Devoir à la maison n° 7

À rendre le 26 novembre

I. Un exercice sur les ensembles

Soient A, B et C trois ensembles. Montrer que :

$$A \cap B = A \cap C \iff A \cap \bar{B} = A \cap \bar{C}.$$

II. Un exercice sur les applications

Soit E et F deux ensembles, $f: E \to F$ une application et G un troisième ensemble, ayant au moins deux éléments. On construit deux nouvelles applications :

$$f_*: \left\{ egin{array}{ll} E^G & o & F^G \\ arphi & \mapsto & f \circ arphi \end{array}
ight. ext{ et } f^*: \left\{ egin{array}{ll} G^F & o & G^E \\ arphi & \mapsto & arphi \circ f \end{array}
ight.
ight.$$

Montrer les équivalences suivantes :

f est injective $\iff f_*$ est injective $\iff f^*$ est surjective.

III. Un théorème de point fixe

Soit $f:[0,1] \to [0,1]$ une application croissante. On veut montrer que f possède un point fixe, *i.e.* qu'il existe $t \in [0,1]$ tel que f(t) = t.

- 1) On note $T = \{x \in [0,1] \mid f(x) \le x\}.$
 - a) Montrer que T possède une borne inférieure, notée t.
 - **b)** Montrer que $f(T) \subset T$.
 - c) Montrer que f(t) minore T.
 - d) Déduire de tout ceci que f(t) = t.
- 2) Ce résultat est-il toujours vrai :
 - a) pour $f:]0,1] \rightarrow]0,1]$ croissante?
 - **b)** pour $f: [0,1] \rightarrow [0,1]$ croissante?

— FIN —