8/13/24, 11:48 AM Assignment-7(knn)

Import Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn import metrics
```

Load Dataset

```
In [ ]: iris = load_iris()
    iris_df = sns.load_dataset("iris")
```

Basic EDA

In []: iris_df.head()

Out[]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

```
In []: iris_df.isnull().sum()

Out[]: sepal_length  0
    sepal_width  0
    petal_length  0
    petal_width  0
    species  0
    dtype: int64
```

In []: iris_df.describe()

```
Out[ ]:
               sepal_length sepal_width petal_length petal_width
                150.000000
                            150.000000
                                         150.000000 150.000000
         count
                   5.843333
                               3.057333
                                           3.758000
                                                       1.199333
         mean
           std
                   0.828066
                               0.435866
                                           1.765298
                                                       0.762238
                   4.300000
                               2.000000
                                           1.000000
                                                       0.100000
          min
                                                       0.300000
          25%
                   5.100000
                               2.800000
                                           1.600000
          50%
                   5.800000
                               3.000000
                                           4.350000
                                                       1.300000
          75%
                   6.400000
                               3.300000
                                           5.100000
                                                       1.800000
                   7.900000
                               4.400000
                                           6.900000
                                                       2.500000
          max
In [ ]: iris_df['species'].unique()
Out[ ]: array(['setosa', 'versicolor', 'virginica'], dtype=object)
In [ ]: print("Setosa : ")
        iris_df[iris_df['species'] == 'setosa'].describe()
       Setosa :
Out[ ]:
               sepal_length sepal_width petal_length petal_width
                   50.00000
                              50.000000
                                           50.000000
                                                       50.000000
         count
                    5.00600
                               3.428000
                                           1.462000
                                                       0.246000
         mean
                    0.35249
                               0.379064
                                           0.173664
                                                       0.105386
           std
                    4.30000
                               2.300000
                                           1.000000
                                                       0.100000
          min
          25%
                    4.80000
                               3.200000
                                           1.400000
                                                       0.200000
          50%
                    5.00000
                               3.400000
                                           1.500000
                                                       0.200000
          75%
                    5.20000
                               3.675000
                                           1.575000
                                                       0.300000
                    5.80000
                               4.400000
                                           1.900000
                                                       0.600000
          max
        print("Versicolor : ")
        iris_df[iris_df['species'] == 'versicolor'].describe()
```

file:///F:/Aissms/T.Y/Machine Learning Laboratory/Assignment-7(knn).html

Versicolor:

```
Out[]:
                sepal_length sepal_width petal_length petal_width
                  50.000000
                              50.000000
                                            50.000000
                                                        50.000000
         count
                   5.936000
                               2.770000
                                            4.260000
                                                         1.326000
         mean
                   0.516171
                               0.313798
                                            0.469911
                                                         0.197753
           std
                   4.900000
                               2.000000
                                            3.000000
                                                         1.000000
          min
          25%
                   5.600000
                               2.525000
                                            4.000000
                                                         1.200000
          50%
                   5.900000
                               2.800000
                                            4.350000
                                                         1.300000
                                                         1.500000
          75%
                   6.300000
                               3.000000
                                            4.600000
                   7.000000
                               3.400000
                                            5.100000
                                                         1.800000
          max
```

```
In [ ]: print("Virginica : ")
    iris_df[iris_df['species'] == 'virginica'].describe()
```

Virginica :

Out[]:		sepal_length	sepal_width	petal_length	petal_width
	count	50.00000	50.000000	50.000000	50.00000
	mean	6.58800	2.974000	5.552000	2.02600
	std	0.63588	0.322497	0.551895	0.27465
	min	4.90000	2.200000	4.500000	1.40000
	25%	6.22500	2.800000	5.100000	1.80000
	50%	6.50000	3.000000	5.550000	2.00000
	75%	6.90000	3.175000	5.875000	2.30000
	max	7.90000	3.800000	6.900000	2.50000

Target Variable is Type of Species

```
In [ ]: X = iris_df.drop(columns='species')
y = iris_df['species']
```

Partition Data for training and testing the model and standardize the data

```
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=9)
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
```

KNN Model

```
In [ ]: knn_model = KNeighborsClassifier(n_neighbors=5)
knn_model.fit(X_train_scaled, y_train)
```

8/13/24, 11:48 AM Assignment-7(knn)

```
Out[]: KNeighborsClassifier ()

KNeighborsClassifier()
```

Predict the species for the test data

Out[]:		Predicted	Actual
	135	virginica	virginica
	90	versicolor	versicolor
	145	virginica	virginica
	147	virginica	virginica
	60	versicolor	versicolor
	37	setosa	setosa
	26	setosa	setosa
	3	setosa	setosa
	75	versicolor	versicolor
	9	setosa	setosa
	25	setosa	setosa
	73	versicolor	versicolor
	98	versicolor	versicolor
	94	versicolor	versicolor
	39	setosa	setosa
	81	versicolor	versicolor
	31	setosa	setosa
	55	versicolor	versicolor
	101	virginica	virginica
	47	setosa	setosa
	28	setosa	setosa
	27	setosa	setosa
	111	virginica	virginica
	20	setosa	setosa
	118	virginica	virginica
	89	versicolor	versicolor
	43	setosa	setosa
	144	virginica	virginica
	8	setosa	setosa
	137	virginica	virginica

8/13/24, 11:48 AM Assignment-7(knn)

Tn []: