

Lecture 14 Class Project Introduction

Xuan 'Silvia' Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese461/

Final Class Project

Goal: <u>learn by doing</u>

- account for 35% of grade
- work in teams of 3
- choose from two project topics
- optimize design to meet/exceed performance goals
- a custom designed IC chip as the end result

Evaluation

- completion of the design flow
- performance achieved
- techniques applied
- presentation
- report

Evaluation

Completion of the design flow

- functional simulation with behavior Verilog
- logic synthesis
- place and route
- verification simulation with post-P&R netlist

Performance achieved

- meet basic specification of clock frequency and power budget
- if exceed basic requirement, bonus points will be allocated according to performance ranking

Evaluation

Techniques applied

- design optimization techniques
- e.g. pipelining, parallel units, memory buffer

Presentation

- last week of the class
- every team member has to participate

Report

- submit a single report as a team
- clearly specify individual contribution

Choose Between Two Topics

- Optical flow accelerator
 - motion estimation algorithm
 - inspired by biology
 - used in robotic application
- Bitcoin hashing accelerator
 - a novel cryptocurrency
 - use proof-of-work to verify transactions

Optical Flow

• Insect use optical flow for navigation

Saccade away from obstacles

Motion Estimation

• Find the motion vector(u,v) between two frames

Problem Definition

 How to find the pixel motion from I(x,y,t) to I(x,y,t+1)?

Lucas-Kanade Method

Assumptions

- brightness constancy: a point in I(x,y,t) is same as I(x',y',t+1)
- small motion: points do not move too far
- small region moving together: approximately constant moving within a neighborhood of the point p

Lucas-Kanade Method

Brightness constancy

$$I(x,y,t) = I(x+\Delta x,y+\Delta y,t+\Delta t)$$

• Small motion: (Taylor series expansion)

$$I(x+\Delta x,y+\Delta y,t+\Delta t)=I(x,y,t)+rac{\partial I}{\partial x}\Delta x+rac{\partial I}{\partial y}\Delta y+rac{\partial I}{\partial t}\Delta t$$
 +H.O.T.

$$\frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t = 0$$

$$\frac{\partial I}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial I}{\partial y} \frac{\Delta y}{\Delta t} + \frac{\partial I}{\partial t} \frac{\Delta t}{\Delta t} = 0$$

$$\frac{\partial I}{\partial x} V_x + \frac{\partial I}{\partial y} V_y + \frac{\partial I}{\partial t} = 0$$

$$I_x V_x + I_y V_y = -I_t$$

Windowing in Optical Flow

- Nearby region moving together
 - equation can be assumed to hold for all pixels within a window centered at p

- q₁, q₂,, q_n are the pixels inside the window -> moving together

Errors in Lucas-Kanade

- Large motion violates assumption
 - reduce the resolution

Moving can be limited in one pixel change in the lowest resolution image

Bitcoin

A cryptocurrency based on distributed consensus

How Does Bitcoin Work?

Blockchain

 A distributed public ledger maintained by a peerto-peer network

Cryptography Used in Transaction

Address generation

- Digital signature
 - elliptic curve digital signature algorithm

Bitcoin Mining

- Solve a "very hard" crypto puzzle
- Blockchain data structure

- Double SHA-256 hash
 - find a nounce that results in a hash with certain number of preceding zeros

SHA-256

- Secure Hash Algorithm (SHA)
 - hash function designed by NSA
 - SHA-256: run 64 rounds of iteration

Proof-of-Work Using Double SHA-256

Proof-of-Work Using Double SHA-256

Field	Size	Description
version	32 bits	Version of the Bitcoin software version creating this block
hashPrevBlock	256 bits	Hash of the previous block considered as valid in the Bitcoin network (most of the time there is only one candidate)
hashMerkleRoot	256 bits	Here a set of recent yet unconfirmed Bitcoin transactions are hashed into one single value on 256 bits = the Merkle Root
timestamp	32 bits	Current timestamp in seconds since 1970-01-01 00:00 UTC
target	32 bits	The current Target represented in a compact 32 bit format
nonce	32 bits	Nonce chosen by the miner, typically goes from 0x00000000 to 0xFFFFFFF until the CISO puzzle is solved
padding + <u>len</u>	384 bits	standard fixed SHA256 padding on 384 bits for Len=640 bits

Timeline

- Week 8
 - introduction
- Week 9
 - release specification
 - form teams
 - select topic
- Week 9-11
 - develop and debug behavioral code
- Week 12-14
 - design flow and optimization
- Week 15
 - presentation
 - final report due on 12/12 (Monday)

Assignment

- Form a 3-member team
- Pick the topic of your choice
 - optical flow vs. bitcoin hashing
- Email me (cc the TA) your decision as a team
 - due 10/24 (Monday) by 5pm

Reference

- https://en.wikipedia.org/wiki/Lucas%E2%80%93K anade_method
- https://www.mathworks.com/help/vision/ref/o
 pticalflowlk-class.html
- http://docs.opencv.org/trunk/d7/d8b/tutorial_ py_lucas_kanade.html
- http://www.righto.com/2014/02/bitcoins-hardway-using-raw-bitcoin.html
- http://www.righto.com/2014/02/bitcoinmining-hard-way-algorithms.html
- https://www.researchgate.net/figure/25814452
 8_fig8_Fig-9-Key-in-the-first-16-rounds-out-of 64-in-each-computation-and-their-provenance

Questions?

Comments?

Discussion?