(10) oblique incidence

At normal incident we assumed that the wave travelling

at Specific direction, one direction)

General equation assuming we deal with lossless medium.

where;

position vector

wave number vector

0 r+ = B2

*
$$W_1 = W_7 = W_4 = W$$
 $L_1 \times = L_1 \times = L_2$
 $L_1 \times = L_2 \times L_3 = L_4 \times L_4 \times L_5 \times L_$

= B = W-172E2

components of propagation vectors be continous).

- K; Sin O; = K, Sin O;

- For lossless medium

"Snell's law "

$$n_1 = C / l_1 \in I$$

$$S \quad n_2 = C / l_2 \in I$$

apply Phase matching Condition (E & H to be continous) E, = E, . or Z=0 E10 C30; + E10 C30r = Et0 C030+ (Eio + Ero) Coso; = Eto Coso+ -0 W H 1 = H2 Hio + Hrs = Hts $\frac{\mathsf{E}_{10}}{\mathsf{m}_{1}} - \frac{\mathsf{E}_{70}}{\mathsf{m}_{1}} = \frac{\mathsf{E}_{70}}{\mathsf{m}_{10}}$ 1 (E10 - Ero) = 1 Eto $\frac{1}{|I|} = \frac{E_{10}}{E_{10}} = \frac{4}{12} \frac{C_{2}S_{0+} - 4}{12} \frac{C_{2}S_{0+}}{12} + \frac{4}{12} \frac{C_{2}S_{0+}}{12}$ - T₁ = E_{to} = 2⁴/₂ C₅ O_i My COS O; + M COSO; - 1 + MI = TII (COS O+ COS O) $- C_{0}S O_{+} = \sqrt{1 - \left(\frac{U_{2}}{U_{1}} S_{1} M O_{1}^{2}\right)^{2}}$

Brewster angle (polarizing angle) OBII

is the incidence , angle which Make reflection co. eff = o. There is no reflection.

$$\frac{y^2}{y^2}$$
 (1 - $\sin Q_+$) = $\frac{y^2}{y^2}$ (1 - $\sin^2 Q_{B_{11}}$)

(n, 5, 0 B = n25,00)

For nonmagnetic mediums

tangential Components of E and H to be Continous at == 0

$$E_1 = E_2$$

ana

from O and O

$$\frac{F}{L} = \frac{E_{ro}}{E_{io}} = \frac{M_2 \cos 0; - M_1 \cos 0_+}{M_2 \cos 0; + M_1 \cos 0_+}$$

$$T_{\perp} = \frac{E_{to}}{E_{io}} = \frac{2^{4} \cdot 2^{5} \cdot 0_{i}}{\sqrt{2^{5} \cdot 0_{i}} + \sqrt{2^{5} \cdot 0_{i}}}$$

Brewster Angle (Total transmission) OT_ = 1 & T_ = 0 (no reflection) putting II =0 1/2 C2 0B/ = 1/ C2 0+ 1/2 COS 081 = 1/2, COS 0+ M2 (1-512081) = M2 (1-5120+) 50 511 0_B = 1-(M, E₂/M₂ E₁) O For non magnetic 1, = 12 = 16 $S_{11} \circ O_{B_1} = \infty$ (means O_{B_1} not exist) @ for E, = Ez Sin OBI = The $tan O_{B_1} = \frac{\Gamma_2}{\Gamma}$

A uniform plane wave in Air with (8 Cosiwt-4x-3 Z)ayvim is incident on a dielectric slap (2>0) with 1 = 1, Er = 2.5; 6 = 0. Find. a) The polarization of the wave b) The angle of incidence a) The reflected Component d) The transmitted Component Solution 3a) E = 8 Cos (wt _ 4x _ 3z) ay The wave travels in (x- Z) plane and E is perpendicular (we have perpendicular polarization) E; = 8 Cos (W+ - E; . r) ây tan 0; = 4 ۵; = 53.13°

ا ترهم ما بعد التحريم

$$\frac{1}{4} = \frac{\hat{a}_{k} \times E}{4}$$

$$\hat{a}_{k} = \frac{4\hat{a}_{k} + 3\hat{a}_{z}}{5}$$

$$= (\frac{4x8}{5 \times 120 \text{ TT}} \hat{a}_{z} - \frac{3x8}{5 \times 120 \text{ TT}} \hat{a}_{x}) \cdot \text{CoS} ()$$

$$H_{r} = (-4.776 \, \hat{\alpha}_{x} - b.368 \, \hat{\alpha}_{z}) \cdot \text{CoS(wt} - 4x + 32) \quad \text{E} \quad -\alpha_{y} \quad -\alpha_{y} \quad \text{MA/m} \quad \text{H} \quad -\alpha_{z} \quad -\alpha_{x} \quad -\alpha_{$$

polarized wave in Air with E = (8ây - 6âz) 5 m (wt - 4y - 82) V/m incident on a dielectric half-space with (E=4E0; 1= 10) of (4>0) Find 3o The incidence angle 1) The time average in Air (1 = 10; E= E0) 3 The reflected and transmitted E - Solution 4 0 K; = 4 ây + 3 âz 0; = 36.87° @ = 12 Re (ExH*) $= \frac{1}{2} \frac{E_0^2}{4} \hat{a}_{k}$ 79.58 ây + 106.1 âz

$$E_{r} = C_{r} = 36.87^{\circ}$$

$$E_{r} = (E_{ry} \hat{Q}_{y} + E_{rz} \hat{Q}_{z}) \quad Sin(wt - E_{r} \cdot r)$$

$$|E_{i}| = |E_{r}| = 5$$

$$\cdot E_{r} = E_{rz} \hat{Q}_{z} - E_{ry} \hat{Q}_{y}$$

$$= 3 \hat{Q}_{z} - 4 \hat{Q}_{z}$$

$$=$$

also T11 = .6265

$$a_{0} = F_{+} = 9.539 \, a_{y} + 3 \, a_{z}$$

