

Done

Sign in

Collaborate with Acrobat Reader Use the app to add and reply to comments

Open

Generative summary

Exercice 1:(8 points)

Pour tout $n \ge 2$ et $x \in [-1, +\infty[$, on pose

$$f_n(x) = \frac{x^n}{n(n-1)} .$$

1. (a) (0.5 pt) Montrer que la suite de fonctions $(f_n)_{n\geq 2}$ converge simplement sur [-1,1].

$$\forall x \in [-1, 1], |f_n(x)| \le \frac{1}{n(n-1)}$$

comme $\lim_{n\to+\infty}\frac{1}{n(n-1)}=0$ alors $\lim_{n\to+\infty}f_n(x)=0$. D'où la suite de fonctions $(f_n)_{n\geq 2}$ convergence simple vers la fonction nulle sur [-1,1].

(b) (0.5 pt) Étudier la convergence uniforme de la suite de fonctions $(f_n)_{n\geq 2}$ sur [-1,1].

$$\forall n \ge 2, \quad \sup_{x \in [-1,1]} |f_n(x)| = \frac{1}{n(n-1)} \underset{n \to +\infty}{\longrightarrow} 0.$$

Donc La suite de fonctions $(f_n)_{n\geq 2}$ converge uniformément vers la fonction nulle sur [-1,1].

(c) (0.5 pt) Pour x > 1, calcular $\lim_{n \to +\infty} f_n(x)$.

Si
$$x > 1$$
, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{x^n}{n(n-1)} = \lim_{n \to +\infty} \frac{e^{n \ln(x)}}{n(n-1)} = +\infty \ (x > 1 \Rightarrow \ln(x) > 0).$

- (d) (0.5 pt) Déduire le domaine de convergence simple de la suite de fonctions (f_n)_{n≥2}. D'après question 1)a) La suite de fonctions (f_n)_{n≥2} converge simplement vers la fonction nulle sur [-1, 1] et d'après question 1)c) la suite de fonctions (f_n)_{n≥2} ne converge pas simplement sur]1, +∞[(car lim f_n(x) = +∞). Donc le domaine de convergence simple de la suite de fonctions (f_n)_{n≥2} est [-1, 1].
- 2. (a) (1.5 pt) Vérifier que la série numérique ∑_{n≥2} f_n(1) est une série télescopique. Détermine sa nature et calculer sa somme.

$$\sum_{n\geq 2} f_n(1) = \sum_{n\geq 2} \frac{1}{n(n-1)} = \sum_{n\geq 2} \left(-\frac{1}{n} + \frac{1}{(n-1)}\right) = -\sum_{n\geq 2} a_{n+1} - a_n$$

avec
$$a_n = \frac{1}{(n-1)}$$

On a

donc $\sum_{n\geq 2} f_n(1)$ est une série télescopique.

Comme $\lim_{n\to+\infty} a_n = 0$ donc $\sum_{n\geq 2} f_n(1)$ est convergente

$$S_n = \sum_{k=2}^n \left(-\frac{1}{k} + \frac{1}{(k-1)}\right) = 1 - \frac{1}{n}$$
, $\lim_{n \to +\infty} S_n = 1$ donc $\sum_{n \ge 2} f_n(1)$ converge vers 1

(b) (1 pt) La série numérique $\sum_{n\geq 2} f_n(-1)$ est-elle semi-convergente? Justifiant vot

