

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Loops of isogeny graphs of supersingular elliptic curves at j = 0

Yi Ouyang, Zheng Xu*

Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

ARTICLE INFO

Article history: Received 23 December 2018 Received in revised form 2 April 2019

Accepted 11 April 2019 Available online 6 May 2019 Communicated by Neal Koblitz

MSC: 11G20

11G15 14G15

14H52

94A60

Keywords: Supersingular elliptic curves over finite fields

Isogeny graphs

ABSTRACT

We improve Adj et al.'s bound in [1, Theorem 12] from $p > 4\ell$ to $p > 3\ell$ for the loops of $E_0: y^2 = x^3 + 1$ in the ℓ -isogeny graph $G_{\ell}(\mathbb{F}_{p^2}, -2p)$ of supersingular elliptic curves over \mathbb{F}_{p^2} with trace -2p.

© 2019 Elsevier Inc. All rights reserved.

Let ℓ and p be distinct prime numbers. The ℓ -isogeny graph $G_{\ell}(\mathbb{F}_{p^2})$ over \mathbb{F}_{p^2} is the graph whose vertices are \mathbb{F}_{p^2} -isomorphism classes of supersingular elliptic curves defined over \mathbb{F}_{p^2} and edges are equivalent classes of ℓ -isogenies defined over \mathbb{F}_{p^2} . If replacing the field of definition \mathbb{F}_{p^2} of the curves and isogenies by the algebraic closure $\overline{\mathbb{F}}_p$ of \mathbb{F}_p , we get

^{*} Corresponding author.

E-mail addresses: yiouyang@ustc.edu.cn (Y. Ouyang), xuzheng1@mail.ustc.edu.cn (Z. Xu).

the definition of $G_{\ell}(\overline{\mathbb{F}}_p)$. By Tate's result ([4]), two elliptic curves over a finite field \mathbb{F}_q are isogenous over \mathbb{F}_q if and only if the traces of the Frobenius $(x \mapsto x^q)$ on their Tate modules are the same. For a fixed $t \in \mathbb{Z}$, let $G_{\ell}(\mathbb{F}_{p^2}, t)$ be the subgraph of $G_{\ell}(\mathbb{F}_{p^2})$ consisting of vertices whose underlying curves are of Frobenius trace t and edges connecting the vertices. In this graph, two isogenies from E_1 to E_2 are equivalent if they have the same kernel. Then the graph $G_{\ell}(\mathbb{F}_{p^2})$ is the disjoint union of $G_{\ell}(\mathbb{F}_{p^2}, 0)$, $G_{\ell}(\mathbb{F}_{p^2}, \pm p)$ and $G_{\ell}(\mathbb{F}_{p^2}, \pm 2p)$, as the trace of Frobenius $(x \mapsto x^{p^2})$ of a supersingular elliptic curve over \mathbb{F}_{p^2} must belong to the set $\{0, \pm p, \pm 2p\}$. Adj et al. determined the subgraphs $G_{\ell}(\mathbb{F}_{p^2}, -2p)$ and $G_{\ell}(\mathbb{F}_{p^2}, \pm p)$ in [1, Theorems 3-5]. The subgraphs $G_{\ell}(\mathbb{F}_{p^2}, 2p)$ and $G_{\ell}(\mathbb{F}_{p^2}, -2p)$ are isomorphic, hence to study $G_{\ell}(\mathbb{F}_{p^2})$, it suffices to study $G_{\ell}(\mathbb{F}_{p^2}, -2p)$. One problem of interest is to determine the number of loops in $G_{\ell}(\mathbb{F}_{p^2}, -2p)$.

Let E_0 be the curve $y^2 = x^3 + 1$ if $p \equiv 2 \mod 3$ and E_{1728} be the curve $y^2 = x^3 + x$ if $p \equiv 3 \mod 4$. Then E_0 and E_{1728} are supersingular elliptic curves over \mathbb{F}_{p^2} of Frobenius trace -2p and j-invariants 0 and 1728 respectively. Adj et al. [1, Theorems 10 and 12] determined the number of loops of E_0 and E_{1728} in the subgraph $G_{\ell}(\mathbb{F}_{p^2}, -2p)$ if $p > 4\ell$. In this note, we improve the bound $p > 4\ell$ in [1, Theorem 12] to $p > 3\ell$ for E_0 and prove the following theorem:

Theorem. Suppose p and ℓ are distinct prime numbers, $p \equiv 2 \mod 3$ and $p > 3\ell$. If $\ell \equiv 1 \mod 3$, E_0 has exactly two loops in $G_{\ell}(\mathbb{F}_{p^2}, -2p)$. If $\ell \equiv 2 \mod 3$, E_0 has no loop in $G_{\ell}(\mathbb{F}_{p^2}, -2p)$. If $\ell = 3$, E_0 has one loop in $G_{\ell}(\mathbb{F}_{p^2}, -2p)$.

Remark. (1) From Table 1 in [1], if $\ell=5,7$ and 17, the largest prime p satisfying $p\equiv 2 \mod 3$ and $p<3\ell$ is 11, 17 and 47, the number of loops at E_0 in $G_\ell(\mathbb{F}_{p^2},-2p)$ is at least 1, 3 and 1 respectively, larger than the prediction in our theorem. In this sense, the bound $p>3\ell$ is sharp (hence $p>3\ell+1$ since $p\equiv 2 \mod 3$). On the other hand, there are many examples that $\ell\equiv 1 \mod 3$ (resp. $\ell\equiv 2 \mod 3$), p is the largest prime satisfying $p<3\ell$ and $p\equiv 2 \mod 3$, and E_0 has exactly two loops (resp. no loop) in $G_\ell(\mathbb{F}_{p^2},-2p)$.

(2) The method in our proof can be applied to give a new proof of [1, Theorem 10]. One just needs to work on the order $\operatorname{End}(E_{1728})$ and solve the Diophantine equation $(2a+c)^2+(2b+d)^2+p(c^2+d^2)=4\ell$ if $p>4\ell$.

Proof. First note that by [1, Theorem 6], $G_{\ell}(\mathbb{F}_{p^2}, -2p) \cong G_{\ell}(\overline{\mathbb{F}}_p)$, hence we can and will work on the graph $G_{\ell}(\overline{\mathbb{F}}_p)$ instead.

For $p \equiv 2 \mod 3$, we can represent the definite quaternion algebra $B_{p,\infty}$ over \mathbb{Q} ramified only at p and ∞ as $\mathbb{Q} \oplus \mathbb{Q}i \oplus \mathbb{Q}j \oplus \mathbb{Q}k$ with $i^2 = -3$, $j^2 = -p$, ij = -ji = k. From [3],

$$\mathcal{O} = \operatorname{End}(E_0) = \mathbb{Z} + \mathbb{Z} \frac{-1+i}{2} + \mathbb{Z} j + \mathbb{Z} \frac{3+i+3j+k}{6}$$

is a maximal order of $B_{p,\infty}$.

By Deuring's Correspondence Theorem (see [2,3,5]), the ℓ -isogeny classes from E_0 to itself defined over $\overline{\mathbb{F}}_p$ correspond to the left principal \mathcal{O} -ideals with reduced norm ℓ . To find the number of loops at E_0 in the graph $G_{\ell}(\overline{\mathbb{F}}_p)$, it suffices to find the number of left principal \mathcal{O} -ideals with reduced norm ℓ .

For the left principal \mathcal{O} -ideal $I=(a+b\frac{-1+i}{2}+cj+d\frac{3+i+3j+k}{6}),$ its reduced norm

$$\operatorname{Nrd}(I) = \left(a - \frac{b}{2} + \frac{d}{2}\right)^2 + 3\left(\frac{b}{2} + \frac{d}{6}\right)^2 + p\left(c + \frac{d}{2}\right)^2 + p \cdot \frac{d^2}{12}.$$

We are reduced to solve the Diophantine equation

$$\frac{(2a-b+d)^2}{4} + \frac{(3b+d)^2}{12} + \frac{p(3c^2+3cd+d^2)}{3} = \ell.$$

We solve this equation when $p > 3\ell$.

If $(0,0) \neq (c,d) \in \mathbb{Z}^2$, then $3c^2 + 3cd + d^2 \geq 1$ and $\frac{p(3c^2 + 3cd + d^2)}{3} > \ell$, not possible. This means c = d = 0. We are reduced to solve $a^2 - ab + b^2 = \ell$.

Since the class number of $\mathbb{Q}(\sqrt{-3})$ is one, its ring of integers $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$ is a PID. Every ideal of $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$ is of the form $(-a+b\frac{1+\sqrt{-3}}{2})$, whose norm is a^2-ab+b^2 . We need to study the decomposition of the ideal (ℓ) .

For $\ell \neq 2$ and $\ell \equiv 2 \mod 3$, $\left(\frac{-3}{\ell}\right) = -1$ and ℓ is inert in $\mathbb{Q}(\sqrt{-3})$, so there is no $(a,b) \in \mathbb{Z}^2$ such that $a^2 - ab + ab = \ell$. This means there is no ℓ -isogeny from E_0 to itself defined over $\overline{\mathbb{F}}_p$, and hence E_0 has no loop in $G_\ell(\overline{\mathbb{F}}_p) \cong G_\ell(\mathbb{F}_{p^2}, -2p)$. For $\ell \equiv 1 \mod 3$, $\left(\frac{-3}{\ell}\right) = 1$ and ℓ is split in $\mathbb{Q}(\sqrt{-3})$. Up to units, there are two pairs of $(a,b) \in \mathbb{Z}^2$ such that $a^2 - ab + ab = \ell$ and hence two left principal \mathcal{O} -ideals of reduced norm ℓ . This means there are two ℓ -isogeny classes from E_0 to itself defined over $\overline{\mathbb{F}}_p$, and E_0 has exactly two loops in $G_\ell(\mathbb{F}_{p^2}, -2p)$. For $\ell = 2$, there is no $(a,b) \in \mathbb{Z}^2$ such that $a^2 - ab + b^2 = 2$, hence E_0 has no loop in $G_2(\mathbb{F}_{p^2}, -2p)$. For $\ell = 3$, ℓ is ramified in $\mathbb{Q}(\sqrt{-3})$. Then $(a,b) = \pm (1,2), \pm (2,1)$ or $\pm (1,-1)$, all corresponding to the same left principal \mathcal{O} -ideal. This means E_0 has one loop in $G_3(\mathbb{F}_{p^2}, -2p)$. \square

Acknowledgments

Research is partially supported by Anhui Initiative in Quantum Information Technologies (Grant No. AHY150200) and NSFC (Grant No. 11571328).

References

- [1] G. Adj, O. Ahmadi, A. Menezes, On isogeny graphs of supersingular elliptic curves over finite fields, Finite Fields Appl. 55 (2019) 268–283.
- K. Lauter, K. McMurdy, Explicit generators for endomorphism rings of supersingular elliptic curves, preprint available.
- [3] K. McMurdy, Explicit representation of the endomorphism rings of supersingular elliptic curves, https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf, 2014.
- [4] J. Tate, Endomorphisms of abelian varieties over finite fields 2 (1966) 134–144.
- [5] J. Voight, Quaternion algebras. Version v0.9.7, September 3, 2017.