Influência da APP na produção de madeira na floresta Amazônica

Leonardo C. Peres

2023-05-12

Apresentação

Neste projeto o objetivo foi utilizar a linguagem R para análisar a influência da presença de APP na produção em m^3 de madeira e da quantidade de indivíduos presentes em diferêntes Unidades de Trabalho (UT) de manejo florestal realizado na floresta Amazônica.

Hipotese

- H0 A presença de APP nas UTs exerce influência na produção de madeira e quantidade de indivíduos;
- H1 A presença de APP nas UTs não exerce influência significativa na produção de madeira e quantidade de indivíduos;

Etapas

Para realização do projeto o mesmo foi dividido em três etapas:

- Análise exploratória Estudo dos dados e possibilidades de trabalhos
- Modelagem Análise estatísticas para responder a hipótese
- Rmarkdow Apresentação do projeto e dos códigos utilizados nas etapas anteriores

Dados

Os dados utilizados são fornecidos pelo projeto ${f Floresta}R$ disponibilizados em um diretório publico do ${f GitHub}$

O projeto ${f Floresta}{R}$ reúne professores, estudantes e profissionais dedicados à redação da série ${f Floresta}{R}$ de livros sobre o uso do ${\cal R}$ como ferramenta de análise de dados florestais.

 $Para\ mais\ informações\ a\ respeito\ do\ projeto\ acesse:\ github.com/LuizEstraviz/FlorestaR_dados$

1. Exploratória

Nesta etapa do projeto, o objetivo foi verificar qual a relação existente entre a presença de APP na UT e a produção madeireira assim como o número de indivíduos presente.

Para isso foi criado um data-frame shapefile contendo as 10 UTs, e suas correspondentes: (quantidade de indivíduos por hectare, volume total por hectare, volume médio, área de APP dentro da UT e área da UT). Com isso foram plotados gráficos afim de representar as relações existentes entre a área de APP

Abrindo os dados

```
remove(list=ls())
#Definindo o diretório onde os arquivos estão armazenados
gitOnde <- "https://github.com/FlorestaR/dados/blob/main/1_AMAZON"</pre>
gitNome <- "shapes.zip"</pre>
gitArqv <- file.path(gitOnde, gitNome) %>% pasteO("?raw=true")
#Criando diretório temporário e descompactando pasta zipada
tmpd <- tempdir(check = TRUE)</pre>
                                                 # diretório temporário
zipf <- file.path(tmpd, "shapes.zip")</pre>
                                                    # arquivo temporário
if(!file.exists(zipf))
                             # garante download de dados binários (wb)
 download.file(gitArqv, mode="wb", destfile = zipf)
unzip(zipf, exdir = tmpd) # shape é unziped no diretório temporário
unlink(zipf)
                                              # deleta o arquivo zipado
# leitura das camadas
dadosArv <- pasteO(tmpd, "/shapes/Arvores.shp")</pre>
                                                       %>% read sf()
dadosUts <- pasteO(tmpd, "/shapes/UTs.shp")</pre>
                                                       %>% read sf()
dadosApp <- pasteO(tmpd, "/shapes/APP.shp")</pre>
                                                       %>% read_sf()
```

Gerando o dataframe com os valores de volume e número de indivíduos por UT

```
#filtrando meus registros
registros <- dadosArv %>%
 filter(destino == "PAB" | destino == "CF") %>%
  select(codARV,altura,dap,volume,codUT)
# Criar um dataframe com todas as codUT
todos codUTs <- data.frame(unique(dadosUts$UT))</pre>
colnames(todos_codUTs) <- c("codUT")</pre>
#Gerando a média, a soma dos volumes e n^{\varrho} de espécies por UT
mediaVolUts <- merge(todos_codUTs, aggregate(ifelse(is.na(volume), 0, volume) ~ codUT,</pre>
  data = registros, mean), by = "codUT", all.x = TRUE) #media
somaVolUts <- merge(todos_codUTs, aggregate(ifelse(is.na(volume), 0, volume) ~ codUT,</pre>
  data = registros, sum), by = "codUT", all.x = TRUE)#Soma
contagemVolUts <- merge(todos_codUTs, aggregate(ifelse(is.na(volume), 0, volume) ~ codUT,</pre>
 data = registros, FUN = length), by = "codUT", all.x = TRUE)#Qtd
#Unindo todos os valores em um dataframe apenas e renomenado as colunas
resumoUts <- merge(merge(mediaVolUts, somaVolUts, by = "codUT"), contagemVolUts, by =
 "codUT")
```

```
colnames(resumoUts) <- c("codUT", "mediaVolume", "somaVolume", "numeroIndividuos")
resumoUts[is.na(resumoUts)] <- 0</pre>
```

Calculando a área de APP existente dentro de cada UT

```
# Dividir o shp dadosAPP em feições por Uts -> APP por Uts
poligono recortado <- st intersection(dadosApp, dadosUts)</pre>
## Warning: attribute variables are assumed to be spatially constant throughout
## all geometries
appUts <- st_cast(poligono_recortado, "MULTIPOLYGON")</pre>
#Calcular a área da app nas Uts
area <- round(st_area(appUts)/10000,3)</pre>
#Removendo a unidade de medida do texto e transformando em número
appUts$AreaAPP <- as.numeric(gsub("[m^]", "", as.character(area)))
#Agrupando os valores de área da app pelas Uts e renomenado as colunas
areaAppUts <- aggregate(AreaAPP ~ UT, data = appUts, sum)</pre>
colnames(areaAppUts) <- c("codUT", "areaAPP")</pre>
#Enviando os dados da tabela areaAppUts para o shp resumoUts através d ID
resumoUts <- merge(resumoUts, areaAppUts, by = "codUT")</pre>
#Inserindo o valor bruto de área das Uts
resumoUts$area <- 100.00
#calculando a coluna de área liquida area com app - area da app
resumoUts$areaSApp <- resumoUts$area - resumoUts$areaAPP</pre>
#Selecionando apenas as colunas que interessa
resumoUts <- resumoUts %>%
  select(codUT,mediaVolume,somaVolume,numeroIndividuos,areaAPP,area,areaSApp)
#Criando as colunas com as informações de volume/ha e individuos/ha
resumoUts$volumeHectare <- resumoUts$somaVolume / resumoUts$areaSApp</pre>
resumoUts$individuosHectare <- resumoUts$numeroIndividuos / resumoUts$areaSApp
head(resumoUts)
##
     codUT mediaVolume somaVolume numeroIndividuos areaAPP area areaSApp
## 1
       1
             2.964085 4209.00
                                             1420
                                                   5.054 100
                                                                 94.946
             3.141168
## 2
        2
                         3926.46
                                             1250 12.115 100
                                                                 87.885
## 3
        3 2.974856
                         3308.04
                                             1112 18.005 100 81.995
## 4
        4
             2.965656
                         3502.44
                                             1181 10.937 100 89.063
## 5
       5
             3.065453
                         3316.82
                                             1082 11.044 100 88.956
## 6
        6
             3.164379
                       3237.16
                                             1023 27.144 100 72.856
   volumeHectare individuosHectare
## 1
         44.33046
                        14.95587
## 2
         44.67725
                          14.22313
## 3
                          13.56180
        40.34441
```

```
## 4 39.32542 13.26028
## 5 37.28607 12.16332
## 6 44.43230 14.04140
```

Plotagem dos gráficos de dispersão

```
GraficoVolume<-ggplot()+</pre>
  ggtitle("produção/areaAPP")+
  geom_point(data = resumoUts,
             aes(x= areaAPP, y = volumeHectare))+
  theme bw()+
  xlab("Área da APP") + ylab("Produção m³/ha")
GraficoIndividuos<-ggplot()+</pre>
  ggtitle("Ind/areaAPP")+
  geom_point(data = resumoUts,
             aes(x=areaAPP, y = individuosHectare))+
  theme_bw()+
  xlab("Área da APP") + ylab("N^{\circ} de indivíduos (n^{\circ}/ha)")
GraficoIndVol<-ggplot()+</pre>
  ggtitle("Ind/produção")+
  geom_point(data = resumoUts,
             aes(x= volumeHectare, y = individuosHectare))+
  theme_bw()+
  xlab("Produção m³/ha") + ylab("Nº de indivíduos (nº/ha)")
grid.arrange(GraficoVolume, GraficoIndividuos,GraficoIndVol, ncol = 3,nrow = 1)
```


Ao analisar os gráficos percebe-se que não existe relação entre os agentes avaliados (APP X Produção) e (APP X $\rm N^{\circ}$ de indivíduos). Sendo assim foram gerados dois mapas para entender melhor sobre a dinâmica dos parâmetros avaliados e sua UT correspondente

Mapas de localização dos blocos e seus respectivos valores de volume ${\bf m}^3$ por ha e quantidade de indivíduos

```
colnames(resumoUts) <- c("UT", "mediaVolume", "somaVolume", "numeroIndividuos",</pre>
  "areaAPP", "area", "areaSApp", "volumeHectare", "individuosHectare")
dadosUts <- merge(dadosUts, resumoUts, by = "UT")</pre>
MapaVolUt <- ggplot() +</pre>
  ggtitle("Produção m3/ha")+
  geom_sf(data = dadosUts, aes(fill = volumeHectare), colour = "red") +
  scale_fill_gradient(low = "blue", high = "orange") +
  geom_sf_text(data = dadosUts, aes(label = UT), size = 3) +
  geom_sf(data = dadosApp, colour = "red", fill='white', alpha = 0.5) +
  coord_sf(datum=st_crs(29190)) +
                                       # Especifica sistema de coord.
  scale_x_continuous(breaks = seq(from = 218500, to = 223000, by = 1000))+
  labs(fill = "Produção m³/ha")
MapaIndlUt <- ggplot() +</pre>
  ggtitle("Individuos/ha")+
  geom_sf(data = dadosUts, aes(fill = individuosHectare), colour = "red") +
```

```
scale_fill_gradient(low = "blue", high = "orange",) +
geom_sf_text(data = dadosUts, aes(label = UT), size = 3) +
geom_sf(data = dadosApp, colour = "red", fill='white', alpha = 0.5) +
coord_sf(datum=st_crs(29190)) + # Especifica sistema de coord.
scale_x_continuous(breaks = seq(from = 218500, to = 223000, by = 1000))+
labs(fill = "Indivíduos/ha")
grid.arrange(MapaIndlUt, MapaVolUt, ncol = 2,nrow = 1)
```


2. Modelagem

Diante dos resultados obtidos durante a etapa exploratória dos dados, optou-se por agrupar as UTs em 3 classes diferentes de acordo com a área de APP dentro de cada uma delas. Foram consideradas UTs com alta influência de APP aquelas que apresentaram área de APP maior que 15 hectares, média influência aquelas que a área da APP se encontrasse entre 7 e 15 hectares e as demais foram consideradas com baixa influência.

Criação da coluna categorizando as UTs de acordo com a área de APP dentro delas

```
# Criar a nova coluna com base na condição
dadosUts$catAreaApp <- ifelse(dadosUts$areaAPP > 15, 2, ifelse(dadosUts$areaAPP > 7, 1,
  0))
print(dadosUts)
## Simple feature collection with 11 features and 14 fields
## Geometry type: POLYGON
## Dimension:
## Bounding box: xmin: 218921.9 ymin: 8934466 xmax: 222000.2 ymax: 8939219
## Projected CRS: SAD69 / UTM zone 20S
## First 10 features:
##
      UT Y_INDEX X_INDEX
                              Area Hectares mediaVolume somaVolume
## 1
               1
                       8 1000000.0 100.00000
                                                 2.964085
                                                             4209.00
                                                             3926.46
                       9 1000000.0 100.00000
## 2
       2
               1
                                                 3.141168
## 3
       3
               1
                      10 1000000.0 100.00000
                                                 2.974856
                                                             3308.04
## 4
               2
                       8 1000000.0 100.00000
                                                 2.965656
                                                             3502.44
```

```
## 5
                       9 1000000.0 100.00000
                                                3.065453
                                                            3316.82
                                                            3237.16
## 6
              3
                       8 1000000.0 100.00000
                                                3.164379
      6
## 7
      7
              3
                       9 1000000.0 100.00000
                                                2.983255
                                                            3931.93
              4
                      8 1000000.0 100.00000
## 8
                                                3.059262
                                                            2860.41
## 9
               4
                       9 1000000.0 100.00000
                                                2.972996
                                                            4019.49
## 10 10
              5
                       8 500313.1 50.03131
                                                3.374362
                                                            3651.06
     numeroIndividuos areaAPP area areaSApp volumeHectare individuosHectare
                                      94.946
                                                                    14.95587
## 1
                  1420
                        5.054 100
                                                  44.33046
## 2
                  1250 12.115 100
                                      87.885
                                                  44.67725
                                                                    14.22313
## 3
                  1112 18.005 100
                                     81.995
                                                  40.34441
                                                                    13.56180
                  1181 10.937 100
                                    89.063
                                                  39.32542
                                                                    13.26028
## 5
                  1082 11.044 100
                                    88.956
                                                  37.28607
                                                                    12.16332
## 6
                  1023 27.144 100
                                     72.856
                                                  44.43230
                                                                    14.04140
## 7
                        1.586 100
                                     98.414
                  1318
                                                  39.95295
                                                                    13.39240
## 8
                  935 24.811 100
                                     75.189
                                                  38.04293
                                                                    12.43533
## 9
                  1352
                        4.139 100
                                      95.861
                                                  41.93040
                                                                    14.10375
## 10
                  1082 14.429 100
                                      85.571
                                                  42.66703
                                                                    12.64447
##
                            geometry catAreaApp
## 1 POLYGON ((220008.4 8938042,...
                                              0
## 2 POLYGON ((221004.3 8938133,...
                                              1
## 3 POLYGON ((221004.3 8938133,...
                                              2
## 4 POLYGON ((220098.9 8937046,...
                                              1
## 5 POLYGON ((221094.8 8937137,...
                                              1
## 6 POLYGON ((220189.5 8936050,...
## 7 POLYGON ((221185.4 8936141,...
                                              0
## 8 POLYGON ((220280 8935055, 2...
                                              2
## 9 POLYGON ((221275.9 8935145,...
                                              0
## 10 POLYGON ((220325.3 8934556,...
```

Geração do mapa com as UTs classificadas

```
# Converter a variável catAreaApp para o tipo de dados factor
dadosUts$catAreaApp <- factor(dadosUts$catAreaApp)</pre>
# Definir cores para cada valor da variável catAreaApp
cores <- c("orange", "blue", "pink")</pre>
nomes_cores <- setNames(cores, levels(dadosUts$catAreaApp))</pre>
# Plotar o gráfico com cores por valor
MapaClasseAPP <- ggplot() +</pre>
  ggtitle("Classe area/APP") +
  geom_sf(data = dadosUts, aes(fill = catAreaApp), colour = "red") +
  geom_sf_text(data = dadosUts, aes(label = UT), size = 3) +
  geom_sf(data = dadosApp, colour = "red", fill = 'white', alpha = 0.5) +
  coord_sf(datum = st_crs(29190)) + # Especifica sistema de coord.
  scale_x_continuous(breaks = seq(from = 218500, to = 223000, by = 1000)) +
  scale_fill_manual(values = nomes_cores, labels = c("Baixa influência",
    "Média influência", "Alta influência")) +
  labs(fill = "Influência de APP") # Altera o título da legenda
# Visualizar o gráfico
print(MapaClasseAPP)
```


ANOVA

Em seguida, realizou-se a ANOVA para verificar a existência de diferencia significativa entre as categorias criadas em relação a produção de madeira (Tabela 1) e ao número de indivíduos (Tabela 2), considerando um nível de significância de 0.05.

ANOVA Volume

ANOVA nº indivíduos

Ambas as ANOVAS indicam que os dois parâmetros testados não apresentam diferencia significativa entre eles e a presença de APP nas UTs, pois o Pr(>f) possuem valores maiores que 0,05.

3. Conclusão

De acordo com os resultados apresentados neste trabalho, a presença da APP nas unidades de trabalhos não são suficientes para gerarem alguma influência sobre a produção de madeira e a quantidade de indivíduos presentes, em um contexto geral considerando todos os indivíduos com DAP maior que 40.

Uma possibilidade seria replicar a mesma sequência lógica que gerou este resultado, porém filtrando o data-frame por espécies, com o objetivo de localizar espécies com maior aptidão a regiões próximas a APPs e outras com menor.

RStudioCloud - PRODAPPMANJ