ECML PKDD 2021

Finding High-Value Training Data Subset through Differentiable Convex Programming

Soumi Das[†], Arshdeep Singh[†], Saptarshi Chatterjee[†], Suparna Bhattacharya^{*}, Sourangshu Bhattacharya[†]

† Indian Institute of Technology, Kharagpur * Hewlett Packard Labs, Hewlett Packard Enterprise

Subset Selection

Research Question: How to select the most informative items?

NP-Hard Problem

Context of Informativeness

Machine Learning Setup

Training Data

Machine Learning Model

Test Data performance

Machine Learning Setup

Training Data

Machine Learning Model

Test Data performance

How much does each data point contribute towards the test set performance?

Machine Learning Setup

Training Data

Machine Learning Model

Test Data performance

Applications: Explainability; Debugging domain mismatch; Fixing mislabelled examples

Related Works

- 1. Influence Functions (IF)
- 2. Data Shapley (<u>DS</u>)
- TracIn using Checkpointing (<u>TracIn-CP</u>)
- 4. Data Valuation using Reinforcement Learning (<u>DVRL</u>)

- 1. Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." ICML. PMLR, 2017.
- 2. Ghorbani, Amirata, and James Zou. "Data shapley: Equitable valuation of data for machine learning." *ICML*. PMLR, 2019.
- 3. Pruthi, Garima, et al. "Estimating training data influence by tracing gradient descent." NeurIPS (2020).
- 4. Yoon, Jinsung, Sercan Arik, and Tomas Pfister. "Data valuation using reinforcement learning." ICML. PMLR, 2020.

Proposed Method:

HOST-CP = **H**igh value **O**nline **S**ubset selection of **T**raining samples through differentiable **C**onvex **P**rogramming

High-Level Idea

- Learnable subset selection formulation.
- Jointly learn the selection parameters along with the model parameters for optimizing the value function.

Problem Statement

$$\max_{s \in \mathcal{S}} v(s) \text{ sub. to } |s| \leq \gamma n$$

$$\text{Value function}$$
Fraction of incoming instances

$$v(s) = -\mathcal{L}(f(\theta^*(s)), \mathcal{D}^t)$$

Other value functions exist like test set accuracy, or expected return in the context of Reinforcement Learning

Related works: Data Valuation

Training data

Related works: Data Valuation → **Subset Selection**

Examples from real data

Top few images were from only

50,000 images of 10 classes

Solution Framework

Selection

Selection Objective Function

$$s^* = \min_{s \in S} \sum_{(x,y) \in D} \min_{(x',y') \in s} d(x,x')$$

This can be mapped to Facility Location problem and relaxed to convex linear programming problem

Instance Selection

We exploit the fact that the selection of a training point can depend on other training points also.

Convex Optimisation Selection

Existing set _ Incoming set

$$\min_{z_{ij}^o, z_{ij}^n \in [0,1]} \sum_{x_i \in D_{i(t)}, x_j \in \mathcal{O}(t)} z_{ij}^o d(x_i, x_j) + \sum_{x_i \in D_{i(t)}, x_j \in D_{i(t)}} z_{ij}^n d(x_i, x_j)$$

sub. to
$$\sum z_{ij}^o + \sum z_{ij}^n = 1, \ \forall i = \{1, \dots, n\}$$

$$\sum_{x_j \in D_{i(t)}} u_j \le \gamma |D_{i(t)}|$$

 $x_i \in D_{i(t)}$

 $D(h(x_i,\phi),h(x_j,\phi))$

Affine function

$$\sum_{i,j} z_{ij}^n d(x_i, x_j)$$

$$\forall i = \{1, \ldots, n\}$$

Update 0

Update model parameter 0

$$\theta^{t+1} = \theta^t - \alpha \frac{1}{k} \nabla_{\theta} \mathcal{L}(\theta; \phi^t, D_{i(t)})$$

Update Φ

Update Φ

Update selection parameter Φ

$$\phi^{t+1} = \phi^t - \beta \frac{1}{k} \nabla_{\phi} \mathcal{V}(\phi; \theta^t, D_{i(t)}, \mathcal{D}^t)$$

Update selection parameter Φ

$$\phi^{t+1} = \phi^t - \beta \frac{1}{k} \nabla_{\phi} \mathcal{V}(\phi; \theta^t, D_{i(t)}, \mathcal{D}^t)$$

Differentiable Convex Paradigm (DCP)

¹ Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., Kolter, J.Z.: Differentiable convex optimization layers. In: NeurIPS (2019)

Update selection parameter Φ

$$\mathcal{V}(\phi; \theta', \mathcal{D}, \mathcal{D}^t) = v(\hat{\theta}, \mathcal{D}^t), \text{ where } \hat{\theta} = \theta' - \alpha \nabla_{\theta} \mathcal{L}(\theta; \phi, \mathcal{D})$$

$$\mathcal{L}(\theta; \phi, \mathcal{D}) = \frac{1}{\gamma |\mathcal{D}|} \sum_{(x_j, y_j) \in \mathcal{D}} u_j(\phi) L(y_j, f(x_j; \theta))$$

Joining the threads

Empirical Evaluation

Datasets

- 1. Image domain CIFAR10
- 2. Biomedical domain Protein
- 3. Text domain 20 Newsgroups
- 4. Synthetic dataset

This is the first line of this text example.

This is the second line of the same text.

Applications

- 1. Explainability: Which set of examples best explains the test set predictions?
- 2. Diagnosing mislabelled examples: How early can the mislabelled examples be detected?

Experimental Results : Addition

Experimental Results : Addition

Data Shapley(DS) reaches the same accuracy level at a fraction of 20% that HOST-CP attained at a fraction of 5%

Denotes presence of redundant elements in selection using baselines.

Intuitive examples

Top few images were from only the classes - horse and bird

Baseline method

Top few images were from different classes - deer, bird, truck, dog, etc

HOST-CP

Experimental Results: Mislabelling

Experimental Results: Mislabelling

DS

DVRL

■ WS

Conclusion

- 1. Proposed a technique for finding high-values subsets essential for better test set predictions.
- 2. Designed a learning convex framework for subset selection.
- 3. Compared the method against S.O.T.A baselines to show that the proposed method performs comparatively better thus giving considerably better subsets.

Paper: https://arxiv.org/abs/2104.13794 Github: https://github.com/SoumiDas/HOST-CP

THANK YOU!!