Title of the Document

Author Name

June 22, 2024

Contents

Title of the Document 2

1 Exercises

- 1. Let (X, d) be a metric space and $S \subseteq X$. Show that $\overline{S}^{int} = \emptyset$.
- 2. Show that for an arbitrary choice of $a, b, r \in \mathbb{R}$, the closed disk $E = \{(x, y) \mid (x a)^2 + (y b)^2 \le r^2\}$ is a bounded set in \mathbb{R}^2 .
- 3. Let $f: X \to \mathbb{R}$ be a metric space and for $x, y \in X$. Show that if $d(x, y) < \varepsilon$ for every $\varepsilon > 0$, then x = y.

Exercise 2.1. (i) Assume $\overline{S}^{int} \neq \emptyset$. Then $\exists x \in \overline{S}^{int}, \exists r > 0$ such that $B_r(x) \subseteq S^{int}$. However, by $x \notin S$, this value of r > 0 implies $B_r(x) \cap S^c \neq \emptyset \Rightarrow B_r(x) \nsubseteq S$, which is a contradiction. Hence, $x \notin S \Rightarrow S^{int} = \emptyset$. \square

Exercise 2.2. (ii) A set S is bounded iff $\exists M \in \mathbb{R}^+ \ \forall x, y \in S \ d(x,y) \leq M$. Let $a,b,r \in \mathbb{R}$. So $E = \{(x,y) \in \mathbb{R}^2 \mid (x-a)^2 + (y-b)^2 \leq r^2\}$.

$$\Rightarrow x^{2} - 2ax + a^{2} + y^{2} - 2yb + b^{2} \le r^{2}$$
$$\Rightarrow x^{2} - 2ax + y^{2} - 2yb \le r^{2} - a^{2} - b^{2}$$
$$\Rightarrow x^{2} + y^{2} \le r^{2} - a^{2} - b^{2} + 2ax + 2yb$$

We need to show x^2 is bounded.

$$\begin{split} &(x-a)^2 \leq r^2 \\ &\Rightarrow |x-a| \leq |r| \\ &\Rightarrow |x-a| + a \leq |r| + |a| \\ &\Rightarrow |x| \leq |x-a| + a \leq |x-a| + |a| \leq R + |a| \end{split}$$

Thus x^2 is bounded.

 $\Rightarrow |y| \le r + |a| \Rightarrow x^2 \le (r + |a|)^2 \text{ Same for } y_i: \ y_i^2 \le (r + |b|)^2 \ \forall z = (x, y) \in D_{r, (a, b)} \ \|z\| = \sqrt{x^2 + y^2} \le \sqrt{(r + |a|)^2 + (r + |b|)^2} \text{ Thus if } M = \sqrt{(r + |a|)^2 + (r + |b|)^2}, \text{ the bond holds.}$

15 named boundedness = distance boundedness.

Let
$$x = (x_1, x_2), y = (y_1, y_2) \in D_{r,a,b}$$

$$z_i \in \{x_i, y_i\} \ (x_2 - a)^2 + (y_2 - b)^2 = r^2 \Rightarrow d(z_i, (a, b)) = \sqrt{(x_2 - a)^2 + (y_2 - b)^2} \le r \Rightarrow d(x, y) \le d(x_1, (a, b)) + d(y_1, (a, b)) = \sqrt{(x_1 - a)^2 + (x_1 - b)^2} + \sqrt{(y_1 - a)^2 + (y_1 - b)^2} \le r + r = 2r$$

(iii) Suppose that $x \neq y$. Then $d(x,y) \neq 0$. Thus if we choose $\epsilon = d(x,y) \implies \epsilon > 0$ but $d(x,y) \geq \epsilon$ (contradiction).

(contradiction) Suppose $x \neq y$ and so $d(x, y) \neq 0$.

Choose $\epsilon > 0$ so that $\epsilon = \frac{d(x,y)}{2}$. Then we must have $d(x,y) < \epsilon = \frac{d(x,y)}{2}$, which is a contradiction, as this implies if $d(x,y) \le \frac{d(x,y)}{2} \implies d(x,y) = \epsilon = \frac{d(x,y)}{2}$

$$\implies d(x,y) = \frac{d(x,y)}{2} \implies 2\epsilon \le \epsilon$$

Thus, x = y.

Title of the Document 3

(iv) Let $(V, \|.\|)$ be a normed vsp. Then let r > 0 and $x \in V$. Then $B_r(x) = \{y \in V | d(x, y) < r\}$ $B_{\epsilon+r}(0) = \{y \in V | d(0, y) < r + \|x\|\}$

Let $y \in B_r(x)$. $d(0,y) \le d(0,x) + d(x,y) \le ||x|| + r \implies B_r(x) \le B_{\epsilon+r}(0)$

(v) Suppose S is bounded. Then $\exists M \in \mathbb{R}$ such that $\forall x \in S ||x|| \leq M$. (Equivalent to $\exists M \in \mathbb{R} : \forall x \in Sx \in B_M(0)$