DeepONet

Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators

Goal:

Learn non linear operator $G:V_1 o V_2$ between spaces of function

- Based on Universal Approximation Theorem for Operators
- Designed to process input data coming from sensors(mesh-free)
- In applications the operator of interest is often of the form $\mu\mapsto u_\mu,$ μ being the parameters of a PDE and u_μ its corresponding solution

Universal Approximation Theorem for Operators

Let σ be a continuous non-polynomial function, X Banach space, $K_1\subset X$, $K_2\subset \mathbb{R}^d$ two compact sets in X and \mathbb{R}^d , respectively, V compact set in $C(K_1)$. Let $G:V\to C(K_2)$ be a nonlinear continuous operator. Then for any $\epsilon>0$, there are positive integers n,p and m, constants $c_i^k, \xi_{ij}^k, \theta_i^k, \zeta_k\in \mathbb{R}$, $w_k\in \mathbb{R}^d$, $x_j\in K_1$, $i=1,\ldots,n$, $k=1,\ldots,p$ and $j=1,\ldots,m$, such that

$$\left|G(u)(y) - \sum_{k=1}^p \sum_{i=1}^n c_i^k \sigma\left(\sum_{j=1}^m \xi_{ij}^k u(x_j) + heta_i^k
ight) \sigma(w_k \cdot y + \zeta_k)
ight| < \epsilon$$

holds for all $u \in V$ and $y \in K_2$.

Key points from the theorem:

- An operator acting on a function space can be reconstructed using a finite number of function values at fixed points (cast infiinite dimensional problem to finite dimensional one).
- Sensor locations must remain consistent across all training samples
- Directly suggest us to considers **two shallow network with one hidden layer**. We can extend this with **deep networks** to increase expressivity.

DeepONet architecture:

- A **trunk network** that takes y as input and outputs a vector $[t_1, t_2, \dots, t_p]^T \in \mathbb{R}^p$
- A **branch networks**, each taking $[u(x_1), u(x_2), \ldots, u(x_m)]^T$ as input and producing a scalar b_k for $k=1,\ldots,p$
- The final output is computed as:

$$G(u)(y)pprox \sum_{k=1}^p b_k t_k.$$

Test

1. Poisson Equation (finite-dimensional parameter)

Consider the following Poisson equation

$$egin{cases} -\sigma \Delta u(m{x}) = \gamma \sin(4x_1x_2) + (1-\gamma)\cos(x_1-8x_2) & m{x} \in \Omega \ u(m{x}) = b & m{x} \in \Gamma \ -
abla u(m{x}) \cdot m{n} = 0 & m{x} \in \partial \Omega \setminus \Gamma \end{cases}$$

where $\Omega=(0,1)^2$ is the unit square and $\Gamma=\{(0,x_2)\ :\ 0\leq x_2\leq 1\}$ is the left edge.

Goal is to learn the map $oldsymbol{\mu}\mapsto u_{oldsymbol{\mu}},$ where $oldsymbol{\mu}=[\sigma,b,\gamma]$,

Optimization

Result

Mean Relative error on test set: 3.03%

2. Function-to-function

Consider the following nonlinear operator ${\cal G}$ mapping 1D functions onto 1D functions acting as

$$G: \quad f(y) \mapsto \int_0^x rac{1}{1+f(2s)^2} ds,$$

where f=f(y) is defined for $y\in [0,1]$, whereas the output u=u(x) is defined for $x\in [0,1/2].$

Input signal are sampled from Gaussian process $Z:[0,1] o \mathbb{R}$ of the form

$$Z(y) = \sum_{j=1}^{100} e^{-j} \eta_j \sin(\pi j y),$$

with $\eta_1, \ldots, \eta_{100}$ i.i.d. $\mathcal{N}(0, 1)$.

Optimization

Sensor number: 50

Result

Mean Relative error on test set: 1.30%

3. Darcy Flow

Consider a simplified Darcy flow model featuring a spatially distributed parameter (permeability field), namely

$$egin{cases} -
abla\cdot(k
abla p) = f & ext{in }\Omega \ -
abla p\cdotoldsymbol{n} \equiv 0 & ext{on }\partial\Omega \ \int_{\Omega}p = 0 \end{cases}$$

where $\Omega\subset\mathbb{R}^2$ is the spatial domain, $p:\Omega\to\mathbb{R}$ is the pressure field and m n is the unit normal. The permeability field, $k:\Omega\to(0,+\infty)$ is our parameter.

Optimization

Sensor number: 131

Result

Mean Relative error on test set: 11.82%

DeepONet

3.1. Comparison with POD-NN

Mean Relative error POD-NN on test set: 13.71%

Mean Relative error DeepONet on test set: 11.82%

Other test

Vary the number of latent dimension (Poisson)

Vary the number of training data (FuncToFunc)

Add Gaussian noise to the measured data (Darcy)

Bonus: Mesh-Informed Neural Networks

DeepONet

Mean Relative error POD-MINN on test set: 13.35%