Ciência de Dados Quântica 2021/22

QAOA:

Quantum Approximate
Optimization Algorithm

LUÍS PAULO SANTOS

Material de Consulta

- ► [Schuld2021] Sec. 3.6.5.2; Chap. 5
- Qiskit Textbook: Solving combinatorial optimization problems using QAOA https://qiskit.org/textbook/ch-applications/qaoa.html
- Quantum Approximate Optimization Algorithm explained https://www.mustythoughts.com/quantum-approximate-optimization-algorithmexplained
- Quantum TSP tutorial https://github.com/mstechly/quantum_tsp_tutorials

Combinatorial Optimization

Combinatorial optimization problems: finding an optimal object out of a finite set of objects.

▶ Our formulation: finding optimal bit strings, $z = \{0,1\}^{\otimes n}$, out of a set of finite bitstrings

Combinatorial Optimization: MaxCut

Given a graph G=(V,E) find the cut with maximum cost A cut is a partitioning of the graph's nodes into 2 sets

$$A = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}$$

$z=z_0z_1z_2z_3$	Cut
0000	0
0001	2
0010	3
0011	5
0100	3
0101	5
0110	2
0111	4
1000	4
1001	2
1010	5
1011	3
1100	5
1101	3
1110	2
1111	0

Combinatorial Optimization: MaxsAT

lacktriangle Given Boolean statements on the bits z_i identify the bit strings which satisfy more statements

$$z = z_0 z_1 z_2 \qquad C_1(z) = z_0 z_1 \qquad C_2(z) = z_0 \overline{z_2}$$

$$C(z) = \sum_{z=1}^K C_k(z)$$

$z=z_0z_1z_2$	C ₁ (z)	C ₂ (z)	C(z)
000	0	0	0
001	0	0	0
010	0	0	0
011	0	0	0
100	0	1	1
101	0	0	0
110	1	1	2
111	1	0	1

Time Evolution

▶ Let *H* be the Hamiltonian of a quantum system. Then the system time evolution, according to Schrodinger equation is:

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = H |\psi(t)\rangle$$

 $|\psi(t)\rangle = e^{\frac{-iHt}{\hbar}} |\psi(0)\rangle$

▶ The Hamiltonian is Hermitian $(H = H^{\dagger})$,

therefore
$$U_H(t)=e^{\frac{-iHt}{\hbar}}$$
 is unitary $(U_H^{-1}(t)=U_H^{\dagger}(t))$

$$|\psi(t)\rangle = e^{\frac{-iHt}{\hbar}}|\psi(0)\rangle = U_H(t)|\psi(0)\rangle$$

Adiabatic Quantum Computing

"A physical system remains in its instantaneous <u>eigenstate</u> if a given <u>perturbation</u> is acting on it slowly enough ..." [1]

- ▶ Start from the ground state $|s\rangle$ of a quantum system with an easily realisable Hamiltonian H_0 , which corresponds to a smooth landscape
- \blacktriangleright Aim towards the **ground state of the Hamiltonian** H_{p} , which describes the quantum system of interest
- Then the Hamiltonian used by the adiabatic approach is:

$$H(t) = (1 - t) H_0 + t H_p$$

Adiabatic Quantum Computing

Slow time evolution from the ground state of H_0 to the ground state of H_p

QAOA operator

▶ Up to now:

$$lackbr{ert}|oldsymbol{\psi}(t)
angle=e^{rac{-iHt}{\hbar}}|oldsymbol{\psi}(\mathbf{0})
angle$$

$$\blacktriangleright H(t) = (1-t) H_0 + t H_p$$

The circuit based QAOA substitutes (1 - t) and t by parameters β and α , which are variationally optimized:

$$lackbox{|}\psi(t)
angle=e^{rac{-ieta H_0}{\hbar}+rac{-ilpha H_p}{\hbar}}|\psi(0)
angle$$

QAOA operator: trotterization

if H_0 and H_p do not commute (and they can't commute for QAOA to converge^[2]), then:

$$e^{(-i\beta H_0)+(-i\alpha H_p)} \neq e^{-i\beta H_0} * e^{-i\alpha H_p}$$

- Lie product formula states that: $e^{A+B} = \lim_{p \to \infty} \left(e^{A/p} * e^{B/p} \right)^p$
- ▶ The Trotter Suzuki formula allows truncation (trotterization) of the above product:

$$e^{A+B}=\left(e^{A/p}*e^{B/p}\right)^p+\mathcal{O}(p^{-1})$$
, for finite $p\in\mathbb{N}$

QAOA operator: trotterization

$$e^{(-i\beta H_0)+(-iH_p)}=\left(e^{-i\beta H_0/p}*e^{-i\alpha H_p/p}\right)^p+\mathcal{O}(p^{-1})$$
, for finite $p\in\mathbb{N}$

- Let $U(\beta, H_0) = e^{-i\beta H_0}$ and $U(\alpha, H_p) = e^{-i\alpha H_p}$, where $\frac{1}{p}$ has been absorbed into the parameters α and β
- ▶ Furthermore, allow α and β to be different for each term of the product:

$$e^{(-i\beta H_0)+(-i\alpha H_p)} \approx \prod_{j=1}^p \left(U(\beta_j, H_0)U(\alpha_j, H_p)\right)$$

► Finally we get:

$$|\psi(\alpha,\beta)\rangle = U(\beta_p, \mathbf{H_0})U(\alpha_p, \mathbf{H_p})\cdots U(\beta_1, \mathbf{H_0})U(\alpha_1, \mathbf{H_p})|\psi(0)\rangle$$

QAOA operator: trotterization

trotterization: discretization of the time evolution

QAOA: overall

find (α^*, β^*) such that the expectation of H_p is minimized: $|\psi(\alpha^*, \beta^*)\rangle = \underset{\alpha, \beta}{\operatorname{argmin}} \langle |\psi(\alpha, \beta)| H_p |\psi(\alpha, \beta)\rangle$

▶ sample basis states $|z\rangle$ from $|\psi(\alpha^*, \beta^*)\rangle$ to find a solution

The mixer Hamiltonian: H_0

- \blacktriangleright H_0 must:
 - ▶ have a smooth landscape
 - be easy to implement
 - have a ground state easy to prepare
 - \blacktriangleright not commute with H_p
- A good option is using a Pauli-X (σ_j^x) based Hamiltonian:
 - \blacktriangleright $H_0=\sum_j^n\sigma_j^x$; $U(eta,H_0)=e^{-ieta H_0}=R_X^{\otimes n}(eta)$, i.e, a X-rotation for all n qubits
 - ▶ The ground state of H_0 is $|+\rangle^{\otimes n} = H^{\otimes n}|0\rangle$, where H is an Hadarmard gate
 - \blacktriangleright H_p will be based on Pauli-Z operators (σ^z), which do not commute with σ^x

The mixer Hamiltonian: H_0

$$|\psi(0)\rangle = |s\rangle = |+\rangle^{\otimes n} = H^{\otimes n}|0\rangle$$
 ; $H_0 = \sum_{j=1}^{n} \sigma_j^x$; $U(\beta, \mathbf{H_0}) = \mathbf{e}^{-i\beta H_0} = \mathbf{R}_X^{\otimes n}(\beta)$;

$$Z_0 - \begin{bmatrix} R_X \\ 2^*\beta \end{bmatrix} - \begin{bmatrix} R_X \\ 2^*\beta \end{bmatrix}$$

The mixer Hamiltonian: H_0

- \blacktriangleright What is the role of H_0 ?
 - ▶ Suppose there is no H_0 . Then the circuit would repetitively apply $U(\alpha_j, H_p)$
 - \blacktriangleright Once an eigenstate of H_p is reached the state won't evolve any further. Applying an operator to its eigenvector can change its length, but not direction.
 - The same would apply if H_0 would commute with H_p .
 - \blacktriangleright H_0 allows the quantum system to escape from local minima and search for the ground state;
- Imagine you're in a forest full of traps and you want to find a treasure. H_p allows you to feel the treasure and move towards it, while H_0 provides you with a set of rules on how to move to avoid the traps.
 - Without H_p you have no idea which direction to go and without H_0 you cannot make any moves.

https://www.mustythoughts.com/quantum-approximate-optimization-algorithm-explained

The problem Hamiltonian: H_p

- ▶ H_p is built from the problem cost function C(z), where $z \in \{0,1\}^n$ is a bit string
- ▶ Let $z = z_0 z_1 \cdots z_n$, where $z_i = \{0,1\}$ refers to the ith bit in the string
- ▶ Using Pauli-Z (σ^z) operators to develop H_p (σ^z does not commute with σ^x) we can map:

$$ightharpoonup Z_i
ightharpoonup rac{1-\sigma_i^Z}{2}, \qquad \sigma_i^Z = 1 \Longrightarrow Z_i = 0; \qquad \sigma_i^Z = -1 \Longrightarrow Z_i = 1$$

H_p : MaxCUT

$$A = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}$$

$$C(z) = \sum_{(i,j)\in E} \left[w_{i,j} \left(z_i (1 - z_j) + z_j (1 - z_i) \right) \right]$$

$$z_i o rac{1 - \sigma_i^Z}{2}$$

$$H_p = \frac{1}{2} \sum_{(i,j) \in E} \left[w_{i,j} \left(1 - \sigma_i^z \sigma_j^z \right) \right]$$

$$H_p = \frac{1}{2} \left[(1 - \sigma_0^z \sigma_1^z) + (1 - \sigma_0^z \sigma_2^z) + 2(1 - \sigma_1^z \sigma_2^z) + 2(1 - \sigma_0^z \sigma_3^z) \right]$$

$$H_p = (\sigma_0^z \otimes \sigma_1^z \otimes \mathbb{I}_2 \otimes \mathbb{I}_3) + (\sigma_0^z \otimes \mathbb{I}_1 \otimes \sigma_2^z \otimes \mathbb{I}_3) + 2(\mathbb{I}_0 \otimes \sigma_1^z \otimes \sigma_2^z \otimes \mathbb{I}_3) + 2(\sigma_0^z \otimes \mathbb{I}_1 \otimes \mathbb{I}_2 \otimes \sigma_3^z)$$

$$U(\alpha, H_p) = e^{-i\alpha(\sigma_0^Z \otimes \sigma_1^Z \otimes \mathbb{I}_2 \otimes \mathbb{I}_3)} e^{-i\alpha(\sigma_0^Z \otimes \mathbb{I}_1 \otimes \sigma_2^Z \otimes \mathbb{I}_3)} e^{-i2\alpha(\mathbb{I}_0 \otimes \sigma_1^Z \otimes \sigma_2^Z \otimes \mathbb{I}_3)} e^{-i2\alpha(\sigma_0^Z \otimes \mathbb{I}_1 \otimes \mathbb{I}_2 \otimes \sigma_3^Z)} e^{-i2\alpha(\sigma_0^Z \otimes \mathbb{I}_3)} e^{-i2\alpha(\sigma_0^Z \otimes$$

H_p : MaxCUT

$$U(\alpha, H_p) = e^{-i\alpha(\sigma_0^Z \otimes \sigma_1^Z \otimes \mathbb{I}_2 \otimes \mathbb{I}_3)} e^{-i\alpha(\sigma_0^Z \otimes \mathbb{I}_1 \otimes \sigma_2^Z \otimes \mathbb{I}_3)} e^{-i2\alpha(\mathbb{I}_0 \otimes \sigma_1^Z \otimes \sigma_2^Z \otimes \mathbb{I}_3)} e^{-i2\alpha(\sigma_0^Z \otimes \mathbb{I}_1 \otimes \mathbb{I}_2 \otimes \sigma_3^Z)}$$

$$U(\alpha, H_p) = R_{0,1}^Z(2\alpha) R_{0,2}^Z(2\alpha) R_{1,2}^Z(4\alpha) R_{0,3}^Z(4\alpha)$$

MaxCUT: cost and loss functions

```
def loss_function(z,counts):
    loss=0
    for i in range(n qubits):
        for j in range(i+1,n_qubits):
            if z[i] != z[j] and A[i,j]:
                loss -= A[i,j]
    loss *= counts
    return loss
def cost function():
    counts = execute circuit(full gaoa circuit, shots=2048)
    cost = 0
    for (z,c) in counts.items():
        cost+=loss function(z, c)
    cost /= shots
    return cost
```


$z=z_0z_1z_2z_3$	Cut
0000	0
0001	2
0010	3
0011	5
0100	3
0101	5
0110	2
0111	4
1000	4
1001	2
1010	5
1011	3
1100	5
1101	3
1110	2
1111	0

$z=z_0z_1z_2z_3$	Cut
0000	0
0001	2
0010	3
0011	5
0100	3
0101	5
0110	2
0111	4
1000	4
1001	2
1010	5
1011	3
1100	5
1101	3
1110	2
1111	0

$z=z_0z_1z_2z_3$	Cut
0000	0
0001	2
0010	3
0011	5
0100	3
0101	5
0110	2
0111	4
1000	4
1001	2
1010	5
1011	3
1100	5
1101	3
1110	2
1111	0