Equation matricielle

R désigne l'ensemble des nombres réels.

On considère $\,p\,$ un entier naturel supérieur ou égal à 2.

On notera:

 $M_2(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 2 à coefficients réels,

 $GL_2(\mathbb{R})$ l'ensemble des matrices inversibles de $M_2(\mathbb{R})$,

 $D_2(\mathbb{R})$ l'ensemble des matrices diagonales de $M_2(\mathbb{R})$ et

I la matrice identité de $M_2(\mathbb{R})$.

Le but de ce problème est l'étude des ensembles $\,\mathcal{R}(p) = \left\{A \in \mathcal{M}_2(\mathbb{R})/A^p = I\right\}$.

Dans les parties II et III, E désigne une \mathbb{R} -espace vectoriel de dimension 2 muni d'une base $\mathcal{B}=(e_1,e_2)$, et Id_E désigne l'identité de E.

Partie I : Etude générale

- 1. $\mathcal{R}(p)$ est-il un sous-espace vectoriel de $M_2(\mathbb{R})$?
- 2. Soit $A \in \mathcal{R}(p)$. Montrer que $A \in GL_2(\mathbb{R})$ et que $A^{-1} \in \mathcal{R}(p)$.
- 3. Soit $A \in \mathcal{R}(p)$ et $P \in GL_2(\mathbb{R})$. Montrer que $P^{-1}AP \in \mathcal{R}(p)$.
- 4. Montrer que $\mathcal{R}(p) \cap D_2(\mathbb{R})$ est un ensemble fini dont on déterminera le cardinal.
- 5. On considère q un entier naturel supérieur ou égal à 2, et on appelle d le plus grand diviseur commun à p et q. Montrer que $\mathcal{R}(p) \cap \mathcal{R}(q) = \mathcal{R}(d)$.

Partie II : Cas
$$p=2$$

- $1. \qquad \text{Soit } P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ une matrice de } M_2(\mathbb{R}) \text{ et } Q = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$
- 1.a Exprimer la matrice PQ.
- 1.b En déduire que P est inversible ssi $ad bc \neq 0$ et exprimer son inverse P^{-1} lorsque tel est le cas.
- 2. Soit A un élément de $\mathcal{R}(2)$ tel que $A \neq I$ et $A \neq -I$ et soit u l'endomorphisme de E dont la matrice dans la base \mathcal{B} est A.
- 2.a Démontrer que $\ker(u \operatorname{Id}_E) \oplus \ker(u + \operatorname{Id}_E) = E$.
- 2.b En déduire qu'il existe une base de E dans laquelle la matrice de u est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- 2.c Montrer qu'il existe quatre réels a,b,c et d tels que $ad-bc\neq 0$ et $A=\frac{1}{ad-bc}\begin{pmatrix} ad+bc & -2ab \\ 2cd & -ad-bc \end{pmatrix}$.

Partie III : Cas
$$p=3$$

Dans toute la suite du problème, M désigne un élément de $\mathcal{R}_2(3)$, et v l'endomorphisme de E dont la matrice dans \mathcal{B} est M. On considère les ensembles $F=\ker(v-\operatorname{Id}_E)$ et $G=\ker(v^2+v+\operatorname{Id}_E)$ où $v^2=v\circ v$.

- 1.a Montrer que $F \cap G = \{0\}$.
- 1.b Soit $x\in E$. Montrer que $\frac{1}{3}(x+v(x)+v^2(x))\in F$ et que $\frac{1}{3}(2x-v(x)-v^2(x))\in G$. En déduire que $E=F\oplus G$.
- 2. Que peut-on dire de M si F est de dimension 2 ?

- 3. Le but de cette question est de montrer à l'aide d'un raisonnement par l'absurde que F n'est pas de dimension 1. On suppose donc que F est de dimension 1.
- 3.a Montrer qu'il existe une base $\mathcal{G} = (g_1, g_2)$ de E telle que F soit la droite vectorielle engendrée par g_1 et G soit la droite vectorielle engendrée par g_2 .
- 3.b En considérant le vecteur $v^2(g_2) + v(g_2) + g_2$, obtenir une contradiction.
- 4. On suppose dans cette question que F est de dimension 0.
- 4.a Montrer que $(e_1, v(e_1))$ est une base de E.
- 4.b En déduire qu'il existe un réel a et un réel non nul b tels que $M = \frac{1}{b} \begin{pmatrix} ab & -1 a a^2 \\ b^2 & -ab b \end{pmatrix}$.