Aufgabenblatt 11

Operations Research – Wirtschaftsinformatik – Online

Sommersemester 2023

Prof. Dr. Tim Downie

IP: Schnittebenenverfahren

mit Lösungen

Aufgabe 1 ★

Lösen sie das folgende ganzzahlige lineare Optimierungsproblem mit dem Schnittebenenverfahren von Gomory.

$$\max Z(x_1, x_2) = x_1 + 4x_2$$

$$x_1 + 6x_2 \leq 36$$

$$3x_1 + 8x_2 \leq 60$$

$$x_1, x_2 \in \mathbb{Z}_+.$$

Das Simplex Endtableau der LP-Relaxierung ist:

Tab. 2		y_2	y_1
Z	26.4	0.2	0.4
x_2	4.8	-0.1	0.3
x_1	7.2	0.6	-0.3

Hinweis: Welche Strukturvariable hat den größten Bruchanteil? Sie brauchen insgesamt zwei Gomory-Schnitt-Iterationen.

Erste Gomory Schnitt auf x_2 : $-0.9y_2 - 0.3y_1 + s_1 = -0.8$

Tal	b. <i>G1</i>	y_2	y_1	Tak	o. G2	s_1	y_1
Z	26.4	0.2	0.4	z	$26\frac{2}{9}$	$\frac{2}{9}$	$\frac{3}{9}$
x_2	4.8	-0.1	0.3	x_2	$4\frac{8}{9}$	$-\frac{1}{9}$	$\frac{3}{9}$
x_1	7.2	0.6	-0.3	x_1	$6\frac{6}{9}$	$\frac{6}{9}$	-1
s_1	-0.8	-0.9	-0.3	y_2	$\frac{8}{9}$	$-1\frac{1}{9}$	$\frac{3}{9}$

Die aktuelle Lösung ist nicht ganzzahlig: $z=26\frac{2}{9}$, $x_1=6\frac{6}{9}$, $x_2=4\frac{8}{9}$, $y_2=\frac{8}{9}$

2. Gomory Schnitt auf
$$x_2$$
: $-\frac{8}{9}s_1 - \frac{3}{9}y_1 + s_2 = -\frac{8}{9}$

Tak	o. <i>G3</i>	s_1	y_1	
z	$26\frac{2}{9}$	$\frac{2}{9}$	$\frac{3}{9}$	
x_2	$4\frac{8}{9}$	$-\frac{1}{9}$	$\frac{3}{9}$	
x_1	$6\frac{6}{9}$	$\frac{6}{9}$	-1	
y_2	$\frac{8}{9}$	$-1\frac{1}{9}$	$\frac{3}{9}$	
s_2	$-\frac{8}{9}$	$-\frac{8}{9}$	$-\frac{3}{9}$	
Tab	. <i>G4</i>	s_2		y_1
z	26	0.250) (0.250
x_2	5	-0.125	(0.375
x_1	6	0.750	-1	.250
y_2	2	-1.250	(0.750
s_1	1	-1.125		0.375

Diese ist ganzzahlig. Optimale Lösung ist $z^*=26, x_1^*=6, x_2^*=5, y_2^*=2$

Aufgabe 2

Lösen sie das folgende ganzzahlige lineare Optimierungsproblem

$$\max Z(x_1, x_2) = 5x_1 + 6x_2$$

$$10x_1 + 3x_2 \leq 52$$

$$2x_1 + 3x_2 \leq 18$$

$$x_1, x_2 \in \mathbb{Z}_+.$$

Das Simplex-End-Tableau der LP-Relaxierung ist:

Tab. 2		y_1	y_2
Z	$40\frac{1}{4}$	$\frac{1}{8}$	$1\frac{7}{8}$
$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	$\frac{4\frac{1}{4}}{3\frac{1}{6}}$	$-\frac{\frac{1}{8}}{-\frac{1}{12}}$	$-\frac{1}{8}$ $\frac{5}{12}$

Ta	b. G1	y1	y2
Z	40.25	0.12	1.88
x1	4.25	0.12	-0.12
<i>x</i> 2	3.17	-0.08	0.42
s1	-0.25	-0.12	-0.88

Tal	b. G 2	s1	<i>y</i> 2
Z	40	1	1
x1	4	1	-1
<i>x</i> 2	3.33	-0.67	1
y1	2	-8	7

Ta	b. <i>G3</i>	s1	<i>y</i> 2
Z	40	1	1
<i>x1</i>	4	1	-1
<i>x</i> 2	3.33	-0.67	1
y1	2	-8	7
<i>s</i> 2	-0.33	-0.33	0

Tab. G4		<i>s</i> 2	y2
Z	39	3	1
x1	3	3	-1
<i>x</i> 2	4	-2	1
y1	10	-24	7
s1	1	-3	-0

Optimale Lösung ist $x_1^* = 3$, $x_2^* = 4$, $z^* = 39$

Aufgabe 3

Lösen sie die IP (Zimmermann Ronny, Skript Beisp. 1.3, Seite 8) mit dem Schnittebenenverfahren von Gomory.

$$\max Z(x_1, x_2) = 120x_1 + 80x_2$$

unter den Nebenbedingungen:

$$2x_1 + x_2 \leqslant 6$$

$$7x_1 + 8x_2 \leqslant 28$$

$$x_1, x_2 \in \mathbb{Z}_+.$$

<i>Tab.</i> 2		y1	<i>y</i> 2
Z	391.11	44.44	4.44
x1	2.22	0.89	-0.11
<i>x</i> 2	1.56	-0.78	0.22

Lösung der LP Relaxierung: $x_1 = 2\frac{2}{9}$ und $x_2 = 1\frac{5}{9}$. 1. Gomory Schnitt mit x_2 ist: $s_1 - \frac{2}{9}y_1 - \frac{2}{9}y_2 = -\frac{5}{9}$

Tab. G1		y1	<i>y</i> 2
Z	391.11	44.44	4.44
<i>x1</i>	2.22	0.89	-0.11
<i>x</i> 2	1.56	-0.78	0.22
<i>s1</i>	-0.56	-0.22	-0.22

Tai	b. G 2	y1	s1
Z	380	40	20
x1	2.50	1	-0.50
<i>x</i> 2	1	-1	1
y2	2.50	1	-4.50

Aktuelle Lösung $x_1=2\frac{1}{2}$ und $x_2=1$.

2. Gomory Schnitt mit x_1 ist: $s_2-0y_1-\frac{1}{2}s_1=-\frac{1}{2}$

Ta	b. <i>G3</i>	y1	s1
Z	380	40	20
x1	2.50	1	-0.50
<i>x</i> 2	1	-1	1
<i>y</i> 2	2.50	1	-4.50
<i>s</i> 2	-0.50	0	-0.50

Tab. G4		y1	<i>s</i> 2
z	360	40	40
<i>x1</i>	3	1	-1
<i>x</i> 2	0	-1	2
y2	7	1	-9
s1	1	-0	-2

Optimale IP Lösung ist $x_1^*=3$ und $x_2^*=0$, $z^*=360$.

Aufgabe 4

Benutzen Sie Ihre Lösung aus Aufgabe 3, um alle Gomory-Schnitte als Ungleichungen mit Variablen x_1 und x_2 zu bestimmen. D.h. Geben Sie jeder Gomory-Schnitt in der Form $ax_1+bx_2\leqslant c$ an.

Die Schlupfvariablen sind

$$y_1 = 6 - 2x_1 - x_2$$
$$y_2 = 28 - 7x_1 - 8x_2$$

Aus Aufgabe 3: 1. GS

$$s_1 - \frac{2}{9}y_1 - \frac{2}{9}y_2 = -\frac{5}{9}$$

$$s_1 - \frac{2}{9}(6 - 2x_1 - x_2) - \frac{2}{9}(28 - 7x_1 - 8x_2) = -\frac{5}{9}$$

$$s_1 - \frac{68}{9} + 2x_1 + 2x_2 = -\frac{5}{9}$$

$$s_1 + 2x_1 + 2x_2 = 7$$

$$2x_1 + 2x_2 \leqslant 7$$

2. *GS*

$$s_2 - \frac{1}{2}s_1 = -\frac{1}{2}$$

$$s_2 - \frac{1}{2}(7 - 2x_1 - 2x_2) = -\frac{1}{2}$$

$$s_2 - \frac{7}{2} + x_1 + x_2 = -\frac{1}{2}$$

$$s_2 + x_1 + x_2 = 3$$

$$x_1 + x_2 \le 3$$