DIALOG(R)File 351:Derwent WPI (c) 2005 Thomson Derwent. All rts. reserv.

012884381 **Image available**
WPI Acc No: 2000-056214/ 200005

XRAM Acc No: C00-014946

3-hydroxy and 5-(difluoro phenoxy) polyester - useful for making biodegradable plastic

Patent Assignee: NAGOYA-SHI (NAGO-N); NAGOYA SHI (NAGO-N)

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No Date Kind Applicat No Kind Date Week JP 2989175 В1 19991213 JP 98262447 19980831 Α 200005 JP 2000072865 Α 20000307 JP 98262447 Α 19980831 200023

Priority Applications (No Type Date): JP 98262447 A 19980831 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 2989175 B1 7 C08G-063/682

JP 2000072865 A 7 C08G-063/682

Abstract (Basic): JP 2989175 B

NOVELTY - The structure of polyester has the 3-hydroxy and 5-(mono fluoro phenoxy)-group as the repeating unit which is given by the formula (1). DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for the manufacturing method of polyester by fermentation synthesis using a microorganism.

USE - The polyester is useful for making biodegradable plastic. ADVANTAGE - Since fluorine group is introduced in the phenoxy group, 100% of the copolymer is synthesized. The melting point of the obtained polymer is more than 100 deg. C. Improved water repellent optical resolution property and characteristic stereo regularity are expectable.

Dwg.0/0

Title Terms: HYDROXY; PHENOXY; POLYESTER; USEFUL; BIODEGRADABLE; PLASTIC Derwent Class: A23; D16

International Patent Class (Main): C08G-063/682

International Patent Class (Additional): C12N-001/20; C12P-007/62; C12R-001-40

File Segment: CPI

Manual Codes (CPI/A-N): A05-E02; A10-D05; D05-A04; D05-C Polymer Indexing (PS):

<01>

001 018; D11 D10 D19 D18 D31 D76 D50 D90 F- 7A D69 F34 D63; P0839-R F41 D01 D63; H0293; L9999 L2528 L2506; L9999 L2404; L9999 L2573 L2506

002 018; B9999 B3021 B3010; B9999 B5607 B5572; B9999 B3509 B3485 B3372; B9999 B4240-R; B9999 B4944-R B4922 B4740; ND03

This Page Blank (uspto)

(19)日本国特許庁 (JP)

(51) Int.CL*

(12) 特 許 公 報(B1)

ΡI

(11)特許番号

第2989175号

(45)発行日 平成11年(1999)12月13日

. 識別記号

(24)登録日 平成11年(1999)10月8日

C08G 83/	682	C 0 8 G 63/682
C12N 1/2	20	C 1 2 N 1/20 A
C12P 7/0	62	C12P 7/62
/ (C12N 1	/20	•
C12R 1:4	40)	
	•	諸求項の数11(全 7 頁) 最終頁に続く
(21)出願番号	特顏平10-282447	(73)特許権者 591270556 —
		名古屋市
(22)出顧日	平成10年(1998) 8月31日	愛知県名古屋市中区三の丸3丁目1番1
	· ·	号
審查請求日	平成11年(1999) 1月27日	(72)発明者 高木 麻雄
	•	愛知県名古屋市北区上飯田北町1丁目8
微生物の受託番号	FERM P-16953	番
	•	(72)発明者 安田 良
	•	愛知県名古風市千種区星ヶ丘1丁目23番
		地の4
	·	(74)代理人 加藤 輝政
		the train 1.000 cts26
		寄査官 大館 幸治
	•	·
	•	
		最終質に続く
		

(54)【発明の名称】 ポリエステル及びその製造方法

(57)【特許請求の範囲】

【請求項1】3-ヒドロキシ、5-(モノフルオロフェノキシ) ペンタノエート(3H5(MFP)P) ユニットのみからなるポリエステル。

【化1】

3 H 5 (M F P) P

【請求項2】3-ヒドロキシ、5-(ジフルオロフェノキシ) ペンタノエート (3H5 (DFP) P) ユニット

のみからなるポリエステル。

[{1:2]

3H5 (DFP) P.

【請求項3】3-ヒドロキシ、5-(モノフルオロフェノキシ)ベンタノエート(3H5(MFP)P)コニットを70モル%から99モル%、3-ヒドロキシ、7-(モノフルオロフェノキシ)ヘブタノエート(3H7(MFP)Hp)ユニットを30モル%から1モル%含

10

む共重合体ポリエステル。 【化3】

3H7 (MFP) Hp

【請求項4】3ーヒドロキシ、5ー(ジフルオロフェノキシ)ペンタノエート(3H5(DFP)P)コニットを70モル%から99モル%、3ーヒドロキシ、7ー(ジフルオロフェノキシ)ヘブタノエート(3H7(DFP)Hp)コニットを30モル%から1モル%含む共重合体ポリエステル。

[化4]

【請求項5】少なくとも3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート(3H5(MFP)P)ユニットを含有する3成分系のモノマーユニットからなる共重合体ポリエステル。

【請求項6】少なくとも3-ヒドロキシ、5-(ジフルオロフェノキシ)ペンタノエート(3H5(DFP)P)ユニットを含有する3成分系のモノマーユニットからなる共重合体ポリエステル。

【請求項7】第2および第3成分として、3-ヒドロキ して芳香環 シペキサノエート(3 HH x)ユニット、3-ヒドロキ シ基を分子 辺の制限下 シオクタノエート(3 HO)ユニット、3-ヒドロキシ クリナノエート(3 HO)ユニットおよび3-ヒドロキシ (3 H5 (1) デカノエート(3 HD)ユニットからなる群から選ばれ なる2つのユニットを有する請求項5記載の共重合ポリエ ステル。

[(£5]

[{66}

(CH₂)₃ O CH-CH₂ C---

(419) 3 HN 20 CH₃ (CH₂), O — O-CH-CH₂-C-

【請求項8】第2および第3成分として、3-ヒドロキシヘキサノエート(3HHx)コニット、3-ヒドロキシヘブタノエート(3HHp)コニット、3-ヒドロキシオクタノエート(3HO)コニット、3-ヒドロキシノナノエート(3HN)コニットおよび3-ヒドロキシデカノエート(3HD)コニットからなる群から選ばれる2つのユニットを有する請求項6記載の共重合ポリエステル。

【請求項9】請求項1、2、3または4に記載されたポリエステルを合成するシュードモナス・プチダ。

【請求項10】シュードモナス属の微生物を、炭素源として芳香環にファ素原子が1個、結合しているフェノキシ基を分子内に持つ脂肪酸を用いて、炭素源以外の栄養源の制限下で培養することを特徴とする、3-ヒドロキシ、5-(モノフルオロフェノキシ)ベンタノエート(3H5(MFP)P)ユニュトを有するポリエステルの製造方法

【請求項11】シュードモナス属の微生物を、炭素源として芳香環にファ素原子が2個、結合しているフェノキシ基を分子内に持つ脂肪酸を用いて、炭素源以外の栄養源の制限下で培養することを特徴とする、3ーヒドロキシ、5ー(ジフルオロフェノキシ)ペンタノエート(3H5(DFP)P)ユニットを有するポリエステルの製造方法

【発明の詳細な説明】 【0001】

50 【産業上の利用分野】本発明は新規ポリエステルおよび

これを発酵合成する微生物およびその製造方法に関す る。詳しくは自然環境(土中、河川、海中)の下で微生 物の作用を受けて分解するプラスチック様高分子および その製造方法に関するものである。

[0002]

【従来の技術・発明が解決しようとする課題】現在まで 数多くの微生物において、エネルギー貯蔵物質としてポ リエステルを菌体内に蓄積することが知られている。そ の代表例がポリー3-ヒドロキシブチレート(以下、P· (3 HB) と略す) であり、下記の式で示されるモノマ 10 ーユニット (3HB) からなるホモポリマーである。

[0003]

(化10)

3 H B

3 H B

【0004】P(3HB)は確かに自然環境中で分解さ 晶性が高く、硬く、かつ脆い性質を持っており、実用的 には不十分であった。これを解決するために特開昭57 -150393号公報、特開昭58-69225号公 報、特開昭63-269989号公報、特開昭64-4 8821号公報、特開平1-156320号公報、特開 平5-93049号公報によればポリエステルを合成す るモノマーユニットとして3HB以外の構造的に異なる 炭素数が3から6のモノマーユニットを組み込むことで とのような欠点を克服することが提案されている。

【0005】また、特開昭63-229291号公報に 30 よれば、炭化水素資化性菌であるシュードモナス・オレ オポランスATCC29347に炭素数6~12までの 3-ヒドロキシアルカノエート (3 HAと略す) をモノ マーユニットとする共重合体P(3HA)を発酵合成で きることが報告されている。このタイプの共重合体は側 鎖のメチレン数が多く、性状は粘着性高分子である。

[0006]

【化11】

знл

【0007】とのように現在のところ、側鎖の鎖長を変 えたタイプの共重合体が提示されている。即ち、側鎖の メチレン基数の多少による物性のコントロールである。 しかしながら、微生物を使用した発酵合成では化学的な 大量合成に比べると効率が悪く、一般的な汎用ブラスチ ックのコストに対抗するのは困難であるといわれてき た。このため、機能性を併せ持つ付加価値の高いポリマ ーを合成できる菌株の探索が課題となっていた。 [0006]

【課題を解決するための手段】本発明者らは化学合成し た自然界に存在しない脂肪酸を資化して菌体内にポリエ ステルを生合成し、蓄積する微生物を探索していたとこ ろ、資化効率の高い微生物を発見し、さらに研究を重ね・ て本発明を完成するに至った。

【0007】即ち、本発明者らの見い出した微生物はフ ェノキシ基上にフッ素原子が1個あるいは2個置換した フェノキシアルカン酸を唯一の炭素源として生育しポリ エステルを合成させる27N01株である。この微生物 が発酵合成するポリマーのモノマーユニットを分析した れるポリマーであるが、高分子材料としてみた場合、結 20 ととろ、ファ素原子が置換した構造である3-ヒドロキ シ、5~(モノフルオロフェノキシ)ペンタノエート (3H5 (MFP) Pと略す)、3-ヒドロキシ、5-(ジフルオロフェノキシ) ペンタノエート (3H5 (D) FP) Pと略す)、3-ヒドロキシ、7-(モノフルオ ロフェノキシ) ヘプタノエート (3H7 (MFP) Hp と略す)、3-ヒドロキシ、7-(ジフルオロフェノキ シ) ヘプタノエート (3H7 (DFP) Hpと略す) が 完全にポリマーとなっていることがNMR分析により確 認された。この微生物を同定したところ、27N01株 はシュードモナス・プチダであることが判明した。

[0008]

【化12】 3H5 (MFP) P

(化13) 3H5 (DFP) P

【化14】 3H7 (MFP) Hp

【化15】 3H7 (DFP) Hp

【0009】本発明はこの微生物を見い出したことに基 づくものである。即ち、本発明の要旨は、(1)3-ヒ トロキシ、5-(モノフルオロフェノキシ)ベンタノエ ート (3H5 (MFP) P) ユニットのみからなるポリ 40 エステル、(2)3-ヒドロキシ、5-(ジフルオロフ ェノキシ) ベンタノエート (3H5 (DFP) P) ユニ ットのみからなるポリエステル、(3)3-ヒドロキ シ、5-(モノフルオロフェノキシ)ペンタノエート (3H5 (MFP) P) ユニットを70モル%から99 モル%、3-ヒドロキシ、7-(モノフルオロフェノキ シ) ヘプタノエート (3H7 (MFP) Hp) ユニット を30モル%から1モル%含む共重合体ポリエステル、 (4) 3-ヒドロキシ、5-(ジフルオロフェノキシ) ペンタノエート (3H5 (DFP) P) ユニットを70 50 モル%から99モル%、3-ヒドロキシ、7-(ジフル オロフェノキシ) ヘブタノエート (3H7 (DFP) H p) ユニットを30モル%から1モル%含む共重合体ポ リエステル、(5)少なくとも3-ヒドロキシ、5-(モノフルオロフェノキシ) ペンタノエート (3 H5 (MFP) P) ユニットを含有する3成分系のモノマー コニットからなる共重合体ポリエステル、(6)少なく とも3-ヒドロキシ、5-(ジフルオロフェノキシ)ペ ンタノエート (3H5 (DFP) P) ユニットを含有す る3成分系のモノマーユニットからなる共重合体ポリエ キシヘキサノエート (3HHx) ユニット、3-ヒドロ キシヘプタノエート (3HHp) ユニット、3-ヒドロ キシオクタノエート (3HO) ユニット、3-ヒドロキ シノナノエート (3HN) ユニットおよび3ーヒドロキ シデカノエート (3 HD) ユニットからなる群から選ば れる2つのユニットを有する(3H5(MFP)P)と の共重合ポリエステル、(8)第2および第3成分とし て、3-ヒドロキシヘキサノエート(3.HHx) ユニッ ト、3-ヒドロキシへプタノエート(3HHp) ユニゥ ト、3-ヒドロキシオクタノエート (3HO) ユニッ ト、3-ヒドロキシノナノエート(3HN)ユニットお よび3-ヒドロキシデカノエート (3 HD) ユニットか らなる群から選ばれる2つのユニットを有する3H5 (DFP) Pとの共重合ポリエステル、(9) 前記 (1)~(8) に記載されたポリエステルを合成するシ ュードモナス・プチダ、並びに 【0010】(10)シュードモナス属の微生物を用い る前記 $(1) \sim (9)$ のポリエステルの製造法に関するものである。具体的には

1)シュードモナス属の微生物を、炭素源として芳香環にファ素原子が1個、結合しているフェノキシ基を分子内に持つ脂肪酸を用いて、炭素源以外の栄養源の制限下で培養することを特徴とする、3-ヒドロキシ、5-(モノフルオロフェノキシ)ペンタノエート(3H5(MFP)P)ユニットを有するポリエステルの製造方法

ステル、(7)第2 および第3成分として、3 - ヒドロ 10 2)シュードモナス属の微生物を、炭素源として芳香環キシヘキサノエート(3 H H p)ユニット、3 - ヒドロ 内に持つ脂肪酸を用いて、炭素源以外の栄養源の制限下キシオクタノエート(3 H O)ユニット、3 - ヒドロキシノナノエート(3 H N)ユニットおよび3 - ヒドロキシデカノエート(3 H D)ユニットからなる群から選ばれる2つのユニットを有する(3 H 5(MF P)P)と 関するものである。

【0011】シュードモナス属の微生物を用いた本発明のポリエステルの製造方法は、従来より報告されていない。

20 【0012】本発明の微生物であるシュードモナス・プチダの菌学的性質は27N01について示される表1のとおりである。このような本発明の微生物として見いだされた27N01株は名古屋市西区堀越町の土壌から分離されたものであり、27N01株は特許微生物センター;受託番号FERM P-16953号として寄託されている。

【表1】

10

試験項目	試験結果	
#B	持 凿	•
グラム染色性		
芽胞	- .	
運動性	. +	
オキシダーゼ	+.	
カタヲーゼ	+	
OF ·	-	•
硝酸塩の遺元	÷	
インドールの生成	<i>− :</i> .	
グルニースからの酸の生成	_	
アルギニンジヒドロラーゼ	+	
ウレアーゼ		
βガラクトシダー ゼ		
シトクロームオキシダーゼ	. + .	
3 7 ℃での生實	+	
4.5℃での生育	_	
チロシン	+	
ゲラ チ ン	_	
E化性		
グルコース	+	
アラビノース	_	•
マンノース		
マンニトール・	- .	
Nアセチルグルコサミン	_	
マルトース	-	
グルコン酸	· +	
カプロン酸	+ .	
アジピン酸	· -	
マロン酸・	+	
クエン酸	+	
フェニル酢酸	+	

【0013】このような本発明のシュードモナス・ブチ ダ27N01株は、公知の代表的なP(3HA)産生菌 であるシュードモナス・オレオポランスとポリエステル 生合成能力において差が見られる。即ち、ポリメラーゼ の3-ヒドロキシアルカニルCoAに対する特異性であ って、この27N01株は作用する基質の範囲がより広 41.

【0014】本発明は前記のような性質を有するシュー ドモナスの微生物、及びこの微生物が発酵合成する微生 40 物産生ポリエステル及びその製造方法を開示するもので あり、フゥ素基が導入されたポリエステルを作るための 技術的手段を提供するものである。

【0015】即ち、具体的にはシュードモナス属の微生 物に炭素源として炭素数5以上メチレン基の末端にフル オロフェノキシ基が置換した脂肪酸を炭素源として与 え、炭素源以外の栄養源の制限下、通常窒素制限下で好 気的に培養するだけで目的のポリエステルを得ることが できる。メチレン基のみのユニットの組成を高めたい場 合は、炭素源として培養の終期に炭素数6以上の脂肪酸 50 ステルは誘導される。この場合、菌体の生育が制限され

を与えればよい。

【0018】 とのように本発明においては、シュードモ ナス属の微生物の特徴を利用してフェノキシ基にファ素 が置換した種々のポリエステルを発酵合成することがで きる。現在のところ官能基を持つポリエステルを合成で きる微生物としてはシュードモナス・オレオポランスが 報告されている、即ち、Macromolecule s、1996、4572-4581ページによるとメチ ル基上に水素がフッ素に置換したカルボン酸を炭素源と してポリエステルを発酵合成した結果を報告している が、これによれば、ポリエステルは共重合体であって、 この微生物のようにホモポリマーを合成できる能力を有 してはいない。

【0017】本発明の微生物を用いてポリエステルを発 酵合成するには、炭素源以外の栄養源の制限下、通常、 従来から知られている窒素制限条件下で培養するととに よって容易に得られるが、炭素源以外の必須栄養源、例 えば、リン、ミネラル、ピタミン等を制限してもポリエ

るので、通常ポリエステルの発酵合成は2段方式でおこ なわれる。

【0018】1段目は菌体の増殖を目的とするものであ り、栄養源の豊富な条件下で培養される。この際、菌体 はポリエステル合成をほとんど行わないので、炭素源と しては脂肪酸に限らず、資化可能であるものなら自由に 選択できる。1段目で得られた菌体を洗浄回収して2段 目において新たに炭素源を加えてポリエステルを誘導培 養する。従って、この2段目の培養条件が重要であり、 原料であり、この炭素源の化学構造がポリエステルの構 造を決定するといってよい。従って、本発明において炭 素源とは、2段目で与えられる炭素源を意味しており、 炭素源を種々調整することにより、シュードモナス属の **微生物の特徴を利用して、前記のフッ素原子を含むボリ** エステルを発酵合成することができる。また、2段目の 培養条件としては通常pH6~8、温度25~35°C、 通気量0.5~2 v v m、培養時間48~96 h r であ

【0019】発酵合成されたポリエステルの菌体からの 20 回収は、常法により行うことができる。例えば、培養終 了後、菌体を蒸留水およびメタノール等により洗浄し、 **減圧乾燥して得られる乾燥菌体をクロロホルム等を用い** て抽出処理し、遠心分離、ろ過等により菌体除去後、抽 出液にメタノールを加えてポリエステルを沈殿回収する ことができる。

[0020]

【実施例】以下、本発明を具体的に実施例により説明す るが、本発明は以下の実施例に何ら限定されるものでは ない。

シュードモナス・プチダ27N01株(特許微生物生物 センター: 受託番号FERM P-16953号) を以 下に示す倍地を用いて30℃、24時間振盪培養した。 即ち、次の倍地組成からなるものに水を加えて全量を1 リットルとし(pH7.0)、培地を調製した。

クエン酸 48	
Na ₁ HPO ₄ 2 g	
KH, PO, 2 g	
Mg SO. · 7H,O 0. 2	g
イーストエキス 0.3	g

【0021】培養終了後、培養ブロスを遠心分離して菌 体を回収し、さらに次に示す培地中に全量を加えて、3 0℃、96時間振盪培養した。即ち、次の培地組成から なるものに水を加えて全量を1リットルとし(pH7. 0)、培地を調製した。

ジフルオロフェノキシウンデカン酸

Na, HPO.	2 g
KH, PO,	2 g
Na HCO.	1.5

 $MgSO. \cdot 7H_2O$ FeSO, · 7H, O 0.2g

0.02

培養終了後、菌体を蒸留水およびメタノールで洗浄し、 減圧乾燥して乾燥菌体を得た。このようにして得られた 乾燥菌体を30℃で5時間抽出した。菌体除去後、クロ ロホルム抽出液にメタノールを10倍量加えてポリエス テルを沈殿回収した。得られたポリエステルを120 ℃、90分間メタノリシスを行ない、モノマー体をメチ 2段目において与えられる炭素源はポリエステル合成の 10 ルエステルとして光散乱分子量測定装置を備えたキャビ ラリーガスクロマトグラフにより昇温分析をした。キャ ピラリーガスクロマトグラフはHP5890 (Hewl ett Packard社製)、光散乱分子量測定装置 はminiDAWN (ワイアットテクノロシー社)を用 ·いて行った。使用したカラムはJ&W社製のヒューズド ・シリカ・キャピラリーカラムDB-5(カラム内径 0.25mm、液層膜厚0.25μm、カラム長30 m) である。初発温度90℃、5分、昇温速度5℃/ 分、最終温度250°C、2分の条件で行った。図1は得・ られたポリマーのメチルエステル化処理物のガスクロマ トグラフによる分析結果である。 図2 にはポリエステル の''C-NMR(100MHz)の解析結果であるが、 この結果からこのポリエステルが3H5(DFP)Pユ ニットの1成分からなるホモポリマーであることが確認 された。

12

【0022】実施例2

実施例1の1段目の培養で炭素源としてクエン酸のかわ りにオクタン酸を用いて同様の実験を行った。その結 果、3HHx、3HO、3H5 (DFP) Pユニットか 30 らなる3成分系の共重合体が得られた。

[0023] 実施例3

実施例1の2段目の培養で炭素源としてジフルオロフェ ノキシウンデカン酸のかわりにモノフルオロフェノキシ ウンデカン酸を用いて同様の実験を行った。その結果、 3H5 (MFP) Pユニットの1成分からなるホモポリ マーであることが確認された。

【0024】実施例4

実施例3の1段目の培養で炭素源としてクエン酸のかわ りにオクタン酸を用いて同様の実験を行った。その結 40 果、3HHx、3HO、3H5 (MFP) Pユニットか らなる3成分系の共重合体が得られた。

【0025】実施例5

実施例1の1段目の培養で炭素源としてクエン酸のかわ りにノナン酸を用いて同様の実験を行った。その結果、 3HHp、3HN、3H5 (DFP) Pユニットからな る3成分系の共重合体が得られた。

【0026】実施例6

実施例3の1段目の培養で炭素源としてクエン酸のかわ りにノナン酸を用いて同様の実験を行った。その結果、 1.5g 50 3HHp、3HN、3H5 (MFP) Pユニットからな

る3成分系の共重合体が得られた。 【0027】実施例7

フェノキシ基にファ寮基が導入されていないポリマーと 2個ファ素基が導入されている同じ構造をもつポリマー の融点を調べたところ約40℃の差があり、2個のフッ 素基をもつポリマーは100℃以上の融点を有してい tc.

[0028]

【発明の効果】微生物の発酵合成するプラスチックは生 中にフッ索基を導入したものは従来より存在したが、ホ モポリマーとしてではなく共重合体ユニットとして50 %以下しか含有することができなかった。本発明では幅 広い資化性をもつシュードモナス・プチダを用いること とフェノキシ基の芳香環上にフッ索基を導入することに よりファ素基をもつユニットを100%含むホモポリマ ーを合成できた。とのポリマーは従来の置換基を含むポ リマーが達成できていない融点を100°C以上にすると とができ、物性の改良が期待できる。さらに、このポリ* *マー中に含まれるこれらユニットの量をコントロールす ることにより、望ましい物性を得ることができる。ま た、撥水性、生体内合成に特有の立体規則性に由来する 光学分割性も期待するととができる。

14

【要約】

【構成】3-ヒドロキシ、5-(モノフルオロフェノキ シ) ペンタノエート (3H5 (MFP) P) ユニットあ るいは3-ヒドロキシ、5-(ジフルオロフェノキシ) ペンタノエート (3 H5 (DFP) P) ユニットからな 分解性プラスチックとして、よく研究されてきた。側鎖 10 るホモポリマー、少なくとも3H5 (MFP) Pユニッ トあるいは3H5 (DFP) Pユニットを含有するコポ リマー; これらのポリマーを合成するシュードモナス・ プチダ:シュードモナス属を用いた前記のポリマーの製 造法に関する。

> 【効果】置換基をもつ長鎖脂肪酸を資化して、側鎖末端 が1から2個のフッ素原子が置換したフェノキシ基をも つポリマーを合成することができ、融点が高く良い加工 性を保持しながら、立体規則性、撥水性を与えることが

フロントページの続き

(51) Int.C1.5

識別記号

(C 1 2 P 7/62 C12R 1:40)

(58)調査した分野(Int.Cl.*, DB名)

C08G 63/00 - 63/91 C12N 1/20 - 1/21 C12P 7/62 CA (STN) REGISTRRY (STN) FΙ

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☑ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.