ZAJMOVI

Anuitet (a) je iznos koji sadrži otplatu i interes koji korisnik otplaćuje za odredjeno vreme, postepeno davajući zajmodavcu iz godine u godinu , jednom ili više puta godišnje.

K-obeležavamo zajam , n- broj godina(ili broj perioda), p% - interesna stopa , $r=1+\frac{p}{100}$ je interesni dekurzivni činilac.

Kamata se može obračunavati i plaćati na kraju obračunskog perioda (dekurzivno) ili na početku obračunskog perioda (anticipativno)

1. IZRAČUNAVANJE ZAJMA, ANUITETA, INTERESNE STOPE I BROJA PERIODA OTPLAĆIVANJA

 $K= a (r^{n}-1)/r^{n}(r-1)$ ili uz upotrebu tablica $K= a IV_{p}^{n}$ $a=K V_{p}^{n}$

Ako su nam poznati K i a onda izrazimo IV_p^n ili V_p^n i u tablicama tražimo vrednosti za p ili n.

2. IZRADA AMORTIZACIONOG PLANA

Na sledećoj tabeli predstavljen je plan otplaćivanja zajma od K din. za n godina jednakim godišnjim anuitetima uz obračun interesa po stopi p% godisnje i godišnje kapitalisanje.

(Godina	dug na početku godine	interes na kraju godine	otplata na kraju godine
	1.	$K=R_n$	$I_1 = R_n * p/100$	$b_1=a-I_1$
-	2.	K-b ₁ =R _{n-1}	I ₂ =R _{n-1} *p/100	b ₂ =a-I ₂
-				
	n-1.	$K-(b_1++b_{n-2})=R_2$	$I_{n-1}=R_2*p/100$	$b_{n-1} = a - I_{n-1}$
-	n.	$K-(b_1++b_{n-1})=R_1$	$I_n = R_1 * p/100$	$b_n=a-I_n=R_1$

Svaki interes manji je od prethodnog, svaka sledeca otplata je veca od prethodne.

Kontrola valjanosti može se proveriti na više načina:

- 1) Zbir otplata mora biti jednak zajmu $b_1+b_2+...+b_n=K$
- 2) Poslednja otplata jednaka je ostatku duga na početku poslednjeg perioda otplaćivanja b_n=R₁
- 3) Zbir kolone interesa i kolone otplata jednak je zbiru svih anuiteta

3. ODNOSI IZMEDJU OTPLATA. ODNOS ANUITETA I OTPLATA

Prvi anuitet: $a = Kp/100+b_1$

Drugi anuitet: $a=(K-b_1)p/100+b_2$

.....

Poslednji n-ti anuitet: $a = (K-b_1-b_2-...-b_{n-1})p/100+b_n$

$$b_n = b_{n-1} I_p^1$$
 $b_n = b_1 I_p^{n-1}$ $b_n = b_c I_p^{n-c}$ $b_1 = b_n II_p^{n-1}$ $\mathbf{b_c} = \mathbf{b_n} II_p^{n-c}$

$$\mathbf{a} = \mathbf{b_n} \mathbf{I}_p^1$$
 $\mathbf{a} = \mathbf{b_c} \mathbf{I}_p^{n-c+1}$ $\mathbf{b_c} = \mathbf{a} \mathbf{II}_p^{n-c+1}$ sa c smo obelezili c-tu otplatu $1 \le c \le n$

4. IZRAČUNAVANJE OTPLAĆENOG DUGA SA PRVIH n OTPLATA

Otplaćeni dug sa prvih c otplata (O_c) je: $O_c=b_1+b_2+...+b_c$ ili preko tablica:

$$O_c = b_1(1 + III_p^{c-1})$$
 dok je $K = b_1(1 + III_p^{n-1})$

5. IZRAČUNAVANJE OSTATKA DUGA POSLE PLAĆENIH PRVIH c ANUITETA

Ako je od ukupno n anuiteta kojim se zajam amortizuje plaćeno samo prvih c anuiteta, onda preostalih n-c neplaćenih anuiteta predstavljaju ostatak duga (R_{n-c})

 R_{n-c} =K- O_c ili R_{n-c} =a IV_p^{n-c} ili možemo upotrebiti formulu

 $\mathbf{R}_{\mathbf{n-c}} = \mathbf{b_1} (\mathbf{III}_p^{n-1} - \mathbf{III}_p^{c-1})$ ili u zavisnosti šta nam je poznato $\mathbf{R}_{\mathbf{n-c}} = \mathbf{100} \ \mathbf{I_{c+1}/p}$ gde je $\mathbf{I_c} = (\mathbf{R}_{\mathbf{n-c+1}} * \mathbf{p})/\mathbf{100}$

6. ZAJMOVI KOJI SE PLAĆAJU ZAOKRUŽENIM ANUITETIMA

Zajam se može amortizovati i anuitetima koji odstupaju od teorijskih anuiteta . Zaokruživanje anuiteta se može ostvariti na više načina:

- a) odredjivanjem anuiteta u procentu od pozajmljene glavnice
- b) neposrednim utvrdjivanjem
- c) dogovorom o zaokruživanju teorijskog anuiteta a=KVⁿ_p naviše ili naniže, pri čemu su n-1 zaokruženih anuiteta jednaki, a jedan, prvi ili poslednji je manji ili veći od ostalih.

Broj godina(perioda) n se utvrdjuje: $\mathbf{n} = [\log \mathbf{a} - \log (\mathbf{a} - \frac{Kp}{100})] / \log \mathbf{r}$ ili polazeći od relacije K=a IV $_p^n$ uz upotrebu tablice. Anuitetni ostatak \mathbf{a}_n izračunava se po formuli: $\mathbf{a}_n = (\mathbf{K} - \mathbf{a} \ \mathbf{IV}_p^{n-1}) \ \mathbf{I}_p^n$. Ostatak duga na početku poslednjeg perioda je $\mathbf{R}_1 = \mathbf{K} - \mathbf{O}_{n-1}$ gde je $\mathbf{O}_{n-1} = \mathbf{b}_1 (\mathbf{1} + \mathbf{III}_p^{n-2})$. Poslednja otplata dobija se ako se od anuitetnog ostatka oduzme interes na poslednji ostatak duga: $\mathbf{b}_n = \mathbf{a}_n - \mathbf{R}_1 \mathbf{p} / \mathbf{100}$

7. ZAJMOVI KOJI SE AMORTIZUJU JEDNAKIM OTPLATAMA

Kako su otplate jednake, to je zajam: K= nb a odavde $b=\frac{K}{n}$. Ostatak duga posle prvog perioda je $R_{n-1}=K-b$, a bilo koji posle c otplata $R_{n-c}=K-O_c$

Kamata za prvi period je I_1 =Kp/100, a za bilo koji period c je I_c = $R_{n\text{-}c+1}p/100$

Anuitet je zbir otplate i kamate $a_1=I_1+b$, odnosno $a_c=I_c+b$

8. ZAJMOVI SE AMORTIZUJU JEDNAKIM ANUITETIMA KOJI SU ČEŠĆI OD OBRAČUNA KAMATE

Ovde je anuitetni period kraci od perioda obračuna kamate. (pr. Dugoročni stambeni krediti) Ovi anuiteti se zovu **parcijalni anuiteti**.

Obeležimo sa v- broj anuitetnih perioda u godini kao obračunskom periodu, tada je

a`=a
$$\frac{200}{200v + (v-1)p}$$
 odnosno a`=KV $_p^n \frac{200}{200v + (v-1)p}$, gde je naravno a` parcijalni anuitet., p- godišnja interesna stopa.

Parcijalni mesečni anuitet pri godišnjem obračunu interesa(v=12) je:

$$\mathbf{a} = \mathbf{K} \mathbf{V}_{p}^{n} \frac{200}{2400 + 11p}$$
, ili ako uvedemo oznaku $\mathbf{C}_{p}^{v} = \frac{200}{200v + (v - 1)p}$, onda je $\mathbf{a} = \mathbf{K} \mathbf{V}_{p}^{n} \mathbf{C}_{p}^{v}$

ovde je p- godišnja interesna stopa, v-broj anuitetnih perioda u jednoj godini.

AMORTIZACIJA ZAJMOVA PODELJENIH NA OBVEZNICE

1. ZAJAM SE AMORTIZUJE JEDNAKIM ANUITETIMA A OBVEZNICE SE ISPLAĆUJU PO NOMINALNOJ VREDNOSTI

Obveznice se izdaju po zaokruženim iznosima od po 100, 200, 500, 1000 novčanih jedinica, a prodaju po ceni jednakoj nominalnom iznosu(apoen) ili većoj odnosno manjoj od nominalnog iznosa. Zajam može biti izdeljen na obveznice istih apoena ili na grupe jednakih apoena. Obveznice su razvrstane po serijama, a serije po brojevima. Obveznica može da glasi na ime ili na donosioca.

Pre izrade amortizacionog plana potrebno je utvrditi broj obveznica koje se amortizuju i onih koje ostaju u tečaju (neamortizovane)

m- ukupan broj obveznica

 α - nominalna vrednost obveznica, tada je **K**= α **m**, **a** / α je anuitet u komadima obveznica

 $x_1,x_2,...x_n$ - teorijski dobijeni brojevi amortizovanih obveznica na kraju prvog, drugog,..., poslednjeg obracuna

 $x_1, x_2,...,x_n$ – brojevi stvarno amortizovanih obveznica na kraju prvog, drugog,..., poslednjeg perioda obracuna.

$$\mathbf{b_1}=\mathbf{a}-\mathbf{I_1}$$
 je prva otplata. Kako je $\mathbf{a}=\mathbf{KV}_p^n$ i $\mathbf{I_1}=\mathbf{Kp}/100$, onda je $\mathbf{x_1}=\mathbf{m}(\mathbf{V}_p^n-\frac{p}{100})$

i
$$\mathbf{b_1} = \mathbf{K}(\mathbf{V}_p^n - \frac{p}{100})$$
 ako nam treba $\mathbf{x_1}$ preko anuiteta onda je $\mathbf{x_1} = \mathbf{a} / \alpha - \mathbf{m} \frac{p}{100}$

Brojevi ostalih izvučenih (amortizovanih) obveznica $x_2,...,x_n$ dobijaju se iz x_1 na osnovu $x_c=x_1I_p^{c-1}$ (prema $b_c=b_1I_p^{c-1}$)

KONVERZIJA ZAJMA

To je promena uslova otplaćivanja zajma. Korisniku zajma se odobrava otplaćivanje na duže vreme, manja kamatna stopa, manji anuiteti.Konvertovanje zajma znači ili promenu interesne stope naniže, ili produženje vremena otplaćivanja ili i jedno i drugo.U trenutku konverzije zajma mora se utvrditi ostatak duga, koji u odnosu na nove uslove otplaćivanja postaje novi dug.