FİZ 122 2021-2022 Bahar Dönemi 1.Arasınav 90 Dakika

1	2	3	4	5	Total

x

Adı-soyadı:Öğı	renci No:Bölüm	Ders sorumlusu
----------------	----------------	----------------

Hesap makinesi kullanabilirsiniz, ancak alışverişi yasaktır.

Take $\epsilon_0 = 8,854 \text{x} 10^{-12} \text{ F/m}, \ \ g = 9.80 \text{ m/s}^2 \text{ if necessary.}$ **Good luck.**

1)- Düzgün λ_1 çizgisel yük yoğunluğuna sahip ince bir çubuk, şekilde görüldüğü gibi, 2a yarıçaplı yarım-çember şeklinde kıvrılmıştır. Düzgün λ_2 çizgisel yük yoğunluğuna sahip başka bir çubuk, a yarıçaplı yarım-çember şeklinde bükülmüştür. Her iki yarım-çemberin de merkezi şekildeki eksenlerin kesişim noktası olan orijindedir. Orijinde elektrik alanın sıfır olduğu verilmiştir. (a) SI birimleri cinsinden λ_1 çizgisel yük yoğunluğunun birimi nedir? (b) Çubukların çizgisel yük yoğunlukları oranı λ_1/λ_2 nedir? Cevabınızı sebepleriyle açıklayınız.

- 2)- İletken olmayan bir küre, kürenin merkezinde r_1 yarıçaplı küresel bir boşluğa sahiptir. Q yükünün kabukta düzgün bir şekilde dağıldığını varsayarak ($r = r_1$ ve $r = r_0$ arasında), elektrik alanını r' nin bir fonksiyonu olarak;
- (a) $0 < r < r_1$,
- (b) $r_1 < r < r_0$,
- (c) $r > r_0$ için belirleyiniz, ve
- (d) Boşluğun merkezinde q yükü var ise $r > r_0$ da elektrik alan ne olacaktır ?.

Bir elektrik alan çizgisi boyunca A'dan B'ye hareket ederken, şekilde gösterilen elektrik alanı bir elektron üzerine 3,94 X 10^{-19} J iş yapmaktadır. (a) V_B - V_A , (b) V_C - V_A ve (c) V_C - V_B elektrik potansiyel farkları nedir? (e=1,60 X 10^{-19} C).

a)
$$|V_B - V_A| = |W/q| = \frac{3.94 \times 10^{-13} \text{ m}}{1.60 \times 10^{-13} \text{ c}} = 2.46 \text{ m}$$

electron düsük poponsiyele sahip bölgeden yüksel poponsiyele sahip bölgeye doğru ilerliyor. O halde VB-VA = 2,46 V

b) C we B not palar, again potensiyele sahipting
$$V_B = V_C$$
 (5)
$$V_B - V_A = V_C - V_A = 2,46 \frac{V}{4}$$

- **4)-** Şekildeki gibi verilen devrede 3 μ F'lık kondansatöre kıvılcım yapmadan uygulanabilecek en büyük gerilim 4 V olarak veriliyor.
- a)- Devreye uygulanabilecek maksimum gerilimi bulunuz.
- b)- Bu durumda 4 µF lık kondansatörün yükü ne olur?

01-
$$C = \frac{Q}{V}$$

 $V = V_3 + V_6 = \frac{6V}{6}$
 $V = V_4 = V_2 + V_6 = \frac{6V}{6}$
 $V = V_4 = \frac{6V}{6} + \frac{6V}{6}$
 $V = V_4 = \frac{6V}{6} + \frac{6V}{6}$

$$V = ?$$

$$= 1 Q_3 = 3 \times 4 = 12 \text{ MC}$$

$$Q_3 = Q_6 = 12 \text{ MC}$$

$$= 1 Q_6 = 12 \text{ MC}$$

$$= 1 Q_6 = 12 \text{ MC}$$

$$= 1 Q_6 = 12 \text{ MC}$$

$$= 1 Q_6 = 12 \text{ MC}$$

$$= 1 Q_6 = 12 \text{ MC}$$

Şekilde basit bir doğru akım devresi verilmiştir ve devredeki elektrokimyasal EMF kaynağının detaylarını gösteren ayrıca bir şema sunulmuştur. EMF kaynağının terminal (kutup) voltaj değeri V ve EMF değeri ε dir. Devredeki yük direnci $R = 6 \Omega$ değerindedir ve bu direncin harcadığı güç 96 W kadardır.

a) Akım devrede ve de EMF kaynağının içinde hangi terminalden hangi terminale doğru akmaktadır (x'ten y'ye veya y'den x'e şeklinde ayrı ayrı cevaplayınız)?

Devrede x'ten y'ye

EMF kaynağının içinde y'den x'e

b) X ve Y terminallerinden hangisi EMF kaynağının pozitif terminalini temsil etmektedir? Fa ve Fb kuvvetlerinden hangisinin elektriksel olmayan kuvvetleri temsil etmesi beklenir?

x pozitif and y is negatif terminaldir.

F_b elektriksel olmayan kuvvetleri temsil etmesi beklenir.

c) V değeri nedir?

$$V = \sqrt{PR} = 24 V$$

d) EMF kaynağı ideal ise r (EMF kaynağının iç direnci) ve ε değerleri nedir?

$$r = 0 \Omega$$
, $\epsilon = 24 V$

e) Şayet $r = 1.5 \Omega$ kadarsa, ϵ ne olur? Bu durumda F_a ve F_b kuvvetlerinden hangisi daha büyüktür?

$$I = \sqrt{\frac{P}{R}} = 4 A$$

$$\varepsilon = V + Ir = 24V + 4A \times 1.5\Omega = 30V$$

F_b daha büyüktür.