Treinamento para Provas de Velocidade em Equipe, #1 "Mini-Guts"

Instruções:

- Tamanho esperado da equipe: 8 pessoas.
- Tempo disponível: 65 minutos.
- São 6 rodadas, com pontuações de, respectivamente, 5, 7, 10, 12, 15 e 20 pontos por problema.

......

Round 1 (5 points each)

Problem 1. Find the number of pairs of real numbers (x, y) such that $x^4 + y^4 = 4xy - 2$.

Problem 2. Define a function given the following 2 rules: for prime p, f(p) = p + 1; and for positive integers a and b, $f(ab) = f(a) \cdot f(b)$. For how many positive integers $n \le 100$ is f(n) divisible by 3?

Problem 3. Let a sequence be defined as follows: $a_0 = 1$, and for n > 0, a_n is $\frac{1}{3}a_{n-1}$ and is $\frac{1}{9}a_{n-1}$ with probability $\frac{1}{2}$. If the expected value of $\sum_{n=0}^{\infty} a_n$ can be expressed in simplest form as $\frac{p}{q}$, what is p + q?

.....

Round 2 (7 points each)

Problem 4. Calcule o período, ou seja, o tamanho da parte que repete, da expansão decimal de $\frac{1}{729}$.

Problem 5. Seja ABC um triângulo com lados 13, 14, 15. Os pontos no interior de ABC com distância para todos os lados maior que 1 são pintados de preto. A área da região preta pode ser escrita como $\frac{m}{n}$, com m e n primos entre si. Calcule m+n.

Problem 6. Sophie has 20 indistinguishable pairs of socks in a laundry bag. She pulls them out one at a time. After pulling out 30 socks, the expected number of unmatched socks among the socks that she has pulled out can be expressed in simplest form as $\frac{m}{n}$. Find m+n.

......

Round 3 (10 points each)

Problem 7. O número 400000001 pode ser escrito como $p \cdot q$, onde p e q são primos. Ache a soma dos fatores primos de p + q - 1.

Problem 8. Alguns polígonos regulares se encontram em um ponto no plano tal que os polígonos não se sobrepõem, porém esse ponto é rodeado pelos polígonos (isto é, qualquer círculo suficientemente pequeno centrado nesse ponto está contido na união dos polígonos). Qual é o maior número de lados que um desses polígonos pode ter?

Problem 9. Sejam $0 \le a, b, c, d \le 10$. Para quantas quádruplas ordenadas (a, b, c, d), ad - bc é múltiplo de 11?

Round 4 (12 points each)

Problem 10. Let w and h be positive integers and define N(w, h) to be the number of ways of arranging wh people of distinct heights for a photoshoot in such a way that they form w columns of h people, with the people of each column sorted by height (i.e. shortest at the front, tallest at the back). Find the largest value of N(w, h) that divides 1008.

Problem 11. Seja x um real tal que $\tan^{-1}(x) + \tan^{-1}(3x) = \frac{\pi}{6}$ e $0 < x < \frac{\pi}{6}$. Então, x^2 pode ser escrito da forma $\frac{a+b\sqrt{c}}{d}$ para a,b,c,d inteiros com d>0, $(a^2,b^2,c,d^2)=1$ e c livre de quadrados. Calcule a+b+c+d.

Problem 12. Let k be the largest integer such that 2^k divides

$$\left(\prod_{n=1}^{25} \left(\sum_{i=0}^{n} \binom{n}{i}\right)^2\right) \left(\prod_{n=1}^{25} \left(\sum_{i=0}^{n} \binom{n}{i}^2\right)\right).$$

Find k.

.....

Round 5 (15 points each)

Problem 13. Ache o número de termos não-nulos do polinômio P(x), dado que

$$x^{2018} + x^{2017} + x^{2016} + x^{999} + 1 = (x^4 + x^3 + x^2 + x + 1)P(x).$$

Problem 14. Calcule o menor inteiro positivo n que é múltiplo de 29 com a tal que, para todo inteiro positivo k primo com n, $k^n \equiv 1 \pmod{n}$.

Problem 15. Kite ABCD has right angles at B and D, and AB < BC. Points $E \in AB$ and $F \in AD$ satisfy AE = 4, EF = 7, and FA = 5. If AB = 8 and points X lies outside ABCD while satisfying XE - XF = 1 and XE + XF + 2XA = 23, then XA may be written as $\frac{a-b\sqrt{c}}{d}$ for a, b, c, d positive integers with $\gcd(a^2, b^2, c, d^2) = 1$ and c squarefree. Find a + b + c + d.

......

Round 6 (20 points each)

Problem 16. Let a, b, and c be such that the coefficient of the $x^a y^b z^c$ term in the expansion of $(x+2y+3z)^{100}$ is maximal (no other term has a strictly larger coefficient). Find the sum of all possible values of 1,000,000a+1,000b+c.

Problem 17. O triângulo ABC satisfaz AB = 10 e possui ângulos $\angle A = 75^{\circ}$, $\angle B = 60^{\circ}$, e $\angle C = 45^{\circ}$. Seja I_A o centro do exincírculo relativo a A, e sejam D, E os circuncentros dos triângulos BCI_A e ACI_A respectivamente. Se O é o circumcentro do triângulo ABC, então a área do triângulo EOD pode ser escrita como $\frac{a\sqrt{b}}{c}$ para b livre de quadrados e a primo com c. Ache a + b + c.

Problem 18. Se $a \in b$ são inteiros positivos tais que $3\sqrt{2+\sqrt{2+\sqrt{3}}}=a\cos\frac{\pi}{b}$, ache a+b.