第十章 建筑施工供电与安全用电

	分院(系)	班级	姓名	学号 _		次
10-1 填空	:题:					
1、电力系	系统的组成包括					o
2、采用高	高电压输电的优点	有		;		;
以及			等。			
3、国家标	准规定,一般允许	供电线路的电	卫压偏移为	,即线路[首端(电源端)电	凡压应于
电网额定	电压,而线路才	下端电压可 _	_ 于电网额定	E电压 ,	如电网额定电	压为 10 kV,
则发电机	额定电压应为	_kV。				
4、电力系	系统负荷的计算方法	法主要有:	、		`	等。
其中,建	筑电气系统设计施	工中计算负荷	荷最常采用的	是		
5、变电原	所主结线的形式由				确定。	
6、高压网	鬲离开关的作用是		1	且		拉闸。
10-2 简答	题:					
1、1	简单叙述负荷计算	的一般步骤和	山计算原则是	什么?		

2、简单叙述变电所位置的选择依据。

第十章 建筑施工供电与安全用电

	分院(系)	班级	姓名	学号	第 <u>_2</u> 》	欠
10-	-3 空题:					
1,	高压阀型避雷器的作	用是				c
2、	选择一台变压器的容	量选择原则是				0
3、	架空线路由		组成;电约	览线路由		_组成。
10-	4 简答题:					
	1、分别简单叙述低	压动力线和低	压照明线导线	截面的选择和构	交验顺序?	

2、什么是 TN-C、TN-S、TN-C-S 低压配电系统? 它们的特点各是什么?

10-5 计算题: 某宿舍楼白炽灯照明负荷 20kW,采用 380/220v 三相四线制供电,距离变电 所 250m 远,用 BLX 线供电,要求电压损耗不超过 5%,试选择导线的截面 (环境温度 30℃,明敷)。

第十章 建筑施工供电与安全用电

	分院 (系)		名学号	
10-6 筲	简答题 :			
1.	、触电的种类、	原因和形式都有什么?	影响触电严重程度	度的因素有哪些?

2、建筑用电规范安全电压的等级是什么?

3、什么是施工供电组织设计?它应包括那些内容?

10-7 设计题:

某桥梁施工现场使用的电气设备清单如表所示: 高压侧的电源电压为 10KV。

序号	设备名称	台数	额定容量	效率	额定电压	相数	备注
1	混凝土搅拌机	2	7.5kW	0.9	380V	3	
2	沙浆搅拌机	2	2.8kW	0.92	380V	3	
3	电焊机	4	22KVA		380V	1	65%
4	起重机	1	40kW	0.9	380V	3	25%
5	照明		10kW		220V	1	白炽灯

求总的计算负荷 P_{js} 、 Q_{js} 、 S_{js} 、 I_{js} ,选择为该工地所列负荷供电的变压器型号和容量。

11-1 二极管组成的电路如图 11-1 所示,设二极管是理想的,求输出电压 U_0 。(答案(a)-9V; (b)0V; (c)-5V。)

11-2 设有两个稳压管的稳压值分别是 6V 和 7V,正向压降均是 0.7V。如果将它们用不同的方法串联后接入电路,可能得到几种不同的稳压值?试画出各种不同的串联方法。(答案 3 种)

分院	(系)	班级	姓名	学号	第第次
----	-----	----	----	----	-----

11-3 判断图 11-3 中各电路是否能放大交流信号?为什么?(答案只有(a)能放大)

习题 11-3 图

11-4 电路如图 11-4 所示,已知 V_{CC} =12V, R_B =300k Ω , R_C =4k Ω , β =50。

- (1) 估算电路的静态工作点;
- (2) 画出微变等效电路;
- (3) 求输入电阻 R_i 和输出电阻 R_0 ;
- (4) 求电压放大倍数 \dot{A}_{μ} ;
- (5) 求输出端接有负载 R_L =4k Ω 时的电压放大倍数,并说明负载电阻 R_L 对放大倍数的影响。

(4) -203 (5) -102)

11-5 电路如图 11-5 所示,已知 V_{CC} =12V, R_{B1} =33k Ω , R_{B2} =10k Ω , R_{C} =2k Ω , R_{E} =1k Ω , β =50。 U_{S} =10mv, R_{S} =1k Ω 。

- (1) 估算电路的静态工作点;
- (2) 画出微变等效电路;
- (3) 求输入电阻 R_i和输出电阻

 R_0 ;

- (4) 计算 U_i 和 U_0 ;
- (5) 若 $R_S=0$,再求 U_0 ,并说明

信号源内阻 R_s 对放大倍数的影响。

(参 考 答 案
$$V_B = 2.79V, I_C \approx I_E = 2.1mA, I_B = 41\mu A, U_{CE} = 5.8V$$
; (3) $r_{be} = 0.934K\Omega$, $R_i = 0.833K\Omega, R_O = 2K\Omega$;

11-6 射极输出器电路如图 11-6 所示,已知: V_{CC} =12V, R_B =560 k Ω , R_E =5.6 k Ω , β =100, R_L =1.2 k Ω 。

- (1) 估算电路的静态工作点;
- (2) 画出微变等效电路;
- (3) 求输入电阻 R_i 和输出电阻 R_0 ;
- (4) 求电压放大倍数。

(参考答案

- $(1)\,I_{\scriptscriptstyle B} = 10\,\mu\!A, I_{\scriptscriptstyle C} = 1m\!A, U_{\scriptscriptstyle CE} = 6.32V\;;$
- (3) $r_{be} = 2889.75 K\Omega$,

$$R_i = 86.78 K\Omega, R_O = 29\Omega; (4) A_u = 0.97)$$

习题 11-6 图

- 11-7 电路如图 11-7 所示,已知 V_{CC} =12V, R_{B1} = R_{B2} =75k Ω , R_{C} =2k Ω , R_{L} =2k Ω , β =50。
 - (1) 画出直流通路, 计算电路的静态值 I_{co} ;
 - (2) 画出微变等效电路;
 - (3) 求 \dot{A}_u 、 R_i 和 R_0 。

(参考答案(1) $I_B = 44.8 \mu A, I_C = 2.24 mA$;

$$(3)\,r_{be} = 892\Omega\;,\quad A_u = -56 \quad R_i \approx r_{be}\,, R_O \approx 1k\Omega\;)$$

- **11-8** 两级阻容耦合放大电路如图 11-69 所示,已知 eta_1 = eta_2 =40, r_{bel} =1.2k Ω , r_{be2} =0.8k Ω .各个电阻的阻值及电源电压都已标在电路图中。
 - (1) 求各级电压放大倍数 \dot{A}_{u1} 、 \dot{A}_{u2} 及总的电压放大倍数 \dot{A}_{u} ;
- 到第一级的输出端,这时 A_{u1} 是多少?由计算结果分析接入射极输出器的好处。

(2) 若不要射极输出器,将负载直接接

(参考答案(1);

$$A_{u1} = -91, A_{u2} = 0.98, A_{u} = -89;$$
 (2)
 $A_{u} = -33.3$)

习题 11-8 图

11-9 集成运放组成的电路如图 11-9 所示, 试计算开关 S 断开和闭合时的电压

放大倍数 A_{uf} 。 (参考答案(1);

$$A_{u1} = -91, A_{u2} = 0.98, A_{u} = -89; (2)$$

$$A_{u} = -33.3)$$

11-10 求图 11-10 中运放的 输出电压 u_{21} 。(答案(1);

$$A_{uf} = -10$$
,; (2) $A_{uf} = \frac{20}{3}$)

习题 11-10 图

11-11 求图 11-11 电路输出电压 u_0 与输入电压 u_{i1} , u_{i2} 的函数式。

(答案 $u_o = 11u_{i2} - 5.5u_{i1}$)

习题 11-11 图

习题 11-12 图

11-12 在图 11-12中,已知 R_1 =10kΩ, R_2 =20kΩ, R_3 =10kΩ, R_4 =1MΩ,C=1μF。(1)求 u_{01} 和 u_{i1} , u_{i2} 的关系式;(2)求 u_0 和 u_{i1} , u_{i2} 的关系式。

(答案 (1)
$$u_{o1} = -u_{i1} - 0.5u_{i2}$$
]; (2) $\int (u_{i1} + 0.5u_{i2})dt$)

11-13 在图 11-13 中已知 R_F =4 R_1 , 求 u_0 和 u_i 的关系。(答案 u_O = $-1.5u_i$)

习题 11-13 图

11-14 电路如图所示,求出输出电压 u_o 与输入电压 u_{i1} 、 u_{i2} 、 u_{i3} 之间的运算关系。(答案 $u_o=3u_{i3}-u_{i2}-u_{i1}$)

习题 11-14 图

- 11-15 图所示电路,运放 A的最大输出电压为土 12V。求:
- $(1)R_{\rm W}$ 滑动端在最上端时 $U_{\rm O}=?$
- $(2)R_{\rm W}$ 滑动端在最下端时 $U_{\rm O}=?$
- (3) $R_{\rm W}$ 滑动端在中间位置时 $U_{\rm O}$ =?

(答案(1) $u_o = -2V$;(2)-12V;(3)-4V)

习题 11-15 图

- **11-16** 正确画出图 11-16 中桥式整流电容滤波电路的四个二极管,设 u_2 的有效值 U_2 =12V,估算:
 - (1) 输出电压 U_0 ;
 - (2) 电容开路时的 U_0 ;
 - (3) 只有负载开路时的 U_0 ;
 - (4) 电容和一个二极管同时开路 U_0 ;
 - (5) 二极管所承受的最大反向工作电压 U_R 。

(答案(1)14.4;(2)10.8;(3)17; (4)5.4(5)17)

11-17 图 11-17 是一个输出正 9V 的稳压电路,指出图中有哪些错误,并加以改正。

习题 11-17 图