PURE MATHEMATICS 319 L01 WINTER 2016 Practice Problems 6

- 1. For each of the following statements, determine whether the statement is TRUE or FALSE and give a brief explanation.
- (a) \mathcal{F}_2 is generated by a halfturn and a non-identity translation.
- (b) Both W_1^1 and W_1^2 have glide reflections.
- (c) If a point A is a 4-centre of a wallpaper group W then σ_A is an element of W.
- (d) If α and β are isometries so that $\alpha^2 = \beta^2$ then $\alpha = \beta$.
- (e) If a frieze group contains a glide reflection γ then γ^2 generates all translations in the frieze group.
- (f) \mathcal{W}_2^1 can be generated by two halfturns and a reflection.
- (g) \mathcal{W}_1^1 and \mathcal{W}_1^2 can be generated by two translations and a reflection.
- (h) \mathcal{W}_3^1 and \mathcal{W}_3^2 can be generated by two rotations of 120° and a reflection.
- (i) W_1^3 and W_2^4 are the only wallpaper groups which has glides reflections but does not have any reflections.
- (j) The product of two rotations is always a rotation.
- (k) The product of two glide-reflections with parallel axes is a translation.
- (1) The product of a translation and a reflection is always a glide-reflection.
- (m) The product of two glide-reflections with non-parallel axes is a translation.
- (n) W_2 is a subgroup of W_4 .
- (o) W_2 is a subgroup of W_3 .
- (p) \mathcal{W}_2 is a subgroup of \mathcal{W}_6 .
- (q) \mathcal{W}_1^3 is a subgroup of \mathcal{W}_2^4 .
- (r) W_2 does not have a glide-reflection.
- (r) \mathcal{W}_2^1 does not have a glide-reflection.