Introduction to Simulation - Lecture 14

Multistep Methods II

Jacob White

Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Outline

Small Timestep issues for Multistep Methods

Reminder about LTE minimization

A nonconverging example

Stability + Consistency implies convergence

Investigate Large Timestep Issues

Absolute Stability for two time-scale examples. Oscillators.

Basic Equations

General Notation

Nonlinear Differential Equation:

$$\frac{d}{dt}x(t) = f(x(t), u(t))$$

Multistep coefficients

 $t_{l-3} t_{l-2} t_{l-1} t_{l}$

Solution at discrete points

Time discretization

Simplified Problem for Analysis

$$\frac{d}{dt}v(t) = \lambda v(t), \ v(0) = v_0$$

$$\lambda \in \mathbb{C}$$

 $Re(\lambda)$

Scalar ODE:
$$\frac{d}{dt}v(t) = \lambda v(t), \ v(0) = v_0 \qquad \lambda \in \mathbb{C}$$
Scalar Multistep formula:
$$\sum_{j=0}^k \alpha_j \hat{v}^{l-j} = \Delta t \sum_{j=0}^k \beta_j \lambda \hat{v}^{l-j}$$

Must Consider ALL $\lambda \in \mathbb{C}$

Convergence Analysis

Convergence Definition

Definition: A multistep method for solving initial value problems on [0,T] is said to be convergent if given any initial condition

$$\max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| \hat{v}^l - v(l\Delta t) \right\| \to 0 \text{ as } \Delta t \to 0$$

Convergence Analysis

Two Conditions for Convergence

1) Local Condition: "One step" errors are small (consistency)

Typically verified using Taylor Series

2) Global Condition: The single step errors do not grow too quickly (stability)

Multi-step (k > 1) methods require careful analysis.

Convergence Analysis

Global Error Equation

Multistep formula:

$$\sum_{j=0}^{k} \alpha_j \hat{v}^{l-j} - \Delta t \sum_{j=0}^{k} \beta_j \lambda \hat{v}^{l-j} = 0$$

Exact solution Almost satisfies Multistep Formula:

$$\sum_{j=0}^{k} \alpha_{j} v(t_{l-j}) - \Delta t \sum_{j=0}^{k} \beta_{j} \frac{d}{dt} v(t_{l-j}) = e^{l}$$

Local Truncation Error (LTE)

Global Error: $E^l \equiv v(t_l) - \hat{v}^l$

Difference equation relates LTE to Global error

$$(\alpha_0 - \lambda \Delta t \beta_0) E^l + (\alpha_1 - \lambda \Delta t \beta_1) E^{l-1} + \dots + (\alpha_k - \lambda \Delta t \beta_k) E^{l-k} = e^l$$

Making LTE Small

Exactness Constraints

Local Truncation Error:
$$\sum_{j=0}^{k} \alpha_{j} v(t_{l-j}) - \Delta t \sum_{j=0}^{k} \beta_{j} \frac{d}{dt} v(t_{l-j}) = e^{l}$$
Can't be from
$$\frac{d}{dt} v(t) = \lambda v(t)$$
LTE

If
$$v(t) = t^p \Rightarrow \frac{d}{dt}v(t) = pt^{p-1}$$

$$\sum_{j=0}^{k} \alpha_{j} \underbrace{\left(\left(k-j\right) \Delta t\right)^{p} - \Delta t}_{j=0} \sum_{j=0}^{k} \beta_{j} \underbrace{p\left(\left(k-j\right) \Delta t\right)^{p-1}}_{q} = e^{k}$$

$$\underbrace{\frac{d}{dt} v\left(t_{k-j}\right)}_{q}$$

Making LTE Small

Exactness Constraint k=2

Example

Exactness Constraints:
$$\left(\sum_{j=0}^{k} \alpha_{j} (k-j)^{p} - \sum_{j=0}^{k} \beta_{j} p (k-j)^{p-1}\right) = 0$$

For k=2, yields a 5x6 system of equations for Coefficients

Making LTE Small

Exactness Constraint k=2 example, generating methods

First introduce a normalization, for example $\alpha_0 = 1$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & -1 \\ 1 & 0 & -4 & -2 & 0 \\ 1 & 0 & -12 & -3 & 0 \\ 1 & 0 & -32 & -4 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ -4 \\ -8 \\ -16 \end{bmatrix}$$

Solve for the 2-step method with lowest LTE

$$\alpha_0 = 1$$
, $\alpha_1 = 0$, $\alpha_2 = -1$, $\beta_0 = 1/3$, $\beta_1 = 4/3$, $\beta_2 = 1/3$

Satisfies all five exactness constraints $LTE = C(\Delta t)^{51}$

Solve for the 2-step explicit method with lowest LTE

$$\alpha_0 = 1$$
, $\alpha_1 = 4$, $\alpha_2 = -5$, $\beta_0 = 0$, $\beta_1 = 4$, $\beta_2 = 2$
Can only satisfy four exactness constraints $LTE = C(\Delta t)^4$

Making LTE Small

LTE Plots for the FE, Trap, and "Best" Explicit (BESTE).

Making LTE Small

Global Error for the FE, Trap, and "Best" Explicit (BESTE).

Timestep

Making LTE Small

Global Error for the FE, Trap, and "Best" Explicit (BESTE).

Stability of the method

Difference Equation

Why did the "best" 2-step explicit method fail to Converge?

Multistep Method Difference Equation

$$(\alpha_{0} - \lambda \Delta t \beta_{0}) E^{l} + (\alpha_{1} - \lambda \Delta t \beta_{1}) E^{l-1} + \dots + (\alpha_{k} - \lambda \Delta t \beta_{k}) E^{l-k} = e^{l}$$

$$v(l\Delta t) - \hat{v}^{l}$$
LTE

Global Error

We made the LTE so small, how come the Global error is so large?

Stability of the method

Stability Definition

Multistep Method Difference Equation

$$(\alpha_0 - \lambda \Delta t \beta_0) E^l + (\alpha_1 - \lambda \Delta t \beta_1) E^{l-1} + \dots + (\alpha_k - \lambda \Delta t \beta_k) E^{l-k} = e^l$$

Definition: A multistep method is stable if as $\Delta t \rightarrow 0$

$$\max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left| E^l \right| \le \underbrace{C(T)}_{\text{interval}} \underbrace{\frac{T}{\Delta t}}_{\text{dependent}} \max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left| e^l \right|$$

Stability means:

Global Error is bounded by a constant times the sum of the LTE's

Aside on difference Equations

Convolution Sum

Root Relation

Given a kth order difference eqn with zero initial conditions

$$a_0 x^l + \dots + a_k x^{l-k} = u^l, \quad x^{-1} = 0, \quad \dots, \quad x^{-k} = 0$$

x can be related to the input u by $x^l = \sum_{j=0}^{l} h^{l-j} u^j$

Root multiplicity

$$h^{l} = \sum_{q=1}^{Q} \sum_{m=0}^{M_{q}-1} \gamma_{q,m} \left(l\right)^{m} \left(\varsigma_{q}\right)^{l}$$
Roots of

$$a_0 z^k + a_1 z^{k-1} + \dots + a_k = 0$$

Aside on difference Equations

Convolution Sum

Bounding Terms

$$x^{l} = \sum_{q=1}^{Q} \sum_{m=0}^{M_{q}-1} \left(\sum_{j=0}^{l} \gamma_{q,m} (l-j)^{m} (\varsigma_{q})^{l-j} u^{j} \right)$$

If
$$|\varsigma_q| < 1$$
, then $|R_{q,m}| \le C \max_j |u^j|$
Independent of l

If
$$\left| \varsigma_{\mathbf{q}} \right| < (1+\varepsilon)$$
, then $\left| R_{q,0} \right| \le C \frac{e^{\varepsilon l}}{\varepsilon} \max_{j} \left| u^{j} \right|$

Bounds distinct Roots

Stability of the method

Stability Theorem

Theorem: A multistep method is stable if and only if

Roots of
$$\alpha_0 z^k + \alpha_1 z^{k-1} + \dots + \alpha_k = 0$$
 either:

- 1. Have magnitude less than one
- 2. Have magnitude equal to one and are distinct

Stability of the method

Stability Theorem "Proof"

Given the Multistep Method Difference Equation

$$(\alpha_0 - \lambda \Delta t \beta_0) E^l + (\alpha_1 - \lambda \Delta t \beta_1) E^{l-1} + \dots + (\alpha_k - \lambda \Delta t \beta_k) E^{l-k} = e^l$$

If, as
$$\Delta t \to 0$$
, roots of $(\alpha_0 - \lambda \Delta t \beta_0) z^l + \dots + (\alpha_k - \lambda \Delta t \beta_k) = 0$

- less than one in magnitude or
- are distinct and bounded by $1 + \kappa \Delta t$, $\kappa > 0$

Then from the aside on difference equations

$$\max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left| E^l \right| \le C \frac{e^{\kappa l \Delta t}}{\Delta t} \max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left| e^l \right| \le \frac{C e^{\kappa T}}{T} \frac{T}{\Delta t} \max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left| e^l \right|$$

Stability of the method

Stability Theorem Picture

Stability of the method

The BESTE Method

Best explicit 2-step method

$$\alpha_0 = 1$$
, $\alpha_1 = 4$, $\alpha_2 = -5$, $\beta_0 = 0$, $\beta_1 = 4$, $\beta_2 = 2$

Stability of the method

Dahlquist's First Stability
Barrier

For a stable, explicit k-step multistep method, the maximum number of exactness constraints that can be satisfied is less than or equal to k (note there are 2k-1 coefficients). For implicit methods, the number of constraints that can be satisfied is either k+2 if k is even or k+1 if k is odd.

Convergence Analysis

Conditions for convergence, stability and consistency

1) Local Condition: One step errors are small (consistency)

Exactness Constraints up to p_0 (p_0 must be > 0)

$$\Rightarrow \max_{l \in [0, \frac{T}{\Delta t}]} \|e^l\| \le C_1 (\Delta t)^{p_0 + 1} \text{ for } \Delta t < \Delta t_0$$

2) Global Condition: One step errors grow slowly (stability)

roots of
$$\sum_{j=0}^{k} \alpha_j z^{k-j} = 0$$
 Inside the unit circle or on the unit circle and distinct

$$\Rightarrow \max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| E^l \right\| \le C_2 \frac{T}{\Delta t} \max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| e^l \right\|$$

 $\Rightarrow \max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| E^{l} \right\| \leq C_{2} \frac{1}{\Delta t} \max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| e^{l} \right\|$ Convergence Result: $\max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| E^{l} \right\| \leq CT \left(\Delta t\right)^{p_{0}}$

5

Large timestep stability

20

25

With Backward-Euler it is easy to use small timesteps for the fast dynamics and then switch to large timesteps for the slow decay

10

15

Large Timestep Stability

FE on two time-constant circuit?

The Forward-Euler is accurate for small timesteps, but goes unstable when the timestep is enlarged

Multistep Methods

FE, BE and Trap on the scalar ode problem

Scalar ODE:
$$\frac{d}{dt}v(t) = \lambda v(t), \ v(0) = v_0 \qquad \lambda \in \mathbb{C}$$

Forward-Euler:
$$\hat{v}^{l+1} = \hat{v}^l + \Delta t \lambda \hat{v}^l = (1 + \Delta t \lambda) \hat{v}^l$$

the solution grows even if $\lambda < 0$ If $|1 + \Delta t \lambda| > 1$

Backward-Euler:
$$\hat{v}^{l+1} = \hat{v}^l + \Delta t \lambda \hat{v}^{l+1} \Rightarrow \hat{v}^{l+1} = \frac{1}{(1 - \Delta t \lambda)} \hat{v}^l$$
If $\left| \frac{1}{1 - \Delta t \lambda} \right| < 1$ the solution decays even if $\lambda > 0$

Trap Rule:
$$\hat{v}^{l+1} = \hat{v}^l + 0.5\Delta t \lambda \left(\hat{v}^{l+1} + \hat{v}\right)^l \Rightarrow \hat{v}^{l+1} = \frac{\left(1 + 0.5\Delta t \lambda\right)}{\left(1 - 0.5\Delta t \lambda\right)} \hat{v}^l$$

Large Timestep Stability

FE large timestep region of absolute stability

Forward Euler
$$z = (1 + \Delta t \lambda)$$
 Im (λ)

ODE stability region

Re(z)

Re(z)

Re(λ)

Re(λ)

Multistep Methods

FE large timestep stability, circuit example

Circuit example with $\Delta t = 0.1$, $\lambda = -2.1$, -0.1 Im(λ)

Multistep Methods

FE large timestep stability, circuit example

Circuit example with $\Delta t=1.0$, $\lambda=-2.1$, -0.1

Large Timestep Stability

BE large timestep region of absolute stability

Multistep Methods

BE large timestep stability, circuit example

Circuit example with $\Delta t = 0.1$, $\lambda = -2.1$, -0.1 Im(λ)

Multistep Methods

BE large timestep stability, circuit example

Circuit example with $\Delta t = 1.0$, $\lambda = -2.1$, -0.1 Im(λ)

Multistep Methods

Stability Definitions

Region of Absolute Stability for a Multistep method:

Values of $\lambda \Delta t$ where roots of $\sum_{j=0}^{\infty} (\alpha_j - \lambda \Delta t \beta_j) z^{k-j} = 0$ are inside the unit circle.

A-stable:

A method is A-stable if its region of absolute stability includes the entire left-half of the complex plane

Dahlquist's second Stability barrier:

There are no A-stable multistep methods of convergence order greater than 2, and the trap rule is the most accurate.

Numerical Experiments

Why does FE result grow, BE result decay and the Trap rule preserve oscillations

Large Timestep Stability

FE large timestep oscillator example

$$z = (1 + \Delta t \lambda)$$

Large Timestep Stability

BE large timestep oscillator example

Backward Euler

$$z = \left(1 - \Delta t \lambda\right)^{-1} \operatorname{Im}(\lambda)$$

Large Timestep Stability

Trap large timestep oscillator example

Trap Rule
$$z = \frac{(1+0.5\Delta t\lambda)}{(1-0.5\Delta t\lambda)}$$
 Im (λ)

Large Timestep Issues

Multistep Methods

Two Time-Constant Stable problem (Circuit)

FE: stability, not accuracy, limited timestep size.

BE was A-stable, any timestep could be used.

Trap Rule most accurate A-stable m-step method

Oscillator Problem

Forward-Euler generated an unstable difference equation regardless of timestep size.

Backward-Euler generated a stable (decaying) difference equation regardless of timestep size.

Trapezoidal rule mapped the imaginary axis

Summary

Small Timestep issues for Multistep Methods

Local truncation error and Exactness.

Difference equation stability.

Stability + Consistency implies convergence.

Investigate Large Timestep Issues

Absolute Stability for two time-scale examples.

Oscillators.

Didn't talk about

Runge-Kutta schemes, higher order A-stable methods.