

INSTITUTO FEDERAL MINAS GERAIS (IFMG) - CAMPUS BAMBUÍ Lógica

Prof. Marcos Roberto Ribeiro

Lista de Exercícios 9

Exercício 1:

Considere os seguintes predicados:

A(x,y): x admira y

B(x,y): x estava presente em y

 $P(x): x \in \text{um professor}$

 $E(x): x \in um$ estudante

 $L(x): x \in \text{uma aula}$

Considere também a constante m (Maria). Codifique as frases a seguir na Lógica de Predicados:

(a) Maria admira todo professor (a resposta não é $\forall x A(m, P(x))$)

Solução: $\forall x (P(x) \rightarrow A(m, x))$

(b) Algum professor admira Maria.

Solução: $\exists x (P(x) \land A(x,m))$

(c) Maria admira a si própria.

Solução: A(m,m)

(d) Nenhum estudante esta presente em todas as aulas.

Solução: $\forall x(S(x) \to (\exists y(L(y) \lor \neg B(x,y))))$ ou $\neg \exists x(S(x) \land \forall y(L(y) \to B(x,y)))$

(e) Nenhuma aula teve a presença de todos os estudantes.

Solução: $\forall x(L(x) \to \exists y(S(y) \land \neg B(y, x)))$ ou $\neg \exists y(L(y) \land \forall x(S(x) \to B(x, y)))$

(f) Nenhuma aula teve a presença de qualquer estudante.

Solução: $\forall x(L(x) \to \forall y(S(y) \to \neg B(y, x)))$ ou $\forall x \forall y((S(x) \land S(y)) \to \neg B(y, x))$

Exercício 2:

Encontre predicados apropriados e suas especificações para codificar as frases a seguir na Lógica de Predicados:

(a) Todas as coisas vermelhas estão na caixa.

$$\mathbf{Solução:} \ \forall x (\mathtt{Vermelho}(x) \to \mathtt{NaCaixa}(x))$$

(b) Só as coisas vermelhas estão na caixa.

$$\mathbf{Solução:} \ \forall x (\mathtt{NaCaixa}(x) \to \mathtt{Vermelho}(x))$$

(c) Nenhum animal é ao mesmo tempo um cão e um gato.

$$\begin{aligned} & \textbf{Solução:} \ \, \forall x (\texttt{Animal}(x) \to (\neg \texttt{Gato}(x) \vee \neg \texttt{Cao}(x))) \\ & \text{ou} \\ & \neg \exists x (\texttt{Animal}(x) \wedge \texttt{Gato}(x) \wedge \texttt{Cao}(x)) \end{aligned}$$

(d) Todos os prêmios foram ganhos por um menino.

$$\mathbf{Solução:} \ \forall x (\mathtt{Premio}(x) \to \exists y (\mathtt{Menino}(y) \land \mathtt{Ganha}(y,x)))$$

(e) Um menino ganhou todos os prêmios.

```
\mathbf{Solução:} \ \exists y (\mathtt{Menino}(y) \land \forall x (\mathtt{Premio}(x) \to \mathtt{Ganha}(y,x)))
```

Exercício 3:

Seja ϕ a fórmula $\exists x (P(y,z) \land (\forall y (\neg Q(y,x) \lor P(y,z))))$, onde $P \in Q$ são predicados binários.

(a) Desenhe a árvore de análise de ϕ .

(b) Identifique as variáveis livres e presas.

(c) Considere a variável w, e as funções f(x) e g(y,z). Calcule $\phi[x/w], \phi[y/w], \phi[y/f(x)]$ e $\phi[z/g(y,z)]$.

Solução:

 $\phi[x/w]: \exists x (P(y,z) \land (\forall y (\neg Q(y,x) \lor P(y,z))))$ (não há ocorrências livres de x em $\phi)$

 $\phi[y/w]: \exists x (P(w,z) \land (\forall y (\neg Q(y,x) \lor P(y,z))))$

 $\phi[y/f(x)]: \exists x (P(f(x),z) \wedge (\forall y (\neg Q(y,x) \vee P(y,z))))$

 $\phi[z/g(y,z)]: \exists x (P(y,g(y,z)) \wedge (\forall y (\neg Q(y,x) \vee P(y,g(y,z)))))$

Exercício 4:

Faça as seguintes demonstrações.

(a)
$$\forall x (P(x) \land Q(x)) \vdash \forall x P(x) \land \forall x Q(x)$$

(b) $\forall x P(x) \lor \forall x Q(x) \vdash \forall x (P(x) \lor Q(x))$

Solução:			
1.	$\forall x P(x) \lor \forall x Q(x)$	premissa	
2.	x_0		
3.	$\forall x P(x)$	Hipótese	
4.	$P(x_0)$	$\forall x_e, 1$	
5.	$P(x_0) \vee Q(x_0)$	\vee_i , 4	
6.	$\forall x Q(x)$	Hipótese	
7.	$Q(x_0)$	$\forall x_e, 6$	
8.	$P(x_0) \vee Q(x_0)$	\vee_i , 7	
9.	$P(x_0) \vee Q(x_0)$	\vee_e , 1, 3–5, 6–8	
10.	$\forall x (P(x) \lor x Q(x))$	$\forall x_i, 2-9$	

(c) $\exists x (P(x) \land Q(x)) \vdash \exists x P(x) \land \exists x Q(x)$

Solução:			
	1.	$\exists x (P(x) \land Q(x))$	premissa
	2.	x_0	
	3.	$P(x_0) \wedge Q(x_0)$	Hipótese
	4.	$P(x_0)$	\wedge_e , 3
	5.	$\exists x P(x)$	$\exists x_i, 4$
	6.	$Q(x_0)$	Hipótese
	7.	$\exists x Q(x)$	$\exists x_i, 6$
	8.	$\exists x P(x) \land \exists x Q(x)$	\wedge_i , 5, 7
	9.	$\exists x P(x) \land \exists x Q(x)$	$\exists x_i, 1, 2-8$

(d) $\exists x F(x) \lor \exists x G(x) \vdash \exists x (F(x) \lor G(x))$

(e) $\neg \forall x \neg P(x) \vdash \exists x P(x)$

(f) $\forall x \neg P(x) \vdash \neg \exists x P(x)$

Solução:				
	1.	$\neg \forall x \neg P(x)$	premissa	
	2.	$\exists x P(x)$	Hipótese	
	3.	x_0		
	4.	$P(x_0)$	Hipótese	
	5.	$\neg P(x_0)$	$\forall x_e, 1$	
	6.		$\neg_e, 5, 2$	
	7.	上	$\exists x_e, 2, 3-6$	
	8.	$\neg \exists x P(x)$	$\neg_i, 2-7$	

(g) $\neg \exists x P(x) \vdash \forall x \neg P(x)$

(h) $\exists x \exists y (H(x,y) \lor H(y,x)), \neg \exists H(x,x) \vdash \exists x \exists y \neg (x=y)$

Solução:		
1.	$\exists x \exists y (H(x,y) \lor H(y,x))$	premissa
2.	$\neg \exists H(x,x)$	premissa
3.	x_0	
4.	$\exists y (H(x_0, y) \lor H(y, x_0))$	Hipótese
5.	y_0	
6.	$\exists y (H(x_0, y) \lor H(y, x_0))$	Hipótese
7.	$x_0 = y_0$	Hipótese
8.	$H(x_0,y_0)$	Hipótese
9.	$ \ \ \ H(y_0, y_0)$	$=_e, 7, 8$
10.	$ \ \ \exists x H(x,x)$	$\exists x_i, 9$
11.		\neg_e , 10, 2
12.	$H(y_0,x_0)$	Hipótese
13.	$ \ \ \ H(y_0, y_0)$	$=_e, 7, 12$
14.	$ \ \ \exists x H(x,x)$	$\exists x_i, 13$
15.		\neg_e , 14, 2
16.		\vee_e , 6, 8–11, 12–15
17.	$\neg(x_0 = y_0)$	\neg_i , 7–16
18.	$\exists y \neg (x_0 = y)$	$\exists y_i, 17$
19.	$\exists x \exists y \neg (x = y)$	$\exists x_i, 18$
20.	$\exists x \exists y \neg (x = y)$	$\exists y_e, 4, 5-19$
21.	$\exists x \exists y \neg (x = y)$	$\exists x_e, 1, 3-20$