

07 - Pesquisa PIO Output

Rafael Corsi rafael.corsi@insper.edu.br

20 de fevereiro de 2017

Entregar na 6^a em formato PDF via github.

- 1. Criar softwares para microcontroladores utilizando suas especificidades (periféricos/ low power);
- 2. Avaliar e melhorar soluções embarcadas integrando hardware/software levando em conta adequação a uma aplicação;
- 3. Integrar em um protótipo hardware, software básico, sistema operacional de tempo real e módulos de interfaceamento com usuários, de comunicação e de alimentação;
- 4. Compreender as limitações de microcontroladores e seus periféricos;
- 5. Buscar e analisar documentação (datasheet) e extrair informações

1 Periféricos

 $(Utilize\ o\ manual\ encontrado\ em\ :\ Manuais/Cortex-M7-SAM-E70\ para\ resolução\ dessa\ secção.)$

Periféricos são hardwares auxiliares encontrados no uC que fornecem funcionalidades extras tais como : gerenciador de energia (SUPC), comunicação serial UART (UART), comunicação a dois fios (TWI), controlador de saída e entrada paralela (PIO), dentre muitos outros.

Questão. 1.1: Periféricos

Liste a funcionalidade dos periféricos listados a seguir :

- RTC Real time clock /
- \bullet TC Timer/Counter

Os periféricos são configuráveis via escrita/leitura nos registradores do microcontrolador, cada periférico possui um endereço único mapeado em memória. A Fig. 1 define os endereços de memórias reservado para cada funcionalidade do uC.

Figura 1: Mapa de memória SAME70 (Cortex-M7-SAM-E70- pg. 41)

Questão. 1.2: Mapa de memória

- Qual endereço de memória reservado para os periféricos ?
- qual o tamanho (em endereço) dessa secção ?

O diagrama completo do mapeamento de memória pode ser encontrado na página 41.

Questão. 1.3: Periféricos

Encontre os endereços de memória referentes aos seguintes periféricos :

- 1. PIOA
- 2. PIOB
- 3. ACC
- 4. UART1
- 5. UART2

2 PMC - Gerenciador de energia

O Power Management Controller (PMC) é um periférico responsável por gerenciar a energia e clock dos demais periféricos. Para utilizarmos um periférico é necessário primeiramente ativarmos o mesmo no PMC.

Cada periférico é referenciado no PMC via um número único (ID), esse ID também será utilizado para o gerenciamento de interrupções. Os IDs estão listados na Tabela : 13.1 do datasheet Cortex-M7-SAM-E70.pdf.

Table 13-1.	Peripheral Identifiers								
Instance ID	Instance Name	NVIC Interrupt	PMC Clock Control	Description					
0	SUPC	×	-	Supply Controller					
1	RSTC	×	_	Reset Controller					
2	RTC	X	_	Real Time Clock					
3	RTT	×	-	Real Time Timer					
4	WDT	×	_	Watchdog Timer					
5	PMC	×	_	Power Management Controller					
6	EFC	×	-	Enhanced Embedded Flash Controller					
7	UART0	×	×	Universal Asynchronous Receiver/Transmitter					
8	UART1	×	×	Universal Asynchronous Receiver/Transmitter					

Figura 2: Lista de periféricos e IDs

Questão. 2.1: PIO D ID

Qual ID do PIOC?

3 Parallel Input Output (PIO)

Secção 32 datasheet

1

Leitura obrigatória, Secção 32 do datasheet.

No ARM-Atmel os pinos são gerenciados por um hardware chamado de Parallel Input/Output Controller (PIO), esse dispositivo é capaz de gerenciar até 32 diferentes pinos (I/Os).

Além do controle direito do pino pelo PIO, cada I/O no ARM-Atmel pode ser associado a uma função diferente (periférico), por exemplo: o I/O PA20 pode ser controlador pelo periférico do PWM enquanto o PA18 pode ser controlador pela UART.

Isso fornece flexibilidade ao desenvolvimento de uma aplicação, já que os I/Os não possuem uma funcionalidade fixa. Porém não possuímos tanta flexibilidade assim, existe uma relação de quais I/Os os periféricos podem controlar.

Podemos interpretar a tabela como : o pino **102** do microcontrolador identificado como **PA0** (PIOA_0) pode ser utilizado como **WKUP0** (wakeup) ou mapeado para um dos tres perifericos :

- Periferico A: PWM (Pulse width modulation)
- Periferico B: TIOA0 (Timer 0)
- Periferico C: I2C_MCL (I2C master clear)

A tabela na página 16 do datasheet (Table 5-1) ilustra quais periféricos podem ser associados aos respectivos pinos, a Fig. 3 mostra as opções para o PIOA0 até PIOA9.

Table 5-1. 144-lead Package Pinout																	
LQFP LFBGA Pin Ball	UFBGA	Power Rail	I/O Type	Primary		Alternate		PIO Peripheral A		PIO Peripheral B		PIO Peripheral C		PIO Peripheral D		Reset State	
	Ball			Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal, Dir, Pl PD, HiZ, ST	
102	C11	E11	VDDIO	GPIO_AD	PA0	VO	WKUP0 ⁽¹⁾	1	PWMC0_PWMH0	0	TIQA0	1/0	A17/BA1	0	I2SC0_MCK	-	PIO, I, PU, ST
99	D12	F11	VDDIO	GPIO_AD	PA1	VO	WKUP1 ⁽¹⁾	1	PWMC0_PWML0	0	TIOB0	I/O	A18	0	12SC0_CK	-	PIO, I, PU, ST
93	E12	G12	VDDIO	GPIO	PA2	VO	WKUP2 ⁽¹⁾	1	PWMC0_PWMH1	0	-	-	DATRG	1	-	-	PIO, I, PU, ST
91	F12	G11	VDDIO	GPIO_AD	PA3	VO	PIODC0 ⁽²⁾	1	TWD0	1/0	LONCOL1	1	PCK2	0	-	-	PIO, I, PU, ST
77	K12	L12	VDDIO	GPIO	PA4	VO	WKUP3/PIODC1(3)	1	TWCK0	0	TCLK0	1	UTXD1	0	-	-	PIO, I, PU, ST
73	M11	N13	VDDIO	GPIO_AD	PA5	VO	WKUP4/PIODC2 ⁽³⁾	1	PWMC1_PWML3	0	ISI_D4	1	URXD1	1	-	-	PIO, I, PU, ST
114	B9	B11	VDDIO	GPIO_AD	PA6	VO	-	-	-	-	PCK0	0	UTXD1	0	-	-	PIO, I, PU, ST
35	L2	N1	VDDIO	CLOCK	PAZ	VO	XIN32 ⁽⁴⁾	1	-	-	PWMC0_PWMH3	0	-	-	-	-	PIO, HIZ
36	M2	N2	VDDIO	CLOCK	PA8	VO	XOUT32 ⁽⁴⁾	0	PWMC1_PWMH3	0	AFE0_ADTRG	1	-	-	-	-	PIO, HIZ
75	M12	L11	VDDIO	GPIO_AD	PA9	VO	WKUP6/PIODC3 ⁽³⁾	1	URXD0	1	ISI_D3	1	PWMC0_PWMFI0	1	_	-	PIO, I, PU, ST

Figura 3: Mux PIOA - periféricos vs pinos Cortex-M7-SAM-E70pg. 16

Questão. 3.1: PIO periféricos

Verifique quais periféricos podem ser configuráveis nos I/Os :

- 1. PC1
- 2. PB6

O SAME70 possui internamente 5 PIOs: PIOA, PIOB, PIOC, PIOD e PIOE. Cada um é responsável por gerenciar até 32 pinos.

Os I/Os são classificados por sua vez em grandes grupos: A, B,C (exe: PA01, PB22, PC12) e cada grupo é controlado por um PIO (PIOA, PIOB, PIOC, . . .).

3.1 Configurações

O PIO suporta as seguintes configurações :

- Interrupção em nível ou borda em qualquer I/O
- Filtragem de "glitch"
- Deboucing
- Open-Drain
- Pull-up/Pull-down
- Capacidade de trabalhar de forma paralela

Questão. 3.2: Deboucing

- O que é deboucing ?
- Descreva um algorítimo que implemente o deboucing.

3.2 Funcionalidade

O diagrama de blocos do PIO é ilustrado na Fig. 4, onde :

- 1. Peripheral DMA (direct memmory access) controller (PDC) : O P/IO pode receber dados via DMA.
- 2. Interrup Controller : Já que o PIO suporta interrupções nos I/Os o mesmo deve se comunicar com o controlador de interrupções para informar a CPU (NVIC) que uma interrupção ocorreu.

- 3. PMC : A energia e clock desse periférico é controlado pelo PMC (Power management controller).
- 4. Embedded peripheral : O acesso aos pinos dos periféricos é realizado via PIO.

Figura 4: Block Diagram Cortex-M7-SAM-E70- pg. 346

Jm diagrama lógico mais detalhado é encontrado no datasheet (Fig. 5), esse diagrama mostra as funções dos registradores e seu impacto no PIO.

3.3 SET/Clear

Algumas funcionalidades no PIO são configuráveis via dois registradores distintos (set/clear), o primeiro apenas altera o estado do bit específico de 0 para 1, enquanto que o segundo (clear) altera o estado do registrador de 1 para 0. Isso é utilizado para evitar uma condição de corrida ("race condicions"¹).

Um exemplo desse caso é o registrador Output Data Status Register (PIO_ODSR) que configura o valor de saída de um pino, ou seja, se será "1"ou "0". Para configurarmos

¹http://stackoverflow.com/questions/34510/what-is-a-race-condition/34745#34745)

Figura 5: [Datasheet pg. 571] I/O Line Control Logic

por exemplo o bit 2 (referente ao pino PIOA02) precismos "setar" o segundo bit via o registrador Set Output Data Register (IO_SODR):

```
PIOA \rightarrow SODR = 1 << 1;
```

Não podemos por exemplo zerar esse registrador :

```
| PIOA \rightarrow SODR \&= \sim (1 << 1);
```

Para tanto é necessário utilizarmos o registrador Clear Output Data Register (CODR) | PIOA->CODR = 1 << 1;

Esse tipo de controle evita que tenhamos que fazer uma operação de leitura no registrador antes de alterar o bit específico, aumentado assim a eficiência desse periférico.

Questão. 3.3: Race condicions

- O que é race condicions ?
- Como que essa forma de configurar os registradores evita isso?

3.4 Configurando um pino em modo de output

31.5.4 - Output Control (Cortex-M7-SAM-E70. 550)

When the I/O line is assigned to a peripheral function, i.e., the corresponding bit in PIO_PSR is at zero, the drive of the I/O line is controlled by the peripheral. Peripheral A or B or C or D depending on the value in PIO_ABCDSR1 and PIO_ABCDSR2 determines whether the pin is driven or not.

When the I/O line is controlled by the PIO Controller, the pin can be configured to be driven. This is done by writing the Output Enable Register (PIO_OER) and Output Disable Register (PIO_ODR). The results of these write operations are detected in the Output Status Register (PIO_OSR). When a bit in this register is at zero, the corresponding I/O line is used as an input only. When the bit is at one, the corresponding I/O line is driven by the PIO Controller.

The level driven on an I/O line can be determined by writing in the Set Output Data Register (PIO_SODR) and the Clear Output Data Register (PIO_CODR). These write operations, respectively, set and clear the Output Data Status Register (PIO_ODSR), which represents the data driven on the I/O lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to be controlled by the PIO Controller or assigned to a peripheral function. This enables configuration of the I/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR affects PIO_ODSR. This is important as it defines the first level driven on the I/O line.

Questão. 3.4: Pino em modo output

 Explique com suas palavras o trecho anterior extraído do datasheet do uC, se possível referencie com o diagrama "I/O Line Control Logic".

4 Avaliação

Insatisfatório (I) :	 não apresentou o estudo contém apenas 40% do total pedido contém plágio (textos copiados sem referências)
Em Desenvolvimento (D) :	 apresentou o estudo com até 2 aulas de atraso contém apenas 70% tópicos do exigido texto incoerente
Essencial (C)	 apresentou o estudo com até 1 dia de atraso entregou mais de 70% da atividade com respostas corretas texto coerente
Proficiente (B)	 apresentou o estudo sem atraso entregou mais de 70% da atividade com respostas corretas
Avançado (A)	 apresentou o estudo sem atraso entregou mais de 90% da atividade com respostas corretas texto consistente e bem escrito