

Sistemas Digitais (SD)

Minimização de Funções Booleanas

	YZ					
00	01	11	10			
0	0	0	0			
1	1	1	1			
1	1	1	1			
0	0	0	0			
		00 01	00 01 11			

< AB				
CD	00	01	11	10
10	1	1		1
11	1	1		1
01	1	1		1
00	1	1		

Aula Anterior

Na aula anterior:

- Minimização algébrica
- Minimização de Karnaugh:
 - Representação de funções de n variáveis:
 - Quadros de 3 e 4 variáveis;
 - Quadros de n variáveis;
 - Agrupamentos de uns e zeros:
 - Eixos de simetria;
 - o Implicantes e implicados;
 - Implicantes e implicados primos;
 - Implicantes e implicados primos essenciais.

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

3

Sumário

Tema da aula de hoje:

- Minimização de Karnaugh:
 - Agrupamentos de uns e zeros:
 - Eixos de simetria;
 - Implicantes e implicados;
 - o Implicantes e implicados primos;
 - o Implicantes e implicados primos essenciais.
 - Método de minimização de Karnaugh
 - Algoritmo de minimização
 - o Forma normal/mínima disjuntiva
 - o Forma normal/mínima conjuntiva
 - o Funções incompletamente especificadas

Bibliografia:

- M. Mano, C. Kime: Secções 2.4 e 2.5
- G. Arroz, J. Monteiro, A. Oliveira: Secção 2.3

AGRUPAMENTO DE MINTERMOS E MAXTERMOS

▶ Eixos de Simetria:

2 quadrados dizem-se adjacentes em termos lógicos quando apenas uma variável lógica altera o seu valor na representação desses quadrados.

Num quadro de N variáveis, para cada quadrado existem sempre N outros adjacentes

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

▶ Um termo de produto diz-se um implicante da função sse essa função assume 1 para todos os mintermos que o constituem.

Exemplos:

Agrupamentos de 2ⁿ quadrados correspondem à eliminação de n literais

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

▶ Exemplos da representação de Maxtermos:

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

▶ Um termo de soma diz-se um implicado da função sse essa função assume 0 para todos os maxtermos que o constituem.

Exemplos:

Agrupamentos de 2ⁿ quadrados correspondem à eliminação de n literais

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

▶ Um termo de produto diz-se um implicante primo se a remoção de um qualquer literal, desse termo de produto, resulta num termo de produto que não é um implicante da função.

Exemplos:

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

Um termo de soma diz-se um implicado primo se a remoção de um qualquer literal, desse termo de soma, resulta num termo de soma que não é um implicado da função.

Exemplos:

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

Um implicante primo de uma função diz-se implicante primo essencial se contém pelo menos um mintermo não contido em nenhum outro implicante primo.

Exemplos:

Implicantes Primos

Implicantes
Primos Essenciais

Implicantes Primos

Implicantes Primos Essenciais

CD AB	00	01	11	10
00	1	1	0	0
01	0	1	1	0
11	0	0	1	1
10	0	0	0	1

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

Um implicado primo de uma função diz-se implicado primo essencial se contém pelo menos um maxtermo não contido em nenhum outro implicado primo.

Exemplos:

Implicados Primos

Implicados Primos

Implicados Primos Essenciais

CD AB	00	01	11	10
00	1	1	0	0
01	0	1	1	0
11	0	0	1	1
10	0	0	0	1

■ MÉTODO DE MINIMIZAÇÃO DE KARNAUGH

Algoritmo de Minimização:

O procedimento sistemático para a obtenção da expressão simplificada de uma função representada num quadro de Karnaugh corresponde à execução dos seguintes passos:

Passo 1: Identificação de todos os implicantes/implicados primos essenciais.

Passo 2: Determinação do menor conjunto de implicantes/implicados primos que contenham os mintermos/maxtermos não incluídos nos implicantes/implicados primos essenciais identificados no passo anterior.

Passo 3: Escrita da expressão simplificada como soma/produto de todos os termos de produto/soma seleccionados nos passos 1 e 2.

■ MÉTODO DE MINIMIZAÇÃO DE KARNAUGH (cont.)

► Forma Normal/Mínima Disjuntiva: representação algébrica simplificada da função que utiliza apenas implicantes primos essenciais e um número mínimo de implicantes primos não essenciais.

Exemplos:

 $f(A,B,C) = \overline{A}\overline{B} + A\overline{C}$

■ MÉTODO DE MINIMIZAÇÃO DE KARNAUGH (cont.)

Exemplos:

 $f(A,B,C,D) = \overline{A}\overline{B}\overline{C} + \overline{A}BD + ABC + AC\overline{D}$

O conjunto de implicantes primos não essenciais que completam a expressão simplificada oferece várias alternativas.

 $f(A,B,C,D) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{C}D + BCD + AC\overline{D}$

■ MÉTODO DE MINIMIZAÇÃO DE KARNAUGH (cont.)

Exemplos:

CD	E 000	001	011	010	110	111	101	100
00	1	0	3 0	1	_e 0	1	5 0	1
01	8 0	9 1	11 1	10	0	0	13	0
11	0	²⁵ 1	²⁷ 1	²⁶ 0	30	31 1	0	28
10	16	17	0	18	0	²³ 1	0	0

CD AB	E ₀₀₀	001	011	010	110	111	101	100
00	\bigcirc	1	0	(1)	6		5	(1)
01	8 0	1	11	10	0	15	(1)	0
11	0	²⁵ 1	²⁷ 1	²⁶ 0	0	31 1	0	28
10	(1)	17	0	(1)	0	1	0	0

Expressão Original:

- 15 Termos de Produto de 5 Literais

Expressão Simplificada:

- 6 Termos de Produto de 4 Literais
- 1 Termo de Produto de 3 Literais

■ MÉTODO DE MINIMIZAÇÃO DE KARNAUGH (cont.)

► Forma Normal/Mínima Conjuntiva:

 $f(A,B,C,D) = (\bar{A}+C).(A+B+\bar{C}).(A+\bar{B}+D).(\bar{A}+B+\bar{D})$

O conjunto de implicados primos não essenciais que completam a expressão simplificada oferece várias alternativas.

 $\mathsf{f}(\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{D}) = (\bar{\mathsf{A}} + \mathsf{C}).(\bar{\mathsf{B}} + \mathsf{C} + \mathsf{D}).(\mathsf{B} + \bar{\mathsf{C}} + \bar{\mathsf{D}}).(\mathsf{A} + \bar{\mathsf{C}} + \mathsf{D})$

■ MÉTODO DE MINIMIZAÇÃO DE KARNAUGH (cont.)

► Algoritmo de Minimização (Funções Incompletamente Especificadas):

O procedimento sistemático para a obtenção da expressão simplificada de uma função representada num quadro de Karnaugh corresponde execução dos seguintes passos:

Passo 1: Identificação de todos os implicantes/implicados primos essenciais.*

Passo 2: Determinação do menor conjunto de implicantes/implicados primos que contenham os mintermos/maxtermos não incluídos nos implicantes/implicados primos essenciais identificados no passo anterior.*

Passo 3: Escrita da expressão simplificada como soma/produto de todos os termos de produto/soma seleccionados nos passos 1 e 2.

* <u>Incluindo as indeterminações</u> sempre que isso permita reduzir o número de literais presentes nesse implicante/implicado.

MÉTODO DE MINIMIZAÇÃO DE KARNAUGH (cont.)

► Funções Incompletamente Especificadas:

Exemplos:

$$f(A,B,C,D) = \sum m(0,1,5,7,10,14,15) + \sum m_d(8,13)$$

=\PiM(2,3,4,6,9,11,12).\PiM_d(8,13)

CD AB	00	01	11	10
00	° 1	1 1	0	20
01	0	⁵ 1	1	0
11	20	13 X	15 1	14 1
10	8 X	90	0	10 1

CD AB	00	01	11	10
00	0 1	1	3 0	0
01	4 0	5 1	1	6 0
11	0	3 X	15	14 1
10	8 X	9 0	0	10 1

■ MÉTODO DE MINIMIZAÇÃO DE KARNAUGH (cont.)

Exemplos:

Próxima Aula

Próxima Aula

Tema da Próxima Aula:

- Noção de circuito combinatório;
- ▶ Tempo de propagação num circuito;
- Dispositivos lógicos especiais:
 - Buffer de três estados (tri-state);
 - Portas de passagem (transmission gates).

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás