Week 9: Value Iteration

Monday, April 11, 2022 8:57 AM

Taking the example world:

The world contains the set of states $S = \{S1, S_2, S_3, SF1, SF2\}$ where S1 = initial state and SF1 are final states:

→ The world has the following set of Actions A = {→, ←}, where:
o → = agent moves to left, one cell.
o ←= agent moves to right, one cell.

 \rightarrow The reward function $f_{\mathbf{R}}(s,a,s_f) = f_{\mathbf{R}}(s_f)$ only depends on the state that the agent arrives to.

Now, what we want to solve is the value of V(s), and V(s) is:

$$V(SF_1)$$
 $V(S_1)$ $V(S_2)$ $V(SF_3)$ $V(SF_3)$ $V(S)'_S$

$$(SF_1) - (S_1) - (S_2) - (S_3) - (SF_3)$$

$$(SF_3) - (SF_3) - (SF_3)$$

$$(SF_4) - (SF_4) - (SF_3)$$

$$(SF_4) - (SF_4) - (SF_4)$$

Now the excel file, choose sheet with Ft(s):

	Transition Model		
	a1= ←	a2= →	
s1	sF1	s2	
s2	s 1	s3	
s3	s2	sF2	
sF1	sF1	s 1	
sF2	s3	sF2	

We also said this is an example of the case where we have a defined politic $f_{rr}(s)$

THE ANALYTICAL SOLUTION (solving the linear system).

Similar to what we wrote for last section's small example: (50)

$$N(2) = L^{6}(2^{1} L^{4}(2)^{1} 2^{4}) + A N(2^{4})$$
 Det

We need to use:

$$V(s) = \sum_{\substack{s_1 \in S \\ \text{five terms in} \\ \text{the cell's sum}}} P_{MT}\left(s_1 \mid s, f_{\pi}(s)\right) \left[f_{\mathbb{R}}(s, f_{\pi}(s), s_1) + \forall V(s_1)\right] \qquad \text{Non Det}$$

Then, you iterate in the same way.