Поле. Кольцо матриц

Содержание

§1	Делимость в кольце	1
§2	Определение матрицы	2
§3	Действия с матрицами	2
§ 4	Определитель матрицы	3

§1. Делимость в кольце

Опр. 1.1. Делителем нуля в кольце R называется всякий элемент $x \neq 0$, такой что

$$\exists y \neq 0: \quad xy = 0.$$

Пример 1.1. В кольце $\mathbb{Z}/6\mathbb{Z}$ делителями нуля являются элементы $\overline{2}$ и $\overline{3}$.

Опр. 1.2. Областью целостности называется кольцо, в котором нет делителей нуля.

Пример 1.2. Областями целостности являются кольца $\mathbb Z$ и $\mathbb Z/p\mathbb Z$, где p - простое.

Опр. 1.3. Элемент $z \neq 0$ называется **нильпотентом**, если

$$\exists n \in \mathbb{N}: \quad z^n = 0.$$

Пример 1.3. Всякий нильпотент является делителем нуля. Обратное, вообще говоря, не верно.

Опр. 1.4. Обратимым элементом кольца называется всякий элемент $u \in R$ такой что

$$\exists v \in R \quad u \cdot v = 1$$

NtB 1.1. В паре u, v оба элемента являются обратимыми.

Пемма 1.1. Множество обратимых элементов кольца R образует мультипликативную группу, обозначаемую R^* .

Опр. 1.5. Полем называется ненулевое кольцо, в котором каждый ненулевой элемент обратим.

NtB 1.2. Ранее был рассмотрен пример множества комплексных чисел с операциями сложения и умножения. Очевидно, что операция сложения образует аддитивную абелеву группу, а множество ненулевых комплексных чисел мультипликативную абелеву группу, что и позволяет утверждать, что \mathbb{C} — поле.

§2. Определение матрицы

Опр. 2.1. Матрицей с коэффициентами из поля \mathbb{K} называется прямоугольная таблица следующего вида:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

где числа $a_{ij} \in \mathbb{K}$ называются **коэффициентами** матрицы. Упорядоченную совокупность элементов с фиксированным первым индексом i_0 называют *строкой* матрицы с номером i_0 . Упорядоченную совокупность элементов с фиксированным вторым индексом j_0 называют *столбцом* матрицы с номером j_0 .

NtB 2.1. Таким образом, у представленной выше матрицы имеется m строк и n столбцов. Матрица называется $\kappa в a d p a m h o u$, если число ее строк равно числу столбцов.

NtB 2.2. Используемые обозначения для матриц:

$$A_{m \times n}$$
, $B_{s \times t}$, $\|a_{ij}\|_{i=1...m}^{j=1...n}$

Пример 2.1. Примеры матриц:

$$A_{2\times 3} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{pmatrix}, \quad B_{3\times 3} = \begin{pmatrix} 2 & 1 & 3 \\ 2 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad C_{1\times 3} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

§3. Действия с матрицами

NtB 3.1. Будем обозначать множество $m \times n$ матриц через $Mat_{\mathbb{K}}(m,n)$. Определим на этом множестве некоторые операции:

(a) Сложение: если
$$A = \|a_{ij}\|, B = \|b_{ij}\|$$
 и $C = \|c_{ij}\|$, тогда

$$C = A + B \Leftrightarrow c_{ij} = a_{ij} + b_{ij}$$

(б) Умножение на число: если $A = ||a_{ij}||, \lambda \in \mathbb{K}$ и $D = ||d_{ij}||,$ тогда

$$D = \lambda \cdot A \quad \leftrightarrow \quad d_{ij} = \lambda \cdot a_{ij}.$$

Пемма 3.1. Операция сложения индуцирует на множестве $Mat_{\mathbb{K}}(m,n)$ структуру коммутативной группы.

- **NtB 3.2.** Операция умножения на число не является внутренней операцией на $Mat_{\mathbb{K}}(m,n)$, она называется *внешней*. Структуры с внешними операциями мы рассмотрим позже, а пока будем просто ее использовать.
 - (в) Умножение матриц: пусть $A\in Mat_{\mathbb{K}}(m,p), B\in Mat_{\mathbb{K}}(p,n)$ и $C\in Mat_{\mathbb{K}}(m,n),$ тогда

$$C = A \cdot B \quad \Leftrightarrow \quad c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$$

- **NtB 3.3.** Таким образом, перемножить можно только такие матрицы, у число столбцов у перевого сомножителя которых, совпадае с числом строк второго сомножителя. В результате получается матрица, число строк которой совпадает с числом строк первого сомножителя, а число столбцом с числом столбцов второго.
- ${f NtB}$ 3.4. Умножение матриц не коммутативно и определено на матрицах из различных множеств Mat. Чтобы сделать умножение внутренней операцией на данном множестве, необходимо рассматривать только квадратные матрицы.
- **Пемма 3.2.** Множество квадратных матриц, наделенное операциями сложения и умножения, имеет структуру кольца, единицей которого является матрица

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

(г) Транспонирование: пусть $A \in Mat_{\mathbb{K}}(m,n)$, тогда $A^T \in Mat_{\mathbb{K}}(n,m)$:

$$A^T = \|\widetilde{a}_{i,j}\|: \quad \widetilde{a}_{ij} = a_{ji}$$

Свойства операции транспонирования

(а) Согласованность со сложением матриц:

$$\forall A, B \in \operatorname{Mat}_{\mathbb{K}}(m, n) : \quad (A + B)^{T} = A^{T} + B^{T}$$
 (1)

(б) Согласованность с умножением матрицы на число:

$$\forall A \in \operatorname{Mat}_{\mathbb{K}}(m, n), \forall \alpha \in \mathbb{K} : (\alpha A)^T = \alpha A^T$$
 (2)

(в) Согласованность с умножением матриц:

$$\forall A, B \in \operatorname{Mat}_{\mathbb{K}}(m, n) : \quad (A \cdot B)^{T} = B^{T} \cdot A^{T}$$
(3)

NtB 3.5. Независимо от размеров матрицы, произведения $A^T \cdot A$ и $A \cdot A^T$ существуют всегда, хотя, конечно, могут не совпадать.

§4. Определитель матрицы

NtB 4.1. Вводимое здесь понятие является крайне важной характеристикой матрицы. Подробное определение и обсуждение свойств мы проведем в дальнейшем, а в этой лекции лишь упомянем только самые необходимые.

Опр. 4.1. Определителем квадратной матрицы A называется число |A|, которое ставится ей в соответствие следующим образом:

- 1. Если $A_{1\times 1}=(a)$, тогда |A|=a;
- 2. Если $A_{2\times 2}=\begin{pmatrix} a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$, тогда $\begin{vmatrix} a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}=a_{11}a_{22}-a_{12}a_{21};$
- 3. Если $A_{3\times3}=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix}$, тогда |A| можно получить разложением по первой строке:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}, \end{vmatrix} = a_{11} \cdot (-1)^{1+1} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} +$$

$$+ a_{12} \cdot (-1)^{1+2} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot (-1)^{1+3} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

NtB 4.2. Аналогичным образом можно вычислять определители матриц больших размеров, но нам пока будет достаточно приведенных формул.

 ${f NtB}$ 4.3. Часто для определителя матрицы A используют обозначение $\det A$.