PHY 410 - Homework 3 solutions

1.
$$K+K$$
 Ch. 3, #9 Show $Z(1+2)=Z(1)Z(2)$

for independent systems $1+2$.

 $Z(1)=\sum_{S_1}e$
 $Z(1)=\sum_{S_2/r}e$
 $Z(1+2)=\sum_{S_2}e$

Since the 2 systems are independent, the sum over S is a double sum over S , and S_2 , and

 $E_S=E_{S_1}+E_{S_2}e$
 $-(E_{S_1}+E_{S_2})/r$

So $Z(1+2)=\sum_{S_2}e$

$$\frac{1}{40} = \frac{1}{2} \left(\frac{1+1}{1+2} \right) = \frac{1}{2} \left(\frac{1+1$$

$$= \left(\frac{\sum_{s_1}^{-\xi_{s_1}/\tau}}{\sum_{s_2}^{-\xi_{s_2}/\tau}}\right) \left(\frac{\sum_{s_2}^{-\xi_{s_2}/\tau}}{\sum_{s_2}^{-\xi_{s_2}/\tau}}\right)$$

$$2(1+\lambda) = 2(1) = 2(1)$$

2.
$$K + K$$
. $C(3)$, #1 2- state system: $\frac{-\varepsilon}{0}$

a) $Z = \int_{S} e^{-\varepsilon s/\tau} = 1 + e^{-\varepsilon/\tau}$

$$F = -\tau \ln z = -\tau \ln \left(1 + e^{-\xi/\tau}\right)$$

$$\frac{f}{f} = -\left(\frac{\partial F}{\partial \tau}\right)_{V,N} = \frac{\tau}{1+e^{-\xi/\tau}} = \frac{\varepsilon}{2^{\alpha}} + \ln\left(1+e^{-\xi/\tau}\right)$$

$$\sigma = \frac{\varepsilon_{/\tau}}{1 + \varepsilon_{/\tau}} + \ln\left(1 + \varepsilon_{/\tau}\right)$$

You could also calculate U directly from $U = \tau^2 \frac{3 hr Z}{J\tau}$ without using F. On here is an

even easier motherd:
$$U = \langle \varepsilon \rangle = \sum_{s} \varepsilon_{s} P_{s} = \frac{0 + \varepsilon_{e}}{1 + e^{-\varepsilon/\tau}} = \frac{\varepsilon}{1 + e^{-\varepsilon/\tau}}$$

3.
$$K+K$$
. $CL3$, $\#3$ $Trace energy of a harmonic oscillator

a) $Z = \sum_{s=0}^{s} k = \sum_{s=0}$$

d) In problem 3 of the previous homework set, we found $U = \frac{N k w}{k w/r}$ for N harmonic oscillators UN is indeed N times the result we found here. On the previous homework we also found: on (u) = N ln (1+ un) + un ln (1+ Nkw) Substitute $U_N = \frac{N\hbar\omega}{\hbar\omega/\tau_{-1}}$ so $\frac{U_N}{N\hbar\omega} = \frac{1}{\hbar\omega/\tau_{-1}}$ $\sigma_{N}(N,\tau) = N \ln \left(1 + \frac{1}{4 \ln r_{-1}}\right) + \frac{N}{4 \ln r_{-1}} \ln \left(1 + e^{-1}\right)$ $= N \ln \left(\frac{\hbar w/r}{\hbar w/r} \right) + \frac{N}{\hbar w/r} \ln \left(\frac{\hbar w/r}{r} \right)$ = - Nh (1-e) + Nhw 1 -1 This is indeed N times the result we found in part (c) on the previous page.

=> Conclusion: Calculations in the Microcanonical Ensemble and the Canonical Ensemble give the same answers for U(2), or (2).

4. K+K Cl3, #2 Magnetic Surregitability of N epins

a) For a single spin:
$$E_s = -2mBs$$
 with $s \neq \pm \frac{1}{2}$
 $Z_1 = \sum_s e = e + e = 2$ ruch $\frac{mB}{T}$

For N epins, $Z_n = (Z_1)^N = 2^N (\cosh \frac{mB}{T})^N$

ln $Z_N = N \ln 2 + N \ln (\cosh \frac{mB}{T})$

b) The magnetization per unit volume is defined in Eqn. (46) in Cl. 3: $M = \frac{2s > m}{V}$

Method A: $\frac{2mBs}{V} = \frac{2mBs}{V}$

was truck $\frac{4s}{V} = \frac{2mBs}{V} = \frac{2mBs}{V}$
 $\frac{2mBs}{V} = \frac{7}{mB} \frac{37}{JT} = \frac{7}{mB} \frac{37}{JT} = \frac{7}{mB} \frac{37}{T} = \frac{7}{mB} = \frac{7}{T} = \frac{7}{mB} \frac{37}{T} = \frac{7}{mB} = \frac{7}{T} = \frac$

Method B: Since $E_s = -2s m B$, $U = \langle E \rangle = -\langle 2s \rangle_m B$ we can re-write M as $M = \langle 2s \rangle_m = -U$

Then use the result we derived in class:

$$U = \chi^2 \frac{\int \ln Z_N}{\int \tau} = \tau^2 N \tanh \frac{mB}{\tau} \left(-\frac{mB}{\tau^2} \right)$$

= - m B N tanh $\frac{mB}{\tau}$ $M = -\frac{U}{BV} = \frac{mN}{V} \tanh \frac{mB}{\tau} = n m \tanh \frac{mB}{\tau}$

c) $\chi = \frac{dM}{dB} = n \text{ m sech}^2(\frac{mB}{\tau}) \cdot \frac{m}{\tau} = \frac{n m^2}{\tau} \frac{1}{\cosh^2 \frac{mB}{\tau}}$ At high tengerature, $\cosh \frac{mB}{\tau} \rightarrow 1$ so $\chi(\tau \rightarrow \infty) = \frac{n m^2}{\tau}$

d) On problem 2 of the previous homework set, we found $M = \frac{Nm^2}{T}$, so $\chi = \frac{dM}{dB} = \frac{Nm^2}{T}$

That agrees with our result in part (c) if we divide by volume.

5.
$$K + K$$
 Ch 3, # 4 Energy fluctuations

Show that $\langle (\Delta E)^2 \rangle = \tau^2 \left(\frac{\partial U}{\partial \tau} \right)_V$

L. H. S.
$$\langle (\Delta E)^2 \rangle = \langle (E - \langle E \rangle)^2 \rangle = \langle E^2 \rangle - 2 \langle E \rangle^2 + \langle E \rangle^2$$

= $\langle E^2 \rangle - \langle E \rangle^2$ we showed this in class

R.H.S.
$$U = \frac{\sum_{s} \varepsilon_{s} e}{\sum_{s} \varepsilon_{s}} = \langle \varepsilon \rangle$$

quotient rule:

$$\frac{\partial U}{\partial \tau} = \frac{1}{Z} \cdot \sum_{s} \varepsilon_{s} e^{-\varepsilon_{s} / \kappa} \left(\frac{\varepsilon_{s}}{\tau^{2}} \right) - \left(\sum_{s} \varepsilon_{s} e^{-\varepsilon_{s} / \kappa} \right) \frac{1}{Z^{2}} \frac{JZ}{J\tau}$$

But we also know that
$$U = \tau^2 = \langle \epsilon \rangle$$

$$\int_{\mathcal{T}} = \frac{1}{2} \left[\left\langle \varepsilon^{2} \right\rangle - \left\langle \varepsilon^{2} \right\rangle \right]$$

So the L.H.S. and R.H.S. match. V