2. Desarrollo Experimental.

Lista de Materiales:

Soporte con material óptico reflexivo (espejo y rayo de luz).

Material a estudiar (latón o cobre).

Hoja de papel milimétrico.

Regla y lápiz.

Fuente de alimentación.

Pesas de distintas masas.

Metro para medir.

Nivel de agua.

Medidor de ángulos de inclinación

2.1 Arreglo experimenal. Parte 1: Método Óptico.

Figura 1: Arreglo general

Figura 2: a)Horizontalidad del rayo inicial. b)Marca de origen.

Figura 3: Agrupamiento de pesas en el arreglo.

Figura 4: Material para medir a H correspondiente.

Procedimiento.

- 1.-Medir las constántes X, lo, x, y, calcular A.
- 2.-Asegurar la horizontalidad del rayo reflejado inicial y marcar el origen en el papel. (Figura 1)
- 3.-Colocar un peso y marcar en el papella nueva posición del índice.
- 4. Repetir el paso 3, de 12 a 25 veces.
- 5.-Medir en cada caso la H
 corespondiente, y calcular $\beta,\,\alpha$ y Δl
respectiva.
- 6.- Llenar la tabla.
- 7.- Graficar ε VS (DU)
t y ajustar para calcular la Y de la muestra.

Resultados.

Comenzamos la práctica con ell material proporcionado por el equipo de laboratorio, procedimos a medir algunas de nuestras constantes como lo son; la distancia del soporte medida desde el espejo hasta la hoja de papel milimétrico (X), la elongación inicial del material ya sea latón o cobre, la distancia del soporte para en espejo hasta el hilo, y procedimos a medir el área transversal del material por medio de un tornillo micrométrico.

Tabla 1.

Diámetro(Ad)	X (m)	$A(m^2)$	lo(m)	x (m)
$3,54 \times 10^{-3}$	2.32	$3,937 \times 10^{-3}$	1.185	8.5×10^{-2}

Llenamos la Tabla 2 proporcionada para después graficar el esfuerzo vs deformación unitaria y ajustar para calcular el Y de cada muestra.

Tabla 2.

	Diámetro=0	.354mm)	<=2.325 m	A=0.3937 mm2 Lo	=118.5 cm x=8.5 c	cm g=8.1 m/s	^2	
n	m (kg)	F=mg (N)	H (m)	β=Arctg(H/x) (grad)	β=α/2 (grad)	ΔL=xtgα (m)	E=F/A (Pa)	DU=ΔL/Lo (Ad)
1	2.00E-01	1.956	6.38E-03	1.57E-01	7.85E-02	1.16E-04	1.99E+07	9.76E-05
2	4.00E-01	3.912	1.49E-02	3.67E-01	1.84E-01	2.71E-04	3.97E+07	2.29E-04
3	7.00E-01	6.846	3.29E-02	8.10E-01	4.05E-01	6.00E-04	6.96E+07	5.06E-04
4	9.00E-01	8.802	4.01E-02	9.00E-01	4.50E-01	7.33E-04	8.94E+07	6.18E-04
5	1.00E+00	9.78	4.53E-02	1.12E+00	5.58E-01	8.36E-04	9.94E+07	6.97E-04
6	1.20E+00	11.736	5.48E-02	1.35E+00	6.75E-01	9.99E-04	1.19E+08	8.43E-04
7	1.40E+00	13.69	8.35E-02	2.06E+00	1.03E+00	1.53E-03	1.39E+08	1.29E-03
8	1.70E+00	16.62	1.01E-01	2.48E+00	1.24E+00	1.84E-03	1.69E+08	1.55E-03
9	1.90E+00	18.58	1.10E-01	2.71E+00	1.35E+00	2.01E-03	1.89E+08	1.69E-03
10	2.00E+00	19.56	1.15E-01	2.84E+00	1.42E+00	2.11E-03	1.98E+08	1.78E-03
11	2.20E+00	21.51	1.24E-01	3.04E+00	1.52E+00	2.26E-03	2.19E+08	1.91E-03
12	2.40E+00	23.47	1.33E-01	3.28E+00	1.64E+00	2.44E-03	2.38E+08	2.06E-03
13	2.50E+00	24.45	1.40E-01	3.46E+00	1.73E+00	2.56E-03	2.48E+08	2.16E-03

De la cual extragimos los datos de la siguiente tabla para poder hacer la gráfica ε VS (DU). **Tabla 3.**

n	X= DU (Ad)	Y= Et (Pa)	
	9.76E-05	1.99E+07	
	2.29E-04	3.97E+07	
	5.06E-04	6.96E+07	
	6.18E-04	8.94E+07	
	6.97E-04	9.94E+07	
	8.43E-04	1.19E+08	
	7 1.29E-03	1.39E+08	
	1.55E-03	1.69E+08	
	1.69E-03	1.89E+08	
10	1.78E-03	1.98E+08	
1	1.91E-03	2.19E+08	
1	2.06E-03	2.38E+08	
1	2.16E-03	2.48E+08	

Gráfica de dispersión

Gráfico de dispersión para el método óptico.

5. Ajuste de datos.

Por el Apréndice 1 podemos hacer el respectivo ajuste por el método de mínimos cuadrados para encontrar un modelo lineal Y = ax + b tales que $(x_i, y_i) \to (Du(Ad), \sigma_t(Pa))$ para cada uno de los datos de cada experimento y cuya tabla de entrada es:

Tabla de entrada 1.

$\sum_{i=1}^{n} x_i(\mathrm{Ad})$	$\sum_{i=1}^{n} y_i \text{ (Pa)}$	$\sum_{i=1}^{n} y_i x_i \text{ (Pa)}$	$\sum_{i=1}^{n} x_i^2(Ad)$	n
$1,541 \times 10^{-2}$	$1,837 \times 10^9$	$4{,}193 \times 10^{8}$	$2,449 \times 10^{-5}$	13

De donde:

$$a = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \quad y \quad b = \frac{\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i y_i \sum_{i=1}^{n} x_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}.$$

Sustituyendo los valores queda:

$$a = \frac{13 \times 4,193 \times 10^8 - \left[1,541 \times 10^{-2} \times 1,837 \times 10^9\right]}{13 \times 2,449 \times 10^{-5} - \left(1,541 \times 10^{-2}\right)^2} = 6,67 \times 10^{10} (Pa).$$

$$b = \frac{2,449 \times 10^{-5} \times 1,837 \times 10^9 - \left[4,193 \times 10^8 \times 1,541 \times 10^{-2}\right]}{13 \times 2,449 \times 10^{-5} - \left(1,541 \times 10^{-2}\right)^2} = -7,88 \times 10^{10} (Ad).$$

Finalmente queda el modelos propuesto:

$$Y_1 = -(788 \times 10^{10})(Ad) + (6.67 \times 10^{10}(Pa))x \rightarrow (1)$$

Como la pendiente de la recta a tangente a la curva misma nos representa el módulo de Young , en el cas por su puesto para la gráfica εt VS (DU)t, es decir:

$$m = b = tan(\theta) = \frac{\varepsilon t}{(Du)t} = Y \quad (M\'odulo de Young)$$

Y así, podemos decir, por definición, que el móduo de Young del material es: $Y = 6.67 \times 10^{10} (Pa)$.

Error Porcentual.

Los valores verdaderos (Taba 1) de los módulos de Young del cobre es $Y_1 = 11 \times 10^{10} Pa$. Entonces, de nuestras mediciones y cálculos podemos obtener el error porcentual:

$$Error-porcentual-Y_1 = \frac{Error\ verdadero}{Valor\ Verdadero} = \frac{Valor\ verdadero-Valor\ aproximado}{Valor\ verdadero} \times 100 = 36$$

Ajuste por excel.

Notemos que mientras por medio de cáalculos pudimos enconrar un modoelo, el programa Excel pudo enontrar otro, es cual se muestra a continuación.

Figura 5: Modelo por medio de excel.

Cuya ecuación es:

$$Y_{ex} = (2 \times 10^7 (Ad)) + (1 \times 10^{11} (Pa))x \rightarrow (1)$$

Discusiones.

Al llevar acabo este experimento pudimos notar que hubo ciertas fallas, como por ejemplo: perdimos la continuación de las pesas, es decir, quitabamos unas para poner más pesadas y así sin darnos cuenta perdimos nuestro régimen elástico y se comenzaba a deformar nuestro alambre. Los modelos que propusimos tieen un amplio rango de error, además uno de de un orden mayor, pero así falla por un régimen aceptable a comparació de el valor verdadero.