lmogh Manoj Joshi

■ ajoshi83@asu.edu 🏟 amoghjoshi.netlify.app 🚡 amogh-joshi 🕥 github.com/AmoghJ001

Education

Arizona State University

Master's in Computer Science (MS CS)

University of Mumbai

Bachelor of Engineering - Electronics and Telecommunication Relevant Coursework:

• Database Management System

• Structured Programming Approach

- Neural Networks and Fuzzy Logic
- Object Oriented Programming
- Image Processing and Machine Vision

Fall 2022 - present

CGPA: 8.85/10

July 2018 - June 2022

• Data Compression and Encryption

Publications

Research Interests: Computer Vision, Deep Learning, Data Science

1. GDenseMNet: Global Dense Multiscale Feature Learning Network for Efficient COVID-19 Detection in CT Images

2022 International Joint Conference on Neural Networks (IJCNN) (Accepted for oral presentation!) Amogh Manoj Joshi, Deepak Ranjan Nayak

- 2. MFL-Net: A Lightweight Multi-Scale Feature Learning CNN for COVID-19 Diagnosis from CT Images IEEE Journal of Biomedical and Health Informatics (2022) (IF:7.021) Amogh Manoj Joshi, Deepak Ranjan Nayak
- 3. LiMS-Net: A Lightweight Multi-Scale CNN for COVID-19 Detection from Chest CT Scans ACM Transactions on Management Information Systems (2022) Amogh Manoj Joshi, Deepak Ranjan Nayak, Dibyasundar Das and Yu-Dong Zhang
- 4. A Machine Learning Based Bike Recommendation System Catering To User's Travel Needs 17 th IEEE India Council International Conference (INDICON) 2020 🏶 Ananta Kumar Das, Amogh Manoj Joshi and Subhasish Dhal
- 5. Deep Learning Based Approach For Malaria Detection in Blood Cell Images 2020 IEEE Region 10 International Conference (TENCON 2020) Amogh Manoj Joshi, Ananta Kumar Das and Subhasish Dhal

Experience

Malaviya National Institute of Technology Jaipur

Research Assistant: Deep Learning, Computer Vision

May 2020 - May 2022

Jaipur, India

- Worked on developing lightweight Deep Neural Networks (DNNs) with a focus on Multi-scale feature learning for COVID-19 Detection from Chest CT Scans. Proposed and published three models at top conferences and journals.
- Developed MFL-Net: an extremely lightweight architecture (0.78M Params) with Multiscale Feature Learning (MFL) modules capturing and preserving features at different depths with a blend of convolutions and residual connections.
- MFL-Net (30x lighter than ResNet-50 and 9x lighter than DenseNet-121) achieved an accuracy of 98.79% and 93.59% on SARS-CoV-2 CT-Scan dataset and COVID-CT dataset respectively.

Microsoft Research (MSR) Redmond

Sept 2021 - Jan 2022 Redmond, WA

Intern at Interactive Media Group: Computer Vision

- Worked on understanding why Convolutional Neural Networks (CNNs) fail to generalize on images with varying intensities of adversarial perturbations like Gaussian Noise, Background Occlusion and Affine Transformations.
- Performed experiments on the benchmark ILSVRC Dataset using pretrained Imagenet models like AlexNet, VGG-16, EfficientNet using Pytorch. Visualized saliency maps using GradCAMs to highlight the model's attention region in the image, giving insights behind the wrong prediction.
- Analyzed of the dip in classification performance with the increasing intensity of different perturbations for all the ImageNet models using Matplotlib and Python.

Indian Institute of Technology Ropar

Nov 2020 - June 2021

Research Intern: Deep Learning

Punjab, India

- Worked on COVID-19 Lung Lesion Segmentation on the official NIH COVID-19 Grand Challenge Data. Analyzed the segmentation performance of U-Net and its variants like R2UNet, Attention UNet etc.
- Experimented modifying these networks by adding residual blocks and atrous convolution blocks in their architectures.
- Added attention mechanism in UNet coupled with Tversky Loss function for enhancing feature learning capability which gave the best segmentation IoU of 93.47%

May 2020 - Aug 2020

Data Science Intern

 $Guwahati,\ India$

- Worked on developing a bike recommendation system for public bike sharing systems around the globe. Analyzed millions of trip records from the official Divvy Bike dataset.
- Grouped bikes with similar trip patterns including trip distance and trip duration using K-means clustering into three categories: highly used, moderately used and rarely used bikes.
- \bullet Trained a Random Forest Classifier to predict the best cluster of bikes depending on the user's desired trip duration and trip distance. The model achieved an accuracy of 97%

Projects

Passenger Detection in Bus Transport Service | Keras, YOLOv5, Raspberry Pi, Google Firebase

Sept 2021

- Developed a fully automated passenger count detection system which captures an aerial view inside the bus using a camera connected to Raspberry Pi.
- Captured and curated a novel dataset containing aerial view images inside the bus. The captured image is processed using Region of Interest (ROI) cropping to focus on the seats and corridor.
- Trained a YOLOv5 object detection model to detect number of passengers inside the bus. Also developed an algorithm to count the number of empty seats depending on the bus model.
- The system updates the passenger count, empty seats and current location of the bus to Firebase which can be accessed via a website and an App.

Face Mesh Detection along with Emotion Recognition | Keras, Mediapipe

June 2021

- Built a live face mesh detection system using Mediapipe library with an added emotion recognition feature.
- Trained ResNet-50 on the Extended Cohn-Kanade(CK+) emotion recognition dataset and fused it in the mesh detection pipeline.
- This project aims to help corporations and institutes for employee recognition along with understanding their mental state at work.

MedDES: The Medical Diagnostic Expert System | Keras, Streamlit, Heroku 🏶 🔾

Jan 2021

- Developed a diagnostic system for medical image diagnosis using deep learning which has four diagnostic tests for Malaria, COVID-19, Pneumonia and Brain Tumour. The system also generates a detailed patient report.
- Built and trained four lightweight CNN models using Keras, one for each diagnostic test. The models are deployed in the system and have an average inference time of 84 milliseconds.
- For enabling easy access, system was built as a web application using Streamlit and deployed using herokuapp.

Accident Avoidance Alert System For Drivers | Keras, Arduino UNO, HC-12 Module

Mar 2020

- Developed an object detection system that detects road signs, vehicles and pedestrians using a trained YOLOv3 and notifies it to the driver by giving a count of objects detected.
- Built and trained four lightweight CNN models using Keras, one for each diagnostic test. The models are deployed in the system and have an average inference time of 84 milliseconds.
- For enabling easy access, system was built as a web application using Streamlit and deployed using herokuapp.

Technical Skills

Languages - Python, C++, Java, HTML, SQL

Machine Learning - Keras, TensorFlow, PyTorch, MONAI, Mediapipe, Streamlit

Python Libraries - OpenCV, ImageIO, Scikit-learn, Scikit-image, Pillow, Numpy, Pandas

Software - MATLAB, Tableau, Jupyter Lab, Pycharm, VS Code

Awards and Recognition

• Selected for the **5th Summer School on Artificial Intelligence: 2021** organized by

International Institute of Information Technology Hyderabad from Aug 2 - Aug 31

• Selected for Eastern European Machine Learning (EEML) Summer School 2021 amongst a competitive international pool of 1000+ applicants [2021]

• Selected as one of the six **Student Mentors** in my department. Responsibilities include mentoring junior students academically and providing guidance about their career prospects

• 3rd Prize in IEEE Technical Paper Presentation Competition 2020 held in my institute for my research work titled "Accident Avoidance Alert System for Drivers" [2020]

• Ranked among the top 60 teams amongst 1913 participating teams in E-yantra's **Hackathon** 2020: Fighting COVID-19 for our proposed solution: COVID-19 App

[2020]