

Mathématiques

Classe: BAC MATHS

Chapitre: Déplacement – Antidéplacement

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 15 min

4 pt

Soit ABC un triangle isocèle en A tel que $\left(\overline{AB},\overline{AC}\right) \equiv \frac{\pi}{2}[2\pi]$. On note 0 le milieu du segment [BC] et (\overline{C}) le cercle circonscrit au triangle ABC. Les tangentes à (\overline{C}) en A et C se coupent en O'. On pose R_A la rotation de centre A et d'angle $\frac{\pi}{2}$.

- 1. a) Prouver que $R_A(O) = O'$.
 - a) Déterminer $R_A((BC))$.
- 2. Pour tout point M distinct de B, on pose $R_A(M) = M'$.
 - a) Démontrer que : CM' = BM et $(BM) \perp (CM')$.
 - b) Soit $\{H\} = (BM) \cap (CM')$. Quel est l'ensemble des points H lorsque M varie?
- 3. a) Déterminer les applications $S_{(AO')} \circ S_{(AC)}$ et $S_{(AO')} \circ S_{(OC)}.$
 - b) Soit $R_C = R\left(C, -\frac{\pi}{2}\right)$, déterminer les applications $f = R_A \circ R_C$ et $g = R_A \circ R_C^{-1}$.
 - c) On pose pour tout point N du plan : $R_C^{-1}(N) = N_1$ et $R_A(N) = N_2$. Montrer que $\overline{N_1 N_2} = 2 \overrightarrow{OA}$.

Exercice 2

© 20 min

5 pt

ABC est un triangle isocèle en A tel que $\left(\overline{AB},\overline{AC}\right) \equiv \frac{\pi}{2} \left[2\pi\right]$. Soit I le point de concours des bissectrices intérieures du triangle ABC. On désigne par : R_A la rotation de centre A et d'angle $\frac{\pi}{2}$ et par R_C la rotation de centre C et d'angle $\frac{\pi}{4}$.

- 1. Construire le point A' image de A par $R_{\rm C}$.
- 2. a) Donner la nature et les caractéristiques de $R_C \circ R_A$ (on pourra écrire chaque rotation comme composée de symétries orthogonales convenablement choisies).
 - b) Montrer que IA' = IA et que les droites (IA') et (AB) sont parallèles.

- 3. On considère les applications f = $R_{B} \circ R_{C} \circ R_{A}$ et $g = S_{(IB)} \circ R_{C} \circ R_{A}$.
 - a) Construire le point A" image de A par f.
 - b) On note J le milieu de [AA"], donner la nature et les éléments caractéristiques de f.
 - c) Vérifier que g(A) = A". Montrer que g est un antidéplacement que l'on caractérisera.

Exercice 3

5 pt

Soit un plan orienté, on considère un carré ABCD de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} [2\pi]$. On désigne par E le

milieu de [BC] et F le milieu de [CD]

- 1. Montrer qu'il existe un unique déplacement f qui envoie A sur B et E sur F. Caractériser f.
- 2. La droite (OF) coupe la droite (AE) en H.
 - a) Montrer que H est l'orthocentre du triangle ABF.
 - b) Montrer que $2\overrightarrow{OH} + \overrightarrow{OF} = \overrightarrow{0}$
- 3. Soit G le milieu du segment [AB], on désigne par g l'antidéplacement qui envoie O sur A et F sur G.
 - a) Déterminer et construire H' = g(H). Déduire la construction du point G' = g(G).
 - b) Montrer que A' = g(A) est le symétrique de O par rapport à A. Placer A' et B'.
 - c) Déduire la forme réduite de g.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000