Chapter DM:II

II. Cluster Analysis

- □ Cluster Analysis Basics
- □ Hierarchical Cluster Analysis
- □ Iterative Cluster Analysis
- □ Density-Based Cluster Analysis
- Cluster Evaluation
- Constrained Cluster Analysis

DM:II-1 Cluster Analysis © STEIN 2002-2020

Cluster analysis is the unsupervised classification of a set of objects in groups, pursuing the following objectives:

- 1. maximize the similarities within the groups (intra groups)
- 2. minimize the similarities between the groups (inter groups)

DM:II-2 Cluster Analysis ©STEIN 2002-2020

Cluster analysis is the unsupervised classification of a set of objects in groups, pursuing the following objectives:

- 1. maximize the similarities within the groups (intra groups)
- 2. minimize the similarities between the groups (inter groups)

Applications:

- identification of similar groups of buyers
- □ "higher-level" image processing: object recognition
- search of similar gene profiles
- specification of syndromes
- analysis of traffic data in computer networks
- visualization of complex graphs
- text categorization in information retrieval

DM:II-3 Cluster Analysis © STEIN 2002-2020

Remarks:

- ☐ The setting of a cluster analysis is reverse to the setting of a variance analysis:
 - A variance analysis verifies whether a nominal feature defines groups such that the members of the different groups differ significantly with regard to a numerical feature.
 I.e., the nominal feature is in the role of the independent variable, while the numerical feature(s) is (are) in role of dependent variable(s).
 Example: The type of a product packaging (the independent variable) may define the number of customers (the dependent variable) in a supermarket who look at the product.
 - A cluster analysis, in turn, can be used to identify such a nominal feature, namely by constructing a suited feature domain for the nominal variable: each cluster corresponds implicitly to a value of the domain.
 - Example: Equivalent but differently presented products in a supermarket are clustered (= the impact of product packaging is identified) with regard to the number of customers who buy the products.
- □ Cluster analysis is a tool for structure *generation*. Nearly nothing is known about the nominal variable that is to be identified. In particular, there is no knowledge about the number of domain values (the number of clusters).
- Variance analysis is a tool for structure verification.

DM:II-4 Cluster Analysis © STEIN 2002-2020

Let $x_1, \dots x_n$ denote the *p*-dimensional feature vectors of *n* objects:

	Feature 1	Feature 2	 Feature p
\mathbf{x}_1	x_{1_1}	x_{1_2}	 x_{1_p}
\mathbf{x}_2	x_{2_1}	$x_{2_{2}}$	 x_{2_p}
÷			
\mathbf{x}_n	x_{n_1}	x_{n_2}	 x_{n_p}

DM:II-5 Cluster Analysis © STEIN 2002-2020

Let $x_1, \dots x_n$ denote the *p*-dimensional feature vectors of *n* objects:

	Feature 1	Feature 2	 Feature p	Target concept
\mathbf{x}_1	x_{1_1}	x_{1_2}	 x_{1_p}	c_1
\mathbf{x}_2	x_{2_1}	$x_{2_{2}}$	 x_{2_p}	c_2
÷				:
\mathbf{x}_n	x_{n_1}	x_{n_2}	 x_{n_p}	c_n
				not given

DM:II-6 Cluster Analysis © STEIN 2002-2020

Let $x_1, \dots x_n$ denote the *p*-dimensional feature vectors of *n* objects:

	Feature 1	Feature 2	 Feature p	Target concept
\mathbf{x}_1	x_{1_1}	x_{1_2}	 x_{1_p}	c_1
\mathbf{x}_2	x_{2_1}	$x_{2_{2}}$	 x_{2_p}	c_2
÷				:
\mathbf{x}_n	x_{n_1}	x_{n_2}	 x_{n_p}	C_n
				not given

30 two-dimensional feature vectors (n = 30, p = 2):

DM:II-7 Cluster Analysis ©STEIN 2002-2020

Definition 3 (Exclusive Clustering [splitting])

Let X be a set of feature vectors. An exclusive clustering \mathcal{C} of X, $\mathcal{C} = \{C_1, C_2, \dots, C_k\}$, $C_i \subseteq X$, is a partitioning of X into non-empty, mutually exclusive subsets C_i with $\bigcup_{C_i \in \mathcal{C}} C_i = X$.

DM:II-8 Cluster Analysis ©STEIN 2002-2020

Definition 3 (Exclusive Clustering [splitting])

Let X be a set of feature vectors. An exclusive clustering \mathcal{C} of X, $\mathcal{C} = \{C_1, C_2, \dots, C_k\}$, $C_i \subseteq X$, is a partitioning of X into non-empty, mutually exclusive subsets C_i with $\bigcup_{C_i \in \mathcal{C}} C_i = X$.

Algorithms for cluster analysis are unsupervised learning methods:

- □ the learning process is self-organized
- there is no (external) teacher
- the optimization criterion is task- and domain-independent

DM:II-9 Cluster Analysis © STEIN 2002-2020

Definition 3 (Exclusive Clustering [splitting])

Let X be a set of feature vectors. An exclusive clustering \mathcal{C} of X, $\mathcal{C} = \{C_1, C_2, \dots, C_k\}$, $C_i \subseteq X$, is a partitioning of X into non-empty, mutually exclusive subsets C_i with $\bigcup_{C_i \in \mathcal{C}} C_i = X$.

Algorithms for cluster analysis are unsupervised learning methods:

- □ the learning process is self-organized
- there is no (external) teacher
- □ the optimization criterion is task- and domain-independent

Supervised learning:

- a learning objective such as the target concept is provided
- the optimization criterion is defined by the task or the domain
- information is provided about how the optimization criterion can be maximized. Keyword: instructive feedback

DM:II-10 Cluster Analysis © STEIN 2002-2020

Main Stages of a Cluster Analysis

DM:II-11 Cluster Analysis © STEIN 2002-2020

Feature Extraction and Preprocessing [cluster analysis stages]

Required are (possibly new) features of high variance. Approaches:

- analysis of dispersion parameters
- dimension reduction: PCA, factor analysis, MDS
- visual inspection: scatter plots, box plots

[Webis 2012, VDM tool]

DM:II-12 Cluster Analysis ©STEIN 2002-2020

Feature Extraction and Preprocessing [cluster analysis stages]

Required are (possibly new) features of high variance. Approaches:

- analysis of dispersion parameters
- dimension reduction: PCA, factor analysis, MDS
- visual inspection: scatter plots, box plots

Feature standardization can dampen the structure and make things worse:

	0		0
0	0 0	0	0 0
00	000	00	0 0
00	000	00	000
00	000	0 0	000
0 0	0 0	0 0	0 0
0	0 0	0	0 0

DM:II-13 Cluster Analysis © STEIN 2002-2020

Computation of Distances or Similarities [cluster analysis stages]

Let $x_1, \dots x_n$ denote the *p*-dimensional feature vectors of *n* objects:

	Feature 1	Feature 2	 Feature p
\mathbf{x}_1	x_{1_1}	x_{1_2}	 x_{1_p}
\mathbf{x}_2	x_{2_1}	x_{2_2}	 x_{2p}
÷			
\mathbf{x}_n	x_{n_1}	x_{n_2}	 x_{n_p}

	\mathbf{x}_1	\mathbf{x}_2	 \mathbf{x}_n
\mathbf{x}_1	0	$d(\mathbf{x}_1, \mathbf{x}_2)$	 $d(\mathbf{x}_1, \mathbf{x}_n)$
\mathbf{x}_2	-	0	 $d(\mathbf{x}_2, \mathbf{x}_n)$
÷			
\mathbf{x}_n	-	-	 0

Distance matrix

DM:II-14 Cluster Analysis © STEIN 2002-2020

Remarks:

- □ Usually, the distance matrix is defined implicitly by a metric on the feature space.
- The distance matrix can be understood as the adjacency matrix of a weighted, undirected graph G, $G = \langle V, E, w \rangle$. The set X of feature vectors is mapped one-to-one (bijection) onto a set of nodes V. The distance $d(\mathbf{x}_i, \mathbf{x}_j)$ corresponds to the weight $w(\{u, v\})$ of edge $\{u, v\} \in E$ between those nodes u and v that are associated with \mathbf{x}_i and \mathbf{x}_j respectively.

DM:II-15 Cluster Analysis ©STEIN 2002-2020

Computation of Distances or Similarities (continued)

Properties of a distance function:

- 1. $d(\mathbf{x}_1, \mathbf{x}_2) \geq 0$
- **2.** $d(\mathbf{x}_1, \mathbf{x}_1) = 0$
- 3. $d(\mathbf{x}_1, \mathbf{x}_2) = d(\mathbf{x}_2, \mathbf{x}_1)$
- **4.** $d(\mathbf{x}_1, \mathbf{x}_3) \leq d(\mathbf{x}_1, \mathbf{x}_2) + d(\mathbf{x}_2, \mathbf{x}_3)$

DM:II-16 Cluster Analysis ©STEIN 2002-2020

Computation of Distances or Similarities (continued)

Properties of a distance function:

- 1. $d(\mathbf{x}_1, \mathbf{x}_2) \geq 0$
- **2.** $d(\mathbf{x}_1, \mathbf{x}_1) = 0$
- 3. $d(\mathbf{x}_1, \mathbf{x}_2) = d(\mathbf{x}_2, \mathbf{x}_1)$
- **4.** $d(\mathbf{x}_1, \mathbf{x}_3) \leq d(\mathbf{x}_1, \mathbf{x}_2) + d(\mathbf{x}_2, \mathbf{x}_3)$

Minkowsky metric for features with interval-based measurement scales:

$$d(\mathbf{x}_1, \mathbf{x}_2) = \left(\sum_{i=1}^{p} |x_{1i} - x_{2i}|^r\right)^{1/r}$$

where

- r=1. Manhattan or Hamming distance, L_1 norm
- r=2. Euclidean distance, L_2 norm
- $r=\infty$. Maximum distance, L_{∞} norm or L_{\max} norm

Computation of Distances or Similarities (continued)

Cluster analysis does not presume a particular measurement scale.

→ Generalization of the distance function towards a (dis)similarity function by omitting the triangle inequality. (Dis)similarities can be quantified between all kinds of features—irrespective of the given levels of measurement.

DM:II-18 Cluster Analysis © STEIN 2002-2020

Computation of Distances or Similarities (continued)

Cluster analysis does not presume a particular measurement scale.

→ Generalization of the distance function towards a (dis)similarity function by omitting the triangle inequality. (Dis)similarities can be quantified between all kinds of features—irrespective of the given levels of measurement.

Similarity coefficients for two feature vectors, x_1 , x_2 , with binary features:

Simple Matching Coefficient (SMC)
$$= \frac{f_{11}+f_{00}}{f_{11}+f_{00}+f_{01}+f_{10}}$$
 Jaccard Coefficient (J) $= \frac{f_{11}}{f_{11}+f_{01}+f_{10}}$

where

 f_{11} = number of features with a value of 1 in both \mathbf{x}_1 and \mathbf{x}_2 f_{00} = number of features with a value of 0 in both \mathbf{x}_1 and \mathbf{x}_2 f_{01} = number of features with value 0 in \mathbf{x}_1 and value 1 in \mathbf{x}_2 f_{10} = number of features with value 1 in \mathbf{x}_1 and value 0 in \mathbf{x}_2

Remarks:

- The definitions for the above similarity coefficients can be extended towards features with a nominal measurement scale.
- □ Particular heterogeneous metrics have been developed, such as HEOM and HVDM, which allow the combined computation of feature values from different measurement scales.
- The computation of the correlation between all features of two feature vectors (not: between two features over all feature vectors) allows to compare feature profiles. Example: Q correlation coefficient
- The development of a suited, realistic, and expressive similarity measure is the biggest challenge within a cluster analysis tasks. Typical problems:
 - (unwanted) structure damping due to normalization
 - (unwanted) sensitivity concerning outliers
 - (unrecognized) feature correlations
 - (neglected) varying feature importance
- Similarity measures can be transformed straightforwardly into dissimilarity measures—and vice versa.

DM:II-20 Cluster Analysis ©STEIN 2002-2020

Merging Principles [cluster analysis stages]

DM:II-21 Cluster Analysis ©STEIN 2002-2020