

Computational and Theoretical Study of Disordered Systems

Xiang Cheng

Department of Physics, Emory University

PhD Dissertation Defense 09/23/2016

Outline

- Introduction of Disordered Systems
- Jamming in Hierarchical Networks (HNs)
- Antiferromagnetic Ising model in HNs
- Aging in Random Field Ising Model
- Summary

Introduction

- Disordered material is the majority
- Numerous categories:
 - Glass, polymer, granular materials, biological tissues, etc.

- More unclear questions
- Focus on theoretical models
 - Lattice glass model
 - Antiferromagnetic Ising model
 - Random Field Ising model

Outline

- Introduction of Disordered Systems
- Jamming in Hierarchical Networks (HNs)
- Antiferromagnetic Ising model in HNs
- Aging in Random Field Ising Model
- Summary

Jamming transition

Jammed states are common.

- Characteristics
 - High packing density (not highest)
 - Out of equilibrium
 - Extremely slow relaxation
- A challenge to understand
 - What causes the extremely slow relaxation?
 - Equilibrium state?
 - Equilibrium phase transition?

Biroli-Mezard Model (BM)

<u>Structural disorder</u> → <u>Complex Dynamics</u>

Biroli-Mezard Model (BM)

<u>Structural disorder</u> → <u>Complex Dynamics</u>

- Each lattice site has $n_i = 0$, 1 particle with μ
- Constraint: an occupied site can have at most l neighbors (l = 0,1,2...)

Biroli-Mezard Model (BM)

<u>Structural disorder</u> → <u>Complex Dynamics</u>

- Each lattice site has $n_i = 0$, 1 particle with μ
- Constraint: an occupied site can have at most l neighbors (l = 0,1,2...)

Example: l = 0

Biroli-Mezard Model (BM)

<u>Structural disorder</u> → <u>Complex Dynamics</u>

- Each lattice site has $n_i = 0$, 1 particle with μ
- Constraint: an occupied site can have at most l neighbors (l = 0,1,2...)

Example: l = 0

$$\Xi = \sum_{n=0}^{n_{\text{max}}} \mathbf{g}_n \exp(\mathbf{n}\beta\mu)$$

- where $n_{\rm max}$ is the largest number of particles within constraint
- g_n is the density of state with n particles

Biroli-Mezard Model (BM)

<u>Structural disorder</u> → <u>Complex Dynamics</u>

- Each lattice site has $n_i = 0$, 1 particle with μ
- Constraint: an occupied site can have at most l neighbors (l = 0,1,2...)

Example: l = 0

$$\Xi = \sum_{n=0}^{n_{\text{max}}} \mathbf{g}_n \exp(\mathbf{n}\mu)$$

- where $n_{\rm max}$ is the largest number of particles within constraint
- g_n is the density of state with n particles

Jamming in lattice glass model

- Bigger μ → higher packing fraction ρ
- μ is big enough \rightarrow non-equilibrium state: **Jamming state**
- Mean filed theory → <u>phase transition</u> underlying <u>jamming transition</u>

Equilibrium phase transition \iff **Jamming Transition?**

True in non-mean-filed model?

- Hanoi networks (small world network):
 fixed structure; analytically solvable
- Hanoi Network with degree of 3 (HN3)
 - Backbone: 1-D: $0 1 2 \cdots N$
 - Long-range links:

- Hanoi networks (small world network):
 - <u>fixed structure</u>; <u>analytically solvable</u>
- Hanoi Network with degree of 3 (<u>HN3</u>)
 - Backbone: 1-D: $0 1 2 \cdots N$

- Hanoi networks (small world network):
 fixed structure; analytically solvable
- Hanoi Network with degree of 3 (HN3)

$$N = 2^{1} + 1$$
 0—0—0

- Hanoi networks (small world network):
 - <u>fixed structure</u>; <u>analytically solvable</u>
- Hanoi Network with degree of 3 (HN3)
 - Backbone: 1-D: $0 1 2 \cdots N$

- <u>HN5</u>: average degree of 5
- HNNP: average degree of 4
- <u>HN6</u>: average degree of 6

Why Hierarchical Networks (HNs)?

- Exactly solvable by Renormalization Group (RG)
- Lattice-like structure

Different structures

Network	Degree	Planarity	Diameter
HN3	3	Planar	\sqrt{N}
HN5	5	Planar	$\ln N$
HNNP	4	Nonplanar	$\ln N$
HN6	6	Nonplanar	$\ln N$

Methods

- Monte Carlo Methods:
 - Simulated Annealing \rightarrow Experiment randomly add or remove particle with $P(\mu)$; μ is increased by $d\mu$ per MC sweep;
 - Wang-Landau Sampling \rightarrow Density of States g_n

$$\Xi = \sum_{n=0}^{n_{\text{max}}} \mathbf{g_n} \exp(\mathbf{n}\mu)$$

- Analytical Method:
 - Renormalization Group (HN3, HN5, 0 allowed neighbors)

- Histogram method
 - Sampling with probability $\hat{P} \propto 1/P \rightarrow$ flat histogram
 - Non-thermodynamic, Non-Markov-Chain Monte Carlo

Procedure

- Initial guess: flat $g_n \{1, 1, 1, 1, \dots\}$ and flat $H_n \{0, 0, 0, 0, \dots\}$
- Randomly pick a site i
- Add (remove) a particle with $P = \min[1, \frac{g_n}{g_{n+1}}]$ (min[1, $\frac{g_n}{g_{n-1}}$])
- Update g_n and H_n of the current state, i.e. $H_n = H_n + 1$; $g_n = g_n \times f$
- Random walk until flat histogram H_n
- Reset $\{ H_n = 0 \}$ and $f = \sqrt{f}$ (from e to $< 1 + 10^{-8}$)

Extremely slow for large system size

- Histogram method
 - Sampling with probability $\hat{P} \propto 1/P \rightarrow$ flat histogram
 - Non-thermodynamic, Non-Markov-Chain Monte Carlo

Procedure

- Initial guess: flat $g_n \{1, 1, 1, 1, \dots\}$ and flat $H_n \{0, 0, 0, 0, \dots\}$
- Randomly pick a site i
- Add (remove) a particle with $P = \min[1, \frac{g_n}{g_{n+1}}]$ ($\min[1, \frac{g_n}{g_{n-1}}]$)
- Exchange particle with an empty site
- Update g_n and H_n of the current state, i.e. $H_n = H_n + 1$; $g_n = g_n \times f$
- Random walk until flat histogram H_n
- Reset { $H_n = 0$ } and $f = \sqrt{f}$ (from e to $< 1 + 10^{-8}$)

Results of Wang-Landau sampling

- N=512
- Does NOT converge for larger system size

Results of l = 0 for HN3

Simulated annealing vs RG

Power-law relaxation

- Jamming transition exists;
- No Phase Transition

Results of l = 1 for HN5

- Simulation agrees well with Wang-Landau;
- Converge faster for large system sizes;

- Jamming state DOES NOT exist;
- No real phase transition;

Summary and Conclusion

	l = 0	l = 1
HN3	JT / No PT	JT / No PT (not sure)
HN5	JT / No PT	No JT / No PT
HNNP	JT / No PT (not sure)	No JT / No PT

JT: Jamming Transition; PT: Phase Transition

- Glassy dynamics & power-law relaxation & Jamming transition
- Algorithm efficiency improved by more random walk

Summary and Conclusion

JT: Jamming Transition; PT: Phase Transition

- Glassy dynamics & power-law relaxation & Jamming transition
- Algorithm efficiency improved by more random walk
- Jamming transition may not necessarily indicate a real phase transition

Outline

- Introduction of Disordered Systems
- Jamming in Hierarchical Networks (HNs)
- Antiferromagnetic Ising model in HNs
- Aging in Random Field Ising Model
- Summary

Antiferromagnetic Ising model

Antiferromagnetic Ising model

$$E = -J \sum S_i S_j , J < 0$$

Geometric frustration: odd loops

- HN3
- HN5
- HNNP
- HN6

- HN3
- HN5
- HNNP
- HN6

- HN3
- HN5
- HNNP
- HN6

- HN3
- HN5
- HNNP
- HN6
- Interpolations:
 - Long-range link strength: *y* · *J*
 - *y* = 0: HNNP
 - y = 1: HN6

Research Questions

- Anything interesting in this simple model?
- Glassy dynamics?
- Phase transitions?
 - Spin glass phase?
- Difference to mean-field models?

Methods

- Monte Carlo Methods:
 - <u>Simulated Annealing</u> → Experiment
 - Wang-Landau Sampling \rightarrow Density of States g_E

$$\Xi = \sum_{n=0}^{n_{\text{max}}} \mathbf{g}_{\mathbf{E}} \exp(-\beta \mathbf{E})$$

- Analytical Method:
 - Renormalization Group (HN3, HN5, HNNP, HN6)

Density of States (WL)

- Planar: HN3, HN5
 Degenerate ground states
- Non-planar: HNNP, HN6
 Unique ground states
- Confirmed by entropy (RG)
- Wang-Landau fails
 - *N* > 512

Glassy relaxation (SA)

• *x* axis: *T*

• y axis: $E_T - GS$

ullet Extremely slow relaxation at low T

Power-law relaxation (SA)

- Power-law relaxation
- HN3, HNNP, HN6:
 - Slope = ~ 0.27
- HN5 may equilibrate gradually
 - Similar to that in jamming

Renormalized interaction strength J

Recursive equations

Numerical solution

Analytical solution

Renormalized interaction strength J

Recursive equations

Numerical solution

Analytical solution

- Planar: HN3, HN5
 - stable fixed-point solution
 - no phase transition

- Non-Planar: HNNP, HN6
 - spin glass transition at low T

- Non-Planar: HNNP, HN6
 - spin glass transition at low T

HNNP
$$(y = 0)$$

- Non-Planar: HNNP, HN6
 - spin glass transition at low T

Free energy chaos

- Boundary conditions
 - Parallel: up-up

Anti-parallel: up-down

Free energy chaos

- Boundary conditions
 - Parallel: up-up

• Anti-parallel: up-down

Free energy chaos

- Boundary conditions
 - Parallel: up-up

Anti-parallel: up-down

• Crossings N_C

Free energy chao:

- Boundary conditions
 - Parallel: up-up

Anti-parallel: up-down

- Crossings N_C
 - Power-law scaling

Phase Diagram

Summary and Conclusion

- Glassy dynamics and power-law relaxation
- Free energy chaos in non-planar networks
- Spin glass phase transition
- Simple model → rich findings

Outline

- Introduction of Disordered Systems
- Jamming in Hierarchical Networks (HNs)
- Antiferromagnetic Ising model in HNs
- Aging in Random Field Ising Model
- Summary

Motivation

Quenched disorder at F-AF interface

Arrhenius activation of magnetic domains*

Motivation

Quenched disorder at F-AF interface

Arrhenius activation of magnetic domains*

In the experiment:

Power-law relaxation; small exponent

Random Field Ising Model

- Proposed by Imry and Ma in 1975
- Studied experimental systems:
 - diluted antiferromagnets, impure substrates, magnetic alloys
- simulate aging in thin-film F/AF bilayers

$$H = -J \sum_{\langle ij \rangle} s_i s_j + \sum_i \mathbf{h_i} s_i$$

- J = 1: coupling constant
- **h**_i: quenched random field

Experiment

• 1. Thin film

Simulation

• 1. 2D square lattice

1. Initial State

Experiment

- 1. Thin film
- 2. Cool down slowly

1. Initial State

Simulation

- 1. 2D square lattice
- 2. Simulated annealing

Experiment

- 1. Thin film
- 2. Cool down slowly

Simulation

- 1. 2D square lattice
- 2. Simulated annealing

1. Initial State

2. After Annealing

Experiment

- 1. Thin film
- 2. Cool down slowly
- 3. Measure resistance

Simulation

- 1. 2D square lattice
- 2. Simulated annealing
- 3. Measure energy

1. Initial State

2. After Annealing

Experiment

- 1. Thin film
- 2. Cool down slowly
- 3. Measure resistance
- 4. Flip external field

1. Initial State

Simulation

- 1. 2D square lattice
- 2. Simulated annealing
- 3. Measure energy
- 4. Flip random fields

2. After Annealing

Power-law relaxation

Summary and Conclusion

- Simulations agree well with experiments
- Power-law relaxation is confirmed
- Help understand experiment: interface frustration driven

Summary and Conclusion

- 3 Disordered Systems
 - <u>Lattice glass model</u>: dynamics- & geometry-induced disorder
 - Antiferromagnetic Ising model: geometry-induced disorder
 - Random field Ising model: quenched disorder
- Glassy dynamics & power-law relaxation
- Equilibrium phase transition is not necessary
- Glassy dynamics & chaos indicate computational complexity

Summary and Conclusion

- 3 Disordered Systems
 - <u>Lattice glass model</u>: dynamics- & geometry-induced disorder
 - Antiferromagnetic Ising model: geometry-induced disorder
 - Random field Ising model: quenched disorder
- Glassy dynamics & power-law relaxation
- Equilibrium phase transition is not necessary
- Glassy dynamics & chaos indicate computational complexity

Chaos

- Chaos results from
 - dissimilar configurations
 - Similar free energies
 - Different energy and entropy
- $\Delta F = \Delta E T \Delta S$
- Spin glass chaos: ΔE , ΔS are big