Problem Statement: -

A Mobile Phone manufacturing company wants to launch its three brand new phone into the market, but before going with its traditional marketing approach this time it want to analyze the data of its previous model sales in different regions and you have been hired as an Data Scientist to help them out, use the Association rules concept and provide your insights to the company's marketing team to improve its sales.

Objective:-

use the Association rules concept and provide your insights to the compa ny's marketing team to improve its sales.

```
In [3]: import pandas as pd
import seaborn as sns

import matplotlib.pyplot as plt
#book = []
#with open("D:\\360Digi\\book.csv") as f:
# book = f.read()
myphonedata = pd.read_csv("D:\\360Digi\\myphonedata.csv")
myphonedata
```

Out[3]:

	V1	V2	V3	red	white	green	yellow	orange	blue
0	red	white	green	1	1	1	0	0	0
1	white	orange	NaN	0	1	0	0	1	0
2	white	blue	NaN	0	1	0	0	0	1
3	red	white	orange	1	1	0	0	1	0
4	red	blue	NaN	1	0	0	0	0	1
5	white	blue	NaN	0	1	0	0	0	1
6	red	blue	NaN	1	0	0	0	0	1
7	red	white	blue	1	1	0	0	0	1
8	green	NaN	NaN	0	0	1	0	0	0
9	red	white	blue	1	1	0	0	0	1
10	yellow	NaN	NaN	0	0	0	1	0	0

```
In [4]: myphonedata = myphonedata.iloc[:,3:]
        myphonedata
```

Out[4]:

	red	white	green	yellow	orange	blue
0	1	1	1	0	0	0
1	0	1	0	0	1	0
2	0	1	0	0	0	1
3	1	1	0	0	1	0
4	1	0	0	0	0	1
5	0	1	0	0	0	1
6	1	0	0	0	0	1
7	1	1	0	0	0	1
8	0	0	1	0	0	0
9	1	1	0	0	0	1
10	0	0	0	1	0	0

EDA

```
In [9]: dataset1 =myphonedata.copy()
In [11]: zero =[]
         one = []
         for i in dataset1.columns:
             zero.append(list(dataset1[i].value_counts())[0])
             one.append(list(dataset1[i].value_counts())[1])
In [13]: count_df = pd.DataFrame([zero,one], columns=dataset1.copy().columns)
In [14]: count_df.head()
Out[14]:
             red white green yellow orange blue
              6
                    7
                                10
                                            6
              5
                    4
                          2
                                1
                                            5
```

2

```
In [20]: myphonedata.hist(grid=True, rwidth=0.9, figsize=(10,10))
```



```
In [22]: a = myphonedata.corr(method ='pearson')
sns.heatmap(a>0.85,annot=True)
```

Out[22]: <AxesSubplot:>

Out[23]: <AxesSubplot:>

<ipython-input-24-bced49d0d399>:8: MatplotlibDeprecationWarning: Using a string
of single character colors as a color sequence is deprecated since 3.2 and will
be removed two minor releases later. Use an explicit list instead.
 plt.bar(x = list(range(1, 11)), height = frequent_itemsets.support[1:11], col
or ='rgmyk')

Out[24]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage
0	(red)	(white)	0.545455	0.636364	0.363636	0.666667	1.047619	0.016529
1	(white)	(red)	0.636364	0.545455	0.363636	0.571429	1.047619	0.016529
2	(red)	(blue)	0.545455	0.545455	0.363636	0.666667	1.222222	0.066116
3	(blue)	(red)	0.545455	0.545455	0.363636	0.666667	1.222222	0.066116
4	(white)	(blue)	0.636364	0.545455	0.363636	0.571429	1.047619	0.016529
5	(blue)	(white)	0.545455	0.636364	0.363636	0.666667	1.047619	0.016529

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage
6	(orange)	(white)	0.181818	0.636364	0.181818	1.000000	1.571429	0.066116
7	(white)	(orange)	0.636364	0.181818	0.181818	0.285714	1.571429	0.066116
8	(red, white)	(green)	0.363636	0.181818	0.090909	0.250000	1.375000	0.024793
9	(red, green)	(white)	0.090909	0.636364	0.090909	1.000000	1.571429	0.033058
10	(white, green)	(red)	0.090909	0.545455	0.090909	1.000000	1.833333	0.041322
11	(red)	(white, green)	0.545455	0.090909	0.090909	0.166667	1.833333	0.041322
12	(white)	(red, green)	0.636364	0.090909	0.090909	0.142857	1.571429	0.033058
13	(green)	(red, white)	0.181818	0.363636	0.090909	0.500000	1.375000	0.024793
14	(orange, red)	(white)	0.090909	0.636364	0.090909	1.000000	1.571429	0.033058
15	(red, white)	(orange)	0.363636	0.181818	0.090909	0.250000	1.375000	0.024793
16	(orange)	(red, white)	0.181818	0.363636	0.090909	0.500000	1.375000	0.024793
17	(white)	(orange, red)	0.636364	0.090909	0.090909	0.142857	1.571429	0.033058

Out[25]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	
6	(orange)	(white)	0.181818	0.636364	0.181818	1.000000	1.571429	0.066116	
14	(orange, red)	(white)	0.090909	0.636364	0.090909	1.000000	1.571429	0.033058	
8	(red, white)	(green)	0.363636	0.181818	0.090909	0.250000	1.375000	0.024793	
2	(red)	(blue)	0.545455	0.545455	0.363636	0.666667	1.222222	0.066116	
4	(white)	(blue)	0.636364	0.545455	0.363636	0.571429	1.047619	0.016529	
0	(red)	(white)	0.545455	0.636364	0.363636	0.666667	1.047619	0.016529	

Summary:

- 1- Above the 10 unique Rule that we get by Apply Apriori Algo.
- 2- Antecedent support variable tells us probability of antecedent product alone.
- 3- The Support Value is the value of the two Product(Antecedents and Consequents)
- 4- Confidence is an indication of how often the rule has been found to be True.
- 5-The ratio of the observed support to that expected if X and Y were independent.

In []:		