Thời gian làm bài	150 phút (không kể thời gian phát đề)	
Ngày thi	12/02/2024 – Ngày thi thử thứ nhất	
Đề thi gồm	04 câu, 04 trang	

Tổng quan đề thi

	Tiêu đề	Mã nguồn	Dữ liệu vào	Dữ liệu ra
Câu 1	Trò chơi bốc sỏi	GAME.*	GAME.inp	GAME.out
Câu 2	Dãy đèn	LIGHT.*	LIGHT.inp	LIGHT.out
Câu 3	Chuyến đi dài nhất	TRIP.*	TRIP.inp	TRIP.out
Câu 4	Tổng trên đoạn	RANGE.*	RANGE.inp	RANGE.out

Dấu * được thay thế bởi PAS, CPP hoặc PY tương ứng với ngôn ngữ lập trình Pascal, C++ hoặc Python

Lập trình giải quyết các bài toán sau

Câu 1. Trò chơi bốc sởi (6 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
GAME.*	GAME.inp	GAME.out	1 giây	1024 MB

Quang đang chơi một trò chơi trên máy tính. Luật chơi yêu cầu Quang tạo ra một đống sởi gồm x viên. Quang có thể thực hiện hai loại thao tác sau:

- Bốc a viên sỏi đặt vào đống sỏi và nhận m điểm.
- Bốc b viên sỏi đặt vào đống sỏi và nhận n điểm.

Yêu cầu: Xác định số điểm tối đa Quang có thể đạt được.

Dữ liệu vào: Nhập từ file GAME.inp:

- Một dòng duy nhất gồm năm số nguyên dương x, a, b, m, n $(1 \le x \le 10^{16}, 1 \le a, b \le 10^6, 1 \le m, n \le 100)$.

Dữ liệu ra: Ghi ra file GAME.out:

- Một dòng duy nhất gồm số điểm lớn nhất Quang có thể đạt được. Nếu không tồn tại cách chơi in ra −1.

Ràng buộc bổ sung:

- $48\% \text{ số điểm có } x \leq 10^7.$
- 28% số điểm khác có $a \ge 10^5$ và $x \le 10^{12}$.

- 24% số điểm còn lại không có giới hạn gì thêm.

Ví dụ:

GAME.inp	GAME.out	Giải thích
100 3 7 2 5		Quang sẽ thực hiện 3 lần thao tác 1 (bốc 3 viên sỏi) và 13 lần thao tác 2 (bốc 7 viên sỏi), thu được số điểm tối đa là $3 \times 2 + 13 \times 5 = 71$.
5 3 4 1 2	-1	Không có cách chơi nào để tạo ra 5 viên sỏi.

Câu 2. Dãy đèn (5 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
LIGHT.*	LIGHT.inp	LIGHT.out	1 giây	1024 MB

Trên một con đường có n bóng đèn. Bóng đèn thứ i cách vị trí đầu đường a_i mét và có khả năng chiếu sáng trong phạm vi b_i mét về cả hai phía. Có m người đứng ở các vị trí khác nhau trên con đường, người thứ i đứng cách vị trí đầu đường d_i mét.

Yêu cầu: Với mỗi người, hãy tính xem người đó được chiếu sáng bởi bao nhiều bóng đèn.

Dữ liệu vào: Nhập từ file LIGHT.inp:

- Dòng đầu tiên gồm hai số nguyên dương $n, m \ (1 \le n, m \le 2 \times 10^5)$.
- Dòng thứ hai gồm n số nguyên dương $a_1, a_2, ..., a_n \ (1 \le a_i \le 10^9)$.
- Dòng thứ ba gồm n số nguyên dương $b_1, b_2, ..., b_n$ $(1 \le b_i \le 10^9)$.
- Dòng cuối cùng gồm m số nguyên dương $d_1, d_2, ..., d_m \ (1 \le d_i \le 10^9)$.

Dữ liệu ra: Ghi ra file LIGHT.out:

- Gồm *m* số trên cùng một dòng, số thứ *i* là số bóng đèn đang chiếu sáng người thứ *i*.

Ràng buộc bổ sung:

- 32% số điểm có $n \le 5000$ và $a_i, b_i \le 2000$.
- 32% số điểm có n = 1 hoặc m = 1.
- 16% số điểm khác có $a_i = 1$.
- 12% số điểm khác có a_i , $b_i \le 10^5$.
- 8% số điểm còn lại không có giới hạn gì thêm.

Ví du:

LIGHT.inp	LIGHT.out	Giải thích
4 3	4 3 1	Người thứ nhất được chiếu sáng bởi cả bốn
1 1 2 3		bóng đèn; người thứ hai được chiếu sáng bởi
2 3 3 1		

2 4 5	các bóng đèn 2, 3, 4; người thứ ba chỉ được
	chiếu sáng bởi bóng đèn 3.

Câu 3. Chuyến đi dài nhất (5 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
TRIP.*	TRIP.inp	TRIP.out	1 giây	1024 MB

Thành phố Alpha có một con đường rất dài gồm n địa điểm du lịch nổi tiếng. Địa điểm 1 là sân bay duy nhất của thành phố. Ở địa điểm i có các tuyến xe buýt một chiều nối điểm i với tất cả các điểm j mà $l_i \leq j \leq r_i$. Một chuyến tham quan bất kỳ sẽ bắt đầu ở điểm 1 (sân bay), sử dụng một số tuyến xe buýt để di chuyển và kết thúc ở điểm n.

Yêu cầu: Xác định số địa điểm lớn nhất mà một khách du lịch có thể tham quan trong một chuyến đi.

Dữ liệu vào: Nhập từ file TRIP.inp:

- Dòng đầu tiên gồm một số nguyên dương n ($1 \le n \le 2 \times 10^5$).
- Dòng thứ hai gồm n-1 số nguyên dương $l_1, l_2, ..., l_{n-1}$.
- Dòng thứ ba gồm n-1 số nguyên dương $r_1, r_2, ..., r_{n-1}$ $(i < l_i \le r_i \le n)$.

Dữ liệu ra: Ghi ra file TRIP.out:

- Một dòng duy nhất gồm số địa điểm lớn nhất mà một khách du lịch có thể tham quan trong một chuyển đi.

Ràng buộc bổ sung:

- 32% số điểm có $l_i = r_i$.
- $32\% \text{ số điểm có } n \leq 20.$
- 24% số điểm có $n \le 5000$.
- 12% số điểm còn lại không có giới hạn gì thêm.

Ví dụ:

TRIP.inp	TRIP.out	Giải thích
6	5	Chuyến đi tham quan được nhiều địa điểm nhất
2 6 4 5 6		$lade 1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6.$
3 6 6 5 6		

Câu 4. Tổng trên đoạn (4 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
RANGE.*	RANGE.inp	RANGE.out	1 giây	1024 MB

Định nghĩa |i| là số nguyên lớn nhất không vượt quá i.

Xét hai hàm số sau:

$$f(i) = \left\lfloor \frac{i}{1} \right\rfloor + \left\lfloor \frac{i}{2} \right\rfloor + \dots + \left\lfloor \frac{i}{i} \right\rfloor$$
$$S(L, R) = f(L) + f(L+1) + \dots + f(R)$$

Yêu cầu: Từ hai số nguyên dương L, R cho trước, tính giá trị S(L, R).

Dữ liệu vào: Nhập từ file RANGE.inp:

- Một dòng duy nhất gồm hai số nguyên dương L,R cách nhau một dấu cách $(1 \le L \le R \le 10^{12}, R - L \le 10^6)$.

Dữ liệu ra: Ghi ra file RANGE.out:

- Một dòng duy nhất gồm phần dư của giá trị S(L, R) khi chia cho 10^9 .

Ràng buộc bổ sung:

- $20\% \text{ số điểm có } L = R \le 10^7.$
- 24% số điểm khác có L = R.
- $24\% \text{ số điểm khác có } R \leq 10^6.$
- 32% số điểm còn lại không có giới hạn gì thêm.

Ví dụ:

RANGE.inp	RANGE.out	Giải thích
2 5	26	Ta có $f(3) = \left[\frac{3}{1}\right] + \left[\frac{3}{2}\right] + \left[\frac{3}{3}\right] = 3 + 1 + 1 =$
		5.
		Turong tự, ta có các giá trị $f(2) = 3$, $f(4) = 8$, $f(5) = 10$ và $S(2,5) = 3 + 5 + 8 + 10 = 10$
		8, f(5) = 10 và S(2,5) = 3 + 5 + 8 + 10 =
		26.