Sistemas Digitais 2013/2014

Data: 28/01/2013 Exame – Época Normal Duração: 2 horas

1) Simplifique a expressão lógica seguinte recorrendo aos teoremas e postulados da álgebra de Boole:

$$F = \overline{A.B.C.D} + \overline{C.D} + \overline{A.B.C} + A.C.\overline{A}$$

2) Dimensione um mecanismo de controlo duma porta de abertura automática duma loja comercial de acordo com a figura. Pretende-se um comportamento idêntico às portas que encontramos no quotidiano, que abrem para deixar entrar ou sair clientes e voltam a fechar quando não há pessoas na proximidade.

O movimento da porta é realizado por um motor M cujo movimento é

controlado apenas por um sinal que define o sentido de rotação do motor. O motor tem sempre indicação para rodar no entanto pára automaticamente quando a porta fica completamente aberta ou completamente fechada, pois em cada um destes casos a porta oferece resistência ao movimento. Para determinar se a porta se encontra completamente aberta existe um sensor A que fica activo neste caso.

A abertura e fecho da porta devem obedecer ao seguinte critério:

- A porta deve manter-se fechada enquanto n\u00e3o forem detectadas pessoas atrav\u00e9s do sensor S;
- A porta inicia a abertura se o sensor S ficar activo;
- Iniciada a abertura, esta só termina quando a porta se encontrar totalmente aberta (sensor A ficar activo) mesmo que durante a abertura o sensor S fique desactivo;
- A porta depois de totalmente aberta inicia de imediato o fecho caso o sensor S esteja desactivo, caso contrário permanece aberta enquanto o sensor S se mantiver activo;
- Durante o fecho, se o sensor S ficar activo, então a porta reinicia imediatamente a abertura ainda antes de fechar completamente de forma a ficar novamente aberta.

Desenvolva o projecto do sistema descrito apresentando cada um dos passos:

- a) O diagrama de estados
- b) A tabela de transição de estados
- c) Os estados redundantes
- d) A codificação de estados
- e) A tabela de transição com estados codificados
- f) O diagrama lógico do circuito

 Simplifique a expressão lógica seguinte recorrendo aos teoremas e postulados da álgebra de Boole:

$$F = \overline{A.B.\overline{C.D} + \overline{C.D} + \overline{A.B.C}} + A.C.\overline{A}$$

$$\overline{F} = \overline{A.B.\overline{C.D} + \overline{C.D} + \overline{A.B.C}} + 0$$

$$F = \overline{A.B.\overline{C.D} + \overline{C.D} + \overline{A.B.C}}$$

$$\overline{A} = A$$

$$F = \overline{A.B.\overline{C.D} + \overline{C.D} + \overline{A.B.C}}$$

$$\overline{A} = A$$

$$F = \overline{A.B} + \overline{C.D} + \overline{C.D} + \overline{A.B.C}$$

$$F = \overline{A.B} (1 + C) + \overline{C.D}$$

$$F = \overline{A.B} + \overline{C.D}$$

3. Considerando a função lógica F representada pela tabela de verdade seguinte:

X	Υ	Z	F
0	0	0	W
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	W
1	0	1	0
1	1	0	0
1	1	1	0

a. Obtenha a Forma Mínima Soma de Produtos

		Y		
	W	0	1	0
X	W	0	0	0
·		7	,	

$$Fmsp = \overline{Z}.\overline{Y}.W + \overline{X}.Y.Z$$

b. Implemente a função lógica F recorrendo a um Multiplexer 8:1 (e a eventual lógica adicional);

c. Implemente a função lógica F recorrendo unicamente a um Multiplexer 4:1 (e a eventual lógica adicional);

F(w,z)	F	Z	Υ	Х
_ 7.W	W	0	0	0
Z.W	0	1	0	0
7	0	0	1	0
Z	1	1	1	0
_ 	W	0	0	1
Z.W	0	1	0	1
	0	0	1	1
0	0	1	1	1

X	Υ	F(w,z)
0	0	$\overline{Z}.W$
0	1	Z
1	0	$\overline{Z}.W$
1	1	0

3) Considerando a função lógica F representada pela tabela de verdade seguinte:

Х	Υ	Z	F
0	0	0	W
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	W
1	0	1	0
1	1	0	0
1	1	1	0

- a) Obtenha a Forma Mínima Soma de Produtos;
- b) Implemente a função lógica F recorrendo a um Multiplexer 8:1 (e a eventual lógica adicional);
- c) Implemente a função lógica F recorrendo unicamente a um Multiplexer 4:1
 (e a eventual lógica adicional);

4) Considere o circuito da figura seguinte:

Faça a análise do circuito, indicando a sequência principal de contagem ($S_FS_ES_DS_CS_BS_A$) em binário e em decimal. Justifique a solução proposta, para o efeito deve recorrer a Tabelas de verdade e a uma Tabela de transição.

Pagoude 2

O sitema dipter tem per objetirs controlar a abertira de porte acionanto o motor M.

For when i acionado atavés dem sinal digital que ità definir o sentido de notação do motor e por consequência a ABERTURA OU FECTO da porta.

A acção do siskues sua baseada na infunação proveniente de dois sensores espeperamente (A e 5) de acordo com a firma

Estavos portanto portante um sistema con duas entradas e vua saíde.

Vaus consideran don rhos possibers do Ensteur;

- ESTAPO A: Associado ao fecho do porte que compende a acceso de Fechas e també à situaca de Porte Fechada

- F5TADO B: Associado à abentia de porte que comprende a accad de Abentia e tante porte completamente abente.

Assim defruse o diagrama de setado

EUTRADA /SAIDA S A / M

Detal A conogoude of part fechole or a fector-se of gue devent continuan a fector-se of gue devent continuan a fector-se of guesson (S=0)

reph stedo i judipanta a la puesa proseduinto de seuson A

Quardo o silkura ste uo stedo A e o suson A detecto

premes de pessoon (A=1) o silhura park ao

seledo de Abentra (Estapo B).

O stedo B ilai manta se luquado a fat má

entiver toda abente interpoden de house pessoas ou

não.

avando a part silver toda abente (A=1) so si

mantera dout se s dedector pessoas / caso

Confacilo volta do stedo de TECHAR (BTADOA).

b) O diapama de Fstedos conespude à Sejunh teles de transitud de soledos

BTAD ACTUAL ON	EVÎRI S	*DAS	ESTADO SELVINIE Q 141	SM'DA M
A A A	0011	0101	A A B B	0 1 1
B B B B	0011	0 1 0 1	B A B B	0 1 1

- c) Aprilar con 2 sitedos uas existen solar redumidantes
- a codificació per tendei muito aliphicado:

ESTADO CÓDIGO A O B 1

Passalus asser à tadéla de transità de solados eodificados con exertação.

Vavos consideran a utilizació de Flip-Flogs de tipo J-K

	-
1	
	1
	1)
	1/

1	ESTADO ACIVAL	ENTRAONS	FUTRADA FUT-FLOP	BIARD	SAIDA	1
	(n	SA	JK	QITI	M	
1	0	00	o ×	0	0	
	0	01	OX	0	0	
	0	10	1 ×	1	1	
	0	11	1 ×	1	1	
-	1	00	× U	1	1	
	1	01	× 1	0	0	
	1	10	XO	1	1	
) 1	111	XO	1		

Table a exciteção do Tlp. Plop J-K

an - Qn+1	L	12
070	0	X
0-1	1	×
1-0	X	1
1-1	X	0

$$K = A \cdot \overline{s}$$

$$M = S + Q \cdot \widehat{A}$$

of Digground lights do circuito

Analy 20 controlon.

TABELA DE VERBADE

	1000-10
	1
DO,	1,2,6,7,10,11

2060	SD SC SB SA C	1600 1.00	ED EC GB GA
-		LOPIZ COAD	1
0	0000	1 1	0 1 10
<i>z</i> 3	1001015		0 1 10
	0011	1 6	0110
4	0100/	1 1	1010
5	0 1 0 0	! 1	1000
7567	0111		1010
8	1000 1	1/	0110
	0010	1	0110
10	1010	1 1 1	0)) 0
12	11001		1010
13	11010	1171	1010
14	1 1 1 0 1	1 1	1010
15	11110	11)	1010
		+	
		rero	

Contidos L> 0, 1, 2, 6, 7, 10, 11

	SISE SD SC SB SA
•	10,0000
-	000001
_	00000000
	000 1 1 0
	0 1 0 1 1 1
	0 1 1,010
	1 0 1 1 0 1 1

Tabele Fernaion

D (Qu+)

Contigem Binouis

D6c - 1, 2, 6, 23, 26, 43, 32