Cognate Discovery For Bootstrapping Lexical Resources

Shantanu Kumar (2013EE10798)

Supervisors

Prof. Sumeet Agarwal Dr. Ashwini Vaidya

Motivation

Cognates: Cross-language words which originate from a common ancestral language.

```
Night (English) Nacht (German) *
Father (English) Pater (Greek)
Star (English) Tara (Hindi)
```

- → Essential for historical linguists.
- → Successfully applied to NLP tasks like as Sentence Alignment [Simard et al., 1993][Navlea et al., 2011] and Statistical Machine Translation [Kondrak et al., 2003].
- → Assist in lexical resource creation.

Datasets

- 1. Indo-European Dataset (IELex)
 - 52 Languages, 208 Meanings
 - Romanized and IPA transcription
- 2. Austronesian Dataset
 - 100 Languages, 210 Meanings
 - ASJP transcription
- 3. Mayan Dataset
 - 30 Languages, 100 Meanings
 - ASJP transcription
- Parallel Sentence-aligned Corpora
 - Hindi-Marathi (TDIL)

Part of Wordlist Used Concepts

		ALL	BIG	ANIMAL		
ges	English	All	Big	Animal		
_anguages	French	Tut	Grand	Animal		
Lan	Marathi	Serve	Motha	Jenaver		
	Hindi	Seb	Bara	Janver		

[From Dataset by Dyen et al.]

Previous Work

- SURFACE SIMILARITY
 - B. Hauer and G. Kondrak. "Clustering Semantically Equivalent Words into Cognate Sets in Multilingual Lists." - IJCNLP 2011
 - Orthographic word similarity features
 - T. Rama. "Automatic cognate identification with gap-weighted string subsequences." - HLT-NAACL 2015
 - Gap-weighted common string subsequences
- DEEP REPRESENTATION
 - T. Rama. "Siamese convolutional networks based on phonetic features for cognate identification." - COLING 2016
 - Representing words as 2D matrices

Common Subsequence Model

Subsequence Vector Example

PATER 0.14925373,

'ae':

FATHER 0.07763300.

 $\phi_u(s) = \sum_{\forall I, s[I] = u} \lambda^{l(I)}$

'ar': 'at':

'ae':

0.10447761, 0.21321962,

'ah': 'ar':

0.11090429, 0.05434310.

 $l(I) = i_{|u|} - i_1 + 1$

'er': 'pa':

0.21321962, 0.21321962,

'at': 'er':

0.15843470. 0.15843470,

'pe':

0.10447761,

'fa':

0.15843470, 'fe': 0.05434310,

 $\Phi(s) = \{\phi_u(s); \forall u \in \cup_{n=1}^p \Sigma^n\}$

'pr': 'pt':

'te':

'tr':

0.07313433, 0.14925373,

0.21321962,

0.14925373

'fh': 'fr':

0.07763300, 0.03804017,

0.11090429,

0.15843470,

Multiplicative Model

 $\Phi_{Mul}(s_1, s_2) = \{\phi_u(s_1) + \phi_u(s_2); \forall u \text{ present in } s_1 \text{ and } s_2\}$

'he': 'hr':

0.11090429,

'te':

0.11090429.

'th':

0.15843470,

'tr':

0.07763300

Additive Model

 $\Phi_{Add}(s_1, s_2) = \{\phi_u(s_1) + \phi_u(s_2); \forall u \text{ present in } s_1 \text{ or } s_2\}$

Hybrid Model

$$\Phi_{Avg}(s_1, s_2) = (1 - \alpha) \cdot \Phi_{Mul}(s_1, s_2) + \alpha \cdot \Phi_{Add}(s_1, s_2)$$

Siamese ConvNet Model

- Inspired from networks used for detecting similarity in images
- Manually defined character embeddings based on phonological properties
- No hand engineered features on word level

Drawbacks

- Character vectors defined by phonetic classes, convolution does not seem intuitive
- Both words encoded independently

Character Embeddings Used

Features	p	b	f	v	m	8	4	t	d	S	z	С	n	S	Z	C	i	Т	5	k	g	х	N	q	G	X	7	h	1	L	w	v	r	1	V
		1	1	1	111	1	1	0	1		1	1	1	-	1		J	1	-	-	5		1		1	1	^	11	1	1	1	1	1	•	+
Voiced	0	1	0	1	1	1	1	0	1	0	1	1	1	0	L	0	1	ı I	0	0	1	1	I	0	1	1	0	1	Į.	1	1	1	1	1	1
Labial	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Dental	0	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Alveolar	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Palatal/Post-alveolar	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Velar	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0
Uvular	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
Glottal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
Stop	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	1	1	0	0	1	1	0	1	0	0	0	0	0	0	0	0
Fricative	1	1	1	1	0	1	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0
Affricate	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nasal	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Click	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Approximant	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0
Lateral	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
Rhotic	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Co-Attention LSTM Model

- Symmetric model with co-attention
- Shared LSTM encoder to encode each word
- Character-level encodings learnt
- Additional Concept Features added using Glove embeddings of the concept
- Network pre-trained across different language families

Recurrent Attention Layer (T. Rocktäschel et al. 2016)

Attention Layer

LSTM Layer

Word 1 Word 2

Results - Cross Language Evaluation

- LSTM model gives significantly improved results than ConvNet
- Adding Concept
 Features Improves
 the AUC curve
- Pretraining the model on Austronesian dataset before training on Indo-European also improves the performance

Results - Cross Language Evaluation

Results - Cross Language Evaluation

	Indo-Eu	ıropean	Austro	nesian	Mayan		
	Total	Positive	Total	Positive	Total	Positive	
Training Samples	218,429	56,678	333,626	96,356	25,473	9,614	
Testing Samples	9,894	2,188	20,799	5,296	1,458	441	

Table 5.1: Data size for Cross Language Evaluation

Model	Indo-Eu	ropean	Austron	esian	Mayan		
Wiodei	F-Score	AUC	F-Score	AUC	F-Score	AUC	
Gap-weighted Subsequence	59.0	75.5	58.8	68.9	71.8	81.8	
PhoneticCNN	73.7	86.1	54.6	68.0	72.8	85.0	
PhoneticCNN + Language Features	62.2	85.4	46.8	67.0	66.4	84.0	
CharacterCNN	75.3	85.3	62.2	71.6	75.9	85.7	
CharacterCNN + Language Features	70.7	82.6	61.4	70.1	61.1	82.2	
CoAtt	83.8	89.2	69.0	77.5	67.1	67.7	
CoAtt + Concept Features	83.5	90.5	68.9	77.9	76.2	84.2	
CoAtt + Pre-training (Austro)	83.2	90.6	-	-	80.4	88.3	
CoAtt + Pre-training (IELex)	-	-	-	» - »	79.6	85.2	

Table 5.2: Cross Language Evaluation Results

Cancant Wise Analysis

Conce	Concept Wise Analysis - From Indo-European Dataset										
Concept	# Cognate Classes	CoAtt	CoAtt + Concept	CoAtt + Pret(Austro)	Phonetic CNN	Char CNN	Sub Sequence				
WHO	2	0.914	0.900	0.872	0.429	0.646	0.044				
WHAT	2	0.955	0.905	0.966	0.414	0.686	0.196				
HOW	3	0.902	0.875	0.800	0.269	0.615	0.163				
WHERE	4	0.857	0.780	0.820	0.435	0.531	0.054				
THERE	8	0.900	0.842	0.837	0.778	0.976	0.174				
EAT	10	0.686	0.722	0.800	0.778	0.872	0.429				
IN	14	0.353	0.565	0.383	0.300	0.353	0.000				
AT	18	0.250	0.143	0.500	0.421	0.258	0.000				
IF	20	0.316	0.316	0.462	0.333	0.200	0.000				
BECAUSE	37	0.286	0.000	0.000	0.000	0.000	0.000				

Transcription Tests

- → Indo-European dataset is available in IPA and ASJP formats
- → ASJP is a coarser transcription with a smaller character vocabulary
- → IPA Model predicts false negatives
 - Very fine transcription, correspondence not learnt
- → Adding *Concept Features* corrected the mistake
 - Different threshold for different concepts

А	SJP		IPA					
Word 1 ▼	Word 2	Word 1	Word 2 ▼					
swim	sinda	swim	ˈsɪnd̞a					
swim	zwem3n	swim	zwɛmən					
swim	wim svim3n		ſvɪmən					
swem3	sinda	ˈsʊømːə	ˈsɪnd̞a					
swem3	zwem3n	ˈsʊømːə	zwɛmən					
swem3	svim3n	ˈsʊømːə	ſvɪmən					
sinda	zwem3n	ˈsɪnd̞a	zwɛmən					
sinda	sinda svim3n		ſvɪmən					
zwem3n	sima	zwɛmən	'sim:a					
sima	svim3n	'sim:a	ſvɪmən					

Cognates pairs from the concept **SWIM** for various languages

Model	Indo-Eur (ASJ	-	Indo-European (IPA)		
	F-Score	AUC	F-Score	AUC	
CoAtt	83.8	89.2	82.2	89.1	
CoAtt + Concept Features	83.5	90.5	82.1	90.7	

Cross Concept Evaluation

- Cross concept seems to be a tougher task
- Words from different concepts have different sequence structures
- Different concepts also have varied degrees of cognacy due to different frequency of use

Model	Indo-Eu	ropean	Austron	esian	Mayan		
Model	F-Score	AUC	F-Score	AUC	F-Score	AUC	
Gap-weighted Subsequence	51.6	62.0	53.1	64.5	61.0	75.4	
PhoneticCNN + Language Features	66.4	73.2	57.8	66.6	80.6	88.1	
CharacterCNN + Language Features	63.5	70.5	60.9	70.2	79.6	89.1	
CoAtt	64.8	69.8	57.1	61.0	70.5	74.8	
CoAtt + Language Features	65.6	70.8	57.3	62.0	69.6	71.9	
CoAtt+ Concept Features	64.1	70.6	58.0	63.1	71.9	78.6	
CoAtt + Pre-training (Austro)	65.8	71.0	-	-	71.1	78.4	
CoAtt + Pre-training (IELex)	-	-	-	-	71.2	79.0	

Table 5.5: Cross Concept Evaluation Results

Hindi-Marathi Tests

HINDI	MARATHI	SCORE
चोटयाँ	समोर	0.0086563
रूम	खोलीतील	0.0086572
छंतोली	पालखीवर	0.0086578
यात्रा	लोक	0.008658
मुमकनि	लोकसंख्या	0.008658
कुदरत	नसिर्ग	0.008662
मलि	क्षेत्रास	0.0086626
गहराइयों	तलाव	0.0086626
नगिम	महामंडळाच्या	0.0086626
नाम	पॅलेस	0.0086633
इमारतें	नवाबांनी	0.0086637
प्रकृति	नसिर्ग	0.0086646
कलि	मशदि	0.0086649
मूर्ति	रुपे	0.0086649
तड़के	२७ला	0.008665

HINDI	MARATHI	SCORE
फूलों	फुलांनी	0.985515
फूलों	फुलांचे	0.985508
फूलों	फुलांच्या	0.985507
फ्लाइंग	फ्लाईंग	0.985507
लाइन	लाइनची	0.985505
कस्बा	कसबा	0.985502
बाइक	बाईक	0.985439
फूलों	फ़ुलांसठी	0.985436
शांति	``शांती	0.985435
शांति	शांती	0.985435
भागों	भागांवर	0.985435
बसें	बसेंस	0.985429
रोजाना	रोज	0.985425
रेखाओं	रेषांनी	0.985424
पर्वत	पर्वत	0.985225

HINDI	MARATHI	SCORE
बाँध	बांधू	0.985483
बनवा	बनवून	0.985482
बाँध	बांधून	0.985473
बँधे	बांधून	0.98547
बनाने	बांधण्यास	0.985444
बना	बनवा	0.985438
बनाना	बनवणे	0.985435
भर	भरून	0.985432
बना	बनवत	0.985429
स्थति	साकार	0.985426
बनने	बनण्यास	0.985423
बनाने	बनवू	0.985421
बना	बनवतो	0.985417
भगोिकर	भजिवून	0.985415
बनवाने	बनवण्याच्या	0.985414

Conclusion & Future Direction

- → Surface similarity measure fail infront of Deep structure representation in capturing phonological evolution to predict cognates
 - ◆ LSTM and CNN models capture complementary information. Hybrid model to exploit best of both models.
- → Additional *Concept Features* and *Cross-Family Pretraining* helps to improve performance, especially on the smaller Mayan dataset.
- → Recurrent model lags behind the CNN model for Mayan dataset on Cross-Concept evaluation
 - Analysis of advantages of the CNN model in the task
- → Applied the model to domain of Hindi-Marathi word pairs
 - ◆ Sample and evaluate the performance
 - Apply to other language pairs

References

- 1. Simard, Michel, George F. Foster, and Pierre Isabelle. "Using cognates to align sentences in bilingual corpora." Proceedings of the 1993 conference of the Centre for Advanced Studies on Collaborative research: distributed computing-Volume 2. IBM Press, 1993.
- 2. Kondrak, Grzegorz, Daniel Marcu, and Kevin Knight. "Cognates can improve statistical translation models." *Proceedings of the 2003 Conference of NAACL on Human Language Technology* 2003.
- 3. Rama, Taraka. "Automatic cognate identification with gap-weighted string subsequences." Proceedings of the 2015 Conference of NAACL on Human Language Technologies 2015.
- 4. Rama, Taraka. "Siamese convolutional networks based on phonetic features for cognate identification." *COLING* 2016.
- 5. Rocktäschel, Grefenstette, Hermann, Kočiský and Blunsom. "Reasoning about Entailment with Neural Attention" International Conference on Learning Representations (ICLR) 2016.