CSCI 570 - HW 3

```
1. (i) T(n) = 4T(n/2) + (n^2)\log n
    a=4, b=2, k=2, p=1
    log_b a = 2
    ->case 3
    Therefore: \emptyset((n^2)^*(\log n)^2)
(ii) T(n) = 8T(n/6) + nlogn
a=8, b=6, k=1, p=1
log_ba = log_34 = 1.2
        ->case 1
Therefore: \emptyset(n^{(\log_6 8)})
(iii) T(n) = sqrt(6006)T(n/2) + (n^sqrt(6006))
T(n) = 77.5T(n/2) + (n^77.5)
a=77.5, b=2, k=77.5, p=0
log_b a = log_2 77.5 = 6.3
        ->case 3
        Therefore: Ø(n^sqrt(6006))
(iv) T(n) = 10T(n/2) + (2^n)
T(n) = 10T(n/2) + \log n
a=10, b=2, k=0, p=1
log_b a = log_2 10 = 3.3
->case 1
Therefore: \emptyset(n^{(\log_2 10)})
(v)T(n) = 2T(sqrt(n)) + logn
Master theorem is not applicable because the equation is not of the form T=aT(n/b)+f(n)
Substitute: m=logn
T(2^m) = 2T(2^m/2) + m
Substitute: s=2<sup>m</sup>
T(s) = 2T(s/2) + logs
a=2, b=2, k=0, p=1
log_b a = log_2 2 = 1
->case 1
Therefore: \emptyset(s^{\log_2 2})
=>\emptyset(2^m)
=>\emptyset(2^{\log n})
(vi)T(n)=T(n/2)-n+10
Master Theorem cannot be applied because f(n) is negative and when increases the value tends
to decrease and will be less than 0
(vii)T(n)=(2^n)T(n/2)+n
Master Theorem cannot be applied because a is not a constant
(viii)T(n)=2T(n/4)+(n^0.51)
```

```
a=2, b=4, k=0.51, p=0 \log_b a = \log_4 2 = 0.5 case 3 Therefore: \emptyset(n^0.51) (ix)(1) = 0.5 = 0.5 = 0.5 Therefore: 0.5 = 0.5 = 0.5 case 2 Therefore: 0.5 = 0.5 = 0.5 case 2
```

2. Given A array of n numbers

n>2, index i is said to be local minimum of the array A, if it satisfies $1 \le i \le n$, A[i-1]>=A[i] and A[i+1]>=A[i]

Proof using Induction

Base case: n=3

A[1:3]

The array consists of 3 numbers, A[1] >= A[2] and A[3] >= A[2]

Therefore A[2] is the local minimum

Case 2: A consists n number of elements and lm be the local minimum

So there exists a local minimum A[1:lm+1] (from the base case)

Consider there exists a local minimum at the array length lm, so there exists a local minimum for A[i:lm+(i-1)], that is consider i=2, A[2:lm+1] with the array length lm This satisfies the induction hypothesis that there exists a local minimum for every lm sub array, hence by induction it is proved that there exists a local minimum for A[i:lm+(i-1)]

Algorithm:

Step 1: if n==3, then A[2] is local minimum

Step 2: if n > 3, then lm = n/2

Step 3: if $A[lm-1] \ge A[lm]$ and $A[lm+1] \ge A[lm]$ then A[lm] is local minimum

Step 4: if A[lm-1]<A[lm] then return A[1:lm] else return A[lm:n]

Complexity:

Recurrence Relation=> T(n) = T(n/2)+1 a=1, b=2, k=0, p=0 $log_ba = log_21 = 0$ case 2 Therefore: $O(log_n)$

Proof of correctness:

By using induction. Assume that the algorithm is correct for $n \le k$ and now consider the input k+1, then lm=[(k+1)/2], from the algorithm we know that it returns correct output for 3 number of elements, for n number of elements, and from the question the given algorithm can find correct result if $lm \le k$ (by using induction hypothesis). This is valid for $lm \ge 2$ for all values of $m \ge 3$. Therefore by induction the algorithm gives the correct output for k+1 number of elements.

7. Let P be the original array and n be the number of elements of the array Algorithm:

Step 1: construct the infinite array using the original array and the length of the infinite array is len(infinite_array)>=b

Step 2: count the number of 1's in infinite array up to len(infinite_array)==2n and store in variable count

Step 3: divide the algorithm into 2 parts, i.e. part 1 from index i=0 to i=a-1 and second part i=a to i= len(infinite array)

Step 4: now use the second sub array and divide the second sub array into two parts from i=a to i%n==0 (first occurrence of this condition, let the index value here be g) and i%n==0 to len(infinite array)

Step 5: now use a flag variable and increment flag if i%n==0, repeat this step until len(infinite_array)<=b (let the index value here be h), and when this condition fails divide the second sub array from step 4 again into two parts from index value g to index value h and second sub array from index value h to len(infinite array)

Step 6: divide the second sub array from step 5 into two parts, i.e. from index value i=h to index value i=b and the other sub array from index value i=b+1 to len(infinite array)

Step 7: using for loop count the number of 1's in the sub arrays i=a to i=g and another sub array i=h to i=b, store this value to final_answer

Step 8: now calculate the number of 1's between i=g to i=h by the formula number_1s=(flag/2)*count

Step 9: now add the count and final answer to get the total number 1's between a and b

```
Recurrence Relation:

T(n) = 5T(n/2)+n

Master Theorem:

a=5, b=2, k=1, p=0

log_ba=log_25=2.3

->case 1

Therefore: \emptyset(n^{(log_25)})

Time Complexity:

O(n) < O(b)
```

4.let cour[k,a] be the minimum sum of courses for which Erica will get exhausted for completing all the courses before her exam by completing at least k number of courses for every two consecutive days and ai is number of courses she can complete for the ith day without getting exhausted and bi be the number of courses Erica must complete for the ith day even if she gets exhausted.

```
Sub problems:
cour[k,a]=sum(max(0,b_i-a_i))
Base case: if for all b_i \le a_i
cour[k,a]=0
Case 2: if for any b<sub>i</sub>>a<sub>i</sub>
cour[k,a]=sum(max(0,b_i-a_i))
Pseudo code:
Cour(k,a):
        b = []
        exh=0
        b_0=a_0
        for i in range(1,len(a)):
                 if i%2==0:
                          b_i=a_i
                 else:
                          b_i = k - a_i
```

```
for i in range(len(a)):
              exh=exh+max(0,b_i-a_i)
       retrun exh
Time Complexity: O(n)
5. let chessman score[n,a] be the maximum points which can be scored by the chessman before
moving out of the given array a[]
Sub problems:
chessman score[n,a]=max(scores)
Base case: if n=1
chessman score[n,a]=scores0
Case 2: if n>0
chessman score[n,a]=max(scores)
Pseudo code:
chessman score(){
       scores = []
       for i in range(n):
              scores[i] = a[i]
               for j in range((i+a[i]),n,(a[i]+i)):
                      scores[i]=scores[i]+a[i]
       return max(scores)
}
Time Complexity: O(n)
```

6. Algorithm:

Step 1: read the two strings a and b

Step 2: check whether the two strings a and b are same or not, if a and b are same then return "a and b are J similar"

Step 3: if a and b are not same then rearrange both a and b in alphabetical order

Step 4: check if len(a) is equal to len(b), if they are same then go to step 5, else return "a and b are not J similar"

Step 5: divide the array into two sub arrays and repeat steps 4 and 5 for each substring, if a substring is J similar then return "a and b are J similar" else return "a and b are not J similar", repeat these steps until there is no more possibility to divide the sub array

Recurrence Relation:

```
T(n)=2T(n/2)+n
Master Theorem:
a=2, b=2, k=1, p=0
log_ba=log_22=1
->case 2
Therefore: \mathcal{O}(nlog_n)
```

3. let min_time[i,j] be the minimum sum of travel time required for marco and polo to pass through all the cities, in the shortest time possible, i and j values represent the city index, i < j and $T_{i,j}$ is the time required to travel from one city to another

Sub problems:

Base case: n=1

```
\begin{aligned} & \underset{\text{min\_time}[i,j] = 0}{\text{Pseudo code:}} \\ & \underset{\text{min\_time}(n,T[][]):}{\text{M\_time=0}} \\ & \underset{\text{for i from 0 to n:}}{\text{calculate the time taken to find the shortest time taken for marco to travel from city 1 to city n and add the sum to M_time & for j from 0 to n: & find if there is any other possible path to city j and if that path is less than the time taken for marco then assign that time to polo P_time and decrement M_time & total_time = P_time+M_time & return total_time & Time Complexity: O(n^2) \end{aligned}
```