UNIVERSIDADE FEDERAL DO MARANHÃO		Departamento de Informática - DEINF		;	3a AVALIAÇÃO	
Centro de Ciências Exatas e Tecnologia		Internet: <u>www.deinf.ufma.br</u>		Р		
Disciplina: Matemática Discreta e Lógica		Curso: CIÊNCIA DA COMPUTAÇÃO		Т		
Código 5595.8	Carga Horária: 6	0 horas	Créditos: 4.0.0	MEDIA		
Professor: Luciano Reis Coutinho		Email: luciano.rc@ufma.br				

Terceira Avaliação: Prova Escrita	Data: 25 de janeiro 2022.
Aluno:	Código:
INSTRUÇÕES	0

- A prova deve ser realizada INDIVIDUALMENTE. As respostas DEVEM ser enviadas via SIGAA. Arquivos de resposta idênticos, ou respostas idênticas, enviados por mais de um aluno serão ANULADAS.
- Cada questão consiste em um enunciado e um conjunto de requisitos que uma resposta aceitável deve satisfazer. Respostas dadas que não atendam aos requisitos podem em última instância ser completamente desconsideradas durante a correção da prova. Tenham sempre em mente os requisitos ao dar as suas respostas.
- Todas as respostas devem estar legíveis e com posicionamento correto no arquivo enviado. Respostas posicionadas de cabeça para baixo ou de lado não serão corrigidas.
- A interpretação das questões faz parte da avaliação. Caso ache um enunciado ambíguo ou impreciso escreva na folha de resposta sua interpretação e a correspondente resposta. Todas as questões devem ser interpretadas tendo em vista que foi discutido nas aulas de Matemática Discreta e Lógica.
- Todas as questões DEVEM estar justificadas com os respectivos CÁLCULOS realizados. Respostas sem cálculos ou sem
 devida argumentação não serão corrigidas e às respectivas questões será atribuída pontuação 0.
- O tempo total de prova é de 100 min. Tem **início** às 14h00 e **término** às 15h40. Após 15:40, há 20min de tolerância para submeter as questões. Respostas enviadas **depois das 16h00**, por e-mail, **não serão corrigidas**.

QUESTÕES

1. (2,0 pontos) Utilizando o **princípio de indução matemática**, demonstre que para qualquer inteiro positivo n,

$$\sum_{i=0}^{n} (2i+1)^2 = (n+1)(2n+1)(2n+3)/3 \quad \text{. Lembrete: primeiro, prove a proposição para } n=0; \text{ em seguida, }$$

demonstre que se a proposição é verdadeira para um valor n = k arbitrário, então ela também é verdadeira para n = k + 1. Desenvolva a demonstração passo a passo, com explicação textual explícita (frases em português) de cada passo. Respostas sem detalhamento, sem explicações explícitas e legíveis não serão corrigidas.

- 2. Quantas cadeias de seis dígitos decimais:
 - (a) (0,5 ponto) Terminam com um dígito par?
 - (b) (0,5 ponto) Têm exatamente quatro dígitos '9'?

Em (a) e (b), mostre o raciocínio passo a passo. Respostas sem detalhamento não serão consideradas.

- 3. (1,0 ponto) O nome de identificadores na linguagem JAVA é uma string de tamanho entre 1 e 65.535 caracteres, inclusive. Cada caracter pode ser uma letra maiúscula ou minúscula, o sinal de dolar, o sinal de sublinhado, ou um dígito, exceto o primeiro caracter que não pode ser um dígito. Determine o número máximo de identificadores diferentes em Java. Justifique sua resposta mostrando como os princípios de contagem discutidos em sala de aulas podem ser aplicados para encontrar a resposta. Resposta sem justificativa explícita não serão corrigidas.
- 4. (1,0 ponto) Mostre que se há 30 estudantes em uma classe, então pelo menos dois têm nomes começando com a mesma letra. Faça uma argumentação baseada no princípio da casa do pombo. Justificativas sem usar o princípio da casa do pombo não serão consideradas.
- 5. (1,0 ponto) Quantas relações diferentes existem sobre o conjunto {x,y,z}? Quantas não contêm o par (z,z)? Justifique a sua resposta. Respostas sem justificativas não serão corrigidas.
- 6. (1,0 ponto) Liste todos os pares ordenados na relação R de $A=\{0,1,2,3,4\}$ para $B=\{0,1,2\}$, em que $(x,y) \in R$ se e somente se: x < 2y.
- 7. Considere as relações abaixo sobre o conjunto $E = \{a, b, c\}$:

 $R_1 = \{(a, a), (c, c), (a, c), (c, b), (b, b)\}$

 $R_2 = \{(a, a), (b, b)\}$

 $R_3 = \{(a, b), (b, c), (a, c)\}$

- a) (0,5 ponto) Aponte TODAS as que são REFLEXIVAS. Para as que não são, determine os pares que faltam para ser reflexiva.
- b) (0,5 ponto) Aponte TODAS as que são ANTI-SIMÉTRICAS. Para as que não são, explique o porquê.
- c) (0,5 ponto) Dentre elas, aponte TODAS as que são TRANSITIVAS. Para as que não são, determine os pares que faltam para ser transitivas.
- 8. Seja R a relação no conjunto de pares ordenados de inteiros positivos tais que ((a,b), (c,d)) ∈R se e somente se a*d=b*c. Mostre que R é uma **relação de equivalência**, ou seja, que é ao mesmo tempo: (a) reflexiva (0,5 ponto), (b) simétrica (0,5 ponto) e (c) transitiva (0,5 ponto). Apresente argumento detalhado baseado nas definições formais das propriedades de reflexividade, simetria e transitividade discutidas em aula.