Answers: (1989-90 HKMO Heat Events)

	1	5	2	-2	3	7	4	6	5	(2, 4)
89-90 Individual	6	4	7	120	8	- 7	9	100	10	109
	11	9	12	0	13	2519	14	2	15	10 days
	16	5	17	$2\sqrt{13}$	18	1:2	19	$\frac{9}{20}$	20	58.5

Last updated: 10 July 2023

00.00	1	275	2	73	3	2	4	0	5	1783
89-90 Group	6	26	7	$\frac{125}{8} = 15\frac{5}{8}$	8	4:1	9	7	10	2π

Individual Events

I1 Find the value of
$$\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2}$$
.

$$\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2}$$

$$= 3+\sqrt{8} - (\sqrt{8}+\sqrt{7}) + (\sqrt{7}+\sqrt{6}) - (\sqrt{6}+\sqrt{5}) + (\sqrt{5}+2)$$

$$= 5$$

I2 If
$$b < 0$$
 and $2^{2b+4} - 20 \times 2^b + 4 = 0$, find b.

Let
$$y = 2^b$$
, then $y^2 = 2^{2b}$, the equation becomes $16y^2 - 20y + 4 = 0$

$$4y^2 - 5y + 1 = 0$$

$$(4y - 1)(y - 1) = 0$$

$$y = 2^b = \frac{1}{4}$$
 or $y = 1$

$$b = -2 \text{ or } 0$$

$$\therefore b < 0 \therefore b = -2 \text{ only}$$

I3 If
$$f(a) = a - 2$$
 and $F(a, b) = a + b^2$, find $F(3, f(4))$.

Reference: 1985 FI3.3, 2013 FI3.2, 2015 FI4.3

$$f(4) = 4 - 2 = 2$$

$$F(3, f(4)) = F(3, 2) = 3 + 2^2 = 7$$

I4 For positive integers a and b, define
$$a\#b = a^b + b^a$$
. If $2\#w = 100$, find the value of w.

Reference: 1999 FI3.1

$$2^w + w^2 = 100$$
 for positive integer w.

By trail and error,
$$64 + 36 = 100$$

$$w = 6$$
.

I5
$$a$$
 and b are constants. The straight line $2ax + 3by = 4a + 12b$ passes through a fixed point P whose coordinates do not depend on a and b . Find the coordinates of P .

Reference: 1991 HI6, 1996 HI6

$$2ax + 3by = 4a + 12b \Rightarrow 2a(x-2) + 3b(y-4) = 0$$

Put
$$b = 0 \Rightarrow x = 2$$
,

Put
$$a = 0 \Rightarrow y = 4$$

If The sines of the angles of a triangle are in the ratio 3:4:5. If A is the smallest interior angle of the triangle and $\cos A = \frac{x}{5}$, find the value of x.

Reference: 1989 HI10

By Sine rule, $a : b : c = \sin A : \sin B : \sin C = 3 : 4 : 5$

Let
$$a = 3k$$
, $b = 4k$, $c = 5k$.

$$a^2 + b^2 = (3k)^2 + (4k)^2 = (5k)^2 = c^2$$

 \therefore $\angle C = 90^{\circ}$ (converse, Pythagoras' theorem)

$$\cos A = \frac{b}{c} = \frac{4}{5}$$

$$\Rightarrow x = 4$$

If x + y = 9, y + z = 11 and z + x = 10, find the value of xyz.

Reference: 1986 FG10.1, 1989 HI15

$$(1) + (2) - (3)$$
: $2y = 10 \Rightarrow y = 5$

$$(1) + (3) - (2)$$
: $2x = 8 \Rightarrow x = 4$

$$(2) + (3) - (1)$$
: $2z = 12 \Rightarrow z = 6$

$$\Rightarrow xyz = 120$$

If α , β are the roots of the equation $2x^2 + 4x - 3 = 0$ and α^2 , β^2 are the roots of the equation $x^2 + px + q = 0$, find the value of p.

$$\alpha + \beta = -2$$

$$\alpha\beta = -\frac{3}{2}$$

$$p = -(\alpha^2 + \beta^2) = -(\alpha + \beta)^2 + 2\alpha\beta$$

= -(-2)^2 - 3 = -7

19 If $x^{\log_{10} x} = \frac{x^3}{100}$ and x > 10, find the value of x.

Take log on both sides, $\log x \cdot \log x = 3 \log x - \log 100$

$$(\log x)^2 - 3 \log x + 2 = 0$$

$$(\log x - 1)(\log x - 2) = 0$$

$$\log x = 1 \text{ or } \log x = 2$$

$$x = 10 \text{ or } 100$$

$$\therefore x > 10 \therefore x = 100 \text{ only}$$

I10 Given that $a_0 = 1$, $a_1 = 3$ and $a_n^2 - a_{n-1}a_{n+1} = (-1)^n$ for positive integers n. Find a_4 .

Put
$$n = 1$$
, $a_1^2 - a_0 a_2 = (-1)^1 \implies 3^2 - a_2 = -1 \implies a_2 = 10$

Put
$$n = 2$$
, $a_2^2 - a_1 a_3 = (-1)^2 \implies 10^2 - 3a_3 = 1 \implies a_3 = 33$

Put
$$n = 3$$
, $a_3^2 - a_2 a_4 = (-1)^3 \implies 33^2 - 10a_4 = -1 \implies a_4 = 109$

III Find the units digit of 2137⁷⁵⁴.

Reference 1991 HG1

$$7^1 = 7$$
, $7^2 = 49$, $7^3 = 343$, $7^4 = 2401$

The pattern of units digit repeats for every multiples of 4.

$$2137^{754} \equiv (7^4)^{188} \cdot 7^2 \equiv 9 \mod 10$$

The units digit is 9.

I12 If
$$\left(r + \frac{1}{r}\right)^2 = 3$$
, find $r^3 + \frac{1}{r^3}$.

Reference: 1985 FI1.2, 2017 FI1.4

$$r + \frac{1}{r} = \pm \sqrt{3}$$

$$r^2 + \frac{1}{r^2} = \left(r + \frac{1}{r}\right)^2 - 2 = 3 - 2 = 1$$

$$r^{3} + \frac{1}{r^{3}} = \left(r + \frac{1}{r}\right)\left(r^{2} - 1 + \frac{1}{r^{2}}\right)$$
$$= \pm \sqrt{3}(1 - 1) = 0$$

I13 A positive integer *N*, when divided by 10, 9, 8, 7, 6, 5, 4, 3 and 2, leaves remainders 9, 8, 7, 6, 5, 4, 3, 2 and 1 respectively. Find the least value of *N*.

Reference: 1985 FG7.2, 2013FG4.3

N + 1 is divisible by 10, 9, 8, 7, 6, 5, 4, 3, 2.

The L.C.M. of 2, 3, 4, 5, 6, 7, 8, 9, 10 is 2520.

 $\therefore N = 2520k - 1$, where k is an integer.

The least positive integral of N = 2520 - 1 = 2519

I14 If $\frac{1}{A} = \frac{\cos 45^{\circ} \sin 70^{\circ} \cos 60^{\circ} \tan 40^{\circ}}{\cos 340^{\circ} \sin 135^{\circ} \tan 220^{\circ}}$, find the value of A.

Reference: 1989 HI14

$$\frac{1}{A} = \frac{\cos 45^{\circ} \cos 20^{\circ} \cos 60^{\circ} \tan 40^{\circ}}{\cos 20^{\circ} \cos 45^{\circ} \tan 40^{\circ}}$$

$$=\cos 60^{\circ} = \frac{1}{2}$$

$$A = 2$$

I15 If 10 men can make 20 tables in 5 days, how many days are required to make 60 tables by 15 men?

1 man can make
$$\frac{20}{10 \times 5} = \frac{2}{5}$$
 table in 1 day.

15 men can make
$$\frac{2}{5} \times 15 = 6$$
 tables in one day.

They can make 60 tables in 10 days

I16 In figure 1, the exterior angles of the triangle are in the ratio

x': y': z' = 4:5:6 and the interior angles are in the ratio

$$x: y: z = a: b: 3$$
. Find the value of b .

Let
$$x' = 4k$$
, $y' = 5k$, $z' = 6k$

$$4k + 5k + 6k = 360^{\circ}$$
 (sum of ext. \angle of polygon)

$$15k = 360^{\circ}$$

$$\Rightarrow k = 24$$

$$x' = 96^{\circ}, y' = 120^{\circ}, z' = 144^{\circ}$$

$$x = 84^{\circ}$$
, $y = 60^{\circ}$, $z = 36^{\circ}$ (adj. \angle s on st. line)

$$x:y:z=7:5:3$$

$$\Rightarrow b = 5$$

In $\triangle ABC$, $\angle C = 90^{\circ}$ and D, E are the mid-points of BC and CA respectively. If AD = 7 and BE = 4, find the length of AB. (See figure 2.)

Let
$$\overrightarrow{BD} = x = DC$$
, $\overrightarrow{AE} = y = EC$

$$x^2 + (2y)^2 = 7^2 \dots (1)$$

$$(2x)^2 + y^2 = 4^2 \dots (2)$$

$$4(1) - (2)$$
: $15y^2 = 180 \Rightarrow y^2 = 12$

$$4(2) - (1)$$
: $15x^2 = 15 \Rightarrow x^2 = 1$

$$AB^2 = (2x)^2 + (2y)^2 = 4 + 48$$

$$\Rightarrow AB = \sqrt{52} = 2\sqrt{13}$$

I18 Figure 3 shows 3 semi-circles of diameters a, 2a and 3a respectively. Find the ratio of the area of the shaded part to that of the unshaded part.

Area of the shaded part =
$$\frac{\pi}{2} \cdot a^2 - \frac{\pi}{2} \cdot \left(\frac{a}{2}\right)^2 = \frac{3\pi}{8}a^2$$

Area of the unshaded part =
$$\frac{\pi}{2} \cdot \left(\frac{3a}{2}\right)^2 - \frac{3\pi}{8} \cdot a^2 = \frac{6\pi}{8} \cdot a^2$$

The ratio =
$$3:6=1:2$$

I19 Find the value of $\frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5} + \dots + \frac{1}{10 \times 20}$.

$$\frac{1}{2\times3} + \frac{1}{3\times4} + \frac{1}{4\times5} + \dots + \frac{1}{19\times20}$$

$$= \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \dots + \left(\frac{1}{19} - \frac{1}{20}\right)$$

$$= \frac{1}{2} - \frac{1}{20} = \frac{9}{20}$$

I20 In figure 4, $\angle C = 90^{\circ}$, AD = DB and DE is perpendicular to AB. If AB = 20 and AC = 12, find the area of the quadrilateral ADEC.

$$BD = 10$$
, $BC = 16$ (Pythagoras' theorem)

$$\Delta BDE \sim \Delta BCA$$
 (equiangular)

$$BD : DE : BE = 16 : 12 : 20$$
 (ratio of sides, $\sim \Delta$'s)

$$DE = 7.5, BE = 12.5$$

$$CE = 16 - 12.5 = 3.5$$

$$S_{ADEC} = \frac{1}{2} \cdot 10 \cdot 7.5 + \frac{1}{2} \cdot 12 \cdot 3.5 = 58.5$$

Method 2

$$BD = 10$$
, $BC = 16$ (Pythagoras' theorem)

$$\triangle BDE \sim \triangle BCA$$
 (equiangular)

$$S_{\Delta BDE} = \left(\frac{BD}{BC}\right)^2 \cdot S_{\Delta ABC} = \left(\frac{10}{16}\right)^2 \cdot \frac{1}{2} \cdot 12 \cdot 16 = 37.5$$

$$S_{ADEC} = \frac{1}{2} \cdot 12 \cdot 16 - 37.5 = 58.5$$

 \overline{D}

(Figure 4)

Group Events

G1 If $\frac{1}{a} + \frac{1}{b} = 5$ and $\frac{1}{a^2} + \frac{1}{b^2} = 13$, find the value of $\frac{1}{a^5} + \frac{1}{b^5}$.

$$(1)^2 - (2)$$
: $\frac{2}{ab} = 12$

$$\Rightarrow ab = \frac{1}{6} \dots (4)$$

From (1):
$$(a+b) \cdot \frac{1}{ab} = 5$$
 (5)

Sub. (4) into (5):
$$6(a + b) = 5$$

$$\Rightarrow a+b=\frac{5}{6}\dots(6)$$

From (4) and (6), *a* and *b* are roots of $6t^2 - 5t + 1 = 0$

$$(2t-1)(3t-1) = 0$$

$$\Rightarrow t = \frac{1}{2} \text{ or } \frac{1}{3}$$

$$\frac{1}{a^5} + \frac{1}{b^5} = 2^5 + 3^5$$

$$=32+243=275$$

G2 There are *N* pupils in a class.

When they are divided into groups of 4, 1 pupil is left behind.

When they are divided into groups of 5, 3 pupils are left behind.

When they are divided into groups of 7, 3 pupils are left behind.

Find the least value of N.

Reference: 1992 HG4

$$N = 4p + 1 \dots (1)$$
, p is an integer

$$N = 5q + 3$$
 (2), q is an integer

$$N = 7r + 3 \dots (3)$$
, r is an integer

$$(3) - (2)$$
: $7r = 5q$

$$r = 5k$$
, $q = 7k$, where k is an integer

$$N = 35k + 3 = 4p + 1$$

$$4p - 35k = 2$$

By trial and error,

$$p = 18, k = 2$$
 is a solution

$$N = 73$$

G3 The coordinates of *A*, *B*, *C* and *D* are (10, 1), (1, 7), (-2, 1) and (1, 3) respectively. *AB* and *CD* meet at *P*. Find the value of $\frac{AP}{PB}$.

Reference: 1989 HG5

Equation of *AB*:
$$\frac{y-1}{x-10} = \frac{1-7}{10-1}$$

$$\Rightarrow 2x + 3y - 23 = 0 \dots (1)$$

Equation of *CD*:
$$\frac{y-1}{x+2} = \frac{3-1}{1+2}$$

$$\Rightarrow 2x - 3y + 7 = 0 \dots (2)$$

$$(1) + (2)$$
: $4x - 16 = 0$

$$\Rightarrow x = 4$$

$$(1) - (2)$$
: $6y - 30 = 0$

$$\Rightarrow$$
 y = 5

Let
$$\frac{AP}{PB} = r$$

$$4 = \frac{10+r}{1+r}$$

$$\Rightarrow$$
 4 + 4 r = 10 + r

$$\Rightarrow r = 2$$

G4 Find the remainder when $2^{1989} + 1$ is divided by 3.

$$2^{1989} + 1 = (3-1)^{1989} + 1 = 3m - 1 + 1$$
, binomial theorem, m is an integer.

The remainder is 0.

Method 2

$$2^{1} + 1 = 3 \equiv 0 \mod 3$$
, $2^{2} + 1 = 5 \equiv 2 \mod 3$, $2^{3} + 1 \equiv 0 \mod 3$, $2^{4} + 1 \equiv 2 \mod 3$

The pattern of the remainder repeats for every multiples of 2.

$$2^{1989} + 1 \equiv 2^1 + 1 \equiv 0 \bmod 3$$

$$\Rightarrow$$
 the remainder = 0

G5 Euler was born and died between 1700 A.D. and 1800 A.D. He was n + 9 years old in n^3 A.D. and died at the age of 76. Find the year in which Euler died.

Suppose he was born in x years after 1700 A.D.

$$1700 + x + n + 9 - 1 = n^3 \dots (1)$$

$$11^3 = 1331, 12^3 = 1728, 13^3 > 1800$$

$$\therefore$$
 $n = 12$, $x = 1728 - 1700 - 12 - 9 + 1 = 8$

$$1700 + x + 76 - 1 = 1783$$

 \Rightarrow He was died in A.D. 1783.

Let N! denotes the product of the first N natural numbers, i.e. $N! = 1 \times 2 \times 3 \times ... \times N$.

If k is a positive integer such that $30! = 2^k \times$ an odd integer, find k.

Reference: 1994 FG7.1, 1996 HI3, 2004 FG1.1, 2011 HG7, 2012 FI1.4, 2012 FG1.3

- $2, 4, 6, 8, \dots, 30$ each has at least one factor of 2. Subtotal = 15
- $4, 8, \ldots, 28$ each has at least 2 factors of 2. Subtotal = 7
- 8, 16, 24 each has at least 3 factors of 2. Subtotal = 3

16 has 4 factors of 2. Subtotal = 1

Total number of factors of 2 = 15 + 7 + 3 + 1 = 26

G7 The graph of the parabola $y = x^2 - 4x - \frac{9}{4}$ cuts the x-

axis at A and B (figure 1). If C is the vertex of the parabola, find the area of $\triangle ABC$.

Let the roots be α , β , where $\alpha > \beta$.

$$AB = \alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$$
$$= \sqrt{4^2 + 4 \cdot \frac{9}{4}} = 5$$

Minimum =
$$\frac{4ac - b^2}{4a} = \frac{4\left(-\frac{9}{4}\right) - \left(-4\right)^2}{4} = -\frac{25}{4}$$

Area of
$$\triangle ABC = \frac{1}{2} \times \frac{25}{4} \times 5 = \frac{125}{8}$$

In figure 2, FE // BC and ED // AB. If AF : FB = 1 : 4, find **G8** the ratio of area of $\triangle EDC$: area of $\triangle DEF$.

Reference: 1989 HI17

BDEF is a parallelogram formed by 2 pairs of parallel lines $\Delta DEF \cong \Delta FBD \text{ (A.S.A.)}$

Let $S_{\Delta DEF} = x = S_{\Delta FBD}$ (where *S* stands for the area)

 $\triangle AEF \sim \triangle ACB$ (:: FE // BC, equiangular)

$$\frac{S_{\triangle AEF}}{S_{\triangle ACR}} = \left(\frac{1}{1+4}\right)^2 = \frac{1}{25} \quad \dots (1)$$

- :: DE // AB
- $\therefore AE : EC = BD : DC = 1 : 4$ (theorem of equal ratio)

 $\triangle CDE \sim \triangle CBA$ (:: DE // BA, equiangular)

$$\frac{S_{\Delta CDE}}{S_{\Delta CRA}} = \left(\frac{4}{1+4}\right)^2 = \frac{16}{25} \quad \dots (2)$$

Compare (1) and (2) $S_{\triangle AEF} = k$, $S_{\triangle CDE} = 16k$, $S_{\triangle ABC} = 25k$

$$k + 16k + x + x = 25k$$

$$x = 4k$$

 \Rightarrow area of $\triangle DEF$: area of $\triangle ABC = 16: 4 = 4: 1$

(Figure 2)

G9 In the attached multiplication (figure 3), the letters O, L, Y, M, P, I, A OLYMPIAD and D represent different integers ranging from 1 to 9. Find the integer \times D represented by A.

$$1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 16, 5^2 = 25, 6^2 = 36, 7^2 = 49, 8^2 = 64, 9^2 = 81$$

Possible
$$(D,O) = (2,4), (3,9), (4,6), (7,9), (8,4), (9,1)$$

When
$$D = 4$$
, $O = 6$, $(OLYMPIAD) = 6666666666.5$ rejected

When
$$D = 7$$
, $O = 9$, $(OLYMPIAD) = 9999999999 \div 7 = 142857142.7$ rejected

When
$$D = 9$$
, $O = 1$, $(OLYMPIAD) = 1111111111 \div 9 = 12345679$
 $A = 7$

G10 Three circles, with centres A, B and C respectively, touch one another as shown in figure 4. If A, B and C are collinear and PQ is a common tangent to the two smaller circles, where PQ = 4, find the area of the shaded part in terms of π .

Let the radii of the 3 circles with centres A, B and C be a, b, c.

$$2b + 2c = 2a \Rightarrow a = b + c \dots (1)$$

By intersecting chords theorem, $2c \times 2b = 2^2$

$$bc = 1 \dots (2)$$

Shaded area =
$$\pi a^2 - \pi b^2 - \pi c^2$$

= $\pi [a^2 - (b^2 + c^2)]$
= $\pi [a^2 - (b + c)^2 + 2bc]$
= $\pi (a^2 - a^2 + 2)$ by (1) and (2)
= 2π

(Figure 4)