

## planetmath.org

Math for the people, by the people.

## product topology and subspace topology

 ${\bf Canonical\ name} \quad {\bf ProductTopologyAndSubspaceTopology}$ 

Date of creation 2013-03-22 15:35:33 Last modified on 2013-03-22 15:35:33

Owner matte (1858) Last modified by matte (1858)

Numerical id 6

Author matte (1858) Entry type Theorem Classification msc 54B10 Let  $X_{\alpha}$  with  $\alpha \in A$  be a collection of topological spaces, and let  $Z_{\alpha} \subseteq X_{\alpha}$  be subsets. Let

$$X = \prod_{\alpha} X_{\alpha}$$

and

$$Z = \prod_{\alpha} Z_{\alpha}.$$

In other words,  $z \in Z$  means that z is a function  $z \colon A \to \bigcup_{\alpha} Z_{\alpha}$  such that  $z(\alpha) \in Z_{\alpha}$  for each  $\alpha$ . Thus,  $z \in X$  and we have

$$Z \subseteq X$$

as sets.

**Theorem 1.** The product topology of Z coincides with the subspace topology induced by X.

*Proof.* Let us denote by  $\tau_X$  and  $\tau_Z$  the product topologies for X and Z, respectively. Also, let

$$\pi_{X,\alpha} \colon X \to X_{\alpha}, \quad \pi_{Z,\alpha} \colon Z \to Z_{\alpha}$$

be the canonical projections defined for X and Z. The http://planetmath.org/Subbasissubbases for X and Z are given by

$$\beta_X = \{\pi_{X,\alpha}^{-1}(U) : \alpha \in A, U \in \tau(X_\alpha)\},\$$
  
 $\beta_Z = \{\pi_{Z,\alpha}^{-1}(U) : \alpha \in A, U \in \tau(Z_\alpha)\},\$ 

where  $\tau(X_{\alpha})$  is the topology of  $X_{\alpha}$  and  $\tau(Z_{\alpha})$  is the subspace topology of  $Z_{\alpha} \subseteq X_{\alpha}$ . The claim follows as

$$\beta_Z = \{B \cap Z : B \in \beta_X\}.$$