18MAB102T- ADVANCED CALCULUS AND COMPLEX ANALYSIS

Unit I - Double and Triple Integrals

Dr. E. NANDAKUMAR and Dr. R. VENKATESAN
Assistant Professor,
Department of Mathematics,
Kattankulathur-603 203.

Area using double Integration

Area of the region R by rectangular co-ordinates is $\int\limits_R\int dxdy=\int\limits_R\int dydx$ Area of the region R by polar co-ordinates is $\int\limits_R\int rdrd\theta$

Problem: 1

Show, by double integration, that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$

Solution: The region by integration is as shown.

Solving $y^2 = 4ax$ and $x^2 = 4ay$ are set (0,0), (4a,4a). Take a strip parallel to y-axis implies limits for $y = \frac{x^2}{4a}$ and $y = 2\sqrt{ax}$ and then x varies form 0 to 4a.

$$\therefore \text{Area} = \int_{0}^{4a^{2}\sqrt{ax}} \int_{\frac{x^{2}}{4a}}^{4a} dy dx = \int_{0}^{4a} [y]_{\frac{x^{2}}{4a}}^{2\sqrt{ax}} dx$$

$$= \int_{0}^{4a} \left(2\sqrt{a}x^{1/2} - \frac{x^{2}}{4a} \right) dx = \left[2\sqrt{a}\frac{x^{1/2} + 1}{\frac{1}{2} + 1} - \frac{1}{4a}\frac{x^{3}}{3} \right]_{0}^{4a}$$

$$= \left[\frac{4}{3}\sqrt{a}x^{3/2} - \frac{1}{12a}x^{3} \right]_{0}^{4a} = \frac{4}{3}\sqrt{a}(4a^{3/2}) - \frac{1}{12a}(4a^{3})$$

$$= \frac{4}{3}a^{2}(4 \times 2) - \frac{1}{12a} \times 64a^{3}$$

 $=\frac{32}{2}a^2-\frac{16}{2}a^2=\frac{16}{2}a^2$ Sq.units.

Find by double integration, the area enclosed by the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Solution: The curve is symmetrical about both axes.

$$=4\int_{A}^{a} dy dx = 4\int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} dy dx$$

$$=4\int_{0}^{a} [y]_{0}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} dx = \frac{4b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} dx$$

$$=\frac{4b}{a} \left[\frac{x}{2}\sqrt{a^{2}-x^{2}} + \frac{a^{2}}{2}sin^{-1}\left(\frac{x}{a}\right)\right]_{0}^{a}$$

$$=\frac{4b}{a} \times \frac{a^{2}}{2} \times \frac{\pi}{2} = \pi ab \text{ Sq. units.}$$

Note: If a = b, the ellipse becomes circle. Then Area= πr^2

Problem: 3

Find by double integration, smaller of the areas bounded by the circle $x^2 + v^2 = 9$ and x + v = 3.

Solution: The region of integration is as shown y varies from 3-x $\sqrt{9-x^2}$ and x varies from 0 to 3

Area =
$$\int \int dy dx$$

= $\int_{0}^{3} \int_{3-x}^{\sqrt{9-x^2}} dy dx = \int_{0}^{3} [\sqrt{9-x^2} - (3-x)] dx$
= $\left[\frac{x}{2}\sqrt{9-x^2} + \frac{9}{2}sin^{-1}\left(\frac{x}{3}\right)\right]_{0}^{3} - 3[x]_{0}^{3} + \left[\frac{x^2}{2}\right]_{0}^{3}$
= $\frac{9}{2}\frac{\pi}{2} - 9 + \frac{9}{2} = \frac{9\pi}{4} - \frac{9}{2} = \frac{9}{4}(\pi - 2)$ Sq.units.

Find by double integration, the area bounded by the parabola $y = x^2$ and the line y = 2x + 3.

Solution: The region of integration is as shown.

Solving y = 2x + 3 we get $x^2 - 2x - 3 = 0$. (i.e.) x = 3, -1. Required area $= \iint dy dx$ where y varies from $y = x^2$ and y = 2x + 3. Further x varies from -1 to 3.

:. Required area =
$$\int_{-1}^{3} \int_{x^2}^{2x+3} dy dx = \int_{-1}^{3} [y]_{x^2}^{2x+3} dx$$

$$= \int_{-1}^{3} (2x+3-x^2)dx = \left[2\left(\frac{x^2}{2}\right) + 3x - \frac{x^3}{3}\right]_{-1}^{3}$$
$$= \frac{32}{3} = 10\frac{2}{3} \text{ Sq.units.}$$

Find by double integration, the area lying inside the circle $r = a \sin\theta$ and outside the cordioid $r = a(1 - \cos\theta)$.

Solution: Eliminating *r* between the equations of two curves $sin\theta = 1 - cos\theta$ or $sin\theta + cos\theta = 1$.

Squaring
$$1 + \sin 2\theta = 1$$
 or $\sin 2\theta = 0$ $\therefore 2\theta = 0$ or π (i.e.) $\theta = 0$ or $\frac{\pi}{2}$.

For the required area, r varies from $a(1 - \cos\theta)$ to $a\sin\theta$ and θ varies from 0 to $\frac{\pi}{2}$.

Required area
$$= \int_{0}^{\pi/2} \int_{a(1-\cos\theta)}^{a\sin\theta} rdrd\theta$$
$$= \int_{0}^{\pi} \left[\frac{r^2}{2}\right]_{a(1-\cos\theta)}^{a\sin\theta}$$
$$= \frac{1}{2} \int_{0}^{\pi/2} a^2 [\sin^2\theta - (1-\cos\theta)^2] d\theta$$
$$= \frac{a^2}{2} \int_{0}^{\pi/2} (2\cos\theta - 2\cos^2\theta) d\theta = a^2 (1 - \frac{\pi}{4})$$

Change of polar coordinates

Problem: 1

Change to polar coordinates and evaluate \int xdxdy

Solution: The region of integration is x = y, x = a, y = 0, y = a.

(i.e) The triangle OAB putting $x = r\cos\theta$, $y = r\sin\theta$, the line x = y

becomes
$$rcos\theta = rsin\theta$$

(i.e) $tan\theta = 1 \Rightarrow \theta = \frac{\pi}{4}$

Hence in polar form
$$I = \int_{0}^{\frac{\pi}{4}} \int_{0}^{a/\cos\theta} r^2 \cos\theta dr d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} \left(\frac{r^3}{3}\right)_{0}^{a/\cos\theta} d\theta$$

$$= \frac{a^3}{3} \int_{0}^{\frac{\pi}{4}} \sec^2\theta d\theta = \frac{a^3}{3} [\tan\theta]_{0}^{\pi/4}$$

$$= \frac{a^3}{3} \int_{0}^{\pi} \sec^2\theta d\theta = \frac{a^3}{3} [\tan\theta]_{0}^{\pi/4}$$

Change to polar coordinates and evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} e^{-(x^2+y^2)} dxdy$

Solution: Putting $x = rcos\theta$, $y = rsin\theta$, the given limits $y^2 = a^2 - x^2$. (i.e) The circle $x^2 + y^2 = a^2$ changes to r = a and y = 0.

i.e. The x-axis changes to initial line $\theta = 0$. Hence, in the given region r changes from 0 to a and θ changes from 0 to $\frac{\pi}{2}$.

$$I = \int_{0}^{\pi/2} \int_{0}^{a} e^{-r^{2}} r dr d\theta$$

$$= \int_{0}^{\pi/2} \left(\frac{-1}{2}e^{-r^{2}}\right)_{0}^{a} d\theta$$

$$= -\frac{1}{2} \int_{0}^{\pi/2} (e^{-a^{2}} - 1) d\theta = \frac{\pi}{4} (1 - e^{-a^{2}}).$$

Evaluate $\int_{0}^{4a} \int_{y^2/4a}^{y} dy dx$ by changing to polar coordinates.

Solution: The region of integration is bounded by the parabola $x = y^2/4a$

(i.e) $y^2 = 4ax$ and the line x = yBy putting $x = rcos\theta$, $y = rsin\theta$, the parabola becomes $r^2 sin^2\theta = 4arcos\theta$.

$$r^2 sin^2 \theta = 4 arcos \theta$$
.
 (i.e) $r = \frac{4 acos \theta}{sin^2 \theta}$ and the line becomes $x cos \theta = r sin \theta$
 (i.e) $\theta = \frac{\pi}{4}$

Hence r varies from 0 to $\frac{4a\cos\theta}{\sin^2\theta}$ and θ varies from $\frac{\pi}{4}$ to $\frac{\pi}{2}$.

$$I = \int_{\pi/4}^{\pi/2} \int_{\sin^2\theta}^{\frac{4a\cos\theta}{\sin^2\theta}} rd\theta dr$$

$$= \int_{\pi/4}^{\pi/2} \left(\frac{r^2}{2}\right)_0^{\frac{4a\cos\theta}{\sin^2\theta}} d\theta$$

$$= \frac{1}{2} \int_{\pi/4}^{\pi/2} \left[\frac{16a^2\cos^2\theta}{\sin^4\theta}\right] d\theta$$

$$=8a^{2}\int_{\pi/4}^{\pi/2}\cot^{2}\theta\csc^{2}\theta\,d\theta$$

$$=8a^{2}\left[\frac{-\cot^{3}\theta}{3}\right]_{\pi/4}^{\pi/2}=\frac{-8a^{2}}{3}[0-1]=\frac{8a^{2}}{3}$$

$$8a^{2} \left[\frac{-\cot^{3} \theta}{3} \right]_{\pi/4}^{\pi/2} = \frac{-8a^{2}}{3} [0 - 1] = \frac{8a^{2}}{3}$$

Express the following integral in polar coordinates and evaluate

$$\int_{0}^{a} \int_{\sqrt{ax-x^2}}^{\sqrt{a^2-x^2}} \frac{dxdy}{\sqrt{a^2-x^2-y^2}}$$

Solution: The limits of y are $\sqrt{ax-x^2}$ and $\sqrt{a^2-x^2}$.

The equations of the circles now become

i)
$$r^2 - arcos\theta = 0$$
 (i.e) $r = acos\theta$

ii)
$$r^2 = a^2$$
 (i.e) $r = a$

Hence r changes from $r = a\cos\theta$ to a and θ changes from 0 to $\frac{\pi}{2}$

Evaluate
$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2-x^2}} (x^2+y^2) dxdy$$
 by changing to polar coordinates.

Solution: Put $x = r \cos\theta$, $y = r\sin\theta$: $dxdy = rdrd\theta$

$$I = \int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} (x^2 + y^2) dxdy$$

$$\int_{0}^{\pi} \int_{0}^{a} (x^2 + y^2) dxdy$$

$$= \int_{0.0}^{\pi} \int_{0}^{a} r^{2} . r dr d\theta = \left(\frac{r^{4}}{4}\right)_{0}^{a} [\theta]_{0}^{\pi} = \frac{\pi a^{4}}{4}$$

Volume by Triple Integrals

Problem: 1

Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by triple integrals.

Solution: Volume =8 \times volume in the first octant.

$$V = 8 \times \int_{0}^{a} \int_{0}^{b\sqrt{1 - \frac{x^{2}}{a^{2}}}} c\sqrt{1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}} dydx$$

$$= 8 \times \int_{0}^{a} \int_{0}^{b\sqrt{1 - \frac{x^{2}}{a^{2}}}} c\sqrt{1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}} dydx$$

$$= 8c \int_{0}^{a} \int_{0}^{b\sqrt{1 - \frac{x^{2}}{a^{2}}}} \left[\sqrt{1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}} \right] dydx$$

Put
$$r^2 = \left(1 - \frac{x^2}{a^2}\right) b^2$$

$$= \frac{8c}{b} \int_0^a \int_0^r \sqrt{r^2 - y^2} dy dx$$

$$= \frac{8c}{b} \int_0^a \left[\frac{r^2}{2} sin^{-1} \frac{y}{r} + \frac{y}{2} \sqrt{r^2 - y^2}\right]_0^r dx$$

$$= \frac{2c\pi}{b} \int_0^a r^2 dx = \frac{2c\pi}{b} \int_0^a \left(1 - \frac{x^2}{a^2}\right) b^2 dx$$

$$= 2cb\pi \left(x - \frac{x^3}{3a^2}\right)_0^a = \frac{4\pi}{3} abc$$

Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0.

Solution: z varies from z = 0 to z = 4 - y and x, y varies over all the points of the circle $x^2 + y^2 = 4$.

Volume
$$V = \int_{-2-\sqrt{4-x^2}}^{2} \int_{0}^{\sqrt{4-x^2}} dz dy dx$$

 $= \int_{-2-\sqrt{4-x^2}}^{2} \int_{0}^{\sqrt{4-x^2}} [z]_{0}^{4-y} dy dx$
 $= \int_{2}^{2} \int_{\sqrt{4-x^2}}^{\sqrt{4-x^2}} (4-y) dy dx$

$$= \int_{-2}^{2} \left[4y - \frac{y^2}{2} \right]_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} dx = 8 \times 2 \int_{-2}^{2} \sqrt{4-x^2} dx$$

$$V = 16 \left[\frac{x}{2} \sqrt{4-x^2} + \frac{4}{2} \sin^{-1} \left(\frac{x}{2} \right) \right] = 16\pi$$

Find the volume of the tetrahedron bounded by the coordinate planes and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

Solution: Volume required= $\int \int \int dx dy dz$ with limits.

$$= \int_{0}^{a} \int_{0}^{b(1-\frac{x}{a})} \int_{0}^{c(1-\frac{x}{a}-\frac{y}{b})} dz dy dx$$

$$= c \int_{0}^{a} \int_{0}^{b(1-\frac{x}{a})} \left(1 - \frac{x}{a} - \frac{y}{b}\right) dy dx$$

$$= c \int_{0}^{a} \left[\left(1 - \frac{x}{a}\right) y - \frac{y^{2}}{2b} \right]_{0}^{b(1-\frac{x}{a})} dx$$

$$= c \int_{0}^{a} \left[b \left(1 - \frac{x}{a}\right)^{2} - \frac{b^{2}}{2b} \left(1 - \frac{x}{a}\right)^{2} \right] dx$$

$$= \frac{bc}{2} \int_{0}^{a} (1 - \frac{x}{a})^{2} dx$$

$$= \frac{bc}{2} \left[\frac{\left(1 - \frac{x}{a}\right)^{2}}{3} \times \left(\frac{-a}{1}\right) \right]$$

$$= \frac{abc}{2}$$

