

Arquitectura TI

Modelos Red

- 1- Modelo de Red.
- 2- Modelo OSI.
- 3- Modelo TCP/IP.

- 1- Concepto de **PROTOCOLO**.
- 2- Necesidad de ESTRATIFICACIÓN («layering»).
 - 2.1. Problema simple:

- 2- Necesidad de ESTRATIFICACIÓN («layering»).
 - 2.2. Problema complejo:

- 2- Necesidad de ESTRATIFICACIÓN («layering»).
 - A. Permite dividir una tarea compleja en partes más simples y pequeñas (modularidad).
 - B. Independencia de niveles (nivel=Caja Negra).
 - C. Separación servicios de implementación.

- 3- Principios de ESTRATIFICACIÓN («layering»).
 - A. Comunicación Bidireccional: Cada nivel debe saber escuchar y hablar.
 - B. Dos objetos en el mismo nivel, en dos interlocutores deben ser idénticos.
 - C. Conexión Lógica:

1- **OSI? ISO?**

• ¿Qué significa OSI? R/ Open Systems Interconnection.

Estamos interesados en sistemas en las cuales los componentes pueden provenir de diferente proveedor y aún a pesar de tener orígenes diferentes la integración resulta posible.

• ¿Quién es ISO? R/ *International Standards Organization*. Organización internacional encargada de generar estándares.

2- Modelo LÓGICO.

7

3- Modelo de siete (7) niveles

Application	Provides a user interface
Presentation	Presents data Handles processing such as encryption
Session	Keeps different applications' data separate

Transport	Provides reliable or unreliable delivery Performs error correction before retransmit
Network	Provides logical addressing, which routers use for path determination
Data Link	Combines packets into bytes and bytes into frames Provides access to media using MAC address Performs error detection not correction
Physical	Moves bits between devices Specifies voltage, wire speed, and pinout of cables

4- Modelo de Referencia

Un Modelo de Referencia es una <u>VISION</u> que define el <u>ALCANCE</u>, <u>ESTRUCTURA</u> y <u>MECANISMOS</u> de un sistema.

¿Qué se pretende con OSI?

- Que equipos de distintos fabricantes inter-operen entre sí.
- Que se puedan integrar componentes sin tener en cuenta al fabricante.
 - Creación de comités de estandarización específicos para los distintos temas que se encargan de redactar diferentes recomendaciones.

FIGURE 1.8 OSI layer functions

Application	File, print, message, database, and application services	
Presentation	Data encryption, compression, and translation services	
Session	Dialog control	
Transport	End-to-end connection	
Network	• Routing	
Data Link	• Framing	
Physical	Physical topology	

2.1. Nivel Físico

2.1. Nivel Físico

- A- Transmite los bits por un canal de comunicación.
- B- La unidad de datos BIT.
- C- Define las especificaciones eléctricas, mecánicas y las funciones para activar/desactivar el enlace físico entre sistemas finales.

2.1. Nivel Físico

- A- El componente más representativo del nivel físico es el enlace de comunicaciones.
- B- El parámetro más importante de un enlace de comunicaciones es el Ancho de Banda (Hertz).
- C- El ancho de banda es uno de los parámetros más importante en la definición de la capacidad de transmisión de un canal.
- D- La capacidad de transmisión se mide en bits por segundo (bps)
 - o en cualquier unidad derivada Kbps (Kilobits por segundo) o Mbps.

2.2. Nivel de Enlace

2.2. Nivel de Enlace

A- Se ocupa del direccionamiento físico la topología de red, el acceso, la notificación de errores, formación y entrega ordenada de tramas

y el control de flujo.

B- La unidad de datos: **TRAMA.**

- C- Su principal misión es convertir el medio de transmisión en un medio libre de errores de cualquier tipo.
- D- Agrega las secuencias de bits al principio/final de la trama.

2.3. Nivel de Red

2.3. Nivel de Red

- A- Proporciona conectividad y selección de ruta entre dos sistemas con ubicación geográfica distinta.
- B- La unidad de datos se llama: **PAQUETE.**
- C- Debe conocer la topología de la subred enrutando los paquetes a través de subsistemas intermedios.
- D- Envía los paquetes de nodo a nodo.
- E- Controla la congestión en la red.

2.4. Nivel de Transporte

2.4. Nivel de Transporte

A- La unidad de datos: **SEGMENTO.**

B- Controla la interacción/comunicación entre procesos.

C- Incluye controles de integración para prevenir pérdidas o doble procesamiento de transmisiones.

2.4. Nivel de Transporte

- A- Se encarga de la SEGMENTACIÓN y REENSAMBLE.
- B- Puede considerarse el limite entre los protocolos de capa de medios (INFERIORES) y los protocolos de capa de host (SUPERIORES).
- C- Establece, mantiene y termina los **Circuitos Virtuales**, la conexión que se establece entre los procesos origen y destino.

2.5. Nivel de Sesión

Sincroniza el intercambio de datos entre capas inferiores y superiores

2.5. Nivel de Sesión

A- Establece, administra y finaliza sesiones entre las máquinas host que se comunican.

B- Si la sesión falla, intenta recuperarla, restaurándola desde un punto seguro y sin pérdida de datos del usuario.

C- Establece las reglas del dialogo: Quién? Cómo? Cuándo? Cuánto?

2.6. Nivel de Presentación

2.6. Nivel de Presentación

- A- Garantiza que la información que envía la capa de aplicación pueda ser entendida por la de otro.
- B- Transforma la información desde un código en un formato estándar común.
- C- Comprime los datos si es necesario.
- D- Aplica los procesos criptográficos.

2.7. Nivel de Aplicación

WWW (HTTP) ¿Que debo enviar? Es la interfaz que ve el usuario final. Muestra la información recibida En ella residen las aplicaciones Envía los datos de usuario a la aplicación de destino usando los servicios de las capas inferiores

N=7