Internet Ideal: Simple Network Model

- Globally unique identifiers
 - Each node has a unique, fixed IP address
 - ... reachable from everyone and everywhere
- Simple packet forwarding
 - Network nodes simply forward packets
 - ... rather than modifying or filtering them

Internet Reality

- Host mobility
 - Host changing address
 as it moves
- IP address depletion
 - Multiple hosts using the same address
- Security concerns
 - Detecting and blocking unwanted traffic

- Replicated services
 - Load balancing over server replicas
- Performance concerns
 - Allocating bandwidth,
 caching content, ...
- Incremental deployment
 - New technology deployed in stages

Middleboxes BREAK the Simple Network Model

Middleboxes are intermediaries

- Interposed between communicating hosts
- Often without knowledge of one or both parties

Myriad uses

- Address translators
- Firewalls
- Traffic shapers
- Intrusion detection
- Transparent proxies
- Application accelerators

"An abomination!"

- -Violation of layering
- -Hard to reason about
- -Responsible for subtle bugs

"A practical necessity!"

- —Solve real/pressing problems
- -Needs not likely to go away

Firewalls

Firewalls

- A firewall filters packet-by-packet, based on:
 - Source and destination IP addresses and port #'s
 - TCP SYN and ACK bits; ICMP message type
 - Deep packet inspection of packet contents (DPI)

Packet Filtering Examples

- Block all packets with IP protocol field = 17 and with either source or dest port = 23.
 - All incoming and outgoing UDP flows blocked
 - All Telnet connections are blocked

- Block inbound TCP packets with SYN but no ACK
 - Prevents external clients from making TCP connections with internal clients
 - But allows internal clients to connect to outside

Firewall Configuration

- Firewall applies a set of rules to each packet
 - To decide whether to permit or deny the packet

- Each rule is a test on the packet
 - Comparing headers, deciding whether to allow/deny

- Rule order matters
 - Once packet matches rule, drop/keep decision is made

Firewall Configuration Example

- Alice runs a network in 222.22/16, wants to allow Bob's school to access only certain hosts
 - Bob is on 111.11/16
 - Alice's designated hosts are in 222.22.22/24
- Alice doesn't trust Trudy, inside Bob's network
 - Trudy's hosts are in 111.11.11/24
- Alice doesn't want any other Internet traffic

Firewall Configuration Rules

1. Allow Bob's network in to special destinations

- **ALLOW** (src=111.11/16, dst = 222.22.22/24)

2. Block Trudy's machines

- **DENY** (src = 111.11.11/24, dst = 222.22/16)

3. Block world

- **DENY** (src = 0/0, dst = 0/0)

Order?

(Y) 3, 1 (M) 3, 1, 2 (C) 1, 3 (A) 2, 1, 3

Firewall Configuration Rules

1. Allow Bob's network in to special destinations

- **ALLOW** (src=111.11/16, dst = 222.22.22/24)

2. Block Trudy's machines

- **DENY** (src = 111.11.11/24, dst = 222.22/16)

3. Block world

- **DENY** (src = 0/0, dst = 0/0)

Order?

(Y) 3, 1 (M) 3, 1, 2 (C) 1, 3

(A) 2, 1, 3

Stateful Firewall

- Stateless firewall:
 - Treats each packet independently
- Stateful firewall
 - Remembers connection-level information
 - E.g., client initiating connection with a server
 - ... allows the server to send return traffic

A Variation: Traffic Management

- Permit vs. deny is too binary a decision
 - Classify traffic using rules, handle classes differently
- Traffic shaping (rate limiting)
 - Limit the amount of bandwidth for certain traffic
- Separate queues
 - Use rules to group related packets
 - And then do weighted fair scheduling across groups

Load Balancers

Replicated Servers

One site, many servers

Load Balancer

Dedicated IP addresses Splits load over server replicas 10.0.0.1 At the connection level **Virtual IP address** 12.1.11.3 10.0.0.2 10.0.0.3 Apply load balancing policies

Supports Layer-2 failover!

Supports Layer-2 failover!

Wide-Area Accelerators

At Connection Point to the Internet

- Improve end-to-end performance
 - Through buffering, compression, caching, ...
- Incrementally deployable
 - No changes to end hosts or the rest of the Internet

Example: Improve TCP Throughput

- Appliance with a lot of local memory
- Sends ACK packets quickly to the sender
- Overwrites receive window with a large value
- Or, even run a new and improved version of TCP

Example: Compression

- Compress the packet
- Send the compressed packet
- Uncompress at the other end
- Maybe compress across successive packets

Example: Caching

- Cache copies of the outgoing packets
- Check for sequences of bytes that match past data
- Just send a pointer to the past data
- And have the receiving appliance reconstruct

Tunneling

IP Tunneling

- IP tunnel is a virtual point-to-point link
 - Illusion of a direct link between two nodes

- Encapsulation of the packet inside IP datagram
 - Node B sends a packet to node E
 - ... containing another packet as the payload

6Bone: Deploying IPv6 over IP4

Remote Access Virtual Private Network

- Tunnel from user machine to VPN server
 - A "link" across the Internet to the local network
- Encapsulates packets to/from the user
 - Packet from 12.1.1.73 to 12.1.1.100
 - Inside a packet from 1.2.3.4 to 12.1.1.1
 - Interior packet can be point-to-point encrypted

"Commercial" VPNs

- Tunnel from user machine to VPN server
- VPN server NATs or TCP proxies traffic to origin sites
 - Traffic between client and VPN encrypted
 - VPN "anonymizes" the IP of client to rest of Internet, and can circumvent censorship on client-side
 - Client must fully trust VPN provider

Conclusions

- Middleboxes address important problems
 - Getting by with fewer IP addresses
 - Blocking unwanted traffic
 - Making fair use of network resources
 - Improving end-to-end performance
- Middleboxes cause problems of their own
 - No longer globally unique IP addresses
 - Cannot assume network simply delivers packets