

Memoria Virtual

Águstín Fernández, Josep Llosa, Fermín Sánchez

Estructura de Computadors II

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona

Índice

- Introducción
- Traducción de direcciones
 - Segmentación
 - Paginación
 - TLB
- Memoria Virtual
- Juntando memoria virtual y memoria cache

4

Memoria Virtual: Introducción

- Sistemas multiusuario o multiprogramado con varios programas ejecutándose concurrentemente
 - Tamaño memoria necesario >> memoria principal
 - Sólo una pequeña porción de la memoria se está utilizando activamente en un instante determinado.
- Los programas siempre tienen las mismas direcciones lógicas:
 - Reubicación
 - Traducción de direcciones
- Tamaño de un programa > memoria física
 - Overlays
 - Memoria Virtual

Memoria Virtual

Memoria Virtual: Traducción de direcciones

- Idea Básica:
 - Diferenciar Espacio Lógico (dirección generada por el procesador) de Espacio Físico (dirección con la que se accede a memoria).
 - En general son diferentes
 - → Mecanismo de Traducción de Direcciones
- Esquemas básicos de traducción:
 - Segmentación
 - Paginación

Memoria Virtual: Traducción de direcciones

- Diferencia entre Espacio Lógico y Espacio Físico.
- Ejemplos reales (¡antiguos!)

	Espacio lógico	Espacio físico
PDP 11/70	64 Kbytes	256 Kbytes
VAX-11	4 Gbytes	32 Mbytes

Memoria Virtual

-(

Segmentación

- El programa se descompone en segmentos: código, datos, pila, ...
- Cada segmento se identifica por su dirección inicial y tamaño.

Memoria Virtual

Œ

DATA

Segmentación: Implementación Hardware

- Un cambio de contexto (usuario o programa) implica cambiar el contenido de los registros.
- Acceso lento: Acceso al banco de registros de segmentos y suma.
- Reubicación muy simple.
- Fragmentación de la memoria.
- · Permite protección de los segmentos.

Memoria Virtual

Segmentación: Ejemplo i8086/88

Procesador de 16 bits (bus @ de 16 bits) que generaba direcciones físicas de 20 bits.

- Disponía de 4 registros de segmento:
 - CS: Segmento de código
 - SS: Segmento de pila
 - DS y ES: Segmentos de datos
- Todas las direcciones se formaban con 2 componentes:
 - Registro de Segmento y desplazamiento

- Cada segmento tenía un tamaño máximo de 64Kbytes
- Un programa sólo podía direccionar directamente 256Kbytes, para direccionar más memoria había que cambiar el contenido de los registros de segmento.
- Los actuales procesadores de Intel siguen manteniendo los registros de segmento (CS, SS, DS, ES, FS y GS). En modo real funcionan igual que los antiguos i8086.
- ¡Lo vais a necesitar para PROSO!

Paginación

- El espacio lógico se divide en bloques de tamaño fijo → PÁGINAS
- Los sistemas actuales tienen páginas con tamaño entre 4 y 16 KB
- El espacio físico (MP) se divide en marcos de tamaño una página (frames, tramas).

- Los programas se trocean en páginas (están en disco)
- Una página puede colocarse en CUALQUIER marco de página de MP (correspondencia completamente asociativa)
- Las páginas se copian desde disco a MP cuando son referenciadas

Memoria Virtual

-(

Paginación

 Hace falta una estructura de datos para saber qué hay en cada marco de página → TABLA DE PÁGINAS.

> Espacio lógico del programa

Α
В
С
D

Espacio físico (Memoria)

Tabla de páginas del programa

Memoria Virtual

)

Paginación

- Características
 - · Cálculo rápido de la dirección (no hay operaciones aritméticas).
 - Fragmentación (ficheros pequeños ocupan 1 página completa).
 - · Reubicación muy simple.
 - Permite protección de páginas.
 - Página físicas y virtuales suelen tener el mismo tamaño.
 - VPN y PPN pueden tener longitud diferente.
 - La mayoría de sistemas tienen VPN > PPN.

#

Problema

 En un sistema con direcciones virtuales de 64 bits y direcciones físicas de 43 bits (similar a los primeros procesadores de 64 bits), ¿Cuántos bits se necesitan para el VPN y el PPN si el tamaño de página es de 8 KB?

Memoria Virtual

...

Implementación de la Tabla de Páginas

- · Tabla de páginas de un nivel
 - Cada programa tiene sus propias @ lógicas y físicas.
 - Cada programa tiene su propia Tabla de Páginas.
 - P: bit de presencia (indica si la página está almacenada en MP).
 - M: bit de modificación (indica si la página ha sido modificada en MP).

Tabla de páginas de un nivel

Memoria Virtual

-(

Implementación de la Tabla de Páginas

Tabla de páginas

- · La TP puede necesitar mucha memoria
- Una TP, para un espacio de direcciones físicas y lógicas de 32 bits y páginas de 4 KB, necesitaría 2²⁰ elementos (más de 10⁶).
- Si cada elemento ocupa 3 bytes, la TP ocupa 3 MB.
- Si la MP es de 64 MB, la TP de un programa ocupa casi el 5% de toda la MP
- Con menos de 3 MB de MP no se podría implementar la Memoria Virtual (¡pero los primeros PCs tenían 128 KB!)
- Solución: Tablas de Páginas de múltiples niveles (no las estudiaremos)
 - Sólo una parte de la tabla de páginas está en MP
 - Se requieren varios accesos a la tabla de páginas para conocer la @física de la página
- En este curso utilizaremos como modelo una Tabla de Páginas de un solo nivel almacenada siempre en MP

Memoria Virtual

15

Implementación de la Tabla de Páginas

- La Tabla de Páginas es accedida en cada referencia a memoria
- Si la Tabla de Páginas es de un nivel, se almacena en Memoria Principal
 - 1 acceso a MP necesita 1 acceso a la Tabla de Páginas y 1 acceso al dato

MUY LENTO

- Solución: Tener una memoria cache "especial" para la tabla de páginas
 - Translation Lookaside Buffer (TLB) Buffer de traducción anticipada

Traducción de direcciones con TLB

- Translation Lookaside Buffer (TLB)
 - → Sirve para acelerar el proceso de traducción de direcciones
 - → Tiene una estructura similar (campos) a la Tabla de Páginas
 - → Sólo guarda algunas de las entradas de la TP
 - → Contiene más entradas de página que las páginas que caben en la cache L1 (contiene traducciones de datos residentes en L2 y en MP).
 - → Procesadores de mediados de los 90 tenían TLB de 128 entradas, 32-64 KB de cache L1 y páginas de 4-16KB

Características principales:

- · Integrado en el mismo chip que en el procesador
- Pocas entradas (64-128) (1 entrada por página)
- Completamente asociativo
- · Tasa de fallos muy baja
- Muy rápido (debido a que tiene pocas entradas de pocos bits)
- Algoritmo de reemplazo (LRU, PsudoLRU, FIFO, Random, ..)

Memoria Virtual

17

Problema

- Translation Lookaside Buffer (TLB)
 - → Procesadores de mediados de los 90 tenían TLB de 128 entradas, 32-64 KB de cache L1 y páginas de 4-16KB

¿Cuánta memoria se puede traducir directamente con el TLB?

Problema

- Un procesador tiene un TLB con una tasa de aciertos h = 0,95. Cuando hay acierto de TLB, la traducción requiere 1 ciclo (TsaTLB = 1). La penalización por fallo de TLB es de 160 ciclos.
 - a) ¿Cuál es el tiempo medio necesario para realizar la traducción de una dirección?
- Suponiendo que, sin TLB, traducir una dirección cuesta 135 ciclos
 - b) ¿Qué ganancia en el tiempo de traducción supone tener un TLB frente a no tenerlo?

Paginación: protección

- Cada programa tiene su propia Tabla de Páginas
- Ventajas
 - Los programas comparten espacio físico de direcciones, pero tienen espacios virtuales distintos
 - El sistema de traducción de direcciones asegura que las páginas virtuales de cada programa se mapean en páginas físicas distintas (en MP y en disco)
 - Si dos programas quieren compartir sus datos, algunos SO permiten realizar una petición específica para que algunas de sus direcciones virtuales se asignen a las mismas direcciones físicas

Inconvenientes

- El mapeo de direcciones virtuales a físicas es parte del estado del programa
- · Cuando el SO realiza un cambio de contexto, hay que invalidar el TLB
- · Cuando se comienza a ejecutar un programa hay muchos fallos de TLB
- Para solventar este problema, algunos sistemas actuales incorporan un identificador de proceso en el TLB (coexisten entradas de procesos distintos)

Memoria Virtual 21 UII

- ¿Quién gestiona la memoria virtual?
 - El Sistema Operativo (software)
 - ¿Porqué no el hardware?
- ¿Cuándo se trae una página de Disco a MP?
 - Bajo demanda en caso de fallo (hay otros modelos)
- ¿Dónde se ubica una página en MP?
 - En cualquier marco, política totalmente asociativa
- ¿Qué página de la MP se substituye en caso de fallo?
 - Algoritmos de reemplazo muy sofisticados. La tasa de fallos es MUY importante.
 Un fallo puede costar millones de ciclos porque hay que acceder a disco. La decisión es software y hay mucho tiempo para tomarla.
 - Las páginas modificadas hay que escribirlas en disco.
 - Tasa de fallos: 0,00001% 0,001%
- ¿Qué se hace con las escrituras?
 - COPY BACK + WRITE ALLOCATE

Memoria virtual con TLB

- Fallo de TLB
 - requiere un tiempo relativamente corto para ser resuelto si la página está en la Tabla de Páginas
 - típicamente, se resuelve en unos centenares de ciclos
- Fallo de página
 - necesita acceder al disco (varios milisegundos)
 - puede tardar en resolverse varios millones de ciclos
 - Los SO suelen aprovechar un fallo de página para cambiar de contexto

Memoria Virtual

Paginación con TLB (bajo demanda) Proc. lanza @ lógica Buscar @ lógica en TLB FALLO DE PÁGINA FALLO DE TLB No No Buscar @lógica Está′ Cargar página ِEstá′ en Tabla de de disco Páginas Sí Actualizar TLB Actualizar TLB y Obtener @ física Tabla de Páginas Completar referencia a memoria Memoria Virtual

Juntando Memoria Virtual y Memoria Cache

- La traducción de direcciones y la memoria cache son conceptos ortogonales:
 - · La memoria cache permite acelerar los accesos a memoria
 - La traducción de direcciones permite soportar memoria virtual
 - El TLB es sólo un mecanismo de aceleración del proceso de traducción
- Un sistema puede tener sólo memoria cache, sólo traducción de direcciones, ambos mecanismos o ninguno de ellos
- Los actuales procesadores de propósito general cuentan con una jerarquía de uno o más niveles de cache y mecanismos de traducción de direcciones con el correspondiente TLB
- En este último caso, ¿cuándo se efectúa la traducción de direcciones lógicas a físicas, antes o después de acceder a la Memoria Cache?
- · Tres posibilidades:
 - Traducción antes de acceder a Memoria Cache
 - Traducción después de acceder a Memoria Cache
 - Traducción y acceso a Memoria Cache simultáneos

Memoria Virtual

29

Juntando Memoria Virtual y Memoria Cache

• Traducción antes de acceder a Memoria Cache

- Memoria Cache de direcciones físicas
- Lento: un acceso a memoria necesita un acceso TLB + acceso MC

Memoria Virtual

31

Juntando Memoria Virtual y Memoria Cache

• Traducción después de acceder a Memoria Cache

- Memoria Cache de direcciones lógicas
- Se realiza traducción SÓLO en caso de fallo en MC
- · Aumenta el coste de un fallo de MC

Juntando Memoria Virtual y Memoria Cache

- Traducción en TLB y acceso a Memoria Cache simultáneos
 - Se busca en la MC con la parte de la dirección que corresponde al desplazamiento (línea y byte de la línea)
 - La memoria de etiquetas contiene etiquetas FÍSICAS
 - Se traduce únicamente la página LÓGICA que corresponde a la etiqueta y se comprueba si la línea de la MC es la línea física buscada.
 - Restringe el tamaño de la Memoria Cache:
 - #conjuntos · tamaño línea ≤ tamaño página

