UTN – 1° Parcial	Sistemas Operativos	18/05/2024
	•	

Nombre y Apellido: Curso:

TEORÍA			PRÁCTICA			NOTA		
1	2	3	4	5	1	2	3	

TEORÍA: Responda brevemente las siguientes preguntas. Justifique.

- 1) Explique la relación entre las instrucciones privilegiadas/no-privilegiadas y los modos de ejecución.
- 2) Mencione las ventajas y al menos una desventaja de utilizar Procesos en lugar de Hilos KLTs. En una aplicación que busque minimizar los cambios de modo, ¿qué tipos de hilos convendría usar?
- 3) Explique la diferencia entre los algoritmos de planificación con y sin desalojo. En un sistema en el que no queremos procesos monopolizando la CPU, ¿cuál sería conveniente utilizar?
- 4) Responda Verdadero o Falso, justificando en ambos casos:
 - a) En un sistema donde los procesos compiten por los recursos es necesario protegerlos implementando alguna solución que nos brinde mutua exclusión.
 - b) Las soluciones de software conocidas no son performantes debido a que incurren en mucha espera activa.
- 5) Si analiza un sistema para determinar si está ocurriendo un deadlock o un livelock, ¿Cuáles métricas del sistema operativo y computadora permitirían inferir la respuesta?

<u>PRÁCTICA:</u> Resuelva los siguientes ejercicios <u>justificando</u> las conclusiones obtenidas. **Ejercicio 1**

Un SO con un planificador a corto plazo que implementa un algoritmo Round Robin Q=3, ejecuta una serie de procesos que utilizan una biblioteca de hilos de usuario que planifica mediante un algoritmo SJF (con desalojo).

PROCESOS		ARRIBO	CPU	10	CPU	
PA	KLT1		0	3	2	4
	KLT2	ULTA1	1	6	1	1
		ULTA2	4	2	2	1
		ULTA3	13	3	3	2
PB	KLT3		15	1	4	4

- a) Realice el diagrama de GANTT según la traza de ejecución que muestra la tabla.
- b) Indique en qué instantes y por qué motivo ocurrieron las interrupciones.
- c) Indique, justificando su respuesta, a partir de qué instante cambiaría el diagrama si la biblioteca de hilos implementara la técnica de jacketing.

Ejercicio 2

Existe un centro de reparación de computadoras, donde nos ofrecen varios servicios, como formateo, reparación, etc; siendo cada uno de ellos una sección del comercio.

El centro acepta tener hasta 50 trabajos pendientes en la cola de su sistema.

El cliente lleva el artefacto a reparar y se le asigna un encargo, el cual es ingresado en la cola del sistema. Luego, el administrador es quien los asigna a las distintas secciones de reparación.

El lugar disponible por sección es de 10 encargos.

Teniendo en cuenta el pseudocódigo presentado, sincronice utilizando únicamente semáforos.

Nota: la variable id_seccion puede tomar valores desde 0 a 4.

```
while(1) {
    artefacto_roto = obtener_artefacto_roto(lista_artefactos_del_cliente)
    encargo = llevar_a_reparar(artefacto_roto)
    entregar_encargo(encargo, cola_sistema)
}

Administrador (1 instancia)

While(1) {
    encargo = retirar_encargo(cola_sistema)
    id_seccion = obtener_seccion_de(encargo)
    depositar(encargo, cola_encargos[id_seccion])
}

While(1) {
    id_seccion = seccion_perteneciente(id_tecnico)
    encargo = tomar_encargo(cola_encargos[id_seccion])
    reparar_artefacto(encargo)
}
```

Ejercicio 3

Se tienen 3 procesos, cada uno con N instancias, que se encuentran sincronizados para imprimir CASACASACASA... indefinidamente. Se sabe que utilizan Round Robin Q=2 como algoritmo de planificación y que cada línea de código requiere 1 unidad de tiempo para ejecutarse.

С	А	S	Semáforos:
wait(CS) wait(C) print("C") signal(A) signal(S)	wait(A) print("A") signal(CS)	wait(CS) wait(S) print("S") signal(A) signal(C)	CS, C = 1 A, S = 0

- a) ¿Podrían estos procesos quedar en Deadlock? De ser así, proponga una secuencia de ejecución de procesos en la que ocurriría y realice el GANTT. De no ser posible, proponga otro algoritmo con el que sí ocurriría.
- b) Proponga algún cambio en el pseudocódigo para que, con independencia del planificador de corto plazo usado, no puedan ocurrir deadlocks entre estos procesos.

Condiciones de aprobación: 3 preguntas correctamente respondidas y 1.5 ejercicios correctamente resueltos.