Mineure robotique et systèmes autonomes

Commande et estimation pour la robotique mobile

SYS5240

ESIEA 5A

S. Bertrand sbertrand@esiea.fr

Estimation

- Introduction à la problématique
- Odométrie
- Représentation des incertitudes
- Fusion de mesures
- Filtre de Kalman
- Introduction au SLAM

Introduction à la problématique

- Planification de trajectoire ou commande :
 - besoin de connaître la localisation du robot et d'autres informations (orientation, vitesse, etc.)

- Problème : on dispose d'un ou plusieurs capteur(s) délivrant des mesures
 - imparfaites (bruit, biais, mesures aberrantes, etc.)
 - non disponibles à chaque instant
 - ne correspondant pas directement aux grandeurs dont on a besoin

Estimation

- Introduction à la problématique
- Odométrie
- Représentation des incertitudes
- Fusion de mesures
- Filtre de Kalman
- Introduction au SLAM

Odométrie

- « Dead reckoning »
 - Calcul de la position actuelle à partir de la position précédente et d'une estimation du déplacement réalisé / de la vitesse
- Utilisation des encodeurs pour estimer
 - la vitesse de rotation et la vitesse linéaire de chaque roue :

$$v_L = R_L . \omega_L$$
 $v_R = R_R . \omega_R$

la vitesse de rotation et la vitesse linéaire du véhicule

$$V = \frac{v_R + v_L}{2} = R \frac{\omega_R + \omega_L}{2}$$
$$\omega = \frac{v_R - v_L}{d} = R \frac{\omega_R - \omega_L}{d}$$

Hypothèse $R=R_L=R_R$ Rayons des roues

d: distance entre les roues

Odométrie : estimation de l'état du robot

Calcul de la position et de l'orientation du véhicule

À partir du modèle cinématique :
$$\begin{cases} \dot{x} = V \cdot \cos \theta \\ \dot{y} = V \cdot \sin \theta \\ \dot{\theta} = \omega \end{cases}$$

$$x(t) = x(0) + \int_0^t V(\tau) \cos(\theta(\tau)) d\tau$$

$$\begin{cases} x(t) = x(0) + \frac{R}{2} \int_0^t (\omega_R(\tau) + \omega_L(\tau)) \cos(\theta(\tau)) d\tau \\ y(t) = y(0) + \frac{R}{2} \int_0^t (\omega_R(\tau) + \omega_L(\tau)) \sin(\theta(\tau)) d\tau \end{cases}$$
$$\theta(t) = \theta(0) + \frac{R}{d} \int_0^t (\omega_R(\tau) - \omega_L(\tau)) d\tau$$

Et en pratique?

Odométrie: implémentation pratique

Discrétisation du modèle cinématique

$$\begin{cases} \dot{x} = V \cdot \cos \theta \\ \dot{y} = V \cdot \sin \theta \end{cases} \begin{cases} x_{k+1} = x_k + \Delta t \cdot V_k \cdot \cos \theta_k \\ y_{k+1} = y_k + \Delta t \cdot V_k \cdot \sin \theta_k \\ \theta_{k+1} = \theta_k + \Delta t \cdot \omega_k \end{cases}$$

- On suppose que pendant Δt le mouvement s'est réalisé selon l'orientation définie par θ_k (raffinements possibles)
- On mesure pendant Δt des déplacements angulaires des roues $\Delta \theta_L$ et $\Delta \theta_R$ (à partir des incréments des encodeurs)

$$\begin{cases} x_{k+1} = x_k + \frac{R}{2}(\Delta\theta_R + \Delta\theta_L) \cdot \cos(\theta_k) \\ y_{k+1} = y_k + \frac{R}{2}(\Delta\theta_R + \Delta\theta_L) \cdot \sin(\theta_k) \\ \theta_{k+1} = \theta_k + \frac{R}{d}(\Delta\theta_R - \Delta\theta_L) \end{cases}$$

Odométrie: sources d'incertitudes

- Principales sources d'incertitudes :
 - Glissement des roues sur le sol, chocs
 - Déformations des roues ou du sol
 - Incertitudes sur les paramètres R et d et sur les mesures des encodeurs
- => incertitude sur la position et l'orientation calculées (croît avec le temps)

- Solutions :
 - Méthodes de calibrage, d'estimation et compensation des ces erreurs
 - Fusionner avec des mesures en provenance d'autres capteurs
- Besoin de modéliser les incertitudes

Estimation

- Introduction à la problématique
- Odométrie
- Représentation des incertitudes
- Fusion de mesures
- Filtre de Kalman
- Introduction au SLAM

- Variable déterministe : sa valeur est connue
- Variable aléatoire : incertitude sur sa valeur (probabilité que la variable prenne la valeur ...)
- Utilités :
 - représenter des incertitudes
 - sur la mesure fournie par un capteur,
 - sur le calcul de la position du robot, etc ...
 - tenir compte des effets de phénomènes non (facilement) modélisables
 - frottement ou glissement des roues du robot sur le sol, etc ...

- Variable aléatoire : X, valeurs possibles : x
- Fonction densité de probabilité : f(x)

$$\int_{-\infty}^{+\infty} f(x)dx = 1$$

Probabilité que la valeur de X soit comprise entre a et b :

$$Pr[a < X \le b] = \int_{a}^{b} f(x)dx$$

• Moyenne : $\mu = E[X] = \int_{-\infty}^{\infty} x.f(x)dx$

Moyenne de toutes les valeurs possibles pour X, pondérées par leur densité de probabilité

• Variance :
$$\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 . f(x) dx$$

• Ecart type : $\sigma = \sqrt{Var(X)}$

« Lageur» des valeurs possibles pour \boldsymbol{X} autour de sa moyenne

- Un exemple de modélisation très utilisée : la distribution gaussienne (normal distribution)
- Pour une V.A. à une dimension : $X \in \mathbb{R}$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right\}$$

$$Pr[\mu - \sigma < X \le \mu + \sigma] = 68.26\%$$

$$Pr[\mu - 2\sigma < X \le \mu + 2\sigma] = 95.44\%$$

$$Pr[\mu - 3\sigma < X \le \mu + 3\sigma] = 99.72\%$$

Pour une V.A. à n dimensions : $X = \begin{bmatrix} X_1 \\ ... \\ X_n \end{bmatrix} \in \mathbb{R}^n$

$$X = \left[\begin{array}{c} X_1 \\ \dots \\ X_n \end{array} \right] \in \mathbb{R}^m$$

$$f(x) = \frac{1}{(2\pi)^{n/2}\sqrt{\det\Sigma}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Matrice de covariance

•
$$n=2$$
 $\Sigma = \begin{bmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}$

 ρ_{12} < 1 : coefficient de corrélation (=0 si pas de corrélation entre X_1 et X_2)

Ellipse à «3σ»

Ellipsoïde à «3σ»

Propagation d'incertitudes

- Incertitude sur l'entrée : $x \sim \mathcal{N}(\mu_x, \Sigma_x)$
- Sortie du système : y = h(x)

• Incertitude sur la sortie : $y \sim \mathcal{N}(\mu_y, \Sigma_y)$

$$\mu_y = ?$$
 $\Sigma_y = ?$

- Calcul de la moyenne : $\mu_y = f(\mu_x)$
- Calcul de la matrice de covariance :

$$\Sigma_y = H^x \Sigma_x (H^x)^T$$

Ligne i, colonne j :
$$\left[H^x\right]_{i,j} = \left[\frac{\partial h_i}{\partial x_j}\right]_{(x=\mu_x)}$$

Propagation d'incertitudes

Exercice 1 : mesure de vitesse

$$x = \begin{bmatrix} p_x \ p_y \ v_x \ v_y \end{bmatrix}^T$$
 $y = \begin{bmatrix} v_x \ v_y \end{bmatrix}$ Vecteur d'état du robot (position, vitesse)

 Exercice 2 : mesure de distance fournie par une balise

$$x = [p_x \ p_y \ v_x \ v_y]^T$$
 $y = \sqrt{p_x^2 + p_y^2}$

=> Calculer H^x

Propagation d'incertitudes

Exemple : pour un système dynamique

$$X_k \sim \mathcal{N}(x_k, P_k) \xrightarrow{X_{k+1}} X_{k+1} \sim \mathcal{N}(x_{k+1}, P_{k+1})$$

$$U_k \sim \mathcal{N}(u_k, \Sigma_{uk}) \xrightarrow{X_{k+1}} [X_k, U_k] \xrightarrow{X_{k+1}} (X_k, U_k) \xrightarrow{X_k} (X_k$$

moyenne

$$x_{k+1} = f(x_k, u_k)$$

covariance

$$P_{k+1} = F^{x} P_{k} (F^{x})^{T} + F^{u} \Sigma_{uk} (F^{u})^{T}$$

$$[F^x]_{i,j} = \left[\frac{\partial f_i}{\partial x_j}\right]_{(x_k, u_k)} \qquad [F^u]_{i,j} = \left[\frac{\partial f_i}{\partial u_j}\right]_{(x_k, u_k)}$$

Retour sur l'odométrie

Evolution de la covariance sur la position (ellipses à 3σ)

Vecteur d'état du système : pose du robot

$$X_k = [x_k \ y_k \ \theta_k]^T$$

Entrée du système : déplacements des roues

$$U_k = [\Delta \theta_{Rk} \ \Delta \theta_{Lk}]^T$$

Estimation

- Introduction à la problématique
- Odométrie
- Représentation des incertitudes
- Fusion de mesures
- Filtre de Kalman
- Introduction au SLAM

Fusion statique de deux mesures

- On cherche à calculer l'estimée \hat{q} d'une grandeur q
- Mesures q_1 et q_2 fournies par deux capteurs
- Estimées associées : $\hat{q}_1 \sim \mathcal{N}(q_1, \sigma_1^2)$ $\hat{q}_2 \sim \mathcal{N}(q_2, \sigma_2^2)$
- Approche moindres carrés : trouver \hat{q} qui minimise

$$J = \sum_{i=1}^{2} w_i \cdot (\hat{q} - q_i)^2$$

• Solution:

$$\hat{q} = \frac{\sum_{i=1}^{2} w_i \cdot q_i}{\sum_{i=1}^{2} w_i}$$
 Choix des poids: $w_i = \frac{1}{\sigma_i^2}$

Fusion statique de deux mesures

• =>
$$\hat{q} = \frac{\frac{1}{\sigma_1^2} q_1 + \frac{1}{\sigma_2^2} q_2}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}} = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} q_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} q_2$$

« barycentre »

$$\hat{q} = q_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (q_2 - q_1)$$

« prédiction » + « gain » * « mesure – prédiction »

« correction »

Fusion statique de deux mesures

• Quelle est l'incertitude sur \hat{q} ?

$$\sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

Fusion dynamique

On dispose d'un modèle d'évolution

• ex:
$$\dot{x} = \psi$$

 $x_{k+1} = x_k + T_e v_k + w_k$ $w_k \sim \mathcal{N}(0, \sigma_w^2)$

et d'un capteur donnant une mesure

• ex:
$$y_k = x_k + b_k$$
 $b_k \sim \mathcal{N}(0, \sigma_b^2)$

Algorithme d'estimation :

$$x_{k}^{-} = x_{k} + T_{e}v_{k} \qquad \sigma_{k}^{-2} = \sigma_{k}^{2} + T_{e}\sigma_{w}^{2}$$

$$x_{k+1} = x_{k}^{-} + K_{k+1}(y_{k+1} - x_{k}^{-}) \qquad K_{k+1} = \frac{\sigma_{k}^{-2}}{\sigma_{k}^{-2} + \sigma_{k}^{2}}$$

=> filtre de Kalman

Estimation

- Introduction à la problématique
- Odométrie
- Représentation des incertitudes
- Fusion de mesures
- Filtre de Kalman
- Introduction au SLAM

Filtre de Kalman : formulation générale

Equation d'état :

$$X_{k+1} = A_k X_k + B_k U_k + w_k \qquad w_k \sim \mathcal{N}(0, Q_k)$$

Equation de mesure :

$$Y_k = C_k X_k + v_k \qquad v_k \sim \mathcal{N}(0, R_k)$$

• Objectif du filtre : fournir une estimée \hat{X}_k de l'état X_k et sa matrice de covariance P_k associée

• Entrée du filtre : \hat{X}_0 et P_{θ}

Filtre de Kalman: une illustration

Principe (simplifié)

à t_k : estimée initiale et incertitude associée **prédiction** jusqu'à t_{k+1} et évolution de l'incertitude

à t_{k+1} : obtention d'une **mesure**, avec incertitude associée

Incertitude gaussienne

correction : calcul de l'estimée (et de son incertitude) réalisant « le meilleur compromis » entre la prédiction et la mesure (et leurs incertitudes)

Filtre de Kalman : formulation générale

Etapes de prédiction (« prediction »)

$$\hat{X}_{k+1|k} = A_k \hat{X}_{k|k} + B_k U_k$$
$$P_{k+1|k} = A_k P_{k|k} A_k^T + Q_k$$

Etape de correction (« update »)
 (si mesure est disponible)

$$\hat{X}_{k+1|k+1} = \hat{X}_{k+1|k} + K_{k+1}(Y_{k+1} - C_{k+1}\hat{X}_{k+1|k})$$

$$P_{k+1|k+1} = P_{k+1|k} - K_{k+1}C_{k+1}P_{k+1|k}$$

Innovation : $(Y_{k+1} - C_{k+1}\hat{X}_{k+1|k})$

Covariance de l'innovation : $S_{k+1} = C_{k+1}P_{k+1|k}C_{k+1}^T + R_{k+1}$

Gain de Kalman : $K_{k+1} = P_{k+1|k}C_{k+1}^TS_{k+1}^{-1}$

Filtre de Kalman: une illustration

Principe (simplifié)

à t_k : estimée initiale et incertitude associée

prédiction jusqu'à t_{k+1} et évolution de l'incertitude

à t_{k+1} : obtention d'une **mesure**, avec incertitude associée

correction : calcul de l'estimée (et de son incertitude) réalisant « le meilleur compromis » entre la prédiction et la mesure (et leurs incertitudes)

Localisation d'un robot à 1 dimension

- On cherche à estimer la position et la vitesse du robot à partir d'une mesure de la position
- Exercice 1 : écrire la représentation d'état du système en temps discret
- Exercice 2 : idem pour le cas d'un robot à 1 dimension soumis à une accélération a

- CI : $x_0 = 0$ m, $v_0 = 2$ m/s
- Initialisation du filtre : $\hat{x}_0 = -1 \text{m}$, $\hat{v}_0 = 0 \text{m/s}$

Pas de mesure :

Trajectoire estimée +/- 3σ 10 velocity (m/s) 0.4 0.6 1.0 0.2 8.0 1.2 0.4 0.6 time (s) time (s)

Trajectoire réelle

Trajectoire estimée

oosition (m)

30

- CI : $x_0 = 0$ m, $v_0 = 2$ m/s
- Initialisation du filtre : $\hat{x}_0 = -1 \text{m}$, $\hat{v}_0 = 0 \text{m/s}$

Mesure toutes les 0.2 sec

Trajectoire estimée +/- 3σ 10 velocity (m/s) oosition (m) -20 -6 ∟ 0.0 0.4 1.0 0.6 0.4 1.2 0.6 1.0 0.8 time (s) time (s)

Trajectoire réelle

Trajectoire estimée

- CI : $x_0 = 0$ m, $v_0 = 2$ m/s
- Initialisation du filtre : $\hat{x}_0 = -1 \text{m}$, $\hat{v}_0 = 0 \text{m/s}$

Mesure toutes les 0.05 sec

Trajectoire réelle

Trajectoire estimée

- CI : $x_0 = 0$ m, $v_0 = 2$ m/s
- Initialisation du filtre : $\hat{x}_0 = -1 \text{m}$, $\hat{v}_0 = 0 \text{m/s}$
- Mesure toutes les 0.01 sec (=Te)

Trajectoire réelle
Trajectoire estimée
Trajectoire estimée +/- 3σ

- Retour sur l'exemple :
 - Dynamique linéaire
 - Mesure linéaire
- Mais dans certains cas (pourtant simples) : non linéarités
 - Ex : mesure de distance
 - Ex: dynamique d'un robot mobile (sin, cos, *)
 - Etc...
- => Filtre de Kalman Etendu

Filtre de Kalman Etendu (EKF)

Equation d'état :

$$X_{k+1} = f(X_k, U_k) + w_k$$

$$w_k \sim \mathcal{N}(0, Q_k)$$

Equation de mesure :

$$Y_k = h(X_k) + v_k$$

$$v_k \sim \mathcal{N}(0, R_k)$$

• Objectif du filtre : fournir une estimée \hat{X}_k de l'état X_k et sa matrice de covariance P_k associée

• Entrée du filtre : \hat{X}_0 et P_{θ}

Filtre de Kalman Etendu (EKF)

Etapes de prédiction (« prediction »)

$$\hat{X}_{k+1|k} = f(\hat{X}_{k|k}, U_k)$$

$$P_{k+1|k} = F_k^x P_{k|k} (F_k^x)^T + Q_k$$

$$[F_k^x]_{i,j} = \left[\frac{\partial f_i}{\partial x_j}\right]_{(\hat{X}_k, U_k)}$$

 Etape de correction (« update ») (si mesure est disponible)

$$\hat{X}_{k+1|k+1} = \hat{X}_{k+1|k} + K_{k+1}(Y_{k+1} - h(\hat{X}_{k+1|k}))$$

$$P_{k+1|k+1} = P_{k+1|k} - K_{k+1} H_{k+1}^x P_{k+1|k}$$

$$P_{k+1|k+1} = P_{k+1|k} + K_{k+1}(I_{k+1} - h(X_{k+1|k}))$$

$$P_{k+1|k+1} = P_{k+1|k} - K_{k+1}H_{k+1}^x P_{k+1|k}$$

$$[H_k^x]_{i,j} = \left[\frac{\partial h_i}{\partial x_j}\right]_{(\hat{X}_{k+1|k})}$$

Innovation : $(Y_{k+1} - C_{k+1}\hat{X}_{k+1|k})$

Covariance de l'innovation : $S_{k+1} = H_{k+1}^x P_{k+1|k} (H_{k+1}^x)^T + R_{k+1}$

Gain de Kalman : $K_{k+1} = P_{k+1|k}(H_{k+1}^x)^T S_{k+1}^{-1}$

Estimation

- Introduction à la problématique
- Odométrie
- Représentation des incertitudes
- Fusion de mesures
- Filtre de Kalman
- Introduction au SLAM

- Simultaneous Localization and Mapping
 - Utiliser les éléments cartographiés pour mieux localiser le robot
 - Utiliser la localisation du robot pour améliorer la cartographie

Objectif : estimer l'état du robot et les positions des landmarks

Formulation du problème

Vecteur d'état à estimer :

$$x_k = \begin{bmatrix} x_k^r \\ \hline x_k^L \end{bmatrix} \xrightarrow{x_k^r = [x_k \ y_k \ \theta_k]^T} x_k^L = [(x_k^{L_1})^T \dots (x_k^{L_m})^T]^T$$

Position $[x \ y]^T$

• Modèle robot : $x_{k+1}^r = f(x_k^r, u_k) + w_k$

- Modèle landmarks : $x_{k+1}^L = x_k^L$ Hyp. : landmarks immobiles
- Modèle complet :

$$x_{k+1} = \begin{bmatrix} x_{k+1}^r \\ x_{k+1}^L \end{bmatrix} = \begin{bmatrix} f(x_k^r, u_k) \\ x_k^L \end{bmatrix} + \begin{bmatrix} w_k \\ 0 \end{bmatrix}$$

Données à k = 0

$$\hat{x}_0 = \begin{bmatrix} \hat{x}_0^r \\ \hat{x}_0^L \end{bmatrix}$$

 $\hat{x}_0 = \begin{vmatrix} \hat{x}_0^r \\ \hat{x}_0^L \end{vmatrix}$ Position et orientation a priori du robot Positions a priori des landmarks

$$P_0 = \begin{bmatrix} P_0^r & 0 \\ \hline 0 & P_0^L \end{bmatrix}$$

$$P_0=egin{bmatrix} P_0^r&0\\\hline 0&P_0^L \end{bmatrix} \qquad P_0^L=egin{bmatrix} P_0^{L_1}&\dots&0\\ dots&\ddots&dots\\0&\dots&P_0^{L_m} \end{bmatrix}$$
 ertitudes associées

Incertitudes associées

Utilisation du filtre de Kalman

Prédiction:

$$\hat{x}_{k+1|k} = \begin{bmatrix} \hat{x}_{k+1|k}^r \\ \hat{x}_{k+1|k}^L \end{bmatrix} = \begin{bmatrix} f(\hat{x}_{k|k}^r, u_k) \\ \hat{x}_{k|k}^L \end{bmatrix}$$

$$P_{k+1|k} = \begin{bmatrix} P_{k+1|k}^r & 0\\ \hline 0 & P_{k+1|k}^L \end{bmatrix}$$

$$P_{k+1|k} = \begin{bmatrix} P_{k+1|k}^r & 0 \\ \hline 0 & P_{k+1|k}^L \end{bmatrix} \qquad P_{k+1|k}^r = F_k^x P_{k|k}^r (F_k^x)^T + Q_k; \\ P_{k+1|k}^L = P_{k+1|k}^L = P_{k+1|k}^L$$

Correction:

$$\hat{x}_{k+1|k+1} = \left[\frac{\hat{x}_{k+1|k+1}^r}{\hat{x}_{k+1|k+1}^L} \right] = \left[\frac{\hat{x}_{k+1|k}^r}{\hat{x}_{k+1|k}^L} \right] + K_{k+1}(Y_{k+1} - h(\hat{x}_{k+1|k}))$$

L'étape de correction peut se faire de manière itérative, mesure par mesure

Exemple de mesures, matching

- Mesures fournies par un scanner laser : y
 - distance ρ^i (range) et angle β^i (bearing)

$$Y_k = \left[\begin{array}{c} \rho_k^i \\ \beta_k^i \end{array} \right] + \left[\begin{array}{c} w_k^\rho \\ w_k^\beta \end{array} \right]$$

$$\rho_k^i = \sqrt{(x_k^r - x_k^{L_i})^2 + (y_k^r - y_k^{L_i})^2}$$

$$Y_k = \begin{bmatrix} \rho_k^i \\ \beta_k^i \end{bmatrix} + \begin{bmatrix} w_k^\rho \\ w_k^\beta \end{bmatrix}$$

$$\rho_k^i = \sqrt{(x_k^r - x_k^{L_i})^2 + (y_k^r - y_k^{L_i})^2} \qquad \beta_k^i = \arctan\left(\frac{y_k^{L_i} - y_k^r}{x_k^{L_i} - x_k^r}\right) - \theta_k$$

- « Matching » : faire correspondre les mesures obtenues avec les mesures prédites
 - Quelle mesure correspond à quel landmark?
 - Existe test statistique sur la covariance de l'innovation pour faire les associations

Exemple de mise en œuvre

3 landmarks, mesure : position relative robot / LM

Trajectoire réelle Trajectoire estimée Landmarks

Exemple de mise en œuvre

• Entrées du filtre à t=0 \Rightarrow estimée Ellipse d'incertitude à 3σ

Exemple de mise en œuvre

Erreurs d'estimation sur la position du robot

Exemple de mise en œuvre

Estimation de la position LM1

Exemple de mise en œuvre

Estimation de la position LM2

Exemple de mise en œuvre

• Estimation de la position LM3

Conclusion

Ce qui a été vu :

- localisation par odométrie, les sources d'erreurs
- comment modéliser et propager des incertitudes
- comment fusionner des mesures provenant de différents capteurs
 - fusion statique, filtre de Kalman, filtre de Kalman étendu
- la problématique du SLAM et une première façon de résoudre ce problème à l'aide d'un KF

