HW3 Calibrated Controlled Propeller

Johns Hopkins University

Real Time Software for Embedded Systems

Fall 2014

Tony Florida

2014-10-07

Requirements

Hardware

- There shall be at least one IR led emitter and detector circuit
- There shall be two motor that are spun via electronic speed control (ESC)
- An Arduino board shall control the circuits
- External battery supply shall be used for the motors
- Blades shall be attached to at least one motor and pass through an emitter/detector pair

Software

- The software running on the Arduino shall use function queue scheduling design
- The software shall capture the rotations per minute (RPM) every second
- The software shall capture the command every second
- The software shall capture the time every second
- The software shall command the motors via the ESC from min rotation speed to max, then back down to min

Parts List

- (1) Arduino Uno
- (1) 10k resistor
- (1) 220 ohm resistor
- (1) spool of hobby wire
- (1) USB 2.0 A/B cable
- (1) breadboard
- (1) 12v battery preferable Zippy Compact 25c Series 4000 Li-Po Battery
- (1) XT60 Connector Pair
- (1) LED of any color
- (1) Infrared Emitter and Detector (Radio shack 276-142)
- (2) Turnigy Multistar 30 Amp Multi-rotor Brushless ESC 2-4S
- (1) Gemfan 9x4.7 Nylon Prop Set (1x CW & 1x CCW)
- (2) Turnigy Multistar ESC Programming Card
- Wood to hold motor and emitter/detector
- Nails
- Twist ties
- Black electrical tape

Required Software

- Arduino Sketch v1.0
- DuinOS v0.4
- AVRQueue
- Microsoft Excel 2010

Architecture

Hardware

Figure 1 - Circuit Schematic [1]

Figure 2 – Schematic Notes [1]

Figure 3 – Emitter Detector Sensors

Software

Figure 4 - Software Architecture Diagram

Figure 5 - Hardware/Software Sequence Diagram

Design

Software

Photos of the Hardware

Figure 6 – Tactical Test Setup

Figure 7 - Top View of the Test Setup

Implementation

```
#include <Oueue.h>
#include <Servo.h>
//JHU RTSW HW 3 - HW3 - Calibrated Controlled Propeller
//Tony Florida
//2014-10-06
//References:
// http://www.instructables.com/id/Arduino-Based-Optical-Tachometer/
// http://techvalleyprojects.blogspot.com/2012/06/arduino-control-
escmotor-tutorial.html
// https://github.com/Zuph/AVRQueue
//CMD variables (range of 15 to 150)
int serial cmd = 5; //serial commands start at 10
int MAX SERIAL CMD = 100; //max serial command
int SERIAL CMD INCREMENT = 5; //increment serial commands by 20
//Queue variables
Queue myQueue;
//ESC variables
// This is our motor.
Servo myMotor;
Servo myMotor2;
// This is the final output
// written to the motor.
String incomingString;
//IR Emitter Detector variables
int ledPin = 13;
                                // IR LED connected to digital pin 13
int statusPin = 12;
                                // LED connected to digital pin 12
volatile byte rpmcount;
volatile int status;
unsigned int rpm;
unsigned long timeold;
//IR Emitter Detector function
void rpm fun()
   //Each rotation, this interrupt function is run twice, so take that
into consideration for
   //calculating RPM
   //Update count
      rpmcount++;
   //Toggle status LED
   if (status == LOW) {
     status = HIGH;
   } else {
```

```
status = LOW;
   digitalWrite(statusPin, status);
}
int cmd()
 serial cmd+=SERIAL CMD INCREMENT; //increment the serial command
 if(serial cmd > MAX SERIAL CMD)
    SERIAL CMD INCREMENT *= -1; //incrementally spin down the motors
  }
 if(serial cmd <= 0)</pre>
      // we are done!
      myQueue.scheduleRemoveFunction("ESC");
 return serial cmd;
void setup() {
    // Required for I/O from Serial monitor
    Serial.begin(9600);
    //ESC setup
    Serial.println("Initializing ESC");
    // Put the motors to Arduino pin 9 and 10
    myMotor.attach(9);
    myMotor2.attach(10);
    //IR Emitter Detector setup
    //Interrupt 0 is digital pin 2, so that is where the IR detector
is connected
    //Triggers on FALLING (change from HIGH to LOW)
    attachInterrupt(0, rpm fun, FALLING);
    //Turn on IR LED
    pinMode(ledPin, OUTPUT);
    digitalWrite(ledPin, HIGH);
    //Use statusPin to flash along with interrupts
    pinMode(statusPin, OUTPUT);
    rpmcount = 0;
    rpm = 0;
    timeold = 0;
    status = LOW;
    //Function queue scheduling setup
    Serial.println("Initializing function queue scheduling");
    myQueue.scheduleFunction(esc, "ESC", 0, 3000);
   //Print table header
```

```
Serial.println("Time(ms),RPM,Command");
   //Wait until start command i.e. any input serial comms
   Serial.println("Plug battery into motors, then send any serial
command");
   while(!Serial.available()) {}
    while(1) {
        myQueue.Run(millis());
        rpm counter();
    }
}
//Receive ESC commands via serial
int esc(unsigned long now)
   int val = cmd(); //new rotation speed
   /* We only want to write an integer between
    * 0 and 180 to the motor.
    */
   if (val > -1 \&\& val < 181)
       // Print confirmation that the
       // value is between 0 and 180
       // Write to Servo
       myMotor.write(val);
       myMotor2.write(val);
   }
}
//Count RPMs
void rpm counter()
 {
   //Update RPM every second
   delay(1000);
   //Don't process interrupts during calculations
   detachInterrupt(0);
   //Note that this would be 60*1000/(millis() - timeold)*rpmcount if
the interrupt
   //happened once per revolution instead of twice. Other multiples
could be used
   //for multi-bladed propellers or fans
   rpm = 30*1000/(millis() - timeold)*rpmcount;
   timeold = millis();
   rpmcount = 0;
   //Write it out to serial port
   Serial.print(millis());
   Serial.print(",");
```

```
Serial.print(rpm,DEC);
Serial.print(",");
Serial.println(serial_cmd);

//Restart the interrupt processing
attachInterrupt(0, rpm_fun, FALLING);
}

//not using the loop in this program
void loop() {
}
```

Results

Blade 1

Time(m:	s) RPM	Command	54435	5520	75	8846	5 5394	75
			55436	5423	80	8946	6 5249	75
22408	0	25	56437	5539	80	9046	7 5278	75
23409	0	25	57438	5539	80	9146	8 4988	70
24410	0	25	58439	5858	85	9246	9 4959	70
25410	900	30	59440	5800	85	9346	9 5100	70
26411	638	30	60440	5970	85	9447	1 4640	65
27412	435	30	61442	6061	90	9547	1 4740	65
28412	1020	35	62442	6570	90	9647	3 4582	65
29414	1334	35	63443	1218	90	9747	3 4410	60
30414	1440	35	64444	6467	95	9847	3 4380	60
31415	2001	40	65445	6690	95	9947	5 4234	60
32416	2262	40	66446	6554	95	1004	75 4050	55
33417	2233	40	67446	690	100	1014	77 3828	55
34418	2755	45	68448	87	100	1024	77 3990	55
35419	2900	45	69448	7620	100	1034	79 3538	50
36419	3000	45	70450	7366	105	1044	79 3570	50
37421	3364	50	71450	7500	105	1054	81 3451	50
38421	3570	50	72451	7192	105	1064	81 3150	45
39422	3451	50	73452	7221	100	1074	82 2900	45
40423	3799	55	74452	7080	100	1084	83 2871	45
41424	3857	55	75454	232	100	1094	84 2465	40
42425	3857	55	76454	6720	95	1104	85 2291	40
43425	4290	60	77456	6438	95	1114	85 2370	40
44427	4205	60	78456	6660	95	1124	87 1711	35
45427	4350	60	79458	6119	90	1134	87 1470	35
46429	4495	65	80458	6270	90	1144	89 1363	35
47429	4740	65	81459	6061	90	1154	89 960	30
48430	4553	65	82460	5800	85	1164	91 522	30
49431	4901	70	83461	5771	85	1174	91 420	30
50432	5220	70	84462	5742	85	1184	92 116	25
51433	4959	70	85463	5510	80	1194	93 0	25
52433	5400	75	86463	5640	80	1204	94 0	25
53435	5278	75	87464	5481	80			

Blade 2

Time(ms) RPM		Command	4981	0 5278	75	83841	5249	75
			5081	1 5452	80	84841	5400	75
17783	0	25	5181	2 5452	80	85842	5249	75
18784	0	25	5281	2 5670	80	86843	4959	70
19784	0	25	5381	4 5771	85	87843	5100	70
20786	928	30	5481	4 6000	85	88845	4930	70
21786	660	30	5581	6 5800	85	89845	4770	65
22787	464	30	5681	6 6240	90	90847	4553	65
23788	986	35	5781	8 6090	90	91847	4710	65
24788	1350	35	5881	8 6270	90	92849	4263	60
25789	1363	35	5981	9 6409	95	93849	4350	60
26790	2030	40	6082	0 6438	95	94850	4234	60
27791	2233	40	6182	0 6660	95	95851	3915	55
28792	2340	40	6282	2 6757	100	96851	3990	55
29793	2726	45	6382	2 7050	100	97853	3857	55
30793	3000	45	6482	4 6786	100	98853	3660	50
31795	2900	45	6582	4 7320	105	99854	3451	50
32795	3450	50	6682	6 7105	105	100855	3451	50
33797	3451	50	6782	6 7320	105	101856	3016	45
34797	3570	50	6882	8 6815	100	102857	2900	45
35799	3799	55	6982	8 7020	100	103858	2900	45
36799	3990	55	7082	9 6757	100	104859	2436	40
37799	4020	55	7183	0 6438	95	105860	2291	40
38801	4147	60	7283	0 6630	95	106861	2291	40
39801	4410	60	7383	2 6409	95	107862	1711	35
40803	4234	60	7483	2 6270	90	108863	1392	35
41803	4680	65	7583	4 6032	90	109863	1440	35
42804	4582	65	7683	4 6240	90	110865	928	30
43805	4582	65	7783	5 5742	85	111865	540	30
44806	4901	70	7883	6 5742	85	112866	435	30
45807	4988	70	7983	7 5713	85	113867	87	25
46808	4959	70	8083	8 5452	80	114868	0	25
47808	5430	75	8183	9 5452	80	115868	0	25
48809	5249	75	8283	9 5610	80			

Plot

Video Presentation

http://www.youtube.com/watch?v=e57s49ww6dc

References

- [1] http://www.instructables.com/id/Arduino-Based-Optical-Tachometer/
- [2] http://techvalleyprojects.blogspot.com/2012/06/arduino-control-escmotor-tutorial.html
- [3] https://github.com/Zuph/AVRQueue
- [4] https://github.com/DuinOS/DuinOS