

Caso discreto

La función de probabilidad condicional

Definición: Sea (X, Y) un vector aleatorio discreto con función de probabilidad conjunta $p_{XY}(x, y)$ y marginales $p_X(x)$ y $p_Y(y)$, y sea x tal que $p_X(x) > 0$, la función de probabilidad condicional de Y dado X = x está dada por

$$p_{Y|X=x}(y) = \frac{p_{XY}(x,y)}{p_X(x)}$$

Del mismo modo, sea y tal que $p_Y(y) > 0$, la función de probabilidad condicional de X dado Y = y está dada por

$$p_{X|Y=y}(x) = \frac{p_{XY}(x,y)}{p_Y(y)}$$

Propiedades

- ▶ $p_{Y|X=x}(y) \ge 0$, $p_{X|Y=y}(x) \ge 0$. ▶ $\sum_{y \in R_Y} p_{Y|X=x}(y) = 1$, $\sum_{x \in R_Y} p_{X|Y=y}(x) = 1$.

Demostración

La primera condición se satisface ya que $p_x(x) > 0$ y $p_{xy}(x,y) > 0 \forall x,y$

Respecto a la segunda.

$$\sum_{y} p_{Y|X=x}(y) = \sum_{y} \frac{p_{XY}(x,y)}{p_X(x)} =$$

$$= \frac{1}{p_X(x)} \sum_{y} p_{XY}(x,y) = \frac{1}{p_X(x)} p_X(x) = 1 \square$$

Esto quiere decir que las funciones de probabilidad condicional $p_{Y|X=x}$ y $p_{X|Y=y}$ son funciones de probabilidad puntual.

X: precio kg. pan.

Y: precio docena facturas

Función de probabilidad puntual conjunta

x/y	80	90	100	120	130	$p_X(\cdot)$
100	0.13	0.02	0.11	0.03	0.00	0.29
120	0.06	0.01	0.04	0.02	0.00	0.13
140	0.08	0.03	0.24	0.2	0.03	0.29 0.13 0.58
						1

x/y	80	90	100	120	130	$p_X(\cdot)$
100	0.13	0.02	0.11	0.03	0.00	0.29
120	0.06	0.01	0.04	0.02	0.00	0.13
140	0.08	0.03	0.24	0.2	0.03	0.29 0.13 0.58
$p_Y(\cdot)$	0.27	0.06	0.39	0.25	0.03	1

Función de probabilidad condicional de $p_{Y|X=100}(y)$

у	80	90	100	120	130
$p_{Y X=100}(y)$	0.13/0.29	0.02/0.29	0.11/0.29	0.03/0.29	0/0.29

Función de probabilidad condicional de $p_{Y|X=100}(x)$

y	80	90	100	120	130
$\overline{p_{Y X=100}(y)}$	0.45	0.07	0.38	0.10	0

Función de probabilidad condicional de $p_{Y|X=120}(x)$

Función de probabilidad condicional de $p_{Y|X=140}(x)$

У	80	90	100	120	130
$p_{Y X=140}(y)$					

Hallar $p_{Y|X=x}(y)$, para x = 80, 90, 100, 120, 130.

Distribución condicional. Caso continuo

La función de densidad condicional

Definición:

Sea (X,Y) un vector aleatorio continuo con función de densidad conjunta $f_{XY}(x,y)$ y marginales $f_X(x)$ y $f_Y(y)$, y sea x tal que $f_X(x) > 0$, la función de densidad condicional de Y dado X = x está dada por

$$f_{Y|X=x}(y) = \frac{f_{XY}(x,y)}{f_X(x)}$$

Del mismo modo, sea y tal que $f_Y(y) > 0$, la función de densidad condicional de X dado Y = y está dada por

$$f_{X|X=y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

Propiedades

- ► $f_{Y|x=x}(y) \ge 0$ para todo y

Demostración

La primera condición se satisface ya que $f_X(x) > 0$ y $f_{XY}(x,y) \ge 0 \forall x,y$.

Respecto a la segunda,

$$\int_{-\infty}^{\infty} f_{Y|X=x}(y) dy = \int_{-\infty}^{\infty} \frac{f_{XY}(x,y)}{f_{X}(x)} dy = \frac{1}{f_{X}(x)} \int_{-\infty}^{\infty} f_{XY}(x,y) d$$

Ejemplo 1

Sea (X, Y) un vector aleatorio continuo con función de densidad conjunta

$$f_{XY}(x,y) = 2(x+2y)I_T(x,y)$$

siendo
$$T = \{(x, y)/0 \le x \le 1, 0 \le y \le 1 - x\}$$

Hallar
$$P\left(X \leq \frac{1}{2} | Y = \frac{1}{4}\right)$$

Ejemplo 1 (continuación)

Observar que X|Y=1/4 es una nueva variable aleatoria con densidad $f_{X|Y=1/4}(x)$

$$f_{X|Y=1/4}(x) = \frac{f_{XY}(x, 1/4)}{f_Y(1/4)} = \frac{2(x+2/4)I_{(0,3/4)}(x)}{1+\frac{1}{2}-\frac{3}{16}}$$
$$= \frac{32}{21}\left(x+\frac{1}{2}\right)I_{(0,3/4)}(x)$$

Ahora,

$$P\left(X \le \frac{1}{2}|Y = \frac{1}{4}\right) = \int_{-\infty}^{1/2} f_{X|Y=1/4}(x) dx = \int_{0}^{1/2} \frac{32}{21} \left(x + \frac{1}{2}\right) I_{(0,3/4)}(x)$$

$$= \int_0^{1/2} \frac{32}{21} \left(x + \frac{1}{2} \right) dx = \left. \frac{32}{21} \left(\frac{x^2}{2} + \frac{x}{2} \right) \right|_0^{1/2} = \frac{32}{21} \left(\frac{1}{8} + \frac{1}{4} \right) = \frac{4}{7}$$

Ejemplo 2: Normal bivariada

Si (X, Y) es normal bivariada, entonces la densidad condicional de X dado Y=y es el cociente

$$\frac{f_{XY}(x,y)}{f_Y(y)}$$

de la densidad normal bivariada y una densidad normal univariada.

Después de muchas cuentas, se llega a

$$f_{X|Y}(x|y) = \frac{1}{\sigma_1 \sqrt{2\pi \left(1-\rho^2\right)}} \exp\left(-\frac{1}{2} \frac{\left[x-\mu_1-\rho\frac{\sigma_1}{\sigma_2}\left(y-\mu_2\right)\right]^2}{\sigma_1^2\left(1-\rho^2\right)}\right),$$

que es una densidad normal univariada con media $\mu=\mu_1+\rho\left(y-\mu_2\right)\sigma_1/\sigma_2$ y varianza $\sigma^2=\sigma_1^2\left(1-\rho^2\right)$. Ver libro de Rice, pag 91.

Ejemplo 2: Normal bivariada (continuación)

El conjunto de datos father.son del paquete UsingR contiene los datos estudiados por Pearson sobre la estatura de padres e hijos (en pulgadas) a fines del siglo XIX. Los datos sugieren que la distribución conjunta de la estatura de un hombre adulto y la estatura de su padre, sigue una distribución normal bivariada con parámetros $\mu_1 = 68.7$, $\mu_2 = 67.7$, $\sigma_1 = 7.9$, $\sigma_2 = 7.5$ y $\rho = 0.5$.

Hallar la probabilidad de que un hombre sea más alto que su padre, sabiendo que su padre mide 72 pulgadas (aprox 183 cm)

Ejemplo 2: Normal bivariada (continuación)

Experimento: elegir un hombre al azar de cierta población

$$X =$$
estatura del hombre

$$Y =$$
estatura del padre

$$X|Y = 72 \sim N(\mu, \sigma^2)$$

con
$$\mu = \mu_1 + \rho (72 - \mu_2) \sigma_1 / \sigma_2 v$$

$$\sigma^2 = \sigma_1^2 (1 - \rho^2).$$

ya que
$$68.7 + 0.5(72 - 67.7)7.9/7.5 = 70.96$$
 y

$$7.5^2(1-0.5^2) = 46.81$$

$$X|Y = 72 \sim N(70.96, 46.81)$$

Ejemplo 2: Normal bivariada (continuación)

$$P(X > 72|Y = 72) = 1 - P(X \le 72|Y = 72)$$

$$= 1 - P\left(\frac{X - 70.94}{\sqrt{46.81}} \le \frac{72 - 70.94}{\sqrt{46.81}} \middle| Y = 72\right)$$

$$= 1 - \Phi\left(\frac{72 - 70.94}{\sqrt{46.81}}\right) = 1 - \Phi(0.15) = 1 - 0.5615 = 0.4384$$

$$1-pnorm((72-70.94)/sqrt(46.81))$$

[1] 0.4384381

La probabilidad de que un hombre sea más alto que su padre, dado que el padre mide 72 pulgadas es de 0.44.

Independencia de variables aleatorias

Función de distribución acumulada conjunta

Definición: Sea (X, Y) un vector aleatorio; la **función de distribución acumulada conjunta** de (X, Y) está dada por

$$F_{XY}(x,y) = P(X \le x, Y \le y)$$

Si (X, Y) es continuo

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(s,t)dtds \quad \forall (x,y) \in \mathbb{R}^{2}$$

Si (X, Y) es **discreto**

$$F_{XY}(x,y) = \sum_{s \le x} \sum_{t \le v} p_{XY}(s,t) \quad \forall (x,y) \in \mathbb{R}^2$$

Independencia

Definición: Las variables aleatorias X e Y se dicen independientes si su f.d.a. conjunta se factoriza como el producto de las f.d.a. marginales:

$$F_{XY}(x,y) = F_X(x) F_Y(y)$$

para todo x, y.

- Esta definición vale para vectores discretos y continuos
- La definición es equivalente a:

Las variables aleatorias X e Y son independientes si y sólo si para todo a < b y c < d se satisface

$$P(\{a < X < b\} \cap \{c < Y < d\}) = P(a < X < b)P(c < Y < d)$$

Propiedades

Se puede probar que

▶ Para los vectores discretos la definición es equivalente a que la f.p.p. conjunta se factoriza. Es decir,

$$p_{XY}(x,y) = p_X(x)p_Y(y)\forall (x,y)$$

▶ Para los vectores continuos la definición implica que la densidad conjunta se factoriza. Más precisamente, que

$$f_{XY}(x, y) = f_X(x)f_Y(y)$$

es una densidad para (X, Y).

► Si existen funciones h y g tales que

$$f_{XY}(x, y) = g(x)h(y)$$

entoces X e Y son independientes. Además existen constantes c_1 y c_2 tales que $c_1g(x)$ es una densidad para X y $c_2h(y)$ es una densidad para Y.

Más propiedades

Se puede probar que, si X e Y son independientes, entonces

- ▶ $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ para todo $A, B \subset \mathbb{R}$.
- ▶ h(X) y g(Y) son independientes, para cualquier par de funciones f y g.
 - ▶ El soporte de (X, Y) es un rectángulo o una unión de rectángulos.

¿Qué es el soporte de un vector aleatorio?

Es el conjunto de valores en los cuales la densidad es positiva.

OJO: La reciproca no es cierta: puede ocurrir que el soporte de (X, Y) sea un rectángulo pero X e Y no sean independientes.

Tarea: Buscar en la práctica un contraejemplo. ¿Como se prueba la no indendencia en estos casos? Ver página 98 del apunte.

Ejemplo 1

Sea (X,Y) un vector aleatorio discreto con fpp conjunta dada por

y x	0	1	2	3	$p_{\mathrm{Y}}(y)$
0	1/30	0	15/30	0	16/30
1	0	9/30	0	5/30	14/30
$p_X(x)$	1/30	9/30	15/30	5/30	1

¿Son X e Y independientes?

No, pues $p_{XY}(0,1) = 0 \neq 1/30 \cdot 14/30 = p_X(0)p_Y(1)$

Ejemplo 2: Normal bivariada

Sea (X, Y) un vector aleatorio normal multivariado. Probar que, si $\rho = 0$ entonces X e Y son independientes.

Recordar

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)^2}{\sigma_1\sigma_2} \right] \right)$$

Si $\rho = 0$,

$$= \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2} \left\lfloor \frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right\rfloor\right)$$

$$= \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2} \left\lceil \frac{(x-\mu_1)^2}{\sigma_1^2} \right\rceil\right) \exp\left(-\frac{1}{2} \left\lceil \frac{(y-\mu_2)^2}{\sigma_2^2} \right\rceil\right)$$

La densidad conjunta se factoriza y por lo tanto X y Y son independientes.

Ejemplo 3

Sea (X, Y) un vector aleatorio continuo con densidad uniforme en el triángulo

$$T = \{(x, y)/0 \le x \le 1, 0 \le y \le 1 - x\}$$

 ξ Son X e Y independientes? No, porque el soporte de (X,Y) no es un rectángulo ni una unión de rectángulos.

