# Numeričke metode financijske matematike

Prva domaća zadaća

# Sadržaj:

| PRVI ZADATAK – SOR METODA I METODA POTENCIJA          | 2 |
|-------------------------------------------------------|---|
| Generiranje matrica A1 i A2<br>Provedba prvog zadatka |   |
| REZULTATI PRVOG ZADATKA                               |   |
| DRUGI ZADATAK – METODA KONJUGIRANIH                   |   |
| GRADIJENATA I SCHUROVA DEKOMPOZICIJA                  | 7 |
| Generiranje matrica A3 i A4                           |   |
| Provedba drugog zadatka                               |   |
| REZULTATI DRUGOG ZADATKA                              | 7 |

# Prvi zadatak – SOR metoda i metoda potencija

# Generiranje matrica $A_1$ i $A_2$

Prvotno sam odabrao da mi dimenzije matrica bude 13x13. Zatim se konstruirao normirani vektor x0 tako da bude dimenzije 13. Matricu  $A_1$  naštimamo tako da ima izoliranu svojstvenu vrijednost, a matricu  $A_2$  tako da su sve svojstvene vrijednosti bliske pa tako i najveća među njima.

 $A_1$  dobijemo tako da dijagonalnu matricu  $D_1$ , koja je nastala pomoću MATLAB-ove funkcije diag(), pomnožimo s matricom  $Q_1$  s lijeva i desna. Matrica  $Q_1$  je nastala MATLAB-ovom funkcijom qr() primijenjenu na slučajno izabranu matricu  $X_1$ . Analogno se dobije matrica  $A_2$ . Kod je spremljen pod nazivom matrice1.m.

Ovakvim konstruiranjem dobiju se dvije ( $A_1$  i  $A_2$ ) matrice, pozitivno definitne jer su im svojstvene vrijednosti strogo pozitivni realni brojevi, regularne jer su slične dijagonalnim matricama čija je determinanta različita od nula. Konstrukcijom smo dobili Cramerov sustav koji je rješiv.

### Provedba prvog zadatka

Gore navede matrice te  $b_1$ ,  $b_2$ ,  $x_0$ , x, tol i  $\omega$  se nalaze u datoteci matrice1. U zadatak1.m pozivaju se sve funkcije koje su u zadatku zadane. Izlazni podatci nalaze se u datoteci rezultati1.

## Rezultati prvog zadatka

#### U tablici su dani neki od rezultata

|                                          | $A_1$                                                                            | $A_2$                                                                          |
|------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| UVJETOVANOST                             | 1000.0000000000004                                                               | 2.19999999999998usv                                                            |
| OPTIMALNI OMEGA                          | 0.740000000000000                                                                | 1.040000000000000                                                              |
| SPEKTRALNI RADIJUS                       | 0.993606650461477                                                                | 9.245309238646585e-02                                                          |
| BROJ ITERACIJA                           | 2129                                                                             | 9                                                                              |
| APROKSIMACIJA<br>RIJEŠENJA $A_i x = b_i$ | 1.000000061895773<br>0.999999778008287<br>0.999999956864058<br>1.000000011702239 | 0.99999998512338<br>0.999999998202433<br>0.999999999528199<br>0.99999999473865 |

| 1.000002018956956 | 0.99999999742793  |
|-------------------|-------------------|
| 0.999999497140130 | 1.00000000350385  |
| 0.999999887356065 | 0.99999998719061  |
| 1.000000333656857 | 1.000000000635351 |
| 1.000000724030563 | 0.99999998588091  |
| 1.000000133332243 | 0.99999999665166  |
| 0.99999999057222  | 0.99999999174471  |
| 0.999999962494696 | 1.000000000695710 |
| 1.000000479731538 | 0.99999999582322  |

Matrica  $A_1$  je simetrična i pozitivno definitna pa SOR metoda konvergira za  $\omega \in \langle 0,2 \rangle$  i za svaku početnu iteraciju, to znamo po sljedećem teoremu.

**Teorem.** Ako je matrica sustava  $A \in \mathbb{R}^{n \times n}$  simetrična pozitivno definitna matrica, tada SOR metoda konvergira za  $\omega \in \{0, 2\}$ . SOR metoda ne konvergira za  $\omega \leq 0$  i  $\omega \geq 2$ .

SOR metoda konvergira sporo (2129 iteracija) jer je spektralni radijus za optimalni parametar blizu 1, to slijedi iz teorema o konvergenciji standardnih iteracija i teoremu koji govori o kriteriju zaustavljanja. Za razliku od SOR-a, metoda potencija za matricu  $A_1$  konvergira brzo jer iz teorema o konvergenciji metode potencija koristimo činjenicu da je dominantna svojstvena vrijednost dobro izolirana od ostatka spektra.

**Teorem.** Ako je matrica  $A \in \mathbb{C}^{n \times n}$  dijagonalizabilna matrica, čije su svojstvene vrijednosti  $\lambda_i$ , i=1,...,n uređene na način  $|\lambda_1/>|\lambda_2|\geq |\lambda_3|\geq \cdots \geq |\lambda_n/|$ , neka su svojstveni vektori definirani kao  $Av_i=\lambda_i v_i, \ ||v_i||_2=1, \ i=1,\ldots,n$ . Pretpostavljamo da zapis od x0 u bazi svojstvenih vektora ima netrivijalnu komponentu u smjeru  $v_1$ , tada niz  $x_k$  linearno konvergira k lim  $(k \rightarrow \infty) \ x_k = v_1$ , a konvergencija ovisi o izrazu  $(|\lambda 2|/|\lambda 1|)^k$ , tj. kako se brzo taj izraz približava nuli.

Na sljedećem grafu dani su spektralni radijusi matrice  $A_1$  za  $\omega \in (0,2)$  te očitani spektralni radijus za optimalan parametar  $\omega$ .





Matrica  $A_2$  je simetrična i pozitivno definitna pa SOR metoda konvergira za  $\omega \in (0,2)$  i za svaku početnu iteraciju.

**Teorem.** Ako je matrica sustava  $A \in \mathbb{R}^{n \times n}$  simetrična pozitivno definitna matrica, tada SOR metoda konvergira za  $\omega \in \{0, 2\}$ . SOR metoda ne konvergira za  $\omega \leq 0$  i  $\omega \geq 2$ .

SOR metoda konvergira brzo (9 iteracija) jer je spektralni radijus za optimalni parametar blizu 0, to slijedi iz teorema o konvergenciji standardnih iteracija i teoremu koji govori o kriteriju zaustavljanja. Za razliku od SOR-a, metoda potencija za matricu  $A_2$  konvergira sporo jer iz teorema o konvergenciji metode potencija koristimo činjenicu da je dominantna svojstvena vrijednost slabo izolirana od ostatka spektra.

**Teorem.** Ako je matrica  $A \in \mathbb{C}^{n \times n}$  dijagonalizabilna matrica, čije su svojstvene vrijednosti  $\lambda_i$ , i=1,...,n uređene na način  $|\lambda_1/>|\lambda_2|\geq |\lambda_3|\geq \cdots \geq |\lambda_n/|$ , neka su svojstveni vektori definirani kao  $Av_i=\lambda_i v_i, ||v_i||_2=1, i=1,...,n$ . Pretpostavljamo da zapis od x0 u bazi svojstvenih vektora ima netrivijalnu komponentu u smjeru  $v_1$ , tada niz  $x_k$  linearno konvergira k lim $(k \rightarrow \infty)$   $x_k=v_1$ , a konvergencija ovisi o izrazu  $(|\lambda 2|/|\lambda 1|)^k$ , tj. kako se brzo taj izraz približava nuli.

Na sljedećem grafu dani su spektralni radijusi matrice  $A_2$  za  $\omega \in (0,2)$  te očitani spektralni radijus za optimalan parametar  $\omega$ .



Primijetimo da je uvjetovanost matrice  $A_1$  veća od uvjetovanosti matrice  $A_2$  što također utječe da  $A_1$  sporije konvergira.

Pogledajmo sada grafove normi grešaka i relativnih normi reziduala. Grafovi samo potvrđuju gornje razmatranje da imamo sporu konvergenciju za matricu  $A_1$  te brzu konvergenciju za  $A_2$ .





Iz diskutiranog vidimo da se dobiveni rezultati poklapaju s gore navedenim svojstvima matrice.

# Drugi zadatak – Metoda konjugiranih gradijenata i Schurova dekompozicija

## Generiranje matrica $A_3$ i $A_4$

Prvotno sam odabrao da mi dimenzije matrica bude 13x13. Zatim se konstruira normirani vektor x0 tako da bude dimenzije 13. Matricu  $A_3$  naštimamo tako da imamo različite svojstvene vrijednosti od kojih neke nisu bliske po modulu, a matricu  $A_4$  tako da imamo višestruke svojstvene vrijednosti bliske po modulu.

 $A_3$  dobijemo tako da dijagonalnu matricu  $D_1$ , koja je nastala pomoću MATLAB-ove funkcije diag(), pomnožimo s matricom  $Q_3$  s lijeva i desna. Matrica  $Q_3$  je nastala MATLAB-ovom funkcijom qr() primijenjenu na slučajno izabranu matricu  $X_3$ . Analogno se dobije matrica  $A_4$ . Kod je spremljen pod nazivom matrice2.m.

Ovakvim konstruiranjem dobiju se dvije simetrične matrice, pozitivno definitne jer su im svojstvene vrijednosti strogo pozitivni realni brojevi, regularne jer su slične dijagonalnim matricama čija je determinanta različita od nula. Konstrukcijom smo dobili Cramerov sustav koji je rješiv.

# Provedba drugog zadatka

Gore navede matrice te  $b_3$ ,  $b_4$ , x0, tol, x i n (dimenzija matrice) se nalaze u datoteci matrice2. U zadatak2.m pozivaju se sve funkcije koje su u zadatku zadane. Izlazni podatci nalaze se u datoteci rezultati2.

# Rezultati drugog zadatka

U tablici su dani neki od rezultata.

|                                          | $A_3$                                                                                             | $A_4$                                               |
|------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| UVJETOVANOST                             | 8333.333333332399                                                                                 | 1.100000000000001                                   |
| BROJ ITERACIJA                           | 17                                                                                                | 3                                                   |
| APROKSIMACIJA<br>RIJEŠENJA $A_i x = b_i$ | 1.00000000001938<br>1.00000000001439<br>0.99999999994701<br>1.00000000000166<br>0.999999999999999 | 1.00000000000000<br>1.000000000000000<br>1.00000000 |

|                   | 1.00000000004838      | 1.0000000000000000     |
|-------------------|-----------------------|------------------------|
|                   | 1.000000000000856     | 1.000000000000000      |
|                   | 1.00000000002604      | 1.000000000000000      |
|                   | 0.99999999996281      | 1.0000000000000000     |
|                   | 0.99999999998434      | 1.0000000000000000     |
|                   | 1.00000000002327      | 1.0000000000000000     |
|                   | 0.99999999999402      | 1.0000000000000000     |
|                   | 0.99999999998794      | 1.0000000000000000     |
|                   |                       |                        |
|                   |                       |                        |
|                   | 4.999999131040155e+02 | 1.0999999999999e+01    |
|                   | 1.000000868959840e+02 | 1.04999999999327e+01   |
|                   | 5.599999999999939e-01 | 1.000000000000674e+01  |
|                   | 5.100000000000040e-01 | 1.000039112216344e+01  |
| SVOJSTVENE        | 4.59999999999949e-01  | 1.049960887783655e+01  |
| VRIJEDNOSTI       | 4.09999999999970e-01  | 1.000000000000000e+01  |
| IZRAČUNATE POMOĆU | 3.59999999999974e-01  | 9.9999999999998e+00    |
| SCHUROVE          | 3.09999999999994e-01  | 9.99999999999989e+00   |
| DEKOMPOZICIJE     | 2.600000000000036e-01 | 1.0000000000000000e+01 |
|                   | 2.10000000000021e-01  | 9.9999999999996e+00    |
|                   | 1.59999999999906e-01  | 9.9999999999996e+00    |
|                   | 1.10000000000013e-01  | 9.9999999999989e+00    |
|                   | 6.00000000000119e-02  | 1.00000000000000e+01   |
|                   |                       |                        |
|                   |                       |                        |

Budući da sam samostalno generirao matrice  $A_3$  i  $A_4$  tako da nemaju imaginarnih svojstvenih vrijednosti po teoremu o realnoj Schurovoj dekompoziciji na dijagonalnoj matrici T se pojavljuju realne svojstvene vrijednosti.

Matrice  $A_3$  i  $A_4$  su simetrične i pozitivno definitne pa po teoremu s predavanja znamo da metoda konjugirani gradijenata konvergira. Štoviše metoda konjugiranih gradijenata je m konačna, kao vrsta metode konjugiranih smjerova.

**Teorem**. Metoda konjugiranih smjerova je m-koračna metoda ( $m \le n$ ), u smislu da je u m-tom koraku aproksimacija  $x_m$  jednaka rješenju  $x = A^{-1}b$ .

Uvjetovanost matrice  $A_3$  je puno veća od uvjetovanosti matrice  $A_4$  što utječe na brzinu konvergencije. Matrica  $A_3$  će sporije konvergirati. Također, još jedan razlog za sporiju konvergenciju matrice  $A_3$  je zbog odabira svojstvenih vrijednosti što sam opisao u odlomku Generiranje matrica  $A_3$  i  $A_4$ . Razlog tomu leži u zaključku da matrice za koje metoda konjugiranih gradijenata brže konvergira su:

- matrice koje imaju puno višestrukih svojstvenih vrijednosti
- matrice koje imaju nakupine vrlo bliskih svojstvenih vrijednosti jer za njih polinom niskog stupnja može davati male vrijednosti.

Iz ovog zaključka slijedi i koloar koji kaže da da možemo očekivati sporiju konvergenciju za loše uvjetovane matrice.

Koloar. Primjenjiva je sljedeća ocjena greške  $||e_k||_A \le 2\left(\frac{\sqrt{\kappa_2(A)}-1}{\sqrt{\kappa_2(A)}+1}\right)^k ||e_0||_A$ , pri čemu je

 $\kappa_2(A) = \left| |A| \right|_2 \left| |A^{-1}| \right|_2 = \lambda max / \lambda min$  broj uvjetovanosti matrice A.

Pogledajmo sada grafove normi grešaka i relativnih normi reziduala. Grafovi samo potvrđuju gornje razmatranje da imamo sporu konvergenciju za matricu  $A_3$  te brzu konvergenciju za  $A_4$ .





Iz diskutiranog vidimo da se dobiveni rezultati poklapaju s gore navedenim svojstvima matrice.