1 Определения и формулировки

1.1 Внутренняя точка множества, открытое множество, внутренность

a — внутренняя точка множества D, если $\exists U(a):U(a)\subset D$, т.е. $\exists r>0:B(a,r)\subset D$ D — открытое множество, если $\forall a\in D:a$ — внутренняя точка D Внутренностью множества D называется $Int(D)=\{x\in D:x$ — внутр. точка $D\}$

1.2 Предельная точка множества

a — предельная точка множества D, если

$$\forall \dot{U}(a) \ \dot{U}(a) \cap D \neq \emptyset$$

1.3 Замкнутое множество, замыкание, граница

D - замкнутое множество, если оно содержит все свои предельные точки.

 $\overline{D} = D \cup$ (множество предельных точек D) — замыкание.

Граница множества — множество его граничных точек. Обозначается ∂D

1.4 Изолированная точка, граничная точка

a - изолированная точка D, если $a \in D$ и a — не предельная, то есть:

$$\exists U(a) \quad U(a) \cap D = \{a\}$$

a — граничная точка D, если $\forall U(a) \quad U(a)$ содержит точки как из D, так и из D^c

1.5 Описание внутренности множества

- 1. IntD откр. множество
- 2. $IntD = \bigcup_{\substack{D \supset G \\ G \text{ открыт}}}$ максимальное открытое множество, содержащееся в D
- 3. D откр. в $X \Leftrightarrow D = IntD$

1.6 Описание замыкания множества в терминах пересечений

$$\overline{D} = \bigcap_{\substack{D \subset F \\ F-\text{ замкн.}}} F-$$
 мин. (по вкл.) замкн. множество, содержащее D .

1.7 Верхняя, нижняя границы; супремум, инфимум

 $E\subset\mathbb{R}.$ E — orp. сверху, если $\exists M\in\mathbb{R}\ \ \forall x\in E\ \ x\leq M.$ Кроме того, всякие такие M называются верхними границами E.

Аналогично ограничение снизу.

$$E \subset \mathbb{R}, E \neq \emptyset.$$

Для E — огр. сверху супремум (sup E)— наименьшая из верхних границ E.

Для E — огр. сниху инфимум (sup E) — наибольщая из нижних границ E.

1.8 Техническое описание супремума

Техническое описание супремума: $b = \sup E \Leftrightarrow \begin{cases} \forall x \in E \ x \leq b \\ \forall \varepsilon > 0 \ \exists x \in E \ b - \varepsilon < x \end{cases}$

1.9 Последовательность, стремящаяся к бесконечности

B \mathbb{R} :

1.
$$x_n \to +\infty \quad \forall E > 0 \ \exists N \ \forall n > N \ x_n > E$$

2.
$$x_n \to -\infty \quad \forall E \ \exists N \ \forall n > N \ x_n < E$$

3.
$$x_n \to \infty \Leftrightarrow |x_n| \to +\infty$$

1.10 Компактное множество

 $K\subset X$ — компактное, если для любого открытого покрытия \exists конечное подпокрытие $\Leftrightarrow \exists \alpha_1\dots\alpha_n \quad K\subset \bigcup_{i=1}^n G_{\alpha_i}$

1.11 Секвенциальная компактность

1.12 Определения предела отображения (3 шт)

1. По Коши:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ 0 < \rho^X(a, x) < \delta \quad \rho^Y(f(x), A) < \varepsilon$$

2. На языке окружностей:

$$\forall U(A) \ \exists V(a) \ \forall x \in \dot{V}(a) \ f(x) \in U(A)$$

- 3. По Гейне: $\forall (x_n) \text{посл. в } X$:
 - (a) $x_n \to a$
 - (b) $x_n \in D$
 - (c) $x_n \neq a$

$$f(x_n) \to A$$

1.13 Определения пределов в $\overline{\mathbb{R}}$

Для $Y = \overline{\mathbb{R}}, -\infty < x < +\infty$:

1.
$$\lim_{x \to a} f(x) = +\infty$$
: $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x - a| < \delta \ f(x) > E$

2.
$$\lim_{x \to a} f(x) = -\infty$$
: $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x - a| < \delta \ f(x) < E$

3.
$$\lim_{x \to +\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x > \delta \ |f(x) - c| < \varepsilon$$

4.
$$\lim_{x \to -\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x < \delta \ |f(x) - c| < \varepsilon$$

1.14 Предел по множеству

Предел при $x o x_0$ по множеству D_1 — это $\lim_{x o x_0} f|_{D_1}$

1.15 Односторонние пределы

В $\mathbb R$ одностор. = $\{$ левостор., правостор. $\}$ Левостор. $\lim_{x\to x_0-0}f(x)=L$ - это $\lim f|_{D\cap(-\infty,+\infty)}$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (x_0 - \delta, x_0) \cap D \ |f(x) - L| < \varepsilon$$

Аналогично правостор.

1.16 Непрерывное отображение

 $f: D \subset X \to Y \quad x_0 \in D$ f — непрерывное в точке x_0 , если:

- 1. $\lim_{x \to x_0} f(x) = f(x_0)$, либо x_0 изолированная точка D
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ \rho(x, x_0) < \delta \ \rho(f(x), f(x_0)) < \varepsilon$
- 3. $\forall U(f(x_0)) \ \exists V(x_0) \ \forall x \in V(x_0) \cap D \ f(x) \in U(f(x_0))$
- 4. По Гейне $\forall (x_n): x_n \to x_0; x_n \to D \ f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$

1.17 Непрерывность слева

f — непр. слева в x_0 , если $f|_{(-D,x_0]\cap D}$ — непрерывно в x_0

1.18 Разрыв, разрывы первого и второго рода

Если $ot\equiv\lim_{x\to x_0}f(x)$, либо $\exists\lim_{x\to x_0}f(x)\neq f(x_0)$ — точка разрыва.

Пусть $\exists f(x_0-0), f(x_0+0)$ и не все 3 числа равны: $f(x_0-0), f(x_0), f(x_0+0)$. Это разрыв I рода *(скачок)*.

Остальные точки разрыва — разрыв II рода.

1.19 О большое, о маленькое

 $f,g:D\subset X o\mathbb{R}$ x_0 — пр. точка D Если $\exists V(x_0)$ $\exists arphi:V(x_0)\cap D o\mathbb{R}$ f(x)=g(x)arphi(x) при $x\in V(x_0)\cap D$

- 1. φ ограничена. Тогда говорят f=O(g) при $x\to x_0$ " f ограничена по сравнению с q при $x\to x_0$ "
- 2. $\varphi(x) \xrightarrow[x \to x_0]{} 0$ f беск. малая по отношению к g при $x \to x_0$, f = o(g)
- 3. $\varphi(x) \xrightarrow[x \to x_0]{} 1$ f и g экв. при $x \to x_0$ $f \underset{x \to x_0}{\sim} g$

Примечание. О большое и о малое — разные вопросы в табличке.

1.20 Эквивалентные функции, таблица эквивалентных

Эквивалентные функции даны выше.

Таблица эквивалентных?

1.21 Асимптотически равные (сравнимые) функции

В условиях прошлых определений $f=O(g), g=O(f)\Leftrightarrow f\asymp g$ — асимптотически сравнимы на множестве D, "величины одного порядка".

1.22 Асимптотическое разложение

$$g_n:D\subset X o \mathbb{R}$$
 x_0 — пред. точка D $orall n=0$ $g_{n+1}(x)=o(g_n), x o x_0$ Пример. $g_n(x)=x^n, n=0,1,2\dots$ $x o 0$ $g_{n+1}=xg_n, x o 0$

 (g_n) называется шкала асимптотического разложения.

 $f:D\to\mathbb{R}$ Если $f(x)=c_0g_0(x)+c_1g_1(x)+\ldots+c_ng_n(x)+o(g_n)$, то это асимптотическое разложение f по шкале (g_n)

1.23 Наклонная асимптота графика

Пусть
$$f(x)=Ax+B+o(1), x\to +\infty$$

Прямая $y=Ax+B$ — наклонная асимптота к графику f при $x\to +\infty$

1.24 Путь в метрическом пространстве

$$Y$$
 — метр. пр-во $\gamma:[a,b] o Y$ — непр. на $[a,b]$ = путь в пространстве Y

1.25 Линейно связное множество

$$E\subset Y$$
 E — линейно связное, если $\forall A,B\in E$ \exists путь $\gamma:[a,b]\to E$ $\gamma(a)=A$ $\gamma(b)=B$