1. Sinyal, sistem, uyartılmış sinyal ve bir sistem modelini çizip tanımlayın. Sf. 2

Sinyal: Bilgi taşıyan herhangi bir fiziksel fenomendir.

Sistem: Sinyallere tepki verir ve yeni sinyaller üretir.

Uyartım sinyalleri: Sistem girişlerinde uygulanır ve yanıt sinyalleri sistem çıkışlarında üretilir.

2. Sinyaller verilip sinyal tipleri belirleme sorulacak. Sf. 4

kuantalama, kodlama Sf.5'deki sinyal grafiklerini çalışın, çizin.

4. y[n]=1.97y[n-1]-[n-2] blok diyagramını çizimine ve ayrık sistem tanımına çalışın benzeri sorulacak

Discrete-time systems can be described by difference (not differential) equations. Let a discrete-time system generate an excitation signal y[n] where n is the number of discrete-time intervals that have elapsed since some beginning time n = 0. Then, for example a simple discrete-time system might be described by

y[n] = 1.97 y[n-1] - y[n-2]

("D" means delay one unit in discrete time.)

2. Chapter 2.pdf

5. Signum, Unit Step Impuls Rampa fonksiyonlarını eşitliklerini yazıp, grafiklerini çizin.

The Signum Function

Hassas Grafik

Yaygın Kullanılan Grafik

The Unit Step Function

$$\mathbf{u}(t) = \begin{cases} 1 & , \ t > 0 \\ 1/2 & , \ t = 0 \\ 0 & , \ t < 0 \end{cases}$$

The Unit Ramp Function

$$\operatorname{ramp}^{t} t^{1} - \begin{cases} t & , & t > 0 \\ 0 & , & t \le 0 \end{cases} - \int_{-\infty}^{t} \mathbf{u}^{t} \mathcal{I}^{1} d\mathcal{I} - t \mathbf{u}^{t} t$$

6. Sf. 5 Kaydırma ve Skalalama Fonksiyonlarını dikdörtgen dalga üstünden çalışın benzeri sorulacak. 3 rect(t+1/4)...

7. Sf.7 Verilen fonksiyonun hangilerinin çift ya da tek olduğunu yazın. Örneklere çalışın benzeri sorulacak.

Odd Functions

$$g(t) = g(-t)$$

$$g(t) = -g(-t)$$

$$g(t)$$

8. Bir sinyalin enerji formülünü yazın. Sf.9

The signal energy of a signal x(t) is

$$E_{\mathbf{x}} = \prod_{-\infty}^{\infty} \mathbf{x}(t) \Big|^2 dt$$

3. Chapter 3.pdf

9. Unit Rampa Funksiyonunu (Unit Ramp Function) matematiksel ifadesini yazıp grafiksel olarak gösteriniz.

$$\operatorname{ramp}[n] = \begin{bmatrix} n & , & n \ge 0 \\ 0 & , & n < 0 \end{bmatrix} = n \operatorname{u}[n] = \begin{bmatrix} n \\ 0 \\ m = -\infty \end{bmatrix} \operatorname{u}[m-1]$$

4. Chapter 4.pdf

10. Bir RC Filtresinin Sıfır-Durum Cevabını (t=0) Zero-State Response verilen Vi ve Vo giriş çıkış sinyallaerine göre çizip açıklayınız.

An RC lowpass filter is a simple electrical system. It is excited by a voltage $v_m(t)$ and responds with a voltage $v_{out}(t)$. It can be viewed or modeled as a single-input, single-output system

$$v_{in}(t) \xrightarrow{\dot{i}(t)} \overset{\dot{R}}{C} \xrightarrow{\dot{v}_{out}} v_{out}(t) \qquad v_{in}(t) \xrightarrow{\dot{v}_{out}} v_{out}(t)$$

11. Time-Invariance (Zamanda Değişmezlik) nedir? Verilen sistemin Time-Invariant olup olmadığını belirleyin sf. 16'daki örnek benzeri sorulacak. Sf. 16

• If an excitation causes a zero-state response and delaying the excitation simply delays the zero-state response by the same amount of time, regardless of the amount of delay, the system is **time** invariant.

Time Invariant System

