Topic 1: Lab

Intro lab cont...

- Got to your GWDACSchoolSandBox folder
- Team leaders only
 - git pull
 - Edit the file called Teams.md in your local branch and add the name of your team members
 - ► (1) Group 1st, leader: Shucheng Yang; members:
 - Confirm with instructor ...
 - Save the file and push your changes to the main repository as shown
 - ▶ git commit → git push
- When instructed: Everyone do git pull

Signal generation

- Write matlab code to generate different types of discrete time signals
- ► Each team will write code to generate one type of signal
- ► Team leaders will write the code and explain to their team the meaning of their code
- ► Team members can help:
 - ▶ If you know programming, try to implement the code in parallel so that there is a check
 - ► If you don't know programming, copy the code and try to learn OR learn Matlab using the free mathworks.com coursework

Signal generation

- Follow the example of the code GWDACSchoolSandBox/DSP/crcbgenqcsig.m
 - ▶ Do git pull in GWDACSchoolSandBox to get the latest update
 - Write your code in the same format as this function
 - ► Learn elements of good coding: Good documentation, Clean and understandable code
 - Script showing how to use the function: DSP/testcrcbgenqcsig.m
- Once your code is running well:
 - ▶ Use: git pull \rightarrow git add \rightarrow git commit \rightarrow git push
 - ▶ Remember the advice: Pull before Push

OPTIMIZATION: NON-LINEAR MODEL

Quadratic chirp

$$f(t) = A \sin(2\pi\Phi(t))$$

Instantaneous phase:

$$\Phi(t) = \frac{a_1}{a_1}t + \frac{a_2}{a_2}t^2 + \frac{a_3}{a_3}t^3$$

Parameters of the signal:

A,
$$a_1$$
, a_2 , a_3

Instantaneous frequency:

$$f(t) = \frac{d\Phi}{dt} = a_1 + 2a_2t + 3a_3t^2$$

f(t) increases with t 1/f(t) (Instantaneous period) decreases with t

Example taken from textbook ("Swarm intelligence methods for Statistical Regression", Chapter 1)

Format of a Matlab function definition

function <output arguments> = <function name>(Input arguments)
function sigVec = crcbgenqcsig(dataX,snr,qcCoefs)

- ▶ dataX : vector of time stamps $(t_0, t_1, ..., t_{M-1})$ at which the samples of the signal s(t) are to be computed.
- ▶ qcCoefs: vector of three coefficients [a1, a2, a3] that parametrize the phase of the signal $\Phi(t) = a_1t + a_2t^2 + a_3t^3$
- > snr: A special way to define the parameter A

```
\Phi(t) = a_1t + a_2t^2 + a_3t^3 phaseVec = qcCoefs(1)*dataX + qcCoefs(2)*dataX.^2 + qcCoefs(3)*dataX.^3; \sin(2\pi\Phi(t)) sigVec = \sin(2*pi*phaseVec); A\sin(2\pi\Phi(t)) sigVec = \sin^*sigVec/norm(sigVec);
```

Elements of good coding

sigVec = sin(2*pi*phaseVec);

sigVec = snr*sigVec/norm(sigVec);

```
Function name should be descriptive but short: CRCBook-Generate-
function sigVec = crcbgenqcsig(dataX,snr,qcCoefs)
                                                                                Quadratic-Chirp-Signal
% Generate a quadratic chirp signal ( First comment is used by Matlab to generate Contents report
% S = CRCBGENQSIG(X,SNR,C) Second line shows usage format (input and output arguments); Displayed
                                                     with command "help crcbgengcsig"
% Generates a quadratic chirp signal S. X is the vector of
% time stamps at which the samples of the signal are to be computed. SNR is
                                                                                      Describe what the code does and what
% the matched filtering signal-to-noise ratio of S and C is the vector of
                                                                                     is the meaning of each input and output
% three coefficients [a1, a2, a3] that parametrize the phase of the signal:
                                                                                                  argument
% a1*t+a2*t^2+a3*t^3.
                                          Author of the code (add additional lines for multiple
%Soumya D. Mohanty, May 2018
                                                      authors), Date of creation
phaseVec = qcCoefs(1)*dataX + qcCoefs(2)*dataX.^2 + qcCoefs(3)*dataX.^3;
```

Variable names should be descriptive. C++ convention: thisIsAVariableName. Quadratic Chirp Coefficients

More signals

- Sinusoidal signal
 - $> s(t) = A\sin(2\pi f_0 t + \phi_0)$
 - ▶ Parameters: A, f_0, ϕ_0
- Linear chirp signal
 - $> s(t) = A \sin(2\pi (f_0 t + f_1 t^2) + \phi_0)$
 - ▶ Parameters: A, f_0, f_1, ϕ_0
- Sine-Gaussian signal
 - $> s(t) = A \exp\left(-\frac{(t-t_0)^2}{2\sigma^2}\right) \sin(2\pi f_0 t + \phi_0)$
 - ▶ Parameters: $A, t_0, \sigma, f_0, \phi_0$

More signals

- Frequency modulated (FM) sinusoid
 - $> s(t) = A\sin(2\pi f_0 t + b\cos(2\pi f_1 t))$
 - ▶ Parameters: A, b, f_0, f_1
- ► Amplitude modulated (AM) sinusoid

 - ▶ Parameters: A, f_0, f_1, ϕ_0
- AM-FM sinusoid
 - $> s(t) = A\cos(2\pi f_1 t) \times \sin(2\pi f_0 t + b\cos(2\pi f_1 t))$
 - ▶ Parameters: A, b, f_0, f_1

Linear transient chirp signal

▶ Parameters: A, t_a , f_0 , f_1 , ϕ_0 , L

Plots

- ► Make plots of each signal
- ► You have to choose a **sampling interval (or period)** ∆

$$t = n\Delta$$
, $n = 0,1,...,N-1$

- ► Sampling frequency = $1/\Delta$
- Generate the signal for this set of time stamps and make a plot

Choosing the sampling frequency: Nyquist Sampling theorem

- What is the bandwidth of your signal?
 - ► A good starting guess: highest **instantaneous frequency** in the signal
 - Note: Instantaneous frequency is not the same as Fourier frequency!
- **Example:**
 - ightharpoonup N samples with sampling interval Δ
 - Quadratic chirp instantaneous frequency increases with time
 - ightharpoonup \Rightarrow Maximum instantaneous frequency is at $t = n\Delta$

$$f(t) = a_1 + 2a_2t + 3a_3t^2$$

- Nyquist theorem \Rightarrow Sampling rate is $\geq 2 \times Max$. instantaneous frequency
- Anti-aliasing: When doing actual data analysis, we low pass filter our signals and data such that a given sampling frequency becomes the Nyquist frequency
 - Example: LIGO data is low pass filtered to a maximum Fourier frequency of 8192 Hz before it is sampled at 16384 Hz

Effect of windowing

- Assuming you are generating the signals with the proper sampling frequency, make plots of the periodogram of each signal
- ▶ Periodogram: Magnitude of the FFT

Frequencies in a DFT

- Generate the correct frequency values for your periodogram plots
 - ▶ Positive frequency components of FFT go from index number:
 - ▶ 1 to floor (N/2) +1
 - ▶ Negative frequency components go from index number:
 - \triangleright floor (N/2) +2 to N
- Frequency spacing is $1/(N\Delta)$ where N is the number of samples and Δ is the sampling interval
- See testcrcbgenqcsig.m for an example