### **Discrete Structures**

Set Theory

# Introduction to Set Theory

- \* A set is a structure, representing an <u>unordered</u> collection (group, plurality) of zero or more <u>distinct</u> (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.

#### Basic notations for sets

- For sets, we'll use variables 5, T, U, ...
- We can denote a set S in writing by listing all of its elements in curly braces:
  - {a, b, c} is the set of whatever 3 objects are denoted by a, b, c.
- \* Set builder notation: For any proposition P(x) over any universe of discourse,  $\{x | P(x)\}$  is the set of all x such that P(x).
  - e.g.,  $\{x \mid x \text{ is an integer where } x>0 \text{ and } x<5\}$

# Basic properties of sets

- Sets are inherently <u>unordered</u>:
  - No matter what objects a, b, and c denote,
     {a, b, c} = {a, c, b} = {b, a, c} =
     {b, c, a} = {c, a, b} = {c, b, a}.
- All elements are <u>distinct</u> (unequal); multiple listings make no difference!
  - $\{a, b, c\} = \{a, a, b, a, b, c, c, c, c\}.$
  - This set contains at most 3 elements!

# Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set  $\{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5\} = \{x \mid x \text{ is a positive integer whose square is } 0 \text{ and } < 25\}$

#### **Infinite Sets**

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets:
   N = {0, 1, 2, ...} The natural numbers.
   Z = {..., -2, -1, 0, 1, 2, ...} The integers.
   R = The "real" numbers, such as
   374.1828471929498181917281943125...
- Infinite sets come in different sizes!

# Venn Diagrams



### Basic Set Relations: Member of

- $*x \in S$  ("x is in S") is the proposition that object x is an  $\in lement$  or member of set S.
  - e.g.  $3 \in \mathbb{N}$ , "a"  $\in \{x \mid x \text{ is a letter of the alphabet}\}$
- **Can define** set equality in terms of ∈ relation:  $\forall S, T: S = T \leftrightarrow (\forall x: x \in S \leftrightarrow x \in T)$ "Two sets are equal iff they have all the same members."
- $x \notin S := \neg(x \in S)$  "x is not in S"

# The Empty Set

- Ø ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\bullet \varnothing = \{\} = \{x/\text{False}\}$
- No matter the domain of discourse, we have the axiom

$$\neg \exists x. x \in \emptyset.$$

# Subset and Superset Relations

- \*  $S \subseteq T$  ("S is a subset of 7") means that every element of S is also an element of T.
- *♦* ∅⊆*S*, *S*⊆*S*.
- $\bullet$  S  $\supset T$  ("S is a superset of 7") means  $T \subseteq S$ .
- $\bullet$  Note  $S=T\Leftrightarrow S\subseteq T\wedge S\supseteq T$ .
- $S \subseteq T$  means  $\neg (S \subseteq T)$ , i.e.  $\exists x (x \in S \land x \notin T)$

### Proper (Strict) Subsets & Supersets

 $\bullet$   $S \subset T$  ("S is a proper subset of T") means that  $S \subseteq T$  but  $T \not\subseteq S$ . Similar for  $S \supset T$ .



# Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- \* E.g. let  $S=\{x \mid x \subseteq \{1,2,3\}\}$ then  $S=\{\emptyset,$  $\{1\}, \{2\}, \{3\},$  $\{1,2\}, \{1,3\}, \{2,3\},$  $\{1,2,3\}\}$
- Note that  $1 \neq \{1\} \neq \{\{1\}\}$  !!!!

# Cardinality and Finiteness

- ♦ |S| (read "the cardinality of S") is a measure of how many different elements S has.
- \* E.g.,  $|\emptyset|=0$ ,  $|\{1,2,3\}|=3$ ,  $|\{a,b\}|=2$ ,  $|\{\{1,2,3\},\{4,5\}\}|=2$
- We say 5 is infinite if it is not finite.
- What are some infinite sets we've seen?

# NZR

# The Power Set Operation

- The power set P(S) of a set S is the set of all subsets of S.  $P(S) = \{x \mid x \subseteq S\}$ .
- $\bullet$  E.g.  $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$
- \* Sometimes P(S) is written  $2^{S}$ . Note that for finite S,  $|P(S)| = 2^{|S|}$ .
- ◆ It turns out that |P(N)| > |N|.
  There are different sizes of infinite sets!

# Ordered *n*-tuples

- For  $n \in \mathbb{N}$ , an ordered n-tuple or a <u>sequence of</u> <u>length n</u> is written  $(a_1, a_2, ..., a_n)$ . The first element is  $a_1$ , etc.
- These are like sets, except that duplicates matter, and the order makes a difference.
- Note  $(1, 2) \neq (2, 1) \neq (2, 1, 1)$ .
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., n-tuples.

### Cartesian Products of Sets

- ♦ For sets A, B, their Cartesian product  $A \times B := \{(a, b) \mid a \in A \land b \in B\}.$
- $\bullet$  E.g. {a,b}×{1,2} = {(a,1),(a,2),(b,1),(b,2)}
- Note that for finite A, B,  $|A \times B| = |A||B|$ .
- Note that the Cartesian product is **not** commutative:  $\neg \forall AB$ :  $A \times B = B \times A$ .
- $\bullet$  Extends to  $A_1 \times A_2 \times ... \times A_n$ ...

# The Union Operator

- \* For sets A, B, their union  $A \cup B$  is the set containing all elements that are either in A, or (" $\vee$ ") in B (or, of course, in both).
- ♦ Formally,  $\forall A,B$ :  $A \cup B = \{x \mid x \in A \lor x \in B\}$ .
- Note that  $A \cup B$  contains all the elements of A and it contains all the elements of B:  $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$

# **Union Examples**

- {a,b,c} $\cup$ {2,3} = {a,b,c,2,3}
  - {2,3,5} $\cup$ {3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}



# The Intersection Operator

- For sets A, B, their *intersection*  $A \cap B$  is the set containing all elements that are simultaneously in A and ("\^") in B.
- ♦ Formally,  $\forall A,B$ :  $A \cap B = \{x \mid x \in A \land x \in B\}$ .
- Note that  $A \cap B$  is a subset of A and it is a subset of B:  $\forall A, B$ :  $(A \cap B \subseteq A) \land (A \cap B \subseteq B)$

# **Intersection Examples**

- \*  $\{a,b,c\} \cap \{2,3\} = \emptyset$ \*  $\{2,4,6\} \cap \{3,4,5\} = \{4\}$



# Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty.  $(A \cap B = \emptyset)$
- \* Example: the set of even integers is disjoint with the set of odd integers.

# Inclusion-Exclusion Principle

- \* How many elements are in  $A \cup B$ ?  $|A \cup B| = |A| + |B| |A \cap B|$
- Example:

$$\{2,3,5\}\cup\{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}$$

#### Set Difference

- For sets A, B, the difference of A and B, written A-B, is the set of all elements that are in A but not B.
- $A B := \{ x \mid x \in A \land x \notin B \}$   $= \{ x \mid \neg (x \in A \rightarrow x \in B) \}$
- Also called:
  The <u>complement of B with respect to A</u>.

# Set Difference - Venn Diagram

◆ A-B is what's left after B "takes a bite out of A"



# **Set Complements**

- The universe of discourse can itself be considered a set, call it *U*.
- The complement of A, written A, is the complement of A w.r.t. U, i.e., it is U-A.
- ♦ E.g., If U=N,

$${3,5} = {0,1,2,4,6,7,...}$$

# More on Set Complements

\* An equivalent definition, when U is clear:

$$\overline{A} = \{x \mid x \notin A\}$$





#### Set Identities

- Identity:  $A \cup \emptyset = A$   $A \cap U = A$
- ♦ Domination:  $A \cup U = U$   $A \cap \emptyset = \emptyset$
- Idempotent:  $A \cup A = A = A \cap A$
- Double complement:
- $\bullet$  Commutative:  $A \cup B = B \cup A$   $A \cap B = B \cap A$
- \* Associative:  $A \cup (B \cup C) = (A \cup B) \cup C$   $A \cap (B \cap C) = (A \cap B) \cap C$  $(\overline{A}) = A$

# DeMorgan's Law for Sets

Exactly analogous to (and derivable from) DeMorgan's Law for propositions.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

# **Proving Set Identities**

To prove statements about sets, of the form  $E_1 = E_2$  (where  $E_3$  are set expressions), here are three useful techniques:

- $\bullet$  Prove  $E_1 \subseteq E_2$  and  $E_2 \subseteq E_1$  separately.
- Use logical equivalences.
- ◆ Use a membership table.

### Method 1: Mutual subsets

Example: Show  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ .

- $\bullet$  Show  $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ .
  - Assume  $x \in A \cap (B \cup C)$ , & show  $x \in (A \cap B) \cup (A \cap C)$ .
  - We know that  $x \in A$ , and either  $x \in B$  or  $x \in C$ .
    - Case 1:  $x \in B$ . Then  $x \in A \cap B$ , so  $x \in (A \cap B) \cup (A \cap C)$ .
    - Case 2:  $x \in C$ . Then  $x \in A \cap C$ , so  $x \in (A \cap B) \cup (A \cap C)$ .
  - Therefore,  $x \in (A \cap B) \cup (A \cap C)$ .
  - Therefore,  $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ .
- $\bullet$  Show  $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$ . ...

# Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence with identical columns.

# Membership Table Example

Prove  $(A \cup B) - B = A - B$ .

| $\boldsymbol{A}$ | B | $A \cup B$ | $(A \cup B) - B$ | A-B |
|------------------|---|------------|------------------|-----|
| 0                | 0 | 0          | 0                | 0   |
| 0                | 1 | 1          | 0                | 0   |
| 1                | 0 | 1          | 1                | 1   |
|                  | 1 |            | 0                |     |

## Membership Table Exercise

Prove  $(A \cup B) - C = (A - C) \cup (B - C)$ .

| $A B C A \cup B$ | $(A \cup B) - C$ | A– $C$ | В-С | $(A-C)\cup (B-C)$ |
|------------------|------------------|--------|-----|-------------------|
| 0 0 0            |                  |        |     |                   |
| 0 0 1            |                  |        |     |                   |
| 0 1 0            |                  |        |     |                   |
| 0 1 1            |                  |        |     |                   |
| 1 0 0            |                  |        |     |                   |
| 1 0 1            |                  |        |     |                   |
| 1 1 0            |                  |        |     |                   |
| 1 1 1            |                  |        |     |                   |

## Generalized Union

- $\bullet$  Binary union operator:  $A \cup B$
- \* *n*-ary union:  $A \cup A_2 \cup ... \cup A_n := ((...((A_1 \cup A_2) \cup ...) \cup A_n))$ (grouping & order is irrelevant)
- lacktriangle "Big U" notation:  $\bigcup_{i=1}^{n} A_i$
- lacktrianglet Or for infinite sets of sets:  $\bigcup_{A \in X} A$

### **Generalized Intersection**

- $\bullet$  Binary intersection operator:  $A \cap B$
- *n*-ary intersection:  $A \cap A_2 \cap ... \cap A_n \equiv ((...((A_1 \cap A_2) \cap ...) \cap A_n))$ (grouping & order is irrelevant)
- $\bullet$  "Big Arch" notation:  $\bigcap_{i=1}^{n} A_i$
- $\bullet$  Or for infinite sets of sets:  $\bigcap_{A \in X} A$

#### References

- Sections 2.1 and 2.2 of the text book "Discrete Mathematics and its Applications" by Rosen, 6<sup>th</sup> edition.
- The <u>original slides</u> were prepared by Bebis