An Investigation into Trust and Reputation Frameworks for Collaborative Teams of Autonomous Underwater Vehicles

Andrew Bolster

University of Liverpool andrew.bolster@liv.ac.uk

June 4, 2014

- Context
- 2 Trust in Networks
 - What do we mean by trust?
 - What are TMFs?
 - Reasons for using Communication TMFs
 - Pre-existing Research
- Fusions of Trust Metrics
 - Vector Trust
 - Multi-Vector Trust
 - Challenges for Implementing Multi-vector Trust
- Development Plan
 - Publications
 - Thesis Plan

Research Context

- Project launched at QUB ECIT in 2011 under the DSTL/DGA Anglo French Defence Research Group PhD Programme
- What lessons from the Mobile Ad Hoc Network (MANET) space can be transferred to the marine environment?
- Teams of 3 16 Autonomous Underwater Vehicles (AUVs) Mine countermeasures, Hydrography, and Patrol Capabilities (MHPC)
- Defence focus, assumption of highly capable enemy attempting to compromise communications / operations
- Primary Simulation/Analysis work done in 12/13
- Moved to UoL Oct 13 after 2 mth placement @ DSTL PDW Naval Systems / Information Systems departments.
- CDE Project on Precision Timing for Positioning with NPL/Plextek

 Particularly interested in the application of Trust in Decentralised (P2P) Autonomous Systems of Systems, Autonomous Underwater Vehicles (AUVs) for example

- Particularly interested in the application of Trust in Decentralised (P2P) Autonomous Systems of Systems, Autonomous Underwater Vehicles (AUVs) for example
- Trust: The expectation of an actor performing a certain task or range of tasks within a certain confidence or probability

- Particularly interested in the application of Trust in Decentralised (P2P) Autonomous Systems of Systems, Autonomous Underwater Vehicles (AUVs) for example
- Trust: The expectation of an actor performing a certain task or range of tasks within a certain confidence or probability
- Full System Views of Trust
 - Design Trust that a system of systems will perform as spec'd / designed in operation

- Particularly interested in the application of Trust in Decentralised (P2P) Autonomous Systems of Systems, Autonomous Underwater Vehicles (AUVs) for example
- Trust: The expectation of an actor performing a certain task or range of tasks within a certain confidence or probability
- Full System Views of Trust
 - Design Trust that a system of systems will perform as spec'd / designed in operation
 - ullet Operational Trust the systems within a larger system will perform as designed in field \checkmark

Trust Management Frameworks

Context

 Provide information regarding the estimated future states and operations of nodes within networks

Trust Management Frameworks

- Provide information regarding the estimated future states and operations of nodes within networks
- "[...] collecting the information necessary to establish a trust relationship and dynamically monitoring and adjusting the existing trust relationship" - [4]

Trust Management Frameworks

- Provide information regarding the estimated future states and operations of nodes within networks
- "[...] collecting the information necessary to establish a trust relationship and dynamically monitoring and adjusting the existing trust relationship" - [4]
- Enables nodes to form collaborative opinions on their cohort nodes based on
 - Direct Observation of Communications Behaviour (eg Successfully Forwarded Packets)
 - Common-Neighbour Recommendation
 - Indirect Reputation

Transitivity in Trust Networks

TMFs in Ad Hoc Autonomous Systems

 Multiple transitive relationships can be maintained over time, providing trust resilience with dynamic network topology

TMFs in Ad Hoc Autonomous Systems

- Multiple transitive relationships can be maintained over time, providing trust resilience with dynamic network topology
- Enable trust establishment from partial-strangers via indirect trust and direct observation

TMFs in Ad Hoc Autonomous Systems

- Multiple transitive relationships can be maintained over time, providing trust resilience with dynamic network topology
- Enable trust establishment from partial-strangers via indirect trust and direct observation
- Enables nodes to inform internal processes for global efficiency given observed network behaviour / 'wellness', similar to those found in human social networks eg
 - Update routing table based on 'safest' node chains (Phone Tree)
 - Maneuver away from misbehaving nodes (Shunning)
 - Inform as to 'trustworthiness' of forwarded information (Healthy sense of Skepticism)
 - Historic Distrust/Trust decaying over time (Forgiveness/Relationship Decay)

Reason for using TMFs in MANETs

- Provide Risk Mitigation against many classical MANET attacks
 - Black/Grayhole
 - Routing Loop
 - Selective misbehaviour / selfishness
- Generally; to constrain potential malicious behaviour that can operate without detection

Trust in Autonomous Systems

- Public Key Infrastructure Requires Centralised Control and pre-shared keys
- Resurrecting Duckling Uses in-action keying with a trusted source
- Evidence Based Trust Uses shared keys
- Reputation Based Trust Uses Packet forwarding success rate for prediction of future actions
 - CONFIDANT Trust-based router implementation using packet forwarding rate
 - OTMF Trust including transitive information from other nodes

- ... and there are plenty more along the same lines
- Predominantly use single metrics or only communications metrics

Trust in Autonomous Systems

- Public Key Infrastructure Requires Centralised Control and pre-shared keys
- Resurrecting Duckling Uses in-action keying with a trusted source
- Evidence Based Trust Uses shared keys
- Reputation Based Trust Uses Packet forwarding success rate for prediction of future actions
 - CONFIDANT Trust-based router implementation using packet forwarding rate
 - OTMF Trust including transitive information from other nodes
 - MPTM Relationships and Multiple Metrics combined with Gray Interval assessment
- ... and there are plenty more along the same lines
- Predominantly use single metrics or only communications metrics

Vectorised Trust

- Application of several individual metrics for the construction of a single trust measurement
- For example:
 - $X = \{packet loss, signal strength, datarate, delay, throughput\}$
- This multi-parameter trust prevents 'smart' attackers; leveraging a known trust metric to subvert a TMF without detection
- Normally expressed as a vector, but can be condensed into an abstracted or weighted form for comparison [3]

The Need for Multi-Domain Trust Assessment

- Communications not the only target for an attacker (or failure);
 - Following to restricted area
 - Masquerading
 - Hardware Degradation
 - Resource attack via propulsive power
- Physical observation presents opportunity to further reduce the available threat surface while also discriminating between 'True' attacks and mechanical failure.
- Also could provide additional 'handshake' protocols for 'friendly' fleets/teams through reactionary behaviours

Multi-Vector Trust and the Threat Surface

Potential attacks exist across a multi-domain threat surface

Threat Surface for Trust Management Frameworks

Combination of multiple domains, each containing multiple metrics

Malicious Behaviour Discrimination

Agent Based Behaviour Simulator

Context

 Flocking with Intent: MCM, Port Protection, Survey, Protection Detail, etc.

- Flocking with Intent: MCM, Port Protection, Survey, Protection Detail, etc.
- Metric Selection in collaboration CMRE/DSTL
 - Inter Node Heading Deviation
 - Inter Node Distance Deviation
 - Node Speed

- Flocking with Intent: MCM, Port Protection, Survey, Protection Detail, etc.
- Metric Selection in collaboration CMRE/DSTL
 - Inter Node Heading Deviation
 - Inter Node Distance Deviation
 - Node Speed
- Behaviour selection for testing
 - Shadow
 - Spy
 - Sloth
 - Stalker
 - Scoundrel

- Flocking with Intent: MCM, Port Protection, Survey, Protection Detail, etc.
- Metric Selection in collaboration CMRE/DSTL
 - Inter Node Heading Deviation
 - Inter Node Distance Deviation
 - Node Speed
- Behaviour selection for testing
 - Shadow
 - Spy
 - Sloth
 - Stalker
 - Scoundrel
 - Slow Coach (non-malicious)
 - Spin Doctor (non-malicious)

Raw Behavioural Metric Assessment in AUVs

Context

Behavioural Trust Assessment in AUVs

Behavioural Trust Assessment in AUVs

- Detection and identification based on basic weight-assessment classifier against windowed history of observations, with confidence based on a Grey Theoretic weight
- Currently >96% statistical accuracy of detection and confidence, but this needs much more rigorous analysis

Challenges in Multi-vector Trust

- How to define optimality in trust assessment when dealing with multiple vectors and transitive trust?
- Is there a quantifiable benefit to cross-domain comparison beyond single vector Trust?
- Is there an optimal generic cross-domain comparator?

Current Publications

- A Multi-Vector Trust Framework for Autonomous Systems [2]
 - Symposium paper to the Association for the Advancement of Artificial Intelligence on the current state of work, presenting our progress towards multi-vector trust
- Analysis of Trust Interfaces in Autonomous and Semi-Autonomous Collaborative MHPC Operations [1]
 - Part of a Five-Eyes defence strategy programme (TTCP) for assuring C3I capabilities as part of FF2020

Development Plan

- Behaviour Detection (Q3 14) Formal Analysis of Behavioural Trust Systems
 - ASON 2014 : Seventh Int. WS on Autonomous Self-Organizing Networks (Aug 14)
 - AHUC 2014: The Fourth Int. WS on Ad Hoc and Ubiquitous Computing (Aug 14)
 - ICCAR 2015 : WASET Int. Conf. on Control, Automation and Robotics (Dec 14)
- MANET/Marine comparison (Q4 14) Formal Comparison between Terrestrial MANET / Marine contexts
- Multi-Domain Trust Assessment (Q4 14) Combination of Communicative and Physical Behaviour Trusts
 - IEEE Trans. on Communications / Dependable and Secure Computing / Intelligent Systems
- Reactionary/Perturbative Trust (Q1 15) Exploration of reactionary behaviours for teams to 'shake down' suspects
 - SASO15:Self-Adaptive and Self-Organizing Systems,
 - SEAMS15: Software Engineering for Adaptive and Self-Managing Systems

Thesis plan

- Abstract, Acknowledgements, Introduction,
- Background Information on Trust and it's applications to MANETs
- Background Information on Maritime Uses of Autonomous Systems
- Trust in Autonomous Systems of Systems for Maritime Defence Applications
- Strategies for Multi-Domain Trust Assessment
- Modelling and Analysis of Collaborative Node Kinematic Behaviours in Underwater Acoustic MANETS
- Comparative Analysis of Multi-Domain Trust Assessment in Collaborative Mobile Networks
- Reactionary Behaviours to increase decentralised trust in isolated environments
- Conclusions, Bibliography

- Andrew Bolster. Analysis of Trust Interfaces in Autonomous and Semi-Autonomous Collaborative MHPC Operations. Tech. rep. The Technical Cooperation Program, 2014.
- Andrew Bolster and Alan Marshall. "A Multi-Vector Trust Framework for Autonomous Systems". In: 2014 AAAI Spring Symposium Series. Stanford, CA, 2014, pp. 17–19. URL: http://www.aaai.org/ocs/index.php/SSS/SSS14/paper/viewFile/7697/7724.

References II

Ji Guo, Alan Marshall, and Bosheng Zhou. "A New Trust Management Framework for Detecting Malicious and Selfish Behaviour for Mobile Ad Hoc Networks". In: 2011IEEE 10th International Conference on Trust Security and Privacy in Computing and Communications (2011), pp. 142–149. DOI: 10.1109/TrustCom.2011.21. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6120813.

Huaizhi Li and Mukesh Singhal. "Trust Management in Distributed Systems". In: Computer 40.2 (2007), pp. 45-53. ISSN: 00189162. DOI: 10.1109/MC.2007.76. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4085622.

Context

The End