Housing Price Prediction Model using modeldata package - a subset of ames housing data

Saurav Mukherjee

2023-02-16

Introduction

I am building home price prediction model. I am using Ames Housing dataset to explore the attributes which have been identified somehow influencing the housing cost.

Initially I wanted to use the 'Ames Housing Data" - a data set describing the sale of individual residential property in Ames, Iowa from 2006 to 2010. The data set contains 2930 observations and a large number of explanatory variables (23 nominal, 23 ordinal, 14 discrete, and 20 continuous) involved in assessing home values. However, I looked at a dataset which is a subset of this dataset and which is available within modeldata package created by https://modeldata.tidymodels.org/. I did some research and looked at the model - Hedonic Pricing Method to predict the house price. The Hedonic Pricing Method talks about internal characteristics as well as the external factors affecting the price of a good. Based on the idea of hedonic price modeling I am looking the is that neighborhood-specific and unit-specific characteristics help determine house prices.

##Data - Ames Housing Data

A data set from De Cock (2011) has 82 fields were recorded for 2,930 properties in Ames IA. I used a version from the package modeldata dataset name as ames which is copies from the original AmesHousing package but does not include a few quality columns that appear to be outcomes rather than predictors.

##Load required Libraries ## Load ames dataset ## Setup environments

Exploratory Data Analysis

Explore Ame Dataset - Dimension, Columns and Datatypes

Explore Sales Price Distribution

Table 1: Ames Housing Dataset dimension

 $\frac{x}{2930}$

Table 2: Ames Housing Dataset Columns

 $MS_SubClass$ MS_Zoning Lot_Frontage Lot Area Street Alley Lot_Shape $Land_Contour$ Utilities Lot_Config Land Slope Neighborhood $Condition_1$ ${\bf Condition_2}$ Bldg_Type House_Style Overall Cond $Year_Built$ $Year_Remod_Add$ Roof_Style $Roof_Matl$ $Exterior_1st$ Exterior_2nd Mas_Vnr_Type Mas_Vnr_Area Exter Cond Foundation $Bsmt_Cond$ $Bsmt_Exposure$ $BsmtFin_Type_1$ $BsmtFin_SF_1$ BsmtFin_Type_2 $BsmtFin_SF_2$ Bsmt Unf SF $Total_Bsmt_SF$ Heating Heating_QC Central Air Electrical $First_Flr_SF$ $Second_Flr_SF$ Gr_Liv_Area $Bsmt_Full_Bath$ $Bsmt_Half_Bath$ Full Bath $Half_Bath$ $Bedroom_AbvGr$ $Kitchen_AbvGr$ TotRms AbvGrd

Functional

Fireplaces ${\bf Garage_Type}$ $Garage_Finish$ Garage Cars Garage_Area Garage_Cond Paved_Drive Wood_Deck_SF Open_Porch_SF Enclosed Porch Three_season_porch Screen Porch Pool_Area Pool_QC Fence Misc Feature Misc Val Mo_Sold Year_Sold Sale_Type Sale Condition Sale Price Longitude

Latitude

```
## tibble [2,930 x 74] (S3: tbl_df/tbl/data.frame)
   $ MS_SubClass
##
                         : Factor w/ 16 levels "One_Story_1946_and_Newer_All_Styles",..: 1 1 1 1 6 6 12
##
    $ MS_Zoning
                         : Factor w/ 7 levels "Floating_Village_Residential",..: 3 2 3 3 3 3 3 3 3 3 ...
##
    $ Lot_Frontage
                         : num [1:2930] 141 80 81 93 74 78 41 43 39 60 ...
                         : int [1:2930] 31770 11622 14267 11160 13830 9978 4920 5005 5389 7500 ...
    $ Lot_Area
##
    $ Street
                         : Factor w/ 2 levels "Grvl", "Pave": 2 2 2 2 2 2 2 2 2 ...
##
    $ Alley
                         : Factor w/ 3 levels "Gravel", "No_Alley_Access",..: 2 2 2 2 2 2 2 2 2 2 ...
                         : Factor w/ 4 levels "Regular", "Slightly_Irregular", ...: 2 1 2 1 2 2 1 2 2 1 ...
    $ Lot_Shape
##
##
    $ Land Contour
                         : Factor w/ 4 levels "Bnk", "HLS", "Low", ...: 4 4 4 4 4 4 4 2 4 4 ...
##
                         : Factor w/ 3 levels "AllPub", "NoSeWa", ...: 1 1 1 1 1 1 1 1 1 1 ...
    $ Utilities
                         : Factor w/ 5 levels "Corner", "CulDSac", ...: 1 5 1 1 5 5 5 5 5 5 ....
    $ Lot_Config
    $ Land_Slope
                         : Factor w/ 3 levels "Gtl", "Mod", "Sev": 1 1 1 1 1 1 1 1 1 1 ...
##
                         : Factor w/ 29 levels "North_Ames", "College_Creek", ..: 1 1 1 1 7 7 17 17 7 .
##
    $ Neighborhood
##
   $ Condition_1
                         : Factor w/ 9 levels "Artery", "Feedr", ...: 3 2 3 3 3 3 3 3 3 ...
##
    $ Condition_2
                         : Factor w/ 8 levels "Artery", "Feedr", ...: 3 3 3 3 3 3 3 3 3 ...
                         : Factor w/ 5 levels "OneFam", "TwoFmCon", ...: 1 1 1 1 1 5 5 5 1 ....
##
    $ Bldg_Type
##
    $ House_Style
                         : Factor w/ 8 levels "One_and_Half_Fin",..: 3 3 3 3 8 8 3 3 3 8 ...
##
    $ Overall_Cond
                         : Factor w/ 10 levels "Very_Poor", "Poor", ...: 5 6 6 5 5 6 5 5 5 5 ...
                         : int [1:2930] 1960 1961 1958 1968 1997 1998 2001 1992 1995 1999 ...
##
    $ Year_Built
##
    $ Year_Remod_Add
                        : int [1:2930] 1960 1961 1958 1968 1998 1998 2001 1992 1996 1999 ...
                         : Factor w/ 6 levels "Flat", "Gable", ...: 4 2 4 4 2 2 2 2 2 2 ...
##
    $ Roof_Style
##
   $ Roof Matl
                         : Factor w/ 8 levels "ClyTile", "CompShg", ...: 2 2 2 2 2 2 2 2 2 2 ...
                         : Factor w/ 16 levels "AsbShng", "AsphShn", ...: 4 14 15 4 14 16 7 6 14 ...
##
   $ Exterior_1st
##
                         : Factor w/ 17 levels "AsbShng", "AsphShn", ...: 11 15 16 4 15 15 6 7 6 15 ....
    $ Exterior_2nd
##
  $ Mas_Vnr_Type
                         : Factor w/ 5 levels "BrkCmn", "BrkFace", ...: 5 4 2 4 4 2 4 4 4 4 ...
                         : num [1:2930] 112 0 108 0 0 20 0 0 0 0 ...
  $ Mas_Vnr_Area
                         : Factor w/ 5 levels "Excellent", "Fair", ...: 5 5 5 5 5 5 5 5 5 5 ...
##
    $ Exter Cond
```

```
$ Foundation
                        : Factor w/ 6 levels "BrkTil", "CBlock", ...: 2 2 2 2 3 3 3 3 3 3 ...
##
                        : Factor w/ 6 levels "Excellent", "Fair", ...: 3 6 6 6 6 6 6 6 6 ...
   $ Bsmt_Cond
                        : Factor w/ 5 levels "Av", "Gd", "Mn", ...: 2 4 4 4 4 4 3 4 4 4 ...
  $ Bsmt Exposure
                        : Factor w/ 7 levels "ALQ", "BLQ", "GLQ", ...: 2 6 1 1 3 3 3 1 3 7 ....
##
  $ BsmtFin_Type_1
##
   $ BsmtFin_SF_1
                        : num [1:2930] 2 6 1 1 3 3 3 1 3 7 ...
  $ BsmtFin_Type_2
                        : Factor w/ 7 levels "ALQ", "BLQ", "GLQ", ...: 7 4 7 7 7 7 7 7 7 7 ...
##
                        : num [1:2930] 0 144 0 0 0 0 0 0 0 0 ...
   $ BsmtFin SF 2
##
   $ Bsmt Unf SF
                        : num [1:2930] 441 270 406 1045 137 ...
##
   $ Total Bsmt SF
                        : num [1:2930] 1080 882 1329 2110 928 ...
##
                        : Factor w/ 6 levels "Floor", "GasA",...: 2 2 2 2 2 2 2 2 2 ...
   $ Heating
   $ Heating_QC
                        : Factor w/ 5 levels "Excellent", "Fair", ...: 2 5 5 1 3 1 1 1 1 3 ...
                        : Factor w/ 2 levels "N", "Y": 2 2 2 2 2 2 2 2 2 2 ...
##
   $ Central_Air
##
   $ Electrical
                        : Factor w/ 6 levels "FuseA", "FuseF",..: 5 5 5 5 5 5 5 5 5 5 ...
                        : int [1:2930] 1656 896 1329 2110 928 926 1338 1280 1616 1028 ...
##
  $ First_Flr_SF
##
                        : int [1:2930] 0 0 0 0 701 678 0 0 0 776 ...
   $ Second_Flr_SF
##
   $ Gr_Liv_Area
                        : int [1:2930] 1656 896 1329 2110 1629 1604 1338 1280 1616 1804 ...
##
                       : num [1:2930] 1 0 0 1 0 0 1 0 1 0 ...
   $ Bsmt_Full_Bath
   $ Bsmt_Half_Bath
                        : num [1:2930] 0 0 0 0 0 0 0 0 0 0 ...
                        : int [1:2930] 1 1 1 2 2 2 2 2 2 2 ...
##
  $ Full_Bath
##
   $ Half Bath
                        : int [1:2930] 0 0 1 1 1 1 0 0 0 1 ...
## $ Bedroom_AbvGr
                        : int [1:2930] 3 2 3 3 3 3 2 2 2 3 ...
                        : int [1:2930] 1 1 1 1 1 1 1 1 1 1 ...
  $ Kitchen_AbvGr
## $ TotRms_AbvGrd
                        : int [1:2930] 7 5 6 8 6 7 6 5 5 7 ...
   $ Functional
                        : Factor w/ 8 levels "Maj1", "Maj2", ...: 8 8 8 8 8 8 8 8 8 8 ...
##
## $ Fireplaces
                        : int [1:2930] 2 0 0 2 1 1 0 0 1 1 ...
                        : Factor w/ 7 levels "Attchd", "Basment", ...: 1 1 1 1 1 1 1 1 1 1 ...
   $ Garage_Type
##
   $ Garage_Finish
                        : Factor w/ 4 levels "Fin", "No_Garage",..: 1 4 4 1 1 1 1 3 3 1 ...
##
   $ Garage_Cars
                        : num [1:2930] 2 1 1 2 2 2 2 2 2 2 ...
##
                        : num [1:2930] 528 730 312 522 482 470 582 506 608 442 ...
  $ Garage_Area
                        : Factor w/ 6 levels "Excellent", "Fair", ...: 6 6 6 6 6 6 6 6 6 ...
##
   $ Garage_Cond
##
   $ Paved_Drive
                        : Factor w/ 3 levels "Dirt_Gravel",..: 2 3 3 3 3 3 3 3 3 ...
##
   $ Wood_Deck_SF
                        : int [1:2930] 210 140 393 0 212 360 0 0 237 140 ...
                        : int [1:2930] 62 0 36 0 34 36 0 82 152 60 ...
##
   $ Open_Porch_SF
                        : int [1:2930] 0 0 0 0 0 0 170 0 0 0 ...
##
   $ Enclosed_Porch
##
   $ Three_season_porch: int [1:2930] 0 0 0 0 0 0 0 0 0 0 ...
## $ Screen_Porch
                       : int [1:2930] 0 120 0 0 0 0 0 144 0 0 ...
## $ Pool Area
                        : int [1:2930] 0 0 0 0 0 0 0 0 0 0 ...
## $ Pool_QC
                        : Factor w/ 5 levels "Excellent", "Fair", ...: 4 4 4 4 4 4 4 4 4 4 ...
##
   $ Fence
                        : Factor w/ 5 levels "Good_Privacy",..: 5 3 5 5 5 5 5 5 ...
## $ Misc_Feature
                        : Factor w/ 6 levels "Elev", "Gar2", ...: 3 3 2 3 3 3 3 3 3 3 ...
                        : int [1:2930] 0 0 12500 0 0 0 0 0 0 0 ...
## $ Misc Val
## $ Mo Sold
                        : int [1:2930] 5 6 6 4 3 6 4 1 3 6 ...
                        ##
   $ Year_Sold
                        : Factor w/ 10 levels "COD", "Con", "ConLD", ...: 10 10 10 10 10 10 10 10 10 10 ...
## $ Sale_Type
                        : Factor w/ 6 levels "Abnorm1", "AdjLand", ...: 5 5 5 5 5 5 5 5 5 5 ...
  $ Sale_Condition
                        : int [1:2930] 215000 105000 172000 244000 189900 195500 213500 191500 236500 1
##
   $ Sale_Price
##
   $ Longitude
                        : num [1:2930] -93.6 -93.6 -93.6 -93.6 ...
   $ Latitude
                        : num [1:2930] 42.1 42.1 42.1 42.1 42.1 ...
```

Table: Ames Housing Dataset

Distribution of house prices

Sale Price Observation The Sale Price is right-skewed

##

Sale Price skewness : 1.742607

##

Sale Price kurtosis : 8.108122

Age of the Building

Year Built

It looks that we have more houses were built at the begining of 2000

Condition of the houses

Overall Condition of the houses

House condition - most of the houses are of average condition

Neighborhood and House Price

House Price varies with the neighborhood with few outliers by neighborhood. Also, the median house price by neighborhood is roughly between 200,000 and 400,000. It seems Neighborhood would have some impact on housing price.

Correlation between Sale Price and other variables

Correlation between numeric variables

Correlation between Numeric Variables

There are some high correlations between variables mostly positive but with some negative. I did further analysis and added pairwise correlation between other numeric variables and sales price.

Correlation of Sales Price with other numeric variables

Table 3: Ames Housing Dataset - correlated numeric variables with the Sale Price $\,$

	X
Lot_Frontage	0.2018745
Lot_Area	0.2665492
Year_Built	0.5584261
$Year_Remod_Add$	0.5329738
Mas_Vnr_Area	0.5021960
$BsmtFin_SF_1$	-0.1349055
$BsmtFin_SF_2$	0.0060176
$Bsmt_Unf_SF$	0.1833076
$Total_Bsmt_SF$	0.6325288
$First_Flr_SF$	0.6216761
$Second_Flr_SF$	0.2693734

	X
Gr_Liv_Area	0.7067799
$Bsmt_Full_Bath$	0.2758227
$Bsmt_Half_Bath$	-0.0358166
Full_Bath	0.5456039
Half_Bath	0.2850560
$\operatorname{Bedroom}_{-}\operatorname{AbvGr}$	0.1439134
$Kitchen_AbvGr$	-0.1198137
$TotRms_AbvGrd$	0.4954744
Fireplaces	0.4745581
Garage_Cars	0.6475616
Garage_Area	0.6401383
$Wood_Deck_SF$	0.3271432
Open_Porch_SF	0.3129505
$Enclosed_Porch$	-0.1287874
$Three_season_porch$	0.0322246
Screen_Porch	0.1121512
Pool_Area	0.0684032
Misc_Val	-0.0156915
Mo_Sold	0.0352588
Year_Sold	-0.0305691
Sale_Price	1.0000000
Longitude	-0.2513973
Latitude	0.2908914

Thus, I identified variables which has higher correlations (correlation > 0.5 and < -0.2) I also looked at some non-numeric variables and their relatins with the Sale Price

Correlation of Sales Price with non-numeric variables

Table 4: Ames Housing Dataset - correlated non-numeric variables with the Sale Price

	X
MS_SubClass	-0.0347748
MS_Zoning	-0.3064225
Street	0.0595193
Alley	0.1088436
Lot_Shape	0.3026647
Land_Contour	-0.0693388
Utilities	-0.0310365
Lot_Config	-0.0587875
Land_Slope	0.0685534
Neighborhood	0.1575002
Condition_1	0.1590773
Condition_2	0.1048063
Bldg_Type	-0.0952280
House_Style	0.2310546
Overall_Cond	-0.1635790
Roof_Style	0.2546450
Roof_Matl	0.0720760

	X
Exterior_1st	0.0550217
Exterior_2nd	0.0535448
Mas_Vnr_Type	-0.0763142
Exter_Cond	0.1206939
Foundation	0.4579558
$Bsmt_Cond$	0.1095363
$Bsmt_Exposure$	-0.3519094
$BsmtFin_Type_1$	-0.0975925
$BsmtFin_Type_2$	0.1074020
Heating	-0.0728977
$Heating_QC$	-0.4426972
Central_Air	0.2645064
Electrical	0.2378218
Functional	0.1192451
$Garage_Type$	-0.4061833
$Garage_Finish$	-0.4494826
$Garage_Cond$	0.2750657
Paved_Drive	0.2749134
Pool_QC	-0.0919699
Fence	0.1745827
${\it Misc_Feature}$	-0.0574683
Sale_Type	-0.1845079
Sale_Condition	0.3330831

Looking at the non-numeric variable, I identified few variables which are highly correlated -

MS_Zoning, Lot_Shape, Foundation, Sale_Condition , Garage_Finish, House_Style, Heating_QC, #Feature Engineering and additional visualizations

 $\label{eq:created_state} \begin{tabular}{ll} $\operatorname{Created}$ a variable total_area = $\operatorname{First_Flr_SF}$ + $\operatorname{Second_Flr_SF}$ + $\operatorname{Total_Bsmt_SF}$ \\ \end{tabular}$

Created a variable total_Bathroom = Full_Bath + Bsmt_Full_Bath + 0.5* Half_Bath+ 0.5* Bsmt_Half_Bath

Created a variable sales_price_T = sale_Price_T

 $\label{lem:condition_n} Created\ a\ variable\ or a rall_Condition_n\ a\ numeric\ representation\ of\ over-all_Condition$

Created a variable house_Age = year_Sold - year_Build

```
##
## Corelation between Total Area and Sale Price : 0.7931272
##
## Corelation between Total Bathroom and Sale Price : 0.636175
```

 $\mbox{\tt ##}$ $\mbox{\tt ##}$ Corelation between Age of House and Sale Price : -0.5589068

Corelation between Overall Condition and Sale Price : -0.1016969

Total Area vs. Sales Price

Age of the house vs. Sales Price

Overall Condition vs. Sales Price

Looking at the negative correlation between overall condition of the house and sales price I felt that there is something incorrect about the data. I excluded the overall condition from the final parameter set # Create Final Set with Parameters ## Numeric - Sale_Price_T,total_Area, Gr_Liv_Area, house_Age, total_Bathroom ,Garage_Cars,Garage_Area, Year_Remod_Add, Mas_Vnr_Area, ## Non-Numeric - House Attributes - Lot_Shape, Foundation, Sale_Condition , Garage_Finish, House Style, Heating QC, External Attributes - MS Zoning, Neighborhood

ames <- ames %>% select (Sale_Price_T,total_Area, Gr_Liv_Area, house_Age, total_Bathroom ,Garage_Cars,G Year_Remod_Add, Mas_Vnr_Area, Lot_Shape, Foundation, Sale_Condition , Garage_

Create Test Set and Training set for building Linear Models

test set will be 20% of housing_data data

Table 5: Ames Housing Dataset dimension

 $\frac{x}{2930}$ 17

Table 6: Ames Housing Dataset

$\overline{\mathrm{Sale}}$	_Proted_	(Anreal	⊿ h oι	ıAa <u>tea</u> Aegle	Betha	ıg ©n Cə	aga¥ <u>e</u> aArr	e Bade ansic	<u>dVorkdeNnetpoe</u> mdSatlen@Garki	gid<u>la</u>tise<u>ill</u>eatyil<u>adS</u> QZoniNgighborhood
215	2736	1656	50	2.0	2	528	1960	112	Slightly CBreghilanmaFin	One_Stairy ResidentiaNouthw Albressity
105	1778	896	49	1.0	1	730	1961	0	Regular CBloc Norma Unf	One_Styopic AlesidentiaNouttligh And essity
172	2658	1329	52	1.5	1	312	1958	108	Slightly CBreghtamaUnf	One_Styopic AlesidentiaNouthw Albrewsity
244	4220	2110	42	3.5	2	522	1968	0	Regular CBloc Norma Fin	One_ Strong llRoomidentiaNouthwAbnessity
190	2557	1629	13	2.5	2	482	1998	0	Slightly PCroegNbarmaFin	Two_Stooyl ResidentiaGilLent_Density
196	2530	1604	12	2.5	2	470	1998	20	Slightly PC combarma Fin	Two_ Strongli Rus identia Gil bent_Density

Table 7: Ames Housing Dataset Summary

Salo	(Dytich	CMF:o	 Linaus⁄a	h to A mile	Bootel	ന്തത്തി	mWoo Ara	·MAlam	- Julianto Λ SINH	m Francis	Antin:	nConsi	hitlas Fin	id a hata	MAS OTAn	i N eighborhood
														_ •		
Min.	Min.	Min.	Min.	Min.	Min.	Min.	Min.	Min.	Regular	r Brk7	Γ A :bnc	orFrinh:	One_{-}	StExxye	llEhtat#9§_	_ Nobleh g <u>e A</u> Ræsidenti
:	:	:	: -	:1.000	0:0.000	0:	:1950	:	:1859	311	190	:	:1481		139	: 443
13.0	334	334	1.00			0.0		0.0				728				
1st	1st	1st	1st	1st	1st	1st	1st	1st	Slightly	<u>C</u> IBite	gkdjP	4M d:_	Gan wage	SFaniy	Residenti	iaColHeigeh_Chrenckity
Qu.:1	80 u0:	Qu.:	1 Q 26:	Qu.:1	. 50 00:1	L. Q0 Q:	Qu.:1	W 5.:	: 979		12	159	:	:	: 27	: 267
	2000		7.00			320.0		0.0					873	92		
Medi	a M edi	aMed:	iaMedi	a M edi	a M edi	a M edia	a M edi	a M edia	a M odera	t P Co	nlakirkege	aRaFn	One_	anGool	I Referenti	iaOldLoTowDensity
:160.0	0:	:1442	2:	:2.000	0:2.000	0:	:1993	:	76	:1310):	:	314	:	:2273	: 239
	2450		34.00			480.0		0.0			24	812		476		
Mean	ıMean	Mea	nMean	Mear	ı Mear	ıMean	Mean	Mean	Irregula	Slab	Fami	l₩nf	SLvl	Poor	Residenti	iaE <u>d</u> Waadisum_Densi
:180.8	8:	:1500):	:2.218	8:1.760	6:	:1984	:	: 16	:	:	:1231	l:	: 3	: 462	: 194
	2546		36.43			472.7		101.1		49	46		128			
3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	NA	Ston	eNorn	n a NA	SFoye	r Typi	caAl_agr	Somerset
Qu.:2	QuO:	Qu.:	1 Q 48:	Qu.:2	2. 50 0:2	2. Q0 Q:	Qu.:2	2004.:		:	:2413	}			: 2	: 182
-	2990	•	54.00	-	•	576.0	-	162.8		11				864		
Max.	Max.	Max	. Max.	Max.	Max.	Max.	Max.	Max.	NA	Woo	d Parti	a N A	Two	aiNA I	Half aUnf:	Northridge Heigh
:755.0	0:1175	25642	2:136.0	00.700	0:5.000	0:1488	.02010	:1600	.0	:	245		24		$: \overline{25}$	166
										5						
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	(Othe	r)NA	I all:	(Other)
													: 27	,	2	:1439
										5		NA	(Othe		I_all :	(Other)

House Price Prediction Model - develop, train and test

#Average House Price

Build Linear Models

I started with linear model and some selected set of parameters/attributes and evaluated the performaces of the models use RMSE. In the first Linear Model we used "Age of the House" and "Total Bathroom" I enhanced the model and added "Age of the House", $Garage_Cars + Garage_Area + Year_Remod_Add + Mas_Vnr_Area$

```
##
## Naive RMSE in ,000 : 75.25
```

```
##
## Call:
## lm(formula = Sale_Price_T ~ total_Area + total_Bathroom, data = .)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
  -665.48 -20.32
                     0.26
                            19.33
                                  262.67
##
## Coefficients:
##
                   Estimate Std. Error t value
                                                          Pr(>|t|)
## (Intercept)
                 -36.153333
                              42.57 < 0.0000000000000000 ***
                   0.064023
                              0.001504
## total_Area
                                         ## total_Bathroom
                  24.275518
                              1.511957
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 46.98 on 2340 degrees of freedom
## Multiple R-squared: 0.6639, Adjusted R-squared: 0.6636
## F-statistic: 2311 on 2 and 2340 DF, p-value: < 0.00000000000000022
                method
                                                                  RMSE
                                                                75.25000
                Just the average in ,000
                Total Area and Total Bathroom Effect Model in in ,000
                                                                42.63694
## [1] 37.2129
## # A tibble: 8 x 7
    term
                     estimate std.error statistic
                                                    p.value
                                                              conf.low conf.high
##
    <chr>>
                        <dbl>
                                  <dbl>
                                            <dbl>
                                                      <dbl>
                                                                 <dbl>
                                                                            <dbl>
## 1 (Intercept)
                   -1191.
                               89.8
                                           -13.3 5.23e- 39 -1367.
                                                                       -1015.
## 2 total Area
                                            36.4 7.89e-240
                       0.0482
                                0.00132
                                                                0.0456
                                                                           0.0508
## 3 total Bathroom
                                             7.04 2.42e- 12
                       8.91
                                1.27
                                                                6.43
                                                                          11.4
## 4 house_Age
                      -0.259
                                0.0344
                                            -7.52 7.12e- 14
                                                               -0.326
                                                                          -0.191
## 5 Garage_Cars
                      10.7
                                2.21
                                             4.85 1.28e- 6
                                                                6.38
                                                                          15.0
## 6 Garage_Area
                       0.0299
                                0.00765
                                             3.91 9.63e- 5
                                                                0.0149
                                                                           0.0448
## 7 Year_Remod_Add
                       0.605
                                0.0453
                                            13.3 1.66e- 39
                                                                0.516
                                                                           0.694
## 8 Mas Vnr Area
                                            11.2 1.87e- 28
                       0.0526
                                0.00471
                                                                0.0434
                                                                           0.0619
##
## Call:
## lm(formula = Sale_Price_T ~ total_Area + total_Bathroom + house_Age +
      Garage_Cars + Garage_Area + Year_Remod_Add + Mas_Vnr_Area,
##
      data = .)
##
## Residuals:
               1Q
                   Median
                               3Q
                                      Max
##
  -575.71 -18.74
                    -2.99
                            16.13 303.73
## Coefficients:
##
                     Estimate
                                Std. Error t value
                                                               Pr(>|t|)
                 -1190.960356
                                 89.821434 -13.259 < 0.0000000000000000 ***
## (Intercept)
```

```
## total_Area
                      0.048175
                                   0.001323
                                             36.424 < 0.0000000000000000 ***
## total_Bathroom
                     8.911990
                                              7.038
                                                      0.000000000024160 ***
                                   1.266223
                                                      0.0000000000000712 ***
## house Age
                     -0.258834
                                   0.034409
                                             -7.522
                                              4.852
## Garage_Cars
                     10.711467
                                   2.207507
                                                      0.0000012844482347 ***
## Garage_Area
                      0.029857
                                   0.007646
                                              3.905
                                                      0.0000962703710742 ***
## Year Remod Add
                      0.604965
                                   0.045316
                                           13.350 < 0.0000000000000000 ***
## Mas Vnr Area
                      0.052626
                                            11.182 < 0.0000000000000000 ***
                                   0.004706
## ---
## Signif. codes:
                  0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 39.37 on 2922 degrees of freedom
## Multiple R-squared: 0.7578, Adjusted R-squared: 0.7572
## F-statistic: 1306 on 7 and 2922 DF, p-value: < 0.00000000000000022
```

method	RMSE
Just the average in ,000	75.25000
Total Area and Total Bathroom Effect Model in in ,000	42.63694
Model based on Numeric attributes of the dataset in ,000	37.21290

With linear model and with a set of attributes I was able to tune the model and reduce RMSE.

Non-linear Models

I wanted to further tune the model and enhance the accuracy. I planned to use "kNN", "Classification and regression trees (CART)" and Random Forrest. I added the non-linear parameters with the linear ones. Some of the non-linear ones are attributes of the house and some are external External attributes - Zoning and Neighborhood

k Nearest Neighbor (kNN) Model

##		Length	Class	Mode
##	learn	2	-none-	list
##	k	1	-none-	numeric
##	theDots	0	-none-	list
##	xNames	69	-none-	character
##	${\tt problemType}$	1	-none-	character
##	tuneValue	1	${\tt data.frame}$	list
##	obsLevels	1	-none-	logical
##	param	0	-none-	list

method	RMSE
Just the average in ,000	75.25000
Total Area and Total Bathroom Effect Model in in ,000	42.63694
Model based on Numeric attributes of the dataset in ,000	37.21290
Knn Model in ,000	36.67178

Next I am using Classification and regression trees (CART) model to see whether it reduces the RMSE value # Using Model - Classification and regression trees (CART)

method	RMSE
Just the average in ,000	75.25000
Total Area and Total Bathroom Effect Model in in ,000	42.63694
Model based on Numeric attributes of the dataset in ,000	37.21290
Knn Model in ,000	36.67178
Classification and regression trees (CART) Model in ,000 $$	33.30301

#Random Forrest -

train_rf

method	RMSE
Just the average in ,000	75.25000
Total Area and Total Bathroom Effect Model in in ,000	42.63694
Model based on Numeric attributes of the dataset in ,000	37.21290
Knn Model in ,000	36.67178
Classification and regression trees (CART) Model in ,000	33.30301
Random Forrest in ,000	24.75728

I got the best result when I used the Classification and regression trees (CART). I wanted to use the Confusion Matrix to calculate the accuracy for in the case of kNN and Classification and regression trees (CART). But because Sale Price is a continuous variable, I could not use Confusion Matrix function directly. When I converted Sale Price (both predicted and original) into factor, I got extremely low accuracy. After doing further research I found out that this is not a ideal situation to use Confusion Matrix to calculate the accuracy.

Final Result and improvements over time

RMSEs over Model

method	RMSE
Just the average in ,000	75.25000
Total Area and Total Bathroom Effect Model in in ,000	42.63694

method	RMSE
Model based on Numeric attributes of the dataset in ,000	37.21290
Knn Model in ,000	36.67178
Classification and regression trees (CART) Model in ,000	33.30301
Random Forrest in ,000	24.75728

Conclusion

To build the House Price Prediction model I started with building Linear model with a set of numeric variables. I identified those variables by observing strong correlation with the "Sale Price" ## Parameters used in the Linear Model Sale_Price_T,total_Area, Gr_Liv_Area, house_Age, total_Bathroom, Garage Cars, Garage Area, Year Remod Add, Mas Vnr Area I used RMSE to calculate the efficiency

Next to reduce th error margin , I looked at three other Models kNN, Classification and regression trees (CART) and Random Forrest. I identified some non-numeric attributes looking at their correlation with the Sale Price ## Non-Numeric - House Attributes - Lot_Shape, Foundation, Sale_Condition , Garage_Finish, House_Style, Heating_QC, External Attributes - MS_Zoning, Neighborhood

Finally with Random Forrest Model I got the lowest RMSE.

I am sure doing some additional Feature Engineering and combining more than one models I will be able to build a better House Prediction Model.

Reference -

Introduction to Data Science by Rafael A. Irizarry

https://jse.amstat.org/v19n3/decock.pdf - Ames, Iowa: Alternative to the Boston Housing Data as an End of Semester Regression Project - Dean De Cock

https://modeldata.tidymodels.org/reference/ames.html - Ames Housing Data

https://www.investopedia.com