Lead Scoring Case Study

Dhara KHAMAR
Deepanshu BENIWAL
Deepak GUPTA

[DS C52 – JAN'23 Batch]

Problem Statement

- ☐ An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.
- ☐ The company markets its courses on several websites and search engines like Google. Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos.
- ☐ When these people fill up a form providing their email address or phone number, they are classified to be a lead. The typical lead conversion rate at X education is around 30%.
- ☐ To make this process more efficient, the company wishes to identify the most potential leads, also known as 'Hot Leads'.

Business Objective

☐ Build a logistic regression model to assign a lead score between 0 and 100 to each of the leads which can be used by the company to target potential leads.

□ A higher score would mean that the lead is hot, i.e. is most likely to convert whereas a lower score would mean that the lead is cold and will mostly not get converted.

Strategy

□ Data Reading and inspecting
□ Data Cleaning
□ Exploratory Data Analysis
☐ Data preparation for model building
□ Train – Test Split
☐ Logistic Regression model building on train set
☐ Model evaluation by different measures and metrics
□ Plotting ROC curve
☐ Finding Optimal Cutoff Point
☐ Testing model on test set
☐ Measure accuracy of model by other measures and metrics
□ Calculating lead score of each lead

Data Cleaning & Preparation

- ☐ Handling the 'Select' level that is present in many of the categorical variables
 - Replace 'Select' with null value
- Null values handling
 - Remove variables with null values higher than 35%
 - Replace null values with mode for categorical variables
 - Remove rows where null values are less than 2%
- Outliers handling
 - Capping the outliers to 95% value
- □ Data Preparation
 - Converting binary variables (Yes/No) to 0/1
 - Creating Dummy variables and Dropping repeated variables

Lead Source VS Converted

- High Conversion rate:
 - ✓ Reference
 - ✓ Welingak Website
 - √ Google searches

Do Not Email VS Converted

These leads are not likely to be converted

Last Activity VS Converted

 Sending SMS and Email looks promising method to get higher confirmed leads

What Is Your Current Occupation VS Converted

 Sending SMS and Email looks promising method to get higher confirmed leads

Lead Origin VS Converted

Lead add form has higher conversion rate

Newspaper Article VS Converted

Highly skewed feature and do not have promising leads

Last Notable Activity VS Converted

 Most leads are coming from messages and email communication

Search VS Converted

Search is not good source of leads

Magazine VS Converted

 Only one level is present so not useful for conversion of leads

Receive More Updates About Our Courses Vs Converted

Highly skewed and does not help to convert lead

Total Time Spent on Website VS Converted

 Leads who are spending more time on website are most likely to get converted

Total Visits VS Converted

 Number of visits to website is also important factor to get converted

Model Building Process

- Splitting data into train and test sets
- Scale variables in train set
- Build model using variables selected by RFE
- Eliminate variable based on high P-value
- Build next model
- Check VIF value for all existing variables
- Predict using train dataset
- Evaluate accuracy and other metrics
- Plotting ROC curve
- Finding optimal cutoff point
- Predict using test dataset
- Accuracy, Precision, Recall analysis on test predictions

Model Evaluation – Train Dataset

Accuracy : **81.7** %

Sensitivity: 70.3 %

Specificity: 88.7 %

Cutoff point: 0.35

3463 442

726

1720

Precision: 79.6 %

Recall: **70.3** %

Model Evaluation – Test Dataset

Accuracy : 87.4 %

Sensitivity: 79.2 %

Specificity: 81.0 %

Precision: 70.4 %

Recall: **79.2** %

Conclusion

- > Final model
 - Accuracy is 81.7 %
 - Precision 79.6 % & Recall 70.3 %.
- > Optimal Cutoff is 0.35 after checking accuracy, sensitivity and specificity metrics.
- Model works good on test dataset also with Accuracy 80.4 %, Sensitivity 79.2 %, Specificity 81.0 %
- ➤ Top variables in your model which contribute most towards the probability of a lead getting converted
 - Total Time Spent on Website
 - Lead Origin Lead Add Form
 - What is your current occupation Working Professional

Recommendations

The X company should focus on following kind of Leads,

- Spending more time on website
- Working professionals
- Leads coming through Reference or welingak website
- Leads whose last activity is SMS and Email communication
- Leads whose origin is either 'Lead Add Form' or 'Lead Import
- The X company can also focus on leads whose number of visits to website is higher.

The X company should not focus on these Leads,

- Leads who prefer 'Do not Email' and 'DO not Call'
- Unemployed and Student leads
- Leads whose last activity was "Olark Chat Conversation"