7 端口多功能 USB HUB 控制器芯片 CH339

手册 版本: 1.1 https://wch.cn

1、概述

CH339 是符合 USB2. 0 协议规范的 7 端口多功能 USB HUB 控制器芯片,单芯片集成 7 口 USB HUB、USB 百兆以太网、USB 高速 SD 读卡器、USB PD 和 USB 转 SPI、USB 转 JTAG、USB 转 UART、USB 转 I2C 接口等功能。CH339 上行端口支持 USB2. 0 高速和全速,下行端口支持 USB2. 0 高速 480Mbps、全速 12Mbps 和低速 1.5Mbps,另有 USB 网卡、USB 高速读卡器、USB 转 JTAG 等多个内部直达通道。CH339 支持高性能的并发处理 MTT 模式,采用工业级设计,外围精简,可应用于计算机和工控机主板、扩展坞、外设、嵌入式系统等场景。

下图为 CH339 的系统框图。

图 1-1 系统框图

上图是 HUB 控制器系统内部结构框图。HUB 控制器主要包括三大模块: Repeater、TT 和控制器。 控制器类似 MCU 处理器,用于全局管理和控制。当上行端口与下行端口速度一致时,路由逻辑会将端口连接至 Repeater,当上行端口与下行端口速度不一致时,路由逻辑会将端口连接至 TT。

TT 分为单个 TT 和多个 TT 两种,即 STT 和 MTT, STT 是单个 TT 核分时调度处理 USB 主机下发至 所有下行端口的事务,MTT 指多个 TT 并行,是 7 个 TT 核分别对应并实时处理一个下行端口的事务,因此 MTT 可以为各下行端口的接入设备提供更满的带宽,更好的支持多端口大数据量的并发传输。 注:

USPORT Transceiver: 上行端口收发器 PHY; DSPORT 1-7: 下行端口收发器 PHY;

REPEATER: HUB 中继器;

TT: 处理转换器。

2、特点

- (1) USB HUB 部分
- 7口 USB 集线器,提供 7个 USB2. 0 下行端口,向下兼容 USB1. 1 协议规范
- 支持各端口独立电源控制或 GANG 整体联动电源控制
- 支持各端口独立过流检测或 GANG 整体过流检测
- 支持高性能的 MTT 模式,为每个端口提供独立 TT 实现满带宽并发传输,总带宽是 STT 的 7 倍
- 自研的专用 USB PHY, 低功耗技术, 支持自供电或总线供电
- 可通过 I/0 引脚配置自供电或总线供电模式等功能
- 提供晶体振荡器,支持外部时钟输入,内置 PLL 为 USB PHY 提供 480MHz 时钟
- 非以太网应用场合可支持免晶振模式,节省外置晶体及电容
- 上行端口内置 1.5KΩ上拉电阻,下行端口内置 USB Host 主机所需下拉电阻,外围精简

(2) USB 转以太网和 USB 高速读卡器部分

- 内置自研 10M/100M 以太网 MAC+PHY, 兼容 IEEE 802.3 10BASE-T/100BASE-TX
- 支持 CDC-ECM 协议和 CDC-NCM 协议,免安装驱动程序或可选厂商驱动程序
- 10M/100M 自动协商,支持 UTP CAT5E、CAT6 双绞线,支持 Auto-MDIX,自动识别正负信号线
- 支持休眠模式和低功耗睡眠模式,支持网络低功耗配置和动态电源管理
- 支持通过魔术包和网络唤醒包等事件进行远程唤醒
- 支持 IPv4/IPv6 封包校验,支持 IPv4 TCP/UDP/HEAD 和 IPv6 TCP/UDP 封包校验生成和检查
- 支持 SD 卡和 MMC 卡, 并将其转换成标准的 USB 大容量存储类设备
- 提供 SD10 接口, 兼容 SD 卡规范 2.0, 兼容 MMC 规范 4.5

(3) USB 转 SPI 接口部分

- 作为 Host/Master 主机模式,提供 SCS、SCK/CLK、MISO/SDI、MOSI/SDO 四根信号线
- 支持 8 位数据结构,支持 MSB 或 LSB 传输
- 支持 SPI 模式 0/1/2/3,支持传输频率配置,最高可达 60MHz,支持硬件 DMA 发送和接收
- 通过计算机 API 配合,可灵活操作 4 线接口的 FLASH、MCU、传感器等器件

(4) USB 转 JTAG 接口部分

- 作为 Host/Master 主机模式
- JTAG 接口提供 TMS 线、TCK 线、TDI 线、TDO 线、TRST 线(可选) 和 SRST 线(可选)
- 支持高速 USB 数据传输
- 通过计算机 API 配合,可灵活操作 CPU、DSP、FPGA、CPLD、MCU 等器件

(5) USB 转 UART 接口部分

- 仿真标准串口,用于升级原串口外围设备,或者通过 USB 增加额外串口
- 计算机端 Windows 操作系统下的串口应用程序完全兼容,无需修改
- 硬件全双工串口,内置独立的收发缓冲区,通讯波特率支持 2400bps~6Mbps
- 串口支持8个数据位,支持奇校验、偶校验以及无校验,支持1或2停止位
- 支持 CTS 和 RTS 硬件自动流控
- 通过外加电平转换器件,支持 RS232、RS485、RS422 等接口

(6) USB 转 12C 接口部分

- 作为 Host/Master 主机模式
- 提供 SCL 和 SDA 两根信号线,支持 5 种传输速度
- 通过计算机 API 配合,可灵活操作 2 线接口的 A/D、D/A、EEPROM 和传感器等器件

(7) USB PD 部分

- 支持 USB PD2. 0/3. 0 协议
- 支持最大 100W 对外输出
- 支持 USB Type-C 正反插检测与自动切换
- 支持 VDM 协商使得设备进入 Alternate Mode 模式输出 DP 信号

(8) 其它特征

- 可通过外部 EEPROM 或内部 EEPROM 配置 HUB 芯片是否支持复合设备、不可移除设备、自定义 VID、PID、端口配置和 USB 厂商、产品、序列号字符串描述符等
- 内置信息存储器, 针对行业特殊需求可批量定制厂商或产品信息及配置。
- 处理器内核、高速 USB、以太网等控制器和物理层收发器 IP 全自研,各模块紧密协同,效率高成本低,免除 IP 授权费
- USB接口引脚具有 6kV 增强 ESD 性能, Class 3A
- 工业级温度范围: -40~85°C
- 提供 QFN68、QFN32 等多种封装形式

表 1-1 功能对比

型号 功能	CH339W	CH339F
TT 模式	MTT	MTT
USB 端口数	7	4
过流检测	独立或 GANG	GANG 模式
电源控制	独立或 GANG	GANG 模式
I/0 引脚配置 供电模式	√	×
外部/内部 EEPROM 提供配置信息	√	√
定制配置信息	√	√
上行口交换功能	√	×
隔离/延长功能	√	√
USB 网卡功能	√	√
USB 读卡器功能	√	√
USB 转 JTAG 功能	√	×
USB 转 SPI 功能	√	×
USB 转 UART 功能	√	×
USB 转 12C 功能	√	×
USB 转 SMBus 功能	√	×
Type-C/PD	√	×
芯片供电	单 3. 3V	单 3. 3V

3、引脚排列

表 3-1 封装说明

封装形式	塑体尺寸	引脚节距		封装说明	订货型号
QFN68	8*8mm	0. 4mm	15.7mil	四边无引线 68 脚	CH339W
QFN32	4*4mm	0. 4mm	15.7mil	四边无引线 32 脚	CH339F

注: 优选 CH339F,体积小; CH339W 引脚多,侧重于功能齐全。 0#引脚是 QFN 封装的底板,是必要连接。

4、引脚定义

表 4-1 引脚定义

引脚号(同名	引脚可参考)	引脚	类型⑴	74.464.44.44.44.44.44.44.44.44.44.44.44.4
CH339W	CH339F	名称	矢空	功能描述
12	6	DMU	USB	上行端口 USB2. 0 信号线 D-。
13	7	DPU	USB	上行端口 USB2. 0 信号线 D+。
18	11	DM1	USB	1#下行端口 USB 信号线 D-。
19	12	DP1	USB	1#下行端口 USB 信号线 D+。
20	13	DM2	USB	2#下行端口 USB 信号线 D-。
21	14	DP2	USB	2#下行端口 USB 信号线 D+。
24	31	DM3	USB	3#下行端口 USB 信号线 D-。
25	32	DP3	USB	3#下行端口 USB 信号线 D+。
26	29	DM4	USB	4#下行端口 USB 信号线 D-。
27	30	DP4	USB	4#下行端口 USB 信号线 D+。
28	_	DM5	USB	5#下行端口 USB 信号线 D-。
29	_	DP5	USB	5#下行端口 USB 信号线 D+。
7	_	DM6	USB	6#下行端口 USB 信号线 D-。
8	_	DP6	USB	6#下行端口 USB 信号线 D+。
9	_	DM7	USB	7#下行端口 USB 信号线 D-。
10	_	DP7	USB	7#下行端口 USB 信号线 D+。
16	9	ΧI	Ī	晶体振荡器输入端,接外部晶体一端。

15	8	XO	0	晶体振荡器反相输出端,接外部晶体另一端。
50	16	RESET#	E I	外部复位输入,内置上拉电阻,低电平有效,
58	10	KESEI#	51	不使用时可以悬空,建议短接 V1033 防干扰。
3、23	3、15	V _{DD33}	Р	模拟电源输入,外供 3.3V,外接 1uF 电容。
11、30	_	V _{DD33}	Р	辅助电源输入,外供3.3V,外接0.1uF或1uF电容。
40、63	_	V ₁₀₃₃	Р	引脚电源输入,外供 3.3V,外接 0.1uF或 1uF 电容。
54	24	V _{SD10}	Р	SDIO 引脚内部电源的退耦端,外接 0.1uF 退耦电容。
17	10	AV _{DDK}	Р	模拟内核电源,外接 1uF 退耦电容。
60	28	DV _{DDK}	Р	数字内核电源,外接 0. 1uF 退耦电容。
0	0	GND	Р	公共接地端,必须连接 GND。
6、14、22、	_	GND	Р	 公共接地端,可选,建议连接 GND。
53、61		GIND	ľ	ムハメゼ州,可处,定及在J女 UIU。
34	17	0VCUR1#	51	下行端口1过流检测输入引脚,低电平过流;
0-1	17	OVCUR#		整体模式下行端口过流检测输入引脚,低电平过流。
33	_	OVCUR2#	51	下行端口2过流检测输入引脚,低电平过流。
32	_	OVCUR3#	51	下行端口3过流检测输入引脚,低电平过流。
42	_	0VCUR4#	51	下行端口4过流检测输入引脚,低电平过流。
43	_	0VCUR5#	51	下行端口 5 过流检测输入引脚,低电平过流。
44	_	0VCUR6#	51	下行端口6过流检测输入引脚,低电平过流。
45	_	OVCUR7#	51	下行端口7过流检测输入引脚,低电平过流。
41	18	PWREN1#	0	下行端口1电源输出控制引脚,低电平开启;
	10	PWREN#	•	整体模式下行端口电源输出控制引脚,低电平开启。
62	_	PWREN2#	0	下行端口2电源输出控制引脚,低电平开启。
64	_	PWREN3#	0	下行端口3电源输出控制引脚,低电平开启。
65	_	PWREN4#	0	下行端口4电源输出控制引脚,低电平开启。
66	_	PWREN5#	0	下行端口 5 电源输出控制引脚,低电平开启。
67	_	PWREN6#	0	下行端口 6 电源输出控制引脚,低电平开启。
68	_	PWREN7#	0	下行端口7电源输出控制引脚,低电平开启。
51	22	SD_D0	1/0	SDI0 接口数据引脚 0。
50	21	SD_D1	1/0	SDIO 接口数据引脚 1。
49	20	SD_D2	1/0	SDI0 接口数据引脚 2。
48	19	SD_D3	1/0	SDI0 接口数据引脚 3。
52	23	SD_SCK	0	SDIO 接口时钟引脚。
55	25	SD_CMD	0	SDIO 接口命令引脚。
1	1	MDITP	ETH	MDI模式下为 10BASE-T/100BASE-TX 的差分发送端;
2	2	MDITN	ETH	MDIX 模式下为 10BASE-T/100BASE-TX 的差分接收端。
4	4	MDIRP	ETH	MDI 模式下为 10BASE-T/100BASE-TX 的差分接收端;
5	5	MDIRN	ETH	MDIX 模式下为 10BASE-T/100BASE-TX 的差分发送端。
31	26	LED_ACT	0	ETH 端口状态指示灯 0。
_	26	SDA	0	SDA: 在复位期间为 EEPROM 双向数据信号线。
35	27	LED_LINK	0	ETH 端口状态指示灯 1。
-	27	SCL	1/0	SCL: 在复位期间为 EEPROM 时钟信号线输出。
		0502/		CFG2: 芯片功能配置引脚 2;
46	_	CFG2/	51/0	SDVCC_EN: SD 卡或 MMC 卡供电控制引脚,用于控制电
		SDVCC_EN		源的通断。
35	23	CFG1		芯片功能配置引脚 1。
31	25	CFG0	51	芯片功能配置引脚 0。
55	_	PSELF	I	PSELF: CH339W 在复位期间作为供电模式配置引脚, 悬

				空或高电平为自供电模式,低电平为总线供电模式,
				内置上拉电阻。
68	_	TDI	0	JTAG 接口的数据输出。
67	_	TD0	ı	JTAG 接口的数据输入,内置上拉电阻。
65	_	TCK	0	JTAG 接口的时钟输出。
66	-	TMS	0	JTAG 接口的模式选择。
64	-	TRST	0	JTAG 接口的复位输出。
62	_	SRST	0	JTAG 接口的系统复位输出。
43	_	SCS	0	4 线串口的片选输出。
42	_	SCK	0	4 线串口的时钟输出,别名 DCK。
45	_	MISO	I	4 线串口的数据输入,别名 SDI/DIN,内置上拉电阻。
44	_	MOSI	0	4 线串口的数据输出,别名 SDO/DOUT。
33	_	TXD	0	UART 的串行数据输出,空闲态为高电平。
32	_	RXD	51	UART 的串行数据输入,内置上拉电阻。
39	_	RTS	0	UART 的 MODEM 输出信号,请求发送,低有效。
38	_	CTS		UART 的 MODEM 输入信号,清除发送,低有效。
39		SCL/	0	SCL: 2 线串行接口的时钟输出;
39	_	SMBCLK	U	SMBCLK: SMBus 总线时钟信号线。
38		SDA/	1/0	SDA: 2 线串行接口的数据输入输出;
36	_	SMBDAT	1/0	SMBDAT: SMBus 总线数据信号线。
56	-	CC1	51/0	PD 协议通信引脚 CC1, 用于连接适配器。
57	-	CC2	51/0	PD 协议通信引脚 CC2, 用于连接适配器。
47	_	CC3	1/0	PD 协议通信引脚 CC3, 用于连接手机/电脑。
59	_	PD_CTL1	0	PD 协议通信控制引脚 1。
37	_	PD_CTL2	0	PD 协议通信控制引脚 2。
				PD 协议通信控制引脚 3。
36	_	PD_CTL3	1/0	启用上行口交换功能后,该引脚为切换控制引脚,悬
		_		空或上拉不切换,输入低电平控制切换。
)				

注 1: 引脚类型缩写解释:

USB = USB 信号引脚;

ETH = 以太网信号引脚;

I = 3.3V 信号输入;

0 = 3.3V 信号输出;

51 = 额定 3.3V 信号输入, 支持 5V 耐压;

P = 电源或地。

5、功能说明

5.1 过流检测和电源控制

5.1.1 过流检测

CH339W 支持两种过流保护模式:独立过流模式和整体过流模式,CH339F 支持整体过流模式,如表 5-1 所示。

			200703 124100 73	
芯片型号	过流配置	过流模式	过流模式 过流检测的采样引脚	
	EEPROM 非默认配置/ CFG2-0 引脚配置	细豆式油	OVCUR1#, OVCUR2#, OVCUR3#, OVCUR4#, OVCUR5#, OVCUR6#, OVCUR7#	图 5-1
	EEPROM 默认配置/ CFG2-0 引脚配置	整体过流	OVCUR1#	图 5-2
CH339F	_	整体过流	OVCUR#	图 5-2

表 5-1 过流保护控制说明

5.1.2 电源控制

CH339W 支持两种电源控制模式: 独立电源控制模式和整体电源控制模式, CH339F 支持整体电源控制模式, 如表 5-2 所示。

		·		
芯片型号	电源控制配置	电源控制	电源控制引脚	参考图
CH339W	EEPROM 非默认配置/ CFG2-0 引脚配置	独立控制	PWREN1#, PWREN2#, PWREN3#, PWREN4#, PWREN5#, PWREN6#, PWREN7# 注: 低电平开启。	图 5-1
	EEPROM 默认配置/ CFG2-0 引脚配置	整体控制	PWREN1#	图 5-2
CH339F	_	整体控制	PWREN#	图 5-2

表 5-2 电源控制说明

5.1.3 独立过流检测和独立电源控制

图 5-1 CH339W 独立过流检测和独立电源控制

上图中, V_{BUS1}-V_{BUS7}分别连接下行端口 1-7 的 V_{BUS}电源引脚。U4~U10 为 USB 限流配电开关芯片,内部集成了过流检测,用于 V_{BUS}电源分配管理。在 5V 没有外部供电的应用中,建议通过 ISET 外接电阻

将限流设置在 1A 以下甚至 500mA。U4~U10 的 FLAG 引脚是开漏输出,需要分别通过电阻上拉。CH339W 芯片的 0VCUR#引脚提供内置的弱上拉电流,所以可省掉电阻 R16、R18、R20、R22、R24、R26 和 R28。CH339 芯片的 PWRENx#引脚开启电源时输出为低电平,如果使用的电源开关芯片控制引脚是高电平有效,则需要对 PWREN 引脚进行极性配置。

5.1.4 整体过流检测和整体电源控制

图 5-2 整体过流检测和独立电源控制

U5 为 USB 限流电源开关芯片,例如 CH217 芯片或类似功能的芯片。默认配置下可以省掉 R11。C14 的容量可以根据需要选择。 $V_{\text{BUS-ALL}}$ 同时连接下行端口 1-7 的 V_{BUS} 电源引脚。U5 的限流设置值需考虑 7个下行端口及是否自供电。

5.2 复位

芯片内嵌有上电复位模块,一般情况下,无需外部提供复位信号。同时也提供了外部复位输入引脚 RESET#,该引脚内置有上拉电阻。

5.2.1 上电复位

当电源上电时,芯片内部 POR 上电复位模块会产生上电复位时序,并延时 Troor 约 25mS 以等待电源稳定。在运行过程中,当电源电压低于 Vlvr时,芯片内部 LVR 低压复位模块会产生低压复位直到电压回升,并延时以等待电源稳定。下图为上电复位过程以及低压复位过程。

5.2.2 外部复位

外部复位输入引脚 RESET#已内置约 $40k\Omega$ 上拉电阻,如果外部需要对芯片进行复位,那么可以将该引脚驱动为低电平,驱动内阻建议不大于 $1k\Omega$,复位的低电平脉宽需要大于 4uS。

5.3 I/O 功能配置

CH339 芯片的部分功能可以通过 3 种方式进行配置:内置 EEPROM、外置 EEPROM 和配置引脚。外部 EEPROM 的参数配置功能优先级高于内部 EEPROM 的参数配置功能,内部 EEPROM 的参数配置功能优先级高于引脚配置功能。配置引脚一般为复用引脚,在复位期间作为配置引脚,复位完成之后,再切换到对应的功能引脚。

CH339W 芯片内置 7 口 HUB 功能、USB 网卡功能、USB 读卡器功能、PD 功能、USB 转 JTAG 功能、USB 转 SPI 功能、USB 转 UART 功能、USB 转 GPIO 功能和 USB 转 I2C 功能,支持整体/独立过流检测和整体/独立电源控制。除 7 口 HUB、USB 扩展以太网、USB 读卡器和 PD 等主要功能外,其它功能可根据需要通过配置引脚进行配置选择,具体见下表。

Ī	配置引肽	p	功能使能/禁止说明									
PIN46	PIN35	PIN31	整体	独立	整体	独立	USB	USB	USB	USB	上行	延长
CFG2	CFG1	CFG0	过流检测	过流检测	电源控制	电源控制	转 JTAG	转 SPI	转 UART	转 12C、 SMBUS	口交 换功 能	隔离功能
0	0	0					保	留				
0	0	1	√	×	√	×	√	√	√	√	1	×
0	1	0	√	×	√	×	√	√	√	√	X	√
0	1	1	×	√	×	√	×	×	×	√	X	×
1	0	0	X	1	√	X	1	×	×	√	X	×
1	0	1	√	×	×	√	×	√	√	√	X	×
1	1	0	1	X	√	X	1	1	(√)	×	X	×
1	1	1	√	×	√	×	√	√	√	√	X	×

表 5-3 CH339W 主要配置引脚说明

注 2: $\sqrt{8}$ 表示该功能使能, \times 表示该功能禁止,($\sqrt{8}$)表示 USB 转串口功能支持硬件流控功能。 注 3: 启用上行口交换功能后,PD_CTL3 引脚作为切换控制引脚,悬空或上拉不切换,输入低电平控制切换。

CH339F 芯片内置 4 口 HUB 功能、USB 读卡器功能和 USB 百兆网卡功能,支持整体过流检测和整体电源控制。其中 USB 读卡器功能、USB 扩展以太网功能和上行口交换功能可通过配置引脚进行配置。

配置	引脚	J	功能使能/禁止说時	明
PIN23	PIN25	USB 读卡器	USB 转以太网	延长/隔离
CFG1	CFG0	功能	功能	功能
0	0	×	√	√
0	1	√	×	×
1	0	×	√	×
1	1	√	√	×

表 5-4 CH339F 配置引脚说明

5.4 EEPROM 配置接口

CH339F 提供两线 I 2C 接口与外部 EEPROM 存储芯片通信, EEPROM 芯片地址为 0, EEPROM 中存储有自定义的厂商 ID、产品 ID、下行端口个数、下行端口的设备不可移除特性、USB 字符串描述符和功能配置等信息。

图 5-4 外部 EEPROM 连接示意图

CH339 内置信息存储器,针对行业特殊需求可以代替外部 EEPROM 批量定制厂商或产品信息及配置,例如设置下行端口个数,设置下行端口的设备不可移除特性等。

5.5 EEPROM 配置

CH339 支持从外部或内部 EEPROM 中加载厂商识别码 VID、产品识别码 PID、USB 字符串描述符和功能配置等配置信息,如果 EEPROM 中的信息无效,则自动装载默认配置信息。表 5-5 为 EEPROM 具体配置信息描述。

表 5-5 内置/外置 EEPROM 配置信息

偏移地址	参数简称	参数说明	默认值
00h	VID_L	厂商识别码 VID 的低字节。	86h
01h	VID_H	厂商识别码 VID 的高字节。	1Ah
02h	PID_L	产品识别码 PID 的低字节,默认为 9Fh。	9Fh
03h	PID_H	产品识别码 PID 的高字节。	80h
04h	bcdDevice L	bcdDevice 低字节,用于指示芯片封装型号;	跟随
0411	pcdbev1ce_L	固定,不可修改。	型号
05h	bcdDevice H	bcdDevice 高字节,用于指示芯片版本;	跟随
0311	bcapevice_ii	固定,不可修改。	型号
06h	Fun_Cfg1	功能性配置字节 1; Bit7: 供电模式选择;	跟随型号
07h	Fun_Cfg2	功能性配置字节 2; Bit7: 保留; Bit6: 保留; Bit5: 保留;	20h

		D:+4 /只好	
		Bit4: 保留;	
		Bit3: HUB 是否是 Compound Device;	
		0: 不是;	
		1: 是;	
		Bit2-0: 保留。	
		功能性配置字节3;	
		Bit7-4: 保留;	
		Bit3: 端口重映射功能控制;	
		0: 禁止(默认);	
08h	Fun_Cfg3	1: 使能;	00h
		Bit2-1: 保留;	
		Bit0: 字符串描述符使能控制;	
		0: 禁止(默认);	
		1. 使能。	
		下行端口设备是否可移除控制;	
		Bit7-1: 下行端口 7-1 的设备是否可移除	
09h	Dev_	0: 可移除(默认);	跟随
0711	Removable	1: 不可移除;	型号
		Bit0: 保留, 必须为 0。	
		自供电模式下端口禁止;	
		,	
0.41	D . D' . O	Bit7-1: 下行端口 7-1 是否禁止	001
0 A h	Port_Dis_Sp	0: 使能(默认);	00h
		1: 禁止;	
		Bit0: 保留, 必须为 0。	
		总线供电模式下端口禁止;	
		Bit7-1: 下行端口 7-1 是否禁止;	
0Bh	Port_Dis_Bp	0: 使能(默认);	00h
		1: 禁止;	
		Bit0: 保留, 必须为 0。	
0Ch	MaxPwr_Sp	自供电模式下最大工作电流,单位为 2mA。	01h
0Dh	MaxPwr_Bp	总线供电模式下最大工作电流,单位为 2mA。	64h
0Eh	HubCurrent_Sp	自供电模式下 HUB 要求的最大电流。	01h
0Fh	HubCurrent_Bp	总线供电模式下 HUB 要求的最大电流。	64h
10h	Pwr_OnTime	下行端口上电到电源有效的延迟时间。	32h
11h	Language ID_H	语言 ID 高字节。	00h
12h	Language ID_L	语言 ID 低字节。	00h
13h	Vendor_StrLen	厂商字符串描述符长度。	00h
14h	Product StrLen	产品字符串描述符长度。	00h
15h	SN StrLen	序列号字符串描述符长度。	00h
	_	厂商字符串描述符;	
16h-53h	Vendor String	Unicode 码格式的厂商字符串描述符。	00h
		产品字符串描述符;	
54h-91h	Product String	Unicode 码格式的产品字符串描述符。	00h
	Serial Number	序列号字符串描述符;	
92h-CFh		抒列亏子付申捆还付; Unicode 码格式的序列号字符串描述符。	00h
	String	Unicode 饲格式的序列专子付中佃处付。	Q日 心去
D0h	PortNum	下行端口个数,有效范围: 1-7。	跟随 型号
		USB 版本低字节;	
D1h	bcdUSB_L	bcdUSB_L = 0x00, USB2.00;	00h
İ	_	bcdUSB_L = 0x01, USB2.01;	

		bcdUSB_L=0x10, USB2.10。	
		功能性配置字节 4;	
		Bit7-2: 保留, 必须写 0;	
		Bit1: 强制下行端口为全速模式;	
		0: 高速模式(默认);	
D2h	Fun_Cfg4	1: 全速模式;	00h
		BitO: 指示灯功能使能配置;	
		0: 禁止(默认);	
		1: 使能。	
		」 :	
		切能性配置子 10; Bit7: LED 指示灯极性配置;	
		,	
		0: 低电平有效(默认);	
		1: 高电平有效;	
501	- 05 -	Bit6: 端口过流检测极性配置;	001
D3h	Fun_Cfg5	0: 低电平有效(默认);	00h
		1: 高电平有效;	
		Bit5: 端口电源控制极性配置;	
		0: 低电平有效(默认);	
		1: 高电平有效;	
		Bit4-0: 保留。	
D4-FAh	Reserved	保留。	00h
		下行端口 1−2 重映射配置;	
		Bit7-4: 物理端口2重映射;	
		0000:物理端口2禁止重映射;	
		0001:物理端口2映射为逻辑端口1;	
		0010:物理端口2映射为逻辑端口2;	
		0011: 物理端口2映射为逻辑端口3;	
		0100:物理端口2映射为逻辑端口4;	
		0101: 物理端口2映射为逻辑端口5;	
		0110: 物理端口2映射为逻辑端口6;	
		0111: 物理端口2映射为逻辑端口7;	
FBh	Port_Remap12	1000-1111: 无效;	00h
		Bit3-0: 物理端口 1 重映射;	
		0000:物理端口1禁止重映射;	
		0001:物理端口1映射为逻辑端口1;	
		0010:物理端口1映射为逻辑端口2;	
		0011: 物理端口1映射为逻辑端口3;	
		0100: 物理端口 1 映射为逻辑端口 4;	
		0101: 物理端口 1 映射为逻辑端口 5;	
		0110: 物理端口 1 映射为逻辑端口 6;	
		0111: 物理端口 1 映射为逻辑端口 7;	
		1000-1111: 无效。	
		下行端口 3-4 重映射配置:	
		Bit7-4: 物理端口 4 重映射;	
		0000: 物理端口 4 禁止重映射;	
		0001: 物理端口 4 映射为逻辑端口 1;	
FCh	Port_Remap34	0010: 物理端口 4 映射为逻辑端口 2;	00h
		0010: 物理编口 4 映射为逻辑端口 2; 0011: 物理端口 4 映射为逻辑端口 3;	
		0100: 物理端口 4 映射为逻辑端口 4;	
		,	
		0101:物理端口4映射为逻辑端口5;	

-	1		
		0110:物理端口4映射为逻辑端口6;	
		0111:物理端口4映射为逻辑端口7;	
		1000-1111: 无效;	
		Bit3-0: 物理端口3重映射;	
		0000:物理端口3禁止重映射;	
		0001:物理端口3映射为逻辑端口1;	
		0010: 物理端口3映射为逻辑端口2;	
		0011:物理端口3映射为逻辑端口3;	
		0100:物理端口3映射为逻辑端口4;	
		0101:物理端口3映射为逻辑端口5;	
		0110:物理端口3映射为逻辑端口6;	
		0111:物理端口3映射为逻辑端口7;	
		1000-1111: 无效。	
		下行端口 5-6 重映射配置:	
1		Bit7-4: 物理端口 6 重映射;	
1		0000: 物理端口 6 禁止重映射;	
		0001: 物理端口 6 映射为逻辑端口 1;	
1		0010: 物理端口 6 映射为逻辑端口 2;	
		0011: 物理端口 6 映射为逻辑端口 3;	
	Port_Remap56	0100: 物理端口 6 映射为逻辑端口 4;	
		0101: 物理端口 6 映射为逻辑端口 5;	
		0110: 物理端口 6 映射为逻辑端口 6;	
		0111: 物理端口 6 映射为逻辑端口 7;	
FDh		1000-1111: 无效;	00h
''		Bit3-0: 物理端口5重映射;	0011
		0000: 物理端口 5 禁止重映射;	
		0001: 物理端口 5 映射为逻辑端口 1:	
		0010: 物理端口 5 映射为逻辑端口 2;	
		0011: 物理端口 5 映射为逻辑端口 3;	
		0100: 物理端口 5 映射为逻辑端口 4;	
		0100: 初建端口 5 映射为逻辑端口 5;	
1		0110: 物理端口 5 映射为逻辑端口 6;	
1		0110: 物理端口 5 映射 7 逻辑端口 0; 0111: 物理端口 5 映射 为逻辑端口 7;	
		1000-1111: 无效。	
		下行端口 7 重映射配置;	
	Port_Remap7	ト11端ロ/単次別癿直; Bit7-4: 物理端口7重映射;	
FEh		0000: 物理端口 7 禁止重映射:	
		0001: 物理端口 7 映射为逻辑端口 1;	
		0010: 物理端口 7 映射为逻辑端口 2;	
		0011: 物理端口 7 映射为逻辑端口 3;	
		0100: 物理端口 7 映射为逻辑端口 4;	00h
		0100: 物理端口 7 映射为逻辑端口 5;	
1		0110: 物理端口 7 映射为逻辑端口 6;	
		0111: 物理端口 7 映射为逻辑端口 7;	
		1000-1111: 无效;	
	Pagaryad		00h
FFh	Reserved	保留。	uun

5.6 总线供电与自供电

CH339 支持 USB 总线供电模式和自供电模式。总线供电来自 USB 上行端口,供电能力为 500mA 或 900mA、1. 5A 等多种标准,USB 线材内阻损耗和 HUB 自身消耗会降低对下行端口的供电能力,下行端口电压可能偏低。自供电通常来自外部电源端口,取决于外部电源供电能力。

由于自供电与总线供电的电压难以完全相等,所以 HUB 需要避免两者直接短接而产生大电流。另外,当 USB 上行端口断电后, HUB 也要避免自供电的外部电源向 USB 总线及 USB 主机倒灌电流。

5.6.1 双向隔离示意

二极管 D1 和 D2 用于双向隔离 V_{BUS} 总线电源和 P6 端口外部供电,防止两个电源相互倒灌,采用大功率的肖特基二极管以降低自身压降,下行端口 V_{BUS} 得到 4. 7V 电压甚至更低,仅为示意。

图 5-5 肖特基二极管双向隔离 V_{BUS} 和外部供电的示意图

5.6.2 实用的单隔离方案

理想二极管的功能是低压降单向导通, U3 用于防止 P6 端口的外部电源向上行端口 V_{BUS} 倒灌, 在 500mA 电流时, U3 的压降约为肖特基二极管压降的三分之一,下行端口 V_{BUS} 可以得到 4. 9V 电压。

5V P6 Self-Power/External-Input **VBUS** U3 CH213K VO-U5 CH217 C11 GND VIN U1 GND +5V B +5V $DM1^{\sim}7$ $DP1^{\sim}7$ UD-DMU UD-DPU UD+ UD+ VDD33 GND GND VDD33 P5 P1 P7 **C8** C2CH339 Upstream Downstream 10u

图 5-6 理想二极管隔离 Ⅷ和外部供电的示意图

5.7 USB 转以太网功能

CH339 芯片集成 USB 转百兆以太网功能,集成的 10M/100M 快速以太网 MAC 控制器和百兆收发器 PHY,兼容 IEEE 802.3 10Base-T、100Base-TX 协议标准。支持自动协商和 Auto-MDIX,提供在 CAT5 网线和 CAT6 网线上传输所需的必要功能。内置 50 Ω 阻抗匹配电阻,外围电路精简。

ETH 相关功能引脚如下:

引脚名称	类型	功能描述		
MDITP	ETH	MDI模式下为 10BASE-T/100BASE-TX 的差分发送端		
MDITN	ETH	MDIX 模式下为 10BASE-T/100BASE-TX 的差分接收端		
MDIRP	ETH	MDI模式下为 10BASE-T/100BASE-TX 的差分接收端		
MDIRN	ETH	MDIX 模式下为 10BASE-T/100BASE-TX 的差分发送端		
LED_ACT	0	ETH 端口状态指示灯 0		
LED_LINK	0	ETH 端口状态指示灯 1		

表 5-6 以太网功能脚描述

以太网控制器支持 IPv4/IPv6 封包校验,支持 IPv4 TCP/UDP/HEAD 和 IPv6 TCP/UDP 封包校验的生成和检查。支持符合 IEEE 802. 3x 标准的流量控制和半双工冲突压力回退流量控制。支持符合 IEEE 802. 3Q 标准的 VLAN 标记。支持魔术包唤醒,在休眠模式下可选网络低功耗,具有自动电源管理功能,可以节省在空载或者轻载下的功耗,支持 10Base-T 节能模式。

芯片默认支持 CDC-ECM 模式,定制固件可以支持厂商驱动程序和 CDC-NCM。固件将根据用户的配置要求和 PC 上位机下发的命令,选择并启用相应的模式。支持通过内置 EEPROM 配置相关参数,包括 MAC 地址,MAC 过滤配置、USB 厂商 ID、产品 ID、USB 电源配置和厂商自定义字符串等信息。

5.8 USB 转高速读卡器功能

CH339 芯片集成 USB 转高速读卡器功能,支持 SD 卡和 MMC 卡。实现将 SD 卡或 MMC 卡等存储介质转换成标准的 USB 大容量存储类设备。

相关功能引脚如下:

引脚名称	类型	功能描述
SD_D0	1/0	SDI0 接口数据引脚 0
SD_D1	1/0	SDI0 接口数据引脚 1
SD_D2	1/0	SD10 接口数据引脚 2
SD_D3	1/0	SD10 接口数据引脚 3
SD_SCK	0	SDIO 接口时钟引脚
SD_CMD	0	SDIO 接口命令引脚

表 5-7 读卡器功能脚描述

5.9 USB 转常见接口功能

CH339W 芯片集成 USB 转 SPI/JTAG/UART/I2C 等接口功能。各个接口功能的使能或禁止可根据需要通过配置引脚 CFG2-0 进行配置。

5.9.1 USB 转 SPI 接口

4 线 SPI 同步串行接口工作在 Host/Master 主机模式,包括 SCSx、SCK(CLK)、MISO(SDI/DIN)和 MOSI(SDO/DOUT) 四根信号线。支持 8 位数据结构,支持 MSB 和 LSB 传输、支持 SPI 模式 0/1/2/3、支持传输频率配置等。内置硬件 DMA,可进行批量数据的快速发送和读取。通过计算机 API 配合,可灵活操作 4 线接口的 FLASH、MCU、传感器等器件。

5.9.2 USB 转 JTAG 接口

JTAG 接口工作在 Host/Master 主机模式,包括 TMS、TCK、TDI、TDO、TRST 和 SRST 六根信号线,TRST 和 SRST 为可选信号线。支持自定义协议的快速模式和 bit-bang 模式,传输速率可达 30Mbit/S。提供计算机端的 USB 高速驱动和 USB 转 JTAG TAP 函数库,支持二次开发,用于构建自定义的 USB 转高速 JTAG 调试器、FPGA 下载器、CPU 编程器等产品。

5.9.3 USB 转 UART 接口

UART接口工作在全双工模式,包括TXD、RXD、CTS和RTS四根信号线。串口输入空闲时,RXD为高电平,串口输出空闲时,TXD为高电平。

串行数据包括 1 个低电平起始位、8 个数据位、1 个/2 个高电平停止位,支持无校验/奇校验/偶校验。支持常用通讯波特率: 2400、3600、4800、9600、14400、19200、28800、33600、38400、56000、57600、76800、115200、128000、153600、230400、460800、921600、1M、1.5M、2M、3M、4M、5M、6M 等。CH339W 芯片的异步串口支持 CTS 和 RTS 硬件自动流控制,默认不启用,可以通过 VCP 厂商驱动程序控制启用。如果启用,那么仅在检测到 CTS 引脚输入有效(低电平有效)时串口才继续发送下一包数据,否则暂停串口发送;当接收缓冲区空时,串口会自动有效 RTS 引脚(低电平有效),直到接收缓冲区的数据较满时,串口才自动无效 RTS 引脚,并在缓冲区空时再次有效 RTS 引脚。使用硬件自动速率控制,可以将己方的 CTS 引脚接到对方的 RTS 引脚,并将己方的 RTS 引脚接到对方的 CTS 引脚。

在计算机端的 Windows 操作系统下,安装高速率的 VCP 厂商驱动程序后,能够仿真标准串口,所以绝大部分串口应用程序完全兼容,通常无需任何修改。USB 转 UART 接口功能可以用于升级原串口外围设备,或者通过 USB 总线为计算机增加额外串口。通过外加电平转换器件,可以进一步提供 RS232、RS485、RS422 等接口。

5.9.4 USB 转 I2C/SMBus 接口

I2C/SMBus 接口工作在 Host/Master 主机模式,包括 SCL 和 SDA 两根信号线。SCL 用于单向输出同步时钟,开漏输出,SDA 用于双向数据输入输出,开漏输出及输入。

I2C 接口的基本操作元素包括:起始位、停止位、位输出、位输入。I2C 接口支持 5 种传输速度,通过计算机 API 配合,可灵活操作 2 线接口的 A/D、D/A、EEPROM 和传感器等器件。

6、参数

6.1 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
TJ	结温度范围	-40	100	Ŋ
Ts	储存时的环境温度	− 55	150	Ĵ
V_{DD33}	工作电源电压(Vposs 引脚接电源,GND 引脚接地)	-0.4	4. 0	٧
V ₁₀₃₃	引脚电源电压(V ₁₀₃₃ 引脚接电源,GND 引脚接地)	-0.4	4. 0	٧
V 51	5V 耐压输入引脚上的电压	-0.4	5. 3	٧
$V_{\sf USB}$	USB 信号引脚上的电压	-0.4	V _{DD33} +0. 4	٧
$V_{ ext{GPIO}}$	其它(3.3V)输入或者输出引脚上的电压	-0.4	V ₁₀₃₃ +0. 4	٧
V _{ESDUSB}	USB 信号引脚上的 HBM 人体模型 ESD 耐压	6K		٧
V _{ESDIO}	其他引脚上的 HBM 人体模型 ESD 耐压	2K		V

6.2 电气参数 (测试条件: T_A = 25°C, V_{DD33} = 3.3V)

名称	参数说明			最小值	典型值	最大值	单位
V_{DD33}	外供 3. 3V 电压@V _{DD33}			3. 2	3. 3	3. 4	٧
V ₁₀₃₃	引脚电源电压				V _{DD33}		٧
	工作电流	上行高速	7 个下行高速 +ETH+SDIO+USB 转接		200		mA
		上行高速	4 个下行高速 +ETH+SD10		156		mA
		上行高速	4 个下行高速 +ETH		154		mA
I _{cc}		上行高速	4 个下行高速 +SDI0		106		mA
		上行高速	7 个下行高速		140		mA
		上行高速	4 个下行高速		100		mA
		上行高速	1 个下行高速		65		mA
		上行高速	7 个下行全速		50		mA
		上行全速	7 个下行全速		34		mA
		上行高速 上行全速	下行无设备 含 1. 5KΩ上拉		0. 5		mA
l _{SLP}	深度睡眠电源电流(不含 1.5KΩ上拉) 或:自身睡眠电源电流(不接 USB 主机)				0. 28		mA
,,	低电平输入电压 标准 1/0 引脚 51 引脚		标准 I/0 引脚	0		0.8	٧
V _{IL}			51 引脚	0		0.8	٧
V _{IH}	高电平输入电压 标准 1/0 引脚 51 引脚		标准 I/0 引脚	2. 0		V ₁₀₃₃	٧
			2. 0		5. 0	٧	
VILRST	RESET#引脚的低电平输入电压			0		0.8	٧
V _{oL}	低电平输出电压 灌电流 5mA			0. 4	0. 6	٧	
V _{OH}	高电平输出电压 源电流 5mA		V ₁₀₃₃ -0.6	V ₁₀₃₃ -0. 4		٧	
R _{PU}	上拉等效电阻			30	40	55	kΩ
$R_{ t PD}$	下拉等效电阻			30	40	55	kΩ
V_{lvr}	电源低压复位的电压门限			2. 4	2. 9	3. 2	V

7、封装信息

说明:尺寸标注的单位是 mm (毫米)。 引脚中心间距是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm。

7.1 QFN68

7. 2 QFN32

8、应用

8.1 HUB+USB 读卡器+USB 网卡

图 8-1 CH339F 应用参考电路图

上图中 P1-P4 为 HUB 的 4 个下行 USB 接口, P5 为 HUB 的上行 USB 接口, P6 为外部供电接口, P7 为内置网络变压器的 RJ45 接口, P8 为 SD 卡接口。

图中 U5 是可选的 EEPROM, CH339 的以太网 LED 引脚兼用于在复位期间连接 EEPROM。

U2 为 5V 转 3. 3V 的线性稳压芯片 (LD0),尽量选择宽范围输入、低压差的型号,建议不低于 500mA 负载能力且有散热机制,以便保证输出能稳定在 3. 3V。U3 是低压降理想二极管 CH213,具有简单的过流和短路保护功能,且保护响应更快,用于避免 P6 外部电源向上行端口 P5 的 V_{BUS_IN} 倒灌,尤其是上行端口例如计算机关机而 P6 外部仍然供电时的情况。理论上 U3 可以换成肖特基二极管,但需要选择自身压降较低的器件,否则会降低下行端口 VBUS 的输出电压,在 300mA 负载电流时,肖特基二极管的压降约 0. 3V,理想二极管的压降约 0. 05V。

当前应用中 HUB 所有端口的电源为整体电源控制和整体过流检测, U4 为支持过流保护的 USB 限流电源开关芯片 CH217K,相对于保险电阻,保护响应更快,效果更好。注意,保险电阻和 USB 电源

开关芯片可能不支持高温。图中 R14 可根据电源供电能力设置限流门限,USB 限流电源开关芯片的 FLAG#引脚可以产生过流或过温报警信号通知 HUB 控制器及计算机,CH339 芯片的 0VCUR#引脚已内置上拉电阻。

在下行端口 USB 设备带电热插拔的瞬间, 动态负载可能使 V_{BUS} 和 5V 电压瞬时跌落, 进而可能产生 LVR 低压复位, 从而出现整个 HUB 断开再连接的现象。改进方法: ①在规范允许范围内加大 5V 电源的电解电容(加大图示 C13 容量), 缓解跌落; ②加大 HUB 芯片电源输入端的电容(加大图示 C10 容量, 例如 22uF); ③增强 5V 供电能力或改为自供电, 另外, 提升 USB 线材质量也会改善供电能力。

设计 PCB 时需考虑实际工作电流承载能力, V_{BUS_IN}、5V、V_{BUS_OUT}和 P6 及各端口 GND 走线路径的 PCB 尽可能宽,如有过孔则建议多个并联。USB 口的 D+和 D-信号线按高速 USB 规范贴近平行布线,保证特性阻抗,尽量在两侧提供地线或者覆铜,减少来自外界的信号干扰。

建议 5V 加过压保护器件, 建议所有 USB 信号加 ESD 保护器件, 例如 CH412K, 其 VCC 应接 3.3V。

8.2 PD HUB+USB 读卡器+USB 网卡+USB 转多种接口

下图中 P1-P7 为 HUB 的 7 个下行 USB 接口, P8 为 HUB 的上行 USB 接口, P9 为 Type-C 外部供电接口, P10 为 Type-C 上行接口, P11 为 SD 卡接口, P12 为内置网络变压器的 RJ45 接口, P13 为 USB 转 I2C 接口, P14 为 USB 转 JTAG 接口, P15 为 USB 转 UART 和 SPI 接口, P17 为 DP 视频信号接口。

CH211 是一款内置了高压开关和升压模块的 Type-C/PD 高压接口芯片,配合 CH339W 芯片可以实现支持高压的 PD 功能。CH211 芯片的详细功能可以查看对应的芯片手册,CH339W 的 PD 部分的功能已由芯片本身实现,用户无需进行任何开发。PD 支持 USB PD2.0/3.0 协议、支持最大 100W 对外输出、支持 USB Type-C 正反插检测与自动切换、支持 VDM 协商使得设备进入 Alternate Mode 模式输出 DP信号等功能。

图 8-2 CH339W 应用参考电路图

