Loss Reserving Analytics

Micro-level IBNR reserving

Katrien Antonio LRisk - KU Leuven and ASE - University of Amsterdam

April, 2019

Development of a single claim

Aggregated approach

We aggregate the data from the time line into a run-off triangle or claims development triangle:

Pros and cons of aggregated approach

- Advantages of aggregating, pros of macro-level:
 - useful for accounting figures (audit)
 - established over years
 - low data requirements and computational power
 - · simple and straightforward
 - . . .

Inspired by Mario Wüthrich, 2017, New developments in claims reserving, 6th St. Petersburg Spring School.

Pros and cons of aggregated approach

- Disadvantages of aggregating, pros of micro-level:
 - a lot of (detailed) data and insights gets lost
 - crude, brute force approach
 - individual claims (types) prediction is not available (viz. pricing of products)
 - case management (and early warning) is not possible
 - . . .

Inspired by Mario Wüthrich, 2017, New developments in claims reserving, 6th St. Petersburg Spring School.

Research focus

IBNR claim counts

Research focus

IBNR claim counts

Research focus

IBNR claim counts

The insurance company is **not** aware (yet) of claims related to past exposures that are not (yet) reported!

Research questions

- Research questions with focus on IBNR?
 - How many claims occurred but are not yet reported, because reporting delay is subject to right truncation?
 - When will these IBNR claims be reported?
 - How to specify claim occurrences and reporting delay at daily level (=natural time unit)?
 - How to incorporate covariate information?
- Pioneering work by Ragnar Norberg (1993, 1999), (basic, first) implementation in Antonio & Plat (2014).

A closer look at the micro-level data!

Structure of the data

- Large European dataset of liability claims (from private individuals).
- Two essential variables:
 - occurrence date
 - reporting date
 - + exposure, if available.
- ▶ Observation window: July 1, 1996 to August 31, 2009.

Claim occurrence process

Reporting process

Reporting delay

Declining pattern in reporting delay + intra-week pattern, depending on the occurrence day of the week.

Case study Holidays

average number of reports

Total IBNR counts

The statistical model

- Two (in progress) contributions:
 - Verbelen, R., Antonio, K., Claeskens, G & Crèvecoeur, J. 2018, submitted.
 - joint estimation of occurrence process and reporting delay distribution
 - regression approach.
 - 2. Crèvecoeur, J., Antonio., K. & Verbelen, R. 2019, EJOR.
 - incorporate calendar day effects in reporting delay distribution
 cfr. national holidays and during weekend, reporting at specific delays (e.g. 14 days, 1 year)
 - · regression approach.

Notations

- \triangleright N_t : the (total) number of claims that occurred on day t.
- \triangleright $N_{t,s}$: the number of claims from day t that are reported on day s.
- ► Each claim gets reported eventually, thus

$$N_t = \sum_{s=t}^{\infty} N_{t,s}.$$

K. Antonio, KU Leuven & UvA

Notations

A daily run-off triangle with reported claims

occurrence	reporting delay (in days)					
day	0	•••	τ – t	•••	τ – 1	
1	N ₁₁		$N_{1,1+ au-1}$	t	$\mathcal{N}_{1, au}$	
:						
t	N_{tt}		$N_{t, au}$		_	
:				IBNR		
au	$N_{ au au}$					

The statistical model

Assumptions

(A1) The daily total claim counts N_t for $t = 1, ..., \tau$ are independently Poisson distributed with intensity λ_t

$$N_t \sim POI(\lambda_t)$$
.

(A2) Conditional on N_t , the claim counts $N_{t,s}$ for s = t, t + 1, ... are multinomially distributed with probabilities p_t .

Combining (A1) and (A2), the $N_{t,s}$ are independent and

$$N_{t,s} \sim POI(\lambda_t \cdot p_{t,s}).$$

The statistical model

The likelihood

We observe

$$\mathbf{N}^R = \{ N_{t,s} \mid t \leq s \leq \tau \}$$

where $t \le \tau$ indicates claim occurrence and $t \le s \le \tau$ reporting of the claim.

Log-likelihood of observed data:

$$\ell(\boldsymbol{\lambda}, \boldsymbol{p}; \boldsymbol{N}^R) = \sum_{t=1}^{\tau} \sum_{s=t}^{\tau} \left(\underbrace{-\lambda_t \cdot p_{t,s}}_{(\star)} + \log(\lambda_t) \cdot N_{t,s} + N_{t,s} \cdot \log(p_{t,s}) - \log(N_{t,s}!) \right)$$

'difficult' to optimize (due to ★).

Expectation maximization strategy

The complete data likelihood

- Key idea: likelihood is difficult to optimize, because of unobserved data.
- Assume there is no unobserved data:

$$\mathbf{N} = \{ N_{t,s} \mid t \leq \tau, t \leq s \leq \infty \}.$$

Then the likelihood of the complete data becomes:

$$\ell(\boldsymbol{\lambda}, \boldsymbol{p}; \boldsymbol{N}) = \sum_{t=1}^{\tau} \left(-\lambda_t \cdot \sum_{s=t}^{\infty} \underbrace{p_{t,s}} + \log(\lambda_t) \cdot \sum_{s=t}^{\infty} N_{t,s} + \sum_{s=t}^{\infty} N_{t,s} \cdot \log(p_{t,s}) - \sum_{s=t}^{\infty} \log(N_{t,s}!) \right).$$

which splits into occurrence process and reporting delay likelihoods!

K. Antonio, KU Leuven & UvA EM strategy 23 / 46

Expectation maximization strategy

Key idea

▶ Iteratively "guess" the complete loglikelihood (E-step) and maximize this loglikelihood (M-step).

▶ We propose a Poisson regression model:

$$N_t \sim POI(\lambda_t)$$

 $\lambda_t = e_t \cdot \exp(x_t'\alpha),$

where e_t is the exposure on day t.

A model for reporting delay

Probability of reporting after d days:

$$p_{t,d} = \begin{cases} p_{t,0}^W \cdot p_{t,d}^1 & \text{for } d < 7 \\ p_{t,\lfloor \frac{d}{2} \rfloor}^W \cdot p_{t,d}^2 & \text{otherwise} \end{cases}.$$

- ► Here:
 - p_{tw}^{W} probability of reporting in week w when the claim has occurred at t
 - p'_{t,d} probability of having a reporting delay d, given that the claim is reported in first week (i = 1) or later (i = 2), and has occurred at time t.

K. Antonio, KU Leuven & UvA EM strategy

A model for reporting delay

Probability of reporting after d days:

$$p_{t,d} = \begin{cases} p_{t,0}^W \cdot p_{t,d}^1 & \text{for } d < 7 \\ p_{t,\lfloor \frac{d}{2} \rfloor}^W \cdot p_{t,d}^2 & \text{otherwise} \end{cases}.$$

- ► Here:
 - $p_{t,w}^W$ probability of reporting in week w when the claim has occurred at t
 - pⁱ_{t,d} probability of having a reporting delay d,
 given that the claim is reported in first week (i = 1) or later (i = 2), and has occurred at time t.

K. Antonio, KU Leuven & UvA EM strategy 27 / 46

A model for reporting delay

▶ Use a Negative Binomial distribution for $(p_{t,w}^W)_{w\geq 0}$:

$$p_{t,w}^W = \frac{\Gamma(\phi+w)}{w!\Gamma(\phi)} \cdot \frac{\phi^\phi \mu_t^w}{(\phi+\mu_t)^{\phi+w}},$$

with $\mu_t = \exp(\mathbf{z}_t' \boldsymbol{\beta})$ incorporating covariate information.

Covariate effects for the occurrence model (α)

Covariate effects for reporting delay (β)

Covariate effects for reporting delay

Reporting day probabilities in first week: (dow of occurrence date)

	wday						
dow	wday1	wday2	wday3	wday4	wday5	Saturday	Sunday
Monday	0.2600	0.4006	0.1638	0.0957	0.0744	0.0055	0.0000
Tuesday	0.2722	0.4131	0.1486	0.0900	0.0689	0.0072	0.0000
Wednesday	0.2699	0.3802	0.1739	0.0972	0.0700	0.0088	0.0000
Thursday	0.2639	0.4106	0.1464	0.0925	0.0695	0.0170	0.0000
Friday	0.2985	0.3003	0.1527	0.1006	0.0712	0.0767	0.0000
Saturday	0.4575	0.2045	0.1284	0.0843	0.0722	0.0531	0.0000
Sunday	0.4778	0.2232	0.1375	0.0890	0.0673	0.0051	0.0001

Reporting day probabilities in later weeks:

wday1	wday2	wday3	wday4	wday5	Saturday	Sunday
0.2886	0.2117	0.1829	0.1542	0.1429	0.0196	0.0000

Predictions of the total IBNR claim counts for varying evaluation dates τ in between September 1, 2003, and August 31, 2004. Prediction intervals are constructed with 95% confidence level. The actual total IBNR claim counts are derived based on the full data set until August 2009.

Time change strategy

Non parametric occurrence process

- Estimate the occurrence process non-parametrically.
- Likelihood is maximal when

$$\lambda_t = \frac{\sum_{s=t}^{\tau} N_{t,s}}{\sum_{s=t}^{\tau} P_{t,s}} = \frac{N_t^R(\tau)}{p_t^R(\tau)}.$$

• Replacing λ_t

$$\ell(p; \mathbf{N}^R) = \sum_{t=1}^T \sum_{s=t}^T N_{t,s} \cdot \log(p_{t,s}) - \sum_{t=1}^T N_t^R(\tau) \cdot \log(p_t^R(\tau)) + \text{constants.}$$

Time change strategy

The idea pictured!

$$\begin{array}{lcl} p_{t,s} & = & \int_{s-t}^{s-t+1} f_{U_t}(u) du \\ & = & F_{U_t}(s-t+1) - F_{U_t}(s-t). \end{array}$$

Time change strategy

Structuring the reporting exposures

- Use a standard distribution for \tilde{U} .
- ▶ Explain the daily reporting exposures as a function of covariates:

$$\alpha_{t,s} = \exp(\mathbf{x}'_{t,s} \cdot \boldsymbol{\gamma}).$$

▶ Joint estimation of distribution \tilde{U} and regression parameters to structure $\alpha_{t,s}$.

Simulation study

Simulation study

Performance indicator

$$PE = 100 \cdot \frac{N^{IBNR} - \widehat{N^{IBNR}}}{N^{IBNR}}$$

Results - first evaluation

How many IBNR claims (on August 31, 2004) will be reported by August 31, 2009?

· Observed: 2049, claims

• Granular: 2012.7 claims

· Chain ladder: 2043.2 claims

Results - second evaluation (only granular)

When are the claims that are IBNR (on August 31, 2004) reported?

Results - third evaluation

Results - third evaluation

What else is there?

Recent developments

- ► Capture overdispersion and serial dependency in the occurrence process with a Cox process:
 - Avanzi, Wong & Yang (2016, IME) with a Shot Noise Cox Process.
 - Badescu, Lin & Tang (2016, IME) with a Hidden Markov Model.
- ► Focus on inhomogeneous marked Poisson process and reporting delay in continuous time, Verrall & Wüthrich (2016, Risks).