language for protocol

January 23, 2018

1 A language for actors

Expressions:

$$e ::= n \mid b \mid e \oplus e$$
.

Types for expressions will be required to be finite:

$$\tau ::= \mathbb{Z}_q \mid \mathsf{bool} \mid \tau \times \tau \mid \dots$$

Let $\mathcal{I} = \{i_1, i_2, \dots\}$ be a set of *interface labels* with associated types τ_i . Let Dist and Var be supplies of labels for distributions and variables. Each distribution $D \in Dist$ is assigned a type τ_D of the form $\tau_1 \to \dots \to \tau_k \to \mathcal{D}(\tau)$. (Function and distribution types do not appear elsewhere in the language.) Messages are pairs of values and interface labels.

Syntax for actors:

```
\begin{aligned} \operatorname{decl} &::= \epsilon \mid \operatorname{handler}; \ \operatorname{decl} \\ \operatorname{handler} &::= \operatorname{onInput} i \ v \ c \ \text{ where } i \in \mathcal{I}, \ v \in \operatorname{\mathsf{Var}} \\ c &::= \operatorname{if} e \ c \ c \\ & \mid \operatorname{\mathsf{send}} e \to i \\ & \mid x \leftarrow D \ e_1 \ \ldots \ e_k; \ c \ \text{ where } d \in \mathit{Dist} \\ & \mid x \leftarrow \operatorname{\mathsf{get}}; \ c \\ & \mid \operatorname{\mathsf{put}} e; \ c \end{aligned}
```

Upon activation, actors may receive exactly one message and deliver exactly one message. Sends are guarded behind receives.

1.1 Typing

Let Γ be a typing environment, containing of variable assignments $x \mapsto \tau$ as well as a type for the state $\mathsf{St}(c) \mapsto \tau$. The main typing relation is then $\Gamma \vdash c$, stating that all expressions in c are well typed, all samplings in c are of the correct arity and type, and all stateful commands in c are well-typed.

Then, given a declaration d, write $\vdash d$ to mean that all of the commands in d are well-typed, and all commands in d share the same type for the state.

Given a message m = (v, i), write $\vdash (v, i)$ to mean $\vdash v : \tau_i$.

1.2 Interface typing

We have an typing relation $\vdash d : I O$ on declarations, where I and O are subsets of \mathcal{I} .

$$\frac{\vdash d: I \ O \quad \vdash c: O' \quad I \cap (O \cup O') = \varnothing}{\vdash \text{onInput} \ i \ v \ c; \ d: I \cup \{i\} \ O \cup O'}$$

Above $\vdash c : O$ is the typing relation defined by

$$\vdash \mathsf{send}\ e \to i : \{i\}$$

and the appropriate propogation rules.

Given a declaration d, let In(d), Out(d) be the set of input and output messages to d (i.e., elements of Msg whose interface labels agree with the d). Similarly, for commands c, let Out(c) be the set of output interfaces of c.

1.3 Semantics

For each type τ , we have the semantic domain $\llbracket \tau \rrbracket$. Let \mathcal{D} be the monad of finite probability distributions. A distribution environment Φ is a mapping $D \in Dist \to \llbracket \tau_D \rrbracket$.

We may then give commands a denotational semantics $\llbracket c \rrbracket : \Phi \to \mathsf{St}(c) \to \mathcal{D}(\mathsf{Out}(c) \times \mathsf{St}(c))$. Then, we may lift to declarations in order to obtain the semantics $\llbracket d \rrbracket : \Phi \to \mathsf{In}(d) \to \mathsf{St}(d) \to \mathcal{D}(\mathsf{Out}(d) \times \mathsf{St}(d))$.

2 Systems

Our syntax for systems is:

$$S ::= decl \mid S S$$
.

We only need one combinator: S_1S_2 runs S_1 and S_2 in parallel and, if they share interface labels accordingly, these interfaces get connected together. If the interfaces of S_1 and S_2 are disjoint, then they are simply run in parallel. (In constructive crypto, there is a separate operator for parallel composition: assuming that interface labels are not reused, this is redundant.)

Lift the St typing assignment by declaring that $St(S_1S_2) = St(S_1) \times St(S_2)$.

Interface typing:

$$\frac{\vdash S_1 : I_1 \ O_1 \ \vdash S_2 : I_2 \ O_2}{\vdash S_1 S_2 : (I_1 \cup I_2) \setminus (O_1 \cup O_2) \ (O_1 \cup O_2) \setminus (I_1 \cup I_2)}$$

Lift the assignments In and Out according to the above rule. Define $\mathsf{Connect}(S_1, S_2) = (\mathsf{In}(S_1) \cap \mathsf{Out}(S_2)) \cup (\mathsf{Out}(S_1) \cap \mathsf{In}(S_2))$; $\mathsf{Connect}(S_1, S_2)$ are the message spaces for messages internal to S_1 and S_2 . If S_1 and S_2 do not have any interfaces in common, $\mathsf{Connect}(S_1, S_2)$ is empty.

Systems also implicitly come with an initialization distribution $\operatorname{init}(S)$, which is a distribution $D \in \operatorname{Dist}$ over $\operatorname{St}(S)$, which takes no arguments. This initialization distribution is lifted to compositions of systems in the obvious way.

System semantics: Systems are finally given the denotational semantics $[S]: \Phi \to \mathsf{In}(S) \to \mathsf{St}(S) \to \mathcal{D}(\mathsf{Out}(S) \times \mathsf{St}(S))_{\perp}$. (We adjoin \perp because systems may diverge.) This is defined to be $[S_1S_2]\phi m(s_1,s_2) := \mathsf{Run}_{S_1,S_2} \ m\ (s_1,s_2)$, where

 $\mathsf{Run}_{S_1,S_2} : \mathsf{In}(S_1S_2) \cup \mathsf{Connect}(S_1,S_2) \to \mathsf{St}(S_1S_2) \to \mathcal{D}(\mathsf{Out}(S_1S_2) \times \mathsf{St}(S_1S_2))_\bot$ is given by:

```
1: if m \in In(S_1) then
         (m', s_1') \leftarrow \llbracket s_1 \rrbracket \phi m s_1
 2:
 3:
         if m' \in \text{Out}(S_1S_2) then
              Return (m', (s'_1, s_2))
 4:
 5:
              (m \in \mathsf{Connect}(S_1, S_2))
 6:
              Return Run m' (s'_1, s_2)
 7:
         end if
 8:
    else
 9:
         (m \in In(S_2))
10:
         (This case is symmetric)
11:
12: end if
```

The above is written monadically: line two is implicitly using the bind operation of D. The above algorithm continues to deliver the current message until an external interface is reached.

Equivalence of systems Below is a possible notion of bisimilarity of systems. Given two systems S and T such that In(S) = In(T) := In and Out(S) = Out(T) := Out, represented by their transistion functions $\delta_S = In \times St(S) \rightarrow \mathcal{D}(Out \times St(S))$, and similarly for T (fixing a particular distribution environment). Since St(S) is guaranteed to be finite, we may lift δ_S to operate on distributions of states, rather than single states.

Given a distribution D over pairs, let $\pi_1 D$ be the left projection of D, and for $x \in \mathsf{supp}(\pi_1 D)$, let $D_{|x}$ be the conditional distribution over the right projection of D, where the left component is required to be equal to x.

Then, for two distributions μ over $\mathsf{St}(S)$ and η over $\mathsf{St}(T)$, define

$$\mu \sim_1 \eta \text{ if } \forall m \in \mathsf{In}, \pi_1(\delta_S \ m \ \mu) \equiv \pi_1(\delta_T \ m \ \eta)$$

and

$$\mu \sim_{k+1} \eta \text{ if } \mu \sim_1 \eta \text{ and } \forall m' \in \mathsf{supp}(\pi_1(\delta_S\ m\ \mu)), (\delta_S\ m\ \mu)_{|m'} \sim_k (\delta_T\ m\ \eta)_{|m'}.$$

Since $\mu \sim_1 \eta$, both conditional distributions on the right hand side are well-defined.

Finally, let \sim be $\lim_{i} \sim_{i}$. Two systems are equivalent if $\operatorname{init}(S) \sim \operatorname{init}(T)$.