Total No. of Questions—8]

[Total No. of Printed Pages—2

Seat	
No.)

[5252]-139

S.E. (Elect/E&TC) (Second Semester) EXAMINATION, 2017 COMPUTER ORGANIZATION

(2012 **Pattern**)

Time: Two Hours Maximum Marks: 50

- **N.B.** :— (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Draw the block diagram of basic structure of computer and explain function of each block. [6]
 - (b) Give the IEEE standard for floating point numbers for :
 - (i) Single precision number
 - (ii) Double precision number

[6]

Or

- **2.** (a) Draw and explain single bus organization. [6]
 - (b) Multiply (7) and (3) using Booths algorithm. Register size 5 bits.
- **3.** (a) Compare RISC and CISC processor [6]
 - (b) Write a short note on PCI BUS. [6]

P.T.O.

4.	(a)	Write control sequence for instruction MOVE (R1), (R2) using
		single bus organization. [6]
	(<i>b</i>)	What is BUS arbitration ? Explain Daisy chain and polling
		method. [6]
5.	(a)	Explain cache memory. Why is it used? [6]
	(<i>b</i>)	Explain the connection of memory to processor. [7]
		Or
6.	(a)	Explain the memory hierarchy of computer system. [6]
	(<i>b</i>)	Explain the concept of virtual memory? How virtual memory
		addresses is translated to physical memory address? [7]
7.	(a)	List out addressing modes of 8086. [6]
	(<i>b</i>)	Explain interrupt structure of 8086. [7]
		Or
8.	(a)	Explain the following addressing modes of 8086 with suitable
		example: [6]
		(i) Direct addressing
		(ii) Register addressing
		(iii) Immediate addressing
	(<i>b</i>)	Draw flag structure of 8086 and explain operation of each
		flag. [7]
		6.
		8.
		Draw flag structure of 8086 and explain operation of each flag. [7]
[525]	2]-139	2