Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Import Dataset

In [2]: df = pd.read_csv(r'C:\Users\DELL\Desktop\FSDS\ML\6th - SVM\4th - SVM\SVM\pulsar_
df

Out[2]:		Mean of the integrated profile	Standard deviation of the integrated profile	Excess kurtosis of the integrated profile	Skewness of the integrated profile	Mean of the DM- SNR curve	Standard deviation of the DM-SNR curve	Excess kurtosis of the DM-SNR curve
	0	140.562500	55.683782	-0.234571	-0.699648	3.199833	19.110426	7.975532
	1	102.507812	58.882430	0.465318	-0.515088	1.677258	14.860146	10.576487
	2	103.015625	39.341649	0.323328	1.051164	3.121237	21.744669	7.735822
	3	136.750000	57.178449	-0.068415	-0.636238	3.642977	20.959280	6.896499
	4	88.726562	40.672225	0.600866	1.123492	1.178930	11.468720	14.269573
	•••							
	17893	136.429688	59.847421	-0.187846	-0.738123	1.296823	12.166062	15.450260
	17894	122.554688	49.485605	0.127978	0.323061	16.409699	44.626893	2.945244
	17895	119.335938	59.935939	0.159363	-0.743025	21.430602	58.872000	2.499517
	17896	114.507812	53.902400	0.201161	-0.024789	1.946488	13.381731	10.007967
	17897	57.062500	85.797340	1.406391	0.089520	188.306020	64.712562	-1.597527

17898 rows × 9 columns

+

EDA

In [3]: # view dimensions of dataset
 df.shape

Out[3]: (17898, 9)

In [4]: # let's preview the dataset
df.head()

```
Out[4]:
                         Standard
                                      Excess
                                                                   Standard
                                                                                Excess
              Mean of
                                               Skewness Mean of
                                                                                        Ske
                         deviation
                                     kurtosis
                                                                   deviation
                                                                              kurtosis
                   the
                                                  of the the DM-
                            of the
                                       of the
                                                                      of the
                                                                                of the
             integrated
                                              integrated
                                                             SNR
                                                                                         DIV
                                                                             DM-SNR
                        integrated integrated
                                                                   DM-SNR
                profile
                                                 profile
                                                            curve
                           profile
                                      profile
                                                                      curve
                                                                                curve
         0 140.562500
                        55.683782
                                    -0.234571
                                               -0.699648 3.199833 19.110426
                                                                             7.975532
                                                                                        74.2
           102.507812
                        58.882430
                                     0.465318
                                               -0.515088 1.677258 14.860146 10.576487
                                                                                       127.3
         2 103.015625
                        39.341649
                                     0.323328
                                               1.051164 3.121237 21.744669
                                                                              7.735822
                                                                                        63.1
         3 136.750000
                        57.178449
                                    -0.068415
                                               -0.636238 3.642977 20.959280
                                                                              6.896499
                                                                                        53.5
             88.726562
                        40.672225
                                     0.600866
                                                1.123492 1.178930 11.468720 14.269573 252.5
         # view the column names of the dataframe
In [5]:
         col names = df.columns
         col_names
Out[5]: Index([' Mean of the integrated profile',
                  Standard deviation of the integrated profile',
                 ' Excess kurtosis of the integrated profile',
                 ' Skewness of the integrated profile', ' Mean of the DM-SNR curve',
                 ' Standard deviation of the DM-SNR curve',
                 ' Excess kurtosis of the DM-SNR curve', ' Skewness of the DM-SNR curve',
                 'target class'],
                dtype='object')
In [6]: # remove leading spaces from column names
         df.columns = df.columns.str.strip()
In [7]: # view column names again
         df.columns
Out[7]: Index(['Mean of the integrated profile',
                 'Standard deviation of the integrated profile',
                 'Excess kurtosis of the integrated profile',
                 'Skewness of the integrated profile', 'Mean of the DM-SNR curve',
                 'Standard deviation of the DM-SNR curve',
                 'Excess kurtosis of the DM-SNR curve', 'Skewness of the DM-SNR curve',
                 'target_class'],
                dtype='object')
In [8]:
         # rename column names
         df.columns = ['IP Mean', 'IP Sd', 'IP Kurtosis', 'IP Skewness',
                        'DM-SNR Mean', 'DM-SNR Sd', 'DM-SNR Kurtosis', 'DM-SNR Skewness',
In [9]: # view the renamed column names
         df.columns
Out[9]: Index(['IP Mean', 'IP Sd', 'IP Kurtosis', 'IP Skewness', 'DM-SNR Mean',
                 'DM-SNR Sd', 'DM-SNR Kurtosis', 'DM-SNR Skewness', 'target_class'],
                dtype='object')
In [10]: # check distribution of target_class column
         df['target_class'].value_counts()
```

```
Out[10]: target_class
         0
              16259
         1
               1639
         Name: count, dtype: int64
In [11]: # view the percentage distribution of target_class column
         df['target_class'].value_counts()/np.float(len(df))
        AttributeError
                                                Traceback (most recent call last)
        Cell In[11], line 2
             1 # view the percentage distribution of target_class column
        ---> 2 df['target_class'].value_counts()/np.float(len(df))
        File ~\anaconda3\Lib\site-packages\numpy\__init__.py:324, in __getattr__(attr)
           319
                warnings.warn(
                       f"In the future `np.{attr}` will be defined as the "
           320
           321
                       "corresponding NumPy scalar.", FutureWarning, stacklevel=2)
           323 if attr in __former_attrs__:
                   raise AttributeError(__former_attrs__[attr])
           326 if attr == 'testing':
                   import numpy.testing as testing
           327
        AttributeError: module 'numpy' has no attribute 'float'.
        `np.float` was a deprecated alias for the builtin `float`. To avoid this error in
        existing code, use `float` by itself. Doing this will not modify any behavior and
        is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
        The aliases was originally deprecated in NumPy 1.20; for more details and guidance
        e see the original release note at:
           https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
In [12]: df['target_class'].value_counts() / float(len(df))
Out[12]: target_class
         0 0.908426
              0.091574
         Name: count, dtype: float64
In [13]: # view summary of dataset
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 17898 entries, 0 to 17897
        Data columns (total 9 columns):
        # Column
                             Non-Null Count Dtype
        ---
                             -----
        0
           IP Mean
                            17898 non-null float64
                            17898 non-null float64
            IP Sd
        1
           IP Kurtosis
                            17898 non-null float64
        2
                           17898 non-null float64
         3
           IP Skewness
        4 DM-SNR Mean
                           17898 non-null float64
                            17898 non-null float64
        5 DM-SNR Sd
        6 DM-SNR Kurtosis 17898 non-null float64
        7 DM-SNR Skewness 17898 non-null float64
                            17898 non-null int64
        8 target class
        dtypes: float64(8), int64(1)
        memory usage: 1.2 MB
In [14]: # check for missing values in variables
         df.isnull().sum()
```

```
Out[14]: IP Mean
                          0
         IP Sd
                          0
         IP Kurtosis
                          0
         IP Skewness
                          0
         DM-SNR Mean
                         0
         DM-SNR Sd
                         0
         DM-SNR Kurtosis 0
         DM-SNR Skewness 0
         target_class
         dtype: int64
```

In [15]: # view summary statistics in numerical variables
 round(df.describe(),2)

Out[15]:

		IP Mean	IP Sd	IP Kurtosis	IP Skewness	DM- SNR Mean	DM- SNR Sd	DM- SNR Kurtosis	DM-SNR Skewness
	count	17898.00	17898.00	17898.00	17898.00	17898.00	17898.00	17898.00	17898.00
	mean	111.08	46.55	0.48	1.77	12.61	26.33	8.30	104.86
	std	25.65	6.84	1.06	6.17	29.47	19.47	4.51	106.51
	min	5.81	24.77	-1.88	-1.79	0.21	7.37	-3.14	-1.98
	25%	100.93	42.38	0.03	-0.19	1.92	14.44	5.78	34.96
	50%	115.08	46.95	0.22	0.20	2.80	18.46	8.43	83.06
	75%	127.09	51.02	0.47	0.93	5.46	28.43	10.70	139.31
	max	192.62	98.78	8.07	68.10	223.39	110.64	34.54	1191.00

```
In [16]: # draw boxplots to visualize outliers
         plt.figure(figsize=(24,20))
         plt.subplot(4, 2, 1)
         fig = df.boxplot(column='IP Mean')
         fig.set title('')
         fig.set_ylabel('IP Mean')
         plt.subplot(4, 2, 2)
         fig = df.boxplot(column='IP Sd')
         fig.set_title('')
         fig.set_ylabel('IP Sd')
         plt.subplot(4, 2, 3)
         fig = df.boxplot(column='IP Kurtosis')
         fig.set_title('')
         fig.set_ylabel('IP Kurtosis')
         plt.subplot(4, 2, 4)
         fig = df.boxplot(column='IP Skewness')
```

```
fig.set_title('')
fig.set_ylabel('IP Skewness')
plt.subplot(4, 2, 5)
fig = df.boxplot(column='DM-SNR Mean')
fig.set_title('')
fig.set_ylabel('DM-SNR Mean')
plt.subplot(4, 2, 6)
fig = df.boxplot(column='DM-SNR Sd')
fig.set_title('')
fig.set_ylabel('DM-SNR Sd')
plt.subplot(4, 2, 7)
fig = df.boxplot(column='DM-SNR Kurtosis')
fig.set_title('')
fig.set_ylabel('DM-SNR Kurtosis')
plt.subplot(4, 2, 8)
fig = df.boxplot(column='DM-SNR Skewness')
fig.set_title('')
fig.set_ylabel('DM-SNR Skewness')
```

Out[16]: Text(0, 0.5, 'DM-SNR Skewness')


```
In [18]: # plot histogram to check distribution
         plt.figure(figsize=(24,20))
         plt.subplot(4, 2, 1)
         fig = df['IP Mean'].hist(bins=20)
         fig.set_xlabel('IP Mean')
         fig.set_ylabel('Number of pulsar stars')
         plt.subplot(4, 2, 2)
         fig = df['IP Sd'].hist(bins=20)
         fig.set_xlabel('IP Sd')
         fig.set_ylabel('Number of pulsar stars')
         plt.subplot(4, 2, 3)
         fig = df['IP Kurtosis'].hist(bins=20)
         fig.set_xlabel('IP Kurtosis')
         fig.set_ylabel('Number of pulsar stars')
         plt.subplot(4, 2, 4)
         fig = df['IP Skewness'].hist(bins=20)
         fig.set_xlabel('IP Skewness')
         fig.set_ylabel('Number of pulsar stars')
         plt.subplot(4, 2, 5)
         fig = df['DM-SNR Mean'].hist(bins=20)
         fig.set_xlabel('DM-SNR Mean')
         fig.set_ylabel('Number of pulsar stars')
         plt.subplot(4, 2, 6)
         fig = df['DM-SNR Sd'].hist(bins=20)
         fig.set_xlabel('DM-SNR Sd')
         fig.set ylabel('Number of pulsar stars')
         plt.subplot(4, 2, 7)
         fig = df['DM-SNR Kurtosis'].hist(bins=20)
         fig.set_xlabel('DM-SNR Kurtosis')
         fig.set ylabel('Number of pulsar stars')
         plt.subplot(4, 2, 8)
         fig = df['DM-SNR Skewness'].hist(bins=20)
         fig.set_xlabel('DM-SNR Skewness')
         fig.set_ylabel('Number of pulsar stars')
```

Out[18]: Text(0, 0.5, 'Number of pulsar stars')

Declare feature vector and target variable

```
In [20]: X = df.drop(['target_class'], axis=1)
y = df['target_class']
```

Split data into separate training and test set

```
In [21]: # split X and y into training and testing sets
    from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, randometric rando
```

In [22]: # check the shape of X_train and X_test
X_train.shape, X_test.shape

Out[22]: ((14318, 8), (3580, 8))

Feature Scaling

scaler = StandardScaler()

```
In [23]: cols = X_train.columns
In [24]: from sklearn.preprocessing import StandardScaler
```

```
X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

In [25]: X_train = pd.DataFrame(X_train, columns=[cols])

In [26]: X_test = pd.DataFrame(X_test, columns=[cols])

In [27]: X_train.describe()
Out[27]: DM-SNR
```

	IP Mean	IP Sd	IP Kurtosis	IP Skewness	DM-SNR Mean	DM-
count	1.431800e+04	1.431800e+04	1.431800e+04	1.431800e+04	1.431800e+04	1.4318
mean	1.908113e-16	-6.550610e-16	1.042143e-17	3.870815e-17	-8.734147e- 17	-1.6
std	1.000035e+00	1.000035e+00	1.000035e+00	1.000035e+00	1.000035e+00	1.0000
min	-4.035499e+00	-3.181033e+00	-2.185946e+00	-5.744051e- 01	-4.239001e- 01	-9.7
25%	-3.896291e-01	-6.069473e-01	-4.256221e-01	-3.188054e- 01	-3.664918e- 01	-6.1
50%	1.587461e-01	5.846646e-02	-2.453172e-01	-2.578142e- 01	-3.372294e- 01	-4.0
75%	6.267059e-01	6.501017e-01	-1.001238e-02	-1.419621e- 01	-2.463724e- 01	1.078
max	3.151882e+00	7.621116e+00	7.008906e+00	1.054430e+01	7.025568e+00	4.292
4						•

Run SVM with default hyperparameters

```
In [28]: # import SVC classifier
    from sklearn.svm import SVC

# import metrics to compute accuracy
    from sklearn.metrics import accuracy_score

# instantiate classifier with default hyperparameters
    svc=SVC()

# fit classifier to training set
    svc.fit(X_train,y_train)

# make predictions on test set
    y_pred=svc.predict(X_test)

# compute and print accuracy score
    print('Model accuracy score with default hyperparameters: {0:0.4f}'. format(accuracy)
```

Model accuracy score with default hyperparameters: 0.9827

Run SVM with rbf kernel and C=100.0

```
In [30]: # instantiate classifier with rbf kernel and C=1000
svc=SVC(C=1000.0)

# fit classifier to training set
svc.fit(X_train,y_train)

# make predictions on test set
y_pred=svc.predict(X_test)

# compute and print accuracy score
print('Model accuracy score with rbf kernel and C=1000.0 : {0:0.4f}'. format(acc
```

Model accuracy score with rbf kernel and C=1000.0 : 0.9816

Run SVM with linear kernel and C=1.0

```
In [31]: # instantiate classifier with linear kernel and C=1.0
linear_svc=SVC(kernel='linear', C=1.0)

# fit classifier to training set
linear_svc.fit(X_train,y_train)

# make predictions on test set
y_pred_test=linear_svc.predict(X_test)

# compute and print accuracy score
print('Model accuracy score with linear kernel and C=1.0 : {0:0.4f}'. format(acc
```

Model accuracy score with linear kernel and C=1.0 : 0.9830

Run SVM with linear kernel and C=100.0

```
In [32]: # instantiate classifier with linear kernel and C=100.0
         linear_svc100=SVC(kernel='linear', C=100.0)
         # fit classifier to training set
         linear_svc100.fit(X_train, y_train)
         # make predictions on test set
         y_pred=linear_svc100.predict(X_test)
         # compute and print accuracy score
         print('Model accuracy score with linear kernel and C=100.0 : {0:0.4f}'. format(a
        Model accuracy score with linear kernel and C=100.0 : 0.9832
         Run SVM with linear kernel and C=1000.0
         # instantiate classifier with linear kernel and C=1000.0
In [33]:
         linear_svc1000=SVC(kernel='linear', C=1000.0)
         # fit classifier to training set
         linear_svc1000.fit(X_train, y_train)
         # make predictions on test set
         y_pred=linear_svc1000.predict(X_test)
         # compute and print accuracy score
         print('Model accuracy score with linear kernel and C=1000.0 : {0:0.4f}'. format(
        Model accuracy score with linear kernel and C=1000.0 : 0.9832
         Compare the train-set and test-set accuracy
In [34]: y_pred_train = linear_svc.predict(X_train)
         y_pred_train
Out[34]: array([0, 0, 1, ..., 0, 0, 0], dtype=int64)
In [35]: print('Training-set accuracy score: {0:0.4f}'. format(accuracy_score(y_train, y_
        Training-set accuracy score: 0.9783
         Check for overfitting and underfitting
In [36]: # print the scores on training and test set
         print('Training set score: {:.4f}'.format(linear_svc.score(X_train, y_train)))
         print('Test set score: {:.4f}'.format(linear_svc.score(X_test, y_test)))
        Training set score: 0.9783
        Test set score: 0.9830
         Compare model accuracy with null accuracy
```

```
In [37]: # check class distribution in test set
         y_test.value_counts()
Out[37]: target_class
         0
            3306
               274
         Name: count, dtype: int64
In [38]: # check null accuracy score
         null_accuracy = (3306/(3306+274))
         print('Null accuracy score: {0:0.4f}'. format(null_accuracy))
        Null accuracy score: 0.9235
         Run SVM with polynomial kernel and C=1.0
In [39]: # instantiate classifier with polynomial kernel and C=1.0
         poly_svc=SVC(kernel='poly', C=1.0)
         # fit classifier to training set
         poly_svc.fit(X_train,y_train)
         # make predictions on test set
         y_pred=poly_svc.predict(X_test)
         # compute and print accuracy score
         print('Model accuracy score with polynomial kernel and C=1.0 : {0:0.4f}'. format
        Model accuracy score with polynomial kernel and C=1.0: 0.9807
         Run SVM with polynomial kernel and C=100.0
In [40]: # instantiate classifier with polynomial kernel and C=100.0
         poly_svc100=SVC(kernel='poly', C=100.0)
         # fit classifier to training set
         poly_svc100.fit(X_train, y_train)
         # make predictions on test set
         y_pred=poly_svc100.predict(X_test)
         # compute and print accuracy score
         print('Model accuracy score with polynomial kernel and C=1.0 : {0:0.4f}'. format
        Model accuracy score with polynomial kernel and C=1.0 : 0.9824
         Run SVM with sigmoid kernel and C=1.0
In [41]: # instantiate classifier with sigmoid kernel and C=1.0
         sigmoid svc=SVC(kernel='sigmoid', C=1.0)
         # fit classifier to training set
```

```
# make predictions on test set
y_pred=sigmoid_svc.predict(X_test)

# compute and print accuracy score
print('Model accuracy score with sigmoid kernel and C=1.0 : {0:0.4f}'. format(accuracy score)
```

Model accuracy score with sigmoid kernel and C=1.0: 0.8858

Run SVM with sigmoid kernel and C=100.0

Model accuracy score with sigmoid kernel and C=100.0 : 0.8855

Confusion matrix

```
In [43]: # Print the Confusion Matrix and slice it into four pieces
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred_test)
print('Confusion matrix\n\n', cm)
print('\nTrue Positives(TP) = ', cm[0,0])
print('\nTrue Negatives(TN) = ', cm[1,1])
print('\nFalse Positives(FP) = ', cm[0,1])
print('\nFalse Negatives(FN) = ', cm[1,0])
```

Confusion matrix

[[3289 17] [44 230]]

True Positives(TP) = 3289

True Negatives(TN) = 230

False Positives(FP) = 17

False Negatives(FN) = 44

Out[44]: <Axes: >

In [45]: plt.show()

Classification Report

In [46]: from sklearn.metrics import classification_report
 print(classification_report(y_test, y_pred_test))

```
precision recall f1-score
                                          support
          0
                 0.99
                          0.99
                                    0.99
                                             3306
          1
                 0.93
                          0.84
                                    0.88
                                             274
                                    0.98
                                             3580
   accuracy
                 0.96
                          0.92
                                   0.94
                                             3580
  macro avg
weighted avg
                 0.98
                          0.98
                                    0.98
                                             3580
```

Classification accuracy

```
In [47]: TP = cm[0,0]
         TN = cm[1,1]
         FP = cm[0,1]
         FN = cm[1,0]
In [48]: # print classification accuracy
         classification_accuracy = (TP + TN) / float(TP + TN + FP + FN)
         print('Classification accuracy : {0:0.4f}'.format(classification_accuracy))
        Classification accuracy: 0.9830
         Classification error
In [49]: # print classification error
         classification_error = (FP + FN) / float(TP + TN + FP + FN)
         print('Classification error : {0:0.4f}'.format(classification_error))
        Classification error: 0.0170
         Precision
In [50]: # print precision score
         precision = TP / float(TP + FP)
         print('Precision : {0:0.4f}'.format(precision))
        Precision: 0.9949
         Recall
In [51]: recall = TP / float(TP + FN)
         print('Recall or Sensitivity : {0:0.4f}'.format(recall))
        Recall or Sensitivity: 0.9868
         True Positive Rate
In [52]: true_positive_rate = TP / float(TP + FN)
         print('True Positive Rate : {0:0.4f}'.format(true_positive_rate))
```

True Positive Rate: 0.9868

```
False Positive Rate
In [53]: false_positive_rate = FP / float(FP + TN)
         print('False Positive Rate : {0:0.4f}'.format(false_positive_rate))
        False Positive Rate: 0.0688
         Specificity
In [54]: specificity = TN / (TN + FP)
         print('Specificity : {0:0.4f}'.format(specificity))
        Specificity: 0.9312
         ROC - AUC
In [55]: # plot ROC Curve
         from sklearn.metrics import roc_curve
         fpr, tpr, thresholds = roc_curve(y_test, y_pred_test)
         plt.figure(figsize=(6,4))
         plt.plot(fpr, tpr, linewidth=2)
         plt.plot([0,1], [0,1], 'k--')
         plt.rcParams['font.size'] = 12
         plt.title('ROC curve for Predicting a Pulsar Star classifier')
         plt.xlabel('False Positive Rate (1 - Specificity)')
         plt.ylabel('True Positive Rate (Sensitivity)')
         plt.show()
```



```
In [56]: # compute ROC AUC
from sklearn.metrics import roc_auc_score
ROC_AUC = roc_auc_score(y_test, y_pred_test)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
```

ROC AUC : 0.9171

```
In [57]: # calculate cross-validated ROC AUC
from sklearn.model_selection import cross_val_score
Cross_validated_ROC_AUC = cross_val_score(linear_svc, X_train, y_train, cv=10, s
print('Cross validated ROC AUC : {:.4f}'.format(Cross_validated_ROC_AUC))
```

Cross validated ROC AUC: 0.9756

Stratified k-Fold Cross Validation with shuffle split with linear kernel

```
Stratified cross-validation scores with linear kernel:
        [0.98296089 0.97458101 0.97988827 0.97876502 0.97848561]
In [60]: # print average cross-validation score with linear kernel
         print('Average stratified cross-validation score with linear kernel:{:.4f}'.form
        Average stratified cross-validation score with linear kernel:0.9789
         Stratified k-Fold Cross Validation with shuffle split with rbf kernel
In [61]: rbf svc=SVC(kernel='rbf')
         rbf_scores = cross_val_score(rbf_svc, X, y, cv=kfold)
In [62]: # print cross-validation scores with rbf kernel
         print('Stratified Cross-validation scores with rbf kernel:\n\n{}'.format(rbf_sco
        Stratified Cross-validation scores with rbf kernel:
        [0.97849162 0.97011173 0.97318436 0.9709416 0.96982397]
In [63]: # print average cross-validation score with rbf kernel
         print('Average stratified cross-validation score with rbf kernel:{:.4f}'.format(
        Average stratified cross-validation score with rbf kernel:0.9725
         Hyperparameter Optimization using GridSearch CV
In [ ]: import pandas as pd
         from sklearn.model selection import train test split, GridSearchCV
         from sklearn.svm import SVC
         from sklearn.metrics import accuracy_score
         # 1. Prepare your data
         # Assume df is already defined and cleaned
         X = df.drop('target_class', axis=1) # Features
         y = df['target_class']
                                               # Target
         # 2. Train-test split
         X_train, X_test, y_train, y_test = train_test_split(
             X, y, test_size=0.2, random_state=42
         # 3. Instantiate base SVC model
         svc = SVC()
         # 4. Declare parameter grid
         parameters = [
             {'C': [1, 10, 100, 1000], 'kernel': ['linear']},
             {'C': [1, 10, 100, 1000], 'kernel': ['rbf'],
              'gamma': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]},
             {'C': [1, 10, 100, 1000], 'kernel': ['poly'],
              'degree': [2, 3, 4], 'gamma': [0.01, 0.02, 0.03, 0.04, 0.05]}
         ]
```

print('Stratified cross-validation scores with linear kernel:\n\n{}'.format(line

```
# 5. GridSearchCV
        grid_search = GridSearchCV(
            estimator=svc,
            param_grid=parameters,
            scoring='accuracy',
            cv=5,
            verbose=0
        # 6. Fit to training data
        grid_search.fit(X_train, y_train)
        # 7. Best parameters and score
        print("Best Parameters:", grid_search.best_params_)
        print("Best Cross-Validation Score:", grid_search.best_score_)
        # 8. Evaluate on test set
        best_model = grid_search.best_estimator_
        y_pred = best_model.predict(X_test)
        print("Test Accuracy:", accuracy_score(y_test, y_pred))
In [ ]: # examine the best model
        # best score achieved during the GridSearchCV
        print('GridSearch CV best score : {:.4f}\n\n'.format(grid_search.best_score_))
        # print parameters that give the best results
        print('Parameters that give the best results :','\n\n', (grid_search.best_params
        # print estimator that was chosen by the GridSearch
        print('\n\nEstimator that was chosen by the search :','\n\n', (grid_search.best_
In [ ]: # calculate GridSearch CV score on test set
        print('GridSearch CV score on test set: {0:0.4f}'.format(grid search.score(X tes
In [ ]:
```