Novo Espaço – Matemática A 11.º ano

Proposta de resolução do teste de avaliação [março - 2023]

1. Na figura está representada, em referencial o.n. Oxy, uma reta r.

Sabe-se que:

- o declive da reta $r \in -2$;
- a reta *r* interseta o eixo *Oy* no ponto *A*;
- a reta r interseta o eixo Ox no ponto B.

Qual é o valor de $\frac{\overline{OA}}{\overline{OB}}$?

(B)
$$\frac{1}{2}$$
 (C)

2

Seja θ a inclinação da reta r.

Sabe-se que $\tan \theta = -2$.

$$A\hat{B}O = \pi - \theta$$
. Então, $\tan(A\hat{B}O) = \tan(\pi - \theta) = -\tan\theta = 2$.

Mas,
$$\tan(A\hat{B}O) = \frac{\overline{OA}}{\overline{OB}}$$
. Conclui-se que $\frac{\overline{OA}}{\overline{OB}} = 2$.

Opção correta: (D)

2. Sejam r e s duas retas tais que:

- a reta r é definida pela equação vetorial $(x, y) = (-\sqrt{3}, 2) + k(3, -2), k \in \mathbb{R}$;
- a reta s tem inclinação, representada por θ , e é perpendicular à reta r.

Calcula o valor exato de $\sin \theta$.

O declive da reta r é igual $-\frac{2}{3}$.

Como a reta s é perpendicular à reta r, conclui-se que o declive de s é $\frac{3}{2}$.

$$\tan \theta = \frac{3}{2} \land \theta \in \left] 0, \frac{\pi}{2} \right[\text{. Sabe-se que } 1 + \tan^2(\theta) = \frac{1}{\cos^2(\theta)}.$$

Então,
$$1 + \frac{9}{4} = \frac{1}{\cos^2(\theta)}$$
. Daqui resulta que $\cos^2(\theta) = \frac{4}{13}$.

$$\sin^2(\theta) = 1 - \frac{4}{13} = \frac{9}{13} \land \theta \in \left]0, \frac{\pi}{2}\right[$$
. Daqui resulta que $\sin \theta = \frac{3}{\sqrt{13}} = \frac{3\sqrt{13}}{13}$.

Resposta:
$$\sin \theta = \frac{3\sqrt{13}}{13}$$

3. Na figura estão representados o círculo trigonométrico e um quadrilátero [*OPBC*], que é simétrico em relação ao eixo *Oy*.

Sabe-se que:

- o ponto *P* desloca-se sobre o arco *AB* da circunferência;
- α é a amplitude, em radianos, do ângulo AOP.

Para $\alpha \in \left]0, \frac{\pi}{2}\right[$, a área do quadrilátero [*OPBC*] é dada pela

expressão:

- (A) $\cos \alpha$
- **(B)** $1-\sin\alpha$
- (C) $\sin \alpha$
- (D) $2\sin\alpha\cos\alpha$

A área do triângulo [*OPB*] é dada por: $\frac{\overline{OB} \times \cos \alpha}{2} = \frac{\cos \alpha}{2}$

Área do quadrilátero [*OPBC*] é igual a: $2 \times \frac{\cos \alpha}{2}$, ou seja, $\cos \alpha$.

Opção correta: (A) $\cos \alpha$

Sabe-se que:

- a base do cone está contida no plano definido pela equação 4x y 2z + 4 = 0;
- o ponto *A* pertence à circunferência que limita a base do cone e pertence ao eixo *Oz*;
- o vértice V tem coordenadas (-8,4,5).

4.1 Determina \overline{AV} .

O ponto A coincide com a interseção do plano da base do cone com o eixo Oz. As coordenadas do ponto A são do tipo (0,0,z).

O ponto A pertence ao plano 4x - y - 2z + 4 = 0.

 $0-0-2z+4=0 \Leftrightarrow z=2$. Assim, conclui-se que o ponto A tem coordenadas (0,0,2).

$$\overline{AV} = \sqrt{(-8-0)^2 + (4-0)^2 + (5-2)^2} = \sqrt{89}$$

Resposta: $\overline{AV} = \sqrt{89}$

4.2 Seja *C* o centro da base do cone. Determina as coordenadas do ponto *C*.

Uma equação vetorial da reta que passa em V e é perpendicular à base do cone é:

$$(x, y, z) = (-8, 4, 5) + k(4, -1, -2), k \in \mathbb{R}$$

O ponto C pertence à reta, então as coordenadas de C são do tipo:

$$(-8+4k, 4-k, 5-2k), k \in \mathbb{R}$$

Mas, o ponto C também pertence ao plano 4x - y - 2z + 4 = 0 que contém a base do cone.

Então:

$$4(-8+4k)-(4-k)-2(5-2k)+4=0 \Leftrightarrow$$

$$\Leftrightarrow 4(-8+4k)-(4-k)-2(5-2k)+4=0 \Leftrightarrow \cdots \Leftrightarrow k=2$$

Sendo $C(-8+4k, 4-k, 5-2k) \land k=2$.

Assim, C(0,2,1).

Resposta: As coordenadas do ponto C são (0,2,1).

5. Seja (v_n) a sucessão definida por:

$$\begin{cases} 7n-1 & \text{se } n \le 8 \\ \frac{5}{n} & \text{se } n > 8 \end{cases}$$
, para todo o número *n* inteiro positivo

Indica a firmação verdadeira

- (A) A sucessão (v_n) é monótona.
- **(B)** A sucessão (v_n) é limitada.
- (C) Todos os termos da sucessão (v_n) são maiores do que 1.
- **(D)** 62 é termo da sucessão (v_n) .

Se $n \le 8$, os termos formam uma sequência crescente, tendo-se: $6 \le v_n \le 55$

Se
$$n > 8$$
, $v_n = \frac{5}{n}$, sucessão decrescente, tendo-se: $0 < v_n \le \frac{5}{9}$

Para qualquer número inteiro positivo n, tem-se: $0 < v_n \le 55$. Conclui-se que (v_n) é limitada.

Opção correta: (B) A sucessão (v_n) é limitada.

6. Considera a sucessão (u_n) definida por recorrência, por

$$\begin{cases} u_1 = 5 \\ u_{n+1} = 2u_n - 3 \end{cases}$$
, para todo o número *n* inteiro positivo.

Sabendo que $u_{15} = 32771$, qual é o valor de $u_{16} - u_{14}$?

$$u_{15} = 2u_{14} - 3 \Leftrightarrow 32\,771 = 2u_{14} - 3 \Leftrightarrow u_{14} = 16\,387$$

$$u_{16} = 2u_{15} - 3 \Leftrightarrow u_{16} = 2 \times 32771 - 3 \Leftrightarrow u_{16} = 65539$$

$$u_{16} - u_{14} = 65539 - 16387 = 49152$$

Opção correta: (B) 49 152

7. Considera a sucessão (w_n) definida por:

$$\begin{cases} w_1 = -3 \\ w_{n+1} = w_n + \frac{1}{2} \end{cases}$$
, para todo o número *n* inteiro positivo.

Determina o número de termos da sucessão (w_n) que são maiores do que 12 e não superiores a 25.

A sucessão (w_n) é uma progressão aritmética em que o primeiro termo é -3 e a razão é $\frac{1}{2}$.

Termo geral:

$$w_n = w_1 + (n-1)r = -3 + (n-1) \times \frac{1}{2} = \frac{n-7}{2}$$

$$w_n > 12 \land w_n \le 25 \Leftrightarrow \frac{n-7}{2} > 12 \land \frac{n-7}{2} \le 25 \Leftrightarrow n > 31 \land n \le 57$$

O primeiro termo a satisfazer a condição é o de ordem 32 e o último é o de ordem 57.

O número de termos que satisfaz a condição é dado por: 57-32+1, ou seja, 26.

Resposta: Há 26 termos maiores do que 12 e não superiores a 25.

8. O Bernardo tem disponíveis 960 peças. Com essas peças vai construir uma sequência de "torres". As quatro primeiras "torres" da sequência estão representadas a seguir, mantendo a mesma lei de formação para as restantes "torres".

Nestas condições, determina o número máximo de "torres" que o Bernardo pode construir.

Seja (t_n) a sucessão que à figura de ordem n associa o número de peças de lego dessa figura.

A primeira figura tem 4 peças e o número de peças de cada uma das restantes é igual ao número de peças da figura anterior acrescida de 3 peças.

Assim:
$$\begin{cases} t_1 = 4 \\ t_{n+1} = t_n + 3 \end{cases}$$

Termo geral: $t_n = 4 + (n-1) \times 3 = 3n + 1$

A soma dos *n* primeiros termos da sucessão é:

$$S_n = \frac{t_1 + t_n}{2} \times n \Leftrightarrow S_n = \frac{4 + 3n + 1}{2} \times n \Leftrightarrow S_n = \frac{3n^2 + 5n}{2}$$

Qual é o valor de *n* para gastar todas as peças disponíveis?

$$S_n = 960 \Leftrightarrow \frac{3n^2 + 5n}{2} = 960 \Leftrightarrow 3n^2 + 5n - 1920 = 0 \Leftrightarrow$$

$$\Leftrightarrow n = \frac{-5 \pm \sqrt{25 + 23040}}{6} \Leftrightarrow n = \frac{-5 \pm \sqrt{23065}}{6}$$

Para soluções da equação: $n \approx 24,48$ ou $n \approx -26,15$.

Analisando estes valores, no contexto apresentado, conclui-se que podem ser construídas no máximo 24 "torres".

Resposta: O Bernardo, no máximo, pode construir 24 "torres".

Nota/sugestão: Explorar a resolução, recorrendo à calculadora para resolver graficamente a

inequação
$$f(x) \le 960$$
, sendo $f(x) = \frac{3x^2 + 5x}{2}$.

5

9. Seja (u_n) uma sucessão de termo geral $u_n = \frac{3^{2n}}{2^n}$.

Mostra que (u_n) é uma progressão geométrica em que a razão é igual ao primeiro termo.

Repara que: $u_n = \frac{3^{2n}}{2^n} = \frac{(3^2)^n}{2^n} = \frac{9^n}{2^n} = (\frac{9}{2})^n$. Daqui resulta que $u_1 = \frac{9}{2}$.

 $\frac{u_{n+1}}{u_n} = \frac{\left(\frac{9}{2}\right)^{n+1}}{\left(\frac{9}{2}\right)^n} = \frac{9}{2}.$ Conclui-se que (u_n) é uma progressão geométrica de razão $\frac{9}{2}$.

Resposta: (u_n) é uma progressão geométrica em que o primeiro é igual à razão, neste caso, $\frac{9}{2}$.

10. Considera as sucessões (u_n) e (v_n) tais que:

$$u_n = \frac{1 - n^2}{n + 1}$$

$$w_n = \begin{cases} 5n & \text{se } n < 100\\ \frac{3}{n+1} & \text{se } n \ge 100 \end{cases}$$

10.1 Mostra que $u_n = 1 - n$. O que concluis quanto $\lim (u_n)$?

Repara que $u_n = \frac{1-n^2}{n+1} = \frac{(1-n)(1+n)}{n+1} = 1-n$

$$\lim (u_n) = \lim (1-n) = -\infty$$

Resposta: $u_n = 1 - n$ e $\lim_{n \to \infty} (u_n) = -\infty$

10.2 Em relação à sucessão (v_n) , indica o maior termo e o valor de $\lim (v_n)$.

Para os termos em que n < 100 são crescentes, o maior é $u_{99} = 5 \times 99 = 495$.

6

Para os termos em que $n \ge 100$ são decrescentes, o maior é $u_{100} = \frac{3}{101}$.

Então, conclui-se que o maior termo da sucessão é $u_{99} = 495$.

$$\lim (v_n) = \lim \frac{3}{n+1} = 0$$

Resposta: O maior termo é 495 e $\lim (v_n) = 0$.