Obliczenia naukowe Lista nr 5

Małgorzata Orłowska

1. Opis problemu

Celem zadania było rozwiązanie układu równań liniowych Ax = b, dla danej macierzy współczynników $A \in R^{nxn}$ i wektora prawych stron $b \in R^n$, n >= 4. Macierz A jest tzw. macierzą rzadką, tj. mającą dużą elementów zerowych, i blokową o następującej strukturze:

A_1	C_1	0	0	0	0
B ₂	A_2	C_2	0	0	0
0	B ₃	A_3	C ₃	0	0
0	0	$B_{\nu-2}$	A_{v-2}	$C_{\nu-2}$	0
0	0	0	$B_{\nu - 1}$	A_{v-1}	C_{v-1}
0	0	0	0	B _v	Av

 $v=n/\ell$, zakładając, że n jest podzielne przez ℓ , gdzie $\ell>=2$ jest rozmiarem wszystkich kwadratowych macierzy wewnętrznych (bloków): A_k , B_k i C_k Mianowicie, $A_k \in R^{\ell \times \ell}$, $k=1,\ldots,v$ jest macierzą gęstą, 0 jest kwadratową macierzą zerową stopnia ℓ , macierz $B_k \in R^{\ell \times \ell}$, $k=2,\ldots,v$ jest macierzą posiadającą tylko dwie ostatnie kolumny niezerowe. Natomiast $C_k \in R^{\ell \times \ell}$, $k=1,\ldots,v-1$ jest macierzą diagonalną.

W opracowaniu podano efektywny sposób rozwiązania powyższego problemu, uwzględniający specyficzną strukturę macierzy A, tj. jej rzadkość, regularność występowania elementów zerowych i niezerowych. Pozwala on na zredukowanie złożoności z O(n³) do O(n) w stosunku do standardowych metod rozwiązywania takich układów równań.

2. Rozwiązanie – zaimplementowane algorytmy

Problem został rozwiązany dzięki zaadoptowaniu znanych metod – metody eliminacji Gaussa oraz sposobu wyznaczania rozkładu LU dla macierzy, do sytuacji w zadaniu. Poniżej znajduje się opis implementacji tych metod w dwóch wariantach, w wersji podstawowej oraz z częściowym wyborem elementu głównego, wraz z zastosowanymi optymalizacjami.

2.1 Metoda eliminacji Gaussa

Składa się z dwóch faz. W pierwszej przekształcamy macierz kwadratową w trójkątną, a następnie rozwiązujemy uzyskany, uproszczony układ równań.

2.1.1 Wersja podstawowa eliminacji Gaussa

Idea

W tej metodzie, aby uzyskać macierz trójkątną zerujemy elementy pod przekątną w kolejnych kolumnach, przy pomocy działań elementarnych na macierzach.

Dla Ax = b, $A \in R^{nxn}$, $x \in R^n$, $b \in R^n$, $det(A) \neq 0$ musimy wykonać n-1 kroków. W k-tym kroku eliminujemy zmienną x_k (w k-tej kolumnie) z równań od k+1 do n. W tym celu mnożymy k-te równanie przez

$$I_{ik} = a_{ik}^{(k)} / a_{kk}^{(k)}$$
 dla $i = k + 1,..., n$,

a następnie odejmujemy od pozostałych.

$$a_{ij}^{(k+1)} = a_{ij}^{(k)}$$
 dla $i \le k$

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - (a_{ik}^{(k)} / a_{kk}^{(k)}) a_{kj}^{(k)}$$
 dla $i \ge k+1$, $j \ge k+1$

$$a_{ij}^{(k+1)} = 0$$
 dla $i \ge k+1$, $j \le k$

Warto zauważyć, że ta wersja sprawdza się tylko dla macierzy nieosobliwych, których elementy na przekątnej $a_{kk} \neq 0$, k = 1,..., n. W przypadku a_{kk} , k = 1,..., n bliskich zeru jest problem z wyznaczaniem mnożników głównych macierzy ($I_{ik} = a_{ik}^{(k)} / a_{kk}^{(k)}$) mamy wówczas dzielenie przez zero.

W drugiej fazie algorytmu rozwiązujemy przekształcony układ równań. W tym celu wyznaczamy

$$x_n = b_n / a_{nn}$$

Dalej wyznaczamy x_k dla k = n-1, ..., 1

$$x_k = (b_k - \Sigma^n_{j=k+1} a_{kj} x_j) / a_{kk}$$

Optymalizacje

Standardowa wersja eliminacji Gaussa ma złożoność O(n³), ponieważ dla k-tego wiersza (z n-1 wierszy), wykonujemy n-k odejmowań wierszy, czyli uaktualniamy n+1 wartości w każdym wierszu.

Możemy zmniejszyć złożoność z $O(n^3)$ do O(n) specyficznej macierzy danej w zadaniu, korzystając z regularności występowania elementów zerowych. Zastosowana optymalizacja polega na ograniczeniu ilości elementów, które należy uaktualnić w macierzy w trakcie dokonywania eliminacji. W tym celu dla każdej kolumn wystarczy wyznaczyć pierwszy niezerowy element pod przekątną (funkcja findNoZeroRow()), a dla każdego wiersza wyznaczyć ostatnią kolumnę, w której element nie jest zerem (funkcja findNoZeroColumn()). Dla wielkości bloku I, pod przekątną w danej kolumnie jest od 2 do I - 1 elementów niezerowych, a w trakcie odejmowań wystarczy uaktualnić I elementów (w najniżej położonym bloku A_v od I - 1 do 0 elementów). Zatem złożoność to O((n-1)(I-1)I), czyli O(n).

Łatwo zauważyć, że złożoność rozwiązywania macierzy trójkątnej to $O(n^2)$, ponieważ aby wyznaczyć wartość każdego z x (jest ich n), to dla x_k -tego obliczamy sumę n - (k + 1) elementów.

Postępując w sposób opisany wyżej, w każdym wierszu możemy ograniczyć sumowanie do maksymalnie I elementów i w ten zmniejszyć złożoność do O(n).

Zatem łączną złożoność dwóch faz algorytmu możemy ograniczyć do O(n).

2.1.2 Eliminacja Gaussa z częściowym wyborem elementu głównego **Idea**

Algorytm eliminacji Gaussa w wersji podstawowej przedstawiony powyżej jest często zawodny dla prostych układów równań. Dzieje się tak, gdy elementy przekątniowe macierzy a_{kk} (zwane elementami głównymi – używamy ich do wyzerowania znajdujących się pod nimi elementów w macierzy) są zbyt małe co do wartości bezwzględnej w porównaniu z innymi elementami wiersza, w którym się znajdują. Powstają wtedy błędy obliczeniowe związane z utratą miejsc po przecinku

Aby zapewnić odpowiednią własność macierzy pozwalającą na wyeliminowanie tego błędu należy w k-tym kroku znaleźć taki element, że

$$|a_{pk}^{(k)}| = \max_{k < = i < = n} |a_{ik}^{(k)}|$$

i przestawieniu w macierzy A^(k) wiersza p-tego z k-tym oraz elementu p-tego z k-tym w wektorze b^(k).

Optymalizacje

w trakcie odejmowania.

Łatwo zauważyć, że złożoność poszukiwania elementu głównego, w każdym z n - 1 kroków eliminacji Gaussa jest O(n), zatem złożoność eliminacji z częściowym wyborem pozostaje O(n³).

W tym przypadku stosujemy podobne sposoby optymalizacji jak wcześniej. Możemy ograniczyć liczbę porównań w trakcie szukania elementu głównego do I – 1 (tyle jest co najwyżej elementów niezerowych w danej kolumnie pod przekątną) i tym samym zmniejszyć złożoność tej procedury do liczby stałej. Należy zauważyć, że z powodu przestawienia wierszy zmienia się ograniczenie kolumn, od których odejmujemy w trakcie eliminacji. Dosłowne przestawienie wierszy byłoby zbyt kosztowne, dlatego kolejne permutacje macierzy zapisujemy w wektorze p. W k-tym kroku element główny może zostać wybrany maksymalnie z k + I + 1 wiersza, zatem dla k-tego wiersza ostatni niezerowy element może znajdować się w k + 2I + 1 kolumnie. Zostajemy jednak dalej przy stałej liczbie operacji

i złożoności tej fazy równej O(n). To ograniczenie zwiększa się także w trakcie rozwiązywania macierzy trójkątnej i wyznaczania poszczególnych x-ów.

Zatem udało nam się zachować złożoność O(n) rozwiązywania problemu danego w zadaniu.

2.2 Rozkład LU macierzy

Eliminacja Gaussa jest równoważna rozkładowi macierzy A na iloczyn macierzy trójkątnej dolnej L i trójkątnej górnej U.

$$A = LU$$

Znając ten rozkład, układ równań Ax = b możemy sprowadzić do rozwiązania dwóch układów:

Wyznaczenie najpierw rozkładu LU, a następnie rozwiązywanie układu jest korzystne w przypadku, gdy wielokrotnie wyznaczamy x dla różnych wektorów prawych stron b.

2.2.1 Wersja podstawowa

Idea

Wynikiem eliminacji Gaussa jest macierz trójkątna górna U. Stosując niewielką modyfikację możemy również uzyskać macierz L. Oznaczmy przez $L^{(k)}$ macierz przekształcenia A w k-tym kroku. $L^{(k)}$ ma postać:

Macierz wynikową U uzyskujemy w n-1 krokach:

$$U = A^{(n)} = L^{(n-1)}...L^{(2)}L^{(1)}A$$

$$A = L^{(1)-1}L^{(2)-1}...L^{(n-1)-1}U$$

$$L = L^{(1)-1}L^{(2)-1}...L^{(n-1)-1}$$

Zatem macierz L jest postaci:

W algorytmie Gaussa należy zatem wprowadzić następujące zmiany:

- wartości pod przekątną nie zastępujemy zerami tylko mnożnikami I_{ik} , które służyły do ich wyzerowania, dzięki temu oszczędzimy pamięć, a efektem algorytmu będzie macierz LU, jedynek na przekątnej L nie musimy pamiętać
- nie przekształcamy wektora b, będzie zmieniany dopiero w trakcie wyznaczania rozwiązań układu

Aby rozwiązać układ posiadając wyznaczony wcześniej rozkład LU, w dwóch pętlach wyznaczamy kolejno y z Ly = b, a potem x z Ux = y. Każdy z układów rozwiązujemy analogicznie do opisanej wcześniej metody eliminacji Gaussa.

Optymalizacje

Z powodu niewielkich zmian wprowadzonych do eliminacji Gaussa w celu wyznaczenia LU, algorytm ma tą samą złożoność $O(n^3)$. Wykonując te same optymalizacje redukujemy ją do O(n).

Dodatkowym zabiegiem oszczędzającym pamięć jest nadpisywanie wektora b rozwiązaniami pierwszego układu. Struktura LU jest taka sama jak A, więc rozwiązywanie obu układów równań upraszczamy w ten sam sposób jak algorytm eliminacji Gaussa, zachowując złożoność O(n).

2.2.2 Rozkład LU z częściowym wyborem elementu głównego

Idea

Tak jak we wcześniej opisanej eliminacji Gaussa, częściowy wybór elementu głównego pozwala na zapewnienie lepszych własności numerycznych macierzy A i wpływa na zwiększenie dokładności obliczeń. Dodajemy niewielkie zmiany do algorytmu analogicznie jak w przypadku eliminacji Gaussa. Należy teraz dodatkowo zwracać wektor permutacji wierszy, gdyż będzie potrzebny w kolejnych obliczeniach.

Optymalizacje

Stosujemy te same optymalizacje, co w przypadku eliminacji Gaussa z częściowym wyborem elementu głównego oraz rozkładu LU bez wyboru. Pamiętamy również o prawidłowym ograniczeniu wykonywania działań na elementach macierzy, tak jak w przypadku eliminacji Gaussa z częściowym wyborem elementu głównego. Udało nam się w tej części zredukować złożoność niezoptymalizowanego algorytmu wynoszącą O(n³) do O(n).

Wyznaczanie rozwiązań jest podobne do standardowego rozkładu LU, korzystamy wtedy dodatkowo z obliczonego wcześniej wektora permutacji p, tu również należy pamiętać o odpowiednim ograniczeniu iteracji. W tej fazie również redukujemy złożoność z $O(n^2)$ do O(n).

3. Wyniki

Wykres 1 Czas wykonywania poszczególnych funkcji w zależności od liczby równań układu, f =A/b, eliminacji Gaussa, eliminacji Gaussa z częściowym wyborem elementu głównego, funkcji rozwiązującej układ z wyznaczonym wcześniej LU, funkcji rozwiązującej układ z wyznaczonym wcześniej LU z częściowym wyborem elementu głównego.

Wykres 2 Wykorzystana pamięć w stosunku do liczby równań układu, f =A/b, eliminacji Gaussa, eliminacji Gaussa z częściowym wyborem elementu głównego, funkcji rozwiązującej układ z wyznaczonym wcześniej LU, funkcji rozwiązującej układ z wyznaczonym wcześniej LU z częściowym wyborem elementu głównego.

4. Wnioski

Jeśli macierz jest "rzadka" z rozmieszczonymi regularnie zerami, to możemy wykorzystać jej specyficzną strukturę do zoptymalizowania algorytmów, w których z niej korzystamy. W sprawozdaniu pokazano, że złożoność wyznaczenia rozwiązania układu równań Ax = b można zredukować z O(n³) do O(n), zarówno w przypadku złożoności pamięciowej jak i czasowej, na co wskazują wykresy znajdujące się powyżej. Dodatkowo można zauważyć, że funkcja rozwiązująca układ z wyznaczonym wcześniej LU, z częściowym wyborem elementu głównego jest odrobinę szybsza od pozostałych.