

Universidade Federal de Uberlândia Faculdade de Computação

Método simplex

Paulo Henrique Ribeiro Gabriel

2023/1

GSI027 Otimização 2023/1 1 / 68

Sumário

1 O método simplex

O método simplex

- O método simplex visa a resolução algébrica de um problema de PL.
- Problemas agora não se limitam mais a 2 variáveis de decisão (como na solução gráfica)
- 1º passo: Criação de Variáveis de folga ou excesso: transformam o modelo num sistema linear de equações a ser resolvido.

GS1027 Otimização 2023/1 3/68

Eliminação das desigualdades

- Inicialmente, é preciso eliminar as desigualdades presentes nas restrições do modelo.
 - Criam-se assim novas equações lineares no problema, a partir das inequações anteriores.
- Exemplo:

$$2x_1 + x_2 < 5$$

• Como o lado esquerdo é menor ou igual a 5 (a diferença é desconhecida), a adição de uma variável não-negativa, chamada, por exemplo, x₃, que represente tal diferença, permite que a inequação seja escrita como uma equação:

$$2x_1 + x_2 + x_3 = 5$$

• $x_3 \ge 0$ é denominada variável de folga.

GS1027 Otimização 2023/1 4 / 68

• De modo similar, no caso da inequação

$$x_1 + 3x_2 \ge 7$$
,

onde tem-se o lado esquerdo maior ou igual ao lado direito, é possível representar a diferença pela subtração de uma variável de folga não-negativa:

$$x_1 + 3x_2 - x_4 = 7$$
.

 Algumas referências chamam neste caso a nova variável de variável de excesso.

GSI027 Otimização 2023/1 5 / 68

Observação

Apenas as restrições técnicas são reescritas como equações.

As restrições de não-negatividade são mantidas.

GSI027 Otimização 2023/1 6 / 68

Forma padrão

Um problema de PL está na forma padrão quando:

- 1 É um problema de maximização;
- ② As restrições são do tipo ≤;
- O lado direito das restrições (termo independente) é sempre não-negativo;
- 4 As variáveis de decisão são não-negativas.

Observação

Alguns autores – ex.: Marins (2011) – trabalham com definições alternativas para a forma padrão. A adotada no curso foi considerada por questões didáticas.

GSI027 Otimização 2023/1 7 / 68

Exemplo

$$\max Z(x_1, x_2) = 5x_1 + 2x_2$$

sujeito a

$$x_1 \le 3$$

 $x_2 \le 4$
 $x_1 + 2x_2 \le 9$
 $x_1 \ge 0, x_2 \ge 0$

GSI027 Otimização 2023/1 8 / 68

$$\max Z(x_1, x_2, x_3, x_4, x_5) - 5x_1 - 2x_2 = 0$$

sujeito a

$$x_1 + x_3 = 3$$
 $x_2 + x_4 = 4$
 $x_1 + 2x_2 + x_5 = 9$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$

- Como a função objetivo é dada como uma equação, não é necessária a introdução de variáveis de folga na mesma.
- Note que a função objetivo foi reescrita, de modo a deixar o lado direito nulo.

GSI027 Otimização 2023/1 9 / 68

Quadro inicial

A tabela ou quadro abaixo auxilia na resolução:

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	b
$L_0^{(0)}$	Z	-5	-2	0	0	0	0
$L_{1}^{(0)}$ $L_{2}^{(0)}$ $L_{3}^{(0)}$	X3	1	0	1	0	0	3
$L_2^{(0)}$	<i>X</i> ₄	0	1	0	1	0	4
$L_3^{(0)}$	<i>X</i> 5	1	2	0	0	1	9

- Na linha L_0 encontram-se os coeficientes da função objetivo.
- Nas linhas L_i , $i=1,\ldots,3$, encontram-se os coeficientes das restrições.
- O super-índice entre parênteses (k) das linhas indica que as mesmas são as linhas obtidas após a k-ésima iteração do simplex.
 - ▶ (0) indica que estas são as linhas do quadro inicial.
- O vetor b contém as constantes (termos independentes) das restrições, bem como da função objetivo reescrita.

GSI027 Otimização 2023/1 10 / 68

Solução básica viável inicial

$$x_3 = 3$$

$$x_1 = 0$$

$$x_4 = 4$$

$$x_2 = 0$$

$$x_5 = 9$$

$$Z = 0$$

GSI027 Otimização 2023/1 11 / 68

Algoritmo I

- A solução já é a ótima? Se sim, o problema encontra-se resolvido, e o algoritmo se encerra nesta etapa.
 - ► Este é um problema de maximização. A solução será ótima se não houver coeficientes negativos na linha L₀ da função objetivo.
 - ► Caso haja este é o caso do exemplo é preciso passar à etapa seguinte, **iterativa**.

GSI027 Otimização 2023/1 12 / 68

Algoritmo II

- ② As variáveis de folga formam uma base do \mathbb{R}^m (m é o número de restrições), pois a matriz $m \times m$ formada pelas linhas L_i , $i = 1, \ldots, m$ e respectivas colunas de tais variáveis é uma matriz identidade, portanto com determinante diferente de 0.
 - No quadro inicial, portanto, as variáveis de folga são chamadas de básicas (representadas na coluna à esquerda no mesmo), e as variáveis de decisão originais do problema, não básicas.
 - ► Esta etapa do algoritmo consiste em **colocar na base** uma variável de decisão, retirando da mesma uma das variáveis básicas (deve ser repetida até que a condição da etapa 1 seja satisfeita)

GS1027 Otimização 2023/1 13 / 68

Etapas do passo 2 l

- Identificar quem entrará na base (condição de otimalidade): Regra de Dantzig: Procura-se, na linha L_0 , qual o coeficiente negativo de maior valor absoluto (i.é., de menor valor). A variável associada a ele é a que entrará na base.
 - ▶ No exemplo, entrará na base x_1 , pois |-5| > |-2|. A coluna em destaque é a **coluna pivô** da iteração.

		$\downarrow x_1$	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	b
$L_0^{(0)}$		-5	-2	0	0	0	0
_		1	0	1	0	0	3
$L_2^{(0)}$		0	1	0	1	0	4
$L_3^{(0)}$	<i>X</i> 5	1	2	0	0	1	9

GSI027 Otimização 2023/1 14 / 68

Etapas do passo 2 II

- A variável básica que sairá da base é aquela cuja divisão da constante b_i, i = 1,...,m (a linha L₀ da função objetivo nunca é considerada) pelo coeficiente correspondente c_{ij} da coluna pivô seja o menor de todos apenas divisões não-negativas e finitas são consideradas. Esta é a Condição de viabilidade.
 - ▶ No caso, temos m=3, j=1 (selecionou-se x_1 para deixar a base) e as divisões

$$\frac{b_1}{c_{11}} = \frac{3}{1} = 3$$
 $\frac{b_2}{c_{21}} = \frac{4}{0} = \infty$ (ignora-se) $\frac{b_3}{c_{31}} = \frac{9}{1} = 9$

▶ Portanto, x_3 (associada a linha L_1) deixará a base e a linha L_1 passa a ser a linha pivô desta iteração — razão mínima não-negativa nesta linha.

GSI027 Otimização 2023/1 15 / 68

Etapas do passo 2 III

		$\downarrow x_1$	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	b
$L_0^{(0)}$	\overline{Z}	-5	-2	0	0	0	0
$L_1^{(0)}$	$\leftarrow x_3$	1	0	1	0	0	3
$L_2^{(0)}$	<i>X</i> ₄	0	1	0	1	0	4
$L_3^{(0)}$	<i>X</i> 5	1	2	0	0	1	9

▶ O elemento $c_{11} = 1$, dado pelo cruzamento das linhas e colunas pivô, é o número pivô da iteração.

GS1027 Otimização 2023/1 16 / 68

Etapas do passo 2 IV

- 3 Redefine-se a linha pivô, dividindo-se a mesma pelo número pivô.
 - ► No caso,

$$L_1^{(1)} = \frac{L_1^{(0)}}{c_{11}} = \frac{L_1^{(0)}}{1}$$

▶ Note que agora x_1 faz parte da base, e x_3 passou a ser não-básica.

		<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	b
$L_0^{(0)}$	Z	-5	-2	0	0	0	0
$L_1^{(1)}$	x_1	1	0	1	0	0	3
$L_2^{(0)}$	<i>X</i> 4	0	1	0 0	1	0	4
$L_3^{(0)}$	<i>X</i> ₅	1	2	0	0	1	9

► Detalhamento:

GSI027 Otimização 2023/1 17 / 68

Etapas do passo 2 V

4 As demais linhas (incluindo a da função objetivo) são também redefinidas:

$$L_k^{(1)} = L_k^{(0)} - c_{kj} L_i^{(1)}, k = 0, \dots, m, k \neq i,$$

onde i e j são os índices da (nova) linha pivô e coluna pivô, respectivamente.

GSI027 Otimização 2023/1 18 / 68

Etapas do passo 2 VI

▶ Linha 0 (função objetivo): $L_0^{(1)} = L_0^{(0)} - (-5) L_1^{(1)}$

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	b
$L_0^{(1)}$	Z	0	-2	5	0	0	15
$L_1^{(1)}$	<i>x</i> ₁	1	0	1	0	0	3
$L_2^{(0)}$	<i>X</i> ₄	0	1	0	1	0	4
$L_3^{(0)}$	<i>X</i> 5	1	2	0	0	1	9

► Detalhamento:

GSI027 Otimização 2023/1 19 / 6

Etapas do passo 2 VII

▶ Linha 2: $L_2^{(1)} = L_2^{(0)} - 0$ $L_1^{(1)} = L_2^{(0)}$ (inalterada)

		x_1	<i>x</i> ₂	<i>X</i> ₃	<i>x</i> ₄	<i>X</i> ₅	b
$L_0^{(1)}$	Z	0	-2	5	0	0	15
$L_1^{(1)}$	<i>x</i> ₁	1	-2 0	1	0	0	3
$L_2^{(1)}$	<i>X</i> ₄	0	1	0	1	0	4
$L_3^{(0)}$	<i>X</i> 5	1	2	0	0	1	9

GSI027 Otimização 2023/1 20 / 68

Etapas do passo 2 VIII

► Linha 3: $L_3^{(1)} = L_3^{(0)} - 1 L_1^{(1)}$

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	b
$L_0^{(1)}$	Z	0	-2	5	0	0	15
$L_1^{(1)}$	<i>x</i> ₁	1	0	1	0	0	3
$L_2^{(1)}$	<i>X</i> ₄	0	1	0	1	0	4
$L_3^{(1)}$	<i>X</i> 5	0	2	-1	0	1	6

► Detalhamento:

GSI027 Otimização 2023/1 21 / 68

Etapas do passo 2 IX

► A primeira iteração está concluída.

Solução básica viável após iteração 1

$$x_1 = 3$$

$$x_2 = 0$$

$$x_4 = 4$$

$$x_3 = 0$$

$$x_5 = 6$$

$$Z = 15$$

GSI027 Otimização 2023/1 22 / 68

Nova iteração do passo 2

- Como se pode observar na tabela anterior, ainda há um coeficiente negativo na linha L_0 .
- Portanto, repete-se o passo 2.
 - ▶ Agora x_2 entrará na base, e x_5 sairá. Portanto, o número pivô é $C_{23} = 2$.

GSI027 Otimização 2023/1 23 / 68

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	b
$L_0^{(2)}$	Z	0	0	4	0	1	21
$L_1^{(2)}$	X ₁	1	0		0	0	3
$L_1^{(2)}$ $L_2^{(2)}$	<i>X</i> ₄	0	0	1/2	1	-1/2	1
$L_3^{(2)}$	<i>X</i> ₂	0	1	-1/2	0	1/2	3

Solução básica viável após iteração 2 (solução ótima)

$$x_1 = 3$$

$$x_3 = 0$$

$$x_4 = 1$$

$$x_5 = 0$$

$$x_2 = 3$$

$$Z = 21$$

GSI027 Otimização 2023/1 24 / 68

Situações especiais

1. Empate na entrada da base

Na condição de otimalidade, quando se busca a variável que entrará na base; se houver empate escolhe-se arbitrariamente qual deverá de fato entrar. **Única implicação**: pode-se escolher um caminho mais longo ou mais curto – dependendo da escolha – para se chegar à solução ótima

Exemplo: problema envolvendo maximização da função objetivo

$$Z = 4x_1 + 4x_2 + 3x_3$$

Note que o maior coeficiente é 4, e está associado a duas variáveis (x_1 e x_2). Na 1a. iteração, deve-se escolher qual das duas entrará (aparecerão como -4 no quadro inicial).

GSI027 Otimização 2023/1 25 / 68

2. Empate na saída da base

Na condição de viabilidade, quando se busca a variável que sairá na base, se houver empate em geral *também* se escolhe arbitrariamente qual deverá de fato sair.

Exemplo:

 $\max Z = 5x_1 + 2x_2$, sujeito a

$$x_1 \le 3$$

 $x_2 \le 4$
 $4x_1 + 3x_2 \le 12$
 $x_1 > 0, x_2 > 0$

GS1027 Otimização 2023/1 26 / 68

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	b
$L_0^{(0)}$	Z	-5	-2	0	0	0	0
$L_{1}^{(0)}$	<i>X</i> 3	1	0	1	0	0	3
$L_2^{(0)}$	<i>X</i> 4	0	1	0	1	0	4
$L_3^{(0)}$	<i>X</i> 5	1 0 4	3	0	0	1	12

 x_1 entrará na base. As candidatas a sair da base (menor razão não-negativa):

$$x_3: \frac{b_1}{c_{11}} = \frac{3}{1} = 3$$
 $x_5: \frac{b_3}{c_{31}} = \frac{12}{4} = 3$

Escolhe-se, por exemplo, x_3 para deixar a base:

GSI027	Otimização	2023	/1 27 / 68

		<i>x</i> ₁	$\downarrow x_2$	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	b
$L_0^{(1)}$	Z		-2	5	0	0	15
$L_1^{(1)}$	x_1	1	0 1 3	1	0	0	3
$L_2^{(1)}$	x_1 x_4 $\leftarrow x_5$	0	1	0	1	0	4
$L_3^{(1)}$	$\leftarrow x_5$	0	3	-4	0	1	0

Note que x_5 é nula, mesmo sendo variável básica. Isto ocorre devido à condição de empate e a solução viável encontrada é dita **degenerada**.

GSI027 Otimização 2023/1 28 / 68

				<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	b
$L_0^{(2)}$	Z	0	0	7/3	0	2/3	15
$L_1^{(2)}$		1	0	1	0	0	3
$L_2^{(2)}$	<i>X</i> 4	0	0	4/3	1	-1/3	4
$L_3^{(2)}$	<i>x</i> ₂	0	1	-4/3	0	$0 \\ -1/3 \\ 1/3$	0

Pode ocorrer a ciclagem (ou retorno cíclico) – o valor da função objetivo não melhora, sendo possível que o método entre em uma sequência de iterações sem nunca melhorar tal valor e satisfazer a condição de otimalidade. Neste exemplo, esta última foi satisfeita (encontrou-se solução ótima).

GSI027 Otimização 2023/1 29 / 68

Exemplo de caso em que ocorre ciclagem (Taha, 2008):

$$\max Z = \frac{3}{4}x_1 - 20x_2 + \frac{1}{2}x_3 - 6x_4$$

sujeito a

$$\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 \le 0$$

$$\frac{1}{2}x_1 - 12x_2 - \frac{1}{2}x_3 + 3x_4 \le 0$$

$$x_3 \le 1$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$$

GSI027 Otimização 2023/1 30 / 68

- O sistema encontra-se na forma padrão.
- Na forma de equações:

$$\max Z(x_1, x_2, x_3, x_4, x_5, x_6, x_7) - \frac{3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4 = 0$$

sujeito a

$$\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 + x_5 = 0$$

$$\frac{1}{2}x_1 - 12x_2 - \frac{1}{2}x_3 + 3x_4 + x_6 = 0$$

$$x_3 + x_7 = 1$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0, x_7 \ge 0$$

GSI027 Otimização 2023/1 31/68

GSI027 Otimização 2023/1 32 / 68

					<i>X</i> ₄		<i>x</i> ₆		
$L_0^{(2)}$	Z	0	0	-2	18	1	1	0	0
$L_1^{(2)}$	$\leftarrow x_1$	1	0	8	-84	-12	8	0	0
$L_2^{(2)}$	<i>x</i> ₂	0	1	3/8	-84 $-15/4$	-1/2	1/4	0	0
$L_3^{(2)}$					0				

GSI027 Otimização 2023/1 33 / 68

GSI027 Otimização 2023/1 34 / 68

		$\downarrow x_1$	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	b
$L_0^{(6)}$	Z	-3/4	20	-1/2	6	0	0	0	0
$L_1^{(6)}$	$\leftarrow x_5$	1/4	-8	-1	9	1	0	0	0
$L_2^{(6)}$	<i>x</i> ₆	1/2	-12	-1/2	3	0	1	0	0
$L_3^{(6)}$		0							

Tal quadro é exatamente igual ao inicial: ao se prosseguir com o algoritmo, a mesma sequência de quadros se repetirá sem melhoria do valor da função objetivo (laço infinito).

GSI027 Otimização 2023/1 35 / 68

3. Soluções múltiplas

Modelo de PL apresenta mais de uma solução ótima.

Exemplo:

 $\max Z = 2x_1 + 4x_2$, sujeito a

$$x_1 + 2x_2 \le 5$$

 $x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$

GSI027 Otimização 2023/1 36 / 68

A solução é ótima, e tem-se $x_1 = 0$, $x_2 = 5/2$ e Z = 10. O coeficiente de x_1 (não-básica) em L_0 é zero, indicando que a mesma pode entrar na base, de modo que o valor da função objetivo fique inalterado – apenas os valores das variáveis se alteram.

GS1027 Otimização 2023/1 37 / 68

Forçando-se a saída de x_4 da base, inserindo-se x_1 em seu lugar, tem-se nova solução em $x_1=3, x_2=1$ e Z=10.

Qualquer **combinação convexa** desta solução e da anterior também será uma solução ótima. Graficamente: segmento de reta entre os pontos (0.5/2) e (3.1)

GS1027 Otimização 2023/1 38 / 68

4. Função objetivo ilimitada

- Outro resultado possível é aquele no qual nenhuma variável se qualifica para ser a variável básica a deixar a base.
- Este resultado ocorre quando a variável que entra na base pode ser aumentada indefinidamente sem dar valores negativos a qualquer das variáveis básicas atuais. Na forma tabular, isso significa que todos os coeficientes da coluna pivô (excluindo-se a linha L_0) são negativos ou zero.
- Neste caso, as restrições não impedem que o valor da função objetivo cresça indefinidamente.
- Isto ocorre, provavelmente, porque o modelo foi mal formulado, seja por omitir restrições relevantes, seja por declará-las de modo incorreto.

 GSI027
 Otimização
 2023/1
 39 / 68

Exemplo:

$$\max Z = 2x_1 + x_2$$
 sujeito a

$$x_1 - x_2 \le 10$$

 $2x_1 \le 40$
 $x_1 \ge 0, x_2 \ge 0$

Todos os coeficientes das restrições sob x_2 são todos negativos ou zero. Note que x_2 pode ser aumentada indefinidamente sem desobedecer nenhuma das restrições. Embora x_1 entre na base pelo critério de otimalidade, note que caso x_2 entrasse na base, nem x_3 nem x_4 poderia sair da mesma pelo critério de viabilidade.

GSI027 Otimização 2023/1 40 / 68

		x_1	$\downarrow x_2$	<i>X</i> 3	<i>X</i> 4	b
$L_0^{(1)}$	Z	0	-3	2	0	20
$L_{1}^{(1)}$	x_1	1	-1	1	0	10
$L_2^{(1)}$	$\leftarrow x_4$	0	2	-2	1	20

Como consequência do observado para x_2 no quadro inicial, agora x_3 possui as mesmas características, sendo a única variável candidata a entrar na base: nem x_1 nem x_2 podem sair.

Obs.: É suficiente a análise do quadro inicial para concluir que a solução é ilimitada.

GSI027 Otimização 2023/1 41/68

5. Problema de minimização

Quando a função objetivo tiver de ser minimizada pode-se fazer duas coisas, a saber:

- Inverter o teste de otimização e o critério de entrada na base. Assim, se todos os coeficientes da linha L_0 forem negativos, ou nulos, a solução é ótima. Caso contrário, escolha a variável x_j para entrar que apresente o maior valor.
- Transformar o problema de minimização em um problema de maximização. Sabe-se que achar o mínimo de uma função é equivalente a encontrar o máximo do simétrico desta função.
 - ▶ **Exemplo:** min $W = 2x_1 + 3x_2 \Leftrightarrow \max Z = -2x_1 3x_2$. Depois, na solução final, fazer W = -Z.

GSI027 Otimização 2023/1 42 / 68

- Um aspecto de problemas de minimização é que em geral as restrições contém desigualdades do tipo \geq (maior-ou-igual).
- Os exemplos abordados com o simplex são todos problemas de maximização, onde as restrições são do tipo

$$c_{i1}x_1+c_{i2}x_2+\cdots+c_{in}x_n\leq b_i,$$

onde a constante do lado direito b_i é tal que $b_i \ge 0$ (forma padrão).

- ► Sob esta forma, as variáveis acrescentadas são de folga e o problema pode ser resolvido como visto.
- ▶ Problemas com restrições envolvendo a desigualdade ≥ ou mesmo igualdade (=) exigem etapas adicionais.

GS1027 Otimização 2023/1 43 / 68

Lado direito negativo

- Para que a resolução vista possa ser empregada, é preciso que o lado direito das restrições seja não-negativo.
- Por exemplo, a restrição

$$-x_1 + x_2 \le -3$$

leva ao surgimento da equação

$$-x_1 + x_2 + x_3 = -3, x_3 \ge 0.$$

GSI027 Otimização 2023/1 44 / 68

• O problema é resolvido fazendo-se a multiplicação de ambos os lados por -1:

$$x_1 - x_2 - x_3 = 3$$
.

• Neste caso, o coeficiente de x_3 é -1. Logo, esta não pode entrar na base (na equação reescrita é variável **de excesso**). Isto equivale a partirmos da inequação

$$x_1-x_2\geq 3.$$

(nada mais do que a inequação original multiplicada por -1 – a designaldade é invertida).

GSI027 Otimização 2023/1 45 / 68

Solução inicial artificial

- Para se iniciar a resolução de problemas de PL "mal comportados" (com restrições do tipo \geq e =) deve se adotar variáveis artificiais
- Estas desempenham o papel de folgas na primeira iteração.
- São descartadas em iterações posteriores.
- Dois métodos:
 - ► Método do *M*-grande;
 - Método das duas fases.

GS1027 Otimização 2023/1 46 / 68

Considere o seguinte problema:

max
$$Z = 5x_1 + 2x_2$$
 sujeito a:

$$x_1 \le 3$$
 $x_2 \le 4$
 $x_1 + 2x_2 \ge 9$
 $x_1 \ge 0, x_2 \ge 0$

max Z tal que $Z - 5x_1 - 2x_2 = 0$ sujeito a:

$$x_1 + x_3 = 3$$

 $x_2 + x_4 = 4$
 $x_1 + 2x_2 - x_5 = 9$
 $x_1, \dots, x_5 \ge 0$

- Variáveis não-básicas: $x_1 = x_2 = 0$.
- Variáveis básicas: $x_3 = 3, x_4 = 4, x_5 = -9$.
- Não é solução viável, pois x₅ deveria ser não-negativa.

GSI027 Otimização 2023/1 47 / 68

Pode-se acrescentar uma variável artificial na equação problemática. Esta variável ocupará o lugar de x_5 na base inicial. Logo:

max Z tal que $Z - 5x_1 - 2x_2 = 0$ sujeito a:

$$x_1 + x_3 = 3$$
 $x_2 + x_4 = 4$
 $x_1 + 2x_2 - x_5 + t_1 = 9$
 $x_1, \dots, x_5, t_1 \ge 0$

- Variáveis não-básicas: $x_1 = x_2 = x_5 = 0$.
- Variáveis básicas: $x_3 = 3, x_4 = 4, t_1 = 9.$
- Os sistemas somente se equivalem se a variável artificial t_1 for nula.
- As variáveis artificiais não têm significado no problema real, mas permitem a inicialização do processo de maneira automática.

Método do M-grande

- Como as variáveis artificiais não fazem parte do modelo, estas sofrerão punições na função objetivo:
 - ► As punições visam zerar tais variáveis na solução ótima.
 - ▶ Isto sempre ocorrerá se houver solução viável.

Regra de penalização das variáveis artificiais

Dado M>0, valor suficientemente alto $(M\to\infty)$, o coeficiente na função objetivo representa uma punição adequada quando igual a:

- ► -M, em problemas de maximização;
- ▶ *M*, em problemas de minimização.
- O valor de *M* deve ser suficientemente grande *em relação aos demais* coeficientes da função objetivo, de modo a forçar as variáveis a ter valor nulo no ótimo.

GSI027 Otimização 2023/1 49 / 68

Retornando ao exemplo anterior:

max
$$Z = 5x_1 + 2x_2 - Mt_1$$
 sujeito a:

$$x_1 + x_3 = 3$$

 $x_2 + x_4 = 4$
 $x_1 + 2x_2 - x_5 + t_1 = 9$
 $x_1, \dots, x_5, t_1 > 0$

max
$$Z$$
 tal que $Z - 5x_1 - 2x_2 + 100t_1 = 0$ sujeito a:

$$x_1 + x_3 = 3$$
 $x_2 + x_4 = 4$
 $x_1 + 2x_2 - x_5 + t_1 = 9$
 $x_1, \dots, x_5, t_1 \ge 0$

• Como os coeficientes na função objetivo são 5 e 2, parece razoável definir M=100.

GS1027 Otimização 2023/1 50 / 68

• Quadro inicial:

							t_1	b
$L_0^{(0)}$	Z	-5	-2	0	0	0	100	0
$L_1^{(0)}$	X3	1	0	1	0	0	0	3
$L_2^{(0)}$	<i>X</i> ₄	0	1	0	1	0	0	4
$L_3^{(0)}$	t_1	1 0 1	2	0	0	-1	1	9

- A linha L_0 é **inconsistente** com o resto da tabela, uma vez que $t_1 = 9$ (t_1 está na base) e portanto Z = -900.
- Para empregar a resolução do simplex, é preciso que os coeficientes das variáveis básicas na linha L_0 sejam todos nulos. Este ajuste inicial pode ser feito redefinindo-se esta linha como sendo a soma dela mesma com a linha associada a t_1 multiplicada por -M:

$$L_0^{(0)} = L_0^{(0)} - ML_3^{(0)} = L_0^{(0)} - 100L_3^{(0)}$$

GSI027 Otimização 2023/1 51 / 68

O quadro inicial então se torna

		<i>x</i> ₁	$\downarrow x_2$	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	t_1	b
$L_0^{(0)}$		-105	-202	0	0	100	0	-900
$L_1^{(0)}$	-	1	0	1	0	0	0	3
$L_2^{(0)}$	$\leftarrow x_4$	0	1	0	1	0	0	4
$L_3^{(0)}$	t_1	1	2	0	0	-1	1	9

• Detalhamento:

GSI027 Otimização 2023/1 52 / 68

Solução básica viável inicial

$$x_3 = 3$$

$$x_4 = 4$$

$$t_1 = 9$$

$$x_2 = 0$$

 $x_1 = 0$

$$x_5 = 0$$

$$Z = -900$$

GSI027 Otimização 2023/1 53 / 68

		$\downarrow x_1$	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	t_1	b
$L_0^{(1)}$		-105					0	-92
$L_1^{(1)}$	X3	1	0	1	0	0	0	3
$L_{2}^{(1)}$	X ₂	0	1	0	1	0	0	4
$L_3^{(1)}$	$\leftarrow t_1$	1	0	0	-2	-1	1	1

		<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	$\downarrow x_5$	t_1	b
$L_0^{(3)}$	Z	0	0	4	0	-1	101	l
$L_1^{(3)}$	$\leftarrow x_4$	0	0	1/2	1	1/2	-1/2	1
$L_2^{(3)}$	<i>x</i> ₂	0	1	-1/2	0	1/2 - 1/2	1/2	3
$L_3^{(3)}$	<i>x</i> ₁	1	0	1	0	0	0	3

							t_1	b
$L_0^{(4)}$	Z	0	0	5	2	0	100	23
$L_1^{(4)}$		0	0	1	2	1	-1	2
$L_2^{(4)}$	<i>X</i> ₂	0	1	0	1	0	0	4
$L_3^{(4)}$	<i>x</i> ₁	1	0	1	0	0	-1 0 0	3

GS1027 Otimização 2023/1 55 / 68

O método do M-grande pode resultar em **erros de arredondamento** durante a fase de punição do valor M – definido sempre de forma relativamente arbitrária.

- Na prática, usa-se o método das duas fases, desenvolvido posteriormente.
- O método das duas fases está implementado em praticamente todos os pacotes comerciais para resolução de problemas de PL.

GSI027 Otimização 2023/1 56 / 68

Método das duas fases

- Alternativa ao método do *M*-grande, contornando a dificuldade do mesmo por eliminar o uso da constante *M*.
- Inicialmente, variáveis artificiais são introduzidas ao modelo, como no método anterior.
- Como o nome sugere, há duas fases ou etapas:
 - ► Fase I: consiste em resolver um problema de minimização cuja função objetivo é dada pelo somatório das variáveis artificiais. Espera-se que o mínimo seja zero (requisito para Fase II).

Observação

Caso o valor mínimo da soma seja diferente de zero, o problema não tem nenhuma solução viável, o que encerra o processo — variável artificial positiva indica que restrição original não foi satisfeita.

► Fase II: Usa-se a solução da Fase I como solução básica viável inicial para o problema original.

GSI027 Otimização 2023/1 57 / 68

Seja o problema:

$$\max Z = 4x_1 + x_2$$

sujeito a

$$3x_1 + x_2 = 3$$

 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$

Variáveis de folga:

$$\max Z = 4x_1 + x_2$$

sujeito a

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 - x_3 = 6$$

$$x_1 + 2x_2 + x_4 = 4$$

$$x_1 \ge 0, \dots, x_4 \ge 0$$

Como não há uma solução básica viável são inseridas as variáveis artificiais t_1 e t_2 às restrições envolvendo \geq e =:

$$\max Z = 4x_1 + x_2$$

sujeito a

$$3x_1 + x_2 + t_1 = 3$$

$$4x_1 + 3x_2 - x_3 + t_2 = 6$$

$$x_1 + 2x_2 + x_4 = 4$$

$$x_1 \ge 0, \dots, x_4 \ge 0, t_1 \ge 0, t_2 \ge 0.$$

A função objetivo inicial será portanto

$$W = t_1 + t_2$$

GSI027 Otimização 2023/1 59 / 68

Fase I

$$\min W = t_1 + t_2$$

sujeito a

$$3x_1 + x_2 + t_1 = 3$$

 $4x_1 + 3x_2 - x_3 + t_2 = 6$
 $x_1 + 2x_2 + x_4 = 4$
 $x_1 \ge 0, \dots, x_4 \ge 0, t_1 \ge 0, t_2 \ge 0$.

GSI027 Otimização 2023/1 60 / 68

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3				b
$L_0^{(0)}$	$\overline{-W}$	0	0	0	0	1	1	0
$L_1^{(0)}$ $L_2^{(0)}$	t_1	3	1	0	0	1	0	3
$L_2^{(0)}$	t_2	4	3	-1	0	0	1	6
$L_3^{(0)}$	$-vv$ t_1 t_2 x_4	1	2	0	1	0	0	4

Como a linha L_0 é **incompatível** com o sistema – possui coeficientes para variáveis t_1 e t_2 da base – faz-se $L_0^{(0)} = L_0^{(0)} - L_1^{(0)} - L_2^{(0)}$:

		$\downarrow x_1$	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	t_1	t_2	b
$L_0^{(0)}$	-W	-7	-4	1	0	0	0	<u>-9</u>
$L_1^{(0)}$	$\leftarrow t_1$	3	1	0	0	1	0	3
$L_2^{(0)}$	t_2	4	3	-1	0	0	1	6
$L_3^{(0)}$	$\begin{array}{c} \leftarrow t_1 \\ t_2 \\ x_4 \end{array}$	1	2	0	1	0	0	4

GSI027 Otimização 2023/1 61/68

Detalhamento:

GSI027 Otimização 2023/1 62 / 68

		<i>x</i> ₁	$\downarrow x_2$	<i>X</i> 3	<i>X</i> 4	t_1	t_2	b
$L_0^{(1)}$	-W	0	-5/3	1	0	7/3	0	-2
$L_1^{(1)}$	<i>x</i> ₁	1	1/3	0	0	1/3	0	1
$L_2^{(1)}$	$\leftarrow t_2$	0	1/3 5/3	-1	0	-4/3	1	2
$L_3^{(1)}$	<i>X</i> ₄	0	5/3	0	1	-1/3	0	3

				<i>X</i> 3			t_2	b
$L_0^{(2)}$	-W	0	0	0	0	1	1	0
$L_1^{(2)}$		1	0	1/5	0	3/5	-1/5	3/5
$L_2^{(2)}$	<i>x</i> ₂	0	1	-3/5	0	-4/5	3/5	6/5
$L_3^{(2)}$	<i>X</i> ₄	0	0	1	1	3/5 -4/5 1	1	1

GSI027 Otimização 2023/1 63 / 68

- No quadro (2), -W=0 (logo, W=0), e não há coeficientes negativos para as variáveis fora da base. Portanto, a fase I está concluída.
- A solução básica viável é dada por:

$$x_1 = 3/5$$
 $x_2 = 6/5$ $x_4 = 1$

(apenas variáveis básicas). As demais, bem como a função objetivo W são nulas.

- Neste momento, pode-se eliminar totalmente as colunas das variáveis artificiais t_1 e t_2 e passar à fase II.
 - ► Eliminam-se também as linhas, quando for o caso (variáveis artificiais fora da base).

GSI027 Otimização 2023/1 64 / 68

Fase II

Após eliminar as colunas das variáveis artificiais, reescreve-se o problema original como:

$$\max Z = 4x_1 + x_2$$

sujeito a

$$x_1 + 1/5x_3 = 3/5$$

 $x_2 - 3/5x_3 = 6/5$
 $x_3 + x_4 = 1$
 $x_1 \ge 0, \dots, x_4 \ge 0$.

GSI027 Otimização 2023/1 65 / 68

Quadro inicial desta fase – note que é preciso adequar a linha L_0 antes de prosseguir para o algoritmo do simplex:

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	b
$L_0^{(0)}$	Z	-4	-1	0	0	0
$L_{1}^{(0)}$	<i>x</i> ₁	1	0	1/5 -3/5	0	3/5
$L_{2}^{(0)}$	<i>X</i> ₂	0	1	-3/5	0	6/5
$L_3^{(0)}$	<i>X</i> ₄	0	0	1	1	1

GSI027 Otimização 2023/1 66 / 68

Exercícios I

- 1 Determine a solução ótima a partir do quadro anterior (Fase II).
- 2 Usando simplex, determine a solução do problema

$$\min f(x_1, x_2) = 65x_1 + 30x_2$$

sujeito a

$$2x_1 + 3x_2 \ge 7$$

 $3x_1 + 2x_2 \ge 9$
 $x_1 \ge 1$
 $x_1 \ge 0, x_2 \ge 0$.

GSI027 Otimização 2023/1 67 / 68

Referências

- MARINS, F. A. S. Introdução à pesquisa operacional. São Paulo: Cultura Acadêmica, 2011.
- 2 TAHA, H. *Pesquisa operacional*. 8^a. ed. São Paulo: Prentice Hall, 2008.

Os materiais de parte desta seção foram gentilmente cedidos por Paulo H. R. Gabriel (FACOM/UFU)

Adaptações: Renato Pimentel, FACOM/UFU

GSI027 Otimização 2023/1 68 / 68