Introduction to Analog Integrated Circuits (112), DECE, NTUST

Homework 4 (Due date: 10/21)

HW4.1: (20 points)

A differential amplifier is shown in Fig. 4.1. $R_{D1}=R_{D2}=R_D$, $M_1\neq M_2$, and I_{SS} has a output resistance R_{SS} . If only g_m mismatch is considered, prove that the differential gain is as follows,

$$|A_{DM}| = \frac{R_D}{2} \frac{g_{m1} + g_{m2} + 4g_{m1}g_{m2}R_{SS}}{1 + (g_{m1} + g_{m2})R_{SS}}$$

Fig. 4.1

HW4.2: (40 points)

Assuming that all the transistors in the circuits of Figs. 4.2 are saturated and $\lambda \neq 0$, calculate the small-signal differential voltage gain (Av) of each circuit. Assume both amplifiers have positive voltahe gains.

Fig. 4.2

Introduction to Analog Integrated Circuits (112), DECE, NTUST

Homework 4 (Due date: 10/21)

HW4.3: (40 points)

(a) According to textbook ot lecture, provide your derivation processto show that the equivalent transconductance (Gm) is as follows,

$$\frac{\partial \Delta I_D}{\partial \Delta V_{in}} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \frac{\frac{4I_{SS}}{\mu_n C_{ox} W/L} - 2\Delta V_{in}^2}{\sqrt{\frac{4I_{SS}}{\mu_n C_{ox} W/L} - \Delta V_{in}^2}}$$

Hint: You can refer to Lecture 4, page 9 or Textbook, page 108

(b) Find the maximum Gm(Gm,max) and the ΔVin to get Gm=Gm,max/2.