SLAM 101

Lecture 00 Machine Learning2

Ayoung Kim

RANSAC

RANSAC

- ▶ RANdom SAmple Consensus (RANSAC) (Fischler, Bolles 1981)
 - Estimate parameters of a mathematical model
 - Given a set of observed data which contains outliers

- Popular in computer vision
 - Finding correspondences
 - Robust to outliers

Robustness

Limitation in LS

- Select m point (m = D.O.F)
 - Line = 2 DOF

 Calculate model parameters that fit the data in the sample

- Count "how may agrees"
 - ▶ Calculate error function for each data point

- Count "how may agrees"
 - Calculate error function for each data point
 - Select data that support this hypoethesis

▶ Try with another sample

- Randomly repeating this
 - You'll hit the solution

RANSAC

Algorithm

```
Given:
    data - a set of observed data points
    model - a model that can be fitted to data points
    n - the minimum number of data values required to fit the model
    k - the maximum number of iterations allowed in the algorithm
    t - a threshold value for determining when a data point fits a model
    d - the number of close data values required to assert that a model fits well to data
Return:
    bestfit - model parameters which best fit the data (or nil if no good model is found)
iterations = 0
bestfit = nil
besterr = something really large
while iterations < k {
   maybeinliers = n randomly selected values from data
    maybemodel = model parameters fitted to maybeinliers
    alsoinliers = empty set
   for every point in data not in maybeinliers {
        if point fits maybemodel with an error smaller than t
             add point to alsoinliers
   if the number of elements in also inliers is > d {
       % this implies that we may have found a good model
       % now test how good it is
       bettermodel = model parameters fitted to all points in maybeinliers and alsoinliers
       thiserr = a measure of how well model fits these points
       if thiserr < besterr {
            bestfit = bettermodel
            besterr = thiserr
   increment iterations
return bestfit
```


How Many Iteration?

- Iteration number k
- It is a function of inlier ratio
 - Inlier ratio

$$w = \frac{\text{num of inliers}}{\text{num of samples}}$$

$$w^m$$
 = prob. that all points are inliers $1 - w^m$ = at least one point is outlier

We want to ensure prob p that select a inlier pair

$$1 - p = (1 - w^m)^k$$

$$k = \frac{\log 1 - p}{\log(1 - w^m)}$$

How Many Iteration?

How many iteration

$$k = \frac{\log 1 - p}{\log(1 - w^m)}$$

p = 99%, m = s (dof needed) = sample size

Sample size	Proportion of outliers ϵ						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Clustering

Clustering

- Grouping dataset into groups
 - > 2D example of clustering

K-means Criteria

Cluster map

A cluster map is a function

 $C: \{1, 2, \dots, n\} \mapsto \{1, 2, \dots, K\}$ that partitions the data into K clusters

- Assumes
 - K is known
 - Adopt squared Euclidean distance $||x-y||^2 = \sum_{j=1}^{n} (x^{(i)} y^{(i)})^2$
- Objective
 - Seek to minimize the within cluster scatter

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{i:C(i)=k} \left[\frac{1}{n_k} \sum_{j:C(j)=k} ||x_i - x_j||^2 \right]$$

$$n_k = \sum_{i:C(i)=k} 1_{C(i)=k}$$

avg distance to points in the same cluster

Problem Analysis

Algorithm

- ▶ The K-means criterion is a combinational optimization problem
- ▶ The number of possible cluster map C is

$$\frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} \begin{pmatrix} K \\ k \end{pmatrix} k^n$$

by Jain and Dubes, 1988

- ▶ If $n=10 \text{ K} = 4 \rightarrow 34,105$
- ▶ If $n = 19 K = 4 \rightarrow 10^{10}$

▶ Bad news...

- There is no known efficient search strategy for this space
- Therefore we resort to an iterative suboptimal algorithm

K-means Clustering Algorithm

Algorithm

Initialize $\bar{x}_k, k = 1, 2, \cdots, K$

Repeat

*
$$C(i) = \arg\min_{k} ||x_i - \bar{x}_k||$$

*
$$\bar{x}_k = \frac{1}{n_k} \sum x_i$$

Illustration

- Select initial centroids at random.
- Assign each object to the cluster with the nearest centroid.
- Compute each centroid as the mean of the objects assigned to it.
- Repeat previous steps until no change

Issues with K-means

Issues

- Local optimum
- Simulated annealing and genetic algorithms for global optimum
- Need to specify K, the number of clusters, in advance
- Trouble with noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

Other Partitioning Methods

K-medoids (1990)

- Instead of mean use median
- For a data {13, 23, 11, 16, 15, 10, 26}
 - ▶ Mean = 16.28
 - Median = 15 (middle number)

K-medoids

PAM (Partitioning Around Medoids)

- Find K representative objects of the data set.
- ▶ Each of the K objects is called a Medoid,
- ▶ The most centrally located object within a cluster.

K-means

Density Based Clustering

Two parameters:

- ϵ : Maximum radius of neighborhood
- MinPts: Minimum number of points in an Eps-neighborhood of a point

Neighbor

 $N_{\epsilon}(p) = \{q \in D | dist(p, q) \le \epsilon \}$

Directly density-reachable

- A point p is directly density-reachable from a point q iff
 - 1) p belongs to $N_{\epsilon}(q)$
 - 2) q is a core point $|N_{\epsilon}(q)| \geq \text{MinPts}$

MinPts = 5

Eps = 1 cm

Density Based Clustering

Density-reachable

A point p is density-reachable from a point q if there is a chain of points

$$p_1, \cdots, p_n, p_1 = q, p_n = p$$

such that p_{i+1} is directly density-reachable from p_i

Density-connected

A point p is density-connected to a point q

if there is a point o such that both, p and q are density-reachable from o

DBSCAN

DBSCAN

(Density Based Spatial Clustering of Applications with Noise)

- Relies on a density-based notion of cluster
 - A cluster is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN

▶ The Algorithm

- Arbitrarily select a point p
- Retrieve all points density-reachable from p wrt Eps and MinPts.
- If p is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

Thank you very much !!

