# Introduction to Web-based Analyses for Bacterial Typing

Erkison Ewomazino Odih

# Outline

- General concepts
- Species identification
- Bacterial subtyping (MLST, serotyping)
- Practical

# General concepts

# Sequence Alignment (Applications)

- Discover functional information (annotation)
- Predict molecular structure
- Predict shared ancestry
- Phylogenetic analysis
- Sequence typing and identification (speciation, MLST prediction etc)



# **Kmers**

 Contiguous substrings of a given sequence, each having length k (positive integer)

 Similar sequences expected to share more kmers in common



# Databases

- Publicly accessible repository of [annotated] sequences
- Any prediction tool is only as good as its queried database
- Curated vs non-curated databases
- Find best matches for a query sequence in the database of sequences



# Species identification

### **KmerFinder Tool**

https://cge.food.dtu.dk/services/KmerFinder/

#### Query sequence



| Template                                                                                      | Num  | Score  | Expected | Template<br>length | query_coverage |
|-----------------------------------------------------------------------------------------------|------|--------|----------|--------------------|----------------|
| NZ_CP016952.1<br>Citrobacter<br>freundii strain<br>SL151<br>chromosome,<br>complete<br>genome | 1723 | 127691 | 21       | 168352             | 71.33          |
| NZ_CP016762.1<br>Citrobacter<br>freundii strain<br>B38<br>chromosome,<br>complete<br>genome   | 1722 | 10872  | 83       | 168918             | 6.07           |







# Bacterial subtyping

# Why subtype?

Sub-classification of separate bacterial strains within the same species

- Delineate virulent subtypes (e.g., E. coli O157:H7)
- Epidemiological surveillance
- Outbreak investigation
- Identify emerging pathogenic strains (e.g., hybrid pathotypes)

### Sequence-based subtyping

#### Merits:

- Not all genetic changes translate to morphological change
- Morphological convergence
- More "characters" compared
- Increased WGS access



SNPs – single nucleotide polymorphisms; wg – whole genome; cg – core genome

**SEQAFRICA** 

29

# Multi-locus sequence typing (MLST)

- Whole genome- or PCR-based sequencing of selected (n) housekeeping genes
- Genetic changes in these genes are constrained but discriminatory
- Multiple loci (usually 7) studied to address lack of congruence in bacteria
- Typically compares sequences of gene fragments (300 550 bp)
- Allele numbers for each loci assigned in order of discovery
- All allele numbers form an <u>allelic profile</u>
- Each ST corresponds to a unique allelic profile; STs are also assigned in order of discovery; database updated with new alleles and STs
- Clonal complexes typically defined as clusters with 1 or 2 varying loci



2/18/23 SEQAFRICA 31

#### MLST: Pros and cons





Public databases for molecular typing and microbial genome diversity

A collection of open-access, curated databases that integrate population sequence data with provenance and phenotype information for over 100 different microbial species and genera.

28,636,800
ALLELES

932,444
ISOLATES

673,526
GENOMES

pubmlst.org

# Escherichia coli MLST schemes (pubmlst.org)

#### Achtman scheme

| ST | adk | fumC | gyrB | icd | mdh | purA | recA |
|----|-----|------|------|-----|-----|------|------|
| 1  | 4   | 2    | 2    | 4   | 4   | 4    | 4    |
| 2  | 5   | 3    | 2    | 6   | 5   | 5    | 4    |
| 3  | 6   | 4    | 3    | 7   | 7   | 7    | 6    |
| 4  | 6   | 5    | 4    | 8   | 8   | 8    | 2    |
| 5  | 7   | 6    | 5    | 9   | 9   | 8    | 2    |
| 6  | 8   | 7    | 1    | 1   | 10  | 8    | 6    |
| 7  | 9   | 8    | 5    | 1   | 11  | 8    | 7    |
| 8  | 10  | 9    | 5    | 10  | 12  | 9    | 2    |
| 9  | 6   | 4    | 3    | 7   | 7   | 7    | 8    |
| 10 | 10  | 11   | 4    | 8   | 8   | 8    | 2    |

#### Pasteur scheme

| ST | dinB | icdA | pabB | polB | putP | trpA | trpB | uidA |
|----|------|------|------|------|------|------|------|------|
| 1  | 1    | 1    | 2    | 1    | 1    | 2    | 3    | 1    |
| 2  | 8    | 2    | 7    | 3    | 7    | 1    | 4    | 2    |
| 3  | 3    | 8    | 5    | 11   | 8    | 3    | 5    | 3    |
| 4  | 2    | 4    | 6    | 4    | 1    | 6    | 1    | 1    |
| 5  | 5    | 3    | 3    | 10   | 5    | 8    | 2    | 5    |
| 6  | 1    | 7    | 1    | 9    | 2    | 20   | 1    | 6    |
| 7  | 6    | 6    | 4    | 2    | 6    | 7    | 2    | 4    |
| 8  | 23   | 9    | 8    | 12   | 9    | 11   | 7    | 13   |
| 9  | 9    | 20   | 15   | 7    | 4    | 9    | 6    | 9    |
| 10 | 4    | 18   | 10   | 5    | 2    | 4    | 1    | 6    |

https://pubmlst.org/bigsdb?db=pubmlst\_escherichia\_seqdef https://enterobase.readthedocs.io/en/latest/mlst/mlst-legacy-info-ecoli.html

# MLST 2.0 (CGE)

Platform: Web-based

Input: Sequence reads

(.fastq) OR

assemblies (.fasta)

URL: https://cge.food.dtu.

dk/services/MLST/

Comments: Available for many

clinically important

species; regularly

updated DB



#### **MLST 2.0**



### Enterobase

Platform: Web-based

Input: Sequence reads

(fastq)

URL: https://enterobase.

warwick.ac.uk/

Comments: Specific for E. coli,

Salmonella, etc.

Also generates

cgMLST, serotyping

results, etc.



### **MLST**

Platform: CLI (Linux/OS X)

Input: Assembled and/or

annotated genomes

(fasta/GenBank/EMBL)

URL: https://github.com/ts

eemann/mlst

Comments: Preferred for large

datasets; manually

update database once

installed



## E. coli serotyping

- Serological typing based on differences in the lipopolysaccharide O antigen, capsular K antigen, and flagellar H antigen.
- Serotype information very useful epidemiologically because it is directly linked to antigenic response
- Poor phylogenetic correlation due to high propensity for recombination in these genes
- WGS serotyping based on sequence similarity
- O:H typing (standard serotyping) from WGS data:
  - O group:
    - O-antigen processing genes: wzx, wzy, wzm, and wzt
  - H group:
    - Flagellin-encoding genes fliC, flkA, fllA, flmA and flnA

# Salmonella serotyping

- Phenotypic serotyping
  - Labor-intensive and expensive
  - Requires procurement and storage of multiple antisera
- Serovars designated by names or antigenic formula in the format: O:H1:H2
- Over 2500 serotypes in White-Kauffmann-Le Minor scheme
- Specific combinations of O and H antigenic types represent serotypes/serovars
- Genome-based serotyping targets same antigens as phenotypic assays:
  - Somatic (O) group antigen rfb gene cluster (wzx, wzy, others)
  - Flagellar antigens fliC and fljB

Zhang et al (2015) <a href="https://doi.org/10.1128/JCM.00323-15">https://doi.org/10.1128/JCM.00323-15</a>

# SeqSero (CGE)

Platform: Web-based

Input: Sequence reads (.fastq)

OR assemblies (.fasta)

URL: <a href="https://cge.food.dtu.dk/s">https://cge.food.dtu.dk/s</a>

ervices/SeqSero/

Comments: Salmonella serotyping



#### SeqSero 1.2



### **SISTR**

Platform: Web and CLI (Linux /

OS X)

Input: Assemblies (fasta)

URL: <a href="https://github.com/ph">https://github.com/ph</a>

ac-nml/sistr\_cmd

https://sistr-

app.herokuapp.com/

Comments: Salmonella typing:

serovar and serogroup

prediction, cgMLST,

etc.

| HOME | RESULTS | QUEUE | HISTORY |

#### SISTR: Salmonella In Silico Typing Resource

We present the Salmonella In Silico Typing Resource (SISTR) version 1.1.1, a bioinformatics platform for rapidly performing simultaneous in silico analyses for several leading subtyping methods on draft Salmonella genome assemblies. In addition to performing serovar prediction by genoserotyping, this resource integrates sequence-based typing analyses for: Multi-Locus Sequence Typing (MLST), ribosomal MLST (rMLST), and core genome MLST (cgMLST).

Click or Drop assembly file(s) in FASTA format here for typing.

Submit

Citation: The Salmonella In Silico Typing Resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. Catherine Yoshida, Peter Kruczkiewicz, Chad R. Laing, Erika J. Lingohr, Victor P.J. Gannon, John H.E. Nash, Eduardo N. Taboada. PLoS ONE 11(1): e0147101. doi: 10.1371/journal.pone.0147101

#### Notes:

- 1) Do not submit sensitive private data to this public demo website. Rather deploy SISTR web application privately.
- 2) Submitted data is stored temporary due to hosting virtual machine shut down after 30 min of inactivity.
- 3) This site could be deployed locally or on your own infrastructure with source code available at <a href="https://github.com/phac-nml/sistr-web-app">https://github.com/phac-nml/sistr-web-app</a>

© Copyright 2021. Canada's National Microbiology Laboratory

# **ECTyper**

Platform: Web and CLI

Input: Assemblies (fasta) or raw

reads (fastq)

URL: <a href="https://github.com/phac-">https://github.com/phac-</a>

nml/ecoli serotyping

https://usegalaxy.eu/root

?tool id=ectyper

Comments: *E. coli* serotyping





# Questions

# Practical

- CGE tools: <a href="https://cge.food.dtu.dk/services/">https://cge.food.dtu.dk/services/</a>
  - Species identification
  - MLST determination
  - Serotyping (if applicable)
- Multi-analyses tools:
  - Pathogenwatch [and Kleborate] <a href="https://pathogen.watch/">https://pathogen.watch/</a>
  - Enterobase <a href="https://enterobase.warwick.ac.uk/">https://enterobase.warwick.ac.uk/</a>