Universita` di Bologna Corso di Laurea Magistrale in Ing. Informatica A.A. 2024-2025

Sistemi Operativi M

Prof. Anna Ciampolini

Informazioni generali

- 8 CFU, 64 ore di lezione (aula e laboratorio)
- Docente: Prof. Anna Ciampolini
- Primo ciclo: Settembre dicembre 2024
- Corso a scelta

Il nome dell'insegnamento evidenzia **lo stretto legame con** l'omonimo corso della triennale in Ing. Informatica (**Sistemi Operativi T**):

- trattazione di ulteriori tematiche relative al sistema operativo;
- approfondimento del tema della programmazione concorrente ed estensione verso l'ambito distribuito e parallelo.

Obiettivi del Corso

- Completare lo studio sistemi operativi (v. Sistemi Operativi T):
 - Virtualizzazione
 - Protezione e sicurezza
 - Sistemi operativi per architetture multiprocessore.
- Approfondire il tema della programmazione concorrente in ambiente a memoria comune, in ambiente distribuito e in ambiente parallelo:
 - Studiare come la concorrenza viene realizzata all'interno del kernel del SO, in architetture monoprocessore, multiprocessore e distribuite.
 - Sperimentare le tecniche di programmazione concorrente mediante lo sviluppo di programmi concorrenti in diversi linguaggi.
 - Studiare le caratteristiche dei sistemi paralleli HPC (High Performance Computing), delle metodologie e degli strumenti per lo sviluppo di applicazioni parallele.
 - Sperimentare metodi e strumenti per la programmazione parallela su architetture HPC.

Prerequisiti:

- Caratteristiche, architettura e uso di sistemi operativi (Sistemi Operativi T)
- Conoscenze di base sulle architetture dei calcolatori (Calcolatori Elettronici T)

Programma

1. Protezione e sicurezza

- Richiami sulla protezione: modelli, politiche e meccanismi
- Sicurezza multilivello
- Sistemi *fidati*

2. Virtualizzazione

- Virtualizzazione dell'hardware: finalità e soluzioni
- Realizzazione di virtual machine monitor: virtualizzazione e paravirtualizzazione
- Analisi e sperimentazione di tecnologie: il caso di xen
- Virtualizzazione come supporto al cloud

3. Programmazione concorrente

• Architetture, modelli e linguaggi per la programmazione concorrente, distribuita e parallela.

3.1. Modello a memoria comune.

- Richiami e approfondimenti su threads e sincronizzazione:
 - Caratteristiche e implementazione threads.
 - Semafori: proprietà, casi di uso, implementazione nel kernel.
- Uso di linguaggi concorrenti nel modello a memoria comune: la libreria c/pthread.

3.2. Modello a scambio di messaggi

- -Richiami su canali e primitive
- -Primitive di comunicazione: semantica e implementazione
- -Comandi con guardia
- -Rendez-vous e chiamata di procedura remota
- -Algoritmi per la sincronizzazione in ambiente distribuito
- -Uso di linguaggi concorrenti nel modello a scambio di messaggi: google Go, Ada.

4. Kernel di sistemi multithreaded/multitask

- Realizzazione dei meccanismi di gestione dei thread e di sincronizzazione all'interno del kernel di un sistema monoprocessore
- Estensione al caso **multiprocessore**:
 - Modello SMP
 - Modello loosely-coupled (a nuclei distinti)

5. Sistemi HPC e Programmazione parallela

- Architetture per il calcolo parallelo. Sistemi HPC.
- modelli di programmazione: memoria comune e memoria distribuita
- Sviluppo di applicazioni parallele:
 - Scambio di messaggi: la libreria MPI
 - Memoria comune: open MP
- Cenni a sistemi GPGPU e alla libreria CUDA.

Orario (a regime): 5 ore/settimana

	LUN 14/10	MAR 15/10	MER 16/10	GIO 17/10	VEN 18/10	SAB 19/10	DOM 20/10
09			72947 - SISTEMI OPERATIVI M (8 CFU) Anna Ciampolini AULA 5.7		72947 - SISTEMI OPERATIVI M (8 CFU) Anna Ciampolini LAB 2		
10							
11							
12				72947 - SISTEMI OPERATIVI M (8 CFU) Anna Ciampolini AULA 5.6			
13							

- Alcuni venerdì 9.00-11:00 in laboratorio (LAB2) per l'attività pratica.
- Salvo diverse indicazioni, nelle settimane in cui si farà il laboratorio, la lezione in aula del giovedì non si terrà.

Attivita` di laboratorio

 Verranno proposte esercitazioni pratiche per sperimentare sul campo le tematiche presentate in aula.

Sistemi utilizzati:

- programmazione concorrente e distribuita: computer del laboratorio /macchine virtuali
- programmazione parallela: infrastruttura HPC del Cineca.

Strumenti usati:

- c/LinuxThreads (pthread)
- Ada
- Go
- MPI/openMP

Modalita` di Esame

- L'esame sarà costituito da:
 - una prova pratica di progetto
 - una prova orale.
- Prova Pratica: consiste nel progetto e nello sviluppo di un'applicazione concorrente che risolve un problema dato (da svolgersi in laboratorio).
- Prova Orale: verifica orale su tutto il programma.

NB:

- Per poter sostenere l'orale è necessario aver superato la prova pratica.
- La validità dell'esito della prova pratica è 1 anno solare.

Esame: valutazione

- Prova Pratica: voto in trentesimi (Vp)
- Prova Orale: voto in trentesimi (Vo)

Voto finale =
$$0.3.\text{Vp} + 0.7.\text{Vo}$$

Date d'esame

- Prove Pratiche:
 - 7/1/2025
 - 30/1/2025
 - 11/2/2024
- Prove Orali:
 - circa una settimana dopo ogni scritto (v. almaesami)

(l'orale può essere sostenuto in qualsiasi appello entro un anno solare dalla data della prova di laboratorio)

Date e Iscrizioni su Almaesami

Bibliografia

• Tutte le slide mostrate a lezione saranno disponibili su *virtuale.unibo.it*. [iscrizione da piano di studio, oppure con password studentSOM2425]

Per approfondire e completare gli argomenti trattati:

G.R.Andrews: "Foundations of Multithreaded, Parallel and Distributed Programming", Addison-Wesley

Hwang, Fox, Dongarra: "Distributed and Cloud Computing", Morgan and Kaufmann, 2012.

Peter S. Pacheco, "An Introduction to Parallel Programming", Morgan and Kaufmann, 2011.

P.Ancilotti, M.Boari: "Programmazione Concorrente e Distribuita", McGraw - Hill, 2006.

Bibliografia

• Testi sui Sistemi Operativi:

P.Ancilotti, M.Boari, A.Ciampolini: "Sistemi operativi", seconda edizione, McGraw-Hill – 2008

A.S. Tanenbaum: "I moderni sistemi operativi", quinta edizione 2019, Pearson.

A.Silberschatz, P.Galvin, G.Gagne: "Sistemi Operativi: concetti ed esempi" (versione italiana) 10^ edizione, Pearson.