CS 511 Formal Methods for High-Assurance Software Engineering Homework Assignment 01

Problem 1.

```
1. \phi = (x \wedge y) \vee (y \wedge z) \vee (z \wedge x)
2. \psi = (x \lor y) \land (z \lor y) \land (x \lor z)
3. (declare-const x Bool)
  (declare-const y Bool)
  (declare-const z Bool)
  (declare-fun phi (Bool Bool Bool) Bool)
  (declare-fun psi (Bool Bool Bool) Bool)
  (assert (= (phi x y z))
                (or (and x y) (or <math>(and x z) (and y z)))))
  (assert (= (psi x y z))
                (and (or x y) (and (or x z) (or y z)))))
  ;; check (not (= (phi x y z) (psi x y z))) is unsatisfiable.
  (assert (not (= (phi x y z) (psi x y z))))
  (check-sat)
4.
      from z3 import *
       x, y, z = Bools('x y z')
      phi = Or (And(x,y), And(x,z), And(y,z))
      psi = And (Or(x,y), Or(x,z), Or(y,z))
       s = Solver()
       s.add(Not (phi == psi))
       # check Not (phi == psi) is unsatisfiable
       s.check()
```

Problem 2.

a (not the only correct one)

1	$(p \to q) \to q$	assume
2	$(q \to p)$	assume
3	$\neg p$	assume
4	p	assume
5	\perp	¬e 4,3
6	q	
7	p o q	\rightarrow i 4 - 6
8	q	→e 1,7
9	p	\rightarrow e 2,8
10		⊥i 3,9
11	$ eg \neg p$	¬i 3,10
12	p	¬¬e 11
13	(q o p) o p	\rightarrow i 2 $-$ 12
14	$((p \to q) \to q) \to ((q \to p) \to p)$	\rightarrow i 1 $-$ 13

c (not the only correct one)

$_{1} (p\rightarrow q)\wedge (q\rightarrow p)$	assume
$(p \lor q)$	assume
3 <i>p</i>	assume
$ \parallel q p \rightarrow q $	$\wedge e_1 1$
$\parallel \qquad \qquad$	→e 1,4
$6 p \wedge q$	∧i 3,5
	assume
$\parallel 8 (q \to p)$	$\wedge e_2$ 1
$\parallel \qquad \qquad$	→e 1,8
$p \wedge q$	∧i 7,9
11 $q \wedge p$	$\forall e \ 2, 3-6, 7-10$
12 $(p \lor q) \to (q \land p)$	→i 2 – 11
$13 ((p \to q) \land (q \to p)) \to ((p \lor q) \to (q \land p))$	→i 1 – 12

d (not the only correct one)

$_{1}$ $(p \rightarrow q)$	assume
	assume
$ $ 3 $(p \lor \neg p)$	LEM
4 P	assume
5 q	→e 1,4
<u>6</u> ¬p	assume
7 9	→e 1,6
8 q	$\vee e \ 3, 4-5, 6-7$
$_{9} (\neg p \rightarrow q) \rightarrow q$	\rightarrow i 2 – 8
10 $(p \to q) \to (\neg p \to q) \to q$	\rightarrow i 1 – 9

Problem 3. $\neg \neg i$, $\neg i$ and $\neg e$ are able to be rewrite by letting $\neg \phi$ be $\neg \rightarrow \bot$.

$$\frac{\phi \qquad \phi \to \bot}{\bot} \text{ simulate of } \neg \text{e by rule} \to \text{e} \qquad \qquad \frac{\phi \dots \bot}{\phi \to \bot} \text{ simulate of } \neg \text{i by rule} \to \text{i}$$

simulate of $\neg \neg i$

1 ϕ	premise
$_{2}$ $(\phi ightarrow \bot)$	assume
3 1	ightarrowe1, 2
$_4 (\phi \to \bot) \to \bot$	\rightarrow i2 - 3

simulate of $\neg \neg e$

1	$(\phi o \bot) o \bot$	premise
2	$\phi \lor (\phi o \bot)$	LEM

3ϕ	assume
$_4$ $(\phi \rightarrow \bot)$	assume
5 <u>L</u>	ightarrowe1, 4
6ϕ	⊥e5
- d	\/e2 3 1 = 6

Problem 4.

Proof. induction on height of ϕ , we have following cases:

case 1:

By height of ϕ is 1, we know ϕ contains only 1 atom p, i.e., $\phi = p$.

By the definition of rank, we have: $rank(\phi) = rank(p) = 1$. This case is proved.

```
case 1 + n (n > 0):
```

By the height of ϕ is 1 + n, we know ϕ has two possible form as following:

subcase $\neg \psi$:

By definition of rank, we have: $rank(\phi) = 1 + rank(\psi)$.

By induction hypothesis, we know height of ψ is equal to rank (ψ) , i.e., $n = \text{rank}(\psi)$.

Then, it can be derived that $1 + n = 1 + \text{rank}(\psi) = \text{rank}(\phi)$. This case is proved.

subcase $\psi \circ \psi'$:

By definition of rank, we have: $rank(\phi) = 1 + max(rank(\psi), rank(\psi'))$.

By induction hypothesis, we know height of ψ is equal to $rank(\psi)$, and height of ψ' is equal to $rank(\psi')$, i.e., $n = max(rank(\psi), rank(\psi'))$.

Then, it can be derived that $1+n=1+\max(\mathrm{rank}(\psi),\mathrm{rank}(\psi'))=\mathrm{rank}(\phi)$. This case is proved.

Problem 5.

(a) $\{\neg, \land\}$ is adequate set of connectives, since \rightarrow and \lor can be replaced by using the equivalence: $\phi \lor \psi \equiv \neg(\neg \phi \land \neg \psi), \phi \rightarrow \psi \equiv \neg(\phi \land \neg \psi).$

 $\{\neg, \rightarrow\}$ is adequate set of connectives, since \land and \lor can be replaced by using the equivalence:

 $\phi \lor \psi \equiv \neg \phi \to \psi, \phi \land \psi \equiv \neg (\phi \to \neg \psi).$

 $\{\rightarrow,\bot\}$ is adequate set of connectives, since \neg can be replaced by using the equivalence:

 $\neg \phi \equiv \phi \rightarrow \bot$, and we know $\{\rightarrow, \neg\}$ is already an adequate set.

(b) able to argue that negative value will never be created.

(c) able to argue that \vee and \wedge cannot be simulate or argue that there will always be even number of T or F by using only \leftrightarrow and \neg .

Problem 6.

Proof. This is proved by two directions:

• ⇒:

By rule \rightarrow i and $\phi_1, \phi_2, \cdots, \phi_n \vdash \psi$, we know:

 $\vdash \phi_1 \to \phi_2 \to \cdots \to \phi_n \to \psi.$

By the completeness theorem: "for any ψ , if $\vdash \psi$, then ψ is a tautology" we know:

 $\phi_1 \to \phi_2 \to \cdots \to \phi_n \to \psi$ is a tautology. This case is proved.

• =

By the soundness theorem, since $\phi_1 \to \phi_2 \to \cdots \to \phi_n \to \psi$ is a tautology, we know:

 $\vdash \phi_1 \to \phi_2 \to \cdots \to \phi_n \to \psi (\star).$

By rule \rightarrow e and (\star), we know:

 $\phi_1, \phi_2, \cdots, \phi_n \vdash \psi$. This case is proved.