

TLV743P

ZHCSGF2C -JULY 2017-REVISED JUNE 2019

TLV743P 300mA 低压差稳压器

1 特性

- 输入电压范围: 1.4V 至 5.5V
- 使用 1µF 陶瓷输出电容器实现稳定运行
- 折返过流保护
- 封装:
 - SOT-23 (5)
 - X2SON (4)
- 极低压差: 125mV/300mA (3.3V_{OUT})
- 精度: 1% (典型值)、1.4% (最大值)
- 低 lo: 34µA
- 可提供固定输出电压: 1V 至 3.3V
- 高电源抑制比 (PSRR): 1kHz 频率时为 50dB
- 有源输出放电

2 应用

- 平板电脑
- 智能手机
- 笔记本和台式计算机
- 便携式工业和消费类产品
- 无线局域网 (WLAN) 和其他 PC 附加卡
- 摄像机模块

典型应用电路

3 说明

TLV743P 低压差线性稳压器 (LDO) 是一款超小型低静态电流 LDO,可提供 300mA 拉电流,具有良好的线路和负载瞬态性能。此器件提供了 1% 的典型精度。

TLV743P 器件旨在使用 1μF 的小型输出电容器实现稳定运行。TLV743P 器件可在器件加电和使能期间提供 折返电流控制。该功能对于电池供电型器件尤为重要。

TLV743P 提供了有源下拉电路,用于在器件处于禁用 状态时对输出负载进行快速放电。

TLV743P 采用标准 DBV (SOT-23) 和 DQN (X2SON) 封装。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
TLV743P	SOT-23 (5)	2.90mm × 1.60mm
TLV/43P	X2SON (4)	1.00mm x 1.00mm

(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。

压降电压与输出电流间的关系

Page

Page

_	
	— .
	$\overline{}$
	1

1	特性1	8 Application and Implementation	16
2	应用 1	8.1 Application Information	
3	说明 1	8.2 Typical Application	18
4	修订历史记录	9 Power Supply Recommendations	19
5	Pin Configuration and Functions 4	10 Layout	19
6	Specifications5	10.1 Layout Guidelines	19
·	6.1 Absolute Maximum Ratings 5	10.2 Layout Examples	19
	6.2 ESD Ratings	11 器件和文档支持	20
	6.3 Recommended Operating Conditions5	11.1 器件支持	20
	6.4 Thermal Information5	11.2 文档支持	20
	6.5 Electrical Characteristics	11.3 接收文档更新通知	20
	6.6 Typical Characteristics 8	11.4 社区资源	20
7	Detailed Description 13	11.5 商标	
	7.1 Overview 13	11.6 静电放电警告	
	7.2 Functional Block Diagram 13	11.7 Glossary	
	7.3 Feature Description	12 机械、封装和可订购信息	22
	7.4 Device Functional Modes 15		

4 修订历史记录

Cł	nanges from Revision B (March 2018) to Revision C	Page
•	Changed description of EN pin in <i>Pin Functions</i> table	4
•	Deleted typical specification from V _{EN(HI)} and V _{EN(LO)} parameters	(
•	Added maximum specification to I _{LIM} parameter	
•	已添加 condition to 1-V Load Regulation vs I _{OUT} and Temperature figure	8
•	已添加 condition to 1.8-V Load Regulation vs I _{OUT} and Temperature figure	8
•	已添加 condition to 3.3-V Load Regulation vs I _{OUT} and Temperature figure	8
•	已添加 condition to 1.2-V Dropout Voltage vs I _{OUT} and Temperature figure	
•	已添加 condition to 1.8-V Dropout Voltage vs I _{OUT} and Temperature figure	9
•	已添加 condition to 3.3-V Dropout Voltage vs I _{OUT} and Temperature figure	
•	已添加 and Output Enable to title and changed first paragraph of Shutdown and Output Enable section	14
•	已添加 DBV package to Maximum Ambient Temperature vs Device Power Dissipation figure and text reference	17
•	已添加 将 (3) 添加到器件命名规则 表	20

Changes from Revision A (January 2018) to Revision B

已更改 将 X2SON 封装从预览更改为生产数据(有效)......1

Changes from Original (July 2017) to Revision A

•	已添加 X2SON 封装至特性 列表	. 1
•	已添加 将 DQN (X2SON) 封装添加至说明 部分	. 1
•	已添加 将 X2SON 封装添加至器件信息 表	. 1
•	Added DQN (X2SON) package pinout drawing and pin functions table to Pin Configuration and Functions section	. 4
•	Deleted thermal pad from DBV pinout drawing and Pin Functions table	. 4
•	Changed format of I/O column contents and order of packages in Pin Functions table	. 4
•	Added DQN (X2SON) thermal information to Thermal Information table	. 5

www.ti.com.c	n

5 Pin Configuration and Functions

DQN Package 4-Pin X2SON With Exposed Thermal Pad Top View

Pin Functions

PIN		1/0	DESCRIPTION		
NAME	SOT-23	X2SON	1/0	DESCRIPTION	
EN	3	3	I	Enable pin. Drive EN greater than $V_{\text{EN(LO)}}$ to turn on the regulator. Drive EN less than $V_{\text{EN(LO)}}$ to put the LDO into shutdown mode.	
GND	2	2		Ground pin	
IN	1	4	-	Input pin. A small capacitor is recommended from this pin to ground. See Input and Output Capacitor Selection for more details.	
NC	4			No internal connection	
OUT	5	1	0	Regulated output voltage pin. For best transient response, use a small 1-μF ceramic capacitor from this pin to ground. See <i>Input and Output Capacitor Selection</i> for more details.	
Thermal pad	_	Thermal pad	_	The thermal pad is electrically connected to the GND node. Connect to the GND plane for improved thermal performance.	

6 Specifications

6.1 Absolute Maximum Ratings

over operating junction temperature range (unless otherwise noted); all voltages are with respect to GND⁽¹⁾

, ,,	5			
		MIN	MAX	UNIT
	V _{IN}	-0.3	6	V
Voltage	V _{EN}	-0.3	V _{IN} + 0.3	
	V _{OUT}	-0.3	3.6	
Current	I _{OUT}	Interna	lly limited	Α
Output short-circuit duration		Inde	efinite	
Townsonting	Operating junction, T _J	-40	150	°C
Temperature	Storage, T _{stg}	-65	160	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
	Flootroototic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V_{IN}	Input range	1.4	5.5	V
V_{OUT}	Output range	1	3.3	V
I _{OUT}	Output current	0	300	mA
V _{EN}	Enable range	0	V _{IN}	V
TJ	Junction temperature	-40	125	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		TL	TLV743P		
		DBV (SOT-23)	DQN (X2SON)	UNIT	
			4 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	228.4	218.6	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	151.5	164.8	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	55.8	164.9	°C/W	
ΨЈТ	Junction-to-top characterization parameter	31.4	5.6	°C/W	
ΨЈВ	Junction-to-board characterization parameter	54.8	163.9	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	131.4	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

at operating temperature range ($T_J = -40^{\circ}C$ to +125°C), $V_{IN} = V_{OUT}(nom) + 0.5$ V or 2 V (whichever is greater), $I_{OUT} = 1$ mA, $V_{EN} = V_{IN}$, and $C_{IN} = C_{OUT} = 1$ µF (unless otherwise noted). All typical values at $T_J = 25^{\circ}C$.

F	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT			
V _{IN}	Input voltage			1.4		5.5	V			
	DC output occursor	$T_J = 25^{\circ}C$		-1%		1%				
	DC output accuracy	–40°C ≤ T _J ≤ 125°C		-1.4%		1.4%				
UVLO	Undervoltage	V _{IN} rising			1.3	1.4	V			
OVLO	lockout	V _{IN} falling			1.25		V			
$\Delta V_{O(\Delta VI)}$	Line regulation	$\Delta VI = V_{IN(nom)}$ to $V_{IN(nom)}$	+ 1		1		mV			
$\Delta V_{O(\Delta IO)}$	Load regulation	$\Delta IO = 1$ mA to 300 mA	DBV package		16 25		mV			
			V _{OUT} = 1.1 V -40°C ≤ T _J ≤ 85°C			480				
			1.2 V ≤ V _{OUT} < 1.5 V -40°C ≤ T _J ≤ 85°C			420				
			1.5 V ≤ V _{OUT} < 1.8 V -40°C ≤ T _J ≤ 85°C			370				
			1.8 V ≤ V _{OUT} < 2.5 V -40°C ≤ T _J ≤ 85°C			270	70			
V_{DO}			$2.5 \text{ V} \le \text{V}_{\text{OUT}} < 3.3 \text{ V}$ $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 85^{\circ}\text{C}$			260				
	Dropout voltage ⁽¹⁾	$V_{OUT} = 0.98 \times V_{OUT(nom)}$ $I_{OUT} = 300 \text{ mA}$	V _{OUT} = 3.3 V -40°C ≤ T _J ≤ 85°C		125	220	mV			
			1.2 V ≤ V _{OUT} < 1.5 V -40°C ≤ T _J ≤ 125°C			450				
			1.5 V ≤ V _{OUT} < 1.8 V -40°C ≤ T _J ≤ 125°C			400				
			$1.8 \text{ V} \le \text{V}_{\text{OUT}} < 2.5 \text{ V}$ -40°C \le T _J \le 125°C			300				
			$2.5 \text{ V} \le \text{V}_{\text{OUT}} < 3.3 \text{ V}$ $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$			290				
			$V_{OUT} = 3.3 \text{ V} \\ -40^{\circ}\text{C} \le T_{\text{J}} \le 125^{\circ}\text{C}$		125	270				
I_{GND}	Ground pin current	I _{OUT} = 0 mA			34	60	μΑ			
I _{SHDN}	Shutdown current	$V_{EN} \le 0.35 \text{ V}$ 2 V \le V_{IN} \le 5.5 V $T_{J} = 25^{\circ}\text{C}$			0.1	1	μΑ			
			f = 100 Hz		68					
PSRR	Power-supply rejection ratio	$V_{OUT} = 1.8 \text{ V}$ $I_{OUT} = 300 \text{ mA}$	f = 10 kHz		35		dB			
	. Sjoodon rado	.001 = 000 111/1	f = 100 kHz		28					
V _n	Output noise voltage	Bandwidth = 10 Hz to 100 V_{OUT} = 1.8 V I_{OUT} = 10 mA) kHz		120		μV_{RMS}			
V _{EN(HI)}	EN pin high voltage (enabled)			0.9			V			
V _{EN(LO)}	EN pin low voltage (disabled)					0.35	٧			
I _{EN}	EN pin current	V _{EN} = 5.5 V			0.01		μA			

⁽¹⁾ Dropout voltage for the TLV743P is not valid at room temperature. The device engages undervoltage lockout (V_{IN} < UVLO_{FALL}) before the dropout condition is met.

Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Startup time	Time from EN assertion to 98% × V_{OUT} (nom) V_{OUT} = 1 V I_{OUT} = 0 mA		250		μs	
t _{STR} Startup time	Startup time	Time from EN assertion to 98% × V_{OUT} (nom) $V_{OUT} = 3.3 \text{ V}$ $I_{OUT} = 0 \text{ mA}$		800			
	Pulldown resistor	$V_{IN} = 2.3 \text{ V}$		120		Ω	
I _{LIM}	Output current limit		360		700	mA	
la a	Short-circuit current	V_{OUT} shorted to GND $V_{OUT} = 1 \text{ V}$		150		mΛ	
los limit	limit	V_{OUT} shorted to GND $V_{OUT} = 3.3 \text{ V}$		170	mA		
_	Thermal shutdown	Shutdown, temperature increasing		160		°C	
T _{sd}	meimai shuldown	Reset, temperature decreasing		140		C	

6.6 Typical Characteristics

at operating temperature range ($T_J = -40$ °C to +125°C), $V_{IN} = V_{OUT}(nom) + 0.5$ V or 2 V (whichever is greater), $I_{OUT} = 1$ mA, $V_{EN} = V_{IN}$, and $C_{IN} = C_{OUT} = 1$ µF (unless otherwise noted)

图 29. Shutdown Response With Enable

图 30. Foldback Current Limit Response

7 Detailed Description

7.1 Overview

The TLV743P device belongs to a new family of next-generation, low-dropout regulators (LDOs). This device consumes low quiescent current and delivers excellent line and load transient performance. These characteristics, combined with low noise, good PSRR with low-dropout voltage, make this device well-suited for portable consumer applications.

This regulator offers foldback current limit, shutdown, and thermal protection. The operating junction temperature for this device is -40° C to $+125^{\circ}$ C.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Undervoltage Lockout (UVLO)

The TLV743P device uses an undervoltage lockout (UVLO) circuit that disables the output until the input voltage is greater than the rising UVLO voltage, UVLO_{RISE}. This circuit makes certain that the device does not exhibit any unpredictable behavior when the supply voltage is lower than the operational range of the internal circuitry. During UVLO disable, the output connects to ground with a $120-\Omega$ pulldown resistor.

7.3.2 Shutdown and Output Enable

The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed $V_{EN(HI)}$. Turn off the device by forcing the EN pin to drop below $V_{EN(LO)}$. If shutdown capability is not required, connect EN to IN. There is no internal pulldown resistor connected to the EN pin.

The TLV743P device has an internal pulldown MOSFET that connects a 120- Ω resistor to ground when the device is disabled. The discharge time after disabling depends on the output capacitance (C_{OUT}) and the load resistance (R_I) in parallel with the 120- Ω pulldown resistor. The time constant is calculated in $\Delta \pm 1$:

$$t = \frac{120 \times R_L}{120 + R_L} \times C_{OUT} \tag{1}$$

7.3.3 Internal Foldback Current Limit

The TLV743P device has an internal foldback current limit that protects the regulator during fault conditions. The current allowed through the device is reduced as the output voltage falls. When the output is shorted, the LDO supplies a typical current of 150 mA. The output voltage is not regulated when the device is in current limit. In this condition, the output voltage is the product of the regulated current and the load resistance. When the device output is shorted, the PMOS pass transistor dissipates power $[(V_{IN} - V_{OUT}) \times I_{OS}]$ until thermal shutdown is triggered and the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the fault condition continues, the device cycles between current limit and thermal shutdown. See *Thermal Information* for more details.

The foldback current limit circuit limits the current allowed through the device to current levels lower than the minimum current limit at nominal V_{OUT} current limit (I_{LIM}) during startup. See ₹ 18 to ₹ 20 for typical foldback current limit values. If the output is loaded by a constant-current load during startup, or if the output voltage is negative when the device is enabled, then the required load current by the load may exceed the foldback current limit and the device may not rise to the full output voltage. For constant current loads, disable the output load until the TLV743P has risen to the nominal output voltage.

The TLV743P PMOS pass element has an intrinsic body diode that conducts current when the voltage at the OUT pin exceeds the voltage at the IN pin. Do not force the output voltage to exceed the input voltage because excessively high current may flow through the body diode.

7.3.4 Thermal Shutdown

Thermal shutdown protection disables the output when the junction temperature rises to approximately 160°C. Disabling the device eliminates power dissipated by the device, which allows the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation, which protects the device from damage as a result of overheating.

Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product of the $(V_{IN} - V_{OUT})$ voltage and the load current. For reliable operation, limit junction temperature to 125°C maximum. To estimate the margin of safety in a complete design, increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions.

The TLV743P internal protection circuitry protects against overload conditions, but is not intended to be active in normal operation. Continuously running the TLV743P device into thermal shutdown degrades device reliability.

7.4 Device Functional Modes

7.4.1 Normal Operation

The device regulates to the nominal output voltage under the following conditions:

- The input voltage has previously exceeded the UVLO rising voltage and has not decreased below the UVLO falling threshold.
- The input voltage is greater than the nominal output voltage added to the dropout voltage.
- The enable voltage has previously exceeded the enable rising threshold voltage and not decreased below the enable falling threshold.
- The output current is less than the current limit.
- The device junction temperature is less than the thermal shutdown temperature.

7.4.2 Dropout Operation

If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this condition, the output voltage is the same the input voltage minus the dropout voltage. The transient performance of the device is significantly degraded because the pass device is in a triode state and no longer controls the current through the LDO. Line or load transients in dropout may result in large output voltage deviations.

7.4.3 Disabled

The device is disabled under the following conditions:

- The input voltage is less than the UVLO falling voltage, or has not yet exceeded the UVLO rising threshold.
- The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising threshold.
- The device junction temperature is greater than the thermal shutdown temperature.

When the device is disabled, the active pulldown resistor discharges the output.

表 1 lists the conditions that result in different operating modes.

表 1. Device Functional Mode Comparison

ODED ATING MODE		PARAMETER										
OPERATING MODE	V _{IN}	V _{EN}	I _{OUT}	TJ								
Normal mode	$V_{IN} > V_{OUT}(nom) + V_{DO}$ and $V_{IN} > UVLO_{RISE}$	$V_{EN} > V_{EN(HI)}$	I _{OUT} < I _{LIM}	T _J < 160°C								
Dropout mode	$UVLO_{RISE} < V_{IN} < V_{OUT}(nom) + V_{DO}$	$V_{EN} > V_{EN(HI)}$	I _{OUT} < I _{LIM}	T _J < 160°C								
Disabled mode (any true condition disables the device)	V _{IN} < UVLO _{FALL}	V _{EN} < V _{EN(LO)}	_	T _J > 160°C								

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Input and Output Capacitor Selection

The TLV743P device uses an advanced internal control loop to obtain stable operation with the use of input or output capacitors. An output capacitance of 1 μ F or larger generally provides good dynamic response. Use X5R-and X7R-type ceramic capacitors because these capacitors have minimal variation in value and equivalent series resistance (ESR) over temperature.

Although an input capacitor is not required for stability, increased output impedance from the input supply may compromise the performance of the TLV743P. Good analog design practice is to connect a 0.1- μ F to 1- μ F capacitor from IN to GND. This capacitor counteracts reactive input sources and improves transient response, input ripple, and PSRR. Use an input capacitor if the source impedance is greater than $0.5~\Omega$. Use a higher-value capacitor if large, fast, rise-time load transients are expected, or if the device is located several inches from the input power source.

8.1.2 Dropout Voltage

The TLV743P device uses a PMOS pass transistor to achieve low dropout. When $(V_{IN} - V_{OUT})$ is less than the dropout voltage (V_{DO}) , the PMOS pass device is in the linear region of operation and the input-to-output resistance is the $R_{DS(ON)}$ of the PMOS pass element. V_{DO} scales approximately with output current because the PMOS device behaves like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as $(V_{IN} - V_{OUT})$ approaches dropout operation. See $\[mathbb{R}\]$ 7 to $\[mathbb{R}\]$ 12 for typical dropout values.

Application Information (接下页)

8.1.3 Power Dissipation

The ability to remove heat from the die is different for each package type and presents different considerations in the printed circuit board (PCB) layout. The PCB area around the device that is free of other components moves the heat from the device to ambient air. Performance data for JEDEC high-K boards are shown in *Thermal Information*. Using heavier copper increases the effectiveness in removing heat from the device. The addition of plated through-holes to heat-dissipating layers also improves heat sink effectiveness.

Power dissipation (P_D) depends on input voltage and load conditions. P_D is equal to the product of the output current and voltage drop across the output pass element, as shown in $\Delta \vec{x}$ 2.

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$$
(2)

₹ 31 shows the maximum ambient temperature versus the power dissipation of the TLV743P device in the DQN and DBV packages. This figure assumes the device is soldered on JEDEC standard high-K layout with no airflow over the board. Actual board thermal impedances vary widely. If the application requires high power dissipation, it is helpful to have a thorough understanding of the board temperature and thermal impedances to make certain that the TLV743P device does not operate continuously above a junction temperature of 125°C.

TLV743P, high-K layout

图 31. Maximum Ambient Temperature vs Device Power Dissipation

8.2 Typical Application

图 32. DC/DC Converter Post Regulation

8.2.1 Design Requirements

表 2. Design Parameters

PARAMETER	DESIGN REQUIREMENT
Input voltage	1.8 V, ±5%
Output voltage	1.5 V, ±1%
Output current	200-mA DC, 300-mA peak
Output voltage transient deviation	< 10%, 1-A/µs load step from 50 mA to 200 mA
Maximum ambient temperature	85°C

8.2.2 Detailed Design Procedure

Input and output capacitors are required to achieve the output voltage transient requirements. Capacitance values of 1 μ F are selected to give the maximum output capacitance in a small, low-cost package.

₹ 7 shows the 1.2-V option dropout voltage. Given that dropout voltages are higher for lower output-voltage options, and given that the 1.2-V option dropout voltage is typically less than 300 mV at 125°C, then the 1.5-V option dropout voltage is typically less than 300 mV at 125°C.

See 🛭 31 to verify that the maximum junction temperature is not exceeded.

8.2.3 Application Curve

图 33. 1.8-V to 1.5-V Regulation at 300 mA

9 Power Supply Recommendations

Connect a low-output impedance power supply directly to the IN pin of the TLV743P device. Inductive impedances between the input supply and the IN pin can create significant voltage excursions at the IN pin during startup or load transient events. If inductive impedances are unavoidable, use an input capacitor.

10 Layout

10.1 Layout Guidelines

- Place input and output capacitors as close as possible to the device.
- Use copper planes for device connections to optimize thermal performance.
- Place thermal vias around the device to distribute heat.

10.2 Layout Examples

 Represents via used for application specific connections

图 34. Layout Example: DBV Package

Represents via used for application-specific connections

(1) Not required.

图 35. X2SON Layout Example

^{*}not required

11 器件和文档支持

11.1 器件支持

11.1.1 开发支持

11.1.1.1 评估模块

我们为您提供了评估模块 (EVM),可以借此来对使用 TLV743P 器件时的电路性能进行初始评估。 TLV73312PEVM-643 评估模块(和相关的用户指南)可在德州仪器 (TI) 网站上的产品文件夹中获取,也可直接从 TI 网上商店购买。

11.1.2 器件命名规则

表 3. 器件命名规则(1)(2)

产品	V _{OUT}
TLV743P xx(x)Pyyyz(3)	xx(x) 为标称输出电压。对于分辨率为 100mV 的输出电压,订货编号中使用两位数字;否则,使用三位数字(例如,28 = 2.8V; 125 = 1.25V)。 P 表示有源输出放电功能。TLV743 系列的所有产品在器件处于禁用状态时都可以对输出进行主动放电。 yyy 为封装标识符。 z 为封装数量。R 表示卷(3000 片),T 表示带(250 片)。 (3) 表示其他卷带方向。3 表示引脚 1 位于第 3 象限中。请参阅 <i>封装材料信息</i> 附录,获取更多信息。

- (1) 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。
- (2) 可提供 1V 至 3.3V 范围内的输出电压(以 50mV 为单位增量)。有关器件的详细信息和供货情况,请联系制造商。

11.2 文档支持

11.2.1 相关文档

《TLV73312PDQN-643 评估模块用户指南》(文献编号: SBVU024)

11.3 接收文档更新通知

要接收文档更新通知,请导航至 Tl.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.4 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

★ ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

PACKAGE OUTLINE

DQN0004A

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
- 4. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.

EXAMPLE BOARD LAYOUT

DQN0004A

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

- This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 6. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

DQN0004A

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

23-Sep-2024 www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLV743105PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1NGT	Samples
TLV74310PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1CCT	Samples
TLV74310PDQNR	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	8U	Samples
TLV74311PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1DAT	Samples
TLV74311PDQNR	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	8W	Samples
TLV74312PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1DBT	Samples
TLV74312PDQNR	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	8X	Samples
TLV74312PDQNR3	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	8X	Samples
TLV74315PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1DCT	Samples
TLV74315PDQNR	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	8Z	Samples
TLV74318PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1D7T	Samples
TLV74318PDQNR	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	9A	Samples
TLV74318PDQNR3	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	9A	Samples
TLV74325PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1DDT	Samples
TLV74325PDQNR	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	9B	Samples
TLV743285PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1DET	Samples
TLV743285PDQNR	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	9C	Samples
TLV74328PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1DFT	Samples
TLV74328PDQNR	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	9D	Samples
TLV74328PDQNR1	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	9D	Samples

www.ti.com 23-Sep-2024

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLV74330PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1DGT	Samples
TLV74330PDQNR	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	9E	Samples
TLV74333PDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1CBT	Samples
TLV74333PDQNR	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	9F	Samples
TLV74333PDQNR3	ACTIVE	X2SON	DQN	4	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	9F	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

www.ti.com 23-Sep-2024

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 25-Sep-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV743105PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV74310PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV74310PDQNR	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
TLV74311PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV74311PDQNR	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
TLV74312PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV74312PDQNR	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
TLV74312PDQNR3	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q3
TLV74315PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV74315PDQNR	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
TLV74318PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV74318PDQNR	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
TLV74318PDQNR3	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q3
TLV74325PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV74325PDQNR	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
TLV743285PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2024

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV743285PDQNR	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
TLV74328PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV74328PDQNR	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
TLV74328PDQNR1	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q1
TLV74330PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV74330PDQNR	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
TLV74333PDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV74333PDQNR	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
TLV74333PDQNR3	X2SON	DQN	4	3000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q3

www.ti.com 25-Sep-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV743105PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV74310PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV74310PDQNR	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74311PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV74311PDQNR	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74312PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV74312PDQNR	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74312PDQNR3	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74315PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV74315PDQNR	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74318PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV74318PDQNR	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74318PDQNR3	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74325PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV74325PDQNR	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV743285PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV743285PDQNR	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74328PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Sep-2024

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV74328PDQNR	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74328PDQNR1	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74330PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV74330PDQNR	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74333PDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV74333PDQNR	X2SON	DQN	4	3000	210.0	185.0	35.0
TLV74333PDQNR3	X2SON	DQN	4	3000	210.0	185.0	35.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4210367/F

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.
- 4. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.
- 5. Shape of exposed side leads may differ.
- 6. Number and location of exposed tie bars may vary.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

- 7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 8. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司