

flusser@utia.cas.cz

Prof. Ing. Jan Flusser, DrSc.

Digitální zpracování obrazu Lecture 2

Digitalizace spojitého obrazu

Vzorkování (sampling)

Digitalizace spojitého obrazu

Vzorkování (sampling)

Kvantování

Vzorkovací teorém

Nyquist (1915), Kotelnikov (1933), Shannon (1945)

Lze původní obraz rekonstruovat?

Někdy ano, někdy ne. Kdy ano?

Matematický model vzorkování

Obrazová oblast

$$f(x,y) \cdot s(x,y) = d(x,y)$$

$$s(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x-i\Delta x, y-j\Delta y)$$

Comb function

$$s(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x-i\Delta x, y-j\Delta y)$$

Matematický model vzorkování

Frekvenční oblast

$$D(u,v) = F(u,v) * S(u,v)$$

$$S(u,v) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta\left(u - i\frac{1}{\Delta x}, v - j\frac{1}{\Delta y}\right)$$

Spektrum vzorkovaného obrazu

$$D(u,v) = F(u,v) * S(u,v)$$

Nyquistova podmínka

Vzorkování bez ztráty informace

$$\Delta x \le \frac{1}{2W_u}$$

$$\Delta y \leq \frac{1}{2W_v}$$

Zpětná rekonstrukce obrazu

Zpětná rekonstrukce obrazu

Vyříznutí jednoho spektra a následná inverzní FT

Zpětná rekonstrukce obrazu

Odpovídá v obrazové oblasti interpolaci d(x,y) konvolucí s funkcí h(x,y), resp. h(x).h(y)

Příliš výpočetně náročné

Přibližná rekonstrukce jednoduššími jádry

Interpolační metody

Nearest neighbor

Bicubic

Překrytí sousedních spekter $D(u,v) \rightarrow$ nemožnost přesné separace F(u,v)

Překrytí sousedních spekter $D(u,v) \rightarrow$ nemožnost přesné separace F(u,v)

Překrytí sousedních spekter $D(u,v) \rightarrow ztráta$ VF informace (hrany, detaily, ...), aliasing

Moiré efekt – falešné nízké frekvence

Moiré efekt – falešné nízké frekvence

Moiré efekt – falešné nízké frekvence

Moiré efekt v časové oblasti

Moiré efekt v časové oblasti

Moiré efekt užitečný – námořní navigace

Anti-aliasing techniky

- Zvýšení vzorkovací frekvence
- Odstranění vysokých frekvencí před vzorkováním

Vzorkování v reálných optických systémech

- Rastr je omezený
- Jen několik možných vzorkovacích frekvencí
- Vzorkování není pomocí δ funkcí
- Optika působí jako low-pass filtr

Netradiční vzorkování

- Nepravoúhlý rastr (rovnoběžník, hexagon, ...)
 - co nejlépe pokrýt rovinu (u,v) pomocí supp(F)

Netradiční vzorkování

- Nepravoúhlý rastr (rovnoběžník, hexagon, ...)
 - co nejlépe pokrýt rovinu (u,v) pomocí supp(F)
- Adaptivní vzorkování proměnná frekvence dle charakteru obrazu
- Compressive sensing
- Běžné kamery a scannery neumožňují ani jedno

Kvantování obrazu

Kvantování – diskretizace oboru hodnot signálu -- vždy ztrátové

Kvantizér
$$Q: R \rightarrow L$$

 $L = \{0, 1, ..., k\}$ $(k = 255)$

Kvantizér

Rozložení prahů

- Rovnoměrné (lineární)
- Nerovnoměrné (nelineární)
- Závislé na signálu (adaptivní, optimální)

Kvantovaný signál

Kvantizér

$$P(x, y) = trunc(I(x, y) + 0.5)$$

Kvantování do různého počtu úrovní

Vznik falešných kvantizačních hran (Kvantizační šum)

Účinek vzorkování a kvantování na lidský zrak

2 bits / pixel

Účinek vzorkování a kvantování na lidský zrak

Díky, pro dnešek

končíme s digitalizací!

Nějaké otázky?