

Decision Trees

Decision Trees

- What does it do?
- How does it look?
- Splitting criteria
- Stopping criteria
- Pros / Cons

Choosing threshold

Task: Work with your neighbor to choose the best threshold:

- Threshold 1: TP = 45 TN = 30 FP = 10 FN = 10
- Threshold 2: TP = 35 TN = 15 FP = 5 FN = 5
- Take into account the following prevalence and costs:
 - Prevalence: 70%
 - Cost(FP) Cost(TN) = 10
 - Cost(FN) Cost(TP) = 5

We will then come back to the large group and I'll pick some of you to share your answers with the rest of the class.

Decision Tree Classifiers

Decision Tree Classifier (Training set)

Decision Tree Classifiers

- Splits your data again and again
- Before each split DTs try:
 - Every predictor
 - Each of its values (sort of)
- The split that makes the resulting groups the most homogenous (concentration of one class) wins
- Each variable can be used as many times as necessary

Choosing threshold

Task: Discuss with your partner:

- What problems are Decision Trees better suited for?
- How does a Decision Tree choose how to split the data?
- What is a leaf? What is the depth of a tree?

We will then come back to the large group and I'll pick some of you to share your answers with the rest of the class.

Splitting rules

- If categorical predictor:
 - Get dummies (n-1 is variables enough)
 - o For each dummy:
 - Split on <= 0.5
 - False means 'value in column's header'
 - True means 'not the value in the header'
- If float or integer:
 - For all pairs of contiguous values in the variable
 - Split on <= gap between them</p>

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Choosing splitting points

- Let's imagine we only have marital status and refund as predictors of Cheat
- We are going to try Refund and see what splits it generates.
- Because we only have 2 values we have only one splitting point
- With Refund <= 0.5 True [3,4]
- With Refund <= 0.5 False [0,3]

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Splitting like a DT

Task: Work with your neighbor to figure out the following:

- How many + and do you have as a result of splitting on Marital Status?
- Which of the two columns that we have seen is preferable?

We will then come back to the large group and I'll pick some of you to share your answers with the rest of the class.

Tid	Refund	Marital	Taxable	Charact.
+-		Status	Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Entropy

Entropy (disorder)

$$E = -\Sigma_i p_i \log_2(p_i),$$

$$-p\log_2(p) - q\log_2(q)$$

$$-0.4 * \log_2(0.4) - 0.6 * \log_2(0.6)$$
.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Gini Impurity

Gini (impurity)

$$\mathbf{I}_{G}(p) = 1 - \sum_{i=1}^{J} p_{i}^{2}$$

$$= 1 - p^{2} - q^{2}$$

$$= 1 - 0.4^{2} - 0.6^{2}$$

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Splitting like a DT

Task: Work with your neighbor to figure out the following:

- What are the disorder and impurity values for the split resulting from Marital Status?
- Which of the two columns that we have seen is preferable?

We will then come back to the large group and I'll pick some of you to share your answers with the rest of the class.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Stopping Criteria

- There is a rumor out there that says that Decision Trees are very prone to overfit
- If you let them, they won't stop splitting until they achieve absolute purity/order
- With real life problems that will mean overfitting
- Thankfully we have stopping criteria
- When the criteria is met the tree will stop splitting
- Because stopping criteria have a huge impact on performance they are hyperparameters that you want to tune (more on this soon)

min_samples_leaf

max_depth

Feature Importances

- Based on samples impacted
- They don't indicate the direction of the impact
- Useful for EDA
- Linearises the non-linear tree

 Go beyond importances when interpreting the results of your model

Pros / Cons

Advantages

- Easy to Understand/Explain
- Useful in Data exploration
- Less data cleaning required

Disadvantages

- Computational intensity of splitting on continuous variables
- Prone to overfit (but we know how to get around it)

Delivering Value

Your job is not to create high performance models

They pay you to solve problems

Summary + Exit Ticket

Thresholds

Thresholds to ROC curve

