

INFORME TECNICO

Link de github: https://github.com/Marianavc02/sistemasOperativos

1. Arquitectura General del Sistema

El sistema desarrollado simula un núcleo de sistema operativo simplificado, implementado en C++ y basado en ejecución concurrente con std::thread. El sistema está diseñado de forma modular, agrupando las funcionalidades principales en bloques lógicos accesibles a través de una interfaz por consola (CLI). Los componentes clave del sistema son:

Gestor de procesos: permite crear, suspender, reanudar, terminar y listar procesos simulados.

Planificador de procesos: permite aplicar dos algoritmos de planificación: Round Robin y Shortest Job First (SJF).

Gestor de memoria: simula paginación con algoritmos FIFO y LRU.

Mecanismos de sincronización: resuelve problemas clásicos como productor-consumidor y la cena de los filósofos mediante std::mutex y std::condition_variable.

Simulación de E/S: maneja recursos como impresoras compartidas con acceso sincronizado.

Planificación de disco: implementa algoritmos FCFS y SSTF.

Cada módulo está diseñado para trabajar de forma autónoma pero puede integrarse en una simulación completa, reflejando el comportamiento de un sistema operativo multitarea.

2. Algoritmos Implementados y Justificación

2.1 Planificación de Procesos

Round Robin

Descripción: Asigna un "quantum" de tiempo fijo a cada proceso. Si el proceso no termina en ese tiempo, se reenvía al final de la cola.

Justificación: Ideal para sistemas interactivos con tiempos de respuesta equitativos. Evita inanición y permite compartir CPU entre múltiples tareas.

Shortest Job First (SJF)

Descripción: Selecciona el proceso con menor tiempo de ejecución estimado.

Justificación: Minimiza el tiempo promedio de espera, mejorando el rendimiento del sistema cuando los tiempos de CPU son conocidos.

2.2 Gestión de Memoria Virtual

FIFO (First-In First-Out)

Descripción: Las páginas se almacenan en orden de llegada; la primera que entra es la primera en ser reemplazada.

Justificación: Fácil de implementar, pero propenso a la anomalía de Belady. Se incluye por su valor pedagógico.

LRU (Least Recently Used)

Descripción: Reemplaza la página que no ha sido utilizada por el mayor tiempo.

Justificación: Mejora el rendimiento al adaptarse al uso reciente de páginas. Refleja un comportamiento más realista en entornos modernos.

2.3 Sincronización de Procesos

Productor-Consumidor

Descripción: Un hilo productor inserta elementos en un buffer compartido, mientras que el consumidor los retira.

Justificación: Modelo clásico para ilustrar sincronización en acceso a recursos compartidos. Se implementa con std::mutex y std::condition_variable para evitar condiciones de carrera.

Cena de los Filósofos.

Descripción: Cada filósofo alterna entre pensar y comer. Para comer, debe adquirir dos tenedores (recursos compartidos).

Justificación: Demuestra la gestión de interbloqueo y exclusión mutua. Se aplica una estrategia de orden de adquisición para evitar deadlocks.

2.4 Entrada/Salida y Manejo de Recursos

Impresora Compartida

Descripción: Varios empleados (hilos) preparan documentos y esperan su turno para imprimir.

Justificación: Refleja la exclusión mutua en un entorno compartido. Se emplea una cola de espera y mutex para permitir que solo un empleado imprima a la vez. El sistema registra quién está esperando y quién imprime.

2.5 Planificación de Disco

FCFS (First-Come, First-Served)

Descripción: Las solicitudes de acceso a disco se atienden en orden de llegada.

Justificación: Justo y simple, aunque ineficiente si hay saltos grandes entre pistas.

SSTF (Shortest Seek Time First)

Descripción: Atiende la solicitud más cercana a la posición actual del cabezal.

Justificación: Reduce el tiempo de búsqueda y mejora la eficiencia respecto a FCFS.

2.6 Capturas o gráficas del comportamiento de los subsistemas

```
===== SIMULADOR DE KERNEL =====

1. Gesti | n de Procesos

2. Ejecutar

3. Memoria

4. Simular E/S (Impresora)

5. Planificaci | n Disco (FCFS/SSTF)

6. Simular Productor-Consumidor

7. Simular Cena de Fil | sofos

8. Salir

Seleccione opci | n: 1
```

```
=== Gesti | n de Procesos ===

1. Crear Proceso

2. Suspender Proceso

3. Reanudar Proceso

4. Terminar Proceso

5. Ver Procesos

6. Regresar

Seleccione opci | n: 1

ID del proceso: 1

Tiempo de CPU: 2

Proceso 1 creado en estado NUEVO.
```

```
=== Gesti | n de Procesos ===
1. Crear Proceso
2. Suspender Proceso
3. Reanudar Proceso
4. Terminar Proceso
5. Ver Procesos
6. Regresar
Seleccione opci n: 1
ID del proceso: 1
Tiempo de CPU: 2
Proceso 1 creado en estado NUEVO.
=== Gesti | n de Procesos ===
1. Crear Proceso
2. Suspender Proceso
3. Reanudar Proceso
4. Terminar Proceso
5. Ver Procesos
6. Regresar
Seleccione opci n: 1
ID del proceso: 2
Tiempo de CPU: 3
Proceso 2 creado en estado NUEVO.
```

```
=== Gesti | n de Procesos ===
 1. Crear Proceso
 2. Suspender Proceso
3. Reanudar Proceso
4. Terminar Proceso
 5. Ver Procesos
 6. Regresar
Seleccione opci n: 1
ID del proceso: 3
Tiempo de CPU: 3
 Proceso 3 creado en estado NUEVO.
=== Gesti | n de Procesos ===
1. Crear Proceso
2. Suspender Proceso
3. Reanudar Proceso
4. Terminar Proceso
5. Ver Procesos
6. Regresar
Seleccione opci | n: 5
ID Estado Tiempo restante
1
       NUEVO 2
2 NUEVO
        NUEVO
              3
==== SIMULADOR DE KERNEL =====
1. Gesti n de Procesos
2. Ejecutar
3. Memoria
4. Simular E/S (Impresora)
5. Planificaci n Disco (FCFS/SSTF)
6. Simular Productor-Consumidor
7. Simular Cena de Fil sofos
8. Salir
Seleccione opciln: 2
```

```
=== Ejecutar Planificaci n ===
1. Planificaci | n B ísica
2. Planificaci n Round Robin
3. Planificaci n SJF
4. Regresar
Seleccione opcilln: 2
Ejecutando Round Robin con quantum = 2
Ejecutando 1 por 2 unidades de tiempo.
Ejecutando 2 por 2 unidades de tiempo.
Ejecutando 3 por 2 unidades de tiempo.
Ejecutando 2 por 1 unidades de tiempo.
Ejecutando 3 por 1 unidades de tiempo.
Proceso Llegada Ejecuci n
                              Finalizaci n
                                              Retorno Espera
       0
               2
                                                     0
2
       0
                                                     4
       0
Tiempo promedio de espera: 3 unidades
Tiempo promedio de retorno: 5.66667 unidades
=== Ejecutar Planificaci||n ===
1. Planificaci n B ísica
2. Planificaci n Round Robin
3. Planificaci n SJF
4. Regresar
Seleccione opciln: 3
Ejecutando SJF (Shortest Job First)
Ejecutando 1 por 2 unidades.
Ejecutando 2 por 2 unidades.
Ejecutando 3 por 3 unidades.
Proceso Llegada Ejecuci n
                                Finalizaci n
                                                Retorno Espera
        0
                                                         0
                                2
                                                 2
        0
                                4
                                                4
        0
                3
                                                         4
Tiempo promedio de espera: 2 unidades
Tiempo promedio de retorno: 4.33333 unidades
```

```
===== SIMULADOR DE KERNEL ======

1. Gesti | n de Procesos

2. Ejecutar

3. Memoria

4. Simular E/S (Impresora)

5. Planificaci | n Disco (FCFS/SSTF)

6. Simular Productor-Consumidor

7. Simular Cena de Fil | sofos

8. Salir

Seleccione opci | n: 3

=== Memoria ===

1. Memoria FIFO

2. Memoria LRU

3. Regresar

Seleccione opci | n: 1
```

Pigina 7 cargada en un marco vacio. Memoria: 7 | Fallos: 1 Estado actual de memoria: 7 P-ígina 0 cargada en un marco vac-jo. Memoria: 7 0 | Fallos: 2 Estado actual de memoria: 7 0 Pigina 1 cargada en un marco vacio. Memoria: 7 0 1 | Fallos: 3 Estado actual de memoria: 7 0 1 Pigina 2 cargada en un marco vacio. Memoria: 7 0 1 2 | Fallos: 4 Estado actual de memoria: 7 0 1 2 P-ígina 0 ya en memoria. Memoria: 7 0 1 2 | Fallos: 4 Estado actual de memoria: 7 0 1 2 P-ígina 7 reemplazada por 3. Memoria: 0 1 2 3 | Fallos: 5 Estado actual de memoria: 0 1 2 3 Prígina 0 ya en memoria. Memoria: 0 1 2 3 | Fallos: 5 Estado actual de memoria: 0 1 2 3 P-ígina 0 reemplazada por 4.

Memoria: 1 2 3 4 | Fallos: 6

P-ígina 2 ya en memoria.

Estado actual de memoria: 1 2 3 4

Estado actual de memoria: 1 2 3 4

P-ígina 2 ya en memoria.

Memoria: 1 2 3 4 | Fallos: 6

Estado actual de memoria: 1 2 3 4

Pigina 3 ya en memoria.

Memoria: 1 2 3 4 | Fallos: 6

Estado actual de memoria: 1 2 3 4

P ígina 1 reemplazada por 0.

Memoria: 2 3 4 0 | Fallos: 7

Estado actual de memoria: 2 3 4 0

P-ígina 3 ya en memoria.

Memoria: 2 3 4 0 | Fallos: 7

Estado actual de memoria: 2 3 4 0

P-ígina 2 ya en memoria.

Memoria: 2 3 4 0 | Fallos: 7

Total de fallos de p ígina: 7

=== Memoria ===

- 1. Memoria FIFO
- 2. Memoria LRU
- 3. Regresar

Seleccione opci | n: 2

```
Procesando p ígina: 7
Estado previo del cach ::
Pigina 7 cargada en memoria.
Estado actual del cach 8: 7 | Fallos: 1
Procesando p ígina: 0
Estado previo del cach-®: 7
Pigina 0 cargada en memoria.
Estado actual del cach ®: 0 7 | Fallos: 2
Procesando p ígina: 1
Estado previo del cach 8: 0 7
P-ígina 1 cargada en memoria.
Estado actual del cach 8: 1 0 7 | Fallos: 3
Procesando p igina: 2
Estado previo del cach-®: 1 0 7
Pigina 2 cargada en memoria.
Estado actual del cach 8: 2 1 0 7 | Fallos: 4
Procesando p ígina: 0
Estado previo del cach 8: 2 1 0 7
Prígina 0 ya estaba en memoria (actualizada a mrís reciente).
Estado actual del cach 8: 0 2 1 7 | Fallos: 4
```

```
Procesando pigina: 3
Estado previo del cach 8: 0 2 1 7
P-ígina 7 reemplazada por 3.
P-ígina 3 cargada en memoria.
Estado actual del cach 8: 3 0 2 1 | Fallos: 5
Procesando p ígina: 0
Estado previo del cach 8: 3 0 2 1
P-ígina 0 ya estaba en memoria (actualizada a m-ís reciente).
Estado actual del cach 8: 0 3 2 1 | Fallos: 5
Procesando pigina: 4
Estado previo del cach-®: 0 3 2 1
P-ígina 1 reemplazada por 4.
P-ígina 4 cargada en memoria.
Estado actual del cach 8: 4 0 3 2 | Fallos: 6
Procesando pigina: 2
Estado previo del cach 8: 4 0 3 2
P-ígina 2 ya estaba en memoria (actualizada a m-ís reciente).
Estado actual del cach 8: 2 4 0 3 | Fallos: 6
Procesando pigina: 3
Estado previo del cach 8: 2 4 0 3
P-ígina 3 ya estaba en memoria (actualizada a m-ís reciente).
Estado actual del cach 8: 3 2 4 0 | Fallos: 6
Procesando pigina: 0
Estado previo del cach 8: 3 2 4 0
P-ígina 0 ya estaba en memoria (actualizada a m-ís reciente).
Estado actual del cach ®: 0 3 2 4 | Fallos: 6
```

```
Procesando p|ígina: 3
Estado previo del cach|®: 0 3 2 4
P|ígina 3 ya estaba en memoria (actualizada a m|ís reciente).
Estado actual del cach|®: 3 0 2 4 | Fallos: 6

Procesando p|ígina: 2
Estado previo del cach|®: 3 0 2 4
P|ígina 2 ya estaba en memoria (actualizada a m|ís reciente).
Estado actual del cach|®: 2 3 0 4 | Fallos: 6

Total de fallos de p|ígina: 6
```

```
===== SIMULADOR DE KERNEL =====

1. Gesti | n de Procesos

2. Ejecutar

3. Memoria

4. Simular E/S (Impresora)

5. Planificaci | n Disco (FCFS/SSTF)

6. Simular Productor-Consumidor

7. Simular Cena de Fil | sofos

8. Salir

Seleccione opci | n: 4
```

```
=== SISTEMA DE IMPRESION COMPARTIDA ===
[IMPRESION] Empleado 3 est í esperando para imprimir.
  >> Empleados esperando: 3
[IMPRESION] Empleado 3 est í imprimiendo...
  >> Empleados esperando:
[IMPRESION] Empleado 1 est í esperando para imprimir.
  >> Empleados esperando: 1
[IMPRESION] Empleado 4 est í esperando para imprimir.
  >> Empleados esperando: 1 4
[IMPRESION] Empleado 5 est í esperando para imprimir.
  >> Empleados esperando: 1 4 5
[IMPRESION] Empleado 2 est í esperando para imprimir.
  >> Empleados esperando: 1 4 5 2
[IMPRESION] Empleado 3 ha terminado de imprimir.
  >> Empleados esperando: 1 4 5 2
[IMPRESION] Empleado 1 est í imprimiendo...
  >> Empleados esperando: 4 5 2
[IMPRESION] Empleado 1 ha terminado de imprimir.
  >> Empleados esperando: 4 5 2
[IMPRESION] Empleado 4 est í imprimiendo...
  >> Empleados esperando: 5 2
[IMPRESION] Empleado 4 ha terminado de imprimir.
  >> Empleados esperando: 5 2
[IMPRESION] Empleado 5 est í imprimiendo...
  >> Empleados esperando: 2
[IMPRESION] Empleado 5 ha terminado de imprimir.
  >> Empleados esperando: 2
[IMPRESION] Empleado 2 est í imprimiendo...
  >> Empleados esperando:
[IMPRESION] Empleado 2 ha terminado de imprimir.
  >> Empleados esperando:
```

===== SIMULADOR DE KERNEL =====

- 1. Gesti | n de Procesos
- 2. Ejecutar
- 3. Memoria
- 4. Simular E/S (Impresora)
- 5. Planificaci n Disco (FCFS/SSTF)
- 6. Simular Productor-Consumidor
- 7. Simular Cena de Fil | sofos
- 8. Salir

Seleccione opcilln: 5

Simulaci | n FCFS:

Secuencia: 95 180 34 119 11 123 62 64

Simulaci | n SSTF:

Secuencia: 62 64 34 11 95 119 123 180

```
==== SIMULADOR DE KERNEL =====
1. Gesti | n de Procesos
2. Ejecutar
3. Memoria
4. Simular E/S (Impresora)
5. Planificaci n Disco (FCFS/SSTF)
6. Simular Productor-Consumidor
7. Simular Cena de Fillsofos
8. Salir
Seleccione opcilln: 6
Simulando Productor-Consumidor...
Productor produce: 1
Productor produce: 2
Productor produce: 3
Productor produce: 4
Productor produce: 5
Consumidor consume: 1
Consumidor consume: 2
Consumidor consume: 3
Consumidor consume: 4
Consumidor consume: 5
Productor produce: 6
Productor produce: 7
Productor produce: 8
Productor produce: 9
Productor produce: 10
Consumidor consume: 6
Consumidor consume: 7
Consumidor consume: 8
Consumidor consume: 9
Consumidor consume: 10
```

==== SIMULADOR DE KERNEL =====

- 1. Gesti | n de Procesos
- 2. Ejecutar
- 3. Memoria
- 4. Simular E/S (Impresora)5. Planificaci | n Disco (FCFS/SSTF)
- 6. Simular Productor-Consumidor7. Simular Cena de Fil | sofos
- 8. Salir

Seleccione opciln: 7

```
Simulando Cena de los Fil-sofos...
Fill sofo Fill sofo Fill sofo 1Fill sofo 4 est i pensando...
est í pensando...
0 est í pensando...
Fil-sofo 2 est-í pensando...
3 est í pensando...
Fillsofo 1Fillsofo est i comiendo...
4 est í comiendo...
Fill sofo Fill sofo 4 ha terminado de comer.
1 ha terminado de comer.
Fill sofo 1 est í pensando...
Fill sofo 2 est í comiendo...
Fil sofo 4 est í pensando...
Fil sofo 0 est í comiendo...
Fil-sofo 2 ha terminado de comer.
Fill sofo 2 est í pensando...
Fill sofo Fill sofo 0 ha terminado de comer.
Fill sofo 3 est í comiendo...
1 est í comiendo...
Fill sofo 0 est i pensando...
Fill sofo 3 ha terminado de comer.
Fill sofo 3Fill sofo 4 est í comiendo...
est i pensando...
Fill sofo 2 est í comiendo...
Fill sofo 1 ha terminado de comer.
Fil-sofo 1 est í pensando...
Fill sofo 4Fill sofo 0 est i comiendo...
ha terminado de comer.
Fil sofo 4 est í pensando...
Fillsofo 2Fillsofo 3 est í comiendo...
 ha terminado de comer.
```

```
Fil sofo 2 est í pensando...

Fil sofo 0 ha terminado de comer.

Fil sofo 1 est í pensando...

Fil sofo 3 ha terminado de comer.

Fil sofo 3 est í pensando...

Fil sofo 4 est í comiendo...

Fil sofo 1 ha terminado de comer.

Fil sofo 2 est í comiendo...

Fil sofo 2 est í comiendo...

Fil sofo 4Fil sofo 0 est í comiendo...

ha terminado de comer.

Fil sofo Fil sofo 3 est í comiendo...

2 ha terminado de comer.

Fil sofo 0 ha terminado de comer.

Fil sofo 3 ha terminado de comer.
```

2.7 Resultados y análisis de simulación.

Nota: debemos tener presente que ara ejecutar la opción 2 del menú de el simulador de kernel debes crear los procesos con anterioridad en la opción 1 del menú y si quieres volver a ejecutar la opción 2 con un proceso diferente ten en cuenta que al ya haber terminado este proceso que realizaste con anterioridad todos los procesos crados antes se dan por terminados y no se ejcutarn, así que debes repetir el proceso de creación de procesos si quieres volver a ejecutar la opción 2 del menú de kernel.

Planificación de Procesos: Round Robin logra distribución justa; SJF mejora tiempos de respuesta global.

Gestión de Memoria: LRU genera menos fallos de página que FIFO en acceso repetido. Las simulaciones muestran los cambios de marcos y la cantidad total de fallos.

Sincronización: El productor-consumidor y los filósofos operan sin bloqueos, gracias a las estructuras de sincronización correctamente aplicadas.

Impresora compartida: Solo un empleado imprime a la vez. Se muestran en consola los estados de espera y acceso.

Planificación de Disco: SSTF reduce la distancia recorrida por el cabezal en comparación con FCFS.

3. Diagramas.

Diagrama de módulos

Diagrama de flujo general del sistema

Diagrama de flujo secuencia de paginas

diagrama de flujo planificación de procesos

diagrama de flujo planificación de disco

diagrama de flujo cena de los filósofos

diagrama de flujo simulación impresora

