IOT ENABLED SMART FARMINGAPPLICATION SPRINT DELIVERY – 4

Date	17.11.2022
Team ID	PNT2022TMID06965
Project Name	SMART FARMER - IOT ENABLED SMART
	FARMINGAPPLICATION SYSTEM

Receiving commands from IBM cloud using Python program

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device
organization = "wj54qd"
deviceType="abc"
deviceId = "123"
authMethod = "token"
authToken= "12345678"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="motoron":
    print ("motor is on")
  elif status == "motoroff":
    print ("motor is off")
  else:
    print("please send proper command")
try:
  deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-
method": authMethod, "auth-token":authToken}
  deviceCli = ibmiotf.device.Client(deviceOptions)
#.....
```

```
except Exception as e:
 print("Caught exception connecting device: %s" % str(e))
 sys.exit()
deviceCli.connect()
while True:
 temp=random.randint(90,110)
 Humid=random.randint(60,100)
 Mois=random.randint(20,120)
 data = { 'temp' : temp, 'hum': Humid, 'mois' :Mois}
 #print data
 def myOnPublishCallback():
    print ("published Temperature = %s C" % temp, "Humidity = %s %%" %
Humid, "Moisture = %s deg c" %Mois, "to IBM Watson")
 success = deviceCli.publishEvent("event", "json", data,qos=0,
on_publish=myOnPublishCallback)
 if not success:
    print("Not connected to IoTF")
 time.sleep(3)
 deviceCli.commandCallback = myCommandCallback
#Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
- 0 X
iot.py - C:\Users\ELCOT\Desktop\iot.py (3.7.0)
File Edit Format Run Options Window Help
 import time
 import sys
import ibmiotf.application
import ibmiotf.device
  import random
import random
fProvide your IBM Watson Device
organization = "wj54qd"
deviceType="abo"
deviceId = "123"
authMethod = "token"
authToken= "12345678"
if status=="motoron":
    print ("motor is on")
elif status == "motoroff":
     print("please send proper com
 try:
     deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMethod, "auth-token":authToken}
svs.exit()
 ays.exit()
deviceCli.connect()
while True:
   temp=random.randint(90,110)
    temp=random.randint(90,100)
Humid=random.randint(60,100)
Mois=random.randint(20,120)
data = { 'temp' : temp, 'hum': Humid, 'mois' :Mois}
#print data
def myOnPublishCallback():
         print ("published Temperature = %s C" % temp, "Humidity = %s %%" % Humid, "Moisture =%s deg c" %Mois, "to IBM Watson")
    success = deviceCli.publishEvent("event", "json", data,qos=0, on publish=myOnPublishCallback)
    if not success:
                                                                                                                                                                       g<sup>R</sup> へ 信 (4)) II ENG 01:10 18-11-2022
                                                                            Type here to search
                                                        *
```


Flow Chart

Observations & Results

Advantages

- Farms can be monitored and controlled remotely.
- > Increase in convenience to farmers.
- Less labor cost.
- > Better standards of living.

Disadvantages:

- ➤ Lack of internet/connectivity issues.
- ➤ Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.