University of New Brunswick Faculty of Computer Science

CS2333: Computability and Formal Languages

Homework Assignment 1, Due Time, Date 5:00 PM, January 21, 2022

Student Name:	Matriculation Number:
Instructor: Ro The marking so	ngxing Lu heme is shown in the left margin and [100] constitutes full marks.

- 1. Write formal descriptions of the following sets: (note that you should give the finite sets by listing their contents)
 - (a) The set of all integers that are less than 5
 - (b) The set of all positive integers that have a remainder of 3 if divided by 5
 - (c) The set of all substrings of baab
 - (d) The cross product of $\{0,1,3\}$ and $\{0,1\}$
- 2. Give examples of relations that have the following combination of properties:
 - (a) symmetric and reflexive but not transitive
 - (b) symmetric and transitive but not reflexive
- 3. For each of the following equivalence relations, list their equivalence classes (using a representative element for each class):
 - (a) $\mathcal{R}_1 = \{(x, y) : x, y \in \mathbf{Z}^{nonneg} \text{ and } 3 | (x y) \}$
 - (b) $\mathcal{R}_2 = \{(x,y) : x,y \in \{0,1\}^{2022} \text{ and the first symbol in } x \text{ is the same as the first symbol in } y\}$
- 4. Given languages L_1, L_2 , and L_3 such that

$$L_1(L_2 \bigcap L_3) = \emptyset$$

and

$$L_1L_2 \bigcap L_1L_3$$
 is infinite

and demonstrate these properties.

- 5. Show that $2 \sqrt{2}$ is irrational. (Note that, we already know that $\sqrt{2}$ is not rational.)
- 6. Consider the relation between two sets defined by $S_1 \equiv S_2$ if and only if $|S_1| = |S_2|$. Show that this is an equivalence relation.