WE CLAIM:

1	1.	A me	ethod for producing and identifying an active doublestranded
2	RNA (dsRNA) which	h atten	uates a desired gene expression in a cell, said method
3	comprising:		
4	(a)	produ	ucing a plurality of cDNA, wherein each cDNA comprises at
5	least a portion of a g	ene tha	t is expressed in a cell;
6	(b)	produ	ucing a candidate dsRNA from at least one of the cDNA;
7	(c)	intro	ducing the candidate dsRNA into a reference cell; and
8	(d)	ident	ifying an active dsRNA by determining whether the candidate
9	dsRNA modulates a	desired	candidate gene expression in the reference cell.
1	2.	The r	method of Claim 1 further comprising producing the identified
2	active dsRNA from	a corres	sponding cDNA of step (a).
1	3.	The r	method of Claim 1, wherein said step of identifying the active
2	dsRNA comprises:		
3	(A)	select	ting a candidate gene, wherein the candidate gene is a gene
4	that is expressed in a	test ce	ll and/or a control cell, and/or is expressed at a detectably
5	different level with r	espect 1	to the test cell and the control cell, and the test cell and control
6	cell differ with respect to a cellular characteristic; and		
7	(B)	identi	ifying whether the candidate dsRNA is an active dsRNA by
8	determining whether	down-	regulation of expression of the candidate gene in a reference
9	cell has a functional	effect i	n the reference cell, wherein the determining step comprises:
10		(i)	introducing the candidate dsRNA which is substantially
11			identical to at least a part of the candidate gene into the
12			reference cell; and
13		(ii)	detecting an alteration in a cellular activity or a cellular
14			state in the reference cell, alteration indicating that the
15			candidate gene plays a functional role in the reference cell
16			and is an active dsRNA.
1	4.	The r	method of Claim 1, wherein said step of producing a plurality
2	of cDNA comprises:		
3	(i)	isolat	ing at least one mRNA from the cell, and

4	(ii)	producing a double-stranded cDNA from the isolated mRNA by	
5	reverse transcription.		
1	5.	The method of Claim 4, wherein step of producing a plurality of	
2	cDNA further compr	ises producing cDNAs of a similar length by digesting cDNA of said	
3	step (ii) with a restric	ction enzyme.	
1	6.	The method of Claim 5, wherein said step (b) of producing the	
2	candidate dsRNA cor	mprises:	
3	(i)	producing a plasmid or PCR fragment from the cDNA, and	
4	(ii)	producing the candidate dsRNA from the plasmid or PCR	
5	fragment.		
1	7.	The method of Claim 6, wherein the plurality of cDNA comprises	
2	at least a portion of su	abstantially all genes that are actively expressed in the cell.	
1	8.	The method of Claim 6, wherein the desired affect of the candidate	
2	dsRNA on the reference cell is a result of the candidate dsRNA attenuating expression of		
3	a candidate gene in th	e reference cell.	
1	9.	The method of Claim 8, wherein the candidate dsRNA has	
2	complete sequence ide	entity with the candidate gene over at least 100 nucleotides.	
1	10.	The method of Claim 9, wherein the candidate dsRNA has	
2	complete sequence ide	entity with the candidate gene over at least 500 nucleotides.	
1	11.	The method of Claim 1, wherein the candidate dsRNA is at least	
2	100 nucleotides in len	gth.	
1	12.	The method of Claim 11, wherein the candidate dsRNA is at least	
2	500 nucleotides in len	gth.	
1	13.	The method of Claim 12, wherein the candidate dsRNA is between	
2	500 and 1100 nucleoti	des in length.	
1	14.	A method for identifying and validating the effect of an active	
2	double-stranded RNA	(dsRNA) which attenuates a desired gene expression in a cell, said	
3	method comprising		

4	(a)	producing a candidate dsRNA which comprises at least a portion of
5	a candidate gene tha	t is expressed in a control cell;
6	(b)	introducing the candidate dsRNA into a reference cell; and
7	(c)	identifying whether the candidate dsRNA is an active dsRNA by
8	detecting an alteration	on in a cellular activity or a cellular state in the reference cell,
9	alteration indicating	that the candidate gene plays a functional role in the reference cell
10	and is an active dsR	NA.
1	15.	The method of Claim 14, wherein said step of producing the
2	candidate dsRNA co	emprises:
3	(i)	producing a cDNA from a mRNA of the control cell such that the
4	cDNA comprises at	least a portion of the gene that is expressed in the control cell; and
5	(ii)	producing the candidate dsRNA from at least one of the cDNA of
6	said step (i).	
1	16.	The method of Claim 14, wherein the candidate gene is a gene that
2	is expressed in a test	cell and/or the control cell, and/or is expressed at a detectably
3	different level with r	espect to the test cell and the control cell, and the test cell and control
4	cell differ with respe	ct to a cellular characteristic.
1	17.	A method for correlating genes and gene function, said method
2	comprising:	
3	(a)	producing a plurality of candidate dsRNAs from a plurality of
4	cDNAs of a control of	cell such that each candidate dsRNA comprises at least a portion of a
5	gene that is expressed	d in the control cell;
6	(b)	introducing each of the candidate dsRNA into a plurality of
7	separate reference ce	ll each having a gene expression similar to the control cell in step
8	(a); and	
9	(c)	identifying which candidate dsRNA is an active dsRNA by
10	detecting an alteratio	n in a cellular activity or a cellular state in the reference cell, desired
11	alteration indicating	that the gene corresponding to the candidate dsRNA plays a
12	functional role in the	reference cell.
1	18.	The method of Claim 17, wherein the plurality of cDNAs is
2	produced from a plur	rality of mRNAs which are produced by the control cell.

1	1 19. The	e method of Claim 18, wherein said step of producing a plurality
2	of cDNA comprises:	
3	3 (i) isol	ating at least one mRNA from the cell;
4	4 (ii) prod	ducing a double-stranded cDNA from the isolated mRNA by
5	reverse transcription;	
6	(iii) prod	lucing cDNAs of a similar length by digesting cDNA of said
7	step (ii) with a restriction of	enzyme; and
8	iv) proc	lucing a plasmid or PCR fragment from the cDNA of said step
9	(iii).	
1	20. The	method of Claim 19, wherein the candidate dsRNA is
2	produced by transcribing the	ne plasmid cDNA or PCR fragment of said step (iv).
1	21. The	method of Claim 19, wherein the plurality of cDNA comprises
2	at least a portion of substar	atially all genes that are actively expressed in the cell.
1	22. The	method of Claim 19, wherein the restriction enzyme is selected
2	from the group consisting of	of Dpn1 and Rsa1.
1	23. The	method of Claim 17, wherein said step of producing the
2	plurality of candidate dsRN	As comprises:
3	(A) selec	ting a candidate gene, wherein the candidate gene is a gene
4	that is expressed in a test ce	ell and/or a control cell, and/or is expressed at a detectably
5	different level with respect	to the test cell and the control cell, and the test cell and control
6	cell differ with respect to a	cellular characteristic; and
7	(B) produ	ucing the plurality of candidate dsRNAs, wherein each
8	candidate dsRNA is substar	ntially identical to at least a part of the candidate gene.
1	24 The 1	method of claim 23, wherein the candidate gene is selected
2	from a normalized library p	repared from cells of the same type as the test cell or the
3	control cell and is present in	n low abundance in the normalized library.
1	25. The 1	method of claim 23, wherein the candidate gene is a
2	differentially expressed gen	e selected from a subtracted library that is enriched for genes
3	that are differentially expres	ssed with respect to the test cell and the control cell.

1		26.	The method of claim 25, wherein the subtracted library is also
2	normalized a	and the	candidate gene is one of the genes that is both present in low
3	abundance a	nd diffe	erentially expressed in the subtracted and normalized library.
1		27.	The method of claim 23, wherein said step of selecting the
2	candidate ge	ne com	prises:
3	(i)	prepa	aring
4		(A)	a tester-normalized cDNA library which is a normalized library
5			prepared from test cells;
6		(B)	a driver-normalized cDNA library which is a normalized library
7			prepared from control cells;
8		(C)	a tester-subtracted cDNA library which is enriched in one or more
9			genes that are up-regulated with respect to the test cell and the
10			control cell, and
11	,	(D)	a driver-subtracted cDNA library which is enriched in one or more
12			genes that are down-regulated with respect to the test cell and the
13			control cell; and
14	(ii)	identi	ifying one or more clones from the normalized libraries and/or the
15		subtra	acted libraries,
16	wherein the o	andida	te gene is one of the clones identified.
1		28.	The method of Claim 27, wherein said step of identifying one or
2	more clones	from th	e normalized libraries comprises:
3		(A)	contacting clones from the tester-normalized cDNA library with
4	labeled probe	s deriv	ed from mRNA from test cells and contacting clones from the driver-
5	normalized c	DNA li	brary with labeled probes derived from mRNA from control cells
6	under conditi	ons wh	ereby probes specifically hybridize with complementary clones to
7	form a first se	et of hy	bridization complexes; and
8		(B)	detecting at least one hybridization complex from the first set of
9	hybridization	comple	exes to identify a clone from one of the normalized libraries which is
10	present in lov	v abund	lance.
1		29.	The method of Claim 27, wherein said step of identifying one or
2	more clones	from the	e subtracted libraries comprises:

3	(A) contacting clones from the tester-subtracted cDNA library and	
4	contacting clones from the driver-subtracted cDNA library with a population of labeled	
5	probes under conditions whereby probes from the population of probes specifically	
6	hybridize with complementary clones to form a second set of hybridization complexes,	
7	and wherein the population of labeled probes is derived from mRNA from test cells and	
8	control cells; and	
9	(B) detecting at least one hybridization complex from the second set of	
10	hybridization complexes to identify a clone from one of the subtracted libraries which is	
11	differentially expressed above a threshold level with respect to the subtracted libraries.	
1	30. The method of claim 23, wherein the cellular characteristic is cell	
2	health, the test cell is a diseased cell and the control cell is a healthy cell, and the	
3	candidate gene is potentially correlated with a disease.	
1	31. The method of claim 30, wherein the test cell is obtained from a	
2	mammal that has had a stroke or is at risk for stroke.	
1	32. The method of claim 30, wherein the test cell is obtained from a	
2	mammal that has a neurological disease or develop phenotypes mimicing human	
3	neurological diseases.	
1	33. The method of claim 23, wherein the cellular characteristic is stage	
2	of development and the test cell and the control cell are at different stages of	
3	development, and the candidate gene is potentially correlated with mediating the change	
4	between the different stages of development.	
1	34. The method of claim 23, wherein the cellular characteristic is	
2	cellular differentiation and the candidate gene is potentially correlated with controlling	
3	cellular differentiation.	
1	35. The method of claim 23, wherein the candidate gene is an	
2	endogenous gene of the reference cell.	
1	36. The method of claim 23, wherein the candidate gene is present in	

the reference cell as an extrachromosomal gene.

1		37.	The method of claim 17, wherein the reference cell is part of a cell
2	culture.		
1		38.	The method of claim 17, wherein the reference cell is part of a
2	tissue.	20.	p
1		39.	The method of claim 17, wherein the reference cell is part of an
2	organism.		
1		40.	The method of claim 17, wherein the reference cell is part of an
2	embryo.		
1		41.	The method of claim 17, wherein the reference cell is a mammalian
2	cell.		
1		42.	The method of claim 17, wherein the reference cell is a neural or
2	glial cell.		
•		42	The weeks 1 of claim 42 and again the reference colling
1		43.	The method of claim 42, wherein the reference cell is a
2	neuroblastom	ia ceii.	
1		44.	The method of claim 43, wherein the reference cell is useful as a
2	model system	n for inv	restigating neurological disease in humans.
1		45.	The method of claim 44, wherein the reference cell has increased
2	sensitivity to		yl-D-aspartate, β-amyloid, peroxide, oxygen-glucoe deprivation, or
3	combinations		
1		46.	The method of claim 45, wherein the detecting step comprises
2	detecting a de	ecrease	in cellular sensitivity to N-methyl-D-aspartate, β-amyloid, peroxide,
3	oxygen-gluco	oe depri	vation, or combinations thereof.
1		47.	The method of claim 17, wherein the detecting step comprises
2	detecting mo		of ligand binding to a protein.
	, , , , , , , , , , , , , , , , , , ,		
1		48.	The method of claim 17, wherein the reference cell is a part of an
2	organism and	d the det	tecting step comprises detecting a change in phenotype.

3

1	49. The method of claim 17, wherein the determining step comprises
2	determining whether interference with expression of the candidate gene in the reference
3	cell is correlated with alteration of a cellular activity or cellular state.
1	50. The method of claim 49, wherein interference is achieved by
2	introducing a double-stranded RNA into the reference cell that can specifically hybridize

1 51. The method of claim 17, wherein the determining step comprises 2 determining whether the protein encoded by the candidate gene binds to another protein 3 to form a complex that can be coimmunoprecipitated.

RAD P3

to the candidate gene.