

Long-Time Asymptotic Properties of Dynamical Semigroups on W*-algebras

Alberto Frigerio 1 and Maurizio Verri 2

¹ Istituto di Scienze Fisiche, Università di Milano, Milano, Italy

² Istituto di Matematica, Informatica e Sistemistica, Università di Udine, Udine, Italy

Introduction

The theory of quantum dynamical semigroups provides a convenient mathematical description of the irreversible dynamics of an open quantum system. This motivates an interest in the study of conditions for a dynamical semigroup to induce approach to a stationary state [7, 8, 13, 14] and of related subjects such as irreducibility [2, 4], ergodic theorems [8, 10, 15] and Perron-Frobenius type results [1, 5, 16]. Most of the results have been shown so far in the finite-dimensional case [5, 13, 14] or when there exists a faithful (family of) stationary state(s) [1, 7, 8, 10, 15]. Here we prove more general theorems of ergodic type and on approach to equilibrium, by suitably modifying some of the techniques of the above quoted papers and using a result of [12]. We also give some applications to dynamical semigroups of Lindblad type [6, 11] and asymptotically finite-dimensional.

1. Preliminaries

Let $T=\{T_t\colon t\in\mathbb{R}^+\}$ be a dynamical semigroup on a W^* -algebra \mathcal{M} , i.e. a weakly* continuous one-parameter semigroup of completely positive identity preserving normal maps of \mathcal{M} into itself, with T_0 the identity map of \mathcal{M} . Denote by T_{t^*} the preadjoint map of T_t on the predual space \mathcal{M}_* of normal linear functionals on \mathcal{M} : then $T_*=\{T_{t^*}\colon t\in\mathbb{R}^+\}$ is a strongly continuous one-parameter semigroup of positive contractions on \mathcal{M}_* . Let also $\mathcal{F}(T)$, resp. $\mathcal{F}(T_*)$, be the fixed point set of T in \mathcal{M} , respectively of T_* in \mathcal{M}_* . If there exists a faithful family of T-invariant normal states on \mathcal{M} , then $\mathcal{F}(T)$ is a W^* -subalgebra of \mathcal{M} [7, 14]. If P is a projection in \mathcal{M} and φ is in \mathcal{M}_* , we denote by $P\varphi P$ the element of \mathcal{M}_* defined as $P\varphi P(A)=\varphi(PAP)$ for all A in \mathcal{M}_* and by $P\mathcal{M}_*P$ the set of such elements as φ spans \mathcal{M}_* . Then the hereditary W^* -subalgebra $P\mathcal{M}P$ of \mathcal{M} is (canonically isomorphic to) the dual space of $P\mathcal{M}_*P$. A non-zero projection P in \mathcal{M} is said to reduce T_* [2] if $P\mathcal{M}_*P$ is

globally invariant under T_* or, equivalently, if

$$PT_t(A) P = PT_t(PAP) P$$
 for all A in \mathcal{M} , t in \mathbb{R}^+ . (1.1)

Then

$$T_t^P(A) = P T_t(A) P$$
 for all A in $P \mathcal{M} P$ (1.2)

defines a dynamical semigroup $T^P = \{T_t^P : t \in \mathbb{R}^+\}$ on PMP. The support projection $S(\omega)$ of any state ω in $\mathcal{F}(T_*)$ reduces T_* since $S(\omega) \mathcal{M}_* S(\omega)$ is the norm closure of the set of linear combinations of the normal states on \mathcal{M} which are majorized by a scalar multiple of ω , and the same is true for the recurrent subspace projection (cf. [5])

$$R = \sup\{S(\omega): \omega \text{ is a state in } \mathscr{F}(T_*)\}$$
 (1.3)

since $R\mathcal{M}_*R$ is the norm closure of $\bigcup \{S(\omega)\mathcal{M}_*S(\omega): \omega \text{ is a state in } \mathscr{F}(T_*)\}$. We have R=0 when the semigroup T has no normal stationary state (see examples in [2,4]), and R=1 when T has a faithful family of normal stationary states.

The application of the mean ergodic theorems of [8, 10, 15] to T^R leads to the following.

Theorem 1.1. For any dynamical semigroup $T = \{T_t : t \in \mathbb{R}^+\}$ on a W^* -algebra \mathcal{M} ,

$$E(A) = w^* - \lim_{t \to \infty} \frac{1}{t} \int_0^t R T_s(A) R \, ds \tag{1.4}$$

exists for all A in \mathcal{M} , and defines a T-invariant normal conditional expectation E onto the W*-subalgebra $\mathcal{F}(T^R)$ of $R\mathcal{M}R$; and a normal state ω on \mathcal{M} is T-invariant if and only if $\omega \circ E = \omega$.

As a consequence, the study of normal T-invariant states on \mathcal{M} is reduced to the study of normal states on $\mathcal{F}(T^R)$ (cf. [8]).

It should be remarked that the above theorem and all results of Sect. 2 and 3 are also valid if complete positivity is replaced by the requirement that the maps T_t satisfy the Kadison-Schwarz inequality $T_t(A^*A) \ge T_t(A)^*T_t(A)$ for all A in \mathcal{M} . As is well known, this property is stronger than positivity, but weaker than 2-positivity [6].

2. The Ergodic Theorem

In this Section we extend to the general case the mean ergodic theorems which were proved in [8, 10, 15] under the assumption R = 1.

Theorem 2.1. For a dynamical semigroup $T = \{T_t : t \in \mathbb{R}^+\}$ on a W^* -algebra M the following are equivalent:

(i) there exists a normal T-invariant norm one projection F of \mathcal{M} onto $\mathcal{F}(T)$:

(ii)
$$w-\lim_{t\to\infty}\frac{1}{t}\int_0^t T_{s*}(\varphi)\,\mathrm{d}s$$
 exists in \mathscr{M}_* for all φ in \mathscr{M}_* ;

(iii)
$$w^* - \lim_{t \to \infty} \frac{1}{t} \int_0^t T_s(R) \, ds = 1$$
;

(iv) $\mathcal{F}(T_*)$ separates $\mathcal{F}(T)$.

If the above conditions are satisfied, then

$$F(A) = w^* - \lim_{t \to \infty} \frac{1}{t} \int_0^t T_s(A) \, ds \qquad \text{for all } A \text{ in } \mathcal{M}. \tag{2.1}$$

Proof. (i) \Rightarrow (ii): For each A in \mathcal{M} , the net $\left\{\frac{1}{t}\int_{0}^{t}T_{s}(A)\,\mathrm{d}s\right\}_{t>0}$ is compact in the weak* topology of \mathcal{M} . Any of its limit points, say A_{∞} , is in $\mathcal{F}(T)$, hence, if (i) holds, $A_{\infty} = F(A_{\infty})$; on the other hand, $F \circ T_{s} = F$ for all s and F is normal, hence $F(A_{\infty}) = F(A)$. So, $\frac{1}{t}\int_{0}^{t}T_{s}(A)\,\mathrm{d}s$ converges in the weak* topology to F(A) as $t \to \infty$. This proves (2.1). As a consequence, for each φ in \mathcal{M}_{*} , the net $\left\{\frac{1}{t}\int_{0}^{t}T_{s*}(\varphi)\,\mathrm{d}s\right\}_{t>0}$ converges to $\varphi \circ F$ in the $\sigma(\mathcal{M}^{*},\mathcal{M})$ topology of \mathcal{M}^{*} . Both the net and its limit point are in \mathcal{M}_{*} , since F is assumed to be normal, and the $\sigma(\mathcal{M}^{*},\mathcal{M})$ topology of \mathcal{M}^{*} , restricted to \mathcal{M}_{*} , is the weak topology of \mathcal{M}_{*} .

(ii) \Rightarrow (iii): For any state φ in \mathcal{M}_* , the support projection of w- $\lim_{t\to\infty}\frac{1}{t}\int_0^t T_{s*}(\varphi)\,\mathrm{d}s$ $=\varphi_\infty$ satisfies $S(\varphi_\infty)\leq R$, hence $\lim_{t\to\infty}\frac{1}{t}\int_0^t \varphi(T_s(R))\,\mathrm{d}s=\varphi(1)$ for all φ in \mathcal{M}_* , which is (iii).

(iii) \Rightarrow (iv): If A is in $\mathcal{F}(T)$, then RAR = E(A) is in $\mathcal{F}(T^R)$, where E and T^R have been defined in Section 1. We know from Theorem 1.1 that $\mathcal{F}(T_*)$ is isomorphic to the predual space of $\mathcal{F}(T^R)$, hence it separates $\mathcal{F}(T)$ if and only if RAR = 0, $A \in \mathcal{F}(T)$, implies A = 0. Now, from (iii) it follows that $w^* - \lim_{t \to \infty} \frac{1}{t} \int_0^t T_s((1 - R)A) \, ds = w^* - \lim_{t \to \infty} \frac{1}{t} \int_0^t T_s(A(1 - R)) \, ds = 0$ for all A in \mathcal{M} , by application of the Kadison-Schwarz inequality to the maps $\frac{1}{t} \int_0^t T_s(.) \, ds$. Hence, if A is in $\mathcal{F}(T)$,

$$A = w^* - \lim_{t \to \infty} \frac{1}{t} \int_0^t T_s(RAR) \, \mathrm{d}s$$

which proves that A=0 if RAR=0.

(iv) ⇒ (i): This is a special case of a theorem due to Nagel [12].

Remark 2.2. It should be noticed that for any dynamical semigroup T on a W^* -algebra \mathcal{M} there exists a unique T-invariant norm one projection F, which satisfies (2.1); however, F need not be normal. The proof of this fact may be obtained by using Theorem 5.1 of [3], where the weak topology should be replaced by the weak* topology. It follows also from [3] that the Cesaro limit or the Abel limit may be used equivalently in (2.1).

Remark 2.3. When \mathcal{M} is finite-dimensional, the map F must be normal, so that (iii) always holds. Actually, more is true in this case: Evans and Høegh-Krohn have shown that $\lim_{t \to \infty} T_t(R) = 1$ [5].

In the general, infinite-dimensional case, the problem of finding R and of ascertaining whether $w^*-\lim_{t\to\infty}\frac{1}{t}\int_0^t T_s(R)\,\mathrm{d}s=1$ seems hard and a detailed analysis of concrete cases would be necessary. There is, however, a class of dynamical semigroups for which the above problem can be reduced to the analogous problem for a Markov semigroup on a discrete state space. Suppose there exist a totally atomic abelian W^* -subalgebra $\mathscr Z$ of $\mathscr M$ and a normal conditional expectation N of \mathcal{M} onto \mathcal{Z} , commuting with the dynamical semigroup T. (For instance, this is the case when \mathcal{M} is the algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on a separable Hilbert space \mathcal{H} , $\mathcal{Z} = \{P_i : i \in I\}$ where $\{P_i : i \in I\}$ is a family of mutually orthogonal one-dimensional projections with $\sum_{i \in I} P_i = 1$, and T commutes with a group $\{\alpha_t: t \in \mathbb{R}\}\$ of *-automorphisms of \mathcal{M} determined by a Hamiltonian $H = \sum_{i \in I} \varepsilon_i P_i$ where the ε_i are distinct real numbers). Then, for all tin \mathbb{R}^+ , T_t may be restricted to a map \tilde{T}_t on \mathcal{Z} , and $\tilde{T} = {\tilde{T}_t : t \in \mathbb{R}^+}$ is a Markov semigroup on a discrete state space, the "states" corresponding to the atoms of \mathcal{Z} . Now, we claim that $R = \tilde{R}$, where R and \tilde{R} are the recurrent subspace projections of T_* and \tilde{T}_* , respectively. Indeed, each state φ in $\mathscr{F}(\tilde{T}_*)$ can be extended to a state $\varphi \circ N$ in $\mathscr{F}(T_*)$ and \tilde{R} is just $\sup \{S(\omega): \omega \text{ is an } N\text{-invariant } \}$ state in $\mathscr{F}(T_{\star})$. This proves $R \geq \tilde{R}$. On the other hand, we have $\tilde{R} = N(\tilde{R})$ and, for any state ω in $\mathscr{F}(T_*)$, $\omega \circ N \upharpoonright \mathscr{Z}$ is a state in $\mathscr{F}(\tilde{T}_*)$. Then, $\omega(\tilde{R}) = (\omega \circ N)(\tilde{R})$

Finally, since $R = \tilde{R} = N(\tilde{R})$ and N is normal, for each φ in \mathcal{M}_* we have

$$\varphi\left(\frac{1}{t}\int_{0}^{t}T_{s}(R)\,\mathrm{d}s\right)=(\varphi\circ N)\left(\frac{1}{t}\int_{0}^{t}T_{s}(\tilde{R})\,\mathrm{d}s\right),$$

hence the existence of $\sigma(\mathcal{M}, \mathcal{M}_*)$ - $\lim_{t\to\infty} \frac{1}{t} \int_0^t T_s(R) \, ds$ is equivalent to the existence of $\sigma(\mathcal{L}, \mathcal{L}_*)$ - $\lim_{t\to\infty} \frac{1}{t} \int_0^t T_s(\tilde{R}) \, ds$, and the former is 1 if and only if the latter is.

3. Approach to Equilibrium

=1, so that $R \geq R$.

In this Section we study conditions under which any normal state on \mathcal{M} approaches a normal state under the action of T_{t*} as $t \to \infty$. We reduce this problem to the corresponding problem for T^R , which has a faithful family of normal stationary states, plus the condition that w^* -lim $T_t(R)=1$. Then, by restricting considerations to T^R , we may assume R=1; for this case we give some extension of the results of [8].

The following Lemma is needed repeatedly.

Lemma 3.1. Let $T = \{T_t : t \in \mathbb{R}^+\}$ be a dynamical semigroup on a W^* -algebra \mathcal{M} , and P a projection in $\mathcal M$ reducing T_* . Then the following are equivalent:

- (i) w^* - $\lim_{t\to\infty} T_t(P)=1$;
- (ii) $\lim_{t\to\infty} \|T_{t*} \varphi P(T_{t*} \varphi)P\| = 0$ for all φ in \mathcal{M}_* ;
- (iii) for all φ in \mathcal{M}_* and $\varepsilon > 0$, there exists ψ in $P\mathcal{M}_*P$ and t > 0 such that $T_{t*}\varphi - \psi \parallel < \varepsilon$.

Proof. (i) \Rightarrow (ii): We can assume \mathcal{M} to be concretely represented as a von Neumann algebra of bounded linear operators on a Hilbert space H. For all A in \mathcal{M} , ξ in \mathcal{H} , and $t \ge 0$, we have, using the Kadison-Schwarz inequality for T_{t}

$$||T_{t}(A(\mathbb{1}-P))\xi||^{2} \leq (\xi, T_{t}((\mathbb{1}-P)A^{*}A(\mathbb{1}-P))\xi)$$

$$\leq ||A||^{2}(\xi, T_{t}(\mathbb{1}-P)\xi)$$

so that $T_t(A(1-P))$ tends to zero as $t\to\infty$ in the strong operator topology, uniformly in A. Thus, $T_t(A-PAP)$ tends to zero as $t\to\infty$ in the weak (hence ultraweak, being a bounded net) operator topology, uniformly in A. This proves (ii).

(ii) \Rightarrow (i): For any state φ in \mathcal{M}_* , (ii) gives

$$0 \leq \varphi(T_t(\mathbb{1} - P)) = (T_{t*} \varphi - P(T_{t*} \varphi) P)(\mathbb{1}) \to 0$$

as $t \to \infty$, hence (i) follows.

(ii) \Rightarrow (iii): Given φ in \mathcal{M}_* and $\varepsilon > 0$, choose t large enough and $\psi = P(T_{t^*}\varphi) P$.

(iii) \Rightarrow (ii): Let φ , ε , ψ , t be given such that (iii) holds. For all s in \mathbb{R}^+ we have

$$||P(T_{t+s*}\varphi)P - P(T_{s*}\psi)P|| \leq ||T_{t+s*}\varphi - T_{s*}\psi||$$

$$\leq ||T_{t*}\varphi - \psi|| < \varepsilon.$$

But ψ is in $P\mathcal{M}_*P$ and P reduces T_* , hence $P(T_{s*}\psi)P = T_{s*}\psi$. Then, $||T_{t+s*}\varphi|$ $-P(T_{t+s*}\varphi)P\parallel \stackrel{?}{<} 2\varepsilon$ for all s in \mathbb{R}^+ and a suitable t, which is (ii).

Theorem 3.2. Let $T = \{T_t : t \in \mathbb{R}^+\}$ be a dynamical semigroup on a W*-algebra \mathcal{M} , and let T^R and E be defined as in Section 1. Then the following conditions are equivalent:

- (i) w^* - $\lim_{t\to\infty} T_t(R) = 1$ and w- $\lim_{t\to\infty} \psi \circ T_t^R = \psi \circ E$ for all ψ in $R \mathcal{M}_* R$; (ii) w- $\lim_{t\to\infty} T_{t*} \varphi$ exists in \mathcal{M}_* for all φ in \mathcal{M}_* .

Similarly, the following conditions are equivalent:

- (i') w^* -lim $T_t(R) = 1$ and $\lim \|\psi \circ T_t^R \hat{\psi} \circ E\| = 0$ for all ψ in $R\mathcal{M}_*R$;
- (ii') $n-\lim_{t\to\infty} T_{t*} \varphi$ exists in M_* for all φ in M_* .

Furthermore, conditions (i'), (ii') imply (i), (ii), and (i) implies the equivalent conditions of Theorem 2.1.

Proof. (ii) \Rightarrow (i) and (ii') \Rightarrow (i'): If the limit in (ii) (or in (ii')) exists, it coincides with $\varphi \circ F$, where F is defined by (2.1) and is normal since the limit is assumed to exist in \mathcal{M}_* . For any state φ in \mathcal{M}_* , the support projection of $\varphi \circ F$ is not greater than R, so that $\lim_{t \to \infty} \varphi(T_t(R)) = \varphi(1)$ for all φ in \mathcal{M}_* , i.e. w^* - $\lim_{t \to \infty} T_t(R) = 1$. Moreover, it is clearly RF(.) R = E, hence the conditions w- $\lim_{t \to \infty} \psi \circ T_t^R = \psi \circ E$ and $\lim_{t \to \infty} \|\psi \circ T_t^R - \psi \circ E\| = 0$ for all ψ in $R\mathcal{M}_*R$ are the specializations of (ii) and (ii'), respectively, to ψ in $R\mathcal{M}_*R$.

(i) \Rightarrow (ii) and (i') \Rightarrow (ii'): Notice, first of all, that (i') \Rightarrow (i), which in turn implies (iii) of Theorem 2.1, hence F exists, given by (2.1), and is normal. For all A in \mathcal{M} with $||A|| \leq 1$, φ in \mathcal{M}_* and t, s in \mathbb{R}^+ , we have

$$\begin{aligned} |\varphi(T_{t+s}(A)) - \varphi(F(A))| \\ &\leq |\varphi \cdot T_t(T_s(A) - R T_s(A) R)| + |\varphi \circ T_t(F(A) - R F(A) R)| + |\varphi \circ T_t(T_s^R(A) - E(A))| \\ &\leq ||T_{t*} \varphi - R(T_{t*} \varphi) R || [||T_s(A)|| + ||F(A)||] + |T_{t*} \varphi(T_s^R(A) - E(A))| \\ &\leq 2 ||T_{t*} \varphi - R(T_{t*} \varphi) R || + |T_{t*} \varphi(T_s^R(A) - E(A))|, \end{aligned}$$

where $T_t \circ F = F$ and RF(.) R = E have been used.

Take $\varepsilon > 0$. Because of Lemma 3.1, there exists $t(\varepsilon, \varphi)$ such that

$$||T_{t*}\varphi - R(T_{t*}\varphi)R|| < \varepsilon/3$$
 for all $t \ge t(\varepsilon, \varphi)$.

Under condition (i), there exists $s(t, \varepsilon, A, \varphi)$ such that

$$|T_{t*}\varphi(T_s^R(A) - E(A))| < \varepsilon/3$$
 for all $s \ge s(t, \varepsilon, A, \varphi)$

where we have taken into account that $T_{t*}\varphi(T_s^R(A)-E(A))=(RT_{t*}\varphi R)$ $(T_t^R(A)-E(A))$. If condition (i') holds, $s(t,\varepsilon,A,\varphi)$ may be chosen independent of A for $\|A\| \le 1$. So, if $u \ge u(\varepsilon,A,\varphi)=t(\varepsilon,\varphi)+s(t(\varepsilon,\varphi),\varepsilon,A,\varphi)$, we may decompose u as $t(\varepsilon,\varphi)+s$ with $s \ge s(t(\varepsilon,\varphi),\varepsilon,A,\varphi)$ and we have

$$|\varphi(T_u(A)) - \varphi(F(A))| < \varepsilon$$
 for all $u \ge u(\varepsilon, A, \varphi)$.

This proves (ii) from (i). If (i') holds, $u(\varepsilon, A, \varphi)$ may be chosen independent of A for $||A|| \le 1$ and (ii') follows.

In the rest of the Section, we assume that R=1 and we given some extension of the results of [8] concerning the weak approach to equilibrium. These considerations could, in principle, be applied to T^R . As regards the condition w^* -lim $T_t(R)=1$, we shall discuss it in some special case in the next Section.

Let $\mathcal{M}_{\Gamma}(T)$ be the weak closure of the linear span of the eigenvectors of T_{i} corresponding to eigenvalues of modulus one, and define

$$\mathcal{N}(T) = \{ A \in \mathcal{M} : T_t(A^*A) = T_t(A^*) \ T_t(A),$$
$$T_t(AA^*) = T_t(A) \ T_t(A^*) \text{ for all } t \text{ in } \mathbb{R}^+ \}.$$

It has been shown by Evans [4, Theorem 3.1] that $\mathcal{N}(T)$ is a W^* -subalgebra of \mathcal{M} . When there exists a faithful family of normal T-invariant states, $\mathcal{M}_{\Gamma}(T)$ is a

 W^* -subalgebra of \mathcal{M} and is contained in $\mathcal{N}(T)$, as shown by Albeverio and Høegh-Krohn in [1]; furthermore, when $R=\mathbb{1}$, $\mathcal{N}(T)$ can be equivalently characterized as

$$\mathcal{N}(T) = \{ A \in \mathcal{M} : \omega(A^*A) = \omega(T_t(A^*) T_t(A)), \omega(AA^*)$$

$$= \omega(T_t(A) T_t(A^*)) \text{ for all states } \omega \text{ in } \mathcal{F}(T_*) \text{ and } t \text{ in } \mathbb{R}^+ \},$$

which shows that $\mathcal{N}(T)$ is globally invariant under T when R=1.

Theorem 3.3. Let $T = \{T_t : t \in \mathbb{R}^+\}$ be a dynamical semigroup on a W^* -algebra \mathcal{M} . If there is a faithful family of normal T-invariant states, then $\mathcal{N}(T) = \mathcal{F}(T)$ implies that

$$w^*-\lim_{t\to\infty} T_t(A) = E(A) \quad \text{for all } A \text{ in } \mathcal{M}, \tag{3.1}$$

which in turn implies that $\mathcal{M}_{\Gamma}(T) = \mathcal{F}(T)$.

Proof. Under the above assumptions, we have

$$E(A) = F(A) = w^* - \lim_{t \to \infty} \frac{1}{t} \int_0^t T_s(A) \, ds \quad \text{for all } A \text{ in } \mathcal{M}.$$

Then the first implication is a straightforward generalization of Theorem 3.1 of [8] (we warn the reader that the set $\mathcal{N}(T)$ defined here is $\mathcal{N}(T) \cap \mathcal{N}(T)^*$ in the notation of [8]), and the second one is obvious.

Theorem 3.4. Under the assumptions of Theorem 3.3, suppose in addition that either

- (a) *M* is finite-dimensional, or
- (b) \mathcal{M} is the algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on a separable Hilbert space \mathcal{H} , and T is norm continuous and satisfies detailed balance, in the sense of [9], with respect to a faithful normal state ω .

Then $\mathcal{N}(T) = \mathcal{F}(T)$ is a necessary and sufficient condition for the validity of (3.1).

Proof. We show that in both cases (a) and (b) $\mathcal{M}_{\Gamma}(T) = \mathcal{N}(T)$ and then we apply Theorem 3.3. Notice that, under the present assumptions, $\mathcal{N}(T)$ is the largest T-invariant W*-subalgebra of \mathcal{M} such that the restriction of T to it is a semigroup of *-homomorphisms.

When \mathcal{M} , hence $\mathcal{N}(T)$, is finite-dimensional, a semigroup of *-homomorphisms can always be extended to a group of *-automorphisms with pure point spectrum. This proves $\mathcal{N}(T) = \mathcal{M}_{\Gamma}(T)$ in case (a).

In case (b), the detailed balance condition of [9] means that the infinitesimal generator L of T can be decomposed as $L=L_h+L_s$, where $L_h(A)=[iH,A]$ for all A in \mathcal{M} , H being a self-adjoint operator on \mathcal{H} commuting with the density matrix ρ determining ω , and where L_s satisfies $\omega(AL_s(B))=\omega(L_s(A)B)$ for all A, B in \mathcal{M} . Recalling Theorem 3.1 of [4], we see that, if A is in $\mathcal{N}(T)$, we have $\omega(AL(B))=-\omega(L(A)B)$ for all B in \mathcal{M} , so that $L(A)=L_h(A)$ for all A in $\mathcal{N}(T)$. Then, $T_l(A)=e^{iHt}Ae^{-iHt}$ for all A in $\mathcal{N}(T)$, t in \mathbb{R}^+ , and H has pure point spectrum since it commutes with the strictly positive density matrix ρ . This proves $\mathcal{N}(T)=\mathcal{M}_T(T)$ in case (b).

4. Applications

Let \mathcal{M} be the algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on a separable Hilbert space \mathcal{H} and let $T = \{T, : t \in \mathbb{R}^+\}$ be a norm continuous dynamical semigroup on M with infinitesimal generator L. Then L is of the form (Lindblad [11])

$$L(A) = K^*A + AK + W(A) \quad \text{for all } A \text{ in } \mathcal{B}(\mathcal{H})$$
(4.1)

where K is in $\mathcal{B}(\mathcal{H})$ and W is a completely positive normal map of $\mathcal{B}(\mathcal{H})$ into itself, satisfying $K^* + K + W(1) = 0$. By Stinespring's theorem, W can be written as

$$W(A) = \sum_{i=1}^{\infty} V_i^* A V_i \quad \text{for all } A \text{ in } \mathcal{B}(\mathcal{H})$$
 (4.2)

where the V_i are in $\mathcal{B}(\mathcal{H})$ and the convergence is ultraweak. We can allow for an unbounded K in (4.1) in the following way: if $C_t = \exp(Kt)$ is a strongly continuous contraction semigroup on \mathcal{H} such that $(K\xi, \eta) + (\xi, K\eta) + (\xi, \xi)$ $W(1)\eta = 0$ for all ξ , η in dom(K), and $S_t(A) = C_t^* A C_t$, $A \in \mathcal{B}(\mathcal{H})$, $t \in \mathbb{R}^+$, then there exists a dynamical semigroup $T = \{T_i : t \in \mathbb{R}^+\}$ of $\mathcal{B}(\mathcal{H})$ satisfying

$$T_t(A) = S_t(A) + \int_0^t S_{t-s} W T_s(A) \, \mathrm{d}s \quad \text{for all } A \text{ in } \mathcal{B}(\mathcal{H}). \tag{4.3}$$

Such dynamical semigroups will be called of Lindblad type [6].

A projection P reduces the preadjoint of a dynamical semigroup T of Lindblad type if and only if $\lceil 2 \rceil$

$$(1-P) V_i P = 0$$
 for all i and $(1-P) C_t P = 0$ for all t in \mathbb{R}^+ , (4.4)

and if T is norm continuous with generator of the form (4.1), T^P is norm continuous with a generator of the same form, in which K is replaced by PKP and V_i by PV_iP . Moreover, $\mathcal{N}(T) \subseteq \{V_i^*, V_i\}'$, and if T has a faithful family of normal stationary states, then $\mathcal{M}(T) = \{V_i^*, V_i, K, K^*\}'$ [4, 7]. If $\lim \{V_i\}$ is selfadjoint, a projection reducing T is also a fixed point of T, hence in this case the equivalent conditions of Theorem 2.1 give R=1.

For some semigroup of Lindblad type, it is possible to check concretely the equivalent conditions of Lemma 3.1.

Proposition 4.1. Let $T = \{T_i : t \in \mathbb{R}^+\}$ be a dynamical semigroup of Lindblad type on $\mathcal{M} = \mathcal{B}(\mathcal{H})$ and let $\{P_n: n=0,1,2,\ldots\}$ be an increasing (finite or infinite) sequence of projections in $\mathcal{B}(\mathcal{H})$ satisfying

- (i) $P_0 = P_1 = P$, $\sup_{n} P_n = 1$; (ii) $(1 P_n) V_i P_{n+1} = 0$ for all n and for all i; (iii) $(1 P_n) C_t P_n = 0$ for all n and for all t in \mathbb{R}^+ ;
- (iv) $\lim_{t \to \infty} C_t(1-P) \xi = 0$ for all ξ in \mathcal{H} .

Then P satisfies the equivalent conditions of Lemma 3.1.

Proof. Note, first of all, that all P_n reduce T_* by (ii), (iii) and (4.4). Then it follows from (ii), (iii), (4.3) and (4.2) that $(T_{t*} - S_{t*})(\varphi)$ is in $\mathcal{F}(P_{n-1} \mathcal{H})$ $=P_{n-1}\mathcal{M}_*P_{n-1} \text{ if } \varphi \text{ is in } \mathcal{F}(P_n\mathcal{H})=P_n\mathcal{M}_*P_n \text{ (here we denote by } \mathcal{F}(\mathcal{H}) \text{ the space of all trace class operators on a Hilbert space } \mathcal{H}). By (iv), \lim_{t\to\infty}\|S_{t*}(\varphi-P\varphi P)\| = 0 \text{ for all } \varphi \text{ in } \mathcal{M}_*. \text{ Thus, for all } n=2,3,..., \text{ for all } \varphi_n \text{ in } \mathcal{F}(P_n\mathcal{H}) \text{ and all } \varepsilon>0, \text{ it is possible to find } \varphi_{n-1} \text{ in } \mathcal{F}(P_{n-1}\mathcal{H}) \text{ and } t=t(\varphi_n,\varepsilon)>0 \text{ such that } \|T_{t*}\varphi_n-\varphi_{n-1}\|<\varepsilon; \text{ take, e.g., } \varphi_{n-1}=S_{t*}(P\varphi_nP)+\int\limits_0^t T_{s*}W_*S_{t-s*}(\varphi_n) \,\mathrm{d} s \text{ with } t \text{ large enough: then, } \|T_{t*}\varphi_n-\varphi_{n-1}\|=\|S_{t*}(\varphi_n-P\varphi_nP)\|. \text{ By iterating this procedure, given } \varphi_n \text{ in } \mathcal{F}(P_n\mathcal{H}) \text{ and } \varepsilon>0, \text{ it is possible to find } \psi \text{ in } \mathcal{F}(P\mathcal{H}) \text{ and } s=s(n,\varphi_n,\varepsilon)>0 \text{ such that }$

$$||T_{s*}\varphi_n-\psi||<\varepsilon;$$

here, $s(n, \varphi_n, \varepsilon) = \sum_{j=2}^n t(\varphi_j, \varepsilon/(n-1))$ and $\psi = \varphi_1$. Then, by Lemma 3.1, we have

$$\lim_{t \to \infty} ||T_{t*} \varphi_n - P(T_{t*} \varphi_n) P|| = 0 \quad \text{for all } \varphi_n \text{ in } \mathcal{F}(P_n \mathcal{H}).$$
 (4.5)

On the other hand, by (i) we have that

$$\lim_{n \to \infty} \|\varphi - P_n \varphi P_n\| = 0 \quad \text{for all } \varphi \text{ in } \mathcal{F}(\mathcal{H}). \tag{4.6}$$

Combining (4.5) and (4.6), with $\varphi_n = P_n \varphi P_n$, we conclude by an $\varepsilon/3$ argument that

$$\lim_{t\to\infty} ||T_{t*}\varphi - P(T_{t*}\varphi)P|| = 0 \quad \text{for all } \varphi \text{ in } \mathscr{T}(\mathscr{H}),$$

which is (ii) of Lemma 3.1.

Remark 4.2. Conditions (ii) to (iv) of Proposition (4.1) are most easily checked when there is a family $\{Q_k: k \in I\}$ of mutually orthogonal projections with $\sum_{k \in I} Q_k = 1$ such that $\{Q_k: k \in I\}$ " contains all P_n and C_t , and is mapped into itself by W. Explicitly, let

$$\begin{split} P_n &= \sum_{k \in I_n} Q_k \quad \text{with } I_n \subseteq I_{n+1} (n=0,1,\ldots), \quad \sup_n I_n = I; \\ C_t &= \sum_{k \in I} \exp \left[- (i\omega_k + \gamma_k) \, t \right] Q_k \quad \text{with } \omega_k \in \mathbb{R}, \; \gamma_k \in \mathbb{R}^+; \\ W(Q_k) &= \sum_{j \in I} W_{kj} Q_j \quad \text{with } W_{kj} \in \mathbb{R}^+. \end{split}$$

Then (iii) is satisfied and (iv) becomes $\gamma_k > 0$ for all $k \notin I_1$; it is easily shown that (ii) is equivalent to $W(\mathcal{B}(P_{n+1}\mathcal{H})) \subseteq \mathcal{B}(P_n\mathcal{H})$ for all n, which in turn is equivalent to $W_{kj} = 0$ whenever $k \notin I_n$, $j \in I_{n+1}$.

Note that, when $\operatorname{tr} Q_k < \infty$ for all $k \in I$, the W_{kj} are just the transition rates of the Pauli master equation

$$\dot{n_k} = \sum_i W_{kj} n_j - W_{jk} n_k$$

governing the evolution under T_* of the diagonal density matrices of the form $\sum_{k \in I} n_k Q_k$, $\sum_{k \in I} n_k \operatorname{tr} Q_k < \infty$.

The following Proposition is the generalization of Theorem 3.2 of [8].

Proposition 4.3. Under the assumptions of Proposition 4.1, suppose in addition that

- (a) there exists a T-invariant normal state ω , and
- (b) $lin\{PV_iP\}$ is self-adjoint and its commutant in $\mathcal{B}(P\mathcal{H})$ is reduced to the multiples of P.

Then $S(\omega) = P$, R = P and $w - \lim_{t \to \infty} \varphi \circ T_t = \varphi(1) \omega$ for all φ in \mathcal{M}_* .

Proof. Apply Theorem 3.2 of [8] to T^P to prove that $S(\omega) = P$ and that w-lim $\varphi \circ T_t^P = \varphi(1) \omega$ for all φ in $P \mathcal{M}_* P$. Then $R \ge P$. On the other hand, by Proposition 4.1, w*-lim $T_t(P) = 1$, hence $\varphi(P) = 1$ for each state φ in $\mathscr{F}(T_*)$ and $P \ge R$. It follows that R = P and, by Theorem 3.2, $\varphi \circ T_t$ tends weakly as $t \to \infty$ to $\varphi(1) \omega$ for all φ in \mathcal{M}_* .

Let \mathcal{M} be any W^* -algebra. We say that the preadjoint semigroup T_* of a dynamical semigroup T on \mathcal{M} is asymptotically finite-dimensional if there exists a projection P in \mathcal{M} reducing T_* and satisfying the conditions of Lemma 3.1 such that $P\mathcal{M}_*P$ is finite-dimensional.

Proposition 4.4. Let T_* be asymptotically finite-dimensional Then w^* - $\lim_{t\to\infty} T_t(R) = 1$.

Proof. Let R^P be the recurrent subspace projection of T_*^P . Clearly, $R^P \leq R$. It is also easy to show that R^P reduces T_* since it reduces T_*^P and P reduces T_* . Next, we show that w^* - $\lim_{t\to\infty} T_t(R^P)=1$. Since, by assumption, P satisfies the conditions of Lemma 3.1, for all φ in \mathcal{M}_* and $\varepsilon>0$ there exist ψ in $P\mathcal{M}_*P$ and t>0 such that

$$||T_{\bullet,\bullet}\varphi-\psi||<\varepsilon/2.$$

Similarly, by Lemma 3.1 and [5], for all ψ in $P\mathcal{M}_*P$ and $\varepsilon>0$ there exist ω in $R^P\mathcal{M}_*R^P$ and s>0 such that

$$||T_{s*}^{P}\psi-\omega||<\varepsilon/2.$$

But P reduces T, hence $T_{s*}^P \psi = T_{s*} \psi$ for all ψ in $P \mathcal{M}_* P$ and s > 0, so that

$$||T_{t+s*}\varphi-\omega||<\varepsilon.$$

Therefore, since R^P reduces T_* , w^* - $\lim_{t\to\infty} T_t(R^P)=1$ by Lemma 3.1. Finally, using the same argument as in Proposition 4.3, we find that $R^P \ge R$, so $R^P = R$ and w^* - $\lim_{t\to\infty} T_t(R) = 1$.

Theorem 4.5. Let $T = \{T_t : t \in \mathbb{R}^+\}$ be a dynamical semigroup on a W*-algebra \mathcal{M} such that T_* is asymptotically finite-dimensional. Then the following are equivalent:

(i) there is a state ω in \mathcal{M}_* such that

$$\lim_{t\to\infty} \|T_{t*}\varphi - \varphi(1)\omega\| = 0 \quad \text{for all } \varphi \text{ in } \mathcal{M}_*;$$

- (ii) there is exactly one T-invariant state ω in \mathcal{M}_{\star} ;
- (iii) the set $\mathcal{P}(T_*)$ of all projections in \mathcal{M} reducing T_* has a non-zero smallest element.

If these conditions hold, then $\inf \mathcal{P}(T_*) = S(\omega) = R$.

Proof. (i)⇒(ii): Obvious.

(i) \Rightarrow (iii): The support $S(\omega)$ of ω reduces T_* and, if Q is in $\mathcal{P}(T_*)$, it follows from (i) that ω is in $Q \mathcal{M}_* Q$, so that $S(\omega) \leq Q$ for all Q in $\mathcal{P}(T_*)$.

(iii) \Rightarrow (iii): Let ψ be an extremal T-invariant normal state on \mathcal{M} , and consider the dynamical semigroup $T^{S(\psi)}$ on $S(\psi)$ $\mathcal{M}S(\psi)$. For all φ in $(\mathcal{M}_*)_+$ with $S(\varphi) \leq S(\psi)$, we have $T_{t*}\varphi = T_{t*}^{S(\psi)}\varphi$ for all t in \mathbb{R}^+ . Hence, ψ is also extremal $T^{S(\psi)}$ -invariant, and since it is faithful on $S(\psi)$ $\mathcal{M}S(\psi)$, it follows from [7] that no projection in $S(\psi)$ $\mathcal{M}S(\psi)$ reduces $T^{S(\psi)}$. Then, no projection Q in \mathcal{M} with $Q \leq S(\psi)$ can reduce T. As a consequence, the support of any extremal T-invariant normal state is a minimal element of $\mathcal{P}(T_*)$. By (iii), $\mathcal{P}(T_*)$ has a unique minimal element, hence there exists just one extremal T-invariant normal state. Since T_* is asymptotically finite-dimensional, $\mathcal{F}(T_*)$ is non-zero and finite-dimensional, hence any state in $\mathcal{F}(T_*)$ can be decomposed (not uniquely, in general) into extremal T-invariant normal states. We can conclude that there exists exactly one T-invariant state ω in \mathcal{M}_* , with support $S(\omega) = \inf \mathcal{P}(T_*)$.

(ii) \Rightarrow (i): If ω is the unique T-invariant state in \mathcal{M}_* we have $R = S(\omega)$. Since T_* is asymptotically finite-dimensional, w^* - $\lim_{t\to\infty} T_t(R) = 1$ by Proposition 4.4. Hence, by Theorem 3.2, it suffices to show that

$$\lim_{t \to \infty} \|\varphi \circ T_t - \varphi(\mathbb{1}) \omega\| = 0 \quad \text{for all } \varphi \text{ in } S(\omega) \, \mathcal{M}_* S(\omega). \tag{4.7}$$

Let P be the projection satisfying w^* - $\lim_{t\to\infty} T_t(P)=1$ such that $P\mathcal{M}_*P$ is finite-dimensional, whose existence has been assumed. Then $\omega(P)=1$ and $S(\omega) \leq P$. It follows that $S(\omega) \mathcal{M}_*S(\omega)$ is finite-dimensional, and we get (4.7) by the uniqueness of the invariant state, as shown by Evans and Høegh-Krohn [5].

References

- 1. Albeverio, S., Høegh-Krohn, R.: Frobenius theory for positive maps of von Neumann algebras. Comm. Math. Phys. 64, 83-94 (1978)
- Davies, E.B.: Quantum stochastic processes II. Comm. Math. Phys. 19, 83-105 (1970). See also Davies, E.B.: Quantum theory of open systems (Chap. 6). New York-San Francisco-London: Academic Press 1976
- Davies, E.B.: One-parameter semigroups. New York-San Francisco-London: Academic Press 1980

- 4. Evans, D.E.: Irreducible quantum dynamical semigroups. Comm. Math. Phys. 54, 293-297 (1977)
- Evans, D.E., Høegh-Krohn, R.: Spectral properties of positive maps on C*-algebras. J. London Math. Soc. (2) 17, 345-355 (1978)
- Evans, D.E., Lewis, J.T.: Dilations of irreversible evolutions in algebraic quantum theory. Comm. Dublin Inst. Adv. Studies. Ser. A 24, 1977
- 7. Frigerio, A.: Quantum dynamical semigroups and approach to equilibrium. Lett. Math. Phys. 2, 79-87 (1977)
- 8. Frigerio, A.: Stationary states of quantum dynamical semigroups. Comm. Math. Phys. 63, 269-276 (1978)
- 9. Kossakowski, A., Frigerio, A., Gorini, V., Verri, M.: Quantum detailed balance and KMS condition. Comm. Math. Phys. **57**, 97-110 (1977)
- Kümmerer, B., Nagel, R.J.: Mean ergodic semigroups on W*-algebras. Acta Sci. Math. (Szeged) 41, 151-159 (1979). See also: Kümmerer, B.: Mean Ergodic Semigroups of contractions in W*-algebras. In: Group Theoretical Methods in Physics. Proceedings (Tübingen 1977), pp. 475-481. Lecture Notes in Physics 79. Berlin-Heidelberg-New York: Springer 1978
- 11. Lindblad, G.: On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48, 119-130 (1976)
- 12. Nagel, R.J.: Mittelergodische Halbgruppen linearer Operatoren. Ann. Inst. Fourier (Grenoble) 23, No. 4, 75-87 (1973). See also: Nagel, R.J.: Mean ergodic semigroups and invariant ideals in ordered Banach spaces. In: Foundations of Quantum Mechanics and Ordered Linear Spaces. Advanced Study Institute (Marburg 1973), pp. 309-315. Lecture Notes in Physics 29. Berlin-Heidelberg-New York: Springer 1974
- 13. Spohn, H.: Approach to equilibrium for completely positive dynamical semigroups of N-level systems. Rep. Mathematical Phys. 10, 189-194 (1976)
- 14. Spohn, H.: An algebraic condition for the approach to equilibrium of an open N-level system. Lett. Math. Phys. 2, 33-38 (1977)
- 15. Watanabe, S.: Ergodic theorems for W^* -dynamical semigroups. Hokkaido Math. J. 8, 176-190 (1979)
- Watatani, Y., Enomoto, M.: A Perron-Frobenius type theorem for positive linear maps on C*algebras. Math. Japan 24, 53-63 (1979)

Received March 31, 1981; received in final form January 15, 1982