

Neurocomputing

Transformers

Julien Vitay

Professur für Künstliche Intelligenz - Fakultät für Informatik

1 - Transformers

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research nikip@google.com Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

Transformer networks

- Attentional mechanisms are so powerful that recurrent networks are not even needed anymore.
- **Transformer networks** use **self-attention** in a purely feedforward architecture and outperform recurrent architectures.
- Used in Google BERT and OpenAI GPT-3 for text understanding (e.g. search engine queries) and generation.

Transformer networks

• Transformer networks use an **encoder-decoder** architecture, each with 6 stacked layers.

Encoder layer

- ullet Each layer of the encoder processes the n words of the input sentence in parallel.
- Word embeddings (as in word2vec) of dimension 512 are used as inputs (but learned end-to-end).

Encoder layer

- Two operations are performed on each word embedding \mathbf{x}_i :
 - self-attention vector \mathbf{z}_i depending on the other words.
 - lacktriangle a regular feedforward layer to obtain a new representation ${f r}_i$ (shared among all words).

- The first step of self-attention is to compute for each word three vectors of length $d_k = 64$ from the embeddings \mathbf{x}_i or previous representations \mathbf{r}_i (d = 512).
 - The **query** \mathbf{q}_i using W^Q .
 - The **key** \mathbf{k}_i using W^K .
 - lacksquare The **value** ${f v}_i$ using W^V .

• This operation can be done in parallel over all words:

- Why query / key / value? This a concept inspired from recommendation systems / databases.
- A Python dictionary is a set of key / value entries:

```
tel = {
    'jack': 4098,
    'sape': 4139
}
```

• The query would ask the dictionary to iterate over all entries and return the value associated to the key equal or close to the query.

```
tel['jacky'] # 4098
```

• This would be some sort of **fuzzy** dictionary.

- In attentional RNNs, the attention scores were used by each word generated by the decoder to decide which **input word** is relevant.
- If we apply the same idea to the **same sentence** (self-attention), the attention score tells how much words of the same sentence are related to each other (context).

The animal didn't cross the street because it was too tired.

• The goal is to learn a representation for the word it that contains information about the animal, not the street.

- Each word \mathbf{x}_i of the sentence generates its query \mathbf{q}_i , key \mathbf{k}_i and value \mathbf{v}_i .
- For all other words \mathbf{x}_j , we compute the **match** between the query \mathbf{q}_i and the keys \mathbf{k}_j with a dot product:

$$e_{i,j} = \mathbf{q}_i^T \, \mathbf{k}_j$$

ullet We normalize the scores by dividing by $\sqrt{d_k}=8$ and apply a softmax:

$$a_{i,j} = \operatorname{softmax}(rac{\mathbf{q}_i^T \, \mathbf{k}_j}{\sqrt{d_k}})$$

• The new representation \mathbf{z}_i of the word \mathbf{x}_i is a weighted sum of the values of all other words, weighted by the attention score:

$$\mathbf{z}_i = \sum_j a_{i,j} \, \mathbf{v}_j$$

Source: http://jalammar.github.io/illustrated-transformer/

• If we concatenate the word embeddings into a $n \times d$ matrix X, self-attention only implies matrix multiplications and a row-based softmax:

$$egin{cases} Q = X imes W^Q \ K = X imes W^K \ V = X imes W^V \ Z = ext{softmax}(rac{Q imes K^T}{\sqrt{d_k}}) imes V \end{cases}$$

- Note 1: everything is differentiable, backpropagation will work.
- Note 2: the weight matrices do not depend on the length n of the sentence.

- In the sentence *The animal didn't cross the street because it was too tired.*, the new representation for the word it will hopefully contain features of the word animal after training.
- But what if the sentence was *The animal didn't cross the street because it was too* **wide**.? The representation of it should be linked to street in that context.
- ullet This is not possible with a single set of matrices W^Q , W^K and W^V , as they would average every possible context and end up being useless.

Source: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

ullet The solution is to use **multiple attention heads** (h=8) with their own matrices W_k^Q , W_k^K and W_k^V .

- Each **attention head** will output a vector \mathbf{z}_i of size $d_k = 64$ for each word.
- How do we combine them?

- The proposed solution is based on **ensemble learning** (stacking):
 - ullet let another matrix W^O decide which attention head to trust...
 - \blacksquare 8 imes 64 rows, 512 columns.

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Z

- Each attention head learns a different context:
 - it refers to animal.
 - it refers to street.
 - etc.
- The original transformer paper in 2017 used 8 attention heads.
- OpenAI's GPT-3 uses 96 attention heads...

Encoder layer

- Multi-headed self-attention produces a vector \mathbf{z}_i for each word of the sentence.
- A regular feedforward MLP transforms it into a new representation \mathbf{r}_i .
 - one input layer with 512 neurons.
 - one hidden layer with 2048 neurons and a ReLU activation function.
 - one output layer with 512 neurons.
- ullet The same NN is applied on all words, it does not depend on the length n of the sentence.

• As each word is processed in parallel, the order of the words in the sentence is lost.

street was animal tired the the because it cross too didn't

- We need to explicitly provide that information in the input using positional encoding.
- A simple method would be to append an index $i=1,2,\ldots,n$ to the word embeddings, but it is not very robust.

- If the elements of the 512-d embeddings are numbers between 0 and 1, concatenating an integer between 1 and n will unbalance the dimensions.
- ullet Normalizing that integer between 0 and 1 requires to know n in advance, this introduces a maximal sentence length...
- How about we append the binary code of that integer?

```
      0:
      0 0 0 0 0
      8:
      1 0 0 0

      1:
      0 0 0 1
      9:
      1 0 0 1

      2:
      0 0 1 0
      10:
      1 0 1 0

      3:
      0 0 1 1
      11:
      1 0 1 1

      4:
      0 1 0 0
      12:
      1 1 0 0

      5:
      0 1 0 1
      13:
      1 1 0 1

      6:
      0 1 1 0
      14:
      1 1 1 0

      7:
      0 1 1 1
      15:
      1 1 1 1
```

Source: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

- Sounds good, we have numbers between 0 and 1, and we just need to use enough bits to encode very long sentences.
- However, representing a binary value (0 or 1) with a 64 bits floating number is a waste of computational resources.

- We can notice that the bits of the integers oscillate at various frequencies:
 - the lower bit oscillates every number.
 - the bit before oscillates every two numbers.
 - etc.

```
0 0 0 0
                  1 0 0 0
   0 0 0 1
                  1 0 0 1
             10:
   0 0 1 0
                  1 0 1 0
             11:
   0 0 1 1
                  1 0 1 1
           12:
   0 1 0 0
                  1 1 0 0
   0 1 0 1
             13:
                  1 1 0 1
   0 1 1 0 14:
                  1 1 1 0
7: 0 1 1 1
             15: 1 1 1 1
```

- We could also represent the position of a word using sine and cosine functions at different frequencies (Fourier basis).
- We create a vector, where each element oscillates at increasing frequencies.
- The "code" for each position in the sentence is unique.

Source: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

In practice, a 512-d vector is created using sine and cosine functions.

$$egin{cases} t(\mathrm{pos},2i) = \sin(rac{\mathrm{pos}}{10000^{2i/512}}) \ t(\mathrm{pos},2i+1) = \cos(rac{\mathrm{pos}}{10000^{2i/512}}) \end{cases}$$

• The positional encoding vector is **added** element-wise to the embedding, not concatenated!

Encoder layer

- Last tricks of the encoder layers:
 - skip connections (residual layer)
 - layer normalization
- The input X is added to the output of the multiheaded self-attention and normalized (zero mean, unit variance).
- Layer normalization (Ba et al., 2016) is an alternative to batch normalization, where the mean and variance are computed over single vectors, not over a minibatch:

$$\mathbf{z} \leftarrow \frac{\mathbf{z} - \mu}{\sigma}$$

with
$$\mu=rac{1}{d}\sum_{i=1}^d z_i$$
 and $\sigma=rac{1}{d}\sum_{i=1}^d (z_i-\mu)^2$.

Source: http://jalammar.github.io/illustrated-transformer/

• The feedforward network also uses a skip connection and layer normalization.

Encoder

• We can now stack 6 (or more, 96 in GPT-3) of these encoder layers and use the final representation of each word as an input to the decoder.

Decoder

- In the first step of decoding, the final representations of the encoder are used as query and value vectors of the decoder to produce the first word.
- The input to the decoder is a "start of sentence" symbol.

Decoder

• The decoder is **autoregressive**: it outputs words one at a time, using the previously generated words as an input.

Decoder layer

- Each decoder layer has two multi-head attention sublayers:
 - A self-attention sub-layer with query/key/values coming from the generated sentence.
 - An encoder-decoder attention sub-layer, with the query coming from the generated sentence and the key/value from the encoder.
- The encoder-decoder attention is the regular attentional mechanism used in seq2seq architectures.
- Apart from this additional sub-layer, the same residual connection and layer normalization mechanisms are used.

Masked self-attention

- When the sentence has been fully generated (up to the <eos> symbol), **masked self-attention** has to applied in order for a word in the middle of the sentence to not "see" the solution in the input when learning.
- As usual, learning occurs on minibatches of sentences, not on single words.

Source: https://jalammar.github.io/illustrated-gpt2/

Output

• The output of the decoder is a simple softmax classification layer, predicting the one-hot encoding of the word using a vocabulary (vocab_size=25000).

Training procedure

- The transformer is trained on the WMT datasets:
 - English-French: 36M sentences, 32000 unique words.
 - English-German: 4.5M sentences, 37000 unique words.
- Cross-entropy loss, Adam optimizer with scheduling, dropout. Training took 3.5 days on 8 P100 GPUs.
- The sentences can have different lengths, as the decoder is autoregressive.
- The transformer network beat the state-of-the-art performance in translation with less computations and without any RNN.

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S 9	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble 38	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble 9	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

2 - Self-supervised transformers

Transformer-based language models

- The Transformer is considered as the **AlexNet** moment of natural language processing (NLP).
- However, it is limited to supervised learning of sentence-based translation.
- Two families of architectures have been developed from that idea to perform all NLP tasks using unsupervised pretraining or self-supervised training:
 - BERT (Bidirectional Encoder Representations from Transformers) from Google.
 - GPT (Generative Pre-trained Transformer) from OpenAI https://openai.com/blog/better-language-models/.

Source: https://jalammar.github.io/illustrated-gpt2/

BERT - Bidirectional Encoder Representations from Transformers

- ullet BERT only uses the encoder of the transformer (12 layers, 12 attention heads, d=768).
- BERT is pretrained on two different unsupervised tasks before being fine-tuned on supervised tasks.

BERT - Bidirectional Encoder Representations from Transformers

- **Task 1:** Masked language model. Sentences from BooksCorpus and Wikipedia (3.3G words) are presented to BERT during pre-training, with 15% of the words masked.
- The goal is to predict the masked words from the final representations using a shallow FNN.

Source: https://jalammar.github.io/illustrated-bert/

BERT - Bidirectional Encoder Representations from Transformers

- Task 2: Next sentence prediction. Two sentences are presented to BERT.
- The goal is to predict from the first representation whether the second sentence should follow the first.

Source: https://jalammar.github.io/illustrated-bert/

BERT - Bidirectional Encoder Representations from Transformers

- Once BERT is pretrained, one can use transfer learning with or without fine-tuning from the high-level representations to perform:
 - sentiment analysis / spam detection
 - question answering

BERT - Bidirectional Encoder Representations from Transformers

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

2 - Supervised training on a specific task with a labeled dataset.

• As the Transformer, GPT is an **autoregressive** language model learning to predict the next word using only the transformer's **decoder**.

- GPT-2 comes in various sizes, with increasing performance.
- GPT-3 is even bigger, with 175 **billion** parameters and a much larger training corpus.

• GPT can be fine-tuned (transfer learning) to perform machine translation.

Training Dataset

I	am	а	student	<to-fr></to-fr>	je	suis	étudiant
let	them	eat	cake	<to-fr></to-fr>	Qu'ils	mangent	de
good	morning	<to-fr></to-fr>	Bonjour				

• GPT can be fine-tuned to summarize Wikipedia articles.

• GPT can be fine-tuned to summarize Wikipedia articles.

Training Dataset

Article #1 tokens			<summarize></summarize>		Article #1 Summary	
Article #2 tokens	<summarize></summarize>	Article #2 Summary		padding		
Article #		<summarize></summarize>		Article #3 Summary		

Source: https://jalammar.github.io/illustrated-gpt2/

=

Try transformers at https://huggingface.co/

pip install transformers

Save & Publish

Github copilot

- Github and OpenAI trained a GPT-3-like architecture on the available open source code.
- Copilot is able to "autocomplete" the code based on a simple comment/docstring.

https://copilot.github.com/

```
addresses.rb
                                   тs sentiment.ts
parse_expenses.py
                    -co write_sql.go
 1 import datetime
 3 def parse_expenses(expenses_string):
        """Parse the list of expenses and return the list of triples (date, va
 5
 6
 8
 9
10
11
12
14
15
16
18
19
20
```

ChatGPT

Transformers and NLP

- All NLP tasks (translation, sentence classification, text generation) are now done using Large Language
 Models (LLM), self-supervisedly pre-trained on huge corpuses.
- BERT can be used for feature extraction, while GPT is more generative.
- Transformer architectures seem to **scale**: more parameters = better performance. Is there a limit?

Source: https://julsimon.medium.com/large-language-models-a-new-moores-law-66623de5631b

- The price to pay is that these models are very expensive to train (training one instance of GPT-3 costs 12M\$) and to use (GPT-3 is only accessible with an API).
- Many attempts have been made to reduce the size of these models while keeping a satisfying performance.
 - Distilbert, Roberta, Bart, T5, XLNet...
- See https://medium.com/mlearning-ai/recent-language-models-9fcf1b5f17f5

References

• Various great blog posts by Jay Alammar to understand attentional networks, transformers, etc:

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

http://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-bert/

https://jalammar.github.io/illustrated-gpt2/

Application of transformers outside NLP:

https://medium.com/swlh/transformers-are-not-only-for-nlp-cd837c9f175