Linux fájlrendszerek

Varga Tibi 2018 GD Szeged

Fogalmak

- Partíciók
- Mi az a fájlrendszer?
- Inode
- Naplózó fájlrendszerek
- Hol léteznek a fájlrendszerek
- Elérhető fájlrendszerek Linux alatt
- Melyik mire való?

Partíciók

A háttértárolókat (merevlemez, ssd) partíciókra osztjuk fel, amelyeken létrehozzuk a fájlrendszert.

- A partíciós tábla határozza meg a partíciók tárolásának módját.
 Kompatibilitási okokból a Linux alapértelmezetten a "MBR partíciós struktúrát" használja.
- Az MBR partícióban 4 elsődleges partíció lehet, a többi egy kiterjesztett partícióban helyezkedhet el.
- A kiterjesztett partíciót további részekre oszthatjuk, ezeket logikai partícióknak nevezzük. A logikai partíciók száma maximálisan 128 darab.

első elsődleges partíció	
második elsődleges partíció	
harmadik elsődleges partíció	
negyedik kiterjesztett partíció amely további logikai partíciókat tartalmazhat	

első elsődleges partíció								
második elsődleges partíció								
harmadik elsődleges partíció								
logikai 1	logikai 2	logikai 3	logikai 4	logikai n				

Linux MBR - rendszertöltő szektor

Az egész merevlemez, most négy elsődleges partícióval

4x16 bájt a 4 elsődleges partíciónak

Linux partíció és fájlrendszer

Inode

Az inode tábla

Az i-node az index-node rövidítése, ezzel utalnak arra, hogy a fájlt alkotó blokkokat egy indexelt struktúrán keresztül érik el, a fájlok adatai (méret, dátumok, jogosultság) és és blokk címek ebben blokkokban tárolódnak, és a hozzáférést az i-node értékeken keresztül tudjuk elérni. Az i-node-ok az egyes fájlokra vonatkozó minden információt tartalmaznak, kivéve a fájl nevét.

A superblock

Alapvető adatokat tárol a fájlrendszerről: verzió, csatolás számláló, blokk méret, szabad blokkok és inode-ok száma, blokkok és inode-ok száma.

block 0

boot block

superblock

inodes

block 1

block 2

block 3

...

data blocks

Kapcsolat a könyvtárbejegyzés és az inode között

Inode felépítése

Inode felépítése

Inode felépítése

Direkcós és idirekció pointerk (mutatók)

Linux partíció

Mi az a fájlrendszer?

Egy olyan szoftverstruktúra, amelyet arra terveztek, hogy adatokat lehessen benne **eltárolni** benne és **kinyerni** belőle.

Az informatika egy fájlrendszer alatt a számítógépes fájlok tárolásának és rendszerezésének a módszerét érti, ideértve a tárolt adatokhoz való hozzáférést és az adatok egyszerű megtalálását is. A fájlrendszerek használhatják az adattároló eszközöket, mint a merevlemez vagy CD-ROM és használhatók a fájlok fizikai elhelyezésének karbantartására is, valamint szervereken lévő adatokhoz való hozzáférést is biztosíthatnak hálózati protokollok segítségéve.

Lemzes fájlrenszerek

- A lemezes fájlrendszereket úgy tervezték, hogy a fájlok tárolására a számítógépek adattároló eszközei szolgálnak, amelyek leggyakrabban lemezes egységek.
- Ezek az egységek közvetlenül vagy közvetett módon kapcsolódhatnak a számítógéphez.
- Például a lemezes fájlrendszerek közé tartozik a FAT, az NTFS, a HFS és a HFS+, az ext3, az ext4, az ISO 9660, az ODS-5 és az UDF.
- Néhány fájlrendszer naplózó fájlrendszerek közé sorolható, néhány viszont változatkezelő fájlrendszer.

Naplózó fájlrendszerek

- Minden modern fájlrendszer használ valamiféle naplót
- · Először csak "naplót" írunk, utána a tényleges adatot
 - Segít a katasztrófákat egyszerűbben megoldani:
 - tudjuk milyen fájlok voltak nyitva
 - gyorsabb lemezellenőrzés
 - pontosabb helyreállítás

Sebességet veszítünk vele, de nem sokat.

Fájlrendszerek, amelyekre Linux telepíthető

A fájlrendszer az állományok és könyvtárak elhelyezésének, elrendezésének, elérésének módja egy háttértárolón. A Linux közel 50 féle fáljrendszert kezel, de az alábbiakra telepíthető. Linux alatt a következő fájlrendszereket szoktuk használni:

- ext2
- ext3
- ext4
- ReiserFS

- Reiser4
- XFS
- JFS
- Btrfs
- ZFS

Merevlemezes Linux fájlrendszerek

Számos lemez-alapú fájlrendszert használhatunk:

- ext2/ 3/ 4
- BtrFS,
- ReiserFS
- · XFS,
- JFS,
- ZFS
- Swap

Cserehely - swap partíció

rendszer partíció	swap partíció
-------------------	---------------

- Linuxnak szüksége van egy úgynevezett swap fájlrendszerre, amely magyarul cserehelynek nevezhető. A cserehelyre lapozza ki a Linux operációs rendszer a memória azon részeit, amelyek nincsenek használatban. Ha elfogy a fizikai memória, akkor a nem használt programok részeit a Linux, a merevlemezen, virtuális memóriában tárolja. A programot, amint használjuk, a rendszer visszatölti a fizikai memóriába a gyorsabb működés érdekében, hiszen a merevlemezről elég lassú lesz a használat.
- Mivel a Linuxon alapértelmezetten cserehely külön Swap partícióra kerül, ezért a töredezettség fel sem merül. Még jobb teljesítményt érünk el, ha külön merevlemezre helyezzük a cserehelyet. A cserhely használata nem befolyásolja a normál lemezműveleteket.

Ext2/3/4 az alapértelmezett Linuxos fájlrendszerek

- Extended Filesystem 2
 - Nagyon gyors
 - Naplózni még nem tud
- Extended Filesystem 3
 - Naplózni már tud
 - Visszafele kompatibilis
- Extended Filesystem 4
 - Visszafele kompatibilis
 - Számos újdonság

ReiserFS és BtrFS

ReiserFS

- 2001-ben kicsit megelőzte a korát
- egyedülálló funkciólista
- a 2004-ben megjelent Reiser4 nem tudta leváltani

BtrFS

- Az Oracle fejlesztése alatt álló nagyvállalati fájlrendszer
- a ReiserFS-t váltja, funkcióit tovább bővítik, teljesítményét növelik
- számos disztribúció jelezte, hogy alapértelmezett fájlrendszere ez lesz

XFS, JFS, ZFS

· XFS

- SGI 1994-ben saját használatra fejlesztette
- megbízható, strapabíró, nagyvállalati*

• JFS

- IBM fejlesztette ki 1990-ben, AIX-re
- alacsony processzorigényű, nagyon gyors
- nem terjedt el

ZFS

- Oracle (SUN) fejleszti (ezt is)
- számos funkció, nagy teljesítmény, nem GPL licenc
- kicsit elérhetetlen

Melyiket válasszam?

Ext2:

- Ha kell a nagy sebesség
- nem baj, ha nincs naplózás (kevésbé megbízható)
- pendrive

Ext3:

- Ext2-ről migrálás
- hatalmas felhasználói bázis
- nagyon megbízható, rengeteg teszteset
- számos adatbázis optimalizációt tartalmaz
- általános fájlrendszer

Melyiket válasszam?

Ext4:

- Ext2/Ext3-ról migrálás
- nagyon nagy kötet- és fájlméret (Ext3-hoz képest)
- nagyobb sebesség (késleltetett írás)
- SSD támogatás
- általános fájlrendszer és adatbázisok alá

BtrFS:

- nagyvállalati támogatás
- rengeteg funkció (pool, snapshot, compress, ssd, stb)
- a következő "Linux fájlrendszer"

Melyiket válasszam?

- ReiserFS
 - nagyon jó, de kihalófélben van

- · XFS
 - nagyon megbízható, kiforrott általános fájlrendszer
- JFS
 - nagyon gyors, ezért a gyengébb netbookokba jó választás lehet
 - kevesen használják
- ZFS
 - nehézkesen használható (FUSE)
 - a BtrFS valószínűleg kitölti az űrt, amit a ZFS nem tölt be

Több fájlrendszer a Linux szerveren

A Linuxot több külön álló fájlrendszerre szokás telepíteni, ha azt szerverként telepítjük.

Ennek oka a biztonság növelése.

Ha például a naplófájlok a /var/log könyvtárban valamilyen oknál fogva igen gyorsan megtöltik a partíciót, a rendszer nem áll meg a betelt partíció miatt, ha a /var/log külön partícióra került.

Partition		File System	Mount Point	Label	Size	Used	Unused	Flags
/dev/sda1	0	ext4	/boot	boot	365.00 MiB	101.48 MiB	263.52 MiB	boot
'▽ /dev/sda2	0	extended			931.15 GiB			
/dev/sda5	0	xfs	/	parrot-syste	37.25 GiB	13.79 GiB	23.46 GiB	
/dev/sda6	0	btrfs	/opt	parrot-opt	15.26 GiB	1.00 GiB	14.26 GiB	
/dev/sda7	0	btrfs	/home	parrot-home	878.64 GiB	168.01 GiB	710.63 GiB	

A következő oldalon látjuk **fájlrendszer hierarchia szabványt (FSH)** azaz a különböző könyvtárakhoz tartozó ajánlott fájlrendszereket

O operations pending

Filesystem Hierarchy Standard (FHS)

- /boot (Ext3)
- / (Ext3/4, BtrFS, XFS, JFS)
- /home (Ext3/4, BtrFS, XFS, JFS)
- /usr (Ext3/4, BtrFS, XFS, JFS)
- /var (Ext4, BtrFS)
- /var/lib (Ext3/4, XFS, BtrFS)
- /opt (bármi)
- /srv (BtrFS, XFS)

A terhelés típusának megfelelő fájlrendszert érdemes választani!

Hálózati fájlendszerek

A hálózati fájlrendszer egyszerűen egy hálózati protokoll, amivel lemez alapú fájlrendszereket oszthatunk meg távoli számítógépekkel:

NFS

SMB/CIFS

NCP

Vége

