Outline: Week 3 R

Compact Sets and the Heine–Borel Theorem

- 1. Definition of compact set.
- 2. Examples:
 - \bullet The interval [a, b] is compact due to Bolzano Weierstrass.
 - the naturals $\mathbb N$ are closed but unbounded; in fact any discrete ϵ -separated set is closed but unbounded.
- 3. Heine Borel theorem
 - If a set is compact, then it is bounded.
 - Compact implies closed.
 - Bounded and closed implies compact.
- 4. Open cover and finite subcover of open sets, then A is compact (see Abbott 3.3.8).