Impact of Elevated Base Stations on the Ultra-Dense Networks

Hewon Cho, Chenxi Liu, Jemin Lee, Taegyun Noh, and Tony Q. S. Quek

BongSang Kim

25/April/2019 UGRP

Keywords

- Elevated BSs
- LoS(Line of Sight)/NLoS
- Stochastic geometry
- Coverage probability

UDN Characteristics

- -The distance between BS and UE is small
- The height of BSs cannot be ignored
- The possibilities of having LoS propagation increases.

Former studies models

- Assumption: the probability of LoS propagations decreases as the antenna height of BSs increases -unlikely to be valid in practice
- BSs with a higher height are more likely to establish the LoS path towards the UEs.
- Assumption: equal height for all BSs-not realistic.
- heights of buildings should be different and random

System Model

- Single-antenna BSs and single-antenna Ues are randomly distributed.
- Modeled as PPPs(Poisson point processes) respectively(Φ_{BS} and Φ_{UE})
- each BS has at least one UE associated in its coverage for simplicity

System Model-Network Description

- All BSs have their antennas at the height l
- All UEs are on the ground
- Each BS supports one UE using time and frequency with the same transmission power.
- each BS has a LoS/NLoS path to associated UE with probability

$$\mathcal{P}_{L}(r_{i}) = \frac{1}{1 + a \exp(-b(\theta(r_{i}) - a))}$$

$$\mathcal{P}_{NL}(r_i) = 1 - \mathcal{P}_{L}(r_i)$$

System Model-Network Description

- Consider both fading and path loss
- LoS/NLoS propagation experiences Nakagami-m fading
 - *LoS: Rician fading
 - *NLoS: Rayleigh fading
- Path loss exponent $2 < \alpha_L \le \alpha_{NL} \le 4$

BS Association Rule

- the path loss exponents are different for LoS and NLoS propagations
- →the signal strength of the nearest BS is not always the strongest one
- cf) conventional model : the signal strength of the nearest BS is the strongest one

Consider BS with average strongest received power.

BS Association Rule

 Conventional PDF of the distance between UE and BS canoot be applied to the system.

• Should be consider LoS/NLoS propagation respectively.

BS Association Rule

- The approximated PDFs of r_0
- LOS

$$\tilde{f}_{r_0}^{L}(r) = 2\pi\lambda_{\rm BS}r \left(1 - \exp\left(-p_{\ell}r^2\right)\right) \exp\left(-\pi\lambda_{\rm BS}r^{\frac{2\alpha_{\rm L}}{\alpha_{\rm NL}}}\right) \\
\times \exp\left[\frac{\pi\lambda_{\rm BS}}{p_{\ell}} \left(\exp\left(-p_{\ell}r^2\right) - \exp\left(-p_{\ell}r^{\frac{2\alpha_{\rm L}}{\alpha_{\rm NL}}}\right)\right)\right]$$

NLOS

$$\begin{split} \tilde{f}_{r_0}^{\rm NL}(r) &= 2\pi \lambda_{\rm BS} r {\rm exp}\left(-p_\ell r^2\right) {\rm exp}\left(-\pi \lambda_{\rm BS} r^2\right) \\ &\times {\rm exp}\left[\!-\!\frac{\pi \lambda_{\rm BS}}{p_\ell} \left({\rm exp}\left(\!-\!p_\ell r^2\right)\!-\!{\rm exp}\left(\!-\!p_\ell r^{\frac{2\alpha_{\rm NL}}{\alpha_{\rm L}}}\right)\right)\!\right] \end{split}$$

 p_l : tunable value determined by the BS height l

Signal-to-Interference Radio

SIR at the typical UE located at the origin

$$ext{SIR}_o = rac{h_oig({r_o}^2 + \ell^2ig)^{-rac{lpha_o}{2}}}{I_{
m L} + I_{
m NL}},$$

- h: channel fading(LoS: $h_0 = h_L$, NLoS: $h_0 = h_{NL}$
- r: horizontal distance between UE and BS
- α : pathloss exponent
- I_L , I_{NL} : total interference power received from BSs in Φ_L , Φ_{NL}

Coverage Probability analysis

The coverage probability of the system is

$$egin{aligned} ext{SIR}_o &= \mathbb{P}\left[ext{SIR}_o > \zeta
ight] \ &= \int_0^\infty \mathbb{E}\left[\mathbb{P}\left[h_{ ext{L}} > rac{\zeta I}{\left(r^2 + \ell^2
ight)^{-rac{lpha_{ ext{L}}}{2}}} igg|^r, I
ight]
ight]f_{r0}^{ ext{L}}(r)\,\mathrm{d}r \ &+ \int_0^\infty \mathbb{E}\left[\mathbb{P}\left[h_{ ext{NL}} > rac{\zeta I}{\left(r^2 + \ell^2
ight)^{-rac{lpha_{ ext{NL}}}{2}}} igg|^r, I
ight]
ight]f_{r0}^{ ext{NL}}(r)\,\mathrm{d}r, \end{aligned}$$

Coverage Probability Analysis

- Coverage Probability
 - The coverage probability when the main link transmitter is in j-tier under channel c is selected with distance d

$$p_j^{(c)}(d) = \mathbb{P}\left[\text{SINR}_j^{(c)}(d) > \beta\right]$$

- β : SINR threshold
- ${
 m SINR}_j^{(c)}(d)=P_j^{(c)}(d)/{\cal I}$ is SINR when the main link transmitter is in the j-tier under channel c with distance d

Numerical Results

Numerical Results

Fig. 2. $\mathcal{P}_{cov}(\zeta)$ versus ℓ for difference values of λ_{BS} with $\zeta=1$.

Fig. 3. $\mathcal{P}_{cov}(\zeta)$ versus λ_{BS} for difference values of ℓ with $\zeta=1$.

Questions?

Thank you