STAT 212 Problem Set 1.

Due: Friday, February 7th at 11:59PM

Instructions: Collaboration with your classmates is encouraged. Please identify everyone you worked with at the beginning of your solution PDF (e.g. Collaborators: Alice, Bob). Your solutions should be *written* entirely by you, even if you collaborated to *solve* the problems. The first person to report each typo in this problem set (by emailing me and Somak) will receive 1 extra point; more serious mistakes will earn more points.

1. Let $C([0,1]) = \{f : [0,1] \to \mathbb{R} \text{ continuous}\}$. For $f,g \in C([0,1])$, define

$$d_{\text{sup}}(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

- Prove that $d_{\text{sup}}(\cdot,\cdot)$ defines a metric on C([0,1]).
- A metric space (X, d) is defined to be *complete* if every Cauchy sequence is convergent. Prove that $(C([0, 1]), d_{\sup})$ is a complete metric space.
- A metric space (X, d) is defined to be *separable* if there exists a *countable* set $S \subseteq X$ which is *dense* in (X, d). (A subset S is dense if for all $x \in X$ and $\varepsilon > 0$, there exists $y \in S$ such that $d(x, y) < \varepsilon$. Prove that $(C([0, 1]), d_{\text{sup}})$ is separable.

Hint: Construct functions with rational values at points of the form i/n, and interpolate linearly otherwise.

A metric space that is both *complete* and *separable* is called a *Polish space*. For the purposes of probability theory, Polish spaces enjoy many of the nice properties of \mathbb{R} . This will be very useful in our later study of *Brownian Motion*, which can be defined as a "C([0,1])-valued random variable".

- 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
 - Let $\{\mathcal{F}_{\alpha} : \alpha \in I\}$ be any collection of sub- σ -algebras of \mathcal{F} . Prove that $\cap_{\alpha \in I} \mathcal{F}_{\alpha}$ is a σ -algebra.
 - Let X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. By definition, X is measurable with respect to a σ -algebra \mathcal{G} if $\{X \in A\} \in \mathcal{G}$ for all Borel subsets A of \mathbb{R} . Consider the collection

$$C = \{C \subset F : C \text{ is a } \sigma - \text{algebra}, X \text{ is } C - \text{measurable}\}.$$

It follows from the previous part that $\cap_{\mathcal{G}\in\mathcal{C}}\mathcal{G}$ is a σ -algebra. It is called the ' σ -algebra generated by X', and is often denoted $\sigma(X)$. By definition, it is the *smallest* sigma algebra with respect to which X is measurable.

Prove that $\sigma(X)$ consists **exactly** of the sets $\{X \in A\}$ for Borel $A \subseteq \mathbb{R}$.

3. Let $\{X_n : n \geq 1\}$, X be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that $X_n \xrightarrow{P} X$ if and only if any subsequence of X_n has a further subsequence converging to X almost surely.

4. We showed in class that if ν , μ are finite measures on the same sigma-algebra such that

$$0 \le \nu(S) \le \mu(S) \tag{1}$$

for all measurable sets S, then there exists a [0,1]-valued measurable function f such that $\nu(S) = \int_S f d\mu$ for all S. Note that given a general pair (ν, μ) of finite measures, the pair $(\nu, \nu + \mu)$ always obeys (1). By applying the result from class to this setup, show the following stronger forms of the Radon–Nikodym theorem:

- (a) If $\nu \ll \mu$ (i.e. $\nu(S) = 0$ whenever $\mu(S) = 0$), then there exists a non-negative integrable function f such that $\nu(S) = \int_S f d\mu$ for all S.
- (b) In complete generality, there exists a non-negative integrable function f and finite measure θ such that

$$\nu(S) = \theta(S) + \int_{S} f d\mu \tag{2}$$

for all measurable sets S. Furthermore, one can arrange that θ and μ are mutually singular: there exists a measurable set S_* with $\theta(S_*) = 0$ and $\mu(S_*^c) = 0$. (Hint: consider the set where the function f coming from $(\nu, \nu + \mu)$ equals 1.)

- (c) Recall that in class, we showed f is unique in the absolutely continuous case. Show the decomposition (2) is also unique, i.e. if $(\tilde{\theta}, \tilde{f})$ is another such decomposition then $\theta = \tilde{\theta}$ as measures, and $f = \tilde{f}$ holds μ -almost everywhere.
- 5. Let $(X_i, \mathcal{F}_i)_{i \in \mathbb{N}}$ be an adapted process of real-valued random variables. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function such that for some fixed constants A, B we have

$$|f(x)| \le A|x| + B, \quad \forall x \in \mathbb{R}.$$
 (3)

Show that:

• If $(X_i, \mathcal{F}_i)_{i \in \mathbb{N}}$ is a martingale then $(f(X_i), \mathcal{F}_i)_{i \in \mathbb{N}}$ is a submartingale.

Hint: In checking measurability, it may be helpful to recall that any convex function from $\mathbb{R} \to \mathbb{R}$ is continuous.

- If $(X_i, \mathcal{F}_i)_{i \in \mathbb{N}}$ is a submartingale and if f is non-decreasing then $(f(X_i), \mathcal{F}_i)_{i \in \mathbb{N}}$ is also a submartingale.
- Both of the previous statements may be false, if the assumption (3) is dropped.
- 6. A Galton-Watson branching process models the growth of a population, and can be formally described as follows. Let $\{X(i,t): i \geq 1, t \geq 1\}$ be an array of iid $\mathbb{Z}_{\geq 0}$ valued random variables satisfying $m := \mathbb{E}[X(1,1)] \in (0,\infty)$. Define $Z_0 = 1$ and

$$Z_{t+1} = \sum_{i=1}^{Z_t} X(i, t+1).$$

• Prove that $M_t = Z_t/m^t$ is a martingale with respect to the natural filtration $\mathcal{F}_t = \sigma(Z_0, \dots, Z_t)$. Further, prove that $\mathbb{E}[Z_t] = m^t$.

- Conclude that M_t converges to a non-negative random variable M_{∞} almost surely, with $\mathbb{E}[M_{\infty}] \leq 1$.
- Show by example that both $\mathbb{E}[M_{\infty}] = 1$ and $\mathbb{E}[M_{\infty}] < 1$ are possible.

Optional questions (not graded)

• Let A, B be two events such that P(B > 0). Denote \mathcal{G} to be the sigma-algebra generated by B. Prove that

$$P(A|\mathcal{G})(\omega) = \begin{cases} \frac{P(A \cap B)}{P(B)} & \omega \in B\\ \frac{P(A \cap B^c)}{P(B^c)} & \text{otherwise} \end{cases}$$

 \bullet Let X be a square-integrable random variable. Let $\mathcal F$ be a sub-algebra. Prove that

$$Var(X) = \mathbb{E}(Var(X|\mathcal{F})) + Var(\mathbb{E}(X|\mathcal{F})).$$

- If $S \subseteq \mathbb{R}$ is a Borel set, prove that for any $\epsilon > 0$, there exists a compact set $K \subseteq S$ such that $\mu(K) \ge \mu(S) \epsilon$. (Hint: consider the family of S such that both S and its complement have this property. Prove this family itself forms a σ -algebra.)
- A related proof of the Radon–Nikodym theorem goes by considering the quadratic objective

$$V(f) = 2 \int f d\nu - \int f^2 d\mu.$$

As in class, let's assume $\nu(S) \leq \mu(S)$ for all measurable sets S, and aim to find a [0,1]-valued Radon–Nikodym derivative.

- 1. Explain why if one **assumes** the Radon–Nikodym theorem, then V is maximized by the Radon–Nikodym derivative $f = d\nu/d\mu$.
- 2. Show that $\sup_{f:\Omega\to[0,1]}V(f)$ is attained, by considering a rapidly convergent sequence of approximate maximizers. (Hint: it may help to prove that if $V(f_n)\approx V(f_m)$ are near-maximal, then $f_n\approx f_m$ in L^2 , by considering $V\left(\frac{f_n+f_m}{2}\right)$. The intuition here is that V is strictly concave.)
- 3. Letting f_* attain the maximum value of V, show that f_* yields a Radon-Nikodym derivative.