

O QUE IREMOS APRENDER

O CONTEXTUALIZAÇÃO DA AULA DE HOJE

02 BANCO DE DADOS

03 SQL

1 TIPOS DE BANCO DE DADOS

05 SGBDS

06 MYSQL

O7 CRIANDO UM BANCO DE DADOS

COMANDOS SQL (CREATE, ALTER, DROP, TRUNCATE)

CONSTRAINTS

09

08

Contextualização da aula de hoje

Usar um banco de dados é essencial por várias razões em ambientes onde é necessário armazenar e gerenciar dados de forma eficiente. Os bancos de dados desempenham um papel crítico em organizações e aplicativos modernos, pois fornecem uma estrutura robusta para armazenar, acessar e proteger os dados.

Eles facilitam a tomada de decisões informadas, o compartilhamento de informações, garantem a segurança dos dados e promovem a eficiência operacional.

Banco de Dados

Basicamente, um banco de dados é uma planilha, como a do excel, gerenciada por um software, entretanto, além do software. há outras diferenças:

- Como os dados são armazenados e manipulados
- Quem pode acessar os dados
- Quantos dados podem ser armazenados

Banco de Dados

Banco de Dados

Um banco de dados é uma coleção organizada de informações, ou dados, estruturados, geralmente armazenados eletronicamente em um sistema de computador.

Normalmente, um banco de dados é controlado por um Sistema de Gerenciamento de Banco de Dados (SGBD).

SQL

O SQL em Python refere-se à integração da linguagem de consulta estruturada (SQL) com a linguagem de programação Python. SQL é uma linguagem utilizada para gerenciar bancos de dados, permitindo a criação, modificação e consulta de dados armazenados em um banco de dados relacional. Ao combinar SQL com Python, os desenvolvedores podem aproveitar a capacidade do Python para manipular dados e a flexibilidade do SQL para realizar operações específicas em um banco de dados.

SQL

Os dados nos tipos mais comuns de bancos de dados em operação atualmente são modelados em linhas e colunas em uma série de tabelas para tornar o processamento e a consulta de dados eficientes. Os dados podem ser facilmente acessados, gerenciados, modificados, atualizados, controlados e organizados.

A maioria dos bancos de dados usa a linguagem de consulta estruturada (SQL) para escrever e consultar dados.

Tipos de Banco de Dados

01

Bancos de dados relacionais

Os itens são organizados como um conjunto de tabelas com colunas e linhas.

04

Data warehouses

Um repositório central de dados, um data warehouse é um tipo de banco de dados projetado para consultas e análises rápidas.

02

Bancos de dados orientados a objetos

As informações são representadas na forma de objetos, como na programação orientada a objetos.

05

Bancos de dados autônomos

São baseados em nuvem e usam machine learning para automatizar tarefas de gerenciamento de rotina executadas por administradores de banco de dados.

03

Bancos de dados distribuídos

Consiste em dois ou mais arquivos localizados em sites diferentes. Pode ser armazenado em vários computadores, localizados no mesmo local físico ou espalhados por diferentes redes.

06

Bancos de dados NoSQL

Banco de dados não relacional permite que dados não estruturados e semiestruturados sejam armazenados e manipulados (em contraste com um banco de dados relacional, que define como todos os dados inseridos no banco de dados devem ser compostos).

Tipos de Banco de Dados

07

Bancos de dados gráficos

Os bancos de dados gráficos armazenam estruturas de dados complexas, que seriam incompatíveis em uma base tradicional. É ideal para lidar com dados altamente interconectados.

08

Banco de dados multimodelo

Combinam diferentes tipos de modelos de banco de dados em um back-end único e integrado. Isso significa que eles podem acomodar vários tipos de dados.

09

Banco de dados de documentos/JSON

Projetado para armazenamento, recuperação e gerenciamento de informações orientadas a documentos, os bancos de dados de documentos são uma maneira moderna de armazenar dados no formato JSON, em vez de linhas e colunas.

10

Bancos de dados em nuvem

É uma coleção de dados, estruturados ou não estruturados, que residem em uma plataforma de computação em nuvem privada, pública ou híbrida.

SGBDS

Um banco de dados normalmente requer um programa abrangente de banco de dados, conhecido como sistema de gerenciamento de banco de dados (SGBD). Um SGBD serve como uma interface entre o banco de dados e seus usuários finais ou programas, permitindo usuários que os atualizem recuperem, gerenciem como as informações são organizadas e otimizadas.

SGBDS

Um também SGBD facilita supervisão e o controle de bancos de dados, permitindo uma variedade de operações administrativas, como monitoramento de desempenho, e backup e recuperação. ajuste Alguns exemplos de softwares de bancos de dados populares ou SGBD incluem MySQL, Microsoft Access, Microsoft SQL Server, FileMaker Pro, Oracle Database e dBASE.

O MySQL é o SGBD por trás de alguns dos principais sites e aplicativos baseados na web do mundo, incluindo Uber, LinkedIn, Facebook, Twitter e YouTube. O MySQL Workbench é uma ferramenta visual de design de banco de dados que integra desenvolvimento, administração , design, criação manutenção de banco de dados SQL em um único ambiente de desenvolvimento integrado para o sistema de banco de dados MySQL.

O MySQL Workbench é uma ferramenta gráfica para desenvolvedores e administradores de bancos de dados MySQL. Ele permite criar, gerenciar e consultar bancos de dados, além de oferecer recursos para modelagem de dados, administração de usuários e migração de dados. Em resumo, é uma ferramenta abrangente para trabalhar com MySQL.

O workbench configura um servidor na nossa máquina onde podemos criar bancos de dados, executar códigos SQL, entre outras funcionalidades. Essa conexão é chamada de "Local Instance".

O usuário por padrão é o usuário root.

Esse servidor roda no nosso localhost, na porta 3306 por padrão.

Ao clicar nessa conexão e logar pelo usuário root, vemos essa tela.

Na parte central da tela temos o ambiente onde escreveremos os código SQL, salvaremos e executaremos.

Na parte inferior temos as saídas, podemos visualizar o resultado da execução dos códigos SQL por exemplo.

No lado esquerdo, temos um menu de navegação com algumas opções importantes para o gerenciamento, performance e configuração. Na parte inferior termos duas abas, "Administration" e "Schemas".

Na aba "Schemas" temos os bancos de dados criados. Dentro de cada Schema conseguimos ver as tabelas, as views, as stored Procedures e as Functions.

Criando um Banco de Dados

Primeiro comando SQL

Para criar nosso primeiro banco de dado (schema), utilizamos o comando: create database nome_do_banco.

Lembrando que esse comando irá apenas criar o banco de dados, para utilizarmos um banco de dados criado, utilizamos: use nome_do_banco

Comandos SQL

o SQL é uma linguagem para se trabalhar com banco de dados relacionais.

Com o SQL podemos gerenciar os nosso dados em um banco de dados através das querys, ou seja, através das requisições. Vamos entender que temos diferentes grupos de comandos para fazer diferentes requisições ao SGBD. Cada grupo de comando também será responsável por uma letra do CRUD

Comandos SQL

Tipos de Comandos

CREATE 01 Criar ou adicionar novas entradas

02

READ (RETRIEVE) Ler, recuperar ou ver entradas existentes

Delete (Destroy) 04 Remover entradas existentes

UPDATE

03

Atualizar ou editar entradas existentes

Comandos SQL

Os comandos DDL (Data Definition Language) são estruturais. Eles servem para definir aspectos da estrutura do banco de dados, como criar tabelas, excluir tabelas, alterar tabelas e mais. São mais focados em um aspecto amplo, e menos nos dados necessariamente.

Ou seja, esses comandos servirão para a estrutura do banco de dados e **não para os dados.**

Comandos SQL

Os comandos DDL normalmente não são usados por um usuário geral, pois, nesse cenário, um usuário seria capaz de mexer na estrutura do banco de dados.

Fazem parte dos comandos DDL: CREATE, DROP, ALTER, TRUNCATE, COMMENT, RENAME

Comandos SQL - CREATE

```
CREATE DATABASE IF NOT EXISTS name_db

CREATE DATABASE IF NOT EXISTS name_db

Sintaxe Básica

Sintaxe Básica
```

Existem duas instruções CREATE disponíveis no SQL:

- CREATE DATABASE
- CREATE TABLE

O comando CREATE DATABASE irá criar um novo banco de dados

Comandos SQL - CREATE

Com o banco de dados criado, precisamos criar as tabelas, para armazenar os dados.

O comando **CREATE TABLE** é usado para criar uma tabela. Sabemos que uma tabela é composta por linhas e colunas, portanto, ao criar tabelas, precisamos fornecer todas as informações ao SQL sobre os nomes das colunas, tipos de dados a serem armazenados nas colunas, tamanho dos dados, etc.

```
CREATE TABLE nome_tabela(
coluna_01 tipo_dado(tamanho)
coluna_02 tipo_dado(tamanho)
coluna_03 tipo_dado(tamanho)

-- Sintaxe Básica

CREATE TABLE Usuario(
id int,
nome varchar(40) -- Tamanho máximo
esta_ativo boolean

12 )

13
14 -- Exemplo
```

Comandos SQL - ALTER TABLE

Usado para modificar a estrutura de uma tabela existente, como adicionar, modificar ou excluir colunas.

- 1 ALTER TABLE alunos
- 2 CHANGE COLUMN curso curso_atual varchar(50);

Este comando renomeia a coluna "curso" para "curso_atual" e altera o tipo de dados para VARCHAR(50).

- 1 ALTER TABLE alunos
- 2 ADD COLUMN data_matricula DATE;

Este comando adiciona uma nova coluna chamada "data_matricula" à tabela "alunos", que armazenará datas de matrícula.

Comandos SQL - DROP

O comando DROP é utilizado para excluir um banco de dados inteiro ou apenas uma tabela.

A instrução DROP destrói os objetos como um banco de dados, tabela, índice ou visão.

Comandos SQL - TRUNCATE

A instrução TRUNCATE é usada para remover os dados de uma tabela para fins de deslocação (vazia para reutilização).

O resultado dessa operação remove rapidamente todos os dados de uma tabela, geralmente ignorando vários mecanismos de imposição de integridade.

A instrução TRUNCATE TABLE é logicamente equivalente à instrução DELETE FROM (sem a cláusula WHERE).

```
TRUNCATE TABLE nome_tabela

TRUNCATE TABLE nome_tabela

-- Ao executar a comando acima,

-- a tabela será truncada ou seja,

-- os dados serão excluídos, mas a

-- estrutura permanecerá na memória

-- para operações posteriores
```


Comandos SQL - TRUNCATE X DROP

Truncar preserva a estrutura da tabela para uso futuro, ao contrário de DROP TABLE onde a tabela é excluída com sua estrutura completa.

A exclusão da tabela ou banco de dados usando a instrução DROP não pode ser revertida, portanto, deve ser usada com cautela.

Você pode aplicar restrições, como chaves primárias, chaves estrangeiras, restrições únicas e verificação, para garantir a integridade dos dados.

Chave Primária (Primary Key): Uma constraint de chave primária é usada para identificar de forma exclusiva cada registro em uma tabela. Ela garante que os valores em uma coluna (ou um conjunto de colunas) sejam únicos e não nulos.

```
CREATE TABLE alunos(

id_aluno INT PRIMARY KEY

nome VARCHAR(50)

)
```


Chave (Foreign Key): Uma constraint de chave estrangeira estabelece uma relação entre duas tabelas, garantindo que os valores em uma coluna correspondam aos valores de outra tabela.

```
CREATE TABLE alunos(

id INT PRIMARY KEY

id_aluno INT,

id_curso INT,

FOREIGN KEY (id_aluno) REFERENCES alunos(id_aluno),

FOREIGN KEY (id_curso) REFERENCES cursos(id_curso)

);

8
```


Restrição Única (Unique Constraint): Uma restrição única garante que os valores em uma coluna sejam únicos, mas não necessariamente que sejam não nulos. Ela pode ser usada para impedir a inserção de duplicatas.

```
CREATE TABLE produtos (
codigo_produto INT UNIQUE,
nome_produto VARCHAR(100)
);
```

Restrição de Verificação (Check Constraint): Uma restrição de verificação permite especificar uma condição que os valores em uma coluna devem atender. Isso pode ser usado para garantir que os dados estejam dentro de um intervalo específico.

```
1 CREATE TABLE funcionarios (
2    id_funcionario INT,
3    salario DECIMAL(10, 2),
4    CHECK (salario >= 0)
5 );
```


Restrição de Não Nulo (Not Null Constraint): Uma restrição de não nulo garante que uma coluna não pode conter valores nulos, ou seja, todos os registros devem ter valores para essa coluna.

```
CREATE TABLE clientes (
id_cliente INT,
nome VARCHAR(50) NOT NULL
);
```


ATIVIDADE PRÁTICA 1

Crie um banco de dados chamado "escola" e as seguintes tabelas:

```
Tabela "alunos" com colunas: id_aluno, nome, idade.
Tabela "cursos" com colunas: id_curso, nome_curso,
carga_horaria. Tabela "matriculas" com colunas:
id_matricula, id_aluno id_curso, data_matricula.
```

ATIVIDADE PRÁTICA 2

Usando o comando TRUNCATE TABLE, exclua todos os dados da tabela "matriculas" sem excluir a estrutura da tabela.

ATIVIDADE PRÁTICA 3

Usando o comando DROP DATABASE, exclua o banco de dados "escola". Certifique-se de que você tenha feito um backup dos dados, pois essa ação apagará todo o banco de dados.

DESAFIO PRÁTICO

Sistema de uma escola

Crie um banco de dados para um sistema de uma escola, esse banco de dados ficará responsável por persistir os dados sobre alunos, professores, turmas e disciplinas.

Para os alunos é importante que contenha um número de matrícula, o nome, a idade, e o endereço.

DESAFIO PRÁTICO

Sistema de uma escola

Para os professores, deverá conter um número de matrícula, nome, especialidade e endereço.

Para a turma deverá conter um identificador, horário de início e dia de semana.

Para disciplina é importante que contenha um identificador, nome e quantidade de aulas.

AULA 16 DE PYTHON: SQL II

INFINITY SCHOOL
VISUAL ART CREATIVE CENTER

Aula 16 - SQL II

MANIPULAÇÃO DE DADOS (INSERT - UPDATE - DELETE - SELECT)

MÃOS NO CÓDIGO

