MATLAB CODE OF ADIABATIC MASTER EQUATION AND QUANTUM TRAJECTORIES

KA-WA YIP

$$\mathcal{H}_{ising} = -\frac{A(s)}{2} \left(\sum_{i} \hat{\sigma}_{x}^{(i)} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \hat{\sigma}_{z}^{(i)} + \sum_{i>j} J_{i,j} \hat{\sigma}_{z}^{(i)} \hat{\sigma}_{z}^{(j)} \right)$$

Form of Hamiltonian

A(s) blue, B(s) orange

One-qubit example

Ohmic bath, DWave 2000Q schedule

$$T = 20 \text{mK} \approx 2.6 \text{GHz}$$

 $\eta g^2/(\hbar^2) = 1.2 \times 10^{-4}/(2\pi)$

ame1qubit_demo.m

Master equation solution.

aqt1qubit_demo.m

Quantum traj. Solution

QT code feature

```
X = bsxfun(@minus, e.', e); %matrix of \omega_{ba}
[sortedOutput, ~, ~] = uniquetol(full(reshape(X,[1 nevaltruc^2])),0.1, 'DataScale',1);
length(sortedOutput(sortedOutput>0));
w_unique = length(sortedOutput);

dp = zeros(1, w_unique*4);
```

Sorting jump operators

```
psi = v*psicb;
   %Change back to comp.basis
else % Rigorously should have implemented backtrack:
    % collapse has occured:
    % find collapse time to within specified tolerance
    % Rigorously should have implemented backtrack:
    % collapse has occured:
    % find collapse time to within specified tolerance
   t_prev = tstep_qt(index);
   t_final = tstep_qt(index) + dt_qt;
   %r1;
   ii = 0;
   while ii < 5
       ii = ii + 1;
       t_guess = t_prev + (log(norm2_prev/r1)/log(norm2_prev/norm2_unpsi)) *
       %t_guess - t_prev
       unpsi_guess = expm(-1i*(t_guess - t_prev)*H_eff/hbar)*unpsi_prev;
       %norm2_guess = norm(unpsi_prev)^2
       norm2_guess = norm(unpsi_guess)^2;
       if abs(r1 - norm2_guess) < 0.001*r1 %error tolerance</pre>
           break
       elseif (norm2_guess < r1)</pre>
           t_final = t_guess;
           norm2_unpsi = norm2_guess;
        else
            + prov - + guessi
```

Backtracking

```
Lpcomponent1 = matrixelement1*sparse(a(s),b(s),1,nevaltruc,nevaltruc);
Lpcomponent2 = matrixelement2*sparse(a(s),b(s),1,nevaltruc,nevaltruc);
Lpcomponent3 = matrixelement3*sparse(a(s),b(s),1,nevaltruc,nevaltruc);
Lpcomponent4 = matrixelement4*sparse(a(s),b(s),1,nevaltruc,nevaltruc);
```

Sparse matrix

ME code feature

Ode with rotations

UCL 4-qubit gadget

Hs = -1e9.*A_sp1(inslist(index)).*(sX_1+sX_2+sX_3+sX_4) + 1e9.*B_sp1(inslist(index)).*(((-1).*sZ_1+(0.95).*sZ_2+(0.95).*sZ_3+(-1).*sZ_4) + ... ((-1).*sZsZII + (-1).*IsZsZI + (-1).*IIsZsZ));

ame_4qubit_reverse_annealing_spectrum.m

Assume the following form and use linear schedule

$$\mathcal{H}_{ising} = -\frac{A(s)}{2} \left(\sum_{i} \hat{\sigma}_{x}^{(i)} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \hat{\sigma}_{z}^{(i)} + \sum_{i>j} J_{i,j} \hat{\sigma}_{z}^{(i)} \hat{\sigma}_{z}^{(j)} \right)$$

linearschedule/ame_4qubit.m

ME solution

linearschedule/aqt_4qubit.m

QT solution

Reverse Annealing

t1 = 2us. So total is around 5us.

Reproducing the previous graph


```
step = 1000;
sstar = 0.525;
inslist1 = linspace(1,sstar,step*2/5);
inslist2 = linspace(sstar,sstar,step*1/5+1);
inslist3 = linspace(sstar,1,step*2/5);
inslist = [inslist1, inslist2, inslist3];
```


s*=0.525, tf = 50us, linear schedule, start at ground state of the Hp

s*=0.525, tf = 50us, linear schedule, start at first excited state of the Hp

s*=0.525, tf = 50us, linear schedule, start at first excited state of the Hp

Ground state population from QT

s*=0.525, tf = 50us, dwave schedule, start at first excited state of the Hp

Results from D-Wave 2000Q (with pause)


```
function aqt_4qubit_reverse_annealing_linear
% cluster = parallel.cluster.Generic;
% set(cluster,'JobStorageLocation', '/home/rcf-proj2/ky/kawayip/research/fourqubitgadget_linear/qt');
% set(cluster,'HasSharedFilesystem', true);
% set(cluster,'IntegrationScriptsLocation','/usr/usc/matlab/R2018b/SlurmIntegrationScripts');
% cluster.AdditionalProperties.SlurmArgs='--time=23:59:59';
cluster = get_LOCAL_cluster('/home/rcf-proj2/ky/kawayip/research/fourqubitgadget_reverse_annealing/linear/qt');
pool=parpool(cluster,15)
```

Add the above lines for computing in the hpc cluster