This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BÖRDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AM"

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-45422

(43)公開日 平成10年(1998)2月17日

(51) Int.Cl. 5	識別記号	庁内整理番号	FI		技術表示箇所
C 0 3 C 3/085			C 0 3 C 3/085	•	
G09F 9/30	3 1 0		G09F 9/30	310	•

審査請求 未請求 請求項の数6 OL (全 6 頁)

(21)出願番号	特顏平8-199361		(71)出願人	00000044
•				旭硝子株式会社
(22)出願日	平成8年(1996)7月29日			東京都千代田区丸の内2丁目1番2号
			(72)発明者	西沢 学
				神奈川県横浜市神奈川区羽沢町1150番地
				旭硝子株式会社中央研究所内
•		•	(72)発明者	中尾 泰昌
	:	•		神奈川県横浜市神奈川区羽沢町1150番地
		•		旭硝子株式会社中央研究所内
•			(74)代理人	弁理士 泉名 謙治
* * * * * * * * * * * * * * * * * * * *				

(54) 【発明の名称】 無アルカリガラスおよびフラットディスプレイパネル

(57)【要約】

【課題】 歪点が高く、フロート法による成形が可能な無アルカリガラスを得る。

【解決手段】 歪点が700℃以上、50~300℃での 熱膨張係数が40×10-7/℃以下で、モル%表示でS iO2:66~72、A12O3:10~14、B2O 3:0~1.5、MgO:0~10、CaO:0~1 0、SrO:0~10、BaO:0~1未満、MgO+-CaO+SrO+BaO:14~22からなる無アルカ リガラス。

【特許請求の範囲】

【請求項1】歪点が700℃以上であって、50~30 0℃での熱膨張係数が40×10-7/℃以下であって、 酸化物基準のモル%表示で本質的に、

SiO2	66~72
A 1 2 O3	10~14,
B ₂ O ₃	0~1.5
MgO	0~10、
CaO	0~10
SrO	0~10
BaO	0~1未満、
M-OLO-OLO OLD	

MgO+CaO+SrO+BaO 14~22、からな り、アルカリ金属酸化物を実質的に含有しない無アルカ リガラス.

[請求項2] P2 O5 、PbO、As2 O3 、Sb2 O 3 を実質的に含有しない請求項1記載の無アルカリガラ

【請求項3】BaOを実質的に含有しない請求項1また は2記載の無アルカリガラス。

【請求項4】酸化物基準のモル%表示で本質的に、

S i O ₂	67~72
A 1 2 O3	10~14
B ₂ O ₃	0~1.5
MgO	0~8、
CaO	0~8、
SrO	0~8、
MgO+CaO+SrO	15~21、からな
り、アルカリ金属酸化物、	BaOを実質的に含有しない
請求項1記載の無アルカリ	

3 を実質的に含有しない請求項4記載の無アルカリガラ ス。

【請求項6】請求項1、2、3、4または5記載の無ア ルカリガラスを少なくとも一方の基板として使用したフ ラットディスプレイパネル.

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、各種ディスプレイ 用基板ガラスやフォトマスク用基板ガラスとして好適 な、アルカリ金属酸化物を実質上含有せず、フロート成 40 形可能な、無アルカリガラスに関する。

[0002]

【従来の技術】従来、各種ディスプレイ用基板ガラス、 特に表面に金属ないし酸化物薄膜等を形成するもので は、以下に示す特性が要求されてきた。

- (1) アルカリ金属酸化物を含有していると、アルカリ 金属イオンが薄膜中に拡散して膜特性を劣化させるた め、実質的にアルカリ金属イオンを含まないこと。
- (2) 薄膜形成工程で高温にさらされる際に、ガラスの

最小限に抑えうるように、 歪点が高いこと.

【0003】(3)半導体形成に用いる各種薬品に対し て充分な化学耐久性を有すること。特にSiOxやSi Nx のエッチングのためのバッファードフッ酸 (BH F:フッ酸とフッ化アンモニウムの混合液)、および I TOのエッチングに用いる塩酸を含有する薬液、金属電 極のエッチングに用いる各種の酸(硝酸、硫酸等)、レ ジスト剥離液のアルカリに対して耐久性のあること。

- (4) 内部および表面に欠点(泡、脈理、インクルージ 10 ョン、ピット、キズ等)がないこと。
 - 【0004】上記の要求に加えて、近年では、以下のよ うな状況にある。
 - (5) ディスプレイの軽量化が要求され、ガラス自身も 密度の小さいガラスが望まれる。
 - (6)ディスプレイの軽量化が要求され、基板ガラスの 薄板化が望まれる。

【0005】(7)これまでのアモルファスシリコン (a-Si)タイプの液晶ディスプレイに加え、若干熱 処理温度の高い多結晶シリコン(p-Si)タイプの液 20 晶ディスプレイが作製されるようになってきた (a-S i:約350℃→p-Si:350~550℃)。

(8)液晶ディスプレイ作製熱処理の昇降温速度を速く して、生産性を上げたり耐熱衝撃性を上げるために、ガ ラスの熱膨張係数の小さいガラスが求められる。

【0006】一方、エッチングのドライ化が進み、耐B HF性に対する要求が弱くなってきている。これまでの ガラスは、耐BHF性を良くするために、B: O3 を6 ~10モル%含有するガラスが多く用いられてきた。し かし、B2 O3 は歪点を下げる傾向がある。B2 O3 を 【請求項5】P2 O5 、PbO、As2 O3 、Sb2 O 30 含有しないまたは含有量の少ない無アルカリガラスの例 としては以下のようなものがある。

> 【0007】特開昭62-113735にはB2 O3 を 含有しない、SiOź -Alź Oš-SrOガラスが開 示されているが、SiO2を77モル%以上含有するた め、熔解に必要な温度が高く製造に困難を生ずる。

【0008】特開昭62-100450にはB2 O3 を 含有しない、SiO2 -Al2 O3-SrO結晶化ガラ スが開示されているが、SiOrを6-8モル%以上、か つ、Al2 O3 を18モル%以上含有するため、熔解に 必要な温度が高く製造に困難を生ずる。

【0009】特開昭63-176332にはB203を 0~5重量%含有するガラスが開示されているが、Ca 〇を11モル%以上含有するため失透温度が高く、また CaOの原料である石灰石中の不純物リンを多く含有 し、ガラス基板上に作製するトランジスタにリーク電流 を生じさせるおそれがある。

【0010】特開平4-325435にはB2 O3 を0 ~3重量%含有するガラスが開示されているが、SrO とCaOをそれぞれ8モル%以上含有するため、50~ 変形およびガラスの構造安定化に伴う収縮(熱収縮)を 50 300°Cでの熱膨張係数が40×10-7/°Cを超える。

【0011】特開平5-232458にはB2 O3 を0 ~5モル%含有するガラスが開示されているが、SrO を15モル%以上含有するため、50~300℃での熱 膨張係数が50×10-7/℃を超える。

【0012】米国特許第5326730号明細書にはB 2 O3 を0~5モル%含有するガラスが開示されている が、BaOを12モル%以上含有するため、熱膨張が大 きく、密度も大きい。

【0013】特開平8-109037にはB2 O3 を0 2 を55~67重量%含有し、かつ、A 12 O3 を6~ 14重量%含有するガラス」(a群)と「SiO2を4 9~58重量%含有し、かつ、Al2 O3 を16~23 重量%含有するガラス」(b群)とに分けられるが、a 群はSiO2の含有量が多いため、SiO2原料である ケイ砂が融液中に熔けきらず未融ケイ砂として熔け残る・ 問題があり、b群はAl2 O3 の含有量が多いため失透 温度が著しく高くなる問題がある。

[0014]

【発明が解決しようとする課題】本発明の目的は、上記 20 欠点を解決し、歪点が高く、膨張が小さく、フロート成 形できる無アルカリガラスを提供することにある。

[0015]

【課題を解決するための手段】本発明は、歪点が700 ℃以上であって、50~300℃での熱膨張係数が40 ×10-7/℃以下であって、酸化物基準のモル%表示で 本質的に、SiO2:66~72、Al2O3:10~ 14. B₂ O₃ : $0\sim1$, MgO: $0\sim10$, CaO: 0~10、SrO:0~10、BaO:0~1未満、M gO+CaO+SrO+BaO:14~22からなり、 アルカリ金属酸化物を実質的に含有しない無アルカリガ ラスである。

$\{0016\}$

【発明の実施の形態】次に各成分の組成範囲について説 明する。SiO2 は66% (モル%、以下特記ないかぎ り同じ)未満では、歪点が充分に上がらず、かつ、熱膨 張係数が増大し、密度が上昇する。72%超では、熔解 性が低下し、失透温度が上昇する。好ましくは67~7 1%である.

【0017】A12 O3 はガラスの分相性を抑制し、熱・40 膨脹係数を下げ、歪点を上げるが、10%未満ではこの 効果があらわれず、また、ほかの膨張を上げる成分を増 加させることになるため、結果的に熱膨張が大きくな る。14%超ではガラスの熔解性が悪くなったり、失透 温度を上昇させるおそれがある。10.5~13.5% がより好ましい。

【0018】B2 O3 は必須ではないが、ガラスの熔解 反応性をよくし、また、失透温度を低下させるため1. 5%まで添加できる。しかし、多すぎると歪点が低くな る。したがって1%以下が好ましく、実質的に含有しな 50 いことが特に好ましい。

【0019】MgOは必須ではないが、アルカリ土類の 中では膨張を高くせず、かつ歪点を過大には低下させな いという特徴を有し、熔解性も向上させるため、含有で きる。しかし、10%を超えると、失透温度が上昇する おそれがある。8%以下がより好ましい。

【0020】CaOは必須ではないが、MgOに次いで アルカリ土類中では膨張を高くせず、かつ歪点を過大に は低下させないという特徴を有し、熔解性も向上させる ~8モル%含有するガラスが開示されており、「SiO 10 ため、含有できる。しかし、10%を超えると、失透温 度が上昇したりCaO原料である石灰石(CaCO₃) 中の不純物であるリンが、多く混入するおそれがある。 . 8%以下がより好ましく、特に好ましくは5%以下であ

> 【0021】SrOは必須ではないが、ガラスの失透温 度を上昇させず熔解性を向上させるため、含有できる。 しかし、10%を超えると膨脹係数が増大するおそれが ある. 好ましくは8%以下である.

【0022】BaOは必須ではないが熔解性向上のため に含有できる。しかし、多すぎるとガラスの膨張と密度 を過大に増加させるので1%未満とする。実質的に含有 しないことが好ましい。

【0023】MgO、CaO、SrO、BaOは合量で 14%よりも少ないと、熔解性に乏しく、22%よりも 多いと、熱膨張係数を小さくできないという難点が生じ るおそれがある。好ましくはBaOを実質的に含まず、 15~21%である。

【0024】なお、本発明のガラスは、パネル製造時に ガラス表面に設ける金属ないし酸化物薄膜の特性劣化を 生じさせないために、アルカリ金属酸化物を不純物レベ ルを超えて(すなわち実質的に)含有しない。また、同 様の理由で、P2 O5 を実質的に含有しないことが好ま しい。さらに、ガラスのリサイクルを容易にするため、 PbO、As2 O3、Sb2 O3 は実質的に含有しない ことが好ましい。

【0025】本発明の無アルカリガラスは上記成分以外 にガラスの熔解性、清澄性、成形性を改善するため、2 nO、Fe2 O3、SO3、F、C1、SnO2 を総量 で5%以下添加できる。

【0026】本発明の無アルカリガラスは、歪点が70 ○℃以上であり、パネル製造時の熱収縮を抑えられる。 本発明のガラスにおいて、好ましくは歪点は720℃以 上である。

【0027】また本発明の無アルカリガラスは、50~ 300℃での熱膨張係数が40×10-7/℃以下であ り、耐熱衝撃性が大きく、パネル製造時の生産性を高く できる。本発明の無アルカリガラスにおいて、50~3 00℃での熱脆残係数は30×10-7~40×10-7/ **℃であることが好ましい。**

【0028】さらに、本発明の無アルカリガラスは、密

度が2.70g/cc以下であることが好ましく、より好ましくは2.65g/cc以下である。

【0029】また、本発明の無アルカリガラスは、粘度 nが10² ポイズとなる温度T₂ が1770℃以下、好 ましくは1730℃以下になっているため、熔解が比較 的容易である。

【0030】さらに、本発明のガラスは粘度ヵが10°ポイズとなる温度T。が1370℃以下、好ましくは1340℃以下であるうえ、この温度T。が失透温度以上になっているのでフロート法による成形ができる。

【0031】本発明のガラスは、例えば次のような方法で製造できる。通常使用される各成分の原料を目標成分になるように調合し、これを熔解炉に連続的に投入し、1500~1600℃に加熱して熔融する。この熔融ガラスをフロート法により所定の板厚に成形し、徐冷後切断する。

[0032]

【実施例】以下において例1~22は実施例、例23、24は比較例である。各成分の原料を目標組成になるように調合し、白金坩堝を用いて1500~1600℃の20温度で熔解した。熔解にあたっては、白金スターラを用い撹拌しガラスの均質化を行った。次いで熔解ガラスを流し出し、板状に成形後徐冷した。

【0033】表1~3には、ガラス組成(単位:モル・*

*%) と50~300℃での熱膨脹係数(単位:×10⁻⁷ /℃)、歪点(単位:℃)、密度(単位:g/cc)、高温粘性値として、熔解性の目安となる温度T2 (log n=2、すなわち粘度が10²ポイズとなる温度、単位:℃)とフロート成形性の目安となる温度T1 (log n=4、すなわち粘度が10⁴ポイズとなる温度、単位:℃)、失透温度(単位:℃)、表示す。表4~6に は各例の組成を重量%で示す。

【0034】表から明らかなように、実施例のガラスは 10 いずれも、熱膨脹係数は40×10⁻⁷/℃以下と低く、 歪点も700℃以上と高く、高温での熱処理に充分耐え うることがわかる。

【0035】熔解性の目安となる温度 T_2 も比較的低く熔解が容易であり、成形性の目安となる温度 T_1 は失透温度以上になっており、成形時に失透が生成するなどのトラブルがないと考えられる。

【0036】例23はMgO+CaO+SrO+BaOが多いため、熱膨張係数が大きくなっている。また、CaOおよびA12O3が多いため、失透温度がT4より高く、フロート成形に適していない。例24はA12O3が少なく、MgO+CaO+SrO+BaOが多いため、歪点が700℃に満たない。

[0037]

【表1】

				<u>,</u>					
モル%	1	2	3	4	5	6	. 7	. 8	9
SiO ₂ Al ₂ O ₃ B ₂ O ₃ MgO CaO SrO	69. 0	67.0	68. 0	70.0	71.0	72.0	69. 0	69. 0	69.0
	12. 5	12.5	12. 5	12.5	12.5	12.5	10. 5	11. 5	13.5
	0. 0	0.0	0. 0	0.0	0.0	0.0	0. 0	0. 0	0.0
	6. 2	6.8	6. 5	5.8	5.5	5.2	6. 8	6. 5	7.0
	6. 2	6.8	6. 5	5.8	5.5	5.2	6. 8	6. 5	3.5
	6. 2	6.8	6. 5	5.8	5.5	5.2	6. 8	6. 5	7.0
熟膨張係数	37	40	38	36	34	33	40	38	35
密度	2. 61	2.66	2. 63	2. 59	2. 57	2. 54	2.64	2. 63	2. 59
亞点	740	730	740	740	750	750	710	730	750
T ₂	1710	1670	1690	1730	1750	1770	1710	1710	1710
T ₄	1330	1320	1330	1340	1350	1370	1330	1330	1330
失透温度	1310	1310	1310	1310	1310	1330	1210	1260	1310

7									8
モル%	10	11	1 2	1 3	1 4	1 5	1 6	17	1 8
S 1 O ₂	70.0	69. 0	69.0	69. 0	69.0	69.0	69. 0	69. 0	66.0
A 1, O,	13.0	12. 5	12. 5	12.5	12.5	12.5	12.5	12.5	12.5
B ₂ O ₃	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5
MgO	0.0	3.0	9.0	9.3	4.8	9.3	7.8	4.8	6.7
CaO	8. 5	7.8	4.8	0.0	9.0	9.3	7.8	4.8	6.7
SrO	8.5	7.8	4.8	9.3	4.8	0.0	3. 0	9.0	6.7
熟膨張係数	40	40	34	35	37	33	35	39	40
密度	2.66	2.65	2.57	2. 63	2. 61	2. 52	2.56	2.66	2. 65
歪点	750	740	750	750	740	740	740	740	720
T,	1730	1730	1730	1730	1730	1730	1730	1730	1680
T ₄	1340	1340	1340	1340	1340	1340	1340	1340	1330
失透温度	1330	1330	1310	1310	1310	1330	1330	1310	1310

【0039】 【表3】

*【表4】

20

モル%	19	2 0	2 1	2 2	2 3	2 4
S 1 O2	69.0	69.0	69. 0	69.0	58. 5	70.2
Al, O,	12.5	12.5	12.5	12.5	14.9	5.1
B ₁ O ₃	1.0	0.5	0.0	0.0	0.0	0.0
MgO	5.8	6.0	6.0	5.9	5.4	9.1
CaO	5.8	6.0	6.0	5.9	11.5	6.0
SrO	5.8	6.0	6.0	5.9	5.6	8.0
ВаО	0.0	0.0	0.4	0.8	1.0	0.9
熟膨張係数	36	37	37	38	- 51	48
密度	2. 59	2. 60	2. 62	2. 63	2.84	2. 72
歪点	730	740	740	730	728	693
T ₂	1680	1670	1710	1710	1450	1620
_T	1330	1320	1330	1330	1160	1300
失透温度	1300	1310	1310	1300	1240	1280
						i

30

[0040]

			· ·	т					10
重量%	1	2	3	4	5	6	7	8	9
SiO ₂ Al ₂ O ₃ B ₂ O ₃ MgO CaO SrO	62.3 19.2 0.0 3.7 5.2 9.6	60. 4 19. 1 0. 0 4. 1 5. 7 10. 6	61. 3 19. 1 0. 0 3. 9 5. 5 10. 1	63.3 19.2 0.0 3.5 4.9 9.1	64. 2 19. 2 0. 0 3. 3 4. 6 8. 6	65. 2 19. 2 0. 0 3. 1 4. 4 8. 1	63. 0 16. 3 0. 0 4. 2 5. 8 10. 8	62. 6 17. 7 0. 0 4. 0 5. 5 10. 2	61. 6 20. 5 0. 0 4. 2 2. 9 10. 8

[0041]

*	*	【表5	1
-		1483	

			,			- 1			
重量%	10	11	1 2	1 3	14	1 5	16	17	1 8
S 1 O ₂ A 1 ₂ O ₃ B ₂ O ₃ Mg O	61. 1 19. 2 0. 0	18. 8 0. 0	19.5 0.0	18. 9 0. 0	19.3 0.0		64. 0 19. 7 0. 0		59. 4 19. 1 1. 6
CaO	6.9	1.8 6.4	5. 5 4. 1	5.5	2.9	5.9	4.8	2.8	4.0
SrO	12.8	11.8	7.5	0.0 14.2	7.6 7.4	8.2 0.0	6.7 4.8	3. 9 13. 7	5.6 10.3
L	اـــــا								10.0

[0.0,42]

【表6】

重量%	19	20	2 1	2 2	2 3	2 4
SiO ₂	62. 3	62, 3	62. 0	61.7	50.3	65.5
A 1 2 O3	19.1	19. 2	19.1	19.0	21.7	8.1
B ₂ O ₃	1.0	0.5	0.0	0.0	0.0	0.0
MgO	3.5	3. 6	3.6	3.5	3, 1	6.1
CaO	4.9	5.1	5.1	4.9	9.2	5.2
SrO	9.1	9.3	9.3	9.1	13.0	12.9
ВаО	0.0	0.0	0.9	1.8	2. 2	2.2
					<u></u>	

※【発明の効果】本発明の無アリカリガラスは、歪点が高く、フロート法による成形ができ、ディスプレイ用基板、フォトマスク用基板等の用途に好適である。

30

[0043]