Ejercicio-Ejemplo (15 min)

[E1] A mass m is connected to a vertical revolving axle by two strings of length l, each making an angle of 45° with the axle, as shown. Both the axle and mass are revolving with angular velocity ω . Gravity is directed downward.

- a) Draw a clear force diagram for m.
- b) Find the tension in the upper string, $T_{\rm up}$, and lower string, $T_{\rm low}$.

a) L'dentifiquemos las fuerzas sobre m:

1. Tensión superior, Tup. Tup = Tupx î + Tupy ĵ = -Tup sin(#)î+ Tup cos(#) = - = Tupî+ = Tupî

2. Tensian inferior, Thow. Thou Thoux î + Thoux ĵ = -Thousin(#)î-Thouses(#) = - 12 Thouî - 12 Thouî

Tupy b) Planteamos 22 leg de Newton:

$$\theta = \frac{\pi}{4}$$
 $\overline{T}_{7x} = \sum_{m} F_{x} = -\frac{2}{2} T_{up} - \frac{2}{2} T_{low} = m a_{x}$

$$F_{Ty} = \sum_{m} F_{y} = \frac{12}{2} T_{up} - \frac{12}{2} T_{low} - mg = may.$$

 $R = L \sin(\frac{\pi}{4}) = \frac{12}{2} L$

Fry = $\frac{1}{m}$ Fy = $\frac{1}{2}$ Tup - $\frac{1}{2}$ 1600 - 171. Analysis cinematics: M.C.U — vel. angular w. $a_{xy} = -R_{10}^{2}$, $a_{y} = 0 \leftarrow N_{0}$ hay movimiento vertical Acel. $70x = -Rw^2$, $0y = 0 \leftarrow No$ hay movimiento vertical. Atripeta $R = \frac{12}{2} L \Rightarrow 0x = -\frac{12}{3} Lw^2$

Teniendo en cuenta (as a celera ciones:
$$\sqrt{-\frac{12}{2}} \text{ Tup} - \frac{12}{2} \text{ Two} = -m\frac{\sqrt{2}}{2} \text{ Lw}^2$$

Resolvemos:
$$\oplus$$
 las dos Ecs. $-\sqrt{2} T_{\omega\omega} - mg = -\frac{\sqrt{2}}{2} m l \omega^2$
 $\Rightarrow T_{\omega} = \frac{1}{2} m (l \omega^2 - \sqrt{2} g)$