$00\mathrm{D}7\times$

Booklet of Code and Output for STAD29/STA 1007 Midterm Exam

List of Figures in this document by page:

List of Figures

1	Packages
2	Reasoning data
3	Processing, part 1
4	Processing, part 2
5	Processing, part 3
6	Fish mercury data (structure)
7	Scatter plots for fish mercury data
8	Regression 1 for fish mercury data 6
9	Regression 2 for fish mercury data
10	Regression 3 for fish mercury data
11	Prediction for fish mercury data
12	Leukemia data
13	wbc vs. survival
14	Logistic regression for leukemia data
15	Predictions
16	Pain relief data
17	Model-fitting and predictions for pain relief data
18	Clematis data (structure and a few randomly-chosen rows) 14
19	Boxplots of waiting times
20	Construction of response variable
21	Cox model 1
22	Cox model 2 and comparison
23	Essay marks data
24	Essay marks means
25	Essay marks analysis 1
26	Essay marks analysis 2
27	Essay marks analysis 3
28	Essay marks analysis 4
29	Pottery data
30	Boxplots of pottery data
31	Computations for pottery data
32	Analysis for pottery data
33	Grouped bar chart of pain relief data
34	Predictions and survival plot
35	Essay marks plot

Note that Figures 33, 34 and 35 are at the end of this booklet, because they are printed in colour.

```
library(tidyverse)
## -- Attaching packages -----
tidyverse 1.2.1 --
## v qqplot2 3.1.1
                         v purrr 0.3.2
                         v dplyr 0.8.0.1
## v tibble 2.1.1
## v tidyr 0.8.3.9000 v stringr 1.4.0
## v readr 1.3.1
                        v forcats 0.3.0
## Warning: package 'ggplot2' was built under R version 3.5.3
## Warning: package 'tibble' was built under R version 3.5.3
## Warning: package 'tidyr' was built under R version 3.5.3
## Warning: package 'readr' was built under R version 3.5.2
## Warning: package 'purrr' was built under R version 3.5.3
## Warning: package 'dplyr' was built under R version 3.5.2
## Warning: package 'stringr' was built under R version 3.5.2
## Warning: package 'forcats' was built under R version 3.5.1
## -- Conflicts -----
tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
library(broom)
## Warning: package 'broom' was built under R version 3.5.2
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
      select
library(survival)
library(survminer)
## Warning: package 'survminer' was built under R version 3.5.1
## Loading required package: ggpubr
## Warning: package 'ggpubr' was built under R version 3.5.1
## Loading required package: magrittr
## Warning: package 'magrittr' was built under R version 3.5.1
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
##
      set\_names
## The following object is masked from 'package:tidyr':
##
##
      extract
```

```
reasoning=read.csv("reasoning.csv",header=T)
reasoning
##
     row piano singing computer none
## 1
      1
           2
                1
                         0 5
## 2
       2
            5
                  -1
                           1
                               -1
     3 7 0
4 -2 1
5 2 -4
6 7 0
7 4 0
## 3
                                7
## 4
                          -3
                              0
                          -2
## 5
                                4
     6
                           4
## 6
                                0
    7
                          -1 2
## 7
          4
                  0
## 8
           1
      8
                  1
                           2
                               1
## 9
      9
            0
                   0
                           4
                               -6
## 10 10
                                0
```

Figure 2: Reasoning data

```
reasoning %>%
  gather(lesson, changescore, piano: none) -> reasoning2
```

Figure 3: Processing, part 1

```
reasoning2 %>%
  group_by(lesson) %>%
  summarize(count=n(),m=mean(changescore))
```

Figure 4: Processing, part 2

```
reasoning2 %>%
ggplot(aes(x=lesson,y=changescore))+geom_boxplot()
```

Figure 5: Processing, part 3

```
mercury=read.csv("mercury.csv",header=T)
str(mercury)

## 'data.frame': 38 obs. of 4 variables:
## $ mercury : int 1330 250 450 160 720 810 710 510 1000 150 ...
## $ alkalinity: num 2.5 19.6 5.2 71.4 26.4 4.8 6.6 16.5 7.1 83.7 ...
## $ calcium : num 2.9 4.5 2.8 55.2 9.2 4.6 2.7 13.8 5.2 66.5 ...
## $ pH : num 4.6 7.3 5.4 8.1 5.8 6.4 5.4 7.2 5.8 8.2 ...
```

Figure 6: Fish mercury data (structure)

```
mercury %>%
  gather(xname,x,alkalinity:pH) %>%
  ggplot(aes(x=x,y=mercury))+geom_point()+geom_smooth()+
   facet_wrap(~xname,scales="free",ncol=2)

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```


Figure 7: Scatter plots for fish mercury data

```
mercury.1=lm(mercury~alkalinity+calcium+pH,data=mercury)
summary(mercury.1)
##
## Call:
## lm(formula = mercury ~ alkalinity + calcium + pH, data = mercury)
##
## Residuals:
   Min 1Q Median
                             3Q
## -371.46 -140.30 -3.97 106.31 551.98
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1221.451 279.406 4.372 0.00011 ***
                       2.014 -2.324 0.02622 *
## alkalinity -4.681
## calcium
               3.495
                         2.594 1.347 0.18685
## pH
              -96.058
                        46.504 -2.066 0.04656 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 226.4 on 34 degrees of freedom
## Multiple R-squared: 0.4571, Adjusted R-squared: 0.4092
## F-statistic: 9.544 on 3 and 34 DF, p-value: 0.0001024
```

Figure 8: Regression 1 for fish mercury data

```
mercury.2=lm(log(mercury)~log(alkalinity)+log(calcium)+pH,data=mercury)
summary(mercury.2)
##
## Call:
## lm(formula = log(mercury) ~ log(alkalinity) + log(calcium) +
     pH, data = mercury)
##
## Residuals:
##
     Min
               1Q
                  Median
                               3Q
                                      Max
## -0.75244 -0.30191 -0.00783 0.23852 1.22932
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.55983 0.48981 15.434 < 2e-16 ***
0.10315 1.425 0.163185
## log(calcium) 0.14702
                -0.07998
                         0.10248 -0.780 0.440527
## pH
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4099 on 34 degrees of freedom
## Multiple R-squared: 0.6069, Adjusted R-squared: 0.5723
## F-statistic: 17.5 on 3 and 34 DF, p-value: 4.808e-07
```

Figure 9: Regression 2 for fish mercury data

```
mercury.3=update(mercury.2,.~.-log(calcium)-pH)
```

Figure 10: Regression 3 for fish mercury data

```
summary(mercury)
##
      mercury
                    alkalinity
                                      calcium
                                                         рН
##
   Min. : 150.0
                   Min. : 1.20
                                   Min. : 2.000
                                                  Min.
                                                         :4.300
## 1st Qu.: 250.0
                   1st Qu.: 7.20
                                  1st Qu.: 4.525
                                                   1st Qu.:5.800
## Median : 445.0
                   Median : 18.45
                                   Median :11.650
                                                   Median :6.850
## Mean : 488.4
                   Mean : 37.15
                                   Mean :22.361
                                                   Mean :6.634
##
   3rd Qu.: 650.0
                   3rd Qu.: 66.88
                                   3rd Qu.:33.200
                                                   3rd Qu.:7.300
  Max. :1330.0
                   Max. :119.10
                                   Max. :90.700
                                                          :8.700
                                                   Max.
new=data.frame(alkalinity=c(7,67))
new
##
    alkalinity
## 1
             7
## 2
            67
p=predict(mercury.3,new,interval="c")
cbind(new,p)
##
    alkalinity
                 fit
                          lwr
                                    upr
## 1
            7 6.435714 6.252683 6.618745
## 2
            67 5.536953 5.345056 5.728849
```

Figure 11: Prediction for fish mercury data

```
leukemia=read.csv("leukemia.csv", header=T)
leukemia
##
            wbc live
      ag
## 1
            75
       +
                   1
## 2
       +
            260
                   1
## 3
       +
           1000
                   1
## 4
            700
                   1
          3500
## 5
                   0
       + 10000
## 6
                   0
## 7
            300
                   1
## 8
            900
                   0
## 9
           1900
                   0
## 10
           3100
                   0
## 11
           7900
                   0
## 12
       +
            230
                   1
  13
       +
##
            600
                   0
##
  14
       +
           1700
                   0
## 15
       +
            940
                   1
## 16
       +
           5200
                   0
## 17
       + 10000
                   0
## 18
            400
                   0
## 19
            530
                   0
## 20
           2700
                   0
## 21
           2600
                   0
## 22
       - 10000
                   0
## 23
      +
            430
                   1
## 24
       +
          1050
                   1
       +
## 25
            540
                   0
## 26
      +
           3200
                   0
## 27
       + 10000
                   1
## 28
            440
                   1
## 29
            150
                   0
## 30
      -
                   0
          1000
## 31
           2800
                   0
## 32
          2100
                   0
## 33 - 10000
                   0
```

Figure 12: Leukemia data

Figure 13: Boxplot of white blood cell count vs. survival $\,$

```
leukemia.1=glm(live~log(wbc)+ag,family="binomial",data=leukemia)
summary(leukemia.1)
##
## Call:
## glm(formula = live ~ log(wbc) + ag, family = "binomial", data = leukemia)
## Deviance Residuals:
##
      Min
           1Q Median
                            3Q
                                       Max
## -1.6599 -0.6568 -0.2803 0.5286
                                     2.1258
##
## Coefficients:
##
   Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.5433 3.0224 1.834 0.0666.
## log(wbc) -1.1088 0.4609 -2.405 0.0162 *
                        1.0907 2.310 0.0209 *
## ag+
               2.5196
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 42.010 on 32 degrees of freedom
##
## Residual deviance: 26.833 on 30 degrees of freedom
## AIC: 32.833
## Number of Fisher Scoring iterations: 5
```

Figure 14: Logistic regression for leukemia data

Figure 15: Predictions

```
painrelief0=read.table("drugcomp.txt",header=T)
lev=levels(painrelief0$rating)
lev
## [1] "fair"
                 "good"
                            "poor"
                                       "verygood"
painrelief0 %>%
 mutate(rating=ordered(rating,lev[c(3,1,2,4)])) -> painrelief
painrelief
##
      drug
           rating frequency
## 1
      c15
           poor
## 2
      c15
              fair
                          18
## 3
                         20
      c15
              good
      c15 verygood
## 4
                          5
## 5
      c60
           poor
                          30
## 6
      c60
              fair
                          25
## 7
      c60
             good
                          30
## 8
                          8
      c60 verygood
## 9 z100
             poor
                         10
## 10 z100
                          4
              fair
## 11 z100
              good
                          13
## 12 z100 verygood
                          34
painrelief$rating
## [1] poor
               fair
                         good
                                  verygood poor
                                                   fair
                                                            good
## [8] verygood poor
                         fair
                                  good
                                           verygood
## Levels: poor < fair < good < verygood
```

Figure 16: Pain relief data

```
painrelief.1=polr(rating~drug, weight=frequency, data=painrelief)
drop1(painrelief.1,test="Chisq")
## Single term deletions
##
## Model:
## rating ~ drug
## Df AIC LRT Pr(>Chi)
## <none> 557.96
## drug 2 595.87 41.91 7.93e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
new=data.frame(drug=levels(painrelief$drug))
p=predict(painrelief.1,new,type="probs")
cbind(new,p)
##
                                   good verygood
   drug
              poor
                         fair
## 1 c15 0.32446172 0.25034061 0.2972508 0.1279469
## 2 c60 0.34244375 0.25200600 0.2863636 0.1191867
## 3 z100 0.06486819 0.09848111 0.3327126 0.5039381
```

Figure 17: Model-fitting and predictions for pain relief data

```
clematis=read.csv("muenchow.csv",header=T)
str(clematis)
  'data.frame': 96 obs. of 3 variables:
   $ gender : Factor w/ 2 levels "female", "male": 2 2 2 2 2 2 2 2 2 2 ...
             : int 1 1 2 2 4 4 5 5 6 6 ...
   $ wait
   $ observed: Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...
clematis %>% sample_n(20)
##
      gender wait observed
## 1
               7
        male
                       yes
## 2
     female
               15
                       yes
## 3
               68
        male
                       yes
## 4
     female
               7
                       yes
## 5 female
               29
                       yes
## 6 female
               23
                       yes
## 7 female
               30
                       yes
## 8 female
               18
                       yes
## 9
        male
               19
                       yes
## 10
       male
               1
                       yes
## 11
       male
               61
                       yes
## 12 female
               35
                       yes
               29
## 13 female
                       yes
## 14 female
               39
                       yes
## 15 female
               19
                       yes
## 16 female
               28
                       yes
## 17 female
               90
                       no
## 18 female
               75
                       no
## 19 female
               2
                       yes
## 20
        male
               83
                       yes
```

Figure 18: Clematis data (structure and a few randomly-chosen rows)

Figure 19: Boxplots of waiting times

```
y=with(clematis,Surv(wait,observed=="yes"))
У
##
    [1]
                1
                     2
                           2
                                4
                                           5
                                                 5
                                                      6
                                                           6
                                                                 6
                                                                                  8
                                      4
## [15]
          8
                8
                     9
                           9
                                9
                                     11
                                          11
                                                14
                                                     14
                                                           14
                                                                16
                                                                      16
                                                                           17
                                                                                 17
## [29]
         18
               19
                    19
                          19
                               27
                                     27
                                          30
                                                31
                                                     35
                                                           36
                                                                40
                                                                      43
                                                                                 61
  [43]
         68
               69
                    70
                          83
                               95
                                    102+ 104+
                                                      2
                                                           4
                                                                 4
                                                                      5
                                                                                  7
##
                                                1
                                                                            6
          7
                                9
   [57]
               8
                     8
                           8
                                     14
                                          15
                                                18
                                                     18
                                                           19
                                                                23
                                                                      23
                                                                           26
                                                                                 28
                                                           43
##
  [71]
         29
               29
                    29
                          30
                               32
                                     35
                                          35
                                                37
                                                     39
                                                                56
                                                                      57
                                                                                 67
## [85]
                          78
                                                     96+ 100+ 102+ 105+
         71
               75
                    75+
                               81
                                     90+
                                          94+
                                                96
```

Figure 20: Construction of response variable

```
clematis.1=coxph(y~gender,data=clematis)
summary(clematis.1)
## Call:
## coxph(formula = y ~ gender, data = clematis)
##
##
   n= 96, number of events= 87
##
##
               coef exp(coef) se(coef)
                                          z Pr(>|z|)
## gendermale 0.5069    1.6602    0.2170    2.336    0.0195 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
             exp(coef) exp(-coef) lower .95 upper .95
##
## gendermale
              1.66
                          0.6023
                                    1.085
##
## Concordance= 0.571 (se = 0.029)
## Likelihood ratio test= 5.47 on 1 df,
                                         p=0.02
## Wald test = 5.46 on 1 df,
                                         p=0.02
## Score (logrank) test = 5.57 on 1 df,
                                         p=0.02
```

Figure 21: Cox model 1

```
clematis.0=coxph(y~1,data=clematis)
anova(clematis.0,clematis.1)

## Analysis of Deviance Table
## Cox model: response is y
## Model 1: ~ 1
## Model 2: ~ gender
## loglik Chisq Df P(>|Chi|)
## 1 -331.66
## 2 -328.93 5.4726 1 0.01932 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 22: Cox model 2 and comparison

```
essay=read.csv("essay.csv",header=T)
essay
##
     ability method score
## 1
        none bluebook 23
## 2
        none bluebook 32
## 3
       none bluebook 25
                      29
## 4
        some bluebook
## 5
       some bluebook 30
## 6
        some bluebook 34
## 7
        lots bluebook
                      31
## 8
        lots bluebook
                       36
## 9
        lots bluebook
                       33
## 10
        none computer
                        32
## 11
        none computer
                        26
## 12
        none computer
                        26
## 13
                        34
        some computer
## 14
        some computer
                        41
## 15
        some computer
                        35
## 16
        lots computer
                        23
## 17
        lots computer
                        26
        lots computer
## 18
                         32
```

Figure 23: Essay marks data

```
essay %>% mutate(ability.ord=ordered(ability,c("none","some","lots"))) %>%
 group_by(ability.ord,method) %>%
  summarize(mean.score=mean(score)) -> essay.means
essay.means
## # A tibble: 6 x 3
## # Groups: ability.ord [3]
    ability.ord method mean.score
    <ord>
             <fct>
                          <dbl>
                             26.7
## 1 none
              bluebook
              computer
## 2 none
## 3 some
              bluebook
                              31
## 4 some
              computer
                              36.7
              bluebook
## 5 lots
                              33.3
## 6 lots
              computer
                              27
```

Figure 24: Essay marks means

Figure 25: Essay marks analysis 1

```
essay.2=aov(score~ability*method,data=essay)
summary(essay.2)
                Df Sum Sq Mean Sq F value Pr(>F)
##
## ability
                 2 127.44
                           63.72 4.606 0.0328 *
## method
                 1 0.22
                            0.22
                                 0.016 0.9012
## ability:method 2 110.78 55.39 4.004 0.0465 *
## Residuals 12 166.00
                          13.83
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 26: Essay marks analysis 2

```
essay %>% filter(method=="computer") %>%
 aov(score~ability,data=.) -> essay.3
summary(essay.3)
##
              Df Sum Sq Mean Sq F value Pr(>F)
## ability
               2 169.56
                          84.78 5.373 0.046 *
## Residuals
               6 94.67
                          15.78
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(essay.3,conf.level=0.90)
    Tukey multiple comparisons of means
##
       90% family-wise confidence level
##
##
## Fit: aov(formula = score ~ ability, data = .)
##
## $ability
##
                 diff
                            lwr
                                     upr
                                             p adj
## none-lots 1.000000 -7.1604402 9.16044 0.9493774
## some-lots 9.666667 1.5062264 17.82711 0.0557235
## some-none 8.666667 0.5062264 16.82711 0.0820210
```

Figure 27: Essay marks analysis 3

```
essay %>% filter(method=="bluebook") %>%
 aov(score~ability,data=.) -> essay.4
summary(essay.4)
##
              Df Sum Sq Mean Sq F value Pr(>F)
## ability
               2 68.67
                          34.33
                                  2.888 0.132
## Residuals
               6 71.33
                          11.89
TukeyHSD(essay.4,conf.level=0.90)
##
    Tukey multiple comparisons of means
##
      90% family-wise confidence level
##
## Fit: aov(formula = score ~ ability, data = .)
##
## $ability
##
                 diff
                             lwr
                                        upr
                                               p adj
## none-lots -6.666667 -13.750385 0.417052 0.1207974
## some-lots -2.333333 -9.417052 4.750385 0.7004165
## some-none 4.333333 -2.750385 11.417052 0.3395194
```

Figure 28: Essay marks analysis 4

```
pottery=read.table("pottery.txt",header=T)
pottery
##
        Al
             Fe
                       Ca
                                       Site
                  Mg
                           Na
     14.4 7.00 4.30 0.15 0.51
                                 Llanederyn
     13.8 7.08 3.43 0.12 0.17
                                 Llanederyn
## 3
      14.6 7.09 3.88 0.13 0.20
                                 Llanederyn
## 4
     11.5 6.37 5.64 0.16 0.14
                                 Llanederyn
      13.8 7.06 5.34 0.20 0.20
                                 Llanederyn
## 6
     10.9 6.26 3.47 0.17 0.22
                                 Llanederyn
      10.1 4.26 4.26 0.20 0.18
                                 Llanederyn
## 8
     11.6 5.78 5.91 0.18 0.16
                                 Llanederyn
                                 Llanederyn
## 9 11.1 5.49 4.52 0.29 0.30
## 10 13.4 6.92 7.23 0.28 0.20
                                 Llanederyn
## 11 12.4 6.13 5.69 0.22 0.54
                                 Llanederyn
## 12 13.1 6.64 5.51 0.31 0.24
                                 Llanederyn
## 13 12.7 6.69 4.45 0.20 0.22
                                 Llanederyn
## 14 12.5 6.44 3.94 0.22 0.23
                                 Llanederyn
## 15 11.8 5.44 3.94 0.30 0.04
                                   Caldicot
## 16 11.6 5.39 3.77 0.29 0.06
                                   Caldicot
## 17 18.3 1.28 0.67 0.03 0.03 IslandThorns
## 18 15.8 2.39 0.63 0.01 0.04 IslandThorns
## 19 18.0 1.50 0.67 0.01 0.06 IslandThorns
## 20 18.0 1.88 0.68 0.01 0.04 IslandThorns
## 21 20.8 1.51 0.72 0.07 0.10 IslandThorns
## 22 17.7 1.12 0.56 0.06 0.06
                                AshleyRails
                                AshleyRails
## 23 18.3 1.14 0.67 0.06 0.05
## 24 16.7 0.92 0.53 0.01 0.05
                                AshleyRails
## 25 14.8 2.74 0.67 0.03 0.05
                                AshleyRails
## 26 19.1 1.64 0.60 0.10 0.03
                                AshleyRails
```

Figure 29: Pottery data

Figure 30: Boxplots of pottery data

Site

```
levels(pottery$Site)

## [1] "AshleyRails" "Caldicot" "IslandThorns" "Llanederyn"

c.a=c(1,0,-1,0)
c.b=c(-1/2,1/2,-1/2,1/2)
c.c=c(0,1,0,-1)
m=cbind(c.a,c.b,c.c)
contrasts(pottery$Site)=m
```

Figure 31: Computations for pottery data

```
pottery.1=lm(Fe~Site,data=pottery)
summary(pottery.1)
##
## Call:
## lm(formula = Fe ~ Site, data = pottery)
##
## Residuals:
## Min
               1Q Median
                                 3Q
                                        Max
## -2.11214 -0.33954 0.01143 0.49036 1.22800
##
## Coefficients:
   Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.7528 0.1738 21.587 2.68e-16 ***
## Sitec.a -0.1000
                         0.2231 -0.448 0.6584
              4.2816
                      0.3477 12.314 2.42e-11 ***
## Sitec.b
## Sitec.c
             -0.4786
                        0.2667 -1.795 0.0865 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7055 on 22 degrees of freedom
## Multiple R-squared: 0.9246, Adjusted R-squared: 0.9143
## F-statistic: 89.88 on 3 and 22 DF, p-value: 1.679e-12
```

Figure 32: Analysis for pottery data

Figure 33: Grouped bar chart of pain relief data

```
genders=with(clematis,levels(gender))
new=data.frame(gender=genders)
p=survfit(clematis.1,new)
new

## gender
## 1 female
## 2 male

ggsurvplot(p)

## Error in .get_data(fit, data = data, complain = FALSE):
The `data` argument should be provided either to ggsurvfit or survfit.
```

Figure 34: Predictions and survival plot

Figure 35: Essay marks plot