Successió de Sturm

Marco Praderio 1361525

Volem demostrar que si p(x) té arrels múltiples, amb la notació de les planes anteriors, la Successió donada per

$$q_0(x) = q(x) = \frac{p(x)}{p_{m-1}(x)}$$

 $q_i(x) = \frac{p_i(x)}{p_{m-1}(x)} \text{ per } i = 1, \dots, m-1$

és de Sturm.

Sabem que la successió $\{p_i\}_{i=0}^{m-1}$ està construïda de manera que compleix totes les propietats de una successió de Sturm excepte la propietat 4 que demana que $p_{m-1}(x)$ no canvii de signe en el interval on es vol estudiar el polinomi. En el cas de la successió $\{q_i\}_{i=0}^{m-1}$ aquesta proprietat si que es compleix en quant $q_{m-1}=1$. vegem ara que es compleixen les altres proprietats

- $q_0(x) = q(x)$: Per definició.
- Si $\alpha \in \mathbb{R}$ és tal que $q_0(\alpha) = 0$ aleshores $q_0'(\alpha) \cdot q_1(\alpha)$: Sabem que $q_0(x) = \frac{p_0(x)}{p_{m-1}(x)}$ i, per tant

$$q_0'(x) = \frac{p_0'(x)p_{m-1}(x) - p_{m-1}'(x)p_0(x)}{p_{m-1}(x)^2}$$

com que en el punt $x=\alpha$ es compleix que $q_0(\alpha)=0$ aleshores $\frac{p_0(\alpha)}{p_{m-1}(\alpha)}=q_0(\alpha)=0 \Rightarrow p_0(\alpha)=0$, per tant

$$q_0'(\alpha) = \frac{p_0'(x)p_{m-1}(x) - p_{m-1}'(x)p_0(x)}{p_{m-1}(x)^2} = \frac{p_0'(x)}{p_{m-1}(x)}$$

i podem conloure que

$$q_0'(\alpha) \cdot q_1(\alpha) = \frac{p_0'(\alpha) \cdot p_1(\alpha)}{p_{m-1}(x)^2} \ge 0$$

com que α no és un 0 de $q_1(x)$ ni de $q'_0(x)$ en quant $q_1(\alpha) = q'_0(\alpha)$ i la funció successió de q_i està construïda de manera que si α és un 0 de q_0 aleshores no és 0 de q_1 . Per tant podem concloure que $q'_0(\alpha) \cdot q_1(\alpha) > 0$

• per a tot $i=1,\ldots,m-2$ es compleix que, si α és tal que $q_i(\alpha)=0$ aleshores $q_{i-1}(\alpha)q_{i+1}(\alpha)<0$: Hem vist que si $q_i(\alpha)=0$ aleshores $p_i(\alpha)=0$ i per tant tenim

$$q_{i-1}(\alpha)q_{i+1}(\alpha) = \frac{p_{i-1}(\alpha)p_{i+1}(\alpha)}{p_{m-1}(\alpha)^2}$$

1

i, com que $p_{i-1}(\alpha)p_{i+1}(\alpha) < 0$ i $p_{m-1}(\alpha)^2 > 0$ aleshores $q_{i-1}(\alpha)q_{i+1}(\alpha) > 0$