

## Department of Computer Science and Engineering

Program: BE

| Date                              | 18 June 2024 | Maximum Marks             | 50     |  |  |
|-----------------------------------|--------------|---------------------------|--------|--|--|
| Course Code                       | CD343AI      | Duration                  | 90 min |  |  |
| 7 Sem                             | IV Semester  | CIE-I Scheme and Solution |        |  |  |
| Design and Analysis of Algorithms |              |                           |        |  |  |
| (Common to AIML/CSE/CD/CY/ISE)    |              |                           |        |  |  |



|                                                                        | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Algorithm $Sum(n)$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| //input: A positive integer n                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| //output: Sum of cubes of first n natural numbers                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| if n = 1, return 1                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| else                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| return Sum(n-1) + (n*n*n)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Since multiplication is basic operation and its executed twice         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| in each call, the recurrence is:                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(n) = C(n-1) + 2 when $n > 1$                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(1)=0                                                                 | Algo (2)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                        | Recur(1)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                        | Solve (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(n) = C(n-3) + 2 + 2(2) = C(n-3) + 2(3)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •••                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $C(n) = C(n-i) + 2 + 2 + \cdots = C(n-i) + 2(i)$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ,                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Therefore, its Linear complexity.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u> </u>                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| //input: An array of 'n' random numbers                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $if \ A[j] < A[min] \qquad min \leftarrow j$                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| swap $A[i]$ and $A[min]$                                               | Algo (2)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Desir an anations Communicati                                          | Solve (2)+<br>Compare(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| n-2 $n-1$                                                              | Comparc(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $C(n) = \sum_{i} \sum_{j} 1$                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| t=0 j=t11                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Solving, we get quadratic time complexity.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Selection sort is a brute force technique with $\theta(n^2)$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Merge-sort is a divide-and-conquer algorithm, has $\theta(n \log n)$ . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        | //input: A positive integer n //output: Sum of cubes of first n natural numbers if $n=1$ , return 1 else return $Sum(n-1)+(n*n*n)$ Since multiplication is basic operation and its executed twice in each call, the recurrence is: $C(n) = C(n-1)+2  \text{when } n > 1$ $C(1) = 0$ Solving by method of backward substitution, we get $C(n) = C(n-1)+2$ $C(n) = C(n-2)+2+2=C(n-2)+2(2)$ $C(n) = C(n-3)+2+2(2)=C(n-3)+2(3)$ $C(n) = C(n-i)+2+2+2+\cdots=C(n-i)+2(i)$ Put $i=n-1$ , We get $C(n) = C(1)+2(n-1)=0+2(n-1)=2n-2$ Therefore, its Linear complexity. Algorithm Selection Sort $(A[0 \dots n-1])$ //input: An array of 'n' random numbers //output: sorted array in ascending order for $i \leftarrow 0$ to $n-2$ do $min \leftarrow i$ $for j \leftarrow i+1$ to $n-1$ do $if A[j] < A[min] \qquad min \leftarrow j$ swap $A[i]$ and $A[min]$ Basic operation: Comparison $C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$ Solving, we get quadratic time complexity. Selection sort is a brute force technique with $\theta(n^2)$ |

| 3a | Increasing order of growth: $log_5 n$ , $log_2 n$ , $\sqrt{n}$ , $3n$ , $n log n$ , $n^3$ , $2^n$ If its argument is increased four-fold, we get $log_4 5 + log_5 n$ , $2 + log_2 n$ , $2\sqrt{n}$ , $12n$ , $8n + 4n log n$ , $64n^3$ , $16*2^n$ ALGORITHM Mergesort(A[0n - 1])  //Sorts array A[0n - 1] by recursive mergesort  //Input: An array A[0n - 1] of orderable elements  //Output: Array A[0n - 1] sorted in nondecreasing order  if $n > 1$ copy A[0[ $n/2$ ] - 1] to B[0[ $n/2$ ] - 1]  copy A[ $\lfloor n/2 \rfloor$ $n - 1$ ] to C[0[ $n/2$ ] - 1]                                                                                                                                   | 2+3 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | //Sorts array $A[0n-1]$ by recursive mergesort<br>//Input: An array $A[0n-1]$ of orderable elements<br>//Output: Array $A[0n-1]$ sorted in nondecreasing order<br>if $n > 1$<br>$copy A[0\lfloor n/2 \rfloor - 1]$ to $B[0\lfloor n/2 \rfloor - 1]$                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 3b | $Mergesort(B[0\lfloor n/2\rfloor-1])$ $Merge(B,C,A) \text{ //see below}$ $\textbf{ALGORITHM}  Merge(B[0p-1],C[0q-1],A[0p+q-1])$ $\text{//Merges two sorted arrays into one sorted array}$ $\text{//Input: Arrays } B[0p-1] \text{ and } C[0q-1] \text{ both sorted}$ $\text{//Output: Sorted array } A[0p+q-1] \text{ of the elements of } B \text{ and } C$ $i \leftarrow 0; j \leftarrow 0; k \leftarrow 0$ $\textbf{while } i  \textbf{if } B[i] \leq C[j] A[k] \leftarrow B[i]; i \leftarrow i+1 \textbf{else } A[k] \leftarrow C[j]; j \leftarrow j+1 k \leftarrow k+1 \textbf{if } i = p \text{copy } C[jq-1] \text{ to } A[kp+q-1] \textbf{else } \text{copy } B[ip-1] \text{ to } A[kp+q-1]$ | 3+2 |
|    | Recurrence: $C(n) = 2C(\frac{n}{2}) + n - 1$ for $n > 1$ , $C(1) = 0$ Master's theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 4a | The recurrence $T(n) = aT(n/b) + cn^k$ $T(1) = c,$ $where a, b, c, and k are all constants, solves to:$ $T(n) \in \Theta(n^k) \text{ if } a < b^k$ $T(n) \in \Theta(n^k \log n) \text{ if } a = b^k$ $T(n) \in \Theta(n^{\log_b a}) \text{ if } a > b^k$ i. $T(n) = 2T\left(\frac{n}{2}\right) + n$ $a = 2, b = 2, d = 1$ Since $a = b^d$ , its case 2. $T(n) \in \theta(n \log n)$                                                                                                                                                                                                                                                                                                                  | 2+2 |

|    | $a = 8, b = 2, d = 2$ Since $a > b^d$ , its case 3. $T(n) \in \theta(n^{\log_2 8}) \Rightarrow T(n) \in \theta(n^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4b | Worst-case efficiency class for the quick sort happens when the array is almost sorted either ascending or descending.  Before the split, $(n + 1)$ comparison done for an array of size $n$ . This split is uneven and we are left with subarray of size $(n - 1)$ $C(n) = (n + 1) + n + (n - 1) + \cdots \dots 3 = \frac{(n + 1)(n + 2)}{2} - 3$ Hence quadratic efficiency class.  The first split happens as follows: $38, 81, 22, 48, 18, 50, 31, 58$ $38, 31, 22, 48, 18, 50, 81, 58$ $38, 31, 22, 18, 48, 50, 81, 58$ $18, 31, 22, 38, 48, 50, 81, 58$ $18, 31, 22, 38, 48, 50, 81, 58$ | 3+3 |
| 5a | <ul> <li>3 variations of decrease-and-conquer:</li> <li>Decrease by constant (DFS/BFS)</li> <li>Decrease by constant factor (Binary search)</li> <li>Variable size decrease (Euclid's GCD algorithm)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |     |
| 5b | i. DFS: 1, 0, 3, 2, 4, 6, 5 Stack is as shown below.  6 <sub>6,1</sub> 4 <sub>5,2</sub> 2 <sub>4,4</sub> 5 <sub>7,3</sub> 3 <sub>3,5</sub> 0 <sub>2,6</sub> 1 <sub>1,7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                   | 4+2 |

