System ekspertowy

Ekspert – osoba posiadająca wiedzę specjalistyczną w pewnej dziedzinie, najczęściej o niealgorytmicznym charakterze i umiejętność jej stosowania dla rozwiązywania problemów z tej dziedziny.

Cechy eksperta

- Wiedza dziedzinowa
- Umiejętność wnioskowania

System ekspertowy...

System ekspertowy (program regułowy) – program, którego zadaniem jest rozwiązywanie problemów zlecanych ekspertom.

Główne elementy systemu ekspertowego:

- Baza wiedzy wiedza dziedzinowa, istotna dla podejmowania racjonalnych decyzji.
- System wnioskujący system podejmowania decyzji na podstawie bazy wiedzy

- 44 -

- 45 -

System ekspertowy...

Pozostałe elementy systemu ekspertowego:

- Edytor bazy wiedzy umożliwia edycję, aktualizacje, usuwanie bazy wiedzy
- Interfejs użytkownika komunikacja systemu z użytkownikiem
- Dynamiczna baza danych baza danych w postaci relacyjnej służąca przechowywaniu odpowiedzi użytkownika i wyników wnioskowania

Struktura systemu ekspertowego

Edytor bazy wiedzy

Interfejs użytkownika Baza wiedzy

System wnioskujący

Dynamiczna baza danych

- 46 -

Baza reguł

- Reguły wiedza dziedzinowa o charakterze ogólnym
- Fakty wiedza dziedzinowa o charakterze szczegółowym

Reguly Fakty

Przykład reguły:

"Jeżeli student x otrzymał wszystkie zaliczenia w terminie **i** student x zdał wszystkie egzaminy w terminie **to** student x zaliczył semestr"

Przykład faktu:

"Student Jan Nowak otrzymał wszystkie zaliczenia w terminie"

Baza wiedzy

- Baza wiedzy oddzielona od systemu ekspertowego
- Najczęściej plik tekstowy, łatwość
 - o czytania
 - o edycji

do modyfikacji bazy wiedzy służy tzw. edytor bazy wiedzy. Umożliwia jej modyfikację bez naruszania integralności systemu wnioskującego

- 48 -

- 49 -

- 47 -

Baza reguł...

- Reguła jest zdaniem warunkowym to znaczy:
 - W języku potocznym:
 Jeśli A jest prawdą i B jest prawdą to C jest prawdą
 - o W języku logiki: $A \wedge B \Rightarrow C$
 - W języku PROLOG:C:-A,B
 - o Na potrzeby systemów ekspertowych $A, B \rightarrow C$
- A, B warunki reguly
- C wniosek reguly

- 50 -

Baza reguł... Klauzule Horna

- Fakt może być uważany za wniosek reguły, której warunki zawsze są prawdą.
- Fakt zapisujemy w postaci A
- Klauzula Horna reguła o jednym wniosku

Twierdzenie.

Dowolne zagadnienie dające się wyrazić w języku logiki można wyrazić za pomocą klauzul Horna.

- 51 -

Klauzule Horna...

 Jeżeli z tych samych warunków mogą wynikać dwa wnioski zapisujemy w postaci dwóch klauzul Horna:

A, B, $C \rightarrow wniosek1$

A, B, $C \rightarrow wniosek2$

2. Jeżeli ten sam wniosek uzyskujemy w wyniki spełnienia dwóch różnych zbiorów warunków zapisujemy:

A, B, $C \rightarrow wniosek$

D, E, $F \rightarrow$ wniosek

 Klauzule Horna upraszczają automatyczne wnioskowanie a więc budowę systemu

- 52 -

Budowa bazy wiedzy. Zagnieżdżanie reguł

- Występuje gdy wnioski jednych reguł są warunkami reguł innych.
- Występowanie zagnieżdżania oznacza, że nie o wszystkie warunki powinien system pytać
- Zbiór warunków bazy reguł dzielimy na warunki dopytywalne i niedopytywalne
- Warunki dopytywalne warunki nie będące wnioskami innych reguł. Ich wartość logiczna musi być określona przez użytkownika
- Warunki niedopytywalne warunki będące wnioskami innych reguł. Ich wartość może być wyprowadzona przez system na podstawie warunków dopytywalnych

- 53 -

Budowa bazy wiedzy. Klasyfikacja baz reguł

- Klasyfikacja ze względu na strukturę zagnieżdżania reguł
 - a) **Bazy elementarne** warunki niedopytywalne nie mogą występować w postaci zanegowanej np.:

1. A, B, $nC \rightarrow W$

2. W, nD, $E \rightarrow V$

3. V, H, I, $J \rightarrow U$

(warunki niedopytywalne W, V występują w postaci niezanegowanej)

Budowa bazy wiedzy. Klasyfikacja baz reguł

b) **Bazy rozwinięte** – warunki dopytywane mogą występować w postaci zanegowanej

1. A, B, $C \rightarrow W$

2. nW, nD, $E \rightarrow V$

3. nV, H, I, $J \rightarrow U$

(warunki niedopytywalne nW, nV mogą występować w postaci zanegowanej)

54 -

- 55 -

Budowa bazy wiedzy. Spłaszczanie baz reguł

 Dowolną bazę reguł można spłaszczyć przez zastępowanie warunków niedopytywalnych listami warunków reguł, których są wnioskami – często utrata czytelności

Baza zagnieżdżona	Baza płaska	
1. $A \rightarrow D$	$1. A \rightarrow D$	

2.
$$F, H \rightarrow G$$
 2. $C, A, H \rightarrow G$

3.
$$B \rightarrow L$$
 3. $B \rightarrow L$ 4. A. $E \rightarrow M$

5.
$$C, D \rightarrow F$$
 5. $C, A \rightarrow F$

6. A, E \rightarrow J 6. A, E \rightarrow J

Wnioskowanie

Dla wszystkich systemów dokładnych zakładamy, że uważamy
za nieznane to, co nie wynika z bazy reguł, faktów, faktów
zadeklarowanych przez użytkownika oraz reguł
wnioskowania - założenie otwartego świata

 Założenie otwartego świata – pozostawia drzwi otwarte na przypadek opracowania innej reguły z tym samym wnioskiem lecz innymi warunkami, które być może okażą się prawdziwe

- 57 -

Wnioskowanie

- Jeżeli prawdą są wszystkie warunki implikacji regułowej prawdziwy jest również jej wniosek
- Jeżeli nieprawdą jest choć jeden warunek implikacji regułowej to wniosek jest nieukonkretniony

Implikacja w logice				
q	p	q⇒p		
1	1	1		
0	1	1		
0	0	1		

Implikacja regułowa				
q	p	q→p		
1	1	1		
0	?	1		

- 58 -

- 56

Ograniczenia założenia otwartego świata

Rozpatrzmy regułę:
 jeśli dostanę urlop i będę miał pieniądze wyjadę na urlop

- Reguła nie określa co się stanie, gdy któryś z jej warunków nie będzie spełniony
- Rozwiązanie jeżeli warunki powyższej reguły są jedynymi, których spełnienie umożliwi wyjazd na urlop nalezałoby dopisać dwie reguły:

jeśli nie dostanę urlopu nie pojadę na urlop jeśli nie będę miał pieniędzy nie pojadę na urlop

- 59 -

Cele wnioskowania

- Wyznaczenie wszystkich wniosków prawdziwych dla początkowego zbioru faktów w oparciu o zdefiniowane reguły oraz reguły wnioskowania – wnioskowanie w przód
- Potwierdzenie (zweryfikowanie) lub brak możliwości
 potwierdzenia iż dana hipoteza wynika z danego początkowego
 zbioru faktów oraz reguł wnioskowanie wstecz

Zasady wnioskowania

Wnioskowanie w systemach ekspertowych elementarnych dokładnych opiera się o dwie reguły:

1. reguła odrywania (modus ponens):

Dana regula: **Jeżeli A to B**Prawdą jest **A** $\frac{A \to B, A}{B}$

Wniosek: prawdą jest B

2. Założenie otwartego świata:

Dana regula: **Jeżeli A to B**Nieprawdą jest **A** $\frac{A \rightarrow B, \neg A}{?B}$

Wniosek: **B** jest nieukonkretnione

- 60

- 61

Wnioskowanie w przód

Przykład 1:

- 1. $A \rightarrow D$
- 2. $F, H \rightarrow G$
- 3. $B \rightarrow L$
- 4. D. J \rightarrow M
- 5. C, D \rightarrow F
- 6. A, $E \rightarrow J$

Za fakty uznajemy A, C, E, H

Wnioskowanie wstecz

Przykład:

1. $A \rightarrow D$

3. $B \rightarrow L$

2. $F, H \rightarrow G$

4. D, $J \rightarrow M$

5. $C, D \rightarrow F$ 6. A, $E \rightarrow J$

Wnioskowanie w przód

Przykład 1:

- 1. $P \rightarrow Q$
- 2. L, $M \rightarrow P$
- 3. B, $L \rightarrow M$
- 4. A. $P \rightarrow L$
- 5. A, B \rightarrow L

Za fakty uznajemy A, B. Czy można wywnioskować Q?

- 63 -

- 65 -

- 62 -

Wnioskowanie w przód - uwagi

- 1. Jeżeli reguła ma warunek o nieokreślonej wartości logicznej to jest pomijana
- 2. Jeżeli wszystkie warunki reguły są faktami to reguła jest spełniona i jej wniosek jest faktem – dodawanym do dynamicznej bazy danych
- 3. Jeżeli jeden z warunków nie jest faktem, to reguła jest niespełniona i jej wniosek nie jest faktem, czego nie piszemy bo to co nie wynika z bazy reguł nie jest faktem
- 4. Jeżeli kilka reguł ma ten sam wniosek to spełnienie co najmniej z nich czyni wniosek faktem
- Jeżeli reguła została już testowana i jej wniosek uznano za fakt zostaje pomijana w następnym cyklu testowania

Wnioskowanie wstecz

- Przy wnioskowaniu w przód użytkownik deklaruje pewne fakty otrzymując na wyjściu fakty nowe, wynikające z bazy wiedzy
- Użytkownik nie musi być zainteresowany znalezieniem wszystkich faktów a jedynie stwierdzeniem prawdziwości jednego z nich - nazywamy go hipotezą
- Wynikiem wnioskowania wstecz może być:
 - o Weryfikacja hipotezy potwierdzenie
 - o Brak potwierdzenia hipotezy
- Dla zweryfikowania hipotezy musi ona być wnioskiem co najmniej jednej reguły
- W przypadku gdy nie jest wnioskiem żadnej z reguł oznacza że nie wynika z bazy reguł (założenie otwartego świata)

- 64 -

Przykład:

- 1. $P \rightarrow Q$
- 2. L, $M \rightarrow P$
- 3. B, $L \rightarrow M$

Wnioskowanie wstecz

- 4. A, $P \rightarrow L$
- 5. A, B \rightarrow L

Zweryfikować hipotezę Q, przy założeniu że tylko warunki A, B sa faktami.

Zweryfikować hipotezę F, przy założeniu że tylko warunki A, C są faktami.

Regułowe systemy ekspertowe

- Wiedza dziedzinowa zapisana w postaci deklaratywnej za pomoca:
 - o Reguł
 - o Faktów
- System wnioskujący oparty na wnioskowaniu logicznym

Systemy regułowo-modelowe (hybrydowe)

- Wiedza dziedzinowa w postaci deklaratywnej (reguły i fakty)i proceduralnej (równania, relacje)
- Wnioskowanie logiczne wspomagane obliczeniami numerycznymi i relacyjnymi

Struktura bazy wiedzy RMSE

Baza r	eguł	Baza ogra	aniczeń
Baza	rad	Pliki	rad
	Baza modeli		

- Baza reguł wiedza dziedzinowa logiczna
- Baza ograniczeń wiedza dziedzinowa logiczna
- Baza modeli wiedza dziedzinowa matematyczna
- Baza rad/Pliki rad wiedza dziedzinowa uzupełniająca i wyjaśniająca

- 68 -

System RMSE

- W systemach RMSE stosowane są wyłącznie zmienne łańcuchowe, tak zwane inkludy, np.: "zmienna łańcuchowa"
- Wyróżnia się zmienne łańcuchowe typu:
 - o Logicznego gdy przyjmuje tylko wartości ze zbioru {prawda, nieprawda}, np.: "wiek>=32 lat"
 - o Rzeczywistego np.: "pi", "123.45"
 - o Całkowitego np.: "wiek", "12"
- Inkludy nie musza być atomowe (moga występować spacje)

System RMSE, baza wiedzy

- Fakty bazy dokładnej mają postać: fakt("warunek_dopytywalny")
- Reguły bazy dokładnej mają postać: reguła(nr_reguły, "wniosek", "lista warunków", semafor_wyświetlania)
- Lista warunków: ["warunek1", "warunek2" "warunek3",..., "warunekN"]
- warunekI logiczna zmienna łańcuchowa
- semafor_wyświetlania wartość 0 lub 1 oznacza odpowiednio, że informacja o stosowaniu reguły nie jest bądź jest wyświetlana w trakcie wnioskowania

- 70 -

System RMSE, baza wiedzy

Baza ograniczeń

- elementarna dokładna baza ograniczeń zawiera zbiory warunków dopytywanych wzajemnie wykluczających się.
- W systemie RMSE ograniczenia zapisujemy następująco: ograniczenie(nr_og, lista_warunków_dop_wykluczających_się) przykład:

ograniczenie(1, ["dostanę urlop", "nie dostanę urlopu"])

System RMSE, baza wiedzy

Baza modeli

Model elementarny podstawowy dokładny

```
model(numer_modelu,
       "warunek_startowy",
       "wynik" / "wniosek",
       "pierwszy_argument",
       "operacja" / "relacja",
      "drugi_argument",
      semafor_wyświetlania)
```

- 71 -

System RMSE, baza wiedzy

Baza modeli

- "wynik" rzeczywista zmienna łańcuchowa dla modelu arytmetycznego a logiczna dla modelu relacyjnego
- argumenty rzeczywiste lub całkowite zmienne łańcuchowe
- "operacja" "+", "-", "*", "/", "div", "mod", "min", "max", "%", "A^N", "zaokraglenie_do_N", "sqrt", "sin", "cos", "tan", "arctan", "log", "ln", "exp", "round", "abs", "="
- W przypadku modeli jednoargumentowych, drugi argument jest równy "0".

System RMSE, baza wiedzy

Baza modeli

• "relacja" – w przypadku modeli relacyjnych testuje relacje ">", "<", ">=", "<=", "==", "<>", "><"

Interpretacja modelu arytmetycznego:

```
Model(Nr, "start", "wynik", "x1", "+", "x2", semafor_wyświetlania)
```

Jeżeli *start* jest prawdą to *wynik=xI+x2*Jeżeli *start* nie jest prawdą to *wynik* jest nieokreślony

75

System RMSE, baza wiedzy

Baza modeli

Interpretacja modelu relacyjnego:

Model(Nr, "start", "wniosek", "x1", "<=", "x2", semafor_wyświetlania)

Jeżeli *start* jest prawdą oraz x1 <= x2 to *wniosek* jest prawdą

Jeżeli start nie jest prawdą lub x1>x2 to wniosek jest nieokreślony

System RMSE, baza wiedzy

Baza modeli

- 74 -

- 76 -

Model elementarny rozszerzony dokładny

```
model(numer_modelu,
"warunek_startowy",
"wynik" / "wniosek",
"operacja" / "relacja",
Lista_argumentów,
semafor_wyświetlania)
```

- 77

System RMSE, baza wiedzy

Baza modeli

- "wynik" rzeczywista zmienna łańcuchowa dla modelu arytmetycznego a logiczna dla modelu relacyjnego
- argumenty rzeczywiste lub całkowite zmienne łańcuchowe
- "operacja" w przypadku modeli arytmetycznych wykonują operacje: "+", "*", "min_list", "max_list"
- "relacja" w przypadku modeli relacyjnych testuje relacje"<,<", "<,<=", "<=,<","<=,<="<"

System RMSE, baza wiedzy

Baza modeli

Interpretacja modelu arytmetycznego:

```
Model(Nr, "start", "wynik", "+", ["x1", "x2",..., "xn"] semafor_wyświetlania)
```

Jeżeli *start* jest prawdą to *wynik=x1+x2+...+xn* Jeżeli *start* nie jest prawdą to *wynik* jest nieokreślony

78 -

- 79 -

System RMSE, baza wiedzy

Baza modeli

 Dla modeli rozszerzonych relacyjnych dokładnych Lista_argumntów jest postaci:

```
["ograniczenie dolne", "wielkość testowana", "ograniczenie górne"]
```

Interpretacja modelu relacyjnego:

```
Model(Nr, "start", "wniosek", ["ogr1", "x", "ogr2"], "<,<=", semafor_wyświetlania)
```

Jeżeli *start* jest prawdą oraz ogr1<*x*<=*ogr*2 to *wniosek* jest prawdą

System RMSE, baza wiedzy

Baza modeli

• Model elementarny liniowy dokładny

```
model_liniowy(numer_modelu,
"warunek_startowy",
"wynik",
Lista_współczynników,
Lista_argumentów,
semafor_wyświetlania)
```

- 81 -

System RMSE, baza wiedzy

Baza modeli

• Model elementarny wielomianowy dokładny

```
model_wielomianowy(numer_modelu,
    "warunek_startowy",
    "wynik",
    Lista_współczynników,
    Lista_potęg
    Lista_argumentów,
    semafor_wyświetlania)
```

System RMSE, baza wiedzy

Baza modeli

- Podobnie jak w przypadku reguł modele mogą się zagnieżdżać
 - o wynik jednego modelu może być argumentem innego,
 - wniosek jednego modelu może być warunkiem stosowania innego
 - O wniosek modelu relacyjnego może być warunkiem reguły
 - wniosek reguły może być warunkiem startowym modelu

- 82 -

- 83 -