Induktionsprinzip

Sei A(n) eine Aussage die von einer Zahl $n \in \mathbb{N}$ abhängt

Falls
$$A(n_0)$$
 und $\forall n \geq n_0$, wenn $A(n)$ dann $A(n+1)$ $A(M) \longrightarrow A(M+1)$

$$\forall n \geq n_0, A(n)$$

$$A(M-1) \longrightarrow A(M)$$

Induktionsprinzip

Induktionsanfang (I.A.): Zeige, dass die Aussage für den Basiswert n_0 gilt.

Induktionshypothese (I.H.): Es wird angenommen, dass die Aussage bis zu einem Wert n gilt. Der Wert wird dabei nicht näher definiert. $A(m_3)\cdots A(m_n)$

Induktionsschritt (I.S.): Die zu zeigende Eigenschaft wird für n+1 gezeigt mit hilfe der Induktionshypothese.

Induktion

Beispiel: $\forall n \in \mathbb{N}, 4^n + 5$ ist durch 3 teilbar.

Mo = 1
$$A(M_0)$$
 $4^{M_0}+S = 4^1+5 = 4+5=9$ /

1.H. $fin \ m \le m$ $4^{M_0}+5 \ den \ d \ s \ te:16a$

1.S. $A(M+1)$? $4^{M+1}+5 = 4^{M_0}\cdot 4+5 = 1$

1.V. $= (4^{M_0}+5)4-5\cdot 4+5 = (4^{M_0}+5)\cdot 4-15$
 $= (3\cdot K)\cdot 4-3\cdot 5 = 3(K\cdot 4-5)$ V

Induktion

Beispiel:
$$\forall n \in \mathbb{N}, \sum_{i=1}^{n} \frac{1}{i} = \frac{n(n+1)}{2}$$
.

 $1+2+3+4+\cdots+49+100=5050$
 $101 \quad 100 \quad 100 \quad 100 \quad 100 \quad 100 \quad 100$
 $1.4. \quad 4=1 \quad \sum_{i=1}^{n} = 1 = \frac{1(1+1)}{2} = 1$
 $1.4. \quad 4=1 \quad \sum_{i=1}^{n} \frac{1}{2} = 1 \quad 100 \quad 1$

Strukturelle Induktion

Einige Informatik-Objekte lassen sich am besten induktiv definieren. Ein Beweis über solche Objekte kann entlang der induktiven Definition folgen.

Beispiel: Binärbäume (BB)

Ein **Graph** G = (V, E) ist eine mathematische Struktur mit

$$V = \{1, 2, \dots n\}$$
 Knoten und $E \subseteq {V \choose 2}$ (Kanten)

Bsp:
$$V = \{1, 2, 3, 4, 5\},\$$

$$E = \{(1,2), (1,3), (1,5), (2,3), (2,4), (4,3)\}$$

Binärbäume

Def: Binärbaum (BB)

- Ein Knoten v ist ein BB mit Wurzel v.
- Wenn $T_1=(V_1,E_1)$ und $T_2=(V_2,E_2)$ BB mit Wurzeln $v_1\in V_1$ und $v_2\in V_2$ sind, mit $V_1\cap V_2=\emptyset$ und v ein Knoten ist $v\not\in V_1\cup V_2$ dann ist T=(V,E) mit $V=V_1\cup V_2\cup \{v\}$ und $E=E_1\cup E_2\cup \{(v,v_1),(v,v_2)\}$ auch ein BB (mit Wurzel v).

Binärbäume

Satz: Ein BB T hat immer eine ungerade Anzahl von Knoten.

 $T_2=(V_2E_2)$ T=(V,E)||V|| ung

Binärbäume

Satz: Ein BB *T* mit *n* Knoten

- hat n = 1 Kanten.
- a hat $\lceil \frac{n}{2} \rceil$ viele Blätter (Knoten mir nur einem Nachbarknoten).