Lecture 9-red-black trees

What type of data structure is a Red-Black Tree? Array
b) Linked List
c) Balanced Binary Search Tree
d) Hash Table
Answer: c) Balanced Binary Search Tree
2. In a Binary Search Tree, where are items smaller than a given node placed?
a) To the left
b) To the right
c) Above
d) Below
Answer: a) To the left
3. What is the guaranteed height of a balanced search tree with n items?
a) O(n)
b) O(log n)
c) O(n^2)
d) O(1)
Answer: b) O(log n)
4. How many colors can a node in a Red-Black Tree have?
a) 1
b) 2
c) 3
d) 4
Answer: b) 2
5. What color are the root and leaves (NIL) in a Red-Black Tree?
a) Red
b) Black
c) Either red or black
d) No color
Answer: b) Black
6. If a node is red in a Red-Black Tree, what color must its children be?
a) Red
h) Black

c) Either red or bla	ack
d) No color	
Answer: b) Black	
7. In a Red-Black Tr	ree, all paths from a node to its NIL descendants contain:
a) The same num	ber of red nodes
b) The same num	ber of black nodes
, .	per of red and black nodes
d) No specific pat	tern
Answer: b) The sa	nme number of black nodes
8. What is the maxi	imum ratio between the longest and shortest path in a Red-Black Tree?
a) 1:1	
b) 2:1	
c) 3:1	
d) 4:1	
Answer: b) 2:1	
9. What is the time	complexity of search, insert, and remove operations in a Red-Black Tree?
a) O(1)	
b) O(n)	
c) O(log n)	
d) O(n^2)	
Answer: c) O(log r	n)
10. What technique	e is used to fix violations after inserting or removing nodes in a Red-Black
Tree?	
a) Sorting	
b) Rotations	
c) Splitting	
d) Merging	
Answer: b) Rotati	ions
11. What is the prin	mary goal of rotations in a Red-Black Tree?
•	e height of the tree
,	ne height of the tree
c) To change the	
d) To remove nod	
,	

Answer: b) To decrease the height of the tree

12. What is the time complexity of a rotation operation?
a) O(1)
b) O(log n)
c) O(n)
d) O(n^2)
Answer: a) O(1)
13. How many main scenarios are there after inserting a node Z in a Red-Black Tree?
a) 2
b) 3
c) 4
d) 5
Answer: c) 4
14. In Case 0 of insertion, what action is taken when Z is the root?
a) Color Z red
b) Color Z black
c) Rotate Z
d) No action needed
Answer: b) Color Z black
15. In Case 1 of insertion, what is done when Z's uncle is red?
a) Rotate Z
b) Recolor Z's parents and grandparent
c) Remove Z
d) No action needed
Answer: b) Recolor Z's parents and grandparent
16. In Case 2 of insertion (triangle case), what action is taken?
a) Rotate Z
b) Rotate Z's parent
c) Rotate Z's grandparent
d) No rotation needed
Answer: b) Rotate Z's parent
17. In Case 3 of insertion (line case), what actions are taken?
a) Rotate Z's grandparent only

b) Recolor Z's parents and grandparent only

c) Rotate Z's grandparent and recolor Z's parents and grandparent

d) No action needed

Answer: c) Rotate Z's grandparent and recolor Z's parents and grandparent

- 18. What is the overall time complexity of inserting a node in a Red-Black Tree?
 - a) O(1)
 - b) O(log n)
 - c) O(n)
 - d) O(n^2)

Answer: b) O(log n)

- 19. Which of the following is NOT an application of Red-Black Trees?
 - a) Java's TreeMap
 - b) C++ STL's map
 - c) Linux kernel's completely fair scheduler
 - d) Python's list implementation

Answer: d) Python's list implementation

- 20. What property of Red-Black Trees makes them efficient for use as system symbol tables?
 - a) They use only two colors
 - b) They guarantee O(log n) time complexity for basic operations
 - c) They always have a black root
 - d) They require frequent rotations

Answer: b) They guarantee O(log n) time complexity for basic operations