Spark DataFrames and SparkSQL

Game Plan

Spark DataFrames motivation

Spark DataFrames basics

 Working with Spark DataFrames and SparkSQL

- Understand the benefits of Spark DataFrames over traditional RDDs
- Know how to instantiate and interact with a Spark DataFrame
- Know how to register a Spark DataFrame in order to be able to use SQL queries on the data
 - Know how to spin up a spark cluster on AWS

Game Plan

Spark DataFrames motivation

Spark DataFrames basics

 Working with Spark DataFrames and SparkSQL

- Understand the benefits of Spark DataFrames over traditional RDDs
- Know how to instantiate and interact with a Spark DataFrame
- Know how to register a Spark DataFrame in order to be able to use SQL queries on the data
 - Know how to spin up a spark cluster on AWS

- They provide an abstraction that simplifies working with structured datasets
- They can read and write data in a variety of structured formats
- They let you query the data using SQL.
- They are much faster than traditional RDD's

• Spark default RDDs —> (Key, Value)

• What if our data is not (Key, Value), and looks like this?

```
{ 'name': 'Amy', age: 18, hobby: 'drinking'}
{ 'name': 'Greg', age: 60, hobby: 'fishing'}
{ 'name': 'Susan', age: 30}
```

To get this: Older than 18, With hobbies

With traditional RDDs, we have to write this:

```
rdd.filter(lambda d: d['age'] > 18) \
.filter(lambda d: 'hobby' in d.keys()) \
.map(lambda d: d['name'])
```

With DataFrames, we can write this:

hive_context.sql("SELECT name

FROM table

WHERE age > 18
AND hobby IS NOT NULL")

This is much simpler, even for just a simple query!

On top of the ease with which we can perform operations,
 DataFrames are also much faster!

Game Plan

Spark DataFrames motivation

Spark DataFrames basics

 Working with Spark DataFrames and SparkSQL

 Understand the benefits of Spark DataFrames over traditional RDDs

- Know how to instantiate and interact with a Spark DataFrame
- Know how to register a Spark DataFrame in order to be able to use SQL queries on the data
 - Know how to spin up a spark cluster on AWS

RDD vs. DataFrame

Spark DataFrames are basically just RDD's, with some structure...

RDD vs. DataFrame

Or more specifically, a schema...

DataFrame Basics

• A DataFrame contains an RDD of **Row** objects, each representing a record. A DataFrame is not technically an RDD, but we can effectively treat it as such.

 A DataFrame knows the schema of its rows, which means that it can store and process data in a more efficient manner

Schema Importance

- Allows logical optimizations (e.g. predicate pushdown)
- Allows for compilation to Bytecode (Python specific)

Schema Importance

Game Plan

Spark DataFrames motivation

Spark DataFrames basics

 Working with Spark DataFrames and SparkSQL

Spark DataFrames

How do I get one of these things?

```
1. sc = SparkContext()
```

2. hive_context = HiveContext(sc)

OR

sql_context = SQLContext(sc)

 HiveContext() offers more functionality, and this should be your go to

- Understand the benefits of Spark DataFrames over traditional RDDs
- Know how to instantiate and interact with a Spark DataFrame
- Know how to register a Spark DataFrame in order to be able to use SQL queries on the data
 - Know how to spin up a spark cluster on AWS

SparkSQL

How do I get to SparkSQL?

- 1. data = hive_context.jsonFile(input_file)
- 2. data.registerTempTable("users")
- 3. transaction_counts = hive_context.sql("SELECT COUNT(transactions) FROM users")

- Understand the benefits of Spark DataFrames over traditional RDDs
- Know how to instantiate and interact with a Spark DataFrame
- Know how to register a Spark DataFrame in order to be able to use SQL queries on the data
 - Know how to spin up a spark cluster on AWS