Cohomology theories Brown representability & K-cheory.

Defor the homotopy category of pointed spaces is a category h.S.:

obj: pointed CW complexes * -> X.
mor: Hongs(X, T) = To. Map. (X, T).

composition: take the composition map then apply To.

let het denote die full subcat whose objects are pointed connected CW complexes.

Defu a generalized homology sheory is a sequence of functors {Hn: ho. - Ab} together with natural isomorphisms { In: Hn · E >> Hn-1} satisfying 1) (exactness) for any cofibre sequence A-) X-) X/A, -the sequence $H_n(A) \rightarrow H_n(X) \rightarrow H_n(X/A)$ is exact

2) Hu preserves coproducts, i.e. $\bigoplus_{i \in I} H_n(X_i) \longrightarrow H_n(\bigvee_{i \in J} X_i)$ is an isomorphism

Jimilarly, a generalized cohomology—theory is a sequence of functors {H¹: (hJ+)²→ Ab} together with notural isomorphisms {S¹: H¹→ H¹¹···□∑}, soitisfying

1) (exactuss) for any cofibre sequence A→X→ X/A,

-the sequence H¹(X/A) → H¹(X) → H¹(A) is exact

2) H¹ takes coproducts to products, i.e.

H¹(VX:) → TI H¹(X:) is an isomorphism

NOTE: we can define-the "boundary homomorphisms $\partial: H^{n}(A) \longrightarrow H^{n+1}(\Sigma A) \longrightarrow H^{n+1}(X/A)$

and there's a LES by the Puppe coexact sequence $\rightarrow H^{n-1}(A) \rightarrow H^n(X/A) \rightarrow H^n(X) \rightarrow H^n(A) \rightarrow \cdots$

Brown representability theorem:

F: (ho) of - Set is representable iff

1) it takes coproducts to products.

2) for pointed CW triple (X; A, B) with $X = A \cup B$, $F(X) \rightarrow F(A) \times F(A \cap B)$ is surjective

Cor. for a generalized cohomology-theory {H", 5"},

every H" is representable

 $\mu : \text{ note that } H^{n}(X) \cong H^{n+1}(\Sigma X) \quad \text{if } H^{n+1}(h \mathcal{I}_{*}^{> 0}) \stackrel{gh}{\longrightarrow} \mathcal{A}_{b}$

is represented by Yn+1 € h.J. then

H'(X) = Homise (EX, Thei) = Homise (X, D Thei)

is represented by 2 Tax, & h %

-then the condition 2) in Brown rep. then follows from

$$H^{\mathsf{n}}(X/B) \to H^{\mathsf{n}}(X) \to H^{\mathsf{n}}(B) \to H^{\mathsf{n}}(X/B)$$

H"(A/AnB) -> H"(A) -> H"(A)B) -> H"(A/AnB)

by diagram chasing

then for any $\{H^{n}, S^{n}\}$, $\exists T_{n} \in h \mathcal{J}_{*}$, satisfying $H^{n}(X) \cong Hom_{h} \mathcal{S}_{*}(X, T_{n}) \cong T_{0} Map_{*}(X, T_{n})$ and $S^{n}: H^{n} \stackrel{\widehat{=}}{\longrightarrow} H^{n+1} = \Sigma$ includes $Hom_{h} \mathcal{S}_{*}(X, T_{n}) \stackrel{\widehat{=}}{\longrightarrow} Hom_{h} \mathcal{S}_{*}(X, T_{n+1}) \cong Hom_{h} \mathcal{S}_{*}(X, \mathcal{Q}_{n+1})$ $\Rightarrow T_{n} \rightarrow \mathcal{Q}_{n+1}$ is an isomorphism in $h \mathcal{J}_{*}$, hence a weak homotopy equivalence

Defn. an Ω -spectrum is a sequence $K_0, K_1 \cdots \in h\mathcal{I}_*$, together with weak homotopy equivalences $\{K_n \rightarrow \Omega \mid K_{n+1}\}$.

NOTE: we can set $K_{-n} = \Omega^n K_0$ for n > 0.

as such, every cohomology theory is represented by an Ω - spectrum.

e.g. for $A \in Ab$, $\widetilde{H}^{n}(X; A) \cong Hom_{kF_{n}}(X, K(A, n))$ is represented by the Eilenberg Mac Lane Ω -spectrum $(HA)_{n}=K(A, n)$

e.g. K-theory for X ∈ h Sx, let Vect (X)/= be the set of isomorphism classes of k-vector bundles over X (k=R, C). the direct sun makes it a commitative monoid take the group completion $K(Vect_{\kappa}(X)/\cong , \mathcal{D})^{-\{E-E'\}/\sim}$ if X is compact, then \E, \(\frac{1}{2}\)E', s.t. \(\text{E}\)\(\text{E}'\) \(\sigma\). then elements in $K(\operatorname{Vect}_{\mathbf{k}}(X)/_{\widehat{=}}, \oplus)$ has the form $\overline{E} - \Sigma^n$. for the case $k = \mathbb{C}$, $K(\text{Vect}_{k}(X)/_{\mathbb{Z}}, \oplus) \cong [X, BU \times Z]$. where BU = lim BU(n); Z classifies the rank. esp. K(Vect*(*)/~, +) =[*, Bu x 2] = Z. let Ku°(X) = Ler ([X, Bu × Z] -> [*, Bu × Z]) = Homber (X,BU×Z)

the complex K-theory Ω -spectrum KU: $(KU)_{\circ} = BU \times U$ mo $(KU)_{-1} = \Omega(KU)_{\circ} \simeq U$, $(KU)_{-2} = \Omega(KU)_{-1} \simeq BU \times U$ define $(KU)_{2n} = BU \times U$. $(KU)_{2n+1} = U$. similarly, for the case k=R, there's the real K-theory Ω -spectrum KO: $(KO)_{\circ} = BO \times \mathcal{U}$, wo $\Omega^{8}(BO \times \mathcal{U}) \simeq BO \times \mathcal{U}$ define $(KO)_{8n} = BO \times \mathcal{U}$. $(KO)_{8n-k} = \Omega^{k}(BO \times \mathcal{U})$.