

ULN200x, ULQ200x High-Voltage, High-Current Darlington Transistor Arrays

1 Features

- 500mA-rated collector current (single output)
- High-voltage outputs: 50V
- Output clamp diodes
- Inputs compatible with various types of logic
- Relay-driver applications

2 Applications

- Relay Drivers
- Stepper and DC Brushed Motor Drivers
- **Lamp Drivers**
- Display Drivers (LED and Gas Discharge)
- Line Drivers
- Logic Buffers

3 Description

The ULx200xA devices are high-voltage, high-current Darlington transistor arrays. Each consists of seven NPN Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads.

The collector-current rating of a single Darlington pair is 500mA. The Darlington pairs can be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. For 100V (otherwise interchangeable) versions of the ULx2003A devices, see the SLRS023 data sheet for the SN75468 and SN75469 devices.

The ULN2002A device is designed specifically for use with 14V to 25V PMOS devices. Each input of this device has a Zener diode and resistor in series to control the input current to a safe limit. The ULx2003A devices have a 2.7k\O series base resistor for each Darlington pair for operation directly with TTL or 5V CMOS devices.

The ULx2004A devices have a $10.5k\Omega$ series base resistor to allow operation directly from CMOS devices that use supply voltages of 6V to 15V. The required input current of the ULx2004A device is below that of the ULx2003A devices, and the required voltage is less than that required by the ULN2002A device.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
ULN200xAD	SOIC (16)	9.90mm × 3.91mm
ULN200xAN	PDIP (16)	19.30mm × 6.35mm
ULN200xANS	SOP (16)	10.30mm × 5.30mm
ULN200xAPW	TSSOP (16)	5.00mm × 4.40mm
ULN2003ADYY	SOT (16)	4.20mm × 2.00mm

- For all available packages, see the orderable addendum at the end of the data sheet.
- The package size (length × width) is a nominal value and (2)includes pins, where applicable.

Simplified Block Diagram

Table of Contents

1 Features	6 Parameter Measurement Information	12
2 Applications	7 Detailed Description	14
3 Description		14
4 Pin Configuration and Functions	7.2 Functional Block Diagrams	14
5 Specifications	7.3 Feature Description	.1
5.1 Absolute Maximum Ratings	7.4 Device Functional Modes	.1
5.2 ESD Ratings	8 Application and Implementation	16
5.3 Recommended Operating Conditions	8.1 Application Information	16
5.4 Thermal Information	- 71 11	1
5.5 Electrical Characteristics: ULN2002A	8.3 System Examples	19
5.6 Electrical Characteristics: ULN2003A and	8.4 Power Supply Recommendations	19
ULN2004A		
5.7 Electrical Characteristics: ULN2003AI	9 Device and Documentation Support	2
5.8 Electrical Characteristics: ULN2003AI	9.1 Documentation Support	2
5.9 Electrical Characteristics: ULQ2003A and	9.2 Related Links	
ULQ2004A	9.3 Receiving Notification of Documentation Updates	2
5.10 Switching Characteristics: ULN2002A,	9.4 Support Resources	2
ULN2003A, ULN2004A		
5.11 Switching Characteristics: ULN2003AI	9.6 Electrostatic Discharge Caution	2
5.12 Switching Characteristics: ULN2003AI		
5.13 Switching Characteristics: ULQ2003A,	10 Revision History	2
ULQ2004A	, 0,	
5.14 Typical Characteristics1	Information	22

4 Pin Configuration and Functions

Figure 4-1. D, N, NS, and PW Package 16-Pin SOIC, PDIP, SO, and TSSOP Top View

Table 4-1. Pin Functions

	PIN	I/O ⁽¹⁾	DESCRIPTION
NAME	NO.	1/0(*/	DESCRIPTION
1B	1		
2B	2		
3B	3		
4B	4	l I	Channel 1 through 7 Darlington base input
5B	5		
6B	6		
7B	7		
1C	16		
2C	15		
3C	14		
4C	13	0	Channel 1 through 7 Darlington collector output
5C	12		
6C	11		
7C	10	1	
СОМ	9	_	Common cathode node for flyback diodes (required for inductive loads)
E	8	_	Common emitter shared by all channels (typically tied to ground)

(1) I = Input, O = Output

5 Specifications

5.1 Absolute Maximum Ratings

at 25°C free-air temperature (unless otherwise noted)(1)

			MIN	MAX	UNIT	
V _{CC}	Collector-emitter voltage			50	V	
	Clamp diode reverse voltage ⁽²⁾			50	V	
VI	Input voltage ⁽²⁾			30	V	
	Peak collector current, See Figure 5-4 and Figure 5-5			500	mA	
I _{OK}	Output clamp current			500	mA	
	Total emitter-terminal current			-2.5	Α	
	UI	LN200xA	-40	70		
	UI	LN200xAI	-40	105	°C	
TA	Operating free-air temperature range	LQ200xA	-40	85		
	UI	LQ200xAT	-40	105		
	UI	LN2004ADR	-40	105		
TJ	Operating virtual junction temperature			150	°C	
	Lead temperature for 1.6 mm (1/16 inch) from case for 10 seconds			260	°C	
T _{stg}	Storage temperature		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
\/		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _{(ES}	^{SD)} discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Collector-emitter voltage (non-V devices)	0	50	V
T_J	Junction temperature	-40	125	°C

5.4 Thermal Information

			ULx200x						
THERMAL METRIC(1)		D (SOIC)			PW (TSSOP)	DYY (SOT)	UNIT		
			16 PINS	16 PINS	16 PINS	16 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	88.6	66.7	95.0	114.1	123.1	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	50.1	54.2	53.3	50.3	59.6	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	49.8	46.7	57.2	59.3	56.5	°C/W		
ΨЈТ	Junction-to-top characterization parameter	12.4	33.7	19.6	9.7	3.2	°C/W		

⁽²⁾ All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.4 Thermal Information (continued)

THERMAL METRIC ⁽¹⁾									
		D (SOIC)	N (PDIP)	NS (SO)	PW (TSSOP)	DYY (SOT)	UNIT		
		16 PINS	16 PINS	16 PINS	16 PINS	(,			
ΨЈВ	Ψ _{JB} Junction-to-board characterization parameter		46.4	56.8	58.9	56.0	°C/W		

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

5.5 Electrical Characteristics: ULN2002A

 $T_A = 25^{\circ}C$

	DADAMETED	TEST FIGURE	TEGT O	ONDITIONS	UL	N2002A		UNIT	
	PARAMETER	1EST FIGURE	IESIC	CNDITIONS	MIN	TYP	MAX	UNII	
V _{I(on)}	ON-state input voltage	Figure 6-6	V _{CE} = 2 V,	I _C = 300 mA			13	V	
V _{OH}	High-level output voltage after switching	Figure 6-10	V _S = 50 V, I _O :	= 300 mA	V _S - 20			mV	
			I _I = 250 μA,	I _C = 100 mA		0.9	1.1		
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 6-4	I _I = 350 μA,	I _C = 200 mA		1	1.3	V	
	voltago		I _I = 500 μA,	I _C = 350 mA		1.2	1.6		
V _F	Clamp forward voltage	Figure 6-7	I _F = 350 mA			1.7	2	V	
		Figure 6-1	V _{CE} = 50 V,	I ₁ = 0			50		
I _{CEX}	Collector cutoff current	Figure 0.0	V _{CE} = 50 V,	I _I = 0			100	0 μΑ	
		Figure 6-2	T _A = 70°C	V _I = 6 V			500		
I _{I(off)}	OFF-state input current	Figure 6-2	V _{CE} = 50 V,	I _C = 500 μA	50	65		μA	
II	Input current	Figure 6-3	V _I = 17 V			0.82	1.25	mA	
	Claman marrana arrimant	Figure C.C.	V _R = 50 V	T _A = 70°C			100		
I _R	Clamp reverse current	Figure 6-6	V _R = 50 V				50	μΑ	
Ci	Input capacitance		V _I = 0,	f = 1 MHz			25	pF	

5.6 Electrical Characteristics: ULN2003A and ULN2004A

T_A = 25°C

	DADAMETED	TEST	TEST CO	ONDITIONS	ULN	12003A		ULN	2004A		UNIT	
	PARAMETER	FIGURE	153100	TEST CONDITIONS		TYP	MAX	MIN	TYP	MAX	UNIT	
				I _C = 125 mA						5		
		Figure 6-6	V 0 V	I _C = 200 mA			2.4			6		
.,	ON-state input			I _C = 250 mA			2.7				v	
$V_{I(on)}$	voltage		V _{CE} = 2 V	I _C = 275 mA						7	v	
				I _C = 300 mA			3					
				I _C = 350 mA						8		
V _{OH}	High-level output voltage after switching	Figure 6-10	V _S = 50 V, I _O :	= 300 mA	V _S - 20			V _S - 20			mV	
			I _I = 250 μA,	I _C = 100 mA		0.9	1.1		0.9	1.1		
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 6-5	I _I = 350 μA,	I _C = 200 mA		1	1.3		1	1.3	V	
	odidianon voltago		I _I = 500 μA,	I _C = 350 mA		1.2	1.6		1.2	1.6		
		Figure 6-1	V _{CE} = 50 V,	I _I = 0			50			50		
I _{CEX}	Collector cutoff current	Figure 6-2	V _{CE} = 50 V,	I ₁ = 0			100			100	μA	
		Figure 0-2	T _A = 70°C	V _I = 1 V						500		

5.6 Electrical Characteristics: ULN2003A and ULN2004A (continued)

 $T_A = 25^{\circ}C$

PARAMETER		TEST	TEST CONDITIONS		ULN2003A		ULN	UNIT			
	PARAMETER	FIGURE		TEST CONDITIONS		TYP	MAX	MIN	TYP	MAX	ONII
V _F	Clamp forward voltage	Figure 6-8	I _F = 350 mA			1.7	2		1.7	2	V
I _{I(off)}	Off-state input current	Figure 6-3	V _{CE} = 50 V, T _A = 70°C,	I _C = 500 μA	50	65		50	65		μА
			V _I = 3.85 V			0.93	1.35				
II	Input current	Figure 6-4	V _I = 5 V						0.35	0.5	mA
			V _I = 12 V						1	1.45	
	Clamp reverse	Figure 6.7	V _R = 50 V				50			50	
I _R	current	Figure 6-7	V _R = 50 V	T _A = 70°C			100			100	μA
Ci	Input capacitance		V _I = 0,	f = 1 MHz		15	25		15	25	pF

5.7 Electrical Characteristics: ULN2003AI

 $T_A = 25^{\circ}C$

	PARAMETER	TEST FIGURE	TEST		ULN	12003AI		UNIT
	PARAMETER	1EST FIGURE	CONDITIONS		MIN	TYP	MAX	UNIT
				I _C = 200 mA			2.4	
V _{I(on)}	ON-state input voltage	Figure 6-6	V _{CE} = 2 V	I _C = 250 mA			2.7	V
				I _C = 300 mA			3	
V _{OH}	High-level output voltage after switching	Figure 6-10	V _S = 50 V, I _O = 3	300 mA	V _S - 50			mV
			I _I = 250 μA,	I _C = 100 mA		0.9	1.1	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 6-5	I _I = 350 μA,	I _C = 200 mA		1	1.3	V
			I _I = 500 μA,	I _C = 350 mA		1.2	1.6	
I _{CEX}	Collector cutoff current	Figure 6-1	V _{CE} = 50 V,	I _I = 0			50	μΑ
V _F	Clamp forward voltage	Figure 6-8	I _F = 350 mA			1.7	2	V
I _{I(off)}	OFF-state input current	Figure 6-3	V _{CE} = 50 V,	I _C = 500 μA	50	65		μΑ
I _I	Input current	Figure 6-4	V _I = 3.85 V			0.93	1.35	mA
I _R	Clamp reverse current	Figure 6-7	V _R = 50 V				50	μΑ
Ci	Input capacitance		V _I = 0,	f = 1 MHz		15	25	pF

5.8 Electrical Characteristics: ULN2003AI

 $T_A = -40$ °C to 105°C

	PARAMETER	TEST FIGURE	TEST CO	ULN		UNIT		
	PARAMETER	TEST FIGURE	1231 00	MIN	TYP	MAX	UNIT	
				I _C = 200 mA			2.7	
$V_{I(on)}$	ON-state input voltage	Figure 6-6	V _{CE} = 2 V	I _C = 250 mA			2.9	V
				I _C = 300 mA			3	
V _{OH}	High-level output voltage after switching	Figure 6-10	V _S = 50 V, I _O =	300 mA	V _S - 50			mV
			I _I = 250 μA,	I _C = 100 mA		0.9	1.2	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 6-5	I _I = 350 μA,	I _C = 200 mA		1	1.4	V
			I _I = 500 μA,	I _C = 350 mA		1.2	1.7	
I _{CEX}	Collector cutoff current	Figure 6-1	V _{CE} = 50 V,	I _I = 0			100	μA

5.8 Electrical Characteristics: ULN2003AI (continued)

 $T_A = -40$ °C to 105°C

	PARAMETER	TEST FIGURE	TEST CONDITIONS		ULN		UNIT	
	PARAMETER	TEST TIGORE		MIN	TYP	MAX	UNII	
V _F	Clamp forward voltage	Figure 6-8	I _F = 350 mA			1.7	2.2	V
I _{I(off)}	OFF-state input current	Figure 6-3	$V_{CE} = 50 \text{ V}, \qquad I_{C} = 500 \mu$	Α	30	65		μΑ
II	Input current	Figure 6-4	V _I = 3.85 V			0.93	1.35	mA
I _R	Clamp reverse current	Figure 6-7	V _R = 50 V				100	μA
Ci	Input capacitance		$V_I = 0$, $f = 1 MHz$			15	25	pF

5.9 Electrical Characteristics: ULQ2003A and ULQ2004A

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST	TEST CC	ONDITIONS	ULQ	2003A		ULQ	2004A		UNIT
	PARAMETER	FIGURE	TEST CC	ONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
				I _C = 125 mA						5	
				I _C = 200 mA			2.7			6	
	ON-state input	Figure 6.6	.,	I _C = 250 mA			2.9				V
V _{I(on)}	voltage	Figure 6-6	V _{CE} – Z V	I _C = 275 mA						7	, v
				I _C = 300 mA			3				
				I _C = 350 mA						8	
V _{OH}	High-level output voltage after switching	Figure 6-10	V _S = 50 V, I _O	= 300 mA	V _S - 50			V _S - 50			mV
			I _I = 250 μA,	I _C = 100 mA		0.9	1.2		0.9	1.1	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 6-5		I _C = 200 mA		1	1.4		1	1.3	V
	cararaner remage		I _I = 500 μA,	I _C = 350 mA		1.2	1.7		1.2	1.6	
	0 11 1 15	Figure 6-1	V _{CE} = 50 V,	I _I = 0			100			50	
I _{CEX}	Collector cutoff current	Figure 6-2	V _{CE} = 50 V,	I _I = 0						100	μA
		Figure 0-2	T _A = 70°C	V _I = 1 V						500	
V _F	Clamp forward voltage	Figure 6-8	I _F = 350 mA			1.7	2.3		1.7	2	٧
I _{I(off)}	OFF-state input current	Figure 6-3	V _{CE} = 50 V, T _A = 70°C,	I _C = 500 μA		65		50	65		μA
			V _I = 3.85 V			0.93	1.35				
I _I	Input current Figure 6		V _I = 5 V						0.35	0.5	mA
			V _I = 12 V						1	1.45	
	Clamp reverse	Figure 6-7	V _R = 50 V	T _A = 25°C			100			50	
I _R	IR current		V _R = 50 V				100			100	μA
Ci	Input capacitance		V _I = 0,	f = 1 MHz		15	25		15	25	pF

5.10 Switching Characteristics: ULN2002A, ULN2003A, ULN2004A

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	ULN2002A ULN	UNIT		
			MIN	TYP	MAX	
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 6-9		0.25	1	μs
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 6-9		0.25	1	μs

5.11 Switching Characteristics: ULN2003AI

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	ULN	UNIT		
	FARAMETER	TEST CONDITIONS	MIN	TYP	MAX	
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 6-9		0.25	1	μs
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 6-9		0.25	1	μs

5.12 Switching Characteristics: ULN2003AI

 $T_A = -40$ °C to 105°C

PARAMETER		TEST CONDITIONS	ULN	UNIT		
	FARAWETER	TEST CONDITIONS	MIN	TYP	MAX	ONII
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 6-9		1	10	μs
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 6-9		1	10	μs

5.13 Switching Characteristics: ULQ2003A, ULQ2004A

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	ULQ2003	UNIT		
	FARAMETER	TEST CONDITIONS	MIN	TYP	MAX	ONIT
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 6-9		1	10	μs
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 6-9		1	10	μs

5.14 Typical Characteristics

5.14 Typical Characteristics (continued)

Figure 5-7. Maximum and Typical Saturated V_{CE} vs Output Current

Figure 5-8. Minimum Output Current vs Input Current

6 Parameter Measurement Information

Figure 6-1. I_{CEX} Test Circuit

Figure 6-3. I_{I(off)} Test Circuit

 I_{l} is fixed for measuring $V_{\text{CE(sat)}}$, variable for measuring h_{FE} .

Figure 6-5. h_{FE}, V_{CE(sat)} Test Circuit

Figure 6-7. I_R Test Circuit

Figure 6-2. I_{CEX} Test Circuit

Figure 6-4. I_I Test Circuit

Figure 6-6. V_{I(on)} Test Circuit

Figure 6-8. V_F Test Circuit

Figure 6-9. Propagation Delay-Time Waveforms

The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_{O} = 50 $\Omega.$

C_L includes probe and jig capacitance.

For testing the ULN2003A device, ULN2003Al device, and ULQ2003A devices, V_{IH} = 3 V; for the ULN2002A device, V_{IH} = 13 V; for the ULN2004A and the ULQ2004A devices, V_{IH} = 8 V.

Figure 6-10. Latch-Up Test Circuit and Voltage Waveforms

7 Detailed Description

7.1 Overview

This standard device has proven ubiquity and versatility across a wide range of applications. This is due to integration of 7 Darlington transistors of the device that are capable of sinking up to 500 mA and wide GPIO range capability.

The ULN2003A device comprises seven high-voltage, high-current NPN Darlington transistor pairs. All units feature a common emitter and open collector outputs. To maximize their effectiveness, these units contain suppression diodes for inductive loads. The ULN2003A device has a series base resistor to each Darlington pair, thus allowing operation directly with TTL or CMOS operating at supply voltages of 5 V or 3.3 V. The ULN2003A device offers solutions to a great many interface needs, including solenoids, relays, lamps, small motors, and LEDs. Applications requiring sink currents beyond the capability of a single output may be accommodated by paralleling the outputs.

This device can operate over a wide temperature range (-40°C to 105°C).

7.2 Functional Block Diagrams

All resistor values shown are nominal. The collector-emitter diode is a parasitic structure and should not be used to conduct current. If the collectors go below GND, an external Schottky diode should be added to clamp negative undershoots.

Figure 7-1. ULN2002A Block Diagram

Figure 7-2. ULN2003A, ULQ2003A and ULN2003Al Figure 7-3. ULN2004A and LQ2004A Block Diagram

Block Diagram

7.3 Feature Description

Each channel of the ULN2003A device consists of Darlington connected NPN transistors. This connection creates the effect of a single transistor with a very high-current gain (β 2). This can be as high as 10,000 A/A at certain currents. The very high β allows for high-output current drive with a very low input current, essentially equating to operation with low GPIO voltages.

The GPIO voltage is converted to base current through the 2.7-k Ω resistor connected between the input and base of the predriver Darlington NPN. The 7.2-k Ω and 3-k Ω resistors connected between the base and emitter of each respective NPN act as pulldowns and suppress the amount of leakage that may occur from the input.

The diodes connected between the output and COM pin is used to suppress the kick-back voltage from an inductive load that is excited when the NPN drivers are turned off (stop sinking) and the stored energy in the coils causes a reverse current to flow into the coil supply through the kick-back diode.

In normal operation the diodes on base and collector pins to emitter will be reversed biased. If these diodes are forward biased, internal parasitic NPN transistors will draw (a nearly equal) current from other (nearby) device pins.

7.4 Device Functional Modes

7.4.1 Inductive Load Drive

When the COM pin is tied to the coil supply voltage, ULN2003A device is able to drive inductive loads and suppress the kick-back voltage through the internal free-wheeling diodes.

7.4.2 Resistive Load Drive

When driving a resistive load, a pullup resistor is needed in order for ULN2003A device to sink current and for there to be a logic high level. The COM pin can be left floating for these applications.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

Typically, the ULN2003A device drives a high-voltage or high-current (or both) peripheral from an MCU or logic device that cannot tolerate these conditions. This design is a common application of ULN2003A device, driving inductive loads. This includes motors, solenoids and relays. Figure 8-1 shows a model for each load type.

8.2 Typical Application

Figure 8-1. ULN2003A Device as Inductive Load Driver

8.2.1 Design Requirements

For this design example, use the parameters listed in Table 8-1 as the input parameters.

Duty cycle

 DESIGN PARAMETER
 EXAMPLE VALUE

 GPIO voltage
 3.3 V or 5 V

 Coil supply voltage
 12 V to 48 V

 Number of channels
 7

 Output current (R_{COIL})
 20 mA to 300 mA per channel

100%

Table 8-1. Design Parameters

8.2.2 Detailed Design Procedure

When using ULN2003A device in a coil driving application, determine the following:

- Input voltage range
- Temperature range
- · Output and drive current
- Power dissipation

8.2.2.1 Drive Current

The coil voltage (V_{SUP}) , coil resistance (R_{COIL}) , and low-level output voltage $(V_{CE(SAT)})$ or V_{OL} determine the coil current

$$I_{COIL} = (V_{SUP} - V_{CE(SAT)}) / R_{COIL}$$
 (1)

8.2.2.2 Low-Level Output Voltage

The low-level output voltage (V_{OL}) is the same as $V_{CE(SAT)}$ and can be determined by, Figure 5-1, Figure 5-2, or Figure 5-7.

8.2.2.3 Power Dissipation and Temperature

The number of coils driven is dependent on the coil current and on-chip power dissipation. The number of coils driven can be determined by Figure 5-4 or Figure 5-5.

For a more accurate determination of number of coils possible, use the below equation to calculate ULN2003A device on-chip power dissipation P_D :

$$P_{D} = \sum_{i=1}^{N} V_{OLi} \times I_{Li}$$
(2)

where

- · N is the number of channels active together
- V_{OLi} is the OUT_i pin voltage for the load current I_{Li} . This is the same as $V_{CE(SAT)}$

To ensure reliability of ULN2003A device and the system, the on-chip power dissipation must be lower that or equal to the maximum allowable power dissipation ($PD_{(MAX)}$) dictated by below equation Equation 3.

$$PD_{(MAX)} = \frac{\left(T_{J(MAX)} - T_{A}\right)}{\theta_{JA}}$$
(3)

where

- $T_{J(max)}$ is the target maximum junction temperature
- T_A is the operating ambient temperature
- R_{θ,JA} is the package junction to ambient thermal resistance

Limit the die junction temperature of the ULN2003A device to less than 125°C. The IC junction temperature is directly proportional to the on-chip power dissipation.

8.2.3 Application Curves

The characterization data shown in Figure 8-2 and Figure 8-3 were generated using the ULN2003A device driving an OMRON G5NB relay and under the following conditions: $V_{IN} = 5 \text{ V}$, $V_{SUP} = 12 \text{ V}$, and $R_{COIL} = 2.8 \text{ k}\Omega$.

Figure 8-2. Output Response With Activation of Coil (Turnon)

Figure 8-3. Output Response With De-activation of Coil (Turnoff)

8.3 System Examples

Figure 8-4. P-MOS to Load

ULN2003A

ULQ2003A

Vcc

Figure 8-5. TTL to Load

Figure 8-6. Buffer for Higher Current Loads

Figure 8-7. Use of Pullup Resistors to Increase **Drive Current**

8.4 Power Supply Recommendations

This device does not need a power supply. However, the COM pin is typically tied to the system power supply. When this is the case, it is very important to ensure that the output voltage does not heavily exceed the COM pin voltage. This discrepancy heavily forward biases the fly-back diodes and causes a large current to flow into COM, potentially damaging the on-chip metal or over-heating the device.

8.5 Layout

8.5.1 Layout Guidelines

Thin traces can be used on the input due to the low-current logic that is typically used to drive ULN2003A device. Take care to separate the input channels as much as possible, as to eliminate crosstalk. TI recommends thick traces for the output to drive whatever high currents that may be needed. Wire thickness can be determined by the current density of the trace material and desired drive current.

Because all of the channels currents return to a common emitter, it is best to size that trace width to be very wide. Some applications require up to 2.5 A.

8.5.2 Layout Example

Figure 8-8. Package Layout

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, see the following:

SN7546x Darlington Transistor Arrays, SLRS023

9.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 9-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
ULN2002A	Click here	Click here	Click here	Click here	Click here
ULN2003A	Click here	Click here	Click here	Click here	Click here
ULN2003AI	Click here	Click here	Click here	Click here	Click here
ULN2004A	Click here	Click here	Click here	Click here	Click here
ULQ2003A	Click here	Click here	Click here	Click here	Click here
ULQ2004A	Click here	Click here	Click here	Click here	Click here

9.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision S (June 2024) to Revision T (March 2025)

Page

Added ULN2004ADR MIN = −40°C and MAX = 105°C for T_Δ in the Absolute Maximum Ratings table............4

 Changed I_{CEX} test condition From: V_I = 6V To: V_I = 1V in the <i>Electrical Characteristic ULN2004A</i> table 	
Changes from Revision R (February 2024) to Revision S (June 2024)	Page
Added DYY package throughout the data sheet	1

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

www.ti.com 22-Mar-2025

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ULN2002AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-20 to 70	ULN2002AN	Samples
ULN2002ANE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-20 to 70	ULN2002AN	Samples
ULN2003ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 70	ULN2003A	Samples
ULN2003ADYYR	ACTIVE	SOT-23-THIN	DYY	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 70	UN2003A	Samples
ULN2003AIDR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIN	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	-40 to 105	ULN2003AIN	
ULN2003AINSR	ACTIVE	SOP	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2003AI	Samples
ULN2003AIPW	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	-40 to 105	UN2003AI	
ULN2003AIPWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 105	(U2003AI, UN2003AI)	Samples
ULN2003AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU SN	N / A for Pkg Type	-40 to 70	ULN2003AN	Samples
ULN2003ANS	OBSOLETE	SOP	NS	16		TBD	Call TI	Call TI	-40 to 70	ULN2003A	
ULN2003ANSR	ACTIVE	SOP	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 70	ULN2003A	Samples
ULN2003ANSRE4	ACTIVE	SOP	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 70	ULN2003A	Samples
ULN2003ANSRG4	ACTIVE	SOP	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 70	ULN2003A	Samples
ULN2003APW	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	-40 to 70	UN2003A	
ULN2003APWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 70	UN2003A	Samples
ULN2003APWRG4	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	-40 to 70	UN2003A	
ULN2004AD	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-20 to 70	ULN2004A	
ULN2004ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples
ULN2004ADRG4	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-20 to 70	ULN2004A	
ULN2004ADYYR	ACTIVE	SOT-23-THIN	DYY	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 70	UN2004A	Samples
ULN2004AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-20 to 70	ULN2004AN	Samples

www.ti.com 22-Mar-2025

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
ULN2004ANE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-20 to 70	ULN2004AN	Samples
ULN2004ANSR	ACTIVE	SOP	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-20 to 70	ULN2004A	Samples
ULQ2003AD	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-40 to 85	ULQ2003A	
ULQ2003ADG4	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI		ULQ2003A	
ULQ2003AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	ULQ2003A	Samples
ULQ2004AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ULQ2004A	Samples
ULQ2004ADG4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM		ULQ2004A	Samples
ULQ2004ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ULQ2004A	Samples
ULQ2004ADRG4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM		ULQ2004A	Samples
ULQ2004AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	ULQ2004AN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

www.ti.com 22-Mar-2025

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ULQ2003A, ULQ2004A:

Automotive: ULQ2003A-Q1, ULQ2004A-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

www.ti.com 20-Feb-2025

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO BO Cavity AO

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ULN2003ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003ADYYR	SOT-23- THIN	DYY	16	3000	330.0	12.4	4.8	3.6	1.6	8.0	12.0	Q3
ULN2003AIDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AIDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AIDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2003AINSR	SOP	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
ULN2003AINSR	SOP	NS	16	2000	330.0	16.4	8.45	10.55	2.5	12.0	16.2	Q1
ULN2003AIPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003AIPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003ANSR	SOP	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
ULN2003ANSR	SOP	NS	16	2000	330.0	16.4	8.45	10.55	2.5	12.0	16.2	Q1
ULN2003APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2003APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
ULN2004ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Feb-2025

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ULN2004ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2004ADYYR	SOT-23- THIN	DYY	16	3000	330.0	12.4	4.8	3.6	1.6	8.0	12.0	Q3
ULN2004ANSR	SOP	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 20-Feb-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ULN2003ADR	SOIC	D	16	2500	356.0	356.0	35.0
ULN2003ADR	SOIC	D	16	2500	353.0	353.0	32.0
ULN2003ADYYR	SOT-23-THIN	DYY	16	3000	336.6	336.6	31.8
ULN2003AIDR	SOIC	D	16	2500	353.0	353.0	32.0
ULN2003AIDR	SOIC	D	16	2500	353.0	353.0	32.0
ULN2003AIDR	SOIC	D	16	2500	340.5	336.1	32.0
ULN2003AINSR	SOP	NS	16	2000	356.0	356.0	35.0
ULN2003AINSR	SOP	NS	16	2000	353.0	353.0	32.0
ULN2003AIPWR	TSSOP	PW	16	2000	356.0	356.0	35.0
ULN2003AIPWR	TSSOP	PW	16	2000	353.0	353.0	32.0
ULN2003ANSR	SOP	NS	16	2000	356.0	356.0	35.0
ULN2003ANSR	SOP	NS	16	2000	353.0	353.0	32.0
ULN2003APWR	TSSOP	PW	16	2000	356.0	356.0	35.0
ULN2003APWR	TSSOP	PW	16	2000	353.0	353.0	32.0
ULN2004ADR	SOIC	D	16	2500	340.5	336.1	32.0
ULN2004ADR	SOIC	D	16	2500	353.0	353.0	32.0
ULN2004ADYYR	SOT-23-THIN	DYY	16	3000	336.6	336.6	31.8
ULN2004ANSR	SOP	NS	16	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Feb-2025

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
ULN2002AN	N	PDIP	16	25	506	13.97	11230	4.32
ULN2002ANE4	N	PDIP	16	25	506	13.97	11230	4.32
ULN2003AN	N	PDIP	16	25	506	13.97	11230	4.32
ULN2003AN	N	PDIP	16	25	506	13.97	11230	4.32
ULN2003AN	N	PDIP	16	25	506.1	9	600	5.4
ULN2004AN	N	PDIP	16	25	506	13.97	11230	4.32
ULN2004AN	N	PDIP	16	25	506	13.97	11230	4.32
ULN2004ANE4	N	PDIP	16	25	506	13.97	11230	4.32
ULN2004ANE4	N	PDIP	16	25	506	13.97	11230	4.32
ULQ2003AN	N	PDIP	16	25	506	13.97	11230	4.32
ULQ2003AN	N	PDIP	16	25	506	13.97	11230	4.32
ULQ2004AD	D	SOIC	16	40	507	8	3940	4.32
ULQ2004ADG4	D	SOIC	16	40	507	8	3940	4.32
ULQ2004AN	N	PDIP	16	25	506	13.97	11230	4.32

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

SOF

NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per side
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- 5. Reference JEDEC Registration MO-345, Variation AA

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated