Parallel Programming Exercise 9-10

Author:	林子傑 (r10525069@ntu.edu.tw)					
Student ID	R10525069					
Department	Engineering Science and Ocean Engineering					

(If you and your team member contribute equally, you can use (co-first author), after each name.)

1 Problem and Proposed Approach

(Brief your problem, and give your idea or concept of how you design your program.)

Problem: 找出前八個完全數。

Proposed Approach: 設立一個 manager process,其他 process 當 worker,worker 每次都和 manager 拿一個數字 n 去判斷是否 2^n -1 為質數,如果是質數,就直接回傳該數字,否則回傳 0。Manager 一次給一個數字,如果找到八個答案,就會傳送 0 給每個 worker,表示要停止搜尋。

(一個偶數是完美數,若且唯若它具有如下形式: 2ⁿ⁻¹*(2ⁿ-1),其中 2ⁿ-1 是質數)

2 Theoretical Analysis Model

(Try to give the time complexity of the algorithm, and analyze your program with iso-efficiency metrics)

Sequential algorithm complexity : $\Theta(n)$

Parallel computational complexity : $\Theta(n/p)$

Parallel communication complexity : $\Theta(n)$

Parallel overhead : $To(n, p) = \Theta(np)$

Iso-efficiency relation ∶ n>=Cpn

M(n)=1

M(Cpn)/p = Cpn/p = Cn

3 Performance Benchmark

(Give your idea or concept of how you design your program.)

The time to perform determine if it is a perfect number : χ

Sequential execution time: nx

Parallel:

The computation time for each process: $\chi([n/p])$

Need to send a number 2n times.

Sending a number requires time : λ

Parallel execution time : $\chi([n/p]) + 2n\lambda$

Table 1. The execution time

Processors	2	3	4	5	6	7	8
Real execution	0.00053		0.000501	0.001579	0.000503	0.000585	0.000489
time	8						
Estimate execution	0.0005	0.00025	0.0001666	0.000125	0.0001	8.3333E-0	7.1429E-0
time			7			5	5
Speedup	1.00	1.0653465	1.0738523	1.0695825	0.9196581	1.1002045	1.1002045
		3			2		
Karp-flatt metrics		0.8773234	0.8968401	0.9132589	1.1092007	0.8907063	0.8937422
		2	5	8	4	2	6

4 Conclusion and Discussion

(Discuss the following issues of your program

- 1. What is the speedup respect to the number of processors used?
- 2. How can you improve your program further more
- 3. How does the communication and cache affect the performance of your program?
- 4. How does the Karp-Flatt metrics and Iso-efficiency metrics reveal?

從 speedup 的數據來看,當 processor 增加,speedup 效果有限,本問題不適合用平行計算。 從 Iso-efficiency metrics 顯示出這個程式有不錯的 Scalability。

Appendix(optional):

)

(If something else you want to append in this file, like picture of life game)