ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 31 gennaio 2022

Esercizio A

$R_1 = 2 \text{ k}\Omega$	$R_9 = 8.5 \text{ k}\Omega$	V _{cc}	
$R_2 = 1 \text{ k}\Omega$	$R_{10}=4.75~k\Omega$	$R_7 \geq R_7 \leq R_7$	
$R_3 = 2 k\Omega$	$R_{11} = 1 \text{ k}\Omega$	R_{2} R_{8} R_{9} R_{11}	
$R_5 = 50 \Omega$	$R_{12}=2\;k\Omega$	R_1 R_4 Q_1 Q_2 Q_3 Q_4 Q_5 Q_5	+ V,
$R_6 = 2.7 \text{ k}\Omega$	$R_{13} = 10 \text{ k}\Omega$	V_{i} $\stackrel{+}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{$	
$R_7 = 2.5 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$, - v u
$R_8 = 1 \text{ k}\Omega$			

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Q_2 è un transistore MOS a canale p resistivo con $V_T = -1$ V con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V². Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R₄ in modo che, in condizioni di riposo, la tensione sul source di Q₂ sia 13.5 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₂.
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti.

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A} \ \overline{B} + A \ \overline{D}\right) \cdot \left(B \ \overline{C} + \overline{E}\right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

Il circuito IC_1 è un NE555 alimentato a $V_{CC}=6$ V; Q_1 e Q_2 hanno una $R_{on}=0$ e $V_T=1$, l'inverter è ideale. Dimostrare che il circuito in figura è un multivibratore astabile e determinare la frequenza del segnale di uscita.

31/01 12022 APPELLO

ESERCIZIO A R1=2KR Rs= Sol R 2 = 2.5K2 Rg=8.5K2 1) (ALCOLARE RY PER VS = 13.5V $I_{S} = I_{11} = \frac{V_{cc} - V_{S}}{R_{11}} = 4.5 \text{ m/s}$ R12 = 2KR $I_6 = \emptyset =$ $I_D = I_S = 4.5 md$ VD = R12 ID = 8V Vcc = 18V $V_{DS} = V_{D} - V_{S} = -4.5V$

hp: U2 SATURO => ID = K(VGS-VT)2 PER I PROS LA CONDUEIONE SI HA V6S = V7 + V = = (4- V =) PER VGS 2 V4 PER CUI SCELGO SOLULIONE CON IL SEGNO NEGATIVO =(-1)-3=-4

 $Vos \leq (V_{6S} - V_{T})$ VERIFICA SATURATIONE:

(-4.5) < -4-(-1) = -3V OK VERIFICATA

gn = 2 K | Vos - V7 | = 3 x10-3 4/V

 $V_{G} = V_{GS} + V_{S} = -4 + 13.5 = + 9.5V$

Ig = Vcc - Va = ImA

In = V6 = 2m. A

R2=1KR R3=2K2

R6 = 2.7KR

R8=1K2

R10=4.75 N RMEIKR

R13 = 10K2

 $Q_{2}: \begin{cases} I_{D} = 4.5 \text{ m A} \\ V_{DS} = -4.5 \text{ V} \end{cases}$ $V_{6S} = -4 \text{ V}$ $Q_{m} = 3 \times 10^{-3} \text{ A/V}$

$$I_8 = I_{10} - I_9 = 4mA$$

$$V_C = V_6 + R_8 I_8 = 10.5V$$

$$I_7 = V_{CC} - V_C = 3mA$$

$$I_7 = I_7 - I_8 = 2mA$$

$$I_8 = I_7 - I_8 = 2mA$$

$$I_9 = R_5 + R_6 I_8 = 5.5V$$

$$V_{CE} = V_C - V_E = 5V$$

$$V_{CE} = V_C - V_C - V_E = 5V$$

$$V_{CE} = V_C - V_$$

2) DETERMINARE VU/V.

Krhen is I hie wheis

Vu = (R12 11 R13) (- gm Jgs)

V5 = (gm Jos) R11

 $\sqrt{g_s} = \sqrt{g} - \left(gmg_{gs}R_{11}\right) = \sqrt{g_s} = \frac{\sqrt{g}}{1 + gmR_{11}}$

Vg = (- hpe is) Rz (Rg/11R10) RI+R8+ Rg/IRIO

Uper = U: R211R3
R1+R211R3

RTher = RILIRILIR3

 $ib = \frac{\int_{\text{Ther}} \int_{\text{Res}} \frac{\int_{\text{Res}} R_2 ||R_3|}{R_1 + R_2 ||R_3|} = \frac{\int_{\text{Res}} R_2 ||R_3|}{R_1 + R_2 ||R_3|} \frac{1}{\left(R_1 ||R_2||R_3\right) + \text{hie} + R_3 \left(\text{he} + 1\right)}$

 $\frac{V_{u}}{V_{i}} = \left(-g_{m}\right)\left(\frac{1666.6}{1600}\right)\left(\frac{0.25}{0.25}\right)\left(\frac{300}{1600}\right)\left(\frac{0.38184}{1600}\right)\left(\frac{300}{1600}\right)\left(\frac{1}{160$

R1#(R211R3) (R11R211R3) + hie + Rs(hpe++) (0.25

(4.914×10-5)

ESERCIZIO C

$$R_{1} = Soo \Omega$$

$$R_{2} = 2K\Omega$$

$$R_{3} = 3.5K\Omega$$

$$R_{4} = 2K\Omega$$

$$R_{5} = Soe \Omega$$

$$R_{6} = 5KC$$

$$C = 820 nF$$

Vcc = 6V

$$D = HI = V_{CC} = V_{CC} = V_{CS1} = V_{CC} = V_{CC} = V_{CS} = V_{CC} = 6V > V_{T1} = 1V = 1 V_{C} = 0V$$

$$V_{62} = \phi V + V_{S2} = \phi V = 1 V_{6S2} = \phi V < V_{T2} = 1V = 1 V_{C} = 0FF$$

IL CIRCUITO DIVENTA:

$$R_{1}$$
 R_{2}
 R_{3}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}
 R_{7}

$$V_{i1} = \frac{1}{3}V_{cc} = \frac{2V}{2V}$$

$$= V_{cc} \frac{R_3}{(R_2||R_4) + R_1 + R_3} = 4.2V$$

$$I_{Rs} = \frac{V_{cc} - V_{rH}}{R_2 I I R_4} = 2mA$$

$$R_{V_{1}} = R_{3} II \left(R_{1} + R_{2} II R_{u} \right) = 1050 \ \Omega$$
 $C_{1} = R_{V_{1}} C = 861 \ \mu S$

死

$$D = \phi = \int V_{61} = \phi V_{1} V_{51} = \phi V_{2} = \phi V_{21} = \phi V_{21} = \psi V_{21$$

L CIRCUITO DIVENTA

$$R_{S} = V_{COR1} = 3V$$

$$V_{COR2} = V_{i1} = 2V$$

$$V_{COR2} = V_{i1} = 2V$$

$$V_{R_{2}} = V_{CC} = V_{R_{2}||R_{S}|} = 1V$$

$$R_{S} = V_{CC} = V_{CC} = 1V$$

$$V_{i2} = V_{cons} = 3V$$

VERIFICA CORRUTATIONE: Viz > VCORZ > VRC

$$3V > 2V > \pm V$$
 or

$$R_{V2} = R_1 + (R_2 || R_4 || R_5) = 833.3 \Omega$$

INVERTER:

A of
$$A$$
 B of A B

$$\left(\frac{W}{Z}\right)_{7,8,8,10} = \times - \frac{1}{N} + \frac{1}{N} + \frac{1}{N} + \frac{1}{N} = \frac{4}{N} = \frac{1}{p}$$

$$\times - \left(\frac{W}{Z}\right)_{7,8,9,10} = 4p = 20$$

ABBIATO DUE OPZIONI .

ope. 1) CONSIDERO PRIMA 7-8-(1) & DOPO (3-6) 11
$$t = \left(\frac{w}{L}\right)_{N} + \frac{1}{6} + \frac{1}{6p} + \frac{1}{6p} = \frac{1}{t} + \frac{1}{2p} = \frac{1}{p}$$

$$\frac{1}{6} = \frac{1}{2p}$$
 - $\frac{1}{2p} = \frac{1}{2p} = \frac{10}{2p}$

$$7 = \left(\frac{w}{L}\right)_{5,6} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = \frac{2}{7} + \frac{1}{7} = \frac{1}{7}$$

$$\frac{2}{7} = \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = \frac{2}{7} + \frac{1}{7} = \frac{1}{7}$$

$$\frac{2}{7} = \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = \frac{2}{7} + \frac{1}{7} = \frac{1}{7}$$

$$\frac{2}{7} = \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = \frac{2}{7} + \frac{1}{7} = \frac{1}{7}$$

$$\frac{2}{7} = \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = \frac{2}{7} + \frac{1}{7} = \frac{1}{7}$$

$$\frac{2}{7} = \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = \frac{2}{7} + \frac{1}{7} = \frac{1}{7}$$

$$\frac{2}{7} = \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = \frac{2}{7} + \frac{1}{7} = \frac{1}{7}$$

OP7 2) USO 5-6-11 & DOPS VORUTICO 7-8-11

$$\left(\frac{w}{c}\right)_{3,6,11} = J + \frac{1}{J} + \frac{1}{J} = \frac{3}{J} = \frac{1}{P} + \frac{w}{C} = 3P = 15$$

$$\frac{1}{4p} + \frac{1}{4p} + \frac{1}{3p} = \frac{3+3+4}{12p} = \frac{5}{6p} < \frac{1}{p}$$
 OK, DINGNOWANDON AMONTO

		5	6	1. 11	/ tor						
oft	1	40	49	rp	10 p						
off	2)	3р	30	30	9 p	A	0P310N6	(2)	Ah	ARSA	WNORS
										, 10, 1	500 St 200-0

$$\left(\frac{V}{L}\right)_{12,13,14,15,16,17,18} = K$$

$$\frac{1}{k} + \frac{1}{k} = \frac{2}{R} = \frac{1}{m} \quad \Delta \quad K = \left(\frac{W}{L}\right)_{12, 13, 14, 15, 16, 17, 18} = 2m = 4$$