

Masterproef

Nick Michiels

Promotor:

Prof. dr. Philippe Bekaert

Begeleiders:

dr. Bert De Decker

dhr. Tom Haber

Masterproef voorgedragen tot het behalen van de graad van Master in de Informatica, afstudeerrichting Multimedia

Academiejaar 2010-2011

Inleiding

- Inscannen van een scène
- Patronen projecteren
 - Geen feature detection
- Camera en projector
 - Vrij bewegen
- Frames aaneenplakken

Pipeline

Opstelling

- 1 computer
- 1 projector
- 2 Point Grey Flea camera's

Pipeline - Calibratie

Calibratie

- Belangrijk
- # correspondenties ~ kwaliteit
 - Laser
 - Time-multiplexing (gray-codes)
- Multi-Camera Self-Calibration [Svoboda et al.]
 - Correspondenties zoeken
 - Projectiematrix (interne en externe)
 - Radiale correctie

Pipeline – Textuur toevoegen

Textuur toevoegen (patronen)

- Verschillende soorten
 - Time-multiplexed en spatial neighborhood
- De Bruijn spatial neighborhood patronen
 - Geen dubbele overeenkomsten

De Bruijn Patronen

- Multi-Slit / Stripe / Hybride
- Variaties in
 - Orde: verschillende kleuren gebruikt
 - Window: de grootte van een code (opeenvolgende kleuren)

Multi-slit patronen

Orde: 4, window: 3

Orde: 4, window: 3

Orde: 3, window: 4

Orde: 4, window: 4

De Bruijn Patronen

Stripe patronen

Orde: 4, window: 3

Orde: 4, window: 3

Hybride patronen

- Zichtbaarheid
- De Bruijn sequenties noodzakelijk?
- Kiezen in functie van het algoritme

Pipeline – Rectification

Rectification

- Punt in 1 camera mapt op epipolaire lijn in andere
 - Zoekruimte 2D
- Beter: beelden rectificeren
 - Epipolaire lijnen parallel
 - Zoekruimte 1D
- Puntgebaseerd
 - OpenCV
 - Matlab Rectification Kit

(a) Input rechts

(b) Input links

(d) Gerectificeerd links

Pipeline – Correspondenties

Correspondenties zoeken

- Scanlines op elkaar mappen (na rectification)
- Eerste methode (naïef)
 - De Bruijn kleurencodes zoeken in de twee scanlines

Slechte kwaliteit, veel ruis

- Beter: global optimization techniek
 - Dynamic programming

Dynamic Programming

- Global optimization
 - Twee scanlines met een zo laag mogelijke cost matchen
- Eén-aan-één pixel kosten
 - RMS distance: $score(q, e) = \sqrt{(q.red e.red)^2 + (q.green e.green)^2 + (q.blue e.blue)^2}$
 - Scoring matrix
- Kostmatrix
 - Pad met laagste kost (back-tracking)

Dynamic Programming

Pipeline – 3D reconstruction

3D Reconstructie

- Dispariteiten omzetten naar 3D wereldcoördinaten
- = Triangularisatie
- Backprojectie 2D punten
- Snijpunt zoeken tussen de twee lijnen
- Beste oplossing (SVD)

3D Reconstructie

Surface reconstruction

3D Reconstructie

Paspop

Pipeline – Registratie

Registratie

- Automatische alignatie van een data puntenwolk in een model puntenwolk
- Populairste: Iterative Closest Point (ICP)
- Resultaat: bekomen van een volledige puntenwolk
- Standaard algoritme
 - Iteratief punten selecteren op basis van kortste punten
 - Beste transformatie zoeken
 - Singular Value Decomposition (SVD)

Registratie

- Gebruik extra geometrie [Bae en Lichti]
 - Correspondentieparen zoeken op basis van extra geometrie
 - Normalen, change in curvature
 - Op basis van k neighborhood punten
 - Computationeel zwaar
 - Goed voor scènes met meer diepte

Resultaten

- 3D reconstructie
 - Background substraction
 - Dense dieptemap
 - Optimalisatie: downsampling (1/10)
 - Verbetering: second pass dynamic programming [Zhang et al.]

(a) 3D reconstructie zonder downsampling

(b) 3D reconstructie met downsampling

(c) 3D reconstructie met downsampling en upsampling

Resultaten

Registratie

- Puntenwolken best zo veel mogelijk overlappen
- Robuuster met extra geometrie
- Meerdere lokale minima
- Translatie is het grootste probleem
- Beste oplossing: gebruik maken van extra features
- Traag (zeker extra geometrie)

Conclusie

- Dense dieptemappen
 - Door toevoeging extra textuur
 - Global optimization techniek
 - Weinig ruis
- Post processing technieken (surface reconstruction)
- Heel aantal variaties op ICP onderzocht
- Kwaliteit registratie afhankelijk van de scène
 - Genoeg diepte
 - Uitbreiding: feature detection

Vragen?

"What you see is what you get in 3D!"

