PUNTO Y LÍNEA SOBRE EL PLANO

ECUACIONES LINEALES DIOFANTINAS APLICADAS A PROGRAMAS LINEALES ENTEROS

Iñaki Liendo Coloquio de matemáticas 8 de septiembre de 2025

1. MOTIVACIÓN

Sea $a \in \mathbb{R}^n$ un vector no nulo y sea $b \in \mathbb{R}$ un escalar. Llamamos **hiperplano afino** al conjunto de vectores $x \in \mathbb{R}^n$ que satisfacen $a^Tx = b$. Llamamos **semi-espacios afinos** a los conjuntos de vectores $x, y \in \mathbb{R}^n$ que satisfacen $a^Tx \ge b$ y $a^Ty \le b$.

Sea $A \in \mathbb{R}^{m \times n}$ una matriz con renglones linealmente independientes y sea $\mathbf{b} \in \mathbb{R}^m$ un vector. Llamamos **poliedro** al conjunto definido por

$$P := \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} \leq \boldsymbol{b} \} = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_i^T \boldsymbol{x} \leq b_i, 1 \leq i \leq m \}.$$

Sea $P\subseteq\mathbb{R}^m$ un poliedro y sea $c\in\mathbb{R}^n$ un vector. Llamamos **problema lineal** al problema de maximización

$$z^* \coloneqq \max_{\mathbf{x}} \{ \mathbf{c}^T \mathbf{x} : \mathbf{x} \in P \}.$$

Nota: Un problema lineal puede ser infactible porque P es vacío (y entonces z^* no está bien definida) o puede ser no acotado porque $z^* = \infty$.

Teorema

Supongamos que el valor óptimo z^* existe y es finito. Entonces el conjunto de soluciones óptimas $\{x^* \in P : c^T x^* = z^*\}$ contiene al menos un vértice de P.

Al problema lineal

$$z^* \coloneqq \max_{\mathbf{x}} \{ \mathbf{c}^T \mathbf{x} : \mathbf{x} \in P \}.$$

lo llamamos problema relajado del problema lineal entero

$$z_{\mathsf{PE}}^* := \max_{\mathbf{x}} \{ \mathbf{c}^\mathsf{T} \mathbf{x} : \mathbf{x} \in P \cap \mathbb{Z}^n \}.$$

Nota: Como $P \cap \mathbb{Z}^n \subseteq P$, tenemos $z_{PF}^* \leq z^*$.

Ramificación y Acotamiento genera la cadena de subproblemas autosimilares

$$S_0, S_{011}, S_{01111}, S_{0111111}, \ldots,$$

y este método jamás terminará con una solución.

En general, Ramificación y Acotamiento es ineficiente (o incluso falla) cuando una restricción del problema es ortogonal al vector objetivo. La instancia minimal que reproduce esta ineficiencia es

Aún más general, Ramificación y Acotamiento es ineficiente cuando el problema contiene múltiples simetrías:

• Sin contar rotaciones o reflexiones del tablero, cada solución tiene al menos

$$8! \times (2!)^3 \times 1! \times 1! = 322,560$$

soluciones equivalentes.

• Contanto rotaciones y reflexiones del tablero, cada solución tiene al menos

$$4 \times 2 \times 322,560 = 2,580,480$$

soluciones equivalentes.

- Las simetrías dependen de la formulación que utilicemos. Si la formulación induce a que las soluciones equivalentes se encuentren en árboles disjuntos, entonces estos jamás serán podados y Ramificación y Acotamiento es más ineficiente.
- ¿Cuántas soluciones distintas (no equivalentes) existen?

2. FUNDAMENTOS

Decimos que un vector $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ es **esencialmente entero** si existen un vector $\mathbf{w} \in \mathbb{Z}^n$ y un escalar $m \neq 0$ tales que $\mathbf{v} = m\mathbf{w}$. Además, decimos que \mathbf{w} es el **múltiplo coprimo** de \mathbf{v} si sus entradas son coprimas y si su primera entrada no nula es positiva.

Ejemplo

El vector $(-\sqrt{2},1/\sqrt{2})=2\sqrt{2}(-2,1)$ es esencialmente entero y (2,-1) es su múltiplo coprimo. En contraste, el vector $(\sqrt{2},\sqrt{3})$ no es esencialmente entero (¿por qué?).

- **Ejercicio:** Todo vector racional $\mathbf{v} \in \mathbb{Q}^n$ no nulo es esencialmente entero.
- ⇒ Todo número representable en un sistema de aritmética finita es esencialmente entero.

Sea $\mathbf{v} \in \mathbb{R}^n$ un vector esencialmente entero y sea $t \in \mathbb{R}$ un escalar. Decimos que su hiperplano afino asociado

$$H_{\mathbf{v},t} := \ker \left\{ \mathbf{x} \mapsto \mathbf{v}^T \mathbf{x} \right\} + t \mathbf{v} = \left\{ \mathbf{v}^\perp + t \mathbf{v} : \mathbf{v}^T \mathbf{v}^\perp = 0 \right\}$$

es una capa entera si contiene al menos un punto entero.

Teorema de cobertura

Sea $\mathbf{v} \in \mathbb{R}^n$ un vector esencialmente entero y sea \mathbf{w} su múltiplo coprimo. Entonces la familia de capas enteras $\{H_{\mathbf{w}.k||\mathbf{w}||^{-2}}: k \in \mathbb{Z}\}$ cubre a \mathbb{Z}^n .

Lema de utilidad (*)

Sea $\mathbf{v} \in \mathbb{R}^n$ un vector esencialmente entero y sea \mathbf{w} su múltiplo coprimo. Entonces $\mathbf{w}^T \mathbf{x} = k$ para todo $\mathbf{x} \in H_{\mathbf{w},k||\mathbf{w}||^{-2}}$.

Lema de satisfacción (*)

Sea $\boldsymbol{p} \in \mathbb{R}^n$ un vector esencialmente entero y sea \boldsymbol{q} su múltiplo coprimo, de manera que $\boldsymbol{p} = m\boldsymbol{q}$ para algún escalar $m \neq 0$. Entonces la primera capa entera $H_{\boldsymbol{q},\eta \parallel \boldsymbol{q} \parallel^{-2}}$ que satisface la restricción $\boldsymbol{p}^T \boldsymbol{x} \leq u$ está parametrizada por

$$\eta := \begin{cases} \lceil u/m \rceil, & m < 0, \\ \lfloor u/m \rfloor, & m > 0. \end{cases}$$

Teorema de infactibilidad (*)

Sea $p \in \mathbb{R}^n$ un vector esencialmente entero y sea q su múltiplo coprimo. Entonces el problema (1) es infactible si y solo si $q \ge 0$ y el lado derecho u de (1b) es negativo.

Teorema de factibilidad

Sea $p \in \mathbb{R}^n$ un vector esencialmente entero y sea q su múltiplo coprimo, de manera que p = mq para alguna m > 0. Supongamos que el problema (1) es factible. Entonces se satisface lo siguiente:

- 1. Si $q_i < 0$ para algún $i \in \{1, ..., n\}$, entonces la η -ésima capa entera $H_{\mathbf{q}, \eta ||\mathbf{q}||^{-2}}$ contiene un número infinito de puntos factibles.
- 2. Si q>0 entonces, para todo $k\in\{\eta,\eta-1,\ldots,0\}$, la k-ésima capa entera $H_{q,k\parallel q\parallel^{-2}}$ contiene un número finito de puntos factibles.

Por el teorema de factibilidad (o el de cobertura), las soluciones se encuentran en una capa entera $H_{q,k\parallel q\parallel^{-2}}$ con $0\leq k\leq \eta$. Por el lema de utilidad, estas soluciones satisfacen la **ecuación lineal diofantina**

$$\mathbf{q}^T\mathbf{x}=q_1x_1+\cdots+q_nx_n=k.$$

Podemos resolver recursivamente esta ecuación. Utilizando una formulación hacia adelante, obtenemos...

$$x_i = k \cdot \prod_{j=2}^{i} \omega'_j \cdot x'_i - \sum_{j=1}^{i-1} m_{ij} x'_i t_j + g_{i+1} t_i$$

para 1 < i < n-2, y también,

$$x_{n-1} = k \cdot \prod_{j=2}^{n-1} \omega'_j \cdot x'_{n-1} - \sum_{j=1}^{n-2} m_{n-1,j} x'_{n-1} t_j + \frac{q_n}{\prod_{j=1}^{n-1} g_j} t_{n-1},$$

$$x_n = k \cdot \prod_{j=2}^{n-1} \omega'_j \cdot x'_n - \sum_{j=1}^{n-2} m_{n-1,j} x'_n t_j - \frac{q_{n-1}}{\prod_{j=1}^{n-1} g_j} t_{n-1},$$

donde las constantes desconocidas son **números enteros mágicos** y $t_1, \ldots, t_{n-1} \in \mathbb{Z}$ son parámetros libres.

Punto y línea sobre el plano

Si definimos $\nu \in \mathbb{Z}^n$ como

$$u_i := \mathsf{x}_i' \cdot \prod_{j=2}^{\mathsf{min}\,\{i,n-1\}} \omega_j'.$$

y también definimos la matriz $M \in \mathbb{Z}^{n \times (n-1)}$ a través de

$$M_{ij} := egin{cases} -m_{ij} x_i', & j < i, \ g_{i+1}, & i = j < n-1, \ rac{q_n}{\prod_{k=1}^{n-1} g_k}, & i = j = n-1, \ -rac{q_{n-1}}{\prod_{k=1}^{n-1} g_k}, & i = n, j = n-1, \ 0, & ext{e.o.c.}, \end{cases}$$

encontramos que...

Proposición

Sea $q \in \mathbb{Z}^n$ un vector con entradas coprimas y última entrada no nula. Entonces **todas** las soluciones enteras de la ecuación lineal diofantina

$$\mathbf{q}^T \mathbf{x} = q_1 \mathbf{x}_1 + \cdots + q_n \mathbf{x}_n = \mathbf{k}$$

son de la forma

$$\mathbf{x} = k\mathbf{\nu} + M\mathbf{t},$$

donde $t \in \mathbb{Z}^{n-1}$.

3. PROBLEMA DE FROBENIUS

Hola mundo

4. MÚLTIPLES RESTRICCIONES

Hola mundo