A symmetric matrix A can be decomposed as

$$A = P\Delta P'$$

where P is orthogonal matrix, i.e., PP' = P'P = I, and Δ is a diagonal matric. One of advantage of this decomposition is that, $A^n = P(\Delta)^n P'$. Since Δ is a diagonal matrix, $(\Delta)^n$ is also a diagonal matrix with the diagonal elements being the nth power of the corresponding diagonal elements of Δ . This can greatly simplify the computation of A^n , especially when n is relatively large.

In SAS, eigval(A) gives the vector of the diagonal matrix Δ , and eigvec(A) gives the orthogonal matric P. In R, eigen(A) gives the P and the vector of the diagonal matrix Δ .