Deep learning

9.1. Looking at parameters

François Fleuret
https://fleuret.org/dlc/

Understanding what is happening in a deep architectures after training is complex and the tools we have at our disposal are limited.

In the case of convolutional feed-forward networks, we can look at

- the network's parameters, filters as images,
- internal activations on a single sample as images,
- derivatives of the response(s) w.r.t. the input,
- maximum-response synthetic samples,
- adversarial samples.

We can also look at distributions of activations on a population of samples at different stages in a model.

Hidden units of a perceptron

Given a one-hidden layer fully connected network $\mathbb{R}^2 \to \mathbb{R}^2$

```
nb_hidden = 20
model = nn.Sequential(
    nn.Linear(2, nb_hidden),
    nn.ReLU(),
    nn.Linear(nb_hidden, 2)
)
```

```
Given a one-hidden layer fully connected network \mathbb{R}^2 	o \mathbb{R}^2
```

```
nb_hidden = 20
model = nn.Sequential(
    nn.Linear(2, nb_hidden),
    nn.ReLU(),
    nn.Linear(nb_hidden, 2)
)
```

we can visit the parameters (w, b) of each hidden units with

```
for k in range(model[0].weight.size(0)):
    w = model[0].weight[k]
    b = model[0].bias[k]
```

and draw for each the line

$$\{x: w \cdot x + b = 0\}.$$

Given a one-hidden layer fully connected network $\mathbb{R}^2 \to \mathbb{R}^2$

```
nb_hidden = 20
model = nn.Sequential(
    nn.Linear(2, nb_hidden),
    nn.ReLU(),
    nn.Linear(nb_hidden, 2)
)
```

we can visit the parameters (w, b) of each hidden units with

```
for k in range(model[0].weight.size(0)):
    w = model[0].weight[k]
    b = model[0].bias[k]
```

and draw for each the line

$$\{x: w \cdot x + b = 0\}.$$

During training, these separations get organized so that their combination partitions properly the signal space.

Iteration 1

Iteration 4

Iteration 7

Iteration 10

Iteration 16

Iteration 34

Iteration 77

Iteration 100

Iteration 703

Iteration 1407

Iteration 2789

Iteration 9999

Iteration 1

Iteration 4

Iteration 7

Iteration 10

Iteration 16

Iteration 34

Iteration 100

Iteration 272

Iteration 556

Iteration 2222

Iteration 9999

Convnet filters

A similar analysis is complicated to conduct with real-life networks given the high dimension of the signal.

The simplest approach for convnets consists of looking at the filters as images.

While it is quite reasonable in the first layer, since the filters are indeed consistent with the image input, it is far less so in the subsequent layers. LeNet's first convolutional layer (1 \rightarrow 32), all filters

周示器是通過洗過數據三段這段時間**可是似识现识似更以**對為這種前等發

AlexNet's first convolutional layer (3 \rightarrow 64), first 20 filters out of 64

AlexNet's first convolutional layer (3 \rightarrow 64), first 20 filters out of 64

or as RGB images

AlexNet's second convolutional layer (64 \rightarrow 192). First 15 channels (out of 64) of the first 20 filters (out of 192).

