Theoretical Computer Science Tutorial Week 6

Prof. Andrey Frolov

nvoboriz

Agenda

- Determinism vs Non-determinism
 - Definition of NDFSA
 - Examples
- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

Determinism vs Non-determinism

Agenda

- Determinism vs Non-determinism
 - Definition of NDFSA
 - Examples
- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

Non-deterministic Finite State Automata (NDFSA)

Definition: NDFSA

A NDFSA is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where Q, Σ, q_0, A are defined as in (D)FSA and the transition function is defined as

$$\delta: Q \times \Sigma \to \mathbb{P}(Q)$$

 \mathbb{P} is the power set (i.e., the set of all possible subsets)

A NDFSA modifies the definition of a FSA to permit transitions at each stage to either zero, one, or more than one states.

Example

NDFSA with ϵ

What about ϵ -transition???

NDFSA with ϵ

Could we add ϵ ?

Definition: NDFSA

A NDFSA is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where Q, Σ, q_0, A are defined as in (D)FSA and the transition function is defined as

$$\delta: Q \times \Sigma \cup \{\epsilon\}$$
??? $\rightarrow \mathbb{P}(Q)$

 ${\mathbb P}$ is the powerset function (i.e., the set of all possible subsets)

NDFSA with ϵ

Could we add ϵ ?

Definition: NDFSA

A NDFSA is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where Q, Σ, q_0, A are defined as in (D)FSA and the transition function is defined as

$$\delta: Q \times \Sigma \cup \{\epsilon\}$$
??? $\rightarrow \mathbb{P}(Q)$

 ${\mathbb P}$ is the powerset function (i.e., the set of all possible subsets)

Yes, but it is not necessary!

Example with ϵ

Agenda

- Determinism vs Non-determinism
 - Definition of NDFSA
 - Examples
- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

FSA vs NDFSA

The FSA and NDFSA accepting strings ending with 00

FSA vs NDFSA

The FSA and NDFSA accepting strings ending with 00

Example

The NDFSA accepting strings ending with 00 or 01

FSA vs NDFSA

Let Σ be the alphabet $\Sigma = \{a, b\}$

• $L = \{x \in \Sigma^* \mid x \text{ contains the substring } abbaab\};$

FSA vs NDFSA

Let Σ be the alphabet $\Sigma = \{a, b\}$

• $L = \{x \in \Sigma^* \mid x \text{ contains the substring } abbaab\};$

Agenda

- Determinism vs Non-determinism
 - Definition of NDFSA
 - Examples
- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

DFSA (Formal definition)

Definition

A Deterministic Finite State Automaton (DFSA) is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

Q is a finite set of states; Σ is a finite input alphabet; $q_0 \in Q$ is the initial state; $A \subseteq Q$ is the set of accepting states; $\delta: Q \times \Sigma \to Q$ is a transition function.

PDA (Formal Definition)

Definition

```
A (Deterministic) Pushdown Automaton (PDA) is a tuple \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle, where Q is a finite set of states; \Sigma and \Gamma are the input and stack (finite) alphabets; \delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^* is the (partial) transition function; q_0 \in Q is the initial state; Z_0 \in \Gamma is the initial stack symbol;
```

 $A \subseteq Q$ is the set of accepting states.

Using the ϵ -rule below!

The ϵ -rule

If there is an epsilon transition from a state q, there must not be any alphabet transition from that state.

Usually, we use only ϵ , Z_0/Z_0 -transition at the end of PDA.

 $\Gamma = \{Z_0, A\}, Z_0$ is the initial stack symbol.

Conditions on Z_0

- the stack contains at least one symbol: Z_0 ;
- Z_0 is never removed;
- no additional copies of Z_0 are pushed onto the stack.

$$\delta(p_0, a, Z_0) = (p_1, AZ_0)$$

$$\delta(p_1,b,A)=(p_2,\epsilon)$$

 $aabb \in L_1$

PDA. Transition

Definition

A tuple (q, x, Z) is called **configuration**, where $q \in Q, x \in \Sigma^*, Z \in \Gamma^*$.

Definition

For a PDA $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle$, if $\delta(q, a, Z) = (q', Z')$ then

$$(q, ax, Z\gamma) \vdash (q', x, Z'\gamma),$$

where $a \in \Sigma, x \in \Sigma^*, Z \in \Gamma, Z' \in \Gamma^*$.

$$(p_0, aabb, Z_0) \vdash (p_1, abb, AZ_0)$$

$$(p_0, aabb, Z_0) \vdash (p_1, abb, AZ_0) \vdash (p_1, bb, AAZ_0)$$

$$(p_0, aabb, Z_0) \vdash (p_1, abb, AZ_0) \vdash (p_1, bb, AAZ_0) \vdash (p_2, b, AZ_0)$$

$$(p_0, aabb, Z_0) \vdash (p_1, abb, AZ_0) \vdash (p_1, bb, AAZ_0) \vdash (p_2, b, AZ_0) \vdash (p_3, \epsilon, Z_0)$$

PDA. Recognized Languages

Definition

For configurations $c_1, c_2, \dots c_k$, if

$$c_1 \vdash c_2 \vdash \cdots \vdash c_k$$

then we define

$$c_1 \vdash^* c_k$$

PDA. Recognized Languages

Definition

For configurations $c_1, c_2, \dots c_k$, if

$$c_1 \vdash c_2 \vdash \cdots \vdash c_k$$

then we define

$$c_1 \vdash^* c_k$$

Definition

A language L is recognized by a PDA $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle$, if

$$L = \{x \in \Sigma^* \mid (q_0, x, Z_0) \vdash^* (q, \epsilon, \gamma), \text{ where } q \in A, \gamma \in \Gamma^*\}$$

Agenda

- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

Example 1

 $L_1 = \{a^n b^n \mid n \ge 1\}$ is not regular, but is recognized by a PDA.

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular, but is recognized by a PDA.

Example 3

 $L_3 = \{vcv^R \mid v \in \{a, b\}^*\}$ is not regular, but is recognized by a PDA.

Agenda

- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

Pumping lemma for FSA

Pumping lemma

If $L \subseteq \Sigma^*$ is a regular language then there exists $m \ge 1$ such that any $w \in L$ with $|w| \ge m$ can be represented as w = xyz such that

- $y \neq \epsilon$,
- $|xy| \leq m$,
- $xy^iz \in L$ for any $i \ge 0$.

Pumping lemma. For practice

Corollary

If for any $m \ge 1$ there is $w \in L$ such that $|w| \ge m$ and for any representation w = xyz with $y \ne \epsilon$ and $|xy| \le m$

$$xy^iz \notin L$$
 for some $i \ge 0$.

Then L is not a regular language.

Pumping lemma. For practice

Corollary

If for any $m \geq 1$ there is $w \in L$ such that $|w| \geq m$ and for any representation w = xyz with $y \neq \epsilon$ and $|xy| \leq m$

$$xy^iz \notin L$$
 for some $i \ge 0$.

Then L is not a regular language.

Player 1 (opponent)	Player 2 (you)
any $m \geq 1$	$w \in L$ such that $ w \ge m$
any $xyz = w$ with $y \neq \epsilon$ and $ xy \leq m$	$xy^iz \notin L$ for some $i \ge 0$

Pumping lemma for PDA

Bar-Hillel lemma

If $L \subseteq \Sigma^*$ is a recognized by a PDA language then there exists $m \ge 1$ such that any $w \in L$ with $|w| \ge m$ can be represented as $w = x_1x_2x_3x_4x_5$ such that

- $|x_2x_4| > 0$,
- $|x_2x_3x_4| \leq m$,
- $x_1 x_2^i x_3 x_4^i x_5 \in L$ for any $i \ge 0$.

Pumping lemma for PDA

Bar-Hillel lemma (corollary)

If for any $m \ge 1$ such that there is $w \in L$ such that $|w| \ge m$ and for any representation $w = x_1x_2x_3x_4x_5$ such that $|x_2x_4| > 0$, $|x_2x_3x_4| \le m$,

$$x_1x_2^ix_3x_4^ix_5 \notin L$$
 for some $i \ge 0$,

then $L \subseteq \Sigma^*$ is **not** recognized by any PDA.

Pumping lemma for PDA

Bar-Hillel lemma (corollary)

If for any $m \ge 1$ such that there is $w \in L$ such that $|w| \ge m$ and for any representation $w = x_1x_2x_3x_4x_5$ such that $|x_2x_4| > 0$, $|x_2x_3x_4| \le m$,

$$x_1x_2^ix_3x_4^ix_5 \notin L$$
 for some $i \ge 0$,

then $L \subseteq \Sigma^*$ is **not** recognized by any PDA.

Example

 $L = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ is **not** recognized by a PDA.

Agenda

- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

PDA (Formal Definition)

Definition

A Deterministic Pushdown Automaton (DPDA) is a tuple $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle$, where

Q is a finite set of states;

 Σ and Γ are the input and stack (finite) alphabets;

 $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^*$ is the (partial) transition function;

 $q_0 \in Q$ is the initial state;

 $Z_0 \in \Gamma$ is the initial stack symbol;

 $A \subseteq Q$ is the set of accepting states.

Nondeterministic PDA (Formal Definition)

Definition

A Nondeterministic Pushdown Automaton (NPDA) is a tuple $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle$, where

Q is a finite set of states;

 Σ and Γ are the input and stack (finite) alphabets;

 $\delta \subseteq Q \times (\Sigma \cup {\epsilon}) \times \Gamma \times Q \times \Gamma^*$ is the transition relation;

 $q_0 \in Q$ is the initial state;

 $Z_0 \in \Gamma$ is the initial stack symbol;

 $A \subseteq Q$ is the set of accepting states.

Nondeterministic PDA

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is recognized by a PDA.

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is recognized by a NPDA.

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is recognized by a NPDA.

Example 2

 $L_2 = \{vv^R \mid v \in \{a, b\}^*\}$ is recognized by a NPDA.

Example 2

 $\{vv^R \mid v \in \{a, b\}^*\}$ is recognized by a NPDA.

Question

Is $\{vv^R \mid v \in \{a, b\}^*\}$ recognized by a DPDA?

Thank you for your attention!