SÉRIE D'EXERCICES N°8 – (GROUPES + MORPHISMES + MATRICES)

LYCÉE MOHAMMED ZERKTOUNI

2ème BAC SCIENCES MATHÉMATIQUES

Prof: Amine SOUHIR

Exercice 1:

On définit sur $\mathbb R$ la loi de composition interne * définie par :

$$(\forall (x,y) \in \mathbb{R}^2) : x * y = x^2 y^2 + x + y$$

- 1. Montrer que la loi * est commutative dans \mathbb{R} .
- **2.** La loi * est-elle associative dans \mathbb{R} ?
- 3. Montrer que la loi * admet un élément neutre e dans $\mathbb R$ à déterminer.
- **4.** Résoudre dans \mathbb{R} les équations : $(E_1): 1*x = 0$ et $(E_2): 1*x = 1$.
- 5. Déterminer l'ensemble des éléments symétrisables par la loi * dans $\mathbb R$.

Exercice 2:

On considère l'ensemble $E = \mathbb{R} \setminus \left\{ \frac{1}{\sqrt{2}} \right\}$, et pour tout $(x,y) \in E$ on pose : $x * y = x + y - xy\sqrt{2}$.

- 1. Montrer que * est une loi de composition interne dans $E_{\mathcal{A}}$
- **2.** Montrer que (E,*) est un groupe commutatif.

Exercice 3:

On considère l'ensemble $E = \{(x,y) \in \mathbb{Z} / x^2 - 2y^2 = 1\}$.

Pour tout $(x,y) \in E$, $(x',y') \in E$ on pose : $(x,y) \top (x',y') = (xx' + 2yy', xy' + x'y)$.

- 1. Montrer que \top est une loi de composition interne dans E.
- **2.** Montrer que (1,0) est l'élément neutre pour (E, \top) .
- **3.** Montrer que \top est associative dans E.
- 4. Déterminer l'ensemble des éléments symétrisables par la loi \top dans E.

Exercice 4:

On définit sur \mathbb{R} la loi de composition interne * définie par :

$$(\forall (x,y) \in \mathbb{R}^2) : x * y = xy - 3(x+y) + 12$$

- 1. Montrer que la loi * est commutative dans \mathbb{R} .
- **2.** Montrer que la loi * admet un élément neutre e dans $\mathbb R$ à déterminer.
- **3.** Montrer que la loi * est associative dans \mathbb{R} .
- 4. Est-ce que 3 est symétrisable par la loi * dans \mathbb{R} ?
- **5.** Montrer que $F = \mathbb{R} \setminus \{3\}$ est une partie stable de $(\mathbb{R}, *)$.
- **6.** Montrer que $(F_{\star}*)$ est un groupe commutatif.

Exercice 5:

On définit dans $\mathbb C$ la loi de composition interne * définie par :

Pour tout z = x + iy et z = x' + iy' où $(x, x', y, y') \in \mathbb{R}^4$: z * z' = (x + x' + xx') + i(y + y')

- 1. Montrer que la loi * est commutative et associative dans $\mathbb C$.
- **2.** Montrer que la loi * admet un élément neutre e dans \mathbb{C} à déterminer.
- 3. Déterminer l'ensemble des éléments symétrisables par la loi * dans $\mathbb C$.
- **4.** On pose $G = \{z \in \mathbb{C} \mid \operatorname{Re}(z) \neq 1\}$, montrer que (G, *) est un groupe commutatif.
- **5.** On pose $H = \{x + i \ln(1+x) / x > -1\}$, montrer que (H,*) est un sous-groupe de (G,*).

Exercice 6:

On définit sur l'intervalle I =]-1,1[la loi \bot par : $(\forall (x,y) \in I^2): x \bot y = \frac{x+y}{1+xy}$.

- 1. Montrer que \perp est une loi de composition interne sur I.
- **2.** On considère l'application $f: x \mapsto \frac{1-e^x}{1+e^x}$.
 - **a.** Montrer que f est un morphisme de $(\mathbb{R},+)$ vers (I,\perp) .
 - **b.** Montrer que f est bijective de \mathbb{R} vers I et que pour tout $x \in I$: $f^{-1}(x) = \ln\left(\frac{1-x}{1+x}\right)$.
 - **c.** En déduire que (I, \bot) est un groupe commutatif, puis déterminer son élément neutre et le symétrique de tout élément $x \in I$ par la loi \bot .
 - **d.** Pour tout $x \in I$ et $n \in \mathbb{N}^*$ on pose $x_n = \underbrace{x \perp x \perp \dots \perp x}_{n \text{ fois}}$.

Montrer que
$$x_n = \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}$$

- 3. On pose $E = \left\{ M(x) = \begin{pmatrix} \frac{1}{\sqrt{1-x^2}} & \frac{-x}{\sqrt{1-x^2}} \\ \frac{-x}{\sqrt{1-x^2}} & \frac{1}{\sqrt{1-x^2}} \end{pmatrix} \middle/ x \in I \right\}.$
 - **a.** Montrer que pour tout $(x,y) \in I^2 : M(x) \times M(y) = M(x \perp y)$.
 - **b.** En déduire que (E,\times) est un groupe commutatif.
 - **c.** Montrer que $\left(M\left(\frac{1}{2}\right)\right)^n = M\left(\frac{3^n 1}{3^n + 1}\right)$ pour tout $n \in \mathbb{N}^*$

Exercice 7:

On considère dans
$$\mathcal{M}_3(\mathbb{R})$$
 la matrice B tel que $B = \begin{pmatrix} -1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$.

- 1. Vérifier que $B^2 = B$.
- **2.** Est-ce que la matrice B est inversible dans $(\mathcal{M}_3(\mathbb{R}),\times)$?
- **3.** Montrer que $(\forall n \in \mathbb{N}^*): B^n = B$.

Exercice 8:

On définit sur \mathbb{R}^* la loi de composition interne \top définie par :

$$\left(\forall (x,y) \in \left(\mathbb{R}^*\right)^2\right) \colon x \top y = 2xy$$

- **1.** Montrer que la loi \top est associative et commutative dans \mathbb{R}^* .
- 2. Montrer que la loi \top admet un élément neutre dans \mathbb{R}^* à déterminer.
- **3.** En déduire la structure de (\mathbb{R}^*, \top) .
- **4.** On pose $E = \left\{ M_x = \begin{pmatrix} x & x \\ x & x \end{pmatrix} / x \in \mathbb{R}^* \right\}.$
 - **a.** Est-ce que les matrices $M_x \in E$ sont inversibles dans $(\mathcal{M}_2(\mathbb{R}), \times)$? Justifier.
 - **b.** Montrer que E est une partie stable de $(\mathcal{M}_{2}(\mathbb{R}),\times)$.
 - **c.** On considère l'application $\varphi: \mathbb{R}^* \to E$.

$$x \mapsto M_x$$

Montrer que l'application φ est isomorphisme de (\mathbb{R}^*, \top) vers (E, \times) .

- **d.** En déduire la structure de (E,\times) .
- **e.** Déterminer l'élément neutre de (E,\times) , puis M_x^{-1} pour tout $x \in \mathbb{R}^*$.

Exercice 9:

On considère les ensembles $G = \left\{ \begin{bmatrix} 2^a & b \\ 0 & 2^{-a} \end{bmatrix} / (a,b) \in \mathbb{R}^2 \right\}$ et $H = \left\{ \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} / b \in \mathbb{R} \right\}$.

- 1. Montrer que (G,\times) est un groupe non commutatif.
- Montrer que (H,\times) est un sous-groupe de (G,\times) .

Exercice 10:

On considère les ensembles
$$E = \left\{ M_a = \begin{bmatrix} a & \frac{1}{\sqrt{3}} \left(a - \frac{1}{a} \right) \\ 0 & \frac{1}{a} \end{bmatrix} \middle/ a \in \mathbb{R} \right\}$$
 et $F = \left\{ N_a = \begin{bmatrix} a & \frac{1}{\sqrt{3}} \left(a - \frac{1}{a} \right) \\ -a\sqrt{3} & -a \end{bmatrix} \middle/ a \in \mathbb{R} \right\}$.

- 1. On considère l'application $\varphi: \mathbb{R}^* \to E$, montrer que φ est isomorphisme de (\mathbb{R}^*,\times) vers (E,\times) et en déduire la structure de (E,\times) .
- **2.** Montrer que $\left(\forall (a,b) \in \left(\mathbb{R}^*\right)^2\right) : N_a \times N_b = M_{\frac{b}{a}}$.
- On pose $G = E \cup F$, montrer que (G, \times) est un groupe, ce groupe est-il commutatif?

Exercice 11:

On considère la matrice
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- **1.** Montrer que pour tout $n \in \mathbb{N}^* : A^n = \begin{bmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix}$.
- **2.** Vérifier que : $A^3 3A^2 + 3A = I_{3=3}$
- **3.** En déduire que A est inversible puis déterminer son inverse A^{-1} .

On rappelle que $(\mathcal{M}_2(\mathbb{R}),\times,+)$ est un anneau unitaire, son zéro est la matrice $O_2=\begin{bmatrix}0&0\\0&0\end{bmatrix}$ et son unité est

la matrice
$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

On considère dans $\mathcal{M}_2(\mathbb{R})$ la matrice $\Lambda = \begin{pmatrix} a & d \\ c & b \end{pmatrix}$ où $(a,b,c,d) \in \mathbb{R}^4$ tel que $\begin{cases} ad - bc = 1 \\ a + d = 1 \end{cases}$.

- 1. Montrer que $A^2 A + I_2 = O_2$.
- En déduire que la matrice A est inversible dans l'anneau $(\mathcal{M}_2(\mathbb{R}),\times,+)$ et déterminer son inverse A^{-1} .
- **3.** Vérifier que $A^3 = -I_3$, puis en déduire A^n selon les valeurs de $n \in \mathbb{N}^*$.