

Air pollution in Africa is dominated by non-industrial sources

Mass concentrations of fine particles ($PM_{2.5}$) in Africa comparable to other hotspots

[van Donkelaar et al., 2015]

Sources of PM_{2.5} mostly from Saharan dust and seasonal open burning of biomass

Unique mix of anthropogenic inefficient combustion sources

Anthropogenic emissions diffuse, but similar in magnitude to emissions from open fires

NMVOCs Emissions for 2006 from DICE-Africa

Africa is poised for rapid growth

Most populous megacities will be in Africa in 2100

[Both maps from www.visualcapitalist.com]

Mix of energy options will determine future air quality

Economic development less certain

Solid fuels like charcoal are still dominant energy sources

Charcoal production and use is increasing by 7% per year, as alternate options like LPG are costly, fluctuate in cost, and supplies are unreliable

Charcoal production, transport and use emissions for 2014

Charcoal production hotspots

Charcoal industry emissions for Africa 2014 may double by 2030

CH₄ emissions, specifically, may outcompete those from open fires in West Africa by 2025

Investment in fossil fuels, despite climate and health impacts

2030 emissions: all vehicles + power plants (including powerships)

Premature deaths due to future fossil fuel use:
GEOS-Chem PM_{2.5} and Vodonos et al. (2018)

concentration-response curve

Total premature deaths in Africa: 48,000

Routine monitoring of air quality is sparse

Maps from OpenAQ.org (28 March 2021)

Not all reference monitor data is publicly available and is often susceptible to quality control issues US Embassy and research institution sites being established in many locations Deployment of low-cost sensors is helping to fill this gap, but require calibration and validation

Reliant on satellite observations and models

Most space-based instruments provide complete coverage once per day

Already evidence of air quality degradation in populous cities

Trends in NO_2 greater than those in HCHO. Heading toward VOC-limited ozone formation? Trends in NH_3 possibly from agriculture and burning solid fuels \rightarrow implications for N mobilization

Derive and constrain emissions, assess bottom-up inventories

Satellite-derived isoprene emissions from Ozone Monitoring Instrument formaldehyde (HCHO)

Many other applications: lightning NO_x , biomass burning, sources of NO_x , SO_x , and NH_3 Requires surface observations to evaluate satellite observations and derived products

Characterize sources and conditions that lead to severe air pollution

10¹⁶ molecules cm⁻²

Remote and theoretical constraints on <u>sources</u> (open fires, natural gas leakage and flaring) and <u>dynamics</u> (natural inversion) that lead to severe ozone pollution in Nigeria

Seasonal open fires CO + fires NO₂ DJF DJF NO₂ 1.5 1.8 2.1 2.4 2.7 3.0 0 1 2 3 4 10¹⁸ molecules cm⁻²

Anthropogenic Volatile Organic Compounds HCHO Methane (CH₄) Glyoxal Output DJF 1.5 2.0 1725 1750 1775 0 2.5 5.0 7.5 10.0

ppbv

Seasonal average MDA8 ozone [ppbv] from GEOS-Chem:

MDA8:

Maximum daily average 8-hour surface ozone

Impact of sources exacerbated by very stagnant natural inversion induced by warm Harmattan winds.

[Marais et al., 2014]

10¹⁴ molecules cm⁻²

Field campaigns are vital, but challenging, costly and high-risk

Assess model chemistry mechanisms during AMMA

Others aircraft campaigns:

DECAFE, DACCIWA, CAFÉ-Africa, ATom, ORACLES, IAGOS

Use historical flux measurements (REA) from EXPRESSO and SAFARI to arbitrate

[Marais et al., 2014]

What's on the Horizon?

- **Satellites**: Ongoing launches of high-cost instruments by NOAA, NASA, ESA, CNSA and lower-cost instruments by a range of players
- Health: Improved monitoring of aerosols with the NASA MAIA mission (2022 launch)
- Surface monitors: Increased deployment of low-cost sensors
- Models: Enhanced modelling tools that better capture local conditions
- Local capacity: Growing capacity at local institutes in Rwanda, Nigeria, Ghana, Kenya, South Africa, Sierra Leone
- International interest: Heightened interest in air quality in Africa by international organizations. To name a few: UCL, Columbia, NCAR, York, Oxford, HEI, NCAR, KIT, SEI, CNRS and so on.

Acknowledgements

Marais research group members:

Karn Vohra, Alfred Bockarie

Collaborators:

D. J. Jacob, L. J. Mickley, C. Wiedinmyer, K. Chance, L. Schwartz, C. Reeves, A. Guenther, D. Millet, J. Murphy, B. Sauvage, C. Lerot, K. Wecht, R. Silvern, A. Vodonos, R. MacKenzie, T. P. Kurosu, L. Zhang