STAT 433 Mid 1

Wenxiao Yang^*

*Department of Mathematics, University of Illinois at Urbana-Champaign

October 11, 2022

Contents

1	Markov Chain			4	
1.1 Definition			n	4	
	1.2	1.2 Matrix Computations		4	
		1.2.1 C	Chapman Kolmogorov Equations (C-K Equations) $P(X_{n+m} = j X_0 = i) =$		
			$P^{m+n})_{ij} = \sum_{k \in S} (P^m)_{ik} (P^n)_{kj} \dots \dots$	5	
		1.2.2 N	Marginal Distribution $P(X_n = j) = (\alpha P^n)_j$	5	
	1.3	States, C	Class	5	
		1.3.1 In	rreducible, Reducible	5	
		1.3.2 R	Recurrent, Transient	5	
1.4 Periodicity		ity	6		
		1.4.1 L	Lemma: all states in an irreducible MC have the same period	7	
		1.4.2 P	Periodic, Aperiodic	7	
1.5 Regular Matrix		Matrix	7		
		1.5.1 R	Regular matrix: $\exists n \geq 1 \text{ s.t. } P^n > 0$	7	
		1.5.2 L	Lemma: Finite MC is Irreducible, Aperiodic \Leftrightarrow has Regular transition matrix .	7	
	1.6	Long Ru	ın Behavior of Finite Markov Chains	7	
		1.6.1 L	imiting Distribution	8	
		1.6.2 S	Stationary Distribution	8	
		1.6.3 L	imiting Distribution = Expected Proportion of time in each state	9	

		1.6.4	Fundamental Theorem for <u>Irreducible</u> , <u>Aperiodic</u> , <u>Finite MC</u> (Regular transi-	
			tion matrix) $\Rightarrow \exists$ unique limiting distribution π and $\pi_j > 0, \forall j$	9
		1.6.5	Long run behavior for reducible and/or periodic chains	9
		1.6.6	Fundamental Theorem for <u>Irreducible, Finite MC</u> : expected first return time	
			$\mathbb{E}(T_j X_0=j)=\frac{1}{\pi_j} \dots \dots$	10
	1.7	Return	n Times and Absorption Probabilities	11
		1.7.1	Expected Number of Visits to a Transient State: $E(Y_i X_0=j)=M_{ji}=(I-Q)_{ji}^{-1}$	11
		1.7.2	Expected Time till Absorption to a Recurrent Class: $\mathbb{E}(T_{abs} X_0=j)=\sum_{i\in T_1\cup T_2\cup \cdots}$	$\dots \cup T_s M_{ji}$ 12
		1.7.3	Expected first return time (different initial state) = Time till Absorption	13
		1.7.4	Probability of Eventually Entering a Given Recurrent Class: $A=(I-Q)^{-1}S=$	
			MS	14
	1.8	Examp	ples of Finite MC	15
		1.8.1	Gambler's Ruin	15
		1.8.2	Simple Random Walk (SRW) on Undirected Graph	16
2	Co	untabl	y infinite MC	17
	2.1	Recur	rence and Transience	17
		2.1.1	Recurrent or Transient State	17
		2.1.2	Recurrent or Transient Class	18
		2.1.3	Lemma: Transient Class $\Leftrightarrow \sum_{n=0}^{\infty} P_{i,i}^n < \infty$	18
		2.1.4	Recurrence/Transience of Simple Random Walk on Lattice	19
		2.1.5	Null and Positive Recurrence	19
		2.1.6	Stationary Distribution and Limiting Distribution	19
	2.2	Differe	ences between Finite and (Countably) Infinite Markov Chains	20
3	Bra	nching	; Process	21
	3.1	Extinction Probability in a Branching Process		
		3.1.1	Expectation $\mathbb{E}X_n = \mu^n \mathbb{E}X_0$	21
		3.1.2	Lemma: $\mu < 1 \Rightarrow P(extinction) = 1 \dots \dots \dots \dots \dots$	22
		3.1.3	Variance: $VarX_n = \begin{cases} n\sigma^2, & \mu = 1\\ \sigma^2 \mu^{n-1} \frac{\mu^n - 1}{\mu - 1}, & \mu \neq 1 \end{cases}$	22
		3.1.4	$\int \sigma^2 \mu^{n-1} \frac{\mu^n - 1}{\mu - 1}, \mu \neq 1$ Extinction probability $\rho = 1$ if $\mu < 1$; $\rho < 1$ if $\mu > 1$	23

		3.1.5	$G_n(s) = G_{n-1}(\psi(s)) = \psi(\psi(\psi(\cdots \psi(s) \cdots))) = \psi(G_{n-1}(s)) \dots \dots$	25
4	Mai	arkov Chain Monte Carlo (MCMC)		
	4.1	Strong	g Law of Large Numbers for Markov Chains	25
5	Time Reversible Markov Chains		26	
	5.1	1 Definition: Local Balance $\pi(i)P(i,j) = \pi(j)P(j,i), \forall i,j \in S$		26
	5.2	2 Discussion about Local Balance		26
		5.2.1	Flow: $Flow(A, B) = \sum_{i \in A} \sum_{j \in B} \pi(i) P_{ij} \dots \dots \dots \dots \dots \dots \dots$	26
		5.2.2	Lemma: $Flow(A, A^c) = Flow(A^c, A)$ for any subset $A \subset S$	26
		5.2.3	Lemma: Local balance $\Rightarrow \pi$ is stationary	26
		5.2.4	Lemma: All stationary birth and death chains are reversible	27
	5.3	Exam	ple: Random Walk on an Undirected Graph	27

1 Markov Chain

1.1 Definition

For discrete state space S, a Markov Chain is a stochastic process $X_0, X_1, X_2, ...$ such that

$$P(X_{n+1} = i | X_n = j, X_{n-1} = x_{n-1}, ..., X_0 = x_0) = P(X_{n+1} = i | X_n = j)$$

for all $n \in \mathbb{Z}$ and $x_0, x_1, ..., x_{n-1}, i, j \in S$.

A MC is called <u>time homogeneous</u> if $P(X_{n+1} = i | X_n = j) = P(X_1 | X_0 = j), \forall n \in \mathbb{Z}^+$ and $i, j \in S$ (we only consider time homogeneous MC).

The transition probabilities for a <u>time homogeneous MC</u> can be written down as a matrix P satisfying $P_{ij} = P(X_1 = j | X_0 = i)$. This matrix P satisfies two properties:

- (1) $P_{ij} \ge 0$ for all $i, j \in S$.
- (2) $\sum_{j \in S} P_{ij} = 1$ for all $i \in S$.

Any matrix satisfies the two properties is called a **stochastic matrix**.

1.2 Matrix Computations

Given a time homogeneous MC with initial distribution $X_0 \sim \alpha \in [0,1]^{|S|}$ and transition matrix P.

Lemma 1 (Distribution of Entire Sequence).

$$P(X_0 = x_0, X_1 = x_1, ..., X_n = x_n) = P(X_0 = x_0) P_{x_0, x_1} P_{x_1, x_2} ... P_{x_{n-1}, x_n}$$

Lemma 2 (Markov Property).

$$P(X_{t_n} = x_{t_n} | X_{t_{n-1}} = x_{t_{n-1}}, ..., X_{t_0} = x_{t_0}) = P(X_{t_n} = x_{t_n} | X_{t_{n-1}} = x_{t_{n-1}})$$

Lemma 3 (Transition Probability after n states).

$$P(X_n = j | X_0 = i) = (P^n)_{ij}$$

Proof.
$$P(X_2 = j | X_0 = i) = \sum_{k \in S} P(X_2 = j | X_1 = k) P(X_1 = k | X_0 = i) = \sum_{k \in S} P_{kj} P_{ik} = (P^2)_{ij}$$
. Then prove by mathematical induction, $P(X_n = j | X_0 = i) = \sum_{k \in S} P(X_n = j | X_{n-1} = k) P(X_{n-1} = k | X_0 = i) = \dots = (P^n)_{ij}$

1.2.1 Chapman Kolmogorov Equations (C-K Equations) $P(X_{n+m} = j | X_0 = i) = (P^{m+n})_{ij} = \sum_{k \in S} (P^m)_{ik} (P^n)_{kj}$

m-step transition probabilities from state k to state j:

$$P(X_{n+m} = j | X_0 = i) = (P^{m+n})_{ij} = \sum_{k \in S} (P^m)_{ik} (P^n)_{kj}$$
(1)

Proof.
$$P(X_n = j | X_0 = i) = \sum_{k \in S} P(X_{n+m} = j | X_m = k) P(X_m = k | X_0 = i) = \sum_{k \in S} P(X_n = j | X_0 = k) P(X_m = k | X_0 = i)$$

1.2.2 Marginal Distribution $P(X_n = j) = (\alpha P^n)_j$

Lemma 4 (Marginal Distribution). Given initial distribution $X_0 \sim \alpha$ and transition matrix P. α is distribution vector $(1 \times |S|)$ with $\sum_{i \in S} \alpha_i = 1$.

$$P(X_n = j) = (\alpha P^n)_j$$

Corollary 1 (Distribution of Subsequence).

$$P(X_{t_n} = x_{t_n}, X_{t_{n-1}} = x_{t_{n-1}}, ..., X_{t_0} = x_{t_0}) = (\alpha P^{t_0})_{x_{t_0}} P_{x_{t_0}, x_{t_1}}^{t_1 - t_0} P_{x_{t_1}, x_{t_2}}^{t_2 - t_1} \cdots P_{x_{t_{n-1}}, x_{t_n}}^{t_n - t_{n-1}}$$

1.3 States, Class

1.3.1 Irreducible, Reducible

- Accessible: j is accessible from i if $\exists n \text{ s.t. } P_{ij}^n > 0$.
- Communicate/Communication: i communicates j ($i \leftrightarrow j$) if j is accessible from i and i is accessible from j. (Reflexivity: $i \leftrightarrow i$; Symmetry: $i \leftrightarrow j \Rightarrow j \leftrightarrow i$; Transitivity: $i \leftrightarrow j$ and $j \leftrightarrow k \Rightarrow i \leftrightarrow k$.)
- (Communication) Class: if $i \leftrightarrow j$, then states i, j are said to be in the same (communication) class. (Since communication is an equivalence relation, the state space can be partitioned into equivalence classes, called *communication classes*.)
- Irreducible: A Markov Chain that has only one class is said to be irreducible.

1.3.2 Recurrent, Transient

• Recurrent State: State i is recurrent if $f_i = P(\text{ever re-enter state } i \text{ if started in state } i) = 1$. (the expected number of times it visits state i is $\sum_{n=0}^{\infty} P_{ii}^n = +\infty$). (A MC is irreducible if all states are recurrent)

- Transient State: State i is transient if $f_i = P(\text{ever re-enter state } i \text{ if started in state } i) < 1.$ (the expected number of times it visits state i is $\sum_{n=0}^{\infty} P_{ii}^n < +\infty$; $P(\text{visits state } i \text{ exactly } n \text{ times}) = f_i^{n-1}(1-f_i)$; The expected number is $\sum_{n=0}^{\infty} f_i^n(1-f_i)n = n = 0^{\infty}P_{ii}^n < \infty$).
- <u>Transient Class</u>: A communicating class is called transient if starting from that class, with probability 1 the MC leaves that class and never returns. The states of such a class are called transient states.
- Recurrent Class: communicating class that is not transient.

Lemma 5. If i is recurrent, $i \leftrightarrow j \Rightarrow j$ is recurrent.

Theorem 1. The states of a communication class are <u>either all recurrent or all transient</u>.

Corollary 2. For a finite irreducible Markov chain, all states are recurrent.

Canonical Decomposition

Definition 1. A set of states C is said to be <u>closed</u> if no state outside of C is accessible from any state in C. If C is closed, then

$$P_{ij} = 0, \ \forall i \in C, j \notin C$$

Lemma 6. (1) A communication class is <u>closed</u> if it consists of all recurrent states. (2) A finite communication class is closed only if it consist of all recurrent states.

Proof. (1): if not closed, $\exists i \in C, j \notin C, P_{ij} > 0$. i shouldn't be accessible from j since i, j are not in one class. There exists positive probability that starting from i then hit j and never hit i again, which contradicts to i is recurrent. (2):According to former corollary, a finite class's all states are recurrent.

1.4 Periodicity

Suppose P is the transition matrix for an irreducible MC. For a given state i, we define the set

$$J_i = \{ n \ge 1 : P^n(i, i) > 0 \}$$

 J_i is the set of times when it is possible for the MC to come back to i starting from i at time 0. We define the **period** of a state i is

$$d(i) = gcd(J_i)$$

1.4.1 Lemma: all states in an irreducible MC have the same period

Lemma 7. For an irreducible MC, all states have the same period.

Proof. Let d be a common divisor of J_i . Consider any other state j. We want to show d is also the common divisor of J_j .

Since the MC is irreducible, there exists m and n s.t. $P_{ij}^m > 0$ and $P_{ji}^n > 0$. Then $P_{ii}^{m+n} \ge P_{ij}^m P_{ji}^n > 0$ $\Rightarrow m+n \in J_i$. d should be a divisor of m+n.

For any $l \in J_j$, $P_{ii}^{m+n+l} \ge P_{ij}^m P_{jj}^l P_{ji}^n > 0 \Rightarrow m+n+l \in J_i$. d divides $m+n+l \Rightarrow d$ divides l. Since l can be any number in J_j , d is a common divisor of J_j .

1.4.2 Periodic, Aperiodic

A <u>state</u> is **aperiodic** if period equals 1, **periodic** otherwise.

A <u>chain</u> is **aperiodic** if <u>all</u> its states are aperiodic, **periodic** otherwise.

1.5 Regular Matrix

1.5.1 Regular matrix: $\exists n \geq 1 \text{ s.t. } P^n > 0$

A matrix M is said to be positive if all the entries of M are positive. We write M > 0.

Definition 2 (Regular Transition Matrix). A transition matrix P is said to be <u>regular</u> if some power of P is positive. That is, $P^n > 0$, for some $n \ge 1$.

1.5.2 Lemma: Finite MC is Irreducible, Aperiodic ⇔ has Regular transition matrix

Lemma 8. A finite MC is **irreducible** and **aperiodic** is equivalent to the transition matrix P is regular.

We also call an MC is **ergodic** if it is **irreducible** and **aperiodic**.

1.6 Long Run Behavior of Finite Markov Chains

As $n \to \infty$, P^n :

- (1) Convergence. $(P^{n+1} = P^n)$
- (2) Forgetting the initial states. (each row is identical)

1.6.1 Limiting Distribution

Definition 3. A MC is said to have a **limiting distribution** λ if we have

$$\lim_{n \to \infty} P_{ij}^n = \lambda_j, \ \forall i, j \in S$$

An equivalent definition is that for all initial distributions $X_0 \sim \alpha$ and all $j \in S$ we have

$$\lim_{n \to \infty} (\alpha P^n)_j = \lambda_j$$

Example: $P = \begin{bmatrix} 1-p & p \\ q & 1-q \end{bmatrix}$. If p+q=1, each rows of P is the same and $P^n = P$.

$$\begin{split} P_{11}^n &= P_{11}^{n-1}(1-p) + P_{12}^{n-1}q \\ &= P_{11}^{n-1}(1-p) + (1-P_{11}^{n-1})q \\ P_{11}^n &= \frac{q}{p+q} + \frac{p}{p+q}(1-p-q)^n \to \frac{q}{p+q} \text{ as } n \to \infty \\ \lim_{n \to \infty} P^n &= \frac{1}{p+q} \begin{bmatrix} q & p \\ q & p \end{bmatrix} \end{split}$$

Lemma 9. If λ is the limiting distribution for a MC with transition matrix P then λ satisfies the equation

$$\lambda P = \lambda$$

Proof.
$$(\lambda P)_j = \sum_{i \in S} \lambda_i P_{ij} = \sum_{i \in S} \lim_{n \to \infty} P_{ki}^n P_{ij} = \lim_{n \to \infty} \sum_{i \in S} P_{ki}^n P_{ij} = \lim_{n \to \infty} P_{kj}^{n+1} = \lambda_j$$

1.6.2 Stationary Distribution

Definition 4. A distribution π which satisfies the equation

$$\pi P = \pi$$

is called a **stationary distribution** for the MC.

Note: A limiting distribution λ for the MC has to also be a stationary distribution. The converse is not always true.

1.6.3 Limiting Distribution = Expected Proportion of time in each state

The entries of the limiting distribution can also be interpreted as the limit of the expected proportion of time the MC spends in each of the corresponding states. For any state j, define the indicator random variable $I_k = 1(X_k = j)$. Now define

$$F_{n,j} = \frac{1}{n} \sum_{k=0}^{n-1} I_k$$

The random variable $F_{n,j}$ represents the proportion of time till time n-1 the MC spends in state j.

Lemma 10. If λ is the limiting distribution for a MC with transition matrix P then λ satisfies the equation $\lim_{n\to\infty} \mathbb{E}(F_{n,j}|X_0=i)=\lambda_j$ for all $j,i\in S$

Proof. We can write

$$\mathbb{E}(F_{n,j}|X_0=i) = \mathbb{E}\frac{1}{n}\sum_{k=0}^{n-1}\mathbb{E}(I_k|X_0=i) = \frac{1}{n}\sum_{k=0}^{n-1}P(X_k=j|X_0=i) = \frac{1}{n}\sum_{k=0}^{n-1}P_{ij}^k$$

Therefore, taking limits we can conclude that

$$\lim_{n \to \infty} \mathbb{E}(F_{n,j}|X_0 = i) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} P_{ij}^k = \lim_{n \to \infty} P_{ij}^n = \lambda_j$$

1.6.4 Fundamental Theorem for Irreducible, Aperiodic, Finite MC (Regular transition matrix) $\Rightarrow \exists$ unique limiting distribution π and $\pi_j > 0, \forall j$

Theorem 2. If P is the transition matrix for an irreducible, aperiodic (finite) Markov chain then there exists a unique stationary distribution or a unique solution to the equation $\pi = \pi P$ which satisfies the following two properties:

- (1) π is the **limiting distribution** of the MC. $(\lim_{n\to\infty} \alpha P^n = \pi, \forall \alpha \text{ initial distribution})$
- (2) π gives **positive** probability to each of the states. $(\pi_j > 0, \forall j \in S)$

1.6.5 Long run behavior for reducible and/or periodic chains

Question: What is the long run behavior for reducible and/or periodic chains?

Assume P is reducible with <u>recurrent classes</u> R_1, \ldots, R_r and <u>transient classes</u> T_1, \ldots, T_s . Each recurrent class acts as a separate MC with transition matrix P_1, \ldots, P_r . Assume each P_k is aperiodic.

Then by the fundamental theorem, there exists r different limiting distributions π^1, \ldots, π^r . The distribution π^k is supported on its own recurrent class; i.e. $\pi^k(j) = 0$ if $j \notin R_k$. There are three cases to consider:

1. If $i, j \in R_k$ (in the same recurrent class) then

$$\lim_{n \to \infty} P_{ij}^n = \pi^k(j)$$

2. If i is any transient state then eventually it ends up in one of the recurrent states. Therefore, if i, j are transient states then,

$$\lim_{n \to \infty} P_{ij}^n = 0$$

3. Let $\alpha_k(i)$ for k = 1, ..., r be the probability that the chain starting in i eventually ends up in a recurrent class R_k . (We will see later how to calculate $\alpha_k(i)$.) Once the chain reaches the recurrent class R_k , it will settle down to the limiting distribution on R_k . Therefore, we have for a transient state i and $j \in R_k$,

$$\lim_{n \to \infty} P_{ij}^n = \alpha_k(i)\pi^k(j)$$

So, in this case there is a limit of P^n , but the limit will have different rows.

When an MC is irreducible but **periodic** (period d > 1), we can show there is no **limiting distribution**. P^n will keep switching according to whether n|d has remainder 0, 1, ..., d - 1. Therefore, there cannot be a limit of P^n .

Although $\lim_{n\to\infty} P_{ij}^n$ doesn't exist in irreducible and periodic MC, $\lim_{n\to\infty} \frac{1}{n} \sum_{m=0}^{n-1} P_{ij}^m$ exists. It is the limit of the expected long run proportions of time spent in each state.

1.6.6 Fundamental Theorem for Irreducible, Finite MC: expected first return time $\mathbb{E}(T_j|X_0=j)=\tfrac{1}{\pi_j}$

$$T_j = \min\{n > 0 : X_n = j\}$$

is the first time the chain returns to state i after time 0. This time is often also called the first passage time to the state i.

In a finite irreducible MC, $P(T_j < \infty) = 1, \forall i$.

Theorem 3. Assume that $X_0, X_1, ...$ is a <u>finite irreducible</u> Markov chain. For each state j, let $\mu_j = \mathbb{E}(T_j|X_0=j)$ be the expected return time to j. Then, μ_j is finite, and there exists a unique **positive** stationary distribution π such that

$$\pi_j = \frac{1}{\mu_j}, \forall j$$

Furthermore, for all initial states i, limiting distribution on j equals to the expected proportion of time spends in j:

$$\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} P_{ij}^m = \frac{1}{\mu_j}, \forall j$$

Proof. The sum of k i.i.d. random variables $T_1+T_2+\cdots+T_k$ each of which follows the same distribution as T conditional on $X_0=i$. For $k\to\infty$, by the Law of Large Numbers, $\lim_{k\to\infty}\frac{T_1+T_2+\cdots+T_k}{k}=\mathbb{E}(T|X_0=i)$.

Consider this total time is $T_1 + T_2 + \dots + T_k$ and the time we spent at i is k, the expected proportion of time the chain spends in state i is approximately $\lim_{k\to\infty}\frac{k}{T_1+T_2+\dots+T_k}\approx\frac{1}{\mathbb{E}(T|X_0=i)}$. As we showed before, the expected proportion of time is $\pi_i\Rightarrow\pi_i=\frac{1}{\mathbb{E}(T|X_0=i)}=\frac{1}{\mu_i}, \forall i$

Example 1 (Two State MC). Consider the transition matrix

$$P = \begin{bmatrix} 1 - p & p \\ q & 1 - q \end{bmatrix}$$

Here, by the theorem

$$\mu_0 = \mathbb{E}[T_0|X_0 = 0] = \frac{1}{\pi(0)} = \frac{p+q}{q}$$

1.7 Return Times and Absorption Probabilities

1.7.1 Expected Number of Visits to a Transient State: $E(Y_i|X_0=j)=M_{ji}=(I-Q)_{ji}^{-1}$

Let P be the transition matrix of a MC. Suppose P has some transient states and let Q be the submatrix of P which contains the rows and columns for the transient states. Hence, after reordering the states we can write

$$P = \begin{bmatrix} \tilde{P} & 0 \\ S & Q \end{bmatrix}$$

Let i be a transient state and let us define a random variable which counts the total number of visits to the state i

$$Y_i = \sum_{n=0}^{\infty} \mathbf{1}_{X_n = i}$$

Since i is transient, $Y_i < \infty$ w.p.1.

Lemma 11. Let Q denote the part of transition matrix indexed by the transient states. Define $M = (I - Q)^{-1}$. We have the following equality for any two transient states $i, j \in S$,

$$E(Y_i|X_0=j)=M_{ji}$$

Thus, the matrix $(I-Q)^{-1}$ gives the expected number of visits to a transient state i when the MC starts at a transient state j.

Proof. We can write

$$\mathbb{E}(Y_i|X_0=j) = \sum_{n=0}^{\infty} P(X_n=i|X_0=j) = \sum_{n=0}^{\infty} P_{ji}^n = \sum_{n=0}^{\infty} Q_{ji}^n = M_{ji}$$

The last equality holds because $I+Q+Q^2+\cdots=\frac{I(I-Q^{\infty})}{1-Q}=(I-Q)^{-1}$

We can also extend the equation:

$$\mathbb{E}(Y_i|X_0=j) = \mathbf{1}_{i=j} + \sum_{k \text{ transient}} \mathbb{E}(Y_i|X_1=k)Q_{jk}$$

1.7.2 Expected Time till Absorption to a Recurrent Class: $\mathbb{E}(T_{abs}|X_0=j) = \sum_{i \in T_1 \cup T_2 \cup \cdots \cup T_s} M_{ji}$

Let's define

$$T_{abs} = \{ \min_{n>0} : X_n \in \text{a recurrent class} \}$$

which is the waiting time till the chain enters a recurrent class. T_{abs} also equals to the total time spent on transient states.

$$T_{abs} = \sum_{i \in T_1 \cup T_2 \cup \dots \cup T_s} Y_i$$

Corollary 3. For any transient state $j \in S$,

$$\mathbb{E}(T_{abs}|X_0=j) = \sum_{i \in T_1 \cup T_2 \cup \dots \cup T_s} M_{ji}$$

Example 2. Simple Random Walk (SRW) with absorbing boundaries on $\{0, 1, 2, 3, 4\}$

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

We can reorder it by $\{0, 4, 1, 2, 3\}$

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 & 1/2 & 0 \end{pmatrix} = \begin{bmatrix} I_{2\times2} & 0 \\ S & Q \end{bmatrix}$$

where
$$Q = \begin{bmatrix} 0 & 1/2 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 \end{bmatrix}$$
, then

$$M = (I - Q)^{-1} = \begin{bmatrix} 3/2 & 1 & 1/2 \\ 1 & 2 & 1 \\ 1/2 & 1 & 3/2 \end{bmatrix}$$

Therefore $\mathbb{E}(Y_3|X_0=1)=\frac{1}{2}, \ \mathbb{E}(T_{abs}|X_0=1)=M_{11}+M_{12}+M_{13}=\frac{3}{2}+1+\frac{1}{2}=3.$

1.7.3 Expected first return time (different initial state) = Time till Absorption

We have computed $\mathbb{E}[T_i|X_0=i]=\frac{1}{\pi_i}$, we want to compute

$$\mathbb{E}[T_i|X_0=j], i\neq j$$

Method 1: Condition on first step: Let $a_j = \mathbb{E}[T_i|X_0 = j]$

$$\mathbb{E}[T_i|X_0 = j] = P_{ji} \cdot 1 + \sum_{k \neq i} P_{jk} \cdot (1 + \mathbb{E}[T_i|X_0 = k])$$

$$= 1 + \sum_{k \neq i} P_{jk} \cdot \mathbb{E}[T_i|X_0 = k]$$

$$\Rightarrow a_j = 1 + \sum_{k \neq i} P_{jk} \cdot a_k$$

Then the problem can be solved by solving the linear system for all $j \in S$.

Method 2: This problem can be transformed into computing the expected time till absorption to i. (we can let i be an absorbing state)

Reorder the transition matrix P with i being the first state and make i an absorbing state

$$P = \begin{bmatrix} P_{ii} & R \\ S & Q \end{bmatrix} \Rightarrow \tilde{P} = \begin{bmatrix} 1 & 0 \\ S & Q \end{bmatrix}$$

Then

$$\mathbb{E}[T_i|X_0=j] = \mathbb{E}[T_{abs}|X_0=j]$$

Example 3. Simple Random Walk (SRW) with reflecting boundaries on $\{0, 1, 2, 3, 4\}$

$$P = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right)$$

To compute $\mathbb{E}[T_0|X_0=j]$, we make 0 an absorbing state:

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ S & Q \end{bmatrix}$$

where
$$Q = \begin{pmatrix} 0 & 1/2 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
, then we can calculate

$$M = (I - Q)^{-1} = \begin{pmatrix} 2 & 2 & 2 & 1 \\ 2 & 4 & 4 & 2 \\ 2 & 4 & 6 & 3 \\ 2 & 4 & 6 & 4 \end{pmatrix}$$

Now we can compute

$$\mathbb{E}[T_0|X_0=4] = M_{41} + M_{42} + M_{43} + M_{44} = 16$$

1.7.4 Probability of Eventually Entering a Given Recurrent Class: $A=(I-Q)^{-1}S=MS$

In some MC, there are more than one recurrent class. e.g. $\{0\}$. $\{N\}$ in absorbing boundary exmaple. We want to know what is the probability that the MC eventually ends up in a given recurrent class starting from a transient state j.

We can create a modified MC where each of the recurrent classes are seen as single states. Let these states be $r_1, ..., r_k$ with $P(r_i, r_i) = 1, \forall i \in \{1, ..., k\}$.

We denote all transient states as $t_1, ..., t_s$. And the transistion matrix is expressed by

$$P = \begin{bmatrix} I & 0 \\ S & Q \end{bmatrix}$$

Let α_{t_i,r_j} be the probability that the MC strating at t_i ends up at r_j . We set $\alpha_{r_i,r_i} = 1$ and $\alpha_{r_i,r_j} = 0, i \neq j$. Then, for any t_i , we can write by conditioning on the first step

$$\alpha_{t_i,r_j} = P(X_n = r_j \text{ eventually } | X_0 = t_i)$$

$$= \sum_{x \in S} P(X_1 = x | X_0 = t_i) P(X_n = r_j \text{ eventually } | X_1 = x)$$

$$= \sum_{x \in S} P(t_i, x) \alpha_{x,r_j}$$

(this S is the set of states.) Let $A_{s \times k}$ be the matrix with α_{t_i,r_j} being entries. The above equation can be written as

$$A = [S \ Q] \begin{bmatrix} I \\ A \end{bmatrix} = S + QA$$
$$\Rightarrow A = (I - Q)^{-1}S = MS$$

(this S is the submartix in P)

1.8 Examples of Finite MC

1.8.1 Gambler's Ruin

Example 4 (Gambler's Ruin). Consider the asymmetric Gambler's Ruin with winning probability $p \in (0,1)$. The state space is $\{0,1,...,N\}$.

Let α_j be the probability that the MC get absorbed in state N strating from state j. Clearly,

 $\alpha(0) = 0, \alpha(N) = 1$. For any 0 < j < N, we can condition on the first step to get

$$\alpha(j) = (1 - p)\alpha(j - 1) + p\alpha(j + 1)$$

$$\Rightarrow \alpha(j + 1) - \alpha(j) = \frac{1 - p}{p}(\alpha(j) - \alpha(j - 1))$$

$$\Rightarrow 1 = \alpha(N) - \alpha(0) = \sum_{j=0}^{N-1} (\alpha(j + 1) - \alpha(j))$$

$$= \sum_{k=0}^{N-1} \left(\frac{1 - p}{p}\right)^k (\alpha(1) - \alpha(0))$$

$$= \begin{cases} N\alpha(1), & p = 0.5 \\ \frac{1 - \left(\frac{1 - p}{p}\right)^N}{1 - \left(\frac{1 - p}{p}\right)^N} \alpha(1), & p \neq 0.5 \end{cases}$$

$$\alpha(1) = \alpha(1) - \alpha(0) = \begin{cases} \frac{1}{N}, & p = 0.5\\ \frac{1 - \left(\frac{1-p}{p}\right)}{1 - \left(\frac{1-p}{p}\right)^N}, & p \neq 0.5 \end{cases}. \text{ Then,}$$

$$\alpha(j) = \sum_{k=0}^{j-1} \left(\frac{1-p}{p}\right)^k (\alpha(1) - \alpha(0)) = \begin{cases} \frac{j}{N}, & p = 0.5\\ \frac{1-\left(\frac{1-p}{p}\right)^j}{1-\left(\frac{1-p}{p}\right)^N}, & p \neq 0.5 \end{cases}$$

1.8.2 Simple Random Walk (SRW) on Undirected Graph

Consider an undirected graph (V, E). The state space is V. Let the degree deg(i) of a vertex i be the number of edges starting from i. Formally, we can write $deg(i) = \{j \in V : (i, j) \in E\}$. The transition matrix $P_{|V| \times |V|}$ is as follows.

$$P_{ij} = \frac{1}{deg(i)} \mathbf{1}_{(i,j) \in E}$$

The MC is irreducible iff the graph is connected. When assuming connected we can compute the unique stationary distribution

$$\pi(v) = \frac{deg(v)}{2|E|} = \frac{deg(v)}{\sum_{v \in V} deg(v)}$$

The period of the chain is either 1 or 2. The period is 2 if and only if the graph is bipartite, meaning that the set of vertices can be divided into two subsets and each edge in the graph goes from one subset to another.

If the period is 1 then π is the limiting distribution for this chain. If the period is 2 then π can still be interpreted as the limiting expected fraction of time spent in each of the states.

Figure 1: bipartite

2 Countably infinite MC

Countably infinite MC: Markov Chain in countable infinite state space (e.g. \mathbb{Z}). The transition matrix P is infinite large, but the sum of each row converges to 1.

Chapman Kolmogorov Equations (C-K Equations) also holds: $P(X_{n+m} = j | X_0 = i) = (P^{m+n})_{ij} = \sum_{k \in S} (P^m)_{ik} (P^n)_{kj}$

Example:

- (1) RW with partially reflecting boundary $S = \{0, 1, 2, ...\}$, $P_{x,x-1} = 1 p$, $P_{x,x+1} = p$, $P_{0,1} = p$, $P_{0,0} = 1 p$.
- (2) Queuing Model: $X_n = \#$ people at time n. $S = \{0, 1, 2, ...\}$. P(x, x 1) = q(1 p); P(x, x + 1) = (1 q)p; P(x, x) = pq + (1 p)(1 q); P(0, 0) = 1 p; P(0, 1) = p.

Difference: For the infinite, irreducible, and aperiodic MC, there may not exist stationary distribution.

Example 5. For Simple Random Walk: assume there exists a stationary distribution π , we have

$$\pi_j = \frac{1}{2}(\pi_{j-1} + \pi_{j+1}) \Rightarrow \pi_j - \pi_{j-1} = \pi_{j+1} - \pi_j$$

Let the difference between $\pi_j - \pi_{j-1} = \varepsilon$, there doesn't exist solution to

$$\sum_{i=0}^{\infty} \pi_i = 1; \pi_i = i\varepsilon, i = 0, 1, \dots$$

2.1 Recurrence and Transience

2.1.1 Recurrent or Transient State

Suppose the first return time $T_j = \min\{n > 0 : X_n = j\}$.

Let the probability of the chain return to j given $X_0 = j$ is

$$f_j = P(T_j < \infty | X_0 = j)$$

Definition 5. A state j is recurrent if $f_j = 1$ and transient if $f_j < 1$.

2.1.2 Recurrent or Transient Class

(Also class properties: states of a class should be all recurrent or all transient)

Lemma 12. If i, j are in the same class, i is recurrent $\Leftrightarrow j$ is recurrent.

Proof. Suppose i is recurrent, $P(T_i < \infty | X_0 = i) = 1$. Since $i \sim j$, $\exists k > 0, P_{ij}^k > 0$. Suppose $P(T_j < \infty | X_0 = j) < 1$ i.e., $P(T_j = \infty | X_0 = j) > 0$. Then,

$$P(T_i = \infty | X_0 = i) \ge P(T_i = \infty | X_0 = j) P_{ij}^k$$

= $P(T_i = \infty | T_j = \infty, X_0 = j) P(T_j = \infty | X_0 = j) P_{ij}^k > 0$

2.1.3 Lemma: Transient Class $\Leftrightarrow \sum_{n=0}^{\infty} P_{i,i}^n < \infty$

Lemma 13. An irreducible MC is **transient** <u>if and only if</u> the expected number of visits to a state is finite; i.e.

$$\sum_{n=0}^{\infty} P_{i,i}^n < \infty$$

Proof. Let the total number of visits i in infinite time is $Y_i = \sum_{n=0}^{\infty} \mathbf{1}_{X_n = i}$. The expected number is $\mathbb{E}[Y_i | X_0 = i] = \sum_{n=0}^{\infty} P_{i,i}^n$.

 \Leftarrow : If *i* is recurrent, the expected total number to visits *i* in infinite time should be infinite. Then, the MC can be proved to be transient if $\mathbb{E}[Y_i|X_0=i]=\sum_{n=0}^{\infty}P_{i,i}^n<\infty$.

 \Rightarrow : Suppose *i* is transient, let $f_i = P(T_i = \infty | X_0 = i) = q > 0$ (Probability of not return). Then, the expected number of <u>returns</u> to *i* is (follows geometric distribution)

$$\sum_{n=0}^{\infty} (1-q)^n q n = q(1-q) \frac{\partial \left(-\sum_{n=0}^{\infty} (1-q)^n\right)}{\partial q} = q(1-q) \frac{\partial \left(-\frac{1}{q}\right)}{\partial q} = \frac{1-q}{q}$$

which also equals to $\mathbb{E}[Y_i|X_0=i]-1\Rightarrow \mathbb{E}[Y_i|X_0=i]=\frac{1}{q}<\infty$

2.1.4 Recurrence/Transience of Simple Random Walk on Lattice

Is the d dimensional SRW recurrent or transient?

We can first consider d=1 case. We want to compute the probability of returning to state 0 (the same as others). For 2n steps trajectories, there are $\binom{2n}{n}$ trajectories that can return to 0 and each has probability $\frac{1}{2^{2n}}$.

$$P_{0,0}^{2n} = \binom{2n}{n} \frac{1}{2^{2n}} = \frac{(2n)!}{n!n!2^{2n}}$$

Using Stirling's formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ that is $\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1$

$$P_{0,0}^{2n} \sim \frac{2\sqrt{\pi n} \left(\frac{2n}{e}\right)^{2n}}{2\pi n \left(\frac{n}{e}\right)^{2n} 2^{2n}} = \frac{1}{\sqrt{\pi n}}$$

So the $\sum_{n=N}^{\infty} P_{0,0}^{2n} = \sum_{n=N}^{\infty} \frac{1}{\sqrt{\pi}} n^{-\frac{1}{2}} = \infty$.

Note: $n^{-\alpha}$ diverges when $\alpha \in (0,1]$ and converges when $\alpha > 1$.

For d dimensions,

$$P_{0.0}^{2n} \sim n^{-\frac{d}{2}}$$

Lemma 14. SRW is recurrent when d = 1, 2; SRW is transient when $d \ge 3$.

2.1.5 Null and Positive Recurrence

$$\mu_j = \mathbb{E}[T_j | X_0 = j]$$

Definition 6. A state j is **positive recurrent** if it is recurrent and $\mu_j < \infty$. A state j is **null** recurrent if it is recurrent and $\mu_j = \infty$.

Example of null recurrent: $P(T_i = n) = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}, n \ge 1.$

$$f_i = \sum_{n=1}^{\infty} P(T_i = n) = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) \Rightarrow \text{ recurrent}$$

$$\mu_i = \sum_{n=1}^{\infty} nP(T_i = n) = \sum_{n=1}^{\infty} \frac{1}{n+1} = \infty \Rightarrow \text{ null recurrent}$$

2.1.6 Stationary Distribution and Limiting Distribution

Limiting distribution

$$\lim_{n \to \infty} P_{y,x}^n = \pi(x), \ \forall x, y \in S$$

Obviously, when a chain is transient, $\lim_{n\to\infty} P_{y,x}^n = 0$, there will be no limiting distribution. We can also know $\lim_{n\to\infty} P_{y,x}^n = 0$ when the chain is null recurrent.

Lemma 15. For an irreducible MC, $\lim_{n\to\infty} P_{y,x}^n = 0$ for each $x,y\in S$ if and only if the chain is transient or null recurrent.

Theorem 4 (Fundamental Theorem for General Discrete Markov Chains). An irreducible, positive recurrent MC has a unique stationary distribution π (which is positive everywhere) solving the equation

$$\sum_{y \in S} \pi(y) P(y, x) = \pi(x), \ \forall x \in S$$

 $\pi(j)$ equals to the **expected visiting time** at j

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} P_{ij}^k = \pi(j)$$

If in addition, the MC is aperiodic, then

$$\lim_{n \to \infty} P_{ij}^n = \pi(j)$$

The stationary distribution π is also inversely related to the expected first return times.

$$\pi(j) = \frac{1}{\mathbb{E}(T_j|X_0 = j)} = \frac{1}{\mu_j}$$

Furthermore, if the irreducible chain is not positive recurrent then there does not exist a stationary distribution.

Note: we can prove a MC is not positive recurrent by showing the MC doesn't have a stationary distribution.

2.2 Differences between Finite and (Countably) Infinite Markov Chains

- 1. An irreducible MC with finite S has to be recurrent. An irreducible MC with infinite S could be recurrent or transient.
- 2. An irreducible MC with finite S has to be positive recurrent. An irreducible recurrent MC with infinite S could be positive recurrent ($\mathbb{E}[T_j|X_0=j]<\infty$) or null recurrent ($\mathbb{E}[T_j|X_0=j]=\infty$).
- 3. An irreducible MC with finite S always has a unique stationary distribution. An irreducible recurrent MC with infinite S has a (unique) stationary distribution if and only if the MC is positive recurrent.

3 Branching Process

(Sir Francis Galton, 1873) It is a stochastic model for population growth. Let X_n denote the number of individuals at time n. At each time interval, each individual will produce a random number of offsprings and then die.

Two Assumptions:

- (1) Each individual produces offspring with the same probability distribution: there are given non-negative numbers $p_0, p_1, ...$ summing up to 1 so that the probability of an individual producing k children is p_k .
- (2) The individuals reproduce independently.

We want to know

"What is the probability that the population eventually becomes extinct?"

The number of individuals at time n, X_n is a MC with state space $S = \{0, 1, 2, ...\} = \mathbb{Z}_+$. Note that 0 is an absorbing state. Suppose $X_n = k$. Then k individuals produce offspring for the next generation. Let $Y_1, ..., Y_k$ be i.i.d random variables with $P(Y_1 = j) = p_j$. Then we can write the transition probabilities as

$$P_{k,j} = P(Y_1 + \dots + Y_k = j)$$

Since $P(X_1 = 0 | X_0 = i) = p_0^i > 0$ for each i > 0, the any state i > 0 must be transient. From this, it can be shown that, with probability 1, the chain must either get absorbed in 0 eventually or approach ∞ .

3.1 Extinction Probability in a Branching Process

3.1.1 Expectation $\mathbb{E}X_n = \mu^n \mathbb{E}X_0$

The mean number of offsprings produced by an individual:

$$\mu = \sum_{i=0}^{\infty} i p_i$$

The mean number of individuals in generation n,

$$\mathbb{E} X_n = \sum_{k=0}^{\infty} P(X_{n-1} = k) \mathbb{E}(X_n | X_{n-1} = k) = \sum_{k=0}^{\infty} P(X_{n-1} = k) k \mu = \mu \mathbb{E} X_{n-1}$$

Then, we can get

$$\mathbb{E}X_n = \mu^n \mathbb{E}X_0$$

3.1.2 Lemma: $\mu < 1 \Rightarrow P(extinction) = 1$

Lemma 16. If $\mu < 1$, then probability of extinction is 1.

Proof. We know the event $\{X_{n-1} = 0\} \subseteq \{X_n = 0\}$

$$P(extinction) = P(\bigcup_{n=0}^{\infty} \{X_n = 0\}) = \lim_{n \to \infty} P(X_n = 0)$$

$$P(X_n \ge 1) = \sum_{k=1}^{\infty} P(X_n = k) \le \sum_{k=1}^{\infty} k P(X_n = k) = \mathbb{E}X_n$$

Now, the probability of survival

$$\lim_{n \to \infty} P(X_n \ge 1) \le \lim_{n \to \infty} \mathbb{E}X_n = \lim_{n \to \infty} \mu^n \mathbb{E}X_0 = 0$$

$$\Rightarrow \lim_{n \to \infty} P(X_n \ge 1) = 0$$

Then we can conclude

$$P(extinction) = \lim_{n \to \infty} P(X_n = 0) = 1 - \lim_{n \to \infty} P(X_n \ge 1) = 1$$

If $\mu = 1$, the expected population size remains constant while if $\mu > 1$, the expected population size grows.

3.1.3 Variance:
$$VarX_n = \begin{cases} n\sigma^2, & \mu = 1 \\ \sigma^2 \mu^{n-1} \frac{\mu^n - 1}{\mu - 1}, & \mu \neq 1 \end{cases}$$

Let's calculate the variance of X_n . We denote the variance of the number of offsprings produced by an individual by σ^2 . By the law of total variance,

$$VarX_n = Var(\mathbb{E}X_n|X_{n-1}) + \mathbb{E}Var(X_n|X_{n-1})$$
$$= Var(\mu X_{n-1}) + \mathbb{E}(\sigma^2 X_{n-1})$$
$$= \mu^2 Var(X_{n-1}) + \sigma^2 \mu^{n-1} \mathbb{E}X_0$$

(Assuming $X_0 = 1$ with probability 1)

$$VarX_{n} = \begin{cases} n\sigma^{2}, & \mu = 1\\ \sigma^{2}\mu^{n-1}\frac{\mu^{n}-1}{\mu-1}, & \mu \neq 1 \end{cases}$$

3.1.4 Extinction probability $\rho = 1$ if $\mu \le 1$; $\rho < 1$ if $\mu > 1$

To avoid trivial cases, we assume $1.p_0 > 0$; 2. $p_0 + p_1 < 1$.

Let $a_n(k) = P(X_n = 0|X_0 = k)$ and let $a(k) = \lim_{n\to\infty} a_n(k)$ denote the probability that the population dies out eventually assuming that $X_0 = k$.

Since all k individuals act independently, we must have

$$a(k) = a(1)^k$$

We simply denote a(1) by ρ .

$$\rho = a(1) = P(extinction|X_0 = 1) = \lim_{n \to \infty} P(X_n = 0|X_0 = 1)$$

By conditioning on the first step, we can write

$$\rho = \sum_{k=0}^{\infty} P(X_1 = k | X_0 = 1) P(extinction | X_1 = k) = \sum_{k=0}^{\infty} p_k \rho^k = \psi(\rho)$$

where $\psi:[0,1]\to\mathbb{R}$ is given by $\psi(z)=\sum_{k=0}^{\infty}p_kz^k$. Then the ρ satisfies $z=\psi(z)$

Definition 7. If a random variable X takes values in \mathbb{Z} , the **probability generating function** (pgf) of X is the function $\psi : [0,1] \to \mathbb{R}$ given by

$$\psi(s) = \psi_X(s) = \mathbb{E}(s^X) = \sum_{k=0}^{\infty} s^k P(X = k)$$

We now note some important properties of the function ψ .

- 1. $\psi'(x) = \sum_{k=1}^{\infty} x^{k-1} k p_k > 0$ for $x \in (0,1) \Rightarrow \psi$ is an **increasing** function.
- 2. $\psi''(x) = \sum_{k=2}^{\infty} x^{k-2} k(k-1) p_k > 0$ for $x \in (0,1) \Rightarrow \psi$ is a **convex** function.
- 3. $\psi(0) = p_0 > 0$
- 4. $\psi(1) = 1$
- 5. $\psi'(1) = \sum_{k=1}^{\infty} k p_k = \mu$
- 6. Probability Generating Functions characterize the distribution: if two discrete random variables have their pgf the same then they have the same distribution.

7.
$$\psi_{X+Y}(s) = \mathbb{E}(s^{X+Y}) = \mathbb{E}(s^X)\mathbb{E}(s^Y) = \psi_X(s)\psi_Y(s)$$

Figure 2: Fixed Point of pgf

From the pictures we can find that $\rho = 1$ is the unique fixed point of $\psi(z)$ when $\mu \leq 1$ and there exists another fixed point $\rho = r \in (0,1)$ when $\mu > 1$.

Suppose $\mu > 1$. Denote $q_n = a_n(1) = P(X_n = 0 | X_0 = 1)$, where $\lim_{n \to \infty} q_n = \rho$. Defining r to be the smaller solution of $\psi(z) = z$.

We want to prove $q_n \leq r$, $\forall n \geq 0$. Prove by induction:

- 1. Let $q_0 = 0$.
- 2. Assume that $q_n \leq r$,

$$q_{n+1} = P(X_{n+1} = 0 | X_0 = 1) = \sum_{k=0}^{\infty} P(X_{n+1} = 0 | X_1 = k) p_k$$
$$= \sum_{k=0}^{\infty} P(X_n = 0 | X_0 = k) p_k = \sum_{k=0}^{\infty} q_n^k p_k = \psi(q_n)$$

Since ψ is increasing, we have $q_{n+1} = \psi(q_n) \le \psi(r) = r$

Theorem 5. If $\mu < 1$ or $\mu = 1$, the extinction probability $\rho = 1$. If $\mu > 1$, then the extinction probability $\rho < 1$ and equals to the unique root of $z = \psi(z), z \in (0,1)$.

Example 6. $p_0 = \frac{1}{8}, p_1 = \frac{3}{8}, p_2 = \frac{3}{8}, p_3 = \frac{1}{8}.$

Since $\mu = \frac{3}{2} > 1$, we can solve $\frac{1}{8} + \frac{3}{8}r + \frac{3}{8}r^2 + \frac{1}{8}r^3 = r$. Because r = 1 is always a solution $\Rightarrow (r-1)(r^2+4r-1) = 0$ $r^* = \sqrt{5}-2$.

3.1.5
$$G_n(s) = G_{n-1}(\psi(s)) = \psi(\psi(\psi(\cdots \psi(s) \cdots))) = \psi(G_{n-1}(s))$$

For $n \geq 0$, let

$$G_n(s) = \sum_{k=0}^{\infty} s^k P(Z_n = k)$$

be the generating function of the n^{th} generation size Z_n .

$$G_1(s) = \psi(s)$$

We have

$$G_n(s) = \psi_{Z_n}(s) = \mathbb{E}(s^{Z_n}) = \mathbb{E}\left(\mathbb{E}(s^{\sum_{k=1}^z X_k})|Z_{n-1} = z\right)$$
$$= \mathbb{E}\left(\prod_{k=1}^z \mathbb{E}(s^{X_k})|Z_{n-1} = z\right) = \mathbb{E}\left((\psi(s))^z|Z_{n-1} = z\right)$$
$$= \mathbb{E}\left[(\psi(s))^{Z_{n-1}}\right] = G_{n-1}(\psi(s))$$

Since $G_2(s) = G_1(\psi(s)) = \psi(\psi(s)) = \psi(G_1(s))$, we can infer

$$G_n(s) = G_{n-1}(\psi(s)) = \psi(\psi(\psi(\cdots \psi(s)\cdots))) = \psi(G_{n-1}(s))$$

4 Markov Chain Monte Carlo (MCMC)

Given a probability distribution π , the goal of MCMC is to simulate a random variable X whose distribution is π .

The MCMC algorithm constructs an ergodic (irreducible and aperiodic) Markov chain whose limiting distribution is the desired π .

4.1 Strong Law of Large Numbers for Markov Chains

Theorem 6. Assume that $X_0, X_1, ...$ is an ergodic Markov chain with stationary distribution π . Let r be a bounded and real-valued function. Let Y be a random variable with distribution π . Then, with probability 1,

$$\lim_{n \to \infty} \frac{r(X_1) + \dots + r(X_n)}{n} = \mathbb{E}_Y[r(Y)]$$

where $\mathbb{E}[r(Y)] = \sum_{j} r(j)\pi_{j}$

5 Time Reversible Markov Chains

5.1 Definition: Local Balance $\pi(i)P(i,j) = \pi(j)P(j,i), \forall i,j \in S$

Definition 8. We say that a MC is **time reversible** if, for each $n \geq 1$, the distribution of (X_0, \ldots, X_n) is the same as the distribution of (X_n, \ldots, X_0) . Equivalently, for any $x_0, \ldots, x_n \in \mathcal{S}$ we have

$$P(X_0 = x_0, X_1 = x_1, \dots, X_n = x_n) = P(X_n = x_0, X_{n-1} = x_{n-1}, \dots, X_0 = x_n).$$

In words, the probability of a given trajectory is the same as the probability of the reverse trajectory.

Lemma 17 (Local Balance). The Markov chain $X_0, X_1, ...$ is time-reversible if and only if the distribution π of X_0 satisfies the condition

$$\pi(i)P(i,j) = \pi(j)P(j,i), \forall i,j \in S$$

5.2 Discussion about Local Balance

5.2.1 Flow: $Flow(A, B) = \sum_{i \in A} \sum_{j \in B} \pi(i) P_{ij}$

Definition 9. For a distribution π on the state space S and any two subsets of the state space A, B define the Flow

$$Flow(A, B) = \sum_{i \in A} \sum_{j \in B} \pi(i) P_{ij}$$

5.2.2 Lemma: $Flow(A, A^c) = Flow(A^c, A)$ for any subset $A \subset S$

Lemma 18. $Flow(A, A^c) = Flow(A^c, A)$ for any subset $A \subset S$.

Proof.

$$Flow(A, A^{c}) = \sum_{i \in A} \sum_{j \in A^{c}} \pi(i) P_{ij} = \sum_{i \in A} \pi(i) (1 - \sum_{j \in A} P_{ij}) = \sum_{i \in A} \pi(i) - \sum_{i \in A} \sum_{j \in A} \pi(i) P_{ij}$$
$$Flow(A^{c}, A) = \sum_{i \in A^{c}} \sum_{j \in A} \pi(i) P_{ij} = \sum_{j \in A} \pi(i) - \sum_{i \in A} \pi(i) P_{ij} = \sum_{j \in A} \pi(i) P_{ij} = \sum_{j \in A} \pi(i) P_{ij}$$

5.2.3 Lemma: Local balance $\Rightarrow \pi$ is stationary

Lemma 19. If the local balance equations " $\pi(i)P(i,j) = \pi(j)P(j,i), \forall i,j \in S$ " hold then π is stationary.

Proof.

$$(\pi P)_i = \sum_{j \in S} \pi_j P_{ji} = \sum_{j \in S} \pi_i P_{ij} = \pi_i$$

5.2.4 Lemma: All stationary birth and death chains are reversible

Lemma 20. All stationary birth and death chains are reversible. (i.e. For a MC with $P_{i,j} = 0, \forall |i - j| > 1$, $\pi(i)P(i,j) = \pi(j)P(j,i), \forall i,j \in \mathbb{Z}_+$)

Proof. It is enough to show the equation holds when j = i + 1. For $A = \{0, 1, 2, ..., i\}$,

$$Flow(A, A^c) = \sum_{0 \le k \le i} \sum_{j>i} \pi(k) P_{kj} = \pi(i) P_{i,i+1}$$
$$= Flow(A^c, A) = \sum_{j>i} \sum_{0 \le k \le i} \pi(j) P_{jk} = \pi(i+1) P_{i+1,i}$$

5.3 Example: Random Walk on an Undirected Graph

Lemma 21. Any stationary random walk on a weighted undirected graph is time reversible. On the other hand, any time reversible MC can be thought of as a random walk on a weighted undirected graph.

Proof. Consider a RW on a weighted undirected graph G = (V, W). Recall that every potential edge or a pair of states i, j has some weight $W_{ij} \geq 0$. Since the graph is undirected this means that the edge weights $W_{ij} = W_{ji}$ are symmetric. The transition probabilities are $P_{v,u} = \frac{W_{vu}}{\sum_{v \in S} W_{vu}}$, where $S = \{v : W_{uv} \neq 0\}$. By the symmetric property, $P_{v,u} = \frac{W_{vu}}{\sum_{v \in S} W_{vu}} = \frac{W_{uv}}{\sum_{v \in S} W_{uv}}$. Let's denote $W = \sum_{(i,j) \in V \times V} W_{ij}$.

We know from an earlier lecture that the stationary distribution is given by $\pi(v) = \frac{\sum_{v \in \mathcal{S}} W_{uv}}{W}$. Let's now check that this π satisfies the local balance.

$$\pi(v)P_{v,u} = \frac{\sum_{v \in \mathcal{S}} W_{uv}}{W} \frac{W_{uv}}{\sum_{v \in \mathcal{S}} W_{uv}} = \frac{W_{uv}}{W}.$$

The right hand side above is symmetric in u, v so local balance must hold. On the other hand, lets consider a time reversible MC. Build a graph where the set of vertices is same as the state space of this MC. Define the edge weights to be $W_{ij} = \pi_i P_{ij}$. Since local balance holds we have $W_{ij} = W_{ji}$. Now

we can imagine a random walk on this weighted undirected graph. What is the transition probability Q of this random walk? It has to be

$$Q_{uv} = \frac{W_{uv}}{\sum_{v \in S} W_{uv}} = \frac{\pi(v) P_{v,u}}{\sum_{u \in S} \pi(v) P_{v,u}} = P_{v,u}.$$

Therefore, this random walk describes the same MC as the original one.