21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

34- Monday November 28, 2011.

Definition 34.1: If E is a field, a *primitive* mth root of unity is an element $a \in E^*$ which generates a (cyclic) group of order m consisting of the m roots of $x^m - 1 = 0$.

Remark 34.2: If a primitive mth root of unity a exists, then there are $\varphi(m)$ primitive mth roots of unity, of the form a^k with (k, m) = 1.

For $E = \mathbb{C}$ (or any algebraically closed field) a primitive mth root of unity exists for every $m \geq 1$. For $E = \mathbb{R}$ or $E = \mathbb{Q}$, a primitive mth root of unity exists only for m = 1, 2.

Lemma 34.3: If E is a finite field with q elements (and $q = p^k$, where p is the characteristic of E and $k \ge 1$), then a primitive mth root of unity exists if and only if m divides q - 1.

Proof: Since the multiplicative group E^* is cyclic, it is generated by an element a, which has order q-1. If an mth root $b \neq 1$ exists, it means $b^m = 1$, and one writes $b = a^j$ for some j which is unique modulo q-1, so that one may choose $j \in \{1, \ldots, q-2\}$, and one defines d = (m, q-1). Since $a^{mj} = b^m = 1$, mj is a multiple of q-1, and if one writes m = dn, q-1 = dr with (n,r) = 1, one deduces that nj is a multiple of r, so that j is a multiple of r since n and r are relatively prime; because a^r has order d, and the powers of d are among the powers of d, one deduces that there are at most d distinct powers of d. One deduces that if a primitive d primitive d

Definition 34.4: A field extension F of E is called *simple* if $F = E(\theta)$ for some $\theta \in F$.

Of course, this is just using the fact that $\varphi_q \in Aut_E(F)$.

Lemma 34.5: If E is a finite field, then for any finite extension F of E with $[F:E] = \ell$, there exists $a \in F$ such that $\{1, a, \ldots, a^{\ell-1}\}$ is a power basis (of F as an E-vector space), hence F = E(a). Proof: Let a be any of the $\varphi(q-1)$ generators of the multiplicative group E^* (with q = |E|), and I Let P_a be the minimal polynomial of a (i.e. the monic irreducible polynomial satisfying $P_a(a) = 0$). One wants to show that P_a has degree ℓ . The $\ell+1$ elements $1, a, \ldots, a^{\ell}$ are E-linearly dependent, since they belong to an E-vector space of dimension ℓ , and the non-zero E-linear combination which is 0 gives a polynomial Q of degree $\ell \in \ell$ such that $\ell \in \ell$ 0 but $\ell \in \ell$ 1 is then a multiple of $\ell \in \ell$ 2, whose degree is then $\ell \in \ell$ 2. If $\ell \in \ell$ 3 had degree $\ell \in \ell$ 4, all the powers of $\ell \in \ell$ 4 would be $\ell \in \ell$ 5 had degree $\ell \in \ell$ 5, one would deduce that the dimension of $\ell \in \ell$ 5 over $\ell \in \ell$ 5 is $\ell \in \ell$ 6.

Lemma 34.6: If E is a finite field with q elements, and F is a field extension of E, then for every $a \in F$ which is algebraic over E, $\varphi_q(a)$ has the same minimal polynomial than a.

Proof: Since E is isomorphic to a splitting field extension for $x^q - x$ over \mathbb{Z}_p , one deduces that $\varphi_q(e) = e$ for all $e \in E$. If $a \in F$ is algebraic over E, it has a minimal polynomial $P \in E[x]$, but since the coefficients of P are fixed by φ_q which is a ring-homomorphism from F into itself, one finds that $P(\varphi_q(a)) = \varphi_q(P(a)) = 0$.

Remark 34.7: Consider $E=\mathbb{Z}_2$ and $F\ (\simeq F_8)$, so that [F:E]=3, and since $\varphi(7)=6$, all the nonzero elements except 1 generate F^* , and there are then two irreducible polynomials of degree 3 over \mathbb{Z}_2 . Let ξ be any of these generators, so that the minimal polynomial of ξ is $P=(x-\xi)\,(x-\xi^2)\,(x-\xi^4)$, which has the form $x^3+a\,x^2+b\,x+1$ (since $\xi^7=1$ and -1=1), and the minimal polynomial of ξ^3 is $Q=(x-\xi^3)\,(x-\xi^6)\,(x-\xi^{12})$, but since ξ^3 is the inverse of ξ^4 , ξ^6 is the inverse of ξ , and $\xi^{12}=\xi^5$ is the inverse of ξ^2 , one has $Q=x^3P\left(\frac{1}{x}\right)=x^3+b\,x^2+a\,x+1$. Then, since $x^7-1=(x-1)\,P\,Q$, one has $P\,Q=x^6+x^5+x^4+x^3+x^2+x+1$, but the coefficient of x^5 in $P\,Q$ is then a+b, and a+b=1 has the symmetric solutions a=1,b=0 or a=0,b=1, so that one finds that the two irreducible polynomials of degree 3 over \mathbb{Z}_2 are x^3+x^2+1 and x^3+x+1 .

Remark 34.8: Consider $E = \mathbb{Z}_2$ and $F (\simeq F_{16})$, so that [F:E] = 4, and since $\varphi(15) = \varphi(3)\varphi(5) = 2 \cdot 4 = 8$, there are 8 generators. Let ξ be any of these generators, so that the minimal polynomial of ξ is $P = (x - \xi)(x - \xi^2)(x - \xi^4)(x - \xi^8)$, which has the form $x^4 + ax^3 + bx^2 + cx + 1$ (since $\xi^{15} = 1$); the minimal polynomial of ξ^3 is $Q = (x - \xi^3)(x - \xi^6)(x - \xi^{12})(x - \xi^{24})$, but since $\xi^{24} = \xi^9$ and $\eta = \xi^3$ is a fifth

root of unity different from 1, one has $Q=(x-\eta)\,(x-\eta^2)\,(x-\eta^3)\,(x-\eta^4)=\frac{x^5-1}{x-1}=x^4+x^3+x^2+x+1;$ the minimal polynomial of ξ^5 is $R=(x-\xi^5)\,(x-\xi^{10})$ since $\xi^{20}=\xi^5$, and because $\zeta=\xi^5$ is a third root of unity different from 1, one has $R=(x-\zeta)\,(x-\zeta^2)=\frac{x^3-1}{x-1}=x^2+x+1;$ the minimal polynomial of ξ^7 is $S=(x-\xi^7)\,(x-\xi^{14})\,(x-\xi^{28})\,(x-\xi^{56}),$ but since ξ^7 is the inverse of $\xi^8,\,\xi^{14}$ is the inverse of $\xi,\,\xi^{28}=\xi^{13}$ is the inverse of $\xi^2,\,$ and $\xi^{56}=\xi^{11}$ is the inverse of $\xi^4,\,$ one has $S=x^3P\left(\frac{1}{x}\right)=x^4+c\,x^3+b\,x^2+a\,x+1.$ There are then three irreducible polynomials of degree 4 over $\mathbb{Z}_2.$

are then three irreducible polynomials of degree 4 over \mathbb{Z}_2 . One has $x^{15}-1=(x-1)\,P\,Q\,R\,S$, and $(x-1)\,Q=x^5-1$, so that $P\,R\,S=\frac{x^{15}-1}{x^5-1}=x^{10}+x^5+1$ (by using $x^5=y$), hence $P\,S=\frac{x^{10}+x^5+1}{x^2+x+1}$, and in $\mathbb{Z}_2[x]$ this quotient is $x^8+x^7+x^5+x^4+x^3+x+1$; identifying then the coefficients of powers x^7, x^6, x^5, x^4 (since those of x^3, x^2, x coincide then with those of x^5, x^6, x^7), one obtains $1=a+c,\ 0=2b+ac,\ 1=(a+c)\,(1+b)$, and $1=a^2+b^2+c^2$ which gives the symmetric solutions a=1,b=0,c=0 and a=0,b=0,c=1, so that, besides $x^4+x^3+x^2+x+1$, the two other irreducible polynomials of degree 4 over \mathbb{Z}_2 are x^4+x^3+1 and x^4+x+1 .

Remark 34.9: Using the monic irreducible polynomial $P = x^4 + x + 1 \in \mathbb{Z}_2[x]$ just obtained, one lets ξ be any of its four roots, and one uses the basis $1, \xi, \xi^2, \xi^3$ for $F (\simeq F_{16})$ over F_2 , and since $\xi^4 = 1 + \xi$ one constructs easily by induction the formula expressing ξ^j :

$$\begin{array}{lll} \xi^4 = 1 + \xi & \xi^8 = 1 + \xi^2 & \xi^{12} = 1 + \xi + \xi^2 + \xi^3 \\ \xi^5 = \xi + \xi^2 & \xi^9 = \xi + \xi^3 & \xi^{13} = 1 + \xi^2 + \xi^3 \\ \xi^6 = \xi^2 + \xi^3 & \xi^{10} = 1 + \xi + \xi^2 & \xi^{14} = 1 + \xi^3 \\ \xi^7 = 1 + \xi + \xi^3 & \xi^{11} = \xi + \xi^2 + \xi^3 & \xi^{15} = 1 \end{array}.$$

Remark 34.10: The preceding remarks show that all the irreducible polynomials of degree d over \mathbb{Z}_p are obtained by considering a field extension F ($\simeq F_q$ with $q=p^d$) of \mathbb{Z}_p with $[F:\mathbb{Z}_p]=d$, and considering the $\varphi(q-1)$ generators, which will correspond to $\frac{\varphi(q-1)}{d}$ such irreducible polynomials of degree d, but that some others may be associated to a non-zero element different from 1 which is not a generator, as in the case q=16. Also, the product of these polynomials divide $x^{q-1}-1$, so that considering the factorization of x^n-1 for a general n is a natural question, which will be considered over $\mathbb{Z}[x]$.

Definition 34.11: The *cyclotomic field* of *n*th roots of unity over \mathbb{Q} is the splitting field extension for $x^n - 1$ over \mathbb{Q} , i.e. $\mathbb{Q}(e^{2i\pi/n})$ (= $\mathbb{Q}[e^{2i\pi/n}]$).

The nth cyclotomic polynomial Φ_n is defined by $\Phi_n(x) = \prod_{primitive} (x - \xi_k)$, where the product is taken over the primitive nth roots of unity ξ_k , so that the degree of Φ_n is $\varphi(n)$, where φ is the Euler function.

Lemma 34.12: For all $n \geq 1$, $x^n - 1 = \prod_{d|n} \Phi_d(x)$, Φ_n is monic, and $\Phi_n \in \mathbb{Z}[x]$.

Proof: If $1 \le k \le n-1$, then $(k,n) = \delta$ and $d = \frac{n}{\delta}$ are divisors of n, and $e^{2i\pi k/n}$ is a primitive dth root of unity. Since $x^n - 1 = \prod_{0 \le k \le n} (x - e^{2i\pi k/n})$, and $\Phi_1 = x - 1$, by grouping the terms $(x - e^{2i\pi k/n})$ for k a dth root of unity, which must be a divisor of n, one obtains the formula $x^n - 1 = \prod_{d|n} \Phi_d(x)$, a consequence of which is $n = \sum_{d|n} \varphi(d)$ by comparing degrees. That the coefficients are integers is easily derived from the formula by induction on n, observing first that it is true for Φ_1 and for $\Phi_p = x^{p-1} + \ldots + 1$ when p is a prime; then, one has $x^n - 1 = \Psi_n \Phi_n$ and Ψ_n is the product of Φ_d for d < n a divisor of n, so that by induction $\Psi_n \in \mathbb{Z}[x]$, and then since Ψ_n is monic, the Euclidean division of $x^n - 1$ by Ψ_n gives a quotient and a remainder (here 0) in $\mathbb{Z}[x]$.

Remark 34.13: For p prime $\Phi_p = x^{p-1} + \ldots + 1$, and for the first composite n, the formula gives $\Phi_4 = x^2 + 1$, $\Phi_6 = x^2 - x + 1$, $\Phi_8 = x^4 + 1$, $\Phi_9 = x^6 + x^3 + 1$, $\Phi_{10} = x^4 - x^3 + x^2 - x + 1$, $\Phi_{12} = x^4 - x^2 + 1$, $\Phi_{14} = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1$, $\Phi_{15} = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1$, $\Phi_{16} = x^8 + 1$, and one observes some simple properties, which will be proved later to be general.

One may think that the coefficients are always -1, 0, or +1, but it is not the case: the smallest value of n for which it is not true is n = 105, and Φ_{105} has a coefficient equal to -2; $105 = 3 \cdot 5 \cdot 7$ is the smallest odd integer with three distinct prime factors, and if n has at most two distinct odd prime factors, then one can show that the coefficients of Φ_n belong to $\{-1,0,+1\}$.

¹ A consequence of this formula is $\sum_{n} \frac{n}{n^s} = \sum_{n} \frac{\varphi(n)}{n^s} \sum_{n} \frac{1}{n^s}$, i.e. $\sum_{n} \frac{\varphi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}$, valid for $\Re(s) > 2$.