La generica equazione dei razzi afferma che:

$$M \frac{d\mathbf{v}}{dt} = \mathbf{F}^{\mathbf{ext}} + \frac{dM}{dt}\mathbf{u} \quad (1)$$

Se ci troviamo nella situazione in cui l'interazione gravitazionale tra il razzo e la Terra è non trascurabile, decidiamo di studiare il problema assumendo che:

$$\mathbf{F^{ext}} = \mathbf{F_p} = -M \mathbf{g}$$

Supponendo di trovarsi in un sistema di riferimento come quello in figura, allora posso proiettare le grandezze vettoriali lungo la verticale ascendente:

$$M \mathbf{g} = -M g \mathbf{j}$$

 $\mathbf{v} = v \mathbf{j}$
 $\mathbf{u} = u \mathbf{j}$

A questo punto è possibile riscrivere la (1) come segue:

$$M \frac{dv}{dt} = M g + \frac{dM}{dt} u \quad (2)$$

La soluzione nota della (2):

$$v_f = v_i - g(t_f - t_0) + u \log\left(\frac{m_i}{m_f}\right)$$

È valida sotto l'assunzione che la forza peso F_p del razzo all'istante t sia sempre pari alla sua massa all'istante t moltiplicata per -g:

$$F_p = -M(t) g \quad g \approx 9.81 \frac{m}{s^2}$$

Ovvero consideriamo costante l'accelerazione di gravità.

Quello che mi domandavo io, è che noi conosciamo un modello abbastanza semplice che ci permette di determinare la reciproca forza attrattiva tra due punti nello spazio, cioè la legge di gravitazione universale. In particolare, se M è la massa del razzo a un certo istante t, M_t è la massa della Terra, e d la distanza tra i centri di massa della Terra e del razzo:

$$\mathbf{F_{Terra \to razzo}} = -G \frac{MM_t}{d^2} \mathbf{j}$$
 (3)

Supponendo che all'istante t = 0 valga $y(0) = R_t$, con R_t raggio della Terra, potrei riscrivere la (3) in funzione della coordinata y:

$$\mathbf{F_{Terra o razzo}} = -G rac{MM_t}{y^2} \, \mathbf{j}$$

Andando a sostituire nella (1) proiettata sull'asse y, ottengo:

$$M \frac{dv}{dt} = -G \frac{MM_t}{v^2} - \frac{dM}{dt} u \quad (4)$$

Considerando che:

$$\frac{dv}{dt} = a = \ddot{y}$$
$$\frac{dM}{dt} = \dot{M}$$

Potrei nuovamente riscrivere la (4):

$$M\ddot{y} = -G\frac{MM_t}{y^2} - \dot{M}u$$

$$\ddot{y} = -G\frac{M_t}{y^2} - \frac{\dot{M}}{M}u$$

$$\ddot{y} = (-GM_t)\frac{1}{y^2} - \frac{\dot{M}}{M}u$$

Ponendo $\alpha = -G M_t$:

$$\ddot{y} = \alpha \frac{1}{y^2} - \frac{\dot{M}}{M} u \quad (5)$$

Quello che ho pensato è che dM = -dm è la quantità di gas espulso cambiata di segno, è costante e dipende esclusivamente dalla chimica del processo di combustione, e non dalla coordinata y. In generale per la massa M del razzo vale:

$$M(t) = m_{mec}(t) + m_{carb}(t)$$

$$M(t + dt) = m_{mec}(t + dt) + m_{carb}(t + dt)$$

La m_{mec} del razzo rimane sempre costante (a meno di considerare eventuali stadi), mentre ciò che varia è m_{carb} . Quindi posso scrivere:

$$M(t+dt) = m_{mec}(t) + m_{carb}(t+dt)$$

$$M(t+dt) = m_{mec}(t) + m_{carb}(t) - dm$$

Di conseguenza:

$$\dot{M} = \frac{dM}{dt} = \frac{M(t+dt) - M(t)}{dt} = \frac{m_{mec}(t) + m_{carb}(t) - dm - m_{mec}(t) - m_{carb}(t)}{dt} = -\frac{dm}{dt}$$

La quantità $\frac{dm}{dt}$ è il rate di espulsione del gas, che sappiamo essere costante a parità di processo chimico:

$$\frac{dm}{dt} = k > 0$$

Quindi:

$$\frac{dM}{dt} = -\frac{dm}{dt} \Rightarrow \frac{dM}{dt} = -k \quad (6)$$

La (6) è una equazione differenziale lineare del primo ordine a coefficienti costanti, la cui soluzione vale:

$$M(t) = c - kt$$

Per trovare c posso risolvere il problema ai valori iniziali:

$$M(0) = m_{mec} + m_{0_{carb}}$$

Dove m_{mec} è la massa delle parti meccaniche del razzo, mentre $m_{0_{carb}}$ è la massa iniziale di carburante:

$$c - 0k = m_{mec} + m_{0_{carb}} \Rightarrow c = m_{mec} + m_{0_{carb}}$$

Quindi:

$$\frac{\dot{M}}{M} = -\frac{k}{c+kt}$$

La (5) diventa:

$$\ddot{y} = \alpha \frac{1}{y^2} + \frac{k}{c + kt} u$$

Ossia una equazione differenziale non lineare del secondo ordine, la cui soluzione esplicita non penso di saper calcolare; ma che posso comunque approssimare numericamente.

```
function dydt = rocket(t,y,a,c,k)
  dydt = zeros(2,1);
  dydt(1) = y(2);
  dydt(2) = (k/(c+k*t.))*a*1/y(1)^2;

G = 6.67*1e-11;
  Mt = 6e24;
  a = (-G*Mt);
  c = 7000; #7000kg di carburante
  k = 100; #100kg al secondo
  tspan = [0 5];
  y0 = [0 0.01];
  [t,y] = ode45(@(t,y) rocket(t,y,a,c,k), tspan, y0);
  plot(t,y(:,1),'-o',t,y(:,2),'-.');
```

Distanza centro Terra (m)	Distanza superficie terrestre (m)	Stima di g (m/s²)
$6.371000 \ 10^6$	$0.000000 \ 10^{0}$	-10.0211
$6.376448\ 10^6$	$5.447722\ 10^3$	-10.0211
$6.392830 \ 10^6$	$2.183007 \ 10^4$	-9.9869
$6.420206\ 10^6$	$4.920630\ 10^4$	-9.9188
$6.458636\ 10^6$	$8.763636\ 10^4$	-9.8177
$6.508181 \ 10^6$	$1.371809 \ 10^5$	-9.685
$6.568901\ 10^6$	$1.979012 \ 10^5$	-9.5224
$6.640859 \ 10^6$	$2.698594 \ 10^5$	-9.3322
$6.724118 \ 10^6$	$3.531181 \ 10^5$	-9.1167
$6.818741\ 10^6$	$4.477409 \ 10^5$	-8.8789
$6.924792 \ 10^6$	$5.537920 \ 10^5$	-8.6216
$7.042336\ 10^6$	$6.713362 \ 10^5$	-8.3478
$7.171439 \ 10^6$	$8.004394\ 10^5$	-8.0606
$7.312168 \ 10^6$	$9.411680 \ 10^5$	-7.7631
$7.464589 \ 10^6$	$1.093589 \ 10^6$	-7.4583
$7.628771 \ 10^6$	$1.257771 \ 10^6$	-7.1488
$7.804782\ 10^6$	$1.433782 \ 10^6$	-6.8371
$7.992692 \ 10^6$	$1.621692 \ 10^6$	-6.5257
$8.192572 \ 10^6$	$1.821572 \ 10^6$	-6.2168
$8.404492 \ 10^6$	$2.033492\ 10^6$	-5.9121
$8.628525 \ 10^6$	$2.257525 \ 10^6$	-5.6136
$8.864744 \ 10^6$	$2.493744 \ 10^6$	-5.3221
$9.113223 \ 10^6$	$2.742223 \ 10^6$	-5.0389
$9.374035 \ 10^6$	$3.003035 \ 10^6$	-4.765
$9.647257 \ 10^6$	$3.276257 \ 10^6$	-4.5013
$9.932966 \ 10^6$	$3.561966 \ 10^6$	-4.248
$1.023124\ 10^7$	$3.860238 \ 10^6$	-4.0056
$1.054215\ 10^7$	$4.171153\ 10^6$	-3.7741
$1.086579 \ 10^7$	$4.494789 \ 10^6$	-3.5536
$1.120223\ 10^7$	$4.831227 \ 10^6$	-3.3442
$1.155155\ 10^7$	$5.180548 \ 10^6$	-3.1457
$1.191383 \ 10^7$	$5.542834 \ 10^6$	-2.9578
$1.228917 \ 10^7$	$5.918170 \ 10^6$	-2.7802
$1.267764 \ 10^7$	$6.306639 \ 10^6$	-2.6127
$1.307933 \ 10^7$	$6.708326 \ 10^6$	-2.4549
$1.349432\ 10^7$	$7.123320 \ 10^6$	-2.3063
$1.392271\ 10^7$	$7.551707 \ 10^6$	-2.1666
$1.436458 \ 10^7$	$7.993576 \ 10^6$	-2.0353
$1.482002\ 10^7$	$8.449017 \ 10^6$	-1.9121
$1.528912 \ 10^7$	$8.918123 \ 10^6$	-1.7964
$1.577198 \ 10^7$	$9.400985 \ 10^6$	-1.688
$1.626870 \ 10^7$	$9.897697 \ 10^6$	-1.5864
$1.677935 \ 10^7$	$1.040835 \ 10^7$	-1.4911
$1.730405\ 10^7$	$1.093305 \ 10^7$	-1.4019
$1.784289 \ 10^7$	$1.147189 \ 10^7$	-1.3183
$1.839597 \ 10^7$	$1.202497 \ 10^7$	-1.2401
$1.896338 \ 10^7$	$1.259238 \ 10^7$	-1.1668
$1.954524 \ 10^7$	$1.317424\ 10^7$	-1.0982
$2.014164\ 10^7$	$1.377064\ 10^7$	-1.0339
$2.075269 \ 10^7$	$1.438169 \ 10^7$	-0.97378
$2.137850 \ 10^7$	$1.500750 \ 10^7$	-0.91743
$2.201917 \ 10^7$	$1.564817 \ 10^7$	-0.86466
$2.267481\ 10^7$	$1.630381\ 10^7$	-0.81523
$2.334553 \ 10^7$	$1.697453 \ 10^7$	-0.76892
$2.403145 \ 10^7$	$1.766045\ 10^7$	-0.72551
$2.473269 \ 10^7$	$1.836169 \ 10^7$	-0.68481
$2.544935 \ 10^7$	$1.907835 \ 10^7$	-0.64665
$2.618155 \ 10^7$	$1.981055 \ 10^7$	-0.61086
$2.692942\ 10^7$	$2.055842\ 10^{7}$	-0.5773
$2.769308 \ 10^7$	$2.132208 \ 10^7$	-0.54578
		-