		I	II
Name Vorname	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Semestrale	7		
Mathematik 4 für Physik	'		
(Analysis 3)			
Prof. Dr. S. Warzel	\sum		
F101. D1. 3. Wal Zei			"
19. Februar 2010, 8:15 – 9:45 Uhr, MW 0001	I	 Erstkorre	 ktur
Hörsaal: Reihe: Platz:	II	 Zweitkor	···········
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 7 Aufgaben		Zweitkor	rektur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4-Seiten			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen.			

Vorzeitig abgegeben um

Besondere Bemerkungen:

Note

$$F(x,y,z) = \begin{pmatrix} y-z\\ -x+z\\ x-y \end{pmatrix} \tag{1}$$

 $\operatorname{durch} S$.

2. Zirkulation durch den Rand einer Fläche Sei $S:=\left\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=1\land z\geq 0\right\}$ so orientiert, dass der Normalenvektor vom Ursprung weg zeigt, und

$$v(x, y, z) = \begin{pmatrix} y+4 \\ \tanh z + 2x \\ \cosh(x^2 + z^2) + e^{4y^2} \end{pmatrix}$$

ein Vektorfeld. Bestimmen Sie die Zirkulation von \boldsymbol{v} durch den Rand von \boldsymbol{S} .

3.	Resi	idnei	nkal	lkii

[8 Punkte]

Seien $\alpha_1,\ldots,\alpha_N\in\mathbb{C}$ paarweise verschieden und

$$f(z) = \prod_{k=1}^{N} (z - \alpha_k)^{-1}.$$

(a) f hat bei α_k eine

 $\hfill\Box$ hebbare Singularität $\hfill\Box$ Pol1. Ordnung $\hfill\Box$ Pol2. Ordnung

 \square Pol -1. Ordnung \square wesentliche Singularität

(b) Bestimmen Sie das Residuum von f bei $z=\alpha_1$:

 $\operatorname{Res}_{\alpha_1}(f) =$

(c) Geben Sie den Hauptteil der Laurent-Reihe von f um $z=\alpha_1$ an:

 $\sum_{n=1}^{\infty} c_{-n} (z - \alpha_1)^{-n} =$

(d) Bestimmen Sie den Konvergenzradius des Nebenteils $N(z):=\sum_{n=0}^\infty c_n(z-\alpha_1)^n$ der Laurent-Reihe von f um $z=\alpha_1$:

R =

4. Fourier-Transformation Gegeben sei $f:\mathbb{R}\longrightarrow\mathbb{R}$,

[11 Punkte]

$$f(x) = \frac{1}{x^2 + \varepsilon^2},$$

 $\mbox{mit } \varepsilon > 0.$ Berechnen Sie die Fourier-Transformierte $\hat{f}.$

5. Wärmeleitungsgleichung mit Quellterm

[8 Punkte]

Bestimmen Sie die Fourier-Transformierte $\hat{g}(k,t)$ von g(x,t), so dass für $f\in\mathcal{S}(\mathbb{R})$ die Funktion

$$\phi(x,t) := \int_{\mathbb{R}} f(y) g(x - y, t) \, \mathrm{d}y$$

das Anfangswertproblem $\phi(x,0)=f(x)$ zur Gleichung

$$\partial_t \phi(x,t) = (\partial_x^2 - m^2)\phi(x,t)$$

löst.

6. Rechnen mit Distributionen

[4 Punkte]

Bestimmen Sie die distributionelle Ableitung von $f:\mathbb{R}\longrightarrow\mathbb{R}$,

$$f(x) = \begin{cases} +1 & x \ge 0 \\ -1 & x < 0 \end{cases}.$$

7. Operatoren auf Hilbert-Räumen Sei $T_{\lambda}:L^2(\mathbb{R}^n)\longrightarrow L^2(\mathbb{R}^n)$ der durch	[7 Punkte]
$(T_\lambda \psi)(x) := \lambda^{n/2} \psi(\lambda x)$	
definierte Operator, wobei $\lambda>0$ ist.	
(a) Bestimmen Sie den adjungierten Operator:	
$(T_{\lambda}^*\varphi)(x) =$	
(b) T_{λ} ist für alle $\lambda \neq 1$	
\square selbstadjungiert \square eine Orthonormalbasis \square positiv \square ein orthogonaler Projektor \square unitär	
Seien A,B selbstadjungierte beschränkte Operatoren auf einem Hilbert-Raum $\mathcal{H}.$	
(c) Zeigen Sie, dass aus $AB=0$ auch $BA=0$ folgt:	