On Kronecker Sums

Zouhair Mahboubi

March 20, 2015

1 Introduction

The goal of this short note is to outline how a special case of Kronecker sums can be computed efficiently. In our application, the joint transition rate matrix Q can be expressed as a Kronecker sum of basic transition matrices. Particularly, by using a compact representation of the state and action space, we can eventually show that for any action $a \in \mathcal{A}$ the associated transition matrix takes the form:

$$Q = A \oplus \underbrace{B \oplus B \cdots \oplus B}_{K}$$

In our problem $A, B \in M_{n \times n}$ are sparse matrices with $n \approx 30$. Computing Q for values of K+1 < 5 is tractable on a personal computer, but for values of $K+1 \geq 5$ we run into memory constraints. However, since Q is ultimately used in a value iteration algorithm, where only one row at a time is needed, we investigate how the i^{th} row of Q can be computed efficiently.

2 Definitions and Notation

In this section, we introduce the notation that we use and define different symbols and operators. We then outline how the Kronecker sum of a repeated matrix can be represented in a compact form.

2.1 Dimensions and Special matrices

- We will denote a matrix A of dimensions $m \times n$ as $A \in M_{m \times n}$ or $A_{m \times n}$.
 - We will omit dimensions of matrices when they are obvious
- If the matrix is square, we will drop one dimension and write $A_n \in M_n$.
- The identity matrix of dimensions $n \times n$ will be denoted by I_n .
- e_i is a versor of Cartesian coordinates with entries $e_i(k) = \delta_{ik}$
- $E_{m \times n}^{i,j}$ will denote the sparse $m \times n$ matrix whose entries are defined by $E^{i,j}(k,l) = e_i e_j^{\mathsf{T}} = \delta_{ki} \delta_{lj}$ (i.e. everything is 0 except the (i,j) entry)

2.2 Kronecker Product

Kronecker product between two matrices $X \in M_{m \times n}, Y \in M_{p \times q}$ is written as $X \otimes Y \in M_{mp \times nq}$. Definition can be found in any matrix analysis textbook. Some of the Kronecker product properties we will use later:

$$X \otimes (Y \otimes Z) = (X \otimes Y) \otimes Z$$

 $X \otimes (Y + Z) = X \otimes Y + X \otimes Z$
 $I_n \otimes I_m = I_{nm}$

Note that in general the Kronecker product is not commutative, i.e.

$$X \otimes Y \neq Y \otimes X$$

However, the product is permutation equivalent, and it can be shown that:

$$X_{m \times n} \otimes Y_{p \times q} = P_{(m,p)} (Y \otimes X) P_{(n,p)}^{\mathsf{T}}$$

$$\tag{1}$$

Where $P_{(m,p)} \in M_{mp}$ is known as the perfect shuffle permutation:

$$P_{(m,p)} = \sum_{i=1}^{m} \sum_{j=1}^{p} \left(E_{m \times p}^{i,j} \otimes (E_{m \times p}^{i,j})^{\mathsf{T}} \right)$$
 (2)

We note one particular case which we will use subsequently,

$$P_{(1,m)} = P_{(m,1)} = I_m$$

2.3 Kronecker Sum

The Kronecker sum is defined for square matrices only and is defined as follows:

$$X_n \oplus Y_m = X_n \otimes I_m + I_n \otimes Y_m \in M_{nm \times nm}$$

The Kronecker sum is also non-commutative. However, we will show in this section how the special case of $C = \underbrace{B \oplus B \cdots \oplus B}_{K}$ can be simplified:

$$B_n \oplus B_n = B_n \otimes I_n + I_n \otimes B_n$$

= $I_n \otimes B_n + P_{(n,n)} (I_n \otimes B_n) P_{(n,n)}^{\mathsf{T}}$

Likewise,

$$B_{n} \oplus B_{n} \oplus B_{n} = B_{n} \oplus (B_{n} \otimes I_{n} + I_{n} \otimes B_{n})$$

$$= B_{n} \otimes I_{n^{2}} + I_{n} \otimes (B_{n} \otimes I_{n} + I_{n} \otimes B_{n})$$

$$= B_{n} \otimes I_{n^{2}} + (I_{n} \otimes B_{n}) \otimes I_{n} + I_{n^{2}} \otimes B_{n}$$

$$= I_{n^{2}} \otimes B_{n} + P_{(n^{2},n)} (I_{n^{2}} \otimes B_{n}) P_{(n^{2},n)}^{\mathsf{T}} + P_{(n,n^{2})} (I_{n^{2}} \otimes B_{n}) P_{(n,n^{2})}^{\mathsf{T}}$$

One last time...

$$B_{n} \oplus B_{n} \oplus B_{n} \oplus B_{n} = B_{n} \oplus (B_{n} \otimes I_{n^{2}} + (I_{n} \otimes B_{n}) \otimes I_{n} + I_{n^{2}} \otimes B_{n})$$

$$= B_{n} \otimes I_{n^{3}} + I_{n} \otimes (B_{n} \otimes I_{n^{2}} + (I_{n} \otimes B_{n}) \otimes I_{n} + I_{n^{2}} \otimes B_{n})$$

$$= B_{n} \otimes I_{n^{3}} + (I_{n} \otimes B_{n}) \otimes I_{n^{2}} + (I_{n^{2}} \otimes B_{n}) \otimes I_{n} + I_{n^{3}} \otimes B_{n}$$

$$= +P_{(n^{4},n^{0})} (I_{n^{3}} \otimes B_{n}) P_{(n^{4},n^{0})}^{\mathsf{T}}$$

$$+P_{(n^{3},n^{1})} (I_{n^{3}} \otimes B_{n}) P_{(n^{2},n^{2})}^{\mathsf{T}}$$

$$+P_{(n^{1},n^{3})} (I_{n^{3}} \otimes B_{n}) P_{(n^{1},n^{3})}^{\mathsf{T}}$$

This can be generalized to 1 :

$$\underbrace{B \oplus B \cdots \oplus B}_{K} = \sum_{u=1}^{K} P_{(n^{u}, n^{K-u})} \left(I_{n^{K-1}} \otimes B \right) P_{(n^{u}, n^{K-u})}^{\mathsf{T}} \tag{3}$$

More generally, the following relationship can be proven:

$$A_1 \oplus A_2 \cdots \oplus A_K = \sum_{u=1}^K P_{(n^u, n^{K-u})} (I_{n^{K-1}} \otimes A_i) P_{(n^u, n^{K-u})}^{\mathsf{T}}$$
(4)

3 Computing Q_i

In this section, we show how the i^{th} row of $Q = A \oplus \underbrace{B \oplus B \cdots \oplus B}_{K}$ can be computed efficiently and give a brief discussion of the required storage space and show how the compact representation introduced is helpful.

3.1 Row Entry of a Kronecker product

First, we point out that the i^{th} row of the Kronecker product $Z = X_{m \times n} \otimes Y_{p \times q}$ is given by:

$$Z_i = X_a \otimes Y_b \mid (b, a) = \operatorname{ind2sub}((p, m), i)$$
 (5)

Where X_a, Y_b are the a^{th} and b^{th} rows of X and Y respectively, and the ind2sub function returns the indexing tuple (b, a) from the linear index i. We assume here that the implementation uses a column major ordering of matrices. If a row major ordering is used we just need to reverse the order of dimensions and the order of the returned tuple.

¹Proof by induction left as an exercise to the reader :)

3.2 Row Entry of Q

We have

$$Q_{i} = \left(A \oplus \underbrace{B \oplus B \cdots \oplus B}_{K}\right)_{i}$$

$$= (A \oplus C)_{i}$$

$$= (A \otimes I_{n^{K}} + I_{n} \otimes C)_{i}$$

$$= A_{a} \otimes e_{b}^{T} + e_{a}^{T} \otimes C_{b}$$

Where as explained before $(b,a) = \operatorname{ind2sub}((n^K,n),i)$. We also have $e_a \in M_{n\times 1}$ and $e_b \in M_{n^K\times 1}$ the Cartesian coordinates versors. And as long as we can compute (and store) the b row of C, it is trivial to construct the i row of Q, and since there are only n non-zero entries in $A_a \otimes e_b^{\mathsf{T}}$, summing it with $e_a^T \otimes C_b$ can be done in O(n).

Finding the b row of C deserves a discussion as it involves some Kronecker algebra. We are interested in finding:

$$C_{b} = e_{b}^{\mathsf{T}} C = e_{b}^{\mathsf{T}} \sum_{u=0}^{K-1} P_{(n^{u}, n^{K-u})} (I_{n^{K-1}} \otimes B) P_{(n^{u}, n^{K-u})}^{\mathsf{T}}$$

$$= \sum_{u=0}^{K-1} e_{b}^{\mathsf{T}} P_{(n^{u}, n^{K-u})} (I_{n^{K-1}} \otimes B) P_{(n^{u}, n^{K-u})}^{\mathsf{T}}$$

Let's explain how this can be done for a given u. Let $n^u = p, n^{K-u} = q$ (note that $pq = n^K \forall u$), we are interested in an efficient way to compute:

$$x = e_b^{\mathsf{T}} P_{(p,q)} \left(I_{n^{K-1}} \otimes B \right) P_{(p,q)}^{\mathsf{T}} \tag{6}$$

The expression for $P_{(p,q)}$ is given by Eq.2, which can be rearranged as follows:

$$P_{(p,q)} = \sum_{i=1}^{p} \sum_{j=1}^{q} \left(E_{p\times q}^{i,j} \otimes (E_{p\times q}^{i,j})^{\mathsf{T}} \right) = \sum_{i=1}^{p} \sum_{j=1}^{q} \left(e_{i} e_{j}^{\mathsf{T}} \otimes (e_{i} e_{j}^{\mathsf{T}})^{\mathsf{T}} \right)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} \left(e_{i} e_{j}^{\mathsf{T}} \otimes e_{j} e_{i}^{\mathsf{T}} \right) = \sum_{i=1}^{p} \sum_{j=1}^{q} \left((e_{i} \otimes e_{j})(e_{j} \otimes e_{i})^{\mathsf{T}} \right)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} \left(e_{k} e_{l}^{\mathsf{T}} \right) \mid \begin{cases} k = \text{sub2ind}((q, p), j, i) \\ l = \text{sub2ind}((p, q), i, j) \end{cases}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} \left(E_{nK}^{l, l} \right)$$

$$(7)$$

Let's now compute the first term in x:

$$\begin{split} e_b^{\mathsf{T}} P_{(p,q)} &= e_b^{\mathsf{T}} \sum_{i=1}^p \sum_{j=1}^q (e_k e_l^{\mathsf{T}}) \\ &= \sum_{i=1}^p \sum_{j=1}^q e_b^{\mathsf{T}} e_k e_l^{\mathsf{T}} = \sum_{i=1}^p \sum_{j=1}^q \delta_{bk} e_l^{\mathsf{T}} \\ &= e_{b'}^{\mathsf{T}} | \begin{cases} b = k = \mathrm{sub2ind}((q,p), j, i) \\ b' = l = \mathrm{sub2ind}((p,q), i, j) \end{cases} \end{split}$$

Where we can solve for b' = sub2ind((p,q), reverse(ind2sub((q,p),b))...). The next step in computing x in Eq.6 is to compute:

$$e_{b'}^{\mathsf{T}}$$
 $(I_{n^{K-1}} \otimes B) = e_c^{\mathsf{T}} \otimes B_d \mid (d,c) = \operatorname{ind2sub}((n,n^{K-1}),b')$

Note that $e_c^\intercal \in M_{1 \times n^{K-1}}$ and $B_d \in M_{1 \times n}$ and therefore the result has size $1 \times n^K$. Also note that this a sparse vector, with only n entries in the [(c-1)n+1:cn] locations, i.e. $e_c^\intercal \otimes B_d = [\cdots, B_d, \cdots]$ with \cdots being zeros.

The only thing left to construct x in Eq.6 is to multiply by $P_{(p,q)}^{\mathsf{T}}$. But this is just a permutation matrix and the resulting vector has entries at l that were at k, where l, k are given by Eq.7. Since $e_c^{\mathsf{T}} \otimes B_d$ is sparse, we can just iterate over the non zero entries, and move their column storage accordingly, which can be done in O(n).

3.3 Space Usage and Computational Complexity

Although in our application A and B are sparse matrices, we will discuss the difference of storing the entire Q matrix compared to computing the i^{th} entry in terms of space usage for the general case.

We have shown how $C = B \oplus B \cdots \oplus B$ can be written compactly using a set of perfect shuffle matrices and the Kronecker product $X = I_{n^{K-1}} \otimes B_n$. Note that while this product has dimension $n^K \times n^K$ (i.e. n^{2K} entries), even if B is full, X is sparse with only $n^{K-1}n^2 = n^{K+1}$ non-zero entries. However, only n^2 of those entries (the ones defined by B_n) are unique.

If we look back at the expression for C, the b row is constructed by summing K vectors, each of dimension n^K . Each one of those vectors is sparse and has at most n entries. So every time we add a new vector we do at most O(n) operations, and therefore we expect the total number of operations needed to construct C_b to be O(Kn).

If B is full, we might end up with n^K entries in C_b . But even without sparsity, being able to compute the n^K entries on the fly in O(Kn) as opposed to storing the whole n^{2k} entries is worthwhile. Indeed, with n=30, K=5, using single precision floats, it takes $\approx 100 \text{MB}$ to store n^K entries while it takes

 $\approx 2 \times 10^6 {
m GB}$ to store n^{2K} entries. Unfortunately this is still exponential, and a 120GB would only allow us to handle K=7... But this is assuming B is full, hopefully with a sparse B we can handle more if needed (Might spend more time later finding out the required storage...)