4047. Найти площадь части сферы, ограниченной двумя параллелями и двумя меридианами.

4048. Найти площадь части геликоида $x = r \cos \varphi$,

 $y = r \sin \varphi$, $z = h\varphi$, где 0 < r < a, $0 < \varphi < 2\pi$.

4049. Найти площадь части поверхности тора $\alpha = (b + a \cos \psi) \cos \varphi$, $y = (b + a \cos \psi) \sin \varphi$, $z = a \sin \psi$ (0 $< a \le b$), ограниченной двумя меридианами $\varphi = \varphi_1$, $\varphi = \varphi_2$ и двумя параллелями $\psi = \psi_1$, $\varphi = \psi_2$.

Чему равна поверхность всего тора?

4050. Найти телесный угол ω , под которым виден из начала координат прямоугольник x=a>0, $0 \le y \le b$, $0 \le z \le c$.

Вывести приближенную формулу для ω , если a велико.

§ 5. Приложения двойных интегралов к механике

1°. Центр тяжести. Если x_0 и y_0 — координаты центра тяжести пластинки Ω , лежащей в плоскости Oxy, и $\rho = \rho(x, y)$ — плотиость пластинки, то

$$x_0 = \frac{1}{M} \iint_{\Omega} \rho x \, dx \, dy, \quad y_0 = \frac{1}{M} \iint_{\Omega} \rho y \, dx \, dy, \quad (1)$$

где
$$M = \int_{0}^{\infty} \int \rho \ dx \ dy$$
 — масса пластинки.

Если пластинка однородна, то в формулах (і) следует по-

ложить $\rho = 1$.

 2° . Моменты инерции. I_x и I_y — моменты инерции пластинки Ω , лежащей в плоскости Oxy, относительно коорцинатных осей Ox и Oy — выражаются соответственно формулами

$$I_x = \iint_{\Omega} \rho y^2 dx dy, \quad I_y = \iint_{\Omega} \rho x^2 dx dy, \tag{2}$$

где $\rho = \rho (x, y)$ — плотность пластинки.

Рассматривается также центробежный момент инерции

$$I_{xy} = \iint\limits_{\Omega} \rho \, xy \, dx \, dy. \tag{3}$$

Полагая р = 1 в формулах (2) и (3), получим ееометрические моменты инерции плоской фигуры.

4051. Найти массу квадратной пластинки со стороной a, если плотность пластинки в каждой точке пропорциональна расстоянию этой точки от одной из вершин квадрата и равна ρ_0 в центре квадрата.