Clase 6 - Teoría de sistemas

- Según su relación con el medio -> Estabilidad
- Según su naturaleza
- Según su origen
- Según su cambio en el tiempo
- Según sus relaciones
- Según sus variables
- Otras clasificaciones

Tipos de sistemas

- Sistemas dinámicos: Sistema que cambia con el tiempo. Ejemplo: El universo, los átomos, los hongos.
- Sistemas discretos: Definidos por variables directas. Ejemplo: lógica booleana, alfabeto.
- Sistemas continuos: Sistema definido por variables continuas (aquellos con valores variables, que pueden cambiar). Ejemplo: Alternador, DAC.

Otras clasificaciones

- Sistema de control: Un sistema con dependencias en el cual algunos elementos son controlados por otros. Ejemplo: lámpara, máquinas.
- Sistemas de control con retroalimentación: sistema de control en el cual los elementos controlados envían información sobre su estado a los elementos controladores. Ejemplo: Termostato.

Sistemas jerárquicos

- Sus elementos están relacionados mediante dependencia o subordinación.
- Se organiza por niveles.
- · Pueden ser llamados sistemas piramidales.

Sistemas deteminísticos

Sistema con un comportamiento previsible. Ejemplo: Un programa de computador.

Sistemas probabilísticos

• El comportamiento no es exactamente previsible. Ejemplo: Sistemas que predicen el clima, sistema económico.

Estructura de los sistemas

- La estructura de un sistema es un componente que es permanente o cambia lenta u ocasionalmente.
- Es la forma en la que sus partes se comunican unas con otras.

Tipos de estructuras

- Dependen de las relaciones y es posible encontrarlas de forma combinada.
- Se pueden combinar en especial si el sistema es complejo.
 - Lineal
 - circular
 - centralizada

Estructura lineal

- Los elementos se encuentran uno después del otro.
- Para referirse a esta estructura se pueden utilizar los términos cadena o secuencia.
- Características: No poseen diferentes estados, no varían mucho, lo procesado no regresa.

Estructura Circular

- Los elementos se encuentran uno después del otro, pero no existe un principio o fin de la secuencia.
- Se utilizan los términos círculo o anillo para referirnos a esta estructura.
- Características: Son cíclicas, no poseen jerarquía, posee retroalimentación.
- Ejemplos: Listas doblemente enlazadas, termostato, sistema de presión.

Estructura centralizada

- Todos sus elementos se encuentran unidos a
- Características: Un punto en común que provee información/controla otras partes.
- Ejemplos: Red de computadoras con topología estrella, sistema de información, sistema circulatorio.

Por ejemplo, en el sistema circulatorio el sistema es controlado por el corazón, siendo este quien controla el sistema.

Estructura matricial

- Los elementos se disponen en filas y columnas.
- Se asocia a la idea de tener varias estructuras lineales unidas.
- Características: Estructuras lineales unidas
- Ejemplos: Tablas en bases de datos, sistema económico, sistema de posiciones.

Estructura Jerárquica

- Sus elementos mantienen una relación de dependencia entre ellos, hay elementos en niveles superiores y elementos en niveles inferiores.
- Características: Existen distintos niveles dentro de la estructura, y dentro de estos niveles existe cierta dependencia. Poseen prioridades, y precedencia/control.
- Ejemplos: El gobierno, organizaciones piramidales, procesador.

Estructura descentralizada

- Características: Posee distintos estados. Puede ser determinística y no determinística.
- Ejemplos: Autómatas, grafos, redes neuronales, BlockChain.

Comportamientos de los sistemas

El comportamiento se genera a partir de las relaciones entre los elementos del sistema.

- Estabilidad
- Efecto de palanca
- Efecto secundario

Estabilidad

- La estabilidad depende de la cantidad, tamaño y diversidad de los subsistimos que componen el sistema.
- También depende de su tipo y grado de conectividad que tenga entre sus partes.
- Los sistemas complejos que son estables son resistentes al cambio. No puede haber estabilidad sin resistencia.

Resistencia -> Retroalimentación

Estabilidad

- Depende de su relación con el medio
- Depende de su complejidad/grado
- Depende de su estructura
- Depende de que todas sus partes estén bien (subsistemas)