Sample Solution for Exercise: 1

Subtask	Sh	Points
1.1	+ high power density	0.5
	+ simple realization of linear movements	
	+ good controllability	0.5
	+ good time response behavior due to low mass inertia	
	+ simple and reliable overload protection	
	+ good lubrification and removal of heat losses by the fluid	
	- energy consumption (losses through friction and internal leakage)	0.5
	- maintenance of the fluid (susceptibility towards dirt and wear of the	
	components)	
	- environment (noise emitted, leakage)	0.5
1.2	environmentally friendly liquids	1
	viscosity group	1
1.3		1
	$p = \frac{F}{A} \qquad Q = v \cdot A \iff A = \frac{Q}{v}$	
	$p = v \cdot \frac{F}{Q} = 1 \frac{m}{s} \cdot \frac{20 \ kN}{30 \ \frac{l}{m^2}} = 4 \cdot 10^7 \frac{N}{m^2} = 400 \ bar$	0.5
	$Q s 30 \frac{l}{min} m^2$	0.5
1.4	orifice	1
	$Q = \alpha_D \cdot A \cdot \sqrt{\frac{2}{\rho}} \cdot \sqrt{\Delta p}$	1
	$Q = a_D \cdot A \cdot \sqrt{\rho} \cdot \sqrt{\Delta \rho}$	

Page: 1

Total Score: 15

Subtask		Points
1.5	$p = \frac{F}{A_Z} \implies F = \Delta p \cdot A_Z$	0.5
	$A_Z = \frac{\pi}{4} (d_K^2 - d_Z^2) = 471.24 \ mm^2$	0.5
	$p_P \cdot A_Z = p_{ND} \cdot A_Z + mg$	0.5
	$m = \frac{1}{g}(p_P - p_{ND}) \cdot A_Z = \frac{1}{9.81 \frac{m}{S^2}} \cdot 205 \cdot 10^5 \frac{N}{m^2} \cdot 471.24 \ mm^2$	0.5
	$=984.75 \ kg$	0.5
1.6	$c = \sqrt{\frac{E'_{Fl}}{\rho}} = \sqrt{\frac{16000 \cdot 10^5 \frac{N}{m^2}}{890 \frac{kg}{m^2}}} = 1340.8 \frac{m}{s}$	1
	$t_{crit} = \frac{2 \cdot l}{c} = \frac{2 \cdot 6.7 \ m}{1340.8 \ \frac{m}{s}} = 9.994 \ ms$	1
1.7	$\Delta p_{full\ surge} = \rho \cdot c \cdot \Delta v = 890 \ \frac{kg}{m^3} \cdot 1340.8 \frac{m}{s} \cdot 8 \frac{m}{s} = 95.46 \ bar$	1
	$\beta = \frac{t_{crit}}{t_{close}} = \frac{9.994 ms}{18 ms} = 0.555$	1
	$\Delta p = \Delta p_{full surge} \cdot \beta = 53.00 bar$	1
	Alternative values: $\Delta p_{full\ surge} = \rho \cdot c \cdot \Delta v = 890 \ \frac{kg}{m^3} \cdot 1500 \frac{m}{s} \cdot 8 \frac{m}{s} = 106.8 \ bar$	
	$\beta = \frac{t_{crit}}{t_{close}} = \frac{12 ms}{18 ms} = 0.666$	
	$\Delta p = \Delta p_{full surge} \cdot \beta = 71.13 bar$	
	Summation:	15

Sample Solution for Exercise: 2 Total Score: 10

Subtask	Ro	Points
2.1	A P T	1.5
2.2	Pressure relief valves limit the inlet pressure by draining the fluid when the adjusted value is achieved. Pressure reducing valves keep the outlet pressure constant in spite of an unsteady inlet pressure or outlet flow rate. Under the condition that the inlet pressure is higher than the outlet pressure.	1.0
2.3	 Impurity of the fluid can lead to deterioration, clamping etc => high pressure filter Irregular pressure distribution at the spool perimeter e.g through asymmetrical flow can lead to radial forces which can cause clamping => peripheral grooves and/or symmetrically designed in-and outlets Form errors can be the reason for radial clamping forces => increase production accuracy Damage of the actuation e.g. through over-tension of electromagnets => safety feature in the control electronics Damage of the valve seat i.e. due to high pressures, oscillations etc. => pressure relief valve and/or orifices in the control pipe 	1.0
2.4	The accelerating force yields from Newton's law of motion $F_a = m \ddot{x}$ Coulomb's friction (solid body friction) from $F_{RC} = r \cdot \text{sign}(\dot{x})$ and Newton's friction (liquid friction, dependent on viscosity and velocity) from $F_{RN} = d \cdot \dot{x}$ Pre-tension spring force (proportional to the stroke) from $F_F = c \cdot x$ Flow forces from $F_{Str} = f(Q, \dot{Q})$ and the pressure forces from $F_p = A \cdot \Delta p$	1.5

Subtask		Points
2.6	$x_0 = \frac{\Delta p \cdot A_{\text{RV}}}{c_{\text{F}}} = 3.93 \text{ mm}$	0.5
2.5	$Q = v_{\rm A} \cdot A_{\rm A} = 60 \frac{l}{min}$	2.0
	$\Delta p_{\text{RV}} = \left(\frac{Q}{\alpha_D \cdot \pi \cdot d_{\text{RV}} \cdot x_{\text{RV}}}\right)^2 \frac{\rho}{2} = 3.13 \text{ bar}$ $\frac{P_{\text{RV}}}{P_{\text{h}}} = \frac{\Delta p_{\text{RV}} \cdot Q}{12 \text{ kW}} = 2.61 \%$	
	⇒ requirement is fulfilled	
2.7	requirement: the opening forces (pressure force) need to be higher that the	2.5
	closing forces (spring force, flow force).	
	$\sum F = F_{\rm p} - F_{\rm F} - F_{\rm Str} \ge 0$	
	The lowest positive total force occurs at maximum opening width of the	
	check valve. Therefore only this point is taken into consideration.	
	$F_{\rm p} = \Delta p_{\rm RV} \cdot A_{\rm RV} = 24.59 \mathrm{N}$	
	$F_{\rm F} = c_{\rm F} \cdot (x_0 + x) = 11.85 \mathrm{N}$	
	$F_{\text{Str}} = \rho \cdot \frac{Q_T^2}{\underline{\pi \cdot d \cdot x}} \frac{\cos 60^{\circ}}{\sin 60^{\circ}} = 8.17 \text{ N}$	
	$\sum F = 4.56 \text{ N}$	
	⇒ valve opens completely and is pressed against the end stop	
	Summation:	10

Page: 5

Total Score: 10

Sample Solution for Exercise: 3

Subtask	Sk	Points
3.1	Variable radial piston pump	0.5
3.2	1. piston, 2. cylinder star, 3. slipper, 4. stroke ring, 5. actuating piston	2.5
3.3	kinematically caused: through finite quantity of displacement rooms compression caused: through backflowing fluid in the displacement rooms during the reversing process in the high pressure area	1
3.4	$V = 2 \cdot \mathbf{e} \cdot b \cdot (D \cdot \pi - \mathbf{a} \cdot \mathbf{z})$ $d_{Rotor} = d_{Housing} - 2 \cdot I_{min}$ $D_{Housing} = d_{Rotor} + 2 \cdot I_{max} = 38 - 2 \cdot 1mm + 2 \cdot 7mm = 50 mm$ $\mathbf{e} = (I_{max} - I_{min})/2 = 3mm$ $V = 2 \cdot 2 \cdot 3mm \cdot 40mm \cdot (50 \cdot \pi - 4mm \cdot 6) = 63.88 \text{ cm}^3$	2
3.5	 centrifugal force pressure applied to bottom side of the vane 	1
3.6	No, therfore a variable pump is necessary.	1
3.7	Pressure line Tank line	2
	Summation:	10

Page: 6

Total Score: 10

Sample Solution for Exercise: 4

Subtask	Di	Points
4.1	Orifices are independent of temperature and therefore are used preferencially. The design of the system can be done in one step for all temperatures.	1
4.2	Paramount valve (A) Image: Application of the content of the co	0.5
	Here both pressure chambers are connected with the high pressure, therefore only oil is required for the rod area for a fast process. Here the maximum velocity is the highest.	1
4.3		
	adjustable drive (pump or motor)	0.5
	system to accumulate braking energy (accumulator available) (only if the	0.5
	next two points are not reached)	
	braking system is displacement controlled and works	0.5
	traction drive independent of accumulator load	0.5
	free-wheel possible	0.5
	pressure relief valves	0.5
	filter	0.5

Subtask	Di	Points
4.4	$p = 2\pi^* M/V/\eta_{hm,motor}$	0.5
	$Q_{leak, motor} = k_p \; p + k_n \; n_{motor}$	
	$N_{pump} = (V_{motor} \ n_{motor} + Q_{leak, \ motor}) / (\eta_{vol, \ pump} \ V_{pump})$	0.5
	$n_{pump} = 4,846 \text{ U/min}$	0.5
4.5	$p = 2\pi M \eta_{hm, pump} / V$	0.5
	$M = M_{pedal} \eta_{hm, pump} \eta_{hm, motor} (V_{motor}/V_{pump}) = 16,2 Nm$	0.5
	$Q_{leak, motor} = k_p p + k_n n$	
	$Q = V_{motor} n_{motor} + Q_{leak, motor}$	0.5
	$\eta_{\text{vol, motor}} = (Q - Q_{\text{leak, motor}}) / Q$	
	$P = 2\pi \; n_{motor} \; M_{motor} \; / \; (\eta_{hm, \; motor} \; \eta_{hm, pump} \; \eta_{vol, \; motor} \; \eta_{vol, \; pump)}$	
	P = 255,9 W	0.5
4.6	The volumetric efficiency factor increases and the mechanical one	0.5
	decreases.	0.5
	The oil is getting more viscous at lower temperatures so less leakage	
	appears. Indeed the friction increases with higher viscosity.	
	Summation:	10

Sample Solution for Exercise: 5 Total Score: 15

Subtask	vG			Points
5.1	lubricator,			1,5
	pressure control va	alve,		0,5 per
	filter of compresse	ed air		mentio-
				ning
5.2	a: slotted cylinder	b: magnet cy	linder	2
	c: rope cylinder	d: band cyline	der	0,5 per
				mentio-
				ning
5.3		benefit ©	disadvantage ⊖	3
	mantenaince of	no ageing, no	filtration, mist lubrication,	0,5 per
	the pressure	environmental pollution	noise absorbtion or drying	correct
	medium	by leakage	necessary	mentio-
	low viscosity	low system losses, high	High losses through	ning
		operating velocity	leakage, low damping	
	low operating	pressure resistance of the	lower forces and torques	
	pressure	construction elements	than in hydraulics	
		umproblematic, use of		
5.4	calculation of the a	tubing lines possible		2.5
				2,5
	$A_S = \pi \frac{s}{4} = 490,$	87 mm ²		
	$A_S = \pi \frac{d_s^2}{4} = 490,$ $A_K = \pi \frac{d_K^2}{4} = 636$	$1,73 \ mm^2$		
	Balance of forces:			
	$p_{Ver} \cdot A_K - p_{lower}$	$(A_K - A_S) - p_U \cdot A_S - (m_S - m_S) \cdot a_S$	$a_L + m_S) \cdot g = 0$	
	$p_{lower} = \frac{p_{Ver} \cdot A_K}{1}$	$\frac{(A_{K} - p_{U} \cdot A_{S} - (m_{L} + m_{S}) \cdot g)}{A_{K} - A_{S}}$		
	$6har \cdot 6$	361.73mm² – 1har · 490.8	$7mm^2m$	
	$p_{lower} = {}$	$6361,73mm^2 - 490,87mm^2$	2	
	(150kg + 20k	$\frac{(kg) \cdot 9.81 \frac{m}{s^2}}{490.87mm^2} = 3.58bar$		
	$-{6361,73mm^2}$	$-490,87mm^2 = 3,58bar$		
		ow of the exhaust air throttle		
	Plower	→ critically floated and ther		
	long as p_{lower} is not	t reduced by the load, so that	a subcritical flow occurs.	

Subtask	vG	Points
5.5	Balance of forces: $\sum F = 0$	3
	$p_{lower} \cdot A_K - p_U \cdot A_K - m_S \cdot g = 0$ $p_{lower} = \frac{p_U \cdot A_K + m_S \cdot g}{A_K} = 1,308 \text{ bar}$	
	Check if critical flow of the exhaust air throttle is given: $\frac{p_U}{p_{lower}} = 0.76 > b \rightarrow \text{floated subcritically}$	
	air mass in the cylinder from the ideal gas equation: $m_{cyl} = \frac{p_{lower} \cdot A_K \cdot h}{RT} = \frac{1,308bar \cdot 6361,73mm^2 \cdot 1000mm}{288 \frac{J}{kg \ K} \cdot 293,15K} = 9,86 \ \mathrm{g}$	
	acceleration and inertia are neglected \rightarrow constant velocity and constant mass flow $\dot{m} = \frac{m_{cyl}}{t} = \frac{9,86g}{5s} = 1,972 \frac{g}{s}$	
	$\dot{m} = C_2 \cdot p_{lower} \cdot \rho_0 \cdot \underbrace{\sqrt{\frac{T_0}{T_{lower}}}}_{1} \sqrt{1 - \left(\frac{\frac{p_U}{p_{lower}} - b}{1 - b}\right)^2}$	
	$\Leftrightarrow C_2 = \frac{\dot{m}}{p_{lower} \cdot \rho_0} \frac{1}{\sqrt{1 - \left(\frac{p_U}{p_{lower}} - b}{1 - b}\right)^2}} = 0$	
	$ \frac{1,972\frac{g}{s}}{1,308bar\cdot 1,1845kg/m^3} \frac{1}{\sqrt{1-\left(\frac{\frac{1bar}{1,308bar}-0,528}{1-0,528}\right)^2}} $	
	\Leftrightarrow $C_2 = 1.47 \text{ Nl/(bar s)}$	
5.6	The move-out velocity stays unchanged because the exhaust air throttle provides the velocity and is still actuated by air.	1

Subtask	vG	Points
	To gurantee a safe operation the bottle needs to be filled for 20 strokes with at least $p_{N2} \ge 6$ bar. mass over 20 strokes: $m_{cyl} = \frac{p_{Ver} \cdot A_K \cdot h}{R_{N2}T} \cdot 20 = \frac{6bar \cdot 6361,73mm^2 \cdot 1000mm}{296,8 \frac{J}{kg K} \cdot 293,15K} \cdot 20$ $= 877,41g$ basic filling oft he bottle at 6 bar: $m_{bo} = \frac{p_{bo} \cdot V_{bo}}{R_{N2}T} = \frac{6bar \cdot 20l}{296,8 \frac{J}{kg K} \cdot 293,15K} = 137,92g$ filling pressure of the bottle: $p_{bo,0} = \frac{(m_{cyl} + m_{bo}) \cdot R_{N2}T}{V_{bo}} = \frac{1015,33g \cdot 296,8 \frac{J}{kg K} \cdot 293,15K}{20l}$ $= 44,17bar$	2
	Summation:	15

Sample Solution for Exercise: 6 Total Score: 10

Subtask	St	Points
6.1	When the box arrives at workspace (1) and the operator confirms the end	2
	of the loading procedure with the hand switch H1, cylinder Z1 shall move	
	out with the help of valve V1. As soon as the box has left working place	
	(1), the cylinder shall move in again.	
	V2 • A	
	M1 H2	
	① ② ② □ ↓ ↓ 2.1 ▼ ② 2.1 ▼ ③ 3.1 ▼ ③ 3.1	
6.2	To avoid damages of the goods the move-out of cylinder Z1 shall take	1,5
	place cushioned .	
	V2 • A	
	72 H2 H1.1	
	Z1	

