

IIC1253 — Matemáticas Discretas

INTERROGACION 1

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

Pregunta 1

Sea A un conjunto no vacío y $R \subseteq A \times A$ una relación binaria. Demuestre que:

$$R^t = \bigcup_{i=1}^{\infty} R^i$$

Donde R^t es la clausura transitiva de R y R^i es la relación R compuesta i-veces.

Pregunta 2

Sea A un conjunto finito y $\sim_1, \sim_2 \subseteq A \times A$ dos relaciones de equivalencia.

- 1. Demuestre que $\sim_1 \cap \sim_2$ es una relación de equivalencia.
- 2. Sea $\sim = \sim_1 \cap \sim_2$. Demuestre que para toda clase de equivalencia $X \in A/\sim$ existen dos clases de equivalencia $X_1 \in A/\sim_1$ y $X_2 \in A/\sim_2$ tal que $X=X_1 \cap X_2$.

Pregunta 3

Sea A un conjunto no vacío y 2^A el conjunto potencia de A. Considere el conjunto:

$$A^\dagger \ = \ \{S \in 2^{2^A} \ \mid \ \text{para todo} \ X, Y \in S, \ \text{si} \ X \subseteq Y, \ \text{entonces} \ X = Y\}$$

En otras palabras, A^{\dagger} contiene todos los $S \in 2^{2^A}$ tal que no existen dos conjuntos distintos X e Y en S con $X \subseteq Y$.

Se define la relación $R \subseteq A^{\dagger} \times A^{\dagger}$ tal que $(S, S') \in R$ si para todo $X \in S$, existe un $X' \in S'$ tal que $X \subseteq X'$. Formalmente:

$$(S, S') \in R$$
 si, y solo si, $\forall X \in S. \exists X' \in S'. X \subseteq X'$

Demuestre que la relación R es un orden parcial.

Pregunta 4

Sea A un conjunto finito y $f: A \to A$ una biyección. A partir de f, se define la relación $R_f \subseteq A \times A$ como:

$$(a,b) \in R_f$$
 si, y solo si, existe un $n > 0$ tal que $f^n(a) = b$

donde $f^n = f \circ \stackrel{n\text{-veces}}{\cdots} \circ f$. En otras palabras, f^n corresponde a componer la función f n-veces.

Demuestre que la relación R_f es una relación de equivalencia.