PCT

Patents, Novo Allé, DK-2880 Bagsvaerd (DK),

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number:	WO 96/23874	
C12N 9/28, 15/56	A1	(43) International Publication Date:	8 August 1996 (08.08.96)	
(21) International Application Number: PCT/DKS	26/000	67 (81) Designated States: AL, AM, AT, CA, CH, CN, CZ, DE, DK, EF	AU, AZ, BB, BG, BR, BY,	
(22) International Filing Date: 5 February 1996 (0	5.02.9	6) JP, KE, KG, KP, KR, KZ, LK, MG, MK, MN, MW, MX, NO,	LR, LS, LT, LU, LV, MD, NZ, PL, PT, RO, RU, SD,	
(30) Priority Data:		SE, SG, SI, SK, TJ, TM, TR, ARIPO patent (KE, LS, MW, S)	II, UA, UG, US, UZ, VN, D SZ IIG) Furnetian natent	
0128/95 3 February 1995 (03.02.95)	D	K (AZ, BY, KG, KZ, RU, TJ, TM). European patent (AT. BE.	
1192/95 23 October 1995 (23.10.95)	D	K CH, DE, DK, ES, FR, GB, GR		
1256/95 10 November 1995 (10.11.95	5) D	K SE), OAPI patent (BF, BJ, CF, MR, NE, SN, TD, TG).	CG, CI, CM, GA, GN, ML,	
(71) Applicant (for all designated States except US): NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Ba				
(DK).		With international search report	ı .	
		Before the expiration of the ti	me limit for amending the	
(72) Inventors; and		claims and to be republished in	the event of the receipt of	
(75) Inventors/Applicants (for US only): SVENDSEN				
[DK/DK]; Novo Nordisk a/s, Novo Allé, I Bagsvaerd (DK). BISGARD-FRANTZEN.				
[DK/DK]; Novo Nordisk a/s, Novo Allé, D				
Bagsvaerd (DK). BORCHERT, Torben, Vedel [D	K/DK) <u>:</u>		
Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd	(DK).			
(74) Common Representative: NOVO NORDISK A/S; Co	OTTOTAL	£		
The same by the Alle Title account.	F	7	!	

(54) Title: A METHOD OF DESIGNING ALPHA-AMYLASE MUTANTS WITH PREDETERMINED PROPERTIES

(57) Abstract

A method of constructing a variant of a parent Termamyl-like α -amylase, which variant has α -amylase activity and at least one altered property as compared to the parent α -amylase, comprises i) analysing the structure of the parent Termamyl-like α -amylase to identify at least one amino acid residue or at least one structural part of the Termamyl-like α -amylase structure, which amino acid residue or structural part is believed to be of relevance for altering the property of the parent Termamyl-like α -amylase (as evaluated on the basis of structural or functional considerations), ii) constructing a Termamyl-like α -amylase variant, which as compared to the parent Termamyl-like α -amylase, has been modified in the amino acid residue or structural part identified in i) so as to alter the property, and iii) testing the resulting Termamyl-like α -amylase variant for the property in question.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB United Kingdom		MW	Malewi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belanis	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic	•	of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	Si	Slovenia
CI	Côte d'Ivoire	L	Liechtenstein	SK	Slovakia
CM		LK	Sri Lanka	SN	Senegal
CN	Carneroon	LR	Liberia	SZ	Swaziland
	China Czechoslovakia	LT	Lithuania	TD	Chad
CS		LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
EE	Estonia	MG	Madagascar	UG	Uganda
ES	Spain	ML	Mali	us	United States of America
FI	Finland			UZ.	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon	MR	Mauritania	VIV.	A MOST LANGER

1

A METHOD OF DESIGNING ALPHA-AMYLASE MUTANTS WITH PREDETERMINED PROPERTIES

FIELD OF THE INVENTION

5 The present invention relates to a novel method of designing α -amylase mutants with predetermined properties, which method is based on the hitherto unknown three-dimensional structure of bacterial α -amylases.

10 BACKGROUND OF THE INVENTION

 α -Amylases (α -1,4 glucan-4-glucanohydrolase, EC 3.2.1.1) constitute a group of enzymes which is capable of hydrolyzing starch and other linear and branched 1,4-glucosidic oligo- and polysaccharides. Almost all α -amylases studied have a few conserved regions with approximately the same length and spacing. One of these regions resembles the Ca2+ binding site of calmodulin and the others are thought to be necessary for the active centre and/or binding of the substrate.

20

While the amino acid sequence and thus primary structure of a large number of α -amylases are known, it has proved very difficult to determine the three-dimensional structure of all α -amylases. The three-dimensional structure can be determined by X-ray crystallographic analysis of α -amylase crystals, but it has proven difficult to obtain α -amylase crystals suitable for actually solving the structure.

Until now the three-dimensional structure of only a few α-amylases have been determined at high resolution. These include the structure of the Aspergillus oryzae TAKA α-amylase (Swift et al., 1991), the Aspergillus niger acid amylase (Brady et al, 1991), the structure of pig pancreatic α-amylase (Qian et al., 1993), and the barley alpha-amylase (Kadziola et al. 1994, Journal of Molecular Biology 239: 104-121, A.Kadziola, Thesis, Dept of Chemistry, U. of Copenhagen, Denmark). Furthermore, the three-dimensional structure of a Bacillus circulans cyclodextrin glycosyltransferase (CGTase) is known

(Klein et al., 1992) (Lawson et al., 1994). The CGTase catalyzes the same type of reactions as α -amylases and exhibits some structural resemblance with α -amylases.

5 Furthermore, crystallization and preliminary X-ray studies of B. subtilis α-amylases have been described (Chang et al. (1992) and Mizuno et al. (1993)). No final B. subtilis structure has been reported. Analogously, the preparation of B. licheniformis α-amylase crystals has been reported (Suzuki et al. (1990), but no subsequent report on X-ray crystallographic analysis or three-dimensional structure are available.

Several research teams have attempted to build three-dimensional structures on the basis of the above known 15 α -amylase structures. For instance, Vihinen et al. (J. Biochem. 267-272, 1990), disclose the modelling (or computer simulation) of a three-dimensional structure of the Bacillus stearothermophilus α -amylase on the basis of the TAKA amylase structure. The model was used to investigate hypothetical 20 structural consequences of various site-directed mutations of the B. stearothermophilus α -amylase. E.A. MacGregor (1987) predicts the presence of α -helices and β -barrels in α -amylases from different sources, including barley, pig pancreas and Bacillus amyloliquefaciens on the basis of the known structure 25 of the A. oryzae TAKA α -amylase and secondary structure predicting algorithms. Furthermore, the possible loops and subsites which may be found to be present in, e.g., the B. amyloliquefaciens α-amylase are predicted (based comparison with the A. oryzae sequence and structure).

30

- A.E. MacGregor (Starch/Stärke 45 (1993), No. 7, p. 232-237) presents a review of the relationship between the structure and activity of α -amylase related enzymes.
- 35 Hitherto, no three-dimensional structure has been available for the industrially important Bacillus α -amylases (which in the present context are termed "Termamyl-like α -amylases"),

3

including the B. licheniformis, the B. amyloliquefaciens, and the B. stearothermophilus α -amylase.

BRIEF DISCLOSURE OF THE INVENTION

5

The three-dimensional structure of a Termamyl-like bacterial α -amylase has now been elucidated. On the basis of an analysis of said structure it is possible to identify structural parts or specific amino acid residues which from structural or functional considerations appear to be important for conferring the various properties to the Termamyl-like α -amylases. Furthermore, when comparing the Termamyl-like α -amylase structure with known structures of the fungal and mammalian α -amylases mentioned above, it has been found that some similarities exist between the structures, but also that some striking, and not previously predicted structural differences between the α -amylases exist. The present invention is based on these findings.

20 Accordingly, in a first aspect the invention relates to a method of constructing a variant of a parent Termamyl-like α -amylase, which variant has α -amylase activity and at least one altered property as compared to said parent α -amylase, which method comprises

25

- i) analysing the structure of the Termamyl-like α -amylase with a view to identifying at least one amino acid residue or at least one structural part of the Termamyl-like α -amylase structure, which amino acid residue or structural part is believed to be of relevance for altering said property of the parent Termamyl-like α -amylase (as evaluated on the basis of structural or functional considerations),
- ii) constructing a Termamyl-like α -amylase variant, which as compared to the parent Termamyl-like α -amylase, has been modified in the amino acid residue or structural part identified in i) so as to alter said property, and

- iii) testing the resulting Termamyl-like α -amylase variant for said property.
- 5 In a second aspect the present invention relates to a method of constructing a variant of a parent Termamyl-like α -amylase, which variant has α -amylase activity and one or more altered properties as compared to said parent α -amylase, which method comprises
- 10 i) comparing the three-dimensional structure of the Termamyl-like α -amylase with the structure of a non-Termamyl-like α -amylase,
- ii) identifying a part of the Termamyl-like α -amylase structure which is different from the non-Termamyl-like α -amylase structure, and
 - iii) modifying the part of the Termamyl-like α -amylase identified in ii) whereby a Termamyl-like α -amylase variant is obtained, one or more properties of which differ from the parent Termamyl-like α -amylase.

- In a third aspect the invention relates to a method of constructing a variant of a parent non-Termamyl-like α -amylase, which variant has α -amylase activity and one or more altered properties as compared to said parent α -amylase, which method comprises
 - i) comparing the three-dimensional structure of the non-Termamyl-like α -amylase with the structure of a Termamyl-like α -amylase,
- ii) identifying a part of the non-Termamyl-like α -amylase structure which is different from the Termamyl-like α -amylase structure, and
- iii) modifying the part of the non-Termamyl-like α -amylase identified in ii) whereby a non-Termamyl-like α -amylase variant is obtained, one or more properties of which differ from the parent Termamyl-like α -amylase.

The property which may be altered by the above methods of the present invention may, e.g., be substrate specificity,

5

substrate binding, substrate cleavage pattern, temperature stability, pH dependent activity, pH dependent stability (especially increased stability at low (e.g. pH<6, in particular pH<5) or high (e.g. pH>9) pH values), stability towards oxidation, Ca^{2*} -dependency, specific activity, and other properties of interest. For instance, the alteration may result in a variant which, as compared to the parent Termamyl-like α -amylase, has an increased specific activity at a given pH and/or an altered substrate specificity.

.10

In still further aspects the invention relates to variants of a Termamyl-like α -amylase, DNA encoding such variants and methods of preparing the variants. Finally, the invention relates to the use of the variants for various industrial purposes.

DETAILED DISCLOSURE OF THE INVENTION

The Termamyl-like α-amylase

20

It is well known that a number of alpha-amylases produced by Bacillus spp. are highly homologous on the amino acid level. For instance, the B. licheniformis α -amylase comprising the amino acid sequence shown in SEQ ID No. 2 (commercially 25 available as Termamyl®) has been found to be about 89% homologous with the B. amyloliquefaciens α -amylase comprising the amino acid sequence shown in SEQ ID No. 4 and about 79% homologous with the B. stearothermophilus α -amylase comprising the amino acid sequence shown in SEQ ID No. 6. Further 30 homologous α -amylases include an α -amylase derived from a strain of the Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513 or DSM 9375, all of which are described in detail in WO 95/26397, and the α -amylase described by Tsukamoto et al., 1988, Biochemical and Biophysical Research Communications, Vol. 35 151, No. 1. Still other homologous α -amylases include the α amylase produced by the B. licheniformis described in EP 252 666 (ATCC 27811), and the α -amylases identified in WO 91/00353 and WO 94/18314. Other commercial Termamyl-like E.

6

licheniformis α-amylases are Optitherm® and Takatherm® (available from Solvay), Maxamyl® (available from Gistbrocades/Genencor), Spezym AA® (available from Genencor), and Keistase® (available from Daiwa).

5

Because of the substantial homology found between these α -amylases, they are considered to belong to the same class of α -amylases, namely the class of "Termamyl-like α -amylases".

10 Accordingly, in the present context, the term "Termamyl-like α amylase" is intended to indicate an α -amylase which, on the amino acid level, exhibits a substantial homology to Termamyl®, i.e. the B. licheniformis α -amylase SEQ ID NO 2. In other words, a Termamyl-like α -amylase is an α -amylase, which has the 15 amino acid sequence shown in SEQ ID No. 2, 4 or 6 herein, or the amino acid sequence shown in SEQ ID NO 1 or 2 of WO 95/26397 or in Tsukamoto et al., 1988, or i) which displays at least 60%, such as at least 70%, e.g. at least 75%, or at least 80%, e.g. at least 85%, at least 90% or at least 95% homology 20 with at least one of said amino acid sequences and/or ii) displays immunological cross-reactivity with an antibody raised against at least one of said α -amylases, and/or iii) is encoded by a DNA sequence which hybridizes to the DNA sequences encoding the above specified α -amylases which are apparent from 25 SEQ ID Nos. 1, 3 and 5 of the present application, and SEQ ID NO 4 and 5 of WO 95/26397, respectively.

In connection with property i) the "homology" may be determined by use of any conventional algorithm, preferably by use of the GAP progamme from the GCG package version 7.3 (June 1993) using default values for GAP penalties (Genetic Computer Group (1991) Programme Manual for the GCG Package, version 7, 575 Science Drive, Madison, Wisconsin, USA 53711).

Property ii) of the α -amylase, i.e. the immunological cross reactivity, may be assayed using an antibody raised against or reactive with at least one epitope of the relevant Termamyllike α -amylase. The antibody, which may either be monoclonal or

polyclonal, may be produced by methods known in the art, e.g. as described by Hudson et al., 1989. The immunological cross-reactivity may be determined using assays known in the art, examples of which are Western Blotting or radial immunodiffusion assay, e.g. as described by Hudson et al., 1989. In this respect, immunological cross-reactivity between the α-amylases having the amino acid sequences SEQ ID Nos. 2, 4 and 6, respectively, has been found.

10 The oligonucleotide probe used in the characterization of the Termamyl-like α -amylase in accordance with property iii) above may suitably be prepared on the basis of the full or partial nucleotide or amino acid sequence of the α -amylase in question. conditions for testing hybridization 15 presoaking in 5xSSC and prehybridizing for 1h at ~40°C in a solution of 20% formamide, 5xDenhardt's solution, 50mM sodium phosphate, pH 6.8, and $50\mu g$ of denatured sonicated calf thymus followed by hybridization in the same supplemented with 100 µM ATP for 18h at ~40 °C, or other methods 20 described by e.g. Sambrook et al., 1989.

In the present context, "derived from" is intended not only to indicate an α -amylase produced or producible by a strain of the organism in question, but also an α -amylase encoded by a DNA sequence isolated from such strain and produced in a host organism transformed with said DNA sequence. Finally, the term is intended to indicate an α -amylase which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying characteristics of the α -amylase in question. The term is also intended to indicate that the parent α -amylase may be a variant of a naturally occurring α -amylase, i.e. a variant which is the result of a modification (insertion, substitution, deletion) of one or more amino acid residues of the naturally occurring α -amylase.

8

Parent hybrid α-amylases

The parent α -amylase (being a Termamyl-like or non-Termamyl-like α -amylase) may be a hybrid α -amylase, i.e. an α -amylase which comprises a combination of partial amino acid sequences derived from at least two α -amylases.

The parent hybrid α -amylase may be one which on the basis of amino acid homology and/or immunological cross-reactivity and/or DNA hybridization (as defined above) can be determined to belong to the Termamyl-like α -amylase family. In this case, the hybrid α -amylase is typically composed of at least one part of a Termamyl-like α -amylase and part(s) of one or more other α -amylases selected from Termamyl-like α -amylases or non-15 Termamyl-like α -amylases of microbial (bacterial or fungal) and/or mammalian origin.

Thus, the parent hybrid α -amylase may comprise a combination of at least two Termamyl-like α -amylases, or of at least one 20 Termamyl-like and at least one non-Termamyl-like bacterial α amylase, or of at least one Termamyl-like and at least one fungal α -amylase. For instance, the parent α -amylase comprises a C-terminal part of an α -amylase derived from a strain of B. licheniformis and a N-terminal part of an α -amylase derived 25 from a strain of B. amyloliquefaciens or from a strain of B. instance, stearothermophilus. For the parent α-amylase comprises at least 430 amino acid residues of the C-terminal part of the B. licheniformis α -amylase, and may, e.g. comprise a) an amino acid segment corresponding to the 37 N-terminal 30 amino acid residues of the B. amyloliquefaciens α -amylase having the amino acid sequence shown in SEQ ID No. 4 and an amino acid segment corresponding to the 445 C-terminal amino acid residues of the B. licheniformis α -amylase having the amino acid sequence shown in SEQ ID No. 2, or b) an amino acid 35 segment corresponding to the 68 N-terminal amino acid residues of the B. stearothermophilus α -amylase having the amino acid sequence shown in SEQ ID No. 6 and an amino acid segment corresponding to the 415 C-terminal amino acid residues of the

9

B. licheniformis α -amylase having the amino acid sequence shown in SEQ ID No. 2.

Analogously, the parent hybrid α -amylase may belong to a non-streamyl-like α -amylase family, e.g. the Fungamyl-like α -amylase family. In that case the hybrid may comprise at least one part of an α -amylase belonging to the non-Termamyl-like α -amylase family in combination with one or more parts derived from other α -amylases.

10

The three-dimensional Termamyl-like α-amylase structure

The Termamyl-like α -amylase which was used to elucidate the three-dimensional structure forming the basis for the present invention consists of the 300 N-terminal amino acids of the B. amyloliquefaciens α -amylase (with the amino acid sequence shown in SEQ ID No. 4) and amino acids 301-483 of the C-terminal end of the B. licheniformis α -amylase with the amino acid sequence SEQ ID No. 2. The bacterial α -amylase belongs to the "Termamyllike α -amylase family" and the present structure is believed to be representative for the structure of any Termamyl-like α -amylase.

The structure of the α-amylase was solved in accordance with the principle for X-ray crystallographic methods given in "X-Ray Structure Determination", Stout, G.K. and Jensen, L.H., John Wiley & Sons, inc. NY, 1989. The structural coordinates for the solved crystal structure of the α-amylase at 2.2 Å resolution using the isomorphous replacement method are given in a standard PDB format (Brookhaven Protein Data Base) in Appendix 1. It is to be understood that Appendix 1 forms part of the present application.

Amino acid residues of the enzyme are identified by three-35 letter amino acid code (capitalized letters).

The α -amylase structure is made up of three globular domains ordered A, B, and C with respect to sequence, which lie

approximately along a line in the order B, A, C. The domains can be defined as being residues 1-103 and 206-395 for domain A, residues 104-205 for domain B, and residues 396-483 for domain C, the numbers referring to the B. licheniformis α-samylase. This gives rise to an elongated molecule, the longest axis being about 85Å. The widest point perpendicular to this axis is approximately 50Å and spans the central A domain. The active site residues of the B. licheniformis α-amylase (SEQ ID NO 2) are D323, D231 and E261.

10

Domain A

Domain A is the largest domain and contains the active site (comprised of a cluster of three amino acid residues placed at the bottom of a deep cleft in the enzyme's surface). Domain A of all known α -amylase structures have the same overall fold, viz. the (beta/alpha)8 barrel with 8 central beta strands (number 1-8) and 8 flanking α -helices. The β -barrel is defined by McGregor op. cit. The C-terminal end of Beta strand 1 is connected to helix 1 by a loop denoted loop 1 and an identical pattern is found for the other loops. These loops show some variation in size and some can be quite extensive.

The 8 central Beta-strands in the (beta/alpha)8 barrel superimpose well between the various known α-amylase structures, and this part of the structure, including the close surroundings of the active site located at the c-terminal end of the beta-strands, show high similarity between the different amylases.

30

The loops connecting beta-strands and alpha helices display high variations between alpha amylases. These loops constitute the structural context of the active site and the majority of the contacts to the substrate is found among residues located in these loops. Such important characteristics as substrate specificity, substrate binding, pH/activity profile, starch cleavage pattern are determined by the amino acids and the positions of same in these loops.

11

The substantial differences between the Fungamyl-like α -amylase structure and the structure of the Termamyl-like α -amylase disclosed herein which are found in loops 1, 2, 3, and 8 are visualized in the Figures.

Domain B

The Termamyl-like α -amylase structure has been found to comprise a special domain structure in the A domain's loop3, also called domain B. The structure of the Termamyl-like α -amylase B domain has never been seen before in any of the known α -amylase or $(\beta/alpha)$ 8-barrel proteins.

The domain B structure is a very compact domain having a very high number of charged residues. The B domain arises as an extension of the loop between strand 3 and helix 3 of domain A (shown in Fig. 7) and contains a 5 stranded antiparallel β -sheet structure containing at least one long loop structure and having the connectivity -1, +3, -1X, +2 (Richardson, 1981, Adv. Protein Chem. 34, 167-339).

The first four strands of the B domain form two hairpin loops which twist around each other like a pair of crossed fingers (right-hand twist). The mainchain folds into a ß-strand which connects two small ß-sheet structures. After making one turn in one sheet it folds back and makes up a two stranded sheet in contact with domain A and an internal hole in the α-amylase structure. Then the mainchain folds up to a small sheet structure nearly perpendicular to the first two sheets. Before entering the helix 3 on top of the ß-strand 3, the approximately 24 last amino acids in domain B form two calcium binding sites in the contact region to domain A.

Domain B is connected with domain A by two peptide stretches, which divide the domain-domain contact areas into two. Domain B is in contact with Domain A by a calcium binding region and an internally buried hole containing waters. Many types of molecular contacts are present. Ionic interacting between acid

12

and basic amino acids are possible, these interactions are very important for the general stability at high pH and for keeping the Calcium binding sites intact.

5 Domain C

Domain C is the C-terminal part of the protein consisting of amino acids 394-483. Domain C is composed entirely of β -strands which forms a single 8-stranded sheet structure, which folds back on itself, and thus may be described as a β -sandwich structure. The connectivity is +1,+1, +5, -3, +1, +1, -3 although strands 6 and 7 are only loosely connected. One part of the β -sheet forms the interface to domain A.

15 Ca-binding and Na-binding sites

The structure of the Termamyl-like α-amylase is remarkable in that it exhibits four calcium-binding sites and one sodium-binding site. In other words four calcium ions and one sodium ion are found to be present in the structure, although one of the calcium ions displays very weak coordination. Two of the calcium ions form part of a linear cluster of three ions, the central ion being attributed to sodium, which lie at the junction of the A and B domains.

25

The coordinating residues for the calcium ions between the A and B domain are as follows (using the Pdb file nomenclature for amino acid residues and atoms in the Pdb file found in Appendix 1 herein): For the calcium ion nearest to the active site (IUM 502 in the pdb file), the backbone carbonyls from His235 and Asp194, the sidechain atom OD1 from residues Asp194, Asn102 and Asp200, and one water molecule WAT X3 (atom OW7). For the sodium ion (IUM 505), the binding site includes atom OD2 from Asp194, Asp200, Asp183 and Asp159, and a backbone carbonyl from Val201. The coordinates for the other calcium ion between domain A and B are (IUM 501): atom OD2 from Asp204 and Asp159, backbone carbonyl from Asp183 and Ala181, atom OD1 from Asp202, and one water molecule WAT X7 (atom OW7).

13

One calcium ion is located between the A and C domain, another is located in the C domain. The first mentioned calcium ion, which is also the one best coordinated (IUM 503) includes a carbonyl backbone from Gly300, Tyr302 and His406, atom OD2/OD1 from Asp430, atom OD1 from Asp407, and one water molecule WAT X6 (atom OW7). The other and very weakly coordinated calcium site (IUM 504) comprises 4 water molecules WAT X21 (atom OW8), X6 (atom OW6), X9 (atom OW0) and X28 (atom OW8), OE1/OE2 from Glu447 and OD1 from Asp444.

. 10

Substrate-binding site

Without being limited to any theory it is presently believed that favourable interactions between a substrate molecule and the enzyme (such as hydrogen bonds and/or strong electrostatic interaction) are found within a sphere of 4Å of the substrate, when bound to the enzyme. The following residues of the B. licheniformis α-amylase having the amino acid sequence shown in SEQ ID No. 2 are contemplated to be within a distance of 4 Å of the substrate and thus believed to be involved in interactions with the substrate:

Trp13, Tyr14, Asn17, Asp18, Ser50, Gln51, Ala52, Asp53, Val54,
Gly55, Tyr56, Lys70, Arg74, Lys76, Val102, His105, Gly107,
Gly108, Ala109, Trp138, Thr163, Asp164, Trp165, Asn172, Glu189,
25 Tyr193, Leu196, Met197, Tyr198, Ala199, Arg229, Asp231, Ala232,
Lys234, His235, Glu261, Trp263, His327, Asp328, Gln333, Ser334,
and Leu335.

The amino acid residues of another Termamyl-like α -amylase, which are contemplated to be within a distance of 4\AA of the substrate, may easily be identified by aligning the amino acid sequence SEQ ID NO 2 with that of the other Termamyl-like α -amylase and thereby identifying the positions equivalent to those identified above.

35

Generality of structure

Because of the high homology between the various Termamyl-like α -amylases, the solved structure defined by the coordinates of 5 Appendix 1 is believed to be representative for the structure of all Termamyl-like α -amylases. A model structure of other Termamyl-like α -amylases may easily be built on the basis of the coordinates given in Appendix 1 adapted to the α -amylase in question by use of an alignment betweeen the respective amino acid sequences. The creation of a model structure is exemplified in Example 1.

The above identified structurally characteristic parts of the Termamyl-like α -amylase structure (Ca-binding site, substrate binding site, loops, etc.) may easily be identified in other Termamyl-like α -amylases on the basis of a model (or solved) structure of the relevant Termamyl-like α -amylase or simply on the basis of an alignment between the amino acid sequence of the Termamyl-like α -amylase in question with that of the B. lichenformis α -amylase used herein for identifying the amino acid residues of the respective structural elements.

Furthermore, in connection with Termamyl-like variants of the invention, which are defined by modification of specific amino acid residues of a specific Termamyl-like α -amylase, it will be understood that variants of another Termamyl-like α -amylase modified in an equivalent position (as determined from the best possible amino acid sequence alignment between the respective sequences) are intended to be covered as well. Thus, irrespective of whether an amino acid residue is identified herein for the purpose of defining a structural part of a given α -amylase or used for identifying a variant of the α -amylase, this amino acid residue shall be considered as representing the equivalent amino acid residue of any other Termamyl-like α -amylase.

Methods of the invention for design of novel α-amylase variants

In the methods according to the first, second and third aspects of the invention the terms "structure of a Termamyl-like α -amylase" and "Termamyl-like α -amylase structure" are intended to indicate the solved structure defined by the coordinates presented in Appendix 1 or a model structure of a given Termamyl-like α -amylase (such as the B. licheniformis α -amylase) built on the basis of the solved structure.

10

In most cases the parent Termamyl-like α -amylase to be modified in accordance with the present invention is different from the α -amylase which was actually used for solving the structure (Appendix 1). This means that the amino acid residue(s) or 15 structural part(s) identified in the solved structure (Appendix 1) in step i) of the method according to the first, second or third aspect of the invention must be translated into the corresponding amino acid residue(s) or structural part(s) of parent Termamyl-like α-amylase in question. 20 "translation" is conveniently performed on the basis of an amino acid sequence alignment between the amino acid sequence of the Termamyl-like α -amylase used for solving the structure and the amino acid sequence of the parent Termamyl-like α amylase in question.

25

The analysis or comparison performed in step i) of the method according to the first, second and third aspect, respectively, of the invention may be performed by use of any suitable computer programme capable of analysing and/or comparing protein structures, e.g. the computer programme Insight, available from Biosym Technologies, Inc. For instance, the basic principle of structure comparison is that the three-dimensional structures to be compared are superimposed on the basis of an alignment of secondary structure elements (such as the central 8 β -strands in the barrel) and the parts differing between the structures can subsequently easily be identified from the superimposed structure.

The structural part which is identified in step i) of the methods of the first, second and third aspects of the invention may be composed of one amino acid residue. However, normally the structural part comprises more than one amino acid residue, typically constituting one of the above parts of the Termamyllike α-amylase structure such as one of the A, B, or C domains, an interface between any of these domains, a calcium binding site, a loop structure, the substrate binding site, or the like.

10

In the present context the term "structural or functional considerations" is intended to indicate that modifications are made on the basis of an analysis of the relevant structure or structural part and its contemplated impact on the function of 15 the enzyme. Thus, an analysis of the structures of the various α -amylases, which until now has been elucidated, optionally in combination with an analysis of the functional differences between these α -amylases, may be used for assigning certain properties of the α -amylases to certain parts of the α -amylase 20 structure or to contemplate such relationship. For instance, differences in the pattern or structure of loops surrounding the active site may result in differences in access to the active site of the substrate and thus differences in substrate specificity and/or cleavage pattern. Furthermore, parts of a 25 Termamyl-like α -amylase involved in or contemplated to be (and binding substrate involved in specificity/cleavage pattern), calcium or sodium ion binding (e.g. of importance for the Calcium-dependency of the enzyme), and the like has been identified (vide infra).

30

The modification of an amino acid residue or structural part is typically accomplished by suitable modifications of a DNA sequence encoding the parent enzyme in question. The term "modified" as used in step ii) in the method according to the first aspect of the invention is intended to have the following meaning: When used in relation to an amino acid residue the term is intended to mean replacement of the amino acid residue in question with another amino acid residue. When used in

relation to a structural part, the term is intended to mean replacement of one or more amino acid residues of said structural part, addition of one or more amino acid residues to said part, or deletion of one or more amino acid residues of said structural part.

The construction of the variant of interest is accomplished by cultivating a microorganism comprising a DNA sequence encoding the variant under conditions which are conducive for producing the variant, and optionally subsequently recovering the variant from the resulting culture broth. This is described in detail further below.

First aspect of the invention

In a preferred embodiment of the method according to the first aspect of the invention the property of the parent enzyme to be modified is selected from calcium dependency, substrate binding, cleavage pattern, pH dependent activity and the like. Specific examples of how to change these properties of a parent Termamyl-like α -amylase are given further below.

In another preferred embodiment the parent Termamyl-like α -amylase to be modified is a *B. licheniformis* α -amylase.

25 Second and third aspects of the invention

One important advantage of the methods according to the second and third aspects of the present invention is that it is possible to adapt the structure (or a structural part) of a Termamyl-like α-amylase to the structure (or structural part)

30 of a non-Termamyl-like α-amylase and vide versa. For instance, having identified a loop structure of the non-Termamyl-like α-amylase which is believed to be responsible for or contributing to a particular property of the non-Termamyl-like α-amylase it is possible to replace the corresponding structure of the Termamyl-like α-amylase with said non-Termamyl-like α-amylase structure - or if no corresponding structure exists in the Termamyl-like α-amylase - to insert the structure into the

Termamyl-like α -amylase in such a manner that the resulting

18

variant Termamyl-like α -amylase, as far as the relevant part is concerned, resembles the corresponding part of the non-Termamyl-like α -amylase. When two or more parts of the structure of the parent Termamyl-like α -amylase are modified so as to resemble the corresponding parts of the non-Termamyl-like α -amylase it is possible to increase the resemblance to the non-Termamyl-like α -amylase of the Termamyl-like α -amylase variant and thus to alter the properties of said variant in the direction of those of said non-Termamyl-like α -amylase. Loop modifications are discussed in much further detail further below.

Typically, the modification to be performed in step iii) of the method according to the second aspect of the invention is accomplished by deleting one or more amino acid residues of the part of the Termamyl-like α-amylase to be modified so as to adapt the structure of said part of the parent α-amylase to the corresponding part of the non-Termamyl-like α-amylase; by replacing one or more amino acid residues of the part of the Termamyl-like α-amylase to be modified with the amino acid residues occupying corresponding positions in the non-Termamyl-like α-amylase; or by insertion of one or more amino acid residues present in the non-Termamyl-like α-amylase into a corresponding position in the Termamyl-like α-amylase. For the method according to the third aspect the modification is to be understood analogously, performed on the non-Termamyl-like parent α-amylase rather than the Termamyl-like α-amylase.

In step ii) of the method according to the second or third
aspect of the invention the part of the structure to be
identified is preferably one which in the folded enzyme is
believed to be in contact with the substrate (cf the disclosure
above in the section entitled "Substrate-binding site) or
involved in substrate specificity and/or cleavage pattern,
and/or one which is in contact with one of the calcium or
sodium ions and/or one, which is contributing to the pH or
temperature profile of the enzyme, or one which otherwise, from
structural or functional considerations, is contemplated to be

responsible for differences in one or more properties of the Termamyl-like and non-Termamyl-like α -amylase.

Non-Termamyl-like α -amylase

The non-Termamyl-like α-amylase with which the comparison is made in step i) of the method of the second aspect of the invention and which is the parent α-amylase in the method of the third aspect of the invention, may be any α-amylase, which does not belong to the family of Termamyl-like α-amylases (as defined above) and, which as a consequence thereof, has a different three-dimensional structure. Furthermore, the non-Termamyl-like α-amylase should be one which has, at the time that the method is performed, an elucidated or contemplated three-dimensional structure.

15

The non-Termamyl-like α -amylase may, e.g., be a fungal α -amylase, a mammalian or a plant α -amylase or a bacterial α -amylase (different from a Termamyl-like α -amylase). Specific examples of such α -amylases include the Aspergillus oryzae TAKA α -amylase, the A. niger acid α -amylase, the Bacillus subtilis α -amylase, the porcine pancreatic α -amylase and a barley α -amylase. All of these α -amylases have elucidated structures which are clearly different from the structure of the Termamyl-like α -amylase shown herein.

25

The fungal α -amylases mentioned above, i.e. derived from A. niger and A. oryzae, are highly homologous on the amino acid level and generally considered to belong to the same family of α -amylases. In the present disclosure, this family is termed "Fungamyl-like α -amylase" and intends to indicate an α -amylase which exhibits a high homology, i.e. more than 70%, such as 80% homologous (as defined herein) to the fungal α -amylase derived from Aspergillus oryzae, commercially available as Fungamyl[©], and the A. niger α -amylase.

35

From the enclosed illustrations of the α -amylase structure of a Termamyl-like α -amylase and a comparison of said structure with the structure of a Fungamyl-like α -amylase it is evident

PCT/DK96/00057 WO 96/23874

20

that major differences exist between the two structures. In the method of the invention it is of particular interest to modify parts of the parent Termamyl-like α -amylase, which belong to a region with large differences to the Fungamyl-like α -amylase. 5 In particular, it is of interest to modify the parent Termamyllike α -amylase in one or more of the following loops: loop 1,

In the method of the third aspect of the invention it is of 10 particular interest to modify loop 1, loop 2, loop 3 and/or loop 8 of the parent non-Termamyl-like α -amylase to a closer ressemblance to the similar loops of a Termamyl-like α -amylase, such as Termamyl.

loop 2, loop 3 and/or loop 8 of the parent α -amylase.

15 In the following specific types of variants are described which have been designed by use of the method of the invention.

Loop modifications

20 In order to change the substrate specificity of the parent α amylase to be modified it is relevant to consider loop modifications. For instance changing one or more of the loop structures of the Termamyl-like α -amylase into a closer ressemblance with the corresponding loop structure(s) of a non-25 Termamyl-like α -amylase (such as a Fungamyl-like α -amylase) it is contemplated that it is possible to change the substrate specificity in the direction of that of the non-Termamyl α amylase. In the following different types of loop modifications of interest are listed. It will be understood that the variants 30 may have other changed properties in addition to the modified substrate specificity. It will be understood that the following modifications identified for a specific Termamyl-like α -amylase are intended to include corresponding modifications in other equivalent positions of other Termamyl-like α -amylases. 35 Furthermore, it will be understood that, normally, the loop modification will comprise replacement of an entire loop structure or a substantial part thereof in, e.g., the Termamyllike α -amylase, with the corresponding loop structure (or substantial part thereof) in a non-Termamyl-like α -amylase.

Loop2 modifications

- 5 In one embodiment the invention relates to a variant of a parent Termamyl-like α-amylase, in which variant at least one amino acid residue of the parent α-amylase, which is/are present in a fragment corresponding to the amino acid fragment 44-57 of the amino acid sequence of SEQ ID No. 4, i.e. loop 2, 10 has been deleted or replaced with one or more amino acid residues which is/are present in a fragment corresponding to the amino acid fragment 66-84 of the amino acid sequence shown in SEQ ID No. 10, or in which one or more additional amino acid residues has been added using the relevant part of SEQ ID No. 15 10 or a corresponding part of another Fungamyl-like α-amylase as a template.
- The amino acid sequence shown in SEQ ID No. 10 is the amino acid sequence of the A. oryzae α -amylase, i.e. a Fungamyl-like α -amylase. It will be understood that amino acid residues or fragments found in corresponding positions in other α -amylases, in particular Fungamyl-like α -amylases, may be used as a template for the construction of the variant according to the invention. The corresponding part in other homologous α -25 amylases may easily be identified on the basis of a comparison of the amino acid sequences and/or three-dimensional structures of the respective α -amylases.

For instance, the variant may be one, which, when the amino acid sequence of the variant is aligned most closely with the amino acid sequence of the said parent α-amylase, occupies the same position as the portion from residue X to residue Y of SEQ ID No 4, the said region having at least 80% such as at least 90% sequence homology with the part of SEQ ID No 10 extending from residue Z to residue V of SEQ ID No 10, wherein X is the amino acid residue occupying position 44, 45, 46, 47 or 48 of SEQ ID No. 4,

Y is the amino acid residue occupying position 51, 52, 53, 54, 55, 56 or 57 of SEQ ID No. 4,

Z is the amino acid residue occupying position 66, 67, 68, 69 or 70 of SEQ ID No. 10, and

5 V is the amino acid residue occupying position 78, 79, 80, 81, 82, 83 or 84 of SEQ ID No. 10.

In other words, the variant may be one in which an amino acid fragment X-Y of the parent α-amylase, which corresponds to or is within the amino acid fragment 44-57 of SEQ ID No. 4, has been replaced with an amino acid fragment Z-V, which corresponds to or is within the amino acid fragment 66-84 of the amino acid sequence shown in SEQ ID No. 10, in X, Y, Z and V have the meaning indicated above.

15

A specific example of a variant according to this embodiment is a variant of a parent Termamyl-like α -amylase, in which the amino acid fragment of the parent α -amylase, which corresponds to amino acid residues 48-51 of SEQ ID No. 4, has been replaced with an amino acid fragment corresponding to amino acid residues 70-78 of the amino acid sequence shown in SEQ ID No. 10.

Loop 3 modifications - limited alteration

25 In another embodiment the invention relates to a variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is/are present in an amino acid fragment corresponding to the amino acid fragment 195-202 of the amino acid sequence of SEQ ID No. 4, has been deleted or replaced with one or more of the amino acid residues which is/are present in an amino acid fragment corresponding to the amino acid fragment 165-177 of the amino acid sequence shown in SEQ ID No. 10, or in which one or more additional amino acid residues has been added using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.

For instance, the variant may be one in which an amino acid fragment X-Y of the parent α-amylase which corresponds to or is within the amino acid fragment 195-202 of SEQ ID No. 4, has been replaced by an amino acid fragment Z-V, which corresponds to or is within the amino acid fragment 165-177 of the amino acid sequence shown in SEQ ID No. 10, in which

X is an amino acid residue corresponding to the amino acid occupying position 195 or 196 of SEQ ID No. 4,

10

Y is an amino acid residue corresponding to the amino acid occupying position 198, 199, 200, 201, or 202 of SEQ ID No. 4,

Z is an amino acid residue corresponding to the amino acid occupying position 165 or 166 of SEQ ID No. 10, and

V is an amino acid residue corresponding to the amino acid occupying position 173, 174, 175, 176 or 177 of SEQ ID No. 10.

- Expressed in another manner, the variant according to this aspect may be one, which, when the amino acid sequence of variant is aligned most closely with the amino acid sequence of the said parent Termamyl-like α-amylase, occupies the same position as the portion from residue X to residue Y of SEQ ID No 4, the said region having at least 80%, such as 90% sequence homology with the part of SEQ ID No 10 extending from residue Z to residue V of SEQ ID No 10, the meaning of X, Y, Z and V being as identified above.
- 30 A specific example of a variant according to this embodiment is a variant of a parent Termamyl-like α -amylase, in which the amino acid fragment of the parent α -amylase, which corresponds to amino acid residues 196-198 of SEQ ID No. 4, has been replaced with the amino acid fragment corresponding to amino acid residues 166-173 of the amino acid sequence shown in SEQ ID No. 10.

30

Loop 3 modifications - complete domain B

In a further embodiment the invention relates to a variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is/are present in a fragment corresponding to the amino acid fragment 117-185 of the amino acid sequence of SEQ ID No. 4, has/have been deleted or replaced with one or more of the amino acid residues, which is/are present in an amino acid fragment corresponding to the amino acid fragment 98-210 of the amino acid sequence shown in SEQ ID No. 10, or in which one or more additional amino acid residues has been added using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.

15 For instance, the variant may be one, in which an amino acid fragment X-Y of the parent α-amylase, which corresponds to or is within the amino acid fragment 117-185 of SEQ ID No. 4, has been replaced with an amino acid fragment Z-V, which corresponds to or is within the amino acid fragment 98-210 of the amino acid sequence shown in SEQ ID No. 10, in which variant

X is an amino acid residue corresponding to the amino acid occupying position 117, 118, 119, 120 or 121 of SEQ ID No. 4,

Y is an amino acid residue corresponding to the amino acid occupying position 181, 182, 183, 184 or 185 of SEQ ID No. 4, Z is an amino acid residue corresponding to the amino acid

occupying position 98, 99, 100, 101, 102 of SEQ ID No. 10, and

V is an amino acid residue corresponding to the amino acid occupying position 206, 207, 208, 209 or 210 of SEQ ID No. 10.

A specific example of a variant according to this embodiment is a variant of a parent α -amylase, in which an amino acid fragment of the parent α -amylase, which corresponds to amino acid residues 121-181 of SEQ ID No. 4, has been replaced with

the amino acid fragment corresponding to amino acid residues 102-206 of the amino acid sequence shown in SEQ ID No. 10.

In another embodiment the invention relates to a variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is/are present in a fragment corresponding to the amino acid fragment 117-181 of the amino acid sequence of SEQ ID No. 4, has/have been deleted or replaced with one or more of the amino acid residues, which is/are present in an amino acid fragment corresponding to the amino acid fragment to 98-206 of the amino acid sequence shown in SEQ ID No. 10, or in which one or more additional amino acid residues has been added using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.

For instance, the variant may be one, in which the amino acid fragment X-Y of the parent α-amylase, which corresponds to or is within the amino acid fragment 117-177 if SEQ ID No. 4, 20 has/have been replaced with an amino acid fragment Z-V, which corresponds to or is within the amino acid fragment 98-202 of the amino acid sequence shown in SEQ ID No. 10, in which variant

25 X is an amino acid residue corresponding to the amino acid occupying position 117, 118, 119, 120 or 121 of SEQ ID No. 4,

Y is an amino acid residue corresponding to the amino acid occupying position 174, 175, 176 or 177 of SEQ ID No. 4,

Z is an amino acid residue corresponding to the amino acid occupying position 98, 99, 100, 101, 102 of SEQ ID No. 10, and

V is an amino acid residue corresponding to the amino acid occupying position 199, 200, 201 or 202 of SEQ ID No. 10.

A specific example of a variant according to this embodiment of the invention is a variant, in which the amino acid fragment of

the parent α -amylase, which corresponds to amino acid residues 121-174 of SEQ ID No. 4, has been replaced with the amino acid fragment corresponding to amino acid residues 102-199 of the amino acid sequence shown in SEQ ID No. 10.

Loop 1 modifications - minimal addition

In a further embodiment the present invention relates to a variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-10 amylase, which is/are present in an amino acid fragment corresponding to the amino acid fragment 12-19 of the amino acid sequence of SEQ ID No. 4, has/have been deleted or replaced with one or more of the amino acid residues, which is/are present in an amino acid fragment which corresponds to the amino acid fragment 28-42 of SEQ ID No. 10, or in which one or more additional amino acid residues has/have been inserted using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.

For instance, the variant may be one, in which the amino acid fragment X-Y of the parent α-amylase, which corresponds to or is within the amino acid fragment 12-19 of SEQ ID No. 4, has/have been replaced with an amino acid fragment Z-V, which corresponds to or is within the amino acid fragment 28-42 of the amino acid sequence shown in SEQ ID No. 10, in which variant

X is an amino acid residue corresponding to the amino acid occupying position 12, 13 or 14 of SEQ ID No. 4,

Y is an amino acid residue corresponding to the amino acid occupying position 15, 16, 17, 18 or 19 of SEQ ID No. 4,

Z is an amino acid residue corresponding to the amino acid occupying position 28, 29, 30, 31 or 32 of SEQ ID No. 10, and

V is an amino acid residue corresponding to the amino acid occupying position 38, 39, 40, 41 or 42 of SEQ ID No. 10.

A specific example of a variant according to this aspect of the invention is a variant, in which the amino acid fragment of the parent α-amylase, which corresponds to amino acid residues 14-15 of SEQ ID No. 4, has been replaced with the amino acid fragment corresponding to amino acid residues 32-38 of the amino acid sequence shown in SEQ ID No. 10.

Loop 1 modifications - complete loop

In a further embodiment the invention relates to a variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is present in a fragment corresponding to amino acid residues 7-23 of the amino acid sequence of SEQ ID No. 4, has/have been deleted or replaced with one or more amino acid residues, which is/are present in an amino acid fragment corresponding to amino acid residues 13-45 of the amino acid sequence shown in SEQ ID No. 10, or in which one or more additional amino acid residues has/have been inserted using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.

For instance, the variant may be one, in which the amino acid fragment X-Y of the parent α-amylase, which corresponds to or is within the amino acid fragment 7-23 of SEQ ID No. 4, 25 has/have been replaced with an amino acid fragment Z-V, which corresponds to or is within the amino acid fragment 13-45 of the amino acid sequence shown in SEQ ID No. 10, in which variant

- 30 X is an amino acid residue corresponding to the amino acid occupying position 7 or 8 of SEQ ID No. 4,
 - Y is an amino acid residue corresponding to the amino acid occupying position 18, 19, 20, 21, 22 or 23 of SEQ ID No. 4,
 - Z is an amino acid residue corresponding to the amino acid occupying position 13 or 14 of SEQ ID No. 10, and

V is an amino acid residue corresponding to the amino acid occupying position 40, 41, 42, 43, 44 or 45 of SEQ ID No. 10.

A specific variant according to this embodiment is one, in 5 which the amino acid fragment of the parent α -amylase, which corresponds to amino acid residues 8-18 of SEQ ID No. 4, has been replaced with the amino acid fragment corresponding to amino acid residues 14-40 of the amino acid sequence shown in SEO ID No. 10.

10

Loop 8 modifications

In a further embodiment the invention relates to a variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is present in a fragment corresponding to amino acid residues 322-346 of the amino acid sequence of SEQ ID No. 2, has/have been deleted or replaced with one or more amino acid residues, which is/are present in an amino acid fragment corresponding to amino acid residues 291-313 of the amino acid sequence shown in SEQ ID No. 10, or in which one or more additional amino acid residues has/have been inserted using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.

25 For instance, the variant may be one, in which the amino acid fragment X-Y of the parent α-amylase, which corresponds to or is within the amino acid fragment 322-346 of SEQ ID No. 2, has/have been replaced with an amino acid fragment Z-V, which corresponds to or is within the amino acid fragment 291-313 of the amino acid sequence shown in SEQ ID No. 10, in which variant

X is an amino acid residue corresponding to the amino acid occupying position 322, 323, 324 or 325 of SEQ ID No. 2,

35

Y is an amino acid residue corresponding to the amino acid occupying position 343, 344, 345 or 346 of SEQ ID No. 2,

Z is an amino acid residue corresponding to the amino acid occupying position 291, 292, 293 or 294 of SEQ ID No. 10, and

V is an amino acid residue corresponding to the amino acid occupying position 310, 311, 312 or 313 of SEQ ID No. 10.

A specific variant according to this aspect of the invention is one, in which the amino acid fragment of the parent α -amylase, which corresponds to amino acid residues 325-345 of SEQ D No.

10 2, has been replaced with the amino acid fragment corresponding to amino acid residues 294-313 of the amino acid sequence shown in SEQ ID No. 10.

Ca2+ dependency

WO 96/23874

15 It is highly desirable to be able to decrease the Ca^{2*} dependency of a Termamyl-like α -amylase. Accordingly, in a further aspect the invention relates to a variant of a parent Termamyl-like α -amylase, which exhibits α -amylase activity and which has a decreased Ca^{2*} dependency as compared to the parent α -amylase. The decreased Ca^{2*} dependency has the functional result that the variant exhibits a satisfactory amylolytic activity in the presence of a lower concentration of calcium ion in the extraneous medium than is necessary for the parent enzyme and, for example, therefore is less sensitive than the parent to calcium ion-depleting conditions such as those obtained in media containing calcium-complexing agents (such as certain detergent builders).

The decreased Ca^{2+} dependency of the variant of the invention may advantageously be achieved by increasing the Ca^{2+} binding affinity of the parent Termamyl-like α -amylase, in other words the stronger the Ca^{2+} binding of the enzyme, the lower is the Ca^{2+} dependency.

35 It is presently believed that amino acid residues located within 10Å from a sodium or calcium ion are involved in or are of importance for the Ca²⁺ binding capability of the enzyme.

Accordingly, the variant according to this aspect of the invention is preferably one, which has been modified in one or more amino acid residues present within 10Å from a calcium and/or sodium ion identified in the three-dimensional Termamyllike α -amylase structure in such a manner that the affinity of the α -amylase for calcium is increased.

The amino acid residues found within a distance of 10\AA from the Ca²⁺ binding sites of the B. licheniformis α -amylase with the amino acid sequence SEQ ID NO 2 were determined as described in Example 2 and are as follows:

V102, I103, N104, H105, K106, R125, W155, W157, Y158, H159, F160, D161, G162, T163, Y175, K176, F177, G178, K180, A181, W182, D183, W184, E185, V186, S187, N192, Y193, D194, Y195, L196, M197, Y198, A199, D200, I201, D202, Y203, D204, H205, P206, V208, A209, D231, A232, V233, K234, H235, I236, K237, F238, F240, L241, A294, A295, S296, T297, Q298, G299, G300, G301, Y302, D303, M304, R305, K306, L307, W342, F343, L346, Q393, Y394, Y396, H405, H406, D407, I408, V409, R413, E414, G415, D416, S417, V419, A420, N421, S422, G423, L424, I428, T429, D430, G431, P432, V440, G441, R442, Q443, N444, A445, G446, E447, T448, W449, I462, G475, Y480, V481, Q482, R483.

- In order to construct a variant according to this aspect of the invention it is desirable to replace at least one of the above mentioned amino acid residues (or an amino acid residue occupying an equivalent position in another Termamyl-like α-amylase than that defined by SEQ ID NO 2), which is contemplated to be involved in providing a non-optimal calcium binding, with any other amino acid residue which improves the Ca² binding affinity of the variant enzyme. In practice, the identification and subsequent modification of the amino acid residue is performed by the following method:
- i) identifying an amino acid residue within 10Å from a Ca 2 binding site of a Termamyl-like α -amylase structure, which from

structural or functional considerations is believed to be responsible for a non-optimal calcium ion interaction,

- ii) constructing a variant in which said amino acid residue is replaced with another amino acid residue which from structural or functional considerations is believed to be important for establishing a higher Ca^{2*} binding affinity, and testing the Ca^{2*} dependency of the resulting Termamyl-like α -amylase variant.
- In the present context, the term "non-optimal calcium ion interaction" is intended to indicate that the amino acid residue in question is selected on the basis of a presumption that substituting said amino acid residue for another may improve a calcium ion binding interaction of the enzyme. For instance, the amino acid residue in question may be selected on the basis of one or more of the following considerations:
- to obtain an improved interaction between a calcium ion and an amino acid residue located near to the surface of the enzyme
 (as identified from the structure of the Termamyl-like α-amylase). For instance, if the amino acid residue in question is exposed to a surrounding solvent, it may be advantageous to increase the shielding of said amino acid residue from the solvent so as to provide for a stronger interaction between
 said amino acid residue and a calcium ion. This can be achieved by replacing said residue (or an amino acid residue in the vicinity of said residue contributing to the shielding) by an amino acid residue which is more bulky or otherwise results in an improved shielding effect.

30

to stabilize a calcium binding site, for instance by stabilizing the structure of the Termamyl-like α-amylase (e.g. by stabilizing the contacts between the A, B and C domains or stabilizing one or more of the domains as such). This may,
 e.g., be achieved by providing for a better coordination to amino acid side chains, which may, e.g., be obtained by replacing an N residue with a D residue and/or a Q residue with

an E residue (e.g. N104D), e.g. within 10Å, and preferably within 3 or 4Å, of a calcium binding site.

- to protect the calcium binding site or to improve the solution between the calcium ion and the calcium binding site, e.g. by providing a stronger interaction between the ion and the binding site.

Before actually constructing a Termamyl-like α -amylase variant according to the above principles it may be convenient to evaluate the contemplated amino acid modification by its accommodation into the Termamyl-like α -amylase structure, e.g. into a model structure of the parent Termamyl-like α -amylase.

15 Preferably, the amino acid residue to be modified is located within 8Å of a Ca²⁺ binding site residue, such as within 5Å of such residue. The amino acid residues within 8Å and 5Å, respectively, may easily be identified by an analogous method used for identifying amino acid residues within 10Å (cf. 20 Example 2).

The following mutation is contemplated to be of particular interest with respect to decreasing the Ca^{2+} dependency of a Termamyl-like α -amylase:

25 N104D (of the B. licheniformis α -amylase SEQ ID NO 2, or an equivalent (N to D) mutation of an equivalent position in another Termamyl-like α -amylase.)

In connection with substitutions of relevance for Ca^2 dependency, some other substitutions appear to be of importance in stabilizing the enzyme conformation (for instance the Domains A-B and/or Domains A-C interactions contributing to the overall stability of the enzyme) in that they may, e.g., enhance the strength of binding or retention of calcium ion or sodium ion at or within a calcium or sodium binding site, respectively, within the parent Termamyl-like α -amylase.

It is desirable to stabilize the C-domain in order to increase the calcium stability and/or thermostability of the enzyme. In this connection the stabilization may result in a stabilization of the binding of calcium by the enzyme, and an improved contact between the C-domain and the A-domain (of importance for thermostability). The latter may be achieved by introduction of cystein bridges, salt bridges or increase hydrogen, hydrophobic and/or electrostatic interactions.

10 For instance, the C-domain of the B. licheniformis α-amylase having the amino acid sequence shown in SEQ ID No. 2 may be stabilized by introduction of a cystein bridge between domain A and domain C, e.g. by introducing of the following mutations: A349C+I479C and/or L346C+I430C.

15

A salt bridge may be obtained by introduction of the following mutations:

N457D, E

N457D, E+K385R

20 F350D, E+I430R, K

F350D, E+I411R, K

The calcium site of Domain C may be stabilized by replacing the amino acid residues H408 and/or G303 with any other amino acid

25 residue. Of particular interest is the following mutations: H408Q,E,N,D and/or G303N,D,Q,E

which are contemplated to provide a better calcium binding or protection from calcium depletion.

Similar mutations may be introduced in equivalent positions of other Termamyl-like α -amylases.

Other substitution mutations (relative to $B.\ licheniformis$ α -amylase, SEQ ID No. 2) which appear to be of importance,

include the following: R23K, H156Y, A181T, A209V and G310D (or equivalent mutations in equivalent positions in another Termamyl-like α -amylase). Substitutions of R214 and P345 with

other amino acids may also be of importancen in this connection.

Variants with altered activity at higher/lower pH

- It is contemplated that it is possible to change the pH optima of a Termamyl-like α -amylase or the enzymatic activity at a given pH by changing the pKa of the active site residues. This may be achieved, e.g. by changing the electrostatic interaction or hydrophobic interaction between functional groups of amino acid side chains of the amino acid residue to be modified and of its close surroundings. This may, e.g., be accomplished by the following method:
- i) in a structure of the Termamyl-like α-amylase in question to identifying an amino acid residue within 15Å from an active site residue, in particulular 10Å from an active site residue, which amino acid residue is contemplated to be involved in electrostatic or hydrophobic interactions with an active site residue,
- ii) replacing, in the structure, said amino acid residue with an amino acid residue which changes the electrostatic and/or hydrophobic surroundings of an active site residue and 25 evaluating the accomodation of the amino acid residue in the structure,
- iii) optionally repeating step i) and/or ii) until an amino acid replacement has been identified which is accommodated into 30 the structure,
 - iv) constructing a Termamyl-like α -amylase variant resulting from steps i), ii) and optionally iii) and testing the pH dependent enzymatic activity of interest of said variant.
- In the above method it may be of particular relevance to add a positively charged residue within 5Å of a glutamate (thereby lowering the pKa of the glutamate from about 4.5 to 4), or to

add a negatively charged residue within 5 Å of a glutamate (thereby increasing the pKa to about 5), or to make similar modifications within a distance of about 5Å of a Histidine.

5 In a further aspect the invention relates to a variant of a Termamyl-like α -amylase which exhibits a higher activity at a lower pH (e.g. compared to the pH optimum) than the parent α -amylase. In particular, the variant comprises a mutation of an amino acid residue corresponding to at least one of the following positions of the B. licheniformis α -amylase (SEQ ID NO 2):

E336, Q333, P331, I236, V102, A232, I103, L196

The following mutations are of particular interest:

15

E336R, K

Q333R, K

P331R, K

V102R, K, A, T, S, G;

20 I236K, R, N;

I103K,R;

L196K, R;

A232T, S, G;

25 or any combination of two or more of these variants or any combination of one or more of these variants with any of the other variants disclosed herein.

In a still further aspect the invention relates to a variant of a Termamyl-like α -amylase which has a higher activity at a higher pH than the parent α -amylase. In particular, the variant comprises a mutation of an amino acid residue corresponding to at least one of the following positions of the *B. licheniformis* α -amylase (SEQ ID NO 2):

35

N236, H281, Y273

In particular, the variant comprises a mutation corresponding to at least one of the following mutations of the B. licheniformis α -amylase (SEQ ID NO 2):

5 N326I,Y,F,L,V H281F,I,L Y273F,W

or any combination of two or more of these variants or any combination of one or more of these variants with any of the other variants disclosed herein.

A mutation which appears to be importance in relation to the specific activity of variants of the invention is a mutation corresponding to the substitution S187D in B. licheniformis α -amylase (SEQ ID NO 2).

Variants with increased thermostability and/or altered temperature optimum

20

In a further desired aspect the invention relates to a variant of a parent Termamyl-like α -amylase, which variant is the result of one or more amino acid residues having been deleted from, replaced or added to the parent α -amylase so as to obtain an increased thermostability of the variant.

The Termamyl-like α -amylase structure contains a number of unique internal holes, which may contain water, and a number of crevices. In order to increase the thermostability of the α -amylase it may be desirable to reduce the number of holes and crevices (or reduce the size of the holes or crevices), e.g. by introducing one or more hydrophobic contacts, preferably achieved by introducing bulkier residues, in the vicinity or surroundings of the hole. For instance, the amino acid residues to be modified are those which are involved in the formation of the hole.

Accordingly, in a further aspect the present invention relates to a method of increasing the thermostability and/or altering the temperature optimum of a parent Termamyl-like α -amylase, which method comprises

- i) identifying an internal hole or a crevice of the parent Termamyl-like α -amylase in the three-dimensional structure of said α -amylase,
- 10 ii) replacing, in the structure, one or more amino acid residues in the neighbourhood of the hole or crevice identified in i) with another amino acid residue which from structural or functional considerations is believed to increase the hydrophobic interaction and to fill out or reduce the size of the hole or crevice,
 - iii) constructing a Termamyl-like α -amylase variant resulting from step ii) and testing the thermostability and/or temperature optimum of the variant.
- The structure used for identifying the hole or crevice of the parent Termamyl-like α -amylase may be the structure identified in Appendix 1 or a model structure of the parent Termamyl-like α -amylase built thereon.
- 25 It will be understood that the hole or crevice is identified by the amino acid residues surrounding the hole/crevice, and that modification of said amino acid residues are of importance for filling or reducing the size of the hole/crevice. The particular amino acid residues referred to below are those which in crystal structure have been found to flank the hole/crevice in question.
- In order to fill (completely or partly) a major hole located between domain A and B, mutation to any other amino acid residue of an amino acid residue corresponding to one or more of the following residues of the B. licheniformis α -amylase (SEQ ID NO 2) is contemplated:

L61, Y62, F67, K106, G145, I212, S151, R214, Y150, F143, R146

5

Of particular interest is a mutation to a more bulky amino acid residue than the amino acid residue of the parent enzyme.

Of particular interest is a variant of a Termamyl-like α 10 amylase which comprises a mutation corresponding to the following mutations (using the numbering of B. licheniformis α amylase (SEQ ID NO 2):

L61W, V, F;

15 Y62W;

F67W;

K106R, F, W;

G145F, W

I212F, L, W, Y, R, K;

20 S151 replaced with any other amino acid residue and in particular with F,W,I or L;

R214W;

Y150R, K;

F143W; and/or

25 R146W.

In order to fill a hole in the vicinity of the active site mutation to any other amino acid residue of an amino acid residue corresponding to one or more of the following residues of the B. licheniformis α -amylase (SEQ ID NO 2) is contemplated:

L241, I236.

35 Of interest is a mutation to a more bulky amino acid residue.

39

Of particular interest is a variant of a Termamyl-like α -amylase which comprises a mutation corresponding to one or more of the following mutations in the *B. licheniformis* α -amylase:

In order to fill a hole in the vicinity of the active site mutation to any other amino acid residue of an amino acid residue corresponding to one or more of the following residues of the *B. licheniformis* α-amylase (SEQ ID NO 2) is contemplated:

L7, V259, F284

15 Of interest is a mutation to a more bulky amino acid residue.

Of particular interest is a variant of a Termamyl-like α -amylase which comprises a mutation corresponding to one or more of the following mutations in the *B. licheniformis* α -amylase:

20

L7F, I, W V259F, I, L F284W

In order to fill a hole in the vicinity of the active site mutation to any other amino acid residue of an amino acid residue corresponding to one or more of the following residues of the B. licheniformis α -amylase (SEQ ID NO 2) is contemplated:

30

F350, F343

Of interest is a mutation to a more bulky amino acid residue.

35 Of particular interest is a variant of a Termamyl-like α -amylase which comprises a mutation corresponding to one or more of the following mutations in the B. licheniformis α -amylase: F350W

40

F343W

In order to fill a hole in the vicinity of the active site mutation to any other amino acid residue of an amino acid residue corresponding to one or more of the following residues of the B. licheniformis α -amylase (SEQ ID NO 2) is contemplated:

L427, V481

10

Of interest is a mutation to a more bulky amino acid residue.

Of particular interest is a variant of a Termamyl-like α amylase which comprises a mutation corresponding to one or more

15 of the following mutations in the *B. licheniformis* α -amylase:

L427F,L,W V481,F,I,L,W

20 Variants with an altered cleavage pattern

In the starch liquefaction process it is desirable to use an α amylase which is capable of degrading the starch molecules into long branched oligo saccharides (like, e.g. the Fungamyl-like α-amylases) rather than shorter branched oligo saccharides 25 (like conventional Termamyl-like α -amylases). The resulting very small branched oligosaccharides (panose precursors) cannot hydrolyzed properly by pullulanases, which liquefaction process are used after the α -amylases and before the amyloglucosidases. Thus, in the presence of panose 30 precursors the action of amylo-glucoamylase ends up with a high limiting-dextrin, of small branched the trisaccharide panose. The presence of panose lowers the saccharification yield significantly and is thus undesirable.

35 Thus, one aim of the present invention is to change the degradation characteristics of a Termamyl-like α -amylase to that of a Fungamyl-like α -amylases without at the same time reducing the thermostability of the Termamyl-like α -amylase.

35

Accordingly, in a further aspect the invention relates to a variant of a Termamyl-like α -amylase which has a reduced ability to cleave a substrate close to the branching point.

- 5 The variant may suitably be constructed by a method which comprises
- i) identifying the substrate binding area of the parent Termamyl-like α -amylase in a model of the three-dimensional structure of said α -amylase, (e.g. within a sphere of 4\AA from the substrate binding site (as defined in the section above entitled "Substrate Binding Site"),
- ii) replacing, in the model, one or more amino acid residues of the substrate binding area of the cleft identified in i), which is/are believed to be responsible for the cleavage pattern of the parent α-amylase, with another amino acid residue which from structural considerations is believed to result in an altered substrate cleavage pattern, or deleting one or more amino acid residues of the substrate binding area contemplated to introduce favourable interactions to the substrate or adding one or more amino acid residues to the substrate binding area contemplated to introduce favourable interactions to the substrate, and
- 25 iii) constructing a Termamyl-like α -amylase variant resulting from step ii) and testing the substrate cleavage pattern of the variant.
- Of particular interest is a variant which cleaves an amylopectin substrate, from the reducing end, more than one glucose unit from the branching point, preferably more than two or three glucose units from the branching point, i.e. at a further distance from the branching point than that obtained by use of a wild type $B.\ licheniformis\ \alpha$ -amylase.
 - Residues of particular interest in connection with this aspect of the invention correspond to the following residues of the B. licheniformis α -amylase (SEQ ID NO 2): V54, D53, Y56, Q333,

G57, and the variants according to this aspect preferably comprises a mutation in one or more of these residues.

In particular, the variant comprises at least one of the following mutations, which are expected to prevent cleavage close to the branching point:

V54L,I,F,Y,W,R,K,H,E,Q
D53L,I,F,Y,W
10 Y56W
Q333W
G57all possible amino acid residues

A52amino acid residues larger than A, e.g. A52W,Y,L,F,I.

15 Variants of a fungal α-amylase

In a still further embodiment the invention relates to a variant of a parent Fungamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-20 amylase, which is/are present in an amino acid fragment corresponding to amino acid residues 291-313 of the amino acid sequence of SEQ ID No. 10, has/have been deleted or replaced with one or more of the amino acid residues, which is/are present in an amino acid fragment corresponding to amino acid residues 98-210 of the amino acid sequence shown in SEQ ID No. 4, or in which one or more additional amino acid residues has/have been inserted using the relevant part of SEQ ID No. 4 or a corresponding part of another Termamyl-like α-amylase as a template.

For instance, the variant may be one, in which the amino acid fragment X-Y of the parent α-amylase, which corresponds to or is within the amino acid fragment 117-185 of SEQ ID No. 10, has/have been replaced with an amino acid fragment Z-V, which corresponds to or is within the amino acid fragment 98-210 of the amino acid sequence shown in SEQ ID No. 4, in which variant

- X is an amino acid residue corresponding to the amino acid occupying position 117, 118, 119, 120 or 121 of SEQ ID No. 10,
- Y is an amino acid residue corresponding to the amino acid soccupying position 181, 182, 183, 184 or 185 of SEQ ID No. 10,
 - Z is an amino acid residue corresponding to the amino acid occupying position 98, 99, 100, 101 or 102 of SEQ ID No. 4, and
- 10 V is an amino acid residue corresponding to the amino acid occupying position 206, 207, 208, 209 or 210 of SEQ ID No. 4.
- A specific example of a variant according to this aspect of the invention is one, in which the amino acid fragment of the parent α-amylase, which corresponds to amino acid residues 121-181 of SEQ ID No. 10, has been replaced with the amino acid fragment corresponding to amino acid residues 102-206 of the amino acid sequence shown in SEQ ID No. 4.
- 20 Another example of a variant according to this aspect of the invention is one, in which the amino acid fragment of the parent α-amylase, which corresponds to amino acid residues 121-174 of SEQ ID No. 10, has been replaced with the amino acid fragment corresponding to amino acid residues 102-199 of the 25 amino acid sequence shown in SEQ ID No. 4.
- In a further embodiment the invention relates to a variant of a parent Fungamyl-like α -amylase, in which an amino acid fragment corresponding to amino acid residues 181-184 of the amino acid sequence shown in SEQ ID No. 10 has been deleted.

General mutations in variants of the invention

It may be preferred that the variant of the invention or prepared in accordance with the method of the invention comprises one or more modifications in addition to those outlined above. Thus, it may be advantageous that one or more proline residues present in the part of the α -amylase variant

having been modified is/are replaced with a non-proline residue which may be any of the possible, naturally occurring non-proline residues, and which preferably is an alanine, glycine, serine, threonine, valine or leucine.

5

Analogously, it may be preferred that one or more cysteine residues present in the amino acid residues with which the parent α-amylase is modified are replaced with a non-cysteine residues such as serine, alanine, threonine, glycine, valine or leucine.

Furthermore, the variant of the invention may either as the only modification or in combination with any of the above outlined modifications be modified so that one or more Asp and/or Glu present in an amino acid fragment corresponding to the amino acid fragment 185-209 of SEQ ID No. 8 is replaced by an Asn and/or Gln, respectively. Also of interest is the modification of one or more of the Lys residues present in the Termamyl-like α-amylase is replaced by an Arg present in an amino acid fragment corresponding to the amino acid fragment 185-209 of SEQ ID No. 8 is replaced by an Asn and/or Gln, respectively.

It will be understood that in accordance with the present invention variants may be prepared which carry two or more of the above outlined modifications. For instance, variants may be prepared which comprises a modification in the loop 1 and loop 2 region, a modification in loop 2 and limited loop 3, a modification in loop 1, loop 2, loop 3 and loop 8, etc.

30

Furthermore, it may be advantageous to introduce pointmutations in any of the variants described herein.

Methods of preparing α-amylase variants

35 Several methods for introducing mutations into genes are known in the art. After a brief discussion of the cloning of α -amylase-encoding DNA sequences, methods for generating

35

mutations at specific sites within the α -amylase-encoding sequence will be discussed.

Cloning a DNA sequence encoding an α -amylase

- 5 The DNA sequence encoding a parent α -amylase may be isolated from any cell or microorganism producing the α -amylase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the α -amylase to be studied. Then, if the amino acid sequence of the α -amylase is known, homologous, labelled oligonucleotide probes may be synthesized and used to identify α -amylase-encoding clones from a genomic library prepared from the organism in question. Alternatively, a labelled oligonucleotide probe containing sequences homologous to a known α -amylase gene could be used as a probe to identify α -amylase-encoding clones, using hybridization and washing conditions of lower stringency.
- Yet another method for identifying α -amylase-encoding clones would involve inserting fragments of genomic DNA into an expression vector, such as a plasmid, transforming α -amylase-negative bacteria with the resulting genomic DNA library, and then plating the transformed bacteria onto agar containing a substrate for α -amylase, thereby allowing clones expressing the α -amylase to be identified.

Alternatively, the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g. the phosphoroamidite method described by S.L. Beaucage and M.H. Caruthers (1981) or the method described by Matthes et al. (1984). In the phosphoroamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors.

Finally, the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by ligating fragments of synthetic,

genomic or cDNA origin (as appropriate, the fragments corresponding to various parts of the entire DNA sequence), in accordance with standard techniques. The DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers, for instance as described in US 4,683,202 or R.K. Saiki et al. (1988).

Site-directed mutagenesis

Once an α -amylase-encoding DNA sequence has been isolated, and 10 desirable sites for mutation identified, mutations may be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide synthesis. In a specific method, a single-stranded 15 gap of DNA, bridging the α -amylase-encoding sequence, is created in a vector carrying the α -amylase gene. Then the synthetic nucleotide, bearing the desired mutation, is annealed to a homologous portion of the single-stranded DNA. The remaining gap is then filled in with DNA polymerase I (Klenow fragment) 20 and the construct is ligated using T4 ligase. A specific example of this method is described in Morinaga et al. (1984). US 4,760,025 discloses the introduction of oligonucleotides encoding multiple mutations by performing minor alterations of the cassette. However, an even greater variety of mutations can 25 be introduced at any one time by the Morinaga method, because a multitude of oligonucleotides, of various lengths, can be introduced.

Another method of introducing mutations into α -amylase-encoding DNA sequences is described in Nelson and Long (1989). It involves the 3-step generation of a PCR fragment containing the desired mutation introduced by using a chemically synthesized DNA strand as one of the primers in the PCR reactions. From the PCR-generated fragment, a DNA fragment carrying the mutation may be isolated by cleavage with restriction endonucleases and reinserted into an expression plasmid.

Random mutagenesis

Random mutagenesis is suitably performed either as localized or region-specific random mutagenesis in at least three parts of the gene translating to the amino acid sequence shown in question, or within the whole gene.

5

For region-specific random mutagenesis with a view to improving the thermal stability of a parent Termamyl-like α -amylase, codon positions corresponding to the following amino acid residues of the *B. licheniformis* α -amylase (SEQ ID NO 2) may appropriately be targeted:

To improve the stability of the calcium site between Domain A and C

I428-A435

15 T297-L308

F403-V409

To improve the stability between domain A and B:

D180-D204

20 H156-T163

A232-F238

With a view to achieving improved binding of a substrate (i.e. improved binding of a carbohydrate species, such as amylose or amylopectin) by a Termamyl-like α -amylase variant, modified (e.g. higher) substrate specificity and/or modified (e.g. higher) specificity with respect to cleavage (hydrolysis) of substrate, it appears that the following codon positions for the amino acid sequence shown in SEQ ID NO 2 (or equivalent codon positions for another parent Termamyl-like α -amylase in the context of the invention) may particularly appropriately be targeted:

13-18

35 50-56

70-76

102-109

163-172

48

189-199

229-235

360-264

327-335

5

The random mutagenesis of a DNA sequence encoding a parent α -amylase to be performed in accordance with step a) of the above-described method of the invention may conveniently be performed by use of any method known in the art.

10

For instance, the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents.

The mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, scrambling, deletions, and/or insertions.

Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues.

When such agents are used, the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties.

35

When the mutagenesis is performed by the use of an oligonucleotide, the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions which are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide can be incorporated into the DNA encoding the amylolytic enzyme by any published technique, using e.g. PCR, LCR or any DNA polymerase and ligase.

When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a parent α -amylase enzyme is subjected to PCR under conditions that increase the misincorporation of nucleotides (Deshler 1992; Leung et al., Technique, Vol.1, 1989, pp. 11-15).

A mutator strain of E. coli (Fowler et al., Molec. Gen. Genet., 133, 1974, pp. 179-191), S. cereviseae or any other microbial organism may be used for the random mutagenesis of the DNA encoding the amylolytic enzyme by e.g. transforming a plasmid containing the parent enzyme into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid from the mutator strain. The mutated plasmid may subsequently be transformed into the expression organism.

The DNA sequence to be mutagenized may conveniently be present in a genomic or cDNA library prepared from an organism expressing the parent amylolytic enzyme. Alternatively, the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenizing agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in the cell. Finally, the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence.

35

In some cases it may be convenient to amplify the mutated DNA sequence prior to the expression step (b) or the screening step (c) being performed. Such amplification may be performed in

50

accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme.

Subsequent to the incubation with or exposure to the mutagenizing agent, the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place. The host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the

Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus, Bacillus megaterium, Bacillus thuringiensis, Streptomyces lividans or Streptomyces murinus; and gramnegative bacteria such as E.coli.

mutagenesis treatment. Examples of suitable host cells are the following: grampositive bacteria such as Bacillus subtilis,

The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence.

25

Localized random mutagenesis: the random mutagenesis may advantageously be localized to a part of the parent α -amylase in question. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme.

35

The localized random mutagenesis is conveniently performed by use of PCR- generated mutagenesis techniques as described above or any other suitable technique known in the art.

51

Alternatively, the DNA sequence encoding the part of the DNA sequence to be modified may be isolated, e.g. by being inserted into a suitable vector, and said part may subsequently be subjected to mutagenesis by use of any of the mutagenesis methods discussed above.

With respect to the screening step in the above-mentioned method of the invention, this may conveniently performed by use of aa filter assay based on the following principle:

10

A microorganism capable of expressing the mutated amylolytic enzyme of interest is incubated on a suitable medium and under suitable conditions for the enzyme to be secreted, the medium being provided with a double filter comprising a first proteinbinding filter and on top of that a second filter exhibiting a low protein binding capability. The microorganism is located on the second filter. Subsequent to the incubation, the first filter comprising enzymes secreted from the microorganisms is separated from the second filter comprising the microorganisms.

The first filter is subjected to screening for the desired enzymatic activity and the corresponding microbial colonies

The filter used for binding the enzymatic activity may be any protein binding filter e.g. nylon or nitrocellulose. The top-filter carrying the colonies of the expression organism may be any filter that has no or low affinity for binding proteins e.g. cellulose acetate or DuraporeTM. The filter may be pretreated with any of the conditions to be used for screening or may be treated during the detection of enzymatic activity.

present on the second filter are identified.

The enzymatic activity may be detected by a dye, fluorescence, precipitation, pH indicator, IR-absorbance or any other known technique for detection of enzymatic activity.

35

The detecting compound may be immobilized by any immobilizing agent e.g. agarose, agar, gelatine, polyacrylamide, starch, filter paper, cloth; or any combination of immobilizing agents.

52

α-Amylase activity is detected by Cibacron Red labelled amylopectin, which is immobilized on agarose. For screening for variants with increased thermal and high-pH stability, the filter with bound α-amylase variants is incubated in a buffer at pH 10.5 and 60° or 65°C for a specified time, rinsed briefly in deionized water and placed on the amylopectin-agarose matrix for activity detection. Residual activity is seen as lysis of Cibacron Red by amylopectin degradation. The conditions are chosen to be such that activity due to the α-amylase having the amino acid sequence shown in SEQ ID No.1 can barely be detected. Stabilized variants show, under the same conditions, increased colour intensity due to increased liberation of Cibacron Red.

15 For screening for variants with an activity optimum at a lower temperature and/or over a broader temperature range, the filter with bound variants is placed directly on the amylopectin-Cibacron Red substrate plate and incubated at the desired temperature (e.g. 4°C, 10°C or 30°C) for a specified time.

20 After this time activity due to the α-amylase having the amino acid sequence shown in SEQ ID No.1 can barely be detected, whereas variants with optimum activity at a lower temperature will show increase amylopectin lysis. Prior to incubation onto the amylopectin matrix, incubation in all kinds of desired media - e.g. solutions containing Ca²*, detergents, EDTA or other relevant additives - can be carried out in order to screen for changed dependency or for reaction of the variants in question with such additives.

30

Testing of variants of the invention

The testing of variants of the invention may suitably be performed by determining the starch-degrading activity of the variant, for instance by growing host cells transformed with a DNA sequence encoding a variant on a starch-containing agarose plate and identifying starch-degrading host cells. Further testing as to altered properties (including specific activity,

substrate specificity, cleavage pattern, thermoactivation, pH optimum, pH dependency, temperature optimum, and any other parameter) may be performed in accordance with methods known in the art.

Expression of \alpha-amylase variants

According to the invention, a DNA sequence encoding the variant produced by methods described above, or by any alternative methods known in the art, can be expressed, in enzyme form, using an expression vector which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.

The recombinant expression vector carrying the DNA sequence encoding an α-amylase variant of the invention may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e. a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid, a bacteriophage or an extrachromosomal element, minichromosome or an artificial chromosome. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

In the vector, the DNA sequence should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of the DNA sequence encoding an α-amylase variant of the invention, especially in a bacterial host, are the promoter of the lac operon of E.coli, the Streptomyces coelicolor agarase gene dagA promoters, the promoters of the Bacillus licheniformis α-

amylase gene (amyL), the promoters of the Bacillus stearothermophilus maltogenic amylase gene (amyM), the promoters of the Bacillus amyloliquefaciens α -amylase (amyQ), the promoters of the Bacillus subtilis xylA and xylB genes etc. For 5 transcription in a fungal host, examples of useful promoters are those derived from the gene encoding A. oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger neutral α -amylase, A. niger acid stable α -amylase, A. niger glucoamylase, Rhizomucor miehei lipase, A. oryzae alkaline 10 protease, A. oryzae triose phosphate isomerase or A. nidulans acetamidase.

The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, poly- adenylation sequences operably connected to the DNA sequence encoding the α -amylase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.

- The vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702.
- The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, such as the dal genes from B. subtilis or B. licheniformis, or one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance. Furthermore, the vector may comprise Aspergillus selection markers such as amdS, argB, niaD and sC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, e.g. as described in WO 91/17243.
- While intracellular expression may be advantageous in some respects, e.g. when using certain bacteria as host cells, it is generally preferred that the expression is extracellular. In general, the Bacillus α -amylases mentioned herein comprise a

preregion permitting secretion of the expressed protease into the culture medium. If desirable, this preregion may be replaced by a different preregion or signal sequence, conveniently accomplished by substitution of the DNA sequences encoding the respective preregions.

The procedures used to ligate the DNA construct of the invention encoding an α-amylase variant, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al. (1989)).

The cell of the invention, either comprising a DNA construct or an expression vector of the invention as defined above, is advantageously used as a host cell in the recombinant production of an α-amylase variant of the invention. The cell may be transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g. by homologous or beterologous recombination. Alternatively, the cell may be transformed with an expression vector as described above in connection with the different types of host cells.

The cell of the invention may be a cell of a higher organism such as a mammal or an insect, but is preferably a microbial cell, e.g. a bacterial or a fungal (including yeast) cell.

Examples of suitable bacteria are grampositive bacteria such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus, Bacillus megaterium, Bacillus thuringiensis, or Streptomyces lividans or Streptomyces

murinus, or gramnegative bacteria such as *E.coli*. The transformation of the bacteria may, for instance, be effected by protoplast transformation or by using competent cells in a manner known per se.

5

The yeast organism may favourably be selected from a species of Saccharomyces or Schizosaccharomyces, e.g. Saccharomyces cerevisiae. The filamentous fungus may advantageously belong to a species of Aspergillus, e.g. Aspergillus oryzae or Aspergillus niger. Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se. A suitable procedure for transformation of Aspergillus host cells is described in EP 238 023.

15

In a yet further aspect, the present invention relates to a method of producing an α-amylase variant of the invention, which method comprises cultivating a host cell as described above under conditions conducive to the production of the variant and recovering the variant from the cells and/or culture medium.

The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the α -amylase variant of the invention. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. as described in catalogues of the American Type Culture Collection).

The α-amylase variant secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

57

Industrial Applications

The α-amylase variants of this invention possesses valuable properties allowing for various industrial applications. In particular the enzyme variants finds potential applications as a component in washing, dishwashing and hard surface cleaning detergent compositions, but it may also be useful in the production of sweeteners and ethanol from starch and for textile desizing. Conditions for conventional starch converting processes and liquefaction and/or saccharification processes are described in for instance US Patent No. 3,912,590 and EP patent publications Nos. 252,730 and 63,909.

Production of sweetners from starch: A "traditional" process for conversion of starch to fructose syrups normally consists of three consecutive enzymatic processes, viz. a liquefaction process followed by a saccharification process and an isomerization process. During the liquefaction process, starch is degraded to dextrins by an α-amylase (e.g. Termamyl^m) at pH values between 5.5 and 6.2 and at temperatures of 95-160°C for a period of approx. 2h. In order to ensure an optimal enzyme stability under these conditions, 1mM of calcium is added (40 ppm free calcium ions).

After the liquefaction process the dextrins are converted into dextrose by addition of a glucoamylase (e.g. AMG[™]) and a debranching enzyme, such as an isoamylase or a pullulanase (e.g. Promozyme[™]). Before this step the pH is reduced to a value below 4.5, maintaining the high temperature (above 95°C), and the liquefying α-amylase activity is denatured. The temperature is lowered to 60°C, and glucoamylase and debranching enzyme are added. The saccharification process proceeds for 24-72 hours.

After the saccharification process the pH is increased to a value in the range of 6-8, preferably pH 7.5, and the calcium is removed by ion exchange. The dextrose syrup is then converted into high fructose syrup using, e.g., an immmobilized glucoseisomerase (such as SweetzymeTM).

At least 3 enzymatic improvements of this process could be obtained. All three improvements could be seen as individual benefits, but any combination (e.g. 1+2, 1+3, 2+3 or 1+2+3) could be employed:

<u>Improvement 1</u>. Reduction of the calcium dependency of the liquefying alpha-amylase.

Addition of free calcium is required to ensure adequately high stability of the α -amylase, but free calcium strongly inhibits the activity of the glucoseisomerase and needs to be removed, by means of an expensive unit operation, to an extent which reduces the level of free calcium to below 3-5 ppm. Cost savings could be obtained if such an operation could be avoided and the liquefaction process could be performed without addition of free calcium ions.

To achieve that, a less calcium-dependent Termamyl-like α -amylase which is stable and highly active at low concentrations of free calcium (< 40 ppm) is required. Such a Termamyl-like α -amylase should have a pH optimum at a pH in the range of 4.5-6.5, preferably in the range of 4.5-5.5.

Improvement 2. Reduction of formation of unwanted Maillard
25 products

The extent of formation of unwanted Maillard products during the liquefaction process is dependent on the pH. Low pH favours reduced formation of Maillard products. It would thus be desirable to be able to lower the process pH from around pH 6.0 to a value around pH 4.5; unfortunately, all commonly known, thermostable Termamyl-like α -amylases are not very stable at low pH (i.e. pH < 6.0) and their specific activity is generally low.

Achievement of the above-mentioned goal requires a Termamyllike α -amylase which is stable at low pH in the range of

4.5-5.5 and at free calcium concentrations in the range of 0-40 ppm, and which maintains a high specific activity.

Improvement 3.

- It has been reported previously (US patent 5,234,823) that when saccharifying with A. niger glucoamylase and B. acidopullulyticus pullulanase, the presence of residual α-amylase activity from the liquefaction process can lead to lower yields of dextrose if the α-amylase is not inactivated before the saccharification stage. This inactivation can typically be carried out by adjusting the pH to below 4.3 at 95°C, before lowering the temperature to 60°C for saccharification.
- The reason for this negative effect on dextrose yield is not fully understood, but it is assumed that the liquefying α-amylase (for example Termamyl 120 L from B. licheniformis) generates "limit dextrins" (which are poor substrates for B. acidopullulyticus pullulanase) by hydrolysing 1,4-alpha-glucosidic linkages close to and on both sides of the branching points in amylopectin. Hydrolysis of these limit dextrins by glucoamylase leads to a build-up of the trisaccharide panose, which is only slowly hydrolysed by glucoamylase.
- The development of a thermostable α -amylase which does not suffer from this disadvantage would be a significant process improvement, as no separate inactivation step would be required.
- 30 If a Termamyl-like, low-pH-stable α -amylase is developed, an alteration of the specificity could be an advantage needed in combination with increased stability at low pH.
- The methodology and principles of the present invention make it possible to design and produce variants according to the invention having the required properties as outlined above.

Detergent Compositions

238,216.

According to the invention, the α -amylase may typically be a component of a detergent composition. As such, it may be included in the detergent composition in the form of a nondusting granulate, a stabilized liquid, or a protected enzyme. 5 Non-dusting granulates may be produced, e.g. as disclosed in US 4,106,991 and 4,661,452 (both to Novo Industri A/S) and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1000 to 10 20000, ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids. Examples of 15 film-forming coating materials suitable for application by fluid bed techniques are given in patent GB 1483591. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. 20 Other enzyme stabilizers are well known in the art. Protected enzymes may be prepared according to the method disclosed in EP

The detergent composition of the invention may be in any convenient form, e.g. as powder, granules, paste or liquid. A liquid detergent may be aqueous, typically containing up to 70% of water and 0-30% of organic solvent, or nonaqueous.

The detergent composition comprises one or more surfactants, each of which may be anionic, nonionic, cationic, or zwitterionic. The detergent will usually contain 0-50% of anionic surfactant such as linear alkylbenzenesulfonate (LAS), alphaolefinsulfonate (AOS), alkyl sulfate (fatty alcohol sulfate)
(AS), alcohol ethoxysulfate (AEOS or AES), secondary alkanesulfonates (SAS), alpha-sulfo fatty acid methyl esters, alkylor alkenylsuccinic acid or soap. It may also contain 0-40% of nonionic surfactant such as alcohol ethoxylate (AEO or AE), carboxylated alcohol ethoxylates, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty

acid monoethanolamide, fatty acid monoethanolamide, or polyhydroxy alkyl fatty acid amide (e.g. as described in WO 92/06154).

5 The detergent composition may additionally comprise one or more other enzymes, such as lipase, cutinase, protease, cellulase, peroxidase, e.g., laccase.

The detergent may contain 1-65% of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, citrate, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTMPA), alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates (e.g. SKS-6 from Hoechst). The detergent may also be unbuilt, i.e. essentially free of detergent builder.

The detergent may comprise one or more polymers. Examples are carboxymethylcellulose (CMC), poly(vinylpyrrolidone) (PVP), polyethyleneglycol (PEG), poly(vinyl alcohol) (PVA), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.

The detergent may contain a bleaching system which may comprise a H₂O₂ source such as perborate or percarbonate which may be combined with a peracid-forming bleach activator such as tetraacetylethylenediamine (TAED) or nonanoyloxybenzene-sulfonate (NOBS). Alternatively, the bleaching system may comprise peroxy acids of e.g. the amide, imide, or sulfone type.

The enzymes of the detergent composition of the invention may be stabilized using conventional stabilizing agents, e.g. a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative as e.g. an aromatic borate ester, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.

The detergent may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, dyes, bactericides, optical brighteners, or perfume.

The pH (measured in aqueous solution at use concentration) will usually be neutral or alkaline, e.g. 7-11.

Particular forms of detergent compositions within the scope of the invention include:

1) A detergent composition formulated as a granulate having a 15 bulk density of at least 600 g/l comprising

	Linear alkylbenzenesulfonate (cal- culated as acid)	7	_	12%
20	Alcohol ethoxysulfate (e.g. C_{12-18} alcohol, 1-2 EO) or alkyl sulfate (e.g. C_{16-18})	1	-	4%
	Alcohol ethoxylate (e.g. C ₁₄₋₁₅ alcohol, 7 EO)	5	•	9%
	Sodium carbonate (as Na ₂ CO ₃)	14	-	20%
25	Soluble silicate (as Na ₂ O, 2SiO ₂)	2	-	68
	Zeolite (as NaAlSiO4)	15	_	228
	Sodium sulfate (as Na ₂ SO ₄)	0	_	68
	Sodium citrate/citric acid (as C ₆ H ₅ Na ₃ O ₇ /C ₆ H ₆ O ₇)	0	-	15%
30	Sodium perborate (as NaBO3.H2O)	11		18%
	TAED	2	_	6%
	Carboxymethylcellulose	0	-	2%
	Polymers (e.g. maleic/acrylic acid copolymer, PVP, PEG)	0	-	3%
35	Enzymes (calculated as pure enzyme protein)	0.00	001	- 0.1%
	Minor ingredients (e.g. suds suppressors, perfume, optical brightener, photobleach)	0	-	5%
_				

2) A detergent composition formulated as a granulate having a bulk density of at least 600 g/l comprising

5	Linear alkylbenzenesulfonate (cal- culated as acid)	6 - 11%
	Alcohol ethoxysulfate (e.g. C_{12-18} alcohol, 1-2 EO or alkyl sulfate (e.g. C_{16-18})	1 - 3%
10	Alcohol ethoxylate (e.g. C ₁₄₋₁₅ alcohol, 7 EO)	5 - 9%
	Sodium carbonate (as Na ₂ CO ₃)	15 - 21%
	Soluble silicate (as Na ₂ O, 2SiO ₂)	1 - 4%
15	Zeolite (as NaAlSiO ₄)	24 - 34%
	Sodium sulfate (as Na ₂ SO ₄)	4 - 10%
	Sodium citrate/citric acid (as C ₆ H ₅ Na ₃ O ₇ /C ₆ H ₈ O ₇)	0 - 15%
	Carboxymethylcellulose	0 - 2%
20	Polymers (e.g. maleic/acrylic acid copolymer, PVP, PEG)	1 - 6%
	Enzymes (calculated as pure enzyme protein)	0.0001 - 0.1%
25	Minor ingredients (e.g. suds suppressors, perfume)	0 - 5 %

3) A detergent composition formulated as a granulate having a bulk density of at least 600 g/l comprising

30	Linear alkylbenzenesulfonate (cal- culated as acid)	5	- 9%	
	Alcohol ethoxylate (e.g. C ₁₂₋₁₅ alcohol, 7 EO)	7	- 14%	
35	Soap as fatty acid (e.g. C_{16-22} fatty acid)	1	- 3%	
	Sodium carbonate (as Na ₂ CO ₃)	10	- 17%	
	Soluble silicate (as Na ₂ O,2SiO ₂)	3	- 9%	_
	Zeolite (as NaAlSiO4)	23	- 33%	_
	Sodium sulfate (as Na ₂ SO4)	0	- 4%	\Box
40	Sodium perborate (as NaBO3.H2O)	8	- 16%	

	TAED	2	-	8%
L	Phosphonate (e.g. EDTMPA)	0	-	1%
	Carboxymethylcellulose	0	-	28
	Polymers (e.g. maleic/acrylic acid copolymer, PVP, PEG)	0	-	3%
	Enzymes (calculated as pure enzyme protein)	0.0001	-	0.1%
	Minor ingredients (e.g. suds suppressors, perfume, optical brightener)	0		5%

4) A detergent composition formulated as a granulate having a bulk density of at least 600 g/l comprising

15	Linear alkylbenzenesulfonate (cal-culated as acid)	8	-	12%
	Alcohol ethoxylate (e.g. C ₁₂₋₁₅ alcohol, 7 EO)	10	-	25%
20	Sodium carbonate (as Na ₂ CO ₃)	14	_	22%
	Soluble silicate (as Na ₂ O,2SiO ₂)	1	-	5%
	Zeolite (as NaAlSiO4)	25	_	35%
	Sodium sulfate (as Na ₂ SO ₄)	0	_	10%
	Carboxymethylcellulose	0 -	_	2%
25	Polymers (e.g. maleic/acrylic acid copolymer, PVP, PEG)	1		3%
	Enzymes (calculated as pure enzyme protein)	0.0001	-	0.1%
30	Minor ingredients (e.g. suds suppressors, perfume)	0	-	5%

5) An aqueous liquid detergent composition comprising

	Linear alkylbenzenesulfonate (cal- culated as acid)	15	- 21%	
35	Alcohol ethoxylate (e.g. C ₁₂₋₁₅ alcohol, 7 EO or C ₁₂₋₁₅ alcohol, 5 EO)	12	- 18%	
	Soap as fatty acid (e.g. oleic acid)	3	- 13°	
40	Alkenylsuccinic acid (C12-14)	0	- 13%	

	Aminoethanol	8	_	18%
	Citric acid	2	_	8%
	Phosphonate	0	-	38
	Polymers (e.g. PVP, PEG)	0		31
5	Borate (as B ₄ O ₇)	0	_	28
	Ethanol	0	-	3%
	Propylene glycol	8	-	14%
	Enzymes (calculated as pure enzyme protein)	0.0001	-	0.1%
10	Minor ingredients (e.g. dispersants, suds suppressors, per- fume, optical brightener)	0	-	5%

6) An aqueous structured liquid detergent composition compris-15 ing

	Linear alkylbenzenesulfonate (calculated as acid)	15	-	21%
20	Alcohol ethoxylate (e.g. C ₁₂₋₁₅ alcohol, 7 EO, or C ₁₂₋₁₅ alcohol, 5 EO)	3	-	9%
	Soap as fatty acid (e.g. oleic acid)	3	-	10%
	Zeolite (as NaAlSiO4)	14	_	22*
	Potassium citrate	9	_	18%
25	Borate (as B ₄ O ₇)	0	_	2*
	Carboxymethylcellulose	0	-	2*
	Polymers (e.g. PEG, PVP)	0	-	3%
30	Anchoring polymers such as, e.g., lauryl methacrylate/acrylic acid copolymer; molar ratio 25:1; MW 3800	0	-	3%
	Glycerol	0	_	5%
	Enzymes (calculated as pure enzyme protein)	0.0001	-	0.1%
35	Minor ingredients (e.g. dispersants, suds suppressors, perfume, optical brighteners)	0	-	5%

7) A detergent composition formulated as a granulate having a bulk density of at least 600 g/l comprising

	Fatty alcohol sulfate	5	_	10%
5	Ethoxylated fatty acid monoethanol-amide	3	-	9*
	Soap as fatty acid	0	_	38
	Sodium carbonate (as Na ₂ CO ₃)	5	-	10%
	Soluble silicate (as Na ₂ O,2SiO ₂)	1	-	48
	Zeolite (as NaAlSiO4)	20	-	40%
10	Sodium sulfate (as Na ₂ SO ₄)	2	-	88
	Sodium perborate (as NaBO3.H2O)	12	-	18%
	TAED	2	-	78
	Polymers (e.g. maleic/acrylic acid copolymer, PEG)	1	-	5*
15	Enzymes (calculated as pure enzyme protein)	0.0001	-	0.1%
	Minor ingredients (e.g. optical brightener, suds suppressors, perfume)	0	-	5%

8) A detergent composition formulated as a granulate comprising

	Linear alkylbenzenesulfonate (calculated as acid)	8	- 14%
25	Ethoxylated fatty acid monoethanol-amide	5	- 11%
	Soap as fatty acid	0	- 3%
	Sodium carbonate (as Na ₂ CO ₃)	4	- 10%
	Soluble silicate (as Na ₂ O, 2SiO ₂)	1	- 4%
	Zeolite (as NaA1SiO4)	30	- 50%
30	Sodium sulfate (as Na₂SO₄)	3	- 11%
	Sodium citrate (as C ₆ H ₅ Na ₃ O ₇)	5	- 12%
	Polymers (e.g. PVP, maleic/acrylic acid copolymer, PEG)	1	- 5%
35	Enzymes (calculated as pure enzyme protein)	0.0001	- 0.1%
	Minor ingredients (e.g. suds suppressors, perfume)	0	- 5%

9) A detergent composition formulated as a granulate comprising

	Linear alkylbenzenesulfonate (calculated as acid)	6	_	12%
	Nonionic surfactant	1	_	4%
5	Soap as fatty acid	2	_	6 %
	Sodium carbonate (as Na ₂ CO ₃)	14	_	22%
	Zeolite (as NaAlSiO4)	18	-	32*
	Sodium sulfate (as Na ₂ SO ₄)	5	-	20%
	Sodium citrate (as C ₆ H ₅ Na ₃ O ₇)	3	-	8*
10	Sodium perborate (as NaBO ₃ .H ₂ O)	4	-	9\$
	Bleach activator (e.g. NOBS or TAED)	. 1	-	5%
	Carboxymethylcellulose	0	-	2*
15	Polymers (e.g. polycarboxylate or PEG)	1	-	5 %
	Enzymes (calculated as pure enzyme protein)	0.0001	-	0.1%
	Minor ingredients (e.g. optical brightener, perfume)	0	•	5 %

20

10) An aqueous liquid detergent composition comprising

	Linear alkylbenzenesulfonate (calculated as acid)	15	- 23%	
25	Alcohol ethoxysulfate (e.g. C ₁₂₋₁₅ alcohol, 2-3 EO)	8	- 15%	
	Alcohol ethoxylate (e.g. C_{12-15} alcohol, 7 EO, or C_{12-15} alcohol, 5 EO)	3	- 9%	
30	Soap as fatty acid (e.g. lauric acid)	0	- 3%	
	Aminoethanol	1	- 5%	_
	Sodium citrate	5	- 10%	
	Hydrotrope (e.g. sodium toluensulfonate)	. 2	- 6%	
35	Borate (as B ₄ O ₇)	0	- 2%	
	Carboxymethylcellulose	0	- 1%	
	Ethanol	1	- 3%	
	Propylene glycol	2	- 5%	

Enzymes (calculated as pure enzym protein)	e 0.0001 -	0.1%
Minor ingredients (e.g. polymers, dispersants, perfume, optical brighteners)	0 -	- 5%

11) An aqueous liquid detergent composition comprising

	Linear alkylbenzenesulfonate (calculated as acid)	20	-	32%
10	Alcohol ethoxylate (e.g. C ₁₂₋₁₅ alcohol, 7 EO, or C ₁₂₋₁₅ alcohol, 5 EO)	6	-	12%
	Aminoethanol	2	-	68
į	Citric acid	8	-	14%
15	Borate (as B ₄ O ₇)	1	_	38
20	Polymer (e.g. maleic/acrylic acid copolymer, anchoring polymer such as, e.g., lauryl methacrylate/acrylic acid copolymer)	0	-	3%
	Glycerol	3	-	8%
	Enzymes (calculated as pure enzyme protein)	0.0001	-	0.1%
25	Minor ingredients (e.g. hydro- tropes, dispersants, perfume, optical brighteners)	0	-	5%

12) A detergent composition formulated as a granulate having a bulk density of at least 600 g/l comprising

30	Anionic surfactant (linear alkylbenzenesulfonate, alkyl sulfate, alpha-olefinsulfonate, alpha-	25	- 40%
	sulfo fatty acid methyl esters, alkanesulfonates, soap)		
35	Nonionic surfactant (e.g. alcohol ethoxylate)	1	- 10%
	Sodium carbonate (as Na ₂ CO ₃)	8	- 25%
	Soluble silicates (as Na ₂ O, 2SiO ₂)	5	- 15%
	Sodium sulfate (as Na ₂ SO ₄)	0	- 5%
40	Zeolite (as NaA1SiO4)	15	- 28%
	Sodium perborate (as NaBO3.4H2O)	0	- 20%

Bleach activator (TAED or NOBS)	0	-	5%
Enzymes (calculated as pure enzyme protein)	0.0001	-	0.1%
Minor ingredients (e.g. perfume, optical brighteners)	0	-	34

13) Detergent formulations as described in 1) - 12) wherein all or part of the linear alkylbenzenesulfonate is replaced by (C12-C₁₈) alkyl sulfate.

10

14) A detergent composition formulated as a granulate having a bulk density of at least 600 g/l comprising

ĺ				4.54
ı	(C ₁₂ -C ₁₈) alkyl sulfate	9		15%
15	Alcohol ethoxylate	3	-	68
	Polyhydroxy alkyl fatty acid amide	1	-	5%
	Zeolite (as NaAlSiO4)	10	-	20%
	Layered disilicate (e.g. SK56 from Hoechst)	10	-	20%
20	Sodium carbonate (as Na ₂ CO ₃)	3	_	12*
	Soluble silicate (as Na2O,2SiO2)	0	_	6%
	Sodium citrate	4	_	8%
	Sodium percarbonate	13	_	22*
	TAED	3	-	8%
25	Polymers (e.g. polycarboxylates and PVP=	0	-	5%
	Enzymes (calculated as pure enzyme protein)	0.0001	-	0.1%
30	Minor ingredients (e.g. optical brightener, photo bleach, perfume, suds suppressors)	0	-	5%

15) A detergent composition formulated as a granulate having 35 a bulk density of at least 600 g/l comprising

(C ₁₂ -C ₁₀) alkyl sulfate	4	- 8%
Alcohol ethoxylate	11	- 15%

15	Soap		1	_	4*
2	Zeolite MAP or zeolite A		35	-	45%
٤	Sodium carbonate (as Na ₂ CO ₃)		2	-	8%
5	Soluble silicate (as Na ₂ O,2SiO ₂)		0	_	48
5	Sodium percarbonate		13	_	22%
1	FAED		1	_	8%
_	Carboxymethyl cellulose		0	-	3%
	Polymers (e.g. polycarboxylates and PVP)		0	-	3%
	Enzymes (calculated as pure enzyme protein)		0.0001	-	0.1%
	Minor ingredients (e.g. optical prightener, phosphonate, perfume)	·	0	-	3%

- 15 16) Detergent formulations as described in 1) 15) which contain a stabilized or encapsulated peracid, either as an additional component or as a substitute for already specified bleach systems.
- 20 17) Detergent compositions as described in 1), 3), 7), 9) and 12) wherein perborate is replaced by percarbonate.
 - 18) Detergent compositions as described in 1), 3), 7), 9), 12),
 - 14) and 15) which additionally contain a manganese catalyst.
- 25 The manganese catalyst may, e.g., be one of the compounds described in "Efficient manganese catalysts for low-temperature bleaching", Nature 369, 1994, pp. 637-639.
- 19) Detergent composition formulated as a nonaqueous detergent
 30 liquid comprising a liquid nonionic surfactant such as, e.g.,
 linear alkoxylated primary alcohol, a builder system (e.g.
 phosphate), enzyme and alkali. The detergent may also comprise
 anionic surfactant and/or a bleach system.
- The α -amylase variant of the invention may be incorporated in concentrations conventionally employed in detergents. It is at present contemplated that, in the detergent composition of the invention, the α -amylase may be added in an amount correspon-

ding to 0.00001-1 mg (calculated as pure enzyme protein) of α -amylase per liter of wash liquor.

Dishwashing Composition

- 5 The dishwashing detergent composition comprises a surfactant which may be anionic, non-ionic, cationic, amphoteric or a mixture of these types. The detergent will contain 0-90% of non-ionic surfactant such as low- to non-foaming ethoxylated propoxylated straight-chain alcohols.
- The detergent composition may contain detergent builder salts of inorganic and/or organic types. The detergent builders may be subdivided into phosphorus-containing and non-phosphorus-containing types. The detergent composition usually contains 1-90% of detergent builders.
- Examples of phosphorus-containing inorganic alkaline detergent builders, when present, include the water-soluble salts especially alkali metal pyrophosphates, orthophosphates, and polyphosphates. An example of phosphorus-containing organic alkaline detergent builder, when present, includes the water-soluble salts of phosphonates. Examples of non-phosphorus-containing inorganic builders, when present, include water-soluble alkali metal carbonates, borates and silicates as well as the various types of water-insoluble crystalline or amorphous alumino silicates of which zeolites are the best-known representatives.

Examples of suitable organic builders include the alkali metal, ammonium and substituted ammonium, citrates, succinates, malonates, fatty acid sulphonates, carboxymetoxy succinates, ammonium polyacetates, carboxylates, polycarboxylates, aminopolycarboxylates, polyacetyl carboxylates and polyhydroxsulphonates.

Other suitable organic builders include the higher molecular so weight polymers and co-polymers known to have builder properties, for example appropriate polyacrylic acid, polymaleic and polyacrylic/polymaleic acid copolymers and their salts.

The dishwashing detergent composition may contain bleaching agents of the chlorine/bromine-type or the oxygen-type. Examples of inorganic chlorine/bromine-type bleaches are lithium, sodium or calcium hypochlorite and hypobromite as well as chlorinated trisodium phosphate. Examples of organic chlorine/bromine-type bleaches are heterocyclic N-bromo and N-chloro imides such as trichloroisocyanuric, tribromoisocyanuric, dibromoisocyanuric and dichloroisocyanuric acids, and salts thereof with water-solubilizing cations such as potassium and sodium. Hydantoin compounds are also suitable.

The oxygen bleaches are preferred, for example in the form of an inorganic persalt, preferably with a bleach precursor or as a peroxy acid compound. Typical examples of suitable peroxy bleach compounds are alkali metal perborates, both tetrahydrates and monohydrates, alkali metal percarbonates, persilicates and perphosphates. Preferred activator materials are TAED and glycerol triacetate.

The dishwashing detergent composition of the invention may be stabilized using conventional stabilizing agents for the enzyme(s), e.g. a polyol such as e.g.propylene glycol, a sugar or a sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g. an aromatic borate ester.

The dishwashing detergent composition of the invention may also contain other conventional detergent ingredients, e.g. deflocculant material, filler material, foam depressors, anti-corrosion agents, soil-suspending agents, sequestering agents, anti-soil redeposition agents, dehydrating agents, dyes, bactericides, fluorescers, thickeners and perfumes.

Finally, the α -amylase variant of the invention may be used in conventional dishwashing detergents, e.g. in any of the detergents described in any of the following patent publications:

EP 518719, EP 518720, EP 518721, EP 516553, EP 516554,

EP 516555, GB 2200132, DE 3741617, DE 3727911, DE 4212166, DE 4137470, DE 3833047, WO 93/17089, DE 4205071, WO 52/09680, WO 93/18129, WO 93/04153, WO 92/06157, WO 92/08777, EP 429124, WO 93/21299, US 5141664, EP 561452, EP 561446, GB 2234980, S WO 93/03129, EP 481547, EP 530870, EP 533239, EP 554943, EP 346137, US 5112518, EP 318204, EP 318279, EP 271155, EP 271156, EP 346136, GB 2228945, CA 2006687, WO 93/25651, EP 530635, EP 414197, US 5240632.

10 EXAMPLES

EXAMPLE 1

15 Example on Homology building of TERM

The overall homology of the B. licheniformis α -amylase (in the following referred to as TERM) to other Termamyl-like α amylases is high and the percent similarity is extremely high. 20 The similarity calculated for TERM to BSG (the stearothermophilus α -amylase with SEQ ID NO 6), and BAN (the B. amyloliquefaciens α -amylase with SEQ ID NO 4) using the University of Wisconsin Genetics Computer Group's program GCG gave 89% and 78%, respectively. TERM has a deletion of 2 25 residues between residue G180 and K181 compared to BAN and BSG. BSG has a deletion of 3 residues between G371 and I372 in comparison with BAN and TERM. Further BSG has a C-terminal extension of more than 20 residues compared to BAN and TERM. BAN has 2 residues less and TERM has one residue less in the 30 N-terminal compared to BSG.

The structure of the B. licheniformis (TERM) and of the B. amyloliquefaciens α -amylase (BAN), respectively, was model built on the structure disclosed in Appendix 1 herein. The structure of other Termamyl-like α -amylases (e.g. those disclosed herein) may be built analogously.

In comparison with the \$\alpha\$-amylase used for elucidating the present structure, TERM differs in that it lacks two residues around 178-182. In order to compensate for this in the model structure, the HOMOLOGY program from BIOSYM was used to substitute the residues in equivalent positions in the structure (not only structurally conserved regions) except for the deletion point. A peptide bond was established between G179(G177) and K180(K180) in TERM(BAN). The close structural relationship between the solved structure and the model structure (and thus the validity of the latter) is indicated by the presence of only very few atoms found to be too close together in the model.

To this very rough structure of TERM was then added all waters 15 (605) and ions (4 Calcium and 1 Sodium) from the solved structure (Appendix 1) at the same coordinates as for said solved structure using the INSIGHT program. This could be done with only few overlaps - in other words with a very nice fit. This model structure were then minimized using 200 steps of 20 Steepest descent and 600 steps of Conjugated gradient (see Brooks et al 1983, J. Computational Chemistry 4, p.187-217). The minimized structure was then subjected to molecular dynamics, 5ps heating followed by up to 200ps equilibration but more than 35ps. The dynamics as run with the Verlet algorithm 25 and the equilibration temperature 300K were kept using the Behrendsen coupling to a waterbath (Berendsen et. al., 1984, J. Chemical Physics 81, p. 3684-3690). Rotations and translations were removed every picosecond. The potential energy became stable after appr. 35ps equilibration. A mean dynamics struc-30 ture was extracted and can be used for further analysis.

EXAMPLE 2

Determination of residues within 10Å from the ions present in the solved structure

The coordinates of Appendix 1 are read into the INSIGHT program provided by BIOSYM tecnologies. The spatial coordinates are

presented showing the bonds between the atoms. The ions are presented as well as the water atoms. The program package part of creating subset are used to create a 10Å subset around the Calcium and the Sodium ions in the structure using the command 5 ZONE. All residues having an atom within the 10Å are compiled and written out by the LIST MOLECULE command. By giving the ions the name ium in the coordinate file a 10Å sphere around all atoms called ium is compiled. The specific residues identified in this manner are given further above in the section entitled "Ca²⁺ dependency".

EXAMPLE 3

15

Determination of cavities in the solved structure (Appendix 1)

The solved structure exhibits many internal holes and cavities. When analysing for such cavities the Connolly program is normally used (Lee, B. and Richards, F.M. (1971) J. Mol. Biol. 55,p. 379-400). The program uses a probe with radius to search the external and internal surface of the protein. The smallest hole observable in this way has the probe radius.

To analyse the solved structure a modified version of the Connolly program included in the program of INSIGHT were used.

25 First the water molecules and the ions were removed by unmerging these atoms from the solved structure. By using the command MOLECULE SURFACE SOLVENT the solvent accessible surface area were calculated for all atoms and residues using a probe radius of 1.4Å, and displayed on the graphics screen together with the model of the solved structure. The internal cavities where then seen as dot surfaces with no connections to external surface.

Mutant suggestions for filling out the holes are given in the specification (in the section entitled "Variants with increased thermostability and/or altered temperature optimum"). By using the homology build structures or/and the sequence alignment

WO 96/23874 PCT/DK96/00057

76

mutations for the homologous structures of TERM and BSG and BAN can be made.

EXAMPLE 4

5

Construction of Termamyl m variants in accordance with the invention

Termamyl (SEQ ID NO. 2) is expressed in B. subtilis from a plasmid denoted pDN1528. This plasmid contains the complete gene encoding Termamyl, amyL, the expression of which is directed by its own promoter. Further, the plasmid contains the origin of replication, ori, from plasmid pUB110 and the cat gene from plasmid pC194 conferring resistance towards chloramphenicol. pDN1528 is shown in Fig. 9.

A specific mutagenesis vector containing a major part of the coding region of SEQ ID NO 1 was prepared. The important features of this vector, denoted pJeEN1, include an origin of replication derived from the pUC plasmids, the cat gene conferring resistance towards chloramphenicol, and a frameshift-containing version of the bla gene, the wild type of which normally confers resistance towards ampicillin (amp^R phenotype). This mutated version results in an amp^S phenotype.

The plasmid pJeEN1 is shown in Fig. 10, and the E. coli origin of replication, ori, bla, cat, the 5'-truncated version of the Termamyl amylase gene, and selected restriction sites are indicated on the plasmid.

Mutations are introduced in amyL by the method described by Deng and Nickoloff (1992, Anal. Biochem. 200, pp. 81-88) except that plasmids with the "selection primer" (primer #6616; see below) incorporated are selected based on the ampR phenotype of transformed E. coli cells harboring a plasmid with a repaired bla gene, instead of employing the selection by restriction enzyme digestion outlined by Deng and Nickoloff. Chemicals and enzymes used for the mutagenesis were obtained from the

Chameleon™ mutagenesis kit from Stratagene (catalogue number 200509).

- After verification of the DNA sequence in variant plasmids, the truncated gene, containing the desired alteration, is subcloned into pDN1528 as a PstI-EcoRI fragment and transformed into a protease- and amylase-depleted Bacillus subtilis strain in order to express the variant enzyme.
- 10 The Termamyl variant V54W was constructed by the use of the following mutagenesis primer (written 5' to 3', left to right):

PG GTC GTA GGC ACC GTA GCC CCA ATC CGC TTG

15 The Termamyl variant A52W + V54W was constructed by the use of the following mutagenesis primer (written 5' to 3', left to right):

PG GTC GTA GGC ACC GTA GCC CCA ATC CCA TTG GCT CG

Primer #6616 (written 5' to 3', left to right; P denotes a 5' phosphate):

P CTG TGA CTG GTG AGT ACT CAA CCA AGT C

25

30

EXAMPLE 5

Saccharification in the presence of "residual" α -amylase activity

Two appropriate Termamyl variants with altered specificity were evaluated by saccharifying a DE 10 (DE = dextrose equivalent) maltodextrin substrate with A. niger glucoamylase and B. acidopullulyticus pullulanase under conditions where the variant amylase was active.

Saccharification: Substrates for saccharification were prepared by dissolving 230 g DE 10 spray-dried maltodextrin, prepared

from common corn starch, in 460 ml boiling deionized water and adjusting the dry substance (DS) content to approximately 30% w/w. The pH was adjusted to 4.7 (measured at 60°C) and aliquots of substrate corresponding to 15 g dry weight were transferred to 50 ml blue cap glass flasks.

The flasks were then placed in a shaking water bath equilibrated at 60°C, and the enzymes added. The pH was readjusted to 4.7 where necessary.

10

The following enzymes were used:

Glucoamylase: AMG™ (Novo Nordisk A/S); dosage 0.18 AG/g DS

Pullulanase: Promozyme™ (Novo Nordisk A/S);

dosage 0.06 PUN/g DS

α-Amylases: Termamyl^m (Novo Nordisk A/S); dosage 60 NU/g DS

Termamyl variant V54W; dosage 60 NU/g DS

Termamyl variant V54W + A52W; dosage 60 NU/g DS

20 2 ml samples were taken periodically. The pH of each sample was adjusted to about 3.0, and the sample was then heated in a boiling water bath for 15 minutes to inactivate the enzymes. After cooling, the samples were treated with approximately 0.1 g mixed-bed ion exchange resin (BIO-Rad 501-X (D)) for 30 minutes on a rotary mixer and then filtered. The carbohydrate composition of each sample was determined by HPLC. The following results were obtained after 72 hours [DPn denotes a dextrose (D-glucose) oligomer with n glucose units]:

α-amylase	%DP ₁	%DP ₂	%DP ₃	%DP4
None (control)	95.9	2.8	0.4	1.0
V54W	96.0	2.9	0.4	0.8
5 V54W + A52W	95.9	2.8	0.4	0.8
Termamyl™	95.6	2.8	0.8	0.8

It can be seen from the above results that compared with the control (no α -amylase activity present during liquefaction), the presence of α -amylase activity from variants V54W and V54W + A52W did not lead to elevated panose (DP₃) levels. In contrast, Termamyl α -amylase activity resulted in higher levels of panose and a subsequent loss of D-glucose (DP₁) yield.

Thus, if α -amylase variants V54W or V54W + A52W are used for starch liquefaction, it will not be necessary to inactivate the residual α -amylase activity before the commencement of saccharification.

EXAMPLE 6

15 Calcium-binding affinity of α -amylase variants of the invention

Unfolding of amylases by exposure to heat or to denaturants such as guanidine hydrochloride is accompanied by a decrease in fluorescence. Loss of calcium ions leads to unfolding, and the affinity of α -amylases for calcium can be measured by fluorescence measurements before and after incubation of each α -amylase (e.g. at a concentration of 10 μ g/ml) in a buffer (e.g. 50 mM HEPES, pH 7) with different concentrations of calcium (e.g. in the range of 1 μ M-100 mM) or of EGTA (e.g. in the range of 1-1000 μ M) [EGTA = 1,2-di(2-aminoethoxy)ethane-N,N,N',N'-tetraacetic acid] for a sufficiently long period of time (such as 22 hours at 55°C).

The measured fluorescence F is composed of contributions form the folded and unfolded forms of the enzyme. The following equation can be derived to describe the dependence of F on calcium concentration ([Ca]):

$$F = [Ca]/(K_{diss} + [Ca])(\alpha_N - \beta_N \log([Ca])) + K_{diss}/(K_{diss} + [Ca])(\alpha_U - \beta_U \log([Ca]))$$

where α_N is the fluorescence of the native (folded) form of the enzyme, β_N is the linear dependence of α_N on the logarithm of

SUBSTITUTE SHEET (RULE 26)

the calcium concentration (as observed experimentally), α_{U} is the fluorescence of the unfolded form and β_{U} is the linear dependence of α_{U} on the logarithm of the calcium concentration. K_{diss} is the apparent calcium-binding constant for an equilibrium process as follows:

 K_{diss}

N-Ca ↔ U + Ca (N = native enzyme; U = unfolded enzyme)

- In fact, unfolding proceeds extremely slowly and is irreversible. The rate of unfolding is a dependent on calcium concentration, and the dependency for a given α -amylase provides a measure of the Ca-binding affinity of the enzyme. By defining a standard set of reaction conditions (e.g. 22 hours at 55°C), a meaningful comparison of $K_{\rm diss}$ for different α -amylases can be made. The calcium dissociation curves for α -amylases in general can be fitted to the equation above, allowing determination of the corresponding values of $K_{\rm diss}$.
- The following values for $K_{\rm diss}$ were obtained for a parent Termamyl-like α -amylase having the amino acid sequence shown in SEQ ID No. 1 of WO 95/26397 and for the indicated variant thereof according to the invention:

25	α-Amylase	$K_{\mathtt{diss}}$	(mol/l)
	L351C + M430C + T	3* + G184* 1.7	(±0.5) x 10 ⁻³
	Parent	3.5	$(\pm 1.1) \times 10^{-1}$

It is apparent from the above that the calcium-binding affinity of the variant in question binds calcium significantly more strongly than the parent, and thereby has a correspondingly lower calcium dependency than the parent.

35

REFERENCES CITED

Klein, C., et al., Biochemistry 1992, 31, 8740-8746,

5 Mizuno, H., et al., J. Mol. Biol. (1993) 234, 1282-1283,

Chang, C., et al, J. Mol. Biol. (1993) 229, 235-238,

Larson, S.B., J. Mol. Biol. (1994) 235, 1560-1584,

10

Lawson, C.L., J. Mol. Biol. (1994) 236, 590-600,

Qian, M., et al., J. Mol. Biol. (1993) 231, 785-799,

15 Brady, R.L., et al., Acta Crystallogr. sect. B, 47, 527-535,

Swift, H.J., et al., Acta Crystallogr. sect. B, 47, 535-544

- A. Kadziola, Ph.D. Thesis: "An alpha-amylase from Barley and its Complex with a Substrate Analogue Inhibitor Studied by X-ray Crystallography", Department of Chemistry University of Copenhagen 1993
 - MacGregor, E.A., Food Hydrocolloids, 1987, Vol.1, No. 5-6, p.

25

- B. Diderichsen and L. Christiansen, Cloning of a maltogenic α -amylase from *Bacillus stearothermophilus*, FEMS Microbiol. letters: 56: pp. 53-60 (1988)
- 30 Hudson et al., Practical Immunology, Third edition (1989), Blackwell Scientific Publications,
 - Sambrook et al., <u>Molecular Cloning: A Laboratory Manual</u>, 2nd Ed., Cold Spring Harbor, 1989
 - S.L. Beaucage and M.H. Caruthers, <u>Tetrahedron Letters</u> 22, 1981, pp. 1859-1869

Matthes et al., The EMBO J. 3, 1984, pp. 801-805.

R.K. Saiki et al., Science 239, 1988, pp. 487-491.

5 Morinaga et al., (1984, Biotechnology 2:646-639)

Nelson and Long, Analytical Biochemistry 180, 1989, pp. 147-151

Hunkapiller et al., 1984, Nature 310:105-111

R. Higuchi, B. Krummel, and R.K. Saiki (1988). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucl. Acids Res.

16:7351-7367.

15

Dubnau et al., 1971, <u>J. Mol. Biol.</u> <u>56</u>, pp. 209-221.

Gryczan et al., 1978, <u>J. Bacteriol.</u> <u>134</u>, pp. 318-329. S.D. Erlich, 1977, <u>Proc. Natl. Acad. Sci.</u> <u>74</u>, pp. 1680-1682.

Boel et al., 1990, <u>Biochemistry</u> 29, pp. 6244-6249.

WO 96/23874 PCT/DK96/00057

83

SEQUENCE LISTING

In the following SEQ ID Nos. 1, 3, 5 the 5', coding sequence and 3' sequence of the relevant α -amylase genes are illustrated. The 5' sequence is the first separate part of the sequence written with lower case letters, the coding sequence is the intermediate part of the sequence, where the signal sequence is written with lower case letters and the sequence encoding the mature α -amylase is written with upper case letters, and the 3' sequence is the third separate part of the sequence written with lower case letters.

SEQ ID No. 1

15

cggaagattggaagtacaaaaataagcaaaagattgtcaatcatgtcatgagccatgcgggagacggaaaaatcgtctta atgcacgatatttatgcaacgttcgcagatgctgctgaagagattattaaaaagctgaaagcaaaaggctatcaattggt aactgtatctcagcttgaagaagtgaagaagcagagaggctattgaataaatgagtagaagcgccatatcggcgcttttc
ttttggaagaaaatatagggaaaatggtacttgttaaaaattcggaatatttatacaacatcatatgtttcacattgaaa ggggaggagaatc

atgaaacaacaaaacggctttacgcccgattgctgacgctgttatttgcgctcatcttcttctcattctgcagcagcggCAAATCTTAATGGGACGCTGATGCAGTATTTT-25 GAATGGTACATGCCCAATGACGGCCAA CATTGGAGGCGTTTGCAAAACGACTCGGCATAT-TTGGCTGAACACGGTATTACTGCCGTCTGGATTCCCCCGGCATATAA GGGAACGAGC-CAAGCGGATGTGGGCTACGGTGCTTACGACCTTTATGATTTAGGGGAGTTTCATCAAAAAG-GGACGGTTC GGACAAAGTACGGCACAAAAGGAGAGCTGCAATCTGCGATCAAAAGTCTTC-ATTCCCGCGACATTAACGTTTACGGGGAT GTGGTCATCAACCACAAAGGCGGCGCTGA-30 TGCGACCGAAGATGTAACCGCGGTTGAAGTCGATCCCGCTGACCGCAACCG CGTAATTT-CAGGAGAACACCTAATTAAAGCCTGGACACATTTTCATTTTCCGGGGCGCGGCAGCACATA-CAGCGATTTTA AATGGCATTGGTACCATTTTGACGGAACCGATTGGGACGAGTCCCGAAA-GCTGAACCGCATCTATAAGTTTCAAGGAAAG GCTTGGGATTGGGAAGTTTCCAATGAA-AACGGCAACTATGATTATTTGATGTATGCCGACATCGATTATGACCATCCTGA TGTCGCAG-35 CAGAAATTAAGAGATGGGGCACTTGGTATGCCAATGAACTGCAATTGGACGGTTTCCGTCTT-GATGCTGTCA AACACATTAAATTTTCTTTTTTGCGGGATTGGGTTAATCATGTCAGGGA-AAAAACGGGGAAGGAAATGTTTACGGTAGCT GAATATTGGCAGAAT-GACTTGGGCGCGCTGGAAAACTATTTGAACAAAACAAATTTTAATCATTCAGTGTTTGAC-

PCT/DK96/00057

aagagcagagaggacggatttcctgaaggaaatccgtttttttatttt

15 SEQ ID No. 2

ANLNGTLMQYFEWYMPNDGQHWRRLQNDSAYLAEHGITAV
WIPPAYKGTSQADVGYGAYDLYDLGEFHQKGTVRTKYGTK
GELQSAIKSLHSRDINVYGDVVINHKGGADATEDVTAVEV
DPADRNRVISGEHLIKAWTHFHFPGRGSTYSDFKWHWYHF
DGTDWDESRKLNRIYKFQGKAWDWEVSNENGNYDYLMYAD
IDYDHPDVAAEIKRWGTWYANELQLDGFRLDAVKHIKFSF
LRDWVNHVREKTGKEMFTVAEYWQNDLGALENYLNKTNFN
HSVFDVPLHYQFHAASTQGGGYDMRKLLNGTVVSKHPLKS
VTFVDNHDTQPGQSLESTVQTWFKPLAYAFILTRESGYPQ
VFYGDMYGTKGDSQREIPALKHKIEPILKARKQYAYGAQH
DYFDHHDIVGWTREGDSSVANSGLAALITDGPGGAKRMYV
GRQNAGETWHDITGNRSEPVVINSEGWGEFHVNGGSVSIY
VQR

30

SEQ ID No. 3

gcccgcacatacgaaaagactggctgaaaacattgagcctttgatgactgatgatttgg35 ctgaagaagtggatcgattg tttgagaaaagaagaccataaaaaataccttgtctgtcatcagacagggtatttttttatgctgtccagactgtccgct gtgtaaaaataaaggaataaaggggggttgttattattttactgatatgtaaaatataatttgtataagaaaatgagagg
agaggaaac

atgattcaaaaacgaaagcggacagtttcgttcagacttgtgcttatgtgcacgctgttatttgtcagttt gccgattacaaaaacatcagccGTAAATGGCACGCTGATGCAGTATT-TTGAATGGTATACGCCGAACGACGGCCAGCATT GGAAACGATTGCAGAATGATGCGGAA-CATTTATCGGATATCGGAATCACTGCCGTCTGGATTCCTCCCGCATACAAAGGA TTGAG-5 CCAATCCGATAACGGATACGGACCTTATGATTTGTATGATTTAGGAGAATTCCAGCAAAA-AGGGACGGTCAGAAC GAAATACGGCACAAAATCAGAGCTTCAAGATGCGATCGGCTCAC-TGCATTCCCGGAACGTCCAAGTATACGGAGATGTGG TTTTGAATCATAAGGCTGGTGCT-GATGCAACAGAAGATGTAACTGCCGTCGAAGTCAATCCGGCCAATAGAAATCAGGAA ACTTCGGAGGAATATCAAATCAAAGCGTGGACGGATTTTCGTTTTCCGGGCCGTGGAAAC-10 ACGTACAGTGATTTTAAATG GCATTGGTATCATTTCGACGGAGCGGACTGGGATGAATCCC-GGAAGATCAGCCGCATCTTTAAGTTTCGTGGGGAAGGAA AAGCGTGGGATTGGGAAGTAT-CAAGTGAAAACGGCAACTATGACTATTTAATGTATGCTGATGTTGACTACGACCACCCT GATGTCGTGGCAGAGACAAAAAATGGGGTATCTGGTATGCGAATGAACTGTCATTAGACGG-CTTCCGTATTGATGCCGC CAAACATATTAAATTTTCATTTCTGCGTGATTGGGTTCAGG-CGGAGTATTGGCAG-15 CGGTCAGACAGGCGACGGGAAAAGAAATGTTTACGGTTG GATGTT CCGCTTCATTTCAATTTACAGGCGGCTTCCTCACAAGGAGGCGGATATGATAT-GAGGCGTTTGCTGGACGGTACCGTTGT GTCCAGGCATCCGGAAAAGGCGGTTACATTTGT -TGAAAATCATGACACACAGCCGGGACAGTCATTGGAATCGACAGTCC AAACTTGGTTTAA-20 ACCGCTTGCATACGCCTTTATTTTGACAAGAGAATCCGGTTATCCTCAGGTGTTCTATGGG-GATATG TACGGGACAAAAGGGACATCGCCAAAGGAAATTCCCTCACTGAAAGATAATATA-GAGCCGATTTTAAAAGCGCGTAAGGA GTACGCATACGGGCCCCAGCACGATTATATTGAC-CACCCGGATGTGATCGGATGGACGGGGAAGGTGACAGCTCCGCCG ATCAGGTTTGGCCGCTTTAATCACGGACGGACCCGGCGGATCAAAGCGGATGTATGCCGG-25 CCTGAAAAATGCCGGC GAGACATGGTATGACATAACGGGCAACCGTTCAGATACTGTAA-AAATCGGATCTGACGGCTGGGGAGAGTTTCATGTAAA CGATGGGTCCGTCTCCATTTAT-**GTTCAGAAATAA**

SEQ ID No. 4

VNGTLMQYFEWYTPNDGQHWKRLQNDAEHLSDIGITAVWI
PPAYKGLSQSDNGYGPYDLYDLGEFQQKGTVRTKYGTKSE
5 LQDAIGSLHSRNVQVYGDVVLNHKAGADATEDVTAVEVNP
ANRNQETSEEYQIKAWTDFRFPGRGNTYSDFKWHWYHFDG
ADWDESRKISRIFKFRGEGKAWDWEVSSENGNYDYLMYAD
VDYDHPDVVAETKKWGIWYANELSLDGFRIDAAKHIKFSF
LRDWVQAVRQATGKEMFTVAEYWQNNAGKLENYLNKTSFN
10 QSVFDVPLHFNLQAASSQGGGYDMRRLLDGTVVSRHPEKA
VTFVENHDTQPGQSLESTVQTWFKPLAYAFILTRESGYPQ
VFYGDMYGTKGTSPKEIPSLKDNIEPILKARKEYAYGPQH
DYIDHPDVIGWTREGDSSAAKSGLAALITDGPGGSKRMYA
GLKNAGETWYDITGNRSDTVKIGSDGWGEFHVNDGSVSIY

15

SEQ ID No. 5

aaattcgatattgaaaacgattacaaataaaaattataatagacgtaaacgttcgagggt ttgctcccttttttactcttt ttatgcaatcgtttcccttaatttttttggaagccaaacc-gtcgaatgtaacatttgattaagggggaagggcatt

aacgtttcaccgcatcattcgaaaaggatggatgttcctgctcgcgttgtgct tttgctcactgtctcgctgttctgcccaacag gacagcccgccaaggctGCCGCACCGT-25 TTAACGGCACCATGATGCAGTATTTTGAATGGTACTTGCCGGATGATGGCACG TTATGG-ACCAAAGTGGCCAATGAAGCCAACAACTTATCCAGCCTTGGCATCACCGCTCTTTGGCTG-CCGCCCGCTTACAA AGGAACAAGCCGCAGCGACGTAGGGTACGGAGTATACGACTTGTA-TGACCTCGGCGAATTCAATCAAAAAGGGACCGTCC GCACAAAATACGGAACAAAAGCTC-AATATCTTCAAGCCATTCAAGCCGCCCACGCCGCTGGAATGCAAGTGTACGCCGAT GTC-30 GTGTTCGACCATAAAGGCGGCGCTGACGGCACGGAATGGGTGGACGCCGTCGAAGTCAAT-CCGTCCGACCGCAACCA AGAAATCTCGGGCACCTATCAAATCCAAGCATGGACGAAATT-TGATTTTCCCGGGCGGGCAACACCTACTCCAGCTTTA AGTGGCGCTGGTACCATTTTG-ACGGCGTTGATTGGGACGAAAGCCGAAAATTGAGCCGCATTTACAAATTCCGCGGCATC GGCAAAGCGTGGGATTGGGAAGTAGACACGGAAAACGGAAACTATGACTACTTAATGTAT-35 GCCGACCTTGATATGGATCA TCCCGAAGTCGTGACCGAGCTGAAAAACTGGGGGAAATG-GTATGTCAACACGAACATTGATGGGTTCCGGCTTGATG CCGTCAAGCATATTAAGT-TCAGTTTTTTCCTGATTGGTTGTCGTATGTGCGTTCTCAGACTGGCAAGCCGCTATTTACC GTCGGGGAATATTGGAGCTATGACATCAACAAGTTGCACAATTACATTACGAAAACAGAC-

tgcctgcga

15

SEQ ID No. 6

AAPFNGTMMQYFEWYLPDDGTLWTKVANEANNLSSLGITA

LWLPPAYKGTSRSDVGYGVYDLYDLGEFNQKGTVRTKYGT

KAQYLQAIQAAHAAGMQVYADVVFDHKGGADGTEWVDAVE

VNPSDRNQEISGTYQIQAWTKFDFPGRGNTYSSFKWRWYH

FDGVDWDESRKLSRIYKFRGIGKAWDWEVDTENGNYDYLM

YADLDMDHPEVVTELKNWGKWYVNTTNIDGFRLDAVKHIK

FSFFPDWLSYVRSQTGKPLFTVGEYWSYDINKLHNYITKT

DGTMSLFDAPLHNKFYTASKSGGAFDMRTLMTNTLMKDQP

TLAVTFVDNHDTEPGQALQSWVDPWFKPLAYAFILTRQEG

YPCVFYGDYYGIPQYNIPSLKSKIDPLLIARRDYAYGTQH

DYLDHSDIIGWTREGGTEKPGSGLAALITDGPGGSKWMYV

OGKQHAGKVFYDLTGNRSDTVTINSDGWGEFKVNGGSVSVW

VPRKTTVSTIARPITTRPWTGEFVRWTEPRLVAW

SEQ ID No. 10

- 35 1 ATPADWRSQS IYFLLTDRFA RTDGSTTATC
 - 31 NTADQKYCGG TWQGIIDKLD YIQGMGFTAI
 - 61 WITPVTAQLP QTTAYGDAYH GYWQQDIYSL
 - 91 NENYGTADDL KALSSALHER GMYLMVDVVA

	121	NHMGYDGAGS	SVDYSVFKPF	SSQDYFHPF
	151	FIQNYEDQTQ	VEDCWLGDNT	VSLPDLDTT
	181	DVVKNEWYDW	VGSLVSNYSI	DGLRIDTVK
	211	VQKDFWPGYN	KAAGVYCIGE	VLDGDPAYTO
5	241	${\tt PYQNVMDGVL}$	NYPIYYPLLN	AFKSTSGSMI
	271	DLYNMINTVK	SDCPDSTLLG	TFVENHDNPF
	301	FASYTNDIAL	AKNVAAFIIL	NDGIPIIYA
	331	QEQHYAGGND	PANREATWLS	GYPTDSELY
	361	LIASANAIRN	YAISKDTGFV	TYKNWPIYKI
10	391	DITIAMRKGT	DGSQIVTILS	NKGASGDSYT
	421	LSLSGAGYTA	GQQLTEVIGC	TTVTVGSDGN

451 VPVPMAGGLP RVLYPTEKLA GSKICSSS

,	o 4	> <	, <	> <	~	•	•	9	•	7	9	•	۰ د	۰ ،	•	•	•	•	€ (٠.	۰ ه	۰ <	•	•	€0	•	o ~	٠.	•	•	۰ ح	•	9 1	-	•	•	•	۸ د	٠.	•	•	•	۰ و٠	0
9		25	22	95	2	1.62	1.87	9.70	79.6	9.16	9.15	8.08	9.21	 	23	79.7	8.17	8.94	8.65	8	2.5	7.55	6.81	8.43	5.00	8.6	10.15	10.35	9.98	11.61	2.56	3.39	11.78	4.2	3.91	14.23	75.01	K	=	=	3.	1.95	12.43	5
5	3 8	35	3 5	3 2	8		8	8	8	8	8	8	88	- 3 8	38	8	8	8	8	8	3 8	3 5	88	8	8	8	38	8	8	8	3 5	8	8	3 5	8	8	8 8	8	8	8	8	8	8	٤
767	25.5	200	18	767	267 6	1.312	962.0	4.119	14.563	3.639	3.588	4.941	5.978	06.2	27.76	699.2	296.2	25.963	22.918	22.536	900.22	10.213	19, 156	18.397	19.438	22.737	22, 29	23.407	23.186	24.181	25.263	26.432	23.915	27.003	27.72	28.280	22.935	21.623	21.126	19.798	20.02	19.704	19.892	1170
,	206.1	7 082	2 679	2000	2,02	0.156	1.063	7.289 2	8.427	6.710 2	7.307	2.73	6.659	57.0	141	205.205	869.5	6.294	5.102	6.856	0.000	7.00	7.580	8.544	6.877	6.715	36.050	6.551	15.619	15.940	190.5	4.916	909.9	20.07	14.763	5.256	7.937	8.209	9.508	19.432	8.515	17.158	6.268	′
•		100		7 672	080	358 4	, 114	.789 3	.918 3	89. M	. 19.	.895	2 68		2 077	0.070	313 3	.173 3	203	.284	2.450	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	186.7	3.145	3.962	7.636	38.791	9.980	1.182 3	2.271	267.7	1.412	3.446	831	1.717	2.946	0.8410	0.322	0.766	1.559	2.765 3	2.605	999	
•	•	•	•	9 4																							2=																	
	< x 2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2	Z X	Z	Z	TYR	뿚	뿚	뿚	2	¥ 2	E E	1	E	꾩	꾦	3	3	3 5	3 3	3	2	3	189 4	Ę	TRP	TRP	¥ 2	2	2	1 2 E	78	3	¥ &	7	TR	TYR	TYR	T'S	Z :	
	ع د	3 8	3 2	3 8	96	12	8	J	0	*	5	8	ខ្ល	ā 8	֓֞֝֟֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	3	7	U	0	= 1	5 8	9 5	3 8	8	230	ں ہ) =	5	8	ខ្ល	36	CES	8	22	C73	ž,	ہ د	2	ฮ	8	ຮູ	8	38)
																											8 %																	
;	5 3	E 3	Ę 3	Ę 3	; ≱		¥	I	10H	I	I	I	I;	E ;	: 3	.	¥	¥	¥	Ŧ:	X ;	ĘĮ	Ę	Ŧ	ATOM	¥ ;	5 6	¥	돐	z i	5 3	F	3 3	5 8	7	3 8		吾	吾	품	3	3 8	5 2	5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VAL A 1 11.	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 11 11 11 11 11 11 11 11 11 11 11 11	1 11.90	11.90	305	27.157	22.095	88	23.86	~ · ·
CG2 VAL A 1 10.	VAL A 1 10.	0.	0.	10.65	10.65	_	27.948	22.511	8		
C VAL A 1 13.	VAL A 1 13,	. 1	. 1	13.03	13.03		25.0%	22.743	8		
0 VAL A 1 13.	VAL A 1 13.			13.19	13.19	_	25.013	23.967	8		
N VAL A 1 10.	VAL A 1 10.	2;	2;	₽:	10.70	~ (25.241	25.415	83		
CA VAL A 1 11.	VAL A 1			=:	11.65		25.658	22.35	88		
TA ASH A 2 15.	ASH A 2 15.	2 13	2 13	2 ¥	13.86/		75.75 701	202.12	3 5		
CR ASK A 7	ASH A 2 15.	2 2	2 2	2	15.836		23.657	20.945	8		
CG ASH A 2 15	ASH A 2 15.	2 15.	2 15.	ξ	15.219		22.336	20.451	8		
001 ASN A 2 14.	ASH A 2 14.	16,	16,	2	14.707	_	21.549	21.252	8.		
ND2 ASH A 2 15.	ASH A 2 15.	1 2 15.	1 2 15.	15	15.283		25.082	19.151	8		
C ASH A 2 15	ASH A 2 15	2 .	2 .	2	15.969		25.334	22.767	8		
0 ASN A 2 15	ASN A 2 15	2 1	2 1	∵	15.903		26.435	22.198	23		
N GLYA S 10	GLY A 5 16	2 .	2 .	2 :	16.720		25.198	25.63	38		
CA ULIA S	1	7.	7.	= :	20.00		26.30	166.93	3 5		
5 CL A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 K K N N N N N N N N N N N N N N N N N	~ ~	~ ~	2 2	10.74		26.67 75.75	79.57	38		
01 7 V HIL N	THE A C 10			2	10.501		27.368	87 22	8		
CA THR A 4 20	THR A 4 20	4 20	4 20	2	20.829		27.555	216.52	9		
CB 148 A 4 20	118 A 4 20	0Z	0Z	20	20.721		27.878	21.400	8.		
OG1 THR A 4 19	TIIR A 4 19	A 4 19	A 4 19	9	19.920		26.828	20.782	8		
CG2 THR A 4 22	THR A 4 22	4 4 22	4 4 22	2	22.048	_	27.933	20.693	8		
C THR A 4 ZI	THR A 4 21	12 5 Y	12 5 Y	7	21.584		20.05	23.65	8.6		
THE A STATE OF THE	12 4 4 131			, נ נ	20.00		26 27	25.000	3 5		
TA LEUA S CA	teu A 5 621	22 23 24 25 25 26	22 23 24 25 25 26	3 %	23.70	_	20.270	24.818	3 8		
CR LEUA S 24	1.FU A S 24	26 S	26 S	2	24.51		28.477	25.789	8		
1 CG 1EU A S 25	1EU A 5 25	A 5 25	A 5 25	52	25.42	_	28.946	26.864	8		
1 CD1 LEU A S 24	1EU A S 24	7 S Y	7 S Y	*	24.88	~	30.150	27.608	8.		
CO2 LEU A S 25	LEU A S 25	S 2 S	S 2 S	22.3	25.60	፟.	27.802	27.884	8		
1 C LEU A 5 24	1EU A 5 24	2 ×	2 ×	2,5	74.64		29.92	23.840	8.5		
22 S V V V V V V V V V V V V V V V V V V	150 A S S S S S S S S S S S S S S S S S S	< × ×	< × ×	C X	0 x		27.435	26.75	35		
CA META 6	MFT A 6 25	9 9	9 9	3 %	25.93	=	31.930	23.312	88		
7 CB MET A 6 25	MET A 6 25	\$2 • • •	\$2 • • •	. X	25.45	'n	33.143	22.507	8		
3 CG NET A 6 24	MET A 6 26)Z 9 V)Z 9 V	≈	26.6	2:	33.643	21.638	5.		
SD MET A 6 26	HET A 6 26	9 Y	9 Y	~;	26.0	\$:	34.480	20.185	2:		
CE META 6 21	KET A 6	9 Y	9 Y	7.	2.5	0.5	35.144	19.516	8.6		
C KEIA 6 21	MEI A O ZI	0	0	2 2	ייייייייייייייייייייייייייייייייייייי	2 :	11 204	25.65	3 5		
	MEI A O CO	0 7 6	0 7 6	57	2.00	e 4	22.66	2.5	3 5		
2	2 4 7 5			2 ×	20.30		12 727	25.75	38		
		- ^	- ^	3 ≽	70 60	9	11 010	217 76	3 2		
CE CLN A A	CLN A C	~ ·	~ ·	۲ <u>۲</u>	20.07	9 P	3.75	110.7	3 8		
בני פנא א	2 4 2 2	- i	- i	7 :	2.4	٠.	36.05	50.03	38		
CD GLW A 7 S.	GLN A 7 S	. Y	. Y	7	35.28	9	31.914	22.027	8		
3 OE1 GLN A 7 34	1 GLN A 7 34	. 7 A	. 7 A	ž	34.32	_	32.470	25.449	-		
P NEZ GLH A 7 31	CLH A 7 3.	A 7 3.	A 7 3.	Ħ	33.33	0	30.71	24.570	1.00		
0 C GLH A 7 25	GLH A 7 25	7 A	7 A	×	29.5	ø	34.125	24.015	8.		
1 0 GLWA 7 25	GLW A 7 25	7 A	7 A	×	29.8	9	34.167	22.786	9.		
2 H TYR A B 29	1YR A B 29	R A B 29	χ.	χ.	29.3	2	35,236	24.691	8		
S CA 1YR A B 29	R A 8 29	R A 8 29	8	8	\sim	29		24.022	8		

| 100 | NEZ NIS A | 19 | 31.584 41.112 | 24.073 | 1.00 | 9.42 | 7 | 1.00 | 165

| Michael | Mich

ALICH 215 0 CLW A 25 23.035 47.596 1.00 14.63 ALICH 216 A SNA A 25 23.642 46.359 20.213 1.00 15.31 6 ALICH 216 ASNA A 25 23.642 46.359 20.213 1.00 15.31 6 ALICH 216 CR ASNA A 25 23.642 46.359 20.213 1.00 15.31 6 ALICH 216 CR ASNA A 25 23.642 46.359 20.213 1.00 15.31 6 ALICH 218 CR ASNA A 25 23.711 65.141 19.588 1.00 23.11 7 ALICH 220 CASNA A 25 22.514 6.7259 10.258 1.00 23.11 7 ALICH 221 C ASNA A 25 22.514 6.7259 10.00 14.00 23.11 7 ALICH 222 C ASNA A 25 22.514 6.7259 10.00 14.00 14.10 14.00 14.10 14.00 14.10 14.00 14.10 14.00 14.10 1

| Main |

| 17.00 | 17.0

ATION (25 0 ASN A 52 38.007 39.309 30.702 1:00 5.01 4.104 4.25 0 ASN A 53 39.609 33.677 1:00 6.627 7.104 4.26 H GLY A 53 39.628 39.909 33.677 1:00 6.627 7.104 4.26 C GLY A 53 39.628 39.909 33.677 1:00 6.628 6.404 4.20 C GLY A 53 39.622 39.209 53.509 1:00 6.626 6.404 4.20 C GLY A 53 39.622 39.209 53.509 1:00 6.628 6.404 4.20 C GLY A 54 40.227 37.223 33.116 1:00 6.208 6.404 4.20 C GLY A 54 40.227 37.223 33.116 1:00 6.208 6.404 4.20 C GLY A 54 40.227 37.227 33.116 1:00 6.208 6.404 4.20 C GLY A 54 40.227 37.227 33.116 1:00 6.208 6.404 4.20 C GLY A 54 40.227 37.227 33.116 1:00 6.209 6.404 4.20 C GLY A 54 40.227 37.227 33.116 1:00 6.209 6.404 4.20 C GLY A 54 40.227 37.227 33.116 1:00 6.209 6.404 4.20 C GLY A 54 40.227 37.227 33.116 1:00 6.209 6.404 4.20 C GLY A 54 40.227 37.227 33.116 1:00 6.209 6.404 4.20 C GLY A 54 40.427 37.227 33.116 1:00 6.209 6.404 4.20 C GLY A 54 40.427 37.237 33.118 1:00 5.509 6.404 4.20 C GLY A 55 40.427 37.237 31.102 1:00 6.509 6.404 4.20 C GLY A 55 40.427 37.237 31.102 1:00 5.509 6.404 4.20 C GLY A 55 40.427 37.237 31.102 1:00 5.509 6.404 4.20 C GLY A 55 40.427 37.237 31.102 1:00 5.509 6.404 4.20 C GLY A 55 40.207 37.237 31.102 1:00 5.509 6.404 4.20 C GLY A 55 40.207 37.237 31.404 4.20 C GLY A 55 40.207 37.237 31.409 5

ATTOM STILL PHE A 65 36-395 2-381 40-126 1-00 10-67 B ALTOM STILL STILL CHIR A 65 36-395 2-381 30-255 1-00 10-67 B ALTOM STILL STILL CHIR A 66 316-395 2-381 30-255 1-00 10-67 B ALTOM STILL CHIR A 66 319-395 5-381 30-255 1-00 10-67 B ALTOM STILL S

| Color | Colo

| Michael | Mich

ATCH 1008 C SER A 128 61.62 23.756 51.617 1.00 18.11 6

ATCH 1010 C GLU A 129 65.375 24.744 52.356 1.00 19.05 8

ATCH 1011 CA GLU A 129 65.375 24.744 52.375 1.00 19.05 6

ATCH 1012 CG GLU A 129 65.375 24.744 52.375 1.00 19.05 6

ATCH 1013 CG GLU A 129 64.774 24.300 35.817 1.00 37.70 6

ATCH 1016 CE GLU A 129 64.774 24.300 35.817 1.00 37.70 6

ATCH 1016 CE GLU A 129 64.377 21.903 54.40 1.00 17.70 6

ATCH 1016 CE GLU A 129 64.377 21.903 54.05 1.00 6.2.88 8

ATCH 1016 CE GLU A 129 64.377 21.903 56.055 1.00 6.2.88 8

ATCH 1017 C GLU A 129 64.377 21.903 56.055 1.00 6.2.88 8

ATCH 1018 C GLU A 129 64.377 21.903 56.055 1.00 6.2.88 8

ATCH 1025 CE GLU A 129 64.377 21.903 56.055 1.00 19.50 6

ATCH 1025 CE GLU A 129 64.377 21.903 56.055 1.00 19.50 6

ATCH 1025 CE GLU A 120 64.377 21.903 56.055 1.00 19.50 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 19.50 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 19.50 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 19.50 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 19.50 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1025 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1026 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1026 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1026 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1026 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1026 CE GLU A 120 64.337 27.72 57.215 1.00 18.75 6

ATCH 1026 CE GLU A 120 64.32 57.32 57.32 1.00 17.13 6

ATCH 1026 CE GLU A 122 66.433 27.72 57.32 1.00 17.13 6

ATCH 1026 CE GLU A 122 66.433 27.32 1.00 17.13 6

ATCH 1026 CE GLU A 122 66.433 27.32 1.00 17.21 6

ATCH 1026 CE GLU A 122 66.433 27.32 1.00 17.13 6

ATCH 10

| March | Marc

| 1220 | N | 18P | 153 | 41.8ft | 41.8f5 | 51.926 | 1.00 | 8.13 | 7 | 1.00 | 1221 | C | 18P | 153 | 42.567 | 40.6f4 | 51.865 | 1.00 | 5.18 | 6.70 | 6

ATTICKE 1167 N. THE A 147 11.20 50.555 50.175 1.00 11.26 6
ATTICKE 1168 CA THE A 147 11.164 51.128 48.161 1.00 11.26 6
ATTICKE 1169 CG THE A 147 11.164 51.128 48.161 1.00 11.26 6
ATTICKE 1170 CG1 THE A 147 11.164 51.128 48.161 1.00 11.20 11.20 11.20 CG1 THE A 147 11.164 51.128 48.161 1.00 11.20 11.20 CG1 THE A 147 11.164 51.128 48.161 1.00 11.20 11.20 CG1 THE A 147 11.164 51.128 48.161 1.00 11.20 CG1 THE A 147 11.164 51.128 48.161 1.00 11.20 CG1 THE A 147 11.164 51.164 51.247 1.00 11.00 11.00 CG1 THE A 147 11.164 51.164 51.247 1.00 11.00 11.00 CG1 THE A 148 29.245 47.064 51.30 10.34 6.10 10.34 6.10 CG1 THE A 148 29.245 47.064 51.30 10.01 S. 14.00 THE A 148 29.245 47.064 51.30 10.01 S. 14.00 THE A 148 29.245 47.064 51.30 10.01 S. 14.00 THE A 148 29.245 47.064 51.30 10.00 S. 14.00 THE A 148 29.245 47.064 51.30 10.00 S. 14.00 THE A 148 29.245 47.064 51.30 10.00 S. 14.00 THE A 148 29.245 47.064 51.30 10.00 S. 14.00 THE A 148 29.245 47.064 51.30 10.00 S. 14.00 THE A 148 29.245 47.064 51.30 10.00 S. 14.00 THE A 148 29.245 47.064 51.30 10.00 S. 14.00 THE A 148 29.245 47.064 51.30 51.425 1.00 19.275 4.10H 1185 CG THE A 148 29.245 47.064 51.30 51.425 1.00 19.275 4.10H 1185 CG THE A 148 29.245 47.064 51.30 51.425 1.00 19.20 5.41 51.00 19

| 1326 | C13 | 18P A | 163 | 59.639 | 37.017 | 39.06 | 1.00 | 14.61 | 6.10 | 6.101 | 31.279 | 31.139 | 1.00 | 16.01 | 6.101 | 31.279 | 31.139 | 1.00 | 16.01 | 6.101 | 6.101 | 31.279 | 31.139 | 1.00 | 12.01 | 31.279 | 31.139 | 1.00 | 12.01 | 31.279 | 31.139 | 1.00 | 12.01 | 31.279 | 31.139 | 1.00 | 12.01 | 31.279 | 31.139 | 31

ALICH 1273 CG HIS A 157 42.236 36.398 53.732 1.00 5.00 6.47

ALICH 1275 CG HIS A 157 42.266 37.705 53.703 1.00 5.00 6.47

ALICH 1275 CET HIS A 157 41.280 38.216 10.0 5.10 5.10 5.10

ALICH 1275 CET HIS A 157 41.280 38.216 1.00 5.10 5.10

ALICH 1275 CET HIS A 157 41.280 31.473 51.733 1.00 5.12

ALICH 1275 CET HIS A 157 41.280 31.473 51.733 1.00 5.12

ALICH 1275 CET HIS A 157 41.280 31.473 51.733 1.00 5.12

ALICH 1275 CET HIS A 157 41.280 31.473 51.733 1.00 5.12

ALICH 1275 CE PIE A 158 45.712 51.253 1.00 5.10

ALICH 1280 CE PIE A 158 45.712 51.253 1.00 5.00

ALICH 1281 CE PIE A 158 45.712 51.733 1.00 5.00

ALICH 1281 CET PIE A 158 45.712 51.733 1.00 5.00

ALICH 1282 CET PIE A 158 45.712 51.733 1.00 5.00

ALICH 1283 CET PIE A 158 45.712 51.733 1.00 5.00

ALICH 1281 CET PIE A 158 45.712 51.734 1.00 5.00

ALICH 1281 CET PIE A 158 45.713 51.713 1.00 5.00

ALICH 1282 CET PIE A 158 45.713 51.713 1.00 5.00

ALICH 1283 CET PIE A 158 45.713 51.705 1.00 5.00

ALICH 1284 CET PIE A 158 45.713 1.00 5.00

ALICH 1285 CET PIE A 158 45.713 1.00 5.00

ALICH 1280 CET PIE A 158 45.713 1.00 5.00

ALICH 1281 CET PIE A 158 45.713 1.00 5.00

ALICH 1282 CET PIE A 158 45.713 1.00 5.00

ALICH 1283 CET PIE A 158 45.713 1.00 5.00

ALICH 1284 CET PIE A 158 45.713 1.00 5.00

ALICH 1285 CET PIE A 158 45.713 1.00 5.00

ALICH 1280 CET PIE A 158 45.713 1.00 5.00

ALICH 1281 CET PIE A 158 45.713 1.00 5.00

ALICH 1282 CET PIE A 158 45.713 1.00 5.00

ALICH 1284 CET PIE A 158 45.713 1.00 5.00

ALICH 1285 CET PIE A 158 45.713 1.00 5.00

ALICH 1285 CET PIE A 158 45.713 1.00 5.00

ALICH 1280 CET A ALA A 161 51.20 1.00 5.00

ALICH 1280 CET A ALA A 161 51.20 5.00

ALICH 1300 CET A 160 50.438 10.00 5.00

ALICH 1300 CET A 160 50.438 10.00 5.00

ALICH 1300 CET A 160 50.438 10.00 5.00

ALICH 1301 CET A 160 50.438 10.00 5.00

ALICH 1302 CET A 161 51.70 51.70 51.70 51.70 51.70

ALICH 1303 CET A 161 51.70 51.7

| 17th | 1432 CET PHE A 175 | 55.473 33.823 50.320 1.00 7.64 6 | 11th | 1435 CET PHE A 175 51.517 33.933 49.545 1.00 11.49 6.81 1 | 1436 CET PHE A 175 51.517 33.933 49.545 1.00 11.49 6.81 1 | 1436 CET PHE A 175 51.526 28.942 53.770 1.00 11.49 0.1144 | 1436 CET PHE A 175 51.526 28.942 53.770 1.00 11.49 0.1144 | 1438 CE PHE A 175 51.526 28.942 55.770 1.00 11.49 0.1144 | 1438 CE ARG A 176 53.328 28.772 56.372 1.00 15.29 0.1144 | 1448 CE ARG A 176 53.328 28.772 56.372 1.00 15.29 0.1144 | 1448 CE ARG A 176 55.748 28.802 56.777 1.00 15.29 0.1144 | 1441 CE ARG A 176 55.138 28.473 56.037 1.00 15.39 0.1144 | 1441 ARG A 176 55.138 28.473 1.00 15.39 0.1144 | 1442 CE ARG A 176 55.138 28.473 1.00 15.39 0.1144 | 1442 CE ARG A 176 55.138 28.473 1.00 15.39 0.1144 | 1442 CE ARG A 176 55.138 28.473 1.00 15.39 0.1144 | 1443 CE ARG A 176 55.138 28.473 1.00 15.39 0.1144 | 1443 CE ARG A 176 55.138 28.473 1.00 15.37 1.00 15.37 1.00 15.39 0.1144 | 1443 CE ARG A 176 55.130 24.037 55.062 1.00 15.27 1.00 15.39 0.1144 | 1443 CE ARG A 176 55.138 28.473 1.00 15.34 1.00

ALCH 1379 C ILE A 169 60.748 33.255 41.354 1.00 16.35 A 1414 1380 0 ILE A 169 60.458 33.460 40.342 1.00 16.39 A 1414 1380 0 ILE A 169 60.458 33.460 40.342 1.00 16.39 A 1414 1380 C SER A 170 59.203 23.003 6.120 1.00 16.32 6 A 170 1383 C SER A 170 59.203 31.335 6.2518 1.00 16.32 6 A 170 1383 C SER A 170 59.203 13.355 5.318 1.00 15.28 A 170 1385 C SER A 170 59.203 13.355 5.318 1.00 15.28 A 170 1385 C SER A 170 59.203 13.355 5.318 1.00 15.28 A 170 1385 C SER A 170 50.103 13.355 30.802 1.00 16.32 6 A 171 1387 A ARC A 171 50.203 13.355 1.00 15.28 A 170 1395 C B ARG A 171 50.203 19.802 1.00 15.28 A 170 1395 C B ARG A 171 50.203 19.802 1.00 15.28 A 170 1395 C B ARG A 171 50.203 19.802 1.00 15.28 A 170 1395 C B ARG A 171 50.203 19.802 1.00 15.28 A 170 1395 C B ARG A 171 50.203 19.802 1.00 15.20 B 1.00 15.20 A 170 1395 C B ARG A 171 50.203 19.802 1.00 15.20 B 1.00 15.20 A 170 1395 C B ARG A 171 50.203 19.802 1.00 15.20 B 1.00 15.20 A 170 1395 C B ARG A 171 50.203 19.802 1.00 15.00 15.00 15.00 A 170 1395 C B ARG A 171 50.203 19.002 1.00 15.00 15.00 15.00 A 170 1395 C B ARG A 171 50.203 19.002 1.00 15.00 15.00 15.00 A 170 1395 C B ARG A 171 50.203 19.005 C B ARG A 171 50.

AIGH 1645 0 ASP A 200 45.308 31.320 47.681 1.00 5.31 B

AIGH 1645 CG VAL A 201 42.557 31.445 45.359 1.00 5.00 7

AIGH 1645 CG VAL A 201 42.25 31.354 46.354 1.00 5.00 6

AIGH 1645 CG VAL A 201 42.25 31.354 46.354 1.00 5.00 6

AIGH 1649 CG VAL A 201 42.25 31.354 46.354 1.00 5.00 6

AIGH 1649 CG VAL A 201 42.25 31.354 46.351 1.00 5.00 6

AIGH 1655 C VAL A 201 42.25 31.354 46.351 1.00 5.00 6

AIGH 1655 C VAL A 201 42.25 31.354 46.351 1.00 5.00 6

AIGH 1655 C VAL A 201 42.25 31.375 46.351 1.00 5.00 6

AIGH 1655 C VAL A 201 42.25 31.375 20.400 8.254 1.00 5.00 6

AIGH 1655 C VAL A 201 42.25 30.401 40.271 1.00 5.00 6

AIGH 1655 C VAL A 201 42.25 30.401 40.271 1.00 5.00 6

AIGH 1655 C VAL A 201 42.25 30.401 40.271 1.00 5.00 6

AIGH 1655 C VAL A 202 42.25 20.400 8.354 1.00 5.00 6

AIGH 1655 C VAL A 202 42.25 20.400 8.354 1.00 5.00 6

AIGH 1655 C VAL A 202 42.25 20.400 8.354 1.00 5.00 6

AIGH 1657 CO ASP A 202 42.017 20.814 51.801 1.00 5.00 6

AIGH 1657 CO ASP A 202 42.017 20.814 51.801 1.00 5.00 6

AIGH 1657 C VAL A 203 31.37 20.814 51.801 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 40.271 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6

AIGH 1657 C VAL A 203 31.401 20.403 40.418 1.00 5.00 6.00

AIGH 1657 C VAL A 203 31.401 20.403 40.419 1.00 5.00 6.00

AIGH 1657 C VAL A 203 31.401 20.403 40.419 1.00 5.00 6.00

AIGH 1657 C VAL A 204 204 41.100 20.403 40.403 1.00 6.00 6.00

AIGH 1657 C VAL A 204 204 41.100 20.403 40.403 1.00 6.00 6.00

AIGH 1658 C VAL A 204 204 41.100 20.403 40.403 1.00 6.00 6.00

AIGH 1659 C

1750	CL	175	A 214	28.63	39.011	51.731	100	17.39	6	
1751	CL	175	A 214	28.63	39.011	51.731	100	17.90	6	
1752	CL	175	A 214	29.35	39.546	52.915	100	22.01	6	
1753	CL	175	A 214	29.35	39.546	52.915	100	22.01	6	
1754	1755	CL	175	A 214	29.35	39.546	52.915	100	22.01	6
1755	CL	175	A 214	29.35	39.546	52.915	100	22.01	6	
1756	CL	175	A 214	29.35	39.546	52.915	100	22.01	6	
1756	CL	175	A 214	29.37	39.753	40.021	100	22.01	6	
1756	CL	175	A 214	29.37	39.753	40.021	100	22.01	6	
1757	CL	1758	A 215	29.75	39.753	40.021	100	22.01	6	
1764	1755	CL	175	A 215	39.752	40.021	100	22.01	6	
1764	1765	CL	175	A 215	39.753	40.021	100	22.01	6	
1765	CL	175	A 215	39.753	40.021	100	22.01	6		
1764	1765	CL	175	A 215	39.753	40.021	100	22.01	6	
1765	CL	175	A 215	39.753	40.021	100	20.00	6		
1764	1765	CL	175	A 215	39.753	40.021	100	20.00	6	
1765	CL	175	A 215	39.753	40.021	100	20.00	6		
1766	CL	175	A 215	39.753	40.021	100	20.00	6		
1767	CL	175	A 215	39.753	40.021	100	20.00	6		
1769	CL	175	A 215	39.753	40.021	100	20.00	6		
1770	CL	175	A 215	39.753	40.021	100	20.00	6		
1771	CL	175	A 215	29.23	40.021	100	20.00	6		
1771	CL	175	A 215	29.23	40.021	100	20.00	6		
1772	CL	175	A 215	29.23	40.021	100	20.00	6		
1773	CL	175	A 215	29.23	40.021	100	20.00	6		
1774	1775	CL	177	A 216	20.00	4				
1775	CL	177	A 216	20.00	4					
1775	CL	175	A 216	20.00	4					
1775	CL	175	A 216	20.00	4					
1776	CL	175	A 216	20.00	4					
1777	CL	175	A 216	20.00	4					
1778	CL	175	A 216	20.00	4					
1779	CL	175	A 216	20.00	4					
1770										

1697	N	1697	N	1697	N	1646	32.591	56.971	1.00	6.105	
1698	C	ASP	A	207	36.054	31.599	56.613	1.00	6.055		
1698	C	ASP	A	207	36.054	31.599	56.613	1.00	6.055		
1704	1705	C	ASP	A	207	36.054	31.505	51.00	6.107		
1705	C	ASP	A	207	36.054	31.505	51.00	6.107			
1705	C	ASP	A	207	36.054	31.505	51.00	6.107			
1705	C	ASP	A	207	36.054	31.505	51.00	6.17			
1705	C	ASP	A	207	36.054	31.505	51.00	6.17			
1706	C	ASP	A	207	36.054	31.615	51.60	6.17			
1707	C	AVI	A	208	31.505	31.41	51.605	51.77	1.00	6.47	
1708	C	AVI	A	208	31.505	31.41	51.605	51.60	6.17		
1709	C	AVI	A	208	31.505	31.41	51.605	1.00	6.47		
1700	C	AVI	A	208	31.505	31.605	52.455	1.00	6.47		
1701	C	AVI	A	208	31.505	31.505	52.455	1.00	6.47		
1702	C	AVI	A	208	31.505	31.505	32.455	1.00	6.90		
1704	1707	C	AVI	A	208	31.505	31.505	31.505	31.505		
1704	1707	C	AVI	A	208	31.505	31.505	31.505	31.505		
1704	1707	C	AVI	A	208	31.505	31.505	31.505	31.505		
1704	1707	C	AVI	A	208	31.505	31.505	31.505	31.505		
1704	1707	C	AVI	A	208	31.505	31.505	31.505	31.505		
1704	1707	C	AVI	A	208	31.505	31.505	31.505	31.505		
1704	1707	C	AVI	A	208	31.505	31.505	31.505	31.505		
1704	1707	C	AVI	A	208	31.505	31.505	31.505	31.505		
1704	1707	C	AVI	A	208	31.505	31.505	31.505	31.505		
1704	1707	C	AVI	A	209	31.505	31.505	31.505	31.505		
1704	1707	C	AVI	A	209	31.505	31.505	31.505	31.505	31.505	
1704	1707	C	AVI	A	209	31.505	31.505	31.505	31.505	31.505	31.505
1704	1707	C	AVI	A	200	31.505	31.505	31.505	31.505	31.505	31.505

```
ATTH 1803 CET 178 A 219 29.180 39.619 38.541 1.00 9.96 6 ATTH 1804 CDZ 178 A 219 28.451 37.404 (2008 1.00 9.75 6 ATTH 1805 CZ 178 A 219 29.364 38.361 38.701 1.00 9.75 6 ATTH 1805 CZ 178 A 219 29.364 38.361 38.701 1.00 10.19 6 ATTH 1805 CZ 178 A 219 29.364 38.361 38.702 1.00 11.00 8.95 ATTH 1805 CZ 178 A 219 29.364 38.361 38.702 1.00 11.00 8.96 ATTH 1805 CZ 178 A 219 29.364 38.361 38.702 1.00 11.00 8.96 ATTH 1805 CZ 178 A 229 29.264 6.0527 1.00 10.00 8.97 ATTH 1802 CZ 178 A 220 22.315 38.665 41.321 1.00 8.97 A ATTH 1812 CR ALA A 220 22.315 38.665 41.321 1.00 10.07 A ATTH 1812 CR ALA A 220 22.315 38.665 41.321 1.00 10.07 A ATTH 1812 CR ALA A 220 22.315 38.665 41.321 1.00 10.07 A ATTH 1812 CR ALA A 220 22.315 38.665 41.321 1.00 10.07 A ATTH 1812 CR ALA A 220 22.315 38.665 41.321 1.00 10.07 A ATTH 1812 CR ALA A 220 22.315 39.364 41.321 1.00 10.07 A ATTH 182 CR ALA A 220 22.315 39.364 41.321 1.00 10.07 A ATTH 182 CR ALA A 220 22.315 39.364 41.321 1.00 10.07 A ATTH 182 CR ALU A 222 22.325 41.325 1.00 10.05 A ATTH 182 CR ALU A 222 22.325 41.325 1.00 10.05 A ATTH 182 CR ALU A 222 22.325 41.325 1.00 10.05 A ATTH 182 CR ALU A 222 22.325 41.325 1.00 10.05 A ATTH 182 CR ALU A 222 22.327 41.325 1.00 10.30 A ATTH 182 CR ALU A 222 22.327 41.325 1.00 10.30 A ATTH 182 CR ALU A 222 22.327 41.325 1.00 10.30 A ATTH 182 CR ALU A 222 22.327 41.327 1.00 10.30 A ATTH 182 CR ALU A 222 22.327 41.328 10.00 12.30 A ATTH 182 CR ALU A 222 22.327 41.328 10.00 12.30 A ATTH 182 CR ALU A 222 22.327 41.328 10.00 12.30 A ATTH 182 CR ALU A 222 22.327 41.328 10.00 12.30 A ATTH 182 CR ALU A 222 22.327 41.33 13.30 A ATTH 182 CR ALU A 222 22.327 41.33 13.30 A ATTH 183 CR ALU A 222 22.327 41.33 13.30 A ATTH 183 CR ALU A 222 22.327 41.33 13.30 A ATTH 183 CR ALU A 222 22.327 41.33 13.30 A ATTH 183 CR ALU A 222 22.327 41.33 13.30 A ATTH 184 CR ALU A 223 22.327 41.33 13.30 A ATTH 184 CR ALU A 223 22.327 41.33 13.30 A ATTH 184 CR ALU A 223 22.327 41.33 13.30 A ATTH 184 CR ALU A 223 22.327 41.33 13.30 A ATTH 184 CR ALU A 223 22.327 41.33 13.30 A ATTH 184 CR
```

| 1962 CA SER A 239 | 32.706 20.656 (40.05 1.00 7.57 6 | 104 1965 CB SER A 239 | 32.90 19.984 (40.17 100 7.79 6 | 104 1965 CB SER A 239 | 32.90 20.415 (40.17 100 7.79 6 | 104 1965 CB SER A 239 | 31.20 20.415 (40.17 100 7.33 6 | 104 1965 CB SER A 239 | 31.20 20.155 (40.17 100 7.33 6 | 104 1965 CB SER A 240 | 31.30 20.064 (40.16 100 7.33 6 | 104 1968 CB PHE A 240 | 31.30 20.064 (40.17 100 7.28 6 | 104 1970 CB PHE A 240 | 31.30 20.265 (40.10 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.30 20.265 (40.10 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.30 20.265 (40.10 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.30 20.265 (40.10 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.30 20.265 (40.10 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.40 20.265 (40.10 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.40 20.265 (40.10 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.40 20.265 (40.10 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.40 20.265 (40.10 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.40 20.40 4.70 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.40 20.40 4.70 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.20 20.40 4.70 100 7.00 6.51 100 7.00 6 | 104 1970 CB PHE A 240 | 31.20 20.40 4.70 100 7.00 6.50 6 | 104 1970 CB PHE A 240 | 31.20 20.40 4.70 100 7.00 6.50 6 | 104 1970 CB PHE A 240 | 31.20 20.40 4.70 100 7.00 6.50 6 | 104 1970 CB PHE A 240 | 31.20 20.40 4.70 100 7.00 6.50 6 | 104 1970 CB PHE A 240 | 31.40 20.20 4.40 100 7.00 6.50 6 | 104 1970 CB PHE A 240 | 31.40 20.20 4.40 100 7.00 6.50 6 | 104 1990 CB PHE A 240 20.20 4.40 4.20 10.0 10.50 6.10 10.90 6.10

ATION 1909 N ALA A 233 35.626 23.626 37.639 1.00 5.00 5.41 1.00 1.00 5.45 6.41 1.00 1.00 6.45 6.41 1.00 6.41 1.00 6.41 1.00 6.41 1.00 6.41 1.00 6.41 1.00 6.41 1.00 6.

MICH 2015 CES 1RP A 244 28.452 B.3.054 6.2.096 1.00 10.65 6.4144 12016 CH2 1RP A 244 28.452 B.3.050 66.006 1.00 9.77 6.4144 2019 R. WAL A 245 26.2018 29.166 1.00 9.78 6.4144 2019 R. WAL A 245 26.2018 27.305 46.104 1.00 18.62 B.4144 2019 R. WAL A 245 26.002 27.305 46.114 1.00 10.26 A.414 2019 R. WAL A 245 26.002 27.305 46.114 1.00 10.26 A.414 2019 R. WAL A 245 26.002 27.305 46.114 1.00 10.26 A.414 2019 CC WAL A 245 26.105 26.105 27.305 46.114 1.00 10.26 A.414 2025 CC WAL A 245 26.105 26.105 27.305 46.114 1.00 10.25 A.414 2025 CC WAL A 245 26.202 26.203 44.290 1.00 13.35 6.414 2025 CC WAL A 245 26.202 27.203 44.290 1.00 13.35 6.414 2025 CC WAL A 245 26.202 26.203 44.290 1.00 10.25 A.414 2025 CC WAL A 245 26.202 26.203 44.290 1.00 10.25 A.414 2025 CC WAL A 245 26.202 26.203 44.290 1.00 10.25 A.414 2025 CC WAL A 245 26.202 26.203 44.290 1.00 10.25 A.414 2025 CC WAL A 246 27.202 26.203 44.290 1.00 10.25 A.414 2025 CC WAL A 246 27.202 26.203 44.290 1.00 10.25 A.414 2025 CC WAL A 246 27.202 27.203 44.290 1.00 10.25 A.414 2025 CC WAL A 246 27.202 27.203 44.290 1.00 12.30 A.414 2025 CC WAL A 246 27.202 27.203 44.290 1.00 12.30 A.414 2025 CC WAL A 246 27.302 27.203 44.290 1.00 12.30 A.414 2025 CC WAL A 246 27.302 27.203 44.290 1.00 12.30 A.414 2025 CC WAL A 246 27.302 27.203 44.290 1.00 12.30 A.414 2025 CC WAL A 246 27.302 27.304 42.301 1.00 12.30 A.414 2025 CC WAL A 246 27.302 27.304 42.301 1.00 12.30 A.414 2025 CC WAL A 248 27.302 27.304 42.301 1.00 12.30 A.414 2025 CC WAL A 248 27.303 1.00 12.30 A.414 2025 CC WAL A 248 27.303 1.00 12.30 A.414 2025 CC WAL A 248 27.303 1.00 12.30 A.414 2025 CC WAL A 248 27.303 1.00 12.30 A.414 2025 CC WAL A 248 27.303 1.00 12.30 A.414 2025 CC WAL A 248 27.303 1.00 12.30 A.414 2025 CC WAL A 248 27.403 1.00 12.30 A.414 2025 CC WAL A 248 27.403 1.00 12.30 A.414 2025 CC WAL A 248 27.403 1.00 12.30 A.414 2025 CC WAL A 248 27.403 1.00 12.30 A.414 2025 CC WAL A 248 27.403 1.00 12.30 A.414 2025 CC WAL A 249 27.403 1.00 12.30 A.414 2025 CC WAL A 249 27.403 1.00 12.30 A.414 2025 CC WAL A 249 27.4

WO 96/23874 PCT/DK96/00057

109

| MICHAEL | MARK | MARK

Michael	1986	68	Price A	290	10.555	16.3132	22.1175	1.00	7.05	5.65
Michael	2389	622	Price A	290	40.370	17.378	22.825	1.00	7.05	5.65
Michael	2399	622	Price A	290	40.370	13.61	22.214	1.00	2.46	5.65
Michael	2399	622	Price A	290	41.610	1.25	1.00	2.46	5.65	
Michael	2399	622	Price A	290	41.610	19.075	22.838	1.00	9.13	6.65
Michael	2399	623	Price A	290	41.610	19.075	1.00	2.13	6.65	
Michael	2399	624	Price A	290	39.186	15.881	19.084	1.00	9.13	6.65
Michael	2399	624	Ash A	291	31.61	19.075	1.00	1.00	1.00	
Michael	2399	624	Ash A	291	31.61	19.075	1.00	1.00	1.00	
Michael	2399	624	Ash A	291	31.62	1.00	1.33	6.46	1.00	1.00
Michael	2399	624	Ash A	291	31.62	1.00	1.33	6.46	1.00	1.00
Michael	2399	624	Ash A	291	31.62	1.00	1.33	6.46	1.00	1.00
Michael	2399	625	Ash A	291	31.62	1.00	1.33	6.46	1.00	1.00
Michael	2399	626	627	627	627	1.00	1.00	1.00	1.00	
Michael	2399	627	627	627	627	627	1.00	1.00	1.00	
Michael	2390	627	627	627	627	627	627	627	627	627

ATTICK 2333 N PHE A 284 31.212 21.483 30.801 1.00 7.67 6 ATTICK 2335 CA PHE A 284 31.516 21.589 29.383 1.00 7.67 6 ATTICK 2335 CG PHE A 284 31.516 22.409 29.110 1.00 7.61 6 ATTICK 2335 CG PHE A 284 31.002 24.475 20.222 1.00 7.61 6 ATTICK 2335 CG PHE A 284 31.002 24.475 20.222 1.00 7.61 6 ATTICK 2335 CG PHE A 284 31.002 24.475 20.232 1.00 7.61 6 ATTICK 2330 CET PHE A 284 31.002 24.475 20.232 1.00 7.61 6 ATTICK 2343 C PHE A 284 31.002 24.475 20.232 1.00 7.61 6 ATTICK 2343 C PHE A 284 31.002 24.475 20.2314 1.00 7.74 6 ATTICK 2343 C PHE A 284 31.002 24.475 20.2314 1.00 7.74 6 ATTICK 2343 C PHE A 284 31.002 24.475 20.2314 1.00 7.74 6 ATTICK 2343 C PHE A 284 31.002 10.512 20.9314 1.00 7.74 6 ATTICK 2343 C PHE A 284 31.002 10.512 20.9314 1.00 7.74 6 ATTICK 2343 C PHE A 284 31.007 10.722 20.9314 1.00 7.74 6 ATTICK 2343 C PHE A 284 31.007 10.722 20.9314 1.00 7.74 6 ATTICK 2343 C PHE A 284 31.007 10.722 20.9314 1.00 7.74 6 ATTICK 2353 C PHE A 285 31.007 10.722 20.9314 1.00 7.74 6 ATTICK 2353 C PHE A 285 31.007 10.724 20.902 1.00 9.24 A ATTICK 2353 C PHE A 285 31.007 10.724 20.902 ATTICK 2353 C PHE A 285 31.007 10.724 20.724 1.00 7.74 7 ATTICK 2353 C PHE A 286 31.774 1.007 20.444 1.00 7.74 7 ATTICK 2354 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.444 1.00 7.74 7 ATTICK 2355 C PHE A 286 30.707 10.707 20.707 10.707 20.707 10.707 20.707 10.707 20.707 10.707 20.707 10.7

ALICH 2545 O THR A 311 30.667 10.902 27.258 1.00 11.29 7
ALICH 2546 H VAL A 312 30.313 13.022 28.693 1.00 11.20 7
ALICH 2546 CR VAL A 312 30.313 13.022 28.693 1.00 11.20 7
ALICH 2550 CG2 VAL A 312 30.367 14.637 29.912 1.00 12.62 6
ALICH 2551 C VAL A 312 20.351 14.537 29.912 1.00 12.62 6
ALICH 2552 H VAL A 312 28.633 12.52 28.793 1.00 11.23 6
ALICH 2553 H VAL A 313 28.633 12.52 28.793 1.00 11.23 6
ALICH 2555 CG VAL A 313 28.633 13.825 27.061 1.00 11.23 6
ALICH 2555 CG VAL A 313 28.633 13.825 27.061 1.00 11.24 6
ALICH 2555 CG VAL A 313 28.633 13.825 27.061 1.00 11.24 6
ALICH 2555 CG VAL A 313 27.067 1.00 11.24 6
ALICH 2555 CG VAL A 313 27.067 1.00 11.24 6
ALICH 2555 CG VAL A 313 27.067 1.00 11.24 6
ALICH 2555 CG VAL A 313 27.067 1.00 11.24 6
ALICH 2555 CG VAL A 313 27.067 1.00 11.24 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.24 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.24 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2557 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.067 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.07 1.00 11.04 6
ALICH 2556 CG VAL A 313 27.07 1.00 11.04 6
ALICH 2556 CG VAL A 315 27.07 1.00 11.04 6
ALICH 2556 CG VAL A 315 27.07 1.00 11.04 6
ALICH 2557 CG VAL A 315 27.07 1.00 11.04 6
ALICH 2557 CG VAL A 315 27.07 1.00 11.04 6
ALICH 2557 CG VAL A 315 27.07 1.00 11.04 1.00 11

ALINH 2651 DOT ASP A 325

ALINH 2652 DOZ ASP A 325

ALINH 2652 DOZ ASP A 325

ALINH 2652 DOZ ASP A 325

ALINH 2653 OD ASP A 325

ALINH 2654 O ASP A 325

ALINH 2655 OD ASP A 325

ALINH 2655 OD ASP A 325

ALINH 2655 OD ASP A 325

ALINH 2656 OD ASP A 325

ALINH 2656 OD ASP A 326

ALINH 2650 OD ASP A 327

ALINH 2650 OD ASP A 327

ALINH 2650 OD ASP A 327

ALINH 3650 OD ASP A 327

ALINH 3650 OD ASP A 327

ALINH 2650 OD ASP A 327

ALINH 3650 OD ASP A 327

ALINH 3650 OD ASP A 326

ALINH 3650 OD ASP

| March | 2810 | N | PRO A 345 | 31,699 | 23,586 | 10,213 | 1,00 | 9,33 | 5,70 | 1,00 | 2,13 | 6,70 | 1,00 | 2,13 | 6,70 | 1,00 | 2,13 | 6,70 | 1,00 | 2,13 | 6,70 | 1,00 | 1,10 | 1,00 | 2,13 | 6,70 | 1,00 | 1,10 | 1,00 | 1,10 | 1,00 | 1,10 | 1,00 | 1,10

ATCH 2757 CC2 VAL A 339 36.745 21.811 16.463 1.00 9.26 6
ATCH 2758 C VAL A 339 38.513 24.68 13.287 1.00 12.55 7
ATCH 2756 C ALLA 330 39.016 22.68 13.287 1.00 12.55 7
ATCH 2756 C GLN A 340 39.016 22.68 13.287 1.00 12.55 7
ATCH 2765 CE GLN A 340 39.975 22.337 10.087 1.00 11.15 6
ATCH 2765 CE GLN A 340 41.372 21.974 10.087 1.00 11.15 6
ATCH 2765 CE GLN A 340 41.372 21.975 10.087 1.00 11.15 6
ATCH 2765 CE GLN A 340 41.372 21.975 10.087 1.00 11.15 6
ATCH 2765 CE GLN A 340 41.372 21.975 10.087 1.00 11.15 6
ATCH 2765 CE GLN A 340 41.372 21.975 10.087 1.00 11.15 6
ATCH 2765 CE GLN A 340 41.372 21.975 10.087 1.00 11.15 6
ATCH 2765 CE GLN A 340 41.372 21.975 10.087 1.00 12.34 A
ATCH 2766 CE GLN A 340 41.372 21.975 10.08 1.00 12.34 A
ATCH 2760 CE GLN A 340 41.272 21.975 10.08 1.00 12.34 A
ATCH 2775 CE INR A 341 37.08 1.02 21.30 1.00 12.34 A
ATCH 2775 CE INR A 341 37.08 1.02 21.30 1.00 12.34 A
ATCH 2775 CE INR A 341 37.08 1.00 27.48 6.397 1.00 12.34 A
ATCH 2775 CE INR A 341 37.54 24.91 6.337 1.00 12.34 A
ATCH 2775 CE INR A 341 37.54 24.91 6.337 1.00 12.34 A
ATCH 2775 CE INR A 341 37.54 24.91 6.337 1.00 12.34 A
ATCH 2775 CE INR A 341 37.54 24.91 6.337 1.00 12.34 A
ATCH 2775 CE INR A 341 37.54 24.91 6.337 1.00 12.34 A
ATCH 2775 CE INR A 342 37.54 24.91 6.337 1.00 12.34 A
ATCH 2775 CE INR A 342 37.54 24.91 6.337 1.00 12.34 A
ATCH 2775 CE INR A 342 37.54 24.91 6.337 1.00 12.34 A
ATCH 2775 CE INR A 342 37.54 24.91 6.337 1.00 12.34 A
ATCH 2775 CE INR A 342 37.54 24.91 6.337 1.00 10.35 A
ATCH 2775 CE INR A 342 37.54 24.91 6.337 1.00 10.35 A
ATCH 2775 CE INR A 342 37.54 24.91 6.337 1.00 10.35 A
ATCH 2775 CE INR A 342 37.54 24.91 6.337 1.00 10.35 A
ATCH 2775 CE INR A 343 37.54 24.91 7.307 1.00 10.35 A
ATCH 2775 CE INR A 343 37.54 24.91 7.307 1.00 10.35 A
ATCH 2775 CE INR A 343 37.54 24.91 7.307 1.00 10.35 A
ATCH 2775 CE INR A 343 37.54 24.91 7.307 1.00 10.35 A
ATCH 2775 CE INR A 343 37.54 24.91 7.307 1.00 10.35 A
ATCH 2775 CE INR A 343 37.54 24.91 7.307 1.00 10.35 A
ATCH 2775 CE INR A 343 37.54 24.90 3.300 1.00 10.30 A
ATCH 2775 CE

| Michael | 2916 | CE | 178 | M | 338 | 21.449 | 26.080 | 26.747 | 1.00 | 9.42 | 6.44

| March | Marc

ATCH 3128 CEI ILE A 384 28.029 28.790 12.411 1.00 13.70 6
ATCH 3130 CD 11E A 384 28.029 28.649 13.43 11.00 12.00 15.12 6
ATCH 3131 O 11E A 384 28.029 28.649 11.430 1.00 12.64 B
ATCH 3131 O 11E A 384 28.029 28.640 11.031 1.00 12.05 B
ATCH 3131 C C CLU A 385 22.649 30.641 1.00 12.02 7
ATCH 3132 CD CLU A 385 22.649 30.647 1.00 12.02 7
ATCH 3135 CD CLU A 385 22.649 36.671 1.00 12.02 7
ATCH 3135 CD CLU A 385 22.049 35.252 10.671 1.00 18.25 6
ATCH 3135 CD CLU A 385 22.049 35.252 10.671 1.00 18.25 6
ATCH 3139 C CLU A 385 22.049 35.252 10.671 1.00 18.25 6
ATCH 3139 C CLU A 385 22.049 35.057 10.00 18.26 A
ATCH 3139 C CLU A 385 22.049 35.057 10.00 18.26 A
ATCH 3140 C CLU A 385 22.049 35.057 10.00 18.26 A
ATCH 3140 C CLU A 385 22.049 35.057 10.00 18.27 A
ATCH 3141 N PRO A 386 21.647 29.867 7.199 1.00 11.26 A
ATCH 3142 C PRO A 386 21.647 29.867 7.199 1.00 11.26 A
ATCH 3145 C PRO A 386 21.647 28.047 8.523 1.00 11.27 A
ATCH 3145 C PRO A 386 21.647 28.047 8.524 1.00 11.27 A
ATCH 3145 C PRO A 386 21.647 28.047 1.00 11.26 A
ATCH 3145 C PRO A 386 21.647 28.047 1.00 11.26 A
ATCH 3145 C PRO A 386 21.647 28.047 1.00 11.26 A
ATCH 3145 C PRO A 386 21.647 28.047 1.00 11.26 A
ATCH 3145 C PRO A 386 21.677 28.047 1.00 11.26 A
ATCH 3145 C PRO A 386 21.677 28.047 1.00 11.26 A
ATCH 3145 C PRO A 386 21.677 28.047 1.00 11.26 A
ATCH 3145 C PRO A 386 21.677 28.047 1.00 11.26 A
ATCH 3145 C PRO A 386 21.057 28.047 1.00 11.26 A
ATCH 3146 C PRO A 386 21.057 28.047 1.00 11.26 A
ATCH 3150 C LEU A 387 21.057 28.047 1.00 11.26 A
ATCH 3150 C LEU A 386 21.057 28.047 1.00 11.26 A
ATCH 3150 C LEU A 388 21.057 28.047 1.00 11.26 A
ATCH 3150 C LEU A 389 11.047 28.061 1.00 11.26 A
ATCH 3151 C LEU A 389 11.047 28.041 1.00 10.00 11.00 A
ATCH 3151 C LEU A 389 11.047 28.041 1.00 10

ATION 3075 0 ILE A 377 37.433 34.301 12.173 1.00 16.90 8 AITCH 3075 N PRO A 378 37.634 31.617 9.621 1.00 16.91 7 AITCH 3075 N PRO A 378 37.634 31.617 9.621 1.00 16.91 7 AITCH 3075 C PRO A 378 35.635 31.222 8.263 1.00 15.97 6 AITCH 3080 C PRO A 378 35.635 31.222 8.263 1.00 15.97 6 AITCH 3080 C PRO A 378 35.213 31.835 8.456 1.00 15.97 6 AITCH 3080 C AITCH

ATCH 3181 CG ARG A 391 18.295 24.255 18.295 1.00 6.17 6
ATCH 3182 RG ARG A 391 19.445 22.392 20.476 1.00 6.11 6
ATCH 3183 RG A 391 19.441 22.752 21.057 1.00 6.11 6
ATCH 3186 RIE ARG A 391 19.441 22.752 21.057 1.00 6.11 6
ATCH 3186 RIE ARG A 391 19.447 22.533 22.359 1.00 6.11 7
ATCH 3186 RIE ARG A 391 19.447 22.533 22.359 1.00 6.11 7
ATCH 3186 C ARG A 391 19.447 22.533 22.359 1.00 6.11 7
ATCH 3180 RIE ARG A 391 19.447 22.533 22.359 1.00 6.142 7
ATCH 3180 LIE ARG A 391 19.447 22.533 22.359 1.00 6.142 7
ATCH 3180 LIE ARG A 391 15.482 25.816 17.099 1.00 9.24 6
ATCH 3190 C LIYS A 392 15.061 25.811 16.184 1.00 10.42 7
ATCH 3190 C LIYS A 392 15.061 25.811 16.184 1.00 11.31 6
ATCH 3190 C LIYS A 392 15.061 25.811 16.184 1.00 11.31 6
ATCH 3190 C LIYS A 392 12.061 25.81 16.202 1.00 11.31 6
ATCH 3100 C LIYS A 392 12.061 25.801 16.202 1.00 11.31 6
ATCH 3100 C LIYS A 392 12.061 25.801 16.202 1.00 11.31 6
ATCH 3100 C LIYS A 392 12.061 25.301 16.302 1.00 11.31 6
ATCH 3100 C LIYS A 392 12.061 32.301 10.00 11.31 6
ATCH 3100 C LIYS A 392 12.061 32.301 10.00 11.32 6
ATCH 3200 C LIYS A 392 12.061 32.301 10.00 11.32 6
ATCH 3200 C C LIY A 393 11.201 25.218 11.301 10.00 12.37 6
ATCH 3200 C C LIY A 393 11.201 25.218 11.301 10.00 12.37 6
ATCH 3200 C C LIY A 394 11.201 25.316 11.00 12.37 6
ATCH 3200 C C LIY A 394 11.201 25.316 11.00 11.31 6
ATCH 3201 C C LIY A 394 11.201 25.316 11.00 11.31 6
ATCH 3201 C C LIY A 394 11.201 25.316 11.00 11.31 6
ATCH 3201 C C LIY A 394 11.201 25.316 11.00 11.31 6
ATCH 3201 C C LIY A 394 11.201 25.316 11.00 11.37 6
ATCH 3201 C C LIY A 394 11.201 25.316 11.00 11.37 6
ATCH 3201 C C LIY A 394 11.201 25.316 11.00 11.37 6
ATCH 3201 C C LIY A 394 11.201 25.316 11.00 11.37 6
ATCH 3201 C C LIY A 394 11.201 25.201 11.00 11.37 6
ATCH 3201 C C LIY A 394 11.201 25.201 11.00 11.37 6
ATCH 3201 C C LIY A 394 11.201 25.201 11.00 11.37 1.00 11.37 6
ATCH 3201 C C LIY A 394 11.201 25.201 11.00 11.37 1.00 11.37 6
ATCH 3201 C C LIY A 394 11.201 25.201 11.00 11.37 1.00 11.37 1.00 11.37 1.00 11.37 1.00 11.37 1.00 11.37 1.00 11.37

ANOH 3287 CG PHE A 403 25.776 7.267 18.655 1.00 20.07 6

AICH 3228 CGD PHE A 403 25.379 9.241 18.167 1.00 20.07 6

AICH 3228 CGD PHE A 403 25.379 9.241 18.167 1.00 21.07 6

AICH 3229 CED PHE A 403 27.318 10.216 15.354 1.00 21.07 6

AICH 3229 CED PHE A 403 27.318 10.216 15.354 1.00 21.07 6

AICH 3229 CED PHE A 403 27.318 10.216 15.354 1.00 12.07 6

AICH 3229 CED PHE A 403 27.318 10.216 15.354 1.00 12.07 6

AICH 3229 CED PHE A 403 27.318 10.216 15.354 1.00 12.07 6

AICH 3229 CED PHE A 403 27.318 10.206 1.00 15.35 6

AICH 3229 CED PHE A 403 27.318 10.206 1.00 15.35 6

AICH 3229 CED PHE A 403 27.318 10.206 1.00 15.35 6

AICH 3229 CED PHE A 403 27.318 10.206 1.00 15.35 6

AICH 3229 CED PHE A 403 27.318 1.320 1.00 15.31 6

AICH 3229 CED PHE A 403 27.318 1.320 1.00 15.31 6

AICH 3229 CED PHE A 403 27.318 2.320 1.00 15.31 6

AICH 3229 CED PHE A 403 27.318 2.320 1.00 15.31 6

AICH 3229 CED PHE A 403 27.318 2.320 1.00 15.31 6

AICH 3229 CED PHE A 403 27.318 2.320 1.00 15.31 6

AICH 3229 CED PHE A 403 27.318 2.320 1.00 15.31 6

AICH 3229 CED PHE A 403 27.318 2.320 1.00 15.31 6

AICH 3229 CED PHE A 403 27.318 2.320 1.00 15.31 6

AICH 3220 CED PHE A 403 27.318 2.320 1.00 15.31 6

AICH 3220 CED PHE A 404 27.320 2.320 1.00 15.31 6

AICH 3220 CED PHE A 404 27.320 2.320 1.00 15.31 6

AICH 3220 CED PHE A 405 27.320 2.300 1.00 15.31 6

AICH 3300 CED PHE A 405 37.320 2.300 1.00 15.31 6

AICH 3310 CED PHE A 405 37.320 2.300 1.00 15.31 6

AICH 3310 CED PHE A 405 37.320 2.300 1.00 15.31 6

AICH 3310 CED PHE A 406 37.400 2.323 8.381 1.00 15.31 6

AICH 3311 CED PHE A 406 37.400 2.323 8.381 1.00 15.31 6

AICH 3312 CED PHE A 406 37.400 2.323 8.381 1.00 15.51 6

AICH 3312 CED PHE A 406 37.400 2.323 8.381 1.00 15.51 6

AICH 3312 CED PHE A 406 37.400 2.323 8.381 1.00 15.51 6

AICH 3313 CED PHE A 406 37.400 2.323 8.381 1.00 15.51 6

AICH 3313 CED PHE A 406 37.400 2.323 8.381 1.00 15.51 6

AICH 3313 CED PHE A 406 37.400 2.323 8.381 1.00 15.51 6

AICH 3313 CED PHE A 406 37.300 2.300 2.300 0.00 17.51 6

AICH 3320 CED PHE A 405 37.300 0.00 17.51

ATCH 3446 CA LEU A 424 15.778 16.900 9.939 1.00 10.33 6 ATCH 3446 CA LEU A 424 15.377 18.024 00.667 1.00 7.87 6 ATCH 3450 CD LEU A 424 15.377 18.024 01.6607 1.00 7.87 6 ATCH 3450 CD LEU A 424 15.577 18.034 07.071 1.00 10.06 8 ATCH 3450 CD LEU A 424 15.648 14.626 10.07 15.547 1.00 18.33 ATCH 3452 C LEU A 424 15.648 14.626 10.07 10.01 10.06 8 ATCH 3452 C ALA A 425 16.685 17.564 10.07 10.01 10.00 10.06 8 ATCH 3452 C ALA A 425 16.685 17.264 16.085 17.00 10.06 8 ATCH 3452 C ALA A 425 16.885 17.264 16.085 17.00 10.00

AICH 3193 C GLY A 415 8.276 15.870 15.637 1.00 17.118 6

AICH 3195 C GLY A 415 7.581 16.004 16.004 1.00 17.23 8

AICH 3195 C ASP A 416 6.026 16.860 17.118 1.00 17.13 16.00 17.13 18.10 17.13 18.00 17

| MICH | 3552 | CD2 | TTR A 439 | 10.516 | 5.664 | 11.875 | 1.00 | 15.05 | 6.164 | 5.365 | 11.875 | 1.00 | 17.36 | 6.164 | 5.365 | 11.875 | 1.00 | 17.36 | 6.164 | 5.365 | 11.68 | 1.00 | 17.36 | 6.164 | 5.365 | 11.68 | 1.00 | 17.36 | 6.164 | 5.365 | 11.68 | 1.00 | 17.36 | 6.164 | 5.365 | 1.00 | 17.36 | 6.164 | 5.365 | 10.00 | 17.36 | 6.164 | 5.365 | 10.00 | 17.36 | 6.164 | 5.365 | 10.00 | 17.36 | 6.164 | 5.365 | 10.00 | 17.36 | 6.164 | 5.365 | 10.00 | 17.36 | 6.164 | 5.365 | 10.00 | 17.36 | 6.164 | 5.365 | 10.00 | 17.36 | 6.164 | 5.365 | 10.00 | 17.36 | 6.164 |

ATOM 3500 CA PRO A 422 33.639 10.665 0.884 1.00 16.46 6
ATOM 3500 CA PRO A 422 33.635 10.832 -0.199 1.00 16.46 6
ATOM 3501 CG PRO A 422 35.224 10.168 -0.554 1.00 16.46 6
ATOM 3502 CG PRO A 422 35.224 10.168 -0.554 1.00 16.46 6
ATOM 3505 K GLY A 433 31.312 12.512 -0.641 1.00 15.15 7
ATOM 3505 K GLY A 433 20.812 12.532 -0.641 1.00 15.15 7
ATOM 3505 C GLY A 433 20.812 12.532 -0.461 1.00 15.15 7
ATOM 3505 C GLY A 433 20.812 12.532 -0.461 1.00 15.15 7
ATOM 3505 C GLY A 433 20.812 12.532 -0.461 1.00 15.65 6
ATOM 3506 C GLY A 433 20.812 12.532 -0.461 1.00 15.65 6
ATOM 3506 C GLY A 433 20.812 12.532 -0.788 1.00 15.65 6
ATOM 3507 C GLY A 433 20.812 12.532 -0.788 1.00 15.65 6
ATOM 3508 C GLY A 433 20.812 12.532 -0.788 1.00 15.65 6
ATOM 3509 C GLY A 434 20.812 1.00 10.25 6
ATOM 3500 C GLY A 434 20.812 1.00 10.25 6
ATOM 3510 C GLY A 434 20.812 1.00 10.55 6
ATOM 3511 R GLY A 434 20.812 1.00 10.55 6
ATOM 3512 C GLY A 434 20.812 1.00 15.20 1.00 15

```
ATCH 3658 CG1 ILE A 452 16.275 5.551 7802 1.00 14.27 6.410 3660 CG1 ILE A 452 16.275 5.551 7802 1.00 14.27 6.410 3660 CG1 ILE A 452 19.422 24.011 4.527 1.00 13.78 6.410 3660 CG1 ILE A 452 19.422 24.14 4.27 1.00 13.78 6.410 3663 CG1 THR A 453 21.685 24.011 4.427 1.00 13.78 6.410 3663 CG1 THR A 453 21.685 24.011 4.427 1.00 12.74 6.47 1.00 12.32 6.410 3664 CG2 THR A 453 21.685 24.011 4.427 1.00 12.32 6.410 3664 CG2 THR A 453 21.685 24.011 4.427 1.00 12.32 6.410 3664 CG2 THR A 453 21.685 24.01 3.030 1.00 12.32 6.410 3664 CG2 THR A 453 21.665 21.00 12.32 6.410 3.030 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 12.32 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 1.00 13.34 6.410 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.04
```

| Mich | 3605 | 0 | CUY | 4446 | 4,924 | 14,124 | -0.066 | 1.00 | 15,33 | 1,4144 | 3605 | M | CU | M | 4477 | 5,963 | 13,877 | 1,00 | 14,73 | 7,1444 | 3606 | M | CU | M | 4477 | 5,963 | 1,987 | 1,00 | 14,73 | 7,1444 | 3606 | CG | CUU | M | 4477 | 5,715 | 15,902 | 5,455 | 1,00 | 15,75 | 1,00 | 1

ATTHEN STATE CC PRO A 459 15.637 19.885 -4.393 1.00 18.37 6

ATTHEN STATE CC PRO A 459 14.504 16.723 1.00 18.37 6

ATTHEN STATE CC PRO A 459 14.504 16.728 1.00 18.24 7

ATTHEN STATE CC VAL A 460 15.907 14.504 1.00 18.24 7

ATTHEN STATE CC VAL A 460 15.907 14.504 1.00 18.24 7

ATTHEN STATE CC VAL A 460 15.907 14.504 1.00 17.516 6

ATTHEN STATE CC VAL A 460 15.371 14.396 -0.750 1.00 17.516 6

ATTHEN STATE CC VAL A 460 15.371 14.396 -0.750 1.00 17.516 6

ATTHEN STATE CC VAL A 460 11.892 15.157 -0.428 1.00 18.23 6

ATTHEN STATE CC VAL A 460 11.892 15.157 -0.428 1.00 18.23 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.779 1.00 18.23 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.779 1.00 18.23 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.779 1.00 18.23 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.779 1.00 18.23 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.779 1.00 18.23 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.779 1.00 18.20 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.779 1.00 18.20 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.779 1.00 18.20 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.779 1.00 18.20 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.759 1.00 17.45 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.759 1.00 17.45 6

ATTHEN STATE CC VAL A 461 11.894 13.302 -1.759 1.00 17.45 6

ATTHEN STATE CC VAL A 461 11.894 13.307 1.00 18.20 6

ATTHEN STATE CC VAL A 461 11.894 13.307 1.00 18.20 6

ATTHEN STATE CC VAL A 461 11.894 13.307 1.00 18.20 6

ATTHEN STATE CC VAL A 461 11.894 13.307 1.00 18.20 6

ATTHEN STATE CC VAL A 461 11.894 13.307 1.00 18.20 6

ATTHEN STATE CC VAL A 461 11.894 13.307 1.00 18.20 6

ATTHEN STATE CC VAL A 463 10.22 11.30 1.307 1.00 18.20 6

ATTHEN STATE CC CC VAL A 463 10.22 1.307 1.301 1.307 1.00 18.20 6

ATTHEN STATE CC CC VAL A 463 10.22 1.307 1.301 1.307 1.00 18.20 6

ATTHEN STATE CC CC VAL A 464 1.307 1.301 1.307 1.00 18.20 6

ATTHEN STATE CC CC VAL A 464 1.307 1.30

| March | Marc

| Main |

| Mith |

| The | The | Color | Live | 18.5 | 19.712 | 20.331 | 10.712 | 10.712 | 10.312 | 10.712 | 10.

ATICH (115 OLY MAI X 24, 12.513, 2.40, 2.216, 1.00 27.39 AIGH (116 OLY MAI X 24, 17.213, 2.30, 2.216, 1.00 27.39 AIGH (116 OLY MAI X 24, 17.213, 2.30, 2.216, 1.00 24.05 BAIR (117 OLY MAI X 24, 17.213, 2.30, 2.216, 1.00 24.05 BAIR (117 OLY MAI X 24, 17.213, 2.30, 2.216, 1.00 24.05 BAIR (117 OLY MAI X 24, 17.213, 2.30, 2.213, 2.30, 2.213, 2.30, 2.3

| Color | Colo

ATTICH (222 DOB MAT X 35 9.844 14,771 51.911 1.00 36.68 ATTICH (222 DOB MAT X 35 10.706 24,237 50.395 1.00 36.68 ATTICH (222 DOB MAT X 35 10.706 24,237 50.395 1.00 34,68 BATTICH (224 DOB MAT X 35 10.706 24,237 50.395 1.00 34,68 BATTICH (224 DOB MAT X 35 10.706 24,237 50.395 1.00 34,68 BATTICH (224 DOB MAT X 35 10.706 24,237 50.395 1.00 34,68 BATTICH (225 DOB MAT X 35 10.706 24,22 6.837 1.00 45,60 BATTICH (225 DOB MAT X 35 10.706 24,22 6.837 1.00 55,63 BATTICH (225 DOB MAT X 35 10.706 24,22 6.837 1.00 55,63 BATTICH (225 DOB MAT X 35 10.706 24,22 6.837 1.00 55,63 BATTICH (225 DOB MAT X 35 10.706 24,22 6.837 1.00 55,43 BATTICH (225 DOB MAT X 35 10.706 24,22 6.837 1.00 55,43 BATTICH (225 DOB MAT X 36 10.706 1.007 1.007 1.00 55,43 BATTICH (225 DOB MAT X 36 10.707 1.007 1.007 1.00 55,43 BATTICH (225 DOB MAT X 36 10.707 1.007 1.00 55,43 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 36 10.707 1.00 55,44 BATTICH (225 DOB MAT X 37 10.707 1.00 55,44 BATTICH (225 DOB MAT X 37 10.707 1.00 55,44 BATTICH (225 DOB MAT X 37 10.707 1.00 51,44 BATTICH (225 DOB MAT X 37 10.707 1.00 51,44 BATTICH (225 DOB MAT X 37 10.707 1.00 51,44 BATTICH (225 DOB MAT X 38 10.707 1.00 51,44 BATTICH (225 DOB MAT X 38 10.707 1.00 51,44 BATTICH (225 DOB MAT X 38 10.707 1.00 51,44 BATTICH (225 DOB MAT X 38 10.707 1.00 51,44 BATTICH (226 DOB MAT X 38 10.707 1.00 51,44 BATTICH (226 DOB MAT X 38 10.707 1.00 51,44 BATTICH (226 DOB

ATCH 4400 OUG MAY X \$1 10.155 9.058 10.207 1.00 72.09 8 14.00 00.00 MAY X \$1 10.152 5.356 10.053.15 8 14.00 00.00 MAY X \$1 10.152 5.356 10.053.15 8 14.00 00.00 MAY X \$1 10.152 6.0593 5.0523 1.00 53.15 8 14.00 00.00 MAY X \$1 10.152 6.0596 4.529 1.00 73.12 8 14.00 00.00 MAY X \$1 11.152 6.0596 4.529 1.00 73.12 8 14.00 00.00 MAY X \$1 11.152 6.0596 4.529 1.00 73.12 8 14.00 00.00 MAY X \$1 11.152 6.0596 4.529 1.00 73.13 8 14.00 00.00 MAY X \$1 11.152 6.0596 1.00 73.13 8 14.00 00.00 MAY X \$1 11.152 6.0596 4.529 1.00 73.13 8 14.00 00.00 MAY X \$1 11.152 6.0596 1.00 73.13 8 14.00 00.00 MAY X \$1 11.152 6.0596 1.00 73.13 8 14.00 00.00 MAY X \$2 10.00 73.10 00.00 73.10 00.00 MAY X \$2 10.00 73.10 00.00 73.10 00.00 MAY X \$2 10.00 73.10 00

ATCH 4347 OAS BALT X 65 115.207 36.176 30.314 100 64.04 BALTON 4348 OAS BALTON 4348 OAS BALTON 4350 OAS BALT X 65 40.766 24.807 65.315 20.313 10.00 37.06 BALT X 65 40.766 24.807 65.315 20.313 11.00 37.06 BALT X 65 50.76 25.315 20.313 11.00 37.07 BALT X 65 50.76 26.317 20.313 11.00 37.07 BALT X 65 50.76 10.00 61.31 BALT X 65 50.76 10.00 61.31 BALT X 65 50.76 10.00 61.32 BALT X 65 50.76 10.00

ATCH 4506 ORC MAY X 62 39.039 74.039 38.673 1.00 64.37 8.414 4507 OLS MAY X 62 39.039 74.039 14.675 1.00 52.29 8.414 4509 OLS MAY X 62 37.782 54.213 14.675 1.00 52.36 8.414 4519 OLS MAY X 62 27.782 54.213 14.675 1.00 52.36 8.414 4519 OLS MAY X 63 64.519 0.033 56.411 1.00 57.35 8.414 4519 OLS MAY X 63 64.519 0.033 56.411 1.00 57.35 8.414 4519 OLS MAY X 63 64.519 0.033 56.411 1.00 57.32 8.414 4519 OLS MAY X 63 64.519 0.033 56.411 1.00 57.32 8.414 4519 OLS MAY X 63 64.519 0.033 56.411 1.00 57.32 8.414 4519 OLS MAY X 63 64.519 0.034 56.47 1.00 67.50 8.414 4519 OLS MAY X 64 64.511 1.00 57.51 1.00 67.50 8.414 4519 OLS MAY X 64 64.511 1.00 57.51 1.00 67.50 8.414 4519 OLS MAY X 64 64.511 1.00 57.51 1.00 67.50 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 57.54 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 67.50 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 67.50 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 67.50 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 67.50 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 67.51 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 67.51 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 67.51 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 67.51 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 67.51 8.414 4519 OLS MAY X 64 64.521 47.71 25.521 1.00 67.51 8.414 47.71 25.521 1.00 67.51 8.414 47.71 25.521 1.00 67.51 8.414 47.71 25.521 1.00 67.51 8.414 47.71 25.521 1.00 67.51 8.414 47.71 25.521 1.00 67.51 8.414 47.71 25.521 1.00 67.51 8.414 47.71 25.521 1.00 67.51 8.414 47.71 25.521 1.00 67.51 8.414 47.71 25.521 1.00 67.51 8.414 47.71 1.00 67.51

ATICH 4455 DUM MIX \$6 53.874 20.460 35.843 1.00 60.27 ALICH 4455 DUM MIX \$6 20.830 4.835 11.524 1.000 60.27 BATCH 4455 DUM MIX \$6 20.830 4.835 11.524 1.000 60.20 BATCH 4455 DUM MIX \$6 20.830 4.835 11.524 1.000 60.20 BATCH 4455 DUM MIX \$7 44.538 21.346 24.084 11.00 64.12 BATCH 4455 DUM MIX \$7 44.538 21.346 24.084 11.00 64.12 BATCH 4455 DUM MIX \$7 44.538 21.346 10.00 45.12 BATCH 4455 DUM MIX \$7 44.538 21.346 10.00 45.12 BATCH 4455 DUM MIX \$7 40.50 20.00 10.00 50.13 BATCH 4455 DUM MIX \$7 50.00 87 4.00 50.00

| MICH | 4612 | OLZ MIX | R | 13.341 | 34.872 | 38.349 | 1.00 | 64.64 | 8.470 | 4613 | OLZ MIX | R | 11.746 | 61.776 | 413.76 | 1.00 | 81.62 | 8.470 | 4613 | OLZ MIX | R | 17.746 | 61.776 | 413.76 | 1.00 | 81.62 | 8.470 | 4615 | OLZ MIX | R | 17.746 | 413.76 | 1.00 | 81.62 | 8.470 | 4615 | OLZ MIX | R | 17.746 | 413.76 | 1.00 | 81.62 | 8.470 | 4615 | OLZ MIX | R | 17.746 | 413.76 | 1.00 | 81.62 | 8.470 | 4615 | OLZ MIX | R | 17.75 | 41.257 | 51.00 | 7.79 | 8.470 | 4615 | OLZ MIX | R | 17.86 | 41.267 | 31.60 | 1.00 | 62.64 | 8.470 | 4615 | OLZ MIX | R | 17.86 | 41.637 | 51.00 | 7.79 | 8.470 | 4623 | OLZ MIX | R | 17.86 | 41.637 | 0.00 | 7.70 | 8.470 | 4623 | OLZ MIX | R | 17.75 | 41.637 | 0.00 | 7.70 | 8.470 | 4623 | OLZ MIX | R | 17.70 | ALM | 4623 | OLZ MIX | R | 17.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | ALM | 4623 | OLZ MIX | R | 47.70 | A

ATICH (559 OLG MAIX 70 (22.78) (0.50) -0.175 (1.00) 10.00 B. ATICH (556 OLG MAIX 70 (5.225) (0.527) (1.548) (0.542) (1.00 65.28) ATICH (556 OLG MAIX 70 (5.225) (0.527) (1.548) (1.00 65.28) ATICH (555 OLG MAIX 70 (5.225) (0.527) (1.572) (1

5.054 67.844 67.844 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 97.1528 6.740 3.728 3.7283 3.7283 3.7283 3.7283 3.7283 3.7283 3.7283 3.7283 5.72 0017 A 104 Appendix 1

SUBSTITUTE SHEET (RULE 26)

CLAIMS

15

- 1. A method of constructing a variant of a parent Termamyl-like α -amylase, which variant has α -amylase activity and at least one altered property as compared to said parent α -amylase, which method comprises
- i) analysing the structure of the parent Termamyl-like α amylase to identify at least one amino acid residue or at least
 one structural part of the Termamyl-like α -amylase structure,
 which amino acid residue or structural part is believed to be
 of relevance for altering said property of the parent Termamyllike α -amylase (as evaluated on the basis of structural or
 functional considerations),
- ii) constructing a Termamyl-like α -amylase variant, which as compared to the parent Termamyl-like α -amylase, has been modified in the amino acid residue or structural part identified in i) so as to alter said property, and
- iii) testing the resulting Termamyl-like α -amylase variant for said property.
- 2. The method according to claim 1, wherein the property to be altered is selected from the group consisting of substrate specificity, substrate binding, substrate cleavage pattern, temperature stability, pH dependent activity, pH dependent stability (especially increased stability at low (e.g. pH<6) or high (e.g. pH>9) pH values), stability towards oxidation, Ca²⁺dependency and specific activity.
- 3. The method according to claim 1 or 2, wherein the property to be altered is the calcium ion dependency and the structural part to be modified is selected from the group consisting of the C domain, the interface between the A and B domain, the interface between the A and C domain, or the interaction to a calcium binding site of the Termamyl-like α -amylase.

WO 96/23874 PCT/DK96/00057

4. The method according to claim 1 or 2, wherein the property to be altered is the substrate cleavage pattern and the structural part to be modified is located within 10Å from an amino acid residue of the substrate binding site.

- 5. A method of constructing a variant of a parent Termamyl-like α -amylase, which variant has α -amylase activity and one or more altered properties as compared to said parent α -amylase, which method comprises
- 10 i) comparing the three-dimensional structure of the Termamyllike α -amylase with the structure of a non-Termamyl-like α -amylase,
- ii) identifying a part of the Termamyl-like α -amylase structure which is different from the non-Termamyl-like α -amylase 15 structure and which from structural functional or considerations is contemplated to be responsible differences in one or more properties of the Termamyl-like and non-Termamyl-like α -amylase, and
- iii) modifying the part of the Termamyl-like α -amylase 20 identified in ii) whereby a Termamyl-like α -amylase variant is obtained, one or more properties of which differ from the parent Termamyl-like α -amylase.
- 6. The method according to claim 6, wherein, in step iii), the 25 part of the Termamyl-like α -amylase is modified so as to ressemble the corresponding part of the non-Termamyl-like α -amylase.
- 7. The method according to claim 5 or 6, wherein, in step iii), the modification is accomplished by deleting one or more amino acid residues of the part of the Termamyl-like α -amylase to be modified; by replacing one or more amino acid residues of the part of the Termamyl-like α -amylase to be modified with the amino acid residues occupying corresponding positions in the non-Termamyl-like α -amylase; or by insertion of one or more amino acid residues present in the non-Termamyl-like α -amylase into a corresponding position in the Termamyl-like α -amylase.

- 8. The method according to any of claims 5-7, wherein the non-Termamyl-like α -amylase structure is the structure of a fungal α -amylase or a mammalian α -amylase.
- 5 9. The method according to claim 8, wherein the non-Termamyllike α -amylase is the Aspergillus oryzae TAKA α -amylase, the Anniger acid α -amylase, the Bacillus subtilis α -amylase or the pig pancreatic α -amylase.
- 10 10. The method according to any of claims 1-9, wherein the parent Termamyl-like α -amylase is derived from a strain of Bacillus.
- 11. The method according to claim 10, wherein the parent α15 amylase is derived from a strain of a B. licheniformis, B. amyloliquefaciens, B. stearothermophilus or a strain from an
 alkalophilic Bacillus sp. such as NCIB 12289, NCIB 12512 or
 NCIB 12513.
- 20 12. The method according to any of claims 1-11, wherein the parent α -amylase is a hybrid α -amylase comprising a combination of partial amino acid sequences derived from at least two α -amylases, of which one is a Termamyl-like α -amylase and the other(s) are, e.g., from a microbial and/or a mammalian α -25 amylase.
- 13. The method according to any of claims 5-12, wherein the part of the parent Termamyl-like α -amylase to be modified and identified in step ii) is loop 1, loop 2, loop 3 and/or loop 8 of the parent α -amylase.
 - 13. A method of constructing a variant of a parent Termamyllike α -amylase, which has a decreased calcium ion dependency as compared to said parent, which method comprises:
 - i) identifying an amino acid residue within 10Å from a Ca² binding site of a Termamyl-like α -amylase in a model of the three-dimensional structure of said α -amylase, which from

 α -amylase variant.

structural or functional considerations is believed to be responsible for a non-optimal calcium ion interaction,

- ii) constructing a variant in which said amino acid residue is replaced with another amino acid residue which from structural or functional considerations is believed to be important for establishing a higher Ca²⁺ binding affinity, and iii) testing the Ca²⁺ dependency of the resulting Termamyl-like
- 10 14. A method of constructing a variant of a parent Termamyllike α -amylase which variant has α -amylase activity and an altered pH dependent activity, which method comprises
- i) in a three-dimensional structure of the Termamyl-like α 15 amylase in question, identifying an amino acid residue within
 15Å from an active site residue, in particular 10Å from an
 active site residue, which amino acid residue is contemplated
 to be involved in electrostatic or hydrophobic interactions
 with an active site residue,

20

- ii) replacing, in the structure, said amino acid residue with an amino acid residue which changes the electrostatic and/or hydrophobic surroundings of an active site residue and evaluating the accomodation of the amino acid residue in the structure,
 - iii) optionally repeating step i) and/or ii) until an amino acid replacement has been identified which is accommodated into the structure.

- iv) constructing a Termamyl-like α -amylase variant resulting from steps i), ii) and optionally iii) and testing the pH dependent activity of said variant.
- 35 15. A method of increasing the thermostability and/or altering the temperature optimum of a parent Termamyl-like α -amylase, which method comprises

- i) identifying an internal hole or a crevice of the parent Termamyl-like α -amylase in the three-dimensional structure of said α -amylase,
- ii) replacing, in the structure, one or more amino acid residues in the neighbourhood of the hole or crevice identified in i) with another amino acid residue which from structural or functional considerations is believed to increase the hydrophobic interaction and to fill out or reduce the size of the hole or crevice,
- iii) constructing a Termamyl-like α -amylase variant resulting from step ii) and testing the thermostability and/or temperature optimum of the variant.
- 16. A method of constructing a variant of a Termamyl-like α 15 amylase which has a reduced ability to cleave a substrate close to the branching point, which method comprises
- i) identifying the substrate binding area of the parent Termamyl-like α -amylase in a model of the three-dimensional structure of said α -amylase,
- ii) replacing, in the model, one or more amino acid residues of the substrate binding area of the cleft identified in i), which is/are believed to be responsible for the cleavage pattern of the parent α-amylase, with another amino acid residue which from structural considerations is believed to result in an altered substrate cleavage pattern, or deleting one or more amino acid residues of the substrate binding area contemplated to introduce favourable interactions to the substrate or adding one or more amino acid residues to the substrate binding area contemplated to introduce favourable interactions to the substrate binding area contemplated to introduce favourable interactions to the substrate, and
- iii) constructing a Termamyl-like α -amylase variant resulting from step ii) and testing the substrate cleavage pattern of the variant.
 - 17. The method according to any of the preceeding claims, in which the α -amylase variant is obtained by cultivating a

microorganism comprising a DNA sequence encoding the variant under conditions which are conducive for producing the variant, and optionally subsequently recovering the variant from the resulting culture broth.

- 18. A variant of a parent Termamyl-like α-amylase, in which variant at least one amino acid residue of the parent α-amylase, which is/are present in a fragment corresponding to the amino acid fragment 44-57 of the amino acid sequence of SEQ
 10 ID No. 4, has been deleted or replaced with one or more amino acid residues which is/are present in a fragment corresponding to the amino acid fragment 66-84 of the amino acid sequence shown in SEQ ID No. 10, or in which one or more additional amino acid residues has been added using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.
- 19. A variant of a parent Termamyl-like α-amylase, which variant has a region which, when the amino acid sequence of variant is aligned most closely with the amino acid sequence of the said parent α-amylase, occupies the same position as the portion from residue X to residue Y of SEQ ID No 4, the said region having at least 80% sequence homology with the part of SEQ ID No 10 extending from residue Z to residue V of SEQ ID No 25 10, wherein
 - X is the amino acid residue occupying position 44, 45, 46, 47 or 48 of SEQ ID No. 4,
 - Y is the amino acid residue occupying position 51, 52, 53, 54, 55, 56 or 57 of SEQ ID No. 4,
- 30 Z is the amino acid residue occupying position 66, 67, 68, 69 or 70 of SEQ ID No. 10, and
 - V is the amino acid residue occupying position 78, 79, 80, 81, 82, 83 or 84 of SEQ ID No. 10.
- 35 20. The variant according to claim 18 or 19, wherein X is the amino acid residue occupying position 48 and Y the amino acid residue occupying position 51 of SEQ ID NO 4 and Z is the amino

acid residue occupying position 70 and V the amino acid residue occupying position 78 in SEQ ID No 10.

- 21. A variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is/are present in an amino acid fragment corresponding to the amino acid fragment 195-202 of the amino acid sequence of SEQ ID No. 4, has been deleted or replaced with one or more of the amino acid residues which is/are present in an amino acid fragment corresponding to the amino acid fragment 165-177 of the amino acid sequence shown in SEQ ID No. 10, or in which one or more additional amino acid residues has been added using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.
- 22. A variant of a parent Termamyl-like α-amylase, which variant has a region which, when the amino acid sequence of variant is aligned most closely with the amino acid sequence of the said parent α-amylase, occupies the same position as the portion from residue X to residue Y of SEQ ID No 4, the said region having at least 80%, such as 90% sequence homology with the part of SEQ ID No 10 extending from residue Z to residue V of SEQ ID No 10, wherein
- 25 X is the amino acid occupying position 195 or 196 of SEQ ID No. 4,
 - Y is the amino acid residue occupying position 198, 199, 200, 201, or 202 of SEQ ID No. 4,
- Z is the amino acid residue occupying position 165 or 166 of SEQ ID No. 10, and
- V is the amino acid residue occupying position 173, 174, 175, 35 176 or 177 of SEQ ID No. 10.
 - 23. The variant according to claim 21 or 22, in which the amino acid fragment of the parent α -amylase, which corresponds to

amino acid residues 196-198 of SEQ ID No. 4, has been replaced with the amino acid fragment corresponding to amino acid residues 166-173 of the amino acid sequence shown in SEQ ID No. 10.

5 、

35

- 24. A variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is/are present in a fragment corresponding to the amino acid fragment 117-185 of the amino acid sequence of
 10 SEQ ID No. 4, has/have been deleted or replaced with one or more of the amino acid residues, which is/are present in an amino acid fragment corresponding to the amino acid fragment 98-210 of the amino acid sequence shown in SEQ ID No. 10, or in which one or more additional amino acid residues has been added
 15 using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.
- 25. A variant of a parent Termamyl-like α-amylase, which variant has a region which, when the amino acid sequence of variant is aligned most closely with the amino acid sequence of the said parent α-amylase, occupies the same position as the portion from residue X to residue Y of SEQ ID No 4, the said region having at least 80%, such as at least 90% sequence homology with the part of SEQ ID No 10 extending from residue
 25 Z to residue V of SEQ ID No 10, wherein

X is the amino acid occupying position 117, 118, 119, 120 or 121 of SEQ ID No. 4,

- 30 Y is the amino acid occupying position 181, 182, 183, 184 or 185 of SEQ ID No. 4,
 - Z is the amino acid occupying position 98, 99, 100, 101, 102 of SEQ ID No. 10, and

V is the amino acid occupying position 206, 207, 208, 209 or 210 of SEQ ID No. 10.

26. The variant according to claim 24 or 25, in which an amino acid fragment of the parent α-amylase, which corresponds to amino acid residues 121-181 of SEQ ID No. 4, has been replaced with the amino acid fragment corresponding to amino acid residues 102-206 of the amino acid sequence shown in SEQ ID No. 10.

27. A variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is/are present in a fragment corresponding to the amino acid fragment 117-181 of the amino acid sequence of SEQ ID No. 4, has/have been deleted or replaced with one or more of the amino acid residues, which is/are present in an amino acid fragment corresponding to the amino acid fragment to 98-206 of the amino acid sequence shown in SEQ ID No. 10, or in which one or more additional amino acid residues has been added using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.

20

28. A variant of a parent Termamyl-like α-amylase, which variant has a region which, when the amino acid sequence of variant is aligned most closely with the amino acid sequence of the said parent α-amylase, occupies the same position as the portion from residue X to residue Y of SEQ ID No 4, the said region having at least 80%, such as at least 90% sequence homology with the part of SEQ ID No 10 extending from residue Z to residue V of SEQ ID No 10, wherein

X is the amino acid occupying position 117, 118, 119, 120 or 30 121 of SEQ ID No. 4,

Y is the amino acid occupying position 174, 175, 176 or 177 of SEQ ID No. 4,

35 Z is the amino acid occupying position 98, 99, 100, 101, 102 of SEQ ID No. 10, and

V is the amino acid occupying position 199, 200, 201 or 202 of SEQ ID No. 10.

29. The variant according to claim 27 or 28, in which the amino 5 acid fragment of the parent α-amylase, which corresponds to amino acid residues 121-174 of SEQ ID No. 4, has been replaced with the amino acid fragment corresponding to amino acid residues 102-199 of the amino acid sequence shown in SEQ ID No. 10.

10

- 30. A variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is/are present in an amino acid fragment corresponding to the amino acid fragment 12-19 of the amino acid sequence of SEQ ID No. 4, has/have been deleted or replaced with one or more of the amino acid residues, which is/are present in an amino acid fragment which corresponds to the amino acid fragment 28-42 of SEQ ID No. 10, or in which one or more additional amino acid residues has/have been inserted using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.
- 31. A variant of a parent Termamyl-like α-amylase, which variant has a region which, when the amino acid sequence of variant is aligned most closely with the amino acid sequence of the said parent α-amylase, occupies the same position as the portion from residue X to residue Y of SEQ ID No 4, the said region having at least 80%, such as at least 90% sequence homology with the part of SEQ ID No 10 extending from residue Z to residue V of SEQ ID No 10, wherein
 - X is the amino acid occupying position 12, 13 or 14 of SEQ ID No. 4,
 - Y is the amino acid occupying position 15, 16, 17, 18 or 19 of SEQ ID No. 4,
- 35 Z is the amino acid occupying position 28, 29, 30, 31 or 32 of SEQ ID No. 10, and
 - V is an amino acid residue corresponding to the amino acid occupying position 38, 39, 40, 41 or 42 of SEQ ID No. 10.

- 32. The variant according to claim 30 or 31, in which the amino acid fragment of the parent α-amylase, which corresponds to amino acid residues 14-15 of SEQ ID No. 4, has been replaced with the amino acid fragment corresponding to amino acid residues 32-38 of the amino acid sequence shown in SEQ ID No. 10.
- 33. A variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is present in a fragment corresponding to amino acid residues 7-23 of the amino acid sequence of SEQ ID No. 4, has/have been deleted or replaced with one or more amino acid residues, which is/are present in an amino acid fragment corresponding to amino acid residues 13-45 of the amino acid sequence shown in SEQ ID No. 10, or or in which one or more additional amino acid residues has/have been inserted using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.
- 20 34. A variant of a parent Termamyl-like α-amylase, which variant has a region which, when the amino acid sequence of variant is aligned most closely with the amino acid sequence of the said parent α-amylase, occupies the same position as the portion from residue X to residue Y of SEQ ID No 4, the said region having at least 80%, such as at least 90% sequence homology with the part of SEQ ID No 10 extending from residue Z to residue V of SEQ ID No 10, wherein X is the amino acid occupying position 7 or 8 of SEQ ID No. 4,
- 30 Y is the amino acid occupying position 18, 19, 20, 21, 22 or 23 of SEQ ID No. 4,
 - ${\tt Z}$ is the amino acid occupying position 13 or 14 of SEQ ID No. 10, and
- V is the amino acid occupying position 40, 41, 42, 43, 44 or 45 of SEQ ID No. 10.

35. The variant according to claim 33 or 34, in which the amino acid fragment of the parent α-amylase, which corresponds to amino acid residues 8-18 of SEQ ID No. 4, has been replaced with the amino acid fragment corresponding to amino acid residues 14-40 of the amino acid sequence shown in SEQ ID No. 10.

- 36. A variant of a parent Termamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent 10 α-amylase, which is present in a fragment corresponding to amino acid residues 322-346 of the amino acid sequence of SEQ ID No. 2, has/have been deleted or replaced with one or more amino acid residues, which is/are present in an amino acid fragment corresponding to amino acid residues 291-313 of the 15 amino acid sequence shown in SEQ ID No. 10, or or in which one or more additional amino acid residues has/have been inserted using the relevant part of SEQ ID No. 10 or a corresponding part of another Fungamyl-like α-amylase as a template.
- 20 37. A variant of a parent Termamyl-like α-amylase, which variant has a region which, when the amino acid sequence of variant is aligned most closely with the amino acid sequence of the said parent α-amylase, occupies the same position as the portion from residue X to residue Y of SEQ ID No 2, the said region having at least 80% sequence homology with the part of SEQ ID No 10 extending from residue Z to residue V of SEQ ID No 10, wherein

X is the amino acid occupying position 322, 323, 324 or 325 of SEQ ID No. 2,

Y is the amino acid occupying position 343, 344, 345 or 346 of SEQ ID No. 2,

30

Z is the amino acid occupying position 291, 292, 293 or 294 of 35 SEQ ID No. 10, and

V is the amino acid occupying position 310, 311, 312 or 313 of SEQ ID No. 10.

20

- 38. The variant according to claim 36 or 37, in which the amino acid fragment of the parent α -amylase, which corresponds to amino acid residues 325-345 of SEQ D No. 2, has been replaced with the amino acid fragment corresponding to amino acid residues 294-313 of the amino acid sequence shown in SEQ ID No. 10.
- 39. A variant of a parent Fungamyl-like α-amylase, in which variant at least one of the amino acid residues of the parent α-amylase, which is/are present in an amino acid fragment corresponding to amino acid residues 291-313 of the amino acid sequence of SEQ ID No. 10, has/have been deleted or replaced with one or more of the amino acid residues, which is/are present in an amino acid fragment corresponding to amino acid residues 98-210 of the amino acid sequence shown in SEQ ID No. 4, or in which one or more additional amino acid residues has/have been inserted using the relevant part of SEQ ID No. 4 or a corresponding part of another Termamyl-like α-amylase as a template.

40. A variant of a parent Fungamyl-like α -amylase, which variant has a region which, when the amino acid sequence of

variant has a region which, when the amino acid sequence of the said parent α -amylase, occupies the same position as the

- portion from residue X to residue Y of SEQ ID No 10, the said region having at least 80%, such as at least 90% sequence homology with the part of SEQ ID No 10 extending from residue Z to residue V of SEQ ID No 4, wherein
- X is the amino acid occupying position 117, 118, 119, 120 or 30 121 of SEQ ID No. 10,
 - Y is the amino acid occupying position 181, 182, 183, 184 or 185 of SEQ ID No. 10,
- 35 Z is the amino acid occupying position 98, 99, 100, 101 or 102 of SEQ ID No. 4, and

V is the amino acid occupying position 206, 207, 208, 209 or 210 of SEQ ID No. 4.

41. The variant according to claim 39 or 40, in which the amino sacid fragment of the parent α-amylase, which corresponds to amino acid residues 121-181 of SEQ ID No. 10, has been replaced with the amino acid fragment corresponding to amino acid residues 102-206 of the amino acid sequence shown in SEQ ID No. 4.

10

- 42. A variant according to any of claims 39-41, in which the the amino acid fragment of the parent α-amylase, which corresponds to amino acid residues 121-174 of SEQ ID No. 10, has been replaced with the amino acid fragment corresponding to amino acid residues 102-199 of the amino acid sequence shown in SEQ ID No. 4.
- 43. A variant of a parent Fungamyl-like α -amylase, in which an amino acid fragment corresponding to amino acid residues 181-20 184 of the amino acid sequence shown in SEQ ID No. 10 has been deleted.
- 45. A variant of a parent Termamyl-like α -amylase, which exhibits α -amylase activity and which has a decreased Ca²⁺ dependency as compared to the parent α -amylase.
 - 46. A variant according to claim 45, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID NO 2:
- 30 N104, A349, I479, L346, I430, N457, K385, F350, I411, H408 or G303, in particular a mutation corrsponding to N104D;

A349C+I479C;

L346C+I430C;

35 N457D,E;

N457D, E+K385R;

F350D, E+I430R, K;

F350D, E+I411R, K;

148

H408Q,E,N,D; and/or G303N,D,Q,E.

47. A variant of a parent Termamyl-like α-amylase which sexhibits a higher activity below the pH optimum than the parent α-amylase, which variant comprises a mutation of an amino acid residue corresponding to at least one of the following positions of the B. licheniformis α-amylase (SEQ ID NO 2): E336, Q333, P331, I236, V102, A232, I103, L196, in particular at least one of the following mutations:

E336R, K;

Q333R,K; P331R,K;

V102R, K, A, T, S, G;

1236K, R, N;

15 I103K,R;

L196K,R; and/or

A232T, S, G.

48. A variant of a parent Termamyl-like α-amylase which exhibits a higher activity above the pH optimum than the parent α-amylase, which variant comprises a mutation of an amino acid residue corresponding to at least one of the following positions of the B. licheniformis α-amylase (SEQ ID NO 2): N236, H281 and/or Y273, in particular one of the follwoing mutations:

N326I,Y,F,L,V; H281F,I,L; and/or Y273F,W.

49. A variant of a parent Termamyl-like α -amylase which exhibits α -amylase activity and which has an increased thermostability and/or altered temperature optimum as compared to the parent α -amylase, which variant comprises a mutation of an amino acid residue corresponding to at least one of the following positions of the B. licheniformis α -amylase (SEQ ID NO 2):

```
L61, Y62, F67, K106, G145, I212, S151, R214, Y150, F143, R146,
   L241, I236, L7, V259, F284, F350, F343, L427 and/or V481, in
   particular at least one of the following mutations:
   L61W, V, F;
 5 Y62W;
   F67W;
   K106R, F, W;
   G145F, W
   I212F, L, W, Y, R, K;
10 S151 replaced with any other amino acid residue and in
   particular with F,W,I or L;
   R214W;
   Y150R, K;
   F143W;
15 R146W;
   L241I, F, Y, W;
   I236L, F, W, Y;
   L7F, I, W;
   V259F, I, L;
20 F284W;
   F350W;
   F343W;
  L427F,L,W; and/or
  V481, F, I, L, W.
25
  50. A variant of a parent Termamyl-like \alpha-amylase, which
  exhibits \alpha-amylase activity and which has a reduced capability
  of cleaving an oligo-saccharide substrate close to the
  branching point as compared to the parent \alpha-amylase, which
30 variant comprises a mutation of an amino acid residue
  corresponding to at least one of the following positions of the
  B. licheniformis \alpha-amylase (SEQ ID NO 2):
  V54, D53, Y56, Q333 and/or G57, in particular at least one of
35 the following mutations:
  V54L, I, F, Y, W, R, K, H, E, Q;
  D53L, I, F, Y, W;
  Y,56W;
```

Q333W; and/or

G57 to all possible amino acid residues.

- 51. The variant according to any of claims 17-50, wherein one 5 or more proline residues present in the amino acid residues with which the parent α -amylase is modified are replaced with a non-proline residue such as alanine.
- 52. The variant according to any of claims 17-51, wherein one or more cysteine residues present in the amino acid residues with which the parent α -amylase is modified are replaced with a non-cysteine residue such as alanine.
- 53. A DNA construct comprising a DNA sequence encoding an α 15 amylase variant according to any of claims 17-52.
 - 54. A recombinant expression vector which carries a DNA construct according to Claim 53.
- 20 55. A cell which is transformed with a DNA construct according to Claim 53 or a vector according to Claim 54.
 - 56. A cell according to Claim 55, which is a microorganism.
- 25 57. A cell according to Claim 56, which is a bacterium or a fungus.
- 58. The cell according to Claim 57, which is a grampositive bacterium such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus
 - Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus or Bacillus thuringiensis.
- 35 59. Use of an α -amylase variant according to any of claims 17-52 for washing and/or dishwashing.

10

25

- 60. Use of an α -amylase variant according to any of claims 17-52 for desizing.
- 61. Use of an α -amylase variant according to any of claims 17-5 52 for starch liquefaction.
 - 62. A detergent additive comprising an α -amylase variant according to any of claims 17-52, optionally in the form of a non-dusting granulate, stabilised liquid or protected enzyme.

63. A detergent additive according to Claim 62 which contains 0.02-200 mg of enzyme protein/g of the additive.

- 64. A detergent additive according to Claim 62 or 63, which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.
- 65. A detergent composition comprising an α -amylase variant according to any of claims 17-52.
 - 66. A detergent composition according to Claim 65 which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.
 - 67. A manual or automatic dishwashing detergent composition comprising an α -amylase variant according to any of claims 17-52.
- 30 68. A dishwashing detergent composition according to Claim 67 which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.
- 35 69. A manual or automatic laundry washing composition comprising an α -amylase variant according to any of claims 17-52.

152

70. A laundry washing composition according to Claim 69, which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, an amylolytic enzyme and/or a cellulase.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

SUBSTITUTE SHEET (RULE 26)

Fig. 6

Fig. 7

CAT CAT AAT GGA ACA AAT GGT ACT ATG ATG CAA TAT TTC GAA TGG TAT TTG CCA AAT GAC H H N G T N G T M M Q Y F E W Y L P N D GGG AAT CAT TGG AAC AGG TTG AGG GAT GAC GCA GCT AAC TTA AAG AGT AAA GGG ATA ACA G N H W N R L R D D A A N L K S K G I T GCT GTA TGG ATC CCA CCT GCA TGG AAG GGG ACT TCC CAG AAT GAT GTA GGT TAT GGA GCC A V W I P P A W K G T S Q N D V G Y G A TAT GAT TTA TAT GAT CTT GGA GAG TTT AAC CAG AAG GGG ACG GTT CGT ACA AAA TAT GGA Y D L Y D L G E F N Q K G T V R T K Y G ACA CGC AAC CAG CTA CAG GCT GCG GTG ACC TCT TTA AAA AAT AAC GGC ATT CAG GTA TAT TRNQLQAAVTSLKNNGIQVY GGT GAT GTC GTC ATG AAT CAT AAA GGT GGA GCA GAT GGT ACG GAA ATT GTA AAT GCG GTA G D V V M N H K G G A D G T E I V N A V GAA GTG AAT CGG AGC AAC CGA AAC CAG GAA ACC TCA GGA GAG TAT GCA ATA GAA GCG TGG EVNRSNRNQETSGEYAIEAW ACA AAG TTT GAT TTT CCT GGA AGA GGA AAT AAC CAT TCC AGC TTT AAG TGG CGC TGG TAT T K F D F P G R G N N H S S F K W R W Y CAT TIT GAT GGG ACA GAT TGG GAT CAG TCA CGC CAG CTT CAA AAC AAA ATA TAT AAA TTC H F D G T D W D Q S R Q L Q N K I Y K F AGG GGA ACA GGC AAG GCC TGG GAC TGG GAA GTC GAT ACA GAG AAT GGC AAC TAT GAC TAT R G T G K A W D W E V D T E N G N Y D Y CTT ATG TAT GCA GAC GTG GAT ATG GAT CAC CCA GAA GTA ATA CAT GAA CTT AGA AAC TGG L M Y A D V D M D H P E V I H E L R N W 221 GGA GTG TGG TAT ACG AAT ACA CTG AAC CTT GAT GGA TTT AGA ATA GAT GCA GTG AAA CAT G V W Y T N T L N L D G F R I D A V K H ATA AAA TAT AGC TTT ACG AGA GAT TGG CTT ACA CAT GTG CGT AAC ACC ACA GGT AAA CCA I K Y S P T R D' W L T H V R N T T G K P ATG TTT GCA GTG GCT GAG TTT TGG AAA AAT GAC CTT GGT GCA ATT GAA AAC TAT TTG AAT M F A V A E F W K N D L G A I E N Y L N AAA ACA AGT TGG AAT CAC TCG GTG TTT GAT GTT CCT CTC CAC TAT AAT TTG TAC AAT GCA K T S W N H S V F D V P L H Y N L Y N A

Fig. 8

TCT AAT AGC GGT GGT TAT TAT GAT ATG AGA AAT ATT TTA AAT GGT TCT GTG GTG CAA AAA S N S G C Y Y D M R N I L N C S V V Q K .. CAT CCA ACA CAT GCC GTT ACT TTT GTT GAT AAC CAT GAT TCT CAG CCC GGG GAA GCA TTG H P T H A V T F V D N H D S Q P G E A L GAA TCC TTT GTT CAA CAA TGG TTT AAA CCA CTT GCA TAT GCA TTG GTT CTG ACA AGG GAA ESFVQQWFKPLAYALVLTRE CAA GGT TAT CCT TCC GTA TTT TAT GGG GAT TAC TAC GGT ATC CCA ACC CAT GGT GTT CCG Q G Y P S V F Y G D Y Y G I P T H G V P GCT ATG AAA TCT AAA ATA GAC CCT CTT CTG CAG GCA CGT CAA ACT TIT GCC TAT GGT ACG A M K S K I D P L L Q A R Q T F A Y G T CAG CAT GAT TAC TIT GAT CAT CAT GAT ATT ATC GGT TGG ACA AGA GAG GGA AAT AGC TCC Q H D Y F D H H D I I G W T R E G N S S CAT CCA AAT TCA GGC CTT GCC ACC ATT ATG TCA GAT GGT CCA GGT GGT AAC AAA TGG ATG H P N S G L A T I M S D G P G G N X W M TAT GTG GGG AAA AAT AAA GCG GGA CAA GTT TGG AGA GAT ATT ACC GGA AAT AGG ACA GGC YVGKNKÄGQVWRDITGNRTG ACC GTC ACA ATT AAT GCA GAC GGA TGG GGT AAT TTC TCT GTT AAT GGA GGG TCC GTT TCG T V T I N A D G W G N F S V N G G S V S 481 GTT TGG GTG AAG CAA TAA v w v k Q -

Fig. 8 (cont.)

Fig. 9

Fig. 10

International application No. PCT/DK 96/00057

CLASSIFICATION OF SUBJECT MATTER

IPC6: C12N 9/28, C12N 15/56
According to International Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, CA, MEDLINE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	Dialog Information Services, File 5, BIOSIS PREVIEWS, Dialog accession no. 11619266, BIOSIS no. 98219266, Machius M et al: "Crystal structure of calcium-depleted Bacillus licheni- formis alpha-amylase at 2.2 A resolution", & Journal of Molecular Biology 246 (4). 1995. 545-559	1-17
		·
X	Dialog Information Services, file 155, MEDLINE, Dialog accession no. 08974640, MEDLINE accession no. 94289640, Svensson B: "Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability", & Plant Mol Biol (NETHERLANDS) May 1994, 25 (2) p141-57	1-17

Further documents are listed in the continuation of Box C.

See patent family annex.

- Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" ertier document but published on or after the international filing date
- document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- document referring to an oral disclosure, use, exhibition or other
- document published prior to the international filing date but later than
- later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

the priority date claimed Date of mailing of the international search report 0.5 -07- 1996 Date of the actual completion of the international search <u>5 July 1996</u> Name and mailing address of the ISA; Authorized officer Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Yvonne Siösteen Facsimile No. + 46 8 666 02 86 Telephone No. +46 8 782 25 00

PCT/DK 96/00057

The invention claimed relates to a method of constructing alpha-amylase variants with predetermined properties by comparing the three-dimensional structures of enzymes. The claims also include many alpha-amylase variants.

"A search for a special technical feature" as mentioned in PCT Rule 13.2 among the independent claims did not reveal a unifying, novel technical feature.

Accordingly, the following inventions were found:

- I Claims 1-17 focus on a method of constructing alphaamylase variants by comparing the tree-dimensional
 structure of a parent enzyme (Temamyl-like alpha-amylase)
 with another enzyme e.g. mammalie or fungal alphaamylases. The differences in structure are compared with
 the differences in function, whereafter new variants with
 new predictable characteristics are produced.
- II Claims 45-46 directed to a alpha-amylase variant that has decreased Ca2+ dependency,
- III Claim 47 directed to a alpha-amylase variant that exhibits higher activity below the ph-optimum than the parent enzyme.
- IV Claim 48 directed to a alpha-amylase variant having an increased thermostability and/or altered temperature optimum.
- V Claim 50 directed to a variant having reduced capability of cleaving an oligo-saccharide substrate close to its branching point.

Due to the complex construction of the claims and the fact that the search so far has not covered all aspects of the invention, it may be that further non-unity remarks can appear. If further searches are done, references might appear which will give furter a posteriori non-unity remarks.

Therefore, the search has been restricted to the first invention.

International application No.

PCT/DK 96/00057

Claims 18-43 are directed to a number of different variants that are composed of several inventions. They are, however, so complex and broad that no meaningful search can be done, especially as no special characteristic is linked to the groups of variants. It is for example unlikely that claim 18 concerns one invention. It is not believable that a change in any amino acid in one fragment for one/or none of the amino acids in a fragment of another enzyme gives an enzyme with the same new and valuable characteristic. The formulation of claims 18-43 is so complicated because of all the different combinations of amino acid substitutions.

Thus they do not comply with Art. 6. PCT prescribing that claims shall be clear and concise.

International application No.
PCT/DK 96/00057

Category*	Citation of document with individual	T
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
x	Dialog Information Services, file 155, MEDLINE. Dialog accession no. 08958150, MEDLINE accession no. 94273150, Nakatani H et al: "Effect of modifying histidine residues on the action of Bacillus amylo- liquefaciens and barley-malt alpha-amylases", & Carbohydr Res (NETHERLANDS) Apr 16 1994, 257 (1) p 155-61	1-17
Y		45-46
.]		
x	J. MED. BIOL., Volume 229, 1993, C. Chang et al, "Crystallization and Preliminary X-ray Crystallographic Analysis of alpha-Amylase from Bacillus subtilis" page 235 - page 238	1-17
	·	
\	WD 9100343 A2 (GIST-BROCADES N.V.), 10 January 1991 (10.01.91)	1-17
\	EP 0410498 A2 (GIST-BROCADES N.V.), 30 January 1991 (30.01.91)	1-17
	-~	
	JOURNAL OF BACTERIOLOGY, Volume 166, No 2, May 1986, G. L. Gray et al, "Structural Genes Encoding the Thermophilic alpha-Amylases of Bacillus stearothermophilus and Bacillus licheniformis" page 635 - page 643	1-17
	. 	
у,х	WO 9535382 A2 (GISTBROCADES B.V.), 28 December 1995 (28.12.95), claims 1-2, abstract	45-46
!	WO 9418314 A1 (GENENCOR INTERNATIONAL), 18 August 1994 (18.08.94)	45-46
	· <u></u>	
		·

International application No. PCT/DK 96/00057

C (Cartier	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
		T	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N	
Y	Chemical Abstracts, Volume 108, No 11, 14 March 1988 (14.03.88), (Columbus, Ohio, USA), Buisson, G. et al, "Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 Å resolution. Role of calcium in structure and activity", page 325, THE ABSTRACT No 90927h, EMBO J. 1987, 6 (13), 3909-3916	45-46	
Y	Chemical Abstracts, Volume 112, No 15, 9 April 1990 (09.04.90), (Columbus, Ohio, USA), Vihinen, Mauno et al, "Site-directed mutagenesis of a thermostable alpha-amylase from Bacillus stearothermophilus: putative role of three conserved residues", page 347, THE ABSTRACT No 135178r, J. Biochem 1990, 107 (2), 267-272	45-46	
			
A	US 4600693 A (KAREN L. KINDLE ET AL), 15 July 1986 (15.07.86)	45-46	
A	Chemical Abstracts, Volume 112, No 19, 7 May 1990 (07.05.90), (Columbus, Ohio, USA), Holm, Liisa et al, "Random mutagenesis used to probe the structure and function of Bacillus stearothermophilus alpha-amylase", page 351, THE ABSTRACT No 174785f, Protein Eng. 1990, 3 (3), 181-191	45-46	
	, ·		

International application No. PCT/DK96/00057

	Box 1	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
	This int	
		ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
	1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
		, and a second of this Additionty, manely:
	2. X	Claims Nos.:
	_	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out seed for the
		an extent that no meaningful international search can be carried out, specifically:
		see next sheet
	3.	Claims Nos.:
		because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
-		Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	This Inter	mational Searching Authority found multiple inventions in this international application, as follows:
		see next sheet
		See Heat Sheet
		. 1
1		
1	ı. 🗌 🥻	As all required additional search fees were timely paid by the applicant, this international search report covers all
1.		
'	" U ;	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
	C	As only some of the required additional search fees were timely paid by the applicant, this international search report overs only those claims for which fees were paid, specifically claims Nos.:
	- a	laims 1-17 directed to a method of constructing alpha-amylase variants and claims 45-46 directed to an alpha-amylase.
		and the deficiency to an alpha-amylase.
4	· 🔲 "	o required additional search fees were timely paid by the applicant. Consequently, this international search report is
	, -	estricted to the invention first mentioned in the claims; it is covered by claims Nos.:
2		
*	emark on	The second secon
Ļ	m PCTAS	X No protest accompanied the payment of additional search fees.
-	- WITTE	5 C110 (

Form PCTASA 210 (continuation of first sheet (1)) (July 1992)

Information on patent family members

01/04/96

International application No. PCT/DK 96/00057

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
0-A2-	9100343	10/01/91	AU-B,B- AU-A- CA-A- EP-A,A,A JP-T-	629959 5939790 2032518 0409299 4500609	15/10/92 17/01/91 30/12/90 23/01/91 06/02/92
P-A2-	0410498	30/01/91	AU-B- AU-A- CA-A- CN-A- JP-T- US-A- WO-A,A,A	638263 5953890 2030554 1050220 4500756 5364782 9100353	24/06/93 17/01/91 30/12/90 27/03/91 13/02/92 15/11/94 10/01/91
D-A2-	9535382	28/12/95	NONE		
0-A1-	9418314	18/08/94	NONE		
 S-A-	4600693	15/07/86	NONE		