

First thought

data1.csv

08/05/2020 01:47

EXAM 1.docx

Type: Microsoft Excel Comma Separated Values File
Size: 3.22 GB
Date modified: 08/05/2020 01:47

```
[ ] # let's see the size of the dataset df.shape
```

(12591077, 24)

Cleaning process

let's see if actualy is a lot, or meaning less for the model.

```
[ ] df['County'].isnull().sum()*100/df.shape[0]
```

0.6288421554407141

As we can see there is not much data missing, under a percent.

There are records where the Sale, Cost and Retail are 0. So I need to get rid of this errors.

```
[ ] # Total numbers of ambiguous data.
    df['Sale (Dollars)'].isin([0]).sum()
```

3491

```
# Getting rid of $ in each value of column and change the type to floats

df['State Bottle Cost'] = df['State Bottle Cost'].str.replace('$', '', regex=True).astype('float')

df['State Bottle Retail'] = df['State Bottle Retail'].str.replace('$', '', regex=True).astype('float')

df['Sale (Dollars)'] = df['Sale (Dollars)'].str.replace('$', '', regex=True).astype('float')

df.info()
```

Outliers

Let's the outliers

[] plt.scatter(df['Profit Margin'], df['Volume Sold (Liters)'])
 plt.show()

Kydavra comes to save us

I will try an algorithm from kydavra library.

```
[14] pearson = PearsonCorrelationSelector(min_corr=0.02, max_corr=0.9)
```

```
[15] selected_columns2 = pearson.select(df, 'Volume Sold (Liters)')
```

```
[16] selected_columns2
```

```
['Store Number',
'Item Number',
'Pack',
'Bottle Volume',
'Sale (Dollars)',
'Profit Margin',
'City_DES_MOINES',
'Rest_Cities']
```

Correlations

Store Number	1	-0.027	0.09	0.079	0.043	-0.023	-0.014	-0.043	-0.024
Item Number		1	0.0051	-0.081					-0.022
Pack			1	-0.78	-0.15		0.041		-0.062
Bottle Volume			-0.78	1	0.2	0.081			0.15
Sale (Dollars)					1	0.77			0.68
Profit Margin					0.77	1			0.84
City_DES_MOINES			0.041				1	0.74	0.023
Rest_Cities							0.74	1	0.024
Volume Sold (Liters) Rest_Cities	-0.024	-0.022	-0.082	0.15	0.68	0.84	0.023	0.024	1
-	Store Number -	Item Number	Pack -	Bottle Volume -	Sale (Dollars) -	Profit Margin –	City_DES_MOINES -	Rest_Cities -	olume Sold (Liters) –

Training time

	ML model	Score	MSE	MAE	RMSE
0	LinearRegression()	0.720062	228.583409	3.849922	15.118975
1	KNeighborsRegressor()	0.911344	72.391744	0.366536	8.508334
2	RandomForestRegressor()	0.986845	10.741954	0.063238	3.277492
3	DecisionTreeRegressor()	0.979420	16.804915	0.057573	4.099380
4	RandomForestRegressor() without selecting columns	0.990049	7.793316	0.061354	2.791651

Lime

Feature Value

Profit Margin -0.63 Bottle Volume-1.32

Pack 1.75

Sale (Dollars) -0.66

Item Number -1.32 Zip Code -0.49

Store Number 0.98

Feature Value

Profit Margin -0.19 Bottle Volume-0.28 Pack 0.10 Item Number -0.13 Sale (Dollars) -0.21

Store Number 0.89 Zip Code -0.67

Thanks

Questions? Hope not XD