Семинар 5.

Семинары: Погорелова П.В.

Проверка гипотез и блочные матрицы.

Задание 1. Всегда ли доверительный интервал для коэффициентов регрессии $\beta_1 + \beta_2$ шире каждого доверительного интервала для β_1 и β_2 ? Если да, то почему?

Задание 2. Рассмотрим модель $Y_i = \beta_1 + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i4} + \varepsilon_i$. При оценке модели по 24 наблюдениям оказалось, что RSS = 15, $\sum (Y_i - \bar{Y} - X_{i3} + \bar{X}_3)^2 = 20$. На уровне значимости 1% протестируйте гипотезу

$$H_0: \begin{cases} \beta_2 + \beta_3 + \beta_4 = 1 \\ \beta_2 = 0 \\ \beta_3 = 1 \\ \beta_4 = 0 \end{cases}$$

Задание 3. В файле *dataflats.xlsx* хранятся данные о стоимости квартир в Москве (тыс.долл.).

(а) Оцените следующие модели регрессии для стоимости одного квадратного метра жилья:

$$price_sq_i = \beta_1 + \beta_2 livesp_i + \beta_3 dist_i + \varepsilon_i,$$
$$price_sq_i = \beta_1' + \beta_2' livesp_i + \beta_3' dist_i + \beta_4' metrdist_i + \varepsilon_i.$$

- (b) Для оцененных моделей проверьте гипотезу о незначимости модели в целом.
- (c) Используя p-value коэффициентов, укажите для каждой из моделей, какие из переменных являются значимыми, а какие незначимыми на 5% уровне значимости?
- (d) Проинтерпретируйте оценки коэффициентов при значимых переменных. Согласуются ли знаки данных оценок с интуицией?
- (е) Постройте 90%-ые доверительные интервалы для коэффициентов обеих моделей.
- (f) Для каждой из моделей проверьте гипотезу (с помощью t-теста и с помощью F-теста) о том, что коэффициент при расстоянии до центра (dist) равен -0.1. Содержательно проинтерпретируйте результаты тестирования.
- (g) Для второй модели проверьте гипотезу $H_0: \beta_2' + \beta_4' = 0$. Содержательно проинтерпретируйте результаты тестирования.
- (h) Переоцените вторую модель регрессии на шакалированных данных. Какой из факторов оказывает наибольшее влияние на стоимость квартиры? Вспомните выводы о

соотношении оценок регрессии для исходных переменных и регрессии для стандартизированных показателей, полученные на предыдущем семинаре. Сравните теоретические выводы с полученными практическими результатами.

Семинары: Погорелова П.В.

Умножение блочных матриц. Если размеры блоков допускают операцию умножения, то:

$$\left[\begin{array}{c|c}A&B\\\hline C&D\end{array}\right]\cdot\left[\begin{array}{c|c}E&F\\\hline G&H\end{array}\right]=\left[\begin{array}{c|c}AE+BG&AF+BH\\\hline CE+DG&CF+DH\end{array}\right].$$

Транспонирование блочных матриц. Пусть

$$M = \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right].$$

Тогда

$$M' = \left[\begin{array}{c|c} A' & C' \\ \hline B' & D' \end{array} \right].$$

Формула Фробениуса (блочное обращение).

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}BH^{-1}CA^{-1} & -A^{-1}BH^{-1} \\ \hline -H^{-1}CA^{-1} & H^{-1} \end{bmatrix},$$

где A — невырожденная квадратная матрица размерности $n \times n$, D — квадратная матрица размерности $k \times k$, $H = D - CA^{-1}B$.

Задание 4. Вместо того чтобы оценивать параметры β_1, β_2 в модели

$$y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon$$

(X_1, X_2 — $n \times k_1, n \times k_2$ матрицы соответственно, β_1, β_2 — векторы размерности k_1, k_2 соответственно), строятся МНК–оценки этих параметров исходя из модели

$$y = X_1^* \beta_1 + X_2 \beta_2 + \varepsilon^*,$$

где X_1^* — матрица остатков, полученных в результате регрессии каждого столбца матрицы X_1 на X_2 .

(a) Покажите, что полученная таким образом оценка вектора β_2 совпадает с оценкой, полученной в результате регрессии y только на X_2 .

(b) Найдите смещение оценки вектора β_2 .

Задание 5. Для блочной матрицы

$$\begin{bmatrix}
A & B \\
\hline
0 & D
\end{bmatrix}$$

Семинары: Погорелова П.В.

найдите обратную матрицу.

Предположения: $\det A_{n\times n} \neq 0$; $\det D_{k\times k} \neq 0$.

Задание 6.

(а) Рассмотрим модель множественной регрессии:

$$Y_i = \beta_1 + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon.$$

Что произойдет с МНК-оценками коэффициентов модели, если добавить константу c_1 к каждому наблюдению признака X_2 и другую константу c_2 к каждому наблюдению признака X_3 ?

(b) Что произойдет с МНК-оценками коэффициентов множественной регрессии, если умножить зависимую переменную y на константу c? А если на константу умножить какой-нибудь регрессор?