Отчет по лабораторной работе №1

Методы кодирования и модуляция сигналов

Галацан Николай, НПИбд-01-22

Содержание

1	Цел	ь работы	4
2	Выполнение лабораторной работы		5
	2.1	Построение графиков в Octave	5
	2.2	Разложение импульсного сигнала в частичный ряд Фурье	7
	2.3	Определение спектра и параметров сигнала	9
	2.4	Амплитудная модуляция	12
	2.5	Кодирование сигнала. Исследование свойства самосинхронизации	
		сигнала	13
3	Выв	воды	17

Список иллюстраций

2.1	Редактирование plot_sin.m	5
2.2	График функции	6
2.3	Добавление линии на график	7
2.4	Графики меандра с разным количеством гармоник	8
2.5	Графики меандра с разным количеством гармоник через синусы .	9
2.6	Два синусоидальных сигнала разной частоты	10
2.7	Исправленный график спектров синусоидальных сигналов	11
2.8	Спектр суммарного сигнала	12
2.9	Спектр сигнала при амплитудной модуляции	13
2.10	Создание и заполнение файлов в каталоге coding	14
2.11	Установленные пакеты	14
2.12	Файлы с графиками кодированного сигнала	15
2.13	Файлы с графиками, иллюстрирующими свойства самосинхрони-	
	зации	15
2.14	Файлы с графиками спектров сигналов	16

1 Цель работы

Изучение методов кодирования и модуляции сигналов с помощью высокоуровнего языка программирования Octave. Определение спектра и параметров сигнала. Демонстрация принципов модуляции сигнала на примере аналоговой амплитудной модуляции. Исследование свойства самосинхронизации сигнала.

2 Выполнение лабораторной работы

2.1 Построение графиков в Octave

Построю график функции

$$y = \sin(x) + \frac{1}{3}\sin(3x) + \frac{1}{5}\sin(5x)$$

на интервале [-10; 10], используя Octave и функцию plot. Создаю файл plot_sin.m (рис. 2.1).

Рис. 2.1: Редактирование plot sin.m

Запускаю файл и получаю график (рис. 2.2). В рабочем каталоге появляются файлы с графиками в форматах .eps, .png.

Рис. 2.2: График функции

Сохраняю файл под другим именем, добавляю на график линию

$$y2 = cos(x) + \frac{1}{3}cos(3x) + \frac{1}{5}cos(5x)$$

и запускаю (рис. 2.3)

Рис. 2.3: Добавление линии на график

2.2 Разложение импульсного сигнала в частичный ряд Фурье

Создаю сценарий meandr.m для демонстрации графиков меандра, реализованных с разным количеством гармоник (рис. 2.4)

Рис. 2.4: Графики меандра с разным количеством гармоник

Добавляю в листинг строки для экспорта графика в .png. Корректирую код для реализации меандра через синусы (рис. 2.5)

Рис. 2.5: Графики меандра с разным количеством гармоник через синусы

2.3 Определение спектра и параметров сигнала

Определю спектр двух отдельных сигналов и их суммы. В рабочем каталоге создаю каталог spectre1 и в нём новый сценарий с именем spectre.m. Запускаю сценарий (рис. 2.6)

Рис. 2.6: Два синусоидальных сигнала разной частоты

Нахожу спектры сигналов с помощью быстрого преобразования Фурье. Корректирую график спектра (рис. 2.7)

Рис. 2.7: Исправленный график спектров синусоидальных сигналов

Нахожу спектр суммы рассмотренных сигналов, создав каталог spectr_sum и файл в нём spectre_sum.m. В результате получается аналогичный предыдущему результат, т.е. спектр суммы сигналов должен быть равен сумме спектров сигналов, что вытекает из свойств преобразования Фурье (рис. 2.8)

Рис. 2.8: Спектр суммарного сигнала

2.4 Амплитудная модуляция

Создаю каталог modulation и в нём новый сценарий с именем am.m. для демонстрации принципов модуляции сигнала на примере аналоговой амплитудной модуляции. В результате получаю, что спектр произведения представляет собой свёртку спектров (рис. 2.9).

Рис. 2.9: Спектр сигнала при амплитудной модуляции

2.5 Кодирование сигнала. Исследование свойства самосинхронизации сигнала

В рабочем каталоге создаю каталог coding и в нём файлы main.m, maptowave.m, unipolar.m, ami.m, bipolarnz.m, bipolarrz.m, manchester.m, diffmanc.m, calcspectre.m. и ввожу код (рис. 2.10).

Рис. 2.10: Создание и заполнение файлов в каталоге coding

Устанавливаю пакет расширений signal (рис. 2.11):

```
pkg list -forge

pkg install -forge control

pkg install -forge signal

| Triews signar. | >> pkg list | Package Name | Version | Installation directory | control | 4.0.1 | /home/ngalacan/octave/control-4.0.1 | signal | 1.4.5 | /home/ngalacan/octave/signal-1.4.5
```

Рис. 2.11: Установленные пакеты

Запустив файл main.m, получаю графики. В каталоге signal получены файлы с графиками кодированного сигнала (рис. 2.12), в каталоге sync — файлы с графиками, иллюстрирующими свойства самосинхронизации (рис. 2.13), в каталоге spectre — файлы с графиками спектров сигналов (рис. 2.14).

Рис. 2.12: Файлы с графиками кодированного сигнала

Рис. 2.13: Файлы с графиками, иллюстрирующими свойства самосинхронизации

Рис. 2.14: Файлы с графиками спектров сигналов

3 Выводы

Изучены методы кодирования и модуляции сигналов с помощью высокоуровнего языка программирования Octave. Изучено определение спектра и параметров сигнала. Произведена демонстрация принципов модуляции сигнала на примере аналоговой амплитудной модуляции. Исследованы свойства самосинхронизации сигнала.