Модуль подсистемы "DAQ" < ModBus>

Модуль:	ModBus	
Имя:	Mod Bus клиент	
Tun:	DAQ	
Источник:	daq_ModBus.so	
Версия:	0.4.0	
Автор:	Роман Савоченко	
Описание:	Предоставляет реализацию клиента Mod Bus-протокола. На данный момент реализован только Mod Bus TCP/IP.	
Лицензия:	GPL	

Оглавление

Модуль подсистемы "DAQ" <modbus></modbus>	1
Введение	
1 Общее описание протокола Modbus	
1.1 Адресация	
1.2 Стандартные коды функций	2
2 Модуль	
2.1 Контроллер данных2.2 Параметры	

Введение

Modbus — коммуникационный протокол, основанный на клиент-серверной архитектуре. Разработан фирмой Modicon для использования в контроллерах с программируемой логикой (PLC). Стал стандартом де-факто в промышленности и широко применяется для организации связи промышленного электронного оборудования. Использует для передачи данных через последовательные линии связи RS-485, RS-422, RS-232, а также сети TCP/IP. В настоящее время поддерживается некоммерческой организацией Modbus-IDA.

Существуют три режима протокола: Modbus RTU, Modbus ASCII, Modbus TCP. Первые два используют последовательные линии связи (в основном RS-485, реже RS-422/RS-232), последний использует для передачи данных по сетям TCP/IP.

Данный модуль предоставляет возможность собирать информацию у различных устройств по протоколу Modbus в режиме TCP.

1 Общее описание протокола Modbus

Протокол Modbus RTU предполагает одно ведущее (запрашивающее) устройство в линии (master), которое может передавать команды одному или нескольким ведомым устройствам (slave), обращаясь к ним по уникальному в линии адресу. Синтаксис команд протокола позволяет адресовать 247 устройств на одной линии связи стандарта RS-485 (реже RS-422 или RS-232). В случае с режимом TCP, адресация исключена из протокола, поскольку выполняется на уровне TCP/IP стека.

Инициатива проведения обмена всегда исходит от ведущего устройства. Ведомые устройства прослушивают линию связи. Мастер подаёт запрос (посылка, последовательность байт) в линию и переходит в состояние прослушивания линии связи. Ведомое устройство

отвечает на запрос, пришедший в его адрес. Окончание ответной посылки мастер определяет, по временному интервалу между окончанием приёма предыдущего байта и началом приёма следующего. Если этот интервал превысил время, необходимое для приёма двух байт на заданной скорости передачи, приём кадра ответа считается завершённым. Кадры запроса и ответа по протоколу modbus имеют фиксированный формат.

1.1 Адресация

Все операции с данными привязаны к нулю, каждый вид данных (регистр, выходное/входное значение) начинаются с адреса 0000. Адресация к ячейке начинается с 1.

1.2 Стандартные коды функций

В протоколе Modbus можно выделить несколько подмножеств команд (Таблица 1).

Таблица 1: Подмножество команд протокола Modbus

Подмножество	Диапазон кодов
Стандартные	1–21
Резерв для расширенных функций	22–64
Пользовательские	65–119
Резерв для внутренних нужд	120–255

Данным модулем используются команды 0x03 и 0x06 для чтения и записи регистров, соответственно. В будущих версиях планируется добавление поддержи и других стандартных команд.

2 Модуль

Данный модуль поддерживает предоставляет возможность опроса и записи регистров устройств посредством режима протокола TCP и команд запроса 0x03 и 0x06. В будущих версиях планируется расширение в направлении поддержки режимов RTU и ASCII, а также использования остальных стандартных команд.

2.1 Контроллер данных

Для добавления источника данных Modbus создаётся и конфигурируется контроллер в системе OpenSCADA. Пример вкладки конфигурации контроллера данного типа изображен на рис.1.

Рис.1. Вкладка конфигурации контроллера.

С помощью этой вкладки можно установить:

- Состояние контроллера, а именно: «Включен», Запущен», имя БД содержащей конфигурацию и время сбора данных.
- Идентификатор, имя и описание контроллера.
- Состояние в которое переводить контроллер при загрузке: «Включен» и «Запущен».
- Имя таблицы для хранения конфигурации параметров контроллера.
- Период и приоритет задачи сбора данных.
- Транспорт подсистемы «Транспорты» системы OpenSCADA для установки соединения.
- Адрес устройства и узел сервера назначения.
- Сохранить/загрузить контроллер в БД.

2.2 Параметры

Модуль *Modbus* предоставляет только один тип параметров – "Стандарт". Дополнительным конфигурационным полем параметра данного модуля (рис.2) является перечень обрабатываемых атрибутов. Атрибут в этом перечне записывается следующим образом: <numb>:<wr>:<id>:<numb>:<wr>:</d>

Гле:

```
numb — номер атрибута устройства; wr — признак доступности записи в атрибут; id — идентификатор атрибута; name — имя атрибута.
```


Рис.2. Вкладка конфигурации параметра.

В соответствии с указанным списком атрибутов выполняется опрос и создание атрибутов параметра (рис.3).

Рис.3. Вкладка атрибутов параметра.