Wine Quality model prediction

(Kaggle project)

Kumar Gaurav, Msc(data science) student

```
In [1]:
!python --version # version of python
Python 3.7.6
In [2]:
import sklearn,pandas,numpy
In [3]:
pandas.__version__
Out[3]:
'1.0.1'
In [4]:
numpy.__version__
Out[4]:
'1.18.1'
In [5]:
sklearn. __version__
Out[5]:
'0.24.2'
In [6]:
import pandas as pd # import all library as per require
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from scipy.stats import norm,boxcox
```

In [7]:

wine = pd.read_csv('winequality-red.csv') # Dataset is given on Kaggle ,just downloaded fro
wine.head()

Out[7]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
4											>

In [8]:

wine.shape

Out[8]:

(1599, 12)

In [9]:

wine.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [10]:

wine.info

Out[10]:

<body< th=""><th></th><th>DataFrame.ir ual sugar ch</th><th></th><th>fixed acid</th><th>dity vola</th><th>atile a</th><th>cidity</th><th>citri</th></body<>		DataFrame.ir ual sugar ch		fixed acid	dity vola	atile a	cidity	citri
0 6	u residu	7.4	0.700	0	.00		1.9	0.07
1 8		7.8	0.880	0	.00		2.6	0.09
2		7.8	0.760	0	.04		2.3	0.09
3		11.2	0.280	0	.56		1.9	0.07
4 6		7.4	0.700	0	.00		1.9	0.07
• • •		•••			•••		•••	
 1594 0		6.2	0.600	0	.08		2.0	0.09
1595 2		5.9	0.550	0	.10		2.2	0.06
1596 6		6.3	0.510	0	.13		2.3	0.07
1597 5		5.9	0.645	0	.12		2.0	0.07
1598 7		6.0	0.310	0	. 47		3.6	0.06
0 1 2 3 4 1594 1595 1596 1597 1598 0 1 2 3 4 1594 1595 1596 1597 1598	alcohol 9.4 9.8 9.8 9.4 10.5 11.2 11.0 10.2	fur dioxide	total sulf	ur dioxide 34.0 67.0 54.0 60.0 34.0 51.0 40.0 42.0	0.99780 0.99680 0.99700 0.99800 0.99780 0.99490 0.99512 0.99574 0.99547	3.51 3.20 3.26		tes \ .56 .68 .65 .58 .5658 .76 .75 .71
[T233	1.0M2 X T	rs corniius]>						

In [11]:

```
wine.describe()
```

Out[11]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total su dio
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000
4							>

In [12]:

wine.shape

Out[12]:

(1599, 12)

Null values visualization

In [13]:

wine.isnull().any()

Out[13]:

fixed acidity	False			
volatile acidity	False			
citric acid	False			
residual sugar	False			
chlorides	False			
free sulfur dioxide	False			
total sulfur dioxide	False			
density	False			
рН	False			
sulphates	False			
alcohol	False			
quality	False			
dtype: bool				

In [14]:

import missingno as msno
msno.matrix(wine)

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e12e6628c8>

In [15]:

msno.bar(wine)

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e12e779c08>

In [16]:

wine.plot()

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e12e913948>

correlation work

In [17]:

```
wine_corr = wine.corr()
wine_corr
```

Out[17]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	§
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978	
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937	-
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904	
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.085652	
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.265026	
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.070377	•
◀										>

In [18]:

import seaborn as sns
sns.heatmap(wine_corr,cmap = 'coolwarm')

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e12e2d75c8>

In [19]:

```
col_names = wine.columns
col_names
```

Out[19]:

EDA part

In [20]:

```
for col in col_names :
    sns.countplot(x =col, data = wine)
```


In [21]:

```
sns.countplot(x ='quality', data = wine)
```

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e1317f7248>

In [22]:

```
plt.scatter(wine["quality"],wine["alcohol"])
```

Out[22]:

<matplotlib.collections.PathCollection at 0x1e12f9b1308>

In [23]:

```
sns.boxplot(x="quality",y="alcohol", data=wine)
```

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e12eb60708>

In [24]:

```
from collections import Counter
Counter(wine['quality'])
```

Out[24]:

Counter({5: 681, 6: 638, 7: 199, 4: 53, 8: 18, 3: 10})

```
In [25]:
```

```
plot = plt.figure(figsize=(15,7))
sns.boxplot(x="quality",y="residual sugar", data=wine)
Out[25]:
<matplotlib.axes._subplots.AxesSubplot at 0x1e131504848>
  16
  14
  12
  10
esidual sugar
                                           quality
```

In [26]:

```
cols = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides',
```

In [27]:

```
Q1 = wine[cols].quantile(0.25)
Q3 = wine[cols].quantile(0.75)
IQR = Q3 - Q1
print(IQR)
```

fixed acidity 2.100000 volatile acidity 0.250000 citric acid 0.330000 residual sugar 0.700000 0.020000 chlorides free sulfur dioxide 14.000000 density 0.002235 0.190000 рΗ sulphates 0.180000 1.600000 alcohol dtype: float64

visualized with normal graph,

skewedness

In [31]:

```
from scipy import stats
sns.distplot(wine['fixed acidity'],fit = norm)
```

Out[31]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e1318c97c8>

In [33]:

```
stats.probplot(wine["fixed acidity"], plot = plt)
```

Out[33]:

```
((array([-3.33053651, -3.075151 , -2.93323893, ..., 2.93323893,
  3.075151 , 3.33053651]),
array([ 4.6, 4.7, 4.9, ..., 15.6, 15.6, 15.9])),
 (1.692490335637927, 8.31963727329581, 0.9705990367383132))
```


In [34]:

```
plt.figure(figsize=(10,4))
plt.subplot(1,2,1)
sns.distplot(wine["fixed acidity"], fit=norm, color="orange")
plt.title("fixed acidity Distplot", color = "darkred")
plt.subplot(1,2,2)
stats.probplot(wine["fixed acidity"], plot = plt)
plt.show()
```


In [35]:

```
plt.figure(figsize=(10,4))
plt.subplot(1,2,1)
sns.distplot(wine["residual sugar"], fit=norm, color="orange")
plt.title("residual sugar Distplot", color = "darkred")
plt.subplot(1,2,2)
stats.probplot(wine["residual sugar"], plot = plt)
plt.show()
```


In [36]:

```
wine["residual sugar"], lam_fixed_acidity = boxcox(wine["residual sugar"])
```

In [37]:

```
plt.figure(figsize=(10,4))
plt.subplot(1,2,1)
sns.distplot(wine["residual sugar"], fit=norm, color="orange")
plt.title("residual sugar Distplot", color = "darkred")
plt.subplot(1,2,2)
stats.probplot(wine["residual sugar"], plot = plt)
plt.show()
```


fixing skewness using boxcox

```
In [38]:
wine["fixed acidity"], lam = boxcox(wine["fixed acidity"])
In [39]:
#Fixing skewness using boxcox
wine["free sulfur dioxide"], lam_fixed_acidity = boxcox(wine["free sulfur dioxide"])
In [40]:
#Fixing skewness using boxcox
wine["total sulfur dioxide"], lam_fixed_acidity = boxcox(wine["total sulfur dioxide"])
In [41]:
#Fixing skewness using boxcox
wine["alcohol"], lam_fixed_acidity = boxcox(wine["alcohol"])
In [42]:
wine['quality'].values
Out[42]:
array([5, 5, 5, ..., 6, 5, 6], dtype=int64)
```

wine quality scalling in 1,2,3 with column rating

```
In [43]:
```

```
rating = []
for num in wine['quality']:
    if num <= 4:
        rating.append('1')
    elif num <=7 :</pre>
        rating.append('2')
    elif num ==8 :
        rating.append('3')
wine["rating"] = rating
```

```
In [44]:
```

```
from collections import Counter
Counter(wine['quality']) # count every row with number
Out[44]:
Counter({5: 681, 6: 638, 7: 199, 4: 53, 8: 18, 3: 10})
```

```
In [45]:
Counter(wine['rating'])
Out[45]:
Counter({'2': 1518, '1': 63, '3': 18})
In [46]:
x = wine.drop('quality',axis = 1)
```

PCA

```
In [47]:
pca = PCA()
In [48]:
```

```
x_pca = pca.fit_transform(x)
```

```
In [49]:
```

```
plt.figure(figsize = (8,8))
plt.plot(np.cumsum(pca.explained_variance_ratio_),'ro-')
plt.grid()
plt.show()
```


In [50]:

```
new pca = PCA(n components = 8)
new_pca.fit_transform(x)
Out[50]:
array([[-0.26421366, 0.05051731, 0.33922719, ..., 0.04888194,
        0.00845628, 0.03111742],
       [ 1.21455873, -0.05860345, 0.27227432, ..., -0.31664888,
        0.04964319, -0.08699835],
       [0.43810846, 0.22526499, 0.24008532, ..., -0.16144937,
        0.0587462, -0.06772005],
       [0.99772982, -0.71313651, 0.02715106, ..., 0.02671376,
       -0.02238335, -0.0461304 ],
       [1.19670756, -0.73696865, 0.16420511, ..., 0.03647319,
       -0.07637579, 0.09559929],
       [0.45147704, -0.1705262, -0.22301896, ..., 0.15792403,
       -0.18086472, -0.02620968]])
In [51]:
new_x = new_pca.fit_transform(x)
In [95]:
x_train,x_test,y_train,y_test = train_test_split(new_x,rating,test_size = 0.50)
working with imbalanced dataset with help of imlearn
library
In [96]:
from scipy import stats
from imblearn.over_sampling import SMOTE
In [97]:
sm = SMOTE(random_state = 14)
In [98]:
x_train,y_train = sm.fit_resample(x_train,y_train)
In [99]:
import collections
collections.Counter(y_train)
Out[99]:
```

Counter({'2': 759, '1': 759, '3': 759})

```
In [91]:
```

```
model = RandomForestClassifier() # used random forest classifier
```

```
In [100]:
```

```
model.fit(x_train,y_train)
```

Out[100]:

RandomForestClassifier()

In [101]:

```
prediction_x = model.predict(x_test)
```

accuracy with random forest

```
In [102]:
```

```
accuracy = accuracy_score(prediction_x , y_test)
accuracy
```

Out[102]:

0.99875

classification report, score and confusion matrix

In [104]:

```
from sklearn.metrics import confusion_matrix,classification_report
classification_report(y_test,prediction_x)
```

Out[104]:

```
precision
                          recall f1-score
                                            support\n\n
1.00
         0.97
                   0.98
                              32\n
                                                    1.00
                                                              1.00
                                             2
                         3
1.00
          759\n
                                 1.00
                                           1.00
                                                   1.00
                                                                 9\n\n
                                 1.00
                                          800\n macro avg
                                                                   1.00
accuracy
0.99
         0.99
              800\nweighted avg
                                           1.00
                                                    1.00
                                                              1.00
800\n'
```

In [105]:

```
confusion_matrix(prediction_x, y_test)
```

Out[105]:

```
array([[ 31, 0,
                 0],
       1, 759,
                0],
       0, 0, 9]], dtype=int64)
```

```
In [109]:
model.score(x_train,y_train)
Out[109]:
1.0
In [107]:
accuracy
Out[107]:
0.99875
```

Now working with support vector machine

```
In [110]:
from sklearn.svm import SVC
In [119]:
x_train,x_test,y_train,y_test = train_test_split(new_x,rating,test_size = 0.80)
In [120]:
classifier_svm = SVC(kernel= 'sigmoid')
In [121]:
classifier_svm.fit(x_train,y_train) # used sigmoid function
Out[121]:
SVC(kernel='sigmoid')
```

training score

```
In [122]:
classifier_svm.score(x_train,y_train)
Out[122]:
0.9780564263322884
In [123]:
y_pred = classifier_svm.predict(x_test)
```

Model accuracy

```
In [125]:
```

```
accuracy=accuracy_score(y_pred,y_test)
accuracy
```

Out[125]:

0.9640625

classification report ,score, confusion matrix

```
In [126]:
```

```
classification_report(y_pred,y_test)
C:\Users\hp\anaconda3\lib\site-packages\sklearn\metrics\_classification.p
y:1248: UndefinedMetricWarning: Recall and F-score are ill-defined and bei
ng set to 0.0 in labels with no true samples. Use `zero_division` paramete
r to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
C:\Users\hp\anaconda3\lib\site-packages\sklearn\metrics\_classification.p
y:1248: UndefinedMetricWarning: Recall and F-score are ill-defined and bei
ng set to 0.0 in labels with no true samples. Use `zero_division` paramete
r to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
C:\Users\hp\anaconda3\lib\site-packages\sklearn\metrics\_classification.p
y:1248: UndefinedMetricWarning: Recall and F-score are ill-defined and bei
ng set to 0.0 in labels with no true samples. Use `zero_division` paramete
r to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))
Out[126]:
                            recall f1-score
               precision
                                               support\n\n
0.46
          0.96
                   0.62
                                25\n
                                                       1.00
                                                                 0.96
```

In [127]:

```
confusion_matrix(y_pred,y_test)
```

```
Out[127]:
```

```
array([[ 24,
                    0],
                   17],
        28, 1210,
      0, 0]], dtype=int64)
         0,
```

accuracy

```
In [128]:
```

```
accuracy
```

Out[128]:

0.9640625