Al Hub Easy Builder 사용

사용 의의

• 이지 빌더의 데이터 셋을 이용해 Epoch, layer 수들을 변경해 가며 정확도가 높은 학습 모델을 만든다.

• 그 후 모델을 추출하여 다른 프로젝트에 사용한다.

1. 데이터 셋 선택

- 이지 빌더에서 제공되는 데이터 셋은 아래와 같다.
- 한국형 사물이미지는 아예 다른 이미지들을 학습시키는 것에
- 위해 물품은 가방 을 공항 검색대에서 스캔한 것으로, 전체 이미지 중 사이즈가 작은 물품들을 학습 시 키는 것에
- 농업(토마토)는 같은 대상의 상태에 대해 학습 시키는 것에 적합한 것으로 보인다.

한국형 사물이미지

국내 특성에 맞는 궁궐, 가옥, 탑, 무덤, 사찰 이미지

위해물품 이미지 국내 공항 항만에 사용중인

국내 공항 항만에 사용중인 엑스레이 스캐너 3종 장비를 이용한 이미지

농업 (토마토)

토마토 11종, 촬영 가이드에 따라 온습도, 촬영각도, 장소 등의 메타 정보를 포함하여 데이터 셋 구축

2. 이미지 라벨링

- 테스트 셋들의 이미지 라벨들을 변경해 줄 수 있습니다.
- 이미 주어진 데이터 셋에는 올 바른 라벨들이 붙어있으니 이 단계는 스킵하겠습니다.

• 인풋으로 사용할 이미지를 전처리합니다.

비정형 데이터 학습

축소, 확대는 가시적 확인 불가

사진 크기는 동일해 보이나, 해상도 차이가 있음 이제 전처리를 완료했다면 레이어를 편집 해야함.

데이터 탐색 레이어 생성

batch size: 한번에 데이터를 몇 개씩 넘겨주는가?

epochs : 몇 회 반복할 것인가?

loss(손실함수): mae / mse / mape 가능

MAE와 MSE의 차이는 무엇인가?

 $MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$ ⇒ 크기 의존적 에러 발생 가능성 존재

MAE와 MSE의 공통점은 무엇인가?

- 실제값과 측정값을 빼주는 것

- 평균을 내주는 것 (M - mean)

$$MAE = rac{1}{n} \sum_{i=1}^n |x_i - x|$$

MAPE는 크기 의존적 에러의 단점을 커버하기 위한 모델입니다. MAPE의 공식은 아래와 같습니다.

$$\mathrm{M} = rac{100}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|,$$

At 는 실제 값이고, Ft 는 예측 값입니다.

optimizer(최적함수): SGD / RMSProp / Adagrad / Adadelta / Adam / Adamax / Nadam 가능

<Optimizer의 종류>

출처: https://www.slideshare.net/yongho/ss-79607172

척도(Metrics): Accuracy / BinaryAccuracy / CategoricalAccuracy 가 있다.

Accuracy : 예측 값이 실제 라벨과 얼마나 맞는가 → 전체 오차율이 낮아지는 방향으로 (but, 정답일 확률이 올라가는 것을 의미하지 않음

Binary Accuracy: binary label과 비교 [0, 1, 1, 0, 1] 이런 것이 바이너리 라벨

Categorical Accuracy: One-Hot 라벨과 비교 (원 핫은 실제 값을 밑에 t 처럼 정답만 1, 나머지는 0으로 한 것)

추가적으로 공부

교차 엔트로피 오차로 계산 → 정답 제외 나머지를 제거, 정답에 가깝도록 만듦. 이렇게 설정해 두면, [2]를 제외한 나머지 예측값들은 * 0 되어서 신경 X. 그저 [2]의 정답이 높아지는 쪽으로만

교차엔트로피 오차 CEE (Cross Entropy Error)

$$E = -\sum t_i \cdot log(y_i)$$

t = [0, 0, 1, 0, 0, 0, 0, 0, 0]

보통 { Conv2D + Maxpolling2D } X a + Flatten X b + Dense X c 로 구성

Maxpooling

Flatten

Dense Layer

1	1	1	0	0
0	1	1	1	0
0	0	1,	1 _{×0}	1,
0	0	1,0	1,	0,×0
0	1	1,	0,×0	0 _{×1}

Dot 연산

```
1
0
4
2
1
0
2
```

5. Test1

평가 데이터 분할 비율

5. Test1 결과

	Epochs	Status	Loss	Acc	Val loss	Val acc
Þ	1	실행완료	4.97	0.17	1.23	0.15
Þ	2	실행완료	1.36	0.23	1.4	0.16
Þ	3	실행완료	1.21	0.22	1.19	0.19
Þ	4	실행완료	1.01	0.34	0.93	0.44
Þ	5	실행완료	0.9	0.43	0.97	0.48

5. Test2 - 추후 비교는 Test2를 기준으로 하겠습니다.

평가 데이터 분할 비율

5. Test2 결과

	Epochs	Status	Loss	Acc	Val loss	Val acc
→	5	실행완료	0.9	0.38	1.03	0.4
→	6	실행완료	0.93	0.43	0.86	0.53
→	7	실행완료	0.74	0.54	0.74	0.63
→	8	실행완료	0.75	0.55	0.78	0.55
-	9	실행완료	0.79	0.52	0.79	0.49
-	10	실행완료	0.81	0.52	0.74	0.58

5. Test1 - Test2 Epoch 를 조금 늘릴 경우

정확도가 조금 더 높아졌음 을 알 수 있습니다.

	Epochs	Status	Loss	Acc	Val loss	Val acc
→	5	실행완료	0.9	0.38	1.03	0.4
→	6	실행완료	0.93	0.43	0.86	0.53
→	7	실행완료	0.74	0.54	0.74	0.63
→	8	실행완료	0.75	0.55	0.78	0.55
+	9	실행완료	0.79	0.52	0.79	0.49
•	10	실행완료	0.81	0.52	0.74	0.58

5. Test2-1. Epoch를 100으로 확 늘릴경우

5. Test2-1 결과

	Epochs	Status	Loss	Acc	Val loss	Val acc
>	93	실행완료	0.82	0.51	0.8	0.49
>	94	실행완료	0.66	0.6	0.74	0.55
>	95	실행완료	0.74	0.56	0.88	0.47
>	96	실행완료	0.78	0.5	0.81	0.52
>	97	실행완료	0.78	0.54	0.79	0.56
			1 2	3 4	5 6 7	8 9 10

전반적으로 정확도가 0.5~0.6사이로 조금 높아졌지만, 크게 차이가 없습니다

5. Test3 제일 처음 conv2D의 filter수를 8로

5. Test2-Test3 비교 (epoch는 10으로 동일)

	Epochs	Status	Loss	Acc	Val loss	Val acc
•	5	실행완료	0.9	0.38	1.03	0.4
•	6	실행완료	0.93	0.43	0.86	0.53
•	7	실행완료	0.74	0.54	0.74	0.63
•	8	실행완료	0.75	0.55	0.78	0.55
•	9	실행완료	0.79	0.52	0.79	0.49
•	10	실행완료	0.81	0.52	0.74	0.58

좌 - test2 - filter 32개 우 - test3 - filter 8개 정확도가 조금 낮아졌습니다.

	Epochs	Status	Loss	Acc	Val loss	Val acc
>	5	실행완료	0.88	0.51	0.96	0.48
>	6	실행완료	0.93	0.44	0.86	0.51
>	7	실행완료	0.92	0.44	1	0.37
>	8	실행완료	0.95	0.41	1.04	0.39
>	9	실행완료	0.99	0.39	1.01	0.47
•	10	실행완료	0.91	0.44	0.8	0.41

5. Test4 batch size를 16으로 줄임

5. Test2-Test4 비교

	Epochs	Status	Loss	Acc	Val loss	Val acc
→	5	실행완료	0.9	0.38	1.03	0.4
→	6	실행완료	0.93	0.43	0.86	0.53
→	7	실행완료	0.74	0.54	0.74	0.63
→	8	실행완료	0.75	0.55	0.78	0.55
→	9	실행완료	0.79	0.52	0.79	0.49
•	10	실행완료	0.81	0.52	0.74	0.58

별 차이 없음

	Epochs	Status	Loss	Acc	Val loss	Val acc
•	5	실행완료	1.03	0.32	0.99	0.17
>	6	실행완료	0.88	0.41	0.88	0.47
>	7	실행완료	0.8	0.53	0.83	0.5
>	8	실행완료	0.84	0.48	0.81	0.53
>	9	실행완료	0.78	0.52	0.86	0.47
•	10	실행완료	0.8	0.49	0.85	0.46

5. Test 5 Dense Layer 2개를 추가

평가 데이터 분할 비율

5. Test2-Test5 비교

	Epochs	Status	Loss	Acc	Val loss	Val acc
•	5	실행완료	0.9	0.38	1.03	0.4
→	6	실행완료	0.93	0.43	0.86	0.53
→	7	실행완료	0.74	0.54	0.74	0.63
→	8	실행완료	0.75	0.55	0.78	0.55
→	9	실행완료	0.79	0.52	0.79	0.49
•	10	실행완료	0.81	0.52	0.74	0.58

	Epochs	Status	Loss	Acc	Val loss	Val acc
•	5	실행완료	0.8	0.51	1.09	0.3
+	6	실행완료	0.81	0.5	0.88	0.3
>	7	실행완료	0.69	0.56	0.79	0.44
+	8	실행완료	0.88	0.48	0.86	0.52
>	9	실행완료	0.88	0.49	0.61	0.59
•	10	실행완료	0.78	0.53	0.78	0.49

5. Test6 평가 데이터 2%

평가 데이터 분할 비율

5. Test2 - Test6 결과

	Epochs	Status	Loss	Acc	Val loss	Val acc
>	5	실행완료	0.9	0.38	1.03	0.4
•	6	실행완료	0.93	0.43	0.86	0.53
+	7	실행완료	0.74	0.54	0.74	0.63
-	8	실행완료	0.75	0.55	0.78	0.55
+	9	실행완료	0.79	0.52	0.79	0.49
•	10	실행완료	0.81	0.52	0.74	0.58

	Epochs	Status	Loss	Acc	Val loss	Val acc
•	5	실행완료	0.81	0.47	0.9	0.42
•	6	실행완료	0.92	0.45	0.98	0.31
•	7	실행완료	0.88	0.41	0.78	0.52
→	8	실행완료	0.77	0.5	0.89	0.44
•	9	실행완료	0.83	0.44	0.82	0.5
•	10	실행완료	0.88	0.48	0.82	0.44

5. Test7 평가 데이터 98%

평가 데이터 분할 비율

5. Test2 - Test7 결과

	Epochs	Status	Loss	Acc	Val loss	Val acc
•	5	실행완료	0.9	0.38	1.03	0.4
•	6	실행완료	0.93	0.43	0.86	0.53
•	7	실행완료	0.74	0.54	0.74	0.63
•	8	실행완료	0.75	0.55	0.78	0.55
→	9	실행완료	0.79	0.52	0.79	0.49
•	10	실행완료	0.81	0.52	0.74	0.58

	Epochs	Status	Loss	Acc	Val loss	Val acc
>	5	실행완료	0.99	0.34	1	0.38
>	6	실행완료	0.91	0.44	0.82	0.54
>	7	실행완료	0.75	0.57	0.67	0.59
→	8	실행완료	0.91	0.41	1.06	0.27
→	9	실행완료	0.79	0.51	0.8	0.54
•	10	실행완료	0.88	0.43	0.89	0.49

5. Test8 – Sigmoid 사용

- Conv2D의 Activation 함수를 sigmoid로 변경,
- 평가 데이터는 20%로 동일

5. Test2 - Test8 결과

	Epochs	Status	Loss	Acc	Val loss	Val acc
→	5	실행완료	0.9	0.38	1.03	0.4
→	6	실행완료	0.93	0.43	0.86	0.53
→	7	실행완료	0.74	0.54	0.74	0.63
→	8	실행완료	0.75	0.55	0.78	0.55
→	9	실행완료	0.79	0.52	0.79	0.49
•	10	실행완료	0.81	0.52	0.74	0.58

• 정확도가 더 낮게 나온다.

	Epochs	Status	Loss	Acc	Val loss	Val acc
•	5	실행완료	1.15	0.2	1.15	0.23
>	6	실행완료	1.05	0.31	1	0.38
>	7	실행완료	1.05	0.36	1.01	0.37
>	8	실행완료	0.96	0.36	0.95	0.37
>	9	실행완료	1.03	0.32	1.07	0.09
•	10	실행완료	1.06	0.22	0.95	0.34

5. Test9 – loss : mape 사용

평가 데이터 분할 비율

5. Test2 - Test9 결과

	Epochs	Status	Loss	Acc	Val loss	Val acc
•	5	실행완료	0.9	0.38	1.03	0.4
→	6	실행완료	0.93	0.43	0.86	0.53
→	7	실행완료	0.74	0.54	0.74	0.63
>	8	실행완료	0.75	0.55	0.78	0.55
→	9	실행완료	0.79	0.52	0.79	0.49
•	10	실행완료	0.81	0.52	0.74	0.58

• 정확도가 더 낮게 나온다.

	Epochs	Status	Loss	Acc	Val loss	Val acc
+	5	실행완료	0.84	0.4	0.93	0.43
-	6	실행완료	0.91	0.43	0.8	0.51
-	7	실행완료	0.86	0.44	0.69	0.6
+	8	실행완료	0.88	0.36	0.77	0.49
+	9	실행완료	0.77	0.54	0.81	0.48
,	10	실행완료	0.91	0.38	0.88	0.5