Gradient Descent: Convex and Non Convex Case

Ben Ayad Ayoub

December 12, 2022

Contents

1	Problem Setting	1
2	Non-convex Case	1
3	Convex case	3

1 Problem Setting

The goal is to minimize a differentiable function f with $dom(f) = \mathbb{R}^n$, with an L-Lipschitz continuous gradient (i.e., $\exists L > 0, \forall x, y \colon \|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2$). Using the following iterative procedure: starting from a point $x^{(0)}$, with each $t_k \le 1/L$:

$$x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f(x^{(k-1)}), \quad k = 1, 2, 3, \dots$$

Generically written as follows: $x^+ = x - t\nabla f(x)$, where $t \leq 1/L$.

2 Non-convex Case

In this section, we will not assume that f is convex, and still manage to prove some interesting results. **Spoiler alert**: we will show that the gradient descent reaches a point x, such that $\|\nabla f(x)\|_2 \le \epsilon$, in $O(1/\epsilon^2)$ iterations.

Show that:
$$f(x^+) \le f(x) - \left(1 - \frac{Lt}{2}\right)t\|\nabla f(x)\|_2^2$$

At first, we prove this "101" property of L-lipschitz functions:

$$\forall x, y \in \mathbb{R}^n \ f(y) \le f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{L}{2} ||x - y||^2$$
 (1)

Let x, y be in \mathbb{R}^n , Let's define the function $g_{x,y} : \mathbb{R} \to \mathbb{R}$ (we'll ommit the subscripts for simplicity) as g(t) = f(tx + (1-t)y). The function g has some really cool properties, to me, this one property, almost feel illegal to use:

$$g'(t) = \nabla f(tx + (1-t)y)^{\mathsf{T}}(x-y)$$

We can also express f(x) - f(y) using g, as follows: $f(y) - f(x) = g(0) - g(1) = \int_1^0 g'(t) dt$. Which yileds the following:

$$\begin{split} f(y) - f(x) &= \int_{1}^{0} g'(t) \, \mathrm{d}t \\ &= \int_{1}^{0} \nabla f(tx + (1-t)y)^\intercal (x-y) \, \mathrm{d}t \\ &= \int_{0}^{1} \nabla f(tx + (1-t)y)^\intercal (y-x) \, \mathrm{d}t \\ &= \int_{0}^{1} (\nabla f(tx + (1-t)y) - \nabla f(x) + \nabla f(x))^\intercal (y-x) \, \mathrm{d}t \\ &= \int_{0}^{1} \nabla f(x)^\intercal (y-x) \, \mathrm{d}t + \int_{0}^{1} \nabla (f(tx + (1-t)y) - \nabla f(x))^\intercal (y-x) \, \mathrm{d}t \\ &= \nabla f(x)^\intercal (y-x) + \int_{0}^{1} (\nabla f(tx + (1-t)y) - \nabla f(x))^\intercal (y-x) \, \mathrm{d}t \\ &\leq \nabla f(x)^\intercal (y-x) + \int_{0}^{1} \|\nabla (f(tx + (1-t)y) - \nabla f(x))\| \|(y-x)\| \, \mathrm{d}t \\ &\leq \nabla f(x)^\intercal (y-x) + \int_{0}^{1} L \|tx + (1-t)y - x\| \|(y-x)\| \, \mathrm{d}t \\ &= \nabla f(x)^\intercal (y-x) + L \|(y-x)\|^2 \int_{0}^{1} |t-1| \, \mathrm{d}t \\ &= \nabla f(x)^\intercal (y-x) + \frac{L}{2} \|(y-x)\|^2 \end{split}$$

We used Cauchy-Schwarz and the L-smoothness of ∇f . This completes the proof of (1).

Now, by plugging $x^+ = x - t\nabla f(x)$ in the placeholder y and re-arranging, we complete our proof:

$$f(x^{+}) \leq f(x) + \nabla f(x)^{\mathsf{T}} (-t \nabla f(x)) + \frac{L}{2} \| - t \nabla f(x) \|^{2}$$
$$= f(x) - (1 - \frac{Lt}{2}) t \| \nabla f(x) \|^{2}$$

Prove that:
$$\sum_{i=0}^{k} \|\nabla f(x^{(i)})\|_2^2 \le \frac{2}{t} (f(x^{(0)}) - f^*).$$

From the definition of $\{x^{(i)}\}$, the past result, and the fact that $t \leq \frac{1}{L}$, we get for each $i \in \{0, \ldots, k-1\}$:

$$\|\nabla f(x^{(i)})\|_2^2 \le \frac{2}{t} (f(x^{(i)}) - f(x^{(i+1)}))$$

By summing each term, the RHS, cancels (Telescopes?), we get:

$$\sum_{i=0}^{k} \|\nabla f(x^{(i)})\|_{2}^{2} \leq \frac{2}{t} (f(x^{(0)}) - f(x^{(k)})) \leq \frac{2}{t} (f(x^{(0)}) - f^{\star})$$

The second inequality is obtained from (by definition), $f^* \leq f(x^{(k)})$. Which completes the proof. Which completes the proof. Which completes the proof.

Conclude that this lower bound holds:

$$\min_{i=0,\dots,k} \|\nabla f(x^{(i)})\|_2 \le \sqrt{\frac{2}{t(k+1)}(f(x^{(0)}) - f^*)},$$

We have $\forall i \in \{0, ..., k-1\}$: $\min_{i=0,...,k} \|\nabla f(x^{(i)})\|^2 \le \|\nabla f(x^{(i)})\|^2$. Which implies the following:

$$(k+1) \min_{i=0,...,k} \|\nabla f(x^{(i)})\|^{2} \leq \sum_{i=0}^{k} \|\nabla f(x^{(i)})\|_{2}^{2}$$

$$\leq \frac{2}{t} (f(x^{(0)}) - f^{*})$$

$$\Longrightarrow$$

$$\min_{i=0,...,k} \|\nabla f(x^{(i)})\|^{2} \leq \frac{2}{t(k+1)} (f(x^{(0)}) - f^{*})$$

$$\Longrightarrow (\text{Since } x \mapsto x^{2} \text{ is strictly increasing on } \mathbb{R}^{+})$$

$$\left(\min_{i=0,...,k} \|\nabla f(x^{(i)})\|\right)^{2} \leq \frac{2}{t(k+1)} (f(x^{(0)}) - f^{*})$$

$$\Longrightarrow$$

$$\min_{i=0,...,k} \|\nabla f(x^{(i)})\| \leq \sqrt{\frac{2}{t(k+1)} (f(x^{(0)}) - f^{*})}$$

Which proves that we could achieve ϵ -substationarity in $O(1/\epsilon^2)$ iterations.

3 Convex case

Assuming now that f is convex. We prove that we can achieve ϵ -optimality in $O(1/\epsilon)$ steps of SGD, i.e., $f(x) - f^* \leq \epsilon$

Question: Show that:
$$f(x^+) \le f^* + \nabla f(x)^T (x - x^*) - \frac{t}{2} \|\nabla f(x)\|^2$$
.

We have proved that: $f(x^+) \le f(x) - \frac{t}{2} \|\nabla f(x)\|_2^2$ (add link here to question b). Also, using the first-order condition of convexity, we get:

$$f(x) + \nabla f(x)^T (x^* - x) \le f^* \implies f(x) \le f^* + \nabla f(x)^T (x - x^*)$$
 [2]

Which yileds:

$$f(x^+) \le f^* + \nabla f(x)^T (x - x^*) - \frac{t}{2} ||\nabla f(x)||_2^2$$

Show the following:
$$\sum_{i=1}^k (f(x^{(i)}) - f^\star) \le \frac{1}{2t} ||x^{(0)} - x^\star||^2$$
.

We first prove the following:

$$f(x^+) \le f^* + \frac{1}{2t} (\|x - x^*\|^2 - \|x^+ - x^*\|^2).$$

Starting from the result we have proved in the past question, we use the generic update $t\nabla f(x) = x - x^+$, and a few arrangements to get the following:

$$f(x^{+}) \leq f^{\star} + \nabla f(x)^{T} (x - x^{\star}) - \frac{t}{2} \|\nabla f(x)\|^{2}$$

$$= f^{\star} + \frac{1}{2t} (2t \nabla f(x)^{T} (x - x^{\star}) - t^{2} \|\nabla f(x)\|^{2})$$

$$= f^{\star} + \frac{1}{2t} (2(x - x^{+})^{\mathsf{T}} (x - x^{\star}) - \|x - x^{+}\|^{2})$$

$$= f^{\star} + \frac{1}{2t} (\|x\|^{2} - 2x^{\mathsf{T}} x^{\star} + 2(x^{+})^{\mathsf{T}} x^{\star} - \|x^{+}\|^{2})$$

$$= f^{\star} + \frac{1}{2t} ((\|x\|^{2} - 2x^{\mathsf{T}} x^{\star} + \|x^{\star}\|^{2}) - (\|x^{\star}\|^{2} - 2(x^{+})^{\mathsf{T}} x^{\star} + \|x^{+}\|^{2}))$$

$$= f^{\star} + \frac{1}{2t} (\|x - x^{\star}\|^{2} - \|x^{+} - x^{\star}\|^{2})$$

By summing the inequalities for each $i \in \{0, \dots, k-1\}$, the RHS "telescopes", we are left with: $\sum_{i=1}^k (f(x^{(i)}) - f^\star) \le \frac{1}{2t} (\|x^{(0)} - x^\star\|^2 - \|x^{(k)} - x^\star\|^2)$ Since $0 \le \|x^{(k)} - x^\star\|^2$, we upper bound the RHS to complete the proof.

Conclude that:
$$f(x^{(k)}) - f^* \leq \frac{\|x^{(0)} - x^*\|^2}{2tk}$$
,

Every update from $x^{(i)}$ to $x^{(i+1)}$ makes the gap $f(x^{(i)}) - f^*$ smaller (see first question), and hence, $f(x^{(k)}) - f^* = \min\{f(x^{(i)}) - f^*\}_{i=1}^{i=k}$, which yields, using what we established in the past question:

$$k(f(x^{(k)}) - f^*) \le \sum_{i=1}^k (f(x^{(i)}) - f^*)$$
$$\le \frac{1}{2t} ||x^{(0)} - x^*||^2.$$

Dividing by k completes the proof. This proves the $O(1/\epsilon)$ rate for achieving ϵ -suboptimality.