Building Clustering Models with scikit-learn

BUILDING A SIMPLE CLUSTERING MODEL IN SCIKIT-LEARN

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Clustering as a classic ML problem

Solving clustering using unsupervised learning

Setting up the clustering problem

Solving the clustering problem using K-means clustering

Prerequisites and Course Outline

Prerequisites

Working with Python and Python libraries

Basic understanding of machine learning algorithms

Prerequisites

Understanding Machine Learning

Understanding Machine Learning with Python

Building Your First scikit-learn Solution

Course Outline

Clustering as canonical ML problem

Implement and contrast different clustering techniques

Hyperparameter tuning in clustering

Clustering operations on image data

Supervised and Unsupervised Learning

"What lies behind us and what lies ahead of us are tiny matters compared to what lives within us"

Henry David Thoreau

Whales: Fish or Mammals?

Mammals

Members of the infraorder *Cetacea*

Fish

Look like fish, swim like fish, move with fish

Whales: Fish or Mammals?

ML-based Classifier

Training

Feed in a large corpus of data classified correctly

Prediction

Use it to classify new instances which it has not seen before

Training the ML-based Classifier

$$y = f(x)$$

Supervised Machine Learning

Most machine learning algorithms seek to "learn" the function f that links the features and the labels

Linear Regression involves finding the "best fit" line via a training process

$$y = Wx + b$$

$$f(x) = Wx + b$$

Linear regression specifies, up-front, that the function f is linear

```
def doSomethingReallyComplicated(x1,x2...):
    ...
    ...
    return complicatedResult
```

f(x) = doSomethingReallyComplicated(x)

ML algorithms such as neural network can "learn" (reverse-engineer) pretty much anything given the right training data

Everything so far discussed really applied only to Supervised Learning

Unsupervised Learning does not have:

- y variables
- · a labeled corpus

Types of ML Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Supervised Learning

Input variable x and output variable y

Learn the mapping function y = f(x)

Approximate the mapping function so for new values of x we can predict y

Use existing dataset to correct our mapping function approximation

Unsupervised Learning

Only have input data x - no output data

Model the underlying structure to learn more about data

Algorithms discover the patterns and structure in the data

Clustering Algorithms

Types of ML Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Types of ML Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Why Look Within?

To be emotionally self-sufficient

To learn what values matter (to you)

Identify others who share them...

..and those who don't

Eliminate what does not matter

In general, to train yourself to navigate the outside world

Why Look Within

In Life

To be emotionally self-sufficient
To learn what values matter to you
Identify others who share them...

Eliminate what does not matter

..and those who don't

In general, to train yourself to navigate the outside world

In Machine Learning

To make unlabelled data self-sufficient

Latent factor analysis

Clustering

Anomaly detection

Quantization

Pre-training for supervised learning problems (classification, regression)

Unsupervised Learning Use-cases

ML Technique

To make unlabelled data self-sufficient

Latent factor analysis

Clustering

Anomaly detection

Quantization

Pre-training for supervised learning problems (classification, regression)

Use-case

Identify photos of a specific individual

Find common drivers of 200 stocks

Find relevant document in a corpus

Flag fraudulent credit card transactions

Compress true color (24 bit) to 8 bit

All of the above!

Unsupervised Learning Use-cases

What

How

To make unlabelled data self-sufficient

Latent factor analysis

Autoencoder

Autoencoder

Clustering

Clustering

Anomaly detection

Autoencoder

Quantization

Clustering

Pre-training for supervised learning problems (classification, regression)

All of the above!

Unsupervised ML Algorithms

Clustering

Identify patterns in data items e.g. K-means clustering

Autoencoding

Identify latent factors that drive data e.g. PCA

Unsupervised ML Algorithms

Clustering

Identify patterns in data items e.g. K-means clustering

Autoencoding

Identify latent factors that drive data e.g. PCA

Patterns in Data

Patterns in Data

Group them based on some common attributes

Products sold on Amazon

People on Facebook

Websites indexed by Google

What if you want to group more complex entities?

Products sold on Amazon

People on Facebook

Websites indexed by Google

Too many entities, too many attributes per entity

Huge complexity

Anything can be represented by a set of numbers

Product ID, Timestamp, Amount

Age, Height, Weight

Length, word frequencies

Age, Height, Weight

Age, Height, Weight

Age, Height, Weight

A set of N numbers represents a point in an N-dimensional Hypercube

A set of points, each representing a Facebook user

Same group = similar

Different group = different

Same group = similar

Different group = different

Users in a Cluster

May like the same kind of music

May have gone to the same high school

May enjoy the same kinds of movies

The distance between users indicates how similar they are

Maximize Inter-cluster Similarity

Distances between users in the same cluster should be small

Maximize Inter-cluster Similarity

Between users in different clusters distances should be large

Entities in the same group are very similar and entities in different groups are very different

Relevant Documents in a Corpus

Rich document archives (Wikipedia, digitized books)

Hard to identify content relevant to specific user or query

Clump documents into semantically similar groups

Clustering

Color Quantization

True color images represent each image with 24 bits/pixel

Many displays and image formats use 8 bits/pixel

Statically choosing 256 not optimal - too few blues in a seascape!

Use clustering to identify the 256 most representative colors

Quantize each true color to nearest shade

Clustering Objective

Maximize intra-cluster similarity

Minimize inter-cluster similarity

The **K-means Clustering** algorithm is a famous Machine Learning algorithm to achieve this

Initialize K centroids i.e means

Recalculate the mean for each cluster

Re-assign the points to clusters

Iterate until points are in their final clusters

Each cluster has a representative point called a reference vector

K-means Clustering

Because of how they are calculated, these reference vectors are often called centroids

Repeat:

For each data point:
Assign to "nearest" cluster

For each centroid:
Update coordinates

Have centroids converged?

Yes: Stop, we're done

No: Keep iterating

◆ Pick an initial solution (algorithms exist to pick well)

- **◄** Iterate until convergence
 - Update assignments of points to clusters

■ Update coordinates of reference vectors

■ Keep iterating until we converge

```
Repeat:
```

For each data point:
Assign to "nearest" cluster

For each centroid:
Update coordinates

Have centroids converged?

Yes: Stop, we're done

No: Keep iterating

- **◄** Hyperparameters
 - **Number of clusters**
 - **◄** Initial values of centroids

Repeat:

For each data point:
Assign to "nearest" cluster

For each centroid:
Update coordinates

Have centroids converged?

Yes: Stop, we're done

No: Keep iterating

◆ Design choice #1:

- **◆**Distance measure between point, cluster
- **◄** Euclidean distance often used

```
Repeat:
```

For each data point:
Assign to "nearest" cluster

For each centroid:
Update coordinates

Have centroids converged?

Yes: Stop, we're done

No: Keep iterating

■ Design choice #2:

- **◄** Calculating cluster center from points in cluster
- ◆Centroid (simple average)
 often used

K-means Clustering

Given t data points

K-means Clustering

Each in N dimensional space

K Reference Vectors

Find K "best" reference vectors

(m, ... m^K)

Here K = 4

Assign Points to Cluster

Each point is associated with exactly one cluster

Repeat:

For each data point:
Assign to "nearest" cluster

For each centroid:
Update coordinates

Have centroids converged?

Yes: Stop, we're done

No: Keep iterating

◆ Design choice #1:

- **◆**Distance measure between point, cluster
- **◄** Euclidean distance often used

Reference Vector as Centroid

Each reference vector is the average of all points in that cluster


```
Repeat:
```

For each data point:
Assign to "nearest" cluster

For each centroid:
Update coordinates

Have centroids converged?

Yes: Stop, we're done

No: Keep iterating

■ Design choice #2:

- **◄** Calculating cluster center from points in cluster
- ◆Centroid (simple average)
 often used

Total Reconstruction Error

...Minimizing total reconstruction error

The lower the total reconstruction error, the better the fit

Individual Reconstruction Error

Square of Euclidean distance of each point from nearest reference vector

 d^2

Total Reconstruction Error

Sum over all points and reference vectors

Initial Values Matter

Pick initial values as smartly as possible

(m, ... m^K)

Homogeneity

Completeness

V-measure

Adjusted Rand Index (ARI)

Adjusted Mutual Info

Silhouette

Homogeneity

Completeness

V-measure

Adjusted Rand Index (ARI)

Adjusted Mutual Info

Silhouette

Desirable Properties of Clusters

Homogeneity

Each cluster should contain members of the same class

Completeness

All members of a class should lie in the same cluster

Homogeneity vs. Completeness Homogeneity and completeness are inversely related

Each lies between 0 and 1

Similar to precision and recall

Need a metric to optimize trade-off

V-measure

Homogeneity x Completeness

Homogeneity x Completeness

Harmonic mean of homogeneity and completeness

Closer to lower of two

Favors even weightage to both metrics

Homogeneity, Completeness, V-measure Related set of metrics

Bounded scores between 0 and 1

Easy to interpret - higher is better

Apply to any algorithm

However, require labeled data

Homogeneity

Completeness

V-measure

Adjusted Rand Index (ARI)

Adjusted Mutual Info

Silhouette

Adjusted Rand Index Measure of similarity between labels and assigned clusters

Also needs labeled data

Adjusts for probability of correct labeling by chance

Named after William Rand

Adjusted Rand Index Value between -1 and 1 in sklearn

1 indicates that labels and calculated clusters agree perfectly for all points

O or negative values are bad

Indicate that labels and calculated clusters are independent

Homogeneity

Completeness

V-measure

Adjusted Rand Index (ARI)

Adjusted Mutual Info

Silhouette

Adjusted Mutual Info Measures mutual information in overlap between cluster assignments

Also needs labeled data

1 indicates highest mutual information, i.e. best clustering

O or negative values are bad

Indicate that labels and calculated clusters are independent

Homogeneity

Completeness

V-measure

Adjusted Rand Index (ARI)

Adjusted Mutual Info

Silhouette

Important advantage of Silhouette scoring: Does not require labeled data

Silhouette
Score

Defines Silhouette coefficient for each sample

Measure of how similar an object is to objects in its own cluster

And how different it is from objects in other clusters

Overall Silhouette score averages Silhouette coefficient of each sample

No need for labeled data

Demo

Implementing K-means clustering

Demo

Implementing K-means clustering on the Iris dataset

Summary

Clustering as a classic ML problem

Solving clustering using unsupervised learning

Setting up the clustering problem

Solving the clustering problem using K-means clustering