Homework 1

```
API: Covid-19 cases by province (Week Number 48: 28/11/2022-04/12/2022)
```

```
1 import requests
```

1 url = 'https://covid19.ddc.moph.go.th/api/Cases/today-cases-by-provinces'

1 response.status_code

200

```
1 result = response.json()
```

³ df.head(n = 10)

→		year	weeknum	province	new_case	total_case	new_case_excludeabroad	total_c
	0	2022	49	ปราจีนบุรี	5	52605	5	
	1	2022	49	ราชบุรี	40	87263	40	
	2	2022	49	ศรีสะเกษ	6	50754	6	
	3	2022	49	นครศรีธรรมราช	75	129160	75	
	4	2022	49	นครพนม	28	19367	28	
	5	2022	49	ตราด	43	19288	43	
	4							>

```
1 # count the number of rows and columns
```

4

Rows = 79, Columns = 10

Homework 2

ML model using sklearn:

- ${\tt 1} {\tt from sklearn.linear_model import LogisticRegression}$
- 2 from sklearn.model_selection import train_test_split
- 3 import pandas as pd
- 4 import numpy as np
- $1 \ \#df2 \ from \ https://www.kaggle.com/datasets/saurabh00007/diabetescsv/download?datasetVersionNumber=1 \ from \ https://www.kaggle.com/datasets/saurabh000007/diabetescsv/download?datasetversionNumber=1 \ from \ https://www.kaggle.com/datasetversionNumber=1 \ from \ https://www.kaggl$
- 2 df2 = pd.read_csv('diabetes.csv')
- 3 df2.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedig
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
4							>

 $^{{\}bf 2}$ import time

³ import pandas as pd

² response = requests.get(url)

² df = pd.DataFrame.from_dict(result)

² rows = len(df.axes[0])

³ cols = len(df.axes[1])

⁵ print(f"Rows = {rows}, Columns = {cols} ")

```
1/1/23, 11:19 PM
```

```
1 # check null in each column
2 df2.isna().sum()
   Pregnancies
   Glucose
   BloodPressure
   SkinThickness
   Insulin
   BMI
                            0
   DiabetesPedigreeFunction
                            0
   Age
   Outcome
   dtype: int64
1 # preview data types
2 df2.dtypes
   Pregnancies
                             int64
   Glucose
                             int64
   BloodPressure
                              int64
   SkinThickness
                              int64
   Insulin
                              int64
                            float64
   DiabetesPedigreeFunction
                            float64
                              int64
   Age
   Outcome
                              int64
   dtype: object
1 # prepare & split data
2 \times = df2.drop('Outcome', axis = 1)
3 y = df2['Outcome']
5 x_tra, x_tes, y_tra, y_tes = train_test_split(
   x, y , test_size = 0.25, random_state = 42
6
7)
1 # train model
2 model = LogisticRegression()
3 model.fit(x_tra, y_tra)
5 # test model
6 p = model.predict(x_tes)
7 print(p)
   [0\;0\;0\;0\;0\;0\;0\;1\;1\;1\;0\;1\;0\;0\;0\;0\;0\;1\;1\;0\;0\;1\;0\;1\;1\;0\;0\;0\;0\;1\;1\;1\;1\;1\;1\;1
    0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1
    0001000]
   /usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=
   STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
   Increase the number of iterations (max_iter) or scale the data as shown in:
      https://scikit-learn.org/stable/modules/preprocessing.html
   Please also refer to the documentation for alternative solver options:
      https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
     n_iter_i = _check_optimize_result(
  4
1 # model evaluation
2 model.score(x_tes, y_tes)
```

0.7291666666666666

X