blad 1 van 17 projectnr. 411708

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

Samenvatting constructieve toets

Uitgangspunten van de kering

Kadetraject15-2Type keringPrimairOndergrens / T =1:3000L_{traject}24,5Faalkans t.b.v. macrostabiliteit binnenwaarts4%

Overige uitgangspunten

Schematiseringsfactor Berekenen Is er een opbarstsituatie? Nee 1,10 [-] 3D-factor Reductie puntdruk t.g.v. MHW (holocene lagen) 0,97 [-] Reductie puntdruk t.g.v. MHW (pleistocene lagen) 0,97 [-] Groepseffect-factor kopplaat/LDP in de dwarsrichting van de dijk 1,00 [-] Gewenste levensduur 100 [jaar] Is er 100% controle op alle klapankers Nee 10 of meer Aantal beschikbare sonderingen

Rij 2 Maatgevend Optredende krachten 1 3 13,1 Maximaal optredend moment in het LDE 14,5 14,1 15 [kNm] $M_{LDE;plx} =$ 8,5 [kN] Maximaal optredende dwarskacht in het LDE 8,51 8,51 8,0 $F_{LDE;dw;plx} =$ Optredende dwarskracht t.h.v. overgang LDE - LDP 2,45 1,8 2 2,5 [kN] $F_{NB;dw;plx} =$ Optredende dwarskracht aan het einde van het LDE 1,26 0,3 0,1 1,3 [kN] $F_{AKS;dw;plx} =$ Maximale trekkracht in de ankerstang 85,4 82,3 79,4 85 [kN] $F_{trek;plx} =$ $F_{kpl;r}$ Maximale ontwerpwaarde draagkracht kopplaat 106 106 106 106 [kN] De slipkracht in het LDE-element 15,5 16 [kN] $F_{slip;LDE} =$ 12,3 15,5

Toetsresultaten		UC
STR1: Bezwijken LDE door combinatie dwarskracht en normaalkracht	$\sigma'_{LDE;com} / \sigma'_{LDE;r}$	0,07
STR2: Bezwijken LDE door combinatie buigend moment en normaalkracht	$N_{LDE'd} / N_{b;Rd} + M_{LDE;d} / M_{Rd}$	0,83
STR3: Bezwijken trekstang door combinatie dwarskracht en normaalkracht	$= \sigma_{LDE;com} / \sigma_{LDE;r}$	0,87
STR4: Bezwijken trekstang door combinatie buigend moment en normaalkra	$\sigma_{'LDE;com}$ / $\sigma_{'LDE;r}$	0,87
STR4: Bezwijken naspanbout door combinatie dwarskracht en normaalkrach	$\sigma_{\text{CBS;NB}}$ / $\sigma_{\text{toel;NB}}$	0,40
STR4: Bezwijken ankermof naspanbout door normaalkracht	L _{tapgat;min} / L _{mof}	0,33
STR4: Bezwijken ankermof klapanker door normaalkracht	L _{tapgat;min} / L _{mof}	0,33
STR5: Constructief bezwijken kopplaat	$N_{LDP;d} / N_{LDP;RD}$	n.t.b.
STR6: Constructief bezwijken klapanker	= F _{AKV;d} / N _{klapanker;d}	0,59
SSI1: Snijden van de grond tussen de JLD-Dijkstabilisatoren	Invoer Plaxis: 34,3 [kN/m]	
SSI2: Bezwijken houdkracht klapanker	F _{AKV;r} / F _{AKV;mx;r}	0,52
SSI3: Slip LDE	Invoer Plaxis: 2,62 [kN/m]	
SSI3: Verlies draagvermogen grond onder de kopplaat tijdens MHW	= N _{MHW} / F _{uitv}	1,00
SSI3: Verlies draagvermogen grond onder de kopplaat tijdens de uitvoering	= N _{uitv;d} / F _{uitv}	1,00

blad 2 van 17 projectnr. 413509

titel Constructieve toets JLD-Dijkstabilisator ringdijk Watergraafsmeer

Geotechnische uitgangspunten

Globale geometrie

Breedte kruin 9 [m]
Hoogte kuin 5 [m NAP]
Breedte binnentalud 12,5 [m]
Hoogte achterland 0 [m NAP]
Aantal rijen JLD-Dijkstabilisatoren 3 [-]
Aanname van de zwel van het dijklichaam 20 [mm]

Toegepaste elementen

Type LDP	Kopplaat 0.90 * 1.00 m	[-]
Type LDE	LDE 0,25 m breed	[-]
Type ankerstaaf	K60-22	[-]
Type ankervoet	JLD 2.6	[-]

Afmetingen Dijkstabilisator NR 1 NR 2 NR 3 Hoek t.o.v. horizontaal 30 30 30 [0] Positie t.o.v. hippenteen 0.79 4.5 8.15 [m]

 Positie t.o.v. binnenteen
 0,79
 4,5
 8,15 [m]

 Lengte LDE
 15,5
 16,6
 17 [m]

 Lengte ankerstang
 21
 23,7
 27,1 [m]

Diepte LDE -7,9 -7,0 -5,7 [m t.o.v. NAP] Diepte ankervoet -10,7 -10,6 #### [m t.o.v. NAP] Referentieafstand in Plaxis 1,0 1,0 1,0 [m] Ontwerp h.o.h. afstand 1,0 1,0 1,0 [m]

Minimale Qc over de lengte van het LDE 0,38 [Mpa]
Gemiddelde Qc over de lengte van het LDE 0,82 [Mpa]
Qc ter hoogte van de ondiepste ankervoet 8,0 [Mpa]

blad 3 van 17 projectnr. 411708

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

Geotechnisch bezwijken

Foutenboom falen dijktraject

T = Overbelastingskans stabiliteit = 3000 [jaar]
P_{o;st} = Overscheidingskans van de stabiliteit = 1/T = 0,00033 [per jaar]

Normgetal = signaalwaarde = middenkans = 0,0001 [per jaar]
Maximaal toelaatbare kans op overstroming = middenkans *3 = 3,33E-04 [per jaar]
Normklasse = 3,33E-04 [per jaar]

Foutenboom falen JLD-Dijkstabilisator

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

Constructief bezwijken

STR1: Constructief bezwijken LDE door combinatie dwars- en normaalkracht

LDEtype = LDE 0,25 m breed

Da.::*!1	· •			
Partiële	= Tac	coren Materiaalfactor gekoppeld aan geometrische afwijkingen	=	1,15 [-]
γ _{m1}		Materiaalfactor die onzekerheden in de sterkte verdisconteerd	=	1,13 [-]
γ _{m2}	=			
γ_{m}	=	γ _{m1} * γ _{m2}	=	1,38 [-]
η_{ct}	=	Conversiefactor voor temperatuureffecten	=	1,00 [-]
η_{cm}	=	Conversiefactor voor effecten van waterdamp	=	0,90 [-]
$\eta_{\text{cv;p}}$	=	Conversiefactor voor effecten van kruip parallel aan de pultrusierichting	=	0,90 [-]
$\eta_{\text{cv;l}}$	=	Conversiefactor voor effecten van kruip lateraal aan de pultrusierichting	=	0,47 [-]
$\eta_{c;p}$	=	Conversiefactor sterkte parallel aan de pultrusierichti = $\eta_{ct} * \eta_{cm} * \eta_{cv;p}$	=	0,81 [-]
$\eta_{c;l}$	=	Conversiefactor sterkte loodrecht op de pultrusierich = $\eta_{ct} * \eta_{cm} * \eta_{cv;l}$	=	0,42 [-]
$\gamma_{\text{add;3D}}$	=	3D factor	=	1,10 [-]
$\gamma_{\text{add;str}}$	=	Belastingeffect-factor voor constructieve onderdelen	=	1,25 [-]
γ _{b;str}	=	Schematiseringsfactor constructieve onderdelen	=	1,09 [-]
$\gamma_{s;t}$	=	partiële weerstandsfactor voor schachtweerstand	=	1,25 [-]
Storkto	oigo	nschappen		
A _{LDE}	eige =	Doorsnede LDE	=	8519 [mm²]
a	=	De kleinste afmeting van het LDE	=	154 [mm]
b	=	De grootste afmeting van het LDE	=	245 [mm]
W_x	=	Weerstandsmoment om de horizontale as	=	128890 [mm³]
σ' _{LDE;tr}	=	Maximale treksterkte LDE	=	420 [N/mm²]
$\sigma'_{LDE;dr}$	=	Maximale druksterkte LDE	=	350 [N/mm²]
σ' _{LDE;proe}	_{ef} =	Maximale druksterkte LDE o.b.v. destructieve beproevingen	=	400 [N/mm²]
τ' _{LDE}	=	Maximale dwarse buigsterkte LDE	=	125 [N/mm²]
n _{ini}	=	Verhouding tussen toelaatbare druk en trekspanninggen	=	3,36 [-]
n	=	Verhouding tussen toelaatbare druk en trekspanninggen, inc. tijdseffect	=	6,48 [-]
Berekei	ning	puntdraagvermogen LDE		
$f_{punt;d}$	=	Maximaal puntdraagvermogen van het LDE = $A_{LDE} * q_{b;max}$	=	17,4 [kN]
q _{b;max}	=	Max (15; $^{1}/_{2} * \alpha_{p} * \beta * s * ((q_{c;l;gem} + q_{c;l gem} / 2) + q_{c;l l;gem}))$	=	2,04 [MPa]
α_{p}	=	De paalklassefactor, bepaald conform NEN 9997-1, tabel 7.c	=	0,7 [-]
β	=	De factor die de invloed van de paalvorm in rekening brengt	=	1 [-]
S	=	$(1 + (\sin \phi / r)) / (1 + \sin \phi)$	=	0,87 [-]
r	=	de verhouding b/a	=	1,59 [-]
Φ_{punt}	=	φ t.h.v. de punt van het LDE	=	32,5 [⁰]
q _{c;I;gem}	=	De gemiddelde waarde van de conusweerstanden, over het traject I	=	0,95 [MPa]
q _{c;II;gem}	=	De gemiddelde waarde van de conusweerstanden, over het traject II	=	0,95 [MPa]
q _{c;III;gem}	=	De gemiddelde waarde van de conusweerstanden, over het traject III	=	1,25 [MPa]

1_	
n	เลก

UC

projectnr. 411708

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

0,07 [-] voldoet

Berekening schuifweerstand LDE

$L_{LDE;glij}$	=	Lengte van JLD-dijkstabilisator	=	15,5 [m]
O_LDE	=	Omtrek van de LDE in de grond	=	0,71 [m]
		Reductie puntdruk t.g.v. maatgevend hoogwater	=	0,97 [-]
$q_{c;gem}$	=	sondeerweerstand onder MHW; gemiddelde over de lengte van het LDE	=	1,510 [MPa]
α_{kar}	=	karakteristieke waarde voor $lpha$	=	0,008 [-]
C _{kar}	=	karakteristieke waarde voor c	=	0,093 [MPa]
$q_{s;k}$	=	$\alpha * (q_c + c)$	=	12,46 [kPa]
$q_{s;d}$	=	$q_{s;k} * \gamma_{s;t}$	=	21,42 [kPa]
$f_{s;d}$	=	$q_{s;d} * O_{LDE} * L_{LDE}$	=	235 [kN]

Beoordeling op druk-/ trek- en dwarskrachten

= $\sigma'_{LDE;com} / \sigma'_{LDE;r}$

		•		
σ'_{LDE}	;r =	Rekenwaarde druksterkte = $(\sigma'_{LDE} * \eta_{c,p}) / \gamma_m$	=	235 [N/mm²]
N_{LDE}	;d =	Maximale normaalspanning in het LDE		
	=	$ minimum ((f_{s;d} + f_{;punt;d}) * \gamma_{add;3D} * \gamma_{add;str}) ; (N_{tr;k} * \gamma_{add;3D} * \gamma_{add;str} * \gamma_{b;str})) $	=	127 [kN]
σ'_{LDE}	;nm =	Optredende spanning t.g.v. normaalkracht in het LDE	=	15,0 [N/mm²]
V_{LDE}	k =	Karakterestieke dwarskracht	=	8,51 [kN/m/m]
$V_{LDE;}$	d =	Maximale ontwerpwaarde dwarskracl = $V_{LDE;plx} * \gamma_{add;3D} * \gamma_{add;str} * \gamma_{b;str}$	=	12,71 [kN/m/m]
τ' _{LDE;}	dw =	Optredende dwarse spanning = $V_{LDE;d} / A_{LDE}$	=	1,5 [N/mm²]
σ'_{LDE}	;com =	$V(\sigma'_{LDE;tr}^2 + n * \tau_{'LDE;tr}^2)$	=	15 [N/mm²]

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

STR2: Constructief bezwijken LDE door combinatie buigend moment en normaalkracht Controle knik LDE

Control	e KII	IK LDL		
γ_{m1}	=	Materiaalfactor gekoppeld aan geometrische afwijkingen	=	1,15 [-]
$\gamma_{m2;knik}$	=	Materiaalfactor die onzekerheden in de sterkte verdisconteerd m.b.t. knik	=	1,40 [-]
$\gamma_{m;knik}$	=	γ _{m1} * γ _{m2;knik}	=	1,61 [-]
η_{c}	=	Conversiefactor sterkte lateraal aan de pultrusierichti = $\eta_{ct} * \eta_{cm}$	=	0,81 [-]
E _{LDE}	=	Elasticiteitsmodulus LDE = 27 GPa	=	27000 [N/mm²]
I _{x;LDE}	=	Oppervlaktetraagheidsmoment (om de zwakke as)	=	1381 [cm4]
β_d	=	Reductiefactor	=	1,0 [-]
L_{cr}	=	Kniklengte van het LDE, uitgaande dat knik alleen optreed direct rond het g	li =	1,0 [m]
N _{cr}	=	$EI * \beta_d * \pi^2 / L_{cr}^2$	=	3679 [kN]
ρ	=	Reductiefactor voor lokaal plooien en lokale imperfecties	=	0,9 [-]
$lpha_{f}$	=	Imperfectiefactor	=	0,75 [-]
$\lambda_{f,0}$	=	Plateaulengte van de knikkromme	=	0,5 [-]
λ_{f}	=	Relatieve slankheid = $V(A_{LDE} * \rho * \sigma_{LDE;r} / N_{CR})$	=	0,69 [-]
ф	=	Algemene initiele scheefstand = $0.5 * (1 + \alpha_f * (\lambda_f - \lambda_{f0}) + \lambda_f^2)$	=	0,81 [-]
Χ	=	Reductiefactor voor de van toepassing zijnde knikvorr = $1/(\phi + V(\phi^2 - \lambda_f^2))$)) =	0,85 [-]
Beoord	eling	op moment- en druk-/ trekbelasting		
$N_{b;Rd}$	=	Rekenwaarde van de normaalkrachtcapaciteit inclusief knik	=	1116 [kN]
N_{Rd}	=	Rekenwaarde van de normaalkrachtcapaciteit = $A_{LDE} * \sigma_{LDE;r}$	=	2000 [kN]
${\sf M}_{\sf Rd}$	=	Rekenwaarde van de buigend moment capaciteit = $W_x * \sigma'_{LDE;r}$	=	30,3 [kNm]
$M_{\text{LDE};k}$	=	Karakterestieke waarde buigend moment	=	14,5 [kNm]
$M_{\text{LDE};d}$	=	Rekenwaarde buigend moment = $M_{LDE;k} * \gamma_{add;3D} * \gamma_{add;str} * \gamma_{b;str}$	=	21,7 [kNm]
UC	=	$N_{LDE'd}$ / min($N_{b;Rd}$ of N_{Rd}) + $M_{LDE;d}$ / M_{Rd}	=	0,83 [-]
		• • • • • • • • • • • • • • • • • • •		voldoet

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

STR3: Constructief bezwijken trekstang door combinatie dwarskracht en normaalkracht

Partiel	e fac	toren			
γ_{m1}	=	Materiaalfactor gekoppeld aan geometrische afwijking	gen	=	1,15 [-]
γ_{m2}	=	Materiaalfactor die onzekerheden in de sterkte verdis	conteerd	=	1,20 [-]
γ_{m}	=	γ _{m1} * γ _{m2}		=	1,38 [-]
γm;staal,v	_{lot} =	Materiaalfactor staal voor 100 jaar		=	1,02 [-]
γ_{vorm}	=	Vormfactor schroefdraad		=	1,25 [-]
η_{ct}	=	Conversiefactor voor temperatuureffecten		=	1,00 [-]
η_{cm}	=	Conversiefactor voor effecten van waterdamp		=	0,90 [-]
$\eta_{\text{cv;p}}$	=	Conversiefactor voor effecten van kruip parallel aan de	e pultrusierichting	=	0,90 [-]
$\eta_{\text{cv;l}}$	=	Conversiefactor voor effecten van kruip lateraal aan d	e pultrusierichting	=	0,47 [-]
$\eta_{c;p}$	=	Conversiefactor sterkte parallel aan de pultrusierichti	$= \eta_{ct} * \eta_{cm} * \eta_{cv;p}$	=	0,81 [-]
$\eta_{c;l}$	=	Conversiefactor sterkte loodrecht op de pultrusierich	$= \eta_{ct} * \eta_{cm} * \eta_{cv;l}$	=	0,42 [-]
$\gamma_{\text{add;3D}}$	=	3D factor		=	1,10 [-]
$\gamma_{\text{add;str}}$	=	Belastingeffect-factor voor constructieve onderdelen		=	1,25 [-]
$\gamma_{\text{b;str}}$	=	Schematiseringsfactor constructieve onderdelen		=	1,09 [-]
	_	enschappen			
Type a		_		=	K60-22
D	=	Buitenmiddellijn		=	22 [mm]
D _{2min}	=	Flankmiddellijn		=	18 [mm]
A_{tr}	=	Oppervlakte trekstang		=	250 [mm²]
$\sigma_{AKS;k}$	=	Maximale sterkte in de axiale richting		=	1000 [N/mm²]
$\tau_{\text{AKS};k}$	=	Maximale sterkte in de dwarsrichting		=	225 [N/mm ²]
n_{AKS}	=	Correctiefactor, basalt kunststof		=	4,44 [-]
n _{AKS;r}	=	Correctiefactor, inc. tijdseffect		=	8,57 [-]
Beoord	lelin	g op trek en dwarskrachten			
$\sigma_{\text{AKS};r}$	=	Rekenwaarde treksterkte = $\sigma_{AKS;k} / \eta$		=	587 [N/mm²]
$N_{tr;d}$	=		dd;3D * Yadd;str * Yb;str	=	127 [kN]
$\sigma_{tr;nm}$	=	Rekenwaarde normaalspanning ankerstan $\xi = N_{tr;d} / A_{ti}$	r	=	510 [N/mm²]
$V_{\text{tr;d}}$	=		dd;3D * Yadd;str * Yb;str	=	1,9 [kN]
$\tau_{tr;dw}$	=	Rekenwaarde dwarsspanning ankerstang = $N_{tr;d} / A_{ti}$		=	7,5 [N/mm²]
$\sigma_{\text{tr;com}}$	=	$V(\sigma_{tr;nm}^2 + n_{AKS;r} * \tau_{tr;dw}^2)$		=	510 [N/mm²]
		$U.C. = \sigma_{\text{'LDE};com}$	/ σ _{'LDE;r}	=	0,87 < 1.00
					voldoet

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

0,87 < 1.00

voldoet

STR4: Constructief bezwijken trekstang door combinatie buigend moment en normaalkracht

Partiele factoren

Idem aan STR3.

Sterkte	eigenschappen
---------	---------------

Sterkte	eige	enscnappen				
$D_{gem;AKS}$	=	Gemiddelde diameter ankerstang			=	20 [mm]
$W_{x;AKS}$	=	Weerstandsmoment ankerstang			=	0,78 [cm ³]
I _{x;AKS}	=	Oppervlaktetraagheidsmoment ankers	tang		=	0,78 [cm ⁴]
E _{AKS}	=	Elasticiteitsmodulus ankerstang			=	60 [GPa]
I _{x;LDP}	=	Oppervlaktetraagheidsmoment koppla	at		=	829 [cm ⁴]
E _{LDP}	=	Elasticiteitsmodulus kopplaat			=	3454 [N/mm²]
β	=	Inbrenghoek van de JLD-Dijkstabilisato	r		=	30 [⁰]
		, , , , , , , , , , , , , , , , , , , ,				
Beoord	eling	g op momentspanningen en normaalkra	cht			
L_{vrij}	=	Vrije ankerlengte ankerstang onder he	t LDE		=	5,5 [m]
u_{AKS}	=	Vervorming ankerstang t.o.v. initele po	sitie		=	0,012 [m]
Optrede	end i	moment t.g.v. vervorming van de ankerst	ang			
$M_{u;k}$	=	$(3 * E_{AKS} * I_{x;AKS} * u_{AKS})/L_{vrij}^{2}$			=	0,0006 [kNm]
Optrede	end i	moment t.g.v. weerstand van de ondergr	ond			
$L_{vrij;c}$	=	Lengte van de ankerstang in de cohesie	eve laag		=	2,95 m
C _u	=	Ongedraineerde cohesie t.h.v. de vrije	lengte van	de ankerstang	=	83 [kPa]
а	=	factor conform CUR166, deel 2, 4.9.13			=	5 [-]
\mathbf{q}_{coh}	=	lijnlast op de ankerstang t.g.v. de weer	stand van	de cohesieve grond		
		$c_u * D_{gem;AKS} * (1 + a)$			=	10,0 [kN/m]
L _{vrij;nc}	=	Lengte van de ankerstang in de niet-co	hesieve laa	ag	=	2,6 [m]
σ' _{v;z}	=	Effectieve verticale korrelspanning halv	verwege de	e niet cohesieve laag	=	111 [kPa]
ф	=	Inwendige hoek van wrijving van het za	and		=	32,5 [0]
δ	=	Wandwrijvingshoek	=	2/3 φ	=	21,7 [0]
K_0	=	Horizontale gronddrukcoefficient	=	1 - sinus * φ	=	0,46 [-]
q_{nc}	=	lijnlast op de ankerstang t.g.v. de weer	stand van	de niet cohesieve grond		
		$\sigma'v;z * D_{AKS} * (1 + \frac{1}{2} * (1 + 2 * K_0) tan *$	δ		=	2,79 [kN/m1]
q_{tot}	=	(gewogen gemiddelde $q_{coh} + q_{nc}$) * β			=	5,76 [kN/m1]
1/(1 + a) =	$U_{AKS} / (L_{vrij} * ((qAKS * L_{vrij}) / N_{AKS}) * (1 / C_{vrij}) / ($	π²)		=	0,00089 [-]
$M_{\text{res};k}$	=	$(q_{tot} * E_{LDP} * I_{x;LDP}) / N_{tr;d}) * (1 / (1 + a))$			=	0,0012 [kNm]
Optrede	end i	moment t.g.v. weerstand van de ondergr	ond			
$M_{\text{tr};k}$	=	$M_{u;k} + M_{res;k}$			=	0,002 [kNm]
$M_{\text{tr;d}}$	=	$M_{tr;k} * \gamma_{add;3D} * \gamma_{add;str} * \gamma_{b;str}$			=	0,003 [kNm]
$\sigma_{\text{tr;dw}}$	=	Rekenwaarde normaalspanning ankers	tang, volgt	uit STR3	=	510 [N/mm²]
σ_{com}	=	$M_{tr,d} / W_{x;AKS} + \sigma_{tr,dw}$			=	513 [N/mm²]
- com		uju r xjako - ujuW				[,]

U.C.

 $\sigma_{'LDE;com}$ / $\sigma_{'LDE;r}$

projectnr. 411708

STR5: Constructief bezwijken kopplaat

Partiele factoren

γ_{m1}	=	Materiaalfactor gekoppeld aan geometrische afwijkingen	=	1,15 [-]
γ_{m2}	=	Materiaalfactor die onzekerheden in de sterkte verdisconteerd	=	1,20 [-]
γ_{m}	=	γ _{m1} * γ _{m2}	=	1,38 [-]
η_{ct}	=	Conversiefactor voor temperatuureffecten	=	0,90 [-]
η_{cm}	=	Conversiefactor voor effecten van waterdamp	=	0,90 [-]
η_{cv}	=	Conversiefactor voor effecten van kruip lateraal aan de pultrusierichting		0,60 [-]
η_{c}	=	Conversiefactor sterkte loodrecht op de pultrusiericht = $\eta_{ct} * \eta_{cm} * \eta_{cv;l}$		0,49 [-]
γ̃add;3D	=	3D factor	=	1,10 [-]
$\gamma_{add;str}$	=	Belastingeffect-factor voor constructieve onderdelen		1,25 [-]
$\gamma_{\text{b;str}}$	=	Schematiseringsfactor constructieve onderdelen		1,09 [-]
$N_{\text{LDP;d}}$	=	Rekenwaarde trekkracht kopplaat = $N_{tr;k} * \gamma_{add;3D} * \gamma_{add;str} * \gamma_{b;str}$	=	127 [kN]

 $F_{AKV;d}$

projectnr. 411708

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

216 [kN]

0,59 < 1.00 voldoet

STR6: Constructief bezwijken klapanker

Partiele factoren

	·	ioren.		
γ_{m1}	=	Materiaalfactor gekoppeld aan geometrische afwijkingen	=	1,15 [-]
γ_{m2}	=	Materiaalfactor die onzekerheden in de sterkte verdisconteerd	=	1,20 [-]
γ_{m}	=	γ _{m1} * γ _{m2}	=	1,38 [-]
γm;staal,v	₁₀₆ =	Materiaalfactor staal voor de levensduur	=	1,02 [-]
η_{ct}	=	Conversiefactor voor temperatuureffecten	=	1,00 [-]
η_{cm}	=	Conversiefactor voor effecten van waterdamp	=	0,90 [-]
$\eta_{\text{cv;p}}$	=	Conversiefactor voor effecten van kruip parallel aan de pultrusierichting	=	0,90 [-]
$\eta_{\text{cv;l}}$	=	Conversiefactor voor effecten van kruip lateraal aan de pultrusierichting	=	0,47 [-]
$\eta_{c;p}$	=	Conversiefactor sterkte parallel aan de pultrusierichti = $\eta_{ct} * \eta_{cm} * \eta_{cv;p}$	=	0,81 [-]
$\eta_{c;l}$	=	Conversiefactor sterkte loodrecht op de pultrusierich = $\eta_{ct} * \eta_{cm} * \eta_{cv;l}$	=	0,42 [-]
γ _{add;3D}	=	3D factor	=	1,10 [-]
γ _{add;str}	=	Belastingeffect-factor voor constructieve onderdelen	=	1,25 [-]
γ _{b;str}	=	Schematiseringsfactor constructieve onderdelen	=	1,09 [-]
$N_{klapanko}$	er; =	Rekenwaarde normaalkracht klapanker = $N_{tr;k} * \gamma_{add;3D} * \gamma_{add;str} * \gamma_{b;str}$	=	127 [kN]
Beoord	deling	breuk ankervoet		
Type JL	.D an	kervoet	=	JLD 2.6
$F_{AKV;k}$	=	Maximale karakterestieke breuksterkte van de ankervoet	=	220 [kN]

 $U.C. = F_{AKV;d} / N_{klapanker;d}$

Rekenwaarde breuksterkte can de ankervo = $F_{AKV;k}$ / $\gamma_{m;staal,vloei}$

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

SSI1: Snijden van de grond tussen de JLD-Dijkstabilisatoren

Partiele factoren

γ_{Cu}	=	Materiaalfactor ongedraineerde schuifsterkte	=	1,00 [-]
ξ_{undr}	=	Ksi-factor	=	1,14 [-]
γ _{add;3D}	=	3D factor	=	1,10 [-]
$\gamma_{add;ssi}$	=	Belastingeffect-factor voor grond-constructie interactie	=	1,10 [-]
γ _{h·cci}	=	Schematiseringsfactor grond-constructie interactie	=	1.02 [-]

Sterkte eigenschappen

Type LDE				=	LDE 0,25 m breed
Red _{MHW} =	Reductie puntdruk t.g.v. maatgevend h	hoog	gwater	=	0,97 [-]
$q_{c;k}$ =	Karakterestieke waarde kritische sonde	eerv	weerstand	=	0,38 [MPa]
$q_{c;k}$ =	Sonderdeerweerstand onder MHW	=	q _{c;k} * Red _{MHW}	=	0,37 [MPa]
N _{kt} =	Correlatie tussen sondeerweerstand ei	n or	ngedraineerde schuifsterkte	=	12 [-]
Cu _k =	Ongedraineerde schuifsterkte	=	$q_{c;d} * N_{kt}$	=	31,04 [kPa]
Cu _d =	Ongedraineerde schuifsterkte	=	$Cu_k / \gamma_{Cu} / \xi_{undr}$	=	27,23 [kPa]
$S_c =$	Vormfactor			=	0,02 [-]
B _{LDE} =	Breedte van het LDE			=	0,225 [m]
Z _{LDE} =	Diepte kritische sondeerweerstand			=	1,32 [m-mv]
$d_c =$	Dieptefactor :	=	0,4 * boogtangens * (B _{LDE} * Z	_{LDE}) =	0,56 [-]

Draagvermorgen tegen snijden / grondbreuk

Pu_{rek}	=	Draagvermogen tegen snijden (druk) =	$0.85 * Cu_d * (\pi + 2) * (1 + S_c + d_c) =$	= 188,1 [kPa]
$T_{lat\cdot k}$	=	Draagvermogen tegen snijden (kracht =	Pu _{rek} * D _{eq}	42,3 [kN/m]

projectnr. 411708

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

SSI2: Bezwijken houdkracht anker

Geometrie JLD-Klapanker

Type JLD ankervoet	= J	JLD 2.6
A _{AKV} = Oppervlakte ankervoet	=	156780 [mm²]
B _{AKV} = Breedte ankervoet	=	400 [mm]
H _{AKV} = Hoogte ankervoet	=	446 [mm]
D _{eq} = Equivalente diameter van de ankervoer	=	447 [mm]
Geometrie JLD-Klapanker		
Wrijvingsgetal ter hoogte van de ankervoet	=	0,76 [%]
Type grondslag waarin het verankeringselement zich bevindt:	Niet -	cohesief [-]
Niveau maaiveld t.h.v. ankervoet	=	0,00 [m NAP]
Aangrijpniveau verankering raai 1	=	-0,18 [m NAP]
Hoek anker met maaiveld raai 1	=	30 [⁰]
Aangrijpniveau verankering raai 2	=	1,30 [m NAP]
Hoek anker met maaiveld raai 2	=	30 [⁰]
Aangrijpniveau verankering raai 3	=	2,76 [m NAP]
Hoek anker met maaiveld raai 3	=	30 [⁰]
Niveau hart ankervoet raai 1	=	-10,69 [m NAP]
Niveau hart ankervoet raai 2	=	-10,55 [m NAP]
Niveau hart ankervoet raai 3	=	-10,79 [m NAP]
Beoordeling diepteligging		
D _{eq} = Equivalente diameter van de ankervoer	=	447 [mm]
H _{eis} = Minimaal benodige diepte an de ankervoer = D _{eq} * 5	=	2,23 [m]
H _{aanwezig} = Aanwezige diepte t.o.v. maaiveld	=	10,55 [m]

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

Onderlinge beïnvloeding - h.o.h. afstand

De onderlinge h.o.h. afstand van de ankers op niveau aangrijppunt bedraagt 2,238	8 D _{eq} =	0,33 [m]
De afstand van raai 1 van het voetje tot het LDP in bovenaanzicht:	=	2,52 [m]
De afstand van raai 2 van het voetje tot het LDP in bovenaanzicht:	=	-3,52 [m]
De afstand van raai 3 van het voetje tot het LDP in bovenaanzicht:	=	-10,12 [m]
Resulterende onderlinge hoh afstand in bovenaanzicht:	=	6,06 [m]
Niveau hart ankervoet raai 1	=	-10,69 [m NAP]
Niveau hart ankervoet raai 2	=	-10,55 [m NAP]
Niveau hart ankervoet raai 3	=	-10,79 [m NAP]
Verticale afstand	=	0,14 [m]
Fysieke h.o.h. afstand lengterichting, door middel van kwadratisch optellen 2,24	$4 D_{eq} =$	1,00 [m]
Fysieke h.o.h. afstand dwarsrichting, door middel van kwadratisch optellen 13,0	6 D _{eq} =	6,06 [m]
Combinatieafstand dwars- en langsrichting 2,24	$4 D_{eq} =$	1,00 [m]

De heersende reductiefactor t.g.v. het groepseffect bedraagt:

 $\begin{array}{lll} \alpha_{\text{groep;lengterichting}} & = & 0,59 \ [\text{-}] \\ \alpha_{\text{groep;dwarsrichting}} & = & 1,00 \ [\text{-}] \\ \text{Combinatie dwars- en lengterichting} \\ \alpha_{\text{groep;totaal}} & = & 0,59 \ [\text{-}] \end{array}$

Geotechnische draagkracht conform CUR 166

 $\mathsf{R}_{\mathsf{A};\mathsf{d};\mathsf{excl}} * \alpha_{\mathsf{groep};\mathsf{totaal}}$

 $R_{A;d}$

Waarde conusweerstand onder MHW

Type grondslag waarin het verankeringselement zich bevindt:	Niet - cohesief [-]		
Oppervlakte verankeringselement A	=	0,157 [m ²]	
Afname conusweerstand t.g.v. MHW	=	0,97 [-]	

ξ Ya		Ksi - factor Partiele materiaalfactor	=	1,14 [-] 1,25 [-]
$R_{A,min}$	=	0,4 * q _c * A	=	486,6 [kN]
$R_{A,k}$	=	$R_{o,min}$ / ξ	=	426,9 [kN]
$R_{A;d;excl}$	=	$R_{a;k} / \gamma_a$	=	341,5 [-]

$$N_{klapanker;}$$
 = Rekenwaarde normaalkracht klapanker = $N_{tr;k} * \gamma_{add;3D} * \gamma_{add;ssi} * \gamma_{b;ssi}$ = 105 [kN]

U.C. = $F_{AKV;r} / F_{AKV;mx;r}$ = 0,52 < 1.00

voldoet

201,0 [kN]

7,8 [MPa]

= $(f_{slip;m} * Plx_{ref} * H.o.h.) / (\gamma_{add;3D} * \gamma_{add;ssi} * \gamma_{b;ssi})$

2,62 [kN/m]

SSI3: Slip LDE en verlies draagvermogen grond onder kopplaat

Partiële	e fact	coren			
$\gamma_{s;t}$	=	Slipcriterium		=	1,35 [-]
ξ	=	Ksi-factor		=	1,14 [-]
φ'	=	Hoek van inwendige wrijving		=	1,15 [-]
c'	=	Effectieve cohesie		=	1,60 [-]
γ	=	Volumiek gewicht		=	1,10 [-]
Is er 10	0% c	ontrole op alle kopplaten?	Nee		
Aantal	besc	nikbare sonderingen	10 of meer		
γ _{add;3D}	=	3D factor		=	1,10 [-]
$\gamma_{add;ssi}$	=	Belastingeffect-factor voor gror	nd-constructie interactie	=	1,10 [-]
$\gamma_{b;ssi}$	=	Schematiseringsfactor grond-co	onstructie interactie	=	1,02 [-]
Sterkte	eige	nschappen - slip LDE			
Type L[_			=	LDE 0,25 m breed
Reduct	ie pu	ntdruk t.g.v. maatgevend hoogwa	ater	=	0,97 [-]
$q_{c;gem}$	=	Sondeerweerstand onder MHW	I; gemiddelde over de lengte van het LDE.	=	0,79 [MPa]
O _{LDE}	=	Omtrek van de LDE in de grond		=	0,71 [m]
$lpha_{\sf kar}$	=	Karakteristieke waarde voor $lpha$		=	0,008 [-]
C _{kar}	=	Karakteristieke waarde voor c		=	0,093 [MPa]
$L_{LDE;glij}$	=	Lengte van JLD-dijkstabilisator k	ooven het glijvlak	=	15,5 [m]
Beoord	eling	op krachten - slip LDE			
$F_{slip;k}$	=	Invoer in plaxis van de wrijving	langs de Embedded pilerow	=	4,89 [kN/m]
F _{slip;m}	=	Maximale trekkracht t.g.v. slip (meter = Fkar / γs;t / ξ	=	3,18 [kN/m]
Plx _{ref}	=	Referentieafstand in Plaxis (n.v.	.t. bij JLD-Dijkstabilisator).	=	1,0 [m]
H.o.h.	=	Ontwerp hart op hart afstand	•	=	1,0 [m]

projectnr. 411708

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3 $\,$

voldoet

Draagvermogen grond onder kopplaat

		0- 0			
F _{LDP;EC;un}	nd =	Rekenwaarde ongedraineerde draagkracht	conform NEN 9997-1	=	97 [kN]
F _{LDP;EC;dr}	=	Rekenwaarde gedraineerde draagkracht co	onform NEN 9997-1	=	129 [kN]
F _{Plx;MHW}	=	Rekenwaarde draagkracht onder MHW om	nstandigheden, bepaalt met Plax	is =	108 [kN]
F _{Plx;uitv}	=	Rekenwaarde draagkracht gedurende de u	itvoering, bepaalt met Plaxis 2D	=	106 [kN]
F_{uitv}	=	Min. draagkracht gedurende de uitvoering	= min(F _{LDP;EC;undr} ; F _{LDP;EC;dr} ; F _{PL})	(;u =	86 [kN]
F_{MHW}	=	Min. draagkracht onder MHW	= $min(F_{LDP;EC;dr}; F_{PLX;MHW})$	=	105 [kN]
$N_{uitv;k}$	=	Karakterestieke waarde afspankracht		=	70 [kN]
$N_{\text{uitv;d}}$	=	Rekenwaarde afspankracht	= $N_{tr;k} * \gamma_{add;3D} * \gamma_{add;str} * \gamma_{b;str}$	=	86 [kN]
		U.C.	$= N_{uitv;d} / F_{uitv}$	=	1,00 < 1.00
					voldoet
$N_{\text{LDP};d}$	=	Rekenwaarde normaalkracht op het LDP	= $N_{tr;k}$ * $\gamma_{add;3D}$ * $\gamma_{add;str}$ * $\gamma_{b;str}$	=	105 [kN]
		U.C.	= N _{MHW} / F _{uitv}	=	1,00 < 1.00

blad 16 van 17 projectnr. 411708

Bepaling schematiseringsfactor

Uitga	ngsp	untei	า
Опъри	איםיי	unice	•

Geotechnische instabiliteit

Si	Schematisering	P(Si)	SF	ΔSF	F(DI S _i)	β	$P_f(DI S_i)$	$P_f(DI S_i) * P(S_i)$
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[1/jaar]	[1/jaar]
0	Basis schematisering	0,6	1,09	0,00	1,175	5,10	1,71E-07	1,02E-07
1	Freatische lijn in dijk hoger (NAI	0,1	1,07	-0,02	1,153	4,95	3,67E-07	3,67E-08
2	Aangepaste grondopbouw (+0,5	0,1	1,07	-0,02	1,155	4,97	3,42E-07	3,42E-08
3	Verhoging van ISF	0,1	1,07	-0,02	1,152	4,95	3,79E-07	3,79E-08
4	Aangepaste waarde van herspa	0,1	1,09	0,00	1,172	5,08	1,90E-07	1,90E-08
5								
6								
7								
8								
9								
10								

Laterale belasting

 $\begin{array}{llll} \gamma_{\text{b;geo}} &=& \text{Keuze schematiseringsfactor} &=& 1,086 \ [\text{-}] \\ P_{\text{eis,HT,dsn}} &=& \text{Totale faalkans S}_0 \text{ t/m S}_{10} &=& 2,51\text{E-07 } \ [\text{1/jaar}] \\ \beta_{\text{eis,STBI,dsn}} &=& \text{Benodigde faalkans} &=& 2,56\text{E-07 } \ [\text{1/jaar}] \\ Percentage \ \text{van de toetlaatbare faalkans} &=& 97,8 \ [\%] \end{array}$

Si		Schematisering	P(Si)	F _{lat}	ΔF_{lat}	F(DI S _i)	β	$P_f(DI S_i)$	$P_f(DI S_i) * P(S_i)$
[-]		[-]	[-]	[kN]	[%]	[-]	[-]	[1/jaar]	[1/jaar]
	0	Basis schematisering	0,6	11,7	0,00	1,263	5,69	6,41E-09	3,85E-09
	1	Freatische lijn in dijk hoger (NAF	0,1	13,0	0,11	1,127	4,78	8,70E-07	8,70E-08
	2	Aangepaste grondopbouw (+0,5	0,1	13,1	0,12	1,109	4,66	1,59E-06	1,59E-07
	3	Verhoging van ISF	0,1	11,8	0,01	1,248	5,59	1,15E-08	1,15E-09
	4	Aangepaste waarde van herspa	0,1	10,6	-0,09	1,383	6,49	4,37E-11	4,37E-12
	5								
	6								
	7								
	8								
	9								
	10								

blad 17 van 17 projectnr. 411708

titel Constructieve toets JLD-Dijkstabilisator PPE, rij 1 t/m 3

Axiale belasting

 $\begin{array}{lllll} \gamma_{b;ax} & = & \text{Keuze schematiseringsfactor} & = & 1,020 \ [-] \\ P_{eis,HT,dsn} & = & \text{Totale faalkans S}_0 \text{ t/m S}_{10} & = & 2,25\text{E-07 } \ [1/jaar] \\ \beta_{eis,STBI,dsn} & = & \text{Benodigde faalkans} & = & 2,56\text{E-07 } \ [1/jaar] \\ Percentage van de toetlaatbare faalkans & = & 87,6 \ [\%] \end{array}$

Si		Schematisering	P(Si)	F_{lat}	ΔF_{lat}	$F(DI S_i)$	β	$P_f(DI S_i)$	$P_f(DI S_i) * P(S_i)$
[-]		[-]	[-]	[kN]	[%]	[-]	[-]	[1/jaar]	[1/jaar]
	0	Basis schematisering	0,6	85,4	0,00	1,186	5,18	1,13E-07	6,78E-08
	1	Freatische lijn in dijk hoger (NAF	0,1	86,8	0,02	1,167	5,05	2,22E-07	2,22E-08
	2	Aangepaste grondopbouw (+0,5	0,1	87,0	0,02	1,164	5,02	2,52E-07	2,52E-08
	3	Verhoging van ISF	0,1	85,6	0,00	1,183	5,15	1,29E-07	1,29E-08
	4	Aangepaste waarde van herspa	0,1	89,9	0,05	1,124	4,76	9,65E-07	9,65E-08
	5								
	6								
	7								
	8								
	9								
	10								