QF621 Quantitative Trading Strategies

Pairs Trading:

Application of Machine Learning and GARCH Model in the Foreign Exchange Market

Group Member:

CHEN Liangrui; JIANG Zihan; MAI Jialing; WONG Keat Ye; XUE Yuanhuang

CONTENT

- 1 Introduction
- 2 Pairs Selection
- 3 Trading Signal
- 4 Back-testing Result
- 5 Discussion

INTRODUCTION

Pairs Trading in Forex

- Simultaneous long and short positions in two correlated currency pairs.
- Profits from the relative price movements rather than absolute price levels.
- Exploits mean reversion in correlated currency pairs.

		_ •			
Intr	od	U	CT	10	n

Data Source

- > 35 historical Forex rates sourced from Yahoo Finance.
- > Time frame: From 2014.01.01 to 2024.05.25

Pairs Selection

Method

Introduction

Pure PCA Analysis

- A dimensionality reduction technique that transforms a large set of variables into a smaller one that still contains most of the information.
- It identifies the *directions* (principal components) in which the data varies the most.

PCA + OPTICS Clustering

- Combine PCA with OPTICS to *leverage the strengths* of both techniques for finding trading pairs.
- OPTICS is a clustering algorithm that identifies clusters with varying densities, which helps in finding groups of assets that behave similarly.

Method	Suitable for	Advantages
Pure PCA Analysis	 Markets with high volatility Markets with significant linear relationships Markets with large data scales 	 Effectively captures the primary directions of variance
PCA + OPTICS Clustering	 Diversified markets Complex markets with significant nonlinear relationships Markets with strong local correlations 	 Identifies intricate market structures Uncovers potential trading opportunities

Trading Signal

Method

Introduction

Traditional Methods

• Often involves *simple statistical techniques* to identify deviations from historical relationships between asset prices.

GARCH Model

• To model and *forecast time-varying volatility* in financial time series.

Trading Signal

Method

Suitable for

Advantages

Traditional Methods

- Markets with *stable* volatility patterns
- Markets with fewer data points

- Simple and easy to implement
- Quick computation
- Less computational intensive

GARCH Model

- Markets with high and variable volatility
- Markets with *large* datasets and high-frequency data
- Markets where *capturing volatility is crucial*

- Models time-varying volatility explicitly
- More accurate spread estimation under conditions
- Provides a more realistic measure of risk

PAIRS SELECTION

What is OPTICS Clustering?

Pairs Selection

Check for Cointegration & Stationarity

Step 2

Log-Transform the Prices

 To stabilize variance and convert multiplicative relationships into additive relationships.

Step 4

Perform Engle-Granger Cointegration Test

Reject if p-value > 0.5.

Step 1

Identify the Most Influential Assets

• Identify the assets with the highest and lowest absolute loading in the principal component.

Step 3

Perform OLS Regression

• β : hedge ratio

Step 5

Perform ADF Test for Stationarity

- Performed on the residuals.
- Reject if p-value > 0.5.

PCA Results

CAD=X and CHF = X (US Dollar / Canadian Dollar and US Dollar / Swiss Franc)

Economic Intuition

- > Different Economic Drivers:
 - 1.CAD = X : Heavily influenced by the commodity market, particularly oil.
 - 2.CHF = X: Often considered a *safe-haven currency*.
- Correlation and Diversification:
 - **1.Correlation:** Low correlation (0.3160) due to the different economic factors.
 - Opportunity for pairs trading, as the spread between them might offer mean-reverting characteristics.
 - 2.Diversification: The trader can potentially hedge against sector-specific risks.

Pairs Selection

PCA + OPTICS Results

List of Noisy Points:

SGDMYR=X, EURSGD=X, SGDHKD=X, SGDIDR=X, SGDCNY=X, SGDTHB=X, SGDINR=X, SGDKRW=X, AUDSGD=X, NZDSGD=X, JPY=X, HKD=X, MYR=X, INR=X, CNY=X, PHP=X, IDR=X, CHF=X, MXN=X, VND=X, EURGBP=X, EURSEK=X, EURCHF=X, EURHUF=X

Cluster	Currency		
,	SGD = X		
O	THB = X		
U	KRW = X		
	CAD = X		
	AUDUSD = X		
1	NZDUSD = X		
2	SGDJPY = X		
	EURJPY = X		
3	GBPSGD = X		
	GBPJPY = X		
	GBPUSD = X		
Total	11 pairs		

PCA + OPTICS Results

Cluster	Currency	Economic Explanation for the Clusters
	SGD = X	
0	THB = X	Based on <i>USD pairings</i> , with significant trade relations with the US
	KRW = X	and influences from US economic data.
	CAD = X	
1	AUDUSD = X	Due to geographic proximity and similar economic structures,
	NZDUSD = X	heavily influenced by commodities and USD.
	SGDJPY = X	Based on the common involvement of the Japanese Yen, influenced
2	EURJPY = X	by its safe-haven status and interest rate differentials.
	GBPSGD = X	
3	GBPJPY = X	Due to the common involvement of the <i>British Pound</i> , reflecting its global economic influence and diverse economic links.
	GBPUSD = X	Biodai economic infractice and arverse economic infras.

PCA + OPTICS Results

SGD=X and CAD=X

(US Dollar / Singapore Dollar and US Dollar / Canadian Dollar)

Economic Intuition

- **Economic Divergence:**
 - **1.SGD:** A highly developed and open economy, heavily reliant on *trade* and *services*.
 - 2.CAD: Heavily influenced by the commodity market, particularly oil.
- **➤** Interest Rate Differentials:
 - **1.SGD:** MAS uses the *exchange rate* as the main tool of monetary policy rather than interest rates.
 - Interest rates in Singapore are influenced by global interest rates and the domestic economy's performance.
 - **2.CAD:** Bank of Canada's *interest rate decisions* directly impact the CAD.
 - Higher interest rates in Canada attract foreign investment, strengthening the CAD, while lower rates can weaken it.

PCA + OPTICS Results

AUDUSD=X and NZDUSD = X

(Australian Dollar / US Dollar and New Zealand Dollar / US Dollar)

Economic Intuition

Economic Structures:

- 1. Australia: A diverse economy with key sectors including mining, agriculture, services, and manufacturing.
- 2.New Zealand: A smaller, open economy heavily reliant on agriculture and dairy products.

Geopolitical Factors:

• Both countries have relatively *stable* political environments, but they can be affected by global geopolitical events that impact trade, commodity prices, and investor sentiment.

TRADING SIGNAL

Traditional Method

Generate Spread Series

Log price series of 2 assets

Decentralization

Calculation of Mean and Standard Deviation

$$\mu = \frac{1}{N} \sum_{t=1}^{N} MSPREAD_{t}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{t=1}^{N} (MSPREAD_t - \mu)^2}$$

Construction of Trading Signals

$$Buy \, Signal = MSPREAD_t < \mu - k\sigma$$

$$Sell \, Signal = MSPREAD_t > \mu + k\sigma$$

In our project, we set k = 1.

Traditional Method

Descriptive Statistics of Decentralized Spread Series

Mean = 0

Std. Dev. = 0.0272

Skewness = 0.0584

Kurtosis = 2.5515

Jarque-Bera Stats.: 19.4320

P-value (JB Test): 0

AUDUSD = X and NZDUSD = X

Mean = 0

Std. Dev. = 0.0205

Skewness = -0.1962

Kurtosis = 2.9459

Jarque-Bera Stats.: 14.1902

P-value (JB Test): 0.0008

CAD = X and CHF = X

Mean = 0

Std. Dev. = 0.0318

Skewness = 0.4245

Kurtosis = 2.7480

Jarque-Bera Stats.: 70.9398

P-value (JB Test): 0.0000

Traditional Method

Construction of Trading Signals

SGD = X and CAD = X

Holding: 365

Sell: 141

Buy: 37

AUDUSD = X and NZDUSD = X

Holding: 400

Sell: 78

Buy: 65

CAD = X and CHF = X

Holding: 316

Sell: 140

Buy: 87

Trading Signal

GARCH Model Method

1 Fitting an AR(2) Model

Constant
$$MSPREAD_t = c + \sum_{i=1}^{p} \phi_i MSPREAD_{t-1} + \epsilon_t$$

- Fitting a GARCH Model to AR(2) residuals
- $\epsilon_t = \alpha_0 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$ Forecast σ^2
- Adjust the spread $Adj.SPREAD_{t} = MSPREAD_{t} c \sum_{i=1}^{p} \phi_{i}MSPREAD_{t-1}$
- 4 Construction of Trading Signals

$$Buy \, Signal = Adj. SPREAD_t < -k\sigma$$

$$Sell \, Signal = Adj. SPREAD_t > k\sigma$$

In our project, we set k = 1.

GARCH Model Method

Autocorrelation Test (All the pairs have the same results.)

PACF

Significant spikes at lag 1 and 2 and then fluctuates around zero.

ACF

A slow decay.

AR(2)

Trading Signal

GARCH Model Method

ARCH-Lagrange Multiplier Test

• To indicate evidence of heteroskedasticity in the residuals of the GARCH(1,1) model.

○ P-value > 0.05 : Homoskedasticity

P-value < 0.05 : Heteroskedasticity

SGD=X and CAD=X

Lagrange Multiplier Test Statistic: 24.1818

p-value: 0.0071

AUDUSD = X and NZDUSD = X

Lagrange Multiplier Test Statistic: 30.9759

p-value: 0.0006

CAD = X and CHF = X

Lagrange Multiplier Test Statistic: 42.6111

p-value: 0.0

Heteroskedasticity

GARCH Model Method Construction of Trading Signals

SGD = X and CAD = X

Holding: 315

Sell: 38

Buy: 75

AUDUSD = X and NZDUSD = X

Holding: 347

Sell: 28

Buy: 53

CAD = X and CHF = X

Holding: 299

Sell: 84

Buy: 45

BACK-TESTING RESULT

Leverage

When it is **Buy Signal** -> Buy β spread and vice versa.

Where β is the OLS estimation coefficient

Back Testing Metrics

Cumulative Return

Sharpe Ratio

Sortino Ratio

Max Drawdown (%)

Cumulative of daily return

$$\sqrt{252} \times \frac{\text{Average Value of Daily Return}}{Standard Deviation of Daily Return}$$

$$\sqrt{252} \times \frac{\text{Average value of daily return}}{\frac{\sum Daily \ Return^2}{\sqrt{Number of Days}}}$$

$$\max \left(\frac{\text{Maximum Drawdown (\$)}}{Cumulative \ Maximum \ portfolio \ value} \times 100\% \right)$$

Methods	Pairs	Cumulative Return (%)	Sharpe Ratio	Sortino Ratio
Traditional	SGD = X and CAD = X	7.55	0.54	0.87
	AUDUSD = X and $NZDUSD = X$	6.87	0.5	0.71
	CAD = X and CHF = X	7.64	0.43	0.78
GARCH Model	SGD = X and CAD = X	3.56	0.15	0.25
	AUDUSD = X and $NZDUSD = X$	37.97	0.61	0.96
	CAD = X and CHF = X	13.29	0.57	0.97

Key Observations

Superior Performance of GARCH Model

- This suggests that the GARCH model is more effective in capturing and utilizing volatility information for generating trading signals.
- Enhanced Risk Management

 Lower drawdown reflects the GARCH model's ability to adapt to changing market conditions and mitigate significant losses during adverse periods.
 - **Consistency Across Pairs**
 - The performance improvement with the GARCH model was consistent across all tested currency pairs.
 - This consistency enhances the credibility of the GARCH model as a robust tool for pairs trading strategies across different forex markets.
 - **Weak Performance of PCA Pair**
 - ➤ Weak performance for the CAD=X and CHF=X pair in both methods, with smallest Sharpe and Sortino ratios.
 - The poor performance of the PCA pair can be attributed to its inability to effectively capture complex, non-linear relationships and varying densities within the data.

DISCUSSION

Weakness of the Technique

High Computational Requirements

The GARCH model is computationally intensive, requiring significant processing power and advanced technical expertise.

2 Data Dependency

- >The strategy relies heavily on historical data to model volatility and generate trading signals.
- This dependency can be a limitation as past performance does not always predict future results, especially in rapidly changing markets.

Market Assumptions

- ➤ Pairs trading strategies, including those using the GARCH model, often assume that the price relationship between pairs will revert to the mean.
- If this assumption does not hold true, especially during prolonged trends or structural market changes, the strategy may incur losses.

Areas for Further Research

Incorporation of Macro-Economic Indicators

>Understanding the broader economic context may help in anticipating market movements more accurately.

2 Sentiment Analysis

- Incorporating sentiment analysis from news articles, social media platforms, and financial forums could provide additional insights into market sentiment.
- >This can help in capturing market moods and trends that are not reflected in historical price data alone.

Regime Switching Models

- Combining the GARCH model with regime-switching models could help in identifying different market regimes (e.g., bull, bear, high volatility, low volatility).
- >Adapting trading strategies based on the identified regime can improve performance and risk management.

High-Frequency Data

➤ Exploring the application of the GARCH model to high-frequency data can provide opportunities for intraday trading.

THANK YOU