Ch.3: Functions and branching

Hans Petter Langtangen^{1,2}

Simula Research Laboratory¹

University of Oslo, Dept. of Informatics²

Aug 22, 2014

We have used many Python functions

Mathematical functions:

```
from math import *
y = sin(x)*log(x)
```

Other functions:

```
n = len(somelist)
ints = range(5, n, 2)
```

Functions used with the dot syntax (called methods):

```
C = [5, 10, 40, 45]
i = C.index(10)  # result: i=1
C.insert(2, 20)
```

What is a function? So far we have seen that we put some objects in and sometimes get an object (result) out of functions. Now it is time to write our own functions!

Python functions

- Function = a collection of statements we can execute wherever and whenever we want
- Function can take input objects and produce output objects
- Functions help to organize programs, make them more understandable, shorter, and easier to extend

Simple example: a mathematical function $F(C) = \frac{9}{5}C + 32$

```
def F(C):
return (9.0/5)*C + 32
```

Note:

- Functions start with def, then the name of the function, then a list of arguments (here C) the function header
- Inside the function: statements the function body
- Wherever we want, inside the function, we can "stop the function" and return as many values/variables we want

Functions must be called

• A function does not do anything before it is called

```
\begin{array}{lll} a = 10 & \# \ call \\ F1 = F(a) & \# \ call \\ temp = F(15.5) & \# \ call \\ print \ F(a+1) & \# \ call \\ sum. temp = F(10) + F(20) & \# \ two \ calls \\ Fdegrees = [F(C) \ for \ C \ in \ Cdegrees] & \# \ multiple \ calls \\ \end{array}
```

Note: Since F(C) produces (returns) a float object, we can call F(C) everywhere a float can be used

Local variables in Functions

```
Example: sum the integers from start to stop
```

```
def sumint(start, stop):
    s = 0  # variable for accumulating the sum
    i = start  # counter
    while i <= stop:
        s += i
        i += 1
    return s

print sumint(0, 10)
sum_10_100 = sumint(10, 100)</pre>
```

Note

- i and s are local variables in sumint these are destroyed at the end (return) of the function and never visible outside the function (in the calling program); in fact, start and stop are also local variables
- There is one global variable: sum_10_100, visible everywhere
- Read Chapter 3.1.3 in the book about local and global variables!

Turn a formula into a Python function

```
Formula: y(t) = v_0 t - \frac{1}{2}gt^2. Make a Python function of it:
```

```
def yfunc(t, v0):
    g = 9.81
    return v0*t - 0.5*g*t**2
# sample calls:
y = yfunc(0.1, v0=6)
y = yfunc(0.1, v0=6)
y = yfunc(t=0.1, v0=6)
y = yfunc(v0=6, t=0.1)
```

Functions can have as many arguments as you like.

Function arguments become local variables

```
def yfunc(t, v0):
    g = 9.81
         return v0*t - 0.5*g*t**2
When calling yfunc(0.1, 6), all these statements are in fact
executed:
    t = 0.1 # arguments get values as in standard assignments
    v0 = 6
    g = 9.81
    return v0*t - 0.5*g*t**2
# local variables t, v0, g are destroyed
```

Functions may access global variables

```
The y(t,v0) function took two arguments. Could implement y(t)
as a function of t only:
    >>> def yfunc(t):
   ... g = 9.81
... return v0*t - 0.5*g*t**2
    >>> yfunc(0.6)
    NameError: global name 'v0' is not defined
Problem: v0 must be defined in the calling program program
before we call yfunc
    >>> v0 = 5
    >>> yfunc(0.6)
1.2342
Note:
  • v0 is a global variable
  • Global variables are variables defined outside functions
  • Global variables are visible everywhere in a program
```

Functions can return multiple values

```
Say we want to compute y(t) and y'(t) = v_0 - gt:
    def yfunc(t, v0):
        g = 9.81
y = v0*t - 0.5*g*t**2
        dydt = v0 - g*t
        return y, dydt
    position, velocity = yfunc(0.6, 3)
Separate the objects to be returned by comma, assign to variables
separated by comma. Actually, a tuple is returned:
   >>> def f(x):
    ... return x, x**2, x**4
    >>> s = f(2)
    >>> s
(2, 4, 16)
    >>> type(s)
    <type 'tuple'>
>>> x, x2, x4 = f(2)
```

Example: Compute a function defined as a sum

The function

$$L(x; n) = \sum_{i=1}^{n} \frac{1}{i} \left(\frac{x}{1+x} \right)^{i}$$

is an approximation to ln(1+x) for a finite n and $x \ge 1$. Make a Python function for L(x; n):

```
def L(x, n):
   x = float(x) # ensure float division below
    for i in range(1, n+1):

s += (1.0/i)*(x/(1+x))**i
     return s
from math import log as ln
print L(x, 10), L(x, 100), ln(1+x)
```

Returning errors as well from the L(x, n) function

```
We can return more: also the first neglected term in the sum and
the error (\ln(1+x) - L(x; n)):
    def L2(x, n):
```

```
x = float(x)
      for i in range(1, n+1):

s += (1.0/i)*(x/(1+x))**i

value_of_sum = s
     value_or_sum = s
first_neglected_term = (1.0/(n+1))*(x/(1+x))**(n+1)
from math import log
exact_error = log(1+x) - value_of_sum
      return value_of_sum, first_neglected_term, exact_error
# typical call:
value, approximate_error, exact_error = L2(x, n)
```

Functions do not need to return objects

```
def somefunc(obj):
   print obj
```

Here, return_value becomes None because if we do not explicitly return something, Python will insert return None.

Example on a function without return value

Keyword arguments are useful to simplify function calls and help document the arguments

Functions can have arguments of the form name=value, called keyword arguments:

```
>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
>>> print arg1, arg2, kwarg1, kwarg2
>>> somefunc('Hello', [1,2])  # drop kwarg1 and kwarg2
Hello [1, 2] True 0  # default values are used
>>> somefunc('Hello', [1,2], kwarg1='Hi')
Hello [1, 2] Hi 0  # kwarg2 has default value
>>> somefunc('Hello', [1,2], kwarg2='Hi')
Hello [1, 2] True Hi  # kwarg1 has default value
>>> somefunc('Hello', [1,2], kwarg2='Hi', kwarg1=6)
Hello [1, 2] 6 Hi  # specify all args
If we use name=value for all arguments in the call, their sequence
```

If we use name=value for all arguments in the call, their sequence can in fact be arbitrary:

```
>>> somefunc(kwarg2='Hello', arg1='Hi', kwarg1=6, arg2=[2])
Hi [2] 6 Hello
```

Example: Mathematical function of one variable, but with additional parameteres

Consider a function of t, with parameters A, a, and ω :

$$f(t; A, a, \omega) = Ae^{-at}\sin(\omega t)$$

We can implement f in a Python function with t as positional argument and A, a, and ω as keyword arguments:

```
from math import pi, exp, sin

def f(t, A=1, a=1, omega=2*pi):
    return A*exp(-a*t)*sin(omega*t)

v1 = f(0.2) comega=1
v2 = f(0.2, omega=1)
v2 = f(0.2, 1, 3) # same as f(0.2, A=1, a=3)
v3 = f(0.2, omega=1, A=2.5)
v4 = f(A=5, a=0.1, omega=1, t=1.3)
v5 = f(t=0.2, A=9)
v6 = f(t=0.2, A=9)
v6 = f(t=0.2, B=9)
wf = f(t=0
```

Doc strings

Python convention: document the purpose of a function, its arguments, and its return values in a *doc string* - a (triple-quoted) string written right after the function header.

```
def C2F(C):

"""Convert Celsius degrees (C) to Fahrenheit."""

return (3.0/5)*C + 32

def line(x0, y0, x1, y1):

"""

Compute the coefficients a and b in the mathematical expression for a straight line y = a*x + b that goes through two points (a0, y0) and (x1, y1).

x0, y0: a point on the line (floats).

x1, y1: another point on the line (floats).

return: a, b (floats) for the line (y=a*x+b).

"""

a = (y1 - y0)/(x1 - x0)

b = y0 - a*x0

return a, b
```

Convention for input and output data in functions

- A function can have three types of input and output data:
 - input data specified through positional/keyword arguments
 - input/output data given as positional/keyword arguments that will be modified and returned
 - output data created inside the function
- All output data are returned, all input data are arguments

```
def somefunc(i1, i2, i3, io4, io5, i6=value1, io7=value2):
# modify $io4, io5, io7; compute o1, o2, o3
return o1, o2, o3, io4, io5, io7
```

The function arguments are

- pure input: i1, i2, i3, i6
- input and output: io4, io5, io7

The main program

The main program is the set of statements outside functions.

```
from math import * # in main

def f(x): # in main

e = exp(-0.1*x)
    s = sin(6*pi*x)
    return e*s

x = 2 # in main
    y = f(x) # in main
    print 'f(%g)=%g' % (x, y) # in main
```

The execution starts with the first statement in the main program and proceeds line by line, top to bottom.

def statements define a function, but the statements inside the function are not executed before the function is called.

Python functions as arguments to Python functions

- Programs doing calculus frequently need to have functions as arguments in other functions
- For example:
 - numerical integration: $\int_{a}^{b} f(x) dx$
 - numerical differentiation: f'(x)
 - numerical root finding: f(x) = 0
- All the three functions need f, as a Python function

Example: numerical computation of f''(x) by

$$f''(x) \approx \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$$
 def diff2(f, x, h=1E-6):
r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h) return r

No difficulty with f being a function (more complicated in Matlab, C, C++, Fortran, Java, ...).

Round-off errors caused nonsense values in the table

- For $h < 10^{-8}$ the results are totally wrong!
- We would expect better approximations as h gets smaller
- Problem 1: for small h we subtract numbers of approx equal size and this gives rise to round-off errors
- Problem 2: for small h the round-off errors are multiplied by a big number
- Remedy: use float variables with more digits
- Python has a (slow) float variable with arbitrary number of digits
- ullet Using 25 digits gives accurate results for $h \leq 10^{-13}$
- Is this really a problem? Quite seldom other uncertainies in input data to a mathematical computation makes it usual to have (e.g.) $10^{-2} \leq h \leq 10^{-6}$

Code: def g(t): return t**(-6) # make table of g''(t) for 14 h values: for k in range(1,15): h = 10**(-k) print 'h=%.0e: %.5f' % (h, diff2(g, 1, h)) Output (g"(1) = 42): h=1e=01: 44.61504 h=1e=02: 42.02521 h=1e=03: 42.00025 h=1e=04: 42.00000 h=1e=05: 41.99999

```
h=1e-08: 47.73959
h=1e-09: -666.13381
h=1e-10: 0.00000
h=1e-11: 0.00000
h=1e-12: -666133814.77509
h=1e-13: 666133814777.50939
h=1e-14: 0.00000
```

h=1e-06: 42.00074 h=1e-07: 41.94423

Application of the diff2 function

Lambda functions for compact inline function definitions

```
def f(x):
    return x**2 - 1
The lambda construction can define this function in one line:
    f = lambda x: x**2 - 1
In general,
    somefunct = lambda a1, a2, ...: some_expression
is equivalent to
    def somefunc(a1, a2, ...):
        return some_expression

Lambda functions can be used directly as arguments in function calls:
    value = someotherfunc(lambda x, y, z: x*y*3*z, 4)
```

Example on using a lambda function to save typing

```
Old code:

def g(t):
    return t**(-6)

print diff2(g)

New, more compact code with lambda:
    print diff2(lambda t: t**(-6))
```

If tests for branching the flow of statements

Sometimes we want to perform different actions depending on a condition. Example:

$$f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & \text{otherwise} \end{cases}$$

A Python implementation of f needs to test on the value of x and branch into two computations:

```
def f(x):
    if 0 <= x <= pi:
        return sin(x)
    else:
        return 0</pre>
```

In general (the else block can be skipped):

If tests with multiple branches

```
We can test for multiple (here 3) conditions:
   if condition1:
       <block of statements>
   elif condition3:
      <blook of statements>
   else:
      <blook of statements>
   <next statement>
```

Example on multiple branching

Here is a piecewisely defined function:

 $0, \quad x < 0$

 $N(x) = \begin{cases} x, & 0 \le x < 1 \\ 2 - x, & 1 \le x < 2 \end{cases}$ def N(x): if x < 0: return 0 elif 0 <= x < 1: return x elif 1 <= x < 2: return 2 - x elif x >= 2: return 0

Inline if tests for shorter code

```
A common construction is
       variable = value1
    else:
       variable = value2
This test can be placed on one line as an expression:
    variable = (value1 if condition else value2)
Example:
       return (sin(x) if 0 <= x <= 2*pi else 0)
```

Test functions

To verify the implementation of a function, write a separate function according to some rules.

Example:

```
def double(x):
    return 2*x
def test_double():
    exact_result = 8
    r = double(x)
    assert r == exact_result, 'got %s, should have %s' % \
    (r, exact_result)
```

Rules for test functions:

- name begins with test_
- no arguments
- must have an assert condition statement, where condition is True if the test passed and False otherwise (can have optional message, which is printed if test failed)

Why write test functions according to these rules?

- Easy to recognize where functions are verified
- Test frameworks, like nose and pytest, can automatically run all your test functions (in a folder tree) and report if any bugs have sneaked in

Terminal> nosetests -s Terminal> pytest -s .

A test function as test_double() is often referred to as a unit test since it tests a small unit (function) of a program. When all unit tests work, the whole program is supposed to work.

Summary of if tests and functions

```
If tests:
     if x < 0:
    value = -1
elif x >= 0 and x <= 1:
value = x
    else:
value = 1
User-defined functions:
     def quadratic_polynomial(x, a, b, c)
         value = a*x*x + b*x + c
derivative = 2*a*x + b
          return value, derivative
     # function call:
    p, dp = quadratic_polynomial(x, 2, 0.5, 1)
p, dp = quadratic_polynomial(x=x, a=-4, b=0.5, c=0)
Positional arguments must appear before keyword arguments:
    def f(x, A=1, a=1, w=pi):
    return A*exp(-a*x)*sin(w*x)
```

A summarizing example for Chapter 3; problem An integral

can be approximated by Simpson's rule:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{3n} \left(f(a) + f(b) + 4 \sum_{i=1}^{n/2} f(a + (2i-1)h) + 2 \sum_{i=1}^{n/2-1} f(a+2ih) \right)$$

computing an integral of f(x) by Simpson's rule. Call Simpson(...) for $\frac{3}{2} \int_0^{\pi} \sin^3 x dx$ (exact value: 2) for n = 2, 6, 12, 100, 500.

```
h = (b - a)/float(n)
                                                                                                                      sum1 = 0
                                                                                                                     for i in range(1, n/2 + 1):
sum1 += f(a + (2*i-1)*h)
                                                                                                                     sum2 = 0
for i in range(1, n/2):
    sum2 += f(a + 2*i*h)
                                                                                                                      integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)
Problem: make a function Simpson(f, a, b, n=500) for
```

The program: function, now with test for possible errors

```
def Simpson(f, a, b, n=500):
    if a > b:
        print 'Error: a=%g > b=%g' % (a, b)
        return None
    # Check that n is even if n % 2 != 0:
        print 'Error: n=%d is not an even integer!' % n
        n = n+1 # make n even
    # as before...
    return integral
```

```
The program: application (and main program)
          def h(x):
                return (3./2)*sin(x)**3
          from math import sin, pi
          def application():
               apprint 'Integral of 1.5*sin'3 from 0 to pi:'
for n in 2, 6, 12, 100, 500:
approx = Simpson(h, 0, pi, n)
print 'n=%3d, approx=%18.15f, error=%9.2E' % \
(n, approx, 2-approx)
          application()
```

The program: function for computing the formula

Return the approximation of the integral of f from a to b using Simpson's rule with n intervals.

def Simpson(f, a, b, n=500):

```
The program: verification (with test function)
    Property of Simpson's rule: 2nd degree polynomials are integrated
    exactly!
           def test_Simpson(): # rule: no arguments
    """Check that 2nd-degree polynomials are integrated exactly.""
                 b = 2.0
n = 8
                  g = lambda x: 3*x**2 - 7*x + 2.5  # test integrand
G = lambda x: x**3 - 3.5*x**2 + 2.5*x  # integral of g
exact = G(b) - G(a)
                 exact = U(D) - U(a)
approx = Simpson(g, a, b, n)
success = abs(exact - approx) < 1E-14 # tolerance for floats
msg = 'exact=kg, approx=kg' % (exact, approx)
assert success, msg # assert boolean success condition
    Can either call test_Simpson() or run nose or pytest:
           Terminal> nosetests -s Simpson.py
Terminal> pytest -s Simpson.py
           Ran 1 test in 0.005s
           OK
```