Introduction to Analysis I HW3

B13902024 張沂魁

September 27, 2025

Problem 0.0.1 (16pts).

(a) Let

$$X := \left\{ (a_n)_{n=0}^{\infty} : \sum_{n=0}^{\infty} |a_n| < \infty \right\}$$

be the space of absolutely convergent sequences. Define the ℓ^1 and ℓ^∞ metrics on this space by

$$d_{\ell^1}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}) := \sum_{n=0}^{\infty} |a_n - b_n|,$$

$$d_{\ell^{\infty}}((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}) := \sup_{n \in \mathbb{N}} |a_n - b_n|.$$

Show that these are both metrics on X, but show that there exist sequences

$$x^{(1)}, x^{(2)}, \dots$$

of elements of X (i.e. sequences of sequences) which are convergent with respect to the $d_{\ell^{\infty}}$ metric but not with respect to the $d_{\ell^{1}}$ metric. Conversely, show that any sequence which converges in the $d_{\ell^{1}}$ metric automatically converges in the $d_{\ell^{\infty}}$ metric.

(b) Let (X, d_{ℓ^1}) be the metric space from part (a). For each natural number n, let $e^{(n)} = (e_j^{(n)})_{j=0}^{\infty}$ be the sequence in X such that

$$e_j^{(n)} := \begin{cases} 1, & \text{if } n = j, \\ 0, & \text{if } n \neq j. \end{cases}$$

Show that the set

$$\{e^{(n)}:n\in\mathbb{N}\}$$

is a closed and bounded subset of X, but is not compact.

(This is despite the fact that (X, d_{ℓ^1}) is even a complete metric space—a fact which we will not prove here. The problem is not that X is incomplete, but rather that it is "infinite-dimensional," in a sense that we will not discuss here.)

Problem 0.0.2 (24pts). A metric space (X,d) is called *totally bounded* if for every $\varepsilon > 0$, there exists a natural number n and a finite number of balls

$$B(x^{(1)}, \varepsilon), B(x^{(2)}, \varepsilon), \dots, B(x^{(n)}, \varepsilon)$$

which cover X (i.e. $X = \bigcup_{i=1}^{n} B(x^{(i)}, \varepsilon)$).

- (a) Show that every totally bounded space is bounded.
- (b) Show the following stronger version of Proposition 1.5.5: if (X, d) is compact, then it is complete and totally bounded. *Hint*: if X is not totally bounded, then there is some $\varepsilon > 0$ such that X cannot be covered by finitely many ε -balls. Then use Exercise 8.5.20 (on page 182 of Analysis I)to find an infinite sequence of balls $B(x^{(n)}, \varepsilon/2)$ which are disjoint from each other. Use this to construct a sequence which has no convergent subsequence.
- (c) Conversely, show that if X is complete and totally bounded, then X is compact. Hint: if $(x^{(n)})_{n=1}^{\infty}$ is a sequence in X, use the total boundedness hypothesis to recursively construct a sequence of subsequences $(x^{(n;j)})_{n=1}^{\infty}$ of $(x^{(n)})_{n=1}^{\infty}$ for each positive integer j, such that for each j the elements of the sequence $(x^{(n;j)})_{n=1}^{\infty}$ are contained in a single ball of radius 1/j. Also ensure that each sequence $(x^{(n;j+1)})_{n=1}^{\infty}$ is a subsequence of the previous one $(x^{(n;j)})_{n=1}^{\infty}$. Then show that the "diagonal" sequence $(x^{(n;n)})_{n=1}^{\infty}$ is a Cauchy sequence, and then use the completeness hypothesis.

Problem 0.0.3 (16pts).

- (a) A metric space (X, d) is compact if and only if every sequence in X has at least one limit point in X.
- (b) Let (X,d) have the property that every open cover of X has a finite subcover. Show that X is compact.

Hint: If X is not compact, then by part (a) there is a sequence $(x^{(n)})_{n=1}^{\infty}$ with no limit points. Then for every $x \in X$ there exists a ball $B(x, \varepsilon)$ containing x which contains at most finitely many elements of this sequence. Now use the hypothesis.

Problem 0.0.4 (10pts). Let (X, d) be a compact metric space. Suppose that $(K_{\alpha})_{\alpha \in I}$ is a collection of closed sets in X with the property that any finite subcollection of these sets necessarily has non-empty intersection, thus

$$\bigcap_{\alpha \in F} K_{\alpha} \neq \emptyset \quad \text{for all finite } F \subseteq I.$$

(This property is known as the finite intersection property.)

Show that the entire collection has non-empty intersection, thus

$$\bigcap_{\alpha\in I}K_{\alpha}\neq\varnothing.$$

Show by counterexample that this statement fails if X is not compact.

Problem 0.0.5 (24pts).

(a) Let (X,d) be a metric space, and let $(E,d|_{E\times E})$ be a subspace of (X,d). Let $\iota_{E\to X}:E\to X$ be the inclusion map, defined by setting

$$\iota_{E \to X}(x) := x \text{ for all } x \in E.$$

Show that $\iota_{E\to X}$ is continuous.

(b) Let $f: X \to Y$ be a function from one metric space (X, d_X) to another (Y, d_Y) . Let E be a subset of X (which we give the induced metric $d_X|_{E\times E}$), and let $f|_E: E \to Y$ be the restriction of f to E, thus

$$f|_E(x) := f(x)$$
 when $x \in E$.

If $x_0 \in E$ and f is continuous at x_0 , show that $f|_E$ is also continuous at x_0 . (Is the converse of this statement true? Explain.)

Conclude that if f is continuous, then $f|_E$ is continuous. Thus restriction of the domain of a function does not destroy continuity.

Hint: use part (a).

(c) Let $f: X \to Y$ be a function from one metric space (X, d_X) to another (Y, d_Y) . Suppose that the image f(X) of X is contained in some subset $E \subseteq Y$ of Y. Let $g: X \to E$ be the function which is the same as f but with the codomain restricted from Y to E, thus g(x) = f(x) for all $x \in X$.

Note on codomain: The *codomain* of a function is the declared target set of the function, in contrast to the *image* (or range), which is the set of values the function actually takes. So while f is originally defined with codomain Y, its values all lie in the smaller set $E \subseteq Y$. Therefore, one can equivalently regard f as a function $g: X \to E$. The metric on E is the one *induced from* Y, i.e. $d_Y|_{E\times E}$.

Show that for any $x_0 \in X$, f is continuous at x_0 if and only if g is continuous at x_0 . Conclude that f is continuous if and only if g is continuous.

(Thus the notion of continuity is not affected if one restricts the codomain of the function.)

Problem 0.0.6 (20pts). Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \mapsto Y$ is a function from X to Y.

(a) Prove that f is continuous on X if, and only if,

$$f(\overline{A}) \subseteq \overline{f(A)}$$

for every subset A of X.

(b) Prove that f is continuous on X if, and only if, f is continuous on every compact subset of X.

Hint: If $x_n \to p$ in X, the set $\{p, x_1, x_2, \dots\}$ is compact.