1	
2	
3	A SPECIFICATION
4	FOR
5	A SYSTEM AND METHOD FOR LOSSLESS AUDIO ENCODING WITH INTEGRATED
6	OFFLINE AUTHENTICATION AND DIGITAL RIGHTS MANAGEMENT
7	
8	By Henry T. McBrien
9	10/12/2024
10	
11	
12	A system and method for lossless audio encoding is required in present market
13	conditions. The system generates a digital audio file comprising a Main Audio Package (MAP)
14	and an Authentication Key Message (AKM). The MAP contains losslessly compressed audio
15	data, where compression is achieved through a combination of predictive coding and entropy
16	encoding of residual signals. The AKM comprises cryptographic information for both file
17	authentication and user-level access control. File authentication is performed offline using a
18	digital signature created by hashing the MAP and encrypting the hash with a private key. User
19	access is managed through Digital Rights Management (DRM) by encrypting a symmetric
20	session key with a public key unique to an authorized user, where the session key is used to
21	decrypt the MAP. This dual-layered security model provides robust file integrity verification and
22	access control without requiring a continuous online connection.
23	
24	SPECIFICATIONS
25	
26	The field of digital audio has a need for secure, high-fidelity formats that ensure both the
27	authenticity of the content and the control of its distribution. Existing formats often lack
28	robust, integrated security features or require constant connectivity to a central server for

verification, which limits their utility in offline environments. There is a need for a unified system that can provide lossless audio quality while implementing cryptographic controls for file integrity and user access. The present invention addresses these deficiencies by providing a comprehensive, self-contained system for authenticated and encrypted lossless audio.

6 2

- The present invention provides a method for generating a digital audio file format, hereinafter referred to as the "Dougsphere" format, which comprises two distinct but cryptographically linked components: a Main Audio Package (MAP) and an Authentication Key Message (AKM). The MAP contains the primary audio data, which is losslessly compressed to reduce file size while preserving audio fidelity. The AKM contains the necessary cryptographic data to perform offline authentication of the file's origin and to enforce Digital Rights Management (DRM) for user access.
- 2.1 The lossless compression of the MAP is achieved through a two-step process. First, an audio signal is processed by a predictive coding scheme, where each audio sample is predicted from preceding samples. The difference between the actual sample and the predicted sample, known as the residual, is then encoded. Second, these residuals are subjected to entropy encoding, such as Huffman or arithmetic coding, to efficiently represent the data.
- 2.2 The AKM facilitates a two-part security scheme. For file integrity and authenticity, a digital signature is generated by hashing the MAP and encrypting the hash with the content creator's private key. This signature is stored in the AKM. A receiving party can verify the file's authenticity by re-hashing the MAP and comparing it to the decrypted hash from the AKM. For user-level access and DRM, the MAP data is encrypted with a symmetric session key. This session key is, in turn, encrypted with a public key unique to an authorized user's license and stored within the AKM. A user can only decrypt and access the audio data if they possess the corresponding private key to unlock the session key.
- 2.3 The present invention supports multiple audio channels, such as up to 6 channels, and

CLAIM OF INVENTION

28

1		
2	1	A method for generating a digital audio file, said method comprising:
3	1.1	receiving an uncompressed audio signal;
4	1.2	generating a Main Audio Package (MAP) by applying a lossless compression scheme to
5		said audio signal, said scheme comprising:
6	1.2.1	predicting subsequent audio samples based on preceding samples;
7	1.2.2	calculating a residual signal from the difference between predicted and actual samples;
8	1.2.3	applying entropy encoding to said residual signal to generate compressed audio data;
9	1.3	generating an Authentication Key Message (AKM), wherein said AKM comprises:
10	1.3.1	a digital signature generated by hashing the MAP and encrypting said hash with a private
11		key of a content creator; and
12	1.3.2	an encrypted symmetric session key for decrypting the MAP, wherein said session key is
13		encrypted with a public key associated with a user's license.
14	2	The method of claim 1, wherein the prediction of subsequent audio samples is performed
15		using a linear predictive coding (LPC) model.
16	3	The method of claim 1, wherein the entropy encoding is performed using Huffman
17		coding or arithmetic coding.
18	4	The method of claim 1, wherein the digital audio file is configured for offline verification
19		of authenticity and offline enforcement of user access rights.
20	5	A digital audio file format, comprising:
21	5.1	a Main Audio Package (MAP) containing losslessly compressed audio data; and
22	5.2	an Authentication Key Message (AKM) containing cryptographic information for said
23		MAP, wherein said cryptographic information comprises:
24	5.2.1	a digital signature for authenticating the integrity and origin of the MAP; and
25	5.2.2	a symmetrically encrypted session key for decrypting the MAP, said session key being
26		asymmetrically encrypted with a public key of an authorized user.
27		HENRY MCBRIEN
28		DESIGNER

1	
2	
3	
4	THIS DOCUMENT
5	FOR RELEASE
6	
7	DOUGTONE.COM
8	SOME RIGHTS RESERVED
9	
10	FOR FURTHER LICENSE QUESTIONS, CONTACT
11	WEBMASTER@DOUGTONE.COM
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	