Übungen zur "Eichfeldtheorie"

April 10, 2015

Aufgabe 1. Sei (M, g) eine Riemannsche Mannigfaltigkeit der Dimension n mit Rahmenbündel $GL(M) \to M$. Definiere

$$O(M,g) := \bigcup_{m \in M} \{ (m,(v_1,\ldots,v_n)) \in GL(M)_m \mid (v_1,\ldots,v_n) \text{ orthonormal bezüglich } g_m \} \subseteq GL(M).$$

Zeige:

- (1) $O(M,g) \subseteq GL(M)$ ist eine Untermannigfaltigkeit und die Projektion $O(M,g) \to M$ ist glatt.
- (2) Die Rechtswirkung von GL(n) auf GL(M) schränkt sich zu einer glatten Rechtswirkung von $O(n) \leq GL(n)$ auf O(M, g) ein.
- (3) Bezüglich dieser Wirkung ist $O(M,g) \to M$ ein O(n)-Prinzipalbündel.

Aufgabe 2. Betrachte die *n*-Sphäre $S^n \subset \mathbb{R}^{1+n}$ mit der von der Standardmetrik auf \mathbb{R}^{1+n} induzierten Metrik g. Sei $O(n) \to O(1+n)$ die Inklusion $A \mapsto \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}$.

- (1) Zeige, dass $A \mapsto A(e_1)$ einen Diffeomorphismus $O(1+n)/O(n) \cong S^n$ induziert, wobei $e_1 = (1, 0, \dots, 0) \in \mathbb{R}^{1+n}$.
- (2) Konstruiere einen Isomorphismus von O(n)-Prinzipalbündeln

$$O(1+n) \longrightarrow O(S^n, g)$$

$$S^n.$$

Aufgabe 3. Welche der Vektorbündel TS^n $(n \in \{1, 2, 3\})$ und $TS^n \oplus \mathbb{R}$ $(n \in \mathbb{N})$ sind trivial?