MATH 437 - Manifolds

ARessegetes Stery

December 22, 2023

Contents

1	Preliminary Topology
2	Differentiable Manifolds

2

3

1 Preliminary Topology

Definition 1.1 (Topological Space). A topological space is a pair (X, \mathcal{O}) , where X is an arbitrary set, and \mathcal{O} a class of subsets of X, which satisfies the follows:

- $\emptyset \in \mathcal{O}$, and $X \in \mathcal{O}$.
- Let $(\Omega_i)_{i\in I}$ be a (possibly infinite) class of subsets of X, then $\bigcup_{i\in I} \Omega_i \in \mathcal{O}$.
- Let $(\omega_i)_{i\in I}$ be a finite class of subsets of X, then $\bigcap_{i\in I}\omega_i\in\mathcal{O}$.

Elements of \mathcal{O} are called the **open sets**. \mathcal{O} (as a class) gives the topology of X.

Remark 1.2. If the topology of X is clear, one often denotes the space by simply X.

Definition 1.3 (Hausdorff Space). A topological space (X, \mathcal{O}) is a **Hausdorff space** if for all $x, y \in X$ there exists $\Omega_x, \Omega_y \in \mathcal{O}$ s.t. $x \in \Omega_x, y \in \Omega_y$; and $\Omega_x \cap \Omega_y = \emptyset$.

Example 1.4. Choice of topology is very important. Consider the following examples:

- Consider $(\mathbb{R}, \mathcal{O})$ where $\Omega \in \mathcal{O}$ if and only if for all $x \in \Omega$, there exists $\varepsilon \in \mathbb{R}$ s.t. $(x \varepsilon, x + \varepsilon) \subseteq \Omega$. This space is Hausdorff as one could choose $\varepsilon_x = \varepsilon_y = |x y|/4$. This also illustrates why the intersection must be finite, as otherwise one could construct a converging sequence of ε , whose corresponding class of subsets intersecting to a closed interval.
- Consider $(\mathbb{R}, \mathcal{O})$ to be the trivial topology, where $\mathcal{O} := \{\mathbb{R}, \emptyset\}$. Then the only subset in \mathcal{O} containing x and y is \mathbb{R} , which implies that the space is not Hausdorff.

Definition 1.5 (Basis of a Topology). Let (X, \mathcal{O}) be a topology space. Then a subset $\mathcal{B} \subseteq \mathcal{O}$ is a **basis of topology** \mathcal{O} if for any $\Omega \in \mathcal{O}$ it can be expressed as union of elements in \mathcal{B} . If there exists such \mathcal{B} s.t. it is countably infinite, then X admits a **countable** basis of topology.

Proposition 1.6. $(\mathbb{R}, \mathcal{O})$ with topology defined as in the first case in the example above admits a countable basis of topology.

Proof. First consider $\mathcal{B} := \{(a,b) \mid a < b, a, b \in \mathbb{R}\}$. This gives a basis for the topology of $(\mathbb{R}, \mathcal{O})$ in the sense of the first case above:

- Any union of elements in \mathcal{B} is open. Denote such union to be Ω . By construction, for $x \in \mathbb{R}$ s.t. $x \in \Omega$, there exists $a_x < b_x$ s.t. $x \in (a_x, b_x)$. Then there exists $\varepsilon = \min\{x a_x, b_x x\}/2$ that satisfies the definition.
- Any open subset of $\mathbb R$ can be expressed as a union of open intervals. Recall that the union can be infinite. Now consider for Ω an open interval

$$\Omega = \bigcup_{x \in \Omega} (x - \varepsilon_x, x + \varepsilon_x)$$

where for each x, ε_x is the corresponding radius s.t. the definition is satisfied; and for all $x \in \Omega$, $(\mathbb{R} \setminus \Omega) \cap (x - 2\varepsilon_x, x + 2\varepsilon_x) \neq \emptyset$. By definition for all $x \in \Omega$ there exists such an interval that x is in it.

Then consider $\mathcal{B}':=\{(a,b)\mid a< b,a,b\in\mathbb{Q}\}$. Since \mathbb{Q} is dense in \mathbb{R} , for any $x'\in\mathbb{R}\cap\Omega$ there exists a sequence (x_n) s.t. $\lim_{n\to\infty}x_n=x'$. Choose the sequence s.t. $|x_n-x'|>2\,|x_{n+1}-x'|$. Suppose that for all $n,x'\notin(x_n-\varepsilon_{x_n},x_n+\varepsilon_{x_n})$. Then

there exists some n_0 s.t. $(x_{n+1} - \varepsilon_{x_{n+1}}, x_{n+1} + \varepsilon_{x_{n+1}}) \subsetneq (x_n, x')$ assuming $x_n < x'$ without loss of generality, which is a contradiction.

Since $\mathbb{Q} \simeq \mathbb{N} \times \mathbb{N}$ which is countable, $\mathbb{Q} \times \mathbb{Q}$ is also countable, indicating that β' gives a countable basis of topology on \mathbb{R} .

Remark 1.7. For \mathbb{R}^n , the <u>standard topology</u> is defined as where a set Ω is open if and only if for every $x \in \Omega$ there exists $\varepsilon > 0$ s.t. $B_{\varepsilon}^n(x) \subseteq \Omega$.

Corollary 1.8. By the same proof, and considering open intervals as 1-balls on \mathbb{R}^1 , this gives that \mathbb{R}^n with the standard topology admits a countable basis of topology.

Definition 1.9 (Induced Topology). Let (X, \mathcal{O}_X) be a topological space, and $Y \subseteq X$. Then there exists a definition for \mathcal{O}_Y where $\Omega' \in \mathcal{O}_Y$ if and only if there exists $\Omega \in \mathcal{O}_X$ s.t. $\Omega' = \Omega \cap Y$. This is the **induced topology** on Y.

Definition 1.10. Let (X_1, \mathcal{O}_1) , (X_2, \mathcal{O}_2) be topological spaces. Then

- A map $f: X_1 \to X_2$ is continuous if for all $\Omega \in \mathcal{O}_2$, $f^{-1}(\Omega) \in \mathcal{O}_1$.
- A map $f: X_1 \to X_2$ is **homeomorphic** if it is invertible, and both f and f^{-1} are continuous.

Example 1.11. The map $f:[0,2\pi)\to S^1, x\mapsto (\cos x,\sin x)$ is not homeomorphic, as for the arcs wrapped around the origin (e.g. $f([0,\pi/6)\cup(11\pi/6,2\pi))$) the image is open, but the interval itself is not open.

Definition 1.12 (Diffeomorphism). Let $\Omega_1, \Omega_2 \subseteq \mathbb{R}^n$ be open sets. Then a homeomorphism $f: \Omega_1 \to \Omega_2$ is a **diffeomorphism** if both f and f^{-1} are differentiable. Similarly one can consider C^k -diffeomorphism for f and f^{-1} being k-times differentiable.

Proposition 1.13. If f is a diffeomorphism which is n-times differentiable, then f^{-1} is also n-times differentiable.

Proof. Proceed to prove this via induction on k:

- Base case. For k=1, this is by the definition of diffeomorphisms.
- Inductive step. Suppose that this is proven for k=m. For $k=m+1\leq n$, since f is C^n -differentiable and locally injective everywhere, by inverse function theorem this gives

$$g'(x) = \frac{1}{f'(g(x))}$$

where by hypothesis f' and g are both C^m -differentiable, and therefore so is their composition and g'.

This gives g' is C^{n-1} -differentiable, which gives g being C^n -differentiable.

Remark 1.14. A differentiable homeomorphism is not necessarily a diffeomorphism, as f is not necessarily locally injective everywhere. Consider $f: x \mapsto x^3$ whose inverse is not differentiable at 0. f is not locally injective at 0.

2 Differentiable Manifolds