

PROJECT COMPUTERVISION

Group 7 - 07/06/2021

Baert Olivier, Callaert Arne, Hernou Arno, Vereecken Ward, Waegemans Wolfgang

<u>OVERVIEW</u>

- Painting detection and extraction
- Painting classification
- Painting matching
- Localization
- Demo
- Conclusion and future work

PAINTING DETECTION AND EXTRACTION

DETECTION PHASES

- > Filtering
 - Gray scale
 - ➤ Bilateral
 - Otsu's thresholding
- Edge detection
 - Canny
 - ➤ Dilation
- Painting detection and extraction

<u>FILTERING</u>

- 1. Convert to gray scale
- 2. Apply bilateral filter
- 3. Apply Otsu's thresholding
- 4. The image is now ready to be edge-detected

EDGE DETECTION

- 2. Dilate detected edges to connect gaps
- 3. Fill found contours
 - a. Optional: erode away noise

Current speaker: Ward Vereecken

PAINTING DETECTION & EXTRACTION

- 2. Set area constraints for detected shapes to>20% of largest found area
- 3. Set # of corners constraint to four corners
- 4. Connect four found corners for visualization (demo)
- 5. Extract painting to standard scale and orientation using perspective transform

Current speaker: Ward Vereecken

PAINTING CLASSIFIER

SUPPORT VECTOR MACHINE

- Supervised machine learning algorithme
- Binary classification (environment or painting)
- Feature vector 32x32 image patch:
 - Histogram of oriented gradients (HOG)
 - Color histogram
- Normalize
- Balance trainings data (subsampling)

Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)
80	81	80	80

CLASSIFIER RESULTS

Discard extracted painting :

Exceeds environment over painting ratio

False positives: 103

False negatives: 197

PAINTING MATCHING

PAINTING MATCHING

- > SIFT matching
- > save keypoints, descriptors and metadata to a database
- > calculate keypoints and descriptors once
- > filter matches as per Lowe's ratio test
- > return a sorted list of all matched sets (ranked by best matches)

PAINTING MATCHING

- > SIFT beneficial for environment of use
- > evaluated on dataset
 - > extraction from picture
 - > matching

Matching performance

Correct match	88,76 %
Correct match, excluding images with no matches	91,86 %
Average matching score for correct painting	62,83 %

LOCALIZATION

HIDDEN MARKOV MODEL

- X: Staten = zalen
- > y: Observaties = schilderijen
- > a: Transitieprobabiliteit
- > b: Emissieprobabiliteit

TRANSITIEPROBABILITEIT

Kans van zaal j naar i =

#schilderijen in zaal i

schilderijen in zalen waar j is mee geconnecteerd (inclusief zaal j zelf)

EMISSIEPROBABILITEIT

- ➤ Top 10 gematchte databaseschilderijen worden toegewezen aan één van de zalen
- > De emissieprobabilieit bedraagt dan:

KANS OP HUIDIGE STAAT

kans huidige staat is A

emissieprob *
$$(P(x_0 = A) * transitieprobVanAnrA + P(x_0 = B) * transitieprobVanBnrA + \cdots)$$

 \sum teller van elke kans

KANS DAT VORIGE STAAT A WAS

KANS DAT VORIGE STAAT B WAS

0%

0%

DEMO

LENS DISTORTION

- ➤ GoPro = Wide angle lens
- ➤ Solution: Calculate camera intrensic parameters

<u>UNDISTORT - RESULT</u>

DEMO

- > Frame buffering
- > Minimum polygon size
- ➤ Blurriness validation
- > Contrast validation

CONCLUSION

CONCLUSION

- > Still many improvements possible
- ➤ Guesses location in a top 5
- > Extraction and matching perform
 - Reasonably well in well-lit testing set
 - ➤ Worse on poorly-lit video room

FUTURE WORK

FUTURE WORK

- Color histogram for matching
- > Scaling all images to the same size and compute with ORB
- Matching dependent on HMM
- > Room-dependent preprocessing

