COSC 290 Discrete Structures

Lecture 6: Logical Equivalence

Prof. Michael Hay Monday, Sep. 11, 2017 Colgate University

Expressing knowledge in propositional logic

Plan for today

- 1. Expressing knowledge in propositional logic
- 2. Logical Equivalence
- 3. Equivalence of logical operators
- 4. Establishing logical equivalence

Poll: Wumpus world sentences

Let atomic propositions be denoted as follows:

- · p i denotes "there is a pit in [i, j]."
- w_{ij} denote "there is a wumpus in [i, j]."

Write this sentence in propositional logic: "There may be a pit in [1,2] or [2,2] and the wumpus is either in [2,1] or [3,1]."

- A) $(p_{1,2} \oplus p_{2,2}) \wedge (w_{2,1} \oplus w_{3,1})$
- B) $(p_{12} \lor p_{22}) \land (w_{21} \oplus w_{31})$
- C) $(p_{1,2} \lor p_{2,2}) \land (w_{2,1} \lor w_{3,1})$
- D) $(p_{1,2} \wedge p_{2,2}) \vee (w_{2,1} \wedge w_{3,1})$
- E) More than one of the above / None of the above

Poll: Wumpus world sentences

Let atomic propositions be denoted as follows:

- p_{ii} denotes "there is a pit in [i, j]."
- · bij denote "there is a breeze in [i, j]."

Suppose we know that "pits cause breezes in adjacent cells." Which of the following sentences could we add to our KB?

A)
$$p_{2,1} \implies (b_{1,1} \wedge b_{2,2} \wedge b_{3,1})$$

B)
$$b_{1,1} \implies (p_{1,2} \vee p_{2,1})$$

- C) $b_{1,1} \iff (p_{1,2} \vee p_{2,1})$
- D) All of the above
- E) None of the above unless we also know that $b_{1,1}$ is true or $p_{2,1}$ is true.

Bonus question: would your answer change if you also knew that pits were the sole cause of breezes?

Truthiness of a sentence

Consider the sentence $p \land (p \implies q) \implies q$.

How do we evaluate whether this sentence is true?

- Represent expression as a tree (relying on operator precedence to correctly parse sentence).
- Assign true/false values to leaves of the tree (atomic propositions p and q)
- Propagate true/false values up tree using properties of logical operators.

Shown on board

(Can this expression be simplified?)

Logical Equivalence

Equivalence

Two sentences ψ and φ are logically equivalent, written $\psi \equiv \varphi$, if they have identical truth tables.

4

Example

Let
$$\psi := p \implies q$$
.

Let
$$\varphi := \neg p \lor q$$
.

 ψ is logically equivalent to φ , i.e., $\psi \equiv \varphi$.

p	q	$p \implies q$	$\neg p \lor q$
T	Т	T	T
T	F	F	F
F	Т	T	Т
F	F	T	T

Tautology

A proposition ψ is a tautology if it is true under every assignment of its variables. In other words, ψ is a tautology if $\psi \equiv true$.

The example

$$\psi := p \land (p \implies q) \implies q$$

is the tautology known as modus ponens.

Exercise

Working in small groups (2-4), try to simplify the following sentence.

$$\psi := p \land (p \implies q) \implies q$$

In other words, find another sentence φ that is simpler and is equivalent to ψ . Hint: start by constructing a truth table for this sentence

Important equivalence relationships

Equivalence of logical operators

Poll: can we replace \iff ?

Are all of the logical connectives really necessary? You already know that \implies is unnecessary because $p \implies a \equiv \neg p \lor a$.

What about \iff (if and only if)?

- A) Replace with $\neg(\neg p \lor \neg q)$
- B) Replace with $(\neg p \land \neg q) \lor (p \land q)$
- C) Replace with $\neg(p \land q) \land (p \lor q)$
- D) Replace with something else
- E) ⇔ in necessary

Hint: write out a truth table and evaluate each expression.

Ю

Poll: can we replace $\oplus \textbf{?}$

Are all of the logical connectives really necessary? You already know that \implies is unnecessary because $p \implies q \equiv \neg p \lor q$.

What about ⊕ (exclusive or)?

- A) Replace with $\neg(\neg p \lor \neg q)$
- B) Replace with $(\neg p \land \neg q) \lor (p \land q)$
- C) Replace with $\neg(p \land q) \land (p \lor q)$
- D) Replace with something else
- E) ← in necessary

Poll: can we replace \wedge ?

Are all of the logical connectives really necessary? You already know that \implies is unnecessary because $p \implies q \equiv \neg p \lor q$.

What about ∧ (and)?

- A) Replace with $\neg(\neg p \lor \neg q)$
- B) Replace with $(\neg p \land \neg q) \lor (p \land q)$
- C) Replace with $\neg (p \land q) \land (p \lor q)$
- D) Replace with something else
- E) ←⇒ in necessary

11

Minimal set of logical connectives

Not necessary:

$$\cdot$$
 if, \Longrightarrow

We can represent all of the above using only two connectives:

Or ∨ and Not ¬

The set of connectives $\{ \lor, \neg \}$ is functionally complete, meaning that any statement we can write in propositional logic we can write with only these two connectives.

Can we get it down to just one?

Poll: use NAND to simulate NOT

¬p is equivalent to...

р	q	p↑q	
T	Т	F	
Т	F	T	
F	Т	Т	
F	F	т	

NAND connective

The NAND connective, denoted \uparrow , is logically equivalent to the "not" of an "and."

р	q	p∧q	$\neg(p \land q)$	p↑q
Т	Т	T	F	F
Т	F	F	T	T
F	Т	F	T	T
F	F	F	T	T

NAND is also functionally complete. Given what we already know, what work remains to show this?

Poll: use NAND to simulate AND

 $p \wedge q$ is equivalent to...

B)
$$(p \uparrow p) \uparrow (q \uparrow q)$$

C)
$$(p \uparrow q) \uparrow (p \uparrow q)$$

D)	None of the above / I	more than one
	of the above	

F F T

Hint: the double-negation elimination rule may be helpful

$$\neg(\neg \alpha) \equiv \alpha$$
 double-negation elimination

as in
$$p \wedge q \equiv \neg(\neg(p \wedge q))$$

13

Poll: use NAND to simulate OR

 $p \vee q$ is equivalent to...

B)
$$(p \uparrow p) \uparrow (q \uparrow q)$$

- C) $(p \uparrow q) \uparrow (p \uparrow q)$
- D) None of the above / more than one of the above

Hint: double-negation elimination and DeMorgan's law #2 might be helpful

 $p \uparrow q$

T F

$$\begin{array}{cccc} \neg(\neg\alpha) & \equiv & \alpha & \text{double-negation elimination} \\ \neg(\alpha \land \beta) & \equiv & (\neg\alpha \lor \neg\beta) & \text{De Morgan's law #1} \\ \neg(\alpha \lor \beta) & \equiv & (\neg\alpha \land \neg\beta) & \text{De Morgan's law #2} \end{array}$$

as in,
$$p \lor q \equiv \neg(\neg(p \lor q))$$
.

Ways to show logical equivalence

There are basically two ways to show logical equivalence $\psi \equiv \varphi$:

- 1. Using a truth table.
 - Make a truth table with columns for ψ and φ.
 - Equivalent if and only if the T/F values in each row are identical between the two columns.
- 2. Using known logical equivalences.
 - · Step-by-step approach, resembling a proof.
 - Equivalent if and only if one can start with ψ and gradually transform it into φ using only known logical equivalence properties.

Establishing logical equivalence

Example

17

A proposition ψ is a tautology if it is true under every assignment of its variables. In other words, ψ is a tautology if $\psi \equiv true$.

Can we show that

$$\psi := p \land (p \implies q) \implies q$$

is a tautology by transforming it into $\varphi := true$.

Shown on board

CNF and DNF

Given a proposition ψ , it is possible to write a proposition φ such that $\psi \equiv \varphi$ and φ is in disjunctive-normal form (DNF) – an "or" of a bunch of "ands",

Given a proposition ψ , it is possible to write a proposition φ such that $\psi \equiv \varphi$ and φ is in conjunctive-normal form (CNF) – an "and" of a bunch of "ors".

Problem set

20

Any questions from the problem set?