Read/Write Memory Architectures

Dr. Shubhajit Roy Chowdhury,

Centre for VLSI and Embedded Systems Technology,

IIIT Hyderabad, India

Email: src.vlsi@iiit.ac.in

Registers

- Used for storing data
- Structure
 - N-bit wide
 - Parallel/serial read/write
 - Clocked
 - Static/dynamic implementation
- Register files
 - Multiple read/write ports possible
 - Example: 32-bit wide by 16-bit deep, dual-port parallel read, single port parallel write register file

Implementing Registers in CMOS

- Direct gate implementation too costly
 - A master-slave JK flip-flop uses 38 CMOS transistors
- Directly implement in transistors
 - Example: clocked SR FF

Implementing Registers in CMOS (cont.)

- Another example: D latch (register)
 - Uses transmission gate
 - When "WR" asserted, "write" operation will take place
 - Stack D latch structures to get n-bit register

Memory (Array) Design

- Array of bits
- Area very important
 - Memory takes considerable area in processor chips
 - Compaction results in fewer memory chip modules, more on-chip cache
- Timing and power consumption of memory blocks have significant impact on the system
- Different types
 - RAM (SRAM, DRAM, CAM)
 - ROM (PROM, EEPROM, FLASH)

Memory Design (cont.)

- Static vs. dynamic RAM
 - Dynamic needs refreshing
 - Refreshing: read, then write back to restore charge
 - Either periodically or after each read
- Static (SRAM)
 - Data stored as long as supply voltage is applied
 - Large (6 transistors/cell)
 - Fast
- Dynamic (DRAM)
 - Periodic refresh required
 - Small (1-3 transistors/cell)
 - Slower
 - Special fabrication process

Memory Architecture: the Big Picture

- Address: which one of the M words to access
- Data: the N bits of the word are read/written

Memory Access Timing: the Big Picture

• Timing:

- Send address on the address lines,
 wait for the word line to become stable
- Read/write data on the data lines

6-Transistor SRAM Cell: Layout

- WL is word line (select line Sj)
- BL is bit line (bit_i)

SRAM Read

- Precharge both bitlines high
- Then turn on wordline
- One of the two bitlines will be pulled down by the cell
- Ex: A = 0, $A_b = 1$
 - bit discharges, bit_b stays high
 - But A bumps up slightly
- Read stability
 - A must not flip

SRAM Write

- Drive one bitline high, the other low
- Then turn on wordline
- Bitlines overpower cell with new value
- Ex: A = 0, A_b = 1, bit = 1, bit_b = 0
 - Force A_b low, then A rises high
- Writability
 - Must overpower feedback inverter
 - -N2 >> P1

SRAM sizing

- High bitlines must not overpower inverters during reads
- But low bitlines must write new value into cell

6-Transistor Memory Array

8 words deep RAM,
2 bits wide words

- To write to word j:
 - Set S_j=1, all other S lines to 0
 - Send data on the global
 bit₀, bit₀', bit₁, bit₁'
- To read word k:
 - Set S_k=1, all other S lines to 0
 - Sense data on bit₀ and bit₁.

Decoders

- n:2ⁿ decoder consists of 2ⁿ n-input AND gates
 - One needed for each row of memory
 - Build AND from NAND or NOR gates

Static CMOS

Pseudo-nMOS

Large Decoders

- For n ≥ 4, NAND gates become slow
 - Break large gates, into multiple smaller gates

Predecoding

Many of these gates are redundant

- Factor out common gates into predecoder
- Saves area
- Same path effort

Column Circuitry

- Some circuitry is required for each column
 - Bitline conditioning
 - Sense amplifiers
 - Column multiplexing

Bitline Conditioning

Precharge bitlines high before reads

 Equalize bitlines to minimize voltage difference when using sense amplifiers

Sense Amplifiers

- Bitlines have many cells attached
 - Ex: 32-kbit SRAM has 256 rows x 128 cols
 - 128 cells on each bitline
- $t_{pd} \propto$ (C/I) Δ V
 - Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 - Discharged slowly through small transistors (small I)
- Sense amplifiers are triggered on small voltage swing (reduce ΔV)

Differential Pair Amp

- Differential pair requires no clock
- But always dissipates static power

Clocked Sense Amp

- Clocked sense amp saves power
- Requires sense_clk after enough bitline swing
- Isolation transistors cut off large bitline

Twisted Bitlines

- Sense amplifiers also amplify noise
 - Coupling noise is severe in modern processes
 - Try to couple equally onto bit and bit_b
 - Done by twisting bitlines

Column Multiplexing

- Recall that array may be folded for good aspect ratio
- Ex: 2 kword x 16 folded into 256 rows x 128 columns
 - Must select 16 output bits from the 128 columns
 - Requires 16 8:1 column multiplexers

Tree Decoder Mux

- Column mux can use pass transistors
 - Use nMOS only, precharge outputs
- One design is to use k series transistors for 2^k:1 mux
 - No external decoder logic needed

Single Pass-Gate Mux

Or eliminate series transistors with separate decoder

Multiple Ports

- We have considered single-ported SRAM
 - One read or one write on each cycle
- Multiported SRAM are needed for register files
- Examples:
 - Multicycle MIPS must read two sources or write a result on some cycles
 - Pipelined MIPS must read two sources and write a third result each cycle
 - Superscalar MIPS must read and write many sources and results each cycle

Multi-Port SRAM Cells

- Idea: add more input and output transistors
- Can be applied to all variants
 - Usually not done for 1T cells

Multi-Port SRAM Cells Array

7 words deep,
 2 wide words,
 dual port mem

 To read from word j and write "d₁d₀" to word k simultaneously:

- Set SA_i=1, and all other SA's=0
- Set SB_k=1, and all other SB's=0
- Sense the values on bus_A0 and bus_A1
- Write d₁d₀ to bus_B0 and bus_B1

Dynamic RAM 1-Transistor Cell

- 1-transistor cell
 - Storage capacitor is source of cell transistor
 - Special processing steps to make the storage capacitor large
 - Charge sharing with bus capacitance (C_{cell} << C_{bus})
 - Extra demand on sense amplifier to detect small changes
 - Destructive read (must write immediately)

Dynamic RAM 1-Transistor Cell: Timing

- Write: Cs is charged/discharged
- Read
 - Voltage swing is small (~250 mV)

$$- \Delta V = V_{RI} - V_{DRF} = (V_{X} - V_{DRF}) \cdot Cs / (Cs + C_{RI})$$

Dynamic RAM 1-Transistor Cell: Observations

- DRAM memory cell is single-ended
- Read operation is destructive
- 1T cell requires presence of an extra capacitance that must be explicitly included in the design
 - Polysilicon-diffusion plate capacitor
- When writing a "1" into a DRAM cell, a threshold voltage is lost
 - Set WL to a higher value than Vdd

Dynamic RAM 1-Transistor Cell: Layout

(a) Cross-section

(b) Layout

Used Polysilicon-Diffusion Capacitance

Expensive in Area

Dynamic RAM 1-Transistor Cell: Layout

Dynamic RAM 1-Transistor Cell: Layout

RAM Cells: Summary

Static

- Fastest (no refresh)
- Simple design
- Right solution for small memory arrays such as register files

Dynamic

- Densest: 1T is best and is the way to go for large memory arrays
- Built-in circuitry to step through cells and refresh (can do more than one word at a time)
- Sense amplifier needed for fast read operation

THANK YOU

