SAE Robotique S6 - FORBOT (force control for robots)

Martin Mujica, (Vincent Bonnet), Ludovic De Matteis

Introduction

- Appliquer les notions de commande des moteurs pour la robotique
- Commande de plusieurs moteurs
- Mesure et commande de la force
- 6 groupes de 2 ou 3 étudiants
- 2 projets à choisir
 - Commande en effort sur le robot MATE 3DDL (2 groupes)
 - Application Haptique bilatérale avec deux pendules (4 groupes)

Exemple de commande en effort sur MATE

Objectif:

 Deplacer le robot en contact avec une surface et appliquer une force sur la surface

Requis :

- Monter le robot
- Simuler la commande sur coppeliasim
- Appliquer sur le robot

Vous devez aussi:

- Définir des étapes intermédiaires
- Faire un plan d'implémentation
- Ecrire un rapport et faire une vidéo

Éléments supplémentaires pour la commande en effort sur MATE

- Le robot doit se déplacer avec votre PID jusqu'au contacte (ou presque)
- Appliquer une commande en effort sur l'axe Z de la surface (quist la même que du monde/base)

Exemple d'application Haptique

Objectif:

 Déplacer un des pendules et que le deuxième fasse le même déplacement.

Requis :

- Commander un pendule
- Commander un pendule + simulation
- Commander deux pendules
- Vous devez aussi :
 - Définir des étapes intermédiaires
 - Faire un plan d'implémentation
 - Ecrire un rapport et faire une vidéo

Éléments supplémentaires pour le système haptique

- Les pendules doivent être compensés en gravité
- Ils seront controlés avec vos commandes PD ou PID
- On doit pouvoir sentir les efforts d'un pendule dans l'autre
- On peut l'imaginer comme un ressort amortisseurs qui les relies (le ressort est comme un terme Kp et l'amortisseur comme un Kd

Planning

Organisation

- Organisez les groupes
- Planifiez les listes de tâches
- Planifiez les deadlines pour les tâches pour arriver aux résultats
- Démarrez vos tests sur moteurs et simulation