IoT 특론

4차시

AI첨단기술학과

이의혁

2. 사물 인터넷 디바이스

2-3. IoT 디바이스 프로그래밍

1) IoT 디바이스 프로그래밍 준비

IoT 디바이스 프로그래밍을 위한 준비

- 준비물
 - Raspberry Pi
 - Pi 3 Model B
 - 마이크로 SD 카드
 - Raspberry Pi OS 설치
 - 전원: 마이크로 USB (5V 1A 이상)
 - 키보드와 마우스
 - 초기 설정 시
 - HDMI 지원 모니터 및 HDMI 케이블
 - 케이스

- 각종 센서와 액추에이터를 연결하고 사용하기 위한 부품
 - 브레드보드
 - 각종 센서, 액추에이터 장치들을 연결하는 회로를 구성하기 위한 용도
 - 코블러 브레이크아웃 보드(GPIO 확장 보드)
 - Raspberry Pi의 GPIO 핀을 이용하여 회로를 구성할 때 GPIO 핀을 좀 더 쉽게 사용할 수 있도록 해주는 커넥터 보드
 - 40핀 GPIO 리본 케이블
 - Raspberry Pi 본체의 GPIO 핀과 브레이크아웃 보드를 연결하는 용도로 사용
 - 리본 케이블에 연결된 브레이크아웃 보드는 브레드보드에 장착하여 원하는 회로 를 구성
- 각종 센서, LED, 저항, 점퍼와이어(전선) 등

Raspberry Pi와 브레드보드 연결

Raspberry Pi OS 설치

- Raspberry Pi Imager를 이용하여 설치
 - 라즈베리 파이 재단 홈페이지에서 다운로드 받을 수 있음
 - https://www.raspberrypi.com/software/

• SD 카드 리더기에 SD 카드를 넣고 이를 컴퓨터 USB에 꽂은 후 Raspberry Pi Imager 프로그램에서 Storage 선택 시 이 USB 드라이브를 선택

Raspberry Pi OS 설치 후 데스크탑 모드로 실행된 화면

첫 부팅 후 초기 설정

Raspberry Pi OS에서는 한글 사용을 위한 세팅이 안 되어 있기 때문에 English (US)로 먼저 진행

기본적으로 사용자 이름 pi, 패스워드 raspberry로 로그인할 수 있음

새 password를 설정할 수 있음

첫 부팅 후 초기 설정

WiFi 선택 후 패스워드 입력하면 연결 이 이루어짐

소프트웨어 업데이트는 진행하지 않고 Skip 버튼을 눌러도 됨 Next 버튼을 누르면 새로운 업데이트 가 있는 경우 다운로드 후 설치 진행 될 것임 (시간 소요)

한글 설정 관련

```
pi@raspberrypi:~ $ sudo apt-get install ibus
           읽는 중입니다... 완료
         읽는 중입니다... 완료
ibus is already the newest version (1.5.19-4+deb10u1).
   업그레이드, 0개 새로 설치 0개 제거 및 86개 언그레이드 안 함.
pi@raspberrypi:~ $ sudo apt-get install ibus-hangul
패키지 목록을 읽는 중입니다... 완료
의존성 트리를 만드는 중입니다
         읽는 중입니다... 완료
ibus-hangul is already the newest version (1.5.1-1+b5).
   업그레이드, 0개 새로 설치, 0개 제거 및 86개 업그레이드 안 함.
pi@raspberrypi:~ $ sudo apt-get install fonts-unfonts-core
패키지 목록을 읽는 중입니다... 완료
         읽는 중입니다... 완료
fonts-unfonts-core is already the newest version (1:1.0.2-080608-16).
   업그레이드, 0개 새로 설치, 0개 제거 및 86개 업그레이드 안 함.
pi@raspberrypi:~ $
```

이미 설치되어 있는 상태에서 명령 어를 실행했기 때문에 가장 최신 버전이 이미 설치되어 있다고 메시 지가 나오고 끝난 것임

sudo apt-get install ibus 명령 실행 중 마지막에 Error가 발생했다고 나 오면 sudo apt-get update 명령어 실행 후 다시 시도

한글 설정 관련

한글 설정 관련

Input Method 탭에서 Add 버튼을 누른 후 Korean 추가

Raspberry Pi Configuration

지역, 언어, 시간대, 키보드 설정 가능 (변경하게 되면 리부팅 함)

한글 설정 관련 (메뉴: 기본 설정(Preferences) > Raspberry Pi Configuration)

Set WiFi Country는 변경하지 않고 그냥 둠

VNC Viewer를 이용한 원격 접속

- VNC Server가 설치된 컴퓨터에 원격 접속하여 해당 컴퓨터의 화면을 원격으로 제어할 수 있음
 - https://www.realvnc.com/en/connect/download/viewer/
 - Raspberry Pi에서 VNC 활성화 필요

원격 접속하려고 하는 컴퓨터와 Raspberry Pi가 같은 WiFi AP에 연결되어 있지 않으면 하기 어려움

Raspberry Pi 원격 접속을 위한 VNC 활성화

Raspberry Pi IP 주소 확인

- 원격 접속을 위한 IP 주소 확인
 - ifconfig 명령어 실행
 - WiFi로 연결된 경우
 - wlan0의 inet addr 항목

```
pi@raspberrypi: ~
pi@raspberrypi ~ $ ifconfig
         Link encap: Ethernet HWaddr b8:27:eb:8d:f6:3a
         inet6 addr: fe80::ffac:18cc:6254:132a/64 Scope:Link
         UP BROADCAST MULTICAST MTU:1500 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
         inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING MTU:65536 Metric:1
         RX packets:72 errors:0 dropped:0 overruns:0 frame:0
         TX packets:72 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:6288 (6.1 KiB) TX bytes:6288 (6.1 KiB)
wlan0
         Link encan: Fthernet HWaddr e8:4e:06:31:60:8b
         inet addr:192.168.0.7 Bcast:192.168.0.255 Mask:255.255.255.0
          inet6 addr: fe80::ea4e:6ff:fe31:608b/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:26824 errors:0 dropped:307 overruns:0 frame:0
         TX packets:5967 errors:0 dropped:3 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:5473464 (5.2 MiB) TX bytes:903603 (882.4 KiB)
pi@raspberrypi ~ $
```

VNC Viewer로 Pi 접속 과정

VNC Viewer로 원격 접속한 라즈베리 파이 화면

SSH(Secure Shell) 원격 접속

- SSH 원격 접속
 - 다른 컴퓨터에서 CLI 모드 터미널 창으로 라즈베리 파이 사용 가능
 - 명령 실행, 프로그램 작성/실행
 - SSH 서버 활성화 필요
 - VNC 활성화 한 설정 화면에서 할 수 있음
 - SSH 접속 클라이언트
 - 윈도우 SSH 클라이언트 중 PuTTY 프로그램 사용 (무설치로 실행 가능)
 - http://www.chiark.greenend.org.uk/~sgtatham/putty/
 - 리눅스, 맥 OS의 경우 내장된 터미널 프로그램 이용

- PuTTY 실행 화면
 - Host Name (or IP address)
 - 라즈베리 파이의 IP 주소 입력

- PuTTY를 통한 SSH 접속 화면
 - 기본 login
 - pi
 - password
 - raspberry
- CLI 모드
 - 리눅스 명령어를 입력 하여 작업 수행

리눅스 기본 명령어

- Is
 - 현재 디렉토리 내용을 표시
 - -a 옵션: 이름이 .으로 시작하는 파일도 보여줌
 - 니 옵션: 각 파일과 디렉토리에 대한 퍼미션, 소유자, 그룹, 크기 등 자세한 정보를 같이 보여줌
 - 두 가지 플래그를 같이 사용하고 싶으면 -al이라고 입력
- cd
 - 디렉토리를 변경. 현재 디렉토리 아래 temp라는 디렉토리가 있는 경우, cd temp라고 하면 temp 디렉토리로 이동
- pwd
 - 현재 디렉토리 이름을 표시
- mkdir
 - 새로운 디렉토리를 만듦
 - mkdir iot : 현재 디렉토리 상에 iot라는 이름의 디렉토리를 생성
- rmdir
 - 디렉토리를 삭제
 - rmdir iot : 현재 디렉토리에 있는 iot 디렉토리를 삭제 (단, 삭제하려는 디렉토리가 비어있는 경우만 삭제)
- rm
 - 파일을 삭제
 - rm temp.txt : 현재 디렉토리에 있는 temp.txt 파일을 삭제 (-r 옵션을 사용하면 디렉토리 삭제 가능)

리눅스 기본 명령어

cp

- 파일에 대한 복사본 생성
- cp temp.txt iot.txt : 현재 디렉토리에 있는 temp.txt 파일을 복사하여 iot.txt라는 이름으로 파일을 생성
- cp temp.txt /home/pi2/iot/iot.txt : 현재 디렉토리의 temp.txt 파일을 복사하여 /home/pi2/iot 디렉토리 안에 iot.txt라는 이름으로 파일을 생성

mv

- 파일 혹은 디렉토리를 이동 혹은 파일이나 디렉토리 이름을 변경
- mv temp.txt /home/pi2/iot/ : 현재 디렉토리의 temp.txt 파일을 /home/pi2/iot 디렉토리 아래로 이동

cat

- 파일의 내용을 표시
- cat iot.txt : iot.txt 파일의 내용을 화면에 보여줌

sudo

- root (superuser) 권한으로 어떤 명령어를 실행할 때 사용
- passwd
 - 계정 암호 변경하기 위해 사용

Raspberry Pi Python 프로그래밍

- Thonny Python IDE 이용
 - Raspberry Pi OS에 기본 설치 되어 있는 Python 프로그램 개 발 도구

예제 프로그램 github 저장소

https://github.com/skang-koreatech/loT_2023-winter

- Raspberry Pi에 저장소의 코드를 복제하기
 - git clone https://github.com/skang-koreatech/loT_2023-winter

```
~ ^ X
File Edit Tabs Help
pi@raspberrypi:~ $ git clone https://github.com/skang-koreatech/IoT_2021-winter
Cloning into 'IoT 2021-winter'...
remote: Enumerating objects: 15, done.
remote: Counting objects: 100% (15/15), done.
remote: Compressing objects: 100% (12/12), done.
remote: Total 15 (delta 1), reused 12 (delta 1), pack-reused 0
Receiving objects: 100% (15/15), done.
Resolving deltas: 100% (1/1), done.
pi@raspberrypi:~ $ ls
Bookshelf Documents IoT_2021-winter Pictures Templates
          Downloads Music
                                     Public
                                               Videos
pi@raspberrypi:~ $
```

- 저장소에서 업데이트 된 코드를 받아오기
 - Raspberry Pi에 복제한 저장소 폴더로 이동 후
 - git pull

```
File Edit Tabs Help
remote: Compressing objects: 100% (12/12), done.
remote: Total 15 (delta 1), reused 12 (delta 1), pack-reused 0
Receiving objects: 100% (15/15), done.
Resolving deltas: 100% (1/1), done.
pi@raspberrypi:~ $ ls
Bookshelf Documents IoT_2021-winter Pictures Templates
           Downloads Music
                                           Public
                                                      Videos
pi@raspberrypi:~ $ cd IoT 2021-winter
pi@raspberrypi:~/IoT_2021-winter $ ls
'python basic' README.md
pi@raspberrypi:~/IoT_2021-winter $ git pull
 int: git config pull.rebase false # merge (the default strategy)
nint: preference for all repositories. You can also pass --rebase, --no-rebase, nint: or --ff-only on the command line to override the configured default per
Already up to date.
pi@raspberrypi:~/IoT_2021-winter $
```

Python 예제 프로그램 둘러보기

- HelloWorld.py
 - 텍스트 출력
- ComputeAverage.py
 - 사용자 데이터 입력, 연산, 출력
- MathFunctions.py
 - 여러 가지 수학 함수 연산 기능을 구현한 모듈 이용
 - 모듈: 미리 만들어진 특정 기능을 수행하는 프로그램의 모음
- LoopAndCondition.py
 - 반복문, 조건문 이용
- PythonFunction.py
 - 함수를 정의하고 이를 이용하여 프로그램 작성

Raspberry Pi GPIO

- 라즈베리 파이에서 센서를 제어하고 센서 데이터를 읽거나 액추에이터를 제어하기 위해서 GPIO를 이용
- 이를 위해서 GPIO 프로그래밍 필요

Raspberry Pi 3 GPIO Header

Pin#	NAME		NAME	Pin‡
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I ² C)	00	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	O	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)		(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

www.element14.com/RaspberryPi

29/02/2016

RPi.GPIO 모듈

- RPi.GPIO
 - GPIO (General Purpose Input Output) 핀을 사용하기 위한 Python 모듈
 - 이를 이용하여 센서/액추에이터를 이용하는 프로그램 구현
 - http://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/
 - Raspberry Pi OS에 기본 설치되어 있음
 - 확인 : Command line 터미널에 python 입력 후 모듈을 import 해 본다. 에러가 발생하지 않으면 이용 가능한 것임

RPi.GPIO 모듈 기본

- 모듈 import
 - import RPi.GPIO as gpio
- 초기 설정
 - gpio.setmode(gpio.BCM)
 - gpio.setup(channel, gpio.IN)
 - 여기서 channel은 사용하려고 하는 핀 번호
 - 리스트를 이용하여 동시에 여러 개의 핀 번호를 설정할 수 있음
 - 두번째 파라미터는 입력용/출력용을 설정
 - 출력용으로 사용하고자 하는 경우, gpio.OUT

RPi.GPIO 모듈 기본

- 입력/출력
 - gpio.input(channel)
 - channel 변수로 명시된 핀에서 값을 읽음
 - 0 / gpio.LOW / False 또는 1 / gpio.HIGH / True를 반환
 - gpio.output(channel, state)
 - channel 변수로 명시된 핀에 state에 해당하는 값을 출력
 - state는 0 / gpio.LOW / False 또는 1 / gpio.HIGH / True 가 될 수 있음
- 종료 시
 - gpio.cleanup()

2) IoT 디바이스 프로그래밍

LED 제어하기

• Raspberry Pi GPIO 핀을 통해 LED를 켜고 끄는 것을 제어

• 준비

• Raspberry Pi와 GPIO 케이블로 연결된 코블러 브레이크아웃 보드와 브

레드보드

- LED
- 저항
- 점퍼 와이어

http://www.mobilefish.com/developer/arduino/arduino.html

• 회로 구성

- 전원 공급용 GPIO 핀 연결
 - 이 예제에서는 5번 핀 사용
 - 코블러 브레이크아웃 보드에서 GPIO 5번 핀을 브레드보드의 빨간선으로 표시된 (+) 홀에 와이어 로 연결
- 그라운드 연결
 - 코블러 브레이크아웃 보드의 그라운드(GND) 핀을 와이어로 브레드보드의 파란선 (-) 홀에 연결
- LED 장착
 - LED의 긴 전극이 양극, 짧은 전극이 음극이므로 음극을 브레이크아웃 보드의 GND 핀에 연결된 파란선 (-) 홀과 와이어로 연결
- 저항 연결
 - LED의 양극과 브레드보드 빨간선 (+) 홀 사이에 작은 저항 하나를 연결


```
import RPi.GPIO as gpio
import time
led pin = 5
gpio.setmode(gpio.BCM)
gpio.setup(led_pin, gpio.OUT)
gpio.output(led_pin, True)
time.sleep(0.5)
gpio.output(led_pin, False)
time.sleep(0.5)
gpio.output(led_pin, True)
time.sleep(0.5)
gpio.output(led_pin, False)
time.sleep(0.5)
print("Blink Finished")
gpio.cleanup()
```

- 예제 코드: /actuator_led/simpleLedBlink.py
- 0.5초 간격으로 LED를 켰다 껐다 2번 반복하는 예제 프로그램
- 5번 GPIO 핀을 출력핀으로 사용하여 LED 제어
 - 5번 핀이 아닌 다른 핀을 사용하는 경우 3번 라인 에서 해당 번호에 맞게 숫자를 변경해주어야 함

• 10번 켰다 껐다 반복하도록 프로그램을 변경한다면?

예제 코드: /actuator_led/blinkLed.py

```
import RPi.GPIO as gpio
import time
led_pin = 5
gpio.setmode(gpio.BCM)
gpio.setup(led_pin, gpio.OUT)
def blinkLED(numTimes, speed):
  for i in range(0, numTimes):
    print("Iteration " + str(i+1))
    gpio.output(led_pin, True)
    time.sleep(speed)
    gpio.output(led_pin, False)
    time.sleep(speed)
  print("Blink Finished")
  gpio.cleanup()
```

```
try:
  iterations = input("Enter total number of times to blink: ")
  speed = input("Enter length of each blink(seconds): ")
  blinkLED(int(iterations), float(speed))
except KeyboardInterrupt:
  gpio.cleanup()
```