N-Gram

N-gram

Given the Corpus:

- 1. He is a nice guy
- 2. It's nice to get your letter
- I am going to meet you
- 4. I would like a meat sandwich

Estimate the probability of the following two sentences (with smoothing):

- Nice to meet you
- Nice to meat you

Start & End tags

```
Add Start & End Tag:
<s> He is a nice guy <e>
<s> It's nice to get your letter <e>
The bigrams:
<s> He, He is, is a, a nice, nice guy, guy <e>
<s> It's, It's nice, nice to, to get, get your, your letter, letter <e>
```

Estimate the probability

P(nice to meet you)

= P(nice|<s>)P(to|nice)P(meet|to)P(you|meet)P(<e>|you)

p(nice <s>)</s>	p(to nice)	p(meat to)	p(meet to)	p(you meat)	p (you meet)	p(<e> you)</e>
C(<s> nice) / (C(<s>he) + C(<s>it's) + C(<s>I)</s></s></s></s>						
0/4						

Estimate the probability

p(nice <s>)</s>	p(to nice)	p(meat to)	p(meet to)	p(you meat)	p(you meet)	p(<e> you)</e>
C(<s> nice) / (C(<s>he) + C(<s>it's) + C(<s>I)</s></s></s></s>	C(nice to) / C(nice guy) + C(nice to)	C(to meat) / C(to get) + C(to meet)	C(to meet)/ C(to get) + C(to meet)	C(meat you)/ C(meat sandwich)	C(meet you)/ C(meet you)	C(you <e>)/ C(you <e>)</e></e>
0/4	1/2	0/2	1/2	0/1	1/1	1/1

Smoothing

Techniques to tackle data sparseness problem

Decreasing the probability of seen events

Adding a little bit of probability mass over for unseen events

Probabilistic distribution becomes smoother

Smoothing by adding one to frequencies of all events

p(nice <s>)</s>	p(nice <s>) smoothed</s>
C(<s> nice) / (C(<s>he) + C(<s>it's) + C(<s>l)</s></s></s></s>	C(<s> nice) + 1 / (C(<s>he) + 1 + C(<s>it's) + 1 + C(<s>l) + 1</s></s></s></s>
0/4	1/7

Smoothing by Laplace's law

If the size of the vocabulary is given as V, we can apply the Laplace smoothing.

For example, given V = 20

p(nice <s>)</s>	p(nice <s>) smoothed by Laplace's law</s>
C(<s> nice) / (C(<s>he) + C(<s>it's) + C(<s>I)</s></s></s></s>	C(<s> nice) + 1 / (C(<s>he) + C(<s>it's) + C(<s>l) + V</s></s></s></s>
0/4	1/ 24

Convolutional Neural Network

Question 1

Perform the convolution operation (no padding, stride=1)

0	1	0	0	0
1	1	1	1	0
0	1	1	0	1
1	0	1	0	0
1	1	0	1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

Input matrix

Filter (kernel)

Question 1 - Answer

Perform the convolution operation (no padding, stride=1)

0	1	0	0	0
1	1	1	1	0
0	1	1	0	1
1	0	1	0	0
1	1	0	1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

3	3	5
2	3	-5
-6	4	-4

Input matrix

Filter (kernel)

Convolved feature

Question 2

Perform the average pooling (pool size = 2x2, stride=1)

0	1	0	0	0
1	1	1	1	0
0	1	1	0	1
1	0	1	0	0
1	1	0	1	0

Input matrix

Question 2 - Answer

Perform the average pooling (stride=2)

0	1	0	0	0
1	1	1	1	0
0	1	1	0	1
1	0	1	0	0
1	1	0	1	0

Input matrix

0.75	0.75	0.5	0.25
0.75	1	0.75	0.5
0.5	0.75	0.5	0.25
0.75	0.5	0.5	0.25

Result

Information Retrieval

Given Inverted Index Matrix, and the query: w1 and w3 and not w4

	D1	D2	D3	D4
w1	0	0	1	1
w2	1	0	0	0
w3	1	1	1	1
w4	1	0	0	1

w1 and w3 and not w4

= 0011 & 1111 & 0110

=0010 (Document D3 will be retrieved)

	D1	D2	D3	D4
w1	0	0	1	1
w2	1	0	0	0
w3	1	1	1	1
w4	1	0	0	1

TF-IDF

- d1 = big cats are nice and funny
- d2 = small dogs are better than big dogs
- d3 = small cats are afraid of small dogs
- d4 = big cats are not afraid of small dogs
- d5 = funny cats are not afraid of small dogs

Fill in the TF IDF matrix

TF-IDF

d1 = big cats are nice and funny

d2 = small dogs are better than big dogs

d3 = small cats are afraid of small dogs

d4 = big cats are not afraid of small dogs

d5 = funny cats are not afraid of small dogs

$$w_j^i = tf_j^i \cdot idf_j = tf_j^i \cdot \log \frac{N}{df_j}$$

		big	cat	nice	and	funny	small	dog
d	l1	log ₂ (5/3)						
d	12							
d	13							

	big	cat	nice	and	funny	small	dog
d1	log ₂ (5/3)	log ₂ (5/4)	log ₂ (5/1)	log ₂ (5/1)	log ₂ (5/2)	0	0
d2	log ₂ (5/3)	0	0	0	0	log ₂ (5/4)	2log ₂ (5/4)
d3	0	log ₂ (5/4)	0	0	0	2log ₂ (5/4)	log ₂ (5/4)