

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT No. 777

THE THEORY OF PROPELLERS III—THE SLIPSTREAM CONTRACTION WITH NUMERICAL VALUES FOR TWO-BLADE AND FOUR-BLADE PROPELLERS

By THEODORE THEODORSEN

1944

AERONAUTIC SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

		Metric		English		
	Symbol	Unit	Abbrevia- tion	Unit	Abbrevia- tion	
Length Time Force	l t F	metersecond_ weight of 1 kilogram	m s kg	foot (or mile) second (or hour) weight of 1 pound	ft (or mi) sec (or hr) lb	
Power	(Irilamatana nan haun		kph mps	horsepower miles per hour feet per second	hp mph fps	

2. GENERAL SYMBOLS

W	Weight=mg	,	Kinematic viscosity
g	Standard acceleration of gravity=9.80665 m/s ²	ρ	Density (mass per unit volume)
	or 32.1740 ft/sec ²	Stand	ard density of dry air, 0.12497 kg-m ⁻⁴ -s ² at 15° C
m	$Mass = \frac{W}{a}$	and	760 mm; or 0.002378 lb-ft ⁻⁴ sec ²
I	Moment of inertia= mk^2 . (Indicate axis of	Specif	fic weight of "standard" air, 1.2255 kg/m³ or 7651 lb/cu ft
	radius of gyration k by proper subscript.)	0.0	1001 tb/cu 10
μ	Coefficient of viscosity		
	3. AERODYNA	MIC SY	MBOLS
S	Area	i_{w}	Angle of actting of miner (maleting to the think
Sw	Area of wing	i_t	Angle of setting of wings (relative to thrust line)
G	Gap	01	Angle of stabilizer setting (relative to thrust line)
6	Span	0	Resultant moment
c	Chord	Ω	Resultant angular velocity
1	Aspect ratio, $\frac{b^2}{S}$	n	
A	Aspect ratio, \overline{S}	R	Reynolds number, $\rho \frac{Vl}{\mu}$ where l is a linear dimen-
V	True air speed		sion (e.g., for an airfoil of 1.0 ft chord, 100 mph,
q	Dynamic pressure, $\frac{1}{2}\rho V^2$		standard pressure at 15° C, the corresponding
4	Dynamic pressure, 2pr		Reynolds number is 935,400; or for an airfoil
L	Lift, absolute coefficient $C_{\rm\scriptscriptstyle L} = \frac{L}{qS}$		of 1.0 m chord, 100 mps, the corresponding
1	and, absolute connected of qS		Reynolds number is 6,865,000)
D	Drag, absolute coefficient $C_D = \frac{D}{dS}$	α	Angle of attack
	qS qS	•	Angle of downwash
D_0	Profile drag, absolute coefficient $C_{D0} = \frac{D_0}{qS}$	αο	Angle of attack, infinite aspect ratio
	20 98	at	Angle of attack, induced
D_i	Induced drag, absolute coefficient $C_{Di} = \frac{D_i}{qS}$	α_a	Angle of attack, absolute (measured from zero- lift position)
D_{p}	Parasite drag, absolute coefficient $C_{Dp} = \frac{D_p}{aS}$	Y	Flight-path angle
-	qS		
0	Cross-wind force, absolute coefficient $C_c = \frac{C}{gS}$		
S. Say	qS-		

ERRATUM

NACA REPORT No. 777

THE THEORY OF PROPELLERS

III - THE SLIPSTREAM CONTRACTION WITH NUMERICAL

VALUES FOR TWO-BLADE AND FOUR-BLADE PROPELLERS

By Theodore Theodorsen

1944

Page 18, figure 7(a): The bottom part of the lowest curve in the lower left-hand corner of the figure should be ____ instead of _____.

THE THEORY OF PROPELLERS III—THE SLIPSTREAM CONTRACTION WITH NUMERICAL VALUES FOR TWO-BLADE AND FOUR-BLADE PROPELLERS

By THEODORE THEODORSEN

Langley Memorial Aeronautical Laboratory

Langley Field, Va.

National Advisory Committee for Aeronautics

Headquarters, 1500 New Hampshire Avenue NW., Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight (U. S. Code, title 49, sec. 241). Its membership was increased to 15 by act approved March 2, 1929. The members are appointed by the President, and serve as such without compensation.

JEROME C. HUNSAKER, Sc. D., Cambridge, Mass., Chairman

LYMAN J. BRIGGS, Ph. D., Vice Chairman, Director, National Bureau of Standards.

Charles G. Abbot, Sc. D., Vice Chairman, Executive Committee, Secretary, Smithsonian Institution.

HENRY H. ARNOLD, General, United States Army, Commanding General, Army Air Forces, War Department.

WILLIAM A. M. BURDEN, Special Assistant to the Secretary of Commerce.

Vannevar Bush, Sc. D., Director, Office of Scientific Research and Development, Washington, D. C.

WILLIAM F. DURAND, Ph. D., Stanford University, California.

OLIVER P. ECHOLS, Major General, United States Army, Chief of Maintenance, Matériel, and Distribution, Army Air Forces, War Department. Aubrey W. Fitch, Vice Admiral, United States Navy, Deputy Chief of Operations (Air), Navy Department.

WILLIAM LITTLEWOOD, M. E., Jackson Heights, Long Island, N. Y

Francis W. Reichelderfer, Sc. D., Chief, United States Weather Bureau.

LAWRENCE B. RICHARDSON, Rear Admiral, United States Navy, Assistant Chief, Bureau of Aeronautics, Navy Department.

EDWARD WARNER, Sc. D., Civil Aeronautics Board, Washington, D. C.

ORVILLE WRIGHT, Sc. D., Dayton, Ohio.

Theodore P. Wright, Sc. D., Administrator of Civil Aeronautics, Department of Commerce.

George W. Lewis, Sc. D., Director of Aeronautical Research

JOHN F. VICTORY, LL. M., Secretary

Henry J. E. Reid, Sc. D., Engineer-in-Charge, Langley Memorial Aeronautical Laboratory, Langley Field, Va.
Smith J. Defrance, B. S., Engineer-in-Charge, Ames Aeronautical Laboratory, Moffett Field, Calif.
Edward R. Sharp, LL. B., Manager, Aircraft Engine Research Laboratory, Cleveland Airport, Cleveland, Ohio
Carlton Kemper, B. S., Executive Engineer, Aircraft Engine Research Laboratory, Cleveland Airport, Cleveland, Ohio

TECHNICAL COMMITTEES

AERODYNAMICS

OPERATING PROBLEMS

POWER PLANTS FOR AIRCRAFT

MATERIALS RESEARCH COORDINATION

AIRCRAFT CONSTRUCTION

Coordination of Research Needs of Military and Civil Aviation
Preparation of Research Programs
Allocation of Problems
Prevention of Duplication

Langley Memorial, Aeronautical Laboratory
Langley Field, Va.

Ames Aeronautical Laboratory
Moffett Field, Calif.

AIRCRAFT ENGINE RESEARCH LABORATORY, Cleveland Airport, Cleveland, Ohio under unified control, for all agencies, of scientific research on the fundamental problems of flight

Office of Aeronautical Intelligence, Washington, D. C. sification, compilation, and dissemination of scientific and technical information on aeronautics

II

THE THEORY OF PROPELLERS

CONTRACTION WITH NUMERICAL VALUES FOR TWO-BLADE AND III—THE SLIPSTREAM FOUR-BLADE PROPELLERS

By Theodore Theodorsen

SUMMARY

As the conditions of the ultimate wake are of concern both theoretically and practically, the magnitude of the slipstream contraction has been calculated. It will be noted that the contraction in a representative case is of the order of only 1 percent of the propeller diameter. In consequence, all calculations need involve only first-order effects. Curves and tables are given for the contraction coefficient of two-blade and four-blade propellers for various values of the advance ratio; the contraction coefficient is defined as the contraction in the diameter of the wake helix in terms of the wake diameter at infinity. The contour lines of the wake helix are also shown at four values of the advance ratio in comparison with the contour lines for an infinite number of blades.

INTRODUCTION

Since reference is often made to the wake infinitely far behind the propeller, it is desirable to establish certain relationships between the dimensions of the propeller and those of the wake helix at infinity. The present paper considers the relationship of the propeller diameter and the wake diameter, or the problem of the slipstream contraction.

The discussion is restricted to a consideration of first-order effects, that is, to the determination of the contraction per unit of loading for infinitely small loadings only. It will be seen that the contractions are indeed very small, of the order of a few percent of the propeller diameter, and that the high-order terms are therefore not of concern. The interference velocity accordingly is neglected as small compared with the stream velocity. The wake helix lies on a perfect cylinder and the pitch angle is everywhere the same. It is noted that the assumption of zero loading corresponds to that used by Goldstein for a different purpose.

SYMBOLS

tip radius of propeller R

radius of element of vortex sheet

contraction Δr

total contraction or contraction at $\frac{h}{R} = 0$ Δr_0

angle between starting point of spiral line and point P

Hpitch of spiral

angular coordinate on vortex sheet

advance ratio $\left(\frac{\cdot H}{2\pi R}\right)$

ratio of radius of element to tip radius of vortex sheet (r/R)

radial velocity

Vadvance velocity of propeller

rearward displacement velocity of helical vortex surface

number of blades

mass coefficient

 $c_s = 2\kappa \overline{w}$

circulation at radius $x\left(\Gamma = \frac{\pi c_s \lambda VR}{\kappa} K(x)\right)$

K(x) circulation function for single rotation $\left(\frac{p\Gamma\omega}{2\pi Vw}\right)$

angular velocity of propeller, radians per second

radial velocity at point P due to a doublet element at θ , x except for a constant factor

$$\left(y_1 = \frac{\left[\theta \cos \left(\theta + \tau\right) - \sin \left(\theta + \tau\right)\right] \left[1 - 2x^2 + \lambda^2 \theta^2 + x \cos \left(\theta + \tau\right)\right]}{\left[1 + x^2 + \lambda^2 \theta^2 - 2x \cos \left(\theta + \tau\right)\right]^{\frac{5}{2}}}\right)$$

$$y_2 = \frac{K(x)}{p} \sum_n y_1$$
 where $n = 0, 1, 2, \dots p-1$

$$Y_1 = \int_0^1 y_2 \ dx = 1$$

angle of contraction, except for a constant

factor
$$\left(Y_2 = \int_{\theta}^{\infty} Y_1 \ d\theta\right)$$

contour line of contraction, except for a constant factor $\frac{c_s}{\kappa} \frac{\lambda^3}{4} \left(Y_3 = \int_0^{\infty} Y_2 \ d\theta \right)$.

total contraction in terms of radius $\left(\frac{c_s}{\kappa} \frac{\lambda^3}{4} Y_3\right)$.

 $\frac{\Delta r_0}{R} \frac{\kappa}{c_*}$ contraction coefficient $\left(\frac{\lambda^3}{4} Y_3\right)$

 $z_{1} = \sin \phi \left\{ \tan^{2} \phi \left(x^{-\frac{1}{2}} - x^{\frac{1}{2}} \right) E(k) + 2x^{\frac{1}{2}} [F(k) - E(k)] \right\}$ $w_{1} = \left[\left(\frac{2}{k} - k \right) F(k) - \frac{2}{k} E(k) \right]^{x=1}$

$$w_1 = \left[\left(\frac{2}{k} - k \right) F(k) - \frac{2}{k} E(k) \right]^{x=1}$$

THEORY

The radial velocity is obtained by using the Biot-Savart law and integrating over the entire surface of discontinuity. If Δr_0 is the total contraction, the problem is to determine the ratio $\frac{\Delta r_0}{R}$ for various numbers of blades at several advance ratios. Simple expressions referring to zero loading are used throughout.

The radial inward velocity $dv_{R'}$ at the point P is calculated. (See figs. 1 and 2.) This velocity results from an element

FIGURE 1.—Geometric relationships of wake helix.

Figure 2.—Plan view of wake helix showing geometric relationships.

of circulation f ds, which is located on a spiral of radius r that starts in a plane perpendicular to the axis and containing the reference point P. The angle between the starting point of the spiral line and the point P is designated τ . The spiral extends below the plane to infinity. If the pitch of this spiral is designated H, the element at a projected angle θ from the starting point of the spiral is then at a distance h below the reference plane where

$$h = H \frac{\theta}{2\pi} \tag{1}$$

By introducing the nondimensional quantities

$$\lambda = \frac{H}{2\pi R}$$

$$x = \frac{r}{R}$$
(2)

in the Biot-Savart law, the following expression is obtained . for the radial inward velocity $dv_{R'}$ due to an element on the wake helix of strength f:

$$dv_{R}' = \frac{1}{4\pi} \frac{f \, d\theta}{R} \lambda x \frac{\theta \cos (\theta + \tau) - \sin (\theta + \tau)}{[1 + x^2 + \lambda^2 \theta^2 - 2x \cos (\theta + \tau)]^{\frac{3}{2}}} \tag{3}$$

By differentiating equation (3) with respect to x, the field of a doublet element on the helical vortex sheet is obtained, the doublet element consisting of two neighboring singlet elements each of strength f. Setting f dx equal to Γ and dividing through by the stream velocity V gives

$$d\frac{v_R}{V} = -\frac{1}{4\pi}$$

$$\frac{\Gamma d\theta}{RV} \lambda \frac{\left[\theta \cos \left(\theta + \tau\right) - \sin \left(\theta + \tau\right)\right] \left[1 - 2x^2 + \lambda^2 \theta^2 + x \cos \left(\theta + \tau\right)\right]}{\left[1 + x^2 + \lambda^2 \theta^2 - 2x \cos \left(\theta + \tau\right)\right]^{\frac{5}{2}}} \tag{4}$$

where v_R is the radial velocity at the point P. Equation (4) may be written in the form

$$d\frac{v_R}{V} = -\frac{1}{4\pi} \frac{\Gamma}{RV} \lambda y_1 \tag{5}$$

where

$$y_1 = \frac{[\theta \cos (\theta + \tau) - \sin (\theta + \tau)] \left[1 - 2x^2 + \lambda^2 \theta^2 + x \cos (\theta + \tau)\right]}{[1 + x^2 + \lambda^2 \theta^2 - 2x \cos (\theta + \tau)]^{\frac{5}{2}}}$$
(6)

The function y_1 is plotted against $\theta + \tau$ for four values of λ and various values of τ and x in figures 3 to 6. With

$$\Gamma = \frac{2\pi V w}{p\omega} K(x)$$

$$= \frac{2\pi V^2 \overline{w}}{p\omega} K(x)$$

$$= \frac{\pi V R \lambda c_s}{p\kappa} K(x)$$
(7)

where

$$c_s = \frac{2\kappa w}{V}$$

$$= 2\kappa \overline{w} \tag{8}$$

substitution in equation (5) gives

$$d\frac{v_R}{V} = -\frac{\lambda^2}{4} \frac{c_s}{\kappa} \frac{K(x)}{p} y_1 d\theta \tag{9}$$

If the point P is at a distance $h=H\frac{\theta}{2\pi}$ below the propeller, integrating equation (9) over the wake yields

$$\frac{v_R}{V} = -\frac{\lambda^2}{4} \frac{c_s}{\kappa} \int_{-\theta}^{\infty} \int_0^1 \frac{K(x)}{p} \sum_n y_1 \, dx \, d\theta \tag{10}$$

It is noted that, with equally spaced blades, the function

$$\sum_{n} y_{1} \tag{11}$$

is an odd function of θ and

$$\sum_{n} \int_{-\theta}^{\theta} y_1 d\theta = 0 \tag{12}$$

Equation (10) can therefore be rewritten as

$$\frac{v_R}{V} = -\frac{\lambda^2}{4} \frac{c_s}{\kappa} \int_0^\infty \int_0^1 \frac{K(x)}{p} \sum_n y_1 \ dx \ d\theta \tag{13}$$

Let

$$y_{2} = \frac{K(x)}{p} \sum_{n} y_{1}$$

$$Y_{1} = \int_{0}^{1} y_{2} dx$$

$$Y_{2} = \int_{\theta}^{\infty} Y_{1} d\theta$$

$$(14)$$

Values of Y_1 and Y_2 , multiplied by a constant factor for convenience in plotting, are given in tables I to IV for two-blade and four-blade propellers for which λ and θ take on various values. These functions are plotted against θ in figures 7 and 8.

Equation (13) becomes

$$\frac{v_R}{V} = -\frac{\lambda^2}{4} \frac{c_s}{r} Y_2 \tag{15}$$

Now

$$\frac{v_R}{V} = \frac{dr}{dh} = \frac{d\frac{r}{R}}{d\frac{h}{R}} = \frac{1}{\lambda} \frac{dx}{d\theta}$$
 (16)

Therefore

$$\frac{dx}{d\theta} = \lambda \frac{v_R}{\dot{V}} = -\frac{\lambda^3}{4} \frac{c_s}{\kappa} Y_2 \tag{17}$$

whence

$$\frac{\Delta r}{R} = \frac{R_2 - R_1}{R} = \frac{1}{R} \int_{R_1}^{R_2} dr = \int_{x_1}^{x_2} dx = -\frac{\lambda^3}{4} \frac{c_s}{\kappa} \int_{\theta_1}^{\theta_2} Y_2 \ d\theta \qquad (18)$$

If R_2 is the radius at the propeller and R_1 is the ultimate radius of the wake $(\theta_2=0, \theta_1=\infty)$,

$$\frac{\Delta r_0}{R} = \frac{c_s}{\kappa} \frac{\lambda^3}{4} \int_0^\infty Y_2 d\theta = c_s \frac{\lambda^3}{4\kappa} Y_3 \tag{19}$$

where

$$Y_3 = \int_0^\infty Y_2 d\theta$$

Values of Y_3 are given in tables V and VI and are plotted in figure 9 for two-blade and four-blade propellers for which λ and θ take on various values.

After all substitutions are made, the complete multiple integral for the total contraction is obtained as

$$\frac{\Delta r_0}{R} = \frac{c_s}{\kappa} \frac{\lambda^3}{4} \int_0^\infty \int_0^\infty \int_0^1 K(x) \frac{1}{p} \sum_n y_1(\theta, x) dx \ d\theta \ d\theta$$

(See figs. 10 and 11.)

INFINITE NUMBER OF BLADES

For purposes of comparison, it is useful to obtain the contraction for the case of an infinite number of blades. By resolving the circulation into components parallel to and perpendicular to the axis of the wake, the helical vortices can be replaced by a system of vortices parallel to the axis and another of ring vortices having centers on the axis. Only the ring vortices contribute to the radial velocity.

The field due to a vortex ring of strength f and radius r=Rx, located at a distance h below the reference point P, is given by Lamb (reference 1, p. 237). In the notation of the present paper it is

$$\psi_{0}' = -\frac{fR}{2\pi} x^{\frac{1}{2}} \left[\left(\frac{2}{k} - k \right) F(k) - \frac{2}{k} E(k) \right]$$
 (20)

where E(k) and F(k) are the complete elliptic integrals and

$$k^{2} = \frac{4x}{\left(\frac{h}{R}\right)^{2} + (1+x)^{2}}$$

As before, a doublet ring is obtained by differentiating equation (20) with respect to x. By setting

$$\int dx = \frac{\Gamma}{IJ}$$

the following expression is obtained for the field of a doublet ring:

$$\psi_0 = \frac{\Gamma}{8\pi} \frac{R}{H} k \left\{ x^{-\frac{1}{2}} \frac{k^2}{1 - k^2} E(k) + x^{\frac{1}{2}} \left[2F(k) - \frac{2 - k^2}{1 - k^2} E(k) \right] \right\}$$
(21)

In order to obtain the effect of the entire vortex system, equation (21) is integrated with respect to h/R and x as

$$\psi\left(\frac{h}{R}\right) = \int_{0}^{1} \int_{-h/R}^{\infty} \frac{\Gamma R^{2}}{8\pi H} k \left[x^{-\frac{1}{2}} \frac{k^{2}}{1-k^{2}} E(k) + x^{\frac{1}{2}} \left[2F(k) - \frac{2-k^{2}}{1-k^{2}} E(k) \right] \right] d\frac{h}{R} dx \tag{22}$$

The radial velocity

$$v_R = \frac{1}{R^2} \frac{\partial \psi}{\partial \frac{h}{R}}$$

Equation (22) may be written in the form

$$\psi\left(\frac{h}{R}\right) = \frac{R^2}{8\pi H} \int_0^1 \Gamma \int_{-h/R}^{\infty} \Phi\left(\frac{h}{R}, x\right) d\frac{h}{R} dx \tag{23}$$

so that

$$v_{R} = -\frac{1}{8\pi H} \int_{0}^{1} \Gamma \ \Phi\left(-\frac{h}{R}, \ x\right) dx$$

$$= -\frac{1}{8\pi H} \int_0^1 \Gamma \,\Phi\left(\frac{h}{R}, x\right) dx \tag{24}$$

Now

$$\frac{\Delta r}{R} = \frac{1}{R} \int_{\infty}^{h} \frac{dr}{dh} \, dh$$

$$= \int_{-\infty}^{h/R} \frac{v_R}{V} d\frac{h}{R}$$

$$= \frac{1}{8\pi H V} \int_{0}^{\infty} \Gamma \int_{h/R}^{\infty} \Phi\left(\frac{h}{R}, x\right) d\frac{h}{R} dx \tag{25}$$

By substituting

$$\Gamma = \frac{\pi c_s \lambda VR}{\kappa} K(x) \tag{26}$$

where K(x) is the horizontal component of the circulation coefficient, which may be expressed as

$$K(x) = \left(\frac{x^2}{\lambda^2 + x^2}\right)^{3/2} \tag{27}$$

the following equation is finally obtained:

$$\frac{\Delta r}{R} = \frac{c_s}{16\pi\kappa} \int_0^1 \left(\frac{x^2}{\lambda^2 + x^2}\right)^{3/2} dx \int_{h/R}^{\infty} k \left[x^{-\frac{1}{2}} \frac{k^2}{1 - k^2} E(k) + x^{\frac{1}{2}} \left[2F(k) - \frac{2 - k^2}{1 - k^2} E(k)\right]\right] d\frac{h}{R}$$
(28)

For convenience in using the Legendre tables, the second integral is written in the form

$$\int_{h/R}^{\infty} z_1 \, d\overline{R} \tag{29}$$

where

$$z_1 = \sin \phi \left\{ \tan^2 \phi \left(x^{-\frac{1}{2}} - x^{\frac{1}{2}} \right) E(k) + 2x^{\frac{1}{2}} [F(k) - E(k)] \right\}$$

and

or

$$\left(\frac{h}{R}\right)^2 = \frac{4x}{\sin^2\phi} - (1+x)^2$$

 $\phi\!=\!\sin^{-1}\!k$

(See fig. 12 for plots of z_1 against h/R.)

The final expression is

(See table VII and fig. 13.)

INFINITE NUMBER OF BLADES FOR DUAL ROTATION .

The contraction for a dual-rotating propeller with an infinite number of blades is next obtained. In this case K(x)=1, and the radial velocity is

$$v_R = -\frac{\Gamma}{2\pi H} \left[x^{\frac{1}{2}} \left\{ \left(\frac{2}{k} - k \right) F(k) - \frac{2}{k} E(k) \right\} \right]_{k=0}^{k=1}$$

Since the value at the lower limit is zero and K(x)=1 for an infinite number of blades, it follows by substituting the value of Γ that

$$\frac{\Delta r}{R} = -\frac{c_s}{4\pi} \int_{h/R}^{\infty} w_1 \ d\overline{R}$$

where

$$w_1 = \left[\left(\frac{2}{k} - k \right) F(k) - \frac{2}{k} E(k) \right]^{x = 1}$$

(See table VIII and fig. 14.)

CONCLUDING REMARKS

The contraction coefficients are given for two-blade and four-blade single-rotating propellers at four specific values

of the advance ratio. The calculations involve triple integrations and are therefore somewhat laborious and susceptible to numerical errors. Until more convenient methods are devised to perform this integration, it is hoped that the values given in this paper will serve the purpose. It is well to notice the small magnitude of the contraction. A four-blade propeller with normal loading and advance ratio is shown to have a total contraction in terms of the radius of less than one percent. The first-order treatment embodied in the paper is therefore adequate for all technical purposes.

Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., October 10, 1944.

REFERENCE

 Lamb, Horace: Hydrodynamics. Sixth ed., Cambridge Univ. Press, 1932.

TABLE I.—FUNCTION $\frac{\lambda^3}{4}Y_1$ FOR TWO-BLADE PROPELLER | TABLE III.—FUNCTION $\frac{\lambda^3}{4}Y_2$ FOR TWO-BLADE PROPELLER

				<u> </u>			
θ (deg)	$\frac{\lambda^3}{4}Y_1$	θ (deg)	$\begin{pmatrix} \theta \\ (\text{deg}) \end{pmatrix}$				
(deg)	λ=1/4	(deg)	λ=½	λ=1	λ=1½		
50 100 130 150 170	-0.000291 .000148 .001966 .004813 .006679	1 2 3 4 · 5	-0.000138 000213 000293 000382 000488	-0.000282	-0.000683 001088 001367 001232 001283		
200 220 250 300 350	. 005052 . 002008 . 000730 . 000450 . 001305	- 6 7 8 9 10	000570 000682 000789 000898 000984	000923 	001316 001358 001358 001350 001358		
400 500 550 600 650	. 000622 . 000270 . 000400 . 000145 . 000031	20 40 60 80 100	001139 000999 000802 000339 . 000460	001571 001286 000862 000324 . 000312	001367 001080 000759 000354 . 000084		
700 750 800 - 900	. 000149 . 000175 . 000058 . 000079	120 140 160 180 200	. 001730 . 003131 . 003351 . 002658 . 001544	. 000709 . 000809 . 000740 . 000492 . 000237	. 000274 . 000347 . 000321 . 000132 . 000100		
		220 240 260 280 300	. 000625 . 000160 —. 000056 . 000049 . 000213	.000093 .000014 .000003 —.000013 —.000004	. 000073 000015 . 000008 . 000036 . 000047		
		320 340 360 380 400	. 000363 . 000390 . 000343 . 000232 . 000113	. 000004 . 000008 . 000031 . 000008 —. 000003	. 000036 . 000030 . 000001 —. 000003 . 000004		
•		420 440 460	.000027 000011 .000014	. 000020 6. 000011	. 000007		

Table II.—Function $\frac{\lambda^3}{4}Y_1$ for Four-blade propeller

θ			$\frac{\lambda^3}{4}Y_1$				
(deg)	λ=1/4	(deg)	λ=½	· λ=1	λ=1½		
0 10 30 60 65	0. 000500 020680 . 097700 1, 251120 1. 858120 2. 879450	1 2 3 4 5	-0.004211	-0.000001	-0.000273 000250 000088 .000083 .000251		
75 80 85 90	3. 849270 4. 594600 4. 987600 4. 538300	6 7 8 9 10	011374	 000013	. 000704 . 000905 . 001263 . 001432		
95 100 110 120 160	3. 549380 2. 685010 1. 330560 . 821510 1. 017150	20 40 60 80 100	. 006150 . 137004 · . 363018 . 342699 . 218548	. 001786 . 006466 . 006423 . 004174 . 002161	. 002984 . 005328 . 003108 . 001577 . 000532		
200 250 300 350 400	. 902770 . 436960 . 323530 . 217700 . 154190	120 140 160 180 200	. 112735 . 091686 . 075117 . 058218 . 040861	. 001281 . 090865 . 000535 . 000345 . 000224	. 000298 . 000224 . 000214 . 000166 . 000078		
450, 500 550 600	. 154010 . 119570 . 038450 —. 029500	220 240 260 280 300	. 030023 . 024839 . 021139 . 017093 . 014048	. 000176 . 000130 . 000100 . 000062 . 000042	. 000101 . 000066 . 000057 . 000048 . 000037		
		320 340 360 380 400	. 011174 . 009069 . 007762 . 006439 . 004650	. 000032 . 000016 . 000032 000018 000041	. 000025 . 000002 . 000004		
	,	420 440 460	. 003748 . 003884 . 004428	000003 000004			

(dog)	$\begin{pmatrix} \theta & -\frac{\lambda^3}{4}Y_2 \\ (\text{deg}) & -\frac{\lambda^3}{4}Y_2 \end{pmatrix}$		$rac{\lambda^3}{4}Y_2$				
(deg)	λ=1/4	(deg)	λ=½	λ=1	λ=1½		
0 20 40 60 80	8. 138900 8. 159900 8. 219400 8. 291400 8. 351400	0 2 4 6 8	0. 377250 . 377650 . 378580 . 380140 . 382320	-0.004494 004435 004280 003990 003490	-0.003136		
100 120 140 160 180	8. 358900 8. 223900 7. 745900 6. 570900 4. 917900	10 20 30 40 50	. 385170 . 402420 . 437620	002790 . 000595 . 006355	002466 001651 000876 000189 . 000407		
200 220 240 260 280	3, 412900 2, 512900 2, 232900 2, 202900 2, 245900	60 70 80 90 100	. 467020 . 486770 . 485670	. 010675	.000907 .001302 .001577 .001717 .001724		
300 320 340 360 380	2. 215900 2. 026900 1. 734900 1. 404900 1. 108400	120 140 160 180 200	. 453070 . 373150 . 267250 . 169400 . 102200	. 011070 . 008050 . 004870 . 002470 . 001070	. 001504 . 001129 . 000718 . 000444 . 000313		
400 420 440 460 500	. 890900 . 780400 . 745400 . 740400 . 674400	220 240 260 280 300	. 067320 . 055310 . 053460 . 052810 . 048820	. 000470 . 000280 . 000270 . 000280 . 000290	. 000207 . 000178 . 000189 . 000162 . 000112		
540 580 620 660 700	. 504400 . 324400 . 246400 . 231400 . 189400	320 340 360 380 400	. 040500 . 028630 . 016630 . 007610 . 002400	. 000290 . 000260 . 000150 . 000090 . 000080	. 000065 . 000025 . 000007 . 000007 . 000006		
740 780 820 860	. 112000 . 030000 —. 006000 —. 004000	420 440	. 000420	. 000070			

TABLE IV.—FUNCTION $\frac{\lambda^3}{4} Y_2$ FOR FOUR-BLADE PROPELLER

θ.	$rac{\lambda^3}{4}Y_2$	θ		$rac{\lambda^3}{4}Y_2$	
(deg)	λ=1/4	(deg)	λ=½	λ=1	λ=1½
0 10 20 30 40	0. 024414 . 024414 . 024416 . 024380 . 024256	0 2 4 6 8	0.017258 .017259 .017261 .017266 .017276	0.007918 0.007918 007918 007918 007918	0.005175 .005107 .004728 .004084 .003214
50 60 70 80 90	. 023969 . 023338 . 021958 . 019333 . 016049	10 20 40 60 80	. 017287 . 017317 . 016676 . 013899 . 009902	. 007918 . 007908 . 006873 . 004520 . 002668	. 002343 . 001099 . 001235 . 000902 . 000675
100 110 130 150 170	. 013540 . 012166 . 010889 . 009821 . 008444	100 120 140 160 180	. 006845 . 005099 . 004010 . 003112 . 002383	. 001594 . 001014 . 000644 . 000407 . 000255	.000541 .000404 .000314 .000240 .000173
190 210 230 250 270	. 006951 . 005703 . 004773 . 004082 . 003528	200 220 240 260 280	. 001859 . 001486 . 001186 . 000949 . 000744	. 000157 · 000091 . 000987 . 000049 . 000028	. 000135 . 000102 . 000073 . 000052 . 000035
290 310 330 350 370	. 003035 . 002594 . 002216 . 001887 . 001612	300 320 340 360 380	. 000596 . 000472 . 000363 . 000271 . 000192	. 000010 000002 000010 000019 000021	. 000020 . 000009 . 000003
390 410 430 450 470	. 001376 . 001166 . 000959 . 000754 . 000550	400 420 440	. 000132 . 000087 . 000046	000013 000001	
490 510 530	. 000367 . 000205 . 000075				

TABLE V.—FUNCTION $\frac{\lambda^3}{4}Y_3$ FOR TWO-BLADE PROPELLER

θ (deg)			$\frac{\lambda^3}{4}Y_3$				
	λ=1/4	(deg)	λ=½	λ=1	λ=1½		
0 20 40 60 80	0. 048613 . 044739 . 040850 . 036926 . 032975	0 2 4 6 8	0. 015944 . 015800 . 015656 . 015511 . 015366	0. 002141 . 002154 . 002168 . 002180 . 002191	0.000602		
100 120 140 160 180	. 029007 . 025056 . 021248 . 017800 . 015057	10 20 30 40 50	. 015221 . 014474 . 012913	. 002201	. 000748 . 000855 . 000921 . 000950 . 000944		
200 220 240 260 280	. 013062 . 011670 . 010549 . 009501 . 008448	60 70 80 90 100	. 011197 . 009382 . 007525	. 001852 . 001490 . 001094	.000910 .000854 .000780 .000695		
300 320 340 360 380	. 007392 . 006381 . 005483 . 004734 . 004139	120 140 160 180 200	. 005732 . 004148 . 002927 . 002099 . 001594	. 000728 . 000437 . 000243 . 000136 . 000087	. 000439 . 000303 . 000208 . 000148 . 000111		
400 420 440 460 500	. 003664 . 003268 . 002903 . 002459 . 001882	220 240 260 280 300	.001277 .001049 .000837 .000632 .000441	. 000065 . 000055 . 000047 . 000039 . 000031	. 000086 . 000066 . 000048 . 000030 . 000017		
540 580 620 660 700	. 001318 . 000922 . 000651 . 000425 . 000232	320 340 360 380 400	. 000276 . 000146 . 000066 . 000021 . 000005	.000022 .000014 .000008 .000005 .000002	. 000007 . 000002 . 000001 . 000001		
740 780 820	. 000085 000006 000005	420	. 000001				

Table VI.—Function $\frac{\lambda^3}{4} Y_3$ for four-blade propeller

θ (deg)	$\frac{\lambda^3}{4}Y^3$	(dog)	$\begin{pmatrix} \theta \\ \text{(deg)} \end{pmatrix} = \frac{\lambda^3}{4} Y_3$			
(deg)	λ=1/4	(deg)	λ=½	λ=1	λ=1½	
0 10 20 30 40 50 60 70 80 90 1100 110 130 150 170 190 2210 230 250 270 290 310 330 350 370 410 430 450 470	6. 067786 063525 . 059264 . 055006 . 050757 . 046549 . 042420 . 038450 . 031732 . 029167 . 026892 . 022885 . 019263 . 016059 . 013358 . 011148 . 009303 . 007765 . 006435 . 005288 . 004300 . 003461 . 002748 . 002138 . 001621 . 000181 . 000532 . 000532 . 000306	0 2 4 6 8 8 10 20 30 40 100 120 140 160 180 200 220 240 280 300 320 340 360 400	0. 033572 0.32969 032367 031764 031764 031762 030558 027537 021584 016211 012055 009157 007100 005512 004265 003314 002574 002003 001545 00165 000634 000634 000196 000116 000061	0. 010513		
490 510	.000153	420	. 000023			

TABLE VII.—CONTOUR LINES—SINGLE-ROTATING PROPELLER

h/R	$\frac{\Delta r}{R} \frac{1}{c_{\bullet}}$	h/R	$\frac{\Delta r}{R} \frac{1}{c_{\bullet}}$	h/R	$\frac{\Delta r}{R} \frac{1}{c_s}$	h/R	$\frac{\Delta r}{R} \frac{1}{c_*}$
-	λ=1/4		λ=½		λ=1		λ=1½
4.0 3.0 2.0 1.6 1.2 .8 .45	0.00045 .00263 .00747 .01148 .01796 .02888 .04733	4.0 3.0 2.6 2.2 1.8 1.4 1.0 .8 .6	0.00060 .00226 .00350 .00545 .00838 .01266 .01963 .02499 .03247 .04312	4.0 3.0 2.6 2.2 1.8 1.4 1.0 .8 .6	0.00058 .00188 .00292 .00424 .00626 .00937 .01446 .01812 .02312 .03053	4.0 3.0 2.6 2.2 1.8 1.4 1.0 .6 .45	0. 00032 . 00148 . 00226 . 00332 . 00487 . 00726 . 01107 . 01768 . 02330
		.2	. 05997	. 12	. 04233 . 04985		

 $\begin{array}{c} \text{TABLE VIII.--} \text{CONTOUR LINES---} \text{DUAL-ROTATING} \\ \text{PROPELLER} \end{array}$

h/R	$\frac{\Delta r}{R} \frac{1}{c_*}$
10. 00	0. 000060
9. 50	. 000141
9. 00	. 000244
8. 50	. 000368
8. 00	. 000513
7, 50	. 000680
7, 00	. 000867
6, 50	. 001074
6, 00	. 001472
5, 50	. 001898
5, 00	. 002355
4, 50	. 002873
4, 00	. 003716
3, 50	. 004671
3, 00	. 006183
2. 50	. 008889
2. 00	. 013390
1. 75	. 016370
1. 50	. 020350
1. 25	. 025820
1.00 .75 .50 .45	. 033490 . 044930 . 062340 . 066120 . 070340
.35 .30 .25 .20	. 075070 . 080400 . 086370 . 093230 . 101230
. 10	. 110680 . 123220

FIGURE 3.—The function y_1 for $\lambda = \frac{1}{4}$ and four values of τ .

FIGURE 3.—Continued.

(f) $x = \frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, $\frac{3}{4}$, and $\frac{1}{2}$ %; $\tau = 270^{\circ}$. FIGURE 3.—Concluded.

FIGURE 4.—The function y_1 for $\lambda = \frac{1}{2}$ and four values of τ .

FIGURE 4.—Continued.

FIGURE 4.—Concluded.

FIGURE 5.—The function y_1 for $\lambda=1$ and four values of τ .

FIGURE 5.—Continued.

FIGURE 5.—Concluded.

FIGURE 6.—The function y_1 for $\lambda=1\frac{1}{2}$ and four values of τ .

FIGURE 6.—Continued.

(a) Two-blade propeller. (See table I.)

(b) Four-blade propeller. (See table II.) Figure 7.—The function $\frac{\lambda^3}{4}Y_1$ against θ for four values of λ .

(b) Four-blade propeller. (See table IV.) . Figure 8.—The function $\frac{\lambda^3}{4}Y_2$ against θ for four values of λ .

(a) Two-blade propeller. (See table V.)

(b) Four-blade propeller. (See table VI.) Figure 9.—The contour function $\frac{\Delta r}{R}\frac{\dot{\kappa}}{c_i}=\frac{\lambda^3}{4}Y_3$ against θ for four values of λ .

FIGURE 11.—Contraction coefficient $rac{\Delta r_0}{R}rac{1}{c_4}$ against λ for two- and four-blade propellers.

FIGURE 12.—The function z_1 against \hbar/R for several values of x.

(c) $\lambda = 1$.

(d) $\lambda = 1\frac{1}{2}$.

Figure 14.—Contour lines of wake for $p=\infty$. Dual rotation. (See table VIII.)

Positive directions of axes and angles (forces and moments) are shown by arrows

Axis		The state of the s	Moment about axis		Angle		Velocities		
Designation	Sym- bol	Force (parallel to axis) symbol	Designation	Sym- bol	Positive direction	Designa- tion	Sym- bol	Linear (compo- nent along axis)	Angular
Longitudinal Lateral Normal	X Y Z	X Y Z	Rolling Pitching Yawing	L M N	$\begin{array}{c} Y \longrightarrow Z \\ Z \longrightarrow X \\ X \longrightarrow Y \end{array}$	Roll Pitch Yaw	φ θ ψ	u v w	p q r

Absolute coefficients of moment

 $C_i = \frac{L}{qbS}$ (rolling) (p

 $C_m = \frac{M}{qcS}$ (pitching)

 $C_n = \frac{N}{qbS}$ (yawing)

Angle of set of control surface (relative to neutral position), δ . (Indicate surface by proper subscript.)

4. PROPELLER SYMBOLS

D Diameter

Geometric pitch

p/D Pitch ratio V' Inflow velocity

V_s Slipstream velocity

T Thrust, absolute coefficient $C_T = \frac{T}{\rho n^2 D^4}$

Q Torque, absolute coefficient $C_Q = \frac{Q}{\rho n^2 D^5}$

P Power, absolute coefficient $C_P = \frac{P}{\rho n^3 D^5}$

 C_s Speed-power coefficient= $\sqrt[5]{rac{
ho V^5}{Pn^2}}$

η Efficiency

n Revolutions per second, rps

 $\Phi \qquad \text{Effective helix angle} = \tan^{-1} \left(\frac{V}{2\pi rn} \right)$

5. NUMERICAL RELATIONS

1 hp=76.04 kg-m/s=550 ft-lb/sec

1 metric horsepower=0.9863 hp

1 mph=0.4470 mps

1 mps=2.2369 mph

1 lb=0.4536 kg

1 kg=2.2046 lb

1 mi = 1,609.35 m = 5,280 ft

1 m=3.2808 ft