EXPRESS MAIL NO .: EL668292918US

DATE DEPOSITED: AUGUST 22, 2001

٤

60

AUG 2 2 2001 5820603.ST25 SECUENCE LISTING

RADEM <110> Weigel, Paul

<120> Identification of Hyaluronan Receptor for Endocytosis

<130> 5820.603

<140> 09/842,930

<141> 2001-04-25

<150> 60/245,320

<151> 2000-11-02

60/199,538 <150>

<151> 2000-04-25

<160> 56

<170> PatentIn version 3.1

<210> 1

<211> 4706

<212> DNA

<213> Rattus norvegicus

<400>

tetttaceaa gtetaeteae eegtetggag eagatgeeeg actatteeat titeegaggt tacattattc attacaacct ggcaagtgca atcgagtctg cagatgctta tactgtgttc 120 180 qtqccaaaca atqaaqccat cqaaaactat atcagggaga agaaagccac atctctaaaq gaagatattc tacggtacca tgtggtcctg ggggaaaagc tcctgaagaa tgacttgcat 240 aacggcatgc accgagagac catgctgggg ttctcctacc tccttgcctt ctttctccgc 300 360 aatgaccagc tgtatgtaaa tgaagctcca ataaactaca ccaatgtggc cactgataaa ggagtgatcc atggtctgga gaaagttctg gaaattcaga agaacagatg tgacaataat 420 480 gacaccatta ttgtgagagg ggagtgtgga aagtgttccc agcaagcccc ctgcccactc qaqacaaaac cacttaqaqa qacqaggaaa tgcatctatt ccatctactt catggggaag 540 600 agateegtat teategggtg ceagecaeag tgtgtgagaa eeateattae aagageetge tggctggctt ctttggccca caatgccaag cctgccccgg gagaggtcaa aatgtgtgct 660 ctgggaacgg cttctgtctg ggacggtgtg aatggcactg gcacgtgcca gtgcgggctg 720

ggetteaatg ggacageetg tgaaacetge aetgagggga agtatggtat eeactgegae 780 caagcatgct cttgtgtcca tgggagatgt agccaaggac ccttgggaga cggctcctgt 840 gactgtgacg tcggctggcg aggagtgaag tgtgacatgg agatcaccac agacaactgc 900 aacgggacct gtcacaccag tgccaactgc cttctggatc cagacggcaa agcctcgtgc 960 aaatgtgcgg caggattccg agggaatgga acggtctgca cagccatcaa tgcctgtgag 1020 accagcaatg gaggatgttc tacaaaggcc gactgtaaaa gaaccacccc aggaaaccgg 1080 gtgtgtgtgt gcaaggcagg ctataccggc gacggcatcg tgtgccttga aatcaacccg 1140 tgtttggaga accatggtgg ctgtgacaga aatgcagagt gcacacagac agggcccaac 1200 caggoogtot gtaactgott googaagtac actggagatg gaaaggtotg ctogottato 1260 1320 aatgtctgcc taacgaacaa tggcggctgc agtccatttg ccttctgcaa ctacactgag 1380 caagatcaaa ggatatgtac ctgcaagcca gactacacgg gtgatggaat cgtctgccgg ggcagcatct acggggagct tcccaagaac ccttcgacgt cccagtactt cttccagttq 1440 caggagcatg ctgtccgaga gcttgctgga cctggcccct tcaccgtgtt cgcgcctttg 1500 tctagctcct tcaatcatga gccccggatt aaagactggg atcagcaggg cctcatgtcc 1560 1620 caggitette getateacgi ggigggetge cagcagetge igitggacaa cetaaaagig accacaagtg ccacgaccct ccaaggagag ccagtttcca tctctgtctc tcaggacact 1680 gtgttcataa acaatgaggc gaaggtcctg tccagtgaca tcatcagcac caatggcgtc 1740 atccacgtta tagacaagtt gctgtctccc aaaaacttgc ttatcacccc caaagatgcc 1800 ttgggcaggg ttctgcaaaa tcttactaca gtggcagcaa accacggata taccaaattc 1860 agcaagttga tacaggactc aggcttgctg tcagtcatca ctgactccat ccacacccca 1920 gtcactgtct tctggcctac ggacaaagcc ctggaagcct tgcccccaga gcagcaggac 1980 ttcctgttca atcaagacaa caaggacaag ctgaagtctt acctgaagtt ccacgtgatc 2040 cgagacteca aggetttage tteagacete eecaggtetg etteetggaa gaeeetgeaa 2100 ggctcagagc tgagtgtgag gtgtggaact ggcagtgaca tcggtgagct ctttctaaac 2160 gaacaaatgt gcagattcat acaccgggga ctcttgtttg acgtgggtgt ggcctatggc 2220 attgactgcc tactcatgaa tcctacccta ggtggccgat gtgacacttt tactaccttc 2280

gatattccgg gggagtgcgg aagttgcatt ttcactccca aatgcccact gaagagcaag 2340 ccaaagggcg tgaagaagaa gtgtatctac aacccgttac ctttcaggag gaacgtggaa 2400 ggctgccaga acctgtgcac cgtggtgatc caaaccccca ggtgctgcca tggttacttc 2460 2520 atgccagact gtcaggcctg ccctggagga ccagatacac cgtgtaacaa ccggggcatg 2580 tgccgcgatc tgtacacacc catgggacag tgcctatgcc acaccggctt caacgggaca 2640 gcctgcgagc tctgctggca tgggagattt gggcctgact gtcagccccg cagctgctcc 2700 gagcatggac agtgtgatga ggggatcaca ggctccgggg agtgcctctg tgaaacaggg tggacagccg cttcgtgtga cactcccaca gctgtattcg cagtgtgcac acctgcttgc 2760 2820 tccgtgcacg ccacctgtac ggagaacaac acgtgtgtgt gtaacttgaa ctacgaaggt gacgggatca catgcacagt cgtggacttc tgcaaacaga acaacggggg ctgtgcgaag 2880 2940 gtcgctaagt gctcccagaa aggcacccaa gtctcttgca gctgcaagaa aggctacaag 3000 ggggatggct acagctgcat agagatagac ccctgtgcag acggtgtcaa cgggggatgc 3060 catgagcacg ccacctgcag gatgacgggc ccaggcaagc ataagtgtga atgtaaaagt cactatgtcg gggacggagt ggactgtgag cctgagcagc tgccgctcga ccgttgctta 3120 3180 caggacaacg gacagtgcca cccagatgcc agctgtgcag acctctactt ccaggacacg accgtaggag tattccatct acgctcccca ctgggccagt acaaactgac atttgacaaa 3240 gccaaagaag cctgtgccaa agaagctgcg accatagcca cctacaacca gctctcctat 3300 3360 gcccagaagg ccaagtatca cctgtgctcg gccggctggc tggagagtgg gcgggttgcc tacccgacta cgtatgcctc tcagaagtgt ggtgcaaacg ttgttgggat cgtagactac 3420 3480 ggatccaggg ccaacaagag tgaaatgtgg gatgtcttct gttaccggat gaaagatgtg 3540 aactgcacct gcaaggcagg ctatgtggga gatggcttct cgtgcagtgg gaacctgctg caggteetea tgteetteee etegeteaea aactteetga cagaggtget ggetttttee 3600 aagageteag eeegaggaca ggeatttttg aaacacetga etgacetgte cateegtgge 3660 accetyttty tyccacagaa caytygycta cegygaaata agageetyte tygeegygae 3720 attgagcacc acctcactaa tgtcaacgtc tccttttaca atgaccttgt caatggtacc 3780

tttctgagga	ctatgctggg	aagccaactg	ctcattacct	tcagccagga	ccagctccac	3840
caagagacca	ggtttgtgga	tggaagatcc	attctgcagt	gggacatcat	cgccgccaat	3900
ggaatcctcc	atattatttc	tgaacctttg	agagctcctc	ccacggcagc	aacggctgcc	3960
cactctggcc	tggggacagg	tatattctgt	gccgtcgtcc	tggtcactgg	tgcgattgct	4020
ctggcagctt	actcttactt	ccggctaaag	cagcgaacca	ctggtttcca	gcgttttgat	4080
cagaagagga	cattgatgtc	ttggcttttg	gcaagcagca	gcccaagaat	atcgcaaacc	4140
ctctgtatga	gacctcagcg	ccggcacccc	cagagtcctc	ctgtgacccc	ttcacagacc	4200
ctggagaaca	ggatctggag	gacagcgacc	ctctgggggc	actgcggtcc	tgacatgaga	4260
agccagcaag	caaccacagt	cacggttcca	cggtgattcc	cagccccagc	tgtctcatgg	4320
atcagttgtt	ttaaagaatg	acaacactca	taagccagcc	atacctcacc	cttctggtta	4380
atctgggatt	gtcgccaggg	ctaaggagcc	atgttgcctg	gatacctggg	ggacctccac	4440
ctcctctgag	cctataccgt	ggttctctca	cttccatatg	gtgcttggtc	tgttctgccc	4500
tctcttgtac	ccacaaactg	tgactctgtg	gtattctcct	attgacgtaa	gcaccaaagg	4560
cggggcttca	cctcttatgt	tctgtattcc	agtacccaga	agtacctgcc	acacatgtgt	4620
gctcaataaa	tgttttggga	acaaaataaa	gaaggcactg	tgtacctaga	aggtgtcaaa	4680
ctatgaaagc	aaaaaaaaa	aaaaaa			,	4706

<210> 2

Ser Leu Pro Ser Leu Leu Thr Arg Leu Glu Gln Met Pro Asp Tyr Ser 1 5 10 15

Ile Phe Arg Gly Tyr Ile Ile His Tyr Asn Leu Ala Ser Ala Ile Glu 20 25 30

Ser Ala Asp Ala Tyr Thr Val Phe Val Pro Asn Asn Glu Ala Ile Glu 35 40 45

<211> 1431

<212> PRT

<213> Rattus norvegicus

<400> 2

Asn Tyr Ile Arg Glu Lys Lys Ala Thr Ser Leu Lys Glu Asp Ile Leu Arg Tyr His Val Val Leu Gly Glu Lys Leu Leu Lys Asn Asp Leu His Asn Gly Met His Arg Glu Thr Met Leu Gly Phe Ser Tyr Leu Leu Ala Phe Phe Leu Arg Asn Asp Gln Leu Tyr Val Asn Glu Ala Pro Ile Asn Tyr Thr Asn Val Ala Thr Asp Lys Gly Val Ile His Gly Leu Glu Lys Val Leu Glu Ile Gln Lys Asn Arg Cys Asp Asn Asn Asp Thr Ile Ile Val Arg Gly Glu Cys Gly Lys Cys Ser Gln Gln Ala Pro Cys Pro Leu Glu Thr Lys Pro Leu Arg Glu Thr Arg Lys Cys Ile Tyr Ser Ile Tyr Phe Met Gly Lys Arg Ser Val Phe Ile Gly Cys Gln Pro Gln Cys Val Arg Thr Ile Ile Thr Arg Ala Cys Trp Leu Ala Ser Leu Ala His Asn Ala Lys Pro Ala Pro Gly Glu Val Lys Met Cys Ala Leu Gly Thr Ala Ser Val Trp Asp Gly Val Asn Gly Thr Gly Thr Cys Gln Cys Gly Leu Gly Phe Asn Gly Thr Ala Cys Glu Thr Cys Thr Glu Gly Lys Tyr Gly Page 5

Ile His Cys Asp Gln Ala Cys Ser Cys Val His Gly Arg Cys Ser Gln Gly Pro Leu Gly Asp Gly Ser Cys Asp Cys Asp Val Gly Trp Arg Gly Val Lys Cys Asp Met Glu Ile Thr Thr Asp Asn Cys Asn Gly Thr Cys His Thr Ser Ala Asn Cys Leu Leu Asp Pro Asp Gly Lys Ala Ser Cys Lys Cys Ala Ala Gly Phe Arg Gly Asn Gly Thr Val Cys Thr Ala Ile Asn Ala Cys Glu Thr Ser Asn Gly Gly Cys Ser Thr Lys Ala Asp Cys Lys Arg Thr Thr Pro Gly Asn Arg Val Cys Val Cys Lys Ala Gly Tyr Thr Gly Asp Gly Ile Val Cys Leu Glu Ile Asn Pro Cys Leu Glu Asn His Gly Gly Cys Asp Arg Asn Ala Glu Cys Thr Gln Thr Gly Pro Asn Gln Ala Val Cys Asn Cys Leu Pro Lys Tyr Thr Gly Asp Gly Lys Val Cys Ser Leu Ile Asn Val Cys Leu Thr Asn Asn Gly Gly Cys Ser Pro Phe Ala Phe Cys Asn Tyr Thr Glu Gln Asp Gln Arg Ile Cys Thr Cys Lys Pro Asp Tyr Thr Gly Asp Gly Ile Val Cys Arg Gly Ser Ile Tyr Page 6

450 455 460

Gly 465	Glu	Leu	Pro	Lys	Asn 470	Pro	Ser	Thr	Ser	Gln 475	Tyr	Phe	Phe	Gln	Leu 480
Gln	Glu	His	Ala	Val 485	Arg	Glu	Leu	Ala	Gly 490	Pro	Gly	Pro	Phe	Thr 495	Val
Phe	Ala	Pro	Leu 500	Ser	Ser	Ser	Phe	Asn 505	His	Glu	Pro	Arg	Ile 510	Lys	Asp
Trp	Asp	Gln 515	Gln	Gly	Leu	Met	Ser 520	Gln	Val	Leu	Arg	Tyr 525	His	Val	Val
Gly	Cys 530	Gln	Gln	Leu	Leu	Leu 535	Asp	Asn	Leu	Lys	Val 540	Thr	Thr	Ser	Ala
Thr 545	Thr	Leu	Gln	Gly	Glu 550	Pro	Val	Ser	Ile	Ser 555	Val	Ser	Gln	Asp	Thr 560
Val	Phe	Ile	Asn	Asn 565	Glu	Ala	Lys	Val	Leu 570	Ser	Ser	Asp	Ile	Ile 575	Ser
Thr	Asn	Gly	Val 580	Ile	His	Val	Ile	Asp 585	Lys	Leu	Leu	Ser	Pro 590	Lys	Asn
Leu	Leu	Ile 595	Thr	Pro	Lys	Asp	Ala 600	Leu	Gly	Arg	Val	Leu 605	Gln	Asn	Leu
Thr	Thr 610	Val	Ala	Ala	Asn	His 615	Gly	Tyr	Thr	Lys	Phe 620	Ser	Lys	Leu	Ile
Gln 625	Asp	Ser	Gly	Leu	Leu 630	Ser	Val	Ile	Thr	Asp 635	Ser	Ile	His	Thr	Pro 640
Val	Thr	Val	Phe	Trp 645	Pro	Thr	Asp	Lys	Ala 650	Leu	Glu	Ala	Leu	Pro 655	Pro

Glu Gln Gln Asp Phe Leu Phe Asn Gln Asp Asn Lys Asp Lys Leu Lys Ser Tyr Leu Lys Phe His Val Ile Arg Asp Ser Lys Ala Leu Ala Ser Asp Leu Pro Arg Ser Ala Ser Trp Lys Thr Leu Gln Gly Ser Glu Leu Ser Val Arg Cys Gly Thr Gly Ser Asp Ile Gly Glu Leu Phe Leu Asn Glu Gln Met Cys Arg Phe Ile His Arg Gly Leu Leu Phe Asp Val Gly Val Ala Tyr Gly Ile Asp Cys Leu Leu Met Asn Pro Thr Leu Gly Gly Arg Cys Asp Thr Phe Thr Thr Phe Asp Ile Pro Gly Glu Cys Gly Ser Cys Ile Phe Thr Pro Lys Cys Pro Leu Lys Ser Lys Pro Lys Gly Val Lys Lys Lys Cys Ile Tyr Asn Pro Leu Pro Phe Arg Arg Asn Val Glu Gly Cys Gln Asn Leu Cys Thr Val Val Ile Gln Thr Pro Arg Cys Cys His Gly Tyr Phe Met Pro Asp Cys Gln Ala Cys Pro Gly Gly Pro Asp Thr Pro Cys Asn Asn Arg Gly Met Cys Arg Asp Leu Tyr Thr Pro Met Gly Gln Cys Leu Cys His Thr Gly Phe Asn Gly Thr Ala Cys Glu Leu

Cys Trp His Gly Arg Phe Gly Pro Asp Cys Gln Pro Arg Ser Cys Ser Glu His Gly Gln Cys Asp Glu Gly Ile Thr Gly Ser Gly Glu Cys Leu Cys Glu Thr Gly Trp Thr Ala Ala Ser Cys Asp Thr Pro Thr Ala Val Phe Ala Val Cys Thr Pro Ala Cys Ser Val His Ala Thr Cys Thr Glu Asn Asn Thr Cys Val Cys Asn Leu Asn Tyr Glu Gly Asp Gly Ile Thr Cys Thr Val Val Asp Phe Cys Lys Gln Asn Asn Gly Gly Cys Ala Lys Val Ala Lys Cys Ser Gln Lys Gly Thr Gln Val Ser Cys Ser Cys Lys Lys Gly Tyr Lys Gly Asp Gly Tyr Ser Cys Ile Glu Ile Asp Pro Cys Ala Asp Gly Val Asn Gly Gly Cys His Glu His Ala Thr Cys Arg Met Thr Gly Pro Gly Lys His Lys Cys Glu Cys Lys Ser His Tyr Val Gly Asp Gly Val Asp Cys Glu Pro Glu Gln Leu Pro Leu Asp Arg Cys Leu Gln Asp Asn Gly Gln Cys His Pro Asp Ala Ser Cys Ala Asp Leu Tyr Phe Gln Asp Thr Thr Val Gly Val Phe His Leu Arg

Page 9

Ser	Pro 1070		Gly	Gln	Tyr	Lys 1075		Thr	Phe	Asp	Lys 1080		Lys	Glu
Ala	Cys 1085		Lys	Glu	Ala	Ala 1090	Thr	Ile	Ala	Thr	Tyr 1095	Asn	Gln	Leu
Ser	Tyr 1100	Ala	Gln	Lys	Ala	Lys 1105	Tyr	His	Leu	Cys	Ser 1110	Ala	Gly	Trp
Leu	Glu 1115	Ser	Gly	Arg	Val	Ala 1120	Tyr	Pro	Thr	Thr	Tyr 1125	Ala	Ser	Gln
Lys	Cys 1130	Gly	Ala	Asn	Val	Val 1135	Gly	Ile	Val	Asp	Tyr 1140	Gly	Ser	Arg
Ala	Asn 1145	Lys	Ser	Glu	Met	Trp 1150	Asp	Val	Phe	Cys	Tyr 1155	Arg	Met	Lys
Asp	Val 1160	Asn	Cys	Thr	Cys	Lys 1165	Ala	Gly	Tyr	Val	Gly 1170	Asp	Gly	Phe
Ser	Cys 1175	Ser	Gly	Asn	Leu	Leu 1180	Gln	Val	Leu	Met	Ser 1185	Phe	Pro	Ser
Leu	Thr 1190	Asn	Phe	Leu	Thr	Glu 1195	Val	Leu	Ala	Phe	Ser 1200	Lys	Ser	Ser
Ala	Arg 1205	Gly	Gln	Ala	Phe	Leu 1210	Lys	His	Leu	Thr	Asp 1215	Leu	Ser	Ile
Arg	Gly 1220	Thr	Leu	Phe	Val	Pro 1225	Gln	Asn	Ser	Gly	Leu 1230	Pro	Gly	Asn
Lys	Ser 1235	Leu	Ser	Gly	Arg	Asp 1240	Ile	Glu	His	His	Leu 1245	Thr	Asn	Val
Asn	Val	Ser	Phe	Tyr	Asn	Asp		Val age		Gly	Thr	Phe	Leu	Arg

	1250					1255		0603	. ST2	5	1260			
Thr	Met 1265	Leu	Gly	Ser	Gln	Leu 1270	Leu	Ile	Thr	Phe	Ser 1275	Gln	Asp	Gln
Leu	His 1280	Gln	Glu	Thr	Arg	Phe 1285	Val	Asp	Gly	Arg	Ser 1290	Ile	Leu	Gln
Trp	Asp 1295	Ile	Ile	Ala	Ala	Asn 1300	Gly	Ile	Leu	His	Ile 1305	Ile	Ser	Glu
Pro	Leu 1310	Arg	Ala	Pro	Pro	Thr 1315	Ala	Ala	Thr	Ala	Ala 1320	His	Ser	Gly
Leu	Gly 1325	Thr	Gly	Ile	Phe	Cys 1330	Ala	Val	Val	Leu	Val 1335	Thr	Gly	Ala
Ile	Ala 1340	Leu	Ala	Ala	Tyr	Ser 1345	Tyr	Phe	Arg	Leu	Lys 1350	Gln	Arg	Thr
Thr	Gly 1355	Phe	Gln	Arg	Phe	Asp 1360	Gln	Lys	Arg	Thr	Leu 1365	Met	Ser	Trp
Leu	Leu 1370	Ala	Ser	Ser	Ser	Pro 1375	Arg	Ile	Ser	Gln	Thr 1380	Leu	Cys	Met
	Pro 1385										Val 1395		Pro	Ser
Gln	Thr 1400	Leu	Glu	Asn	Arg	Ile 1405	Trp	Arg	Thr	Ala	Thr 1410	Leu	Trp	Gly
His	Cys 1415	Gly	Pro	Asp	Met	Arg 1420	Ser	Gln	Gln	Ala	Thr 1425	Thr	Val	Thr
Val	Pro 1430	Arg												

Page 11

```
<210>
       3
<211> 20
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc_feature
<222> (3)..(3)
<223> a or g or c or t
<220>
<221> misc_feature
<222> (9)..(9)
<223> a or g or c or t
<220>
<221> misc_feature
<222> (12)..(12)
<223> a or g or c or t
<220>
<221> misc_feature
<222> (6)..(6)
<223> t or c
<220>
<221> misc_feature
<222> (18)..(18)
<223> modified_base
<220>
<221> modified_base
<222> (18)..(18)
<223> I
<220>
<221> misc_feature
<222> (15)..(15)
<223> t or c
<400> 3
```

centtyacng tnttygence

<210>	4
<211>	21
<212>	DNA
<213>	Rattus norvegicus
<400>	4
ggcata	cgta gtcgggtagg c
<210><211><212><212><213>	5 24 DNA Homo sapiens
<400>	5
tcaata	taat ctggcgaatg caat
<210><211><212><212><213>	
<400>	6
ggtgcca	agct gaagagtaca a
<210><211><212><212><213>	24
<400>	7
agttcc	gaat gggcaggtca gctc
<210> <211> <212> <213>	6 PRT
<400>	8
Pro Lei	ı Gly Gln Tyr Lys
l	5
<210><211><212><213>	

<400> 9

Ala Tyr Pro Thr Thr Tyr Ala Ser Gln Lys
1 5 10

<210> 10

<211> 16

<212> PRT

<213> Rattus norvegicus

<400> 10

Val Leu Gln Asp Leu Thr Thr Val Ala Ala Asn His Gly Tyr Thr Lys
1 10 15

<210> 11

<211> 18

<212> PRT

<213> Rattus norvegicus

<400> 11

Gln Leu Tyr Val Asn Glu Ala Pro Ile Asp Tyr Thr Asn Val Ala Thr 1 5 10 15

Asp Lys

<210> 12

<211> 22

<212> PRT

<213> Rattus norvegicus

<400> 12

Leu Ala Gly Pro Gly Pro Phe Thr Val Phe Ala Pro Leu Ser Ser Ser 1 5 10 15

Phe Asn His Glu Pro Arg 20

<210> 13

<211> 12

<212> PRT

```
5820603.ST25
```

```
<213>
       Rattus norvegicus
<400>
       13
Asp Ile Leu Arg Tyr His Val Val Leu Gly Glu Lys
<210>
      14
<211>
       6
<212>
      PRT
<213>
       Rattus norvegicus
<400>
       14
Val Leu Glu Ile Asn Lys
<210> 15
<211>
      17
<212>
      PRT
<213>
      Rattus norvegicus
<400>
       15
Leu Glu Ala Leu Pro Glu Gln Gln Asp Phe Leu Phe Asn Gln Asp Asn
                                    10
Lys
<210> 16
<211>
       20
<212>
      DNA
<213> Rattus norvegicus
<220>
<221>
     misc_feature
<222>
      (12)..(12)
<223>
       a or g or c or t
<220>
     misc_feature
<221>
<222>
      (3)..(3)
<223> modified_base
```

```
<220>
<221> modified_base
<222> (3)..(3)
<223>
       I
<220>
<221> misc_feature
<222> (15)..(15)
<223> a or g or c or t
<220>
<221> misc_feature
<222> (18)..(18)
<223> a or g or c or t
<400>
       16
tancertgrt tngcngcnac
<210> 17
<211> 20
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc_feature
<222> (3)..(3)
<223> a or g or c or t
<220>
<221> modified_base
<222>
      (18)..(18)
<223>
<220>
<221> misc_feature
<222>
      (18)..(18)
<223> modified_base
<220>
<221> misc_feature
<222> (6)..(6)
```

<223> a or g or c or t

Page 16

```
<220>
<221> misc_feature
<222> (9)..(9)
<223> a or g or c or t
<400> 17
gtngcngcna aycayggnta
<210>
       18
<211>
       20
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc_feature
<222> (9)..(9)
<223> a or g or c or t
<220>
<221> misc_feature
<222> (6)..(6)
<223> modified_base
<220>
<221> modified_base
<222> (6)..(6)
<223> I
<220>
<221> misc_feature
<222> (12)..(12)
<223> a or g or c or t
<220>
<221> misc_feature
<222> (18)..(18)
<223> a or g or c or t
<400> 18
gcrtangtng tnggrtangc
<210>
      19
<211> 21
```

Page 17

20

<212>	DNA	
<213>	Rattus norvegicus	
<400>	19	
ctccaaa	acac gggttgattt c	21
<210>	20	
<211> <212>	21 DNA	
	Rattus norvegicus	
<400>	20	
	ggtt cttttacagt c	21
<210>	21	
<211>		
<212> <213>	Rattus norvegicus	
<400>	21 aatt ctttaccaag tctactcacc	30
<210>	22	
<211>	21	
<212>		
<213>	Rattus norvegicus	
<400>	22	0.1
ctccaaa	acac ggattaattt c	21
0.1.0		
<210> <211>	23 21	
<212>	DNA	
<213>	Rattus norvegicus	
<400>	23	
gaaatta	aatc cgtgtttgga g	21
<210>	24	
	4576 DNA	
	Homo sapiens	
<400>	24	
	zata atctggcgaa tgcaattgag gctgccgatg cctacacagt gtttgctcca	60

aacaacaatg ccatcgagaa ttacatcagg gagaagaaag tcttgtctct agaggaggac 120 gtcctccggt atcatgtggt cctggaggag aaactcctga agaatgacct gcacaatggc 180 atgcatcgtg agaccatgct gggtttctcc tatttcctta gcttctttct ccataatgac 240 cagctctatg taaatgaggc tccaataaac tacaccaatg tagccactga taagggagtg 300 360 atccatggct tgggaaaagt tctggaaatt cagaagaaca gatgtgataa taatgacact actattatac gaggaagatg taggacatgc tcctcagagc tgacctgccc attcggaact 420 aaatctctag gtaatgagaa gaggagatgc atctatacct cctatttcat gggaagacga 480 accetgttta ttgggtgeca gecaaaatgt gtgagaaceg teattaegag agaatgetgt 540 gccggcttct ttggccccca atgccagccc tgtccaggga atgcccagaa tgtctgcttt 600 ggtaatggca tctgtttgga tggagtgaat ggcacaggtg tgtgtgagtg tggggagggc 660 ttcagcggca cagcctgcga gacctgcacc gagggcaagt acggcatcca ctgtgaccaa 720 gcatgttctt gtgtccatgg gagatgcaac caaggaccct tgggagatgg ctcctgtgac 780 tgtgatgttg gctggcgagg agtgcattgt gacaatgcaa ccacagaaga caactqcaat 840 900 gggacatgcc ataccagcgc caactgcctc accaactcag atggtacagc ttcatgcaag tgtgcagcag gattccaagg aaacgggacc atctgcacag caatcaatgc ctgtgagatc 960 agcaatggag gttgctctgc caaggctgac tgtaagagaa ccaccccagg aaggcgagtg 1020 tgcacgtgca aagcaggcta cacgggtgat ggcattgtgt gcctggaaat caacccgtgt 1080 1140 ttggagaacc atggtggctg tgacaagaat gcggagtgca cacagacagg acccaaccag gctgcctgta actgtttgcc agcatacact ggagatggaa aggtctgcac actcatcaat 1200 gtctgcttaa ctaaaaatgg cggctgtagt gaatttgcca tctgcaacca cactgggcaa 1260 1320 gtagaaagga cttgtacttg caagccaaac tacattggag atggatttac ctgccgcggc 1380 agcatttatc aggagettee caagaaceeg aaaaetteee agtatttett eeagttgeag gagcatttcg tgaaagatct ggtcggccca ggccccttca ctgtttttgc acctttatct 1440 gcagcctttg atgaggaagc tcgggttaaa gactgggaca aatacggttt aatgccccag 1500 gttcttcggt accatgtggt cgcctgccac cagctgcttc tggaaaacct gaaattgatc 1560 tcaaatgcta cttccctcca aggagagcca atagtcatct ccgtctctca gagcacqqtq 1620

tatataaaca ataaggetaa gateatatee agtgatatea teagtaetaa tgggattgtt 1680 catatcatag acaaattgct atctcccaaa aatttgctta tcactcccaa agacaactct 1740 ggaagaattc tgcaaaatct tacgactttg gcaacaaaca atggctacat caaatttagc 1800 1860 aacttaatac aggactcagg tttgctgagt gtcatcaccg atcccatcca caccccagtc actetettet ggeecacega ceaageeete catgeeetae etgetgaaca acaggaette 1920 ctgttcaacc aagacaacaa ggacaagctg aaggagtatt tgaagtttca tgtgatacga 1980 gatgccaagg ttttagctgt ggatcttccc acatccactg cctggaagac cctgcaaggt 2040 tcagagctga gtgtgaaatg tggagctggc agggacatcg gtgacctctt tctgaatggc 2100 caaacctgca gaattgtgca gcgggagctc ttgtttgacc tgggtgtggc ctacggcatt 2160 gactgtctgc tgattgatcc caccctgggg ggccgctgtg acacctttac tactttcgat 2220 gcctcggggg agtgtgggag ctgtgtcaat actcccagct gcccaaggtg gagtaaacca 2280 aagggtgtga agcagaagtg tctctacaac ctgcccttca agaggaacct ggaaggctgc 2340 cgggagcggt gcagcctggt gatacagatc cccaggtgct gcaagggcta cttcgggcga 2400 gactgtcagg cctgccctgg aggaccagat gccccgtgta ataaccgggg tgtctgcctt 2460 gatcagtact cggccaccgg agagtgtaaa tgcaacaccg gcttcaatgg gacggcgtgt 2520 gagatgtgct ggccggggag atttgggcct gattgtctgc cctgtggctg ctcagaccac 2580 2640 ggacagtgcg atgatggcat cacgggctcc gggcagtgcc tctgtgaaac ggggtggaca ggcccctcgt gtgacactca ggcagttttg cctgcagtgt gtacgcctcc ttgttctgct 2700 2760 catgccacct gtaaggagaa caacacgtgt gagtgtaacc tggattatga aggtgacgga atcacatgca cagttgtgga tttctgcaaa caggacaacg ggggctgtgc aaaggtggcc 2820 2880 agatgetece agaagggeae gaaggtetee tgeagetgee agaagggata caaaggggae gggcacagct gcacagagat agacccctgt gcagacggcc ttaacggagg gtgtcacgag 2940 cacgccacct gtaagatgac aggcccgggc aagcacaagt gtgagtgtaa aagtcactat 3000 gtcggagatg ggctgaactg tgagccggag cagctgccca ttgaccgctg cttacaggac 3060 aatgggcagt gccatgcaga cgccaaatgt gtcgacctcc acttccagga taccactgtt 3120

ggggtgttcc atctacgctc cccactgggc cagtataagc tgacctttga caaagccaga 3180 gaggeetgtg ceaaegaage tgegaeeatg geaaeetaea aceagetete etatgeeeag 3240 aaggccaagt accacctgtg ctcagcaggc tggctggaga ccgggcgggt tgcctacccc 3300 acageetteg ceteceagaa etgtggetet ggtgtggttg ggatagtgga etatggaeet 3360 agacccaaca agagtgaaat gtgggatgtc ttctgctatc ggatgaaaga tgtgaactqc 3420 3480 acctgcaagg tgggctatgt gggagatggc ttctcatgca gtgggaacct gctgcaggtc ctgatgtcct tcccctcact cacaaacttc ctgacggaag tgctggccta ttccaacagc 3540 tcagctcgag gccgtgcatt tctagaacac ctgactgacc tgtccatccg cggcaccctc 3600 tttgtgccac agaacagtgg gctgggggag aatgagacct tgtctgggcg ggacatcgag 3660 caccacctcg ccaatgtcag catgtttttc tacaatgacc ttgtcaatgg caccaccctg 3720 caaacgaggc tgggaagcaa gctgctcatc actgccagcc aggacccact ccaaccgacg 3780 gagaccaggt ttgttgatgg aagagccatt ctgcagtggg acatctttgc ctccaatggg 3840 3900 atcattcatg tcatttccag gcctttaaaa gcacccctg ccccgtgac cttgacccac 3960 actggcttgg gagcagggat cttctttgcc atcatcctgg tgactggggc tgttgccttg gctgcttact cctactttcg gataaaccgg agaacaatcg gcttccagca ttttgagtcg 4020 gaagaggaca ttaatgttgc agctcttggc aagcagcagc ctgagaatat ctcgaacccc 4080 4140 ttgtatgaga gcacaacctc agctccccca gaaccttcct acgacccctt cacggactct 4200 gaagaacggc agcttgaggg caatgacccc ttgaggacac tgtgagggcc tggacgggag atgccagcca tcactcactg ccacctgggc catcaactgt gaattctcag caccagttgc 4260 cttttaggaa cgtaaagtcc tttaagcact cagaagccat acctcatctc tctggctgat 4320 4380 ctgggggttg tttctgtggg tgagagatgt gttgctgtgc ccacccagta cagcttcctc ctctgaccct ttggctcttc ttcctttgta ctcttcagct ggcacctgct ccattctgcc 4440 ctacatgatg ggtaactgtg atctttcttc cctgttagat tgtaagcctc cgtctttgta 4500 tcccagcccc tagcccagtg cctgacacag gaactgtgca caataaaggt ttatggaaca 4560 gaaacaaagt caacag 4576

<210> 25

<212>

<211> 1394

PRT <213> Homo sapiens

<400> 25

Ile Gln Tyr Asn Leu Ala Asn Ala Ile Glu Ala Ala Asp Ala Tyr Thr 10

Val Phe Ala Pro Asn Asn Asn Ala Ile Glu Asn Tyr Ile Arg Glu Lys 20 25

Lys Val Leu Ser Leu Glu Glu Asp Val Leu Arg Tyr His Val Val Leu 35 40 45

Glu Glu Lys Leu Lys Asn Asp Leu His Asn Gly Met His Arg Glu

Thr Met Leu Gly Phe Ser Tyr Phe Leu Ser Phe Phe Leu His Asn Asp 70 65 75

Gln Leu Tyr Val Asn Glu Ala Pro Ile Asn Tyr Thr Asn Val Ala Thr 85 90

Asp Lys Gly Val Ile Gln Tyr Asn Leu Ala Asn Ala Ile Glu Ala Ala 100 105

Asp Ala Tyr Thr Val Phe Ala Pro Asn Asn Asn Ala Ile Glu Asn Tyr 115 120 125

Ile Arg Glu Lys Lys Val Leu Ser Leu Glu Glu Asp Val Leu Arg Tyr 130 135 140

His Val Val Leu Glu Glu Lys Leu Leu Lys Asn Asp Leu His Asn Gly 145 150 155 160

Met His Arg Glu Thr Met Leu Gly Phe Ser Tyr Phe Leu Ser Phe Phe 165 170

Leu His Asn Asp Gln Leu Tyr Val Asn Glu Ala Pro Ile Asn Tyr Thr 180 185 190

Asn Val Ala Thr Asp Lys Gly Val Ile Gln Tyr Asn Leu Ala Asn Ala 195 200 205

Ile Glu Ala Asp Ala Tyr Thr Val Phe Ala Pro Asn Asn Asn Ala 210 215 220

Ile Glu Asn Tyr Ile Arg Glu Lys Lys Val Leu Ser Leu Glu Glu Asp 225 230 235 240

Val Leu Arg Tyr His Val Val Leu Glu Glu Lys Leu Leu Lys Asn Asp 245 250 255

Leu His Asn Gly Met His Arg Glu Thr Met Leu Gly Phe Ser Tyr Phe 260 265 270

Leu Ser Phe Phe Leu His Asn Asp Gln Leu Tyr Val Asn Glu Ala Pro 275 280 285

Ile Asn Tyr Thr Asn Val Ala Thr Asp Lys Gly Val Cys Ala Ala Gly 290 295 300

Phe Gln Gly Asn Gly Thr Ile Cys Thr Ala Ile Asn Ala Cys Glu Ile 305 310 315 320

Ser Asn Gly Gly Cys Ser Ala Lys Ala Asp Cys Lys Arg Thr Thr Pro 325 330 335

Gly Arg Arg Val Cys Thr Cys Lys Ala Gly Tyr Thr Gly Asp Gly Ile 340 345 350

Val Cys Leu Glu Ile Asn Pro Cys Leu Glu Asn His Gly Gly Cys Asp 355 360 365

Lys Asn Ala Glu Cys Thr Gln Thr Gly Pro Asn Gln Ala Ala Cys Asn 370 375 380

Cys Leu Pro Ala Tyr Thr Gly Asp Gly Lys Val Cys Thr Leu Ile Asn Val Cys Leu Thr Lys Asn Gly Gly Cys Ser Glu Phe Ala Ile Cys Asn His Thr Gly Gln Val Glu Arg Thr Cys Thr Cys Lys Pro Asn Tyr Ile Gly Asp Gly Phe Thr Cys Arg Gly Ser Ile Tyr Gln Glu Leu Pro Lys Asn Pro Lys Thr Ser Gln Tyr Phe Phe Gln Leu Gln Glu His Phe Val Lys Asp Leu Val Gly Pro Gly Pro Phe Thr Val Phe Ala Pro Leu Ser Ala Ala Phe Asp Glu Glu Ala Arg Val Lys Asp Trp Asp Lys Tyr Gly Leu Met Pro Gln Val Leu Arg Tyr His Val Val Ala Cys His Gln Leu Leu Leu Glu Asn Leu Lys Leu Ile Ser Asn Ala Thr Ser Leu Gln Gly Glu Pro Ile Val Ile Ser Val Ser Gln Ser Thr Val Tyr Ile Asn Asn Lys Ala Lys Ile Ile Ser Ser Asp Ile Ile Ser Thr Asn Gly Ile Val His Ile Ile Asp Lys Leu Leu Ser Pro Lys Asn Leu Leu Ile Thr Pro Lys Asp Asn Ser Gly Arg Ile Leu Gln Asn Leu Thr Thr Leu Ala Thr Page 24

Asn Asn Gly Tyr Ile Lys Phe Ser Asn Leu Ile Gln Asp Ser Gly Leu Leu Ser Val Ile Thr Asp Pro Ile His Thr Pro Val Thr Leu Phe Trp Pro Thr Asp Gln Ala Leu His Ala Leu Pro Ala Glu Gln Gln Asp Phe Leu Phe Asn Gln Asp Asn Lys Asp Lys Leu Lys Glu Tyr Leu Lys Phe His Val Ile Arg Asp Ala Lys Val Leu Ala Val Asp Leu Pro Thr Ser Thr Ala Trp Lys Thr Leu Gln Gly Ser Glu Leu Ser Val Lys Cys Gly Ala Gly Arg Asp Ile Gly Asp Leu Phe Leu Asn Gly Gln Thr Cys Arg Ile Val Gln Arg Glu Leu Leu Phe Asp Leu Gly Val Ala Tyr Gly Ile Asp Cys Leu Leu Ile Asp Pro Thr Leu Gly Gly Arg Cys Asp Thr Phe Thr Thr Phe Asp Ala Ser Gly Glu Cys Gly Ser Cys Val Asn Thr Pro Ser Cys Pro Arg Trp Ser Lys Pro Lys Gly Val Lys Gln Lys Cys Leu Tyr Asn Leu Pro Phe Lys Arg Asn Leu Glu Gly Cys Arg Glu Arg Cys Ser Leu Val Ile Gln Ile Pro Arg Cys Cys Lys Gly Tyr Phe Gly Arg Page 25

785	790	795	800
-----	-----	-----	-----

Asp	Cys	Gln	Ala	Cys 805	Pro	Gly	Gly	Pro	Asp 810	Ala	Pro	Cys	Asn	Asn 815	Arg
Gly	Val	Cys	Leu 820	Asp	Gln	Tyr	Ser	Ala 825	Thr	Gly	Glu	Cys	Lys 830	Cys	Asn
Thr	Gly	Phe 835	Asn	Gly	Thr	Ala	Cys 840	Glu	Met	Cys	Trp	Pro 845	Gly	Arg	Phe
Gly	Pro 850	Asp	Cys	Leu	Pro	Cys 855	Gly	Cys	Ser	Asp	His 860	Gly	Gln	Cys	Asp
Asp 865	Gly	Ile	Thr	Gly	Ser 870	Gly	Gln	Cys	Leu	Cys 875	Glu	Thr	Gly	Trp	Thr 880
Gly	Pro	Ser	Cys	Asp 885	Thr	Gln	Ala	Val	Leu 890	Pro	Ala	Val	Cys	Thr 895	Pro
Pro	Cys	Ser	Ala 900	His	Ala	Thr	Cys	Lys 905	Glu	Asn	Asn	Thr	Cys 910	Glu	Cys
Asn	Leu	Asp 915	Tyr	Glu	Gly	Asp	Gly 920	Ile	Thr	Cys	Thr	Val 925	Val	Asp	Phe
Cys	Lys 930	Gln	Asp	Asn	Gly	Gly 935	Cys	Ala	Lys	Val	Ala 940	Arg	Cys	Ser	Gln
Lys 945	Gly	Thr	Lys	Val	Ser 950	Cys	Ser	Cys	Gln	Lys 955	Gly	Tyr	Lys	Gly	Asp 960
Gly	His	Ser	Cys	Thr 965	Glu	Ile	Asp	Pro	Cys 970	Ala	Asp	Gly	Leu	Asn 975	Gly
Gly	Cys	His	Glu 980	His	Ala	Thr	Cys	Lys 985	Met	Thr	Gly	Pro	Gly 990	Lys	His

Lys Cys Glu Cys Lys Ser His Tyr Val Gly Asp Gly Leu Asn Cys Glu 995 1000 1005

Pro Glu Gln Leu Pro Ile Asp Arg Cys Leu Gln Asp Asn Gly Gln 1010 1015 1020

Cys His Ala Asp Ala Lys Cys Val Asp Leu His Phe Gln Asp Thr 1025 1030 1035

Thr Val Gly Val Phe His Leu Arg Ser Pro Leu Gly Gln Tyr Lys 1040 1050

Leu Thr Phe Asp Lys Ala Arg Glu Ala Cys Ala Asn Glu Ala Ala 1055 1060 1065

Thr Met Ala Thr Tyr Asn Gln Leu Ser Tyr Ala Gln Lys Ala Lys 1070 1080

Tyr His Leu Cys Ser Ala Gly Trp Leu Glu Thr Gly Arg Val Ala 1085 1090 1095

Tyr Pro Thr Ala Phe Ala Ser Gln Asn Cys Gly Ser Gly Val Val 1100 1105 1110

Gly Ile Val Asp Tyr Gly Pro Arg Pro Asn Lys Ser Glu Met Trp 1115 1120 1125

Asp Val Phe Cys Tyr Arg Met Lys Asp Val Asn Cys Thr Cys Lys 1130 1140

Val Gly Tyr Val Gly Asp Gly Phe Ser Cys Ser Gly Asn Leu Leu 1145 1150 1155

Gln Val Leu Met Ser Phe Pro Ser Leu Thr Asn Phe Leu Thr Glu 1160 1165 1170

Val Leu Ala Tyr Ser Asn Ser Ser Ala Arg Gly Arg Ala Phe Leu 1175 1180 1185

Glu	His 1190	Leu	Thr	Asp	Leu	Ser 1195		Arg	Gly	Thr	Leu 1200		Val	Pro
Gln	Asn 1205	Ser	Gly	Leu	Gly	Glu 1210	Asn	Glu	Thr	Leu	Ser 1215	Gly	Arg	Asp
Ile	Glu 1220	His	His	Leu	Ala	Asn 1225	Val	Ser	Met	Phe	Phe 1230	Tyr	Asn	Asp
Leu	Val 1235	Asn	Gly	Thr	Thr	Leu 1240	Gln	Thr	Arg	Leu	Gly 1245	Ser	Lys	Leu
Leu	Ile 1250	Thr	Ala	Ser	Gln	Asp 1255	Pro	Leu	Gln	Pro	Thr 1260	Glu	Thr	Arg
Phe	Val 1265	Asp	Gly	Arg	Ala	Ile 1270	Leu	Gln	Trp	Asp	Ile 1275	Phe	Ala	Ser
Asn	Gly 1280	Ile	Ile	His	Val	Ile 1285	Ser	Arg	Pro	Leu	Lys 1290	Ala	Pro	Pro
Ala	Pro 1295	Val	Thr	Leu	Thr	His 1300	Thr	Gly	Leu	Gly	Ala 1305	Gly	Ile	Phe
Phe	Ala 1310	Ile	Ile	Leu	Val	Thr 1315	Gly	Ala	Val	Ala	Leu 1320	Ala	Ala	Tyr
Ser	Tyr 1325	Phe	Arg	Ile	Asn	Arg 1330	Arg	Thr	Ile	Gly	Phe 1335	Gln	His	Phe
Glu	Ser 1340	Glu	Glu	Asp	Ile	Asn 1345	Val	Ala	Ala	Leu	Gly 1350	Lys	Gln	Gln
Pro	Glu 1355	Asn	Ile	Ser	Asn	Pro 1360	Leu	Tyr	Glu	Ser	Thr 1365	Thr	Ser	Ala
Pro	Pro 1370	Glu	Pro	Ser	Tyr	Asp 1375		Phe age		Asp	Ser 1380	Glu	Glu	Arg

21

```
Gln Leu Glu Gly Asn Asp Pro Leu Arg Thr Leu
    1385
                         1390
<210> 26
<211> 21
<212> DNA
<213> Homo sapiens
<400> 26
atgaggaagc tcgggttaaa g
<210> 27
<211> 18
<212> PRT
<213> Rattus norvegicus
<400> 27
Ser Leu Pro Ser Leu Leu Thr Arg Leu Glu Gln Met Pro Asp Tyr Ser
                5
                                   10
                                                       15
Ile Phe
<210> 28
<211> 17
<212> PRT
<213> Rattus norvegicus
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> UNKNOWN
<220>
<221> MISC_FEATURE
<222>
      (1)..(1)
<223> UNKNOWN
<220>
<221> MISC_FEATURE
<222>
      (2)..(2)
<223> UNKNOWN
```

```
<220>
<221>
       MISC_FEATURE
<222>
       (11)..(11)
<223>
       UNKNOWN
<400>
       28
Xaa Xaa Val Ile His Gly Leu Glu Lys Val Xaa Xaa Ile Gln Lys Asn
                                                          15
Arg
<210>
       29
<211>
       24
<212> DNA
<213> Homo sapiens
<400>
       29
gatgtagcca ttgtttgttg ccaa
                                                                         24
<210>
       30
<211>
       24
<212>
       DNA
<213>
       Homo sapiens
<400>
       30
agacgccaaa tgtgtcgacc tcca
                                                                         24
<210>
       31
<211>
      24
<212>
       DNA
<213>
       Homo sapiens
<400>
       31
gaataggcca gcacttccgt cagg
                                                                         24
<210>
       32
       24
<211>
<212>
       DNA
<213>
       Homo sapiens
<400>
       32
```

ggtgaggcag ttggcgctgg	tatg	24
<210> 33 <211> 24 <212> DNA <213> Homo sapiens		
<400> 33 gagctgacct gcccattcgg	aact	24
<210> 34 <211> 24 <212> DNA <213> Homo sapiens		
<400> 34 cataccageg ceaactgeet	cacc	24
<210> 35 <211> 21 <212> DNA <213> Homo sapiens		
<400> 35 ctttaacccg agcttcctca	t	21
<210> 36 <211> 24 <212> DNA <213> Homo sapiens		
<400> 36 caagtacggc atccactgtg	acca	24
<210> 37 <211> 24 <212> DNA <213> Homo sapiens		
<400> 37 ggctacttcg ggcgagactg	tcag	24
<210> 38 <211> 24 <212> DNA		

24

21

```
<213> Homo sapiens
<400> 38
ctgacagtct cgcccgaagt agcc
<210>
       39
<211>
       21
<212> DNA
<213> Homo sapiens
<400>
       39
ttgtactctt cagctggcac c
<210>
       40
<211>
       5
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> unknown
<400> 40
Xaa Ser Lys Pro Lys
<210> 41
<211> 5
<212> PRT
<213> Homo sapiens
<400>
       41
Leu Thr Phe Asp Lys
<210> 42
<211>
     9
<212>
     PRT
<213> Homo sapiens
<400>
       42
Gly Ser Ile Tyr Gln Glu Leu Pro Lys
```

```
5820603.ST25
1
                 5
<210>
       43
<211>
       13
<212>
       PRT
<213>
       Homo sapiens
<400>
       43
Gly Thr Leu Phe Val Pro Gln Asn Ser Gly Leu Gly Glu
<210>
       44
<211>
       23
<212>
      PRT
<213>
       Homo sapiens
<400> 44
Asp Leu Val Gly Pro Gly Pro Phe Thr Val Phe Ala Pro Leu Ser Ala
                                      10
Ala Phe Asp Glu Glu Ala Arg
            20
<210>
       45
<211>
       9
<212>
       PRT
<213>
       Homo sapiens
<400>
       45
Glu Leu Thr Ser Pro Phe Gly Thr Lys
                 5
<210>
       46
<211>
       6
```

Met Pro Gln Val Leu Arg

Homo sapiens

PRT

46

<212>

<213>

<400>

```
<210> 47
<211> 7
<212> PRT
<213>
       Homo sapiens
<400> 47
Ser Pro Leu Gly Gln Tyr Lys
<210> 48
<211>
       6
<212> PRT
<213> Homo sapiens
<400>
       48
Val Leu Glu Ile Gln Lys
<210> 49
<211> 7
<212> PRT
<213> Homo sapiens
<400>
       49
Val Ile His Gly Leu Gly Lys
               5
1
<210> 50
<211> 6
<212> PRT
<213> Homo sapiens
<400> 50
Lys Gly Tyr Phe Gly Arg
<210> 51
<211> 6
<212>
     PRT
<213> Homo sapiens
<400>
      51
```

```
Lys Phe His Val Ile Arg
<210>
       52
<211>
       8
<212>
       PRT
<213> Homo sapiens
<400>
       52
Arg Ser Pro Leu Gly Gln Tyr Lys
<210>
       53
<211>
       10
<212>
       PRT
<213>
       Homo sapiens
<400>
       53
Arg Gly Ser Ile Tyr Gln Glu Leu Pro Lys
                5
                                     10
<210> 54
<211> 11
<212>
       PRT
<213> Homo sapiens
<400>
       54
Lys Thr Leu Gln Gly Ser Glu Leu Ser Val Lys
<210> 55
<211> 15
<212>
       PRT
<213>
       Homo sapiens
<400>
       55
Arg Ser Pro Leu Gly Gln Tyr Lys Leu Thr Phe Asp Lys Ala Arg
                                                         15
                                     10
<210>
       56
<211>
       10
<212>
       PRT
```

<213> Homo sapiens

<400> 56