Schwarz's Lemma

Theorem

Let f(z) be analytic in |z| < R, f(0) = 0, and $|f(z)| \le M$:

- 1). $|f(z)| \le |z| \frac{M}{R}$
- 2). $|f'(0)| \leq \frac{M}{R}$
- 3). Equality holds for $f(z)=cz\frac{M}{R}$ where |c|=1

Proof

Let
$$g(z) = \begin{cases} \frac{f(z)}{z}, & 0 < z < R \\ f'(0), & z = 0 \end{cases}$$

Since f(z) is analytic |z| < R, f'(z) exists in |z| < R

So, by L'Hospital, $\lim_{z\to 0}g(z)=\frac{f'(z)}{1}=f'(0)$ Thus, f(z) is continuous at z=0

Assume 0 < r < R

On
$$|z| = r$$
, $|g(z)| = \frac{f(z)}{z} \le \frac{M}{r}$

On $|z|=r, |g(z)|=\frac{f(z)}{z}\leq \frac{M}{r}$ Since g(z) analytic in $|z|\leq r$, by the maximum principle: $|g(z)|\leq \frac{M}{R}$ Let $r \to R$

Therefore, $|f(z)| \leq |z| \frac{M}{R}$

$$|f'(0)| = |g(0)| \le \frac{M}{R}$$

For equality, |g(z)| reaches its maximum value of $\frac{M}{R}$

Let
$$c \in \mathbb{C}, |c| = 1$$

$$|g(z)| = \frac{M}{R} = \left| \frac{f(z)}{z} \right|$$

$$|f(z)| = |z| \, \frac{M}{R}$$

$$|g(z)| = \frac{M}{R} = \left| \frac{f(z)}{z} \right|$$

$$|f(z)| = |z| \frac{M}{R}$$

$$|f(z)| = |c| |z| \frac{M}{R} = |cz| \frac{M}{R}$$

$$\therefore f(z) = cz \frac{M}{R}$$

$$\therefore f(z) = cz \frac{M}{R}$$