

Università di Bologna - Scuola di Scienze

Esame scritto di Calcolo delle Probabilità e Statistica 14 gennaio 2019

Esercizio 1

Un'urna contiene dieci palline, di cui sei rosse e quattro blu. Si estraggono due palline senza reimmissione. Si considerino gli eventi:

A = "la prima pallina estratta è rossa"

B = "la seconda pallina estratta è rossa"

C = "le palline estratte hanno colori diversi"

- 1) Quanto vale la probabilità dell'evento A?
- 2) Quanto vale la probabilità condizionata $\mathbb{P}(B|A)$?
- 3) Si calcoli la probabilità dell'evento B.
- 4) Si calcoli la probabilità condizionata $\mathbb{P}(A|B)$.
- 5) Si calcoli la probabilità dell'evento C.

1)
$$\mathbb{P}(A) = \frac{6}{10} = 0.6$$
.

2)
$$\mathbb{P}(B|A) = \frac{5}{9} \simeq 0.5556.$$

3) Per la formula delle probabilità totali, si ha che

$$\mathbb{P}(B) = \mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|A^c)\mathbb{P}(A^c) = \frac{5}{9} \cdot \frac{6}{10} + \frac{6}{9} \cdot \frac{4}{10} = \frac{6}{10} = 0.6.$$

4) Per la formula di Bayes, abbiamo che

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)} = \frac{\frac{5}{9} \cdot \frac{6}{10}}{\frac{6}{10}} = \frac{5}{9} \simeq 0.5556.$$

5) Possiamo esprimere C in termini degli eventi A e B come segue:

$$C = (A \cap B^c) \cup (A^c \cap B).$$

Dato che gli insiemi $A \cap B^c$ e $A^c \cap B$ sono disgiunti, per la proprietà di additività della probabilità, otteniamo

$$\mathbb{P}(C) = \mathbb{P}(A \cap B^c) + \mathbb{P}(A^c \cap B) = \mathbb{P}(B^c|A)\mathbb{P}(A) + \mathbb{P}(B|A^c)\mathbb{P}(A^c) \\
= \frac{4}{9} \cdot \frac{6}{10} + \frac{6}{9} \cdot \frac{4}{10} = \frac{8}{15} \simeq 0.5333.$$

Esercizio 2

Sia X una variabile aleatoria discreta avente legge descritta dalle formule

$$\mathbb{P}(X=0) = \frac{2}{\lambda}, \qquad \mathbb{P}(X=\lambda^2) = 1 - \frac{2}{\lambda},$$

dove λ è un parametro reale.

- 1) Trovare i valori ammissibili di λ .
- 2) Calcolare media e varianza di X.
- 3) Sia Y una variabile aleatoria con la stessa legge di X, ma indipendente da X. Determinare densità discreta congiunta e densità marginali di X e Y.
- 4) Calcolare $\mathbb{E}[XY]$ e Var(X + Y).

1) Le quantità $2/\lambda$ e $1-2/\lambda$ sono probabilità, quindi devono essere comprese tra 0 ed 1; inoltre la loro somma deve fare 1. Devono essere dunque verificate le condizioni seguenti:

$$0 \le \frac{2}{\lambda} \le 1, \qquad 0 \le 1 - \frac{2}{\lambda} \le 1, \qquad \mathbb{P}(X = 0) + \mathbb{P}(X = \lambda^2) = 1,$$

da cui si ottiene $\lambda \geq 2$.

2) $\mathbb{E}[X] = \lambda(\lambda - 2) \text{ e } \text{Var}(X) = 2\lambda^2(\lambda - 2).$

3)

,	X Y	0	λ^2	p_X
	0	$\frac{4}{\lambda^2}$	$\frac{2}{\lambda} \left(1 - \frac{2}{\lambda} \right)$	$\frac{2}{\lambda}$
	λ^2	$\frac{2}{\lambda} \left(1 - \frac{2}{\lambda} \right)$	$\left(1-\frac{2}{\lambda}\right)^2$	$1-\frac{2}{\lambda}$
	p_Y	$\frac{2}{\lambda}$	$1-\frac{2}{\lambda}$	1

4) Per l'indipendenza, si ha che

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y], \quad \operatorname{Cov}(X,Y) = 0.$$

Quindi

$$\mathbb{E}[XY] = \lambda^2 (\lambda - 2)^2,$$

$$Var(X + Y) = Var(X) + Var(Y) = 4\lambda^2 (\lambda - 2).$$

Esercizio 3

Supponiamo che X abbia legge esponenziale di parametro 2, ovvero X è una variabile aleatoria continua con densità

$$f_X(x) = \begin{cases} 0, & x < 0, \\ 2e^{-2x}, & x \ge 0. \end{cases}$$

Sia

$$Z = \frac{1}{1 + e^{-2X}}.$$

- 1) Qual è la funzione di ripartizione di X?
- 2) Calcolare $\mathbb{E}[Z]$.
- 3) Mostrare che $\mathbb{P}(Z \leq 1/2) = 0$ e $\mathbb{P}(Z \leq 1) = 1.$
- 4) Determinare la funzione di ripartizione di Z.

1) $F_{-}(t) = \int 0$

$$F_X(t) = \begin{cases} 0, & t \le 0, \\ 1 - e^{-2t}, & t \ge 0. \end{cases}$$

2)

$$\mathbb{E}[Z] = \mathbb{E}\left[\frac{1}{1 + e^{-2X}}\right] = \int_0^{+\infty} \frac{2e^{-2x}}{1 + e^{-2x}} dx$$
$$= \left[-\log\left(1 + e^{-2x}\right)\right]_0^{+\infty} = \log 2.$$

- 3) Notiamo che la funzione $x\mapsto 1/(1+\mathrm{e}^{-2x})$, per $x\geq 0$, è sempre positiva e prende valori nell'intervallo [1/2,1). Deduciamo quindi che $\mathbb{P}(Z\leq 1/2)=0$ e $\mathbb{P}(Z\leq 1)=1$.
- 4) Dal punto precedente, sappiamo che $F_Z(1/2) = 0$ ed $F_Z(1) = 1$. Dalla monotonia della funzione di ripartizione, segue che

$$F_Z(t) = 0, \quad \forall t \le \frac{1}{2}, \quad F_Z(t) = 1, \quad \forall t \ge 1.$$

Sia ora $t \in (1/2, 1)$, allora

$$F_{Z}(t) = \mathbb{P}\left(\frac{1}{1 + e^{-2X}} \le t\right) = \mathbb{P}\left(e^{-2X} \ge \frac{1}{t} - 1\right) = \mathbb{P}\left(-2X \ge \log\left(\frac{1}{t} - 1\right)\right)$$
$$= \mathbb{P}\left(X \le -\frac{1}{2}\log\left(\frac{1}{t} - 1\right)\right)$$
$$= \mathbb{F}_{X}\left(-\frac{1}{2}\log\left(\frac{1}{t} - 1\right)\right).$$

Quindi

$$F_Z(t) = \begin{cases} 0, & t \le 1/2, \\ 1 - e^{\log(\frac{1}{t} - 1)}, & 1/2 < t < 1, \\ 1, & t \ge 1, \end{cases} = \begin{cases} 0, & t \le 1/2, \\ 2 - \frac{1}{t}, & 1/2 < t < 1, \\ 1, & t \ge 1. \end{cases}$$

Esercizio 4

Si consideri un gioco da tavolo in cui una pedina si muove su un tabellone con cinque caselle, numerate da 0 a 4. Per i movimenti si utilizzano quattro monete non truccate, recanti sulle due facce le scritte zero e quattro, secondo le seguenti regole.

- Si parte dalla casella 1.
- Si vince raggiungendo la casella 4.
- Si perde raggiungendo la casella 0.

Se la pedina è su una casella, il movimento successivo è deciso in base alle seguenti regole.

- Se la pedina si trova sulle caselle 0 oppure 4, il gioco termina (ovvero la pedina resta dove si trova indefinitamente).
- Se la pedina si trova su una casella k=1,2,3, il movimento è deciso dal lancio di (k+1) monete:
 - se si ottengono tutti zero, la pedina si sposta sulla casella 0;
 - se si ottengono tutti *quattro*, la pedina avanza di una casella;
 - in tutti gli altri casi, la pedina resta sull'attuale casella.

Il gioco può essere descritto da una catena di Markov a tempo discreto $(X_n)_{n\geq 0}$, dove X_n denota la casella occupata dalla pedina all'istante n.

- 1) Introdurre lo spazio di stato S della catena e scrivere la matrice di transizione Π .
- 2) Disegnare il grafo orientato associato alla catena di Markov.
- 3) Quali sono le classi comunicanti?
- 4) Scrivere la legge di X_0 (ovvero la distribuzione iniziale della catena di Markov) e trovare la legge di X_1 .

1)
$$S = \{0, 1, 2, 3, 4\},\$$

$$\Pi = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & 0 \\ \frac{1}{8} & 0 & \frac{3}{4} & \frac{1}{8} & 0 \\ \frac{1}{16} & 0 & 0 & \frac{7}{8} & \frac{1}{16} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

2)

- 3) $\{0\}$, $\{1\}$, $\{2\}$, $\{3\}$ e $\{4\}$.
- 4) Dato che il gioco incomincia dalla casella 1, la densità discreta di X_0 è data da

La densità discreta di X_1 è invece data dalla formula $\overrightarrow{p}_{X_1} = \overrightarrow{p}_{X_0}\Pi$, quindi