

Machine Learning

EE382V Activity Sensing and Recognition

UT Austin • Dept. Electrical and Computer Engineering • Fall 2016

Today

Machine Learning (45mins)

Supervised Learning & Terminology

Linear Regression & Decision Trees

Discriminative and Generative Models

Bias and Variance

Overfitting & Underfitting

Projects (15mins)

Activity Recognition Pipeline

What is ML

Field of study that gives computers the ability to learn without being explicitly programmed.

— Arthur Samuel, 1959

Study of algorithms that:

- improve their performance P
- at some task T
- with experience E

well-defined learning task: <P,T,E>

Types of ML

- Based on information available
 - Supervised true labels provided
 - Reinforcement Only indirect labels provided (reward/punishment)
 - Unsupervised No feedback & no labels
- Based on the role of the learner
 - Passive given a set of data, produce a model
 - Online given one data point at a time, update model
 - Active ask for specific data points to improve model
- Based on type of output
 - Concept Learning Binary output based on +ve/-ve examples
 - Classification Classifying into one among many classes
 - Regression Numeric, ordered output

Dataset of home sale prices in Austin

Dataset includes the living area of homes in sq. feet

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

Goal: Predict future home prices as a function of living area size

Dataset of breast tumors

Dataset includes characteristic of tumors

tumor size	texture	perimeter	 outcome	time	
18.02	27.60	117.5	N	31	
17.99	10.38	122.8	N	61	
20.29	14.34	135.1	R	27	

Goal: Predict outcomes of future tumors

Dataset of sensor features

Mean	Variance	Kurtosis	Running
0.34	0.76	0.67	No
0.75	0.54	0.99	Yes
0.02	0.23	0.79	Yes

Goal: Predict future instances of running activity

Terminology

Mean	Variance	Kurtosis	Running
0.34	0.76	0.67	No
0.75	0.54	0.99	Yes
0.02	0.23	0.79	Yes

Features / Attributes

Terminology

Mean	Variance	Kurtosis	Running
0.34	0.76	0.67	No
0.75	0.54	0.99	Yes
0.02	0.23	0.79	Yes

Labels

Terminology

árdann Ace	Mean	Variance	Kurtosis	Running
	0.34	0.76	0.67	No
	0.75	0.54	0.99	Yes
	0.02	0.23	0.79	Yes

Instance / Training Example

Dataset of home sale prices in Austin

Dataset includes the living area of homes in sq. feet

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

Goal: Predict future home prices as a function of living area size

Goal: Predict future home prices as a function of living area size

Function (f): $X \rightarrow Y$

There is an unknown target function (f) mapping the X,Y relationship

But often not useful to predict future values for Y

Our goal: learn a function $h: X \rightarrow Y$ that approximates f

Need to use a learning algorithm!

Learning Algorithm

e.g., linear regression outputs linear model

Many forms of h(x): Hypothesis Space

Learning Algorithms

Different learning algorithms output different types of hypothesis spaces. Many representations possible

Regression Algorithms

Instance-based Algorithms

Decision Tree Algorithms

Bayesian Algorithms

Learning Algorithm

Source: Andrew Ng CS229 Lecture Notes

Function Approximation

Problem Setting:

- Set of possible instances X
- Unknown target function f: X→Y
- Set of function hypotheses H={ h | h : X→Y }

superscript: ith training example

Input:

Training examples {<x(i),y(i)>} of unknown target function f

Output:

• Hypothesis $h \in H$ that best approximates target function f

Source: Tom Mitchell ML 10-701 Lecture Notes

Learning Algorithms

How to choose a hypothesis?

Learning Algorithms

Identify parameters that minimize error

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Source: (Based in part on) Andrew Ng CS229 Lecture Notes

Least-Squares Cost Function

Least-Squares Cost Function

$$\theta = (X^T X)^{-1} X^T \vec{y}.$$

Least-Squares Cost Function

Gradient Descent

Source: Andrew Ng CS229 Lecture Notes

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Decision Tree

Problem Setting:

- Set of possible instances X
 - each instance x in X is a feature vector
 - e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>
- Unknown target function $f: X \rightarrow Y$
 - Y is discrete valued
- Set of function hypotheses H={ h | h : X→Y }
 - each hypothesis h is a decision tree
 - trees sorts x to leaf, which assigns y

Outlook

Decision Tree

A Decision tree for

F: <Outlook, Humidity, Wind, Temp> → PlayTennis?

Each internal node: test one attribute X_i

Each branch from a node: selects one value for X_i

Each leaf node: predict Y (or $P(Y|X \in leaf)$)

Source: (Based in part on) Tom Mitchell ML 10-701 Lecture Notes

Decision Tree

Top-Down Induction of Decision Trees

[ID3, C4.5, Quinlan]

node = Root

Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

Discriminative vs. Generative

Discriminative Models

Hypothesis defines a decision boundary between classes e.g., Linear Models, Decision Tree

Generative Models

Build a (probabilistic) model for each class, and match against each model

e.g., Bayesian Networks, Naive Bayes

Generative Models

Consider hypothesis space H

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- P(h) = prior prob. of hypothesis $h \in H$
- P(D) = prior prob. of training data D
- P(h|D) = probability of h given D
- P(D|h) = probability of D given h

Generative Models

Natural choice is most probable hypothesis given the training data, or *maximum a posteriori* hypothesis h_{MAP} :

$$h_{\mathsf{MAP}} = \operatorname{argmax}_{h \in H} P(h|D)$$

$$= \operatorname{argmax}_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \operatorname{argmax}_{h \in H} P(D|h)P(h)$$

P(y) P(sun|y) P(cool|y) P(high|y) P(strong|y) = .005P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

• So, $y_{NB} = n$

Generative Models

Natural choice is most probable hypothesis given the training data, or *maximum a posteriori* hypothesis h_{MAP} :

$$h_{\mathsf{MAP}} = \operatorname{argmax}_{h \in H} P(h|D)$$

$$= \operatorname{argmax}_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \operatorname{argmax}_{h \in H} P(D|h)P(h)$$
?

P(y) P(sun|y) P(cool|y) P(high|y) P(strong|y) = .005P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

• So,
$$y_{NB} = n$$

Naive Bayes

del em AC	f ₁	f ₂	f ₃	c: yes I no	
	0.34	0.76	0.67	?	
No.	0.75	0.54	0.99	?	
	0.02	0.23	0.79	?	

p(yes |
$$f_{1},f_{2},f_{3}$$
)
p(no | f_{1},f_{2},f_{3})
argmax p(c | f_{1},f_{2},f_{3})

$$p(yes \mid f_{1},f_{2},f_{3}) = \underbrace{\frac{p(f_{1},f_{2},f_{3} \mid yes) \ p(yes)}{p(f_{1},f_{2},f_{3})}}_{p(no \mid f_{1},f_{2},f_{3})} = \underbrace{\frac{p(f_{1},f_{2},f_{3} \mid no) \ p(no)}{p(f_{1},f_{2},f_{3})}}_{p(f_{1},f_{2},f_{3})}$$

Naive Bayes

del essa as	f ₁	f ₂	f ₃	c: yes I no	
	0.34	0.76	0.67	?	
10000	0.75	0.54	0.99	?	
	0.02	0.23	0.79	?	

p(yes |
$$f_{1},f_{2},f_{3}$$
)
p(no | f_{1},f_{2},f_{3})
argmax p(c | f_{1},f_{2},f_{3})

$$p(yes | f_{1},f_{2},f_{3}) = \frac{p(f_{1},f_{2},f_{3} | yes) p(yes)}{p(f_{1},f_{2},f_{3})}$$

$$p(no | f_{1},f_{2},f_{3}) = \frac{p(f_{1},f_{2},f_{3} | no) p(no)}{p(f_{1},f_{2},f_{3})}$$

Underfitting & Overfitting

Overfitting

Model too complex, learns the noise in the data

Underfitting

Model not complex enough to fit training data

Just Right

Bias and Variance

Concepts to help us understand the sources of model error

Bias: difference between expected prediction of the model and the value we are trying to predict

Variance: variability of model prediction for a given data point

Project

You will work on a semester-long project

Get you to develop practical activity recognition skills

Push the state-of-the-art in some aspect of sensing or recognition

Explore a problem in the context of a real-world application

Develop your research skills (e.g., reviewing prior work, etc)

Develop your communication skills

Satisfying to complete course with a tangible outcome

Project

Team Formation (Sept 20th)

3 or 4 students per team

Proposal (Sept 27th)

Progress Report (Oct 25th)

Final Report (Nov 29th)

Presentation (Nov 29th)

Project report should be of publishable quality

Use of traditional research methods

Live demos are welcome!

Project Ideas

Swimming style and form detection

Identify different types of cooking gestures

Sensor to detect dog activities

Identify when text and driving is happening

Hand washing detection with wrist sensors

Activity recognition with physiological signals

Detect stress from gestural data

Activity recognition models from media

Upcoming Class(es)

Next class: Bring a computer to class

Machine Learning Lab

Python + Scipy/Numpy + Scikit-Learn

Talk to me or TA in case if you have issues

Next week: Project Idea Pitches

Project Team Formation

Possible Guest Lecture

I will be out-of-town but reachable by email