

TEQIP-III Short Course on Systems Analysis of Biofuels and Bioproducts

Module 2: Technical Feasibility and Resource Sustainability Assessment

Ganti S. Murthy Professor Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology-Indore Email: Ganti.Murthy@iiti.ac.ir

Technical Feasibility

- · Aspects of technical feasibility analysis
 - Technical Feasibility

1

- Schedule Feasibility
- Operational Feasibility
- Economic Feasibility
- · Estimating theoretical maximum and best-case scenarios
- Using alternative approaches to assess technical feasibility

3 4

Biorefinery Complexity Index

- IEA task force 42 proposed a biorefinery complexity index inspired by a Nelson's Complexity Index (NCI) used to indicate the complexities in petroleum refineries.
- Feature Complexity (FC) = 10-TRL
- Assigns FC levels to
 - Platforms
 - Feedstocks
 - Products
 - Processes

Goals of this Lecture

Introduce the Technical Feasibility and Resource Sustainability Analysis

Learning Objectives

By the end of this lecture, you must be able to:

2

- 1. Able to perform basic technical feasibility analysis
- 2. Calculate the resources (land, water and nutrient) needed for any technology

Technical Feasibility • US DOE Technology Readiness Levels TECHNOLOGY DEVELOPMENT Scale of Testing Environment^{1,2} TRL Level Fidelity (Full Range) Full Identical (Limited Range) Engineering/Pilot Scale Relevant Relevant Lab/Bench Simulated Paper | Paper | Simulants should match relevant physical and chemical properties | Testing with as wide a range of actual waste as practicable; and consistent with waste availability, safety ALARA, cost, and project risk is highly desirable

Biorefinery Complexity Index

TRLs for Platforms

C6 sugars (9), C5 sugars (7), C6 and C5 sugars (7), oils (9), fiber (7), bagasse (9) pulp (9) ligni for pyrolysis (6), lignin from hydrolyses (7), lignin and C6 sugars (8) pyrolysis oils and slurry 4), syngas (9), black/sulfite liquor (8-9), biogas (9), hydrogen (9), electricity and heat (9), piomethane (8) and green pressate (7)

TRLs for Feedstocks

Itural produce: Starch rich feedstocks (maize, wheat, potatoes, cassava and tapioca 9), oil seeds (9), sugarcane and other sugar crops (9), bagasse (9), microalgae (4), gricultural residues (corn stover, wheat straw, rice straw, grass straw) (7-8)

Naste feedstocks: effluents from dairy industries (9), municipal solid waste (8-9), municipal vaste water (8-9), fruit processing wastes (citrus peels, coffee processing waste, tea processing waste) (9), food industry effluents (vegetable processing, food product manufacturing) (9), animal manure (9)

Nood Industry Products: saw mill residues (9), wood chips (9), dedicated energy crops (7-8), hardwoods (7-8), softwoods (7-8), effluents from paper processing (black/sulfite liquor) (8)

5 6

Biorefinery Complexity Index

Example

- Calculate the BCI for a Corn dry grind ethanol process
- FCplatform =1 (10-9=1).
- FCfeedstocks=1,
- FCProducts, ethanol=1 and FCProducts, DDGS=1.
- FCprocess,sizereduction=1, FCprocess,hydrolysis=1, FCprocess,fermentation=1, FCprocess,distillation=1 and FCprocess,drying=1.
- BCI =FCplatform (1) +FCfeedstock (1) + FCproduct (1+1) + FCprocess (1+1+1+1+1) =9.

Based on these numbers, the BCP for a corn dry grind ethanol process can be specified as BCP =9 (1/1/2/5).

8

Land and Water Use

- Global Land Area: 13.2 billion ha
 - Arable Land: 1.6 billion ha (12%)
 - Forest: 3.7 billion ha (28%)
 - Grasslands and woodlands: 4.6 billion ha (35%)
- Renewable global water resources: 42, 000 Km³/year
- Human use from rivers and aquifers: 3,900 Km³/year (40% consumptive use)
 - Irrigation: 2710 Km³/year (70%)
 Industrial use: 741 Km³/year(19%)
 Municipal sector: 429 Km³/year(11%)

Source: SOWLOW FAO Report

9

10

Dominant Constraints for Low-input Farming Source: SOWLOW FAO Report

Year	2015	2016	2017	2018	2019	2020
Ammonia (NH ₃) as N	174 781	181 228	185 222	186 804	186 920	188 310
Phosphoric acid (H ₃ PO ₄) as P ₂ O ₅	57 422	58 385	60 955	61 995	63 036	64 677
Potash as K ₂ O	52 942	55 974	58 111	61 576	62 136	64 486
Total (N+ P ₂ O ₅ +K ₂ O)	285 145	295 587	304 287	310 374	312 092	317 474

Year	2015	2016	2017	2018	2019	2020
Ammonia (NH ₃) as N	154 773	158 850	166 402	168 987	169 693	170 761
Phosphoric acid (H ₃ PO ₄) as P ₂ O ₅	47 424	48 394	49 558	51 190	52 361	53 078
Potash as K ₂ O	43 571	42 772	44 868	47 249	48 898	49 545
Total (N+ P ₂ O ₅ +K ₂ O)	245 768	250 016	260 828	267 426	270 952	273 384

Nutrient Management: BMPs Table 4. Components of the 4R Nutrient Stewardship system. Provide plant-available forms, and a balanced supply of all essential nutrients. Take advantage of various formulations that offer improved efficiency and reduce environmental consequences. Right source Ensure an adequate supply of all essential nutrients to meet plant demand. Right rate Right time Manage nutrient applications to match the interactions of crop uptake, soil supply, environmental risks, and field operation logistics. Consider root-soil dynamics and nutrient movement, and manage spatial variability within the field to meet site-specific crop needs and minimize potential losses from Right place Source: Reetz 2016 Fertilizers and Their Efficient Use. International Fertilizer Association

References Land and water Land and water
https://www.suda.gov/lopics/farm-practices-management/
https://wwate.usgs.gov/edu/wuit.html
http://www.globalgericulture.org/report-topics/water.html
http://www.globalgericulture.org/report-topics/water.html
http://www.globalgericulture.org/fileadmin/files/weltaggarbericht/AquastatWithdrawal2014.pdf
http://globalchange.mit.edu/stxt/edu/ult/files/MITPSPCC.Reprint_14-16.pdf http://www.fao.org/land-water/databases-and-software/en/ http://www.fao.org/3/a-i1688e.pdf http://www.fao.org/3/a-1688e.pdf
http://pubs.sep.ov/scr/1405/
http://pubs.sep.ov/scr/1405/
http://pubs.sep.ov/scr/1405/
http://pubs.sep.ov/scr/1405/
http://pubs.sep.ov/scr/1405/
http://pubs.sep.ov/scr/1405/
http://water/ootprint.org/sep.water-footprint/what-is-water-footprint/
http://waterfootprint.org/sep.water-footprint/what-is-water-footprint/
http://waterfootprint.org/sep.water-footprint/what-is-water-footprint/
http://waterfootprint.org/sep.water-footprint/http://water-footprint.org/sep.water-footprint/
http://water-footprint.org/sep.water-footprint/http://water-footprint-fo Nutrients zer.org/imis20/images/Library_Downloads/2016_ifa_reetz.pdf?WebsiteKey=411e9724-4bda-422fabfc-8152ed74f306&=404%3bhttp%3a%2f%2fwww.fertilizer.org%3a80%2fen%2fimages%2fLibrary_Downloads%2f2016_ifa reetr.pd
http://www.fertilizer.org/statistics
http://fidadat.fertilizer.org/statistics
http://fidadat.fertilizer.org/statistics
http://fidadat.fertilizer.org/statistics
http://www.fertilizer.org/statistics-management/shemical-inputs/fertilizer-use-markets/
https://www.fertilizer.org/statistics-management/shemical-inputs/fertilizer-use-markets/
https://www.fertilizer.org/statistics-management/shemical-inputs/shemical-inputs/shemical-inputs/s

TEQIP-III Short Course on Systems Analysis of Biofuels and Bioproducts Module 2: Technical Feasibility and Resource Sustainability Assessment **BREAK** Ganti S. Murthy Professor Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology-Indore Email: Ganti.Murthy@iiti.ac.in

27

First Generation Biofuels Feasibility Analysis

Corn Dry Grind Ethanol in the US

Background

26

28

- Corn dry grind ethanol process is currently used in the US to produce 60 billion L/year (~15.8 billion gal/year) of ethanol per year accounting for 58% of the global production
- This process uses almost 35% of the US corn production. Each bushel of corn (25.424 kg or 56 lbs) can produce 10.62 L or 2.8 gal of ethanol.

29 30

First Generation Biofuels Feasibility Analysis

The goal of this analysis is to:

Determine the levels of ethanol that can be produced without major disruption in the corn markets or expanding the area of cultivation significantly.

	Data
Average US corn yield: :	11.46 tons/ha (181.3 bu/acre)
US corn, grain- harveste	ed: 32.708 million ha (81.77 million acres)
US crop land: 152.26 m	illion ha
Corn to ethanol convers	sion: 0.4273 L/Kg (2.87 gal/bu)
DDGS production: 0.292	28 kg/kg corn or 0.685 kg/L ethanol
Gasoline:Ethanol energ	y density equivalency ratio= 1.424
US gasoline needs: 3.40	4 billion barrels=142.98 billion gal=541.735
billion L/year	
Number of cattle in US:	92 million heads.
1 gal =3.785 L	

31 32

First Generation Biofuels Feasibility Analysis

- Area needed to produce ethanol to meet 100% current gasoline needs = Ethanol equal to 100% current gasoline needs /(Average US corn vield x Corn to ethanol conversion)
- =771.5 billion L/year /(11.46e3 kg/ha x 0.4273 L/kg)=157.6 million ha.
- Area needed to produce ethanol to meet 50% current gasoline needs = Ethanol equal to 100% current gasoline needs /(Average US corn yield x Corn to ethanol conversion)
 - =385.75 billion L/year /(11.46e3 kg/ha x 0.4273 L/kg)= million ha.
 - Area needed to produce 15 billion gal/year ethanol
 - =(15 billion gal/year x 3.785 L/gal) /(11.46e3 kg/ha x 0.4273 L/kg) =11.6 million ha
- Amount of DDGS produced for 15 billion gal ethanol
 - = 15 billion gal/year x 3.785 L/gal x 0.685 kg/L ethanol
 - = 38.89 million tons
- Number of cattle that can be fed the DDGS:

38.89 million tons/0.548 tons/head =71 million cattle heads

First Generation Biofuels Feasibility Analysis

Results:

- The total area needed to meet gasoline needs of the US (157.6 million ha) is greater than the arable land available (152.26 million ha).
- The land area needed to meet 50% of the gasoline needs (78.78 million ha) is greater than the crop land dedicated to US corn production (32.708 million ha).
- Area needed to produce 56.78 billion L/year (15 billion gal/year) ethanol is 11.6 million ha, which is about 35% of the US corn cropping area

33 34

First Generation Biofuels Feasibility Analysis

Conclusions:

- It is infeasible to meet 100% or even 50% of the US gasoline needs using ethanol from corn.
- It is feasible to produce 56.78 billion L/year (15 billion gal/year) with existing land resources, but the coproduct utilization needs to be looked carefully to avoid potential market saturation scenarios.

Second Generation Biofuels Feasibility Analysis

35 36

6

- Ethanol equal to 100% current gasoline needs
 - = 541.735 billion L/year x 4.424 =771.5 billion L/year

First Generation Biofuels Feasibility Analysis

- Ethanol equal to 50% current gasoline needs
 - = 385.75 billion L/year
- Total corn production, TCP
 - = Average US corn yield x US corn crop area
 - =11.46 tons/ha x 32.708e6 ha = 374.8 million tons/year
- Ethanol potential with current corn production
- = Average US corn yield x US corn crop area x Corn to ethanol conversion
- =11.46e3 kg/ha x 32.708e6 ha x 0.4273 L/kg =160.16 billion L/year (42.31 billion gal/year)
- Max. Ethanol potential with corn production on all arable lands
 - = Average US corn yield x US arable land area
 - =11.46e3 kg/ha x 152.26e6 ha x 0.4273 L/kg
 - = 745.6 billion L /year (197 billion gal./year)

Cellulosic Ethanol Production in the US

Background

 Agricultural residues such as corn stover, wheat straw and barley straw among others are considered as potential feedstocks for producing second generation cellulosic ethanol.

The goal of this analysis is to:

 Determine the levels of ethanol that can be produced from corn stover and other agricultural residues without any increase in cultivated area.

Cellulosic Ethanol Production in the US

Data

- Projected corn stover at<\$80/ton is 112.2 million tons and 129 million tons of all agricultural residues
- Corn Stover Composition (dry basis):

Glucan	Xylan	Lignin	Ash	Acetate	Protein
35.05	19.53	15.76	4.93	1.81	3.1
Extractives	Arabinan	Galactan	Mannan	Sucrose	
14.65	2.38	1.43	0.6	0.77	

Assumptions

- · Basis: 1 dry ton.
- Pretreatment and hydrolysis efficiency is 80%
- Inhibitors generation: 1% from hexoses and $\,$ 2% from pentoses
- Fermentation efficiency: Hexose and pentose fermentation efficiency are 98 and 60 % respectively.
- · Distillation efficiency is 99%.

37 38

Calculations

- Hexoses = Biomass* Glucan* ηhydrolysis*Hydrolytic gain*(1inhibitor production)
- Pentoses=Biomass* Xylans* ηhydrolysis*Hydrolytic gain*(1inhibitor production)
- Ethanol = Hexoses * ethanol yield * hexose fermentation efficiency + Pentoses * ethanol yield * pentose fermentation efficiency

Cellulosic Ethanol Production in the US

- Ethanol (L) = Ethanol (Kg) * distillation efficiency / ethanol density (kg/L)
- Overall Ethanol yield= Ethanol/Basis = 0.2605 L/Kg
- Total corn ethanol = Average US corn stover production x Ethanol yield =29.23 billion L/year (7.71 billion gal/year)

Cellulosic Ethanol Production in the US

Results:

- Based on the total US gasoline needs of 541.735 billion L/year, the corn stover ethanol represents a 5.4 % of the total gasoline needs.
- Potential ethanol production from all agricultural residues will be 33.6 billion L/ year represents a 6.2% of the total US annual gasoline needs.

39

Cellulosic Ethanol Production in India

- India needs 232 billion L of petrol/year
- India produces about 165 MMT of agricultural residues.

Questions

- What is the potential of cellulosic ethanol in India?
- Where can we produce it?
- What are the top feedstocks?

Assume

• 260L/MT biomass ethanol yield

Cellulosic Ethanol Production in India

State	Biomass Generated (MMT)	Bioethanol potential
Uttar Pradesh	138.0	35889.7
Maharashtra	81.7	21250.1
Andhra Pradesh	44.2	11494.9
Punjab	41.5	10785.3
Tamil Nadu	40.3	10480.9
Karnataka	39.1	10164.1
Madhya Pradesh	38.1	9904.8
Rajasthan	33.8	8793.3
Gujarat	30.9	8037.1
Total	623.4	162077.4

However

40

- Agricultural residues are used as cattle feed and for cooking.
- What is the real potential when accounting for the farmers needs?

Cellulosic Ethanol Production in India

• Notice something here? ... Punjab is missing.

Biomass Generated (MMT)	Bioethanol potential
38.4	9980.6
28.5	7409.8
13.4	3474.4
11.7	3038.7
11.5	2994.7
10.9	2828.7
9.3	2418.1
7.2	1876.3
6.3	1646.9
164.5	42771.1
	38.4 28.5 13.4 11.7 11.5 10.9 9.3 7.2 6.3

Algal Biofuels Feasibility Analysis

44

43

45

	n Units Th. M	Iax Best	Open			BR
			min	max	min	max
		000 5623.0000	4700	4700	4700	5621
t .	- 0.458	80 0.4580	0.458	0.458	0.458	0.458
nergy M.	gy MJ/mol 0.22:	53 0.2253	0.2253	0.2253	0.2253	0.2253
smission	- 1.000	0.9500	0.8	0.9	0.95	0.95
lization		0.5000	0.5	0.5	0.7	0.7
n nent	8.000	8.0000	8	8	8	8
drate ontent K.		000 482.5000	482.5	482.5	482.5	482.5
mulation	- 1.000	0.5000	0.5	0.7	0.6	0.8
marou		00 21.9000	21.9	21.9	21.9	21.9
ontent	ent - 0.500	0.5000	0.1	0.15	0.15	0.25
	Kg/m3 918.00	000 918,0000	918	918	918	918
ontent K.	ret KJ/mol 482.50 - 1.000 rgy KJ/g 21.90 ent - 0.500	00 0.5000 00 21.9000 00 0.5000	0.5 21.9 0.1	0.7 21.9 0.15	0.6 21.9 0.15	0.8 21. 0.2

Production and Processing Alternatives max Maximum daily g/sq.m-day 178.2 22.7 28.8 45.9 20.5 growth Annual oil production L/ha-year 354202 5733 13543 17155 45592 Annual oil gal/ac-year 37383 605 1429 1811 4812 Biomass Biodiesel 18.15 35.7 Direct Combustion 1.0 of biomass 1.0 of lipid content 80 Solvent Extraction Biogas (62% CH₄) 475.8 L/Kg of 0.02375 biomass (8 cu ft/lb) 0.51 of Fermentation 23.4 carbohydrate Thermochemical Biooil 0.553 of biomass 33.64 conversion (fast pyrolysis)

47 48

al Biodiesel/Biocr	ude:	India (Case S
Algal Biodiesel Target	9.2	29E+10	L/year
Algae Needed	8.3	L2E+08	MT/year
Land area needed	8.4	14E+06	ha/year
Carbon dioxide needed	1.4	19E+09	MT/year
Nitrogen needed	5.6	59E+07	MT/year
Phoshphorous Needed	3.2	25E+06	MT/year
Water for ET	7.3	39E+10	m3/year
Total water Requirement	7.4	18E+10	m3/year
Algal biofuels Water requireme	nt	805	L/L diesel
nd Area (% of arable land)		6	%
Nitrogen Requirements			
% of total Nitrogen fertilizers)		335	%
Phosphorous Requirements			
% of total Phosphorous fertilize	ers)	111	%
Number of 1000 MW power pla	ants	183	
Algal hydrochar produced		4.06E+08	MT/year

The Promise of Algae Arable Land Land needed for algae cultivation to meet India's diesel needs

50 49

	Water usage (L/MJ)	EROWI (MJ/L)	EROEI (MJ/MJ)	Net EROWI
Nuclear Electric	1.162(0.145)	0.861(1.517)	10	0.775 (1.137)
Coal Electric	0.560(0.488)	1.786 (2.049)	-	-
Conv. Diesel	0.0035	285.3	5.01	228.4
		Biodiesel		
Rapeseed	100-175	0.010-0.0057	2.33	0.0057-0.0033
Algae (Ponds)	20.142*	0.004965	3.33	0.03475
		Ethanol		,
Sugarcane	38-156	0.026-0.0065	8.3	0.023-0.0057
Corn	73-346	0.014-0.0029	1.38	0.0039-0.00081
	Li	ignocellulosic Crop	os	
Ethanol	11-171	0.091-0.0058	4.55	0.0071-0.0045
Hydrogen	15-129	0.067-0.0078	4.67	0.053-0.0062
Electricity	13-195	0.077-0.0051	5.0	0.062-0.0041
*20142 L/ 4 days	~25 people (201 L/	person-day)		

EROEI and EROWI for Algal Fuels 0.035 (1.74) 20.142 0.05 Base case 10971.77 3291.96 7679.81 (2.48)(0.403)20.142 0.05 0.045 Improved 10971.77 1105.51 9866.26 9.925 Harvesting (0.403) (2.48) (1.74) Without 20.142 0.05 -0.114 Coproduct 3291.96 -2291.96 (0.403)(2.48)(-5.69) Credits Water/ Sea 10971.77 1105.51 9866.26 9.25 Water *Base case as in Sander and Murthy (2010). 1000MJ ~27.89L (7.36 gal) Biodiesel
** Improved harvesting assumes a 75% reduction in energy to harvest and drying algae.
*** Numbers in parentheses indicate photobioreactor assuming a 50 times lower water
consumption than an equivalent open pond. Data from: Sander and Murthy, 2010. IJLCA. 15:704-714

51

Technical Feasibility: Fun Problem

- India needs 4 million barrels of petrol/day. Calculate the area needed to meet the ethanol needed to replace petrol in India?
- What if the crop is changed to Sugarcane?
- What about Algae?

Goals of this Lecture

Introduce the Technical Feasibility and Resource Sustainability Analysis

Learning Objectives

By the end of this lecture, you must be able to:

52

- - Able to perform basic technical feasibility analysis
 Calculate the resources (land, water and nutrient) needed for any technology

54 53

TEQIP-III Short Course on Systems Analysis of Biofuels and Bioproducts

Module 2: Technical Feasibility and Resource Sustainability Assessment

THANK YOU

Ganti S. Murthy
Professor
Discipline of Biosciences and Biomedical Engineering,
Indian Institute of Technology-Indore
Email: Ganti.Murthy@ilti.ac.in