

لسنة 2016 - 2017

تصحيح الامتحان الوطئى _ الدورة العادية _

لصفحة

.01

الفضاء منسوب إلى معلم متعامد ممنظم مباشر $(0,\vec{i},\vec{j},\vec{k})$ ، نعتبر المستوى (P) المار من النقطة (R) و (1,0-1) و متجهة منظمية عليه و الفلكة (R) التي مركزها (R) و شعاعها (R) و شعاعها (R) .

.01

 (\mathbf{P}) نبین أن $\mathbf{x} - \mathbf{z} + \mathbf{1} = \mathbf{0}$ هي معادلة ديكارتية للمستوى

طريقة 1:

بما أن : المستوى (\mathbf{P}) المار من النقطة $\mathbf{A}(0,1,1)$ و $\mathbf{A}(0,1,0-1)$ متجهة منظمية عليه فإن :

$$M(x,y,z) \in (P) \Leftrightarrow \overrightarrow{AM.u} = 0$$

$$\Leftrightarrow \begin{pmatrix} x-0 \\ y-1 \\ z-1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 0$$
$$\Leftrightarrow x \times 1 + (y-1) \times 0 + (z-1) \times (-1) = 0$$

$$\Leftrightarrow x-z+1=0$$

 $\left(\mathbf{P} \right)$ هي معادلة ديكارتية للمستوى $\left(\mathbf{P} \right)$.

طريقة 2:

- 1x + 0y 1z + d = 0 المتجهة $\dot{u}(1,0,-1)$ متجهة منظمية ل $\dot{u}(P)$ إذن معادلة ديكارتية له هي على شكل
 - . d=1: و منه $A(0,1,1)\in (P)$ فإن $A(0,1,1)\in (P)$ و منه و النقطة

خلاصة: x-z+1=0 هي معادلة ديكارتية للمستوى

بين أن المستوى (P) مماس للفلكة (S) و نتحقق بأن النقطة (P) هي نقطة التماس .

 (\mathbf{S}) نبين أن المستوى (\mathbf{P}) مماس للفلكة

. (P) المسافة بين النقطة Ω مركز الفلكة و المستوى لهذا نحسب

.
$$d(\Omega,(P)) = \frac{|0+0+1+1|}{\sqrt{1^2+0^2+(-1)^2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$$
: لاينا

. $d\left(\Omega,\left(P\right)\right)=r$ ونظم أن شعاع الفلكة $\left(S\right)$ هو $\left(S\right)$

خلاصة 1: المستوى (P) مماس للفلكة (S).

. هي نقطة التماس B $\left(-1,1,0
ight)$ هي نقطة التماس

. $B\in (P)$ و نبين أن $B\in (S)$ و نبين أن $B\in (S)$ و نبين أن $B\in (S)$ و نبين أن $B\in (S)$

.
$$\mathbf{B} \in (\mathbf{S})$$
 و منه $\Omega \mathbf{B} = \sqrt{\left(-1\right)^2 + 0^2 + 1^2} = \sqrt{2}$ و منه $\Omega \mathbf{B} \left(-1, 0, 1\right)$ -

$$\mathbf{B} \in (\mathbf{P})$$
 : نن $\mathbf{L} \times (-1) + 0 \times 1 - 1 \times 0 + 1 = 0$ الذن

. $B \in (S) \cap (P)$: و منه

. النقطة $\mathbf{B}(-1,1,0)$ هي نقطة التماس

لسنة 2016 - 2017

تصحيح الامتحان الوطنى - الدورة العادية -

الصفحة

...02

 (\mathbf{P}) المار من النقطة (\mathbf{A}) والعمودي على المستوى المستوى (\mathbf{P}) .

$$A(0,1,1)$$
 \in (Δ) و (P) الأنها منظمية على المستوى $\stackrel{\rightarrow}{u}(1,0,-1)$ عرجهة ل (Δ) الأنها منظمية على المتجهة :

$$\left(\Delta
ight):egin{cases} x=0+1 imes t=t \ y=1+0 imes t=1 \end{cases};\ t\in\mathbb{R}:$$
 هو $\left(\Delta
ight)$ هو $\left(\Delta
ight)$ مثيل بارامتري للمستقيم $\left(\Delta
ight)$ هو $\left(\Delta
ight)$

$$(\Delta): egin{cases} x=t \ y=1 \ z=1-t \end{cases}$$
 , $t\in \mathbb{R}: \Delta$ هو (Δ) هو $z=1-t$

 \cdot . $\mathrm{C}ig(1,1,0ig)$ مماس للفلكة $\mathrm{S}ig)$ في النقطة في المستقيم Δ

. (S):
$$(x-0)^2 + (y-1)^2 + (z+1)^2 = \sqrt{2}^2 = 2$$
: (S) خدد معادلة ديكارتية للفلكة \checkmark

 \checkmark نحدد تقاطع الفلكة $\left(S \right)$ و المستقيم $\left(\Delta \right)$.

لدينا:

$$\begin{split} M(x,y,z) \in & (S) \cap (\Delta) \Leftrightarrow \begin{cases} M \in (S) \\ M \in (\Delta) \end{cases} \\ \Leftrightarrow \begin{cases} x^2 + (y-1)^2 + (z+1)^2 - 2 = 0 \\ x = t \\ y = 1 \\ z = 1 - t \end{cases} \\ \Leftrightarrow \begin{cases} x = t \\ y = 1 \\ z = 1 - t \end{cases} \\ \Leftrightarrow \begin{cases} x = t \\ y = 1 \\ z = 1 - t \end{cases} \\ \Leftrightarrow \begin{cases} 2t^2 - 4t + 2 = 2(t-1)^2 = 0 \\ x = t \\ y = 1 \\ z = 1 - t \end{cases} \\ \Leftrightarrow \begin{cases} t = 1 \\ x = 1 \\ y = 1 \\ z = 0 \end{cases} \end{aligned}$$

و منه : المستقيم (Δ) و الفلكة (S) يتقاطعان في نقطة وحيدة هي (Δ) .

. $\mathrm{C}ig(1,1,0ig)$ في النقطة ($\mathrm{S}ig)$ مماس للفلكة في النقطة

(3)

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 2 علوم فيزياء و 2 علوم الحياة و الأرض

لسنة 2016-2017

تصحيح الامتحان الوطنى _ الدورة العادية _

 $(d(\Omega,(\Delta)) = \frac{\|\overrightarrow{\Omega A} \wedge \overrightarrow{u}\|}{\|\overrightarrow{u}\|}$ بحساب و ذلك بحساب ($d(\Omega,(\Delta))$ مسافة المركز Ω عن المستقيم و ذلك بحساب منحوظة و مناك طريقة أخرى يمكن أن نحسب ($d(\Omega,(\Delta))$

. $C \in (\Delta)$ و $C \in \Omega$ أم نتحقق أن $C \in \Omega$ و نتحقق أن $C \in \Omega$ و نتحقق أن

 $\overrightarrow{OC} \wedge \overrightarrow{OB} = 2\overrightarrow{k}$: نبین أن : .03

$$. \overrightarrow{OC} \wedge \overrightarrow{OB} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & -1 \\ 0 & 0 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} \vec{k} = 0\vec{i} - 0\vec{j} + 2\vec{k} = 2\vec{k} \text{ and } \overrightarrow{OC} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \subseteq \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : \overrightarrow{OB} \begin{pmatrix} -1 \\ 1$$

 $\overrightarrow{OC} \wedge \overrightarrow{OB} = 2\overrightarrow{k}$: خلاصة

• مساحة المثلث OCB :

$$\mathbf{S}_{\mathrm{OBC}} = \frac{1}{2} \times \left\| \overrightarrow{\mathbf{OC}} \wedge \overrightarrow{\mathbf{OB}} \right\| = \frac{1}{2} \left\| 2\overrightarrow{\mathbf{k}} \right\| = \frac{1}{2} \times 2 = 1$$
 لاينا

و بالتالي : مساحة المثلث $^{
m OBC}$ هي $^{
m OBC}=1$ (حسب وحدة المساحة)

.02

يحتوي صندوق: على 8 كرات أربع كرات تحمل رقم 2 وكرة واحدة تحمل رقم 1 و كرة واحدة تحمل رقم 4 ؛ لا يمكن التميز بين الكرات باللمس و نسحب عشوائيا و في آن واحد ثلاث كرات من الصندوق .

[0. ليكن

- الحدث : " من بين الكرات الثلاث المسحوبة لا توجد أية كرة تحمل العدد Λ " Λ
 - " والحدث " جداء الأعداد التي تحملها الكرات الثلاث المسحوبة يساوي ${f B}$
 - $\cdot p(A) = \frac{5}{14}$: نبین أن
 - : (card Ω أي عدد السحبات الممكنة (أي \checkmark

 $card\Omega = C_8^3 = \frac{8 \times 7 \times \cancel{6}}{1 \times 2 \times 3} = 56$ سحب ثلاث کرات في آن واحد من بين 8 کرات يمثل تأليفة ل 3 من بين 9 کرات يمثل تأليفة ل

 $card\Omega = C_8^3 = 56$: إذن

✓ عدد السحبات التي نريد أن تتحقق (أي cardA)

الحدث A نعبر عنه أيضا بما يلي: A " الكرات الثلاث المسحوبة من بين الكرات التي تحمل الأعداد ① أو ② أو ④

و نعلم أن عدد هاته الكرات عددها هو 6 كرات.

 $cardA = C_6^3 = \frac{\cancel{6} \times 5 \times 4}{\cancel{1} \times \cancel{2} \times \cancel{3}} = 20$ منه و منه و منه و كرات يمثل تأليفة ل و منه و منه و المد من بين و كرات يمثل تأليفة ل

cardA = $C_6^3 = 20$: هنه

. $p(A) = \frac{\text{card}A}{\text{card}\Omega} = \frac{C_6^3}{C_9^3} = \frac{4 \times 5}{8 \times 7} = \frac{5}{14}$: ومنه

 $p(A) = \frac{5}{14} :$ خلاصة

: (cardB أي عدد السحبات التي نريد أن تتحقق (أي \checkmark

لسنة 2016-2017

تصحيح الامتحان الوطنى - الدورة العادية -

اصفحة

الحدث \mathbf{B} نعبر عنه أيضا بما يلي: \mathbf{A} " (الكرات الثلاث المسحوبة من بين الكرات التي تحمل العدد ②) أو (كرة تحمل العدد ③ و كرة تحمل العدد ② و كرة تحمل العدد ② و كرة تحمل العدد ② العدد ② و كرة تحمل العدد ②

- الكرات الثلاث المسحوبة من بين الكرات التي تحمل العدد ② .
- أي سحب ثلاث كرات في آن واحد من بين 4 كرات (التي تحمل العدد ②) يمثل تأليفة ل 3 من بين 4 وهي تتم ب أي سحب ثلاث كرات في آن واحد من بين 4 كرات (التي تحمل العدد $C_4^3 = C_4^1 = 4$
- عدد $\mathbb{C}_1^1 \times \mathbb{C}_4^1 \times \mathbb{C}_1^1 = 1 \times 4 \times 1 = 4$ و كرة تحمل العدد $\mathbb{C}_1^1 \times \mathbb{C}_4^1 \times \mathbb{C}_4^1 \times \mathbb{C}_1^1 = 1 \times 4 \times 1 = 4$ كرة تحمل العدد $\mathbb{C}_1^1 \times \mathbb{C}_4^1 \times \mathbb{C}_4$
 - $cardB = C_4^3 + C_1^1 \times C_4^1 \times C_1^1 = 4 + 4 = 8$

.
$$p(B) = \frac{cardB}{card\Omega} = \frac{C_4^3 + C_1^1 \times C_4^1 \times C_1^1}{C_8^3} = \frac{4+4}{8 \times 7} = \frac{8}{8 \times 7} = \frac{1}{7}$$

$$p(B) = \frac{1}{7}$$
 خلاصة

10. ليكن X المتغير العشوائي الذي يربط كل سحبة بجداء الأعداد التي تحملها الكرات الثلاث المسحوبة .

 $p(X=16) = \frac{3}{28}$: نبین أن

- " و كرة واحدة تحمل رقم (X=16) الحدث (X=16) يمثل الحدث " الكرات الثلاث المسحوبة من بينها كرتين تحملان العدد (X=16)
 - . عنويات مختلفة $C_4^2 = \frac{4 \times 3}{1 \times 2} = 6$ سحب كرتين تحملان العدد ② من بين 4 كرات وهي تتم ب
 - کرة واحدة تحمل رقم (4) من کرة واحدة وهي تتم ب (4) (بكيفية واحدة فقط)
 - $card(X=16) = C_4^2 \times C_1^1 = 6$: e aib •

.
$$p(X=16) = \frac{C_4^2 \times C_1^1}{C_8^3} = \frac{6}{8 \times 7} = \frac{3}{28}$$
: و بالتالي:

$$p(X=16) = \frac{3}{28}$$
 : خلاصة

ب- نتمم ملء الجدول مع التعليل.

- $p(X=8) = p(B) = \frac{1}{7}$: فلحظ أن : الحدث (X=8) يمثل الحدث (X=8)
- $p(X=4) = \frac{C_4^2 \times C_1^4}{C_8^3} = \frac{6 \times 1}{8 \times 7} = \frac{3}{28}$ الحدث (X=4) يمثل الحدث " كرتين تحملان العدد © و كرة تحمل العدد ا
 - الحدث (X=0) يمثل الحدث "على الأقل كرة تحمل العدد "

$$\left(\mathbf{X}=\mathbf{0}
ight) =\overline{\mathbf{A}}$$
 ومنه \mathbf{A} ومنه $\left(\mathbf{X}=\mathbf{0}
ight)$ إذن الحدث المضاد ل

$$p(X=0) = \frac{9}{14}$$
 $|p(X=0) = p(\overline{A}) = 1 - p(A) = 1 - \frac{5}{14} = \frac{9}{14}$

و منه سيتم ملء الجدول كالتالى:

X _i	0	4	8	16	المجموع
$p(X = x_i)$	9 14	$\frac{3}{28}$	1 7	$\frac{3}{28}$	1

لسنة 2016-2017

تصحيح الامتحان الوطنى _ الدورة العادية _

. $\mathbf{b} = \sqrt{3} - 1 + \left(\sqrt{3} + 1\right)$ i و $\mathbf{a} = \sqrt{3} + \mathbf{i}$ و \mathbf{a} حيث $\mathbf{a} = \sqrt{3} + \mathbf{i}$ و العددين العقديين

. b = (1+i)a : <u>أ</u>

$$(1+i)a = (1+i)(\sqrt{3}+i)$$
 : المينا

$$= \sqrt{3}+i+i\sqrt{3}-1$$

$$= \sqrt{3}-1+(1+\sqrt{3})i$$

$$= b$$

b=(1+i)a : خلاصة

 $\cdot \arg b = \frac{5\pi}{12} [2\pi]$ و أن $|b| = 2\sqrt{2}$: نستنتج أن

. $|{\bf b}| = 2\sqrt{2}$: نستنتج أن

$$|\mathbf{b}| = |(1+\mathbf{i})\mathbf{a}|$$

$$= |1+\mathbf{i}||\mathbf{a}|$$

$$= \sqrt{1^2 + 1^2} \times \sqrt{\sqrt{3}^2 + 1^2}$$

$$= \sqrt{2} \times 2$$

$$= 2\sqrt{2}$$

 $|\mathbf{b}| = 2\sqrt{2}$: ومنه \cdot arg $\mathbf{b} \equiv \frac{5\pi}{12}$ $[2\pi]$: أن

$$1+i = \sqrt{2}\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \left[\sqrt{2}, \frac{\pi}{4}\right] -$$

$$a = \sqrt{3} + i = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = \left[2, \frac{\pi}{6}\right] - \frac{\pi}{6}$$

$$\mathbf{b} = (1+\mathbf{i})\mathbf{a} = \left[\sqrt{2}, \frac{\pi}{4}\right] \times \left[2, \frac{\pi}{6}\right] = \left[2\sqrt{2}, \frac{\pi}{4} + \frac{\pi}{6}\right] = \left[2\sqrt{2}, \frac{5\pi}{12}\right] : 0$$

ملحوظة: وهذه الطريقة نحصل بها على كل من: معيار $|\mathbf{b}|$ و على عمدة $|\mathbf{b}|$ أي $|\mathbf{arg}|$.

$$\operatorname{arg} \mathbf{b} \equiv \frac{5\pi}{12} \quad [2\pi]$$
 و بالتالي:

لسنة 2016 - 2017

تصحيح الامتحان الوطئى - الدورة العادية -

$$\cos \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
: نستنتج مما سبق أن

(b هو الجزء الحقيقي ل Re(b)) .
$$\cos \frac{5\pi}{12} = \frac{\text{Re(b)}}{|b|} = \frac{\sqrt{3}-1}{2\sqrt{2}} = \frac{\sqrt{2}\times\left(\sqrt{3}-1\right)}{4} = \frac{\sqrt{6}-\sqrt{2}}{4}$$
 : نعلم أن

$$\cos \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
: و بالتالي

نعتبر ، في المستوى العقدي (P) المنسوب إلى معلم متعامد ممنظم مباشر $(0,\vec{u},\vec{v})$ النقطتين (P) المنسوب المعامد معامد منظم مباشر (D,\vec{u},\vec{v})

. $c=-1+i\sqrt{3}$ و ما a و النقطة c التي لحقها التي حيث و a التي لحقها

$$\cdot \left(\overline{\overrightarrow{OA},\overrightarrow{OC}}\right) = \frac{\pi}{2} \quad [2\pi]$$
 و أن $\overrightarrow{OA} = \overrightarrow{OC}$ و نستنتج أن $\overrightarrow{C} = ia$: في نتحقق أن

نتحقق أن : c = ia .

•
$$ia = i(\sqrt{3} + i) = i\sqrt{3} - 1 = -1 + i\sqrt{3} = c$$

c = ia:

. OA = OC: نستنتج أن

$$c = ia \Rightarrow \frac{c}{a} = i$$

$$\Rightarrow \left| \frac{c}{a} \right| = |i|$$

$$\Rightarrow \frac{|c|}{|a|} = 1$$

$$\Rightarrow \frac{|c - 0|}{|a - 0|} = \frac{OC}{OA} = 1$$

$$\Rightarrow OC = OA$$

$$OA = OC : 4ia$$

$$\cdot \left(\overline{\overrightarrow{OA}, \overrightarrow{OC}} \right) \equiv \frac{\pi}{2} \left[2\pi \right] : نمتنتج أن = 1$$

$$c = ia \Rightarrow \frac{c}{a} = i$$
 : الدينا
$$\Rightarrow \arg\left(\frac{c}{a}\right) \equiv \arg i \quad [2\pi]$$

$$\Rightarrow \arg\left(\frac{c-0}{a-0}\right) \equiv \frac{\pi}{2} \quad [2\pi]$$

$$\Rightarrow \left(\overline{\overrightarrow{OA}, \overrightarrow{OC}}\right) \equiv \frac{\pi}{2} \quad [2\pi]$$

$$\left(\overline{\overrightarrow{OA}, \overrightarrow{OC}}\right) \equiv \frac{\pi}{2} \quad [2\pi]$$

لسنة 2016-2017

تصحيح الامتحان الوطنى - الدورة العادية -

 \overrightarrow{OC} نبين أن : النقطة \overrightarrow{B} هي صورة النقطة \overrightarrow{A} بالإزاحة ذات المتجهة

ى طرىقة 1:

لدينا الكتابة العقدى للإزاحة هي : z'=z+c

 $\overline{\mathbf{oc}}$ نعتبر أن النقطة ' \mathbf{A} حيث لحقها ' \mathbf{a} هي صورة النقطة \mathbf{A} بالإزاحة ذات المتجهة

$$t_{\overline{OC}}(A) = A' \Leftrightarrow a' = a + c$$
 ومنه : $\Leftrightarrow a' = a + ia$

$$\Leftrightarrow$$
 a' = $(1+i)a$

$$(b=(1+i)a$$
 (צֹיט $\Rightarrow a'=b$

$$(A' = B \ a' = b) \Leftrightarrow A' = t_{\overline{OC}}(A) = B$$

 $\overline{\mathbf{OC}}$ فلاصة: النقطة \mathbf{B} هي صورة النقطة \mathbf{A} بالإزاحة ذات المتجهة

♦ طريقة 2:

 \cdot . $t_{\overrightarrow{OC}}$ ب \overrightarrow{OC} بالمتجهة نرمز للإزاحة ذات المتجهة

و منه : \mathbf{B} هي صورة النقطة \mathbf{A} بالإزاحة ذات المتجهة $\overline{\mathbf{OC}}$ يعني أن : \mathbf{B} و هذا يكافئ $\overline{\mathbf{AB}} = \overline{\mathbf{OC}}$ أي نبين أن

 ${f b}-{f a}={f c}-{f 0}={f c}$ متساويين) أي ${f Z}_{\overline{
m AB}}={f b}-{f a}$ هو ${f Z}_{\overline{
m OC}}={f c}-{f 0}={f c}$ هو ${f Z}_{\overline{
m OC}}={f C}$

$$(b=(1+i)a)$$
 فن جهة أخرى: $b-a=(1+i)a-a$

$$= a + ia - a$$

.
$$t_{\overline{OC}}(A)=B$$
 و منه : $\overline{AB}=\overline{OC}$ و بالتالي $Z_{\overline{AB}}=Z_{\overline{OC}}$ و بالتالي $b-a=c$

 $\overline{\mathbf{OC}}$ فلاصة : \mathbf{B} هي صورة النقطة \mathbf{A} بالازاحة ذات المتجهة

ج- نستنتج أن الرباعي OABC مربع.

لدينا:

- \overrightarrow{A} هي صورة النقطة \overrightarrow{A} بالإزاحة ذات المتجهة \overrightarrow{OC} إذن \overrightarrow{OC} \overrightarrow{AB} و منه : الرباعي \overrightarrow{OABC} متوازي الأضلاع .
 - اذن OABC متوازي الأضلاع له زاوية قائمة . $\left(\overline{\overrightarrow{OA}}, \overline{\overrightarrow{OC}}\right) \equiv \frac{\pi}{2}$
 - . متوازي الأضلاع له ضلعين متتابعين متقايسين OABC إذن OA = OC

ومنه: الرباعي OABC متوازي الأضلاع له زاوية قائمة و له ضلعين متتابعين متقايسين إذن الرباعي OABC مربع. خلاصة: الرباعي OABC مربع.

.04

 $g(x)=x^2+x-2+2\ln x$: بما يلي $y=0,+\infty$ نعتبر الدالة العددية المعرفة على يا $0,+\infty$ بما يلي

g(1) = 0: نتحقق أن نتحقق أن

. $g(1) = 1^2 + 1 - 2 + 2 \ln 1 = 2 - 2 + 2 \times 0 = 0$ دينا:

g(1) = 0 : خلاصة

X	0	+∞
g'(x)	+	
g(x)	7	+∞
S(*)	_∞	

لسنة 2016-2017

تصحيح الامتحان الوطنى - الدورة العادية -

12 وانطلاقا من الجدول تغيرات الدالة g جانبه:

.]0,1] نبين أن $g(x) \le 0$ لكل x من $\sqrt{}$

 $x\in]0,1]$ من خلال الجدول الدالة g هي تزايدية على $]0,+\infty[$ و منه : g تزايدية على [0,1] و منه :لكل

(]0,1] نان
$$g$$
 تزايدية على $x \le 1 \Rightarrow g(x) \le g(1)$

$$(g(1)=0)$$
 کن $\Rightarrow g(x) \leq 0$

[0,1] کی $g(x) \leq 0$ یا g(x) یا و منه

. $[1,+\infty[$ نبین أن $g(x) \ge 0$ لكل $g(x) \ge \sqrt{2}$

 $x \in [1,+\infty[$ و منه :لكل g و منه g الدينا و منه g الدينا و منه :g الدينا على g الدينا على g الدينا على g

$$([1,+\infty[$$
 لأن g تزايدية على $x \ge 1 \Rightarrow g(x) \ge g(1)$

$$(g(1) = 0 \dot{\psi}) \Rightarrow g(x) \ge 0$$

.]0,1] لكل x من $g(x) \le 0$

. $f(x) = x + \left(1 - \frac{2}{x}\right) \ln x$: بما يلي $= 0, +\infty$ المعرفة على $= 0, +\infty$ بما يلي $= 0, +\infty$ المعرفة على $= 0, +\infty$

. ($1~{
m cm}$ و ليكن $({
m C})$ منحنى الدالة f في معلم متعامد ممنظم و $({
m C})$ (الوحدة

 $\lim_{\substack{x \to 0 \ x \to 0}} f(x) = +\infty$ نبین أن : $\infty + = \lim_{\substack{x \to 0 \ x \to 0}} f(x)$ و نؤول هندسیا النتیجة .

 $\lim_{\substack{x\to 0\\y>0}} f(x) = +\infty$: نبین أن

$$\lim_{\substack{x \to 0 \\ x > 0}} \left(1 - \frac{2}{x}\right) \ln x = +\infty \text{ in } \left(\frac{2}{x}\right) \lim_{\substack{x \to 0 \\ x > 0}} \ln x = -\infty \text{ in } \left(\frac{2}{x}\right) \lim_{\substack{x \to 0 \\ x > 0}} \left(1 - \frac{2}{x}\right) = -\infty \text{ in } \left(1 - \frac{2}{x}\right) = -\infty$$

$$\lim_{\substack{x \to 0 \\ x > 0}} x = 0 \quad \checkmark$$

$$\lim_{\substack{x\to 0\\x>0}} x + \left(1 - \frac{2}{x}\right) \ln x = +\infty : \checkmark$$

$$\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$$

. $\mathbf{x}=\mathbf{0}$ بما أن $\mathbf{x}=\mathbf{0}$ المنحنى المنحنى فإن المنحنى المنحنى المنحنى المنحنى المنحنى بما أن

 $_{
m C}$ خلاصة : المنحنى $_{
m C}$) يقبل مقارب عمودي هو المستقيم الذي معادلته $_{
m C}$

$$\lim_{x\to+\infty} f(x) = +\infty$$
: نبین أن $\lim_{x\to+\infty} f(x) = +\infty$

لسنة 2016-2017

تصحيح الامتحان الوطنى - الدورة العادية -

لصفحة

$$\lim_{x\to +\infty} \left(1-\frac{2}{x}\right) \ln x = +\infty \quad \text{in} \quad \lim_{x\to +\infty} \ln x = +\infty \quad \text{in} \quad \left(\lim_{x\to +\infty} \frac{2}{x} = 0\right) \quad \lim_{x\to +\infty} \left(1-\frac{2}{x}\right) = 1 \quad \checkmark$$

 $\lim_{x \to +\infty} x = +\infty \quad \checkmark$

$$\lim_{x \to +\infty} x + \left(1 - \frac{2}{x}\right) \ln x = +\infty : \checkmark$$

 $\lim f(x) = +\infty$: خلاصة

. y = x فرعا شلجميا في اتجاه المستقيم (D) الذي معادلته (C) الذي معادلته (C) الذي لدينا :

- ($a = \lim_{x \to +\infty} \frac{f(x)}{x}$ ومنه نحدد قیمة $a = \lim_{x \to +\infty} f(x) = +\infty$
 - a نحدد قیمة

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x + \left(1 - \frac{2}{x}\right) \ln x}{x} = \lim_{x \to +\infty} 1 + \left(1 - \frac{2}{x}\right) \times \frac{\ln x}{x} = 1$$
ادینا :

$$\left(\lim_{x\to+\infty}\left(1-\frac{2}{x}\right)\times\frac{\ln x}{x}=0\right) = \lim_{x\to+\infty}\left(1-\frac{2}{x}\right) = 1$$
 و منه
$$\lim_{x\to+\infty}\left(\frac{\ln x}{x}=0\right) = \lim_{x\to+\infty}\left(\frac{\ln x}{x}=0\right)$$

و منه: a = 1

.
$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} x + \left(1 - \frac{2}{x}\right) \ln x - x = \lim_{x \to +\infty} \left(1 - \frac{2}{x}\right) \ln x = +\infty$$
 : لدينا

$$(\lim_{x\to +\infty} \left(1-\frac{2}{x}\right) \times \frac{\ln x}{x} = +\infty \ \text{ فاصية}) \lim_{x\to +\infty} \left(1-\frac{2}{x}\right) = 1 \ \text{otherwise} \) \lim_{x\to +\infty} \ln x = +\infty \) \lim_{x\to +\infty} \ln x = +\infty$$

 $\mathbf{b} = +\infty \quad \mathbf{b} = \mathbf{d} \quad .$

y=x فرعا شلجميا في اتجاه المستقيم (C) الذي معادلته y=x

.03

.]0,+
$$\infty$$
[نبین أن $\frac{g(x)}{x^2}$ ككل $\frac{g(x)}{x}$ ككل $\frac{g(x)}{x}$

. $]0,+\infty[$ لأنها مجموع و جداء عدة دوال قابلة الاشتقاق على $]0,+\infty[$ لأنها مجموع و جداء عدة دوال قابلة الاشتقاق على

لسنة 2016 - 2017

تصحيح الامتحان الوطني - الدورة العادية -

لصفحة

$$= \frac{x^2 + 2\ln x + x - 2}{x^2}$$
$$= \frac{x^2 + x - 2 + 2\ln x}{x^2}$$
$$= \frac{g(x)}{x^2}$$

. $]0,+\infty[$ نكل $_{x}$ من $f'(x)=rac{g(x)}{x^{2}}$: خلاصة

 $0,1,+\infty$ نبين أن : الدالة 1 تناقصية على المجال $1,+\infty$ و تزايدية على المجال $1,+\infty$

. لهذا ندرس إشارة
$$g(x)$$
 أي ندرس إشارة $g(x)$ فقط $f'(x) = \frac{g(x)}{x^2}$ فقط

حسب ما سبق :

- .]0,1] اكل [0,1] اكل [0,1] الذن [0,1] على المجال [0,1] على المجال [0,1] الكل [0,1] الكل [0,1]
- . $[1,+\infty[$ يكل x من $]\infty+,1]$ إذن $g(x)\geq 0$ على المجال $]\infty+,1]$. و منه f تزايدية على المجال $[1,+\infty[$ على المجال $]\infty+,1]$

 $[1,+\infty[$ على المجال [0,1] و تزايدية على المجال $[0,+\infty[$.

 $0,+\infty$ نضع جدول لتغيرات f على المجال $-\infty$

X	0	1	+∞
f'(x)	_	0	+
f(x)	+∞ f	(1) =	+∞ ✓

..04

$$\left(1-\frac{2}{x}\right)\ln x=0$$
 المعادلة $\left[0,+\infty\right]$ المجال أـــ نحل على المجال

لدينا:

$$\left(1 - \frac{2}{x}\right) \ln x = 0 \iff \left(1 - \frac{2}{x} = 0 \text{ if } \ln x = 0\right)$$

$$\iff \left(\frac{2}{x} = 1 \text{ if } \ln x = \ln 1\right)$$

$$\iff \left(x = 2 \in \left]0, +\infty\right[\text{ if } x = 1 \in \left]0, +\infty\right[\right)$$

.
$$x=2$$
 أو $x=1$ أو $x=1$ أو $x=1$ أو $x=1$

ب نستنتج أن : المنحنى (C) يقطع المستقيم (D) في نقطتين يتم تحديد زوج إحداثيتي كل منهما .

$$\mathbf{M} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} \in (\mathbf{C}) \cap \left(\mathbf{D}\right) \Leftrightarrow \begin{cases} \mathbf{M} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} \in (\mathbf{C}) \\ \mathbf{M} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} \in (\mathbf{D}) \end{cases}$$

لسنة 2016 - 2017

تصحيح الامتحان الوطنى - الدورة العادية -

صفحة

$$\Leftrightarrow \begin{cases} f(x) = y \\ y = x \end{cases}$$
$$\Leftrightarrow f(x) = y = x$$

f(x) = y: لهذا نحل المعادلة

$$f(x) = y \Leftrightarrow x + \left(1 - \frac{2}{x}\right) \ln x = x$$
 : لاينا
$$\Leftrightarrow \left(1 - \frac{2}{x}\right) \ln x = 0$$

(حسب السؤال السابق)

$$\Leftrightarrow x=1$$
 de $x=2$

$$(f(x) = y = x)$$
 (لأن $y = x = 1$ فإن $x = 1$ فإن $y = x = 1$

(
$$f(x) = y = x$$
 الأن $y = x = 2$ فإن $x = 2$ بالنسبة ل

. (2;2) و (1;1) و (1;1) في نقطتين حيث زوج إحداثيتي كل منهما كالتالي (1;1) و (2;2) .

. [1;2] على [x] على [x] و المستقيم [x] اكل [x] على [x] اكل [x] المنحنى [x] المنحنى [x]

$$f(x) \le x \Leftrightarrow x + \left(1 - \frac{2}{x}\right) \ln x \le x$$
 : لابنا
$$\Leftrightarrow \left(1 - \frac{2}{x}\right) \ln x \le 0$$

$$\Leftrightarrow \left(\frac{x - 2}{x}\right) \ln x \le 0$$

$$\Leftrightarrow (x - 2) \ln x \le 0$$
 ; $(x \in [1; 2])$

[1;2] نعلم أن x-2 على المجال $[1,+\infty]$ إذن إشارة $[1,+\infty]$ هي إشارة $[1,+\infty]$ على المجال $[1,+\infty]$ و منه الوضع النسبي للمنحنى $[1,+\infty]$ و المستقيم $[1,+\infty]$ على $[1,+\infty]$ هو كالتالي :

- المنحنى (C) و المستقيم (D) يتقاطعان في نقطتين حيث زوج إحداثيتي كالتالي (C) و (C;2)
 - .]1;2[على المجال (C) على المجال .

خلاصة : الوضع النسبي للمنحى (C) و المستقيم (D) على [1;2] بواسط الجدول التالي :

X	1	2
f(x)-x	0	_ 0
		(D) تحت (C)
(\mathbf{D}) الوضع النسبي للمنحنى (\mathbf{C}) و المستقيم	و (D) يتقطعان (C)	(C) و (C) يتقطعان

لسنة 2016 - 2017

تصحيح الامتحان الوطني - الدورة العادية -

ننشئ المستقيم ig(D ig) و المنحنى ig(C ig) في نفس المعلم ig(O,; i; j ig) (نقبل أن للمنحنى ig(C ig) نقطة انعطاف وحيدة أفصولها محصور بين 2,4 و 2,5).

$$\int_{1}^{2} \frac{\ln x}{x} dx = \frac{1}{2} (\ln 2)^{2} : \frac{1}{2} = \frac{1}{2}$$

.
$$\int_{1}^{2} \frac{\ln x}{x} dx = \int_{1}^{2} (\ln x)^{2} \times \ln x dx = \left[\frac{1}{2} (\ln x)^{2} \right]_{1}^{2} = \frac{1}{2} \left((\ln 2)^{2} - (\ln 1)^{2} \right) = \frac{1}{2} \left((\ln 2)^{2} - 0 \right) = \frac{1}{2} (\ln 2)^{2}$$
 دينا:

$$\int_{1}^{2} \frac{\ln x}{x} dx = \frac{1}{2} (\ln 2)^{2}$$
:

لسنة 2016-2016

تصحيح الامتحان الوطنى _ الدورة العادية _

صفحة

 $[0,+\infty[$ على المجال $]0,+\infty[$ على المجال $]0,+\infty[$ على المجال $]0,+\infty[$ على المجال المجال $]0,+\infty[$

لهذا نبين أن : H'(x) = h(x) .

$$H'(x) = (2\ln x - x)' = 2 \times \frac{1}{x} - 1 = \frac{2}{x} - 1 = h(x)$$
 لدينا

H'(x) = h(x) : و منه

. $]0,+\infty[$ على المجال $\mathrm{h}:\mathrm{x}\mapsto rac{2}{\mathrm{x}}-1$ غلى المجال $\mathrm{H}:\mathrm{x}\mapsto 2\ln\mathrm{x}-\mathrm{x}$

نضع:

$$u(x) = \ln x \qquad u'(x) = \frac{1}{x}$$

$$(1) \downarrow \qquad (2) \searrow \qquad - \downarrow (3)$$

$$v'(x) = \frac{2}{x} - 1 \qquad v(x) = 2\ln x - x$$

ومنه:

$$\int_{1}^{2} \left(\frac{2}{x} - 1\right) \ln x dx = \left[\ln x \left(2 \ln x - x\right)\right]_{1}^{2} - \int_{1}^{2} \frac{1}{x} \times \left(2 \ln x - x\right) dx$$

$$= \ln 2 \left(2 \ln 2 - 2\right) - \ln 1 \left(2 \ln 1 - 1\right) - \int_{1}^{2} \left(2 \frac{\ln x}{x} - 1\right) dx$$

$$= 2 \left(\ln 2\right)^{2} - 2 \ln 2 - \left(2 \int_{1}^{2} \frac{\ln x}{x} dx - \int_{1}^{2} 1 dx\right)$$

$$= 2 \left(\ln 2\right)^{2} - 2 \ln 2 - \left(2 \times \frac{1}{2} \left(\ln 2\right)^{2} - \left[x\right]_{1}^{2}\right)$$

$$= 2 \left(\ln 2\right)^{2} - 2 \ln 2 - \left(\left(\ln 2\right)^{2} - \left(2 - 1\right)\right)$$

$$= 2 \left(\ln 2\right)^{2} - 2 \ln 2 - \left(\ln 2\right)^{2} + 1$$

$$= \left(\ln 2\right)^{2} - 2 \ln 2 + 1$$

$$= \left(1 - \ln x\right)^{2}$$

$$\int_{1}^{2} \left(\frac{2}{x} - 1\right) \ln x dx = (1 - \ln 2)^{2}$$
 : خلاصة

 ${f x}=1$ و المستقيمين اللذين معادلتاهما ${f x}=1$ و المستقيم ${f cm}^2$ و المستقيمين اللذين معادلتاهما ${f x}=2$.

المساحة المطلوبة هي:

$$\left(\begin{bmatrix} 1;2 \end{bmatrix} \right. \preceq f\left(x\right) \leq x \left. \right) \cdot \left(\int_{1}^{2} \left| f\left(x\right) - x \right| dx \right) \times \left\| \overline{i} \right\| \times \left\| \overline{j} \right\| = \left(\int_{1}^{2} \left(x - f\left(x\right)\right) dx \right) \times \left\| \overline{i} \right\| \times \left\| \overline{j} \right\| \ cm^{2}$$

لسنة 2016 - 2017

تصحيح الامتحان الوطنى _ الدورة العادية _

لصفحة

$$= \left(\int_{1}^{2} \left(x - \left(x + \left(1 - \frac{2}{x}\right) \ln x\right)\right) dx\right) \times 1 \times 1 \text{ cm}^{2}$$

$$= \int_{1}^{2} - \left(1 - \frac{2}{x}\right) \ln x dx \text{ cm}^{2}$$

$$= \int_{1}^{2} \left(\frac{2}{x} - 1\right) \ln x dx \text{ cm}^{2}$$

$$= \left(1 - \ln 2\right)^{2} \text{ cm}^{2}$$

خلاصة : مساحة حيز من المستوى المحصور بين المنحنى (C) و المستقيم (D) و المستقيمين اللذين معادلتاهما x=2 و x=2 هي $(D)^2$ cm² .

. N من $u_{n+1}=f\left(u_n\right)$ و $u_0=\sqrt{3}$. المعرفة بما يلي $u_0=\sqrt{3}$ المعرفة بما يلي . III.

. $\mathbb N$ نبين بالترجع أن : $1 \le u_n \le 2$ لكل n من n

 $\mathbf{n}=\mathbf{0}$ نتحقق أن العلاقة صحيحة ل

. $\mathbf{n}=\mathbf{0}$ دينا : $\mathbf{1} \leq \mathbf{u}_0 = \sqrt{3} \leq 2$ و منه العلاقة صحيحة من أجل

و نفترض أن العلاقة صحيحة للرتبة n : أي $1 \le u_n \le 2$ (معطيات الترجع) .

 $1 \le u_{n+1} \le 2$: أي نبين أن العلاقة صحيحة ل n+1 : أي نبين أن العلاقة صحيحة ل

 $1 \le u_n \le 2$: حسب معطيات الترجع لدينا

و منه : $(1 \le u_n \le 2)$ و منه [1;2] و منه [1;2] و [1;2] و [1;2] و [1;2] و منه [1;2]

 $(f(x) \le x ; x \in [1;2])$ و ذلك $f(1) \le 1$ و ذلك $f(2) \le 2$) $\Rightarrow 1 \le u_{n+1} \le 2$

حيث : زوج إحداثيتي كالتالي (1;1) و (2;2) .

و منه: العلاقة صحيحة ل n+1.

. $\mathbb N$ نكل $\mathbf n$ من $1 \le \mathbf u_{\mathrm n} \le 2$

نبين أن المتتالية $\left(\mathbf{u}_{\mathbf{n}}
ight)$ تناقصية $\left(\mathbf{u}_{\mathbf{n}}
ight)$ نبين أن المتتالية نبين أن المتالية $\left(\mathbf{u}_{\mathbf{n}}
ight)$

. $\mathbb N$ من $\mathbf u_{\mathrm{n+1}} - \mathbf u_{\mathrm{n}} \leq \mathbf 0$ عن الهذا نبين أن

 $\mathbf{u}_{\mathbf{n}} = \mathbf{x}$ نضع \mathbf{n} من \mathbf{n}

($\mathbb N$ من n لكل $x=u_n\in[1;2]$ الكل n من $1\leq u_n\leq 2$ و نظم أن $1\leq u_n\leq 2$

 $(\ \mathbb{N}\ \text{ من }\ f\left(u_{n}\right)\leq u_{n}\ :$ و لدينا $f\left(u_{n}\right)\leq u_{n}$ لكل $f\left(x\right)\leq x$ من $f\left(x\right)\leq x$ و لدينا $f\left(x\right)\leq x$

. $\mathbb N$ من $\mathbf u_{n+1} = \mathbf f\left(\mathbf u_n\right)$ و ذلك لكل $\mathbf u_{n+1} \leq \mathbf u_n$

و بالتالي : لكل n من \mathbb{N} لدينا $\mathbf{u}_{n+1} \leq \mathbf{u}_n$ او أيضا $\mathbf{u}_n \leq \mathbf{u}_n$

. المتتالية $\left(u_{\mathrm{n}}
ight)$ تناقصية

لسنة 2016 - 2017

تصحيح الامتحان الوطنى - الدورة العادية -

صفحة

استنتج أن المتتالية $\left(u_{n}
ight)$ متقاربة و حدد نهايتها .

- ❖ نستنتج أن: المتتالية (un) متقاربة
- $\ell\in\mathbb{R}$ مع المتتالية $\left(u_n\right)$ متقاربة مع نهايتها $\ell\in\mathbb{R}$ مع ℓ لان $\ell\in\mathbb{R}$ و منه : المتتالية $\left(u_n\right)$ متقاربة مع نهايتها $\ell\in\mathbb{R}$ مع المتتالية $\left(u_n\right)$ متقاربة مع نهايتها $\ell\in\mathbb{R}$ مع المتتالية $\left(u_n\right)$ متقاربة
 - $\left(u_{n}
 ight)$ نحدد نهاية المتتالية imes
 - $\mathbf{u}_{\mathrm{n+1}} = \mathbf{f}\left(\mathbf{u}_{\mathrm{n}}\right)$ المتتالية تكتب على شكل ullet
 - I = [1;2] على الدالة f متصلة على
 - : لأن f(I)⊂I=[1;2] •

$$1 \le x \le 2 \Rightarrow f(1) \le f(x) \le f(2)$$
$$(f(x) \le x ; x \in [1;2]) \Rightarrow 1 \le f(x) \le 2$$

• بما أن (u_n) متقاربة إذن نهايتها ℓ هي حل للمعادلة x = x ; f(x) = x (حسب خاصية) . $x \in [1;2] \; ; \; f(x) - x = 0$ أي $x \in [1;2] \; ; \; f(x) - x = 0$ و هذه المعادلة لها حلين هما 1 و ℓ و بما أن المتتالية ℓ يناقصية إذن $\ell = 1$ و منه ℓ و منه ℓ

 $\lim_{n\to +\infty} \mathbf{u}_n = 1$: خلاصة