

Parallel Programming Tutorial - Dependency and transformations

Amir Raoofy, M.Sc.

Chair for Computer Architecture and Parallel Systems (Prof. Schulz)

Technical University of Munich

23. Mai 2018

Few organizational notes

Organization

- The speedup requirement for assignment 6 is relaxed to 14.0 since you don't access to the server environment.
- Slides from last tutorial are updated, please download the latest version.
- Please evaluate the course, the date will be announced.
- Don't forget that On June 25th we will have a lecture on optimization of sequential programs by M.Sc. Alexis Engelke
- Assignment on SIMD is not yet ready. Hopefully will be published by the end of the week
- Assignment 7 will be published today by evening

Solution for Assignment 5

Solution for Assignment 5 - Sections

- Parallelize the familytree algorithm with OpenMP sections
- Set the correct number of threads
 - use the runtime function omp_set_num_threads
- Enable nested parallelism
 - use the runtime function omp set nested
- Avoid oversubscription
 - Option 1: Use conditional parallelism by utilizing omp get level
 - Option 2: Use omp set max active levels

```
#define MAX NESTING LEVEL 5
3 void parallel_traverse(tree *node) {
     if (node != NULL) {
       node->IQ = compute_IQ(node->data);
       genius[node->id] = node->IQ;
       #pragma omp parallel sections {
      #pragma omp section
       parallel_traverse(node->right);
       #pragma omp section
11
       parallel traverse(node->left);
12
13
14
15
  void traverse(tree *node, int numThreads) {
     omp_set_num_threads( numThreads );
18
     omp set nested( 1 );
     omp_set_max_active_levels( MAX_NESTING_LEVEL );
21
     parallel traverse(node);
23
```


Solution for Assignment 5 - Tasks

- Parallelize the familytree algorithm with OpenMP tasks
- Set the correct number of threads
 - use the clause num_threads
- Use a single thread to start the algorithm
- Optimization: Create only one task per recursion 8

```
void parallel traverse(tree *node) {
    if (node != NULL) {
      #pragma omp task
      parallel_traverse(node->right);
      parallel_traverse(node->left);
      node->IQ = compute_IQ(node->data);
      genius[node->id] = node->IQ;
10
11
12
  void traverse(tree *node, int numThreads) {
    #pragma omp parallel num threads( numThreads )
      #pragma omp single
      parallel traverse(node);
19
```


(Data) Dependency Analysis

Dependence Notation

• S1 and S2 are statements

Type	Meaning	Symbol	Alternative Symbols	Example
True dependence	RAW	S1 δ^t S2	δ , δ^f	S1: x=1
True dependence	I VAVV	31 0 32	0, 0	S2: y=x
Antidependence	WAR	S1 δ^a S2	δ^{-1}	S1: y=x S2: x=1
Antidependence	VVAIN	31 0 32		S2: x=1
Output dependence	WAW	S1 δ° S2		S1: x=1
Output dependence	V V /~\ V	31 0 32		S2: x=2

It's called true dependence, because for second instruction you need the first one to finish.

- RAW = "read after write"
- WAR = "write after read"
- WAW = "write after write"

Iteration Vector

- The iteration vector for a statement S in the loop is given by $\vec{i} := (i_1, i_2, \dots, i_n)$ where i_k , $(1 \le k \le n)$, represents the iteration number for the loop at nesting level k.
- The set of all possible iteration vectors for S is called *iteration space*.

Iteration Vector - Example

```
1 for (i = 1; i < 3; i++) {
2    for (j = 1; j < 4; j++) {
3       S: ...
4    }
5 }</pre>
```

• The iteration space of statement S is $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$

Data Dependence

Informal Definition

There is a data dependence from statement S_1 to statement S_2 (S_2 dependes on S_1), if and only if (1) both statements access the same memory location and at least one of them writes to it, and (2) there is a feasible run-time execution path from S_1 to S_2 .

Formal Definition

$$\exists M, S_1, S_2, \overrightarrow{i}, \overrightarrow{j}$$
:

- 1. $(\overrightarrow{i} < \overrightarrow{j})^1$ or $(\overrightarrow{i} = \overrightarrow{j})^{23}$ and there is a path from S_1 to S_2
- 2. S_1 and S_2 access M on \overrightarrow{i} and \overrightarrow{j} , respectively
- 3. One of these accesses is a write

¹called *loop-carried dependence*

²called *loop-independent dependence*

 $^{^{3}}$ The operations < and = are defined componentwise from left to right.

Distance Vector

Definition

- Suppose there is a dependence from statement S_1 on iteration \overrightarrow{i} of a loop nest to statement S_2 on iteration \overrightarrow{j}
- The distance vector is defined as $d(\overrightarrow{i}, \overrightarrow{j}) = [d(\overrightarrow{i}, \overrightarrow{j})_1, \dots, d(\overrightarrow{i}, \overrightarrow{j})_N]$, where $d(\overrightarrow{i}, \overrightarrow{j})_k := j_k i_k$.

Example

The distance vector for the dependence S[(2,2,2)] $\delta^t S[(3,1,2)]$ of the following loop nest is (1,-1,0).

Direction Vector

Definition

• Suppose there is a dependence from statement S_1 on iteration \overrightarrow{i} of a loop nest to statement S_2 on iteration \overrightarrow{j}

```
• Direction vector D(\overrightarrow{i}, \overrightarrow{j})_k := \begin{cases} \text{"<",} & d(i,j)_k > 0 \\ \text{"=",} & d(i,j)_k = 0 \\ \text{">",} & d(i,j)_k < 0 \end{cases}
```

Example

The direction vector for the dependence S[(2,2,2)] $\delta^t S[(3,1,2)]$ of the following example is (<,>,=).

The **level** of a loop-carried dependence is the index of the leftmost non-"=" of D(i,j).

Dependence Graphs

- Nodes: The statements of a program
- Edges: The dependences between the statements from the first executed statement to the following one
- Each edge is labeled with the dependence type and the nesting level

Example

```
for (i = 1; i < N; i++) {
for (j = 1; j < M; j++) {
    S1: A(i + 1,j) = B(i,j + 1)
    S2: B(i,j) = A(i,j)
}
</pre>
```


Example 1

• Give the dependence graph for the following loop.

```
1 for (i = 0; i < N; i++) {
2    S1: B(i) = A(i)
3    S2: A(i) = A(i) + B(i + 1)
4    S3: C(i) = 2 * B(i)
5 }</pre>
```

• Give the distance and direction vectors for the loop-carried dependencies.

Source	Sink	Dep.Type	Dist. Vector	Dir. Vector	

- Source, Sink: Specify the references in the form S1:B(i)
- Type: Loop-independent (I-i) or loop-carried dependence (I-c)
- Dep.Type: True-, Anti-, or Output-Dependence
- Vectors: n-Tuples where n is the depth of the loop nest

Solution for Example 1

```
1 for (i = 0; i < N; i++) {
2    S1: B(i) = A(i)
3    S2: A(i) = A(i) + B(i + 1)
4    S3: C(i) = 2 * B(i)
5 }</pre>
```

Source	Sink	Dep.Type	Dist. Vector	Dir. Vector
S2: B(i + 1)	S1: B(i)	а	(1)	(<)

Example 2

• Give the dependence graph for the following loop.

```
for (i = 1; i < N; i++) {
for (j = 1; j < M; j++) {
    S1: A(i) = B(i,j)
    S2: B(i,j) = B(i - 1,2 * j)
}
</pre>
```

• Give the distance and direction vectors for the dependencies.

Solution for Example 2

```
for (i = 1; i < N; i++) {
for (j = 1; j < M; j++) {
    S1: A(i) = B(i,j)
    S2: B(i,j) = B(i - 1,2 * j)
}
</pre>
```

Source	Sink	Dep.Type	Dist. Vector	Dir. Vector
S1: A(i)	S1: A(i)	0	(0,*)	(=, *)
S2: B(i, j)	S2: B(i-1, 2*j)	t	(1,-j)	(<, >)

Example 3

• Give the dependence graph for the following loop.

```
for (i = 0; i < N; i++) {
for (j = 0; j < M; j++) {
    S1: B(i - 1,j) = C(i,j - 2)
    S2: C(i,j) = 2 * B(i,j + 1)
}</pre>
```

• Give the distance and direction vectors for the loop-carried dependencies.

Solution for Example 3

```
for (i = 0; i < N; i++) {
for (j = 0; j < M; j++) {
    S1: B(i - 1,j) = C(i,j - 2)
    S2: C(i,j) = 2 * B(i,j + 1)
}</pre>
```

Source	Sink	Dep.Type	Dist. Vector	Dir. Vector
S2: B(i, j+1)	S1: B(i-1, j)	а	(1,1)	(<, <)
S2: C(i, j)	S1: C(i, j-2)	t	(0,2)	(=, <)

Loop Transformations

Transformations

Theorem

Any reordering transformation that preserves every dependence in a program preserves the meaning of that program.

Transformations - Mindmap

Loop Distribution I

```
for (i=1; i<n; i++) {
    for (j=1; j<m; j++) {
        S1: A(i,j) = B(i,j)
        S2: B(i,j) = A(i,j-1)
    }
}</pre>
```


Loop Distribution I

```
for (i=1; i<n; i++) {
    for (j=1; j<m; j++) {
        S1: A(i,j) = B(i,j)
        S2: B(i,j) = A(i,j-1)
    }
}</pre>
```

```
for (i=1; i<n; i++) {
    for (j=1; j<m; j++) {
        S1: A(i,j) = B(i,j)
    }
    for (j=1; j<m; j++) {
        S2: B(i,j) = A(i,j-1)
    }
}</pre>
```


Loop Distribution II - Cycle

```
for (i=1; i<n; i++) {
    for (j=1; j<m; j++) {
        S1: A(i,j) = B(i,j)
        S2: B(i,j+1) = A(i,j-1)
    }
}</pre>
```


Loop Distribution II - Cycle

```
for (i=1; i<n; i++) {
    for (j=1; j<m; j++) {
        S1: A(i,j) = B(i,j)
        S2: B(i,j+1) = A(i,j-1)
    }
}</pre>
```


Loop Alignment I

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i)
    S2: B(i+1) = A(i+1)
}</pre>
```


Loop Alignment I

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i)
    S2: B(i+1) = A(i+1)
}</pre>

    for (i=1; i<n; i++) {
        S1: A(i) = B(i)
        S2: B(i+1) = A(i+1)
    }
</pre>
```


Loop Alignment I - Peeling Off Executions

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i)
    S2: B(i+1) = A(i+1)
}</pre>
```

```
1 A(1) = B(1)

2 for (i=2; i<n; i++) {

3 S2: B(i) = A(i)

4 S1: A(i) = B(i)

5 }

6 B(n) = A(n)
```


Loop Alignment II - Cycle

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i)
    S2: B(i+1) = A(i)
}</pre>
```


Loop Alignment II - Cycle

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i)
    S2: B(i+1) = A(i)
}</pre>

    for (i=1; i<n+1; i++) {
        S1: if (i<n) A(i) = B(i)
        S2: if (i>1) B(i) = A(i-1)
    }
```


Loop Alignment III - Conflict

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i)
    S2: C(i) = A(i) + A(i-1)
}</pre>
```


Loop Alignment III - Conflict

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i)
    S2: C(i) = A(i) + A(i-1)
}</pre>
for (i=0; i<n; i++) {
    S1: if (i>0) A(i) = B(i)
    S2: if (i<n+1) C(i+1) = A(i+1)+A(i)
}
```


Code Replication

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i)
    S2: C(i) = A(i) + A(i-1)
}</pre>
```


Code Replication

```
for (i=1; i<n; i++) {
    S1:    A(i) = B(i)
    S2:    C(i) = A(i) + A(i-1)
}</pre>
```



```
for (i=1; i<n; i++) {
    private(T)
    S1: A(i) = B(i)
    if (i=1) T = A(0)
    else T = B(i-1)
    S2: C(i) = A(i) + T
}</pre>
```


Statement Reordering

```
for (i=1; i<10; i++) {
    S1: A(i+1) = F(i)
    S2: F(i+1) = A(i)
}</pre>
```


Transformations

Theorem

Alignment, replication, and statement reordering are sufficient to eliminate all carried dependences in a single loop that contains no recurrence and in which the distance of each dependence is a constant independent of the loop index.

Loop Fusion I

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i+1)
}
for (i=1; i<n; i++) {
    S2: C(i) = A(i) + B(i)
}</pre>
```


Loop Fusion I

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i+1)
}
for (i=1; i<n; i++) {
    S2: C(i) = A(i) + B(i)
}</pre>
```



```
for (i=1; i<n; i++) {
    S1: A(i) = B(i+1)
    S2: C(i) = A(i) + B(i)
}</pre>
```


Loop Fusion II - Fusion preventing Dependency

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i+1)
}
for (i=1; i<n; i++) {
    S2: C(i) = A(i+1) + B(i)
}</pre>
```


Loop Fusion II - Fusion preventing Dependency

```
for (i=1; i<n; i++) {
    S1: A(i) = B(i+1)
}
for (i=1; i<n; i++) {
    S2: C(i) = A(i+1) + B(i)
}</pre>
```


Loop Fusion III - Parallelism inhibiting Dependency

```
for (i=1; i<n; i++) {
    S1: A(i+1) = B(i+1)
}
for (i=1; i<n; i++) {
    S2: C(i) = A(i) + B(i)
}</pre>
```


Loop Fusion III - Parallelism inhibiting Dependency

```
for (i=1; i<n; i++) {
    S1: A(i+1) = B(i+1)
}
for (i=1; i<n; i++) {
    S2: C(i) = A(i) + B(i)
}</pre>
```


Loop Interchange

```
for (i=1; i<n; i++) {
    for(j=1; j<m; j++) {
        S: A(i+1,j) = A(i,j) + B(i,j)
    }
}</pre>
```



```
for (j=1; j<m; j++) {
    for(i=1; i<n; i++) {
        S: A(i+1,j) = A(i,j) + B(i,j)
    }
}</pre>
```


Assignment 7

Assignment 7: Loop Transformations (will be updated)

- Apply loop fusion to the loop in loop_fusion_seq.c
- Parallelize the loop with OpenMP in loop_fusion_par.c and upload it