Info Challenge 2022 Veo E-Scooter Sidewalk Usage

• • •

Team 22014: Alibi Shokputov, Ruthwik Kuppachi, Iskander Lou, Govind Nageswaran

Outline

Context

Project objectives

Data & methodology

Spatial analysis

Regression analysis

Discussion of findings

Data limitations and further directions

Practical solutions

Context

The VeoRide e-scooters became available on UMD campus in Fall 2019, and gained popularity among students since its launch. The affordable service fees and **availability in many locations** on campus are likely main drivers for the Veoride e-scooter service popularity.

However, the UMD Department of Transportation Services raised concerns lately for **pedestrian safety** risks associated with the use of sidewalks by VeoRide e-scooter riders. This alludes to a growing issue of **competition for space intended for pedestrians** such as sidewalks given the rise of micro-mobility services like VeoRide in recent years.

With VeoRide going dockless in 2020, a problem of **scooter cluttering** also emerged, hindering pedestrian movement in areas highly frequented by them.

It also made the process of charging and rebalancing the scooter supply more challenging for VeoRide.

Project Objectives

In this project, we examined the dataset provided by DOTS that contains Veoride scooter trips aggregated per street segment in September and November 2021.

Using ArcGIS and Python packages like geopandas, we identified the campus areas with the highest scooter traffic levels in those two months.

Data

trips_intersected_only_20220302T163907Z_001 - Sept trips intersected only $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					
	id	name 💠	count 💠	percentage 💠	geometryld 💠 …
	a30f7d5c1d3857b4deaa96527b		401.00	1.10	a30f7d5c1d3857b4deaa96527b
	68c39a5dc69f7264d9f5853cc99		58.00	0.20	68c39a5dc69f7264d9f5853cc99
	4bddca8d46f66baca3e5bf95a19		4.00	0.00	4bddca8d46f66baca3e5bf95a19
	23f8e1dfdef8ca4e971c428b93b		403.00	1.10	23f8e1dfdef8ca4e971c428b93b
	a86653e49a21dae941ed18c163		58.00	0.20	a86653e49a21dae941ed18c163
	569bffaa212009e6aa91eed5cb8		405.00	1.10	569bffaa212009e6aa91eed5cb8

Data

Figure 1: trip counts in September

Figure 2: trip counts in September (normalized)

Methodology

- 1. Data cleaning and processing in Python using pandas, geopandas, and shapely packages
- 2. Use ArcGIS Desktop to subset trips made on sidewalks only and calculate sidewalk width
- 3. Use ArcGIS Online for map visualizations
- 4. Use Random Forest regression for predicting VeoRide scooter user behavior

September

Roads & sidewalks

September

Sidewalks only

November

Sidewalks only

Difference between Sept and Nov

Sidewalks only

Sidewalk Trips vs Road Trips

Both months

Roads and sidewalks displayed separately

Veoride parking hubs included

Sidewalks Width

Safety Risk Sidewalks

Sidewalk width less than 4 feet

Scooter activity in top 25 percentile

Regression Analysis

Using Random Forest Regressor, we tried to predict the behavior of scooter riders and understand what factors influence people to ride on the sidewalks.

Input variables for this model include:

- Width of the segment
- Distance to nearest bus stop
- Distance to nearest parking lot
- Number of segments connected to a given segment

Width of the Segment

Distance to the Nearest Bus Stop

Distance to the Nearest Parking Lot

Number of Segments Connected to a Given Segment

Relationship between Number of Trips on a Segment vs the Number of Segments Connected to the Segment

Data Limitations

No data for individual trips - The trip data was aggregated at the month level and per street segment which prevented us from doing granular analysis including where trips started and ended or building individual trip trajectories, for example.

Lack of temporal data - No hourly or daily trip data was provided making it impossible to perform time series analysis.

Practical Solutions

Optimize scooter hub locations

Enforce speed limits in safety risk areas on campus

Use a geofenced system for proper parking

Run the short-term pilot program with speed limits and no scooter zones in safety risk areas

Incentive programs: Free rides and discounted trip fares for following on-campus regulations

Software & external datasets used

ArcGIS, geopandas, shapely

UMD map API

Scooter hubs data

Bus stations data

Parking lots data

Bike rack data