Machine Learning – 6/12/2018

Continual Learning

Lorenzo Brigato

Lab Ro.Co.Co - DIAG

Supervised Machine Learning

- Current Machine Learning paradigm
 - Fixed labeled data set: $\{x_i, y_i^*\}, \quad i = 1, ... P$
 - Samples x_i may come from different domains (e.g. images, words, stock prices ...)
 - Divide the samples in Training and Test set

Goal

Find a function **f** represented by the weights **w** tuned on the **Training** set:

Very successful!!!

Supervised Machine Learning

• Successful even with our limited resources (MarDCT dataset run on a laptop)

Training phase

Supervised Machine Learning

- What happens if we do not have the entire dataset available?
 - Expand an existing model (e.g. add a new class)

Training phase

Update the model with the new class without using the entire dataset

Supervised Machine Learning

- Stress the idea with a continous data set building
 - Repeat the training on a new class for K times

Training phase

4

Supervised Machine Learning

ullet Assume K=4, the Jet Sky is the last learned class

Chatastropchic forgetting

- Why do we witness a decrease of perfomance?
 - Every time you retrain the model you change the weight distribution
 - New weights ——— Chatastropchic forgetting of older functions

 $f_1(x_1, w_1)$ $f_2(x_1, w_2)$

- Short-term pratical Problem:
 - Every class addition _____ training with the entire dataset
 - It is not always available (mobile application with memory constraints)
 - It is computationally inefficient (linearly increase with the number of tasks)
- Long-term Problem:
 - Impossibility to build truly intelligent ML models

6

State of the art

- Hot Research topic
 - Continual Learning is gaining more and more attention in the scientific community
 - Diverse Projects have recently started:

Lifelong Learning Machine by DARPA

Lifelong Learning of Visual Scene Understanding at Institute of Science, Austria Model

Never-Ending Language Learner at Carnegie Mellon University

NELL: Never-Ending Language Learner

Spatio-Temporal Representation and Activities for Cognitive Control in Long-Term Scenarios

State of the art

- Neuroscientific background to tackle the problem
 - Biologically inspired theories in the 90's (survey by French et. al 1997)
 - Two distinct but interacting functional areas (Hyppocampus and Neocortex)
 - · Dynamical separation of internal representations during learning

Complementary Learning Systems Theory

Protection of older memories from the interference of novel tasks

8

State of the art

- ML approaches to mitigate catastrophic forgetting:
 - Regularized
 - Penalizing changes of network parameters
 - · Relatively easy to implement
 - Performance trade-off among tasks
 - E.g. Elastic weight consolidation (Kirkpatricka et. al 2017)
 - Dynamic Architectures
 - Partially solve the problem
 - Scalability issues
 - E.g. Progressive networks (Rusu et. al 2016), Dynamically expandable networks (Yoon et. al 2018)
 - Dual-memory systems
 - Inspired by CLS theory to different extents
 - Most performing archtitectures
 - · Highest overall complexity
 - E.g. Deep Generative Replay (Shin et. al 2017)

Regularized Approach

- Elastic weight consolidation (Kirkpatricka et. al 2017)
 - Preservation of relevant parameters ($\theta = w$)
 - Old task is represented by $heta_A$ and the new task by $heta_B$
 - Minimize the following loss function:

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_i \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$

• With F_i coming from the Fisher information matrix (equivalent to the second derivative of the loss near a minimum)

10

Dynamic Architectures

- Progressive networks (Rusu et. al 2016)
- Add parallel layers for successive tasks fixing previous weights
 - Mitigates catastrophic forgetting and enables features transfer
- Tested in Reinforcement Learning domain (only computer games)
- Dynamically expandable networks (Yoon et. al 2018)
- Fuse the two previous approaches:
 - Retrain the parameters which are «less» relevant
 - · Add new resources when the network capacity is reached

Dual-memory systems

- Deep Generative Replay (Shin et. al 2017)
 - Generator model used to replay past experience to a solver
 - · Accuracy highly depends on how well the generator reproduces old samples

- Sequential Training
 - Very high performance if you reply old samples (orange curve)
 - Accuracy drop for each task if nothing is recalled (purple curve)

12

Continual News Filtering

- Problem modeling
 - Train a classifier able to recognize if a text corpus is relevant for the police
 - $\{x_i, y_i^*\}$ with x_i that is a vector of words and y_i^* is the class (+1 relevant, -1 not relevant)
- Very unpredictable and not constant behaviour:
 - Some news might be very critical for few weeks (easy to predict)
 - But what if they appear again after months? (Morandi bridge investigation)
 - The model has probably forgot about them!!
- Difficulty for linguistic correlations (both are «Morandi»):

Continual News Filtering

- Use a Continual Learning approach
 - Example: Recall past samples using Deep Generative Replay
 - Retrain the network with batches of news every some time. In total K steps:
 - *K* can be very large since news are arriving every day!

14