Week 7 Lecture 0

Jared Brannan

October 11, 2021

1 Administrative drivel

2 Anatomy and Physiology

2.1 Muscles

- The ends of the sarcomeres are reffered to sometimes as zlines
- Contraction
 - Actin-myosin cycle:
 - * Myosin binds to actin
 - * myosin changes position, pulling on actin
 - * myosin releases actin, ATP binds at this final step
 - repeating this cycle shortens the sarcomere.
 - If ATP is absent, myosin cannot release
 - rigor mortis sest in because after death ATP dwindles and eventually runs out
 - * myosin is left permanently bound to the actin
 - this is the same thing as a cramp!
 - Nerve cells stimulate muscle contraction:
 - * Nerve cells release neurotransmitter (chem. signal)
 - * It Binds to receptors in the plasma membrane of the nuscle cell (fiber)
 - * Causes increases in calcium ions (CA^{2+}) inside the cell (stored in the smooth ER/ sarcoplasmic reticulum)
 - · each actin is normally covered by an accessory protien, but the ions open up the actin for binding
 - * Calcium causes shift in protein (tropomyosin) that blocks myosin from binding to actin
 - * Myosin can interact with actin \rightarrow contraction
 - Both CA^{2+} and ATP are involved

• Relaxation

- Calcium is pumped back into the SER
- w/o CA++, cacium regulated protein blocks myosin binding site on actin
- myosin cannoot bind any more / no more contraction
- Muscle relaxation occurs as antagonistic muscle dooes it's job via the tendons, pulls the muscle back to the relaxed length

• To recap:

- Basic structure: sarcomere
- made of thin filament of actin, thick of myocin with movable heads
- nervous system sends a nerotransmitter, traveling to a T tubiul, down SER, leading to the relase of CA++
- the CA++ acts on the accessory protiens
 - * 2 kinds: troponin and tropoomyosin (former pulls on the latter to expose the binding sites on the actin when exposed to CA++)
- At the sarcomere, myosin heads 'walk' along actin filament
 - * myosin binds to actin
 - * ATP is broken, releasing the phosphate, moving the myosin head to the next binding site
- 20 cm of contraction is spread across 100,000 sarcomeres
- Different types of muscle fiber: slow twitch and fast twitch
 - Almost all muscles have both, and one might dominate the other depending on use and genes, etc
 - slow twitch develops with arobic, fast twitch with quick motions
 - slow twitch has high endurance relative to fast twitch
 - slow twitch
 - * lots of blood supply
 - * lots of mitocondria
 - * lots of myoglobin (binds to oxygen, much like hemoglobin)
 - * less gglycogen
 - * more stamina
 - * less diameter
 - * less tension
 - * Aerobic requires high O_2 delivery
 - O_2 present
 - · Glucose \rightarrow pyruvic acid + 2ATP
 - · pyruvic acid $\rightarrow CO_2 + H_2O + 34$ ATP
 - * most of what we do is slow twitch
 - * small movments, sitting upriight, endurance
 - fast twitch
 - * Lower blood supply
 - * fewer mitochondria
 - * Less myoglobin
 - * Lots of glycogen
 - * less stamina
 - * bigger diameter
 - * more tension
 - $\ast\,$ anaerobic does not require high O_2
 - O_2 absent
 - Glucose \rightarrow pyruvic acid + 2 ATP
 - pyruvic acid \rightarrow Lactic acid
 - · (lactic acid is eventually split into pyruvic acid and put back through aerobic cycle)
 - * breif powerful movment

- **Hypertorphy** is due to increase in number of myofibrils, but not the number of cells (think body builders)
 - Each muscle cell has multiple myofibrils
- Atrophy loss of muscle mass is a normal part of aging, and is impacted by nutritian, exercise. Also occurs if a limb is inactive for several months
- Anabolic steroids:
 - Testosterone-like chemicals, stimulates actin and myosin production
 - cheating, long term side effects
- Clicker Q: calcium does NOT stimulate ATP breakdown
- end of play...

3 Cardiovascular system

3.1 Heart

- In the thoracic cavity and protected by the ribs
- has 4 pumps that push blood through the pulmonary and systemic circuits
- Cardo == heart
- vasular == blood vessels
- Functions of cardio system:
 - blood picks up all of the waste from cells/tissues (e.g. CO_2)
 - blood caries things to the cells/tissues (e.g. O_2 , glucose)
 - Transport immune cells
 - causees clotting
 - trasport hormones
 - transports water
 - etc.
- What color is blood?
 - books show blood as red inn the arteries, and blue in the veins
 - blood is not blue
 - oxygenated blood is bright red, deoxygenated blood is a little darker red