1 Outline

Suppose:

- $(\Omega, \mathcal{A}, \mu)$ is a probability space.
- $n \in \mathbb{N}$ is an natural number (positive integer).
- $T_1, T_2, \dots, T_n : \Omega \longrightarrow [0, \infty]$ are independent identically distributed extended \mathbb{R} -valued random variables.
- $U_1, U_2, \dots, U_n : \Omega \longrightarrow [0, \infty]$ are independent identically distributed extended \mathbb{R} -valued random variables.
- For each i = 1, 2, ..., n, let $X_i := \min\{T_i, U_i\}$, and $C_i := I_{\{T_i \le U_i\}}$.

For each subject i = 1, 2, ..., n, the random variable T_i is interpreted to be the "survival time" of subject i, while U_i is interpreted to be the "censoring time" of subject i.

We wish to make inference about the (common) survival function

$$S(t) \ := \ P(\,T > t\,) \ = \ \mu \Big(\Big\{\, \omega \in \Omega \, \, \Big| \, \, T(\omega) > t \,\, \Big\} \Big)$$

of T_1, T_2, \ldots, T_n . However, in survival analysis, the inference about S(t) is made based on the right-censored survival time data $\{X_i, C_i\}, i = 1, 2, \ldots, n$ (rather than on the T_i 's directly).

The hazard function:

$$\lambda(t) \ := \ \lim_{h \to 0^+} \frac{1}{h} \cdot P\Big(\, t \le T < t + h \, \, \Big| \, \, t \le T \Big)$$

The cumulative hazard function:

$$\Lambda(t) := \int_0^t \lambda(t) \, \mathrm{d}t$$

The Nelson-Aalen estimator for the cumulative hazard function $\Lambda(t)$:

$$\widehat{\Lambda}(\omega, t) := \sum_{\substack{C_i(\omega) = 1 \\ T_i(\omega) \le t}} \frac{1}{Y(\omega, T_i(\omega))},$$

where

$$Y_i(\omega, t) := \begin{cases} 1, & t - h < X_i(\omega), \text{ for each } h > 0 \\ 0, & \text{otherwise} \end{cases}$$

and

$$Y(\omega,t) := \sum_{i=1}^{n} Y_i(\omega,t)$$

The aggregated counting process for subject i:

$$N_i(\omega, t) := I_{\{X_i(\omega) \le t\}}$$

The aggregated counting process:

$$N(\omega, t) := \sum_{i=1}^{n} N_i(\omega, t) = \sum_{i=1}^{n} I_{\{X_i(\omega) \le t\}}$$

The aggregated intensity process:

$$\alpha(\omega,t) \ := \ \lim_{h \to 0^+} \frac{1}{h} \cdot P\bigg(N(\omega,t+h) - N(\omega,t) = 1 \ \bigg| \ \mathcal{F}_t \, \bigg) \ = \ \lim_{h \to 0^+} \frac{1}{h} \cdot E\bigg[N(\omega,t+h) - N(\omega,t) \ \bigg| \ \mathcal{F}_t \, \bigg]$$

The aggregated cumulative intensity process:

$$A(\omega,t) := \int_0^t \alpha(\omega,t) dt$$

Then, the process

$$M(\omega, t) := N(\omega, t) - A(\omega, t) = N(\omega, t) - \int_0^t \alpha(\omega, t) dt$$

is a martingale process. In particular, $M(\,\cdot\,,t)$ satisfies

$$E \left[\ M(\,\cdot\,,t+h) - M(\,\cdot\,,t) \ \middle| \ \mathcal{F}_t \ \middle] (\omega) \ = \ M(\omega,t) \right.$$

A Integration on product measure spaces

Definition A.1 (Product σ -algebra)

Suppose (Ω_1, A_1) and (Ω_2, A_2) are two measurable spaces. Define

$$\mathcal{A}_1 \times \mathcal{A}_2 := \left\{ A_1 \times A_2 \in \Omega_1 \times \Omega_2 \mid A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2 \right\}.$$

We refer to $A_1 \times A_2$ as the collection of all measurable rectangles in $\Omega_1 \times \Omega_2$. The <u>product σ -algebra</u> $A_1 \otimes A_2$ of A_1 and A_2 is, by definition, the following:

$$\mathcal{A}_1 \otimes \mathcal{A}_2 := \sigma(\mathcal{A}_1 \times \mathcal{A}_2).$$

In other words, $A_1 \otimes A_2$ is the σ -algebra of subsets of $\Omega_1 \times \Omega_2$ containing all Cartesian products $A_1 \times A_2$, where $A_1 \in A_1$ and $A_2 \in A_2$.

Definition A.2 (Horizontal and vertical sections in a set-theoretic Cartesian product)

Suppose X and Y are two non-empty sets. For each $x \in X$, $y \in Y$, and $V \subset X \times Y$, we define:

$$V_{(x,\cdot)} := \left\{ y \in Y \mid (x,y) \in V \right\}$$

$$V_{(\cdot,y)} := \left\{ x \in X \mid (x,y) \in V \right\}$$

Theorem A.3 (Sections of measurable subsets in a product measurable space are themselves measurable.) Suppose (Ω_1, A_1) and (Ω_2, A_2) are two measurable spaces. Then,

- (i) $V_{(x,\cdot)} \in \mathcal{A}_2$, for each $x \in \Omega_1$ and each $V \in \mathcal{A}_1 \otimes \mathcal{A}_2$, and
- (ii) $V_{(\cdot,y)} \in \mathcal{A}_1$, for each $y \in \Omega_2$ and each $V \in \mathcal{A}_1 \otimes \mathcal{A}_2$.

PROOF We give only the proof of (i); that of (ii) is similar. Define $\mathcal{F} \subset \mathcal{P}(\Omega_1 \times \Omega_2)$ as follows:

$$\mathcal{F} := \left\{ V \in \Omega_1 \times \Omega_2 \mid V_{(x,\cdot)} \in \mathcal{A}_2, \text{ for each } x \in \Omega_1 \right\}.$$

Claim 1: $A_1 \times A_2 \subset \mathcal{F}$

Claim 2: \mathcal{F} is a σ -algebra of subsets of $\Omega_1 \times \Omega_2$.

Proof of Claim 1: Suppose $x \in \Omega_1$ and $V = A_1 \times A_2$, where $A_1 \in \mathcal{A}_1$ and $A_2 \in \mathcal{A}_2$. Then,

$$V_{(x,\cdot)} = \begin{cases} A_2, & \text{if } x \in A_1 \\ \varnothing, & \text{otherwise} \end{cases}$$

This proves that $V_{(x,\cdot)} = (A_1 \times A_2)_{(x,\cdot)} \subset \mathcal{F}$. Since $x \in \Omega_1$, $A_1 \in \mathcal{A}_1$, and $A_2 \in \mathcal{A}_2$ are arbitrary, Claim 1 follows.

Proof of Claim 2: First, note that, for each $x \in \Omega_1$, we have $(\Omega_1 \times \Omega_2)_{(x,\cdot)} := \{ y \in \Omega \mid (x,y) \in \Omega_1 \times \Omega_2 \} = \Omega_2 \in \mathcal{A}_2$. Hence, $\Omega_1 \times \Omega_2 \in \mathcal{F}$. Next, suppose $V \in \mathcal{F}$ and $V^c := (\Omega_1 \times \Omega_2) \setminus V$. Then, for each $x \in \Omega_1$,

$$(V^c)_{(x,\cdot)} = \left\{ y \in \Omega_2 \mid (x,y) \in V^c \right\} = \left\{ y \in \Omega_2 \mid (x,y) \notin V \right\}$$

$$= \Omega_2 \setminus \left\{ y \in \Omega_2 \mid (x,y) \in V \right\} = \left(V_{(x,\cdot)} \right)^c \in \mathcal{A}_2,$$

where the last containment follows from the fact that \mathcal{A}_2 is a σ -algebra (hence closed under complementation) and that $V \in \mathcal{F}$ (hence $V_{(x,\cdot)} \in \mathcal{A}_2$). This proves that \mathcal{F} is closed under complementation. Lastly, suppose $V_1, V_2, \ldots, \in \mathcal{F}$. Then,

$$\left(\bigcup_{i=1}^{\infty} V_i\right)_{(x,\cdot)} = \left\{y \in \Omega_2 \mid (x,y) \in \bigcup_{i=1}^{\infty} V_i\right\} = \bigcup_{i=1}^{\infty} \left\{y \in \Omega_2 \mid (x,y) \in V_i\right\} = \bigcup_{i=1}^{\infty} (V_i)_{(x,\cdot)} \in \mathcal{A}_2,$$

where the last containment follows from the fact that A_2 is a σ -algebra (hence closed under countable union) and that each $V_i \in \mathcal{F}$ (hence $(V_i)_{(x,\cdot)} \in A_2$). This proves that \mathcal{F} is closed under countable union. This completes the proof of Claim 2.

Claim 1 and Claim 2 together immediately imply that

$$\mathcal{A}_1 \otimes \mathcal{A}_2 := \sigma \left(\mathcal{A}_1 \times \mathcal{A}_2 \right) \subset \mathcal{F} := \left\{ V \in \Omega_1 \times \Omega_2 \mid V_{(x,\cdot)} \in \mathcal{A}_2, \text{ for each } x \in \Omega_1 \right\}.$$

This completes the proof of statement (i) in the present Theorem.

Theorem A.4 (Sections of measurable maps are themselves measurable.)

Suppose $(\Omega_1, \mathcal{A}_1)$, $(\Omega_2, \mathcal{A}_2)$, (S, \mathcal{S}) are measurable spaces, and $f: (\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2) \longrightarrow (S, \mathcal{S})$ is an $(\mathcal{A}_1 \otimes \mathcal{A}_2, \mathcal{S})$ -measurable map. Then,

- (i) $f(x, \cdot): \Omega_2 \longrightarrow S: y \longmapsto f(x, y)$ is an (A_2, S) -measurable map for each $x \in \Omega_1$.
- (ii) $f(\cdot,y):\Omega_1\longrightarrow S:x\longmapsto f(x,y)$ is an $(\mathcal{A}_1,\mathcal{S})$ -measurable map for each $y\in\Omega_2$.

Proof

(i) We need to show that $f(x,\cdot)^{-1}(V)\in\mathcal{A}_2$, for each $x\in\Omega_1$, and each $V\in\mathcal{S}$. To this end, note that

$$f(x,\cdot)^{-1}(V) = \left\{ y \in \Omega_2 \mid f(x,y) \in V \right\} = \left\{ y \in \Omega_2 \mid (x,y) \in f^{-1}(V) \right\} = f^{-1}(V)_{(x,\cdot)} \in \mathcal{A}_2,$$

where the last containment follows, by Theorem A.3, from the fact that $f^{-1}(V) \in \mathcal{A}_1 \otimes \mathcal{A}_2$ (since $V \in \mathcal{S}$ and f is $(\mathcal{A}_1 \otimes \mathcal{A}_2, \mathcal{S})$ -measurable).

(ii) The proof here is similar to that of (i).

Definition A.5 (Elementary subsets of the set-theoretic Cartesian product of two measurable spaces)

Suppose $(\Omega_1, \mathcal{A}_1)$ and $(\Omega_2, \mathcal{A}_2)$ are two measurable spaces. The collection of <u>elementary subsets</u> of $\Omega_1 \times \Omega_2$ with respect to their respective σ -algebras \mathcal{A}_1 and \mathcal{A}_2 is, by definition, the following:

$$\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2) := \left\{ \begin{array}{l} \prod\limits_{i=1}^n A_1^{(i)} \times A_2^{(i)} \in \Omega_1 \times \Omega_2 \\ \end{array} \middle| \begin{array}{l} A_k^{(i)} \in \mathcal{A}_k, \text{ for } k = 1, 2, \\ \text{for each } i = 1, 2, \dots, n, \\ \text{for each } n \in \mathbb{N} \end{array} \right\}$$

Definition A.6 (Monotone class)

Suppose X is a non-empty set. Then, a collection \mathcal{M} of subsets of X is called a <u>monotone class</u> if \mathcal{M} satisfies both of the following two conditions:

(i)
$$A := \bigcup_{i=1}^{\infty} A_i \in \mathcal{M}, \text{ whenever } \{A_i\}_{i \in \mathbb{N}} \text{ satistfies } A_i \in \mathcal{M} \text{ and } A_i \subset A_{i+1}, \text{ for each } i \in \mathbb{N}.$$

(ii)

$$B := \bigcap_{i=1}^{\infty} B_i \in \mathcal{M}$$
, whenever $\{B_i\}_{i \in \mathbb{N}}$ satisfies $B_i \in \mathcal{M}$ and $B_i \supset B_{i+1}$, for each $i \in \mathbb{N}$.

Lemma A.7 (An arbitrary intersection of monotone classes is itself a monotone class)

Suppose X is a non-empty set and $\{M_t\}_{t\in T}$ is a family of monotone classes of subsets of X indexed by the non-empty set T. Then,

$$\mathcal{M} := \bigcap_{t \in T} \mathcal{M}_t \subset \mathcal{P}(X)$$

is itself a monotone class of subsets of X.

PROOF Suppose $\{A_i\}_{i\in\mathbb{N}}$ satisfies $A_i\subset A_{i+1}$, for each $i\in\mathbb{N}$. Then, note the following implications:

$$A_{i} \in \mathcal{M} = \bigcap_{t \in T} M_{t}, \text{ for each } i \in \mathbb{N}$$

$$\iff A_{i} \in \mathcal{M}_{t}, \text{ for each } i \in \mathbb{N}, \text{ each } t \in T$$

$$\iff A := \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{M}_{t}, \text{ for each } t \in T \text{ (since each } \mathcal{M}_{t} \text{ is a monotone class)}$$

$$\iff A := \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{M} := \bigcap_{t \in T} M_{t}$$

Similarly, suppose $\{B_i\}_{i\in\mathbb{N}}$ satisfies $B_i\supset B_{i+1}$, for each $i\in\mathbb{N}$. Then, note the following implications:

$$B_{i} \in \mathcal{M} = \bigcap_{t \in T} M_{t}, \text{ for each } i \in \mathbb{N}$$

$$\iff B_{i} \in \mathcal{M}_{t}, \text{ for each } i \in \mathbb{N}, \text{ each } t \in T$$

$$\implies B := \bigcap_{i=1}^{\infty} B_{i} \in \mathcal{M}_{t}, \text{ for each } t \in T \text{ (since each } \mathcal{M}_{t} \text{ is a monotone class)}$$

$$\implies B := \bigcap_{i=1}^{\infty} B_{i} \in \mathcal{M} := \bigcap_{t \in T} M_{t}$$

This shows that $\mathcal{M} := \bigcap_{t \in T} \mathcal{M}_t$ is indeed a monotone class, and completes the proof of the Theorem.

Lemma A.8

Suppose $(\Omega_1, \mathcal{A}_1)$ and $(\Omega_2, \mathcal{A}_2)$ are two measurable spaces.

Then, $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$ is closed under taking intersections, unions, and set-theoretic subtractions.

PROOF We prove this Lemma by proving the following series of claims:

Claim 1: $A_1 \times A_2$ is closed under finite intersections.

Proof of Claim 1: This claim follows immediately from the following set-theoretic identity

$$\bigcap_{i=1}^{n} \left(A_1^{(i)} \times A_2^{(i)} \right) = \left(\bigcap_{i=1}^{n} A_1^{(i)} \right) \times \left(\bigcap_{i=1}^{n} A_2^{(i)} \right),$$

and the fact that A_1 and A_2 are σ -algebras; hence, in particular they are closed under countable (hence finite) intersections.

January 9, 2016

Claim 2: For every $P, Q \in \mathcal{A}_1 \times \mathcal{A}_2$, there exist disjoint $R, S \in \mathcal{A}_1 \times \mathcal{A}_2$ such that $P \setminus Q = R \sqcup S$.

Proof of Claim 2: This claim follows immediately from the following set-theoretic identity

$$(A_1 \times A_2) \setminus (B_1 \times B_2) = ((A_1 \backslash B_1) \times A_2) \sqcup ((A_1 \cap B_1) \times (A_2 \backslash B_2)),$$

and that fact that A_1 and A_2 are σ -algebras.

Claim 3:

For every $P, Q \in \mathcal{A}_1 \times \mathcal{A}_2$, there exist pairwise disjoint $R, S, T \in \mathcal{A}_1 \times \mathcal{A}_2$ such that $P \cup Q = R \sqcup S \sqcup T$.

Proof of Claim 3: This claim follows immediately from the following set-theoretic identity

$$(A_1 \times A_2) \cup (B_1 \times B_2) = \left((A_1 \times A_2) \setminus (B_1 \times B_2) \right) \sqcup \left(B_1 \times B_2 \right)$$
$$= \left((A_1 \setminus B_1) \times A_2 \right) \sqcup \left((A_1 \cap B_1) \times (A_2 \setminus B_2) \right) \sqcup \left(B_1 \times B_2 \right),$$

and the fact that A_1 and A_2 are are σ -algebras.

Claim 4:

For every $P, Q, R, S \in \mathcal{A}_1 \times \mathcal{A}_2$ with $P \cap Q = \emptyset$ and $R \cap S = \emptyset$, there exist pairwise disjoint $T_1, T_2, T_3, T_4 \in \mathcal{A}_1 \times \mathcal{A}_2$ such that

$$(P \sqcup Q) \bigcap (R \sqcup S) = T_1 \sqcup T_2 \sqcup T_3 \sqcup T_4.$$

Proof of Claim 4: This claim follows from Claim 1 and the following set-theoretic identity

$$\begin{array}{rcl} (P \sqcup Q) \bigcap (R \sqcup S) & = & \Big(P \cap (R \sqcup S)\Big) \bigsqcup \Big(Q \cap (R \sqcup S)\Big) \\ & = & (P \cap R) \sqcup (P \cap S) \bigm| \Big(Q \cap R) \sqcup (Q \cap S). \end{array}$$

Claim 5:

For every $P_1, \ldots, P_n, Q_1, \ldots, Q_n \in \mathcal{A}_1 \times \mathcal{A}_2$ with $P_i \cap Q_i = \emptyset$, for each $i = 1, 2, \ldots, n$, there exist pairwise disjoint $T_1, T_2, T_3, \ldots, T_{2^n} \in \mathcal{A}_1 \times \mathcal{A}_2$ such that

$$\bigcap_{i=1}^{n} (P_i \sqcup Q_i) = \bigsqcup_{k=1}^{2^n} T_k$$

Proof of Claim 5: This claim follows from Claim 4 and finite induction.

Claim 6: $\mathcal{E}(A_1 \times A_2)$ is closed under intersections.

Proof of Claim 6: This claim follows from the following set-theoretic identity:

$$\left(\bigsqcup_{i=1}^{n} A_{1}^{(i)} \times A_{2}^{(i)} \right) \bigcap \left(\bigsqcup_{k=1}^{m} B_{1}^{(k)} \times B_{2}^{(k)} \right) = \bigsqcup_{i=1}^{n} \bigsqcup_{k=1}^{m} \left(A_{1}^{(i)} \cap B_{1}^{(k)} \right) \times \left(A_{2}^{(i)} \cap B_{2}^{(k)} \right),$$

and the fact that A_1 and A_2 are σ -algebras.

Claim 7: $\mathcal{E}(A_1 \times A_2)$ is closed under unions.

Proof of Claim 7: Let $\bigsqcup_{i=1}^{n} A_1^{(i)} \times A_2^{(i)}$ and $\bigsqcup_{k=1}^{m} B_1^{(k)} \times B_2^{(k)}$ be two elements of $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$. Then,

$$\begin{pmatrix} \bigsqcup_{i=1}^n A_1^{(i)} \times A_2^{(i)} \end{pmatrix} \bigcap \begin{pmatrix} \bigsqcup_{k=1}^m B_1^{(k)} \times B_2^{(k)} \end{pmatrix} = \bigsqcup_{i=1}^n \begin{pmatrix} \left(A_1^{(i)} \times A_2^{(i)} \right) \bigcap \begin{pmatrix} \bigsqcup_{k=1}^m B_1^{(k)} \times B_2^{(k)} \end{pmatrix} \end{pmatrix}$$

$$= \bigsqcup_{i=1}^n \begin{pmatrix} \bigsqcup_{k=1}^m \left(A_1^{(i)} \times A_2^{(i)} \right) \bigcap \left(B_1^{(k)} \times B_2^{(k)} \right) \end{pmatrix}$$

$$= \bigsqcup_{i=1}^n \begin{pmatrix} \bigsqcup_{k=1}^m \left(A_1^{(i)} \cap B_1^{(k)} \right) \times \left(A_2^{(i)} \cap B_2^{(k)} \right) \end{pmatrix}.$$

This completes the proof of Claim 7.

Claim 8: $\mathcal{E}(A_1 \times A_2)$ is closed under set-theoretic subtractions.

Proof of Claim 8: Let $\bigsqcup_{i=1}^{n} A_1^{(i)} \times A_2^{(i)}$ and $\bigsqcup_{k=1}^{m} B_1^{(k)} \times B_2^{(k)}$ be two elements of $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$. Then,

$$\left(\bigsqcup_{i=1}^n A_1^{(i)} \times A_2^{(i)} \right) \setminus \left(\bigsqcup_{k=1}^m B_1^{(k)} \times B_2^{(k)} \right) = \bigsqcup_{i=1}^n \left(\left(A_1^{(i)} \times A_2^{(i)} \right) \setminus \left(\bigsqcup_{k=1}^m B_1^{(k)} \times B_2^{(k)} \right) \right)$$

$$= \bigsqcup_{i=1}^n \left(\left(A_1^{(i)} \times A_2^{(i)} \right) \cap \left(\bigsqcup_{k=1}^m B_1^{(k)} \times B_2^{(k)} \right)^c \right)$$

$$= \bigsqcup_{i=1}^n \left(\left(A_1^{(i)} \times A_2^{(i)} \right) \cap \left(\bigcap_{k=1}^m \left(B_1^{(k)} \times B_2^{(k)} \right)^c \right) \right)$$

$$= \bigsqcup_{i=1}^n \left(\bigcap_{k=1}^m \left(A_1^{(i)} \times A_2^{(i)} \right) \setminus \left(B_1^{(k)} \times B_2^{(k)} \right) \right)$$

$$= \bigsqcup_{i=1}^n \left(\bigcap_{k=1}^m \left(A_1^{(i)} \times A_2^{(i)} \right) \setminus \left(B_1^{(k)} \times B_2^{(k)} \right) \right)$$

$$= \bigsqcup_{i=1}^n \left(\bigcap_{k=1}^m \left(A_1^{(i)} \times A_2^{(i)} \right) \setminus \left(B_1^{(k)} \times B_2^{(k)} \right) \right)$$

$$= \bigsqcup_{i=1}^n \left(\bigcap_{k=1}^m \left(A_1^{(i)} \times A_2^{(i)} \right) \setminus \left(B_1^{(k)} \times B_2^{(k)} \right) \right)$$
by Claim 5
$$= \bigsqcup_{i=1}^n \left(\bigsqcup_{j=1}^m T^{(i,j)} \right)$$
, by Claim 2

where the existence of $R^{(i,k)}$, $S^{(i,k)} \in \mathcal{A}_1 \times \mathcal{A}_2$ follows from Claim 2, while that of $T^{(i,j)} \in \mathcal{A}_1 \times \mathcal{A}_2$ from Claim 5. This completes the proof of Claim 8, as well as that of the present Lemma.

Lemma A.9

Suppose $(\Omega_1, \mathcal{A}_1)$ and $(\Omega_2, \mathcal{A}_2)$ are two measurable spaces.

Then, the smallest monotone class \mathcal{M} containing $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$ is a σ -algebra of subsets of $\Omega_1 \times \Omega_2$.

PROOF First, by Lemma A.7, \mathcal{M} exists and equals the intersection of all monotone classes of subsets of $\Omega_1 \times \Omega_2$ which contain $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$. For every $P \subset \Omega_1 \times \Omega_2$, define:

$$\mathcal{M}\langle P \rangle := \left\{ Q \in \Omega_1 \times \Omega_2 \mid P \backslash Q, Q \backslash P, P \cup Q \in \mathcal{M} \right\}$$

Clearly, we have

$$P \in \mathcal{M}\langle Q \rangle \iff Q \in \mathcal{M}\langle P \rangle$$
, for every $P, Q \in \Omega_1 \times \Omega_2$.

Claim 1: For each $P \subset \Omega_1 \times \Omega_2$, $\mathcal{M}\langle P \rangle$ is a monotone class.

Proof of Claim 1: First, let $Q_1, Q_2, \ldots \in \mathcal{M}\langle P \rangle$ with $Q_1 \subset Q_2 \subset \cdots$. We need to show that $Q := \bigcup_{i=1}^{\infty} Q_i \in \mathcal{M}\langle P \rangle$. In other words, we need to show that $P \setminus Q$, $Q \setminus P$, $P \cup Q \in \mathcal{M}$. To this end, observe that:

$$P \setminus Q = P \setminus \left(\bigcup_{i=1}^{\infty} Q_i\right) = P \cap \left(\bigcup_{i=1}^{\infty} Q_i\right)^c = P \cap \left(\bigcap_{i=1}^{\infty} Q_i^c\right) = \bigcap_{i=1}^{\infty} \underbrace{\left(P \setminus Q_i\right)}_{\in \mathcal{M}} \in \mathcal{M},$$

$$Q \setminus P = \left(\bigcup_{i=1}^{\infty} Q_i\right) \setminus P = \left(\bigcup_{i=1}^{\infty} Q_i\right) \cap P^c = \bigcup_{i=1}^{\infty} \left(Q_i \cap P^c\right) = \bigcup_{i=1}^{\infty} \underbrace{\left(Q_i \setminus P\right)}_{\in \mathcal{M}} \in \mathcal{M},$$

$$P \cup Q = P \cup \left(\bigcup_{i=1}^{\infty} Q_i\right) = \bigcup_{i=1}^{\infty} \underbrace{\left(P \cup Q_i\right)}_{\in \mathcal{M}} \in \mathcal{M},$$

where we have used the fact that $P \setminus Q_i \supset P \setminus Q_{i+1}$, $Q_i \setminus P \subset Q_{i+1} \setminus P$, $P \cup Q_i \subset P \cup Q_{i+1}$, and that \mathcal{M} is a monotone class. This proves that we indeed have $Q := \bigcup_{i=1}^{\infty} Q_i \in \mathcal{M} \setminus P \setminus P$.

Next, let $R_1, R_2, \ldots \in \mathcal{M}\langle P \rangle$ with $R_1 \supset R_2 \supset \cdots$. We need to show that $R := \bigcap_{i=1}^{\infty} R_i \in \mathcal{M}\langle P \rangle$. Observe that:

$$P \setminus R = P \setminus \left(\bigcap_{i=1}^{\infty} R_i\right) = P \cap \left(\bigcap_{i=1}^{\infty} R_i\right)^c = P \cap \left(\bigcup_{i=1}^{\infty} R_i^c\right) = \bigcup_{i=1}^{\infty} \underbrace{\left(P \setminus R_i\right)}_{\in \mathcal{M}} \in \mathcal{M},$$

$$R \setminus P = \left(\bigcap_{i=1}^{\infty} R_i\right) \setminus P = \left(\bigcap_{i=1}^{\infty} R_i\right) \cap P^c = \bigcap_{i=1}^{\infty} \left(R_i \cap P^c\right) = \bigcap_{i=1}^{\infty} \underbrace{\left(R_i \setminus P\right)}_{\in \mathcal{M}} \in \mathcal{M},$$

$$P \cup R = P \cup \left(\bigcap_{i=1}^{\infty} R_i\right) = \bigcap_{i=1}^{\infty} \underbrace{\left(P \cup R_i\right)}_{\in \mathcal{M}} \in \mathcal{M},$$

where we have used the fact that $P \setminus R_i \subset P \setminus R_{i+1}$, $R_i \setminus P \supset R_{i+1} \setminus P$, $P \cup R_i \supset P \cup R_{i+1}$, and that \mathcal{M} is a monotone class. This proves that we indeed have $R := \bigcap_{i=1}^{\infty} R_i \in \mathcal{M} \setminus P$. This completes the proof of Claim 1.

Claim 2: For each $P \in \mathcal{E}(A_1 \times A_2)$, we have $\mathcal{M} \subset \mathcal{M}(P)$.

Proof of Claim 2: Let $P, Q \in \mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$ be arbitrary. By Lemma A.8, we have $P \setminus Q$, $Q \setminus P$, $P \cup Q \in \mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$ $\subset \mathcal{M}$. Hence, $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2) \subset \mathcal{M} \langle P \rangle$, for every $P \in \mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$. Claim 1 and Lemma A.7 together imply that, for every $P \in \mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$, we have $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2) \subset \mathcal{M} \subset \mathcal{M} \langle P \rangle$. This proves Claim 2.

Claim 3: For each $P \in \mathcal{M}$, we have $\mathcal{M} \subset \mathcal{M} \langle P \rangle$.

Proof of Claim 3: By Claim 2, $P \subset \mathcal{M}\langle Q \rangle$, for every $P \in \mathcal{M}$ and every $Q \in \mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$. But, recall that $U \in \mathcal{M}\langle V \rangle$ $\iff V \in \mathcal{M}\langle U \rangle$, for any $U, V \in \Omega_1 \times \Omega_2$. We thus see that $Q \subset \mathcal{M}\langle P \rangle$, for every $P \in \mathcal{M}$ and every $Q \in \mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$, which in turn implies that $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2) \subset \mathcal{M}\langle P \rangle$, for every $P \in \mathcal{M}$. Claim 1 and Lemma A.7 together imply that, for every $P \in \mathcal{M}$, we have $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2) \subset \mathcal{M}\langle P \rangle$. This proves Claim 3.

Claim 4: For each $P, Q \in \mathcal{M}$, we have $P \setminus Q, P \cup Q \in \mathcal{M}$.

Proof of Claim 4: For any $P, Q \in \mathcal{M}$, we have, by Claim 3, that $Q \in \mathcal{M} \subset \mathcal{M} \langle P \rangle$, which immediately Claim 4.

Claim 5: $\Omega_1 \times \Omega_2 \in \mathcal{M}$.

Proof of Claim 5: This Claim follows immediately from the observation that: $\Omega_1 \times \Omega_2 \in \mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2) \subset \mathcal{M}$.

Claim 6: \mathcal{M} is closed under complementation.

Proof of Claim 6: $W \in \mathcal{M} \implies (\Omega_1 \times \Omega_2) \setminus W \in \mathcal{M}$, by Claim 4 and Claim 5. This proves Claim 6.

Claim 7: \mathcal{M} is closed under countable unions.

Proof of Claim 7: Let $W_1, W_2, \ldots \in \mathcal{M}$. We need to show $W := \bigcup_{i=1}^{\infty} W_i \in \mathcal{M}$. To this end, define $Q_n := \bigcup_{i=1}^{n} W_i$, for each $n \in \mathbb{N}$. Note that $W = \bigcup_{n=1}^{\infty} Q_n$. Note also that $Q_n \subset Q_{n+1}$, for each $n \in \mathbb{N}$. By Claim 4 and finite induction, we see that $Q_n \in \mathcal{M}$, for each $n \in \mathbb{N}$. Since \mathcal{M} is a monotone class, we have that $W \in \mathcal{M}$. This proves Claim 7.

Claim 5, Claim 6, and Claim 7 together means precisely that \mathcal{M} is a σ -algebra of subsets of $\Omega_1 \times \Omega_2$. This completes the proof of the present Lemma.

Theorem A.10

Suppose $(\Omega_1, \mathcal{A}_1)$ and $(\Omega_2, \mathcal{A}_2)$ are two measurable spaces. Then, $\mathcal{A}_1 \otimes \mathcal{A}_2$ is the smallest monotone class which satisfies $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2) \subset \mathcal{A}_1 \otimes \mathcal{A}_2$.

PROOF First note that, since $A_1 \otimes A_2$ is a σ -algebra, it is closed under countable intersections and countable unions. Hence, $A_1 \otimes A_2$ is in particular a monotone class. It is also immediate that $\mathcal{E}(A_1 \times A_2) \subset A_1 \otimes A_2$, since $A_1 \otimes A_2$ is closed under finite disjoint unions (being closed under countable unions) and it contains $A_1 \times A_2$, i.e. the collection of all subsets of $\Omega_1 \times \Omega_2$ of the form $A_1 \times A_2$ with $A_1 \in A_1$ and $A_2 \in A_2$. So, $A_1 \otimes A_2$ is a monotone class of subsets of $\Omega_1 \times \Omega_2$ which contains $\mathcal{E}(A_1 \times A_2)$.

Let \mathcal{M} be the smallest monotone class containing $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$. By Lemma A.7, \mathcal{M} exists and equals the intersection of all monotone classes of subsets of $\Omega_1 \times \Omega_2$ which contain $\mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2)$. By the preceding paragraph, we therefore have $\mathcal{M} \subset \mathcal{A}_1 \otimes \mathcal{A}_2$, and hence the following series of containment:

$$\mathcal{A}_1 \times \mathcal{A}_2 \subset \mathcal{E}(\mathcal{A}_1 \times \mathcal{A}_2) \subset \mathcal{M} \subset \mathcal{A}_1 \otimes \mathcal{A}_2 := \sigma(\mathcal{A}_1 \times \mathcal{A}_2) \subset \mathcal{P}(\Omega_1 \times \Omega_2).$$

But by Lemma A.9, \mathcal{M} is itself a σ -algebra. Thus, we may now conclude $\mathcal{M} = \mathcal{A}_1 \otimes \mathcal{A}_2$. This completes the proof of the present Theorem.

Theorem A.11 (Well-definition of the product measure of two σ -finite measures)

Suppose $(\Omega_1, \mathcal{A}_1, \mu_1)$ and $(\Omega_2, \mathcal{A}_2, \mu_2)$ are two σ -finite measure spaces. Let $(\mathbb{R}, \mathcal{B})$ be \mathbb{R} equipped with its Borel σ -algebra $\mathcal{B} = \sigma(\mathcal{O}(\mathbb{R}))$. Then, for each $V \in \mathcal{A}_1 \otimes \mathcal{A}_2$, the following statements hold:

- (i) the map $\Omega_1 \longrightarrow \mathbb{R} : x \longmapsto \mu_2(V_{(x,\cdot)}) = \int_{\Omega_2} 1_V(x,y) \, \mathrm{d}\mu_2(y)$ is $(\mathcal{A}_1,\mathcal{B})$ -measurable,
- (ii) the map $\Omega_2 \longrightarrow \mathbb{R} : y \longmapsto \mu_1(V_{(\cdot,y)}) = \int_{\Omega_1} 1_V(x,y) \, \mathrm{d}\mu_1(x)$ is $(\mathcal{A}_2,\mathcal{B})$ -measurable, and
- (iii) the following equality of Lebesgue integrals (of measurable \mathbb{R} -valued functions) holds:

$$\int_{\Omega_1} \mu_2(V_{(x,\cdot)}) d\mu_1(x) = \int_{\Omega_2} \mu_1(V_{(\cdot,y)}) d\mu_2(y),$$

or equivalently,

$$\int_{\Omega_1} \left(\int_{\Omega_2} 1_V(x,y) \, \mathrm{d}\mu_2(y) \right) \mathrm{d}\mu_1(x) \ = \ \int_{\Omega_2} \left(\int_{\Omega_1} 1_V(x,y) \, \mathrm{d}\mu_1(x) \right) \mathrm{d}\mu_2(y).$$

PROOF Define $\mathcal{C} \subset \mathcal{A}_1 \otimes \mathcal{A}_2$ as follows:

$$\mathcal{C} := \left\{ V \in \mathcal{A}_1 \otimes \mathcal{A}_2 \mid \int_{\Omega_1} \mu_2(V_{(x,\cdot)}) d\mu_1(x) = \int_{\Omega_2} \mu_1(V_{(\cdot,y)}) d\mu_2(y) \right\}.$$

Claim 1: $A_1 \times A_2 \in \mathcal{C}$, for each $A_1 \in \mathcal{A}_1$ and each $A_2 \in \mathcal{A}_2$.

Claim 2: $V := \bigcup_{i=1}^{\infty} V_i \in \mathcal{C}$, whenever $\{V_i\}_{i \in \mathbb{N}} \subset \mathcal{C}$ and $V_i \subset V_{i+1}$, for each $i \in \mathbb{N}$.

Claim 3: $V := \bigsqcup_{i=1}^{\infty} V_i \in \mathcal{C}$, whenever $\{V_i\}_{i \in \mathbb{N}} \subset \mathcal{C}$ is a disjoint countable collection of members in \mathcal{C} .

Claim 4: Suppose $A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2$, with $\mu_1(A_1), \mu_2(A_2) < \infty$. Suppose also that $\{V_i\}_{i \in \mathbb{N}} \subset \mathcal{C}$ satisfies $A_1 \times A_2 \supset V_1 \supset V_2 \supset V_3 \supset \cdots$. Then, $V := \bigcap_{i=1}^{\infty} V_i \in \mathcal{C}$.

Proof of Claim 1:

Proof of Claim 2:

Proof of Claim 3:

Proof of Claim 4:

Next, note that, since $(\Omega_1, \mathcal{A}_1, \mu_1)$ is a σ -finite measure space, there exist mutually disjoint $\Omega_1^{(1)}, \Omega_1^{(2)}, \ldots \in \mathcal{A}_1$ such that

$$\Omega_1 = \bigsqcup_{n=1}^{\infty} \Omega_1^{(n)}, \text{ and } \mu_1(\Omega_1^{(n)}) < \infty, \text{ for each } n \in \mathbb{N}.$$

Similarly, there exist mutually disjoint $\Omega_2^{(1)}, \Omega_2^{(2)}, \ldots \in \mathcal{A}_2$ such that

$$\Omega_2 = \bigsqcup_{n=1}^{\infty} \Omega_2^{(n)}, \text{ and } \mu_2(\Omega_2^{(n)}) < \infty, \text{ for each } n \in \mathbb{N}.$$

We now define

$$\mathcal{M} := \left\{ V \in \mathcal{A}_1 \otimes \mathcal{A}_2 \mid V \cap \left(\Omega_1^{(m)} \times \Omega_2^{(n)}\right) \in \mathcal{C}, \text{ for each } m, n \in \mathbb{N} \right\}.$$

Claim 5: \mathcal{M} is a monotone class.

Claim 6:

$$\mathcal{E} \subset \mathcal{M}$$

Proof of Claim 5: Suppose $V_1, V_2, \ldots \in \mathcal{M}$, with $V_1 \subset V_2 \subset V_3 \subset \cdots$. We need to show $V := \bigcup_{i=1}^{\infty} V_i \in \mathcal{M}$. To this end, note that, for each $m, n \in \mathbb{N}$, we have

$$V \cap \left(\Omega_1^{(m)} \times \Omega_2^{(n)}\right) = \left(\bigcup_{i=1}^{\infty} V_i\right) \bigcap \left(\Omega_1^{(m)} \times \Omega_2^{(n)}\right) = \bigcup_{i=1}^{\infty} \underbrace{\left(V_i \cap (\Omega_1^{(m)} \times \Omega_2^{(n)})\right)}_{\mathcal{CC}} \in \mathcal{C},$$

where the last containment follows from Claim 3. Thus, we see that we indeed have $V \in \mathcal{M}$. Next, suppose that $W_1, W_2, \ldots \in \mathcal{M}$, with $W_1 \supset W_2 \supset W_3 \supset \cdots$. We need to show $W := \bigcap_{i=1}^{\infty} W_i \in \mathcal{M}$. Now, for each $m, n \in \mathbb{N}$, we have:

$$W \cap \left(\Omega_1^{(m)} \times \Omega_2^{(n)}\right) = \left(\bigcap_{i=1}^{\infty} W_i\right) \cap \left(\Omega_1^{(m)} \times \Omega_2^{(n)}\right) = \bigcap_{i=1}^{\infty} \underbrace{\left(W_i \cap (\Omega_1^{(m)} \times \Omega_2^{(n)})\right)}_{\in \mathcal{C}} \in \mathcal{C}.$$

where the last containment follows from Claim 4. This proves that \mathcal{M} is indeed a monotone class and completes the proof of Claim 5.

It follows from Claim 5, Claim 6 and Theorem ?? that $\mathcal{M} = \mathcal{A}_1 \otimes \mathcal{A}_2$, which in turn implies that $V \cap \left(\Omega_1^{(m)} \times \Omega_2^{(n)}\right) \in \mathcal{C}$, for each $V \in \mathcal{A}_1 \otimes \mathcal{A}_2$ and each $m, n \in \mathbb{N}$. Hence, for each $V \in \mathcal{A}_1 \otimes \mathcal{A}_2$, we have

$$V = V \cap (\Omega_1 \times \Omega_2) = V \cap \left(\bigsqcup_{m,n \in \mathbb{N}} \Omega_1^{(m)} \times \Omega_2^{(n)} \right) = \bigsqcup_{m,n \in \mathbb{N}} \underbrace{V \cap \left(\Omega_1^{(m)} \times \Omega_2^{(n)}\right)}_{\in \mathcal{C}} \in \mathcal{C},$$

where the last containment follows from Claim 3. Lastly, recall that $V \in \mathcal{C}$ is equivalent to

$$\int_{\Omega_1} \mu_2(V_{(x,\cdot)}) d\mu_1(x) = \int_{\Omega_2} \mu_1(V_{(\cdot,y)}) d\mu_2(y).$$

This completes the proof of the present Theorem.

References

- [1] ALIPRANTIS, C. D., AND BURKINSHAW, O. Principles of Real Analysis, third ed. Academic Press, 1998.
- [2] BILLINGSLEY, P. Probability and Measure, third ed. John Wiley & Sons, 1995.
- [3] BILLINGSLEY, P. Convergence of Probability Measures, second ed. John Wiley & Sons, 1999.
- [4] FERGUSON, T. S. A Course in Large Sample Theory, first ed. Texts in Statistical Science. CRC Press, 1996.
- [5] Shao, J. Mathematical Statistics, second ed. Springer, 2003.