

NOVEL ANTIPROLIFERATIVE FALCARINDIOL FURANOCOUMARIN ETHERS FROM THE ROOT OF ANGELICA JAPONICA

Kazuhiro Furumi,^a Toshihiro Fujioka,^a Hiroko Fujii,^a Hikaru Okabe,^a Yukitaka Nakano,^b Hisashi Matsunaga,^b Mitsuo Katano,^c Masato Mori,^b and Kunihide Mihashi,^a*

^a Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-80, Japan
^b Faculty of Hospital Pharmacy, Saga Medical School, Nabeshima 5-chome 1-1, Saga 849, Japan
^c Department of Surgery, Saga Medical School, Nabeshima 5-chome 1-1, Saga 849, Japan

Received 19 September 1997; accepted 19 November 1997

Abstract: Four novel antiproliferative furanocoumarin ethers of falcarindiol, named japoangelols A (8.5), B (7.2), C (7.4), and D (8.4), were isolated from the root of *Angelica japonica* together with panaxynol (0.3), falcarindiol (3.2), (9Z)-1,9-heptadecadiene-4,6-diyne-3,8,11-triol (2.2), and 8-acetoxyfalcarinol (3.2). Structures were established from the spectroscopic evidence, and the inhibitory activities (ED₅₀, μg/ml, shown in the parentheses) were evaluated using the MTT assay. © 1997 Elsevier Science Ltd. All rights reserved.

After we found the acetylenic compound, panaxytriol, as an antiproliferative acetylenic compound in the steamed and dried ginseng root ("red ginseng"), 1 we systematically screened the 21 Umbelliferae plants² for the antiproliferative acetylenic compounds using the combination of the ELISA^{1,3} for panaxytriol and the MTT assay, 4 and isolated falcarindiol from the root and fruit of Anthriscus sylvestris⁵ and falcarindiol and panaxynol from the root of Heracleum moellendorfii² as the antiproliferative constituents.

In the course of our continuing search for antiproliferative acetylenic compounds in the Umbelliferae plants, we found the MeOH extract of the root of *Angelica japonica* showed the antiproliferative activity (ED₅₀ 25 μg/ml) against human gastric adenocarcinoma cell (MK-1) *in vitro*, and the activity is localized only in the CHCl₃-soluble fraction. Subsequent bioassay-directed fractionation of the CHCl₃-soluble fraction (105.6 g from 5.5 kg dried root) of the MeOH extract using chromatography on silica gel and YMC-ODS, and the preparative HPLC on ODS has led to the isolation of four furanocoumarin ethers of falcarindiol, named japoangelols A (1, 28 mg), B (2, 38 mg), C (3, 43 mg), and D (4, 44 mg), in addition to five polyacetylenic compounds, panaxynol (57 mg), falcarindiol (5, 2.94 g), (9Z)-1,9-heptadecadiene-4,6-diyne-3,8,11-triol (25 mg), and 8-acetoxyfalcarinol (100 mg). Non-antiproliferative free furanocoumarins, byakangelicin (6, 93 mg) and oxypeucedanin hydrate (7, 23 mg) were also isolated.

Japoangelols A (1)⁶ and B (2)⁷ were obtained as yellow syrups with a molecular formula C₃₄H₄₀O₈. Both showed ¹H and ¹³C nmr signals almost identical to those of falcarindiol and byakangelicin suggesting them to be conjugates of the two. In the ¹H nmr spectrum of 1, the proton signals of the hydroxyl groups corresponding to C8"-OH of falcarindiol and C3'-OH of byakangelicin were not observed in spite that the

signals of the corresponding C3"-OH (δ 2.23) and C2'-OH (δ 3.08) were observed. The ¹³C nmr signals of C3' appeared at δ 78.5, 7.0 ppm lower than that of free byakangelicin (δ 71.5), suggesting that falcarindiol is linked to the C3'-OH of byakangelicin. The down-field shift of the signal of the counterpart carbon (C8") in the falcarindiol moiety was not observed, however, the C8"-H signal showed in the HMBC spectrum a clear cross peak with a carbon signal (C3') of the byakangelicin moiety (see Figure 1). From these spectroscopic evidence, the location of the linkage was concluded to be C8"-O-C3'. In the ¹³C nmr spectrum of 2, the signal of C3' appeared at δ 78.7, 7.2 ppm lower than that of free byakangelicin, and C3"-H and C3' showed a cross peak in the HMBC spectrum, indicating the location of the linkage is C3"-O-C3'.

Figure 1: ¹H-¹³C Long-range Correlations in 1

Japoangelols C (3)⁸ and D (4)⁹ were obtained as yellow syrups with a molecular formula $C_{33}H_{38}O_7$. Both showed the ¹H and ¹³C nmr signals nearly identical to those of falcarindiol and oxypeucedanin hydrate. In the ¹³C nmr spectrum of 3, the signal of C3' appeared at δ 78.5, 6.8 ppm lower than that of free oxypeucedanin hydrate (δ 71.7), suggesting that falcarindiol is linked to the C3'-OH of oxypeucedanin hydrate. The location of the linkage of the two was concluded to be C8"-O-C3' by the HMBC experiment. In the same way, the location of the linkage of falcarindiol and oxypeucedanin hydrate in 4 was concluded to be C3"-O-C3'.

On the basis of spectral evidences described above, the structures of japoangelol A, B, C, and D are represented by formula 1, 2, 3, and 4, respectively.

The inhibitory activities (ED₅₀, μ g/ml) against MK-1 cell growth of the acetylenic compounds isolated were as follows: panaxynol (0.3), falcarindiol (3.2), (9Z)-1,9-heptadecadiene-4,6-diyne-3,8,11-triol (2.2), 8-acetoxyfalcarinol (3.2), japoangelols A (8.5), B (7.2), C (7.4), and D (8.4).

Figure 2

TABLE I.	¹ H-NMR Data (δ	j, J in Hz) for Com	pounds 1-7 (CDCl ₃ , 500 MHz)
----------	----------------------------	---------------------	--

	1	2	3	4	5	6	7
H- 2	7.63 (br d, 2.5)	7.64 (d, 2.5)	7.60 (br d, 2.5)	7.61 (br d, 2.5)		7.64 (d, 2.5)	7.60 (br d, 2.5)
H- 3	6.99 (br d, 2.5)	7.00 (d, 2.5)	7.01 (br dd, 1,2.5)	7.01 (br dd, 1,2.5)		7.01 (d, 2.5)	6.99 (dd, 1,2.5)
4-OMe	4.17 (s)	4.18 (s)				4.19 (s)	
H- 5	8.11 (d, 10)	8.11 (d, 10)	8.23 (dd, 0.5,10)	8.23 (br d, 10)		8.12 (d, 10)	8.17 (d, 10)
H- 6	6.27 (d, 10)	6.28 (d, 10)	6.30 (d, 10)	6.30 (d, 10)		6.29 (d, 10)	6.26 (d, 10)
H- 9			7.14 (br s)	7.17 (br s)		• • •	7.15 (br s)
H- 1'	4.23 (dd, 8,10)	4.27 (dd, 8,10)	4.42 (dd, 7.5,10)	4.42 (dd, 8,10)		4.28 (dd, 8,10)	4.44 (dd, 8,10)
	4.63 (dd, 3,10)	4.60 (dd, 3,10)	4.59 (dd, 3,10)	4.59 (dd, 3,10)		4.61 (dd, 3,10)	4.55 (dd, 3,10)
H- 2'	3.99 (br d, 8)	3.99 (dd, 3, 8)	3.96 (m)	3.96 (m)		3.84 (dd, 3,8)	3.90 (dd, 3,8)
3'-Me	1.33 (s)	1.33 (s)	1.30 (s)	1.30 (s)		1.29 (s)	1.31 (s)
	1.38 (s)	1.38 (s)	1.40 (s)	1.40 (s)		1.33 (s)	1.36 (s)
H-1"	5.22 (ddd, 1,1,10)	5.16 (ddd, 1,1,10)	5.22 (ddd, 1,1.5,10)		5.25 (ddd, 1,1.5,1		-100 (0)
	5.44 (br d, 17)	5.39 (ddd, 1,1.5,17)	5.42 (ddd, 1,1.5,17)		5.46 (ddd, 1,1.5,1		
H-2"	5.92 (ddd, 5,10,17)	5.81 (ddd, 5,10,17)	5.82 (ddd, 5,10,17)		5.93 (ddd, 5.5,10	•	
H-3"	4.91 (br s)	4.93 (br d, 5)	4.87 (br d, 5)	4.87 (br d, 5)	4.93 (br d, 5.5)	,,	
H-8"	5.17 (br d, 8)	5.18 (br d, 8)	5.20 (br d, 9)	5.20 (br d, 8)	5.20 (br d, 8)		
H-9"	5.41 (br dd, 8,10.5)	5.50 (dddd, 1,1.5,8,10.5)			5.51 (ddt, 8,10.5,	1.5)	
H-10"	5.46 (br dt, 10.5,7.5)	5.59 (ddt, 1,10.5,7.5)		5.61 (ddt, 1,10.5, 7.5)	5.60 (ddt, 1.5,10.		
H-11"	2.07 (m)	2.10 (dq, 1.5,7.5)	2.11 (br q, 7.5)	2.11 (br q, 7.5)	2.11 (dq, 1.5,7.5)		
H-12"	1.36 (t-like, 7.5)	1.36 (t-like, 7.5)	1.36 (t-like, 7.5)	1.38 (t-like, 7.5)	1.38 (t-like, 7.5)		
H-13"	1.28 (m)	1.28 (m)	1.28 (m)	1.28 (m)	1.28 (m)		
H-14"	1.28 (m)	1.28 (m)	1.28 (m)	1.28 (m)	1.28 (m)		
H-15"	1.28 (m)	1.28 (m)	1.28 (m)	1.28 (m)	1.28 (m)		
H-16"	1.28 (m)	1.28 (m)	1.28 (m)	1.28 (m)	1.28 (m)		
H-17"	0.88 (t-like, 7)	0.88 (t-like, 7)	0.87 (t-like, 7)	0.87 (t-like, 7)	0.88 (t-like, 7)		

14.	TABLE II. AC-NMR Data (6) for Compounds 1-7 (CDC13, 125 MHz)							
	1	2	3	4	5	6	7	
2	145.2	145.3	145.1	145.2		145.2	145.2	
3	105.1	105.1	104.9	104.8		105.3	104.7	
3a	114.8	114.7	114.1	114.4		114.6	114.3	
4	144.6	144.7	148.7	148.7		144.9	148.6	
4-OMe	60.8	60.8				60.8		
4a	107.6	107.6	107.3	107.6		107.6	107.3	
5	139.4	139.5	139.4	139.4		139.4	139.0	
6	112.9	112.9	112.8	113.0		112.9	113.0	
7	160.3	160.3	161.3	161.3		160.1	161.0	
8a	144.0	144.0	152.6	152.6		144.0	152.6	
9	127.2	127.2	94.5	94.7		126.9	94.8	
9a	150.3	150.3	158.1	158.1		150.2	158.1	
1'	75.7	75.6	74.2	74.2		76.1	74.5	
2'	76.0	76.0	76.3	76.2		76.1	76.6	
3'	78.5	78.7	78.5	78.7		71.5	71.7	
3'-Me	22.1	22.1	22.2	21.9		25.1	26.6	
	23.5	22.8	23.0	22.6		26.7	26.6	
1"	117.1	116.6	117.2	117.0	117.2			
2"	136.0	135.7	135.9	135.4	135.9	•		
3"	63.4	63.3	63.4	63.4	63.4			
4"	77.9	79.0	78.4	78.3	78.3			
5"	70.5	70.0	70.2	70.5	70.2			
6"	68.5	69.0	68.9	68.6	68.7			
7"	80.6	79.4	79.9	80.0	79.9			
8"	59.0	58.6	59.0	58.6	58.5			
9"	127.7	127.9	127.4	127.7	127.7			
10"	132.3	134.4	132.8	134.6	134.5			
11"	27.9	27.6	27.9	27.7	27.6			
12"	29.2	29.3	29.2	29.2	29.2			
13"	29.2	29.1	29.1	29.1	29.1			
14"	29.1	29.1	29.1	29.1	29.1			
15"	31.8	31.8	31.7	31.8	31.7			
16"	22.6	22.6	22.6	22.6	22.6			
17"	14.1	14.0	14.0	14.0	14.0			

TABLE II. ¹³C-NMR Data (δ) for Compounds 1-7 (CDCl₃, 125 MHz)

References and Notes

- Saita, T.; Matsunaga, H.; Yamamoto, H.; Nagumo, F.; Fujito, H.; Mori, M; Katano, M., Biol. Pharm. Bull., 1994, 17, 798.
- 2. Nakano, Y.; Matsunaga, H.; Saita, T.; Mori, M.; Katano, M.; Okabe, H., Biol. Pharm. Bull., submitted.
- 3. Saita, T.; Katano, M.; Matsunaga, H.; Kouno, I.; Fujito, H.; Mori, M., Biol. Pharm. Bull., 1995, 18, 933.
- 4. Mosmann, T. J. Immunol. Methods, 1983, 65, 55.
- 5. Ikeda, R.; Nagao, T.; Okabe, H.; Nakano, Y.; Matsunaga, H.; Katano, M.; Mori, M., Chem. Pharm. Bull., submitted.
- 6. $[\alpha]_D^{29} + 111.8^{\circ}$ (c = 0.50, CHCl₃). $C_{34}H_{40}O_8$ [(M+Na)⁺ m/z 599.2635, calcd. 599.2621].
- 7. $[\alpha]_D^{29} + 138.4^{\circ}$ (c= 0.17, CHCl₃). $C_{34}H_{40}O_8$ [(M+Na)⁺ m/z 599.2635, calcd. 599.2621].
- 8. $[\alpha]_D^{29} + 117.5^{\circ}$ (c= 0.19, CHCl₃). C₃₃H₃₈O₇ [(M)⁺ m/z 546.2633, calcd. 546.2617].
- 9. $[\alpha]_D^{29} + 219.4^{\circ}$ (c= 0.16, CHCl₃). C₃₃H₃₈O₇ [(M+Na)⁺ m/z 569.2502, calcd. 569.2515].