Trigonometry Notes for Grade 10: Easy Step-by-Step Guide with New Questions

Grok 3

July 2025

Introduction

Trigonometry is a fun way to solve triangle puzzles, especially those with a right angle (90 degrees). It helps us find missing sides or angles using ratios like sine, cosine, and tangent. This guide uses simple words to help kids understand step-by-step, with examples from your exam papers and new questions from the images. Let's make math easy and exciting!

1 Basic Trigonometric Ratios

In a right-angled triangle with an angle θ :

• Opposite: The side across from θ .

• Adjacent: The side next to θ (not the longest side).

• Hypotenuse: The longest side, opposite the 90-degree angle.

The ratios are:

•
$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

•
$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

•
$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

Extra ratios:

• Cosecant: $\csc \theta = \frac{1}{\sin \theta}$

• Secant: $\sec \theta = \frac{1}{\cos \theta}$

• Cotangent: $\cot \theta = \frac{1}{\tan \theta}$

Step-by-Step Trick: Use SOH-CAH-TOA:

• **CAH**: Cosine = Adjacent / Hypotenuse

• TOA: Tangent = Opposite / Adjacent

Draw this triangle:

Angle	sin	cos	tan
0°	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\tilde{1}$	$\tilde{0}$	undefined

Step-by-Step Trick:

- 1. Practice the table every day.
- 2. Use a 30-60-90 triangle (sides $1:\sqrt{3}:2$) or 45-45-90 triangle (sides $1:1:\sqrt{2}$) to recall.

3 Trigonometric Identities

Useful rules:

• Pythagorean Identities:

$$-\sin^2\theta + \cos^2\theta = 1$$

$$-1 + \tan^2 \theta = \sec^2 \theta$$

$$-1 + \cot^2 \theta = \csc^2 \theta$$

• Double Angle Formulas:

$$-\sin 2\theta = 2\sin\theta\cos\theta$$

$$-\cos 2\theta = \cos^2 \theta - \sin^2 \theta \text{ (or) } 2\cos^2 \theta - 1$$

• Angle Sum:

$$-\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$-\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

Step-by-Step Trick:

- 1. Start with $\sin^2 \theta + \cos^2 \theta = 1$.
- 2. Practice rewriting expressions with these rules.

4 Trigonometric Graphs

Graphs look like waves:

- Sine/Cosine: $y = a\sin(bx)$ or $y = a\cos(bx) + c$
 - **Amplitude**: |a| (wave height).
 - **Period**: $\frac{360^{\circ}}{b}$ (cycle length).
 - Vertical Shift: c (up/down move).
- Range: For $y = a\cos(bx) + c$, range is [c |a|, c + |a|].

Step-by-Step Trick:

- 1. Find amplitude, period, and shift.
- 2. Draw the midline (y = c), then max (c + |a|) and min (c |a|).
- 3. Sketch the wave.

5 Solving Trigonometric Equations

Find θ in equations like $\sin \theta = 0.5$:

- 1. Find reference angle: $\sin^{-1}(0.5) = 30^{\circ}$.
- 2. Use CAST diagram:
 - C: Cosine positive $(0^{\circ}-90^{\circ})$.
 - A: All positive $(0^{\circ}-90^{\circ})$.
 - **S**: Sine positive (90°-180°).
 - T: Tangent positive $(180^{\circ}-270^{\circ})$.
- 3. Find all angles in 0° to 360° .

6 Examples from Exam Papers and New Questions

6.1 November 2022 Paper 2 - Question 6

Graph: $f(x) = -2\cos x$ for $0^{\circ} \le x \le 360^{\circ}$.

- **6.1** Amplitude of *f*:
 - 1. Amplitude is |a| in $y = a \cos x$. Here, a = -2, so amplitude = |-2| = 2.
- 6.2 Minimum value of f(x) + 3:
 - 1. Minimum of $f(x) = -2\cos x$ is -2 (when $\cos x = 1$).
 - 2. Add 3: -2 + 3 = 1.
- **6.3** Draw $g(x) = \sin x + 1$:
 - 1. Amplitude of $\sin x$ is 1, vertical shift is +1.
 - 2. Range: [0,2]. Draw a sine wave starting at 1 (when $x=0^{\circ}$), peaking at 2, and dipping to 0.
- **6.4.1** Value of $f(180^{\circ}) g(180^{\circ})$:
 - 1. $f(180^\circ) = -2\cos 180^\circ = -2 \cdot (-1) = 2$.
 - 2. $g(180^{\circ}) = \sin 180^{\circ} + 1 = 0 + 1 = 1$.
 - 3. Subtract: 2 1 = 1.
- **6.4.2** Values of x where $f(x) \cdot g(x) > 0$:
 - 1. $f(x) \cdot g(x) > 0$ when both are positive or both negative.
 - 2. $f(x) = -2\cos x$ is positive when $\cos x < 0$ (90° to 270°).
 - 3. $g(x) = \sin x + 1$ is positive when $\sin x > -1$ (always, since $\sin x \ge -1$ and +1 shifts it up).
 - 4. Both positive/negative: Check where f(x) and g(x) match signs. g(x) > 0 always, so focus on f(x) positive (90° to 270°).
- **6.5** Graph of h (reflect about x-axis, move 3 units down):
 - 1. Reflect $f(x) = -2\cos x$ about x-axis: Becomes $2\cos x$ (removes negative).
 - 2. Move down 3 units: $h(x) = 2\cos x 3$.
- **6.5.1** Equation of *h*:
 - 1. $h(x) = 2\cos x 3$.
- **6.5.2** Range of h for $0^{\circ} \le x \le 360^{\circ}$:
 - 1. $\cos x$ ranges from -1 to 1.
 - 2. $2\cos x$ ranges from -2 to 2.
 - 3. $2\cos x 3$ ranges from -2 3 = -5 to 2 3 = -1.
 - 4. Range: [-5, -1].

6.2 New Questions - Question 4

Diagram: Triangle with $\sin \theta$, $\cos \theta$, opposite = 2, adjacent = $\sqrt{3}$.

• **4.1.1** $\sin \theta$:

1.
$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$
.

2. Hypotenuse =
$$\sqrt{2^2 + (\sqrt{3})^2} = \sqrt{4+3} = \sqrt{7}$$
.

3.
$$\sin \theta = \frac{2}{\sqrt{7}}$$
.

• 4.1.2 $\sin \theta \cos \theta$:

1.
$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{3}}{\sqrt{7}}$$
.

2.
$$\sin\theta\cos\theta = \frac{2}{\sqrt{7}}\cdot\frac{\sqrt{3}}{\sqrt{7}} = \frac{2\sqrt{3}}{7}$$
.

• **4.2** If $x = 60^{\circ}$ and $y = 45^{\circ}$:

1.
$$\frac{1}{2}\sin 2y - 12\tan^2\left(\frac{y}{2}\right)\cos x$$
:

2.
$$\sin 2y = \sin 90^{\circ} = 1$$
, so $\frac{1}{2} \sin 2y = \frac{1}{2} \cdot 1 = 0.5$.

3.
$$\tan\left(\frac{45^{\circ}}{2}\right) = \tan 22.5^{\circ}$$
 (approximate or use half-angle, but let's simplify): $\tan 22.5^{\circ} \approx 0.414$, $\tan^2 22.5^{\circ} \approx 0.171$.

4.
$$12 \tan^2 \left(\frac{y}{2}\right) \approx 12 \cdot 0.171 = 2.052$$
.

5.
$$\cos x = \cos 60^{\circ} = 0.5$$
.

6.
$$12\tan^2\left(\frac{y}{2}\right)\cos x \approx 2.052 \cdot 0.5 = 1.026.$$

7. Total:
$$0.5 - 1.026 = -0.526$$
.

• 4.3 Acute angle β to 2 decimals:

$$-4.3.1 \sin(\beta - 17.8^{\circ}) = 0.215$$
:

1.
$$\sin^{-1}(0.215) \approx 12.4^{\circ}$$
.

2.
$$\beta - 17.8^{\circ} = 12.4^{\circ}$$
, so $\beta = 12.4^{\circ} + 17.8^{\circ} = 30.2^{\circ}$.

$$-4.3.2 \tan 3\beta = \sqrt{3}$$
:

1.
$$\tan^{-1}(\sqrt{3}) = 60^{\circ}$$
, so $3\beta = 60^{\circ}$.

2.
$$\beta = 60^{\circ}/3 = 20^{\circ}$$
.

$$-4.3.3 3 \sin \frac{\beta}{2} = 2.012$$
:

1.
$$\sin \frac{\beta}{2} = \frac{2.012}{3} \approx 0.6707$$
.

2.
$$\frac{\beta}{2} = \sin^{-1}(0.6707) \approx 42.1^{\circ}$$
.

3.
$$\beta = 2 \cdot 42.1^{\circ} \approx 84.2^{\circ}$$

• 4.4 $\frac{\tan 30^{\circ} \csc 60^{\circ}}{\cot 45^{\circ} \sin 45^{\circ}}$:

1.
$$\tan 30^\circ = \frac{1}{\sqrt{3}}$$
, $\csc 60^\circ = \frac{1}{\sin 60^\circ} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}$.

2. Numerator:
$$\frac{1}{\sqrt{3}} \cdot \frac{2}{\sqrt{3}} = \frac{2}{3}$$
.

3.
$$\cot 45^\circ = 1$$
, $\sin 45^\circ = \frac{\sqrt{2}}{2}$.

- 4. Denominator: $1 \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}$.
- 5. Total: $\frac{\frac{2}{3}}{\frac{\sqrt{2}}{2}} = \frac{2}{3} \cdot \frac{2}{\sqrt{2}} = \frac{4}{3\sqrt{2}} = \frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3}$.

6.3 New Questions - Question 5

Diagram: P(x, y) in 3rd quadrant, $\angle ROP = \beta$, $17\cos\beta + 15 = 0$.

- **5.1.1** Values of x, y, r:
 - 1. $17\cos\beta + 15 = 0 \implies \cos\beta = -\frac{15}{17}$.
 - 2. In 3rd quadrant, $\sin \beta$ is negative, $\cos \beta$ is negative.
 - $3. \sin^2 \beta + \cos^2 \beta = 1.$
 - 4. $\sin^2 \beta = 1 \left(-\frac{15}{17}\right)^2 = 1 \frac{225}{289} = \frac{64}{289}$.
 - 5. $\sin \beta = -\frac{\sqrt{64}}{17} = -\frac{8}{17}$ (negative in 3rd quadrant).
 - 6. $x = r \cos \beta, y = r \sin \beta, r = \sqrt{x^2 + y^2}$.
 - 7. Assume r = 17 (common radius), then $x = 17 \cdot -\frac{15}{17} = -15$, $y = 17 \cdot -\frac{8}{17} = -8$.
- **5.1.2** Without calculator:
 - 1. (a) $\sin \beta = -\frac{8}{17}$.
 - 2. (b) $\cos^3 30^{\circ} \tan \beta$:

$$-\cos 30^{\circ} = \frac{\sqrt{3}}{2}, \cos^3 30^{\circ} = \left(\frac{\sqrt{3}}{2}\right)^3 = \frac{3\sqrt{3}}{8}.$$

$$-\tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{-\frac{8}{17}}{-\frac{15}{17}} = \frac{8}{15}.$$

- Total:
$$\frac{3\sqrt{3}}{8} \cdot \frac{8}{15} = \frac{3\sqrt{3}}{15} = \frac{\sqrt{3}}{5}$$
.

- **5.1.3** Size of $\angle ROP$:
 - 1. $\cos \beta = -\frac{15}{17}$, $\beta = \cos^{-1}(-\frac{15}{17})$.
 - 2. Approximate: $\cos^{-1}(0.8824) \approx 28^{\circ}$, but negative, so $\beta \approx 180^{\circ} 28^{\circ} = 152^{\circ}$ (3rd quadrant).
 - 3. Adjust with calculator: $\beta\approx 151.8^\circ$ (to 2 decimals).
- **5.2** Solve for x where $0^{\circ} \le x \le 90^{\circ}$:
 - 1. **5.2.1** $\tan x = 2.22$:

$$-x = \tan^{-1}(2.22) \approx 65.7^{\circ}.$$

2. **5.2.2** $\sec(x+10^{\circ}) = 5.759$:

$$-\sec\theta = \frac{1}{\cos\theta}$$
, so $\cos(x+10^{\circ}) = \frac{1}{5.759} \approx 0.1736$.

$$-x + 10^{\circ} = \cos^{-1}(0.1736) \approx 80^{\circ}.$$

$$-x \approx 80^{\circ} - 10^{\circ} = 70^{\circ}.$$

3. **5.2.3**
$$\frac{\sin x}{0.2} - 1 = 1.24$$
:

- $-\frac{\sin x}{0.2} 1 = 1.24 \implies \frac{\sin x}{0.2} = 2.24.$ $-\sin x = 2.24 \cdot 0.2 = 0.448.$
- $-x = \sin^{-1}(0.448) \approx 26.6^{\circ}.$

Tips to Make Trigonometry Easy 7

- 1. Draw Pictures: Sketch triangles or graphs.
- 2. Use SOH-CAH-TOA: Label sides to pick the right ratio.
- 3. Memorize Angles: Practice the special angle table.
- 4. Use Identities: Simplify with $\sin^2 \theta + \cos^2 \theta = 1$.
- 5. Check Quadrants: Use CAST for angles.
- 6. Round Carefully: Follow instructions (e.g., 2 decimals).