

Varianta 008

Subjectul I

a)
$$|i^{2007}| = 1$$

b) Inversul lui i^{2007} este i.

c)
$$\sin \frac{\pi}{2007} - \cos \frac{\pi}{2007} < 0$$

d) Aria triunghiului ABC este: $S_{ABC} = 15\sqrt{2}$.

e) Ecuația cercului este: $(x-1)^2 + (y+1)^2 - 2^2 = 0$.

f) Distanța de la punctul A la plan este: $\frac{3\sqrt{14}}{7}$.

Subjectul II

1.

a) Coordonatele vârfului parabolei sunt: $x_v = 1$, $y_v = 4$.

b n = 3.

c) x = 6.

d) $x_1 + x_2 + x_3 = 3$.

e) În mulțimea Z_5 , $\hat{4}^{2007} = \hat{4}$.

2

a)
$$\lim_{n\to\infty} f(n) = +\infty$$
.

b) $f'(x) = \frac{1}{3 \cdot \sqrt[3]{(x-1)^2}}$, pentru $x \in \mathbf{R} \setminus \{1\}$.

c)
$$\lim_{x\to 2} \frac{f(x)-f(2)}{x-2} = \frac{1}{3}$$
.

d) Pentru orice x > 1, avem f'(x) > 0, deci f este strict crescătoare pe $(1, \infty)$.

e)
$$\int_{1}^{2} f^{3}(x) dx = \frac{1}{2}$$
.

Subjectul III

a)
$$f(1) = 55,5$$
.

b)
$$x_1 \cdot x_2 \cdot ... \cdot x_{10} = \frac{1}{20}, \quad x_1 + x_2 + ... + x_{10} - \frac{9}{10}.$$

c) Calcul direct.

- **d**) Dacă $z \in \mathbb{C}$ și g(z) = 0, atunci $z \neq 0$ și $10z^{11} = z^{10} + ... + z^2 + 0.5z + 0.5$ și împărțind ultima relație cu z^{11} obținem: $10 = \frac{1}{z} + \frac{1}{z^2} + ... + \frac{1}{z^9} + \frac{0.5}{z^{10}} + \frac{0.5}{z^{11}}$.
- e) În planul complex, considerăm punctele O(0), A(u), B(v) și C(u+v). În triunghiul (degenerat sau nu) OAB avem $OC \le OA + AC$, de unde rezultă concluzia.
- **f**) Presupunem că există $z \in \mathbb{C}$, |z| > 1, astfel încât $10 = \frac{1}{z} + \frac{1}{z^2} + ... + \frac{1}{z^9} + \frac{0.5}{z^{10}} + \frac{0.5}{z^{11}}$

Avem: $10 = \left| \frac{1}{z} + \frac{1}{z^2} + \dots + \frac{1}{z^9} + \frac{0.5}{z^{10}} + \frac{0.5}{z^{11}} \right| \le \left| \frac{1}{z} \right| + \left| \frac{1}{z^2} \right| + \dots + \left| \frac{1}{z^9} \right| + \left| \frac{0.5}{z^{10}} \right| + \left| \frac{0.5}{z^{11}} \right| < 10, \text{ fals.}$

g) Dacă z este o rădăcină a lui f, atunci z este și rădăcină a lui g și din punctul \mathbf{d}), trebuie să avem $10 = \frac{1}{z} + \frac{1}{z^2} + ... + \frac{1}{z^9} + \frac{0.5}{z^{10}} + \frac{0.5}{z^{11}}$, relație care, conform punctului \mathbf{f}) este imposibilă dacă |z| > 1. Așadar modulele tuturor rădăcinilor lui f sunt ≤ 1 .

Subjectul IV

- a) $f'(x) = \cos x \frac{1}{(x+1)^2}$, $f^{(2)}(x) = -\sin x + \frac{2}{(x+1)^3}$, $f^{(3)}(x) = -\cos x \frac{6}{(x+1)^4}$, pentru orice $x \ge 0$.
- **b**) Pentru $x \in \left[0, \frac{\pi}{2}\right)$, $\cos x > 0$, deci $f^{(3)}(x) = -\cos x \frac{6}{(x+1)^4} < 0$.
- c) Din **b**) rezultă că funcția $f^{(2)}$ este strict descrescătoare pe $\left[0, \frac{\pi}{2}\right]$ și folosind **a**) deducem că există un unic $\alpha \in \left(0, \frac{\pi}{2}\right)$ pentru care $f^{(2)}(\alpha) = 0$.

Obținem că funcția f' este strict crescătoare pe $[0, \alpha]$ și strict descrescătoare pe $x \in \left(\alpha, \frac{\pi}{2}\right]$ și apoi că există un unic $\beta \in \left(\alpha, \frac{\pi}{2}\right]$ astfel încât $f'(\beta) = 0$.

Deducem că f este strict crescătoare pe $\left[0,\beta\right]$ și strict descrescătoare pe $\left[\beta,\frac{\pi}{2}\right]$ și apoi că $\forall x \in \left[0,\frac{\pi}{2}\right], f(x) \geq 0$.

d) În demonstrație se folosește monotonia funcției sinus și punctul c).

e) Pentru x > 0, aplicând teorema lui Lagrange funcției $g: [x, x+1] \to \mathbf{R}$, $g(t) = \ln t$ deducem că există $c \in (x, x+1)$ astfel încât $\ln(x+1) - \ln x = \frac{1}{c}$.

Mai mult,
$$x < c < x+1 \iff \frac{1}{x+1} < \ln(x+1) - \ln x < \frac{1}{x}, \ \forall x > 0.$$

- f) Înlocuind succesiv în partea din dreapta a inegalității de la e) numărul x cu fiecare din elementele mulțimii $\{1, 2, ..., n\}$ și adunând relațiile obținute, se deduce concluzia.
- g) Folosind d) deducem:

$$x_{1}(a) + x_{2}(a) + \dots + x_{n}(a) > \frac{a}{a+1} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right)^{5} > \frac{a}{a+1} \ln(n+1) \quad \text{si}$$

$$\lim_{n \to \infty} (x_{1}(a) + x_{2}(a) + \dots + x_{n}(a)) = +\infty.$$