

Prof^a. Maigan Alcântara

Monitora: Iris Souza

09/11/2021

Estatística Paramétrica e Não-Paramétrica com uso do software R

Testes Não Paramétricos para mais de dois grupos:

É um teste não paramétrico utilizado para comparar três ou mais populações. Ele é usado para testar a hipótese nula de que todas as populações possuem funções de distribuição iguais contra a hipótese alternativa de que ao menos duas das populações possuem funções de distribuição diferentes.

William Henry Kruskal (1919 - 2005) e Wilson Allen Wallis (1912-1998).

- É uma extensão do teste de Mann-Whitney (soma dos postos de Wilcoxon), i.e. para k = 2 populações, este teste é equivalente ao teste de Wilcoxon da soma de postos;
- É equivalente ao teste de Mantel-Haenszel aplicado aos postos dos dados;
- □ Pode ser interpretado como a versão não-paramétrica do teste F da ANOVA com 1 fator;
- Não leva em consideração formas específicas de distribuição;
- Deseja-se testar se k amostras aleatórias(possivelmente tamanhos diferentes) de uma v.a. possuem a mesma distribuição.

PRESSUPOSTOS

- As amostras são aleatórias e independentes entre si;
- A escala de mensuração é no mínimo ordinal.

HIPÓTESES

□ Ho:

Todas as k populações têm funções de distribuição idênticas.

□ H1:

Pelo menos uma das populações difere das demais.

CONSTRUÇÃO DO TESTE

Considere a i-ésima amostra aleatória de tamanho ni :

$$X_{i1}, X_{i2}, \dots, X_{in_i}, i = 1, 2, \dots, k.$$

Seja N o número total de observações

$$N = \sum_{i=1}^{k} n_i.$$

CONSTRUÇÃO DO TESTE

Os dados podem ser organizados em colunas:

Amostra 1	Amostra 2		Amostra k
X ₁₁	X ₂₁		X_{k1}
X_{12}	X ₂₂		X_{k2}
:	:	٠	:
X_{1n_1}	X_{2n_2}		X_{kn_k}

CONSTRUÇÃO DO TESTE

Atribua posto 1 à menor observação do total de N observações, posto 2 a segunda menor, e assim por diante, até a maior de todas as N observações, que recebe posto N (quando não há empates).

Quando há observações iguais, calcular a média dos postos. Sejam:

- Rij o posto da observação de Xij
- $\ \ \ \ \ R_{i\circ}$ a soma dos postos da i-ésima amostra:

$$R_{i} = \sum_{j=1}^{n_i} R_{ij}, i = 1, 2, \dots, k,$$

CONSTRUÇÃO DO TESTE

e R • • a média geral dos postos:

$$R_{\cdot \cdot} = \frac{\sum_{i=1}^{k} R_{i \cdot}}{N}.$$

Se não há empates, teremos que a soma total de postos(numerador de (1)) é a soma de uma PA e portanto $R \cdot \bullet = (N + 1)/2$.

ESTATÍSTICA DO TESTE

A estatística de teste T é definida como:

$$T = \frac{1}{S^2} \left(\sum_{i=1}^k \frac{R_{i*}^2}{n_i} - \frac{N(N+1)^2}{4} \right),$$

em que

$$S^2 = \frac{1}{N-1} \left(\sum_{i,j} R_{ij}^2 - \frac{N(N+1)^2}{4} \right)$$

ESTATÍSTICA DO TESTE

Esta estatística mede a razão entre:

- A soma diferenças quadráticas das médias dos tratamentos para a média geral (soma de quadrados entre tratamentos) e;
- As diferenças quadráticas dos postos em relação à média geral (quadrado médio total, variância);

ESTATÍSTICA DO TESTE

Se <u>não há empates</u>, teremos que:

$$S^2 = N(N+1)/12$$

e a estatística de teste reduz a:

$$T = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_{i}^{2}}{n_{i}} - 3(N+1);$$

ESTATÍSTICA DO TESTE

- □ A distribuição exata de T é tabelada (veja [Conover, 1996], Tabela A8) para k = 3 e ni ≤ 5 (no caso sem empates). No entanto, a distribuição exata é complexa e nos demais casos utiliza-se uma aproximação de T por a qui-quadrado com k - 1 graus de liberdade;
- □ Rejeita Ho ao nível α se T for maior que o quantil 1 α (dos valores tabelados ou da χ 2 k−1)

ASPECTO COMPUTACIONAL

No R, Pode ser realizado pelo pacote kruskal.test ou pelo pacote PMCMRplus

Teste Kruskal-Wallis – Exemplo 1

Os dados a seguir são de uma experiência clássica agrícola para avaliar o rendimento de culturas divididas em quatro grupos diferentes. Para manter a simplicidade, identificamos os tratamentos usando os números inteiros {1,2,3,4}. Queremos avaliar se os dados provém de distribuições igualmente distribuídas.

1	1	1	1	1	1	1	1	1	1	2	2	2	2	2
83	91	94	89	89	96	91	92	90	84	91	90	81	83	84
2	2	3	3	3	3	3	3	3	3	4	4	4	4	4
91	89	101	100	91	93	96	95	94	81	78	82	81	77	79

Teste Kruskal-Wallis – Exemplo 1

Os dados a seguir compara avaliar de l'ivididas em quatro grupos diformanter a simplimare, identificamos os trat usando os púmeros in ros {1,2,3,4}. Querer iar se de distribuições igualm ribuídas.

EXERCÍCIO 1

Verificar a influência do fator Idade sobre a variável tempo (em dias) para conseguir um emprego, considerando as seguintes amostras:

Acima de 40 anos	Entre 25 e 40	Abaixo de 25
63	33	25
20	42	31
43	27	6
58	28	14
	51	18

Ao nível de 5% de significância, é possível afirmar que o fator idade tem influência sobre o tempo para encontrar trabalho?

EXERCÍCIO 2 [Korosteleva, 2014]

Em uma competição de arco e flecha, 3 competidores disputam o primeiro lugar, que será definido estatisticamente. A pontuação por acerto pode ser 10 para o círculo menor, 5 a 9 para os círculos intermediários e 1 a 4 para os círculos mais externos. Cada competidor tem direito a 10 flechas. Decida se houve ganhador, ou se todos obtiveram o mesmo desempenho, com base nos dados abaixo.

Monica		Bob		Jeff	
Pontuação	Posto	Pontuação	Posto	Pontuação	Posto
3	6.5	2	4	1	1.5
4	10.5	2	4	1	1.5
4	10.5	3	6.5	2	4
5	16	4	10.5	4	10.5
5	16	4	10.5	4	10.5
5	16	5	16	5	16
10	22	10	22	10	22
10	22	10	22	10	22
				10	22

É um teste não paramétrico utilizado para comparar três ou mais populações. Ele é usado para testar a hipótese nula de que todas as populações possuem funções de distribuição iguais contra a hipótese alternativa de que ao menos duas das populações possuem funções de distribuição diferentes.

Milton Friedman(1912 - 2006).

- É uma extensão do teste dos sinais de Wilcoxon, logo, também utiliza os postos das observações. É também um caso especial do teste de Mantel-Haenszel geral, o qual vimos anteriormente o caso k × 2
- É útil para estudos de medidas repetidas ou delineamento em blocos;
- Neste tipo de estudo, observa-se o mesmo grupo de indivíduos sob cada um das k tratamentos, ou então formam-se conjuntos de indivíduos homogêneos que são alocados aleatoriamente a cada um dos tratamentos;
- É uma alternativa não paramétrica para a ANOVA com blocos casualizados;
- O teste examina os postos (ranks) dos dados em cada tratamento para determinar se as distribuições das variáveis são provenientes da mesma população.

SUPOSIÇÕES:

- A variável de interesse é medida no mínimo em escala ordinal;
- Os blocos são independentes, i.e. a variabilidade dentro de um bloco não influencia os resultados de outro bloco.
- Em cada bloco (amostra), as observações podem ser ordenadas de acordo com algum critério de interesse.

DADOS

- Consistem de b vetores aleatórios independentes k-variados (Xi1, Xi2, . . . , Xik), chamados blocos (ou amostras), i = 1, . . . , b.
- A variável aleatória Xij representa a observação associada ao bloco i e ao tratamento j.
- Os dados podem ser organizados em forma da Tabela que será apresentada.

CONSTRUÇÃO DO TESTE

Atribuir postos de 1 a k para as observações do bloco i, i = 1, 2, . . . , b, ditos Rij ; Em caso de empates, atribuir a média dos postos; A soma dos postos para cada tratamento, R•j , é definida por:

$$R_{ij} = \sum_{i=1}^{b} R_{ij}$$
, para todo $j = 1, 2, \dots, k$

Teremos assim uma nova tabela de postos:

Amostras	Tratamentos					
(Blocos)	1	2		k		
1	X_{11}	X_{12}		X_{1k}		
:	:	:		Ė		
ь	X_{b1}	X_{b2}		X_{bk}		
Total	-	-	-	-		

Postos							
1	2		k				
R ₁₁	R_{12}		R_{1k}				
:	:	4.	:				
R_{b1}	R_{b2}		R_{bk}				
R. ₁	R. ₂		$R_{\cdot k}$				

ESTATÍSTICA DO TESTE

Diferente do teste de Kruskal-Wallis, aqui temos postos 1, . . . , k para cada bloco. Logo, a soma total dos postos, se não há empates, será b vezes a soma de uma PA de k termos. A média geral dos postos será então:

$$R.. = \frac{1}{k}b\left(\frac{k(k+1)}{2}\right) = \frac{b(k+1)}{2};$$

ESTATÍSTICA DO TESTE

No caso <u>sem empates</u>, Friedman propôs a estatística do teste como:

$$T_1 = \frac{12}{bk(k+1)} \sum_{j=1}^k \left(R_j - \frac{b(k+1)}{2} \right)^2$$
$$= \frac{12}{bk(k+1)} \sum_{j=1}^k R_{\cdot j}^2 - 3b(k+1),$$

Note que, assim como no teste de Kruskal-Wallis, esta estatística também está relacionada com a soma das diferenças quadráticas das médias dos tratamentos para a média geral

ESTATÍSTICA DO TESTE

Se há empates, um ajustamento na estatística T1 precisa ser feito:

Seja A1 a soma dos quadrados dos postos

$$A_1 = \sum_{i=1}^b \sum_{j=1}^k [R_{ij}]^2;$$

Calcule o fator de correção dado por:

$$C_1 = bk(k+1)^2/4;$$

ESTATÍSTICA DO TESTE

Então, a estatística T1, modificada na presença de empates, é:

$$T_{1}^{*} = \frac{(k-1)\left(\sum_{j=1}^{k} R_{,j}^{2} - bC_{1}\right)}{A_{1} - C_{1}}$$

$$= \frac{(k-1)\sum_{j=1}^{k} \left(R_{,j} - \frac{b(k+1)}{2}\right)^{2}}{A_{1} - C_{1}};$$

- A distribuição exata de T1 e T * 1 é difícil ser encontrada e uma aproximação é comumente usada;
- T1 e T * 1 têm, sob Ho distr. aprox. Qui-quadrado com (k 1) graus de liberdade;

ESTATÍSTICA DO TESTE

Uma estatística alternativa é a estatística dos experimentos em blocos ao acaso na ANOVA calculada sobre os postos R(Xij):

 $T_2 = \frac{(b-1)T_1}{b(k-1)-T_1};$

A estatística T2 tem, aproximadamente, distribuição F com $k_1 = (k - 1) e k_2 = (b - 1)(k - 1)$ graus de liberdade.

DECISÃO DO TESTE

- Fixado α, rejeitamos Ho se T1 exceder o quantil (1 α) da distribuição Qui-quadrado com (k – 1) graus de liberdade.
- De maneira similar, rejeitamos Ho ao nível de significância α se T2 exceder o quantil (1 α) da distribuição F com k1 = (k 1) e k2 = (b 1)(k 1) graus de liberdade.

ASPECTO COMPUTACIONAL

No R, pode ser realizado

```
friedman.test(resp, trat, bloco)
friedman.test(resp ~ trat | bloco, data)
```


Teste de Friedman – Exemplo

Dum teste de consumo de combustível envolvendo carros produzidos por três fabricantes foi realizado e os resultados, em quilômetros por litro de combustível estão apresentados na tabela abaixo. Estabelecer e testar a hipótese adequada. Considere $\alpha = 5\%$

Modelo	Fabricante				
	G	F	C		
Pequeno	9.0	11.3	10.6		
Médio- 6 cil.	9.4	10.9	10.2		
Médio- 8 cil.	8.1	8.6	9.1		
Grande-8 cil.	8.3	8.6	8.8		
Esporte	8.2	9.2	9.5		

 Aqui podemos testar se existe diferença do consumo do carro de acordo com o modelo.

Teste de Friedman – Exemplo

Um teste de consideration de la produzidos por produzidos por quilômetro apresentados na tabela apelecer e testar a tese adequada. Consideration de la presentados na consideration de la presentación de la presentación della presentación de la presentación del presentac

Model
F
Pequer
Médio- 6
Médio- 8
nde-8

Aqui podemos testar se alterer posumo do carro de acordo com o modelo no fabril

EXERCÍCIO 1 [Lehmann and D'abrera, 2006]

Num estudo sobre hipnose, 8 sujeitos tiveram a tensão elétrica na superfície da pele medida (em milivolts) em 4 situações emocionais distintas: medo, alegria, tristeza e calma. Avalie se existe diferença na tensão entre os diferentes estados emocionais.

Sujeito	Medo	Alegria	Tristeza	Calma
1	23.1	22.7	22.5	22.6
2	57.6	53.2	53.7	53.1
3	10.5	9.7	10.8	8.3
4	23.6	19.6	21.1	21.6
5	11.9	13.8	13.7	13.3
6	54.6	47.1	39.2	37.0
7	21.0	13.6	13.7	14.8
8	20.3	23.6	16.3	14.8

EXERCÍCIO 2 Velocidades de atletas

6 atletas de ciclismo tiveram suas velocidades médias calculadas ao longo de 4 trechos de uma prova. Avalie se algum atleta se destacou dos demais.

	Trecho						
Atleta	A	С	D				
1	32.60	36.40	29.50	29.40			
2	42.70	47.10	32.90	40.00			
3	35.30	40.10	33.60	35.00			
4	35.20	40.30	35.70	40.00			
5	33.20	34.30	33.20	34.00			
6	33.10	34.40	33.10	34.10			

- Beall, G. (1942). The transformation of data from entomological field experiments so that the analysis of variance becomes applicable. Biometrika, 32:243.
- Conover, W. J. (1996). Practical nonparametric statistics.
 John Wiley and sons, 3 ed. edition.
- Korosteleva, O. (2014). Nonparametric methods in statistics with SAS applications
- □ Lehmann, E. L. and D'abrera, H. J. M. (2006). Nonparametrics: statistical methods based on ranks.
- Notas de aula do prof Anderson Ara

