Γλώσσες Προγραμματισμού ΙΙ Άσκηση 11 Στατική Ανάλυση

Καπελώνης Ελευθέριος

A.M. 03116163

Άσκηση 3.1

Το ακόλουθο πρόγραμμα σε Java, ενώ δε μπορεί να οδηγήσει σε runtime type error, δεν περνάει το type checking. Συγκεκριμένα, η μέθοδος foo επιστρέφει πάντα το true που έχει τύπο boolean. Ωστόσο, το signature δηλώνει ότι η μέθοδος επιστρέφει Object και έτσι η Java δε μας αφήνει να το χρησιμοποιήσουμε σε εντολή συνθήκης.

```
public class Test {
    public static Object foo() {
        return true;
    }
    public static void main(String[] args) {
        if (foo()) {
            System.out.println(42);
        }
    }
}
```

Άσκηση 3.2

Στην Java, οι πίνακες είναι covariant που σημαίνει ότι ο πίνακας A[] είναι υποτύπος του πίνακα B[] αν το A είναι υποτύπος του B. Επομένως, δεδομένου ότι η κλάση Integer είναι υποκλάση της Number, η κλάση Integer[] είναι υποκλάση της Number[] και ο ακόλουθος κώδικας περνάει το type checking.

```
public class Test2 {
    public static void main(String[] args) {
        Integer[] integers = new Integer[10];
        Number[] numbers = integers;
```

```
numbers[0] = 1.2;
}
```

Παρόλα αυτά, το πρόγραμμα όταν εκτελεστεί παράγει το εξής σφάλμα:

```
Exception in thread "main" java.lang.ArrayStoreException: java.lang.Double
    at Test2.main(Test2.java:6)
```

το οποίο οφείλεται στο γεγονός ότι προσπαθούμε να βάλουμε double σε έναν πίνακα από integers.

Άσκηση 3.9

Αρχικά το x είναι ένας pointer σε ακέραιο (το 1) και το y είναι ένας pointer σε pointer σε ακέραιο (το 2). Η τελευταία εντολή αναθέτει στο x την τιμή του y.

Έχουμε ότι:

```
[[x]] = \uparrow int [[y]] = \uparrow [[alloc 2]] = \uparrow \uparrow int [[x]] = [[y]] που από term equality axiom συνεπάγεται ότι int = <math>\uparrow int
```

Ενώ οι δύο πρώτοι περιορισμοί ικανοποιούνται, ο τελευταίος δεν ικανοποιείται αν θεωρήσουμε ότι ο τύπος του pointer δεν είναι ακέραιος.