbf{v}_x \cdot B \qquad (2)$ Derivâm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{d^2 \mathbf{v}_x}{dt^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot \mathbf{v}_x = 0$ cu soluția: $\mathbf{v}_x = \mathbf{A} \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ $\hat{\mathbf{n}}$ Înlocuim $\mathbf{v}_x = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t \mathbf{n}$ relația (1) și obținem: $\mathbf{v}_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \mathbf{n}$ Integrând, obținem relația: $\mathbf{v}_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \mathbf{n}$ Integrând, obținem relația: $\mathbf{v}_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Dentru un unghi mic, avem: $\alpha_B \approx \frac{\mathbf{v}_y}{\mathbf{v}_x} \approx \frac{\ell}{R}$ Rezultă: $P = \frac{e \cdot B \cdot \ell}{\alpha_B}$ $\mathbf{B}. \mathbf{b}$) Aplicâm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^2 + \rho^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$			
$m \cdot \frac{\mathrm{d} v_y}{\mathrm{d} t} = -e \cdot v_x \cdot B \qquad (2)$ Derivăm în raport cu timpul relația (1) şi înlocuind în (2) obținem ecuația: $\frac{\mathrm{d}^2 v_x}{\mathrm{d} t^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot v_x = 0$ $\mathrm{cu soluția:}$ $v_x = \mathbf{A} \cdot \cos \omega \cdot t = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Derivim un unghi mic, avem: $\alpha_B \approx \frac{v_y}{v_x} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot e^4 + p^2 \cdot e^2} \text{ (la momentul } t \text{ când particulai iese din câmp)}$ 0.50	1		
$m \cdot \frac{\mathrm{d} v_y}{\mathrm{d} t} = -e \cdot v_x \cdot B \qquad (2)$ Derivăm în raport cu timpul relația (1) şi înlocuind în (2) obținem ecuația: $\frac{\mathrm{d}^2 v_x}{\mathrm{d} t^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot v_x = 0$ $\mathrm{cu soluția:}$ $v_x = \mathbf{A} \cdot \cos \omega \cdot t = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Derivim un unghi mic, avem: $\alpha_B \approx \frac{v_y}{v_x} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot e^4 + p^2 \cdot e^2} \text{ (la momentul } t \text{ când particulai iese din câmp)}$ 0.50	$m \cdot \frac{\mathrm{dV}_{x}}{\mathrm{dV}_{x}} = e \cdot \mathrm{V}_{y} \cdot B \tag{1}$		
Derivăm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{\mathrm{d}^2 v_x}{\mathrm{d}t^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot v_x = 0$ cu soluția: $v_x = A \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ 0,25 $v_x = \frac{A}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ în relația (1) și obținem: $v_x = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ în relația (1) și obținem: $v_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ 0,50 Integrând, obținem relația $y = \frac{Am}{eB} \cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un are de cerc cu raza $R = \frac{Am}{eB}$ 0,50 Pentru un unghi mic, avem: $\alpha_B \approx \frac{v_y}{v_x} \approx \frac{\ell}{R}$ 0,25 $P = \frac{e \cdot B \cdot \ell}{\alpha_n}$ 0,25 $\frac{P}{m} \cdot \frac{e \cdot B \cdot \ell}{\alpha_n} \cdot \frac{e \cdot B \cdot \ell}{\alpha_$	u/	0,25	
Derivăm în raport cu timpul relația (1) și înlocuind în (2) obținem ecuația: $\frac{\mathrm{d}^2 v_x}{\mathrm{d}t^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot v_x = 0$ cu soluția: $v_x = A \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ 0,25 $v_x = \frac{A}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ în relația (1) și obținem: $v_x = \frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ în relația (1) și obținem: $v_y = -\frac{P}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ 0,50 Integrând, obținem relația $y = \frac{Am}{eB} \cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un are de cerc cu raza $R = \frac{Am}{eB}$ 0,50 Pentru un unghi mic, avem: $\alpha_B \approx \frac{v_y}{v_x} \approx \frac{\ell}{R}$ 0,25 $P = \frac{e \cdot B \cdot \ell}{\alpha_n}$ 0,25 $\frac{P}{m} \cdot \frac{e \cdot B \cdot \ell}{\alpha_n} \cdot \frac{e \cdot B \cdot \ell}{\alpha_$	$m \cdot \frac{\mathrm{dV}_{y}}{\mathrm{dV}_{y}} = -e \cdot \mathrm{V}_{z} \cdot B \qquad (2)$		
$\frac{\mathrm{d}^2 \mathrm{v}_x}{\mathrm{d}t^2} + \left(\frac{e \cdot B}{m}\right)^2 \cdot \mathrm{v}_x = 0$ cu soluția: $v_x = A \cdot \cos \omega \cdot t = \frac{P}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ $0,25$ $1 \cdot \int_{0}^{\infty} \frac{e \cdot B}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t \cdot \hat{v} \cdot v$	ui		
cu soluția: $v_x = A \cdot \cos \omega \cdot t = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ $0,25$ Înlocuim $v_x = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t \text{ în relația (1) și obținem:}$ $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația $y = \frac{Am}{eB} \cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_B \approx \frac{v_y}{v_x} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ 0,25 B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$			
cu soluția: $v_x = A \cdot \cos \omega \cdot t = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ $0,25$ Înlocuim $v_x = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t \text{ în relația (1) și obținem:}$ $v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația $y = \frac{Am}{eB} \cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_B \approx \frac{v_y}{v_x} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ 0,25 B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$	$\frac{d^2 v_x}{dx} + \left(\frac{e \cdot B}{e^2}\right)^2 \cdot v_x = 0$		
cu soluția: $v_x = A \cdot \cos \omega \cdot t = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația: $x = \frac{Am}{eB} \sin \omega t$ 0,25		0,25	2.50
Integrand, obtinem relația: $x = \frac{Am}{eB} \sin \omega t $ 0,25			2,30
Integrand, obtinem relația: $x = \frac{Am}{eB} \sin \omega t $ 0,25	$\mathbf{v}_{x} = \mathbf{A} \cdot \cos \omega \cdot t = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$		
$\widehat{\ln locuim} \ v_x = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t \ \widehat{\ln locuim} \ v_x = \frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \ \widehat{\ln locuim} \ v_y = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \ \widehat{\ln locuim} \ v_y = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ v_z = \frac{Am}{e} \cdot \sum_{e \in B} cos \omega t \ \widehat{\ln locuim} \ \ln loc$	Integrând, obținem relația:		
$\widehat{\ln} \operatorname{locuim} \ \mathbf{v}_{\mathbf{x}} = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t \ \widehat{\ln} \ \operatorname{relația} \ (1) \ \widehat{\$i} \ \operatorname{obținem:} \\ \mathbf{v}_{\mathbf{y}} = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t \\ \operatorname{Integrând, obținem relația} \ y = \frac{Am}{eB} \cos \omega t \\ \operatorname{Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza } R = \frac{Am}{eB} \\ \operatorname{Pentru un unghi mic, avem:} \ \alpha_B \approx \frac{\mathbf{v}_{\mathbf{y}}}{\mathbf{v}_{\mathbf{x}}} \approx \frac{\ell}{R} \\ \operatorname{Rezultă:} \\ p = \frac{e \cdot B \cdot \ell}{\alpha_B} \\ \mathbf{B. b) \ Aplicăm teorema de variație a energiei:} \\ W = W_0 + e \cdot E \cdot y \\ \mathbf{Unde:} \\ W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \ (\text{la momentul } t \ \text{când particula iese din câmp}) $ 2,00	$x = \frac{Am}{R} \sin \omega t$	0,25	
$v_{y} = -\frac{p}{m} \cdot \sin \frac{e \cdot B}{m} \cdot t$ Integrând, obținem relația $y = \frac{Am}{eB} \cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_{B} \approx \frac{v_{y}}{v_{x}} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_{B}}$ 0,50 B. b) Aplicăm teorema de variație a energiei: $W = W_{0} + e \cdot E \cdot y$ Unde: $W = \sqrt{m_{0}^{2} \cdot c^{4} + p^{2} \cdot c^{2}} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,00			
Integrând, obținem relația $y = \frac{Am}{eB}\cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_B \approx \frac{V_y}{V_x} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ 0,50 B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,00	Înlocuim $v_x = \frac{p}{m} \cdot \cos \frac{e \cdot B}{m} \cdot t$ în relația (1) și obținem:		
Integrând, obținem relația $y = \frac{Am}{eB}\cos \omega t$ Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_B \approx \frac{V_y}{V_x} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ 0,50 B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,00	$v = -\frac{p}{\sin \frac{e \cdot B}{e}} \cdot t$	0,50	
Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_B \approx \frac{V_y}{V_x} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ 0,25 B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,00			
Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{eB}$ Pentru un unghi mic, avem: $\alpha_B \approx \frac{V_y}{V_x} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ 0,25 B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,00	Integrând, obținem relația $y = \frac{Am}{R} \cos \omega t$		
Pentru un unghi mic, avem: $\alpha_B \approx \frac{\mathbf{v}_y}{\mathbf{v}_x} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,00	ев		
Pentru un unghi mic, avem: $\alpha_B \approx \frac{\mathbf{v}_y}{\mathbf{v}_x} \approx \frac{\ell}{R}$ Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,00	Ecuațiile anterioare arată că traiectoria particulei este un arc de cerc cu raza $R = \frac{Am}{a^{D}}$		
Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ 0,25 B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ 0,25 Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2}$ (la momentul t când particula iese din câmp) 0,50		0,50	
Rezultă: $p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ 0,25 B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ 0,25 Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2}$ (la momentul t când particula iese din câmp) 0,50	Pentru un unghi mic, avem: $\alpha_B \approx \frac{v_y}{v_y} \approx \frac{\varepsilon}{R}$		
$p = \frac{e \cdot B \cdot \ell}{\alpha_B}$ B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,00			
B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ 0,25 Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2}$ (la momentul t când particula iese din câmp) 0,50		0.25	
B. b) Aplicăm teorema de variație a energiei: $W = W_0 + e \cdot E \cdot y$ 0,25 Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2}$ (la momentul t când particula iese din câmp) 0,50	$p = \frac{c B c}{\alpha}$	0,23	
$W = W_0 + e \cdot E \cdot y$ Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2} \text{ (la momentul } t \text{ când particula iese din câmp)}$ 2,00			
Unde: $W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2}$ (la momentul t când particula iese din câmp) 0,50		0,25	
$W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2}$ (la momentul <i>t</i> când particula iese din câmp) 0,50			• • •
$W_0 = \sqrt{m_0^2 \cdot c^4 + p_0^2 \cdot c^2} \text{(la momentul inițial } t_0 = 0 \text{)}$	$W = \sqrt{m_0^2 \cdot c^4 + p^2 \cdot c^2}$ (la momentul t când particula iese din câmp)	0,50	2,00
	$W_0 = \sqrt{m_0^2 \cdot c^4 + p_0^2 \cdot c^2} \text{(la momentul inițial } t_0 = 0\text{)}$		

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 7 din 10

Tar: $p = \sqrt{p_x^2 + p_y^2} = \sqrt{p_0^2 + p_y^2}$	0,25	
Dar: $tg \alpha_{\rm E} \cong \alpha_{\rm E} = \frac{p_{\rm y}}{p_{\rm x}} = \frac{p_{\rm y}}{p_{\rm 0}}$	0,25	
Calculăm: $W^{2} - W_{0}^{2} = (p^{2} - p_{0}^{2}) \cdot c^{2} = p_{y}^{2} \cdot c^{2} = \alpha_{E}^{2} \cdot p_{0}^{2} \cdot c^{2}$	0,25	
Rezultă: $W_0 = \frac{\alpha_E^2 \cdot p_0^2 \cdot c^2 - e^2 \cdot E^2 \cdot y^2}{2e \cdot E \cdot y}$	0,50	
Oficiu		1

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe judeţ

15 februrie 2014 Barem

Subject 3. Anemometro Doppler ou laser Barren subject 3 10 10 10 10 10 10 10 10 10 1	Pagina 8 din 10		
Barem subject 3	-	Parțial	Punctaj
Deci: $AB = \frac{2D}{\cos\theta}$ Rezultā: $AB = 1,0038 \equiv 1 mm$ $A \Rightarrow 0$ $Ab \Rightarrow 0$ Rezultā: $AB = 1,0038 \equiv 1 mm$ $Ab \Rightarrow 0$ Rectorii de undā sunt: $k_i = (k \cos\theta) \cdot \vec{i} + (k \sin\theta) \cdot \vec{j}$ $\vec{k}_i = (k \cos\theta) \cdot \vec{i} - (k \sin\theta) \cdot \vec{j}$ unde $k = n \cdot \frac{2\pi}{\lambda_0}$ $\vec{k}_i = (k \cos\theta) \cdot \vec{i} - (k \sin\theta) \cdot \vec{j}$ unde $k = n \cdot \frac{2\pi}{\lambda_0}$ $\vec{k}_i = (k \cos\theta) \cdot \vec{k} \cdot \vec{OM}$ $\Phi_i(M) = \Phi_i(O) + \vec{k}_i \cdot \vec{OM}$ $\Phi_i(M) = \Phi_i(M) + \Phi_i(M)$ $\Phi_i(M) = \Phi_i(M)$ $\Phi_i($	2. Barem subject 3		
Rezultā: $AB = 1,0038 \equiv 1 mm$ $A. b)$ Metoda I Vectorii de undā sunt: $\vec{k}_i = (k \cdot \cos \theta) \cdot \vec{i} + (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_j = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ unde $k = n \cdot \frac{2\pi}{\lambda_0}$ Fazele celor două unde în M (x,y,z) sunt: $\Phi_1(M) = \Phi_1(O) + \vec{k}_1 \cdot OM$ $\Phi_2(M) = \Phi_2(O) + \vec{k}_2 \cdot OM$ Oin enunț $\Phi_1(O) = \Phi_2(O)$, deci: $\Delta \Phi(M) = (\vec{k}_1 - \vec{k}_2) \cdot OM = (2k \cdot \sin \theta) \cdot (x \cdot \vec{i} + y \cdot \vec{j} + z \cdot \vec{k}) \cdot \vec{j} = \frac{4\pi \cdot n}{\lambda_0} \cdot y \cdot \sin \theta$, ar diferența de drum cerută este: $\delta = \frac{\lambda_0 \cdot \Delta \Phi}{2\pi} = 2n \cdot y \cdot \sin \theta$ Metoda 2 Din figura alăturată se observă $(OI - \text{suprafață de midă})$: $(\delta) = (OM) - (IM) = n \cdot (OM - IM)$ $OM = \frac{y}{\sin \theta}$ ii $IM = OM \cdot \cos 2\theta = \frac{y}{\sin \theta} \cdot \cos 2\theta$ Deci: $\delta = n \cdot (\frac{y}{\sin \theta} - \frac{y \cdot \cos 2\theta}{\sin \theta}) = 2n \cdot y \cdot \sin \theta$	$\cos\theta = \frac{2D}{AB}$	0,50	1,00
$AB = 1,0038 \cong 1 \ mm$ $Ab \text{ Metoda } 1$ $\text{Vectorii de undă sunt:}$ $\vec{k}_1 = (k \cdot \cos \theta) \cdot \vec{i} + (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_3 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$ $\vec{k}_4 = (k \cdot \cos \theta) \cdot \vec{j} - (k \cdot \cos \theta) \cdot \vec{j}$	Deci: $AB = \frac{2D}{\cos \theta}$	0,25	-
Metoda 1 Vectorii de undă sunt: $\vec{k}_1 = (k \cdot \cos \theta) \cdot \vec{i} + (k \cdot \sin \theta) \cdot \vec{j}$ $\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ unde $k = n \cdot \frac{2\pi}{\lambda_0}$ Fazele celor două unde în $M(x,y,z)$ sunt: $\Phi_1(M) = \Phi_1(O) + \vec{k}_1 \cdot \overrightarrow{OM}$ $\Phi_2(M) = \Phi_2(O) + \vec{k}_2 \cdot \overrightarrow{OM}$ Oin enunț $\Phi_1(O) = \Phi_2(O)$, deci: $\Delta \Phi(M) = (\vec{k}_1 - \vec{k}_2) \cdot \overrightarrow{OM} = (2k \cdot \sin \theta) \cdot (x \cdot \vec{i} + y \cdot \vec{j} + z \cdot \vec{k}) \cdot \vec{j} = \frac{4\pi \cdot n}{\lambda_0} \cdot y \cdot \sin \theta$, ar diferența de drum cerută este: $\delta = \frac{\lambda_0 \cdot \Delta \Phi}{2\pi} = 2n \cdot y \cdot \sin \theta$ Metoda 2 Din figura alăturată se observă (OI – suprafață de undă): $(\delta) = (OM) - (IM) = n \cdot (OM - IM)$ $OM = \frac{y}{\sin \theta}$ ii $IM = OM \cdot \cos 2\theta = \frac{y}{\sin \theta} \cdot \cos 2\theta$ Deci: $\delta = n \cdot (\frac{y}{\sin \theta} - \frac{y \cdot \cos 2\theta}{\sin \theta}) = 2n \cdot y \cdot \sin \theta$	Rezultă: $AB = 1,0038 \cong 1 mm$	0,25	
Din figura alăturată se observă (OI – suprafață de andă): $(\delta) = (OM) - (IM) = n \cdot (OM - IM)$ $OM = \frac{y}{\sin \theta}$ Di $IM = OM \cdot \cos 2\theta = \frac{y}{\sin \theta} \cdot \cos 2\theta$ Deci: $\delta = n \cdot \left(\frac{y}{\sin \theta} - \frac{y \cdot \cos 2\theta}{\sin \theta}\right) = 2n \cdot y \cdot \sin \theta$	$\vec{k}_2 = (k \cdot \cos \theta) \cdot \vec{i} - (k \cdot \sin \theta) \cdot \vec{j}$ unde $k = n \cdot \frac{\lambda_0}{\lambda_0}$ Fazele celor două unde în M (x, y, z) sunt: $\Phi_1(M) = \Phi_1(O) + \vec{k}_1 \cdot \overrightarrow{OM}$ $\Phi_2(M) = \Phi_2(O) + \vec{k}_2 \cdot \overrightarrow{OM}$ Din enunț $\Phi_1(O) = \Phi_2(O)$, deci: $\Delta \Phi(M) = (\vec{k}_1 - \vec{k}_2) \cdot \overrightarrow{OM} = (2k \cdot \sin \theta) \cdot (x \cdot \vec{i} + y \cdot \vec{j} + z \cdot \vec{k}) \cdot \vec{j} = \frac{4\pi \cdot n}{\lambda_0} \cdot y \cdot \sin \theta$, iar diferența de drum cerută este: $\delta = \frac{\lambda_0 \cdot \Delta \Phi}{2\pi} = 2n \cdot y \cdot \sin \theta$	0,50	1,00
	Din figura alăturată se observă (OI – suprafață de undă): $(\delta) = (OM) - (IM) = n \cdot (OM - IM)$ $OM = \frac{y}{\sin \theta}$ şi $IM = OM \cdot \cos 2\theta = \frac{y}{\sin \theta} \cdot \cos 2\theta$ Deci:	0,50	
(a) Condition de obtinere a maximelor este:	A. c) Condiția de obținere a maximelor este:	0,25	1,00

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 9 din 10

Pagina 9 din 10		
$2n \cdot y \cdot \sin \theta = k \cdot \lambda_0$		_
Deci coordonata maximului de ordin k este:		
$y_{k,\max} = \frac{k \cdot \lambda_0}{2n \cdot \sin \theta}$		
$2n \cdot \sin \theta$ Rezultă că interfranja este:		
$i = y_{k+1} - y_k = \frac{\lambda_0}{2n \cdot \sin \theta}$; $i = 2,24 \ \mu \text{m}$	0,25	
Numărul de maxime care se observă este:		
$N = \frac{AB}{i} + 1$; $N = 447$ maxime	0,50	
A. d) Viteza cu care curge fluidul este:		
$v = \frac{i}{T}$	0,75	
Rezultă:		1,00
$v = 44,8 \cdot 10^{-6} \frac{m}{s}$ B. a) Alegem următoarele sisteme de referință: S (x, y, z, t) legat de receptor (considerat fix) și	0,25	
B. a) Alegem următoarele sisteme de referință: S (x, y, z, t) legat de receptor (considerat fix) și S' (x', y', z', t') legat de sursă (se deplasează cu viteza v spre receptor).		
Introducem transformările Lorentz în condiția de invarianță a fazei:	0,25	
$\omega_{\text{Receptor}} \cdot \left(t + \frac{x}{c} \right) = \omega_{\text{Surså}} \cdot \left(t' + \frac{x'}{c} \right)$		
şi obţinem: $v \cdot \left(t + \frac{x}{c}\right) = v_0 \cdot \left[\frac{t + \frac{v}{c^2} \cdot x}{\sqrt{1 - \left(\frac{v}{c}\right)^2} + \frac{x + v \cdot t}{c \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}}\right]$	0,25	0,75
Rezultă: $v = v_0 \sqrt{\frac{c + v}{c - v}}$	0,25	
$\sqrt{c-v}$ B. b) Frecvența recepționată de receptor depinde de viteza relativă a sursei față de receptor (în ambele situații este aceeași). Vom obține același rezultat ca și la punctul (a).	0,25	0,25
B. c) Din relația:		
$v \cdot \left(t + \frac{x}{c}\right) = v_0 \cdot \left[t + \frac{x + \left(v \cdot \cos \theta\right) \cdot t}{c}\right]$ cu:	0,50	
$\frac{x}{c} \to 0$		1,00
Rezultă:		
$v = v_0 \left(1 + \frac{\mathbf{v}}{c} \cdot \cos \theta \right)$	0,50	
B. d) În acest caz	0,50	1,00

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 10 din 10

$v' = v_0 \cdot \left(1 - \frac{u}{c} \cdot \cos \theta\right)$		
$v_d = v \cdot \left(1 + \frac{u}{c} \cdot \cos \theta' \right)$		
unde v' este frecvența radiației reflectate pe particula mobilă, iar v frecvența recepționată de		
detector. De aici, după neglijarea termenilor de ordinul 2 în u/c :		
$v_{d} = v_{0} \cdot \left(1 - \frac{u}{c} \cdot \cos \theta\right) \cdot \left(1 + \frac{u}{c} \cdot \cos \theta'\right) \approx v_{0} \cdot \left[1 + \frac{u}{c} \cdot \left(\cos \theta' - \cos \theta\right)\right]$		
Deplasarea Doppler, va fi:		
$\Delta V_D = V_d - V_0 = V_0 \cdot \frac{u}{c} \cdot \left(\cos\theta' - \cos\theta\right) = n \cdot \frac{u}{\lambda_0} \cdot \left(\cos\theta' - \cos\theta\right)$	0,50	
B. e) Deplasarea Doppler este maximă dacă $\theta' = 180^{\circ}$ (radiația este reflectată în sens opus celei		
incidente) și $\theta = 0^{\circ}$ (radiația cade pe direcția mișcării particulei). În acest caz:	0.25	
$\left \Delta V_{\text{\tiny D,max}}\right = \frac{2 \cdot v_{\text{\tiny 0}} \cdot u}{c} = \frac{2n \cdot u}{\lambda_{\text{\tiny 0}}}$	0,25	
şi		1.00
$\varepsilon = \frac{\left \Delta V_{\rm D,max}\right }{V_0} = \frac{2u}{c}$	0,25	1,00
Observăm că ε are ordinul de mărime 10^{-13} , dar având în vedere că frecvența radiației vizibile este		
de ordinul 10 ¹⁵ Hz, rezultă o deplasare de ordin de mărime 10 ² Hz, de care trebuie să se țină seama	0,50	
în anemometria laser.		
Oficiu		1

Barem propus de: Prof. Liviu Arici, Colegiul Național "Nicolae Bălcescu" Brăila Prof. Corina Dobrescu, Colegiul Național de Informatică "Tudor Vianu"București Prof. Gabriel Florian, Colegiul Național "Carol I" Craiova Prof. Victor Stoica, Inspectoratul Școlar al Municipiului București

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.