MATH 138 LECTURE 2

1 Riemann Sums

Recall: Summation Notation Let a_n and b_n be sequences. Then,

$$\sum_{i=1}^{n} a_i = a_1 + \dots + a_n \tag{1}$$

$$\sum_{i=1}^{n} Ra_i = R \sum_{i=1}^{n} a_i \text{ where } R \in \mathbb{R}$$
 (2)

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$
 (3)

Important Summations

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n$$
$$= \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2$$
$$= \frac{n(n+1)(2n+1)}{6}$$

2 Definitions

Recall:

$$P = \{t_0, ..., t_n\}$$
 is a partition of $[a, b]$. $\Delta t_i = t_i - t_{i-1}$
 $|P| = max(\Delta t_1, ..., \Delta t_n)$

If $p^{(n)}$ is the regular *n*-partition of [a,b], then $|p^{(n)}| = \frac{b-a}{n}$. For i = 1, 2, ..., n. Select a point c_i in $[t_{i-1}, t_i]$. Construct a rectangle from $[t_{i-1}, t_i]$ to the point $(c_i, f(c_i))$.

Riemann Sum of f With Respect to p:

The sum $S = \sum_{i=1}^{n} f(c_i) \Delta t_i$ is called a **Riemann sum of** f with respect to p.

Right-hand Riemann Sum of f with Respect to p:

If $c_i = t_i$, then $\sum_{i=i}^n f(c_i) \Delta t_i$ is called a **Right-hand Riemann Sum of** f with **Respect to** p. The right-hand Riemann sum of f with respect to $P^{(n)}$ is denoted by R_n .

$$R_n = \sum_{i=1}^n f(c_i) \Delta t_i = \sum_{i=1}^n f(t_i) \frac{b-a}{n} = \sum_{i=1}^n f(a + \frac{i(b-a)}{n}) \frac{b-a}{n}$$

Example 1: $f(x) = 2x^2 + 1, a = 0, b = 6$. Compute R_n :

$$R_n = \sum_{i=1}^n f(\frac{6i}{n}) \frac{6}{n}$$

$$= \frac{6}{n} \sum_{i=1}^n f(\frac{6i}{n})$$

$$= \frac{6}{n} \sum_{i=1}^n (2(\frac{6i}{n})^2 + 1)$$

$$= \frac{6}{n} \sum_{i=1}^n (\frac{72i^2}{n^2} + 1)$$

$$= \frac{6}{n} (\frac{72}{n^2} \sum_{i=1}^n i^2 + n)$$

$$= \frac{6}{n} (\frac{72}{n^2} (\frac{n(n+1)(2n+1)}{6}) + n)$$

Therefore, $R_n = \frac{72(n+1)(2n+1)}{n^2} + 6$. We can also see that: $\lim_{n \to \infty} R_n = 150$.

Left-hand Riemann Sum of f with Respect to p:

If $c_i = t_{i-1}$, then $L = \sum_{i=1}^n f(c_i) \Delta t_i$ is called the **Left-hand Riemann Sum** of f with Respect to p.

$$L_n = \sum_{i=1}^n f(t_{i-1}) \Delta t_i = \sum_{i=1}^n f(a + \frac{(i-1)(b-a)}{n}) \frac{b-a}{n}.$$

EXERCISE Example 2: Compute L_n for $f(x) = 2x^2 + 1, a = 0, b = 6$ and check that $\lim_{n \to \infty} L_n = 150$.

Integrability on [a, b]:

We say that a bounded function f is **integrable on** [a, b] if there exists a real number I such that the following property holds.

If P_i is a sequence of partitions of [a,b] with $\lim_{i\to\infty}|P_i|=0$ and S_i is a sequence of Riemann sums with respect to P_i , then $\lim_{i\to\infty}S_i=I$.

I is called the **integral of** f **from** a **to** b.

Notation:

$$\int_a^b f(x)dx$$

a and b are called the limits of integration.

f is called the integrand.

x is called the variable of integration.

THEOREM: Integrability Theorem for Continuous Functions

If f is a continuous function on [a,b], then f is integrable on [a,b]. $\int_a^b f(x)dx = \lim_{n \to \infty} S_n$, where S_n is any Riemann sum associated to $P^{(n)}$.

In particular,
$$\int_a^b f(x)dx = \lim_{n \to \infty} R_n = \lim_{n \to \infty} L_n$$
.

From the integrability theorem for continuous functions, we can clearly see that $\int_0^6 2x^2 + 1 dx = 150$.

3 Summary

The definite integral by using Riemann sums invluve the splitting of the interval into n partitions and letting $n \to \infty$.

As n gets bigger, the rectangles get smaller and we approach a limit of the true area.

This can be applied only if the function is continuous or has a finite amount of discontinuities (refer to the Integrability Theorem for Continuous Functions).