This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

*		THE THE PARTY OF THE PARTY TO SEE THE PARTY OF THE PARTY	¥771.V; ng
ğ: .			
ji H			
5-			* .
48		andre grand Alle Maria de Carlos de Carl Carlos de Carlos de	
			*
ř			
1			4
in the same	•		i veti
			() () () () () () () () () ()
ja .	•		
1			* **
4			
340			1.4
)			
			i i
			1
	$x_{i+1} = \frac{1}{x_i}$		
			7
``	er Santa		
T.	•		4
¥.			ý
186			
at the state of th			
. *			100
8			
kee			
1			
			3.3 1
			i i
, i			N.
1799 July		A CONTRACTOR OF THE PROPERTY O	54-1

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

G01N 33/574

A1

(11) Internationale Veröffentlichungsnummer:

WO 97/21104

(43) Internationales

Veröffentlichungsdatum:

12. Juni 1997 (12.06.97)

(21) Internationales Aktenzeichen:

PCT/EP96/05448

(22) Internationales Anmeldedatum: 5. December 1996 (05.12.96)

(30) Prioritätsdaten:

195 45 472.3 196 15 074.4 6. December 1995 (06.12.95) 17. April 1996 (17.04.96)

DE DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): INTERNATIONAL INGELHEIM BOEHRINGER GMBH [DE/DE]; D-55216 Ingelheim am Rhein (DE). KARLSRUHE FORSCHUNGSZENTRUM [DE/DE]; D-76021 Karlsruhe (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HEIDER, Karl-Heinz [DE/AT]; Hervicusgasse 4/3/21, A-1120 Wien (AT). ADOLF, Günther [AT/AT]; Stiftgasse 15-17/10, A-1070 Wien (AT). OSTERMANN, Elinborg [AT/AT]; Mauerbachstrasse 56/6, A-1140 Wien (AT). PATZELT, Erik [AT/AT]; Hans Buchmüllergasse 8, A-3002 Purkersdorf (AT). SPROLL, Marlies [DE/AT]; Schwenkgasse 3, A-1120 Wien (AT).

(74) Gemeinsamer Vertreter: BOEHRINGER INGELHEIM IN-TERNATIONAL GMBH; A Patente, Postfach 200, D-55216 Ingelheim am Rhein (DE).

(81) Bestimmungsstaaten: AU, BG, BR, BY, CA, CN, CZ, EE, HU, IL, JP, KR, KZ, LT, LV, MX, NO, NZ, PL, RO, RU, SG, SK, TR, UA, US, UZ, VN, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: METHOD OF DIAGNOSING AND TREATING EPITHELIOMA
- (54) Bezeichnung: VERFAHREN ZUR DIAGNOSE UND THERAPIE VON PLATTENEPITHELKARZINOMEN
- (57) Abstract

The invention concerns a method of diagnosing and treating epithelioma, the method being based on the expression of the variant exon v6 of the CD44 gene as the molecular target. In a preferred embodiment, v6-specific antibody molecules, in particular the monoclonal antibody BIWA-1 (VFF-18), are used for this purpose.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Diagnose und Therapie von Plattenepithelkarzinomen, das auf der Expression des varianten Exons v6 des CD44-Gens als molekularem Target beruht. In einer bevorzugten Ausführungsform werden v6-spezifische Antikorpermoleküle, insbesondere der monoklonale Antikörper BIWA-1 (VFF-18) dafür verwendet.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM AT AU BB BE BF BG BJ BR CA CF CG CH CI CM CS CZ DE DK EE ES FI FR	Armenien Osterreich Australien Barbados Belgien Burkina Faso Bulgarien Benin Brasilien Belarus Kanada Zentrale Afrikanische Republik Kongo Schweiz Cöte d'Ivoire Kamerun China Tschechoslowakei Tschechische Republik Deutschland Dänemark Estland Spanien Finnland Frankreich	GB GE GN GR HU IE IT JP KE KG KP LI LK LR LW MC MD MG ML MN MN	Vereinigtes Königreich Georgien Guinea Griechenland Ungarn Irland Italien Japan Kenya Kirgisistan Demokratische Volksrepublik Korea Republik Korea Republik Korea Kasachstan Liechtenstein Sri Lanka Liberia Litauen Luxemburg Lettland Monaco Republik Moldau Madagaskar Mali Mongolei Mauretanien	MX NE NL NO NZ PL PT RO RU SD SE SG SI SK SN SZ TD TG TJ TT UA UG US UZ	Mexiko Niger Niederlande Norwegen Neuseeland Poien Portugal Rumänien Russische Föderation Sudan Schweden Singapur Slowenien Slowakei Senegal Swasiland Tschad Togo Tadschikistan Trinidad und Tobago Ukraine Uganda Vereinigte Staaten von Amerika Usbekistan
GA	Gabon	MR MW	Mauretanien . Malawi	VN	Vietnam

WO 97/21104 PCT/EP96/05448

Verfahren zur Diagnose und Therapie von Plattenepithelkarzinomen

Die Erfindung betrifft Verfahren zur Diagnose und Therapie von Plattenepithelkarzinomen, die auf der Expression des variablen Exons v6 des CD44-Gens beruhen, Mittel für solche Verfahren sowie deren Verwendung.

Es wurde kürzlich gezeigt, daß die Expression von Varianten des Oberflächen-Glykoproteins CD44 notwendig und hinreichend ist, um sogenanntes spontanes metastatisches Verhalten sowohl in einer nicht-metastasierenden Pankreas-Adenokarzinom-Zellinie der Ratte als auch in einer nicht-metastasierenden Fibrosarkom-Zellinie der Ratte auszulösen (Günthert et al., 1991). Während die kleinste CD44-Isoform, die Standardform CD44s, in einer Reihe verschiedener Gewebe, darunter Epithelzellen, ubiquitär exprimiert wird, werden bestimmte Spleißvarianten von CD44 (CD44v) nur auf einer Untergruppe von Epithelzellen exprimiert. Die CD44-Isoformen werden durch alternatives Spleißen so erzeugt, daß die Sequenzen von 10 Exons (v1-v10) in CD44s komplett ausgeschnitten werden, jedoch bei den größeren Varianten in verschiedenen Kombinationen vorkommen können (Screaton et al., 1992, Heider et al., 1993; Hofmann et al., 1991). Die Varianten unterscheiden sich dadurch, daß an einer bestimmten Stelle des extrazellulären Teils des Proteins unterschiedliche Aminosäuresequenzen inseriert sind. Solche Varianten konnten in verschiedenen menschlichen Tumorzellen und in menschlichem Tumorgewebe nachgewiesen werden. So wurde kürzlich die Expression von CD44-Varianten im Verlauf der kolorektalen Karzinogenese untersucht (Heider et al., 1993). Die Expression von CD44-Varianten fehlt in normalem menschlichem Kolonepithel, und nur eine schwache Expression ist in den proliferierenden Zellen der Krypten nachweisbar. In späteren Stadien der Tumorprogression, z.B. in Adenokarzinomen, exprimieren alle malignen Entartungen Varianten von CD44. Weiter wurde kürzlich Expression von CD44-Spleißvarianten in aktivierten Lymphozyten sowie in Non-Hodgkin-Lymphomen gezeigt (Koopman et al., 1993).

Es sind verschiedene Ansätze bekannt geworden, die differentielle Expression varianter Exons des CD44-Gens in Tumoren und Normalgeweben für diagnostische und therapeutische Verfahren nutzbar zu machen (WO 94/02633, WO 94/12631, WO 95/00658, WO 95/00851, EP 0531300).

Auch die Expression varianter CD44-Moleküle in Plattenepithelkarzinomen ist schon untersucht worden. Salmi et al. (1993) fanden mit dem v6-spezifischen Antikörper Var3.1 eine Abnahme der v6-Expression in Tumorzellen im Vergleich zu Normalzellen. Brooks et

:DOCID: <WO___9721104A1_I_>

5

10

15

30

15

20

25

30

35

al. (1995) erhielten mit dem v6-spezifischen Antikörper 11.9 eine heterogene Anfärbung nasopharyngealer Karzinome. Lediglich in 2/12 Fällen wurde eine starke Anfärbung erzielt, während in der Mehrzahl der Fälle nur eine schwache fokale v6-Expression immunhistologisch nachgewiesen werden konnte.

Aufgabe der vorliegenden Erfindung war die Entwicklung von neuen Verfahren zur Diagnose und Therapie von Plattenepithelkarzinomen sowie die Bereitstellung von Mitteln für solche Verfahren.

Diese Aufgabe konnte mit der vorliegenden Erfindung gelöst werden. Sie betrifft Ver-10 fahren zur Diagnose und Therapie von Plattenepithelkarzinomen, die auf der Expression des varianten Exons v6 des CD44-Gens als molekularem Marker bzw. Target beruhen. Insbesondere betrifft die vorliegende Erfindung Verfahren, die auf der starken und homogenen Expression von v6 in Plattenepithelkarzinomen beruhen, die überraschend und im Gegensatz zur Lehre, wie sie aus dem Stand der Technik bekannt war, festgestellt werden konnte. Antikörpermoleküle mit entsprechender Spezifität eignen sich insbesondere als Vehikel, um Plattenepithelkarzinome in vivo selektiv zu erreichen.

Bevorzugt sind dabei Verfahren, die dadurch gekennzeichnet sind, daß dabei ein Antikörpermolekül verwendet wird, das die Aminosäuresequenz QWFGNRWHEGYRQT, besonders bevorzugt die Aminosäuresequenz WFGNRWHEGYR erkennt. Besonders bevorzugt ist dabei der monoklonale Antikörper BIWA-1 (Klon VFF-18), der von einer Hybridom-Zellinie sezerniert wird, die am 7.6.1994 unter der Hinterlegungsnummer DSM ACC2174 bei der DSM-Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig, Deutschland, hinterlegt wurde (WO 95/33771), oder Derivate dieses Antikorpers.

Weitere Aspekte der vorliegenden Erfindung sind die Verwendung solcher Antikörpermoleküle bei den erfindungsgemäßen Verfahren sowie Mittel, um diese Verfahren auszuführen.

Die Nuklein- und Aminosäuresequenz des varianten Exons v6 des CD44-Gens ist bekannt (Screaton et al., 1992, Tölg et al., 1993). Die Existenz degenerierter oder alleler Varianten ist für die Ausführung der Erfindung nicht von Bedeutung; solche Varianten sind daher ausdrücklich mit eingeschlossen.

Die Sequenz von Exon v6 des menschlichen CD44-Gens ist:

S S T Q Α Т P T E E T A 0 TC CAG GCA ACT CCT AGT AGT ACA ACG GAA GAA ACA GCT ACC F G K Ε 0 N R W Η E G Y R Q AAG GAA CAG TGG TTT GGC AAC AGA TGG CAT GAG GGA TAT CGC CAA T ₽ R \mathbf{E} D S Η S T Т G Т A ACA CCC AGA GAA GAC TCC CAT TCG ACA ACA GGG ACA GCT G.

10

15

20

25

30

35

Die Erfindung kann mit polyklonalen oder monoklonalen Antikörpern ausgeführt werden, die für ein Epitop spezifisch sind, das vom Exon v6 kodiert wird, insbesondere ein Epitop innerhalb der Aminosäuresequenz QWFGNRWHEGYRQT, ganz besonders bevorzugt innerhalb der Aminosäuresequenz WFGNRWHEGYR. Die Herstellung von Antikörpern gegen bekannte Aminosäuresequenzen kann nach an sich bekannten Methoden erfolgen (Catty, 1989). Beispielsweise kann ein Peptid dieser Sequenz synthetisch hergestellt und als Antigen in einem Immunisierungsprotokoll eingesetzt werden. Ein anderer Weg ist die Herstellung eines Fusionsproteins, das die gewünschte Aminosäuresequenz enthält, indem eine Nukleinsäure (die synthetisch oder z.B. durch Polymerase-Kettenreaktion (PCR) aus einer geeigneten Probe hergestellt werden kann), die für diese Sequenz kodiert, in einen Expressionsvektor integriert und das Fusionsprotein in einem Wirtsorganismus exprimiert wird. Das gegebenenfalls gereinigte Fusionsprotein kann dann als Antigen in einem Immunisierungsprotokoll eingesetzt und Insert-spezifische Antikörper oder, im Falle monoklonaler Antikörper, Hybridome, die insertspezifische Antikörper exprimieren, mit geeigneten Verfahren selektiert werden. Solche Verfahren sind Stand der Technik. Heider et al. (1993, 1996a) und Koopman et al. (1993) beschreiben die Herstellung von Antikörpern gegen variante Epitope von CD44.

Für das erfindungsgemäße Verfahren können jedoch auch Antikörpermoleküle verwendet werden, die von poly- oder monoklonalen Antikörpern abgeleitet sind, z.B. Faboder F(ab')₂-Fragmente von Immunglobulinen, rekombinant hergestellte single-chain-Antikörper (scFv), chimäre bzw. humanisierte Antikörper sowie andere Moleküle, die spezifisch an Epitope binden, die durch Exon v6 kodiert werden. Aus dem kompletten Immunglobulin des Antikörpers BIWA-1 (VFF-18) oder anderer Antikörper können beispielsweise Faboder F(ab')₂-Fragmente oder andere Fragmente erzeugt werden (Kreitman et al., 1993). Der Fachmann ist ferner in der Lage, rekombinante v6-spezifische Antikörpermoleküle herzustellen. Insbesondere kann er nach Analyse der Aminosäuresequenz des Antikörpers BIWA-

1 (VFF-18) und/oder unter Verwendung der Hybridom-Zellinie, die diesen Antikörper produziert, insbesondere der darin enthaltenen genetischen Information, rekombinante Antikörpermoleküle mit dem gleichen Idiotyp wie BIWA-1 (VFF-18) herstellen, d.h. Antikörpermoleküle, die im Bereich der Antigen-Bindungsstelle (complementarity-determining regions, CDR) die gleiche Aminosäuresequenz aufweisen wie der Antikörper BIWA-1 (VFF-18). Entsprechende Verfahren sind Stand der Technik. Solche rekombinanten Antikörpermoleküle können z.B. humanisierte Antikörper (Shin et al., 1989; Güssow et Seemann, 1991), bispezifische oder bifunktionelle Antikörper (Weiner et al., 1993; Goodwin, 1989, Featherstone, 1996), single-chain-Antikörper (scFv, Johnson et Bird, 1991), komplette oder fragmentarische Immunglobuline (Coloma et al., 1992; Nesbit et al., 1992; Barbas et al., 1992), oder durch chain shuffling erzeugte Antikörper (Winter et al., 1994) sein. Humanisierte Antikörper können beispielsweise durch CDR-grafting (EP 0239400) hergestellt werden. Auch Framework-Regionen können modifiziert werden (EP 0519596; WO 9007861). Zur Humanisierung von Antikörpern können heute Methoden wie PCR (s. z.B. EP 0368684; EP 0438310; WO 9207075) oder Computer-modelling (s. z.B. WO 9222653) angewendet werden. Es können auch Fusionsproteine, beispielsweise singlechain-Antikörper/Toxin-Fusionsproteine (Chaudhary et al., 1990; Friedman et al., 1993) hergestellt und verwendet werden. Unter die Oberbegriffe "Antikörper" "Antikörpermoleküle" sollen außer polyklonalen und monoklonalen Antikörpern alle in diesem Abschnitt diskutierten Verbindungen fallen, sowie weitere Verbindungen, die sich strukturell von Immunglobulinen ableiten lassen und mit an sich bekannten Methoden herstellbar sind.

Es liegt ebenfalls im Bereich des Könnens des Durchschnittsfachmanns, in Kenntnis des Epitops (vgl. Fig. 1, Fig. 4) von BIWA-1 (VFF-18) äquivalente Antikörper mit der gleichen Bindungsspezifität herzustellen. Solche Antikörper sind daher ebenfalls in der Erfindung eingeschlossen.

Für diagnostische Verfahren können Antikörpermoleküle, vorzugsweise BIWA-1-Antikörpermoleküle, Fragmente davon oder rekombinante Antikörpermoleküle mit dem gleichen Idiotyp, beispielsweise mit radioaktiven Isotopen wie ¹²⁵I, ¹³¹I, ¹¹¹In, ^{99m}Tc oder radioaktiven Verbindungen (Larson et al., 1991; Thomas et al., 1989; Srivastava, 1988), Enzymen wie Peroxidase oder alkalischer Phosphatase (Catty et Raykundalia, 1989), mit Fluoreszenzfarbstoffen (Johnson, 1989) oder Biotinmolekülen (Guesdon et al., 1979) verknüpft werden. Für therapeutische Anwendungen können v6-spezifische Antikörpermoleküle, vorzugsweise BIWA-1(VFF-18)-Antikörpermoleküle oder VFF-18-abgeleitete Antikörpermoleküle, z.B. Fragmente davon oder rekombinante Antikörpermoleküle mit dem gleichen Idiotyp, mit Radioisotopen wie ⁹⁰Y, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ¹⁵³Sm, ⁶⁷Cu, ²¹²Bi,

10

15

20

25

30

20

25

30

213Bi, 177Lu (Quadri et al., 1993, Lenhard et al., 1985, Vriesendorp et al., 1991; Wilbur et al., 1989, Maraveyas et al., 1995a, Jurcic et Scheinberg, 1994), Toxinen (Vitetta et al., 1991; Vitetta et Thorpe, 1991; Kreitman et al., 1993; Theuer et al., 1993), Zytostatika (Schrappe et al., 1992), Prodrugs (Wang et al., 1992; Senter et al., 1989), photoaktivierbaren Substanzen (Hemming et al., 1993), einem Antikörpermolekül mit einer anderen Spezifität oder radioaktiven Verbindungen verknüpft werden. Das Antikörpermolekül kann ferner mit einem Zytokin oder einem anderen immunmodulatorischen Polypeptid verknüpft sein, z.B. mit Tumornekrosefaktor, Lymphotoxin (Reisfeld et al., 1996) oder Interleukin-2 (Becker et al., 1996). Die Antikörpermoleküle können für den Einsatz in einem Pretargeting-System auch z.B. mit Streptavidin oder Biotin modifiziert werden (Goodwin, 1995).

Vorteilhaft können mit dem erfindungsgemäßen diagnostischen Verfahren Proben von Patienten, beispielsweise aus Biopsien, untersucht werden, bei denen der Verdacht auf Plattenepithelkarzinom besteht oder die Diagnose bereits vorliegt, der Tumor aber genauer charakterisiert werden soll. Der Nachweis varianter CD44-Moleküle, die eine Aminosäuresequenz enthalten, die vom variablen Exon v6 kodiert wird, kann auf Proteinebene mittels Antikörpern oder auf Nukleinsäureebene mittels spezifischer Nukleinsäuresonden oder Primern für die Polymerase-Kettenreaktion (PCR) erfolgen. Die Erfindung betrifft demzufolge auch Antikörpermoleküle und Nukleinsäuren, die als Sonden bzw. Primer für solche Verfahren geeignet sind, und die Verwendung solcher Antikörper und Nukleinsäuren zur Diagnose und Analyse von Plattenepithelkarzinomen. Beispielsweise können Gewebsschnitte immunhistochemisch mit Antikörpern mit an sich bekannten Methoden untersucht werden. Aus Gewebeproben gewonnene Extrakte oder Körperflüssigkeiten können ferner mit anderen immunologischen Methoden unter Verwendung von Antikörpern untersucht werden, beispielsweise in Western Blots, Enzyme-linked Immunosorbent Assays (ELISA, Catty et Raykundalia, 1989), Radioimmunoassays (RIA, Catty et Murphy, 1989) oder verwandten Immunoassays. Die Untersuchungen können qualitativ, semiquantitativ oder quantitativ erfolgen.

Neben der *in-vitro-*Diagnostik eignen sich Antikörpermoleküle mit erfindungsgemäßer Spezifität auch zur *in-vivo-*Diagnostik von Plattenepithelkarzinomen. Trägt das Antikörpermolekül ein detektierbares Label, kann eine Detektion des Labels zu diagnostischen Zwecken, z.B. Visualisierung des Tumors *in vivo* (Imaging), oder beispielsweise zur radiounterstützten Chirurgie (radioguided surgery) erfolgen. Für die Verwendung von mit radioaktiven Isotopen konjugierten Antikörpern zur Immunszintigraphie (Imaging) beispielsweise gibt es eine Reihe von Protokollen, auf deren Grundlage der Fachmann die Erfindung ausführen kann (Siccardi et al., 1989; Keenan et al., 1987; Perkins et Pimm, 1992; Colcher et al., 1987; Thompson et al., 1984).

WO 97/21104 PCT/EP96/05448 6

Durch Nachweis und/oder Quantifizierung der Expression des varianten CD44-Epitops v6 erhobene Daten können so in die Diagnose und Prognose einfließen. Vorteilhaft kann dabei die Kombination mit anderen prognostischen Parametern sein, etwa mit dem Tumorgrad.

5

10

15

20

Antikörpermoleküle mit der erfindungsgemäßen Spezifität und ggf. verknüpft mit einem zytotoxischen Agens können vorteilhaft zur Therapie von Plattenepithelkarzinomen verwendet werden. Dabei kann die Applikation systemisch oder topisch erfolgen, beispielsweise durch intravenöse (als Bolus oder Dauerinfusion), intraperitoneale, intramuskuläre, subkutane o.a. Injektion/Infusion. Protokolle für die Verabreichung von konjugierten oder nichtkonjugierten Antikörpern (sei es als komplette Immunglobuline, Fragmente, rekombinante humanisierte Moleküle o.ä.) sind Stand der Technik (Mulshine et al., 1991; Larson et al., 1991; Vitetta et Thorpe, 1991; Vitetta et al., 1991; Breitz et al., 1992, 1995; Press et al., 1989, Weiner et al., 1989, Chatal et al., 1989, Sears et al., 1982). Eine therapeutische Anwendung kann beispielsweise analog zu der Verwendung des Antikörpers 1.1ASML (Seiter et al., 1993) erfolgen. Nichtmodifizierte monoklonale Antikörper können direkt therapeutisch eingesetzt werden, wenn sie die für eine zytotoxische Wirkung geeignete intrinsische Effektorfunktion aufweisen, beispielsweise für komplement-induzierte oder antikörperinduzierte zelluläre Zytotoxizität (Riethmüller et al. 1994). Geeignete monoklonale Antikörper für diese Verwendung sind Maus-Antikörper vom Isotyp IgG2a oder Antikörper vom humanem IgG1-Typ. Nichtmodifizierte Antikörper können ferner zur Induktion einer patienteneigenen anti-tumoralen Reaktion über einen anti-idiotypischen Mechanismus appliziert werden (Baum et al., 1993; Khazaeli et al., 1994).

Eine bevorzugte Ausführungsform einer therapeutischen Anwendung besteht darin, 25 ein humanisiertes v6-spezifisches Immunglobulin oder ein $F(ab')_2$ -Fragment davon mit ^{90}Y (Quadri et al., 1993; Vriesendorp et al., 1995), 131 (Maraveyas et al., 1995a, 1995b; Juweid et al., 1995; Press et al., 1995; Thomas et al., in: Catty 1985, S. 230-239) 186Re (Breitz et al., 1992, 1995) oder einem anderen geeigneten Radioisotop zu verknüpfen und zur Radioimmunotherapie von Plattenepithelkarzinomen einzusetzen. Beispielsweise kann 30 der Antikörper BIWA-1, eine humanisierte Version von BIWA-1 oder ein F(ab')2-Fragment von BIWA-I oder des humanisierten Antikörpers mit 90Y unter Verwendung eines chelatbildenden Linkers wie ITCB-DTPA (Isothiocyanatbenzyl-Diethylentriaminpentaacetat) verknüpst werden, wobei eine spezifische Aktivität von 5-20 mCi/mg, vorzugsweise 10 mCi/mg erreicht werden sollte. Dieses Agens kann dann einem Patienten mit antigen-positivem Tumor in einer Dosierung von 0.1 bis 1 mCi/kg Körpergewicht, vorzugsweise 0.3 bis $0.5\,$ mCi/kg Körpergewicht, verabreicht werden. Ist das Antikörpermolekül mit $^{131}\mathrm{I}$ verknüpft, kann bei einer spezifischen Aktivität von 2 mCi/mg ein mögliches Dosierungs-

verknüpft, kann bei einer spezifischen Aktivität von 2 mCi/mg ein mögliches Dosierungsschema z.B. 2 x 150 mCi im Abstand von 6 Wochen sein. Der Fachmann kann mit an sich bekannten Methoden die maximal möglichen Dosierungen ermitteln (Maraveyas et ~1 1995a, 1995b). Bei einer zu verabreichenden Gesamtproteinmenge von 2 bis 5 mg kann die Verabreichung in Form einer schnellen intravenösen Bolusinjektion geschehen. Bei größeren Proteinmengen kann eine Infusion die günstigere Adminstrationsform sein. Bei monoklonalen Antikörpern kann es notwendig sein, das Agens vor der Verabreichung mit einem Überschuß (z.B. dem zehnfachen molaren Überschuß) des nichtradioaktiven Antikörpers zu vermischen; in diesem Fall erfolgt die Verabreichung besser in Form einer intravenösen Infusion z.B. über 15 Minuten. Die Anwendung kann wiederholt werden. Die Therapie kann mit externer Strahlentherapie kombiniert werden. Sie kann ferner durch Knochenmarkstransplantation unterstützt werden; dies ist insbesondere dann notwendig, wenn bei

Erfindungsgemäße Antikörpermoleküle können auch ex vivo zur Reinigung von CD34-positiven Stamm- und Vorläuferzellpräparationen (Immunopurging) verwendet werden. Die Strahlen- oder Chemotherapie von Plattenepithelkarzinomen kann durch autologe Knochenmarkstransplantation unterstützt werden. Die dabei applizierte Präparation von hämatopoietischen Stamm- und Vorläuferzellen muß frei von Tumorzellen sein. Dies kann durch Inkubation mit erfindungsgemäßen Antikörpermolekülen, beispielsweise Antikörper-Toxin-Konjugaten, erreicht werden (Myklebust et al., 1994; DE P 196 48 209.7).

der Therapie eine Dosis von mehr als 1.6 Gy im Knochenmark erreicht wird.

Erfindungsgemäße Antikörpermoleküle können ferner in Form rekombinanter Konstrukte in den T-Zell-Rezeptor von T-Lymphozyten eingeführt werden. Solche reprogrammierten T-Lymphozyten binden selektiv an die Antigen exprimierenden Tumorzellen und entfalten zytotoxische Wirkung, sodaß sie zur Therapie von Plattenepithelkarzinomen verwendet werden können (PCT/EP9604631; Altenschmidt et al., 1996).

30

25

10

15

Abbildungen

Fig. 1: Bestimmung der Epitop-Spezifität von BIWA-1 durch Bindung an synthetische Peptide, die aus der humanen CD44v6-Sequenz abgeleitet wurden. Das korrespondierende Peptid von Ratten-CD44v6 wurde mit dem Antikörper 1.1ASML getestet. Die Bindung wurde in einem ELISA bestimmt, wobei die Peptide auf Mikrotiterplatten immobilisiert wurden (vgl. Heider et al., 1996b, Fig. 2). -: keine Bindung, +/-: schwache Bindung, +: starke Bindung.

Fig. 2: Immunhistochemische Analyse eines Plattenepithelkarzinoms des Larynx (a) 10 und einer Lebermetastase eines Karzinoms des Oesophagus (b) mit dem CD44v6-spezifischen monoklonalen Antikörper BIWA-1. In beiden Fällen kann die Reaktivität des Antikörpers mit der Membran der Tumorzellen gesehen werden. Originalvergrößerung 40x, Gegenfärbung Hämatoxylin.

Fig. 3: Vergleich der Antigen-Bindung verschiedener CD44v6-spezifischer mAbs. Die Bindung vier verschiedener CD44v6-spezifischer mAbs an menschliche SCC A-431-Zellen wurde in einem Zell-ELISA gemessen. MAb BIWA-1 zeigt eine höhere Affinität für die Tumorzellen als die anderen mAbs.

Fig. 4: Verfeinerte Epitop-Kartierung des mAb BIWA-1. Die Bindung von BIWA-1 an verschiedene überlappende synthetische Peptide, die die Aminosäuren 18-32 der CD44v6-kodierten Region umspannen, wurde in einem kompetitiven ELISA gemessen. Die minimale Bindungssequenz (Peptid v6 (19-29)) ist unterstrichen.

Fig. 5: Biodistribution von 125[-BIWA-1 in A-431 xenotransplantierter Nacktmäusen. Die Akkumulation des Antikörpers ist dargestellt als % ID/g (Mittelwert ± SEM) bei 4, 24, 48, 120 und 168 h post Injektion.

15

20

Beispiele

Beispiel 1: Expression von CD44v6 in Plattenepithelkarzinomen

Gewebe

5

10

15

20

30

Insgesamt 126 Fälle Paraffin eingebetteter Tumorproben wurden immunhistochemisch mit dem mAb BIWA-1 (Klon VFF-18) auf Expression von CD44v6 analysiert. Die Proben schlossen 31 Fälle primärer Plattenepithelkarzinome (15 Fälle Larynx, 16 Fälle Haut), 91 Fälle von Lymphknotenmetastasen (Larynx, n=38; Lunge, n=27; Oesophagus, n=11; Mundhöhle, n=11; Tonsille, n=4), und 4 Fälle von Lebermetastasen (Oesophagus) ein.

Antikörper

Die gesamte variante Region des HPKII-Typs von CD44v (Hofmann et al., 1991) wurde aus menschlicher Keratinozyten-cDNA durch Polymerase-Kettenreaktion (PCR) amplifiziert. Die beiden PCR-Primer 5'-CAGGCTGGGAGCCAAATGAAGAAAATG-3', Positionen 25-52, und 5'-TGATAAGGAACGATTGACATTAGAGTTGGA-3', Positionen 1013-984 der LCLC97-varianten Region, wie von Hofmann et al. beschrieben, enthielten eine EcoRI-Erkennungsstelle, die benutzt wurde, um das PCR-Produkt direkt in den Vektor pGEX-2T (Smith et al., 1988) zu klonieren. Das resultierende Konstrukt (pGEX CD44v HPKII, v3-v10) kodiert für ein Fusionsprotein von ~70 kD, bestehend aus Glutathion-Stransferase von Schistosoma japonicum und den Exons v3-v10 von humanem CD44 (Fig. 1; Heider et al., 1993). Das Fusionsprotein wurde in E. coli exprimiert und anschließend über Glutathion-Agarose affinitätsgereinigt (Smith et al., 1988).

Weibliche Balb/c Mäuse wurden intraperitoneal mit dem affinitätsgereinigten Fusionsprotein nach folgendem Schema immunisiert:

- 1. Immunisierung: 90 µg Fusionsprotein in komplettem Freund'schen Adjuvans
- 2. und 3. Immunisierung: 50 µg Fusionsprotein in inkomplettem Freund'schen Adjuvans.

Die Immunisierungen erfolgten im Abstand von jeweils 4 Wochen. 14 Tage nach der letzten Immunisierung wurden die Tiere noch an drei aufeinanderfolgenden Tagen mit jeweils 10 µg Fusionsprotein in PBS immunisiert. Am darauffolgenden Tag wurden Milzzellen eines Tieres mit hohem Antikörpertiter mit P3.X63-Ag8.653-Mausmyelomzellen mit

WO 97/21104 PCT/EP96/05448

Hilfe von Polyethylenglykol 4000 fusioniert. Die Hybridomzellen wurden dann in Mikrotiterplatten in HAT-Medium selektioniert (Köhler et Milstein, 1975; Kearney et al., 1979).

Die Bestimmung des Antikörpertiters im Serum bzw. das Screening der Hybridom-überstände wurde mit Hilfe eines ELISAs durchgeführt. Bei diesem Test wurden zunächst Mikrotiterplatten mit Fusionsprotein (GST-CD44v3-10) oder nur mit Glutathion-S-Transferase beschichtet. Anschließend wurde mit seriellen Verdünnungen von Serumproben bzw. Hybridomüberständen inkubiert und die spezifischen Antikörper mit Peroxidase-konjugierten Antikörpern gegen Maus-Immunglobulin nachgewiesen. Hybridome, die nur mit Glutathion-S-transferase reagierten, wurden verworfen. Die verbleibenden Antikörper wurden zunächst in einem ELISA mit domänenspezifischen Fusionsproteinen (Exon v3, Exon v5 + v6, Exon v6 + v7, Exon v8 - v10) charakterisiert (Koopman et al., 1993). Ihre immunhistochemische Reaktivität wurde an menschlichen Hautschnitten getestet.

BIWA-1 (VFF-18, Herstellung und Eigenschaften siehe auch WO 95/33771) band nur an Fusionsproteine, die eine Domäne enthielten die durch das Exon v6 kodiert wurde. Um das Epitop des Antikörpers weiter einzugrenzen, wurden verschiedene synthetische Peptide, die Teile der v6-Domäne repräsentierten, in ELISA-Bindungsassays benutzt (Fig. 1). Das 14 Aminosäure-Peptid v6D zeigte die stärkste Bindung. Folglich liegt das Epitop von BIWA-1 ganz oder teilweise innerhalb der Sequenz QWFGNRWHEGYRQT der Domäne, die von Exon v6 kodiert wird. Diese Sequenz ist homolog zum Bindungsepitop des Antikörpers 1.1ASML, der in einem therapeutischen Rattenmodell verwendet wurde, und der für Ratten-CD44v6 spezifisch ist (Fig. 1).

25

30

35

10

Immunhistochemie

Vor der Inkubation mit dem Primärantikörper wurden Paraffinschnitte (4 µm) in Rotihistol (Roth, Deutschland) 3 mal für jeweils 10 Minuten deparaffiniert und dann in einer aufsteigenden Alkoholreihe rehydriert. Die Schnitte wurden kurz mit *A. dest.* gewaschen und danach in einem Mikrowellenofen (Sharp Model R-6270) 3 mal für jeweils 10 Minuten bei 600 Watt in 0.01 M Na-Citrat-Puffer gekocht. Nach jeder Mikrowellen-Inkubation wurden die Schnitte 20 Minuten lang abgekühlt. Nach dem letzten Kühlschritt wurden die Träger in PBS gewaschen und mit normalem Ziegenserum (10% in PBS) präinkubiert. Nach 3 Waschungen in PBS wurden die Schnitte mit Primärantikörper (BIWA-1: 5 µg/ml; Maus-IgG (Isotyp-entsprechende Negativkontrolle) 5 µg/ml in PBS/1% BSA) für 1 Stunde inkubiert. Als Positivkontrolle für die Färbungsreaktion wurden normale menschliche Hautschnitte benutzt, da Keratinozyten eine CD44-Isoform exprimieren, die v3-v10 enthält. En-

dogene Peroxidasen wurden mit 0.3 % H₂O₂ in PBS blockiert, und die Schnitte wurden mit dem biotinylierten Sekundärantikörper (Anti-Maus IgG-F(ab')2, DAKO Corp.) für 30 Minuten inkubiert. Zur Farbentwicklung wurden die Schnitte für 30 Minuten mit Meerrettich-Peroxidase, die an Biotin als Streptavidin-Biotin-Peroxidase-Komplex gekoppelt war (DAKO Corp.), inkubiert. Die Schnitte wurden dann in 3,3-Amino-9-ethyl-carbazol-Substrat (Sigma Immunochemicals) für 5-10 Minuten inkubiert, die Reaktion wurde mit H₂O gestoppt und die Schnitte wurden mit Hämatoxylin gegengefärbt. Die Auswertung der Färbungen wurden mit einem Zeiss-Axioskop-Lichtmikroskop durchgeführt, und die Färbungsintensitäten wurden wie folgt quantifiziert: +++, starke Expression; ++, moderate Expression; +, schwache Expression; -, uneindeutige oder keine Expression detektierbar. Nur Tumorzellen mit einer klaren Membranfärbung wurden als positiv bewertet. Der Prozentsatz positiver Tumorzellen in jedem Schnitt wurde grob abgeschätzt und zwei Gruppen wurden gebildet: fokal positive Tumoren (weniger als 10 % der Tumorzellen reagierten mit dem Antikörper) und positive Tumoren (10 oder mehr % der Tumorzellen positiv). Wenn weniger als 80% der Tumorzellen in den positiven Zellen mit dem Antikörper reagierten, wurde die entsprechende Prozentzahl angezeigt.

126 Fälle von Plattenepithelkarzinomen verschiedener Herkunft wurden mit dem CD44v6-spezifischen monoklonalen Antikörper BIWA-1 analysiert. Expression CD44v6 enthaltender Isoformen wurde in allen außer einer Tumorprobe beobachtet. Der Großteil der Proben zeigte eine Expression des Antigens auf 80-100 % der Tumorzellen, die Färbung war auf die Membran der Tumorzellen beschränkt. Mit Stromagewebe, Lymphozyten, Muskelzellen oder Endothel wurde keine Reaktion beobachtet.

Um die Expression von CD44v6-Molekülen auf diesen Tumorzellen zu quantifizieren, wurden Schnitte von normaler menschlicher Haut parallel zu den Tumorschnitten gefärbt. Normale Hautkeratinozyten exprimieren hohe Spiegel von CD44-Isoformen und zählen zu den am stärksten CD44v6 exprimierenden normalen Zellen, die bis heute beschrieben wurden. Deshalb wurde die Keratinozytenfärbung als Referenz genommen und als "stark" (+++) in unserem Bewertungssystem klassifiziert. In der Mehrzahl der untersuchten Tumorproben war die Färbung der Tumorzellen vergleichbar oder sogar stärker als die Färbung der Hautkeratinozyten, nur wenige Fälle zeigten schwache (3 Fälle von Lymphknotenmetastasen) oder moderate (2 Primärkarzinome, 10 Metastasen) Tumorfärbung. Die Färbungsreaktion war innerhalb eines gegebenen Tumorschnittes sehr homogen, wobei die meisten Tumorzellen des Schnittes die gleiche Färbungsintensität aufwiesen. Zwischen Primärtumoren und Metastasen wurden keine signifikanten Differenzen im CD44v6-Expressionsmuster beobachtet. Eine detaillierte Zusammenfassung der Ergebnisse zeigt Tabelle 1, Beispiele sind in Fig. 2 gezeigt.

10

15

20

25

30

Tabelle 1: Expression von CD44v6 in Plattenepithelkarzinomen

	Pr	obe	Tumoi	rtyp	BIWA-1 Reaktivitä
4693	7 8	6	Primär		
4687	9	0	Primar	Larynx	+++*
8372	9	0	Primär	Larynx	+++
1742	7 9	0	Primär	Larynx	+++
2729			Primar	Larynx	+++
4690				Larynx	+++
51334			Primär	Larynx	+++
51402			Primär	Larynx	+++
60414			Primär	Larynx	+++
61733			Primär	Larynx	+++
12280			Primär	Larynx	+++
23140			Primär	Larynx	+++
31792			Primär	Larynx	+++
32214			Primär	Larynx	+++
10209			Primär	Larynx	+++
2366	86		Primär	Larynx	+++
2574	86		Primär	Haut	+++
9916	86		Primär	Haut	+++
2696			Primär	Haut	++/+++
8906	87		Primär	Haut	+++
8191	87		Primär	Haut	1+++
8354	88		Primär	Haut	1+++
11963	88	┿	Primär	Haut	++ 50%
5590	88		Primär	Haut	++
530	90	4	Primär	Haut	++/+++
	92		Primär	Haut	+++
2583	94		Primär	Haut	+++
11337	94	 	Primär	Haut	+++
10901	95	 	Primär	Haut	+++
11557	95		Primär	Haut	+++
11744	95	<u> </u>	Primär	Haut	+++
1917	95		Primär	Haut	+++
688	90	I	Lymphknotenmetastase	Larynx	
688	90	II	Lymphknotenmetastase	Larynx	++/+++
374	90	<u> </u>	Lymphknotenmetastase	Larynx	+++
7428	90		Lymphknotenmetastase	Larynx	
7300	90		Lymphknotenmetastase	7	+++
6942	90		Lymphknotenmetastase		+++
6909	90		Lymphknotenmetastase		+++
1336	90		Lymphknotenmetastase		++
1108	91		Lymphknotenmetastase		+++
1398	91		Lymphknotenmetastase		+++
0416	91		Lymphknotenmetastase		+++
1734	91		Lymphknotenmetastase	Larynx -	+++

					
1318	92	I	Lymphknotenmetastase	Larynx	+++
1318	92	II	Lymphknotenmetastase	Larynx	+++
1318	92	III	Lymphknotenmetastase	Larynx	+++
1318	92	IV	Lymphknotenmetastase	Larynx	+++
2863	92	I	Lymphknotenmetastase	Larynx	+++
2863	92	II	Lymphknotenmetastase	Larynx	+++
5745	92	I	Lymphknotenmetastase	Larynx	+++
5745	92	II	Lymphknotenmetastase	Larynx	+++
8969	92	I	Lymphknotenmetastase	Larynx	+++
8969	92	II	Lymphknotenmetastase	Larynx	+++
8969	92	III	Lymphknotenmetastase	Larynx	++
8969	92	IV	Lymphknotenmetastase	Larynx	+++
8969	92	2/I	Lymphknotenmetastase	Larynx	+++
8969	92	2/II	Lymphknotenmetastase	Larynx	+++
8969	92	2/111	Lymphknotenmetastase	Larynx	++
8969	92	2/IV	Lymphknotenmetastase	Larynx	+/++
9366	92		Lymphknotenmetastase	Larynx	+++
9509	92		Lymphknotenmetastase	Larynx	+++
9566	92		Lymphknotenmetastase	Larynx	+++
12283	92		Lymphknotenmetastase	Larynx	+++
14046	92		Lymphknotenmetastase	Larynx	+++
31787	92		Lymphknotenmetastase	Larynx	+++
49228	92		Lymphknotenmetastase	Larynx	+++ 50%
29228	93		Lymphknotenmetastase	Larynx	+++
29829	93		Lymphknotenmetastase	Larynx	++
29804	95		Lymphknotenmetastase	Larynx	++/+++
15293	91	<u> </u>	Lymphknotenmetastase	Lunge	+ 25%
1667	92		Lymphknotenmetastase	Lunge	+ 20%
2757	92	Ĭ	Lymphknotenmetastase	Lunge	+++
2757	92	II	Lymphknotenmetastase	Lunge	+++
2757	92	Ш	Lymphknotenmetastase	Lunge	++-+
2757	92	IV	Lymphknotenmetastase	Lunge	+++
4790	92		Lymphknotenmetastase	Lunge	+++
6168	92	I	Lymphknotenmetastase	Lunge	++ 50%
6168	92	П	Lymphknotenmetastase	Lunge	+++
6168	92	III	Lymphknotenmetastase	Lunge	+++
6168	92	IV	Lymphknotenmetastase	Lunge	+++
7206	92	ļ	Lymphknotenmetastase	Lunge	+++
7531	92	I	Lymphknotenmetastase	Lunge	+++
7531	92	II	Lymphknotenmetastase	Lunge	+++
7531	92	III	Lymphknotenmetastase	Lunge	++/+++
7531	92	IV	Lymphknotenmetastase	Lunge	+++
10324	92		Lymphknotenmetastase	Lunge	+++
10519	92	II	Lymphknotenmetastase	Lunge	+++
10519	92	RMII	Lymphknotenmetastase	Lunge	+++
10958	92	<u></u>	Lymphknotenmetastase	Lunge	+++
11425	92	I	Lymphknotenmetastase	Lunge	+++
11425	92	II	Lymphknotenmetastase	Lunge	+++

<u> </u>						
	055	92		Lymphknotenmetasta	se Lunge	++/+++
——	055	92		Lymphknotenmetasta	se Lunge	fokal +++
	055	92		Lymphknotenmetastas	se Lunge	+++
	663	92		Lymphknotenmetastas	e Lunge	+++
<u></u>	713	92		Lymphknotenmetastas	e Lunge	+++
	980	91	1	Lymphknotenmetastas	e Oesonhami	
	980	91	II	Lymphknotenmetastas	e Oesophagu	s +++
160		91	I	Lymphknotenmetastas	e Desophague	5 +++
166		91	II	Lymphknotenmetastas	e Oesophagus	
166		91	III	Lymphknotenmetastas	e Oesophagus	
105		92		Lymphknotenmetastas	e Oesophagus	
171		92	I	Lymphknotenmetastase	Oesophagus Oesophagus	
171		92	II	Lymphknotenmetastase		+++
171		92	III	Lymphknotenmetastase		
115		92	I	Lymphknotenmetastase		+++
115	02	92	II	Lymphknotenmetastase		
202		92		Lymphknotenmetastase		++
603	0	92		Lymphknotenmetastase		++ 60%
733:	5	92	I	Lymphknotenmetastase		+/++/+++ 25%
733	5	92	II	Lymphknotenmetastase		+++
1532	24	92	II	Lymphknotenmetastase		+++
1616	54	92	I	Lymphknotenmetastase		+++ 70%
1616	4	92	II	Lymphknotenmetastase		+++
1641	2	92	1	Lymphknotenmetastase	Mundhöhle	+++ 50%
1683	6	92	I	Lymphknotenmetastase	Mundhöhle	++/+++
1683		92	II	Lymphknotenmetastase	Mundhöhle	+++
1683	6	92	III	Lymphknotenmetastase	Mundhöhle	+++
6228		92	I	Lymphknotenmetastase	Mundhöhle	+++
6228		92	II	Lymphenotenmetastase	Tonsille	+++
6618		92		Lymphknotenmetastase		+++
1184		92		Lymphknotenmetastase		+++
1417		91	4	Lymphknotenmetastase		++
14172		91	5	Lebermetastase		+++
4131		94	1	Lebermetastase		+++
8438		4		Lebermetastase		+/++
80 10				Lebermetastase	Oesophagus 1	fokal ++/+++

80-100% der Tumorzellen reagierten positiv mit BIWA-1. In Fällen, in denen weniger Tumorzellen mit dem Antikörper reagierten, ist die entsprechende Prozentzahl angezeigt.

Beispiel 2: Expression von CD44v6 in Nierenzellkarzinomen, Prostatakarzinomen und Lebermetastasen von Kolonkarzinomen

Gewebe

5

Analysiert wurden 19 Fälle von Nierenzellkarzinomen (12 Fälle klarzellig, 5 Fälle chromophil, 1 Fall chromophob, 1 Onkozytom), 16 primäre Adenokarzinome der Prostata und 19 Fälle von Lymphknotenmetastasen von Prostatakarzinomen, sowie 30 Fälle von Lebermetastasen von Kolonkarzinomen.

10

Antikörper

BIWA-1 (siehe Beispiel 1).

15

Immunhistochemie

Ausführung siehe Beispiel 1.

20

25

Im Gegensatz zu den Plattenepithelkarzinomen konnte in der Mehrzahl der untersuchten Nierenzell- und Prostatakarzinome keine oder nur eine fokale Expression von CD44v6-Isoformen nachgewiesen werden. Im Falle einer mehr als fokalen Expression bei den Prostatakarzinomen war die Färbung vorwiegend diffus zytoplasmatisch und schwach bzw. heterogen im Vergleich zur Färbung von normalem Prostataepithel. In 50% der untersuchten Lebermetastasen von Kolonkarzinomen wurde eine mehr als fokale Expression von CD44v6 Isoformen nachgewiesen. Die Färbung in der Mehrheit der Fälle war schwach bis mittelmäßig, wobei meist weniger als 100% der Tumorzellen einer Probe eine Anfärbung mit BIWA-1 zeigte. Eine Zusammenfassung der Ergebnisse ist in Tabelle 2 wiedergegeben.

Tabelle 2: Expression CD44v6 in Prostata-Adenokarzinomen, Nierenzellkarzinomen, und Lebermetastasen von kolorektalen Karzinomen

Tun	Tumortyp				vität
Prostata Adonala		 	negativ	fokal pos.	positiv
Prostata-Adenokarzinom		16	8	3	5
Prostata-Adenokarzinom	Lymphknotenmetastasen	19	15	12	-
Nierenzellkarzinom	Primär	+	1.5	2	2
Kolorektales Karzinom		19	117	0	2
	Lebermetastasen	30	7	8	15

Beispiel 3: Charakterisierung von CD44v6-spezifischen Antikörpern

10 Zellinie

5

15

20

25

30

Die menschliche SCC-Zellinie A-431 (spontanes epidermoides Karzinom der Vulva) wurde von der American Type Culture Collection (Rockwell MD) bezogen und gemäß der Herstellerangaben gezüchtet. Die Oberflächenexpression von CD44v6-enthaltenden Isoformen wurde durch FACS-Analyse bestimmt, wobei ein FITC-verknüpfter mAb BIWA-1 benutzt wurde.

Analyse der kinetischen Konstanten

Die Bestimmung der Affinität und Kinetik der monoklonalen Antikörper-CD44v6-Wechselwirkung wurde durch Surface Plasmon Resonance (SPR) durchgeführt, wobei ein BIAcore 2000-System (Pharmacia Biocensor) benutzt wurde. Ein Glutathion-S-Transferase-CD44-Fusionsprotein, das die Region enthielt, die von den Exons v3-v10 kodiert wurde (GST/CD44 v3-v10), wurde auf einem CM5 Sensor-Chip immobilisiert, wobei die Amin-Kupplungs-Methode gemäß Herstellerangaben durchgeführt wurde. Antikörper in verschiedenen Konzentrationen (8-132 nM) in HRS (10 mM Hance pH 7.4 150 antikörper in

verschiedenen Konzentrationen (8-132 nM) in HBS (10 mM Hepes pH 7.4, 150 mM Natriumchlorid, 3.4 mM EDTA, 0.05% BIA core surfactant P20) wurde über die antigenspezifische Oberfläche bei einer Flußrate von 5 µl/min injiziert. Die Wechselwirkung wurde als Änderung des SPR-Signals aufgezeichnet. Die Dissoziation des Antikorpers wurde für 5 Minuten im Pufferfluß (HBS) beobachtet. Die Oberfläche des Chips wurde mit einem Einzelpuls von 15 µl 30 mM HCl regeneriert. Analyse der Daten und Berechnung der kinetischen Konstanten wurde mit der Pharmacia Biosensor BIA Evaluation Software, Version 2.1 durchgeführt.

Auf diese Weise wurde die Antigenaffinität von BIWA-1 mit anderen CD44v6-spezifischen mAbs (VFF4, VFF7, BBA-13 (IgG1, R&D Systems, Abingdon, U.K.)) verglichen. Kinetische und Affinitätskonstanten der verschiedenen Antikörper wurden jeweils in zwei unabhängigen Experimenten bestimmt. Tabelle 3 zeigt die Werte der Assoziationsraten (k_a), Dissoziationsraten (k_d) und Dissoziationskonstanten (K_d) für die 4 mAbs. Alle mAbs zeigen ähnliche k_a und k_d, mit Ausnahme von BBA-13, der einen 3-fach niedrigeren k_a hat und VFF7, der eine signifikant höhere Dissoziationsrate (Faktor 5) im Vergleich zu den anderen mAbs zeigt. Dies resultiert in einer niedrigeren Bindungsaffinität für VFF7 und BBA-13 im Vergleich zu VFF4 und BIWA-1. BIWA-1 zeigt den niedrigsten K_d aller untersuchten Antikörper.

Tabelle 3: Kinetische und Affinitätskonstanten verschiedener CD44v6-spezifischer mAbs

Antikörper	k _a (M ⁻¹ s ⁻¹)	k _d (s-1)	K _d (M)
VFF4	1.1 x 10 ⁵	2.6 x 10 ⁻⁵	2.4 x 10 ⁻¹⁰
VFF7	1.1 x 10 ⁵	1.2 x 10 ⁻⁴	1.1 x 10 ⁻⁹
BIWA-1	1.3×10^5	2.2×10^{-5}	1.7 x 10 ⁻¹⁰
BBA-13	3.7×10^4	2.3 x 10 ⁻⁵	6.2 x 10 ⁻¹⁰

20

25

30

10

15

Analyse der Antikörper-Protein-Wechselwirkung durch ELISA.

CD44v6 exprimierende A-431-Zellen wurden in 96-Lochplatten (Falcon Microtest III, Becton Dickinson, Lincoln Park, NJ) in einer Zahl von 5 x 10⁴ pro Loch in RPMI 1640 mit 10% fötalem Kälberserum über Nacht bei 37°C kultiviert. Nach einer Waschung mit PBS/0.05% Tween 20 wurden die Zellen mit eiskaltem Ethanol für 1 Minute fixiert, wonach ein Waschschritt folgte. Die Inkubation mit den Primärantikörpern (VFF4, VFF7, BIWA-1, BBA-13, 1 ng/ml bis 600 ng/ml, jeweils in Assaypuffer: PBS/ 0.5 % BSA/ 0.05 % Tween 20) erfolgte für 1 Stunde bei Raumtemperatur und wurde von 3 Waschschritten gefolgt. Als Sekundärantikörper wurde ein Kaninchen-Antimaus-IgG-Meerettichperoxidase-konjugierter Antikörper (DAKO Corporation, Kopenhagen, Dänemark; Verdünnung 1:6000 in Assaypuffer) benutzt (1 h/RT). Nach 3 Waschschritten wurde die Farbentwicklung mit TMB-Lö-

sung (Kirkegaard + Perry, Gaithersburg, USA) hervorgerufen. Die Extinktion wurde mit einem Hewlett-Packard ELISA-Reader gemessen.

Figur 3 zeigt, daß die relativen Affinitäten der Antikörper, wie sie durch BIAcore-Analyse bestimmt wurden, in ihrer Wechselwirkung mit den Tumorzellen reflektiert werden. wobei BIWA-1 klar die höchste Bindungsaffinität zeigt.

Die Proteindomäne, die durch das CD44-Exon v6 kodiert wird, besteht aus 45 Aminosäuren (Figur 4). Um das Epitop, daß von BIWA-1 erkannt wird, präziser zu definieren, wurde eine Serie synthetischer Peptide in ELISA-Assays eingesetzt. Vorabexperimente ergaben eine Bindung an ein zentral lokalisiertes 14-mer (Aminosäurenreste 18-31; Figur 4; vgl. auch Figur 1), aber nicht an Peptide außerhalb dieser Region. Eine zweite Serie von Peptiden wurden deshalb synthetisiert und in kompetitiven ELISAs getestet (Figur 4). Die Ergebnisse zeigen, daß das Peptid 19-29 (WFGNRWHEGYR) die Minimalstruktur repräsentiert, die für hochaffine Bindung erforderlich ist. Die Eliminierung der C-terminalen Argininreste ergab eine mehr als 100fach schwächere Bindung.

Beispiel 4: Biodistribution radiojodinierter CD44v6-Antikörper in Xenotransplantat-tra-20 genden Nacktmäusen

A-431-Xenotransplantat Modell

Acht Wochen alte weibliche BALB/c nu/nu Nacktmäuse (B & K Universal, Renton, 25 WA) wurden subkutan in die linksseitige Mittellinie 5 x 106 kultivierte A-431-Zellen (humanes epidermoides Karzinom der Vulva) injiziert. Xenotransplantierte Tiere, die A-431-Tumoren trugen wurden für Biodistibutionsexperimente innerhalb von zwei Wochen verwendet (Tumorgewichte: 40-50 mg).

Radiojodinierung von BIWA-1

Protein G-gereinigter mAb BIWA-1 (muriner IgG1) wurde an Streptavidin gekoppelt, wobei der heterobifunktionale Crosslinker Succinimidyl 4-(N-maleimido-me-35 thyl)cyclohexan-1-carboxylat verwendet wurde. Streptavidin-Lysyl-Reste wurden an reduzierte Antikörper-Cysteinyl-Reste geknüpft, die durch Dithiothreitol-Vorbehandlung des Antikörpers erzeugt wurden. Erhaltene 1:1-Konjungate (> 90%) wurden mit Ionenaus-

30

tauschchromatographie weiter gereinigt. Für Biodistributionsexperimente wurde BIWA-1/SA über primäre Amine von Lysin mit ¹²⁵I markiert, wobei p-Jodophenyl-Markierungsreagenz (PIP; NEN Dupont, Wilmington, DE) verwendet wurde, gefolgt von dem Verfahren von Willbur et al. (1989). Markierung von BIWA-1 mit SA oder ¹²⁵I änderte nicht die Immunreaktivität oder die Pharmakokinetik des Antikörpers in Mäusen.

Biodistributionsexperimente

Nacktmäuse, die mit menschlichen A-431-Tumoren xenotransplantiert waren, wurden 5-7 μCi ¹²⁵I auf 50 μg mAb BIWA-1 (spezifische Aktivität 0.1-0.14 mCi/mg) intravenös (i.v.) über die laterale Schwanzvene injiziert. Zeitverlaufs-Biodistributionsstudien wurden in Gruppen von n=3 Tieren pro Zeitpunkt bei 4, 24, 48, 120 und 168 h post-Injektion ausgeführt. An ausgewählten Zeitpunkten wurden Mäuse gewogen, über den retro-orbitalen Plexus ausgeblutet und durch Zervixdislokation getötet. Neun Organe und Gewebe wurden gesammelt und gewogen, Blut, Schwanz, Lunge, Leber, Milz, Magen, Nieren, Darm und Tumor. Die Radioaktivität in Geweben wurde im Vergleich mit Standards der injizierten Antikörperpräparation in einem Gammaszintillationszähler (Packard Instrument Company, Meriden, CT) gezählt, wobei das Energiefenster auf 25-80 keV für ¹²⁵I gesetzt wurde. Die Prozent injizierte Dosis/g des Gewebes wurde berechnet (% ID/g).

Vorexperimente hatten ergeben, daß BIWA-1 nicht mit murinem CD44v6-Antigen kreuzreagierte. Tabelle 4 und Figur 5 zeigen die Aufnahme von Radioaktivität in Tumoren und Normalgewebe. Iodinierter BIWA-1 zeigte eine schnelle Tumoraufnahme (7.6 % injizierte Dosis/g bei 4 h post-Injektion), die auf mehr auf 18 % ID/g bei 48 h zunahm und danach für bis zu 120 h konstant blieb. Sieben Tage post-Injektion (168 h) enthielt der Tumor immer noch 15.3 % ID/g Gewebe. Tumor:Gewebe-Verhältnisse wurden für individuelle Zeitpunkte berechnet und werden in Tabelle 4 gezeigt. Bei 24 h post-Injektion war das Tumor:Blut Verhältnis 0.48 und nahm auf 3.16 am Tag 7 zu. Aufnahme im Normalgewebe war niedrig und am wahrscheinlichsten verursacht durch Blut-Pool-Hintergrund in den Gewebebiopsien. Selektives *in-vivo-*Targeting von humanen SCC-Xenotransplantaten in Nacktmäusen mit ¹²⁵I-markiertem BIWA-1 zeigen, daß dieser monoklonale Antikörper ein hohes Potential als Targetingvehikel für die diagnostische und therapeutische Anwendung in SCC-Patienten aufweist.

10

15

Tabelle 4: Tumor: Gewebe-Verhältnisse von ¹²⁵I-BIWA-1 in A-431-tumortragenden Nacktmäusen zu verschiedenen Zeitpunkten post Injektion

Verhältnis von Tumor zu	4 h	24 h	101	T	T
Blut	0.22a		48 h	120 h	168 h
Schwanz		0.48	1.31	2.60	3.16
	1.18	2.62	7.70	12.28	
Lunge	0.40	1.03	2.65		13.06
Leber	0.94			7.04	4.82
Milz		1.18	2.28	3.57	3.24
	1.40	1.84	4.00	4.86	4.42
Magen	3.89	7.37	19.40	25.56	
Niere	0.82	1.31	1		33.96
Darm		T	2.72	2.79	2.53
	3.54	6.24	11.94	19.24	27.78

a Mittelwerte (n=3); SD sind < 7%

Beispiel 5: Unterschiedliche Expression von CD44v6 in einer großen Zahl menschlicher Tumoren

In einer erweiterten Untersuchung wurden insgesamt 544 Tumorproben immunhistochemisch mit dem monoklonalen Antikörper BIWA 1 (Klon VFF-18) auf Expression von CD44v6 untersucht. Die Proben waren entweder Paraffin-eingebettet oder sofort nach der chirurgischen Entnahme in flüssigem Stickstoff eingefroren und bis zum Gebrauch bei -70°C aufbewahrt worden. Die folgenden Tumoren wurden analysiert: Basaliome (n=16), Adenokarzinome (AC) der Brust (n=55), AC des Kolons (n=83), Plattenepithelkarzinome (SCC) des Kopfes und Halses (n=125), Lungenkarzinome (n=120), Prostata AC (n=34), Nierenzellkarzinome (n=27), SCC der Haut (n=15) und AC des Magens (n=69). Die Gewebe wurden durch Routinechirurgie oder -biopsie erhalten, Normalgewebe wurden begleitend zu den Tumorproben erhalten. Die immunhistochemische Untersuchung wurde wie in Beispiel 1 ausgeführt.

Tabelle 5 zeigt eine Übersicht über die immunhistochemische Analyse von 397 verschiedenen Tumorproben mit dem mAb BIWA 1.

10

15

Tabelle 5: Expression von CD44v6 in menschlichen Tumoren

	Тур	Gesamt n	Positi	ve Fälle*
			n	%
Basalioma	Primärtumor	16	10	62
Brust AC	Primärtumor	17	15	88
	Lymphknoten-Metastasen	34	31	91
	Leber-Metastasen	4	4	100
Kolon AC	Lymphknoten-Metastasen	51	21	41
	Leber-Metastasen	26	13	50
	Hirn-Metastasen	6	6	100
Larynx SCC	Lymphknoten-Metastasen	18	18	100
Lunge AC	Primärtumor	35	15	43
Lunge SCC	Primärtumor	9	9	100
Ösophagus SCC	Primärtumor	20	20	100
Prostata AC	Primärtumor	16	5	31 .
	Lymphknoten-Metastasen	18	0	0
RCC	Primärtumor	27	5	18
SCLC	Primärtumor	31	7	23
Magen AC	Primärtumor	22	15	68
	Lymphknoten-Metastasen	43	16	37
	Leber-Metastasen	4	4	100
	Gesamt n	397		
*: ≥ 10 % der Tur	morzellen positiv			
AC: Adenokarzine	om; RCC: Nierenzellkarzinom			
SCLC: kleinzellige	er Lungenkrebs; SCC: Platten	epithelkarzinoi	m	

Bei kleinzelligen Lungenkarzinomen, Nierenzellkarzinomen und AC der Prostata wurde keine oder nur geringe Reaktivität beobachtet. Alle anderen untersuchten Tumortypen exprimierten CD44v6-enthaltende Isoformen in unterschiedlichem Ausmaß. Die meisten der untersuchten AC der Brust zeigten Reaktivität mit BIWA 1, und die getesteten SCC (Larynx, Lunge und Ösophagus) exprimierten CD44v6 in 100% aller Fälle.

10

5

Es wurden insgesamt 185 Fälle von SCC verschiedener Typen und Klassifikation auf Reaktivität mit BIWA 1 untersucht. Darin waren 67 Fälle primärer SCC (Larynx, n=15; Mundhöhle, n=16; Oropharynx, n=3; Haut, n=15), 77 Proben von Lymphknotenmetastasen

(Larynx, n=12; Lunge, n=27; Ösophagus, n=11; Mundhöhle, n=6; Oropharynx, n=7; Hypopharynx, n=10, Tonsille, n=4), und 3 Proben aus Lebermetastasen (Ösophagus). Eine Übersicht über die immunhistochemische Analyse aller untersuchten SCC-Proben zeigt Tabelle 6.

Tabelle 6: Expression von CD44v6 in Plattenepithelkarzinomen

Тур		Gesamt n	Ne	gativ	Fokal pos.		Positiv	
			n	%	n	%	n	1 %
Hypopharynx	LNM	10	0	0	0	0	10	100
Oropharynx	PT	3	0	0	0	0	3	100
	LNM	7	0	0	0	0	7	100
Larynx	PT	15	0	0	0	0	15	100
	LNM	30	1	3	0	0	29	97
Lunge	PT	18	2	11	0	0	16	89
	LNM	27	0	0	1	4	26	96
Ösophagus	PT	20	0	0	1	5	19	95
	LNM	11	0	0	0	0	11	100
	LM	3	0	0	0	0	3	100
Mundhöhle	PT	16	0	0	0	0	16	100
	LM	6	0	0	0	0	6	100
Haut	PT	15	0	0	0	0	15	100
Tonsille	LNM	4	0	0	0	0	4	100
Ge	samt n	185					7	100

Fokal pos.: < 10 % der Tumorzellen positiv; LNM: Lymphknotenmetastasen;

PT: Primartumor; LM: Lebermetastasen

10

5

Expression von CD44v6 enthaltenden Isoformen wurde in allen mit Ausnahme von drei Tumorproben gefunden (ein Fall Larynx, 2 Fälle Lunge). Die Mehrzahl der Proben zeigte eine Expression des Antigens auf 80 bis 100 % der Tumorzellen innerhalb eines einzigen Schnitts, wobei die Färbung hauptsächlich auf die Membran der Tumorzellen konzentriert war. Das am stärksten homogene Färbungsmuster wurde in Karzinomen des Larynx, Ösophagus und Hypopharynx gefunden, wobei die meisten Tumorzellen des Schnitts die gleiche Färbungsintensität zeigten.

15

Literatur

Altenschmidt U, Kahl R, Moritz D, Schnierle BS, Gerstmayer B, Wels W, Groner B. Cytoplysis of tumor cells expressing the neu/erbB-2, erbB-3, and erbB-4 receptors by genetically targeted naive T lymphocytes. Clinical Cancer Res. 2: 1001-1008 (1996).

Barbas C F, Björling E, Chiodi F, Dunlop N, Cababa D, Jones T M, Zebedee S L, Persson M A A, Nara P L, Norrby E, Burton D R. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus *in vitro*. *Proc. Natl. Acad. Sci. U.S.A.* 89: 9339-9343 (1992).

Baum RP, Noujaim AA, Nanci A, Moebus V, Hertel A, Niesen A, Donnerstag B, Sykes T, Boniface G, Hör G. Clinical course of ovarian cancer patients under repeated stimulation of HAMA using MAb OC125 and B43.13. *Hybridoma 12(5)*: 583-589 (1993).

Becker JC, Varki N, Gillies SD, Furukawa K, Reisfeld RA. An antibody-interleukin 2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune response. *Proc. natl. Acad. Sci. USA 93:* 7826-7831 (1996).

- Breitz H B, Weiden P L, Vanderheyden J-L, Appelbaum J W, Bjorn M J, Fer M F, Wolf S B, Ratcliff B A, Seiler C A, Foisie D C, Fisher D R, Schroff R W, Fritzberg A R, Abrams P G. Clinical experience with rhenium-186-labeled monoclonal antibodies for radioimmunotherapy: results of phase I trials. J. Nucl. Med. 33: 1099-1112 (1992).
- Breitz H B, Durham J S, Fisher D R, Weiden P L, DeNardo G L, Goodgold H M, Nelp W B. Phrmacokinetics and normal organ dosimetry following intraperitoneal rhenium-186-labeled monoclonal antibody. J. Nucl. Med 36: 754 (1995).
- Brooks, L., Niedobitek, G., Agathanggelou, A., Farrell, P.J. The expression of variant CD44 in nasopharyngeal carcinoma is unrelated to expression of LMP-1. Am. J. Pathol. 146(5): 1102-12 (1995).

Catty, D (Hrsg). Antibodies Vols. I und II. IRL Press Oxford (1989).

Catty, D., Raykundalia, C. ELISA and related immunoassays. In: Catty, D (Hrsg). Antibodies Vol. II. IRL Press Oxford (1989), 97-152, s. S. 105-109.

20

25

30

Catty, D., Murphy, G. Immunoassays using radiolabels. In: Catty, D (Hrsg). Antibodies Vol. II. IRL Press Oxford (1989), 77-96.

Chatal J-F, Saccavini J-C, Gestin J-F, Thédrez P, Curtet C, Kremer M, Guerreau D, Nolibé D, Fumoleau P, Guillard Y. Biodistribution of indium-111-labeled OC 125 monoclonal antibody intraperitoneally injected into patients operated on for ovarian carcinomas. Cancer Res. 49: 3087-3094 (1989).

Chaudhary V K, Batra J K, Galdo M G, Willingham M C, Fitzgerald D J, Pastan I. A rapid method of cloning functional variable-region antibody genes in *Escherichia coli* as single-chain immunotoxins. *Proc. Natl. Acad. Sci. U.S.A. 87:* 1066 (1990).

Colcher D, Esteban J, Carrasquillo J A, Sugarbaker P, Reynolds J C, Bryant G, Larson S M, Schlom J. Complementation of intracavitary and intravenous administration of a monoclonal antibody (B72.3) in patients with carcinoma. *Cancer Res.* 47: 4218-4224 (1987).

Coloma M J, Hastings A, Wims L A, Morrison S L. Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. J. Immunol. Methods 152: 89-104 (1992).

Featherstone C. Bispecific antibodies: the new magic bullets. Lancet 348: 536 (1996).

Friedmann P N, McAndrew S J, Gawlak S L, Chace D, Trail P A, Brown J P, Siegall C B. BR96 sFv-PE40, a potent single-chain immunotoxin that selectively kills carcinoma cells. Cancer Res. 53: 334-339 (1993).

Gerretsen M, Visser GWM, Brakenhoff RH, van Walsum M, Snow GB, van Dongen GAMS. Complete ablation of small squamous cell carcinoma xenografts with ¹⁸⁶Re-labeled monoclonal antibody E48. *Cell Biophysics 24/25*: 135-141 (1994).

Goodwin D A. A new appoach to the problem of targeting specific monoclonal antibodies to human tumors using anti-hapten chimeric antibodies. J. Nucl. Med. Biol. 16: 645 (1989).

Goodwin DA. Tumor pretargeting: almost the bottom line. J. Nucl. Med. 36(5): 876-879 (1995).

Günthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller, M., Haußmann, I., Matzku, S., Wenzel, A., Ponta, H., and Herrlich, P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. *Cell* 65: 13-24 (1991).

5 Guesdon, J. I., Ternynck, T., Avrameas, S. J. Histochem. Cytochem. 27: 1131 (1979).

Güssow D, Seemann G. Humanization of monoclonal antibodies. *Methods Enzymol.* 203: 99-121 (1991):

Heider, K.-H., Hofmann, M., Horst, E., van den Berg, F., Ponta, H., Herrlich, P., and Pals, S.T.A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J. Cell Biol. 120: 227-233 (1993).

Heider, K.-H., Mulder, J.-W. R., Ostermann, E., Susani, S., Patzelt, E., Pals, S.T., Adolf, G.R. Splice variants of the cells surface glycoprotein CD44 associated with metastatic tumor cells are expressed in normal tissues of humans and cynomolgus monkeys. *Eur. J. Cancer 31A*:2385-2391 (1995).

Heider K H, Ratschek M, Zatloukal K, Adolf G R. Expression of CD44 isoforms in human renal cell carcinomas. *Virchows Arch.* 428: 267-273 (1996a).

Heider KH, Sproll M, Susani S, Patzelt E, Beaumier P, Ostermann E, Ahorn H, Adolf GR. Characterization of a high-affinity monoclonal antibody specific for CD44v6 as candidate for immunotherapy of squamous cell carcinomas. *Cancer Immunol. Immunother.*: in press. 1996.

Hemming AW, Davis NL, Finley RJ. Photodynamic therapy of squamous cell carcinoma: an evaluation of an anti-EGFR monoclonal antibody-prophyrin conjugate. *Society of Surgical Oncology, 46th Annual Cancer Symposium.* March 18-21, 1993, Los Angeles, CA, p. 67

Hofmann, M., Rudy, W., Zöller, M., Tölg, C., Ponta, H., Herrlich P., and Günthert, U. CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. *Cancer Res.* 51: 5292-5297 (1991).

Johnson, G. D. Immunofluorescence. In: Catty, D (Hrsg). Antibodies Vol. II. IRL Press Oxford (1989), 179-200, s. S. 180-189.

20

25

15

25

30

35

Johnson S, Bird R E. Construction of single-chain derivatives of monoclonal antibodies and their production in *Escherichia coli*. *Methods Enzymol*. 203: 88-98 (1991).

Jurcic JG, Scheinberg DA. Recent Developments in the radioimmunotherapy of cancer. Current Opinion in Immunology 6: 715-721 (1994).

Juweid M, Sharkey R M, Markowitz A, Behr T, Swayne L C, Dunn R, Hansen H J, Shevitz J, Leung S-O, Rubin A D, Herskovic T, Hanley D, Goldenberg D M. Treatment of Non-Hodgkins's lymphoma with radiolabeled murine, chimeric, or humanized LL2, an anti-CD22 monoclonal antibody. *Cancer Res. (Suppl.)* 55: 5899s-5907s (1995).

Kearney, J.F., Radbruch A., Liesegang B., Rajewski K. A new mouse myeloma cell line that has lost imunoglobulin expression but permits construction of antibody-secreting hybrid cell lines. *J. Immunol.* 123: 1548 (1979).

Keenan A M, Weinstein J N, Carrasquillo J A, Bunn P A, Reynolds J C, Foon K A et al. Immunolymphoscintigraphy and the dose dependence of ¹¹¹In-labeled T101 monoclonal antibody in patients with cutaneous T-cell lymphoma. Cancer Res. 47: 6093-6099 (1987).

20 Khazaeli MB, Conry RM, LoBuglio AF. Human immune response to monoclonal antibodies. J. Immunother. 15: 42-52 (1994).

Köhler, G., Milstein, C. Continous culture of fused cells secreting antibody of predefined specifity. *Nature 265:* 495 (1975)

Koopman, G., Heider, K.-H., Horts, E., Adolf, G. R., van den Berg, F., Ponta, H., Herrlich, P., Pals, S. T. Activated human lymphocytes and aggressive Non-Hodgkin's lymphomas express a homologue of the rat metastasis-associated variant of CD44. *J. Exp. Med. 177*: 897-904 (1993).

Kreitman R J Hansen H J, Jones A L, FitzGerald D J P, Goldenberg D M, Pastan I. *Pseudomonas* exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab' induce regression of subcutaneous human B-cell lymphoma in mice. *Cancer Res.* 53: 819-825 (1993).

Larson S M, Cheung N-K V, Leibel S A. Radioisotope Conjugates. *In:* DeVita V T, Hellman S, Rosenberg S A (Hrsg.). Biologic therapy of cancer. J. B. Lippincott Comp., Philadelphia, 496-511 (1991).

Lenhard R E, Order S E, Spunberg J J, Asbell S O, Leibel S A. Isotopic immunoglobulin. A new systemic therapy for advanced Hodgkin's Disease. J. Clin. Oncol. 3: 1296-1300 (1985).

5

Maraveyas A, Myers M, Stafford N, Rowlinson-Busza G, Stewart J S W, Epenetos A A. Radiolabeled antibody combined with external radiotherapy for the treatment of head and neck cancer: Reconstruction of a theoretical phantom of the larynx for radiation dose calculation to local tissues. Cancer Res. 55: 1020-1027 (1995a).

10

Maraveyas A, Stafford N, Rowlinson-Busza G, Stewart J S W, Epenetos A A, Pharmacokinetics, biodistribution, and dosimetry of specific and control radiolabeled monoclonal antibodies in patients with primary head and neck squamous cell carcinoma. Cancer Res. 55: 1060-1069 (1995b).

15

Mulshine J L, Magnani J L, Linnoila R I: Applications of monoclonal antibodies in the treatment of solid tumors. In: DeVita V T, Hellman S, Rosenberg S A (Hrsg.). Biologic therapy of cancer. J. B. Lippincott Comp., Philadelphia, 563-588 (1991).

20

Myklebust AT, Godal A, Juell S, Pharo A, Fodstad O. Comparison of two antibody based methods for elimination of breast cancer cells from human bone morrow. Cancer Res. *54*:209-214 (1994).

25

Nesbit M. Fu Z F. McDonald-Smith J, Steplewski Z, Curtis P J. Production of a functional monoclonal antibody recognizing human colorectal carcinoma cells from a baculovirus expression system. J. Immunol. Methods 151: 201-208 (1992).

Perkins A C, Pimm M V. A role for gamma scintigraphy in cancer immunology and immunotherapy. Eur. J. Nucl. Med. 19: 1054-1063 (1992).

30

Press O W, Eary J F, Badger C C, Martin P J, Appelbaum F R, Levy R, Miller R, Brown S, Nelp W B, Krohn K A, Fisher D, DeSantes K, Porter B, Kidd P, Thomas E D, Bernstein I D. Treatment of refractory Non-Hodgkin's lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J. Clin. Oncol. 7: 1027-1038 (1989).

35

Press O W, Eary J F, Appelbaum F R, Martin P J, Nelp W B Glenn S, Fisher D J. Porter B. Metthews D C Gooley T, Bernstein I D. Phase II trial of ¹³¹I-B1 (anti-CD20) antibody the-

15

25

30

35

rapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 346: 336-340 (1995).

Quadri S M, Vriesendorp H M, Leichner P K, Williams J R. Evaluation of indium-111 and yttrium-90 labeled linker immunoconjugates in nude mice and dogs. *J. Nucl. Med.* 34: 938-945 (1993).

Reisfeld RA, Gillies SD, Mendelsohn J, Varki NM, Becker JC. Involvement of B lymphocytes in the growth inhibition of human pulmonary melanoma metastases in athymic nu/nu mice by an antibody-lymphotoxin fusion protein. *Cancer res.* 56: 1707-1712 (1996).

Riethmüller G, Schneider-Gädicke E, Schlimok G, Schmiegel W et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. Lancet 343: 1177-1183 (1994).

Salmi, M., Grön-Virta, K., Sointu, P., Grenman, R., Kalimo, H., Jalkanen S. Regulated expression of exon v6 containing isoforms of CD44 in man: Downregulation during malignant transformation of tumors of squamocellular origin. *J. Cell Biol.* 122: 431-442 (1993).

Sambrook, J., Fritsch E.E., Maniatis I., Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989).

Schrappe M, Bumol T F, Apelgren L D, Briggs S L, Koppel G A, Markowitz D D, Mueller B M, Reisfeld R A. Long-term growth suppression of human glioma xenografts by chemo-immunoconjugates of 4-desacetylvinblastine-3-carboxyhydrazide and monoclonal antibody 9.2.27. Cancer Res. 52: 3838-3844 (1992).

Screaton, G.R., Bell, M.V., Jackson, D.G., Cornelis, F.B., Gerth, U., and Bell, J. I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. *Proc. Natl. Acad. Sci. U.S.A.* 89: 12160-12164 (1992).

Sears H F, Mattis J, Herlyn D, Häyry P, Atkinson B, Ernst C, Steplewski Z, Koprowski H. Phase-I clinical trial of monoclonal antibody in treatment of gastrointestinal tumours. *Lancet* 1982 (1): 762-765 (1982).

Seiter, S., Arch, R., Reber, S., Komitowski, D., Hofmann, M., Ponta, H., Herrlich, P., Matzku, S., Zöller, M. Prevention of tumor metastasis formation by anti-variant CD44. J. Exp. Med. 177: 443-455 (1993).

Senter P D, Schreiber G J, Hirschberg D L, Ashe S A, Hellström K E, Hellström I. Enhancement of the *in vitro* and *in vivo* antitumor activities of phosphorylated mitomycin C and etoposide derivatives by monoclonal antibody-alkaline phosphatase conjugates. *Cancer Res.* 49: 5789-5792 (1989).

Shin S-U, Morrison S L. Production and properties of chimeric antibody molecules. *Methods Enzymol.* 178: 459-476 (1989).

- Siccardi A G, Buraggi G L, Callegaro L, Colella A C, DeFilippi P G et al. Immunoscintigraphy of adenocarcinomas by means of radiolabeled F(ab')₂ fragments of an anti-carcinoembryonic antigen monoclonal antibody: a multicenter study. Cancer Res. 49: 3095-3103 (1989).
- Smith, D.B., Johnson, K.S. Single-step purification of polypetides expressed in *Escherichia coli* as fusions with glutathione S-transferase. *Gene 67:* 31 (1988).
 - Srivastava S C (Hrsg). Radiolabeled monoclonal antibodies for imaging and therapy. Life Sciences Series A 152, Plenum New York (1988).
 - Tölg, C., Hofmann, M., Herrlich, P., and Ponta, H. Splicing choice from ten variant exons establishes CD44 variability. *Nucleic Acids. Res. 21*: 1225-1229 (1993).
- Theuer C P, Kreitman R J, FitzGerald D J, Pastan I. Immunotoxins made with a recombinant form of pseudomonas exotoxin A that do not require proteolysis for activity. Cancer Res. 53: 340-347 (1993).
 - Thomas, G. D., Dykes, P. W., Bradwell, A. R. Antibodies for tumour immunodetection and methods for antibody radiolabeling. In: Catty, D. (Hrsg.). *Antibodies Vol. II*. IRL Press Oxford, 223-244 (1989).
 - Thompson C H, Stacker S A, Salehi N, Lichtenstein M, Leyden M J, Andrews J T. Immunoscintigraphy for detection of lymph node metastases from breast cancer. *Lancet* 1984 (2): 1245-1247 (1984).
 - Vitetta E S, Thorpe P E. Immunotoxins. In: DeVita V T, Hellman S, Rosenberg S A (Hrsg.). Biologic therapy of cancer. J. B. Lippincott Comp., Philadelphia, 482-495 (1991)

20

30

Vitetta E S, Stone M, Amlot P, Fay J, May R, Till M, Newman J, Clark P, Collins R, Cunningham D, Ghetie V, Uhr J W, Thorpe P E. Phase I immunotoxin trial in patients with B-cell lymphoma. *Cancer Res.* 51: 4052-4058 (1991).

- Vriesendorp H M, Herbst J M, Germack M A, Klein J L, Leichner P K, Loudenslager D M, Order S E. Phase I-II studies of yttrium-labeled antiferritin treatment for end stage Hodg-kin's diesease, including Radiation Therapy Oncology Group 87-01. J. Clin Oncol. 9: 918-928 (1991).
- Vriesendorp H M, Morton J D, Quadri S M. Review of five consecutive studies of radiolabeled immunoglobulin therapy in Hodgkins's Disease. Cancer Res. (Suppl.) 55: 5888s-5892s (1995).
- Wang S-M, Chern J-W, Yeh M-Y, Ng J C, Tung E, Roffler S R. Specific activation of glucuronide prodrugs by antibody-targeted enzyme conjugates for cancer therapy. Cancer Res. 52: 4484-4491 (1992).
 - Weiner L M, O'Dwyer J, Kitson J, Comis R L, Frankel A E, Bauer R J, Kopnrad M S, Groves E S. Phase I evaluation of an anti-breast carcinoma monoclonal antibody 260F9-recombinant ricin A chain immunoconjugate. *Cancer Res.* 49: 4062-4067 (1989).
 - Wilbur, D. S., Hadley, S. W., Hylarides, M. D., Abrams, P. G., Beaumier, P. A., Morgan, A.C., Reno, J.M., Fritzberg, A.R. Development of a stable radioiodinating agent to label monoclonal antibodies for radiotherapy of cancer. *J. Nucl. Med.* 30: 216-226 (1989).
- Winter, G., Griffith, A. D., Hawkins, R. E., Hoogenboom, H. R. Making antibodies by phage display technology. *Ann. Rev. Immunol.* 12, 433-455 (1994).

20

SEQUENZPROTOKOLL

31

(1) ALLGEMEINE ANGABEN:

(i) ANMELDER:

- (A) NAME: Boehringer Ingelheim International GmbH
- (B) STRASSE: Rheinstrasse
- (C) ORT: Ingelheim
- (E) LAND: Deutschland
- (F) POSTLEITZAHL: 55216
- (G) TELEFON: +49-(0)-6132-772770
- (H) TELEFAX: +49-(0)-6132-774377
- (A) NAME: Forschungszentrum Karlsruhe GmbH
- (B) STRASSE: Postfach 3640
- (C) ORT: Karlsruhe
- (E) LAND: Deutschland
- (F) POSTLEITZAHL: 76021
- (A) NAME: Heider, Karl-Heinz
- (B) STRASSE: Hervicusgasse 4/3/21
- (C) ORT: Wien
- (E) LAND: Oesterreich
- (F) POSTLEITZAHL: 1120
- (A) NAME: Adolf, Guenther
- (B) STRASSE: Stiftgasse 15-17/10
- (C) ORT: Wien
- (E) LAND: Oesterreich
- (F) POSTLEITZAHL: 1070
- (A) NAME: Ostermann, Elinborg
- (B) STRASSE: Mauerbachstr. 56/6
- (C) ORT: Wien
- (E) LAND: Oesterreich
- (F) POSTLEITZAHL: 1140

- (A) NAME: Patzelt, Erik
- (B) STRASSE: Hans-Buchmueller-Gasse 8
- (C) ORT: Purkersdorf
- (E) LAND: Oesterreich
- (F) POSTLEITZAHL: 3002
- (A) NAME: Sproll, Marlies
- (B) STRASSE: Schwenkgasse 3
- (C) ORT: Wien

WO 97/21104

- (E) LAND: Oesterreich
- (F) POSTLEITZAHL: 1120
- (ii) BEZEICHNUNG DER ERFINDUNG: Verfahren zur Diagnose und Therapie von Plattenepithelkarzinomen
 - (iii) ANZAHL DER SEQUENZEN: 16
 - (iv) COMPUTER-LESBARE FASSUNG:
 - (A) DATENTROGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
- (2) ANGABEN ZU SEQ ID NO: 1:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 129 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: beides
 - (D) TOPOLOGIE: beides
 - (ii) ART DES MOLEKULS: Genom-DNA
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: exon
 - (B) LAGE:1..129
 - (D) SONSTIGE ANGABEN:/product= "CD44"

```
/label= v6
/note= "GenBank data base accession No. L05411"
/citation= ([1])
```

- (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 3..128
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (A) AUTORS: Screaton, GR
 Bell, MV

Jackson, DG

Cornelis, FB

Gerth, U

Bell, JI

- (B) TITEL: Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons
 - (C) ZEITSCHRIFT: Proc. Natl. Acad. Sci. U.S.A.
 - (D) BAND: 89
 - (F) SEITEN: 12160-12164
 - (G) DATUM: December-1992
 - (K) BELANGREICHE RESTE IN SEQ ID NO: 1: VON 1 BIS 129
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
- TC CAG GCA ACT CCT AGT AGT ACA ACG GAA GAA ACA GCT ACC CAG AAG 47
 Gln Ala Thr Pro Ser Ser Thr Thr Glu Glu Thr Ala Thr Gln Lys
 1 5 10 15

GAA CAG TGG TTT GGC AAC AGA TGG CAT GAG GGA TAT CGC CAA ACA CCC 95
Glu Gln Trp Phe Gly Asn Arg Trp His Glu Gly Tyr Arg Gln Thr Pro
20 25 30

AGA GAA GAC TCC CAT TCG ACA ACA GGG ACA GCT G
Arg Glu Asp Ser His Ser Thr Thr Gly Thr Ala
35

129

(2) ANGABEN ZU SEQ ID NO: 2:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 42 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKULS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Gln Ala Thr Pro Ser Ser Thr Thr Glu Glu Thr Ala Thr Gln Lys Glu

1 5 10 15

Gln Trp Phe Gly Asn Arg Trp His Glu Gly Tyr Arg Gln Thr Pro Arg
20 25 30

Glu Asp Ser His Ser Thr Thr Gly Thr Ala 35 40

(2) ANGABEN ZU SEQ ID NO: 3:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Peptid

- (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
- (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

Gln Trp Phe Gly Asn Arg Trp His Glu Gly Tyr Arg Gln Thr
1 5 . 10

- (2) ANGABEN ZU SEQ ID NO: 4:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 27 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure
 - (A) BESCHREIBUNG: /desc = "PCR primer"
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

CAGGCTGGGA GCCAAATGAA GAAAATG

(2) ANGABEN ZU SEQ ID NO: 5:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 30 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure
 - (A) BESCHREIBUNG: /desc = "PCR primer"
- (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
- (x) VER™FFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

TGATAAGGAA CGATTGACAT TAGAGTTGGA

30

- (2) ANGABEN ZU SEQ ID NO: 6:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4

(I) ANMELDETAG: 17-APR-1996

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

Trp Phe Gly Asn Arg Trp His Glu Gly Tyr Arg

1 5 10

- (2) ANGABEN ZU SEQ ID NO: 7:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 43 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

Gln Ala Thr Pro Ser Ser Thr Thr Glu Glu Thr Ala Thr Gln Lys Glu
1 5 10 15

Gln Trp Phe Gly Asn Arg Trp His Glu Gly Tyr Arg Gln Thr Pro Arg
20 25 30

Glu Asp Ser His Ser Thr Thr Gly Thr Ala Ala 35 40

- (2) ANGABEN ZU SEQ ID NO: 8:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

Ser Ser Thr Thr Glu Glu Thr Ala Thr Gln Lys

5 10

- (2) ANGABEN ZU SEQ ID NO: 9:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:

- (H) DOCUMENTNUMMER: DE 196 15 074.4
- (I) ANMELDETAG: 17-APR-1996
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

Glu Glu Thr Ala Thr Gln Lys Glu Gln Trp 1 5 10

- (2) ANGABEN ZU SEQ ID NO: 10:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11 Aminosäuren
 - (B) ART: Aminosaure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

Thr Ala Thr Gln Lys Glu Gln Trp Phe Gly Asn
1 5 10

- (2) ANGABEN ZU SEQ ID NO: 11:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang

- (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

Gln Trp Phe Gly Asn Arg Trp His Glu Gly Tyr Arg Gln Thr

1 5 10

- (2) ANGABEN ZU SEQ ID NO: 12:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

Asn Arg Trp His Glu Gly Tyr Arg Gln Thr Pro

1 5 10

(2) ANGABEN ZU SEO ID NO: 13:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11 Aminos, uren
 - (B) ART: Aminos, ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:

Glu Gly Tyr Arg Gln Thr Pro Arg Glu Asp Ser

1 5 10

- (2) ANGABEN ZU SEQ ID NO: 14:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4

(I) ANMELDETAG: 17-APR-1996

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:

Thr Pro Arg Glu Asp Ser His Ser Thr Gly
1 5 10

- (2) ANGABEN ZU SEQ ID NO: 15:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 42 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:

Trp Ala Asp Pro Asn Ser Thr Thr Glu Glu Ala Ala Thr Gln Lys Glu

1 5 10 15

Lys Trp Phe Glu Asn Glu Trp Gln Gly Lys Asn Pro Pro Thr Pro Ser 20 25 30

Glu Asp Ser His Val Thr Glu Gly Thr Thr 35

- (2) ANGABEN ZU SEQ ID NO: 16:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Peptid
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 195 45 472.3
 - (I) ANMELDETAG: 06-DEC-1995
 - (x) VERÖFFENTLICHUNGSINFORMATION:
 - (H) DOCUMENTNUMMER: DE 196 15 074.4
 - (I) ANMELDETAG: 17-APR-1996
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:

Lys Trp Phe Glu Asn Glu Trp Gln Gly Lys Asn Pro Pro Thr
1 5 10

10

20

30

35

Patentansprüche

- 1. Verfahren zur Diagnose oder Therapie von Plattenepithelkarzinomen, dadurch gekennzeichnet, daß dieses Verfahren auf der Expression des variablen Exons v6 des Gens CD44 als molekularem Marker beruht.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es auf der Bindung eines Antikörpermoleküls an ein Epitop, das von dem variablen Exon v6 des Gens CD44 kodiert wird, beruht.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß dabei ein Antikörpermolekül verwendet wird, das die Aminosäuresequenz WFGNRWHEGYR erkennt.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß dabei der monoklonale Antikörper BIWA-1 (VFF-18), der von der Hybridomzellinie mit der Hinterlegungsnummer DSM ACC2174 gebildet wird, oder ein Derivat dieses Antikörpers verwendet wird.
 - 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Antikörpermolekül ein monoklonaler Antikörper, ein Fab- oder F(ab')₂-Fragment eines Immunglobulins, ein rekombinant hergestellter Antikörper, ein rekombinant hergestellter chimärer bzw. humanisierter Antikörper, ein bifunktioneller oder ein single-chain-Antikörper (scFv) ist.
- 6. Verwendung eines Antikörpermoleküls, das für ein Epitop spezifisch ist, das von dem varianten Exon v6 des CD44-Gens kodiert wird, in einem Verfahren gemäß einem der Ansprüche 1 bis 4.
 - 7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, daß das Antikörpermolekül an die Aminosäuresequenz WFGNRWHEGYR bindet.
 - 8. Verwendung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß das Antikörpermolekül der monoklonale Antikörper BIWA-1 (VFF-18), der von der Hybridomazellinie mit der Hinterlegungsnummer DSM ACC2174 gebildet wird, oder ein Derivat dieses Antikörpers ist.
 - 9. Verwendung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß das Antikörpermolekül ein monoklonaler Antikörper, ein Fab- oder F(ab')₂-Fragment eines Immunglobulins, ein rekombinant hergestellter Antikörper, ein rekombinant hergestellter

10

15

20

30

35

chimärer bzw. humanisierter Antikörper, ein bifunktioneller oder ein single-chain-Antikörper (scFv) ist.

- 10. Verwendung eines Antikörpermoleküls, das für ein Epitop innerhalb der Aminosäuresequenz spezifisch ist, die durch das variable Exon v6 des CD44-Gens kodiert wird, zur Therapie von Plattenepithelkarzinomen.
- 11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß das Antikörpermolekül an die Aminosäuresequenz WFGNRWHEGYR bindet.

12. Verwendung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß das Antikörpermolekül der monoklonale Antikörper BIWA-1 (VFF-18), der von der Hybridomzellinie mit der Hinterlegungsnummer DSM ACC2174 gebildet wird, oder ein Derivat dieses Antikörpers ist.

13. Verwendung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß das Antikörpermolekül ein monoklonaler Antikörper, ein Fab- oder F(ab')₂-Fragment eines Immunglobulins, ein rekombinant hergestellter Antikörper, ein rekombinant hergestellter chimärer bzw. humanisierter Antikörper, ein bifunktioneller oder ein single-chain-Antikörper (scFv) ist.

- 14. Verwendung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß das Antikörpermolekül mit einem radioaktiven Isotop, einer photoaktivierbaren Verbindung, einer radioaktiven Verbindung, einem Enzym, einem Fluoreszenzfarbstoff, einem Biotinmolekül, einem Toxin, einem Zytostatikum, einem Prodrug, einem Antikörpermolekül mit einer anderen Spezifität, einem Zytokin oder einem anderen immunmodulatorischen Polypeptid verknüpft ist.
- 15. Mittel zur Ausführung eines Verfahrens nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es ein Antikörper oder Antikörpermolekül ist, das für ein Epitop spezifisch ist, das durch das Exon v6 des CD44-Gens kodiert wird.
 - 16. Verwendung eines Antikörpermoleküls, das für ein Epitop innerhalb der Aminosäuresequenz spezifisch ist, die durch das variable Exon v6 des CD44-Gens kodiert wird, zur Herstellung einer pharmazeutischen Zusammensetzung zur Diagnose und/oder Therapie von Plattenepithelkarzinomen.

1/5

Peptid	Sequenz	Bindung
human:		
v6	QATPSSTTEETATQKEQWFGNRWHEGYRQTPREDSHSTTGTAA	
		BIWA-1
v6A	SSTTEETATQK	
v6B	EETATQKEQW	-
v6C	TATQKEQWFGN	+/_
v6D	QWFGNRWHEGYRQT	+
v6E	NRWHEGYRQTP	-
v6F	EGYRQTPREDS	
v6G	TPREDSHSTG	-
Ratte:		
v 6	WADPNSTTEEAATQKEKWFENEWQGKNPPTPSEDSHVTEGT T	
		1.1ASML
	KWFENEWQGKNPPT	+

Fig. 1

Fig. 2

ERSATZBLATT (REGEL 26)

Fig. 3

4/5

Peptid					Sequer	nz			
v6 (18-31)				QWF	GNRWH	EGYRQ	T		
v6 (18-29)				QWF	GNRWH	EGYR			
v6 (19-30)				WF	GNRWH	EGYRQ			
v6 (19-29)				WF	GNRWH	EGYR			
v6 (19-28)				WF	GNRWH	EGY			
v6 (20-29)				F	GNRWH	EGYR			
v6 (21-29)					GNRWH	EGYR			
v6 (22-29)					NRWH	EGYR			
v6 (22-32)					NRWH	EGYRQ	TP		
v 6	IQATP	SSTTE	ETATQ	KEQWF	GNRWH	EGYRQ	TPRED	SHSTT	GTAAA

Fig. 4

INTERNATIONAL SEARCH REPORT

PCT/EP 96/05448

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 G01N33/574 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category * WO 95 00851 A (BOEHRINGER INGELHEIM INT Х 1-3,5-7, ; KERNFORSCHUNGSZ KARLSRUHE (DE); PONTA HE) 9-11. 13-16 5 January 1995 cited in the application see abstract see page 4, line 26 see page 5, line 32 - line 35 see page 6 - page 7 DE 43 26 573 A (BOEHRINGER INGELHEIM INT 1,2,5,6, X :KERNFORSCHUNGSZ KARLSRUHE (DE)) 23 9,10, February 1995 see the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report _ 14 -04- 1997 26 March 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Ceder, 0 Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

2

INTERNATIONAL SEARCH REPORT

PCT/EP 96/05448

C (C	PACILLE NEW CONTROL OF THE PACILLE NEW CONTROL O	PCT/EP 96/05448		
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate of the relevant account.				
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
	AMERICAN JOURNAL OF PATHOLOGY, vol. 146, no. 5, May 1995, pages 1102-1112, XP000197160 BR00KS ET AL.: "The expression of variant CD44 in nasopharyngeal carcinoma" cited in the application see abstract	1,2,6, 15,16		
	WO 95 00658 A (JALKANEN SIRPA ;SALMI MARKO (FI)) 5 January 1995 cited in the application see abstract	1,2,15		
P,X	WO 95 33771 A (BOEHRINGER INGELHEIM INT; ADOLF GUENTHER R (AT); PATZELT ERIK (AT)) 14 December 1995 cited in the application see the whole document	1-16		
P,X	CANCER IMMUNOL IMMUNOTHER, vol. 43, 1996, pages 245-253, XP000197161 HEIDER ET AL.: "Characterization of a high-affinity monoclonal antibody specific for CD44v6" cited in the application see the whole document	1-16		

2

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

1: jational Application No PCT/EP 96/05448

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9500851 A	05-01-95	DE 4320623 A DE 4320624 A DE 4321944 A DE 4414787 A EP 0705436 A JP 8511624 T	09-02-95 09-02-95 02-03-95 02-11-95 10-04-96 03-12-96
DE 4326573 A	23-02-95	AU 7459894 A WO 9504547 A EP 0713398 A	28-02-95 16-02-95 29-05-96
WO 9500658 A	05-01-95	AU 6972694 A CA 2165461 A EP 0703989 A FI 956041 A JP 8511419 T ZA 9404383 A	17-01-95 05-01-95 03-04-96 06-02-96 03-12-96 03-03-95
WO 9533771 A	14-12-95	DE 4431297 A AU 2737095 A CA 2192370 A FI 964845 A NO 965239 A ZA 9504678 A	07-03-96 04-01-96 14-12-95 04-12-96 06-12-96 08-12-95

INTERNATIONALER RECHERCHENBERICHT

ationales Aktenzeichen

PCT/EP 96/05448

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES I PK 6 G01N33/574 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüßstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 G01N Recherchierte aber nicht zum Mindestprüstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Х WO 95 00851 A (BOEHRINGER INGELHEIM INT 1-3,5-7, ; KERNFORSCHUNGSZ KARLSRUHE (DE); PONTA HE) 9-11, 5. Januar 1995 in der Anmeldung erwähnt siehe Zusammenfassung siehe Seite 4, Zeile 26 siehe Seite 5, Zeile 32 - Zeile 35 siehe Seite 6 - Seite 7 X DE 43 26 573 A (BOEHRINGER INGELHEIM INT 1,2,5,6, ; KERNFORSCHUNGSZ KARLSRUHE (DE)) 9,10, 23.Februar 1995 13-16 siehe das ganze Dokument -/--Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X. Siche Anhang Patentfamilie entnehmen Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verstündnis des der Besondere Kategorien von angegebenen Veröffentlichungen Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann nabeliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie susgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselhen Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 14 -04- 1997 26.März 1997 Name und Postanschrift der Internationale Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Ceder, 0 Fax: (+31-70) 340-3016

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

2

INTERNATIONALER RECHERCHENBERICHT

tr humales Aktenzeichen
PCT/EP 96/05448

		PCT/EP S	06/05448
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategone*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	nden Teile	Betr. Anspruch Nr.
х	AMERICAN JOURNAL OF PATHOLOGY, Bd. 146, Nr. 5, Mai 1995, Seiten 1102-1112, XP000197160 BROOKS ET AL.: "The expression of variant CD44 in nasopharyngeal carcinoma" in der Anmeldung erwähnt siehe Zusammenfassung		1,2,6, 15,16
X	WO 95 00658 A (JALKANEN SIRPA ;SALMI MARKO (FI)) 5.Januar 1995 in der Anmeldung erwähnt siehe Zusammenfassung	·	1,2,15
P,X	WO 95 33771 A (BOEHRINGER INGELHEIM INT; ADOLF GUENTHER R (AT); PATZELT ERIK (AT)) 14.Dezember 1995 in der Anmeldung erwähnt siehe das ganze Dokument		1-16
P,X	CANCER IMMUNOL IMMUNOTHER, Bd. 43, 1996, Seiten 245-253, XP000197161 HEIDER ET AL.: "Characterization of a high-affinity monoclonal antibody specific for CD44v6" in der Anmeldung erwähnt siehe das ganze Dokument		1-16

· 2

Formblett PCT/ISA/218 (Fortsetzung von Blatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlitzungen, die zur selben Patentfamilie gehören

t jationales Aktenzeichen
PCT/EP 96/05448

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9500851 A	05-01-95	DE 4320623 A DE 4320624 A DE 4321944 A DE 4414787 A EP 0705436 A JP 8511624 T	09-02-95 09-02-95 02-03-95 02-11-95 10-04-96 03-12-96
DE 4326573 A	23-02-95	AU 7459894 A WO 9504547 A EP 0713398 A	28-02-95 16-02-95 29-05-96
WO 9500658 A	05-01-95	AU 6972694 A CA 2165461 A EP 0703989 A FI 956041 A JP 8511419 T ZA 9404383 A	17-01-95 05-01-95 03-04-96 06-02-96 03-12-96 03-03-95
WO 9533771 A	14-12-95	DE 4431297 A AU 2737095 A CA 2192370 A FI 964845 A NO 965239 A ZA 9504678 A	07-03-96 04-01-96 14-12-95 04-12-96 06-12-96 08-12-95