$$||K_{n}| = [b \mid Ab \mid \cdots \mid A^{n-1}b]|$$

$$|X \in K_{n}| \sim ||Incar comb|| \text{ of them}$$

$$|(.e., x)| = \sum_{j=0}^{n-1} a_{j} \cdot A^{j}b = b \left(\sum_{j=0}^{n-1} a_{j} \cdot A^{j}\right) = p(A)b_{m}$$

$$||Z|(a) \text{ Note that } H_{n}| = \begin{bmatrix} h_{11} & h_{12} & h_{12} & h_{1n} \\ h_{21} & h_{22} & h_{22} & h_{22} \\ h_{2n-1} & h_{2n} & h_{2n} \end{bmatrix}. \text{ As } h_{n+1}, n = 0,$$

$$|A| = \begin{bmatrix} h_{11} & h_{12} & h_{22} & h_{1n} \\ h_{21} & h_{22} & h_{22} & h_{22} \\ h_{2n-1} & h_{2n} & h_{2n} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{21} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{22} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{22} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{22} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{22} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{22} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{22} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{22} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{22} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{22} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{22} & h_{22} & h_{22} \\ h_{21} & h_{22} & h_{22} \\ h_{$$

Now, consider K_{n+1} & $K_{n+2} = \langle b, Ab, \dots, A^{n-1}b, A^nb, A^{n+1}b \rangle$. where $K_{n+1} = \langle q_1, \dots, q_n \rangle$. ("= K_n) Again, it suffices to show $A^{n+1}b \in K_{n+1}$. $\sum_{i=1}^{n} a_i A_i q_i \leq \langle q_1, \dots, q_n \rangle \text{ from (b)}.$ •• $K_{n+1} = K_{n+2}$.

So, for $V_{K \in IN}$, with induction, we can show that $K_{n}=K_{n+1}=...=K_{n+k}=K_{n+k+1}$ induction

(d) By Thm 24.3, similar matrices have the same eigenvalues & from (a), $H_n \sim A$ as Also, it can be proved without thm easily: λ is the eigenvalue of H_n $A=Q_nH_nQ_n^*$ \leftrightarrow $\det(\lambda I-H_n)=0$

Then $\det(Q_n)\det(\lambda I - H_n)\det(Q_n^*)$ (e) A nonsingular, $Ax = b \leftrightarrow x = A^{-1}b$. $= \det(\lambda I - Q_nH_nQ_n^*)$ So, it suffices to show $A^{-1}b \in K_n = \langle b, Ab, ..., A^{n-1}b \rangle$ $\longleftrightarrow \lambda$ is the eigenvalue of A_n

As A is nonsingular $(\det(A) \neq 0)$, so does $H_n(\det(H_n) \neq 0)$ from $AQ_n = Q_nH_n$ (: $\det(Q_n) \neq 0$) So, $AQ_nH_n^{-1} = Q_n$, i.e $[Aq_1|\cdots|Aq_n]H_n^{-1} = [q_1|\cdots|q_n]$.

~ Each f_j can be represented as a linear combination of $\{Af_i | i=1,...,n\}$. ~ $K_n \subseteq AK_n$ clearly, $K_n = AK_n$ by (c). So, $b \in AK_n$ i.e, $b = \sum_{j=1}^n b_j Af_j$ ~ $x = A^{-1}b = \sum_{j=1}^n b_j f_j \in K_n$