Package 'wheatmap'

May 8, 2016

•
Type Package
Title WHeatmap
Version 0.1.0
Author Wanding Zhou
Maintainer Wanding Zhou <zhouwanding@gmail.com></zhouwanding@gmail.com>
Description Plot heatmap in a sequential manner.
License MIT license
LazyData TRUE
RoxygenNote 5.0.1

R topics documented:

Beneath
ooth.cluster
CalcTextBounding
CalcTextBounding.WDendrogram
CalcTextBounding.WHeatmap
CMPar
ColorMap
column.cluster
FromAffine
grid.dendrogram
LeftOf
y
MapToContinuousColors
MapToDiscreteColors
olot.WHeatmap
orint.WDendrogram
print.WGroup
orint.WHeatmap
RightOf
ow.cluster
ScaleGroup

2 Beneath

	text.width	13
	ToAffine	13
	TopOf	14
	WColorBarH	14
	WColorBarV	15
	WColumnBind	15
	WDendrogram	16
	WDim	16
	WGroup	17
	WHeatmap	17
	WLegendH	18
	WLegendV	19
	WRowBind	19
	[.WGroup	20
Index		21

Beneath Beneath

Description

Generate dimension beneath another object

Usage

```
Beneath(x = NULL, height = NULL, pad = 0.01, min.ratio = 0.02,
    h.aln = NULL, v.scale = NULL, v.scale.proportional = FALSE)
```

Arguments

X	an object with dimension
height	the height of the new object (when NULL set proportional to the data)
pad	padding between the target and current
min.ratio	minimum ratio of dimensions when auto-scale
h.aln	object for horizontal alignment (when NULL, set to x)
v.scale	object for vertical scaling (when NULL, set to x)
v.scale.proport	tional
	when v.scale is provided, whether to make proportional to data

Value

a dimension generator beneath x

both.cluster 3

both.cluster

row- and column-cluster a matrix

Description

```
row- and column-cluster a matrix
```

Usage

```
both.cluster(mat, hc.method = "ward.D2")
```

Arguments

hc.method

method to use in hclust

at

input matrix

Value

a list of clustered row, column and matrix

CalcTextBounding

Calculate Text Bounding

Description

Calculate bounding box including texts.

Usage

```
CalcTextBounding(x, ...)
```

Arguments

Х

object

Details

W.R.T lower left corner of the view port in the unit of points

 ${\tt CalcTextBounding.WDendrogram}$

Calculate Text Ranges

Description

Calculate Text Ranges

Usage

```
## S3 method for class 'WDendrogram'
CalcTextBounding(dd, group)
```

CalcTextBounding.WHeatmap

Calculate Texting Bounding for WHeatmap

Description

Calculate Texting Bounding for WHeatmap

Usage

```
## S3 method for class 'WHeatmap'
CalcTextBounding(hm, group)
```

Arguments

hm

object of class WHeatmap

Value

an object of class WDim in coordinate points

CMPar 5

CMPar

Color Map Parameters

Description

Create color map parameters

Usage

```
CMPar(dmin = NULL, dmax = NULL, brewer.name = "Accent", brewer.n = 3,
  colorspace.name = "rainbow_hcl", colorspace.n = 2, cmap = "jet",
  stop.points = NULL, grey.scale = FALSE)
```

Arguments

dmin minimum for continuous color map
dmax maximum for continuous color map
brewer.name palette name for RColorbrewer

brewer.n number of stop points in RColorbrewer for continuous color map

colorspace.name

colorspace name

colorspace.n number of stops in colorspace palettes

cmap customized colormap name

stop.points custome stop points

grey.scale whether to use grey scale
cm existing color maps

Value

an object of class CMPar

ColorMap

Constructor for ColoMap object

Description

Create color maps

Usage

```
ColorMap(continuous = TRUE, colors = NULL, dmin = NULL, dmax = NULL,
    scaler = NULL, mapper = NULL)
```

6 column.cluster

Arguments

colors colors for each data point

dmin miminum in continuous color map

dmax maximum in continuous color map

scaler scaler function from data range to 0-1

mapper function that maps data to color discrete whether colormap is discrete

Value

an object of class ColorMap

column.cluster

column cluster a matrix

Description

column cluster a matrix

Usage

```
column.cluster(mat, hc.method = "ward.D2")
```

Arguments

mat input matrix

hc.method method to use in hclust

Value

a list of clustered row, column and matrix

From Affine 7

E	ror	nAf	·fi	nn
	ιи	пат		116

Convert from affine coordinates

Description

Convert from affine coordinates

Usage

```
FromAffine(dm.affine, dm.sys)
```

Arguments

dm. sys the affine system

obj object on affine coordinate

Value

object on absolute coordinate

.dendro	

Draw dendrogram under grid system

Description

The dendrogram can be renderred. A viewport is created which contains the dendrogram.

Usage

```
grid.dendrogram(dend, facing = c("bottom", "top", "left", "right"),
   max_height = NULL, order = c("normal", "reverse"), ...)
```

Arguments

dend a stats::dendrogram object.
facing facing of the dendrogram.

max_height maximum height of the dendrogram.

Details

-order should leaves of dendrogram be put in the normal order (1, ..., n) or reverse order (n, ..., 1)? -... pass to 'grid::viewport' which contains the dendrogram.

This function only plots the dendrogram without adding labels. The leaves of the dendrogram locates at unit(c(0.5, 1.5, ...(n-0.5))/n, "npc").

8 ly

Source

adapted from the ComplexHeatmap package authored by Zuguang Gu <z.gu@dkfz.de>

LeftOf LeftOf

Description

Generate dimension to the left of another object

Usage

```
LeftOf(x = NULL, width = NULL, pad = 0.01, min.ratio = 0.02,
v.aln = NULL, h.scale = NULL, h.scale.proportional = FALSE)
```

Arguments

x an object with dimension

width the width of the new object (when NULL, set proportional to data)

padding between the target and current

min.ratio minimum ratio of dimensions when auto-scale

v.aln object for vertical alignment (when NULL, set to x) h.scale object for horizontal scaling (when NULL, set to x)

h.scale.proportional

when h.scale is provided, whether to make proportional to data

Value

a dimension to the left of x

ly show layout

Description

show layout

Usage

ly(x)

 ${\tt MapToContinuousColors} \quad map \; data \; to \; continuous \; color$

Description

map data to continuous color

Usage

```
MapToContinuousColors(data, cmp = CMPar(), given.cm = NULL)
```

Arguments

data numeric vector

cmp an color map parameter object of class CMPar

Value

an object of ColorMap

MapToDiscreteColors map data to discrete color

Description

map data to discrete color

Usage

```
MapToDiscreteColors(data, cmp = CMPar(), given.cm = NULL)
```

Arguments

data numeric vector

cmp an color map parameter object of class CMPar

Value

an object of ColorMap

10 print.WGroup

plot.WHeatmap

plot WHeatmap

Description

```
plot WHeatmap
```

Usage

```
## S3 method for class 'WHeatmap'
plot(hm, cex = 1, layout.only = FALSE,
    stand.alone = TRUE)
```

Arguments

hm

heatmap to plot

print.WDendrogram

WPlot

Description

WPlot

Usage

```
## S3 method for class 'WDendrogram'
print(dend, stand.alone = TRUE, layout.only = FALSE,
   cex = 1)
```

print.WGroup

Draw WGroup

Description

Draw WGroup

Usage

```
## S3 method for class 'WGroup'
print(group, mar = c(0.03, 0.03, 0.03, 0.03),
   stand.alone = TRUE, cex = 1, layout.only = FALSE)
```

Arguments

group plot to display cex for scale fonts

print.WHeatmap 11

print.WHeatmap plot WHeatmap

Description

plot WHeatmap

Usage

```
## S3 method for class 'WHeatmap'
print(hm, cex = 1, layout.only = FALSE,
    stand.alone = TRUE)
```

Arguments

hm an object of class WHeatmap

Value

NULL

RightOf

RightOf

Description

Generate dimension to the right of another object

Usage

```
RightOf(x = NULL, width = NULL, pad = 0.01, min.ratio = 0.02,
v.aln = NULL, h.scale = NULL, h.scale.proportional = FALSE)
```

Arguments

x an object with dimension

width the width of the new object (when NULL, set proportional to data)

pad padding between the target and current

min.ratio minimum ratio of dimensions when auto-scale v.aln object for vertical alignment (when NULL, set to x) h.scale object for horizontal scaling (when NULL, set to x)

h.scale.proportional

when h.scale is provided, whether to make proportional to data

Value

```
a dimension to the right of x
```

ScaleGroup ScaleGroup

row.cluster

row cluster a matrix

Description

row cluster a matrix

Usage

```
row.cluster(mat, hc.method = "ward.D2")
```

Arguments

mat input matrix

hc.method method to use in hclust

Value

a list of clustered row, column and matrix

ScaleGroup

Scale group

Description

Scale group to incorporate text on margins

Usage

```
ScaleGroup(group.obj, mar = c(0.03, 0.03, 0.03, 0.03))
```

Arguments

group.obj

group object that needs to be scaled

Value

scaled group obj

text.width

text.width

font width and scale to specified font size

Description

font width and scale to specified font size

Usage

```
## S3 method for class 'width'
text(txt, fontsize = NULL)
```

ToAffine

To affine coordinates

Description

To affine coordinates

Usage

```
ToAffine(dm, dm.sys)
```

Arguments

dm absolute coordinate

dm. sys the affine system

Value

dm.affine on the affine coordiante

14 WColorBarH

TopOf Top of

Description

Generate dimension top of another object

Usage

```
TopOf(x = NULL, height = NULL, pad = 0.01, min.ratio = 0.02,
    h.aln = NULL, v.scale = NULL, v.scale.proportional = FALSE)
```

Arguments

x an object with dimension

height the height of the new object (when NULL, set to proportional to data)

padding between the target and current

min.ratio minimum ratio of dimensions when auto-scale

h.aln object for horizontal alignment (when NULL, set to x)

v.scale object for vertical scaling (when NULL, set to x)

v.scale.proportional

when v.scale is provided, whether to make proportional to data

Value

a dimension generator on top of x

WColorBarH

WColorBarH

Description

a horizontal color bar

Usage

```
WColorBarH(data, ...)
```

Arguments

data numeric vector

Value

an object of class WColorBarH

WColorBarV 15

WColorBarV

WColorBarV

Description

a vertical color bar

Usage

```
WColorBarV(data, ...)
```

Arguments

data

numeric vector

Value

an object of class WColorBarV

WColumnBind

column bind non-overlapping objects

Description

column bind non-overlapping objects

Usage

```
WColumnBind(..., nr = NULL, nc = NULL)
```

Arguments

plotting objectsnr number of rowsnc number of columns

Value

an object of class WDim

16 WDim

WDend	lrogram
wbend	irograiii

WDendrogram class

Description

WDendrogram class

Usage

```
WDendrogram(clust = NULL, dm = WDim(0, 0, 1, 1), name = "",
facing = c("bottom", "top", "left", "right"))
```

Arguments

clust hclust object dm plotting dimension

name name of the dendrogram plot facing direction of the dendrogram plot

Value

an object of class WDendrogram

WDim

class WDim

Description

class WDim

Usage

```
WDim(left = 0, bottom = 0, width = 1, height = 1, nr = 1, nc = 1,
column.split = NULL, row.split = NULL)
```

Arguments

left left coordinate
bottom bottom coordinate

width width height

column.split a list of WDim objects for column split row.split a list of WDim objects for row split

WGroup 17

WGroup

Create a WGroup

Description

Children must be registered already

Usage

```
WGroup(..., name = "", group.dm = WDim(), affine = FALSE, nr = NULL,
    nc = NULL)
```

Arguments

affine member is on affine coordinate

nr number of rows
nc number of columns

dm dimension

Value

an object of class WGroup

WHeatmap

WHeatmap object

Description

Create a heatmap

Usage

```
WHeatmap(data = NULL, dm = NULL, name = "", continuous = NULL,
  cmp = CMPar(), cm = NULL, parent = NULL, title = NULL,
  title.fontsize = 12, title.pad = 0.005, title.side = "1",
  xticklabels = NULL, xticklabels.n = NULL, xticklabel.side = "b",
  xticklabel.fontsize = 12, xticklabel.rotat = 90, xticklabel.pad = 0.005,
  yticklabels = NULL, yticklabels.n = NULL, yticklabel.side = "1",
  yticklabel.fontsize = 12, yticklabel.pad = 0.005, alpha = 1,
  sub.name = NULL, gp = NULL)
```

WLegendH

Arguments

data data matrix

dm plotting dimension c(left, bottom, width, height)

name of the plot

continuous whether the data is on continuous scale

cmp an object of CMPar class

Value

one or a list of heatmaps (depends on whether dimension is split)

WLegendH WLegendH

Description

a horizontal legend

Usage

```
WLegendH(x = NULL, dm = NULL, name = "", n.stops = 20, n.text = 5,
label.fontsize = 12, width = 0.1, height = 0.1, ...)
```

Arguments

x a name or a plotting object, if NULL use the last plotting object

dm position

name of the plotted legend

n.stops number of stops in computing continuous legend

n.text number of text labels in continuous legend

label.fontsize label font size

width width of each unit in plotted legend height height of each unit in plotted legend

Value

an object of class WLegendH

Examples

```
WHeatmap(matrix(1:4,nrow=2))+WLegendH(NULL, Beneath())
```

WLegendV 19

WLegendV

WLegendV

Description

a vertical legend

Usage

```
WLegendV(x = NULL, dm = NULL, name = "", n.stops = 20, n.text = 5,
label.fontsize = 12, width = 0.1, height = 0.1, ...)
```

Arguments

x a name or a plotting object, if NULL use the last plotting object

dm position

name name of the plotted legend

n.stops number of stops in computing continuous legend

n.text number of text labels in continuous legend

label.fontsize label font size

width width of each unit in plotted legend height height of each unit in plotted legend

Value

an object of class WLegendV

Examples

```
WHeatmap(matrix(1:4,nrow=2))+WLegendV(NULL, RightOf())
```

WRowBind

row bind non-overlapping objects

Description

row bind non-overlapping objects

Usage

```
WRowBind(..., nr = NULL, nc = NULL)
```

20 [.WGroup

Arguments

nr plotting objects
nr number of rows
nc number of columns

Value

an object of class WDim

[.WGroup

subset WGroup

Description

```
subset WGroup
```

Usage

```
## S3 method for class 'WGroup' x[i]
```

Arguments

i integer indexing element

Index

$[.{\tt WGroup},20$
Beneath, 2 both.cluster, 3
CalcTextBounding, 3 CalcTextBounding.WDendrogram, 4 CalcTextBounding.WHeatmap, 4 CMPar, 5 ColorMap, 5 column.cluster, 6
FromAffine, 7
grid.dendrogram,7
LeftOf, 8 ly, 8
MapToContinuousColors, 9 MapToDiscreteColors, 9
plot.WHeatmap, 10 print.WDendrogram, 10 print.WGroup, 10 print.WHeatmap, 11
RightOf, 11 row.cluster, 12
ScaleGroup, 12
text.width, 13 ToAffine, 13 TopOf, 14
WColorBarH, 14 WColorBarV, 15 WColumnBind, 15 WDendrogram, 16 WDim, 16 WGroup, 17

WHeatmap, 17 WLegendH, 18 WLegendV, 19 WRowBind, 19