$\label{eq:classical_condition} \text{C\&EE 110:}$ Introduction to Statistics and Probability

Einar Balan

Contents

1	\mathbf{Set}	Theory and Random Variables	2
	1.1	Probabilistic Sets	2
	1.2	Axioms	:

1 Set Theory and Random Variables

1.1 Probabilistic Sets

A random event, E, has more than 1 possible outcome in the sample space S. S is the collection of all possible event outcomes. We know that $E \subset S$.

Ex) Number in dice roll

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$E_{odd} = \{1, 3, 5\}$$

$$E_{>3} = \{4, 5, 6\}$$

Operations

We can apply several operations to our sets.

- 1. Union, denoted $E_1 \cup E_2$
- 2. Intersection, denoted $E_1 \cap E_2$ or E_1E_2

Consider E_{odd} and $E_{>3}$ above.

$$E_{odd} \cup E_{>3} = \{1, 3, 4, 5, 6\}$$

 $E_{odd} \cap E_{>3} = \{5\}$

These operations are commutative, associate, and distributive. Intersection has precedence over union.

Special Events

- S is the event the spans the entire sample space
- \bullet \varnothing is the null event, it has no outcomes
- if E_1 and E_2 are mutually exclusive, $E_1E_2 = \emptyset$
- if E_1 and E_2 are collectively exhaustive, $E_1 \cup E_2 = S$
- $\overline{E_1} = S E_1$, the complement¹ of E_1

¹Demorgan's Laws hold

Frequentist Probability (Natural Variation)

The probability of occurrence of E is the relative frequency of observations of E in a large number of repeated experiments. Put more formally below,

$$P(E) = \lim_{N \to \infty} \frac{n}{N}$$
, where n = occurrences of E in N observations in S

Bayesian Probability (Incomplete Knowledge)

The probability of an event E represents analysts' degree of belief that E will occur.

Frequentist Probability	Bayesian Probability
probability of expecting a ground	probability of finding water on
shaking intensity of 1g in next	new planet
100 years	
max wind speed in a year	probability that a building will collapse under ground shaking intensity of 1g
live load on a building	election results
*based on previous observations	*not based on previous observations
*cannot be reduced through more measurement	*can be reduced if more observa- tions/measurements applied

1.2 Axioms

1.
$$0 \le P(E) \le 1$$

2.
$$P(S) = 1$$

3.
$$P(A \cup B) = P(A) + P(B)$$
, s.t. $AB = \emptyset$

We can derive several rules from these axioms.

1.
$$P(\overline{E}) = 1 - P(E)$$

2.
$$P(\emptyset) = 0$$

3.
$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1E_2)$$

- if E_1 and E_2 are mutually exclusive, then we double count their intersection when using the 3rd axiom; subtracting it leads to the correct value
- what if we have > 2 events? Inclusion/Exclusion rule
- $P(E_1 \cup E_2 \cup ... \cup E_n) =$

$$\sum_{i=1}^{n} P(E_i) - \sum_{i=1}^{n} \sum_{j=1}^{i-1} P(E_i E_j) + \sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} P(E_i E_j E_k) + \dots + (-1)^{n-1} P(E_1 E_2 \dots E_n)$$

^{*} these axioms are consistent with Frequentist probability

Conditional Probability

We may want to determine the probability of an event given another event is guaranteed to occur. This is denoted $P(E_1|E_2)$, which is read as E_1 given E_2 . It essentially redefines the sample space to be E_2 .

$$P(E_1|E_2) = \begin{cases} \frac{P(E_1E_2)}{P(E_2)} & P(E_2) > 0\\ 0 & P(E_2) = 0 \end{cases}$$
(1.1)

From this equation, it follows that

$$P(E_1E_2) = P(E_1|E_2)P(E_2)$$

This holds in general for n events.

$$P(E_1E_2E_3) = P(E_1|E_2E_3)P(E_2E_3) = P(E_1|E_2E_3)P(E_2|E_3)P(E_3)$$

Ex) Applying conditions to operations

$$P(E_1 \cup E_2|E_3) = P(E_1|E_3) + P(E_2|E_3) - P(E_1E_2|E_3)$$

$$P(E_1E_2|E_3) = P(E_1|E_2|E_3)P(E_2|E_3)$$
, which follows from (1.1)

Independence

Two events are independent iff $P(E_1|E_2) = P(E_1)$

We have mutual independence if $P(E_1E_2...E_n) = P(E_1)P(E_2)...P(E_n)$.

Theorem of Total Probability

Consider an event A and a set of of mutually exclusive and collectively exhaustive events $E_1, E_2, ..., E_3$.

$$P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$$
(1.2)

Bayes' Rule

Consider an event A and a set of of mutually exclusive and collectively exhaustive events $E_1, E_2, ..., E_3$ in S.

$$P(AE_{j}) = P(E_{j}|A)P(A) = P(A|E_{j})P(E_{j})$$

$$P(E_{j}|A) = \frac{P(A|E_{j})P(E_{j})}{P(A)}$$

$$P(E_{j}|A) = \frac{P(A|E_{j})P(E_{j})}{\sum_{i=1}^{n} P(A|E_{i})P(E_{i})}$$