42707 ANÁLISE MATEMÁTICA II LIÇÕES

Vítor Neves

2009/2010

Lema 1.4.1 Considere a série de potências $\sum_{n\geq 0} a_n x^n$.

- 1. Se $\overline{x} \neq 0$ e $\sum_{n\geq 0} a_n r^n$ converge, então $\sum_{n\geq 0} a_n x^n$ converge absolutamente sempre que $|x| < |\overline{x}|$.
- 2. Seja ρ o raio de convergência da série.
 - (a) $\rho = \sup\{r \ge 0 | \sum_{n \ge 0} a_n r^n \ converge\}$
 - (b) A série diverge quando $|x| > \rho$.
 - (c) A série pode convergir em qualquer dos extremos do intervalo de convergência.
 - (d) Quando todos os $a_n \neq 0$, $\rho = \overline{\lim} \frac{|a_n|}{|a_{n+1}|}$

Corolário 1.4.1 O lema anterior vale com as devidas adaptações para séries de potências de $x - x_0$.

Definição 1.4.3 Se ρ for o raio de convergência da série $\sum_{n\geq 0} a_n(x-x_0)^n$ o intervalo $]x_0-\rho,x_0+\rho[$ diz-se o intervalo de convergência; $\{x\in\mathbb{R}|\sum_{n\geq 0}a_n(x-x_0)^n\text{ converge}\}$ diz-se domínio de convergência.

1.5 Séries de Taylor

1.5.1 Teorema de Taylor

Teorema 1.5.1 Seja $f:]\alpha,\beta[\subseteq \mathbb{R} \to \mathbb{R}$ uma função de classe C^{n+1} e suponha-se que $\alpha < a < \beta$.

$$f(x) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + R_{n}(x, a)$$
$$:= \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + R_{n}(x, a) \quad (x \in]\alpha, \beta[)$$

Os restos R_n podem tomar as formas

$$R_n(x,a) = \int_a^x \frac{(x-t)^{n-1}}{(n-1)!} \left[f^{(n)}(t) - f^{(n)}(a) \right] dt$$
$$= \int_0^1 \frac{(1-s)^{n-1}}{(n-1)!} \left[f^{(n)}(a+s(x-a)) - f^{(n)}(a) \right] (x-a)^n ds$$

$$R_n(x,a) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$
$$= \int_0^1 \frac{(1-s)^{n+1}}{n!} f^{(n+1)}(a+s(x-a))(x-a)^{n+1} ds$$

$$R_n(x,a) = \frac{f^{(n+1)}(x^*)}{n!}(x-x^*)^n(x-a)$$

$$R_n(x,a) = \frac{f^{(n+1)}(x^*)}{(n+1)!}(x-a)^{n+1}$$