Organização e Arquitetura de Computadores II

Memórias Cache Introdução

Capítulo 2, 6 do Jean-Loup Baer Capítulo 5 do Monteiro Capítulo 4 do Stallings Capítulo 5 do Hennessy e Patterson Capítulo 7 do Patterson e Hennessy

Introdução a Caches

Funcionalidade

- Área de memória rápida e com informações dinâmicas
- Cache só pode ter parte dos dados do nível mais abaixo
 - Tamanho menor

Problemas

- Como identificar se o dado procurado está na cache?
- Se estiver, como acessar de forma rápida?
- Se n\u00e3o estiver, como buscar eficientemente de n\u00edveis inferiores?
- Qual dado tirar da cache para colocar o novo dado?

Processador não sabe qual memória física tem o dado

 Gera apenas endereços e a hierarquia se encarrega de acessar a informação endereçada

Mapeamento de Endereços em Memória Cache

Como fazer para pesquisar um dado na cache?

- Fazer cache com todos endereços não faz sentido
- Efetuar varredura sequencial na cache leva muito tempo

Solução

- Fazer mapeamento de endereços

Objetivo

- Relacionar informações (dados e instruções) da memória principal com posições da cache
- Formas de mapeamento de memórias cache
 - Direto
 - Associativo
 - Conjunto associativo

Estrutura Cache/MP

Memória Cache

linha tag bloco 0 C-1 tamanho do bloco (k palavras)

Memória Principal

*Fig 4.4, Stallings

Leitura da Cache

*Fig 4.5, Stallings

Índice

- 1. Mapeamento de Endereços em Memória Cache
 - 1.1 Mapeamento Direto
 - 1.2 Mapeamento Associativo
 - 1.3 Mapeamento Conjunto Associativo

Introdução ao Mapeamento Direto

Forma mais simples de mapeamento

- Posição na cache depende do endereço da palavra na memória principal (MP)
 - Cada palavra possui uma posição fixa
- Grupo de palavras mapeado na mesma posição da cache

Exemplo

- Cache de 4 posições e MP de 32 endereços (palavra de 8 bits)
- Cada posição da cache tem 1 de 8 posições da MP
- Endereço obtido pelo resto da divisão inteira do número de posições da cache
 - Mapeamento utilizando os dois bits menos significativos do endereço

Esquema de Mapeamento Direto

- TAG (rótulo) para cada posição da cache → identifica qual das palavras está na cache
- Bit de validade → posição da cache está ocupada ou contém lixo
- Poderiam ser usados os bits mais significativos do endereçamento ao invés dos bits menos significativos? Qual a consequência?

Bit de Validade	<u>Taq</u>	<u>Dado</u>
1	001	00110110
0		
0		
1	000	11100011

Acesso a Cache com Mapeamento Direto

Passos para um acesso

- Calcular o resto da divisão inteira do endereço pelo número de posições da cache → Ex. usar os bits menos significativos do endereço
- 2. Se bit de validade da posição for válido

Verificar Tag

Senão

Acusar miss

Ir para 4

3. Se Tag diferente de endereço

Acusar miss

Ir para 4

Senão

Ler posição (hit)

Ir para 7

- 4. Buscar dado no nível inferior
- 5. Colocar na posição
- 6. Efetuar leitura
- 7. Fim

Mapeamento Direto – Divisão de bits no registrador de endereçamento

- Exemplo da divisão de blocos em uma cache com 1024 (2¹⁰) linhas e bloco com 4 palavras de 32 bits
 - Bit de validade e Tag
 - Transferência de blocos entre níveis de memória

Qual a vantagem de utilizar blocos ao invés de palavras?

Mapeamento Direto - Exercícios

1. Considerando um espaço de endereçamento de 1 Giga. Como fica a divisão de bits para uma cache de 2048 linhas que trabalha com blocos de 8 palavras?

End	dereço de 30 bits (1	Giga)
16 (Tag)	11 (Linha)	3 (Palavra)

2. Quanto tem efetivamente de dados nessa cache, considerando palavras de 32 bits?

Mapeamento Direto - Conclusões e Questões

Vantagens do mapeamento direto

- Simplicidade / Velocidade
 - Hardware barato
 - Procura simples (posição fixa)
 - Não existe escolha da vítima (é dada pelo módulo)

Desvantagens do mapeamento direto

 Pode ter mau aproveitamento das posições da cache (dependendo dos endereços gerados)

Exercícios

- 1. (POSCOMP 2011 30) Um sistema de computador possui um mapa de memória de 4 Gbytes, usando endereçamento a byte e uma memória cache com organização de mapeamento direto. A cache tem capacidade de armazenar até 1.024 palavras de 32 bits provenientes do mapa de memória. Assuma que a cache sempre é escrita de forma atômica com quatro bytes vindos de um endereço de memória alinhado em uma fronteira de palavra de 32 bits, e que ela usa 1 bit de validade por linha de cache. Neste caso, as dimensões do rótulo (tag) da cache, do índice e o tamanho da cache são, respectivamente
 - a) 12 bits, 18 bits e 54.272 bits
 - b) 14 bits, 18 bits e 56.320 bits
 - c) 20 bits, 10 bits e 54.272 bits
 - d) 20 bits, 12 bits e 54.272 bits
 - e) 22 bits, 10 bits e 56.320 bits

Resposta de Exercícios

- 1. (POSCOMP 2011 30) Um sistema de computador possui um mapa de memória de 4 Gbytes, usando endereçamento a byte e uma memória cache com organização de mapeamento direto. A cache tem capacidade de armazenar até 1.024 palavras de 32 bits provenientes do mapa de memória. Assuma que a cache sempre é escrita de forma atômica com quatro bytes vindos de um endereço de memória alinhado em uma fronteira de palavra de 32 bits, e que ela usa 1 bit de validade por linha de cache. Neste caso, as dimensões do rótulo (tag) da cache, do índice e o tamanho da cache são, respectivamente
 - a) 12 bits, 18 bits e 54.272 bits
 - b) 14 bits, 18 bits e 56.320 bits
 - c) 20 bits, 10 bits e 54.272 bits
 - d) 20 bits, 12 bits e 54.272 bits
 - e) 22 bits, 10 bits e 56.320 bits

Exercícios

2. (Baseado no POSCOMP 2017 - 44) Considere que um processador tenha 16 bits de endereçamento de byte. Sua cache possui mapeamento direto com uma capacidade de 128 palavras e blocos de 8 palavras (palavra de 16 bits). O endereço se divide em campos para acesso à cache de acordo com a seguinte representação:

Etiqueta	i
Índice	ii
Palavra dentro do bloco	iii
Byte dentro da palavra	iv

O número de bits de cada um dos campos acima, ou seja, os valores de i, ii, iii e iv são, respectivamente:

- a) 12, 6, 5 e 3
- b) 8, 4, 3 e 1
- c) 8, 6, 5 e 3
- d) 12, 4, 3 e 1
- e) 12, 6, 3 e 1

Resposta de Exercícios

2. (Baseado no POSCOMP 2017 - 44) Considere que um processador tenha 16 bits de endereçamento de byte. Sua cache possui mapeamento direto com uma capacidade de 128 palavras e blocos de 8 palavras (palavra de 16 bits). O endereço se divide em campos para acesso à cache de acordo com a seguinte representação:

Etiqueta	i
Índice	ii
Palavra dentro do bloco	iii
Byte dentro da palavra	iv

O número de bits de cada um dos campos acima, ou seja, os valores de i, ii, iii e iv são, respectivamente:

- a) 12, 6, 5 e 3
- b) 8, 4, 3 e 1
- c) 8, 6, 5 e 3
- d) 12, 4, 3 e 1
- e) 12, 6, 3 e 1

Exercícios

3. Considere uma memória principal de 256 bytes, endereçada a byte, e caches de 4 linhas, cada linha contendo um bloco de 8 bytes, além do espaço para colocar os bits de controle (bit de validade e tag). Dadas as sequências de acesso à memória principal tabeladas abaixo, preencha a cache para o caso de mapeamento direto. Diga, também, quantos miss e quantos hits aconteceram

Sequência de acessos (posição representada em hexadecimal)

Acesso	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Posição	16	17	18	19	16	17	18	19	96	97	98	99	1A	1B	C8	C9	CA	1B	1C	1D

Hits =

Miss =

BV	TAG (3 bits)	0	1	2	3	4	5	6	7

Resposta de Exercícios

Acesso	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Posição	16	17	18	19	16	17	18	19	96	97	98	99	1A	1B	C8	C9	CA	1B	1C	1D

(continuação)

BV	TAG (3 bits)	0	1	2	3	4	5	6	7
0									
0, 1	110	C8	C9	CA	СВ	CC	CD	CE	CF
0, 1	000, 100	10,90	11,91	12,92	13,93	14,94	15,95	16,96	17,97
0, 1	000, 100, 000	18,98,18	19,99,19	1A,9A,1A	1B,9B,1B	1C,9C,1C	1D,9D,1D	1E,9E,1E	1F,9F,1F

Hits =
$$14$$
, Miss = 6

Índice

- 1. Mapeamento de Endereços em Memória Cache
 - 1.1 Mapeamento Direto
 - 1.2 Mapeamento Associativo
 - 1.3 Mapeamento Conjunto Associativo

Introdução ao Mapeamento Associativo

- Como melhorar o mapeamento Direto, retirando a dependência entre endereço na memória e posição da cache sem comprometer desempenho da procura?
 - Resposta → Mapeamento associativo
- Endereço da MP em qualquer posição da cache
 - Tag não fica mais na cache e sim em memória especial (memória associativa)

Consequências

- Necessita fazer procura de dado
- Necessita política de substituição
 - Quando ocorre miss, deve buscar no nível abaixo e, caso a cache esteja com todas posições ocupadas, quem tirar para abrir lugar?

Solução para procurar

- Procurar em paralelo
- Usar memória associativa
 - Memória cara e de tamanho limitado

Esquema de Memória para Mapeamento Associativo – Pesquisa em Paralelo

Mapeamento Associativo – Divisão de bits no registrador de endereçamento

- Exemplo da divisão de blocos em uma cache com 1024 (2¹⁰) linhas e bloco com 4 palavras de 32 bits
 - Bit de validade e Tag
 - Transferência de blocos entre níveis de memória

Mapeamento Associativo - Exercícios

1. Considerando espaço de endereçamento de 256 Mega palavras. Como ficaria a divisão de bits do endereço para uma cache de 2048 linhas e que trabalhe com blocos de 8 palavras?

2. Quanto tem efetivamente de dados nessa cache?

100% (não considerando bit de validade)

3. Qual o tamanho da memória associativa?

Tamanho = 2048 * 25 (tag)

= 51200 bits / 8

= 6400 bytes / 1024

= 6,25 Kbytes

Mapeamento Associativo – Substituição de Dados na Cache

Usar políticas

Randômica

 Escolhe aleatoriamente posição a ser substituída → Simples, mas sujeito a aumentar número de caches miss

Contador

 Um contador baseado em algum tipo de relógio aponta para a próxima posição a ser substituída → simples, mas igualmente à política randômica, está sujeita a aumentar o número de misses

LFU (Least Frequent Used)

 Posição da cache menos usada é substituída → Escolha precisa mecanismo de contagem para cada acesso

– LRU (Least Recent Used)

Posição da cache usada a mais tempo será substituída >
 Escolha precisa variável de tempo a cada acesso e comparação

Mapeamento Associativo – Algoritmo do Relógio

- Técnica simples para pesquisar endereço de memória cache visitado há mais tempo. Permite a implementação do critério de substituição por tempo
- A técnica, na verdade, não retorna a posição há mais tempo visitada, mas é simples, fornecendo posições visitadas há mais tempo
- Cada posição da cache tem associado um bit (flag) que informa se a mesma foi ou não recentemente visitada. Quando posição de memória é acessada, a flag é escrita
- Um ponteiro (*relógio*) que caminha nos endereços da cache em uma determinada base de tempo, vai apagando as flags na medida em que passa por elas
- Se uma posição de memória não tem a flag escrita é considerada que ela foi acessada há mais tempo e pode ser descartada. Esta informação fica em uma pequena lista no gerente da hierarquia de memória

 O algoritmo pode ser melhorado substituindo flags por contadores. Cada vez que o relógio passa, contador é decrementado, e cada vez que a posição de memória é acessada, contador volta para valor máximo

Acesso a Cache com Mapeamento Associativo

Passos para um acesso

- 1. Alimentar memória associativa com Tag procurado (comparação)
- 2. Se Tag está na memória associativa

(Hit) Acessar memória cache com índice fornecido pela memória associativa Ir para 7

Senão

Acusar miss

- Se não existir posição livre na cache
 Escolher endereço para substituir de acordo com política estabelecida (e.g., LRU)
- 4. Buscar dado no nível inferior
- 5. Colocar na posição livre ou escolhida da memória cache
- 6. Cadastrar posição na memória associativa para pesquisas futuras
- 7. Efetuar leitura
- 8. Fim

Mapeamento Associativo - Conclusões e Questões

Vantagem do mapeamento associativo

Melhor distribuição da informação na cache

Desvantagens

- Memória associativa tem alto custo e tamanho limitado
 - Limita número de linhas da cache
- Necessita política de substituição
 - Pode ocorrer escolhas inadequadas
 - Gasta tempo
 - Requer hardware extra para controle de qual posição deve ser substituída

Exercícios

(POSCOMP 2013, Questão 48) Sobre memória cache, considere as afirmativas a seguir.

- I. No mapeamento associativo, cada bloco da memória principal pode ser carregado em qualquer linha da cache.
- II. No mapeamento direto, cada bloco da memória principal é mapeado a apenas uma linha de cache.
- III. No mapeamento direto, o acesso repetido a diferentes blocos de memória mapeados na mesma linha de cache resultará em uma alta taxa de acerto.
- IV. A técnica de mapeamento associativo é simples e pouco dispendiosa para se implementar.

Assinale a alternativa correta.

- a) Somente as afirmativas I e II são corretas.
- b) Somente as afirmativas I e IV são corretas.
- c) Somente as afirmativas III e IV são corretas.
- d) Somente as afirmativas I, II e III são corretas.
- e) Somente as afirmativas II, III e IV são corretas.

Resposta de Exercícios

(POSCOMP 2013, Questão 48) Sobre memória cache, considere as afirmativas a seguir.

- I. No mapeamento associativo, cada bloco da memória principal pode ser carregado em qualquer linha da cache.
- II. No mapeamento direto, cada bloco da memória principal é mapeado a apenas uma linha de cache.
- III. No mapeamento direto, o acesso repetido a diferentes blocos de memória mapeados na mesma linha de cache resultará em uma alta taxa de acerto.
- IV. A técnica de mapeamento associativo é simples e pouco dispendiosa para se implementar.

Assinale a alternativa correta.

- a) Somente as afirmativas I e II são corretas.
- b) Somente as afirmativas I e IV são corretas.
- c) Somente as afirmativas III e IV são corretas.
- d) Somente as afirmativas I, II e III são corretas.
- e) Somente as afirmativas II, III e IV são corretas.

Exercícios

Considere uma memória principal de 256 bytes, endereçada a byte, e caches de 4 linhas, cada linha contendo um bloco de 8 bytes, além do espaço para colocar os bits de controle (bit de validade e tag), se forem necessários. Dadas as sequências de acesso à memória principal tabeladas abaixo, preencha a caches para o caso de mapeamento associativo. Considere que a política para substituição é LRU. Diga quantos miss e quantos hits aconteceram. Compare a implementação de mapeamento direto com a de mapeamento associativo.

Sequência de acessos (posição representada em hexadecimal)

Acesso	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Posição	16	17	18	19	16	17	18	19	96	97	98	99	1A	1B	C8	C9	CA	1B	1C	1D

MA (5 bits)	

BV	0	1	2	3	4	5	6	7

Hits =

Miss =

Resposta de Exercícios

(continuação)

Mapeamento Direto (exercício anterior)

BV	TAG (3 bits)	0	1	2	3	4	5	6	7
0									
0, 1	110	C8	C9	CA	СВ	CC	CD	CE	CF
0, 1	000, 100	10,90	11,91	12,92	13,93	14,94	15,95	16,96	17,97
0, 1	000, 100, 000	18,98,18	19,99,19	1A,9A,1A	1B,9B,1B	1C,9C,1C	1D,9D,1D	1E,9E,1E	1F,9F,1F

Hits = 14, Miss = 6

Mapeamento Associativo

MA (5 bits)
00010, 11001
00011
10010
10011

BV	0	1	2	3	4	5	6	7
0,1	10, C8	11, C9	12, CA	13, CB	14, CC	15, CD	16, CE	17, CF
0,1	18	19	1A	1B	1C	1D	1E	1F
0,1	90	91	92	93	94	95	96	97
0,1	98	99	9A	9B	9C	9D	9E	9F

Hits = 15, Miss = 5

Índice

- 1. Mapeamento de Endereços em Memória Cache
 - 1.1 Mapeamento Direto
 - 1.2 Mapeamento Associativo
 - 1.3 Mapeamento Conjunto Associativo

Introdução ao Mapeamento Conjunto Associativo

- Limite de tamanho da cache devido pesquisa na memória associativa é uma restrição muito forte

 Tendência é aumentar a cache. Qual seria outra possibilidade?
 - Resposta → Mapeamento Conjunto Associativo
- Compromisso entre mapeamento direto e totalmente associativo
- Cache dividida em S conjuntos de N linhas
 - Se $S = 1 \rightarrow$ mapeamento associativo
 - Se S = número de linhas da cache → mapeamento direto
- Pesquisa dentro do conjunto
 - Endereço i, da memória principal, pode mapear para endereços no conjunto i mod S, da cache
- Necessita de substituição quando ocorre cache miss
 - Caso conjunto esteja cheio quem tirar?
 - A substituição deve ser necessariamente dentro do conjunto

Mapeamento Conjunto Associativo – Divisão de bits no registrador de endereçamento

• Exemplo de cache com 1024 linhas (2¹⁰) com blocos com 2 palavras, palavra de 32 bits e 2 conjuntos (S=2)

Acesso à Cache com Mapeamento Conjunto Associativo

Passos para um acesso

- Calcular resto da divisão inteira do endereço pelo número de conjuntos S
 → Ex., usar bits menos significativos de endereço
- 2. Alimentar memória associativa do conjunto com Tag (Comparação)
- Se Tag está na memória associativa
 (Hit) Acessar memória cache com índice fornecido pela memória associativa
 Ir para 8

Senão

Acusar miss

- 4. Se não existir posição livre no conjunto cache Escolher endereço para substituir de acordo com política estabelecida
- 5. Buscar dado no nível inferior
- 6. Colocar dado na posição livre ou escolhida da cahe
- 7. Cadastrar posição na memória associativa para pesquisas futuras
- 8. Efetuar leitura
- 9. Fim

Mapeamento Conjunto Associativo - Exercícios

 Considerando uma cache com 1024 posições (2¹⁰) com palavra de 32 bits, um espaço de endereçamento de 4 Gigabytes (2³²), dois conjuntos associativos, responda as perguntas que seguem

1. Quanto tem efetivamente de dados nessa cache?

100% (sem considerar o bit de validade)

2. Qual tamanho de cada memória associativa?

```
Tamanho = 1024 (linhas) / 2 (cj.) * 31 (tag)
= 512 * 31 bits = 15872 bits
= 15872 bits / 8 = 1984 bytes
= 1984 bytes / 1024 = 1,93 Kbytes
```

3. Como ficaria a mesma cache com 4 conjuntos (S=4)?

Mapeamento Conjunto Associativo - Exercícios

4. Qual tamanho de cada uma das 4 memórias associativas?

```
Tamanho = 256 * 30 (tag)
= 7680 bits / 8
= 960 bytes / 1024
= 0,94 Kbytes
```

5. Como ficaria divisão do endereço de cache de 4 conjuntos com 2048 linhas (bloco com 4 palavras de 32 bits)?

Endereço de 32 bits (4 Giga)								
28 (Tag)	2 (Conjunto)	2 (Palavra)						

Mapeamento Conjunto Associativo – Vantagens e Desvantagens

Vantagem

 Aumenta tamanho da cache mantendo tamanho da memória associativa (limitação tecnológica)

Desvantagens

- Memória associativa tem alto custo e tamanho limitado
- Somente faz substituição dentro do conjunto
 - Pode aumentar o número de miss, se comparado com o mapeamento associativo
- Necessita política de substituição
 - Gasta tempo
 - Pode escolher mal
 - Requer hardware extra para controle de qual posição deve ser substituída

Mapeamento Conjunto Associativo – Níveis de Associatividade

- Associatividade da cache é dada pelo número de vias (ways)
- Exemplo: cache de 8 posições pode ter 1 a 8 vias

Vias (Ways)	Mapeamento	Esquema								
1	Direto									
2	Conjunto-associativo (4 cj)									
4	Conjunto-associativo (2 cj)									
8	Associativo									

 Quantos conjuntos possui cache L1 4-Way de 64 Kbytes e com processador Ultra Sparc III (assumir bloco de 32 palavras de 64 bits)?

Tamanho da linha da cache = $32 * 64 b = 2048 b = 256 B = 0,25 KB 64 KB / 0,25 KB = 256 linhas / 4 (4-Way <math>\rightarrow$ 4 linhas por cj) = 64 cj

Mapeamento Conjunto Associativo – Níveis de Associatividade e Miss Rate

Mapeamento Conjunto Associativo – Miss Rate versus Tamanho do Bloco

Mapeamento Conjunto Associativo – O Efeito do Tamanho do Bloco

- 1. Analise o comportamento das três curvas
- 2. Porque, a partir de um determinado tamanho, quando o bloco aumenta também aumenta o tempo de acesso?

- 1. Cite alguns problemas básicos do uso de memória cache e comente
- 2. Porque não é necessário para o processador saber onde estão fisicamente os dados quando gera o endereçamento?
- 3. Quais são as três formas básicas de mapeamento de memórias cache? Comente sobre vantagens e desvantagens das mesmas
- 4. Explique como funciona o mapeamento direto. Para que serve a tag, e para que serve o bit de validade?
- 5. Comente sobre o passo 4 (buscar dado no nível inferior) do algoritmo de acesso à memória cache com mapeamento direto. Fale com relação a tempo para sua execução. Detalhe melhor este passo
 - 1. Calcular o módulo do endereço pelo número de posições da *cache* (ou usar os bits menos significativos do endereço);
 - 2. Verificar o bit de validade da posição da *cache* correspondente e se for inválido acusar *miss* (ir para 4), senão verificar o Tag;
 - 3. Se Tag diferente do endereço procurado acusar *miss* (ir para 4), senão ocorre *hit*. Ler a posição (fim);
 - 4. Buscar dado no nível inferior. Colocar na posição e efetuar a leitura (fim)
- 6. Porque o mapeamento direto é tão rápido/simples para acessar um dado? Comente, descrevendo os mecanismos necessários para o seu funcionamento

- 7. Qual a necessidade do multiplexador no mapeamento direto com blocos?
- 8. Comente a seguinte frase: "Depois de realizado vários testes, verificamos que cache, com mapeamento direto, somente é interessante se os dados que compartilham as mesmas áreas de cache estiverem bastante distantes na memória física"
- Comente a afirmativa: "Para ter melhor desempenho, a escolha do modo de endereçamento depende da aplicação". Descreva aplicações onde o mapeamento direto pode ser interessante
- 10. Existe como a abordagem de mapeamento direto ser realizada dinamicamente? Ou seja, os dados não têm endereços fixos conhecido em tempo de projeto, mas sim durante a execução do programa este endereço é calculado
- 11. Considerando possível a pergunta acima, quais as consequências desta modalidade de mapeamento direto? Comente analisando características como: velocidade de acesso, custos de implementação, flexibilidade da memória cache.
- 12. Qual a característica básica de uma memória associativa? Responda comentando sobre a organização deste tipo de memória
- 13. Descreva o funcionamento do mapeamento associativo. Cite uma grande vantagem? Cite uma grande desvantagem?
- 14. Porque no mapeamento associativo pode não ser necessário o uso de bit de validade?

- 15. Cite as três políticas básicas para substituição de dados em uma memória associativa. Explique como funciona cada uma delas. Diga vantagens e desvantagens. Sugira alguma outra política e compare com as anteriores
- 16. Diga qua(l/is) a(s) diferença(s) básica(s) entre o acesso a dados em cache com mapeamento direto e mapeamento associativo
- 17. Comente a afirmação: "A grande vantagem do mapeamento associativo frente ao mapeamento direto está no fato que toda a memória pode ser utilizada eficientemente como cache. Já no mapeamento direto esta eficiência é praticamente inalcançável"
- 18. Descreva o funcionamento do mapeamento conjunto associativo
- 19. Dado S como número de conjuntos de um mapeamento conjunto associativo. Porque se S = 1 o mapeamento conjunto associativo se assemelha ao mapeamento associativo, e se S = número de linhas da cache o mapeamento conjunto associativo se assemelha ao mapeamento direto?
- 20. Descreva como funcionam os níveis de associatividade
- 21. Qual a diferença básica entre o mapeamento associativo e o mapeamento conjunto associativo? Apresente vantagens e desvantagens.

- 22. Compare com relação a vantagens e desvantagens, o mapeamento direto e o mapeamento conjunto associativo
- 23. O que diferencia a memória associativa das memórias convencionais? Qual a aplicação das memórias associativas? Faça um diagrama da arquitetura de uma memória associativa, explicando o seu funcionamento
- 24. Na figura abaixo, que relaciona taxa de associatividade com miss-rate, é mostrado que para, caches pequenas, o miss-rate reduz à medida que aumenta a associatividade (número de vias). Porque isto acontece? Porque o mesmo efeito não é verificado com caches maiores?

25. Comente as curvas que relacionam tamanho do bloco com miss-rate e tamanho de cache

Block Size and Miss Rate

26. Comente as três figuras que relacionam o efeito do tamanho do bloco no tempo médio de acesso e no miss-rate

- 27. Diferencie localidade espacial de localidade temporal. Explique porque os sistemas de hierarquia de memórias são baseados no princípio de localidade
- 28. Aponte qual é o gráfico que melhor representa o efeito do tamanho da memória cache no hit-rate e diga por quê

- 29. Considere a seguinte estrutura de memória:
 - Memória principal: 1 MByte
 - Memória cache: 16 Kbytes
 - Tamanho do bloco na cache: 32 palavras
 - Tamanho da palavra: 1 Byte
 - Quantos blocos têm a memória cache? Mostre o cálculo e explique
 - Como é formado o endereço para o mapeamento direto? Explique com diagramas
 - Qual a área necessária para armazenar os TAGs, em Bytes?
 - Qual a desvantagem do mapeamento direto?
 - Como seria a formação para o mapeamento conjunto associativo 4-way (4 blocos em cada conjunto)? Explique com diagramas
- 30. O que pode ser alterado na arquitetura de memórias cache para diminuir o missrate? Explique as possibilidades que forem citadas

- 31. (POSCOMP 2005 23) Das afirmações a seguir, sobre memória cache, quais são verdadeiras?
 - I. Numa estrutura totalmente associativa, um bloco de memória pode ser mapeado em qualquer slot do cache.
 - II. O campo tag do endereço é usado para identificar um bloco válido no cache, junto com o campo de índice.
 - III. Um cache de nível 2 serve para reduzir a penalidade no caso de falta no nível 1.
 - IV. O esquema de substituição LRU é o mais usado para a estrutura de mapeamento direto.
 - a. Somente as afirmações (I), (III) e (IV).
 - b. Somente as afirmações (II), (III) e (IV).
 - c. Somente as afirmações (I) e (II).
 - d. Somente as afirmações (I), (II) e (III).
 - e. Somente as afirmações (II) e (III).

Resposta de Exercícios

- 31. (POSCOMP 2005 23) Das afirmações a seguir, sobre memória cache, quais são verdadeiras?
 - I. Numa estrutura totalmente associativa, um bloco de memória pode ser mapeado em qualquer slot do cache.
 - II. O campo tag do endereço é usado para identificar um bloco válido no cache, junto com o campo de índice.
 - III. Um cache de nível 2 serve para reduzir a penalidade no caso de falta no nível 1.
 - IV. O esquema de substituição LRU é o mais usado para a estrutura de mapeamento direto.
 - a. Somente as afirmações (I), (III) e (IV).
 - b. Somente as afirmações (II), (III) e (IV).
 - c. Somente as afirmações (I) e (II).
 - d. Somente as afirmações (I), (II) e (III).
 - e. Somente as afirmações (II) e (III).

32. (POSCOMP 2008 - 55) Analise as seguintes afirmativas

- O processador que apresenta o melhor desempenho é sempre aquele que tem a frequência de relógio mais alta.
- II. A técnica de pipeline é utilizada para aumentar o desempenho em processadores. Dessa forma, o pipeline alivia o tempo de latência das instruções.
- III. A maneira mais simples de aumentar a taxa de acertos em memória cache é aumentar a sua capacidade.
- IV. Em arquiteturas superescalares, os efeitos das dependências e antidependências de dados são reduzidos na etapa de renomeação de registradores.

A análise permite concluir que:

- a) Todas as afirmativas são verdadeiras.
- b) Somente as afirmativas II e III são verdadeiras.
- c) Somente as afirmativas III e IV são verdadeiras.
- d) Somente as afirmativas II, III e IV são verdadeiras.
- e) Nenhuma das afirmativas é verdadeira.

Resposta de Exercícios

32. (POSCOMP 2008 - 55) Analise as seguintes afirmativas

- O processador que apresenta o melhor desempenho é sempre aquele que tem a frequência de relógio mais alta.
- II. A técnica de pipeline é utilizada para aumentar o desempenho em processadores. Dessa forma, o pipeline alivia o tempo de latência das instruções.
- III. A maneira mais simples de aumentar a taxa de acertos em memória cache é aumentar a sua capacidade.
- IV. Em arquiteturas superescalares, os efeitos das dependências e antidependências de dados são reduzidos na etapa de renomeação de registradores.

A análise permite concluir que:

- a) Todas as afirmativas são verdadeiras.
- b) Somente as afirmativas II e III são verdadeiras.
- c) Somente as afirmativas III e IV são verdadeiras.
- d) Somente as afirmativas II, III e IV são verdadeiras.
- e) Nenhuma das afirmativas é verdadeira.

33. (POSCOMP 2010 - 33) Um computador apresenta um sistema de memória organizado em quatro níveis: memórias cache níveis 1 e 2, memórias RAM principal e secundária. Programas prontos para execução são trazidos da memória secundária e transformados em processos na memória principal. Uma instrução para acessar dados na memória fornece o endereço real de memória onde se localiza a informação desejada. A informação é então buscada na cache nível 1. Se lá não for encontrada, ela é buscada no segundo nível de cache. Não sendo encontrada, a informação é finalmente buscada na memória principal.

Qual o modo de endereçamento utilizado?

- a) Imediato
- b) Indireto
- c) Direto
- d) Implícito
- e) Relativo

Resposta de Exercícios

33. (POSCOMP 2010 - 33) Um computador apresenta um sistema de memória organizado em quatro níveis: memórias cache níveis 1 e 2, memórias RAM principal e secundária. Programas prontos para execução são trazidos da memória secundária e transformados em processos na memória principal. Uma instrução para acessar dados na memória fornece o endereço real de memória onde se localiza a informação desejada. A informação é então buscada na cache nível 1. Se lá não for encontrada, ela é buscada no segundo nível de cache. Não sendo encontrada, a informação é finalmente buscada na memória principal.

Qual o modo de endereçamento utilizado?

- a) Imediato
- b) Indireto
- c) Direto
- d) Implícito
- e) Relativo

Considere uma memória principal de 256 bytes, endereçado a byte, e caches de 4 linhas, cada linha contendo um bloco de 8 bytes, além do espaço para colocar os bits de controle (bit de validade e tag), se forem necessários. Dadas as sequências de acesso à memória principal tabeladas abaixo, preencha a cache para o caso de *mapeamento conjunto associativo*, com 2 *conjuntos*. Considere a política para substituição é LRU. Diga quantos miss e quantos hits aconteceram

Sequência de acessos (posição representada em hexadecimal)

Acesso	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Posição	16	17	18	19	16	17	18	19	96	97	98	99	1A	1B	C8	C9	CA	1B	1C	1D

Hits = , Miss =

Н	MA	(4 bits	3)
	J. 177		

	BV	0	1	2	3	4	5	6	7
+									
-									

SLIDES EXTRAS

Mapeamento Direto - Exercícios

3. Supor as seguintes características: (i) Memória principal de 2 GBytes, com palavras de 32 bits; (ii) Cache com 64 Kbits; (iii) Blocos de 16 palavras

Mostre como ficará distribuída a cache e o formato da palavra de endereço

Mapeamento Direto Obtendo o formato do Endereçamento

O formato de instrução pode ser obtido com as relações que seguem:

- cacheSize ≥ lineSize × numberOfLines
 - lineSize = numberOfWordInsideBlocks × wordSize + tagSize + bitValiditySize
 - numberOfLines = 2^{lineAddressSize}
 - validityBitSize = 1
 - cacheSize ≥ (numberOfWordInsideBlocks × wordSize + tagSize + 1)× 2^{lineAddressSize}
- addressSize = tagSize + lineAddressSize + blockAddressSize
 - addressSize = log₂(memorySize)
 - blockAddressSize = log₂(numberOfWordInsideBlocks)
 - log₂(memorySize) = tagSize + lineAddressSize + log₂(numberOfWordInsideBlocks)
 - tagSize = log₂(memorySize) lineAddressSize log₂(numberOfWordInsideBlocks)

Mapeamento Direto Obtendo o formato do Endereçamento

Voltando ao problema:

- Memória principal de 8GBytes, com palavras de 32 bits (word = 4 bytes)
 - memorySize = 2GWords
- Cache com 64Kbits
 - cacheSize = 64KBits = 64 × 1024 = 65536 bits
- Blocos de 16 palavras
 - numberOfWordInsideBlocks = 16
 - blockAddressSize = $log_2(16) = 4$

Aplicando as relações, teremos:

- cacheSize ≥ (numberOfWordInsideBlocks × wordSize + tagSize + 1)× 2^{lineAddressSize}
 - $65536 \ge (16 \times 32 + tagSize + 1) \times 2^{lineAddressSize}$
 - $65536 \ge (512 + tagSize + 1) \times 2^{lineAddressSize}$
 - 65536 ≥ (513 + tagSize) × 2lineAddressSize
- tagSize = log₂(memorySize) lineAddressSize log₂(numberOfWordInsideBlocks)
 - tagSize = log₂(2 Giga) lineAddressSize 4
 - tagSize = 31 lineAddressSize 4
 - tagSize = 27 lineAddressSize

Mapeamento Direto Obtendo o formato do Endereçamento

Finalizando:

Substituindo o termo da equação na inequação, teremos:

- 65536 ≥ (513 + 27 lineAddressSize) × 2^{lineAddressSize}
- 65536 ≥ (540 lineAddressSize) × 2^{lineAddressSize}

A solução da inequação pode ser feita através de tentativa e erro, de forma a chegar ao valor que mais se aproxima da solução:

- lineAddressSize = 6 ⇒
 - $65536 \ge (540 6) \times 26$
 - 65536 ≥ 34176
- tagSize = 27 lineAddressSize ⇒
 - tagSize = 27 6
 - tagSize = 21

Assim, o formato do endereçamento fica: