Homework 4: Theory Questions

Julian Lehrer

Question 1. Lemma: $A^n = QU^nQ^*$ where U is upper triangular and Q is unitary. Proof (induction on n). For n=1, we have that $A=QUQ^*$ by the Schur decomposition. Then suppose $A^n=QU^nQ^*$, and show $A^{n+1}=QU^{n+1}Q^*$. We have that $A^{n+1}=AA^n=(QUQ^*)(QU^nQ^*)=QUQ^*QU^nQ^*=QUIU^nQ^*=QU^{n+1}Q^*$, as desired. Since A^n is similar to QU^nQ^* , we have that the spectrum of A^n is the same as the spectrum of U^n .

Proof (\Longrightarrow). Consider $||A||_F$, the Frobenius norm given by $\sqrt{\sum_i \sum_j |a_{ij}|}$. If $\sqrt{\sum_i \sum_j |a_{ij}^n|} \longrightarrow 0$ as $n \longrightarrow \infty$, then we must have that $|a_{ij}| < 0$, since each entry of the matrix must go to zero. Then since $||A^n|| \longrightarrow 0 \iff ||U^n|| \longrightarrow 0$ as $n \longrightarrow \infty$, and the diagonals of U contain the eigenvalues of A, we have by necessity that p(A) < 1.

Proof (\Leftarrow). Suppose that p(A) < 1. We prove the following lemma: $\|A^nx\|/\|x\| = p(A)^n$ by induction on n. Suppose $\lambda = p(A)$ and we have that $Ax = \lambda x$. Then $Ax/x = \lambda$, so $\|Ax\| = \|\lambda x\| = \lambda \|x\|$, therefore $\frac{\|Ax\|}{\|x\|}$.

Question 2. Lemma: The eigenvalues of AB are the same as the eigenvalues of BA. Proof: Let $(AB)x = \lambda x$. Then $ABx = BABx = BA(Bx) = \lambda(Bx)$, so λ is an eigenvalue of BA with eigenvalue y = Bx. Now,

Question 3. First, note that since $detA = detA^T$, we have that $det(A - \lambda I) = det((A - \lambda I)^T) = det(A^T - \lambda I)$, so the eigenvalues of A and A^T are the same. Therefore, the Gersgorin circles defined by the rows of A^T (columns of A) contain all eigenvalues of A. Equivalently, the theorem holds with column sums.

Question 4. First, consider the absolute row sums given by $r_{1,2,3,4} = 0.8, 0.1, 0.4, 0.1$. Then since we showed the Gershgorin discs can also be found by considering the absolute column sums, consider the column sums of columns 2 and 4, given by $c_{2,4} = 0.1, 0.1$. Therefore, the radius of each circle is 0.1. Additionally, since k + 0.1 < (k + 1) - 0.1 the circles are disjoint, and we can conclude that there is exactly one eigenvalue in |z - k| < 0.1 for k = 1, 2, 3, 4.

Question 5. Lemma: If $Ay = \lambda y$, then $A^n y = \lambda^n y$. Proof (by induction on n). n = 1 is handled in the definition. Then suppose $A^n y = \lambda^n y$ and show that $A^{n+1}y = \lambda^{n+1}y$. Then $A^{n+1} = AA^n = A(\lambda^n y) = \lambda^n (Ay) = \lambda^n \lambda = \lambda^{n+1}$. Then

we have that $y^T A^k y = y^T y \lambda^k$, so

$$\lim_{k\longrightarrow\infty}\frac{y^TA^{k+1}y}{y^TA^ky}=\frac{y^Ty\lambda^{k+1}}{y^Ty\lambda^k}\lambda$$

Is an eigenvalue of A.

Question 6. Lemma: $p(A) \leq ||A||$. Proof: We consider the proof with the 2-norm, since all norms are equivalent in a finite vector space. Let $p(A) = |\lambda|$, and let the corresponding eigenvector be x with ||x|| = 1. Then $||Ax|| = ||\lambda x|| = |\lambda|$. Now consider an arbitary unit vector u. By the Cauchy-Schwartz inequality, we have that $||Au|| \leq ||A|| ||u|| = ||A||$, therefore $||A|| \geq ||Au||$ for all vectors u. In particular, $||A|| \geq ||Ax|| = |\lambda|$, so $p(A) \leq ||A||$.

Now, consider the fact that since A has nonnegative entries, $\sum_{j=1}^{m} a_{ij} = 1 = ||A||_1$, the 1-norm of A. Therefore, p(A) < 1, or equivalently, no eigenvalue has an absolute value greater than one.

Question 7.

- a. Consider the SVD of A to be $A = U\Sigma V^T$. Then since $A^T = V\Sigma U^T$, and $A^TA = V\Sigma^2 V^T = AA^T = U\Sigma^2 U^T$, we have that U = T. Let σ_i be the ith singular value of A. Since $\sigma_i = \sqrt{\lambda_i(A^TA)}$, $A = U\Sigma U^T$ and $A^TA = U\Sigma^2 U^T$ by virtue of A being normal, $\sigma_i = \sqrt{\sigma_i^2} = |\lambda_i|$.
- b. Since $||A||_2 = \sqrt{p(A^T A)} = \sigma_{\max}(A)$ by definition, and we just showed that $\sigma_i = |\lambda_i|$, we have that $||A||_2 = |\lambda_i|$.