TEOREMAS DE ESPACIO VECTORIAL

1.-Sea V un conjunto no vacio y se $(k,+,\bullet)$ un campo. Se dice que V es un espacio vectorial sobre k si están definidas dos leyes de composición, llamadas adición y multiplicación por una escalar, tales que:

i)La adicion asigna a cada pareja ordenada $(\overline{u},\overline{v})$ de elementos de V un único elemento $\overline{u}+\overline{v}\in V$, Ilamado la suma de \overline{u} y \overline{v}

ii)
$$\forall \overline{u}, \overline{v}, \overline{w} \in V : \overline{u} + (\overline{v} + \overline{w}) = (\overline{u} + \overline{v}) + \overline{w}$$

iii)
$$\exists \ \overline{0} \in V \text{ tal que } \overline{0} + \overline{v} = \overline{v}, \forall \ \overline{v} \in v$$

iv)
$$\forall \ \overline{v} \in V - \overline{v} \in V \ \text{tal que } -\overline{v} + \overline{v} = 0$$

v)
$$\forall \overline{u}, \overline{v} \in V : \overline{u} + \overline{v} = \overline{v} + \overline{u}$$

vi) La multiplicación por una escalar asigna a cada pareja asignada (α, \overline{v}) de elementos $\alpha \in k$ y $\overline{v} \in V$ un único elemento $\alpha \overline{v} \in V$, llamado el producto de α por \overline{v}

vii)
$$\forall \alpha \in K : \overline{v} \in V : \alpha(\overline{u} + \overline{v}) = \alpha \overline{u} + \alpha \overline{v}$$

viii)
$$\forall \alpha$$
, $\beta \in K$; $\overline{v} \in V : (\alpha + \beta)\overline{v} = \alpha \overline{v} + \beta \overline{v}$

ix)
$$\forall \alpha$$
, $\beta \in K$; $\overline{v} \in V$: $\alpha(\beta \overline{v}) = (\alpha \beta) \overline{v}$

x) Si 1 es la unidad de K:
$$1 \overline{v} = \overline{v}, \forall \overline{v} \in V$$

A los elementos de V se les llama vectores y a los de K escalares.

2.- Si V es un espacio vectorial sobre K, entonces

i)
$$\forall \overline{u}, \overline{v}, \overline{w} \in V : \overline{u} + \overline{v} = \overline{u} + \overline{w} \Rightarrow \overline{v} = \overline{w}$$

ii)El vector $\overline{0}$ es único y es tal que $\overline{v} + \overline{0} = \overline{v}, \forall \overline{v} \in V$

iii)El vector
$$-\overline{v}$$
 es único y es tal que $\overline{v}+(-\overline{v})=\overline{0}$

iv)La ecuación $\overline{u} + \overline{x} = \overline{v}$ tiene solución única en V.

$$\forall v \ \overline{v} \in V : \quad -(-\overline{v}) = \overline{v}$$

vi)
$$\forall \overline{u}, \overline{v} \in V : -(\overline{u} + \overline{v}) = -\overline{u} + (-\overline{v})$$

3.- Sea V un espacio vectorial sobre K:

i)
$$\forall \alpha \in K : \alpha \overline{0} = \overline{0}$$

ESPACIOS VECTORIALES

ii) $\forall \overline{v} \in V : 0\overline{v} = \overline{0}$, donde 0 e el cero de K

iii)
$$\forall \alpha \in K, \overline{v} \in V : (-\alpha)\overline{v} = -(\alpha \overline{v}) = \alpha(-\overline{v})$$

iv)
$$\forall \alpha \in K, \overline{v} \in V : \alpha \overline{v} = \overline{0} \Rightarrow \alpha = 0 \ o \ \overline{v} = \overline{0}$$

v)
$$\forall \alpha \in K$$
, \overline{u} , $\overline{v} \in V$: $\alpha \overline{u} = \alpha \overline{v}$ $y \alpha \neq 0 \Rightarrow \overline{u} = \overline{v}$

vi)
$$\forall \alpha \in K, \overline{u}, \overline{v} \in V : \alpha \overline{v} = \beta \overline{v}, v \overline{v} \neq 0 \Rightarrow \alpha = \beta$$

4.- Si V es un espacio vectorial sobre K, entonces $\overline{u} - \overline{v} = \overline{u} + (-\overline{v})$; $\forall \overline{u}, \overline{v} \in V$

Al vector $\overline{u} - \overline{v}$ se le llama la diferencia \overline{u} menos \overline{v}

- 5.- Sea V un espacio vectorial sobre K y sea S un subconjunto de V. S es un subespacio de V si es un espacio vectorial sobre K respecto a la adición y la multiplicación por un escalar definidas en V.
- 6.- Sea V un espacio vectorial sobre K y sea S un sunconjunto de V.

S es un subespacio de V si y solo si

i)
$$\forall \overline{u}$$
, $\overline{v} \in S : \overline{u} + \overline{v} \in S$

ii)
$$\forall \alpha \in K, \overline{v} \in S : \alpha \overline{v} \in S$$

7.- Un vector \overline{w} es una combinación lineal de los vectores $\overline{v}_1,\overline{v}_2,...,\overline{v}_n$ si puede ser expresado en la forma $\overline{w}=\alpha_1\overline{v}_1+\alpha_2\overline{v}_2+...+\alpha_n\overline{v}_n$

Donde $\alpha_1, \alpha_2, ..., \alpha_n$ son escalares.

- 8.- Sea $S=\{\overline{v}_1,\overline{v}_2,...,\overline{v}_n\}$ un conjunto no vacio de vectores de un espacio vectorial V. El conjunto de todas las combinaciones lineales de los vectores S, denotado con L(S),es un subespacio de V
- 9.- Sea $S = \{\overline{v}_1, \overline{v}_2, ..., \overline{v}_n\}$ un conjunto de vectores:
 - i) S es linealmente dependiente si existen escalares $\alpha_1,\alpha_2,...,\alpha_n$, no todos iguales a cero, tales que $\alpha_1\overline{v}_1+\alpha_2\overline{v}_2+...+\alpha_n\overline{v}_n=\overline{0}$
 - ii) S es linealmente independiente si la igualdad $\alpha_1\overline{v}_1+\alpha_2\overline{v}_2+...+\alpha_n\overline{v}_n=\overline{0}$ solo se satisface con $\alpha_1=\alpha_2=...=\alpha_n=0$
- 10.- Todo conjunto que contiene al vector $\overline{0}$ es linealmente dependiente
- 11.-

Si S es un conjunto linealmente independiente entonces cualquier subconjunto de S es linealmente independiente.

- 12.- Sea V un espacio vectorial sobre K, y sea $G = \{\overline{v}_1, \overline{v}_2, ..., \overline{v}_m\}$, un conjunto de vectores de V. Se dice que G es un generador de V si para todo vector $\overline{x} \in V$ existen escalares $\alpha_1, \alpha_2, ..., \alpha_m$ tales que $\overline{x} = \alpha_1 \overline{v}_1 + \alpha_2 \overline{v}_2 + ... + \alpha_m \overline{v}_m$
- 13.- Sea V un espacio vectorial sobre K y sea G un subconjunto de V, G es un generador de V si y solo si V = L(G)
- 14.- Se llama base de espacio vectorial V a un conjunto generador de V que es linealmente independiente.
- 15.- Sea V un espacio vectorial sobre K. Si $B = \{\overline{v}_1, \overline{v}_2, ..., \overline{v}_n\}$ es una base de V, entonces cualquier conjunto de vectores de V con más de n elementos es linealmente dependiente.
- 16.- Sea V un espacio vectorial sobre K. Si $B = \{\overline{v}_1, \overline{v}_2, ..., \overline{v}_n\}$ es una base de V, entonces cualquier otra base de dicho espacio está formada por n vectores.
- 17.- Sea V un espacio vectorial sobre K. Si $B = \{\overline{v}_1, \overline{v}_2, ..., \overline{v}_n\}$ es una base de V se dice que V es de dimensión n, lo cual se denota con dim V = n

En particular, si
$$V = \left\{\overline{0}\right\}$$
 , dim V =0

- 18.- Si V es un espacio vectorial de dimensión n, cualquier conjunto linealmente independiente formado por n vectores de V es una base de dicho espacio.
- 19.- Si V es un espacio vectorial de dimensión n y W es un subespacio de V, entonces $\dim W \leq n$

En particular, si $\dim W = n$ entonces W = V

20.- Sea $B=\{\overline{v}_1,\overline{v}_2,...,\overline{v}_n\}$ una base de un espacio vectorial V sobre K , y sea $\,\overline{x}\in\,V$. Si

$$\overline{x} = \alpha_1 \overline{v}_1 + \alpha_2 \overline{v}_2 + \dots + \alpha_n \overline{v}_n$$

los escalares $\alpha_1,\alpha_2,...,\alpha_n$ se llaman coordenadas de \overline{x} en la base B; y el vector de K^n

$$(\overline{x})_B = (\alpha_1, \alpha_2, ..., \alpha_n)^T$$

Se llama vector de coordenadas de \overline{x} en la base B.

ESPACIOS VECTORIALES

21.- Sea $B=\left\{\overline{v_1},\overline{v_2},...,\overline{v_n}\right\}$ una base de un espacio vectorial V sobre K . Para cualquier $\overline{x}\in V$ el vector $(\overline{x})_B$ es único.

- 22.- Sea $A=\left[a_{ij}\right]$ una matriz de mxn con elementos en un campo K, y sea $\overline{r}_i=(a_{i1},a_{i2},...,a_{in})$ el i-ésimo renglón de A. Si $A_r=(\overline{r}_2\,,\,\overline{r}_2\,,...,\,\overline{r}_m)$, el conjunto $L(A_r)$ se llama espacio renglón de A.
- 23.- Dos matrices A y B son equivalentes (por renglones), lo cual se denota mediante $A \sim B$, si alguna de ellas puede obtenerse a partir de la otra mediante una sucesión finita de transformaciones elementales (por renglón).
- 24.- Dos matrices equivalentes tienen el mismo espacio renglón
- 25.- Sea $A=\left[a_{ij}\right]$ una matriz de mxn con elementos en un campo K, y sea $\overline{c}_i=\left(a_{1i},a_{2i},...,a_{mi}\right)^T$ la i-ésima columna de A. Si $A_c=\left\{\overline{c}_1,\overline{c}_2,...,\overline{c}_n\right\}$, el conjunto de $L(A_c)$ se llama espacio columna de A.
- 26.- Para cualquier matriz A se tiene que $\dim L(A_r) = \dim L(A_c)$
- 27.- Se llama rango de una matriz A , y se denota con R(A), al número $R(A)=\dim L(A_c)=\dim L(A_c)$
- 28.- Si A es una matriz de nxn, los siguientes enunciados son equivalentes
- i)R(A)=n
- ii) $A \sim I_n$
- iii) $\exists A^{-1}$
- iv) dim $A \neq 0$
- v) Los renglones de A son linealmente independientes
- vi) Las columnas de A son linealmente independientes
- 29.- El sistema de ecuaciones lineales $A\overline{x} = \overline{b}$ es compatible si y solo si $R(A) = R(A, \overline{b})$
- 30.- Sea $A\overline{x}=\overline{b}$ un sistema compatible de m ecuaciones lineales con n incógnitas: si R(A)=n el sistema es determinado y si R(A) < n el sistema es indeterminado

- 31.- Sea F el conjunto de todas las funciones reales de variable real, y sean f, $g \in F$. Se dice que f y g son iguales, lo cual se denota mediante f = g, cuando f(x) = g(x), $\forall x \in R$
- 32.- Sea F el conjunto de funciones reales de variable real, y sean $f, g \in F$; $\alpha \in R$:
 - i) La suma de f y g es una función f+g definida por $(f+g)(x)=f(x)+g(x), \forall x \in R$ ii)El producto de α y f es una función αf definida por $(\alpha f)=\alpha \bullet f(x), \forall x \in R$
- 33.- Sea $\{f_1,f_2,...,f_n\}$ un conjunto de n funciones reales de variable real. Si existen n valores $x_1,x_2,...,x_n\in R$ tales que el sistema

Solo admite la solución trivial, entonces el conjunto de funciones es linealmente independiente

34.- Sea $\{f_1,f_2,..,f_n\}$ un conjunto de n funciones reales de variable real, derivables al menos n-1 veces en el intervalo (a,b) y sea

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f_1(x) & f_2(x) & \dots & f_n(x) \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}$$

Si W(x_0) $\neq 0$ para algún $x_0 \in (a,b)$, entonces el conjunto de funciones es linealmente independiente en dicho intervalo.