Roll. No. (Pages 1)

NATIONAL INSTITUTE OF TECHNOLOGY CALICUT

Department of Mathematics

FOURTH SEMESTER B.TECH. DEGREE EXAMINATIONS, INTERIM TEST-I JANUARY 2014

MA 2002 MATHEMATICS IV

Time: 1 Hour 15 Minutes Max. Marks: 25

Answer ALL Questions

1. Using Frobenius method, obtain two linearly independent solutions for the differential d^2y .

equation $2x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - 3)y = 0$ near the regular singular point x = 0. (3.5)

- 2. State and prove Rodrigue's formula for Legendre polynomials. (3)
- 3. Show that $J_{n+1}(x) = \frac{2n}{x}J_n(x) J_{n-1}(x)$. Hence express $J_4(x)$ in terms of $J_0(x)$ and $J_1(x)$.
- 4. Prove the following: (i) $\int_{-1}^{1} P_n(x) P_n(x) dx = 0$, for $m \neq n$ (2)
 - (ii) $\cos(x \sin \theta) = J_0 + 2(J_2 \cos 2\theta + J_4 \cos 4\theta + \dots)$ (2)
 - (iii) If n is an integer, prove that $J_{-n}(x) = (-1)^n J_n(x)$. (1)
- 5. If $f(x) = \begin{cases} x, & -1 < x < 0 \\ 1, & 0 < x < 1 \end{cases}$, expand f(x) as a Fourier-Legendre series on (-1, 1)

by finding three nonzero coefficients. (3)

6. Find the eigen values and eigen functions of the Sturm-Liouville problem

 $\frac{d^2y}{dx^2} + \lambda y = 0$ with y(0) = 0, $y'(\pi) = 0$ and $\lambda \in \mathbb{R}$. Also verify the orthogonality

property of eigen functions. (3.5)

- 7. Form the PDE by eliminating the function ϕ from ϕ (x+y+z, x²+y²+z²) = 0. (2)
- 8. Solve the PDE: $(y^2 + z^2)p xy q = -xz$, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$. (3)
