

Implementação de uma Calculadora Científica utilizando Séries

Paulo Henrique de O. Bonfim, Pedro Bezerra Heinzelmann

2024.1

UERJ - Instituto de Matemática e Estatística

Disciplina: Cálculo IV

Professora: Cristiane Oliveira de Faria

Implementação de n!

```
função fatorial(x):
    resultado ← 1
    para i ← 2 até x faça
    resultado *= i
```

retorna resultado

Apesar de simples, valores de **x** muito grandes, como os usados nas séries infinitas, podem exceder facilmente o espaço de memória em que a variável de retorno está alocada.

Variações da função utilizando recursão excederam o número de chamadas recursivas suportadas em alguns testes.

Implementação de π

Série de Leibniz de π	$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \Rightarrow \sum_{n=0}^{\infty} \frac{2}{(4n+1)(4n+3)}$
Pseudo-código Python	função pi(): resultado ← 0 para i ← 0 até 10^6 faça resultado += 2 / (4*i + 1) * (4*i + 3) retorna resultado * 4

Foi escolhido o intervalo [0,10⁶] devido a precisão até a 6⁰ casa decimal: 3.141592

Implementação de e^x

Série	$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
Pseudo-código Python	função exp(x): resultado ← 0 para i ← 0 até 700 faça resultado += (x**i) / fatorial(i) retorna resultado

Implementação de sen(x) e cos(x)

Séries de Taylor	$\operatorname{sen}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}; \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$
Pseudo-código Python	função $cos(x)$: $x \leftarrow x^*(pi() / 180)$ #conversão para radianos resultado $\leftarrow 0$ para i $\leftarrow 0$ até 50 faça resultado += ((-1)**i)*($x^*(2*i)$) / fatorial(2*i) retorna resultado
	#O mesmo se aplica para a função sen(x).

Implementação de tan(x)

Série/Identidade	(i) $tg(x) = \sum_{n=0}^{\infty} \frac{B_{2n}(-4)^n (1-4^n)x^{2n+1}}{(2n)!}$ (ii) $tg(x) = \frac{sen(x)}{cos(x)}$
Pseudo-código Python	<pre>função tan(x): resultado ← sen(x) /cos(x) retorna resultado</pre>

(i) além de computacionalmente custosa, também dependia da implementação da Números de Bernoulli. Logo, a alternativa (ii) é mais simples (mas há menor precisão) pois se aproveita das chamadas de duas outras séries já implementadas.

Implementação de In(x)

Série	$(i) \ln(x+1) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$ $(ii) \ln(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} (\frac{a}{10})^n}{n} - (b+1) \sum_{n=1}^{\infty} \frac{(-0.9)^{n+1} (-1)^{n+1}}{n}$
Pseudo-código	função ln(x):
Python	a,b ← notacãocientifica* (x)
	resultado ← 0
	para i ← 0 até <mark>370</mark> faça
	arg1 = ((-1)**(i+1))*((a/10)**i) / i
	arg2 = (b+1) * (((-0.9)**(i+1))*((-1)**(i+1)) / i)
	resultado += arg1 – arg2
	retorna resultado

(i) possui o intervalo de convergência $|x| \le 1$, o que é um problema devido a entradas "x" maiores. Dessa forma, a sequência pode ser reescrita como (ii) para aceitar os valores **a** e **b**, **sendo x** = **a** * 10^b , para 1 < 0.1a < 1.

^{*}A função não existe, apenas representa um conjunto de procedimentos de formatação de funções padrão do Python 3.

Implementação de $log_{10}(x)$

Identidade	$\log_{10}(x) = \frac{\ln(x)}{\ln(10)}$
Pseudo-código Python	<pre>função log(x): resultado ← In(x) /In(10) retorna resultado</pre>

Implementação de \sqrt{x}

Série	(i) $\sqrt{N^2 = d} = \sum_{n=1}^{\infty} \frac{(-1)^n 2n!}{(1-2n) n!^2 4^n} \frac{d^2}{N^{2n}}$ (ii) $\sqrt{x} = e^{(\ln(x)/2)}$
Pseudo-código Python	<pre>função raiz(x): resultado ← exp((In(x) / 2)) retorna resultado</pre>

A implementação de (i) é custosa devido a presença de diversas potências e principalmente de fatoriais cada vez maiores.

Uma alternativa eficiente para o cálculo da raiz quadrada é utilizar a identidade (ii) que utiliza, por sua vez as funções das séries que convergem para e^x e ln(x) mostradas anteriormente.

Interface da Calculadora

Aproveitamos o código de uma interface gráfica de usuário para uma calculadora científica e alteramos as chamadas das funções da biblioteca math para as funções desenvolvidas a partir das séries e dos algoritmos apresentados.

Utilizamos assim, somente o pacote tkinter para o uso da interface gráfica e as funções da biblioteca padrão do Python 3, além das desenvolvidas.

Em destaque:

fatorial(); pi(); sin(); cos(); tan(); exp(); ln(); log() e sqrt()

Demonstração de uso

Interface

Funções

- 1 Números
- 2 Operações
- 3 Regra de Precedência "()"
- 4 Funções com aplicações de séries
- 5 Botão para avaliar a expressão e apagar

Restrições

- Não é possível armazenar histórico
- Todas funções que implementamos precisam de ter <u>parenteses</u> entre o valor computado