§ 10. Криволинейные интегралы

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Криволинейные интегралы первого рода. Пусть спрямляемая кривая Γ задана уравнением

$$\mathbf{r} = \mathbf{r}(s), \quad 0 \leqslant s \leqslant S,\tag{1}$$

где s — переменная длина дуги этой кривой. Тогда, если на кривой Γ определена функция F, то число

$$\int_{0}^{S} F(\mathbf{r}(s)) ds$$

называют криволинейным интегралом первого рода от функции F по кривой Γ и обозначают

$$\int\limits_{\Gamma} F(x;y;z)\,ds$$
 или, короче, $\int\limits_{\Gamma} F\,ds.$

Таким образом, по определению

$$\int_{\Gamma} F(x; y; z) \, dx = \int_{0}^{S} F(x(s); y(s); z(s)) \, ds. \tag{2}$$

Интеграл (2) существует, если функция F непрерывна на кривой Γ . Свойства криволинейного интеграла первого рода.

- 1) Криволинейный интеграл первого рода не зависит от ориентации кривой.
- 2) Если кривая Γ есть объединение конечного числа кривых $\Gamma_1,...$..., Γ_k , а функция F непрерывна на Γ , то

$$\int_{\Gamma} F(x; y; z) dx = \sum_{i=1}^{k} \int_{\Gamma_i} F(x; y; z) ds.$$
 (3)

3) Если гладкая кривая Г задана уравнением

$$\mathbf{r} = \mathbf{r}(t), \quad \alpha \leqslant t \leqslant \beta,$$
 (4)

а функция F непрерывна на кривой Γ , то

$$\int_{\Gamma} F(x;y;z) \, ds = \int_{\alpha}^{\beta} F(x(t);y(t);z(t)) \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} \, dt.$$
(5)

Если Γ — гладкая плоская кривая, заданная уравнением

$$y = f(x), \quad a \leqslant x \leqslant b, \tag{6}$$

то

$$\int_{\Gamma} F(x;y) \, dx = \int_{0}^{b} F(x;f(x)) \sqrt{1 + (f'(x))^2} \, dx. \tag{7}$$

Аналогично, если гладкая плоская кривая Г задана уравнением

$$x = \varphi(y), \quad c \leqslant y \leqslant d,$$

то

$$\int_{\Gamma} F(x;y) dx = \int_{\Gamma}^{d} F(\varphi(y);y) \sqrt{1 + (\varphi'(y))^2} dy.$$
 (8)

2. Криволинейные интегралы второго рода. Пусть гладкая кривая Г задана уравнением (1). Тогда

$$\frac{d\mathbf{r}}{ds} = \boldsymbol{\tau} = (\cos\alpha; \cos\beta; \cos\gamma) \tag{9}$$

 $\frac{d\mathbf{r}}{ds} = \boldsymbol{\tau} = (\cos\alpha; \cos\beta; \cos\gamma) \tag{9}$ — единичный вектор касательной к этой кривой. Здесь α , β , γ углы, образованные касательной с координатными осями Ox, Oyи Oz соответственно.

Пусть на кривой Γ определена вектор-функция $\mathbf{F}=(P;Q;R)$ такая, что для скалярной функции

$$F_{\tau} = (\mathbf{F}, \boldsymbol{\tau}) = P \cos \alpha + Q \cos \beta + P \cos \gamma$$
 существует
$$\int_{\Gamma} F_{\tau} ds. \text{ Тогда число}$$

$$\int_{\Gamma} F_{\tau} ds = \int_{\Gamma} (\mathbf{F}, \boldsymbol{\tau}) ds \tag{10}$$

называют криволинейным интегралом второго рода от функции ${f F}$ по кривой Г и обозначают

$$\int_{\Gamma} P \, dx + Q \, dy + R \, dz.$$

Таким образом, по определению

$$\int_{\Gamma} P dx + Q dy + R dz = \int_{0}^{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds, \qquad (11)$$

где $(\cos \alpha; \cos \beta; \cos \gamma)$ — единичный вектор касательной к кривой Γ . Формулу (11) можно записать в векторной форме:

$$\int_{\Gamma} (\mathbf{F}, d\mathbf{r}) = \int_{0}^{S} (\mathbf{F}(\mathbf{r}(s)), \boldsymbol{\tau}(s)) ds,$$
 (12)

где $d\mathbf{r} = (dx; dy; dz)$.

Если $\dot{Q}=R=0$, то формулу (11) записывают в виде

$$\int_{\Gamma} P dx = \int_{0}^{S} P(x(s); y(s); z(s)) \cos \alpha(s) ds.$$
 (13)

Аналогично.

$$\int_{\Gamma} Q \, dy = \int_{0}^{S} Q \cos \beta \, ds, \quad \int_{\Gamma} R \, dz = \int_{0}^{S} R \cos \gamma \, ds. \tag{14}$$

Свойства криволинейного интеграла второго рода.

- 1) При изменении ориентации кривой на противоположную криволинейный интеграл второго рода меняет знак.
- 2) Если гладкая кривая Γ задана уравнением (4), а вектор-функция $\mathbf{F} = (P; Q; R)$ непрерывна на Γ , то

$$\int_{\Gamma} (\mathbf{F}, d\mathbf{r}) = \int_{\Omega}^{\beta} (\mathbf{F}, \mathbf{r}'(t)) dt, \tag{15}$$

или

$$\int_{\Gamma} P dx + Q dy + R dz = \int_{\alpha}^{\beta} \left[P(x(t); y(t); z(t)) x'(t) + \right]$$

$$+Q(x(t);y(t);z(t))y'(t) + R(x(t);y(t);z(t))z'(t)dt.$$
 (16)

В случае, когда Γ — плоская гладкая кривая, заданная уравнением (6), из формулы (16) следует, что

$$\int_{\Gamma} P(x;y) dx = \int_{a}^{b} P(x;f(x)) dx, \tag{17}$$

$$\int_{\Gamma} Q(x;y) \, dy = \int_{a}^{b} Q(x;f(x))f'(x) \, dx. \tag{18}$$

3. Формула Грина. Пусть граница Г плоской ограниченной области G состоит из конечного набора кусочно гладких кривых. Тогда, если функции $P,\ Q,\ \frac{\partial P}{\partial y},\ \frac{\partial Q}{\partial x}$ непрерывны на \overline{G} , то справедлива фор-

мула Грина

$$\iint\limits_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \int\limits_{\Gamma} P \, dx + Q \, dy, \tag{19}$$

где контур Γ ориентирован так, что при его обходе область G остается слева.

Из формулы (19) при Q = x, P = -y получаем

$$S = \frac{1}{2} \int_{\Gamma} x \, dy - y \, dx, \tag{20}$$

где $S = \iint dx \, dy$ — площадь области G, ограниченной контуром Γ (при обходе контура Γ область G остается слева).

4. Условия независимости криволинейного интеграла от **пути интегрирования.** Если функции P(x;y) и Q(x;y) непрерывны в плоской области G, то криволинейный интеграл

$$\int_{\Gamma_{AB}} P \, dx + Q \, dy \tag{21}$$

17 Под ред. Л.Д.Кудрявцева, т. 3

не зависит от пути интегрирования Γ_{AB} (кривая Γ_{AB} лежит в области $G,\ A$ — ее начало, \hat{B} — конец) тогда и только тогда, когда выражение P dx + Q dy является полным дифференциалом некоторой функции u = u(x; y), т. е. в области G выполняется условие

$$du = P dx + Q dy$$
 или $\frac{\partial u}{\partial x} = P$, $\frac{\partial u}{\partial y} = Q$. (22)

При этом

$$\int_{\Gamma_{AB}} P dx + Q dy = u(B) - u(A). \tag{23}$$

Здесь

$$u(x;y) = \int_{\Gamma_{M_0M}} P dx + Q dy, \qquad (24)$$

где Γ_{M_0M} — некоторая кривая с началом в фиксированной точ-

ке $M_0(x_0;y_0)$ и концом в точке M(x;y), лежащая в области G. Пусть функции $P,~Q,~\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$ непрерывны в плоской области G. Тогда для того чтобы криволинейный интеграл (21) не зависел от пути интегрирования, необходимо, а в случае, когда G — односвязная область, то и достаточно, чтобы в области G выполнялось условие

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}. (25)$$

5. Некоторые приложения криволинейных интегралов. Π усть на кусочно гладкой кривой Γ распределена масса с линейной плоскостью $\rho(x; y; z)$ (или $\rho(x; y)$ для плоской кривой).

Массу кривой вычисляют по формуле

$$m = \int_{\Gamma} \rho(x; y; z) \, ds, \tag{26}$$

координаты центра масс — по формулам

$$x_C = \frac{1}{m} \int_{\Gamma} x \rho \, ds, \quad y_C = \frac{1}{m} \int_{\Gamma} y \rho \, ds, \quad z_C = \frac{1}{m} \int_{\Gamma} z \rho \, ds, \quad (27)$$

моменты инерции относительно осей $Ox,\ Oy\ u\ Oz$ — по формулам

$$I_x = \int_{\Gamma} (y^2 + z^2) \rho \, ds, \quad I_y = \int_{\Gamma} (z^2 + x^2) \rho \, ds, \quad I_z = \int_{\Gamma} (x^2 + y^2) \rho \, ds.$$
 (28)

Пусть на области Ω задана вектор-функция $\mathbf{F}(\mathbf{r})$, где \mathbf{r} — радиусвектор точки из Ω , тогда говорят, что на Ω задано векторное (силовое) поле. Пусть Γ — кусочно гладкая ориентированная кривая в Qи векторное поле ${\bf F}$ непрерывно на Γ .

Pаботой поля $\mathbf F$ вдоль Γ называют интеграл

$$A = \int_{\Gamma} \mathbf{F}(\mathbf{r}) \, d\mathbf{r}. \tag{29}$$

примеры с решениями

Пример 1. Вычислить криволинейный интеграл

$$I = \int\limits_{\Gamma} (x+y) \, ds,$$

где Γ — граница треугольника (рис. 10.1) с вершинами O(0;0),A(1;0), B(1;1).

lack Пусть $I_1,\,I_2,\,I_3$ — криволинейные интегралы от функции x+y по отрезкам AB, BOи OA соответственно. Так как отрезок ABзадается уравнением $x=1,\ 0\leqslant y\leqslant 1,$ то по формуле (8) получаем

$$I_1 = \int\limits_0^1 \left(y+1
ight) dy = rac{3}{2}.$$

Отрезки BO и OA задаются соответственно уравнениями y=x, $0 \leqslant x \leqslant 1$, и y = 0, $0 \leqslant x \leqslant 1$. По формуле (7) находим

$$I_2 = \int_0^1 2x \sqrt{2} \, dx = \sqrt{2}, \quad I_3 = \int_0^1 x \, dx = \frac{1}{2}.$$

Следовательно, $I = I_1 + I_2 + I_3 = 2 + \sqrt{2}$. \blacktriangle

Пример 2. Вычислить криволинейный интеграл

$$I = \int\limits_{\Gamma} y \, dx + x \, dy$$

по кривой Γ с началом O(0;0) и концом A(1; 1), если (рис. 10.2):

- 1) Γ отрезок OA; 2) Γ дуга параболы $y=x^2$; 3) Γ дуга окружности радиуса 1 с центром в точке (1;0).

\Delta 1) Так как отрезок OA задается уравнением $y=x,\ 0\leqslant x\leqslant 1,$ то, применяя формулы (17) и (18), находим

$$I = \int\limits_0^1 x \, dx + \int\limits_0^1 x \, dx = 1.$$

2) Если Г — дуга параболы, то

$$\int\limits_{\Gamma} y \, dx = \int\limits_{0}^{1} x^{2} \, dx, \quad \int\limits_{\Gamma} x \, dy = \int\limits_{0}^{1} 2x^{2} \, dx, \quad I = \int\limits_{0}^{1} 3x^{2} \, dx = 1.$$

3) Так как уравнение дуги окружности можно записать в виде $x = 1 + \cos t$, $y = \sin t$,

0

Рис. 10.2

где t меняется от π до $\pi/2$, то по формуле (16) получаем

$$I = \int_{\pi}^{\pi/2} \sin t (-\sin t) \, dt + \int_{\pi}^{\pi/2} (1 + \cos t) \cos t \, dt =$$

$$= \int_{\pi}^{\pi/2} (\cos t + \cos 2t) \, dt = 1. \quad \blacktriangle$$

 Π р и м е р 3. Вычислить с помощью формулы Γ рина криволинейный интеграл

$$I = \int\limits_G x^2 y \, dx - xy^2 \, dy,$$

где Γ — окружность $x^2+y^2=R^2,$ пробегаемая против хода часовой стрелки.

▲ Воспользуемся формулой (19), где

$$P = x^2 y$$
, $Q = -xy^2$, $\frac{\partial Q}{\partial x} = -y^2$, $\frac{\partial P}{\partial y} = x^2$.

Тогда

$$I = -\iint\limits_{D} (x^2 + y^2) \, dx \, dy,$$

где D — круг радиуса R с центром в точке (0;0). Переходя к полярным координатам, получаем

$$I = -\int_{0}^{2\pi} d\varphi \int_{0}^{R} r^{3} dr = -\frac{\pi R^{4}}{2}.$$

Пример 4. Пользуясь формулой (20), найти площадь S, ограниченную астроидой

$$x = a\cos^3 t$$
, $y = a\sin^3 t$, $0 \le t \le 2\pi$.

▲ Применяя формулы (20) и (16), получаем

$$S = \frac{1}{2} \int_{0}^{2\pi} (x(t)y'(t) - y(t)x'(t)) dt = \frac{3a^{2}}{2} \int_{0}^{2\pi} (\cos^{4}t \sin^{2}t + \sin^{4}t \cos^{2}t) dt =$$

$$= \frac{3a^{2}}{8} \int_{0}^{2\pi} \sin^{2}2t dt = \frac{3a^{2}}{16} \int_{0}^{2\pi} (1 - \cos 4t) dt = \frac{3\pi a^{2}}{8}. \quad \blacktriangle$$

Пример 5. Показать, что криволинейный интеграл

$$I = \int_{AB} (3x^2y + y) dx + (x^3 + x) dy,$$

где $A(1;-2),\ b(2;3),$ не зависит от пути интегрирования, и вычислить этот интеграл.

▲ Так как функции $P=3x^2y+y,\;Q=x^3+x,\;\frac{\partial P}{\partial x}$ и $\frac{\partial Q}{\partial y}$ непрерывны в R^2 и выполняется условие (25), то интеграл не зависит от пути интегрирования и выражается формулой (23).

Функцию u(x;y) можно найти по формуле (24). Заметим, однако, что подынтегральное выражение является полным дифференциалом, так как

$$(3x^{2} + y) dx + (x^{3} + x) dy = (3x^{2}y dx + x^{3} dy) + (y dx + x dy) =$$

= $d(x^{3}y) + d(xy) = d(x^{3}y + xy) = du$.

Следовательно, $u = x^3y + xy$, и по формуле (23) находим

$$I = u(B) - u(A) = 30 - (-4) = 34.$$

ЗАДАЧИ

- 1. Вычислить криволинейный интеграл первого рода по плоской кривой Γ :
 - 1) $\int\limits_{\Gamma} ds, \; \Gamma$ отрезок с концами (0;0) и (1;2);
 - 2) $\int\limits_{\Gamma} \left(2x+y\right)ds,\; \Gamma$ ломаная $ABOA,\;$ где $A(1;0),\;B(0;2),\;O(0;0);$
 - 3) $\int\limits_G \left(x+y\right)ds,$ Γ граница треугольника с вершинами (0;0);
- (1;0) и (0;1);
 - 4) $\int_{\Gamma} \frac{ds}{y-x}$, Γ отрезок с концами (0;-2) и (4;0);
 - 5) $\int\limits_{\Gamma} \frac{ds}{\sqrt{x^2+y^2+4}}\,,\;\Gamma$ отрезок с концами (0;0) и (1;2).
 - **2.** Вычислить криволинейный интеграл $\int\limits_{\Gamma} xy\,ds,$ если:
- 1) Γ граница квадрата с вершинами $(1;0),\ (0;1),\ (-1;0),\ (0;-1);$
- 2 2 1 2 четверть эллипса $x^{2}/a^{2}+y^{2}/b^{2}=1$, лежащая в 2 квадранте:
- 3) Γ граница прямоугольника с вершинами $(0;0),\ (4;0),\ (4;2),\ (0;2).$
- **3.** Пусть Γ гладкая кривая, заданная в полярных координатах $(r;\varphi)$ уравнением $r=\rho(\varphi),\ \varphi_1\leqslant \varphi\leqslant \varphi_2,$ а функция F(x;y) непрерывна на Γ . Доказать, что

$$\int_{\Gamma} F(x;y) ds = \int_{\varphi_1}^{\varphi_2} F(\rho(\varphi)\cos\varphi; \rho(\varphi)\sin\varphi) \sqrt{\rho^2(\varphi) + (\rho'(\varphi))^2} d\varphi. \quad (30)$$

Вычислить криволинейный интеграл по плоской кривой Γ (4–11).

4.
$$\int\limits_{\Gamma} x^2\,ds,\ \Gamma$$
 — дуга окружности $x^2+y^2=a^2,\ y\geqslant 0.$

5.
$$\int_{\Gamma} (x^2 + y^2)^n ds$$
, Γ — окружность $x^2 + y^2 = a^2$.

6.
$$\int_{\Gamma} f(x,y) dx$$
, Γ — окружность $x^2 + y^2 = ax$, если:

1)
$$f(x;y) = x - y$$
; 2) $f(x;y) = \sqrt{x^2 + y^2}$.

7.
$$\int\limits_{\Gamma} f(x;y)\,ds,\;\Gamma$$
 — правый лепесток лемнискаты, заданной в по-

лярных координатах уравнением $r^2=a^2\cos 2\varphi,$ если: 1) f(x;y)=x+y; 2) $f(x;y)=x\sqrt{x^2-y^2}.$

1)
$$f(x;y) = x + y$$
; 2) $f(x;y) = x\sqrt{x^2 - y^2}$.

8.
$$\int\limits_{\Gamma} |y| \, ds, \; \Gamma$$
 — лемниската $r^2 = a^2 \cos 2\varphi$.

9.
$$\int\limits_{\Gamma} \left(x^{4/3}+y^{4/3}\right)ds, \; \Gamma$$
 — астроида $x^{2/3}+y^{2/3}=a^{2/3}.$

10.
$$\int_{\Gamma} f(x;y) ds$$
, Γ — арка циклоиды $x = a(t-\sin t)$, $y = a(1-\cos t)$

$$-\cos t$$
), $0 \leqslant t \leqslant 2\pi$, если:

1)
$$f(x;y) = y$$
; 2) $f(x;y) = y^2$.

11.
$$\int\limits_{\Gamma} f(x;y)\,ds,\ \Gamma$$
 — дуга развертки окружности
$$x=a(\cos t+t\sin t),\quad y=a(\sin t-t\cos t),\quad 0\leqslant t\leqslant 2\pi,$$

если:

1)
$$f(x;y) = x^2 + y^2$$
; 2) $f(x;y) = \sqrt{x^2 + y^2}$.

Вычислить криволинейный интеграл по пространственной кривой Γ (12–18).

12.
$$\int\limits_{\Gamma} f(x;y;z)\,ds,\;\Gamma$$
 — первый виток винтовой линии $x=a\cos t,\quad y=a\sin t,\quad z=bt,$

1)
$$f(x;y;z) = z^2/(x^2+y^2);$$
 2) $f(x;y;z) = 1/(x^2+y^2+z^2);$
3) $f(x;y;z) = x^2+y^2+z^2.$

3)
$$f(x; y; z) = x^2 + y^2 + z^2$$
.

13.
$$\int\limits_{\Gamma} f(x;y;z)\,ds,\ \Gamma$$
 — дуга конической винтовой линии

$$x = t \cos t$$
, $y = t \sin t$, $z = t$, $0 \leqslant t \leqslant 2\pi$,

1)
$$f(x;y;z) = z$$
; 2) $f(x;y;z) = \sqrt{x^2 + y^2} + z$.

14.
$$\int_{\Gamma} \sqrt{2y^2 + z^2} \, ds$$
, Γ — окружность $x^2 + y^2 + z^2 = a^2$, $x = y$.

15.
$$\int\limits_{\Gamma} xyz\,ds,\ \Gamma$$
 — четверть окружности $x^2+y^2+z^2=a^2,\ x=y,$ расположенная в I октанте.

16.
$$\int\limits_{\Gamma} (x+y)\,ds,\; \Gamma$$
 — четверть окружности $x^2+y^2+z^2=a^2,\; y=x,\;$ расположенная в Γ октанте.

17.
$$\int_{\Gamma} x^2 ds$$
, Γ — окружность $x^2 + y^2 + z^2 = a^2$, $x + y + z = 0$.

18.
$$\int\limits_{\Gamma}^{1}z\,ds,\ \Gamma$$
 — дуга кривой $x^2+y^2=z^2,\ y^2=ax$ от точки $(0;0;0)$ до точки $(a;a;a\sqrt{2}),\ a>0.$

Вычислить криволинейный интеграл второго рода по кривой Γ , пробегаемой в направлении возрастания ее параметра x (19, 20).

19. 1)
$$\int_{\Gamma} xy \, dx$$
, Γ — дуга синусоиды $y = \sin x$, $0 \leqslant x \leqslant \pi$;

2)
$$\int\limits_{\Gamma}\left(x-\frac{1}{y}\right)dy,\ \Gamma$$
 — дуга параболы $y=x^2,\ 1\leqslant x\leqslant 2;$

3)
$$\int\limits_{\Gamma} x\,dy-y\,dx,\ \Gamma$$
 — кривая $y=x^3,\ 0\leqslant x\leqslant 2;$

4)
$$\int\limits_{\Gamma} \frac{y}{x} \, dx + dy$$
, Γ — кривая $y = \ln x$, $1 \leqslant x \leqslant e$;

5)
$$\int\limits_{\Gamma}2xy\,dx+x^2\,dy,\;\Gamma$$
 — дуга параболы $y=rac{x^2}{4},\;0\leqslant x\leqslant 2;$

6)
$$\int\limits_{\Gamma} 2xy\ dx - x^2\ dy,\ \Gamma$$
 — дуга параболы $y = \sqrt{\frac{x}{2}},\ 0\leqslant x\leqslant 2.$

$${f 20.}\ 1)\int\limits_{\Gamma}\cos y\,dx-\sin y\,dy,\ \Gamma$$
 — отрезок прямой $y=-x,\ -2\leqslant x\leqslant 2;$

$$2)\int\limits_{\Gamma}\left(xy-y^{2}\right)dx+x\,dy,\ \Gamma\ -\text{кривая}\ y=2\sqrt{x},\ 0\leqslant x\leqslant 1;$$

$$3)\int\limits_{\Gamma}^{\Gamma}(x^2-2xy)\,dx+(y^2-2xy)\,dy,\ \Gamma$$
 — дуга параболы $y=x^2,$

$$-1\leqslant \overset{\tilde{\Gamma}}{x}\leqslant 1;$$
 4) $\int\limits_{\Gamma}(x^2+y^2)\,dx+(x^2-y^2)\,dy,\ \Gamma$ — кривая $y=1-|x-1|,\ 0\leqslant \leqslant x\leqslant 2.$

Вычислить криволинейный интеграл по кривой Γ , пробегаемой от точки A к точке B (21–25).

21.
$$\int\limits_{\Gamma} x\,dy-y\,dx,\ A(0;0),\ B(1;2),$$
 если:

- 1) Γ отрезок $AB;\ 2)$ Γ дуга параболы $y=2x^2;$
- 3) Γ ломаная ACB, где C(0;1).

22.
$$\int\limits_{\Gamma} xy\,dx-y^2\,dy,\ \Gamma$$
 — дуга параболы $y^2=2x,\ A(0;0),\ B(2;2).$

23.
$$\int\limits_{\Gamma} \frac{3x}{y} \ dx - \frac{2y^3}{x} \ dy, \ \Gamma$$
 — дуга параболы $x = y^2, \ A(4;2), \ B(1;1).$

24.
$$\int\limits_{\Gamma} \frac{x}{y} \, dx - \frac{y-x}{x} \, dy, \ \Gamma$$
 — дуга параболы $y = x^2, \ A(2;4), \ B(1;1).$

25.
$$\int_{\Gamma} x \, dy$$
, Γ — полуокружность $x^2 + y^2 = a^2$, $x \geqslant 0$, $A(0; -a)$, $F(0; a)$.

26. Вычислить криволинейный интеграл по отрезку AB, ориентированному в направлении от точки A к точке B:

1)
$$\int_{\Gamma} x^3 dy - xy dx$$
, $A(0; -2)$, $B(1; 3)$;

2)
$$\int -3x^2 dx + y^3 dy$$
, $A(0;0)$, $B(2;4)$;

3)
$$\int_{\Gamma} (2x - y) dx + (4x + 5y) dy$$
, $A(3; -4)$, $B(1; 2)$;

4)
$$\int_{\Gamma} (4x + 5y) dx + (2x - y) dy$$
, $A(1; -9)$, $B(4; -3)$;

5)
$$\int_{\Gamma} \left(\frac{x}{x^2 + y^2} + y \right) dx + \left(\frac{y}{x^2 + y^2} + x \right) dy$$
, $A(1; 0)$, $B(3; 4)$;

6)
$$\int_{\Gamma} (x+y) dx + (x-y) dy$$
, $A(0;1)$, $B(2;3)$.

Вычислить криволинейный интеграл по кривой Γ , пробегаемой в направлении возрастания ее параметра t (27, 28).

27. 1)
$$\int\limits_{\Gamma} xy^2\ dx,\ \Gamma$$
 — дуга окружности $x=\cos t,\ y=\sin t,\ 0\leqslant t\leqslant$ $\leqslant\pi/2;$

2)
$$\int\limits_{\Gamma}x\,dy+y\,dx,\ \Gamma$$
 — дуга окружности $x=R\cos t,\ y=R\sin t,$ $0\leqslant t\leqslant\pi/2;$

3)
$$\int\limits_{\Gamma} y\,dx - x\,dy$$
, Γ — эллипс $x = a\cos t$, $y = b\sin t$, $0\leqslant t\leqslant 2\pi$;

$$3) \int\limits_{\Gamma} y\,dx-x\,dy, \ \Gamma \ \ -\text{ эллипс } \ x=a\cos t, \ y=b\sin t, \ 0\leqslant t\leqslant 2\pi;$$

$$4) \int\limits_{\Gamma} y^2\,dx+x^2\,dy, \ \Gamma \ \ -\text{ верхняя половина эллипса } \ x=a\cos t,$$

$$y=b\sin t.$$

28. 1)
$$\int_{\Gamma} (2a - y) dx + (y - a) dy$$
, Γ — дуга циклоиды $x = a(t - \sin t)$, $y = a(1 - \cos t)$, $0 \le t \le 2\pi$:

2)
$$\int\limits_{\Gamma} \frac{x^2 dy - y^2 dx}{x^{5/3} + y^{5/3}}, \; \Gamma$$
 — дуга астроиды $x = a\cos^3 t, \; y = a\sin^3 t,$ $0 \leqslant t \leqslant \pi/2.$

Вычислить криволинейный интеграл по замкнутой кривой Γ , пробегаемой так, что ее внутренность остается слева (29, 30).

29. 1)
$$\int\limits_{\Gamma} (x^2+y^2)\,dx$$
, Γ — граница прямоугольника, образованного прямыми $x=1,\ x=3,\ y=1,\ y=5;$ 2) $\int\limits_{\Gamma} (x^2-2xy)\,dx+(x-2y)^2\,dy$, Γ — граница прямоугольника,

2)
$$\int_{\Gamma} (x^2 - 2xy) dx + (x - 2y)^2 dy$$
, Γ — граница прямоугольника образованного прямыми $x = 0$, $x = 2$, $y = 0$, $y = 1$;

образованного прямыми
$$x=0,\ x=2,\ y=0,\ y=1;$$
 3) $\int\limits_{\Gamma} (3x^2-y)\,dx+(1-2x)\,dy,\ \Gamma$ — граница треугольника с вершинами $(0;0),\ (1;0),\ (1;1);$

шинами
$$(0;0),\ (1;0),\ (1;1);$$
 $4)\int\limits_{\Gamma}(x^2+y^2)\,dx+(x^2-y^2)\,dy,\ \Gamma$ — граница треугольника с вершинами $(0;0),\ (1;0),\ (0;1).$

$${f 30.}\ 1)\int\limits_{\Gamma}2(x^2+y^2)\,dx+(x+y)^2\,dy,\ \Gamma$$
— граница треугольника с вершинами $(1;1),\ (1;3),\ (2;2);$

вершинами
$$(1;1),\ (1;3),\ (2;2);$$
 2) $\int\limits_{\Gamma} \frac{dx+dy}{|x|+|y|},\ \Gamma$ — граница квадрата с вершинами $(1;0),\ (0;1),\ (-1;0),\ (0;-1);$

$$(-1;0), \ (0;-1);$$
 3)
$$\int\limits_{\Gamma} \frac{(x+y)\,dx+(y-x)\,dy}{x^2+y^2}\,, \ \Gamma$$
 — окружность $x^2+y^2=R^2;$

$$f(x)=\int\limits_{\Gamma} rac{xy^2\,dx-x^2y\,dy}{x^2+y^2}\,,$$
 Γ — правый лепесток лемнискаты $f(x)=\int\limits_{\Gamma} rac{xy^2\,dx-x^2y\,dy}{x^2+y^2}\,.$

Вычислить криволинейный интеграл второго рода по пространственной кривой Г, пробегаемой в направлении возрастания параметра t (31–36).

31. $\int\limits_{\Gamma} y\,dx+z\,dy+x\,dz,\ \Gamma$ — виток винтовой линии $x=a\cos t,$ $y=a\sin t,\ z=bt,\ 0\leqslant t\leqslant 2\pi.$

 ${f 32.} \int\limits_{\Gamma} (y^2-z^2)\,dx+2yz\,dy-x^2\,dz,\ \Gamma$ — кривая $x=t,\ y=t^2,\ z=t^3,\ 0\leqslant t\leqslant 1.$ ${f 33.} \int\limits_{\Gamma} yz\,dx+z\sqrt{a^2-y^2}\,dy+xy\,dz,\ \Gamma$ — дуга винтовой линии

 $x=a\cos t,\ y=a\sin t,\ z=at/(2\pi),\ 0\leqslant t\leqslant 2\pi.$ 34. $\int\limits_{\Gamma} (y+z)\,dx+(z+x)\,dy+(x+y)\,dz,\ \Gamma$ — кривая $x=a\sin^2 t,$

 $y=2a\sin t\cos t,\ z=a\cos^2 t,\ 0\leqslant t\leqslant \pi.$ 35. $\int\limits_{\Gamma}x\,dx+(x+y)\,dy+(x+y+z)\,dz,\ \Gamma$ — кривая $x=a\sin t,$ $y = a \cos t$, $z = a(\sin t + \cos t)$, $0 \le t \le 2\pi$.

36. $\int\limits_{\Gamma} y\,dx + z\,dy + x\,dz$, Γ — окружность $x = a\cos\alpha\cos t$, y = $= a \cos \alpha \sin t, \ z = a \sin \alpha \ (\alpha = \text{const}).$

Вычислить криволинейный интеграл второго рода по пространственной кривой Γ (37–44).

37. $\int\limits_{\Gamma}x\,dx+y\,dy+(x+y-1)\,dz,\;\Gamma$ — отрезок AB, пробегаемый

38. $\int \frac{x\,dx+y\,dy+z\,dz}{\sqrt{x^2+y^2+z^2-x-y+2z}}\,,\;\;\Gamma$ — отрезок $AB,\;$ пробегаемый

39. $\int x(z-y)\,dx+y(x-z)\,dy+z(y-x)\,dz,\;\Gamma$ — ломаная ABCA, где $A(a;0;0),\ B(0;a;0),\ C(0;0;a).$

40. $\int y^2 \, dx + z^2 \, dy + x^2 \, dz$, Γ — линия пересечения сферы $x^2 + y^2 + y^2 + z^2 + z^2$ $y^2+z^2=R^2$ и цилиндра $x^2+y^2=Rx$ $(R>0,\ z\geqslant 0),$ пробегаемая против хода часовой стрелки, если смотреть из точки (0;0;0).

41. $\int_{\Gamma} (y-z) \, dx + (z-x) \, dy + (x-y) \, dz$, Γ — окружность $x^2 +$ $y^2+z^2=a^2,\ y=x\operatorname{tg} \alpha\ (0\leqslant \alpha\leqslant \pi),$ пробегаемая против хода часовой стрелки, если смотреть с положительной полуоси Ox.

42.
$$\int\limits_{\Gamma} \left(y^2-z^2\right) dx + \left(z^2-x^2\right) dy + \left(x^2-y^2\right) dz, \ \Gamma$$
 — граница час-

ти сферы $x^2+y^2+z^2=1$ (лежащей в I октанте), пробегаемая по ходу часовой стрелки, если смотреть из точки (0;0;0).

43.
$$\int\limits_{\Gamma} (y+z)\,dx + (z+x)\,dy + (x+y)\,dz, \ \Gamma$$
 — окружность $x^2+y^2+z^2=a^2,\ x+y+z=0,$ пробегаемая против хода часовой стрелки, если смотреть с положительной полуоси Oy .

44.
$$\int\limits_{\Gamma} (y^2+z^2)\,dx + (x^2+z^2)\,dy + (x^2+y^2)\,dz, \ \Gamma$$
 — линия пересечения поверхностей

$$x^{2} + y^{2} + z^{2} = 2Rx$$
, $x^{2} + y^{2} = 2rx$, $0 < r < R$, $z \ge 0$,

пробегаемая против хода часовой стрелки, если смотреть с положительной полуоси Oz.

Применяя формулу Грина, вычислить криволинейный интеграл по замкнутой кривой Г, пробегаемой так, что ее внутренность остается слева (45-55).

45.
$$\int_{\Gamma} (xy + x + y) dx + (xy + x - y) dy$$
, если:

1)
$$\Gamma$$
 — эллипс $x^2/a^2 + y^2/b^2 = 1$; 2) Γ — окружность $x^2 + y^2 = ax$.

46.
$$\int\limits_{\Gamma} \left(2xy-y\right)dx+x^2\,dy,\ \Gamma$$
 — эллипс $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.$

47.
$$\int\limits_{\Gamma} \frac{x\,dy+y\,dx}{x^2+y^2}, \ \Gamma$$
 — окружность $(x-1)^2+(y-1)^2=1.$

48.
$$\int\limits_{\Gamma} (x+y)^2\,dx - (x^2+y^2)\,dy,\ \Gamma$$
— граница треугольника с вершинами $(1;1),\ (3;2),\ (2;5).$

шинами
$$(1;1), (3;2), (2;5).$$
 49. $\int\limits_{\Gamma} (y-x^2)\,dx + (x+y^2)\,dy, \ \Gamma$ — граница кругового секто-

ра
$$0 < \overset{1}{r} < R, \; 0 < arphi < lpha \leqslant \pi/2,$$
 где $(r;arphi)$ — полярные координаты.

ра
$$0 < r < R$$
, $0 < \varphi < \alpha \leqslant \pi/2$, где $(r;\varphi)$ — полярные координаты. **50.** $\int\limits_{\Gamma} e^x [(1-\cos y)\,dx + (\sin y - y)\,dy], \ \Gamma$ — граница области $0 < x < \pi, \ 0 < y < \sin x.$

$$< x < \pi$$
, $0 < y < \sin x$.

51. $\int\limits_{\Gamma} e^{y^2 - x^2} (\cos 2xy \, dx + \sin 2xy \, dy, \ \Gamma$ — окружность $x^2 + y^2 = R^2$

52.
$$\int\limits_{\Gamma} \left(e^x \sin y - y\right) dx + \left(e^x \cos y - 1\right) dy, \ \Gamma$$
 — граница области $x^2 + y^2 < ax, \ y > 0.$

53.
$$\int\limits_{\Gamma} \frac{dx-dy}{x+y}, \ \Gamma$$
 — граница квадрата с вершинами $(1;0), \ (0;1), \ (-1;0), \ (0;-1).$

54.
$$\int\limits_{\Gamma} \sqrt{x^2+y^2} \, dx + y(xy+\ln(x+\sqrt{x^2+y^2})) \, dx, \quad \Gamma$$
 — окружность $x^2+y^2=R^2.$

55.
$$\int\limits_{\Gamma} (x+y)^2\,dx - (x-y)^2\,dy, \ \Gamma$$
 — граница области, образован-

ной отрезком AB, где A(1;1), B(2;6), и дугой параболы $y=ax^2+bx+c$, проходящей через точки $A,\ B,\ O(0;0)$.

Убедившись в том, что подынтегральное выражение является полным дифференциалом, вычислить криволинейный интеграл по кривой Γ с началом в точке A и концом в точке B (56–68).

56.
$$\int_{\Gamma} x \, dy + y \, dx$$
, $A(-1;3)$, $B(2;2)$.

57.
$$\int_{\Gamma} x \, dx + y \, dy$$
, $A(-1;0)$, $B(-3;4)$.

58.
$$\int_{\Gamma} (x+y) dx + (x-y) dy$$
, $A(2;-1)$, $B(1;0)$.

59.
$$\int_{\mathbb{R}} 2xy \, dx + x^2 \, dy$$
, $A(0;0)$, $B(-2;-1)$.

60.
$$\int_{\Gamma} (x^4 + 4xy^3) dx + (6x^2y^2 - 5y^4) dy, \ A(-2; -1), \ B(0; 3).$$

61.
$$\int_{\mathbb{R}^{2}} (x^{2} + 2xy - y^{2}) dx + (x^{2} - 2xy - y^{2}) dy, \quad A(3;0), \quad A(0;-3).$$

62.
$$\int_{\Gamma}^{1} (3x^2 - 2xy + y^2) dx + (2xy - x^2 - 3y^2) dy,$$
$$A(-1; 2), B(1; -2).$$

63.
$$\int\limits_{\Gamma} f(x+y)(dx+dy), \ f(t)$$
 — непрерывная функция, $A(0;0),$ $B(x_0;y_0).$

64.
$$\int\limits_{\Gamma} \varphi(x)\,dx+\psi(y)\,dy, \quad \varphi(t), \quad \psi(t)$$
 — непрерывные функции, $A(x_1;y_1), \ B(x_2;y_2).$

65.
$$\int_{\Gamma} e^x \cos y \, dx - e^x \sin y \, dy, \ A(0;0), \ B(x_0;y_0).$$

66.
$$\int_{\Gamma} x \, dx + y^2 \, dy - z^3 \, dz, \ A(-1;0;2), \ B(0;1;-2).$$

67.
$$\int_{\Gamma} yz \, dx + xz \, dy + xy \, dz$$
, $A(2; -1; 0)$, $B(1; 2; 3)$.

68.
$$\int\limits_{\Gamma} \frac{x\,dx+y\,dy+z\,dz}{\sqrt{x^2+y^2+z^2}}\,,\;A\in S_1,\;B\in S_2,$$
 где S_1 — сфера $x^2+y^2+z^2$

$$+z^2=R_1^2,\ S_2$$
 — cфepa $x^2+y^2+z^2=R_2^2\ (R_1>0,\ R_2>0).$

Найти функцию и по заданному полному дифференциалу этой функции (69-77).

69.
$$du = x^2 dx + y^2 dy$$
.

70.
$$du = (e^{2y} - 5y^3e^x) dx + (2xe^{2y} - 15y^2e^x) dy$$
.

71.
$$du = e^{x-y} [(1+x+y) dx + (1-x-y) dy].$$

72.
$$du = \frac{2x(1-e^y)}{(1+x^2)^2} dx + \left(\frac{e^2}{1+x^2} + 1\right) dy$$

73.
$$du = \frac{dx + dy + dz}{x + y + z}$$
. **74.** $du = \frac{yz dx + xz dy + xy dz}{1 + x^2 y^2 z^2}$

75.
$$du = (x^2 - 2yz) dx + (y^2 - 2xz) dy + (z^2 - 2xy) dz$$
.

76.
$$du = \left(1 - \frac{1}{u} + \frac{y}{z}\right) dx + \left(\frac{x}{z} + \frac{x}{u^2}\right) dy - \frac{xy}{z^2} dz.$$

77.
$$du = \frac{(x+y-z)dx + (x+y-z)dy + (x+y+z)dz}{x^2 + y^2 + z^2 + 2xy}$$

78. Какому условию должна удовлетворять дифференцируемая функция F(x;y), чтобы криволинейный интеграл

$$\int_{\Gamma_{AB}} F(x;y)(y\,dx + x\,dy)$$

не зависел от пути интегрирования Γ_{AB} ?

79. Исходя из определения длины s спрямляемой кривой $\Gamma=\{{\bf r}(t), a\leqslant t\leqslant b\}$, данного в $[1,\ \S\ 24,\ {\bf n}.\ 2]$, доказать, что если Γ — кусочно гладкая кривая, то в R^3

$$s = \int_{\Gamma} ds = \int_{a}^{b} \left| \frac{d\mathbf{r}}{dt}(t) \right| dt = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt, \quad (31)$$

ав R^2

$$s = \int_{\Gamma} ds = \int_{a}^{b} \left| \frac{d\mathbf{r}}{dt}(t) \right| dt = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt.$$
 (32)

80. Доказать, что:

1) если плоская кривая Γ — график непрерывно дифференцируемой функции $y = f(x), \ a \leqslant x \leqslant b,$ то

$$s = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx; \tag{33}$$

2) если плоская кривая Г задана в полярных координатах уравнением $r=r(\varphi),\ a\leqslant \varphi\leqslant b,$ где функция $r(\varphi)$ непрерывно дифференцируема на [a;b], то

$$s = \int_{a}^{b} \sqrt{\left(\frac{dr}{d\varphi}\right)^{2} + r^{2}} \, d\varphi. \tag{34}$$

81. Найти длину дуги плоской кривой *):

- 1) $ay^2 = x^3$, $0 \le x \le 5a$; 2) $y = 1 \ln \cos x$, $0 \le x \le \pi/4$;
- 3) $y = a \operatorname{ch}(x/a), \ 0 \leqslant x \leqslant x_0; \ 4) \ r = a \sin^3(\varphi/3);$
- 5) $r = a(1 + \cos \varphi)$; 6) $x = e^t \sin t$, $y = e^t \cos t$, $0 \le t \le 2\pi$;
- 7) $x = \varphi + \sin \varphi$, $y = 1 \cos \varphi$, $|\varphi| \leqslant \pi$;
- 8) $x^2/a^2 + y^2/b^2 = 1$, $a \ge b$; 9) $x^{2/3} + y^{2/3} = a^{2/3}$.

82. Найти длину дуги пространственной кривой:

- 1) x = 3t, $y = 3t^2$, $z = 2t^3$, $0 \le t \le 1$;
- 2) $x = t \cos t, \ y = t \sin t, \ z = t, \ 0 \le t \le \sqrt{2};$
- 3) $x = a(1 + \cos \varphi), \ y = a(\varphi \sin \varphi), \ z = 4a\sin(\varphi/2), \ 0 \leqslant \varphi \leqslant 2\pi;$
- 4) $x = t \cos t^2$, $y = t \sin t^2$, $z = t^2$, $0 \leqslant t \leqslant \sqrt{2\pi}$;
- 5) $2px=z^2,\ 6p^2y=z^3,\ 0\leqslant z\leqslant p;$ 6) $x^2-y^2=9z^2/8,\ (x+y)^2=8(x-y)$ от точки (0;0;0) до точки с аппликатой $z_0 = 1/3$.

83. Пусть s_n — длина витка кривой $x=e^{-kt}\cos t,\ y=e^{-kt}\sin t,$ $z=e^{-kt},\ 2\pi n\leqslant t\leqslant 2\pi (n+1)t,\ n\in {\it Z}.$ Найти отношение $s_{n+1}:s_n.$

84. Используя таблицы, найти с погрешностью не более чем 0.1длину дуги кривой $x^2 + y^2 + z^2 = 1$, $y^2 + z^2 = y$.

85. Найти массу, распределенную с линейной плотностью $\rho(x;y)$ по дуге AB плоской кривой Γ , если:

- 1) Γ отрезок AB, A(1;1), B(2;3); $\rho(x;y) = 2x + y$;
- 2) Γ отрезок AB, A(1;0), B(4;6); $\rho(x;y) = \sqrt{y+2}/x$;
- 3) Γ : $y = x^2/2$, A(1; 1, 5), B(2; 2); $\rho(x; y) = y/x$;
- 4) Γ : $y^2 = x$, A(1;1), B(4;2); $\rho(x;y) = y$;
- 5) Γ : $y = 2x^{3/2}/3$, A(0;0), B(4;16/3); $\rho = ks$, где s длина дуги от точки (0;0).

86. Найти массу всей кривой $y = a \operatorname{ch}(x/a), x \in R$, с линейной плотностью $\rho = 1/y^2$.

 $[^]st$) Задачи о вычислении для дуг кривых их длин, масс, центров масс, моментов инерции сосредоточены в [2, § 7].

- **87.** Найти массу, распределенную с линейной плотностью ρ по плоской кривой Γ :
 - 1) Γ : $r = a\sqrt{\cos 2\varphi}$; $\rho = kr$; 2) Γ : $r = a(1 + \cos \varphi)$; $\rho = k\sqrt{r}$;
 - 3) Γ : $x = a(t \sin t)$, $y = a(1 \cos t)$, $0 \le t \le 2\pi$; $\rho = y^{3/2}$;
 - 4) Γ : $x = a \cos^3 t$, $y = a \sin^3 t$, $0 \le t \le \pi/2$; $\rho = \sqrt[3]{y}$;
 - 5) Γ : $x = \ln(1+t^2)$, $y = 2 \arctan t t$, $0 \le t \le 1$; $\rho = ye^{-x}$; 6) Γ : $x^2/a^2 + y^2/b^2 = 1$, $x \ge 0$, $y \ge 0$; a > b; $\rho = y$;

 - 7) $\Gamma \colon x^{2/3} + y^{2/3} = a^{2/3}; \ \rho = |xy|;$
 - 8) $\Gamma: x^2 + y^2 = ax; \ \rho = \sqrt{x^2 + y^2}$
- **88.** Найти массу, распределенную с линейной плотностью ρ по пространственной кривой Г:
 - 1) Γ : $x = \cos t$, $y = \sin t$, z = t, $0 \leqslant t \leqslant 2\pi$; $\rho = (x^2 + y^2 + z^2)^{-1}$;
 - 2) Γ : x = at, $y = at^2/2$, $z = at^3/3$, $0 \le t \le 1$; $\rho = \sqrt{2y/a}$;
 - 3) Γ : $x = t \cos t$, $y = t \sin t$, z = t, $0 \le t \le 2\pi$; $\rho = \sqrt{x^2 + y^2 + z^2}$;
 - 4) Γ : $x = ae^t \cos t$, $y = ae^t \sin t$, $z = ae^t$, $-\infty < t \le 0$; $\rho = kz$;
- 5) Γ дуга кривой $y = x^2/\sqrt{2}, \ z = x^3/3$ с началом A(0;0;0) и
- концом $B(4;8\sqrt{2};64/3);\ \rho=k\sqrt{x^2+y^2};$ 6) Γ дуга кривой $y^2-4x^2=3z^2,\ y^2=x,\ z\geqslant 0,\ c$ началом A(0;0;0) и концом $B(1/4;1/2;0);\ \rho=z;$ 7) $\Gamma=\{x^2+y^2+z^2=a^2,\ x+y+z=a\},\ \rho=x^2.$
- 89. Найти координаты центра масс, распределенных по плоской кривой Γ с линейной плотностью $\rho = 1$:
 - 1) Γ : $y = a \operatorname{ch}(x/a), |x| \leq a$;
 - 2) Γ : $x = a(t \sin t)$, $y = a(1 \cos t)$, $0 \le t \le 2\pi$;
 - 3) Γ дуга окружности $r=R, \ |\varphi|\leqslant \varphi_0\leqslant \pi;$
 - 4) Γ кардиоида $r = a(1 + \cos \varphi)$;
 - 5) $\Gamma: x^{2/3} + y^{2/3} = a^{2/3}, y \ge 0$; 6) $\Gamma: \sqrt{x} + \sqrt{y} = \sqrt{a}$;
 - 7) $\Gamma: y^2 = x^2/3 + x^3, x \ge 0.$
- 90. Найти координаты центра масс, распределенных с линейной плотностью ρ по дуге винтовой линии $x = R\cos\varphi$, $y = R\sin\varphi$, z = $=h\varphi/2\pi,\ 0\leqslant \varphi\leqslant \varphi_0,$ если:
 - 1) $\rho = \rho_0 = \text{const}; \ 2) \ \rho = \rho_0 e^{-z/h}, \ \text{считать} \ \varphi_0 = 2\pi n, \ n \in \mathbb{N}.$
 - 91. Найти координаты центра масс однородной кривой

$$x = e^{-t}\cos t$$
, $y = e^{-t}\sin t$, $z = e^{-t}$, $0 \le t < \infty$.

- 92. Найти координаты центра масс однородного края поверхнос- $\text{ти } \sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a}.$
- **93.** Пусть кусочно гладкая кривая Γ является объединением гладких кривых $\Gamma_i, \; \Gamma = \bigcup\limits_{i=1}^n \Gamma_i, \; \text{с массами} \; m_i \; \text{и радиус-векторами центров}$

масс $\mathbf{r}_i, i=1,...,n$. Пусть m — масса Γ, r_C — центр масс Γ . Доказать, что

$$\mathbf{r}_C = \sum_{i=1}^n \frac{m_i}{m} \, \mathbf{r}_i. \tag{35}$$

- **94.** Найти момент инерции I_x окружности $x^2 + y^2 = R^2$; $\rho = 1$.
- **95.** Найти момент инерции I_y окружности $x^2 + y^2 = 2Rx; \; \rho = 1.$
- **96.** Найти моменты инерции I_x и I_y одной арки циклоиды $x = a(t + \sin t), \quad y = a(1 - \cos t), \quad |t| \le \pi, \quad \rho = 1.$
- **97.** Найти моменты инерции $I_x,\ I_u,\ I_z$ одного витка винтовой ли $x = a \cos t$, $y = a \sin t$, $z = ht/2\pi$, $0 \le t \le 2\pi$; $\rho = 1$.
- **98.** Найти момент инерции I_x окружности $x^2 + y^2 + z^2 = R^2$, $x + y^2 + z^2 = R^2$ $+y + z = 0; \ \rho = 1.$
 - ${f 99.}\,$ Найти полярный момент инерции $I_0=\int \left(x^2+y^2
 ight)ds$ плоской

однородной кривой Γ ($\rho=1$) относительно начала координат, если:

- 1) $\Gamma: |x| + |y| = a;$ 2) $\Gamma: x^{2/3} + y^{2/3} = a^{2/3};$
- 3) Γ : $x = a(\cos t + t \sin t)$, $y = a(\sin t t \cos t)$, $0 \le t \le 2\pi$.
- 100. Пусть G ограниченная плоская область с кусочно гладкой границей ∂G , ориентированной так, что область G находится (локально) слева от касательного к ∂G вектора. Доказать, что площадь μG можно вычислять по любой из формул

$$S = \oint_{\partial G} x \, dy = -\oint_{\partial G} y \, dx = \frac{1}{2} \oint_{\partial G} x \, dy - y \, dx. \tag{36}$$

- 101. Найти площадь области, ограниченной плоскими кривыми:
- 1) $y^2 = 4 x$, x = 4, y = 1; 2) $y = 2x^2$, x y + 1 = 0;
- 3) $y = 1 x^2$, x y 1 = 0; 4) $x = t^2$, $y = t^3$, x = 1;
- 5) $x = a \cos t$, $y = b \sin t$; 6) $x = 12 \sin^3 t$, $y = 3 \cos^3 t$;
- 7) $x = a \sin 2\varphi \cos^2 \varphi$, $y = a \cos 2\varphi \cos^2 \varphi$, $|\varphi| \le \pi/2$.
- **102.** Найти площадь области $\frac{x^2}{a^2} + \frac{y^2}{b^2} < 1$, $\frac{x}{a} \frac{y}{b} < \frac{\sqrt{3}-1}{2}$.
- 103. Найти площадь области, ограниченной кривыми:

- 1) $(y-x)^2+x^2=1;$ 2) $(x+y)^2=ax,\ y=0;$ 3) $y^2=x^2-x^4;$ 4) $9y^2=4x^3-x^4;$ 5) $(x^2+y^2)^2=a^2(x^2-y^2),\ x\geqslant 0;$ 6) $(x^2+y^2)^2=2ax^3;$ 7) $x^3+y^3=x^2+y^2,\ x=0,\ y=0.$
- 104. Найти площадь области, ограниченной петлей кривой:
- 1) $x = 3t/(1+t^3)$, $y = 3t^2/(1+t^3)$;
- 2) $x = a \cos \varphi$, $y = a \sin 2\varphi$, $x \ge 0$; 3) $(\sqrt{x} + \sqrt{y})^{12} = xy$.

105. Пусть G — ограниченная область в полуплоскости $y \geqslant 0$ с кусочно гладкой границей ∂G , ориентированной так, что область Gрасположена (локально) слева от касательного вектора. Пусть Ω тело, образованное вращением области G вокруг оси Ox. Доказать, что объем $\mu\Omega$ можно вычислять по любой из формул

$$\mu\Omega = -\pi \oint_{\partial G} y^2 dx = -2\pi \oint_{\partial G} xy dy = -\frac{\pi}{2} \oint_{\partial G} 2xy dy + y^2 dx.$$
 (37)

- 106. Найти объем тела, образованного при вращении вокруг оси Ox области, ограниченной кривыми:
 - 1) $y = \sinh x$, x = 0 > 0, y = 0;
 - 2) $y = 2 \sin x$, $0 \le x \le 2\pi$, y = 0, x = 0, $x = 2\pi$;
 - 3) $y^2 x^2 = 1$, |x| = 1; 4) $x = a\cos^3 t$, $y = a\sin^3 t$;
 - 5) $x = \sin 2t$, $y = \sin t$, $0 \leqslant t \leqslant 2\pi$.
- **107***). Найти работу поля $\mathbf{F} = (F_0; 0), F_0 = \text{const},$ вдоль дуги параболы $y^2 = 1 - x$ от точки (1;0) до точки (0;1).
- **108.** Найти работу поля $\mathbf{F} = (F_0, 0), \ F_0 = \mathrm{const}, \ \mathrm{вдоль}\ \mathrm{дуги}\ \mathrm{act}$ роиды $x^{2/3}+y^{2/3}=a^{2/3},\ x\geqslant 0,\ y\geqslant 0,$ от точки (a;0) до точки (0;a).
- **109.** Найти работу поля $\mathbf{F} = (xy; x + y)$ вдоль дуги AB кривой Γ , где A(0;0), B(1;1), если:
 - 1) $\Gamma: y = x; 2) \Gamma: y = x^2.$
- **110.** Найти работу поля $\mathbf{F} = (4x 5y; 2x + y)$ вдоль дуги AB кривой Γ , где A(1;-9), B(3;-3), если:
 - 1) Γ ломаная APB, где P(1; -3);
 - 2) Γ ломаная AQB, где Q(3;-9); 3) Γ отрезок AB.
 - **111.** Найти работу поля F вдоль дуги AB кривой Γ , если
 - 1) $\mathbf{F} = (2xy; -y); \ \Gamma: \ y = x^2 1, \ A(1;0), \ B(2;3);$
 - 2) $\mathbf{F} = (3xy^2; -x y); \ \Gamma: \ y^2 = x + 1, \ A(0;1), \ B(3;2);$
 - 3) $\mathbf{F} = (-y; x)$; $\Gamma \colon x = a(t \sin t)$, $y = a(1 \cos t)$, A(0; 0),
 - $B(2\pi a; 0);$
 - 4) $\mathbf{F} = (y; -2x); \ \Gamma; \ x^2 + y^2 = 1, \ y \geqslant 0, \ A(1;0), \ B(-1;0);$
 - 5) $\mathbf{F} = (0, 2x)$; $\Gamma \colon x = a \cos t, \ y = b \sin t, \ y \geqslant 0, \ A(a, 0), \ B(-a, 0)$.
 - **112.** Найти работу поля $\mathbf{F} = (-y; x)$:
 - 1) от точки A(1;0) до точки B(-1;0):
 - а) вдоль ломаной AMNB, где M(1;1); N(-1;1);
 - б) вдоль верхней полуокружности $x^2 + y^2 = 1$;
 - в) вдоль ломаной APB, где P(0;1);
 - 2) от точки $(x_0-R;y_0)$ до точки $(x_0+R;y_0)$ вдоль:
 - а) верхней полуокружности $(x-x_0)^2+(y-y_0)^2=R^2,\ y\geqslant y_0;$ б) нижней полуокружности $(x-x_0)^2+(y-y_0)^2=R^2,\ y\leqslant y_0.$

^{*)} Задачи по этой теме включены также в § 12.

¹⁸ Под ред. Л.Д.Кудрявцева, т. 3

- **113.** Найти работу поля $\mathbf{F} = -\mu \mathbf{r}/r^3$, $\mathbf{r} = (x; y)$, $r = |\mathbf{r}|$, $\mu = \text{const}$:
- 1) вдоль дуги AB параболы $y=x^2-1,$ где $A(x_1;y_1),\ B(x_2;y_2);$
- 2) вдоль дуги AB гладкой кривой Γ , не проходящей через начало координат, где $A(x_1;y_1),\ B(x_2;y_2).$
- **114.** Найти работу поля $\mathbf{F}=\frac{1}{r^2}\cdot (-y;x),\ r^2=x^2+y^2,$ вдоль дуги AB кривой $\Gamma,$ где $A(1;0),\ B(0;1),$ если:
 - 1) Γ ломаная APB, где P(1;1);
 - 2) Γ четверть окружности $x^2 + y^2 = 1, \ x \ge 0, \ y \ge 0;$
 - 3) Γ четверть астроиды $x^{2/3} + y^{2/3} = 1, x \ge 0, y \ge 0.$
- **115.** Найти работу поля $\mathbf{F}=\frac{1}{r^2}(-y;x),\ r^2=x^2+y^2,$ вдоль ориентированной против часовой стрелки окружности:
 - 1) $x^2 + y^2 = 1$; 2) $(x-2)^2 + y^2 = 1$.
- **116.** Найти работу поля $\mathbf{F}=\lambda\mathbf{r},\ \mathbf{r}=x\mathbf{i}+y\mathbf{j}+z\mathbf{k},$ вдоль дуги OM кривой $\Gamma,$ где $O(0;0;0),\ M(x_0;y_0;z_0),$ если:
 - 1) Γ винтовая линия $x = ae^t \cos t$, $y = ae^t \sin t$, $z = ae^t$;
 - 2) Γ отрезок OM.
 - **117.** Найти работу поля ${\bf F}$ вдоль контура Γ , если:
- 1) $\mathbf{F}=(yz;zx;xy);\ \Gamma$ ломаная ABCD с вершинами A(1;1;1), B(2;1;1), C(2;3;1), D(2;3;4);
- 2) ${f F}=(x+z;x;-y);\ \Gamma$ замкнутая ломаная ABCA с вершинами $A(1;0;0),\ B(0;1;0),\ C(0;0;1);$
- 3) $\mathbf{F}=(xy;yz;xz);$ Γ замкнутая ломаная ABCDA с вершинами $A(1;1;-1),\ B(-1;1;1),\ C(-1;-1;-1),\ D(1;-1;1);$
- 4) ${\bf F}=(x^2/y;y/x;\cos z);\;\Gamma$ виток винтовой линии $x=a\cos t,$ $y=a\sin t,\;z=bt$ от точки (a;0;0) до точки $(0;0;2\pi b);$
- 5) $\mathbf{F}=(y;-z;x);\ \Gamma$ кривая $x^2+y^2+2z^2=2a^2,\ y=x,$ ориентированная против часовой стрелки со стороны оси Ox;
- 6) $\mathbf{F}=(2xy;y^2;-x^2);\ \Gamma$ дуга кривой $x^2+y^2-2z^2=2a^2,\ y=x,$ от точки A(a;a;0) до точки $B(a\sqrt{2};a\sqrt{2};a);$
- 7) $\mathbf{F} = (z; x; y); \ \Gamma$ окружность $x^2 + y^2 + z^2 = R^2, \ x + y + z = R,$ ориентированная против часовой стрелки со стороны оси Oz.
- **118.** Найти работу поля центральных сил $\mathbf{F} = f(r)\mathbf{r}$, где $\mathbf{r} = x\,\mathbf{i} + y\,\mathbf{j} + z\,\mathbf{k}, \ r = |\mathbf{r}|, \ f(r)$ непрерывная при r>0 функция, вдоль гладкого контура Γ с началом $A(x_1;y_1;z_1)$ и концом $B(x_2;y_2;z_2)$, не содержащего начала координат.
- **119.** Доказать, исходя из закона взаимодействия точечных масс, что материальная кривая Γ с линейной плотностью $\rho(\xi;\eta;\zeta)$ притягивает массу m, находящуюся в точке M(x;y;z), с силой

$$\mathbf{F} = km \int_{\Gamma} \frac{\overline{MN}}{|\overline{MN}|^3} \rho(\xi; \eta; \zeta) dx, \quad N = N(\xi; \eta; \zeta).$$
 (38)

- **120.** Найти напряженность гравитационного поля, создаваемого однородной материальной прямой с линейной плотностью ρ_0 .
- **121.** С какой силой масса M, равномерно распределенная вдоль окружности $x^2+y^2=a^2,\ z=h>0,$ притягивает точечную массу m, помещенную в начало координат.
- **122.** Пусть (p;v) координаты, определяющие на плоскости Opv состояние одного моля идеального газа (давление и объем). Уравнение состояния одного моля такого газа имеет вид pv=RT, где $R={\rm const}>0,\ T$ абсолютная температура. При переходе из состояния $(p_1;v_1)$ в состояние $(p_2;v_2)$ по кривой Γ количество получаемого (или отдаваемого) тепла газом определяют по формуле

$$Q = \int_{\Gamma} \frac{c_p}{R} p \, dv + \frac{c_v}{R} v \, dp, \tag{39}$$

где $c_v = {\rm const}, \ c_p = c_v + R$. Кривую, задаваемую уравнением $pv^\gamma = {\rm const}, \$ где $\gamma = c_p/c_v, \$ называют $a \partial u a \delta a mo \check{u}$ (а процесс изменения состояния вдоль этой кривой — $a \partial u a \delta a m u v e c \kappa u M$).

- 1) Найти тепло, получаемое газом в изотермическом процессе, т. е. вдоль кривой $pv=RT=\mathrm{const},$ при переходе из состояния $(p_1;v_1)$ в состояние $(p_2;v_2).$
- 2) Доказать, что в адиабатическом процессе газ не получает и не отдает тепло.
- 3) Пусть $pv^\gamma=C_1,\;pv^\gamma=C_2$ две адиабаты, $\Gamma(T)$ отсекаемый ими отрезок *изотермы* $pv=RT,\;Q(T)$ количество тепла, получаемое газом на $\Gamma(T)$. Доказать, что для всех изотерм $\frac{Q(T)}{T}=\mathrm{const.}$
- 4) *Циклом Карно* называют замкнутый контур, образованный двумя адиабатами и двумя изотермами $pv=RT_1$ и $pv=RT_2,\ T_2>T_1.$ Пусть этот контур ориентирован от точки с наибольшим давлением вдоль изотермы $pv=RT_2.$ Пусть Q полное тепло, полученное газом на цикле Карно, а Q_2 на изотерме $pv=RT_2.$ Доказать, что к. п. д. цикла $\eta=Q/Q_2$ определяется по формуле $\eta=(T_2-T_1)/T_2.$
- **123.** В установившемся стационарном потоке жидкости плотность и скорость в каждой точке потока не зависят от времени, т. е. $\rho = \rho(x;y), \ \mathbf{v} = (u(x;y);v(x;y)).$
- 1) Найти количество жидкости, прошедшей за единицу времени через ограниченную область G с кусочно гладкой границей ∂G ;
- 2) получить уравнение для u и v, предполагая, что в области G жидкость не возникает и не исчезает (т. е. нет ни источников, ни стоков) и что жидкость несжимаема.
 - 124. Найти логарифмический потенциал простого слоя

$$u(x;y) = \oint_{\Gamma} \mu(\xi;\eta) \ln(\frac{1}{r}) ds, \tag{40}$$

где Γ — окружность $\xi^2+\eta^2=1$, ориентированная против часовой стрелки, $r=\sqrt{(\xi-x)^2+(\eta-y)^2},$ если:

- 1) $\mu(\xi;\eta) = \mu_0 = \text{const};$ 2) $\mu(\xi;\eta) = \cos m\varphi, \ m \in N;$
- 3) $\mu(\xi;\eta) = \sin m\varphi, \ m \in \mathbb{N}.$

Здесь φ — полярный угол точки $(\xi;\eta)$.

125. Вычислить интеграл Гаусса

$$I = \oint_{\partial G} \frac{\cos(\widehat{\mathbf{r}, \mathbf{n}})}{r} ds, \tag{41}$$

где ∂G — кусочно гладкая граница области G, $\mathbf{r} = \overline{MN}$, $M(x;y) \in \mathbb{R}^2$, $N(\xi;\eta)\in\partial G,\ r=\sqrt{(\xi-x)^2+(\eta-y)^2},\ \mathbf{n}$ — внешняя нормаль к $\partial G,$ $(\widehat{\mathbf{r},\mathbf{n}})$ — угол между \mathbf{r} и \mathbf{n} , предполагая, что:

- 1) $M \notin G$; 2) $M \in G$.
- 126. Вычислить логарифмический потенциал двойного слоя

$$u(x;y) = \oint_{\Gamma} \nu(\xi;\eta) \frac{\cos(\widehat{\mathbf{r},\mathbf{n}})}{r} ds, \tag{42}$$

где Γ — окружность $\xi^2+\eta^2=1$, ориентированная против часовой стрелки, ${\bf r}=(\xi-x;\eta-y),\ r=\sqrt{(\xi-x)^2+(\eta-y)^2},\ {\bf n}$ — внешняя нормаль к Г, если:

1) $\nu(\xi;\eta) = \cos m\varphi$, $m \in \mathbb{N}$; 2) $\nu(\xi;\eta) = \sin m\varphi$, $m \in \mathbb{N}$.

Здесь arphi — полярный угол точки $(\xi;\eta)$. Рассмотреть случаи $\sqrt{x^2+y^2} > 1$ и $\sqrt{x^2+y^2} < 1$.

ОТВЕТЫ

- 1. 1) $\sqrt{5}/2$; 2) $3 + 2\sqrt{5}$; 3) $1 + \sqrt{2}$; 4) $-\sqrt{5} \ln 2$; 5) $\ln((3 + \sqrt{5})/2)$.
- **2.** 1) 0; 2) $ab(a^2 + ab + b^2)/(3(a + b))$; 3) 24. **4.** $\pi a^3/2$. **5.** $2\pi a^{2n+1}$. **6.** 1) $\pi a^2/2$; 2) $2a^2$. **7.** 1) $a^2\sqrt{2}$; 2) $2a^3\sqrt{2}/3$.
- **8.** $2a^2(2-\sqrt{2})$. **9.** $4a^{7/3}$. **10.** 1) $32a^2/3$; 2) $256a^3/15$.
- 11. 1) $2\pi^2 a^3 (1+2\pi^2)$; 2) $((1+4\pi^2)^{3/2}-1)a^2/3$.
- **12.** 1) $8\pi b^2 \sqrt{a^2 + b^2}/(3a^2)$; 2) $(\sqrt{a^2 + b^2}/ab) \arctan(2\pi b/a)$;
- 3) $2\pi\sqrt{a^2+b^2}(3a^2+4\pi^2b^2)/3$.
- **13.** 1) $((1+2\pi^2)^{3/2}-1)2\sqrt{2}/3$; 2) $((1+2\pi^2)^{3/2}-1)4\sqrt{2}/3$.
- **14.** $2\pi a^2$. **15.** $a^4/6$. **16.** $a^2\sqrt{2}$. **17.** $2\pi a^3/3$.
- **18.** $(100\sqrt{38} 72 17\ln((25 + 4\sqrt{38})/17))a^2\sqrt{2}/512$.
- **19.** 1) π ; 2) $(14-3\ln 4)/3$; 3) 8; 4) 3/2; 5) 4; 6) 12/5.
- **20.** 1) $2 \sin 2$; 2) -8/15; 3) -14/15; 4) 4/3. **21.** 1) 0; 2) 2/3; 3) 2. **22.** 8/15, **23.** -11. **24.** $(5 \ln 8)/3$. **25.** $\pi a^2/2$. **26.** 1) 7/12; 2) 56; 3) 8; 4) 6; 5) $12 + \ln 5$; 6) 4.
- **27.** 1) -1/4; 2) 0; 3) $-2\pi ab$; 4) $-4ab^2/3$.
- **28.** 1) πa^2 ; 2) $3\pi a^{4/3}/16$.

```
29. 1) -48; 2) 4; 3) -1/2; 4) 0. 30. 1) 4/3; 2) 0; 3) -2\pi; 4) 0.
31. -\pi a^2. 32. 1/35. 33. 0. 34. 0. 35 -\pi a^2.
36. -\pi a^2 \cos^2 \alpha. 37. 13. 38. 3\sqrt{3}. 39. a^3. 40. -\pi R^3/4.
41. \pi a^2 2^{3/2} \sin(\pi/4 - \alpha). 42. -4. 43. 0. 44. 2\pi Rr^2.
45. 1) 0; 2) -\pi a^3/8. 46. \pi ab. 47. 0. 48. -140/3.
49. 0. 50. (l - e^{\pi})/5. 51. 0. 52. \pi a^2/8. 53. -4. 54. \pi R^4/4.
55. -2. 56. 7. 57. 12. 58. 1. 59. -4. 60. -1148/5.
                             63. \int_{0}^{x_0+y_0} f(t) dt. \quad 64. \int_{x_1}^{x_2} \varphi(t) dt + \int_{y_1}^{y_2} \psi(t) dt.
65. e^{x_0}\cos y_0 - 1. 66. -1/6. 67. 6. 68. R_2 - R_1.
69. u = (x^3 + y^3)/3 + C. 70. u = xe^{2y} - 5y^3e^x + C.
71. u = e^{x-y}(x+y) + C. 72. u = (e^y - 1)/(1+x^2) + y + C.
73. u = \ln|x + y + z| + C. 74. u = \arctan(xyz) + C.
75. u = (x^3 + y^3 + z^3)/3 - 2xyz + C. 76. u = x - x/y + xy/z + C.
77. u = \ln \sqrt{(x+y)^2 + z^2} + \arctan(z/(x+y)) + C.
78. xF'_x(x;y) = yF'_y(x;y).
81. 1) 335a/27; 2) \ln(1+\sqrt{2}); 3) a \sin(x_0/a); 4) 3\pi a/2; 5) 8a;
6) (c^{2\pi}-1)\sqrt{2}; 7) 8; 8) 4aE(\pi/2;\sqrt{a^2-b^2}/a); 9) 6a.
82. 1) 5; 2) \sqrt{2} + \ln(\sqrt{2} + 1); 3) 4\pi a; 4) \sqrt{2\pi}(3 + 4\pi)/3; 5) 7p/6;
6) 9\sqrt{2}/16.
83. e^{-2\pi k}. 84. 4\sqrt{2}E(\pi/2;1/\sqrt{2})\approx 7{,}6404.
85. 1) 5\sqrt{5}; 2) 2\sqrt{10}; 3) (5\sqrt{5} - 2\sqrt{2})/6; 4) (17\sqrt{17} - 5\sqrt{5})/12;
5) 4(63-5\sqrt{5})k/9.
86. \pi/a.
87. 1) k\pi a^2; 2) \pi k(2a)^{3/2}; 3) 3\sqrt{2}\pi a^{5/2}; 4) a^{4/3}; 5) (\pi^2 - 8\ln 2)/16; 6) \frac{b^2}{2} + \frac{ab}{2\varepsilon} \arcsin \varepsilon, \varepsilon = \frac{\sqrt{a^2 - b^2}}{a}; 7) \frac{9\pi a^3}{64}; 8) 2a^2.

88. 1) \sqrt{2} \arctan 2\pi; 2) \frac{3a}{16} \left( \ln \frac{\sqrt{3} + 2}{\sqrt{3}} + 2\sqrt{3} - \frac{2}{3} \right);
3) 4((1+2\pi^2)^{3/2}-1)/3; 4) \sqrt{3}ka^2/2; 5) 2644k/15;
6) 1/16; 7) 2\sqrt{6}\pi a^3/9.
89. 1) \left(0; \frac{\sinh 2 + 2}{4 \sinh 1} a\right); 2) \left(\pi a; \frac{4a}{3}\right); 3) \left(\frac{R \sin \varphi_0}{\varphi_0}; 0\right); 4) \left(\frac{4a}{5}; 0\right); 5) \left(0; \frac{2a}{5}\right); 6) x_C = y_C = \frac{7\sqrt{2} + 3\ln(\sqrt{2} + 1)}{\sqrt{2} + \ln(\sqrt{2} + 1)} \cdot \frac{a}{16}; 7) \left(\frac{8}{45}; 0\right).
90 1) ((R\sin\varphi_0)/\varphi_0; R(1-\cos\varphi_0)/\varphi_0; (\varphi_0h)/(4\pi));
2) (R/(1+4\pi^2); 2\pi R/(1+4\pi^2); h(1-(n+1)e^{-n})/(1-e^{-n})).
91. (2/5; 1/5; 1/2). 92. x_C = y_C = z_C = \frac{a}{24} \frac{7\sqrt{2} + 3\ln(\sqrt{2} + 1)}{\sqrt{2} + \ln(\sqrt{2} + 1)}
```

94. πR^3 . **95.** $3\pi R^3$. **96.** $I_x = 32a^3/5$, $I_y = 8(\pi^2 - 256/45)a^3$. **97.** $I_x = I_y = \sqrt{4\pi^2a^2 + h^2}(3a^2 + 2h^2)/6$, $I_z = \sqrt{4\pi^2a^2 + h^2}a^2$.

- **98.** $2\pi a^3/3$. **99.** 1) $8\sqrt{2}a^3/3$; 2) $3a^3$; 3) $2\pi^2(2\pi^2+1)a^3$.
- **101.** 1) 1/3; 2) 9/8; 3) 9/2; 4) 4/5; 5) πab ; 6) $27\pi/2$; 7) $3\pi a^2/8$.
- **102.** $(7\pi + 3)ab/12$.
- **103.** 1) π ; 2) $a^2/6$; 3) 4/3; 4) $8\pi/3$; 5) a^2 ; 6) $5\pi a^2/8$;
- 7) $(3\sqrt{3} + 4\pi)/9\sqrt{3}$.
- **104.** 1) 3/2; 2) $4a^2/3$; 3) 1/30.
- **106.** 1) $\pi(\sinh 2a 2a)/4$; 2) $9\pi^2$; 3) $8\pi/3$; 4) $32\pi a^3/105$; 5) $\pi^2/2$.
- **107.** -8/15. **108.** $-aF_0$. **109.** 1) 4/3; 2) 17/12.
- **110.** 1) 22; 2) 106; 3) 64.
- **111.** 1) 0; 2) 113/3; 3) $-6\pi a^2$; 4) $-3\pi/2$; 5) πab .
- **112.** 1) a) 4; 6) π ; B) 1; 2) a) $-(\pi R + 2y_0)R$; 6) $(\pi R 2y_0)R$.

113. 1) и 2)
$$\mu(1/r_2 - 1/r_1)$$
, где $r_j = \sqrt{x_j^2 + y_j^2}$, $j = 1, 2$.
114. 1), 2), 3) $\pi/2$. 115. 1) 2π ; 2) 0.

- **116.** 1) и 2) $\lambda(x_0^2 + y_0^2 + z_0^2)/2$.
- **117.** 1) 23; 2) 1/2; 3) -4/3; 4) $\sin(2\pi b) \pi a^2$; 5) $2\pi a^2$;
- 6) $(2\sqrt{2}-7/3)a^3$; 7) $2\pi R^2/\sqrt{3}$.

118.
$$\int_{r_1}^{r_2} rf(r) dr, \ r_j = \sqrt{x_j^2 + y_j^2 + z_j^2}, \ j = 1, 2.$$

120.
$$-\frac{2k\rho_0}{x^2+y^2}(x;y;0)$$
 (прямая совпадает с осью Oz).

121.
$$(0;0;kMmh/(a^2+h^2)^{3/2})$$
. **122.** 1) $RT \ln(p_1/p_2)$.

$$x^{2} + y^{2} + \sqrt{(x^{2} + y^{2})^{3/2}}$$
121. $(0; 0; kMmh/(a^{2} + h^{2})^{3/2})$. **122.** 1) $RT \ln(p_{1}/p_{2})$.

123. 1) $\oint_{\partial G} \rho(x; y)(v(x; y) dx - u(x; y) dy)$; 2) $\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0$.

124. 1) 0 при
$$r = \sqrt{x^2 + y^2} < 1, -2\pi\mu_0 \ln r$$
 при $r > 1;$

- **124.** 1) 0 при $r=\sqrt{x^2+y^2}<1,\; -2\pi\mu_0\ln r$ при r>1; 2) $\frac{\pi}{nr^n}\cos n\varphi$ при $r>1,\; \frac{\pi}{n}r^n\cos n\varphi$ при $r<1\; ((r;\varphi)$ полярные координаты точки (x;y)); $3) \frac{\pi}{nr^n} \sin n\varphi$ при $r>1, \frac{\pi}{n} r^n \sin n\varphi$ при r<1.

 - **125.** 1) 0; 2) 2π .
- **126.** 1) $\pi r^n \cos n\varphi$ при r < 1, $-\pi r^{-n} \cos n\varphi$ при r > 1 $((r; \varphi)$ полярные координаты точки (x;y);
 - 2) $\pi r^n \sin n\varphi$ при r < 1, $-\pi r^{-n} \sin n\varphi$ при r > 1.

§ 11. Поверхностные интегралы

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Поверхностный интеграл первого рода. Пусть поверхность S задана параметрически:

$$x = x(u; v), \quad y = y(u; v), \quad z = z(u; v), \quad (u; v) \in \overline{D},$$
 (1)