# Universidade Federal de Ouro Preto Departamento de Computação Matemática Discreta- BCC101

# NOTAS DE AULA: TEORIA DE CONJUNTOS

Profa. Dayanne G. Coelho

# Aula 18: Introdução aos Conjuntos

BCC101- Matemática Discreta (DECOM/UFOP)

| 1.1 | Introdução a Teoria dos Conjuntos | 1  |
|-----|-----------------------------------|----|
|     | 1.1.1 Notação de Conjuntos        | 2  |
|     | 1.1.2 Cardinalidade               | 6  |
|     | 1.1.3 Conjunto Vazio              | 6  |
|     | 1.1.4 Exercícios Complementares   | 6  |
| 1.2 | Relações Sobre Conjuntos          | 7  |
|     | 1.2.1 Subconjunto                 | 7  |
|     | 1.2.2 Diagrama de Venn            | 8  |
|     | 1.2.3 Igualdade de Conjuntos      | 8  |
|     | 1.2.4 Exercícios Complementares   | 9  |
| 1.3 | Operações Sobre Conjuntos         | 10 |
|     | 1.3.1 União e Interseção          | 10 |
|     | 1.3.2 Diferença                   | 11 |
|     | 1.3.3 Complemento                 | 12 |
|     |                                   | 13 |
|     | 1.3.5 Família de Conjuntos        | 13 |
|     |                                   | 15 |
| 1.4 | -                                 | 15 |
|     |                                   | 19 |
|     | 1                                 |    |

# 1.1 Introdução a Teoria dos Conjuntos

Definimos **conjunto** como uma coleção de objetos, sem repetição e não ordenada, em que seus elementos possuem uma propriedade em comum (além de pertencerem ao mesmo conjunto). Assim, qualquer objeto que possui essa propriedade pertence ao conjunto e qualquer objeto que não possui essa propriedade não pertence ao conjunto [1]. Um objeto pertencente a um conjunto é chamado de **elemento do conjunto**.

Usaremos, como convenção, letras maiúsculas para representar conjuntos e letras minúsculas para representar seus elementos. O símbolo  $\in$  será usado para denotar pertinência em um conjunto. Assim,  $x \in A$  significa que um elemento x pertence ao conjunto A, ou seja, x é um elemento deste conjunto. De forma similar,  $x \notin A$  significa que x não pertence ao conjunto A.

Tabela 1.1: Utilização do símbolo ∈

| Notação Simbólica | Tradução para o português           |
|-------------------|-------------------------------------|
| $x \in A$         | "x pertence a A"                    |
| $x \in A$         | " <i>x</i> é elemento de <i>A</i> " |
| $x \notin A$      | "x não pertence a A"                |
| $x \notin A$      | "x não é elemento de A"             |

Como os elementos podem ocorrer uma única vez em um conjunto, a operação determinar se um elemento pertence ou não a um conjunto possui um valor lógico (verdadeiro ou falso).

#### 1.1.1 Notação de Conjuntos

Um conjunto pode ser definido de várias maneiras. Vamos apresentar de forma sucinta algumas delas.

#### Por enumeração

Se um conjunto possui poucos elementos, vamos representá-lo por enumeração listando todos os seus elementos, um a um, entre chaves.

#### **Exemplo 1.1** Conjuntos definidos por enumeração:

$$A = \{ \text{azul, verde, vermelho, amarelo} \}$$
 $V = \{ \text{a, e, i, o, u} \}$ 
 $P = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9 \}$ 
 $J = \{ \}$ 

- Proposições sobre pertinências verdadeiras nestes conjuntos:
  - $azul \in A$
  - preto ∉ A
  - **-** 5 ∈ *P*
- Proposições sobre pertinências falsas nestes conjuntos:
  - $-l \in V$
  - azul ∉ A
  - **-** 5 ∈ J

#### Em termos de uma propriedade

Um conjunto pode ser representado em termos de uma propriedade que descreve quais são os seus elementos. De maneira simples, a representação do conjunto será na forma  $S = \{ \text{variável} \mid \text{propriedade} \}$ :

$$A = \{ x \in C \mid P(x) \} \tag{1.1}$$

em que x é uma variável arbitrária, C um conjunto e P(x) é uma sentença matemática (fórmula da lógica de predicados). A Equação (1.1) significa que  $\forall x, [(x \in C \to P(x)) \land (P(x) \to x \in C)]$ .

#### **Exemplo 1.2** Considere os seguintes conjuntos:

- A =  $\{x \in \mathbb{Z} \mid -3 < x < 3\}$ . Este conjunto possui os seguintes elementos:  $A = \{-2, -1, 0, 1, 2\}$ .
- Conjunto de todos os números naturais pares.
  Este conjunto possui os seguintes elementos: P = {0,2,4,6,8,···} e também pode ser representado por P = {x ∈ N | ∃k, k ∈ N ∧ x = 2k}.

Observe que a representação de conjunto em termos de uma propriedade está diretamente ligada as fórmulas da linguagem de primeira ordem com variável livre. A fórmula para representar o conjunto dos números pares  $\{x \in \mathbb{N} \mid \exists k, k \in \mathbb{N} \land x = 2k\}$ , por exemplo, possui x como variável livre.

Gottlob Frege (1948-1925) propôs uma formalização que unifica a lógica matemática e conjuntos, relacionando um conjunto como uma propriedade que descreve seus elementos. Em 1903, ele publicou o segundo volume do livro Leis básicas da Aritmética (em alemão *Grundgesetze der Arithmetik*), em que expunha um sistema lógico no qual seu contemporâneo Bertrand Russell (1872-1970) encontrou uma contradição, que ficou conhecida como o **Paradoxo**<sup>1</sup> de **Russell**.

**Definição 1.1 ( Paradoxo de Russell )** Se qualquer propriedade determina um conjunto, então podemos definir o conjunto *S* como o "o conjunto de todos os conjuntos que não possuam a si próprios como elementos". A questão é: *S* pertence a si próprio?

Se todos os conjuntos estão formando outro conjunto, então ele não pode ser um conjunto, daí surge o paradoxo: não existe conjunto de todos os conjuntos. Quando se diz que um conjunto está dentro de todos os outros, então estamos afirmando que ele é maior que ele mesmo. Chegamos então a uma contradição! Formalmente definimos o conjunto *S* como:

$$S = \{A | A \notin A\}$$

Temos que  $A \in A$  ou  $S \notin S$ . Considere os seguintes casos:

- Caso  $S \in S$ : Se  $S \in S$ , pela definição de S, temos que  $S \notin S$ , o que constitui uma contradição.
- Caso  $S \notin S$ : Logo, pela definição de S, temos que  $S \in S$ , o que constitui uma contradição.

<sup>&</sup>lt;sup>1</sup>Paradoxo é uma declaração aparentemente verdadeira que leva a uma contradição lógica, ou a uma situação que contradiz a intuição comum. Em termos simples, um paradoxo é uma palavra usada para designar uma contradição verdadeira e irresolúvel.

Como ambos os casos cobrem todas as possibilidades, temos que  $S \in S$  não pode ser uma proposição lógica, já que esta não pode ser determinada como verdadeira ou falsa.

Uma aplicação semelhante ao paradoxo de Russel é o Paradoxo do barbeiro .

**Exemplo 1.3 ( Paradoxo do Barbeiro: )** Considere uma cidade em que existe apenas um barbeiro e que este faz a barba de todos que não fazem a própria barba. O barbeiro faz sua própria barba?

Temos as seguintes considerações:

- Se o barbeiro não faz a própria barba, ele deveria fazê-la, já que ele faz a barba apenas de quem não faz a própria barba.
- Porém se ele faz a própria barba, pela definição, ele não deveria fazê-la.

Ou seja, a sentença sobre o barbeiro desta cidade é um paradoxo.

#### Por definição recursiva

Conjuntos definidos por recursão são muito utilizados em computação para a definição de estruturas de dados e algoritmos. De forma sucinta, para definir um conjunto recursivamente devemos especificar três partes: casos base, passos recursivos e regra de fechamento.

- Casos base: consistem de afirmativas simples.
- Passos recursivos: consistem de afirmativas envolvendo implicações e quantificadores universais.
- Regras de fechamento: especificam que todo elemento do conjunto pode ser obtido a partir de um número finito de utilizações das regras anteriores.

**Exemplo 1.4** Como um primeiro exemplo de definição de um conjunto recursivo, vamos considerar o conjunto dos números naturais  $\mathbb{N}$ . O conjunto  $\mathbb{N}$  é representado utilizando a operação de sucessor e uma constante para representar o número 0. Utilizaremos a mesma ideia para a definição recursiva de  $\mathbb{N}$ :

- Caso base:  $0 \in \mathbb{N}$ .
- Passo recursivo:  $\forall n, n \in \mathbb{N} \to n+1 \in \mathbb{N}$
- Regra de fechamento: Todo  $n \in \mathbb{N}$  pode se obtido por um número finito de aplicações das regras anteriores.

**Exercício:** Descreva os conjuntos a seguir:

1. 
$$A = \{x \in \mathbb{Z} \mid 3 < x \le 7\}$$

- 2.  $B = \{x \mid x \text{ \'e um m\'es com exatamente } 30 \text{ dias} \}$
- 3.  $C = \{x \mid x \text{ \'e a capital de Minas Gerais}\}$
- 4.  $D = \{x \in \mathbb{N} \mid \exists y, y \in \{0, 1, 2\} \ e \ x = y^3\}$

5. 
$$E = \{x \in \mathbb{Z} - \mid \exists y, y \in \mathbb{Z} - e \ x \le y\}$$

6. 
$$F = \{x \in \mathbb{Z} - \mid \forall y, y \in \mathbb{Z} - \land x \le y\}$$

Os conjuntos numéricos frequentemente usados na matemática e seus respectivos nomes simbólicos:

- $\mathbb{Z}$ : Conjunto de todos os números inteiros.
- N: Conjunto de todos os números naturais ou conjunto de todos os números inteiros positivos.
- Q: Conjunto de todos os números racionais.
- $\mathbb{R}$ : Conjunto de todos os números reais.
- C: Conjunto de todos os números complexos.

#### **OBSERVAÇÕES**

- O conjunto dos números inteiros é formado pelos inteiros positivos, negativos e o zero.
- A adição do sobrescrito \* indica a ausência do número zero no conjunto. Assim, o conjunto
   Z\* = {···, -3, -2, -1, 1, 2, 3, ···}
- A adição de um sobrescrito + ou indica que somente os elementos não negativos ou não positivos do conjunto, respectivamente, devem ser incluídos. Assim,  $\mathbb{Z}+$  denota o conjunto dos números inteiros não negativos, ou seja,  $\mathbb{Z}+=\{0,1,2,3,4,\cdots\}$ . Alguns autores referem-se ao conjunto  $\mathbb{Z}+$  como o conjunto dos números naturais  $\mathbb{N}$ .
- Os conjuntos  $\mathbb{N}$  e  $\mathbb{Q}$  podem, por exemplos, ser escritos como:

$$\mathbb{N} = \{ x \in \mathbb{Z} \mid x \ge 0 \} \qquad \text{e} \qquad \mathbb{Q} = \{ x, y \in \mathbb{Z} \mid \frac{x}{y} \land y \ne 0 \}$$

#### 1.1.2 Cardinalidade

Um conjunto A é dito um **conjunto finito** se ele possui uma quantidade finita de elementos, ou seja, possui um número n de elementos, onde  $n \in \mathbb{N}$ . Este número é chamado de **cardinalidade** de A e será denotado por |A|.

#### **Exemplo 1.5** Sejam os conjuntos:

- $A = \{a, b, c, d\}$
- $B = \{\{1,2\},\{1,2,3\}\}$

onde |A| = 4 e |B| = 2.

Um conjunto A é dito um **conjunto infinito** se ele não é um conjunto finito. Exemplos de conjuntos infinitos:  $\mathbb{N}$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$  e  $\mathbb{R}$ .

## 1.1.3 Conjunto Vazio

Existe um único conjunto A tal que |A|=0 (não possui elementos). Este conjunto é chamado de **conjunto vazio** e será denotado pelos símbolos  $\emptyset$  ou  $\{\ \}$ .

**Exemplo 1.6** Sejam o conjunto  $A = \{x \in \mathbb{N} \mid x < 0\}$ . Então, temos que:

- $\bullet$   $A = \emptyset$
- |A| = 0
- 3 *∉ A*
- $x \notin A$
- $\emptyset \in A$

# **OBSERVAÇÃO:** Note que $\emptyset$ é diferente de $\{\emptyset\}$ .

A segunda expressão significa que temos um conjunto com um único elemento, e esse elemento é o conjunto vazio. Segue que:

- 1.  $|\emptyset| = 0$
- 2.  $|\{\emptyset\}| = 1$
- 3.  $|A| = 0 \leftrightarrow A = \emptyset$

# 1.1.4 Exercícios Complementares

- 1. Liste os elementos dos conjuntos seguintes:
  - (a)  $A = \{x \in \mathbb{N} \mid x \text{ \'e impar } \land x < 10\}$
  - (b)  $B = \{x \in \mathbb{N} \mid \exists y, y \in \mathbb{N} \land x = 2y + 1\}$
  - (c)  $C = \{x \in \mathbb{Z} \mid x^2 = 9\}$
  - (d)  $D = \{x \in \mathbb{N} \mid x + 2 = 1\}$
  - (e)  $E = \{x \in \mathbb{Z}^* \mid x < 10\}$
  - (f)  $F = \{x \in \mathbb{Z} \mid x^2 = 2\}$
- 2. Use a notação em termos de uma propriedade para reescrer os conjuntos abaixo:

- (a)  $A = \{0, 3, 6, 9, 12, 15, 18\}$
- (b)  $B = \{-4, -3, -2, -1, 0, 1, 2, 3\}$
- (c)  $C = \{1, 4, 9, 16, 25, 36, \dots\}$
- (d)  $D = \{MTM123, BCC101, EAD700, BCC324, BCC202, BCC266\}$
- (e)  $E = \{2, 3, 5, 7, 11, 13, 17, 19\}$
- (f)  $F = \emptyset$

#### 1.2 **Relações Sobre Conjuntos**

Existem algumas operações que podem ser aplicadas a conjuntos. Nessa seção estudaremos algumas delas.

#### 1.2.1 Subconjunto

**Definição 1.2 ( Continência )** Sejam os conjuntos A e B. Dizemos que A é um subconjunto de B se, e somente se, todo elemento do conjunto A é um elemento do conjunto B, ou seja:

$$A \subseteq B \leftrightarrow \forall x, (x \in A \rightarrow x \in B)$$

ou,  $A \subseteq B \iff$  para todo x, se  $x \in A$  então  $x \in B$ . A notação  $A \subseteq B$  significa que A é subconjunto

De forma análoga, se existe um elemento de A que não pertence a B, dizemos que A não é subconjunto de B (notação:  $A \not\subseteq B$ ). A Tabela 1.2 apresenta a tradução de algumas notações para subconjuntos.

Tabela 1.2: Resumo de notações para subconjuntos.

| Notação Simbólica     | Tradução para o português  |
|-----------------------|----------------------------|
| $A\subseteq B$        | "A está contido em B"      |
| $A\subseteq B$        | "A é subconjunto de B"     |
| $A \not\subseteq B$   | "A não está contido B"     |
| $A \not\subseteq B$   | "A não é subconjunto de B" |
| $B \supseteq A$ .     | "B contém A"               |
| $B \not\supseteq A$ . | "B não contém A"           |

**Exemplo 1.7** Sejam os conjuntos  $A = \{1, 2\}$  e  $B = \mathbb{N}$ .

Temos que A é subconjunto de B.

Algumas considerações importantes:

- Todo conjunto está contido em si próprio  $(A \subseteq A)$ .
- Todo conjunto contém o conjunto vazio ( $\emptyset \subseteq A$ ).
- O símbolo  $\subseteq$  é um hibridismo dos símbolos  $\subset$  e =, se quisermos eliminar a igualdade dos dois conjuntos, podemos dizer que A é um subconjunto estrito ou próprio de B.

**Definição 1.3 ( Subconjunto Próprio )** Sejam dois conjuntos arbitrários A e B. Dizemos que A é um **subconjunto próprio** de B, e escrevemos como  $A \subset B$ , se e somente se  $A \subseteq B$  e  $A \neq B$ .

Em outras palavras, A é um subconjunto próprio de B se existe pelo menos um elemento de B que não pertence a A. A notação  $A \not\subset B$  significa que A não é um subconjunto próprio de B.

#### 1.2.2 Diagrama de Venn

Sejam dois conjuntos A e B. Esses conjuntos e as relações entre eles podem ser representadas por desenhos (círculos ou outras figuras geométricas) chamados de **Diagramas de Venn**<sup>2</sup>.

A Figura 1.1 apresenta dois exemplos de representação dos conjuntos usando o Diagrama de Venn. Em (a) está a representação de um conjunto único  $B = \{1, 2, 3, 4, 5\}$  e em (b) está a representação da relação  $A \subseteq B$ .



Figura 1.1: Exemplo da aplicação do Diagrama de Venn.

## 1.2.3 Igualdade de Conjuntos

**Definição 1.4 ( Igualdade: )** Sejam dois conjuntos quaisquer A e B. Dizemos que A e B são **iguais** (denotamos por A=B) se, e somente se os dois conjuntos possuem exatamente os mesmos elementos:

$$A = B \leftrightarrow (A \subseteq B) \ e \ (B \subseteq A)$$

Em outras palavras, dizemos que um conjunto A é igual a um conjunto B se, e somente se todo elemento de A é elemento de B, e todo elemento de B é elemento de A. Usando a notação da lógica dos predicados, temos que A = B significa que:

$$(\forall x)[(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

De forma análoga, dois conjuntos A e B são ditos diferentes (denotamos por  $A \neq B$ ) se, e somente se existe um elemento de A que não pertence a B ou um elemento de B que não pertence a A.

<sup>&</sup>lt;sup>2</sup>Nome dado em homenagem ao matemático britânico do século XIX Jhon Venn.

#### **Exemplo 1.8** Sejam os conjuntos:

- $A = \{x \in \mathbb{Z} : x \text{ \'e par}\}$
- $B = \{z \in \mathbb{Z} : z = a + b, \text{em que a e b são ímpares}\}$

Temos que os conjuntos A e B são iguais.

# 1.2.4 Exercícios Complementares

1. Sejam os seguintes conjuntos:

$$A: \quad \{x: x \in \mathbb{N} \ e \ x \ge 5\}$$

C: 
$$\{x: (\exists x)(y \in \mathbb{N} \ e \ x = 2y)\}$$

Verifique o valor lógico das proposições seguintes.

- (a)  $B \subseteq C$
- (b)  $B \subset A$
- (c)  $A \subseteq C$
- (d)  $26 \in C$
- (e)  $\{11, 12, 13\} \subseteq A$
- (f)  $\{11, 12, 13\} \subset C$
- (g)  $\{12\} \in B$
- (h)  $\{12\}\subseteq B$
- (i)  $\{x : x \in \mathbb{N} \mid e \mid x < 20\} \not\subseteq B$
- (j)  $5 \subseteq A$
- (k)  $\{\emptyset\} \subseteq B$
- (l) ∅ ∉ *A*
- 2. Determine se os conjuntos a seguir são iguais.
  - (a)  $\{1,2,3\},\{1,1,2,3\},\{1,1,2,3,1\},\{2,1,3\},\{1,2,2,3\}$
  - (b)  $\{\{1\}\},\{1,\{1\}\},\{1\}$
  - (c)  $\{\emptyset\},\emptyset$
  - (d)  $\{x: x \in \mathbb{N}, x < 3\}, \{1, 2\}, \{1, 2, 1\}$
  - (e)  $\{3,1\}, \{x: x \in \mathbb{N}, x^2 4x + 3 = 0\}, \{1,3,3\}$
- 3. Determine se cada uma das proposições abaixo é verdadeira ou falsa.
  - (a) ( )  $0 \in \emptyset$
  - (b) ( )  $\emptyset \in \{0\}$
  - (c) ( )  $\{0\} \subset \emptyset$
  - (d) ( )  $\emptyset \subset \{0\}$
  - (e) ( )  $\{0\} \in \{0\}$
  - (f) ( )  $\{\emptyset\} \subseteq \{\emptyset\}$
  - (g) ( )  $x \in \{x\}$
  - (h) ( )  $\emptyset \subseteq \{x\}$

- (i)  $(x) \in \{\{x\}\}$
- 4. Sejam os conjuntos *A*, *B* e *C* arbitrários. Determine se cada uma das proposições abaixo é verdadeira ou falsa.
  - (a) ( )  $A \in \{A\}$
  - (b) ( )  $A \subseteq \{A\}$
  - (c) ( )  $A \subseteq \mathcal{P}(A)$
  - (d)  $(A \cup B) B = A$
  - (e)  $(A \cap B) \cup C = A \cap (B \cup C)$
  - (f) ( )  $A \cap \emptyset = A$
- 5. Sejam os conjuntos  $A = \{1\}$ ,  $B = \{1,2\}$  e  $C = \{1,\{1\}\}$ . Determine se cada uma das proposições é verdadeira ou falsa. Justifique sua resposta.
  - (a) ( )  $A \subset B$
  - (b) ( )  $A \subseteq B$
  - (c) ( )  $A \in B$
  - (d) ( ) A = B
  - (e) ( )  $A \subset C$
  - (f) ( )  $A \in C$
  - (g) ( )  $\{1\} \in A$
  - (h) ( )  $\emptyset \subseteq A$

# 1.3 Operações Sobre Conjuntos

O conjunto universo ou universo do discurso é um conjunto que contém todos os elementos no contexto no qual estamos trabalhando e também contém todos os conjuntos deste contexto. Vamos denotar o conjunto universo pela letra  $\mathcal{U}$ .

É possível definir operações sobre conjuntos pertencentes ao universo do discurso  $\mathcal{U}$ . Para tanto, considere os conjuntos  $A, B \in \mathbb{U}$ .

# 1.3.1 União e Interseção

A união e a interseção são as operações mais fundamentais sobre conjuntos.

• A união dos conjuntos A e B, denotada por  $A \cup B$ , é o conjunto de todos os elementos que estão em pelo menos um dos conjuntos, A ou B:

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

• A **interseção** dos conjuntos A e B, denotada por  $A \cap B$ , é o conjunto que contém todos os elementos que estão em ambos os conjuntos, A e B:

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}$$

A Figura 1.2 representa as operações de união e interseção pelo diagrama de Venn. As áreas sombreadas representam os conjuntos resultantes das operações (a)  $A \cup B$  e (b)  $A \cap B$ .



Figura 1.2: Diagrama de Venn das operações (a) união e (b) interseção nos conjuntos A e B.

**Definição 1.5 ( Conjunto Disjunto )** Dois conjuntos são chamados de **conjuntos disjuntos** se, e somente se  $A \cap B = \emptyset$ .

#### **Exemplo 1.9** Sejam os conjuntos:

•  $A = \{1, 3, 5, 7, 9\} e B = \{3, 5, 6, 10, 11\}$ -  $A \cup B = \{1, 3, 5, 6, 7, 9, 10, 11\}$ -  $A \cap B = \{3, 5\}$ -  $\emptyset \cup A = A$ -  $\emptyset \cap A = \emptyset$ •  $\{\emptyset, \{\emptyset\}\} e \{\{\{\emptyset\}\}\}\}$ -  $\{\emptyset, \{\emptyset\}\} \cup \{\{\{\emptyset\}\}\} = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\}$ 

# 1.3.2 Diferença

A diferença entre dois conjuntos A e B é o conjunto de todos os elementos que estão no conjunto A, mas não estão no conjunto B, ou seja:

$$A - B = \{ x \mid x \in A \land x \notin B \}$$
 (1.2)

essa operação pode ainda ser reescrita como  $A - B = A \cap \overline{B}$ .

**Exemplo 1.10** Considere as seguintes operações:

- $\{2,3,5,7\} \{2,7,11\} = \{3,5\}$
- $\bullet$   $A \emptyset = A$
- $\emptyset A = \emptyset$

Dois conjuntos A e B são ditos **disjuntos** quando  $A \cap B = \emptyset$ . Dessa forma, temos que A - B e B - A são exemplos de conjuntos disjuntos.

**Definição 1.6 ( Diferença Simétrica )** Chamamos de **Diferença Simétrica** entre dois conjuntos A e B, e denotamos por  $A \Delta B$ , o conjunto de todos os elementos que estão em A, mas não estão em B, ou que estão em B, mas não estão em A:

$$A\Delta B = (A - B) \cup (B - A)$$

**Exemplo 1.11** Sejam os conjuntos  $A = \{1, 2, 3, 4\}$  e  $B = \{3, 4, 5, 6\}$ .

- $A B = \{1, 2\}$
- $B A = \{5, 6\}$
- $A \Delta B = \{1, 2, 5, 6\}$

A Figura 1.3 apresenta o diagrama de Venn para as operações diferenças sobre dois conjuntos A e B. As áreas sombreadas na figura ilustram os seguintes resultados: (a) A - B, (b) B - A e (c)  $A \Delta B$ .



Figura 1.3: Diagrama de Venn das operações diferenças entre conjuntos (a) A - B, (b) B - A e (c)  $A \Delta B$ .

## 1.3.3 Complemento

O **complemento** de um conjunto A, denotado por  $\overline{A}$  ou  $A^c$ ,  $\acute{e}$  o conjunto de todos os elementos que pertencem ao conjunto universo  $\mathcal{U}$  e não pertencem ao conjunto A ( $\overline{A} = \mathbb{U} - A$ ):

$$\overline{A} = \{ x \mid x \in \mathbb{U} \land x \notin A \}$$

A Figura 1.4 ilustra o conjunto resultante da operação  $\overline{A} = \mathbb{U} - A$  usando o diagra de Venn.



Figura 1.4: A área sombreada no diagrama de Venn representa a operação complemento de um conjunto.

**Exemplo 1.12** Considere como universo do discurso o conjunto dos números naturais N.

- $\overline{\{2,3,4,5\}} = \{0,1\} \cup \{6,7,8,\cdots\}$
- $\bullet \ \overline{\{2x:x\in\mathbb{N}\}} = \{2x+1:x\in\mathbb{N}\}'$

#### 1.3.4 Produto Cartesiano

**Definição 1.7 ( Produto Cartesiano )** O Produto cartesiano de A e B, denotado por  $A \times B$ , é o conjunto de todos os pares ordenados (lista de dois elementos) formados tomando-se o primeiro elemento do conjunto A e o segundo elemento do conjunto B. Ou seja:

$$A \times B = \{(x, y) \mid x \in A \text{ e } y \in B\}$$

**Exemplo 1.13** Sejam os conjuntos  $A = \{1, 2, 3\}$  e  $B = \{5, 7\}$ , então:

$$A \times B = \{(1,5), (1,7), (2,5), (2,7), (3,5), (3,7)\}$$
$$B \times A = \{(5,1), (5,2), (5,3), (7,1), (7,2), (7,3)\}$$

Algumas considerações importantes:

- A notação  $A^2 = A \times A$ .
- $A \times B \neq B \times A$ , ou seja, o produto cartesiano de conjuntos não é uma operação comutativa.
- Se A e B são conjuntos finitos, então  $|A \times B| = |A| \times |B|$ .

## 1.3.5 Família de Conjuntos

Chamamos de **Família de conjuntos** os conjuntos que possuem como elementos outros conjuntos pertencentes ao conjunto universo  $\mathcal{U}$ .

**Definição 1.8 ( Família de Conjuntos )** Uma família de conjuntos é um conjunto  $\mathcal{F}$  cujos elementos são conjuntos.

Um exemplo de família de conjuntos é conhecido conjunto potência.

Definição 1.9 ( Conjunto Potência ) Chamamos de conjunto potência ou conjunto das partes do conjunto A, simbolicamente representado por  $\mathcal{P}(A)$ , o conjunto de todos os subconjuntos de A:

$$\mathcal{P}(A) = \{X \mid X \subset A\}$$

**Exemplo 1.14** O conjunto potência do conjunto  $A = \{a,b,c\}$  é o conjunto

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$$

**Teorema 1.3.1 ( Contagem de Subconjuntos )** Seja A um conjunto finito. O número de subconjuntos de A é dado por  $2^{|A|}$ .

A demonstração deste teorema será feita nas aulas seguintes usando a técnica de **demonstração por indução**. O exemplo seguinte ilustra o teorema da contagem de subconjuntos.

**Exemplo 1.15** Quantos subconjuntos possui o conjunto  $A = \{a, b, c\}$ ?

- Para resolver este problema é necessário listar todos os possíveis subconjuntos de A.
- Como |A| = 3, temos que qualquer subconjunto de A poderá ter de zero a quatro elementos.
- A Tabela 1.3 apresenta de forma organizada todas as possibilidades existentes.
- O conjunto A possui 2<sup>3</sup> (oito) subconjuntos.

Tabela 1.3: Contagem de subconjuntos do conjunto  $A = \{a, b, c\}$ .

| nº de elementos | Subconjuntos          | Quantidade |
|-----------------|-----------------------|------------|
| 0               | 0                     | 1          |
| 1               | $\{a\}, \{b\}, \{c\}$ | 3          |
| 2               | ${a,b}, {a,c}, {b,c}$ | 3          |
| 3               | $\{a,b,c\}$           | 1          |
| 7               | Total                 | 8          |

#### **OBSERVAÇÕES:**

Para qualquer conjunto A, o conjunto potência  $\mathcal{P}(A)$ :

- tem pelo menos os conjuntos  $\emptyset$  e A como elementos, já que é sempre verdade que  $\emptyset \subseteq A$  e  $A \subseteq A$ .
- $|\mathcal{P}(A)| = 2^{|A|}$

Definição 1.10 (União e Interseção de Famílias de Conjuntos) Seja  $\mathcal{F}$  uma família de conjuntos não vazia. As operações de união e interseção da família  $\mathcal{F}$  são definidas como:

$$\bigcup \mathcal{F} = \{ x \mid \exists A, A \in \mathcal{F} \land x \in A \}$$
$$\bigcap \mathcal{F} = \{ x \mid \forall A, A \in \mathcal{F} \rightarrow x \in A \}$$

**Exemplo 1.16** Considere a seguinte família de conjuntos  $\mathcal{F} = \{\{1\}, \{1,3,5\}, \{1,2,3\}\}$ . Logo:

$$\bigcup \mathcal{F} = \{1\} \cup \{1,3,5\} \cup \{1,2,3\} = \{1,2,3,5\}$$
$$\bigcap \mathcal{F} = \{1\} \cap \{1,3,5\} \cap \{1,2,3\} = \{1\}$$

Uma outra maneira de especificar uma família de conjuntos é através de um conjunto de índices, que são conhecidas como *famílias indexadas*.

**Definição 1.11 ( Famílias Indexadas )** Seja *I* um conjunto de índices (não vazio). Denomina-se por família indexada de conjuntos o conjunto

$$\mathcal{F} = \{A_i \mid i \in I\}$$

onde cada  $A_i$  é definido em termos dos elementos do conjunto de índices.

**Exemplo 1.17** Considere o seguinte conjunto de índices  $I = \{1, 2, 3\}$  e a família indexada  $\mathcal{F} = \{A_i \mid i \in I0\}$ , em que  $A_i = \{i, i+1, i+2\}$ . Logo, temos que:

$$\mathcal{F} = \{A_1, A_2, A_3\} = \{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}\}\$$

As operações de união e interseção de famílias indexadas é formalizada por:

- União:  $\bigcup_{i \in I} A_i = \{x \mid \exists i, i \in I \land x \in A_i\}$
- Interseção:  $\bigcap_{i \in I} A_i = \{x \mid \forall i, i \in I \rightarrow x \in A_i\}$

**Exemplo 1.18** Considere o exemplo anterior em que  $\mathcal{F} = \{\{1,2,3\},\{2,3,4\},\{3,4,5\}\}$ . Logo, temos que:

- $\bigcup_{i \in \{1,2,3\}} = \{1,2,3,4,5\}$
- $\bigcap_{i \in \{1,2,3\}} = \{3\}$

## 1.3.6 Exercícios Complementares

- 1. Suponha o conjunto universo  $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$  e sejam os conjuntos:  $A = \{2, 4, 5, 6, 8\}$ ,  $B = \{1, 4, 5, 9\}$  e  $C = \{x : x \in \mathbb{Z} \land 2 \le x < 5\}$ . Determine:
  - (a)  $A \cup B$
  - (b)  $C \cap B$
  - (c) A B
  - (d)  $A \Delta B$
  - (e) B-A
  - (f)  $\overline{C}$
  - (g)  $\overline{(A \cap B)}$
  - (h)  $(C \cap B) \cup \overline{A}$
  - (i)  $B \times C$
  - (j)  $A \times B$
  - (k)  $\mathcal{P}(A)$

# 1.4 Leis Algébricas para Conjuntos

Existem igualdades entre conjuntos envolvendo as operações de união, interseção, diferença e complemento que são verdadeiras para quaisquer subconjuntos pertencentes ao universo do discurso U.

Essas igualdades são chamadas de leis algébricas para conjuntos.

A seguir são listadas as principais equivalências algébricas para conjuntos.

1. Idempotência:

$$A \cup A = A \tag{1.3}$$

$$A \cap A = A \tag{1.4}$$

2. Comutatividade:

$$A \cup B = B \cup A \tag{1.5}$$

$$A \cap B = B \cap A \tag{1.6}$$

3. Associatividade:

$$A \cup (B \cup C) = (A \cup B) \cup C \tag{1.7}$$

$$A \cap (B \cap C) = (A \cap B) \cap C \tag{1.8}$$

4. Distributividade:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \tag{1.9}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \tag{1.10}$$

5. Existência do Conjunto Universo:

$$A \cup \mathcal{U} = \mathcal{U} \tag{1.11}$$

$$A \cap \mathcal{U} = A \tag{1.12}$$

6. Existência do Conjunto Vazio:

$$A \cup \emptyset = A \tag{1.13}$$

$$A \cap \emptyset = \emptyset \tag{1.14}$$

7. Propriedades do Complemento:

$$A = \overline{\overline{A}} \tag{1.15}$$

$$\overline{U} = \emptyset \tag{1.16}$$

$$\overline{\emptyset} = \overline{U} \tag{1.17}$$

$$A \cup \overline{A} = \mathcal{U} \tag{1.18}$$

$$A \cap \overline{A} = \emptyset \tag{1.19}$$

$$A - B = A \cap \overline{B} \tag{1.20}$$

8. Leis de De Morgan:

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B} \tag{1.21}$$

$$\overline{(A \cap B)} = \overline{A} \cup \overline{B} \tag{1.22}$$

**Exemplo 1.19** Prove que a lei algébrica para conjuntos (1.9) é verdadeira.

**Prova:** Mostrar que a equação  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$  é verdadeira é equivalente a provar que:

- (1)  $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ , e que
- (2)  $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

Demonstrando a primeira parte: seja x um elemento qualquer de  $A \cup (B \cap C)$ . Então temos que:

$$x \in A \cup (B \cap C) \quad \to \quad x \in A \text{ ou } x \in (B \cap C)$$

$$\to \quad x \in A \text{ ou } (x \in B \text{ e } x \in C)$$

$$\to \quad (x \in A \text{ ou } x \in B) \text{ e } (x \in A \text{ ou } x \in C)$$

$$\to \quad x \in (A \cup B) \text{ e } x \in (A \cup C)$$

$$\to \quad x \in (A \cup B) \cap (A \cup C)$$

Para mostrar (2) basta refazer o argumento de trás para frente.

Existe uma correspondência entre os conectivos lógicos e as operações sobre conjuntos e as relações lógicas com as relações sobre conjunto. De forma sucinta, temos que:

| Relação Lógica                       | Relação sobre Conjuntos         |
|--------------------------------------|---------------------------------|
| Implicação $(p \rightarrow q)$       | continência ( $A \subseteq B$ ) |
| Equivalência $(p \leftrightarrow q)$ | igualdade $(A = B)$             |
| Conectivo Lógico                     | Operação sobre Conjuntos        |
| negação                              | complemento                     |
| disjunção                            | união                           |
| conjunção                            | interseção                      |

Assim, para fazer a demonstração de equivalência podemos partir do princípio de que a equivalência (igualdade de conjuntos) pode ser definida em termos de uma dupla implicação (dupla continência, no caso dos conjuntos), ou seja, mostramo que um conjunto X = Y se, e somente se,  $X \subseteq Y$  e  $Y \subseteq X$ .

As propriedades introduzidas sobre os conectivos lógicos também são válidas para a teoria dos conjuntos, basta substituirmos cada conectivo lógico pela sua operação sobre conjuntos correspondente:

| Conectivo Lógico             | Operação sobre Conjuntos                        |
|------------------------------|-------------------------------------------------|
| idempotência: ∧ e ∨          | idempotência: ∩ e ∪                             |
| comutatividade: ∧ e ∨        | comutatividade: $\cap$ e $\cup$                 |
| associatividade: ∧ e ∨       | associatividade: $\cap$ e $\cup$                |
| distributividade             | distributividade                                |
| ∧ sobre ∨                    | $\cap$ sobre $\cup$                             |
| $\vee$ sobre $\wedge$        | $\cup$ sobre $\cap$                             |
| dupla negação $\neg(\neg p)$ | duplo complemento $\overline{\overline{A}} = A$ |
| Leis de De Morgan            | Leis de De Morgan                               |
| Absorção                     | Absorção                                        |

#### **Exemplo 1.20** Prove que: $A \cup \emptyset = \emptyset \cup A = A$

Vamos organizar a prova da seguinte maneira:

I) 
$$A \cup \emptyset = \emptyset \cup A$$

II) 
$$A \cup \emptyset = A$$

**Prova:** Parte I: Vamos mostrar que  $A \cup \emptyset = \emptyset \cup A$ . Para tanto, precisamos provar que  $A \cup \emptyset \subseteq \emptyset \cup A$  e que  $\emptyset \cup A \subseteq A \cup \emptyset$ .

Seja 
$$x \in A \cup \emptyset$$

$$x \in A \cup \emptyset$$
  $\Rightarrow$   $x \in A \lor x \in \emptyset$  definição de união 
$$\Rightarrow x \in \emptyset \lor x \in A$$
 comutatividade da disjunção 
$$\Rightarrow x \in \emptyset \cup A$$
 definição de união

Portanto temos que:

$$A \cup \emptyset \subseteq \emptyset \cup A \qquad (1)$$

Seja 
$$x \in \emptyset \cup A$$

$$x \in \emptyset \cup A$$
  $\Rightarrow$   $x \in \emptyset \lor x \in A$  definição de união 
$$\Rightarrow x \in A \lor x \in \emptyset$$
 comutatividade da disjunção 
$$\Rightarrow x \in A \cup \emptyset$$
 definição de união

Portanto temos que

$$\emptyset \cup A \subseteq A \cup \emptyset \qquad (2)$$

De (1) e (2), concluímos que  $A \cup \emptyset = \emptyset \cup A$ .

**Parte II**) Vamos mostrar que  $A \cup \emptyset = A$ . Ou seja, precisamos provar que  $A \cup \emptyset \subseteq A$  e que  $A \subseteq A \cup \emptyset$ .

Seja 
$$x \in A \cup \emptyset$$

$$x \in A \cup \emptyset$$
  $\Rightarrow$   $x \in A \lor x \in \emptyset$  definição de união 
$$\Rightarrow x \in A \lor F$$
  $x \in \emptyset$  é sempre falso 
$$\Rightarrow x \in A$$

Portanto temos que:

$$A \cup \emptyset \subseteq A \qquad (3)$$

Agora, considere  $x \in A$ 

$$x \in A \quad \Rightarrow \quad x \in A \lor x \in \emptyset$$
 adição  $p \Rightarrow p \lor q$   
  $\Rightarrow \quad x \in A \cup \emptyset$  definição de união

Portanto temos que

$$A \subseteq A \cup \emptyset \tag{4}$$

De (3) e (4), concluímos que  $A \cup \emptyset = A$ 

Logo, por transitividade da igualdade, podemos concluir que

$$A \cup \emptyset = \emptyset \cup A = A$$

De forma similar à aplicação das leis fundamentais da lógica para provar equivalências lógicas, podemos aplicar às leis algébricas para conjuntos para provar novas equivalências.

#### **Exemplo 1.21** Prove as equivalências seguintes:

1.  $[A \cup (B \cap C)] \cap \{ [\overline{A} \cup (B \cap C)] \cap \overline{(B \cap C)} \} \equiv \emptyset$ 

```
Prova: Seja:  [A \cup (B \cap C)] \cap \{ [\overline{A} \cup (B \cap C)] \cap (\overline{B} \cap C) \} \qquad \equiv \quad \text{Distributividade (1.10)}   [A \cup (B \cap C)] \cap \{ [\overline{A} \cap (\overline{B} \cap C)] \cup [(B \cap C) \cap (\overline{B} \cap C)] \} \qquad \equiv \quad \text{Prop. Complemento (1.19)}   [A \cup (B \cap C)] \cap \{ [\overline{A} \cap (\overline{B} \cap C)] \cup \emptyset \} \qquad \equiv \quad \text{Exist. Conjunto Vazio (1.13)}   [A \cup (B \cap C)] \cap [\overline{A} \cap (\overline{B} \cap C)] \qquad \equiv \quad \text{Leis de De Morgan (1.21)}   [A \cup (B \cap C)] \cap [\overline{A} \cup (B \cap C)] \qquad \equiv \quad \text{Prop. Complemento (1.19)}   \emptyset
```

## 1.4.1 Exercícios Complementares

Exercícios adaptados dos livros [2, 3, 4]

- 1. Sejam os conjuntos arbitrários A, B e C e o conjunto universo  $\mathcal{U}$ . Prove as seguintes equivalências algébricas para conjuntos.
  - (a)  $A \cup A \equiv A$
  - (b)  $A \cap A \equiv A$
  - (c)  $A \cup B \equiv B \cup A$
  - (d)  $A \cap B \equiv B \cap A$
  - (e)  $\overline{(A \cap B)} \equiv \overline{A} \cup \overline{B}$
  - (f)  $A \cap (B \cup C) \equiv (A \cap B) \cup (A \cap C)$
  - (g)  $A \cap \mathcal{U} \equiv A$
  - (h)  $A \cap (B \cap C) \equiv (A \cap B) \cap C$
- 2. Prove as seguintes equivalências algébricas para conjuntos.
  - (a)  $(A \cup B) \cap \overline{A} \equiv B \cap \overline{A}$
  - (b)  $A \cup (\overline{A} \cap B) \equiv A \cup B$
  - (c)  $\overline{((A \cap B) \cup (\overline{A} \cap \overline{B}))} \equiv (\overline{A} \cap B) \cup (A \cap \overline{B})$
  - (d)  $A \cap (B \cup \overline{A}) \equiv B \cap A$

# Aula 19: Teoremas Envolvendo Conjuntos

BCC101- Matemática Discreta (DECOM/UFOP)

| 2.1 | Teorer | mas envolvendo Conjuntos  | 20 |
|-----|--------|---------------------------|----|
|     | 2.1.1  | Exercícios Complementares | 22 |

# 2.1 Teoremas envolvendo Conjuntos

As técnicas de demonstração estudas nas aulas anteriores podem ser utilizadas para provar diversos fatos que envolvem a teoria de conjuntos. <sup>1</sup>.

**Exemplo 2.1** Sejam A, B e C conjuntos quaisquer. Então se  $A \subseteq B$  e  $B \subseteq C$  então  $A \subseteq C$ .

- Hipóteses:
  - A, B e C são conjuntos.
  - A ⊆ B
  - *B* ⊂ *C*
- Conclusão:  $A \subseteq C$

Pela definição de contingência (1.2) temos que  $A \subseteq B \leftrightarrow \forall x, (x \in A \rightarrow x \in B)$ .

#### **Prova:** (Direta)

- 1. Sejam A, B e C conjuntos quaisquer.
- 2. Suponha as relações  $A \subseteq B$  e  $B \subseteq C$ .
- 3. Seja  $x \in A$ . Como  $A \subseteq B$ , pela definição de contingência temos que  $x \in B$ .
- 4. Como  $x \in B$  e  $B \subseteq C$ , pela definição de contingência temos que  $x \in C$ .
- 5. Como x é um elemento arbitrário, podemos concluir que  $A \subseteq C$ .
- 6. Portanto, se  $A \subseteq B$  e  $B \subseteq C$  então  $A \subseteq C$ .

Logo, dados os conjuntos A, B e C. Se  $A \subseteq B$  e  $B \subseteq C$  então  $A \subseteq C$ .

<sup>&</sup>lt;sup>1</sup>Os exemplos e exercícios apresentados foram retirados e adaptados de [4, 5]

# Exemplo 2.2 Seja U um conjunto infinito e seja S um subconjunto finito de U. Seja também T o complemento de S em relação a U. Então, T é infinito.

Considere as seguintes definições úteis:

- $S \in \mathbf{finito}$ :  $\exists$  um inteiro n tal que |S| = n.
- U é infinito: Para nenhum inteiro p podemos dizer que |U| = p.
- T é o complemento de S em relação a U: Então  $S \cup T = U$  e  $S \cap T = \emptyset$ .

#### Prova: (por Contradição)

- 1. Da afirmação "seja U um conjunto infinito e seja S um subconjunto finito de U" temos que se S é finito, então |S| = n para algum n e, como U é infinito, não existe inteiro p tal que |U| = p.
- 2. Da afirmação "seja T o complemento de S em relação a U" temos que  $S \cup T = U$  e que S e T são disjuntos. Assim, |S| + |T| = |U|.
- 3. Suponha que *T* seja finito. (negando a tese)
- 4. Assim, |T| = m para algum inteiro m.
- 5. Então, |U| = |S| + |T| = n + m, onde  $m + n \in \mathbb{Z}$ . Tal fato contradiz a afirmação de não existe nenhum inteiro p igual a |U|.
- 6. Portanto, *T* é infinito.

Logo, se U é um conjunto infinito, S é um subconjunto finito de Ue T é o complemento de S em relação a U, então T é infinito.

**Exemplo 2.3** Suponha que  $A \cap C \subseteq B$  e  $a \in C$ . Então,  $a \notin A - B$ .

- Hipóteses:
  - *A* ∩ *C*  $\subseteq$  *B*
  - $-a \in C$
- Conclusão:  $a \notin A B$ .

Da definição da operação diferença (Equação 1.2) temos que  $A - B = \{x \mid x \in A \land x \notin B\}$ .

Então, a conclusão  $a \notin A - B$  pode ser reescrita como a seguinte fórmula da lógica  $\neg (a \in A \land a \notin B)$ . Utilizando equivalências algébricas, podemos verificar que:

$$\neg(a \in A \land a \notin B) \equiv \{ \land - \text{De Morgan} \}.$$

$$\neg(a \in A) \lor \neg(a \notin B) \equiv \{ \text{Negação} \}$$

$$\neg(a \in A) \lor a \in B \equiv \{ \text{Implicação} \}$$

$$(a \in A) \rightarrow a \in B$$

Vamos provar que dados  $A \cap C \subseteq B$  e  $a \in C$ , se  $a \in A$  então  $a \in B$ .

#### **Prova:** (Direta)

- 1. Sejam  $A \cap C \subseteq B$  e  $a \in C$ .
- 2. Suponha que  $a \in A$ .
- 3. Como a é um elemento arbitrário e  $a \in A$  e  $a \in C$ , temos que  $a \in A \cap C$ .
- 4. Como  $a \in A \cap C$  e  $A \cap C \subseteq B$ , então  $a \in B$ .
- 5. Portando, se  $a \in A$  então  $a \notin A B$ .

Logo, se  $A \cap C \subseteq B$  e  $a \in C$ , então  $a \notin A - B$ .

# 2.1.1 Exercícios Complementares

- 1. Mostre que  $A = \{2,3,5,7\}$  não é subconjunto de  $B = \{x : x \in \mathbb{N}, x \text{ é impar}\}$
- 2. Mostre que  $A = \{2,3,5,7\}$  é um subconjunto próprio de  $B = \{1,2,3,4,5,6,7,8,9\}$
- 3. Suponha que  $A \times B = \emptyset$ . O que você pode concluir?
- 4. Prove que, se  $\overline{A} \subseteq \overline{B}$ então  $B \subseteq A$
- 5. Prove que, se  $A \subseteq B$  então  $\mathcal{P}(A) \subseteq \mathcal{P}(B)$
- 6. Prove que, se  $A \cup B = A B$  então  $B = \emptyset$
- 7. Prove que, se  $A \cap B = A$  então  $A \subseteq B$
- 8. Suponha que  $A \subseteq C$  e que B e C são disjuntos. Prove que, se  $x \in A$  então  $x \notin B$

# Referências Bibliográficas

- [1] GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação: Matemática Discreta e suas Aplicações. 7<sup>a</sup>. ed. Rio de Janeiro: LTC, 2017.
- [2] MENEZES, P. B. *Matemática Discreta para a Computação e Informática*. 4ª. ed. Porto Alegre: Bookman, 2013.
- [3] ROSEN, K. H. Matemática Discreta e Suas Aplicações. 6a. ed. Porto Alegre: Mc Graw Hill, 2010.
- [4] RIBEIRO, R. G. *Notas de Aula de Matemática Discreta*. [S.l.]: Universidade Federal de Ouro Preto, 2016.
- [5] HAMMACK, R. H. Book of Proof. 2<sup>a</sup>. ed. Virginia: Richard Hammack, 2013. v. 1.
- [6] DAGHLIAN, J. Lógica e Álgebra de Boole. 4ª. ed. São Paulo: atlas, 2016.

# Respostas dos Exercícios Complementares

# Aula 18

# 1.1.4 - Introdução a Teoria dos Conjuntos

- 1. (a)  $A = \{1, 3, 5, 7, 9\}$ 
  - (b)  $B = \{1, 3, 5, 7, 9, \dots\}$
  - (c)  $C = \{-3, 3\}$
  - (d)  $D = \emptyset$
  - (e)  $E = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
  - (f)  $F = \emptyset$
- 2. (a)  $A = \{x \in \mathbb{N} \mid 3x \land 0 \le x \le 6\}$ 
  - (b)  $B = \{x \in \mathbb{Z} \mid -5 < x < 4\}$
  - (c)  $C = \{x \in \mathbb{N} \mid x^2 \land x > 1\}$
  - (d) Seja U o conjunto das disciplinas oferecidas pelo DECOM.

 $D = \{x \in \mathbb{U} \mid x \text{ \'e uma disciplina do } 2^{\text{o}} \text{ per\'edo}$ 

- (e)  $E = \{x \in \mathbb{Z} \mid (x \text{ \'e primo}) \land x < 20\}.$
- (f)  $F = \{x \in \mathbb{N} \mid x^2 = 5.\}$

# 1.2.4 - Relações sobre Conjuntos

- 1. (a) V
  - (b) V
  - (c) F
  - (d) V
  - (e) V
  - (f) F
  - (g) F
  - (h) V
  - (i) V
  - (j) F
  - (k) F
  - (1) V
- 2. (a) Todos os conjuntos são iguais. A repetição e reordenação não alteram o conjunto.
  - (b) Não são iguais.

- (c) Não são iguais.
- (d) São iguais.
- (e) São iguais
- 3. (a) (F)
  - (b) (F)
  - (c) (F)
  - (d) (V)
  - (e) (F)
  - (f) (V)
  - (g) (V)
  - (h) (V)
  - (i) (V)
- 4. (a) (V)
  - (b) (V)
  - (c) (V)
  - (d) (F)
  - (e) (F)
  - (f) (F)
- 5. (a) (V) Pois temos que  $2 \in B$  e  $2 \notin A$ .
  - (b) (V) Pois  $A \subset B$ .
  - (c) (F) Todos os elementos de A também são elementos de B, porém A é um conjunto.
  - (d) (F) Existe um elemento  $2 \in B$  tal que  $2 \notin A$ , logo  $B \not\subseteq A$ .
  - (e) (V) Temos que A é subconjunto próprio de C, pois  $\{1\} \in C$  e  $\{1\} \notin A$ .
  - (f) (V) Temos que  $A = \{1\}$  e  $\{1\} \in C$
  - (g) (F) O único elemento de A é o número 1 e não o conjunto {1}.
  - (h) ( V ) O conjunto vazio esta contido em qualquer conjunto.

# 1.3.6 - Operações sobre Conjuntos

- 1. (a)
  - (b)
  - (c)
  - (d)
  - (e)
  - (f)
  - (g)
  - (h)
  - (i) (j)
  - (k)

## 1.4.1 - Leis Algébricas para Conjuntos

1. (a) **Prova:** Para mostrar que  $A \cup A \equiv A$ , precisamos mostrar que 1)  $A \cup A \subseteq A$  e que 2)  $A \subseteq A \cup A$ .

Prova da primeira parte  $A \cup A \subseteq A$ :

Seja  $x \in A \cup A$ . Então:

$$x \in A \cup A \implies x \in A \lor x \in A$$
 definição de união

$$\Rightarrow x \in A$$
 idempotência da disjunção

Portanto  $A \cap A \subseteq A$ . A Prova da parte (2) é de forma análoga.

(b) **Prova:** Para mostrar que  $A \cap A \equiv A$ , precisamos mostrar que 1)  $A \cap A \subseteq A$  e que 2)  $A \subseteq A \cap A$ .

Prova da segunda parte  $A \subseteq A \cap A$ :

Seja  $x \in A$ . Então:

$$x \in A \implies x \in A \land x \in A$$
 idempotência da conjunção

$$\Rightarrow x \in A \cap A$$
 definição de interseção

Portanto  $A \cap A \subseteq A$ . A Prova da parte (1) é de forma análoga.

(c) **Prova:** Para mostrar que  $A \cup B \equiv B \cup A$ , precisamos mostrar que 1)  $A \cup B \subseteq B \cup A$  e que 2)  $B \cup A \subseteq A \cup B$ .

Prova da primeira parte  $A \cup B \subseteq B \cup A$ :

Seja  $x \in A \cup B$ . Então:

$$x \in A \cup B \implies x \in A \lor x \in B$$
 definição de união

$$\Rightarrow x \in B \lor x \in A$$
 Comutatividade da disjunção

$$\Rightarrow x \in B \cup A$$
 Definição de União

Portanto  $A \cup B \subseteq B \cup A$ . A Prova da parte (2) é de forma análoga.

(d) **Prova:** Para mostrar que  $A \cap B \equiv B \cap A$ , precisamos mostrar que 1)  $A \cap B \subseteq B \cap A$  e que 2)  $B \cap A \subseteq A \cap B$ .

Prova da primeira parte  $A \cap B \subseteq B \cap A$ :

Seja  $x \in A \cap B$ . Então:

$$x \in A \cap B \implies x \in A \land x \in B$$
 definição de interseção

$$\Rightarrow x \in B \land x \in A$$
 Comutatividade da conjunção

$$\Rightarrow x \in B \cup A$$
 Definição de interseção

Portanto  $A \cap B \subseteq B \cap A$ . A Prova da parte (2) é de forma análoga.

(e) **Prova:** Para mostrar a validade da segunda lei de De Morgan para conjuntos, precisamos mostrar que 1)  $\overline{(A \cap B)} \subseteq \overline{A} \cup \overline{B}$  e que 2)  $\overline{A} \cup \overline{B} \subseteq \overline{(A \cap B)}$ .

Prova da primeira parte  $\overline{(A \cap B)} \subseteq \overline{A} \cup \overline{B}$ :

Seja  $x \in \overline{(A \cap B)}$ . Então:

$$x \in \overline{(A \cap B)}$$
  $\Rightarrow$   $x \notin A \cap B$  definição de complemento   
  $\Rightarrow$   $\neg(x \in A \cap B)$  definição de não pertence   
  $\Rightarrow$   $\neg(x \in A \land x \in B)$  definição de interseção

$$\Rightarrow \neg(x \in A) \lor \neg(x \in B)$$
 primeira lei de De Morgan para equivalências

$$\Rightarrow x \notin A \lor x \notin B$$
 definição de não pertence 
$$\Rightarrow x \in \overline{A} \lor x \in \overline{B}$$
 definição de complemento

$$\Rightarrow x \in (\overline{A} \cup \overline{B})$$
 definição de união

Portanto  $\overline{(A \cap B)} \subseteq \overline{A} \cup \overline{B}$ . A Prova da parte (2) é de forma análoga.

(f) **Prova:** Para mostrar a validade da propriedade  $A \cap (B \cup C) \equiv (A \cap B) \cup (A \cap C)$ , precisamos mostrar que 1)  $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$  e que 2)  $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$ .

Prova da primeira parte  $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ :

Seja  $x \in A \cap (B \cup C)$ . Então:

$$\begin{array}{lll} x \in A \cap (B \cup C) & \Rightarrow & x \in A \wedge x \in B \cup C & \text{definição de interseção} \\ & \Rightarrow & x \in A \wedge (x \in B \vee x \in C) & \text{definição de união} \\ & \Rightarrow & (x \in A \wedge x \in B) \vee (x \in A \wedge x \in C) & \text{distributividade da disjunção} \\ & \Rightarrow & (x \in A \cap B) \vee (x \in A \cap C) & \text{propriedade da interseção} \\ & \Rightarrow & x \in (A \cap B) \cup (A \cap C) & \text{propriedade da união} \end{array}$$

Portanto  $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ . A Prova da parte (2) é de forma análoga.

(g) **Prova:** Para mostrar a validade da propriedade  $A \cap \mathcal{U} \equiv A$ , precisamos mostrar que 1)  $A \cap \mathcal{U} \subseteq A$  e que 2)  $A \subseteq A \cap \mathcal{U}$ .

Prova da primeira parte  $A \cap \mathcal{U} \subseteq A$ :

Seja  $x \in A \cap \mathcal{U}$ . Então:

$$x \in A \cap \mathcal{U} \implies x \in A \land x \in \mathcal{U}$$
 definição de interseção 
$$\Rightarrow x \in A \land V \qquad x \in \mathcal{U} \text{ \'e sempre V}$$
 
$$\Rightarrow x \in A \qquad \text{Propriedade elemento neutro}$$

Portanto  $A \cap \mathcal{U} \subseteq A$ . A Prova da parte (2) é de forma análoga.

(h) **Prova:** Para mostrar a validade da propriedade  $A \cap (B \cap C) \equiv (A \cap B) \cap C$ , precisamos mostrar que 1)  $A \cap (B \cap C) \subseteq (A \cap B) \cap C$  e que 2)  $(A \cap B) \cap C \subseteq A \cap (B \cap C)$ .

Prova da primeira parte  $A \cap (B \cap C) \subseteq (A \cap B) \cap C$ :

Seja  $x \in A \cap (B \cap C)$ . Então:

$$x \in A \cap (B \cap C) \quad \Rightarrow \quad x \in A \land x \in (B \cap C) \qquad \text{definição de interseção}$$
 
$$\Rightarrow \quad x \in A \land (x \in B \land x \in C) \qquad \text{definição de interseção}$$
 
$$\Rightarrow \quad (x \in A \land x \in B) \land x \in C \qquad \text{associatividade da conjunção}$$
 
$$\Rightarrow \quad x \in (A \cap B) \land x \in C \qquad \text{definição de interseção}$$
 
$$\Rightarrow \quad x \in (A \cap B) \cap C \qquad \text{definição de interseção}$$

Portanto  $A \cap (B \cap C) \subseteq (A \cap B) \cap C$ . A Prova da parte (2) é de forma análoga.

2. (a) **Prova:** 

$$(A \cup B) \cap \overline{A} \equiv \overline{A} \cap (A \cup B)$$
 comutatividade da interseção  $\equiv (\overline{A} \cap A) \cup (\overline{A} \cap B)$  distributividade da interseção sobre a união  $\equiv \emptyset \cup (\overline{A} \cap B)$  Propriedade do complemento  $\equiv (\overline{A} \cap B)$  Existência do conjunto vazio  $\equiv (B \cap \overline{A})$  comutatividade da interseção

Portanto  $(A \cup B) \cap \overline{A} \equiv B \cap \overline{A}$ .

(b) Prova:

$$A \cup (\overline{A} \cap B) \equiv (A \cup \overline{A}) \cap (A \cup B)$$
 distributividade da união sobre a união 
$$\equiv \mathbb{U} \cap (A \cup B)$$
 Propriedade do complemento 
$$\equiv (A \cup B)$$
 Existência do conjunto universo

Portanto  $A \cup (\overline{A} \cap B) \equiv A \cup B$ .

(c) Prova:

 $((A \cap B) \cup (\overline{A} \cap \overline{B}))$ Leis de De Morgan  $\overline{(A \cap B)} \cap (\overline{A} \cap \overline{B})$ Leis de De Morgan  $\overline{(A \cap B)} \cap ((\overline{A}) \cup (\overline{B}))$ Duplo complemento  $\equiv \overline{(A \cap B)} \cap (A \cup B)$ Distb. da  $\cap$  sobre a  $\cup$  $\equiv (\overline{(A \cap B)} \cap A) \cup (\overline{(A \cap B)} \cap B)$ Leis de De Morgan  $\equiv ((\overline{A} \cup \overline{B}) \cap A) \cup ((\overline{A} \cup \overline{B}) \cap B)$ Distb. da  $\cap$  sobre a  $\cup$  $\equiv ((\overline{A} \cap A) \cup (\overline{B} \cap A)) \cup ((\overline{A} \cap B) \cup (\overline{B} \cap B))$ Prop. do complemento  $\equiv (\emptyset \cup (\overline{B} \cap A)) \cup ((\overline{A} \cap B) \cup \emptyset)$ Prop. conjunto vazio  $\equiv (\overline{B} \cap A) \cup (\overline{A} \cap B)$ Comutatividade da união  $\equiv (\overline{A} \cap B) \cup (\overline{B} \cap A)$ Comutatividade da interseção  $\equiv (\overline{A} \cap B) \cup (A \cap \overline{B})$ Portanto  $((A \cap B) \cup (\overline{A} \cap \overline{B})) \equiv (\overline{A} \cap B) \cup (A \cap \overline{B}).$ 

(d) Prova:

# Aula 19

#### **2.1.1** - Teoremas Envolvendo Conjuntos

- Para mostrar que A não é subconjunto de B, basta mostrar que pelo menos um elemento de A não pertence a B. Temos que 2 ∈ A e 2 ∉ B, logo A não é subconjunto de B.
- 2. A é subconjunto próprio de B se  $A \subseteq B$  e  $A \ne B$ . Como todo elemento  $x \in A$  também pertence a B, temos que  $A \subseteq B$ . Por outro lado, considere o elemento 1, onde  $1 \in B$  e  $1 \notin A$ . Desta parte, temos que  $A \ne B$ . Portanto, temos que A é um subconjunto próprio de B.
- 3. Podemos concluir que  $A = \emptyset \lor B = \emptyset$ . Sejam as possibilidades:

$$A = \emptyset, \text{ então } \emptyset \times B = \{(x, y) : x \in \emptyset \ e \ y \in B\} = \emptyset$$

$$B = \emptyset, \text{ então } A \times \emptyset = \{(x, y) : x \in A \ e \ y \in \emptyset\} = \emptyset$$

$$A = B = \emptyset, \text{ então } \emptyset \times \emptyset = \{(x, y) : x \in \emptyset \ e \ y \in \emptyset\} = \emptyset$$

4.

5.

6.

#### 7. Prova Direta:

- 1. Suponha que  $A \cap B = A$
- 2. Seja um x arbitrário e suponha que  $x \in A$ .
- 3. Como  $x \in A$  e  $A \cap B = A$ , temos que  $x \in A \cap B$
- 4. De $x \in A \cap B$ , temos que  $x \in B$ .
- 5. Como x é um elemento arbitrário e  $x \in A$  e  $x \in B$ , temos que  $A \subseteq B$ . Portanto, se  $A \cap B = A$  então  $A \subseteq B$ .

8.