Heights and periodic points for one-parameter families of Hénon maps

(Joint work with Liang-Chung Hsia)

Shu Kawaguchi

Doshisha Univ.

September 4, 2018

Plan of the talk

- Background and motivation (surveyal): Variation of Néron-Tate heights for families of elliptic curves after Silverman, Tate, Masser-Zannier, DeMarco-Wang-Ye . . .
- 2 From elliptic curves to dynamical systems
- 3 Arithmetic properties of families of Hénon maps: Definition of a Hénon map, a height on the parameter space, the set of periodic parameter values, unlikely intersection . . .

Part 1 Variation of Néron-Tate heights on elliptic curves

Variation of Néron-Tate heights

(For simplicity, we consider elliptic curves. For the general case of abelian varieties, see e.g. Call '89, Green '89, Holms-de Jong '15, '17)

Part 1 Variation of Néron-Tate heights on elliptic curves

Variation of Néron-Tate heights

(For simplicity, we consider elliptic curves. For the general case of abelian varieties, see e.g. Call '89, Green '89, Holms-de Jong '15, '17)

 $\pi: \mathcal{E} \to B$ is an elliptic surface defined over a number field K,

B is a smooth projective curve

 $E_t := \pi^{-1}(t)$ is a smooth elliptic curve except for finitely many $t \in B(\overline{K})$.

except for finitely many $t \in B(K)$.

Define $B^{\circ} \subseteq B$ to be the maximal Zariski open subset over which π is smooth.

Assume that π has a section $O: B \to \mathcal{E}$, which we regard as zero section.

 $\mathcal{E} \to B$: an elliptic surface over a number field K with zero section $O: B \to \mathcal{E}$

K is equipped with absolute values satisfying the product formula. So is the function field K(B) of B

 $\mathcal{E} \to B$: an elliptic surface over a number field K with zero section $O: B \to \mathcal{E}$

K is equipped with absolute values satisfying the product formula. So is the function field K(B) of B

- \rightsquigarrow We have Néron-Tate heights (η : generic point of B)
 - $\hat{h}_{E_t}: E_t(\overline{K}) \to \mathbb{R}_{\geq 0}$ on each fiber E_t for $t \in B^{\circ}(\overline{K})$
 - $\widehat{h}_{\mathcal{E}_{\eta}}: \mathcal{E}_{\eta}(\overline{K(B)}) \to \mathbb{R}_{\geq 0}$ on the generic fiber \mathcal{E}_{η}

 $\mathcal{E} \to B$: an elliptic surface over a number field K with zero section $O: B \to \mathcal{E}$

K is equipped with absolute values satisfying the product formula. So is the function field K(B) of B

- \leadsto We have Néron–Tate heights (η : generic point of B)
 - $\widehat{h}_{E_t}: E_t(\overline{K}) \to \mathbb{R}_{\geq 0}$ on each fiber E_t for $t \in B^{\circ}(\overline{K})$
 - $\hat{h}_{\mathcal{E}_{\eta}}: \mathcal{E}_{\eta}(\overline{K(B)}) \to \mathbb{R}_{\geq 0}$ on the generic fiber \mathcal{E}_{η}

Let $\mathcal{P}: B \to \mathcal{E}$ be a section.

Set
$$P_t := \mathcal{P}(t)$$
 for $t \in B^{\circ}(\overline{K})$

How $\widehat{h}_{E_t}(P_t)$ and $\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta})$ are related?

 $\mathcal{E} \to B$: an elliptic surface over a number field K

Theorem (Silverman '83, Tate '83)

Let $\mathcal{P}: B \to \mathcal{E}$ be a section with $\widehat{h}_{\mathcal{E}_n}(\mathcal{P}_\eta) \neq 0$.

Let h_B be a height on $B(\overline{K})$ associated to a degree 1 divisor. Then

$$\widehat{h}_{E_t}(P_t) = \widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \, h_B(t) + O(\sqrt{h_B(t)}) \quad \text{ for any } t \in B^{\circ}(\overline{K}).$$

The error term $O(\sqrt{h_B(t)})$ is replaced by O(1) if $B = \mathbb{P}^1$.

Assume $B = \mathbb{P}^1$, for simplicity of explanation.

 $\mathcal{E} \to \mathbb{P}^1$: an elliptic surface over a number field K with zero section

 $h_{\mathrm{std}}: \mathbb{P}^1(\overline{K}) \to \mathbb{R}_{\geq 0}$ standard logarithmic Weil height

 $\mathcal{P}: \mathbb{P}^1 \to \mathcal{E}$ a section with $\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$

Assume $B = \mathbb{P}^1$, for simplicity of explanation.

 $\mathcal{E} \to \mathbb{P}^1$: an elliptic surface over a number field K with zero section

 $h_{\mathrm{std}}: \mathbb{P}^1(\overline{K}) \to \mathbb{R}_{\geq 0}$ standard logarithmic Weil height

 $\mathcal{P}: \mathbb{P}^1 \to \mathcal{E}$ a section with $\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$

Results of Silverman and Tate assert that

$$\widehat{h}_{E_t}(P_t) = \widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \, h_{\mathrm{std}}(t) + O(1) \quad \text{ for any } t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$$

Assume $B = \mathbb{P}^1$, for simplicity of explanation.

 $\mathcal{E} \to \mathbb{P}^1$: an elliptic surface over a number field K with zero section $h_{\mathrm{std}}: \mathbb{P}^1(\overline{K}) \to \mathbb{R}_{\geq 0}$ standard logarithmic Weil height

 $\mathcal{P}: \mathbb{P}^1 \to \mathcal{E}$ a section with $\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$

Results of Silverman and Tate assert that

$$\widehat{h}_{E_t}(P_t) = \widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \, h_{\mathrm{std}}(t) + O(1) \quad \text{ for any } t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$$

We put $h_{\mathcal{P}} := \widehat{h}_{E_t}(P_t)/\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta})$ for $t \in (\mathbb{P}^1)^{\circ}(\overline{K})$. Then

$$h_{\mathcal{P}} = h_{\mathrm{std}} + O(1)$$
 on $(\mathbb{P}^1)^{\circ}(\overline{K})$.

Assume $B = \mathbb{P}^1$, for simplicity of explanation.

 $\mathcal{E} \to \mathbb{P}^1$: an elliptic surface over a number field K with zero section

 $h_{\mathrm{std}}: \mathbb{P}^1(\overline{K}) \to \mathbb{R}_{\geq 0}$ standard logarithmic Weil height

$$\mathcal{P}: \mathbb{P}^1 \to \mathcal{E}$$
 a section with $\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$

Results of Silverman and Tate assert that

$$\widehat{h}_{E_t}(P_t) = \widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \, h_{\mathrm{std}}(t) + O(1) \quad \text{ for any } t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$$

We put
$$h_{\mathcal{P}} := \widehat{h}_{E_t}(P_t)/\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta})$$
 for $t \in (\mathbb{P}^1)^{\circ}(\overline{K})$.

Then

$$h_{\mathcal{P}} = h_{\mathrm{std}} + O(1)$$
 on $(\mathbb{P}^1)^{\circ}(\overline{K})$.

Question What if $t \notin (\mathbb{P}^1)^{\circ}(\overline{K})$? (That is, what if E_t is singular?)

Theorem (DeMarco-Mavraki '17+ based on Silverman '92, '94)

Let $\mathcal{E} \to \mathbb{P}^1$ be an elliptic surface over a number field K with zero section. Let $\mathcal{P}: \mathbb{P}^1 \to \mathcal{E}$ be a section with $\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$. Set

$$h_{\mathcal{P}}(t) := \widehat{h}_{E_t}(P_t)/\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \quad for \ t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$$

Then $h_{\mathcal{P}}$ is the restriction of a semipositive adelically metrized line bundle $\overline{\mathcal{L}_{\mathcal{P}}} = (\mathcal{O}_{\mathbb{P}^1}(1), \{\|\cdot\|_v\})$ on \mathbb{P}^1 (in the sense of Zhang).

Theorem (DeMarco-Mavraki '17+ based on Silverman '92, '94)

Let $\mathcal{E} \to \mathbb{P}^1$ be an elliptic surface over a number field K with zero section. Let $\mathcal{P}: \mathbb{P}^1 \to \mathcal{E}$ be a section with $\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$. Set

$$h_{\mathcal{P}}(t) := \widehat{h}_{E_t}(P_t)/\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \quad \text{for } t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$$

Then $h_{\mathcal{P}}$ is the restriction of a semipositive adelically metrized line bundle $\overline{\mathcal{L}_{\mathcal{P}}} = (\mathcal{O}_{\mathbb{P}^1}(1), \{\|\cdot\|_v\})$ on \mathbb{P}^1 (in the sense of Zhang).

• Theorem says that $h_{\mathcal{P}}$ extends "nicely" to $t \notin (\mathbb{P}^1)^{\circ}(\overline{K})$ (That is, for t with singular E_t).

Theorem (DeMarco-Mavraki '17+ based on Silverman '92, '94)

Let $\mathcal{E} \to \mathbb{P}^1$ be an elliptic surface over a number field K with zero section. Let $\mathcal{P}: \mathbb{P}^1 \to \mathcal{E}$ be a section with $\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$. Set

$$h_{\mathcal{P}}(t) := \widehat{h}_{E_t}(P_t)/\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \quad \text{for } t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$$

Then $h_{\mathcal{P}}$ is the restriction of a semipositive adelically metrized line bundle $\overline{\mathcal{L}_{\mathcal{P}}} = (\mathcal{O}_{\mathbb{P}^1}(1), \{\|\cdot\|_v\})$ on \mathbb{P}^1 (in the sense of Zhang).

- Theorem says that $h_{\mathcal{P}}$ extends "nicely" to $t \notin (\mathbb{P}^1)^{\circ}(\overline{K})$ (That is, for t with singular E_t).
- The base curve need not be \mathbb{P}^1 . DeMarco–Mavraki showed that for any elliptic surface $\mathcal{E} \to B$ (B a smooth projective curve), $h_{\mathcal{P}}$ is the restriction of a semipositive adelically metrized line bundle on B.

Application to unlikely intersection of Masser–Zannier

Let
$$\mathcal{E} = \{y^2z = x(x-z)(x-tz)\}$$

Legendre family of elliptic curves over $t \in \mathbb{P}^1$.

(At
$$t = 0, 1, \infty$$
, E_t is singular)
For $a \in \overline{\mathbb{Q}} \setminus \{0, 1\}$,
consider a section $\mathcal{P}_a : \mathbb{P}^1 \to \mathcal{E}$,
 $t \mapsto (a : \sqrt{a(a-1)(a-t)} : 1)$.

$$\Sigma(\mathcal{P}_a) := \{t \in \overline{\mathbb{Q}} \mid \mathcal{P}_a(t) \text{ is torsion on } E_t\}$$

$$= \{t \in \overline{\mathbb{Q}} \mid h_{\mathcal{P}_a}(t) = 0\}$$

Application to unlikely intersection of Masser–Zannier

Let
$$\mathcal{E} = \{y^2z = x(x-z)(x-tz)\}$$

Legendre family of elliptic curves over $t \in \mathbb{P}^1$.

(At
$$t = 0, 1, \infty$$
, E_t is singular)
For $a \in \overline{\mathbb{Q}} \setminus \{0, 1\}$,
consider a section $\mathcal{P}_a : \mathbb{P}^1 \to \mathcal{E}$,
 $t \mapsto (a : \sqrt{a(a-1)(a-t)} : 1)$.

$$\Sigma(\mathcal{P}_a) := \{t \in \overline{\mathbb{Q}} \mid \mathcal{P}_a(t) \text{ is torsion on } E_t\}$$

$$= \{t \in \overline{\mathbb{Q}} \mid h_{\mathcal{P}_a}(t) = 0\}$$

Note: $\Sigma(\mathcal{P}_a)$ is an infinite set (Masser–Zannier).

Application to unlikely intersection of Masser–Zannier

Let
$$\mathcal{E} = \{y^2z = x(x-z)(x-tz)\}$$

Legendre family of elliptic curves over $t \in \mathbb{P}^1$.

(At
$$t = 0, 1, \infty$$
, E_t is singular)
For $a \in \overline{\mathbb{Q}} \setminus \{0, 1\}$,
consider a section $\mathcal{P}_a : \mathbb{P}^1 \to \mathcal{E}$,
 $t \mapsto (a : \sqrt{a(a-1)(a-t)} : 1)$.

$$\Sigma(\mathcal{P}_a) := \{ t \in \overline{\mathbb{Q}} \mid \mathcal{P}_a(t) \text{ is torsion on } E_t \}
= \{ t \in \overline{\mathbb{Q}} \mid h_{\mathcal{P}_a}(t) = 0 \}$$

Note: $\Sigma(\mathcal{P}_a)$ is an infinite set (Masser–Zannier).

Theorem (Masser–Zannier '08, '10, '12)

Let $a, b \in \overline{\mathbb{Q}} \setminus \{0, 1\}$. If there are infinitely many parameter values $t \in \overline{\mathbb{Q}}$ such that both $\mathcal{P}_a(t)$ and $\mathcal{P}_b(t)$ are torsion points on E_t (i.e., if $\Sigma(\mathcal{P}_a) \cap \Sigma(\mathcal{P}_b)$ is an infinite set), then a = b.

DeMarco-Wang-Ye '14 give an alternate proof of Masser-Zannier's theorem using the fact that $h_{\mathcal{P}}$ is semipositive adelically metrized.

• Let $\mathcal{E} = \{y^2z = x(x-z)(x-tz)\} \to \mathbb{P}^1$ be the Legendre family of elliptic curves.

- Let $\mathcal{E} = \{y^2z = x(x-z)(x-tz)\} \to \mathbb{P}^1$ be the Legendre family of elliptic curves.
- For $a \in \overline{\mathbb{Q}} \setminus \{0,1\}$, the section $\mathcal{P}_a : \mathbb{P}^1 \to \mathcal{E}$, $t \mapsto (a : \sqrt{a(a-1)(a-t)} : 1)$ has $\hat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{a\eta}) \neq 0$.

- Let $\mathcal{E} = \{y^2z = x(x-z)(x-tz)\} \to \mathbb{P}^1$ be the Legendre family of elliptic curves.
- For $a \in \overline{\mathbb{Q}} \setminus \{0, 1\}$, the section $\mathcal{P}_a : \mathbb{P}^1 \to \mathcal{E}$, $t \mapsto (a : \sqrt{a(a-1)(a-t)} : 1)$ has $\hat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{a\eta}) \neq 0$.
- $\Sigma(\mathcal{P}_a) := \{t \mid \mathcal{P}_a(t) \text{ torsion on } E_t\} = \{t \mid h_{\mathcal{P}_a}(t) = 0\}.$

- Let $\mathcal{E} = \{y^2z = x(x-z)(x-tz)\} \to \mathbb{P}^1$ be the Legendre family of elliptic curves.
- For $a \in \overline{\mathbb{Q}} \setminus \{0, 1\}$, the section $\mathcal{P}_a : \mathbb{P}^1 \to \mathcal{E}$, $t \mapsto (a : \sqrt{a(a-1)(a-t)} : 1)$ has $\hat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{a\eta}) \neq 0$.
- $\Sigma(\mathcal{P}_a) := \{t \mid \mathcal{P}_a(t) \text{ torsion on } E_t\} = \{t \mid h_{\mathcal{P}_a}(t) = 0\}.$
- Since $h_{\mathcal{P}_a} = h_{\overline{\mathcal{L}_{\mathcal{P}_a}}}$ with semipositive adelically metrized line bundle $\overline{\mathcal{L}_{\mathcal{P}_a}}$, one can use the equidistribution theorem (such as by Yuan).

- Let $\mathcal{E} = \{y^2z = x(x-z)(x-tz)\} \to \mathbb{P}^1$ be the Legendre family of elliptic curves.
- For $a \in \overline{\mathbb{Q}} \setminus \{0, 1\}$, the section $\mathcal{P}_a : \mathbb{P}^1 \to \mathcal{E}$, $t \mapsto (a : \sqrt{a(a-1)(a-t)} : 1)$ has $\hat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{a\eta}) \neq 0$.
- $\Sigma(\mathcal{P}_a) := \{t \mid \mathcal{P}_a(t) \text{ torsion on } E_t\} = \{t \mid h_{\mathcal{P}_a}(t) = 0\}.$
- Since $h_{\mathcal{P}_a} = h_{\overline{\mathcal{L}_{\mathcal{P}_a}}}$ with semipositive adelically metrized line bundle $\overline{\mathcal{L}_{\mathcal{P}_a}}$, one can use the equidistribution theorem (such as by Yuan).
- If $|\Sigma(\mathcal{P}_a) \cap \Sigma(\mathcal{P}_b)| = \infty$, then equidistribution theorem implies that $c_1(\overline{\mathcal{L}_{\mathcal{P}_a}})_v = c_1(\overline{\mathcal{L}_{\mathcal{P}_b}})_v$ for any $v \in M_K$.

- Let $\mathcal{E} = \{y^2z = x(x-z)(x-tz)\} \to \mathbb{P}^1$ be the Legendre family of elliptic curves.
- For $a \in \overline{\mathbb{Q}} \setminus \{0,1\}$, the section $\mathcal{P}_a : \mathbb{P}^1 \to \mathcal{E}$, $t \mapsto (a : \sqrt{a(a-1)(a-t)} : 1)$ has $\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{a\eta}) \neq 0$.
- $\Sigma(\mathcal{P}_a) := \{t \mid \mathcal{P}_a(t) \text{ torsion on } E_t\} = \{t \mid h_{\mathcal{P}_a}(t) = 0\}.$
- Since $h_{\mathcal{P}_a} = h_{\overline{\mathcal{L}_{\mathcal{P}_a}}}$ with semipositive adelically metrized line bundle $\overline{\mathcal{L}_{\mathcal{P}_a}}$, one can use the equidistribution theorem (such as by Yuan).
- If $|\Sigma(\mathcal{P}_a) \cap \Sigma(\mathcal{P}_b)| = \infty$, then equidistribution theorem implies that $c_1(\overline{\mathcal{L}_{\mathcal{P}_a}})_v = c_1(\overline{\mathcal{L}_{\mathcal{P}_b}})_v$ for any $v \in M_K$.
- Then $h_{\overline{\mathcal{L}_{\mathcal{P}_a}}} = h_{\overline{\mathcal{L}_{\mathcal{P}_b}}}$, $\Sigma(\mathcal{P}_a) = \Sigma(\mathcal{P}_b)$, and (with more arguments) a = b.

Plan of the talk

- Background and motivation (surveyal): Variation of Néron-Tate heights for families of elliptic curves after Silverman, Tate, Masser-Zannier, DeMarco-Wang-Ye . . .
- 2 From elliptic curves to dynamical systems
- 3 Arithmetic properties of families of Hénon maps: Definition of a Hénon map, a height on the parameter space, the set of periodic parameter values, unlikely intersection . . .

Part 2 From elliptic curves to dynamical systems

Canonical heights

E is an elliptic curve over a number field K

 $L = \mathcal{O}_E([0]), \quad h_L$ is any height function associated to L

 $[2] \colon E \to E \quad \text{ twice multiplication map.} \quad \text{ Note that } [2]^*(L) \cong L^{\otimes 4}.$

Néron-Tate height $\widehat{h}_E: E(\overline{K}) \to \mathbb{R}_{\geq 0}$ is defined by

$$\widehat{h}_E(P) = \lim_{n \to \infty} \frac{1}{4^n} h_L([2]^n P)$$

Part 2 From elliptic curves to dynamical systems

Canonical heights

E is an elliptic curve over a number field K

 $L = \mathcal{O}_E([0]), \quad h_L$ is any height function associated to L

 $[2] \colon E \to E \quad \text{ twice multiplication map.} \quad \text{ Note that } [2]^*(L) \cong L^{\otimes 4}.$

Néron-Tate height $\widehat{h}_E: E(\overline{K}) \to \mathbb{R}_{\geq 0}$ is defined by

$$\widehat{h}_E(P) = \lim_{n \to \infty} \frac{1}{4^n} h_L([2]^n P)$$

In place of $(E, [2], \mathcal{O}_E([0]))$, this construction of a height is generalized to the case (X, f, L)

(continued ...)

Canonical heights (continued)

X is a projective variety over a number field K

L is an ample line bundle over X

 h_L is any height function associated to L

 $f \colon X \to X$ a morphism

Assume that $f^*(L) \cong L^{\otimes d}$ for some d > 1

Such a triple (X, f, L) is called a polarized dynamical system

Canonical heights (continued)

X is a projective variety over a number field K

L is an ample line bundle over X

 h_L is any height function associated to L

 $f: X \to X$ a morphism

Assume that $f^*(L) \cong L^{\otimes d}$ for some d > 1

Such a triple (X, f, L) is called a polarized dynamical system

Canonical height $\widehat{h}_f: X(\overline{K}) \to \mathbb{R}_{\geq 0}$ is defined by

$$\widehat{h}_f(P) = \lim_{n \to \infty} \frac{1}{d^n} h_L(f^n P)$$

(Call-Silverman '93, Zhang '95)

Néron-Tate height is when $(X, f, L) = (E, [2], \mathcal{O}_E([0]))$.

Torsion points, preperiodic points

 $f: X \to X$ a morphism over a field KA point $P \in X(\overline{K})$ is **periodic** if $f^n(P) = P$ for some $n \ge 1$ $P \in X(\overline{K})$ is **preperiodic** if $f^m(P)$ is periodic for some $m \ge 1$

Torsion points, preperiodic points

 $f: X \to X$ a morphism over a field KA point $P \in X(\overline{K})$ is periodic if $f^n(P) = P$ for some $n \ge 1$ $P \in X(\overline{K})$ is preperiodic if $f^m(P)$ is periodic for some $m \ge 1$

For an elliptic curve E, it is easy to see that a point $P \in E(\overline{K})$ is torsion if and only if P is preperiodic under [2].

Torsion points, preperiodic points (continued)

For an elliptic curve E over a number field K

$$\{\text{torsion point}\} = \{\text{preperiodic point under } [2]\}$$
$$= \{P \in E(\overline{K}) \mid \widehat{h}_E(P) = 0\}$$

Torsion points, preperiodic points (continued)

For an elliptic curve E over a number field K

$$\{\text{torsion point}\} = \{\text{preperiodic point under } [2]\}$$
$$= \{P \in E(\overline{K}) \mid \hat{h}_E(P) = 0\}$$

 \Downarrow

In a polarized dynamical system (X, f, L), in place of torsion points, we consider

$$\{\text{preperiodic point under }f\}=\{P\in X(\overline{K})\mid \widehat{h}_f(P)=0\}$$

(The equality follows from Northcott's finiteness theorem.)

Families (continued)

 B° (parameter space)

elliptic surface torsion point $\Sigma(\mathcal{P}) = \{t \mid P_t \text{ is }$ torsion on $E_t\}$ Néron–Tate height

 B° (parameter space)

polarized dynamical system preperiodic point

$$\Sigma(\mathcal{P}) = \{t \mid P_t \text{ is}$$
 preperiodic under $f_t\}$ canonical height

Baker–DeMarco obtained the first result in a dynamical setting.

$$\mathbb{P}^1 \times \mathbb{A}^1 \to \mathbb{A}^1, \quad ((z_0:z_1),t) \mapsto t$$

$$f: \mathbb{P}^1 \times \mathbb{A}^1 \to \mathbb{P}^1 \times \mathbb{A}^1, \quad ((z_0:z_1),t) \mapsto ((z_0^2+tz_1^2:z_1^2),t)$$
a constant section $a: \mathbb{A}^1 \to \mathbb{P}^1 \times \mathbb{A}^1, \quad t \mapsto ((a:1),t)$

$$\Sigma(a) := \{t \in \mathbb{A}^1 \mid (a:1) \text{ is preperiodic under } f_t\}$$

$$f_t(z_0:z_1)=(z_0^2+tz_1^2:z_1^2)$$

$$\Sigma(a) = \{t \in \mathbb{A}^1(\mathbb{C})\}$$

|(a:1) is preperiodic under f_t

Note: $\Sigma(a)$ is an infinite set.

$$f_t(z_0:z_1)=(z_0^2+tz_1^2:z_1^2)$$

$$\Sigma(a) = \{t \in \mathbb{A}^1(\mathbb{C})\}$$

|(a:1)| is preperiodic under f_t

Note: $\Sigma(a)$ is an infinite set.

Theorem (Baker–DeMarco '11)

Let $f_t(z) = z^2 + t$. Let $a, b \in \mathbb{C}$. Suppose that there exist infinitely many $t \in \mathbb{C}$ such that a and b are both preperiodic under f_t . Then $a^2 = b^2$.

$$f_t(z_0:z_1)=(z_0^2+tz_1^2:z_1^2)$$

$$\Sigma(a) = \{t \in \mathbb{A}^1(\mathbb{C})\}$$

|(a:1)| is preperiodic under f_t

Note: $\Sigma(a)$ is an infinite set.

Theorem (Baker–DeMarco '11)

Let $f_t(z) = z^2 + t$. Let $a, b \in \mathbb{C}$. Suppose that there exist infinitely many $t \in \mathbb{C}$ such that a and b are both preperiodic under f_t . Then $a^2 = b^2$.

• This answered a question of Zannier. The assumption says that $\#(\Sigma(a) \cap \Sigma(b)) = \infty$. Using equidistribution theorem, they show $\Sigma(a) = \Sigma(b)$. Properties of the Bötthcher coordinate then imply $a^2 = b^2$.

More comments on Baker–DeMarco's theorem

- Further generalizations (in relation to the dynamical Pink–Zilber conjecture) have been obtained by Baker–DeMarco, Ghioca–Hsia–Tucker, Favre–Gauthier, DeMarco–Wang–Ye...
- Families of rational maps of \mathbb{P}^1 have been mostly studied. Our talk is about families of higher-dimensional maps.

Plan of the talk

- Background and motivation (surveyal): Variation of Néron-Tate heights for families of elliptic curves after Silverman, Tate, Masser-Zannier, DeMarco-Wang-Ye . . .
- 2 From elliptic curves to dynamical systems
- 3 Arithmetic properties of families of Hénon maps: Definition of a Hénon map, a height on the parameter space, the set of periodic parameter values, unlikely intersection . . .

Part 3 Arithmetic properties of families of Hénon maps

Hénon maps

 \mathbb{A}^2 : affine plane

A Hénon map over a field K is an automorphism of the form

$$H: \mathbb{A}^2 \to \mathbb{A}^2$$
, $H(x,y) = (\delta y + f(x), x)$

for some $\delta \in K \setminus \{0\}$ and $f(x) \in K[x]$ with $d := \deg(f) \ge 2$.

The inverse is given by

$$H^{-1}: \mathbb{A}^2 \to \mathbb{A}^2, \quad H^{-1}(x,y) = \left(y, \frac{1}{\delta}(x - f(y))\right)$$

Note: H extends to a birational map $H: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$, but not an isomorphism.

Some remarks on Hénon maps

• Hénon '76 showed that a Hénon map has a strange attractor.

Some remarks on Hénon maps

- Hénon '76 showed that a Hénon map has a strange attractor.
- If δ in $H(x,y) = (\delta y + f(x), x)$ is very small (nearly 0), then the map looks like

$$(x,y) \mapsto (f(x),x) \mapsto (f^2(x),f(x)) \mapsto \dots$$

So, Hénon maps are more complicated than one-variable polynomial maps.

Some remarks on Hénon maps

- Hénon '76 showed that a Hénon map has a strange attractor.
- If δ in $H(x,y) = (\delta y + f(x), x)$ is very small (nearly 0), then the map looks like

$$(x,y) \mapsto (f(x),x) \mapsto (f^2(x),f(x)) \mapsto \dots$$

So, Hénon maps are more complicated than one-variable polynomial maps.

• Friedland–Milnor '89 showed that any automorphism $F: \mathbb{A}^2 \to \mathbb{A}^2$ over \mathbb{C} is, up to conjugacy of $\operatorname{Aut}(\mathbb{C}^2)$, either triangularizable or the composition of Hénon maps. (Dynamically, triangularizable maps are not interesting.) So, the class of Hénon maps consists of a fundamental class of plane automorphisms.

• Hénon maps over \mathbb{C} are deeply studied in Bedford–Smilie '91, Fornæss–Sibony '92, Hubbard –Oberste-Vorth '94 among from the vast literature.

- Hénon maps over \mathbb{C} are deeply studied in Bedford–Smilie '91, Fornæss–Sibony '92, Hubbard –Oberste-Vorth '94 among from the vast literature.
- Arithmetic properties of Hénon maps are also studied. I think that they are first studied by Silverman '94.

- Hénon maps over \mathbb{C} are deeply studied in Bedford–Smilie '91, Fornæss–Sibony '92, Hubbard –Oberste-Vorth '94 among from the vast literature.
- Arithmetic properties of Hénon maps are also studied. I think that they are first studied by Silverman '94.
- For a Hénon map $H(x,y) = (y, \delta x + f(x))$, up to conjugacy of $\operatorname{Aut}(\overline{K})$, we may assume that f(x) is monic.

Canonical heights for Hénon maps

Hénon maps are not polarized dynamical systems, but one can define canonical heights for Hénon maps

- Ω : an algebraically closed field complete with respect to an absolute value $|\cdot|$
- $||(a_1,\ldots,a_n)|| := \max_i \{|a_i|\}$
- $\log^+(r) := \log \max\{r, 1\}$ for $r \in \mathbb{R}$
- $H: \mathbb{A}^2 \to \mathbb{A}^2$ a Hénon map over Ω , $P \in \mathbb{A}^2(\Omega)$

Definition (Green functions on $\mathbb{A}^2(\Omega)$)

$$G_H^+(P) := \lim_{n \to +\infty} \frac{1}{d^n} \log^+ ||H^n(P)||, \ G_H^-(P) := \lim_{n \to +\infty} \frac{1}{d^n} \log^+ ||H^{-n}(P)||$$
$$G_H(P) := \max\{G_H^+(P), G_H^-(P)\}$$

 $H: \mathbb{A}^2 \to \mathbb{A}^2$ a Hénon map over a number field K

For each place $v \in M_K$ with absolute value $|\cdot|_v$,

 K_v : completion of K with respect to $|\cdot|_v$

 \mathbb{K}_v : completion of an algebraic closure of K_v

We have the v-adic Green function

$$G_{H,v} := \max\{G_{H,v}^+, G_{H,v}^-\} : \mathbb{A}^2(\mathbb{K}_v) \to \mathbb{R}_{\geq 0}$$

Definition (canonical height)

$$\widetilde{h}_H \colon \mathbb{A}^2(\overline{K}) \to \mathbb{R}_{\geq 0}, \quad \widetilde{h}_H(P) := \sum_{v \in M_K} n_v G_{H,v}(P)$$

Here n_v is a usual normalizing constant.

For example, if $p \mid v$, then $n_v = [K_v : \mathbb{Q}_p]/[K : \mathbb{Q}]$.

 $H: \mathbb{A}^2 \to \mathbb{A}^2$: a Hénon map of degree $d \geq 2$ over a number field K.

 $H: \mathbb{A}^2 \to \mathbb{A}^2$: a Hénon map of degree $d \geq 2$ over a number field K.

- \rightsquigarrow We have defined
 - $G_{H,v} \colon \mathbb{A}^2(\mathbb{K}_v) \to \mathbb{R}_{\geq 0}$ (v-adic Green function) $G_{H,v}(P) := \max \left\{ \lim \frac{1}{d^n} \log^+ \|H^n(P)\|, \lim \frac{1}{d^n} \log^+ \|H^{-n}(P)\| \right\}$
 - When $\mathbb{K}_v = \mathbb{C}$, the Green function is extremely useful in Bedford–Smilie '91, Farnæss–Sibony '92, Hubbard–Oberste-Vorth '94.
 - $\widetilde{h}_H : \mathbb{A}^2(\overline{K}) \to \mathbb{R}_{\geq 0}$ (canonical height), $\widetilde{h}_H(P) := \sum_{v \in M_K} n_v G_{H,v}$

 $H: \mathbb{A}^2 \to \mathbb{A}^2$: a Hénon map of degree $d \geq 2$ over a number field K.

- \rightsquigarrow We have defined
 - $G_{H,v} \colon \mathbb{A}^2(\mathbb{K}_v) \to \mathbb{R}_{\geq 0}$ (v-adic Green function) $G_{H,v}(P) := \max \left\{ \lim \frac{1}{d^n} \log^+ \|H^n(P)\|, \lim \frac{1}{d^n} \log^+ \|H^{-n}(P)\| \right\}$
 - When $\mathbb{K}_v = \mathbb{C}$, the Green function is extremely useful in Bedford–Smilie '91, Farnæss–Sibony '92, Hubbard–Oberste-Vorth '94.
 - $\widetilde{h}_H \colon \mathbb{A}^2(\overline{K}) \to \mathbb{R}_{\geq 0}$ (canonical height), $\widetilde{h}_H(P) := \sum_{v \in M_K} n_v G_{H,v}$

Theorem (K-'06, '13)

- **1** The limits defining $G_{H,v}$ exist for all $v \in M_K$.
- $\widetilde{h}_H = h_{\rm std} + O(1) \ on \ \mathbb{A}^2(\overline{K})$
- **3** {periodic point under H} = { $P \in \mathbb{A}^2(\overline{K}) \mid \widetilde{h}_H(P) = 0$ }

Note: Hénon map is an autom, so preperiodic = periodic.

Families (our setting)

K a number field, $\delta \in K \setminus \{0\}$, $f_t(x) \in K[t,x]$ monic in x, degree $d \geq 2$ in x $\mathbb{A}^2 \times \mathbb{A}^1 \to \mathbb{A}^1$, $((x,y),t) \mapsto t$ $\mathcal{H} : \mathbb{A}^2 \times \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1$, $((x,y),t) \mapsto ((\delta y + f_t(x),x),t)$ a section $\mathcal{P} : \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1$, $t \mapsto ((a(t),b(t)),t)$ $\Sigma(\mathcal{P}) := \{t \in \mathbb{A}^1(\overline{K}) \mid P_t = (a(t),b(t)) \text{ is periodic under } H_t\}$

K: a number field

 $t \in \mathbb{A}^1$ (parameter space)

K: a number field

 $t \in \mathbb{A}^1$ (parameter space)

- \rightsquigarrow We have canonical heights $(\eta: \text{ generic point of } \mathbb{A}^1)$
 - $\widetilde{h}_{H_t}: \mathbb{A}^2(\overline{K}) \to \mathbb{R}_{\geq 0}$ for each $t \in \mathbb{A}^1(\overline{K})$
 - $\widetilde{h}_{\mathcal{H}_{\eta}}: \mathbb{A}^2(\overline{K})(\overline{K(t)}) \to \mathbb{R}_{\geq 0}$ on the generic fiber \mathbb{A}^2_{η}

Let $\mathcal{P}: \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1$ be a section with $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$. Set

$$h_{\mathcal{P}}(t) := \widetilde{h}_{H_t}(P_t)/\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}).$$

Question 1 Is $h_{\mathcal{P}}: \mathbb{A}^1(\overline{K}) \to \mathbb{R}$ a "nice" height function?

K: a number field

$$\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$$

 $t \in \mathbb{A}^1 \text{ (parameter space)}$

K: a number field

$$\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$$

Theorem (Hsia–K)

 $h_{\mathcal{P}}$ is the restriction of the height function associated to a semipositive adelically metrized line bundle $(\mathcal{O}_{\mathbb{P}^1}(1),\{\|\cdot\|_v\})$ on \mathbb{P}^1 (in the sense of Zhang).

Remark

A weaker estimate $\widetilde{h}_{H_t} = \widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta})h_{\mathrm{std}} + O(1)$ on $\mathbb{A}^1(\overline{K})$ (Silverman and Tate type) was previously obtained by Ingram '14.

K: a number field $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$ $v \in M_K$

K: a number field $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$ $v \in M_K$

 $t \in \mathbb{A}^1$ (parameter space)

$$G_{\mathcal{P},v} \colon \mathbb{A}^{1}(\mathbb{K}_{v}) \to \mathbb{R}_{\geq 0}, \qquad G_{\mathcal{P},v}(t) := G_{H_{t},v}(P_{t})$$

$$\mathcal{K}_{\mathcal{P},v} := \{ t \in \mathbb{A}^{1}(\mathbb{K}_{v}) \mid \{H^{n}(P_{t})\}_{n \in \mathbb{Z}} \text{ is bounded} \}$$

$$\mathcal{W}_{\mathcal{P},v} := \{ t \in \mathbb{A}^{1}(\mathbb{K}_{v}) \mid \lim_{n \to +\infty} \|(H^{n}(P_{t}), H^{-n}(P_{t}))\| = +\infty \}$$

K: a number field $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$ $v \in M_K$

 $t \in \mathbb{A}^1$ (parameter space)

$$G_{\mathcal{P},v} \colon \mathbb{A}^{1}(\mathbb{K}_{v}) \to \mathbb{R}_{\geq 0}, \qquad G_{\mathcal{P},v}(t) := G_{H_{t},v}(P_{t})$$

$$\mathcal{K}_{\mathcal{P},v} := \{ t \in \mathbb{A}^{1}(\mathbb{K}_{v}) \mid \{H^{n}(P_{t})\}_{n \in \mathbb{Z}} \text{ is bounded} \}$$

$$\mathcal{W}_{\mathcal{P},v} := \{ t \in \mathbb{A}^{1}(\mathbb{K}_{v}) \mid \lim_{n \to +\infty} \|(H^{n}(P_{t}), H^{-n}(P_{t}))\| = +\infty \}$$

Proposition (Hsia–K)

- $\bullet h_{\mathcal{P}} = c \sum_{v \in M_K} n_v G_{\mathcal{P},v} \text{ with } c := 1/\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \in \mathbb{Q}_{>0}.$
- $2 \mathcal{K}_{\mathcal{P},v} = \{ t \in \mathbb{A}^1(\mathbb{K}_v) \mid G_{\mathcal{P}}(t) = 0 \}$
- 3 $\mathbb{A}^1(\mathbb{K}_v) = \mathcal{K}_{\mathcal{P},v} \coprod \mathcal{W}_{\mathcal{P},v}$

Example

$$\mathcal{H} = (H_t)_t \colon \mathbb{A}^2 \to \mathbb{A}^2, \quad (x,y) \mapsto (y+x^2+t,x)$$

(family of quadratic Hénon maps parametrized by t)
 $\mathcal{P}_{(0,0)} \colon \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1, \ t \mapsto ((0,0),t) \text{ a constant family of initial points}$

 $\mathcal{K}_{(0,0),\mathbb{C}} := \{ t \in \mathbb{C} \mid \{ H_t^n((0,0)) \}_{n \in \mathbb{Z}} \text{ is bounded} \}$

31 / 40

Example

 $\mathcal{H} = (H_t)_t \colon \mathbb{A}^2 \to \mathbb{A}^2, \quad (x,y) \mapsto (y+x^2+t,x)$ (family of quadratic Hénon maps parametrized by t)

 $\mathcal{P}_{(0,0)}: \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1, t \mapsto ((0,0),t)$ a constant family of initial points $\mathcal{K}_{(0,0),\mathbb{C}} := \{t \in \mathbb{C} \mid \{H^n_t((0,0))\}_{n \in \mathbb{Z}} \text{ is bounded}\}$

Figure: $|\text{Re}(t)| \le 0.1$, $|\text{Im}(t)| \le 0.1$

The set $\Sigma(\mathcal{P})$ of periodic parameter values

K: a number field $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$

$$\Sigma(\mathcal{P}) := \{t \in \mathbb{A}^1(\overline{K}) \mid P_t \text{ is periodic under } H_t\}$$

Here, we have a phenomena that was not observed in families of one-dimensional dynamics.

 $\Sigma(\mathcal{P})$ may not be an infinite set.

Result on infiniteness of $\Sigma(\mathcal{P})$

K a field (of any characteristic)

$$\mathcal{H}(x,y) = (\delta y + f_t(x), x)$$

$$\Sigma(\mathcal{P}) = \{ t \in \mathbb{A}^1(\overline{K}) \mid$$

 $| P_t$ is periodic under H_t }

 $t \in \mathbb{A}^1$ (parameter space)

Inspired by Dujardin–Favre's result on dynamical Mordell–Lang conjecture for plane automorphisms, we consider a **reversible** Hénon map. Thus we assume that $\delta = \pm 1$ and that, if $\delta = 1$, then $f_t(x)$ is an even polynomial in x. Then, via the involution $\iota: (x,y) \mapsto (-\delta y, -\delta x)$, we have

$$\iota \circ \mathcal{H} \circ \iota = \mathcal{H}^{-1}$$
.

Further ι has the fixed curve $C = \{x + \delta y = 0\}$ in \mathbb{A}^2 .

Result on infiniteness of $\Sigma(\mathcal{P})$ (continued)

K a field (of any characteristic)

$$\mathcal{H}(x,y) = (\delta y + f_t(x), x)$$

$$\Sigma(\mathcal{P}) = \{ t \in \mathbb{A}^1(\overline{K}) \mid$$

 $| P_t$ is periodic under H_t }

 $t \in \mathbb{A}^1$ (parameter space)

Theorem (Hsia-K)

We assume that $\delta = \pm 1$ and that, if $\delta = 1$, then $f_t(x)$ is an even polynomial in x. If the family of initial points $\mathcal{P} = (a(t), b(t))$ lie on the fixed curve of the involution $\iota : (x, y) \mapsto (-\delta y, -\delta x)$, i.e., $a(t) + \delta b(t) = 0$, then $\Sigma(\mathcal{P})$ is an infinite set.

Example

Let $\mathcal{H}(x,y) = (y+x^2+t,x)$. Then, for any $a \in K$, $|\Sigma((a,-a))| = \infty$.

Result on finiteness/emptyness of $\Sigma(P)$

As a complimentary result, we point out that $\Sigma(\mathcal{P})$ can be the empty set.

Proposition (Hsia-K)

We consider the family of quadratic Hénon maps over $\mathbb C$

$$\mathcal{H}(x,y) = (y + x^2 + t, x).$$

Let $b \in \mathbb{C}$, and assume that $b \notin \overline{\mathbb{Z}}$. Then

$$\Sigma((0,b)) := \{t \in \mathbb{A}^1(\overline{K}) \mid (0,b) \text{ is periodic under } H_t\} = \emptyset.$$

Example

We have $\Sigma((0,1/2)) = \emptyset$, while $|\Sigma((a,-a))| = \infty$ for any $a \in \mathbb{C}$.

 $\mathcal{P} = (0,0)$ near t = 0. (Right) enlarged 10^3 times. $|\Sigma(\mathcal{P})| = \infty$

 $\mathcal{P} = (0, 1/2) \text{ near } t = -0.1. \text{ (Right) enlarged } 10^3 \text{ times. } \Sigma(\mathcal{P}) = \emptyset$

K: a number field

$$\Sigma(\mathcal{P}) = \{ t \in \mathbb{A}^1(\overline{K}) \}$$

 $| P_t$ is periodic under H_t }

We have instances that $\Sigma(\mathcal{P})$ is infinite.

 $t \in \mathbb{A}^1$ (parameter space)

K: a number field

$$\Sigma(\mathcal{P}) = \{ t \in \mathbb{A}^1(\overline{K}) \}$$

 $| P_t$ is periodic under H_t }

We have instances that $\Sigma(\mathcal{P})$ is infinite.

 $t \in \mathbb{A}^1$ (parameter space)

Let $\mathcal{Q}: \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1$ be another section with $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{Q}_{\eta}) \neq 0$.

K: a number field

$$\Sigma(\mathcal{P}) = \{ t \in \mathbb{A}^1(\overline{K}) \mid$$

 $| P_t$ is periodic under H_t }

We have instances that $\Sigma(\mathcal{P})$ is infinite.

 $t \in \mathbb{A}^1$ (parameter space)

Let $\mathcal{Q}: \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1$ be another section with $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{Q}_{\eta}) \neq 0$.

We would like to consider when there are infinitely many parameter values t such that both P_t and Q_t are periodic under H_t .

K: a number field

$$\Sigma(\mathcal{P}) = \{t \in \mathbb{A}^1(\overline{K})\}$$

 $| P_t$ is periodic under H_t }

We have instances that $\Sigma(\mathcal{P})$ is infinite.

 $t \in \mathbb{A}^1$ (parameter space)

Let $Q: \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1$ be another section with $h_{\mathcal{H}_{\eta}}(Q_{\eta}) \neq 0$.

We would like to consider when there are infinitely many parameter values t such that both P_t and Q_t are periodic under H_t .

Recall that we have shown

- $h_{\mathcal{P}}(t) := \widetilde{h}_{H_t}(P_t)/\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta})$ is the restriction of the semipositive adelically metrized line bundle $\overline{\mathcal{L}_{\mathcal{P}}} := (\mathcal{O}_{\mathbb{P}^1}(1), \{\|\cdot\|\}_v).$
- $\Sigma(P) = \{ t \in \mathbb{A}^1(\overline{K}) \mid h_{\mathcal{P}}(t) = 0 \}.$

$$h_{\mathcal{P}} \colon \mathbb{A}^1(\overline{K}) \to \mathbb{R}_{\geq 0}$$
 defined by $h_{\mathcal{P}}(t) := \widetilde{h}_{H_t}(P_t)/\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta})$
We have $h_{\mathcal{P}} = c \sum_{v \in M_K} n_v G_{\mathcal{P},v}$ with $c = 1/\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) > 0$
 $\Sigma(\mathcal{P}) := \{ t \in \mathbb{A}^1(\overline{K}) \mid P_t \text{ is periodic under } H_t \}$
 $= \{ t \in \mathbb{A}^1(\overline{K}) \mid h_{\mathcal{P}}(t) = 0 \}$

Theorem (Hsia-K)

Assume that $\Sigma(\mathcal{P})$ and $\Sigma(\mathcal{Q})$ are infinite.

Then the following are equivalent.

- $\Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$ is infinite. Namely, there are infinitely many periodic values t such that P_t and Q_t are both periodic under H_t .
- **3** $G_{\mathcal{P},v} = G_{\mathcal{Q},v}$ for all $v \in M_K$.

Proof uses Yuan's equidistribution theorem. (Or, as the parameter space is 1-dimensional, so we can also use equidistribution theorem due to Autisser, Thuillier, Chambert-Loir, Baker-Rumely, Favre-Rivera-Letlier...).

Proof uses Yuan's equidistribution theorem. (Or, as the parameter space is 1-dimensional, so we can also use equidistribution theorem due to Autisser, Thuillier, Chambert-Loir, Baker-Rumely, Favre-Rivera-Letlier...).

Indeed, suppose that $\Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$ is infinite.

Let $\{x_n\}_{n\geq 1}$ be a sequence of distinct points with $\{x_n\}\subseteq \Sigma(\mathcal{P})\cap \Sigma(\mathcal{Q})$.

Proof uses Yuan's equidistribution theorem. (Or, as the parameter space is 1-dimensional, so we can also use equidistribution theorem due to Autisser, Thuillier, Chambert-Loir, Baker-Rumely, Favre-Rivera-Letlier...).

Indeed, suppose that $\Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$ is infinite. Let $\{x_n\}_{n\geq 1}$ be a sequence of distinct points with $\{x_n\} \subseteq \Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$. Since $\{x_n\}_{n\geq 1}$ has height 0 with respect to $h_{\mathcal{P}} = h_{\overline{\mathcal{L}_{\mathcal{P}}}}$, the equidistribution theorem implies that, as $n \to \infty$, the Galois orbit of x_n will be equidistributed on $\mathbb{P}^1(\mathbb{K}_v)$ with respect to the measure $c_1(\overline{\mathcal{L}_{\mathcal{P}}})_v$ for any $v \in M_K$.

Proof uses Yuan's equidistribution theorem. (Or, as the parameter space is 1-dimensional, so we can also use equidistribution theorem due to Autisser, Thuillier, Chambert-Loir, Baker-Rumely, Favre-Rivera-Letlier...).

Indeed, suppose that $\Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$ is infinite. Let $\{x_n\}_{n\geq 1}$ be a sequence of distinct points with $\{x_n\} \subseteq \Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$. Since $\{x_n\}_{n\geq 1}$ has height 0 with respect to $h_{\mathcal{P}} = h_{\overline{\mathcal{P}}}$, the

Since $\{x_n\}_{n\geq 1}$ has height 0 with respect to $h_{\mathcal{P}} = h_{\overline{\mathcal{L}_{\mathcal{P}}}}$, the equidistribution theorem implies that, as $n \to \infty$, the Galois orbit of x_n will be equidistributed on $\mathbb{P}^1(\mathbb{K}_v)$ with respect to the measure $c_1(\overline{\mathcal{L}_{\mathcal{P}}})_v$ for any $v \in M_K$.

The same holds for $h_{\mathcal{Q}} = h_{\overline{\mathcal{L}_{\mathcal{Q}}}}$, and we obtain $c_1(\overline{\mathcal{L}_{\mathcal{P}}})_v = c_1(\overline{\mathcal{L}_{\mathcal{Q}}})_v$.

 $c_1(\overline{\mathcal{L}_{\mathcal{P}}})_v$ for any $v \in M_K$.

Proof uses Yuan's equidistribution theorem. (Or, as the parameter space is 1-dimensional, so we can also use equidistribution theorem due to Autisser, Thuillier, Chambert-Loir, Baker-Rumely, Favre-Rivera-Letlier...).

Indeed, suppose that $\Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$ is infinite. Let $\{x_n\}_{n\geq 1}$ be a sequence of distinct points with $\{x_n\} \subseteq \Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$. Since $\{x_n\}_{n\geq 1}$ has height 0 with respect to $h_{\mathcal{P}} = h_{\overline{\mathcal{L}_{\mathcal{P}}}}$, the equidistribution theorem implies that, as $n \to \infty$, the Galois orbit of x_n will be equidistributed on $\mathbb{P}^1(\mathbb{K}_v)$ with respect to the measure

The same holds for $h_{\mathcal{Q}} = h_{\overline{\mathcal{L}_{\mathcal{Q}}}}$, and we obtain $c_1(\overline{\mathcal{L}_{\mathcal{P}}})_v = c_1(\overline{\mathcal{L}_{\mathcal{Q}}})_v$. It follows that $G_{\mathcal{P},v} = G_{\mathcal{Q},v}$ for all $v \in M_K$, and $h_{\mathcal{P}} = h_{\mathcal{Q}}$. Then $\Sigma(\mathcal{P}) = \Sigma(\mathcal{Q})$.

For a family of one-variable dynamics, using the Böttcher coordinate function, one can obtain more preside orbital relation of \mathcal{P} and \mathcal{Q} .

For a family of one-variable dynamics, using the Böttcher coordinate function, one can obtain more preside orbital relation of \mathcal{P} and \mathcal{Q} . For a family of Hénon maps, the argument based on the Böttcher coordinate function does not seem to be extended. We ask the following question.

For a family of one-variable dynamics, using the Böttcher coordinate function, one can obtain more preside orbital relation of \mathcal{P} and \mathcal{Q} . For a family of Hénon maps, the argument based on the Böttcher coordinate function does not seem to be extended. We ask the following question.

Question

Suppose that $h_{\mathcal{P}} = h_{\mathcal{Q}}$. Then does there exist an automorphism $\sigma: \mathbb{A}^2 \to \mathbb{A}^2$ over \mathbb{A}^1 and a positive integer $m \geq 1$ with $\sigma^{-1} \circ \mathcal{H}^m \circ \sigma = \mathcal{H}^m$ or $\sigma^{-1} \circ \mathcal{H}^m \circ \sigma = \mathcal{H}^{-m}$ such that $\mathcal{Q} = \mathcal{H}^n(\sigma(\mathcal{P}))$ for some $n \geq 1$?