HW #3 CSc 137, Harvey Adder/Mux (12 pts)

- 1. Design a Single cell -1 bit Carry propagate (Ripple Carry Adder) full adder. (6 pts)
 - a. Generate the truth table
 - b. Using K-map, determine the logical expression for Carry out (C-out) and Sum (S)
 - c. Based on the logical expression, create the schematic diagram for full adder
- 2. Design a 1 bit, 2 to 1 multiplexer (Mux). Outputs Y when S = 0; X when S = 1. (6 pts)
 - a. Generate the truth table
 - b. Using K-map, determine the logical expression for output
 - c. Based on the logical expression, create the schematic diagram for Mux

a)	Ax Bx 00010011	Cx 5x C 0 0 0 0 0 1 1 1 1 1	00 R2 R3 R5 R6 R7 R6 R7 R6	16.) A 00 01 11 10 0 0 0 0 0 0 0 0 0 0 0 0 0
10.	inputs Ax Bx		puts	$= A \oplus B \oplus C$ $= AC + BC + AB$ $= AB + (A \oplus B)C$ $\leq x$
		A) —		cout

20)	5	X	Y) r	
	0	0	0	0	P
	00	1	0	0	,
	1	00	0	0	
	i	l	0	201	
		1	1	1	10

$$\Gamma = 5Xy + 5Xy + 6XY + 6XY$$

$$\Gamma = 5y + 5x$$

