Trabalho 2 de Pesquisa Operacional

Davi Magalhães Pereira e Alexandre Vieira Pereira Pacelli

Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora, Juiz de Fora

15 de setembro de 2021

Otimização de portfólio de investimentos

1. Modelagem

1.1. Variáveis

Como variáveis do modelo temos todos os ativos pertencentes à carteira de investimentos do investidor.

Sendo x[i], para todo e qualquer ativo, a porcentagem da carteira a ser investida no mesmo de acordo com a resposta do modelo (seguindo restrições e função objetivo)

1.2. Restrições

Restrições Solicitadas pelo Investidor:

- Ativos RENDA FIXA == 15% do total investido
- Ativos FUNDOS IMOBILIÁRIOS == 15% do total investido
- Ativos GOLD11, HASH11, BIAU39 == 5% do total investido
- Ativos DEMAIS AÇÕES == 65% do total investido
- TODOS os ATIVOS devem possuir um investimento >= 1% do total investido
- TODOS os ATIVOS devem possuir um investimento <= 15% do total investido
- Soma de todos os investimentos == 100%

Restrições gerais presentes em todos os modelos testados para o trabalho:

- TODOS os ATIVOS devem possuir um investimento >= 0.5% do total investido
- TODOS os ATIVOS devem possuir um investimento <= 15% do total investido
- Soma de todos os investimentos == 100%
- O RETORNO TOTAL do investimento >= 8% *OU* A VARIÂNCIA TOTAL do investimento <= 60%

Em 2.2.1. Modelo mantendo todas as restrições solicitadas pelo investidor

Neste modelo nós mantivemos as retrições solicitadas pelo investidor

Objetivo: Minimizar Variância

- Porcentagem em fundos imobiliários == 0.15
- Porcentagem em renda fixa == 0.15
- Porcentagem em GOLD11, HASH11 e BIAU39 == 0.05
- Porcentagem no restante dos ativos == 0.65
- Valor mínimo em cada ação >= 0.005
- Valor máximo em cada ação <= 0.15
- Soma das váriaveis == 1
- Retorno mínimo >= 8

Objetivo: Maximizar Retorno

- Porcentagem em fundos imobiliários == 0.15
- Porcentagem em renda fixa == 0.15
- Porcentagem em GOLD11, HASH11 e BIAU39 == 0.05
- Porcentagem no restante dos ativos == 0.65
- Valor mínimo em cada ação >= 0.005
- Valor máximo em cada ação <= 0.15
- Soma das váriaveis == 1
- Variância máxima <= 60

Em 2.2.2. Modelo removendo algumas restrições entre ativos de renda variável

Neste modelo, removemos algumas restrições entre ativos de renda variável e mantivemos as restrições de rendas fixas separadas dos de renda variável, pois esses não devem ser comparados.

Objetivo: Minimizar Variância

- Porcentagem em renda fixa == 0.15
- Porcentagem em renda variável == 0.85
- Valor mínimo em cada ação >= 0.005
- Valor máximo em cada ação <= 0.15
- Soma das váriaveis == 1
- Retorno mínimo >= 8

Objetivo: Maximizar Retorno

- Porcentagem em renda fixa == 0.15
- Porcentagem em renda variável == 0.85
- Valor mínimo em cada ação >= 0.005
- Valor máximo em cada ação <= 0.15
- Soma das váriaveis == 1
- Variância máxima <= 60

Em 2.2.3. Modelo removendo algumas restrições e utilizando faixas de restrições

Neste deixamos o modelo mais livre, ao invés de usar as restrições de igualdades anteriormente propostas demos uma margem para essas.

Objetivo: Minimizar Variância

- Porcentagem em renda fixa >= 0.1
- Porcentagem em renda fixa <= 0.3
- Porcentagem em renda variável >= 0.7
- Porcentagem em renda variável <= 0.9
- Valor mínimo em cada ação >= 0.005
- Valor máximo em cada ação <= 0.15
- Soma das váriaveis == 1
- Retorno mínimo >= 8

Objetivo: Maximizar Retorno

- Porcentagem em renda fixa >= 0.1
- Porcentagem em renda fixa <= 0.3
- Porcentagem em renda variável >= 0.7
- Porcentagem em renda variável <= 0.9
- Valor mínimo em cada ação >= 0.005
- Valor máximo em cada ação <= 0.15
- Soma das váriaveis == 1
- Variância máxima <= 60

Em 2.2.4. Modelo mais livre

E, por fim, deixamos o modelo ainda mais livre. Removemos todas restrições impostas aos ativos, exigindo somente que seja alocado uma porcetagem mínima e máxima em cada um.

Objetivo: Minimizar Variância

- Valor mínimo em cada ação >= 0.005
- Valor máximo em cada ação <= 0.15
- Soma das váriaveis == 1
- Retorno mínimo >= 8

Objetivo: Maximizar Retorno

- Valor mínimo em cada ação >= 0.005
- Valor máximo em cada ação <= 0.15
- Soma das váriaveis == 1
- Variância máxima <= 60

1.3. Função objetivo

Como Função Objetivo, o investidor despertou interesse em descobrir os ativos de MAIOR RETORNO e de MENOR VARIÂNCIA em sua carteira de investimentos.

Portanto, elaboramos as seguintes Funções Objetivo para os dois interesses acima, onde: * 'i' = Cada Ativo da carteira de investimentos * 'r' = Retorno em % de cada ativo desde sua compra * 'v' = Variância de cada ativo desde sua compra

$$z_{min} = \sum_{i=1}^{n} \mathbf{v}_i \tag{1}$$

$$z_{max} = \sum_{i=1}^{n} \mathbf{r}_i \tag{2}$$

2. Implementação

2.1. Coleta de Dados

[28]:

var_dict

Realizamos alguns testes com a API de dados do Yahoo e percebemos que algumas ações e rendas fixas possuíam dados faltantes ou inexistentes, então baixamos essas e coletamos os dados manualmente.

E então, construímos os dois dicionários para formar a função objetivo de um tipo de carteira que foi solicitado pelo investidor. O mesmo nos explicou que gostaria de aplicar mais dinheiro em ações/fundos/rendas fixas menos voláteis e ao mesmo tempo, levar em consideração quanto cada investimento o retornou desde sua compra.

```
[28]: {'Selic': 7605.365255462518,
       'Prefixado': 271.49614009511976,
       'IPCA': 5.2457444321145195,
       'HASH11.SA': 74.32406074367088,
       'TGAR11.SA': 17.432172175786853,
       'BIAU39.SA': 2.374279376623375,
       'GOLD11.SA': 0.12897262139466956,
       'XINA11.SA': 1.0428390993788819,
       'ALSO3.SA': 4.3012893175270355,
       'ALUP11.SA': 1.7235097835979942,
       'AURA33.SA': 26.92945538709674,
       'BABA34.SA': 63.886195816910124,
       'BOVA11.SA': 84.77055131362727,
       'BRML3.SA': 0.6558331862238179,
       'BRPR3.SA': 0.4034105712248405,
       'COGN3.SA': 0.3964924842230561,
       'CSAN3.SA': 7.398388268431805,
       'CYRE3.SA': 8.040283744860925,
       'DIRR3.SA': 0.7390312531266555,
       'EGIE3.SA': 4.306696404097669,
       'FESA4.SA': 157.19910113627762,
       'GGBR4.SA': 18.87004211357665,
       'GOAU4.SA': 3.8311162536542103,
```

```
'IVVB11.SA': 355.1450851527817,
'JHSF3.SA': 0.19806698450874277,
'KNRI11.SA': 97.79476148887748,
'MXRF11.SA': 0.05479719270370854,
'OIBR3.SA': 0.13187151757975604,
'RAIZ4.SA': 0.05025498623320052,
'SULA11.SA': 14.624895297821103,
'TAEE11.SA': 17.53831546578641,
'TEND3.SA': 9.085364605859361,
'TRIS3.SA': 1.8382505512041083,
'TRPL4.SA': 3.1927415261826284,
'VIVT3.SA': 2.852285603560675,
'XPCI11.SA': 19.760213889181845}
```

[29]: return_dict

```
[29]: {'IPCA': -7.18,
       'Selic': 0,
       'Prefixado': 0,
       'KNRI11.SA': 0,
       'XPCI11.SA': 0,
       'XINA11.SA': -22.08,
       'VIVT3.SA': -7.45,
       'TRPL4.SA': -8.94,
       'TRIS3.SA': -23.36,
       'TGAR11.SA': 0.29,
       'TEND3.SA': -19.57,
       'TAEE11.SA': 24.53,
       'SULA11.SA': -12.05,
       'RAIZ4.SA': -3.51,
       'OIBR3.SA': -38.0,
       'MXRF11.SA': -0.8,
       'JHSF3.SA': 7.34,
       'IVVB11.SA': 9.53,
       'HASH11.SA': -5.79,
       'GOLD11.SA': -3.85,
       'GOAU4.SA': 1.41,
       'GGBR4.SA': 2.38,
       'FESA4.SA': 16.51,
       'EGIE3.SA': -7.68,
       'DIRR3.SA': -6.52,
       'CYRE3.SA': -17.04,
       'CSAN3.SA': 4.83,
       'COGN3.SA': -14.84,
       'BRPR3.SA': -3.45,
       'BRML3.SA': 22.01,
       'BOVA11.SA': 4.7,
```

```
'BIAU39.SA': -1.77,
'BABA34.SA': -27.99,
'AURA33.SA': 14.35,
'ALUP11.SA': -5.53,
'ALSO3.SA': 8.66}
```

2.2. Implementação do Modelo

Com os dados de variância e retorno obtidos, podemos agora otimizar o portfólio.

2.2.1. Modelo mantendo todas as restrições solicitadas

• Minimizando a variância e com retorno mínimo de 8%

```
objective: 55.019
  invs_IPCA=0.140
  invs_Selic=0.005
  invs_Prefixado=0.005
  invs_KNRI11.SA=0.005
  invs_XPCI11.SA=0.005
  invs_XINA11.SA=0.005
  invs_VIVT3.SA=0.005
  invs_TRPL4.SA=0.005
  invs_TRIS3.SA=0.005
  invs_TGAR11.SA=0.135
  invs_TEND3.SA=0.005
  invs_TAEE11.SA=0.150
  invs_SULA11.SA=0.005
  invs_RAIZ4.SA=0.005
  invs_OIBR3.SA=0.005
  invs_MXRF11.SA=0.005
  invs_JHSF3.SA=0.005
  invs_IVVB11.SA=0.005
  invs_HASH11.SA=0.005
  invs_GOLD11.SA=0.005
  invs_GOAU4.SA=0.005
  invs_GGBR4.SA=0.005
  invs_FESA4.SA=0.009
  invs_EGIE3.SA=0.005
  invs_DIRR3.SA=0.005
  invs_CYRE3.SA=0.005
  invs_CSAN3.SA=0.005
  invs_COGN3.SA=0.005
  invs_BRPR3.SA=0.005
  invs_BRML3.SA=0.150
  invs_BOVA11.SA=0.005
  invs_BIAU39.SA=0.040
  invs_BABA34.SA=0.005
```

invs_AURA33.SA=0.150 invs_ALUP11.SA=0.005 invs_ALS03.SA=0.086

Variâcia encontrada pela função objetivo: 55.01854056755589

Retorno total: 7.9999999999997
Total alocado em renda fixa: 0.15

Total alocado em renda variável: 0.8500000000000001

• Maximizando o retorno e com variância máxima de 60

objective: 8.256 invs_IPCA=0.140 invs_Selic=0.005 invs_Prefixado=0.005 invs_KNRI11.SA=0.005 invs_XPCI11.SA=0.005 invs_XINA11.SA=0.005 invs_VIVT3.SA=0.005 invs_TRPL4.SA=0.005 invs_TRIS3.SA=0.005 invs_TGAR11.SA=0.135 invs_TEND3.SA=0.005 invs_TAEE11.SA=0.150 invs_SULA11.SA=0.005 invs_RAIZ4.SA=0.005 invs_OIBR3.SA=0.005 invs_MXRF11.SA=0.005 invs_JHSF3.SA=0.005 invs_IVVB11.SA=0.005 invs_HASH11.SA=0.005 invs_GOLD11.SA=0.005 invs_GOAU4.SA=0.005 invs_GGBR4.SA=0.005 invs_FESA4.SA=0.042 invs_EGIE3.SA=0.005 invs_DIRR3.SA=0.005 invs_CYRE3.SA=0.005 invs_CSAN3.SA=0.005 invs_COGN3.SA=0.005 invs_BRPR3.SA=0.005 invs_BRML3.SA=0.150 invs_BOVA11.SA=0.005 invs_BIAU39.SA=0.040 invs_BABA34.SA=0.005 invs_AURA33.SA=0.150 invs_ALUP11.SA=0.005 invs_ALSO3.SA=0.053

Retorno encontrado pela função objetivo: 8.255755501530928

Variância total: 60.0

Total alocado em renda fixa: 0.15 Total alocado em renda variável: 0.85

2.2.2. Modelo removendo algumas restrições entre ativos de renda variável

• Minimizando a variância e com retorno mínimo de 8%

```
objective: 49.189
  invs_ALS03.SA=0.150
  invs_ALUP11.SA=0.005
  invs_AURA33.SA=0.005
  invs_BABA34.SA=0.005
  invs_BOVA11.SA=0.005
  invs_BRML3.SA=0.150
  invs_BRPR3.SA=0.005
  invs_COGN3.SA=0.005
  invs_CSAN3.SA=0.110
  invs_CYRE3.SA=0.005
  invs_DIRR3.SA=0.005
  invs_EGIE3.SA=0.005
  invs_FESA4.SA=0.005
  invs\_GGBR4.SA=0.005
  invs_GOAU4.SA=0.005
  invs_IVVB11.SA=0.005
  invs_JHSF3.SA=0.150
  invs_KNRI11.SA=0.005
  invs_MXRF11.SA=0.005
  invs_OIBR3.SA=0.005
  invs_RAIZ4.SA=0.005
  invs_SULA11.SA=0.005
  invs_TAEE11.SA=0.150
  invs_TEND3.SA=0.005
  invs_TRIS3.SA=0.005
  invs_TRPL4.SA=0.005
  invs_VIVT3.SA=0.005
  invs_XPCI11.SA=0.005
  invs_Selic=0.005
  invs_Prefixado=0.005
  invs_IPCA=0.140
  invs_HASH11.SA=0.005
  invs_TGAR11.SA=0.005
  invs_BIAU39.SA=0.005
  invs_GOLD11.SA=0.005
  invs_XINA11.SA=0.005
```

Variâcia encontrada pela função objetivo: 49.18879023082532

Retorno total: 7.999999999999964
Total alocado em renda fixa: 0.15

• Maximizando o retorno e com variância máxima de 60

```
objective: 9.731
 invs_ALS03.SA=0.150
 invs_ALUP11.SA=0.005
 invs_AURA33.SA=0.150
 invs_BABA34.SA=0.005
 invs_BOVA11.SA=0.005
 invs_BRML3.SA=0.150
 invs_BRPR3.SA=0.005
 invs_COGN3.SA=0.005
 invs_CSAN3.SA=0.005
 invs_CYRE3.SA=0.005
 invs_DIRR3.SA=0.005
 invs_EGIE3.SA=0.005
 invs_FESA4.SA=0.054
 invs_GGBR4.SA=0.005
 invs_GOAU4.SA=0.005
 invs_IVVB11.SA=0.005
 invs_JHSF3.SA=0.061
 invs_KNRI11.SA=0.005
 invs_MXRF11.SA=0.005
 invs_OIBR3.SA=0.005
 invs_RAIZ4.SA=0.005
 invs_SULA11.SA=0.005
 invs_TAEE11.SA=0.150
 invs_TEND3.SA=0.005
 invs_TRIS3.SA=0.005
 invs_TRPL4.SA=0.005
 invs_VIVT3.SA=0.005
 invs_XPCI11.SA=0.005
 invs_Selic=0.005
 invs_Prefixado=0.005
 invs_IPCA=0.140
 invs_HASH11.SA=0.005
 invs_TGAR11.SA=0.005
 invs_BIAU39.SA=0.005
 invs_GOLD11.SA=0.005
 invs_XINA11.SA=0.005
Retorno encontrado pela função objetivo: 9.7309305094014
Total alocado em renda fixa: 0.15
```

2.2.3. Modelo removendo algumas restrições e utilizando faixas de restrições

Minimizando a variância e com retorno mínimo de 8%

```
objective: 48.513
  invs_ALS03.SA=0.150
  invs_ALUP11.SA=0.005
  invs_AURA33.SA=0.005
  invs_BABA34.SA=0.005
  invs_BOVA11.SA=0.005
  invs_BRML3.SA=0.150
  invs_BRPR3.SA=0.005
  invs_COGN3.SA=0.005
  invs_CSAN3.SA=0.053
  invs_CYRE3.SA=0.005
  invs_DIRR3.SA=0.005
  invs_EGIE3.SA=0.005
  invs_FESA4.SA=0.005
  invs_GGBR4.SA=0.005
  invs_GOAU4.SA=0.005
  invs_IVVB11.SA=0.005
  invs_JHSF3.SA=0.150
  invs_KNRI11.SA=0.005
  invs_MXRF11.SA=0.112
  invs_OIBR3.SA=0.005
  invs_RAIZ4.SA=0.005
  invs_SULA11.SA=0.005
  invs_TAEE11.SA=0.150
  invs_TEND3.SA=0.005
  invs_TRIS3.SA=0.005
  invs_TRPL4.SA=0.005
  invs_VIVT3.SA=0.005
  invs_XPCI11.SA=0.005
  invs_Selic=0.005
  invs_Prefixado=0.005
  invs_IPCA=0.090
  invs_HASH11.SA=0.005
  invs_TGAR11.SA=0.005
  invs_BIAU39.SA=0.005
 invs_GOLD11.SA=0.005
  invs_XINA11.SA=0.005
Variâcia encontrada pela função objetivo: 48.513149520159
Retorno total: 7.999999999999964
Total alocado em renda fixa: 0.1
```

• Maximizando o retorno e com variância máxima de 60

objective: 10.472 invs_ALSO3.SA=0.150 invs_ALUP11.SA=0.005

```
invs_AURA33.SA=0.150
  invs_BABA34.SA=0.005
  invs_BOVA11.SA=0.005
  invs_BRML3.SA=0.150
  invs_BRPR3.SA=0.005
  invs_COGN3.SA=0.005
  invs_CSAN3.SA=0.005
  invs_CYRE3.SA=0.005
  invs_DIRR3.SA=0.005
  invs_EGIE3.SA=0.005
  invs_FESA4.SA=0.056
  invs_GGBR4.SA=0.005
  invs_GOAU4.SA=0.005
  invs_IVVB11.SA=0.005
  invs_JHSF3.SA=0.109
  invs_KNRI11.SA=0.005
  invs_MXRF11.SA=0.005
  invs_OIBR3.SA=0.005
  invs_RAIZ4.SA=0.005
  invs_SULA11.SA=0.005
  invs_TAEE11.SA=0.150
  invs_TEND3.SA=0.005
  invs_TRIS3.SA=0.005
  invs_TRPL4.SA=0.005
  invs_VIVT3.SA=0.005
  invs_XPCI11.SA=0.005
  invs_Selic=0.005
  invs_Prefixado=0.005
  invs_IPCA=0.090
  invs_HASH11.SA=0.005
  invs_TGAR11.SA=0.005
  invs_BIAU39.SA=0.005
  invs_GOLD11.SA=0.005
  invs_XINA11.SA=0.005
Retorno encontrado pela função objetivo: 10.471671559498496
Variância total: 60.0
Total alocado em renda fixa: 0.1
```

2.2.4. Modelo mais livre

• Minimizando a variância e com retorno mínimo de 8%

```
objective: 47.710
invs_ALSO3.SA=0.150
invs_ALUP11.SA=0.005
invs_AURA33.SA=0.005
invs_BABA34.SA=0.005
```

```
invs_BOVA11.SA=0.005
invs_BRML3.SA=0.150
invs_BRPR3.SA=0.005
invs_COGN3.SA=0.005
invs_CSAN3.SA=0.005
invs_CYRE3.SA=0.005
invs_DIRR3.SA=0.005
invs_EGIE3.SA=0.005
invs_FESA4.SA=0.005
invs_GGBR4.SA=0.005
invs_GOAU4.SA=0.005
invs_IVVB11.SA=0.005
invs_JHSF3.SA=0.150
invs_KNRI11.SA=0.005
invs_MXRF11.SA=0.150
invs_OIBR3.SA=0.005
invs_RAIZ4.SA=0.101
invs_SULA11.SA=0.005
invs_TAEE11.SA=0.149
invs_TEND3.SA=0.005
invs_TRIS3.SA=0.005
invs_TRPL4.SA=0.005
invs_VIVT3.SA=0.005
invs_XPCI11.SA=0.005
invs_Selic=0.005
invs_Prefixado=0.005
invs_IPCA=0.005
invs_HASH11.SA=0.005
invs_TGAR11.SA=0.005
invs_BIAU39.SA=0.005
invs_GOLD11.SA=0.005
invs_XINA11.SA=0.005
```

Variâcia encontrada pela função objetivo: 47.70984227946272

Retorno total: 7.999999999999964
Total alocado em renda fixa: 0.015

Total alocado em renda variável: 0.9849999999999999

Maximizando o retorno e com variância máxima de 60

objective: 11.603 invs_ALSO3.SA=0.150 invs_ALUP11.SA=0.005 invs_AURA33.SA=0.150 invs_BABA34.SA=0.005 invs_BOVA11.SA=0.005 invs_BRML3.SA=0.150 invs_BRPR3.SA=0.005 invs_COGN3.SA=0.005

```
invs_CSAN3.SA=0.049
  invs_CYRE3.SA=0.005
  invs_DIRR3.SA=0.005
  invs_EGIE3.SA=0.005
  invs_FESA4.SA=0.056
  invs_GGBR4.SA=0.005
  invs_GOAU4.SA=0.005
  invs_IVVB11.SA=0.005
  invs_JHSF3.SA=0.150
  invs_KNRI11.SA=0.005
  invs_MXRF11.SA=0.005
  invs_OIBR3.SA=0.005
  invs_RAIZ4.SA=0.005
  invs_SULA11.SA=0.005
  invs_TAEE11.SA=0.150
  invs_TEND3.SA=0.005
  invs_TRIS3.SA=0.005
  invs_TRPL4.SA=0.005
  invs_VIVT3.SA=0.005
  invs_XPCI11.SA=0.005
  invs_Selic=0.005
  invs_Prefixado=0.005
  invs_IPCA=0.005
  invs_HASH11.SA=0.005
  invs_TGAR11.SA=0.005
  invs_BIAU39.SA=0.005
  invs_GOLD11.SA=0.005
  invs_XINA11.SA=0.005
Retorno encontrado pela função objetivo: 11.602893818642055
Variância total: 60.0
Total alocado em renda fixa: 0.015
```

2.2.5. Extra - Abordagem de máximos locais

Nessa abordagem maximizamos o número de máximos locais, de forma que o modelo alocará maior parte da carteira em ativos que tenham mais máximos. Essa abordagem é mais interessante para um perfil de investidor mais ousado ou talvez um *day trader*.

Abaixo mostramos exemplos de gráficos de cotação das ações da COGN3 e da BRPR3 destacando os máximos locais com pontos verdes e os mínimos locais com pontos vermelhos.

Resultados obtidos: objective: 10.140

```
invs_ALSO3.SA=0.010
  invs_ALUP11.SA=0.010
  invs_AURA33.SA=0.010
  invs_BABA34.SA=0.010
  invs_BOVA11.SA=0.010
  invs_BRML3.SA=0.010
  invs_BRPR3.SA=0.010
  invs_COGN3.SA=0.010
  invs_CSAN3.SA=0.010
  invs_CYRE3.SA=0.150
  invs_DIRR3.SA=0.150
  invs_EGIE3.SA=0.010
  invs_FESA4.SA=0.010
  invs_GGBR4.SA=0.010
  invs_GOAU4.SA=0.010
  invs_IVVB11.SA=0.010
  invs_JHSF3.SA=0.090
  invs_KNRI11.SA=0.010
  invs_MXRF11.SA=0.150
  invs_OIBR3.SA=0.010
  invs_RAIZ4.SA=0.010
  invs_SULA11.SA=0.010
  invs_TAEE11.SA=0.010
  invs_TEND3.SA=0.150
  invs_TRIS3.SA=0.010
  invs_TRPL4.SA=0.010
  invs_VIVT3.SA=0.010
  invs_XPCI11.SA=0.010
  invs_Selic=0.010
  invs_Prefixado=0.010
  invs_IPCA=0.010
  invs_HASH11.SA=0.010
  invs_TGAR11.SA=0.010
  invs_BIAU39.SA=0.010
  invs_GOLD11.SA=0.010
  invs_XINA11.SA=0.010
Valor encontrado pela função objetivo: 10.14
Retorno total: -6.7716
Variância total: 91.35584976331121
Total alocado em renda fixa: 0.03
Total alocado em renda variável: 0.97
```

3. Conclusão

Em 2.2.1. Modelo mantendo todas as restrições solicitadas pelo investidor

Neste modelo nós mantivemos as retrições solicitadas pelo investidor, acrescentando nas restrições o investimento em certas ações que são do seu interesse.

Objetivo: Minimizar Variância

• Variâcia encontrada pela função objetivo: 55.01854056755589

• Total alocado em renda variável: 0.85000000000000001

Objetivo: Maximizar Retorno

• Retorno encontrado pela função objetivo: 8.255755501530928

• Variância total: 60.00

Total alocado em renda fixa: 0.15
Total alocado em renda variável: 0.85

Tabela 1: Resultados obtidos em 2.2.1

Objetivo	Variância	Retorno
Minimizar variância	55.01	7.99
Maximizar retorno	60.00	8.25

Em 2.2.2 Modelo removendo algumas restrições entre ativos de renda variável

Neste modelo foram removidas algumas restrições impostas pelo investidor como o investimento em ativos específicos da carteira de acordo com o seu interesse.

Objetivo: Minimizar Variância

• Variâcia encontrada pela função objetivo: 49.18879023082532

Total alocado em renda variável: 0.85

Objetivo: Maximizar Retorno

• Retorno encontrado pela função objetivo: 9.7309305094014

Tabela 2: Resultados obtidos em 2.2.2

Objetivo	Variância	Retorno
Minimizar variância	49.18	7.99
Maximizar retorno	59.99	9.73

Análise dos resultados:

Percebemos uma diminuição da variância final encontrada pelo modelo. Também notou-se aumento do retorno total como objetivo. Isso pode ocorrer pois, no modelo anterior, ao restringir ativos específicos, o investidor pode estar sujeito a erros e escolher ativos que no final possuem, nesse caso, alta variância e possivelmente menores retornos.

Em 2.2.3 Modelo removendo algumas restrições e utilizando faixas de restrições

Objetivo: Minimizar Variância

• Variâcia encontrada pela função objetivo: 48.51314952015901

• Retorno total: 7.99999999999998

• Total alocado em renda fixa: 0.1

• Total alocado em renda variável: 0.899999999999999

Objetivo: Maximizar Retorno

• Retorno encontrado pela função objetivo: 10.471671559498496

• Variância total: 60.00

• Total alocado em renda fixa: 0.1

• Total alocado em renda variável: 0.899999999999999

Tabela 3: Resultados obtidos em 2.2.3

Objetivo	Variância	Retorno
Minimizar variância Maximizar retorno	48.51 60.00	7.99 10.47

Análise dos resultados

Ao retirar o investimento de ativos específicos e utilizarmos faixas de restrições podemos ver uma leve diminuição na variância total, assim como aumento do retorno. Isso aconteceu devido à possibilidade que a faixa de restrições deu ao modelo de alocar até 90% do investimento em rendas variáveis e menor alocamento em rendas fixas que podem não ser a melhor opção para investimento seguindo esses objetivos.

Em 2.2.4 Modelo mais livre

Objetivo: Minimizar Variância

• Variâcia encontrada pela função objetivo: 47.70984227946272

• Retorno total: 7.9999999999998

• Total alocado em renda fixa: 0.015

• Total alocado em renda variável: 0.985

Objetivo: Maximizar Retorno

• Retorno encontrado pela função objetivo: 11.602893818642055

Variância total: 59.9999999999999Total alocado em renda fixa: 0.015

• Total alocado em renda variável: 0.9849999999999999

Tabela 4: Resultados obtidos em 2.2.4

Objetivo	Variância	Retorno
Minimizar variância	47.70	7.99
Maximizar retorno	59.99	11.60

Análise dos resultados

Ao retirarmos as retrições para investimento o modelo conseguiu encontrar os melhores resultados dentre todos os já apresentados. Pois, ao eliminar a restrição de ativos específicos e de grupos de ativos na obrigatoriedade da carteira, foi apresentado para nós os melhores investimentos no decorrer de 1 ano.

A variância mínima encontrada para a carteira de 47% e retorno máximo encontrado de 11.6%

Com isso podemos observar o poder que o modelo tem de escolher os melhores ativos por conta própria. E, além disso, observamos como os interesses particulares dos investidores podem afetar bastante o resultado final de acordo com certas restrições impostas.

Sendo assim, é uma boa opção deixar o modelo mais livre e alimentá-lo com dados variados para posterior análise!