NLP-tutorial

nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using **TensorFlow** and **Pytorch**. Most of the models in NLP were implemented with less than **100 lines** of code.(except comments or blank lines)

Curriculum - (Example Purpose)

1. Basic Embedding Model

- 1-1. NNLM(Neural Network Language Model) Predict Next Word
 - Paper A Neural Probabilistic Language Model(2003)
 - Colab NNLM_Tensor.ipynb, NNLM_Torch.ipynb
- 1-2. Word2Vec(Skip-gram) Embedding Words and Show Graph
 - Paper Distributed Representations of Words and Phrases and their Compositionality(2013)
 - Colab Word2Vec_Tensor(NCE_loss).ipynb, Word2Vec_Tensor(Softmax).ipynb, Word2Vec_Torch(Softmax).ipynb
- 1-3. FastText(Application Level) Sentence Classification
 - Paper Bag of Tricks for Efficient Text Classification(2016)
 - Colab FastText.ipynb

2. CNN(Convolutional Neural Network)

- 2-1. TextCNN Binary Sentiment Classification
 - Paper Convolutional Neural Networks for Sentence Classification(2014)
 - Colab TextCNN_Tensor.ipynb, TextCNN_Torch.ipynb
- 2-2. DCNN(Dynamic Convolutional Neural Network)

3. RNN(Recurrent Neural Network)

- 3-1. TextRNN Predict Next Step
 - Paper Finding Structure in Time(1990)
 - Colab TextRNN_Tensor.ipynb, TextRNN_Torch.ipynb

- 3-2. TextLSTM Autocomplete
 - Paper LONG SHORT-TERM MEMORY(1997)
 - Colab TextLSTM_Tensor.ipynb, TextLSTM_Torch.ipynb
- 3-3. Bi-LSTM Predict Next Word in Long Sentence
 - Colab Bi_LSTM_Tensor.ipynb, Bi_LSTM_Torch.ipynb

4. Attention Mechanism

- 4-1. Seq2Seq Change Word
 - Paper Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation(2014)
 - Colab Seq2Seq_Tensor.ipynb, Seq2Seq_Torch.ipynb
- 4-2. Seq2Seq with Attention Translate
 - Paper Neural Machine Translation by Jointly Learning to Align and Translate(2014)
 - Colab Seq2Seq(Attention)_Tensor.ipynb, Seq2Seq(Attention)_Torch.ipynb
- 4-3. Bi-LSTM with Attention Binary Sentiment Classification
 - o Colab Bi_LSTM(Attention)_Tensor.ipynb, Bi_LSTM(Attention)_Torch.ipynb

5. Model based on Transformer

- 5-1. The Transformer Translate
 - Paper Attention Is All You Need(2017)
 - Colab Transformer_Torch.ipynb, Transformer(Greedy_decoder)_Torch.ipynb
- 5-2. BERT Classification Next Sentence & Predict Masked Tokens
 - Paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding(2018)
 - Colab BERT_Torch.ipynb

Model	Example	Framework	Lines(torch/tensor)
NNLM	Predict Next Word	Torch, Tensor	67/83
Word2Vec(Softmax)	Embedding Words and Show Graph	Torch, Tensor	77/94
TextCNN	Sentence Classification	Torch, Tensor	94/99
TextRNN	Predict Next Step	Torch, Tensor	70/88

Model	Example	Framework	Lines(torch/tensor)
TextLSTM	Autocomplete	Torch, Tensor	73/78
Bi-LSTM	Predict Next Word in Long Sentence	Torch, Tensor	73/78
Seq2Seq	Change Word	Torch, Tensor	93/111
Seq2Seq with Attention	Translate	Torch, Tensor	108/118
Bi-LSTM with Attention	Binary Sentiment Classification	Torch, Tensor	92/104
Transformer	Translate	Torch	222/0
Greedy Decoder Transformer	Translate	Torch	246/0
BERT	how to train	Torch	242/0

Dependencies

- Python 3.5+
- Tensorflow 1.12.0+
- Pytorch 0.4.1+
- Plan to add Keras Version

Author

- Tae Hwan Jung(Jeff Jung) @graykode
- Author Email : nlkey2022@gmail.com
- Acknowledgements to mojitok as NLP Research Internship.