Temperaturabhängigkeit von Widerständen

Lineare Widerstände werden durch ihren Temperaturkoeffizienten α beschrieben:

- α positiv: R wächst mit zunehmender Temperatur.
- α negativ: R sinkt mit zunehmender Temperatur.

Lineare Widerstands-Temperaturkoeffizienten einiger Stoffe bei 20 °C

Reine Metalle	lpha in K ⁻¹	Legierungen	lpha in K ⁻¹	Nichtmetalle	lpha in K ⁻¹
Aluminium (99,5 %)	4,0 · 10 ^{-3[1]}	Aldrey (AlMgSi)	3,6 · 10 ^{-3[1]}	Kohlenstoff	-0,5 · 10 ^{-3[2]}
Blei	4,2 · 10 ^{-3[1]}	Berylliumbronze (SnBe4Pb)	0,5 · 10 ⁻³	Graphit	-0,2 · 10 ⁻³
Eisen (rein)	6,57 · 10 ^{-3[3]}	Manganin (Cu84Ni4Mn12)	±0,04 · 10 ⁻³	Lichtbogen-Kohle	0,5 · 10 ^{-3[4]}
Gold	3,7 · 10 ^{-3[1]}	Konstantan (CuNi44)	±0,01 · 10 ^{-3[1]}	Germanium	-48 · 10 ^{-3[2]}
Kupfer (99,9 %)	3,93 · 10 ^{-3[1]}	Isaohm	±0,003 · 10 ^{-3[5]}	Silizium	-75 · 10 ^{-3[2]}
Nickel	6,0 · 10 ^{-3[1]}	Messing (CuZn37)	1,6 · 10 ^{-3[1]}		
Platin	3,92 · 10 ^{-3[6]}	Weicheisen (4 % Si)	0,9 · 10 ^{-3[4]}		
Quecksilber	0,9 · 10 ^{-3[1]}	Stahl C15	5,7 · 10 ⁻³		
Silber	3,8 · 10 ^{-3[1]}				
Tantal	3,3 · 10 ^{-3[1]}				
Wolfram	4,4 · 10 ^{-3[1]}				

Widerstände=f(Temperatur):

Differenz in Kelvin [K]

$$R(\mathcal{G}) = R_{20} + \alpha_{20} \cdot R_{20} \cdot (\mathcal{G} - \mathcal{G}_{20})$$

$$\Delta R$$
 Änderung

Bezugstemperatur meist 20°C