Package 'MixedPoisson'

October 12, 2022

Type Package

Index

Title Mixed Poisson Models

version 2.0
Date 2016-11-24
Author Alicja Wolny-Dominiak and Michal Trzesiok
Maintainer Alicja Wolny-Dominiak <alicja.wolny-dominiak@ue.katowice.pl></alicja.wolny-dominiak@ue.katowice.pl>
Depends gaussquad, Rmpfr, MASS
Description The estimation of the parameters in mixed Poisson models.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2016-12-09 08:58:43
R topics documented:
MixedPoisson-package
est.delta
est.gamma
est.nu
Gamma.density
invGauss.density
lambda_m_step
lambda_start
ll.gamma
ll.invGauss
ll.lognorm
lognorm.density
pg.dist

14

2 est.delta

MixedPoisson-package Mixed Poisson Models

Description

The package provides functions, which support to fit parameters of different mixed Poisson models using the Expectation-Maximization (EM) algorithm of estimation, cf. (Ghitany et al., 2012, pp. 6848). In the model the assumptions are: conditional $N|\theta$ is of distribution $N|\theta \sim POIS(\lambda\theta)$, parameter θ is a random variable distributed according to the density function $f_{\theta}(\cdot)$, $E[\theta]=1$ and $\lambda=\exp(\mathbf{x}_i'\boldsymbol{\beta})$ – the regression component. The E-step is carried out through the numerical integration using Laquerre quadrature. The M-step estimates the parameters $\boldsymbol{\beta}$ using GLM Poisson with pseudo values from E-step and mixing parameters using optimize function.

Details

Package: MixedPoisson

Type: Package Version: 1.0

Date: 2015-07-13 License: GPL-2

Author(s)

Alicja Wolny-Dominiak and Michal Trzesiok

Maintainer: <alicja.wolny-dominiak@ue.katowice.pl>

References

Karlis, D. (2005). EM algorithm for mixed Poisson and other discrete distributions. Astin Bulletin, 35(01), 3-24. Ghitany, M. E., Karlis, D., Al-Mutairi, D. K., & Al-Awadhi, F. A. (2012). An EM algorithm for multivariate mixed Poisson regression models and its application. Applied Mathematical Sciences, 6(137), 6843-6856.

est.delta

Estimation of delta parameter of inverse-Gaussian distribution

Description

The function estimates the value of the parameter delta using optimize.

est.gamma 3

Usage

```
est.delta(t)
```

Arguments

t the vector of values

Details

The form of the distribution is as in the function 11. invGauss

Value

nu the estimates of ν

11.delta.max the value of loglikehood

Author(s)

Michal Trzesiok

Examples

```
est.delta(t=c(3,8))
```

est.gamma

Estimation of gamma parameter of Gamma distribution

Description

The function estimates the value of the parameter gamma using optimize.

Usage

```
est.gamma(t)
```

Arguments

t the vector of values

Details

The form of the distribution is as in the function 11. gamma

Value

gamma the estimates of γ

11. gamma. max the value of loglikehood

est.nu

Author(s)

Michal Trzesiok

Examples

```
est.gamma(t=c(3,8))
```

est.nu

Estimation of nu parameter of log-normal distribution

Description

The function estimates the value of the parameter nu using optimize.

Usage

```
est.nu(t)
```

Arguments

t the vector of values

Details

The form of the distribution is as in the function 11.1ognorm

Value

nu the estimates of ν

11.nu.max the value of loglikehood

Author(s)

Michal Trzesiok

```
est.nu(t=c(3,8))
```

Gamma.density 5

Gamma.density

Gamma density

Description

The function returns the vector of values of density function for of Gamma distribution with one parameter γ .

Usage

```
Gamma.density(theta, gamma.par)
```

Arguments

theta

the vector of values

gamma.par

the parameter of Gamma distribution

Details

The pdf of Gamma is of the form $f_{\theta}(\theta)=rac{\gamma^{\gamma}}{\Gamma(\gamma)}\theta^{\gamma-1}\exp(-\gamma\theta)$

Value

Gamma.density(theta, nu)

the density – the vector of values

Author(s)

Michal Trzesiok

Examples

```
Gamma.density(c(2,3,5,4,6,7,4), 5)
```

invGauss.density

inverse-Gaussian Density

Description

The function returns the vector of values of density function for of inverse-Gaussian distribution with one parameter δ .

Usage

```
invGauss.density(theta, delta)
```

6 lambda_m_step

Arguments

theta the vector of values

delta the parameter of inverse-Gaussian distribution

Details

The pdf of inverse-Gaussian is of the form $f_{\theta}(\theta) = \frac{\delta}{2\pi} \exp(\delta^2) \theta^{-\frac{3}{2}} \exp(-\frac{\delta^2}{2}(\frac{1}{\theta} + \theta))$

Value

Author(s)

Michal Trzesiok

Examples

```
invGauss.density(c(2,3,5,4,6,7,6), 5)
```

lambda_m_step Estimation of Lambda in M-step - Expectation-Maximization (EM) algorithm

Description

The function fits the GLM Poisson with given offset.

Usage

```
lambda_m_step(variable, X, offset)
```

Arguments

variable the vector of numbers

X model matrix of the form X = model.matrix(regressor). In the model with-

out regressor the X sould be defined as X = as.matrix(rep(1, length(variable)))

offset offset in GLM Poisson

Details

It fits the GLM Poisson, where $variable \sim 1$ and the ofsset is given as the vector of the variable's length. The results are used in M-step of EM algorithm, cf. [Karlis, 2012] pp. 6850.

lambda_start 7

Value

lambda $\hat{\lambda} = \hat{\beta} X$

beta regressor parameters

glm output of glm

Author(s)

Alicja Wolny-Dominiak, Michal Trzesiok

Examples

```
set.seed(1234)
variable=rpois(50,4)
X=as.matrix(rep(1, length(variable)))
t=pseudo_values(variable, mixing=c("invGauss"), lambda=4, delta=1, n=100)
lambda_m_step(variable, X, offset=t$pseudo_values)
```

lambda_start

Estimation of starting lambda in Expectation-Maximization (EM) al-

gorithm

Description

The function fits the GLM Poisson without regressors.

Usage

```
lambda_start(variable, X)
```

Arguments

variable the vector of numbers

X $model\ matrix\ of\ the\ form\ X = model.matrix\ (regressor).$ In the model with-

out regressor the X sould be defined as X = as.matrix(rep(1, length(variable)))

Details

It fits the GLM Poisson, where $variable \sim 1$. The results are taken as the starting value of EM algorithm.

Value

lambda $\hat{\lambda} = \hat{\beta} X$

beta regressor parameters

glm output of glm

8 Il.gamma

Author(s)

Alicja Wolny-Dominiak, Michal Trzesiok

Examples

```
set.seed(1234)
variable=rpois(50,4)
X=as.matrix(rep(1, length(variable)))
t=pseudo_values(variable, mixing=c("invGauss"), lambda=4, delta=1, n=100)
lambda_m_step(variable, X, offset=t$pseudo_values)
```

11.gamma

Gamma Log-likelihood

Description

The function returns the value of log-likelihood function for of Gamma distribution with one parameter γ .

Usage

```
11.gamma(gamma.par, t)
```

Arguments

 $\begin{array}{ll} {\rm gamma.par} & \gamma \; {\rm parameter} \\ {\rm t} & {\rm the \; vector \; of \; values} \end{array}$

Details

The pdf of Gamma is of the form $f_{\theta}(\theta)=rac{\gamma^{\gamma}}{\Gamma(\gamma)}\theta^{\gamma-1}\exp(-\gamma\theta)$

Value

11. gamma the value

Author(s)

Michal Trzesiok

```
11.gamma(1, c(3,8))
```

11.invGauss 9

ll.invGauss

Inverse-Gaussian Log-likelihood

Description

The function returns the value of log-likelihood function for of inverse-Gaussian distribution with one parameter δ .

Usage

```
ll.invGauss(delta, t)
```

Arguments

delta

 δ parameter

t

the vector of values

Details

The pdf of inverse-Gaussian is of the form $f_{\theta}(\theta) = \frac{\delta}{2\pi} \exp(\delta^2) \theta^{-\frac{3}{2}} \exp(-\frac{\delta^2}{2} (\frac{1}{\theta} + \theta))$

Value

ll.invGauss

the value

Author(s)

Michal Trzesiok

Examples

```
11.invGauss(1, c(3,8))
```

11.lognorm

Log-normal Log-likelihood

Description

The function returns the value of log-likelihood function of log-normal distribution with one parameter ν .

Usage

```
11.lognorm(nu, t)
```

10 lognorm.density

Arguments

nu ν parameter

t the vector of values

Details

The pdf of log-normal is of the form
$$f_{\theta}(\theta) = \frac{1}{\sqrt{2\pi\nu\theta}} \exp[-\frac{(\log(\theta) + \frac{\nu^2}{2})^2}{2\nu^2}]$$

Value

11.lognorm the value

Author(s)

Michal Trzesiok

Examples

11.lognorm(1, c(3,8))

lognorm.density

Log-normal Density

Description

The function returns the vector of values of density function for of log-normal distribution with one parameter ν .

Usage

lognorm.density(theta, nu)

Arguments

theta the vector of values

nu the parameter of log-normal distribution

Details

The pdf of log-normal is of the form
$$f_{\theta}(\theta) = \frac{1}{\sqrt{2\pi\nu\theta}} \exp[-\frac{(\log(\theta) + \frac{\nu^2}{2})^2}{2\nu^2}]$$

Value

 pg.dist

Author(s)

Michal Trzesiok

Examples

```
lognorm.density(c(2,3,5,4,6,7,6), 5)
```

pg.dist

Poisson-Gamma Distribution (Negative-Binomial)

Description

The function fits a mixed Poisson distribution, in which the random parameter follows Gamma distribution (the negative-binomial distribution). As teh method of estimation Expectation-maximization algorithm is used. In M-step the analytical formulas taken from [Karlis, 2005] are applied.

Usage

```
pg.dist(variable, alpha.start, beta.start, epsylon)
```

Arguments

variable The count variable.

alpha.start The starting value of the parameter alpha. Default to 1. beta.start The starting value of the parameter beta. Default to 0.3

epsylon Default to epsylon = $10^{(-8)}$

Details

This function provides estimated parameters of the model $N|\lambda \sim Poisson(\lambda)$ where λ parameter is also a random variable follows Gamma distribution with hiperparameters α, β . The pdf of Gamma is of the form $f_{\lambda}(\lambda) = \frac{\lambda^{\alpha-1} \exp(-\beta \lambda) \beta^{\lambda}}{\Gamma(\alpha)}$.

Value

alpha the parameter of mixing Gamma distribution beta the parameter of mixing Gamma distribution

theta the value 1/beta

n.iter the number of steps in EM algorithm

References

Karlis, D. (2005). EM algorithm for mixed Poisson and other discrete distributions. Astin bulletin, 35(01), 3-24.

12 pl.dist

Examples

```
library(MASS)
pGamma1 = pg.dist(variable=quine$Days)
print(pGamma1)
```

pl.dist

Poisson-Lindley Distribution

Description

The function fits a mixed Poisson distribution, in which the random parameter follows Lindley distribution. As teh method of estimation Expectation-maximization algorithm is used.

Usage

```
pl.dist(variable, p.start, epsylon)
```

Arguments

variable The count variable.

p. start The starting value of p parameter. Default to 0.1.

epsylon Default to epsylon = $10^{(-8)}$

Details

This function provides estimated parameters of the model $N|\lambda \sim Poisson(\lambda)$ where λ parameter is also a random variable follows Lindley distribution with hiperparameter p. The pdf of Lindley is of the form $f_{\lambda}(\lambda) = \frac{p^2}{p+1}(\lambda+1)\exp(-\lambda p)$.

Value

p the parameter of mixing Lindley distribution

n.iter the number of steps in EM algorithm

References

Karlis, D. (2005). EM algorithm for mixed Poisson and other discrete distributions. Astin bulletin, 35(01), 3-24.

```
library(MASS)
pLindley = pl.dist(variable=quine$Days)
print(pLindley)
```

pseudo_values 13

pseudo_values	Pseudo values – Expectation-Maximization (EM) algorithm

Description

The function returns the pseudo values t_i defined as the conditional expectation $E[\theta_i|k_1,...,k_n]$, where $k_1,...,k_n$ are realizations of the count variable N.

Usage

```
pseudo_values(variable, mixing, lambda, gamma.par, nu, delta, n)
```

Arguments

variable	the vector of numbers
mixing	the name of mixing distribution - "Gamma", "lognorm", "invGauss"
lambda	λ parameter in mixed Poisson model
gamma.par	γ parameter in Gamma mixing distribution
nu	ν parameter in log-normal mixing distribution
delta	δ parameter in inverse-Gaussian mixing distribution
n	The integer value for the Laguerre quadrature. Default to 100

Details

The function calculates the vector of pseudo values $t_i = E[\theta_i | k_1, ..., k_n]$ in E-step of EM algorithm. It applies the numerical integration using laguerre.quadrature in the nominator and the denominator of the formula

The proper parameter γ , ν , δ should be chosen according to the mixing distribution.

Value

```
pseudo_values pseudo values t_1, ..., t_n
nominator nominator in the formula
denominator denominator in the formula
```

Author(s)

Alicja Wolny-Dominiak, Michal Trzesiok

```
variable=rpois(30,4)
pseudo_values(variable, mixing="Gamma", lambda=4, gamma.par=0.7, n=100)
```

Index

```
\operatorname{est.delta}, 2
est.gamma, 3
\texttt{est.nu}, \textcolor{red}{4}
{\tt Gamma.density}, {\tt 5}
{\tt invGauss.density}, {\tt 5}
{\tt lambda\_m\_step}, {\color{red} 6}
lambda_start, 7
11.gamma, 8
11.invGauss,9
11.lognorm, 9
{\tt lognorm.density}, \\ 10
{\tt MixedPoisson-package}, 2
{\tt MixedPoisson2}~({\tt MixedPoisson-package}),~2
pg.dist, 11
pl.dist, 12
pseudo_values, 13
```