Propositions and Predicates

CSC165 Week 2 - Part 2

Negating Logical Operators

NOT:
$$\neg (\neg p) \iff p$$

It is not the case that x is not positive \iff x is positive

OR:
$$\neg (p \lor q) \iff$$

AND:
$$\neg (p \land q) \iff$$

р	q	¬(p ∨ q)	
Т	Т		
Т	F		
F	Т		
F	F		

р	q	¬(p ∧ q)	

 $IF: \neg (p \Longrightarrow q) \Longleftrightarrow$

IF AND ONLY IF: $\neg (p \Leftrightarrow q) \Leftrightarrow$

р	q	$p \Longrightarrow q$	
Т	Т		
Т	F		
F	Т		
F	F		

р	q	$\neg(p \Longrightarrow q)$	
Т	Т		
Т	F		
F	Т		
F	F		

р	q	$p \Leftrightarrow q$	
Т	Т		
Т	F		
F	Т		
F	F		

р	q	¬(p ⇔ q)	
Т	Т		
Т	F		
F	Т		
F	F		

A useful domain: Factors

Definition 1.8. Let $n, d \in \mathbb{Z}$. We say that d **divides** n, or n **is divisible by** d, when there exists a $k \in \mathbb{Z}$ such that n = dk. In this case, we use the notation $d \mid n$ to represent "d divides n."

630 is divisible by:

630

Using "|" or "=" to describe divisibility

2 | n

"2 divides n" or "2 is a factor of n"

 $\exists k \in \mathbb{Z}, n = 2k$

"There exists an integer k such that n can be written as a product of 2 and k" or "n is a multiple of 2"

Both "2 | n" and "n = 2k" are predicates.

How do we symbolize "All multiples of 100 are divisible by 10"?

Precedence

- **1.** ¬
- 2. V, ∧
- $3. \Rightarrow , \Leftrightarrow$
- 4. ∀,∃

So for example the expression

$$(p \lor \neg q) \land r \Rightarrow ((s \lor t) \land u) \lor (\neg v \land w)$$

$$\forall x, y \in \mathbb{N}, \ \exists z \in \mathbb{N}, \ x + y = z \land x \cdot y = z \Rightarrow x = y$$

represents

$$\forall x, y \in \mathbb{N}, \ \Big(\exists z \in \mathbb{N}, \ \Big(\big(x+y=z \land x \cdot y=z\big) \Rightarrow x=y\Big)\Big).$$

Scope

 \bigvee \forall $x \in \mathbb{N}$, \exists $k \in \mathbb{Z}$, \exists $m \in \mathbb{Z}$, \exists $n \in \mathbb{Z}$, $((x = 2k) \land (x = 3m)) \Longrightarrow (x = 6n)$

 $\forall x \in \mathbb{N}, ((\exists k \in \mathbb{Z}, x=2k) \land (\exists m \in \mathbb{Z}, x=3m)) \Longrightarrow (\exists n \in \mathbb{Z}, x=6n)$

 $X (\forall x \in \mathbb{N}, (\exists k \in \mathbb{Z}, x=2k) \land (\exists m \in \mathbb{Z}, x=3m)) \Longrightarrow (\exists n \in \mathbb{Z}, x=6n)$

 $(\forall x \in \mathbb{N}, (\exists k \in \mathbb{Z}, x=2k) \land (\exists m \in \mathbb{Z}, x = 3m))$ $\Longrightarrow (\forall x \in \mathbb{N}, \exists n \in \mathbb{Z}, x = 6k)$

Negating the universal quantifier

Let $U = \{\text{students in this course}\},\$ Let M(x) = ``x is majoring in English Literature''

How do we symbolize:

"It is not the case that all students in this course are majoring in English Literature."

Negating the existential quantifier

Let $U = \{\text{students in this course}\},\$ Let M(x) = ``x is majoring in English Literature''

How do we symbolize:

"No one is majoring in English Literature."

or

"It is not the case that someone in this course is majoring in English Literature."

Double Quantifiers

Let $U = \{\text{students in this course}\}$, and $x \in U$, $y \in U$

Let S(x,y) = "x studies with y"

$$\forall x \in U, \forall y \in U, S(x,y) =$$

$$\forall x \in U, \exists y \in U, S(x,y) =$$

$$\exists x \in U, \forall y \in U, S(x,y) =$$

$$\exists x \in U, \exists y \in U, S(x,y) =$$

Negating Double Quantifiers

$$\neg (\forall x \in U, \forall y \in U, S(x,y)) =$$

$$\neg (\forall x \in U, \exists y \in U, S(x,y)) =$$

$$\neg (\exists x \in U, \forall y \in U, S(x,y)) =$$

$$\neg$$
 ($\exists x \in U, \exists y \in U, S(x,y)$) =

Negating Double Quantifiers

$$\neg (\forall x \in U, \forall y \in U, S(x,y)) = \exists x \in U, \exists y \in U, \neg S(x,y)$$

$$\neg (\forall x \in U, \exists y \in U, S(x,y)) = \exists x \in U, \forall y \in U, \neg S(x,y)$$

$$\neg$$
 ($\exists x \in U, \forall y \in U, S(x,y)$) = $\forall x \in U, \exists y \in U, \neg S(x,y)$

$$\neg$$
 ($\exists x \in U, \exists y \in U, S(x,y)$) = $\forall x \in U, \forall y \in U, S(x,y)$