WHAT IS CLAIMED IS:

1) A hydrogenated ring-opening metathesis polymer which contains, if necessary, a structural unit [A] of the following general formula [1]:

5

[wherein, at least one of ${\ensuremath{\mathsf{R}}}^1$ to ${\ensuremath{\mathsf{R}}}^4$ represents a functional group having a tertiary ester group of a cyclic alkyl of the following general formula [2]:

(wherein, the chain line represents a connecting means. $\,\mathrm{R}^{5}$ 10 represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, a linear, branched or cyclic alkoxyalkyl group having 2 to 10 carbon atoms, or a linear, branched or cyclic acyl group having 1 to 10 car- \setminus R⁶ represents a linear, branched or cyclic al-15 bon atoms. kyl group having 1 to 10 carbon atoms. \setminus W¹ represents a

10

15

20

25

single bond or a (k+2)-valent hydrocarbon group having 1 to 10 carbon atoms.) Z represents a divalent hydrocarbon group having 2 to 15 carbon atoms, and forms a single ring or a cross-linked ring together with carbon atoms to be bonded. k represents 0 or 1.) and the remaining groups of $\ensuremath{\mbox{R}}^1$ to $\ensuremath{\mbox{R}}^4$ are selected each independently from a hydrogen atom, linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms, halogens, linear, branched or cyclic halogenated alkyl groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxy groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxyalkyl groups having 2 to 20 carbon atoms, linear, branched or cyclic alkylcarbonyloxy groups having 2 to 20 carbon atoms, arylcarbonyloxy groups having 6 to 20 carbon atoms, linear, branched or cyclic alkylsulfonyloxy groups having 1 to 20 carbon atoms, branched or cyclic alkylsulfonyloxy groups, arylsulfonyloxy groups having 6 to 20 carbon atoms, linear, branched or cyclic alkoxycarbonyl groups having 2 to 20 carbon atoms, or linear, branched or cyclic alkoxycarbonylalkyl groups having 3 to 20 carbon atoms, and $\mathbf{X}^1\mathbf{s}$ may be the same or different and represent -O- or $-CR^{7}_{2}$ - (wherein, R^{7} represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms(.).) j represents an integer of 0 or 1 to 3.], and contains at least a structural unit [B] of the

following general formula [3]:

[wherein, R^8 to R^{11} each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, and X^2 s may be the same or different and represent -O- or $-CR^{12}_{2}$ - (wherein, R^{12} represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.). m represents an integer of 0 or 1 to 3.], and/or a structural unit [C] of the following general formula [4]:

10

[wherein, R^{13} to R^{16} each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, and X^3 s may be the same or different

10

15

20

and represent -O- or $-CR^{17}_{2}$ - (wherein, R^{17} represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.). One of Y^1 and Y^2 represents -(C=0)- and the other of Y^1 and Y^2 represents $-CR^{18}_{2}$ - (wherein, R^{18} represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.). n represents an integer of 0 or 1 to 3.],

wherein at least one of X¹ in the structural unit [A] of the general formula [1], X² in the structural unit [B] of the general formula [3] and X³ in the structural unit [C] of the general formula [4] represents -O-, and the molar ratio of [A]/([B] and [C]) is 0/100 to 99/1, and the ratio of the weight-average molecular weight Mw to the number-average molecular weight Mn (Mw/Mn) is 1.0 to 2.0.

- 2. The hydrogenated ring-opening metathesis polymer according to Claim 1 wherein the molar ratio of the structural unit [A] of the general formula [1] to the structural unit [B] of the general formula [3] and the structural unit [C] of the general formula [4] ([A]/([B] and [C])) is 25/75 to 90/10.
- 3. The hydrogenated ring-opening metathesis polymer according to Claim 1 wherein the molar ratio of the struc-

tural unit [A] of the general formula [1] to the structural unit [B] of the general formula [3] and the structural unit [C] of the general formula [4] ([A]/([B] and [C])) is 30/70 to 85/15.

5

10

15

- 4. The hydrogenated ring-opening metathesis polymer according to Claim 1 wherein at least one of X^1 in the structural unit [A] of the general formula [1], X^2 in the structural unit [B] of the general formula [3] and X^3 in the structural unit [C] of the general formula [4] represents -O-, and the others represent -CH₂-.
- 5. The hydrogenated ring-opening metathesis polymer according to Claim 1 wherein a functional group having a tertiary ester group of a cyclic alkyl of the general formula [2] selected as at least one of R¹ to R⁴ in the general formula [1] is a 1-alkylcyclopentyl ester, 1-alkylnorbotnyl ester or 2-alkyl-2-adamantyl ester.
- 6. The hydrogenated ring-opening metathesis polymer according to Claim 1 wherein \mathbf{W}^1 in the general formula [2] represents a single bond.
- 7. The hydrogenated ring-opening metathesis polymer according to Claim 1 wherein the material further contains,

if necessary, a structural unit [D] of the following general formula [5]:

$$\begin{array}{c|c}
 & X^4 \\
 & X^4 \\
 & P \\
 & R^{19} \\
 & R^{20} \\
 & R^{21}
\end{array}$$
[6]

[wherein, at least one of R¹⁹ to R²² represents a functional group having a carboxyl group of the following general formula [6]:

(wherein, the chain line represents a connecting means.

R²³ represents a hydrogen atom, a linear, branched or cy
clic alkyl group having 1 to 10 carbon atoms, a linear,

branched or cyclic alkoxyalkyl group having 2 to 10 carbon

atoms, or a linear, branched or cyclic acyl group having 1

to 10 carbon atoms. W² represents a single bond or a

(k+2)-valent hydrocarbon group having 1 to 10 carbon atoms.

q represents 0 or 1.) and the remaining groups of R¹⁹ to

R²² are selected each independently from a hydrogen atom,

10

15

linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms, halogens, linear, branched or cyclic halogenated alkyl groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxy groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxyalkyl groups having 2 to 20 carbon atoms, linear, branched or cyclic alkylcarbonyloxy groups having 2 to 20 carbon atoms, arylcarbonyloxy groups having 6 to 20 carbon atoms, linear, branched or cyclic alkylsulfonyloxy groups having 1 to 20 carbon atoms, branched or cyclic alkylsulfonyloxy groups, arylsulfonyloxy groups having 6 to 20 carbon atoms, linear, branched or cyclic alkoxycarbonyl groups having 2 to 20 carbon atoms, or linear, branched or cyclic alkoxycarbonylalkyl groups having 3 to 20 carbon atoms, and $\mathbf{X}^4\mathbf{s}$ may be the same or different and represent -O- or $-CR^{24}_2$ - (wherein, R^{24} represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.). p represents an integer of 0 or 1 to 3.1.

8. The hydrogenated ring-opening metathesis polymer according to Claim 7 wherein the molar ratio of the structural unit [A] of the general formula [1], the structural unit [B] of the general formula [3] and the structural unit [C] of the general formula [4] to the structural unit [D] of the general formula [5] ([A]+[B]+[C])/[D] is from 100/0

to 20/80.

- 9. The hydrogenated ring-opening metathesis polymer according to Claim 7 wherein X^4 in the general formula [5] represents -O- or -CH₂-.
 - 10. The hydrogenated ring-opening metathesis polymer according to Claim 7 wherein W^2 in the general formula [6] represents a single bond.

10

5

11. The hydrogenated ring-opening metathesis polymer according to Claim 1 wherein the material further contains, if necessary, a structural unit [E] of the following general formula [7]:

[7]

15

[wherein, at least one of R²⁵ to R²⁸ represents a functional group having a carboxylate group of the following general formula [8]:

15

20

[8]

(wherein, the chain line represents a connecting means. R²⁹ represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, a linear, branched or cyclic alkoxyalkyl group having 2 to 10 carbon atoms, or a linear, branched or cyclic acyl group having 1 to 10 carbon atoms. R^{30} represents a linear or branched alkyl group having 1 to 10 carbon atoms, a linear, branched or cyclic alkoxyalkyl group having 2 to 10 carbon atoms, or a linear, branched or cyclic halogenated alkyl group having 1 to 20 carbon atoms. W^3 represents a single bond or a (k+2)-valent hydrocarbon group having 1 to 10 carbon atoms. s represents 0 or 1.) and the remaining groups of ${\ensuremath{\mathsf{R}}}^{25}$ to ${\ensuremath{\mathsf{R}}}^{28}$ are selected each independently from a hydrogen atom, linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms, halogens, linear, branched or cyclic halogenated alkyl groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxy groups having 1 to 20 carbon atoms, linear, branched or cyclic alkoxyalkyl groups having 2 to 20 carbon atoms, linear, branched or cyclic alkylcarbonyloxy groups having 2 to 20 carbon atoms, arylcarbonyloxy groups having 6 to 20 carbon atoms, linear, branched or cyclic alkylsul-

10

15

fonyloxy groups having 1 to 20 carbon atoms, branched or cyclic alkylsulfonyloxy groups, arylsulfonyloxy groups having 6 to 20 carbon atoms, linear, branched or cyclic alkoxycarbonyl groups having 2 to 20 carbon atoms, or linear, branched or cyclic alkoxycarbonylalkyl groups having 3 to 20 carbon atoms, and x⁵s may be the same or different and represent -O- or -CR³¹₂- (wherein, R³¹ represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms.). r represents an integer of 0 or 1 to 3.].

- 12. The hydrogenated ring-opening metathesis polymer according to Claim 11 wherein the molar ratio of the structural unit [A] of the general formula [1], the structural unit [B] of the general formula [3] and the structural unit [C] of the general formula [4] to the structural unit [E] of the general formula [7] ([A]+[B]+[C])/[E] is from 100/0 to 40/60.
- 13. The hydrogenated ring-opening metathesis polymer according to Claim 11 wherein \mathbf{x}^5 in the general formula [7] represents -0- or -CH₂-.
- 14. The hydrogenated ring-opening metathesis polymer 25 according to Claim 11 wherein W^3 in the general formula [7]

represents a single bond.

- 15. The hydrogenated ring-opening metathesis polymer according to Claim 11 wherein the number-average molecular weight in terms of polystyrene measured by GPC is from 500 to 200,000.
- 16. A method of producing a hydrogenated ring-opening metathesis polymer of Claim 1, comprising

using, if necessary, a cyclic olefin monomer of the following general formula [9]:

(wherein, R^1 to R^4 , X^1 and j are as defined in Claim 1.) and, at least a cyclic olefin monomer of the following general formula [10]:

(wherein, R^8 to R^{11} , X^2 and m are as defined in the general formula [3] in Claim 1.) and/or a cyclic olefin monomer of the following general formula [11]:

- (wherein, R^{13} to R^{16} , X^3 , Y^1 , Y^2 and n are as defined in the general formula [4] in Claim 1.), wherein at least one of X^1 in the general formula [9], X^2 in the general formula [10] and X^3 in the general formula [11] represents -O-, and
- polymerizing these monomers with a ring-opening metathesis catalyst, and hydrogenating the resulted polymer in the presence of a hydrogenation catalyst.
- 17. The production method according to Claim 16
 wherein the charging molar ratio of a cyclic olefin monomer
 of the general formula [9] to a cyclic olefin monomer of
 the general formula [10] and a cyclic olefin monomer of the
 general formula [11] is from 0/100 to 99/1.
- 18. The production method according to Claim 16
 20 wherein the charging molar ratio of a cyclic olefin monomer

of the general formula [9] to a cyclic olefin monomer of the general formula [10] and a cyclic olefin monomer of the general formula [11] is from 25/75 to 90/10.

- 19. The production method according to Claim 16 wherein at least one of X¹ in a cyclic olefin monomer of the general formula [9], X² in a cyclic olefin monomer of the general formula [10] and X³ in a cyclic olefin monomer of the general formula [11] represents -O-, and the others represent -CH₂-.
- 20. The production method according to Claim 16 wherein a functional group having a tertiary ester group of a cyclic alkyl of the general formula [2] selected as at least one of R¹ to R⁴ in the general formula [9] is a 1-alkylcyclopentyl ester, 1-alkylnorbotnyl ester or 2-alkyl-2-adamantyl ester.
- 21. The production method according to Claim 16
 20 wherein at least part of a tertiary ester group of a cyclic alkyl in the general formula [2] is decomposed, after hydrogenation, into a carboxyl group.
- 22. The production method according to Claim 16 . 25 wherein the method further uses a cyclic olefin monomer of

the following general formula [12]:

(wherein, R^{25} to R^{28} , X^5 and r are as defined in the general formula [7] in Claim 11.).

5

- 23. The production method according to Claim 22 wherein at least part of an ester group is decomposed, after hydrogenation, into a carboxyl group.
- 24. The production method according to Claim 16 wherein the ring-opening metathesis catalyst is a living ring-opening metathesis catalyst.
- 25. The production method according to Claim 16
 wherein polymerization is conducted with a living ringopening metathesis catalyst in the presence of an olefin or
 diene.