Hardness Amplification for Weakly Verifiable Cryptographic Primitives

Grzegorz Mąkosa

Advisors: Prof. Dr. Thomas Holenstein, Dr. Robin Künzler Department of Computer Science, ETH Zürich

Hardness Amplification

Is solving parallel repetition of problems substantially harder than a single instance of a problem?

Hardness Amplification Facts

- Weak one-way function \implies strong one-way function
- What about MAC, signature schemes, CAPTCHAs?

Agenda

- Motivation and problem statement
- Background and related work
- My contribution
- Results
- Discussion

Weakly Verifiable Puzzles - CAPTCHA

Assumptions

- Small solutions space.
- Solver cannot have a way to efficiently verify its solutions.

Weakly Verifiable Puzzles

- Introduces by Cannetti, Halevi, Steiner [CHS05]
- An algorithm G generates a puzzle p together with some secrecy information s.
- A solver given p has to find a correct solution.
- It is hard for the solver to verify the correctness of a solution given only p.
- A verification algorithm has access to s which makes the task of checking the correctness of a solution easy.

Threshold and Binary Monotone Functions

Threshold functions
Binary functions

Gap Amplification

Difference between human and computer algorithms solutions.

Dynamic Puzzles Example

Game based security definition of MAC.

9

Dynamic Puzzle Definition (Informal)

- Given a set of indices Q.
- Hints : Solver can ask for solutions on any $q \in \mathcal{Q}$
- Verification: Solver solves a puzzle on $q \in \mathcal{Q}$ for which it has not asked for a hint before.
- Number of hint and verification queries limited.
- Generalize breaking MACs and signature schemes
- Introduced by Dodis et al. [?]

Interactive Puzzles Example

Binding property of the bit commitment protocols.

Previous works

- Weakly verifiable puzzles [CHS05]
- Dynamic weakly verifiable puzzles and threshold functions [?]
- Interactive puzzles and monotone function [?]

Goal

- Define puzzles that generalize MAC, CAPTCHA, bit commitments.
- Hardness amplification result for these puzzles.

Dynamic interactive puzzles

- Cannot run the solver multiple times.
- Hint queries from previous runs can prevent verification queries from succeeding.
- Use hash function to partition query domain [?].

Weakly verifiable puzzles

- Cannot check whether the solution is correct.
- For a special case where all puzzles have to be solved.
- Look at remaining n 1 puzzles that are generated.

Results

Let C be a solver for parallel repetition of puzzles

$$\geq \Pr_{u \leftarrow \mu_{\delta}^k}[g(u) = 1] + \varepsilon,$$

then D with high probability satisfies

$$\geq \frac{1}{16(h+\nu)} \Big(\delta + \frac{\varepsilon}{6k} \Big). \tag{0.1}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Discussion

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Questions

Bibliography

Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of weakly verifiable puzzles. In *Theory of Cryptography*, pages 17–33. Springer, 2005.