$10_{63} \ (K10a_{51})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{12} + 2u^{11} + 9u^{10} + 14u^9 + 29u^8 + 34u^7 + 40u^6 + 32u^5 + 20u^4 + 7u^3 - u^2 + b - 2u - 1, \\ &- u^{12} - 3u^{11} - 10u^{10} - 21u^9 - 35u^8 - 51u^7 - 52u^6 - 48u^5 - 29u^4 - 11u^3 - 2u^2 + 2a + 2u, \\ &u^{13} + 3u^{12} + 12u^{11} + 25u^{10} + 51u^9 + 75u^8 + 96u^7 + 96u^6 + 77u^5 + 45u^4 + 16u^3 - 4u - 2 \rangle \\ I_2^u &= \langle -2u^8a + 2u^8 + \dots - 4a + 3, \\ &- u^7 + u^5a + u^6 - 2u^4a - 5u^5 + 4u^3a + 5u^4 - 6u^2a - 8u^3 + a^2 + 3au + 7u^2 - 2a - 4u + 2, \\ &u^9 - u^8 + 6u^7 - 5u^6 + 11u^5 - 7u^4 + 6u^3 - 2u^2 + u - 1 \rangle \\ I_3^u &= \langle b + 1, \ 2a - u, \ u^2 + 2 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 34 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{12} + 2u^{11} + \dots + b - 1, \ -u^{12} - 3u^{11} + \dots + 2a + 2u, \ u^{13} + 3u^{12} + \dots - 4u - 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{12} + \frac{3}{2}u^{11} + \dots + u^{2} - u \\ -u^{12} - 2u^{11} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{12} + \frac{3}{2}u^{11} + \dots - 2u - 1 \\ u^{8} + u^{7} + 5u^{6} + 4u^{5} + 7u^{4} + 4u^{3} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{8} + u^{7} + 5u^{6} + 4u^{5} + 7u^{4} + 4u^{3} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} + u^{8} + 6u^{7} + 5u^{6} + 11u^{5} + 7u^{4} + 6u^{3} + 2u^{2} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes $= 2u^{12} + 6u^{11} + 24u^{10} + 52u^9 + 100u^8 + 154u^7 + 174u^6 + 174u^5 + 108u^4 + 46u^3 4u^2 14u 16u^4 + 108u^4 + 108$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_7 c_{10}	$u^{13} + u^{12} + \dots + u + 1$
c_2, c_3, c_8 c_9	$u^{13} - 3u^{12} + \dots - 4u + 2$
c_4, c_6	$u^{13} + 5u^{12} + \dots + 9u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7 c_{10}	$y^{13} - 5y^{12} + \dots + 9y - 1$
$c_2, c_3, c_8 \ c_9$	$y^{13} + 15y^{12} + \dots + 16y - 4$
c_4, c_6	$y^{13} + 11y^{12} + \dots + 25y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.138146 + 0.948701I		
a = 0.317222 + 0.611463I	2.65637 - 1.35876I	-4.47319 + 3.17078I
b = -0.644264 - 0.592137I		
u = -0.138146 - 0.948701I		
a = 0.317222 - 0.611463I	2.65637 + 1.35876I	-4.47319 - 3.17078I
b = -0.644264 + 0.592137I		
u = -0.578420 + 0.729059I		
a = -0.85431 - 1.51986I	-0.00714 + 8.67404I	-9.53036 - 8.43648I
b = -1.089570 + 0.623417I		
u = -0.578420 - 0.729059I		
a = -0.85431 + 1.51986I	-0.00714 - 8.67404I	-9.53036 + 8.43648I
b = -1.089570 - 0.623417I		
u = -0.694065 + 0.222366I		
a = 0.835992 + 0.144863I	-1.52198 - 4.38846I	-11.77625 + 4.32757I
b = 0.982157 + 0.559210I		
u = -0.694065 - 0.222366I		
a = 0.835992 - 0.144863I	-1.52198 + 4.38846I	-11.77625 - 4.32757I
b = 0.982157 - 0.559210I		
u = -0.063059 + 1.278080I		
a = -0.069487 + 0.291937I	2.83101 - 1.40076I	-6.04773 + 4.90140I
b = -0.750183 - 0.366139I		
u = -0.063059 - 1.278080I		
a = -0.069487 - 0.291937I	2.83101 + 1.40076I	-6.04773 - 4.90140I
b = -0.750183 + 0.366139I		
u = 0.400549		
a = 0.898581	-0.714503	-13.6630
b = 0.421510		
u = -0.17430 + 1.61896I		
a = -0.03628 + 1.72509I	7.93590 + 11.51170I	-7.17210 - 6.84034I
b = 1.168160 - 0.683587I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.17430 - 1.61896I		
a = -0.03628 - 1.72509I	7.93590 - 11.51170I	-7.17210 + 6.84034I
b = 1.168160 + 0.683587I		
u = -0.05229 + 1.64838I		
a = -0.642426 - 1.259340I	11.49220 - 0.51506I	-3.16885 + 2.03529I
b = 0.622947 + 0.904317I		
u = -0.05229 - 1.64838I		
a = -0.642426 + 1.259340I	11.49220 + 0.51506I	-3.16885 - 2.03529I
b = 0.622947 - 0.904317I		

$$II. \\ I_2^u = \langle -2u^8a + 2u^8 + \dots - 4a + 3, \ -u^7 + u^6 + \dots - 2a + 2, \ u^9 - u^8 + \dots + u - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2u^{8}a - 2u^{8} + \dots + 4a - 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{8}a + 2u^{8} + \dots - 3a + 3 \\ -3u^{8}a + 3u^{8} + \dots - 5a + 4 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -5u^{8}a + 5u^{8} + \dots - 8a + 7 \\ -3u^{8}a + 3u^{8} + \dots - 5a + 4 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{8}a - 2u^{8} + \dots + 3a - 2 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^7 + 4u^6 20u^5 + 16u^4 28u^3 + 16u^2 8u 6u^4 28u^3 + 16u^4 28u^3 + 16u^4 8u 6u^4 28u^3 + 16u^4 8u 6u^4 28u^3 + 16u^4 8u 6u^4 8u$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_7 c_{10}	$u^{18} + u^{17} + \dots + 4u + 3$
$c_2, c_3, c_8 \ c_9$	$(u^9 + u^8 + 6u^7 + 5u^6 + 11u^5 + 7u^4 + 6u^3 + 2u^2 + u + 1)^2$
c_4, c_6	$u^{18} + 9u^{17} + \dots + 40u + 9$

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_7 \ c_{10}$	$y^{18} - 9y^{17} + \dots - 40y + 9$
c_2, c_3, c_8 c_9	$(y^9 + 11y^8 + 48y^7 + 105y^6 + 121y^5 + 73y^4 + 20y^3 - 6y^2 - 3y - 1)^2$
c_4, c_6	$y^{18} - y^{17} + \dots + 524y + 81$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.429032 + 0.787939I		
a = 0.559116 - 0.339074I	1.87293 - 3.41073I	-6.11762 + 4.39642I
b = -0.444651 + 0.766223I		
u = 0.429032 + 0.787939I		
a = -0.47019 + 1.53024I	1.87293 - 3.41073I	-6.11762 + 4.39642I
b = -0.935577 - 0.603792I		
u = 0.429032 - 0.787939I		
a = 0.559116 + 0.339074I	1.87293 + 3.41073I	-6.11762 - 4.39642I
b = -0.444651 - 0.766223I		
u = 0.429032 - 0.787939I		
a = -0.47019 - 1.53024I	1.87293 + 3.41073I	-6.11762 - 4.39642I
b = -0.935577 + 0.603792I		
u = 0.590618		
a = 0.834260 + 0.039950I	-0.453072	-10.3330
b = 0.640279 + 0.479450I		
u = 0.590618		
a = 0.834260 - 0.039950I	-0.453072	-10.3330
b = 0.640279 - 0.479450I		
u = -0.290170 + 0.487341I		
a = 1.066630 + 0.144171I	-3.25448 + 1.10969I	-11.44626 - 6.23947I
b = 1.174710 + 0.153689I		
u = -0.290170 + 0.487341I		
a = 0.06769 - 3.10644I	-3.25448 + 1.10969I	-11.44626 - 6.23947I
b = -0.943806 + 0.303030I		
u = -0.290170 - 0.487341I		
a = 1.066630 - 0.144171I	-3.25448 - 1.10969I	-11.44626 + 6.23947I
b = 1.174710 - 0.153689I		
u = -0.290170 - 0.487341I		
a = 0.06769 + 3.10644I	-3.25448 - 1.10969I	-11.44626 + 6.23947I
b = -0.943806 - 0.303030I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.05587 + 1.55975I		
a = 0.1256620 + 0.0280657I	3.77376 + 2.21388I	-7.75885 - 3.04598I
b = -1.339950 - 0.113954I		
u = -0.05587 + 1.55975I		
a = -0.77131 + 1.94759I	3.77376 + 2.21388I	-7.75885 - 3.04598I
b = 0.857711 - 0.553032I		
u = -0.05587 - 1.55975I		
a = 0.1256620 - 0.0280657I	3.77376 - 2.21388I	-7.75885 + 3.04598I
b = -1.339950 + 0.113954I		
u = -0.05587 - 1.55975I		
a = -0.77131 - 1.94759I	3.77376 - 2.21388I	-7.75885 + 3.04598I
b = 0.857711 + 0.553032I		
u = 0.12170 + 1.63384I		
a = -0.664164 + 1.104630I	10.17130 - 5.50049I	-4.51063 + 2.97298I
b = 0.437217 - 0.966793I		
u = 0.12170 + 1.63384I		
a = -0.24771 - 1.68585I	10.17130 - 5.50049I	-4.51063 + 2.97298I
b = 1.054070 + 0.732497I		
u = 0.12170 - 1.63384I		
a = -0.664164 - 1.104630I	10.17130 + 5.50049I	-4.51063 - 2.97298I
b = 0.437217 + 0.966793I		
u = 0.12170 - 1.63384I		
a = -0.24771 + 1.68585I	10.17130 + 5.50049I	-4.51063 - 2.97298I
b = 1.054070 - 0.732497I		

III. $I_3^u=\langle b+1,\; 2a-u,\; u^2+2 \rangle$

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} \frac{1}{2}u \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} \frac{1}{2}u + 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} \frac{1}{2}u\\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} \frac{1}{2}u \\ u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u+1)^2$
$c_2, c_3, c_8 \ c_9$	$u^2 + 2$
c_4, c_5, c_6 c_{10}	$(u-1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_5 \\ c_6, c_7, c_{10}$	$(y-1)^2$
c_2, c_3, c_8 c_9	$(y+2)^2$

Solutions to I_3^u		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.414210I		
a =	0.707107I	1.64493	-12.0000
b = -1.00000)		
u =	-1.414210I		
a =	-0.707107I	1.64493	-12.0000
b = -1.00000			

IV.
$$I_1^v = \langle a,\ b-1,\ v+1
angle$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_7	u-1
c_2, c_3, c_8 c_9	u
c_5, c_{10}	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_5 \\ c_6, c_7, c_{10}$	y-1
c_2, c_3, c_8 c_9	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u-1)(u+1)^{2}(u^{13}+u^{12}+\cdots+u+1)(u^{18}+u^{17}+\cdots+4u+3)$
$c_2, c_3, c_8 \ c_9$	$u(u^{2}+2)(u^{9}+u^{8}+6u^{7}+5u^{6}+11u^{5}+7u^{4}+6u^{3}+2u^{2}+u+1)^{2}$ $\cdot (u^{13}-3u^{12}+\cdots-4u+2)$
c_4, c_6	$((u-1)^3)(u^{13} + 5u^{12} + \dots + 9u + 1)(u^{18} + 9u^{17} + \dots + 40u + 9)$
c_5, c_{10}	$((u-1)^2)(u+1)(u^{13}+u^{12}+\cdots+u+1)(u^{18}+u^{17}+\cdots+4u+3)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_7 \ c_{10}$	$((y-1)^3)(y^{13} - 5y^{12} + \dots + 9y - 1)(y^{18} - 9y^{17} + \dots - 40y + 9)$
c_2, c_3, c_8 c_9	$y(y+2)^{2}$ $\cdot (y^{9} + 11y^{8} + 48y^{7} + 105y^{6} + 121y^{5} + 73y^{4} + 20y^{3} - 6y^{2} - 3y - 1)^{2}$ $\cdot (y^{13} + 15y^{12} + \dots + 16y - 4)$
c_4, c_6	$((y-1)^3)(y^{13}+11y^{12}+\cdots+25y-1)(y^{18}-y^{17}+\cdots+524y+81)$