An optimal Gaifman normal form construction for structures of bounded degree

Lucas Heimberg¹ Dietrich Kuske² Nicole Schweikardt¹

¹Goethe-University Frankfurt am Main

²Ilmenau University of Technology

Highlights 2013 September 20

Throughout this talk: signatures contain only relation symbols.

Theorem: (Gaifman, 1981)

Every FO-formula is equivalent to an FO-formula in Gaifman normal form.

And there is an algorithm which translates a given FO-formula into an equivalent formula in Gaifman normal form.

Reminder

- Gaifman normal form
 - Boolean combination of local formulas
- ▶ local formula:
 - FO-formula $\varrho(\vec{y})$ in which every quantifier has the form
- $\exists x (alst(y, x) \leqslant r \land \psi) \text{ or } \forall x (alst(y, x) \leqslant r \rightarrow \psi).$
- basic local sentence
 - $\exists x_1 \cdots \exists x_k$

Throughout this talk: signatures contain only relation symbols.

Theorem: (Gaifman, 1981)

Every FO-formula is equivalent to an FO-formula in Gaifman normal form.

And there is an algorithm which translates a given FO-formula into an equivalent formula in Gaifman normal form.

Reminder

- ▶ Gaifman normal form:
 - Boolean combination of local formulas
 - and basic local sentences
- ▶ local formula
 - FO-formula $\varrho(\bar{y})$ in which every quantifier has the form
 - $\exists x \, (dist(\bar{y}, x) \leqslant r \land \psi) \text{ or } \forall x \, (dist(\bar{y}, x) \leqslant r \rightarrow \psi).$
- ▶ basic local sentence:
 - $\exists x_1 \cdots \exists x_k \ \left(\ \bigwedge dist(x_i, x_j) > 2r \ \land \ \bigwedge^{\kappa} \varrho$

Throughout this talk: signatures contain only relation symbols.

Theorem: (Gaifman, 1981)

Every FO-formula is equivalent to an FO-formula in Gaifman normal form.

And there is an algorithm which translates a given FO-formula into an equivalent formula in Gaifman normal form.

Reminder:

- Gaifman normal form:
 - Boolean combination of local formulas and basic local sentences
- ► local formula

FO-formula $\varrho(\bar{y})$ in which every quantifier has the form

$$\exists x (dist(\bar{y}, x) \leqslant r \land \psi) \text{ or } \forall x (dist(\bar{y}, x) \leqslant r \rightarrow \psi)$$

▶ basic local sentence

$$\exists x_1 \cdots \exists x_k \ \left(\bigwedge_{1 \leqslant i < j \leqslant k} dist(x_i, x_j) > 2r \land \bigwedge_{i=1}^k \varrho(x_i) \right)$$

Throughout this talk: signatures contain only relation symbols.

Theorem:

(Gaifman, 1981)

Every FO-formula is equivalent to an FO-formula in Gaifman normal form.

And there is an algorithm which translates a given FO-formula into an equivalent formula in Gaifman normal form.

Reminder:

Gaifman normal form:
 Boolean combination of local formulas
 and basic local sentences

- ▶ local formula:
 - FO-formula $\varrho(\bar{y})$ in which every quantifier has the form $\exists x \ (\textit{dist}(\bar{y}, x) \leqslant r \ \land \ \psi)$ or $\forall x \ (\textit{dist}(\bar{y}, x) \leqslant r \ \rightarrow \ \psi)$.
- ▶ basic local sentence

$$\exists x_1 \cdots \exists x_k \ \left(\bigwedge_{1 \leq i < j \leq k} dist(x_i, x_j) > 2r \land \bigwedge_{i=1}^k \varrho(x_i) \right)$$

Throughout this talk: signatures contain only relation symbols.

Theorem: (Gaifman, 1981)

Every FO-formula is equivalent to an FO-formula in Gaifman normal form.

And there is an algorithm which translates a given FO-formula into an equivalent formula in Gaifman normal form.

Reminder:

- Gaifman normal form:
 Boolean combination of local formulas and basic local sentences
- ▶ local formula: FO-formula $\varrho(\bar{y})$ in which every quantifier has the form $\exists x \ (\textit{dist}(\bar{y}, x) \leqslant r \land \psi)$ or $\forall x \ (\textit{dist}(\bar{y}, x) \leqslant r \rightarrow \psi)$.
- ► basic local sentence:

$$\exists x_1 \cdots \exists x_k \ \left(\bigwedge_{1 \leqslant i < j \leqslant k} dist(x_i, x_j) > 2r \land \bigwedge_{i=1}^k \varrho(x_i) \right)$$

Algorithmic meta-theorems:

Gaifman's normal form can often be used as a first step for finding "efficient" algorithms for computational problems defined by FO-formulas.

Example:

- ► FO-sentence: $\exists x \exists y \left(\neg E(x, y) \land R(x) \land B(y) \right)$
- equivalent sentence in Gaifman normal form:

$$\exists z \ \Big(\exists x \ \exists y \big(\ dist(x,z) \leqslant 2 \land dist(y,z) \leqslant 2 \land \neg E(x,y) \land R(x) \land B(y) \big) \Big)$$
$$\lor \Big(\exists x \ \exists y \big(\ dist(x,y) > 2 \land (R(x) \lor B(x)) \land (R(y) \lor B(y)) \big)$$
$$\land \ \exists x \ R(x) \land \ \exists x \ B(x) \Big)$$

Answer: There is no elementary algorithm.

Algorithmic meta-theorems:

Gaifman's normal form can often be used as a first step for finding "efficient" algorithms for computational problems defined by FO-formulas.

Example:

- ► FO-sentence: $\exists x \exists y \left(\neg E(x, y) \land P(x) \land B(y) \right)$
- equivalent sentence in Gaifman normal form:

$$\exists z \ \Big(\exists x \ \exists y \big(\ dist(x,z) \leqslant 2 \land dist(y,z) \leqslant 2 \land \neg E(x,y) \land R(x) \land B(y) \big) \Big)$$
$$\lor \Big(\exists x \ \exists y \big(\ dist(x,y) > 2 \land (R(x) \lor B(x)) \land (R(y) \lor B(y)) \big)$$
$$\land \ \exists x \ R(x) \land \ \exists x \ B(x) \Big)$$

Answer: There is no elementary algorithm.

Algorithmic meta-theorems:

Gaifman's normal form can often be used as a first step for finding "efficient" algorithms for computational problems defined by FO-formulas.

Example:

- ► FO-sentence: $\exists x \exists y \left(\neg E(x, y) \land P(x) \land B(y) \right)$
- equivalent sentence in Gaifman normal form:

$$\exists z \ \Big(\exists x \ \exists y \big(\ dist(x, z) \leqslant 2 \land dist(y, z) \leqslant 2 \land \neg E(x, y) \land \stackrel{\textstyle R}{}(x) \land B(y) \, \Big) \Big)$$
$$\lor \Big(\exists x \ \exists y \big(\ dist(x, y) > 2 \land (\stackrel{\textstyle R}{}(x) \lor B(x)) \land (\stackrel{\textstyle R}{}(y) \lor B(y)) \, \Big)$$
$$\land \ \exists x \ \stackrel{\textstyle R}{}(x) \land \ \exists x \ B(x) \, \Big)$$

Answer: There is no elementary algorithm.

Algorithmic meta-theorems:

Gaifman's normal form can often be used as a first step for finding "efficient" algorithms for computational problems defined by FO-formulas.

Example:

- ► FO-sentence: $\exists x \exists y \left(\neg E(x, y) \land R(x) \land B(y) \right)$
- equivalent sentence in Gaifman normal form:

$$\exists z \ \Big(\exists x \ \exists y \big(\ dist(x,z) \leqslant 2 \land dist(y,z) \leqslant 2 \land \neg E(x,y) \land R(x) \land B(y) \big) \Big)$$
$$\lor \Big(\exists x \ \exists y \big(\ dist(x,y) > 2 \land (R(x) \lor B(x)) \land (R(y) \lor B(y)) \big)$$
$$\land \ \exists x \ R(x) \land \ \exists x \ B(x) \Big)$$

Answer: There is no elementary algorithm.

A precise statement of the lower bound:

```
Theorem: (Dawar, Grohe, Kreutzer, Schweikardt, ICALP'07 and H., Kuske, Schweikardt, LICS'13)
```

There is an $\epsilon > 0$ and a sequence of FO(E)-sentences $(\Psi_n)_{n \geq 1}$ of increasing size such that every FO(E)-sentence in Gaifman normal form that is equivalent to Ψ_n has size \geqslant Tower $(\epsilon \cdot ||\Psi_n||)$.

Proof: Use succinct encodings of large natural numbers by trees.

- A class ℰ of structures has bounded degree d, if there is a number d ≥ 1 such that the Gaifman graph of every structure in ℰ has degree ≤ d.
- E has unbounded degree, if there is no such d

Note: The proof doesn't work for classes of structures of bounded degree

A precise statement of the lower bound:

Theorem: (Dawar, Grohe, Kreutzer, Schweikardt, ICALP'07 and H., Kuske, Schweikardt, LICS'13)

There is an $\epsilon > 0$ and a sequence of FO(E)-sentences (Ψ_n) $_{n \geqslant 1}$ of increasing size such that every FO(E)-sentence in Gaifman normal form that is equivalent to Ψ_n on the class of forests of unbounded degree has size \geqslant Tower($\epsilon \cdot ||\Psi_n||$).

Proof: Use succinct encodings of large natural numbers by trees.

- A class $\mathfrak C$ of structures has bounded degree d, if there is a number $d \geqslant 1$ such that the Gaifman graph of every structure in $\mathfrak C$ has degree $\leqslant d$.
- E has unbounded degree, if there is no such d

Note: The proof doesn't work for classes of structures of bounded degree

A precise statement of the lower bound:

```
Theorem: (Dawar, Grohe, Kreutzer, Schweikardt, ICALP'07 and H., Kuske, Schweikardt, LICS'13)
```

There is an $\epsilon > 0$ and a sequence of FO(E)-sentences $(\Psi_n)_{n \ge 1}$ of increasing size such that every FO(E)-sentence in Gaifman normal form that is equivalent to Ψ_n on the class of forests of unbounded degree has size \geqslant Tower($\epsilon \cdot ||\Psi_n||$).

Proof: Use succinct encodings of large natural numbers by trees.

- A class $\mathfrak C$ of structures has bounded degree d, if there is a number $d \ge 1$ such that the Gaifman graph of every structure in $\mathfrak C$ has degree $\le d$.
- \blacktriangleright \mathfrak{C} has unbounded degree, if there is no such d.

Note: The proof doesn't work for classes of structures of bounded degree.

A precise statement of the lower bound:

```
Theorem: (Dawar, Grohe, Kreutzer, Schweikardt, ICALP'07 and H., Kuske, Schweikardt, LICS'13)
```

There is an $\epsilon > 0$ and a sequence of FO(E)-sentences $(\Psi_n)_{n \geqslant 1}$ of increasing size such that every FO(E)-sentence in Gaifman normal form that is equivalent to Ψ_n on the class of forests of unbounded degree has size \geqslant Tower $(\epsilon \cdot ||\Psi_n||)$.

Proof: Use succinct encodings of large natural numbers by trees.

- A class $\mathfrak C$ of structures has bounded degree d, if there is a number $d \ge 1$ such that the Gaifman graph of every structure in $\mathfrak C$ has degree $\le d$.
- \blacktriangleright \mathfrak{C} has unbounded degree, if there is no such d.

Note: The proof doesn't work for classes of structures of bounded degree.

A precise statement of the lower bound:

```
Theorem: (Dawar, Grohe, Kreutzer, Schweikardt, ICALP'07 and H., Kuske, Schweikardt, LICS'13)
```

There is an $\epsilon > 0$ and a sequence of FO(E)-sentences $(\Psi_n)_{n \geqslant 1}$ of increasing size such that every FO(E)-sentence in Gaifman normal form that is equivalent to Ψ_n on the class of forests of unbounded degree has size \geqslant Tower($\epsilon \cdot ||\Psi_n||$).

Proof: Use succinct encodings of large natural numbers by trees.

- A class $\mathfrak C$ of structures has bounded degree d, if there is a number $d \ge 1$ such that the Gaifman graph of every structure in $\mathfrak C$ has degree $\le d$.
- \blacktriangleright \mathfrak{C} has unbounded degree, if there is no such d.

Note: The proof doesn't work for classes of structures of bounded degree.

Let $d \ge 1$. Formulas Ψ and Φ are called d-equivalent if they are equivalent on all structures of degree $\le d$.

Theorem:

(H., Kuske, Schweikardt, LICS'13)

(a) Let σ be a relational signature, and let d ≥ 1.
 There is a 3-fold exponential algorithm which transforms an input FO(σ)-formula
 Ψ in time

into a d-equivalent formula Ψ^{G} in Gaifman normal form.

- (b) This is optimal: There is an $\epsilon > 0$ and a sequence of FO(E)-sentences $(\Psi_n)_{n \ge 1}$ of increasing size such that every FO(E)-sentence in Gaifman normal form that is equivalent to Ψ_n
 - on the class of binary forests has size at least

Proof: (a) In this talk. (b) Use succinct encodings of numbers by binary tree

Let $d \ge 1$. Formulas Ψ and Φ are called d-equivalent if they are equivalent on all structures of degree $\le d$.

Theorem:

(H., Kuske, Schweikardt, LICS'13)

(a) Let σ be a relational signature, and let $d \geqslant 1$. There is a 3-fold exponential algorithm which transforms an input FO(σ)-formula Ψ in time

 $2^{d^{2^{O(||\Psi||)}}}$

into a d-equivalent formula Ψ^G in Gaifman normal form.

- (b) This is optimal: There is an $\epsilon > 0$ and a sequence of FO(E)-sentences $(\Psi_n)_{n \geq 1}$ of increasing size such that every FO(E)-sentence in Gaifman normal form that is equivalent to Ψ_n
 - on the class of binary forests has size at leas

 $2^{2^{2^{\epsilon||\Psi_n||}}}$.

Proof: (a) In this talk. (b) Use succinct encodings of numbers by binary trees.

Let $d \ge 1$. Formulas Ψ and Φ are called d-equivalent if they are equivalent on all structures of degree $\le d$.

Theorem:

(H., Kuske, Schweikardt, LICS'13)

(a) Let σ be a relational signature, and let $d \geqslant 1$. There is a 3-fold exponential algorithm which transforms an input FO(σ)-formula Ψ in time

 $2^{d^{2^{O(||\Psi||)}}}$

into a d-equivalent formula Ψ^G in Gaifman normal form.

(b) This is optimal: There is an $\epsilon > 0$ and a sequence of FO(E)-sentences $(\Psi_n)_{n \geqslant 1}$ of increasing size such that every FO(E)-sentence in Gaifman normal form that is equivalent to Ψ_n on the class of binary forests has size at least

 $2^{2^{2^{\epsilon||\Psi_n||}}}$.

Proof: (a) In this talk. (b) Use succinct encodings of numbers by binary trees.

Let $d \ge 1$. Formulas Ψ and Φ are called d-equivalent if they are equivalent on all structures of degree $\le d$.

Theorem:

(H., Kuske, Schweikardt, LICS'13)

(a) Let σ be a relational signature, and let $d \geqslant 1$. There is a 3-fold exponential algorithm which transforms an input FO(σ)-formula Ψ in time

$$2^{d^{2^{O(||\Psi||)}}}$$

into a d-equivalent formula Ψ^G in Gaifman normal form.

(b) This is optimal: There is an $\epsilon > 0$ and a sequence of FO(E)-sentences $(\Psi_n)_{n\geqslant 1}$ of increasing size such that every FO(E)-sentence in Gaifman normal form that is equivalent to Ψ_n on the class of binary forests has size at least

$$2^{2^{\epsilon||\Psi_n||}}$$

Proof: (a) In this talk. (b) Use succinct encodings of numbers by binary trees.

Outline

1 Introduction

2 The Algorithm

3 Final Remarks

Outline

1 Introduction

2 The Algorithm

3 Final Remarks

The Algorithm

Input: An FO(σ)-sentence Ψ For simplicity: sentence!

Goal: Transform Ψ in time $3-\exp(||\Psi||)$ into

a d-equivalent sentence Ψ^G in Gaifman normal form

Step 1: Transform Ψ into a d-equivalent sentence Ψ^H in Hanf normal form

l.e., Ψ^H is a Boolean combination of Hanf-sentences, i.e., sentences of the form

$$\exists^{\geq k} x \varrho(x)$$
, where

 $k \geqslant 1$ and $\varrho(x)$ is r-local around x, for some r. (More precisely, $\varrho(x)$ describes the isomorphism type of ar r-neighbourhood.)

By a Theorem of Bollig and Kuske (2012), this can be done in time $3-\exp(||\Psi||)$.

The Algorithm

Input: An FO(σ)-sentence Ψ For simplicity: sentence!

Goal: Transform Ψ in time 3-exp($||\Psi||$) into a d-equivalent sentence Ψ^G in Gaifman normal form

Step 1: Transform Ψ into a d-equivalent sentence Ψ^H in Hanf normal form

I.e., Ψ^{H} is a Boolean combination of Hanf-sentences, i.e., sentences of the form

$$\exists^{\geqslant k} x \varrho(x)$$
, where

 $k \geqslant 1$ and $\varrho(x)$ is r-local around x, for some r. (More precisely, $\varrho(x)$ describes the isomorphism type of an r-neighbourhood.)

By a Theorem of Bollig and Kuske (2012), this can be done in time $3-\exp(||\Psi||)$.

The Algorithm

Input: An FO(σ)-sentence Ψ For simplicity: sentence!

Goal: Transform Ψ in time 3-exp($||\Psi||$) into a d-equivalent sentence Ψ^G in Gaifman normal form

Step 1: Transform Ψ into a d-equivalent sentence Ψ^H in Hanf normal form

I.e., Ψ^{H} is a Boolean combination of Hanf-sentences, i.e., sentences of the form

$$\exists^{\geqslant k} x \varrho(x)$$
, where

 $k\geqslant 1$ and $\varrho(x)$ is r-local around x, for some r. (More precisely, $\varrho(x)$ describes the isomorphism type of an r-neighbourhood.)

By a Theorem of Bollig and Kuske (2012), this can be done in time $3\text{-exp}(||\Psi||)$.

Step 1: Transform Ψ into a d-equivalent sentence Ψ^H in Hanf normal form

Step 2: Transform each Hanf-sentence $\exists^{\geqslant k} x \varrho(x)$ of Ψ^H into an equivalent sentence in Gaifman normal form.

Technical Lemma:

This can be done in time $2^{O(R \log R)}(\log r + ||\varrho||)$

Step 1 + Step 2: Total running time: $3-\exp(||\Psi||)$

- ▶ Instead of σ -structures A, consider their Gaifman graphs G_A
- ▶ Each node v of G_A is
 - ightharpoonup colored red, if $A \models \varrho(v)$,
 - \triangleright colored blue, if $\mathcal{A} \not\models \rho(v)$.
- $ightharpoonup A \models \exists^{\geqslant k} x \varrho(x) \iff$ There are at least k red nodes in G_A .
- ► Thus, consider red-blue-colored graphs *G*, and investigate the distribution of red nodes in *G*.

Step 1: Transform Ψ into a d-equivalent sentence Ψ^H in Hanf normal form

Step 2: Transform each Hanf-sentence $\exists^{\geqslant k} x \varrho(x)$ of Ψ^H into an equivalent sentence in Gaifman normal form.

Technical Lemma:

This can be done in time $2^{O(k \log k)} (\log r + ||\varrho||)$.

Step 1 + Step 2: Total running time: $3-\exp(||\Psi||)$

- ▶ Instead of σ -structures A, consider their Gaifman graphs G_A
- \triangleright Each node v of G_A is
 - ightharpoonup colored red, if $A \models \rho(v)$,
 - ightharpoonup colored blue, if $A \not\models \rho(v)$.
- $ightharpoonup A \models \exists^{\geqslant k} x \varrho(x) \iff$ There are at least k red nodes in G_A .
- ► Thus, consider red-blue-colored graphs *G*, and investigate the distribution of red nodes in *G*.

Step 1: Transform Ψ into a d-equivalent sentence Ψ^H in Hanf normal form

/

Step 2: Transform each Hanf-sentence $\exists^{\geq k} x \varrho(x)$ of Ψ^H into an equivalent sentence in Gaifman normal form.

Technical Lemma: No restriction to structures of bounded degree!

This can be done in time $2^{O(k \log k)} (\log r + ||\varrho||)$.

Step 1 + Step 2: Total running time: 3-exp($||\Psi||$)

- ▶ Instead of σ -structures A, consider their Gaifman graphs G_A
- \triangleright Each node v of G_A is
 - ightharpoonup colored red, if $A \models \varrho(v)$,
 - ightharpoonup colored blue, if $\mathcal{A} \not\models \varrho(v)$.
- $ightharpoonup A \models \exists^{\geqslant k} x \varrho(x) \iff$ There are at least k red nodes in G_A .
- ► Thus, consider red-blue-colored graphs *G*, and investigate the distribution of red nodes in *G*.

- Step 1: Transform Ψ into a *d*-equivalent sentence Ψ^H in Hanf normal form
- Step 2: Transform each Hanf-sentence $\exists^{\geqslant k} x \varrho(x)$ of Ψ^H into an equivalent sentence in Gaifman normal form.

Technical Lemma: No restriction to structures of bounded degree!

This can be done in time $2^{O(k \log k)} (\log r + ||\varrho||)$.

Step 1 + Step 2: Total running time: $3-\exp(||\Psi||)$.

- ▶ Instead of σ -structures A, consider their Gaifman graphs G_A
- ▶ Each node v of G_A is
 - ightharpoonup colored red, if $A \models \varrho(v)$,
 - ightharpoonup colored blue, if $\mathcal{A} \not\models \varrho(v)$.
- $ightharpoonup A \models \exists^{\geqslant k} x \varrho(x) \iff$ There are at least k red nodes in G_A .
- ► Thus, consider red-blue-colored graphs *G*, and investigate the distribution of red nodes in *G*.

- Step 1: Transform Ψ into a d-equivalent sentence Ψ^H in Hanf normal form
- V
- Step 2: Transform each Hanf-sentence $\exists^{>k} x \varrho(x)$ of Ψ^H into an equivalent sentence in Gaifman normal form.
- Technical Lemma: No restriction to structures of bounded degree!

This can be done in time $2^{O(k \log k)} (\log r + ||\varrho||)$.

Step 1 + Step 2: Total running time: $3-\exp(||\Psi||)$.

- ▶ Instead of σ -structures A, consider their Gaifman graphs G_A .
- \triangleright Each node v of G_A is
 - ightharpoonup colored red, if $A \models \varrho(v)$,
 - ightharpoonup colored blue, if $\mathcal{A} \not\models \varrho(v)$.
- $ightharpoonup A \models \exists^{\geqslant k} x \varrho(x) \iff$ There are at least k red nodes in G_A .
- ► Thus, consider red-blue-colored graphs *G*, and investigate the distribution of red nodes in *G*.

- Step 1: Transform Ψ into a d-equivalent sentence Ψ^H in Hanf normal form
- •
- Step 2: Transform each Hanf-sentence $\exists^{\geqslant k} x \varrho(x)$ of Ψ^H into an equivalent sentence in Gaifman normal form.
- Technical Lemma: No restriction to structures of bounded degree!

This can be done in time $2^{O(k \log k)} (\log r + ||\varrho||)$.

Step 1 + Step 2: Total running time: $3-\exp(||\Psi||)$.

- ▶ Instead of σ -structures A, consider their Gaifman graphs G_A .
- ▶ Each node v of G_A is
 - ightharpoonup colored red, if $A \models \varrho(v)$,
 - ▶ colored blue, if $A \not\models \varrho(v)$.
- $\blacktriangleright A \models \exists^{\geq k} x \varrho(x) \iff$ There are at least k red nodes in G_A .
- ► Thus, consider red-blue-colored graphs *G*, and investigate the distribution of red nodes in *G*.

- Step 1: Transform Ψ into a *d*-equivalent sentence Ψ^H in Hanf normal form
- Step 2: Transform each Hanf-sentence $\exists^{>k} x \varrho(x)$ of Ψ^H into an equivalent sentence in Gaifman normal form.

Technical Lemma: No restriction to structures of bounded degree!

This can be done in time $2^{O(k \log k)} (\log r + ||\varrho||)$.

Step 1 + Step 2: Total running time: $3-\exp(||\Psi||)$.

- ▶ Instead of σ -structures A, consider their Gaifman graphs G_A .
- \triangleright Each node v of G_A is
 - ightharpoonup colored red, if $A \models \varrho(v)$,
 - ▶ colored blue, if $A \not\models \varrho(v)$.
- $ightharpoonup A \models \exists^{\geqslant k} x \, \varrho(x) \iff$ There are at least k red nodes in G_A .
- ► Thus, consider red-blue-colored graphs *G*, and investigate the distribution of red nodes in *G*.

- Step 1: Transform Ψ into a *d*-equivalent sentence Ψ^H in Hanf normal form
- •
- Step 2: Transform each Hanf-sentence $\exists^{>k} x \varrho(x)$ of Ψ^H into an equivalent sentence in Gaifman normal form.
- Technical Lemma: No restriction to structures of bounded degree!

This can be done in time $2^{O(k \log k)} (\log r + ||\varrho||)$.

Step 1 + Step 2: Total running time: $3-\exp(||\Psi||)$.

- ▶ Instead of σ -structures A, consider their Gaifman graphs G_A .
- ▶ Each node v of G_A is
 - ightharpoonup colored red, if $A \models \varrho(v)$,
 - ▶ colored blue, if $A \not\models \varrho(v)$.
- $ightharpoonup A \models \exists^{\geqslant k} x \, \varrho(x) \iff$ There are at least k red nodes in G_A .
- ► Thus, consider red-blue-colored graphs *G*, and investigate the distribution of red nodes in *G*.

An *r*-scattered red set is a non-empty set of red nodes of pairwise distance > r.

Combinatorial Lemma:

An r-scattered red set is a non-empty set of red nodes of pairwise distance > r.

Combinatorial Lemma:

Let $k, r, c \ge 1$, and let G be a red-blue-colored graph. Then, one of the following statements is true:

- (a) There is no red node
- (b) There is a cr-scattered red set of size $\geqslant k$.
- (c) There is a number s with $0 \le s \le k-2$ such that for $R_s := (c+1)^s cr$, there is a cR_s -scattered red set W_s of size < k, such that every red node of G belongs to the R_s -neighbourhood of W_s .

Proof: W.l.o.g., neither (a) nor (b) is true. Construct a sequence $W_0 \supset W_1 \supset ... \supset W_s$ of sets of red nodes such that, for every j, $N_{B_i}(W_j)$ contains all red nodes of G:

- W_0 . a Cr-scattered red set of maximum size.

 Clearly $|W_0| < k$ and $N_1(W_0) = N_0(W_0)$ contains all rad nodes of G
 - Clearly, $|W_0| < k$ and $N_{cr}(W_0) = N_{R_0}(W_0)$ contains all red nodes of G.
- W_{j+1} : if W_j contains two nodes a, b with $dist(a, b) \leq cR_j$, then $W_{j+1} := W_j \setminus \{b\}$. Clearly, $N_{R_j + cR_j}(W_{j+1}) = N_{R_{j+1}}(W_{j+1})$ contains all red nodes of G.

An r-scattered red set is a non-empty set of red nodes of pairwise distance > r.

Combinatorial Lemma:

Let $k, r, c \ge 1$, and let G be a red-blue-colored graph. Then, one of the following statements is true:

- (a) There is no red node.

An r-scattered red set is a non-empty set of red nodes of pairwise distance > r.

Combinatorial Lemma:

Let $k, r, c \ge 1$, and let G be a red-blue-colored graph. Then, one of the following statements is true:

- (a) There is no red node.
- (b) There is a cr-scattered red set of size $\geqslant k$.
- (c) There is a number s with $0 \le s \le k-2$ such that for $R_s := (c+1)^s cr$, there is a cR_s -scattered red set W_s of size < k, such that every red node of G belongs to the R_s -neighbourhood of W_s .

Proof: W.I.o.g., neither (a) nor (b) is true. Construct a sequence $W_0 \supset W_1 \supset ... \supset W_s$ of sets of red nodes such that, for every j, $N_{B_j}(W_j)$ contains all red nodes of G:

- Clearly, $|W_0| < k$ and $N_{cc}(W_0) = N_{R_c}(W_0)$ contains all red nodes of G.
- W_{j+1} : if W_j contains two nodes a, b with $dist(a, b) \leqslant cR_j$, then $W_{j+1} := W_j \setminus \{b\}$. Clearly, $N_{R_j + cR_j}(W_{j+1}) = N_{R_{j+1}}(W_{j+1})$ contains all red nodes of G.

An r-scattered red set is a non-empty set of red nodes of pairwise distance > r.

Combinatorial Lemma:

Let $k, r, c \ge 1$, and let G be a red-blue-colored graph. Then, one of the following statements is true:

- (a) There is no red node.
- (b) There is a cr-scattered red set of size $\geqslant k$.
- (c) There is a number s with $0 \le s \le k-2$ such that for $R_s := (c+1)^s cr$, there is a cR_s -scattered red set W_s of size < k, such that every red node of G belongs to the R_s -neighbourhood of W_s .

Proof: W.I.o.g., neither (a) nor (b) is true. Construct a sequence $W_0 \supset W_1 \supset ... \supset W_s$ of sets of red nodes such that, for every j, $N_{B_j}(W_j)$ contains all red nodes of G:

- Clearly, $|W_0| < k$ and $N_{cc}(W_0) = N_{R_c}(W_0)$ contains all red nodes of G.
- W_{j+1} : if W_j contains two nodes a, b with $dist(a, b) \leqslant cR_j$, then $W_{j+1} := W_j \setminus \{b\}$. Clearly, $N_{R_j + cR_j}(W_{j+1}) = N_{R_{j+1}}(W_{j+1})$ contains all red nodes of G.

An *r*-scattered red set is a non-empty set of red nodes of pairwise distance > r.

Combinatorial Lemma:

Let $k, r, c \geqslant 1$, and let G be a red-blue-colored graph.

Then, one of the following statements is true:

- (a) There is no red node.
- (b) There is a cr-scattered red set of size $\geqslant k$.
- (c) There is a number s with $0 \le s \le k-2$ such that for $R_s := (c+1)^s cr$, there is a cR_s -scattered red set W_s of size < k, such that every red node of G belongs to the R_s -neighbourhood of W_s .

Proof: W.l.o.g., neither (a) nor (b) is true. Construct a sequence $W_0 \supset W_1 \supset ... \supset W_s$ of sets of red nodes such that, for every j, $N_{B_i}(W_j)$ contains all red nodes of G:

- W_0 : a *cr*-scattered red set of maximum size. Clearly, $|W_0| < k$ and $N_{cr}(W_0) = N_{R_0}(W_0)$ contains all red nodes of G.
- W_{j+1} : if W_j contains two nodes a, b with $dist(a, b) \leq cR_j$, then $W_{j+1} := W_j \setminus \{b\}$. Clearly, $N_{B_i+cB_i}(W_{j+1}) = N_{B_{i+1}}(W_{j+1})$ contains all red nodes of G.

An r-scattered red set is a non-empty set of red nodes of pairwise distance > r.

The Algorithm

Combinatorial Lemma:

Let $k, r, c \geqslant 1$, and let G be a red-blue-colored graph.

Then, one of the following statements is true:

- (a) There is no red node.
- (b) There is a cr-scattered red set of size $\geqslant k$.
- (c) There is a number s with $0 \le s \le k-2$ such that for $R_s := (c+1)^s cr$, there is a cR_s -scattered red set W_s of size < k, such that every red node of G belongs to the R_s -neighbourhood of W_s .

With an additional argument, this leads to a set of conditions which can be directly translated into a Boolean combination Φ^G of basic-local sentences, such that

$$G_A$$
 has $\geqslant k$ red nodes \iff $A \models \Phi^G$.

Outline

1 Introduction

2 The Algorithm

3 Final Remarks

Main result presented here:

For every $d \geqslant 1$, there is a 3-fold exponential algorithm which transforms an input FO-formula Ψ into a formula in Gaifman normal form that is equivalent to Ψ on the class of all structures of degree at most d.

And this is optimal

For binary forests, we show a 3-fold exponential lower bound on the formula size.

Variations

- and we can prove a matching lower bound.
- For structures where the size of r-neighborhoods is $\leq p(r)$, for a polynomial p: Our algorithm is 2-fold exponential.

Applications

Simplified proofs for Linear-time FO-model checking (Frick, Grohe, LICS'02) and Constant-delay FO-query enumeration (Kazana, Segoufin, LMCS'11).

Ongoing work

Main result presented here:

For every $d \geqslant 1$, there is a 3-fold exponential algorithm which transforms an input FO-formula Ψ into a formula in Gaifman normal form that is equivalent to Ψ on the class of all structures of degree at most d.

And this is optimal:

For binary forests, we show a 3-fold exponential lower bound on the formula size.

Variations

- and we can prove a matching lower bound.
- For structures where the size of r-neighborhoods is $\leq p(r)$, for a polynomial p: Our algorithm is 2-fold exponential.

Applications

Simplified proofs for Linear-time FO-model checking (Frick, Grohe, LICS'02) and Constant-delay FO-query enumeration (Kazana, Segoufin, LMCS'11).

Ongoing work

Main result presented here:

For every $d \geqslant 1$, there is a 3-fold exponential algorithm which transforms an input FO-formula Ψ into a formula in Gaifman normal form that is equivalent to Ψ on the class of all structures of degree at most d.

And this is optimal:

For binary forests, we show a 3-fold exponential lower bound on the formula size.

Variations:

- For structures of degree 2: Our algorithm is 2-fold exponential; and we can prove a matching lower bound.
- For structures where the size of r-neighborhoods is $\leq p(r)$, for a polynomial p: Our algorithm is 2-fold exponential.

Applications

Simplified proofs for Linear-time FO-model checking (Frick, Grohe, LICS'02) and Constant-delay FO-query enumeration (Kazana, Segoufin, LMCS'11).

Ongoing work

Main result presented here:

For every $d \geqslant 1$, there is a 3-fold exponential algorithm which transforms an input FO-formula Ψ into a formula in Gaifman normal form that is equivalent to Ψ on the class of all structures of degree at most d.

And this is optimal:

For binary forests, we show a 3-fold exponential lower bound on the formula size.

Variations:

- For structures of degree 2: Our algorithm is 2-fold exponential; and we can prove a matching lower bound.
- For structures where the size of r-neighborhoods is $\leq p(r)$, for a polynomial p: Our algorithm is 2-fold exponential.

Applications

Simplified proofs for Linear-time FO-model checking (Frick, Grohe, LICS'02) and Constant-delay FO-query enumeration (Kazana, Segoufin, LMCS'11).

Ongoing work

Main result presented here:

For every $d \geqslant 1$, there is a 3-fold exponential algorithm which transforms an input FO-formula Ψ into a formula in Gaifman normal form that is equivalent to Ψ on the class of all structures of degree at most d.

And this is optimal:

For binary forests, we show a 3-fold exponential lower bound on the formula size.

Variations:

- For structures of degree 2: Our algorithm is 2-fold exponential; and we can prove a matching lower bound.
- For structures where the size of *r*-neighborhoods is $\leq p(r)$, for a polynomial p: Our algorithm is 2-fold exponential.

Applications:

 Simplified proofs for Linear-time FO-model checking (Frick, Grohe, LICS'02) and Constant-delay FO-query enumeration (Kazana, Segoufin, LMCS'11).

Ongoing work

Main result presented here:

For every $d \geqslant 1$, there is a 3-fold exponential algorithm which transforms an input FO-formula Ψ into a formula in Gaifman normal form that is equivalent to Ψ on the class of all structures of degree at most d.

And this is optimal:

For binary forests, we show a 3-fold exponential lower bound on the formula size.

Variations:

- For structures of degree 2: Our algorithm is 2-fold exponential; and we can prove a matching lower bound.
- For structures where the size of *r*-neighborhoods is $\leq p(r)$, for a polynomial p: Our algorithm is 2-fold exponential.

Applications:

 Simplified proofs for Linear-time FO-model checking (Frick, Grohe, LICS'02) and Constant-delay FO-query enumeration (Kazana, Segoufin, LMCS'11).

Ongoing work: