Técnicas de Desenho de Algoritmos

Ana Paula Tomás

Desenho e Análise de Algoritmos

Novembro 2019

Técnicas de desenho de algoritmos

- Pesquisa exaustiva (exhaustive search)
- Divisão-e-conquista (*Divide-and-conquer*)
- Estratégias ávidas, gananciosas, gulosas (greedy)
- Programação Dinâmica (dynamic programmimng)
- ...

Programação Dinâmica (DP)

- Obtém a solução à custa de soluções de subproblemas (ou de problemas relacionados).
- A construção é muitas vezes realizada por fases (como nos algoritmos de Floyd-Warshall, Bellman-Ford, Dijkstra, Prim).
- Cada subproblema só é resolvido uma vez e a sua solução é memorizada para utilização futura, se necessária.
- DP torna-se particularmente **eficiente** quando a partilha de subproblemas entre os subproblemas é significativa (não se reduz a "divide-and-conquer").
- Em problemas de otimização: utilizado quando as soluções ótimas têm subestrutura ótima (por exemplo, caminho mínimo de s para t num grafo), mas não só. Habitualmente, começamos por definir uma recorrência para caraterizar o valor ótimo e uma estratégia ótima em função dos valores e das estratégias para os subproblemas.

Algoritmo de Floyd-Warshall - aplicação de DP

Problema: Distâncias mínimas para todos os pares de nós

Dado um grafo G = (V, E, d), com d(u, v) > 0, para todo $(u, v) \in E$, e |V| = n, determinar o comprimento do caminho mínimo de s para t, para **todos os pares** $(s, t) \in V \times V$, $s \neq t$.

O algoritmo de Floyd-Warshall resolve o problema em $\Theta(n^3)$

Supõe-se que os nós do grafo estão numerados de 1 a n

<u>Inicialmente</u>: $D_{ii}=0$; $D_{ij}=d(i,j)$, se $i\neq j$ e $(i,j)\in E$; se não, $D_{ij}=\infty$.

```
AlgoritmoFloyd-Warshall(D, n)
```

```
Para k \leftarrow 1 até n fazer
Para i \leftarrow 1 até n fazer
Para j \leftarrow 1 até n fazer
Se D[i,j] > D[i,k] + D[k,
```

Algoritmo de Floyd-Warshall - aplicação de DP

Problema: Distâncias mínimas para todos os pares de nós

Dado um grafo G = (V, E, d), com d(u, v) > 0, para todo $(u, v) \in E$, e |V| = n, determinar o comprimento do caminho mínimo de s para t, para **todos os pares** $(s, t) \in V \times V$, $s \neq t$.

O algoritmo de Floyd-Warshall resolve o problema em $\Theta(n^3)$.

Supõe-se que os nós do grafo estão numerados de 1 a n

Inicialmente:
$$D_{ii} = 0$$
; $D_{ij} = d(i,j)$, se $i \neq j$ e $(i,j) \in E$; se não, $D_{ij} = \infty$.

ALGORITMOFLOYD-WARSHALL(D, n)

```
Para k \leftarrow 1 até n fazer

Para i \leftarrow 1 até n fazer

Para j \leftarrow 1 até n fazer

Para j \leftarrow 1 até n fazer

Se D[i,j] > D[i,k] + D[k,j] então D[i,j] \leftarrow D[i,k] + D[k,j];
```

Seja G = (V, E, d) um grafo dirigido finito, com $d(e) \in \mathbb{R}^+$, para todo $e \in E$. Suponhamos que os nós estão **numerados de** 1 **a** n = |V|

Seja $D_{ij}^{(k)}$ a distância mínima de i para j em G se os percursos só puderem ter os nós $1, 2, \ldots, k$ como nós intermédios, com $k \ge 0$, fixo.

$$D_{ii}^{(0)} = \begin{cases} d(i,j), & \text{se } i \neq j \land (i,j) \in E \\ \infty & \text{se } i \neq j \land (i,j) \notin E \end{cases}$$

- $D_{ij}^{(0)} = \begin{cases} \infty & \text{se } i \neq j \land (i,j) \notin E \\ 0 & \text{se } i = j \end{cases}$
- O algoritmo de Floyd-Warshall baseia-se nessa recorrência e no facto de $D_{ij}^{(k+1)} \leq D_{ij}^{(k)}$, o que permite dispensar a construção de matrizes auxiliares.
- A matriz das distâncias mínimas é $D_{ij}^{(n)}$, sendo n = |V|. Notar que, nesse caso, qualquer nó de V pode ser nó intermédio no caminho mínimo

Seja G = (V, E, d) um grafo dirigido finito, com $d(e) \in \mathbb{R}^+$, para todo $e \in E$. Suponhamos que os nós estão **numerados de** 1 **a** n = |V|

Seja $D_{ij}^{(k)}$ a distância mínima de i para j em G se os percursos só puderem ter os nós $1,2,\ldots,k$ como nós intermédios, com $k\geq 0$, fixo.

$$D_{ij}^{(k)} = \min(D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)}), \text{ se } k \ge 1$$

$$D_{ij}^{(0)} = \begin{cases} d(i,j), & \text{se } i \neq j \land (i,j) \in E \\ \infty & \text{se } i \neq j \land (i,j) \notin E \\ 0 & \text{se } i = j \end{cases}$$

- O algoritmo de Floyd-Warshall baseia-se nessa recorrência e no facto de $D_{ij}^{(k+1)} \leq D_{ij}^{(k)}$, o que permite dispensar a construção de matrizes auxiliares.
- A matriz das distâncias mínimas é $D_{ij}^{(n)}$, sendo n = |V|. Notar que, nesse caso, qualquer nó de V pode ser nó intermédio no caminho mínimo

Seja G = (V, E, d) um grafo dirigido finito, com $d(e) \in \mathbb{R}^+$, para todo $e \in E$. Suponhamos que os nós estão **numerados de** 1 **a** n = |V|

Seja $D_{ij}^{(k)}$ a distância mínima de i para j em G se os percursos só puderem ter os nós $1, 2, \ldots, k$ como nós intermédios, com $k \ge 0$, fixo.

$$D_{ij}^{(k)} = \min(D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)}), \text{ se } k \ge 1$$

$$D_{ij}^{(0)} = \begin{cases} d(i,j), & \text{se } i \neq j \land (i,j) \in E \\ \infty & \text{se } i \neq j \land (i,j) \notin E \\ 0 & \text{se } i = j \end{cases}$$

- O algoritmo de Floyd-Warshall baseia-se nessa recorrência e no facto de $D_{ij}^{(k+1)} \leq D_{ij}^{(k)}$, o que permite dispensar a construção de matrizes auxiliares.
- A matriz das distâncias mínimas é $D_{ij}^{(n)}$, sendo n = |V|. Notar que, nesse caso, qualquer nó de V pode ser nó intermédio no caminho mínimo

Seja G = (V, E, d) um grafo dirigido finito, com $d(e) \in \mathbb{R}^+$, para todo $e \in E$. Suponhamos que os nós estão **numerados de** 1 **a** n = |V|

Seja $D_{ij}^{(k)}$ a distância mínima de i para j em G se os percursos só puderem ter os nós $1, 2, \ldots, k$ como nós intermédios, com $k \ge 0$, fixo.

$$D_{ij}^{(k)} = \min(D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)}), \text{ se } k \ge 1$$

$$D_{ij}^{(0)} = \begin{cases} d(i,j), & \text{se } i \ne j \land (i,j) \in E \\ \infty & \text{se } i \ne j \land (i,j) \notin E \\ 0 & \text{se } i = j \end{cases}$$

- O algoritmo de Floyd-Warshall baseia-se nessa recorrência e no facto de $D_{ii}^{(k+1)} \leq D_{ii}^{(k)}$, o que permite dispensar a construção de matrizes auxiliares.
- A matriz das distâncias mínimas é $D_{ij}^{(n)}$, sendo n = |V|. Notar que, nesse caso, **qualquer nó de** V **pode ser nó intermédio no caminho mínimo**.

Como caraterizar o caminho mínimo?

Problema: Caminhos mínimos para todos os pares de nós

Dado um grafo G = (V, E, d), com d(u, v) > 0, para todo $(u, v) \in E$, encontrar um caminho mínimo de s para t, para todos os pares $(s, t) \in V \times V$, $s \neq t$.

Assume-se que os nós estão numerados de 1 a n=|V|. Seja $D_{ij}^{(k)}$ a distância mínima de i para j em G se os percursos só puderem ter os nós $1,2,\ldots,k$ como nós intermédios, com $k\geq 0$, fixo. Seja $P_{ij}^{(k)}$ o nó que precede o nó j num caminho mínimo de i para j nessas condições. Para todo $(i,j)\in V\times V$, o

valor de $P_{ii}^{(\kappa)}$ **define-se recursivamente** assim

$$P_{ij}^{(k)} = \begin{cases} P_{ij}^{(k-1)} & \text{se } D_{ij}^{(k)} = D_{ij}^{(k-1)} \\ P_{kj}^{(k-1)} & \text{caso contrário } (D_{ij}^{(k)} = D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \circ D_{ij}^{(k)} < D_{ij}^{(k)} \end{cases}$$

$$P_{ij}^{(0)} = \begin{cases} i & \text{se } (i,j) \in E \\ 0 & \text{caso contrário} \end{cases}$$

NB: Em alternativa, podiamos definir $P_{ij}^{(r)}$ como o nó que segue i ou como um nó intermédio no caminho.

₹ 990

Como caraterizar o caminho mínimo?

Problema: Caminhos mínimos para todos os pares de nós

Dado um grafo G = (V, E, d), com d(u, v) > 0, para todo $(u, v) \in E$, encontrar um caminho mínimo de s para t, para todos os pares $(s, t) \in V \times V$, $s \neq t$.

Assume-se que os nós estão numerados de 1 a n = |V|. Seja $D_{ij}^{(k)}$ a distância mínima de i para j em G se os percursos só puderem ter os nós $1, 2, \ldots, k$ como nós intermédios, com $k \geq 0$, fixo. Seja $P_{ij}^{(k)}$ o nó que precede o nó j num caminho mínimo de i para j nessas condições. Para todo $(i,j) \in V \times V$, o valor de $P_{ij}^{(k)}$ define-se recursivamente assim:

$$P_{ij}^{(k)} = \begin{cases} P_{ij}^{(k-1)} & \text{se } D_{ij}^{(k)} = D_{ij}^{(k-1)} \\ P_{kj}^{(k-1)} & \text{caso contrário } (D_{ij}^{(k)} = D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \in D_{ij}^{(k)} < D_{ij}^{(k-1)}) \end{cases}$$

$$P_{ij}^{(0)} = \begin{cases} i & \text{se } (i,j) \in E \\ 0 & \text{caso contrário} \end{cases}$$

NB: Em alternativa, podiamos definir $P_{ij}^{(k)}$ como o nó que segue i ou como um nó intermédio no caminho.

∄ ୬९୯

Algoritmo de Floyd-Warshall com cálculo dos caminhos

```
ALGORITMOFLOYD-WARSHALL(D, P, n)

Para k \leftarrow 1 até n fazer

Para i \leftarrow 1 até n fazer

Para j \leftarrow 1 até n fazer

Se D[i,j] > D[i,k] + D[k,j] então

D[i,j] \leftarrow D[i,k] + D[k,j];

P[i,j] \leftarrow P[k,j];
```

As matrizes *D* e *P* devem estar já inicializadas na chamada se, como acima, não se incluir a inicialização na função:

$$D[i,i]=0$$
; $D[i,j]=d(i,j)$ se $(i,j)\in E$ e, caso contrário, $D[i,j]=\infty$. $P[i,i]=0$; $P[i,j]=i$ se $(i,j)\in E$ e, caso contrário, $P[i,j]=0$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Construir expressão regular para AF – Método de Kleene

Dado um autómato finito $A=(S,\Sigma,\delta,s_1,F)$, com estados numerados de 1 a n, seja $r_{ij}^{(k)}$ a expressão que descreve a linguagem determinada pelos percursos de i para j que passam quando muito por estados intermédios etiquetados com números não superiores a k.

$$r_{ii}^{(0)} = \begin{cases} \varepsilon & sse & \text{não existe qualquer lacete em } i \\ \varepsilon + a_1 \dots + a_p & sse & \text{os lacetes em } i \text{ estão etiquetados com } a_1, \dots, a_p \end{cases}$$

$$r_{ij}^{(0)} = \begin{cases} \emptyset & sse & \text{não existe qualquer arco } (i,j) \\ a_1 + \dots + a_p & sse & a_1, \dots, a_p \text{ etiquetam os arcos } (i,j) \end{cases}$$

Define-se agora $r_{ij}^{(k)}$, para $k \ge 1$, recursivamente assim:

$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}$$

onde \star é o (habitual) fecho de Kleene. A expressão que define a linguagem reconhecida pelo autómato é dada por: $\sum_{s \in F} r_{1s}^{(n)}$

(□ > (□ > (Ē) + (

Método de Kleene para obter expressões regulares para AFs

Muito trabalhoso...

Conclusão: a expressão que descreve a linguagem aceite pelo AF é $r_{12}^{(2)}$ ou seja, b^*ac^* . Se 1 e 2 fossem estados finais seria $r_{11}^{(2)} + r_{12}^{(2)} = b^* + b^*ac^*$.

Recordar que:

- Um grafo dirigido G = (V, E) representa uma relação binária R definida no conjunto V. O conjunto de ramos corresponde ao conjunto de pares ordenados que constituem R. Por definição, R ⊆ V × V.
- R é transitiva se $((x,y) \in R \land (y,z) \in R) \Rightarrow (x,z) \in R$, para todo (x,y,z).
- O fecho transitivo de R denota-se por R⁺ e é a menor relação binária definida em V que é transitiva e contém R. Menor para ⊆.
- Usando a **composta de relações**, define-se $R^1 = R$ e $R^{i+1} = R^i R = RR^i$. Por definição de composição, $uR^i Rv$ se existe $w \in V$ tal que $uR^i w \wedge wRv$

Consequentemente:

- $(x, y) \in R^i$ sse existir um percurso de x para y com i ramos no grafo de R, para $i \ge 1$. É conhecido que $R^+ = \bigcup_{i=1}^n R^i$, com n = |V|.
- $(x,y) \in R^+$ sse existir um percurso de x para y no grafo de R.

◆ロト ◆個ト ◆量ト ◆量ト ■ 釣りで

Recordar que:

- Um grafo dirigido G = (V, E) representa uma relação binária R definida no conjunto V. O conjunto de ramos corresponde ao conjunto de pares ordenados que constituem R. Por definição, R ⊆ V × V.
- R é transitiva se $((x,y) \in R \land (y,z) \in R) \Rightarrow (x,z) \in R$, para todo (x,y,z).
- O fecho transitivo de R denota-se por R⁺ e é a menor relação binária definida em V que é transitiva e contém R. Menor para ⊆.
- Usando a **composta de relações**, define-se $R^1 = R$ e $R^{i+1} = R^i R = RR^i$. Por definição de composição, $uR^i Rv$ se existe $w \in V$ tal que $uR^i w \wedge wRv$

Consequentemente:

- $(x, y) \in R^i$ sse existir um percurso de x para y com i ramos no grafo de R, para $i \ge 1$. É conhecido que $R^+ = \bigcup_{i=1}^n R^i$, com n = |V|.
- $(x,y) \in R^+$ sse existir um percurso de x para y no grafo de R.

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ト ・ 差 ・ 夕 Q ©

Recordar que:

- Um grafo dirigido G = (V, E) representa uma **relação binária** R definida no conjunto V. O conjunto de ramos corresponde ao conjunto de pares ordenados que constituem R. Por definição, $R \subseteq V \times V$.
- R é transitiva se $((x,y) \in R \land (y,z) \in R) \Rightarrow (x,z) \in R$, para todo (x,y,z).
- O fecho transitivo de R denota-se por R^+ e é a menor relação binária definida em V que é transitiva e contém R. Menor para \subseteq .
- Usando a **composta de relações**, define-se $R^1 = R$ e $R^{i+1} = R^i R = RR^i$. Por definição de composição, $uR^i Rv$ se existe $w \in V$ tal que $uR^i w \wedge wRv$

Consequentemente:

- $(x,y) \in R^i$ sse existir um percurso de x para y com i ramos no grafo de R, para $i \ge 1$. É conhecido que $R^+ = \bigcup_{i=1}^n R^i$, com n = |V|.
- $(x,y) \in R^+$ sse existir um percurso de x para y no grafo de R.

Recordar que:

- Um grafo dirigido G = (V, E) representa uma **relação binária** R definida no conjunto V. O conjunto de ramos corresponde ao conjunto de pares ordenados que constituem R. Por definição, $R \subseteq V \times V$.
- $R ext{ \'e transitiva se } ((x,y) \in R \land (y,z) \in R) \Rightarrow (x,z) \in R$, para todo (x,y,z).
- O fecho transitivo de R denota-se por R^+ e é a menor relação binária definida em V que é transitiva e contém R. Menor para \subseteq .
- Usando a **composta de relações**, define-se $R^1 = R$ e $R^{i+1} = R^i R = RR^i$. Por definição de composição, $uR^i Rv$ se existe $w \in V$ tal que $uR^i w \wedge wRv$.

Consequentemente:

- $(x, y) \in R^i$ sse existir um percurso de x para y com i ramos no grafo de R, para $i \ge 1$. É conhecido que $R^+ = \bigcup_{i=1}^n R^i$, com n = |V|.
- $(x,y) \in R^+$ sse existir um percurso de x para y no grafo de R.

Recordar que:

- Um grafo dirigido G = (V, E) representa uma **relação binária** R definida no conjunto V. O conjunto de ramos corresponde ao conjunto de pares ordenados que constituem R. Por definição, $R \subseteq V \times V$.
- R é transitiva se $((x,y) \in R \land (y,z) \in R) \Rightarrow (x,z) \in R$, para todo (x,y,z).
- O fecho transitivo de R denota-se por R^+ e é a menor relação binária definida em V que é transitiva e contém R. Menor para \subseteq .
- Usando a **composta de relações**, define-se $R^1 = R$ e $R^{i+1} = R^i R = RR^i$. Por definição de composição, $uR^i Rv$ se existe $w \in V$ tal que $uR^i w \wedge wRv$.

Consequentemente:

- $(x, y) \in R^i$ sse existir um percurso de x para y com i ramos no grafo de R, para $i \ge 1$. É conhecido que $R^+ = \bigcup_{i=1}^n R^i$, com n = |V|.
- $(x,y) \in R^+$ sse existir um percurso de x para y no grafo de R.

◆ロト ◆個ト ◆量ト ◆量ト ■ りへの

Recordar que:

- Um grafo dirigido G = (V, E) representa uma **relação binária** R definida no conjunto V. O conjunto de ramos corresponde ao conjunto de pares ordenados que constituem R. Por definição, $R \subseteq V \times V$.
- R é transitiva se $((x,y) \in R \land (y,z) \in R) \Rightarrow (x,z) \in R$, para todo (x,y,z).
- O fecho transitivo de R denota-se por R^+ e é a menor relação binária definida em V que é transitiva e contém R. Menor para \subseteq .
- Usando a **composta de relações**, define-se $R^1 = R$ e $R^{i+1} = R^i R = RR^i$. Por definição de composição, $uR^i Rv$ se existe $w \in V$ tal que $uR^i w \wedge wRv$.

Consequentemente:

- $(x, y) \in R^i$ sse existir um percurso de x para y com i ramos no grafo de R, para $i \ge 1$. É conhecido que $R^+ = \bigcup_{i=1}^n R^i$, com n = |V|.
- $(x,y) \in R^+$ sse existir um percurso de x para y no grafo de R.

4□ > 4□ > 4 = > 4 = > = 90

A matriz da relação binária R é uma matriz de booleanos dada por

$$M_{ij} = \begin{cases} 1 & \text{se } (i,j) \in R \\ 0 & \text{se } (i,j) \notin R \end{cases}$$

- Como no algoritmo de **Floyd-Warshall**, seja $M_{ij}^{(k)}=1$ se existir algum percurso no grafo de R do nó i para o nó j que, quando muito, use nós numerados até k como nós intermédios. Supomos que $V=\{1,\ldots,n\}$.
- Definimos $M_{ij}^{(0)}=M_{ij}$. Tem-se $(i,j)\in R^+$ sse $M_{ij}^+=1$, sendo $M_{ij}^+=M_{ij}^{(n)}$.

```
ALGORITMO WARSHALL(M, n)
```

```
1 Para k \leftarrow 1 ate n fazer
```

Para
$$i \leftarrow 1$$
 até n fazer

3 Para
$$j \leftarrow 1$$
 até n fazer

$$4 \mid M[i,j] \leftarrow M[i,j] \lor (M[i,k] \land M[k,j]);$$

A matriz da relação binária R é uma matriz de booleanos dada por

$$M_{ij} = \left\{ egin{array}{ll} 1 & ext{se } (i,j) \in R \\ 0 & ext{se } (i,j) \notin R \end{array} \right.$$

- Como no algoritmo de **Floyd-Warshall**, seja $M_{ij}^{(k)} = 1$ se existir algum percurso no grafo de R do nó i para o nó j que, quando muito, use nós numerados até k como nós intermédios. Supomos que $V = \{1, \ldots, n\}$.
- Definimos $M_{ij}^{(0)}=M_{ij}$. Tem-se $(i,j)\in R^+$ sse $M_{ij}^+=1$, sendo $M_{ij}^+=M_{ij}^{(n)}$.

```
ALGORITMO WARSHALL(M, n)

1 | Para k \leftarrow 1 até n fazer

2 | Para i \leftarrow 1 até n fazer

3 | Para j \leftarrow 1 até n fazer

4 | M[i, i] \leftarrow M[i, i] \lor (M[i, k] \land M[k, i]):
```

Na linha 4 explora propriedades de R^+ . Mais eficiente do que $M^{(k)}[i,j] \leftarrow M^{(k-1)}[i,j] \lor (M^{(k-1)}[i,k] \land M^{(k-1)}[k,j]);$

A matriz da relação binária R é uma matriz de booleanos dada por

$$M_{ij} = \left\{ egin{array}{ll} 1 & ext{se } (i,j) \in R \\ 0 & ext{se } (i,j) \notin R \end{array} \right.$$

- Como no algoritmo de **Floyd-Warshall**, seja $M_{ij}^{(k)} = 1$ se existir algum percurso no grafo de R do nó i para o nó j que, quando muito, use nós numerados até k como nós intermédios. Supomos que $V = \{1, \ldots, n\}$.
- Definimos $M_{ij}^{(0)}=M_{ij}$. Tem-se $(i,j)\in R^+$ sse $M_{ij}^+=1$, sendo $M_{ij}^+=M_{ij}^{(n)}$.

```
ALGORITMO WARSHALL(M, n)

1 | Para k \leftarrow 1 até n fazer

2 | Para i \leftarrow 1 até n fazer

3 | Para j \leftarrow 1 até n fazer

4 | M[i, j] \leftarrow M[i, j] \lor (M[i, k] \land M[k, j]);
```

Na linha 4 explora propriedades de R^+ . Mais eficiente do que $M^{(k)}[i,j] \leftarrow M^{(k-1)}[i,j] \lor (M^{(k-1)}[i,k] \land M^{(k-1)}[i,k]);$

A matriz da relação binária R é uma matriz de booleanos dada por

$$M_{ij} = \left\{ egin{array}{ll} 1 & ext{se } (i,j) \in R \\ 0 & ext{se } (i,j) \notin R \end{array} \right.$$

- Como no algoritmo de **Floyd-Warshall**, seja $M_{ij}^{(k)} = 1$ se existir algum percurso no grafo de R do nó i para o nó j que, quando muito, use nós numerados até k como nós intermédios. Supomos que $V = \{1, \ldots, n\}$.
- Definimos $M_{ij}^{(0)} = M_{ij}$. Tem-se $(i,j) \in R^+$ sse $M_{ij}^+ = 1$, sendo $M_{ij}^+ = M_{ij}^{(n)}$.

 ALGORITMO WARSHALL(M, n)1 | Para $k \leftarrow 1$ até n fazer

 2 | Para $i \leftarrow 1$ até n fazer

 3 | Para $j \leftarrow 1$ até n fazer

Na linha 4 explora propriedades de R^+ . Mais eficiente do que $M^{(k)}[i,j] \leftarrow M^{(k-1)}[i,j] \lor (M^{(k-1)}[i,k] \land M^{(k-1)}[i,k])$

 $M[i, j] \leftarrow M[i, j] \vee (M[i, k] \wedge M[k, j]);$

A matriz da relação binária R é uma matriz de booleanos dada por

$$M_{ij} = \left\{ egin{array}{ll} 1 & ext{se } (i,j) \in R \\ 0 & ext{se } (i,j) \notin R \end{array} \right.$$

- Como no algoritmo de **Floyd-Warshall**, seja $M_{ij}^{(k)} = 1$ se existir algum percurso no grafo de R do nó i para o nó j que, quando muito, use nós numerados até k como nós intermédios. Supomos que $V = \{1, \ldots, n\}$.
- Definimos $M_{ij}^{(0)}=M_{ij}$. Tem-se $(i,j)\in R^+$ sse $M_{ij}^+=1$, sendo $M_{ij}^+=M_{ij}^{(n)}$.

```
ALGORITMO WARSHALL(M, n)

1 | Para k \leftarrow 1 até n fazer

2 | Para i \leftarrow 1 até n fazer

3 | Para j \leftarrow 1 até n fazer

4 | M[i,j] \leftarrow M[i,j] \lor (M[i,k] \land M[k,j]);
```

Na linha 4 explora propriedades de R^+ . Mais eficiente do que $M^{(k)}[i,j] \leftarrow M^{(k-1)}[i,j] \lor (M^{(k-1)}[i,k] \land M^{(k-1)}[k,j]);$

Contagem de percursos em grafos

Problema: calcular o número de percursos de v_i para v_i , para todos os pares de nós (v_i, v_i) de um grafo G = (V, E). Assumir que $V = \{0, \dots, n-1\}$. O resultado deve ser guardado numa matriz M, com M[i,j] = -1 se existir uma infinidade de percursos de v_i para v_i .

Resolução:

intermédios os numerados até k, com $k \ge -1$ fixo. C_{ii}^k define-se pela **recorrência**:

$$C_{ij}^{-1} = \begin{cases} 1, \text{ se } (i,j) \in E \\ 0, \text{ se } (i,j) \notin E \end{cases}$$

$$C_{ij}^{k} = C_{ik}^{k-1} \times (C_{kk}^{k-1})^{*} \times C_{kj}^{k-1} + C_{ij}^{k-1}$$

$$\begin{array}{ll} 0^{\star}=1 & y^{\star}=\infty, \ \ \text{se} \ y\neq 0 \\ \infty\times 0=0\times \infty=0 & \infty+y=y+\infty=\infty, \ \ \text{para todo} \ y \\ \infty\times y=y\times \infty=\infty, \ \ \text{se} \ y\neq 0 \end{array}$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 Ana Paula Tomás (DCC-FCUP) DAA 2019/2020 Novembro 2019 12 / 29

Contagem de percursos em grafos

Problema: calcular o número de percursos de v_i para v_j , para todos os pares de nós (v_i, v_j) de um grafo G = (V, E). Assumir que $V = \{0, \ldots, n-1\}$. O resultado deve ser guardado numa matriz M, com M[i,j] = -1 se existir uma infinidade de percursos de v_i para v_j .

Resolução:

Seja C_{ij}^k o número de percursos de i para j que apenas podem ter como nós intermédios os numerados até k, com $k \ge -1$ fixo. C_{ij}^k define-se pela recorrência:

$$C_{ij}^{-1} = \begin{cases} 1, \text{ se } (i,j) \in E \\ 0, \text{ se } (i,j) \notin E \end{cases}$$

$$C_{ij}^{k} = C_{ik}^{k-1} \times (C_{kk}^{k-1})^{*} \times C_{kj}^{k-1} + C_{ij}^{k-1}$$

em que \times e + (extensão das operações habituais a $\mathbb{R}^+_0 \cup \{\infty\}$) e \star satisfazem:

$$\begin{array}{ll} 0^{\star}=1 & y^{\star}=\infty, \ \ \text{se} \ y\neq 0 \\ \infty\times 0=0\times \infty=0 & \infty+y=y+\infty=\infty, \ \ \text{para todo} \ y \\ \infty\times y=y\times \infty=\infty, \ \ \text{se} \ y\neq 0 \end{array}$$

Contagem de percursos em grafos

Problema: calcular o número de percursos de v_i para v_i , para todos os pares de nós (v_i, v_i) de um grafo G = (V, E). Assumir que $V = \{0, \dots, n-1\}$. O resultado deve ser guardado numa matriz M, com M[i,j] = -1 se existir uma infinidade de percursos de v_i para v_i .

Resolução:

Seja C_{ii}^k o número de percursos de i para j que apenas podem ter como nós intermédios os numerados até k, com $k \ge -1$ fixo. C_{ii}^k define-se pela **recorrência**:

$$C_{ij}^{-1} = \begin{cases} 1, \text{ se } (i,j) \in E \\ 0, \text{ se } (i,j) \notin E \end{cases}$$

$$C_{ij}^{k} = C_{ik}^{k-1} \times (C_{kk}^{k-1})^{*} \times C_{kj}^{k-1} + C_{ij}^{k-1}$$

em que \times e + (extensão das operações habituais a $\mathbb{R}_0^+ \cup \{\infty\}$) e \star satisfazem:

$$\begin{array}{ll} 0^{\star}=1 & y^{\star}=\infty, \ \ \text{se} \ y\neq 0 \\ \infty\times 0=0\times \infty=0 & \infty+y=y+\infty=\infty, \ \ \text{para todo} \ y \\ \infty\times y=y\times \infty=\infty, \ \ \text{se} \ y\neq 0 \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ● めぬぐ Novembro 2019

Contagem de percursos – Implementação em C

```
Se M_{ij}^{k-1} = -1 ou se M_{ik}^{k-1} \times M_{kj}^{k-1} \neq 0 e algum dos valores M_{ik}^{k-1}, M_{kj}^{k-1} e M_{kk}^{k-1} for -1, então M_{ij}^{k} = -1. Nos outros casos, M_{ij}^{k} = M_{ik}^{k-1} \times M_{kj}^{k-1} + M_{ij}^{k-1}.
```

Contagem de percursos – Implementação em C

```
Se M_{ij}^{k-1} = -1 ou se M_{ik}^{k-1} \times M_{kj}^{k-1} \neq 0 e algum dos valores M_{ik}^{k-1}, M_{kj}^{k-1} e M_{kk}^{k-1} for -1, então M_{ij}^{k} = -1. Nos outros casos, M_{ij}^{k} = M_{ik}^{k-1} \times M_{kj}^{k-1} + M_{ij}^{k-1}.
void contacaminhos(int n,int M[][MAX])
{ int aux[MAX][MAX], k, i, j;
   for(k=0; k < n; k++) {
     // copia M para aux
     for (i=0: i < n: i++)
          for (j=0; j < n; j++) aux[i][j] = M[i][j];
     // atualiza a contagem
     for (i=0; i < n; i++)
        for (j=0; j < n; j++)
          if (a[i][j] != -1) {
             if (aux[i][k]*aux[k][j])
               if(aux[k][k] || aux[i][k] == -1 || aux[k][j] == -1) M[i][j] = -1;
               else M[i][j] += aux[i][k]*aux[k][j];
```

Novembro 2019

Caixotes de Morangos - aplicação de DP

O dono de uma pequena cadeia de $(L \geq 1)$ mercearias adquiriu $(C \geq 1)$ caixotes de morangos e tem que decidir quantos caixotes enviar para cada uma das suas lojas, de forma a maximizar o lucro. Devido às características específicas de cada loja (localização, capacidade de armazenamento, número médio de clientes, etc.), o lucro esperado com a venda dos morangos varia, não só de loja para loja, como, também, consoante o número de caixotes enviados para cada loja. É conhecido o lucro do envio de n caixotes para cada uma das lojas, para cada $n \in [0, C]$. Naturalmente, é nulo se não enviar nenhum caixote. Por razões administrativas, cada caixote é indivisível (i.e., o seu conteúdo não pode ser repartido por várias lojas). Não é necessário enviar caixotes para todas as lojas. Como efetuar a distribuição?

(Margarida Mamede, UNL, adaptado)

□ ▶ ◀♬ ▶ ◀돌 ▶ ◀돌 ▶ **9** 9 9 0 0

Caixotes de Morangos

Exemplo de dados:

3 5 1.50 2.50 2.00 3.50 5.00 3.00 4.50 5.50 5.50 6.00 5.50 6.00 6.50 5.50 6.00 Neste exemplo, tem L=3 lojas e C=5 caixotes.

Na coluna j tem os lucros v_{ij} do envio de i caixotes para a loja j, com i = 1, 2, ..., C, e j = 1, 2, ..., L.

Admitimos ainda que $v_{0j} = 0$, para todo j.

Seja $z_{k,j}$ o lucro ótimo se enviar no total k caixotes para as j primeiras lojas, com k e j fixos. Então, $z_{k,j}$ é definido pela recorrência:

$$\begin{array}{lll} z_{0,j} &=& 0, & \text{para } 1 \leq j \leq L \\ z_{k,1} &=& v_{k,1}, & \text{para } 1 \leq k \leq C \\ z_{k,j} &=& \max_{0 \leq t \leq k} (v_{k-t,j} + z_{t,j-1}), & \text{para } 1 \leq k \leq C, \text{ e } 2 \leq j \leq L \ , \end{array}$$

Para $j \geq 2$, calculam-se os lucros das soluções que enviam k-t caixotes à loja j e distribuem otimamente os restantes t pelas lojas numeradas até j-1, para $0 \leq t \leq k$. A solução de maior valor define $z_{k,j}$.

Caixotes de Morangos

Exemplo de dados:

3 5 1.50 2.50 2.00 3.50 5.00 3.00 4.50 5.50 5.50

6.00 5.50 6.00 6.50 5.50 6.00 Neste exemplo, tem L=3 lojas e C=5 caixotes.

Na coluna j tem os lucros v_{ij} do envio de i caixotes para a loja j, com i = 1, 2, ..., C, e j = 1, 2, ..., L.

Admitimos ainda que $v_{0j} = 0$, para todo j.

Seja $z_{k,j}$ o lucro ótimo se enviar no total k caixotes para as j primeiras lojas, com k e j fixos. Então, $z_{k,j}$ é definido pela recorrência:

$$\begin{array}{lll} z_{0,j} &=& 0, \quad \text{para } 1 \leq j \leq L \\ z_{k,1} &=& v_{k,1}, \quad \text{para } 1 \leq k \leq C \\ z_{k,j} &=& \max_{0 \leq t \leq k} (v_{k-t,j} + z_{t,j-1}), \quad \text{para } 1 \leq k \leq C, \text{ e } 2 \leq j \leq L \end{array}$$

Para $j \geq 2$, calculam-se os lucros das soluções que enviam k-t caixotes à loja j e distribuem otimamente os restantes t pelas lojas numeradas até j-1, para $0 \leq t \leq k$. A solução de maior valor define $z_{k,j}$.

Caixotes de Morangos

Exemplo de dados:

Seja $z_{k,j}$ o lucro ótimo se enviar no total k caixotes para as j primeiras lojas, com k e j fixos. Então, $z_{k,j}$ é definido pela recorrência:

$$\begin{array}{lll} z_{0,j} &=& 0, \quad \text{para } 1 \leq j \leq L \\ z_{k,1} &=& v_{k,1}, \quad \text{para } 1 \leq k \leq C \\ z_{k,j} &=& \max_{0 \leq t \leq k} (v_{k-t,j} + z_{t,j-1}), \quad \text{para } 1 \leq k \leq C, \text{ e } 2 \leq j \leq L \ , \end{array}$$

Para $j \ge 2$, calculam-se os lucros das soluções que enviam k-t caixotes à loja j e distribuem *otimamente os restantes t* pelas lojas numeradas até j-1, para $0 \le t \le k$. A solução de maior valor define $z_{k,j}$.

Caixotes de Morangos - Exemplo

```
3 5
1.50 2.50 2.00
                            z_{0,j} = 0, para 1 \le j \le L
3.50 5.00 3.00
                            z_{k,1} = v_{k,1}, para 1 \le k \le C
                            z_{k,j} = \max_{0 \le t \le k} (v_{k-t,j} + z_{t,j-1}), \text{ para } 1 \le k \le C, \text{ e } 2 \le j \le L,
4.50 5.50 5.50
6.00 5.50 6.00
6.50 5.50 6.00
```

caixas	0	1	2	3	4	5
lojas						
L_1	0.00	1.50	3.50	4.50	6.00	6.50
	0 : <i>L</i> ₁	1 : L_1	2 : <i>L</i> ₁	3 : <i>L</i> ₁	4 : <i>L</i> ₁	5 : <i>L</i> ₁
L_1, L_2	0.00	2.50	5.00	6.50	8.50	9.50
	0 : <i>L</i> ₁	$0: L_1$	0 : <i>L</i> ₁	1 : L_1	2 : <i>L</i> ₁	3 : <i>L</i> ₁
	0 : <i>L</i> ₂	$1: L_2$	2 : L ₂	2 : <i>L</i> ₂	2 : <i>L</i> ₂	2 : <i>L</i> ₂
L_1, L_2, L_3	0.00	2.50	5.00	7.00	8.50	10.50
	0 : <i>L</i> ₁	0 : <i>L</i> ₁	0 : <i>L</i> ₁	$0: L_1$	1 : L_1	0 : <i>L</i> ₁
	0 : <i>L</i> ₂	$1: L_2$	2 : L ₂	$2: L_2$	2 : <i>L</i> ₂	2 : <i>L</i> ₂
	0 : <i>L</i> ₃	0 : <i>L</i> ₃	0 : <i>L</i> ₃	$1: L_3$	1 : <i>L</i> ₃	3 : <i>L</i> ₃

Caixotes de Morangos (cont.)

$$\begin{array}{lll} z_{0,j} &=& 0, \quad \text{para } 1 \leq j \leq L \\ z_{k,1} &=& v_{k,1}, \quad \text{para } 1 \leq k \leq C \\ z_{k,j} &=& \max_{0 \leq t \leq k} (v_{k-t,j} + z_{t,j-1}), \quad \text{para } 1 \leq k \leq C, \text{ e } 2 \leq j \leq L \end{array}$$

- Algoritmos baseados em programação dinâmica podem gastar muita memória. É necessário evitar, se possível, gastos de memória excessivos.
- Neste caso, não precisamos de uma matriz $(C+1) \times L$ para guardar $z_{k,j}$, pois $z_{k,j}$ só depende dos valores de $z_{t,j-1}$, para $t \leq k$.
- Bastariam dois arrays com C+1 posições, para guardar os valores de $z_{k,j-1}$ e de $z_{k,j}$, para todo k.
- Se analisarmos com mais cuidado, podemos concluir que, de facto, **basta um array** $Z[\cdot]$, sendo $Z[k] = z_{k,j}$, pois $z_{k,j}$ só depende dos valores de $z_{t,j-1}$, para $t \le k$. Para tal, **na atualização** de Z[k] **para um novo** j, tem de se **começar pelo valor mais alto de** k, tomando $k = C, C 1, \ldots, 2, 1$.

4□ > 4圖 > 4 差 > 4 差 > 差 9 Q @

Caixotes de Morangos – DP construção "bottom-up"

```
CaixotesMorangos(V, L, C, Z)
        Z[0] \leftarrow 0;
        Para k \leftarrow 1 até C fazer Z[k] \leftarrow V[k,1];
        Para i \leftarrow 2 até L fazer
          Para k \leftarrow C até 1 com decremento de 1 fazer
   4
             Para t \leftarrow 0 até k-1 fazer /* NB: inicialmente Z[k] é já V[0,j] + Z[k] */
   5
               Se V[k-t,j]+Z[t]>Z[k] então
                  Z[k] \leftarrow V[k-t,j] + Z[t];
   6
```

ciclo 3-6 é $\Theta(\sum_{k=1}^C k) = \Theta(C(C+1)/2) = \Theta(C^2)$ e, portanto, para o ciclo 2-6 é

Caixotes de Morangos – DP construção "bottom-up"

```
CaixotesMorangos(V, L, C, Z)
       Z[0] \leftarrow 0;
      Para k \leftarrow 1 até C fazer Z[k] \leftarrow V[k, 1];
        Para i \leftarrow 2 até L fazer
          Para k \leftarrow C até 1 com decremento de 1 fazer
   4
             Para t \leftarrow 0 até k-1 fazer /* NB: inicialmente Z[k] é já V[0,j] + Z[k] */
   5
               Se V[k-t,j]+Z[t]>Z[k] então
                 Z[k] \leftarrow V[k-t, i] + Z[t]:
   6
```

Complexidade:

Passando V e Z por referência e C e L por valor, a complexidade temporal é $\Theta(LC^2)$ e a espacial (adicional) é $\Theta(C)$. "Adicional" porque não contabiliza o espaço $\Theta(LC)$ ocupado pela matriz de dados V, mas apenas Z.

Justificação (sucinta): A complexidade temporal do ciclo 4-6 é $\Theta(k)$. Logo, para o **ciclo 3-6** é $\Theta(\sum_{k=1}^{C} k) = \Theta(C(C+1)/2) = \Theta(C^2)$ e, portanto, para o **ciclo 2-6** é $\Theta(LC^2)$. Assim, o **bloco 1-6** tem complexidade $\Theta(C + LC^2) = \Theta(LC^2)$.

Se os dados fossem lidos de um ficheiro e se desse V^T (a transposta de V) em vez de V, o espaço total podia ser $\Theta(C)$. Ver problema da aula prática: Caixotes de Morangos II (não passar V; ler lucro da loja j dentro da função e atualizar Z)

- O problema "Não lhes dês troco" usa uma estratégia ávida (greedy) para dar o troco, que nem sempre permite obter o montante pretendido.
- De quantas formas conseguiria obter uma quantia Q dada se não usar essa
- Se puder usar apenas moedas de valor v_1, \ldots, v_k , o número de formas $N_{a,k}$

$$N_{0,k}=1$$
, para $1\leq k\leq m$ (não dar moeda nenhuma se $q=0$)

$$N_{q,1} = \left\{ \begin{array}{ll} 1 & \text{se } q > 0 \wedge q\%v_1 = 0 \wedge d_1 \geq \frac{q}{v_1} \\ 0 & \text{se } q > 0 \wedge \left(q\%v_1 \neq 0 \vee d_1 < \frac{q}{v_1}\right) \end{array} \right.$$

$$N_{q,k} = \sum_{r=0}^{\min(d_k, \lfloor q/v_k \rfloor)} N_{q-rv_k, k-1}$$
, para todo $q > 0$ e $1 < k \le m$.

- O problema "Não lhes dês troco" usa uma estratégia ávida (greedy) para dar o troco, que nem sempre permite obter o montante pretendido.
- De quantas formas conseguiria obter uma quantia Q dada se não usar essa estratégia? Seja d_k o número de moedas disponíveis de valor v_k , para
- Se puder usar apenas moedas de valor v_1, \ldots, v_k , o número de formas $N_{a,k}$

$$N_{0,k}=1$$
, para $1 \leq k \leq m$ (não dar moeda nenhuma se $q=1$

$$N_{q,1} = \left\{ \begin{array}{ll} 1 & \text{se } q > 0 \wedge q\%v_1 = 0 \wedge d_1 \geq \frac{q}{v_1} \\ 0 & \text{se } q > 0 \wedge \left(q\%v_1 \neq 0 \vee d_1 < \frac{q}{v_1}\right) \end{array} \right.$$

$$N_{q,k} = \sum_{r=0}^{\min(d_k, \lfloor q/\nu_k \rfloor)} N_{q-r\nu_k, k-1}$$
, para todo $q>0$ e $1 < k \le m$.

- O problema "Não lhes dês troco" usa uma estratégia ávida (greedy) para dar o troco, que nem sempre permite obter o montante pretendido.
- De quantas formas conseguiria obter uma quantia Q dada se não usar essa estratégia? Seja d_k o número de moedas disponíveis de valor v_k , para $1 \le k \le m$. Admita-se que $v_k < v_{k+1}$, para todo k < m.
- Se puder usar apenas moedas de valor v_1, \ldots, v_k , o número de formas $N_{a,k}$

$$N_{0.1} = \begin{cases} 1 & \text{se } q > 0 \land q\%v_1 = 0 \land d_1 \ge \frac{q}{v_1} \end{cases}$$

$$N_{q,1} \equiv \left\{ \begin{array}{l} 0 \quad \text{se } q > 0 \land \left(q\%v_1 \neq 0 \lor d_1 < \frac{q}{v_1}\right) \end{array} \right.$$

$$N_{q,k} = \sum_{r=0}^{\min(d_k, \lfloor q/\nu_k \rfloor)} N_{q-r\nu_k, k-1}$$
, para todo $q>0$ e $1 < k \le m$.

- O problema "Não lhes dês troco" usa uma estratégia ávida (greedy) para dar o troco, que nem sempre permite obter o montante pretendido.
- De quantas formas conseguiria obter uma quantia Q dada se não usar essa estratégia? Seja d_k o número de moedas disponíveis de valor v_k , para $1 \le k \le m$. Admita-se que $v_k < v_{k+1}$, para todo k < m.
- Se puder usar apenas moedas de valor v_1, \ldots, v_k , o número de formas $N_{a,k}$ de obter q pode ser definido recursivamente assim:

$$N_{0,k}=1$$
, para $1\leq k\leq m$ (não dar moeda nenhuma se $q=0$)
$$N_{q,1}=\left\{ egin{array}{ll} 1 & ext{se }q>0 \land q\%v_1=0 \land d_1\geq rac{q}{v_1} \\ 0 & ext{se }q>0 \land \left(q\%v_1\neq 0 \lor d_1<rac{q}{v_1}
ight) \end{array}
ight.$$
 $N_{q,k}=\sum_{r=0}^{\min(d_k,\lfloor q/v_k\rfloor)}N_{q-rv_k,k-1}$, para todo $q>0$ e $1< k\leq m$

- O problema "Não lhes dês troco" usa uma **estratégia ávida** (*greedy*) para dar o troco, que nem sempre permite obter o montante pretendido.
- De quantas formas conseguiria obter uma quantia Q dada se não usar essa estratégia? Seja d_k o número de moedas disponíveis de valor v_k , para $1 \le k \le m$. Admita-se que $v_k < v_{k+1}$, para todo k < m.
- Se puder usar apenas moedas de valor v_1, \ldots, v_k , o número de formas $N_{q,k}$ de obter q pode ser definido recursivamente assim:

$$N_{0,k}=1$$
, para $1\leq k\leq m$ (não dar moeda nenhuma se $q=0$)
$$N_{q,1}=\left\{ egin{array}{ll} 1 & ext{se }q>0 \wedge q\%v_1=0 \wedge d_1\geq rac{q}{v_1} \\ 0 & ext{se }q>0 \wedge \left(q\%v_1
eq 0 ee d_1<rac{q}{v_1}
ight) \end{array}
ight.$$
 $N_{q,k}=\sum_{r=0}^{\min(d_k,\lfloor q/v_k\rfloor)}N_{q-rv_k,k-1}$, para todo $q>0$ e $1< k\leq m$.

O valor procurado é $N_{Q,m}$. Dependendo de Q e dos valores das moedas disponíveis, pode acontecer que nem todos os pares (q, k), com $q \leq Q$, precisem de ser calculados.

- O problema "Não lhes dês troco" usa uma estratégia ávida (greedy) para dar o troco, que nem sempre permite obter o montante pretendido.
- De quantas formas conseguiria obter uma quantia Q dada se não usar essa estratégia? Seja d_k o número de moedas disponíveis de valor v_k , para $1 \le k \le m$. Admita-se que $v_k < v_{k+1}$, para todo k < m.
- Se puder usar apenas moedas de valor v_1, \ldots, v_k , o número de formas $N_{q,k}$ de obter q pode ser definido recursivamente assim:

$$N_{0,k}=1$$
, para $1\leq k\leq m$ (não dar moeda nenhuma se $q=0$)
$$N_{q,1}=\left\{ egin{array}{ll} 1 & ext{se }q>0 \wedge q\%v_1=0 \wedge d_1\geq rac{q}{v_1} \\ 0 & ext{se }q>0 \wedge \left(q\%v_1\neq 0 \vee d_1<rac{q}{v_1}
ight) \end{array}
ight. \ N_{q,k}=\sum_{r=0}^{\min(d_k,\lfloor q/v_k\rfloor)}N_{q-rv_k,k-1}, ext{ para todo }q>0 ext{ e }1< k\leq m.$$

O valor procurado é $N_{Q,m}$. Dependendo de Q e dos valores das moedas disponíveis, pode acontecer que nem todos os pares (q, k), com $q \leq Q$, precisem de ser calculados.

Abordagem "Top-Down" com memoização

```
CONTASOLS(v, d, q, k) /* chamar CONTASOLS(v, d, Q, m) para obter N_{Q,m} */
         Se q = 0 então retorna 1;
         Se k=1 então
   3
              Se q\%v[1] \neq 0 \lor d[1] < q/v[1] então retorna 0;
   4
              retorna 1:
   5
         Se N[q, k] já calculado então retorna N[q, k];
   6
         rmax \leftarrow \min(d[k], |q/v[k]|);
   7
         conta \leftarrow 0:
         Para r \leftarrow 0 até rmax fazer
   8
   9
              conta \leftarrow conta + ContaSols(v, d, q - r * v[k], k - 1);
         N[q, k] \leftarrow conta; /* memoriza para uso futuro se necessário */
   10
   11
         retorna conta;
```

Implementação: Definir a tabela N por dicionário (hash-table)
Dicionários/Tabelas de dispersão/Arrays associativos – coleção de pares (Chave, Valor).
Java: Map, HashMap, TreeMap C++: std::unordered_map, std::map

Abordagem "Top-Down" com memoização

```
CONTASOLS(v, d, q, k) /* chamar CONTASOLS(v, d, Q, m) para obter N_{Q,m} */
         Se q = 0 então retorna 1;
         Se k=1 então
   3
              Se q\%v[1] \neq 0 \lor d[1] < q/v[1] então retorna 0;
   4
              retorna 1:
   5
         Se N[q, k] já calculado então retorna N[q, k];
   6
         rmax \leftarrow \min(d[k], |q/v[k]|);
   7
         conta \leftarrow 0:
         Para r \leftarrow 0 até rmax fazer
   8
   9
              conta \leftarrow conta + ContaSols(v, d, q - r * v[k], k - 1);
         N[q, k] \leftarrow conta; /* memoriza para uso futuro se necessário */
   10
   11
         retorna conta;
```

Implementação: Definir a tabela N por dicionário (hash-table)

Dicionários/Tabelas de dispersão/Arrays associativos – coleção de pares (Chave, Valor).

Java: Map, HashMap, TreeMap C++: std::unordered_map, std::map

Problema: Supondo que se tem um número não limitado de moedas de valores 200, 100, 50, 20, 10, 5, 2, e 1, qual é o **número mínimo** de moedas necessário para formar uma quantia Q?

- Abordagem de programação dinâmica é ineficiente.
- Prova-se que a estratégia greedy que consiste em começar por usar a moeda de valor mais alto $v_k \leq Q$ o número máximo de vezes que **puder** (isto é, $n_k = |Q/v_k|$ vezes) e aplicar a mesma estratégia para obter a quantia $Q - n_k v_k$ restante, determina a **solução ótima**, em O(m), sendo m o número de tipos de moedas existentes.

Atenção! Para garantir O(m), é necessário usar $Q - n_k v_k$ em vez de dar uma moeda v_k e aplicar a estratégia a

 $Q - v_k$. Note que O(Q) é $O(2^{\log_2 Q})$ e, portanto, é exponencial no tamanho da representação de Q (input) em binário

4 D > 4 D > 4 E > 4 E > E 9 Q P (assumido no modelo RAM para análise assintótica).

Ana Paula Tomás (DCC-FCUP) DAA 2019/2020 Novembro 2019 21 / 29

Prova de que a estratégia greedy obtém a solução ótima se {200, 100, 50, 20, 10, 5, 2, 1}:

- Seja x^* uma solução ótima para a quantia Q. Seja x_v^* é o número de moedas que usa de valor v.
- Se $x_{100}^* > 1$, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, $x_{100}^* \le 1$. Analogamente se conclui que: $x_{50}^* \le 1$, $x_{10}^* \le 1$, e $x_1^* \le 1$.
- Se $x_{20}^* > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^* \le 2$. Analogamente, $x_2^* \le 2$.
- Não pode ter simultaneamente $x_2^*=2$ e $x_1^*=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^*+x_1^*\leq 4$. Também não tem simultaneamente $x_{20}^*=2$ e $x_{10}^*=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.

Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* é a solução greedy.

NB: A estrategia greedy apresentada nao seria correta para, por exemplo, $V = \{1, 300, 1000\}$, Q = 1200] Q = 1200

Prova de que a estratégia greedy obtém a solução ótima se $\{200, 100, 50, 20, 10, 5, 2, 1\}$:

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_v é o número de moedas que usa de valor v.
- Se $x_{100}^* > 1$, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, $x_{100}^* \le 1$. Analogamente se conclui que: $x_{50}^* \le 1$, $x_{10}^* \le 1$, e $x_1^* \le 1$.
- Se $x_{20}^* > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^* \le 2$. Analogamente, $x_2^* \le 2$.
- Não pode ter simultaneamente $x_2^*=2$ e $x_1^*=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^*+x_1^*\leq 4$. Também não tem simultaneamente $x_{20}^*=2$ e $x_{10}^*=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.

Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* é a solução greedy.

Prova de que a estratégia greedy obtém a solução ótima se {200, 100, 50, 20, 10, 5, 2, 1}:

- Seja x^* uma solução ótima para a quantia Q. Seja x^* é o número de moedas que usa de valor v.
- Se $x_{100}^{\star} > 1$, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, $x_{100}^{\star} \leq 1$. Analogamente se conclui que: $x_{50}^{\star} < 1$, $x_{10}^{\star} < 1$, e $x_{1}^{\star} < 1$.
- Se $x_{20}^* > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^{\star} < 2$. Analogamente, $x_{2}^{\star} < 2$.
- Não pode ter simultaneamente $x_2^* = 2$ e $x_1^* = 1$, pois a solução não seria ótima
- Como $2x_2^* + x_1^* < 4$, $x_5^* < 1$ e $x_{10}^* < 1$ então $5x_5^* + 2x_2^* + x_1^* < 9$ e

Prova de que a estratégia greedy obtém a solução ótima se $\{200, 100, 50, 20, 10, 5, 2, 1\}$:

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_v é o número de moedas que usa de valor v.
- Se x^{*}₁₀₀ > 1, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, x^{*}₁₀₀ ≤ 1.
 Analogamente se conclui que: x^{*}₅₀ ≤ 1, x^{*}₁₀ ≤ 1, e x^{*}₁ ≤ 1.
- Se $x_{20}^{\star} > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^{\star} \leq 2$. Analogamente, $x_{2}^{\star} \leq 2$.
- Não pode ter simultaneamente $x_2^*=2$ e $x_1^*=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^*+x_1^*\leq 4$. Também não tem simultaneamente $x_{20}^*=2$ e $x_{10}^*=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.

Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* é a solução greedy.

NB: A estratégia greedy apresentada não seria correta para, por exemplo, $V=\{1,300,1000\}$, Q=1200, Q

Prova de que a estratégia greedy obtém a solução ótima se {200, 100, 50, 20, 10, 5, 2, 1}:

- Seja x^* uma solução ótima para a quantia Q. Seja x^* é o número de moedas que usa de valor v.
- Se $x_{100}^{\star} > 1$, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, $x_{100}^{\star} \leq 1$. Analogamente se conclui que: $x_{50}^{\star} < 1$, $x_{10}^{\star} < 1$, e $x_{1}^{\star} < 1$.
- Se $x_{20}^* > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^{\star} < 2$. Analogamente, $x_{2}^{\star} < 2$.
- Não pode ter simultaneamente $x_2^* = 2$ e $x_1^* = 1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^{\star} + x_1^{\star} \le 4$. Também não tem simultaneamente $x_{20}^{\star} = 2$ e $x_{10}^{\star} = 1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^{\star} + 5x_{5}^{\star} + 2x_{2}^{\star} + x_{1}^{\star} \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_{5}^* + 2x_{2}^* + x_{1}^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_{5}^* + 2x_{2}^* + x_{1}^* \le 99$. $100x_{100}^{\star} + 50x_{50}^{\star} + 20x_{20}^{\star} + 10x_{10}^{\star} + 5x_{5}^{\star} + 2x_{2}^{\star} + x_{1}^{\star} \le 199.$

Prova de que a estratégia greedy obtém a solução ótima se $\{200,100,50,20,10,5,2,1\}$:

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_{v} é o número de moedas que usa de valor v.
- Se x^{*}₁₀₀ > 1, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, x^{*}₁₀₀ ≤ 1.
 Analogamente se conclui que: x^{*}₅₀ ≤ 1, x^{*}₁₀ ≤ 1, e x^{*}₁ ≤ 1.
- Se $x_{20}^{\star} > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^{\star} \leq 2$. Analogamente, $x_{2}^{\star} \leq 2$.
- Não pode ter simultaneamente $x_2^*=2$ e $x_1^*=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^*+x_1^*\leq 4$. Também não tem simultaneamente $x_{20}^*=2$ e $x_{10}^*=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.

Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^{\star} < v_{k+1}$, para todo k. Portanto, x^{\star} é a solução greedy.

NB: A estratégia greedy apresentada não seria correta para, por exemplo, $V=\{1,300,1000\}$, Q=1200. Q=1200

Seja G = (V, E, d) um grafo que **pode ter pesos negativos** nos ramos. O algoritmo de Bellman-Ford determina percursos com peso mínimo de um nó **origem** s para cada nó $v \in V = \{1, 2, \dots, n\}$.

- Um percurso mínimo de s para v não pode ter mais do que n-1 ramos, a menos que inclua ciclos com peso negativo. Mas, nesse caso, não há percurso mínimo de s para v pois, usando o ciclo, poderia diminuir o peso...
- O algoritmo inclui um passo (linhas 6–8) para verificar se existem ciclos com peso negativo. Se existirem, as distâncias finais não estariam corretas.

```
Algoritmo Bellman-Ford(s, n)
```

```
    Para cada v ∈ V fazer dist[v] ← ∞
    dist[s] ← 0;
    Para r ← 1 até n − 1 fazer
    Para cada (u, v) ∈ E fazer
    Se dist[v] > dist[u] + d(u, v) então dist[v] ← dist[u] + d(u, v)
    Para cada (u, v) ∈ E fazer
    Se dist[v] > dist[u] + d(u, v) então retorna false; /*ciclos com peso negativo*/
    retorna true; /*sem ciclos com peso negativo*/
```

23 / 29

Seja G = (V, E, d) um grafo que **pode ter pesos negativos** nos ramos. O algoritmo de Bellman-Ford determina percursos com peso mínimo de um nó **origem** s para cada nó $v \in V = \{1, 2, \dots, n\}$.

- Um percurso mínimo de s para v não pode ter mais do que n 1 ramos, a menos que inclua ciclos com peso negativo. Mas, nesse caso, não há percurso mínimo de s para v pois, usando o ciclo, poderia diminuir o peso...
- O algoritmo inclui um passo (linhas 6–8) para verificar se existem ciclos com peso negativo. Se existirem, as distâncias finais não estariam corretas.

```
    Para cada v ∈ V fazer dist[v] ← ∞
    dist[s] ← 0;
    Para r ← 1 até n − 1 fazer
    Para cada (u, v) ∈ E fazer
    Se dist[v] > dist[u] + d(u, v) então dist[v] ← dist[u] + d(u, v)
```

Seja G = (V, E, d) um grafo que **pode ter pesos negativos** nos ramos. O algoritmo de Bellman-Ford determina percursos com peso mínimo de um nó **origem** s para cada nó $v \in V = \{1, 2, \ldots, n\}$.

- Um percurso mínimo de s para v não pode ter mais do que n-1 ramos, a menos que inclua ciclos com peso negativo. Mas, nesse caso, não há percurso mínimo de s para v pois, usando o ciclo, poderia diminuir o peso. . . .
- O algoritmo inclui um passo (linhas 6–8) para verificar se existem ciclos com peso negativo. Se existirem, as distâncias finais não estariam corretas.

```
ALGORITMO BELLMAN-FORD(s, n)

1. | Para cada v \in V fazer dist[v] \leftarrow \infty

2. | dist[s] \leftarrow 0;

3. | Para r \leftarrow 1 até n-1 fazer

4. | Para cada (u, v) \in E fazer

5. | Se dist[v] > dist[u] + d(u, v) então dist[v] \leftarrow dist[u] + d(u, v)

6. | Para cada (u, v) \in E fazer

7. | Se dist[v] > dist[u] + d(u, v) então retorna false; /*ciclos com peso negativo*/

8. | retorna true; /*sem ciclos com peso negativo*/
```

23 / 29

Seja G = (V, E, d) um grafo que **pode ter pesos negativos** nos ramos. O algoritmo de Bellman-Ford determina percursos com peso mínimo de um nó **origem** s para cada nó $v \in V = \{1, 2, \ldots, n\}$.

- Um percurso mínimo de s para v não pode ter mais do que n-1 ramos, a menos que inclua ciclos com peso negativo. Mas, nesse caso, não há percurso mínimo de s para v pois, usando o ciclo, poderia diminuir o peso. . . .
- O algoritmo inclui um passo (linhas 6–8) para verificar se existem ciclos com peso negativo. Se existirem, as distâncias finais não estariam corretas.

```
ALGORITMO BELLMAN-FORD(s, n)

1. | Para cada v \in V fazer dist[v] \leftarrow \infty

2. | dist[s] \leftarrow 0;

3. | Para r \leftarrow 1 até n-1 fazer

4. | Para cada (u, v) \in E fazer

5. | Se dist[v] > dist[u] + d(u, v) então dist[v] \leftarrow dist[u] + d(u, v)

6. | Para cada (u, v) \in E fazer

7. | Se dist[v] > dist[u] + d(u, v) então retorna false; /*ciclos com peso negativo*,

8. | retorna true; /*sem ciclos com peso negativo*/
```

23 / 29

Seja G = (V, E, d) um grafo que **pode ter pesos negativos** nos ramos. O algoritmo de Bellman-Ford determina percursos com peso mínimo de um nó **origem** s para cada nó $v \in V = \{1, 2, \dots, n\}$.

- Um percurso mínimo de s para v não pode ter mais do que n-1 ramos, a menos que inclua ciclos com peso negativo. Mas, nesse caso, não há percurso mínimo de s para v pois, usando o ciclo, poderia diminuir o peso. . . .
- O algoritmo inclui um passo (linhas 6–8) para verificar se existem ciclos com peso negativo. Se existirem, as distâncias finais não estariam corretas.

```
ALGORITMO BELLMAN-FORD(s, n)

1. | Para cada v \in V fazer dist[v] \leftarrow \infty

2. | dist[s] \leftarrow 0;

3. | Para r \leftarrow 1 até n - 1 fazer

4. | Para cada (u, v) \in E fazer

5. | Se dist[v] > dist[u] + d(u, v) então dist[v] \leftarrow dist[u] + d(u, v)

6. | Para cada (u, v) \in E fazer

7. | Se dist[v] > dist[u] + d(u, v) então retorna false; /*ciclos com peso negativo*/

8. | retorna true; /*sem ciclos com peso negativo*/
```

Para $d(e) \in \mathbb{R}^+$, a matriz das distâncias mínimas $\tilde{D}_{ij}^{(n-1)}$ para **todos os** (i,j) pode ser definida pela recorrência

$$\tilde{D}_{ij}^{(1)} = \begin{cases} d(i,j) \text{ se } i \neq j \text{ e } (i,j) \in E \\ \infty, \text{ se } i \neq j \text{ e } (i,j) \notin E \\ 0, \text{ se } i = j. \end{cases}$$

$$\tilde{D}_{ij}^{(r)} = \min \{ \tilde{D}_{ik}^{(r-1)} + \tilde{D}_{kj}^{(1)} \mid 1 \leq k \leq n \}$$

$$= \min \{ \tilde{D}_{ik}^{(1)} + \tilde{D}_{ki}^{(r-1)} \mid 1 \leq k \leq n \}, \text{ se } r \geq 2$$

 $\tilde{D}_{ij}^{(r)}$ é a distância mínima de i para j se o percurso não puder ter mais do que r ramos, para cada $r \geq 1$.

Para $d(e) \in \mathbb{R}^+$, a matriz das distâncias mínimas $\tilde{D}_{ij}^{(n-1)}$ para todos os (i,j) pode ser definida pela recorrência

$$\begin{split} \bar{D}_{ij}^{(1)} &= \begin{cases} d(i,j) \text{ se } i \neq j \text{ e } (i,j) \in E \\ \infty, \text{ se } i \neq j \text{ e } (i,j) \notin E \\ 0, \text{ se } i = j. \end{cases} \\ \bar{D}_{ij}^{(r)} &= \min\{\bar{D}_{ik}^{(r-1)} + \bar{D}_{kj}^{(1)} \mid 1 \leq k \leq n\} \\ &= \min\{\bar{D}_{ik}^{(r)} + \bar{D}_{kj}^{(r-1)} \mid 1 \leq k \leq n\}, \text{ se } r \geq 2 \end{cases}$$

Calcula-se como um **produto de matrizes** \otimes em $(\mathbb{R}, \min, +)$, sendo um **método multiplicativo**. Os percursos mínimos têm subestrutura ótima e, por isso, $\tilde{D}^{(r+s)} = \tilde{D}^{(r)} \otimes \tilde{D}^{(s)}$, sendo dada por

$$(\tilde{D}^{(r)} \otimes \tilde{D}^{(s)})_{ij} = \min_{1 \leq k \leq n} (\tilde{D}^{(r)}_{ik} + \tilde{D}^{(s)}_{kj})$$

Para reduzir o número de multiplicações \otimes de $\Theta(n)$ para $\Theta(\log_2 n)$ podemos usar **o método binário para cálculo de potências**: $x^n = (x^2)^{\lfloor n/2 \rfloor} x^{n\%2} = \prod_{t=0}^{\lfloor \log_2 n \rfloor} (x^{2^t})^{b_t}$, onde b_t é o bit t da representação de n em binário. Por exemplo, $\tilde{D}^{19} = \tilde{D}^{16} \otimes \tilde{D}^2 \otimes \tilde{D}$.

◆ロト ◆昼 ト ◆ 豊 ト ◆ 豊 ・ りへの

Para $d(e) \in \mathbb{R}^+$, a matriz das distâncias mínimas $\tilde{D}_{ij}^{(n-1)}$ para todos os (i,j) pode ser definida pela recorrência

$$\begin{split} \bar{D}_{ij}^{(1)} &= \begin{cases} d(i,j) \text{ se } i \neq j \text{ e } (i,j) \in E \\ \infty, \text{ se } i \neq j \text{ e } (i,j) \notin E \\ 0, \text{ se } i = j. \end{cases} \\ \bar{D}_{ij}^{(r)} &= \min\{\bar{D}_{ik}^{(r-1)} + \bar{D}_{kj}^{(1)} \mid 1 \leq k \leq n\} \\ &= \min\{\bar{D}_{ik}^{(1)} + \bar{D}_{kj}^{(r-1)} \mid 1 \leq k \leq n\}, \text{ se } r \geq 2 \end{cases}$$

Calcula-se como um **produto de matrizes** \otimes em $(\mathbb{R}, \min, +)$, sendo um **método multiplicativo**. Os percursos mínimos têm subestrutura ótima e, por isso, $\tilde{D}^{(r+s)} = \tilde{D}^{(r)} \otimes \tilde{D}^{(s)}$, sendo dada por

$$(\tilde{D}^{(r)} \otimes \tilde{D}^{(s)})_{ij} = \min_{1 \leq k \leq n} (\tilde{D}^{(r)}_{ik} + \tilde{D}^{(s)}_{kj})$$

Para reduzir o número de multiplicações \otimes de $\Theta(n)$ para $\Theta(\log_2 n)$ podemos usar o método binário para cálculo de potências: $x^n = (x^2)^{\lfloor n/2 \rfloor} x^{n\%2} = \prod_{t=0}^{\lfloor \log_2 n \rfloor} (x^{2^t})^{b_t}$, onde b_t é o bit t da representação de n em binário. Por exemplo, $\tilde{D}^{19} = \tilde{D}^{16} \otimes \tilde{D}^2 \otimes \tilde{D}$.

Para $d(e) \in \mathbb{R}^+$, a matriz das distâncias mínimas $\tilde{D}_{ii}^{(n-1)}$ para todos os (i,j) pode ser definida pela recorrência

$$\begin{split} \tilde{D}_{ij}^{(1)} &= \begin{cases} d(i,j) \text{ se } i \neq j \text{ e } (i,j) \in E \\ \infty, \text{ se } i \neq j \text{ e } (i,j) \notin E \\ 0, \text{ se } i = j. \end{cases} \\ \tilde{D}_{ij}^{(r)} &= \min \{ \tilde{D}_{ik}^{(r-1)} + \tilde{D}_{kj}^{(1)} \mid 1 \leq k \leq n \} \\ &= \min \{ \tilde{D}_{ik}^{(1)} + \tilde{D}_{kj}^{(r-1)} \mid 1 \leq k \leq n \}, \text{ se } r \geq 2 \end{cases}$$

Calcula-se como um produto de matrizes \otimes em $(\mathbb{R}, \min, +)$, sendo um método multiplicativo. Os percursos mínimos têm subestrutura ótima e, por isso, $\tilde{D}^{(r+s)} = \tilde{D}^{(r)} \otimes \tilde{D}^{(s)}$, sendo dada por

$$(\tilde{D}^{(r)} \otimes \tilde{D}^{(s)})_{ij} = \min_{1 \leq k \leq n} (\tilde{D}^{(r)}_{ik} + \tilde{D}^{(s)}_{kj})$$

Para reduzir o número de multiplicações \otimes de $\Theta(n)$ para $\Theta(\log_2 n)$ podemos usar o método binário para cálculo de potências: $x^n = (x^2)^{\lfloor n/2 \rfloor} x^{n\%2} = \prod_{t=0}^{\lfloor \log_2 n \rfloor} (x^{2^t})^{b_t}$, onde b_t é o bit t da representação de n em binário. Por exemplo, $\tilde{D}^{19} = \tilde{D}^{16} \otimes \tilde{D}^2 \otimes \tilde{D}$.

Podemos adotar a ideia do algoritmo de Bellman-Ford (adaptado) para obter a matrix do fecho transitivo R^+ .

- Definimos $\tilde{M}_{ij}^{(r)} = 1$ se existir algum percurso no grafo de R do nó i para o nó i com até r ramos, para $r \ge 1$, fixo.
- Recorrência: para todos os pares (i, j) tem-se

$$\begin{array}{lcl} \tilde{M}_{ij}^{(1)} & = & M_{ij} \\ \\ \tilde{M}_{ij}^{(r)} & = & \tilde{M}_{ij}^{(r-1)} \vee (\bigvee_{k=1}^{n} (\tilde{M}_{ik}^{(r-1)} \wedge M_{kj})), \quad \text{para } r \geq 2 \end{array}$$

 Podemos avaliar usando o método multiplicativo e adaptar o método binário para reduzir o número de multiplicações, pois

$$\tilde{M}^{(r+s)} = \tilde{M}^{(r)} \otimes \tilde{M}^{(s)}$$

onde o produto de matrizes \otimes é considerado em $(\{0,1\},\vee,\wedge)$.

Podemos adotar a ideia do algoritmo de Bellman-Ford (adaptado) para obter a matrix do fecho transitivo R^+ .

- Definimos $\tilde{M}_{ij}^{(r)} = 1$ se existir algum percurso no grafo de R do nó i para o nó j com até r ramos, para $r \ge 1$, fixo.
- Recorrência: para todos os pares (i, j) tem-se

$$\tilde{M}_{ij}^{(1)} = M_{ij}$$

$$\tilde{M}_{ij}^{(r)} = \tilde{M}_{ij}^{(r-1)} \vee (\bigvee_{k=1}^{n} (\tilde{M}_{ik}^{(r-1)} \wedge M_{kj})), \quad \text{para } r \geq 1$$

 Podemos avaliar usando o método multiplicativo e adaptar o método binário para reduzir o número de multiplicações, pois

$$\tilde{M}^{(r+s)} = \tilde{M}^{(r)} \otimes \tilde{M}^{(s)}$$

onde o produto de matrizes \otimes é considerado em $(\{0,1\},\vee,\wedge)$.

Podemos adotar a ideia do algoritmo de Bellman-Ford (adaptado) para obter a matrix do fecho transitivo R^+ .

- Definimos $\tilde{M}_{ij}^{(r)} = 1$ se existir algum percurso no grafo de R do nó i para o nó j com até r ramos, para $r \ge 1$, fixo.
- Recorrência: para todos os pares (i, j) tem-se

$$\tilde{M}_{ij}^{(1)} = M_{ij}$$

$$\tilde{M}_{ij}^{(r)} = \tilde{M}_{ij}^{(r-1)} \vee (\bigvee_{k=1}^{n} (\tilde{M}_{ik}^{(r-1)} \wedge M_{kj})), \quad \text{para } r \geq 2$$

 Podemos avaliar usando o método multiplicativo e adaptar o método binário para reduzir o número de multiplicações, pois

$$\tilde{M}^{(r+s)} = \tilde{M}^{(r)} \otimes \tilde{M}^{(s)}$$

onde o produto de matrizes \otimes é considerado em $(\{0,1\},\vee,\wedge)$.

Podemos adotar a ideia do algoritmo de Bellman-Ford (adaptado) para obter a matrix do fecho transitivo R^+ .

- Definimos $\tilde{M}_{ij}^{(r)} = 1$ se existir algum percurso no grafo de R do nó i para o nó j com até r ramos, para $r \ge 1$, fixo.
- Recorrência: para todos os pares (i, j) tem-se

$$\tilde{M}_{ij}^{(1)} = M_{ij}$$

$$\tilde{M}_{ij}^{(r)} = \tilde{M}_{ij}^{(r-1)} \vee (\bigvee_{k=1}^{n} (\tilde{M}_{ik}^{(r-1)} \wedge M_{kj})), \quad \text{para } r \geq 2$$

 Podemos avaliar usando o método multiplicativo e adaptar o método binário para reduzir o número de multiplicações, pois

$$\tilde{M}^{(r+s)} = \tilde{M}^{(r)} \otimes \tilde{M}^{(s)}$$

onde o produto de matrizes \otimes é considerado em $(\{0,1\}, \vee, \wedge)$.

- Para $G = (V, \Sigma, P, S)$ fixa, a complexidade temporal do algoritmo é $O(|x|^3)$, ou seja, é cúbica no comprimento da palavra que se quer analisar.
- Seja N[i, i + s] o conjunto de variáveis em V que geram a subpalavra $x_i \dots x_{i+s}$ de x, isto é, $N[i, i + s] = \{A \mid A \in V, A \Rightarrow_G^* x_i \dots x_{i+s}\}.$
- Algoritmo CYK:
 - $N[i,i] := \{A \mid A \in V, A \rightarrow x_i\}$, para $1 \le i \le n$ e $N[i,j] := \emptyset$, para todo (i,j), com $i \ne j$.
 - Para cada s entre 1 e n-1 fazer

 Para cada i entre 1 e n-s, considerar N[i,k] e N[k+1,i+s],

 para todo k com $i \le k \le (i+s)-1$. Se existir $(A \to BC) \in P$ com $B \in N[i,k]$ e $C \in N[k+1,i+s]$, acrescentar A a N[i,i+s].
 - A palavra x está em $\mathcal{L}(\mathcal{G})$ se e só se $S \in N[1, n]$.

◆ロト ◆個 ▶ ◆ 種 ▶ ◆ 種 ▶ ■ ● 夕へで

27 / 29

Algoritmo CYK - aplicação de DP

 $\acute{\mathsf{E}}$ usual usar uma matriz, com $\mathit{N}[t,t+s]$ na coluna t e linha #s+1.

#n	N[1, n]					
#n-1	N[1, n-1]	N[2, n]				
:	:	:	:			
#3	N[1,3]	N[2, 4]		N[n-2, n]	1	
#2	N[1, 2]	N[2, 3]		N[n-2, n-1]	N[n-1, n]	
#1	N[1,1]	N[2, 2]		N[n-2, n-2]	N[n-1, n-1]	N[n, n]
	<i>x</i> ₁	<i>x</i> ₂		X_{n-2}	x_{n-1}	X _n

A entrada N[t, t+s] da tabela apresenta o conjunto das categorias possíveis para a subpalavra $x_t \cdots x_{t+s}$ de x. Portanto, contexiza as categorias das subpalavras indicadas na matrix seguintes.

Algoritmo CYK – aplicação de DP

É usual usar uma matriz, com N[t,t+s] na coluna t e linha #s+1.

# <i>n</i>	N[1, n]					
#n-1	N[1, n-1]	N[2, n]				
:	:	:	:			
	A/[1 0]	. 410 41	•	A/F 0 1	1	
#3	N[1, 3]	N[2, 4]	• • • •	N[n-2, n]		
#2	N[1, 2]	N[2, 3]		N[n-2, n-1]	N[n-1, n]	
_#1	N[1,1]	N[2, 2]	• • •	N[n-2, n-2]	N[n-1, n-1]	N[n, n]
	<i>x</i> ₁	<i>x</i> ₂		X_{n-2}	x_{n-1}	Xn

A entrada N[t, t+s] da tabela apresenta o conjunto das categorias possíveis para a subpalavra $x_t \cdots x_{t+s}$ de x. Portanto, carateriza as categorias das subpalavras indicadas na matrix seguinte:

#n	$x_1 \cdot \cdot \cdot x_n$				
#n-1	$x_1 \cdot \cdot \cdot x_{n-1}$	$x_2 \cdot \cdot \cdot x_n$			
		•		1	
#3	x ₁ x ₂ x ₃	X2X3X4	 $x_{n-2}x_{n-1}x_n$,
#2	x_1x_2	x ₂ x ₃	 $x_{n-2}x_{n-1}$	$x_{n-1}x_n$	
#1	<i>x</i> ₁	<i>x</i> ₂	 x_{n-2}	x_{n-1}	x _n

Algoritmo CYK - Exemplo

Para GIC G, com $V = \{E, T, F, E_1, E_2, T_1, T_2, T_3, M, S, X, Q, A, B\}$, símbolo inicial E, e seguintes produções:

Tem-se $(n+n)*n \in \mathcal{L}(\mathcal{G})$? Sim, porque o símbolo inicial E ocorre no topo da tabela:

#7	{ T , E }						
#6	Ø	Ø					
#5	$\{F, T, E\}$	Ø	Ø				
#4	Ø	$\{T_3\}$	Ø	Ø			
#3	Ø	{ <i>E</i> }	Ø	Ø	Ø		
#2	Ø	Ø	$\{E_1\}$	$\{T_3\}$	Ø	$\{T_1\}$	
#1	{ <i>A</i> }	$\{E,T,F\}$	{ <i>M</i> }	$\{E,T,F\}$	{ <i>B</i> }	{ <i>X</i> }	$\{E,T,F\}$
	(n	+	n)	*	n