Ordinal logistic model on large, classified windows data

Ruth Gómez Graciani

Contents

Prepare the data	1
Descriptive statistics Variable scalation (optional)	5
Basic inversions model	10
All dataset together without colors category	12
Centromeres vs telomeres models	13
Centromeres & arms	. 13
Arms	. 14
Telomeres	15
Without some values	15
Without 3+	. 15
Without 2	
Without 1	. 17
Without 0	18
Bingo! 1 categories are doing something	19
Without per-region (Color) outliers	. 22
Without per-category (InvCategory) outliers	
Without all outliers	. 27
Manually remove group 1 outlier	28
Which is this point?	29
Wihtout some chromosomes	32
Multiply the numbers	33
cM/Mb *10	
cM/Mb *100	
cM/Mb *1000	
cM/Mb *10000	
<u> </u>	

Prepare the data

First, we obtain the density distribution, and local minima and maxima for the recombination map.

Figure 1: Crossover zones; centromeres in blue, workspace limits in orange.

Next, we define telomeric regions as the space between the chromosome start to the next local minimum, or between the chromosome end to the previous local minimum. We also define centromeric regions as the space between two local maxima that contains the centromere. When the local maximum delimiting a centromeric region is the same as the peak from the corresponding telomeric region (see chr1, chr5, chr7, chr8, etc.), the limit between the telomeric and centromeric regions is defined as the center point between the local maximum corresponding to the telomeric peak and the local minimum corresponding to the centromere valley. These categories will be represented as the "Color" variable in this analysis.

Figure 2: Color-coded windows for telomeric, centromeric and arm categories.

Distribution

Distribution

Descriptive statistics

Raw data:

Chromos	somstart	End	Color	inv	CentersNHC	ente r AHR	Cenfleength.Madl	RepCo	un M sAvgRate.	p erlMob mT
chr10	60683	23750219	9telomeric	3	2	1	23.689536	428	0.0144805	A
chr10	2375021	939146059	9 centromeri	id	0	1	15.395840	880	0.0079079	A
chr10	1161724	1 6 355243′	72elomeric	1	1	0	19.351956	266	0.0140434	A
chr10	4236950	847478464	4 centromeri	(6)	0	0	5.108956	954	0.0068103	A
chr11	87267	29960849	9 telomeric	2	1	1	29.873582	920	0.0119573	A
chr11	2996084	951577746	6 centromeri	©	0	0	21.616897	596	0.0060984	A

For each window, I calculated the number of total inversions, NH inversions, and NAHR inversions, the window length in Mb, number of repeats and the average recombination rate in $\rm cM/Mb$.

I want to perform Ordinal Logistic Regressions on different subsets of the data. The assumptions of the Ordinal Logistic Regression are as follow:

- 1. The dependent variable is ordered.
- 2. One or more of the independent variables are either continuous, categorical or ordinal.
- 3. No multi-collinearity.
- 4. Proportional odds.

I show the data distributions in the figure below. The inversion counts have only a number of possible options, so they can be considered an ordinal variable. The independent variables are continuous and categorical, so assumptions 1 and 2 are satisfied

Distribution of variables

Figure 3: Distribution of variables.

We see that some categories have low number of cases, so I will make a "3 or more" category when relevant.

Table 2: Original counts

CountGroups	invCenters	NHCenters	NAHRCenters
0	56	74	92
1	40	34	28
2	18	11	5

CountGroups	invCenters	NHCenters	NAHRCenters
3	8	5	NA
4	2	NA	NA
5	NA	1	NA
6	1	NA	NA

Table 3: New counts

${\bf Count Groups}$	invCategory	NHCategory	NAHRCategory
0	56	74	92
1	40	34	28
2	18	11	5
3+	11	6	NA

With these groups, I visualize the relationships between dependent and independent variables.

Differences in each chromosomal variable between inversion count groups invCategory

Figure 4: Potential effect of independent variables on the different types of invesions.

Finally, I will test assumption number 3, no multi-collinearity between independent variables.

Pearson correlation

Spearman correlation

Figure 5: Correlations between variables.

We see that our three variables are significantly correlated, but this does not confirm multi-collinearity. I perform a variance inflation factor test on the corresponding linear model to further check the multi-collinearity.

	GVIF	Df	GVIF^(1/(2*Df))
Length.Mb	2.272644	1	1.507529
allRepCounts	1.232203	1	1.110046
Color	5.610644	2	1.539052
WAvgRate.perMb	4.011360	1	2.002838

The general rule of thumbs for VIF test is that if the VIF value is greater than 10, then there is multi-collinearity, so we can say that the third assumption (no multi-collinearity) is satisfied.

The proportional odds assumption will be tested for each model that we fit in the following analyses.

Variable scalation (optional)

Standardized coefficients are useful in our case to compare effects of predictors reported in different units. The most straightforward way is using the Agresti method of standardization, applied with the scale() function.

	Length.Mb I	Length.Mb.Scaled	allRepCounts a	llRepCounts.Scaled	WAvgRate.perM W	AvgRate.perMb.Sca
Min.	2.680877	-1.7498964	22.000	-0.9723187	0.0025248	-1.6620166
1st Qu.	12.405960	-0.8498356	290.000	-0.6083294	0.0064492	-0.7741887
Median	20.918330	-0.0620119	466.000	-0.3692916	0.0086610	-0.2738265
Mean	21.588363	0.0000000	737.904	0.0000000	0.0098713	0.0000000
3rd	28.276348	0.6189760	880.000	0.1929904	0.0124489	0.5831374
Qu.						
Max.	50.611965	2.6861476	3750.000	4.0909359	0.0222621	2.8031981

Once the model is fitted, we can use the sd to transform scaled coefficients to natural coefficients and viceversa.

Basic inversions model

	Value	Std. Error	t value	p value
Length.Mb	0.0737271	0.0201554	3.6579369	0.0002542
allRepCounts	0.0001784	0.0002728	0.6539988	0.5131126
Colorcentromeric	-0.0424398	0.5035783	-0.0842765	0.9328366
Colortelomeric	-0.2615772	0.4138051	-0.6321266	0.5273042
WAvgRate.perMb	-20.4600426	0.0075202	-2720.6640308	0.0000000
0 1	1.0831908	0.5879727	1.8422466	0.0654391
1 2	2.7165527	0.6382078	4.2565330	0.0000208
2 3+	4.0236666	0.7141154	5.6344767	0.0000000

All dataset together without colors category

	Value	Std. Error	t value	p value
Length.Mb	0.0748453	0.0173033	4.3254994	0.0000152
allRepCounts	0.0002178	0.0002716	0.8018725	0.4226267
WAvgRate.perMb	-42.4941805	0.0044931	-9457.7004110	0.0000000
0 1	1.0247472	0.4191767	2.4446666	0.0144986
1 2	2.6632238	0.4914423	5.4191992	0.0000001
2 3+	4.0057595	0.5917357	6.7695084	0.0000000

Centromeres vs telomeres models

Centromeres & arms

	Value	Std. Error	t value	p value
Length.Mb	0.0607367	0.0222281	2.7324270	0.0062870
allRepCounts	0.0001975	0.0003074	0.6424220	0.5205992
Colorcentromeric	-0.2558071	0.5190072	-0.4928779	0.6220989
WAvgRate.perMb	-70.9254147	0.0078320	-9055.9069961	0.0000000
0 1	0.4021982	0.6483600	0.6203316	0.5350395
1 2	2.0349075	0.7057819	2.8831958	0.0039366
2 3+	3.0992051	0.7809907	3.9682998	0.0000724

Arms

	Value	Std. Error	t value	p value
Length.Mb	0.0823750	0.0267929	3.074511e+00	0.0021085
allRepCounts	-0.0004984	0.0004835	-1.030656e+00	0.3027021
WAvgRate.perMb	-85.7120834	0.0076066	-1.126809e+04	0.0000000
0 1	0.4604720	0.7357741	6.258334 e-01	0.5314242
1 2	1.9100213	0.8097604	2.358749e+00	0.0183367
2 3+	3.0216266	0.8984374	3.363202e+00	0.0007704

Telomeres

	Value	Std. Error	t value	p value
Length.Mb	0.1684136	0.0488775	3.4456263	0.0005697
allRepCounts	0.0000070	0.0006143	0.0114539	0.9908613
WAvgRate.perMb	138.2007194	0.0236048	5854.7706739	0.0000000
0 1	5.5689339	1.0379514	5.3653126	0.0000001
1 2	7.2537166	1.1844030	6.1243652	0.0000000
2 3+	9.7362012	1.5787288	6.1671143	0.0000000

Odds ratios calculated from coefficients

Without some values

Without 3+

	Value	Std. Error	t value	p value
Length.Mb	0.0357966	0.0220799	1.621229e+00	0.1049686
allRepCounts	0.0003083	0.0003091	9.975525 e-01	0.3184964
Colorcentromeric	-0.2866251	0.5214320	-5.496885e-01	0.5825331
Colortelomeric	0.5193225	0.4396308	1.181270e+00	0.2374956
WAvgRate.perMb	-92.7126645	0.0079481	-1.166482e+04	0.0000000
0 1	0.0287219	0.6213614	4.622420 e - 02	0.9631316
1 2	1.8601967	0.6788796	2.740098e+00	0.0061421

Without 2

	Value	Std. Error	t value	p value
Length.Mb	0.0657398	0.0229874	2.8598215	0.0042388
allRepCounts	-0.0003079	0.0003747	-0.8217789	0.4112028
Colorcentromeric	-0.0381814	0.5421341	-0.0704280	0.9438530
Colortelomeric	-0.3856099	0.4840778	-0.7965865	0.4256912
WAvgRate.perMb	-29.3894076	0.0078837	-3727.8528784	0.0000000
0 1	0.7605662	0.6374277	1.1931803	0.2327988
1 3+	3.0714713	0.7312693	4.2001920	0.0000267

Without 1

	Value	Std. Error	t value	p value
	Varac	Std. Effor	o varue	
Length.Mb	0.1232740	0.0317454	3.8832083	0.0001031
allRepCounts	0.0003903	0.0003458	1.1285186	0.2591010
Colorcentromeric	-0.2570092	0.8834121	-0.2909278	0.7711065
Colortelomeric	-0.1823910	0.5982558	-0.3048713	0.7604642
WAvgRate.perMb	-2.1272076	0.0137193	-155.0526408	0.0000000
0 2	3.8626769	1.0597724	3.6448175	0.0002676
2 3+	5.5240181	1.1521950	4.7943431	0.0000016

Without 0

	Value	Std. Error	t value	p value
Length.Mb	0.1242950	0.0342084	3.6334649	0.0002796
allRepCounts	0.0007091	0.0004198	1.6890466	0.0912105
Colorcentromeric	-0.2214517	0.9960831	-0.2223225	0.8240628
Colortelomeric	-0.9174297	0.6209592	-1.4774395	0.1395579
WAvgRate.perMb	85.6275888	0.0129082	6633.5801778	0.0000000
1 2	4.4949442	1.1303102	3.9767350	0.0000699
2 3+	6.3083182	1.2421986	5.0783490	0.0000004

Bingo! 1 categories are doing something...

```
load(file= "data/winRegions.RData")

ggplot(winRegions)+geom_histogram(aes(x = WAvgRate.perMb))+
  facet_grid(invCategory ~ Color)
```



```
ggplot(winRegions, aes(x = "recRate", y = WAvgRate.perMb))+
    # Half violin
    ggdist::stat_halfeye(adjust = .5, width = .6, .width = 0, justification = -.2, point_colour = NA)
    # Boxplot
    geom_boxplot(width = .1, outlier.shape = NA) +
    # Points
    gghalves::geom_half_point_panel(side = "l", range_scale = .6, alpha = .5, aes(color = invCategor)
    # scale_color_manual(values = c(rep("#3c7ae7",11),rep("#89b23e",11)))+
    # Adjust coordinates
    coord_flip()+facet_grid(Color ~ .)+
    # coord_flip( xlim = c(1.3, NA))+
    # Adjust labels
    theme(axis.title.y = element_blank(), legend.position = "top")+
    # Title
    ggtitle("group")
```

group


```
ggplot(winRegions, aes(x = "recRate", y = WAvgRate.perMb))+
    # Half violin
    ggdist::stat_halfeye(adjust = .5, width = .6, .width = 0, justification = -.2, point_colour = NA)
    # Boxplot
    geom_boxplot(width = .1, outlier.shape = NA) +
    # Points
    gghalves::geom_half_point_panel(side = "l", range_scale = .6, alpha = .5, aes(color = Color))+
    # scale_color_manual(values = c(rep("#3c7ae7",11),rep("#89b23e",11) ))+
    # Adjust coordinates
    coord_flip()+facet_grid(invCategory ~ .)+
    # coord_flip( xlim = c(1.3, NA))+
    # Adjust labels
    theme(axis.title.y = element_blank(), legend.position = "top")+
    # Title
    ggtitle("group")
```

group

I will repeat the analysis without outliers to look for influential points.

Without per-region (Color) outliers

```
load(file= "data/winRegions.RData")
outvalue<-boxplot(winRegions$WAvgRate.perMb ~ winRegions$Color)$out</pre>
```


winRegions<-winRegions[!(winRegions\$WAvgRate.perMb %in% outvalue),]</pre>

	Value	Std. Error	t value	p value
Length.Mb	0.0750515	0.0203656	3.6852054	0.0002285
allRepCounts	0.0002364	0.0002785	0.8488965	0.3959389
Colorcentromeric	-0.0462419	0.5100767	-0.0906567	0.9277654
Colortelomeric	-0.3817157	0.4170139	-0.9153548	0.3600054
WAvgRate.perMb	-3.2871793	0.0072546	-453.1177931	0.0000000
0 1	1.2684207	0.5930473	2.1388190	0.0324503
1 2	2.9027449	0.6421521	4.5203384	0.0000062
2 3+	4.2414116	0.7194241	5.8955647	0.0000000

Without per-category (InvCategory) outliers

```
load(file= "data/winRegions.RData")
outvalue<-boxplot(winRegions$WAvgRate.perMb ~ winRegions$invCategory)$out</pre>
```


winRegions<-winRegions[!(winRegions\$WAvgRate.perMb %in% outvalue),]</pre>

	Value	Std. Error	t value	p value
Length.Mb	0.0684941	0.0205945	3.325843e+00	0.0008815
allRepCounts	0.0002199	0.0002812	7.819999e-01	0.4342146
Colorcentromeric	-0.2352583	0.5092974	-4.619271e-01	0.6441336
Colortelomeric	-0.1392175	0.4298412	-3.238812e-01	0.7460280
WAvgRate.perMb	-82.0451558	0.0075305	-1.089501e+04	0.0000000
0 1	0.4400045	0.5997809	7.336087e-01	0.4631873
1 2	2.1706342	0.6546799	3.315566e+00	0.0009146
2 3+	3.4892504	0.7366953	4.736355e+00	0.0000022

Without all outliers

```
load(file= "data/winRegions.RData")

outvalue_A<-boxplot(winRegions$WAvgRate.perMb ~ winRegions$invCategory, horizontal = TRUE)$out

A company to the compan
```

outvalue_B<-boxplot(winRegions\$WAvgRate.perMb ~ winRegions\$Color, horizontal = TRUE)\$out</pre>

winRegions<-winRegions[!(winRegions\$WAvgRate.perMb %in% outvalue_A),]
winRegions<-winRegions[!(winRegions\$WAvgRate.perMb %in% outvalue_B),]</pre>

save(yVar,xVars,myFormula,xVarsVector,samples , winRegions, file= "data/analysisParams.RData")

Value	Std. Error	t value	p value
0.0703901	0.0207286	3.3957920	0.0006843
0.0002483	0.0002869	0.8653041	0.3868719
-0.2009656	0.5142903	-0.3907629	0.6959725
-0.3429690	0.4322469	-0.7934562	0.4275121
-52.8849659	0.0072844	-7260.0654212	0.0000000
0.7096547	0.6022166	1.1784044	0.2386354
2.4455977	0.6559532	3.7283115	0.0001928
3.7692352	0.7380748	5.1068470	0.0000003
	0.0703901 0.0002483 -0.2009656 -0.3429690 -52.8849659 0.7096547 2.4455977	0.0703901 0.0207286 0.0002483 0.0002869 -0.2009656 0.5142903 -0.3429690 0.4322469 -52.8849659 0.0072844 0.7096547 0.6022166 2.4455977 0.6559532	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Manually remove group 1 outlier

```
load(file= "data/winRegions.RData")

outvalue<-max(winRegions[winRegions$invCategory == "1", "WAvgRate.perMb"])

winRegions<-winRegions[!(winRegions$WAvgRate.perMb %in% outvalue),]
winRegions[winRegions$WAvgRate.perMb == outvalue,]</pre>
```

[1] Chromosome Start

End

```
[4] Color
                              invCenters
                                                    NHCenters
   [7] NAHRCenters
                              Length.Mb
                                                    allRepCounts
## [10] WAvgRate.perMb
                              ChromType
                                                    invCategory
## [13] NHCategory
                              NAHRCategory
                                                    plotgroup
## [16] Length.Mb.Scaled
                              allRepCounts.Scaled
                                                    WAvgRate.perMb.Scaled
## <0 rows> (or 0-length row.names)
```

save(yVar,xVars,myFormula,xVarsVector,samples , winRegions, file= "data/analysisParams.RData")

	Value	Std. Error	t value	p value
Length.Mb	0.0699748	0.0203525	3.4381454	0.0005857
allRepCounts	0.0002456	0.0002732	0.8990661	0.3686175
Colorcentromeric	-0.1475520	0.5056204	-0.2918236	0.7704215
Colortelomeric	-0.0209640	0.4186967	-0.0500697	0.9600668
WAvgRate.perMb	-65.3042648	0.0074218	-8799.0176031	0.0000000
0 1	0.6980202	0.5948266	1.1734852	0.2406013
1 2	2.3049403	0.6446221	3.5756457	0.0003494
2 3+	3.6414174	0.7219612	5.0437854	0.0000005

Odds ratios calculated from coefficients

Which is this point?

```
load(file= "data/winRegions.RData")
# Setup
```

```
pacman::p_load(ggplot2)
name <-"CEUSpence_COzones_0.03_1000000"
divChroms <- pasteO("data/divideChromosomes/",name,"/")</pre>
  # PATHS
  windowsFile <- pasteO(divChroms,"/windows.txt")</pre>
  densityFile <- pasteO(divChroms, "/densities.txt")</pre>
  extremesFile <- pasteO(divChroms, "/extremes.txt")</pre>
  centroFile <- pasteO(divChroms,"/workspace.txt")</pre>
  # FILES
  windows <- read.table(windowsFile, header = T, sep = "\t")</pre>
    windows$Color <- "a"
    windows[as.numeric(rownames(windows)) %% 2 == 1, "Color"] <- "b"</pre>
  windows$Chromosome <- factor(windows$Chromosome, levels = paste(rep("chr", 23), as.character(c(c(1:2
  density <- read.table(densityFile, header = T, sep = "\t")</pre>
  density$Chromosome <- factor(density$Chromosome, levels = paste(rep("chr", 23), as.character(c(c(1:22
  extremes <- read.table(extremesFile, header = T, sep = "\t")</pre>
  extremes$Chromosome <- factor(extremes$Chromosome, levels = paste(rep("chr", 23), as.character(c(c(1:
  centromeres <- read.table(centroFile, header = T, sep = "\t")</pre>
  centromeres$Chromosome <- factor(centromeres$Chromosome, levels = paste(rep("chr", 23), as.character
  armLimits <-centromeres[grep("cen", centromeres$chromID,invert = T),]</pre>
  centromeres<-centromeres[grep("cen", centromeres$chromID),]</pre>
  starts <- armLimits[grep("p", armLimits$chromID), c("Start", "Chromosome")]
  ends<- armLimits[grep("q", armLimits$chromID), c("End", "Chromosome")]</pre>
    d_rowlist<-c()</pre>
  c_rowlist<-c()</pre>
  for (c in unique(starts$Chromosome)) {
    cStart <-min(extremes[extremes$Chromosome ==c, "pos"])</pre>
    starts - starts[!(starts Chromosome == c \& starts Start < cStart), ] # chromosome start will be fi
    windows[windows$Chromosome ==c & windows$Start < cStart, "Start" ] <-cStart #window start may be affe
    d_rowlist<-c(d_rowlist,rownames(density[density$Chromosome ==c & density$pos < cStart,])) #some den
    c_rowlist<-c(c_rowlist,rownames(centromeres[centromeres$Chromosome ==c & centromeres$Start < cStart</pre>
  density<-density[!(rownames(density) %in% d_rowlist),]</pre>
  centromeres<-centromeres[!(rownames(centromeres) %in% c_rowlist),]</pre>
  # PLOT
  ggplot()+
        geom_rect(data= centromeres, aes(xmin = Start, xmax = End, ymin = 0, ymax = Inf), fill = "blu
        geom_vline(data=starts, aes(xintercept = Start), color = "orange")+geom_vline(data=ends, aes(xi.
        geom_rect(data=windows, aes(xmin = Start, xmax = End, fill = Color, ymin = 0, ymax = Inf), alph
        geom_line(\frac{data}{data} = density, aes(x = pos, y = val)) +
        geom_point(data=extremes, aes(x = pos, y = val, color = Type))+
        facet_wrap("Chromosome", scales = "free", ncol=4)+
        scale_fill_manual(values=c("#737373", "#e1e5eb"), guide="none")+
        scale_color_manual(values = c("#bd2b43", "#2b63bd"), guide = "none")+
```

```
scale_y_continuous(labels=function(x)x*1000000)+
   theme(axis.ticks.x = element_blank(),axis.text.x = element_blank(),axis.text.y = element_text(
   ylab("Rate (cM/Mb)")+xlab("Position")+ggtitle(name)
```

CEUSpence_COzones_0.03_1000000

Position

```
ggplot()+
    # geom_rect(data= centromeres, aes(xmin = Start, xmax = End, ymin = 0, ymax = Inf), fill = "b
    geom_vline(data=starts, aes(xintercept = Start), color = "orange")+geom_vline(data=ends, aes(xintercept = Start), xmax = End, fill = Color, ymin = 0, ymax = WAvgRater geom_line(data=density,aes(x = pos, y = val * 1000000))+
    geom_text(data = winRegions, aes(x = (Start+End)/2, y = WAvgRate.perMb, label = invCategory))+
    geom_point(data=extremes, aes(x = pos, y = val * 1000000, color = Type))+
    facet_grid("Chromosome", scales = "free_x", space = "free_x")+
    # scale_fill_manual(values=c("#737373", "#e1e5eb"), guide="none")+
    scale_color_manual(values = c("#bd2b43", "#2b63bd"), guide = "none")+
    # scale_y_continuous(labels=function(x)x*1000000)+
    theme(axis.ticks.x = element_blank(),axis.text.x = element_blank(),axis.text.y = element_text(
    ylab("Rate (cM/Mb)")+xlab("Position")+ggtitle(name)
```

CEUSpence_COzones_0.03_1000000

Wihtout some chromosomes

	Value	Std. Error	t value	p value
Length.Mb	0.1747090	0.0505233	3.4579886	0.0005442
allRepCounts	-0.0000613	0.0006051	-0.1013287	0.9192896
Colorcentromeric	0.1413892	1.1510196	0.1228382	0.9022352
Colortelomeric	-2.2741922	0.7817295	-2.9091803	0.0036238
WAvgRate.perMb	391.2285330	0.0160786	24332.3073241	0.0000000
0 1	6.3872174	1.3625175	4.6878060	0.0000028
1 2	8.0249932	1.5046694	5.3333931	0.0000001
2 3+	9.1366160	1.5889662	5.7500378	0.0000000

Tested unsuccessfully:

- no Chr22
- no Chr21
- no Chr19
- chroms 1,2,3,4,5
- chroms 6,7,8,9,10

So it seems something about the data...

Multiply the numbers

cM/Mb *10

	Value	Std. Error	t value	p value
Length.Mb	0.0728497	0.0201091	3.6227291	0.0002915
allRepCounts	0.0002031	0.0002730	0.7437002	0.4570579
Colorcentromeric	-0.0771374	0.5023924	-0.1535401	0.8779723
Colortelomeric	-0.1399662	0.4152548	-0.3370611	0.7360709
WAvgRate.perMb	-3.5621851	0.0743385	-47.9184552	0.0000000
0 1	0.9713314	0.5817022	1.6698087	0.0949572
1 2	2.5961332	0.6326116	4.1038344	0.0000406
2 3+	3.9276278	0.7102449	5.5299626	0.0000000

cM/Mb *100

	Value	Std. Error	t value	p value
Length.Mb	0.0728569	0.0242608	3.0030712	0.0026727
allRepCounts	0.0002030	0.0002889	0.7026144	0.4822961
Colorcentromeric	-0.0769941	0.5885796	-0.1308134	0.8959230
Colortelomeric	-0.1401181	0.6145913	-0.2279858	0.8196573
WAvgRate.perMb	-0.3558995	0.8014672	-0.4440599	0.6569992
0 1	0.9717801	1.1144136	0.8720103	0.3832027
1 2	2.5965576	1.1354513	2.2868067	0.0222071
2 3+	3.9280475	1.1857060	3.3128344	0.0009236

cM/Mb *1000

	Value	Std. Error	t value	p value
Length.Mb	0.0728566	0.0242608	3.0030590	0.0026728
allRepCounts	0.0002030	0.0002889	0.7026109	0.4822983
Colorcentromeric	-0.0769918	0.5885793	-0.1308095	0.8959260
Colortelomeric	-0.1401134	0.6145917	-0.2279780	0.8196634
WAvgRate.perMb	-0.0355908	0.0801473	-0.4440671	0.6569941
0 1	0.9717631	1.1144154	0.8719935	0.3832119
1 2	2.5965472	1.1354544	2.2867913	0.0222080
2 3+	3.9280298	1.1857092	3.3128104	0.0009236

cM/Mb *10000

	Value	Std. Error	t value	p value
Length.Mb	0.0728569	0.0242611	3.0030340	0.0026730
allRepCounts	0.0002030	0.0002889	0.7026239	0.4822902
Colorcentromeric	-0.0770008	0.5885540	-0.1308305	0.8959094
Colortelomeric	-0.1401096	0.6146278	-0.2279584	0.8196786
WAvgRate.perMb	-0.0035591	0.0080205	-0.4437485	0.6572244
0 1	0.9717729	1.1146403	0.8718264	0.3833031
1 2	2.5965559	1.1357978	2.2861075	0.0222480
2 3+	3.9280357	1.1860982	3.3117289	0.0009272

