ROLL NO-57

Q1)

```
#Question 1
    #LAZY LEARNER ALGORITHM(KNN ALGORITHM)
    #loading necesssary libraries
 4
    library(caret)#Confusion Matrix
    library(caTools)#Feature Scaling
    library(class)#KNN Algorithm
    data <- read.csv(file.choose())#read the CSV file</pre>
10
    View(data)#to view data
    sum(is.na(data))#to know how many na values are there in dataset
11
    data[is.na(data)] <- 0 #to replce na values with 0
   str(data)#gives structure of the data
13
   summary(data)#gives summary of the data
   data$Gender <- as.numeric(factor(data$Gender))#creating factors</pre>
16 data$MaritalStatus <- as.numeric(factor(data$MaritalStatus))#creating factors</pre>
17 - normalize <- function(x) {
      return ((x - min(x)) / (max(x) - min(x)))#formula of normalization
18
19 - }
20 data[2:9] <- as.data.frame(lapply(data[2:9], normalize))</pre>
    set.seed(123)#to randomize data
21
    split <- sample.split(data$Product, SplitRatio = 0.7)#splitting data</pre>
23
   train <- subset(data, split == TRUE)#training data</pre>
24
    test <- subset(data, split == FALSE)#testing data
    View(train)
25
    View(test)
   k <- 3 # Value of k used in prediction
27
   pred <- knn(train = train[, -1], test = test[, -1], cl = train$Product, k = k)
   accuracy <- mean(pred == test$Product)</pre>
   cat("Accuracy: ", accuracy)
30
```

```
33:1 (Top Level) $
Console Terminal
                    Background Jobs
Max. :/.UUU Max. :3.UUU Max. :1U4381 Max. :30U.U > data$Gender <- as.numeric(factor(data$Gender))#creating factors
> data$MaritalStatus <- as.numeric(factor(data$MaritalStatus))#creating factors</pre>
> normalize <- function(x) {
     return ((x - min(x)) / (max(x) - min(x)))#formula of normalization
> data[2:9] <- as.data.frame(lapply(data[2:9], normalize))</pre>
> set.seed(123)#to randomize data
> split <- sample.split(data$Product, SplitRatio = 0.7)#splitting data
> train <- subset(data, split == TRUE)#training data</pre>
> test <- subset(data, split == FALSE)#testing data > k <- 3 # Value of k used in prediction
> pred <- knn(train = train[, -1], test = test[, -1], cl = train$Product, k = k)
> accuracy <- mean(pred == test$Product)</pre>
> cat("Accuracy: ", accuracy)
Accuracy: 0.6111111
```

```
#Question2
data <- read.csv(file.choose())</pre>
# 1
na <- sum(is.na(data))</pre>
na
# 2
na_location <- which(is.na(data),arr.ind = TRUE)</pre>
na_location
 data_completecases <- data[complete.cases(data), ]</pre>
View(data_completecases)
 # 4
normalize <- function(x) \{(x - min(x)) / (max(x) - min(x))\}
 data1 <- as.data.frame(lapply(data$Product, normalize))</pre>
 library(ggplot2)
 ggplot(data\_completecases, aes(x = Age)) + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = "blue", color = "black") + geom\_histogram(binwidth = 1, fill = 1, fill
           labs(title = "Distribution of Age", x = "Age", y = "Frequency")
```

```
> # 1
> na <- sum(is.na(data))
> na
[1] 2
> # 2
> na_location <- which(is.na(data),arr.ind = TRUE)
> na_location
    row col
[1,] 19 6
[2,] 50 7
```

	Product [‡]	Age ‡	Gender [‡]	Education ‡	MaritalStatus ‡	Usage [‡]	Fitness ‡	Income ‡	Miles ‡
1	TM195	18	Male	14	Single	3	4	29562	112
2	TM195	19	Male	15	Single	2	3	31836	75
3	TM195	19	Female	14	Partnered	4	3	30699	66
4	TM195	19	Male	12	Single	3	3	32973	85
5	TM195	20	Male	13	Partnered	4	2	35247	47
6	TM195	20	Female	14	Partnered	3	3	32973	66
7	TM195	21	Female	14	Partnered	3	3	35247	75
8	TM195	21	Male	13	Single	3	3	32973	85
9	TM195	21	Male	15	Single	5	4	35247	141
10	TM195	21	Female	15	Partnered	2	3	37521	85
11	TM195	22	Male	14	Single	3	3	36384	85
12	TM195	22	Female	14	Partnered	3	2	35247	66
13	TM195	22	Female	16	Single	4	3	36384	75
14	TM195	22	Female	14	Single	3	3	35247	75
15	TM195	23	Male	16	Partnered	3	1	38658	47
16	TM195	23	Male	16	Partnered	3	3	40932	75
17	TM195	23	Female	14	Single	2	3	34110	103
18	TM195	23	Male	16	Partnered	4	3	39795	94
20	TM195	23	Female	15	Partnered	2	2	34110	38
21	TM195	23	Male	14	Single	4	3	38658	113
22	TM195	23	Male	16	Single	4	3	40932	94
23	TM195	24	Female	16	Single	4	3	42069	94
24	TM195	24	Female	16	Partnered	5	5	44343	188
25	TM195	24	Male	14	Single	2	3	45480	113
26	TM195	24	Male	13	Partnered	3	2	42069	47
27	TM195	24	Female	16	Single	4	3	46617	75
28	TM195	25	Female	14	Partnered	3	3	48891	75

#5


```
a <- sqldf("select ItemCategory, sum(Sales_Amt) as TotalSales from dataset group by ItemCategory order by TotalSales desc LIMIT 1")
  ItemCategory TotalSales
     Cellular
> c <- sqldf("select Manager, Department, sum(Sales_Amt) as TotalSales from dataset group by Manager, Department")
   Manager Department TotalSales
                 Sales
1 Manager 1
                            10400
2 Manager 2
                 Sales
3 Manager 3
              Finance
                            28000
4 Manager 4 Accounting
                            11600
                            13600
5 Manager 5 Accounting
6 Manager 6
                 Audit
                             5600
                             6000
7 Manager 7
                 Audit
                             6000
8 Manager 8
                 Audit
9 Manager 9
                 Audit
> d <- sqldf("select Manager, sum(Sales_Amt) as TotalSales from dataset group by Manager")
   Manager TotalSales
1 Manager 1
                  4000
2 Manager 2
                 10400
3 Manager 3
                 28000
4 Manager 4
                 11600
                 13600
5 Manager 5
6 Manager 6
                  5600
7 Manager 7
                  6000
8 Manager 8
                  6000
9 Manager 9
                  6400
> e <- sqldf("select ItemCategory as TotalSales from dataset where ChannelType = 'Online' group by ItemCategory order by TotalSales desc LIMIT 1")
   TotalSales
1 Electronics
```

2nd part

