Практическое занятие в рамках Осенней ИТ-школы ОИЯИ-2024

Математическое моделирование джозефсоновского перехода сверхпроводник/ферромагнетик/ сверхпроводник на поверхности трехмерного топологического изолятора

1. Введение: Исследование поведения подынтегральной функции при различных значениях параметров, численное интегрирование и аппроксимация интегралов при различных значениях параметров

Особенности вычисления интеграла:

$$j_{s} = \int_{-\pi/2}^{\pi/2} \cos\varphi \exp\left(-\frac{d}{\cos(\varphi)}\right) \cos(rm_{\chi} \tan\varphi) d\varphi.$$

Подынтегральная функция на концах интрервала интегрирования не определена, однако

$$\lim_{\varphi \to \pm \frac{\pi}{2}} f(m_{\chi}, r, d, \varphi) = 0.$$

Параметры модели:

- d безразмерная длина контакта, $d \in [0.1, 0.8]$;
- r безразмерный параметр, определяющий величину спинорбитального взаимодействия, $r \in [0.1, 2]$;
- G отношение энергии Джозефсона к энергии магнитной анизотропии, $G \in [0.1, 10];$
- α диссипация Гилберта $\alpha \in [0.01, 0.2];$
- wF = 1.

Функция, подлежащая определению, значения которой при вычислении интеграла играет роль параметра: m_χ - компонета намагниченности.

Подключение необходимых библиотек

```
In [1]: import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

%matplotlib inline

# use seaborn plotting defaults
sns.set()
sns.set(style="whitegrid")
```

Определим подынтегральную функцию

Параметры

Зависимость подынтегральной функции F_{js} от угла ϕ

Численное интегрирование с использованием библиотеки SciPy

Воспользуемся функцией quad:

```
quad(func, a, b, args=(), full_output=0, epsabs=1.49e-08,
epsrel=1.49e-08, limit=50, points=None, weight=None, wvar=None,
wopts=None, maxp1=50, limlst=50, complex func=False)[source]
```

Compute a definite integral. Integrate func from a to b (possibly infinite interval) using a technique from the Fortran library QUADPACK.

```
In [8]: from scipy.integrate import quad

In [9]: %time
    js = quad(funct_js, -np.pi/2, np.pi/2, args=(mx, r, d))
        CPU times: user 3.52 ms, sys: 103 µs, total: 3.62 ms
        Wall time: 4.1 ms

In [10]: js

Out[10]: (0.5616726952897881, 1.3014932435115616e-08)

In [11]: Npoint = 1000
    arr_mx = np.linspace(-1, 1, Npoint, endpoint=True)

In [12]: arr_js = np.zeros(Npoint, dtype=np.float64)
```


Интерактивное управление в Jupyter Notebooks: библиотека *IPywidgets*

Для решения задач инерактивного управления параметрами воспользуемся библиотекой *IPywidgets* (См. ссылку). С помощью этой библиотеки блокнот Jupyter превращается в диалоговую панель, удобную для визуализации и работы с данными.

Для работа с IPywidgets создаем ячейку с:

```
import ipywidgets as widgets
from ipywidgets import interact, interact_manual, Label
Список доступных виджетов (Widget List) можно найти на сайте
библиотеки.
```

Однако, в библиотеке есть удобная функция (*ipywidgets.interact*), котороя автоматически создает элементы управления пользовательского интерфейса (UI) для интерактивного изучения кода и данных. Это самый простой способ начать использовать виджеты IPython.

Мы воспользуемся конструкцией (декоратор):

@interact

которая автоматически создаёт и текстовое поле и слайдер для выбора колонки и числа. Декоратор смотрит на введённые параметры и создаёт панель диалогового управления, основываясь на типах данных.

Пример

```
plt.legend(loc='upper right', fontsize=13)
plt.show()
```

interactive(children=(FloatSlider(value=0.0, description='mx', max=2.0, min=
-2.0, step=0.2), FloatSlider(value...

Для дальнейших исследований представляет интерес рассмотрение поведения функции тока j_s и интегралов I_x и I_y при различных значениях параметров.

```
In [20]: @interact
         def show funct js(r=(0.1, 4.0, 0.1), d=(0.1, 0.8, 0.1)):
             Npoint = 1000 # количество точек (число вызовов функции интегрирования)
             arr_mx = np.linspace(-1, 1, Npoint, endpoint=True)
             arr js = np.zeros(Npoint, dtype=np.float64)
             arr err = np.zeros(Npoint, dtype=np.float64)
             for ind in range(Npoint):
                 mx = arr mx[ind]
                 # интегрируем для каждого
                 arr js[ind], arr err[ind] = quad(funct_js, -np.pi/2, np.pi/2,
                                                  args=(mx, r, d))
             fig = plt.figure(figsize=(8, 6))
             plt.scatter(arr mx, arr js, edgecolor="red", s=10,
                         label=r'$r=%6.3f, d=%6.3f$' % (r, d))
             plt.xlabel("$m_x$ ", fontsize=14)
             plt.ylabel("$j_{s}$", fontsize=14)
             plt.title("Зависимость $j s$ от параметра $m x$ ", fontsize=16)
             plt.legend(fontsize=13)
             plt.show()
```

interactive(children=(FloatSlider(value=2.0, description='r', max=4.0, min=
0.1), FloatSlider(value=0.4, descri...

Поведение интегралов I_{x} и I_{y} при различных значениях параметров

```
arr_err = np.zeros(Npoint, dtype=np.float64)

for ind in range(Npoint):

    mx = arr_mx[ind]

# интегрируем для каждого

    arr_Ix[ind], arr_err[ind] = quad(funct_Ix, -np.pi/2, np.pi/2, args=(mx, r, d))

fig = plt.figure(figsize=(8, 6))

plt.scatter(arr_mx, arr_js, edgecolor="red", s=10, label=r'$r=%6.3f, d=%6.3f$' % (r, d))

plt.xlabel("$m_x$ ", fontsize=14)

plt.ylabel("$I_{x}$", fontsize=14)

plt.title("Зависимость $I_{x}$ от параметра $m_x$ ", fontsize=16)

plt.legend(fontsize=13)

plt.show()
```

interactive(children=(FloatSlider(value=1.0, description='r', max=2.0, min=
0.1), FloatSlider(value=0.4, descri...

```
In [24]: @interact
         def show funct Iy(r=(0.1, 2.0, 0.1), d=(0.1, 0.8, 0.1)):
             Npoint = 1000 # количество точек (число вызовов функции интегрирования)
             arr mx = np.linspace(-1, 1, Npoint, endpoint=True)
             arr_js = np.zeros(Npoint, dtype=np.float64)
             arr err = np.zeros(Npoint, dtype=np.float64)
             for ind in range(Npoint):
                 mx = arr mx[ind]
                 # интегрируем для каждого
                 arr js[ind], arr err[ind] = quad(funct_Iy, -np.pi/2, np.pi/2,
                                                  args=(mx, r, d))
             fig = plt.figure(figsize=(8, 6))
             plt.scatter(arr mx, arr js, edgecolor="red", s=10,
                         label=r'$r=%6.3f, d=%6.3f$' % (r, d))
             plt.xlabel("$m x$ ", fontsize=14)
             plt.ylabel("$I {y}$", fontsize=14)
             plt.title("Зависимость $I {y}$ от параметра $m x$ ", fontsize=16)
             plt.legend(fontsize=13)
             plt.show()
```

interactive(children=(FloatSlider(value=1.0, description='r', max=2.0, min=
0.1), FloatSlider(value=0.4, descri...

Аппроксимация вычисленных интегралов для $m_{\chi} \in [-1, 1]$

Для аппроксимации интеграла воспользуемся модулем *scipy. optimize* библиотеки Scipy, функцией curve_fit:

```
curve_fit(f, xdata, ydata, p0=None, sigma=None,
absolute_sigma=False, check_finite=None, bounds=(-inf, inf),
method=None, jac=None, *, full_output=False, nan_policy=None,
**kwargs)[source]
? Какую функцию выбрать?
```

Рассмотрим многочлены:

```
P_n(x), n = 2, 4, ....
```

```
In [25]: from scipy.optimize import curve fit
In [26]: def func P2(x, a, b, c):
             '''Defines a polynomial of the second degree'''
             return a*x*x + b*x + c
In [27]: # область изменения параметра mx
         xnew = np.linspace(-1, 1, 2000, endpoint=True)
In [28]: # значения параметров
         d = 0.8
         r = 1.1
         # массивы
         Npoint = 1000
         arr mx = np.linspace(-1, 1, Npoint, endpoint=True)
         arr js = np.zeros(Npoint, dtype=np.float64)
         arr err = np.zeros(Npoint, dtype=np.float64)
         # вычисление интегралов
         for ind in range(Npoint):
             mx = arr mx[ind]
             arr js[ind], arr err[ind] = quad(funct js, -np.pi/2, np.pi/2,
                                               args=(mx, r, d))
In [29]: # popt: optimal values for the parameters a, b, c
         popt, pcov = curve fit(func P2, arr mx, arr js)
In [30]: # Deviation error on parameters a, b, c
         perr = np.sqrt(np.diag(pcov))
In [31]: plt.figure(figsize=(4, 3))
         plt.scatter(arr mx, arr js, edgecolor="red", s=5,
                     label=r'$r=%6.3f, d=%6.3f$' % (r, d))
         plt.plot(arr mx, func P2(arr mx, *popt), 'b-',
                  label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))
         plt.xlabel("$m x$")
         plt.ylabel("$j {s}$")
         plt.title("Зависимость $j s$ от параметра $m x$")
         plt.legend()
         plt.show()
```

Figure

Аппроксимация многочленом степени n > 2

Для решения задачи аппроксимации возможно применить различные подходы, например, реализованный в библиотеке Numpy polyfit или подход в библиотеке Scipy: scipy.odr.polynomial, который и применим далее:

```
from scipy import odr
poly_model = odr.polynomial(order)
Factory function for a general polynomial model.
```

Подробнее о методе *ODR* (Orthogonal distance regression) Можно прочитать в документации.

```
In [32]: from scipy import odr

In [33]: # Using the 8th order polynomial model
    poly_model = odr.polynomial(8)
    data = odr.Data(arr_mx, arr_js)
    odr_obj = odr.ODR(data, poly_model)

# Running ODR fitting
    output = odr_obj.run()

poly = np.polyld(output.beta[::-1])
    poly_y = poly(arr_mx)

In [34]: plt.figure(figsize=(6, 4))
    plt.scatter(arr_mx, arr_js, edgecolor="red", s=5, label="Input data")
    plt.plot(arr_mx, poly_y, label="polynomial ODR")
    plt.xlabel("$m$ ")
    plt.ylabel("$j_{s}$")
```

plt.title("Зависимость \$j s\$ от параметра \$m x\$")

```
plt.legend(fontsize=12)
plt.show()
```

Figure


```
In [35]: Npoint = 1000 # количество точек (число вызовов функции интегрирования)
         arr mx = np.linspace(-1, 1, Npoint, endpoint=True)
         arr Ix = np.zeros(Npoint, dtype=np.float64)
         arr err = np.zeros(Npoint, dtype=np.float64)
         for ind in range(Npoint):
             mx = arr mx[ind]
             # интегрируем для каждого
             arr_Ix[ind], arr_err[ind] = quad(funct_Ix, -np.pi/2, np.pi/2,
                                                  args=(mx, r, d)
         # Using the 9th order polynomial model
         poly_model = odr.polynomial(9)
         data = odr.Data(arr mx, arr Ix)
         odr obj = odr.ODR(data, poly model)
         # Running ODR fitting
         output = odr_obj.run()
         poly = np.poly1d(output.beta[::-1])
         poly_y = poly(arr_mx)
```

```
In [36]: plt.figure(figsize=(6, 4))
    plt.scatter(arr_mx, arr_Ix, edgecolor="red", s=5, label="Input data")
    plt.plot(arr_mx, poly_y, label="polynomial ODR")
    plt.xlabel("$m$ ")
    plt.ylabel("$j_{s}$")
```

```
plt.title("Зависимость $j_s$ от параметра $m_x$")
plt.legend(fontsize=12)
plt.show()
```

Figure

2. Численное решение задачи Коши: библиотека SciPy

Задача Коши: Рассмотрим решение начальной задачи (*Intial value problem*) для системы обыкновенных дифференциальных уравнений первого порядка, разрешенных относительно производной:

$$\begin{cases} \frac{dy(t)}{dt} = f(t, y(t)), \\ y|_{t=t_0} = y_0, \end{cases}$$

где $y = (y_1, \dots, y_n)^T$ - вектор-функция.

Пример 1: Численно решить задачу Коши:

$$\begin{cases} \frac{dy}{dt} = y\cos(t) \\ y(0) = y_0. \end{cases}$$

Для сравнения приведем аналитическое решение задачи (2):

$$y_{exact} = y_0 e^{\sin(t)}.$$

Воспользуемся библиотекой SciPy, содержащей функцию для решения начальной задачи:

```
scipy.integrate.solve_ivp(fun, t_span, y0, method='RK45',
t_eval=None, dense_output=False, events=None, vectorized=False,
args=None, **options)[source]
Solve an initial value problem for a system of ODEs.
```

Для этого необходимо задать правые части уравнений (2).

```
In [37]: from scipy.integrate import solve ivp
         from functools import partial
In [38]: def F_right2(t, y, omega):
             '''right-hand part'''
             return y*np.cos(omega*t)
In [39]: # Параметр модели
         omega = 5. \# np.pi/2
         # Параметры численного счета
         t0 = 0
         tf = 10
         nt = 1000
         # Массив точек (сетка) в которых будет находится решение
         t e = np.linspace(t0, tf, nt)
         # Начальное условие
         y0 = np.array([3])
In [40]: f = partial(F right2, omega=omega)
         t e = np.linspace(t0, tf, nt)
         sol_2 = solve_ivp(f, [t0, tf], y0, t_eval=t_e, method='RK45',
                           rtol=1e-8, atol=1e-8)
In [41]: sol 2
```

```
message: The solver successfully reached the end of the integration inter
Out[41]:
         val.
           success: True
            status: 0
                 t: [ 0.000e+00 1.001e-02 ... 9.990e+00 1.000e+01]
                 y: [[ 3.000e+00 3.030e+00 ... 2.819e+00 2.847e+00]]
                sol: None
          t_events: None
          y events: None
              nfev: 1124
              njev: 0
               nlu: 0
In [42]: plt.figure(figsize=(8, 6))
         plt.plot(sol_2.t, sol_2.y[0], label='Численное решение задачи (3) $y(t)$',
                  linewidth=3.0)
         plt.xlabel('t', size=16)
         plt.ylabel('$y(t)$', size=12)
         plt.legend(loc='upper center', fontsize=11)
         plt.show()
```

Figure

Математическое моделирование джозефсоновского перехода сверхпроводник/ферромагнетик/

сверхпроводник на поверхности трехмерного топологического изолятора

Аномальный эффект Джозефсона, который заключается в возникновении фазового сдвига в токфазовом соотношении гибридных джозефсоновских структур, состоящих из сверхпроводников и магнетиков приводит к возникновении конечного сверхпроводящего тока при нулевой джозефсоновской разности фаз. Данный фазовый сдвиг пропорционален намагниченности ферромагнетика и отражает совместное проявление сверхпроводимости и магнетизма.

Одной из возможных подобных гибридных структур является джозефсоновский переход сверхпроводник/ферромагнетик/ сверхпроводник на поверхности трехмерного топологического изолятора, содержащего дираковские квазичастицы, в котором сильная зависимость энергии Джозефсона от ориентации намагниченности открывает новые возможности для контроля намагниченности джозефсоновским током или джозефсоновской фазой. Помимо наличия сдвига фазы, также в этой структуре джозефсоновский критический ток сильно зависит от ориентации намагниченности, а именно от составляющей намагниченности в плоскости вдоль направлении тока. Такая зависимость критического тока может привести к четырехкратному вырожденному состоянию ферромагнетика, которая резко контрастирует с обычным двукратным вырожденным состояниям. Активный интерес к исследованию таких структур вызван возможностью их практического приложения. Возникающая связь между магнитным и сверхпроводниковыми степенями свободы дает возможность взаимного контроля, т.е. управления магнитными свойствами посредством сверхпроводящего тока или наоборот.

Теоретическая модель

Ток-фазовое соотношение этого перехода задается выражением

$$j_s = j_c \sin(\varphi - \varphi_0),$$

где j_c - критический ток, φ - джозефсоновская разность фаз, $\varphi_0 = rm_y$ - аномальный сдвиг фазы, $m_y = M_y/M_s$ - y компонента намагниченности (M_y) нормированная на намагниченность насыщения M_s , $r = 2dh_{\rm exc}/v_F$ - безразмерный параметр, определяющий величину спин-орбитального взаимодействия, d - толщина ферромагнитного барьера, $h_{\rm exc}$ - обменное поле, v_F -скорость Ферми.

Отличительной чертой рассматриваемого джозефсоновского перехода является то, что критический ток сильно зависит от ориентации намагниченности, а именно, от x компоненты намагниченности в плоскости вдоль направления тока и задается выражением

$$j_c = j_b \int_{-\pi/2}^{\pi/2} \cos\varphi \exp\left(-\frac{\tilde{d}}{\cos\phi}\right) \cos(rm_x \tan\varphi) d\varphi,$$

где φ - угол между направлением квазичастичного тока и осью x, $m_{\chi}=M_{\chi}/M_{S}$ - x компонента намагниченности нормированная на M_{S} , $j_{b}=\frac{ev_{F}N_{F}\triangle^{2}}{\pi^{2}T}$, \triangle - сверхпроводящий параметр порядка, T - температура, N_{F} - концентрация частиц вблизи уровня Ферми, v_{F} - скорость Ферми, \tilde{d} - безразмерная длина контакта.

Динамика вектора намагниченности **M** ферромагнитного слоя описывается в рамках уравнения Ландау - Лифшица - Гильберта (ЛЛГ):

$$\frac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_{\text{s}}} \mathbf{M} \times \frac{d\mathbf{M}}{dt},$$

где γ - гиромагнитное отношение, α - гильбертовское затухание и $\mathbf{H}_{\mathrm{eff}}$ - эффективное поле. Эффективное поле определяется варьированием полной энергии системы по вектору намагниченности

$$\mathbf{H}_{\text{eff}} = -\frac{1}{V_F} \frac{\delta E_t}{\delta \mathbf{M}},$$

где V_F - объем ферромагнитного слоя. Полная энергия системы состоит из энергии магнитной анизотропии

$$E_M = -KV_F \left(\frac{M_y}{M_s}\right)^2,$$

где K - константа анизотропии, и джозефсоновской энергии

$$E_J = \frac{\Phi_0 j_c S}{2\pi} [1 - \cos(\varphi - rm_y)],$$

где Φ_0 - квант магнитного потока, S - площадь перехода.

Таким образом, компоненты эффективного поля в нормированных единицах могут быть записаны в виде:

$$h_{x} = \frac{H_{\text{eff,x}}}{H_{F}} = \frac{GrI_{x}}{j_{c0}} \left[1 - \cos(\varphi - rm_{y}) \right],$$

$$h_{y} = \frac{H_{\text{eff,y}}}{H_{F}} = \frac{GrI_{y}}{j_{c0}} \sin(\varphi - rm_{y}) + m_{y},$$

$$h_{z} = \frac{H_{\text{eff,z}}}{H_{F}} = 0,$$

где $G=\Phi_0 j_b S/2\pi K V_F$ - отношение амплитуды джозефсоновской энергии к магнитной, $H_F=\omega_F/\gamma=K/M_s$, ω_F - собственная частота ферромагнитного резонанса, а $I_{_X}$ и $I_{_Y}$ интегральные выражения определяемые как:

$$I_{x} = \int_{-\pi/2}^{\pi/2} \sin \phi \exp\left(-\frac{\tilde{d}}{\cos \varphi}\right) \sin(rm_{x} \tan \phi) d\varphi,$$

$$I_{y} = \int_{-\pi/2}^{\pi/2} \cos \phi \exp\left(-\frac{\tilde{d}}{\cos \varphi}\right) \cos(rm_{x} \tan \phi) d\varphi.$$

Здесь j_{c0} определяет выражение для критического тока при $m_{_{\! X}}=0$ и записывается как

$$j_{c0} = \int_{-\pi/2}^{\pi/2} \cos\phi \exp(-\frac{\tilde{d}}{\cos\phi}) d\phi$$

Таким образом, в нормированных величинах, получим систему уравнений:

$$\begin{split} \frac{dm_{x}}{dt} &= -\frac{\omega_{F}}{1 + \alpha^{2}} \Big((m_{y}h_{z} - m_{z}h_{y}) + \alpha [m_{x}(m_{x}h_{x} + m_{y}h_{y} + m_{z}h_{z}) - h_{x}m^{2}] \Big), \\ \frac{dm_{y}}{dt} &= -\frac{\omega_{F}}{1 + \alpha^{2}} \Big((m_{z}h_{x} - m_{x}h_{z}) + \alpha [m_{y}(m_{x}h_{x} + m_{y}h_{y} + m_{z}h_{z}) - h_{y}m^{2}] \Big), \\ \frac{dm_{z}}{dt} &= -\frac{\omega_{F}}{1 + \alpha^{2}} \Big((m_{x}h_{y} - m_{y}h_{x}) + \alpha [m_{z}(m_{x}h_{x} + m_{y}h_{y} + m_{z}h_{z}) - h_{z}m^{2}] \Big). \end{split}$$

При заданном значении напряжении можно считать разоность фаз φ линейной функцией от времени, т.е. $\varphi = Vt$. Тогда выражения для компонент эффективного поля записываются в виде

$$h_x = \frac{GrI_x}{j_{c0}} \left[1 - \cos\left(Vt - rm_y\right) \right],$$

$$h_y = \frac{GrI_y}{j_{c0}} \sin(Vt - rm_y) + m_y,$$

$$h_z = 0.$$

Легкая ось намагниченности в ферромагнитном слое направлена вдоль оси y, т.е. направления $m_y = \pm 1$ являются стабильными. В paботe\cite{nashaat19prb} было показано, что в SFS джозефсоновском переходе на поверхности топологического изолятора при определенных значениях параметров модели реализуются четырехкратно вырожденные стабильные состояния намагниченности.

Наша задача заключается, в том чтобы на основе математического моделирования продемонстрировать реализацию этих вырожденных состояний.

Аппроксимация интегралов

Отметим, что при численном решении системы дифференциальных уравнений приходится на каждом шаге по времени вычислить интегралы. Это сильно замедляет процесс решения уравнений. Эту проблему можно решить следующим образом:

- 1. Вычислить интегралы численно в интервале $m_\chi \in [-1,1]$ с определенным шагом
- 2. Интерполировать полученный результат полиномом определенной степени
- 3. Затем вставить полученную приближенную формулу в уравнении и решать систему уравнений

```
In [43]: %matplotlib inline
```

Задаем значения параметров модели для вычисления интегралов

```
In [44]: d = 0.3
 r = 0.5
```

Определяем подынтегральные функции

Создаем массивы для $m_{\scriptscriptstyle X}$ и соответствующих значений интегралов

```
In [47]: # массивы
Npoint = 1000
arr_mx = np.linspace(-1, 1, Npoint, endpoint=True)
arr_Ix = np.zeros(Npoint, dtype=np.float64)
arr_Iy = np.zeros(Npoint, dtype=np.float64)
arr_errx = np.zeros(Npoint, dtype=np.float64)
arr_erry = np.zeros(Npoint, dtype=np.float64)
# вычисление интегралов
for ind in range(Npoint):
    mx = arr_mx[ind]
    arr_Ix[ind], arr_errx[ind] = quad(funct_Ix, -np.pi/2, np.pi/2, args=(mx, r, d))
    arr_Iy[ind], arr_erry[ind] = quad(funct_Iy, -np.pi/2, np.pi/2, args=(mx, r, d))
```

Аппроксимация интегралов I_{x} и I_{y} многочленом девятой P_{9} и восьмой P_{8} степени соответственно

```
In [48]: # Using 9th order polynomial model
    poly_model = odr.polynomial(9)
    data = odr.Data(arr_mx, arr_Ix)
    odr_obj = odr.ODR(data, poly_model)

# Running ODR fitting
    output = odr_obj.run()

Ixfit = np.polyld(output.beta[::-1])

In [49]: # using 8th order polynomial model
    poly_model = odr.polynomial(8)
    data = odr.Data(arr_mx, arr_Iy)
    odr_obj = odr.ODR(data, poly_model)

# Running ODR fitting
    output = odr_obj.run()

Iyfit = np.polyld(output.beta[::-1])
```

Определение функции для j_{c0}

Вычисление j_{c0}

```
In [51]: Jc0 = jc0(d)

J0 = Jc0[0]

J0
```

```
mx = S[0]
my = S[1]
mz = S[2]
Jx = Ixfit(mx)
Jy = Iyfit(mx)
Hx = (G*r*Jx/J0)*(1-np.cos(V*t-r*my))
Hy = (G*r*Jy/J0)*np.sin(V*t-r*my)+my
Hz = 0
H = [Hx, Hy, Hz]
M = [mx, my, mz]
m2 = np.dot(M, M)
HdM = np.dot(H, M)
ksi = -wF/(1+alpha*alpha*m2)
dmx = ksi * ((my*Hz-mz*Hy) + alpha * (mx*HdM-Hx*m2))
dmy = ksi * ((mz*Hx-mx*Hz) + alpha * (my*HdM-Hy*m2))
dmz = ksi * ((mx*Hy-my*Hx) + alpha * (mz*HdM-Hz*m2))
dS = [dmx, dmy, dmz]
return dS
```

```
In [54]: G = 4.5 # отношение энергии Джозефсона к энергии магнитной анизотропии r = 0.5 # параметр спин—орбитального взаимодействия d = 0.3 # безразмерная длина джозефсоновского перехода wF = 1 # собственная частота ферромагнитного резонанса alpha = 0.01 # параметр гильбертовского затухания V = 5 # напряжение в джозефсоновском переходе

t0 = 0
tf = 1500
nt = 15000
```

```
In [55]: s = np.array([0, 1, 0])
dS = my_sfs(0, s, 4.12, 0.5, 0.01, 1, 0.3, 5, J0)
dS
```

Задаем начальные условия $m_{_X} = -0.5$, $m_{_Z} = 0$, $m_{_Y} = \sqrt{1 - m_{_X}^2 - m_{_Z}^2}$

```
In [56]: mx0 = -0.5
          mz0 = 0
          my0 = np.sqrt(1-mx0*mx0-mz0*mz0)
In [72]: f = partial(my sfs, G=G, r=r, alpha=alpha, wF=wF, d=d, V=V, J0=J0)
          t e = np.linspace(t0, tf, nt)
          s0 = np.array([mx0, my0, mz0])
          sol_1 = solve_ivp(f, [t0, tf], s0, t_eval=t_e, method='BDF',
                               rtol=1e-8, atol=1e-8)
In [73]: %matplotlib inline
          plt.figure(figsize=(18, 6))
          plt.subplot(1, 3, 1)
          plt.ylim(-1.2, 1.2)
          plt.plot(sol_1.t, sol_1.y[0], label='Компонента $m_x $', color='b')
          plt.xlabel('t', size=16)
          plt.ylabel('$m {x}$', size=16)
          plt.legend(fontsize=12)
          plt.subplot(1, 3, 2)
          plt.ylim(-1.2, 1.2)
          plt.plot(sol 1.t, sol 1.y[1], label='Компонента $m y $', color='g')
          plt.xlabel('t', size=16)
          plt.ylabel('$m {y}$', size=16)
          plt.legend(fontsize=12)
          plt.subplot(1, 3, 3)
          plt.ylim(-1.2, 1.2)
          plt.plot(sol_1.t, sol_1.y[2], label='Компонента $m_z $', color='r')
          plt.xlabel('t', size=16)
          plt.ylabel('$m_{z}$', size=16)
          plt.legend(fontsize=12)
          plt.show()
                          — Компонента m<sub>x</sub>
                                                        — Компонента m<sub>v</sub>
                                                                                     — Компонента m<sub>z</sub>
          1.0
                                        1.0
                                                                     1.0
          0.5
        ĕ 0.0
                                                                   0.0
                                      £ 0.0
          -0.5
                                        -0.5
          -1.0
                                        -1.0
                                                                     -1.0
                            1000
                               1250
                                              250
                                                  500
                                                         1000
                                                             1250
                    500
                                                     750
                                                                               500
                                                                                      1000
                                                                                          1250
```

Влияние начальных условий

```
In [74]:  mx0 = 0.5 
 mz0 = 0
```

```
my0 = np.sqrt(1-mx0*mx0-mz0*mz0)
In [281... | f = partial(my sfs, G=1.25, r=r, alpha=alpha, wF=wF, d=d, V=V, J0=J0)
          t e = np.linspace(t0, tf, nt)
          s0 = np.array([mx0, my0, mz0])
          sol 2 = solve ivp(f, [t0, tf], s0, t eval=t e, method='BDF', rtol=1e-8, atol
In [282... %matplotlib inline
          plt.figure(figsize=(18, 6))
          plt.subplot(1, 3, 1)
          plt.ylim(-1.2, 1.2)
          plt.plot(sol_2.t, sol_2.y[0], label='Компонента $m_x $', color='b')
          plt.xlabel('t', size=16)
          plt.ylabel('$m_{x}$', size=16)
          plt.legend(fontsize=12)
          plt.subplot(1, 3, 2)
          plt.ylim(-1.2, 1.2)
          plt.plot(sol_2.t, sol_2.y[1], label='Компонента $m_y $', color='g')
          plt.xlabel('t', size=16)
          plt.ylabel('$m {y}$', size=16)
          plt.legend(fontsize=12)
          plt.subplot(1, 3, 3)
          plt.ylim(-1.2, 1.2)
          plt.plot(sol_2.t, sol_2.y[2], label='Компонента $m_z $', color='r')
          plt.xlabel('t', size=16)
          plt.ylabel('$m_{z}$', size=16)
          plt.legend(fontsize=12)
          plt.show()

    Компонента m<sub>x</sub>

                                                                                     Компонента m
          1.0
                                        1.0
                                                                     1.0
          0.5
                                        0.5
                                                                    0.5
        E 0.0
                                     £ 0.0
                                                                  0.0
          -0.5
                                       -0.5
                                                                    -0.5
          -1.0
                                                                    -1.0
                250
                        750
                           1000
                               1250
                                                 500
                                                        1000
                                                            1250
                                                                           250
```

Пример распараллеливания

```
In [283... import joblib
In [284... f"Number of cpu: {joblib.cpu_count()}"
Out[284... 'Number of cpu: 8'
In [285... sol_1.y[0][-1]
```

```
Out[285... -0.5738074502086493
In [286... sol_2.y[0][-1]
Out[286... -2.6992362231474343e-06
         Mean [750, 1500] mx my
In [287... mx_750_1500 = sol_2.y[0][7500:]
         my 750\ 1500 = sol\ 2.y[1][7500:]
         mz 750 1500 = sol 2.y[2][7500:]
In [288... | mx mean = np.mean(mx 750 1500)
         mx mean
Out [288... -1.1831645871327533e-06
In [289... | my_mean = np.mean(my_750_1500)]
         my mean
Out[289... 1.000000608633775
In [290... mz mean = np.mean(mz 750 1500)
         mz mean
Out[290... 1.0534689901157607e-06
In [291... my mean*my mean + mx mean*mx mean + mz mean*mz mean
Out[291... 1.0000012172704298
In [279... mx 750 1500.shape
Out[279... (7500,)
In [280... sol 2.y.shape
Out[280... (3, 15000)
In [96]: def get G bests(truncated solutions):
              squared_sums_deviation = []
              best g indexes = []
              for s in truncated solutions:
                  mx mean = np.mean(s.y[0])
                  my mean = np.mean(s.y[1])
                  mz_{mean} = np.mean(s.y[2])
                  square sum = my mean*my mean + mx mean*mx mean + mz mean*mz mean
                  absolute val = abs(1 - square sum)
```

```
for in range(4):
                 best g index = np.argmin(squared sums deviation)
                 best g indexes.append(best g index)
                  squared sums deviation = np.delete(squared sums deviation, best q ir
              return best q indexes
In [325... def truncate solutions(solutions):
             truncated solutions = []
             for s in solutions:
                 truncation index = 0
                 amplitudes = []
                 for i in range(1, len(s.y[0]), 2):
                      amplitudes.append(abs(s.y[0][i-1] - s.y[0][i]))
                  print(amplitudes[:10])
                 mean amplitude = np.median(amplitudes)
                 print(mean_amplitude, "max:", np.max(amplitudes))
                 for i in range(1, len(s.y[0]), 2):
                      if abs(s.y[0][i-1] - s.y[0][i]) < mean amplitude:
                          truncated solutions.append(np.array([s.y[0][i:], s.y[1][i:],
                          print(i)
                          break
             if len(truncated solutions) == 0:
                 print("No stabilization!")
              return truncated solutions
In [326... | ts = truncate solutions(np.array([sol 1, sol 2]))
         for i in range(len(ts)):
             print(ts[i].shape)
        [0.000698740403399345, 0.03698506052453965, 0.09762966774257542, 0.060959069
        895438034, 0.012751624176249213, 0.03279125123083995, 0.002676170407602624,
        0.04769972584034052, 0.0883793003835382, 0.06129564343134597]
        0.02197417795938228 max: 0.12823564169670537
        1
        [0.0017346705592588552, 0.015987141166329433, 0.03396098967622174, 0.0323609
        3086673014, 0.016376352435712838, 0.00920415939531416, 0.020450336676087977,
        0.04474471851668041, 0.06171455182622179, 0.0522435337786753
        4.070617243467384e-05 max: 0.06171455182622179
        813
        (3, 14999)
        (3, 14187)
 In [ ]:
 In [ ]:
```

squared sums deviation.append(absolute val)

10	- 1	- 1	

This notebook was converted to PDF with convert.ploomber.io