CS3230

Tutorial 3

Q2. Given an array A of integers and a number k, give an efficient algorithm to decide if there exist two elements A[i] and A[j], $i \neq j$, such that A[i] + A[j] = k. Give time complexity bound of your algorithm.

Ans: (A) Sort the array (takes $O(n \log n)$ time).

(B) For each j, use binary search to check if the array contains the element k - A[j] (as A[i], with $i \neq i$).

Time complexity: $O(n \log n)$ for step (A) above. $O(\log n)$ for each j in step (B), and thus $O(n \log n)$ for step (B).

Alternatively, a better way to do step (B) is as follows:

Suppose array A[1:n] is sorted.

```
i = 1; j = n.
While i < j do {
   If A[i] + A[j] = k, then output yes.
   Else If A[i] + A[j] < k, then i = i + 1.
   Else If A[i] + A[j] > k, then j = j - 1.
}
```

The above will do step (B) in O(n) time. However, the overall complexity of steps (A) and (B) still remains $O(n \log n)$.

Q3. Consider the following modification of the partition algorithm done in class. Show that it works correctly.

```
Partition(A, i, j)
Assumption: i < j
1. Let m = i + 1, n = j;
2. While m \leq n, do {
   3.
         While A[m] < A[i] and m \le n do \{ m = m + 1 \}
         While A[n] \ge A[i] and n \ge m do \{ n = n - 1 \}
   4.
         If n > m, then swap(A[m],A[n]).
   5.
   }
6. \operatorname{swap}(A[i], A[n])
7. Return n.
```

End

Ans:

First note that m is monotonically non-decreasing and n is monotonically non-increasing throughout the algorithm.

Invariants of the algorithm during the while loop (steps 2–5)

I1:
$$A[i+1], \ldots, A[m-1]$$
, are $A[i]$
I2: $A[n+1], \ldots, A[j]$, are $A[i]$

Clearly, the invariants hold at the beginning of the first iteration of the while loop at step 2, as at that time m = i + 1 and n = j.

Furthermore, whenever value of m or n is changed in steps 3 and 4, the invariants are maintained.

Also,

While loop at step 3, increases m until $A[m] \ge A[i]$ or m becomes > n. Thus, at the end of the while loop at step 3, either m > n, or $A[m] \ge A[i]$.

Similarly, while loop at step 4, decreases n until A[n] < A[i], or n < m. Thus, at the end of the while loop at step 3, either m > n, or A[n] < A[i].

Thus, at the end of any iteration of the while loop (of step 2), either m > n, or (A[m] < A[i]) and $A[n] \ge A[i]$) — in the later case, in the next iteration of the while loop of step 2, m will increase and n will decrease.

Thus, m increases in value after very iteration of the while loop in step 2 (except maybe for the first iteration), and n decreases in value after very iteration of the while loop in step 2 (except maybe for the first iteration).

It follows that eventually, m > n and the while loop at step 2 will terminate. Using the invariants, we immediately have that at this point, m = n + 1, $A[i + 1], \ldots, A[n]$ are A[i] and $A[m], \ldots, A[j]$ are A[i].

Thus, step 6 correctly places the pivot value at A[n], and at the end, $A[i], \ldots, A[n-1]$ are smaller than A[n], and $A[n+1], \ldots, A[j]$ are $\geq A[n]$, as needed.

Q4. Given as input a sorted array A, containing n elements, and two numbers ℓ and u (where $\ell \leq u$). Give an algorithm to find how many numbers are there in the array which are between ℓ and u (both inclusive). That is, find the number of x in the array A such that $\ell \leq x \leq u$.

What is the time complexity of your algorithm.

Ans: (A) Suppose the array indices are from 1 to n.

- (B) Use binary search to find least i such that $A[i] \ge \ell$ (if none, then we take i = n + 1).
- (C) Use binary search to find largest j such that $A[j] \leq u$ (if none, then we take j to be 0).
- (D) Output j i + 1.

Complexity of the algorithm: Steps (B) and (C) take $O(\log n)$ time. Rest of the operations take constant time. So the algorithm runs in time $O(\log n)$.

Q5. Suppose we are given an array of n integers between 1 to m (both inclusive). Preprocess the array such that one can answer the following query in constant time:

How many numbers are there in the array which are between ℓ and u (both inclusive), where $1 \le \ell \le u \le m$.

What is the time complexity of your preprocessing algorithm? Try to make it linear in m and n.

Ans: (A) Use the idea of counting sort to obtain $C[1], C[2], \ldots$, where C[i] gives number of elements in the array which are $\leq i$.

(B) Then, the output is $C[u] - C[\ell - 1]$, where we take C[0] = 0. Complexity is: O(m + n)