Problem 1. Anderson 5.9

A narrow beam of gamma rays passes through $2.0\,\mathrm{cm}$ of lead. The incident beam consists of $30\%~0.4\,\mathrm{MeV}$ photons and $70\%~1.5\,\mathrm{MeV}$ photons. What fraction of the incident fluence is transmitted? Use Figure 5.5.

In addition to what's asked for in the question, find the effective attenuation coefficient.

Problem 2. Anderson 5.10

A narrow beam of neutrons passes through $2.0\,\mathrm{cm}$ of cadmium. The incident beam consists of $60\%~0.02\,\mathrm{MeV}$ neutrons and $40\%~0.5\,\mathrm{MeV}$ neutrons. What fraction of the incident fluence is transmitted? Use the information on Figure 5.6.

Problem 3. Anderson 5.14

Calculate the dose for a 100 R exposure measured in muscle tissue and bone at $18\,\mathrm{keV}$ (Mo $-\mathrm{K}_{\alpha}$), $140\,\mathrm{keV}$ ($^{99m}\mathrm{Tc}$), and $1.25\,\mathrm{MeV}$ ($^{60}\mathrm{Co}$) from the information on Figure 5.14. Assume that electronic equilibrium holds at the point of consideration.

Problem 4.

Calculate the flux of epithermal neutrons needed to deliver a dose rate of $0.1\,\mathrm{Gy\,s^{-1}}$ to muscle (tissue). Use an energy of $0.1\,\mathrm{MeV}$ to represent the average energy of epithermal neutrons.

Problem 5. Anderson 6.4

What is the angle of scatter and the energy of a Compton electron when the incident photon energy is $140\,\mathrm{keV}$ and the angle of scatter of the photon is 60° ?

Problem 6.

Calculate the Compton edge energies (max scattered electron energy) for the following isotopes:

- (a) ^{54}Mn
- (b) ^{137}Cs
- (c) ²²Na (ignore the positron annihilation gammas)

Problem 7.

Using the photon energy from a 137 Cs decay, calculate the following:

- (a) The Klein Nishina total scattering cross section
- (b) The total atomic cross section for Compton scattering in lead
- (c) The Compton scattering attenuation coefficient in lead

Solution

Please see attached code

Part (a)

$$\sigma_{KN} = \pi r_0^2 \left[\frac{2(1+\alpha)}{\alpha^2} \left(\frac{2(1+\alpha)}{1+2\alpha} - \frac{\ln(1+2\alpha)}{\alpha} \right) + \frac{\ln(1+2\alpha)}{\alpha} - \frac{2(1+3\alpha)}{(1+2\alpha)^2} \right]$$

$$\sigma_{KN} = 0.256 \,\mathrm{b}$$

Part (b)

$$\sigma_{compton} = Z\sigma_{KN}$$
 $\sigma_{compton} = 21 \,\mathrm{b}$

Part (c)

$$\left(\frac{\mu}{\rho}\right)_{is} = n_m \sigma_{is}$$

$$\mu_{is} = \frac{N_A Z}{M_m} \rho \sigma_{is}$$

$$\mu_{is} = 56.78 \,\text{cm}^{-1}$$

Problem 8.

Calculate the values for $\frac{\mathrm{d}\sigma_{KN}}{\mathrm{d}T_e}$ versus T_e assuming an incoming photon energy of 0.5 MeV. Calculate the values between $T_e=0$ and $T_e=T_{max}$ in step sizes of 0.02 MeV. Plot your results and compare with figure 6.7

Solution

This strongly resembles figure 6.7, though without the vertical edge drawn in.