

#### PALESTRA 2

18 de outubro de 2011

Jonathan D. Mahnken, Ph.D., PStat®





- □ Tipos de Dados
  - Numéricos/Contínuos
  - Nominais/Categóricos
- Resumindo dados contínuos
  - Medidas de localização
  - Medidas de dispersão
  - Resumo gráfico
- Resumindo dados categóricos
  - Medidas
  - Resumo gráfico
- Relações entre as medidas
  - Medidas de associação

# THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

#### Resumindo dados

- Dados são valores observados ou medidos
  - Forma de plural de datum
- Utilizam-se dados para fazer uma declaração sobre uma hipótese
  - O grupo A recebeu mais mamografias que o grupo B
  - O tratamento X não é melhor que o tratamento Y
- □ OBJETIVO: descrever população *brevemente*





- Descrições numéricas
  - Tendência central
  - Dispersão
  - Amplitude
- Descrições pictóricas
  - Diagrama de dispersão
  - Histograma
  - Diagrama em caixa (box-plot)



# Tipos de Dados

#### Dados Categóricos

- Valores qualitativos
- Variáveis nominais
  - Valores se encaixam numa categoria
    - Ex. Olhos azuis, verdes ou castanhos
  - Não há ordem de magnitude associada a vários níveis
- Variáveis Ordinais
  - Valores se encaixam numa categoria mas há uma ordem ou magnitude inerente
    - Ex. Muito doente, doente, saudável ou muito saudável



# Tipos de Dados

#### □ Dados Numéricos

- Valores quantitativos
- Valores ao longo de uma continuidade
  - Variáveis contínuas
    - Ex. IMC
  - Variáveis Discretas
    - Número de visitas ao hospital



#### ■ Medidas de tendência central

- Média
- Mediana
- Moda
- Média geométrica



Department of Biostatistics

#### ■ Média

- Média aritmética
- Diagrama de x-barra
- Pode usar os dados tabulados (média ponderada)

#### Mediana

- Obervação média
  - Média aritimética das duas observações médias se n for par
- [50% < mediana] and [50% > mediana]
  - 50° percentil

## KANSAS Medical Center

#### Resumindo Dados Numéricos

Department of Biostatistic

#### ■ Moda

- Valor que ocorre mais frequentemente
- Podem haver mais de uma moda
  - Ex. 2 modas são chamadas de bimodal
- NEM SEMPRE existe
- Média Geométrica
  - Enésima (n) raiz do produto de n observações



#### □ Qual medida da tendência central é a melhor?

- Depende da forma da distribuição
  - Assimétrica: esticada para um lado, não simétrica
- Média
  - Distribuições simétricas
- Mediana
  - Distribuições ordinais ou assimétricas
- Moda
  - Distribuições com mais de uma moda
- Média geométrica
  - Distribuições em escala logarítmica



# Populações Assimétricas

Department of Biostatistics



Negativamente assimétrica assimétrica à esquerda Média menor que a mediana

Positivamente distorcida assimétrica à direita média maior que a mediana



#### ■ Medidas de dispersão

- Desvio padrão
- Coeficiente de variação
- Percentis
- Amplitude
- Amplitude interquartil



Department of Biostatistic

#### □ Desvio Padrão (DP)

- Raiz quadrada do desvio quadrado médio a partir da média
- Graus de liberdade (gl) em vez de n para tornar imparcial
  - gl é o número de parâmetros que são "livres para variar"
  - Se somar e (n-1) observações são conhecidas, então a enésima n<sup>th</sup> observação é fixada
- DP da População (parâmetro) utiliza n
- DP da Amostra (estatística) utiliza n-1



Department of Biostatistics

- □ Coeficiente de Variação(CV)
  - Dispersão relativa
    - Dispersão relativa à média
  - Razão do DP para diagrama de X-barra (vezes 100%)
  - Compara medidas de escalas diferentes



Department of Biostatistics

- □ Percentil (%tile)
  - % da distribuição ≤ o valor
    - Min = 0%tile
    - Mediana = 50%tile
- □ Amplitude
  - Amplitude = max min
  - Amplitude = 100%tile 0%tile
- Amplitude interquartil
  - 75%tile 25%tile

# THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

#### Resumindo Dados Numéricos

- Qual medida de dispersão é melhor?
  - Depende do tipo de medida de tendência central que é utilizada
    - A qual depende da forma da distribuição
  - DP
    - Quando a média é utilizada (distribuições simétricas)
  - %tiles
    - Quando a mediana é utilizada
    - Quando a média é usada mas comparando com conjunto de normas
      - Peso e altura de uma criança entre 1 e 3 anos
  - Amplitude
    - Quando descreve valores extremos
    - Amplitude interquartil quando descreve os 50% internos da distribuição
  - CV
    - Ao comparar medidas de escalas diferentes



- □ Tabela de frequência
- □ Diagrama de caule-e-folhas
- □ Histograma
- □ Diagrama em caixa (box plot)



#### □ Tabela de Frequência

- Categoriza os números
  - Ex. idades 0-4, 5-9, 10-14, 15-19, ...
  - Grupos mutuamente exclusivos
- Conta o número de vezes que uma observação se encaixa em cada categoria



| Obs | X | Cumul  | ativa Cumu    | ılativa         |               |                |
|-----|---|--------|---------------|-----------------|---------------|----------------|
| 1   | 1 | X      |               | Percentagem     | Frequência    | Percentagem    |
| 2   | 2 | ffffff | fffffffffffff | fffffffffffffff | fffffffffffff |                |
| _   | _ | 1      | 1             | 3 <b>,</b> 70   | 1             | 3 <b>,</b> 70  |
| 3   | 3 | 2      | 1             | 3,70            | 2             | 7,41           |
| 1   | 2 | 3      | 2             | 7,41            | 4             | 14,81          |
| 4   | 3 | 4      | 3             | 11,11           | 7             | 25,93          |
| 5   | 3 | 5      | 4             | 14,81           | 11            | 40,74          |
| 6   | 2 | 6      | 2             | 7,41            | 13            | 48,15          |
| 6   | 3 | 7      | 4             | 14,81           | 17            | 62,96          |
| 7   | 3 | 8      | 4             | 14,81           | 21            | 77 <b>,</b> 78 |
| 0   | 1 | 9      | 3             | 11,11           | 24            | 88,89          |
| 8   | 4 | 10     | 3             | 11,11           | 27            | 100,00         |
| 9   | 4 |        |               |                 |               |                |
| 10  | 4 |        |               |                 |               |                |
| 11  | 5 |        |               |                 |               |                |



#### □ Diagrama de caule-e-folhas

- Categoriza os números
  - Caule
  - Ex. renda: <\$10 mil \$10 mil-<\$20 mil, ...</li>
  - Grupos mutuamente exclusivos
- Coloca cada valor de observação dentro da categoria apropriada
  - Folha
  - Como um registro
  - Pode apenas incluir porção do valor que é único à categoria



| Obs | X | Caule Folha | #      |
|-----|---|-------------|--------|
| 1   | 1 | 10 000      | π<br>3 |
| 2   | 2 | 9 000       | 3      |
| 3   | 3 | 8 0000      | 4      |
| 4   | 3 | 7 000       | 3      |
| 5   | 3 | 6 00        | 2      |
| 6   | 3 | 5 00000     | 5      |
|     |   | 4 000       | 3      |
| 7   | 3 | 3 00000     | 5      |
| 8   | 4 | 2 0         | 1      |
| 9   | 4 | 1 0         | 1      |
| 10  | 4 | +           | +      |
| 11  | 5 |             |        |



#### □ Histograma

- Categoriza os números
  - Ex. anos de escolarização: 0-8, 9-12, 13-16, >16
  - Grupos mutuamente exclusivos
- <u>A Área</u> da barra vertical para cada categoria é proporcional ao número de observações que se encaixam naquela categoria
- A barra vertical está centrada no ponto médio de amplitude da categoria





# THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

#### Exibindo Dados Numéricos

- □ Diagrama em Caixa Box plot
  - Diagrama em caixa de bigodes
  - 25, 50, 75%tiles
    - Caixa em torno da amplitude interquartil
    - Linha horizontal na mediana
    - Bigodes de fora da caixa para 1,5 x [amplitude interquartil]
  - Observações do diagrama além dos bigodes
    - Valores atípicos
  - Figura 3-4 (p. 40)
  - PROC UNIVARIATE (Opção PLOTS) ou PROC BOXPLOT
    - Capítulo 3 Programa 6.sas



```
Obs
     X
  5
 10
 11 5...
```

```
Diagrama em Caixa - Box-plot
```



Department of Biostatistics

- □ Proporções
- □ Percentagens
- □ Taxas
- □ Razões



- □ Proporção
  - a/[a+b]
  - a e b são pessoas
    - Denominador é pessoas
    - Proporção de coorte que fez um mamografia
      - a = número de mulheres em coorte que fizeram um mamografia
      - b = número de mulheres em coorte que não fizeram um mamografia
  - Melhor estimativa de risco
- Porcentagem
  - 100% x {a/[a+b]}
  - Proporção x 100%



#### □ Taxas

- a/[a+b]
- a e b são pessoa-tempo
  - Denominador é pessoa-tempo
  - Taxa de mamografias
    - a = número de anos nos quais as mulheres no coorte fizeram uma mamografia
    - b = número de anos nos quais as mulheres no coorte não fizeram uma mamografia
- Alguns sujeitos podem contribuir mais pessoatempo que outras
- Somente observações em denominador podem contribuir para o numerador!
- Melhor estimativa de risco que a razão, pior que proporção

# Aparte



- □ Comentário sobre taxas
  - Estudo A:
    - 2 pessoas acompanhadas por 50 anos cada
  - Estudo B:
    - 100 pessoas acompanhadas por 1 ano cada
- Ambos estudos possuem a mesma quantidade de pessoa-anos
  - Ambos estudos possuem o mesmo denominador

# THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

#### Resumindo Dados Nominais

#### □ Razão

- a/b
- a e b são dois números quaisquer
  - Exemplos
    - Razão das chances(OR)
    - Razão de nascimentos e mortes
- Não é tão bom quanto proporção ou taxa ao se estimar risco
  - OR ≈ risco quando a doença é rara

# Exemplos de Medida de Dados Nominais



- □ Proporções (por centos)
  - Incidência de doenças cardíacas
  - Prevalência de câncer

#### □ Taxas

- Taxa de mortalidade de câncer em população SEER
- Taxa de morbidade em dados de alta hospitalar

#### □ Razões

- Taxa bruta de natalidade
  - O Denominador é a população de meados do ano (e não uma coorte)



- □ Variáveis de confusão
  - Idade
  - Sexo
  - Raça
- □ Idade, sexo, raça, ... taxas específicas
  - Taxa separada dentro de cada categoria de confundidor
- □ Taxas ajustadas
  - Direta
  - Indireta



# Taxas Ajustadas

- Quais teriam sido as taxas se as variáveis de confusão tivessem sido distribuídas de forma diferente?
  - População de referência
    - Arbitrária
  - Direta
    - Média ponderada das taxas específicas
  - Indireta
    - Razão de mortalidade padronizada (RMP)

# Razão de Mortalidade Padronizada Direta



|                                                |                     | Developed Coun      | try           |              | Developing Cour | ntry          |
|------------------------------------------------|---------------------|---------------------|---------------|--------------|-----------------|---------------|
|                                                | Infants Born        |                     | Deaths        | Infants Born |                 | Deaths        |
| Birthweight                                    | N                   | No.                 | Rate (/1,000) | N            | No.             | Rate (/1,000) |
| <1500 g                                        | 20,000              | 870                 | 43.5          | 30,000       | 1,860           | 62.0          |
| 1500-2499 g                                    | 30,000              | 480                 | 16.0          | 45,000       | 900             | 20.0          |
| >=2500 g                                       | 150,000             | 1,050               | 7.0           | 65,000       | 585             | 9.0           |
| Total                                          | 200,000             | 2,400               | 12.0          | 140,000      | 3,345           | 23.9          |
| Crude infant mortalit                          | y in developed      | country =           | 12.0          |              |                 |               |
| Crude infant mortality in developing country = |                     |                     | 23.9          |              |                 |               |
|                                                |                     |                     |               |              |                 |               |
| Reference population                           | n: developed co     | ountry              |               |              |                 |               |
| What would the crud                            | e be in the develop | ing country         |               |              |                 |               |
| if they had the devel                          | oped countries      | birthweight distrib | ution?        |              |                 |               |
| DSMR (/1000) =                                 | 15.95               |                     |               |              |                 |               |

# Razão de Mortalidade Padronizada Indireta



|                                                                           | Number of In    | fants Born          | Spec Dth Rts   |  |  |  |
|---------------------------------------------------------------------------|-----------------|---------------------|----------------|--|--|--|
| Birthweight                                                               | Developed       | Developing          | /1,000 Std Pop |  |  |  |
| <1500 g                                                                   | 20,000          | 30,000              | 50.0           |  |  |  |
| 1500-2499 g                                                               | 30,000          | 45,000              | 20.0           |  |  |  |
| >=2500 g                                                                  | 150,000         | 65,000              | 10.0           |  |  |  |
| <b>Number of Deaths</b>                                                   | 2,400           | 3,345               |                |  |  |  |
|                                                                           |                 |                     |                |  |  |  |
| Actual number of infa                                                     | ant deaths in d | 2,400               |                |  |  |  |
| Actual number of infa                                                     | ant deaths in d | eveloping country : | 3,345          |  |  |  |
|                                                                           |                 |                     |                |  |  |  |
|                                                                           |                 |                     |                |  |  |  |
| Death rates are from                                                      | the standard p  |                     |                |  |  |  |
| How many deaths would we expect to have observed in the developed country |                 |                     |                |  |  |  |
| if they had the death                                                     | ?               |                     |                |  |  |  |
| Expected =                                                                |                 | 3100                |                |  |  |  |
| SMR = Observed/Ex                                                         | pected =        | 0.77                |                |  |  |  |



Department of Biostatistics

## Exibindo Dados Nominais

- □ Tabela de Frequência
- □ Diagrama de barra
- □ Diagrama de Pizza

## Exibindo Dados Nominais



Department of Biostatistics

### □ Tabela de frequência

- Já categorizada
  - Ex. Hispânico e não Hispânico
  - Grupos mutuamente exclusivos
- Conta o número de vezes que uma observação se encaixa em cada categoria



| Obs | raça          | Raça      | Frequê  | ncia    | Percentagem |
|-----|---------------|-----------|---------|---------|-------------|
| 1   | Hispânica     | fffffffff | fffffff | fffffff | fffffffff   |
| 2   | Hispânica     | Hispânica |         | 7       | 70,00       |
| 3   | Hispânica     | Não-Hispâ | nica    | 3       | 30,00       |
| 4   | Hispânica     |           |         |         |             |
| 5   | Hispânica     |           |         |         |             |
| 6   | Hispânica     |           |         |         |             |
| 7   | Hispânica     |           |         |         |             |
| 8   | Não-Hispânica |           |         |         |             |
| 9   | Não-Hispânica |           |         |         |             |
| 10  | Não-Hispânica |           |         |         |             |

### Exibindo Dados Nominais

### Diagrama de barras

- Já categorizados
  - Ex. olhos azuis, verdes ou castanhos
  - Grupos mutualmente exclusivos
- A altura para a barra vertical para cada categoria é proporcional ao número de observações que se encaixam naquela categoria
  - Todas as barras verticais possuirão a mesma espessura
- Figura 3-10 (p. 48)
- PROC GCHART
  - Capítulo 3 Programa 8.sas







## Exibindo Dados Nominais



Department of Biostatistics

### Diagrama de pizza

- Já categorizado
  - Ex. olhos azuis, verdes ou castanhos
  - Grupos mutualmente exclusivos
- O tamanho de cada fatia para cada categoria é proporcional ao número de observações que se encaixam dentro daquela categoria



### Frequência de cor dos olhos

FREQUENCY of eye\_color



Department of Biostatistics

- Numérica
  - Coeficiente de correlação
  - Coeficiente de determinação
- Ordinal
  - Coeficiente de correlação ordinal de Spearman
- Nominal
  - Relativa
    - Razão de riscos
    - Razão das chances
  - Absoluto
    - Diferença de risco

## Relações Entre Características Numéricas



### □ Coeficiente de correlação (r)

- Coeficiente de correlação de Pearson
- Relação Linear entre duas variáveis
- [-1, 1] independente de unidades







## Relações Entre Características Numéricas











## Relações Entre Características Numéricas

### □ r² é o coeficiente de determinação

- Ex.
  - r = 0.58
  - $r^2 = 0.34$
  - "... 34% variabilidade numa das medidas, ..., pode ser considerada (ou prevista) sabendose o valor da outra medida..." (pp 49-50)

## Relações Entre Características Ordinais



- □ Coeficiente de correlação ordinal de Spearman (r<sub>s</sub>)
  - ρ do Spearman
  - Não paramétrica
  - Cálculo
    - Observações ordinais
    - Calcula o coeficiente de correlação de Pearson em postos quando empates não estão presentes
    - Fórmula mais complexa quando empates estão presentes!
  - **[**-1, 1]
    - Relação linear entre os postos das observações

## Relações Entre



### Características Nominais

- Razão de risco ou risco relativo (RR)
  - Termos frequentemente utilizados livremente
  - Risco
    - 1. Proporção
    - 2. Taxa
    - 3. Chances
  - Qual medida é apropriada?
    - Depende de como os dados foram amostrados
    - Direção de levantamento
- Medidas absolutas
  - Redução de risco absoluto(RRA), redução de risco relativo (RRR), etc.
  - Diferença em vez de razão

## Relações Entre



### Características Nominais

- □ Razão de proporção ou razão de taxa (RR)
  - Estudo de Follow-up
    - Status de exposição conhecido
    - Status da doença descoberto através de estudo

| Exposição | Doença |     |  |
|-----------|--------|-----|--|
|           | Sim    | Não |  |
| Sim       | а      | b   |  |
| Não       | С      | d   |  |
|           |        |     |  |

$$RR = \frac{\frac{a}{a+b}}{\frac{c}{c+d}}$$

Compare a taxa de doença em exposto vs. não exposto

## Relações Entre Características Nominais



- □ Razão das Chances (RC)
  - Estudo de caso-controle
    - Status da doença é conhecido
    - Status de exposição descoberto através de estudo

| Exposição | Doença |     |
|-----------|--------|-----|
|           | Sim    | Não |
| Sim       | а      | b   |
| Não       | С      | d   |

$$RC = \frac{\frac{a}{c}}{\frac{b}{d}}$$

 Compare as chances de exposição nos casos vs. controles

### RC para Exposição = RC para Doença



Department of Biostatistic

| Exposição | Doença |     |
|-----------|--------|-----|
|           | Sim    | Não |
| Sim       | а      | b   |
| Não       | С      | d   |

$$RC = \frac{\frac{a}{c}}{\frac{b}{d}} = \frac{ad}{bc}$$

| Exposição | Doença |     |  |
|-----------|--------|-----|--|
|           | Sim    | Não |  |
| Sim       | а      | b   |  |
| Não       | С      | d   |  |
|           |        |     |  |

$$RC = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$

## Razão das chances para Doenças KU



Department of Biostatistics

Raras

- Quando a doença é <u>rara</u> ([a + b ≈ b] e [c + d ≈ d])
  - RC ≈ RR

| Exposição | Doença |     |
|-----------|--------|-----|
|           | Sim    | Não |
| Sim       | а      | b   |
| Não       | С      | d   |
|           |        |     |



| Exposição | Doença |     |
|-----------|--------|-----|
|           | Sim    | Não |
| Sim       | а      | b   |
| Não       | С      | d   |

$$RC = \frac{\frac{a}{c}}{\frac{b}{d}} = \frac{\frac{a}{b}}{\frac{c}{d}} \approx \frac{\frac{a}{a+b}}{\frac{c}{c+d}}$$



## Parte II – Esboço

### □ Inferência Estatística

- Inferência para médias
- Erros tipo I e tipo II
- Inferência para proporções
- Inferência para diferenças de média (ex., publicação de pré-versus
- Inferências para proporções pareadas (ex., publicação de pre- versus)
- Abordagens Não Paramétricas
- Estimação do tamanho da amostra

### Estatística Inferencial

- Métodos que usamos para retirar conclusões de uma amostra de uma população..
- □ Suposições
  - Seleção aleatória
  - Amostra representativa
- Intervalos de confiança
- □ Teste de hipótese

### Estatística Inferencial

- Estatísticas do Capítulo 5 são para único grupo de sujeitos
  - Observado uma vez por sujeito
    - Estimativa de extensão média de permanência hospitalar (95% CI)
    - Testar se a extensão média de permanência hospitalar é igual (ou maior que ) 5 dias
  - Observado duas vezes por sujeito
    - Pareado (antes e depois)
    - Compara número e visitas médicas antes e depois do tratamento



### Estatística Inferencial

#### Paramétrica

- Os dados são provenientes de uma distribuição conhecida
  - Normal
  - t dos alunos
  - Exponencial (sobrevivência)
- Não paramétrica
  - Distribuição de dados desconhecida
    - Assimétrica
    - Bimodal
  - Menor potência

Department of Biostatistics

- □ Dados "Normais"
- Inferência sobre a média (μ)
  - $H_0$ :  $\mu = \mu_0$ 
    - Estimativa de teste de μ
  - 95% CI:  $(\mu 1,96\sigma, \mu + 1,96\sigma)$ 
    - Utilize estimativa de μ
- □ Fatores que afetam a inferência
  - Diferença (△)
  - Variância (σ²)
  - Tamanho da amostra (n)









- □ Teste t
  - Teste t dos estudantes
- $\square \mu \text{ de N}(\mu, \sigma^2)$ 
  - $\mu \sim N(\mu, \sigma^2)$ 
    - Somente se σ for conhecido
  - μ se for de uma distribuição t
    - Se σ não for conhecido
    - σ é estimado a partir do desvio padrão amostral



## A Distribuição t

- □ Diferença entre a distribuição t e a distribuição normal pequena para n > 30
  - Graus de liberdade (gl)
    - gl = n 1 quando há um grupo de comparação
  - Distribuição t converge em distribuição normal à medida que o número de gl aumenta

## Teste de Hipótese Sobre a Média Media Media

Department of Biostatistics

- Medida Uma Vez

$$\Box H_0$$
:  $\mu = \mu_0$  vs.  $H_1$ :  $\mu \neq \mu_0$ 

- Suposições
  - $\mu \sim N(\mu, \sigma^2)$
  - σ é desconhecido
  - Estimativa de σ é SE

$$\frac{\overline{X} - \mu_0}{SE} \sim t_{n-1}$$

Rejeite H<sub>0</sub> quando t<sub>n-1</sub> for extremo

## Intervalo de Confiança para a Média – Medida uma vez



- □ Estimativa de μ (95% CI)
  - Suposições
    - $\mu \sim N(\mu, \sigma^2)$
    - σ é desconhecido
    - Estimativa de σ é SE

$$\mu = \overline{X} \pm SE \cdot t_{n-1,\alpha}$$

## Similaridade Entre Intervalo de Confiança e Teste de Hipótese



Utilizando o mesmo nível α levará à mesma conclusão

$$\frac{\overline{X} - \mu_0}{SE} \sim t_{n-1}$$

$$\mu = \overline{X} \pm SE \cdot t_{n-1,\alpha}$$

Algebricamente são a mesma coisa

### Erros Associados à Probabilidade



| <b>a</b>    |                         | sobre H <sub>0</sub> |              |
|-------------|-------------------------|----------------------|--------------|
| o<br>ótes   |                         | Verdadeiro           | Falso        |
| o d<br>Hip  |                         | Erro Tipo I          | Potência     |
| usã<br>de l | Rejeitam H <sub>0</sub> | α                    | 1- β         |
| ncl         | ψ Λooitom H             |                      | Erro Tipo II |
| Cor         | Aceitam H <sub>0</sub>  | 1- α                 | β            |

- Analogia
  - Inocente até provado culpado

# Erros Associados à Probabilidade



- Se não há <u>nenhuma associação</u> e rejeitarmos a hipótese nula (H<sub>0</sub>)
  - Nós cometemos um erro tipo I
- Se há <u>uma associação</u> e não rejeitarmos a hipótese nula (H<sub>0</sub>)
  - Nós cometemos um erro tipo II

### SEMPRE ARRISCAMOS UM ERRO!

## Inferência sobre uma Proporção



### Medida uma vez

- □ Desfecho dicotômico
  - Distribuição Binomial
  - Parece mais com o formato de um sino a medida que o n aumenta
- $\Box$  p é a estimativa observada de  $\pi$

$$p = \frac{\sum_{i=1}^{n} X_i}{n}$$

## Inferência sobre uma Proporção



- Medida uma vez
- Para uma proporção, a média é simplesmente a própria proporção
- □ SE de p

$$SE = \sqrt{\frac{p(1-p)}{n}}$$

□ Teste de hipótese e intervalos de confiança para a média (p) são os mesmos como definidos previamente.

## Medindo o Mesmo Grupo Duas



### Vezes

- Planejamentos pareados ou planejamentos com medidas repetidas
  - Cada EU é medido duas vezes
    - Antes e depois
    - Medido na linha de base e após intervenção
  - Observações pareadas
  - Para cada EU, as duas medidas não são independentes
    - Dependente
    - Correlacionada

## Medindo o Mesmo Grupo Duas Vezes



### □ Cada EU é seu próprio controle

- Única diferença entre intervenção e grupo de controle é o tratamento
- Variação em medidas pares apenas o resultado do tratamento
  - Às vezes outros fatores indesejados podem afetar as medidas tal como o tempo

## Teste de Hipótese sobre a Média- Observações Pareadas



- $\Box H_0$ :  $\mu_a \mu_b = \delta_0 \text{ vs. } H_1$ :  $\mu_a \mu_b \neq \delta_0$ 
  - Suposições
    - $\mu_a$   $\mu_b$  ~  $N(\delta, \sigma^2)$ 
      - Se  $\mu_a$  e  $\mu_b$  são ambos distribuídos normalmente, então ( $\mu_a$   $\mu_b$ ) é distribuído normalmente
    - σ é desconhecido
    - Estimativa de σ é SE<sub>δ</sub>

$$\frac{\langle \overline{X}_{a} - \overline{X}_{b} \rangle - \langle \mu_{a} - \mu_{b} \rangle}{SE_{\delta}} = \frac{\langle \overline{X}_{a} - \overline{X}_{b} \rangle - \delta}{SE_{\delta}} \sim t_{n-1}$$

• n é o número de pares

## Intervalo de confiança para a Média – Observações Pareadas



- $\square$  Estimativa de  $\delta$  (95% CI)
  - Suposições
    - $\mu_a$   $\mu_b$  ~  $N(\delta, \sigma^2)$ 
      - Se  $\mu_a$  e  $\mu_b$  são ambos distribuídos normalmente, então ( $\mu_a$   $\mu_b$ ) é normalmente distribuído
    - σ é desconhecido
    - Estimativa de σ é SE<sub>δ</sub>

$$\mathcal{S} = \overline{\mathbf{X}}_a - \overline{X}_b + SE_{\mathcal{S}} \cdot t_{n-1,\alpha}$$

n é o número de pares

# Inferência sobre uma Proporção Observações Pareadas

Evento de Interesse Antes Não Sim Evento de Sim Não d

### Concordância



- Confiabilidade Intra-examinador
  - Uma pessoa medida duas vezes
  - Intra- (interno)
- Confiabilidade Inter avaliador
  - Medida de duas pessoas diferentes
  - Inter- (entre)
- Porcentagem Simples de Concordância

$$\frac{a+d}{a+b+c+d}$$

### Concordância



### □ Kappa (κ)

- Concordância além do que a esperada por acaso
- Concordância observada é porcentagem simples de concordância (slide anterior)
- Concordância esperada é calculada utilizando a regra de multiplicação como se os eventos fossem independentes
- $\kappa \in [-1, 1]$ 
  - κ < 0 significa que a concordância observada é menor que o que era esperado por acaso

### Concordância

#### □ Teste de McNemar

- Testa se a presença de um resultado muda
  - $H_0$ :  $p_{antes} = p_{depois}$  vs.  $H_1$ :  $p_{antes} \neq p_{depois}$
- Apenas utiliza observações fora da diagonal (slide 72)
- Estatística de teste possui assintótica χ²(1)

### Transformando Variáveis

- □ Teste t não deve ser usado quando os dados não são provenientes de uma distribuição normal
  - Severamente distorcidos
- □ Às vezes as observações podem ser transformadas
  - "...às vezes torna-se possível o uso de testes estatísticos que de outra maneira seriam inapropriados." (p 118)
- □ Transformações Comuns
  - Logaritmos
  - Raiz quadrada

### Testes Não Paramétricos

- Suposições mais fracas
  - Nenhuma distribuição subjacente
  - Menor potência, mas melhor que usar outros métodos paramétricos inapropriadamente
    - Às vezes a potência é um pouco menor que a do teste paramétrico correto!

## Teste de Hipótese Sobre Mediana - Medida Uma Vez



- □ Teste dos sinais
- $\Box H_0$ : m = m<sub>0</sub> vs. H<sub>1</sub>: m  $\neq$  m<sub>0</sub>
  - Sem suposições de distribuição (não paramétrica)
  - Utiliza distribuição binomial
    - Contagens de observações > m<sub>0</sub> e observações < m<sub>0</sub>
    - Observações iguais a m<sub>0</sub> são descartadas
    - Soma-se todos os valores ao menos tão extremos quanto o valor observado
    - Fórmulas aproximadas também existem

## Teste de Hipótese Sobre Mediana – Observações Pareadas



- Teste dos sinais pode ser usado na diferença entre as medidas de antes e depois
  - Diferença (d) é tratada como uma observação
- $\Box H_0$ : d = d<sub>0</sub> vs. H<sub>1</sub>: d  $\neq$  d<sub>0</sub>
  - Sem suposições de distribuição (não paramétrica)
  - Utiliza uma distribuição binomial
    - Contagens de diferenças pareadas > d<sub>0</sub> e diferenças pareadas < d<sub>0</sub>
    - Diferenças observadas iguais a d<sub>0</sub> são descartadas
    - Mesmas fórmulas do slide anterior

## Teste de Hipótese Sobre Mediana – Observações Pareadas



- □ Teste dos postos sinalizados de Wilcoxon
  - a.k.a. Mann-Whitney teste U
  - Mais forte que teste dos sinais (para diferença)
- □ H<sub>0</sub>: d = d<sub>0</sub> vs. H<sub>1</sub>: d ≠ d<sub>0</sub>
  - Sem suposições de distribuição (não paramétrica)
  - Utiliza postos dos valores d observados
    - Valores de p exatos requerem cálculos extensivos
    - Valores aproximados de p us média e DP dos postos

## Estimativa do Tamanho Amostral



- Compara uma média num grupo a μ<sub>0</sub>
  - Qual é α?
  - Qual é β?
    - Potência= 1-β
  - O que é uma diferênça clinicamente importante?

• 
$$\mu_0$$
 -  $\mu_1 = \Delta$ 

Qual é σ?

$$\square n = (z_{\alpha} - z_{\beta})^2 (\sigma/\Delta)^2$$

Sempre arredondar para o inteiro mais próximo!

## Estimativa do Tamanho Amostral



- $\Box$  Compare uma <u>proporção</u> num grupo a  $\pi_0$ 
  - Qual é α?
  - Qual é β?
    - Potência = 1-β
  - O que é uma diferencia clinicamente importante?
    - $\pi_0 \pi_1 = \Delta$
  - σ é uma função de π
    - Determinar  $\pi$  também determina  $\sigma$

$$\square n = \{z_{\alpha}[\pi_0(1-\pi_0)]^{1/2} - z_{\beta}[\pi_1(1-\pi_1)]^{1/2}\}^2(1/\Delta)^2$$

Sempre arredondar para o inteiro mais próximo!

### Referência



□ Dawson B and Trapp RG (2001). *Basic* & *Clinical Biostatistics*, 3<sup>rd</sup> ed., McGraw Hill: New York