Coding Theory - Homework 4

Kishlaya Jaiswal

November 22, 2019

Exercise 1

Proof. First we show that

$$max_3(r,2) = 1 + max_2(r-1,2)$$

$$n \leq max_3(r, 2)$$

 $\iff \exists (n, 3) \text{ set in } \mathbb{F}_2^r$
 $\iff \exists [n, n-r, \geq 4] code$
 $\iff \exists [n-1, n-r, \geq 3] code$
 $\iff \exists (n-1, 2) \text{ set in } \mathbb{F}_2^{r-1}$
 $\iff n \leq 1 + max_2(r-1, 2)$

But since we know that $max_2(r-1,2)=2^{r-1}-1$ (no. of lines in \mathbb{F}_2^{r-1}), we get that $max_3(r,2)=2^{r-1}$

Exercise 2

Proof. Let $V = \mathbb{F}_2^{r+1}$ and

Since every line passing through origin has exactly one more point on it (in V), we get that $V \setminus \{0\} \cong PG(r, 2)$.

We can identify any $S \subseteq PG(r, 2)$ as $S \subseteq V$.

Now, if S is a maximal n-cap then we know that any 3 vectors in S are linearly independent and hence by the previous problem we know that $|S| = max_3(r+1,2) = 2^r$.

Let
$$T = V \setminus S$$
. Clearly $|T| = 2^r$ as $|\mathbb{F}_2^{r+1}| = 2^{r+1}$

We shall show that T is a linear subspace of V.

• $0 \in T$. This is clear as the pullback of S doesn't contain 0 by definition.

- $v \in T \implies \lambda v \in T \forall \lambda \in \mathbb{F}_2$. If $\lambda = 0$ then we are done otherwise if $\lambda v \in S$ then since $v \sim \lambda v \implies v \in S$ which is a contradiction.
- $v, w \in T \implies v + w \in T$. Fix a $s \in S$ and consider the map

$$f: V \longrightarrow V$$

$$x \longmapsto s + x$$

First note that f is injective and hence it's a bijection. Now for any $s' \in S$, f(s') = $s+s' \in T$ because any 3 points in S are non-collinear (and s, s', s+s' are collinear points). So $f(S) \subseteq T$. But since $|S| = |T| = 2^r$, therefore f(S) = T and so any point in T is of the form s + x for some $x \in S$.

So let $v = s + s_1$ and $w = s + s_2$, where $s_1, s_2 \in S$.

Furthermore, since s in the definition of f was arbitrary, we get that $S + S \subseteq T$.

Hence, $v + w = (s + s_1) + (s + s_2) = s_1 + s_2 \in T$ as required.

It follows that, T' (projection of T in PG(r,2) and so $|T'|=2^r-1$ as T' doesn't contain 0) is a r-1 dimensional subspace of PG(r,2). Clearly, S and T are disjoint in their images in PG(r,2) and furthermore, $|S| + |T'| = 2^r + (2^r - 1) = 2^{r+1} - 1 = |PG(r,2)|$. And therefore, S is obtained from the complement of some hyperplane in PG(r, 2).

Exercise 3

Proof. Let $\mathbb{F}_q^* = \{a_1, a_2, \dots a_{q-1}\}$. Consider

$$H = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 & 0 & 0 \\ a_1 & a_2 & a_3 & \dots & a_{q-1} & 0 & 1 & 0 \\ a_1^2 & a_2^2 & a_3^2 & \dots & a_{q-1}^2 & 0 & 0 & 1 \end{pmatrix}$$

We will show that H when considered as a parity check matrix, gives a [q+2, q-1, 4] code iff q is even prime power. Otherwise if q is odd prime power, then we get $[q+2, q-1, \geq 5]$ code.

First, it is clear that n = q + 2 and that the rank of H is 3 and so k = q - 1.

Now, if we consider the following submatrix H' of H:

$$H' = \begin{pmatrix} 1 & 1 & 0 \\ a_i & a_j & 1 \\ a_i^2 & a_j^2 & 0 \end{pmatrix}$$

Then $|H'| = (a_i^2 - a_i^2)$.

If q is even prime power, then $|H'| = (a_j^2 - a_i^2) = (a_j - a_i)^2 \neq 0$ as $a_i \neq a_j$. But if q is odd prime power, then $|H'| = (a_j^2 - a_i^2) = (a_j - a_i)(a_j + a_i) = 0$, whenever a_i and a_i are additive inverses of each other, which are distinct.

(Note that, for characteristic 2 fields, additive inverse of x is x itself).