SIMPLICIAL COMPLEXES IN MACAULAY2

BEN HERSEY, GREGORY G. SMITH, AND ALEXANDRE ZOTINE

ABSTRACT. We highlight some features of the SimplicialComplexes package in Macaulay2.

This updated version of the *SimplicialComplexes* package in *Macaulay2* [M2], originally developed by Sorin Popescu, Gregory G. Smith, and Mike Stillman, adds constructors for many classic examples, implements a new data type for simplicial maps, and incorporates many improvements to the methods and documentation. Emphasizing combinatorial and algebraic applications, the primary data type encodes an abstract simplicial complex—a family of subsets that is closed under taking subsets. These simplicial complexes are the counterpart to the geometric realizations formed from points, line segments, filled-in triangles, solid tetrahedra, and their higher-dimensional analogues in some Euclidean space. The subsets in a simplicial complex are called faces. The faces having cardinality 1 are its vertices and the maximal faces (ordered by inclusion) are its facets. Following the combinatorial conventions, every nonempty simplicial complex has the empty set as a face.

In this package, a simplicial complex is represented by its Stanley–Reisner ideal. The vertices are identified with a subset of the variables in a polynomial ring and each face is identified with the product of the corresponding variables. A nonface is any subset of the variables that does not belong to the simplicial complex and each nonface is again identified with a product of variables. The Stanley–Reisner ideal of a simplicial complex is generated by monomials corresponding to its nonfaces; see Definition 5.1.2 in [BH], Definition 1.6 in [MS], or Definition II.1.1 in [S]. Because computations in the associated polynomial ring are typically prohibitive, this package is not intended for simplicial complexes with a large number of vertices.

CONSTRUCTORS. The basic constructor for a simplicial complex accepts two different kinds of input. Given a list of monomials, it returns the smallest simplicial complex containing the corresponding faces. Given a radical monomial ideal, it returns the simplicial complex having the input as its Stanley–Reisner ideal. We illustrate both methods using the 'bowtie' complex in Figure 1.

2020 Mathematics Subject Classification. 05E45, 13F55, 55U10 SimplicialComplexes version 2.0.

FIGURE 1. The left is the bowtie complex \bowtie and the right its Alexander dual \bowtie^*

```
i5 : M' = simplicialComplex I
o5 = simplicialComplex | x_2x_3x_4 x_0x_1x_2 |
o5 : SimplicialComplex
i6 : assert(M === M')
```

The package also has convenience constructors for some archetypal simplicial complexes. For example, we recognize triangulations of the real projective plane and the Klein bottle from their reduced homology groups; see Theorems 6.3–6.4 in [Mu].

```
i7 : P = realProjectiveSpaceComplex(2, R = ZZ[a..h])
o7 = simplicialComplex | bef aef cdf adf bcf cde bde ace abd abc |
o7 : SimplicialComplex
i8 : for j from 0 to 2 list prune HH_j P
o8 = {0, cokernel | 2 |, 0}
o8 : List
i9 : for j from 0 to 2 list prune HH_j kleinBottleComplex R
o9 = {0, cokernel | 2 |, 0}
o9 : List
```

More comprehensively, Frank H. Lutz enumerates simplicial complexes having a small number of vertices; see [L]. Using this list, the package creates a database of 43 138 simplicial 2-manifolds having at most 10 vertices and 1 343 simplicial 3-manifolds having at most 9 vertices. We demonstrate this feature by exhibiting the distribution of f-vectors among the 3-manifolds having 9 vertices. For all nonnegative integers j, the j-th entry in the f-vector is the number of faces having j vertices.

Exploiting the same loop, we construct the simplicial maps from a minimal triangulation of a torus to the induced subcomplex on the first 7 vertices for each of these 3-manifolds.

COMBINATORIAL TOPOLOGY. We showcase some of the key operations on simplicial complex using the bowtie complex. Viewing a simplicial complex as lying in a standard simplex yields a duality theory. For any simplicial complex Δ whose vertices belong to a set V, the Alexander dual is the simplicial complex $\Delta^* := \{ F \subseteq V \mid V \setminus F \in \Delta \}$. Since each simplicial complex in this package has an underlying polynomial ring, the variables in this ring form a canonical superset of the vertices.

```
i17 : dual ⋈
o17 = simplicialComplex | x_1x_2x_4 x_0x_2x_4 x_1x_2x_3 x_0x_2x_3 |
o17 : SimplicialComplex
i18 : assert(dual dual ⋈ === ⋈)
i19 : assert(dual monomialIdeal ⋈ === monomialIdeal dual ⋈)
```

Algebraically, Alexander duality switches the roles of the minimal generators and the irreducible components in the Stanley–Reisner ideal.

```
i20 : monomialIdeal dual \bowtie
o20 = monomialIdeal (x x , x x )
0 1 3 4

o20 : MonomialIdeal of S

i21 : irreducibleDecomposition monomialIdeal \bowtie
o21 = {monomialIdeal (x , x ), monomialIdeal (x , x )}
0 1 3 4
```

The topological form of Alexander duality gives an isomorphism between the reduced homology of a simplicial complex and reduced cohomology of its dual; see Theorem 5.6 in [MS].

```
i22 : n = numgens ring \bowtie;
```

```
i23 : assert all(-1..n-1, j -> prune HH^(n-j-3) dual ▶ == prune HH_j ▶)
```

A simplicial complex Δ is Cohen–Macaulay if the associated quotient ring S/I, where I is the Stanley–Reisner ideal of Δ in the polynomial ring S, is Cohen–Macaulay. To characterize this attribute topologically, we introduce a family of subcomplexes. For any face F in Δ , the link is the subcomplex link $\Delta(F) := \{G \in \Delta \mid F \cup G \in \Delta \text{ and } F \cap G = \emptyset\}$. The link of the vertex x_2 in \bowtie has two disjoint facets.

```
i24 : L = link(\mathbf{M}, x_2)

o24 = simplicialComplex | x_3x_4 x_0x_1 |

o24 : SimplicialComplex

i25 : prune HH_0 L

o25 = QQ

o25 : QQ-module, free
```

The dimension of a simplicial complex is one less than the maximal cardinality of its faces.

```
i26 : dim L
o26 = 1
```

As discovered by Gerald Reisner, the simplicial complex Δ is Cohen–Macaulay if and only if, for all faces F in Δ and all integers j less than the dimension of $\operatorname{link}_{\Delta}(F)$, the j-th reduced homology group of $\operatorname{link}_{\Delta}(F)$ vanishes; see Corollary 5.3.9 in [BH], Theorem 5.53 in [MS], or Corollary II.4.2 in [S]. Using this criterion, the 0-th reduced homology certifies that \bowtie is not Cohen–Macaulay.

```
i27 : assert(HHL0 L != 0)
i28 : assert(dim(S^1/monomialIdeal \bowtie) =!= n - pdim(S^1/monomialIdeal \bowtie))
However, the 1-skeleton of \bowtie is Cohen—Macaulay.
i29 : \bowtie = skeleton(1, \bowtie)
o29 = simplicialComplex | x_3x_4 x_2x_4 x_2x_3 x_1x_2 x_0x_2 x_0x_1 |
o29 : SimplicialComplex
i30 : faceList = rsort flatten values faces \bowtie
o30 = {x x , x x , x x , x x , x x , x x , x x , x x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x
```

Alternatively, we verify that bowtie complex \bowtie is not Cohen–Macaulay by showing that its h-vector has a negative entry; see Theorem 5.1.10 in [BH] or Corollary II.2.5 in [S]. By definition, the h-vector of a simplicial complex Δ is a binomial transform of its f-vector: for all $0 \le j \le d := \dim \Delta$, we have $h_j = \sum_{k=0}^{j} (-1)^{j-1} {d+1-k \choose j-k} f_{k-1}$. The h-vector encodes the numerator of the Hilbert series for S/I.

```
i33 : d = dim \bowtie 0
```

o37 : Expression of class Divide

RESOLUTIONS OF MONOMIAL IDEALS. As David Bayer, Irena Peeva, and Bernd Sturmfels [BPS] reveal, minimal free resolutions of monomial ideals are frequently encoded by a simplicial complex. Consider a monomial ideal J in the polynomial ring $R := \mathbb{Q}[y_1, y_2, \dots, y_m]$. Assume that R is equipped with the \mathbb{N}^m -grading given, for all $1 \le i \le m$, by $\deg(y_i) = \mathbf{e}_i$ where $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$ is the standard basis. Let Δ be a simplicial complex whose vertices are labelled by the generators of J. We label each face F of Δ by the least common multiple $y^{\mathbf{a}_F} \in R$ of its vertices; the empty face is labelled by the monomial $1 = y^{\mathbf{a}_{\emptyset}}$. The complex $C(\Delta)$ supported on the labelled simplicial complex Δ is the complex of free \mathbb{N}^m -graded R-modules with basis corresponding to the faces of Δ . The differential $\partial: C(\Delta) \to C(\Delta)$ is given by

$$C_i(\Delta) := \bigoplus_{\dim(F) = i-1} R(-\mathbf{a}_F) \quad \text{and} \quad \partial(F) = \sum_{\dim(G) = \dim(F) - 1} \operatorname{sign}(G, F) y^{\mathbf{a}_F - \mathbf{a}_G} G.$$

The symbols F and G represent both faces in Δ and basis vectors in the underlying free module of $C(\Delta)$. The sign of the pair (G, F) belongs to $\{-1, 0, 1\}$ and is part of the data in the boundary map of the chain complex of Δ . For more information, see Subsection 4.1 in [MS] or Chapter 55 in [P].

We illustrate this construction with an explicit example. Consider the simplicial complex Γ in Figure 2 and the monomial ideal $J = (y_0y_1, y_0y_2, y_0y_3, y_1y_2y_3)$ in $R = \mathbb{Q}[y_0, y_1, y_2, y_3]$. Label the

FIGURE 2. The left is simplicial complex Γ and the right is the labelling of its vertices

vertices of Γ by the generators of $J: x_0 \mapsto y_0 y_1, x_1 \mapsto y_0 y_2, x_2 \mapsto y_0 y_3, \text{ and } x_3 \mapsto y_1 y_2 y_3.$

$$i38 : S = ZZ[x_0..x_3];$$

i39 :
$$\Delta = simplicialComplex\{x_0*x_1*x_2, x_2*x_3\}$$

o39 = simplicialComplex |
$$x_2x_3 x_0x_1x_2$$
 |

o39 : SimplicialComplex

i40 : chainComplex Δ

$$040 = ZZ^{1} \leftarrow ZZ^{4} \leftarrow ZZ^{4} \leftarrow ZZ^{1} \leftarrow ZZ^{1}$$

o40 : ChainComplex

$$i41 : R = QQ[y_0..y_3];$$

$$i42 : J = ideal(y_0*y_1, y_0*y_2, y_0*y_3, y_1*y_2*y_3)$$

$$042 = ideal (y y , y y , y y , y y y)$$

 $01 02 03 123$

i43 : C = chainComplex(
$$\Delta$$
, Labels => J_*)

$$043 = R \quad -- \quad R \quad -- \quad R \quad -- \quad R \quad -- \quad R$$

$$0 \qquad 1 \qquad 2 \qquad 3$$

o43 : ChainComplex

o44 : ChainComplexMap

$$i45 : assert(res (R^1/J) == C)$$

The chain complex $C(\Delta)$ depends on the labelling and is not always a resolution.

i46 : C' = chainComplex(
$$\Delta$$
, Labels => reverse J_*)

$$046 = R < -- R < -- R < -- R < -- R$$

$$0 1 2 3$$

o12 : ChainComplex

Given a monomial ideal J, there are several algorithms that produce a labelled simplicial complex Δ such that chain complex $C(\Delta)$ is a free resolution of R/J.

the I-homogenization of $\widetilde{C}(\Delta;k)$ is a free resolution of S/I, though often non-minimally. Examples of such constructions are the Taylor resolution, Lyubeznik resolution, and the Buchberger resolution, all of which are implemented in SimplicialComplexes. We have also implemented a constructor for the Scarf complex, which is a complex that is not always a free resolution of S/I, but when it is a free resolution it is minimal. We will not describe these constructions here, but a concise description of the Taylor resolution, Lyubeznik resolution, and Scarf complex is given in [Me], and a description of the Buchberger resolution is given in [OW].

Consider the monomial ideal $I = (x_1x_3, x_2^2, x_0x_2, x_1^2, x_0^2) \subset \mathbb{C}[x_0, \dots, x_3]$. The Taylor resolution of I can be realized as an I-homogenization of the 4-simplex.

The Buchberger simplicial complex is a subcomplex of the 4-simplex, and the Buchberger resolution is an I-homogenization of the Buchberger simplicial complex. For this example, the Buchberger resolution is the minimal free resolution of S/I, but this is not always the case.

Lyubeznik simplicial complexes and resolutions are constructed relative to a total order on the minimal generators of I. Every ordering will produce a resolution, but these resolutions need not be isomorphic. When no ordering is given, the methods lyubeznikSimplicialComplex and lyubeznikResolution will order the generators relative to the monomial order on S which, in Macaulay2, is graded revlex by

default. The option MonomialOrder reorders the minimal generators of I relative to the monomial ordering on S. For example, MonomialOrder => $\{2,1,0,3,4\}$ refers to the total ordering $x_0x_2 < x_2^2 < x_1x_3 < x_1^2 < x_0^2$ on the minimal generators of I. We see that by changing the ordering we can both produce the worst case (Taylor resolution) and best case (minimal free resolution).

The Scarf simplicial complex of I starts with the labelled 4-simplex and removes any faces F, F' such that $m_F = m_{F'}$. The I-homogenization of the Scarf simplicial complex is the Scarf chain complex. It is often the case that the Scarf chain complex is not a free resolution of S/I, but when it is a resolution, it is minimal, see Lemma 3.1 in [BPS].

```
i16 : scarfSimplicialComplex(J,R)
o16 = simplicialComplex | acde abcd |
o16 : SimplicialComplex
i17 : scarfChainComplex J == buchbergerResolution J
o17 = true
```

ACKNOWLEDGEMENTS. All three authors were partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

REFERENCES

- [ÀFG] Josep Alvarez Montaner, Oscar Fernández-Ramos, and Philippe Gimenez, *Pruned cellular free resolutions of monomial ideals*, J. Algebra **541** (2020), 126–145.
- [BH] Winfried Bruns and Jürgen Herzog, *Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.
 - [L] Frank H. Lutz, The Manifold Page (2017), http://page.math.tu-berlin.de/~lutz/stellar/.
- [M2] Daniel R. Grayson and Michael E. Stillman, *Macaulay2*, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
- [Me] Jeff Mermin, *Three simplicial resolutions*, Progress in commutative algebra 1, de Gruyter, Berlin, 2012, pp. 127–141.
- [MS] Ezra Miller and Bernd Sturmfels, *Combinatorial Commutative Algebra*, Graduate Texts in Mathematics, vol. 227, Springer-Verlag New York, 2005.
- [Mu] James R. Munkres, *Elements of algebraic topology*, Addison-Wesley Publishing Company, Menlo Park, CA, 1984.
- [P] Irena Peeva, *Graded Syzygies*, Algebra and Applications, vol. 14, Springer-Verlag London, 2011.
- [BPS] Dave Bayer, Irena Peeva, and Bernd Sturmfels, *Monomial resolutions*, Math. Res. Lett. **5** (1998), no. 1-2, 31–46, DOI 10.4310/MRL.1998.v5.n1.a3. MR1618363
- [OW] Anda Olteanu and Volkmar Welker, *The Buchberger resolution*, J. Commut. Algebra **8** (2016), no. 4, 571–587.

[S] Richard P. Stanley, *Combinatorics and Commutative Algebra*, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, 1996.

DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, $K7L\ 3N6$ hersey.b@queensu.ca, ggsmith@mast.queensu.ca, 18az45@queensu.ca.