Examenul de bacalaureat național 2019 Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$6\sqrt{3} + 2(1 - \sqrt{27}) = 6\sqrt{3} + 2(1 - 3\sqrt{3}) =$	3p
	$=6\sqrt{3}+2-6\sqrt{3}=2$	2 p
2.	f(2) = 0	3p
	$f(0) \cdot f(1) \cdot f(2) = 0$	2 p
3.	20x - 6 = 14	3 p
	x = 1, care convine	2p
4.	$x + \frac{10}{100} \cdot x = 440$, unde x este prețul inițial al obiectului	3 p
	x = 400 de lei	2p
5.	Mijlocul segmentului BC este punctul $M(3,3)$	2 p
	AM = 1	3р
6.	$\cos 30^\circ = \frac{\sqrt{3}}{2}$, $\sin 30^\circ = \frac{1}{2}$, $\tan 30^\circ = \frac{\sqrt{3}}{3}$	3 p
	$\frac{\cos 30^{\circ}}{1+\sin 30^{\circ}} = \frac{\frac{\sqrt{3}}{2}}{1+\frac{1}{2}} = \frac{\sqrt{3}}{2} \cdot \frac{2}{3} = \frac{\sqrt{3}}{3} = \text{tg}30^{\circ}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det M = \begin{vmatrix} -1 & 2 \\ -6 & -9 \end{vmatrix} = (-1) \cdot (-9) - (-6) \cdot 2 =$	3p
	=9+12=21	2p
b)	$A(-a) + A(a) = \begin{pmatrix} -a - 2 & -a + 1 \end{pmatrix} + \begin{pmatrix} a - 2 & a + 1 \end{pmatrix} = \begin{pmatrix} -4 & 2 \end{pmatrix} = \begin{pmatrix} -4 & 2 \end{pmatrix}$	3 p
	$=2\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} = 2A(0)$, pentru orice număr real a	2p
c)	$ \begin{pmatrix} a+1 & a+2 \\ a-2 & a+1 \end{pmatrix} \begin{pmatrix} b+1 & b+2 \\ b-2 & b+1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -6 & -9 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 2ab-a+3b-3 & 2ab+3a+3b+4 \\ 2ab-a-b-4 & 2ab-b+3a-3 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -6 & -9 \end{pmatrix} $	2p
	Obţinem $a = -1$, $b = 1$	3p
2.a)	$2 \circ (-2) = 2(2 + (-2)) - \frac{2 \cdot (-2)}{2} =$	3 p
	$=\frac{4}{2}=2$	2p

Probă scrisă la matematică *M_tehnologic*

Varianta 1

Barem de evaluare și de notare

b)	$2\left(n+\frac{1}{n}\right) - \frac{n \cdot \frac{1}{n}}{2} = \frac{9}{2} \Leftrightarrow n + \frac{1}{n} = \frac{5}{2}$ Cum <i>n</i> este număr natural nenul, obținem <i>n</i> = 2	3p
c)	$2(x+y) - \frac{xy}{2} = 8 \Leftrightarrow 4x + 4y - xy - 16 = 0 \Leftrightarrow (x-4)(4-y) = 0, \text{ pentru orice număr real } x$	3p
	y = 4	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$x'(x) = x^2 + 4 - x \cdot 2x$	
	$f'(x) = \frac{x^2 + 4 - x \cdot 2x}{\left(x^2 + 4\right)^2} =$	3p
	$= \frac{4 - x^2}{\left(x^2 + 4\right)^2} = \frac{(2 - x)(2 + x)}{\left(x^2 + 4\right)^2}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{x^2 + 4} = \lim_{x \to -\infty} \frac{1}{x \left(1 + \frac{4}{x^2}\right)} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $-\infty$ la graficul funcției f	2p
c)	$f'(x) \le 0$, pentru orice $x \in (-\infty, -2] \Rightarrow f$ este descrescătoare pe $(-\infty, -2]$, $f'(x) \ge 0$, pentru orice $x \in [-2, 2] \Rightarrow f$ este crescătoare pe $[-2, 2]$ și $f'(x) \le 0$, pentru orice $x \in [2, +\infty) \Rightarrow f$ este descrescătoare pe $[2, +\infty)$	2p
	f continuă pe \mathbb{R} , $\lim_{x \to -\infty} f(x) = 0$, $f(-2) = -\frac{1}{4}$, $f(2) = \frac{1}{4}$ și $\lim_{x \to +\infty} f(x) = 0$, deci mulțimea valorilor funcției f este $\left[-\frac{1}{4}, \frac{1}{4} \right]$	3p
2.a)	$\int_{0}^{2} x(x+1) \left(f(x) + \frac{1}{x+2} \right) dx = \int_{0}^{2} x dx =$	2p
	$=\frac{x^2}{2}\Big _0^2=2$	3p
b)	$\int_{0}^{1} x f(x) dx = \int_{0}^{1} \left(\frac{x}{x+1} - \frac{x}{x+2} \right) dx = \int_{0}^{1} \left(1 - \frac{1}{x+1} - 1 + \frac{2}{x+2} \right) dx =$	2 p
	$= \left(-\ln(x+1) + 2\ln(x+2)\right) \Big _{0}^{1} = 2\ln 3 - 3\ln 2 = \ln\frac{9}{8}$	3p
c)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{1}{x+1} - \frac{1}{x+2} \right) dx = \left(\ln(x+1) - \ln(x+2) \right) \Big _{0}^{1} = \ln\frac{4}{3}$	3 p
	$\ln\left(p^2 + \frac{1}{3}\right) = \ln\frac{4}{3} \Leftrightarrow p^2 + \frac{1}{3} = \frac{4}{3} \Leftrightarrow p^2 - 1 = 0 \text{ si, cum } p \text{ este număr natural, obținem } p = 1$	2 p