Capítulo 14

- 1. Índice 1.
- 2. Índice = 2
- 4, 25 m 5.10 m
- 6. a) $\frac{3}{5}$
- c) $\frac{3}{4}$
- e) $\frac{3}{5}$
- b) $\frac{4}{5}$
- d) $\frac{4}{5}$
- f) $\frac{4}{3}$
- **7.** Sim
- 8. a) 90°
 - b) sen $\hat{B} = \frac{z}{x}$; cos $\hat{B} = \frac{y}{x}$; tg $\hat{B} = \frac{z}{y}$; $\operatorname{sen} \hat{C} = \frac{y}{x}$; $\cos \hat{C} = \frac{z}{x}$; $\operatorname{tg} \hat{C} = \frac{y}{x}$
- 9. a) sen $\hat{G} = \frac{\sqrt{11}}{6}$; cos $\hat{G} = \frac{5}{6}$; $\operatorname{tg} \hat{G} = \frac{\sqrt{11}}{5}$
 - b) 25 cm e $5\sqrt{11}$ cm
 - c) 1; $\frac{5\sqrt{11}}{11}$; 1; $\frac{\sqrt{11}}{5}$
- 11. a) sen $\alpha = \frac{5}{12}$; tg $\alpha = \frac{5}{12}$ b) 41,6 m
- 13.0,3098 12.0,173
- 14. Poste: 18 m; fios: 21,2 m e 26,9 m aproximadamente
- 15. AC = 8 cm; $m(\hat{B}) \approx 53^{\circ}$; $m(\hat{C}) \approx 37^{\circ}$
- 16. a) sen $\hat{B}=0.6$; cos $\hat{B}=0.8$; tg $\hat{B}=0.75$; $\hat{B}\simeq37^{\circ}$
 - b) sen $\hat{B} = \frac{1}{2}$; cos $\hat{B} = \frac{\sqrt{3}}{2}$; tg $\hat{B} = \frac{\sqrt{3}}{3}$; $\hat{B} = 30^{\circ}$
- 17. a) sen $45^{\circ} = \frac{\sqrt{2}}{2}$; $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$;
 - b) sen $30^{\circ} = \frac{1}{2}$; $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$; $tg 30^{\circ} = \frac{\sqrt{3}}{3}$
 - c) sen $60^{\circ} = \frac{\sqrt{3}}{2}$; $\cos 60^{\circ} = \frac{1}{2}$; $1960^{\circ} = \sqrt{3}$
- 18. a) x = 6e) x = 10b | x = 9.4d) x = 6f) x = 5,12
- 19. x = 50./320.5,1 m 21.22 m
- 22. $(20 + 6.\sqrt{3})$ m 23. 50./3 m
- 24. 540 m; aproximadamente 2062 m.
- 25. R\$ 10,00 26.59,7 m 27,5,04 m
- 28. 120 m

- **29.** b) $600(3 \sqrt{3})$ m ≈ 780 m
- 31.5 $\sqrt{3}$ e 5 30. 4.08 m
- 32. 188 unidades de comprimento
- 34.6 633 km 33. 391,40 m
- 35.30° 36. Aproximadamente 41°.
- 37. a) 5 m/s^2 b) $35\sqrt{3}$ N
- 38. 160 J 39. $\frac{\sqrt{6}}{2}$

Desafio em dupla _

$$h = p \cdot \frac{tg \ \beta \cdot tg \ \alpha}{tg \ \alpha - tg \ \beta}$$

Para refletir

Página 188

- Para que o índice seja 1, a altura e o afastamento devem ser iguais. Para que o índice seja maior que 1, a altura deve ser maior que o afastamento.
- A de índice de subida maior.

Página 189

- $\alpha < \beta$; $\frac{h_1}{a_1} < \frac{h_2}{a_2}$.
- Ângulo α; sen α; ângulo de subida α (de
- A que tem ângulo de subida β; cos β; ângulo de subida α (de cosseno menor).

Capítulo 15

- 1. a) $\frac{\sqrt{2}}{2}$ c) $\frac{1}{2}$
- - b) $-\frac{\sqrt{2}}{2}$ d) $-\frac{\sqrt{3}}{2}$
- 2. a) 0 b) 0
- 3. $100\sqrt{2}$ 4. x = 2; y = 0.73
- 5. $\sqrt{3}$; $\frac{\sqrt{6} + \sqrt{2}}{2}$ 6. $\sqrt{2}$
- 7. a) Aproximadamente 9,151.
 - b) Aproximadamente 5,959.
 - c) Aproximadamente 0,705.
- 8. $\frac{m \cdot sen \alpha}{sen \beta}$ 9. $\frac{50(sen \alpha + sen \beta)}{sen (\alpha + \beta)}$
- 10. $\frac{\text{m} \cdot \text{sen } (45^{\circ} \alpha)}{\text{sen } \alpha}$ 11. $\sqrt{7}$
- 12. $\sqrt{10}$ 13. $\frac{1}{0}$
- 14. 14 cm
- 15.2 $\sqrt{17}$
- 16. Diagonal BD = $2\sqrt{39}$ cm; diagonal AC = $2\sqrt{109}$ cm
- 17. 45°
- 18. $4\sqrt{19}$ N 19. $\frac{3\sqrt{7}}{9}$

- 20. $r\sqrt{2(1-\cos 36^\circ)}$
- 21. $\alpha = 62^\circ$; x = 4.13; y = 4.76
- 22. Aproximadamente 5 459 m.
- 23. Aproximadamente 496,7 m.
- 24. 2 \(\sqrt{39} \) m \(25. 111.6 \) km

Desafio em equipe

Aproximadamente 56,6°.

Para refletir

Página 207

No losango dado, cada ângulo mede 20°. Como a soma das medidas dos ângulos internos de qualquer quadrilátero é 360°, temos: $x + x + 20^{\circ} + 20^{\circ} = 360^{\circ} \Rightarrow$ $\Rightarrow 2x = 360^{\circ} - 40^{\circ} = 320^{\circ} \Rightarrow x = 160^{\circ}$

Capítulo 16

- 1. a) $\frac{\pi}{3}$ rad d) $\frac{5\pi}{3}$ rad

 - b) $\frac{\pi}{4}$ rad e) $\frac{3\pi}{8}$ rad
- c) $\frac{7\pi}{6}$ rad f) $\frac{11\pi}{48}$ rad
- d) 150° 2. a) 30°
 - e) 67°30' b) 36° c) 45° A 11°15'
- 3. 5 rad 4. Aproximadamente 1,57 cm.
- 5. 31,4 cm
- 6. Aproximadamente 15,7 cm.
- 7. a) $\alpha = 60^{\circ} + k \cdot 360^{\circ}$, com $k \in \mathbb{Z}$
 - b) $\alpha = 120^{\circ} + k \cdot 360^{\circ}$, com $k \in \mathbb{Z}$
 - c) $\alpha = 240^{\circ} + k \cdot 360^{\circ}$, com $k \in \mathbb{Z}$
 - d) $\alpha = 300^{\circ} + k \cdot 360^{\circ}$, com $k \in \mathbb{Z}$
 - e) $\alpha = \frac{\pi}{3} + 2k\pi$, com $k \in \mathbb{Z}$
 - f) $\alpha = \frac{2\pi}{3} + 2k\pi$, com $k \in \mathbb{Z}$
 - g) $\alpha = \frac{5\pi}{4} + 2k\pi$, com $k \in \mathbb{Z}$
 - h) $\alpha = \frac{11\pi}{6} + 2k\pi$, com $k \in \mathbb{Z}$
- g) $\frac{3\pi}{2}$ rad 8. a) 325°
 - h) $\frac{4\pi}{3}$ rad b) 60°
 - i) $\frac{11\pi}{4}$ rad c) 60°
 - i) $\frac{\pi}{5}$ rad d) 130°
 - 1) $\frac{\pi}{2}$ rad e) 320°
- m) $\frac{\pi}{4}$ rad f) 130°
- 9. a) $\alpha = 80^{\circ} + k \cdot 360^{\circ}, k \in \mathbb{Z}$
- b) $\alpha = 60^{\circ} + k \cdot 360^{\circ}, k \in \mathbb{Z}$
- c) $\alpha = 200^{\circ} + k \cdot 360^{\circ}, k \in \mathbb{Z}$

 $d \alpha = \frac{\pi}{4} + 2k\pi, \text{ com } k \in \mathbb{Z}$

 $e^{\alpha} = \frac{\pi}{3} + 2k\pi$, com $k \in \mathbb{Z}$

 $\beta \alpha = \frac{3\pi}{5} + 2k\pi, \text{ com } k \in \mathbb{Z}$

 $_{10.}$ a) $_{30^{\circ}}$ + $_{k}$ · $_{360^{\circ}}$, com $_{k}$ \in $_{\mathbb{Z}}$ ou $\frac{\pi}{4} + 2k\pi$, com $k \in \mathbb{Z}$

b) 45° + k ·180°, com k ∈ \mathbb{Z} ou

 $\frac{\pi}{4} + k\pi$, com $k \in \mathbb{Z}$

c) $180^{\circ} + k \cdot 360^{\circ}$, com $k \in \mathbb{Z}$ ou $\pi + 2k\pi$, com $k \in \mathbb{Z}$ ou $(2k + 1)180^\circ$, $com k \in \mathbb{Z}$ ou $(2k + 1)\pi$, $com k \in \mathbb{Z}$

d) $120^{\circ} + k \cdot 360^{\circ}$, com $k \in \mathbb{Z}$ ou

 $\frac{2\pi}{3} + 2k\pi$, com $k \in \mathbb{Z}$

 $_{el}$ -60° + $k \cdot 360^{\circ}$, com $k \in \mathbb{Z}$ ou $-\frac{\pi}{2} + 2k\pi$, com $k \in \mathbb{Z}$

A $150^{\circ} + k \cdot 180^{\circ}$, com $k \in \mathbb{Z}$ ou $\frac{5\pi}{4}$ + k π , com k $\in \mathbb{Z}$

11. a) Fakie 360: giro de uma volta completa; 540 McTwist. giro de uma volta completa e mais meia-volta; 720 McHawk: giro de duas voltas completas; 900: giro de duas voltas completas e mais meia-volta.

b) 540 McTwist e 900.

12. a) 315°

b) $\frac{\pi}{2}$ cm

cl 130°

d) $\frac{2\pi}{3}$ + $2k\pi$, com $k \in \mathbb{Z}$

13. b 14. e 15. d

Desafio em equipe_

a) 200 gr; 400 gr

c) 63,66 gr

b) 3º quadrante

d) $0.9^{\circ} = 54'$

Para refletir

Página 209

- · Sim; não.
- Aproximadamente 58°.

 Porque os arcos são considerados com medidas positivas, negativas ou nulas.

• B(0, 1); A'(-1, 0) e B'(0, -1)

Página 212

• Quando k é negativo, estamos percorrendo a circunferência no sentido horário.

• Do 2º exemplo, podemos afirmar que são

côngruos 45° e 765° ou $\frac{\pi}{4}$ e $-\frac{17\pi}{4}$.

Do 3º exemplo, podemos afirmar que são côngruos 60° e - 1020° ou $\frac{\pi}{3}$ e $-\frac{17\pi}{3}$.

Página 213

Significa um número positivo ou zero.

Capítulo 17

1. a) 3º quadrante

b) 1º quadrante

c) 4º quadrante

2. a) 3º ou 4º quadrante

b) 2º ou 3º quadrante

c) 1º ou 4º quadrante

d) 1º ou 2º quadrante

4. a) $\frac{1}{2}$ b) $-\frac{\sqrt{3}}{2}$

e)∄x

5. a) 0,985

e) 0,956

b) -0,423

f) -0.087

c) -0,766

g) 0,998

d) - 0.927

h) -0.574

6. a) 270°

c) $\frac{\pi}{2}$

b) $\frac{\pi}{6}$ ou $\frac{5\pi}{6}$

7. a) $-\frac{\sqrt{3}}{2}$ d) $\frac{\sqrt{3}}{2}$

b) $\frac{\sqrt{2}}{2}$ e) $-\frac{\sqrt{2}}{2}$

c) $-\frac{1}{2}$

f $-\frac{1}{2}$

8. a) 0,883

c1 - 0.996

b) -0.643

d) 0,643

9. a) 60° ou 330° b) $\frac{3\pi}{4}$ ou $\frac{5\pi}{4}$

10. a) $\frac{1}{2}$

d) $\frac{\sqrt{2}}{2}$

b) $\frac{\sqrt{2}}{2}$

e) -1

c) 0

f) $-\frac{\sqrt{3}}{2}$

11. a) -0.643

c) -0,643

b) -0,242

d) 0,588

12. a) $\frac{3\pi}{2}$ + $2k\pi$, com $k \in \mathbb{Z}$

b) $\frac{\pi}{4}$ + 2k π ou $\frac{3\pi}{4}$ + 2k π , com k $\in \mathbb{Z}$

c) $\frac{7\pi}{6}$ + 2k π ou $\frac{11\pi}{6}$ + 2k π , com

d) $k\pi$, com $k \in \mathbb{Z}$

13. a) $\frac{\sqrt{2}}{2}$

d) -

g) - 1

b) $\frac{\sqrt{3}}{2}$ e) $\frac{\sqrt{3}}{2}$ h) $-\frac{\sqrt{3}}{2}$

c) 0

14. a) -0,766

c) 0,122

Ы 0,985

d) 0,707

15. a) $\frac{\sqrt{2}}{2}$

9) $1 + \sqrt{3}$

b) $\frac{7\sqrt{3}}{2}$ c) $\sqrt{3}$

h) 0 i) $\frac{\sqrt{3}}{2}$

d) 1

 $\frac{\sqrt{3}}{2}$

 $\int \frac{1+\sqrt{3}}{2}$

16. a) 45° ou 315°

b) $\frac{\pi}{2}$ ou $\frac{3\pi}{2}$

c) $\frac{5\pi}{6} + 2k\pi$ ou $\frac{7\pi}{6} + 2k\pi$, com $k \in \mathbb{Z}$

d) $\pi + 2k\pi$, com $k \in \mathbb{Z}$ ou $(2k+1)\pi$, com $k \in \mathbb{Z}$

17. $-\frac{\sqrt{6}}{2}$

18. $\cos x = \pm \frac{\sqrt{3}}{2}$; $x = \frac{\pi}{6} e x = \frac{5\pi}{6}$

19. a) 0

6)0

d) Não é definida.

i) √3

e) 1

 $f) \sqrt{3}$ 20. a) -5,671

d) 0,176

Ы 0,364

e) 2,050

c) -1,428f) 1,192

21. $x \in \mathbb{R} \mid x = \frac{\pi}{4} + k\pi$, com $k \in \mathbb{Z}$

22. a) $\{x \in \mathbb{R} \mid x = \frac{\pi}{3} + k\pi \}$

b) $\left\{ x \in \mathbb{R} \mid x = \frac{3\pi}{4} + k\pi \right\}$

23. a) $\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$

b) $\left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$

24. $-\frac{3}{4}$ 25. $\frac{\sqrt{7}}{5}$ 26. -1

Desafios em dupla_

• 40°, 50° e 14° . 0

Para refletir

Página 215 Porque são os mais usados.

Capítulo 18

1. a) $\cos x = \frac{\sqrt{3}}{2}$, $\log x = -\frac{\sqrt{3}}{3}$,

 $\cot x = -\sqrt{3}, \ \sec x = \frac{2\sqrt{3}}{3},$

cossec x = -2

b)
$$\operatorname{sen} x = \frac{2\sqrt{2}}{3}$$
, $\operatorname{tg} x = 2\sqrt{2}$, $\operatorname{cotg} x = \frac{\sqrt{2}}{4}$, $\operatorname{sec} x = 3$, $\operatorname{cossec} x = \frac{3\sqrt{2}}{4}$
c) $\operatorname{sen} x = -\frac{\sqrt{2}}{2}$, $\operatorname{cos} x = -\sqrt{2}$, $\operatorname{tg} x = 1$, $\operatorname{cotg} x = 1$, $\operatorname{sec} x = -\sqrt{2}$
d) $\operatorname{sen} x = \frac{\sqrt{3}}{2}$, $\operatorname{cos} x = \frac{1}{2}$, $\operatorname{cotg} x = \frac{\sqrt{3}}{3}$, $\operatorname{sec} x = 2$; $\operatorname{cossec} x = \frac{2\sqrt{3}}{3}$
2. $-\frac{36}{25}$ 3. $\frac{1}{5}$ 4. $2\sqrt{2}$ 5. $\frac{\sqrt{3}}{9}$
6. a) $\operatorname{sec} x$ b) 1 7. $\frac{1}{2}$ 8. $-2\sqrt{2}$
9. $\frac{9}{4}$ 10. $\frac{1}{2}$ 11. $\frac{1 + \cos^2 x}{\cos x}$
13. $\frac{1}{t-1}$
19. a) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + 2k\pi$ ou $x = \frac{7\pi}{4} + 2k\pi$, $k \in \mathbb{Z}\right\}$ c) $\left\{x \in \mathbb{R} \mid x = \frac{7\pi}{6} + 2k\pi$ ou $x = \frac{11\pi}{6} + 2k\pi$, $k \in \mathbb{Z}\right\}$ d) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + 2k\pi$ ou $x = \frac{11\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$ e) \mathbb{Z}
10. a) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + 2k\pi$ ou $x = \frac{7\pi}{4} + 2k\pi$, $k \in \mathbb{Z}$ 2
20. a) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{6} + k \cdot \frac{2\pi}{3}$, $k \in \mathbb{Z}$ d) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{6} + k \cdot \frac{2\pi}{3}$ ou $x = \frac{\pi}{3} + k \cdot \frac{2\pi}{3}$, $k \in \mathbb{Z}$ d) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{6} + k \cdot \frac{2\pi}{3}$ ou $x = \frac{\pi}{3} + k \cdot \frac{2\pi}{3}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$, $k \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$ for $x \in \mathbb{Z}$ f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$ for $x \in \mathbb{Z}$ fo

 $k \in \mathbb{Z}$

b)
$$\left\{x \in \mathbb{R} \mid x = k\pi \text{ ou } x = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\right\}$$
c) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{3} + k\pi \text{ ou } x = \frac{2\pi}{3} + k\pi, k \in \mathbb{Z}\right\}$
d) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{6} + 2k\pi \text{ ou } x = \frac{5\pi}{6} + 2k\pi, k \in \mathbb{Z}\right\}$
e) $\left\{x \in \mathbb{R} \mid x = \frac{11\pi}{36} + k\pi \text{ ou } x = \frac{61\pi}{36} + k\pi, k \in \mathbb{Z}\right\}$
f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{3} + 2k\pi \text{ ou } x = \frac{5\pi}{3} + 2k\pi, k \in \mathbb{Z}\right\}$
22. a) $\left\{x \in \mathbb{R} \mid x = \frac{5\pi}{4} + 2k\pi \text{ ou } x = \frac{7\pi}{4} + 2k\pi, k \in \mathbb{Z}\right\}$
b) $\left\{x \in \mathbb{R} \mid x = \frac{7\pi}{4} + k\pi, k \in \mathbb{Z}\right\}$
c) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{2} + k\pi \text{ ou } x = \frac{\pi}{6} + 2k\pi \text{ ou } x = \frac{\pi}{6} + 2k\pi \text{ ou } x = \frac{11\pi}{6} + 2k\pi, k \in \mathbb{Z}\right\}$
d) $\left\{x \in \mathbb{R} \mid x = \frac{2\pi}{3} + 2k\pi \text{ ou } x = \frac{4\pi}{3} + 2k\pi, k \in \mathbb{Z}\right\}$
e) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{6} + k\pi, k \in \mathbb{Z}\right\}$
f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{6} + k\pi, k \in \mathbb{Z}\right\}$
f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{6} + k\pi, k \in \mathbb{Z}\right\}$
f) $\left\{x \in \mathbb{R} \mid x = \frac{\pi}{6} + k\pi, k \in \mathbb{Z}\right\}$
23. \emptyset
Describes em dupla
$$\left\{x \in \mathbb{R} \mid \frac{\pi}{4} < x < \frac{3\pi}{4}\right\}$$

Desafios em dupla • $\left\{x \in \mathbb{R} \mid \frac{\pi}{4} < x < \frac{3\pi}{4}\right\}$

Para refletir

Página 223 $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$

Capítulo 19

1. a)
$$\sqrt{3} - 2$$
 d) $2 + \sqrt{3}$
b) $\frac{\sqrt{6} - \sqrt{2}}{4}$ e) $\frac{\sqrt{6} + \sqrt{2}}{4}$
c) $\frac{\sqrt{6} - \sqrt{2}}{4}$ f) $-\frac{\sqrt{6} + \sqrt{2}}{4}$
2. $\frac{6}{7}$
3. sen $(a + b) = \frac{56}{6}$; $\cos (a - b) = \frac{63}{65}$;

 $1g(a + b) = -\frac{56}{33}$

4.
$$\frac{1}{2+i^2}$$
 5. $\lg x$ 6. $\frac{3}{7}$ 7. c

8. A' $(4\sqrt{3} - 3, 3\sqrt{3} + 4)$

9. B' $(\frac{4+7\sqrt{2}}{2}, \frac{19\sqrt{2}}{2})$

10. $\sec 2x = 2mn$; $\cos 2x = n^2 - m^2$; $\lg 2x = \frac{2mn}{n^2 - m^2}$ 11. $\frac{8}{15}$

14. $\sec 2a = \frac{4\sqrt{5}}{9}$; $\cos 2a = \frac{1}{9}$; $\lg 2a = 4\sqrt{5}$

15. $-\frac{31}{17}$ 16. l 18. $\sec x$ 19. $\frac{2}{3}$

20. $\frac{1}{8}$ 23. Aproximadamente 3,6.

24. a) $\frac{\sqrt{3}}{2}$
b) $\frac{\sqrt{6}}{6}$
c) $\sec \frac{x}{2} = \frac{\sqrt{10}}{10}$; $\cot \frac{x}{2} = \frac{1}{3}$
d) $\cot 67^{\circ}30' = \frac{\sqrt{2 + \sqrt{2}}}{2}$; $\cot 67^{\circ}30' = \frac{\sqrt{2 - \sqrt{2}}}{2}$

26. a) $2 \cdot \sec 10^{\circ} \cdot \cos 50^{\circ}$ b) $2 \cdot \sec 2x \cdot \cos y$ c) $-2 \cdot \sec 3x \cdot \sec 2x$ d) $2 \cdot \cos (a + b) \cdot \cos c$ e) $4 \cdot \sec 4x \cdot \cos x \cdot \cos 2x$ f) $-\cot \frac{x + y}{2}$ ou $-\cos \frac{x + y}{2}$ ou $-\cos \frac{x + y}{2}$ cosec $\frac{x + y}{2}$

27. a) $tg \frac{a + b}{2}$ b) $\cot g a$

28. a) $2 \cdot \sec^2 \frac{x}{2}$ b) $\cot g a$

28. a)
$$2 \cdot \text{sen}^2 \frac{x}{2}$$

b) $2 \cdot \text{cos}^2 x$
c) $\sqrt{2} \cdot \text{sen} \left(x - \frac{\pi}{4} \right)$
d) $2 \cdot \text{sen} 55^\circ \cdot \text{cos} 5^\circ$

29. a)
$$-4 \cdot \text{sen } x \cdot \text{sen}^2 \frac{x}{2}$$

b) $\cdot 2 \cdot \text{sen } x \cdot \text{cos}^2 2x$

Capítulo 20

1. a)
$$\{m \in \mathbb{R} \mid 3 \le m \le 4\}$$

b) $\{m \in \mathbb{R} \mid 4 \le m \le 6\}$
c) $\{m \in \mathbb{R} \mid \frac{1}{3} \le m \le 1\}$
d) $\{m \in \mathbb{R} \mid -2 \le m \le -1 \text{ ou } 0 \le m \le 1\}$
e) $\{m \in \mathbb{R} \mid -\sqrt{2} \le m \le \sqrt{2}\}$
f) $\{m \in \mathbb{R} \mid 0 \le m \le \frac{1}{2}\}$
2. a) $\{m \in \mathbb{R} \mid -3 \le m \le -2\}$
b) $\{m \in \mathbb{R} \mid 2 \le m \le 4\}$

$$d\left\{m \in \mathbb{R} \mid -\frac{5}{3} \le m \le -1\right\}$$

$$d\left\{m \in \mathbb{R} \mid -\frac{2}{3} \le m \le 0 \text{ ou}\right\}$$

$$\frac{1}{3} \le m \le 1$$

$$d\left\{m \in \mathbb{R} \mid -\sqrt{2} \le m \le \sqrt{2}\right\}$$

$$\frac{1}{3} \leq m$$

$$e) \{ m \in \mathbb{R} \mid -\sqrt{2} \leq m \leq \sqrt{2} \}$$

$$f) \{ m \in \mathbb{R} \mid 1 \leq m \leq \frac{7}{5} \}$$

$$\begin{cases}
f(\pi) = 0; g(\pi) = -1; \\
f(\frac{\pi}{3}) - g(\frac{\pi}{4}) = \frac{\sqrt{3} - \sqrt{2}}{2};
\end{cases}$$

$$\frac{f\left(\frac{\pi}{6}\right)}{g\left(\frac{\pi}{6}\right)} = \frac{\sqrt{3}}{3};$$

$$f\left(-\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2};$$

$$g\left(-\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}.$$

b)
$$\frac{\pi}{4}$$
 ou $\frac{5\pi}{4}$

$$\text{d} | \frac{3\pi}{2} \leqslant x < 2\pi$$

c)
$$\frac{\sqrt{3}}{2}$$

$$f$$
 $\frac{\pi}{8}$ ou $\frac{5\pi}{8}$ ou $\frac{9\pi}{8}$ ou $\frac{13\pi}{8}$

6. o) D(f) =
$$\mathbb{R}$$
; Im(f) = [-1, 1]; p = $\frac{2\pi}{3}$
b) D = \mathbb{R} ; Im = [0, 1]; p = π

7.
$$lm(f) = [2, 4];$$

 $lm(g) = [-3, 3]$

8.
$$D(g) = \mathbb{R}$$
; $Im(g) = [-2, 2]$; $p = 4\pi$

9. q
$$\frac{2\pi}{7}$$
 b) π c) π d)1 e)2

10. c)
$$\pm \frac{2}{3}$$
 b) $\pm \frac{5}{2}$ c) ± 2

13. a)
$$\{t \mid t = 12k - \frac{15}{2}, t \in \mathbb{Z}\}$$

b) 4,5 horas

15.
$$v(x) = 2 \cdot \text{sen}\left(\frac{\pi}{4}x\right)$$

$$\frac{16. h(x)}{100} = 0.3 \cdot \text{sen } (\pi x)$$

<sup>20,
$$A = 2$$
, $\omega = \frac{\pi}{2} e \varphi = -\frac{3\pi}{2}$</sup>

Para refletir

Página 231

Como $k \in \mathbb{Z}$, temos:

$$x = 0 + 2k\pi \Rightarrow \text{sen } x = 0$$

 $x = \frac{\pi}{2} + 2k\pi \Rightarrow \text{sen } x = 1$

$$x = \pi + 2k\pi \Rightarrow \text{sen } x = 0$$

$$x = \frac{3\pi}{2} + 2k\pi \Rightarrow \text{sen } x = -1$$

Página 233

$$\cos (0 + 2k\pi) = 1; \cos \left(\frac{\pi}{2} + 2k\pi\right) = 0;$$

$$\cos (\pi + 2k\pi) = -1; \cos \left(\frac{3\pi}{2} + 2k\pi\right) = 0$$

Página 234

Para $f(x) = 3 \cdot \text{sen } x$, o intervalo da imagem

Para $f(x) = 1 + \cos x$, os extremos do intervalo que representa a imagem ficaram somados de uma unidade.

Capítulo 21

- 2. a) 2×2
 - b) Matriz-coluna 3 × 1
- 3. a) $a_{11} = 2$; $a_{22} = -5$; $a_{13} = 10$ b) $a_{31} = 6$; $a_{23} = 2$; $a_{33} = \sqrt{2}$

4. a)
$$\begin{bmatrix} 2 & 5 & 10 \\ 5 & 8 & 13 \end{bmatrix}$$
 d) $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$

c) 5×3

b)
$$\begin{bmatrix} 0 & 2 & 4 \\ 3 & 5 & 7 \\ 6 & 8 & 10 \end{bmatrix}$$
 e) $\begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \end{bmatrix}$

c)
$$\begin{bmatrix} 1 & 0 \\ 7 & 6 \\ 17 & 16 \\ 31 & 30 \end{bmatrix} \qquad f) \begin{bmatrix} 2 & -2 \\ -4 & 4 \end{bmatrix}$$

7. a)
$$\begin{bmatrix} 5 & 3 \\ 9 & 7 \end{bmatrix}$$
 b) $\begin{bmatrix} -1 & -3 & -5 \\ 6 & 4 & 2 \\ 25 & 23 & 21 \end{bmatrix}$

8. a)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad b) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

9. a)
$$\begin{bmatrix} 4 & -2 & -2 & -2 \\ 0 & 16 & -2 & -2 \\ 0 & 0 & 36 & -2 \\ 0 & 0 & 0 & 64 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 8 & 8 \\ 0 & 0 & 27 \end{bmatrix}$$

12.
$$x = 2$$
; $y = 0$; $z = 1$; $t = 3$

13.
$$m = 0 e n = 1$$

14.
$$a = 1$$
, $b = 0$ e $c = \frac{1}{3}$

15.
$$x = 3$$
; $y = 10$; $z = 3$

16. a)
$$\begin{pmatrix} 2 & 6 \\ -6 & -1 \end{pmatrix}$$
 c) $\begin{pmatrix} 7 & 2 \\ -11 & 2 \end{pmatrix}$

b)
$$\begin{pmatrix} 1 & 4 \\ -5 & 1 \end{pmatrix}$$
 d) $\begin{pmatrix} 5 & 6 \\ -11 & 1 \end{pmatrix}$

17. a)
$$x = 7$$
, $y = -3$ e $z = 0$
b) $x = 5$, $y = -4$, $z = 6$ e $t = 1$

18. a)
$$\begin{bmatrix} 8 & 2 \\ 6 & -8 \end{bmatrix}$$
 c) $\begin{bmatrix} 24 & 6 \\ 18 & -24 \end{bmatrix}$

b)
$$\begin{bmatrix} 12 & 3 \\ 9 & -12 \end{bmatrix}$$

19. a)
$$\begin{bmatrix} 4 & 2 \\ 10 & 8 \\ 16 & 14 \end{bmatrix}$$
 b) $\begin{bmatrix} 2 & 1 \\ 5 & 4 \\ 8 & 7 \end{bmatrix}$

20.
$$\begin{bmatrix} 4 & 0 \\ 12 & 14 \end{bmatrix} e \begin{bmatrix} 4 & 0 \\ 12 & 14 \end{bmatrix}$$

21.
$$\begin{pmatrix} 4 & 11 \\ 6 & 13 \end{pmatrix}$$

22.
$$\begin{bmatrix} 0 & -3 \\ -2 & -5 \end{bmatrix}$$
 23. $\begin{bmatrix} 3 & -2 & 1 \\ -6 & 10 & -7 \end{bmatrix}$

24. a)
$$\begin{pmatrix} 3 \\ 8 \\ 7 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix}$ c) $\begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$

25. a)
$$x = 13$$
, $y = -9$ e $z = 2$
b) $x = 6$, $y = 2$ e $z = -1$

26.
$$\begin{bmatrix} 0 & -2 \\ -12 & -2 \end{bmatrix}$$

27. a)
$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 12 \end{bmatrix}$$
 d) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

b)
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$
 e) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$

28. a)
$$\begin{pmatrix} 10 & 0 & -5 \\ -20 & 5 & 15 \end{pmatrix}$$

b)
$$\begin{pmatrix} 0 & 2 & -4 \\ -10 & 0 & -12 \end{pmatrix}$$

c)
$$\begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ -2 & \frac{1}{2} & \frac{3}{2} \end{pmatrix}$$

$$d)\begin{pmatrix} 4 & -3 & 4 \\ 7 & 2 & 24 \end{pmatrix}$$