ENDOMORPHISMES DE (R,+) MESURABLES

Dans toute la suite, le cadre est $(\mathbf{R}^d, \mathcal{B}(\mathbf{R}^d), \lambda)$, où λ est la mesure de Lebesgue, pour un certain $d \in \mathbf{N}$.

Exercice 1. Montrer que la mesure de Lebesgue sur $(\mathbf{R}^d, \mathcal{B}(\mathbf{R}^d))$ est régulière.

Exercice 2 (Théorème de Steinhaus). Soit $A \in \mathcal{B}(\mathbf{R}^d)$ un borélien non négligeable.

Montrer que $A - A := \{a_1 - a_2; a_i \in A\}$ contient une boule ouverte de centre 0 de rayon strictement positif.

Exercice 3. Déterminer tous les endomorphismes de $(\mathbf{R}, +)$ mesurables.

Correction de l'exercice 1. On montre pour cela un résultat préliminaire : pour tout borélien B, pour tout $\varepsilon > 0$, il existe un fermé F_{ε} , un ouvert U_{ε} vérifiant

$$\lambda(U_{\varepsilon}\backslash F_{\varepsilon}) \leqslant \varepsilon \quad \text{et} \quad F_{\varepsilon} \subseteq B \subseteq U_{\varepsilon}$$

On note \mathcal{A} la collection d'éléments de $\mathcal{B}(\mathbf{R}^d)$ vérifiant (*) pour tout $\varepsilon > 0$ et montre que c'est une tribu contenant les fermés de \mathbf{R}^d .

D'abord, toute partie A fermée appartient à \mathcal{A} . En effet, soit $\varepsilon > 0$; on pose d'abord $F_{\varepsilon} = A$. Ensuite, pour $\delta > 0$, on pose $V_{\delta}(A) = \bigcup_{x \in A} B(x, \delta)$. Posons pour $n \geq 1$, $U_n = V_{\frac{1}{n}}(A)$, ouvert comme union d'ouverts. La suite $(U_n)_{n \geq 1}$ est décroissante, et donc par continuité à droite de la mesure λ

$$\lim \lambda(U_n) = \lambda \left(\bigcap_{n \in \mathbf{N}^*} U_n\right)$$

or $\bigcap_{n\in\mathbb{N}^*}U_n=A$. En effet si $x\in\bigcap_{n\in\mathbb{N}^*}U_n$, pour tout $n\geqslant 1$, il existe $y_n\in A$ tel que $\|x-y_n\|\leqslant \frac{1}{n}$. La suite (y_n) est bornée, donc on peut en extraire une suite $(y_{\varphi(n)})$ convergente de limite $y\in A$ car A est fermé. Par passage à la limite $\|x-y\|\leqslant 0$ et alors $x=y\in A$; l'autre inclusion est triviale. Ainsi, il existe $n_0\geqslant 1$ vérifiant $0\leqslant \lambda(U_{n_0})-\lambda(A)\leqslant \varepsilon$ et on pose alors $U_\varepsilon=U_{n_0}$ qui convient. Ainsi A contient tous les fermés, donc en particulier \mathbf{R}^d , mais A est également stable par passage au complémentaire. On montre enfin qu'elle stable par union dénombrable. Soient $(A_n)\in \mathcal{A}^{\mathbf{N}^*},\ \varepsilon>0$. Il existe pour tout $n\in \mathbf{N}^*$ des F_n,U_n vérifiant (*) pour A_n et pour $\varepsilon_n=2^{-n}\varepsilon$. Posons $U_\varepsilon=\bigcup_{n\in\mathbb{N}^*}U_n$ (on constate que c'est un ouvert comme union d'ouverts), $G_k=\bigcup_{i=1}^kF_i$ (fermé comme union finie de fermés) pour tout $k\geqslant 1$. $(G_k)_{k\geqslant 1}$ est une suite croissante d'éléments de boréliens, de limite $\bigcup_{n\in\mathbb{N}^*}F_n$, ainsi par continuité à gauche $\lambda(G_k)$ tend vers $\lambda(\bigcup_{n\in\mathbb{N}^*}F_n)$ à mesure que $k\to +\infty$. Mais $\lambda(U_\varepsilon\setminus\bigcup_{n\in\mathbb{N}^*}F_n)=\lambda(\bigcup_{n\in\mathbb{N}^*}(U_n\setminus F_n))\leqslant \varepsilon$ et $\lambda(U_\varepsilon\setminus G_k)$ tend vers $\lambda(U_\varepsilon\setminus\bigcup_{n\in\mathbb{N}^*}F_n)$ à mesure que $k\to +\infty$, donc est plus petit que ε à partir d'un certain k_0 . On pose finalement $F_\varepsilon=F_{k_0}$ et on constate

$$\lambda(U_{\varepsilon} \backslash F_{\varepsilon}) \leqslant \varepsilon \quad \text{et} \quad F_{\varepsilon} \subseteq \bigcup_{n \in \mathbf{N}^*} A_n \subseteq U_{\varepsilon}$$

Ainsi, pour un certain borélien B, pour tout $\varepsilon > 0$, il existe U_{ε} , F_{ε} vérifiant (*), et alors, il existe un certain M > 0 tel que le compact $K_{\varepsilon} = F_{\varepsilon} \cap B(0, M)$ vérifie $\lambda(B\varepsilon \setminus K_{\varepsilon}) \leq \varepsilon$, et alors

$$\varepsilon + \lambda(K_{\varepsilon}) \geqslant \lambda(U_{\varepsilon} \backslash K_{\varepsilon}) + \lambda(K_{\varepsilon}) = \lambda(U_{\varepsilon}) \geqslant \lambda(B)$$

et

$$\lambda(U_{\varepsilon}) = \lambda(U_{\varepsilon} \cap B) + \lambda(U_{\varepsilon} \cap B^{c}) \leqslant \lambda(A) + \lambda(U_{\varepsilon} \setminus K_{\varepsilon}) \leqslant \lambda(B) + \varepsilon$$

ce qui montre, ceci valant pour tout $\varepsilon > 0$,

$$\lambda(B) = \sup_{\substack{K \subseteq B \\ K \text{ compact}}} \lambda(K) = \inf_{\substack{B \subseteq U \\ U \text{ ouvert}}} \lambda(U)$$

ce qui conclut.

Correction de l'exercice 2. D'après l'exercice 1, λ est régulière, et alors il existe K un compact inclus dans A de mesure plus grande que $\lambda(A) - \frac{\lambda(A)}{4} > 0$ car $\lambda(A) > 0$. Toujours par régularité de λ , il existe un ouvert U contenant A et vérifiant

$$\lambda(U) < \lambda(A) + \frac{\lambda(A)}{2} \leqslant 2\lambda(K)$$

Par transitivité de \subseteq , $K \subseteq U$, et alors il existe $\varepsilon > 0$ tel que $K + h \subseteq U$ dès que $||h|| < \varepsilon$. En effet, tout élément $x \in K$ est dans U ouvert, donc il existe un $\varepsilon_x > 0$ tel que $B(x, \varepsilon_x) \subseteq U$. Puis

$$K\subseteq\bigcup_{x\in K}B\left(x,\frac{\varepsilon_{x}}{2}\right)$$

et d'après Borel-Lebesuge, on extrait un recouverement fini de K

$$K \subseteq \bigcup_{k} B\left(x_{j_k}, \frac{\varepsilon_{x_{j_k}}}{2}\right)$$

ainsi, lorsque $x \in K+h$, x=x'+h avec $x' \in K$ donc avec $x' \in B\left(x_{j_k}, \frac{\varepsilon_{x_{j_k}}}{2}\right)$ pour un certain k. D'où $\|x-x_{j_k}\| \leqslant \|x'-x_{j_k}\| + \|h\| \leqslant \frac{\varepsilon_{x_{j_k}}}{2} + \|h\|$, et alors $x \in U$ dès que $\|h\| \leqslant \frac{\min \varepsilon_{x_{j_k}}}{2}$. On a de plus que $K \cap (K+h) \neq \emptyset$ pour tout h de norme assez petite, sinon $2\lambda(K) = \lambda(K \cup (K+h)) \leqslant \lambda(U)$, ce qui conclut.

Correction de l'exercice 3. On montre qu'il s'agit exactement des applications linéaires. Les applications linéaires de \mathbf{R} dans \mathbf{R} sont continues donc mesurables et sont bien évidemment des endomorphismes de $(\mathbf{R}, +)$. Soit f un endomorphisme de $(\mathbf{R}, +)$. Si f n'est pas linéaire, nécessairement il existe $x^* \in \mathbf{R}$ tel que $f(x^*) \neq x^* f(1)$. En fait, on vérifie que pour tout rationnel $q \in \mathbf{Q}$, pour tout réel $x \in \mathbf{R}$, f(qx) = qf(x). Dans ce cas, le graphe de f, qui est l'ensemble

$$G = \{(x, f(x)), \ x \in \mathbf{R}\}\$$

est dense dans \mathbf{R}^2 . En effet, si $(\alpha, \beta) \in \mathbf{R}^2$, et si $\varepsilon > 0$, on montre qu'il existe $x \in \mathbf{R}$ tel que $|x - \alpha| < \varepsilon$ et $|f(x) - \beta| < \varepsilon$ (on travaille avec la norme infinie dans \mathbf{R}^2). On pose $\delta = \beta - \alpha f(1)$, $\varepsilon' = \varepsilon/2$. Comme $f(x^*) - x^* f(1) \neq 0$, on peut choisir $q_0 \in \mathbf{Q}$ tel que $|f(q_0x^*) - q_0x^*f(1) - \delta| < \varepsilon'$ car $f(qx^*) - qx^*f(1) = q(f(x^*) - x^*f(1))$ pour tout $q \in \mathbf{Q}$. Ce q_0 étant choisi, on peut choisir $q_1 \in \mathbf{Q}$ tel que $|f(1)||q_0x^* + q_1 - \alpha| < \varepsilon'$ et $|q_0x^* + q_1 - \alpha| < \varepsilon$, et on aura toujours $|f(q_0x^* + q_1) - (q_0x^* + q_1)f(1) - \delta| < \varepsilon'$ car $f(q_0x^* + q_1) - (q_0x^* + q_1)f(1) = f(q_0x^*) - q_0x^*f(1)$.

Ainsi, on obtient

 $|f(q_0x^* + q_1) - \beta| \le |f(q_0x^* + q_1) - (q_0x^* + q_1)f(1) - \delta| + |f(1)||q_0x^* + q_1 - \alpha| < \varepsilon$

ce qui conclut à la densité de G dans \mathbf{R}^2 . Si de plus f est mesurable, f est bornée au voisinage de 0. En effet, il existe M>0 tel que $A:=f^{-1}(B(0,M))$ est non négligeable, car sinon $\lambda(\mathbf{R})=0$ par continuité à gauche. D'après l'exercice 2, A-A contient un intervalle centre en 0, notons-le I. Donc pour tout $x\in I$, il existe $a_1,a_2\in A$, $x=a_1-a_2$, d'où $|f(x)|=|f(a_1)-f(a_2)|\leqslant 2M$. Ainsi, si f est mesurable, le graphe de f ne peut être dense dans \mathbf{R}^2 , car f est bornée au voisinage de 0, et alors f est nécessairement linéaire.