2019 Math 340:101. Quiz 5 Friday, 2019 November 8 IN CLASS

Last name	
First name	
Student number	

 \mathbf{Grade}

1. (3 points) Given the following dictionary of a primal problem, find the corresponding dual dictionary.

$$x_{2} = 1 -x_{1} -x_{3}$$

$$x_{4} = 2 -2x_{1} +x_{3}$$

$$x_{5} = 2 +x_{1} +x_{3}$$

$$z = 3 -x_{1} +x_{3}$$

Solution:

• First put the objective function at the first row:

• Recall the correspondence between the primal and dual variables. As there are 2 original variables and 3 slack variables, we have

$$x_j \longleftrightarrow y_{3+j} \text{ for } j = 1, 2,$$

 $x_{2+i} \longleftrightarrow y_i \text{ for } i = 1, 2, 3.$

• Then, use the "— transpose" property of the dual dictionary

- 2. (2 points) (1 mark per two correct answers) We use the notation in the class. You are given $A, \vec{b}, \vec{c}, \vec{x}_B, \vec{x}_N, B$ and N. Let \vec{x}^* be the basic solution of the corresponding primal dictionary, and let \vec{y}^* be the corresponding dual basic solution (i.e. the basic solution of the dual dictionary). Check whether the following statements are true or false.
 - (a) **True** / **False** If \vec{x}^* , \vec{y}^* are primal/dual feasible, respectively, then they are primal/dual optimal, respectively.
 - (b) **True** / **False** It is possible in some examples, that \vec{x}^* is not primal feasible and \vec{y}^* is not dual feasible.
 - (c) **True** / **False** If \vec{x}^* is the unique primal optimal solution, then \vec{y}^* is the unique dual optimal solution.
 - (d) **True** / **False** If we change both \vec{b} and \vec{c} to different vectors \vec{b}' and \vec{c}' , respectively, while $A, \vec{x}_B, \vec{x}_N, B$ and N remain the same, then the resulting primal and dual basic solutions $\vec{x}^{**}, \vec{y}^{**}$ will have to be different from \vec{x}^*, \vec{y}^* , respectively.

Solution.

- (a) True.
- (b) True.
- (c) False.
- (d) False.

3. We use the notation as in the class. You are given $A, \vec{b}, \vec{c}, \vec{x}_B, B$ and B^{-1} .

$$[A|I] = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}, \qquad \vec{x}_B = \begin{bmatrix} x_3 \\ x_1 \\ x_2 \end{bmatrix}$$

$$\vec{c}^T = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 3 & 2 & 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} x_3 & x_1 & x_2 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \qquad B^{-1} = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

Let \vec{x}^* be the basic solution of the corresponding primal dictionary, and let \vec{y}^* be the corresponding dual basic solution (i.e. the basic solution of the dual dictionary).

(i) (3 points) Find $x_1^*, x_2^*, x_3^*, x_4^*, x_5^*$ and $y_1^*, y_2^*, y_3^*, y_4^*, y_5^*$.

Solution: As \vec{x}^* is the basic solution

$$\vec{x}_B^* = \begin{bmatrix} x_3^* \\ x_1^* \\ x_2^* \end{bmatrix} = B^{-1}\vec{b} = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

and

$$\vec{x}_N^* = \begin{bmatrix} x_4^* \\ x_5^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

As \vec{y}^* is the dual basic solution, $(\vec{y}^*)^T B = \vec{c}_B^T$, so

$$(\vec{y}^*)^T = \vec{c}_B^T B^{-1} = \begin{bmatrix} x_3 & x_1 & x_2 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} y_1 & y_2 & y_3 \\ 0 & 3 & -4 \end{bmatrix}$$

So, $(y_1^*, y_2^*, y_3^*) = (0, 3, -4)$. Note that $\vec{y}_B = (y_1, y_4, y_5)$ using the primal/dual variable correspondence. Note that because \vec{y}^* is dual basic, $\vec{y}_B^* = (y_1^*, y_4^*, y_5^*) = \vec{0}$. Therefore, $(y_1^*, y_2^*, y_3^*, y_4^*, y_5^*) = (0, 3, -4, 0, 0)$.

(ii) (2 points) Is \vec{x}^* optimal? To earn credit, you have to justify your answer.

Solution.

Note that $\vec{x}_B^* > \vec{0}$ so \vec{x}^* is non-degenerate. if it was optimal then the dual basic solution \vec{y}^* must be dual feasible. However, $(y_1^*, y_2^*, y_3^*, y_4^*, y_5^*) \not\geq \vec{0}$, so not dual feasible.

Blank page