Relations between Problems

- some problems can be solved using an algorithm for another problem
- reduction
 - e.g. problem B can be efficiently solved if there is an efficient algorithm for problem A
 - B cannot be fundamentally harder than A \iff A cannot be fundamentally easier than B
 - $-B \leq_x A$
 - * B can be reduced to A
 - * solving B with the help of A

Reducing City Tour to Dinner Party

- similarity
 - view both problems as graphs
 - "differently reachable from ..." \iff "liked by ..."
- difference
 - cycle must be closed for the dinner party
- conclusions
 - if there is a tour \Rightarrow there is a possible seating order
 - if there is a seating \Rightarrow finding a tour path is easy
 - * no tour \Rightarrow no seating
 - \Rightarrow City Tour \leq_x Dinner Party:
 - The seating problem is at least as hard as the tour problem.
- the dinner party problem can be also reduced to the city tour problem

Complexity Classes

- P
- decision problems solvable in polynomial time
- NP
 - decision problems solvable in nondeterministic polynomial time
 - solution is verifiable in polynomial time given a certificate (e.g. a solution)
- PSPACE
 - decision problems solvable using a polynomial amount of memory
 - disregards time complexity
- EXPTIME
 - decision problems solvable in exponential time
- Undecidable
 - problems which cannot be solved no matter how much time or space is allowed

- must be proven that no such algorithm exists

Some Example Problems

- Paths in graphs: Given a graph G=(V,E), is there a . . .
 - path from vertex u to vertex v with at most k edges? simple path from u to v with at least k edges? simple path through all vertices (with n-1 edges)?
- Integer factorization: Given two integers n and k with 1 < k < n, does n have a factor d with 1 < d < k?
- Halting problem: Given a program P and an input I,
 does P halt on I after finitely many steps?
 does P halt on I after exponentially many steps?
- Checkers/Hex: Given an $n \times n$ board and a game situation, is there a winning strategy for the first player?

Types of Polynomial Time Reductions

Polynomial time Turing (Cook) reduction $A \leq_{PT} B$:

- At most polynomially many calls to the subroutine for B.
- Everything except the subroutine calls for B needs polynomial time in total.

Polynomial time Karp reduction $A \leq_p B$:

Transform inputs for A into inputs for B in polynomial time, in a way that the output from B on the transformed input is the same as the output from A for the original input.

- special case of Cook reductions

Note: $A \leq_{PT} B$ or $A \leq_{p} B$ does <u>not</u> imply that an algorithm for A runs faster than one for B. But it implies that

- if B is in P, then A is in P as well.
- if A is not in P then B can't be in P either.

NP-completeness

- Problem B is NP-complete if
 - $-B \in NP$
 - B is NP-hard

B is "at least as hard" as all other problems in **NP**, or, more formally:

 $A \leq_p B$ for all problems A in NP.

- ways to show that B is NP-complete
 - Possibility 1: Show A ≤_p B for all problems A in NP.

Cook's Theorem:

SAT (satisfiability of boolean formulas) is NP-complete.

- Possibility 2: Show $C \leq_p B$ for some NP-complete problem C:
- * possibility 2 works because

As $A \leq_p C$ for all problems A in NP, and as $A \leq_p C$ and $C \leq_p B$ implies $A \leq_p B$,

- \blacksquare all problems in NP can be reduced to C
 - ▲ since C is NP-complete
- C can be reduced to B

- must also show that $B \in NP$
 - \ast otherwise B might be NP-hard but B \notin NP
- ways to show that B is NP-hard
 - reduce a NP-hard problem to B