³⁶S(pol d, ³He) 1985Kh04

 $J^{\pi}=0^+$ for ³⁶S ground state.

1985Kh04: E=52-MeV unpolarized and vector-polarized deuteron beams of 100 nA were produced from the Karlsruhe cyclotron. The target was a 1 mg/cm² ²⁰⁸Pb sulfide with 81.1% enriched ³⁶S on ¹²C backing. Reaction products were detected with two 300 μm and 1500 μm-thick ΔΕ-E surface-barrier detector telescopes (FWHM≈90 keV). Measured σ(E(³He),θ), analyzing powers (iT₁₁(θ)). Deduced mass excess, levels, J, π, L-transfers, spectroscopic factors from vector analyzing power data and standard local, zero-range JULIE-DWBA analysis of the angular distributions.

³⁵P Levels

Spectroscopic factor $C^2S = \sigma(\theta)_{exp}/\sigma(\theta)_{DWBA}/N$, where N=2.95 is a normalization factor adopted by 1985Kh04 from 1974Ma34, originally from 1966Ba54.

E(level) [†]	\mathbf{J}^{π}	L^{\ddagger}	C^2S^{\ddagger}	Comments
0	1/2+	0	1.63	
2386 6	3/2+#	2	0.31#	
3857 2	$5/2^{+}$ @	2	2.91 [@]	
4474 <i>21</i>			< 0.2	$1d_{5/2}$ proton transfer assumed in DWBA calculations, but $2016Mu03$ proposed $1f_{7/2}$ (L=3) based on the measured parallel momentum distribution.
4665 <i>3</i>	5/2 ⁺ @	2	1.06 [@]	•
5189 <i>13</i>	5/2 ⁺ @	2	1.38 [@]	
7520 <i>30</i>			< 0.4	$1d_{5/2}$ proton transfer assumed in DWBA calculations, but $2016Mu03$ proposed $1p_{1/2}$ (L=1) based on the measured parallel momentum distribution.

[†] Deduced from ³He spectra measured with unpolarized deuteron beam.

[‡] From DWBA analysis of measured $\sigma(\theta)$.

[#] L-1/2 transfer from analyzing power measurements; 1d_{3/2} proton transfer assumed in DWBA calculations.

 $^{^{@}}$ L+1/2 transfer from analyzing power measurements; $1d_{5/2}$ proton transfer assumed in DWBA calculations.