

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

iContrALL Intelligens Épületelektronika Kft.

Modell prediktív fűtésszabályozás alkalmazási lehetőségei

ÖNÁLLÓ LABORATÓRIUM

Készítette Gyulai László Belső konzulens dr. Kiss Bálint

Külső konzulens Kurbucz Máté

Tartalomjegyzék

1.	l. Bevezetés		
	1.1.	Motiváció	1
	1.2.	A modell	1
	1.3.	MPC áttekintés	2
		1.3.1. Az MPC költségfüggvénye	3
2.	Köl	tség- és komfortoptimum elérése	5
	2.1.	OptiControl projekt	5
	2.2.	Peak demand csökkentése	5
		2.2.1. Signal Preview	5
		2.2.2. Súlyozás módosítása	6
3.	Szin	nulációs eredmények	8
	3.1.	Költségek figyelembe vétele	9
	3.2.	Komfort figyelembe vétele	10
		3.2.1. Hőérzetbeli különbségek	10
	3.3.	Súlyozás további hangolása	11
4.	Öss	zefoglalás	13

Bevezetés

Motiváció

A szakdolgozatban elkezdett munkát folytatva a cél az ottani MPC szabályozás finomhangolása, továbbfejlesztése volt. A felállított Simulink modellen a szabályozást kvantitatíven vizsgáltam meg, koncentrálva a költségek és a komfort közötti egyensúlyra.

A modell

A korábbiakban használt *fűtési rendszer modelljét* nem változtattam meg, viszont a modellből kivezetve mértem a pillanatnyi hőleadást. Így megkaptam a hőmennyiségeket, amik a beavatkozás forintosított költségével arányosak.

1.1. ábra. Fűtési rendszer modellje - fűtőtest és helyiség

Adott környezeti hőmérséklet és belső hőmérséklet (alapjel) mellett ez az energiamennyiég azonos volt, mivel a helyiség hőveszteségei csak ennek különbségétől függnek. Az energiamegtakarítást tehát nem itt kell keresni, hanem a primer energia felhasználásánál. Ennek okai a következők:

Az alacsony hőmérsékletű (sugárzó) fűtések, pl. a padlófűtés használata gazdaságosabb lehet a hagyományos radiátoros fűtéseknél a megújulók használatával. Ugyanannyi leadott energia így olcsóbb ilyen rendszerekkel¹, emellett pedig jobb hőérzetet biztosítanak.

A modellben a kétféle fűtőtesthez két külön beavatkozó jel tartozik, mely a két szelep kinyitásának mértéke. A beavatkozók dinamikája is eltér, a prediktív irányítás ezt figyelembe véve tud egy egyensúlyt találni.

A csúcsterhelés csökkentése számos előnnyel jár. Szakaszos üzem helyett folyamatos teljesítményigény esetén a megújuló források előnyösebben hasznosíthatók.

MPC áttekintés

A modell-prediktív szabályozást alapjaiban a szakdolgozatomban mutattam be. A szabályozó, illetve a zárt szabályozási kör blokkvázlata és a rövidítések magyarázata szerepel az alábbiakban. [2] alapján

1.2. ábra. Az MPC be- és kimenetei

MPC	model predictive control	modell-prediktív szabályozás
MO / OV	measured output, output variable	mért kimenet (szabályzott jellemző)
MD	measured disturbance	mért zavarás
MV	manipulated variable	beavatkozó jel
REF	reference signal	referenciajel
T_s	sampling time	mintavételi idő
p	prediction horizon	predikciós horizont
\mathbf{c}	control horizon	szabályozási horizont
J	cost function	költségfüggvény
w_u	weight (control signal)	beavatkozó jelet büntető együttható
$w_{\Delta u}$	weight (rate of control signal)	beavatkozó jel változását bünteti
w_y	weight (measured output)	hibajelet büntető együttható
\mathbf{SF}	scale factor	skálázási tényező

1.1. táblázat. A fejezetben ismertetett rövidítések és angol szakkifejezések

¹Sugárzó fűtésekkel kevesebb primer energia szükséges a jobb hatásfok, kisebb veszteségek miatt.

A kiindulási MPC-t már létrehoztam az alábbi lépésekkel:

- 1. a 2 bemenetű, 1 kimenetű szakaszt identifikáltam átviteli függvényével
- 2. létrehoztam az MPC-t a megfelelő mintavételi idővel, beállítottam a jelek fizikai korlátait, illetve a skálázást. Az MPC két beavatkozó jele a modell 2 szelepének nyitásához tartozik.
- 3. Simulinkben futtatam a szimulációt, Scope használatával mentve az adatokat az analízishez

1.3. ábra. Szabályzó szimulációja Simulinkben

Az MPC költségfüggvénye

A szabályzó a predikciós horizonton belül minden lehetséges beavatkozójel-sorozatra kiszámolja annak (várható, modell szerinti) költségét. Azt a beavatkozójel-sorozatot választja, ami a legkisebb költséggel jár. Ez után a szabályozási horizontnak megfelelő számú beavatkozást végez, nem adja ki a teljes sorozatot.

Agachi [3] szerint:

$$J = \sum_{i}^{p} \left(w_u \Delta u^2 + w_e (r_i - y_i)^2 \right)$$
 (1.1)

ahol N a predikciós horizont, w_u a beavatkozó jel változásának súlya, w_e a hibajel súlya. A referenciajel jövőbeli változásait figyelembe lehet venni a predikciós horizonton belül.

A költségfüggvényben a hibajelhez és beavatkozó jelekhez, illetve azok változásaihoz különböző súlyok tartozhatnak. Nagyobb súlyok nagyobb költséget eredményeznek, így a szabályozó a nagyobb költségű beavatkozójel-sorozatot kisebb valószínűséggel választja.

Költség- és komfortoptimum elérése

OptiControl projekt

Az ETH Zürich kutatássorozata, az OptiControl [1] (2007 és 2013 között) a prediktív irányítások használatát vizsgálta és tesztelte irodaépületeken. Az egyetem mellett a Siemens mérnökeit és más partnereket is bevontak. A projektből számos ötletet merítettem, és szimuláltam ezeket a Simulink környezetben.

A projektben MPC szabályozás és RBC (Rule Based Control) performanciáját vetették össze.

Az általuk használt MPC modell meglehetősen részletes: figyelembe veszi a napsütés, illetve az irodában használt elektromos fogyasztók hatását is.

A projekt összefoglalója egy szabályzóval hasonlítja össze a hagyományos megoldásokat, én viszont arra voltam kíváncsi, hogy az általuk használt stratégiák mennyiben befolyásolják az MPC viselkedését.

Peak demand csökkentése

Signal Preview

A prediktív szabályozókban lehetőség van arra, hogy a predikciós horizonton belül a szabályozó figyelembe vegye a referenciajel jövőbeli változását, illetve a mérhető zavarások várható értékét. (Erre previewing vagy look-ahead néven szokás hivatkozni.)

Erre abban az esetben van lehetőség, ha például elő van írva a napi hőmérséklet alapjel, ahogyan ez megtehető egyszerű programozható termosztátoknál is, amelyek egyszerű RBC (Rule Based Control) elven kapcsolnak be vagy ki.

Időjárás-előrejelzést figyelembe véve pedig a külső hőmérséklet értékére adható becslés, ami tovább csökkentheti az energiafelhasználást: Ha a szabályozó csak a pillanatnyi zavarás értékét ismeri, akkor ennek megváltozásakor a referenciajel is hirtelen megváltozhat. Amennyiben a szabályozó a zavarás becsült értékét előre ismeri, optimalizálni tudja az energiafelhasználást. Ha például a külső hőmérséklet hirtelen emelkedik, akkor könnyen túlmelegedhet a helyiség, felesleges energiafogyasztást eredményezve.

ANTICIPATIVE ACTION (A.K.A. "PREVIEW")

$$\min_{\Delta U} \sum_{k=0}^{N-1} \|W^{y}(y_{k+1} - r_{k+1})\|^{2} + \|W^{\Delta u}\Delta u(k)\|^{2}$$

• Reference not known in advance (causal):

• Future reference samples (partially) known in advance (anticipative action):

Same idea also applies to reject measured disturbances entering the process

2.1. ábra. Signal previewing hatása (forrás: [4])

Súlyozás módosítása

A költségfüggvényben a beavatkozóknak különböző súlyokat rendelhetünk, ezzel szintén korlátozhatók a beavatkozó jelek.

A csúcsidőszakban csökkenthető a teljesítményigény, ha a tarifákidőben változnak. Ez elérhető például a súlyok futás közbeni módosításával.

Ezt vizsgálták az *OptiControl projektben* [1] is, kora reggel és késő este alacsonyabb tarifát feltételezve. (A TABS jelenti a padlófűtést, a Ventilation pedig a légfűtést.)

Figure 6-1: Average diurnal cycles of imposed MPC price signals and of measured average specific heating power (in [W/m2]) for TABS and ventilation from the target building. The horizontal axis shows the hour of day. Top: reference case (November 11, 2012 to February 4, 2013); bottom: load shifting experiment (February 5 to 14, 2013).

2.2. ábra. Különböző tarifák figyelembe vétele az OptiControl projektben

Szimulációs eredmények

Az alábbiakban a signal previewing hatása látható. A referenciajel nappal 22 °C, éjszaka 21 °C volt. A külső hőmérséklet -3 °C és 7 °C között változott, 1.8 °C/óra változási sebességgel. A referenciajel fel- és lefutása hasonlóan korlátos volt. A szimuláció blokkvázlata a preview blokkokkal a 1.3. ábrán látható.

A grafikonokon a szimuláció 10 napnyi szelete látható, a nagyobb felfűtési tranziensek lecsengése után. A legfelső ábra mutatja a beavatkozó jeleket, a középső a belső hőmérsékletet, az alsó pedig a külső hőmérsékletet (mért zavarás).

Több esetet vizsgáltam: a 3.1a ábrán látható szabályozás a referenciajel és a zavarjel pillanatnyi értékét ismerte csak. A 3.1b. ábra szerinti referenciakövetés adódott, ha a zavarás értéket 5 órával előre ismertük. Ez jelentősen lecsökkentette a maximális teljesítményigényt (lásd 3.3b. ábra). A 3.1c. ábrán látható esetben a referenciajel is előre ismert volt, 2.5 órával. Látható, hogy az alapjel felfutása előtt megáll a hőmérséklet csökkenése.

3.1. ábra. MPC viselkedése – previewing hatása

Meg kell jegyezni, hogy a previewing néhány esetben egy siettetést hozott a rendszerbe, azaz még 21 °C-os alapjel volt előírva, amikor már jóval megemelte a hőmérsékletet. Ha ezeket a követési tulajdonságokat módosítani szeretnénk, érdemes a szabályozó súlyfüggvényében további módosítást végezni.

3.2. ábra. Szabályozók különböző singal preview-val

Költségek figyelembe vétele

A fűtés energiaköltségét legkönnyebben az összes felhasznált energia mennyiségéből kaphatjuk meg. Ezen kívül célszerű még megvizsgálni a maximális teljesítményigényt is (peak demand), illetve az energiaátalakítás teljesítményszintektől függő hatásfokát.

A szimulációban helyiség Simscape modelljéből kivezettem a ténylegesen leadott hőmennyiséget, amiből a radiátoros- és padlófűtés közötti arányra voltam kíváncsi. Abból adódóan, hogy továbi zavarást nem iktattam a rendszerbe, minden szabályozó beállítás mellett az összes energiafelhasználás azonos volt. Valós környezetben történő méréseknél lehetne vizsgálni azt, hogy mely konfiguráció a legelőnyösebb, ezért én csak a módszert mutatom be, ami alapján lehetséges megtalálni az ideális értéket.

Komfort figyelembe vétele

A szabályozás ezen minőségi jellemzője a hibajellel arányos. Ennek átlaga egy referenciától mért átlagos eltérést ad (ez az állandósult állapotbeli hiba). Ha a hiba abszolút integrálját vesszük, akkor kiválaszthatjuk a zavarokra minimális hibával működő szabályozást. Ezt a mennyiséget Kh, azaz kelvinóra mértékegységben értjük.

Az alábbi ábrákon látható a költségek és komfort metrikája egyes szabályozókra, a previewing függvényében. (A rövidebb jelölésrendszer érdekében R0 jelöli, ha a referenciajelből csak az aktuális értéket ismerjük, D10 pedig azt, ha a zavarjel (disturbance) értékét 10 lépésre előre ismerjük.)

3.3. ábra. Szabályozók összehasonlítása komfort és költség szempontjából

Hőérzetbeli különbségek

A szabályozás performanciáját tovább árnyalja, hogy azonos levegőhőmérséklet esetén is lehet különböző a hőérzetünk. Elég arra gondolni, hogy az időjárás-előrejelzések is megadnak hőérzetet is, amely napsütés esetén a ténylegesnél magasabb, szél esetén alacsonyabb lehet.

A épületekben a sugárzó fűtések magasabb hőérzetet biztosítanak, ezért a referenciajelet alacsonyabbra is lehet állítani.

Súlyozás további hangolása

A korábbi szimulációkból látható, hogy azonos költségfüggvény esetén is más-más lesz a szabályozók viselkedése. Ezért a previewing beállítása után is szükség lehet a súlyok állítására, ezt vizsgáltam meg az alábbiakban.

Kiválasztottam a 3.3b. ábra szerint a két legalacsonyabb teljesítményigényű szabályozót. Az R10D48 szabályozó (a previewing lépésszámából következik a jelölés, ld. az alábbi táblázat) súlyait tovább hangoltam, ez szintén leolvasható a táblázatból.

T_s	30 perc 24 óra (48 lépés)		
p			
\mathbf{c}		1	
szabályozó	eredeti	súlyozott	
w_u	[0 0]	$[0.01 \ 0.005]$	
$w_{\Delta u}$	$[0.1 \ 0.1]$	$[0.1 \ 0.05]$	
w_y	1	1	
SF	1	300 (MV,DV)	
Ref. preview	5	10	
Dist. preview	10	48	

3.1. táblázat. MPC szabályozó paraméterei

Összehasonlítható a két vizsgált szabályozó viselkedése:

(a) Referencia 5 lépéssel, zavarás 10 lépéssel előre ismert

(b) Referencia 10 lépéssel, zavarás 48 lépéssel előre ismert, módosított súlyozással

A számszerű eredmények azt mutatják, hogy az abszolút hibaintegrált tovább tudtuk csökkenteni, és eközben (a korábbihoz képest, ld. 3.3a. ábra) jobban használtuk a padlófűtést.

(b) Referencia 10 lépéssel, zavarás 48 lépéssel előre ismert, módosított súlyozással

Összefoglalás

Az elvégzett munka célja gyakorlatban is alkalmazható MPC hangolási módszerek kipróbálása volt. A forrásaim alapján megvizsgáltam, hogy a signal previewing és a súlyozás hogyan befolyásolja a szabályozást, mind a beavatkozó jelekkel arányos költségeket, mind az alapjelkövetéssel arányos komfortot.

Azt hiszem, hogy ezeket a módszereket a gyakorlatban is ki lehet használni és a hagyományos megoldásoknál alacsonyab energiafelhasználást lehet elérni.

Irodalomjegyzék

- [1] Dimitrios Gyalistras et al. Markus Gwerder. Final Report: Use of Weather And Occupancy Forecasts For Optimal Building Climate Control Part II: Demonstration. https://opticontrol.ee.ethz.ch/Lit/Gwer_13_Rep-OptiCtrl2FinalRep.pdf, 2013. [Online].
- [2] Alberto Bemporad, N. Lawrence Ricker, Manfred Morar (MathWorks). Model Predictive Control ToolboxTM Reference. https://www.mathworks.com/help/pdf_doc/mpc/mpc_ug.pdf, 2019. [Online].
- [3] Paul Agachi, Zoltan Kalman Nagy, Vasile Cristea, and Arpad Imre-Lucaci. *Model Based Control Case Studies in Process Engineering*. 11 2006.
- [4] Alberto Bemporad). Course on Model Predictive Control (IMT Lucca). http://cse.lab.imtlucca.it/~bemporad/teaching/mpc/imt/1-linear_mpc.pdf, 2019. [Online].