Упражнение №1

Построение фигур Лиссажу с помощью хсоз

Акопян Сатеник

Российский университет дружбы народов, Москва, Россия

Построить с помощью хсоз фигуры Лиссажу с различными значениями параметров.

Теоретическое введение

Scilab — система компьютерной математики, предназначенная для решения вычис лительных задач.

Основное окно Scilab содержит обозреватель файлов, командное окно, обозрева тель переменных и журнал команд

Теоретическое введение

Программа xcos является приложением к пакету Scilab [5]. Для вызова окна xcos необходимо в меню основного окна Scilab выбрать Инструменты, Визуальное моделирование xcos.

При моделировании с использованием хсоѕ реализуется принцип визуального программирования, в соответствии с которым пользователь на экране из палитры блоков создаёт модель и осуществляет расчёты

1. Строим модель функционирования двух источников синусоидального сигнала, позволяющая в зависимости от задаваемых параметров построить различные фигуры Лиссажу

Рис. 1: модель функционирования двух источников синусоидального сигнала

2. Строим с помощью хсоз фигуры Лиссажу со следующими параметрами:

$$$A = B = 1, a = 2, b = 2, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi$$$

 $2.1 \delta = 0$:

6/45

Рис. 2: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, $\delta = 0$

2.2 $\delta = \pi/4$:

Рис. 3: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, δ = $\pi/4$

 $2.3 \delta = \pi/2$:

Рис. 4: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, δ = $\pi/2$

 $2.4 \delta = 3\pi/4$:

Рис. 5: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 2, δ = $3\pi/4$

Рис. 6: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, δ = $3\pi/4$

 $2.5 \delta = \pi$:

Рис. 7: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 2, $\delta = \pi$

Рис. 8: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 2, δ = π

3. Строим с помощью хсоѕ фигуры Лиссажу со следующими параметрами:

$$$A = B = 1, a = 2, b = 4, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi$$$

3.1 δ = 0:

Рис. 10: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = 0

15/45

Рис. 11: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = $\pi/4$

3.3 $\delta = \pi/2$:

Рис. 12: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = $\pi/2$

Рис. 13: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, $\delta = \pi/2$

3.4 δ = 3 π /4:

Рис. 14: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = $3\pi/4$

Рис. 15: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = $3\pi/4$

3.5 δ = π :

Рис. 16: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = π

Рис. 17: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 4, δ = π

4. Строим с помощью хсоз фигуры Лиссажу со следующими параметрами:

$$$A = B = 1, a = 2, b = 6, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi$$$

4.1 δ = 0:

Рис. 19: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = 0

Рис. 20: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = 0

4.2 $\delta = \pi/4$:

Рис. 21: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, $\delta = \pi/4$

Рис. 22: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = $\pi/4$

4.3 $\delta = \pi/2$:

Рис. 23: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = $\pi/2$

Рис. 24: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = $\pi/2$

 $4.4 \delta = 3\pi/4$:

Рис. 25: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, $\delta = 3\pi/4$

Рис. 26: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = $3\pi/4$

 $4.5 \delta = π$:

Рис. 27: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 6, $\delta = \pi$

Рис. 28: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 6, δ = π

5. Строим с помощью хсоѕ фигуры Лиссажу со следующими параметрами:

$$$A = B = 1, a = 2, b = 3, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi$$$

 $5.1 \delta = 0$:

Рис. 30: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 3, $\delta = 0$

Рис. 31: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = π

5.2 $\delta = \pi/4$:

Рис. 32: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = $\pi/4$

Рис. 33: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = $\pi/4$

5.3 $\delta = \pi/2$:

Рис. 34: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 3, $\delta = \pi/2$

Рис. 35: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = $\pi/2$

5.4 δ = 3 π /4:

Рис. 36: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 3, $\delta = 3\pi/4$

Рис. 37: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = $3\pi/4$

 $5.5 \delta = π$:

Рис. 38: модель для фигуры Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = π

Рис. 39: фигура Лиссажу с параметрами A = B = 1, a = 2, b = 3, δ = π

В результате данной лабораторной работы было выполнено упражнение с помощью xcos фигуры Лиссажу с различными значениями параметров.