

Học MÁY THỐNG KÊ Support Vector Machine

Support Vector Machine

- Support Vector Machine (SVM) là một thuật toán thuộc nhóm Supervised Learning (học có giám sát) dùng để phân chia dữ liệu (classification) thành các nhóm riêng biệt (bài toán phân lớp).
- Thuật toán được phát triển bởi nhà khoa học người Nga Vladimir Vapnik vào những năm 1960.

Hình: tách dữ liệu 2 chiều bằng

Hình: Dữ liệu hai chiều với đường phép biến đổi thẳng

 Vấn đề: Trong hình 1, đường thẳng phân tách lớp dữ liệu nào là tốt nhất

PHƯƠNG PHÁP BIÊN CỰC ĐẠI BÀI TOÁN CỰC TIỂU CÓ ĐIỀU KIỆN PHƯƠNG PHÁP NHÂN TỬ LAGRANGE

Để tìm hiểu cơ sở lý thuyết toán học của SVM, ta xét trường hợp số liệu hai chiều được tách rời tuyến tính. Ghi chú:

- ightharpoonup Đường thẳng: ax + by + c = 0 (trong không gian 2 chiều)
- Mặt phẳng: ax + by + cz + d = 0 (trong không gian 3 chiều)
- Siêu phẳng (hyperplane): $w_1x_1 + w_2x_2 + ... + w_nx_n + b = 0$. Ta thường viết dạng véc tơ là $\mathbf{wx} + b = 0$

Biên (Margin)

 Biên (hay lề - Margin) là khoảng cách giữa siêu phẳng đến 2 điểm dữ liệu gần nhất tương ứng với 2 phân lớp.

Hình: Độ rộng biên

Một cách trực quan, đường thẳng phân tách 2 tập nhãn là tốt nhất nếu như nó không quá gần một tập nào đó, nghĩa là độ rộng biên M là cực đại. Trong hình trên, phân lớp màu đen tốt hơn phân lớp màu xanh. Đây cũng là lý do vì sao SVM còn được gọi là pp phân loại biên cực đại (Maximum Margin Classifier).

Tính M theo W và b

Từ 2 lớp nhãn thuộc tập huấn luyện, ta lấy một điểm bất kỳ và đặt (p+), (p-) là các "mặt" đi qua mỗi điểm đó và song song với mặt phân lớp Wx + b = 0:

$$(p+) = \{x/wx + b = +1\}$$

 $(p-) = \{x/wx + b = -1\}$

Để ý: w là "pháp véc tơ" của mỗi "mặt".

Hình: Cực đại độ rộng biên

Hai mặt phẳng (p+) và (p-) tựa trên một số điểm thuộc lớp phân loại nên những điểm (vectors) này gọi là các điểm hỗ trợ (support vector). Đó là lý do tên phương pháp này là SVM (support vector machine).

Lấy một điểm (x-) trong lớp nhãn "-" thuộc tập huấn luyện và thuộc (p-). Lấy một điểm (x+) thuộc (p+) mà gần (x-) nhất. Khi đó (x+)-(x-) sẽ cùng phương với vector \mathbf{w} nên

$$(\mathbf{x}+)-(\mathbf{x}-)=\lambda\mathbf{w} \tag{1}$$

Sử dụng phương trình mặt (p+), (p-) và thay vào phương trình trên ta được

$$\lambda = \frac{2}{\mathbf{w}^{\mathsf{T}}\mathbf{w}} \tag{2}$$

Để ý là độ rộng lề $M = |(x+) - (x-)| = \lambda |\mathbf{w}| = \lambda \sqrt{\mathbf{w}^T \mathbf{w}}$ nên suy ra

$$M = \frac{2}{\sqrt{\mathbf{w}^\mathsf{T}\mathbf{w}}} = \frac{2}{||\mathbf{w}||} \tag{3}$$

Cực đại độ rộng biên

Cực đại độ rộng $M = \frac{2}{\sqrt{\mathbf{w}^T \mathbf{w}}} = \frac{2}{||\mathbf{w}||}$ tương đương với bài toán cực tiểu có điều kiện như sau (Ta chọn bình phương để việc tính đao hàm được thuân lợi):

$$(\mathbf{w}, b) = \arg\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2 \qquad (4)$$

với điều kiện:
$$1 - y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \le 0, \forall i = 1, 2, ..., m$$
 (5)

với $y^{(i)} = +/-1$ tương ứng với nhãn của hai phân lớp. Bài toán tối ưu trên thuộc loại tối ưu bậc 2 (Quadratic Programming-QP), được giải bằng cách giải bài toán đối ngẫu Lagrange (Lagrange dual problem).

Xác định lớp (gán nhãn) cho một điểm dữ liệu mới: Sau khi tìm được mặt phân cách $\mathbf{w}^T\mathbf{x} + b = 0$, phân lớp (gán nhãn) của một điểm bất kỳ được xác đinh như sau:

$$\hat{\mathbf{y}} = \mathsf{class}(\mathbf{x}) = \mathsf{sgn}(\mathbf{w}^\mathsf{T} \mathbf{x} + b) \tag{6}$$

Trong đó hàm sgn(.) là hàm xác định dấu, nhận giá trị 1 nếu đối số là không âm và -1 nếu ngược lai.

Tối ưu có ràng buộc- Phương pháp nhân tử Lagrange

Xét bài toán tối ưu có ràng buôc:

$$(\mathbf{w}, b) = \arg\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2$$
 với điều kiên:
$$1 - \mathbf{v}^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) < 0, \forall i = 1, 2, \dots, m$$

Việc giải bài toán này trở nên phức tạp khi số chiều (số thuộc tính) n và số điểm dữ liệu m lớn. Khi đó người ta xét bài toán đối ngẫu Lagrage của nó. Ta xây dựng hàm Lagrange với $\alpha_i \geq 0$ được gọi là các nhân tử, đưa bài toán đã cho về bài toán cực tri:

$$L(\mathbf{w}, b; \alpha_i) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^{m} \alpha_i [1 - y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b)]$$
 (7)

Giải phương trình đạo hàm riêng của L theo các tham số

$$\frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{m} \alpha_{i} y^{(i)} \mathbf{x}^{(i)} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{m} \alpha_{i} y^{(i)} \mathbf{x}^{(i)} (8)$$

$$\frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b} = -\sum_{i=1}^{m} \alpha_{i} y^{(i)} = 0$$
(9)

Giải phương trình đạo hàm riêng của L theo các tham số, ta được hàm đối ngẫu Lagrange và cần cực đại hàm này với $\alpha_i > 0$ (CT 5-6, tr 170)

$$L(\alpha) = -\sum_{i=1}^{m} \alpha_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)T} \mathbf{x}^{(j)}$$
(10)

Dùng tool python để tính được α_i , khi đó ta tính các hệ số phương trình đường phân tách như sau (CT5-7 tr 171):

$$\mathbf{w} = \sum_{i \in \mathcal{S}} \alpha_i \mathbf{y}^{(i)} \mathbf{x}^{(i)} \tag{11}$$

$$b = \frac{1}{n_{S}} \sum_{i \in S} (y^{(i)} - \mathbf{w}^{T} \mathbf{x}^{(i)}) = \frac{1}{n_{S}} \sum_{i \in S} \left(y^{(i)} - \sum_{j \in S} \alpha_{j} y^{(j)} \mathbf{x}^{(j)}^{T} \mathbf{x}^{(i)} \right)$$
với n_{S} là số điểm hỗ trơ, còn S là các điểm i ứng với $\alpha_{i} = 0$ (S=

Support vector). Để ý là m và n có thể lớn, nhưng n_S lại khá nhỏ - Hãy kiểm chứng bằng CT python.

SVM nhạy cảm với phép biến đổi độ lớn (scale) thuộc tính. Hình dưới cho thấy hình bên phải cho phân lớp tốt hơn.

Figure 5-3, Hard margin sensitivity to outliers

Phương pháp biên cứng (Hard margin)

Phương pháp biên mềm (Soft margin)

Hình

Với trường hợp có nhiễu, điều kiện theo phương pháp biên cứng không thỏa được nên ta đưa thêm vào một biến phụ $\xi_i \geq 0$

$$1 - y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \le \xi_i, \forall i = 1, 2, \dots, m$$
 (13)

Bài toán tối ưu trở thành

$$(\mathbf{w},b) = \arg\min_{\mathbf{w},b} \left[\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^m \xi_i \right]$$
 (14)

với đk:
$$1 - y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) - \xi_i \le 0, \xi_i \ge 0, \forall i = 1, 2, ...$$
 (15)

Tham số C được gọi là "siêu tham số" (hyperparameter). Độ lớn tham số C cho ta ưu tiên mức độ tối ưu giữa hai thành phần:

- C nhỏ: Ưu tiên cực tiểu thành phần thứ nhất
- ▶ C lớn: ưu tiên cực tiểu thành phần thứ 2. Nếu C quá lớn và hai tập tách rời tuyến tính thì hàm cực tiểu khi tổng $\xi_i = 0$, nghĩa là thuật toán trở thành thuật toán biên cứng SVM.
- Nếu mô hình SVM quá khớp (overfitting), ta có thể điều chỉnh giảm tham số C (khi đó độ rộng biên sẽ tăng lên).

Nhận xét: SVM không cho ta biết xác suất thuộc phân lớp của một điểm dữ liệu.

Hình

Thuật toán SVM có thể sử dụng xây dựng đường hồi quy. Thay vì cố gắng xác định "đường đi rộng nhất" giữa 2 lớp, đường hồi quy SVM cố gắng càng gần các điểm càng tốt trong giới hạn của biên. Đô rông của đường được kiểm soát bởi siêu tham số

Để xác định đường hồi quy SVM, ta cực tiểu hàm mất mát với điều kiên như sau:

$$-\epsilon \le y_i - wx_i - b \le \epsilon \tag{16}$$

from sklearn.svm import LinearSVR

Hình

Thực hành: Chạy kiểm tra các đoạn chương trình ở trang 165, 166.

 ϵ .

Figure 5-10. SVM Regression

Hình

Phân loại SVM phi tuyến

Trong thực tế ta cũng gặp dữ liệu không "gần với" tách rời tuyến tính, nghĩa là đường phân lớp có thể là một đường cong. Khi đó ta có thể thêm thuộc tính, chẳng hạn như thuộc tính đa thức, để có được tập tách rời tuyến tính (xem hình dưới), hoặc ta có thể sử dụng phép biến đổi đa thức như bài thực hành số 3 bên dưới.

Phân loai SVM phi tuyến

Ghi chú:

- ► Hàm đa thức bậc 2 $Φ(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$
- Hàm biến đổi đa thức (kernel polynomial)

$$K(x, w; \gamma, r, d) = \Phi(x)^T \Phi(w) = (\gamma x^T w + r)^d$$

- Dữ liệu như trong hình trên có thể gặp trong điều trị bệnh: Lượng thuốc điều trị vừa đủ thì người bệnh sẽ được chữa khỏi, ngược lại, quá liều hoặc không đủ liều thì người bệnh không khỏi được.
- Trong lớp sklearn.svm.SVC, đặt kernel = 'poly', degree=?, C=?

Kernel Gauss RBF

(17)

Một kỹ thuật quan trọng để giải bài toán phân loại có đường phân loại phi tuyến là thêm thuộc tính được tính từ hàm đồng dạng (similarity function) dùng để đo độ tương đồng của mỗi mẫu dữ liệu với một điểm làm dấu (landmark). Chẳng hạn, với dữ liệu một chiều như hình dưới, chọn 2 điểm làm dấu là $\ell_1=-2,\ell_2=1$, và chọn hàm đồng dạng RBF với $\gamma=0.3$. Khi đó trong không gian thuộc tính mới, dữ liệu tách rời tuyến tính.

Hình: Thêm thuộc tính đồng dạng

Công thức hàm đồng dạng Gauss RBF có dạng:

$$\phi_{\gamma}(x,\ell) = \exp(-\gamma||x-\ell||^2), \ell = \text{diểm làm dấu}$$

Tính thuộc tính mới:

▶ Xét điểm x = -1. Ta có 2 điểm làm dấu là $\ell_1 = -1, \ell_2 = 1$. Thay vào công thức trên:

$$x_2 = exp(-0.3 * |-1 - (-2)|^2 \approx 0.74$$

 $x_3 = exp(-0.3 * |-1 - 1|^2) \approx 0.3$

- Làm tương tự cho các điểm dữ liệu còn lại ta được dữ liệu tách rời tuyến tính như hình bên phải.
- ► Trong sklearn.svm.SVC ta đặt kernel = 'rbf' γ =?, C=?

 $\mathbf{D}\hat{\mathbf{e}}$ **ý**: γ càng lớn thì đỉnh chuông càng nhọn, khoảng ảnh hưởng của mỗi mẫu sẽ nhỏ, do đó biên phân lớp sẽ "gắt" (suy biến-irregular), nghĩa là mô hình quá khớp. Như vây, nếu mô hình quá khớp thì ta điều chỉnh giảm tham số này (tương tư tham số C).

CHON ĐIỂM LÀM DẤU THÊ NÀO? Ta chọn m mẫu trong tập

huấn luyên là các điểm làm dấu. Như vây với một mẫu x cho trước và hàm đồng dạng $\Phi_{\gamma}(.,.)$, ta có thuộc tính mới là $[f_i(\mathbf{x}) = \Phi_{\gamma}(\mathbf{x}, \mathbf{x}^{(i)}), i = 1...m]^T$

Cu thể, giả sử tập huấn luyên $(x^{(i)}, y^{(i)}), i = 1...m$

Ta chon các điểm làm dấu: $\ell^{(i)} = x^{(i)}$, i = 1...mBiến đổi mỗi điểm dữ liêu $(x^{(i)}, v^{(i)})$:

 $x^{(i)} \to f = [f_1(x^{(i)}), ... f_m(x^{(i)})]^T$, để ý $f_i(x^{(i)}) = 1$ Như vây, với dữ liệu **x**, ta tính được thuộc tính $f = [1, f_1, ..., f_m]^T \in \mathbb{R}^{m+1}$ và gán nhãn "y=1" nếu như $\theta^T f \ge 0$, θ là tham số của mô hình, được xác định qua việc cực tiểu hàm mất mát tương ứng.

Hình: Thêm thuộc tính đồng dạng

Thực hành với lệnh pipeline trang 158

Bài thực hành 1.

- ► Chạy lại đoạn CT trang 158
- ► Hãy gán nhãn các các điểm (1.5, 1.7), (5.5, 1.6)

Hình: Tách phân lớp dữ liệu 2 chiều bằng phép biến đổi

PP Kernel SVM là việc đi tìm một hàm số biến đổi dữ liệu x từ không gian thuộc tính (feature) ban đầu thành dữ liệu trong một không gian mới bằng hàm số $\Phi(x)$

Equation 5-8. Second-degree polynomial mapping
$$\phi(\mathbf{x}) = \phi \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1^2 \\ \sqrt{2} x_1 x_2 \\ x_2^2 \end{pmatrix}$$

Hình

Định lý Mercer

Nếu hàm số thực hai biến K(.,.) thỏa các điều kiện:

- (i) K liên tục trên \mathbb{R}^2
- (ii) K đối xứng: $K(a,b) = K(b,a), \forall a,b$
- (iii) K nửa xác định dương: $\sum_{i=1}^{N} \sum_{j=1}^{N} k(\mathbf{x}_j, \mathbf{x}_i) c_i c_j \geq 0, \ \forall c_i \in \mathbb{R}, i = 1, 2, \dots, N$

Khi đó tồn tại hàm biến đổi $\Phi(x)$ biến x sang không gian khác và thỏa $K(a,b) = \Phi(a)^T \Phi(b)$.

Không gian đích có thể là không gian hữu hạn chiều hoặc là không gian vô hạn chiều (như hàm Gauss kernel- Radial Basic fuction (RBF)).

Trong thực hành, người ta thấy rằng ta vẫn có thể dùng hàm Kernel K ngay cả khi ta không biết hàm ϕ , hoặc dùng cả hàm K nhưng không thỏa định lý Mercer (như hàm sigmoid kernel)

Công thức ược lượng hệ số tự do b

(18)

$$b = \frac{1}{N_{\mathcal{S}}} \sum_{i \in \mathcal{S}} \left(y^{(i)} - \sum_{j \in \mathcal{S}} \alpha_j y^{(j)} \Phi(\mathbf{x}^{(j)})^T \Phi(\mathbf{x}^{(i)}) \right)$$
$$= \frac{1}{N_{\mathcal{S}}} \sum_{i \in \mathcal{S}} \left(y^{(i)} - \sum_{j \in \mathcal{S}} \alpha_j y^{(j)} K(\mathbf{x}^{(j)}, \mathbf{x}^{(i)}) \right)$$

Equation 5-10, Common kernels

Linear: $K(\mathbf{a}, \mathbf{b}) = \mathbf{a}^T \mathbf{b}$

Polynomial:
$$K(\mathbf{a}, \mathbf{b}) = (\gamma \mathbf{a}^T \mathbf{b} + r)^d$$

Gaussian RBF:
$$K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma ||\mathbf{a} - \mathbf{b}||^2)$$

Sigmoid:
$$K(\mathbf{a}, \mathbf{b}) = \tanh \left(\gamma \mathbf{a}^T \mathbf{b} + r \right)$$

Hình

Equation 5-11, Making predictions with a kernelized SVM

$$\begin{split} h_{\widehat{\mathbf{w}}_{i}\widehat{b}}\Big(\phi\Big(\mathbf{x}^{(n)}\Big)\Big) &= \widehat{\mathbf{w}}^{T}\phi\Big(\mathbf{x}^{(n)}\Big) + \widehat{b} = \left(\sum_{i=1}^{m} \widehat{\alpha}^{(i)}t^{(i)}\phi\Big(\mathbf{x}^{(i)}\Big)\right)^{T}\phi\Big(\mathbf{x}^{(n)}\Big) + \widehat{b} \\ &= \sum_{i=1}^{m} \widehat{\alpha}^{(i)}t^{(i)}\Big(\phi\Big(\mathbf{x}^{(i)}\Big)^{T}\phi\Big(\mathbf{x}^{(n)}\Big)\Big) + \widehat{b} \\ &= \sum_{i=1}^{m} \widehat{\alpha}^{(i)}t^{(i)}K\Big(\mathbf{x}^{(i)},\mathbf{x}^{(n)}\Big) + \widehat{b} \\ \widehat{\alpha}^{(i)} > 0 \end{split}$$

Hình

SVM trực tuyến

- Thuật ngữ "học trực tuyến-online learning" hiểu theo nghĩa mô hình được cân phật tức thì khi ngay khi có mẫu mới
- mô hình được cập nhật tức thì khi ngay khi có mẫu mới.
 Xét lai ràng buôc trong bài toán SVM tuyến tính:

$$1 - y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) - \xi_i \le 0, \xi_i \ge 0, \forall i = 1, 2, \dots, m \quad (19)$$

$$\xi_i \ge max[0, (1 - y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b), \forall i = 1, 2, ..., m]$$
 (20)
Có thể thấy nếu (\mathbf{w}, b, ξ) là nghiệm của bài toán tối ưu

y nêu
$$(\mathbf{w}, \mathbf{b}, \xi)$$
 là nghiệm của bài toán tôi ưu

$$(\mathbf{w}, b) = \arg\min_{\mathbf{w}, b} \left[\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^m \xi_i \right]$$
 (21)

thì $\xi_i = \max[0, (1 - y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b), \forall i = 1, 2, ..., m Vì vậy hàm mất mát của thuật toán SVM tuyến tính trở thành (CT 5-13, tr174)$

$$(\mathbf{w}, b) = \arg\min_{\mathbf{w}, b} \left[\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{m} max[0, (1 - y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b)] \right]$$

- Người ta thấy rằng bộ phân loại SVM tuyến tính với thuật toán tối ưu SGD (GD ngẫu nhiên) áp dụng cho hàm mất mát hội tụ khá chậm so với thuật toán sử dụng quy hoạch bậc 2 (QP)
- ▶ Hàm mất mát Hinge: được định nghĩa là h(t) = max(0, 1 t). Hàm này không khả vi tại t = 1, h'(t) = -1 nếu t < 1 và = 0 nếu (t > 1). Do vậy, khi dùng GD, ta gán đạo hàm của h(t) tại t = 1 một giá trị bất kỳ trong khoảng (-1, 0).

Hình: Đồ thị hàm mất mát Hinge

Các hàm mất mát cơ bản dành cho bài toán phân lớp nhị phân

Hình: Đồ thị một số hàm mất mát hay dùng

Bài tập

- 1. Ý tưởng cơ bản của SVM là gì? Ý tưởng của thuật toán biên mềm SVM. Nêu ý nghĩa siêu tham số C trong bải toán cực tiểu hàm mất mát.
- Sử dụng SVM thư viện sklearn để xây dựng mô hình phân loại cho tập huấn luyện có dữ liệu cho trong data-demo-svm.xls. Thay đổi độ lớn tham số C và nhận xét.
- 3. Ý tưởng của hàm kernel K(.,.) là gì? Khi nào ta áp dụng hàm kernel? Ta có cần biết biểu thức của hàm $\Phi(x)$ không?
- 4. Cho điểm dữ liệu trong không gian hai chiều $\mathbf{x} = [x_1, x_2]^T$ và hàm biến đổi sang không gian 5 chiều: $\Phi(\mathbf{x}) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2]^T$. Hãy tính hàm kernel K(a, b)
- 5. Giả sử bạn dùng bộ phân loại SVM với hàm kernel RBF cho tập huấn luyện và thấy mô hình phân loại chưa tốt. Để cải thiện, bạn sẽ giảm hay tăng tham số γ trong công thức hàm kernel, tham số C trong hàm mất mát.

Nhà khoa học người Nga Vladimir Vapnik

- ▶ 1936/12/6- được sinh ra ở Liên bang Soviet
- 1958- TN đại học, 1960's Bảo vệ TS về SVM nhưng không ai để ý KQ này.
- ▶ 1990- Di cư đến Mỹ, 1992- gửi 3 bài báo cho tạp chí NIPS (Neural Information Processing Systems) về SVM nhưng đều không vượt qua vòng phản biện.
- 1992-1994 PTN Bell quan tâm đến các nhận dạng chữ viết tay, thuật toán của Vapnik đã được sử dụng và cho kết quả tốt.
- Cuốn sách ông cầm trên tay được trích dẫn hơn 60.000 lần.

Tài liệu tham khảo

- Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow, 2nd Edition của tác giả Aurélien Géron.
- https://www.kaggle.com/bbose71/svm-non-linearclassification
- https://machinelearningcoban.com/

