Homework 6

Pan Yisheng 515021910384

April 20, 2018

Problem 1. SSL Consider the SSL protocol shown below (with $K = h(S, R_A, R_B)$):

 $A \to B$: R_A

 $A \leftarrow B : Cert_B, R_B$

 $A \rightarrow B: \{S\}_B, E(K, h(msgs||K))$

 $A \leftarrow B : h(msgs||K)$

 $A \longleftrightarrow B$: Data encrypted under K

- a) In step 3, if we change E(K, h(msgs||K)) to h(msgs||K), will the protocol still be secure?
- b) What exactly is the purpose of the message E(K, h(msgs||K)) sent in step 3?
- c) If we remove this part in step 3, i.e., if we changed step 3 to

$$A \to B$$
 : $\{S\}_B$

Would the protocol still be secure?

Solution a): Yes, the protocol will still be secure. Attacker can't also recover msgs and K even if h(msgs||K) is not encrypted.

- b): The purpose is to convince $\{S\}_B$ is not modified. In other word, it verify that the key is indeed K.
- c): The protocol won't be secure. The message can be sent from A or anyone else using B's public key

Problem 2. IKE(1) In IKE Phase 1 digital-signature-based aggressive mode (see below), $proof_A$ and $proof_B$ are signed by Alice and Bob, respectively. However, in IKE Phase 1 public-keyencryption-based aggressive mode, $proof_A$ and $proof_B$ are neither signed nor encrypted. Explain why they can still securely perform the authentication.

$$A \to B$$
: CP, $g^a \mod p$,{"Alice"} $_{Bob}$, {R_A} $_{Bob}$
 $A \leftarrow B$: CS, $g^b \mod p$,{"Bob"} $_{Alice}$,{R_B} $_{Alice}$,proof_B
 $A \to B$: proof_A

$$proof_A = h(SKEYID, g^a \mod p, g^b \mod p, CP, "Alice")$$

$$SKEYID = h(g^{ab} \mod p, R_A, R_B)$$

Solution In the public-keyencryption-based aggressive mode, the ID "Alice" and "Bod" are encrypted with public key which has the similar effects like digital signature. The middle attacker can't get the identities of A and B, so he can't diaguise as A or B so that the attack will fail.

Problem 3. IKE(2) Imagine you have a key exchange protocol similar to main mode in IKE Phase 1,but adding an additional piece of data (cookies, C_A and C_B) to the message flow:

$$A \to B: CP, C_A$$

$$A \leftarrow B: CS, C_A, C_B$$

$$A \to B: g^a \mod p, R_A, C_A, C_B$$

$$A \leftarrow B: g^b \mod p, R_B, C_A, C_B$$

$$A \to B: h(K, "Alice" || proof_A)$$

$$A \leftarrow B: h(K, "Bob" || proof_B)$$

$$A \longleftrightarrow B: Data encrypted under $K$$$

The cookies are in the form

$$C_x = h(K_x, IP_{peer}, timestamp)$$

where K_x is a secret key only known to the party creating the cookie and IP_{peer} is the IP address of the peer (i.e., Alice would put Bobs IP and vice versa).

- a) What are the reasons for including such cookies in the exchange?
- b) The function of these cookies has to be effective before the exchange reaches step 5,otherwise B could be in trouble. Can you explain why?

Solution a):

- 1. K_x avoids attacker generate fake cookies.
- 2. IP_{peer} avoids middle-in-the-middle cookies.
- 3. timestamp avoids replay attacks.
- b): The cookies can avoid attacker pretend to be A or B in the key exchange period. Otherwise, key exchange may fail.

Problem 4. IKE(3)) IKE Phase 1 signature-based main mode has 6 moves, while the aggressive mode has 3 moves only.

- a) Give two advantages of the main mode over the aggressive mode.
- b) Give one disadvantage of the main mode over the aggressive mode

Solution a):

- we can protect identities in main mode
- \bullet we can negotiate g and p
- b):In symmetric key based main mode, Alice's ID must be IP address!