```
10 Let ai = no. of games played by the end of the i-th day
  Then a_{i+1} - a_i \ge 1 because at least one game
  was played on the i-th day. Also a_{77} \leq 12.11 = 132 because each week at most 12 games are played.
    And for each k = 1, 2, ..., 21
     1+k \leq a_1+k < a_2+k < \cdots < a_{77}+k \leq 132+k \leq 153
```

Now look at the sequence

 $a_1, a_2, a_3, \dots, a_{77}, a_{1}+k, a_2+k, a_3+k, \dots, a_{77}+k$ This sequence has 154 terms each of which is between 1 & 153 (Inclusive). So by the P.H.P, two of the terms must be equal. Since a,..., a77 are all distinct & a,+k,..., an+k are all distinct we must have

 $a_i = a_j + k$ for some $1 \le i, j \le 77$ So $a_i - a_j = k$ and hence on the (j+1)-tk, (j+1)-th, -tk, j+(i-j)-th days a total of k games were played.

No, If k=zz, the sequence

a, az, az, ---, azz , a, +k, ---, azz +k will have 154 terms each of which is between 1 & 154 (inclusive). And we would not be able to conclude that two terms must be equal. By using a more sophisticated proof and the fact that at most 12 games are played each week we can however, find a succession of days in which 22 games are played.

 $a_i = 2^{b_i}.c$ & $a_j = 2^{e_j}.c$ and hence the smaller of a; & a; will divide the larger of ai & aj.

4. Let S' be any subset of {1,2,..., 2n} with n+1 elements. Make n boxes which will accept only the integers shown below the boxes

Now if we place the n+1 integers in 5 into these n boxes, some box (will get) must get two. So S will always have 2 integers which differ by 1.

which differ by at most (k-1).

7. Let $S = \{a_1, a_2, a_3, \dots, a_{52}\}$ be the set of the 52 given integers. Classify these integers into two two types according to a_i (mod 100).

Type I: those with $0 \leqslant a_i$ (mod 100) $\leqslant 50$ Type I: those with $5 \leqslant a_i$ (mod 100) $\leqslant 99$

Now define a function $f: S \rightarrow \{0,1,2,3,\cdots,50\}$ by $f(a_i) = \{a_i \pmod{100}\}$ if a_i is type I \\
\[100 - a_i \text{(mod 100)} \quad if a_i \text{ is type } I \\
\]
Since S' has 52 integers and $\{0,1,2,\cdots,50\}$ has only 51 elements, we must have $f(a_i) = f(a_j)$ for some $1 \le i < j \le 52$.

Now if a_i & a_j were both of type I or both of type I, then $a_i-a_j=0$ (mod 100) and so a_i-a_j will be divisible by 100.

And if a_i & a_j were of different types, then $a_i + a_j = 100 = 0 \pmod{100}$ and so $a_i + a_j$ will be divisible by 100.

So we will always be able to find 2 integers in S whose sum or difference is divisible by 100.

8 Consider a rational number such as 12/7 and list the quotient & remainders at each stage abtaining its decimal expansion

 $\frac{12}{7} = \frac{1.714285714}{5,1,3,2,6,4,5,1,3,2}$ remainders

8. Now the remainders must be an integer between 1 and 6. So after a string of 6 remainders we are guaranteed that the 7th will repeat one of the previous 6 and this will mean that the remainders will repeat from that point. In our example as soon as we get 5 for a second time, we know that 1,3,2...will follow. Because the remainders are the same, The quotients will be the same (because we will just be adding o's and dividing by 7 after a point). So we will get a repeating decimal after some point.

For an arbitry rational number m/n, there are two cases: $n = 2^{a}5^{b}$ for some a & b $n \neq 2^{a}5^{b}$ for any a & any b. In the first case, the decimal expansion eventually repeats with 0's (i.e., it terminates) In the second case the decimal will repeat after some point. The length of the portion that repeals is always a divisor of n-1

period = 6 0.142857 148257 148257 period = 2 0.27 27 27 27 period = 6 0.076923 076923 076923 - - . From these examples you can see that the period is not always n-1. It is, however, always a divisor of n-1. 9. Let $S = \{R_1, \dots, R_n\}$ be the set of the 10 people.

There are $2^{10}-1 = 1023$ non-empty subsets of S.

Let us write these as $\{A_1, \dots, A_{1023}\}$. Since the max. age in 60 and the min age is 1, the sum of the ages in any A_i is between 1 and 600. Since there are 1023 subsets and only 600 possible sums, we must have sum of ages in A_i = sum of ages in A_i

Sum of ages in $A_i = \text{sum of ages in } A_j$ for some $1 \le i < j \le 1023$.

Now $A_i \not \in A_j$ otherwise sum of age in A_i will be strictly less than the sum of ages in A_j . Similarly $A_j \not \in A_i$. Let $A_i' = A_i - A_j$ and $A_j' = A_j - A_i$. Then A_i' and A_j' are non-empty subsets of S'

and sum of ages in Ai

= sum of ages in Ai - sum of ages in AinA;

= sum of ages in A; - sum of ages in A; nA;

= sum of ages in A;

So we have found two disjoint non-empty subsets of 5' such that the sum of the ages in each subset are the same.

10. Let $a_i = number of hours of TV that the child watches by the end of the i-th day.

Then as in problem #1$

Then, as in problem #1, $1 \le a_1 < a_2 < a_3 < --- < a_{49} \le 7.11 = 77$

10. So $1+20 \le a_1+20 < a_2+20 <$ · · · < 949 + 20 € 77+20 = 97 Now look at the sequence

a, a2, a3, -.., a49, a, +20, a2 +20, ..., a49 + 20 This sequence has 98 terms and each term is between 1 & 97 (inclusive). So by the P.H.P two of these terms must be the same. But a,,..., aya are all distinct because this is an increasing sequence. Also a,+20, -.., a49 +20 are all distinct. So we must have

 $a_i = a_j + 20$ $1 \le i, j \le 49$. So $a_i - a_j = 20$ tor some and hence on the (j+1)-th, (j+2)-th, -..., & j+(i-j)-th days the child would have watched 20 hours

11. Let bi = no. of hours that the student studies by the end of the i-th day. Then as in problem #1

 $1 \le b_1 \le b_2 \le b_3 \le \cdots \le b_{37} \le 60$

 $1+13 \le b_1+13 < b_2+13 < \cdots < b_{37}+13 \le 60+13=73$ Now look at the seq.

b, b2, b3, ---, b37, b,+13, b2+13, ---, b37+13. This seq. has 14 terms each of which is between 1 & 73 (inclusive). So by the P.H.P. two terms must be equal. So, as in problem #10 we must have a; = a; +13 for some i &j. Hence the student will study 13 hours from the beginning of the j+1-th day to the end of the j+(i-j)-th day.

of television.

First observe that if we paint the 15 edges (between the 6 vertices) red or blue, then we will get a blue triangle or a red triangle because of formula 2.1 on page 36. There are two cases:

Case (i): We get a red triangle

Let a, b, c, d, e, f be the six vertices of the

problem and let a, b, c be the vertices of the red

triangle. Suppose there is no more red triangles.

We will show that there must be a blue triangle.

(So we will get either two red triangles, or

one red and one blue triangle).

Since we supposed that there is no more red triangles, at least one of the edges of the triangle def must be blue. Let's say de is blue. Now if two or more of the edges da, db and dc were red, then we would get a nother red triangle by using the appropriate edge from abc. So two of the edges da, db, and dc must be blue. Let's say da & db are blue. Now look at the edges eb & ea. If both eb & ea are red, then we would get another red triangle—

and since we supposed that there is no more red triangles, one of the edges eb & ea must be blue. But if eb is blue, then ebd will be a blue triangle and if ea is blue, then ead will be a blue triangle. So if there is only one red triangle them there will be a blue triangle. Hence there must be two red triangles, or one red triangle and one blue triangle.

Case (ii): We get a blue triangle
A similar proof to that of case (i) will show
that if there is no more blue triangles, then
there will be a red triangle. Hence we must
have two blue triangles, or one blue and
one red triangle.

Hence in either case we get two mond-chromatic triangles (i.e., two red triangles, two blue triangles, or one red and one blue triangle).

14. We can pick up to 44 fruits and still not get a dozen of any kind.

But if we pick 45 fruits, we are guaranteed to get a dozen of some kind. It will take 45 min. to pick 45 fruits.

15. Let $S = \{a_1, \ldots, a_{n+1}\}$ and $D = \{0, 1, 2, \ldots, n-1\}$ Define $f: S \rightarrow D$ by $f(a_i) = a_i \pmod{n}$ Since S has not elements and D has only n elements, we must have $f(a_i) = f(a_j)$ for some $1 \le i < j \le n+1$.

So $a_i = a_j \pmod{n}$ $a_{i}-a_{j}=0 \pmod{n}$

Hence ai-aj is divisible by n. So we we can always find two integers ai & aj in S with it and ai-ai divisible by n.

16. We define a person to be a loner if they have no acquaintances. We will prove that in any group of n people there are two people with the same number of acquaintances. There are two cases:

Case (i): The group has no loners In this case the possible number of acquaintances a person can have are 1,2,3, ..., n-1

since no one is allowed to be acquainted with themselves. Since we have n people and only (n-1) possibilities, by the P.H.P., two people must have the same no. of acquaintances.

2 acq. 3 acq.

16 <u>Case(ii)</u> The group has at least one loner. In this case the possible number of acquaintances a person can have are

0,1,2, --- , h-2 because a person cannot be acquainted with the loner or themselves. Since we have n people & n-1 possibilities, two people must have the same number of acquaintances.

So in either case two people will have the same number of acquaintances.

We will prove that there are three people at the party with the same number of acquaintances by splitting the problem into three cases.

Case(i): The party has at least 2 loners
In this case the possible number of acquaintances a person can have are

0, 2, 4, 6; ---, 94, 96 because the person has to exclude the 2 loners and themselves and also posses an even no. of acquaintances. Since we have 100 people and only 49 possibilities the must be 3 people with the same no. ot acquaintances.

Case (ii) The party has exactly one loner In this case the possible nacquaintances of the

17. other 99 people are

2, 4,6, ---, 94,96,98

Since we have 99 people and only 49 possibilities, we must have 3 people with the same number of acquaintances.

Case (iii): The party has no loners

In this case the possible number of acquaintances

a person can have are

2,4,6,8, ---, 96,98

Since we have 100 people and only 49 possibilities, we must have 3 people with the same number of acquaintances.

Divide the square into

four smaller squares as
shown on the right. If
we choose any 5 points in
the 2x2 square, at least

two will fall in one of the
smaller squares. The distance between these two
points will be at most \$\square\$.

19. (a) Hint: Split the equi-lateral triangle into 4 smaller equilateral triangles as shown on the right.

19 (b) Hint: Divide the triangle into 10 equilateral triangles as shown on the

(c)
$$M_n = (1+3+5+7+\cdots+2n-1)+1$$

= n^2+1 .

20. To show that $v(3,3,3) \leq 17$ is equivalent to showing that if we color the (17) edges between the 17 vertices of Kin with redibline, or green, then we can always find a red triangle or a blue triangle or a green triangle. We will prove this below.

Let v, be of the 17 vertices and consider the 16 edges that come out of Vi. If at most 5 edges out of v, have the same color, then v, will have at most 15 edges coming out of it. So v, must have at least 6 red edges or 6 blue or 6 green edges coming out of it.

let's say that at least 6 red edges comes out of v, (the cases with 6 blue or 6 green are entirely similar). If one of the edges between V2, V3,..., and V7 is red then we get a red

20. triangle instantly and we are done. And if none of the edges between v2, v3, ..., v7 are red - then all the edges between these 6 vertices are either blue or green, and by formula 2.1 p.36 we know that there must either be a green triangle or a blue triangle. So with 17 vertices we will always be able to get a blue triangle, or a green triangle, or a red triangle. Hence $r(3,3,3) \le 17$

23 Let V1, V2, ..., Vio be the 10 ten vertices and consider the 9 edges coming out of vio. If at most 5 of these edges were blue and at 3 edges were red, then only 8 edges will come out of vio. So at least 6 edges coming out of vio must be blue or at least 4 edges coming out of vio must be red.

Now if 4 of these edges are red, look at the other four endpoints V1, V2, V3, V4, say. If there is a red edge between two of these vertices, we will get a red triangle by adding vio; and if there are no red edges between these 4 vertices, then vi, vz, v3 & v4 will form a blue Ky (i.e., all six edges will be blue).

Also it 6 of these are blue, look at the other six endpoints a, b, c, d, e, f say. Now the edges between these 6 vertices are red or blue. So by a previous theorem they contain a blue triangle or a red triangle. If we add vio to the blue triangle we will get a blue Ky.

So in all the cases we will get, a blue Ky or a red triangle. So we are done.