Contrôle 2: Algèbre Linéaire

Cours de mathématiques spéciales (CMS)

10 janvier 2017 Semestre d'automne ID: -999

(écrire lisiblement s.v.p)
Nom:
Prénom :
Groupe:

Question	Pts max.	Pts
1	4	
2	$61/_{2}$	
3	5	
4	41/2	
Total	20	

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Question 1 (à 4 points)

Points obtenus: (laisser vide)

Soient $D=\begin{pmatrix}10&a-2\\a-3&5\end{pmatrix}$ appartenant à $\mathbb{M}_2(\mathbb{R})$ et I_2 la matrice unité d'ordre 2.

On considère l'équation matricielle en $X \in M_2(\mathbb{R})$ suivante

$$MX(D-4I_2) = 0, \quad \forall M \in \mathbb{M}_2(\mathbb{R}) \text{ tel que det } M \neq 0$$

- (a) Résoudre cette équation pour a = 0.
- (b) Déterminer $a \in \mathbb{R}$ de telle manière que l'équation

$$MX(D-4I_2) = MD$$
, $\forall M \in \mathbb{M}_2(\mathbb{R})$ tel que det $M \neq 0$

admette une solution unique.

Puis résoudre cette équation pour a = -1.

Solution:

(a) D'où l'ensemble des solutions :

$$S = \{X \in \mathbb{M}_2(\mathbb{R}) \mid X = \begin{pmatrix} x & 2x \\ z & 2z \end{pmatrix}, \ x, z \in \mathbb{R}\}$$

(b) La solution est unique ssi $a \in \mathbb{R} - \{0, 5\}$.

$$X = \frac{-1}{3} \left(\begin{array}{cc} -1 & 6 \\ 8 & 9 \end{array} \right).$$

Question 2 (à 6½ points)

Points obtenus: (laisser vide)

Soient \vec{a} , \vec{b} et \vec{c} les trois vecteurs de \mathbb{R}^3 donnés ci-dessous, dépendant d'un paramètre réel p,

$$\vec{a} = \begin{pmatrix} p \\ 1 \\ 2p+1 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} 1 \\ p \\ 3 \end{pmatrix}$ $\vec{c} = \begin{pmatrix} 1 \\ 1 \\ p+2 \end{pmatrix}$.

(a) Pour quelles valeurs de p les vecteurs $\vec{a}, \vec{b}, \vec{c}$ sont-ils linéairement indépendants ? Soient

$$V = \begin{bmatrix} \vec{a}, \vec{b}, \vec{c} \end{bmatrix}_{\text{sev}}$$
 et $\vec{v} = \begin{pmatrix} \alpha + 1 \\ -2\alpha - 1 \\ 2\alpha - 3 \end{pmatrix}$, $\alpha \in \mathbb{R}$

- (b) Discuter la dimension de V en fonction du paramètre p. Dans chaque cas, donner une base et déterminer pour quelles valeurs de α le vecteur \vec{v} appartient à V (lorsque c'est possible).
- (c) On pose p = -2 et soit le vecteur $\vec{u} = \begin{pmatrix} 5 \\ 1 \\ 4 \end{pmatrix}$.

Déterminer l'équation cartésienne de V et montrer que \vec{u} appartient à V.

Déterminer les composantes de \vec{u} dans une base orthogonale de V contenant \vec{c} .

Question 3 10 janvier 2017 ID: -999

Rappel: les vecteurs d'une base orthogonale sont perpendiculaires mais ne sont pas unitaires.

Solution:

- (a) $\vec{a}, \vec{b}, \vec{c}$ linéairement indépendants ssi $p \in \mathbb{R} \{-2, 1\}$.
- (b) Si $\mathbb{R} \{-2; 1\} : V = \mathbb{R}^3$. $\vec{a}, \vec{b}, \vec{c}$ est une base de \mathbb{R}^3 qui est de dimension trois. $\vec{v} \in V$ pour toute valeur de α .
 - Si $p = -2 : V = [\vec{b}, \vec{c}]_{\text{cov}}$. $\mathcal{B} = (\vec{b}, \vec{c})$ et dim V = 2.

 $\vec{v} \in V \text{ ssi } \det[\vec{b}, \vec{c}, \vec{v}] = 0 \text{ ssi } p = -2 \text{ et } \alpha = -5.$

• Si $p = 1 : V = \begin{bmatrix} \vec{a} \end{bmatrix}_{sev}$ $\mathcal{B} = (\vec{a})$ et dim V = 1.

Si p = 1, $\vec{v} \notin V$ quelque soit $\alpha \in \mathbb{R}$.

(c) Equation cartésienne de V: x - y - z = 0

Soit \vec{w} perpendiculaire à \vec{c} et appartenant à V: par exemple $\vec{w} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$.

Composantes de \vec{u} dans la base $\mathcal{B} = (\vec{c}, \vec{w}) : \vec{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}_{\mathcal{B}}$.

Question 3 (à 5 points)

Points obtenus: (laisser vide)

Soient $n \in \mathbb{N}^*$, V un sous espace vectoriel de $\mathbb{M}_n(\mathbb{R})$ et deux matrices fixées de $\mathbb{M}_n(\mathbb{R})$ notées P et Q.

On considère

$$W = \{ X \in \mathbb{M}_n(\mathbb{R}) \mid \exists A \in V, XQ = PA \}.$$

(a) Montrer que W est un sous espace vectoriel de $\mathbb{M}_n(\mathbb{R})$.

Pour la suite, on pose n=2, $P=\left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array}\right)$, $Q=\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$

$$V = \{A = (a_{i,j}) \in \mathbb{M}_2(\mathbb{R}) \mid a_{11} + a_{22} = 0 \}.$$

(b) Soit $M = \begin{pmatrix} 2 & -2 \\ 3 & -4 \end{pmatrix}$.

Déterminer la matrice B telle que MQ = PB et montrer que Bappartient à V.

Que peut-on en déduire pour M?

(c) Déterminer une base et la dimension de W.

Si M définie sous b) appartient à W, en donner ses composantes par rapport à la base choisie.

Solution:

(b)
$$B = P^{-1}MQ = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

 $\exists B \in V \text{ tel que } MQ = PB \Leftrightarrow M \in W.$

(c)
$$\mathcal{B}_W = (L_1, L_2, L_3)$$
 avec $L_1 = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$ $L_2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ $L_3 = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}$

$$M = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}_{\mathcal{B}}.$$

Question 4 (à $4\frac{1}{2}$ points)

Points obtenus: (laisser vide)

Soient p, q et r trois polynômes de $P_3[x]$ donnés par

$$p = x^3 - 3x^2 - 2x + 1$$
, $q = x^3 - 5x^2 - 1$, $r = -x^3 + 5x - 4$

et le polynôme s = 2p - 2q + r.

(a) On définit le sous espace V de $P_3[x]$ suivant

$$V = [p, q, r, s]_{sev}$$

Déterminer une base contenant le polynôme r ainsi que la dimension de V.

(b) Soit encore le sous espace W de $P_3[x]$

$$W = \{ t \in P_3[x] \mid t(0) = 0 \}$$

Déterminer l'expression générale d'un polynôme de $V\cap W$. Montrer que le polynôme s appartient à $V\cap W$.

Solution:

(a) Par exemple
$$\mathcal{B} = (q, r)$$
 et $\dim V = 2$

(b)
$$t \in V$$
 donc $t = \alpha q + \beta r$
 $t \in W$ donc $t(0) = 0$
D'où
 $t = \beta(r - 4q), \beta \in \mathbb{R}$