

### Song project

EQ2341 Pattern Recognition and Machine Learning



Toot



# **Dataset**Samples for training and testing

Different large datasets researched.

- Choral singing (ICMPC/ESCOM, 2018).
- Standford's DAMP (ICASSP, 2018).

Finally, we used of our own data and voices to train.

| ita and voices to train. |                                                             | iraining |       | lest  |       |   |
|--------------------------|-------------------------------------------------------------|----------|-------|-------|-------|---|
|                          |                                                             | Oriol    | Clara | Oriol | Clara |   |
| Melody A 💿               | Cherry lady                                                 | 5        | 0     | 2     | 0     |   |
| Melody B                 | Happy birthday                                              | 6        | 6     | 1     | 1     |   |
| Melody C                 | Quan les oques<br>van al camp<br>(traditional Catalan song) | 6        | 6     | 1     | 1     | _ |

Training



# **Dataset**Spectogram and frequency analysis

- 1. Apply Yin algorithm to detect note frequency.
- 2. Infer semitone and octave from note frequency.



Spectogram for Melody B

Frequencies for Melody C



### **Feature extractor**

### Theoretical interpretation

The most relevant features in melodies are timbre, rhythm and dynamics<sup>[1]</sup>. According to that, our feature extractor contains 8 different parameters.

- Semitone (st).
- Octave (o).
- Silence (s).
- Filtered Silence (sf).
- Intensity (i).
- Tempo (t).
- Semiton Difference (dst).
- Octave Difference (do).

$$F = \begin{pmatrix} o_1 & o_2 & \cdots & o_n \\ s_1 & s_2 & \cdots & s_n \\ sf_1 & sf_2 & \cdots & sf_n \\ i_1 & i_2 & \cdots & i_n \\ t_1 & t_2 & \cdots & t_n \\ dst_1 & dst_2 & \cdots & dst_n \\ do_1 & do_2 & \cdots & do_n \end{pmatrix}$$

[1] NAWAZ, Rab; NISAR, Humaira; YAP, Vooi; TANG, Py. Acoustic Feature Extraction from Music Songs to Predict Emotions Using Neural Networks. In: 2018, pp. 166–170. Available from DOI: 10.1109/ICBAPS.2018.8527414



# **Feature extractor**Graphical interpretation



$$F = \begin{pmatrix} st_1 & st_2 & \cdots & st_n \\ o_1 & o_2 & \cdots & o_n \\ s_1 & s_2 & \cdots & s_n \\ sf_1 & sf_2 & \cdots & sf_n \\ i_1 & i_2 & \cdots & i_n \\ t_1 & t_2 & \cdots & t_n \\ dst_1 & dst_2 & \cdots & dst_n \\ do_1 & do_2 & \cdots & do_n \end{pmatrix}$$



### **HMM** implementation

Design, training and prediction

### Design

- 2 different approaches.
  - a) Discret observation probability matrix ( $\lambda = \{\{q, A\}, B_{discret}\}$ ).
  - b) Continuous observation probability matrix ( $\lambda = \{\{q, A\}, B_{Continious(GMM)}\}$ ).

### **Training**

1. Baum-Welch algorithm per song.

### **Prediction**

- 1. Forward algorithm.
  - a. Calculate the logprob(obs) per class given the obs sequence.
  - b. Select the maximum probability.



## Continuous observation probability matrix approach Gaussian Mixture model

#### General idea



#### **Characteristics**

$$\lambda = \{ \{q, A\}, B_{Continious(GMM)} \}$$

$$q_{j} = [P_{1} = j] \approx \frac{1}{N} + \mathcal{N}(\mu, \sigma^{2})$$

$$a_{ij} = [P_{t} = i | P_{t+1} = j] \approx \frac{1}{N} + \mathcal{N}(\mu, \sigma^{2})$$

$$b_{i(x_{t})} = f_{Xt|S_{t}}(x_{t}|i) = \sum_{m=1}^{M} w_{im}g(x_{t}, \mu_{im}, C_{im})$$

Making sure the transition matrix is row-stochastic.

- N = 5.
- M = 2.
- f<sub>1</sub> = Semitones difference.
- $f_2' = Octaves$ .



### Continuous observation probability matrix approach

Problem with the Gaussian Mixture model



$$\mu_1 = 7; \sigma_1^2 = 23$$
  
 $\mu_2 = 6.8; \sigma_2^2 = 0.3$   
 $\mu_3 = 7.5; \sigma_3^2 = 0.2$   
 $\mu_4 = 11; \sigma_4^2 = 0.1$ 



### **Discret observation probability matrix approach**Theoretical model

### **Characteristics**

$$\lambda = \{\{q, A\}, B_{discret}\}$$

$$q_j = [P_1 = j] \approx \frac{1}{N} + \mathcal{N}(\mu, \sigma^2)$$

$$a_{ij} = [P_t = i | P_{t+1} = j] \approx \frac{1}{N} + \mathcal{N}(\mu, \sigma^2)$$

$$b_{jm} = P[Z_t = m | S_t = j] \approx \frac{1}{M} + \mathcal{N}(\mu, \sigma^2)$$

Making sure the transition and observation matrices are row-stochastic.

- N: 6.
- M: 1 feature for 13 discrete values.
- f<sub>1</sub>: Semitones restricted to one octave [-12, 12].



# **Experimental results**Example of trained matrices

### **Q** matrix



#### A matrix **B** matrix

| 0 | 0.00000 | 0.00000 | 0.79644 | 0.00000 | 0.20317 | 0.00039 |  |
|---|---------|---------|---------|---------|---------|---------|--|
| 1 | 0.11479 | 0.27034 | 0.00000 | 0.00000 | 0.61487 | 0.00000 |  |
| 2 | 0.00000 | 0.00005 | 0.00000 | 0.00016 | 0.00000 | 0.99979 |  |
| 3 | 0.00002 | 0.80910 | 0.02846 | 0.16240 | 0.00000 | 0.00002 |  |
| 4 | 0.53532 | 0.21207 | 0.00000 | 0.01546 | 0.00000 | 0.23715 |  |
| 5 | 0.05979 | 0.07119 | 0.00000 | 0.19207 | 0.00000 | 0.67695 |  |

| 9       | 10      | 11      | 12      | 13      | 14      | 15      |
|---------|---------|---------|---------|---------|---------|---------|
| 0.00000 | 0.03862 | 0.10082 | 0.00000 | 0.06458 | 0.35102 | 0.18253 |
| 0.07214 | 0.04362 | 0.00000 | 0.36260 | 0.39507 | 0.00000 | 0.00000 |
| 0.04765 | 0.06829 | 0.23371 | 0.07918 | 0.26519 | 0.00000 | 0.00000 |
| 0.00000 | 0.00000 | 0.12102 | 0.65711 | 0.09280 | 0.00000 | 0.00000 |
| 0.06854 | 0.11026 | 0.52448 | 0.08619 | 0.00001 | 0.00000 | 0.00000 |
| 0.01058 | 0.00131 | 0.00000 | 0.94460 | 0.03233 | 0.00000 | 0.00000 |



# **Results**Description of the tests

We tried multiple different configurations embracing different permutations with the following values.

- N = 2, 3, 4, 6, 8 and 10.
- M = 13, 49, 73 and 169.
- Features: Semitones and semitones difference.
- Data: All columns and only those where there is a change.
- Repetitions: 1, 2, 5 and 100.



# **Results**Log probabilities of the test songs

|          | Melody A |          | Melody B |          | Melody C |          |
|----------|----------|----------|----------|----------|----------|----------|
|          | Test 1 🗸 | Test 2 🗶 | Test 1 🗸 | Test 2 🗸 | Test 1 🗸 | Test 2 🔽 |
| Melody A | -144,50  | -175,05  | -315,05  | -290,09  | -250,94  | -212,03  |
| Melody B | -155,01  | -152,32  | -286,38  | -203,31  | -160,26  | -181,56  |
| Melody C | -160,45  | -151,23  | -288,26  | -207,40  | -155,46  | -180,32  |

N = 4, M = 13



### Discussion

### Conclusions and improvements

### **Conclusions**

- 1. HMMs for song due to high accuracy.
- 2. Increase dataset of melody A to train more HMM A to get a higher accuracy.

### **Future improvements**

- 1. Better feature extractor.
- 2. Apply observation continuous matrix with GMM.



## Song project

EQ2341 Pattern Recognition and Machine Learning



