

PDS Lab

Spring 2022.

Outline

- Introduction to Graphic Processing Unit (GPU)
- GPU basics
 - Hardware
 - GPU memory hierarchy
 - Execution Model
- CUDA basics
 - What is CUDA?
 - Function and Variable Qualifiers.
 - Examples of CUDA Programs

Outline

- Introduction to Graphic Processing Unit (GPU)
- GPU basics
 - Hardware
 - GPU memory hierarchy
 - Execution Model
- CUDA basics

What is GPU?

- **GPU (Graphic Processing Unit)** GPUs originated as devices used to accelerate the rendering of images for display (e.g. video games)
- Today, these devices are used to accelerate many different computations
- GPUs do not typically have:
 - Out-of-order execution
 - Prefetching
 - Branch prediction

Applications for GPUs

- GPU is specialized for compute-intensive, highly data parallel computation
- Ideal GPU applications have:
 - Large data sets
 - High parallelism
 - Minimal dependency between data elements

Applications for GPU

- **GPU** is specialized for compute-intensive, highly data parallel computation
 - Visual Computing
 - **Physics Engines**
 - **Image Processing**
 - **Augmented Reality**
 - **Natural Speech Recognition**
 - Computational Photography
 - Cryptography
 - 3D Graphics

GPU computing

- GPUs as (single instruction, multiple data)
 SIMD processors.
- The GPUs address problems that can be expressed as data-parallel computations.
- Because the same program is executed for each data element, there is a lower requirement for sophisticated flow control;

GPU computing

- GPUs traditionally support graphics computing to increase processing speed.
- GPUs computing power is huge be interested by scientists for scientific computing
- Modern GPUs now also allow general purpose computing easily

GPU computing

- A Graphics Processor Unit (GPU) is mostly known for the hardware device used when running applications that weigh heavy on graphics.
- Today, GPGPU's (General Purpose GPU) are the choice of hardware to accelerate computational workloads in modern High-Performance Computing (HPC) landscapes.
- GPGPU is not only about ML computations that require image recognition anymore. Calculations on tabular data is also a common exercise.

Oxen vs. Chickens

"If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?"

—Seymour Cray

CPU vs. GPU

A CPU is a small collection of very powerful cores where a GPU is a large collection of only modestly powerful cores.

GPUs for parallel computing

CPU	GPU
Designed with Big Caches	Designed with Arithmetic Intensity
Latency optimized	Throughput optimized
Best for Task Parallelism	Best for Data Parallelism

Software applications

000000 101101 010100

Serial and Task
Parallel Workloads

Graphics Workloads

Data Parallel Workloads

Outline

- Introduction to Graphic Processing Unit (GPU)
- GPU basics
 - Hardware
 - GPU memory hierarchy
 - Execution Model
- CUDA basics

Heracles's GPUs

NumberSmasher 1U Tesla GPU Server with NVLink

20GB/s NVIDIA NVLink Interconnect (40GB/s bi-directional)

4 Tesla GPUs

GPU Archiecture

Fermi S2050 Tesla GPU (on Hydra) – Launch 2011

One SM has 32 cores

Instruction Cache

Interconnect Network

64K Configurable Cache/Shared Mem

Uniform Cache

16 Stream Multiprocessors (SM)

- Each GPU has ≥ 1 Streaming Multiprocessors (SMs)
- Each SM has a simple SIMD/SIMT Processors

GPU Architecture

Pascal GP100 Tesla GPU (on Heracles) Launch 2016

A Streaming Multiprocessor)

- 56 SM
- 64 CUDA cores per SM
- 3584 cuda cores/GPU (56*64)
- 14336 total cores (3584 * 4GPUs)
- Dual Warp Scheduler

Outline

- Introduction to Graphic Processing Unit (GPU)
- GPU basics
 - Hardware
 - GPU memory hierarchy
 - Execution Model
- CUDA basics

GPU Architecture

Pascal GP100 Tesla GPU (on Heracles) Launch 2016

4 MB L2 cache shared across SMs

24KB **L1/Texture cache** shared across threads in a same block

49KB **shared memory** shared across threads in a same block

Outline

- Introduction to Graphic Processing Unit (GPU)
- GPU basics
 - Hardware
 - GPU memory hierarchy
 - Execution Model
- CUDA basics

Execution Model

- 1. CPU sends data to the GPU
- 2. CPU instructs the processing on GPU
- 3. GPU processes data
- 4. CPU collects the results from GPU

Execution Model

- A kernel is executed as a grid of thread blocks
- A thread block is a batch of threads that can cooperate with each other by:
 - Sharing data through shared memory
 - Synchronizing their execution
- Threads from different blocks cannot cooperate

Execution Model

Software

Hardware

Threads are executed by scalar processors

Thread

Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

Memory model

- Local Memory: per-Thread
 - Private per thread
 - Auto variables, register spill
- Shared Memory: per-Block
 - Shared by thread Block
 - Inter-thread communication
- Global Memory: per-Grid
 - Shared by all threads
 - Inter-Grid communication

Warps

Threads are executed in warps of 32 threads

A thread block consists of 32-thread warps

A warp is executed physically in parallel (SIMT) on a multiprocessor

Within a warp, the hardware is not capable of executing if and else statements at the same time!

warp divergence

Warp divergence

26

Recommendations

- ☐ Try to make every thread in the same warp do the same thing
- If the **if statement cuts at a multiple of the warp size**, there is no warp divergence and the instruction can be done in one pass
- ☐ Remember threads are placed consecutively in a warp (t0-t31, t32-t63, ...)
 - But we cannot rely on any execution order within warps
 - ☐ If you can't avoid branching, try to make as many consecutive threads as possible do the same thing

Outline

- Introduction to Graphic Processing Unit (GPU)
- GPU basics
 - Hardware
 - Execution Models
 - GPU memory hierarchy
- CUDA basics
 - What is CUDA?
 - Function and Variable Qualifiers.
 - Examples of CUDA Programs

What is CUDA?

- CUDA = Compute Unified Device Architecture
- Parallel programming tool for Nvidia GPUs
- CUDA enables efficient use of the massive parallelism of NVIDIA GPUs
- Extensions of C language
- Support NVIDIA GeForce 8-Series & later

Function qualifiers

	Executed on the:	Only callable from the:
host void HostFunc()	Host	Host
global void KernelFunc()	Device	Host
device void DeviceFunc()	Device	Device

```
Restrictions for device code (__global__ / __device__)
no recursive call
no static variable
no function pointer
__global__ function is asynchronous invoked
__global__ function must have void return type
```

Variable qualifiers

	Memory	Scope	Lifetime
Automatic none array variables	Register	Thread	Kernel
Automatic array variables	Local (physically in global memory)	Thread	Kernel
shared int SharedVar;	Shared	Block	Kernel
device int GlobalVar;	Global	Grid	Application
constant int ConstantVar;	Constant	Grid	Application

The constant memory space resides in device memory and is cached in the L1/texture cache.

CUDA = C with Language Extensions

Execution configuration

```
dim3 dimGrid(100, 50); // 5000 thread blocks dim3 dimBlock(4, 8, 8); // 256 threads per block MyKernel <<<dimGrid,dimBlock>>>(...); // Launch kernel
```

Built-in variables and functions valid in device code:

```
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadIdx; // Thread index
void __syncthreads(); // Thread synchronization
```

CUDA = C with Runtime Extensions

- Device management cudaGetDeviceCount(), cudaGetDeviceProperties()
- Device memory management cudaMalloc(), cudaFree(), cudaMemcpy()
- Texture management cudaBindTexture(), cudaBindTextureToArray()

Example of CUDA Program

```
Host Code
1. CPU sends data to the GPU
                                                int N = 1000;
                                                int size = N*sizeof(float);
                                                float A[1000], *dA;
                                                cudaMalloc((void **)&dA, size);
2. CPU instructs the processing on GPU
                                                cudaMemcpy(dA , A, size, cudaMemcpyHostToDevice);
                                                ComputeArray <<< 10, 20 >>> (dA, N);
                                                cudaMemcpy(A, dA, size, cudaMemcpyDeviceToHost);
                                                cudaFree(dA);
3. GPU processes data
                                                Device Code
                                                  _global___ void ComputeArray(float *A, int N)
                                                  int i = blockldx.x * blockDim.x + threadIdx.x;
                                                   if (i < N) A[i] = A[i]*A[i];
4. CPU collects the results from GPU
```

3/18/2022 34

Host Synchronization

- All kernel launches are asynchronous
 - control returns to CPU immediately
 - kernel executes after all previous CUDA calls have completed.
- cudaMemcpy() is synchronous
 - control returns to CPU after copy completes
 - copy starts after all previous CUDA calls have completed

Example of CUDA program

Remember: CUDA uses thread id to select work and address shared data

```
#include <iostream>
using namespace std;
// Kernel definition
__global__ void MatAdd(float A[N], float B[N],
                       float C[N])
    int i = blockIdx.x * blockDim.x + threadIdx.x:
    if (i < N)
        C[i] = A[i] + B[i];
int main()
    int N = ....;
   // Kernel invocation
    int threadsPerBlock = 16;
    int numBlocks = (N / threadsPerBlock);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    ****
```

C++ sequential version

```
‡include <iostream>
#include <math.h>
void add(int n, float *x, float *y)
  for (int i = 0; i < n; i++)
      y[i] = x[i] + y[i];
int main(void)
 int N = 1<<20; // 1M elements</pre>
 float *x = new float[N];
  float *y = new float[N];
  for (int i = 0; i < N; i++) {
   x[i] = 1.0f;
   y[i] = 2.0f;
  add(N, x, y);
  float maxError = 0.0f;
  for (int i = 0; i < N; i++)
    maxError = fmax(maxError, fabs(y[i]-3.0f));
  std::cout << "Max error: " << maxError << std::endl;</pre>
  delete [] x;
  delete [] y;
  return 0;
```

C++ GPU version 1 (1 thread)

```
#include <iostream>
#include <math.h>
 global
void add(int n, float *x, float *y)
  for (int i = 0; i < n; i++)
    y[i] = x[i] + y[i];
int main(void)
  int N = 1 << 20;
 float *x, *y;
  cudaMallocManaged(&x, N*sizeof(float));
  cudaMallocManaged(&y, N*sizeof(float));
  for (int i = 0; i < N; i++) {
    x[i] = 1.0f;
    y[i] = 2.0f;
  add<<<1, 1 >>> (N, x, y);
  cudaDeviceSynchronize();
  float maxError = 0.0f;
  for (int i = 0; i < N; i++)
    maxError = fmax(maxError, fabs(y[i]-3.0f));
  std::cout << "Max error: " << maxError << std::endl;</pre>
  cudaFree(x);
  cudaFree(y);
  return 0;
```

C++ GPU version 1 (1 thread)

```
#include <iostream>
#include <math.h>
global
void add(int n, float *x, float *y)
  for (int i = \emptyset; i < n; i++)
    y[i] = x[i] + y[i];
int main(void)
  int N = 1 << 20;
  float *x, *y;
  cudaMallocManaged(&x, N*sizeof(float));
  cudaMallocManaged(&y, N*sizeof(float));
  for (int i = 0; i < N; i++) {
    x[i] = 1.0f;
    y[i] = 2.0f;
  add <<<1, 1>>>(N, x, y);
  cudaDeviceSynchronize();
  float maxError = 0.0f;
  for (int i = \emptyset; i < N; i++)
    maxError = fmax(maxError, fabs(y[i]-3.0f));
  std::cout << "Max error: " << maxError << std::endl;</pre>
  cudaFree(x);
  cudaFree(y);
  return 0;
```

C++ GPU version 2 (256 threads)

```
#include <iostream>
#include <math.h>
void add(int n, float *x, float *y)
  int index = threadIdx.x;
  int stride = blockDim.x;
  for (int i = index; i < n; i += stride)</pre>
      y[i] = x[i] + y[i];
int main(void)
  int N = 1<<20; // 1M elements</pre>
 float *x = new float[N];
 float *y = new float[N];
  for (int i = 0; i < N; i++) {
    x[i] = 1.0f;
   y[i] = 2.0f;
  add<<<1, 256>>>(N, x, y);
  // Check for errors (all values should be 3.0f)
 float maxError = 0.0f;
  for (int i = 0; i < N; i++)
    maxError = fmax(maxError, fabs(y[i]-3.0f));
  std::cout << "Max error: " << maxError << std::endl;</pre>
  delete [] x;
  delete [] y;
  return 0;
```

C++ GPU version 2 (256 threads)

```
#include <iostream>
#include <math.h>
void add(int n, float *x, float *y)
  int index = threadIdx.x;
  int stride = blockDim.x;
  for (int i = index; i < n; i += stride)</pre>
     y[i] = x[i] + y[i];
int main(void)
  int N = 1<<20; // 1M elements</pre>
 float *x = new float[N];
 float *y = new float[N];
  for (int i = 0; i < N; i++) {
   x[i] = 1.0f;
   y[i] = 2.0f;
 add<<<1, 256>>>(N, x, y);
 // Check for errors (all values should be 3.0f)
 float maxError = 0.0f;
  for (int i = 0; i < N; i++)
   maxError = fmax(maxError, fabs(y[i]-3.0f));
  std::cout << "Max error: " << maxError << std::endl;</pre>
 delete [] x;
 delete [] y;
 return 0;
```

C++ GPU version 2 (multiple blocks)

```
include <iostream>
#include <math.h>
void add(int n, float *x, float *y)
    int i = blockIdx.x * blockDim.x + threadIdx.x;
   if (i < n)
       y[i] = a * x[i] + y[i]
int main(void)
 int N = 1<<20; // 1M elements</pre>
 float *x = new float[N];
 float *y = new float[N];
  for (int i = 0; i < N; i++) {
    x[i] = 1.0f;
   y[i] = 2.0f;
 int blockSize = 256;
 int numBlocks = (N + blockSize - 1) / blockSize;
 add<<<numBlocks, blockSize>>>(N, x, y);
 float maxError = 0.0f;
 for (int i = 0; i < N; i++)
   maxError = fmax(maxError, fabs(y[i]-3.0f));
  std::cout << "Max error: " << maxError << std::endl;</pre>
 delete [] x;
 delete [] y;
```

	Laptop (GeForce GT 750M)		Server (Tesla K80)	
Version	Time	Bandwidth	Time	Bandwidth
1 CUDA Thread	411ms	30.6 MB/s	463ms	27.2 MB/s
1 CUDA Block	3.2ms	3.9 GB/s	2.7ms	4.7 GB/s
Many CUDA Blocks	0.68ms	18.5 GB/s	0.094ms	134 GB/s

Compiling CUDA

- The CUDA source file
 - *.cu extension
 - contain host and device codes
- The CUDA Compiler nvcc
 - generate CPU/PTX code
 - PTX (Parallel Thread Execution) is the device independent VM code
- PTX code is translated for special GPU architecture.

Outline

- Introduction to Graphic Processing Unit (GPU)
- GPU basics
 - Hardware
 - Execution Models
 - GPU memory hierarchy
- CUDA basics
 - What is CUDA?
 - Function and Variable Qualifiers.
 - Examples of CUDA Programs

3/18/2022 42

References

Books

CUDA by Example: An Introduction to General-Purpose GPU Programming by Sanders and Kandrot

The CUDA Handbook: A Comprehensive Guide to GPU Programming by Wilt

CUDA Application Design and Development by Farber

Nvidia CUDA Programming Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

NVIDIA TESLA P100

http://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper-v1.2.pdf

YouTube lectures

GPU Architecture and CUDA Overview

https://www.youtube.com/watch?v=nRSxp5ZKwhQ

CUDA optimization

https://www.youtube.com/watch?v=FcCTHJO8 zo

Exploring the GPU Architecture and why we need it

https://blogs.vmware.com/vsphere/2019/03/exploring-the-gpu-architecture-and-why-we-need-it.html

NVIDIA CUDA tutorial 1: Introduction

3/https://www.youtube.com/watch?v=m0nhePeHwFs