Отчёта по лабораторной работе No1

Основы информационной безопасности

Нджову Нелиа, НКАбд-02-23

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выполнение дополнительного задания	16
5	Ответы на контрольные вопросы	19
6	Выводы	21
Список литературы		22

Список иллюстраций

3.1	создание виртуальной машины		•					•	7
3.2	установки гостевой оси								8
3.3	указание размера основной памяти виртуальной маш	ин	ΗЫ	[8
3.4	Окно определения размера виртуального динамическо	ГС	K C	κë	СТ	KC)Г(С	
	диска и его расположения								9
3.5	подключение образа оптического диска								9
3.6	запуск виртуальную машину								10
3.7	выбор языка								10
3.8	часовой пояс								11
3.9	языки раскладки клавиатуры								11
3.10	настройка установки: выбор программ								12
3.11	отключение KDUMP								12
	сеть и имя узла								13
3.13	пароль для root								13
3.14	пользователя с правами администратора								14
3.15	Завершение установки ОС								14
	проверка носителей								15
	входа в ос								15
4.1	команда dmesg less								16
4.2	Версия ядра Linux								16
4.3	Частота процессора								17
4.4	Модель процессора								17
4.5	оперативной памяти								17
4.6	Тип обнаруженного гипервизора								18
4.7	Тип файловой системы								18
4.8	Последовательность монтирования файловых систем								18

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Установка и настройка операционной системы.
- 2. Найти следующую информацию:
 - 1. Версия ядра Linux (Linux version).
 - 2. Частота процессора (Detected Mhz processor).
 - 3. Модель процессора (CPU0).
 - 4. Объем доступной оперативной памяти (Memory available).
 - 5. Тип обнаруженного гипервизора (Hypervisor detected).
 - 6. Тип файловой системы корневого раздела

3 Выполнение лабораторной работы

Я создала новую виртуальную машину, указивая имя и образ ISO(рис.1).

Рис. 3.1: создание виртуальной машины

Я выбрала имя пользователя и имя хоста(рис.2)

Рис. 3.2: установки гостевой оси

Я указывала размер основной памяти виртуальной машины и выбрала количество процессора(рис.3)

Рис. 3.3: указание размера основной памяти виртуальной машины

Я установила размер диска на 40ГБ(рис.4)

Рис. 3.4: Окно определения размера виртуального динамического жёсткого диска и его расположения

Проверяю подключен ли образ диска к носителю(рис.5)

Рис. 3.5: подключение образа оптического диска

Я запускала виртуальную машину(рис.6)

Рис. 3.6: запуск виртуальную машину

Я выбрала English в качестве языка интерфейс(рис.7)

Рис. 3.7: выбор языка

Я скорректировала часовой пояс и место(рис.8)

Рис. 3.8: часовой пояс

Я выбрала языки раскладки клавиатуры и задала комбинацию клавиш для переключения между раскладками клавиатуры (рис.9)

Рис. 3.9: языки раскладки клавиатуры

В разделе выбора программы в качестве базовой среды указывала Server with

GUI, а в качестве дополнения - Development tools(рис.10)

Рис. 3.10: настройка установки: выбор программ

Я отключила KDUMP (рис.11)

Рис. 3.11: отключение KDUMP

Я включила сетевое подключение и задала имя хоста(рис.12)

Рис. 3.12: сеть и имя узла

Я установила пароль для root и пользователя с правами администратора(рис.13)

Рис. 3.13: пароль для root

Рис. 3.14: пользователя с правами администратора

После завершения установки операционной системы я перезагрузилая и запустила виртуальную машину(рис.14)

Рис. 3.15: Завершение установки ОС

B VirtualBox оптический привод должен автоматически отключиться(рис.15)

Рис. 3.16: проверка носителей

Я вошла в ОС, используя учетную запись, созданную во время установки(рис.16)

Рис. 3.17: входа в ос

4 Выполнение дополнительного задания

Я открывала терминал и запускала команда dmesg | less(рис.17)

Рис. 4.1: команда dmesg | less

Я использовала поиск с помощью grep-dmesg | grep -i "то, что ищем", и получила следующую информацию:

Версия ядра Linux (Linux version)(рис.18)

```
[Nelianjovu@Nelianjovu ~]$ dmesg | less
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Linux version"
[ 0.000000] Linux version 4.18.0-553.el8 10.x86_64 (mockbuild@iad1-prod-build
901.bld.equ.rockylinux.org) (gcc version 8.5.0 20210514 (Red Hat 8.5.0-22) (GCC)
| #1 SMP Fri May 24 13:05:10 UTC 2024
[Nelianjovu@Nelianjovu ~]$
```

Рис. 4.2: Версия ядра Linux

Частота процессора (Detected Mhz processor)(рис.19)

```
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Detected Mhz processor"
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Detected"
[ 0.000000] Hypervisor detected: KVM
[ 0.000000] tsc: Detected 2496.000 MHz processor
[ 0.714255] hub 1-0:1.0: 12 ports detected
[ 0.724362] hub 2-0:1.0: 12 ports detected
[ 1.062052] systemd[1]: Detected virtualization oracle.
[ 1.062055] systemd[1]: Detected architecture x86-64.
[ 2.872625] systemd[1]: Detected virtualization oracle.
[ 2.872628] systemd[1]: Detected architecture x86-64.
```

Рис. 4.3: Частота процессора

Модель процессора (CPU0)(рис.20)

```
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "CPU0"
[ 0.106215] smpboot: CPU0: 12th Gen Intel(R) Core(TM) i5-12450H (family: 0x6,
model: 0x9a, stepping: 0x3)
[Nelianjovu@Nelianjovu ~]$
```

Рис. 4.4: Модель процессора

Объем доступной оперативной памяти (Memory available)(рис.21)

```
model: 0x9a, stepping: 0x3)
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Memory"
[ 0.000000] ACPI: Reserving FACP table <mark>memory</mark> at
                                                                                                            ry at [mem 0x7fff00f0-0x7fff01e3]
          0.000000] ACPI: Reserving DSDT table
                                                                                                                        [mem 0x7fff0610-0x7fff2962]
                                                                                                    emory at [mem 0x7fff0200-0x7fff023f]
emory at [mem 0x7fff0200-0x7fff023f]
         0.000000] ACPI: Reserving FACS table 0.000000] ACPI: Reserving FACS table
           0.000000] ACPI: Reserving APIC table
                                                                                                                        [mem 0x7fff0240-0x7fff029b]
          0.000000] ACPI: Reserving SSDT table
                                                                                                                at [mem 0x7fff02a0-0x7fff060b]
          0.000000] Early memory node ranges

0.000000] PM: Registered nosave memory: [mem 0x00000000-0x00000fff]

0.000000] PM: Registered nosave memory: [mem 0x0000f000-0x0000ffff]

0.000000] PM: Registered nosave memory: [mem 0x000000000-0x0000ffff]

0.000000] PM: Registered nosave memory: [mem 0x0000f00000-0x0000fffff]
                                                                                                  y: [mem 0x000f0000-0x000fffff]
          0.000000] PM: Registered nosave
                                                  261120K/2096696K available (14339K kernel code, 5957K rwd
        0.000000] hemory: 201120K/2090090K avaitable (14339K Kernet Code, 3937K-8568K rodata, 2820K init, 13792K bss, 139920K reserved, 0K cma-reserved)
0.003000] Freeing SMP alternatives memory: 36K
0.111008] x86/mm: Memory block size: 128MB
0.611362] Freeing initrd memory: 52464K
0.659792] Non-volatile memory driver v1.3
0.938116] Freeing unused decryoted memory: 2028K
          0.659792] Non-votatite memory driver vi.3
0.938116] Freeing unused decrypted memory: 2028K
0.938967] Freeing unused kernel image (initmem) memory:
1.048684] Freeing unused kernel image (text/rodata gap)
1.049802] Freeing unused kernel image (rodata/data gap)
                                                                                                                                                            r: 2016K
```

Рис. 4.5: оперативной памяти

Тип обнаруженного гипервизора (Hypervisor detected)(рис.22)

```
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 4.6: Тип обнаруженного гипервизора

Тип файловой системы корневого раздела(рис.23)

```
[Nelianjovu@Nelianjovu ~]$ sudo fdisk -l
We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:
    #1) Respect the privacy of others.
    #2) Think before you type.
    #3) With great power comes great responsibility.
[sudo] password for Nelianjovu:
Disk /dev/sda: 40 GiB, 42949672960 bytes, 83886080 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel Type: dos
Disk identifier: 0x89e63470
                             End Sectors Size Id Type
/dev/sdal *
                  2048 2099199 2097152 1G 83 Linux
/dev/sda2
              2099200 83886079 81786880 39G 8e Linux LVM
```

Рис. 4.7: Тип файловой системы

Последовательность монтирования файловых систем

```
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Mount"
[ 0.036877] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes, line ar)
[ 0.036881] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)
[ 3.024407] XFS (dm-0): Mounting V5 Filesystem
[ 3.033559] XFS (dm-0): Ending clean mount
[ 5.436879] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ 5.442967] systemd[1]: Mounting Huge Pages File System...
[ 5.443784] systemd[1]: Mounting POSIX Message Queue File System...
[ 5.44568] systemd[1]: Mounting Kernel Debug File System...
[ 5.457696] systemd[1]: Mounting Kernel Trace File System...
[ 5.463144] systemd[1]: Starting Remount Root and Kernel File Systems...
[ 5.463297] systemd[1]: Mounted Huge Pages File System.
[ 5.463149] systemd[1]: Mounted POSIX Message Queue File System.
[ 5.463523] systemd[1]: Mounted FOSIX Message Queue File System.
[ 5.463523] systemd[1]: Mounted Kernel Debug File System.
[ 5.467511] systemd[1]: Mounting FUSE Control File System...
[ 5.476338] systemd[1]: Mounting FUSE Control File System...
[ 5.476338] systemd[1]: Finished Remount Root and Kernel File System...
[ 5.476555] systemd[1]: Finished Remount Root and Kernel File Systems.
```

Рис. 4.8: Последовательность монтирования файловых систем

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: —help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выводы

Выполнив эту лабораторной работы, я приобрела практических навыков установки операционной системы на виртуальную машину и настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

001-lab_virtualbox.pdf - Кулябов Д. С., Королькова А. В., Геворкян М. Н.