Rapport n°1 MT12

Alexandre Ballet et Simon LAURENT

Printemps 2016

Table des matières

1	Série de Fourier	2
2	Classe de fonctions	3
3	Phénomène de Gibbs	8
4	Application des série de Fourier 4.1 La corde pincé	9 9
5	Equation de la chaleur	10
6	Compléments 6.1 Finance	

Chapitre 1 Série de Fourier

Chapitre 2

Classe de fonctions

1.
$$f(x) = (\sin x)^{1/3}$$

La fonction f est définie sur l'intervalle $(-\pi;\pi)$. Elle est composée d'une fonction sinus, ce qui la rend impaire. Elle n'admet aucune valeur interdite et on a $f(0^+) = f(0^-) = \sqrt{0} = 0$. Elle est donc continue.

FIGURE 2.1 – Courbe de la fonction f.

Sa dérivée est $f'(x)=\frac{1}{3}cosx(sin\,x)^{-2/3}$. Elle admet une asymptote verticale en 0 et n'est donc pas continue. La fonction f est continue mais non dérivable sur $(-\pi;\pi)$.

2.
$$f(x) = (\sin x)^{4/3}$$

La fonction f est définie sur l'intervalle $(-\pi, \pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+) = f(0^-) = \sqrt[3]{0} = 0$. Elle est donc continue.

FIGURE 2.2 – Courbe de la fonction f.

Sa dérivée est $f'(x) = \frac{4}{3} cos \, x (sin \, x)^{1/3}$. Elle n'admet pas d'asymptote et est donc continue. La fonction f est continue et dérivable, donc régulière.

3.
$$f(x) = \begin{cases} \cos x &, si \quad x > 0 \\ -\cos x &, si \quad x \leq 0 \end{cases}$$
 La fonction f est définie sur l'intervalle $(-\pi;\pi)$. Elle n'admet aucune

valeur interdite et on a $f(0^+) = 1$ et $f(0^-) = -1$. Elle n'est donc pas continue en 0.

FIGURE 2.3 – Courbe de la fonction f.

Elle est dérivable par morceaux et sa dérivée est $f'(x) = \begin{cases} -\sin x & , si & x > 0 \\ \sin x & , si & x \leq 0 \end{cases}$ La fonction f est continue par morceaux et dérivable par morceaux, donc régulière par morceaux.

4.
$$f(x) = \begin{cases} \sin x & \text{, si } x > 0 \\ -\sin 2x & \text{, si } x \le 0 \end{cases}$$

La fonction f est définie sur l'intervalle $(-\pi; \pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+) = f(0^-) = 0$. Elle est donc continue.

Elle est dérivable par morceaux et sa dérivée est $f'(x) = \begin{cases} \cos x & , si & x > 0 \\ -2\cos 2x & , si & x \leq 0 \end{cases}$ La fonction f est continue et dérivable par morceaux, donc régulière par morceaux.

FIGURE 2.4 – Courbe de la fonction f.

5.
$$f(x) = \begin{cases} (\sin x)^{1/5} & , si \quad x < \pi/2 \\ -\cos x & , si \quad x \ge \pi/2 \end{cases}$$

La fonction f est définie sur l'intervalle $(-\pi;\pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+)=f(0^-)=\sqrt{0}=0$ et $f(\pi/2)=0$ et $\lim_{x\to\pi/2}f(x)$. Elle est continue en 0 mais pas en $\pi/2$, elle est donc continue par morceaux.

Elle est dérivable par morceaux et sa dérivée est $f'(x) = \begin{cases} \frac{1}{5}\cos x (\sin x)^{1/5} & \text{, si } x < \pi/2 \\ \sin x & \text{, si } x \ge \pi/2 \end{cases}$

La fonction f est continue par morceaux et dérivable par morceaux, donc régulière par morceaux.

FIGURE 2.5 – Courbe de la fonction f.

Chapitre 3 Phénomène de Gibbs

Chapitre 4

Application des série de Fourier

- 4.1 La corde pincé
- 4.2 La corde frappée

Chapitre 5
Equation de la chaleur

Chapitre 6

Compléments

6.1 Finance

6.2 Informatique

Comme le disait Jean de la Fontaine dans sa fable : Rien de sert de courir, il faut partir à point.