Glassdoor Reviews

Nicolas Alvarez, Zachary Brazelton, Daniel Gabriel, Pratheek Gandhodi

Part One: Data Introduction

What is Glassdoor?

- Companies post Jobs
- Previous Employees Review the Company
- Trustworthy

Dataset

- https://www.kaggle.com/datasets/davidgaut hier/glassdoor-job-reviews
- Data pulled from industries in the United Kingdom
- Only from companies on Glassdoor
- Last Updated November 2022

Features

	overall_rating	work_life_balance	culture_values	career_opp	comp_benefits	senior_mgmt	recommend	ceo_approv	outlook
661354	2	2.0	2.0	3.0	3.0	1.0	Х	х	X
512064	4	4.0	4.0	4.0	3.0	4.0	V	X	r
146071	1	3.0	1.0	2.0	2.0	1.0	Х	X	r
153117	4	2.0	2.0	5.0	2.0	3.0	V	r	V
527213	5	5.0	5.0	3.0	5.0	5.0	V	٧	٧

(v - Positive, r - Mild, x - Negative, o - No opinion)

- Work Life Balance- (1-5)
- Culture and Values- (1-5)
- Career Opportunities- (1-5)

- Compensation and Benefits- (1-5)
- Senior Management- (1-5)
- Recommend?
- Approve of CEO?
- Company Outlook?

Part Two: Data Preparation

- Conversions
- Which Variables?
- Missing Values
- Sampling the Data
- Final Modifications

Conversions

- We converted some of our main variables to categorical.
 - o Overall rating, recommend, ceo approval, outlook
- Converted text variables to string
 - o However...

Which Variables?

- Before further data prep, we kept 11 variables, a mix of categorical and string types.
- We removed some string variables due to lack of relevance, or due to effort needed
- We wanted to keep useful numeric and categorical variables for our analysis

Missing Values

- We examined what percentage of data values were missing.
- We removed all with more that 30% missing
 - Diversity/inclusion and location

diversity_inclusion	83.773967
location	35.457913
culture_values	22.821459
senior_mgmt	18.588400
comp_benefits	17.897458
work life balance	17.875039
career_opp	17.589671
overall_rating	0.000000
recommend	0.000000
ceo_approv	0.000000
outlook	0.000000
dtype: float64	

Examining the remaining missing values, we noticed that most occurred in multiple variables. As a result, we decided to simply remove each row that contained any amount of missing values

Sampling the Data

- With around 700,000 rows of data, we decided to sample the full amount to save our computers
- We decided on 200,000 as our new amount, sampled randomly from the full dataset

[] Glassdoor.head()
---------------------	---

	overall_rating	work_life_balance	culture_values	career_opp	comp_benefits	senior_mgmt	recommend	ceo_approv	outlook
661354	2	2.0	2.0	3.0	3.0	1.0	х	х	х
512064	4	4.0	4.0	4.0	3.0	4.0	V	Х	г
146071	1	3.0	1.0	2.0	2.0	1.0	х	х	r
153117	4	2.0	2.0	5.0	2.0	3.0	V	r	V
527213	5	5.0	5.0	3.0	5.0	5.0	٧	V	V

Final Modifications

- We used an 80/20 split of training and testing data in our analysis
- We scaled our data using sklearn preprocessing
 - MinMaxScaler
- Now we're ready to examine our data!

Part Three: Exploratory Analysis

Part Three: Exploratory Analysis

Part Four: Models

- Linear/Logistic
- Naive Bayes
- K-Nearest Neighbors
- Decision Tree
- Random Forest
- Why not XGBoost or SVM?
- Conclusions

Logistic Regression

```
from sklearn.linear model import LogisticRegression
# instantiate the model (using the default parameters)
logistic = LogisticRegression(max iter=150)
# fit the model with data
logistic.fit(Glassdoor X train, Glassdoor y train)
LogisticRegression(max iter=150)
print(logistic.coef )
print(logistic.intercept )
[[-1.95242692 -3.75711558 -3.78972863 -2.08439561 -3.68671128 -0.69177887
  0.94095359  0.08656158  0.18106987  0.27764356  -0.04512147  -0.06787479
  0.60246681]
 [-0.77054765 -1.82157755 -1.62318222 -1.27364003 -1.62045231 -0.64152053
  0.78862091 0.10434279 -0.01164666 0.03271673 0.09374033 -0.11158389
  0.265779221
 [-0.05053877 -0.18576228 -0.15014621 -0.42097036 0.06425468 0.03055761
  -0.10167433 0.09946712 -0.04957546 -0.0637693
                                         0.23291445 -0.05444095
  0.04590992]
 -0.86237828 -0.04914565 -0.10440137 -0.22525117 -0.0585166
                                                    0.00994424
  -0.47234849]
 -0.76552188 -0.24122584 -0.01544638 -0.02133982 -0.22301671 0.22395538
  -0.44180746]]
```


*Not Actual Representation of Data

Naive Bayes

```
[ ] from sklearn.naive_bayes import GaussianNB
     cnb = GaussianNB()
     naive_bayes = cnb.fit(Glassdoor_X_train, Glassdoor_y_train)
```

K-Nearest Neighbors

```
from sklearn.model selection import RandomizedSearchCV
from sklearn.neighbors import KNeighborsClassifier
# Setup the parameters and distributions to sample from: param dist
param dist = {"n neighbors": range(1, 75)}
knn class = KNeighborsClassifier(weights = "distance")
# Instantiate the GridSearchCV object: knn cv
knn cv = RandomizedSearchCV(knn class, param dist, cv=5)
# Fit it to the data
knn cv.fit(Glassdoor X train, Glassdoor y train)
# Print the tuned parameters and score
print("Tuned K Nearest Neighbors Parameters: {}".format(knn cv.best params ))
print("Best score is {}".format(knn cv.best score ))
```

Tuned K Nearest Neighbors Parameters: {'n_neighbors': 65} Best score is 0.6802952368204677

Decision Tree

```
[ ] from sklearn.tree import DecisionTreeClassifier
     from sklearn.model selection import GridSearchCV
     # Setup the parameters and distributions to sample from: param dist
     param dist = {"max depth": [29, 31, 37, 41, 43, 47],
                   "min samples leaf": [1, 2, 3]}
     # Instantiate a Gradient Boosted Random Forest classifier: tree
     GDTree = DecisionTreeClassifier(criterion="entropy")
     # Instantiate the GridSearchCV object: tree cv
     GDTree cv = GridSearchCV(GDTree, param dist, cv=5)
     # Fit it to the data
     GlassdoorTree = GDTree cv.fit(Glassdoor X train, Glassdoor y train)
     # Print the tuned parameters and score
     print("Tuned Tree Parameters: {}".format(GDTree cv.best params ))
     print("Best score is {}".format(GDTree cv.best score ))
     Tuned Tree Parameters: {'max depth': 43, 'min samples leaf': 2}
     Best score is 0.682815457865652
```

Decision Tree

Random Forest

Tuned Random Forest Parameters: {'n_estimators': 71, 'min_samples_leaf': 2, 'max_depth': 23} Best score is 0.7070233474195462

Why not XGB or SVM?

- Performance
 - XGBoost took over 2 hours to complete, while SVM never completed
- Accuracy
 - XGBoost had no improvement over other models

Results

```
log_pred = logistic.predict(Glassdoor_X_test)
print("Logistic Regression: " + str(accuracy_score(Glassdoor_y_test, log_pred)))

naive_pred = naive_bayes.predict(Glassdoor_X_test)
print("Naive Bayes: " + str(accuracy_score(Glassdoor_y_test, naive_pred)))

knn_pred = knn_cv.predict(Glassdoor_X_test)
print("K Nearest Neighbors: " + str(accuracy_score(Glassdoor_y_test, knn_pred)))

tree_pred = GDTree_cv.predict(Glassdoor_X_test)
print("Decision Tree: " + str(accuracy_score(Glassdoor_y_test, tree_pred)))

forest_pred = forest_cv.predict(Glassdoor_X_test)
print("Random Forest: " + str(accuracy_score(Glassdoor_y_test, forest_pred)))
```

Logistic Regression: 0.636725

Naive Bayes: 0.564525

K Nearest Neighbors: 0.628225

Decision Tree: 0.6227 Random Forest: 0.64315

Classification Report for Logistic

from sklearn.metrics import classification_report
print(classification_report(Glassdoor_y_test, log_pred))

0	precision	recall	f1-score	support
1	0.64	0.76	0.70	3087
2	0.41	0.53	0.46	3635
3	0.59	0.52	0.55	9112
4	0.65	0.61	0.63	13074
5	0.75	0.77	0.76	11092
accuracy			0.64	40000
macro avg	0.61	0.64	0.62	40000
weighted avg	0.64	0.64	0.64	40000

Classification Report for Random Forest

[] print(classification_report(Glassdoor_y_test, forest_pred))

	precision	recall	f1-score	support
1	0.67	0.73	0.70	3087
2	0.44	0.48	0.46	3635
3	0.57	0.59	0.58	9112
4	0.65	0.62	0.63	13074
5	0.77	0.74	0.75	11092
accuracy			0.64	40000
macro avg	0.62	0.63	0.63	40000
weighted avg	0.65	0.64	0.64	40000

Comparison

from sklearn.metrics import classification_report
print(classification_report(Glassdoor_y_test, log_pred))

9		precision	recall	f1-score	support	
	1	0.64	0.76	0.70	3087	
	2	0.41	0.53	0.46	3635	
	3	0.59	0.52	0.55	9112	
	4	0.65	0.61	0.63	13074	
	5	0.75	0.77	0.76	11092	
	accuracy			0.64	40000	
	macro avg	0.61	0.64	0.62	40000	
W	eighted avg	0.64	0.64	0.64	40000	

print(classification_report(Glassdoor_y_test, forest_pred))

support	f1-score	recall	precision		
3087	0.70	0.73	0.67	1	
3635	0.46	0.48	0.44	2	
9112	0.58	0.59	0.57	3	
13074	0.63	0.62	0.65	4	
11092	0.75	0.74	0.77	5	
40000	0.64			accuracy	
40000	0.63	0.63	0.62	macro avg	
40000	0.64	0.64	0.65	weighted avg	

Confusion Matrices

```
from sklearn.metrics import confusion matrix
log cnf matrix = confusion matrix(Glassdoor y test, log pred)
forest cnf matrix = confusion matrix(Glassdoor y test, forest pred)
class names=[1,2,3,4,5]
fig, ax = plt.subplots()
tick marks = np.arange(len(class names))
plt.xticks(tick marks, class names)
plt.yticks(tick marks, class names)
sns.heatmap(pd.DataFrame(log cnf matrix), annot=True, cmap="YlGnBu" ,fmt='g',xticklabels=class names, yticklabels=class names)
ax.xaxis.set_label_position("top")
plt.tight layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
```

Comparison

Logistic Regression

Random Forest

- 8000

- 7000

6000

- 5000

- 4000

- 3000

- 2000

- 1000

Conclusions