Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра интеллектуальных информационных технологий

Отчет по лабораторной работе №2 по курсу «Модели решения задач в интеллектуальных системах»

Выполнили		
студенты группы 821701:	Холупко А. А.	
	Никипелов А.Д.	
Проверил:	Крачковский Д.Я.	

Тема: реализация модели решения задачи на ОКМД архитектуре

Цель: реализовать и исследовать модель решения на ОКМД архитектуре задачи вычисления матрицы значений.

Дано: сгенерированные матрицы A, B, E, G заданных размерностей pxm, mxq, 1xm, pxq соответственно со значениями в рекомендуемом диапазоне [-1;1].

$$c_{ij} = \tilde{\bigwedge}_{k} f_{ijk} * (3 * g_{ij} - 2) * g_{ij} + (\tilde{\bigvee}_{k} d_{ijk} + (4 * (\tilde{\bigwedge}_{k} f_{ijk} \circ \tilde{\bigvee}_{k} d_{ijk}) - 3 * \tilde{\bigvee}_{k} d_{ijk}) * g_{ij}) * (1 - g_{ij})$$

$$f_{ijk} = (a_{ik} \tilde{\to} b_{kj}) * (2 * e_{k} - 1) * e_{k} + (b_{kj} \tilde{\to} a_{ik}) * (1 + (4 * (a_{ik} \tilde{\to} b_{kj}) - 2) * e_{k}) * (1 - e_{k})$$

$$d_{ijk} = a_{ik} \tilde{\wedge} b_{kj}$$

Получить: С – матрицу значений соответствующей размерности рх q.

Вариант 1

$$\tilde{\wedge}_{k} f_{ijk} = \prod_{k} f_{ijk}$$

$$\tilde{\vee}_{k} d_{ijk} = 1 - \prod_{k} (1 - d_{ijk})$$

$$\tilde{\wedge}_{k} f_{ijk} \tilde{\vee}_{k} \tilde{\vee}_{k} d_{ijk} = \tilde{\wedge}_{k} f_{ijk} * \tilde{\vee}_{k} d_{ijk}$$

$$a_{ik} \tilde{\rightarrow}_{k} b_{kj} = a_{ik} * (1 - b_{kj}) + 1$$

$$b_{kj} \tilde{\rightarrow}_{k} a_{ik} = b_{kj} * (1 - a_{ik}) + 1$$

$$a_{ik} \tilde{\wedge}_{k} b_{kj} = a_{ik} * b_{kj}$$

Описание модели: краткое описание особенностей

В ходе данной лабораторной работы была построена модель ОКМД архитектуры, которая реализует решение задачи вычисления матрицы значений и обеспечивает возможность параметрического задания времени счета (длины) операций различных типов ti (сложение, разность, произведение).

Для реализации данной модели был использован язык С++.

Исходные данные:

- 1. р, m, q размерность матриц;
- 2. п количество процессорных элементов в системе;
- 3. ti- время выполнение і операции над элементами матриц.

Матрицы A, B, E, G, заполнены случайными вещественными числами в диапазоне [-1;1].

Пример работы модели. Результаты счёта и времена их получения

Исходные данные:

```
p=1 q=2 m=2 n=4 — количество процессорных элементов ti_s=1 — время счета операции сложение ti_v=1 — время счета операции вычитание ti_v=2 — время счета операции умножение
```

Результат:

```
MATR A
 -0.997
          0.127
MATR_B
-0.613
          0.617
  0.17
         -0.04
MATR E
-0.299
          0.792
MATR G
 0.646
         0.493
MATR_C
 0.314
          0.25
IME-63
IME_POSL-172
(y-2.73016 e-0.68254 D-1.85294 r-4
```

Графики (всего шесть семейств):

```
Ky(n,r) = T1/Tn; e(n,r) = Ky(n,r)/n; D(n,r) = Lsum(n,r)/Lavg(n,r); где: Ky(n,r) - коэффициент ускорения; e(n,r) - эффективность; D(n,r) - коэффициент расхождения программы; n - количество процессорных элементов в системе; <math>r - ранг задачи;
```

r	T1	Tn	n	Ky(n,r)	e(n,r)	D(n,r)
4	112	112	1	1	1	5,33333
4	112	41	4	2,73171	0,6829275	1,95238
4	112	41	8	2,73171	0,34146375	1,95238
4	112	41	16	2,73171	0,170731875	1,95238
4	112	41	32	2,73171	0,0853659375	1,95238
4	112	41	64	2,73171	0,04268296875	1,95238
16	400	400	1	1	1	22,2222
16	400	130	4	3,076923077	0,7692307692	7,22222
16	400	92	8	4,347826087	0,5434782609	5,11111
16	400	73	16	5,479452055	0,3424657534	4,05556
16	400	73	32	5,479452055	0,1712328767	4,05556
16	400	73	64	5,479452055	0,08561643836	4,05556
30	732	732	1	1	1	42,069
30	732	258	4	2,837209302	0,7093023256	14,8276
30	732	162	8	4,518518519	0,5648148148	9,65517
30	732	130	16	5,630769231	0,3519230769	7,47126
30	732	111	32	6,594594595	0,2060810811	6,37931
30	732	111	64	6,594594595	0,1030405405	6,37931
84	1992	1992	1	1	1	119,179
84	1992	669	4	2,977578475	0,7443946188	40,0256
84	1992	465	8	4,283870968	0,535483871	27,8205
84	1992	356	16	5,595505618	0,3497191011	21,2991
84	1992	299	32	6,662207358	0,2081939799	17,8889
84	1992	280	64	7,114285714	0,1111607143	16,7521
120	2784	2784	1	1	1	171,852
120	2784	948	4	2,936708861	0,7341772152	58,5185
120	2784	649	8	4,289676425	0,5362095532	40,0617
120	2784	502	16	5,545816733	0,3466135458	30,9877
120	2784	426	32	6,535211268	0,2042253521	26,2963
120	2784	388	64	7,175257732	0,1121134021	23,9506

В соответствии с полученными результатами, представленными в таблице, построим графики:

Постепенно увеличивая количество процессорных элементов, мы достигнем такой точки, при которой дальнейшее увеличение п никаким образом не будет влиять на коэффициент ускорения, а лишь приведет к их простаиванию. Это связано с тем, что максимальное количество процессорных элементов, которые имеют возможность одновременно производить вычисления, не превышает ранга задачи r.

На графике это выражается с помощью асимптоты r=const, $\lim_{n\to\infty} Ky(n,r) = \frac{T1}{Tr}$, где Tr - время решения задаче на r процессорных элементах.

Таким образом, при увеличении n на данном графике можно наблюдать сначала рост коэффициента ускорения Ку до точки, в которой n=r, а затем его постоянство.

 Γ рафик зависимости Ky(n,r) от ранга задачи r

При выполнении условия $r \mod n = 0$ вычисления производятся за минимальное время, т.к. происходит минимизирование возможностей возникновений ситуаций с простаиванием процессорных элементов, что на графике выражается точками перегиба.

Таким образом, при увеличении r на графике мы наблюдаем скачкообразное изменение коэффициента ускорения, что связано с кратностью r количеству процессорных элементов.

Γ рафик зависимости e(n,r) от количества процессорных элементов п

На данном графике мы можем видеть асимптоту $\lim_{n\to\infty} e(n,r)=0$, которая связана с прекращением роста Ку при постоянном увеличении количества процессорных элементов.

Примечание: перегибы на графике были объяснены ранее.

 Γ рафик зависимости e(n,r) от ранга задачи r

На данном графике мы можем видеть асимптоту $\underset{n\to\infty}{lim} e(n,r)=1$, которая связана с ограничением роста ускорения при увеличении ранга задачи.

Примечание: перегибы на графике были объяснены ранее.

 Γ рафик зависимости D(n,r) от количества процессорных элементов п

Асимптотой графика является прямая, параллельная оси абсцисс. Увеличивая $n,\,D(n)$ уменьшается.

 Γ рафик зависимости D(n,r) от ранга задачи r

Асимптотой графика является функция D=k*r+b. Увеличивая r, D(r) растёт.

Вывод:

В данной лабораторной работе была реализована модель решения задачи на ОКМД архитектуре, с помощью которой производились арифметические операции над матрицами значений. Данная модель позволяет ускорять процесс вычисления, что было проверено опытным путем.

Были исследованы числовые характеристики ОКМД архитектуры, такие как коэффициент ускорения, эффективность и коэффициент расхождения программы. А также, по экспериментальным данным, были построены и проанализированы графики зависимостей данных характеристик.