Etude de suites

Exercice 1

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de

$$u_0=2$$
 ; $u_{n+1}=\frac{1}{3}u_n+1$ pour tout $n\in\mathbb{N}$

Calculer les 4 premiers termes de la suite (u_n)

2. On considère la suite $(v_n)_{n\in\mathbb{N}}$ dont le terme de rang nest définie par la relation :

$$v_n = \frac{1}{2} \cdot \left(\frac{1}{3}\right)^n + \frac{3}{2}$$

Calculer les 4 premiers termes de la suite (v_n) .

- 3. Faire une conjecture quant à l'égalité des suites (u_n) et $(v_n).$
- a. Donner en fonction de n, la valeur de : $v_{n+1} - \frac{1}{3}v_n$
 - b. En déduire l'égalité des suites (u_n) et (v_n) .

Exercice 2

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 5$$
 ; $u_n = \left(1 + \frac{2}{n}\right) \cdot u_{n-1} + \frac{6}{n}$ pour $n \in \mathbb{N}^*$

1. a. Compléter le tableau suivant :

n	0	1	2	3	4	5	6
u_n							

b. Faire une conjecture sur la nature de la suite (d_n) définie par:

$$d_n = u_{n+1} - u_n$$

- 2. On considère la suite (v_n) définie par : $v_n = 4n^2 + 12n + 5$ pour tout $n \in \mathbb{N}^*$
 - a. Donner l'expression simplifiée de l'expression v_{n+1} en fonction de n.
 - b. Simplifier l'expression de : $\left(1+\frac{2}{n+1}\right)\cdot v_n + \frac{6}{n+1}$. $(On\ utilisera\ la\ factorisation:$ $4x^3 + 24x^2 + 41x + 21 = (x+1)(4x^2 + 20x + 21)$
 - c. Que peut-on dire des suites (u_n) et (v_n) .

Exercice 3

1. a. On considère la suite (u_n) définie par la relation : $u_0 = 0$; $u_{n+1} = \frac{1}{2 - u_n}$ pour tout $n \in \mathbb{N}$

Déterminer les quatre premiers termes de la suite (u_n) .

b. On considère la suite (v_n) définie par la relation : $v_n = \frac{n}{n+1}$ pour tout $n \in \mathbb{N}$.

Déterminer les quatre premiers termes de la suite (v_n) .

- c. Quelle conjecture peut-on faire à propos des suites (u_n) et (v_n) ?
- 2. a. Simplifier l'expression suivante : $v_{n+1} \cdot (2-v_n)$
 - b. Justifier que les deux suites (u_n) et (v_n) sont égales.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ dont le terme de rang n est donné par la formule :

$$u_n = n^2 - 7n + 1$$

1. A l'aide de la calculatrice, compléter le tableau cidessous:

n	0	1	2	3	4	5	6	7	8	9	10
u_n											

2. Après avoir donner le tableau de variation de la fonction f dont l'image de x est défini par :

$$f(x) = x^2 - 7x + 1$$

Etablir que la suite (u_n) est croissante à partir du rang

Exercice 5

1. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par : $u_n = -2n^2 - 3n + 2$ pour tout $n \in \mathbb{N}$

Etudier la monotonie de chacune des suites ci-dessous, en étudiant la fonction f vérifiant la relation :

$$u_n = f(n)$$
 pour tout $n \in \mathbb{N}$

2. La suite $(v_n)_{n\in\mathbb{N}}$ est définie par :

$$v_n = \frac{2n^2 + 1}{2n + 5} \quad \text{pour tout } n \in \mathbb{N}$$

On considère la fonction f définie par la relation : $f(x) = \frac{2x^2 + 1}{2x + 5}$

$$f(x) = \frac{2x^2 + 1}{2x + 5}$$

- a. Donner l'ensemble de définition \mathcal{D}_f de la fonction f.
- b. Etablir que la fonction f' dérivée de la fonction f ad-

met pour expression sur
$$\mathcal{D}_f$$
:

$$f'(x) = \frac{4x^2 + 20x - 2}{(2x+5)^2}$$

- c. Dresser le tableau de variation de la fonction f.
- d. Justifier que la suite (u_n) est croissante à partir du rang 1.
- e. Peut-on dire que la suite (v_n) est croissante sur \mathbb{N} ?

Exercice 6

Déterminer la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$ définie par la formule explicite suivante :

$$u_n = \frac{n^2 - 1}{\sqrt{n}}$$
 pour tout $n \in \mathbb{N}$.

Exercice 7

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0=1$; $u_{n+1}=u_n-{u_n}^2-1$ pour tout $n\in\mathbb{N}$

$$=1$$
 ; $u_{n+1} = u_n - u_n^2 - 1$ pour tout $n \in \mathbb{N}$

1. A l'aide de la calculatrice, compléter le tableau cidessous:

n	0	1	2	3	4
u_n					

En étudiant la différence de deux termes consécutifs, montrer que la suite (u_n) est décroissante.

Exercice 8

Dans cet exercice, on utilisera la méthode de la différence pour prouver la monotonie des suites :

1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite dont le terme de rang n est définie par :

$$u_n = -32n + 102$$
 pour tout $n \in \mathbb{N}$

Montrer que cette suite est décroissante.

2. Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite dont le terme de rang n est définie par :

$$v_n = \sqrt{2n-1}$$
 pour tout $n \in \mathbb{N}^*$

Montrer que cette suite est croissante.

3. Soit $(w_n)_{n\in\mathbb{N}^*}$ la suite dont le terme de rang n est définie par :

$$w_n = 2n - \frac{25}{n}$$
 pour tout $n \in \mathbb{N}^*$

Montrer que la suite (w_n) est croissante.

Exercice 9

Dans cet exercice, on mettra en évidence la monotonie des suites par la méthode des quotients.

1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_n = \frac{3^n}{4}$ pour tout $n \in \mathbb{N}$.

Montrer que (u_n) est strictement croissante.

2. La suite $(v_n)_{n\in\mathbb{N}}$ est définie par : $v_n = \frac{n}{2^{n+1}}$ pour tout $n\in\mathbb{N}$

Montrer que (v_n) est strictement décroissante à partir du rang 2.

Exercice 10

1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_n = \frac{3^n}{2n+1}$$
 pour tout $n \in \mathbb{N}$

- a. Simplifier l'expression : $\frac{u_{n+1}}{u_n} 1$.
- b. En déduire les variations de la suite (u_n) sur \mathbb{N} .
- 2. On considère la suite $(v_n)_{n\in\mathbb{N}}$ définie par :

$$v_n = \frac{1-n}{1+n}$$
 pour tout $n \in \mathbb{N}$

- a. Déterminer une expression simplifiée de $v_{n+1}-v_n$.
- b. En déduire les variations de la suite (v_n) sur \mathbb{N} .

Exercice 11

1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_n = \frac{5^n}{n+2} \quad \text{pour tout } n \in \mathbb{N}$$

2. Soit $(v_n)_{n\in\mathbb{N}}$ définie par la relation explicite :

$$v_n = n^3 - 2n^2 - 3n$$

- a. Donner l'expression réduite de : $v_{n+1}-v_n$.
- b. En déduire que la suite (v_n) est croissante pour n supérieur à 2.

Exercice 12

1. On considère la suite (u_n) définie par :

$$u_n = \frac{n^2 + 10}{2n}$$
 pour tout $n \in \mathbb{N}^*$

Justifier que (u_n) est croissante à partir du rang 3.

2. On considère la suite (v_n) définie par :

$$v_n = \frac{n}{2^{n+1}}$$
 pour tout $n \in \mathbb{N}^*$

Montrer que (v_n) est décroissante à partir du rang 2.

Exercice 13

On considère la suite géométrique (v_n) de premier terme 24 et de raison $\frac{1}{2}$.

- 1. Donner les quatre premiers termes de la suite (v_n) .
- 2. Exprimer la valeur du terme v_n en fonction de son rang
- 3. Démontrer que la suite (v_n) est décroissante.

Exercice 14

On considère la suite arithmétique (u_n) de premier terme 5 et de raison 2.

- 1. Donner les quatre premiers termes de la suite (u_n) .
- 2. Exprimer la valeur du terme u_n en fonction de son rang
- 3. Démontrer que la suite (u_n) est croissante.

Exercice 15

Dans chaque cas, préciser, si possible, le sens de variation des

- 1. (u_n) est une suite arithmétique dont le premier terme est positif et la raison négative.
- 2. (v_n) est une suite géométrique dont le premier terme est négatif et la raison est strictement supérieure à 1.
- 3. (w_n) est une suite géométrique dont le premier terme est positif et la raison est négative.

Exercice 16

On considère la suite (u_n) définie par :

$$u_0 = 3$$
 ; $u_{n+1} = \frac{3}{4} \cdot u_n + \frac{1}{2}$ pour tout entier $n \in \mathbb{N}$

1. On considère la suite (v_n) définie par la relation suivante pour tout entier naturel n:

$$v_n = \frac{1}{2} \cdot u_n - 1$$

- a. Etablir l'égalité ci-dessous pour tout entier naturel n : $v_{n+1} = \frac{3}{4} \cdot v_n$
- b. Donner le sens de variation de la suite (v_n) .
- 2. En déduire le sens de variation de la suite (u_n) .

Exercice 17

On considère la suite (u_n) géométrique de premier terme 5

et de raison $\frac{2}{3}$.

On note S_n la somme des (n+1) premiers termes de la suite (u_n) : $S_n = u_0 + u_1 + \cdots + u_{n-1} + u_n$

- 1. Justifier que la suite (S_n) est croissante.
- 2. Donner l'expression du terme S_n en fonction de n.
- 3. a. A l'aide de la calculatrice, compléter le tableau cidessous en arrondissant les valeurs au millième près :

n	0	1	2	10	20	24
S_n						

b. Quelle conjecture peut-on faire sur la valeur des termes de la suite (S_n) lorsque la valeur de n devient très grand?

Exercice 18

Un coureur se lance un défi : il souhaite faire le tour de l'Europe.

Le premier jour, il parcourt $50\,km$. Par la fatigue, de jour en jour, sa distance parcourue quotidiennement se réduit de $1\,\%$.

On note u_n la longueur parcourue par le coureur le n-ième jour. En supposant ue le coureur poursuit indéfiniment sa course, on obtient une suite (u_n) définie pour tout entier naturel non-nul.

- 1. Déterminer la valeur des quatre permiers termes de la suite (u_n) .
- 2. a. Quelle est la nature de la suite (u_n) ? Donner les élèments caractéristiques de la suite (u_n) .
 - b. Exprimer le terme u_n en fonction du rang n.
 - c. Quelle distance sera parcourue par le coureur le 100^e jour? On arrondira la valeur au dixième de kilomètre.
- 3. On note S la somme des n premiers termes de la suite (u_n) : $S_n = u_1 + u_2 + \cdots + u_n$
 - a. Exprimer la somme S_n en fonction du rang n.
 - b. Compléter le tableau suivant en arrondissant les valeurs au dixième de kilomètres :

n	10	100	500	750	1000
u_n					

c. Quelle conjecture peut-on faire sur la limite de la somme S_n quand la valeur de n devient de plus en plus grand?

Exercice 19

On construit le flocon de Heige Von Koch de la manière suivante :

- On part d'un segment [AB] de longueur 9 cm.
- Pour passer d'une étape à la suivante, en découpant chaque segment présent sur la figure en trois parties égales, puis en enlevant le segment "central" et en y construisant un triangle isocèle rectangle.

Voici la représentation des 6 premières étapes de cette construction :

A chaque étape n, on note u_n la longueur de la "ligne brisée" ainsi obtenue. On construit ainsi une suite de nombres (u_n) définie pour tout entier naturel n.

- 1. Déterminer la mesure des trois premiers termes de la suite (u_n) .
- 2. a. A l'étape n, exprimer le nombre de segments s_n formant la "ligne brisée" en fonction de n.
 - b. A l'étape n, exprimer la longueur ℓ_n de chacun des segments formant la "ligne brisée" en fonction de n.
- 3. On note L_n la longueur de la "ligne brisée" à l'étape n. On obtient ainsi une suite (L_n) de termes numériques définie pour tout entier naturel n.
 - a. Exprimer chaque terme de la suite (L_n) en fonction de son rang n.
 - b. Compléter le tableau suivant en arrondissant les valeurs au centième de centimètre près :

n	0	1	10	20	30
L_n					

Exercice 20

On considère la fonction f définie sur $\left[0\,;1\right]$ par la relation :

$$f(x) = \frac{5}{4} - \frac{1}{x+1}$$

1. a. Etablir les valeurs suivantes :

$$f\left(\frac{1}{4}\right) = \frac{9}{20}$$
 ; $(f \circ f)\left(\frac{1}{4}\right) = \frac{65}{116}$

b. Déterminer la valeur de : $(f \circ f \circ f) (\frac{1}{4})$

Ci-dessous est donnée la courbe représentative \mathscr{C}_f de la fonction f dans le repère (O; I; J) orthonormé :

Donner les valeurs approchées au millième près des nombres suivants:

$$\bullet \ u_0 = \frac{1}{4} = \dots$$

•
$$u_0 = \frac{1}{4} = \dots$$
 • $u_1 = \frac{9}{20} \simeq \dots$

•
$$u_2 = \frac{65}{116} \simeq \dots$$
 • $u_3 = \frac{441}{724} \simeq \dots$

$$\bullet \ u_3 = \frac{441}{724} \simeq \dots$$

- b. Placer les valeurs u_2 et u_3 sur l'axe des abscisses.
- c. Placer les valeurs $f(u_1)$, $f(u_2)$ et $f(u_3)$ sur l'axe des ordonnées.
- a. Tracer le segment reliant les deux points $A_1(u_1;0)$ et $B_1(0; f(u_0))$.

Quelle est la nature du triangle OA_1B_1 .

b. Pour i allant de 1 à 3, on définit les points : $A_i(u_i;0) \text{ et } B_i(0;f(u_{i-1}))$

De quelles natures sont les triangles OA_iB_i ?

c. Placer les nombres u_4 et u_5 sur l'axe des abscisses définis par les relations:

$$f(u_3) = u_4$$
 ; $f(u_4) = u_5$

- 4. Génération des termes de la suite :
 - a. Saisir et exécuter ce programme dans le langage de programmation de votre choix.

$$\begin{array}{c} x \leftarrow \text{0,25} \\ \text{Pour i allant de 0 à 100} \\ x \leftarrow \frac{5}{4} - \frac{1}{x+1} \\ \text{Fin Pour} \end{array}$$

En fin d'exécution, quelle est la valeur de la variable x?

b. Quelle conjecture peut-on faire sur les termes de cette suite?

Exercice 21

On considère trois suites (u_n) , (v_n) et (t_n) dont les premiers termes ont été donnés dans la feuille de calcul ci-dessous :

	A	В	С	D
1	n	u_n	v_n	t_n
2	0	3	5	6
3	1	7	8	4
4	2	15	10	-8
5	3	31	11	-16
6	4	63	11	0
7	5	255	10	32

Vérifier que les formules ci-dessous sont vérifiées par les valeurs du tableau:

 \bullet B5 = 2*B4+1

C3 = C2 - A2 + 3

 $\bullet D6 = D5 - 2*D4$

Utiliser ces formules pour en déduire la formule de récurrence définissant chacun des termes de ces suites.

Exercice 22

- 1. On considère la suite (u_n) définie par : $u_0 = 2$; $u_{n+1} = 3 \cdot u_n + 1$ pour tout $n \in \mathbb{N}$
 - a. Déterminer les quatre premiers termes de la suite (u_n) .

On définit la suite (a_n) définie par la relation :

$$a_n = u_n + \frac{1}{2}$$

- b. Démontrer que pour tout $n \in \mathbb{N}$: $a_{n+1} = 3 \cdot a_n$
- c. Quelle est la nature de la suite (a_n) ? Donner les valeurs de ses éléments caractéristiques.
- d. En remarquant l'égalité $u_{n+1}-u_n=a_{n+1}-a_n$ pour tout $n \in \mathbb{N}$, en déduire le sens de variation de la suite $(u_n).$
- 2. On considère la suite (v_n) définie par : $v_0 = 1$; $v_{n+1} = v_n + 2 \cdot n + 3$ pour tout $n \in \mathbb{N}$
 - a. Déterminer les cinq premiers termes de la suite (v_n) .
 - b. Quelle conjecture peut-on émettre sur les termes de la suite (v_n) ?

On définit la suite (w_n) définie par : $w_n = v_{n+1} - v_n$ pour tout $n \in \mathbb{N}$

- c. Justifier que la suite (w_n) est une suite arithmétique. On précisera les élèments caractéristiques de cette suite.
- d. Déterminer l'expression de la somme S des n premiers termes de la suite (w_n) .
- e. En remarquant l'égalité $\left(\sum_{k=0}^{n-1} w_k\right) + v_0 = v_n$, en déduire l'expression du terme v_n en fonction de n.
- f. Confirmer la conjecture faite à la question b.