Course Code:	Subject Title: Green Buildings
Year and Semester: IV Year I Semester	

Pre-requisite: Basic knowledge of Building Components, Engineering Physics Course Objectives:

- 1. This course aims to highlight importance of Energy- Efficient Buildings within the context of Energy issues in the 21st century.
- 2. To familiarize students with the concept of Energy efficiency, Renewable sources of energy and their effective adaptation in green buildings
- 3. To give a fuller understanding of Building Form and Fabric, Infiltration, ventilation, Lighting, cooling and water conservation.
- 4. To highlight the importance of Environmental Management as well as Environmental Impact Assessment methods in Energy efficient buildings.
- 5. To make students aware regarding various Green Building Certifications and Energy Conservation Building code
- 6. Syllabus

UNIT-I: Green Buildings within the Indian Context, Types of Energy, Energy Efficiency and Pollution, Better Buildings, Reducing energy consumption, Low energy design. (10 Hours)

UNIT II: Renewable Energy sources that can be used in Green Buildings – Conventional and Non Conventional Energy, Solar energy, Passive Solar Heating, Passive Solar collection, Wind and other renewables. A passive solar strategy, Photovoltaics, Rainwater Harvesting Climate and Energy, Macro and Microclimate. Indian Examples. (14 Hours)

UNIT-III: Building Form – Surface area and Fabric Heat Loss, utilizing natural energy, Internal Planning, Grouping of buildings. Building Fabrics- Windows and doors, Floors, Walls, Masonry, Ecological walling systems, Thermal Properties of construction material. (12 Hours)

UNIT-IV: Infiltration and ventilation, Natural ventilation in commercial buildings, passive cooling, modelling air flow and ventilation, Concepts of daylight factors and day lighting, daylight assessment, artificial lighting, New light sources. Cooling buildings, passive cooling, mechanical cooling. Water conservation- taps, toilets and urinals, novel systems, collection and utilization of rain water. (15 Hours)

UNIT-V: Energy awareness, monitoring energy consumption, Building Environmental Assessment - environmental criteria - assessment methods - assessment tools (e.g. LEED, GRIHA & IGBC Certification for buildings. Ecohomes, Sustainable architecture and urban design – principles of environmental architecture, Benefits of green buildings – Energy Conservation Building code - NBC

-Case Studies - Green Buildings in Auroville and Dakshina Chitra, Tamil Nadu, India (13 Hours)

TEXT BOOKS:

1. William T. Meyer., Energy Economics and Building Design., New York: McGraw-Hill, Inc Indian Green Building Council

REFERENCE BOOKS:

1. Public Technology, Inc. (1996). Sustainable Building Technical Manual: Green Building Design, Construction, and Operations. Public Technology, Inc.,

- Washington, DC.
- 2. Sim Van Der Ryn, Stuart Cowan, "Ecological Design", Island Press (1996).
- 3. Dianna Lopez Barnett, William D. Browning,"A Primer on Sustainable Building", Rocky Mountain Green Development Services.
- 4. The HOK Guidebook to Sustainable Design, Sara Mendler and William Odell, John Wiley.
- 5. David A. Gottfried, Sustainable Building Technical Manual., Public Technology Inc
- 6. Richard D. Rush, . Building System Integration Handbook., New York: John Wiley & Sons
- 7. Ben Farmer & Hentie Louw., Companion to Contemporary Architectural Thought, London & New
- 8. Peter Noever (ed)., Architecture in Transition: Between Deconstruction and New Modernism., Munich: Prestel.

Course Outcomes:

The students will be able to

CO1: Understand why buildings should be made energy efficient.

CO2: Have a fuller grasp on Renewable Energy mechanisms such as Passive Solar heating and collection, Photovoltaics, and Ground source heat pumps, and their adaption to green building concepts.

CO3: Understand the concepts of Site and Climate, Building Form, Building Fabric

CO4: Understand the concepts of Infiltration and ventilation, Lighting, Heating, Cooling, Energy Management and water conservation.

CO5: Have the necessary skills to undertake an Environmental Impact Assessment study for Energy Efficient Buildings. They shall be equipped with the associated cutting-edge management strategies too.

BL - Bloom's Taxonomy Levels

1- Remembering, 2- Understanding, 3 – Applying, 4 – Analysing, 5 – Evaluating, 6 – Creating

Micro Syllabus of Green Buildings

Unit-I:Green Buildings within the Indian Context, Types of Energy, Energy Efficiency and Pollution, Better Buildings, Reducing energy consumption, Low energy design.

Unit	Module	Micro content
Ī	Introduction to green buildings	Green Buildings within the Indian Context Green building and its relevance Green Building Rating Systems in India Types of Energy Energy Efficiency and Pollution Better Buildings Reducing energy consumption Low energy design
Unit- II:Renewable Energy sources that can be used in Green Buildings - Conventional and		

Non-Conventional Energy, Solar energy, Passive Solar Heating, Passive Solar collection, Wind and other renewables. A passive solar strategy, Photovoltaics, Rainwater Harvesting, Climate and Energy, Macro and Microclimate, Indian Examples.

Unit	Module	Micro content
	Renewable Energy	Conventional Energy
	sources that can be used in	Non-Conventional Energy
	Green Buildings	
		Passive Solar Heating
		Passive Solar collection
	Solar Energy	A passive solar energy
		strategy
		Photovoltaics
	Wind and other renewable	Solar Photovoltaic Systems
	Wind and other renewable	Types of Solar PV
		Generating System
		Artificial ground water
		recharge
		Roof top rainwater harvesting
II		Harvesting in limited rainfall
11		areas
	Rainwater Harvesting	Rainwater harvesting for
		plotted/group housing
		developments
	Climate and Energy	Climate and Energy
		Site and Micro Climate
		MACRO CLIMATE
		MICRO CLIMATE
		Micro Climate – Effect of
		local terrain and
		Buildings
		IMPROVING MICRO
	Macro and Micro Climate	CLIMATE THROUGH
		DESIGN
		Factor affecting micro
		climate

Unit-III: Building Form – Surface area and Fabric Heat Loss, utilizing natural energy, Internal Planning, grouping of buildings. Building Fabrics- Windows and doors, Floors, Walls, Masonry, Ecological walling systems, Thermal Properties of construction material.

Unit	Module	Micro content
		Building Form Development
	Building Forms	Plan
		Building Form, Orientation
		and Shading
111		Envelope Optimization
III	Thermal Performance	Enhancement of thermal
		performance of walls
		Types of thermal insulation

	materials
 	1 4 4 14 41

Unit-IV: Infiltration and ventilation, Natural ventilation in commercial buildings, passive cooling, modelling air flow and ventilation, Concepts of daylight factors and day lighting, daylight assessment, artificial lighting, New light sources. Cooling buildings, passive cooling, mechanical cooling. Water conservation- taps, toilets and urinals, novel systems, collection and utilization of rain water.

Unit	Module	Micro content
	Infiltration and ventilation	Infiltration
		Passive Cooling Techniques
	Lighting	Lighting
		Day lighting
IV		Day lighting and Controls
		Rainwater Harvesting
		Window design for natural
		ventilation
		SKYLIGHT

Unit-V: Energy awareness, monitoring energy consumption, Building Environmental Assessment - environmental criteria - assessment methods - assessment tools (e.g. LEED, GRIHA & IGBC Certification for buildings. Eco homes, Sustainable architecture and urban design - principles of environmental architecture, Benefits of green buildings - Energy Conservation Building code - NBC - Case Studies - Green Buildings in Auroville and Dakshina Chitra, Tamil Nadu, India.

Unit	Module	Micro content
		LEED (Leadership in
	Environmental	Energy and Environmental
	assessment methods for	Design
	buildings (LEED,	BREEAM (Building
	BREEAM, HQE)	Research Establishment
		Environmental Assessment)
		Green Rating for Integrated
		Habitat Assessment
	Three primary rating	(GRIHA)
	systems for Green buildings	Indian Green Building
	in India	Council (IGBC)
		Bureau of Energy Efficiency (BEE)
V		energy efficiency of a building
·		energy efficiency in buildings importance
		Determining a building's
	energy efficiency of a building	energy performance
		Energy use indicators
		Five Principles of an
		environmental architecture
		The Energy Conservation
		Building Code