4.2. We have:

$$D(ax^2 + bx + c) = 2ax + b.$$

Name: HUNG HO

Email: hqdhftw@uchicago.edu

Thus, the corresponding matrix of D is

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right).$$

The characteristic polynomial of *A* is

$$p_A(\lambda) = \lambda^3$$
.

Hence, the only eigenvalue of D is 0, with algebraic multiplicity 3. Since $\lambda = 0$, its geometric multiplicity is also the dimension of Ker(A). Suppose $\mathbf{v} = (v_1, v_2, v_3) \in Ker(A)$, we know that $A\mathbf{v} = 0 \Leftrightarrow v_2 = 2v_3 = 0 \Leftrightarrow \mathbf{v} \in span(\{\mathbf{e}_1\})$. This implies that the geometric multiplicity of λ is 1.

4.4. Any 2×2 matrix has the form

$$\begin{pmatrix} a & b \\ d & c \end{pmatrix}$$

(i) The characteristic polynomial of A is $p_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$. Since A is Hermitian, we have

$$A^H = \left(\begin{array}{cc} \bar{a} & \bar{d} \\ \bar{b} & \bar{c} \end{array} \right).$$

 $A^H = A$ implies $a = \bar{a}, b = \bar{d}$. Therefore,

$$\Delta = \operatorname{tr}(A)^2 - 4\det(A) = (a+c)^2 - 4(ac-bd) = (a-c)^2 + 4bd = a\bar{a} + c\bar{c} - a\bar{c} - \bar{a}c + 4b\bar{b} = (a-c)(\bar{a}-\bar{c}) + 4b\bar{b} \ge 0.$$

Hence, A has only real eigenvalues.

(ii) Since $A^H = -A$, now we deduce that $\bar{a} = -a$, $\bar{c} = -c$, $\bar{d} = -b$. Hence,

$$\Delta = a^2 - 2ac + c^2 + 4bd = -a\bar{a} + \bar{a}c + a\bar{c} - c\bar{c} - 4b\bar{b} = -(a-c)(\bar{a} - \bar{c}) - 4b\bar{b} \le 0.$$

Hence, A has only imaginary eigenvalues.

4.6. Note that the determinant of an upper-triangular matrix or a diagonal matrix is just the product of the entries on the diagonal. Hence, assuming the matrix has dimension n, its characteristic polynomial p has the form $p(\lambda) = \prod_{i=1}^{n} (\lambda - a_{ii})$, whose roots are exactly a_{11}, \ldots, a_{nn} .

4.8.

- (i) It suffices to show that $\sin(x), \cos(x), \sin(2x), \cos(2x)$ are linearly independent. By exercise 3.8, we know that this is an orthonormal set, and thus linearly independent.
- (ii) We know that D is a 4×4 matrix, whose columns (in that order) are

$$D(\sin(x)), D(\cos(x)), D(\sin(2x)), D(\cos(2x)).$$

We have

$$D(\sin(x)) = \cos(x)$$

$$D(\cos(x)) = -\sin(x)$$

$$D(\sin(2x)) = 2\cos(2x)$$

$$D(\cos(2x)) = -2\sin(2x)$$

Thus, the matrix representation of D is

$$\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 \\
0 & 0 & 2 & 0
\end{array}\right).$$

- (iii) Consider $U = \text{span}\{\sin(x), \cos(x)\}\$ and $U^c = \text{span}\{\sin(2x), \cos(2x)\}\$
 - **4.13.** By some calculations, we got

$$P = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}, P^{-1} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}.$$

4.15. Since A is semisimple and thus diagonalizable, there exists an invertible matrix P such that $A = P^{-1}DP$, where P is a diagonal matrix whose diagonal entries are $\lambda_1, \ldots, \lambda_n$, the eigenvalues of A. Then, clearly for any nonnegative integer m, we have $A^m = P^{-1}D^mP$. Thus, if $f(x) = a_0 + a_1x + \ldots + a_nx^n$, then $f(A) = a_0I + a_1P^{-1}DP + \ldots + a_nP^{-1}D^nP = P^{-1}f(D)P$. Note that for any m, D^m is also a diagonal matrix whose entries are $\lambda_1^m, \ldots, \lambda_n^m$, thus we deduce that f(D) is also a diagonal matrix whose entries are $f(\lambda_1), f(\lambda_2), \ldots, f(\lambda_n)$. This shows that $\{f(\lambda_i)\}_{i=1}^n$ are the eigenvalues of f(A).

4.16.

(i) We know that $A = P^{-1}DP$, where

$$P = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 \\ 0 & 0.4 \end{pmatrix}, P^{-1} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}.$$

Hence,

$$\lim_{n \to \infty} A^n = \lim_{n \to \infty} P^{-1} D^n P = \lim_{n \to \infty} P^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 0.4^n \end{pmatrix} P = P^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} P = \frac{1}{3} \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}.$$

- (ii) The answer is still the same (does not depend on the choice of norm).
- (iii) Since A is similar to D, we know that the eigenvalues of A are 1 and 0.4. Thus by Theorem 4.3.12, the eigenvalues of $f(A) = 3I + 5A + A^3$ are $f(\lambda) = 3 + 5\lambda + \lambda^3$ for $\lambda = 1, 0.4$, which are 9 and 5.064.
- **4.18.** We know that λ is also an eigenvalue of A^T , so there exists \mathbf{x} such that $A^T\mathbf{x} = \lambda \mathbf{x}$. Taking transposes of both sides yields $\mathbf{x}^T A = \lambda \mathbf{x}$.
- **4.20.** Suppose A is Hermitian and is similar to B. We can write $A = Q^H B Q$ for some Q orthonormal, thus $B = QAQ^H$ and $B^H = (QAQ^H)^H = (Q^H)^H A^H Q^H = QAQ^H = B$ (note that $(Q^H)^H = Q$ and $A^H = A$). Hence B is also Hermitian.
- **4.24.** Suppose *A* is a Hermitian matrix such that $A^H = A$. It suffices to show $\rho_A(\mathbf{x}) = \overline{\rho_A(\mathbf{x})}$ for any \mathbf{x} . Indeed, We have

$$\overline{\rho_A(\mathbf{x})} = \frac{\overline{\langle \mathbf{x}, A\mathbf{x} \rangle}}{\|\mathbf{x}\|^2} = \frac{\langle A\mathbf{x}, \mathbf{x} \rangle}{\|\mathbf{x}\|^2} = \frac{\langle A^H\mathbf{x}, \mathbf{x} \rangle}{\|\mathbf{x}\|^2} = \frac{\langle \mathbf{x}, A\mathbf{x} \rangle}{\|\mathbf{x}\|^2} = \rho_A(\mathbf{x}).$$

Similarly, if A is skew-Hermitian, or $A^H = -A$, we have

$$\overline{\rho_{A}(\mathbf{x})} = \frac{\overline{\langle \mathbf{x}, A\mathbf{x} \rangle}}{\|\mathbf{x}\|^{2}} = \frac{\langle A\mathbf{x}, \mathbf{x} \rangle}{\|\mathbf{x}\|^{2}} = -\frac{\langle A^{H}\mathbf{x}, \mathbf{x} \rangle}{\|\mathbf{x}\|^{2}} = -\frac{\langle \mathbf{x}, A\mathbf{x} \rangle}{\|\mathbf{x}\|^{2}} = -\rho_{A}(\mathbf{x}).$$

Hence, the Rayleigh quotient can only take real values if A is Hermitian and only imaginary values if A is skew-Hermitian.

- (i) For any j, consider $(\mathbf{x}_1\mathbf{x}_1^H + \ldots + \mathbf{x}_n\mathbf{x}_n^H)\mathbf{x}_j = T\mathbf{x}_j$. We know that $\mathbf{x}_i^H\mathbf{x}_j = 0$ for $i \neq j$ and $\mathbf{x}_j^h\mathbf{x}_j = 1$ (because $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are orthonormal). This implies that $T\mathbf{x}_j = \mathbf{x}_j$ for all $j = 1, \ldots, n$. Hence, the kernel of (T I) has dimension n, (because $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are linearly independent). Therefore, T I is the zero matrix, or T = I.
- (ii) Let $T = \sum_{i=1}^{n} \lambda_i \mathbf{x}_i \mathbf{x}_i^H$. By a similar calculation as in part (i), we know that $T\mathbf{x}_i = \lambda_i \mathbf{x}_i$ for all i = 1, ..., n. Since $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$ for all i also, we deduce that $(T A)\mathbf{x}_i = 0$ for all i, thus the kernel of T A has dimension n, and therefore T = A.
- **4.27.** For any i = 1, ..., n, we know that $\mathbf{e}_i^H A \mathbf{e}_i > 0$ and is real-valued because A is positive definite (note that \mathbf{e}_i has 1 at the i-th entry and 0 everywhere else). Let \mathbf{x}_i be the i-th column of A. Then $A \mathbf{e}_i = \mathbf{x}_i$. Hence, $\mathbf{e}_i^H A \mathbf{e}_i = \mathbf{e}_i^H \mathbf{x}_i = x_{ii} > 0$ and x_{ii} is real-valued. This holds for any i, thus we deduce that all diagonal entries are real-valued and positive.
 - **4.28.** By the Cauchy-Schwarz's inequality with respect to the Frobenius norm, we have:

$$\operatorname{tr}(AB) = \operatorname{tr}(A^{H}B) = \langle A, B \rangle \le \|A\|_{F} \|B\|_{F} = \sqrt{\operatorname{tr}(A^{2})\operatorname{tr}(B^{2})}.$$

Now we will show that $\operatorname{tr}(A^2) = \operatorname{tr}(A)^2$. Assume $A = (a_{ij})$, with $a_{ij} = \overline{a_{ji}}$. The (kk)-th entry of A^2 is therefore $\sum_{i=1}^n a_{kj}a_{jk} = \sum_{i=1}^n a_{jk}\overline{a_{jk}}$.

4.31.

(i) We can write the SVD decomposition of A as

$$A = U\Sigma V^H$$
.

Hence we have $||A|| \le ||U|| \, ||\Sigma|| \, ||V^H|| = ||\Sigma||$ (because U and V^H are orthonormal so their norms is 1). Now, for any $\mathbf{x} = (x_1, \dots, x_n)$ such that $||\mathbf{x}||_2 = 1$, we have

$$\|\Sigma \mathbf{x}\|_{2}^{2} = \sum_{i=1}^{r} \sigma_{i}^{2} x_{i}^{2} \le \sigma_{1}^{2} (\sum_{i=1}^{n} x_{i}^{2}) = \sigma_{1}^{2}.$$

Hence $\|A\|_2 \leq \|\Sigma\|_2 \leq \sigma_1$. On the other hand, we know that $\|A\|_2^2 = \max_{\|\mathbf{x}\|_2} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2} = \max_{\|\mathbf{x}\|_2} \frac{\mathbf{x}^H A^H A \mathbf{x}}{\|\mathbf{x}\|_2}$. Picking $\mathbf{x} = \mathbf{v}_1$, the eigenvector corresponding to $\lambda_1 = \sigma_1^2$ of $A^H A$, we know that $\mathbf{v}_1^H A^H A \mathbf{v}_1 = \mathbf{v}_1^H \lambda_1 \mathbf{v} = \lambda_1 \|\mathbf{v}\|_2^2$. This shows that $\|A\mathbf{v}_1\|_2 = \sigma_1^2 \|\mathbf{v}_1\|$. Therefore, $\|A^H A\|_2 = \|A\|_2^2 = \sigma_1^2$.

- (ii) The proof is similar to that of (i), observing that the largest singular value of A^{-1} is the inverse of the smallest singular value of A, which is σ_n^{-1} .
- (iii) Follows directly from part (i).
- (iv) Apply part (iii) for the matrix UAV, we know that $\|UAV\|_2^2 = \|(UAV)^H UAV\|_2 = \|V^H A^H AV\|_2$. It suffices to show that $\|V^H A^H AV\|_2 = \|A^H A\|_2$ for any orthonormal matrix V. But this is obvious because since V is orthonormal, $V^H A^H AV$ and $A^H A$ are orthonormally similar, thus sharing the same eigenvalues. Therefore, their 2-norms is just the largest eigenvalue. From this we deduce that $\|UAV\|_2 = \sqrt{\|A^H A\|_2} = \|A\|_2$.

4.32.

(i) We have

$$\|\mathit{UAV}\|_F^2 = \operatorname{tr}((\mathit{UAV})^H\mathit{UAV}) = \operatorname{tr}(V^H\mathit{A}\mathit{U}^H\mathit{UAV}) = \operatorname{tr}(V^H\mathit{A}^H\mathit{AV}) = \operatorname{tr}(VV^H\mathit{A}^H\mathit{A}) = \operatorname{tr}(A^H\mathit{A}) = \|A\|_F^2.$$

Hence, $||UAV||_F = ||A||_F$.

(ii) We can apply the SVD decomposition and write $A = U\Sigma V^H$. By part (i), we know that $\|A\|_F = \|U^HAV\|_F = \|\Sigma\|_F = \sqrt{\operatorname{tr}(\Sigma^H\Sigma)} = \sqrt{\operatorname{tr}(\Sigma^2)}$. But Σ^2 is just a diagonal matrix whose diagonal entries are $\sigma_1^2, \ldots, \sigma_n^2$, hence $\|A\|_F = \sqrt{\operatorname{tr}(\Sigma^2)} = (\sigma_1^2 + \ldots + \sigma_n^2)^{\frac{1}{2}}$.

4.33. It is clear that there exists $\mathbf{x} = \mathbf{y} = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$, where \mathbf{v}_1 is the eigenvector corresponding to the largest eigenvalue of A, such that $\mathbf{y}^H A \mathbf{x} = \|A\|_2$ (by Exercise 4.31). Now it suffices to show that $|\mathbf{y}^H A \mathbf{x}| \leq \|A\|_2$ for all $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2 = 1$. Suppose on the contrary that there exists \mathbf{y} , \mathbf{x} such that $|\mathbf{y}^H A \mathbf{x}| > \|A\|_2$. Since $\mathbf{y}^H A \mathbf{x} = \mathbf{x}^H A^H \mathbf{y}$, it follows that $|\mathbf{y}^H A \mathbf{x}|^2 = \|\mathbf{y}^H A \mathbf{x} \mathbf{x}^H A^H \mathbf{y}\| = \|\mathbf{y}^H A A^H \mathbf{y}\| = \|A^H \mathbf{y}\| > \|A\|_2 = \|A^H\|_2$, which is a contradiction because $\|A^H\|_2 = \max_{\|\mathbf{y}\| = 1} \|A^H \mathbf{y}\|$.

4.36.

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Its eigenvalues are $\pm i$, but its singular values are 1.

4.38.

- (i) We have $AA^{\dagger} = U_1\Sigma_1V_1^HV_1\Sigma_1^{-1}U_1^H = U_1\Sigma_1\Sigma^{-1}U_1^H$. Thus $AA^{\dagger}A = U_1\Sigma_1\Sigma^{-1}U_1^HU_1\Sigma_1V_1^H = U_1\Sigma_1\Sigma_1^{-1}\Sigma_1V_1^H = U_1\Sigma_1V_1^H = A$.
- (ii) $A^{\dagger}AA^{\dagger} = V_1\Sigma^{-1}U_1^HU_1\Sigma_1\Sigma_1^{-1}U_1^H = V_1\Sigma_1^{-1}U_1^H = A^{\dagger}$.
- (iii) $(AA^{\dagger})^H = (U_1\Sigma_1\Sigma^{-1}U_1^H)^H = (U_1^H)^H\Sigma_1^{-1}\Sigma_1U_1^H = U_1\Sigma_1\Sigma_1^{-1}U_1^H = AA^{\dagger}$ (because Σ_1 is diagonal, it commutes with its inverse).
- (iv) Similar to part (iv).