Tennessee TCAP 2021 Geometry

Exam Materials Pages 2 - 19

Answer Key Materials Page 20

Tennessee Comprehensive Assessment Program

TCAP

Geometry Item Release

TN0001496_4

00. Triangles JKL and J'K'L' are graphed on the coordinate grid.

Which statement is true?

- **A.** The triangles are congruent because $\frac{JK}{l'K'} = \frac{KL}{K'l'} = \frac{JL}{l'l'}$.
- **B.** The triangles are not congruent because $m \angle J \neq m \angle J'$, $m \angle K \neq m \angle K'$, and $m \angle L \neq m \angle L'$.
- **C.** The triangles are congruent because the corresponding angles of $\triangle J'K'L'$ and $\triangle JKL$ are congruent.
- **D.** The triangles are not congruent because the corresponding sides of $\triangle J'K'L'$ and $\triangle JKL$ are not congruent.

TN0001497_1,2,4

00. Triangle JKL is reflected across the y-axis to create the image, triangle J'K'L'.

Which criteria for triangle congruence will prove triangle JKL is congruent to triangle J'K'L'?

Select **all** that apply.

- A. Side Side Side
- B. Side Angle Side
- C. Side Side Angle
- **D.** Angle Side Angle
- **E.** Angle Angle Angle

TN0001519_4,5

- **00.** Triangle *VXY* is graphed on a coordinate grid. Which series of transformations will result in a triangle that is similar, but not congruent, to triangle *VXY*?

 Select the **two** that apply.
 - A. a translation 4 units down followed by a translation 6 units left
 - **B.** a translation 3 units left followed by a rotation of 180° about the origin
 - C. a rotation of 60° about the origin followed by a translation 0.5 unit left
 - **D.** a dilation with a factor of 0.25 using the origin as the center of dilation followed by a translation 4 units down
 - **E.** a rotation of 90° about the origin followed by a dilation with a factor of 4 using the origin as the center of dilation
 - **F.** a dilation with a factor of 0.5 followed by a dilation with a factor of 2 using the origin as the center of dilation for both

TN0001537_1

- **00.** In a right triangle, the cosine of one acute angle is $\frac{5}{13}$. What is the sine of the other acute angle?
 - **A.** $\frac{5}{13}$
 - **B.** $\frac{13}{5}$
 - **c.** $\frac{5}{12}$
 - **D.** $\frac{12}{13}$

TN0001623_1

00. A ramp is placed on a loading dock that is 5 ft tall.

Which ratio can be used to find the length of the ramp?

- **A.** $\frac{5}{\sin 15^{\circ}}$
- **B.** $\frac{5}{\cos 15^{\circ}}$
- **c.** $\frac{\sin 15^{\circ}}{5}$
- $\mathbf{D.} \quad \frac{\cos 15^{\circ}}{5}$

TN0001658_1

00. Logan is investigating the circumference of a circle with a radius of 10 inches. He divides the circle into 20 equal sections. Next he removes the sections and lines up the pieces to make a figure as shown.

To the nearest whole inch, what are the height and length of the base of the figure?

- **A.** height = 10 in.
 - base = 31 in.
- **B.** height = 10 in.
 - base = 63 in.
- **C.** height = 20 in.
 - base = 31 in.
- **D.** height = 20 in.
 - base = 63 in.

TN0025973_1

00. A partial proof is given, using isosceles triangle *ABC*, where angle *B* is the vertex angle.

Given: Isosceles △ABC

 \overline{BD} bisects $\angle ABC$

Prove: $\triangle ABD \cong \triangle CBD$

Statements	Reasons
1. Isosceles △ <i>ABC</i>	1. Given
$2. \overline{AB} \cong \overline{BC}$	2. Definition of an isosceles triangle
3. BD bisects ∠ABC	3. Given
4. ∠ <i>ABD</i> ≅ ∠ <i>CBD</i>	4. Definition of an angle bisector
5.	5.
6. <i>△ABD</i> ≅ <i>△CBD</i>	6. Side-Angle-Side (SAS)

Which statement and reason complete the proof?

- **A.** $\overline{BD} \cong \overline{BD}$, Reflexive Property
- **B.** $\overline{AD} \cong \overline{DC}$, Definition of a midpoint
- **C.** $\angle ADB \cong \angle CDB$, All right angles are congruent.
- **D.** $\angle A \cong \angle C$, Base angles of an isosceles triangle are congruent.

TN0029381_1,5

00. The coordinates of the vertices of \triangle *ABC* are integers, as shown on the coordinate plane.

Triangle ABC will be dilated by a scale factor of 2. Which statements are true about the image of \triangle ABC?

Select the **two** true statements.

- **A.** If the center of dilation is the origin, then the image is a triangle that has a side on the *x*-axis.
- **B.** If the center of dilation is the origin, then the image is a triangle that has a side on the *y*-axis.
- **C.** If the center of dilation is the origin, then the image is a triangle that does not have any sides parallel to the sides of \triangle *ABC*.
- **D.** If the center of dilation is the point (0, 1), then the image is a triangle that is similar to $\triangle ABC$ but that has been rotated.
- **E.** If the center of dilation is the point (0, 1), then the image is a triangle that has corresponding sides that are parallel to the sides of \triangle *ABC*.

TN0031130_3

00. In quadrilateral *ABCD*, $\overline{BC} \cong \overline{CD}$ and $\overline{AB} \cong \overline{AD}$.

Which single statement is sufficient to prove that $\angle B \cong \angle D$?

- **A.** $\triangle ABD$ is isosceles because $\overline{AB} \cong \overline{AD}$.
- **B.** \triangle *BCD* is isosceles because $\overline{BC} \cong \overline{CD}$.
- **C.** $\triangle ABC \cong \triangle ADC$ because $\overline{AC} \cong \overline{AC}$, $\overline{AB} \cong \overline{AD}$, and $\overline{BC} \cong \overline{CD}$.
- **D.** $m \angle A + m \angle B + m \angle C + m \angle D = 360^{\circ}$ because *ABCD* is a convex quadrilateral.

TN0031944_1

00. Which equation represents a line perpendicular to the line represented by the equation 2x - 5y = 5?

A.
$$5x + 2y = 6$$

B.
$$6x - 15y = 15$$

C.
$$5x - 2y = 6$$

D.
$$2x + 5y = 20$$

TN0032417_3

- **00.** The center of circle *O* is located at (25, 20), and the radius of the circle is 10 units. Which of the following points lies on the circle?
 - **A.** (-24, -17)
 - **B.** (-17, -14)
 - **C.** (19, 28)
 - **D.** (26, 23)

TN0063345_1

00. Circle *O* is represented by the equation shown.

$$(x+4)^2 + (y-4)^2 = 9$$

Which statement describes circle O?

- **A.** The length of a radius of circle *O* is 3 units, and circle *O* lies in Quadrant II.
- **B.** The length of a radius of circle O is 3 units, and circle O lies in Quadrant III.
- **C.** The length of a radius of circle *O* is 4.5 units, and circle *O* lies in Quadrant II.
- **D.** The length of a radius of circle *O* is 4.5 units, and circle *O* lies in Quadrant III.

TN0066806_3,5

00. Segments AC and BD are diagonals of parallelogram ABCD.

Using $\overline{AD} \cong \overline{BC}$, which pairs of angles must be congruent to prove \triangle $AED \cong \triangle$ CEB by the Angle-Side-Angle theorem?

Select the **two** that apply.

- **A.** $\angle BCA \cong \angle BDA$
- **B.** $\angle BEC \cong \angle AED$
- **C.** $\angle CAD \cong \angle BCA$
- **D.** $\angle DAC \cong \angle DBC$
- **E.** $\angle DBC \cong \angle BDA$

TN0069474_3

00. The graph of $\triangle RST$ is shown.

- The triangle is rotated 90° counterclockwise about the origin to create $\triangle R'S'T'$. What are the coordinates of point R'?
- **A.** (8, -4)
- **B.** (-8, 4)
- **C.** (4, -8)
- **D.** (-4, 8)

TN0083039_2,5

00. A partial proof is given. Two statements are missing.

Given:
$$\frac{AB}{AD} = \frac{AE}{AC}$$

Points A, B, and C are collinear.

Points A, E, and D are collinear.

Prove: $\angle 1 \cong \angle 4$

Statement 1:
$$\frac{AB}{AD} = \frac{AE}{AC}$$
; Points A , B , and C are collinear; Points A , E , and D are collinear.

Statement 2:

Statement 3:

Statement 4: $\angle 1 \cong \angle 4$

Which relationships could be the two missing statements?

Select the **two** that apply.

B.
$$\angle A \cong \angle A$$

C.
$$\frac{AB}{BE} = \frac{CD}{AD}$$

D.
$$\triangle$$
 ABE \sim \triangle *ACD*

E.
$$\triangle$$
 EAB \sim \triangle *CAD*

TN0084869_4

00. In the diagram, Cylinder 1 and Cylinder 2 have the same radius, r. The volume of Cylinder 2 is $1,543.5\pi$ cubic centimeters.

What is the **area**, in square centimeters, of the base of Cylinder 1?

- **A.** 10.5π
- **B.** 21.0π
- **C.** 55.125π
- **D.** 110.25π

TN0085449_2

00. Two triangular prisms are shown in the figure.

Prism 2

- **A.** 17 cm
- **B.** 13 cm
- **C.** 12 cm
- **D.** 11 cm

The area of the base of Prism 1 and the area of the base of Prism 2 are both equal to 9 square centimeters. Prism 1 and Prism 2 have equal heights. The volume of Prism 1 is 108 cubic centimeters. What is the slant height, I, of Prism 2?

Metadata- Math

Items

Page Number	UIN	Grade	Item Type	Key	DOK	TN Standards	Calculator
4	TN0001496	Geometry	MC	D	2	G.CO.B.7	N
5	TN0001497	Geometry	MS	A,B,D	2	G.CO.B.8	N
6	TN0001519	Geometry	MS	D,E	2	G.SRT.A.2	Υ
7	TN0001537	Geometry	MC	Α	2	G.SRT.C.7	Y
8	TN0001623	Geometry	MC	Α	2	G.SRT.C.8	Y
9	TN0001658	Geometry	MC	Α	3	G.GMD.A.1	Y
10	TN0025973	Geometry	MC	Α	2	G.CO.C.10	Υ
11	TN0029381	Geometry	MS	A,E	1	G.SRT.A.1	Y
12	TN0031130	Geometry	MC	С	3	G.SRT.B.5	Y
13	TN0031944	Geometry	MC	Α	2	G.GPE.B.3	Υ
14	TN0032417	Geometry	MC	С	2	G.GPE.B.2	Y
15	TN0063345	Geometry	MC	Α	2	G.GPE.A.1	Y
16	TN0066806	Geometry	MS	C,E	3	G.CO.C.11	Y
17	TN0069474	Geometry	MC	С	2	G.CO.B.6	Υ
18	TN0083039	Geometry	MS	B,E	3	G.SRT.B.4	N
19	TN0084869	Geometry	MC	D	2	G.GMD.A.1	Y
20	TN0085449	Geometry	MC	В	2	G.GMD.A.1	Υ

Metadata Definitions:

UIN	Unique letter/number code used to identify the item.		
Grade	Grade level or Course.		
Item Type	Indicates the type of item. MC= Multiple Choice; MS= Multiple Select		
Кеу	Correct answer. This may be blank for constructed response items where students write or type their responses.		
DOK	Depth of Knowledge (cognitive complexity) is measured on a three-point scale. 1 = Recall or simple reproduction of information; 2 = Skills and concepts: comprehension and processing of text; 3 = Strategic thinking, prediction, elaboration.		
TN Standards	Primary educational standard assessed.		
Calculator	Y for items that permit calculator use.		