

Progress Report Week 9

Michiel Aernouts michiel.aernouts@student.uantwerpen.be

May 20, 2017

Abstract

Optimisation of wireless networks is critical for the localisation of wireless devices. For this purpose, a wave propagation model of the environment can be created. Such a model contains a map of the environment combined with RF measurements that are obtained within that map. In this paper, we compare several visual SLAM algorithms such as LSD SLAM [1] and RGB-D SLAM [2] that can be used to render an accurate 3D map of an indoor environment. In order to test these algorithms, simulation software is used to navigate a drone around a room. A camera that is mounted on the drone provides necessary data for the algorithms. After finishing a SLAM algorithm, the resulting point cloud can be implemented in an OctoMap [3] to generate a volumetric representation.

1 Progress

1.1 Camera drivers

In order to use a Microsoft Kinect camera, drivers have to be installed. For Ubuntu, this is a simple process:

- sudo apt-get install libfreenect-dev
- sudo apt-get install ros-indigo-freenect-launch

Afterwards, the open-source freenect driver can be launched by executing 'roslaunch freenect_launch freenect_launch'. However, installing these drivers on the Erle-Brain is not as straightforward. The freenect_launch package and its dependencies have to be installed in a different way, as I will explain below.

The Erle-Brain 3 is a Raspberry Pi 3. Therefore I based the installation process for freenect on chapter 4.2 at http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Kinetic%20on% 20the%20Raspberry%20Pi.

In order to install al required dependencies, I generated rosinstall files. This is done by executing: 'rosinstall_generator <package> --rosdistro kinetic --deps --wet-only --tar > <package>.rosinstall', where "package" is the dependency that has to be installed. The freenect_launch package and its recursive dependencies for which I generated rosinstall files are listed below:

- freenect_launch
- rgbd_launch
- smclib (dependency of bond)
- bond (dependency of nodelet)
- bondcpp (dependency of nodelet)
- nodelet
- image_proc
- libfreenect
- freenect_camera

For example, to create a rosinstall file for nodelet, go to the catkin workspace and execute:

• rosinstall_generator nodelet --rosdistro kinetic --deps --wet-only --tar > nodelet_ros.rosinstall

Then, the src folder in the catkin workspace has to be initialised for rosinstall files:

• wstool init src

In order to import the rosinstall files in the **src** folder, execute the command below for every rosinstall:

• wstool merge -t src <package>

When this is done, the **src** folder has to be updated. If this command renders errors, just try to execute it again.

• wstool update -t src

Now, the catkin workspace can be built. Execute the command below for every package, in the order listed above.

• catkin_make_isolated --pkg <package> --install

If the libfreenect package can not be built, try to execute sudo apt-get install libxmu-dev libxi-dev first.

The freenect driver should be successfully installed now. It can be launched by executing 'roslaunch freenect_launch freenect_launch'. Make sure to source the correct ROS workspace first. However it is possible that the LC_ALL environmental variable has to be set first:

- sudo locale-gen en_US en_US.UTF-8
- export LC_ALL="en_US.UTF-8"

The second command can be put in ".bashrc, so that the environmental variable will be set at all times.

1.2 Camera mount

As we do not need the camera to rotate, the Kinect is mounted to the Erle-Copter with tie-wraps.

1.3 Communication

ROS topics from the Erle-Copter can be viewed on an external PC. In ~.bashrc on the Erle-Brain, the following lines have to be added:

- export ROS_MASTER_URI=http://10.0.0.1:11311
- export ROS_IP=10.0.0.1

For the external PC, add these lines in ~.bashrc:

- export ROS_MASTER_URI=http://10.0.0.1:11311
- export ROS_IP=10.0.0.2

Note that the PC has to be connected on the Erle-Brains' WiFi network. ROS topics can now be viewed in the terminal or with RViz.

2 Planning week 10

- Indoor test flight with Kinect
- Record a bagfile
- OctoMap
 - Research
 - Initial guess algorithm

References

- [1] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-Scale Direct Monocular SLAM. Computer Vision ECCV 2014, pages 834–849, 2014.
- [2] Felix Endres, Jurgen Hess, Nikolas Engelhard, Jurgen Sturm, Daniel Cremers, and Wolfram Burgard. An evaluation of the {RGB}-D {SLAM} system. 2012 {IEEE} International Conference on Robotics and Automation, 2012.
- [3] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard. {OctoMap}: an efficient probabilistic {3D} mapping framework based on octrees. *Autonomous Robots*, 34(3):189–206, 2 2013.