Regole dei loga ritmi

I)
$$\log (M \cdot N) = \log_b M + \log_b N$$

$$\mathbb{I}) \quad \log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$$

$$\mathbb{I}) \log_b(M)^K = K \log_b(M)$$

$$\mathbb{V}$$
) $\log_b(b)^k = 1 \cdot K = K$

$$\overline{\mathbf{VII}}$$
) $\mathbf{b}^{\log_{\mathbf{b}}(\mathbf{K})} = \mathbf{K}$

ES:
$$\log_2 8 + \log_2 4 = \log_2 (4.8) = \log_2(32) = 5$$

Filastrocca: Il log e l'esponente da dave alla base per ottenere l'argomento.

A cosa Serve?

Dicionno che ho la sequente equazione: $2^{x}=32$ In questo esempio e semplice dedurre che x=5 / $2^{5}=32$, ma con dei numeri più difficili trovare la x a meute direnta complicato.

La funzione log serve proprio a trovare la x quendo e all'esponente.

ES:
$$\log_{\frac{1}{3}}(2x-3) = -2$$
 =D C.D.E arg >0 =D $2x-3$ >0 per $x > \frac{3}{2}$
=D $\log_{\frac{1}{3}}(2x-3) = -2$; $(\frac{1}{3}) = 2x-3$; $9 = 2x-3$; $9 + 3 = 2x$; $12 = 2x$
=D $\frac{12}{2} = x = 0$ $x = 6$

Info utili $e_n(e) = e_{og}(e) = 1$