Response

AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions of claims in the application.

1. (Currently Amended): A method for designing industrial products, characterized in

a shape of [[an]] said industrial product products [[is]] are designed by using a three-

dimensional clothoid curve (referred to as a three-dimensional clothoid curve) in which,

wherein each of a pitch angle and a yaw angle in a tangential direction of said three

dimensional clothoid curve is given by a quadratic expression of a curve length or a curve length

variable.

that<u>:</u>

2. (Original): The design method for industrial products according to claim 1,

characterized in that

the industrial product is a machine including a mechanism in which a mechanical element

having a mass moves and

a trajectory of motion of the mechanical element is designed by using the three-

dimensional curve (referred to as the three-dimensional clothoid curve).

3. (Original): The design method for industrial products according to claim 2,

characterized in that

Attorney Docket No.: 062916

Response

the machine is a screw device including a mechanism in which a ball as the mechanical

element moves,

the screw device comprises a screw shaft having an outer surface on which a spiral rolling

element rolling groove is formed, a nut having an inner surface on which a load rolling element

rolling groove is formed so as to be opposed to the rolling element rolling groove and a

regression path is formed to connect a one end and the other end of the load rolling element

rolling groove, and a plurality of rolling elements disposed between the rolling element rolling

groove of the screw shaft and the load rolling element rolling groove of the nut and disposed in

the regression path, and

the regression path of the screw device is designed by using the three-dimensional curve

(referred to as the three-dimensional clothoid curve).

4. (Currently Amended): The design method for industrial products according to claim 1.

characterized in that the three-dimensional clothoid curve is defined by the following- contain

expressions [[.]],

Numeral 126

 $P = P_0 + \int_0^s u ds = P_0 + h \int_0^s u ds, \quad 0 \le s \le h, \quad 0 \le s = \frac{s}{h} \le 1$

(1);

- 3 -

Response

٠,

$$\mathbf{u} = \mathbf{E}^{\mathbf{k}\boldsymbol{\beta}} \mathbf{E}^{\mathbf{j}\boldsymbol{\alpha}}(\mathbf{i}) = \begin{bmatrix} \cos\boldsymbol{\beta} & \sin\boldsymbol{\beta} & 0 \\ \sin\boldsymbol{\beta} & \cos\boldsymbol{\beta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\boldsymbol{\alpha} & 0 & \sin\boldsymbol{\alpha} \\ 0 & 1 & 0 \\ -\sin\boldsymbol{\alpha} & 0 & \cos\boldsymbol{\alpha} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos\boldsymbol{\beta}\cos\boldsymbol{\alpha} \\ \sin\boldsymbol{\beta}\cos\boldsymbol{\alpha} \\ -\sin\boldsymbol{\alpha} \end{bmatrix}$$
(2);

$$\alpha = a_0 + a_1 S + a_2 S^2$$
 (3);

$$\beta = b_0 + b_1 S + b_2 S^2$$
 (4),

wherein

[Numeral 127]

$$P = \begin{cases} x \\ y \\ z \end{cases}, \quad P_0 = \begin{cases} x_0 \\ y_0 \\ z_0 \end{cases}$$
 (5)

shows a positional vector at each point on the three-dimensional clothoid curve and its initial value, respectively[[.]], the expressions for the three-dimensional clothoid curve when implemented:

Assume assumes that the length of [[a]] the curve from a starting point is s and its whole length (a length from the starting point to an end point) is h [[.]] [[A]], and produces a dimensionless value produced by dividing s by h is expressed as S. S is a dimensionless value, which is called [[a]] the curve length variable [[.]];

i, j and k are unit vectors in the x-axis, y-axis and z-axis directions, respectively[[.]]; and

Attorney Docket No.: 062916

Response

the u is a unit vector showing a tangential direction of [[a]] the curve at a point P, which

is given by the Expression (2) [[.]] and the $E^{k\beta}$ and the $E^{j\alpha}$ are rotation matrices and represent an

angular rotation of angle β about the k-axis and an angular rotation of angle α about the j-axis,

respectively[[.]],

The former the $E^{k\beta}$ is referred to as a yaw rotation, while the latter $E^{j\alpha}$ is wherein

referred to as a pitch rotation[[.]] and the Expression (2) means that the unit vector in the i-axis

direction is rotated by an angle α about the j-axis, before being rotated by an angle β about the k-

axis, thus producing a tangent vector u[[.]] in which a₀, a₁, a₂, b₀, b₁ and b₂ are constants.

(Original): The design method for industrial products according to claim 4, 5.

characterized in that a plurality of spatial points are specified in a three-dimensional coordinate

and these spatial points are interpolated by using the three-dimensional clothoid curve, whereby

the shape of the industrial product is designed.

(Original): The design method for industrial products according to claim 5,

characterized in that seven parameters a₀, a₁, a₂, b₀, b₁, b₂ and h of the three-dimensional clothoid

segments are calculated so that, between a one three-dimensional clothoid segment (a unit curve

consisting of a group of curves produced on the interpolation) and the next three-dimensional

clothoid segment (a unit curve consisting of a group of curves produced on the interpolation),

positions, tangential directions, normal directions, and curvatures of both the one and next three-

- 5 -

Attorney Docket No.: 062916

Response

dimensional clothoid segments are made continuous to each other, respectively, at the plurality of

spatial points.

(Original): The design method for industrial products according to claim 6, 7.

characterized in that

the seven parameters a_0 , a_1 , a_2 , b_0 , b_1 , b_2 and b_1 of the three-dimensional clothoid segments

are calculated by making the number of conditional expressions produced by mutual addition to

be made between conditional expressions concerning the tangential directions, the normal

directions and the curvatures at both the starting point and the end point and further conditional

expressions allowing the positions, the tangential directions, the normal directions, and the

curvatures of both the one and next three-dimensional clothoid segments to be made continuous

to each other, respectively, at the plurality of spatial points agree with the unknowns of the seven

parameters a₀, a₁, a₂, b₀, b₁, b₂ and h of the three-dimensional clothoid segments, whereby the

conditional expressions is made agree with the unknowns in terms of number thereof, by

specifying the tangential directions, the normal directions and the curvatures at the stating point

and the and point among the plurality of spatial points and additionally inserting objective points

being interpolated between the spatial points which have been specified in advance.

8. (Previously Presented): An industrial product designed by using the design method for

industrial products according to claim 1.

- 6 -

Attorney Docket No.: 062916

Response

9. (Currently Amended): A program, which is for designing a shape of an industrial

product, enabling a computer to operate as means to design the shape of the industrial product by

using data storage device characterized in that:

the data storage device contains program for designing a shape of an industrial product

which, when executed by a computer, implements,

a three-dimensional clothoid curve (referred to as a three-dimensional clothoid curve) in

which each of a pitch angle and a yaw angle in a tangential direction is given by a quadratic

expression of a curve length or a curve length variable.

10. (Original): A computer-readable recording medium, which is for designing a shape of

an industrial product, recording thereon a program enabling a computer to operate as means to

design the shape of the industrial product by using a three-dimensional curve (referred to as a

three-dimensional clothoid curve) in which each of a pitch angle and a yaw angle in a tangential

direction is given by a quadratic expression of a curve length or a curve length variable.

11. (Original): A numerical control method expressing a trajectory of a machine tool or a

contour shape of a workpiece by using a three-dimensional curve (referred to as a three-

dimensional clothoid curve) in which each of a pitch angle and a yaw angle in a tangential

direction is given by a quadratic expression of a curve length or a curve length variable and

controlling motion of the machine tool based on the three-dimensional curve.

- 7 -

Response

12. (Currently Amended): The numerical control method according to claim 11, wherein the three-dimensional clothoid is defined by the following contain expressions[[.]],

Numeral 128

$$P = P_0 + \int_0^s u ds = P_0 + h \int_0^s u ds, \quad 0 \le s \le h, \quad 0 \le s = \frac{s}{h} \le 1$$

$$\mathbf{u} = \mathbf{E}^{\mathbf{k}\boldsymbol{\beta}} \mathbf{E}^{\mathbf{j}\boldsymbol{\alpha}}(\mathbf{i}) = \begin{bmatrix} \cos\boldsymbol{\beta} & -\sin\boldsymbol{\beta} & 0 \\ \sin\boldsymbol{\beta} & \cos\boldsymbol{\beta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\boldsymbol{\alpha} & 0 & \sin\boldsymbol{\alpha} \\ 0 & 1 & 0 \\ -\sin\boldsymbol{\alpha} & 0 & \cos\boldsymbol{\alpha} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos\boldsymbol{\beta}\cos\boldsymbol{\alpha} \\ \sin\boldsymbol{\beta}\cos\boldsymbol{\alpha} \\ -\sin\boldsymbol{\alpha} \end{bmatrix}$$
(2);

$$\alpha = a_0 + a_1 S + a_2 S^2 \tag{3}$$

$$\beta = b_0 + b_1 S + b_2 S^2 \tag{4},$$

Wherein wherein,

Numeral 129

$$\mathbf{P} = \begin{cases} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{cases}, \quad \mathbf{P}_0 = \begin{cases} \mathbf{x}_0 \\ \mathbf{y}_0 \\ \mathbf{z}_0 \end{cases}$$
 (5)

shows a positional vector at each point on the three-dimensional clothoid curve and its initial value, respectively[[.]], the expressions for the three-dimensional clothoid curve when implemented:

Attorney Docket No.: 062916

Response

Assume assumes that the length of [[a]] the curve from a starting point is s and its whole

length (a length from the starting point to an end point) is h[[.]] [[A]], and produces a

dimensionless value produced by dividing s by h is expressed as S. S is a dimensionless value,

which is called [[a]] the curve length variable[[.]];

i, j and k are unit vectors in the x-axis, y-axis and z-axis directions, respectively[[.]]; and

the u is a unit vector showing a tangential direction of [[a]] the curve at a point P, which

is given by the Expression (2)[[.]] and the Ek^{β} and the $E^{j\alpha}$ are rotation matrices and represent an

angular rotation of angle β about the k-axis and an angular rotation of angle α about the j-axis,

respectively[[.]];

wherein The former the $E^{k\beta}$ is referred to as a yaw rotation, while the latter $E^{j\alpha}$ is referred

to as a pitch rotation[[.]] and the Expression (2) means that the unit vector in the i-axis direction

is rotated by an angle α about the j-axis, before being rotated by an angle β about the k-axis, thus

producing a tangent vector u[[.]] In this Expression, in which a₀, a₁, a₂, b₀, b₁ and b₂ are

constants.

13. (Original): A numerical control device expressing a trajectory of a machine tool or a

contour shape of a workpiece by using a three-dimensional curve (referred to as a three-

dimensional clothoid curve) in which each of a pitch angle and a yaw angle in a tangential

direction is given by a quadratic expression of a curve length or a curve length variable and

controlling motion of the machine tool based on the three-dimensional curve.

-9-

Attorney Docket No.: 062916

Response

14. (Currently Amended): A data storage device characterized in that:

the data storage device contains program [[,]] which is for numerically controlling motion

of a machine tool which, when executed by enabling a computer to operate as means to express a

trajectory of the machine tool or a contour shape of a workpiece by using, implements

a three-dimensional clothoid curve (referred to as a three-dimensional clothoid curve) in

which each of a pitch angle and a yaw angle in a tangential direction is given by a quadratic

expression of a curve length or a curve length variable.

15. (Currently Amended): A computer-readable recoding medium, which is for

numerically controlling motion of a machine tool, recording thereon either a program enabling a

computer to operate as means to express a trajectory of the machine tool or a contour shape of a

workpiece by using a three-dimensional clothoid curve (referred to as a three-dimensional

elothoid curve) in which each of a pitch angle and a yaw angle in a tangential direction is given

by a quadratic expression of a curve length or a curve length variable, or results computed based

on the program.

16. (Original): A numerical control method comprising steps of interpolating points of a

row of points arbitrarily given in a three-dimensional coordinate by using a three-dimensional

curve (referred to as three-dimensional clothoid segments) in which each of a pitch angle and a

yaw angle in a tangential direction is given by a quadratic expression of a curve length or a curve

- 10 -

Response

length variable and controlling motion of a machine tool based on the three-dimensional clothoid segments.

- 17. (Original): A numerical control method comprising steps of mutually connecting a plurality of three-dimensional clothoid curves (each of which is referred to as three-dimensional clothoid segments) in each of which each of a pitch angle and a yaw angle in a tangential direction is given by a quadratic expression of a curve length or a curve length variable and controlling motion of a machine tool based on the plural three-dimensional clothoid segments.
- 18. (Currently Amended): The numerical control method according to claim 16, wherein the three-dimensional clothoid curve is defined by the following contain expressions[[.]],

[Numeral 130]

$$P = P_0 + \int_0^s u \, ds = P_0 + h \int_0^S u \, dS, \quad 0 \le s \le h, \quad 0 \le S = \frac{s}{h} \le 1$$
(1);

$$\mathbf{u} = \mathbf{E}^{\mathbf{k}\boldsymbol{\beta}} \mathbf{E}^{\mathbf{j}\boldsymbol{\alpha}}(\mathbf{i}) = \begin{bmatrix} \cos\boldsymbol{\beta} & -\sin\boldsymbol{\beta} & 0 \\ \sin\boldsymbol{\beta} & \cos\boldsymbol{\beta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\boldsymbol{\alpha} & 0 & \sin\boldsymbol{\alpha} \\ 0 & 1 & 0 \\ -\sin\boldsymbol{\alpha} & 0 & \cos\boldsymbol{\alpha} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos\boldsymbol{\beta}\cos\boldsymbol{\alpha} \\ \sin\boldsymbol{\beta}\cos\boldsymbol{\alpha} \\ -\sin\boldsymbol{\alpha} \end{bmatrix}$$
(2)

$$\alpha = a_0 + a_1 S + a_2 S^2 \tag{3}$$

$$\beta = b_0 + b_1 S + b_2 S^2 \tag{4}$$

Response

wherein,

[Numeral 131]

$$\mathbf{P} = \begin{cases} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{cases}, \quad \mathbf{P}_0 = \begin{cases} \mathbf{x}_0 \\ \mathbf{y}_0 \\ \mathbf{z}_0 \end{cases}$$
 (5)

shows a positional vector at each point on the three-dimensional clothoid curve and its initial value, respectively[[.]], the expressions for the three-dimensional clothoid curve when implemented:

Assume assumes that the length of [[a]] the curve from a starting point is s and its whole length (a length from the starting point to an end point) is h[[.]] [[A]], and produces a dimensionless value produced by dividing s by h is expressed as S. S is a dimensionless value, which is called [[a]] the curve length variable[[.]];

i, j and k are unit vectors in the x-axis, y-axis and z-axis directions, respectively[[.]]; and the u is a unit vector showing a tangential direction of [[a]] the curve at a point P, which is given by the Expression (2) [[.]] and the E^{kβ} and the E^{jα} are rotation matrices and represent an angular rotation of angle β about the k-axis and an angular rotation of angle α about the j-axis, respectively[[.]],

wherein The former the $E^{k\beta}$ is referred to as a yaw rotation, while the latter $E^{j\alpha}$ is referred to as a pitch rotation[[.]] and the Expression (2) means that the unit vector in the i-axis

Attorney Docket No.: 062916

Response

direction is rotated by an angle α about the j-axis, before being rotated by an angle β about the k-

axis, thus producing a tangent vector $\mathbf{u}[[.]]$ in which \mathbf{a}_0 , \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{b}_0 , \mathbf{b}_1 and \mathbf{b}_2 are constants.

19. (Original): The numerical control method according to claim 18, characterized in

that the seven parameters a₀, a₁, a₂, b₀, b₁, b₂ and h are calculated in such a manner that, at a

connecting point between, of the plural three-dimensional clothoid segments, a single three-

dimensional clothoid segment and the next three-dimensional clothoid segment thereto, positions

and tangential directions (and in some cases, curvatures) of both three-dimensional clothoid

segments are continuous, respectively.

20. (Original): A numerical control device interpolating points of a row of points

arbitrarily given in a three-dimensional coordinate by using a three-dimensional curve in which

each of a pitch angle and a yaw angle in a tangential direction is given by a quadratic expression

of a curve length or a curve length variable and controlling motion of a machine tool based on

the three-dimensional clothoid segments.

21. (Currently Amended): A data storage device characterized in that:

the data storage device contains program [[,]] which is for numerically controlling motion

of a machine tool which, when executed by the enabling a computer to operate as means to

- 13 -

Attorney Docket No.: 062916

Response

interpolate points of a row of points arbitrarily given in a three-dimensional coordinate, by using

<u>implements</u>

a three-dimensional curve in which each of a pitch angle and a yaw angle in a tangential

direction is given by a quadratic expression of a curve length or a curve length variable and

controlling the motion of the machine tool based on the three-dimensional clothoid segments.

22. (Original): A computer-readable recording medium, which is for numerically

controlling motion of a machine tool, recording either a program enabling a computer as means

for interpolating points of a row of points arbitrarily given in a three-dimensional coordinate by

using a three-dimensional curve in which each of a pitch angle and a yaw angle in a tangential

direction is given by a quadratic expression of a curve length or a curve length variable, or results

calculated on the program.

23. (Currently Amended): A numerical control method comprising steps of

expressing a trajectory of a machine tool or a contour-shape of a workpiece by using a

three-dimensional clothoid curve (referred to as a three-dimensional clothoid-curve) in which

each of a pitch angle and a yaw angle in a tangential direction is given by a quadratic expression

of a curve length or a curve length variable,

specifying motion of the machine tool to be moved along the three-dimensional curve,

and

- 14 -

Response

calculating a moved position of the machine tool at unit-time intervals according to the specified motion,

wherein the motion is defined as positional information changing as a function of time.

24. (Currently Amended): The numerical control method according to claim 23, wherein the three-dimensional clothoid curve is defined by the following contain expressions[[.]].

[Numeral 132]

$$P = P_0 + \int_0^s u \, ds = P_0 + h \int_0^S u \, dS, \quad 0 \le s \le h, \quad 0 \le S = \frac{s}{h} \le 1$$

$$\mathbf{u} = \mathbf{E}^{\mathbf{k}\boldsymbol{\beta}} \mathbf{E}^{\mathbf{j}\alpha}(\mathbf{i}) = \begin{bmatrix} \cos\boldsymbol{\beta} & -\sin\boldsymbol{\beta} & 0 \\ \sin\boldsymbol{\beta} & \cos\boldsymbol{\beta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\boldsymbol{\alpha} & 0 & \sin\boldsymbol{\alpha} \\ 0 & 1 & 0 \\ -\sin\boldsymbol{\alpha} & 0 & \cos\boldsymbol{\alpha} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos\boldsymbol{\beta}\cos\boldsymbol{\alpha} \\ \sin\boldsymbol{\beta}\cos\boldsymbol{\alpha} \\ -\sin\boldsymbol{\alpha} \end{bmatrix}$$
(2):

$$\alpha = a_0 + a_1 S + a_2 S^2 \tag{3}$$

$$\beta = b_0 + b_1 S + b_2 S^2 \tag{4}$$

wherein,

Numeral 133

Response

$$\mathbf{P} = \begin{cases} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{cases}, \quad \mathbf{P}_0 = \begin{cases} \mathbf{x}_0 \\ \mathbf{y}_0 \\ \mathbf{z}_0 \end{cases}$$
 (5)

shows a positional vector at each point on the three-dimensional clothoid curve and its initial value, respectively[[.]], the expressions for the three-dimensional clothoid curve when implemented:

Assume assumes that the length of [[a]] the curve from a starting point is s and its whole length (a length from the starting point to an end point) is h[[.]] [[A]], and produces a dimensionless value produced by dividing s by h is expressed as S. S is a dimensionless value, which is called [[a]] the curve length variable[[.]];

i, j and k are unit vectors in the x-axis, y-axis and z-axis directions, respectively[[.]]; and the u is a unit vector showing a tangential direction of [[a]] the curve at a point P, which is given by the Expression (2) [[.]] and the E^{kβ} and the E^{jα} are rotation matrices and represent an angular rotation of angle β about the k-axis and an angular rotation of angle α about the j-axis, respectively[[.]],

wherein The former the $E^{k\beta}$ is referred to as a yaw rotation, while the latter $E^{j\alpha}$ is referred to as a pitch rotation[[.]] and the Expression (2) means that the unit vector in the i-axis direction is rotated by an angle α about the j-axis, before being rotated by an angle β about the k-axis, thus producing a tangent vector u[[.]] in which a_0 , a_1 , a_2 , b_0 , b_1 and b_2 are constants.

Attorney Docket No.: 062916

Response

25. (Currently Amended): A numerical control device which is configured to

express a trajectory of a machine tool or a contour shape of a workpiece by using a three-

dimensional clothoid curve (referred to as a three-dimensional clothoid curve) in which each of a

pitch angle and a yaw angle in a tangential direction is given by a quadratic expression of a curve

length or a curve length variable,

specify motion of the machine tool to be moved along the three-dimensional curve, and

calculate a moved position of the machine tool at unit-time intervals according to the

specified motion,

wherein the motion is defined as positional information changing as a function of time.

26. (Currently Amended): A data storage device characterized in that:

the data storage device contains program [[,]] which, when executed by a computer [[is]]

for numerically controlling motion of a machine tool, enabling a computer to operate as

implements,

means for expressing a trajectory of a machine tool or a contour shape of a workpiece by

using a three-dimensional clothoid curve (referred to as a three-dimensional clothoid curve) in

which each of a pitch angle and a yaw angle in a tangential direction is given by a quadratic

expression of a curve length or a curve length variable,

means for specifying motion of the machine tool to be moved along the three-dimensional

curve, and

- 17 -

Attorney Docket No.: 062916

Response

means for calculating a moved position of the machine tool at unit-time intervals

according to the specified motion,

wherein the motion is defined as positional information changing as a function of time.

27. (Currently Amended): A computer-readable recording medium, which is for

numerically controlling motion of a machine tool, recording thereon a program enabling a

computer to operate as

means for expressing a trajectory of a machine tool or a contour shape of a workpiece by

using a three-dimensional clothoid curve (referred to as a three-dimensional clothoid curve) in

which each of a pitch angle and a yaw angle in a tangential direction is given by a quadratic

expression of a curve length or a curve length variable,

means for specifying motion of the machine tool to be moved along the three-dimensional

curve, and

means for calculating a moved position of the machine tool at unit-time intervals

according to the specified motion,

wherein the motion is defined as positional information changing as a function of time.

28. (Currently Amended): The numerical control method according to claim 17, wherein

the three-dimensional clothoid curve is defined by the following contain expressions[[.]],

Response

Numeral 130

$$P = P_0 + \int_0^s u \, ds = P_0 + h \int_0^S u \, dS, \quad 0 \le s \le h, \quad 0 \le S = \frac{s}{h} \le 1$$

$$\mathbf{u} = \mathbf{E}^{\mathbf{k}\boldsymbol{\beta}} \mathbf{E}^{\mathbf{j}\boldsymbol{\alpha}}(\mathbf{i}) = \begin{bmatrix} \cos\boldsymbol{\beta} & -\sin\boldsymbol{\beta} & 0 \\ \sin\boldsymbol{\beta} & \cos\boldsymbol{\beta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\boldsymbol{\alpha} & 0 & \sin\boldsymbol{\alpha} \\ 0 & 1 & 0 \\ -\sin\boldsymbol{\alpha} & 0 & \cos\boldsymbol{\alpha} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos\boldsymbol{\beta}\cos\boldsymbol{\alpha} \\ \sin\boldsymbol{\beta}\cos\boldsymbol{\alpha} \\ -\sin\boldsymbol{\alpha} \end{bmatrix}$$
(2);

$$\alpha = a_0 + a_1 S + a_2 S^2 \tag{3}$$

$$\beta = b_0 + b_1 S + b_2 S^2 \tag{4}$$

wherein,

Numeral 131

$$P = \begin{cases} x \\ y \\ z \end{cases}, \quad P_0 = \begin{cases} x_0 \\ y_0 \\ z_0 \end{cases}$$
 (5)

shows a positional vector at each point on the three-dimensional clothoid curve and its initial value, respectively[[.]], the expressions for the three-dimensional clothoid curve when implemented:

Attorney Docket No.: 062916

Response

Assume assumes that the length of [[a]] the curve from a starting point is s and its whole

length (a length from the starting point to an end point) is h[[.]] [[A]], and produces a

dimensionless value produced by dividing s by h is expressed as S. S is a dimensionless value,

which is called [[a]] the curve length variable[[.]];

i, i and k are unit vectors in the x-axis, y-axis and z-axis directions, respectively[[.]]; and

the u is a unit vector showing a tangential direction of [[a]] the curve at a point P, which

is given by the Expression (2) [[.]] and the $E^{k\beta}$ and the $E^{j\alpha}$ are rotation matrices and represent an

angular rotation of angle β about the k-axis and an angular rotation of angle α about the j-axis,

respectively[[.]],

The former the $E^{k\beta}$ is referred to as a yaw rotation, while the latter $E^{j\alpha}$ is wherein

referred to as a pitch rotation[[.]] and the Expression (2) means that the unit vector in the i-axis

direction is rotated by an angle α about the j-axis, before being rotated by an angle β about the k-

axis, thus producing a tangent vector $\mathbf{u}[[.]]$ in which \mathbf{a}_0 , \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{b}_0 , \mathbf{b}_1 and \mathbf{b}_2 are constants.

29. (New): A data storage device characterized in that:

the data storage device contains program for numerically controlling motion of a machine

tool which, when executed by a computer to contour shape of a workpiece, implements

a three-dimensional clothoid curve in which each of a pitch angle and a yaw angle in a

tangential direction is given by a quadratic expression of a curve length or a curve length

variable.

- 20 -

Attorney Docket No.: 062916

Response

30. (New): A computer-readable recoding medium, which is for numerically controlling

motion of a machine tool, recording thereon a program enabling a computer means to contour

shape of a workpiece by using a three-dimensional clothoid curve in which each of a pitch angle

and a yaw angle in a tangential direction is given by a quadratic expression of a curve length or a

curve length variable, or results computed based on the program.

31. (New): A numerical control method comprising steps of:

expressing a contour shape of a workpiece by using a three-dimensional clothoid curve in

which each of a pitch angle and a yaw angle in a tangential direction is given by a quadratic

expression of a curve length or a curve length variable,

specifying motion of a machine tool to be moved along the three-dimensional curve, and

calculating a moved position of the machine tool at unit-time intervals according to the

specified motion,

wherein the motion is defined as positional information changing as a function of time.

32. (New): A numerical control device which is configured to

express a contour shape of a workpiece by using a three-dimensional clothoid curve in

which each of a pitch angle and a yaw angle in a tangential direction is given by a quadratic

expression of a curve length or a curve length variable,

specify motion of a machine tool to be moved along the three-dimensional curve, and

Attorney Docket No.: 062916

Response

calculate a moved position of the machine tool at unit-time intervals according to the

specified motion,

wherein the motion is defined as positional information changing as a function of time.

33. (New): A data storage device characterized in that:

the data storage device contains program which, when executed by a computer for

numerically controlling motion of a machine tool, implements

means for expressing a trajectory of a contour shape of a workpiece by using a three-

dimensional clothoid curve in which each of a pitch angle and a yaw angle in a tangential

direction is given by a quadratic expression of a curve length or a curve length variable,

means for specifying motion of the machine tool to be moved along the three-dimensional

curve, and

means for calculating a moved position of the machine tool at unit-time intervals

according to the specified motion,

wherein the motion is defined as positional information changing as a function of time.

34. (New): A computer-readable recording medium, which is for numerically controlling

motion of a machine tool, recording thereon a program enabling a computer to operate as

- 22 -

Attorney Docket No.: 062916

Response

means for expressing a contour shape of a workpiece by using a three-dimensional

clothoid curve wherein each of a pitch angle and a yaw angle in a tangential direction is given by

a quadratic expression of a curve length or a curve length variable,

means for specifying motion of the machine tool to be moved along the three-dimensional

curve, and

means for calculating a moved position of the machine tool at unit-time intervals

according to the specified motion,

wherein the motion is defined as positional information changing as a function of time.

- 23 -